Lecture 10 Gauss-Siedel Method

Dr. Mahesha Narayana

Intended Learning Outcomes

At the end of this lecture, student will be able to:

- Illustrate the steps involved in Gauss-Jacobi method and Gauss-Seidel method
- Verify the strictly diagonally dominant for the system
- Solve the linear system by Gauss-Jacobi method and Gauss-Seidel method
- Solve systems of nonlinear equations with successive iterations

Topics

- Jacobi iteration method
- Gauss-Siedel method
- Diagonally Dominant Coefficient Matrix
- MATLAB Program

Motivation

Importance of the Gauss-Jacobi and Gauss-Siedel method to solve system of linear equations because

- Iterative or approximate methods provide an alternative to the elimination methods. The Gauss-Seidel method is the most commonly used iterative method
- Gauss-Siedel method is an iterative method to solve linear and nonlinear system of equation
- The Gauss-Seidel Method allows the user to control round-off error
- Elimination methods such as Gaussian Elimination and LU Decomposition are prone to round-off error

Jacobi Iteration method

Definition: Jacobi iteration method is a first iteration method *that* used to solve linear system of equations. We assume that the diagonal elements a of the matrix A, are non-zero. We write the system of linear equation

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$\vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + a_{n3}x_3 + \dots + a_{nn}x_n = b_n$$

Jacobi Iteration method...

The Guass-Jacobi iteration method or simply Jacobi iteration method is defined as

$$\begin{split} x_1^{(k+1)} &= \frac{1}{a_{11}} \Big[b_1 - \Big(a_{12} x_2^{(k)} + a_{13} x_3^{(k)} + \dots ... a_{1n} x_n^{(k)} \Big) \Big] \\ x_2^{(k+1)} &= \frac{1}{a_{22}} \Big[b_2 - \Big(a_{21} x_1^{(k)} + a_{23} x_3^{(k)} + \dots ... a_{2n} x_n^{(k)} \Big) \Big] \\ \cdot \\ \cdot \\ x_n^{(k+1)} &= \frac{1}{a_{nn}} \Big[b_n - \Big(a_{n1} x_1^{(k)} + a_{n2} x_2^{(k)} + \dots ... a_{n,n-1} x_{n-1}^{(k)} \Big) \Big] \end{split}$$

Starting with initial guess $x^{(0)} = [x_1^{(0)}, x_2^{(0)}, x_3^{(0)}, \dots, x_n^{(0)}]^T$, generate the sequence of iterates $x^{(1)}, x^{(2)}, x^{(3)}, \dots, x^{(n)}$ which in the limit converges to the exact solution **x**.

Jacobi Iteration method...

We can also write the method in matrix form. Let

Where L is strictly lower triangular matrix, D is diagonal matrix, and U is strictly upper triangular matrix of the matrix A. For example, for a 3x3 system, we have

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ a_{21} & 0 & 0 \\ a_{31} & a_{32} & 0 \end{bmatrix} + \begin{bmatrix} a_{11} & 0 & 0 \\ 0 & a_{22} & 0 \\ 0 & 0 & a_{33} \end{bmatrix} + \begin{bmatrix} 0 & a_{12} & a_{13} \\ 0 & 0 & a_{23} \\ 0 & 0 & 0 \end{bmatrix} = L + D + U$$

We write the system of equation Ax=b as

$$(L+D+U)x = b \Rightarrow Dx = -(L+U)x + b$$

$$Dx^{(k+1)} = -(L+U)x^{(k)} + b$$

$$x^{(k+1)} = -D^{-1}(L+U)x^{(k)} + D^{-1}b$$

Example 1

Perform three iterations of the Gauss-Jacobi iteration method for solving the system of equations

$$\begin{bmatrix} 6 & 1 & 2 \\ 1 & 4 & 3 \\ 2 & 1 & 8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 6 \\ -4 \\ 8 \end{bmatrix}$$

Take the initial approximation as $x^{(0)} = [1.3, -1.9, 0.8]^T$. Compare with the exact solution $x_1 = 1, x_2 = -2, x_3 = 1$

We write the Jacobi iteration method is as

$$x_1^{(k+1)} = \frac{1}{6} \left[6 - x_2^{(k)} - 2x_3^{(k)} \right]$$

$$x_2^{(k+1)} = \frac{1}{4} \left[-4 - x_1^{(k)} - 3x_3^{(k)} \right]$$

Starting with $x_1^{(0)} = 1.3$, $x_2^{(0)} = -1.9$, $x_3^{(0)} = 0.8$, we get the following results

