P165 -1135E

Metals in Soil and Vegetation in the Sudbury Area (Survey 2000 and Additional Historic Data)

September 2001

Ministry of the Environment

Metals in Soil and Vegetation in the Sudbury Area (Survey 2000 and Additional Historic Data)

September 2001

Report No. SDB-045-3511-2001

September 2001

Cette publication technique n'est disponible qu'en anglais.

Copyright: Queen's Printer for Ontario, 2001

This publication may be reproduced for non-commercial purposes with appropriate attribution.

Printed on 50% recycled paper including 20% post-consumer fibre

ISBN 0-7794-2102-7

PIBS 4138

Acknowledgments

Many people from the Ministry of the Environment contributed to the collection of the data that went into the production of this report. Prior to 1996, studies of the terrestrial environment in the Sudbury area were conducted by scientists from the Ministry's Northern Region, Sudbury District Office. From 1996 onward the responsibility for terrestrial monitoring province-wide was assumed by Phytotoxicology scientists of the Standards Development Branch, Ecological Standards and Toxicology Section. The scientists and technicians at the Ministry's Laboratory Services Branch analyzed the many thousands of samples collected from the Sudbury area over the years.

The principal author of this report is Laura Morra. Randy Jones prepared the maps. Project management was provided by George Crawford and Dave McLaughlin.

A special acknowledgment is owing to Bill McIlveen. Bill McIlveen prepared the first draft of this report, but retired from public service before the project was completed. Bill had a special fondness for the Sudbury area and his extensive personal and professional studies spanning more than two decades have contributed significantly to our current understanding of the impact of the mining industry on the terrestrial environment of the Sudbury basin. Good luck Bill, and thanks.

Purpose of This Report

This report has four specific objectives:

- 1) to publish the results of the Ministry's most recent soil and vegetation sampling programs in the Sudbury area;
- 2) to report some previously unreleased Ministry Sudbury soil and vegetation chemistry data and to clearly identify by reference previously published data;
- 3) to assess the soil and vegetation contaminant levels in the Sudbury area against existing Ministry environmental quality guidelines; and
- 4) to identify the need for further investigations and assessments in the Sudbury area.

The data summarized in this report spans the period 1971 to 2000. Some previously unreported data from 1971-1999, is included here to ensure all MOE data is available. Data from other historic Sudbury environmental investigations are referenced in this report, however they are stand-alone companion documents and are not discussed in detail in this report. To facilitate reading of this document, details regarding protocols on sampling methodology, preparation, and analyses have been referenced or provided as appendices. Technical reviewers can obtain these protocols from the reference documents.

All data in this report were obtained from samples collected from several Ministry surveys designed to evaluate impacts on the terrestrial environment of the historic and on-going base-metal smelting and refining operations within the Greater Sudbury area.

Data from annual collections of vegetation chemistry reflects changes in air quality over the last 30 years, whereas soil chemistry reflects how air contaminants have accumulated in soil in the Sudbury area over more than 100 years of mining, smelting, and refining activities. In the past, measurements of contaminants in vegetation were used by the Ministry as a measure of air quality, but these high historical concentrations do not reflect the improved environmental conditions that exist today. In contrast, the accumulation of contaminants in the soil is of significant current interest. The MOE is using these data as a planning tool to help determine where the important data gaps are and therefore where future soil sampling efforts should be focused. Much more soil sampling will be done over the next few years, both by the Ministry and by the major mining companies, to fill these knowledge gaps and refine our understanding of soil metal levels in the Sudbury area.

It is also important to realize that this report is not intended to provide an exhaustive interpretation of the implications of the vegetation and soil chemistry in the Sudbury area. Although it is obvious that historic vegetation damage and recent recovery has occurred in the Sudbury area and that soil metal levels are now elevated, it is important that more sampling be done to determine both the extent and severity of soil metal levels in the communities before a thorough evaluation of their potential effects can be undertaken. Although not the focus of this report, the data contained here as well as the data from essential additional sampling currently in progress will allow for an ecological and human health risk assessment to be conducted specifically for the Sudbury communities.

Executive Summary

Environmental impacts of historical emissions of sulphur dioxide and heavy metals from the Inco Ltd. and Falconbridge Ltd. smelters in Sudbury have been well documented. Local and provincial governments, university researchers, and industry have done extensive monitoring, assessment, and reporting on the environmental impacts on terrestrial and aquatic ecosystems.

This report summarizes the previously unreported extensive soil and vegetation chemistry data from the *Sudbury Regular Survey*, the *Sudbury Special Survey*, and the *Year 2000 Surface Soil Survey*. These surveys were conducted in the Greater Sudbury area by the Ministry of the Environment during the period 1971 to 2000. Additional details regarding these surveys are provided in the report.

The study concludes that extensive sampling of soil and vegetation has illustrated elevated levels of heavy metals (specifically nickel, copper, cobalt and to a lesser extent, selenium) and arsenic are common in the Sudbury area. They are particularly elevated in the vicinity of the three historic smelting centres of Copper Cliff, Coniston, and Falconbridge, as well as, the historic roast yards. Apart from the roast yards [11], the highest concentrations in soil consistently occur in the top-most layer of the soil, usually 0-20 centimetres in depth. This indicates air emissions are the source of the contamination. Even though many samples have been taken several times over the last 30 years, it is not possible with this data set alone to confidently identify contaminant trends over time due to changes in laboratory procedures, the uncertainty that precisely the same site was sampled, and the natural variability of these contaminants in soil.

Soil levels are compared to the Ministry's Guideline For Use at Contaminated Sites in Ontario (1996). The MOE soil clean-up *Guidelines* have been developed to provide guidance for cleaning up contaminated soil. The *Guidelines* are not legislated regulations. Also, the *Guidelines* are not action levels, in that exceeding the level does not automatically mean that a clean-up must be conducted. The *Guidelines* were prepared to help industrial property owners decide how to clean-up contaminated soil when property is sold and/or the land-use changes. The value of the *Guidelines* to the Sudbury area report is to provide triggers that may suggest the need for additional investigation or assessment of soil contamination.

This study also concludes that additional sampling is required to achieve five objectives:

- 1) determine the soil metal and arsenic levels in residential communities adjacent to the smelting centers;
- 2) determine the soil metal and arsenic levels in industrial lands adjacent to residential communities:
- 3) contribute to the development of an ecological and human health risk assessment for the Sudbury area communities;
- determine if the natural background levels of these contaminants are higher in the Sudbury basin due to the presence of base metal ore bodies; and
- 5) determine the true geographic extent of the metal and arsenic atmospheric deposition, based on the natural background levels.

Table of Contents

ACKN	OWLEI	DGMENTS	. 1
PURP	OSE OF	THE REPORT	ij
EXEC	UTIVE	SUMMARYi	111
I.	INTRO	DDUCTION	1
П.	FIELD A. B. C.	INVESTIGATIONS Sudbury Regular Survey 1999 Sudbury Special Survey 1971-1997 Year 2000 Surface Soil Survey	3
III.	ANAL A.	YTICAL RESULTS Sudbury Regular Survey 1999 i) Results of Soil Analysis ii) Results of Vegetation Analysis	5
	B. C.	Sudbury Special Survey 1971- 1997 i) Results of Soil Analysis	7
	C.	i) Results of Soil Analysis	
SUMN	IARY A	ND DISCUSSION 1	5
LITER	ATURE	CITED 1	8
APPEN	NDIX A	- Data Tables A1-A7	2
APPEN	NDIX B	- Figures B	1
APPEN	NDIX C -	- Maps	2
APPEN	DIX D	- Changes in Laboratory Practices	2
APPEN	NDIX E -	Derivation and Significance of the MOE Soil Remediation Criteria E1-E	2
APPEN	IDIX F -	Derivation and Significance of the MOE "Ontario Typical Range" Soil Guidelines F1-F	2
APPEN	IDIX G	- Derivation and Significance of the "Upper Limits of Normal" Contaminant Guidelines G	1
APPEN	IDIX H -	- Summary of MOE Criteria, "OTR" and "ULN" Values - Selected Contaminants H1-H	2

I. INTRODUCTION

The impacts of historical emissions of sulphur dioxide and heavy metals from the Inco Ltd. and Falconbridge Ltd. smelters in the Sudbury area are well known [3, 5, 21, 23]. Extensive monitoring and assessment of the environmental impacts on terrestrial and aquatic ecosystems has been conducted by local and provincial governments, university researchers, and industry. Early MOE investigations, conducted by the former Northern Region Sudbury District Office, focused on the effects of sulphur dioxide on vegetation [6, 7, 10, 14]. The incidence of acute vegetation injury caused by this gas has declined [1, 9, 13, 16] and the benefits of reductions in sulphur emissions are evident in the extent of vegetation recovery in the Sudbury area. More recently, increasing emphasis has been placed on the accumulation of heavy metals in soil, particularly copper and nickel, and their associated environmental effects [2, 8, 11, 12, 17, 18, 20, 22, 25].

Since 1996, the Ecological Standards and Toxicology Section (formerly the Phytotoxicology Section) of the Standards Development Branch has been responsible for terrestrial environmental monitoring in the Sudbury area, with an emphasis on delineating the zone of soil contamination. Improvements in air quality, in conjunction with land reclamation efforts, have significantly improved the extent of vegetation recovery in the most severely impacted areas [3, 4, 21].

This report summarizes the previously unreported extensive soil and vegetation chemistry data from the Ministry's Sudbury Regular Survey, the Sudbury Special Survey, and the Year 2000 Surface Soil Survey that were conducted in the Greater Sudbury area during the period 1971 to 2000. Although some of the earlier vegetation data have been summarized in previously released MOE reports [18], this is the first time that unreported historic soil and vegetation data has been collated with the most recent data and evaluated to illustrate the regional distribution of contaminants in surface soil. These data form the basis of an understanding of the extent and severity of surface soil heavy metal contamination associated with the mining industries in Sudbury. In addition, the data and interpretation against the Ministry Guideline, provide essential guidance for where additional sampling and assessment is required.

Information relating to the roast yards that operated historically in the Sudbury area has been previously published in 1998 [11], and has not been incorporated into this report. In addition, this report does not include sporadic data from soil and/or vegetation sampling that was conducted in response to complaint investigations on private residential properties. Information collected on private residential properties is privileged to the property owner, and all complaint investigation reports have been completed and provided to the complainants.

II. FIELD INVESTIGATIONS

The soil and vegetation data discussed in this report originated from three integrated but separately structured surveys: 1) the *Sudbury Regular Survey*, 2) the *Sudbury Special Survey*, and 3) *Year 2000 Surface Soil Sampling*.

1) The Sudbury Regular Survey consisted of a set of 21 widely-distributed sample sites

(Appendix B - Figure 1). Monitoring activities in this project were periodically revised with respect to sampling frequency and species sampled. The locations of sample sites for the *Sudbury Regular Survey* reflect the program's original objective, which was (primarily) to monitor the impacts of gaseous pollutants (i.e., SO₂) emitted from the older smelter operations on sensitive species of vegetation in the Sudbury region. Therefore the sample sites tended to be spread over a large area. The monitoring was initiated in 1970 prior to the commissioning of the Inco superstack in 1973. Data resulting from this sampling program from 1970 to 1984 have been previously published [18], hence only the results from the 1999 sampling are presented in this report.

- The Sudbury Special Survey was initiated in 1971, also before the superstack became operational. The sampling design followed a structured protocol whereby up to 92 sample sites were established along the cardinal compass directions at increasing distances from each of the three smelting centres of Copper Cliff, Coniston, and Falconbridge. Although the sample sites were focused on the three centres of production, some sites extended out to 30 km distance. None of the Sudbury Special data has been previously published, therefore all data is summarized in this report.
- 3) The Year 2000 Surface Soil Survey is the most recent work. The soil data from the Sudbury Regular and Sudbury Special surveys were combined to identify preliminary data gaps and served as the basis for the additional sampling at 103 sites, that was carried out in 2000.

During these on-going soil and vegetation surveys, the sample preparation method, the analytical methodologies, and the laboratory detection limits changed around 1984. These changes were a result of analytical equipment acquisition and implementation of improved laboratory quality control and assurance protocols by the MOE. More detailed information relating to changes in analytical precision, accuracy, reliability, reproducibility, validity, sensitivity and/or potential for errors is provided in Appendix D. Due to the change in sample preparation and improvements made to analytical methods and detection limits, data from the same site cannot be confidently compared over time. In addition, early sample sites did not benefit from the precision of geo-referencing technology available today and so subsequent samples may not have been collected from precisely the same sites, which further erodes the confidence of time-trend data. In consideration of these changes, it is believed that data presented within this report provides a reasonably accurate picture of current and historic soil contaminant conditions in the Sudbury area.

Following 1984, all processed samples were forwarded to the MOE Laboratory Services Branch where they were analyzed for aluminum(Al), barium (Ba), beryllium (Be), cadmium (Cd), calcium (Ca), chromium (Cr), cobalt (Co), copper (Cu), iron (Fe), lead (Pb), manganese (Mn), magnesium (Mg), molybdenum (Mo), nickel (Ni), strontium (Sr), vanadium (V), and zinc (Zn) using the MOE Laboratory Services Branch accredited analytical method E3073L1. Antimony (Sb), arsenic (As), and selenium (Se) were analyzed using the MOE Laboratory Services Branch accredited analytical method E3245L1. Nickel, copper, cobalt, selenium and arsenic were the elements of interest for analysis based on historic knowledge of the smelting industry and the contaminants that are produced during operation. Due to improvements in analytical equipment and procedures, results for more than 20 metals can be acquired simultaneously during the ICP-AES metals scan.

All data in this report are dry weight totals, that is, the maximum amount of each element that can be leached by the acid used by the laboratory to prepare the sample for analysis. Determining total concentrations in soil and vegetation samples is the Ministry's standard operating procedure. Contaminant speciation and bioavailability tests were not undertaken on the soil samples used in this report. When the proposed 2001 soil sampling programs are complete, and a better understanding of the extent of the soil metal levels in the Sudbury area is obtained, then selected samples will be submitted for speciation and bioavailability analysis.

Interpretation of the soil and vegetation chemistry was based on comparisons with data from the control locations at Blind River and Mattawa as well as with MOE guidelines. Vegetation data were compared with *Upper Limit of Normal* (ULN) Guidelines established in 1989 [19] (Appendix G). Soil data were compared with Tables A and F of the *Guidelines for Use at Contaminated Sites in Ontario*, established in 1997 [21] (Appendix E) or the *Ontario Typical Range* (OTR₉₈) established in 1993 [20] (Appendix F) where soil guidelines were not available. All results are reported as dry weight concentrations in $\mu g/g$ (micrograms/gram, or ppm, parts per million).

The Table F criteria represent background soil concentrations obtained from an MOE province-wide parkland sampling program. Concentrations that exceed the Table F criteria are usually indicative of a pollution source. The Table A criteria are the concentrations that must be met when a contaminated property is cleaned up for the purpose of residential or parkland re-development. The Table A criteria are effects-based and were derived to protect both human and ecological health, whichever is potentially affected at the lowest concentration. For example, the current Table A criterion for lead is 200 μ g/g which was set to protect children from the potentially harmful effects of long-term exposure to lead. The criterion for nickel is 150 μ g/g, but this is set to protect sensitive plant species because plants are affected at lower soil nickel levels than it takes to affect human health. Table A criteria are not available for all chemical parameters, since for some elements there is insufficient scientific information available to establish effects-based values (e.g. strontium), or the element is considered non-toxic even at relatively high concentrations (e.g. iron), or the element is a plant nutrient (e.g. magnesium). A summary of the Table F, Table A, OTR₉₈, and ULN guidelines used in this report is provided in Appendix H.

A. Sudbury Regular Survey 1999

In July, 1999, Phytotoxicology scientists of the MOE Standards Development Branch, Ecological Standards and Toxicology Section, collected samples of soil and vegetation at the 21 previously established sample sites of the *Sudbury Regular Survey*. The location of these sample sites are illustrated in Figure 1 (Appendix B). Most of the sites were initially selected in 1970, with additional sites added in 1972 and 1973.

Soil, birch foliage, and grass forage were collected at each location in 1970, 1971, 1972, 1973, 1974, 1975, 1976, 1979, 1984, and 1999. Since 1993, standardized soil sampling procedures were utilized [15]. Sudbury Regular Survey data current to 1987 have been previously published [18], therefore, only the most recent data from soil sampling conducted in the summer of 1999 is included in this report.

B. Sudbury Special Survey 1971- 1997

The Sudbury Special Survey was initiated in 1971. In that year, soil, trembling aspen foliage, and forage grass was collected (as available) at 92 sample locations (Appendix C - Maps 1 and 2). The sample sites were located along transects on the cardinal compass directions from each of the three smelters operating at that time (Copper Cliff, Coniston, and Falconbridge). Some allowance was made for accessibility via the existing road network, but a number of sites were located in places that could only be reached by hiking overland. To the extent possible and practical, sample sites were positioned 0.5, 1, 2, 3, 4, 5, 10, 15, 20, and 25 miles from the smelters along the north, south, east, and west transects. Because of the relative positions of the smelters, the sample locations coincided along the east-west transect between Copper Cliff and Coniston, and along the north-south transect between Coniston and Falconbridge.

The sampling was repeated in 1976, 1981, 1992 and 1997. Over time, some sample sites were lost to changing lands use, such as construction of houses or other buildings associated with urbanization, road relocation, or closure of road or properties to public access. By 1997 the number of sample sites in the *Sudbury Special Survey* was reduced to 63.

Notably, vegetation was not available at all sites in 1971 but small trees and forage were sufficiently abundant at all sample sites in the more recent collections either because of land reclamation efforts or natural colonization of the bare sites over time. In 1971, soil was collected from 0 to 2.5 cm and from 5 to 10 cm. In subsequent years, the sampling was carried out at depth intervals of 0 to 5, 5 to 10, and 10 to 15 cm, which are now standard Phytotoxicology soil sampling protocols. Single samples were collected at each site in 1971. Sampling was conducted in triplicate in 1976 and 1981 and in duplicate in 1992 and 1997. Analysis of the samples included nickel, copper, cobalt, arsenic, iron, sulphur, selenium, and zinc in all years. Additional elements were available for analysis in later years due to improved analytical techniques.

Unlike the data from the Sudbury Regular Survey, the results from the Sudbury Special Survey have not been formally published in an MOE report. The Sudbury Special data was supplementary to the Sudbury Regular data, and although it added to the understanding of metal loadings in the Sudbury area it did not represent new or significant revelations. In addition, the Sudbury Special data was circulated among government, academic, and industrial organizations, was used in local environmental workshops and symposiums, and was an important data base for the Sudbury Land Reclamation Program.

C. Year 2000 Surface Soil Survey

In early 2000, data from the Sudbury Regular and Sudbury Special surveys were assessed to identify any geographic data gaps. Only the more recent data from sites that were accurately located were used for this preliminary exercise. While this assessment corroborated the pattern anticipated from general monitoring experience in the area and provided reasonable preliminary estimates of the contaminant distribution in soil, it also illustrated that some areas had relatively poor coverage and

therefore areas where additional samples were needed.

In the summer of 2000, surface soil samples (0-5 cm) were collected at 103 additional sites in the Sudbury area (Appendix C - Maps 1 and 2). The sampling followed standard Phytotoxicology protocols [15] and the samples were analyzed for a suite of chemical elements that included nickel (Ni), copper (Cu), cobalt (Co), arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb), molybdenum (Mo), selenium (Se), vanadium (V), zinc (Zn), calcium (Ca), magnesium (Mg), iron (Fe), aluminum (Al), manganese (Mn), sulphur (S), strontium (Sr), beryllium (Be), and barium (Ba).

Due to the presence of an extensive naturally occurring nickel and copper ore bodies in the Sudbury area, some questions have been raised about the applicability of the Table F guideline for nickel (43 μ g/g) and copper (85 μ g/g) in the Sudbury area. One approach to addressing this question has been to utilize the nickel results from previous sampling stations for which there is soil profile data, 0-5, 5-10, 10-15 cm depths, to determine the background concentrations for the area. Assuming the contamination is from areal deposition, the concentrations will be highest in the surface soil and will decrease with depth. Therefore, the depth soil results should more closely represent natural background nickel and copper concentration.

III. ANALYTICAL RESULTS

A. Sudbury Regular Survey 1999

The analytical results for the 1999 Sudbury Regular Survey are summarized in Tables 1 to 3. The results for soil (Table 1), birch foliage (Table 2), and grass forage (Table 3) samples are briefly discussed below.

i) Results of Soil Analysis

In 1999, only 8 of 20 elements, those being arsenic, cadmium, cobalt, chromium, copper, nickel, selenium, and strontium, exceeded the MOE Table F background-based soil guidelines (Table 1). Of these eight elements, only nickel, copper, cobalt, and arsenic exceeded the MOE Table A effects-based soil guidelines at the sites closest to Copper Cliff and Falconbridge, specifically Garson, Skead, Ramsey Lake, and Tilton Lake. In general, the higher metal concentrations were found in samples from the top of the soil profile, which is consistent with aerial deposition. The highest nickel (1,000 µg/g) and copper (980 µg/g) concentrations were found at Ramsey Lake, while the highest cobalt (57 µg/g) and arsenic (32 µg/g) concentrations were found at Tilton Lake and Skead, respectively. For the most part, the pattern of soil metal contamination below 5 cm followed the surface concentration pattern; however, the nickel concentration at Callum in 1999 was slightly elevated throughout the depth profile. Soils at this location are particularly sandy (near a sand and gravel pit). The lack of organic matter and clay particles, combined with the relatively large pore size of sand, provide very little chemical or mechanical binding power so that contaminants move more readily through sandy soil.

Calcium concentrations in Sudbury area soils were low but within the normal concentration range

for northern Ontario soils. The lowest mean soil calcium concentrations occurred in soils from Skead and Chiniguichi Lake area. The significance of these sites includes the fact that Skead was historically one of the sites most heavily impacted by SO₂ and calcium would have been more readily leached from the soil by inputs of sulphuric acid. Chiniguichi is a considerable distance from Sudbury but it is located directly downwind of the smelters, the soils are known to be poorly buffered, and lakes in that area have become acidic.

Despite high SO_2 emissions over the past six decades, little evidence of sulphur accumulation in soil was observed in 1999. Sulphur is more reactive in the soil than most of the heavy metals and a lower concentration of sulphur in the soil may be due to the implementation of SO_2 abatement programs. However, the unit of measurement for sulphur in soil is percent and not parts per million, so the ability to measure relatively minor changes is compromised. The only site in 1999 with a soil sulphur concentration above the OTR_{98} was Ramsey Lake, which is likely due to the frequent SO_2 fumigations that were measured historically in the Sudbury Basin.

The concentrations of the remaining elements (aluminum, barium, beryllium, calcium, iron, lead, magnesium, manganese, molybdenum, strontium, vanadium, and zinc) did not exceed background levels. This was anticipated because the smelters at Sudbury are not known to emit these elements in substantial quantities.

ii) Results of Vegetation Analysis

In 1999, only 7 of 20 elements, those being cadmium, chlorine, iron, magnesium, nickel, selenium, and zinc, exceeded the Upper Limit of Normal (ULN) guidelines for unwashed rural tree foliage (Table 2). In 1999, only 3 of 20 elements, those being chlorine, iron, and nickel, exceeded the ULN guidelines for unwashed grass forage (Table 3).

Only one site in 1999 had elevated iron (520 μ g/g) in both tree foliage and grass forage (Tables 2 and 3). These concentrations occurred at Temagami, which is an area known for its iron deposits.

Four sites had nickel concentrations above the ULN guideline of 30 μ g/g in paper birch foliage (Table 2). These included Garson, Rayside, Skead, and Tilton Lake. The highest concentration was 50 μ g/g nickel at Garson. Only one forage collection site, Tilton Lake (27 μ g/g) had a nickel concentration above the ULN guideline of 25 μ g/g in grass forage (Table 3).

The zinc concentrations measured in paper birch foliage in 1999 exceeded the ULN guidelines at 18 of the 21 sites sampled (Table 2). Birch species are known to accumulate zinc to higher levels than most other species growing in the same soils. No obvious distribution pattern relative to the Sudbury area smelters was noted, and the smelters are not known to emit zinc in substantial amounts. The zinc concentrations in birch foliage measured at over half of the sites were higher in 1999 than in any of the previous years. There is not a readily apparent explanation for this, but the trend did not extend to the grass forage samples (Table 3).

Despite the general publicity and magnitude of sulphur dioxide emissions from the Sudbury area

smelters, the number of sites where excessive levels of sulphur occur in vegetation is fairly limited, based on the present survey. However, like soil, the concentrations of sulphur are measured in percent (as opposed to $\mu g/g$ for other elements) and substantial quantities of the element must be absorbed by the foliage before significant changes in the foliage chemistry become apparent. Also, the process of development of sulphur dioxide-induced injury to plant foliage does not necessarily require the uptake of large amounts of SO_2 into the tissues. None of the sites sampled in 1999 had sulphur concentrations above the ULN guideline.

For the remaining elements, the measured concentrations indicate background levels. This would be anticipated because the Sudbury smelters are not known to emit these elements in substantial quantities. The elements which had strictly background concentrations in tree foliage include aluminum, arsenic, barium, boron, beryllium, calcium, cobalt, chromium, iron, potassium, lead, manganese, molybdenum, strontium, sulphur, and vanadium. In addition to these elements, cadmium, magnesium, selenium, and zinc also had background concentrations in grass forage.

B. Sudbury Special Survey 1971 - 1997

Because of the large amount of data obtained from the *Sudbury Special Survey* (Tables 4 to 27), it is not practical to discuss the analytical data in detail. The following summaries are provided mainly as general observations and patterns. See Maps 1 and 2 for soil and vegetation sampling locations (Appendix C).

i) Results of Soil Analysis

The concentrations of elements measured in the soil samples are summarized in Tables 4 to 16.

Arsenic

The highest arsenic concentration measured was $510 \,\mu\text{g/g}$ at Site 23 (1 mile north of Falconbridge) in 1976 (Table 4), although by 1992 the soil arsenic level at the same sample site had fallen to $57\mu\text{g/g}$. Other sites with arsenic concentrations greater than $200 \,\mu\text{g/g}$ included Sites 22 (290 $\,\mu\text{g/g}$), 24 (350 $\,\mu\text{g/g}$), 29 (470 $\,\mu\text{g/g}$), and 30 (350 $\,\mu\text{g/g}$), all of which are located within 3 km of the Falconbridge smelter. By comparison, the maximum arsenic concentration near Copper Cliff was 290 $\,\mu\text{g/g}$ found at Site 97 in 1971 (1 mile west of the smelter). The pattern of background-based Table F guideline exceedences (17 $\,\mu\text{g/g}$) follows closely the pattern of effects-based Table A guideline exceedences due to the small difference between the two guidelines. About half of the sites exceeded the background-based Table F guideline of 17 $\,\mu\text{g/g}$ in 1971.

Surface soils had higher concentrations of arsenic than did the samples from the lower soil profiles.

Cobalt

The maximum cobalt concentration of 788 μ g/g was found at Site 99 in 1971 (3 miles west of Copper Cliff) with concentrations decreasing with depth (Table 5). Nearly one third of the sites sampled exceeded the cobalt Table F guideline of 21 μ g/g. Fewer sites exceeded the cobalt Table A guideline of 40 μ g/g (Table 5). The highest concentrations of cobalt occurred near Copper Cliff,

although soil cobalt levels were proportionately elevated within three miles of Falconbridge.

Copper

Only eleven of 92 sites did not exceed the Table F (85 μ g/g) guideline at some point between 1971 and 1997 (Table 6). The Table A guideline was exceeded at approximately half of the sites sampled in 1997. In 1997, the highest copper concentration measured was 2,800 μ g/g (Site 96, 0.5 miles west of Copper Cliff). The other sites where copper exceeded 1,000 μ g/g were Site 72 (0.5 miles east of Copper Cliff, 1,600 μ g/g, 1997), Site 97 (1 mile west of Copper Cliff; 1,900 μ g/g, 10-15 cm, 1997), and Site 106 (0.5 miles south of Copper Cliff; 1,300 μ g/g, 0-5 cm, 1992).

The highest copper concentrations were encountered in the surface horizon and decreased with depth. Sites within about 5 km of Copper Cliff had copper concentrations considerably greater than sample sites elsewhere in the Sudbury area.

Iron

Five sites of 92 sampled had soil with iron concentrations above the OTR₉₈ guideline in one or more years (Table 7). Two of these 5 sites had single year/depth exceedences, while the remaining three sites had multiple depth exceedences. At Site 97, located 1 mile west of Copper Cliff, the surface soil iron level exceeded the background guideline in 1971, 1986, 1992, and 1997. The high concentrations were particularly evident throughout the soil profile in the two most recent collections.

Nickel

A large proportion of the soil samples collected for the Sudbury Special Study contained nickel in concentrations above both the Table F and Table A guidelines (Table 8). In 1997, every surface soil site except two (Sites 35 and 70) exceeded the Table F guideline of 43 μ g/g. The majority of these sites also exceeded the Table A guideline of 150 μ g/g. In earlier years, the frequency of exceedences were lower. The highest nickel concentrations were found in the surface soil and decreased with depth.

The highest nickel concentrations were measured in 1997 with a maximum concentration of 2,300 μ g/g occurring at Station 72 (0.5 miles east of Copper Cliff). The most conspicuous soil nickel contamination was observed in close proximity to the Copper Cliff smelter.

Selenium

Selenium concentrations in soil exceeded the Table A guideline of $10 \mu g/g$ at two sites (Table 9); these were Sites 96 and 97 (0.5 and 1 mile west of Copper Cliff, respectively) between 1986 and 1997. Surface soil (0-5 cm) at this site had selenium concentrations ranging from 11 to 33 $\mu g/g$, with the highest concentration being found in 1986. Sub-surface concentrations exceeded the Table A guideline in 1986 and 1997 but in the other years, the concentrations were much lower indicating considerable heterogeneity of the soil. The highest concentration at Site 97 was found at the 10-15 cm level in 1997.

A pattern in selenium concentrations is noted when the data above background but below the Table A guideline from sites surrounding Copper Cliff are reviewed. There are three sets of contiguous

sites leading from Copper Cliff to Lively (Sites 96 to 100), Belanger (Sites 87 to 91) and Sudbury (Sites 72, 74 and 75) respectively that roughly follow the transportation system. This suggests that the use of waste materials or spent ore from tailings may have been used in the construction or maintenance of these roads and rights of way and are a contribution to the overall distribution of this metal, and possibly others, within the local environment.

Sulphur

In 1971, approximately half of the surface soils exceeded the OTR₉₈ guideline (Table 10). Neither Table A nor Table F guidelines have been developed for sulphur. The maximum concentration of 1.7% sulphur was measured at Site 97 (1 mile west of Copper Cliff) in 1986. That site had elevated sulphur concentration throughout the soil profile fairly consistently over the study period.

Zinc

The zinc concentrations measured in the soil exceeded the Table F guideline of $160 \mu g/g$ at five sites (Table 11). These included Sites 46, 59, 63, 66, and 87. There is no consistent pattern of elevated zinc in soil in relation to the three smelters.

Aluminum

The aluminum concentrations measured in the soil exceeded the OTR₉₈ guideline of 30,000 μ g/g aluminum (neither Table A nor Table F guidelines have been developed for aluminum) at two locations (Table 12). These included Sites 62 and 89. There is no consistent pattern of elevated aluminum in soil in relation to the three smelters.

Cadmium

The cadmium concentrations measured in soil exceeded the Table F guideline of 1.0 μ g/g at 22 of 92 sites (Table 12). No sample sites exceeded the Table A effects-based guidelines.

Calcium

No sample sites exceeded the OTR₉₈ guideline of $55,000 \,\mu\text{g/g}$ calcium (Table 13). Neither Table A nor Table F guidelines have been developed for calcium because this element is a major plant nutrient.

Lead

The lead concentrations measured in soil exceeded the Table F guideline of $120 \mu g/g$ at 5 of 92 sites sampled (Table 14). These included Sites 22, 87, 95, 101, and 113. Four of these sites exceeded the Table A effects based guideline of $200 \mu g/g$, with the highest concentration (1,000 $\mu g/g$) occurring at Site 87 (5-10 cm, 1986). Four of the five sites are within the vicinity of the Copper Cliff smelter.

Magnesium

The magnesium concentrations measured in the soil exceeded the OTR₉₈ guideline of 20,000 μ g/g at one site, Site 37 (neither Table A nor Table F guidelines have been developed for magnesium)(Table 15). Although this site is located within 1 mile of the Falconbridge smelter, the value only slightly exceeded the OTR₉₈ guideline and no consistent concentration gradient was evident relative to the three smelters.

Other Elements

In 1997, soil samples were also analyzed for barium, beryllium, manganese, molybdenum, strontium, and vanadium (Table 16). Exceedences occurred at only five sites. Site 44 had a molybdenum concentration (4.2 μ g/g) above the Table F guideline of 2.5 μ g/g, Site 63 had chromium concentrations (72 to 74 μ g/g) above the Table F guideline of 71 μ g/g, Site 97 had both barium and chromium above Table F guidelines of 210 μ g/g and 71 μ g/g, respectively, and Sites 102 and 103 had chromium concentrations above the Table F guideline. All other metals were not elevated above background, which was anticipated because the smelters at Sudbury are not known to emit these elements in substantive quantities.

ii) Results of Vegetation Analysis

The concentrations of chemicals measured in the vegetation samples are summarized in Tables 17 to 27.

Arsenic

Elevated levels of arsenic in vegetation were found to be much more prevalent in trembling aspen foliage than in grass forage (Table 17). In part, the differences between species may be related to the respective guidelines (2 μ g/g arsenic for tree foliage and 8 μ g/g arsenic for forage). The highest arsenic concentrations (12 μ g/g in aspen, 20 μ g/g in forage) occurred at Site 31, located 2 miles northeast of the Falconbridge smelter in 1976, and Site 29, located 0.5 miles northeast of Falconbridge in 1976, respectively.

Cobalt

The concentrations of cobalt in vegetation were conspicuously greater in trembling aspen foliage than in grass forage samples (Table 18). It must be noted that there are different guidelines for tree foliage and for grass forage. The maximum concentration of cobalt in aspen foliage was $17 \mu g/g$ (Site 82, about 10 miles east of Copper Cliff) in 1971 and in grass forage was $12.7 \mu g/g$ (Site 29, 0.5 miles northeast of Falconbridge) in 1976.

Copper

The concentrations of copper in vegetation were greater in trembling aspen foliage than in grass forage samples (Table 19). The highest copper concentrations found in aspen was $360 \,\mu\text{g/g}$ in aspen (Site 95, 20 miles north of Copper Cliff) and 220 $\,\mu\text{g/g}$ in forage (Site 96, 0.5 miles west of Copper Cliff). Both high concentrations occurred in 1976. The two high values were notably higher than most of the other concentrations, even at these same locations in other years.

Iron

The concentrations of iron in the vegetation samples ranged widely (Table 20). The iron concentrations were most frequently elevated in the 1971 and 1976 collections. The highest concentrations measured were $5,500 \mu g/g$ in aspen and $3,200 \mu g/g$ in forage in 1981; both at Site 114, 25 miles south of Copper Cliff.

Nickel

Nickel concentrations in vegetation frequently exceeded the ULN guideline (Table 21). The highest nickel concentrations were 340 μ g/g and 240 μ g/g, respectively, in aspen and forage. Both high levels occurred in 1976. The aspen sample was collected 2 miles east of Coniston (Site 64) while the forage was collected 1 mile south of Copper Cliff (Site 107).

Selenium

Samples were not analyzed for selenium in 1971 (Table 22). The highest selenium concentration was found in aspen (5.3 μ g/g) at Site 71 (about 25 miles east of Coniston) and in forage (4.1 μ g/g) at Site 107 (1 mile south of Copper Cliff). Both of these occurred in 1976.

Sulphur

As might be anticipated following the commissioning of the superstack in 1972, the concentrations of sulphur in both aspen foliage and forage declined steadily with time until there were no exceedences in 1997 (Table 23). Forage concentrations exceeded the sulphur guideline of 0.5% at only 6 locations, all in 1971.

Zinc

Zinc is known to accumulate naturally in the foliage of some species, notably poplars, willow, and birch. No guideline specific to these species has been developed, however, the zinc concentrations observed in tree foliage in the Sudbury area were consistent with typical background levels encountered elsewhere in the province. Four samples of grass forage had zinc levels in excess of the $100 \, \mu g/g \, ULN$ guideline for forage (Table 24). These few exceedences did not appear to be related to the smelters.

Aluminum, Cadmium, Calcium, Lead, and Magnesium

Vegetation data for aluminum, cadmium, and calcium are summarized in Table 25 while lead and magnesium data are summarized in Table 26. For the duration of the *Sudbury Special Survey*, no vegetation samples had aluminum, cadmium, lead, or magnesium concentrations above the ULN guidelines for unwashed tree foliage and grass forage. These results are expected, since the smelters at Sudbury are not known to emit these elements in substantial quantities.

Other Elements

In 1997, vegetation samples were also analyzed for barium, beryllium, boron, chlorine, chromium, potassium, manganese, molybdenum, strontium, and vanadium (Table 27). Of these elements, only foliar chlorine concentrations exceeded the ULN guideline of 0.15%. These results are anticipated because the smelters at Sudbury are not known to emit these elements in substantial quantities.

C. Year 2000 Surface Soil Survey

i) Results of Soil Analysis

The analytical results for the soil samples collected in 2000 are summarized in Table 28. Soil levels for the following 10 metals in all 103 samples never exceeded their respective background levels and are discussed no further in this survey: aluminum, barium, beryllium, calcium, chromium, magnesium, manganese, vanadium, zinc and strontium.

Six other metals including iron, molybdenum, lead, cadmium, cobalt and selenium occasionally and sporadically exceed either their respective Table F (background) or OTR_{98} values. Iron exceeds the OTR_{98} at Site 370 and 393 with 36,000 and 45,000 µg/g respectively. Molybdenum exceeds the Table F background value at Site 393 with 3.6 µg/g. Lead exceeds the Table F background value at only two sites, Site 358 with 140 µg/g and Site 389 with 160 µg/g. Cadmium marginally exceeds its background value at five sites (337,341,351,353,and 382). The data set for selenium is incomplete due to an error in ordering tests from the analytical laboratory. Available selenium data indicates that it exceeds background only at 8 of 103 sites. Cobalt exceeds its background level at 8 of 103 sites in this study with the highest value of 36 µg/g observed at Site 411, west of Coniston.

Soil nickel, copper and arsenic concentrations exceeded their Table F guidelines at most sites, and exceeded their respective Table A guidelines to varying degrees and frequencies. Each of these is discussed in more detail below. It is important to note that in all cases the effects-based Table A guideline for these three metals and arsenic is for the protection of sensitive plants.

Nickel

Nickel is the most widely dispersed metal in soil with respect to elevations above the provincial background (43 μ g/g). The 43 μ g/g guideline is exceeded from about Espanola on the west to nearly Hagar on the east, a distance of about 110 km in the east-west direction. The area above background extends a similar distance north to south. The distribution pattern is quite complex, with several areas extending from the three main smelting centres of Copper Cliff, Falconbridge, and Coniston.

Ninety four of the 103 sampling sites have nickel levels that exceed both the background (43 μ g/g) and effects based (150 μ g/g) guideline for nickel. Of these, 45 sites exceed the effects based number. Most of the data shows a localized and higer concentration of nickel at sites clustered around the three sources.

Sites 358, 359 and 360 (520, 250 and 260 μ g/g) respectively are all located to the north and west of Falconbridge. These same sites are identified as elevated with other metals as well as nickel in the historic data.

Sites 362 through 374 are clustered around the vicinity of Copper Cliff and values that exceed the effects based guideline here range from a high of 690 μ g/g to a low of 170 μ g/g with the higher

values closer to Copper Cliff.

Sites 408 through 437 (excluding Sites 410 and 411) are roughly clustered around Coniston. Values that exceed the effects based guideline here range from a high of 480 μ g/g to a low of 180 μ g/g. Again, there is trend towards a gradual decrease in levels with increased distance from Coniston.

Sites 337, 338, 339 and 341 (520, 25, 330 and 210 μ g/g respectively) along with Sites 410 and 411 (270 and 980 μ g/g respectively) present a different picture, with most concentrations marginally above background and two well above effect based guideline. These sampling sites tend to follow the highway corridor running into and out of the City of Sudbury, in one case north/ south in the other case east/ west. This may suggest the use of tailings material or waste ore in road construction. This same phenomenon was also observed for selenium in the Sudbury Special 1971-1997 survey data around Copper Cliff.

A single location greater than 43 μ g/g nickel is identified to the east of Sudbury at Site 18 near Sturgeon Falls. However, this is driven by a single sample point. It is unlikely that this marginally elevated nickel concentration reflects generally elevated soil nickel levels in the Sturgeon Falls area. Because some sample sites between Sturgeon Falls and Sudbury have lower soil nickel levels, it is unlikely that the marginally elevated level at Site 18 is related to the Sudbury mining industries.

Copper

Copper levels exceed background at a total of 71 sites (70% of all sites) including 26 sites (25% of all sites) that also exceed the Table A effects based guideline. Except for two isolated samples that produced elevated copper results (one to the west and the other to the south), the area of elevated soil copper concentrations above the Table F background-based guideline of 85 μ g/g is fairly well defined. This area extends from Whitefish on the west to approximately Lake Ashigami on the east, a distance of about 60 km. The north-south distance is similar, extending north of Capreol to Lake Nepewasi in the northeast and the east end of Lake Penage in the southwest.

Concentrations of elevated copper in soil occurred most consistently in the vicinity of Copper Cliff (Sites 360, 362, 363, 364 with levels of 330, 450, 390 and 280 μ g/g respectively). There also appear to be two small areas above 500 μ g/g copper near each of the Coniston (Sites 405, and 414 at 600 and 670 μ g/g respectively) and Falconbridge (Sites 358 and 359 with 740 and 260 μ g/g respectively) smelters. The Falconbridge Site 358 had the one of the highest observed copper concentration in this study.

Arsenic

Arsenic is observed to exceed its background and effects based guideline at a total of 19 of 103 sites, including 15 sites that exceed the effects-based guideline

The highest arsenic levels are observed in the vicinity of Falconbridge at Sites 358 and 359 with

levels of 130 and 70 μ g/g respectively. Sites 413 and 414 with levels of 25 and 37 μ g/g respectively are situated to the west and south of Falconbridge suggesting an overall increase in soil arsenic burden in the general area caused by the smelter. The fact that these sites are also identified as having elevated levels of nickel and copper is considered additional evidence of a localized effect from the smelter.

Sites 360 and 362 at 25 and 22 µg/g respectively are also marginally above the Table A guideline. There is the potential that these sites in combination with sites and observations reported in the earlier studies (Sudbury Special and Sudbury Regular) and influenced by the Coniston and Copper Cliff smelters respectively.

Sites 370, 371, 376 and 393 with levels of 73, 21, 37 and 28 μ g/g respectively are the next highest levels found. However there does not seem to be any pattern in these sites or the concentrations other than their locations south and west of Copper Cliff, suggesting an overall increase in soil burden in the general area caused by the smelter.

ii) Background Nickel Concentrations In Sudbury Area Soil

The most recent depth soil data from the Sudbury Regular Survey, and the Sudbury Special Survey were pooled to create a data base of 108 sample sites utilized in estimating the background nickel concentration in soil for the Sudbury area (see table below). A summary of the number of stations that fall within four ranges of nickel below 43 μ g/g at the three sample depths is given in the following table. It is clear that even at 5 to 10 cm there are significantly more stations below the 43 μ g/g Table F background value for nickel in soil than at 0 to 5 cm. The number of stations below 43 μ g/g at the three depths, and a consistent pattern of lower soil nickel levels at depth, suggests that the Table F value of 43 μ g/g nickel is a reasonable estimate of background for the Sudbury area.

Number of the	· •	at Fall Within the Fou Three Sample Deptl	-
		Soil Depth	
Nickel Range	0 to 5 cm	5 to 10 cm	10 to 15 cm
<20 μg/g	2	9	7
20 to 29.9 μg/g	6	17	23
30 to 39.9 μg/g	5	12	14
40 to 42.9 μg/g	0	2	3
Total <43 μg/g	13	40	47

SUMMARY AND DISCUSSION

The MOE has been monitoring the terrestrial environment in the Sudbury area since 1970. Extensive sampling of soil, aspen and paper birch foliage, and grass forage has illustrated that elevated levels of heavy metals (specifically nickel, copper, and cobalt) and arsenic are common in the Sudbury area, and are particularly elevated in the vicinity of the three historic smelting and refining centers of Copper Cliff, Coniston, and Falconbridge. The highest concentrations in soil consistently occur in the upper horizons, indicating that the source of the contamination is atmospheric deposition. Even though many sites have been sampled several times over the last 30 years, it is not possible to confidently identify contaminant time trends due to changes in laboratory procedures, the uncertainty that precisely the same site was sampled, and the natural variability of these contaminants in the terrestrial environment. The exception is sulphur in vegetation, which has declined subsequent to the construction of the Inco superstack and with reductions in SO₂ emissions legislated by the MOE Countdown Acid Rain Program, which was completed in 1985. Elevated metal levels in vegetation are expected to continue as long as the contaminants are present in the soil and potentially available to be taken up by plants through their root systems.

The soil contaminant data illustrate that the highest soil metal levels are likely to occur in the urban communities close to the three industrial centers of Copper Cliff, Falconbridge, and Coniston. Because the emphasis in the past has been on defining the extent of the atmospheric deposition (i.e., the "footprint", how far it goes) the majority of the samples were collected at distance, and the urban areas of the City of Greater Sudbury were under-sampled. Additional sampling is required in the Sudbury urban area to further characterize soil contaminant levels.

The MOE Table A effects-based soil guidelines for nickel, copper, cobalt, and arsenic are generic values intended to be used anywhere in the province. The generic soil guidelines are based on the principal of protecting the most sensitive receptor. In setting these guidelines the Ministry reviewed the scientific literature for each contaminant and determined the lowest observable effect level (LOEL) for the most sensitive plants, animals, and aquatic organisms and the no observable effect level (NOEL) for human health. The lowest value was then selected as the generic guideline. For nickel, copper, cobalt, and arsenic the most sensitive receptors are plants: specifically, plants are injured at soil concentrations lower than those observed to affect animals, aquatic organisms, or people. Furthermore, not all plants would be injured at soil levels above the generic guideline, because there is a very broad range in plant sensitivity to soil contaminant concentrations. Therefore, the MOE Table A effects-based generic guidelines for nickel, copper, cobalt, and arsenic are based on the *potential* for injury to sensitive plant species. Soil concentrations above the Table A guidelines do not imply that plant injury *will* occur, but rather that it *may* occur if the most sensitive plant species are present and the soil characteristics are such that the contaminant is bioavailable (can be taken up from the soil by plant roots).

Soil contaminant concentrations close to the Sudbury smelters have been shown to be phytotoxic, and steps to counter the metal toxicity in the soil were required to establish vegetation in some areas remediated by the Sudbury Land Reclamation Program. Recently, substantial new plant growth, particularly paper birch, has occurred in some previously severely impacted areas at sites that did not receive soil amendments as part of the Sudbury Land Reclamation Program. Paper birch is very

sensitive to SO₂ and the re-establishment of paper birch in these areas is a result of the reduction in the frequency of injurious ground level SO₂ fumigations. However, even in the absence of SO₂ fumigations the birch seedlings could not have become established on these sites if the soil metal levels were directly phytotoxic. Therefore, even though large areas of Sudbury exceed the Ministry Table A effects-based generic soil guidelines it is clear that air quality and not soil metal levels was the main factor limiting the natural re-establishment of vegetation. For the Sudbury area, soil metal levels substantially above the Table A guidelines are required before phytotoxicity occurs in local species of vegetation.

