Ferienkurs Quantenmechanik - Aufgaben Sommersemester 2013

Fabian Jerzembeck und Sebastian Steinbeißer Fakultät für Physik Technische Universität München

18. September 2015

Grundlagen und Formalismus

Aufgabe 1 (*)

Betrachte die Wellenfunktion

$$\Psi(x,t) = Ae^{-\lambda|x|}e^{-i\omega t}$$

wobei $A, \lambda, \omega > 0$ gelte.

- a) Normiere Ψ
- b) Was ist der Erwartungswert von x und x^2 ?
- c) Bestimme die Standardabweichung von x. Wie sieht der Graph von $|\Psi|^2$ als Funktion von x aus? Markiere die Punkte $(\langle x \rangle + \Delta x)$ und $(\langle x \rangle \Delta x)$ und berechne die Wahrscheinlichkeit das Teilchen außerhalb dieses Bereichs zu finden.

Lösung:

a)
$$1 = \int |\Psi|^2 dx = 2|A|^2 \int_0^\infty e^{-2\lambda x} dx = 2|A|^2 \left(\frac{e^{-2\lambda x}}{-2\lambda}\right)\Big|_0^\infty = \frac{|A|^2}{\lambda} \Rightarrow \boxed{A = \sqrt{\lambda}}$$

Tag 1

Seite 2

b)

$$\langle x \rangle = \int x |\Psi|^2 dx = |A|^2 \int_{-\infty}^{\infty} x e^{-2\lambda |x|} dx = \lim_{ungerader Integrand} 0$$

$$\langle x^2 \rangle = 2|A|^2 \int_{0}^{\infty} \underbrace{x^2 e^{-2\lambda x}}_{\frac{1}{4} \frac{\partial^2}{\partial x^2} e^{-2\lambda x}} dx = \frac{|A|^2}{2} \frac{\partial^2}{\partial \lambda^2} \int_{0}^{\infty} e^{-2\lambda x} dx = 2\lambda \left[\frac{2}{(2\lambda)^3} \right] = \boxed{\frac{1}{2\lambda^2}}$$

c)

$$(\Delta x)^2 = \langle x^2 \rangle - \langle x \rangle^2 = \frac{1}{2\lambda^2} \Rightarrow \boxed{\Delta x = \frac{1}{\sqrt{2}\lambda}}$$
$$|\Psi(\pm \Delta x)|^2 = |A|^2 e^{-2\lambda \Delta x} = \lambda e^{-2\lambda/\sqrt{2}\lambda} = \lambda e^{-\sqrt{2}} \approx 0.2431\lambda$$

Graph:

Wahrscheinlichkeit das Teilchen außerhalb $\pm \Delta x$ anzutreffen:

$$2|A|^2 \int_{\Delta x}^{\infty} |\Psi|^2 dx = 2|A|^2 \int_{\Delta}^{\infty} e^{-2\lambda x} dx = 2\lambda \left(\frac{e^{-2\lambda x}}{-2\lambda}\right) \Big|_{\Delta x}^{\infty} = e^{-2\lambda \Delta x} = \boxed{e^{-\sqrt{2}} \approx 0.2431.}$$

Aufgabe 2 (*)

Zeige, dass gilt:

$$[x_i, x_j] = [p_i, p_j] = 0, \quad [H, x_i] = -\frac{i\hbar}{m} p_i, \quad [H, p_i] = i\hbar \frac{\partial}{\partial x_i} V(x)$$

Lösung:

Wir rechnen im Ortsraum:

$$\begin{split} &[x_i,x_j]=0 \quad \text{(trivialer weise)} \\ &[p_i,p_j]=-\hbar^2(\nabla_i\nabla_j-\nabla_j\nabla_i)=0 \quad \text{(partielle Ableitungen vertauschen)} \\ &[H,x_i]=-\frac{\hbar^2\nabla^2}{2m}x_i+x_i\frac{\hbar^2\nabla^2}{2m}=-\frac{\hbar^2}{m}\nabla_i=-\frac{i\hbar}{m}p_i \\ &[H,p_i]=V(x)\frac{\hbar}{i}\nabla_i-\frac{\hbar}{i}\nabla_iV(x)=i\hbar\frac{\partial}{\partial x_i}V(x) \end{split}$$

Aufgabe 3 (*)

- a) Zeige, dass gilt: $[p, x^n] = -i\hbar nx^{n-1}$.
- b) Zeige mit a), dass für alle F gilt: $[p,F(x)]=-i\hbar \frac{\partial F}{\partial x}$, wenn diese als Potenzreihe ausgedrückt werden können.

