

PATENT APPLICATION
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant: Darrel L. Turner

Filed: Simultaneously herewith

For: Boron Steel Rotary Blade

Docket No.: FISHBAR-6

PATENT APPLICATION
Assistant Commissioner for Patents
Washington, D.C. 20231

"Express Mail" Mailing Label No.: **TB 783 899 743**

Date of Deposit: July 23, 1997

I hereby certify that these attached documents

- * Response postcard
- * Check in the amount of \$385.00
- * Form PTO/SB/13 (3 pp) (2 copies)
- * A copy of the Specification and Claims (11 pp) with attached formal drawings (3 sheets) and Declaration and Power of Attorney (3 pp)
- * Information Disclosure Statement (3 pp)
- * Form PTO-1449 with 28 attached documents

are being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 35 C.F.R. §1.10 on the date indicated above and is addressed to the Assistant Commissioner for Patents, Washington, D.C. 20231.

(Lisa K. Heindl)

Enclosed for filing please find the above-referenced new patent application. Please indicate receipt of this application by returning the attached postcard with the official Patent and Trademark Office receipt and serial number stamped thereon.

Respectfully submitted,

David R. J. Stiennon, Reg. No. 33212
Attorney for Applicant
Lathrop & Clark
P.O. Box 1507
Madison, Wisconsin 53701-1507
(608) 257-7766

3

A

S

PTO/SB/13 (10-92)

Approved for use through 05/31/96. OMB 0651-0033
Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

07/23/97

REQUEST FOR FILING A PATENT APPLICATION UNDER 37 CFR 1.60

DOCKET NUMBER	ANTICIPATED CLASSIFICATION OF THIS APPLICATION		PRIOR APPLICATION EXAMINER	ART UNIT
FISHBAR-6	CLASS	SUBCLASS	T. Melius	3501

Address to:

Commissioner of Patents and Trademarks
Washington, D.C. 20231

This is a request for filing a continuation divisional application under 37 C.F.R. 1.60, of pending prior application Number 08/532,046, filed on September 21, 1995 entitled High Hardness Boron Steel Rotary Blade

1. Enclosed is a copy of the latest inventor-signed prior application, including a copy of the oath or declaration showing the original signature or an indication it was signed.

I hereby verify that the papers are a true copy of the latest signed prior application number 08/532,046, and further that all statements made herein of my own knowledge are true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

CLAIMS	(1) FOR	(2) NUMBER FILED	(3) NUMBER EXTRA	(4) RATE	(5) CALCULATIONS
	TOTAL CLAIMS (37 CFR 1.16(c))	2 -20 =	0	x \$22 =	\$0
	INDEPENDENT CLAIMS (37 CFR 1.16(b))	1 - 3 =	0	x \$38 =	0
	MULTIPLE DEPENDENT CLAIMS (if applicable) (37 CFR 1.16(d))			+ \$340=	0
			BASIC FEE (37 CFR 1.16(a))		770.00
			Total of Above calculations =		770.00
			Reduction by 50% for filing by small entity (Note 37 CFR 1.9, 1.27, 1.28).		385.00
				TOTAL	385.00

2. A verified statement to establish small entity status under 37 CFR 1.9 and 1.27

is enclosed

was filed in prior application number 08/532,046 and such status is still proper and desired. (37 CFR 1.28(a))

3. The Commissioner is hereby authorized to charge any fees which may be required under 37 CFR 1.16 and 1.17, or credit any overpayment to Account No. 15-0660. A duplicate copy of this sheet is enclosed.

4. A check in the amount of \$385.00 is enclosed.

5. Cancel in this application original Claims 3-10 of the prior application before calculating the filing fee. (At least one original independent claim must be retained for filing purposes.)

6. The inventor(s) of the invention being claimed in this application is (are):
Darrel L. Turner

7. This application is being filed by less than all the inventors named in the prior application. In accordance with 37 CFR 1.60(b), the Commissioner is requested to delete the name(s) of the following person or persons who are not inventors of the invention being claimed in this application:

8. Amend the specification by inserting before the first line the sentence: "This application is a [] continuation [x] division of application serial number 08/532,046, filed, September 21, 1995, (currently pending)."

9. New formal drawings are enclosed.

10. Priority of foreign application number _____, filed on _____ in _____ is claimed under 35 U.S.C. 119.

The certified copy has been filed in prior application number ___, filed ___

11. A preliminary amendment is enclosed.

12. The prior application is assigned of record to Fisher-Barton, Inc..

13. Also enclosed:

14. The power of attorney in the prior application is to: Theodore J. Long, David R.J. Stiennon, and Patrick J.G. Stiennon.

a. The power of attorney appears in the original papers in the prior application.

b. Since the power does not appear in the original papers, a copy of the power in the prior application is enclosed.

c. Address all future communications to: (May only be completed by applicant, or attorney or agent of record.)

