#### 1.Beschreibende Statistik

Werte werden in ein Array geschrieben um bestimmte Methoden anwenden zu können.

A = [2, 3, 4, 5, 5, 9, 1, 3, 5]

B = [193, 180, 183, 185, 170, 156, 200, 188, 183]

Bei Funktionsfragen: doc functionname

#### **Arithmetisches Mittel**

$$\frac{1}{n} \sum_{i=1}^{n} x_i$$

mean(A) → = 4,11

#### Median(50 % Quantil)

$$\widetilde{x} = \left\{ egin{array}{ll} x_{m+1} & falls \ n=2m+1 \ rac{1}{2} \left[ \left( x 
ight]_m + x_{m+1} 
ight) & falls \ n=2m \end{array} 
ight.$$

quantile(A, 0.5)  $\rightarrow$  = 4

#### **P-Quantil**

$$\widetilde{x}_{p} = \begin{cases} x_{[np]} & falls \ np \notin \mathbb{N} \\ \frac{1}{2} [(x]_{np} + x_{np+1}) & falls \ np \in \mathbb{N} \end{cases}$$

quantile(A, np) quantile(A, 0.25) → = 2.75 quantile(A, 0.75) → = 5

#### **Meisvorkommende Zahl**

 $mode(A) \rightarrow = 5$ 

### empirische Varianz

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

var(A) → = 5,36

## empirison Std-Abweichung

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2}$$

std(A) → = 5,36

#### **Spannweite**

$$R = x_{max} - x_{min} \qquad \qquad \Rightarrow \qquad = 8$$

#### **Interquatilabstand**

$$I = \widetilde{x}_{0.75} - \widetilde{x}_{0.25}$$
 quantile(A, 0.75) - quantile(A, 0.25)

| (empirische) Standardabweichungen                                                      |                                   |         |         |
|----------------------------------------------------------------------------------------|-----------------------------------|---------|---------|
| $s_x = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2}$                       | std(A) →                          | 2,25    |         |
| $s_y = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (y_i - \overline{y})^2}$                       | std(B) →                          |         |         |
| (empirische) Kovarianz √                                                               |                                   |         |         |
| 27                                                                                     |                                   | 5.36    | -27.25  |
| $a = \frac{1}{\sqrt{2}} \sum_{n=1}^{\infty} (n - \overline{n})(n - \overline{n})$      | st∕d(A,B) →                       | -27.25  | 164,5   |
| $s_{x,y} = \frac{1}{n-1} \sum_{i=1}^{\infty} (x_i - \overline{x})(y_i - \overline{y})$ | <b>℃</b> √ s <sub>x,y</sub> = -27 | ,25     | VOS ( P |
| Möglicherweise, könnte ein Multiplikator vor                                           | der Tabelle stehen. (Bsp.: 1.0    | De+05 ) |         |
| (empirischer) Korrelationskoeffizient                                                  |                                   |         |         |
|                                                                                        |                                   | 1       | -0.92   |
| $r_{x,y} = \frac{s_{x,y}}{s_x s_y}$                                                    | corrcoef(A,B) →                   | -0.92   | 1       |
| $s_x s_y$                                                                              | r <sub>x,y</sub> = -0,            | .92     |         |
| r(x,y) = 1 Perfekte linae abhänigkeit                                                  | r(x,y) < 0 Negativ korrieliert    |         |         |
| r(x,y) > 0 Positiv korrieliert                                                         | r(x,y) = 0 unkorrieliert          |         |         |

