Алгоритмы

1 Выделение базиса из системы векторов

Дано Пусть $v_1, \ldots, v_m \in \mathbb{R}^n$ – вектора и $V = \langle v_1, \ldots, v_m \rangle$ – их линейная оболочка.

Задача Среди векторов v_1, \ldots, v_m найти базис пространства V и разложить оставшиеся вектора по этому базису.

Алгоритм

1. Запишем вектора v_1, \ldots, v_m по столбцам в матрицу $A \in \mathrm{M}_{n\,m}(\mathbb{R})$. Например, при $n=3,\,m=5$

$$A = \begin{pmatrix} v_{11} & v_{21} & v_{31} & v_{41} & v_{51} \\ v_{12} & v_{22} & v_{32} & v_{42} & v_{52} \\ v_{13} & v_{23} & v_{33} & v_{43} & v_{53} \end{pmatrix}$$

2. Приведем матрицу A элементарными преобразованиями строк к улучшенному ступенчатому виду. Например

$$A' = \begin{pmatrix} 1 & 0 & a_{31} & 0 & a_{51} \\ 0 & 1 & a_{32} & 0 & a_{52} \\ 0 & 0 & 0 & 1 & a_{53} \end{pmatrix}$$

- 3. Пусть k_1, \ldots, k_r номера главных позиций в матрице A'. Тогда вектора v_{k_1}, \ldots, v_{k_r} образуют базис V. Например, в примере выше это вектора v_1, v_2 и v_4 .
- 4. Пусть v_i вектор соответствует неглавной позиции в A'. Тогда в i-ом столбце A' записаны координаты разложения v_i через найденный базис выше. Например, в примере выше $v_3 = a_{31}v_1 + a_{32}v_2$ и $v_5 = a_{51}v_1 + a_{52}v_2 + a_{53}v_4$.

Пример Пусть

$$v_1 = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, v_3 = \begin{pmatrix} 5 \\ 12 \\ 7 \end{pmatrix}, v_4 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, v_5 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \in \mathbb{R}^3$$

Тогда

$$\begin{pmatrix} 1 & 1 & 5 & 1 & -1 \\ 3 & 2 & 12 & 1 & 1 \\ 2 & 1 & 7 & 1 & 0 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 1 & 5 & 1 & -1 \\ 0 & 0 & 0 & -1 & 2 \\ 2 & 1 & 7 & 1 & 0 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 1 & 5 & 1 & -1 \\ 0 & 0 & 0 & -1 & 2 \\ 1 & 0 & 2 & 0 & 1 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 0 & 2 & 0 & 1 \\ 1 & 1 & 5 & 1 & -1 \\ 0 & 0 & 0 & 1 & -2 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 0 & 2 & 0 & 1 \\ 0 & 1 & 3 & 1 & -2 \\ 0 & 0 & 0 & 1 & -2 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 0 & 2 & 0 & 1 \\ 0 & 1 & 3 & 0 & 0 \\ 0 & 0 & 0 & 1 & -2 \end{pmatrix}$$

1

Тогда v_1, v_2 и v_4 – базис линейной оболочки. $v_3 = 2v_1 + 3v_2$ и $v_5 = v_1 - 2v_4$.

2 Нахождение какого-то базиса линейной оболочки

Дано Пусть $v_1, \ldots, v_m \in \mathbb{R}^n$ – вектора и $V = \langle v_1, \ldots, v_m \rangle$ – их линейная оболочка.

 ${f 3}$ адача Найти какой-нибудь базис подпространства V.

Алгоритм

- 1. Уложить все вектора v_i в строки матрицы $A \in \mathrm{M}_{m\,n}(\mathbb{R})$.
- 2. Элементарными преобразованиями строк привести матрицу к ступенчатому виду.
- 3. Ненулевые строки полученной матрицы будут искомым базисом.

3 Дополнение линейно независимой системы до базиса всего пространства стандартными векторами

Дано Пусть $v_1, \ldots, v_m \in \mathbb{R}^n$ – линейно независимая система векторов, $V = \langle v_1, \ldots, v_m \rangle$ – их линейная оболочка и e_i – стандартные базисные векторы, т.е. на i-ом месте стоит 1, а в остальных 0.

Задача Найти такие вектора $e_{k_1},\dots,e_{k_{n-m}},$ что система $v_1,\dots,v_m,e_{k_1},\dots,e_{k_{n-m}}$ является базисом $\mathbb{R}^n.$

Алгоритм

- 1. Уложить вектора v_i в строки матрицы $A \in M_{mn}(\mathbb{R})$.
- 2. Привести матрицу A к ступенчатому виду.
- 3. Пусть k_1, \dots, k_{n-m} номера неглавных столбцов. Тогда $e_1, \dots, e_{k_{n-m}}$ искомое множество.

