1. Additive categories

Def: An additive category is a category of such that

- (Add1) It has a zero object (i.e. an object that is both critical and terminal)
- (Add 2) How gr(X,Y) has an abelian group structure such that composition is biadditive.
- (Add3) It has biproducts, i.e. $\forall X_1, X_2 \in OS(A)$ I object $X =: X_1 \oplus X_2$ and marphisms $X_1 \xleftarrow{\pi_1} X \xrightarrow{\pi_2} X_2$
 - such that . It is = Si idxi
 - $\sigma_{i} \pi_{i} + \sigma_{i} \pi_{i} = i d_{X}$
- that (1) The zero element in the abelian group Hamp(X, Y) equals the unique marphism $X \xrightarrow{\circ} Y$
- (2) (X,0,02) is a coproduct and (X, II, II) is a product of X, and X2
- (3) The group structures on Hourge(XiV) are intrinsic and no additional data!

Given X + Y

The black morphisms can be constructed using only universal properties of (o) products and the fact that we have a zero object (and have zero worphisms)

$$\frac{1}{\left(\frac{id^{X}}{id^{X}}\right)} = \frac{1}{\left(\frac{id^{X}}{id^{X}}\right)} = \frac{1$$

2. Abelian categories

Det Let A be a category with a sew object and X for a worphism.

• (C,
$$\Upsilon \xrightarrow{P} C$$
) is a cokenel of f if pf=0 and $Y \xrightarrow{P} T$ with $f = 0$
 $f \in \mathcal{T}$ with $f = f$

white get an induced worphism
$$\overline{F}: (\text{oim}(f) \longrightarrow \text{Im}(f)$$

Def: An abellian calegory is an additive category it such that every morphism has a ternel and catenel and for every morphism $f:X \longrightarrow Y$ the induced morphism $f:Coin(f) \longrightarrow Im(f)$ is an isomorphism.

Examples of abelian categories:

- . Mod R for a ring R . (ch(X) for a scheme X
- · Fun (C, A) for a small cat. C and an obelian cost. A

Non-example: A = category of f.g. free abelian groups, then A has all terrels and coternels and $Im(f) \cong Coim(f)$ for every morphism f, but A is not abelian.

3. Exact categories

Def. An exact category is an additive category A endowed with a class of temel-cotemel pairs (i,p), called conflations, s.t. inflation I deflation

- (ExO) ido is a deflation
- (Ex1) The composition of two deflations is a deflation
- (Ex2) For every deflation p and worphism $Y' \stackrel{p'}{p} \Rightarrow Z'$ the pullback exists and p' is

 again a deflation

 The pollogical exists and p' is
- (Ex2°P) for every inflation i and worphism f the purbant exists and i' is an inflation.
- Ruk (1) The dual statements (Exo^P) and (Ex 1^{op}) can be derived from the above exisms.
- (2) for every isomorphism of the square X of Y

 is a pullback diagram

 isomorphisms are deflations

 (and also inflations by the dual argument)

Examples . An abelian category can have different exact structures (e.g. conflations = all s.e.s. or conflations = split s.e.s.,...).
. An extension closed subategory of an abelian cot is exact.

4. The derived category of an exact category
Let A be an exact category. We write $C(A)$ for the category of their complexes $X^{i-1} \xrightarrow{d^{i-1}} X^i \xrightarrow{d^i} X^{i+1} \xrightarrow{d^{i+1}} X^i$
A marphism for X° — Y° of chain complexes is multhomotopic of there are marphisms so: X' — Y''' in A
The site of the si
Let $H(A) := C(A)$ (null homotopic) be the homotopy category. of (the underlying add. cat. of) A
Def: A complex X'EC(A) is acyclic if there are factorizations
Such that for every is # Zi Xi Zirl Zi a conflotion.
Def: A worphism for X" - Y" or C(A) is a quasi-isomorphism
If the mapping cone cone $(f^{\circ}) := $

is nomorphic in H(A) to an acyclic complex.

Example Let X+77+2 be a conflation in A, then the following worphisms of chain complexes are quasi-isomorphisms: ..-0-X+X-0-..] [3] .. _ o _ o _ _ t _ o _ .. In particular = (... ~ X - X - 0 - ...) is quasi-isomorphic to (.. - 0 - 7 - 0 - ..) ("conflation in A give vise to distinguished triangles in D(A)") Definition The derived category of the exact contegery A is D(A) := H(A) [(classes of quasi-isomorphisms)] = C(A) [(quasi-isomorphisms)]] Recall (Winversal property of localization of a category) Let C be a category, W = Mar(C) a class of morphisms Then EXTENTED a lacalitation of E at Wiff for every fundor f: C-1D which waps $C \longrightarrow C[W^{-1}]$ AE JE - JE W to isomorphisms, there exists a unique fuctor F: C[w] -D such that Foy=F.

