Conversion réciproque d'énergie électrique en énergie chimique.

Agrégation 2020

Stockage de l'énergie ?

Figure 1. Puissance électrique générée par une éolienne de 1,5 MW sur 10h

Pile Daniell

Mesure de la résistance interne

 Cu^{2+} à 0,1 mol/L

Zn²⁺ à 0,1 mol/L

Résultats expérimentaux

Electrolyse de l'eau

Electrolyseur Hoffman

Electrolyse de l'eau

Electrolyseur Hoffman

Couleur du BBT en fonction du pH

Electrolyse de l'eau

Electrolyseur Hoffman

Électrolyse de l'eau

Pile à combustible

Figure 7.15 : Courbes intensité-potentiel pour la pile à combustible

Conversion réciproque d'énergie électrique en énergie chimique

Synthèse chlore-soude

Synthèse chlore-soude

Présentation de l'accumulateur au Plomb chargé $E^{\circ}(PbO_{2(s)}/PbSO_{4(s)}) = 1,69$

 $E^{\circ}(PbSO_{4(s)}/Pb_{(s)}) = -0.36$

Électrode Électrode en plomb en plomb recouverte d'oxyde de plomb $PbO_2(s)$ Solution concentrée d'acide sulfurique : 2 H⁺; SO₄²⁻ 1 mol/L

Décharge de l'accumulateur au plomb

Réduction

PbO2(s) +SO₄²⁻(aq) + 4H⁺ + 2e⁻ = PbSO₄(s) + 2H₂O (l)

 $E(PbO_2/PbSO_4)=1,72 V$

Oxydation

$$Pb(s) + SO_4^{2-}(aq) = PbSO_4(s) + 2e^{-s}$$

$$E(PbSO_4/Pb)=-0.36 V$$

CATHODE

Accumulateur au plomb déchargé

Réduction

Oxydation

$$PbO2(s) + SO_4^{2-}(aq) + 4H^+ + 2e^- = PbSO_4(s) + 2H_2O(l)$$

$$Pb(s) + SO_4^{2-}(aq) = PbSO_4(s) + 2e^{-s}$$

CATHODE

Charge de l'accumulateur au plomb

Oxydation

Réduction

$$PbSO_4(s) + 2H_2O(l) = PbO2(s) + SO_4^{2-}(aq) + 4H^+ + 2e^-$$

$$PbSO_4(s) + 2e^- = Pb(s) + SO_4^{2-}(aq)$$

ANODE

Accumulateur au plomb chargé

Oxydation

Réduction

$$PbSO_4(s) + 2H_2O(l) = PbO2(s) + SO_4^{2-}(aq) + 4H^+ + 2e^-$$

$$PbSO_4(s) + 2e^- = Pb(s) + SO_4^{2-}(aq)$$

Recharge d'un accumulateur au plomb

Accumulateur au Plomb

Énergie	Puissance	Force	Cyclabilité	Rendement
massique	massique	électromotrice		faradique
27 Wh. kg ⁻¹	250 W. kg^{-1}	2,0 V	1000	< 1