

Disclosure

I and my spouse/partner have no relevant relationships with commercial interests to disclose.

Links and things

This project:

github.com/vincentmajor/ctsa_prediction arxiv.org/abs/1705.06262 zenodo.org/record/802965 (code)
(preprint)
(data and embeddings)

Me:

@vincentjmajor vincent.major@nyulangone.org github.com/vincentmajor linkedin.com/in/vincentmajor/

Overview

- Two open questions about word embeddings for practical tasks:
 - Which documents, with what properties, lead to broadly functional embeddings?
 - Are 'good' embeddings broadly useful for specific classification tasks?

- We cannot answer these questions conclusively but, we
 - present one use-case classification task where
 - custom word embeddings are feasible and
 - do not drastically improve performance over either
 - generic embeddings or
 - benchmark models.

Background — Bag-of-words

Conventional text classification models make a 'bag-of-words' assumption that reduces text (fundamentally, a sequence of words) with a one-hot encoding into a binary vector.

- For small datasets, the vocabulary is going to be missing a lot of words.
 - If a word is not observed, it simply cannot be used to predict.
- But we know that words have meanings and have synonyms.
 - How can we know which words are semantically similar?
 - Can we use other data to learn semantics?
 - Spoiler: yes.

Background — word2vec

A recent algorithm, word2vec^{1,2}, learns a vector representation of words using a contextual window.

Adrian Colver, https://blog.acolver.org/2016/04/21/the-amazing-power-of-word-vectors/

- In this vector space, semantically similar words are close together.
 - Arithmetic: king man + woman = queen
 - Capitals of countries, products of companies etc.
- Possible in any 'large' corpus

Udacity, https://www.youtube.com/watch?v=xMwx2A o5r4

News articles and Wikipedia have been used successfully

- 1. Mikolov T et al. Efficient estimation of word representations in vector space. ICLR, 2013.
- 2. Mikolov T et al. Distributed representations of words and phrases and their compositionality. NIPS, 2013.

Background — is all text equal?

- We can learn text semantics in any 'large' corpus.
 - News articles and Wikipedia have been used and shared online.
 - But, does the source and style of these corpora influence the utility of their embeddings?
 - Can news translate to biomedical articles?

- word2vec is becoming very popular in all domains but few biomedical studies have compared methods to construct useful embeddings.
 - We decided to compare word2vec embeddings in an external text classification task.
 - To do so, we use another tool fastText to train classifiers using pretrained word2vec embeddings

Background — fastText

- To train a model on word2vec embeddings, we can use fastText³.
 - Input is text, uses word embeddings to vectorize text, then averages words to form a vector text representation, which is then used in a linear classifier.
 - Output is a probability distribution over the predefined classes.

3. Joulin A et al. Bag of tricks for efficient text classification. arXiv preprint arXiv:1607.01759, 2016.

Methods

- Models:
 - Benchmark models
 - Word2vec
 - Download some off-the-shelf embeddings
 - Custom embeddings
 - (Aside: parameter optimization)

- Train and test in 5 fold cross-validation
 - With identical folds across models
 - Compare performance (mean AUCs for each class)

Use-case and labeled data

- Our use-case expands on previous work⁴ using manually labeled biomedical research abstracts.
 - Fundamental biosciences, through preclinical and human studies, and into population level studies.
 - N = 542 broken down into T0 (n = 281), T1/T2 (n = 109), and T3/T4 (n = 152).

4. Surkis A et al. Classifying publications from the clinical and translational science award program along the translational research spectrum: a machine learning approach. J Transl Med 2016; 14: 235.

