1)
$$corr (grad f)$$

$$= \nabla \times (grad f)$$

$$= \left(\frac{\partial}{\partial n} \int_{\partial v}^{1} \int_{\partial z}^{1} \right) \times \left(\frac{\partial f}{\partial x} \int_{\partial v}^{1} \int_{\partial z}^{1} \int_{\partial z}^{1} \right)$$

$$= \left(\frac{\partial}{\partial n} \int_{\partial v}^{1} \int_{\partial z}^{1} \right) \times \left(\frac{\partial f}{\partial x} \int_{\partial v}^{1} \int_{\partial z}^{1} \int_{\partial z}^{1} \right)$$

$$= \left(\frac{\partial}{\partial x} \int_{\partial z}^{1} \int_{\partial z}^{$$

$$= \Delta \cdot \left(\frac{2k}{3k} - \frac{3k}{95} \right)^{2} + \frac{3k}{95} +$$

1) div(curly)

$$= \nabla \cdot \left(\left(\frac{\partial R}{\partial \gamma} - \frac{\partial R}{\partial z} \right) : + \left(\frac{\partial P}{\partial z} - \frac{\partial P}{\partial x} \right) : + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) : + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) : + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) : + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial x} \right) : + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial x} \right) : + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial x} \right) : + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial x} \right) : + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial x} \right) : + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial x} \right) : + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial x} \right) : + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial x} \right) : + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial x} \right) : + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial x} \right) : + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial x} \right) : + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial x} \right) : + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial x} \right) : + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial x} \right) : + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial x} \right) : + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial x} \right) : + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial x} \right) : + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial x} \right) : + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial x} \right) : + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial x} \right) : + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial x} \right) : + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial x} \right) : + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial x} \right) : + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial x} \right) : + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial x} \right) : + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial x} \right) : + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial x} \right) : + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial x} \right) : + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial x} \right) : + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial x} \right) : + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial x} \right) : + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial x} \right) : + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial x} \right) : + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial x} \right) : + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial x} \right) : + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial x} \right) : + \left(\frac{\partial Q}{\partial x} - \frac{\partial Q}{\partial x} \right) : + \left(\frac{\partial Q}{\partial x} - \frac{\partial Q}{\partial x} \right) : + \left(\frac{\partial Q}{\partial x} - \frac{\partial Q}{\partial x} \right) : + \left(\frac{\partial Q}{\partial x} - \frac{\partial Q}{\partial x} \right) : + \left(\frac{\partial Q}{\partial x} - \frac{\partial Q}{\partial x} \right) : + \left(\frac{\partial Q}{\partial x} - \frac{\partial Q}{\partial x} \right) : + \left(\frac{\partial Q}{\partial x} - \frac{\partial Q}{\partial x} \right) : + \left(\frac{\partial Q}{\partial x} - \frac{\partial Q}{\partial x} \right) : + \left(\frac{\partial Q}{\partial x} - \frac{\partial Q}{\partial x} \right) : + \left(\frac{\partial Q}{\partial x} - \frac{\partial Q}{\partial x} \right) : + \left(\frac{\partial Q}{\partial x} - \frac{\partial Q}{\partial x} \right) : + \left(\frac{\partial Q}{\partial x} - \frac{\partial Q}{\partial x} \right) : + \left(\frac{\partial Q}{\partial x} - \frac{\partial Q}{\partial x} \right) : + \left(\frac{\partial Q}{\partial x} - \frac{\partial Q}{\partial x} \right) : + \left(\frac{\partial Q}{\partial x} - \frac{\partial Q}{\partial x} \right) : + \left(\frac$$

Differentiating (1) wrt y
$$f_{XY}(x,Y) = P_{Y}(x,Y) - (3)$$

$$Differentiating (2) wrt x,$$

$$f_{YX}(x,Y) = Q_{X}(x,Y) - (4)$$

Since f, P and Q are continuous, using Clairaut's theorem, $e_{xy}(x,y) = f_{yx}(x,y)$ $e_{y}(x,y) = Q_{x}(x,y)$

2) Since P and Q have continuous partial derivatives, $P(x,y) = D(x,y) \cdot (chown)$

$$P(x_1y) = Q(x_1y)$$
 (shown)

curlF

=
$$\left(\frac{3x}{3},\frac{3y}{3},\frac{3z}{3}\right) \times \left(\frac{3(x,y,z)}{2},\frac{3(x,y,z)}{3},\frac{3(x,y,z)}{3}\right)$$

=
$$(R_{y}-Q_{z})_{x}^{2}+(P_{z}-R_{y})_{j}^{2}+(Q_{n}-P_{y})_{x}^{2}-(1)_{y}^{2}$$

Since E is conservative,

As P, Q and R have continuous partial derivatives, Sub (2), (3), (4) into (i)

$$\begin{aligned}
E_{x} &= ||E_{y}||_{x} \\
&= ||E_{y}||_{x^{2}+y^{2}+z^{2}} \\
&= \frac{q^{(x,y,z)}}{\sqrt{x^{2}+y^{2}+z^{2}}} \cdot \frac{(x,y,z)}{\sqrt{x^{2}+y^{2}+z^{2}}} \\
&= \frac{q^{(x,y,z)}}{\sqrt{x^{2}+y^{2}+z^{2}}}
\end{aligned}$$

