Projection of Varieties and Elimination Ideals

Applications: Word-Level Abstraction from Bit-Level Circuits, Combinational Verification, Reverse Engineering Functions from Circuits

Priyank Kalla

Associate Professor
Electrical and Computer Engineering, University of Utah
kalla@ece.utah.edu
http://www.ece.utah.edu/~kalla

Nov 19-24, 2014

We will employ everything we have learnt so far....

- ullet Hilbert's Nullstellensatz over \mathbb{F}_q
- Gröbner basis theory
- Efficient term ordering from circuits
- ullet Canonical representations of circuits $f:\mathbb{B}^k o \mathbb{B}^k$ to $f:\mathbb{F}_{2^k} o \mathbb{F}_{2^k}$

And learn a new concept: Elimination ideals

Apply these techniques to circuit analysis and verification

Polynomial Interpolation from Circuits

- Circuit: $f: \mathbb{B}^k \to \mathbb{B}^k$
- ullet Model it as a polynomial function $f: \mathbb{F}_{2^k} o \mathbb{F}_{2^k}$
- ullet Interpolate a word-level polynomial from the circuit: $Z=\mathcal{F}(A)$
- Obtain $Z = \mathcal{F}(A)$ as a unique, canonical, word-level, polynomial representation from the *bit-level* circuit
- Why?

Hierarchical Abstraction and Verification

Figure: Montgomery multiplier over $GF(2^k)$

Montgomery Multiply: $F = A \cdot B \cdot R^{-1}$, $R = \alpha^k$

Projection of Variety

- Represent the polynomials of the circuit as ideal J (or $J+J_0$)
- Consider $V_{\mathbb{F}_q}(J)$
- Let x_i denote the bit-level variables of the circuit: $J \subset \mathbb{F}_q[x_i, Z, A]$
- ullet Project $V_{\mathbb{F}_q}(J)$ on Z,A, denoted by $V_{\mathbb{F}_q}(J)|_{Z,A}$
 - Does this recover the function of the circuit?

Projection Map

Definition

Given variety
$$V = \mathbf{V}(f_1, \dots, f_s) = \mathbf{V}(J) \subset \mathbb{F}_q^n$$
. The I^{th} projection map $\pi_I : \mathbb{F}_q^n \to \mathbb{F}_q^{n-I}, \pi_I((c_1, \dots, c_n)) = (c_{I+1}, \dots, c_n)$

- We may also denote π_l by $Proj[V(J)]_{l+1,...,n}$, or by $V(J)|_{l+1,...,n}$
- In some sense, we have eliminated the first I variables from the system
- This is related to elimination ideals and variable elimination

Elimination Ideals and Gröbner Bases

Definition (Elimination Ideal)

Given $J = \langle f_1, \dots, f_s \rangle \subset \mathbb{F}_q[x_1, \dots, x_n]$, the *I*th *elimination ideal* J_I is the ideal of $\mathbb{F}_q[x_{l+1}, \dots, x_n]$ defined by $J_I = J \cap \mathbb{F}_q[x_{l+1}, \dots, x_n]$.

In other words, the /th elimination ideal does not contain variables x_1, \ldots, x_l , nor do the generators of it.

Theorem (Elimination Theorem)

Let $J \subset \mathbb{F}_q[x_1,\ldots,x_n]$ be an ideal and let G be a Gröbner basis of J with respect to a lex ordering where $x_1 > x_2 > \cdots > x_n$. Then for every $0 \le l \le d$, the set $G_l = G \cap \mathbb{F}_q[x_{l+1},\ldots,x_n]$ is a Gröbner basis of the lth elimination ideal J_l .

