FMI, Info, Anul I

Logică matematică și computațională

Seminar 10

(S10.1) Fie \mathcal{L} un limbaj de ordinul I, \mathcal{A} o \mathcal{L} -structură şi $e:V\to A$ o interpretare a lui \mathcal{L} în \mathcal{A} . Să se demonstreze că pentru orice formule φ, ψ și orice variabilă x:

- (i) $(\varphi \vee \psi)^{\mathcal{A}}(e) = \varphi^{\mathcal{A}}(e) \vee \psi^{\mathcal{A}}(e);$
- (ii) $(\varphi \wedge \psi)^{\mathcal{A}}(e) = \varphi^{\mathcal{A}}(e) \wedge \psi^{\mathcal{A}}(e);$
- (iii) $(\varphi \leftrightarrow \psi)^{\mathcal{A}}(e) = \varphi^{\mathcal{A}}(e) \leftrightarrow \psi^{\mathcal{A}}(e);$
- (iv) $(\exists x \varphi)^{\mathcal{A}}(e) = \begin{cases} 1, & \text{dacă există } a \in A \text{ a.î. } \varphi^{\mathcal{A}}(e_{x \leftarrow a}) = 1; \\ 0, & \text{altfel.} \end{cases}$

Demonstraţie:

(i) Avem:

$$(\varphi \lor \psi)^{\mathcal{A}}(e) = 1 \iff (\neg \varphi \to \psi)^{\mathcal{A}}(e) = 1$$
$$\iff \neg \varphi^{\mathcal{A}}(e) \to \psi^{\mathcal{A}}(e) = 1$$
$$\iff \varphi^{\mathcal{A}}(e) \lor \psi^{\mathcal{A}}(e) = 1.$$

(ii) Avem:

$$(\varphi \wedge \psi)^{\mathcal{A}}(e) = 1 \iff (\neg(\varphi \to \neg \psi))^{\mathcal{A}}(e) = 1$$
$$\iff \neg(\varphi^{\mathcal{A}}(e) \to \neg\psi^{\mathcal{A}}(e)) = 1$$
$$\iff \varphi^{\mathcal{A}}(e) \wedge \psi^{\mathcal{A}}(e) = 1.$$

(iii) Avem:

$$(\varphi \leftrightarrow \psi)^{\mathcal{A}}(e) = 1 \iff ((\varphi \to \psi) \land (\psi \to \varphi))^{\mathcal{A}}(e) = 1$$
$$\iff (\varphi^{\mathcal{A}}(e) \to \psi^{\mathcal{A}}(e)) \land (\psi^{\mathcal{A}}(e) \to \varphi^{\mathcal{A}}(e)) = 1$$
$$\iff \varphi^{\mathcal{A}}(e) \leftrightarrow \psi^{\mathcal{A}}(e) = 1.$$

(iv) Avem:

$$(\exists x\varphi)^{\mathcal{A}}(e) = 1 \iff (\neg \forall x \neg \varphi)^{\mathcal{A}}(e) = 1 \iff \neg (\forall x \neg \varphi)^{\mathcal{A}}(e) = 1$$

$$\iff (\forall x \neg \varphi)^{\mathcal{A}}(e) = 0$$

$$\iff \text{nu e adevărat că pentru orice } a \in A, (\neg \varphi)^{\mathcal{A}}(e_{x \leftarrow a}) = 1$$

$$\iff \text{există } a \in A \text{ a.î. } (\neg \varphi)^{\mathcal{A}}(e_{x \leftarrow a}) \neq 1$$

$$\iff \text{există } a \in A \text{ a.î. } (\neg \varphi)^{\mathcal{A}}(e_{x \leftarrow a}) = 0$$

$$\iff \text{există } a \in A \text{ a.î. } \varphi^{\mathcal{A}}(e_{x \leftarrow a}) = 1.$$

(S10.2) Considerăm limbajul de ordinul I $\mathcal{L}_{ar} = (\dot{<}; \dot{+}, \dot{\times}, \dot{S}; \dot{0})$ (limbajul aritmeticii) și \mathcal{L}_{ar} -structura $\mathcal{N} = (\mathbb{N}, <, +, \cdot, S, 0)$.

- (i) Fie $x, y \in V$ cu $x \neq y$, şi $t = \dot{S}x \dot{\times} \dot{S}\dot{S}y = \dot{\times}(\dot{S}x, \dot{S}\dot{S}y)$. Să se calculeze $t^{\mathcal{N}}(e)$, unde $e: V \to \mathbb{N}$ este o evaluare ce verifică e(x) = 3 şi e(y) = 7.
- (ii) Fie $\varphi = x \dot{<} \dot{S}y \rightarrow (x \dot{<} y \lor x = y) = \dot{<} (x, \dot{S}y) \rightarrow (\dot{<} (x, y) \lor x = y)$. Să se arate că $\mathcal{N} \models \varphi[e]$ pentru orice $e: V \rightarrow \mathbb{N}$.

