FINITE SET S OF ELEMENTARY EVENTS

 $\{(1,b),(2,b),(3,w),(4,w)\}$

PPUBABLITY DISTRIBUTION

P15 -> [0,1].

- P(si)>0

- > P(Si) = 1

- EVENT A IS ANY SUBSET OF S

-P(A) = Z P(Si)

SIEA

SUM OVER ELEMENTARY EVENTS IN A

- AXIOMS:

· P(A UB) = P(A) + P(B)

DISJOINT

 $-P(AUB) = P(A) + P(B) - P(A \cap B)$

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} \qquad f_{\infty} P(B) > 0$$

$$CONDITIONAL PROB. OF$$

$$EVENT A GIVEN EVENTB$$

$$\begin{array}{c} (1,b) \\ (2,b) \\ (3,w) \\ (4,w) \end{array}$$

A ball is selected from an urn containing two black balls, numbered 1 and 2, and two white balls, numbered 3 and 4. The number and color of the ball is noted, so the sample space is $\{(1,b),(2,b),(3,w),(4,w)\}$. Assuming that the four outcomes are equally likely, find $P[A \mid B]$ and $P[A \mid C]$, where A, B, and C are the following events:

$$A = \{(1, b), (2, b)\},$$
 "black ball selected," $B = \{(2, b), (4, w)\},$ "even-numbered ball selected," and $C = \{(3, w), (4, w)\},$ "number of ball is greater than 2."

$$P(A \cap B) = P((2,C)) = .25$$

 $P(A \cap C) = P(Q) = 0$
 $P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{.25}{.5} = .5 = P(A)$
 $P(A(C) = \frac{P(A \cap C)}{P(C)} = \frac{0}{.5} = 0 \neq P(A)$

In the first case, knowledge of B did not alter the probability of A. In the second case, knowledge of C implied that A had not occurred.

If we multiply both sides of the definition of P[A | B] by P[B] we obtain

$$P[A \cap B] = P[A \mid B]P[B]. \tag{2.25a}$$

Similarly we also have that

$$P[A \cap B] = P[B \mid A]P[A]. \tag{2.25b}$$

INDEPENDENCE OF EVENTS

If knowledge of the occurrence of an event B does not alter the probability of some other event A, then it would be natural to say that event A is independent of B. In terms of probabilities this situation occurs when

$$P[A] = P[A \mid B] = \frac{P[A \cap B]}{P[B]}.$$

The above equation has the problem that the right-hand side is not defined when P[B] = 0.

We will define two events A and B to be **independent** if

$$P[A \cap B] = P[A]P[B]. \tag{2.28}$$

Equation (2.28) then implies both

$$P[A \mid B] = P[A] \tag{2.29a}$$

and

$$P[B \mid A] = P[B] \tag{2.29b}$$

Note also that Eq. (2.29a) implies Eq. (2.28) when $P[B] \neq 0$ and Eq. (2.29b) implies Eq. (2.28) when $P[A] \neq 0$.

$$\begin{cases} (1,b) \\ (2,b) \\ (3,w) \\ (4,w) \end{cases}$$

$$A = \{(1, b), (2, b)\},$$
 "black ball selected";

$$B = \{(2, b), (4, w)\},$$
 "even-numbered ball selected"; and

$$C = \{(3, w), (4, w)\},$$
 "number of ball is greater than 2."

Are events A and B independent? Are events A and C independent? First, consider events A and B. The probabilities required by Eq. (2.28)

$$P[A] = P[B] = \frac{1}{2},$$

and

$$P[A \cap B] = P[\{(2,b)\}] = \frac{1}{4}.$$

Thus

$$P[A \cap B] = \frac{1}{4} = P[A]P[B],$$

and the events A and B are independent. Equation (2.29b) gives more insight into the meaning of independence:

$$P[A \mid B] = \frac{P[A \cap B]}{P[B]} = \frac{P[\{(2,b)\}]}{P[\{(2,b),(4,w)\}]} = \frac{1/4}{1/2} = \frac{1}{2}$$

$$P[A] = \frac{P[A]}{P[S]} = \frac{P[\{(1,b),(2,b)\}]}{P[\{(1,b),(2,b),(3,w),(4,w)\}]} = \frac{1/2}{1}.$$

These two equations imply that $P[A] = P[A \mid B]$ because the proportion of outcomes in S that lead to the occurrence of A is equal to the proportion of outcomes in B that lead to A. Thus knowledge of the occurrence of B does not alter the probability of the occurrence of A.

