Data Science Seminar: Time Series Forecasting with Tree-Based Ensemble Methods

February 25, 2022

About the Presenter

- Brett Efaw
- Data Scientist at Idaho Power Company
- <u>BEfaw@idahopower.com</u> or <u>brettefaw@gmail.com</u>
- Work with various business groups to implement Data Science solutions
 - Decision support
 - · Predictive modeling
 - Forecasting
 - BI and DS reporting/analysis applications

Agenda

- Traditional vs. (non-DL) ML Forecasting Methods
- Simulated daily data set in Python
- Trend + Tree-based ensemble
 - Feature engineering from date components
 - De-trend (fit past and forecast future trend)
 - Train tree-based model on de-trended target ~ date components
 - Combine trend forecast + tree-based prediction
- Compare to traditional time series method (ARIMA)
- Discuss pros and cons of this approach

Traditional Forecasting Methods

- Predict future values as function of past values
 - Classic statistical methods: linear regression (or similar) to extrapolate (trend) into the future
 - Classic time series methods: auto-regressive = regress data onto itself (from past) into the future

SARIMAX (1, 0, 2) (2, 0, 1, 5)
$$y_{t} = c + \frac{\varphi_{t}}{\varphi_{t}} y_{t-1} + \frac{\theta_{t}}{\theta_{t}} \varepsilon_{t-1} + \frac{\theta_{2}}{\theta_{2}} \varepsilon_{t-2} + \frac{\varphi_{t}}{\theta_{1}} (y_{t-5} + \varphi_{1} y_{t-6}) + \frac{\varphi_{2}}{\theta_{2}} (y_{t-10} + \varphi_{1} y_{t-11}) + \frac{\varphi_{1}}{\theta_{1}} (\varepsilon_{t-5} + \theta_{1} \varepsilon_{t-6} + \theta_{2} \varepsilon_{t-7}) + \varepsilon_{t}$$

Forecasting with Machine Learning

- Predict future values as function of (calendar) features
 - Extract features from Date/Time:
 - Day of week, month, quarter, year
 - Month of year
 - Quarter of year
 - Hour of day, week, month, year
 - Minute of hour, day
 - AM/PM
 - Holiday/special event
 - Business-specific process/change
 - Some features are cyclic and can be transformed to a trigonometric scale
 - Take advantage of knowing these features for future dates/times

Date	DOW	DOM	DOY	MOY	QTR	
2/3/2022	5	3	332	2	1	
2/4/2022	6	4	331	2	1	
2/5/2022	7	5	330	2	1	
2/6/2022	1	6	329	2	1	
2/7/2022	2	7	328	2	1	
2/8/2022	3	8	327	2	1	
2/9/2022	4	9	326	2	1	
2/10/2022	5	10	325	2	1	
2/11/2022	6	11	324	2	1	
2/12/2022	7	12	323	2	1	
2/13/2022	1	13	322	2	1	
2/14/2022	2	14	321	2	1	
2/15/2022	3	15	320	2	1	
2/16/2022	4	16	319	2	1	
2/17/2022	5	17	318	2	1	
2/18/2022	6	18	317	2	1	
2/19/2022	7	19	316	2	1	
2/20/2022	1	20	315	2	1	
2/21/2022	2	21	314	2	1	
2/22/2022	3	22	313	2	1	

Simulated Data Set

- Create a Pandas data frame with 3 years of daily data using date_range()
- Fill this data frame with columns for:
 - noise: random noise from N(0,0.1)
 - trend: linear trend from -1 to 1
 - event: -0.5 (dip), 0.5 (spike) or 0.0
 - dw: day of week
 - · dm: day of month
 - · dy: day of year
 - dn: day (row) index
- Trig Conversion for Date Components:
 - sdw: sine representation for day of week
 - sdm: sine representation for day of month
 - sdy: sine representation for day of year
- Target Variable:
 - trend + sine components + event + noise