Recent health studies conducted in Wawa [24], Deloro [27], and Balmertown [26] found no measurable health impacts associated with soil arsenic levels in urban residential areas in the range of 500 to 2,000 μ g/g. The highest soil arsenic level found in Sudbury to date is 510 μ g/g in 1976. However, sampling of the same site in subsequent years could not reproduce that high value. The most recent soil arsenic level for that site is 57 μ g/g, obtained in 1992. The maximum soil arsenic level obtained during the most recent and most extensive sampling in Sudbury, conducted between 1997 and 2000, was 130 μ g/g, and relatively few sites exceeded the 20 μ g/g MOE guideline. Although these other community studies contribute significantly to the understanding of how environmental contaminants may affect human health, they are site specific, meaning they are conducted using environmental conditions and multimedia assessments specific to their host community and their conclusions are valid only for that specific community.

In reviewing the extensive soil data base developed for the Sudbury area the ministry concludes that additional sampling and action is warranted. Especially in Sudbury's residential and publically-accessible urban green space, and communities adjacent to the three smelting centers of Copper Cliff, Coniston, and Falconbridge. Therefore the Ministry has developed a work plan to fill these important knowledge gaps.

Over the summer and fall of 2001 the two industries will be collecting surface soil in remote areas around the Sudbury basin in an attempt to 1) confirm the local background concentrations for the contaminants of concern, if different from the Ministry's Table F guideline, and 2) having defined true local background, accurately determine the spacial extent of the heavy metal and arsenic deposition associated with their mining and smelting activities.
Over the same time period, the companies will also be characterizing the soil contaminant status of their land holdings in areas where they exist adjacent to residential communities.
During the summer 2001 the Ministry will collect surface soil samples from all schools and commercial day care centers in Sudbury.
In the late summer and fall of 2001 the Ministry will sample soil and vegetable garden produce from a representative number of residential properties in the communities of Copper Cliff, Coniston, and Falconbridge.
Throughout the summer and fall of 2001, the Ministry will sample blueberries, other wild

In the fall of 2001 the Ministry will sample surface soil from representative residential properties and major public parks in Sudbury.

berries, and berries from commercial farms in areas of suspected elevated soil levels.

The data obtained from the Ministry and industry 2001 sampling programs will be developed, prepared and distributed as public reports. It is possible that the data from the 2001 studies may identify the need for additional soil sampling in 2002. Nonetheless, the soil information obtained from the 2001 sampling program, in conjunction with the data from this report and the extensive existing Sudbury environmental data base, form the essential building blocks upon which an ecological and human health risk assessment for impacted communities in the City of Greater Sudbury, will be developed.

LITERATURE CITED

- 1. **Balsillie, D., P.C. McGovern** and **W.D. McIlveen**. 1978. Reductions in acute SO₂ vegetation injury as a result of improved air quality in the proximity of nickel smelters in Sudbury. Poster presented at 3rd International Congress of Plant Pathology, Munich, West Germany. August 16-23, 1978.
- 2. **CCME**. 1997. Canadian soil quality guidelines for copper: Environmental and human health. Report # En 108-4/11-1997E. Canadian Council of Ministers of the Environment. 98 pp.
- 3. **Dreisinger, B.R.** 1970. Monitoring atmospheric sulphur dioxide and correlating its effects on crops and forests in the Sudbury area. In Proc. Conference on Impact of Air Pollution on vegetation. 23.
- 4. **Gunn.**, **J.** (Ed.) 1995. Environmental restoration and recovery of an industrial region. Springer-Verlag, New York.
- 5. Lautenbach, W.E. 1985. Land Reclamation Program 1978-1984. Vegetation Enhancement Technical Advisory Committee, Regional Municipality of Sudbury, Sudbury, Ontario.
- 6. Laroche, C., G. Sirois and W.D. McIlveen. 1979. Early roasting and smelting operations in the Sudbury area. An historical outline. Experience '79 Program Report, Ontario Ministry of the Environment. 77 pp.
- 7. **McGovern, P. C.** and **D. Balsillie.** 1973. Sulphur dioxide (1972) and heavy metal (1971) levels and vegetation effects in the Sudbury area. Air Management Branch, Ontario Ministry of the Environment, Sudbury, Ontario. 50 pp.
- 8. **McGovern, P. C.** and **D. Balsillie.** 1975. Effects of sulphur dioxide and heavy metals on vegetation in the Sudbury area. North Eastern Region, Ontario Ministry of the Environment, Sudbury, Ontario. 33 pp.
- 9. **McIlveen, W.D.** 1985. Studies of the terrestrial environment in the Sudbury area, 1970-1982. Northeastern Region, Ontario Ministry of the Environment, Sudbury.
- 10. McIlveen, W.D. 1998. Changes in foliar sulphur of tree in the Sudbury area, 1944 to 1989.

 Poster Presentation. Standards Development Branch, Ontario Ministry of the Environment.
- 11. McIlveen, W.D. 1999. Phytotoxicology Survey Report. Environmental Studies at Former Roast Yards in the Sudbury Area (1998) Report No. SDB-018-3511-1998, Phytotoxicology and Soil Standards Section, Standards Development Branch, Ontario Ministry of the Environment, Toronto, Ontario. 26 pp.

- 14. **McIlveen, W.D.** and **D. Balsillie**. 1979. Injury to vegetation caused by metallic particulate. Proc. Can. Phytopathol. Soc. 46: 64.
- 15. McIlveen, W.D. and D. Balsillie. 1978. Air quality assessment studies in the Sudbury area. Volume 2. Effects of sulphur dioxide and heavy metals on vegetation and soil, 1970-1977. Northeastern Region, Ontario Ministry of the Environment, Sudbury. 105 pp.
- 16. McIlveen, W.D, D. Balsillie and P.C. McGovern. 1977. Recovery of white pine following acute SO₂ injury. Proc. Can. Phytopathol. Soc. 44: 41.
- 17. **McIlveen, W.D.,** and **D.L. McLaughlin**. 1993. Field investigation manual Part 1: General methodology. Report No. HCB-014-3511-93.
- 18. **McIlveen, W.D.** and **J.J. Negusanti**. 1984. Response of white birch trees to repeated SO₂ fumigations in Northeastern Ontario. Can. J. Plant Pathol. 6: 264-265.
- 19. **McIlveen, W.D.** and **J.J. Negusanti**. 1984. Marginal chlorosis of white birch in the Sudbury area 1978-1983: Progress Report No. 1. Northeastern Region, Ontario Ministry of the Environment, Sudbury, Canada. 70 pp.
- Negusanti, J.J., and W.D. McIlveen. 1989. Studies of the terrestrial environment in the Sudbury area, 1978-1987. Northeastern Region, Ontario Ministry of the Environment, Sudbury, Canada.
- 21. **Ontario Ministry of the Environment**. 1989. Ontario Ministry of the Environment "Upper Limit of Normal" contaminant guidelines for Phytotoxicology Section, Air Resources Branch.
- 22. **Ontario Ministry of the Environment**. 1993. Ontario Typical Range of chemical parameters in soil, vegetation, moss bags and snow. Ontario Ministry of the Environment and Energy. 143 pp.
- 23. **Ontario Ministry of the Environment**. 1997. Guideline for use at contaminated sites in Ontario. Ontario Ministry of the Environment and Energy. 158 pp.
- 24. Spires, A. and W.D. McIlveen. 1985. Investigation of metal toxicity to grass in the Copper Cliff area, 1982-1984. Report No. NER-AQTM-31-85. Northeastern Region, Ontario Ministry of the Environment, Sudbury, Canada. 20 pp.
- 25. **Winterhalder, K.**. 1996. Environmental degradation and rehabilitation of the landscape around Sudbury, a major mining and smelting area. Environ. Rev. 4: 185-224.
- 26. Goss Gilroy Inc. 2001. Survey of Arsenic Exposure for Residents of Wawa.

- 27. **McIlveen, W.D.**, and **J.J. Negusanti**. 1994. Nickel in the terrestrial environment. The Science of the Total Environment. 14: 109-138.
- 28. **Gradient Corporation**. 1995. Exposure Assessment Placer Dome Balmertown, Ontario, Canada. Prepared for Placer Dome Canada P.O. Box 10 Balmertown, Ontario, Canada., May 1995.
- 29. Cantox Environmental Inc. 1999. Deloro Village Exposure Assessment and Health Risk Characterization for Arsenic and Other Metals. Prepared for the Ontario Ministry of the Environment and CH2M Gore & Storrie Ltd., December 1999.

lable 1: M	lable 1: Wetals Concentration in Soil Profiles Collecte	ntration	100.	5	ies co	σĺ		Stations	s in the		Sudbury Area	-1	Kegui	ar Surv	Regular Survey Results	uits					
Station	Soil Depth	A	AS	ga	Re	s S	S	ဌ	כֿ	3	F.	Μg	Z	ω	ž	Pb	Se	က်	S	>	Zu
_	0-5 CM	8800		20		2400	0.25	5.1	19	5.5	10000	2200	220	<0.5	11	13	0.25	17	0.02	25	35
Blind	5-10 CM	9300		49	<0.5	2300	<0.2	5.2	19	5.5	10000	2200	190	<0.5	10	12	0.25	18	0.01	26	33
River	10-15 CM		1.3	48		2300	<0.2	5.3	21	5.5	11000	2400	170	<0.5	-	6	<0.2	18	0.01	27	33
,	0-5 CM	• • • • • • •	Ξ	24		2300	<0.2	6.1	23	85	14000	2000	140	<0.5	88	41	0.95	16	0.03	32	25
2 Hacarara	5-10 CM	9400	3.5	41	<0.5	2000	<0.2	5.3	24	22	14000	2000	200	<0.5	26	æ	0.3	16	0.02	34	23
Dulwasii	10-15 CM	9100	1.7	51	<0.5	2100	0.25	4.4	22	5.5	13000	1900	210	<0.5	32	4.5	<0.2	17	0.01	33	22
,	0-5 CM	14000	7.2	49	<0.5	2700	0.25	12	38	37	20000	4500	380	<0.5	48	1	0.45	22	0.02	41	50
الا الا الا	5-10 CM	15000	6	65	<0.5	2500	0.25	12	40	45	21000	4500	440	<0.5	19	12	0.45	21	0.02	41	55
Callul	10-15 CM	16000	9.1	72	<0.5	2400	0.25	13	40	44	22000	4300	680	<0.5	63	12	0.45	22	0.03	41	63
,	0-5 CM	3800	6.1	40	<0.5	650	<0.2	-8	11	24	5300	1000	49	<0.5	24	13	0.45	8	0.01	15	7
- 4 Lidousidad	5-10 CM	4600	4.7	52	<0.5	650	<0.2	1.9	13	11	0009	1300	48	<0.5	-	5.5	0.25	8	0.01	17	9
	10-15 CM	5900	2.6	09	<0.5	800	<0.2	3.1	18	6	7900	2000	29	<0.5	13	3	<0.2	1	0.01	19	6
ı.	0-5 CM	11000	9.6	20	<0.5	1300	0.4	3.2	23	62	19000	1100	190	0.65	64	38	1.7	14	0.04	45	37
3 Fairbanke	5-10 CM	21000	5.9	32	<0.5	1700	0.4	3.5	34	17	24000	2300	190	0.85	16	14	1.5	16	0.03	51	44
all Dalins	10-15 CM	22000	4.7	30	<0.5	2100	0.65	4.1	34	17	22000	2800	180	0.85	15	-	1.4	20	0.03	48	45
,	0-5 CM	8300	4	39	<0.5	2400	0.85	12	21	200	12000	1700	190	<0.5	230	26	1.7	17	0.03	27	39
Gareon	5-10 CM	8900	8.9	42	<0.5		0.35	6.8	21	91	11000	1700	120	<0.5	130	23	0.85	17	0.03	28	35
100000	10-15 CM	8300	9.7	44	<0.5		0.35	6.5	20	83	11000	1600	100	<0.5	110	16	0.8	17	0.02	27	36
7	0-5 CM	8900	2.5	71	<0.5	4100	<0.2	9	29	17	14000	3700	250	<0.5	27	16	0.25	22	0.04	28	46
Grassey	5-10 CM	8800	2.8	9/	<0.5	3700	<0.2	5.9	28	16	14000	3600	250	<0.5	26	17	0.25	20	0.03	28	45
Lake	10-15 CM	10000	2.4	9/	<0.5	3800	0.25	6.4	33	4	14000	4000	240	<0.5	28	12	<0.2	21	0.03	29	43
o	0-5 CM	6500	3.6	33	<0.5	1800	<0.2	4.5	19	19	11000	1800	160	<0.5	21	21	9.0	15	0.05	29	27
o Killarnev	5-10 CM	6200	3.1	34	<0.5	1600	0.25	4.	18	15	10000	1700	140	<0.5	16	17	0.45	14	0.04	27	21
	10-15 CM	6200	1.8 6.	31	<0.5	1700	0.25	က	16	12	7800	1700	93	<0.5	12	13	0.3	14	0.03	22	15
6	0-5 CM	7700	6.1	62	<0.5	2000	0.35	7.4	19	33	11000	1800	420	<0.5	51	18	0.65	17	0.02	25	41
Kukagami	5-10 CM	8000	4.6	55	<0.5	1400	<0.2	4.8	18	25	10000	1300	250	<0.5	27	9.5	0.45	15	0.01	24	29
Lake	10-15 CM	10000	2.3	25	<0.5	1500	<02	5.1	22	12	13000	1500	190	<0.5	19	9	0.3	15	0.01	59	35
ç	0-5 CM	0069	-	25	<0.5	1900	<0.2	2.8	15	5	10000	1600	120	<0.5	6.9	13	<0.2	7.5	0.01	22	31
Mattawa	5-10 CM	8200	0.85	17	<0.5	1200	<0.2	2.3	13	2.5	11000	1000	96	<0.5	4.4	æ	0.3	5.5	0.01	22	26
Managan	10-15 CM	12000 0.55	0.55	18	<0.5	1700	0.25	3.4	18	2.5	14000	1300	130	<0.5	5.9	5	<0.2	6.5	0.01	27	32
	0-5 CM	9500		56	<0.5	2000	0.45	4.9	24	40	15000	1700	290	<0.5	45	31	6.0	17	0.04	32	57
Milnet	5-10 CM	11000		40		1400	0.3	3.4	22	20	13000	1400	160	<0.5	24	19	0.65	14	0.03	30	41
	10-15 CM	15000	2.3	35	<0.5	1600	0.25	4.4	56	7	14000	1800	150	<0.5	22	10	0.5	14	0.02	32	44

1		(e	9				_		4	5	2	2	ž	4	S	ů.	U	>	2
	5200	3.8	53	<0.5	3100	0.25	5.5	22	28	0026	2700	220	\$ 0 5	44	18	0	9	200	25	100
	5300	3.4	33	<0.5	3000	0.3	5	23	23	0096	2600	·÷	<0.5	37	12	0.35	19	0.01	26	28 28
	4900	2	29	<0.5	2800	0.25	4	21	1	8900	2400		<0.5	22	5.5	0.25	19	0.01	24	22
	11000	3.1	61	<0.5	4100	0.25	14	25	52	19000	;	<u>.</u>	0.55	56	20	0.5	24	0.04	44	73
		2.9	41	<0.5	3700	0.25	12	26	22	21000	····		<0.5	52	34	0.35	23	0.03	45	09
		2.1	43	<0.5	3500	<0.2	Ξ	23	43	17000	·····	· · · · ·	<0.5	39	27	0.25	24	0.02	42	51
		9.8	53	<0.5	1800	9.0	8.3	36	81	18000	2200		0.75	94	32	1.5	17	0.03	42	06
:	:	7.3	50	<0.5	1500	0.45	7.7	39	30	19000	2600	270	0.55	36	14	0.85	16	0.02	45	90
	.	5.3	54	0.5	1500	0.35	8.8	43	21	21000	3100	270	0.55	30	11	0.9	15	0.03	46	95
:		8.8	24	<0.5	950	0.35	4.2	14	100	6800	1300	64	0.55	84	30	1.3	9.5	0.02	19	16
		8.3	22	<0.5	750	0.3	3.1	13	88	0099	066	53	<0.5	29	22	1.1	æ	0.02	18	12
<u> </u>		5.5	16	<0.5	700	0.25	1.4	9.5	40	4300	750	45	<0.5	28	10	0.55	7.5	0.01	14	8
-	:	1.9	42	<0.5	4700	<0.2	8.9	39	21	20000	÷	250	<0.5	29	8.5	0.3	26	0.02	46	35
5-10 CM	17000	8.	41	<0.5	3800	0.25	8.5	40	17	22000	4400	.	<0.5	26	ω	0.35	23	0.02	47	30
	:	0.95	41	<0.5	3900	<0.2	9.8	44	19	22000		<u>;</u>	<0.5	30	9	0.3	23	0.02	46	28
		32	52	<0.5	1400	0.45	9.1	25	200	17000		-	0.65	160	42	1.8	15	0.04	34	33
		∞	40	<0.5	1500	0.35	5.3	26	45	15000	.		<0.5	32	13	0.8	17	0.03	37	29
10-15 CM		5.2	<u> </u>	<0.5	1600	0.4	6.5	29	22	15000	.	ļ	<0.5	29	10	0.7	17	0.04	38	32
		1 .9		0.7	4800	0.7	12	75	28	23000	·		<0.5	47	25	0.55	37	0.09	49	64
5-10 CM		7	•	0.75	5300	0.4	15	88	23	30000	÷	;	<0.5	45	13	0.3	41	0.03	09	58
10-15 CM	27000	1.5		0.75	6100	0.25	15	93	22	32000	;	; .	<0.5	46	13	<0.2	47	0.02	65	25
	7400	28	160	<0.5	2300	1.4	34	31	086	23000	;	·	-	1000	66	16	21	90.0	26	62
5-10 CM	8800	17	74	<0.5	1700	9.0	13	26	350	16000	;	110	0.65	300	39	2.9	20	0.03	28	43
10-15 CM	13000	7.9	89	<0.5	1900	4.0	12	32	140	16000		140	<0.5	140	18	1.6	22	0.03	31	9
	7200	4.4	72	<0.5	2100	0.25	3.3	18	34	0066		100	<0.5	35	27	0.45	19	0.02	29	20
5-10 CM	15000	4.4			1900	0.3	5.2	31	12	22000		130	<0.5	20	8	0.3	18	0.02	48	24
10-15 CM	20000	3.7		,	2100	0.25	8.3	38	15	22000		160	<0.5	28	7	0.45	19	0.03	45	30
	12000	30		0.75	2500	1.9	27	31	200	19000	;	1800	1.2	520	82	4.6	24	0.05	33	110
5-10 CM	15000	17	••••		2200	0.75	3	38	160	19000	3200	950	0.95	110	25	1.7	21	0.02	42	80
10-15 CM	17000	6	64	• • •	2100	0.45	21	44	62	21000	4100	380	9.0	69	15	1.1	18	0.02	43	79
H	NG NG	17	17 : 210 : 1.2	1.2	NG	1.0	21	71	85	NG	NG	NG	2.5	43	120	1.9	S N	Ŋ	91	160
_		2	750	1.2	NG N	12	4	750	225	S N	S N	9	40	150	200	10	S N	Š	200	009
3	30000	NG	OTR _{as} 30000 NG NG NG 55000	NG 55000	55000	NG	NG	NG	NG	35000	20000	2200	NG	S	NG	NG	64	0.079	92	Se

sults
Res
rvev
r Su
quia
9 Re
199
Area,
Δn
Sudb
the S
sin
tion
Sta
at 21
ted
ollec
je C
Foliaç
rchl
in Bi
ion
ntrat
once
tals Co
able 2: Metals Co
e 2:
rable

Table 2: Metals Concentration in Birch Follage Collec	Metals	Conce	ntratio	n in	Birch F	ollage	Collec	ted at 21	1 Stati	Stations in the Sudbury	the S	udbury	Area	, 1999 Regular Survey	egular	Surve	y Results	ılts					
Station	₹	As	Ba	8	Be	Ca	Cd	ਠ	Co	Cr	Cu	Fe	¥	Mg	иW	Mo	Z	Pb	Se	S	S	>	Zn
-	30	<0.2	87	17	<0.2	6500	0.7	0.002	0.7	0.55	4.6	170	69.0	2800	410	0.25	1.7	-	<0.2	32	0.08	<0.5	140
2	82	<0.2	91	56	<0.2	8000	0.7	0.033	0.55	0.55	7	150	0.95	3000	1100	<0.2	23	2.3	<0.2	34	0.12	<0.5	130
3	37	<0.2	110	27	<0.2	8400	0.55	0.006	0.65	<0.5	6.1	73	0.96	2400	870	<0.2	15	1.8	0.25	37	0.11	<0.5	130
4	26	<0.2	300	24	<0.2	8100	-	0.003	0.8	<0.5	6.2	61	0.76	2600	750	<0.2	5.8	1.2	<0.2	37	0.13	<0.5	160
5	45	<0.2	170	34	<0.2	6500	1.2	0.002	0.5	<0.5	5.8	100	9.0	2100	1900	0.25	4	1.2	<0.2	41	0.1	<0.5	190
9	58	0.3	29	36	<0.2	7700	0.65	0.033	0.85	<0.5	15	140	0.72	2300	370	<0.2	20	3.7	0.65	33	0.12	<0.5	140
7	29	<0.2	79	26	<0.2	7200	0.3	0.002	0.4	0.55	5.5	29	0.98	1700	260	<0.2	3.6	1.1	<0.2	25	0.11	<0.5	150
8	34	<0.2	100	22	<0.2	6100	0.55	0.002	0.75	<0.5	5.2	65	0.84	2200	830	<0.2	8.3	0.9	<0.2	28	0.12	<0.5	170
6	89	<0.2	160	30	<0.2	6100	0.75	0.01	0.55	0.55	5.7	140	0.68	1800	1400	0.25	15	<0.5	<0.2	24	0.1	<0.5	170
10	33	<0.2	190	23	<0.2	0006	0.85	0.002	0.25	<0.5	5.6	29	1.2	2100	1300	0.25	1.7	2	<0.2	69	0.13	<0.5	250
11	110	<0.2	85	26	<0.2	7300	9.0	0.005	0.35	<0.5	6.9	230	0.99	2000	350	<0.2	6	9.0	<0.2	19	0.12	<0.5	230
12	32	<0.2	92	25	<0.2	7500	0.4	0.002	0.3	<0.5	6.2	79	79.0	2700	420	<0.2	8.4	0.85	<0.2	26	0.11	<0.5	130
13	40	<0.2	56	33	<0.2	5500	0.45	0.003	0.35	<0.5	5.7	65	0.87	1700	430	<0.2	4.2	1.1	<0.2	22	0.1	<0.5	140
14	39	<0.2	110	43	<0.2	12000	0.5	0.019	0.55	<0.5	7.4	88	-	2200	630	0.35	10	2.7	<0.2	31	0.11	<0.5	210
15	37	<0.2	52	29	<0.2	5200	0.65	0.002	0.4	<0.5	1	82	0.78	1800	490	<0.2	33	1.8	0.5	47	0.14	<0.5	110
16	170	<0.2	58	14	<0.2	6400	0.4	0.043	0.45	-	6.4	270	0.73	2700	310	<0.2	6.5	6.0	<0.2	35	0.12	0.65	95
17	73	<0.2	130	21	<0.2	6300	-	0.74	1.3	9.0	7.9	130	1.4	1700	1800	<0.2	35	2	0.4	41	0.11	<0.5	77
18	41	<0.2	130	30	<0.2	8600	0.7	0.002	0.75	0.65	7	93	0.74	3300	1600	<0.2	3.2	9.0	<0.2	45	0.14	<0.5	220
19	22	<0.2	41	22	<0.2	4000	0.2	0.011	0.65	<0.5	12	58	1.5	1100	150	<0.2	29	2.1	0.7	8.3	0.08	<0.5	44
20	290	<0.2	64	28	<0.2	6200	0.5	0.003	9.0	1.5	9	520	0.79	2800	880	<0.2	6.3	1.1	<0.2	15	0.11	6.0	140
21	44	<0.2	59	29	<0.2	5100	0.5	0.003	9.0	<0.5	8.1	06	1.2	1500	1400	<0.2	31	1.7	0.3	17	0.11	<0.5	140
ULN	200	2	NG	75	NG	30000	-	0.15%	2	8	20	200	NG	7000	NG	1.5	8	30	0.5	NG	0.4%	5.0	250
Values are means of duplicate samples reported as ug/g	re mear	us of du	plicate	sam	ples rep	onted a	s ug/g	dry weiç	jht, ex	cept ch	lorine	and su	lphur w	dry weight, except chlorine and sulphur which are expressed as percent	expre	ssed a	s perce	int.					

yandes are means of auphredes samples reported as ugry uny weight, except commented and supposed as percent.

Values shown in bold type indicate concentrations in excess of ULN Guideline. (See Appendix G). NG = no guideline has been established for that element.

A - 4

y Results
lular Surve
, 1999 Reg
y Area
Sudbun
s in the
Station
ed at 21
Collecte
Forage
Grass
ation ir
Soncenti
Metals (
able 3:

Table 3: Metals Concentration in Grass Forage Collected	Metals	Concer	ntratio	n in G	rass F	orage C	ollecte	ed at 21		ns in tl	Stations in the Sudbury	Ibury A	Area, 19	1999 Regular	Jular S	Survey I	Results	رم د					
Station	Ι	As	Ва	В	Ве	Са	рЭ	CI	Co	Cr	Cu	Fe	Х	Mg	Mn	Mo	ï	Pb	Se	Sr	s	>	Zn
1	38	1.1	25	က	<0.2	2300	<0.1	0.42	0.25	<0.5	3.1	110	1.3	1400	270	0.3	1.3	<0.5	<0.2	7	0.13	<0.5	26
2	56	0.3	42	က	<0.2	2300	<0.1	99.0	0.25	0.55	2.4	100	1.4	1000	140	<0.2	8.4	0.75	<0.2	14	0.1	<0.5	13
8	52	<0.2	20	4.5	<0.2	3500	¢0.1	0.16	<0.2	<0.5	5.1	98	2.1	1300	160	0.35	8.1	<0.5	<0.2	12	0.11	<0.5	15
4	150	<0.2	53	3.5	<0.2	2800	<0.1	0.43	<0.2	0.85	5.4	240	1.6	1100	290	<0.2	5.9	0.85	<0.2	9.2	0.14	0.85	25
5	58	<0.2	20	5.5	<0.2	3000	<0.1	0.72	0.45	<0.5	5.4	200	1.9	910	830	<0.2	12	<0.5	<0.2	12	0.1	<0.5	24
9	31	0.3	36	က	<0.2	3900	<0.1	0.52	0.3	<0.5	3.2	98	1.3	460	250	0.4	26	0.65	<0.2	7	0.16	<0.5	20
7	20	<0.2	27	ပ	<0.2	4000	<0.1	0.57	0.25	<0.5	5.5	9/	1.6	1100	56	6.0	2.4	<0.5	<0.2	15	0.16	<0.5	25
8	20	<0.2	39	2	<0.2	2200	<0.1	0.58	0.25	0.55	3.6	22	1.7	630	800	0.4	3.3	6.0	<0.2	10	0.14	<0.5	30
6	100	<0.2	4	3.5	<0.2	2000	<0.1	0.31	0.25	0.55	4.9	170	1.5	710	370	<0.2	9.7	<0.5	<0.2	7.9	0.13	<0.5	25
10	240	<0.2	78	က	<0.2	4000	0.15	0.2	0.3	0.75	5.8	330	1.8	1500	63	0.35	1.9	<0.5	<0.2	27	0.19	0.65	33
11	63	<0.2	23	2	<0.2	1400	<0.1	0.26	<0.2	0.7	2.8	140	1.4	200	150	<0.2	5.6	1.7	<0.2	9.9	90.0	<0.5	22
12	82	<0.2	50	4	<0.2	4600	<0.1	0.24	<0.2	0.55	9.7	180	2	2000	85	0.25	5.6	0.75	<0.2	19	0.25	<0.5	31
13	120	<0.2	34	4.5	<0.2	2500	<0.1	0.34	0.35	<0.5	4.5	210	0.91	490	170	<0.2	3.7	2.2	<0.2	14	0.08	<0.5	17
14	13	<0.2	39	ည	<0.2	3700	0.15	99.0	<0.2	<0.5	4.4	46	2.5	1500	240	0.55	ω	<0.5	<0.2	8.9	0.22	<0.5	36
15	260	0.4	18	က	<0.2	1400	<0.1	0.002	0.3	0.7	5.2	290	0.56	370	70	<0.2	10	1.1	<0.2	5.5	0.12	0.75	16
16	88	<0.2	5.5	4.5	<0.2	3700	<0.1	0.37	<0.2	0.65	ო	160	1.3	1100	34	<0.2	0.95	0.65	<0.2	1	60.0	<0.5	12
17	110	0.25	20	6.5	<0.2	1900	0.25	0.49	0.7	9.0	9.3	260	1.8	790	630	0.55	20	1.6	0.25	ပ	0.11	<0.5	34
18	53	<0.2	17	9	<0.2	2900	<0.1	1.3	<0.2	<0.5	3.9	120	2.4	2300	88	1.2	0.85	0.85	<0.2	14	0.19	<0.5	16
19	15	<0.2	14	4	<0.2	2400	<0.1	0.43	0.25	<0.5	6.7	83	1.3	760	62	0.4	4.2	1.1	0.25	10	0.1	<0.5	10
20	270	0.25	24	4.5	<0.2	2900	<0.1	0.42	0.35	1.2	4.8	520	1.2	1500	380	0.45	4.1	<0.5	<0.2	7.7	0.12	0.75	42
21	52	<0.2	33	3.5	<0.2	3200	<0.1	0.53	0.55	<0.5	3.3	120	1.7	730	480	0.85	27	<0.5	<0.2	19	0.17	<0.5	28
NTN	NG	8	NG	20	NG	NG	2	1	8	2	20	200	NG	NG	NG	9	25	20	0.5	NG	0.5	9	100
Values are means of duplicate samples reported as ug/g	e mear	ns of du	plicate	samp	les rep	orted as	. –	dry weight, except chlorine and sulphur which are expressed as percent	ht, excε	pt chlo	rine ar	id sulpi	in whi	ch are ε	express	ed as b	ercent		-	1			

Values shown in bold type indicate concentrations in excess of ULN Guideline. (See Appendix G). NG = no guideline has been established for that element.

Table 4: Arsenic Concentration in Soil Profiles Collected at 92 Stations in the Sudbury Area as part of the Special Survey

	7	Γ			:					0						:												-		~		:		
	1997		,	'	,	'	4.7	,	78	Ξ	3.2	,	14	5.7	2.4	'	1	,	2.3	'	,	'	2	77	,	7.4	1	18	36	4.8	,	2	'	7 7
	1992	300	120	200	2.2	3.2	3.4	2.6	1	2.1	10	6.9	18	7.6	2.5	28	2.4	15	3.2	က	0.87	5.6	1.9	22	35	23		30	2.6	1.7	1	0.75	9.5	
5 cm	1986	40	46	2.4	1.7	3.1	17	,	100	1.4	41	4.2	7.4	5.7	2.3	100	1.2	1.6	2.1	1.7	8.7	2.9	2.3	21	2	2.9	8.4	1.	1.6	1.7	ı	2.8	8.5	9 0
10 to 1	1981	46	55	7.2	7.7	2.3	6.2	4.2	43	19	20	3.4	2.4	3.4	1.9	390	3.2	7.4	2.5	2.9	1.3	8.1	5.8	18	24	5.3	15	2.1	4.3	17	1.5	10	11	, V V
	1976	93	37	1 .8	0.83	2.4	2.2	2.7	310	2.5	12	2.1	2.8	9.9	1.8	120	32	1.5	2.1	0.83	3.9	1.1	-	43	22	2.1	3.3	7	1.7	31	0.83	13	17	
	1971	234	54	7	5.6		4		1	29	9.2	4	6.4	4.2	2.4	8.6	2.8	11	3.4	5.4	2.4	2.4	2	22	34	,	,	1		1	,	23	,	0 0
	1997	,	1		1	,	8.8		81	84	6.9	,	15	8.4	2.3		,	,	3.7	J	1		5.3	76	1	ھ	1	22	23	5.6	,	2.3	,	45
	1992	340	120	350	6.7	5.6	3.5	3.9	3.5	2.5	32	14	9.8	6.4	5.4	68	4.3	16	5.2	2.5	6.0	4	3.3	54	51	16	1	29	2.2	2.3	, ,	0.95	15	
cm	1986	15	110	3.3	2	7.2	42		110	1.5	40	5	11	14	2.6	160	-	1.9	2.9	2.9	8.7	2.9	5.5	18	1.9	4	15	3.1	2.3	3.4	1	2.9	17	0 0
5 to 10	1981	120	120	23	16	2	5.3	6.1	95	45	32	5.2	3.5	7.9	2.6	230	11	4	4.1	5	1.5	2.7	5.8	18	12	9.3	7.2	2.7	2	63	1.3	9.6	24	
-	\vdash							7.4																										-
ŀ	1971							0.4																										
	1997	1	,	,	'	,	14	1	92	57	17		54	22	2.1	,	,	1	18	,	1	,	14	130	,	9.1	'	21	13	8.9	,	2.2	,	-
ŀ								6.4										••••																•
-	\dashv	100	82	1.6	6.8	12	95	1	210	4.1	24	19	13	20	3.8	140	1.5	3.6	19	5.3	5.9	3.7	14	7.2	3.7	6.4	14	4	17	6.7	,	3.9	16	22
0 to 5 cm	1981	220	160	24	37	27	16	14	170	2	36	22	20	20	9.4	150	40	25	<u> 26</u>	18	4.1	-	19	71	4.1	35	41	3.6	10	75	5.9	11	33	7
ł	\dashv	290	510	13	2.5	12	19	15	470	46	18	13	14	25	6.1	140	29	1	2.3	3.4	9.9	1.5	3.2	88	17	28	26	5.6	3.6	7	1	25	22	26
ŀ								5.6																										
Station	-	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	£7

Table 4: Arsenic Concentration in Soil Profiles Collected at 92 Stations in the Sudbury Area as part of the Special Survey

A - 6

Table 4: Arsenic Concentration in Soil Profiles Collected at 92 Stations in the Sudbury Area as part of the Special Survey

	1992 1997	1			<u>.</u>	-				-	4.6 51		-				ļ	<u></u>			-						2.1 3.7		
15 cm	1986	30	2	,	,			4.7	2.4	4.7	61	11	9.4	1.9	1.9	2.7	2.4	2.9	4.3	2.5	2.8	2.8	1.4	2.5	17	6.3	1.9	2.6	
10 to 1	1981	20	70	4.1	9.2	57	4.9	1.5	6.0	3.2	∞	12	4.6	3.2	2.7	4.7	3.3	3.6	က	က	3.7	20	6.9	5.7	44	4.5	2.4	1.6	7
	1976	,	4	9.1	8.7	4.6	4.4	1.5	3.2	2.8	3.2	82	4.4	1.4	1.5	4.7	4.3	2.7	2.4	1.7		12	25	4.6	3.6	8.2	3.6	1.5	
	1971	,	9.8	11	15	9.9	6.4	6.8	2.4	4.8	1	42	,		1.4	3.2	3.4	2.4	2.2	3.6		4	æ	18	6.4	13	5.4	5.4	L
	1997	63	33	9.5	6.2	17	,	4.8	5.2	4	40	20	17	14	6.1	14	5.8	3.9	3.1	3.3	14	53	13	4.6		6.1	4.9	3.7	
-	1992	9.9	4.8	2	8.2	3.9	5	5.8	2.7	2.2	4.6	73	7.5	5.6	က	3.9	3.2	3.1	1.6	2.5	4.7		2	7.4	2.7	1.7	2	2	
5 to 10 cm	1986	24	2	,	1	,		6.8	4.3	5.7	49	9.1	9.3	2.6	1.7	4.7	က	3.3	4.2	3.1	2.7	2.8	2.4	4.4	16	10	2.8	2.6	
5 to 1	1981	74	22	6.1	9.8	61	5.2	2	2.7	2.3	4.9	15	4.9	7.3	2.9	4.5	9.1	3.6	3.4	2.7	9.7	21	8.4	7.3	13	8.4	4.1	4.	
	1976	,	15	33	10	7.4	6.3	4.4	3.9	5.6	13	16	6.3	2.8	1.4	7.4	-	2.4	2.8	1.6	1	12	34	6.1	4.8	8.3	7.3	2.1	
	1971		1		1	r	1	1	'	,	28	1	0.4	0.8	1	1	1	1	,	1	1		,	,	,		1	1	************
	1997	19	30	12	12	42	,	7.8	4.7	6.4	36	13	27	25	27	29	11	5	3.7	3.2	25	29	12	19	'	12	7.6	3.6	
	1992	14	12	2.8	25	32	11	6.5	5.1	2.4	12	57	18	47	9.9	14	5.7	4.1	3.9	4.5	29	,	7.5	7.7	3.9	1.8	2	4.9	* * * * * * * * * * * * * * * * * * * *
0 to 5 cm	1986	29	2.7	ı	1	1	1	9.3	2.3	5.8	27	10	7.4	5.7	1.8	9.6	5.3	6.3	4.5	2.8	12	2.8	5.7	6.7	15	10	2.7	2.2	
0 to	1981	69	18	3.5	8.6	48	10	2	3.5	3.4	3.8	39	9.7	44	3.4	6.2	4.1	3.9	3.9	က	-18	27	8.9	17	5.7	6.1	1	1.3	
	1976	52	16	48	12	15	14	5.8	4.6	6.6	29	280	2	26	12	7.6	-	2.7	2.7	1.9	ı	33	21	22	33	12	14	4.9	
	1971*	20	11	23	27	25	19	9.6	17	15	44	290	42	42	20	9.9	5.2	2.2	1.4	4.2	ı	4	27	28	17	37	19	4.8	
	Station	87	88	89	90	91	92	93	94	92	96	97	98	66	100	101	102	103	104	105	106	107	108	109	110	111	112	113	777

Depins sampled in 1971 were 0-2.5 cm rather than 0-5 cm.

ug/g As.

Concentrations shown in bold exceed the Table F Background Guideline of 17 ug/g As. Values in bold and underlined exceed the Table A Soil Clean up Guideline of 20 Values represent single samples collected in 1971, means of triplicate samples in 1976 and 1981 and duplicate samples in 1992 and 1997.

1986	4000										2			
5 I	_	1997	1971	1976	1981	1986	1992	1997	1971	1976	1981	1986	1992	1997
	41	1		23	17	15	32	-	16	17	18	14	23	
	23	٠	ı	20	19	23	33	,	18	10	15	16	28	
	23	'	1	4.3	7	8.3	26		7	5.3	6.7	6	16	: 1
	5	٠	٠	7.5	7.3	ω	3.2	1	10	4.3	7.3	ω	6.5	'
:	4.3		ω	5.3	5.7	8.3	3.4	-	ı	7	ഹ	8.3	6.3	
- 1	6,8	7.1	•	12	6	14	7.3	6.3	12	7.7	6	12	8.3	9.3
	4.8	,	7	7	6	1	4.3			7.7	9.7		9.4	ı
	12	18	,	30	13	18	8.4	15	١	18	14	19		12
	9.3	21	ŧ	13	Ξ	1	7.2	16	-	15	11	11	7.7	17
	22	5.8	ı	12	11	1	6.2	4.3	ھ	12	6	12	6.7	5.6
	10	,	,	9.3	4.3	_	3.6	,	1	10	6	11	5.7	'
	-	16	1	10	7.7	12	12	9.3	10	13	9.7	11	13	12
	7.9	10	1	13	3.3	10	10	7.6	11	14	4.3	11	1	7.7
	3.9	6.4	,	10	1	1	17	6.3	3	9.3	1	11	5.4	6.2
• • • • • • • • • • • • • • • • • • • •	39	,	ı	41	25	39	20	1	9	28	21	30	1	'
	7.9	-	1	14	4.7	7	4.7	1	9	12	7.3	7	5.1	'
	9.4	-	ı	12	10	8.3	_		9	10	10	8.3	8.1	'
	6.1	5.3	,	8	3.3	7	2.1	3.4	4	13	3.3	8.7	4.9	4.9
	5.1		ı	9.3	4.7	8.7	5	1	5	7	5.7	6	4	,
	5.1	1	ı	8.7	œ	8.7	4.8	,	5	7	ω	8.3	4.4	,
	6.4	'	1	5	7	14	6.4	1	4	ھ	8.3	14	8.1	1
	6.6	8.9	,	ဆ	۵	6	4.2	6.1	4	7	6.7	8.7	4.2	4.9
	35	06	1	35	15	18	11	35	8	21	15	24	6.1	17
:	22	ı	1	21	9.3	11	10	ı	7	15	6	11	8.6	١
:	8.1	4.5	10	9.3	4.3	7.7	7.5	4.3	,	8.7	4	ω	9.2	3.7
	ι	,	ı	8.7	7.7	10	1	1	١	14	4.7	9.7	1	1
	33	36	17	7.7	7.3	7	23	26	,	7	7.7	8.7	26	17
	7.8	15	.	15	29	7	3.3	19	-	18	31	10	3.6	24
	3.7	4.5	ω	14	44	8.7	2.5	3.4	1	14	37	10	2.5	3.7
	١	,	9	ည	4.7	1	١	ı	٠	9	7.7	ı	1	,
	16	8.9	1	26	20	16	5.6	8.7	10	24	26	18	5.3	8.2
:	15	1	١	35	25	23	16	1	١	31	26	22	17	,
	,	22	•	9	12	13	,	16	Ξ	9.3	10	14	1	1

Table 5: Cobalt Concentration in Soil Profiles Collected at 92 Stations in the Sudbury Area as part of the Special Survey

													2			
1976	1981	1986	1992	1997	1971	1976	1981	1986	1992	1997	1971	1976	1981	1986	1992	1997
~	7	13	14	32		10	6.7	13	10	6.5	10	=	5.3	14	9.5	6.8
7	7.3	13	10	,	1	4.3	4	10	5.8	1	8	9.3	6.7	9.7	9	
8.7	8.3	9.7	9.7	1	1	10	8.7	10	12	1	8	10	-	10	9.8	
7	-	20	13	14	1	9.3	10	17	12	10	9	9.3	12	14	10	9.2
10	ဆ	12	11	6.6	ı	8.7	92	12	7.8	8.9	75	7.7	64	13	8.7	10
8.7	18	13	12		ı	10	22	13	14	6.9	5	13	22	13		8.9
8	24	19	14			17	18	17	,	12	15	17	14	16		13
4	36	8.3	26	5.2		12	26	8.7	24	6.9	13	11	20	ω	18	6.4
6	18	19	16		1	18	20	20	17	14	5	19	18	18	21	14
2	19	20	16	16	1	8	18	17	9.7	11	13	8.7	15	17	8.6	8.2
4	14	25	_	16		25	14	13	8.5	5.7	8	18	15	15	8.4	5.6
7	18	12	13		1	24	8	16	12	,	13	17	9.3	16	10	,
0	ω	12	9.6			9	9.3	8.3	10	7	10	8.7	11	7.3	,	9
က	9.7	20		5.3	1	5	8.7	22		4.4	5	8	10	16	,	5.4
7	22	24	11	1	1	9.3	17	24	10	9.5	18	13	16	24	-	9.1
0	14	14	13	4.4	ı	19	12	12	12	6.3	18	17	13	14	13	8.4
က	10	14	7.8	1	1	8.7	9.7	14	7.3		5	10	9.7	16	7.6	'
9	39	21	20	61	,	13	40	18	16	54	4	14	40	16	15	49
7	16	14	1	16	,	9.3	9.3	13	,	16	ω	8.7	12	12	1	13
8	32	25	30	21	ı	-	9.3	12	8.1	7.6	12	ω	10	16	7.6	8.2
7	23	20	33	38	1	17	6.3	15	9.9	15	20	15	9	12	9.1	15
4	24	13		1	,	4.3	15	9.7		1	1	5	16	9.7	,	1
80	_	10	9.8	6.5		2	5.7	7.3	4.9	5.1	ω	3.7	4.7	6.7	4.3	4.6
0	17	10	,	20	1	13	19	=	1	17	10	12	16	8.3	1	16
6	17	15	1	1	,	15	8.7	10			10	14	ω	10	1	
4	22	25	19	24	ı	25	28	24	19	26	1	36	26	29	21	31
23	17	18	16	74	1	23	21	14	16	14	15	14	23	16	12	12
<u>6</u>	26	7.7	12	34		22	27	7.7	7.3	21	14	19	24	8.3	7.3	20
	10	18	ω	1			7.7	18	5.1	1		1	6.7	18	5.3	,
2	32	23	,	ı	1	-	24	22	1	1	,	12	20	19	ı	
က	23	22	19	,	1	19	15	13	23	1	12	19	12	12	16	
13	4	18	9.2	,		15	14	17	12		6	14	12	17		1
9	29	38	22	43	,	•	20	35	12	33			14	39	12	17

Table 5: Cobalt Concentration in Soil Profiles Collected at 92 Stations in the Sudbury Area as part of the Special Survey

	Cobait Concentration in Soil Profiles Co	Conceil	0 to 5 cm	5 cm	1011163	- 1	וברובח מו 25		5 to 10 cm	10 cm	13 710	as bair	2000	as part of the special survey		15 cm		
Station	1971*	1976	1981	1986	1992	1997	1971	1976	1981	1986	1992	1997	1971	1976	1981	1986	1992	1997
88	14	30	16	27	18	36	,	29	17	27	12	22	11	76	14	16	9.2	15
88	7	27	19	24	4	27		15	14	13	13	23	æ	10	16	12	-	22
06	14	23	23	16	21	87	1	19	24	20	10	37	2	15	24	16	8.2	18
91	31	24	21	17	21	28	1	16	23	16	7.2	11	25	14	29	16	6.7	13
92	15	48	21	4	17	1	1	22	12	15	1	,	12	19	1	16	11	ı
93	7	12	7.3	-	7.3	9.7		10	7	7.3	9.9	5.5	6	7	6.3	7.3	6.3	4.9
94	ω	12	5.7	7.7	4.8	5.6	1	12	4.7	8.3	5.1	4.3	6	13	9	7.3	5.3	3.8
95	2	13	10	10	5.7	4.4	1	9.7	10	13	6.4	4.5	9	13	10	12	6.8	6.8
96	29	34	4	32	35	63	44	29	14	32	1	54	1	16	17	28	12	63
97	51	46	15	2	31	28	1	21	14	75	26	44	18	20	14	<u>63</u>	24	73
86	25	21	20	13	10	13	9	13	18	12	7.7	7.5	١	13	19	14	7.8	9.9
66	788	1	21	16	31	24	26	8.7	13	-	6.2	14	1	9.3	13	10	6.2	12
100	32	10	-	9.7	9.7	13		9	10	10	8.4	4.5	12	7.7	6	1	8.7	5.1
101	12	23	2	12	8.9	4		17	2	10	6.4	4.8	12	13	7	9.7	6.8	4.7
102	9	30	16	16	_	18		31	16	14	13	17	6	27	17	13	18	16
103	15	16	21	17	Ξ	17		15	21	16	12	16	15	18	21	16	12	15
104	15	19	22	19	9.3	13		19	23	21	9.3	13	12	18	24	22	-	13
105	15	14	17	15	9.6	17		15	18	18	10	16	39	17	18	17	1	17
106			24	27	42	26	1	1	16	15	13	15	١	'	Ξ	15	9.1	12
107	15	24	33	15	ı	48	-	14	25	17	1	22	15	19	22	16	١	13
108	1	22	12	13	9	17	ı	23	13	12	4.7	18	သ	30	10	1	5.4	14
109	∞	20	24	19	15	24	1	15	22	18	Ξ	ထ	ထ	15	20	18	Ξ	8.5
110	5	21	46	16	8.3	,	-	ω	<u>69</u>	12	8.4	1	10	1	72	13	7.8	1
111	7	18	14	16	6.1	23	١	15	16	14	6.1	13	ထ	14	16	14	5.8	12
112	9	12	13	11	5.7	15	1	Ξ	9.7	7	9	9.7	7	8.7	12	1	6.1	8.1
113	6	1	ω	12	9.3	10	١	10	ω	12	9.4	8.7	ω	10	9.7	13	8.3	7.5
114	10	13	12	15	6.2	-	-	12	12	14	8.2	,	13	14	13	16	9.2	1
* Depths	sampled	in 1971 v	Depths sampled in 1971 were 0-2.5 cm rather than 0-5	5 cm rath	ner than (, , , , , , , , , , , , , , , , , , ,	1	2070	4004	1 1	4000		000	1001			

Concentrations shown in bold exceed the Table F Background Guideline of 21 ug/g Co. Values in bold and underlined exceed the Table A Soil Clean up Guideline of 4d Values represent single samples collected in 1971, means of triplicate samples in 1976 and 1981 and duplicate samples in 1992 and 1997.

ug/g Co.