K=0
$$x_1^{(1)} = \frac{1}{6} \left[6 - x_2^{(0)} - 2x_3^{(0)} \right] = 1.0500, \quad x_2^{(1)} = \frac{1}{4} \left[-4 - x_1^{(0)} - 3x_3^{(0)} \right] = -1.9250$$

 $x_3^{(1)} = \frac{1}{8} \left[8 - 2x_1^{(0)} - x_2^{(0)} \right] = 0.9125$

$$\mathbf{K=1} \qquad x_1^{(2)} = \frac{1}{6} \left[6 - x_2^{(1)} - 2x_3^{(1)} \right] = 1.0167, \quad x_2^{(2)} = \frac{1}{4} \left[-4 - x_1^{(1)} - 3x_3^{(1)} \right] = -1.9469$$

$$x_3^{(2)} = \frac{1}{8} \left[8 - 2x_1^{(1)} - x_2^{(1)} \right] = 0.9781$$

K=2
$$x_1^{(3)} = \frac{1}{6} \left[6 - x_2^{(2)} - 2x_3^{(2)} \right] = 1.9984, \quad x_2^{(3)} = \frac{1}{4} \left[-4 - x_1^{(2)} - 3x_3^{(2)} \right] = -1.9878$$

 $x_3^{(3)} = \frac{1}{8} \left[8 - 2x_1^{(2)} - x_2^{(2)} \right] = 0.9892$

Comparing with the exact solution, the errors in magnitude are 0.0016, 0.0122 and 0.0108. The maximum absolute error is 0.0122.

Gauss-Seidel Method Algorithms

A set of *n* equations and *n* unknowns:

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$\vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + a_{n3}x_3 + \dots + a_{nn}x_n = b_n$$

If: the diagonal elements are non-zero. Rewrite each equation solving for the corresponding unknown

Starting with initial guess $x^{(0)} = [x_1^{(0)}, x_2^{(0)}, x_3^{(0)}, \dots, x_n^{(0)}]^T$, generate the sequence of iterates $x^{(1)}, x^{(2)}, x^{(3)}, \dots, x^{(n)}$ which in the limit converges to the exact solution **x**.

Gauss-Seidel Method...

If we use the latest available values of each variable then the method is called Gauss-Siedel iteration method

$$x_{1}^{(k+1)} = \frac{1}{a_{11}} \left[b_{1} - \left(a_{12} x_{2}^{(k)} + a_{13} x_{3}^{(k)} + \dots a_{1n} x_{n}^{(k)} \right) \right]$$

$$x_{2}^{(k+1)} = \frac{1}{a_{22}} \left[b_{2} - \left(a_{21} x_{1}^{(k+1)} + a_{23} x_{3}^{(k)} + \dots a_{2n} x_{n}^{(k)} \right) \right]$$

•

•

 $x_n^{(k+1)} = \frac{1}{a_{nn}} \left[b_n - \left(a_{n1} x_1^{(k+1)} + a_{n2} x_2^{(k+1)} \dots a_{n,n-1} x_{n-1}^{(k+1)} \right) \right]$

Starting with initial approximation $x^{(0)} = \left[x_1^{(0)}, x_2^{(0)}, x_3^{(0)}, ..., \dots, x_n^{(0)}\right]^T$ generate the sequence of iterates $x^{(1)}, x^{(2)}, x^{(3)}, \dots, x_n^{(n)}$ which in the limit converges to the exact solution \mathbf{x} .

Calculate the Absolute Relative Approximate Error

$$\left| \in_{a} \right|_{i} = \left| \frac{x_{i}^{new} - x_{i}^{old}}{x_{i}^{new}} \right| \times 100$$

So when has the answer been found?

The iterations are stopped when the absolute relative approximate error is less than a pre-specified tolerance for all unknowns.

