Càlcul Diferencial en Diverses Variables - 2011-2012 Primer Parcial Resolt

- (1) (a) Dibuixeu el conjunt $A = \{(x,y) \in \mathbb{R}^2 : x^4 \le y \le 4x^2\}$. És compacte?
 - (b) Demostreu que si K és un compacte de \mathbb{R}^n i $f:K\to\mathbb{R}$ és contínua, llavors f assoleix un valor màxim en K.

Solució: (a) En els punts de tall de les gràfiques de $y=x^4$ i $y=4x^2$ es compleix l'equació $x^4=4x^2$, que té per solucions $x=0, x=\pm 2$. A més es compleix $x^4\leq 4x^2$ si i només $|x|\leq 2$, i per tant la regió és:

Recordem que un conjunt $K \subset \mathbb{R}^n$ és compacte si i només si és tancat i acotat.

Per veure que A és tancat utilitzarem que si $f: \mathbb{R}^n \to \mathbb{R}^m$ és contínua i B és tancat en \mathbb{R}^m , llavors $A = f^{-1}(B)$ és tancat en \mathbb{R}^n .

Donat que les funcions polinòmiques són contínues en \mathbb{R}^2 , tenim que la funció $f: \mathbb{R}^2 \to \mathbb{R}^2$, definida per $f(x,y)=(x^4-y,y-4x^2)$, és contínua en \mathbb{R}^2 . Utilitzant que $A=f^{-1}((-\infty,0]\times(-\infty,0])$ i que $B=(-\infty,0]\times(-\infty,0]$ és tancat en \mathbb{R}^2 , A també es tancat a \mathbb{R}^2 .

Provem ara que A és acotat. Per fer-ho veurem que si $(x,y) \in A$, llavors existeix una constant C tal que $|x|, |y| \leq C$.

Si $(x,y) \in A$, llavors es compleix $x^4 \le 4x^2$ i per tant $x^2(x^2-4) \le 0$. Utilitzant que $x^2 \ge 0$ aquesta desigualtat és compirà si x=0 o bé si $x^2-4 \le 0$, és a dir quan $|x| \le 2$. Així doncs es compleix $0 \le x^4 \le y \le 4x^2 \le 16$, que prova que $|y| \le 16$. Triant C=16, queda provat que A és acotat.

Conclusió: • A és tancat i acotat, i per tant A és compacte.

(b) Com que K és compacte i $f: K \to \mathbb{R}$ és una funció contínua, f(K) és un subconjunt compacte de \mathbb{R} , i per tant tancat i acotat. En particular, f(K) està acotat superiorment, i en conseqüència existeix $s = \sup f(K)$. Volem veure que $s = \max f(K)$. Com que $s = \sup f(K)$, existeix una successió $\{x^{(j)}\}_j$ de punts de K tal que $s = \lim f(x^{(j)})$, i per tant $s \in f(K)$, per ser f(K) tancat. I això vol dir que $s = \max f(K)$.

(2) [3 punts] Per a quins valors de p > 0, la funció

$$f_p(x,y) = \begin{cases} \frac{x|y|^p}{(x^2 + |y|)^3}, & \text{si } (x,y) \neq (0,0), \\ 0, & \text{si } (x,y) = (0,0), \end{cases}$$

és contínua en \mathbb{R}^2 ?

Solució: Les funcions x i $|y|^p$ amb p > 0 són contínues en \mathbb{R}^2 . Donat que la suma i el producte de funcions contínues en un conjunt és també una funció contínua, les funcions $x|y|^p$ i $(x^2 + |y|)^3$ són contínues a \mathbb{R}^2 . Sabem també que el quocient de dues funcions contínues en un conjunt és una funció contínua en els punts on el denominador no s'anul·la, i per tant f_p és contínua en $\mathbb{R}^2 \setminus \{(0,0)\}$.

Estudiem la continuïtat de f_p en el punt (0,0).