Table 6: Copper Concentration in Soil Profiles Collected at 92 Stations in the Sudbury Area as part of the Special Survey

	ō	ഥ다	, 5 cm					5 to 1	0 cm					10 to	15 cm		
1976 1981 1986	1981 1986	1986	1992	\rightarrow	1997	1971	1976	1981	1986	1992	1997	1971	1976	1981	1986	1992	1997
430 390 240 480	390 240 480	240 480					300	270	180	340	,	349	320	260	140	300	,
540 370 400	370 400	400	360		•	ı	270	190	450	520		335	230	240	260	400	,
71 120 11	120 11	11	350				36	100	30	590	,	73	22	53	17	540	,
24 200 35	200 35	35	72	·	,	1	6	49	4	29		46	7	31	6	6	1
61 110 74	110 74	74	48	·		14	25	7	36	18			14	10	20	13	-
110 67 45 <u>0</u>	67 450	450	110 19	5	ŏ	1	11	33	260	22	63	13	10	24	160	15	28
110 92 - 73	92 - 73	- 73		'		10	24	18	1	18			13	22	-	15	
470 270 370 46	270 370 46	370 46		_	<u>0</u>	ı	480	250	270	28	110	,	290	240	320	,	120
400 150 36 29	150 36 29	36 29		27	0	,	150	150	21	18	240	151	86	84	18	17	260
250 190 160 460	190 160 460	160 460		Ξ	0	•	120	130	160	170	9/	43	110	110	180	110	43
87 96 110 210	96 110 210	110 210		1		ı	93	29	32	72	1	28	56	34	26	64	
100 110 89 61	110 89 61	89 61		400		1	64	20	79	71	110	27	24	21	52	110	72
200 130 180 66	130 180 66	180 66		120		1	88	12	93	17	44	16	43	10	35	18	24
52 54 33 110	54 33 110	33 110		16	-		17	10	20	17	12	11	15	10	18	11	12
570 1300 970 640	1300 970 640	970 640	:	1	-	;	430	360	870	270	1	38	270	340	019	120	,
22 0 150 16 100	150 16 100	16 100		!	:	,	180	43	10	37		28	180	33	10	27	
97 150 28 97	150 28 97	28 97		1		1	33	79	15	89		33	18	63	15	70	
40 200 140 150	200 140 150	140 150		140	-	1	28	17	17	24	28	18	68	18	14	21	14
40 110 42 24	110 42 24	42 24		,		,	5	71	26	23	,	20	7	43	13	32	
88 45 69 28	45 69 28	69 28		1	-	1	45	16	53	10		13	36	14	49	10	1
26 150 61 58	150 61 58	61 58		1		ı	6	25	47	30		æ	10	85	36	58	
48 160 200	160 200 94	200 94		210			18	99	22	38	9/	13	14	50	40	15	25
350 470 80 660	470 80 660	099 08		920		1	460	92	180	200	470	29	290	77	260	100	370
140 48 36 430	48 36 430	36 430		1		'	130	93	19	190		145	89	120	18	150	1
240 230 66 130	230 66 130	99 130		72		34	47	450	47	110	59	1	24	31	38	140	52
220 270 130 -	270 130 -	130		,		,	39	42	110				49	68	86	1	1
190 140 290	140 290 780	290 <u>780</u>	• • • • • • • • • • • • • • • • • • • •	069		285	140	130	150	390	009	1	130	93	88	570	520
140 290 120 200	290 120 200	120 200		310		253	91	260	94	120	440	t	75	210	73	96	570
180 550 74 91	550 74 91	74 91		110		95	230	670	35	34	65	t	230	380	19	20	59
100 46 -	46	7	.	'		64	13	13	,	1	1	t	8	14		1	1
	390 82 110 4	82 110 4	4	49		1	330	420	70	39	48	503	420	800	54	28	40
340 340 230	340 230	230	200	'		1	350	360	240	250	-	1	330	330	140	240	1
79 120 250	120 250	250	•••••	45	0	1	44	130	75	,	360	55	37	160	42	1	150

	ב ב	E 2 C E E					0	E C E					10 to 1	DO C		
_	1981	1986	1992	1997	1971	1976	1981	1986	1992	1997	1971	1976	1981	1986	1992	1997
1	260	130	110	840	,	120	57	61	18	93	78	74	36	43	19	59
	210	100	130		,	75	89	63	69	1	35	64	64	38	71	
57	13	23	110		,	30	15	25	130		73	15	23	22	130	,
0	25	110	100	100	1	27	33	45	45	64	25	17	69	31	32	55
,,	100	40	48	50	1	43	52	31	38	40	45	38	46	31	31	31
44	37	37	65	120	1	6	32	31	38	47	22	7	36	30	1	32
æ	40	47	43	38	1	18	20	32	1	30	29	17	16	27	1	23
0	320	35	230	140	1	120	140	43	140	130	205	06	51	43	29	93
20	260	180	180	300	1	180	270	140	140	180	32	190	290	100	120	160
10	250	250	220	330	1	78	80	230	51	230	39	65	47	97	29	130
09	270	099	150	440	1	280	23	43	99	84	85	51	25	38	21	34
90	340	37	57			100	26	59	43	'	31	44	21	65	37	
70	28	57	42	39	1	16	22	58	99	37	æ	10	18	30	,	33
38	39	75	,	46	,	7	16	9/	,	17	12	6	17	92	1	12
30	52	52	54	37	1	14	29	22	37	17	24	13	24	19	34	21
44	17	43	22	42		38	16	18	26	22	22	28	20	24	22	26
24	16	43	15	,	1	17	6	40	13	,	4	4	10	37	13	•
260	530	360	200	1600	1	110	530	59	69	970	10	86	550	49	61	1000
9	340	220	ı	300	ı	78	190	110	1	210	58	40	120	53	1	190
30	740	540	640	490	1	63	33	86	43	69	09	25	25	34	44	38
40	820	420	810	580	1	310	290	220	91	120	450	360	180	170	50	68
70	200	120	,	1		53	84	53	ı			34	16	41	,	,
20	220	170	150	87		48	58	99	42	48	35	22	32	43	19	34
50	180	110	1	310	1	82	4	44	,	86	25	40	64	42	1	72
30	250	310	1	,		72	73	58	ı	١	25	30	43	24	1	1
510	330	620	450	760	1	360	350	510	460	700	•	710	270	610	450	810
092	190	54	200	280		220	260	47	220	280	393	220	200	09	150	290
090	480	210	310	950	1	230	490	100	140	400	208	270	260	91	120	360
1	210	120	74	1		1	74	56	19	1	'	1	75	57	18	'
230	520	460	,	,	١	83	300	390	•	1	1	99	280	370	t	,
330	300	220	260	-	1	160	120	75	310	-	83	120	95	28	240	1
35	46	92	77	1	•	31	32	52	51	•	63	35	31	62	1	•
((******									

Table 6: Copper Concentration in Soil Profiles Collected at 92 Stations in the Sudbury Area as part of the Special Survey

	992 1997		····	<u></u>	.			•	22 9		.	····		<u>.</u>					÷				<u></u>	•	····		
15 cm		.	.	.	<u> </u>	<u> </u>	<u> </u>	<u></u>	38	<u>.</u>	<u>.</u>	<u> </u>	<u>.</u>	<u></u>	!	<u></u>	.	<u> </u>	 	····	<u></u>	<u></u>	.	<u></u>	<u></u>	<u> </u>	<u></u>
10 to 15	1981	240	42	92	910	23	15	8	20	260	150	29	49	35	21	24	33	29	63	77	370	140	65	470	99	14	21
	1976	340	110	110	99	89	14	18	24	110	350	62	19	19	27	32	17	19	17	ı	120	440	98	45	92	28	19
	1971	143	120	112	57	35	29	11	15	'	120	,	1	28	64	43	25	29	47	'	40	63	183	28	88	28	88
	1997	640	320	220	230	,	52	36	14	2000	1200	91	140	46	79	59	39	22	26	320	640	260	96		150	98	53
	1992	92	39	140	30	92	09	13	20	160	380	41	69	43	57	26	27	16	21	170	1	27	100	36	18	15	65
5 to 10 cm	1986	100	190	370	100	46	59	23	41	640	520	92	49	26	38	40	53	44	41	110	53	44	110	440	130	26	25
5 to	1981	250	59	77	480	43	19	12	12	130	180	77	88	36	35	100	31	32	29	190	260	150	46	230	130	19	18
	1976	320	290	120	120	120	41	24	50	380	440	120	49	16	55	80	19	29	16	,	110	370	160	59	84	56	24
	1971	'	,	•		,	'	'		1700	1	22	ω	1		ı	,	1	,	ı	,		1		,	1	,
	1997	950	510	470	820	1	160	54	61	2800	1200	190	330	230	310	120	57	37	26	<u>980</u>	890	290	430	ı	350	180	61
	1992	290	29	370	380	210	70	37	18	2000	260	160	530	46	140	69	38	38	33	1300	1	83	180	71	27	14	29
5 cm	1986	140	450	240	150	37	150	12	40	850	810	9/	120	35	120	94	110	57	33	640	100	130	200	480	180	39	31
0 to 5 cm	1981	260	34	74	470	150	21	24	21	240	540	180	340	46	69	29	40	35	65	009	820	180	410	180	70	130	20
	1976	330	400	180	250	430	59	34	86	1200	720	260	210	140	61	140	21	30	18	,	290	240	420	360	170	110	54
	1971*	220	197	300	400	176	53	73	73	2600	1007	570	52	268	115	91	100	41	71	,	63	433	165	198	463	85	35
Ctotion	Station	88	89	90	91	92	93	94	95	96	97	86	66	100	101	102	103	104	105	106	107	108	109	110	111	112	113

* Depths sampled in 1971 were 0-2.5 cm rather than 0-5 cm.

225 ug/g Cu.

Values represent single samples collected in 1971, means of triplicate samples in 1976 and 1981 and duplicate samples in 1992 and 1997. Concentrations shown in bold exceed the Table F Background Guideline of 85 ug/g Cu. Values in bold and underlined exceed the Table A Soil Clean up Guideline of

Report Number SDB-045-3511-200

Table 7: Iron Concentration in Soil Profiles Collected at 92 Stations in the Sudbury Area as part of the Special Survey

1976 1981 1986 1992 1997 1971 1976 1981 1986 1982 1997 1970 1970 1900 <th< th=""><th>0 to 5 cm</th><th>5 cm</th><th></th><th></th><th></th><th></th><th>5 to 1</th><th>5 to 10 cm</th><th></th><th></th><th></th><th></th><th>10 to</th><th>15 cm</th><th></th><th></th></th<>	0 to 5 cm	5 cm					5 to 1	5 to 10 cm					10 to	15 cm		
17000 25000 18000 25000 14000 25000 14000 25000 14000 25000 14000 25000 14000 27000 14000 27000 14000 27000 14000 27000 14000 27000 14000 27000 14000 27000 14000 <th< th=""><th>Ē</th><th>1986</th><th>\vdash</th><th>1997</th><th>1971</th><th>1976</th><th>1981</th><th>1986</th><th>1992</th><th>1997</th><th>1971</th><th>1976</th><th>1981</th><th>1986</th><th>1992</th><th>1997</th></th<>	Ē	1986	\vdash	1997	1971	1976	1981	1986	1992	1997	1971	1976	1981	1986	1992	1997
199000 210000 220000 140000 - 91000 189000 21000 4200 72000 11000 24000 - 9100 18900 21000 4200 7200 11000 24000 - 5100 9100 11000 4700 7200 12000 8700 - 14500 6400 12000 12000 4700 12000 27000 17000 17000 17000 17000 17000 15000 13000 12000 20000 14000 14000 14000 14000 5500 4300 14000 14000 14000 14000 14000 14000 6500 4300 14000 14000 14000 14000 14000 14000 6500 4300 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000		18000	25000		'	13000	14000	17000	27000	1	17300	10000	17000	16000	24000	,
4200 7200 11000 24000 - 5100 9100 11000 4200 12000 8700 - 5000 10000 11000 4200 12000 8700 - 11000 6400 9200 12000 4100 12000 12000 12000 12000 12000 12000 12000 4100 12000 12000 12000 12000 12000 12000 12000 4100 13000 12000 12000 12000 12000 12000 12000 1500 13000 13000 12000 12000 12000 12000 12000 1500 13000 14000 12000 14000 <td></td> <td>22000</td> <td>14000</td> <td>1</td> <td>1</td> <td>9100</td> <td>18000</td> <td>21000</td> <td>21000</td> <td>1</td> <td>17000</td> <td>13000</td> <td>16000</td> <td>19000</td> <td>24000</td> <td>1</td>		22000	14000	1	1	9100	18000	21000	21000	1	17000	13000	16000	19000	24000	1
4200 12000 8700 - - 5000 10000 13000 4700 7300 12000 9900 - 11000 6400 9200 12000 4700 7300 12000 9900 - 14000 6700 17000 12000 6100 14000 21000 12000 20000 17000 12000 12000 15000 13000 13000 13000 14000 14000 14000 14000 15000 13000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000		11000	24000	1	1	5100	9100	11000	27000	1	9100	0069	11000	11000	22000	,
4700 7300 12000 9900 - 11000 6400 9200 12000 4100 10000 21000 12000 </td <td></td> <td>12000</td> <td>8700</td> <td>1</td> <td>1</td> <td>5000</td> <td>10000</td> <td>13000</td> <td>8800</td> <td>,</td> <td>11300</td> <td>6100</td> <td>9800</td> <td>11000</td> <td>11000</td> <td>,</td>		12000	8700	1	1	5000	10000	13000	8800	,	11300	6100	9800	11000	11000	,
4100 10000 21000 12000 21000		12000	:	,	11000	6400	9200	12000	11000	1	1	6400	8400	12000	10000	,
6100 14000 6700 14500 17000	<u> </u>	21000	:	2000	,	5400	16000	21000	15000	16000	12500	9300	15000	20000	15000	19000
15000 15000 20000 11000 20000 14000 18000 <th< td=""><td><u> </u></td><td>· · · · · · · · · · · · · · · · · · ·</td><td>:</td><td>; ;</td><td>14500</td><td>0099</td><td>17000</td><td>1</td><td>9400</td><td>,</td><td>1</td><td>7200</td><td>21000</td><td>1</td><td>16000</td><td>'</td></th<>	<u> </u>	· · · · · · · · · · · · · · · · · · ·	:	; ;	14500	0099	17000	1	9400	,	1	7200	21000	1	16000	'
11000 13000 13000 13000 12000 20000 - 7400 15000 12000 7200 13000 16000 20000 13000 - 14000 14000 5500 7800 14000 14000 14000 14000 14000 6500 4300 14000 14000 14000 14000 15000 6500 4300 13000 14000 14000 14000 14000 6500 4300 13000 14000 14000 14000 14000 6500 4300 13000 14000 14000 14000 14000 6500 4300 14000 - 14000 14000 13000 6500 7200 14000 - 14000 14000 14000 4800 7200 14000 - 14000 14000 14000 4800 7200 14000 - 14000 14000 14000 4800 1400 14000 - 14000 14000	Ξ.	20000	:	0000	1	13000	16000	18000	11000	19000	1	11000	16000	19000	,	19000
7200 13000 16000 20000 13000 - 1000 11000 14000 <th< td=""><td>Ξ.</td><td>13000</td><td>:</td><td>0000</td><td>,</td><td>7400</td><td>15000</td><td>12000</td><td>11000</td><td>22000</td><td>12800</td><td>9200</td><td>13000</td><td>12000</td><td>12000</td><td>22000</td></th<>	Ξ.	13000	:	0000	,	7400	15000	12000	11000	22000	12800	9200	13000	12000	12000	22000
5500 7800 14000 11000 - - 11000 14000 14000 4500 12000 16000 16000 18000 - 14000 15000 6500 4300 13000 16000 18000 - 14000 15000 13000 6500 4300 13000 2600 14000 - 14000 13000 14000 14000 14000 14000 14000 14000	`	16000		3000	1	8100	11000	14000	17000	17000	8800	2600	11000	15000	16000	15000
4500 12000 16000 16000 18000 - 8300 14000 15000 6900 4300 13000 5600 14000 - 9600 6500 13000 6500 8100 13000 26000 - 7100 10000 13000 6500 8100 13000 26000 - 7100 10000 13000 6500 7200 7300 10000 - - 6000 9500 10000 4800 8200 11000 9500 - - 6000 9500 11000 4800 8200 11000 9500 14000 - 5500 8000 11000 4800 9700 9500 14000 - 5100 17000 11000 4800 15000 9600 14000 - 5100 17000 11000 11000 15000 9600 14000 - 5900 17000 17000		14000	 .	,	1	11000	14000	14000	0066	1	10700	11000	13000	13000	12000	1
6900 4300 13000 14000 19000 - 9600 6500 13000 6500 8100 13000 5600 14000 - 7100 10000 24000 14000 24000 20000 - - 7100 10000 24000 6500 7200 7300 10000 - - 6000 9900 11000 4900 7800 11000 9300 - - 6000 9900 11000 4900 7800 9500 9100 - - 5500 8600 11000 4100 9700 9600 14000 - - 5500 8600 11000 3500 16000 9600 14000 - - 5500 8600 14000 3500 16000 9600 14000 - - 9900 14000 11000 15000 9600 14000 - - 14000 </td <td></td> <td>16000</td> <td>.</td> <td>8000</td> <td>; ;</td> <td>8300</td> <td>14000</td> <td>15000</td> <td>17000</td> <td>17000</td> <td>13900</td> <td>9100</td> <td>12000</td> <td>15000</td> <td>12000</td> <td>20000</td>		16000	 .	8000	; ;	8300	14000	15000	17000	17000	13900	9100	12000	15000	12000	20000
6500 8100 13000 5600 14000 - 7100 10000 13000 14000 24000 24000 24000 - 14000 17000 24000 6500 7200 7300 10000 - 6000 9900 11000 4900 7800 11000 9100 - 5500 8700 11000 4800 8200 11000 9300 - 5500 8600 11000 4300 9700 9200 8500 - 5500 8600 11000 4300 18000 10000 9300 - 5500 8600 11000 44100 9300 16000 9600 14000 - 5500 8600 17000 44100 9300 16000 9600 14000 - 5500 17000 17000 3500 15000 18000 17000 17000 17000 17000 17000 14000 1500 1600 17000 1300 1600 17000		13000		0006	1	0096	6500	13000	16000	16000	14700	12000	2000	17000	16000	15000
14000 24000 24000 20000 - 14000 17000 24000 6500 7200 7300 10000 6000 9900 8800 4800 8200 11000 9900 5500 8700 11000 4800 8200 11000 9100 5500 8700 11000 4800 8200 11000 9300 5500 8600 11000 44100 9300 11000 5100 7800 11000 44100 9300 16000 14000 5900 17000 17000 44100 9300 16000 14000 5900 17000 17000 5400 15000 18000 17000 9700 9700 9700 17000 17000 13000 8300 7600 13000 17000 17000 17000 18000 17000 18000 17000		13000		4000	ı	7100	10000	13000	6700	13000	10800	0089	10000	13000	13000	14000
6500 7200 7300 10000 - - 6000 9900 8800 4900 7800 11000 9900 - 5500 8700 11000 4800 8200 11000 9100 - 5500 8600 11000 4300 9200 8500 - 5500 8600 11000 5400 9300 18000 - - 5500 8600 11000 4100 9300 18000 - - 3900 7000 1900 4100 9300 18000 - - 9900 17000 17000 5400 15000 18000 14000 9700 17000 17000 17000 5400 7900 18000 17000 12000 13000 13000 13000 5400 7900 18000 17000 12000 12000 12000 12000 12000 12000 12000 12000 120		24000	20000	1	ı	14000	17000	24000	15000	1	8100	12000	25000	20000	11000	,
4900 7800 11000 9900 - 5500 8700 11000 4800 8200 11000 7000 9100 - 5500 8600 11000 4300 9700 9200 8500 - 5500 8600 11000 5400 6400 11000 9300 - - 5500 8600 11000 3500 16000 9600 14000 - 9900 17000 19000 3500 16000 9600 14000 - 9900 17000 19000 3500 15000 9600 14000 - 9900 19000 19000 5400 15000 18000 17000 19000 19000 19000 19000 5500 7600 19000 17000 18000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000		7300	10000	,	1	0009	0066	8800	9400	1	8800	6100	12000	8300	9400	,
4800 8200 11000 7000 9100 - 3300 9000 11000 4300 9700 9200 8500 - 5500 8600 9500 4100 9300 11000 - 5100 7800 11000 4100 9300 16000 9600 14000 7700 1900 3500 15000 9600 21000 4600 7700 17000 5400 9300 12000 9600 21000 4600 7700 17000 5400 9300 12000 8400 970 8900 10000 13000 5500 7500 12000 8400 970 8200 13000 13000 5500 7500 13000 22000 17000 13000 13000 14000 8000 15000 14000 13000 14000 14000 16000 16000 4700 11000 1900 17000 14000 </td <td></td> <td>11000</td> <td></td> <td>1</td> <td>,</td> <td>5500</td> <td>8700</td> <td>11000</td> <td>12000</td> <td>1</td> <td>10800</td> <td>2000</td> <td>8900</td> <td>11000</td> <td>9200</td> <td>1</td>		11000		1	,	5500	8700	11000	12000	1	10800	2000	8900	11000	9200	1
4300 9700 9500 8500 - - 5500 8600 9500 5400 6400 11000 9300 - - 5100 7800 11000 4100 9300 18000 14000 - - 9900 7000 17000 3500 10000 16000 9600 21000 46000 - 9900 8900 17000 5400 9300 12000 18000 - - 5900 17000 17000 5400 7900 9700 8400 9700 8700 13000 13000 5500 7900 9700 8700 12000 13000 13000 7200 1500 12000 17000 12800 13000 13000 800 1500 17000 13800 16000 9100 800 1500 17000 1300 16000 16000 14000 23000 18000 170		11000		9100	1	3300	0006	11000	7900	11000	9800	5500	8800	11000	12000	13000
5400 6400 11000 9300 - 5100 7800 11000 4100 9300 18000 10000 - 5100 7800 11000 3500 16000 9600 14000 - 4700 17000 17000 11000 15000 9600 21000 46000 - 5900 17000 17000 5400 9300 12000 18000 - - 5900 11000 13000 8300 7600 12000 17000 17000 13000 13000 7200 13000 22000 17000 12000 12000 12000 8000 2100 17000 17000 12000 12000 12000 8000 2100 17000 17000 12000 9100 8000 15000 17000 1300 16000 4700 23000 23000 17000 23000 26000 19000 180		9200	8500	1	ı	5500	8600	9500	8500	1	6500	4300	7500	9300	7900	,
4100 9300 18000 10000 - 3900 7000 19000 3500 10000 16000 9600 14000 - 4700 12000 17000 5400 9300 12000 18000 - - 5900 10000 13000 5500 7300 12000 18000 - - 5600 10000 13000 8300 7600 12000 17000 17000 13000 13000 8300 7600 13000 22000 17000 12000 13000 9600 20000 19000 17000 12000 16000 16000 16000 8000 15000 1900 17000 1300 16000 16000 16000 4700 11000 21000 19000 17000 16000 16000 16000 19000 23000 23000 23000 23000 26000 23000 26000		11000	9300	,	1	5100	7800	11000	8800	1	8300	5100	7400	10000	8100	1
3500 10000 16000 9600 14000 - 4700 12000 17000 11000 15000 9600 21000 4600 - 9900 8900 11000 5400 9300 12000 1800 - - 5900 10000 13000 500 7500 12000 970 890 10000 13000 7200 5100 13000 22000 17000 12000 13000 9600 2000 1900 16000 1300 16000 16000 8000 1500 9200 1000 1300 16000 9100 4700 11000 21000 17000 1300 8500 9100 4700 23000 23000 18000 17000 2000 16000 19000 17000 21000 23000 26000 26000 26000		18000		١	1	3900	7000	19000	0066	ı	3800	4300	8600	17000	0066	1
11000 15000 9600 21000 46000 - 9900 8900 11000 5400 9300 12000 18000 - 5900 10000 13000 5500 7900 9700 8400 9700 8700 8700 13000 8300 7600 12000 - - 5600 10000 13000 7200 5100 13000 22000 17000 12000 12000 12000 8000 15000 8700 1300 16000 9100 1600 4700 11000 9200 17000 1300 8500 9100 4700 11000 17000 17000 14000 16000 16000 19000 23000 23000 23000 26000 26000 26000 26000		16000		4000	1	4700	12000	17000	8500	12000	2000	2600	12000	16000	8400	11000
5400 9300 12000 18000 - - 5900 10000 13000 5000 7900 9700 8400 9700 8900 4000 8700 9200 8300 7600 12000 17000 17000 12000 13000 12000 9600 20000 19000 11000 1700 12000 16000 8000 15000 8700 9200 10000 1330 8700 22000 9100 4700 11000 - - 2600 3900 8500 - 14000 23000 19000 17000 17000 23000 26000 19000 22000 23000 23000 26000 26000		0096		0009	1	0066	8900	11000	14000	31000	5400	8900	9100	11000	13000	23000
5000 7900 9700 8400 9700 8900 4000 8700 9200 8300 7600 12000 - - - 5600 10000 13000 7200 5100 13000 22000 17000 7500 18000 16000 8000 15000 8700 9200 10000 13300 8700 22000 9100 4700 11000 - - 2600 3900 8500 - 14000 23000 19000 17000 - 14000 16000 19000 18000 - - 21000 23000 26000		12000		1	1	5900	10000	13000	15000	,	3800	6300	11000	13000	13000	,
8300 7600 12000 - - 5600 10000 13000 7200 5100 13000 22000 17000 12800 5900 5400 12000 8000 15000 8700 16000 13300 16000 1		9200		9700	8900	4000	8700	9200	8000	0096	1	3600	9500	8900	8700	0096
7200 5100 13000 22000 17000 12800 5900 5400 12000 9600 20000 19000 11000 16000 7500 18000 16000 4700 11000 - - 2600 3900 8500 - 14000 23000 19000 17000 - 14000 16000 19000 18000 18000 23000 26000 26000		12000		1	1	2600	10000	13000	ı	ı	1	0099	11000	12000	1	
9600 20000 19000 11000 16000 7500 12000 18000 16000 8000 15000 8700 9200 10000 13300 8700 9100 4700 11000 - - 2600 3900 8500 - 14000 23000 21000 19000 17000 - 14000 16000 19000 22000 23000 18000 - - 21000 26000		13000		7000	12800	5900	5400	12000	21000	17000	1	6400	2000	11000	22000	17000
8000 15000 8700 9200 9100 9100 4700 11000 - - - 2600 3900 8500 - 14000 23000 21000 19000 17000 - 14000 16000 16000 19000 22000 23000 18000 - - 21000 26000 1		19000	 .	0009	7500	12000	18000	16000	7300	21000	,	12000	16000	14000	7500	26000
4700 11000 - - - 2600 3900 8500 - 14000 23000 21000 19000 17000 - 14000 16000 16000 19000 22000 23000 18000 - - 26000 26000		8700		0000	13300	8700	22000	9100	7900	10000	1	8200	21000	11000	8600	11000
14000 23000 21000 19000 17000 - 14000 19000 23000 26000 160		ı	:	1	2600	3900	8500	1	1		1	4100	0096	,	,	,
19000 22000 23000 18000 21000 23000 26000	: :	: :		7000	ı	14000	19000	16000	0066	16000	16000	14000	22000	19000	0066	16000
	: :			1	1	21000	23000	26000	19000	1	1	19000	19000	27000	19000	,
15000 21000 - 27000 - 4600 16000	3900 15000	21000	- 2	7000	,	4600	16000	16000	,	21000	11500	6400	15000	16000	,	16000

Table 7: Iron Concentration in Soil Profiles Collected at 92 Stations in the Sudbury Area as part of the Special Survey

			9	0 to 5 cm					F 60.	E to 40 cm					70.7	7.6		
Station	40744	40.40	200	2007	4000	1007	707	0207	21.5		30,				0101	10 to 15 cm		
	19/1	19/6	1981	1986	1992	1997	19/1	1976	1981	1986	1992	1997	1971	1976	1981	1986	1992	1997
55	16500	19000	10000	14000	16000	26000	1	0089	15000	14000	18000	15000	23800	7100	13000	15000	17000	15000
56	14500	7100	0096	14000	15000	1	1	6400	8100	12000	11000	1	10500	6400	0066	11000	11000	1
25	15000	3800	7900	12000	13000		ı	4400	8700	12000	14000	,	11500	4600	8200	12000	13000	1
58	9300	2000	18000	13000	19000	:	1	5600	16000	14000	20000	18000	11000	4500	17000	13000	19000	17000
59	4800	3600	44000	17000	18000	18000	1	3000	48000	19000	17000	20000	55200	2900	46000	20000	17000	21000
09	10300	9400	24000	17000	18000	14000	1	14000	33000	19000	22000	15000	8500	17000	35000	16000	,	22000
61	13800	18000	25000	26000	27000	24000	1	20000	26000	27000	1	28000	17000	20000	22000	27000	1	32000
62	17500	11000	20000	12000	23000	13000	1	10000	18000	12000	31000	14000	13300	12000	17000	11000	32000	13000
63	8300	11000	11000	23000	22000	29000	1	11000	12000	25000	25000	26000	0009	11000	13000	24000	26000	26000
64	12000	14000	15000	19000	15000	17000	1	11000	13000	16000	14000	14000	9800	14000	11000	17000	16000	12000
65	13000	30000	12000	19000	18000	16000	1	21000	10000	17000	17000	11000	13300	20000	14000	21000	17000	13000
99	16500	22000	13000	16000	22000			20000	12000	20000	21000	,	13500	18000	14000	20000	20000	1
29	8300	7000	11000	13000	16000	16000		7900	11000	0066	17000	15000	11800	13000	11000	8900	1	13000
89	8800	3400	8300	19000	t	8200	1	6500	10000	22000	1	9200	8000	12000	12000	20000		11000
69	12800	0009	21000	25000	; 	23000	1	8000	19000	29000	24000	25000	18300	11000	17000	28000	24000	23000
20	18000	11000	17000	18000	.	13000	1	11000	17000	18000	25000	22000	17500	10000	19000	21000	28000	27000
71	9300	8800	13000	18000	15000		1	10000	15000	20000	15000	'	13300	13000	15000	20000	14000	1
72	9500	9300	21000	22000	28000	31000	1	11000	19000	22000	29000	31000	1600	9700	20000	21000	27000	32000
73	9500	8800	14000	14000		17000	1	7800	11000	13000	1	18000	7500	7300	11000	11000	ı	16000
74	12800	8900	14000	14000		18000		7500	13000	12000	16000	16000	13500	5700	17000	19000	14000	18000
75	1	14000	15000	9500	22000	23000		14000	7100	9800	14000	19000	17800	13000	4600	8700	14000	22000
92	1	8400	15000	16000	1		1	3700	11000	13000			1	4400	13000	13000	1	,
77	9500	0009	11000	11000	11000		ı	4900	7800	9400	9300	11000	7800	4600	8100	9400	9500	11000
78	17300	10000	15000	12000	1	25000	1	8800	20000	16000	ı	23000	13300	0006	20000	11000	1	24000
79	7000	11000	19000	15000	ı	1	1	8900	13000	13000		1	12900	8700	13000	12000	1	1
80	1	14000	21000	23000	21000	24000	ι	11000	21000	22000	20000	25000	1	16000	15000	25000	20000	27000
81	22000	9200	16000	27000	17000	24000	ı	9800	18000	20000	13000	21000	13500	9700	16000	24000	12000	20000
82	12300	13000	26000	0099	7100	21000	1	8500	28000	8100	6200	14000	17800	8600	22000	0096	7800	14000
83	ı	1	14000	17000	12000	ı		1	13000	23000	11000	1	1	1	14000	24000	10000	1
84	1	9100	29000	25000	1	1	ı	8400	22000	27000		1	1	9500	22000	22000	1	1
85	14500	14000			: :	1		15000	17000	16000	20000	1	14100	14000	14000	16000	18000	1
86	9300	7400	16000	21000	11000	ı	1	11000	18000	22000	17000		9500	10000	17000	21000	1	1
87	21300	17000	21000	28000	22000	32000		ı	23000	24000	17000	29000	Ī	٠	16000	27000	18000	24000

Table 7: Iron Concentration in Soil Profiles Collected at 92 Stations in the Sudbury Area as part of the Special Survey

Table 7: Holl concentration in ook I folies concered						1		,	,									
0,000			0	0 to 5 cm					5 to 10 cm	0 cm					10 to 15 cm	15 cm		
Station	1971*	1976	1981	1986	1992		1971	1976	1981	1986	1992	1997	1971	1976	1981	1986	1992	1997
88	15000	14000	19000	14000	28000	33	-	16000	21000	12000	19000	30000	15400	12000	19000	12000	16000	31000
88	7800	13000	24000	25000	25000		,	10000	18000	16000	23000	20000	6500	7600	19000	16000	:	20000
06	14000	9400	27000	26000	22000	32000	,	9200	28000	29000	17000	21000	10000	7900	28000	25000	16000	22000
91	17500	13000	20000	24000	22000	27000	,	12000	20000	23000	12000	18000	24500	10000	22000	22000	13000	23000
92	12000	17000	14000	17000	17000	,	,	16000	14000	17000	16000	1	13300	17000	14000	18000	19000	1
93	7500	5300	9200	14000	11000	15000	1	5200	8600	11000	0096	13000	8300	4900	7300	11000	0066	11000
94	6500	8400	8400	14000	10000	13000	1	9300	7600	15000	12000	11000	7500	16000	9300	13000	12000	12000
95	12300	30000	20000	25000	20000	63000	1	11000	18000	22000	21000	23000	14500	13000	18000	22000	19000	23000
96	18800	12000	11000	20000	16000	24000	17000	9800	12000	22000	15000	25000	,	7800	14000	20000	15000	29000
97	45000	24000	12000	80000	52000	00069	1	11000	16000	63000	57000	49000	19500	10000	11000	34000	57000	59000
86	25500	18000	22000	16000	17000	24000	9800	9100	25000	17000	13000	16000	,	8000	22000	17000	13000	15000
66	52500	12000	22000	21000	43000	8	0006	0066	15000	15000	13000	20000	1	7700	11000	14000	14000	17000
100	21500	9200	11000	14000	20000	17	,	0099	9700	14000	18000	11000	15700	8900	9200	15000	18000	11000
101	10900	7900	7400	15000	12000	19000	,	6500	7600	13000	18000	15000	13000	7200	9800	13000	16000	17000
102	12000	13000	17000	20000	16000	25000	1	14000	16000	20000	21000	26000	11100	15000	20000	18000	30000	28000
103	17500	14000	25000	22000	20000	27000	,	11000	27000	22000	20000	27000	18900	11000	26000	24000	22000	28000
104	18900	11000	23000	22000	17000	22000	1	12000	26000	24000	18000	23000	17500	11000	26000	24000	20000	24000
105	16500	10000	19000	21000	20000	30000	1	11000	19000	21000	20000	30000	17800	12000	19000	22000	20000	31000
106	,	1	22000	24000	30000	32	1	,	20000	17000	21000	20000	,	1	15000	19000	18000	18000
107	19300	24000	24000	19000	,	31000	,	8400	24000	21000	,	21000	21800	8600	22000	21000	1	19000
108	7000	18000	17000	18000	11000	18000	1	17000	17000	17000	11000	19000	6800	15000	17000	14000	11000	18000
109	11000	14000	23000	19000	15000	25000	1	16000	23000	21000	15000	18000	10800	17000	22000	24000	19000	18000
110	7500	14000	30000	12000	11000	,	,	14000	31000	9200	10000	1	10800	18000	30000	10000	10000	1
111	11400	11000	12000	:	8500	22000	1	10000	14000	16000	8600	18000	12000	9100	13000	16000	8700	17000
112	9800	7400	8600	12000	0066	15000	,	7800	10000	13000	9800	16000	11500	8600	12000	11000	10000	18000
113	0066	9500	•	17000	16000	18000	,	11000	8600	16000	17000	17000	8400	9800	8900	17000	17000	18000
114	14800	7400	15000	25000	14000	1		7300	17000	28000	21000	1	19300	7100	16000	33000	22000	'
* Depths sampled in 1971 were 0-2.5 cm rather than 0-5	sampled	in 1971	were 0-2	.5 cm rat	her than	0-5 cm.												

Values represent single samples collected in 1971, means of triplicate samples in 1976 and 1981 and duplicate samples in 1992 and 1997. No Soil Clean-up Guidelines have been established, therefore concentrations shown in bold exceed the OTR₉₈ Guideline of 35,000 ug/g Fe.

Table 8: Nickel Concentration in Soil Profiles Collected at 92 Stations in the Sudbury Area as part of the Special Survey

	7		:		<u> </u>	:						-	-				-	-		:	:		-	_							:	:	
	1997	ļ '	'	,	١	<u>'</u>	40	١	110	200	28		59	29	24				29	,			37	130	,	33		390	490	49		70	,
	1992	290	430	220	26	23	31	30	,	25	36	25	67	40	27	130	25	87	30	25	18	100	25	47	72	140	,	590	31	25	1	32	230
15 cm	1986	56	92	27	28	25	62		150	35	83	32	39	33	26	460	18	23	24	35	45	43	28	330	37	36	63	49	39	34	1	72	200
10 to 15 cm	1981	76	88	25	25	18	35	29	88	50	61	28	28	20	16	280	28	43	15	29	24	95	23	150	87	26	40	100	630	260	41	520	220
	1976	170	110	26	28	37	32	19	180	78	47	46	59	73	43	310	110	31	66	37	28	22	17	200	110	25	99	130	110	210	13	180	300
	1971	153	105	13	15	1	æ	,	1	45	15	13	25	20	က	30	25	38	15	23	23	18	18	43	105	,	1	1	1	1		160	ŀ
	1997	'	1	,	,	,	39		140	170	26		90	35	24			-	26	1			77	300	,	46	'	650	340	51		78	-
	1992	400	570	380	19	17	30	17	23	24	56	23	57	42	1	300	26	120	18	39	19	49	34	130	110	110	ı	510	33	26	1	43	210
cm (1986	44	180	30	56	36	130		160	38	78	30	55	61	29	750	19	22	24	34	56	47	55	150	41	39	73	140	42	45		20	260
5 to 10	1981	62	50	26	35	18	34	24	110	70	85	31	31	18	18	440	37	49	16	29	26	35	23	160	99	35	36	140	520	<u>570</u>	35	270	230
	1976	260	160	29	24	33	21	23	300	96	56	41	58	85	40	360	140	30	25	43	44	25	15	400	240	33	41	120	100	220	15	240	240
	1971		,	1	,	15	1	5	١	1	,	1	1	1	1	,	'	'	,	ı	1	-	1	,	1	88	,	255	140	92	48	,	,
	1997	•	•	1	•	•	120	,	180	190	65	-	270	120	26	ı	-	,	100	1	,	'	190	810	1	53	1	950	270	94	,	77	,
	1992	540	320	300	54					40								••••	130	37	37	77	67	520	310	110	,	970	130	73	ı	200	180
cm	1986	130	220	28	30	57	270	,	250	48	79	09	82	120	32	550	19	34	100	38	99	09	180	73	50	52	84	310	74	72	1	73	210
0 to 5	1981	350	210	70	100	67	38	64	200	76	160	54	65	110	46	1100	67	110	120	87	45	170	120	570	45	140	180	150	410	350	58	270	290
	-	470		••••											<u>:</u>					···-÷					···- ;	···÷	‡		···÷				
	1971*	295	370	315	45	18	115	55	375	270	80	100	113	20	38	89		145	110	45	100	20	35	120	140	700	٠	200	293	213	178	325	625
Station	-	22	j	j						30	Ť	T	Ť	T	T		i	1	j	j	T	j	Ť	i	T	46	Ť		Ť	Ť	Ť	52	\dashv
U.	ļ]		_				- 1]		

Table 8: Nickel Concentration in Soil Profiles Collected at 92 Stations in the Sudbury Area as part of the Special Survey

	0 to 5	מכום		_			2	ESS					1010	ED CE		
1-		1986	1992	1997	1971	1976	1981	1986	1992	1997	1971	1976	1981	1986	1992	1997
1	85	240	,	360	'	20	96	75	,	180	48	28	110	55	,	81
	100	72	270	830	1	120	40	61	46	50	58	84	38	61	40	47
	150	06	140	1		63	29	52	30	1	35	54	34	47	35	
	13	25	130	-	ı	69	15	22	160	١	35	38	25	22	150	,
:	31	83	120	130	,	54	39	41	65	79	28	48	7.1	33	39	7
<u>:</u>	06	28	51	63		53	50	30	45	51	40	44	43	28	39	44
; .	43	31	65	110		29	37	29	41	42	25	36	41	26		40
.	40	65	48	47		44	56	39	,	35	30	44	24	35		31
į	410	41	540	49	T	72	320	42	390	53	100	78	66	40	220	20
;	280	180	140	260		260	320	170	140	130	25	230	230	150	260	130
.	160	260	310	320		55	54	260	130	220	75	63	46	160	67	130
:	200	450	120	350		710	84	56	57	67	70	140	4	76	41	33
!	330	35	70	,	,	160	51	28	26	,	89	110	38	61	47	,
.	34	52	58	49	,	39	26	39	75	46	33	38	23	29	,	47
!	45	06		64	1	13	14	81	'	28	20	27	17	89	1	21
·····	50	67	64	55		35	30	48	20	38	43	42	28	48	50	39
	28	28	41	38	ı	71	26	23	43	26	43	26	31	29	42	32
	22	37	25	,	1	31	12	37	23	,	13	30	15	38	23	•
310	1600	150	310	2300		180	1600	54	150	2100	ω	160	1600	45	80	1600
·····	370	180	,	280		75	82	92		230	58	74	26	75	1	230
	790	530	069	470	1	73	73	110	06	100	09	20	55	64	92	75
	740	640	830	740		360	110	300	69	100	650	390	110	160	89	99
·····	220	78	1	,		94	110	52	1			57	110	42	١	•
	210	140	170	91	-	9	83	63	75	86	52	98	81	29	69	82
	160	110	•	300	,	130	88	47	'	100	92	110	92	53	1	140
	280	210	١	•		82	39	48	,	'	43	65	42	46	•	1
	300	490	340	530	ı	290	250	470	350	580	•	520	160	550	390	<u>650</u>
•••••	160	70	260	180	1	220	190	99	350	200	200	260	260	71	<u>230</u>	160
	<u>079</u>	170	390	890	١	<u>570</u>	700	110	200	490	215	300	089	96	170	440
•	180	100	06	•	-	,	40	52	31	,	,	1	33	52	30	,
	490	460	,	•		61	430	490	ı	ı	,	43	430	460	1	,
	C 7 4		6													

Table 8: Nickel Concentration in Soil Profiles Collected at 92 Stations in the Sudbury Area as part of the Special Survey

Γ	1997	,	80	40	00	20	91	,	41	21	24	100	200	44	30	20	33	28	57	35	46	20	90	20	47	,	70	59	53	,
	-	†	†	÷	:	÷····	:	;	:	÷	÷	÷····	÷···-	.	÷	:	;		÷		÷	.					.			÷
	1992	,	120	57	67	63	47	55	58	21	20	180	200	28	42	45	32	56	40	27	29	74	,	23	84	25	16	24	58	29
15 cm	1986	7.1	840	110	76	200	29	39	35	16	29	450	069	130	44	38	47	37	44	38	33	120	4	45	75	290	110	25	33	37
10 to 1	1981	89	280	250	51	110	550	38	19	13	26	240	170	140	48	34	44	45	50	41	71	83	270	88	130	520	61	33	18	22
	1976	69		330	110	290	120	180	31	44	41	220	310	65	36	33	55	64	35	50	50	1	170	1200	130	64	120	44	32	31
	1971	113	'	75	45	75	63	38	25	80	15	1	190	1	,	23	53	30	45	35	09		45	98	120	53	50	30	48	28
	1997	,	950	550	440	220	150	'	49	41	21	1600	1200	89	180	30	70	79	09	39	50	230	640	350	49		200	120	29	1
	1992		:			:	:	:		÷·····	·····	:	÷	61	; :		:	:		:		:					 :		:	:
cm		.	<u>.</u>				<u>.</u>		.	<u> </u>	<u>:</u>	ļ		82		ļ	<u>.</u>					<u> </u>			 !		.		.	.
5 to 10	-						<u>.</u>		<u>.</u>					140	 :							 !								
	976 1						<u></u> .	<u>.</u>	<u>.</u>	<u>:</u>	<u>:</u>		<u>.</u>	83							<u>.</u>	<u>.</u>								
	-			4	က	က	_	က		<u>:</u>								_					_	0						
	1971	'	1	,	'	'	,	1	-	'	'	1550	1	13	က	1	1	'	'	'	1	1	1	'	1	'	1	'	-	'
	1997	ı	1300	940	900	570	770	1	150	62	63	2000	1500	220	490	290	340	160	76	55	48	720	1600	300	630	•	440	260	83	'
	1992	92	470	370	110	400	430	280	91	46	21	1100	700	150	750	110	140	98	51	42	40	1200	,	79	200	58	28	19	71	79
cm	1986	95	820	240	550	190	140	36	120	17	28	510	1100	93	150	34	110	83	76	42	33	<u>610</u>	52	94	190	360	200	38	25	35
0 to 5	1981 1986	71	770	260	50	100	420	190	26	28	27	180	330	280	360	57	69	44	55	50	72	450	580	100	300	77	79	130	15	40
	1		860	390	550	410	370	530	88	63	130	1100	1000	330	170	150	77	180	44	09	43	1	530	520	430	580	260	140	72	35
		:	: :				: :	:	:	: :				355	;	: :	: :	: :				: :		:			: :			
Ctation		86		88	89	06	91	92	93					98													111	112	113	114
Ú	2	~	~	_	~	ر ا	Ű)]	ا ر	ر ا	ر	٠,	ر ا	,	_	7	-	-	-	1	-		-	7	1		-	1	-

Values represent single samples collected in 1971, means of triplicate samples in 1976 and 1981 and duplicate samples in 1992 and 1997. Concentrations shown in bold exceed the Table F Background Guideline of 43 ug/g Ni. Values in bold and underlined exceed the Table A Soil Clean up Guideline of 150 ug/g Ni.