A Gröbner basis example [From Cox/Little/O'Shea]

Solve the system of equations over \mathbb{C} :

$$f_1: x^2 - y - z - 1 = 0$$

 $f_2: x - y^2 - z - 1 = 0$
 $f_3: x - y - z^2 - 1 = 0$

Gröbner basis G with lex term order x > y > z

$$g_1: x - y - z^2 - 1 = 0$$

$$g_2: y^2 - y - z^2 - z = 0$$

$$g_3: 2yz^2 - z^4 - z^2 = 0$$

$$g_4: z^6 - 4z^4 - 4z^3 - z^2 = 0$$

- $G_1 = G \cap \mathbb{C}[y,z] = \{g_2,g_3,g_4\}$
- $G_2 = G \cap \mathbb{C}[z] = \{g_4\}$
- G is triangular. solve g_4 for z, then g_2, g_3 for y, and then g_1 for x
 - Solutions to z are $0, 1, -1 + \sqrt{2}, -1 \sqrt{2}$
 - $V(G) = \{(1,0,0), (0,1,0), (0,0,1), (-1+\sqrt{2},-1+\sqrt{2},-1+\sqrt{2}), (-1-\sqrt{2},-1-\sqrt{2},-1-\sqrt{2})\}$

Projection of Variety and Elimination Ideals

- Using elimination, obtain partial solution to $V(I_I)$, then extend it to V(I), one variable at a time
- However, all partial solutions to $V(I_I)$ may not lift to V(I)

Example

Consider $f_1: xy - 1$, $f_2: xz - 1$. Eliminate x, you get $f_3: y - z$. All points (a, a) are solutions to f_3 . All points (1/a, a, a) extend to complete solutions, except (0, 0).

Given $J = \langle f_1, \dots, f_s \rangle \subseteq \mathbb{F}[x_1, \dots, x_n], \ \pi_I(V(J)) \subset V(J_I)$ In other words, $\text{Proj}[V(J)]_{X_{I+1},\dots,X_n} \subset V(J_I)$

Theorem (Over \mathbb{F}_q Elimination ideals give Projection exactly)

Over Galois fields, \mathbb{F}_q , let J be any ideal, and J_0 be the ideal of vanishing polynomials. Let $I=J+J_0$. The projection of variety is equal to the variety of the elimination ideal. In other words, $\pi_I(V(I))=V(I_I)$.

Abstraction from Circuits

- To obtain, $Z = \mathcal{F}(A)$:
- Denote x_i as bit-level variables, A, Z as word-level variables
- Obtain $J + J_0$ from the circuits
- Compute Gröbner basis G with lex order with $x_i > Z > A$
- G_{x_i} be the elimination ideal that eliminates x_i
- Projection of variety onto Z, A is equal to $V(G_{x_i})$,
- This recovers the function of the circuit $Z = \mathcal{F}(A)$

Abstraction from Circuits

- G is computed with lex $x_i > Z > A$
- There exists a polynomial $A^q A$ in G
- There exists a polynomial $Z = \mathcal{F}(A)$ in G
 - Why? Can you prove it?
- The rest is irrelevant for us

$$\begin{array}{llll} f_1:z_0+z_1\alpha+Z; & f_2:b_0+b_1\alpha+B; & f_3:a_0+a_1\alpha+A; & f_4:\\ s_0+a_0\cdot b_0; & f_5:s_1+a_0\cdot b_1; & f_6:s_2+a_1\cdot b_0; & f_7:s_3+a_1\cdot b_1; & f_8:\\ r_0+s_1+s_2; & f_9:z_0+s_0+s_3; & f_{10}:z_1+r_0+s_3. & \mathsf{Ideal} \ J=\langle f_1,\ldots,f_{10}\rangle. \end{array}$$

Add J_0 and compute $GB(J + J_0)$ with $x_i > Z > A > B$, then G:

$$g_1: z_0 + z_1\alpha + Z;$$
 $g_2: b_0 + b_1\alpha + B;$ $g_3: a_0 + a_1\alpha + A;$ $g_4: s_3 + r_0 + z_1;$ $g_5: s_1 + s_2 + r_0;$ $g_6: s_0 + s_3 + z_0;$ $g_7: Z + AB;$ $g_8: a_1b_1 + a_1B + b_1A + z_1;$ $g_9: r_0 + a_1b_1 + z_1;$ $g_{10}: s_2 + a_1b_0$

To Conclude

- Lex orders are elimination orders, but Deglex and DegRevLex are not elimination orders
- Computing GB with Lex orders is hard, gives very large output
- One can use block orders (I will give you a singular file with a block order)
- Projection of varieties can be solved exactly using Elimination ideals over Galois fields, not so over $\mathbb{R}, \mathbb{Q}, \mathbb{C}$