Lösung:

- a) Beweis durch Induktion: n = 1: Das ist die bekannte kanonische Vertauschungsrelation von Ort und Impuls.
 - $n-1 \to n$: Nehmen wir an, wir haben es für n-1 bereits gezeigt, dann folgt wegen:

$$\begin{split} [p,x^n] &= [p,x \cdot x^{n-1}] = x \underbrace{[p,x^{n-1}]}_{=-i\hbar(n-1)x^{n-2} \text{ nach IV}} + \underbrace{[p,x]}_{=-i\hbar} x^{n-1} \\ &= x \cdot (-i\hbar(n-1)x^{n-2}) - i\hbar x^{n-1} = -i\hbar nx^{n-1} \end{split}$$

dass es auch für n gilt. Damit ist unsere Induktion vollständig.

b) Sei $F(x) = \sum a_n x^n$. Dann gilt:

$$[p, F(x)] = \sum_{n=0}^{\infty} a_n [p, x^n] = \sum_{n=1}^{\infty} a_n (-i\hbar n x^{n-1}) = -i\hbar \sum_{n=1}^{\infty} a_n n x^{n-1} = -i\hbar \frac{\partial F}{\partial x}$$

Aufgabe 4 (**)

Zeige die Gültigkeit der Heisenberg'schen Unschärferelation, bezogen auf Ort und Impuls, anhand des Gauß'schen Wellenpakets:

$$|\psi(x,t)|^2 = \frac{1}{2\sqrt{2\pi(1+\Delta^2)}} \exp\{-\frac{(x-vt)^2}{2d^2(1+\Delta^2)}\}$$

Lösung:

Wir bestimmen die Ortsunschärfe:

$$\Delta x = d\sqrt{1 + \Delta^2}$$

wobei $\Delta = \frac{t\hbar}{2md^2}$ ist.

Für die Impulswellenfunktion und das Schwankungsquadrat finden wir:

$$|\phi(p,t)|^2 = 2\sqrt{2\pi}d \cdot \exp\left(\frac{2d^2}{\hbar^2}(p-p_0)^2\right)$$

$$(\Delta p)^2 = \langle (p-\langle p\rangle)^2\rangle = \langle (p-p_0)^2\rangle = \frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} d^3p(p-p_0)^2 |\phi(p,t)|^2$$

$$= \frac{2\sqrt{2\pi}d}{2\pi\hbar} \frac{\sqrt{\pi}}{2} \left(\frac{\hbar}{\sqrt{2}d}\right)^3 = \frac{1}{4} \frac{\hbar^2}{d^2}$$

Hierbei haben wir verwendet, dass gilt:

$$\int_{-\infty}^{\infty} dx x^2 e^{-ax^2} = \frac{\sqrt{\pi}}{2} a^{-\frac{3}{2}}$$

und somit ist die Impulsunschärfe gegeben durch:

$$\Delta p = \frac{\hbar}{2d}$$

Wir sehen nun die Gültigkeit der Heisenberg'schen Unschärferelation

$$\Delta x \cdot \Delta p = (d\sqrt{1+\Delta^2}) \cdot \frac{\hbar}{2d} = \sqrt{1+\Delta^2} \cdot \frac{\hbar}{2} \ge \frac{\hbar}{2}$$

da $\sqrt{1+\Delta^2} \ge 1$, da $\Delta \ge 0$.

Der Fall $\Delta=0$ entspricht einer reinen Gaußkurve, für die in der Heisenberg'schen Unschärferelation Gleichheit gilt!

Aufgabe 5 (**)

Berechnen Sie die Bindungsenergien und normierten Wellenfunktionen für ein quantenmechanisches Teilchen der Masse m, das von einem eindimensionalen δ -Potential

$$V(x) = -\lambda \delta(x) \qquad \lambda > 0$$

angezogen wird. Leiten Sie zuerst aus der zeitunabhängigen Schrödingergleichung die Sprungbedingung für die Ableitung der Wellenfunktion am Ursprung her:

$$-\frac{\hbar^2}{2m} \lim_{\varepsilon \to 0^+} \left[\Psi'(\varepsilon) - \Psi'(-\varepsilon) \right] = \lambda \Psi(0)$$

Wie viele Bindungszustände mit E < 0 gibt es? Berechnen Sie für den Bindungszustand die Orts- und Impulsunschärfen Δx und Δp und überprüfen Sie die Heisenberg'sche Unschärferelation $\Delta x \cdot \Delta p \geq \hbar/2$.

