Fracture of Composites: A Soon-To-Be Old Guy's Perspective

James Ratcliffe

james.g.ratcliffe@nasa.gov

Contents

- NASA Missions
- 2 NASA Langley Research Center
- 3 Why Do We Worry About Fracture in Composites?
- 4 Examples of Failure of Composite Structure
- 5 How is Fracture Dealt With in Design and Certification?
- 6 Summary Thoughts

- NASA Missions
- 2 NASA Langley Research Center
- 3 Why Do We Worry About Fracture in Composites?
- 4 Examples of Failure of Composite Structure
- 5 How is Fracture Dealt With in Design and Certification?
- 6 Summary Thoughts

National Aeronautics and Space Administration

NASA Missions

Launch Vehicle Systems: Apollo - Constellation

Launch Vehicle System: Space Launch System

Space Exploration Missions (Crew and Cargo)

- NASA Missions
- 2 NASA Langley Research Center
- 3 Why Do We Worry About Fracture in Composites?
- 4 Examples of Failure of Composite Structure
- 5 How is Fracture Dealt With in Design and Certification?
- 6 Summary Thoughts

Langley Research Center (LaRC)

Langley Research Center (LaRC)

Research Directorate (RD) consists of 26 branches

Configuration
Aerodynamics Branch

Aeroelasticity Branch

Flight Dynamics Branch

Structure Experiments
Branch

Computational Aerosciences Branch

Durability, Damage Tolerance and Reliability Branch

Crew Systems and Aviation Operations Branch

Subsonic/Transonic Testing Branch

Flow Physics and Controls
Branch

Structural Mechanics and Concepts Branch

Electromagnetics and Sensors Branch Supersonic/Hypersonic Testing Branch

Advanced Sensing and Optical Measurement Branch

Nondestructive Evaluation Sciences Branch

Safety-Critical Avionics Systems Branch

Structures Testing Branch

Aerothermodynamics Branch

Aeroacoustics Branch

Structural Acoustics Branch

Technologies Application
Branch

Hypersonic Airbreathing Propulsion Branch Dynamic Systems and Controls Branch

Structural Dynamics Branch

Revolutionary Aviation Technologies Branch

Advanced materials and Processing Branch

Applied Technologies and Testing Branch

Materials Experiments
Branch

- NASA Missions
- 2 NASA Langley Research Center
- 3 Why Do We Worry About Fracture in Composites?
- 4 Examples of Failure of Composite Structure
- 5 How is Fracture Dealt With in Design and Certification?
- 6 Summary Thoughts

Why Do We Worry About Fracture in Composites?

Fiber-Reinforced Polymeric Composite Laminates

Integrally stiffened panels

Sandwich structure

Why Do We Worry About Fracture in Composites?

#1 Fracture occurs in many forms..

Why Do We Worry About Fracture in Composites?

#2 You can't always see it!

- NASA Missions
- 2 NASA Langley Research Center
- 3 Why Do We Worry About Fracture in Composites?
- 4 Examples of Failure of Composite Structure
- 5 How is Fracture Dealt With in Design and Certification?
- 6 Summary Thoughts

1. Rudder Failure

Pressure difference between inside and outside of honeycomb sandwich structures caused by alternating ambient pressure is a major cause of face sheet peeling loads

Initial disbonds between face sheets and core increase the peeling effect and can decrease the structural reliability significantly

FAA-sponsored CMH-17 debond/delamination task group to study the problem

Air-Transit flight 961 (Airbus A310-300):

- Rudder failure due to face sheet disbonding caused by pressure difference and initial disbond

Hilgers R: Substantiation of Damage Growth within Sandwich Structures, In: FAA Workshop for Composite Damage Tolerance & Maintenance, Tokyo, 2009

2. X33 Tank Failure

LOX tank (sandwich structure) failed due cryo pumping

Tank Failure Via Cryopumping

4 Requirements

> Void

≻Cold (really cold)

Liquid hydrogen (-423°F)

- **► Leak path** (to atmosphere)
 - 1. Close outs
 - 2. Matrix cracking of outer facesheet
 - 3. Matrix cracking of inner facesheet (Cryoingestion)
- **≻** Warm up

After tank drain

0 /4 0 /0 0 4 0

......

3. Columbia Orbiter Re-entry Incident

ORBITER WING LEADING EDGE (WLE) DAMAGE TOLERANCE

ASSESSMENT

On February 3, 2003, Space Shuttle Columbia crashed killing its seven member crew. Insulating foam was separated from the external tank, which caused damage that resulted in the loss of the Orbiter.

