

Chapter 9

The Laplace Transform

9.0 Introduction

Convolution—

Analysis the system in time domain

Fourier transform—

Analysis the system in frequency domain

9.0 Introduction

$$h(t) = e^t u(t) \longrightarrow \mathsf{H(jw)}$$

+View of energy finite energy(square integrable)

$$\int_{-\infty}^{\infty} |x(t)|^2 dt < \infty$$

Laplace transform

Analysis the system in 5 domain

9.1 The Laplace transform

$$x(t) = e^{st} \qquad y(t) = H(S)e^{st}$$

$$H(S) \qquad h(t)e^{-st}dt$$

Laplace transform:
$$H(S) = \int_{-\infty}^{+\infty} h(t)e^{-st}dt$$

$$h(t) \longleftrightarrow H(S)$$

Fourier transform: $h(t) \xleftarrow{FT} H(S)|_{S=jw}$

The relationship between the Laplace signals & systems transform and the Fourier transform

$$F\left\{x(t)\right\} = X(S)\Big|_{S=jw}$$

Fourier transform is a particular form of Laplace transform

Laplace transform is Fourier transform of $x(t)e^{-\sigma t}$

$$x(t) = e^{-at}u(t)$$

- (1) if a > 0, determine Fourier transform
- (2) determine Laplace transform

Answer:

$$(1) X (jw) = \int_{-\infty}^{+\infty} e^{-at} u(t) e^{-jwt} dt = \frac{1}{jw + a}$$

$$(2) X (S) = \int_{-\infty}^{+\infty} e^{-at} u(t) e^{-st} dt = \int_{0}^{+\infty} e^{-(s+a)t} dt$$

$$= \frac{1}{S+a} \quad \text{Re}\{S\} > -a$$

$$e^{-at} u(t) \longleftrightarrow \frac{1}{S+a} \quad \text{Re}\{S\} > -a$$

$$if \ a = 0, u(t) \longleftrightarrow \frac{1}{S} \quad \text{Re}\{S\} > 0$$

 $x(t) = -e^{-at}u(-t)$ determine Laplace transform

$$X(S) = \int_{-\infty}^{+\infty} -e^{-at}u(-t)e^{-st}dt = -\int_{-\infty}^{0} e^{-(s+a)t}dt$$
$$= \frac{1}{S+a} \quad \text{Re}\{S\} < -a$$

$$-e^{-at}u(-t) \longleftrightarrow \frac{1}{S+a} \quad \operatorname{Re}\{S\} < -a$$

$$e^{-at}u(t) \longleftrightarrow \frac{1}{S+a} \quad \text{Re}\{S\} > -a$$

Region of Convergence (ROC)

- *ROC—the range of values of 5 for which integral in $X(S) = \int_{-\infty}^{+\infty} x(t)e^{-st}dt$ converges
- Laplace transform includes:
 - (1)the algebraic expression (2)ROC
- The representation of ROC——Complex plane (S-plane)

$$-e^{-at}u(-t) \stackrel{LT}{\longleftrightarrow} \frac{1}{S+a} \qquad \operatorname{Re}\{S\} < -a$$

$$e^{-at}u(t) \stackrel{LT}{\longleftrightarrow} \frac{1}{S+a} \qquad \operatorname{Re}\{S\} > -a$$

$$x(t) = 3e^{-2t}u(t) - 2e^{-t}u(t)$$

determine Laplace transform of x(t)

$$e^{-2t}u(t) \stackrel{LT}{\longleftrightarrow} \frac{1}{S+2} \qquad \operatorname{Re}\{S\} > -2$$

$$e^{-t}u(t) \longleftrightarrow \frac{1}{S+1} \quad \operatorname{Re}\{S\} > -1$$

$$X(S) = \frac{3}{S+2} - \frac{2}{S+1}$$
 Re $\{S\} > -1$

$$x(t) = e^{-2t}u(t) + e^{-t}(\cos 3t)u(t)$$

determine Laplace transform of x(t)

$$e^{-at}u(t) \longleftrightarrow \frac{1}{S+a} \qquad \text{Re}\{S\} > -\text{Re}\{a\}$$

$$\cos 3t = \frac{e^{j3t} + e^{-j3t}}{2}$$

$$x(t) = \left[e^{-2t} + \frac{e^{-(1-3j)t}}{2} + \frac{e^{-(1+3j)t}}{2}\right]u(t)$$

$$X(S) = \frac{1}{S+2} + \frac{1}{2}\left(\frac{1}{S+(1-3j)}\right) + \frac{1}{2}\left(\frac{1}{S+(1+3j)}\right) \qquad \text{Re}\{S\} > -1$$