Demonstrație:

(i) Pentru orice interpretare $e: V \to \mathbb{N}$, avem

$$t^{\mathcal{N}}(e) = \dot{x}^{\mathcal{N}}((\dot{S}x)^{\mathcal{N}}(e), (\dot{S}\dot{S}y)^{\mathcal{N}}(e)) = (\dot{S}x)^{\mathcal{N}}(e) \cdot (\dot{S}\dot{S}y)^{\mathcal{N}}(e)$$
$$= \dot{S}^{\mathcal{N}}(x^{\mathcal{N}}(e)) \cdot \dot{S}^{\mathcal{N}}((\dot{S}y)^{\mathcal{N}}(e)) = S(e(x)) \cdot S(\dot{S}^{\mathcal{N}}(y^{\mathcal{N}}(e)))$$
$$= S(e(x)) \cdot S(S(e(y))).$$

Prin urmare, dacă e(x) = 3 și e(y) = 7, atunci

$$t^{\mathcal{N}}(e) = S(3) \cdot S(S(7)) = 4 \cdot 9 = 36.$$

(ii) Pentru orice interpretare $e: V \to \mathbb{N}$, avem

$$\mathcal{N} \vDash \varphi[e] \iff \mathcal{N} \not\vDash (\dot{<}(x, \dot{S}y))[e] \text{ sau } \mathcal{N} \vDash (\dot{<}(x, y) \lor x = y)[e]$$
 $\iff \dot{<}^{\mathcal{N}}(e(x), S(e(y)) \text{ nu e satisfăcută sau}$
 $\mathcal{N} \vDash (\dot{<}(x, y))[e] \text{ sau } \mathcal{N} \vDash (x = y)[e]$
 $\iff < (e(x), S(e(y)) \text{ nu e satisfăcută sau } < (e(x), e(y))$
 $\text{ sau } e(x) = e(y)$
 $\iff e(x) \geq S(e(y)) \text{ sau } e(x) < e(y) \text{ sau } e(x) = e(y)$
 $\iff e(x) \geq e(y) + 1 \text{ sau } e(x) < e(y) \text{ sau } e(x) = e(y).$

Prin urmare, $\mathcal{N} \vDash \varphi[e]$ pentru orice $e: V \to \mathbb{N}$.

De obicei, scriem:

$$\mathcal{N} \vDash \varphi[e] \iff \mathcal{N} \not\vDash (\dot{<}(x, \dot{S}y))[e] \text{ sau } \mathcal{N} \vDash (\dot{<}(x, y) \lor x = y)[e]$$

 $\iff e(x) \ge S(e(y)) \text{ sau } e(x) < e(y) \text{ sau } e(x) = e(y)$
 $\iff e(x) \ge e(y) + 1 \text{ sau } e(x) < e(y) \text{ sau } e(x) = e(y).$

(S10.3) Considerăm limbajul de ordinul I $\mathcal{L}_{ar} = (\dot{<}; \dot{+}, \dot{\times}, \dot{S}; \dot{0})$ (limbajul aritmeticii) și \mathcal{L}_{ar} structura $\mathcal{N} = (\mathbb{N}, <, +, \cdot, S, 0)$. Fie formula $\varphi = \forall v_4(v_3 \dot{<} v_4 \lor v_3 = v_4)$. Să se caracterizeze acele $e: V \to \mathbb{N}$ ce au proprietatea că $\varphi^{\mathcal{N}}(e) = 1$.

Demonstrație: Fie $e: V \to \mathbb{N}$. Avem:

$$\varphi^{\mathcal{N}}(e) = 1 \iff (\forall v_4(v_3 \dot{<} v_4 \lor v_3 = v_4))^{\mathcal{N}}(e) = 1$$

$$\iff \text{pentru orice } a \in \mathbb{N}, \ (v_3 \dot{<} v_4 \lor v_3 = v_4)^{\mathcal{N}}(e_{v_4 \leftarrow a}) = 1$$

$$\iff \text{pentru orice } a \in \mathbb{N}, \ (v_3 \dot{<} v_4)^{\mathcal{N}}(e_{v_4 \leftarrow a}) \lor (v_3 = v_4)^{\mathcal{N}}(e_{v_4 \leftarrow a}) = 1$$

$$\iff \text{pentru orice } a \in \mathbb{N}, \ (v_3 \dot{<} v_4)^{\mathcal{N}}(e_{v_4 \leftarrow a}) = 1 \text{ sau } (v_3 = v_4)^{\mathcal{N}}(e_{v_4 \leftarrow a}) = 1$$

$$\iff \text{pentru orice } a \in \mathbb{N}, \ e_{v_4 \leftarrow a}(v_3) < e_{v_4 \leftarrow a}(v_4) \text{ sau } e_{v_4 \leftarrow a}(v_3) = e_{v_4 \leftarrow a}(v_4)$$

$$\iff \text{pentru orice } a \in \mathbb{N}, \ e_{v_4 \leftarrow a}(v_3) \leq e_{v_4 \leftarrow a}(v_4)$$

$$\iff \text{pentru orice } a \in \mathbb{N}, \ e(v_3) \leq a$$

$$\iff e(v_3) = 0.$$

3