01 LOGIC

01 03 Tautology Equivalence

A <u>tautology</u> is a proposition which is always true.

Example: p V ~p. Recall the following truth table.

p	~p	$p \lor \sim p$
T	F	Т
F	T	T

A <u>contradiction</u> is a proposition which is always false.

Example: $p \land \sim p$. Recall the following truth table.

p	~p	$p \land \sim p$
T	F	F
F	T	F

Note that the negation of a tautology is a contradiction and the negation of a contradiction is a tautology.

A <u>contingency</u> is a proposition which is neither a tautology nor a contradiction. Example: $p \lor \sim q$.

If a biconditional $r \leftrightarrow t$ is a tautology, then the proposition r and proposition t are logically equivalent, denoted by $r \Leftrightarrow t$.

Because of the truth table below, $p \leftrightarrow \sim (\sim p)$ is a tautology, i.e., p and $\sim (\sim p)$ are logically equivalent and $p \Leftrightarrow \sim (\sim p)$.

p	~p	~(~p)	$p \leftrightarrow \sim (\sim p)$
T	F	T	T
F	T	T	T

Because of the truth table below, $(\underline{p} \land \underline{q}) \leftrightarrow (\underline{q} \land \underline{p})$ is a tautology, i.e., $\underline{p} \land \underline{q}$ and $\underline{q} \land \underline{p}$ are logically equivalent and $(\underline{p} \land \underline{q}) \Leftrightarrow (\underline{q} \land \underline{p})$.

p	q	$p \wedge q$	$q \wedge p$	$(p \land q) \leftrightarrow (q \land p)$
T	T	T	T	T
T	F	F	F	T
F	T	F	F	T
F	F	F	F	T

Because of the truth table below, $(\underline{p} \lor \underline{q}) \leftrightarrow (\underline{q} \lor \underline{p})$ is a tautology, i.e., $\underline{p} \lor \underline{q}$ and $\underline{q} \lor \underline{p}$ are logically equivalent and $(\underline{p} \lor \underline{q}) \Leftrightarrow (\underline{q} \lor \underline{p})$.

p	q	$p \lor q$	$q \lor p$	$(p \lor q) \leftrightarrow (q \lor p)$
T	T	T	T	T
T	F	T	T	T
F	T	T	T	T
F	F	F	F	T

Because of the truth table below, $(p \oplus q) \leftrightarrow (q \oplus p)$ is a tautology, i.e., $p \oplus q$ and $q \oplus p$ are logically equivalent and $(p \oplus q) \Leftrightarrow (q \oplus p)$.

p	q	$p \oplus q$	$q \oplus p$	$(p \oplus q) \leftrightarrow (q \oplus p)$
T	T	F	F	T
T	F	T	T	T
F	T	T	T	T
F	F	F	F	T

Because of the truth table below, $(\underline{p} \leftrightarrow \underline{q}) \leftrightarrow (\underline{q} \leftrightarrow \underline{p})$ is a tautology, i.e., $\underline{p} \leftrightarrow \underline{q}$ and $\underline{q} \leftrightarrow \underline{p}$ are logically equivalent and $(\underline{p} \leftrightarrow \underline{q}) \Leftrightarrow (\underline{q} \leftrightarrow \underline{p})$.

p	q	$p \leftrightarrow q$	$q \leftrightarrow p$	$(p \leftrightarrow q) \leftrightarrow (q \leftrightarrow p)$
T	T	T	T	Т
T	F	F	F	Т
F	T	F	F	Т
F	F	T	T	Т

Because of the truth table below, $(\underline{p} \leftrightarrow \underline{q}) \leftrightarrow \sim (\underline{p} \oplus \underline{q})$ is a tautology, i.e., $(\underline{p} \leftrightarrow \underline{q})$ and $\sim (\underline{p} \oplus \underline{q})$ are logically equivalent, $\sim (\underline{p} \leftrightarrow \underline{q})$ and $(\underline{p} \oplus \underline{q})$ are logically equivalent), $(\underline{p} \leftrightarrow \underline{q}) \Leftrightarrow \sim (\underline{p} \oplus \underline{q})$, and $\sim (\underline{p} \leftrightarrow \underline{q}) \Leftrightarrow (\underline{p} \oplus \underline{q})$.

