Diskrete Strukturen Nachbereitungsaufgabe 7

Khmelyk Oleh

2023

(a) Geben Sie alle Elemente der Gruppe $(\mathbb{Z}_{10}^*;\cdot)$ an. Geben Sie eine andere Gruppe mit 4 Elementen an zu der $(\mathbb{Z}_{10}^*;\cdot)$ isomorph ist und geben Sie alle Isomorphismen zwischen den beiden Gruppen (ohne Begründung) an. Hinweis: Ü4

$$(\mathbb{Z}_{10}^*;\cdot) = \{1,3,7,9\}$$

Verknuepfungstafel:

	1	3	7	9
1	1	3	7	9
3	3	9	1	7
7	7	1	9	3
9	9	7	3	1

 $\overline{\text{Z.B. }}(\mathbb{Z}_4;+) \text{ ist isomorph zu } (\mathbb{Z}_{10}^*;\cdot),$

Verknuepfungstafel:

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

wir koenen diese Isomorphismen dazwishen geben:

$$\begin{array}{l} f: (\mathbb{Z}_{10}^*; \cdot) \to (\mathbb{Z}_4; +): f(1) = 0; f(3) = 1; f(7) = 3; f(9) = 2 \\ g: (\mathbb{Z}_4; +) \to (\mathbb{Z}_{10}^*; \cdot): g(0) = 1; f(1) = 3; f(2) = 9; f(3) = 7 \end{array}$$

(b) Hat die Gruppe (\mathbb{Z}_{19}^* ; ·) Erzeuger? Begründen Sie Ihre Antwort! Wenn ja, so bestimmen Sie die Anzahl der Erzeuger dieser Gruppe. Zeigen Sie, dass 3 eine Primitivwurzel in (\mathbb{Z}_{19}^* ; ·) ist. Nutzen Sie dies, um alle $x \in \mathbb{Z}_{19}$ zu finden, die $5^{42} \cdot x \equiv 10^3 \cdot 7^{-2} \pmod{19}$ erfüllen.

19 - Primzahl
$$\Rightarrow$$
 hat $(\mathbb{Z}_{19}^*; \cdot) : \varphi(\varphi(19)) = \varphi(18) = 1 \cdot 3 \cdot 2 = 6$

Zu zeigen: 3 eine Primitivwurzel in $(\mathbb{Z}_{19}^*; \cdot)$:

Mod 19:

$$3^0 = 1; 3 = 3; 3^2 = 9; 3^3 = 8; 3^4 = 5; 3^5 = 15; 3^6 = 7; 3^7 = 2; 3^8 = 6; 3^9 = 18; 3^{10} = 16; 3^{11} = 10; 3^{12} = 11; 3^{13} = 14; 3^{14} = 4; 3^{15} = 12; 3^{16} = 17; 3^{17} = 13; 3^{18} = 1;$$

Wir haben alle elemente aus $(\mathbb{Z}_{19}^*;\cdot)$ getrofen $\Rightarrow <3>=(\mathbb{Z}_{19}^*;\cdot)$

$$\begin{array}{l} 5^{43} \cdot x \equiv 10^3 \cdot 7^{-2} \bmod{19} \\ 10^3 \cdot 7^{-2} \equiv 3^{33} \cdot 3^{-6} = 3^{27} = 3^{18+9} \equiv 3^9 \equiv 18 \bmod{19} \\ 5^43 \equiv 3^{4 \cdot 43} = 3^{172} \equiv 3^{-8} \equiv 3^{10} \equiv 16 \equiv -3 \end{array}$$

$$-3x \equiv 18 \mod 19 \Rightarrow x \equiv -6 \equiv 13 \mod 19$$