| <b>Bsp.:</b> k =                                                                                          | : 2, n = 7                                    |  |
|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------|--|
| Permutation (ohne Wiederholung)                                                                           |                                               |  |
| V(n) = n!                                                                                                 | factorial(n) → =5040                          |  |
| Möglichkeiten für Anordnungen von 10 CDs (n) im Regal                                                     | factorial(10) = 3.628.800                     |  |
| Permutation (mit Wiederholung) (nick behand                                                               |                                               |  |
| $V(n,k) = \frac{n!}{k!}$                                                                                  | factorial(n)/factorial(k)→ = 2520             |  |
| Möglichkeiten für Anordnungen von 10 CDs (n) im<br>Regal bei der 3 CDs (k) gleich sind                    | factorial(10)/factorial(3) = 604.800          |  |
| Variation (ohne Wiederholung)                                                                             |                                               |  |
| $V(n,k) = \frac{n!}{(n-k)!}$                                                                              | nchoosek(n,k)*factorial(k) $\rightarrow$ = 42 |  |
| passwort mit einer Länge von 6(k) und mit dem<br>Zeichen a-z (26(n)) die sich nicht wiederholen<br>dürfen | nchoosek(n,k)*factorial(k)                    |  |
| Variationen (mit Wiederholung)                                                                            |                                               |  |
| $V(n,k)=n^k$                                                                                              | n^k → = 49                                    |  |
| Pin mit einer Länge von 4(k) und mit den<br>Zahlen 0-9 (10(n))                                            | 10^4 = 10.000                                 |  |
| Pin mit einer Länge von 4(k) und mit dem Zahlen 0-<br>9 (10(n)) doch die erste Zahl darf keine 0 sein     | 10^3*9 = 9.000                                |  |
| Kombination (ohne Wiederholung)                                                                           |                                               |  |
| $\binom{n}{k} = \frac{n!}{k! (n-k)!}$                                                                     | nchoosek(n,k) → = 21                          |  |
| beim Loto werden 6 Zahlen (k) aus 49 Zahlen (n) ausgewählt                                                | nchoosek(49,6) = 13.983.816                   |  |
| Kombination (mit Wiederholung)                                                                            |                                               |  |
| $\binom{n+k-1}{k} = \frac{(n+k-1)!}{k! (n-1)!}$                                                           | nchoosek(n+k-1,k) → = 28                      |  |
| beim Loto werden 6 Zahlen (k) aus 49 Zahlen (n) ausgewählt doch die Zahlen können sich wiederholen        | nchoosek(49+6-1,6) = 25.827.165               |  |

#### 2. Diskrete Wahrscheinlichkeitstheorie



| Geometrische Verteilung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                             |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| $egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$ |                                                                                                                                                                                                                             |  |
| Verteilungsfunktion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $P(X = x) = \begin{cases} pq^{ x } & falls \ x \in \mathbb{N} \\ 0 & sonst. \end{cases}$ $P(X \le x) = \begin{cases} 1 - q^{ x } & falls \ x \ge 1 \\ 0 & sonst. \end{cases}$ $E[X] = \frac{1}{p}$ $Var[X] = \frac{q}{p^2}$ |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $P(X \le X) = \begin{cases} 0 \text{ sonst.} \\ 1 \end{cases}$                                                                                                                                                              |  |
| Erwartungswert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $E[X] = \frac{p}{p}$                                                                                                                                                                                                        |  |
| Varianz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $Var[X] = \frac{q}{p^2}$                                                                                                                                                                                                    |  |
| Bsp.: p = 0.2 → Erfolg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | q = 0.8 → Misserfolg                                                                                                                                                                                                        |  |
| 3 Versuche bis Erfolg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | geopdf(x-1,p) → = 0,1024                                                                                                                                                                                                    |  |
| höchstens/bis zu/max<br>4 Versuche                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | geocdf(x-1,p) → =0,590                                                                                                                                                                                                      |  |
| mehr als/min<br>4 Versuche                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1- geocdf(x-1,p) → =0,409                                                                                                                                                                                                   |  |
| Binominal-Verteilung $X{\sim}Bin(n,p)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                             |  |
| Verteilung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $P(X = x) = \left\{ \binom{n}{x} p^x * q^{n-x} falls x \in \mathbb{N}_0 \right\}$                                                                                                                                           |  |
| Verteilungsfunktion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $P(X \le x) = F(x)$ $0 \text{ falls } x < 0$ $= \begin{cases} e^{-\lambda} \sum_{k=0}^{\lfloor x \rfloor} \binom{n}{x} p^x * q^{n-x} \text{ falls } 0 \le x \le n \\ 1 \text{ falls } x > n \end{cases}$ $E[X] = np$        |  |
| Erwartungswert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E[X] = np                                                                                                                                                                                                                   |  |
| Varianz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Var[X] = npq                                                                                                                                                                                                                |  |
| Wahrscheinlichkeit, für 3 Erfolge (x) mit 4Versuche (n) p = Wk, für Erfolg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | binopdf(x, n, p) → =0,026                                                                                                                                                                                                   |  |
| Wahrscheinlichkeit, für höchstens/bis zu/max 3 Erfolge (x) mit 4 Versuche (n) $P(X \le x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | binocdf(x, n, p) → =0,998                                                                                                                                                                                                   |  |
| Wahrscheinlichkeit, für mehr als/min 3 Erfolge (x) mit 4 Versuche (n) $P(X \ge x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 - binocdf(x, n, p) → =0,002                                                                                                                                                                                               |  |
| Wahrscheinlichkeit, für 7 (x <sub>1</sub> ) oder 12 Erfolge(x <sub>2</sub> ) mit n Versuche $P(X_1 = x_1) + P(X_2 = x_2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | binopdf( $x_1$ , $n$ , $p$ ) + binopdf( $x_2$ , $n$ , $p$ )                                                                                                                                                                 |  |