$$= \frac{2S^2 + 5S + 12}{(S+2)(S^2 + 2S + 10)}$$

Pole-Zero plot

Laplace transform maybe a ratio of polynomials

$$X(S) = \frac{N(S)}{D(S)} - \frac{\text{numerator}}{\text{denominato}}$$

- Poles —— the roots of D(S)
 - Zeros —— the roots of N(S)
- The representation of poles and zeros
 - --Pole-Zero plot
- Another representation of Laplace transform
 - --Pole-Zero plot and ROC
- The order of pole or zero

$$x(t) = \delta(t) - \frac{4}{3}e^{-t}u(t) + \frac{1}{3}e^{2t}u(t)$$

determine Laplace transform of x(t)

$$\delta(t) \stackrel{LT}{\longleftrightarrow} 1$$

$$e^{-t}u(t) \stackrel{LT}{\longleftrightarrow} \frac{1}{S+1} \quad \text{Re}\{S\} > -1$$

$$e^{2t}u(t) \stackrel{LT}{\longleftrightarrow} \frac{1}{S-2} \quad \text{Re}\{S\} > 2$$

$$X(S) = 1 - \frac{4}{3} \frac{1}{S+1} + \frac{1}{3} \frac{1}{S-2} \quad \text{Re}\{S\} > 2$$

$$= \frac{(s-1)^2}{(S+1)(S-2)} \quad \text{Re}\{S\} > 2$$

9.2 The ROC for Laplace transform

*Property 1 —— the ROC of X(S) consists of strips parallel to the jw-axis in the splane

$$\int_{-\infty}^{+\infty} |x(t)| e^{-\sigma t} dt < \infty$$

*Property 2 —— for rational Laplace transforms, the ROC does not contain any poles

$$X(S)\Big|_{s=pole} \longrightarrow \infty$$

$$x(t) = \begin{cases} e^{-at} & 0 < t < T \\ 0 & otherwise \end{cases}$$

determine Laplace transform of x(t)

$$X(S) = \int_0^T e^{-at} e^{-st} dt = \underbrace{1}_{S+a} \left[1 - e^{-(S+a)T} \right]$$

ROC is the entire s-plane

$$\lim_{S \to -a} X(S) = \lim_{S \to -a} \left[\frac{\frac{d}{ds} \left(1 - e^{-(S+a)T} \right)}{\frac{d}{ds} \left(S + a \right)} \right] = \lim_{S \to -a} T e^{-aT} e^{-ST} = T$$

*Property 3 —— if x(t) is of finite duration and is absolutely integrable, then the ROC is the entire s-plane

*Property 4 — if x(t) is right sided, and if the line $Re\{s\} = \sigma_0$ is in the ROC, then all values of S for which $Re\{s\} > \sigma_0$ will also be in the ROC

*Property 5 — if x(t) is left sided, and if the line $Re\{s\} = \sigma_0$ is in the ROC, then all values of S for which $Re\{s\} < \sigma_0$ will also be in the ROC

*Property 6 — if x(t) is two sided, and if the line $Re\{s\} = \sigma_0$ is in the ROC, then the ROC will consist of a strip in the s-plane that include the line $Re\{s\} = \sigma_0$

$$x(t) = e^{-b|t|}$$

determine Laplace transform of x(t)

$$x(t) = e^{-bt}u(t) + e^{bt}u(-t)$$

$$e^{-bt}u(t) \longleftrightarrow \frac{1}{S+b} \quad \text{Re}\{S\} > -b$$

$$e^{bt}u(-t) \longleftrightarrow \frac{LT}{S-b} \quad \text{Re}\{S\} < b$$

$$X(S) = \begin{cases} \frac{1}{S+b} - \frac{1}{S-b} & -b < \text{Re}\{s\} < b & \text{for b} > 0 \\ \text{Laplace transform doesn't exist} & \text{for b} \le 0 \end{cases}$$

*Property 7 — if the Laplace transform X(S) of x(t) is rational, then its ROC is bounded by poles or extends to infinity. In addition, no poles of X(S) are contained in the ROC

❖Property 8 —— if the Laplace transform X(S) of x(t) is rational

if x(t) is right sided, the ROC is the region in the s-plane to the right of the rightmost pole

if x(t) is left sided, the ROC is the region in the s-plane to the left of the leftmost pole

$$X(S) = \frac{1}{(S+1)(S+2)}$$

determine possible ROCs

```
Pole: S=-1, S=-2

if x(t) is left sided, then ROC is Re\{S\} < -2

if x(t) is right sided, then ROC is Re\{S\} > -1

if x(t) is two sided, then ROC is -2 < Re\{S\} < -1
```


