Model Visualization

Dr Saufi

2024-05-29

Contents

1.	Example Code Using the {jtools} Package				
	1.1 Loading Data and Fitting a Model				
	1.2 Summarizing the Model				
	1.3 Visualizing Model Effects				
2.	2. Example Code Using the {modelsummary} Package				
	2.1 Visualizing a Single Model				
	2.2 Visualizing Multiple Models				

1. Example Code Using the {jtools} Package

1.1 Loading Data and Fitting a Model

First, we need to load the necessary data and fit a regression model using the lm function.

```
# Load the necessary package
library(jtools)

# Example dataset from jtools
data(movies)

# Fit a linear model
fit <- lm(metascore ~ imdb_rating + log(us_gross) + genre5, data = movies)</pre>
```

1.2 Summarizing the Model

We can summarize the model using the summ function to get a detailed output.

```
# Summarize the model
summ(fit)
```

MODEL INFO:

Observations: 831 (10 missing obs. deleted)

Dependent Variable: metascore Type: OLS linear regression

MODEL FIT:

F(6,824) = 169.37, p = 0.00

 $R^2 = 0.55$ Adj. $R^2 = 0.55$

Standard errors: OLS

	Est.	S.E.	t val.	р
(Intercept)	-39.96	5.92	-6.75	0.00
imdb_rating	12.80	0.49	25.89	0.00
log(us_gross)	0.47	0.31	1.52	0.13
genre5Comedy	6.32	1.06	5.95	0.00
genre5Drama	7.66	1.08	7.12	0.00
genre5Horror/Thriller	-0.73	1.51	-0.48	0.63
genre50ther	5.86	3.25	1.80	0.07

1.3 Visualizing Model Effects

The effect_plot function allows us to visualize the effect of a predictor variable on the response variable.

```
# Visualize the effect of 'imdb_rating' on 'metascore'
effect_plot(fit, pred = imdb_rating, interval = TRUE, plot.points = TRUE)
```

Using data movies from global environment. This could cause incorrect results if movies has been altered since the model was fit. You can manually provide the data to the "data =" argument.

Warning: Removed 10 rows containing missing values or values outside the scale range (`geom_point()`).

2. Example Code Using the {modelsummary} Package

2.1 Visualizing a Single Model

The modelplot function from the modelsummary package can be used to create visualizations for a single model.

```
# Load the necessary package
library(modelsummary)
```

`modelsummary` 2.0.0 now uses `tinytable` as its default table-drawing backend. Learn more at: https://vincentarelbundock.github.io/tinytable/

Revert to `kableExtra` for one session:

```
options(modelsummary_factory_default = 'kableExtra')
options(modelsummary_factory_latex = 'kableExtra')
```

```
options(modelsummary_factory_html = 'kableExtra')
Silence this message forever:
   config_modelsummary(startup_message = FALSE)
```

```
# Create a plot for the model
modelplot(fit)
```


Coefficient estimates and 95% confidence intervals

2.2 Visualizing Multiple Models

If you have multiple models, you can visualize them together for comparison.

```
# Fit another model for comparison
fit2 <- lm(metascore ~ imdb_rating + log(us_gross), data = movies)

# Create a list of models
models <- list("Model 1" = fit, "Model 2" = fit2)

# Visualize multiple models
modelplot(models)</pre>
```


Coefficient estimates and 95% confidence intervals