David R. J. Stiennon
Lathrop & Clark
P. O. Box 1507
Madison, Wisconsin 53701-1507
(608) 257-7766

7/23/97

Date

David R. J. Stiennon

Signature

David R. J. Stiennon
Typed or printed name

Inventor(s)

Assignee of complete interest

Attorney or agent of record

Filed under 37 C.R.F. §1.34(a)

Registration number if acting under 37 CFR 1.34(a)

division.app

The undersigned hereby certifies that this document is being deposited with the United States Postal Service today July 23 1997 by the "Express Mail" service, utilizing express mail label number IB 783 899 743 addressed to: Assistant Commissioner for Patents, Washington, D.C. 20231.

LISA K. HEINDL

Name of Person signing

Lisa K. Heindl

Signature of person mailing this document

HIGH HARDNESS BORON STEEL ROTARY BLADE

FIELD OF THE INVENTION

The present invention relates to cutting blades in general, and to rotary mower and cutter blades which must resist impact loads in particular

5

BACKGROUND OF THE INVENTION

Safety and durability are of primary concern in the production of lawn mower blades, agricultural and off-highway rotary cutter blades. Experience with blade failures in the field has driven manufacturers to produce blades with low hardness to prevent catastrophic impact failure and related safety concerns. A reduction in blade hardness will tend to reduce the incidence of brittle failures, but it will also reduce yield strength and increase failures from bending, fatigue and wear.

Rotary cutter blade standards have been developed to provide desired levels of blade performance and safety. An industry standard of relevance to rotary cutter blades is the "Blade Impact Test" of ASAE S474, Agricultural Rotary Mower Safety. This test drops a mower with blades rotating onto a two-inch diameter steel stake. No part of the mower or mower component can fail in a way hazardous to anyone in the area. This test will determine the weak link, if any, in the machine and impacts the blade in a worst case manner.

Despite industry standards, rotary cutter blades may still fail, even when those blades satisfy standards with respect to material grade, heat treat process, and hardness and bend tests for ductility. Failures due to wear and bending beyond a usable shape are the most common. These failures are often the result of specifications which tend toward low blade hardness and high ductility at the sacrifice of yield strength and wear resistance. These type of failures cause inconvenience and expense. Fatigue failures can be reduced by blade design and by increased hardness. Increased hardness will also reduce failures due to bending and wear. Mitigating the benefits of increased hardness in conventional blades, is the tendency of the higher hardness material to suffer unacceptable catastrophic impact failure.

High carbon steels exhibit desirable higher levels of hardness, but present several drawbacks in rotary blade applications, such as in a mower or cutter. High carbon steels are difficult to work, and cause accelerated tool wear, adding to manufacturing costs. Furthermore, the higher hardness of the high carbon steels is coupled with reduced toughness. In addition, higher carbon and alloy content steel is more costly, and the annealing required adds further costs to the finished blade.

Boron steels, such as 10B38, have been used for lawn mower blades in lawn mowers. Boron steels exhibit desirable high levels of toughness, but in prior art mower blades, have been susceptible to wear at a greater than optimum rate. These blades also have less than optimal resistance to edge deformation, bending, and

fatigue, and do not perform as well in these respects as traditional higher carbon and alloyed steels.

Although the cost for a mower blade is small compared to the equipment cost, replacement of blades is a time-consuming operation. Hence the time between 5 blade replacements is best extended as much as possible.

What is needed is a rotary cutting blade which presents high hardness to increase wear life, while at the same time exhibiting acceptable toughness levels to insure satisfactory operation and passage of standard blade impact tests.

SUMMARY OF THE INVENTION

10 The rotary blade of this invention has elevated levels of toughness and hardness, achieved by heat treating a boron steel blank. The hardness of the boron steel is elevated by a marquenching or other suitable quench heat treatment to somewhere between 48 and 55 on the Rockwell Hardness Scale per ASTM E-18. If necessary, stress relief with heat may be applied. This high hardness reduces the 15 toughness of the material somewhat. However, because of the iron carbide morphology and distribution, once treated it is still at an acceptable level of toughness. The blade thus exhibits increased wear life due to its hardness, while offering salutary impact resistance and safety due to its high toughness.