Example 3

Perform three iterations of the Gauss-Siedel iteration method for solving the system of equations

$$\begin{bmatrix} 4 & 0 & 2 \\ 0 & 5 & 2 \\ 5 & 4 & 10 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 6 \\ -3 \\ 11 \end{bmatrix}$$

Take the initial approximation as $x_i^{(0)} = \frac{b_i}{a_{ii}}$, i = 1,2,3. Compare with the exact solution $x = \begin{bmatrix} 1,-1,1 \end{bmatrix}^T$

We write the Jacobi iteration method as

$$x_1^{(k+1)} = \frac{1}{6} \left[6 - 2x_3^{(k)} \right]$$

$$x_2^{(k+1)} = \frac{1}{5} \left[-3 - 2x_3^{(k)} \right]$$

$$x_3^{(k+1)} = \frac{1}{10} \left[11 - 5x_1^{(k+1)} - 4x_2^{(k+1)} \right], k = 0,1,2,3....$$

The initial approximation is $x_1^{(0)} = 1.5, x_2^{(0)} = -0.6, x_3^{(0)} = 1.1$. For k=0,1,2, we have following results

$$x_1^{(1)} = \frac{1}{6} \left[6 - 2x_3^{(0)} \right] = 0.95, \quad x_2^{(1)} = \frac{1}{5} \left[-3 - 2x_3^{(0)} \right] = -1.04$$

 $x_3^{(1)} = \frac{1}{10} \left[11 - 5x_1^{(1)} - 4x_2^{(1)} \right] = 1.0451$

$$x_1^{(2)} = \frac{1}{6} \left[6 - 2x_3^{(1)} \right] = 0.9795, \quad x_2^{(2)} = \frac{1}{5} \left[-3 - 2x_3^{(0)} \right] = -1.0164$$

$$x_3^{(2)} = \frac{1}{10} \left[11 - 5x_1^{(2)} - 4x_2^{(2)} \right] = 1.0168$$

$$x_1^{(3)} = \frac{1}{6} \left[6 - 2x_3^{(0)} \right] = 0.9916, \quad x_2^{(3)} = \frac{1}{5} \left[-3 - 2x_3^{(2)} \right] = -1.0067$$

$$x_3^{(3)} = \frac{1}{10} \left[11 - 5x_1^{(3)} - 4x_2^{(3)} \right] = 1.0069$$

Comparing with the exact solution, the errors in magnitude are 0.0084, 0.0067 and 0.0069. The maximum absolute error is 0.0084.

14

Example 4

Table 1 Velocity vs. Time data.

Time,	Velocity		
5	106.8		
8	177.2		
12	279.2		

The velocity data is approximated by a polynomial as:

$$v(t) = a_1 t^2 + a_2 t + a_3, 5 \le t \le 12.$$

Using a Matrix template of the form

$$\begin{bmatrix} t_1^2 & t_1 & 1 \\ t_2^2 & t_2 & 1 \\ t_3^2 & t_3 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$$

The system of equations becomes

$$\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \end{bmatrix}$$

Initial Guess: assume an initial guess of

$$\begin{vmatrix} a_1 \\ a_2 \\ a_3 \end{vmatrix} = \begin{vmatrix} 1 \\ 2 \\ 5 \end{vmatrix}$$

Rewriting each equation

$$\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \end{bmatrix}$$

$$a_1 = \frac{106.8 - 5a_2 - a_3}{25}$$

$$a_2 = \frac{177.2 - 64a_1 - a_3}{8}$$

$$a_3 = \frac{279.2 - 144a_1 - 12a_2}{1}$$

Applying the initial guess and solving for a

$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 5 \end{bmatrix}$$

$$\begin{vmatrix} a_1 \\ a_2 \\ a_3 \end{vmatrix} = \begin{vmatrix} 1 \\ 2 \\ 5 \end{vmatrix}$$

$$a_1 = \frac{106.8 - 5(2) - (5)}{25} = 3.6720$$

Initial Guess

$$a_2 = \frac{177.2 - 64(3.6720) - (5)}{8} = -7.8510$$

$$a_3 = \frac{279.2 - 144(3.6720) - 12(-7.8510)}{1} = -155.36$$

When solving for a₂, how many of the initial guess values were used?

Finding the absolute relative approximate error

$$\left| \in_{a} \right|_{i} = \left| \frac{x_{i}^{new} - x_{i}^{old}}{x_{i}^{new}} \right| \times 100$$

$$\left| \in_{a} \right|_{1} = \left| \frac{3.6720 - 1.0000}{3.6720} \right| x 100 = 72.76\%$$

$$\left| \in_{a} \right|_{2} = \left| \frac{-7.8510 - 2.0000}{-7.8510} \right| x100 = 125.47\%$$

$$\left| \in_{\mathbf{a}} \right|_{3} = \left| \frac{-155.36 - 5.0000}{-155.36} \right| x 100 = 103.22\%$$