Utilitzant que $|x| \le (x^2 + |y|)^{1/2}$ i que $|y| \le x^2 + |y|$ tenim que

$$0 \le |f_p(x,y) - f_p(0,0)| \le (x^2 + |y|)^{1/2 + p - 3} = (x^2 + |y|)^{p - 5/2}.$$

Si p > 5/2, llavors la funció $(x^2 + |y|)^{p-5/2}$ és contínua en \mathbb{R}^2 (és composició de dues funcions contínues, $t = x^2 + |y|$ amb $t^{p-5/2}$) i per tant $(x^2 + |y|)^{p-5/2} \to 0$ si $(x, y) \to (0, 0)$. Per la regla del sandwich es compleix $f_p(x, y) - f_p(0, 0) \to 0$ si $(x, y) \to (0, 0)$, i així doncs f_p és contínua en (0, 0).

Si $0 , triant <math>x = \alpha t$, $y = \beta t^2$ amb $(\alpha, \beta) \ne (0, 0)$, tenim

$$\lim_{t \to 0} f_p(\alpha t, \beta t^2) = \lim_{t \to 0} \frac{\alpha |\beta|^p t |t|^{2p}}{(\alpha^2 + |\beta|)^3 t^6} = \lim_{t \to 0} \frac{\alpha |\beta|^p}{(\alpha^2 + |\beta|)^3} \frac{|t|^{2p}}{t^5},$$

que no existeix si $\alpha, \beta \neq 0$.

Si f_p fos contínua en (0,0), llavors tots els límits direccionals tindríen que valer $f_p(0,0) = 0$. Com això no succeiex, la funció f_p no és contínua en (0,0).

<u>Conclusió:</u> • Si p > 5/2, llavors f_p és contínua en \mathbb{R}^2 .

• Si $0 , llavors <math>f_p$ és contínua en $\mathbb{R}^2 \setminus \{(0,0)\}$, però no en (0,0).

(3) [4 punts]

(a) Per funcions escalars, definiu els conceptes de derivada direccional i funció diferenciable en un punt.

Enuncieu i demostreu la relació entre els dos conceptes.

(b) Per a $m \in \mathbb{N}$ definim les funcions

$$f_m(x,y) = \begin{cases} \frac{x^7}{(x^2 + y^2)^m}, & \text{si } (x,y) \neq (0,0), \\ 0, & \text{si } (x,y) = (0,0). \end{cases}$$

- (i) Per a quins valors de m són diferenciables en \mathbb{R}^2 ?
- (ii) Quina és la direcció de màxim creixement de f_1 en (1,1)?

Solució:

(a) Conceptes de derivada direccional i de diferencial:

Siguin U un subconjunt obert de \mathbb{R}^n , $a \in U$ i $f: U \to \mathbb{R}$.

La derivada direccional de f en a segons la direcció del vector unitari $u \in \mathbb{R}^n$ és el límit

$$D_u f(a) := \lim_{t \to 0} \frac{f(a + tu) - f(a)}{t},$$

quan aquest límit existeix i és finit.

Diem que f és diferenciable en a quan existeix una aplicació lineal $L: \mathbb{R}^n \to \mathbb{R}$ tal que

(1)
$$\lim_{x \to a} \frac{f(x) - f(a) - L(x - a)}{\|x - a\|} = 0.$$

Aquesta aplicació lineal L que, si existeix és única, es diu diferencial de f en a i es denota per df_a o bé per Df(a).

Relació entre els dos conceptes:

Si f és diferenciable en a, llavors existeixen les derivades direccionals en a segons qualsevol direcció i $D_u f(a) = Df(a)(u)$, per a cada vector unitari $u \in \mathbb{R}^n$.

Demostració:

Si f és diferenciable en a, llavors es compleix (1) amb L = Df(a) i per tant el corresponent límit en a segons la recta x = a + tu també val 0, és a dir,

$$\lim_{t \to 0} \frac{f(a+tu) - f(a) - Df(a)(tu)}{|t|} = 0.$$

Però això és equivalent a

$$0 = \lim_{t \to 0} \left| \frac{f(a+tu) - f(a) - Df(a)(tu)}{|t|} \right| = \lim_{t \to 0} \left| \frac{f(a+tu) - f(a) - Df(a)(tu)}{t} \right|.$$

Com que $Df(a): \mathbb{R}^n \to \mathbb{R}$ és lineal obtenim que

$$\lim_{t \to 0} \left| \frac{f(a+tu) - f(a)}{t} - Df(a)(u) \right| = 0,$$

i això vol dir que

$$\lim_{t\to 0} \frac{f(a+tu)-f(a)}{t} = Df(a)(u),$$

que és el que voliem provar.