20 It is an object of the present invention to provide a rotary blade which has hardness levels of between 48 and 55 on the Rockwell Hardness Scale.

It is an additional object of the present invention to provide a mower blade which exhibits high resistance to wear while at the same time being resistant to breakage

25 It is a further object of the present invention to provide a cutter blade which may be cold worked.

Further objects, features and advantages of the invention will be apparent from the following detailed description when taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic view of the process for manufacturing the rotary cutting blade of this invention.

FIG. 2 is an isometric view of an exemplary blade produced according to the process of FIG. 1.

FIG. 3 is a Scanning Electron Microscopy (SEM) Mag. 1000X photograph of a prior art material AISI 9255 46 Rockwell C Hardness.

FIG. 4 is a Scanning Electron Microscopy Mag. 5100X photograph of the sample of FIG. 3.

FIG. 5 is a Scanning Electron Microscopy Mag. 1000X photograph of a sample of the blade material AISI 10B38 of this invention hardened at 50 Rockwell C Hardness.

FIG. 6 is a Scanning Electron Microscopy Mag. 5100X photograph of the sample of FIG. 5.

DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring more particularly to FIGS. 1-6, wherein like numbers refer to similar parts, the process for producing rotary blades 20 such as for a mower is shown schematically in FIG. 1. A fragment of an exemplary disc mower 22 is shown in FIG. 2. Disc mowers are used to harvest grass crops, and employ multiple blades 20 which are fastened to rotating discs 24 which are driven in unison by a gear train 26 mounted to the mower bar 28. In many instances, the mower blades are positioned very close to the ground, to achieve maximum crop harvest, and thus are susceptible to impact with loose rocks, uneven ground, ant hills and the like. Because the blades 20 can be spun at rates of 3,000 rpm and higher, the blades are susceptible to wear by impact with ground and rocks, and also by particle erosion from pick-up of sand and loose soil particles.

The blades 20 in a mowing apparatus represent a proportionately small portion of the entire equipment cost. Nonetheless, it is desirable to increase the

interval between blade replacements required due to wear, as blade replacement is a time-consuming operation during which the machine is out of service.

There are two properties which are of chief concern in rotary cutter blade function: hardness and toughness. Hardness is measured on the Rockwell C Hardness Scale, and is a good measure of the material's resistance to wear. 5 Toughness can be measured by the Charpy Notched Impact Toughness Test per ASTM E-23, and is a good indication of how the material will react to impact, in particular giving a reading on the material's tendency to fracture or crack.

Conventional blade materials have typically relied on increased proportions of 10 carbon in the steel to increase the hardness. However, increased hardness due to increased quantities of carbon in carbon steel will yield a reduced toughness which may cause a blade made of the material to fail the blade impact test, and, more importantly, may cause a failure of the blade in use. Typical toughness of prior art carbon steel blades is 8-16 ft. lbs of energy at 40-45 Rc.

15 Salutary toughness performance has been obtained by the use of steel alloys containing quantities of boron, referred to herein as "boron steels." Conventional boron steels such as 10B38 have been used with a hardness which is less than desired, typically in the range of 40-45 Rockwell C. Charpy notched toughness at this hardness is about 20-30 ft. lbs. of energy.

20 The rotary cutter blade 20 of this invention is imparted with both high hardness and acceptable toughness by heat treating boron steel blanks to cause a metallurgical change in the blade structure. The treated blade has a hardness ranging between 48 and 55 inclusive on the Rockwell Hardness Scale and Charpy notch toughness of 15 ft. lb. or higher.

25 The manufacture of the blade 20 begins with a roll of boron steel sheet stock 30. The sheet stock is approximately the width of the final blade, and is a steel containing a quantity of boron, selected from the steels having the standard designations 10B36, 10B37, 10B38, 10B39, 10B40, 10B41, and 10B42, with 10B38 being employed in the preferred embodiment. It should be noted that steel alloys

having concentrations intermediate between the standard levels noted may also be used.

The moderate levels of carbon present in the boron steels employed allows the boron steel sheet stock to be formed into the desired blade shape in any conventional manner, but a preferred method, but a preferred method takes advantage of the ductility of the sheet stock 30 by cold forming the blade without heating.

The sheet stock 30 proceeds from the roll to a stamping press 32, where it is made into a desired shape between dies. A progression of stations may punch holes, trim to a desired shape and length, shear or coin the cutting edges and form the blade into final or near final configuration.