9.3 The inverse Laplace transform

 The representation of the inverse Laplace transform

$$X(S) = X(\sigma + jw) = F\{x(t)e^{-\sigma t}\}$$

$$= \int_{-\infty}^{+\infty} x(t)e^{-\sigma t}e^{-jwt}dt$$

$$\Rightarrow x(t)e^{-\sigma t} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\sigma + jw)e^{jwt}dw$$

$$\Rightarrow x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\sigma + jw)e^{(\sigma + jw)t}dw$$
because $ds = jdw$

$$so \qquad x(t) = \frac{1}{2\pi i} \int_{\sigma - j\infty}^{\sigma + j\infty} X(S)e^{St}ds$$

Partial-fraction expansion

$$X(S) = \sum_{i=1}^{m} \frac{A_i}{S + a_i}$$

$$e^{-bt}u(t) \longleftrightarrow \frac{1}{S+b} \quad \operatorname{Re}\{S\} > -b$$

$$-e^{-bt}u(-t) \longleftrightarrow \frac{1}{S+b} \quad \operatorname{Re}\{S\} < -b$$

$$X(S) = \frac{1}{(S+1)(S+2)}$$
 Re{S}>-1

determine the inverse Laplace transform

$$X(S) = \frac{A}{S+1} + \frac{B}{S+2}$$

$$A = \left[\left(S+1 \right) X(S) \right] \Big|_{S=-1} = 1$$

$$B = \left[\left(S+2 \right) X(S) \right] \Big|_{S=-2} = -1$$

$$x(t) = \left(e^{-t} - e^{-2t} \right) u(t)$$

Example 9.10

$$Re{S} < -2$$

Example 9.11

$$-2 < \text{Re}\{S\} < -1$$

9.5 Properties of the Laplace transform

Signals & Systems

*Linearity

$$ax_1(t) + bx_2(t) \xleftarrow{LT} aX_1(S) + bX_2(S)$$
with ROC containing R1 \cap R2

Example 9.13

$$x(t) = x_1(t) - x_2(t)$$

$$X_1(S) = \frac{1}{S+1} \qquad \text{Re}\{S\} > -1$$

$$X_2(S) = \frac{1}{(S+1)(S+2)} \qquad \text{Re}\{S\} > -1$$

determine X(S)

$$X(S) = \frac{1}{S+1} - \frac{1}{(S+1)(S+2)} = \frac{1}{S+2}$$
 Re{S}>-2

Time shifting

If

$$x(t) \stackrel{LT}{\longleftrightarrow} X(S) \quad ROC = R$$

then

$$x(t-t_0) \stackrel{LT}{\longleftrightarrow} e^{-St_0}X(S) \quad ROC = R$$

Shifting in the s-domain

If

$$x(t) \stackrel{LT}{\longleftrightarrow} X(S) \quad ROC = R$$

then

$$e^{S_0 t} x(t) \stackrel{LT}{\longleftrightarrow} X(S - S_0) \quad ROC = R + \text{Re}\{S_0\}$$

Time scaling

If

$$x(t) \stackrel{LT}{\longleftrightarrow} X(S) \quad ROC = R$$

then

$$x(at) \longleftrightarrow \frac{1}{|a|} X(\frac{S}{a}) \quad ROC \quad R_1 = aR$$

When

$$a = -1$$

then

$$x(-t) \stackrel{LT}{\longleftrightarrow} X(-S) \quad ROC \quad R_1 = -R$$

Conjugation

If
$$x(t) \xleftarrow{LT} X(S) \quad ROC = R$$
 then
$$x^*(t) \xleftarrow{LT} X^*(S^*) \quad ROC = R$$

Convolution property

$$x_1(t) * x_2(t) \xleftarrow{LT} X_1(S) X_2(S)$$
ROC containing R1 \cap R2

*Differentiation in the time domain If

$$x(t) \stackrel{LT}{\longleftrightarrow} X(S) \quad ROC = R$$

then

$$\frac{dx(t)}{dt} \longleftrightarrow SX(S) \quad ROC \text{ containing } R$$

*Differentiation in the S-domain

If

$$x(t) \stackrel{LT}{\longleftrightarrow} X(S) \quad ROC = R$$

then

$$-tx(t) \longleftrightarrow \frac{dX(S)}{dS} \quad ROC = R$$

$$x(t) = te^{-at}u(t)$$

determine the Laplace transform

$$e^{-at}u(t) \stackrel{LT}{\longleftrightarrow} \frac{1}{S+a} \quad \text{Re}\{S\} > -a$$