4 Найти ФСР однородной СЛУ

Дано Система однородных линейных уравнений Ax=0, где $A\in \mathrm{M}_{m\,n}(\mathbb{R})$ и $x\in \mathbb{R}^n$.

Задача Найти Φ CP системы Ax = 0.

Алгоритм

1. Привести матрицу A элементарными преобразованиями строк к улучшенному ступенчатому виду. Например

$$A' = \begin{pmatrix} 1 & 0 & a_{31} & 0 & a_{51} \\ 0 & 1 & a_{32} & 0 & a_{52} \\ 0 & 0 & 0 & 1 & a_{53} \end{pmatrix}$$

2. Пусть k_1, \ldots, k_r – позиции свободных переменных. Если положить одну из этих переменных равной 1, а все остальные нулями, то существует единственное решение, которое мы обозначим через u_i (всего r штук). Например, для матрицы A' выше свободные переменные имеют номера 3 и 5. Тогда вектора (записанные в строку)

$$u_1 = \begin{pmatrix} -a_{31} & -a_{32} & 1 & 0 & 0 \end{pmatrix}, u_2 = \begin{pmatrix} -a_{51} & -a_{52} & 0 & -a_{53} & 1 \end{pmatrix}$$

являются ФСР.

5 Задать подпространство базисом, если оно задано матричным уравнением

Дано Пусть $A \in M_{mn}(\mathbb{R})$ и $V \subseteq \mathbb{R}^n$ задано в виде $V = \{y \in \mathbb{R}^n \mid Ay = 0\}.$

Задача Найти базис подпространства V.

Алгоритм

1. Найти Φ CP системы Ay = 0. Векторы Φ CP будут базисом V.

6 Задать подпространство матричным уравнением, если оно задано линейной оболочной

2

Дано Пусть $v_1, \ldots, v_k \in \mathbb{R}^n$ – набор векторов и $V = \langle v_1, \ldots, v_k \rangle$.

Задача Для некоторого m найти матрицу $A \in \mathcal{M}_{m,n}(\mathbb{R})$ такую, что $V = \{y \in \mathbb{R}^n \mid Ay = 0\}$.

Алгоритм

- 1. Уложить вектора v_i в строки матрицы $B \in \mathcal{M}_{k,n}(\mathbb{R})$.
- 2. Найти ФСР системы Bz = 0.
- 3. Уложить Φ CP в строки матрицы $A \in M_{mn}(\mathbb{R})$, где m количество векторов в Φ CP. Матрица A и будет искомой.

7 Найти матрицу замены координат

Дано Векторное пространство $V, e = (e_1, \ldots, e_n)$ и $f = (f_1, \ldots, f_n)$ – два базиса пространства V. Известна матрица перехода от e к f, т.е. $(f_1, \ldots, f_n) = (e_1, \ldots, e_n)A$, где $A \in M_n(\mathbb{R})$. Дан вектор $v = x_1e_1 + \ldots + x_ne_n$.

Задача Найти разложение v по базису f.

Алгоритм

1. Если v=ex, где $x\in\mathbb{R}^n$, а также v=fy, где $y\in\mathbb{R}^n$, то $y=A^{-1}x$.

8 Найти матрицу линейного оператора при замене базиса

Дано Векторное пространство $V, e = (e_1, \ldots, e_n)$ и $f = (f_1, \ldots, f_n)$ – два базиса пространства V. Известна матрица перехода от e к f, т.е. $(f_1, \ldots, f_n) = (e_1, \ldots, e_n)C$, где $C \in \mathrm{M}_n(\mathbb{R})$. Дано линейное отображение $\phi \colon V \to V$ заданное в базисе e матрицей $A \in \mathrm{M}_n(\mathbb{R})$, т.е. $\phi e = eA$.

Задача Найти матрицу отображения ϕ в базисе f.

Алгоритм

1. Пусть $\phi f = fB$, где B – искомая матрица. Тогда $B = C^{-1}AC$.

9 Найти сумму подпространств заданных линейными оболочками

Дано Подпространства $V, U \subseteq \mathbb{R}^n$ заданные в виде $V = \langle v_1, \dots, v_m \rangle, U = \langle u_1, \dots, u_k \rangle$, где $v_i, u_i \in \mathbb{R}^n$.

