Mathematical Thinking

Assignment Questions

Week 3

Total Marks: 20

1. Let $b, n \in \mathbb{N}$ be such that $n \mid b$ and $n \mid (b+1)$. Find the value of n.

Answer: 1

2. Let $k = \gcd(1092, 5005)$. Use the Euclidean algorithm to compute k, then express k as a linear combination of 1092 and 5005.

Answer: k = 91, (23)1092 + (-5)(5005) = 91

3. Suppose $\gcd(a+b,a-b)=k$, where $a,b,k\in\mathbb{N}$. Which of the following options is (are) correct?

a.
$$gcd(2a, 2b) = k$$

b.
$$gcd(2a, a - b) = k$$

c.
$$gcd(a, b) = k$$

d.
$$gcd(a+b,2b) = k$$

Answer: (b), (d)

4. Every odd integer is of the form _____

a. either
$$1 + (n-1)^2$$
 or $2 + (2n-1)^2, n \in \mathbb{N}$

b. either
$$6n-3$$
 or $6n-5, n \in \mathbb{N}$

c.
$$3n-2, n \in \mathbb{N}$$

d. either
$$4n-1$$
 or $4n-3, n \in \mathbb{N}$

Answer: (d)

- 5. Suppose gcd(a, b) = 1. If $c \mid a$ and $d \mid b$, then prove that gcd(c, d) = 1. (2 marks)
- 6. If $a \mid bc$ and gcd(a, b) = 1, then prove that $a \mid c$. (2 marks)
- 7. Using the induction method prove that for any $n \in \mathbb{N}$, $2 \mid n(n+1)$ and $3 \mid n(n+1)(n+2)$.
- 8. Consider two integers x and y such that 6x + 12y = 3. Prove or disprove that such integers exist or not. If it exists then write some values of x and y.

graded

1. Find the remainder when $2^{20} + 3^{30} + 4^{40} + 5^{50}$ is divided by 7. (2 marks)

Answer: 6

- 2. Let $a, b \in \mathbb{N}$. Which of the following options is (are) always true? (2 marks)
 - a. If $a^3 \mid b^3$, then $a \mid b$.
 - b. If $a^a \mid b^b$, then $a \mid b$.
 - c. If $a^b \mid b^a$, then $a \mid b$.
 - d. If $a^2 \mid 2b^2$, then $a \mid b$.

Answer: (a),(b),(d)

- 3. Let $m, n \in \mathbb{N}$ and gcd(m, n) = 1. Which of the following options is (are) always true?
 - a. $\exists x, y \in \mathbb{Z}$ such that mx ny = 1.
 - b. $\exists x, y \in \mathbb{Z}$ such that mx + ny = mn.
 - c. $gcd(xm, xn) = 1 \ \forall \ x \in \mathbb{Z}$.
 - d. $gcd(xm, yn) = 1 \ \forall \ x, y \in \mathbb{Z} \text{ and } gcd(x, y) = 1.$

Answer: (a), (b)

- 4. Which of the following equations have solutions $a, b \in \mathbb{Z}$? (2 marks)
 - a. 12a + 20b = 42
 - b. 152a + 102b = 3
 - c. 23a + 11b = 120
 - d. 21a + 91b = 50

Answer: (c)

- 5. Consider a number $a = a_1 \ a_2 \ a_3 \dots a_n$, where $a_1, a_2, a_3, \dots, a_n$ are the digits for integers a. If a is divisible by 8, then prove that the number which is formed by the last 3 digits $(a_{n-2} \ a_{n-1} \ a_n)$ of a is divisible by 8.
- 6. Using the division algorithm show that if $n \mid m$ and $n \mid k$, then $n^2 \mid mk$. (2 marks)
- 7. Prove that gcd(gcd(m, n), k) = gcd(m, gcd(n, k)). (4 marks)
- 8. Let r be the remainder obtained when m is divided by n. Let $g = \gcd(m, n)$ (4 marks) and $g' = \gcd(n, r)$. Prove that $g' \mid g$.