At the end of the first iteration

$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 3.6720 \\ -7.8510 \\ -155.36 \end{bmatrix}$$

The maximum absolute relative approximate error is 125.47%

Using

$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 3.6720 \\ -7.8510 \\ -155.36 \end{bmatrix}$$

from iteration 1

Iteration 2

the values of a_i are found:

$$a_1 = \frac{106.8 - 5(-7.8510) - 155.36}{25} = 12.056$$

$$a_2 = \frac{177.2 - 64(12.056) - 155.36}{8} = -54.882$$

$$a_3 = \frac{279.2 - 144(12.056) - 12(-54.882)}{1} = -798.34$$

Finding the absolute relative approximate error

$$\left| \in_{a} \right|_{1} = \left| \frac{12.056 - 3.6720}{12.056} \right| x100 = 69.543\%$$

$$\left| \in_a \right|_2 = \left| \frac{-54.882 - (-7.8510)}{-54.882} \right| \times 100 = 85.695\%$$

$$\left| \in_{a} \right|_{3} = \left| \frac{-798.34 - (-155.36)}{-798.34} \right| x 100 = 80.540\%$$

At the end of the second iteration

$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 12.056 \\ -54.882 \\ -798.54 \end{bmatrix}$$

The maximum absolute relative approximate error is 85.695%

Repeating more iterations, the following values are obtained

Iteration	a_1		<i>a</i> ₂		a ₃	
1	3.6720	72.767	-7.8510	125.47	-155.36	103.22
2	12.056	69.543	-54.882	85.695	-798.34	80.540
3	47.182	74.447	-255.51	78.521	-3448.9	76.852
4	193.33	75.595	-1093.4	76.632	-14440	76.116
5	800.53	75.850	-4577.2	76.112	-60072	75.963
6	3322.6	75.906	-19049	75.972	-249580	75.931

Notice – The relative errors are not decreasing at any significant rate. $\begin{bmatrix} a_1 \end{bmatrix} \begin{bmatrix} 0.29048 \end{bmatrix}$

Also, the solution is not converging to the true solution of given linear equations

Gauss-Seidel Method: Pitfall

What went wrong?

Even though done correctly, the answer is not converging to the correct answer

This example illustrates a pitfall of the Gauss-Siedel method: not all systems of equations will converge.

Is there a fix?

One class of system of equations always converges: One with a diagonally dominant coefficient matrix.

Diagonally dominant: [A] in [A] [X] = [C] is diagonally dominant if:

$$|a_{ii}| \ge \sum_{\substack{j=1 \ j \ne i}}^n |a_{ij}|$$
 for all 'i' $|a_{ii}| > \sum_{\substack{j=1 \ j \ne i}}^n |a_{ij}|$ for at least one 'i'

Diagonally Dominant Coefficient Matrix

Diagonally dominant: The coefficient on the diagonal must be at least equal to the sum of the other coefficients in that row and at least one row with a diagonal coefficient greater than the sum of the other coefficients in that row.

Which coefficient matrix is diagonally dominant?

$$[A] = \begin{bmatrix} 2 & 5.81 & 34 \\ 45 & 43 & 1 \\ 123 & 16 & 1 \end{bmatrix} \qquad [B] = \begin{bmatrix} 124 & 34 & 56 \\ 23 & 53 & 5 \\ 96 & 34 & 129 \end{bmatrix}$$

$$[B] = \begin{bmatrix} 124 & 34 & 56 \\ 23 & 53 & 5 \\ 96 & 34 & 129 \end{bmatrix}$$

Most physical systems do result in simultaneous linear equations that have diagonally dominant coefficient matrices.

Examples

Which of the following systems of linear equations has a strictly diagonally dominant coefficient matrix?

1.
$$3x_1 - x_2 = -4$$
$$2x_1 + 5x_2 = 2$$

$$4x_1 + 2x_2 - x_3 = -1$$

$$x_1 + 2x_3 = -4$$

$$3x_1 - 5x_2 + x_3 = 3$$

3.
$$x_1 - 5x_2 = -4$$
$$7x_1 - x_2 = 6$$

What about example 3?

$$R_1 \Leftrightarrow R_2$$
 Now check

$$7x_1 - x_2 = 6$$
$$x_1 - 5x_2 = -4$$

Example 5

Given the system of equations

$$12x_1 + 3x_2 - 5x_3 = 1$$

$$x_1 + 5x_2 + 3x_3 = 28$$

$$3x_1 + 7x_2 + 13x_3 = 76$$

The coefficient matrix is:

$$[A] = \begin{bmatrix} 12 & 3 & -5 \\ 1 & 5 & 3 \\ 3 & 7 & 13 \end{bmatrix}$$

With an initial guess of

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

Will the solution converge using the Gauss-Siedel method?

