Agrégation Interne

Matrices compagnons, sous-espaces et endomorphismes cycliques

Ce problème est l'occasion de revoir le cours sur les notions suivantes :

- l'anneau euclidien $\mathbb{K}[X]$;
- calcul matriciel;
- matrices compagnons;
- polynômes d'endomorphismes;
- polynôme minimal et caractéristique, valeurs propres, vecteurs propres;
- endomorphismes diagonalisables;
- théorème de Cayley-Hamilton;
- dualité;
- décomposition de Jordan;
- topologie de $\mathcal{L}(E)$;
- connexité.

Notations

- \mathbb{K} est un corps commutatif;
- $-\mathbb{K}[X]$ est l'algèbre des polynômes à coefficients dans \mathbb{K} ;
- pour tout entier naturel p, $\mathbb{K}_p[X]$ est le sous-espace vectoriel de $\mathbb{K}[X]$ formé des polynômes de degré au plus égal à p (avec la convention deg $(0) = -\infty$);
- pour tout polynôme $P \in \mathbb{K}[X]$, on note :

$$(P) = P \cdot \mathbb{K} [X] = \{ P \cdot Q \mid Q \in \mathbb{K} [X] \}$$

l'idéal de $\mathbb{K}[X]$ engendré par P;

- pour tout entier naturel $n \geq 1$, $\mathcal{M}_n(\mathbb{K})$ est l'algèbre des matrices carrées d'ordre n à coefficients dans \mathbb{K} ;
- E est un \mathbb{K} -espace vectoriel de dimension finie $n \geq 1$;
- $-\mathcal{L}(E)$ est l'algèbre des endomorphismes de E;
- $-E^* = \mathcal{L}(E, \mathbb{K})$ est l'espace dual de E;
- Id est l'endomorphisme identité;
- le polynôme caractéristique unitaire de $u \in \mathcal{L}(E)$ est défini par :

$$P_u\left(X\right) = \det\left(XId - u\right)$$

– on dit qu'un endomorphisme $u \in \mathcal{L}(E)$ est nilpotent d'ordre $p \ge 1$ si on a $u^p = 0$ et $u^{p-1} \ne 0$. On rappelle que le transposé d'un endomorphisme $v \in \mathcal{L}(E)$ est l'endomorphisme $v \in \mathcal{L}(E^*)$ défini par :

$$\forall \varphi \in E^*, \ ^t v(\varphi) = \varphi \circ v$$

et que l'orthogonal dans E d'une partie non vide Y de E^* est l'ensemble :

$$Y^{\circ} = \{ x \in E \mid \forall \varphi \in Y, \ \varphi(x) = 0 \}$$

Dans ce qui suit, u est un endomorphisme de E.

- I - Polynôme minimal

Si $P(X) = \sum_{k=0}^{p} a_k X^k \in \mathbb{K}[X]$, on rappelle que P(u) est l'endomorphisme de E défini par :

$$P\left(u\right) = \sum_{k=0}^{p} a_k u^k$$

où:

$$\left\{ \begin{array}{l} u^0 = Id \\ \forall k \in \mathbb{N}, \ u^{k+1} = u^k \circ u \end{array} \right.$$

On note:

$$\mathbb{K}\left[u\right] = \left\{P\left(u\right) \mid P \in \mathbb{K}\left[X\right]\right\}$$

la sous algèbre de $\mathcal{L}(E)$ engendrée par u.

Cette algèbre est commutative. Précisément on a :

$$\forall (P,Q) \in \mathbb{K} [X]^2, (PQ)(u) = P(u) \circ Q(u) = Q(u) \circ P(u) = (QP)(u)$$

1. Montrer que l'ensemble :

$$I_{u} = \{ P \in \mathbb{K} [X] \mid P(u) = 0 \}$$

est un idéal de $\mathbb{K}[X]$ non réduit au polynôme nul et qu'il existe un unique polynôme unitaire π_u non constant tel que $I_u = (\pi_u)$.