$$te^{-at}u(t) \stackrel{LT}{\longleftrightarrow} -\frac{d}{dS} \left[\frac{1}{S+a} \right] = \frac{1}{(S+a)^2} \quad \text{Re}\{S\} > -a$$

$$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t) \longleftrightarrow \frac{1}{(S+a)^n} \quad \text{Re}\{S\} > -a$$

$$X(S) = \frac{2S^2 + 5S + 5}{(S+1)^2(S+2)} \qquad \text{Re}\{S\} > -1$$

determine the inverse Laplace transform

$$X(S) = \frac{2}{(S+1)^{2}} - \frac{1}{S+1} + \frac{3}{S+2} \qquad \text{Re}\{S\} > -1$$

$$e^{-at}u(t) \longleftrightarrow \frac{LT}{S+a} \qquad \text{Re}\{S\} > -a$$

$$te^{-at}u(t) \longleftrightarrow \frac{1}{(S+a)^{2}} \qquad \text{Re}\{S\} > -a$$

$$x(t) = [2te^{-t} - e^{-t} + 3e^{-2t}]u(t)$$

*Integration in the time domain If

$$x(t) \stackrel{LT}{\longleftrightarrow} X(S) \quad ROC = R$$

then

$$\int_{-\infty}^{t} x(\tau)d\tau \xleftarrow{LT} \frac{1}{S}X(S)$$

ROC containing $R \cap \{\text{Re}\{S\} > 0\}$

*The initial- and final-value theorems

If x(t) = 0 for t < 0 and x(t) contains no impulses or higher order singularities at the origin then

$$x(0^{+}) = \lim_{S \to \infty} SX(S)$$
$$\lim_{t \to \infty} x(t) = \lim_{S \to 0} SX(S)$$

$$X(S) = \frac{2S^2 + 5S + 12}{(S^2 + 2S + 10)(S + 2)}$$

$$Re{S} > -1$$

determine $x(0^+)$ and $\lim_{t\to\infty} x(t)$

Answer:

$$x(t) = e^{-2t}u(t) + e^{-t}(\cos 3t)u(t)$$

9.7 Analysis and characterization of LTI system using the Laplace transform

 The relationship between the properties of system and H(S)

+ How can get the X(S) or H(S) or Y(S)

Causality

The ROC associated with the system function for a causal system is a right-half plane

For a system with a rational system function, causality of the system is equivalent to the ROC being the right-half plane to the right of the rightmost pole

$$h(t) = e^{-t}u(t)$$

determine H(S) and analysis the ROC

$$H(S) = \frac{1}{S+1}$$
 Re{S}>-1

The system is causal, so the ROC of H(S) is a right-half plane

$$h(t) = e^{-|t|}$$

determine H(S) and analysis the ROC

$$H(S) = \frac{-2}{S^2 - 1}$$
 $-1 < \text{Re}\{S\} < 1$

The system is not causal, the ROC of H(S) is not a right-half plane

$$H(S) = \frac{e^S}{S+1} \qquad \text{Re}\{S\} > -1$$

determine h(t)

$$e^{-t}u(t) \stackrel{LT}{\longleftrightarrow} \frac{1}{S+1} \quad \text{Re}\{S\} > -1$$

$$e^{-(t+1)}u(t+1) \longleftrightarrow \frac{e^S}{S+1} \quad \text{Re}\{S\} > -1$$

$$h(t) = e^{-(t+1)}u(t+1)$$

ROC is a right-half plane, but the system is not causal, unless the system is rational

Stability

An LTI system is stable if and only if the ROC of its system function H(S) includes the entire jw-axis[i.e. Re{5}=0]

Example 9.20
$$H(S) = \frac{S-1}{(S+1)(S-2)}$$

analysis the stability of system

A causal system with rational system function H(S) is stable if and only if all of the poles of H(S) lies in the left-half of the s-plane —— i.e., all of the poles have negative real parts

$$h_1(t) = e^{-t}u(t)$$
 $h_2(t) = e^{2t}u(t)$
analysis the stability by using Laplace transform

$$H_1(S) = \frac{1}{S+1}$$
 Re{S}>-1

$$H_2(S) = \frac{1}{S-2}$$
 Re{S}>2

LTI system characterized by linear signals & Systems constant-coefficient differential equations

