BAYESUVIUS QUANTICO

a visual dictionary of Quantum Bayesian Networks

ROBERT R. TUCCI

Bayesuvius Quantico,

a visual dictionary of Quantum Bayesian Networks

Robert R. Tucci www.ar-tiste.xyz

July 16, 2025

This book is constantly being expanded and improved. To download the latest version, go to

https://github.com/rrtucci/bayes-quantico

Bayes Quantico

by Robert R. Tucci Copyright ©2025, Robert R. Tucci.

This work is licensed under the Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License. To view a copy of this license, visit the link https://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042.

Contents

1	Antisymmetrization	4
2	Casimir Operators	5
3	Clebsch-Gordan Coefficients	6
4	Determinants	7
5	General Relativity Nets	8
6	Group Integrals	9
7	Invariants	10
8	Lie Algebra Definition	11
9	Lie Algebra Classification, Dynkin Diagrams	12
10	Orthogonal Groups	13
11	Quantum Shannon Information Theory	14
12	Recoupling Equations	15
13	Reducibility	16
14	Spectral Decomposition	17
15	Spinors	18
16	Squashed Entanglement	19
17	Symplectic Groups	20
18	Symmetrization	21
19	Tensor and Diagrammatic Notation	22

20	Unitary Groups	2 5
21	Wigner Coefficients	2 6
22	Wigner-Ekart Theorem	27
23	Young Tableau	28
Bibliography		2 9

Chapter 1 Antisymmetrization

Chapter 2
Casimir Operators

Chapter 3 Clebsch-Gordan Coefficients

Determinants

Chapter 5 General Relativity Nets

Chapter 6 Group Integrals

Invariants

Chapter 8 Lie Algebra Definition

Lie Algebra Classification, Dynkin Diagrams

Chapter 10 Orthogonal Groups

Quantum Shannon Information Theory

Chapter 12 Recoupling Equations

Chapter 13
Reducibility

Chapter 14 Spectral Decomposition

Chapter 15 Spinors

Chapter 16 Squashed Entanglement

Chapter 17
Symplectic Groups

Chapter 18 Symmetrization

Tensor and Diagrammatic Notation

$$P(y) = \sum_{x} P(y|x)P(x) \tag{19.1}$$

$$\langle y|\psi\rangle = \sum_{x} \underbrace{\langle y|A|x\rangle}_{A(y|x)} \langle x|\psi\rangle$$
 (19.2)

$$\leftarrow = \sum_{a} |a\rangle\langle a|$$
 (19.3)

$$\langle a|q\rangle = \sum_{b} \langle a|G|b\rangle \langle b|q\rangle$$
 (19.4)

$$q_a = \sum_b G_a^b q_b \tag{19.5}$$

$$\stackrel{\longleftarrow}{=} q = \stackrel{\longleftarrow}{=} G \stackrel{\longleftarrow}{\leq_{\Sigma b}} q$$
(19.6)

$$\langle q|a\rangle = \sum_{b} \langle b|G^{\dagger}|a\rangle \langle q|b\rangle$$
 (19.7)

$$q^a = \sum_b (G^{\dagger})^a_b q^b \tag{19.8}$$

$$q \underset{a}{\longleftarrow} = q \underset{\sum b}{\longleftarrow} G^{\dagger} \underset{a}{\longleftarrow} \tag{19.9}$$

$$\underbrace{\qquad}_{a} q = a \underbrace{\qquad} q \tag{19.10}$$

$$q \underset{a}{\longleftarrow} = q \underset{a}{\longleftarrow} a \tag{19.11}$$

$$G_{a,b,c}^{d,e} = \langle a, b, c | G | d, e \rangle = a - G - d$$

$$(19.12)$$

$$\langle b_1, b_2 | h | a_1, a_2 \rangle = \langle G^{\dagger} b_1, G^{\dagger} b_2 | h | G a_1, G a_2 \rangle$$

$$a_1 \qquad a_2 = a_1 \qquad a_2 \qquad (19.14)$$

$$b_1 \qquad b_2 \qquad G^{\dagger} \qquad G^{\dagger} \qquad \downarrow$$

$$G_b^a = \delta_b^a + i \sum_j \epsilon_j (T_j)_b^a \tag{19.15}$$

$$\frac{1}{b}G \stackrel{}{\underset{a}{\longleftarrow}} = \frac{1}{b}\delta \stackrel{j}{\underset{a}{\longleftarrow}} + i\sum_{j}\epsilon_{j} \stackrel{}{\underset{b}{\longleftarrow}} T_{j} \stackrel{}{\underset{a}{\longleftarrow}}$$
(19.16)

Assume $T_j^{\dagger} = T_j$. To first order in ϵ_j ,

from which we get one equation for each ϵ_j .

Chapter 20
Unitary Groups

Chapter 21
Wigner Coefficients

Wigner-Ekart Theorem

Young Tableau

Bibliography