| Poisson-Verteilung $X \sim Po(\lambda)$                                                             |                                                                                                                                                                 |  |
|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Verteilung                                                                                          | $P(X = x) = \begin{cases} \frac{\lambda^{x}}{x!} e^{-\lambda} falls & x \in \mathbb{N}_{0} \\ 0 & sonst. \end{cases}$                                           |  |
| Verteilungsfunktion                                                                                 | $P(X \le x) = \begin{cases} 0 \text{ falls } x < 0 \\ e^{-\lambda} \sum_{k=0}^{ x } \frac{\lambda^k}{k!} \text{ falls } 0 \le x \end{cases}$                    |  |
| Erwartungswert                                                                                      | $E[X] = \lambda$                                                                                                                                                |  |
| Varianz                                                                                             | $Var[X] = \lambda$                                                                                                                                              |  |
| Bsp.: Schraube                                                                                      | n in einer Kiste                                                                                                                                                |  |
| durchsch. 2(λ) deffekt<br>Wahrschk., dass <mark>genau</mark> 5 kaputt (x) sind                      | poisspdf(x, $\lambda$ ) $\rightarrow$ y = 0,036                                                                                                                 |  |
| durchsch. 2 deffekt(λ) Wahrschk., dass höchstens/bis zu/max 2 kaputt (x) sind                       | poisscdf(x, $\lambda$ ) $\rightarrow$ y = 0,68                                                                                                                  |  |
| durchsch. 2 deffekt(λ)<br>Wahrschk., dass<br>mehr als/min<br>2 kaputt (x) sind                      | 1-poisscdf(x, $\lambda$ ) $\rightarrow$ y = 0,32                                                                                                                |  |
| Eponentialverteilung $X{\sim}exp(\lambda)$                                                          |                                                                                                                                                                 |  |
| Verteilungsdichte                                                                                   | $f(x) = \begin{cases} \lambda e^{-\lambda x} f \ddot{\mathbf{u}} r x \ge 0 \\ 0 sonst \end{cases}$                                                              |  |
| Verteilungsfunktion                                                                                 |                                                                                                                                                                 |  |
| Erwartungswert                                                                                      | $E[X] = \frac{1}{\lambda}$                                                                                                                                      |  |
| Varianz                                                                                             | $P(X \le x) = \begin{cases} 1 - e^{-\lambda x} & \text{für } x \ge 0 \\ 0 & \text{sonst} \end{cases}$ $E[X] = \frac{1}{\lambda}$ $Var[X] = \frac{1}{\lambda^2}$ |  |
| Bsp.: 10 Anrufe pro Stunde (λ)                                                                      |                                                                                                                                                                 |  |
| Mit welcher Wk. liegen zwischen zwei<br>Anrufen<br>mehr als/min<br>als 6 Minuten → 0.1 Stunden (x)? | 1-expcdf(x* <mark>λ</mark> )                                                                                                                                    |  |
| Mit welcher Wk. liegen zwischen zwei<br>Anrufen weniger als 6 Minuten → 0.1<br>Stunden (x)?         | expcdf(x* <mark>λ</mark> )                                                                                                                                      |  |