Table 9: Selenium Concentration in Soil Profiles Collected at 92 Stations in the Sudbury Area as part of the Special Survey

		;	
92 1997 1971	7	86 1992 1997	86 1992 1997
	4.7	2.1 4.7 -	
			7
		3.7	<0.03 3.7
		0.97	0.3 0.97
••••	••••	0.76	0.64 0.76
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	0.98	4.2 0.98
		98.0	98.0
		0.28	3.3 0.28
		0.22	0.23 0.22
		3.6	0.8 3.6
		2.8	0.86 2.8
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	1.1	0.73 1.1
		0.91	1.2 0.91
		-	0.36 1
		3.2	3.4 3.2
		0.57	0.1 0.57
. 62	. 0.79	0.79	0.16 0.79
		1.2	0.87 1.2
		0.27	0.26 0.27
•••••	•••••	<0.2	0.39 <0.2
		0.68	0.4 0.68
		1.1	1.5 1.1
		2.2	0.27 2.2
		2.2	0.16 2.2
89 0.55		0.89	0.32 0.89
		1	0.64
		4.2	0.3 4.2
2 1.4		1.2	0.68 1.2
		0.5	0.25 0.5
		1	1
58 <0.2			0.23 0.58
,	,		1.4
3.8	- o c		1

Table 9: Selenium Concentration in Soil Profiles Collected at 92 Stations in the Sudbury Area as part of the Special Survey

	<u></u>			:		5	2		2		2	,,		2	2	2	_		0	6		7			2		r.+	-	ις.					
	1997	0.4	1	1	0.5	9.0	0.75	0.4	0.2	0.7	Ŷ	3.0		0.2	0	0.2	0.7	'	3.5	3.0	0.4	0	,	0.4	0.3	'	4.4	1.4	0.8			1	'	(
	1992	0.29	0.35	_	0.4	99.0	1	,	2.4	1.8	0.72	0.48	0.61		,	0.77	99.0	<0.2	2.1		9.0	0.59		0.21			2.8	0.44	<0.2	0.25	1	1.9	í	
5 cm	1986	0.07	0.04	0.05	0.16	0.29	0.21	0.18	0.04	0.36	0.58	0.22	0.32	0.22	0.4	0.1	0.17	0.26	0.15	0.36	0.51	1.9	0.05	0.21	0.19	0.3	2.9	0.21	0.12	ı		0.39	0.31	ì
10 to 15 cm	1981	0.33	<0.3	<0.3	0.4	-	<0.3	<0.3	<0.3	1.2	<0.3	<0.3	<0.3	<0.3	<0.3	0.33	<0.3	<0.3	7.6	9.0	<0.3	-	9.0	<0.3	<0.3	<0.3	1.5	0.53	2.3	0.37	2.9	0.47	<0.3	•
	1976	0.7	0.65	0.24	0.32	1.2	0.43	0.44	0.16	0.93	0.35	0.57	0.4	0.51	0.37	0.38	0.39	0.26	0.45	0.13	0.32	4.2	0.39	0.31	0.39	0.21	9.9	1.6	0.98	ı	0.61	1.7	0.23	
	1971	-	,	t								,	,			1	· · · · · · · · · · · · · · · · · · ·	•	,	ı	1		1	ı	,	1		1		ı	•	ı		-
	1997	0.65	1	,	0.5	9.0	9.0	0.5	0.35	0.85	1.5	0.45	,	0.3	<0.2	0.3	0.55		6.9	0.85	0.65	0.45	,	0.4	0.4	•	4	1.6	0.8	1	1	1	,	1
	1992	0.27	0.36	1.1	96.0	1.2	0.99		2.2	1.9	0.78	0.73	0.76	0.61	1	96.0	0.58		0.91		0.61		1	0.35	1		ო	0.99	0.38	0.24		1.8	0.25	
to 10 cm	1986	0.16	60.0	0.12	0.28	0.26	0.31			0.19					0.42								0.04	0.31	0.13	0.23	2.2	0.03	0.12	t		0.48	0.32	
5 to	H	0.37													<0.3											<0.3		0.73		0.33	2.6		<0.3	
	976						0.48																					1.9	1.4		0.95	2.6	0.27	
	971 1	ı		_			·		 '		ı	•		 '		,		·		 '		,		,		 ,		,	1	1	· ·	1		****
	1997 1	7	1		9.0	.95	1.5	9.6	.55	က	က	.5		.3	.45).3).5	-	1.7	.5	ω.	9.	-).2	.7	-	1.2	.3	ω.	1	,	,	ı	
	1992 1	9 6.0	4				0.59								0						4.1 2.			1.2 0.			2.8 4	98 1.		56	ı	1.7		
	Н																													0				
0 to 5 cm	1986	0.44	0.34	0.0	0.62	0.2	0.21	0.58	0.1	0.53	1.2	2.6	0.21	0.32	0.44	0.4	0.21	0.3	-	0.83	2.7	3.8	0.24	0.72	0.56	2.5	2.8	0.31	0.3		1	1.2	0.56	
0 to	1981	0.7	1.3	<0.3	<0.3	N	<0.3	0.4	1.9	1.1	1.1	1.2	1.4	<0.3	0.4	0.43	<0.3	<0.3	6.5	2.9	3.5	2.8	1.3	1.4	0.93	1.8	2.3	0.83	3.2	0.97	3.5	1.3	<0.3	١
0 to 5 cm	1976	5.2	1.3	0.53	1.3	1.6	0.84	1.6	0.38	0.84	1.5	7.1	4.3	1.1	0.41	0.45	9.0	0.43	2.1	0.62	3.1	2.8	1.8	1.2	2.9	2.2	5.3	1.5	3.3		က	5.4	0.28	
	1971	'	,	1	•	ı	,	1	,	1	ı	ı	1	ı	1	,	ı	ı	ı	1	1	ı	1	1		1	1	1	ı	1	,	,	1	•
Ctation	Station	55	56	57	58	59	09	61	62	63	64	65	99	67	99	69	70	71	72	73	74	75	9/	77	78	79	80	81	82	83	84	85	98	3

											200	: [(20.00)				
Station			02 - 	U to 5 cm					43	to 10 cm	ے				10 to ,	10 to 15 cm		
	1971	1976	1981	1986	1992	1997	1971	1976	1981	1986	1992	1997	1971	1976	1981	1986	1992	1997
88	1	3.3	2.6	0.72	١	7.8	•	3.2	3.3	0.22	1	4.4	1	2.8	2.9	0.19	-	3.2
89	ı	١	<0.3	١	1	4.4		4.7	0.4	1	1	2.5	,	1.5	0.37			2.3
90	1	2.9	0.5	ı	ı	2.3	1	3.1	0.43	1	1	0.95	1	1.5	0.53			0.45
91	1	4.1	Þ	1	ı	5.7	1	12	Ŋ	1		1.7	1	0.85	7.5	1		1.1
92	1	4.4	-	1	2.6	,	•	1.4	0.4	1	1.6	-	,	29.0	0.4	,	0.83	
93	,	0.99	<0.3	-	0.79	1.7		0.81	<0.3	0.43	0.73	0.7	1	0.28	<0.3	0.26	0.74	0.55
94	,	0.91	0.33	0.26	0.63	-	1	99.0	<0.3	0.38	0.37	0.75	,	0.5	<0.3	0.25	0.32	0.35
95	1	1.8	0.5	0.44	<0.2	1.4	١	1.2	0.43	0.42	<0.2	0.65	,	0.91	0.47	0.34	<0.2	0.5
96	1	1	1.5	33	12	ו	1	2.3	0.73	29	0.95	14	1	0.95	1.8	32	2.7	12
97	,	ı	2.2	7.6	7.8	9.2	1	4.4	1.5	5.1	6.9	7.3	1	2.8	1.3	3.9	∞	16
86	,	5.8	2.6	0.88	1.9	2.8	٠	1.3	0.97	0.69	0.66	6.0	1	0.69	0.97	0.89	0.54	0.5
66	,	4.1	5.1	1.2	9.5	4.5	•	0.75	0.57	0.3	0.83	1.7	t	0.45	0.33	0.15	0.86	0.65
100		1.7	<0.3	0.23	100 - 1.7 <0.3 0.23 1.2 2.9	2.9	ı	0.42	<0.3	0.08	0.74	0.35	1	0.45	<0.3	0.18	0.73	<0.2
101	1	0.79	0.7	-	1.1	3.8	ı	0.79	<0.3	0.39	6.0	0.95	I	0.39	<0.3	0.26	0.75	9.0
102	1	2.4	0.37	0.68	0.96	1.3	,	2	0.63	0.33	_	0.7	1	0.74	<0.3	0.27	1.1	0.45
103	1	0.46	0.4	0.7	1.4	0.7	,	0.39	0.4	0.43	1.3	0.55	1	0.25	0.4	0.41	1.5	0.45
104	1	0.51	<0.3	0.34	0.97	0.5	,	99'0	0.33	0.36	0.55	0.3	1	0.44	0.4	0.32	96.0	0.25
105	1	0.45	<0.3	0.26	0.92	0.45	١	0.49	0.4	0.28	0.68	0.45	1	0.55	<0.3	0.2	0.78	0.45
106	1	1	3.6	3.8	6	4.2	ı	ı	1.1	0.3	1.5	1.8	1		0.33	0.32	99.0	1.2
107	1		5.1	0.17	1	8.3	1	0.98	2.3	0.1	1	4.7	1	1.3	- 8.	0.26		2.4
108	ı	1	0.93	0.79	0.47	1.9	٠	7.5	6.0	0.27	0.21	1.9	1	9.6	0.73	0.14	<0.2	1.8
109	1	8.9	2.2	0.92	1.1	4.4	1	9.0	0.47	0.45	0.59	0.3	1	0.43	<0.3	0.21	0.42	0.3
110	1	3.1	1.1	3.6	0.44	,	1	~ -	1.9	ა. გ.	<0.2	1	1	0.71	5.2	3.5	<0.2	
13	1	2.5	0.47	1.5	<0.2	2.7	1	6.0	0.77	0.83	<0.2	6.0	1	1.1	0.33	1.2	<0.2	0.8
112	1	2.4	0.93	0.4	<0.2	1.6	,	1.3	<0.3	0.26	<0.2	0.85	1	0.86	<0.3	0.15	<0.2	0.45
113	ı	1.3	<0.3	90.0	0.28	0.5	,	7-	<0.3	0.08	0.33	0.45	1	1.1	<0.3	60.0	0.34	0.35
114	٠	0.38	0.4	0.41	0.87	•	•	0.34	<0.3	0.4	0.35	1	1	0.3	<0.3	0.43	0.49	1
* Depths	sampled	in 1971	were 0-2	.5 cm rat	ther than	0-5 cm.												

Values represent single samples collected in 1971, means of triplicate samples in 1976 and 1981 and duplicate samples in 1992 and 1997. Concentrations shown in bold exceed the Table F Background Guideline of 1.9 ug/g Se. Values in bold and underlined exceed the Table A Soil Clean up Guideline of

10 ug/g Se.

Table 10: Sulphur Concentration in Soil Profiles Collected at 92 Stations in the Sudbury Area as part of the Special Survey

0.22 0.23 0.14 0.04 0.01 - - 0.22 0.23 0.14 0.04 0.01 - - 0.22 0.23 0.14 0.04 0.01 - - 0.23 0.24 0.11 0.06 0.05 - - 0.18 0.02 0.01 0.00 0.00 - - 0.18 0.04 0.03 0.04 0.03 0.02 - - 0.03 0.04 0.03 0.04 0.05 0.02 - 0.06 0.04 0.03 0.04 - 0.02 0.02 0.02 0.02 0.04 0.03 0.04 - 0.02 0.02 0.02 0.02 0.04 0.03 0.04 - 0.02 0.02 0.02 0.02 0.05 0.05 0.06 0.03 0.04 0.03 0.04 0.02 0.02 0.06				0 to	5 cm					5 to 10 cm	m 0					10 to	15 cm		
0.22 0.23 0.14 0.04 0.1 1970 1970 1970 1970 1970 1970 1971 1970 1971 1970 1971 1972 1972 1972 1972 1972 1972 1972 1972 1972 1972 1972 1972	Station	7207	010,	١,	000	0007	1007	7207	010,										
0.22 0.23 0.14 0.04 0.1 0.22 0.24 0.11 0.06 0.05 0.18 0.04 0.03 <0.01		1971	1976	1981	1986	1992	1997	1971	1976	1981	1986	1992	1997	1971	1976	1981	1986	1992	1997
0.22 0.24 0.11 0.06 0.05 0.18 0.04 0.03 <0.01	22	0.22	0.23	0.14	0.04	0.1	,		0.12	0.05	0.03	0.1	1	0.07	0.09	90.0	0.03	0.07	1
0.18 0.04 0.03 <0.01 0.05 .	23	0.22	0.24	0.11	90.0	0.05	,	,	0.07	0.08	0.05	0.08	1	0.07	0.08	0.05	0.05	0.07	,
0.01 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.05 <t< td=""><td>24</td><td>0.18</td><td>0.04</td><td>0.03</td><td><0.01</td><td>0.05</td><td>•</td><td>1</td><td>90.0</td><td>0.04</td><td>0.02</td><td>0.07</td><td>,</td><td>0.04</td><td>90.0</td><td>0.05</td><td>0.02</td><td>0.05</td><td>,</td></t<>	24	0.18	0.04	0.03	<0.01	0.05	•	1	90.0	0.04	0.02	0.07	,	0.04	90.0	0.05	0.02	0.05	,
0.03 0.05 0.03 0.02 0.02 0.09 0.06 0.04 0.03 0.04 0.05 0.02 0.0 0.0 0.02 0.05 0.04 0.05 0.02 0.0 0.0 0.08 0.05 0.04 0.05 0.04 0.05 0.02 0.0 0.16 0.13 0.05 0.09 0.07 0.01 0.02 0.02 0.04 0.05 0.06 0.03 0.03 0.04 0.05 0.03 0.04 0.05 0.03 0.04 0.05 0.04 <	25	0.01	0.03	0.04	0.03	0.02	,	1	0.05	0.03	0.04	0.02	,	0.07	0.05	0.02	0.03	0.03	,
0.04 0.03 0.04 0.05 0.05 0.02 0.03 0.01 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.03 0.04 0.03 0.03 0.04 0.03 0.03 0.03 0.03 0.04 0.03 0.03 0.01 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0	56	0.03	0.05	0.03	0.02	0.02		90.0	0.05	0.02	0.02	0.02	,		0.07	0.02	<0.01	0.02	'
0.02 0.05 0.04 0.02 0.02 0.28 0.2 0.09 0.07 0.01 0.02 0.16 0.13 0.05 0.07 0.01 0.02 0.04 0.05 0.06 0.03 0.01 0.04 0.05 0.05 0.06 0.03 0.04 0.05 0.03 0.06 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.04 0.04 0.04 0.05 0.03 0.03 0.03 0.04 0.04 0.04 0.06 0.07 0.02 0.03 0.03 0.01 0.01 0.06 0.07 0.02 0.03 0.03 0.01 0.01 0.06	27	0.04	0.03	0.04	0.05	0.02	0.02	1	0.04	0.07	0.05	0.03	0.03	0.03	0.07	0.07	0.05	0.03	0.04
0.28 0.2 0.09 0.07 0.01 0.02 0.16 0.13 0.05 0.05 0.03 0.01 0.04 0.04 0.05 0.06 0.03 0.03 0.04 0.05 0.05 0.06 0.03 0.04 0.05 0.03 0.04 0.03 0.03 0.03 0.04 0.02 0.04 0.03 0.03 0.03 0.04	58	0.02	0.05	0.04		0.02	,	0.02	0.03	0 03	1	0.01	,	1	0.03	90.0	1	0.02	,
0.16 0.13 0.05 0.03 0.01	53	0.28	0.2	0.09	0.07	0.01	0.02	,	0.12	0.09	0.07	ı	0.03	1	0.00	0.08	90.0	1	0.03
0.04 0.05 0.06 0.03 0.05 0.06 0.03 0.03 0.04 0.05 0.03 0.04 0.05 0.03 0.04 0.05 0.03 0.04 0.02 -	<u>e</u>	0.16	0.13	0.05	0.03	0.01	0.04	1	0.05	0.08	0.02		0.04	0.08	0.04	0.05	<0.01	1	0.05
0.05 0.03 0.03 0.04 0.02 - 0.04 0.03 0.03 0.02 0.01 0.04 0.04 0.03 0.03 0.02 0.01 0.04 - 0.02 0.05 0.03 0.03 0.03 0.01 0.04 - 0.06 0.02 0.02 0.02 0.07 0.02 - - 0.06 0.07 0.02 0.03 0.03 0.01 - - 0.06 0.07 0.02 0.03 0.01 0.01 - - 0.06 0.07 0.03 0.03 0.01 0.01 - - 0.06 0.07 0.02 0.03 0.01 0.01 - - - 0.07 0.08 0.02 0.02 0.01 0.01 - - - 0.08 0.01 0.02 0.03 0.03 0.03 0.03 - - <t< td=""><td>31</td><td>0.04</td><td>0.05</td><td>0.06</td><td>0.03</td><td>0.05</td><td>0.03</td><td>1</td><td>0.05</td><td>0.04</td><td>0.04</td><td>0.03</td><td>0.05</td><td>0.05</td><td>90.0</td><td>0.03</td><td>0.04</td><td>0.04</td><td>0.05</td></t<>	31	0.04	0.05	0.06	0.03	0.05	0.03	1	0.05	0.04	0.04	0.03	0.05	0.05	90.0	0.03	0.04	0.04	0.05
0.04 0.03 0.03 0.02 0.04 0.02 0.05 0.03 0.03 0.04 0.02 0.05 0.03 0.03 0.01 0.02 0.06 0.02 0.02 0.03 0.04 0.01 0.06 0.07 0.02 <0.01	32	0.05	0.03	0.03	0.04	0.02	,	1	0.07	0.05	0.03	0.01		0.04	0.07	0.04	0.02	0.02	
0.02 0.05 0.03 0.01 0.02	33	0.04	0.03	0.03	0.02	0.01	0.04	1	90.0	0.04	0.03	0.01	0.03	0.04	90.0	0.03	0.03	0.01	0.03
0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.01 0.02 0.01 0.02 0.03 <th< td=""><td>34</td><td>0.02</td><td>0.05</td><td>0.03</td><td>0.03</td><td>0.01</td><td>0.02</td><td></td><td>90.0</td><td>0.02</td><td>0.03</td><td>0.02</td><td>0.01</td><td>0.09</td><td>0.08</td><td>0.03</td><td>0.04</td><td>0.01</td><td>0.01</td></th<>	34	0.02	0.05	0.03	0.03	0.01	0.02		90.0	0.02	0.03	0.02	0.01	0.09	0.08	0.03	0.04	0.01	0.01
0.06 0.27 0.07 0.07 0.06 0.07 0.02 <0.01	35	0.03	0.02	0.02	<0.01	0.01	0.01	1	0.02	0.02	<0.01	0.01	1	0.01	0.02	0.02	<0.01	0.02	0.01
0.06 0.07 0.02 <0.01	36	0.06	0.2	0.27	0.09	0.07	,	1	0.11	0.15	0.07	0.03	1	0.04	0.08	0.13	0.03	0.01	,
0.06 0.03 0.03 <0.01	37	0.06	0.07	0.02	<0.01	0.01	,		0.04	0.03	<0.01	0.01	١	90.0	0.04	0.05	<0.01	0.02	
0.06 0.02 0.03 0.03 0.01 0.04 0.04 0.03 0.02 0.01 0.06 0.02 0.02 0.02 0.01 0.04 0.01 0.02 0.02 0.03 0.02 0.03 0.02 0.13 0.06 0.02 0.03 0.07 0.39 0.06 0.02 0.03 0.07 0.39 0.06 0.05 0.03 0.07 0.39 0.06 0.05 0.03 0.03 0.03 0.03 0.16 0.03 0.05 0.03 0.04 0.07 0.16 0.03 0.05 0.03 0.03 0.03 0.03 0.17 0.03 0.03 0.04 0.03 0.03 0.03	88	90.0	0.03	0.03	<0.01	0.01	,	1	0.04	0.02	<0.01	0.01	-	90.0	0.04	0.03	<0.01	0.01	1
0.04 0.03 0.02 0.01 - - 0.06 0.02 0.02 0.02 - - - 0.04 0.01 0.02 0.02 - - - - 0.03 0.02 0.03 0.02 - - - - 0.11 0.17 0.11 0.02 0.03 0.03 - - - 0.13 0.06 0.02 0.03 0.07 - - - 0.39 0.06 0.02 0.03 0.07 - - - 0.39 0.06 0.05 0.03 0.03 0.03 0.03 0.03 0.16 0.03 0.04 0.03 0.04 0.03 0.03 0.03 0.17 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.18 0.19 0.03 0.04 0.03 0.03 0.03 0.03	39	0.06	0.02	0.03	0.03	0.01	0.01	ı	0.01	0.03	0.03	0.01	0.02	0.03	0.02	0.04	0.03	0.03	0.02
0.06 0.02 0.02 0.02 - - - 0.04 0.01 0.02 <0.01	0	0.04	0.04	0.03	0.02	0.01	1	ı	0.04	0.03	0.03	0.01	,	0.03	0.03	0.02	0.02	0.01	
0.04 0.01 0.02 <0.01 0.02 <	11	0.06	0.02	0.02	0.02	1	,	1	0.02	0.03	<0.01	,	١	0.03	0.03	0.03	<0.01	,	,
0.03 0.02 0.05 0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.05 0.03 0.04 0.05 0.03 0.07 0.03 <th< td=""><td>12</td><td>0.04</td><td>0.01</td><td>0.02</td><td><0.01</td><td>0.02</td><td></td><td></td><td>0.01</td><td>0.02</td><td><0.01</td><td>0.02</td><td>,</td><td>0.02</td><td>0.01</td><td>0.02</td><td><0.01</td><td>0.03</td><td>1</td></th<>	12	0.04	0.01	0.02	<0.01	0.02			0.01	0.02	<0.01	0.02	,	0.02	0.01	0.02	<0.01	0.03	1
0.11 0.17 0.11 0.02 0.07 0.15 0.13 0.06 0.02 0.03 0.07 0.21 0.06 0.05 0.02 0.03 0.02 0.03 0.21 0.05 0.02 0.03 0.04 0.07 0.09 0.03 0.05 0.03 0.04 0.03 0.03 0.12 0.03 0.03 0.03 0.03 0.03 0.03 0.18 0.15 0.03 0.04 0.03 0.03 0.03 0.18 0.19 0.03 0.04 0.03 0.03 0.03 0.18 0.19 0.04 0.01 0.03 0.03 0.03 0.18 0.19 0.06 0.07 0.01 0.01 0.03	13	0.03	0.02	0.05	0.03	0.02	0.03	,	0.02	0.04	0.04	0.01	0.01	0.02	0.02	0.04	0.03	0.01	0.01
0.13 0.06 0.02 0.03 0.07 - - 0.39 0.06 0.05 0.02 0.03 0.02 0.03 0.21 0.04 0.04 0.03 0.15 0.04 0.07 0.09 0.03 0.05 0.03 0.04 0.07 0.03 0.12 0.03 0.03 0.04 0.03 0.03 0.03 0.18 0.15 0.06 0.02 0.03 0.03 0.03 0.18 0.15 0.06 0.07 0.03 0.03 0.03 0.33 0.15 0.06 0.07 0.03 0.03 0.03 0.33 0.13 0.16 0.02 0.04 0.01 0.03	14	0.11	0.17	0.11	0.02	0.07	0.15	1	0.13	0.02	0.02	0.03	90.0	0.03	0.07	0.02	0.02	0.02	0.04
0.39 0.06 0.05 0.02 0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.07 -	15	0.13	90.0	0.02	0.03	0.07	,	1	0.07	0.03	0.02	0.04	,	0.09	0.03	0.03	<0.01	0.03	1
0.21 0.04 0.03 -	16	0.39	90.0	0.05	0.02	0.03	0.02	0.03	0.04	0.02	0.02	0.03	0.02	,	0.03	0.02	0.02	0.03	0.02
0.21 0.05 0.02 0.03 0.15 0.04 0.07 0.16 0.03 0.05 0.02 0.03 0.03 0.07 0.09 0.03 0.03 0.04 0.03 0.03 0.03 0.12 0.03 0.03 - - 0.03 0.18 0.15 0.06 0.02 0.04 0.01 - 0.33 0.13 0.11 0.04 0.05 - -	17	1	0.04	0.04	0.03	1	,	1	0.02	0.04	0.02		1	,	0.02	0.03	0.02	1	•
0.16 0.03 0.05 0.02 0.03 0.03 0.07 0.09 0.03 0.08 0.04 0.03 0.03 0.03 0.12 0.03 0.03 - - 0.03 0.18 0.15 0.06 0.02 0.04 0.01 - 0.33 0.13 0.11 0.04 0.05 - -	48	0.21	0.05	0.02	0.03	0.15	0.04	0.07	0.04	0.02	0.02	11.0	0.04	,	0.04	0.02	<0.01	0.11	0.04
0.09 0.03 0.08 0.04 0.03 0.03 0.04 0.03 0.03 0.03 0.12 0.03 0.03 - - - 0.03 0.18 0.15 0.06 0.02 0.04 0.01 - 0.33 0.13 0.11 0.04 0.05 - -	49	0.16	0.03	0.05	0.02	0.03	0.03	0.07	0.02	0.03	0.02	0.01	90.0	ı	0.02	0.03	<0.01	0.01	0.1
0.12 0.03 0.03 - - 0.03 0.18 0.15 0.06 0.02 0.04 0.01 - 0.33 0.13 0.11 0.04 0.05 - -	20	0.09	0.03	0.08	0.04	0.03	0.03	0.03	90.0	0.05	0.02	0.02	0.02	,	90.0	0.03	0.02	0.02	0.03
0.18 0.15 0.06 0.02 0.04 0.01 - 0.33 0.13 0.11 0.04 0.05 - -	51	0.12	0.03	0.03	1	1		0.03	0.02	0.03		í	•	٠	0.03	0.03	ı	•	,
0.33 0.13 0.11 0.04 0.05 -	52	0.18	0.15	90.0	0.02	0.04		1	0.12	0.05	<0.01	0.01	0.01	١٠.٥	0.1	0.09	<0.01	0.01	0.01
	53	0.33	0.13	0.11	0.04	0.05	1	1	0.13	0.07	0.03	0.04	ı	,	0.1	0.04	<0.01	90.0	1
0.06 0.02 0.04 0.07 - 0.09 - 0	54	90.0	0.05	0.04	0.07	1		1	0.02	0.05	0.02	'	90.0	0.05	0.03	90.0	<0.01	,	0.05

Report Number SDB-045-3511-200

/ev
⊆
S
=
· <u>E</u>
Ö
٥
()
ř
=
0
て
ec
S
Ö
g
۳
٩
2
ᆽ
Ħ
ŭ
0)
ž
_
. =
35
ō
Ħ
ij
0)
6
=
70
ĕ
ಕ
<u>=</u>
ō
O
Se
Ē
70
ď
=
Ŏ
(ن
.⊑
Ξ
∺
ā
둗
ē
ည
S
Ö
'n
Ę
유
Su
9
d)
able
ੁੱਛ
H

	0 to 5	5 cm					5 to 10 cm	0 cm					10 to	10 to 15 cm		
၂၈၊	1981	1986	1992	1997	1971	1976	1981	1986	1992	1997	1971	1976	1981	1986	1992	1997
0		0.03	0.04	0.1	1	90.0	0.05	0.02	0.02	0.01	0.0	0.05	0.03	<0.01	0.02	0.01
Ŏ.		0.02	0.04	,	1	0.04	0.09	<0.01	0.01	1	90.0	0.04	0.04	<0.01	0.01	1
0		<0.01	0.02	,	•	0.02	0.02	<0.01	0.01	-	9.0	0.02	0.04	<0.01	0.01	
\simeq :		0.03	0.04	0.04	1	0.04	0.02	<0.01	0.02	0.02	0.01	0.02	0.04	<0.01	0.01	0.02
'		<0.01	0.05	0.07	1	0.12		<0.01	0.05	0.05	0.04	0.13	90.0	0.02	0.04	0.04
=	••••	<0.01	0.03	90.0	ı	0.03	0.02	<0.01	0.02	0.03	0.02	0.03	0.02	<0.01	1	0.03
=	••••	0.03	0.03	0.04	ı	0.04	0.03	<0.01		0.02	0.02	0.03	0.02	<0.01		0.02
:		<0.01	0.03	0.04	ı	0.06	0.02	<0.01	0.01	0.04	0.04	0.04	0.02	<0.01	0.01	0.03
	••••	0.02	0.02	0.05	ı	0.04	0.03	<0.01	0.01	0.02	0.03	0.04	0.03	<0.01	1	0.02
		0.05	0.07	0.04	ι	0.03	0.02	90.0	0.03	0.03	0.03	0.04	0.02	0.04	0.02	0.01
		0.05	0.03	0.03	ı	0.16	0.02	<0.01	0.02	0.01	0.03	0.05	0.02	<0.01	0.01	0.01
		<0.01	0.01	'	,	0.02	0.03	<0.01	0.01	ı	0.02	0.02	0.02	<0.01		1
		0.02	0.02	0.02	ŝ	0.02	0.02	0.02	0.02	0.01	0.03	0.03	0.02	0.02	ı	0.01
		0.03	1	0.03	ı	0.02	0.02	0.03	1	0.01	0.02	0.04	0.02	0.02		0.01
		0.02	0.03	0.03	ı	0.03	0.03	<0.01	0.03	0.01	0.02	0.03	0.02	<0.01	0.02	0.02
		0.02	0.01	0.02	ı	0.04	0.02	<0.01	0.01	0.03	0.01	0.03	0.02	<0.01	0.01	0.04
\mathbf{v} :		0.02	0.01	1	1	0.02	0.03	<0.01	ı	-	0.01	0.02	0.02	<0.01	-	,
· •		0.02	0.01	0.09	,	0.02	0.08	<0.01	1	0.09	0.01	0.02	0.07	<0.01	ı	0.12
$\mathbf{\circ}$:		0.03	1	0.02	1	0.02	0.03	0.02	ı	0.01	0.02	0.02	0.02	<0.01	ı	0.01
<u> </u>		0.02	0.02	0.02	٠	0.03	0.02	<0.01	1	0.01	0.07	0.02	0.02	<0.01	ı	0.01
0		0.16	0.04	0.05	١	0.11	0.07	0.15	0.02	0.02	0.09	0.11	0.1	0.15	0.01	0.01
<u> </u>	0.05	<0.01	1	١	ı	0.03	0.02	<0.01	ı	1	ı	0.02	0.03	<0.01	,	1
<u> </u>		0.02	0.01	0.01	1	0.03	0.03	0.02	0.01	0.01	0.02	0.02	0.03	<0.01	0.01	0.01
_		0.03	١	0.04	ı	0.04	0.02	<0.01	t	0.01	0.02	0.03	0.03	<0.01	1	0.01
٠- :		0.03	ı	,	ı	0.02	0.03	0.02	ı	١	0.01	0.02	0.02	0.02	ı	
٠:		0.07	0.04	90.0	١	0.07	0.07	0.05	0.04	90.0	0.02	0.12	0.05	0.07	0.05	0.08
· •	•••••	<0.01	0.01	0.02	1	90.0	0.04	<0.01	0.01	0.03	90.0	0.06	0.04	<0.01	0.01	0.03
<u>ت</u>	••••	0.02	0.02	0.05	ı	0.06	0.15	0.03	0.01	0.02	0.12	0.08	0.12	0.02	0.01	0.02
· • :		0.03	0.02	,	1	1	0.04	<0.01	0.02	1	1	t	0.04	<0.01	0.02	
_		0.07	,	1	,	0.04	0.08	0.07	1	1	ı	0.05	0.07	0.05		
اب:		0.03	0.83	-	1	0.07	0.03	0.02	0.28		0.03	0.07	0.04	0.03	0.14	

Table 10: Sulphur Concentration in Soil Profiles Collected at 92 Stations in the Sudbury Area as part of the Special Survey

200	S depo					חבבובת	31.04.00		ממן	old y line	nd ca a		Succession of the Special Survey	uivey				
Station			0 to 5 cm	2 cm					5 to 10 cm	0 cm					10 to	10 to 15 cm		
Otation	1971	1976	1981	1986	1992	1997	1971	1976	1981	1986	1992	1997	1971	1976	1981	1986	1992	1997
98	0.11	0.02	0.03	0.02	0.02	,	-	0.03	0.02	<0.01	0.01	,	0.02	0.03	0.02	<0.01		'
87	0.2	0.18	0.16	0.08	0.05	0.09	ı	1	0.12	90.0	0.03	0.09	1	,	0.08	0.09	0.03	90.0
88	0.09	0.16	0.08	0.05	0.07	0.09	,	0.09	0.09	0.03	0.02	0.07	0.08	0.08	90.0	0.03	0.01	0.08
89	0.04	0.09	0.02	0.05	0.08	0.1	1	0.05	0.02	0.02	0.05	0.14	0.04	0.02	0.04	<0.01	0.05	0.14
06	0.07	90.0	0.03	0.03	0.05	90.0	,	0.04	0.02	0.07	0.02	0.02	0.03	0.03	0.02	0.03	0.01	0.01
91	0.13	0.04	0.07	0.03	0.05	0.07	1	0.02	0.08	0.03	0.01	0.02	0.02	0.02	0.11	0.02	0.01	0.02
92	0.02	0.1	0.05	<0.01	0.08	,	1	90.0	0.03	<0.01	0.05	1	0.02	0.03	0.03	<0.01	0.03	
93	0.05	0.04	0.03	0.03	0.04	0.04	,	0.04	0.02	0.02	0.04	0.02	0.03	0.02	0.02	<0.01	0.03	0.02
94	0.08	0.04	0.02	0.02	0.02	0.02	1	0.04	0.02	0.02	0.01	0.01	0.03	0.03	0.02	<0.01	0.02	0.01
95	0.09	0.08	0.03	0.03	0.02	0.03	ì	0.05	0.03	0.03	0.01	0.02	0.02	0.04	0.05	0.02	0.01	0.03
96	0.18	0.23	0.03	0.06	0.07	0.13	0.09	0.12	0.03	0.03	0.05	0.09		0.03	0.04	0.04	0.05	0.12
97	0.41	0.29	0.26	1.7	0.8	0.23	1	0.18	0.13	1.2	0.71	0.18	90.0	0.17	0.16	0.5	0.79	0.21
86	0.12	0.08	0.08	0.06	0.05	90.0	0.01	0.03	0.04	90.0	0.04	0.03	,	0.02	0.03	0.07	0.03	0.02
66	0.28	0.07	0.07	0.04	0.09	90.0	0.01	0.08	0.04	<0.01	0.01	0.03	1	90.0	0.04	<0.01	0.01	0.02
100	0.13	0.07	0.03	<0.01	0.02	0.03	١	0.03	0.02	<0.01	0.01	0.01	0.01	0.04	0.02	<0.01	0.01	
101	0.04	0.03	0.03	0.03	0.02	0.1	1	0.02	0.03	0.02	0.03	0.03	0.02	0.02	0.03	<0.01	0.03	0.02
102	0.07	0.08	0.02	0.03	0.03	0.06	١	0.04	0.05	<0.01	0.01	0.02	0.02	0.03	0.02	<0.01	0.01	0.01
103	0.04	0.03	0.04	0.04	0.03	0.04	1	0.03	0.03	0.02	0.02	0.02	0.02	0.02	0.03	<0.01	0.02	0.03
104	0.03	0.04	0.05	0.03	0.03	0.03		0.03	0.04	0.02	0.01	0.02	0.02	0.03	0.04	0.02	0.01	0.01
105	0.02	0.02	0.05	0.02	0.03	0.03	,	0.02	0.05	0.02	0.01	0.02	0.02	0.02	0.05	0.02	0.01	0.02
106	1	,	0.06	0.04	0.07	0.04	ı		0.03	<0.01	0.01	0.02		,	0.02	<0.01	0.01	0.02
107	0.03	0.09	0.07	<0.01	,	0.09	,	0.02	0.04	<0.01		0.08	0.01	0.03	0.03	<0.01	1	0.12
108	0.07	0.05	0.05	0.04	0.01	0.02	1	0.07	0.04	0.02	0.01	0.01	0.01	0.15	0.04	0.03	0.01	0.01
109	0.05	0.06	0.04	0.02	0.01	0.04	1	0.03	0.02	0.02	0.01	0.01	0.02	0.02	0.03	0.02	0.01	0.01
110	0.04	0.06	0.07	0.09	0.01		3	0.04	0.07	0.11	0.01	1	0.03	0.03	0.11	90.0	0.01	
111	0.07	90.0	0.03	0.03	ı	0.03	1	0.03	0.04	0.05		0.01	0.01	0.03	0.03	0.04		0.01
112	90.0	0.06	0.03	90.0	ı	0.03		90.0	0.03	<0.01	0.01	0.01	90.0	90.0	0.03	<0.01	0.01	0.01
113	0.03	0.16	0.02	<0.01	0.03	0.02		0.12	0.02	<0.01	0.02	0.02	0.04	0.1	0.02	<0.01	0.02	0.02
114	0.01	0.03	0.07	0.02	0.05	-	,	0.02	0.03	<0.01	0.02	-	0.01	0.02	0.02	<0.01	0.02	
Depths s	ampled	in 1971 v	vere 0-2.	5 cm rath	Depths sampled in 1971 were 0-2.5 cm rather than 0-5 cm)-5 cm.												

Values represent single samples collected in 1971, means of triplicate samples in 1976 and 1981 and duplicate samples in 1992 and 1997. No Soil Clean-up Guidelines for sulphur in soil have been established, therefore concentrations in bold exceed the OTR₉₆ Guideline of 0.079%.

Table 11: Zinc Concentration in Soil Profiles Collected at 92 Stations in the Sudbury Area as part of the Special Survey

_		_	:			:	:	-		-			_		-		:	:	_	:	:	:	:	:		: :							
	1997	,	'	,	'		62	'	28	36	24	'	26	19	21	,	'	'	26	'	,	,	25	27	1	10	1	25	30	12	,	23	-
	1992	35	65	34	19	14	48	59	1	14	27	25	25	32	37	18	15	14	15	14	10	47	19	18	25	19	1	28	6	1	1	25	45
5 cm	1986	42	52	14	20	22	40	1	44	13	24	35	35	52	19	36	10	12	4	16	18	31	21	11	11	18	15	23	16	19	,	38	41
10 to 15 cm	1981	42	45	16	20	12	54	39	48	23	16	33	34	24	32	32	25	24	4	25	16	27	28	18	26	13	18	13	39	120	16	09	56
	1976	40	52	13	21	7	14	18	27	ω	25	39	57	70	38	36	23	33	28	12	15	13	10	20	10	က	18	18	38	35	က	24	30
	1971	43	88	25	33	,	30	,	1	20	43	35	65	50	25	14	17	18	6	15	4	6	10	20	45	1	1	1	,	ı	,	28	,
	1997	1	1	1	,	,	47	,	25	36	21	ı	46	20	21	,	,	-	20		,	,	25	37		10	1	29	28	12	,	24	,
	1992	32	99	14	13	-	46	31	15	4	22	17	29	48	14	28	14	16	7	15	-	37	18	23	25	17	ı	22	10	13		18	41
10 cm	1986	36	45	16	21	23	33		40	19	22	32	28	47	21	59	=	-	15	15	18	25	21	7	13	17	16	27	21	19		25	40
5 to 10	1981	26	44	15	17	12	55	29	45	24	17	28	35	17	32	39	20	19	15	28	14	28	27	19	21	10	23	14	42	110	14	47	45
	1976	40	32	7	25	23	12	13	33	ω	15	34	58	20	39	46	29	35	32	28	20	13	10	26	13	က	25	18	41	22	က	15	26
	1971		1	,	,	33	,	33	1		,	,		1	;		,	1		,	1	1	,	1		35	1	20	50	78	20	,	'
	1997	,	,		,		30	,	28	47	15		44	29	22	,	-		14	,	,	-	29	55		12	-	41	28	12		24	,
	1992	38	37	35	10	10	33	29	18	16	26	20	58	30	16	43	17	16	10	16	14	43	32	43	36	17	,	35	15	10	1	29	40
cm	1986	23	43	13	13	25	34	,	37	19	46	28	27	40	21	46	æ	13	18	16	23	25	17	5	12	16	18	28	35	17	,	36	41
0 to 5 cm	1981	31	44	13	17	13	36	29	30	18	20	14	23	19	23	38	15	15	15	24	12	65	24	35	19	11	4	17	42	44	16	38	36
	1976	43	50	5	ω	12	-	25	47	20	13	ည	23	36	22	48	27	25	34	14	24	22	10	23	ω	7	27	25	36	28	က	1-	31
	1971*	65	50	45	33	43	38	38	35	20	80	18	33	18	20	11	,	15	1	14	14	9	13	15	28	173	,	50	138	38	155	30	45
	Station	22	23	24	25	56	27	28	29	30	31	32	33	34	35	38	37	38	39	40	41	42	43	44	45	46	47	48	49	20	51	52	53

Table 11: Zinc Concentration in Soil Profiles Collected at 92 Stations in the Sudbury Area as part of the Special Survey

_		1		-	. 	.	-	1	-	<u> </u>	-			:	;	-																. 	. 	
	1997	27	33	,	,	40	61	09	06	20	59	33	37	<u>.</u>	22	17	29	77		65	33	50	61	'	28	93	,	55	36	29	,		1	,
	1992		36	17	22	46	55			41	57	41	46	37			99	55	20	44		9/	45	1	27	1	1	35	31	14	20		9/	
15 cm	1986	6	31	29	22	37	43	33	51	19	38	36	36	40	11	54	87	37	39	33	39	50	33	30	40	27	25	41	38	16	42	35	25	35
10 to 1	1981	28	19	23	20	39	130	09	58	41	26	36	44	46	23	19	32	43	29	47	28	56	25	73	31	73	35	09	47	65	37	33	43	36
	1976	6	14	33	9	27	35	82	62	27	24	35	58	54	39	39	35	58	28	13	21	28	28	9.3	7.7	58	47	56	25	51		29	68	27
	1971	21	31	28	24	24	82	208	123	78	93	148	133	233	158	55	38	103	80	11	21	46	43	1	25	53	33		56	27			46	34
	1997	34	33		1	41	56	47	83	23	61	39	36	,	26	17	29	89		68	34	82	59	1	30	89	ı	52	37	33		,	,	,
	1992	 	37	17	24	59	71	45		46	55	41	55	39	36		99	58	19	46		69	44		41	1		35	33	13	20	1	6/	38
cm	986	21	30	26	21	39	43	30	71	25	63	22	41	26	16	76	66	39	38	36	43	47	31	31	33	30	26	41	33	12	40	40	31	36
010			<u>.</u>		<u> </u>		<u></u>				<u></u>		<u>:</u>		<u>:</u>		<u>:</u>																48	
	976						<u></u>		<u>.</u>			25																					78	
	971 1								: : : : :						,		1		1	1	ı		1		ری ا		ı	1			,			ı
		3	2			4	6	_	0	_	က	6	6		6	C	0	2		2	ന	2	င		_	6		T	9	6				
	\vdash	43	4			4	ũ	5	9	2	ဖ	48	4		7	2	7	4	•	æ	48	7.	9		31	7		54	4	4	'			-
	1992		43	29	24	. 67	09	47	99	41	49	43	23	46	33		74	28	21	52	'	75	28		40	,		37	33	23	24	1	73	29
0 to 5 cm	1986	98	30	26	21	62	26	27	110	23	45	21	37	14	23	83	110	48	43	35	44	20	57	36	27	40	24	41	41	15	33	38	62	36
0 to	1981	28	19	27	14	32	130	58	92	45	30	46	47	20	25	22	47	36	32	45	28	80	32	130	31	74	44	52	33	45	33	42	82	33
	1976	4	23	46	7	22	50	62	75	28	33	28	140	75	28	17	19	79	89	14	24	40	30	25	13	52	54	57	20	56	1	40	29	18
	1971*	15	28	32	43	26	67	115	145	110	165	02	113	153	75	120	140	100	75	18	22	41	'	'	28	55	45	-	55	45	,	1	50	53
	Station	54	55	26	57	28	59	09	61	62	63	64	65	99	29	89	69	20	71	72	73	74	75	92	77	78	7.9	80	81	82	83	84	85	- 86 - L

_																													
	1997	51	74	63	75	65	,	36	21	54	130	97	29	52	21	45	79	97	63	110	55	32	46	49	,	57	51	43	1
	1992	43	32	29	35	37	47	43	28	18	31	46	29	29	44	62	65	9/	49	50	28	1	22	46	24	16	15	120	20
5 cm	1986	220	12	29	43	70	46	32	22	39	73	79	31	23	25	40	09	83	87	99	30	71	28	52	30	30	34	29	89
10 to 15 cm	1981	45	39	35	58	50	46	35	25	45	43	64	48	31	28	36	9/	81	100	29	25	46	46	58	87	36	34	21	47
	1976	,	18	23	13	53	63	39	35	43	37	53	43	09	38	9.3	100	39	09	29	-	32	36	53	29	35	80	56	44
	1971	,	30	23	43	78	45	28	23	34	1	75	,	,	65	50	55	73	63	85	,	42	15	33	38	35	20	69	38
	1997	81	89	58	80	48	,	34	22	41	110	80	31	51	21	99	98	97	75	110	64	35	44	46	,	57	45	47	'
	1992	41	37	80	42	40	48	49	32	19	31	49	28	33	45	22	99	77	53	51	35	,	23	47	30	16	14	140	46
cm	1986	270	15	32	53	92	46	33	28	39	91	110	32	25	24	20	62	87	87	78	29	38	39	51	28	36	43	20	06
5 to 10 cm	1981	46	39	34	55	49	54	35	24	47	43	29	50	32	32	29	69	80	130	73	31	47	43	65	66	41	31	15	48
	1976	,	29	30	10	54	81	51	27	58	55	53	46	59	36	9.3	100	47	20	73	,	25	28	45	27	28	94	25	20
	1971	1	,	1	,	1	1	,	,	1	58	,	30	23	,	,	,	· · · · ·	,	,	,		1	,	,	1	,	,	'
	1997	69	110	63	100	58	,	55	25	38	110	92	37	09	25	140	93	100	83	110	120	54	40	56	ı	58	50	57	- 2
	1992	48	50	83	55	55	69	47	33	20	43	56	29	53	43	27	70	9/	22	58	56	,	27	51	24	16	13	120	38
m c	1986	220	26	49	45	98	41	55	25	40	65	110	32	31	25	45	71	100	93	79	40	36	51	54	34	39	45	35	73 38
0 to 5 cm	1981	20	38	38	54	40	61	36	30	43	39	52	50	36	35	24	99	62	110	70	42	46	40	62	86	37	31	16	48
	1976	43	28	38	18	09	130	53	32	84	48	61	50	44	35	11	100	53	56	72	ı	33	29	48	33	38	92	62	58
	1971*	63	28	23	43	65	48	25	45	20	95	53	38	58	09	45	85	70	50	95	1	82	20	32	25	23	16	50	38
	Station	87	88	89	06	91	92	93	94	92	96	97	86	66	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114 38 * Doothe compled in

Values represent single samples collected in 1971, means of triplicate samples in 1976 and 1981 and duplicate samples in 1992 and 1997. Concentrations shown in bold exceed the Table F Background Guideline of 160 ug/g Zn. There are no values that exceed the Table A Soil Clean up Guideline of 600 Depths sampled in 1971 were 0-2.5 cm rather than 0-5 cm. ʻug/g Zn.