On dit que I_u est l'idéal annulateur de u et π_u est le polynôme minimal de u.

On définit de manière analogue l'idéal annulateur et le polynôme minimal d'une matrice $A \in \mathcal{M}_n(\mathbb{K})$.

2. Quelques exemples.

- (a) Quels sont les endomorphismes de E ayant un polynôme minimal de degré égal à 1?
- (b) Quels sont les valeurs possibles du polynôme minimal d'un projecteur?
- (c) Calculer le polynôme minimal d'un endomorphisme nilpotent d'ordre $p \ge 1$.
- (d) Calculer le polynôme minimal d'un endomorphisme diagonalisable.
- 3. Montrer que si F est un sous-espace vectoriel de E stable par u, le polynôme minimal de la restriction de u à F divise alors celui de u.
- 4. Montrer que les valeurs propres de u sont les racines de son polynôme minimal.
- 5. Montrer que u est inversible si, et seulement si, $\pi_u\left(0\right)\neq0$ et que dans ce cas, le polynôme minimal de u^{-1} est $\pi_{u^{-1}}\left(X\right)=\frac{1}{\pi_u\left(0\right)}X^p\pi_u\left(\frac{1}{X}\right)$.
- 6. En notant p le degré de π_u , montrer que $\mathbb{K}[u] = \mathbb{K}_{p-1}[u]$ et que c'est un espace vectoriel de dimension p isomorphe à l'espace quotient $\frac{\mathbb{K}[X]}{(\pi_u)}$.
- 7. Montrer que u et ${}^tu \in \mathcal{L}\left(E^*\right)$ ont même idéal annulateur et même polynôme minimal.

- II - Matrices compagnons

À tout polynôme unitaire $P(X) = X^p - \sum_{k=0}^{p-1} a_k X^k$ de degré $p \ge 1$, on associe sa **matrice compagnon** définie par :

$$C_{P} = \begin{pmatrix} 0 & \cdots & 0 & a_{0} \\ 1 & \ddots & \vdots & a_{1} \\ \vdots & \ddots & 0 & \vdots \\ 0 & \cdots & 1 & a_{p-1} \end{pmatrix} \in \mathcal{M}_{p}\left(\mathbb{K}\right)$$

Une telle matrice est dite de Frobénius.

Pour
$$p = 1$$
, $P(X) = X - a_0$ et $C_P = (a_0)$.

Pour cette partie, on se fixe un polynôme unitaire P de degré $p \ge 1$, $C = C_P$ est sa matrice compagnon et u est l'endomorphisme de \mathbb{K}^p de matrice C dans la base canonique $\mathcal{B} = (e_k)_{1 \le k \le p}$.

1.

(a) Montrer que pour tout polynôme $Q \in \mathbb{K}[X]$, on a :

$$(Q(u) = 0 \text{ dans } \mathcal{L}(E)) \Leftrightarrow (Q(u)(e_1) = 0 \text{ dans } E)$$

- (b) Montrer que P est le polynôme minimal de u.
- (c) Montrer que P est le polynôme caractéristique de u, puis que $\det(u) = (-1)^{p+1} a_0$.
- (d) Montrer que C est inversible si, et seulement si, $P(0) \neq 0$. Donner, dans ce cas, une expression de C^{-1} .
- (e) Quel est le rang de C?
- 2. Soit $\lambda \in \mathbb{K}$ une valeur propre de u (s'il en existe). Montrer que l'espace propre associé est de dimension 1 et donner un générateur de cet espace propre en fonction des coefficients de P.
- 3. Montrer que C est diagonalisable si, et seulement si, le polynôme P a p racines distinctes.

Dans ce cas, en notant $P(X) = \prod_{k=1}^{p} (X - \lambda_k)$ où les scalaires λ_k sont deux à deux distincts, en diagonalisant d'abord la matrice tC , montrer que $W^{-1}CW = D$, où :

$$D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \ddots & 0 \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_p \end{pmatrix} \text{ et } W^{-1} = \begin{pmatrix} 1 & \lambda_1 & \cdots & \lambda_1^{p-1} \\ 1 & \lambda_2 & \cdots & \lambda_2^{p-1} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & \lambda_p & \cdots & \lambda_p^{p-1} \end{pmatrix}$$

Étudier le cas de $P(X) = X^p - 1$ sur $\mathbb{K} = \mathbb{C}$.