Events A and C are not independent since $P[A \cap C] = P[\emptyset] = 0$ so

$$P[A \mid C] = 0 \neq P[A] = .5.$$

In fact, A and C are mutually exclusive since $A \cap C = \emptyset$, so the occurrence of C implies that A has definitely not occurred.

FIGURE 2.14 A partition of S into n disjoint sets.

Let B_1, B_2, \ldots, B_n be mutually exclusive events whose union equals the sample space S as shown in Fig. 2.14. We refer to these sets as a **partition** of S. Any event A can be represented as the union of mutually exclusive events in the following way:

$$A = A \cap S = A \cap (B_1 \cup B_2 \cup \cdots \cup B_n)$$

= $(A \cap B_1) \cup (A \cap B_2) \cup \cdots \cup (A \cap B_n).$

See Fig. 2.14. By Corollary 4, the probability of A is

$$P[A] = P[A \cap B_1] + P[A \cap B_2] + \cdots + P[A \cap B_n].$$

By applying Eq. (2.25a) to each of the terms on the right-hand side, we obtain the **theorem on total probability**:

$$P[A] = P[A \mid B_1]P[B_1] + P[A \mid B_2]P[B_2] + \cdots + P[A \mid B_n]P[B_n].$$

10

Let B_1, B_2, \ldots, B_n be a partition of a sample space S. Suppose that event A occurs, what is the probability of event B_j ? By the definition of conditional probability we have

$$P[B_j \mid A] = \frac{P[A \cap B_j]}{P[A]} = \frac{P[A \mid B_j]P[B_j]}{\sum_{k=1}^{n} P[A \mid B_k]P[B_k]},$$
(2.27)

where we used the theorem on total probability to replace P[A]. Equation (2.27) is called **Bayes' rule**.

EXPERIMENT PERFORMED AND A OCCURRED

P(B) IA) POSTERIOR PROBABILITIES
GIVEN ADDITIONAL INFORMATION

BAYES

on the second se	
	- NEXPERTS I MODELS E:
	- IN EACH TRIAL & WE ORSERVE LABEL YE BATUM
	ASSUMPTION:
	- ONE EXPERT E: BENERATED (4, 42,, 4) = 9 - PRIOR PROBABLITY OF EXPERTE: 19 PLE;)
	YEY FINITE
The state of the s	PROBABILITY OF DATA & GIVEN E, GENERATED IT:
	PIGIEI) DATA LIKELIHOODS
	INPORTANT SPECIAL CASE:
	Y, 1921, Y - ARE GENERATED INDEPENDENTLY AT RANDOM
	THUS P(y,, YT) = TT P(yt Ei)
	GENERAL CASE T P(y,, y, Ei) = /1. P(yt E:, y,, yt-1) t=1

FOR EXAMPLE: EXPERTS ARE COINS Y= {0,1}
P(IIEi) ,1 .2 .8 .9 P(Ei) 12 .4 .3 .1
ÿ3 = (1,1,0)
$P(Ei Y_3) = P(U_3 Ei)P(Ei)$ $POSTERIOR$
$P(11Ei)^{2} (1-P(1/Ei) P(Ei)$ $P(93)$ $E_{1} E_{2} E_{3} E_{4}$
$P(E_1 _{53}) \sim 1^2.9.2 \cdot 2^2.8.4 \cdot 8^2.2.3 \cdot 9^2.1.1$
~ 18 128 384 81
FOR 1-HEAVY SEQUENCES POSTERIOR WILL BECOME & argmax P(1/Ei)
PROVIDED THAT ALL P(E)>0