

#### Midterm

First midterm: one week from today (9/21)

 In addition to Professor Shaffer's normal office hours, I will hold a two-hour Q&A session on the morning of 9/20 (exact time TBD – will be in DH 547/548)

#### Recap from last session

- Populations are groups of intrabreeding individuals of the same species in the same location at the same time
- A metapopulation is a population of populations
- As population ecologists, we hope to understand the processes that control population size (N)
- We may seek to understand other characteristics of populations, such as
  - distribution in space and time
  - density
  - age structure

#### Learning objectives

- Students should be able to:
  - Calculate population growth rates from life tables/natality tables
  - Analyze life/natality tables to draw conclusions about survivorship & life history within populations
  - Explain the difference between exponential and logistic growth, and their relevance to determining population sizes
  - Understand how density dependent processes may impact population sizes and growth rates over time

# Goal: make quantitative predictions about population sizes over time

$$dN = [B + I] - [D + E]$$

- N is population size
- dN is the change in population size
- B is births
- I is immigration
- D is deaths
- E is emigration

#### Let's make some data-driven models!

#### First lets only consider:

- *D* (deaths, which relate to survivorship)
- *B* (births, which relate to fecundity)





### Survivorship

Follow number of survivors of a single cohort (i.e., a group of individuals all born around the same time) through time



Note: log scale

### **Survivorship Curves**



## Survivorship data: life table

Year

Number of Individuals

| X | N <sub>x</sub> | l <sub>x</sub> | d <sub>x</sub> |
|---|----------------|----------------|----------------|
| 0 | 1000           |                |                |
| 1 | 900            |                |                |
| 2 | 600            |                |                |
| 3 | 300            |                |                |
| 4 | 100            |                |                |
| 5 | 0              |                |                |



## Survivorship data: life table

Number of

 $l_x = \frac{N_x}{N_0}$ 

| rear | Individuals    | surviving      | dying          |
|------|----------------|----------------|----------------|
| X    | N <sub>x</sub> | l <sub>x</sub> | d <sub>x</sub> |
| 0 (  | 1000           | 1.00           |                |
| 1 <  | 900            | 0.9 =900/      | 1000           |
| 2    | 600            | 0.6 =600/      | 1000           |
| 3    | 300            | 0.3            |                |
| 4    | 100            | 0.1            |                |
| 5    | 0              | 0              |                |

**Proportion** 

Number

## Survivorship data: life table

$$d_x = N_x - N_{x+1}$$

Year

Number of Individuals

Number dying

| X | N <sub>x</sub> | l <sub>x</sub> | $d_x$ |     |         |
|---|----------------|----------------|-------|-----|---------|
| 0 | 1000           | 1.00           | 100   | =10 | 000-900 |
| 1 | 900            | 0.9            | 300   | =90 | 00-600  |
| 2 | 600            | 0.6            | 300   |     |         |
| 3 | 300            | 0.3            | 200   |     |         |
| 4 | 100            | 0.1            | 100   |     |         |
| 5 | 0              | 0              | 0     |     |         |

## Dall Sheep



## Dall Sheep





| Х  | $N_x$ | I <sub>x</sub> | $d_x$ | q <sub>x</sub> |
|----|-------|----------------|-------|----------------|
| 0  | 1000  | 1.000          | 199   | 0.199          |
| 1  | 801   | 0.801          | 12    | 0.015          |
| 2  | 789   | 0.789          | 13    | 0.016          |
| 3  | 776   | 0.776          | 12    | 0.015          |
| 4  | 764   | 0.764          | 30    | 0.039          |
| 5  | 734   | 0.734          | 46    | 0.063          |
| 6  | 688   | 0.688          | 48    | 0.070          |
| 7  | 640   | 0.640          | 69    | 0.108          |
| 8  | 571   | 0.571          | 132   | 0.231          |
| 9  | 349   | 0.349          | 187   | 0.536          |
| 10 | 252   | 0.252          | 136   | 0.540          |
| 11 | 96    | 0.096          | 90    | 0.938          |
| 12 | 6     | 0.006          | 3     | 0.500          |
| 13 | 3     | 0.003          | 3     | 1.000          |

### Dall Sheep





| $N_{x}$ | I <sub>x</sub>            | d <sub>x</sub>                                    | $q_x$                                                                                                                                           |
|---------|---------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 1000    | 1.000                     | 199                                               | 0.199                                                                                                                                           |
| 801     | 0.801                     | 12                                                | 0.015                                                                                                                                           |
| 789     | 0.789                     | 13                                                | 0.016                                                                                                                                           |
| 776     | 0.776                     | 12                                                | 0.015                                                                                                                                           |
| 764     | 0.764                     | 30                                                | 0.039                                                                                                                                           |
|         | 1000<br>801<br>789<br>776 | 1000 1.000<br>801 0.801<br>789 0.789<br>776 0.776 | X       X         1000       1.000       199         801       0.801       12         789       0.789       13         776       0.776       12 |

