

衡量CPU速度的指标

MIPS(Million Instructions Per Second): 单字长定点指令平均执行速度 Million Instructions Per Second的缩写,每秒处理的百 万级的机器语言指令数。这是衡量CPU速度的一个指标。像是一个Intel80386 电脑可以每秒处理3百万到5百万机器语言指令, 即我们可以说80386是3到5MIPS的CPU。MIPS只是衡量CPU性能的指标。

□公司介绍 ク 编辑

MIPS 科技公司(纳斯达克交易代码: MIPS)是全球第二大半导体设计IP(知识产权)公司和全球第一大模拟IP公司。MIPS 科技在全球拥有超过 250 家客户,为全球众多最受欢迎的数字消费、宽带、无线、网络和便携式媒体市场提供动力 nksys 的宽带设备、索尼的数字电视和娱乐系统、先锋的 DVD刻录设备、摩托罗拉的数字机顶盒、思科的网络路由器、Microc hip 的 32 位微控制器和惠普的激光打印机。今天,MIPS 科技在全球拥有 400 多项专利产权(专利和应用)。公司成立于 199 8年,总部位于美国加州 Mountain View,办事处遍布全球。

MIPS技术公司则是一家设计制造高性能、高档次及嵌入式32位和64位处理器的厂商。在通用方面,MIPS R系列微处理器用于 构建SGI的高性能工作站、服务器和超级计算机系统。在嵌入式方面,MIPS K系列微处理器是目前仅次于ARM的用得最多的处 理器之一(1999年以前MIPS是世界上用得最多的处理器),其应用领域覆盖游戏机、路由器、激光打印机、掌上电脑等各个方

MIPS在RISC处理器方面占有重要地位。1984年,MIPS计算机公司成立。1992年,SGI收购了MIPS计算机公司。1998年,MI PS脱离SGI,成为MIPS技术公司。

MIPS公司设计RISC处理器始于二十世纪八十年代初,1986年推出R2000处理器,1988年推R3000处理器,1991年推出第一款 64位商用微处器R4000。之后又陆续推出R8000(于1994年)、R10000(于1996年)和R12000(于1997年)等型号。

随后,MIPS公司的战略发生变化,把重点放在嵌入式系统。1999年,MIPS公司发布MIPS32和MIPS64架构标准,为未来MIPS 处理器的开发奠定了基础。新的架构集成了所有原来MIPS指令集,并且增加了许多更强大的功能。MIPS公司陆续开发了高性 能、低功耗的32位处理器内核(core)MIPS324Kc与高性能64位处理器内核MIPS64 5Kc。2000年,MIPS公司发布了针对MIP S32 4Kc的版本以及64位MIPS 64 20Kc处理器内核。

处理器 ☑ 编辑

MIPS是世界上很流行的一种RISC处理器。MIPS的意思"无内部互锁流水级的微处理器"(Microprocessor without interlocked pip ed stages),其机制是尽量利用软件办法避免流水线中的数据相关问题。它最早是在80年代初期由斯坦福(Stanford)大学Hennes sy教授领导的研究小组研制出来的。MIPS公司的R系列就是在此基础上开发的RISC工业产品的微处理器。这些系列产品为很多 计算机公司采用构成各种工作站和计算机系统。

MIPS技术公司是美国著名的芯片设计公司,它采用精简指令系统计算结构(RISC)来设计芯片。和英特尔采用的复杂指令系统计 算结构(CISC)相比,RISC具有设计更简单、设计周期更短等优点,并可以应用更多先进的技术,开发更快的下一代处理器。MI PS是出现最早的商业RISC架构芯片之一,新的架构集成了所有原来MIPS指令集,并增加了许多更强大的功能。

MIPS处理器是八十年代中期RISC CPU设计的一大热点。MIPS是卖的最好的RISC CPU,可以从任何地方,如Sony, Nintend o的游戏机,Cisco的路由器和SGI超级计算机,看见MIPS产品在销售。目前随着RISC体系结构遭到x86芯片的竞争,MIPS有可 能是起初RISC CPU设计中唯一的一个在本世纪盈利的。和英特尔相比,MIPS的授权费用比较低,也就为除英特尔外的大多数 芯片厂商所采用。

MIPS的系统结构及设计理念比较先进,其指令系统经过通用处理器指令体系MIPS I、MIPS II、MIPS IV到MIPS V, 嵌入式指令体系MIPS16、MIPS32到MIPS64的发展已经十分成熟。在设计理念上MIPS强调软硬件协同提高性能,同时简化硬 件设计。