Задача Найти базис V+U.

Алгоритм

1. Надо найти базис линейной оболочки $\langle v_1, \dots, v_m, u_1, \dots, u_k \rangle$.

10 Найти пересечение подпространств заданных линейными оболочками

Дано Подпространства $V, U \subseteq \mathbb{R}^n$ заданные в виде $V = \langle v_1, \dots, v_m \rangle, U = \langle u_1, \dots, u_k \rangle$, где $v_i, u_j \in \mathbb{R}^n$.

Задача Найти базис $V \cap U$.

\mathbf{A} лгоритм 1

- 1. Найти ФСР системы Dx=0, где $D=(v_1|\ldots|v_m|-u_1|\ldots|-u_k)$ и $x=\left(\frac{\alpha}{\beta}\right)$, где $\alpha\in\mathbb{R}^m,\ \beta\in\mathbb{R}^k$.
- 2. Пусть $\left(\left. \frac{\alpha_1}{\beta_1} \right| \dots \right| \left. \frac{\alpha_s}{\beta_s} \right) \Phi \text{CP}.$
 - (a) Множество векторов $R = (v_1 | \dots | v_m)(\alpha_1 | \dots | \alpha_s)$ порождают $V \cap U$.

 $^{^{1}}$ В это задаче можно задать подпространства системами, потом найти пересечение в виде системы, потом задать результат базисом.

- (b) Среди $(\alpha_1|\dots|\alpha_s)$ можно выкинуть те α_i , для которых $\beta_i=0.2$
- 3. Выделить базис среди столбцов R. Это и будет базис $V \cap U$.
 - Вместо стандартного алгоритма, можно выделить среди полученных $(\alpha_1|\dots|\alpha_s)$ базис, либо найти любой базис их линейной оболочки $(\alpha_1'|\dots|\alpha_t')$. Тогда $R=(v_1|\dots|v_m)(\alpha_1'|\dots|\alpha_t')$ и будет базисом пересечения.³

11 Найти пересечение подпространств заданных матричным уравнением

Дано Подпространства $V, U \subseteq \mathbb{R}^n$ заданные в виде $V = \{ y \in \mathbb{R}^n \mid Ay = 0 \}, \ U = \{ y \in \mathbb{R}^n \mid By = 0 \}, \ rде A \in \mathcal{M}_{mn}(\mathbb{R})$ и $B \in \mathcal{M}_{kn}(\mathbb{R})$.

Задача Задать $V \cap U$ в виде $\{y \in \mathbb{R}^n \mid Dy = 0\}$ для некоторого $D \in \mathcal{M}_{k,n}(\mathbb{R})$, где $\mathrm{rk} \ D = k \leqslant n$.

Алгоритм

- 1. Рассмотреть матрицу $D' = \left(\frac{A}{B}\right)$.
- 2. Выделить среди строк D' линейно независимую подсистему. Результат и будет искомая D.

12 Найти сумму подпространств заданных матричным уравнением

Дано Подпространства $V,U\subseteq\mathbb{R}^n$ заданные в виде $V=\{y\in\mathbb{R}^n\mid Ay=0\},\ U=\{y\in\mathbb{R}^n\mid By=0\},$ где $A\in\mathrm{M}_{m\,n}(\mathbb{R})$ и $B\in\mathrm{M}_{k\,n}(\mathbb{R}).$

Задача Задать V+U в виде $\{y\in\mathbb{R}^n\mid Ry=0\}$ для некоторого $R\in\mathrm{M}_{k\,n}(\mathbb{R})$, где $\mathrm{rk}\,R=k\leqslant n.$

\mathbf{A} лгоритм 4

- 1. Найти ФСР системы Dx=0, где $D=(A^t|-B^t)$ и $x=\left(\frac{\alpha}{\beta}\right)$, где $\alpha\in\mathbb{R}^m$ и $\beta\in\mathbb{R}^k$.
- 2. Пусть $\left(\frac{\alpha_1}{\beta_1}\Big|\dots\Big|\frac{\alpha_s}{\beta_s}\right)$ ФСР. Если определим $S^t=(v_1|\dots|v_m)(\alpha_1|\dots|\alpha_s)$, то $V+U=\{y\in\mathbb{R}^n\mid Sy=0\}$.
- 3. Выделить базис среди строк S. Это и будет искомая матрица R.

13 Найти проекцию вектора на подпространство вдоль другого подпространства

Дано $\mathbb{R}^n = V \oplus U$, где V и U заданы базисами $V = \langle v_1, \dots, v_m \rangle$, $U = \langle u_1, \dots, u_k \rangle$. Пусть $z \in \mathbb{R}^n$ раскладывается z = v + u, где $v \in V$ и $u \in U$.