Results — Benchmarks

- Labeled data only with all of the typical limitations
- Average [min, max] AUC over 5-folds:

Model	AUC T0 (n = 281)	AUC T1T2 (n = 109)	AUC T3T4 (n = 152)	
Naive Bayes	95.0%	81.6%	90.6%	
	[93.2, 96.8]	[72.4, 86.6]	[84.4, 93.9]	
Support Vector	94.8%	73.2%	87.3%	
Machines	[93.1, 96.9]	[67.8, 82.4]	[78.8, 91.7]	
Random Forest	94.8% [92.4, 96.7]	86.1% [79.1, 91.0]	88.5% [84.1, 90.9]	
Bayesian Logistic	96.1%	85.7%	92.6% [85.5, 96.5]	
Regression	[95.6, 96.9]	[81.0, 91.0]		

Definitely room for improvement in T1T2 and T3T4.

(SVM was consistently worse in the second group.)

Results — Off-the-shelf

- We found five sets of word2vec embeddings.
 - Three general text corpora utilizing news articles (2) or Wikipedia (1)
 - One combining Pubmed and PubMed Central.
 - Another adding Wikipedia to PubMed and PubMed Central.
- The exact details of the corpora, their preprocessing and construction of vectors are often glossed over.
 - But, they have all been validated in some internal task and released supporting a paper.

Results — Off-the-shelf

Average [min, max] AUC over 5-folds:

Model	AUC T0	AUC T1/T2	AUC T3/T\$
Bayesian Logistic Regression	96.1% [95.6, 96.9]	85.7% [81.0, 91.0]	92.6% [85.5, 96.5]

Name	Data source(s)	Creator	Unique tokens	Model	Optimization	Dimensions	AUC T0 (n = 281)	AUC T1T2 (n = 109)	AUC T3T4 (n = 152)
Freebase	Freebase	word2vec	1.4 M	skip- gram		1000	94.1% [93.4, 96.0]	81.2% [78.2, 86.3]	86.3% [83.2, 89.7]
Google News	Google news	word2vec	3.0 M	CBOW	negative sampling	300	94.7% [94.0 ,96.1]	85.9% [83.9, 87.2]	91.3% [87.4, 95.3]
PubMed	PubMed+PMC	BioNLP 5,14,15	4.1 M	skip- gram	hierarchical softmax	200	94.6% [93.7, 96.0]	86.0% [83.9, 87.2]	91.1% [88.2, 95.1]
PubMed+ Wiki	PubMed+PMC + Wikipedia	BioNLP 5,14,15	5.4 M	skip- gram	hierarchical softmax	200	94.6% [93.7, 96.2]	86.4% [83.5, 88.1]	91.1% [88.2, 94.2]
Wiki	English Wikipedia	fastText 14	2.5 M	fastText skip-	negative sampling	300	95.5% [94.1, 96.4]	88.1% [85.3, 91.1]	92.2% [90.0, 94.7]

^{1.} Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space. ICLR, 2013.

^{2.} Pyysalo S, Ginter F, Moen H, Salakoski T, Ananiadou S. Distributional Semantics Resources for Biomedical Text Processing. LBM 2013.

^{3.} Bojanowski P, Grave E, Joulin A and Mikolov T. Enriching Word Vectors with Subword Information. arXiv preprint arXiv:1607.04606, 2016.

Methods — Unlabeled Data

- To learn embeddings, you need a lot of data.
 - We used Pubmed articles instead:
 - download all of Medline/PubMed with complete title and abstracts,
 - select articles published Jan 2000 Dec 2016 (10.5M articles),
 - concatenate titles and abstracts, remove all punctuation (1.67B words, 822k unique words), and
 - use word2vec to learn several sets of embeddings (with different parameters).

Results — Comparison

Comparing the best benchmark, with the best off-the-shelf and the custom models.