(b) <u>i.</u> Les funcions $g(x,y) = x^7$ i $h_m(x,y) = (x^2 + y^2)^m$ amb $m \in \mathbb{N}$, són funcions polinòmiques i per tant diferenciables en tot \mathbb{R}^2 . Donat que el h_m només s'anul·la en (0,0), la funció $f = g/h_m$ és diferenciable en $\mathbb{R}^2 \setminus \{(0,0)\}$. De fet, g i h_m són de classe C^1 en \mathbb{R}^2 i per tant el quocient és de classe C^1 en $\mathbb{R}^2 \setminus \{(0,0)\}$.

Per estudiar la diferenciabilitat de f en el punt (0,0), calculem primer les derivades parcials en aquest punt. Recordeu que si les derivades parcials no existeixen, llavors la funció no és diferenciable.

La funció $F_m(x)=f_m(x,0)=x^{7-2m}$ si $x\neq 0$, i $F_m(0)=0$, és derivable en a=0 només quan $7-2m\geq 1$ (en la resta de casos ni tan sols és contínua en a=0). Per tant, si m=1,2 tenim $\frac{\partial f_m}{\partial x}(0,0)=F_m'(0)=0$, i si m=3 llavors $\frac{\partial f_3}{\partial x}(0,0)=F_3'(0)=1$. Si $m\geq 4$ la derivada parcial en (0,0) no existeix i per tant f_m no és diferenciable en (0,0).

La funció $G_m(y) = f_m(0, y) = 0$, i en aquest cas $\frac{\partial f_m}{\partial y}(0, 0) = G'_m(0) = 0$ per a tot m.

Recordem ara que per a $m = 1, 2, 3, f_m$ és diferenciable en (0,0), si i només si, es compleix

(2)
$$\lim_{(x,y)\to(0,0)} \frac{f_m(x,y) - f_m(0,0) - \frac{\partial f_m}{\partial x}(0,0) x - \frac{\partial f_m}{\partial x}(0,0) y}{\sqrt{x^2 + y^2}} = 0.$$

Si m=1,2,el límit (2) és $\lim_{(x,y)\to(0,0)}\frac{x^7}{(x^2+y^2)^{m+1/2}},$ que val 0, ja que

$$0 \le \left| \frac{x^7}{(x^2 + y^2)^{m+1/2}} \right| \le (x^2 + y^2)^{3-m} \to 0, \quad \text{si} \quad (x, y) \to (0, 0).$$

Quan m=3, el límit (2) és $\lim_{(x,y)\to(0,0)} \frac{x^7-x(x^2+y^2)^3}{(x^2+y^2)^{7/2}}$. Donat que el límit de la funció anterior segons la recta y=x no existeix, el límit no pot ser 0 i per tant la funció f_3 no és diferenciable en (0,0).

Conclusió: • Si m = 1, 2, la funció f_m és diferenciable en \mathbb{R}^2 .

 \bullet Si $m \geq 3$, la funció f_m és diferenciable en $\mathbb{R}^2 \setminus \{(0,0)\}$, però no en (0,0).

<u>ii.</u> En l'apartat anterior hem vist que la funció $f_1(x,y) = \begin{cases} \frac{x^7}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$ és de

classe $C^1(\mathbb{R}^2 \setminus \{(0,0)\})$, i per tant diferenciable en (1,1). Així doncs, la direcció de màxim creixement de f_1 en el punt (1,1) es la del gradient de f_1 en aquest punt.

Les derivades parcials de f_1 en $\mathbb{R}^2 \setminus \{(0,0)\}$ són

$$\frac{\partial f_1(x,y)}{\partial x} = \frac{7x^6(x^2+y^2) - 2x^8}{(x^2+y^2)^2} = \frac{5x^8 + 7x^6y^2}{(x^2+y^2)^2}, \qquad \frac{\partial f_1(x,y)}{\partial y} = \frac{-2x^7y}{(x^2+y^2)^2},$$

i el gradient de f_1 en el punt (1,1) és $\nabla f_1(1,1) = (3,-1/2)$.

<u>Conclusió:</u> • La direcció de màxim creixement de f_1 en el punt (1,1) és (6,-1), o bé si es vol expressar amb un vector unitari $(6/\sqrt{37},-1/\sqrt{37})$.