The final edge may be put on the blank in another station of the press, where shear beveling is used to sheer away the material to form an inclined, beveled edge. The relatively low carbon content of the boron steels used provides for advantageous shear bevelling. High carbon steels are not well-suited to sheer bevelling because of the tendency of the high carbon steel to rapidly degrade the tool. The boron steel is also more machinable than high carbon steels and may be machined to produce edges or other features in separate operations.

The formed and edged blade proceeds from the stamping press 32 to a heat treatment station 34, where the blades are subjected to a heat treating process to elevate the hardness of the blade into a desired range of between 48 and 55 Rockwell C. In one advantageous heat treating process, known as Marquenching, the formed blades are first heated to approximately 1560 °F. The heated blades are then quenched into a liquid salt bath at approximately 500 °F for about 20 seconds. The quenched blades are then withdrawn from the salt bath and allowed to air cool to room temperature. The cooled blades then proceed to a tempering station 36 where they are tempered at 300 °F as a stress relief.

Alternatively, the formed and edged blade may be subjected to an austempering heat treating process in which the blades are first heated to

approximately 1560 °F. The heated blades are then quenched into a liquid salt bath at approximately 500 °F for about 20 minutes. The quenched blades are then withdrawn from the salt bath and allowed to air cool to room temperature. This alternative process eliminates the need for further tempering. Scanning electron 5 micrographs of blade material treated according to this process is shown in FIGS. 5 and 6. The material illustrated is AISI 10B38 treated to a Rockwell Hardness of 50 C. The Charpy V-Notch toughness of the sampled material is 18 ft-lbs.

The micrographs were obtained by cross-sectioning the blade material with an abrasive cut-off saw, then mounting the material in a conductive medium. The 10 cut face is polished with a 0.3 micron polishing compound, and the surface is then etched in 2 percent Nital etchant. This etching erodes away the softer material and lets the harder material, primarily iron carbide particles, stand up above the surface.

For comparison purposes, a prior art blade material has been prepared and photomicrographed as shown in FIGS. 4 and 5. The material is AISI 9255, with a 15 hardness of 46 Rockwell C, and a Charpy V-notch toughness of 12 ft-lbs. The prior art blade material is of a type commonly used in Europe, and is used in imported disc mower blades.

The ratio of volume of iron carbide to volume of ferrite is lower in the 20 10B38 of this invention, than in the prior art AISI 9255 sample. However, there does not appear to be a significant difference in the morphology of the iron carbide particles. The greater volume of ferrite in the material of the present invention is believed to provide a structure with high toughness.

A higher carbon content material will tend to have higher volume of iron 25 carbide. However, increased carbon content will typically result in a loss of material toughness, depending on how the iron carbide is distributed in the structure.

The effect of this heat treating process is to elevate the hardness of the boron steel. There is of necessity a decline in the material toughness. However, because of the iron carbide distribution and morphology of the medium carbon steel, the

heat-treated steel still retains acceptable levels of toughness, while also being provided with superior hardness.

The blade 20 of this invention is thus tough enough to survive impact, while at the same time is hard enough to offer extended wear life.

5 It should be noted that although a disc mower blade has been disclosed, other rotary cutting blades may also be formed according to this invention, for example rotary lawn mower blades, flail blades, double edged blades, star blades, and other anvil-less rotary cutting arrangement blades may also be formed. Furthermore, although the Marquenching heat treatment process has been disclosed, other 10 conventional heat treatment processes may be used to increase the hardness of the boron steel blade into the range of 48 to 55 Rockwell C.

15 Although yielding a somewhat lesser toughness, a functional blade may be achieved by heat treating the formed blank in a conventional quench and temper process, involving quenching in oil, polymer or water, followed by tempering at approximately 300 ° F.

For example, a 10B38 blank heat treated with a water quench was determined to have a Rockwell Hardness of 50 RC and a Charpy notch test toughness of about 15 ft-lbs.

20 It is understood that the invention is not limited to the particular construction and arrangement of parts herein illustrated and described, but embraces such modified forms thereof as come within the scope of the following claims.

CLAIMS

I Claim:

1. A rotary cutting blade comprising a boron steel blank of a Rockwell C hardness of between 48 and 55 on the Rockwell Hardness Scale.
2. The rotary cutting blade of Claim 1 wherein the blank is formed of a boron steel selected from the group consisting of 10B36, 10B37, 10B38, 10B39, 10B40, 10B41 and 10B42 steel.
3. A process for forming a rotary cutting blade, comprising the steps of
 - a) working a blank of boron steel to have a bevelled cutting edge; and
 - b) heat treating the formed blank to elevate the blank hardness to between 48 and 55 on the Rockwell Hardness Scale.
4. The process of Claim 3, wherein the working step comprises cold-forming the blank of boron steel.
5. The process of Claim 3 wherein the blank is formed of a boron steel selected from the group consisting of 10B36, 10B37, 10B38, 10B39, 10B40, 10B41 and 10B42 steel.
6. The process of Claim 3 wherein the heat treating step comprises austempering the formed blank.
7. The process of Claim 3 wherein the heat treating step comprises marquenching the formed blank.

