(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出職公開番号

特開平11-54120 (43)公開日 平成11年(1999) 2月26日

(51) Int.Cl. ⁸		織別記号	F I	
H01M	4/58		H01M 4/58	
	4/02		4/02	С
	10/40		10/40	Z

審査請求 未請求 請求項の数2 FD (全 4 百)

		審查請求	未請求 請求項の数2 FD (全 4 頁)		
(21)出職番号	特顧平9-219064	(71)出順人	000004282 日本電池株式会社		
(22) 出順日	平成9年(1997)7月29日	京都府京都市南区吉祥院西ノ庄藩之馬場町 1番地			
		(72)発明者	福永 孝夫 京都府京都市南区吉祥院西ノ庄猪之馬場町 1番地 日本電池株式会社内		
		(72)発明者	岩田 幹夫 京都府京都市南区吉祥院西ノ庄猪之馬場町 1番地 日本電池株式会社内		
		(74)代理人	弁理士 矢野 正行		

(54) 【発明の名称】 リチウムイオン二次電池

(57)【要約】

【課題】リチウム・マンガン複合酸化物を基本とする安 価かつ高容量でサイクル特性及び熱に対する安全性の優 れた正極活物質を備える電池を提供する。

【解決手段】リチウム化合物を活物質とする正極を備え たリチウムイオン電池において、活物質が、リチウム・ ニッケル・コバルト・アルミニウム複合酸化物及びリチ ウム・マンガン複合酸化物の2 種混合物からなることを 特徴とする。

「特許請求の範囲]

【詰求項1】リチウム化合物を活物質とする正極を備え たリチウムイオン電池において、

活物質が、リチウム・ニッケル・コバルト・アルミニウ ム複合酸化物及びリチウム・マンガン複合酸化物の2種 混合物からなることを特徴とするリチウムイオン二次電

【請求項212種混合物中のリチウム・マンガン複合酸 化物の含有量が10%以上である請求項1に記載のリチ ウムイオン二次電池。

【発明の詳細な説明】

(00011

(発明の属する技術分野) この発明は、リチウム化合物 を活物質とする正極を備えたリチウムイオン二次電池に 属する。

[0002]

【従来の技術】リチウムイオンを炭素などのホスト物質 (ことでホスト物質とは、リチウムイオンを吸蔵及び放 出できる物質をいう。) に吸蔵させたインターカレーシ ョン化合物を負極材料とするリチウムイオン電池は、高 20 【0008】 エネルギー密度を有し、且つ軽量であるうえ、金属リチ ウムを使用していないので安全性が高い。従って、携帯 用無線電話、携帯用パソコン、携帯用ビデオカメラ等の 小型携帯電子機器用の電源として広範な利用が期待され

【0003】リチウムイオン電池は、上記ホスト物質を 含む負極合剤を負極集電体に保持してなる負極板と、リ チウム・コバルト複合酸化物やリチウム・ニッケル複合 酸化物のようにリチウムイオンと可逆的に電気化学反応 てなる正価板と、電解質を保持するとともに負極板と正 極板との間に介在して両極の短線を防止するセパレータ とを備えている。電解質は通常LiClO.、LiPF。 等のリチウム塩を溶解した非プロトン性の有機溶媒から なるが、固体電解質でも良い。ただし、電解質が固体の 場合はセパレータは必須でない。

【0004】正極活物質としては、上記のリチウム・コ バルト複合酸化物及びリチウム・ニッケル複合酸化物の 他に、リチウム・マンガン複合酸化物も知られている。 電電圧で高い放電容量を得ることができるうえに 放電 により電子伝導性が発現する(LiCoO,の導電率は10°S /cm) ため導電助剤は3%以下で十分性能を発揮する が、高価である。リチウム・ニッケル複合酸化物は、放 電容量が最も大きいが、放電に伴って電圧が降下するの で、大電流性能に劣る。との点、リチウム・マンガン複 合酸化物は、安価で、高温でも分解し難く安全である。 (00051

【発明が解決しようとする課題】しかし、リチウム・マ ンガン複合酸化物は、電子伝導性がリチウム・コバルト 50 -2-ビロリドンを適宜加えベースト状に調整した後、

複合酸化物のそれより2桁以上低いので導電助剤として の影素などを5%以上(通常は10%)添加しなければ ならない。その結果、エネルギー密度が低い、放電容量 が小さい。特に大電流での放電容量が小さい等の欠占を 有する。また充放電時の膨張収縮による導電マトリック スの崩壊による抵抗増により、サイクル特性の劣化が大 きい。このようにリチウム・マンガン複合酸化物は、多 くの課題を有する。

【0006】そこで、リチウム・マンガン複合酸化物に 10 リチウムニッケル複合酸化物を添加し、放電容量及びサ イクル特性を改善する技術が提案された(特開平8-4 5498号公報)。しかし、この技術をもってしても、 電気自動車などの10Ah以上の容量が必要とされる大 型電池に使用するには、熱安定性が不十分であり、当該 用途での実現が困難であった。

【0007】それ故、との発明の目的は、リチウム・マ ンガン複合酸化物を基本とする安価かつ高容量でサイク ル特性及び熱に対する安全性の優れた正極活物質を備え る電池を提供することにある。

