Calculation of Satellite Position from Ephemeris Data

Table A3-1. Representation of GPS Broadcast Ephemeris

rable A3-1. Representation of GF3 Broaucast epitemens		
	Time Parameters	
t_{0e}	Reference time, ephemeris parameters (s)	
t_{0c}	Reference time, clock parameters (s)	
a_0, a_1, a_2	Polynomial coefficients for clock correction (bias (s), drift (s/s), drift rate (aging) (s/s^2))	
	Keplerian Parameters	
\sqrt{A}	Square root of the semi-major axis (m ^{1/2})	
e	Eccentricity (dimensionless)	
i_0	Inclination angle at reference time (semicircles)	
Ω_0	Longitude of ascending node at reference time (semicircles)	
ω	Argument of perigee (semicircles)	
\overline{M}_{0}	Mean anomaly at reference time (semicircles)	
	Pertubation Parameters	
Δn	Mean motion difference from computed value (semicircles/s)	
$\stackrel{\Delta n}{\dot{\Omega}}$	Rate of change of right ascension (semicircles/s)	
\dot{i}	Rate of change of inclination (semicircles/s)	
C_{us}	Amplitude of the sine harmonic correction term to the argument of latitude (rad)	
C_{uc}	Amplitude of the cosine harmonic correction term to the argument of latitude (rad)	
C_{is}	Amplitude of the sine harmonic correction term to the angle of inclination (rad)	
C_{ic}	Amplitude of the cosine harmonic correction term to the angle of inclination (rad)	
C_{rs}	Amplitude of the sine harmonic correction term to the orbit radius (m)	
C_{rc}	Amplitude of the cosine harmonic correction term to the orbit radius (m)	

Source: Seeber (2003).

The individual satellite time, t_{SV} , is corrected to GPS system time, t, using:

$$t = t_{SV} - \Delta t_{SV}$$

in which

$$\Delta t_{SV} = a_0 + a_1(t - t_{0c}) + a_2(t - t_{0c})^2$$
(A3-1)

Differentiating Eq. A3-1 with respect to time yields satellite clock drift.

The satellite coordinates in the WGS-84 Cartesian system are computed for a given epoch, t. The time, t_k , elapsed since the reference epoch, t_{0e} , is $t_k = t - \Delta t_{0e}$.

Table A3-2. Calculating Satellite Coordinates from GPS Broadcast Ephemeris

Table A3-2. Calculating Satellite Coordinates from GPS Broadcast Ephemeris		
	Constants	
$\overline{GM = 3.986005 \cdot 10^{14} \mathrm{m}^3/\mathrm{s}^2}$	WGS-84 value for the product of gravitational constant <i>G</i> and the mass of the Earth <i>M</i>	
$\omega_e = 7.292115 \cdot 10^{-5} \text{ rad/s}$	WGS-84 value of the Earth's rotation rate	
$\pi = 3.1415926535898$ (exactly)		
	Keplerian Parameters to ECEF Coordinates	
$T = 2\pi/\sqrt{GM/A^3}$	Satellite orbital period	
$n_0 = \sqrt{\frac{GM}{A^3}}$	Computed mean motion	
$n = n_0 + \Delta n$	Corrected mean motion	
$\overline{M}_k = \overline{M}_0 + nt_k$	Mean anomaly	
$E_k = \overline{M}_k + e \sin E_k$	Kepler's equation of eccentric anomaly is solved by	
	iteration.	
	Because of the small eccentricity of GPS orbits ($e <$	
	0.001), two steps are usually sufficient:	
	$E_0 = \overline{M}, E_i = \overline{M} + e\sin E_{i-1}, i = 1, 2, 3,$	
$\cos \mathbf{v}_{k} = \frac{\cos E_{k} - e}{1 - e \cos E_{k}}$	True anomaly	
$\sin v_k = \frac{\sqrt{1 - e^2} \sin E_k}{1 - e \cos E_k}$	True anomaly	
$\Phi_k = v_k + \omega$	Argument of latitude	
$\delta u_k = C_{uc} \cos 2\Phi_k + C_{us} \sin 2\Phi_k$	Argument of latitude correction	
$\delta r_k = C_{rc} \cos 2\Phi_k + C_{rs} \sin 2\Phi_k$	Radius correction	
$\delta i_k = C_{ic} \cos 2\Phi_k + C_{is} \sin 2\Phi_k$	Inclination correction	
$u_k = \Phi_k + \delta u_k$	Corrected argument of latitude	
$r_k = A(1 - e\cos E_k) + \delta r_k$	Corrected radius	
$i_k + i_0 + i t_k + \delta i_k$	Corrected inclination	
$X'_k = r_k \cos u_k$	Position in the orbital plane	
$Y_k' = r_k \sin u_k$	Position in the orbital plane	
$\Omega_k = \Omega_0 + (\Omega - \omega_e)t_k - \omega_e t_{0e}$ $X_k = X_k' \cos \Omega_k - Y_k' \sin \Omega_k \cos i_k$	Corrected longitude of ascending node Earth-fixed geocentric satellite coordinate	
$X_k - X_k \cos \Omega_k - Y_k \sin \Omega_k \cos i_k$ $Y_k = X_k' \sin \Omega_k + Y_k' \cos \Omega_k \cos i_k$	Earth-fixed geocentric satellite coordinate	
$Z_k = Y_k' \sin i_k$ $Z_k = Y_k' \sin i_k$	Earth-fixed geocentric satellite coordinate	
- K SIII VR	Zaran inica geocentric satemic coordinate	

ECEF, Earth-centered, Earth-fixed.

Source: Seeber (2003).