8. The process of Claim 3 wherein the heat treating step comprises quenching the formed blank in a liquid selected from the group consisting of oil, polymer, or water, and tempering the quenched blank.

9. The process of Claim 3 wherein the heat treating step comprises:

- a) heating the blank to approximately 1560 °F;
- b) quenching the heated blank into a liquid salt bath at approximately 500 °F for about 20 seconds;
- c) withdrawing the quenched blank from the salt bath and allowing it to air cool to room temperature; and
- d) tempering the cooled blank at approximately 300 °F.

5

10. The process of Claim 3 wherein the heat treating step comprises:

- a) heating the blank to approximately 1560 °F;
- b) quenching the heated blank into a liquid salt bath at approximately 500 °F for about 20 minutes; and
- c) withdrawing the quenched blank from the salt bath and allowing it to air cool to room temperature.

5

HIGH HARDNESS BORON STEEL ROTARY BLADE

ABSTRACT OF THE DISCLOSURE

A rotary blade for a mower or cutter is formed from boron steel, such as 10B38 steel, and is heat treated to yield high hardnesses of 48 Rockwell C or above. The blade has increased hardness because of the heat treating, but due to the alloy composition, is still sufficiently tough to perform satisfactorily as a cutting blade, in particular to pass conventional impact tests. Furthermore, the low carbon content of the blade makes cold working of the part practical.

Fig.1

Fig.2

DECLARATION AND POWER OF ATTORNEY

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name.

I believe I am the original, first and sole inventor of the subject matter which is claimed and for which a patent is sought on the invention entitled: **HIGH HARDNESS BORON STEEL ROTARY BLADE**, the specification of which

is attached hereto.

was filed on _____ as Application No. _____ and was amended on _____ (if applicable).

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above.

I do not know and do not believe that the same was ever known or used in the United States of America before my invention thereof, or patented or described in any printed publication in any country before my invention thereof or more than one year prior to this application, that the same was not in public use or on sale in the United States of America more than one year prior to this application, that the invention has not been patented or made the subject of an inventor's certificate issued before the date of this application in any country foreign to the United States of America on an application filed by me or my legal representatives or assigns more than twelve months prior to this application, that I acknowledge my duty to disclose information of which I am aware which is material to the examination of this application in accordance with Title 37, Code of Federal Regulations, §1.56(a), and that no application for patent or inventor's certificate on this invention has been filed in any country foreign to the United States of America prior to this application by me or my legal representatives or assigns, except as follows: None.

I hereby claim foreign priority benefits under Title 35, United States Code, §119 of

any foreign application(s) for patent or inventor's certificate listed below and have also identified below any foreign application for patent or inventor's certificate having a filing date before that of the application on which priority is claimed:

Priority

Prior Foreign Application(s)
Claimed

None. (Number)	(Country)	(Day/Month/Year Filed)	[] Yes	[] No

I hereby claim the benefit under Title 35, United States Code, §120 of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code, §112, I acknowledge the duty to disclose material information as defined in Title 37, Code of Federal Regulations, §1.56(a) which occurred between the filing date of the prior application and the national or PCT international filing date of this application:

None. (Application Serial Number)	(filing date)	(Status--patented, pending, abandoned)

(Application Serial Number)	(filing date)	(Status--patented, pending, abandoned)

And I hereby appoint Theodore J. Long, David R.J. Stiennon, and Patrick J.G. Stiennon, 122 West Washington Avenue, P.O. Box 1507, Madison, Wisconsin, 53701-1507, (608) 257-7766, Patent Office Registration Nos. 20648, 33212, and 34934, respectively, my attorneys with full power of substitution and revocation, to prosecute this application and to transact all business in the Patent and Trademark Office connected therewith.

Please direct all communications concerning this application to:

David R.J. Stiennon
Lathrop & Clark
P.O. Box 1507
Madison, WI 53701-1507
(608) 257-7766

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Full name of sole Inventor Darrel L. Turner

Inventor's Signature
Date 9/21/95
Residence Reeseville, Wisconsin
Citizenship United States of America
Post Office Address N 2242 River Oaks Road, Reeseville,
Wisconsin 53579