The method of determine h(t) by differential equations

$$\sum_{k=0}^{N} a_k \frac{d^k y(t)}{dt^k} = \sum_{k=0}^{M} b_k \frac{d^k x(t)}{dt^k}$$

$$\left(\sum_{k=0}^{N} a_k S^k\right) Y(S) = \left(\sum_{k=0}^{M} b_k S^k\right) X(S)$$

$$H(S) = \frac{\left(\sum_{k=0}^{M} b_k S^k\right)}{\left(\sum_{k=0}^{N} a_k S^k\right)}$$

$$\frac{dy(t)}{dt} + 3y(t) = x(t)$$

determine h(t) of the system

$$SY(S) + 3Y(S) = X(S)$$

$$H(S) = \frac{Y(S)}{X(S)} = \frac{1}{S+3}$$

$$h(t) = \begin{cases} e^{-3t}u(t) & \text{Re}\{S\} > -3\\ -e^{-3t}u(-t) & \text{Re}\{S\} < -3 \end{cases}$$

Determine the H(S) of the system

if the input to an LTI system is

$$x(t) = e^{-3t}u(t)$$

the output is

$$y(t) = [e^{-t} - e^{-2t}]u(t)$$

determine H(S) and differential equation

$$X(S) = \frac{1}{S+3} \quad \text{Re}\{S\} > -3$$

$$Y(S) = \frac{1}{(S+1)(S+2)} \quad \text{Re}\{S\} > -1$$

$$H(S) = \frac{Y(S)}{X(S)} = \frac{S+3}{(S+1)(S+2)} = \frac{S+3}{S^2+3S+2} \quad \text{Re}\{S\} > -1$$

$$\frac{d^2y(t)}{dt^2} + 3\frac{dy(t)}{dt} + 2y(t) = \frac{dx(t)}{dt} + 3x(t)$$

An LTI system include the information as below:

- 1. the system is causal
- 2. the system function is rational and has only two poles , at s=-2 and s=4
 - 3. If x(t)=1, then y(t)=0
- 4. the value of the impulse response at t=0+ is 4

A stable and causal system , H(S) is rational , contains a pole at s=-2 , and does not have a zero at the origin , please determine the statements below:

- a) $F\{h(t)e^{3t}\}$ converges
- $b) \int_{-\infty}^{+\infty} h(t)dt = 0$
- c) th(t) is the impulse response of a causal and stable system
- d) dh(t)/dt contains at least one pole in its Laplace transform
- e) h(t) has finite duration
- f)H(S) = H(-S)
- $g) \lim_{S\to\infty} H(S) = 2$

9.8 System function algebra and block diagram representations

Parallel interconnection

$$y(t) = y_1(t) + y_2(t) = h_1(t) * x(t) + h_2(t) * x(t)$$
$$= [h_1(t) + h_2(t)] * x(t)$$

we can get:

$$h(t) = h_1(t) + h_2(t)$$

 $H(S) = H_1(S) + H_2(S)$

Series combination

$$\mathbf{x}(t) \longrightarrow \mathbf{h}_1(t) \xrightarrow{\mathbf{y}_1(t)} \mathbf{h}_2(t) \longrightarrow \mathbf{y}(t)$$

$$y(t) = y_1(t) * h_2(t) = h_1(t) * x(t) * h_2(t)$$
$$= [h_1(t) * h_2(t)] * x(t)$$

we can get:

$$h(t) = h_1(t) * h_2(t)$$

 $H(S) = H_1(S)H_2(S)$

Feedback interconnection

$$\begin{cases} Y(S) = H_1(S)E(S) \\ E(S) = X(S) - Z(S) \\ Z(S) = H_2(S)Y(S) \end{cases}$$

we can get:

$$Y(S) = H_1(S) [X(S) - H_2(S)Y(S)]$$

$$H(S) = \frac{Y(S)}{X(S)} = \frac{H_1(S)}{1 + H_1(S)H_2(S)}$$

A causal LTI system

$$H(S) = \frac{1}{S+3}$$

Example 9.29

A causal LTI system

$$H(S) = \frac{S+2}{S+3}$$

A causal LTI system

$$H(S) = \frac{1}{(S+1)(S+2)}$$

- Cascade form
- *Parallel form
- Direct form

A system

$$H(S) = \frac{2S^2 + 4S - 6}{S^2 + 3S + 2}$$

- Direct form
- Cascade form
- *Parallel form

Example

Consider an LTI system with input $x(t) = \delta(t) + e^{-3t}u(t)$ and output $y(t) = -e^{-t}u(-t)$

- 1. H(S)=? sketch the pole-zero pattern, then indicate the ROC of H(S)
- 2, determine the h(t), is the system causal and stable?
- $3 \cdot x(t) = e^{-3t}, y(t) = ?$
- 4, draw a block diagram
- 5. determine the differential equation of this system