Hinweis:
$$\int_{0}^{\infty} \mathrm{d}x x^{q} \mathrm{e}^{-x} = q!$$

Lösung: Für $x \neq 0$ lautet die Schrödingergleichung für dieses Problem

$$-\frac{\hbar^2}{2m}\Psi''(x) = E\Psi(x) \qquad \text{bzw.} \qquad \Psi''(x) = q^2\Psi(x)$$

Mit der Einführung des Parameters $q^2=-2mE/\hbar$ sehen wir also, dass die zweite Ableitung der Wellenfunktion proportional zur Wellenfunktion selbst ist. Dabei ist E<0 für einen Bindungszustand, die Wurzel ist also reell. Man wähle als Ansatz zur Lösung:

$$\Psi(x) = Ae^{-q|x|}$$

da dieser Ansatz im Gegensatz zur gewöhnlichen Exponentialfunktion der Symmetrie des Potentials entspricht.

Um die Sprungbedingung zu erhalten, integriert man die Schrödingergleichung über das Intervall $(-\varepsilon, \varepsilon)$ und erhält:

$$\int_{-\varepsilon}^{\varepsilon} \left[-\frac{\hbar^2}{2m} \Psi''(x) - \lambda \delta(x) \Psi(x) - E \Psi(x) \right] dx = 0$$

$$\Rightarrow -\frac{\hbar^2}{2m}\Psi'(x)\Big|_{-\varepsilon}^{\epsilon} - \lambda\Psi(0) - \int_{-\varepsilon}^{\epsilon} E\Psi(x) = 0$$

Lässt man nun ε gegen Null gehen, so verschwindet der letzte Term, da $\Psi(x)$ beschränkt ist und man erhält die gewünschte Gleichung. Die Sprungbedingung bei x=0 ergibt nun:

$$-\frac{\hbar^2}{2m}A(-q-q) = \lambda A \quad \text{also} \quad q = \frac{\lambda m}{\hbar^2}$$

Die Bindungsenergie ist damit:

$$E = -\frac{\lambda^2 m}{2\hbar^2}$$

wobei wir nur genau einen Bindungszustand gefunden haben. Es scheint also nur genau diesen einen gebundenen Zustand für das attraktive Deltapotential zu geben. Die Konstante A berechnet sich durch die Normierung:

$$1 = A^{2} \int_{-\infty}^{\infty} dx \, e^{-2q|x|} = 2 \cdot \frac{A^{2}}{2q}$$

also $A = \sqrt{q}$. Die Lösung ist also:

$$\Psi(x) = \frac{\sqrt{\lambda m}}{\hbar} e^{-\frac{\lambda m}{\hbar^2}|x|}$$

Wir sehen nun, dass $\Psi(x)$ eine gerade Funktion ist, so dass sowohl $\langle x \rangle$ als auch $\langle p \rangle$ verschwinden. Zu berechnen bleibt:

$$\langle x^{2} \rangle = q \int_{-\infty}^{\infty} dx \, x^{2} e^{-2q|x|} = 2q \frac{1}{8q^{3}} \int_{0}^{\infty} dy \, y^{2} e^{-y} = \frac{1}{2q^{2}}$$

$$\langle p^{2} \rangle = -\hbar^{2} \int_{-\infty}^{\infty} dx \, \Psi(x) \Psi''(x) = \hbar^{2} \int_{-\infty}^{\infty} dx (\Psi'(x))^{2} = 2\hbar^{2} q^{3} \underbrace{\int_{0}^{\infty} dx \, e^{-2qx}}_{=1/2q} = \hbar^{2} q^{2}$$

Damit ist also $\Delta x = \frac{\hbar^2}{\sqrt{2}\lambda m}$ und $\Delta p = \frac{\lambda m}{\hbar}$ und die Unschärfe ist:

$$\Delta x \cdot \Delta p = \sqrt{2} \frac{\hbar}{2} > \frac{\hbar}{2}$$

so dass die Unschärferelation erfüllt ist.