Table 12: Aluminum and Cadmium Concentrations in Soil Profiles Collected at 92 Stations in the Sudbury Area as part of the Special Survey

				ninum	.					mium		
Station		5 cm		10 cm		15 cm		5 cm		10 cm		15 cm
	1992	1997	1992	1997	1992	1997	1992	1997	1992	1997	1992	1997
22	6300	-	7700	-	8100	-	2.2 1.6 1.8	-	1.8	-	0.43	-
23	6200	-	8800	-	11000	-	1.6	-	0.96	-	0.95	-
24	8600	-	7400	-	8500	-	1.8	-	0.67	<u>-</u>	0.24	-
25	6000	-	7100	†·····	11000	-	0.68	-	0.23	<u> </u>	<0.2	İ
26	7800	!	9400	·····	11000	·····	0.73	-	0.22	-	<0.2	·····
27	11000	8400	18000	16000	17000	20000	0.32	0.4	0.5	0.25	0.45	0.4
28	4800		8400		18000		0.45	-	0.29	1	0.42	
29	6000	7700	6100	7800	-	8200	0.36	0.45	0.28	<0.2	. 0.72	<0.2
30	7600	14000	7200	13000	7300	12000	<0.2	0.43		i	0.22	0.25
						i .			0.34	0.4		
31	6800	6000	14000	13000	19000	16000	0.7	<0.2	0.38	0.25	0.52	0.3
32	4500	-	7400	<u> </u>	12000	-	0.43	<u> </u>	0.24	<u>-</u>	0.93	-
33	11000	10000	11000	15000	9400	19000	0.53	0.5	0.45	<0.2	0.93	0.4
34	11000	10000	16000	10000	15000	10000	0.33	0.3	0.66	<0.2	1.2	<0.2
35	3800	9900	6100	10000	14000	10000	0.33	<0.2	0.39	<0.2	1.1	<0.2
36	9800	-	9900	-	8800	-	1.1	<u> </u>	1.1	-	0.99	-
37	8600	-	10000		10000	-	0.38	-	0.37	:	0.23	-
38	6200	-	6400	-	6500	<u>-</u>	0.39		0.33	-	0.26	-
39	3000	5400	6300	10000	13000	13000	0.28	<0.2	0.23	0.25	0.38	<0.2
40	7500		6800		7200		0.26		0.26		0.27	
41	5900		5100		4900	<u> </u>	0.23		<0.2	<u> </u>	<0.2	
	7300		6200	<u> </u>		<u> </u>	0.23	<u> </u>	0.28	<u> </u>	0.32	
42		-		-	5900	-	0.37	-	0.20			-
43	7500	8900	9000	9500	9300	9600	0.38	0.3	0.31	<0.2	0.24	<0.2
44	13000	12000	12000	15000	11000	14000	0.8	1.1	0.35	0.4	0.29	<0.2
45	8900	-	9600	-	11000	-	0.89	-	0.27	<u> </u>	0.48	-
46	6400	7100	6600	7600	6900	7600	0.51	0.25	0.35	<0.2	0.43	<0.2
47	-	-	-	-	-	-	-	-	-	-	-	-
48	7300	8500	6300	8400	8600	8800	0.55	<0.2	0.29	<0.2	<0.2	<0.2
49	6200	10000	5700	11000	6100	9400	0.31	<0.2	0.21	<0.2	<0.2	<0.2
50	5600	6300	6200	6900	7100	7400	0.25	0.25	0.22	<0.2	0.21	<0.2
51	-	-	-	-	-	-	-	-	-	-	-	-
52	15000	13000	8800	12000	9000	12000	0.29	<0.2	<0.2	<0.2	0.21	<0.2
53	16000	-	17000	-	17000	-	0.29	-0.2	0.26	-0.2	0.54	-
54		12000	-	13000		12000		0.45		0.6		0.3
	-		:		-		-		-		-	
55	14000	13000	15000	13000		13000	0.39	0.65	0.34	0.3	0.38	0.4
56	9100	-	8800	4	9500	-	0.36	-	0.23	-	0.46	-
57	10000	-	12000	-	10000	-	0.55	-	0.61	-	0.6	-
58	23000	14000	25000	14000		14000	0.88	0.7	1	0.45	0.75	0.45
59	20000	18000	20000	21000	23000	23000	0.56	0.7	0.84	0.5	0.72	0.8
60	13000	9100	20000	11000	-	17000	0.71	0.85	0.89	0.55	-	0.6
61	18000	12000	-	15000	-	18000	1	0.95	-	0.65	-	1
62	23000	11000	35000	13000	36000	12000	1	<0.2	0.64	<0.2	0.5	<0.2
63	23000	20000	27000	22000	27000	21000	0.83	<0.2	0.6	0.25	0.6	<0.2
64	23000	9700	27000	10000	26000	10000	0.82	0.5	0.56	0.3	0.57	0.25
65	15000	7300	18000	8800	18000	10000	0.48	0.25	0.43	<0.2	0.34	0.23
66	19000		18000		16000	10000	0.49		0.43	~U.Z	0.34	-
	14000	42000		-		-		-			U.24	- <0.2
67		12000	14000	11000	-	9600	1.3	<0.2	0.86	<0.2	-	
68	-	7700	-	8400	-	9400	-	0.25	-	<0.2	-	<0.2
69	18000	17000	21000	19000	22000	17000	0.63	0.2	1.2	0.25	1.2	<0.2
70	25000	11000	23000	21000	27000	25000	0.68	0.35	1.1	<0.2	1.1	<0.2
71	9300	-	9100	-	9000	-	0.42	-	0.54	-	0.56	-

Table 12: Aluminum and Cadmium Concentrations in Soil Profiles Collected at 92 Stations in the Sudbury Area as part of the Special Survey

			Alum						Cadı	nium		
Station		5 cm		I0 cm	10 to	15 cm		5 cm	5 to '	10 cm		15 cm
	1992	1997	1992	1997	1992	1997	1992	1997	1992	1997	1992	1997
72	25000	11000	27000	12000	25000	12000	0.3	0.45	0.36	0.25	0.81	0.4
73	-	11000	-	11000	-	11000	-	0.5	-	0.45	-	0.35
74	9800	11000	13000	14000	12000	16000	1	1.1	0.49	0.5	0.57	0.4
75	11000	18000	16000	23000	18000	27000	0.89	1.1	0.47	0.5	0.56	0.5
76	-	-	-	-	-	-	-	-	-	-	-	-
77	6700	7300	8100	7600	9000	7600	0.53	0.5	0.55	0.3	0.34	0.3
78	-	16000	-	19000	-	19000	-	0.55	<u> </u>	0.55	<u> </u>	0.45
79	-	-	-	-	-	-	-	•	-	-	-	-
80	9200	7900	8900	7500	8200	8200	0.58	0.55	0.65	0.35	0.44	0.5
81	12000	18000	9300	14000	9500	14000	0.64	0.45	0.56	0.35	0.27	0.3
82	6300	13000	6000	12000	7400	10000	0.33	0.55	0.22	0.25	<0.2	0.25
83	12000	-	11000	-	10000	-	0.27	-	0.27	-	0.23	<u> </u>
84	-	-	-	-	-	-	-	-	-	-	-	-
85	13000	_	16000	-	20000	_	1.3	-	1.3	-	1.1	-
86	8500	-	13000	-	-	-	0.43	.	0.45	. -	-	<u>-</u>
87	16000	9900	17000	12000	18000	14000	0.62	0.25	0.46	0.5	0.37	<0.2
88	18000	14000	15000	16000	14000	18000	0.64	0.25	0.48	0.3	0.23	<0.2
89	39000	11000	37000	12000	32000	11000	0.87	1.7	0.7	0.7	0.54	1
90	14000	14000	14000	14000	14000	16000	0.64	1.4	0.48	0.7	0.32	0.5
91	12000	10000	13000	12000	14000	19000	0.83	1.1	0.33	0.5	0.24	0.3
92	26000	10000	26000	12000	25000	13000	1.8	1.1	0.79		0.44	0.00
93	8800	9800	9400	11000	11000	11000	0.72	0.7	0.65	0.3	0.67	0.35
94	8700	8100	12000	7500	12000	8100	0.72	0.3	0.03	0.35	0.3	<0.2
95	7100	5900	7600	13000	7500	20000	0.23	0.45	0.24	0.25	0.21	0.4
96	7000	8800	7600	9800	7200	10000	2.7	1.2	3.3	0.7	3.2	0.4
97	27000	26000	26000	27000	23000	24000	0.47	<0.2	0.22	0.7	3.∠ 0.94	0.75
	11000	11000	13000	11000	13000	11000	0.47	0.3	0.22	0.3	0.33	0.75
98	13000	14000	12000	14000	13000	14000	0.23	0.5	0.21	0.55	0.33	0.2
99			:	:	:		<0.2	0.5	0.31	0.55	0.32	<0.2
100	15000	8100	15000	9000	16000	9000	<0.2 <0.2					0.3
101	5700	8400	13000	8400	14000	9700	<0.2	1.3	0.54	0.45	0.48	
102	12000	21000	18000	22000	27000	23000	1.1	0.75	0.61	0.55	0.8	0.25
103	17000	23000	17000	24000	19000	24000	1.1	0.55	0.64	0.6	0.68	0.4
104	14000	16000	14000	16000	15000	17000	0.98	0.35	0.55	<0.2	0.54	<0.2
105	18000	25000	20000	25000	20000	28000	0.8	0.4	0.63	0.3	0.66	0.3
106	16000		17000		14000	15000	1.2	1.4	0.57	0.5	0.38	0.4
107	-	13000	-	12000	-	13000	-	0.35	-	0.35	-	0.4
108		10000			8900		0.29	0.35	0.22	0.35	0.31	0.35
109	15000	14000	14000	14000	18000	15000	0.71	<0.2	0.41	<0.2	0.48	<0.2
110	6900	-	6400	-	6500	-	0.3	-	<0.2	-	0.41	-
111	4900	13000	5000	12000	5100	12000	0.22	0.65	<0.2	0.3	0.36	0.3
112	8400	9700	8400	12000	9300	14000	0.32	0.4	0.38	0.35	0.33	0.25
113	13000	12000	13000	12000	13000	12000	0.87	0.3	0.93	<0.2	0.76	<0.2
			,									

Values represent duplicate samples in 1992 and 1997.

Concentrations shown in bold exceed the Table F Background Guideline of 1.0 ug/g Cd. No Table F Guideline exists for Aluminum so concentrations shown in bold exceed the OTR₉₈ of 30,000 ug/g Al. There are no values that exceed the Table A Soil Clean up Guideline of 12 ug/g Cd.

Table 13: Calcium Concentration in Soil Profiles Collected at 92 Stations in the Sudbury Area as part of the Special Survey

Station '		U to	5 cm				10 cm			10 to	15 cm	
Station	1981	1986	1992	1997	1981	1986	1992	1997	1981	1986	1992	1997
22	960	1500	2900	-	730	1500	1700	-	930	1400	3400	-
23	990	1400	3100	-	770	1300	3900	-	810	1400	1100	-
24	780	1400	1100	-	740	1500	970	-	670	1400	1100	-
25	590	680	600		640	1000	680	<u>-</u>	840	1100	1100	-
26	680	810	790	-	630	1000	800	<u> </u>	520	1300	1700	-
27	880	930	1200	1300	1300	960		1600	1400	1200	1700	1900
28	1200	-	1600	-	1400	-	1300	-	950	-	-	-
29	600	1100	4900	4600	820	1200	2900	2300	760	1300	2000	2000
30	640	1600	2400	13000	790	1300	2200	2300	720	1200	1200	1800
31	900	1500	1100	800	760	930	920	850	800	1000	1000	1200
32	460	1100	630	-	630	1300	670	-	780	1300	1700	-
33	610	1700	2600	1600	980	1300	2600	1400	930	1100	1900	1600
34	830	920	1400	2300	660	1000	1700	2000	920	1300	920	2000
35	600	1500	440	1500	580	1500	550	1500	600	1400	1600	1500
36	2000	1600	2100	-	1300	1800	1800	-	870	1600	1300	-
37	840	32000	1400	‡·····-	610	1800	1400	<u>-</u>	690	2000	1300	-
38	570	1300	1500	†····-	640	1500	1500	†·····	720	1500	950	· -
39	480	750	530	850	500	830	590	950	300	920	2300	1200
40	900	1100	1400	†·····-	1000	1100	1800	†·····	800	1200	1700	· - · · · · ·
41	590	1300	2600	<u> </u>	510	1200	1900		600	960	4400	· † · · · · · · · · · · · · · · · · · ·
42	1700	4100	4000	† : -	1300	4300	4900	-	1600	4100	1700	· -
43	860	1100	2800	1900	830	1300	1800	2000	1100	1400	1100	2100
44	1400	1500	2100	5200	1100	1700	1400	2700	1400	1900	1500	1600
45	1800	1900	1900	†······	1400	2200	1500	-	1200	2400	2100	-
46	600	1300	1900	1300	490	1200	2000	1100	750	1200	-	1200
47	690	1200	-		680	1400	†·····	÷	480	1300	1800	-
48	1600	2300	1900	3100	1200	2400	1600	2600	1000	2300	1100	2000
49	3800	2700	1300	6300	2700	1900	1100	2700	3400	1900	1000	2800
50	1200	1100	700	1100	1700	1400	720	1200	2400	1700	-	1300
51	550	-	-	-	400	-	•	-	640		2800	-
52	1900	3600	2700	3300	1800	2800	2400	2900	2000	2900	1700	3000
53	1700	1600	1700	-	2100	2000	1800	-	2700	3600	-	-
54	1300	2700	-	2000	1400	2800	†·····	2000	1300	2700	6800	2200
55	1200	2100	6700	1800	1700	2400	6900	2500	1500	2500	2700	2300
56	960	2000	2900	-	1000	2200	2900	-	910	2100	1800	-
57	2300	2300	2000	-	2400	2400	2200	-	2900	2500	5000	·····
58	3200	2800	5900	3500	3200	2600	5700	31 0 0	3300	2500	2800	3100
59	1900	3500	3500	3300	1500	3200	2800	2700	1600	3400	-	2800
60	4400	4200	4000	3000	3800	4100	3400	2300	3800	4000	-	2600
61	4700	4000	6000	5000	3300	4400		4200	2900	4500	4800	4600
62	3500	2000	18000	1600	19000	2100	7600	1700	14000	2100	4900	1700
63	1500	3500	3600	3200	1700	3500	3700	3600	1600	3700	3000	3600
64	1600	3600	3200	2400	1200	2900	2700	2400	1300	2800	2900	2100
65	1700	2200	2700	1900	1400	2300	2600	2100	1600	2600	8100	2000
66	1500	1700	6400		1100	3100	7100	- 100	1200	3500		- 2000
67	1400	2300	2800	2600	1200	1900	3300	2500	1400	1900		2300
68	4100	4400		3500	3400	4500	3300	3300	3100	3700	4600	3700
69	2900	6100	4400	4600	1700	7200	4700	4200	1400	7300	3600	4000
70	2000	3200	3600	A	1700	3000	3500	2000	2200	7300 3200	3700	2600
71	1600	3100	3900	1700	1500	2600	4100	2000	1500	3100	6000	2000
72	3700	6300	5100	7100	2800	4700	5900	3400	1800	A	0000	3900
73	1500	1700	5100	4600	1100	2000	590U	3400 4000	1300	4900 2200	2800	3800
13	2300	2300	2700	3500	800	2000	2800	3200	920	2600	2100	3300

Table 13: Calcium Concentration in Soil Profiles Collected at 92 Stations in the Sudbury Area as part of the Special Survey

Station			5 cm				10 cm				15 cm	
	1981	1986	1992	1997	1981	1986	1992	1997	1981	1986	1992	1997
75	840	4500	1900	5800	890	6300	1900	2800	920	6800	-	2800
76	2800	2800	-	-	2600	2700	-	-	2500	2600	1200	-
77	1100	900	1700	1300	550	1200	1100	1100	630	950	-	1100
78	2400	2000	-	3300	1800	3300	-	3900	1300	2200	-	4400
79	1400	960	: -	-	920	1300	-	-	680	1200	1200	-
80	930	1000	1100	2100	1100	1000	1200	1500	860	1100	3100	1600
81	1200	4100	2900	3600	1200	3200	3000	2900	1700	3800	2800	2900
82	1700	1600	3200	3600	2100	1800	2400	3400	2800	2300	1300	3500
83	2500	3300	1400	-	410	4800	1300	-	660	5300	-	-
84	1400	1900	-	-	1200	2000	-	-	1500	1900	6800	-
85	14000	5800	24000	-	15000	4600	10000	-	11000	4000	-	-
86	8300	8700	3300	-	9100	13000	9400	-	9900	13000	2600	-
87	1400	3400	2900	2600	1200	2900	2100	2900	1000	3200	2600	2200
88	1600	2200	3300	2500	1700	2200	3100	2400	1700	2200	2000	2200
89	2500	2100	1800	6700	1600	2300	2000	7300	1500	2700	2900	7400
90	2500	2100	2700	4100	2600	2400	2900	3900	2700	1900	2600	4300
91	3500	9700	2400	2300	3200	9500	2800	1900	1900	14000	8100	2500
92	990	18000	11000	-	1000	17000	9100	: -	2800	10000	6000	-
93	2600	2700	5300	3400	940	2400	5300	3300	1200	2500	2200	2800
94	2100	1500	1700	1700	4300	1700	1700	1600	4000	1600	2400	1400
95	1200	2000	2400	1600	840 2300	2200	2400	1700	870	2000	3800	2200
96	2500	3400	4300	5800	2300	4400	3800	5500	2400	3900	11000	6600
97	8200	6400	14000	10000	7600	6500	12000	8400	6500	3800	1600	8000
98	3200	1600	1600	2500	4100	1700	1700	2100	3800	1700	2200	2400
99	2100	3500	2700	4700	1000	3500	2200	3900	860	3500	2900	3600
100	3500	3000	3000	2300	4100	3100	2500	2200	4400	3100	1400	2400
101	1300	1500	970	1700	1200	1500	1400	1100	1300	1800	4300	1100
102	2200	3500	3800	4800	2600	3400	3800	4100	2000	3500	3800	3900
103	2100	3500	3800	4500	2300	3600	3600	3900	2200	3900	4100	3800
104	2700	3100	4100	4600	2500	3100	3700	4500	2700	3200	2600	4600
105	2700	4100	2900	5000	2300	4000	2500	4600	2500	3700	5300	4800
106	6700	3500	4100	17000	1500	3700	4900	3100	1400	3800	-	2400
107	1900	4300	-	2100	2200	4400	-	1400	2400	8700	2600	1700
108	1000	2200	2200	3400	1100	2400	2400	3500	1200	2200	3900	3400
109	2700	3000	3600	3400	3800	3400	3800	3200	4100	3900	2500	3300
110	780	1400	2500	-	780	1000	2300	-	1200	1000	2300	-
111	1400	2000	2100	3500	1800	2100	2400	3700	1800	2300	2000	3500
112	1200	1500	2100	2900	760	1700	2000	2600	830	1700	5100	2900
113	1500	3500	5000	4200	1600	3100	5500	3400	1600	3200	2500	3200
114	3300	3500	2100	-	2600	3400	2300	-	2700	3800	-	-

Values represent means of triplicate samples in 1981 and duplicate samples in 1986, 1992 and 1997.
No Table F Guideline exists for Calcium and the OTR₉₈ Guideline of 55,000 μg/ Ca was not exceeded at any site in any year.

Table 14: Lead Concentration in Soil Profiles Collected at 92 Stations in the Sudbury Area as part of the Special Survey

C4-4'		0 to	5 cm			5 to 1	10 cm			10 to	15 cm	
Station	1981	1986	1992	1997	1981	1986	1992	1997	1981	1986	1992	1997
22	130	48	120	-	36	14	220 62	-	12	15	190	-
23	68	52	42	-	50	43	62	-	27	26	61	-
24	14	4.7	65	-	13	7.3	110	-	5	7.7	61	-
25	36	8.7	15	-	12	7.7	5	-	6.7	6	5	-
26	21	17	11	-	5	9.7	7	-	5	6.7	3.3	-
27	9	100	24	34	6.7	49	13	10	6	25	9.7	6
28	17	_	29	-	6.7	-	21	-	5	-	11	-
29	37	81	9.7	38	17	59	6.7	39	11	43	-	34
30	14	8	8.7	30	13	6.3	5.3	32	5.3	5.3	7.7	53
31	23	17	96	18	18	19	27	6.5	13	20	14	4.5
32	15	20	55	-	5	9.3	13	-	5	9.3	10	-
33	17	21	23	64	5	18	17	15	5	11	19	11
34	29	33	16	37	5	19	12	9.5	10	13	10	4
35	10	11	44	5	5	9	9.3	3.5	5	7.7	11	4
36	78	110	81	-	49	89	43	-	69	62	21	-
37	8.3	5	15	-	5	5	8.7	-	5	5	8	-
38	19	7.3	22	-	11	5.7	24	-	5	5.3	20	-
39	37	34	26	18	5	9	7.3	3	5	8.7	13	3
40	24	11	10	-	16	9	9.3	-	17	7.7	11	-
41	5	29	10	-	5	20	5.3	-	5	19	6	-
42	31	16	13	-	5	12	8	-	16	13	13	-
43	18	24	18	39	5	12	10	13	7	8	8	6
44	26	9.3	43	73	5	14	20	38	6.7	14	10	26
45	5	9.3	70	-	6.7	7.3	39	-	22	7	24	-
46	28	12	18	8.5	15	9.7	16	7.5	6	9.3	20	5.5
47	58	18	-	-	5	16	-	-	11	14	-	-
48	5	8.3	35	31	5	7.3	27	23	5	5.3	36	21
49	9.7	18	13	20	6	6.3	4.7	26	7	5.7	4.3	32
50	58	12	11	8	45	8.7	4.3	4.5	13	7.7	4.3	4
51	5	-	-	-	5	-	-	-	5	-	-	-
52	19	15	11	5.5	18	12	5	4	21	13	3.7	3.5
53	21	20	21	-	20	21	23	-	17	14	26	-
54	8.7	33		42	8.3	13	-	23	7.7	11	-	12
55	5.3	17	9.3	78	5	14	6	11	5	13	3.3	8.5
56	23	15	18	-	7.7	8.3	6.3	-	6.7	6.7	5.7	~
57	5	5.7	16	-	5	5	20	-	5	6	18	-
58	6.7	26	25	25	5	16	19	16	10	12	16	14
59	32	7	25	31	6.7	7	22	24	5	7.7	20	22
60	19	9.7	60	73	5	8	26	23	5	10	-	16
61	26	41	54	41	7	15	-	25	5	12	-	18
62	12	5.7	23	10	5	4.7	20	6	5	4.7	19	6.5
63	5	15	20	35	5	13	16	17	5	12	15	18
64	14	24	27	46	5	19	16	28	5	16	15	16
65	26	51	24	50	5	9.7	14	11	5	12	11	9
66	33	8.7	15	_	5	12	14	-	5	16	9	-
67	5	19	18	9	5	14	24	8	5	9.7	-	7
68	5	37	-	16	5	39	-	6.5	5	25	-	5.5
69	16	20	22	15	5	9.7	16	7	5	8.7	15	8

Table 14: Lead Concentration in Soil Profiles Collected at 92 Stations in the Sudbury Area as part of the Special Survey

Canting		0 to	5 cm			5 to 1	0 cm				15 cm	
Station	1981	1986	1992	1997	1981	1986	1992	1997	1981	1986	1992	1997
70	5	16	16	20	6.7	11	12	7	5	10	13	6
71	8.3	14	7.7	-	5	13	4	-	5	14	3.7	-
72	32	14	15	71	33	11	18	44	31	11	18	42
73	21	18	-	18	10	12	-	14	6.7	9	-	12
74	44	45	68	35	5	13	11	10	5	12	12	10
75	66	33	70	58	19	22	14	16	17	16	13	15
76	91	6.7	-	-	21	4.7	-	-	30	4.3	-	-
77	34	49	59	22	8.3	38	40	14	6.7	40	11	13
78	18	32	-	35	6.7	8	-	15	11	7.7	-	13
79	33	24	-	-	8.3	4	-	-	5	6.3	-	-
80	41	59	42	62	38	43	40	51	28	54	39	61
81	12	12	17	26	13	8.7	13	20	14	11	9.3	16
82	31	10	14	25	35	7	7.3	8.5	21	6.7	5.3	9.5
83	9.3	15	9.7		7.7	13	7	-	6	13	6.3	_
84	26	35	J.1		21	36		_	24	31		-
85	35	31	34	<u> </u>	13	12	35		12	9.7	23	
86	6	19	13	-	5	12	10	:	5	13	20	
				-	1	ā	20	- 	110		15	200
87	180	<u>810</u>	42	<u>460</u>	170	1000		540 53	22	860 7.3	8	280 45
88	18	8.3	27	77	21	7.7	14	•		17	13	45 35
89	5	54	21	53	5	32	20	49	9	•	•	ან 13
90	13	33	100	47	12	43	30	25	12	30	14	
91	67	27	49	80	82	23	12	26	120	23	17	18
92	24	11	35	-	11	15	17	-	8	13	14	- -
93	6	46	18	46	11	15	14	13	6.7	11	12	13
94	6.7	7.7	14	22	6.7	9.7	7.3	16	5	7	6.3	7
95	9.7	17	7.3	42	6	15	8	14	11	14	7	12
96	9	69	37	130	22	50	6.3	160	50	51	6.3	200
97	11	19	39	86	7	20	36	73	7	30	37	110
98	22	13	15	30	9.3	14	5.7	14	11	15	8.3	7.5
99	29	16	73	53	5	8	9.7	22	5	6.7	10	15
100	5	6.7	25	39	5	6	11	11	5	7.7	10	8
101	15	23	23	510	5	9.7	12	110	5	8.7	9.7	25
102	13	62	25	51	49	18	15	26	12	13	18	20
103	22	77	19	30	12	22	15	19	13	19	14	19
104	18	26	26	34	13	18	12	21	18	17	10	16
105	21	21	17	26	17	22	11	25	20	19	10	23
106	28	66	95	36	6	10	13	15	6	11	10	13
107	33	10	-	47	21	11	-	28	16	10	-	21
108	7.7	12	12	59	6.7	8.7	6	50	6	7	4.7	39
109	23	19	17	40	8	15	13	9.5	8	14	11	8.5
110	9.3	33	10	-	16	30	7		44	32	5	-
111	5 5	26	6	38	12	16	4.3	16	5	13	2.3	14
	9.3	20 11	3	36 32	5	10	4.5	15	5	8	<u>2.</u> 5	11
112	9.3				5	4.7	350	51	5	10	240	35
113		5	<u>290</u>	51				51	5 5	10	240 12	30
114	15	15	120	-	5	8.3	10	-	1002 and		12	

Values represent means of triplicate samples in 1981 and duplicate samples in 1986, 1992 and 1997. Concentrations shown in bold exceed the Table F Background Guideline of 120 ug/g Pb. Values shown in bold and underlined exceed the Table A Soil Clean up Guideline of 200 ug/g Pb.

Table 15: Magnesium Concentration in Soil Profiles Collected at 92 Stations in the Sudbury Area as part of the

Special Survey

Station			5 cm				10 cm				15 cm	
	1981	1986	1992	1997	1981	1986	1992	1997	1981	1986	1992	1997
22	2300	2700	3000	<u>-</u>	1400	3200	2400	-	1900	3400	2300	-
23	2300	2600	2400	-	1600	2700	2400	-	1800	2700	3600	-
24	900	2800	1900	-	1200	2700	1600	-	1300	2700	1800	-
25	1200	1000	990	-	1400	1700	1100	-	1600	1900	1900	-
26	940	1500	1200	-	1500	2000	1300	-	1300	2300	1800	-
27	800	1800	1900	1200	1300	1600	2500	2000	1500	2200	3100	2800
28	3100	-	680	-	1600	-	830	-	2500	-	1900	-
29	1200	1700	3800	4500	1300	1800	3700	3800	1500	2100	-	3600
30	1400	2700	3700	5800	1500	2900	3700	2700	1800	3000	3800	2200
31	2000	2700	1700	1000	1800	1700	1600	1500	1100	1800	2300	2100
32	670	1500	800	-	1300	2100	830	-	2000	2100	1600	-
33	1300	3900	4800	1800	2500	2600	5200	2100	2600	2400	3200	3000
34	520	1100	2700	4000	610	1300	3900	3900	870	1800	4300	3800
35	940	3700	470	3200	1500	3600	600	3200	1600	3600	1700	3200
36	1500	2700	2200	-	1200	2100	2400	-	1400	2100	2500	-
37	540	22000	1800	-	820	2600	1900	-	1300	2800	2100	-
38	1000	2500	2600	-	1000	2700	2500	<u>.</u>	1100	2700	2400	-
39	520	1200	650	900	820	1300	680	1200	630	1700	1600	1800
40	1800	1500	2000	-	1900	1700	2000	<u>:</u> -	1900	1800	1300	<u>-</u>
41	1000	2200	3200	-	1100	1900	2500	-	1200	1800	2500	-
42	2700	5800	3300	-	2600	6000	3800	-	2700	5800	3400	-
43	1200	1400	2500	2400	1500	1800	1800	2300	1700	2000	2000	2500
44	2600	2700	3000	3500	2400	2500	2000	3300	2600	2800	1800	2500
45	2400	3000	2500	-	2400	3400	2200	-	2200	3400	2100	-
46	520	2000	2000	1900	1200	1700	1900	1800	1700	1800	1900	1800
47	770	1900	-	-	1200	2100	<u>-</u>	<u>-</u>	720	2100	-	-
48	2000	2900	2700	3200	2000	2700	2300	3000	1800	2700	2600	2700
49	7000	4700	1700	5500	4700	4400	1400	3600	6000	4000	1500	3400
50	2000	1700	750	1300	3200	2100	780	1400	4200	2900	980	1600
51	990	-	-	-	870	-	<u> </u>	-	1300	-	-	-
52	4800	7400	4900	4800	4400	5400	3100	4700	4500	6900	3300	4500
53	3800	4600	3300	-	4600	5100	3200	-	4700	7300	3100	-
54	3200	4100	_	3700	3600	4900	-	3900	3200	5000	-	3900
55	1400	3800	5600	2800	3200	4300	6400	4400	3400	4600	6400	4600
56	1400	2900	3300	-	1200	2900	2900	-	1500	2900	2700	-
57	2800	4000	2500	_	3100	4300	2500	: : _	3300	4200	2100	-
58	4300	3800	5800	4900	3800	4100	6300	5100	3800	4100	5800	5100
59	4300	5100	3700	3800	17000	5300	3600	4400	5000	5500	4000	4900
60	6900	4900	5900	2500	8900	5000	6600	2800	11000	4800		4100
61	4200	7100	6200	4900	5300	7700	-	6000	5200	7700		6900
62	4300	3400	16000	2100	6500	3500	12000	2500	7500	3400	11000	2700
63	2000	6500	7400	7300	2300	7300	8900	7700	2400	7300	9900	7600
	3500	5200						.	i .		5100	.
64		:	4300	2800	3700	4400	4300	2800	3500	5000		2800
65	2000	2700	3800	2000	2100	4300	3700	2100	3900	5900	4100	2800
66	2300	3900	8100	-	3000	5800	8300	-	4100	5900	8300	-
67	2600	4000	4500	4300	2700	2800	5000	3900	3000	2600	-	3400
68	2200	5100	-	2400	2600	5800	-	2800	3300	5600	-	3400
69	4900	13000	5900	6100	5400	17000	6900	6700	5400	18000	7200	5900

Table 15: Magnesium Concentration in Soil Profiles Collected at 92 Stations in the Sudbury Area as part of the

Special Survey

Special S		0 to	5 cm			5 to 1	0 cm			10 to		
Station	1981	1986	1992	1997	1981	1986	1992	1997	1981	1986	1992	1997
70	6400	5400	8100	2000	6000	4800	8300	3400	7000	5900	9700	4800
71	2500	5000	5100	-	2700	5300	5200	-	4100	5900	5400	-
72	5500	7000	10000	6100	4400	7000	11000	3900	3600	6800	10000	4000
73	2600	2400	-	4800	2700	2600	-	4800	3200	2800	-	4400
74	2200	2100	3200	3200	3800	2400	4800	3900	5000	5700	4300	4800
75	800	1200	2200	3700	750	2200	2700	4500	840	2600	2700	6000
76	3700	4300	-	-	2700	3400	-	-	3100	3200	-	-
77	1100	1200	2000	1400	840	1400	1400	1100	810	1100	1400	1100
78	6100	2100	-	6400	5900	4800	-	7100	6500	2000	-	7500
79	3200	1400	-	-	3200	1700	-	-	3600	2000	-	-
80	2100	1500	2200	1900	1800	1500	2100	2000	2400	1800	1900	2300
81	3500	8900	4200	6300	3900	6200	3100	4600	3700	7700	3400	4600
82	3100	1400	1800	3300	3400	1800	1600	3200	3200	2200	2100	3200
83	2200	4400	2400	-	2300	8200	2200	-	2800	8600	1900	-
84	3400	3600	-	-	4000	4000	-	-	4300	3500	-	-
85	6900	5800	7600	-	8200	4600	5900	_	6300	4600	5300	-
86	10000	8600	3500	-	8300	11000	8000	-	8500	11000	-	-
87	2600	3600	3400	3400	2600	3200	3100	2900	2400	3400	3800	2600
88	4100	3200	6200	4100	4400	3200	5000	3600	4000	3000	4300	3600
89	8100	4000	5400	4400	5200	4000	5500	4500	6400	4600	4900	4400
90	6900	4600	4600	5900	7600	5100	4700	5700	6800	4300	5000	7000
91	2200	9100	3400	2700	2400	9100	2900	2900	2200	11000	3700	5100
92	4000	14000	5500	-	4100	12000	5900	-	4000	9700	7300	-
93	2600	3500	2700	3400	2500	2700	2700	3100	2100	2800	2800	2800
94	1100	2000	1700	1800	950	2200	2000	1400	1100	2000	2400	1500
95	1600	3600	3500	1400	1700	4800	3900	1900	2000	4200	3900	2800
96	3000	4900	4300	4700	3100	5800	4000	5000	3000	5200	4000	5700
97	2300	10000	12000	14000	2800	11000	13000	9900	2600	6400	11000	8900
98	6400	2800	2400	3400	7600	2700	2500	3000	7400	2600	2600	3200
99	3000	4700	4500	5400	3000	3900	3100	4400	3000	3800	3400	4400
100	4800	3900	5000	2500	4200	3700	5200	2900	4800	3700	5600	3100
101	1900	2700	1100	1600	1600	2400	1800	1400	1700	2900	2200	1900
102	4800	6000	5300	7400	4300	6400	7600	7900	5700	6000	11000	8600
103	6500	6800	6200	8200	7100	7500	6100	8500	7100	8200		8700
104	11000	6100	5900	6800	7600	6400	6100	7000	6700	6600	6900	7600
105	4100	6900	5200	8700	4000	7100	5300	8600	4000	7400	5500	9300
106	8400	5200	6300	12000	5000	4900	6800	4700	4300	5600	5900	4300
107	3500	5700	-	2700	4100	6600	-	2000	4100	8300	-	2200
108	2600	3900	3100	4700	2800	4200	3200	4800	3000	3800	3400	4600
109	4700	5800	4700	5400	5900	6900	5000	5400	5700	7800	6400	5500
110	4200	2500	3600	-	4200	1900	3500	-	3700	2000	3500	-
111	3700	4400	2900	4900	3700	4500	2900	4900	4000	4600	2800	4800
112	1200	3500	2900	3400	1600	3600	2700	4100	2400	3800	2600	5100
113	2800	5500	5000	5000	2900	5300	5000	4400	3000	5200	5200	4300
114	5000	6900	2400	-	5000	7800	4700	-	5100	11000	5500	-
/		oons of tr			1004	l di un l'a a da		i- 4000	1000	1007		

Values represent means of triplicate samples in 1981 and duplicate samples in 1986, 1992 and 1997.

No Table F Guideline exists for Magnesium and therefore, values in bold exceed the OTR₉₈ Guideline of 20,000 μg/ Mg.

Table 16: Barium, Beryllium, Chromium, Manganese, Molybdenum, Strontium, and Vanadium Concentrations in Soil Profiles Collected in 1997 at 92 Stations in the Sudbury Area as part of the Special Survey

10-15 E 40 31 Vanadium 5-10 E 32 36 34 25 30 26 0-5 cm 37 39 26 27 25 38 37 10-15 26 E 16 25 12 5 $\underline{\circ}$ 7 1 . o Strontium 5-10 ES 19 20 0-5 cm 19 30 8 9 10-15 <0.5 <0.5 <0.5 <0.5 0.65 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 9.0 E Molybdenum 5-10 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 1.5 E ô 0 <0.5 0-5 cm <0.5 0.65 \$\frac{0.5}{0.5}\$ <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 4.2 0.8 1.6 9.0 10-15 170 160 270 260 40 350 170 180 30 30 120 150 75 80 E Manganese 5-10 280 170 170 190 140 150 350 160 180 150 E 80 0-5 cm 160 180 210 290 19 20 5 2 50 140 140 64 84 10-15 E 29 29 26 30 34 26 32 19 34 21 Chromium 5-10 E 26 31 18 24 43 28 29 32 22 28 31 25 0-5 cm 25 27 28 9 36 20 16 43 25 34 25 4 10-15 <0.5 <0.5 <0.5 <0.5 <0.5 0.5 0.5 0.5 5 5 <0.5 E 0 0. 0 ô ô 0 Beryllium <0.5 5-10 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 Ë ô 0 Ô ô. <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 2 <0.5 <0.5 <0.5 S 0.5 E ô ô 0 ô 10-15 81 45 E 20 62 Barium 5-10 E 64 20 59 28 44 28 65 37 49 52 0-5 cm 120 33 45 26 36 27 49 44 29 56 19 52 63 61 Station 49 23 23 24 25 25 43 44 45 46 48 20 52 53 8 8 33 35 36 39 9 42 47 51 27 28 31 32 37 38 4

Table 16: Barium, Beryllium, Chromium, Manganese, Molybdenum, Strontium, and Vanadium Concentrations in Soil Profiles Collected in 1997 at 92 Stations in the Sudbury Area as part of the Special Survey

mn	0 10-15		ļ	33	,			·	52	<u></u>		ļ	<u></u>			<u></u>	<u></u>		ļ	'	<u></u>	33		43		ļ	49		ļ	39	30			
Vanadíum	n 5-10	1	36	34	,		37	45	38	74	29	20	28	24		34	26	48	44	,	39	36	37	37		28	47	,	29	4	31	'		
	0-5 CI		39	32	'	'	37	39	30	29	29	48	27	22	'	35	22	44	32	'	38	34	34	34	,	28	43	'	29	45	32	,	'	_
E	10-15	cm	18	19	,	,	32	25	19	19	15	28	20	19		19	28	38	20	,	24	30	35	32	'	10	44		20	32	23		<u>.</u>	
Strontium	5-10		17	22	1	,	31	23	17	18	14	29	23	20	1	20	25	4	17	'	23	31	37	31	1	10	41	,	18	31	22	1	,	
S	0-5 cm		16	18	1		33	27	21	26	74	25	19	17	,	50	24	4	17	,	22	30	34	35	,	7	34	٠,	18	38	22	'	,	
E	10-15	- 1	<0.5	<0.5	,	1	<0.5	0.55	0.55	<0.5	<0.5	<0.5		<0.5	,	<0.5	<0.5	<0.5	0.7	'	<0.5	<0.5		<0.5	,		<0.5	,	0.75	<0.5	<0.5	,	-	
Molybdenum	5-10	ш	<0.5	<0.5	,		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	9.0	,	<0.5	<0.5		<0.5	,	<0.5	<0.5	,	<0.5	<0.5	<0.5	'		
Mol	0-5 cm		0.85	0.95	,,,,		<0.5	<0.5	0.8	0.65	<0.5	<0.5	<0.5	<0.5		<0.5	0.75	<0.5	<0.5	'	-	<0.5	<0.5	<0.5	,	<0.5	<0.5		<0.5	<0.5	0.55	,	,	
	10-15 0	E C		160	ı		250	220	270	320	120	390	150	140	,	160	160	420	180	-	210	330	220	370	'	110	610	•	270	┼	170	,	,	
Manganese	5-10 1	-		150	,		250	230	320	340	120	410	170	130		061	130	10	150		200	370	220	430		120	650		<u>.</u>	230	091		····	
Man	0-5 cm 5	\dashv		100			320	360	330	400	100	360				<u></u>			120		06	320	340	530 4		••••	470				170			
-	10-15 0-5	ᆉ	34 2						1	37 4		73 3	_	26 1	_		29 1	_	48 1			36 3		62 5		20 1			_	43 2		_		
minm		\dashv														<u>.</u>													ļ					,
Chromium	cm 5-10	\dashv	38					49	ļ					22		 .		54				40				19			.	45		·	<u>.</u>	
-	0-5	-		5 43	'	'	_	_	5 25	``	-2	'	, 29	``	'		22		5 24	'	_			42	'		56	'	26			'	'	
E E	10-15		<0.5				<u></u>	ļ	ļ		<0.5							<0.5	ô.	,		<0.5		0.5		<0.5				<0.5			· ·	
Beryllium	5-10	Ë	<0.5	<0.5	١	'	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	'	<0.5	<0.5	<0.5	<0.5	,	<0.5	<0.5	<0.5	<0.5	,	<0.5	<0.5	,	<0.5	<0.5	<0.5	,	<u>'</u>	
de alli	0-5	E	<0.5	<0.5	,	1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	,	<0.5	<0.5	<0.5	<0.5	1	<0.5	<0.5	<0.5	<0.5	٠	<0.5	<0.5	٠	<0.5	<0.5	<0.5	,	'	
la constant	10-15	Cm	56	4	'	1	9/	130	89	78	43	82	46	44	,	33	47	84	65	,	61	61	61	100	'	53	110	,	140	86	61	'	,	
Barium	5-10	C.B	98	45		'	74	120	73	82	42	82	55	41	١	42	38	98	22		22	29	58	92		32	110	'	110	100	63	,	,	
B	0-5	E C	71	99	,		9/	120	120	120	37	85	54	59	'	42	42	06	57	•	54	59	69	150		32	92		92	110	73	,		
3	Station	1	54	55	26	25					62							69		7.1	72	73	74	75	92	77	78	79	80	81	82	83	84	

Table 16: Barium, Beryllium, Chromium, Manganese, Molybdenum, Strontium, and Vanadium Concentrations in Soil Profiles Collected in 1997 at 92 Stations in the Sudbury Area as part of the Special Survey

		Barium		B	Beryllium	٦	ਠ	Chromium	E	Σ	Manganese	se	Mo	Molybdenum	ur.	5	Strontium	[Vanadium	-
Station	0-5	5-10	10-15	0-5	5-10	10-15 0	0-5 cm	5-10	10-15	0-5 c	1 5-10	0-15	0-5	5-10	-15	0-5 cm	5-10	10-15	0-5 cm	5-10	10-15
	E S	E	cm	cm	сш	cm		СШ	en Ci		СШ	сш		E	E C		E	CB		ш	cm
88	29	99	54	<0.5	<0.5	<0.5	44	40	39	210	180	190	0.85	0.65	0.85	18	17	16	47	48	49
83	100	110	120	0.55	9.0	0.75	42	43	41	240	230	230	1.1	6.0	0.95	38	42	44	37	38	39
06	87	9/	72	<0.5	<0.5	<0.5	22	51	59	870	200	470	0.55	<0.5	<0.5	33	36	39	47	45	49
91	110	71	78	<0.5	<0.5	<0.5	33	30	49	300	310	340	4.	0.65	<0.5	28	22	28	44	41	20
92	-	į		-	ı	-	ı	,	1	,	1	1	1	1	,	1	1	,	,	,	,
93	37	34	39	<0.5	<0.5	<0.5	32	34	31	200	160	150	<0.5	<0.5	<0.5	26	26	23	33	33	31
94	33	30	23	<0.5	<0.5	<0.5	26	22	26	300	230	230	<0.5	<0.5	<0.5	14	15	13	33	34	38
92	50	31	34	<0.5	<0.5	<0.5	24	33	43	170	170	190	<0.5	<0.5	<0.5	4	17	18	38	54	51
96	74	75	82	<0.5	<0.5	<0.5	42	4	43	210	200	230	0.65	<0.5	0.8	24	25	25	32	34	37
6	260	230	230	<0.5	9.0	0.55	150	110	110	470	330	400	<0.5	0.55	0.65	41	36	36	87	69	69
86	77	90	55	<0.5	<0.5	<0.5	36	28	29	290	200	200	<0.5	<0.5	<0.5	25	23	25	35	29	30
66	92	06	87	<0.5	<0.5	<0.5	57	42	42	320	320	350	9.0	<0.5	<0.5	28	29	28	42	37	35
100	51	37	35	<0.5	<0.5	<0.5	29	26	26	100	120	140	<0.5	<0.5	<0.5	22	23	23	25	25	25
101	140	45	25	<0.5	<0.5	<0.5	40	22	23	150	93	100	1.7	9.0	0.65	14	-	10	26	30	33
102	130	120	130	9.0	0.6	0.65	64	29	74	540	200	540	<0.5	<0.5	<0.5	43	40	38	53	58	90
103	120	120	120	0.65	0.75	0.75	99	70	73	1000	920	840	<0.5	<0.5	<0.5	40	37	37	58	58	59
104	96	87	91	<0.5	<0.5	0.55	51	51	55	460	460	460	<0.5	<0.5	<0.5	39	39	39	49	53	53
105	120	120	130	0.7	0.7	0.75	65	99	73	570	510	510	<0.5	<0.5	<0.5	39	37	39	09	90	64
106	56	51	48	<0.5	<0.5	<0.5	33	37	36	220	200	180	0.55	<0.5	0.55	23	18	18	37	40	39
107	44	45	57	<0.5	<0.5	<0.5	41	30	30	120	96	110	9.0	0.65	<0.5	16	14	18	39	35	38
108	54	62	61	<0.5	<0.5	<0.5	39	43	39	220	220	210	<0.5	<0.5	<0.5	56	28	27	33	36	35
109	69	77	75	<0.5	<0.5	<0.5	47	44	45	220	240	260	<0.5	<0.5	<0.5	31	33	34	40	38	40
110	-	ı		1		-	,	,	,	,	'	1	ı	1	,	ı	1	1	ı	ı	,
111	61	69	71	<0.5	<0.5	<0.5	44	41	40	290	350	360	<0.5	<0.5	<0.5	26	26	26	36	35	35
112	69	61	67	<0.5	<0.5	<0.5	59	33	39	340	290	310	0.55	<0.5	<0.5	26	24	27	28	31	36
113	94	06	98	<0.5	<0.5	<0.5	41	36	36	420	390	350	0.55	0.55	<0.5	34	29	29	38	35	37
114	ı			•	,	-	1	1	1	,	1	1	1	,	,	1	1	1	١	1	,
Table F		210			1.2			71			2200 *			2.5			64 *			91	
Table A		750			1.2			750			NG			40			NG			200	
Table F	Guidelir	nes do r	Guidelines do not exist for Manganese and Str.	for Mar	ganese	and S	trontium	, there	ore OT	R_{99} are	stated f	ontium, therefore OTR98 are stated for these elements	elemer	ıts.							

