Tutorial Problems - Sections 8 to 10 - MAT 327 - Summer 2014

8 Finite Products

- 1. Let $\mathcal{T} := \{U \in \mathcal{P}(\mathbb{R}) : 0 \in U\} \cup \{\emptyset\}$, and let $\mathcal{U} := \{U \in \mathcal{P}(\mathbb{R}) : 1 \in U\} \cup \{\emptyset\}$. Describe the product topology on $\mathbb{R} \times \mathbb{R}$ determined by \mathcal{T} and \mathcal{U} .
- 2. Let (X, \mathcal{T}) and (Y, \mathcal{U}) be topological spaces, let $a \in X$, and let $b \in Y$. Prove that the functions $f: X \longrightarrow X \times Y$ and $g: Y \longrightarrow X \times Y$ defined by f(x) = (x, b) and g(y) = (a, y) are embeddings. (An embedding is an injective, continuous, open map.)
- 3. Let (X, \mathcal{T}) be a topological space. Let \mathcal{U} denote the product topology on $X \times X$, let $\Delta := \{(x, x) : x \in X\}$, and let \mathcal{U}_{Δ} be the subspace topology on Δ determined by \mathcal{U} . Prove that (X, \mathcal{T}) is homeomorphic to $(\Delta, \mathcal{U}_{\Delta})$. (The set Δ is called the **diagonal**.)
- 4. Let (X_1, \mathcal{T}_1) and (X_2, \mathcal{T}_2) be topological spaces, and suppose $X_1 \times X_2$ has the product topology. For i = 1, 2, let A_i be a subset of X_i . Prove that $\overline{A_1 \times A_2} = \overline{A_1} \times \overline{A_2}$.
- 5. Let (X_1, \mathcal{T}_1) and (X_2, \mathcal{T}_2) be topological spaces, and suppose $X_1 \times X_2$ has the product topology. For i = 1, 2, let A_i be a subset of X_i . Prove that

$$int(A_1 \times A_2) = int(A_1) \times int(A_2).$$

9 Separation Axioms

Definition 1. A space (X, \mathcal{T}) is T_0 if for all $x \neq y$, there is an open set such that $x \in U$ and $y \notin U$ or there is an open set V such that $y \in V$ and $x \notin V$.

- 1. Let (X, \mathcal{T}) be a topological space. Prove that (X, \mathcal{T}) is a T_0 space if and only if for each pair a and b of distinct members of X, $\{a\} \neq \{b\}$.
- 2. Let X be a set and let $D \subseteq X$. Define a topology \mathcal{T} on X by saying that a subset of X is closed whenever $C = C \cup D$ and a subset U of X belongs to \mathcal{T} whenver $X \setminus U$ is closed. For each i = 0, 1, 2, under what conditions on D is (X, \mathcal{T}) a T_i space?
- 3. Let (X, \mathcal{T}) be a T_1 -space, let (Y, \mathcal{U}) be a topological space, and let f be a closed map of X onto Y. Prove that (Y, \mathcal{U}) is a T_1 space.

10 Partial Orders

1. Prove (directly) that ω_1 is not ccc.

- 2. The previous exercise might get you mistakenly thinking that somehow ω_1 is discrete; this is very much not true! Show that ω_1 has infinitely many points that are not open (hint: look at what we did for $\omega + 1$). Then show that ω_1 has uncountably many points which are not open. (Is this true for \mathbb{R}_{usual} ?)
- 3. Prove that $A \subseteq \omega_1$ is bounded iff it is countable. Conclude that $C \subseteq \omega_1$ is uncountable iff it is unbounded. (Is this true for \mathbb{R} ?)
- 4. Prove that $\{x \in \omega_1 : \{x\} \text{ is not open }\}$ is a closed subset of ω_1 . Conclude from a previous exercise that it is a closed and unbounded set.
- 5. A subset $C \subseteq \omega_1$ is said to be a **club** subset of ω_1 if it is closed and unbounded. Note that final segments (i.e. everything to the *right* of a point α) are club. Prove that the intersection of countably many club sets is again club.