	Name	Model	AUC T0 (n = 281)	AUC T1/T2 (n = 109)	AUC T3/T4 (n = 152)	Cost	Runtime
The best benchmark	BLR	Bayesian Logistic Regression	96.1% [95.6, 96.9]	85.7% [81.0, 91.0]	92.6% [85.5, 96.5]	cheap	< 5 minutes
The best off-the-shelf	Wiki	fastText skip-gram	95.5% [94.1, 96.4]	88.1% [85.3, 91.1]	92.2% [90.0, 94.7]	cheap	< 5 minutes
custom	CBOW	CBOW	94.2% [91.8, 95.9]	87.6% [82.4, 91.9]	90.2% [87.7, 93.7]	expensive	~ 2 hours (28 cores)
	Skip	skip-gram	95.5% [94.0, 96.3]	88.6% [84.7, 91.9]	92.8% [89.6, 95.4]	very expensive	~ 9 hours (28 cores)
	fastText	skip-gram	95.4% [93.9, 96.5]	88.1% [84.1, 92.0]	92.7% [89.9, 95.6]	very expensive	~ 10 hours (28 cores)

• Is the extra effort worth it? *Probably not*

Discussion

- The bag-of-words model are good.
 - Worst in the small classes.
 - Optimization could improve.
- Off-the-shelf embeddings are surprisingly good.
 - Even those learnt on news data.
- Custom embeddings are expensive.
 - o Parameter optimization even more so.

	Model	AUC T0 (n = 281)	AUC T1/T2 (n = 109)	AUC T3/T4 (n = 152)
benchmark	Bayesian Logistic Regression	96.1% [95.6, 96.9]	85.7% [81.0, 91.0]	92.6% [85.5, 96.5]
off-the-shelf	Wiki	95.5% [94.1, 96.4]	88.1% [85.3, 91.1]	92.2% [90.0, 94.7]
custom	Word2vec Skip-gram	95.5% [94.0, 96.3]	88.6% [84.7, 91.9]	92.8% [89.6, 95.4]

- But, the word2vec models aren't drastically better than the bag-of-words models.
 - Abstracts may be too terse for semantics to shine.
 - Interestingly, BLR > word2vec when the number of cases in the class is higher.

Discussion — Closing the gap

- Word embeddings bridge the gap for small datasets by collapsing similar words into similar vectors.
 - But by doing so, every word is minorly related to all others it introduces noise
 - For sufficiently large datasets, the benefits of vector representation diminish.
 - Example for a benchmark 8-class task:

Nadbor Drozd. nadbordrozd.github.io/blog/2016/05/20/text-classification-with-word2vec/

Error Analysis

- We have 8 different sets of word embeddings that:
 - **should** represent semantics of natural language, but
 - they are different.
- How do these hidden differences influence predictions for individual articles?
 - Within one experimental fold, rank all (n~108) articles and compare one articles rank across models.

Error Analysis (class t1t2)

blue = correct, red = wrong Some highlighted and labeled

- A1+A2: are all very variable.
 - Specific language
- B1+B2: consistently high.
 - Secondary use of data.
- D1: high only in Freebase.
 - Adoption of EHRs and meaningful use

(More detail on these instances in the paper)

Error Analysis (class t3t4)

blue = correct, red = wrong Some highlighted and labeled

- D2: mostly high except in Freebase.
 - Database of nurse surveys
- C1+C2+C3: quite consistent but wrong.
 - Small studies but describe specific populations, and conduct chart review.

(More detail on these instances in the paper)

Conclusion

- Text is discrete, but can be embedded into a continuous space.
 - Similar words should overlap in space and allow a model to learn meaning rather than individual words.
 - The embeddings are learnt unsupervised and may learn incorrect associations.
- In a 3-class prediction task using article titles and abstracts:
 - Bayesian logistic regression works well.
 - word2vec parameter optimization results are consistent with literature.
 - Off-the-shelf embeddings are comparable to custom embeddings and BLR.
 - Some article characteristics are consistently misclassified, others are more variable.
 - Improvement in classification performance over BLR is observed for the smallest class and the converse for the larger.
 - Abstracts may be too terse.
- word2vec has great potential when only a small amount of data is labeled
 - But it's improvements likely diminish with sample size increases.

Thank you!

Email me at: vincent.major@nyulangone.org @vincentjmajor