#### 3. Kontinuierliche Wahrscheinlichkeitstheorie

#### **Stetige Funktionen**

#### Wichtig!!

\*Symbolische Variable anlegen: (auch möglich: syms x y z) syms x

\*Funktionen eingeben:  $f=@(x) x.^3 + 3*x.^2$  $f(x)=x^2$ 

Vor jedem Operanten (\*, /, ^..) am besten ein "." setzen

 $fplot(1, [x_1-x_2])$ **Funktion plotten:** fplot(f)

ezplot(F, min, max) Bereich/Integral plotten ywioltigle Nommertor Nivzu ₽

Ableiten: diff(f)

Stammfunktion bilden: F = int(f, x)

→ f: zu intigrierende Funktion

In Matlab wird das "+ C" nach der aufleitung weggelassen!!! **Integral bestimmen** integral(f, min, max)

Für Funktionen  $F(t) = 1 - e^{-\lambda t}$ 

 $\rightarrow \lambda = \text{syms y}$   $\rightarrow t = \text{syms x}$   $\rightarrow F = @(x) 1-\exp(-y^*x)$ 

F'(x) = diff(f,x) $\rightarrow$ v\*exp(-v\*x)

Für unbekannte Variablen werden einfach weitere symbolische Variablen angelegt

Bei einer Funktion wie  $f=@(x) \lambda .*exp(-C*x)$ wird fehlerweise bein der Integration (int(f,x)) die 1 weggellassen statt "1 –  $\exp(-\lambda^*x)$ " wird "–  $\exp(-\lambda^*x)$ "angezeigt !!!

Dies Betrifft jedoch keine Abläufe mit der Funktion integral(f,min,max)!!!

Providerbeispiel:  $\lambda = 0.5$ 

| f=@(x)1-exp(- <mark>0.5</mark> *x)                           |                           |  |
|--------------------------------------------------------------|---------------------------|--|
| Wk,dass zwischen zwei Ankünften<br>höchstens 1 Sekunde liegt | integral(f,0,1) → 0,394   |  |
| $P(A \le 1) = A(1) = 1 - e^{-0.5}$                           |                           |  |
| Wk,dass zwischen zwei Ankünfte zwischen 1 und 2 Sekunden     | integral(f,1,2) → 0,239   |  |
| P(1 < A < 2) = A(2) - A(1)                                   |                           |  |
| Wk,dass zwischen zwei Ankünften mehr als 2 Sekunde liegen    | 1-integral(f,0,2) → 0,368 |  |
| $P(A > 2) = 1 - A(2) = 1 - e^{-0.5}$                         |                           |  |
| Wk,dass zwischen zwei Ankünften genau als 2 Sekunde liegen   | geht nicht → 0            |  |

#### Erwartungswert E(X) oder $\mu_x$ Kein expliziete Funktion gefunden! Bsp.: f(x) = 2xx muss expliziet zu f(x) dazu multipliziert $E(X) = \int_{-\infty}^{\infty} x f(x) dx$ werden! f(x)\*x $\rightarrow$ t=@(x)2x.^2 integral(t,min,max) **Varianz** Kein expliziete Funktion gefunden! (x-μ)<sup>2</sup> muss expliziet zu f(x) dazu multipliziert werden! $Var(X) = \int_{-\infty}^{\infty} (x - \mu_x)^2 f(x) \ dx$ $f(x)*x^2$ t=@(x)2x.^3 integral(t, min, max) – $(\mu_x)^2$ Standardabweichung 6x Kein expliziete Funktion gefunden! $\sqrt{Var(X)}$ sqrt(Varianz) **Verteilungsdichte** f(x) = F'(x)P(X=x)=0**Verteilungsfunktion** f(t)dtint(f,x)

| Gleichverteilung    |                                                                                                                                       |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| $X \sim U(a, b)$    |                                                                                                                                       |
| Verteilungsdichte   | $f(x) = \begin{cases} \frac{1}{b-a} & \text{für } a \le x \le b \\ 0 & \text{sonst} \end{cases}$                                      |
| Verteilungsfunktion | $P(X \le x) = F(x) = \begin{cases} x - a \\ \frac{x - a}{b - a} & \text{falls } a \le x \le b \\ 1 & \text{falls } x > b \end{cases}$ |
| Erwartungswert      | $E[X] = \frac{(a+b)}{2}$                                                                                                              |
| Varianz             | $Var[X] = \frac{(b-a)^2}{12}$                                                                                                         |