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

df = pd.DataFrame()

df["dt"] = pd.date_range("2019-01-01", "2021-12-31", freq = "D")

df["noise"] = np.random.normal(0, 0.1, len(df))

df["trend"] = np.linspace(-1.0, 1.0, len(df))

df["event"] = np.random.choice([-0.5, 0.0, 0.5], size = len(df), p = [0.01, 0.98, 0.01])

df["dw"] = df["dt"].dt.dayofweek+1

df["dm"] = df["dt"].dt.dayofweek+1

df["dy"] = df["dt"].dt.dayofyear

df["dn"] = df.index + 1

df["sdw"] = np.sin(2.0 * np.pi * (df["dw"]-1)/7)

df["sdw"] = np.sin(2.0 * np.pi * (df["dm"]-1)/31)

df["sdy"] = np.sin(2.0 * np.pi * (df["dw"]-1)/366)

df["y"] = df["trend"] + (0.333*df["sdw"]) + (0.333*df["sdw"]) + df["event"] + df["noise"]
```

Trend, Event and Noise

Cyclic Features (Trigonometric)

Cyclic Features (Date Components)

Target Variable

Long-term trend Multiple seasonal periods

Time Series Splitting

- Primarily used for evaluating a model's forecast accuracy
- Split data into training/testing partitions while preserving order
- Number of splits (like number of folds in crossvalidation)
 - For example: 10 splits
- Test size = desired forecast horizon
 - For example: 30 dates in future
- Maximum train size (default is all past data before test partition)
- See TimeSeriesSplit from sklearn.model_selection for more details <u>sklearn.model_selection.TimeSeriesSplit — scikit-learn 1.0.2 documentation</u>

Tree-Based Ensemble Methods

- Tree-based ensembles are an extension of Decision Trees
- Very flexible and fast algos used for both classification and regression
- Can handle numeric or categorical inputs
- No feature scaling/normalization required
- Random Forests
 - <u>sklearn.ensemble.RandomForestRegressor</u> <u>scikit-learn 1.0.2 documentation</u>
- Gradient Boosting
 - <u>sklearn.ensemble.GradientBoostingRegressor</u> <u>scikit-learn</u> 1.0.2 documentation

Tree-Based Ensembles Can't Extrapolate

- One fundamental drawback for tree-based models:
 - Can't predict outside the range of observed values
 - This can be a problem if the target variable extrapolates outside the range of past values

Trend + Tree-Based Ensemble

- y: Target variable
- dn: day number (row sequence)
- Trend Model Formula:
 - y = f(dn)
- ydetrend: Target variable detrended
- dw: day of week (1-7)
- dm: day of month (1-31)
- dy: day of year (1-366)
- Tree-Based Model Formula:
 - ydetrend = f(dw, dm, dy, event)

dt	noise	trend	event	dw	dm	dy	dn	sdw	sdm	sdy	у
2019-01-01	0.103337	-1.000000	0.0	2	1	1	1	0.781831	0.000000	0.000000	-0.636313
2019-01-02	-0.108721	-0.998174	0.0	3	2	2	2	0.974928	0.201299	0.017166	-0.709494
2019-01-03	-0.038267	-0.996347	0.0	4	3	3	3	0.433884	0.394356	0.034328	-0.747379
2019-01-04	0.069619	-0.994521	0.0	5	4	4	4	-0.433884	0.571268	0.051479	-0.862010
2019-01-05	0.020431	-0.992694	0.0	6	5	5	5	-0.974928	0.724793	0.068615	-1.032709
2019-01-06	0.085096	-0.990868	0.0	7	6	6	6	-0.781831	0.848644	0.085731	-0.854975
2019-01-07	-0.066436	-0.989041	0.0	1	7	7	7	0.000000	0.937752	0.102821	-0.708966
2019-01-08	-0.104200	-0.987215	0.0	2	8	8	8	0.781831	0.988468	0.119881	-0.461984
2019-01-09	-0.017878	-0.985388	0.0	3	9	9	9	0.974928	0.998717	0.136906	-0.300453