Table 17: Arsenic Concentration in Vegetation at 92 Stations in the Sudbury Area as part of the

Special Survey.

Station				pen		1	L	1 24		age	4055	T 4
	1971*	1976	1981	1986	1992	1997	1971	1976	1981	1986	1992	1997
22	6.2	5.1	1.7	1.2	0.52	<u>.</u>	7.8	3.7	1.4	0.71	0.38	<u>.</u>
23	6.4	5.5	2.3	0.94	0.36		4.6	2.2	1.5	0.47	0.35	<u>:</u>
24	9	4.4	1.6	1.7	0.37	•	4	1.8	0.55	0.93	2	
25	4	2.1	<0.3	0.42	0.24	:	3.4	1.2	0.87	0.39	0.48	:
26	4.3	2.5	<0.3	1			4.3	0.9	0.6	0.56	<0.2	<u> </u>
27	2.4	1.3	1.1	2.8	<0.2	<0.2	2.4	0.97	1,4	1.3	<0.2	0.25
28	2	0.4	<0.3	2.0	<0.2		2.7	0.37	<0.3	<u> </u>	<0.2	
29	<u>~</u>	0.7	0.5	1.5	-0.2	0.35		20	3.8	0.67	0.4	<0.2
30			3	0.88	0.21	0.25	12.8	11	2.5	2.1	0.49	0.65
		10	1.3	0.00	0.21	<0.2		5.8	0.77		0.62	0.8
31	11.7	12		1.3	0.3		8.7 5.2	3.2	1.3	2.4	0.02	0.0
32	11.5	8.6	2			<u>.</u>	5.Z 4					0.3
33		3.7	8.0	1.2	0.41	<0.2	4	1.9	0.5	0.56	<0.2	•
34	11.7	4.3	<0.3	1.8	<0.2	<0.2	4	1	<0.3	0.91	<0.2	<0.2
35	3.3	0.83	0.33	0.78	<0.2	<0.2	1.8	0.6	<0.3	0.57	0.23	<0.2
36		4.2	3	1.5	0.32	:		3.3	1.1	1,4	0.52	
37			1.8		0.24	:		1.4	0.6		<0.2	
38		1.6	0.37		0.24		3.6	0.53	0.83		0.27	
39		1.1	<0.3			<0.2	4.3	0.77	<0.3		0.26	0.4
40		1.3 1.3 1.2	0.33 0.33 0.33		<0.2		4 4.1	0.73	0.37 <0.3		0.21	:
41		1.3	0.33		<0.2 <0.2		4.1	0.53	<0.3		<0.2	
42		1.2	0.33		<0.2		2.3	0.5	0.83			<u> </u>
43		0.8	0.4	0.36	0.22	<0.2	1.8	1.1	0.57	0.16	<0.2	<0.2
44		22	4.4	2.8		0.65	6.4	17	2.1	1.8	0.46	0.3
45	5	13	2.8	7.4	0.39	:	4.8	7.6	2.2	2.4	0.48	:
46	9.3	6.1	1.1		0.31	0.3	6.4	5.7	0.8	:	<0.2	<0.2
47	1	2.7						4.5				:
48	4.3	2.7	<0.3	1	0.28	<0.2	4.3	1.2	<0.3	0.53	<0.2	<0.2
49	6.6	2.2	<0.3	0.48	<0.2	<0.2		1.6	<0.3	0.48	<0.2	<0.2
50		1.4	<0.3	0.40		<0.2	3.2	1	<0.3		0.21	<0.2
	6.4		1.2		<0.2	-0.2	3.4	1.4	<0.3	<u>.</u>	0.21	-0.2
51	4.8	1.8					4		4		<0.2	<0.2
52	8.3	2.1	0.4	1.2	<0.2	<0.2	1	1	0.37	0.43	:	<0.2
53	6.6	2.3	0.43	1.1	<0.2		1.8	1.2	0.47	0.32	<0.2	<u>.</u>
54	5	2.2	0.5			<0.2	2.3	1.1	0.43	<u>.</u>		<0.2
55	5.2	2.4	0.37		0.21	<0.2	2.3	4	0.63			0.25
56	2	1.1	0.37		<0.2		0.8	1.1	<0.3		<0.2	
57	1	0.7	<0.3		<0.2		1.8	0.9	<0.3		<0.2	
58	2.1	0.43	<0.3	3.2	<0.2	<0.2	2.3	0.57	<0.3	1.7	<0.2	<0.2
59	1.2	0.37	<0.3	0.25	<0.2	<0.2	0.08	0.33	<0.3	0.4	<0.2	0.25
60	1.2 1	<0.3	<0.3	0.32	<0.2	<0.2	0.8	0.33	<0.3	<0.03	<0.2	<0.2
61	0.8	8.5	<0.3	<0.03	<0.2	<0.2	0.8	<0.3	<0.3	<0.03	<0.2	<0.2
62	5	7.6	<0.3	0.71	<0.2	<0.2	3.6	1.6	<0.3	0.33	<0.2	0.35
63	3.2	2.5	0.6	0.53	<0.2	<0.2	2	2.9	0.4	0.37	<0.2	<0.2
64	3.4	1.7	0.43	0.25	<0.2	<0.2	2.3	1.4	<0.3	0.09	0.21	<0.2
65	3.4	0.83	<0.3	0.23	0.21	<0.2	2.7	1 1	<0.3	0.18	<0.2	<0.2
	2	0.83	0.4	0.21	<0.21	70.2	2.1	0.6	<0.3	0.43	0.22	:
66	1.2	0.73	<0.4	0.28	<0.2	<0.2	1.8	0.8		0.22	<0.22	<0.2
67			<0.3	0.24	~ U.Z	0.25	1.8	0.37	<0.3 <0.3	0.22		0.25
68	2.3	0.4	i				1.0	<0.33	<0.3	0.07	<0.2	<0.2
69	2	<0.3 <0.3	<0.3 <0.3	<0.03	<0.2 <0.2	<0.2 <0.2		<0.3 <0.3	<0.3	0.04	<0.2 <0.2	<0.2
70	<0.5	<0.3 1.5	<0.3 <0.3	<0.03 <0.03	<0.2 <0.2	: < U.Z	0.8 1.8	<0.3 <0.3	<0.3	<0.04	<0.2 <0.2	

Table 17: Arsenic Concentration in Vegetation at 92 Stations in the Sudbury Area as part of the

Special Survey.

Station	L		As	pen					For	age		
Station	1971*	1976	1981	1986	1992	1997	1971	1976	1981	1986	1992	1997
72	6.4	0.7	0.6	0.34		0.4	2	0.57	0.8	0.39	0.7	0.35
73	5	0.57	<0.3	0.3		0.35	4.3	0.47	<0.3	0.71		0.45
74	1.9	0.7 1.1	<0.3	•	<0.2	<0.2 <0.2	2.7	0.53	<0.3 <0.3		0.24	0.4
75	1	1.1	<0.3	4	<0.2	<0.2	3.6	0.73	<0.3		<0.2	0.25
76		1.2	<0.3	0.77				0.77	<0.3	0.14		
77	3.4	0.67	<0.3	0.73	0.23	<0.2	2.8	0.63	<0.3	0.14	0.31	<0.2
78	3.4 3.5	1.4	<0.3	0.34		<0.2	2.3	0.87	<0.3	0.15		<0.2
79	4.6	1.3	<0.3	0.49			2.3	<0.3	<0.3	0.28		
80	4.6	1.7	<0.3	0.21 1.1	<0.2	<0.2	2 3.2	0.83	<0.3	0.15	0.21	<0.2
81	5	2.8	0.43	1.1	0.22	<0.2	3.2	0.57	<0.3	0.15	0.29	<0.2
82	†····-		0.93	0.65	<0.2	<0.2	3.3	0.73	0.37	0.25	<0.2	<0.2
83		2.1		1.1	0.35	 !	4.5	<u> </u>	1.2	0.46	0.26	
84		3.4	0.57	0.42			2.9	1.4	0.47	0.31	• • • • • • • • • • • • • • • • • • • •	
85		1.5	0.63	0.47	<0.2		2.2	0.93	0.4	0.15	0.24	
86		1.6	0.33	0.44			0.8	0.9	0.4	0.12	<0.2	
87		1.6 2.4	0.93	0.62	<0.2 0.29	0.3	0.8 3.2	0.87	0.4 1.9	0.58	<0.2	1.5
88		1		0.71		0.25	2.3	1.3	0.43	0.43	0.37	<0.2
89	3.2		0.47	0.39	0.24	<0.2	3.3	0.97	0.73	0.22	0.25	0.2
90	1	<0.3	<0.3		<0.2	<0.2	2.7	1.8	<0.3		<0.2	<0.
91	2	0.37	<0.3	0.28	<0.2	<0.2	2.3	0.47	<0.3 <0.3	<0.03	<0.2	0.5
92	2.4	0.43	<0.3	0.19	<0.2 0.23	 :	2.3 2.3	0.37	<0.3	0.11	0.39	
93	2 2.4 2	<0.3	<0.3	0.13	0.25	<0.2	1.2	<0.3	<0.3	0.05	0.41	<0.2
94	1.8	<0.3	0.37	0.08	0.21 0.26	<0.2	1.2	<0.3 <0.3	<0.3 <0.3	0.2	0.31	<0.2
95	<0.5	3.1	<0.3	0.11	0.26	<0.2	1.2	<0.3	<0.3	0.15	0.23	<0.2
96	2.7	0.77	1.5	0.75	0.27	0.5	3.6	4	0.67	0.43	0.4	0.6
97	2.4	1.4	1	1.4	0.66	0.45	4	1.4	1.7	0.6	0.48	1.2
98	2.4	0.9	0.57	0.92	<0.2	<0.2		0.57	0.6	0.28	0.47	0.3
99	2.3	1	0.37	0.77	<0.2	<0.2	2.3	0.87	0.83	0.14	0.74	0.3
100	0.8	0.57	0.33	0.58	<0.2	<0.2	1	0.57		0.23	<0.2	0.3
101	0.8 2.3	<0.3	<0.3	0.83	<0.2	<0.2	2.3	0.6	<0.3 <0.3	0.25	0.21	<0.
102	1.8	0.4	<0.3	0.12	<0.2	<0.2	1.9	<0.3	<0.3	0.26	<0.2	<0.2
103	2.7	<0.3	0.33	0.57	<0.2	<0.2	3.2	<0.3	<0.3	0.16	<0.2	<0.
104	1.8	<0.3	<0.3	0.22	<0.2	<0.2	2	<0.3	<0.3	0.15	<0.2	<0.2
105	1.9		0.37	0.12	<0.2	<0.2	2 1.2	<0.3	<0.3 0.4 1.1	0.4	<0.2	<0.2 0.5 0.3
106		1.7	0.43	0.71	<0.2 0.21	<0.2 0.3		-	0.4	0.4	0.39	0.5
107		2.6	0.9	0.82		0.7	2.3	2.7	1.1	0.85		0.3
108		1.3			<0.2	0.55			<0.3		0.27	0.4
109		2.5	<0.3 <0.3		<0.2 0.23	0.25	2	1.4 0.73	<0.3 <0.3		0.27	<0.2
110		1.3 2.5 1.1	1				2	2.1	<0.3		0.22	
111		1.4			0.42	<0.2	2 2 2 2.8	2.1 2.2	<0.3 <0.3 <0.3		0.22 0.26	<0.2
112		0.57	<0.3 <0.3		0.42 <0.2	<0.2	0.8	0.5	<0.3		0.21	<0.2
113	1	<0.3	<0.3		<0.2	<0.2	0.6	0.9	<0.3 <0.3		<0.2	<0.2
114	1		0.37	0.37	<0.2			<0.3	<0.3	0.26	<0.2	

^{* - 1971} Aspen foliage was washed.

Values represent single samples collected in 1971, means of triplicate samples in 1976 and 1981 and duplicate samples in 1992 and 1997.

Concentrations shown in bold exceed the Upper Limit of Normal Guideline of 2 ug/g As for foliage and 8 ug/g for forage.

Table 18: Cobalt Concentration in Vegetation at 92 Stations in the Sudbury Area as part of the Special Survey.

Station		· · · · · · · · · · · · · · · · · · ·	Ası					T****		age	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	1971*	1976	1981	1986	1992	1997	1971	1976	1981	1986	1992	1997
22	11	11	5	8.3	4.1	<u></u>	1	2.7	1.3	<1	0.57	<u>.</u>
23	<1	5.7	12	3.3	3.3	<u>:</u>	<u> </u>	1.3	2	<1	0.5	<u>.</u>
24	10	7.3	8 5	3	6.4	<u>;</u>	<1	2.7	<1	<1	0.7	<u>.</u>
25	15 5 3	10	5	3.7	2.9	<u>.</u>	<1	1	<1	<1	0.23	<u>:</u>
26	5	10	7 11	6	<u> </u>	<u> </u>	<1	2	<1	<1	0.27	<u>.</u>
27	3	4.7		8.3	2.7	7.2	2 2	1.3	<1	<1	<0.2	0.4
28	<1	6.3	6.3		2.6	<u>.</u>	2	1	<1	<u>.</u>	<0.2	<u>.</u>
29			<u> </u>	3		5 6.5	1	13	2	<1	1.1	0.65
30			11	6.7	11	6.5	2	7.7	1.7	<1	1.1	1.4
31	5	12	10			7.2	1	5.3	1.3		0.6	0.7
32	5 5 9 10	7	6.7	7	3.1		<1	2 2 2	<1	1.3	0.53	
33	9	12	7	3.7	2.9	4.1	<1	2	<1	<1	<0.2	0.9
34	10	12	2.7	4.7	5.7	9.8	<1		<1	<1	0.33	0.4
35	7	6.7	7	7	4.1	3.1	<1	1.7	<1	<1	0.3	0.25
36		8	7.7	5.3	5.4	:		4	1.3	<1	1.8	:
37			6.3	!	2.4 3.7			4 2 2	<1		0.27	
38	6	8 5	5.3		3.7	:	<1	2	<1	:	0.57	:
39	2	5	4.7			4.1	1 1	1.3	<1	<u>:</u>	0.37	0.45
40	2 5 4	11	4.7 4		3 2		3 <1	1.3	<1		0.27	1
41	4	7.7	5.7		2		<1	3	<1		<0.2	
42	3	5	4.3		3.5		<1	1.3	1.3			
43	3 10	3.3	4.7	3.7	3.5 1.8	1.5	<1	1.7	<1	<u></u>	0.33	0.4
44		14	12			8.6	<1	6	1.3	<1	0.9	0.75
45	7	10	9.3	12 6	5.2		1	6 7 3	1.3	<1	1.2	
46	15	9.3	13	.	7.7	12	5	3	<1		0.27	1.5
47		11			/ • /	14	 	2.7				<u></u>
48	4	2.7	7.7	6	9.2	4.9	4	3.3	<1	<1	1.1	0.3
49	4	6.7	4.7	2.3	7.2	5	4	2.3	<1	<1	0.43	<0.2
50	10	9	7./		5 4.2	2.9	<1	1.3	<1		0.33	0.4
51	10 6 4	5.3	4		7.4	2.7	<1	1.7	<1	<u>.</u>	0.00	
52	0	4.3	2.3	1.7	1.4	4	1	4	1.3	<1	0.33	0.3
53	4	4.3	2.7	1.7	2.6	4	<1	3	<1.5	<1	<0.2	.
54	9 9 5	6.3	5.7	1.7	2.0	4.5	<u>``</u>	1.7	<1		-0.2	0.55
55	y	5.7	5./ 4		2.5	4.5	<1	1.7	<1	:		0.3
56	3 4		7.3		3.2		<1	2 2	1.5	<u></u>	0.27	
		6.7						d 			0.27	!
57	4	4	5.7	4 2	1.2 2.9		1 <1	1	<1 <1		<0.37	<0.2
58	<1	4.7	7.7	1.3	2.9	3.4	<1 <1	2	<1	<1 <1	<0.2	<0.2
59	4	9.3	6	4 3	3.6	2.2			<1 <1	<1 <1	<0.2 <0.2	<0.2
60	3 3	4.7	2.7		2.3	2.3	2	1.3 1	<1 <1	<1 <1	<0.2 <0.2	:
61	3	7.7	1.7	1.3	1.6	1.3	<1				•	<0.2
62	3	8.7	4.7	2	3.9	1.9	2	3.3	<1	<1	<0.2	0.65
63	9 4	11	4.8	2	4.1	4.4	3	2.7	<1	<1	0.33	0.35
64	4	7.7	4.3	3	3.7	2.7	2	2	<1	<1	0.23	0.45
65	3	9.7	4	3	5.5	5.5	2	2.3	<1	<1	<0.2	0.55
66	3	12	4	2.3	2.7		2	2.3	<1	<1	<0.2	
67	5	5.3	6	3.3	4.3	5.7	2	2	1.7	<1	0.23	0.3
68	3	3.3	3	1		1.2	<1	1	<1	<1		0.25
69	5	3	1.7	1.7	0.7	0.8	3	1	<1	<1	0.23	0.75

Table 18: Cobalt Concentration in Vegetation at 92 Stations in the Sudbury Area as part of the Special

Survey.

Station				pen						age		
Station	1971*	1976	1981	1986	1992	1997	1971	1976	1981	1986	1992	1997
70	2 5	4	2.3	<1	0.7	2.3	<1	1.3	<1	<1	<0.2	<0.2
71	5	5.7	2.7	3.3	0.83		<1	1	<1	<1	<0.2	:
72		5.7		2		7.1	<1	1.3	2	<1	1.1	0.7
73	4 5 6	5.7 5	7.5 6.3	2 5		7.1 1.1	<1	1.7	2 <1	<1 1.3	d !	<0.2
74	6	5.3	7.3		1.3	2.4	<1	1	<1		<0.2	0.6
75		7.7			2.6	1.4	<1	1 1	<1		<0.2	0.3
76		11	7 5 5	5				2	1.3	1.7		
77	5	5	5	5 6 10	2.1	1.3	<1	1	1.5	<1	0.77	<0.2
78	6	5 15	1.3	10		0.95	<1	1	<1	<1		0.25
79	2	8.3	<1	4			<1	1.7	5.9	<1		1
80	5 6 2 3	3.3	6.7	2.7	3.9	2.9	<1 <1 3	2	<1	<1 <1	0.47	<0.2
81	~~~~	10	2	3	3.7	4.1	5	2 2 1.7	<1	<1	0.23	<0.2
82	17		2 13	9.7	5.0	4		1 7	<i>-</i> 1	<1	0.27	1.5
83	16	<u> </u>	13	13	5.9 8.5	<u></u>	<1 6 5 <1 <1	1./	<1 1.7	4 2	1	1.0
84	2	6 11	6.3	5.7	0.3			3 3	2 3	4.3 <1 <1	 !	
85	2	Ω	5	1.7	3.9		<1	3.3 2.3	2.3 2.7	<1	0.27	÷
86	2 3 3	8 52	5 5	3.3	3.2		21	2.3	1.3		<0.27	
87	ა	13	4.7	3.3 9	ა.∠	10	<1	2.3 2.7	1.3 2.3	<1 2	<0.2 1.7	1.3
88		9.7	7./	5.3	8	12 2.4	<1	5.7	<1	2.3	1.4	0.35
89	7	7./	7 3	5.3	5	<u> </u>	<1		<1	<1	0.43	0.8
90	7 12	10	7.3 4.7	J.3	2.4	7	<1	2	<1		0.3	1.6
91	2	6.3	6.7	?	5 2.4 2.1	4 4 2.2		3.3	<1 <1 <1 <1 <1 <1	1.3	0.43	0.55
92	2 2 4 2 3 <1	4	2.3	3 1.3	1	4.4	2 <1	3.3	<1	<1	<0.2	: 0.00
93	2	4 2.7	<1	2.3	0.5	4.5		1	<1	<1 <1 1.3	<0.2	<0.2
94		4.7	2.3	2.3	1.6	1.6	<1 <1	1.7	<1	13	0.33	0.3
95	~~~~	10	3.7	1.3	2	3.3	2	1.7		<1	<0.2	<0.2
96	<1	8.7	13	7.3	3 5	6	2 <1	0.3	<1 2.3	1.3	1.1	0.2
97	1	5.7	10	8	70	3.4	<1	27			1.3	3.5
98		5.7 9 3.3	6.7	6.7	7.9 5.9	6.8		9.3 2.7 2.3 2.7	4 2.7	1.5 <1	1.2	0.9 3.5 1.1
99	7	3.3	10	27	6.2	2.3	<1	2.7	3	<1	1.2	<0.2
100	<u>-</u>	5	4.7	2.7 2.7	6.2 2.7	2.3 1.6	<1 <1	1 1	3 <1	<1 <1	0.3	0.4
101	1 2 7 5 <1 6 3 1 8	3.7	5 <i>.</i> 7	3	4.7	4.4	<1	9.7	<1	1.7	0.53	0.35
102	<u>.</u>		6.7		1.1	1	<1	1	<1	2	<0.2	<0.2
103		2.7 3 5	0.7	<1 2 1.7	0.7	0.75	<1	1.3	<1	<1	<0.2	<0.2
104	1	5	2 2	1 7	1.8	0.75	<1	1.3	<1	<1	<0.2	<0.2
105	Ω		4.3	3	3.5	1.3	<1	1.7	<1	<1	<0.2	<0.2
106		4.3	7.2	5.3	4.2	5.5			<1	1.3	0.4	0.7
107	2	11	4.7	3	7	5.5 5.7		11	<1 <1 <1 <1 <1 <1	<1		0.25
108	7	6.3	9		A 0	0.8	•••••	1 1	-1		0.9	0.5
109		0.3 11	5.7		4.8 4.6	4.6		11 4 2.7	~ 1 ~ 1		0.9	0.65
110		7.3	5./		4.0	4.0		2.1	<1 <1 <1 <1		<0.2	0.00
111/	····	7.3 9.7	7		<u>.</u>	2.4		2 2	<u> </u>		0.53	0.45
		9.7	ં ડ :	:	0.8	2.0		2.3	۲۱			
111	<u>'</u>			-	~ ~			2 2	-4		~ ∩ ?	0.3
	4 2 1 7 5 4	11 5	9 3 5.7 1.7		6.8 2.5 1.1	2.6 2.9 2.1		2 2.3 2.3 1.3	<1 <1 3.3		<0.2 <0.2	0.3 <0.2

* - 1971 Aspen foliage was washed.

Values represent single samples collected in 1971, means of triplicate samples in 1976 and 1981 and duplicate samples in 1992 and 1997.

Concentrations shown in bold exceed the Upper Limit of Normal Guideline of 2 ug/g for Co foliage and 8 ug/g for forage.

Table 19: Copper Concentration in Vegetation at 92 Stations in the Sudbury Area as part of the Special

Station				pen			<u> </u>			age		
Station	1971*	1976	1981	1986	1992	1997	1971	1976	1981	1986	1992	1997
22	27	41	11	14	9.5		42	61	8.7	7.3	9.6	
23	38	34	14	11	9.8 10	:		17 21	14	7.7	11	
24	38 50	23	7.5	9.3	10	:	5.5	21	14 5.5	7.7 9 9.7	14	:
25	21	17	9.5	9.3	7.8	÷	12	12	7.3	9.7	6.9	 :
26	29	17	8.5	14	 :	<u>:</u>	16	6.7	13	4.7	6	<u> </u>
27	16	13	9	14	6.9	11	2.5	5.3	11	9.7	7	5.5
28	12	12	8.7	 !	7.2		3.5	2.3	3.3		6.7	
29				12		13		190	19	9.3	13	8
30			17	12 13	11	20	25	72	18	13	15	8 20
31	35	49	:			11		30	19	<u></u>	9.5	8.1
32	38	28	16 15	11	5		8 8	24	9.7	17	11	0.1
33	30	20	12	8	14	9.1	7	4.7	9.3	6.3	6.5	11
	40											
34	43	20	9.7	12	6 10	6.3	8	7.7	12	8.7	6.4	3.3
35	13	10	9.3	8.3	10	8	9.5	6.7	5.7	8.3	6.7	5.7
36	ļ	20	18	13	8.6	<u> </u>		15	12	16	18 8 40	
37	ļ <u>.</u>	<u></u>	26		9.6			9.3	12		8	
38	27	12	9.7		8.8		24	5.7	8.7		40	
39	21	14	11			8	6	5.7	10		21	8.7
40	38	16	15		7.6 7.7		16	6 7.3	17		7.7	
41	29	20	12 9		7.7		26 17	7.3	8.3		5.8	
42	22	16	9		6.1		17	6.7	6.7			
43	42	17	12	12	11	8.9	14	8	14	8	10	4.3
44		69	17	13		14	13	53	16	9 12	18	8.3
45	30	33	10	22	13	•	19 12	39	11	12	14	
46	51	16	12		7.8	11	12	12	6		8.3	8.3
47	1	11					• • • • • • • • • • • • • • • • • • • •	14				
48	25	14	9	11	8.5	5.7	35	17	5	20	9.3	5.4
49	37	14	6.3	7.3	10	6.9	8	13	5.7	9.7	7.3	2.1
50	30	13	8.7		8.5	7.3	-	7			14	7.6
51	24	13		• • • • • • • • • • • • • • • • • • • •			10.5		3 4 7			
52	35	13	10 10	9.7	4.8	5	10.5 3	4.3 13	7	16	7.3	3.3
53	24	10	8.3	8.3	7.3	J	3	10	18	14	5.8	
54	18	10	9.7	0.5	7	7.4	5.5	2.3	7.7	1		4.2
55	18	9.7	6.3		7.7	5.3		2.3 16	7.3			2.2
56		9.3	6.7		1.1	5.5	8		4.3		60	2.2
57	10 8		9.3		13 5.9		4	2.7 3.7	4.3		6.8 4.9	
	11	9 7.7	9.3		5.9 4.9		4	2.3	4.3		4.9 3.2	
58			8 8	8	4.9	6		2.3		4.3	3.2	4.1
59	7	8		7	7.1	9.1	3	2.3	4.3	5.3	2.3	3.6
60	13	4.7	11	7	11	8.5	3	3	4	9	9.2	4.2
61	13	26	9.3	7.3	8.2	7.1	4.5	1	4	3.3	4.4	5.1
62	5	20	9.3	10	6.3	4.6	16	5.3	6.7	10	4.7	8.7
63	27	17	6	11	6	6.7	18	10	3.7	20	6	5.8
64	20	31	7	7	6.5	7.2	14	8.7	4.7	4.3	2.6	4.2
65	7	10	6.7	7.3	8.9	8	19	6.3	5.3	6.7	5	7.4
66	11	17	5.7	10	4		8	2.3	4.3	5.7	5.1	
67	11 12	9.7	11	6	8.1	8.8	5	3	4.3 2.3	4.3	6.8	4.7
68	11	7	7	6 7 6		5.2	5.5	3 4	5.3	3.7		4.6
69	10	7.3	8.7	6	4.6	7.2	5	3	3.3	4	3.1	5
70	12	7	7.3	7.3	4.6	7	3.5	2	3.3	5	3.3	2.2

Table 19: Copper Concentration in Vegetation at 92 Stations in the Sudbury Area as part of the Special

S	u	n	v	e	v	

Station			Ası							age		
Station	1971*	1976	1981	1986	1992	1997	1971	1976	1981	1986	1992	1997
71	11	59	7	7	5.6		4.5	3.7	8.7	5.7	4.3	
72	76	18	44	33		18	9	34	36	45	48	22
73	26 18	12	14 20 9 9	14		11 10	22 3 3	41 12	11 7.7 5 9	44		8.9 9.6 4.7
74	18	10	20		6.2	10	3	12	7.7		16	9.6
75		16	9		6.5	6.7	3	8	5		4.8	4.7
76		16		13				16	9	9		
77	20	10	9.7	9.3	6.9	7.4	11	4	4.6	6.7	6.7	5.7
78	19 15	15 14	8.2	9.7 9.3		5.5	4 2	4.7	5	9.3 14		4.4
79	15	14	5.1	9.3			2	6.7	6.8	14		
80	20	15	12	7	9.5	8.9	10	12	5 6.8 9.3 7.7	9.3	8.8	5.6
81	20	15	20 12	12	6	8.8	7	4.3	7.7	8.3	5.4	5.9
82	70		12	9.7	14	6.8	9	4.7	5.3	8	5.9	14
83	89	34		60	13		76		14	25	36	
84	60	33	17	11			38 10	31	26	16		•
85	20	18	16	12	10		10	21 9	11	8.3	4.6	
86	27	68	12	11	8.3		10	9	9.3 52	6.7	4.3	
87		81	12 47	38	8.3 13	9.5	10 43	28	52	86	15	26
88		52		44		14	8	54	24	45	21	12
89	50		30	21	14	5.5 9.3	16 8	19	22	15	9.9	8.7
90	50 25	13	30 10		9.5	9.3	8	49	22 5.7		9	9.8
91	11	12	15 13	12 8.7	9.5 7.1	5.7	9.5	4.3	4	5.7	4.5 8.1	6.3
92	12	6.7	13	8.7	7.8		7	4.3 3.7	4 3	11	8.1	:
93	20	5 5.3	10 8.7	9.3 8	7.5 6.8	11	7 2 3	2.3 1.3	6.3	5.7	6.4	6.5
94	8	5.3	8.7	8	6.8	7.9	2	1.3	7	16	5.7	5.6
95	12 20 8 8 8	360	8	7.3	7.9	9.5	3	2	3.3	6.7	4.7	4.5
96		54	110	66	39	14	91	220	22	37	78	4.5 35
97	13	33	32	70	11	13	10	45	10	24	15	110
98	18	18	19	22	8.2 8.3 5.7	8.2		9 12	26 33 7	12	43	15
99	21	17	20 15	13	8.3	7.9	13	12	33	6.7	22 11	3.2
100	12	7.7	15	13 15	5.7	8.2	13 3	10	7	10	11	5.8
101	14 16	9.7 9.7	11	17	4	5.8 5	11	8 2 2 2.3 3.3	5.3 7.3	10 19	13	5.8 8 4.4 3 3.5 4.1
102	16	9.7	14	8	4 5.9	5	2 3.5	2	7.3	9.3	3.1	4.4
103	13	8 8.3	12 12	12 7.7	5.5 5.4	6.2 7.6	3.5	2	4.3 3.7	8.7	2.4	3
104	10	8.3	12	7.7	5.4	7.6	1	2.3	3.7	7.7	2.9	3.5
105	13 10 11		7.7	6.7	6.1	11	5	3.3	2.7	4.3	2.4 2.9 4.2	4.1
106		30	40	62	10	8.3			25	92	13	22
107	7	54	140	33		17	4	35	74	19		14
108	17	31	20		14 11	14 11	8 15	38 23	8.5		28 16	13 7.2
109	11	26	16		11	11	15	23	7		16	7.2
110	17	19 23	18				7	18	8.5 7 11		8.4	
111	17	23	13	:	16	6.2	10	13	16		15	4.7
112	11	8.7	12	:	9.7	7.4	4	3	16 5		15 5 4	6
113	15 15	12	14		9.4 7.5	8.4	3 18	3 1.7	7.3		4	6 7.5
114	15		45	6	7.5		18	2	23	5	9.2	

* - 1971 Aspen foliage was washed.

Values represent single samples collected in 1971, means of triplicate samples in 1976 and 1981 and duplicate samples in 1992 and 1997.

Concentrations shown in bold exceed the Upper Limit of Normal Guideline of 20 ug/g Cu for foliage and 20 ug/g for forage.

Table 20:			Ası				1			age		
Station	1971*	1976	1981	1986	1992	1997	1971	1976	1981	1986	1992	1997
22	525	360	210	160	91		580	350	180	110	110	1001
23	565	370	380	130	87	i	†···	190	200	71	130	<u> </u>
24	560	520	210	190	91 46		135	260	170	93	270	!
25	30	93	90	51	46	·····	180	57	170	64	61	.
26	37	230	76	120	į		400	130	120	69	80	‡ ·····
27	160	120	110	240	32	110	45	100	200	130	57	160
28	120	83	52		48	:	45	180	120	130	160	100
29	120			220	70	140	ļ <u>.</u>	1500	630	120	150	90
30		• • · · · · · · · · · · · · · · · · · ·	250	220 150	120	140 320	580	590	350	230	290	330
31	960	670	200	130	120	150	393	480	270	230	250	330
32	815	450	520	120	71	150	256		280	210	200	: 330
33	380		120			350		440				360
		110 190	130 50	90 110	100 43	350 52 92	125	60	180	69 53	85	
34	810	190	50	110	43	52	141 75	59	150	: 53	93	49
35	235	110	33 270	97	63	92	ļ/5	180	100	83	110	150
36		130		180	120		ļ	180	200	200	120	<u>.</u>
37			430		100			110	200	<u>.</u>	54	<u></u>
38	286 282	110 81	90 65		110	<u></u>	259	66	220		210	
39	282	81	65			74	145 142	84	130	.	160	160
40	703	190	190		99		142	130	170	:	130	:
41	509	190	180		66		401	160	200		78	:
42	228	120	150		68		147	110	180			
43	408	73	130	91	140	73 150	125	85	170	130	200	46
44		400 310	320	130		150	275	: 310	250	170	140	65
45	460	310	150	310	110		360	330	310	130	130	
46	540	190	150		95	70	200	130	150		56	70
47		120					Ī	180				
48	272	270	160	120	110	65 59	421	110	150	130	96	49
49	560	160	100	68	140	59	85	200	150	130	130	57
50	400	120	100 75		64	65	55	94	83 87	:	130	57 74
51	320	150	140		***************************************		105	87	87			
52	520	100	150	120	63	72	210	180	140	84	120	80
53	403	160	83	99	72		75	170	220	50	39	
54	440	160 160	83 120			110	140	170 77	300	•	• · · • · • · • · · · · · · · · · · · ·	80
55	630	260	50		52	48	210	210	130		••	80 29
56	140	110	68		74		73	87	220		81	• · · · · · · · · · · · · · · · · · · ·
57	100	78	87		150		95	39	85		160	 :
58		76	130	110	71	58	113	35	63	72	44	35
59	365 135	76 95	640	58	120	58 93	113 72 6	35 52	390	72 43	37	35 41
60	105	93	160	41	69	55	6	140	83	60	69	52
61	86	390	160	57	44	56	49	77	160	46	55	48
62	52	340	120	120	180	51	265	180	150	93	180	510
63	423	310	160	150	100	130	211	150	160	130	260	81
64	301	850	130	55	73	55	160	110	110	26	57	43
65	192	160	280	59	250	64	347	590	200	36	140	300
66	185	230	180	59	170		155	90	130	38	70	
67	165	84	180	66	47	60	195	140	180	50 61	41	48
68	108	110	91		4/					23	41	51
				76		78	75	75	93		220	950
69	123	62	270	92	200	230	121	73	170	90	230	
70	117	57	160	44	51	49	60	35	160	31	38	30

Table 20: Iron Concentration in Vegetation at 92 Stations in the Sudbury Area as part of the Special Survey.

04-4:			As	pen						age		
Station	1971*	1976	1981	1986	1992	1997	1971	1976	1981	1986	1992	1997
71	102	460	57	60	62		51	40	73	56	71	:
72	1080	160	370	97 87		68	113	250	360	120 220	270	100
73	440	100	160	87		68 84	250	210	140	220		85
74	295	64	190	:	59	56	90	110	120	÷	62	56
75		290	85	:	45	42	107	71	150		46	30
76		210	150	370		······································	***************************************	220	180	82		
77	270	210 120	460	100	59	57	110	90	200 90		42	42 45
78	200	120	88	69		57 42	110 75	90 92	90	50 44		45
79	213	100	100	90			73	85	300	87		
80	555	210	150	71	63	88	11	170	180	67	90	120
81	940	210 170	170	110	63 69	88 65	93	160	300	49	43	32
82	1650	‡	230	120	75	70	164	78	200	92	57	49
83	1760	450	<u>:</u>	2300	75 200	:	1850	<u> </u>	440	980	220	
84	605	330	270	120	200		805	360	200 440 390	170		·····
85	161	160	2/0	100	93		145	160	320	36	78	
86	217	800	240 69	62	110		136	97	230	37	51	
87	217	1100	430	320	210	97	700	340	670	280	150	190
		1100 400	430	400	210	220	175	340 480	430	480	230	72
88	4.50	400	: :	190		61	340	200	290	120	83	72 66
89	450		250	190	110		340	200		120		000
90	360	150	110 220		69	260	130	420	610	<u></u>	48	230
91	140	360	220	88	54	74	110	150	150	78	50	52
92	500	170	120	61 72	46		132	180	140	91	67	<u></u>
93	660	610	140 180	72	100	91	110	55	67	48	78	67
94	160	1500	180	140	280	170	82	320	140	470	470	190
95	485	460	41	58	590	64	1200	930	40	240	850	66
96	175	360	610	140	160	71	250	710	390	170	150	70
97	200	950	380	460	150	120	236	330	190	170	190	370
98	685	320	710	760	64	71		220	810	400	320	130
99	505	290	780	650	58 74	150	160	320	2000	350	580	82 66
100	210	130	550	230	74	80	140	140	330	110	130	66
101	390	90	240	280	140	47	115	81 59	130	390	120	51
102	125	160	230	78 73	69 77	46	50	59	270	88	53	36
103	160	100	80		77	40	55	55	41	83	41	21
104	90 110	220	110 100	110	63 64	50	44	75 210	82	81	140	35
105	110	.	100	140	64	69	75	210	150	240	76	220
106	***********	870	210	170	69	45		•	110	180	93	69
107	577	480	300	150	••••	75	65	600	1100	180		57
108	239	21	110	•	65	120	140	470	130	•	130	58
109	91	170			57	85	137	18	80		83	160
110	5	140	82 83				120	170	110		130	
111	91 5 169	120	120		68	42	120 213	110	180		100	50
112	157	77	150		56	79	190	64	100		51	110
113	330	72	140		88	100	52	67	92		42	160
114	170	12	5500	41	86	100	250	47	3200	34	310	:
1071 /			3300	. 7!	00		230	- 71	.3200	. 	310	

^{* - 1971} Aspen foliage was washed.

Values represent single samples collected in 1971, means of triplicate samples in 1976 and 1981 and duplicate samples in 1992 and 1997.

Concentrations shown in bold exceed the Upper Limit of Normal Guideline of 500 ug/g Fe for foliage and 500 ug/g for forage.

Table 21: Nickel Concentration in Vegetation at 92 Stations in the Sudbury Area as part of the Special Survey.

Station	10=11	4.5-5		pen	4050	1 4005	10-4	14070		age	4000	400
	1971*	1976	1981	1986	1992	1997	1971	1976	1981	1986	1992	199
22	85 67	170	69	87	59		50	76	10	5.3 7.3	34	<u></u>
23	67	110	130	22	32		ļ <u>.</u>	40	53		11	<u>.</u>
24	225	150	170	33	46		34	57	17	20	28	<u>.</u>
25	58	140	45	46	69	÷	25	27	23	20	16 21	<u>.</u>
26	130	180	180	76	: 	<u></u>	32	28	28	8 30	21	<u>.</u>
27	62	65	130	110	56	75	17	29	42	30	14	18
28	35	66	48	<u>.</u>	35	<u>.</u>	8	22	9	<u>:</u>	3.2	<u>.</u>
29]			26		30		120	40	17	18	14
30			62	47	76	41	38	100	22	27	2 1 22	15 21
31	90	110	90			66	31	59	46		22	21
32	68	93	48	71	23		31	58	27	29	18	
33	91	150	68	21	58	57	18	22	19	3.3	14	27
34	157	180	12	54	53	81	29	22	16	29	21	15
35	72	100	120	65	83	5 7	7	31	12	8	17	4.4
36	1	97	60	73	46	¢		42	17	8 15	120	
37	†	:	53		37		1	11	6.3		9.2	
38	65	73	66	:	43	:	32	24	29		47	
39	96	86	93	 :		52	40	28	48	÷·····································	27	17
40	93	120	56		38		49	29	28	······································	17	÷·····
41	75	96	110		34			20	: 6	: :	17 4.1	÷·····
42	155	140					47 31	25	25	 !		
43	202	100	110 67	66	42 20	42	43	36	16	6.3	26	46
44	†	160	79	91		47	41	110	42	25	36	12
45	79	98	120	64	80	:	40	100	73	23	49	<u> </u>
46	170	260	200		96	160	39	47	27	÷	24	35
47	+	93			/.	100	ł	40		<u></u>		÷
48	68	50	68	56	150	87	59	170	18	16	83	10
49	270	130	<u>.</u> 79	58	63	50	16	140	47	13	39	6.8
50	130	110	98		72	58	23	28	30	<u></u>	35	49
51	74	68		:		:	36	25	27	<u> </u>		
52	120	65	49 77	58	68	100	18	78	90	39	36	6
53	160	53	66	37	62	100	11	57	34	31	19	÷
54	214	92	72	37	02	140	58	47	50	31		5.4
55	142	62	<u>7 2</u>		64	170	134	35	44			56 2 8
56									10	<u>.</u>	20	
57	45	64 27	81 75		68	÷	42 43	28 30	13		29 9.1	<u> </u>
58	50	25	130	28	83 59	79	34	20	11	8	3.5	20
	64	60	30	20 20	34	19	24 9	12	5	4.7	2.4	4.
59	51			20								20
60	55	24	13	28	25	40	10	12	5	5.3	5.6	
61	36	87	11	11	16	23	11	8	5 50	3.3 31	5.6	5. 2 9
62	55	89	56	33	37	64	48	85			15	
63	105	170	110	49	74	130	105	80	50	54	44	53
64	80	340	130	120	140	120	90	53	53	3.3	12	32
65	55	190	200	46	80	78	105	65	87	59	27	15
66	165	210	77	77	190		67	53	32	8.7	52	<u>:</u>
67	90	100	93	66	87	84	39	25	14	20	15	8.2
68	74	21	43	13		12	23	22	3.7	3		7.6
69	27	9	11	12	10	9.4	11	7.3	8.3	7.7	2.5	4.6
70	9	16	22	7	9.3	16	3	3	7.7	1	3.7	1.9

Table 21: Nickel Concentration in Vegetation at 92 Stations in the Sudbury Area as part of the Special Survey.

Station				pen			<u></u>			rage		
Station	1971*	1976	1981	1986	1992	1997	1971	1976	1981	1986	1992	199
71	11	92	8	23	2.2		1	4.3	4.3 77	1.7	1.3	
72	84	78	82	54		130	24	53	77	30	79	51
73	160	120	89	94		26	4	47	8.3	46		1(
74	175	63 99	120		49 69	62	31	41	8 17	;	110	38 21
75		99	120		69	33	36	30	17	:	21	2
76		120	46	69				32 42	16 21	35		
77	22	51	99	65	49	35	32	42	21	35	55	16
78	180	120	15	87		25	20	24	14	7		13
79	200	130	31	110		• • • • • • • • • • • • • • • • • • •	31	24 29	220	49		:
80	207	100	120	130	110	120	47	29	71	29	40	9.
81	162	110	39 160	200	93	150	19 45	29	21 77	18	14	3.
82	253	:	160	80	76	63	45	43	77	13	9.6	11
83	165	120		100	82		62	-	43	24	48	:
84	108	70	57		••••••		108	60	49			 :
85	172	100	57 7 2	70 21	46		37	18	74	13 8	12	
86	59	230	130	83	60		21	8.7	18	2.3	6.8	
87	†	290	89	200	120	180	25	88	160	80	95	6
88	†······	150		79		43	23	97	37	66	59	12
89	142		150	61	67	56	31	54	51	19	27	3.
90	180	140	140		36	190	41	100	35	÷	23	54
91	61	100	150	96	110	45	37	39	24	4	42	2
92	95	75	30	14	18	75	19	29	3.3	6.7	7.9	- -
93	66	26	15	39	19	53	12	26	2.7	19	5.4	9.
94	20	38	54	33	34	40	24	19	16	20	23	8.
95	28	160	37	6.7	26	30	32	14	4.3	2.7	6.4	9.
96	94	110	150	230	98	110	50	170	41	54	55	5:
97	70	150	140	130	65	68	34	86	91	59	62	18
98	76	140	130	100	110	91		21	94	46	63	86
99	165	130	150	77	140	89	33	70		41	60	2
100	94	49	120	130	38	32	27	53	95 12	10	6.7	2 9
101		53	68	49	110	3∠ 04		- 33 - 11	4.7	27	28	
102	62 32	36	74	6.7	25	96 21	4	17	8.3	22	28 8.3	2 : 20 3
103	31	22	74 35	31	25 16	20	1 12	3	7.7	4.3	5.8	۷
					17							ر 12
104 105	13 11	20	20 11	10	17	13 13	10 7	9 6.7	7.3 11	10 3	5.4 5.7	1.
106	ļ		75	5.3	14 58	60	/	٥./	11 21	3	5./	1.
	ļ	120	/5	120	28				27	52	50	4 1
107	80	230	130	63		46 32	40	240	130	21		74
108	160	190	220		120	32	73	89	24		66	48
109	55	150	78		120	120	69	68	8.3		25 8.4 32	23
110	165	220	110				38	41	23		8.4	
111	155	170	110		94	86	36	38	53		32	32
112	91	180	130		110	80 17	30	52	18 1		23	28
113	40	34	7.7		10	17	7	22			3	3.
114	6		20	10	16		37	9.3	13	7.3	7.7	

^{* - 1971} Aspen foliage was washed.

Values represent single samples collected in 1971, means of triplicate samples in 1976 and 1981 and duplicate samples in 1992 and 1997.

Concentrations shown in bold exceed the Upper Limit of Normal Guideline of 30 ug/g Ni for foliage and 25 ug/g for forage.

Table 22: Selenium Concentration in Vegetation at 92 Stations in the Sudbury Area as part of the Special Survey.

