18CS43

Fourth Semester B.E. Degree Examination, July/August 2022 Operating Systems

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Distinguish between the following terms:
 - i) Multi programming and multitasking.
 - ii) Multi processor systems and clustered systems. (10 Marks)
 - Define Operating Systems. Explain dual mode of operating systems with a neat diagram.
 (05 Marks)
 - Explain about system calls with an example of handling a user application invoking the open() system call. (05 Marks)

OR

- What is a process? Illustrate with a neat diagram the different states of a process and control block. (05 Marks)
 - b. Discuss the implementation of IPC using message passing systems in detail. (10 Marks)
 - List and explain the services provided by OS for the user and efficient operation of system.
 (05 Marks)

Module-2

- a. Give a brief description about multithreading and explain the different multi threading models. (05 Marks)
 - b. Discuss the issues that come with multithreaded programming. (10 Marks)
 - c. Explain CPU scheduling criteria. (05 Marks)

OR

4 a. Calculate the average waiting time and the average turnaround time by drawing the Gantt chart using FCF8, SRTF, RR (q = 2ms) and priority algorithms. Lower priority number represents higher priority.

Process	Arrival Time	Burst Time	Priority		
P_1	0	9	3		
P ₂	1	4	2		
P ₃	2	9	1		
P ₄	3	5	4		

(12 Marks)

b. What is critical section problem? What are the requirements for the solution to critical section problem? Explain Peterson's solution. (08 Marks)

1 of 2

www.vturesource.com

18CS43

Module-3

- a. What is a deadlock? What are the necessary conditions for the deadlock to occur? (05 Marks)
 b. How to prevent the occurrence of deadlock, explain in detail. (05 Marks)
 - c. Consider the following snapshot of a system:

Process	Allocation			Max			Available					
	A	В	C	D	A	В	C	D	A	В	C	D
Po	2	0	0	1	4	2	1	2	3	3	2	1
P ₁	3	1	2	1	5	2	5	2	1			
P ₂	2	1	0	3	2	3	1	6				
P ₃	1	3	1	2	1	4	2	4				
P ₄	1	4	3	2	3	6	6	5				1

Answer the following using Banker's algorithm.

- i) Is the system in safe state? If so, give the safe sequence.
- ii) If process P2 requests (0, 1, 1, 3) resources can it be granted immediately? (10 Marks)

OR

6 a. Explain paging hardware with TLB.
b. Explain segmentation in detail.
c. Discuss structure of page table with suitable diagrams.
(05 Marks)
(10 Marks)

Module-4

- 7 a. Describe the steps in handling page faults. (06 Marks)
 - b. Consider the page reference string: 1, 0, 7, 1, 0, 2, 1, 2, 3, 0, 3, 2, 4, 0, 3, 6, 2, 1 for a memory with 3 frames. Determine the number of page faults using FIFO, optimal and LRU replacement algorithms. Which algorithm is most efficient? (14 Marks)

OR

- 8 a. Explain the different allocation methods. (10 Marks)
 - b. Discuss the various directory structures with required diagrams. (10 Marks)

Module-5

- a. Explain access matrix method of system protection with domain as objects and its implementation. (10 Marks)
 - b. A drive has 5000 cylinders numbered 0 to 4999. The drive is currently serving a request at 143 and previously serviced a request at 125. The queue of pending requests in FIFO order is: 86, 1470, 913, 1774, 948, 1509, 1022, 1750, 130. Starting from current head position, what is the total distance travelled (in cylinders) by disk arm to satisfy the requests using FCFS, SSTF, SCAN, LOOK and C-LOOK algorithms. (10 Marks)

OR

a. With a neat diagram, explain the components of a Linux system.
b. Explain the different IPC mechanisms available in Linux.
c. Discuss about scheduling in Linux.
(06 Marks)
(06 Marks)