4. On désigne ici par E l'espace vectoriel quotient $\frac{\mathbb{K}[X]}{(P)}$, par u l'endomorphisme de E défini par :

$$\forall \overline{Q} \in E, \ u\left(\overline{Q}\right) = \overline{XQ}$$

et par $(P_k)_{1 \le k \le p}$ la famille de polynômes définie par :

$$P_k(X) = X^{p-k} - a_{p-1}X^{p-k-1} - \dots - a_{k+1}X - a_k \ (1 \le k \le p-1)$$
$$P_p(X) = 1$$

(base de Horner).

- (a) Vérifier que $\mathcal{B}_0 = \left(\overline{X^{k-1}}\right)_{1 \leq k \leq p}$ et $\mathcal{B}_1 = \left(\overline{P_k}\right)_{1 \leq k \leq p}$ sont deux bases de E. Préciser la matrice de passage P de \mathcal{B}_0 à \mathcal{B}_1 .
- (b) Vérifier que C est la matrice de u dans la base \mathcal{B}_0 et que sa transposée tC est la matrice de u dans la base \mathcal{B}_1 . Il en résulte que C est semblable à sa transposée. Précisément, on vérifiera qu'il existe une matrice symétrique inversible U telle que ${}^tC = U^{-1}CU$.
- (c) On suppose que P a p racines distinctes $\lambda_1, \dots, \lambda_p$ dans \mathbb{K} . Montrer que u est diagonalisable et qu'une base de vecteurs propres est $(\overline{L_k})_{1 \le k \le p}$, où :

$$L_k(X) = \prod_{\substack{j=1\\j\neq k}}^{p} (X - \lambda_j)$$

(base de Lagrange).

- III - Sous-espaces cycliques

Pour tout vecteur $x \in E$, on note :

$$I_x = \{ P \in \mathbb{K} [X] \mid P(u)(x) = 0 \}$$

et:

$$E_x = \operatorname{Vect}\left\{u^k\left(x\right) \mid k \in \mathbb{N}\right\}$$

est le sous-espace vectoriel engendré par la famille $\left(u^{k}\left(x\right)\right)_{k\in\mathbb{N}}.$

On dit que E_x est le sous espace cyclique (ou u-monogène) de E engendré par x.

On dit qu'un sous-espace cyclique E_x , où $x \in E$, est maximal s'il n'existe pas de sous-espace cyclique de dimension strictement supérieure.

- 1. Préciser I_x et E_x , pour x = 0.
- 2. Soit $x \in E \setminus \{0\}$.
 - (a) Montrer que I_x est un idéal de $\mathbb{K}[X]$ non réduit au polynôme nul et qu'il existe un unique polynôme unitaire non constant $\pi_x \in \mathbb{K}_n[X]$ tel que $I_x = (\pi_x)$. Justifier le fait que π_x divise π_u . On dit que π_x est le **polynôme minimal de** x **relativement à** u. On notera p_x le degré de π_x .
 - (b) Montrer que l'ensemble $\{\pi_x \mid x \in E \setminus \{0\}\}$ est fini et notant $\{\pi_{x_1}, \dots, \pi_{x_m}\}$ cet ensemble, on a :

$$(\pi_u) = \bigcap_{x \in E \setminus \{0\}} (\pi_x) = \bigcap_{k=1}^m (\pi_{x_k})$$

c'est-à-dire que :

$$\pi_u = \operatorname{ppcm} \{ \pi_x \mid x \in E \setminus \{0\} \} = \operatorname{ppcm} (\pi_{x_1}, \dots, \pi_{x_m})$$

- (c) En désignant par $(e_k)_{1 \le k \le n}$ une base de E, montrer que $\pi_u = \operatorname{ppcm}(\pi_{e_1}, \dots, \pi_{e_n})$.
- (d) Montrer que:

$$E_x = \{ P(u)(x) \mid P \in \mathbb{K}[X] \} = \{ P(u)(x) \mid P \in \mathbb{K}_{p_x-1}[X] \}$$

que cet espace est de dimension p_x et que $\mathcal{B}_x = (u^k(x))_{0 \le k \le p_x - 1}$ en est une base.