# Normalverteilung $X{\sim}N(\mu,\sigma)$ Bei weiteren Zufallsvariablen, die dazu addiert werden muss:

$$X + Y \sim N(\mu_X + \mu_Y, \sqrt{\sigma_X^2 + \sigma_Y^2})$$

| Verteilungsdichte                                    | $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$                                                                                                              |  |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Verteilungsfunktion                                  | $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$ $P(X \le x) = F(x) = \frac{1}{\sigma\sqrt{2\pi}}\int_{-\infty}^{x} e^{-\frac{1}{2}(\frac{t-\mu}{\sigma})^2}$ |  |
| Erwartungswert                                       | $E[X] = \mu$                                                                                                                                                                              |  |
| Varianz                                              | $Var[X] = \sigma^2$                                                                                                                                                                       |  |
| Standardabweichung                                   | $\sqrt{Var[X]} = \sigma$                                                                                                                                                                  |  |
| Annahme, dass                                        | s Größe~N(180.3,7.17)                                                                                                                                                                     |  |
| Wk, zufälliger man höchsten 1.75m                    | normcdf(x, μ, σ)                                                                                                                                                                          |  |
| $P(X) \leq 175$                                      | normcdf(175,180.3,7.17)<br>=0,23                                                                                                                                                          |  |
| Welche Größe wird von 95% nicht                      | norminv(p, μ, σ)                                                                                                                                                                          |  |
| überschritten                                        | norminv(0.95,180.3,7.17)<br>= 192,09 cm                                                                                                                                                   |  |
| 68-9                                                 | 5-99.7-Regel                                                                                                                                                                              |  |
| 68% liegt zwischen x <sub>1</sub> und x <sub>2</sub> | $x_1$ =norminv(0.1585, $\mu$ , $\sigma$ )<br>$x_2$ =norminv(0.8385, $\mu$ , $\sigma$ )                                                                                                    |  |
| 95% liegt zwischen x <sub>1</sub> und x <sub>2</sub> | $x_1$ =norminv(0.0235, $\mu$ , $\sigma$ )<br>$x_2$ =norminv(0.9735, $\mu$ , $\sigma$ )                                                                                                    |  |
| 99,7% liegt zwischen x1 und x2                       | x₁=norminv(0.0, μ, σ)<br>x₂=norminv(0.997, μ, σ)                                                                                                                                          |  |

#### 4.Schließende Statistik

| Schätzfunktion                                         | nen X~U(μ, σ)            |
|--------------------------------------------------------|--------------------------|
| Stichprobe =                                           | X = [x1,x2,x3,]          |
| Arithmetisches Mittel $\widehat{\mu}=\overline{x}$     | mean(X)                  |
| <b>Empirische Varianz</b> $\widehat{\sigma^2} = s^2$   | var(X)                   |
| Relative Häufigkeit $\widehat{\pi_x} = \overline{p_x}$ | mean(X <x)< th=""></x)<> |

## (Wurde nicht behandelt)

#### **Hypergeometrische Verteilung**

Bsp.:

Kiste mit 50 Schrauben(M)

10% sind defekt  $\rightarrow x = M*0.1 \rightarrow K = M - x$ 

8(n) Schrauben werden mit einem Griff entnommen Wahrscheinlichkeit, dass 3(n-x) deffekt sind

$$y = f(x|M,K,n) = \frac{\binom{K}{x}\binom{M-K}{n-x}}{\binom{M}{n}}$$
 hygepdf(x, M, K, n)  $\rightarrow$  y = 0,023