Bac Métropole 2021 EXERCICE A - UN SAUT STRATOSPHÉRIQUE (5 points)

http://labolycee.org

Mot-clé : mouvement dans un champ de pesanteur uniforme

Le 14 octobre 2012, Félix Baumgartner devient le premier homme à atteindre une vitesse égale à celle du son en s'élançant d'une capsule située dans la zone supérieure de la stratosphère.

L'objectif de cet exercice est de comprendre pourquoi il réalise un saut depuis la zone supérieure de la stratosphère pour atteindre la vitesse du son dans l'atmosphère.

Données:

- \rightarrow masse de Félix Baumgartner et de son équipement : m = 120 kg;
- \triangleright altitudes limites de la stratosphère : $z_{min} = 11$ km, $z_{max} = 50$ km ;
- altitude de la capsule au moment du saut : zdépart = 38 969 m ;
- intensité du champ de pesanteur à la surface de la Terre supposée sphérique de rayon R_T : $g_0 = 9.81 \, \mathrm{m\cdot s^{-2}}$;

 \triangleright évolution de la norme de la vitesse du son v_{son} dans l'atmosphère en fonction de l'altitude :

Figure 1. Vitesse du son en fonction de l'altitude

- norme f en N de la force de frottements due à l'air : $f = 0.4 \times \rho_{air}(z) \times v^2$ avec :
 - $\rho_{air}(z)$: masse volumique ρ_{air} de l'air à l'altitude z en kg·m⁻³;
 - v : vitesse du centre de masse de Félix Baumgartner en m⋅s⁻¹.

1. Influence de l'altitude sur le champ de pesanteur

- **1.1.** Calculer la différence Δg entre les valeurs des champs de pesanteur aux limites de la stratosphère définie par : $\Delta g = |g(z_{\text{max}}) g(z_{\text{min}})|$.
- 1.2. On considère que le champ de pesanteur est uniforme dans une zone de l'espace si sa variation par rapport à sa valeur à l'altitude z_{max} est inférieure à 2 %. Le champ de pesanteur terrestre peut-il être considéré comme uniforme dans la stratosphère ?

D'après redbull.com

Pour la suite de l'exercice, on prend pour valeur du champ de pesanteur $g = 9,66 \text{ m}\cdot\text{s}^{-2}$.

Le mouvement du centre de masse de Félix Baumgartner est étudié dans le référentiel terrestre supposé galiléen, l'axe des z est dirigé selon la verticale orientée vers le haut, l'origine O est prise au niveau du sol.

À la date t = 0 s, Félix Baumgartner s'élance sans vitesse initiale. Son mouvement est supposé vertical.

- **2.** Établir, dans le cadre du modèle de la chute libre, l'équation horaire z(t) de l'altitude du centre de masse de Félix Baumgartner à la date t en fonction de t, g et $z_{départ}$.
- 3. En déduire, dans le cadre de ce modèle, l'altitude à laquelle la valeur de la vitesse de Félix Baumgartner est égale à 307 m⋅s⁻¹.
- 4. Indiquer, dans le cadre de ce modèle, en justifiant, si Felix Baumgartner a dépassé la vitesse du son lorsqu'il atteint cette altitude.

En réalité, Félix Baumgartner atteint une vitesse égale à celle du son à une altitude z_{son} = 33 446 m. On donne, sur la figure 2 ci-dessous, l'évolution de la masse volumique ρ_{air} de l'air dans la stratosphère pour des altitudes comprises entre 15 km et 50 km.

Figure 2. Masse volumique de l'air dans la stratosphère (entre 15 et 50 km) en fonction de l'altitude

5. Comparer la norme de la force de frottement de l'air et la norme du poids lorsque Félix Baumgartner atteint la vitesse de 307 m·s⁻¹ à l'altitude de 33 446 m. Critiquer le modèle de chute libre utilisé précédemment.

En raison de la force de frottement due à l'air, Félix Baumgartner atteint une vitesse limite lors du saut. La vitesse limite est la vitesse atteinte lorsque la norme de la force de frottement devient égale à celle du poids.

- **6.** Pour simplifier, on formule l'hypothèse que la vitesse limite est atteinte après 4 000 m de chute. Calculer la valeur de la vitesse limite v_{lim} atteinte par Félix Baumgartner s'il s'était élancé d'une altitude z = 20 000 m.
- 7. Expliquer qualitativement pourquoi il est nécessaire de s'élancer depuis la zone supérieure de la stratosphère pour atteindre une vitesse égale à celle du son.