Aufgabe 6 (**)

In der Mitte eines unendlichen hohen Potentialtopfs der Breite 2a befindet sich eine δ -Barriere $V(x) = \lambda \delta(x)$ mit $\lambda > 0$.

- a) Geben Sie die Schrödingergleichung und die Stetigkeitsbedingung für das gegebene Problem an.
- b) Betrachten Sie den Ansatz

$$\Psi(x) = Ae^{ikx} + Be^{-ikx}$$

jeweils in den Gebieten links und rechts von der Barriere. Stellen Sie die Randbedingungen bei $x=\pm a$ und die Anschlussbedingung bei x=0 auf und bestimmen Sie die Koeffizienten der Wellenfunktion.

- c) Leiten Sie die Bedingungen für die möglichen k-Werte ab.
- d) Geben Sie die Normierung der Wellenfunktion an.

Lösung:

a) Die Schrödinger-Gleichung hat die Form:

$$\left[-\frac{\hbar^2}{2m} \frac{d^2}{dr^2} + \lambda \delta(x) \right] \psi(r) = E_n \psi(r)$$

Was uns zu der Form für das δ -Potential führt:

$$\lim_{\varepsilon \to 0^+} \left[\Psi'(\varepsilon) - \Psi'(-\varepsilon) \right] = -\frac{2m\lambda}{\hbar^2} \Psi(0)$$

b) Der Ansatz:

$$\Psi(x)_1 = Ae^{ikx} + Be^{-ikx}$$

führt mit der Randbedingung $\Psi_1(-a) = 0$ zu:

$$B = -Ae^{-2ika}$$

Eliminieren wir damit B, so folgt:

$$\Psi(x)_1 = A(e^{ikx} - e^{-2ika}e^{-ikx}) = Ae^{-ika}(e^{ikx}e^{ika} - e^{-ika}e^{-ikx}) = 2iAe^{-ika}\sin[k(x+a)]$$

 $\to A'\sin[k(x+a)]$

Analog kommt aus der Wellenfunktion für den Bereich II und der Randbedingung $\Psi_2(a)=0$:

$$D = -Ce^{2ika}$$
 und $\Psi(x)_2 = 2iCe^{ika}\sin[k(x-a)] \rightarrow C'\sin[k(x-a)]$

Bei x=0 muss gelten $\Psi_1(0)=\Psi_2(0) \iff A'\sin[ka]=C'\sin[-ka]=-C'\sin[ka]$ und durch die Bedingung für Ψ' folgt:

$$kC'\cos[ka] - kA'\cos[ka] = \frac{2m\lambda}{\hbar^2}A'\sin[ka]$$

c) Ist nun $ka = n\pi$, so folgt A' = C' und man erhält eine antisymmetrische Lösung:

$$\Psi(x) = A(-1)^n \begin{cases} \sin[kx] & \text{für } x \le 0\\ \sin[kx] & \text{für } x > 0 \end{cases}$$

Falls $ka \neq n\pi$, ist A' = -C' und man erhält eine symmetrische Lösung:

$$\Psi(x) = \begin{cases} A\sin[k(x+a)] & \text{für } x \le 0\\ -A\sin[k(x-a)] & \text{für } x > 0 \end{cases}$$

d) Die Normierung für den symmetrischen und den antisymmetrischen Fall ist gegeben durch:

$$A = \begin{cases} \frac{1}{\sqrt{a - \frac{\sin[2ka]}{2k}}} & \text{symmetrisch} \\ \frac{1}{\sqrt{a}} & \text{antisymmetrisch } x > 0 \end{cases}$$

Aufgabe 7 (*)

Wir haben einen unendlichdimensionalen Hilbertraum mit einem abzählbaren Orthonormalsystem $\{|0\rangle, |1\rangle, |2\rangle, ...\}$, d.h.: $\langle n|m\rangle = \delta_{nm}$. Ein Zustand sei definiert als:

$$|\Psi_{\alpha}\rangle \equiv C \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle$$

 $mit\ einer\ komplexen\ Zahl\ \alpha.$

Außerdem definieren wir uns den Absteigeoperator a über:

$$a |n\rangle \equiv \sqrt{n} |n-1\rangle \ \forall n \ge 1 \quad und \quad a |0\rangle \equiv 0$$

- a) Bestimme C so, dass $|\Psi_{\alpha}\rangle$ normiert ist.
- b) Zeige, dass $|\Psi_{\alpha}\rangle$ ein Eigenzustand von a ist und berechne den Eigenwert.
- c) Sind die Zustände $|\Psi_{\alpha}\rangle$ und $|\Psi_{\beta}\rangle$ für $\alpha \neq \beta$ orthogonal?