- (e) Montrer que E_x est isomorphe à l'espace quotient $\frac{\mathbb{K}[X]}{(\pi_x)}$.
- (f) Montrer que E_x est le plus petit sous-espace vectoriel de E contenant x et stable par u, puis en désignant par u_x la restriction de u à E_x , montrer que pour tout polynôme $P \in \mathbb{K}[X]$, on a :

$$(P(u_x) = 0 \text{ dans } \mathcal{L}(E_x)) \Leftrightarrow (P(u)(x) = 0 \text{ dans } E)$$

- (g) Vérifier que la matrice de u_x dans la base \mathcal{B}_x de E_x est la matrice compagnon du polynôme π_x . Il en résulte que π_x est le polynôme minimal et le polynôme caractéristique de u_x .
- (h) Déterminer l'ensemble des vecteurs y de E tels que $E_y=E_x$.
- 3. En utilisant les sous espaces cyclique, montrer que $P_u(u) = 0$, où P_u désigne le polynôme caractéristique de u (théorème de Cayley-Hamilton).
- 4. Soient $r \geq 2$ et x_1, \dots, x_r dans $E \setminus \{0\}$ tels que les polynômes $\pi_{x_1}, \dots, \pi_{x_r}$ soient deux à deux premiers entre eux. Montrer que :

(a)
$$x = \sum_{k=1}^{r} x_k \neq 0$$
.

(b)
$$\pi_x = \operatorname{ppcm}(\pi_{x_1}, \dots, \pi_{x_r}) = \prod_{k=1}^r \pi_{x_k}.$$

(c)
$$E_x = \bigoplus_{k=1}^r E_{x_k}$$
.

- 5. Soit $x \in E \setminus \{0\}$. On suppose qu'il existe un entier $r \geq 2$ et des polynômes unitaires non constants π_1, \cdots, π_r deux à deux premiers entre eux tels que $\pi_x = \prod_{k=1}^r \pi_k$. Montrer qu'il existe des vecteurs x_1, \cdots, x_r dans $E \setminus \{0\}$ tels que $\pi_{x_k} = \pi_k$ pour tout k compris entre 1 et r et $E_x = \bigoplus_{k=1}^r E_{x_k}$.
- 6. Réduction des matrices compagnons.
 - (a) Soient $P = X^n \sum_{k=0}^{n-1} a_k X^k \in \mathbb{K}[X]$ un polynôme unitaire de degré $n \geq 1$ et C_P sa matrice compagnon. En écrivant la décomposition de P en facteurs irréductibles, $P = \prod_{k=1}^r P_k^{\alpha_k}$, où les P_k sont irréductibles deux à deux distincts dans $\mathbb{K}[X]$ et les α_k des entiers non nuls, montrer que la matrice C_P est semblable à la matrice diagonale par blocs :

$$\begin{pmatrix} C_{P_1^{\alpha_1}} & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & C_{P_r^{\alpha_r}} \end{pmatrix}$$

(b) Soit $\lambda \in \mathbb{K}$ et $\alpha \in \mathbb{N}^*$. Montrer que la matrice compagnon $C_{(X-\lambda)^{\alpha}}$ est semblable dans $\mathcal{M}_{\alpha}(\mathbb{K})$ à la matrice de Jordan :

$$J_{\lambda,\alpha} = \begin{pmatrix} \lambda & 0 & \cdots & 0 \\ 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 1 & \lambda \end{pmatrix}$$

(c) On suppose $P \in \mathbb{K}[X]$ est un polynôme unitaire de degré $n \geq 1$ scindé sur \mathbb{K} , soit $P(X) = \prod_{k=1}^{r} (X - \lambda_k)^{\alpha_k}$ où les λ_k sont des scalaires deux à deux distincts et les α_k des entiers naturels non nuls.