Checking if the coefficient matrix is diagonally dominant

$$[A] = \begin{bmatrix} 12 & 3 & -5 \\ 1 & 5 & 3 \\ 3 & 7 & 13 \end{bmatrix}$$

$$|a_{11}| = |12| = 12 \ge |a_{12}| + |a_{13}| = |3| + |-5| = 8$$

$$|a_{22}| = |5| = 5 \ge |a_{21}| + |a_{23}| = |1| + |3| = 4$$

$$|a_{33}| = |13| = 13 \ge |a_{31}| + |a_{32}| = |3| + |7| = 10$$

The inequalities are all true and at least one row is *strictly* greater than:

Therefore, the solution should converge using the Gauss-Siedel Method

Rewriting each equation

$$\begin{bmatrix} 12 & 3 & -5 \\ 1 & 5 & 3 \\ 3 & 7 & 13 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 28 \\ 76 \end{bmatrix}$$

$$x_1 = \frac{1 - 3x_2 + 5x_3}{12}$$

$$x_2 = \frac{28 - x_1 - 3x_3}{5}$$

$$x_3 = \frac{76 - 3x_1 - 7x_2}{13}$$

With an initial guess of

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

$$x_1 = \frac{1 - 3(0) + 5(1)}{12} = 0.50000$$

$$x_2 = \frac{28 - (0.5) - 3(1)}{5} = 4.9000$$

$$x_3 = \frac{76 - 3(0.50000) - 7(4.9000)}{13} = 3.0923$$

Faculty of Science and Humanities

The absolute relative approximate error

$$\left| \in_a \right|_1 = \left| \frac{0.50000 - 1.0000}{0.50000} \right| \times 100 = 100.00\%$$

$$\left| \in_{a} \right|_{2} = \left| \frac{4.9000 - 0}{4.9000} \right| \times 100 = 100.00\%$$

$$\left| \in_{a} \right|_{3} = \left| \frac{3.0923 - 1.0000}{3.0923} \right| \times 100 = 67.662\%$$

The maximum absolute relative error after the first iteration is 100%

After Iteration 1

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0.5000 \\ 4.9000 \\ 3.0923 \end{bmatrix}$$

Substituting the x values into the equations

$$x_1 = \frac{1 - 3(4.9000) + 5(3.0923)}{12} = 0.14679$$

$$x_2 = \frac{28 - (0.14679) - 3(3.0923)}{5} = 3.7153$$

$$x_3 = \frac{76 - 3(0.14679) - 7(4.900)}{13} = 3.8118$$

After Iteration 2

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0.14679 \\ 3.7153 \\ 3.8118 \end{bmatrix}$$

Iteration 2 absolute relative approximate error

$$\left| \in_{a} \right|_{1} = \left| \frac{0.14679 - 0.50000}{0.14679} \right| \times 100 = 240.61\%$$

$$\left| \in_{a} \right|_{2} = \left| \frac{3.7153 - 4.9000}{3.7153} \right| \times 100 = 31.889\%$$

$$\left| \in_{a} \right|_{3} = \left| \frac{3.8118 - 3.0923}{3.8118} \right| \times 100 = 18.874\%$$

The maximum absolute relative error after the first iteration is 240.61%

This is much larger than the maximum absolute relative error obtained in iteration #1. Is this a problem?

Repeating more iterations, the following values are obtained

Iteration	a_1	$\left \in_{a} \right _{1} \%$	a_2	$\left \in_a \right _2 \%$	a_3	$\left \in_a \right _3 \%$
1	0.50000	100.00	4.9000	100.00	3.0923	67.662
2	0.14679	240.61	3.7153	31.889	3.8118	18.876
3	0.74275	80.236	3.1644	17.408	3.9708	4.0042
4	0.94675	21.546	3.0281	4.4996	3.9971	0.65772
5	0.99177	4.5391	3.0034	0.82499	4.0001	0.074383
6	0.99919	0.74307	3.0001	0.10856	4.0001	0.00101

solution of

The solution obtained
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0.99919 \\ 3.0001 \\ 4.0001 \end{bmatrix}$$
 is close to the exact