p	q	$p \leftrightarrow q$	$p \oplus q$	~(p (q)	$(p \leftrightarrow q) \leftrightarrow$
					~(p ⊕ q)
T	T	T	F	T	T
T	F	F	T	F	T
F	T	F	T	F	T
F	F	T	F	T	T

Because of the truth table below, $(\underline{p} \to \underline{q}) \leftrightarrow (\sim \underline{p} \vee \underline{q})$ is a tautology, i.e., $(\underline{p} \to \underline{q})$ and $(\sim \underline{p} \vee \underline{q})$ are logically equivalent and $(\underline{p} \to \underline{q}) \Leftrightarrow (\sim \underline{p} \vee \underline{q})$.

p	q	$p \rightarrow q$	~p	~p \lefty q	$(p \to q) \leftrightarrow (\sim p \lor q)$
Т	T	T	F	T	Т
Т	F	F	F	F	Т
F	T	T	T	T	Т
F	F	T	T	T	Т

Recall the truth table of $(p \to q) \leftrightarrow (\sim q \to \sim p)$ below.

p	q	~p	~q	$p \rightarrow q$	$\sim q \rightarrow \sim p$	$(p \rightarrow q) \leftrightarrow$
						$(\sim q \rightarrow \sim p)$
T	T	F	F	T	T	T
T	F	F	T	F	F	T
F	T	T	F	T	T	T
F	F	T	T	T	Т	T

 $(p \to q)$ and $(\sim q \to \sim p)$ are logically equivalent and $(p \to q) \Leftrightarrow (\sim q \to \sim p)$.

Because of the truth table below, $(\underline{p} \to \underline{q}) \leftrightarrow (\underline{q} \to \underline{p})$ is a contingency, i.e., $(\underline{p} \to \underline{q})$ and $(\underline{q} \to \underline{p})$ are not logically equivalent.

p	q	$p \rightarrow q$	$q \rightarrow p$	$(p \to q) \leftrightarrow (q \to p)$
T	T	T	T	T
T	F	F	T	F
F	T	T	F	F
F	F	T	T	Т

Because of the truth table below, $(\underline{p} \land q) \leftrightarrow \sim (\underline{p} \lor q)$ is a contingency, i.e., $(\underline{p} \land q)$ and $\sim (\underline{p} \lor q)$ are not logically equivalent, and $\sim (\underline{p} \land q)$ and $(\underline{p} \lor q)$ are not logically equivalent).

p	q	$p \wedge q$	$p \lor q$	~(p ∨ q)	$(p \land q) \leftrightarrow \sim (p \lor q)$
T	Т	T	T	F	F
T	F	F	T	F	T
F	T	F	T	F	T
F	F	F	F	Т	F

Common logical equivalences.

Suppose p is a proposition. Then

$p \lor T \Leftrightarrow T$	$p \wedge F \Leftrightarrow F$
$p \wedge T \Leftrightarrow p$	$p \lor F \Leftrightarrow p$
$p \land p \Leftrightarrow p$	$p \lor p \Leftrightarrow p$
p ⇔ ~(~p)	$(p \to q) \Leftrightarrow (\sim p \lor q)$
$p \lor \sim p \Leftrightarrow T$	$p \land \sim p \Leftrightarrow F$
$p \lor q \Leftrightarrow q \lor p$	$p \land q \Leftrightarrow q \land p$
$(p \leftrightarrow q) \Leftrightarrow (q \leftrightarrow p)$	$(p \oplus q) \Leftrightarrow (q \oplus p)$
$p \land (q \land r) \Leftrightarrow (p \land q) \land r$	$p \lor (q \lor r) \Leftrightarrow (p \lor q) \lor r$
$p \land (q \lor r) \Leftrightarrow$	$p \lor (q \land r) \Leftrightarrow$
$(p \land q) \lor (p \land r)$	$(p \lor q) \land (p \lor r)$