## Conclude Type 1

|    |     |       |     | •     |
|----|-----|-------|-----|-------|
| /  | 040 | 0.040 | צס  | 0.100 |
| 8  | 571 | 0.571 | 132 | 0.231 |
| 9  | 349 | 0.349 | 187 | 0.536 |
| 10 | 252 | 0.252 | 136 | 0.540 |
| 11 | 96  | 0.096 | 90  | 0.938 |
| 12 | 6   | 0.006 | 3   | 0.500 |
| 13 | 3   | 0.003 | 3   | 1.000 |

#### Now let's look at



#### **Fecundity**

- Reproductive output of an individual
- Will be summarized in a natality table

#### **Natality Table**

Number of births per individual

Proportion of new individuals

| 1/ |            |
|----|------------|
| X  | <b>二</b> / |
|    |            |

$$l_2 m_2 = l_2 * m_2$$

$$= 0.60*0.5$$

| X | l <sub>x</sub> | $\overline{\mathbf{m}_{x}}$ | $\left( I_{x}m_{x}\right)$ |
|---|----------------|-----------------------------|----------------------------|
| 0 | 1.00           | 0                           | 0                          |
| 1 | 0.90           | 0.3                         | 0.27                       |
| 2 | 0.60           | 0.5                         | 0.30                       |
| 3 | 0.30           | 0.1                         | 0.03                       |
| 4 | 0.10           | 0                           | 0                          |
| 5 | 0              | 0                           | 0                          |
|   |                |                             |                            |

# Natality Table – Compute Net Reproductive Value $(R_0)$

 Growth rate for a populations

$$R_0 = 0.60$$

| Х | l <sub>x</sub> | m <sub>x</sub> | l <sub>x</sub> | m <sub>x</sub> |
|---|----------------|----------------|----------------|----------------|
| 0 | 1.00           | 0              |                | 0              |
| 1 | 0.90           | 0.3            |                | 0.27           |
| 2 | 0.60           | 0.5            |                | 0.30           |
| 3 | 0.30           | 0.1            |                | 0.03           |
| 4 | 0.10           | 0              |                | 0              |
| 5 | 0              | 0              |                | 0              |
|   |                | TOTAL          |                | 0.60           |

## What does $R_0$ tell you?

If 
$$R_0 > 1$$

Population increasing



If 
$$R_0 = 1$$

Population not changing



If 
$$R_0 < 1$$

Population decreasing



#### What is happening with this population?

 Growth rate for a populations

$$R_0 = 0.60$$



| X | l <sub>x</sub> | m <sub>x</sub> | $l_x m_x$ |
|---|----------------|----------------|-----------|
| 0 | 1.00           | 0              | 0         |
| 1 | 0.90           | 0.3            | 0.27      |
| 2 | 0.60           | 0.5            | 0.30      |
| 3 | 0.30           | 0.1            | 0.03      |
| 4 | 0.10           | 0              | 0         |
| 5 | 0              | 0              | 0         |
|   |                | TOTAL          | 0.60      |

- Suppose that  $R_o = 2$
- This implies that each individual is replaced by 2 more individuals

- Suppose that  $R_o = 2$
- This implies that each individual is replaced by 2 more individuals



t = 0 t = 1

- Suppose that  $R_o = 2$
- This implies that each individual is replaced by 2 more individuals



- Suppose that  $R_0 = 2$
- This implies that each individual is replaced by 2 more individuals



## Exponential population growth

- Malthus 1798: essay on human population growth
  - Food is necessary

N

- Passion between sexes necessary and will remain unchecked
- Population growth is geometric when unchecked



N = Number of individuals in population

t = time step

### Exponential population growth

- Darwin's example with elephants:
  - Start with 1 pair of elephants
  - Elephants breed between 30-90 years of age
  - Typically have 6 offspring
  - After 750 years 19 million elephants!
  - Clearly this is not what we see in nature population growth is not usually unchecked
  - Darwin reasoned that whatever factors limit populations also drive natural selection

## Let's compute the number of individuals in the next time interval

- Let's assume that the previous generation dies when the new generation is produced.
  - E.g. Invertebrates who lay eggs and then die.



#### Modeling geometric population growth

 We are interested in the relationship between population size and time – how does the size of the population vary with time?