中国龙芯2和前代产品采用的都是64位MIPS指令架构,它与大家平常所知道的X86指令架构互不兼容,MIPS指令架构由MIPS 公司所创,属于RISC体系。过去,MIPS架构的产品多见于工作站领域,索尼PS2游戏机所用的"Emotion Engine"也采用MIPS 指令,这些MIPS处理器的性能都非常强劲,而龙芯2也属于这个阵营,在软件方面与上述产品完全兼容。

联系 ク 編辑

基本信息

ク 编辑

中文名

外文名

单字长定点指令平均执行速

Million Instructions Per Seco

nd

类别 机器语言指令数

成立时间 1998 年 缩写 MIPS

词条统计

浏览次数 768次

编辑次数 18次 查看历史

目录

- 1 公司介绍
- 2 处理器
- 3 联系
- 4 存在问题

MIPS即Million Instructions Per Second的简写——计算机每秒钟执行的百万指令数。是衡量计算机速度的指标。

现如今CPU的频率越来越高,又是流水线又是超标量计算又是双核多核的,单纯以时钟频率来衡量计算机的速度已经不再科 学,用MIPS来衡量相对比较合理。

以ARM7为内核的S3C44B0X的推荐最高工作频率为66MHz,按照ARM公司提供的技术资料,Cortex A9类CPU的运算速度可按如下公式计算: MIPS=0.9×MHz,由此可得出,旧型号的Arm 7 系列S3C44B0X的最大运算速度大约为0.9×66MHz=59.4MIPS。6M的51单片机通常是12 或24个时钟周期才能完成1条指令,乘法和除法指令更需要48个时钟周期。这样,我初步估算6M的51单片机的运算速度应该在0.2~0.5MIPS之间。可见8位机与32位机的运算速度还是有巨大的差异的。

再以AVR为例,它的数据吞吐率可达1MIPS/MHz,即1MHz的震荡频率可达1MIPS。

综上,用MIPS衡量计算机速度很合理,对于不同的cpu,它的最高工作频率不同,数据吞吐率也不同,所以不可一概而论。

MIPS是指令执行的速率,规定了性能和执行时间成反比,越快的计算机具有越高的MIPS值。从表面看,MIPS既容易理解,又符合人的直觉。其实,用MIPS作为度量性能的指标存在三个问题。

首先,MIPS规定了指令执行的速率,但没有考虑指令的能力。我们没有办法用MIPS比较不同指令集的计算机,因为指令数肯定是不同的。

其次,在同一计算机上,不同的程序会有不同的MIPS,因而一台计算机不会只有一个MIPS值。例如,将执行时间用MIPS、CPI、时钟频率代入之后可得:

MIPS = 指令数/(执行时间 * 10^6) = 指令数 / (指令数 * CPI / 时钟频率 * 10^6) = 时钟频率 / (CPI * 10^6)

上图显示了SPEC2006在Intel Core i7上的CPI最大值和最小值是相差5倍的,MIPS也是如此。

最后一点,也是最重要的一点,如果一个新程序执行的指令数更多,但每条指令的执行速度 更快,则MIPS的变化是性能无关的。

Executation	Name		on	Cleak syste time (secondo x 59°°)	Time (seconds)	Time (seconds)	SPECTOR
	091	2252	0.80	5,179	506	9772	19.7
Socialiting Desperation	1092	290	6.76	1.076	629	9050	15.4
69) Ecompler	ger	794	1.20	8,076	358	8050	22.5
completeling optimization	no.	221	2.86	5,079	221	9129	45.2
to-game (At)	61	3274	1.50	0.37%	527	10490	18.0
learch gana sequence	homer	9664	0.60	6.076	590	9330	15.6
2440 game (40)	torng	2948	0.80	5,079	560	12300	29.7
publisher computer	Stopperson	608	0.44	1.379	509	20120	290.0
tides compression	rossec	2792	0.50	5,379	713	22139	35.0
Secretaries and involution library	onnetyp	367	2.10	0.379	200	6250	20.6
iones/path finding	9536	1156	1.80	5,076	430.	7092	149
M. parsing	nature best	9045	0.70	8.324	275	6900	25.1
Jeonatric mean	-				-		25.7

免责声明

- 快懂百科的词条系由网友创建、编辑和维护,如您发现快懂百科词条内容不准确或不完善,欢迎您前往词条编辑页共同参与该词条内容的编辑和修正;如您发现词条内容涉嫌侵权,请通过 service@baike.com 与我们联系,我们将按照相关法律规定及时处理。
- 未经许可,禁止商业网站等复制、抓取快懂百科内容;合理使用者,请注明来源于www.baike.com。

用户协议 | 隐私政策 | 意见反馈 | 帮助中心 | 违法和不良信息举报电话: 400-140-2108 | 未成年人举报热线: 400-140-2108 按5 | 举报邮籍: service@baike.com中国互联网举报中心 | 北京不良信息举报中心