Potential damage scenarios include throughcrack, front-side coating loss, backside damage

4. AA Flight 587 Accident

The Accident

On November 12, 2001, American Airlines Flight 587 crashed shortly after takeoff, killing 260 people on board and 5 on the ground

The probable cause of this accident was the in-flight separation of the vertical stabilizer as a result of the loads beyond ultimate design

Recovery of Vertical Tail

Right Rear Lug

Lug Failure

- Complex 200 ply laminate
- * Numerous plies in form of tape and fabric
- * Numerous curvilinear ply drops

5. Gulf Helicopter AW139 Tail Boom Failure

The Accident

On 25th August, 2009 a Gulf Helicopter AW 139 experienced a tail boom failure during a pre-flight taxi manouver

"The most probable root cause of this accident was determined in a tail boom strength degradation caused by **hidden Nomex internal damages** of the RH panel corners areas induced by the previous tail strike event...." Aircraft Accident Investigation Final Report

AW139 with failed tail boom

Close-up view of tail rotor

- NASA Missions
- 2 NASA Langley Research Center
- 3 Why Do We Worry About Fracture in Composites?
- 4 Examples of Failure of Composite Structure
- 5 How is Fracture Dealt With in Design and Certification?
- 6 Summary Thoughts

Building Block Approach: Design and Certification

Basic Principles of Fracture in Composites

- A.A. Griffith: Application of classical elasticity concepts leads to infinite crack-tip stresses (due to infinitesimally small area of crack tip).
- Most things inherently contain cracks (e.g., buildings, roads, rocks, people..)
 - So, we should immediately fall apart according to classical elasticity...
- Griffith's alternative was to therefore use an energy-based principle:
 Consider a cracked body whose crack undergoes an extension; The resulting
 decrease in <u>strain energy</u>, U, must equal the increase in surface energy, S, due to
 the crack extension:

Modes of Fracture

• Irwin pointed out the three possible modes of fracture...

Mode I: Loading normal to crack plane

Mode III: Loading along crack plane and parallel to crack front

Mode II: Loading along crack plane and perpendicular to crack front

Characterizing Fracture Using Test Coupons

Computational Analysis – Virtual Crack Closure Technique

Irwin's contention: Energy required to extend a crack by a small amount is equivalent to the work done Needed to close the crack to its original length.

- Two and three-dimensional analysis
- Nonlinear analysis
- Arbitrarily shaped delamination front
- No initiation

$$G_{I} = \frac{1}{2\Lambda ab} \cdot Z'_{Li} \cdot \left(w'_{L\ell} - w'_{L\ell^*} \right)$$

$$G_{\rm II} = \frac{1}{2\Delta ab} \cdot X'_{\rm Li} \cdot \left(u'_{\rm L\ell} - u'_{\rm L\ell^*} \right)$$

$$G_{III} = \frac{1}{2\Delta ab} \cdot Y'_{Li} \cdot \left(v'_{L\ell} - v'_{L\ell^*} \right)$$

$$G_T = G_I + G_{II} + G_{III}$$

Computational Analysis - Cohesive Zone Method

- Two and three-dimensional analysis
- Nonlinear analysis
- Arbitrarily shaped delamination front
- Initiation possible

Bilinear Traction-Displacement Law

Computational Simulation of a Structural Element

Element section Test (building block)

Global Shell and Local 3D Model

Application of VCCT to finite element analysis to predict crack growth

Fracture Mechanics To Streamline the Building Block?

Motivation: Current building block approach requires extensive testing. Reduction of tests with analyses requires additional understanding of:

- Damage initiation
- Damage propagation
- Failure mode interaction

New Approach:

Failure criteria for damage initiation and propagation

Analysis tools to simulate failure process

- Validation tests
- Coupon tests

Goal: Alleviate test burden by

replacing some component and

sub-component level tests with

- NASA Missions
- 2 NASA Langley Research Center
- 3 Why Do We Worry About Fracture in Composites?
- 4 Examples of Failure of Composite Structure
- 5 How is Fracture Dealt With in Design and Certification?
- 6 Summary Thoughts

Summary Thoughts

Why Care About Fracture In Composite Laminates?

- Many different types
- Things aren't necessarily what they appear to be
- Initiation and growth difficult to detect
- Knowledge can affect design/certification philosophies

What Remains To Be Accomplished?

- Inspection Methodologies / Visualization Technologies
- Prediction of Fracture Initiation
- Robust/general computational methods