

Storage Efficient Hardware Prefetching using Delta Correlating Prediction Tables

Marius Grannæs Magnus Jahre Lasse Natvig

Feb 14th 2008

Delta Correlating Prefetch Tables

- Perez et al. did a comparative survey of hardware prefetchers in 2004.
 - Reference Prediction Tables and PC/DC using a Global History Buffer
- Delta Correlating Prediction Tables combines these two approaches and adds extra control for avoiding duplicate prefetching.
- Perez et al. also found that you can make anything look good provided the right benchmarks and parameters.

Sequential RPT PC/DC DCPT

	Sequential	RPT	PC/DC DCF	Ϋ́
Seguential	✓			

	Sequential	RPT	PC/DC	DCPT
Sequential	✓	√	√	
Constant Stride	X			

	Sequential	RPT	PC/DC	DCPT
Sequential	✓		√	
Constant Stride	X			
Repeating Pattern	X	X		

	Sequential	RPT	PC/DC	DCPT
Sequential	✓	✓	✓	
Constant Stride	X			
Repeating Pattern	X	X		
Complexity	(P)	(H)	00	0

	Sequential	RPT	PC/DC	DCPT
Sequential	✓	\checkmark		
Constant Stride	X			
Repeating Pattern	X	X	\checkmark	
Complexity	(P)(P)	(P)	00	0
Delav	(H)(H)	(H)(H)	00	\oplus

	Sequential	RPT	PC/DC	DCPT
Sequential				
Constant Stride	X			
Repeating Pattern	X	X		
Complexity	(H)(H)	(+)	00	0
Delay	$\oplus \oplus$	(H)(H)	00	(H)
Storage Efficiency		\oplus	0	\oplus

Outline

Motivation

Reference Prediction Tables
Properties of RPT prefetching

PC/DC Prefetching

Global History Buffer

Delta Correlation

Properties of PC/DC prefetching

Delta Correlating Prefetch Tables

DCPT Properties

Results

Concluding Remarks

Cache Miss:

Cache Miss:

Cache Miss:

100	00 1		Init	
PC	Last Addr.	Delta	State	

Cache Miss: 1 3

100	3	2	Train
PC	Last Addr.	Delta	State

Cache Miss: 1 3 5

100	5	2	Prefetch
PC	Last Addr.	Delta	State

Properties of RPT prefetching

- Very high accuracy
- Relatively low cost Table lookup, comparator and subtraction
- Small memory footprint
- Only able to capture constant strides

10 11 13 16 17 19 22

1 2 3 1 2 3

Properties of PC/DC prefetching

- Can capture a very wide range of patterns
- High accuracy and performance
- The global history must be very large to capture relevant data
- Pointer chasing
- The deltas are recalucated every time
- The number of deltas can vary

Delta Correlating Prefetch Tables

Delta Correlating Prefetch Tables

10

	100	10	-	-	- 1	-	1	- 1	1	1
Г	PC	Last Addr.	Last Pref.	D	D	D	D	D	D	Ptr

10 11

100	10	-	-	1	-	-	-	-	-
PC	Last Addr.	Last Pref.	D	D	D	D	D	D	Ptr

10 11 13 16 17 19 22

100	22	-	1	2	3	1	2	3		
PC	Last Addr.	Last Pref.	D	D	D	D	D	D	Ptr	

DCPT Properties

- Able to capture the same patterns as PC/DC
- Only stores deltas
 - Uses less memory to store the same data
 - No need to recalcuate the deltas
 - Fixed number of deltas Fixed timeliness
- Constant delay
- Tracks issued prefetches to avoid overlap

Number of bits used to represent a delta

Number of bits used to represent a delta

Deltas per table entry

Number of table entries

Results I

Results II

Concluding Remarks

- Delta Correlating Prediction Tables is a hybrid of RPT and PC/DC prefetching.
- Combines the table based design of RPT and the pattern matching techniques of PC/DC.
- Compact representation
- Calculation in constant time

Thank you for listening

Are there any questions?