2019-01-10	-0.270488	-0.983562	0.0	4	10	10	10	0.433884	0.968077	0.153891	-0.735951
2019-01-11	0.105717	-0.981735	0.0	5	11	11	11	-0.433884	0.897805	0.170830	-0.664646
2019-01-12	-0.100932	-0.979909	0.0	6	12	12	12	-0.974928	0.790776	0.187719	-1.079653
2019-01-13	-0.031559	-0.978082	0.0	7	13	13	13	-0.781831	0.651372	0.204552	-0.984968
2019-01-14	-0.029745	-0.976256	0.5	1	14	14	14	0.000000	0.485302	0.221325	-0.270694
2019-01-15	0.086681	-0.974429	0.0	2	15	15	15	0.781831	0.299363	0.238033	-0.448446
2019-01-16	-0.140585	-0.972603	0.0	3	16	16	16	0.974928	0.101168	0.254671	-0.670042
2019-01-17	0.042266	-0.970776	0.0	4	17	17	17	0.433884	-0.101168	0.271234	-0.727395
2019-01-18	0.129276	-0.968950	0.0	5	18	18	18	-0.433884	-0.299363	0.287717	-0.988036
2019-01-19	0.258936	-0.967123	0.0	6	19	19	19	-0.974928	-0.485302	0.304115	-1.093174
2019-01-20	-0.040826	-0.965297	0.0	7	20	20	20	-0.781831	-0.651372	0.320423	-1.376679

Trend + Tree-Based Ensemble Steps

Steps:

- 1. Fit trend to past (training data)
- 2. Predict trend into future (test data)
- 3. Detrend past (training data)
- 4. Fit tree-based model on detrended target calendar-based features
- 5. Predict tree-based model in future
- 6. Combine trend and tree-based prediction for final forecast

Trend Considerations:

How to fit and forecast the trend?

Linear Regression

Polynomial Regression

Spline/Loess/Kernel Regression

Seasonal Decomposition

Signal Filtering

Do Nothing

Trend fit and forecast could be different methods

LinearRegressor() from sklearn.linear_model

Detrend = Actual – Trend Fit

De-Trend the Target Variable

Train Tree-Based Model + Make Forecast

Final Forecast =

Trend Forecast (LinearRegressor) +

Tree Prediction (GradientBoostingRegressor)

Feature Importance for Tree-Model

ARIMA

- ARIMA = Auto-Regressive Integrated Moving Average
- Use auto_arima() from pmdarima
 - See: https://alkaline-ml.com/pmdarima/tips and tricks.html
 - Also see Rob Hyndman's online textbook (FPP):
 - https://otexts.com/fpp2/arima-r.html (Version 2 forecast::auto.arima)
 - https://otexts.com/fpp3/arima-r.html (Version 3 fable::ARIMA)
- Searches for "best" ARIMA parameters (p, d, q)
- Note: set the "m" parameter (number of observations per seasonal cycle)
 - 7 for daily (used this for simulated data)
 - 12 for monthly
 - 52 for weekly

ARIMA Forecast

Trend + Tree-Based vs. (Auto) ARIMA

*Across 10 splits with: test size = 30 and train size = 365*2 Using Lev's fin_err() function statistics/nb Time Series Forecast Error.ip ynb at master · lselector/statistics · GitHub

Example Trend with Real-World Data Set

- Below is an example of real time series data set (blue line)
- Trend fit with linear regression (red line) vs. signal filter (blue line)

Conclusion

- Topic: use tree-base ensemble algo for time series forecasting (model trend + use calendar features)
- Hyper-parameter tuning of tree-based ensemble algo
 - Default params used in the demo
- Feature engineering options
 - Date/time components vs. trigonometric representation
 - Add other features that may be relevant to the time series being forecast
- Other considerations:
 - Regular vs. irregular time series
 - Ease of automation and/or implementation