Station			As	pen					For	rage		
	1971*	1976	1981	1986	1992	1997	1971	1976	1981	1986	1992	1997
22		0.78	<0.3	0.48	0.46			0.53	<0.3	0.18	<0.2	
23		0.84	<0.3	0.18	0.52		1	0.78	<0.3	0.3	<0.2	:
24		0.91	<0.3	0.33	0.29		·····	0.79 0.3	: <0.3	0.25	0.58	†
25		0.75	<0.3	0.4	<0.2			0.3	: <0.3	0.17	0.3	
26		1.3	<0.3	0.54	•	:		0.6	<0.3	0.1	0.29	!
27		1.2	<0.3	<0.03	<0.2	<0.2		0.46	<0.3	0.18	<0.2	<0.2
28		0.71	<0.3	†	<0.2	<u> </u>		0.36		:	<0.2	 :
29				0.37	<u></u>	0.25		0.81	<0.3 <0.3	0.36	0.34	<0.2
30		•••••••••	<0.3	0.35	<0.2	0.25 <0.2		0.81 0.49	<0.3	0.43	0.36	<0.2
31		0.82	<0.3	*		0.35		0.76	<0.3		0.36	0.3
32		1.8	<0.3	0.06	0.33			0.57	<0.3	0.23	0.32	
33		0.9	<0.3	0.21	0.54	<0.2	•••••	0.34	<0.3	<0.03	<0.2	<0.2
34		0.82	0.37	0.11	0.26	<0.2		0.34 0.33 0.18	0.33	<0.03	<0.2	<0.2
35		0.28	<0.3	0.08	<0.2	<0.2	•	0.18	<0.3	0.04	<0.2	<0.2
36		0.67	<0.3	0.62	0.54			0.55	<0.3	0.3	0.27	
37			0.43	<u>:</u>	0.49	:		0.29	<0.3	<u>:</u>	0.25	<u> </u>
38		0.49	<0.3		0.48	<u></u>	•••••		<0.3	!	0.7	<u></u>
39		0.9	<0.3 <0.3	<u>:</u>	0.40	<0.2		0.32	<0.3		0.35	<0.2
40		0.78	<0.3	<u> </u>	0.7			0.32 0.27 0.5	<0.3	<u></u>	0.33	-0.2
41		0.86	<0.3		0.33		• • • • • • • • • • • • • • • • • • • •	0.42	<0.3		0.21	į
42		0.71	0.33		0.33		••••••	0.42	<0.3		0.51	
43		0.74	0.33	0.33	0.54	0.25					0.07	
43		1.3	0.33 <0.3	0.33	0.54	0.25		0.43	0.53	0.08	0.27	<0.2 <0.2
45		1.3	<0.3	0.47	0.49	U.5		0.56	<0.3 <0.3	0.43	0.28 0.37	<0.2
		0.55	<0.3	0.47		<0.2		0.59		0.28		
46	i		<0.3		0.43	<0.2		0.42	<0.3		0.31	0.3
47	<u>;</u>	0.34	-0.0					0.6				
48		0.58	<0.3 <0.3	0.38 0.31	0.47	<0.2		0.33	<0.3 <0.3	0.16	0.26	<0.2
49		0.39	<0.3	0.31	0.32	0.45		0.53	<0.3	0.23	0.23	<0.2
50		0.67	<0.3		0.29	<0.2		0.71	<0.3		0.34	<0.2
51		0.7	0.4					0.38	<0.3			
52		0.64	<0.3	0.42	0.26	0.3		0.48	<0.3	0.31	0.43	<0.2
53		0.46	<0.3 <0.3	0.45	0.34			0.45	<0.3	0.39	0.26	
54		0.31	<0.3			<0.2		0.25	<0.3			<0.2 <0.2
55		0.33	<0.3		<0.2	<0.2		0.59	<0.3			<0.2
56		0.38	<0.3		0.22			0.25	<0.3		0.28	
57		0.47	<0.3		<0.2			0.22	<0.3		<0.2	
58		0.16 0.37	<0.3 <0.3	0.12 0.12	<0.2 <0.2	<0.2 <0.2		0.17	<0.3 <0.3	0.15	<0.2 <0.2	<0.2 <0.2
59		0.37	<0.3	0.12	<0.2	<0.2		0.18 0.19	<0.3	0.1	<0.2	<0.2
60		0.19	<0.3	<0.03	<0.2	<0.2		0.19	<0.3	<0.03	<0.2	<0.2
61		0.89	<0.3	<0.03	<0.2	<0.2		0.16	<0.3	<0.03	<0.2	<0.2
62		0.84	<0.3	0.16	<0.2	<0.2		0.2	<0.3	0.07	0.3	<0.2
63	:	0.74	<0.3	0.11	0.48			0.47	<0.3	0.27	0.37	<0.2
64	:	0.61	<0.3	<0.03	0.24	0.3 <0.2		0.34	<0.3	<0.03	<0.2	<0.2
65	•••••••••••••••••••••••••••••••••••••••	0.28	<0.3	0.25	0.22	<0.2		0.26	<0.3	<0.03	<0.2	<0.2
66	•••••••••••••••••••••••••••••••••••••••	0.4	<0.3	<0.03	<0.2			0.18	<0.3	<0.03	<0.2	
67	•••••••••••••••••••••••••••••••••••••••	0.26	<0.3	<0.03	<0.2	<0.2		0.22	<0.3	<0.03	<0.2	<0.2
68	•••••••••••••••••••••••••••••••••••••••	0.17	<0.3	<0.03		<0.2	•••••••••••••••••••••••••••••••••••••••	0.25	<0.3	<0.03		<0.2
69	•••••••••••••••••••••••••••••••••••••••	0.17	<0.3	0.07	<0.2	<0.2	•••••••••••••••••••••••••••••••••••••••	0.16	<0.3	<0.03	<0.2	<0.2
70	·····•••••••••••••••••••••••••••••••••	0.18	<0.3	<0.03	<0.2	<0.2	•••••••••••••••••••••••••••••••••••••••	0.08	<0.3	<0.03	<0.2	<0.2

Table 22: Selenium Concentration in Vegetation at 92 Stations in the Sudbury Area as part of the Special Survey.

Ctation				pen					For	age		
Station	1971*	1976	1981	1986	1992	1997	1971	1976	1981	1986	1992	1997
71		5.3 1.4	<0.3	<0.03	<0.2			0.11 1.1	<0.3	<0.03	<0.2	
72		1.4	1.7	4.5		4.3		1.1	<0.3	0.51	2.5	2.2
73		0.66	<0.3	0.42		1.2		1.5	<0.3 <0.3	0.93	• · · · · · · · · · · · · · · · · · · ·	2.2 0.35 0.3
74		0.83	<0.3	•	0.53	1.2 0.4		0.42	<0.3	• · · · · · · · · · · · · · · · · · · ·	0.62 0.4	0.3
75		0.62	0.35	:	0.53 0.46	0.6		0.74	<0.3	•	0.4	0.35
76		0.86	<0.3 <0.3 0.35 <0.3	0.3		:		0.42 0.74 0.49 0.34	<0.3 <0.3	0.13	.	:
77		0.64	<0.3	0.2	0.37	0.65		0.34	<0.3	0.14	0.21	<0.2
78		0.53	<0.3	0.16	• :	0.3		0.32	<0.3	0.09	• · · · · · · · · · · · · · · · · · · ·	<0.2
79		0.61	<0.3	0.22		:		0.32 0.26	<0.3	0.08		
80		1	<0.3	0.14	0.59	<0.2		0.65	<0.3	0.18	0.31	<0.2
81		0.52	<0.3 <0.3	0.34	0.29	<0.2		0.65 0.37 0.34	<0.3 <0.3	0.11 0.13	<0.2	<0.2
82			<0.3	0.37	<0.2	0.3		0.34	<0.3	0.13	<0.2	0.3
83		2		1.3	1.4				0.63	0.37	<0.2 1.6	
84		2 1.7	<0.3	0.39		<u>.</u>		1.3	<0.3	0.17	1.0	
						<u>:</u>						
85		0.82	0.4	0.49	<0.2 <0.2			0.72	<0.3	0.11	0.22	
86		3.5	<0.3	0.17	<0.2	<u>.</u>		0.47	0.33	0.07	<0.2	
87		2.1 1.7	<0.3	0.93	1.5	1.2		0.78	0.37	1.1	0.48	0.8
88		1.7		1.7		0.75		1.4	<0.3	0.57	1.1	0.3
89			<0.3 <0.3	0.58	0.97	0.25		1.6	<0.3 <0.3	0.69	0.37	0.4
90		0.69	<0.3		1.5	<0.2		2.5	<0.3		0.91	<0.2
91		0.56	<0.3	0.78	<0.2 0.33	<0.2		0.41	<0.3	0.14	<0.2 0.22	<0.2
92		0.42	<0.3 <0.3	0.29	0.33	:		1.6 2.5 0.41 0.24 0.18 0.2 0.17	<0.3	0.2	0.22	
93		0.2	<0.3	0.17	0.3 <0.2	<0.2		0.18	<0.3	<0.03	<0.2	<0.2
94		0.2 0.51	<0.3 <0.3	0.17 0.22	<0.2	0.25		0.2	<0.3	<0.03 0.11	0.27	<0.2
95			<0.3	0.17	0.22	<0.2		0.17	<0.3	0.12	0.22	<0.2
96		2.5 2 1.3 1.4 0.75	0.93	2.3	3.1	<0.2 1.5 0.7		•	<0.3	33 1	1.4	<0.2 <0.2 1.2 3.2
97		2	<0.3	2.9	1.6	0.7		2.8	<0.3	1	0.98	3.2
98		1.3	<0.3 <0.3	1.1	0.58	0.35 0.25		0.59 0.75	<0.3 <0.3	0.5	1.5 1.2	0.75
99	:	1.4	<0.3	1.1	0.36	0.25		0.75	<0.3	0.37 0.15	1.2	0.4
100		0.75	<0.3 <0.3	0.39	0.21	0.25		0.45	<0.3	0.15	0.21	0.25
101		0.31	<0.3	0.68	<0.2	<0.2		0.39	<0.3	n 25	<0.2	0.25
102	:	0.31 0.21 0.22 0.13	<0.3 <0.3	0.17	<0.2 <0.2	<0.2 <0.2	••••	0.45 0.39 0.16	<0.3	0.28 0.07	<0.2 <0.2	<0.2
103	:	0.22	<0.3	0.37	<0.2	<0.2		0.16 0.2	<0.3	0.07	<0.2	<0.2 <0.2
104	:	0.13	<0.3	0.09	<0.2	<0.2	***************************************	0.2	<0.3	0.09	<0.2	<0.2
105	:		<0.3	0.08	<0.2	<0.2		0.13	<0.3	0.04	<0.2	<0.2 <0.2
106	:	1.4	1.7	2.7	2.3	4.8			<0.3	2	0.74	0.95
107	:		0.53	2.1	*************	4.8 3 1.2		4.1 2.6	0.9	2 0.35		0.95
108	:	4 1.1	0.53 <0.3		0.53	1.2		2.6	<0.3		0.78	0.6
109	:	0.84	<0.3 <0.3 <0.3 <0.3 <0.3		0.35	0.25		0.84	<0.3		0.56	<0.2
110		1.1	<0.3					0.92	<0.3		0.56 0.23	
111		1.1 1.1	<0.3		0.6	<0.2		1.4	<0.3		0.57	<0.2
112		0.41	<0.3		0.6 0.23	<0.2 <0.2		0.45	<0.3 <0.3		<0.2	<0.2
113		0.41 0.32	<0.3		<0.2	<0.2		0.45 0.37	<0.3		<0.2	<0.2
114	•••••••••••••••••••••••••••••••••••••••		<0.3	0.12	<0.2	· · · · · · · · · · · · · · · · · · ·		0.12	<0.3	0.09	<0.2	

* - 1971 Aspen foliage was washed.

Values represent single samples collected in 1971, means of triplicate samples in 1976 and 1981 and duplicate samples in 1992 and 1997.

Concentrations shown in bold exceed the Upper Limit of Normal Guideline of 0.5 ug/g Se for foliage and 0.5 ug/g for forage.

Table 23: Sulphur Concentration in Vegetation at 92 Stations in the Sudbury Area as part of the Special

Survey.			As	pen		-			For	age		
Station	1971*	1976	1981	1986	1992	1997	1971	1976	1981	1986	1992	1997
22	0.53	0.65	0.3	0.22	0.18		0.62	0.42	0.4	0.23	0.14	
23	0.53	0.47	0.3			!	0.49	0.17		0.13	0.35	
24	0.72	0.31	0.35	0.2 0.17	0.18 0.21	<u> </u>	0.31	0.12	0.2 0.15	0.2	0.14	
25	0.54	0.32	0.3 0.35 0.2	0.23	0.16	!	0.29	0.13	0.17	0.16	0.11	
26	0.52	0.41	0.15	0.17		!	0.27	0.14	0.2	0.14	0.09	
27	0.52	0.39	0.13	0.22	0.14	0.21	0.33	0.17	0.2	0.14	0.08	0.11
28	0.45	0.39	0.33	0.22				0.17		0.21	0.00	0.11
29	0.45	0.42	0.27	0.27	0.17	0.10	0.26	0.37	0.13 0.2	0.11	0.14 0.12	0.12
30		: •	0.47	0.21	0.19	0.19 0.21	0.48	0.36	0.2	0.12	0.17	0.12
			0.47	0.21	0.19	0.21	0.32	0.36	0.17	0.12	0.17	0.20
31	0.62	0.73	0.3		0.28	0.19	0.32					0.15
32	0.52	0.52	0.3	0.2			0.33	0.16	0.1	0.21	0.09	
33	0.6	0.29	0.3 0.2	0.26 0.19	0.24 0.2	0.3 0.23	0.3	0.09	0.1 0.1	0.25 0.19	0.12 0.07	0.09
34	0.59	0.37 0.27	0.2	0.19	0.2	0.23	0.3 0.3 0.33	0.11	0.1	0.19	0.07	0.19
35	0.44	0.27	0.3	0.22	0.19	0.2	0.33	0.21	0.13	0.21	0.15	0.11
36		1.1	0.33	0.25	0.27	:	<u> </u>	0.14	0.33	0.45	0.25	
37			0.3	* • •	0.15	:		0.14	0.1		0.08	
38	0.72	0.41	0.3		0.17	: •	0.74	0.25	0.1 0.1	.	0.1	
39	0.49	0.41	0.23 0.27		:	0.16	0.29	0.23	0.1	•	0.07	0.07
40	0.48	0.35	0.27		0.15		0.36 0.4	0.17	0.23		0.09	
41	0.59	0.48	0.2		0.14		0.4	0.13	0.2		0.08	
42	0.58	0.47	0.23		0.16		0.39	0.21	0.13			
43	0.54	0.48	0.2	0.2	0.13	0.12	0.39	0.22	0.1 0.27	0.21 0.32	0.18	0.16 0.1
44		0.76	0.37	0.52		0.12 0.26	0.39 0.33	0.22 0.48	0.27	0.32	0.15	0.1
45	0.65	0.5	0.37	0.17	0.31		0.57	0.23	0.2	0.14	0.17	:
46	0.6	0.47	0.35	•	0.24	0.19	0.5	0.18	0.2		0.23	0.15
47		0.63		• · · · · · · · · · · · · · · · · · · ·	• · · · · · · · · · · · · · · · · · · ·			0.16	•			
48	1	0.35	0.23	0.21	0.15	0.18	0.32 0.23	0.22	0.1 0.2	0.12 0.15	0.09 0.15	0.11 0.19
49	0.52	0.38	0.2	0.46	0.14	0.17	0.23	0.1	0.2	0.15	0.15	0.19
50	0.51	0.41	0.23 0.2 0.2	• · · · · · · · · · · · · · · · · · · ·	0.15	0.18 0.17 0.15	0.24	0.22 0.1 0.15	0.1	•	0.14	0.23
51	0.62	0.3	0.2		 :	······································	0.49	0.15	0.2	•		
52	0.65	0.22	0.3	0.25	0.2	0.18	0.22	0.22	0.2	0.16	0.11	0.23
53	0.98	0.22	0.2	0.22	0.19		0.35 0.28 0.32	0.13	0.1	0.15	0.1	• •
54	0.34	0.17	0.2 0.2 0.2			0.2 0.17	0.28	0.05	0.1 0.2	•	 :	0.14
55	0.36	0.25	0.2		0.21	0.17	0.32	0.06	0.13	• :	•	0.09
56	0.46	0.23	0.2		0.18		0.28	0.17	0.1	• • • • • • • • • • • • • • • • • • • •	0.18	
57	0.39	0.17	0.2		0.33		0.23	0.13	0.23		0.13	• • • • • • • • • • • • • • • • • • • •
58	0.43	0.21	0.2	0.12	0.00	0.15	0.28			0.13	0.13	0.13
59	0.32	0.29	0.2	0.19	0.15 0.2	0.15 0.27	0.28 0.22	0.08 0.14	0.1 0.2	0.13 0.12	0.09	0.13
60	0.32	0.2	0.27	0.13	0.2	0.18	0.18	0.15	0.2	0.12	0.14	0.11
61	0.24	0.36	0.2	0.16	0.17	0.17	0.10	0.09	0.1	0.11	0.16	0.12
62	0.67	0.30	0.27	0.15	0.15	0.17	0.3	0.27	0.2	0.16	0.11	0.15
					0.13	0.17				0.19	0.1	0.13
63	0.56	0.44	0.23	0.18			0.51	0.22 0.27	0. 1 0.27	0.19	0.09	0.13
64	0.43	0.42	0.27 0.2	0.17 0.13	0.13 0.16	0.15 0.15	0.29		0.27	0.12	0.09	0.29
65	0.5	0.37	0.2			0.15	0.39	0.16				0.12
66	0.43	0.47	0.2	0.18	0.14		0.29	0.24	0.1	0.16	0.18	
67	0.4	0.25	0.2	0.16	0.18	0.19	0.4	0.14	0.2	0.18	0.14	0.12
68	0.39	0.15	0.23	0.18		0.16	0.14	0.08	0.2	0.13		0.15
69	0.24	0.16	0.2	0.11	0.11	0.14 0.17	0.31	0.17	0.23	0.13	0.11	0.13
70	0.31	0.18	0.2	0.15	0.26	0.17	0.17	0.05	0.1	0.12	0.13	0.09

Table 23: Sulphur Concentration in Vegetation at 92 Stations in the Sudbury Area as part of the Special

Survey.

Chatian				pen						age		
Station	1971*	1976	1981	1986	1992	1997	1971	1976	1981	1986	1992	1997
71	0.3	0.35	0.2	0.16	0.13		0.19	0.12	0.37	0.1	0.13	
72	0.69	0.22	0.3 0.2 0.2 0.2 0.2	0.66		0.2	0.18	0.08	0.13	0.22	0.11	0.12
73	0.5	0.2	0.2	0.28		0.15 0.19	0.28	0.1	0.1 0.17	0.15		0.24 0.13
74	0.47	0.2 0.21	0.2		0.22	0.19		0.1 0.09 0.06	0.17		0.22	0.13
75		0.27	0.2		0.18	0.16	0.26	0.06	0.2		0.13	0.16
76		0.24 0.2 0.32 0.29	0.2	0.21 0.24				0.08 0.12 0.07 0.11	0.33	0.16		
77	0.6	0.2	0.3 0.2 0.1	0.24	0.2	0.17	0.51	0.12	0.15	0.19	0.22	0.12
78	0.38	0.32	0.2	0.13 0.2		0.14	0.27 0.2	0.07	0.1 0.2	0.16		0.14
79	0.45	0.29	0.1	0.2			0.2	0.11	0.2	0.16		
80	0.36	0.34	0.2 0.2 0.3	0.22	0.18	0.17	0.19	0.14	0.2	0.18	0.16	0.1
81	0.52	0.42	0.2	0.21	0.13	0.23 0.17	0.49	0.08 0.13	0.2	0.16	0.11	0.15
82	0.89		0.3	0.21	0.21	0.17	0.49	0.13	0.17	0.21	0.12	0.29
83	0.78	0.48 0.34		0.28 0.15	0.16		0.55	-	0.13 0.2	0.28 0.19	0.1	•
84	0.54	0.34	0.2	0.15			0.4 0.28	- 0.24 0.18	0.2	0.19		
85	0.51	0.53	0.3	0.23	0.18		0.28	0.18	0.1	0.17	0.14	
86	0.78	0.41	0.27	0.22	0.2		0.26	0.19	0.1	0.23	0.17	•
87		0.51 0.33	0.23	0.24	0.21	0.2	0.26 0.57	0.19 0.22 0.28 0.09 0.11	0.1 0.2 0.1 0.2	0.15	0.11	0.17
88		0.33		0.25 0.16		0.15 0.12	0.16 0.33	0.28	0.1	0.13	0.08	0.08
89	0.4		0.23 0.2 0.2 0.2	0.16	0.18	0.12	0.33	0.09	0.2	0.16	0.07 0.15	0.2
90	0.26	0.38	0.2		0.14	0.17	0.18	0.11	0.2		0.15	0.11
91	0.37	0.22	0.2	0.22	0.18	0.17		0.08	0.1	0.17	0.12	0.12
92		0.22 0.23 0.28 0.24 1.2 0.8	0.2	0.18	0.15			0.08 0.21	0.1 0.2	0.21 0.16	0.27	
93	0.29	0.28	0.17	0.16	0.21	0.2	0.36 0.13 0.14	0.13	0.1	0.16	0.15	0.17
94	0.19	0.24	0.23	0.19	0.2	0.18	0.13	0.18	0.13	0.25	0.11	0.15
95	0.41	1.2	0.2	0.17	0.19	0.19	0.14	0.22	0.1 0.2	0.16	0.12	0.13
96	0.72	0.8	0.23 0.2 0.3	0.36	0.21 0.2 0.19 0.63	0.18 0.19 0.19	0.38	0.13 0.18 0.22 0.29	0.2	0.16 0.24	0.11 0.12 0.1	0.17 0.15 0.13 0.1
97	0.88	0.4	0.27	0.25	0.14	0.13	0.29	0.17	0.23	0.33	0.18	0.19
98	0.36	0.4 0.41	0.2 0.33	0.24 0.31	0.29 0.22	0.2		0.19	0.23	0.33 0.33	0.09 0.12	0.29 0.14
99	0.41	0.46	0.33	0.31	0.22	0.2	0.14	0.32	0.2	0.22	0.12	0.14
100	0.24 0.24	0.41 0.27	0.23 0.33	0.2 0.23	0.15 0.16	0.2 0.2 0.13 0.16	0.14	0.19 0.32 0.18 0.27	0.1	0.2 0.19	0.06 0.1	0.12 0.08
101	0.24	0.27	0.33	0.23	0.16	0.16	0.23	0.27	0.17	0.19	0.1	0.08
102	0.27	0.27	0.2 0.2 0.2 0.1 0.2	0.26	0.12	0.11 0.15 0.17	0.26	0.22	0.17	0.18	0.14	0.12
103	0.27	0.21 0.19	0.2	0.22	0.14	0.15	0.1	0.22	0.1	0.26	0.1 0.08	0.09
104	0.23	0.19	0.2	0.18	0.14	0.17	0.1 0.1	0.18	0.13 0.17 0.1	0.26 0.16 0.11 0.15	0.08	0.16
105	0.28		0.1	0.17	0.12 0.16	0.18	0.24	0.13	0.17	0.11	0.09	0.13 0.13
106		0.19	0.2	0.26	0.16	0.18 0.22 0.11			0.1	0.15	0.11	0.13
107	0.85	0.52	0.27	0.22		0.11	0.49	0.42	0.23	0.07		0.07
108	0.46	0.37 0.32 0.35 0.29	0.2 0.2		0.15	0.15 0.19	0.38 0.27	0.16	0.1 0.1		0.14 0.12 0.15 0.17 0.1	0.13
109	0.39	0.32	0.2		0.19	0.19	0.27	0.19	0.1		0.12	0.11
110	0.49	0.35	0.2				0.3 0.31	0.16	0.1 0.2		0.15	
111	0.37	0.29	0.2		0.14	0.15	0.31	0.2	0.2		0.17	0.13
112	0.48	0.27	0.2 0.2 0.27		0.19	0.16	0.39	0.16 0.2 0.2	0.13		0.1	0.15
113	0.38	0.22	0.2		0.19	0.18	0.18	0.16	0.23		0.16	0.22
114	0.29		0.23	0.12	0.2		0.25	0.13	0.13	0.11	0.27	

^{* - 1971} Aspen foliage was washed.

Values represent single samples collected in 1971, means of triplicate samples in 1976 and 1981 and duplicate samples in 1992 and 1997.

Concentrations shown in bold exceed the Upper Limit of Normal Guideline of 0.4% S for foliage and 0.5% S for forage.

Table 24: Zinc Concentration in Vegetation at 92 Stations in the Sudbury Area as part of the Special Survey.

	Zinc Co	rcentaat	Ası		at or or	ations it	1 1110 000	ibary 7414	For	age	ороо.а. ч	Jan voj.
Station	1971*	1976	1981	1986	1992	1997	1971	1976	1981	1986	1992	1997
22	66	190	120	74	120		25	22	20	17	17	1007
23	30	61	110	23	44	:	ļ <u></u>	19				
24	38	41	81	18	32		6	19 21 12	35 20	27 17	24 21	
25	95	100	90	49	100	 :	6 12	12	18	28	11	
26	10	160	50	120	: 100		6	3	16	14	17	
27	100	78	100	52	61	130	12	13	15	25	24	14
28	65	110	160		140	130	10	22	34	‡25		
29	00	110	100	24	140	45	ļ! <u>0</u>	62	36	10	25 9.7	10
30			65	24 45	40	53	9	62 5.7	28	19	11	15
		32	80	45	40	36	13	25	23	13	22	27
31	200 98	43	49	40	41	30	45	42	28	18	20	
32				48		420	4				20	20
33	81	100	97	30	95	130	7	52 4	21 9.3 17	26 21	38 18 31	14
34	98	89	46	95	100	140	14	4	9.3	21	10	14
35	140	96	110	110	190	190	31	32	17	55	31	21
36		64	99	35	32			18	27	14	34	
37			110		44		<u></u>	8.3	9		9	
38	281	68	51		70		37	12 40	32 32	‡	16	i <u>.</u> <u>.</u>
39	130	290	140			48	13	40	32		14	8.5
40	171	65	78		45		40	31	12		19	
41	50	110	130		88 130		16	18	18	<u>:</u>	7.3	•
42	152	150	110				36	22	45	<u> </u>		
43	97	75	120	120	83	140	107	13 9.7	18 12	17	16	21 4.5
44		240	59	57		36	7	9.7	12	13	10	4.5
45	35	240 55	140	180	96	:	22	8.7	76	21	22 25	
46	35 42	78	50		59	140	9	3	16		25	32
47		130			• · · · · · · · · · · · · · · · · · · ·	•	1	17	• :	:	:	••••••••••••••••••••••••••••••••••••••
48	16	100	52	79	52	58	35	34	17	18	23 11	16
49			36	97	57	75	1 4	21	12	18 12	11	10
50	56 72	85 49	88		83	88	10	34 21 20	34	:	13	10 12
51	50	85	32				6	20	19		* ·····	!
52	20	58	83	74	50	73	6	3.7	18	16	12	16
53	58	47	49	67	180		6			14	15	• !
54	44	43	74		<u>:</u>	130	6 6 16	14 6	13 20	1		16
55	28	190	34		83	81	14	22	19	<u> </u>		16 9
56	90	42	270		140	<u>:</u>	15	18	26	<u> </u>	37	
57	59	120	87		78		15	17	13	<u> </u>	14	<u>:</u>
58	215	180	310	210	65	110	17	6.7		28	14	40
59			140	170	300	250	17	35	62 28	28 17	16	25
	250	310	210	140	300	180	26	38	43	18	26	25 31
60	405	260			220 230	240	30	35	30	22	29	36
61	250	100	270	250	230 57	65	12		21	12	10	11
62	22	450	59	81				160				17
63	79	74	39	120	45 66	67	23	14	21 56	18	19 12	24
64	86	160	260	49 91	66	240	22	15	20	15	20	27
65	39	110	80		110	170	22	36	24	24	20	21
66	84	240	78	140	150		23 81	16	19	14	25	
67	94	340	150	68	110	180	81	12	34	25	29	16
68	130	130	180	210		190	24	45	45	20		23
69	195	250	160	130	110	190	123	21 23	34	23	16	17
70	360	320	260	180	110	180	24	23	42	15	14	9.5

Table 24: Zinc Concentration in Vegetation at 92 Stations in the Sudbury Area as part of the Special Survey.

Ctation			Ası	pen					For	age		
Station	1971*	1976	1981	1986	1992	1997	1971	1976	1981	1986	1992	1997
71	165	110	170	210	92		20	19	29	17	11	
72	110	63	47	100		49	7	7.3	27	11	20	14
73	140	5 5	85	76	* · · · · · · · · · · · · · · · · · · ·	190	12 14	14	11	29		18
74	95	81	160		62	250		19	13	•	33	18 32
75		150	88 150		75	80	14	33	34 39		8.3	13
76		150	150	130				40 23	39	42		:
77	140	78	130	130	120	120	25	23	29	30	27	20 20
78	190	120	110	63		150	23	9 42	17	28		20
79	50	49	22	58			14	42	54	28		:
80	48 97	91	53	63 73 28	65	110	40	36 21	23 25	17	20 26 17	24
81	97	53	110	73	40	150	13	21	25	18	26	24
82	155		36	28	67	44	40 13 9 28	14	22	17	17	24 24 21
83	112	120		67	28		28		20 50	30	8.7	
84	121	330	78	57			14	39	50	30		
85	120	180	250	130	120		32	16	24	25 17	15 14	
86	120	75	130	99	140		15	23	15	17	14	
87		110	94	210	86	78 77	24	38	100	33 20	45	44
88		110 82		90			15 24 8 8	19	20	20	25	26
89	64		89	70	35	90		21	22	11	12	21
90	71	140	100		24	140	10	19	24 16		9.7	20
91	85	140	140	100	81	150	43	20	16	23	10	34
92	95	170	180	180	170		24 20	20	25 31	20	15 21	:
93	200	100	250	160	260	270	20	29	31	35	21	24
94	110	200	270	110	110	110	17	30	39	52	36	21 27
95	135	97	130	100	130	170	43	45	14	17	17	27
96	40	140	51	130	160	60	10	17	20	19	8.3	23 32 19
97	84	100	85 82	54 49	46 50 72	45 71	7	17	32 17	23 13 15	23 20	32
98	36	92	82	49	50	71		18	17	13	20	. 19
99	90	220	140	80	72	130	14	17	28	15	21	34 16
100	70	86	200	150	96	130	18	34 1.7	19	16	11	16
101	55	320	150	130	99	160	28	1.7	18	15	13	22
102	20	240	230	28	110	130	8 44	33 17	28 21	210	15 14	21 19
103	110	270	350	210	180	160	44	17	21	40	14	. 19
104	280	200	270	200	140	150	16	12	38	27	21	39
105	260		140	230	140	250	43	16	31	22	18	23 23
106		18	55	81	28	51			21	14	21	23
107	78	80 120	290	180		13	10	180	52	14		6
108	98	120	98 89		46	130	14	37	27 27		19	6 33 18
109	46	110 110	89		56	120	54	23	27		10	18
110	95	110	200				50	43	13		15	
111	95	140	140		61	87	34	19	14		18	14
112	62	150	110		120	110	24	23	24		18	45
113	400	250	510		220	240	24	18	37		18 26 39	45 31
114	50		100	170	170		61	70	22	26	39	

^{* - 1971} Aspen foliage was washed.

Values represent single samples collected in 1971, means of triplicate samples in 1976 and 1981 and duplicate samples in 1992 and 1997.

Concentrations shown in bold exceed the Upper Limit of Normal Guideline of 250 ug/g Zn for foliage and 100 ug/g for forage.

Table 25: Aluminum, Cadmium, and Calcium Concentrations in Vegetation

		Aluminum	mam.			Cad	Cadmium					Calc	Calcium			
Station	Asi	Aspen	For	Forage	Aspen	nec	For	Forage		Asi	Aspen			For	Forage	
	1992	1997	1992	1997	1992	1997	1992	1997	1981	1986	1992	1997	1981	1986	1992	1997
22	23		16		1.4		<0.1		11000	16000	11000		4600	4700	1200	
23	30		36		1.7		<0.1		12000	5100	11000		1200	3900	4900	:
24	49		69		0.13		0.22		9200	0069	3000		750	1900	1200	
25	17		14				<0.1		0099	3800	0009		810	940	1500	
26			36				<0.1		4600	7100			1300	1100	096	
27	24	91	8.7	75	0.83	1.1	0.11	0.25	5200	3200	4700	2600	1300	1500	1200	1600
28	22		40		1.4		<0.1		7700		8600		1600		2600	
29		48	38	30		0.0	0.22	0.2		5700		15000	2000	2400	2600	2700
30	29	140	110	140	0.49	1.1	0.39	0.3	19000	6100	4300	0096	1700	860	2700	5500
31		130	110	260		1.2	0.15	0.4	9200			4800	1800		1000	1300
32	31		55				0.29		6300	3500	9100		1400	1400	006	
33	56	270	12	240		0.85	0.19	0.45	0069	9200	6700	9200	1500	4100	1300	1900
34	16	28	14	16	0.84	1.4	0.11	<0.1	9700	8000	7600	13000	1200	1500	1000	2200
35	23	46	46	99		1.7	0.15	٥٠.1	11000	7700	2600	10000	1100	2300	1900	1700
36	38		31		0.31		0.2		18000	12000	10000		4000	4100	2400	
37	48		27		1.7		<0.1		11000		10000		3200		2500	
38	71		9/		0.47		0.12		6200		8900		1400		1700	
33		48	52	64		0.8	0.11	0.2	14000			2000	1400		720	920
9	46		52		0.85		<0.1		0096		9300		1200		1200	
4	16		23		0.92		<0.1		9800		2900		2600		2900	
42	19				1.3				12000		7200		2500			
43	35	35	40	12	0.88	7	0.11	<0.1	16000	14000	8900	14000	9500	3600	2000	2000
44		64	48	17		0.5	0.11	0.15	17000	12000		15000	3800	3000	1900	2600
45	36		22		1.9		0.38		11000	17000	16000		1500	3000	1200	
46	24	24	9.3	17	0.91	2.2	0.11	0.2	7300		10000	7600	006		3700	1700
47															:	
48	23	16	25	15		1.2	<0.1	^0.1	7900	12000	9700	11000	2600	3200	1800	4700
49	64	22	62	19	0.89	1.1	<0.1	<u></u> 0.1	12000	19000	0089	10000	1500	3000	1300	4800
20	24	19	26	24	1.2	0.95	0.11	<u>0</u> .	12000		8900	13000	1500		1300	1600
51									6300				1000		<u>:</u>	
52	19	20	45	37	<0.1	0.4	<0.1	<u>^0.1</u>	17000	14000	14000	12000	1500	1500	890	2900
53	23		œ		ე.ე		<0.1		18000	11000	12000		830	1200	1500	
54		15		6		-		<0.1	17000			10000	1900			2200
55	5	α		12	000	0		Š	000		040		270			\ \ \ \

Table 25: Aluminum, Cadmium, and Calcium Concentrations in Vegetation

					Cadimon						Calcinm	ium			
Aspen	L	For	Forage	Ast	Aspen	For	Forage		Asi	Aspen			For	Forage	
_	1997	1992	1997	1992	1997	1992	1997	1981	1986	1992	1997	1981	1986	1992	1997
. :		19		0.39		<0.1		12000		4300		1800		1500	
		74		1.3		<0.1		7700		9000		1400		1600	:
	27	16	7.5	0.26	0.85	.0 0.1	<0.1	12000	14000	4900	9000	2100	2500	2800	1900
	34	12	ထ	0.77	0.55	<u>0</u> ٠	<0.1	8200	11000	13000	15000	2100	1500	1700	2700
	25	16	14	1.6	1.2	<0.1	^0.1	11000	4800	5500	4000	1500	970	1600	3200
	20	7.7	12	1.6	-:	<0.1	<0 <u>.</u> 1	10000	11000	8300	6100	2200	1400	2600	2400
	7	83	360	1.4	0.45	÷0.1	0.15	0096	10000	7300	12000	1500	2600	1600	1700
	51	130	30	0.49	0.4	.0 ^0.1	<0.1	10000	2600	5500	9300	2200	1700	1100	2200
	14	21	12	0.44	1.9	<0.1	0.15	17000	11000	9200	9700	2500	1900	1900	2900
	27	89	140	0.52	0.75	~ 0.1	0.15	0096	11000	6100	13000	2500	1700	2400	2200
		56		9.[0.15		7500	10000	0006		1300	2300	2500	:
	22	9.7	13	0.53	2.5	<0.1	<0.1	7800	4200	4900	9700	2000	1300	2200	2100
	5.5		ω		-		<u>0.1</u>	13000	13000		6400	4300	2200		2200
	150	140	099	1.2	0.7	<0.1	<0.1	8700	9800	7600	9800	3300	1900	2400	4200
	24	13	6	0.43	0.85	<0.1	<0.1	8100	19000	11000	11000	1900	3400	3100	1600
		31		0.34		<0.1		11000	4900	13000		3300	1900	2700	
	16	09	38		0.2	0.15	0.15	16000	17000		10000	3500	3700	2300	2700
.	16		15		2.1		<0.1	15000	15000		16000	2500	1400		5800
• • • • •	1	15	5.5	0.79	1.8	0.13	<0.1	13000		14000	17000	1700		3600	2600
	13	9.3	5	0.7	2.2	<0.1	<0.1	9100		11000	13000	1500		1500	2400
								10000	16000			2200	4000		
	19	10	9	1.7	0.8	0.13	<0.1	14000	12000	0069	8700	3300	2600	2700	2200
	5.5		5.5		9.1		<0.1	13000	8300	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	13000	2000	3600		2800
				•				2400	0089			8000	1200		
••••	29	21	Ξ	0.37	0.65	<0.1	<0.1	12000	6700	3600	8100	1500	2000	1400	3600
	15	_	5.5	69.0	1.4	0 0.1	~ 0.1	16000	0096	0099	8600	2000	2400	3400	3100
	21	20	12	8.	0.75	<0.1	<0.1	13000	10000	7900	11000	3700	3800	2200	3800
		28		0.57		0.11			17000	5700		1800	6200	1400	
								14000	11000			3300	4500		
		19		2.4		<0.1		13000	16000	10000		1900	3200	3400	0
		12		1.7		<0.1		14000	9100	11000		1900	3100	3400	
	22	38	33	0.67	0.75	0.13	<0.1	21000	21000	15000	13000	3100	2300	1300	3700
	30	68	12		1.4	0.12	<0.1		13000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15000	1600	2500	800	3300
	5	45	12	c	0	Ç	4	0000	000	0	()()			(

Table 25: Aluminum, Cadmium, and Calcium Concentrations in Vegetation

Forage Aspen F 2 1997 1992 1997 1992 30 0.79 1.6 0.12 11 0.76 0.75 <0.1 2.2 < <0.1 22 0.89 3.8 <0.1 0 100 0.56 0.13 1 17 1.6 0.13	orag		1						
1992 1997 0.79 1.6 0.76 0.75 2.2 0.89 3.8 0.58 0.55			Aspen	in.			Forage	age	
0.79 1.6 0.76 0.75 2.2 0.75 0.89 3.8 0.58 0.55	992 1997	1981	1986	1992	1997	1981	1986	1992	1997
0.76 0.75 2.2 2 0.89 3.8 0.58 0.58 0.55		6100		7600	8200	2000		2100	1300
2.2 0.89 3.8 0.58 0.55	0.1 0.25	11000	12000	6300	12000	830	0069	1800	1900
0.89 3.8 0.58 0.55		13000	12000	11000		2600	5300	4200	
0.58 0.55		16000	8100	13000	7700	3700	2100	3000	2700
1 A O E E		16000	0009	0069	7600	2600	3200	2500	1900
CC.O.		5400	9500	9200	5500	830	3300	1500	1300
17 0.9	17 0.15	18000	18000	18000	11000	2100	3100	2900	2700
0.8 0.45		14000	10000	8800	7400	1900	4600	1200	2700
0.8 : 0.3		10000	11000	5700	8000	3200	1500	790	1700
0.4 2.2		19000	13000	4100	12000	2500	2200	1300	2600
0.72 1.4		14000	8000	0096	8500	2400	3200	1300	1800
0.91 0.8		17000	12000	6300	0099	3100	3300	1300	1800
2 0.85		18000	5600	7000	9800	3500	13000	1800	1700
3.5 0.6		16000	13000	10000	11000	1100	4100	1600	3100
0.95 : 0.95		12000	0006	6300	8400	2700	2400	1600	2100
0.75 1.2		14000	15000	6200	12000	2400	2600	1100	2800
0.47 : 0.8		12000	11000	0009	13000	3700	2800	2000	3300
0.75		12000	13000		8800	3000	2700		2100
0.67		9400	• • • • • • • • • • • • • • • • • • •	3600	13000	730		1700	3700
		10000		5600	12000	4200		1200	2500
		9300				940		2600	
0.95 : 0.85	.11 <0.1	13000		5800	14000	1400		1900	2500
54 0.75 1.7 0.1		14000		6300	9200	1700		2000	2300
	11 <0.1	17000		7800	13000	3600		3500	4900
0.87	.22	11000	13000	7700		1800	1700	3900	
NG 1	2		30,000	8			NG	•	

Report Number SDB-045-3511-2001

Metals in Soil and Vegetation in the Sudbury Area Table 26: Lead and Magnesium Concentrations in Vegetation at 92 Stations in the Sudbury Area as part of the Special Survey.

┝			
1981 198	198	92 1997 1981 198	1992 1997 1981 198
<2 1.3		53 <2	53 <2
		<2	<0.5
<2 1.3		<2	0.77
4 2	4 2	4	0.6
3.7	3.7	3.7	3.7
5.3	0.55 5.3 2	0.55 5.3	<0.5 0.55 5.3
1.7	1.7	1.7	0.57
7 3.3 1.	1.7 3.3 1.		
2.3	2 2.3 1		-
2.3	1.2 2.3	1.2 2.3	1.2 2.3
<2 3.3	<2	<2	0.57
က	0.7 3 <	0.7 3	13 0.7 3
2 5 2	1.2 5 2		<0.5
2 1 11.	1.2 1 1.		<0.5
			1.3
4.7	4.7		<0.5
			0.53
1 2.7	1.1 2.7	;	
5.3	5.3	;	9.0
4	4		0.7
က	က	ာ	0.57
		2 7	1.4 2 7
_	2.7	1.8 2.7	1.8 2.7
2.7	2.7	2.7	3.1
5 <2	0.85 <2	1.4 0.85 <2	
5 <2 4	<>	<0.5	0 73 <0.5 <2
5.7		<0.5 5.7	0.57 < 0.5
, ,	, ,		
÷	÷	D.	6.0
7	7	75	7>
. :		<0.5 <2	0.8 <0.5 <2
4	4	4	1.5
3.3		<0.5 3.3	<0.5 3.3
-	-		

Table 26: Lead and Magneslum Concentrations in Vegetation at 92 Stations in the Sudbury Area as part of the Special Survey.

	4	Magnesium		
_	Forage		Forage	
1981	992 1997 1981 1986 1992	1997 1981 19	1986 1992	1997
<2	2200	430	740	
<2	1400 3400	610	890	
0.8 3.3	0.8 2000 3000 2300	470		800
).85 <2	<0.5 1400 2000 2400	1200		930
1.9 <2	0.7 1800 1800 1600	610		520
0.95 6.3	0.65 2000 3000 1400	410		580
0.6 <2	1.2 2000 2700 3600			900
0.6 <2	0.7 4100 3300 2300	1000		1400
<0.5 <2	<0.5 4400 3000 3100	800		1300
).55 <2	0.8 2900 2400 2100	500		1100
<2	3000 2100 2900	470		
0.8 <2	0.7 2900 1500 1800	1100		800
<0.5 <2	0.6 1200 2100	940		730
<0.5 <2	0.75 2000 2100 1700	1500		2200
0.6 <2	2700 1800		1100 1000	069
_	2100 : 1400 : 3000	1700		
	1.8 3900 4100	1000	<u></u>	830
	0.85 1200 2100	710		2600
0.95 <2	2300		1600	910
-	0.55 1600 3100	730		790
	1300 2400	850		
:	1200 1400 1000	029	70 1300	850
-	<0.5 3000 1300			1200
	430 : 2200 :	2900		
<0.5 1.7	2600 1800		00 880	1100
_	<0.5 4700 3900 2400	1200		1000
_	0.7 2800 3500 3100	1100		2400
_	870 3000	790		
	1300 1300			
<2	1300			
	1300 1300 2200 2	880		
1 15	1300 1300 2300 2200 1800 1800 2100		720 750	930
	1300 1300 1300 1400 1500 1500 1900 1800 1900	1800		1500
_	0.63 2300 2200 2200 2000 2000 2000 2000 20	. טאַמ		1100

				-	ad							Magan	1			
Ctation												Magn	Magnesium			
Station		As	Aspen			Forage	age			Aspen	nec			Forage	age	
	1981	1986	1992	1997	1981	1986	1992	1997	1981	1986	1992	1997	1981	1986	1992	1997
06	က		0.63	<0.5	2.3		1.1	0.55	2200		1300	2700	1900		260	780
91	က	2	1.2	9.0	2.3	4.7	1.5	<0.5	4200	1600	2000	2200	460	1800	510	640
92	2.7	1.3	<0.5		-	1.7	<0.5		4000	2300	2500		2000	1400	1500	
93	_ .3	1.7	<0.5	<0.5		₹	<0.5	<0.5	4200	1400	2700	2900	1200	860	950	1000
94	7	2.3	9.0	<0.5	3.3	15	0.7	<0.5	3300	1600	2000	2100	1100	1200	1000	1200
95	1.7	1.3	τ-	9.0	2.3	ო	1.9	0.55	2700	910	1600	1200	630	650	460	470
96	6	4.3	2.4	0.75	<2	1.3	က	2	2900	3600	2600	2600	1000	1600	1200	1500
97	5.3	9.3	2.7	0.8	<2	2.5	1.8	14	1500	1500	1300	1600	1100	1900	870	1200
86	က	3.3	1.6	0.55	4	₹	8.7	1.5	1600	2600	2300	2600	920	920	400	1600
66	4.3	3.3	1.3	0.55	10	⊽	4	9.0	2600	1800	1400	2200	1200	880	640	1100
100	က	4.7	1.1	<0.5	-	2.7	6.0	<0.5	4200	1900	2500	1500	1500	1100	530	1200
101	က	ည	0.63	0.75	<2	4.3	2.4	1.4	1800	2600	2000	1500	930	1300	580	590
102	က	3.7	<0.5	<0.5	2	4	<0.5	0.55	0009	1700	2100	2700	1700	3400	720	910
103		4.7	<0.5	<0.5	τ	5.7	<0.5	<0.5	4500	3100	2500	3400	890	1600	950	1100
104	4.3	ന	<0.5	<0.5	-	2.7	0.57	0.6	4700	3300	2500	2900	5700	790	630	069
105	3.3	⊽	<0.5	0.55	<2	⊽	0.63	1.1	3000	2700	2100	3000	780	800	610	1700
106	8.3	4.3	0.53	0.8	2.3	7	0.7	1.6	3400	3400	2800	4900	1600	1100	880	1500
107	က	ო		1.5	3.7	⊽		0.75	4400	3200		1400	1400	1900		009
108	1.3		0.67	0.65	-		1.7	1.4	0099		1700	3200	650		1100	2000
109	7		<0.5	1.9	_		<u>-</u> .	0.85	5800		3100	2600	2400		880	750
110	~				<2		0.67		2700				330		340	
111	-		1.	0.6	2.3		2.4	<0.5	6300		2000	3100	540		006	1000
112	1.3		0.7	1.5	-		<0.5	<0.5	3000		1700	2200	890		720	880
113	_		<0.5	0.95	1.3		0.9	<0.5	3900		2000	1700	1400		1100	1200
114	6.3	1.3	<0.5		4.7	<1	<0.5		1800	2100	1200		1400	500	1700	
ULN		3	30			2(0			70	8			z	9	
Values represent duplicate samples. Concentratio	sent dup	licate sar	nples. Co	ncentratic	ns.	shown in bold exceed the	xceed the	Upper	Limit of Normal		Guidelines. №	NG = No	guideline l	has been established	establish	ed.