3адача Найти v и u.

Алгоритм

- 1. Решить СЛУ Dx=z, где $D=(v_1|\dots|v_m|u_1|\dots|u_k)$ и $x=\left(\frac{\alpha}{\beta}\right)$, где $\alpha\in\mathbb{R}^m$ и $\beta\in\mathbb{R}^k$.
- 2. Тогда $v = (v_1 | \dots | v_m) \alpha$ и $u = (u_1 | \dots | u_k) \beta$.

14 Найти оператор проекции на подпространство вдоль другого подпространства

Дано $\mathbb{R}^n=V\oplus U$, где V задано базисом $V=\langle v_1,\ldots,v_m\rangle,\ U=\{y\in\mathbb{R}^n\mid Ay=0\},\$ где $A\in\mathbb{M}_{k\,n}(\mathbb{R})$ и гк $A=k\leqslant n.$

 $^{^2}$ Если ФСР построен по стандартному базису, то останутся α_i с нулевыми свободными переменными.

³Если u_1, \ldots, u_k были линейно независимы, то полученный на предыдущем шаге набор $(\alpha_1 | \ldots | \alpha_s)$ уже будет линейно независим.

⁴В этой задаче можно задать подпространства базисами, потом найти сумму заданной базисом, потом задать эту сумму системой.

Задача Найти матрицу отображения $\phi: V \to V$ такого, что $\phi(U) = 0$ и $\phi(v) = v$ для любого $v \in V$. ⁵

Алгоритм

- 1. Положим $B = (v_1 | \dots | v_m) \in M_{n m}(\mathbb{R})$.
- 2. Обязательно получится, что m = k и матрица AB невырождена.
- 3. Искомый ϕ имеет матрицу $B(AB)^{-1}A$.

15 Определить существует ли линейный оператор заданный на векторах

Дано Векторное пространство V и набор векторов $v_1, \ldots, v_k \in V$, векторное пространство U и набор векторов $u_1, \ldots, u_k \in U$.

Задача Определить существует ли линейное отображение $\phi: V \to U$ такое, что $\phi(v_i) = u_i$.

Алгоритм

- 1. Среди векторов v_1, \dots, v_k выделить линейно независимые, а остальные разложить по ним.
- 2. Пусть на предыдущем этапе базис получился v_1, \dots, v_r , а $v_{r+i} = a_{i1}v_1 + \dots + a_{ir}v_r$.
- 3. Искомое линейное отображение ϕ существует тогда и только тогда, когда выполняются равенства $u_{r+i} = a_{i1}u_1 + \ldots + a_{ir}u_r$.

16 Найти базис образа и ядра линейного отображения

Дано $\phi \colon \mathbb{R}^n \to \mathbb{R}^m$ задан $x \mapsto Ax$, где $A \in \mathcal{M}_{m,n}(\mathbb{R})$.

Задача Найти базис $\operatorname{Im} \phi \in \mathbb{R}^m$ и базис $\ker \phi \in \mathbb{R}^n$.

Алгоритм

- 1. Выделить базис среди столбцов матрицы A. В результате получится базис $\operatorname{Im} \phi$.
- 2. Найти Φ CP системы Ax = 0. Полученная Φ CP будет базисом $\ker \phi$.

17 Поиск собственных значений и векторов

Следующий алгоритм годится как для комплексных так и для вещественных матриц. Разница лишь в том, что в вещественном случае у нас вообще говоря будет меньше собственных значений. Для определенности алгоритм рассказывается для комплексных матриц.

Дано Матрица $A \in M_n(\mathbb{C})$.

Задача Найти все собственные значения λ_i для A и для каждого λ_i найти базис пространства $V_{\lambda_i} = \{v \in \mathbb{C}^n \mid Av = \lambda_i v\}.$

Алгоритм

- 1. Посчитать характеристический многочлен $\chi_A(\lambda) = \det(A \lambda E)$.
- 2. Найти корни многочлена $\chi_A(\lambda)$. Корни $\{\lambda_1, \dots, \lambda_k\}$ будут собственным значениями A.
- 3. Для каждого λ_i найти ФСР системы $(A \lambda_i E)x = 0$. Тогда ФСР будет базисом V_{λ_i} .

 $^{^5}$ Заметим, что если $z\in\mathbb{R}^n$ раскладывается z=v+u, где $v\in V$ и $u\in U,$ то $\phi(z)=v.$

 $^{^6}$ В частности, если все v_i оказались линейно независимыми, то линейное отображение ϕ обязательно существует.

