Билет 47

Aвтор1, ..., AвторN

22 июня 2020 г.

Содержание

0.1	Билет 47: ! Признак Леионица. Оценка суммы знакочередующегося ряда. Приме-	
	ры (ряд Лейбница и его перестановка)	1

Билет 47 COДЕРЖАНИЕ

0.1. Билет 47: ! Признак Лейбница. Оценка суммы знакочередующегося ряда. Примеры (ряд Лейбница и его перестановка)

Знакочередующийся ряд: $\sum_{k=1}^{\infty} (-1)^{n-1} a_n, \ a_n \geqslant 0$

Теорема 0.1 (Признак Лейбница).

Если a_n монотонно убывают стремятся к 0, то ряд $\sum_{k=1}^{\infty} (-1)^{n-1} a_n$ сходится. Важно заметить, что условие стремления a_n к 0 важно (см. необходимое условие сходимости ряда). Данный признак можно так же вывести из признака Дирихле. Однако мы хотм произвести так же оценку на сумму знакочередующегося ряда: $S_{2n} \leqslant S \leqslant S_{2n+1}$

Доказательство. a_2n+1 >= 0a_

 $S_{2n+2} = S_{2n} + a_{2n+1} - a_{2n+2} \geqslant S_{2n} \ S_{2n+1} = S_{2n-1} - a_{2n} + a_{2n+1} \leqslant S_{2n-1}$. Получаем, что S с четными номерами растут, а с нечетными - убывают. Значит, мы можем расписать вложенную последовательно сть отрезков: $[0, S_1] \supset [S_2, S_3] \supset [S_4, S_5] ... \supset [S_{2n}, S_{2n+1}]$.

Теперь рассмотрим длины отрезков: $S_{2n+1} - S_{2n} = a_{2n+1} \to 0$. Тогда последовательность отрезков стягивается. Тогда применим одноименную теорему: у этих отрезков есть общая точка S, которая является пределом их концов: $\lim S_{2n} = \lim S_{2n+1} = S$. Получили что частичные суммы сходятся к S, значит исходный ряд тоже сходится к S. Также можно заметить, что неравенство на сумму ряда выполняется, потому что точка S лежит во всех отрезках, в частности в отрезке $[S_{2n}, S_{2n+1}]$

Пример.

В качестве примера рассмотрим ряд Лейбница: $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ $S_{2n}=(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2n-1})-(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2n})=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{2n}-2(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2n}=H_{2n}-H_n=$ (сложили все дроби и дважды вычли четные), где H_n - гармонический ряд (смотри билет 6). Подставим все в формулу для гармонических чисел: $=\ln(2n)+\gamma+o(1)-(\ln(n)+\gamma+o(1))=\ln(2n)-\ln(n)+o(1)=\ln 2+o(1)$. Тогда $S_{2n}\to\ln 2$. Тогда $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}=\ln 2$. Рассмотрим перестановку ряда Лейбница: $(1-\frac{1}{2}-\frac{1}{4})+(\frac{1}{3}-\frac{1}{6}-\frac{1}{8})+...+(\frac{1}{2n-1}-\frac{1}{4n-2}-\frac{1}{4n})+...$ Будем считать $S_{3n}=1+\frac{1}{3}+...+\frac{1}{2n-1}-(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{4n}=1+\frac{1}{3}+...+\frac{1}{2n-1}-\frac{1}{2}(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2n}=$. Последнее выражение в скобках это H_{2n} . Мы только что считали это в предыдущем примере. Получаем: $=H_{2n}-\frac{1}{2}H_n=\frac{\ln 2}{2}$