FVM implementation of NS Equation discretization in OpenFoam

Ajit Kumar Shiv Nadar University Email: ajit.kumar@snu.edu.in

May 15, 2018

1 Incompressible NS Equation

$$\nabla \cdot \mathbf{U} = 0,$$

$$\frac{\partial \mathbf{U}}{\partial t} + \nabla \cdot (\mathbf{U}\mathbf{U}) - \nabla \cdot (\nu \nabla \mathbf{U}) = -\nabla p$$

2 Finite volume form of continuity equation

With a bit of abuse of notation, from now let us assume that \mathbf{U} and \mathbf{p} denote the discretized variables.

To mimick the OpenFoam implementation, lets assume that discretized form of the left hand side of the momentum equation is

$$AU - H(U)$$

which is implemented in foam as

```
fvVectorMatrix UEqn
(
    fvm::ddt(U)
    + fvm::div(phi, U)
    + turbulence->divDevReff()
);
```

The matrix A is a diagonal matrix. The turbulence->divDevReff() is actually implementing

```
-fvm::laplacian(nuEff(), U) -fvc::div(nuEff()*dev(T(fvc::grad(U))))
```

which nuEff() represents effective viscosity which is calculated as fluid viscosity by turbulence viscosity, $\nu_{\text{eff}} = \nu + \nu_T$. The second term I believe represents explicit treatment of devioteric stress tensor which should have been vanished in incompressible flows, right?

Lets say the finite volume discretization of ∇p takes the shape $D\mathbf{p}$. This is never explicitly implemented in OpenFoam. Now say the discretized momentum equation looks like

$$\mathbf{U} = \frac{\mathbf{H}(\mathbf{U})}{\mathbf{A}} - \frac{\mathbf{D}}{\mathbf{A}}\mathbf{p}$$

Let \mathbf{U}_f be the interpolation vector of velocities at cell faces and lets say the connection between \mathbf{U} and \mathbf{U}_f is through a mapping matrix M

$$\mathbf{U}_f = M\mathbf{U}$$

Discretized continuity equation is

$$\sum_{\text{faces in cell}} \mathbf{U}_f \cdot \mathbf{S}_f = 0, \text{ for all cells}$$

which in matrix form, suppose, looks like

$$C(M\mathbf{U}) = 0$$

So, the algebraic equation we intend to solve here is

$$\mathbf{U} = rac{\mathbf{H}(\mathbf{U})}{\mathbf{A}} - rac{\mathbf{D}}{\mathbf{A}}\mathbf{p}$$
 $C(M\mathbf{U}) = \mathbf{0}$

3 PISO loop

- Presently known values of velocity and pressure: \mathbf{U}^n , \mathbf{p}^n .
- Momentum predictor Using \mathbf{U}^n , construct the linearization matrix $\mathbf{L}(\mathbf{U}^n)$ and constant term $\mathbf{X}(\mathbf{U}^n)$ and solve for a momentum predictor \mathbf{U}^* from the equation \mathbf{U}^* from the equation

$$\mathbf{A}\mathbf{U}^* - \underbrace{\left[\mathbf{L}(\mathbf{U}^n)\mathbf{U}^* + \mathbf{X}(\mathbf{U}^n)\right]}_{=H(\mathbf{U}^*)} = -D\mathbf{p}^n$$

For momentum prediction the above equation is rephrased in the form

$$\mathbf{U}^* = \frac{H(\mathbf{U}^*)}{A} - \frac{D}{\mathbf{A}}\mathbf{p}^n$$

The momentum predictor is not expected to be conservative, and is used only to construct $H(\mathbf{U}^*)$.

- PISO correction till desired conservation reached
 - Assume $\mathbf{U} = \frac{H(\mathbf{U}^*)}{A} \frac{D}{A}\mathbf{p}$
 - Substitute in the continuity equation

$$\frac{CMD}{A}\mathbf{p} = \frac{CM}{A}\mathbf{H}(\mathbf{U}^*)$$

- Solve for **p**