Homework 2

CMPSC 360

Kinner Parikh January 24, 2022

Question 1:

- 1. This is a statement because the truth value of the statement can be determined: Obama was the president during 2010 or not
- 2. This is a statement because the quantity x + 3 could be a positive integer or not, which means the truth value can be determined
- 3. This is a statement because 15 is either an odd number or it is not
- 4. This is a statement because a natural number times two has the possibility of being an even number the truth value can be determined
- 5. This is not a statement because it is an open ended question. There is no truth value that can be determined.

Question 2:

- a) If $1 + 1 = 3 \rightarrow F$, then dogs can fly $\rightarrow F \Rightarrow T$
- b) If $1 + 1 = 2 \rightarrow T$, then dogs can fly $\rightarrow F \Rightarrow F$
- c) If $2+2=4 \rightarrow T$, then $1+2=3 \rightarrow T \Rightarrow T$

Question 3:

1. a

Question 4:

Question 5:

Table 1: $\neg (p \rightarrow q) \equiv p \land \neg q$						
p	q	$\mathrm{p} \to \mathrm{q}$	$\neg (p \rightarrow q)$	p ∧¬q		
\overline{T}	Т	Т	F	F		
\mathbf{T}	F	F	${ m T}$	${ m T}$		
\mathbf{F}	Т	T	${ m F}$	\mathbf{F}		
\mathbf{F}	F	T	${ m F}$	\mathbf{F}		

Table 2: $p \vee \neg (p \wedge q) \equiv T$							
p	q	$p \wedge q$	$\neg(p \land q)$	$p \vee \neg (p \wedge q)$			
T	Т	Τ	F	${ m T}$			
\mathbf{T}	F	F	${ m T}$	${ m T}$			
\mathbf{F}	Γ	F	${ m T}$	${f T}$			
\mathbf{F}	F	F	${ m T}$	${f T}$			

Question 6:

Question 7:

1.
$$\neg[(p \land q) \rightarrow r]$$

 $\neg[\neg(p \land q) \lor r]$ Identity Rule
 $\neg\neg(p \land q) \land \neg r$ DeMorgan's Law
 $(p \land q) \land \neg r$ Double Negation

$$\begin{array}{ll} 2. \ \neg[p \to (\neg q \land r)] \\ \neg[\neg p \lor (\neg q \land r)] & \text{Identity Rule} \\ \neg\neg p \land \neg(\neg q \land r) & \text{DeMorgan's Law} \\ p \land \neg(\neg q \land r) & \text{Double Negation} \\ p \land (\neg \neg q \lor \neg r) & \text{DeMorgan's Law} \\ p \land (q \lor \neg r) & \text{Double Negation} \\ \hline p \land (r \to q) & \text{Identity Rule} \\ \end{array}$$

3.
$$\neg [p \lor q \lor (\neg p \land \neg q \land r)]$$

 $\neg p \land \neg q \land \neg (\neg p \land \neg q \land r)$ DeMorgan's Law
 $\neg p \land \neg q \land (\neg \neg p \lor \neg \neg q \lor \neg r)$ DeMorgan's Law
 $\neg p \land \neg q \land (p \lor q \lor \neg r)$ Double Negation
 $\neg (p \lor q) \land (p \lor q \lor \neg r)$ DeMorgan's Law
NOT DONE

Question 8:

Simplify
$$\neg((r \to \neg p) \land (r \to p))$$

$$\begin{array}{lll} \neg(r \to \neg p) \vee \neg(r \to p) & \text{DeMorgan's Law} \\ \neg(\neg r \vee \neg p) \vee \neg(\neg r \vee p) & \text{Identity Rule} \\ (\neg \neg r \wedge \neg \neg p) \vee (\neg \neg r \wedge \neg p) & \text{DeMorgan's Law} \\ (r \wedge p) \vee (r \wedge \neg p) & \text{Double Negation} \\ r \vee (p \wedge \neg p) & \text{Distribution} \\ r \vee F & \text{Contradiction} \\ r & \text{Identity Rules} \end{array}$$

Question 9:

Prove that $[p \to (q \lor r)] \equiv [(p \land \neg q) \to r]$

$$\begin{array}{lll} p \rightarrow (q \vee r) & & \\ \neg p \vee (q \vee r) & & \\ (\neg p \vee q) \vee r & & \\ Associative \ Rule \\ \neg (\neg \neg p \wedge \neg q) \vee r & & \\ DeMorgan's \ Law \\ \neg (p \wedge \neg q) \vee r & & \\ Double \ Negation \\ \hline (p \wedge \neg q) \rightarrow r & & \\ Identity \ Rule \\ \hline \\ (p \wedge \neg q) \rightarrow r & & \\ Identity \ Rule \\ \hline \\ (p \wedge \neg q) \vee r & & \\ DeMorgan's \ Law \\ (\neg p \vee \neg \neg q) \vee r & & \\ DeMorgan's \ Law \\ (\neg p \vee q) \vee r & & \\ Double \ Negation \\ \neg p \vee (q \vee r) & & \\ Associative \ Rule \\ \hline \\ p \rightarrow (q \vee r) & & \\ Identity \ Rule \\ \hline \end{array}$$

Question 10:

- 1. $Q(1) \Rightarrow False$
- 2. $\neg P(3) \Rightarrow False$
- 3. $P(7) \vee Q(7) = F \vee F \Rightarrow False$
- 4. $P(3) \wedge Q(4) = T \wedge T \Rightarrow True$