4)
$$y = f(x)$$
, $x \in [u,b]$

Parametrise $y = f(x)$ with:

 $(x,y) = r(t) = (x,f(x))$, $x \in [a,b]$
 $ds = ||r'(t)|| dx$
 $= ||(||f'(x)||)|| dx$
 $= \int ||f'(t)||^2 dx$

$$\int_C dx = \int_a \int ||f(t)||^2 dx \quad (shown)$$

5) $\int_C f_{avg} ds = \int_C f(x) ds$
 $f_{avg} \int_C ds = \int_C f(x) ds$
 $f_{avg} = \int_C f(x) ds$

favg = length(c) Sc-f(x)ds

6)
$$x^{2}+y^{2}=ax$$
 $x^{2}-ax+y^{2}=0$
 $x^{2}-ax+(\frac{a}{2})^{2}+y^{2}-(\frac{a}{2})^{2}=0$
 $(x-\frac{a}{2})^{2}+y^{2}=(\frac{a}{2})^{2}$
 $(x-\frac{a}{2})^{2}+y^{2}=(\frac{a}{2})^{2}$

Circle control at $(\frac{a}{2},0)$ with radius $\frac{a}{2}$
 $(x-\frac{a}{2})^{2}+y^{2}=(\frac{a}{2})^{2}$
 $y=\pm\sqrt{(\frac{a}{2})^{2}-(x-\frac{a}{2})^{2}}$

Let $x=(\frac{a}{2})\cos t+\frac{a}{2}$, $y=(\frac{a}{2})\sin t$
 $(x,y)=x_{0}(t)_{1}=(\frac{a}{2}\cos t+\frac{a}{2},\frac{a}{2}\sin t)_{1}$, $t\in[0,2\pi]$
 $dS=||x'(t)||dt$
 $=||(-\frac{a\sin t}{2},\frac{a\cos t}{2})||dt$
 $=||(-\frac{a\sin t}{2},\frac{a\cos t}{2})||dt$

$$= \int \frac{(a \sin t)^{2} + (a \cos t)^{2}}{4} dt$$

$$= \int \frac{a^{2} \sin^{2} t + a^{2} \cos^{2} t}{4} dt$$

$$= \int \frac{a^{2}}{4} dt$$

$$= \frac{|a|}{2} dt$$

6)
$$\int_{c} \sqrt{n^{2}+y^{2}} ds$$

= $\int_{0}^{2\pi} \sqrt{\frac{a^{2}\cos^{2}t + \frac{a}{2}}{2}} + (\frac{a}{2}\sin t)^{2} = \frac{a}{2} dt$

= $\int_{0}^{2\pi} \sqrt{\frac{a^{2}\cos^{2}t + \frac{a^{2}\cos^{2}t + \frac{a^{2}\cos^{2}t + \frac{a^{2}\sin^{2}t +$

 $=\frac{\alpha^2}{3}(4)=2\alpha^2$

7a)
$$\gamma = x^{2}, x \in [-1, 2]$$

Let $\gamma = f(x)$
 $(x, y) = g(x) = (x, f(n)) = (x, x^{2}), t \in [-1, 2]$
 $\frac{d}{dx}(x, x^{2}) = (1, 2x)$
 $\int_{c} 2xy dn + (\frac{3}{2}x+y) dy$
 $= \int_{-1}^{2} 2x(x^{2}) dn + (\frac{3}{2}x+x^{2}) 2x dn$
 $= \int_{-1}^{2} 2x^{3} + 3x^{2} + 2x^{3} dn$
 $= \int_{-1}^{2} 4x^{3} + 3x^{2} dn$
 $= \frac{1}{2} 4x^{3} + 3x^{2} dn$

= 24

$$f_{x} = \frac{2x}{x^{2}+y^{2}} - (1)$$

$$f_{y} = \frac{2y}{8^{2}+y^{2}} - (2)$$

$$f(x,y) = \int \frac{2\pi}{x^2 + y^2} dx$$

$$f_{\gamma}(x,y) = \frac{2\gamma}{x^2+y^2} + g'(x) - (3)$$

$$g'(x) = 0$$

... The vector field
$$F = \left(\frac{2x}{x^2+y^2}, \frac{2y}{x^2+y^2}\right)$$
 is conservative.

7b) Using Newton-Leibniz Theorem,
$$\int_{C} \frac{2\pi d\kappa}{\kappa^{2}+\gamma^{2}} + \frac{2\gamma d\gamma}{\kappa^{2}+\gamma^{2}}$$

$$= f(\text{End point of } C) - f(\text{start point of } C)$$
Sub $\kappa = t \cos t$,
 $\gamma = t \sin t$,
 $t \in [\pi, 2\pi]$

$$\int_{C} \frac{2\pi d\kappa}{\kappa^{2}+\gamma^{2}} + \frac{2\gamma d\gamma}{\kappa^{2}+\gamma^{2}}$$

$$= \ln|t^{2}\cos^{2}t + t^{2}\sin^{2}t| \frac{2\pi}{\pi}$$

$$= |n|(2\pi)^{2}\cos^{2}(2\pi) + (2\pi)^{2}\sin^{2}(2\pi)| - |n|\pi^{2}\cos^{2}\pi t^{2}\sin^{2}\pi|$$

$$= |n|(4\pi^{2}) - |n|\pi^{2}|$$

= | 1 4 82

= \n4

= 2/n2