#### Tool Kit:

```
N = population size

t = time

N_t = population size at time t

N_0 = population size at start (t = 0)

R_0 = rate of generation change
```

## Let's compute the number of individuals in the next time interval

$$N_{x+1} = R_o * N_x$$

$$N_{0+1} = R_0 * N_0$$

$$N_1 = 1.32*500 = 660.0$$



# So what would the population be in 10 generations?

| Year | Formula   | Population size |
|------|-----------|-----------------|
| 4    | 1.32*1150 | 1518            |
| 5    | 1.32*1518 | 2004            |
| 6    | 1.32*2004 | 2645            |
| 7    | 1.32*2645 | 3491            |
| 8    | 1.32*3491 | 4609            |
| 9    | 1.32*4609 | 6083            |
| 10   | 1.32*6083 | 8030            |

# Small changes in $R_o$ can have a large effect on growth





Instantaneous growth rate

Birth rate Death rate 
$$r = b - d$$

$$\frac{dN}{dt} = (b - d) * N$$

Instantaneous growth rate

Birth rate Death rate 
$$r = b - d$$

$$\frac{dN}{dt} = rN$$

## Continuous model of geometric population growth

• Examples of per capita growth rates (r) in nature:

|          | r       | Doubling Time |
|----------|---------|---------------|
| Virus    | 110,000 | 3.3 minutes   |
| Bacteria | 21,000  | 17 minutes    |
| Hydra    | 124     | 2 days        |
| Cow      | 0.365   | 1.9 years     |
| Humans   | 0.013   | 50 years      |

$$\frac{dN}{dt} = rN \longrightarrow \frac{N_t}{N_0} = e^{rt}$$

$$N_t = N_0 e^{rt}$$

## Incorporating stochastic effects into population growth models

- Up until now we have been considering models that are deterministic
  - Dependent solely upon in put rates (b and d)
  - Constant birth and death rates
- However, we know that chance effects can alter birth and death rates
  - Stochasticity = random variation
  - Environmental (good and bad years)
  - Demographic (b and d rates whole numbers)

## The effect of stochasticity on population dynamics

#### Examples:

Grizzly Bears
- # adult females/year



## Chickadees # chickadees/year



#### Constraints on Growth



$$\frac{dN}{dt} = rN\left(\frac{K-N}{K}\right)$$

#### Constraints on Growth

- Intraspecific competition
- Disease
- Lower clutch (i.e. egg number) size
- More stress



### Intraspecific competition and densitydependence

- Density = # individuals/area
- Density-dependence: where b or d or some correlate change with density

**Density – dependence in birth or death rates** 

b

N



**Density – independence** 



# Intraspecific competition and density-dependence

Example with song sparrow:

# males without territories vs. # males with territories



# young/female vs. # females



Proportion of juveniles surviving vs. # adults



### Why is density-dependence important?

- Density-dependence means that the per capita birth (b) and death (d) rate varies with density
  - this directly affects the per capita population growth rate (r)!
- 2. If d exceeds b, population is no longer growing:



Recall: r = b - d

When r = 0 population is not growing

At r = 0 population reaches maximum density that can be supported by resources: carrying capacity = K

### Carrying Capacity (K)



The carrying capacity (K) is the maximum number of individuals that the environment can hold and maintain

#### Intra specific mechanisms of densitydependence

- 1. Space depletion (e.g. territories filled up)
- 2. Resource depletion
- 3. Allee effect (reverse density-dependence)



#### Allee Effect

- At low population density, decreases in growth rate (even population viability)
  - Low encounters with potential mates
  - Loss of social structure that influences cooperation in specific activities
    - feeding opportunities
    - territorial & predator defense
    - modifications of habitat
  - Impacts of genetic diversity
  - Loss of population to withstand stochastic variation

#### Allee Effect



#### <u>Inter</u>specific mechanisms of densitydependence

Parasitism, predation, disease, competition with other species

Search image predation (easier to capture more prey when they are more abundant)

## What types of things can affect the carrying capacity?

- Increase
  - Increase in habitat
  - Increase in energy (e.g., prey)
- Decrease
  - Loss of habitat
  - Loss of energy
  - Introduction of competitor



http://www.snh.org.uk/publications/on-line/naturallyscottish/dragonfly/importanthabitats.asp

### Variable Carrying Capacity (K)

- Up to this point, we've only discussed the issue of a constant K
- K can (and likely does) vary with environmental factors
- Response in oscillations depends on size of r
- More variable the environment, the lower the average population

### Variable Carrying Capacity (K)



## Effects of magnitude of change

- Differences above and below the line are roughly equal
  - Small decrease



## Effects of magnitude of change

Differences above and below the line are roughly equal



## How might foreign aid affect a country?

Increase



## What would happen if the foreign aid was suddenly removed



## Examples of Logistic Growing Populations



### Learning objectives

- Students should be able to:
  - Calculate population growth rates from life tables/natality tables
  - Analyze life/natality tables to draw conclusions about survivorship & life history within populations
  - Explain the difference between exponential and logistic growth, and their relevance to determining population sizes
  - Understand how density dependent processes may impact population sizes and growth rates over time