Montrer que la matrice compagnon C_P est semblable dans $\mathcal{M}_n(\mathbb{K})$ à la matrice de Jordan par blocs :

$$J = \begin{pmatrix} J_{\lambda_1,\alpha_1} & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & J_{\lambda_r,\alpha_r} \end{pmatrix}$$

7.

- (a) Soient $r \geq 2$ et x_1, \dots, x_r dans $E \setminus \{0\}$. Montrer qu'il existe $x \in E \setminus \{0\}$ tel que $\pi_x = \operatorname{ppcm}(\pi_{x_1}, \dots, \pi_{x_r})$.
- (b) En déduire qu'il existe un vecteur $x \in E$ tel que $\pi_x = \pi_u$.
- (c) Montrer qu'un sous-espace cyclique E_x est maximal si, et seulement si, $\pi_x = \pi_u$.
- 8. On propose ici une autre preuve de l'existence de $x \in E$ tel que $\pi_x = \pi_u$. Comme le polynôme minimal de u est non constant, il peut s'écrire sous la forme $\pi_u = QP^m$, où P est un polynôme irréductible dans $\mathbb{K}[X]$, m un entier naturel non nul et Q un polynôme unitaire premier avec P.
 - (a) Montrer que $\ker (P^m(u)) \neq \{0\}$ et qu'il existe un vecteur $x \in E \setminus \{0\}$ tel que $\pi_x = P^m$.
 - (b) En déduire qu'il existe un vecteur $x \in E$ tel que $\pi_x = \pi_u$.
- 9. On suppose ici que le corps \mathbb{K} est infini et on se propose de montrer d'une autre manière qu'il existe un vecteur $x \in E$ tel que $\pi_x = \pi_u$.
 - (a) Montrer que si $(F_k)_{1 \le k \le r}$ sont des sous-espaces vectoriels de E tels que $E = \bigcup_{k=1}^r F_k$, il existe alors un indice k tel que $E = F_k$ (c'est ici qu'intervient le fait que \mathbb{K} est infini).
 - (b) En déduire qu'il existe un vecteur $x \in E$ tel que $\pi_x = \pi_u$.
- 10. Soient \mathbb{L} un corps commutatif qui contient \mathbb{K} (on dit que \mathbb{L} est une extension de \mathbb{K}) et $A \in \mathcal{M}_n(\mathbb{K})$. On notant $\pi_{A,\mathbb{K}}$ [resp. $\pi_{A,\mathbb{L}}$] le polynôme minimal de A sur \mathbb{K} [resp. sur \mathbb{L}], montrer que $\pi_{A,\mathbb{K}} = \pi_{A,\mathbb{L}}$.

- IV - Endomorphismes cycliques

On dit qu'un endomorphisme $u \in \mathcal{L}(E)$ est cyclique s'il existe un vecteur $x \in E \setminus \{0\}$ tel que $E = E_x$. On note $\mathcal{C}(E)$ le sous-ensemble de $\mathcal{L}(E)$ formé des endomorphismes cycliques.

- 1. Montrer que, pour $u \in \mathcal{L}(E)$, les assertions suivantes sont équivalentes :
 - (a) u est cyclique;
 - (b) il existe un vecteur $x \in E \setminus \{0\}$ tel que la famille $\mathcal{B}_x = (u^k(x))_{0 \le k \le n-1}$ soit une base de E;
 - (c) il existe un vecteur $x \in E \setminus \{0\}$ tel que deg $(\pi_x) = n$;
 - (d) il existe une base de E dans laquelle la matrice de u soit une matrice de Frobenius;
 - (e) le polynôme minimal de u est égal à son polynôme caractéristique;
- 2. Montrer qu'un endomorphisme diagonalisable est cyclique si, et seulement si, il a n valeurs propres distinctes.
- 3. Montrer qu'un endomorphisme nilpotent est cyclique si, et seulement si, son indice de nilpotence vaut n.