18 Проверка на диагонализуемость

Дано Матрица $A \in \mathcal{M}_n(F)$, задающая линейный оператор $\varphi \colon F^n \to F^n$.

Задача Выяснить существует ли базис, в котором φ задается диагональной матрицей и если задается, то какой именно. На матричном языке: существует ли невырожденная матрица $C \in \mathcal{M}_n(F)$ такая, что $C^{-1}AC$ является диагональной и найти эту диагональную матрицу.

Алгоритм

- 1. Найдем характеристический многочлен $\chi(t)$ для φ , он же для A по формуле $\chi(t) = \det(A tE)$.
- 2. Проверим, раскладывается ли $\chi(t)$ на линейные множители над F, то есть представляется ли он в виде $\chi(t) = (t \lambda_1)^{d_1} \dots (t \lambda_k)^{d_k}$. Если не представляется, то φ (или что то же самое A) не диагонализируется
- 3. Если $\chi(t) = (t \lambda_1)^{d_1} \dots (t \lambda_k)^{d_k}$. Найдем для каждого λ_i базис V_{λ_i} как ФСР системы $(A \lambda_i E)x = 0$. Если для хотя бы одного i количество элементов в ФСР меньше соответствующей кратности корня d_i , то φ не диагонализируется.
- 4. Если для каждого i мы получили, что размер ФСР совпадает с кратностью корня, то есть dim $V_{\lambda_i} = d_i$. То φ диагонализируется и диагональная матрица $C^{-1}AC$ на диагонали содержит числа λ_i в количестве d_i штук.

Заметим, что если поле F алгебраически замкнуто, то первый шаг алгоритма выполнен автоматически, а именно, над алгебраически замкнутым полем любой многочлен разлагается на линейные множители. Потому в этом случае вопрос о диагонализируемости – это лишь проверка всех равенств dim $V_{\lambda_i} = d_i$.

19 Определить ЖНФ у оператора

Дано Матрица $A \in M_n(\mathbb{C})$

Задача Определить все собственные значения и размеры клеток в жордановой нормальной форме.

Алгоритм

- 1. Собственные значения совпадают со спекторм их ищем, как корни характеристического многочлена $\chi_A(t) = (-1)^n \det(A tE) = 0$. Получаем набор корней и их кратности $(\lambda_1, n_1), \ldots, (\lambda_k, n_k)$.
- 2. Для каждого λ_i суммарный размер клеток равен n_i . Потому надо определить количество клеток для всех $k \in [1, n_i]$. Количество клеток считается по формуле

количество клеток размера
$$k=\mathrm{rk}(A-\lambda_i E)^{k+1}+\mathrm{rk}(A-\lambda_i E)^{k-1}+2\,\mathrm{rk}(A-\lambda_i E)^k$$

Обратите внимание, что если вы нашли m клеток размера k, а кратность была n_i , то на оставшиеся клетки уходит $n_i - mk$ мест. Этим можно пользоваться, чтобы не считать все количества клеток подряд.

20 Определение ЖНФ у матриц 2 на 2

Дано Матрица $A \in M_2(\mathbb{C})$

Найти Жорданова форма может быть одной из

$$\begin{pmatrix} \lambda & \\ & \mu \end{pmatrix}, \quad \begin{pmatrix} \lambda & \\ & \lambda \end{pmatrix}, \quad \begin{pmatrix} \lambda & 1 \\ & \lambda \end{pmatrix}$$

Определить какая форма в нашем случае и определить все числа.

Алгоритм Общая идея в том, чтобы подобрать инварианты, которые достаточно рассчитать для выбора из предоставленных вариантов.

- 1. Найдем характеристический многочлен $\chi_A(t) = \det(A tE)$. И посчитаем его корни. Есть два варианта:
 - (a) два разных корня λ и μ . В этом случае ЖНФ имеет вид

$$\begin{pmatrix} \lambda & \\ & \mu \end{pmatrix}$$

(b) один корень λ кратности 2. В этом случае, если $A = \lambda E$, то ЖНФ имеет вид

