Hypothesis:

Among the three MST algorithms PRIM-2 is the MST algorithm with the lowest running time.

Reason:

The running time of the PRIM-1 is O(VlogV+ElogV) by normal binary heaps, PRIM-2 is O(VlogV+ElogV) by indexed heaps and KRUSKAL is O(ElogE) as E can up to maximum of E <= $|v|^2$, it might be the slowest among the three and fastest among the three is the PRIM-2.

Input size - Testing:

Input (G = (V,E)) size	PRIM-1	PRIM-2	KRUSKAL
V = 50, E = 140	2ms	3ms	10ms
V = 100,E = 284	2ms	3ms	3ms
V = 200, E = 580	4ms	4ms	5ms
V = 10000,E =	4149ms	750ms	2249ms
9070678			

Inference:

The results show that PRIM-2 is the fastest among three of the MST algorithms for bigger inputs. But when analyzing the running time of the KRUSKAL and PRIM-1, KRUSKAL is performing better than PRIM-1 which needs further investigation.