- 4. On suppose que $\mathbb{K} = \mathbb{C}$ et on se fixe une base \mathcal{B} de E.

 On se fixe une norme $x \mapsto \|x\|$ sur E et cette norme induit la norme $v \mapsto \|v\| = \sup_{\|x\|=1} \|v(x)\|$ sur $\mathcal{L}(E)$.
 - (a) Montrer que :

$$C(E) = \bigcup_{x \in E \setminus \{0\}} \left\{ u \in \mathcal{L}(E) \mid \det_{\mathcal{B}} \left(x, u(x), \dots, u^{n-1}(x) \right) \neq 0 \right\}$$

- (b) Montrer que l'ensemble $\mathcal{C}(E)$ des endomorphismes cycliques de E est un ouvert dense de $\mathcal{L}(E)$.
- (c) Montrer que $\mathcal{C}(E)$ est connexe par arcs dans $\mathcal{L}(E)$.
- 5. On suppose que $\mathbb{K} = \mathbb{C}$. Montrer que pour $n \geq 2$, l'application $\pi : v \in \mathcal{L}(E) \mapsto \pi_v \in \mathbb{C}[X]$ n'est pas continue.

- V - Invariants de similitude

- 1. Soit E_x un sous-espace cyclique maximal de dimension p. On se propose de montrer que E_x admet un supplémentaire dans E stable par u.
 - (a) Montrer qu'il existe une forme linéaire $\ell_x \in E^*$ telle que :

$$\ell_x\left(u^k\left(x\right)\right) = \begin{cases} 0 \text{ si } 0 \le k \le p-2\\ 1 \text{ si } k = p-1 \end{cases}$$

(pour p = 1, on a seulement la condition $\ell_x(x) = 1$).

- (b) Montrer que le sous-espace vectoriel F_x de E^* engendré par la famille $({}^tu^k(\ell_x))_{0 \le k \le p-1}$ est de dimension p.
- (c) Montrer que F_x est l'espace cyclique $E_{\ell_x}^*$ engendré par ℓ_x relativement à tu dans E^* et qu'il est maximal
- (d) Montrer que l'orthogonal F_x° dans E de F_x est stable par u et que $E = E_x \oplus F_x^{\circ}$.

2.

- (a) Montrer qu'il existe un entier r compris entre 1 et $n = \dim(E)$ et des sous espaces cycliques E_{x_1}, \dots, E_{x_r} tels que $E = \bigoplus_{k=1}^r E_{x_k}$, chaque sous espace E_{x_k} étant cyclique maximal dans l'espace $\bigoplus_{k=1}^r E_{x_k}$.
- (b) Montrer que, pour tout entier k compris entre 1 et r-1 (dans le cas où $r \ge 2$), le polynôme π_{x_k} est multiple de $\pi_{x_{k+1}}$, puis que π_{x_k} est le polynôme minimal de la restriction de u à $\bigoplus_{j=k}^r E_{x_j}$ (en particulier, on a $\pi_{x_1} = \pi_u$).
- (c) On a donc montré qu'il existe un entier r compris entre 1 et n et des sous espaces cycliques E_{x_1}, \dots, E_{x_r} dans E tels que $E = \bigoplus_{k=1}^r E_{x_k}, \pi_{x_1} = \pi_u$, et pour tout k compris entre 1 et r-1 (dans le cas où $r \geq 2$), le polynôme π_{x_k} est multiple de $\pi_{x_{k+1}}$.

Montrer que l'entier r et la suite $(\pi_k)_{1 \le k \le r} = (\pi_{x_k})_{1 \le k \le r}$ sont uniquement déterminés par les conditions précédentes.

On dit que cette suite $(\pi_k)_{1 \le k \le r}$ est la suite des invariants de similitude de u.