$$\begin{pmatrix} \lambda & \\ & \lambda \end{pmatrix}$$

В противном случае ЖНФ имеет вид

$$\begin{pmatrix} \lambda & 1 \\ & \lambda \end{pmatrix}$$

21 Определение ЖНФ у матриц 3 на 3

Дано Матрица $A \in M_3(\mathbb{C})$

Найти Жорданова форма может быть одной из

$$\begin{pmatrix} \lambda & & \\ & \mu & \\ & & \gamma \end{pmatrix}, \quad \begin{pmatrix} \lambda & & \\ & \lambda & \\ & & \mu \end{pmatrix}, \quad \begin{pmatrix} \lambda & 1 & \\ & \lambda & \\ & & \mu \end{pmatrix}, \quad \begin{pmatrix} \lambda & 1 & \\ & \lambda & \\ & & \lambda \end{pmatrix}, \quad \begin{pmatrix} \lambda & 1 & \\ & \lambda & \\ & & \lambda \end{pmatrix}, \quad \begin{pmatrix} \lambda & 1 & \\ & \lambda & 1 \\ & & \lambda \end{pmatrix}$$

Определить какая форма в нашем случае и определить все числа.

Алгоритм Общая идея в том, чтобы подобрать инварианты, которые достаточно рассчитать для выбора из предоставленных вариантов.

- 1. Найдем характеристический многочлен $\chi_A(t) = -\det(A tE)$ и посчитаем его корни. Возможны следующие варианты:
 - три разных корня λ , μ , γ .
 - \bullet один корень λ кратности 2, один корень μ кратности 1.
 - один корень λ кратности 3.
- 2. Три разных корня. В этом случае ЖН Φ имеет вид

$$\begin{pmatrix} \lambda & & \\ & \mu & \\ & & \gamma \end{pmatrix}$$

3. Два разных корня, λ кратности 2 и μ кратности 1. В этом случае, если $\mathrm{rk}(A-\lambda E)=1,$ то ЖНФ имеет вид

$$\begin{pmatrix} \lambda & & \\ & \lambda & \\ & & \mu \end{pmatrix}$$

В противном случае (то есть, если $\operatorname{rk}(A-\lambda E)=2)$ ЖНФ имеет вид

$$\begin{pmatrix} \lambda & 1 & \\ & \lambda & \\ & & \mu \end{pmatrix}$$

7

4. Один корень λ кратности 3. Если $A = \lambda E$, то ЖНФ имеет вид

$$\begin{pmatrix} \lambda & & \\ & \lambda & \\ & & \lambda \end{pmatrix}$$

Если $\operatorname{rk}(A - \lambda E) = 1$, то ЖНФ имеет вид

$$\begin{pmatrix} \lambda & 1 \\ & \lambda & \\ & & \lambda \end{pmatrix}$$

В противном случае (то есть $\operatorname{rk}(A-\lambda E)=2$) ЖНФ имеет вид

$$\begin{pmatrix} \lambda & 1 & \\ & \lambda & 1 \\ & & \lambda \end{pmatrix}$$

22 Определение ЖНФ у матриц 4 на 4 с одним собственным значением

Дано Матрица $A \in \mathrm{M}_4(\mathbb{C})$ с единственным собственным значением.

Найти Жорданова форма может быть одной из

$$\begin{pmatrix} \lambda & & & \\ & \lambda & & \\ & & \lambda & \\ & & & \lambda \end{pmatrix}, \quad \begin{pmatrix} \lambda & 1 & & \\ & \lambda & & \\ & & \lambda & \\ & & & \lambda \end{pmatrix}, \quad \begin{pmatrix} \lambda & 1 & & \\ & \lambda & & \\ & & & \lambda & 1 \\ & & & \lambda & \\ & & & \lambda \end{pmatrix}, \quad \begin{pmatrix} \lambda & 1 & & \\ & \lambda & 1 & \\ & & \lambda & 1 \\ & & & \lambda \end{pmatrix}$$

Определить какая форма в нашем случае и определить собственное значение.

Алгоритм Общая идея в том, чтобы подобрать инварианты, которые достаточно рассчитать для выбора из предоставленных вариантов.

- 1. Найдем характеристический многочлен $\chi_A(t) = \det(A tE)$. Так как он имеет вид $(t \lambda)^4$, то можно найти его 3-ю производную и решить $\chi_A(t)^{(3)} = 0$ для нахождения корня.
- 2. Если $A = \lambda E$, то ЖНФ имеет вид

$$\begin{pmatrix} \lambda & & & \\ & \lambda & & \\ & & \lambda & \\ & & & \lambda \end{pmatrix}$$

3. Если $\operatorname{rk}(A - \lambda E) = 1$, то ЖНФ имеет вид

$$\begin{pmatrix} \lambda & 1 & & \\ & \lambda & & \\ & & \lambda & \\ & & & \lambda \end{pmatrix}$$