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}$$

Example 6

Given the system of equations

$$3x_1 + 7x_2 + 13x_3 = 76$$
$$x_1 + 5x_2 + 3x_3 = 28$$
$$12x_1 + 3x_2 - 5x_3 = 1$$

With an initial guess of

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

Rewriting the equations

$$x_1 = \frac{76 - 7x_2 - 13x_3}{3}$$

$$x_2 = \frac{28 - x_1 - 3x_3}{5}$$

$$x_3 = \frac{1 - 12x_1 - 3x_2}{-5}$$

Conducting six iterations, the following values are obtained

Iteration	a_1	$\left \in_{a} \right _{1} \%$	A_2	$\left \in_{a} \right _{2} \%$	a_3	$\left \in_{a} \right _{3} \%$
1	21.000	95.238	0.80000	100.00	50.680	98.027
2	-196.15	110.71	14.421	94.453	-462.30	110.96
3	-1995.0	109.83	-116.02	112.43	4718.1	109.80
4	-20149	109.90	1204.6	109.63	-47636	109.90
5	2.0364×10^5	109.89	-12140	109.92	4.8144×10^5	109.89
6	-2.0579×10^{5}	109.89	1.2272×10^5	109.89	-4.8653×10^6	109.89

The values are not converging.

Does this mean that the Gauss-Seidel method cannot be used?

The Gauss-Seidel Method can still be used

The coefficient matrix is not diagonally dominant $\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 3 & 7 & 13 \\ 1 & 5 & 3 \\ 12 & 3 & -5 \end{bmatrix}$

$$[A] = \begin{bmatrix} 3 & 7 & 13 \\ 1 & 5 & 3 \\ 12 & 3 & -5 \end{bmatrix}$$

But this is the same set of equations used in example $[A] = \begin{bmatrix} 12 & 3 & -5 \\ 1 & 5 & 3 \\ 3 & 7 & 13 \end{bmatrix}$ #2, which did converge.

$$[A] = \begin{vmatrix} 12 & 3 & -5 \\ 1 & 5 & 3 \\ 3 & 7 & 13 \end{vmatrix}$$

If a system of linear equations is not diagonally dominant, check to see if rearranging the equations can form a diagonally dominant matrix.

Gauss-Seidel Method

Not every system of equations can be rearranged to have a diagonally dominant coefficient matrix.

Observe the set of equations

$$x_1 + x_2 + x_3 = 3$$
$$2x_1 + 3x_2 + 4x_3 = 9$$
$$x_1 + 7x_2 + x_3 = 9$$

Which equation(s) prevents this set of equation from having a diagonally dominant coefficient matrix?

Matlab Code

```
function [GST, MaxIter] = Gauss Seidal(A,C)
n = length(C);
  X = zeros(n,1);
  Error eval = ones(n,1);
  %% Check if the matrix A is diagonally dominant
  for i = 1:n
    j = 1:n;
    j(i) = [];
    B = abs(A(i,j));
    Check(i) = abs(A(i,i)) - sum(B); % Is the diagonal value greater than the remaining
row values combined?
    if Check(i) < 0
      fprintf('The matrix is not strictly diagonally dominant at row %2i\n\n',i)
    end
  end
```


Matlab Code

```
%% Start the Iterative method
  iteration = 0;
  while max(Error_eval) > 0.001
    iteration = iteration + 1;
    Z = X; % save current values to calculate error later
    for i = 1:n
       j = 1:n; % define an array of the coefficients' elements
       j(i) = []; % eliminate the unknow's coefficient from the remaining coefficients
       Xtemp = X; % copy the unknows to a new variable
       Xtemp(i) = []; % eliminate the unknown under question from the set of values
       X(i) = (C(i) - sum(A(i,j) * Xtemp)) / A(i,i);
    end
    Xsolution(:,iteration) = X;
    Error eval = sqrt((X - Z).^2);
  end
  %% Display Results
  GST = [1:iteration;Xsolution]';
  MaTrlx = [A X C];
end
```

Session Summary

- Gauss Jacobi and Gauss-Seidel method is an iterative procedure
- This method is suitable for physical applications where we can make an initial guess
- If the matrix is strictly diagonally dominant, then both the gauss-Jacobi and Gauss-Siedel iterations methods converge for any initial approximations
- Gauss-Seidel iteration converges more rapidly than the Jacobi iteration since it uses the latest updates
- The rearrangement of the equations also plays important role for the convergent of the solutions