Lösung:

a)

$$1 = \langle \Psi_{\alpha} | \Psi_{\alpha} \rangle = |C|^2 \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{(\alpha^*)^n}{\sqrt{n!}} \frac{\alpha^m}{\sqrt{m!}} \underbrace{\langle n | m \rangle}_{=\delta_{nm}} = |C|^2 \sum_{n=0}^{\infty} \frac{(|\alpha|^2)^n}{n!} = |C|^2 e^{|\alpha|^2}$$

$$\Longrightarrow C = e^{-|\alpha|^2/2}$$

b)

$$a |\Psi_{\alpha}\rangle = C \sum_{n=0}^{\infty} \frac{\alpha^{n}}{\sqrt{n!}} \underbrace{a |n\rangle}_{\sqrt{n}|n-1\rangle} = C \sum_{n=1}^{\infty} \frac{\alpha^{n}}{\sqrt{n!}} \sqrt{n} |n-1\rangle = \alpha C \sum_{n=1}^{\infty} \frac{\alpha^{n-1}}{\sqrt{n!}} \sqrt{n} |n-1\rangle = \alpha |\Psi_{\alpha}\rangle$$

c) Nein, denn:

$$\langle \Psi_{\alpha} | \Psi_{\beta} \rangle = e^{-|\alpha|^2/2} e^{-|\beta|^2/2} \sum_{m=0}^{\infty} \sum_{m=0}^{\infty} \frac{(\alpha^*)^n}{\sqrt{n!}} \frac{\beta^m}{\sqrt{m!}} = e^{-(|\alpha|^2 + |\beta|^2)/2} e^{\alpha^*\beta} \neq 0$$

Tag 1

Aufgabe 8 (*)

Wir benutzen einen zweidimensionalen komplexen Hilbertraum (d.h.: den \mathbb{C}^2) um ein System mit zwei Zuständen zu beschreiben. Unsere Orthonormalbasis bezeichnen wir mit $|+\rangle$, $|-\rangle$. Außerdem definieren wir uns die Operatoren

$$S_x \equiv \frac{\hbar}{2}(|+\rangle \langle -|+|-\rangle \langle +|)$$

$$S_y \equiv \frac{i\hbar}{2}(-|+\rangle \langle -|+|-\rangle \langle +|)$$

$$S_z \equiv \frac{\hbar}{2}(|+\rangle \langle +|-|-\rangle \langle -|)$$

- a) Zeige, dass $|+\rangle$ und $|-\rangle$ Eigenzustände von S_z sind.
- b) Zeige, dass $[S_x, S_y] = i\hbar S_z$ gilt.
- c) Wie lautet die Unschärferelation für die beiden Operatoren S_x und S_y für ein System im Zustand $|+\rangle$?

Lösung:

a)

$$S_{z} |+\rangle = \frac{\hbar}{2} (|+\rangle \underbrace{\langle +|+\rangle}_{=1} - |-\rangle \underbrace{\langle -|+\rangle}_{=0}) = \frac{\hbar}{2} |+\rangle$$

$$S_{z} |-\rangle = \frac{\hbar}{2} (|+\rangle \underbrace{\langle +|-\rangle}_{=0} - |-\rangle \underbrace{\langle -|-\rangle}_{=1}) = -\frac{\hbar}{2} |-\rangle$$

b) In Matrixdarstellung haben wir:

$$[S_x, S_y] = S_x S_y - S_y S_x = \frac{\hbar^2}{4} \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} - \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \end{bmatrix}$$
$$= \frac{\hbar^2}{4} \begin{bmatrix} \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} - \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix} \end{bmatrix} = i\hbar \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = i\hbar S_z$$

c) Die Unschärferelation lautet:

$$\Delta S_x \Delta S_y \geq \frac{1}{2} |\left\langle \left[S_x, S_y\right]\right\rangle_{|+\rangle}| \stackrel{=}{=} \frac{\hbar}{2} |\left\langle +|S_z|+\right\rangle| = \frac{\hbar^2}{4} \left\langle +|\left\lceil |+\rangle\left\langle +|-|-\rangle\left\langle -|\right\rceil\right| |+\rangle = \frac{\hbar^2}{4}$$

 S_x und S_y können also nicht gleichzeitig beliebig genau bestimmt werden (Dies ist aber eine intrinsische Eigenschaft des Quantensystems und liegt nicht am Messprozess!).