4. Если $\operatorname{rk}(A - \lambda E) = 3$, то ЖНФ имеет вид

$$\begin{pmatrix} \lambda & 1 & & \\ & \lambda & 1 & \\ & & \lambda & 1 \\ & & & \lambda \end{pmatrix}$$

8

5. Если $\operatorname{rk}(A - \lambda E) = 2$, то надо посмотреть на $(A - \lambda E)^2$. Если $(A - \lambda E)^2 = 0$, то ЖНФ имеет вид

$$\begin{pmatrix} \lambda & 1 & & \\ & \lambda & & \\ & & \lambda & 1 \\ & & & \lambda \end{pmatrix}$$

иначе (если $(A - \lambda E)^2 \neq 0$) ЖНФ имеет вид

$$\begin{pmatrix} \lambda & 1 & & \\ & \lambda & 1 & \\ & & \lambda & \\ & & & \lambda \end{pmatrix}$$

23 Найти матрицу билинейной формы при замене базиса

Дано Векторное пространство $V, e = (e_1, \ldots, e_n)$ и $f = (f_1, \ldots, f_n)$ – два базиса пространства V. Известна матрица перехода от e к f, т.е. $(f_1, \ldots, f_n) = (e_1, \ldots, e_n)C$, где $C \in \mathrm{M}_n(\mathbb{R})$. Дана билинейная форма $\beta \colon V \times V \to \mathbb{R}$ заданная в базисе e матрицей $B \in \mathrm{M}_n(\mathbb{R})$, т.е. $b_{ij} = \beta(e_i, e_j)$.

Задача Найти матрицу билинейной формы β в базисе f.

Алгоритм

1. Пусть в базисе f мы имеем $\beta(x,y)=x^tB'y$, где B' – искомая матрица. Тогда $B'=C^tBC$.

24 Найти правое ортогональное дополнение к подпространству

Дано Подпространство $V \subseteq \mathbb{R}^n$, заданное образующими $V = \langle v_1, \dots, v_k \rangle$, и билинейная форма $\beta \colon \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, заданная $\beta(x,y) = x^t B y$, где $B \in \mathcal{M}_n(\mathbb{R})$.

Алгоритм

- 1. Составить вектора v_i в столбцы матрицы $D \in \mathrm{M}_{n\,k}(\mathbb{R})$.
- 2. Найти ФСР СЛУ $D^t B y = 0$. Данная ФСР дает базис V^{\perp} .

25 Найти левое ортогональное дополнение к подпространству

Дано Подпространство $V \subseteq \mathbb{R}^n$, заданное образующими $V = \langle v_1, \dots, v_k \rangle$, и билинейная форма $\beta \colon \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, заданная $\beta(x,y) = x^t B y$, где $B \in \mathrm{M}_n(\mathbb{R})$.

Задача Найти $^{\perp}V = \{y \in \mathbb{R}^n \mid \beta(y, V) = 0\}.$

Алгоритм

- 1. Составить вектора v_i в столбцы матрицы $D \in \mathrm{M}_{n,k}(\mathbb{R})$.
- 2. Найти ФСР СЛУ $D^t B^t y = 0$. Данная ФСР дает базис $^{\perp}V$.

26 Симметричный Гаусс

Дано Симметричная билинейная форма $\beta \colon F^n \times F^n \to F$ по правилу $(x,y) \mapsto x^t B y$, где $B \in \mathrm{M}_n(F)$ – симметричная матрица и при этом $2 \neq 0$ в поле F.

Задача Диагоналзовать β , то есть найти матрицу перехода к новому базису C такую, чтобы $B' = C^t B C$ была диагональная, и посчитать саму матрицу B'.

Алгоритм

- 1. Чтобы найти матрицу B' будем приводить ее к диагональному виду симметричными элементарными преобразованиями, то есть допускаются следующие преобразования:
 - Прибавить i-ю строку умноженную на λ к j-ой строке и сразу же прибавление i-го столбца умноженного на λ к j-ому столбцу.
 - Поменять местами i-ю и j-ю строку и тут же поменять местами i-ый и j-ый столбец.
 - Умножить i-ю строку на ненулевое λ и тут же умножить i-ый столбец на то же самое λ .

Получившаяся диагональная матрица будет искомая B'.

2. Если при этом надо восстановить матрицу C, то рассматриваем (B|E) и делаем симметричные элементарные преобразования над ней в том смысле, что преобразования над строками выполняются над всей матрицей, а преобразования над столбцами только над часть, где лежит B. Тогда матрица приведется к виду $(B'|C^t)$.