【課題を解決するための手段】上記目的を達成するため に、との発明のリチウムイオン二次電池は、リチウム化 合物を活物質とする正極を備えたリチウムイオン電池に おいて、活物質が、リチウム・ニッケル・コバルト・ア ルミニウム複合酸化物及びリチウム・マンガン複合酸化 物の2種混合物からなることを特徴とする。

【0009】との特徴を有することにより、リチウム・ ニッケル・コバルト・アルミニウム複合酸化物の高容 量、電子伝導性、サイクル特性向上及び大電流性能と、 をする正極活物質を含む正極合剤を正極集電体に保持し 30 リチウム・マンガン複合酸化物の低価格化及び熱安定性 とが発現し、容量、サイクル、価格、安全性の全ての面 でバランスのとれた正極を得ることができる。2種混合

物中のリチウム・マンガン複合酸化物の含有量が10重 量%未満であると大型の実電池においてリチウム・マン ガン複合酸化物の安全性が発揮され難くなるので、10 重量%以上が好ましい。

[00101 (実施例)

【実施例1】これは、本発明のビーカー試験での実施例 このうちリチウム・コバルト複合酸化物は、安定した放 40 である。共沈合成したβ-Ni_{1-x}Co_x(OH),とA 1 (OH) としiOHとの各粉末を所定割合で混合し た後、酸素分圧0.5気圧の雰囲気中720°Cで40時 間焼成し、ボールミルで粉砕することにより、平均粒径 5 μ m の L i N i 。 , , C o 。 , A l , , , O , を合成し

> 【0011】 Cれと平均粒径1 umの市販のLiMn, O.とを表1に示す割合で混合し、混合物91重量部に 結着剤であるポリフッ化ビニリデン6 重量部と導電剤で あるアセチレンブラック3重量部を混合してN-メチル

その合剤を厚さ20μmのアルミニウム箔の両面に徐布 し、乾燥し加圧することによって、正極板を作成した。 【0012】この正極板をLi金属からなる負極板とと もに、LiClO。を1mol/1含むエチレンカーボ ネート:ジエチルカーボネート=1:1(体積比)の混 合液からなる電解液に浸けた。

【0013】正極板に1mAで終止電圧4.1Vまでの 定電流充電を10時間行った後、1mA(放電率0.2 C)、5mA(同1C)又は10mA(同2C)の定電 液で終止電圧3.0 Vまで放電した。そのときの放電容 10 混合しベースト状に調製した合剤を塗布し、乾燥し加圧 量を表1に併記するとともに図1に打点した。図1で縦 軸が放電容量、荷軸が上記混合物中のLiNi。。。Co 。, A 1。, 。, O₂の重量比を示す。また、表 1 でN i 欄及 びMn欄は、各々LiNi。.s。Co。.1AI。。,O2及び LiMn,Oaの重量比を示す。

[0014]

【表1]

放電容量(終止電圧 S. 0 V)

'N i	Мп	C. 2C	10	2C
0	1	120	108	90
0. 1	0.9	125.5	115.5	91.24
0.2	0.8	131	117	92.48
0.3	0.7	136.5	122.5	93.72
0.4	0.6	142	128	94.96
0.5	0.5	147.5	133. 5	96.2
0.6	0.4	153	139	97.44
0.7	0.3	158.5	144.5	98.68
0.8	0.2	164	150	99.92
			·· ·· ·· ··	
0.9	0.1	174	155.5	101.16
1	0	175	161	102.4

【0015】表1及び図1に見られるように、LiNi a. ** C o a. , A l a. **, O, の含有量が増えるにつれて放電 容量が高くなった。特に放電率0.2C及び1Cにおい て傾向が顕著であった。

【0016】 [実施例2] これは、本発明の実電池での 実施例である。正極板は、実施例1で作成したものを伸 用した。負極板は、厚さ20μmの銅箔からなる集電体 の両面に、ホスト物質としてのグラファイト(里鉛)8 6部と結着剤としてのボリフッ化ビニリデン14部とを することによって製作された。セパレータは、ポリエチ レン微多孔膜である。また、雷解液は、LiPF。を1 mol/I含むエチレンカーボネート:ジエチルカーボ ネート= 1:1 (体積比) の混合液である。

【0017】電池要素の各々の寸法は、正極板が厚さ2 0.0 um 幅1.7.5 mmで セバレータが厚さ3.5 u m、幅200mmで、負極板が厚さ150 um、幅18 Ommとなっており、順に重ね合わせてポリエチレンの 巻芯を中心として、その周囲に長円渦状に巻いた後、電

20 池ケースに収納した。電池ケースは、直径66mm、高 さ220mmの円筒形で、材質はステンレス304であ る。電池ケースの蓋上部には電解液注入用の孔が、底部 には安全弁が各々設けられている。電池の側面から釘を 普通させたところ、正極活物質中にLiMn.O.が含ま れていない電池で安全弁が作動した。 $LiMn_iO_i$ が I0重量%以上含まれているものは作動しなかった。

【発明の効果】安価で安全で放電容量の高い電池を得る ことができる。

30 【図面の簡単な説明】

【図1】 LiNi。, ,, Co,, Al, ,, O,の含有量と 放電容量との関係を測定したグラフである。

(XI)