Aufgabe 9 (*)

Betrachte einen Hilbertraum, der von den Eigenkets $|1\rangle, |2\rangle, |3\rangle, ...$ von A aufgespannt wird. Die entsprechenden Eigenwerte lauten $a_1, a_2, a_3, ...$ Beweise, dass

$$\prod_{n} (A - a_n)$$

der Nulloperator ist.

Lösung:

Wir sehen, dass alle Faktoren in dem Produkt miteinander kommutieren. Anwenden von

$$\prod_{n} (A - a_n)$$

auf einen beliebigen Eigenket $|k\rangle$ von A liefert 0 (wende zuerst den Faktor $A - a_k$ auf $|k\rangle$ an).

Jeder Vektor $|x\rangle$ kann als Linearkombination

$$|x\rangle = \sum_{n=1}^{\infty} c_n |n\rangle$$

von Eigenkets dargestellt werden. Also wird auch $|x\rangle$ auf Null abgebildet.

Aufgabe 10 (*)

Eine Observable A besitzt die zwei normierten Eigenzustände ψ_1 und ψ_2 , mit den Eigenwerten a_1 und a_2 . Die Observable B besitzt die normierten Eigenzustände ϕ_1 und ϕ_2 mit den Eigenwerten b_1 und b_2 .

Für die Eigenzustände gilt:

$$\psi_1 = (3\phi_1 + 4\phi_2)/5, \quad \psi_2 = (4\phi_1 - 3\phi_2)/5$$

- a) Observable A wird gemessen und man erhält den Wert a₁. Was ist der Zustand des Systems direkt nach der Messung?
- b) Im Anschluss wird B gemessen. Was sind die möglichen Ergebnisse und mit welcher Wahrscheinlickeit treten sie auf?
- c) Direkt nach der Messung von B wird wieder A gemessen. Mit welcher Wahrscheinlichkeit erhalten wir wieder a₁?

Lösung:

a) Nach den Axiomen der Quantenmechanik befindet sich das System direkt nach der Messung im Eigenzustand zum zugehörigen Eigenwert, also in ψ_1 .

- Seite 11
- b) Das System befindet sich im Zustand $\psi_1 = (3\phi_1 + 4\phi_2)/5$. In dem Moment, in dem B gemessen wir, kollabiert die Wellenfunktion in einen Eigenzustand von B. Die Wahrscheinlichkeit des Messwertes ist das Betragsquadrat des Vorfaktors des zugehörigen Eigenzustands. Die Wahrscheinlichkeit b_1 zu messen ist also gegeben durch $\left(\frac{3}{5}\right)^2$ und die Wahrscheinlichkeit b_2 zu messen is gegeben durch $\left(\frac{4}{5}\right)^2$.
- c) Drücken wir die Eigenfunktionen von B in den Eigenfunktionen von A aus, so erhalten wir

$$\phi_1 = (3\psi_1 + 4\psi_2)/5, \quad \phi_2 = (4\psi_1 - 3\psi_2)/5$$

Falls das System sich also im Zustand ϕ_1 befindet, so beträgt die Wahrscheinlichkeit a_1 zu messen $\left(\frac{3}{5}\right)^2$. Falls es sich in ϕ_2 befindet, so beträgt die Wahrscheinlichkeit a_1 zu messen $\left(\frac{4}{5}\right)^2$.

Aus b) wissen wir: Das System befindet sich mit Wahrscheinlichkeit $\left(\frac{3}{5}\right)^2$ im Zustand ϕ_1 und mit Wahrscheinlichkeit $\left(\frac{4}{5}\right)^2$ im Zustand ϕ_2 . Multiplizieren der entsprechenden Wahrscheinlichkeiten liefert die Gesamtwahrscheinlichkeit dafür a_1 zu messen. Sie beträgt:

$$\left(\frac{3}{5}\right)^2 \left(\frac{3}{5}\right)^2 + \left(\frac{4}{5}\right)^2 \left(\frac{4}{5}\right)^2 = \frac{337}{625}$$