27 Метод Якоби

Дано Симметричная билинейная форма $\beta \colon V \times V \to F$, базис e_1, \dots, e_n пространства V, такой, что $\det \beta|_{\langle e_1, \dots, e_k \rangle} \neq 0$.

Задача Найти базис e_1',\dots,e_n' такой, что $e_i'-e_i\in\langle e_1,\dots,e_{i-1}\rangle=\langle e_1',\dots,e_{i-1}'\rangle$ такой, что $\beta(e_i',e_j')=0$ при $i\neq j$.

Алгоритм

- 1. В начале положим $e'_1 = e_1$.
- 2. Пусть мы нашли вектора e'_1, \ldots, e'_{i-1} . Тогда положим вектор e'_i в виде⁷

$$e'_i = e_i - \frac{\beta(e_i, e'_1)}{\beta(e'_1, e'_1)} e'_1 - \dots - \frac{\beta(e_i, e'_{i-1})}{\beta(e'_{i-1}, e'_{i-1})} e'_{i-1}$$

28 Алгоритм диагонализации на основе метода Якоби

Дано Симметрическая матрица $B \in M_n(F)$.

Задача Проверить, что все ее угловые подматрицы B_k невырождены и если это так, то найти их значения, а также найти верхнетреугольную матрицу с единицами на диагонали $C \in \mathcal{M}_n(F)$ и диагональную матрицу $D \in \mathcal{M}_n(F)$ такие, что $B = C^t DC$.

Алгоритм

- 1. Начнем приводить матрицу B к верхнетреугольному виду элементарными преобразованиями первого типа, когда нам разрешено прибавлять строку с коэффициентом только к более низкой строке. Возможны два исхода:
 - На каком-то этапе получили, что на диагонали на k-ом месте стоит 0, а под диагональю есть ненулевой элемент. Это значит, что $\Delta_k = 0$. Условие на матрицу не выполнено.
 - \bullet Мы привели матрицу B к верхнетреугольной матрице U. Переходим к следующему шагу.
- 2. Восстановим все необходимые данные по матрице U следующим образом:
 - (a) D диагональ матрицы U.
 - (b) $C = D^{-1}U$.
 - (c) Δ_k произведение первых k элементов диагонали матрицы D.

 $^{^7}$ В силу условия $\det eta|_{\langle e_1,\dots,e_k \rangle} \neq 0$ выражения вида $eta(e_k',e_k')$ будут всегда отличны от нуля.

29 Привести квадратичную форму методом Лагранжа в нормальный вид

Дано Квадратичная форма $Q(x) = \sum_{i < j} a_{ij} x_i x_j$, где $a_{ij} \in \mathbb{R}, x \in \mathbb{R}^n$.

Задача Линейной заменой координат x_i привести квадратичную форму к виду $Q(x) = \sum_{i=1}^r x_i^2 - \sum_{i=r+1}^d x_i^2$.

Алгоритм

- 1. Начнем с переменной x_1 . Посмотреть, зависит Q(x) от x_1^2 или нет.
- 2. Пусть не зависит от x_1^2 , но вообще говоря зависит от x_1 . Тогда можно считать, что есть член x_1x_2 . Сделаем замену переменных $x_1=u_1+u_2,\,x_2=u_1-u_2$. Тогда $x_1x_2=u_1^2-u_2^2$. После этой замены, можно считать, что Q(x) зависит от x_1^2 .
- 3. Рассмотрим все слагаемые содержащие x_1 :

$$Q(x) = a_{11}x_1^2 + a_{12}x_1x_2 + \ldots + a_{1n}x_1x_n + Q'(x)$$

Выделим полный квадрат

$$Q(x) = a_{11} \left(x_1^2 + 2 \left(\frac{a_{12}}{2a_{11}} x_2 + \dots + \frac{a_{1n}}{2a_{11}} x_n \right) x_1 + \left(\frac{a_{12}}{2a_{11}} x_2 + \dots + \frac{a_{1n}}{2a_{11}} x_n \right)^2 - \left(\frac{a_{12}}{2a_{11}} x_2 + \dots + \frac{a_{1n}}{2a_{11}} x_n \right)^2 \right) + Q'(x) =$$

$$= a_{11} \left(x_1 + \frac{a_{12}}{2a_{11}} x_2 + \dots + \frac{a_{1n}}{2a_{11}} x_n \right)^2 + Q''(x)$$

4. Теперь Q''(x) не зависит от x_1 . Повторить для него алгоритм с первого шага.