(d) Montrer qu'il existe une base de E dans laquelle la matrice de u est diagonale par blocs de la forme :

$$F = \begin{pmatrix} F_1 & 0 & \cdots & 0 \\ 0 & F_2 & \ddots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & F_r \end{pmatrix}$$

où, pour tout k compris entre 1 et r, F_k est la matrice compagnon de π_k . Vérifier que le polynôme caractéristique de u est $P_u = \prod_{k=1}^r \pi_k$ (on rappelle que π_1 est le polynôme minimal de u).

Cette diagonalisation par blocs, où $\pi_1 = \pi_u$ et π_{k+1} divise π_k pour tout k compris entre 1 et r-1, le polynôme π_k étant le polynôme minimal de sa matrice compagnon F_k , est la **réduction de Frobénius** de l'endomorphisme u.

- 3. Quelques exemples. Préciser les invariants de similitude de u dans les cas suivants.
 - (a) u est une homothétie, c'est-à-dire que $u = \lambda Id$, où $\lambda \in \mathbb{K}$.
 - (b) Le polynôme caractéristique de u est scindé à racines simples.
 - (c) n = 3, $P_u(X) = (X \lambda_1)^2 (X \lambda_2)$ avec $\lambda_1 \neq \lambda_2$ et u est diagonalisable.
 - (d) n = 3, $P_u(X) = (X \lambda_1)^2 (X \lambda_2)$ avec $\lambda_1 \neq \lambda_2$ et u est non diagonalisable.
 - (e) n = 3, $P_u(X) = (X \lambda)^3$ avec u non diagonalisable.
- 4. Soient u, u' dans $\mathcal{L}(E)$. Montrer que ces endomorphismes ont la même suite d'invariants de similitude si, et seulement si, il existe $v \in GL(E)$ tel que $u' = v \circ u \circ v^{-1}$ (on dit alors que u et u' sont semblables). En définissant les invariants de similitude d'une matrice comme les invariants de similitude de l'endomorphisme qu'elle définit dans la base canonique de \mathbb{K}^n , on déduit que deux matrices sont semblables si, et seulement si, elles ont la même suite d'invariants de similitude.
- 5. On suppose que π_u est scindé sur \mathbb{K} .

Montrer qu'il existe une base de E dans laquelle la matrice de u est une matrice de Jordan par blocs du type :

$$J = \begin{pmatrix} J_{\lambda_1,\alpha_1} & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & J_{\lambda_m,\alpha_m} \end{pmatrix}$$

où les λ_k sont les valeurs propres, non nécessairement distinctes, de u.

6.

- (a) Montrer que toute matrice $A \in \mathcal{M}_n(\mathbb{K})$ est semblable à sa transposée avec une matrice de passage symétrique, c'est-à-dire qu'il existe une matrice inversible et symétrique U telle que ${}^tA = U^{-1}AU$.
- (b) En déduire que toute matrice peut s'écrire comme produit de deux matrices symétriques.
- 7. Soient \mathbb{L} une extension de \mathbb{K} et A, B dans $\mathcal{M}_n(\mathbb{K})$. Montrer que si A, B sont semblables dans $\mathcal{M}_n(\mathbb{L})$, elles sont alors semblables dans $\mathcal{M}_n(\mathbb{K})$.
- 8. Le **commutant** de $u \in \mathcal{L}(E)$ est le sous ensemble de $\mathcal{L}(E)$ défini par :

$$\mathcal{C}\left(u\right)=\left\{ v\in\mathcal{L}\left(E\right)\mid u\circ v=v\circ u\right\}$$

- (a) Montrer que $\mathcal{C}(u)$ est un sous-espace vectoriel de $\mathcal{L}(E)$ qui contient $\mathbb{K}[u]$.
- (b) Montrer que si u est cyclique on a alors, $\mathcal{C}(u) = \mathbb{K}[u]$.
- (c) Montrer que $n \leq \dim (\mathcal{C}(u)) \leq n^2$.
- (d) Montrer que u est cyclique si, et seulement si, $\mathcal{C}(u) = \mathbb{K}[u]$.