Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 2 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження алгоритмів розгалуження»

Варіант <u>14</u>

Виконав студент: ІП-15 Кондрацька Соня Леонідівна

Перевірив:

Лабораторна робота № 2 Дослідження алгоритмів розгалуження

Мета — дослідити подання керувальної дії чергування у вигляді умовної та альтернативної форм та набути практичних навичок їх використання під час складання програмних специфікацій.

Варіант 14

Задача

Задані дійсні числа х, у, z. З'ясувати, чи існує трикутник з такими довжинами сторін.

1) Постановка задачі

Дано три сторони трикутника X, Y, Z. З'ясувати чи існує трикутник з такими сторонами використовуючи умову що сторони більше нуля та умову з теоремою про нерівність трикутника : Кожна сторона трикутника менша за суму двох інших сторін. Вивести відповідь чи існує трикутник з такими сторонами

2) Побудова математичної моделі

Змінна	Тип	Ім'я	Призначення
Перша сторона	Додатне, дійсне число	X	Вхідні дані
Друга сторона	Додатне, дійсне число	Y	Вхідні дані
Третя сторона	Додатне, дійсне число	Z	Вхідні дані
Відповідь	Текст	Ans	Вихідні дані,
			результат

Спочатку дізнаємося чи підходять задані числа для побудування геометричної фігури за допомогою умови (X <= 0) \parallel (Y <= 0) \parallel (Z <= 0). Якщо попередня умова не виконується перевіряємо чи підходять задані сторони для побудування трикутника за допомогою умови (X+Y>Z)&&(Y+Z>X)&&(X+Z>Y) якщо відповідь так, то трикутник існує. Якщо відповідь ні,то трикутник не існує.

Ans – змінна що присвоє відповідь і виводиться на екран.

3) Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

- Крок 1. Визначимо основні дії.
- Крок 2. Деталізуємо дві умови визначення існування трикутника.

Псевдокод

4) Блок-схема

5) Випробування

Блок	Дія
	Початок
1	Введення Х, Ү, Z
2	X=3 Y=4 Z=5
3	(3<=0) (4<=0) (5<=0) ні
4	(3+4>5)&&(4+5>3)&&(3+5>4) так
5	Ans:='Трикутник існує'
	Кінець

Блок	Дія
	Початок
1	Введення Х, Ү, Z
2	X=1 Y=0 Z=5
3	(1<=0) (0<=0) (5<=0) так
4	Ans:='Трикутник не існує'
	Кінець

6) Висновки

Ми дослідили подання керувальної дії чергування у вигляді умовної та альтернативної форм та набули практичних навичок їх використання під час складання програмних специфікацій.

В результаті виконання лабораторної роботи ми отримали алгоритм для визначення існування трикутника з заданими сторонами, розділивши задачу на 2 кроки: визначення основних дій, деталізування двох умови визначення існування трикутника.