Metals in Soil and Vegetation in the Sudbury Area Table 27: Additional Elements Analyzed for in Vegetation at 92 Stations in the Sudbury Area as part of the Special Survey in 1997.

Station	Ba	8	Be	%IO	ζ	¥	E I	Μo	Sr	>	Ва	8	Be	%10	ر ن	×	Man	ω	Sr	>
22																				
23																		****		
24																				
25																				
26												•						••••		
27	22	25	<0.2	0.18	<0.5	1.3	590	0.2	32	0.5	21	7	<0.2	0.44	<0.5	1.7	740	0.25	9	0.5
	30		<0.2	0.65	<0.5	0.97	95	0.7	25	0.5	39	1.5	<0.2	0.42	<0.5	0.98	36	4.9	5.8	0.5
	18	13	<0.2	0.41		1.3	81	0.65	7	0.5	33	3.5	<0.2	τ-	1.2	2.5	45	3.3	13	0.5
31	8.8		<0.2	0.26		-	180	0.2	15	0.5	19	5	<0.2	0.1	0.7	1.9	680	1.4	4.6	0.55
33	47	32	<0.2	0.44		1.6	320	0.2	55	0.5	18	6.5	<0.2	0.59	-	1.8	1100	9.0	6.7	0.6
34	51	24	<0.2	0.24		1.2	210	0.2	69	0.5	31	2	<0.2	0.62	<0.5	1.9	96	0.8	13	0.5
35	06	35	<0.2	0.28	<0.5	1.7	250	0.2	69	0.5	25	က	<0.2	0.44	<0.5	1.7	270	0.4	8.7	0.5
36																				
37																				
38																			7	
39	8.6	15	<0.2	0.09	<0.5	0.85	200	0.2	55	0.5	17	4	<0.2	0.2	<0.5	0.77	240	0.35	4.7	0.5
40																		****		
41		-																		
42																				
43	50	29	<0.2	0.17	<0.5	99.0	69	0.2	38	0.5	18	3.5	<0.2	0.38	<0.5	1.2	250	0.2	9.4	0.5
44	22	26	<0.2	0.32			30	0.4	25		18		<0.2	0.38	<0.5	1.3	7.4	2.1	5.5	0.5
45																				
46	9	31	<0.2	0.21	<0.5	1.2	200	0.2	17	0.5	17	7	<0.2	0.47	<0.5	1.8	300	0.8	3.8	0.5
47														• • • • •						
48	4	19	<0.2	0.67		1.2	74	0.2	22	0.5	4.7	3.5	<0.2	••••	<0.5	1.8	19	-	4	0.5
49	20	12	<0.2	0.22	<0.5	0.59	38	0.2	18	0.5	15	က	<0.2	0.5	<0.5	1.6	74	0.75	5.6	0.5
20	39	26	<0.2	0.35		0.91	80	0.2	34	0.5	28	2.5	<0.2		0.55	7	20	0.2	12	0.5
51																				
52	21	24	<0.2	0.31	<0.5	1.2	260	0.2	99	0.5	25	7	<0.2	0.45	<0.5	2.3	320	0.3	18	0.5
53																				
54	23	33	<0.2	0.13	0.55	0.93	110	0.2	40	0.5	33	4.5	<0.2	0.31	<0.5	1.4	270	0.55	12	0.5
ود	0	7	Ċ	Ċ	÷		1									(•		

Table 27: Additional Elements Analyzed for In Vegetation at 92 Stations in the Sudbury Area as part of the Special Survey in 1997.

					Δα	Asnen														
Station	Ba	В	Be	%IS	ပ်	<u> </u>	Mn	Mo	Sr	>	Ba	В	Be	%13	C		MB	Mo	Š	>
99															-					
22							•								Ť					
58	53	19	<0.2		0.55	_	98	0.2	55		19	3.5	<0.2	0.45	<0.5	14	150		5.8	
59	37	33	<0.2		<0.5	0	370	0.2	82		42	3.5	<0.2	0.91	<0.5	2	580		13	
99	27	20	<0.2		0.55	_	220	0.2	15		62	4	<0.2	0.46	<0.5	1.5	290		19	
61	51	15	<0.2		<0.5	_	110	0.2	41		38	4.5	<0.2	0.43	<0.5	1.7	180		14	
62	12	25	<0.2		<0.5	0	88	0.2	35		18	3	<0.2	0.26	1.4	1.3	50		6.1	
63	12	19	<0.2	0.26	<0.5	0.97	94	0.2	25	0.5	24	3.5	<0.2	0.75	<0.5	1.9	230	0.3	9.6	0.5
64	24	23	<0.2		<0.5	0	83	0.2	31		20	3.5	<0.2	0.25	<0.5	1.8	310		12	
65	62	17	<0.2		<0.5	0	160	0.2	49		20	7.5	<0.2	0.51	-	2.1	380		7.8	
99					7															
67	82	26	<0.2	0.07	<0.5	6.0	170		54		16	2.5	<0.2	0.29	<0.5	1.5	180	1.2	7.8	0.5
99	6.9	24	<0.2	0.08	<0.5	1.2	52	0.2	18	0.5	18	က	<0.2	0.39	<0.5	2	240	1.4	8.1	0.5
69	44	12	<0.2	0.13	0.55	0.7	77		46		38		<0.2	0.79	2.5	2	49	0.2	17	1.6
70	40	16	<0.2	0.11	<0.5	6.0	100		61		8.7	1.5	<0.2	0.37	<0.5	1.5	310	0.2	6.3	0.5
7.1															÷					
72	22	20	<0.2		<0.5	0.76	22	0.25	8.8		21	2	<0.2	0.66	<0.5	1.7	14	1.4	7	0.5
73	16	21	<0.2		<0.5	0.87	41	0.2	28		14	က	<0.2	0.99	<0.5	1.8	77	0.8	11	0.5
74	44	42	<0.2	0.23	<0.5	4.	9/	0.2	20	0.5	20	က	<0.2	0.92	<0.5	2.4	99	0.3	9	0.5
75	12	19	<0.2		<0.5	0.95	62	0.2	19		-	3.5	<0.2	0.46	<0.5	1.7	36	1.8	6.9	0.5
9/					•															
77	34	34	<0.2	0.15	<0.5	 	09	0.2	47		37	4	<0.2	0.34	<0.5	2	22	0.55	8.3	
78	16	30	<0.2		<0.5	-	20	0.2	23	0.5	21	က	<0.2	0.68	<0.5	1.7	47	0.65	7.5	0.5
80	25	21	<0.2	0.34	<0.5		110	0.2	31		8.9	5.5	<0.2	0.63	<0.5	2.2	110	1.4	3.4	
		25	<0.2	0.1	<0.5	0.87	92	0.2	28	0.5	27	က	<0.2	0.18	<0.5	1.8	19	0.45	9.6	0.5
	8.3	21	<0.2	0.11	<0.5		44	0.2	-		17	က	<0.2	0.34	<0.5	2.1	40	0.35	5.5	
															•					
84																				
85															÷					
98															÷				:	
	14	29	<0.2		<0.5		36	0.2	21	0.5	19	က	<0.2	0.75	<0.5	2.1	1	0.45	9.6	
	10	_	<0.2	0.26	<0.5	0.95	37	0.2	18	0.5	9.1	5.5	<0.2	0.44	<0.5	1.9	15	0.35	6.7	0.5
88	10	36	<0.2		<0.5		72	0.2	27	0.5	27	3.5	<0.2	0.55	<0.5	1.7	170	0.45	14	

Table 27: Additional Elements Analyzed for in Vegetation at 92 Stations in the Sudbury Area as part of the Special Survey in 1997.

	^	5.5 0.5	0	:	:	:	:	6.4 0.5		:	:			1	:	:				3.0.5	9.8 0.5	. į.		12 0.5	∔		9
	-			;	;																. .	∔.	;		‡		NG NG 6 NG
	Mo	0.4	0.5		<u>:</u>	<u>:</u>	0.2			0.25									1.4					0.3			9
	Mn	86	570		100	120	310	• • • • • • • • • • • • • • • • • • • •		••••	• • • •	• • • •	• • • • •		:	•	100	110	13		Ť	•••‡•	;	530			NG
Forage	¥	1.8	<u>1</u> 8		1.9	7	1.7	Ì	1.5		1.6			1.8	<u>.</u>		2	2	-1	1.8	1.7			18			NG
For	L	<0.5	: <u>:</u>		<0.5	-	<0.5	<0.5						÷	÷	• • • • •		÷ • • • •	÷ · · · ·	<0.5	9.0	∔		<0.5	:		2
	%I2	0.76	9.0		0.76	9.0	0.46	0.81	0.47	0.43	0.73	0.87	0.54	0.55	0.43	0.72	0.39	0.68	0.25	0.85	0.73		0.64	0.24	0.08		1.0
	Be	<0.2	<0.2		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		<0.2	<0.2	<0.2		NG
	8	3.5	2		2.5	3.5	2	4	က	2	4.5	က	7	3.5	5	2	က	5.5	2.5	3.5	3.5		7	က	5	•••	20
	Ba	8.9	18		14	39	23	11	27	16	13	16	12	17	9.3	32	1	8.9	5.2	33	23		24	30	59	•••	NG :
	>	0.5	0.5		0.5		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		0.5	0.5	0.5		5
	Sr	35	28		59	54	33	20	19	63	31	21	21	47	29	48	57	30	11	37	40		64	55	62		S N
	Mo	0.2	0.25		0.2	0.2	0.2	0.25	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.35	0.2	0.2		0.2	0.2	0.25		1.5
	Mn	100	9/		150	270	180	22	46	140	75	63	240	69	100	110	06	23	17	130	74		120	290	29		NG
en	×	0.99	-		-	1.2	1.4	1.3	1-1	0.81	1.2	1.2	-	0.87	-	-	0.97	0.84	11	99.0			- -	-	0.99	•	NG
Aspen	ڻ	<0.5	<0.5		<0.5	9.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0 5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5		8
	% S	75	÷	÷	÷	÷	0.21	÷	÷	÷	0.33	÷	Ť	••••	• • • • •	0.15	0 0	0.28	0.18	0.39	0.36		0.43	0.12	0.03		0.15
	Be	<0.2	<0.2		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.0	<0>	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		<0.2	<0.2	<0.2		NG
	8	25	28		18	19	31	35	23	20	27	26	18	σ	21	21	20	28	16	50	33		28	19	29		75
	Ba	23	16		29	59	53	12	13	9 8	22	23	23	23	707	24	20	15	5.9	1	45		37	55	91		SN.
	Station	06	91	92	93	94	95	96	97	8	66	100	101	13	102	201	105	108	107	108	109	110	111	112	113	114	2

Zn	74	50	45	40	48	37	54	28	20	28	46	48	19	36	61	95	86	22	20	25	21	34	26	42	25	46	49	36	49	59	23	51
>	37	39	39	37	22	28	25	27	24	27	21	34	31	25	28	48	50	18	30	24	26	29	32	30	30	35	37	34	30	41	24	41
Š	39	21	21	18	21	22	24	22	18	11	17	18	Ξ	18	22	25	24	20	15	15	17	13	16	17	24	15	20	14	16	16	15	3
Se	2.9	18	2.5	1.3	1.5	9.0	0.3	0.65	0.45	0.45	-	0.95	1.4	0.55	3.2	1.5	1.5	2.5	0.45	0.95	1.1	3.4	2.1	2	0.45	3.7	2.2	1.6	4	1.9	_ 8	
ž	530	260	330	140	210	91	36	99	47	43	150	96	100	78	330	130	130	210	40	120	86	520	250	260	99	420	470	210	190	170	210	490
ğ	0.55	<0.5	0.55	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.8	<0.5	<0.5	4.	0.7	0.75	<0.5	<0.5	9.0	<0.5	-	0.9	<0.5	<0.5	~	0.55	<0.5	<0.5	0.7	0.65	۸ ۲
Ę	320	200	170	250	570	140	250	180	160	190	770	300	130	160	120	430	220	71	140	79	83	79	91	110	210	130	120	100	230	92	91	710
Σg	4900	4200	2800	2500	1900	2600	3700	2700	2000	1500	940	2700	1600	1700	1400	2900	2500	1200	2800	1600	750	3100	2100	1700	4100	3300	3600	1700	2400	1900	2300	5400
g G	91	52	54	30	41	26	6	17	15	14	27	21	24	26	84	40	82	47	16	35	35	140	61	34	14	53	30	22	21	29	29	
e e	23000	20000	24000	17000	10000	11000	10000	11000	0096	10000	9100	16000	11000	11000	18000	21000	18000	9400	12000	9400	7400	20000	16000	16000	13000	21000	18000	17000	15000	24000	15000	25000
ر ت	440	290	360	130	180	80	25	57	37	35	110	92	100	56	300	110	110	200	52	130		740	260	330	52	450	390	280	190	190	210	400
ပိ	26	14	17	8.9	1	7	6.1	6.4	4.8	4.8	7.4	7.3	6.1	5.7	13	8.8	8.3	7.9	5.6	ဖ	4.1	26	16	12	9.3	17	21	10	12	8.1	-1	23
ပံ	47	33	32	59	16	25	28	28	56	50	14	29	21	21	23	35	34	19	25	19	13	21	23	21	33	25	39	23	25	34	23	47
င္မ	5300	4700	2100	2000	2500	3000	6500	3800	2500	1300	1800	2100	1300	2700	4300	2900	2900	2200	2000	1900	1500	5000	1800	1700	3000	4200	2700	1300	1900	3800	1700	2800
<u>و</u>	1.6	6.0	0.95	0.75	1.3	0.55	0.5	9.0	0.4	0.45	0.9	0.7	0.35	0.5	9.	0.0	1.5	0.55	0.25	0.5	0.35		0.45	0.5	0.3	0.5	0.65	0.4	0.4	0.4	<0.2	0.35
_	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.65	<0.5	<0.5	<0.5	<0.5	<0.5	<0 5
Ва	73	55	28	36	100	31	31	35	27	28	74	41	16	33	62	87	83	45	23	20	30	110	40	46	55	39	57	34	52	32	37	91
As	17	13	19	8.5	Ξ	9.2			3.9	5.7	7.9	7.8	16	7.1	19	9.4	8.7	19	4.4	9.6	7.5	130	20	25	1.6	22	12	14	9.1	9.9	1	14
₹	12000	14000	12000	13000	5500	8600	0069	0066	7000	0006	5500	12000	5400	8500	5900	12000	8800	7200				5300	:						0096	21000	8200	16000
Station	337	338	ij				343				İ	j	i		Ť	ij		j	i		i				i		İ	j	T	_	ij	368

Metals in Soil and Vegetation in the Sudbury Area

Zn	69	49	38	64	160	75	71	32	32	87	51	30	81	20	120	35	47	83	39	79	42	35	110	130	27	58	67	150	47	89	90	48	80	48	56
>	59	29	25	30	32	45	48	44	24	52	70	42	67	33	83	26	40	36	35	37	41	25	32	55	23	31	49	48	4	41	61	32	46	35	33
Sr	16	12	19	15	15	32	13	21	16	29	22	20	28	18	12	21	32	29	19	22	18	21	47	33	15	27	19	16	28	38	43	15	38	13	13
Se													•••																						
Z	069	370	170	110	190	230	310	180	250	190	120	40	250	220	170	65	83	55	80	83	39	25	64	110	31	100	79	65	41	79	58	140	62	230	120
Mo	9.0	0.55	<0.5	0.55	<0.5	<0.5	<0.5	0.65	<0.5	<0.5	0.75	0.6	<0.5	0.65	1.5	<0.5	<0.5	<0.5	<0.5	9.0	<0.5	<0.5	<0.5	3.6	<0.5	0.6	9.0	<0.5	<0.5	<0.5	0.7	6.0	0.7	0.75	<0.5
Mn	300	260	290	340	410	440	670	230	140	1100	860	260	370	290	1500	340	230	530	170	320	340	460	450	1200	210	009	370	490	290	099	590	150	740	100	100
Mg	3400	2200	3200	3300	3300	7100	3000	3700	2500	6800	7200	4300	4400	1600	13000	2200	5000	3200	4100	2200	3300	2600	3800	6500	2900	2900	5000	5400	5200	5500	9400	1800	5100	1600	3100
Pb	48	34	50	19	56	30	46	29	16	26	16	- -	40	•	•	17			• • • • •				22	• • • • •		32	22	31	15	24	21	48	25	49	20
Fe	36000	19000	13000	18000	18000	25000	25000	21000	12000	27000	33000	19000	33000	17000	47000	11000	19000	17000	15000	16000	16000	10000	14000	45000	9800	13000	23000	22000	19000	19000	28000	16000	19000	19000	18000
n O	640	340								140														130	25	87	. 9/	81	28	64	46	160	41	250	110
ပိ	28	18	=	12	13	17	18	11	13	31	29	7.2	21	10	17	5.9	1	7.9	7.9	7	7.4	5.5	7.2	5 6	5.9	8.8 8.8	12	16	Ξ	13	17	7.5		9.7	-
ပ်	36	29	28	32	37	58	27	28	23	61	45	25	30	21	58	25	43	35	29	26	29	24	37	55	23	30	37	29	39	45	70	21	45	27	33
Ca	2200	1400	2700	1700	2000	3400	2400	2800	2800	3800	4600	2800	4000	1900	2800	2700	4300	3400	3200	2700	2300	5100	10000	4500	2500	3000	2400	3600	2800	4200	0009	1800	3800	1600	1300
ဦ	0.65	0.65	0.45	0.45	0.8	0.6	0.75	0.5	0.35	Ψ,	0.4	0.25	-:	····	0.7	<0.2	0.5	9.0	0.25	0.3	<0.2	0.3	0.7	0.5	<0.2	0.55	0.45	0.45	0.4	0.45	0.45	0.4	0.65	0.7	0.5
Be	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.65	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.55	<0.5	<0.5	<0.5	<0.5
Ва	78	44	36	23	78	6	72	78	34	160	85	63	88	92	87	46	54	110	30	130	2	42	87	73	16	87	26	7.7	20	06	92	47	100	46	36
As	73	21	9	8.8	16	=	37	17	5.1	6	8.5	6.4	19	18	15	6.1	5.8	4.7	3.3	5.3	3.6	7	3.3	28	7	7.3	4.5	16	က	4.7	4.2	13	4	16	6.4
Ā	12000	10000	8700	13000	16000	17000	13000	11000	8100	26000	18000	12000	13000	10000	21000	9200	16000	14000	8600	11000	12000	8000	12000	18000	2600	10000	19000	15000	14000	14000	19000	8600	18000	13000	14000
	H	ا	۰i	-i			H	H	T		i	T		T				387		٦j	T	391	T	T	П	395	T					T	T	403	Н

Sr Se ž 0.65 <0.5 0.6 0.5 0.5 ğ Fe ပ္ပ ڻ Ca 0.6 0.45 0.65 0.8 डि <0.5 <0.5 <0.5 <0.5 <0.5 Be Ba As ₹ Station

Concentrations shown in bold exceed the Table F or OTR38 Background Guidelines Values shown in bold and underlined exceed the Table A Soil Clean Blank cells - no data available up Guidelines.

<0.5

<0.5

<0.5 <0.5

<0.5

0.5 0.5 0.5 0.5 0.5

 able A able F

NG = no Soil Clean-up Guidelines have been established.

OTR₉₈ substituted where Table F Guidelines do not exist

Table 29: Samplin MOE Station No.			Longitude and Latitude	Zone	Easting	Northing
·	Map Station No.	Longitude				
5030001	1	-82.975398	46.255776	17	347748	5124363
500000	Blind River	00.707400	10.001001	47	545004	E400400
5030002	2	-80.797196	46.291231	17	515621	5126426
500000	Burwash	22.252422	10.500.100	47	500004	5450000
5030003	3	-80.650139	46.523403	17	526834	5152263
5000004	Callum	00.054000	10.07000	177	500400	5004022
5030004	4	-80.651862	46.970382	17	526482	5201932
5000005	Chiniguchi	04.440000	40,400005	47	466201	5146171
5030005	5	-81.440226	46.468265	17	466201	5145171
5000000	Fairbanks	00.045004	40 50704	17	504047	5153817
5030006	6	-80.945004	46.53791	''	504217	5153617
5020007	Garson	00 007400	40.00117	17	552610	E105533
5030007	0	-80.297183	46.82117	17	553610	5185532
5000000	Grassey Lake	04 400044	40.0407	17	400722	5005640
5030008		-81.403911	46.0137	17	468732	5095649
500000	Killarney q	00 507005	40.740705	17	522047	5174117
5030009		-80.567965	46.719795	17	533017	51/411/
5020010	Kukagami Lake 10	70.006500	46 296157	17	667122	5139249
5030010		-78.826508	46.386157	''	00/122	5139249
5030011	Mattawa 11	80.060004	46.825274	17	502982	5185749
5030011		-80.960904	40.025274	17	502962	5105749
5030012	Milnet 12	-81.237662	46.629129	17	481807	5163979
5030012		-01.237002	40.029129	1 ''	401007	5103979
5030013	Morgan 13	-81.674687	46.304711	17	448045	5128125
5050015	Nairn	-01.074007	40.304711	''	440045	3120123
5030014	14	-81.344743	46.274322	17	473438	5124585
3030014	Lake Penage	-01.544745	40.274322	''	473430	3124303
5030015	15	-81.028445	46.615828	17	497822	5162474
3000010	Rayside	-01.020440	40.010020	1 '' 1	737022	3102414
5030016	16	-80.405207	46.361881	17	545755	5134428
0000010	St. Charles	-00.403207	40.001001	''	040700	0104420
5030017	17	-80.766571	46.656478	17	517860	5167017
3000017	Skead	-00.700071	40.000470	''	317000	3107017
5030018	18	-79.99502	46.393697	17	577264	5138282
	Sturgeon Falls	70.00002	10.000001	''	011201	0.00202
5030019	19	-80.956801	46.463218	17	503317	5145517
	Ramsey Lake		10.1002.0	''		
5030020	20	-79.99116	46.952725	17	576765	5200405
333323	Temagani				0,0.00	0200.00
5030021	21	-81.071954	46.353335	17	494464	5133309
	Tilton Lake					
5030022	22	-80.810748	46.581234	17	514500	5158647
5030023	23	-80.814434	46.58367	17	514217	5158917
5030024	24	-80.816977	46.603473	17	514017	5161117
5030025	25	-80.826066	46.619686	17	513317	5162917
5030026	26	-80.829956	46.628691	17	513017	5163917
5030027	27	-80.796404	46.640525	17	515582	5165238
5030028	28	-80.845403	46.708807	17	511817	5172817
5030029	29	-80.802236	46.589013	17	515150	5159513
5030030	30	-80.798737	46.592643	17	515417	5159917
5030031	31	-80.783434	46.603459	17	516586	5161122
		22.700 10 1			2.0000	

			e & Longitude and UTM)			
	Map Station No.	Longitude	Latitude	Zone	Easting	Northing
5030032	32	-80.777729	46.622302	17	517017	5163217
5030033	33	-80.766508	46.631702	17	517873	5164264
5030034	34	-80.764139	46.647779	17	518049	5166051
5030035	35	-80.74379	46.681402	17	519594	5169792
5030036	36	-80.814477	46.57486	17	514216	5157938
5030037	37	-80.821004	46.570181	17	513717	5157417
5030038	38	-80.84842	46.565721	17	511617	5156917
5030039	39	-80.858937	46.555736	17	510813	5155806
5030040	40	-80.873245	46.551352	17	509717	5155317
5030041	41	-80.899352	46.541479	17	507717	5154217
5030042	42	-80.913713	46.532491	17	506617	5153217
5030043	43	-80.935889	46.526206	17	504917	5152517
5030044	44	-80.810559	46.571964	17	514517	5157617
5030045	45	-80.807977	46.563861	17	514717	5156717
5030046	46	-80.814569	46.544072	17	514217	5154517
5030047	47	-80.818535	46.52788	17	513917	5152717
5030047	48	-80.840823	46.486515	17	512217	5148117
5030048	49	-80.836871	46.500908	17	512517	5149717
5030049	50	-80.838129	46.51621	17	512417	5151417
5030050	51	-80.93475	46.38851	17	505017	5137217
				17	511717	1
5030052	52	-80.847388	46.468524			5146117
5030053	53	-80.843496	46.463119	17	512017	5145517
5030054	54	-80.840928	46.450516	17	512217	5144117
5030055	55	-80.833165	46.434306	17	512817	5142317
5030056	56	-80.839699	46.425315	17	512317	5141317
5030057	57	-80.846252	46.409125	17	511817	5139517
5030058	58	-80.825544	46.374896	17	513417	5135717
5030059	59	-80.784512	46.228127	17	516617	5119417
5030060	60	-80.723785	46.183896	17	521317	5114517
5030061	61	-80.673656	46.115363	17	525217	5106917
5030062	62	-80.823902	46.48109	17	513517	5147517
5030063	63	-80.818697	46.479282	17	513917	5147317
5030064	64	-80.79003	46.481033	17	516117	5147517
5030065	65	-80.778309	46.480111	17	517017	5147417
5030066	66	-80.758771	46.479171	17	518517	5147317
5030067	67	-80.715833	46.469173	17	521817	5146217
5030068	68	-80.620646	46.484196	17	529117	5147917
5030069	69	-80.530666	46.493762	17	536017	5149017
5030070	70	-80.415015	46.46353	17	544917	5145717
5030071	71	-80.30833	46.454835	17	553117	5144817
5030072	72	-81.042047	46.472152	17	496772	5146510
5030073	73	-81.02549	46.469124	17	498043	5146173
5030074	74	-80.99617	46.47639	17	500294	5146980
5030075	75	-80.9751	46.488267	17	501911	5148300
5030076	76	-80.95157	46.486615	17	503717	5148117
5030077	77	-80.937937	46.490529	17	504763	5148553
5030077	78	-80.914272	46.484142	17	506580	5147845
5030078	79	-80.906162	46.47978	17	507203	5147361
	80	-80.878702	46.485046	17	507203	5147949
2030050 i	0U I	- 0U.0/0/U2				1
5030080		20 250006	16 197516	1 17	510025	1 5779776
5030080 5030081 5030082	81 82	-80.858826 -80.849308	46.487516 46.485176	17	510835 511566	5148226 5147967

SDB-045-3511-2001 A - 69

	able 29: Sampling Station Coordinates (Latitude & Longitude and UTM)						
MOE Station No.	Map Station No.		Latitude	Zone	Easting	Northing	
5030084	84	-81.008901	46.498325	17	499317	5149417	
5030085	85	-80.965886	46.513619	17	502617	5151117	
5030086	86	-80.955453	46.519015	17	503417	5151717	
5030087	87	-81.069848	46.485125	17	494639	5147953	
5030088	88	-81.05812	46.496246	17	495540	5149188	
5030089	89	-81.053501	46.516587	17	495896	5151448	
5030090	90	-81.090209	46.538361	17	493083	5153870	
5030091	91	-81.079331	46.538036	17	493917	5153833	
5030092	92	-81.090532	46.560296	17	493061	5156307	
5030093	93	-81.095197	46.609183	17	492710	5161740	
5030094	94	-81.037188	46.700442	17	497157	5171877	
5030095	95	-81.012196	46.838143	17	499070	5187178	
5030096	96	-81.060803	46.470677	17	495332	5146347	
5030097	97	-81.074882	46.460211	17	494250	5145185	
5030098	98	-81.09687	46.448738	17	492560	5143912	
5030099	99	-81.110912	46.439134	17	491480	5142846	
5030100	100	-81.116236	46.432793	17	491070	5142142	
5030101	101	-81.135299	46.419792	17	489603	5140700	
5030102	102	-81.24236	46.393579	17	481367	5137807	
5030103	103	-81.320863	46.376718	17	475324	5135955	
5030104	104	-81.435489	46.355991	17	466496	5133694	
5030105	105	-81.537073	46.323124	17	458656	5130090	
5030106	106	-81.064173	46.467912	17	495073	5146040	
5030107	107	-81.057302	46.461031	17	495600	5145275	
5030107	107	-81.048721	46.447815	17	496258	5143806	
5030108	109	-81.050542	46.432616	17	496117	5142117	
5030109	110	-81.062947	46.409688	17	495162	5139570	
5030110	111	-81.06434	46.39949	17	495054	5138437	
5030111	112	-81.072564	46.352506	17	494417	5133217	
5030112	113	-80.911459	46.314696	17	506817	5129017	
5030114	114	-81.089056	46.103194	17	493117	5105517	
5030302	302	-80.758463	46.795301	17	518433	5182446	
5030303	303	-80.738766	46.83921	17	519920	5187330	
5030304	304	-80.651239	46.969111	17	526530	5201791	
5030304	337	-80.982424	46.525979	17	501348	5152490	
		-80.979159	46.539946	17	501598	5154042	
5030338	338		46.539946		501073		
5030339 5030340	339	-80.985998	L	17 17	499372	5157517	
	340	-81.008198	46.594008	1		5160049	
5030341	341	-81.050027	46.594789	17	496168	5160137	
5030342	342	-81.094088	46.594707	17	492793	5160131	
5030343	343	-81.06828	46.637761	17	494774	5164913	
5030344	344	-80.985236	46.638707	17	501130	5165016	
5030345	345	-81.009454	46.680753	17	499277	5169688	
5030346	346	-80.966848	46.668113	17	502536	5168284	
5030347	347	-80.959594	46.648141	17	503092	5166065	
5030348	348	-80.979214	46.601125	17	501592	5160840	
5030349	349	-80.944917	46.624125	17	504217	5163397	
5030350	350	-80.923615	46.650211	17	505845	5166297	
5030351	351	-80.911404	46.69366	17	506774	5171126	
5030352	352	-80.928502	46.71986	17	505464	5174036	
5030353	353	-80.928115	46.75519	17	505490	5177963	
5030354	354	-80.871463	46.665166	17	509833	5167964	

SDB-045-3511-2001 A - 70

	g Station Coordin Map Station No.	Longitude	Latitude	Zone	Easting	Northing
5030355	355	-80.854355	46.634494	17	511148	5164558
5030356	356	-80.78208	46.686917	17	516664	5170396
5030357	357	-80.801464	46.725361	17	515171	5174664
5030357	358	-80.833427	46.595669	17	512759	5160247
5030359	359	-80.847022	46.585014	17	511720	5159061
5030359	360	-80.885033	46.516266	17	508819	5151417
5030361	361	-80.936396	46.505201	17	504880	1
	1		1	17		5150183
5030362	362	-81.00541 -81.032623	46.516828	17	499585	5151473
5030363	363		46.504386	17	497497	5150091
5030364	364	-81.006681	46.459779		499487	5145134
5030365	365	-80.985027	46.449429	17	501150	5143984
5030366	366	-81.009384	46.430449	17	499279	5141875
5030367	367	-81.095081	46.423525	17	492694	5141110
5030368	368	-81.034405	46.458253	17	497358	5144965
5030369	369	-81.030936	46.448868	17	497624	5143922
5030370	370	-81.068641	46.437089	17	494727	5142615
5030371	371	-81.085001	46.393366	17	493465	5137758
5030372	372	-81.115509	46.408963	17	491122	5139494
5030373	373	-81.121953	46.358206	17	490618	5133855
5030374	374	-81.135803	46.381626	17	489557	5136459
5030375	375	-81.159834	46.416946	17	487717	5140387
5030376	376	-81.146902	46.442118	17	488716	5143182
5030377	377	-81.170716	46.455755	17	486890	5144701
5030378	378	-81.012365	46.487093	17	499051	5148169
5030379	379	-81.183094	46.422896	17	485931	5141052
5030380	380	-81.192745	46.447251	17	485196	5143760
5030381	381	-81.20448	46.469226	17	484301	5146204
5030382	382	-81.206849	46.485925	17	484124	5148060
5030383	383	-81.199206	46.512299	17	484718	5150989
5030384	384	-81.161453	46.537656	17	487620	5153800
5030385	385	-81.210914	46.553199	17	483832	5155536
5030386	386	-81.211716	46.601804	17	483785	5160937
5030387	387	-81.220586	46.654532	17	483122	5166798
5030388	388	-81.307861	46.603169	17	476422	5161113
5030389	389	-81.38065	46.587687	17	470839	5159417
5030390	390	-81.455803	46.622447	17	465104	5163310
5030391	391	-81.371879	46.563048	17	471498	5156676
5030392	392	-81.391881	46.530403	17	469947	5153056
5030393	393	-81.310897	46.535881	17	476160	5153637
5030394	394	-81.326283	46.505041	17	474966	5150215
5030395	395	-81.328246	46.465239	17	474797	5145793
5030396	396	-81.328264	46.43788	17	474783	5143753
5030397	397	-81.312532	46.400143	17	475975	5142753
5030397	398			17		5130770
5030398		-81.345014	46.329986	1 1	473444	
	399	-81.345671	46.382669	17	473419	5136624
5030400	400	-81.466824	46.393678	17	464110	5137895
5030401	401	-81.377212	46.409767	17	471008	5139646
5030402	402	-81.388885	46.452153	17	470134	5144360
5030403	403	-81.191131	46.406287	17	485309	5139208
5030404	404	-80.962772	46.434412	17	502860	5142316
5030405	405	-80.91409	46.442495	17	506599	5143217
5030406	406	-80.938396	46.441781	17	504732	5143136

SDB-045-3511-2001

	g Station Coordina Map Station No.		Latitude	Zone	Easting	Northing
5030407	407	-80.909964	46.44961	17	506915	5144008
5030408	408	-80.889849	46.462048	17	508458	5145392
5030409	409	-80.877153	46.478649	17	509430	5147238
5030410	410	-80.901094	46.494574	17	507590	5149005
5030411	411	-80.958111	46.504158	17	503214	5150066
5030412	412	-80.892744	46.559445	17	508221	5156214
5030413	413	-80.869943	46.579391	17	509965	5158433
5030414	414	-80.852736	46.537864	17	511292	5153821
5030415	415	-80.837147	46.504491	17	512495	5150115
5030416	416	-80.877011	46.495415	17	509438	5149101
5030417	417	-80.815779	46.486882	17	514139	5148162
5030418	418	-80.783241	46.494439	17	516634	5149008
5030419	419	-80.70168	46.518167	17	522883	5151665
5030420	420	-80.629514	46.561505	17	528396	5156504
5030421	421	-80.607924	46.610048	17	530024	5161906
5030422	422	-80.66988	46.665032	17	525254	5167994
5030423	423	-80.781352	46.458697	17	516790	5145037
5030424	424	-80.704502	46.437699	17	522700	5142723
5030425	425	-80.792683	46.437641	17	515926	5142695
5030426	426	-80.749584	46.420258	17	519243	5140773
5030427	427	-80.801	46.394988	17	515299	5137954
5030428	428	-80.982998	46.398796	17	501307	5138358
5030429	429	-81.017497	46.400857	17	498655	5138587
5030430	430	-81.107601	46.337629	17	491719	5131567
5030431	431	-81.139504	46.328595	17	489262	5130567
5030432	432	-81.044824	46.411136	17	496555	5139730
5030433	433	-80.881828	46.419148	17	509081	5140626
5030434	434	-80.865718	46.397936	17	510323	5138271
5030435	435	-80.903216	46.348915	17	507447	5132820
5030436	436	-80.83827	46.345269	17	512445	5132423
5030437	437	-80.777129	46.350782	17	517148	5133047
5030438	438	-80.777931	46.323028	17	517095	5129963
5030439	439	-80.714423	46.315165	17	521987	5129105

SDB-045-3511-2001 A - 72

APPENDIX B Figures

Figure 1. Soil and vegetation sampling locations in the Sudbury area, 1970 to 1999.

* control sites Blind River and Mattawa are beyond the scale of this map.

APPENDIX C Sampling Site Maps

Map 1 identifies the sample sites across the Sudbury region, and illustrates the large size of the study area. Because of the scale of Map 1 some sample sites in the local Sudbury area cannot be numbered. Therefore Map 2 was created so that the sample sites in the City of Greater Sudbury can be identified. In some cases, owing to the large geographic area under study, not all site location numbers were successfully transferred to the maps. However every sampling location is identified in Table 29, the final table in Appendix A, along with its unique geographical coordinates (latitude, longitude and UTM), so that every sampling site can be determined with accuracy (approximately +/- 20 metres).

APPENDIX D

Changes in Laboratory Practices

A. Sample Preparation

There were four major changes made to the Phytotoxicology sample preparation method since the 1970s.

- (i) Prior to 1981, soil samples were collected, air dried, disaggregated with a wooden mallet, and manually sieved through a #45 mesh (approx. 355 μm). If the sample volume was not large enough for analysis, the sieved material was added back to the total sample, the total sample was disaggregated again with the wooden mallet and the entire sample was re-sieved through a #45 mesh until enough volume was obtained.
- (ii) In 1981, it was decided to use the standard definition of soils as any material less than 2 mm in diameter. At this time, samples were air dried, disaggregated with a wooden mallet, passed through a ≤ 2 mm sieve and then passed through a #45 mesh (approximately 355 μm). If the sample volume was not large enough for analysis, the sample was not analyzed. The subsequent disaggregation step previously used was discontinued.
- (iii) In 1984, the method changed again to include grinding the sample. As before, the samples were air dried, disaggregated, passed through a \leq 2 mm mesh, and then all of that material was ground to pass through a #45 mesh (approximately 355 µm).
- (iv)Vegetation preparation was changed slightly over time. Vegetation samples were originally dried in beakers but over time, the volume collected increased so brown kraft bags were used instead. Also, prior to 1981, samples were ground directly into sample jars and when the jar was filled, the remaining vegetation was not used. Since 1981, the entire vegetation sample was ground to 1 mm into a large plastic bag, the entire sample was re-ground and a sub-sample of that large volume was submitted for analysis.

B. Chemical Analysis

There were four major changes made to the chemical analysis methodology that were implemented by the Ministry of the Environment as of May 1984.

- (i) For inorganic chemical analysis of soils, acid digestion in beakers on hotplates was replaced with samples in test tubes in a hot block. This allowed for more uniform and thorough heating during the digestion process, thereby improving precision.
- (ii) Prior to 1983, the Atomic Adsorption Spectrophotometry (AAS) method was used for analysis (with perchloric/nitric digestion). Once the Inductively Coupled Argon Plasma Atomic Emission Spectroscopy (ICP-AES) machine had been acquired, both were used for metals analysis throughout 1983. For requests of 5 or less elements, or for special request elements, the AAS was used. If a metals scan was requested (a scan of 20+ metals), the ICP-AES was used. LSB used these two methods interchangeably and felt that they provided results of similar accuracy. However, ICP-AES allows for the analysis of more metals simultaneously while utilizing less sample volume and reagent and hence more sample results were available in a shorter period of time.
- (iii) The perchloric/nitric acid combination was replaced with hydrochloric/nitric acid for the ICP-AES method. The use of perchloric acid in AAS allowed for more efficient digestion; however, its use in the ICP-AES machine caused interferences and problems with sample nebulization. Therefore, sample recovery may have decreased slightly when hydrochloric/nitric (aqua regia) was adopted due to less thorough sample digestion.
- (iv) Soil sample weight/volume of acid ratios were also changed at the same time. Soils changed from 1.0 g/25 mL to 0.5 g/25 mL and vegetation changed from 1.0 g/10 mL to 0.5 g/10 mL. This was done in an effort to reduce the amounts of dissolved solids in the sample and allowed for "streamlining" of the digestion procedures. Due to better detection limits offered by ICP-AES, the change in volume resulted in a negligible difference.

Appendix E Derivation and Significance of the MOE Soil Remediation Criteria (Clean-up Guidelines)

The MOE soil clean-up *Guidelines* have been developed to provide guidance for cleaning up contaminated soil. The *Guidelines* are not legislated Regulations. Also, the *Guidelines* are not action levels, in that an exceedence does not automatically mean that a clean-up must be conducted. The *Guidelines* were prepared to help industrial property owners decide how to clean-up contaminated soil when property is sold and/or the land-use changes. Most municipalities insist that contaminated soil is cleaned up according to the MOE *Guidelines* before they will approve a zoning change for redevelopment, therefore, even though the *Guideline* is voluntary most industrial property owners and developers are obliged to use it. For example, the owner of an industrial property who plans to sell the land to a developer who intends to build residential housing can use the *Guideline* to clean up the soil to meet the residential land-use criteria. In this way previously-contaminated industrial land can be re-used for residential housing without concern for adverse environmental effects.

The Guideline contains a series of Tables (A through F), each having criteria for soil texture, soil depth, and ground water use for various land-use categories (eg, agricultural, residential, industrial). Table F criteria reflect the upper range of background concentrations for soil in Ontario. An exceedence of Table F indicates the likely presence of a contaminant source. Tables A through E criteria are effects-based and are set to protect against the potential for adverse effects to human health, ecological health, and the natural environment, whichever is the most sensitive. By protecting the most sensitive parameter the rest of the environment is protected by default. The Guideline criteria take into consideration the potential for adverse effects through direct contact, and through contaminant transfer from soil to indoor air, from ground water or surface water through release of volatile gases, from leaching of contaminants in soil to ground water, or from ground water discharge to surface water. However, the Guideline criteria may not ensure that corrosive, explosive, or unstable soil conditions will be eliminated.

If the decision is made that remedial action is needed, the *criteria* in Tables A to F of the *Guideline* can be used as clean-up targets. In some cases, because of economic or practical reasons, it may not be possible to clean up a site using the generic *criteria* in Tables A to F. The *Guideline* provides a process, called a *site specific risk assessment*, which is used to evaluate the soil contamination with respect to conditions that are unique to the contaminated site. In a *site specific risk assessment* the proponent examines all the potential pathways through which the contamination may impact the environment and must demonstrate that because of conditions unique to that site the environment and human health will not be adversely affected if contamination above the generic *criteria* in Table A to E is left in place.

When contamination is present and a change in land-use is not planned, for example residential properties and public green spaces near a pollution source, the *Guideline* may be used in making decisions about the need for remediation. This is different from the previously described situation where a company that caused contamination on their own property decides to clean up the

soil, usually at the insistence of the municipality who will not approve a zoning change unless remediation is conducted. Decisions on the need to undertake remedial action when the *Guideline criteria* are exceeded *and* where the land-use is not changing are made on a site by site basis using *site specific risk assessment* principals and are usually contingent on the contaminants having caused an adverse environmental effect or there is a demonstrated likelihood that the contamination may cause an adverse effect. Because of the long history of industrial operation and our practice of living close to our work place the soil in many communities in Ontario is contaminated above the effects-based *criteria* in the MOE *Guidelines*. In practice, remediation of contaminated soil on privately-owned residential property and public green spaces has only been conducted in communities when the potential for adverse health effects has been demonstrated.

The soil clean-up *Guidelines* were developed from published U.S. EPA and Ontario environmental data bases. Currently there are criteria for about 25 inorganic elements and about 90 organic compounds. Criteria were developed only if there were sufficient, defendable, effects-based data on the potential to cause an adverse effect. All of the criteria address human health and aquatic toxicity, but terrestrial ecological toxicity information was not available for all elements or compounds. The development of these clean-up *Guidelines* is a continuous program, and criteria for more elements and compounds will be developed as additional environmental data become available. Similarly, new information could result in future modifications to the existing *Guidelines*.

For more information on the MOE's soil clean-up *Guidelines* please refer to the *Guideline* for Use at Contaminated Sites in Ontario. Revised February 1997, Ontario Ministry of Environment and Energy, PIBs 3161E01, ISBN 0-7778-6114-3. This document is also available on the MOE web site at www.ene.gov.on.ca, look on the main page under the heading Contaminated Sites: Clean-up Guideline and follow the links to Publications.

Appendix F Derivation and Significance of the MOE "Ontario Typical Range" Soil Guidelines

The MOE "Ontario Typical Range" (OTR) guidelines are being developed to assist in interpreting analytical data and evaluating source-related impacts on the terrestrial environment. The OTRs are used to determine if the level of a chemical parameter in soil, plants, moss bags, or snow is significantly greater than the normal background range. An exceedence of the OTR_{98} (the OTR_{98} is the actual guideline number) may indicate the presence of a potential point source of contamination.

The OTR₉₈ represents the expected range of concentrations of chemical parameters in surface soil, plants, moss bags, and snow from areas in Ontario not subjected to the influence of known point sources of pollution. The OTR₉₈ represents 97.5 percent of the data in the OTR distribution. This is equivalent to the mean plus two standard deviations, which is similar to the previous MOE "Upper Limit of Normal" (ULN) guidelines. In other words, 98 out of every 100 background samples should be lower than the OTR₉₈.

The OTR₉₈ may vary between land use categories even in the absence of a point source of pollution because of natural variation and the amount and type of human activity, both past and present. Therefore, OTRs are being developed for several land use categories. The three main land use categories are Rural, New Urban, and Old Urban. Urban is defined as an area that has municipal water and sewage services. Old Urban is any area that has been developed as an urban area for more than 40 years - New Urban, developed for under 40 years. Rural is all other areas. These major land use categories are further broken into three subcategories; Parkland (which includes greenbelts and woodlands), Residential, and Industrial (which includes heavy industry, commercial properties such as malls, and transportation rights-of-way). Rural also includes an Agricultural category.

The OTR guidelines apply only to samples collected using standard MOE sampling, sample preparation, and analytical protocols. Because the background data were collected in Ontario, the OTRs represent Ontario environmental conditions.

The OTRs are not the only means by which results are interpreted. Data interpretation should involve reviewing results from control samples, examining all the survey data for evidence of a pattern of contamination relative to the suspected source, and where available, comparison with effects-based guidelines. The OTRs are particularly useful where there is uncertainty regarding local background concentrations and/or insufficient samples were collected to determine a contamination gradient. OTRs are also used to determine where in the anticipated range a result falls. This can identify a potential concern even when a result falls within the guideline. For example, if all of the results from a survey are close to the OTR₉₈ this could indicate that the local environment has been contaminated above the anticipated average, and therefore the pollution source should be more closely monitored.

The OTRs identify a range of chemical parameters resulting from natural variation and

normal human activity. As a result, it must be stressed that values falling within a specific OTR98 should not be considered as acceptable or desirable levels; nor does the OTR₉₈ imply toxicity to plants, animals or humans. Rather, the OTR₉₈ is a level which, if exceeded, prompts further investigation on a case by case basis to determine the significance, if any, of the above normal concentration. Incidental, isolated or spurious exceedences of an OTR₉₈ do not necessarily indicate a need for regulatory or abatement activity. However, repeated and/or extensive exceedences of an OTR₉₈ that appears to be related to a potential pollution source does indicate the need for a thorough evaluation of the regulatory or abatement program.

The OTR₉₈ supersedes the Phytotoxicology ULN guideline. The OTR program is on-going. The number of OTRs will be continuously updated as sampling is completed for the various land use categories and sample types. For more information on these guidelines please refer to Ontario Typical Range of Chemical Parameters in Soil, Vegetation, Moss Bags, and Snow, MOEE Report Number HCB-151-3512-93, PIBs Number 2792, ISBN 0-778-1979-1.

APPENDIX G

Derivation and Significance of the "Upper Limits of Normal" Contaminant Guidelines.

The MOE Upper Limits of Normal (ULN) contaminant guidelines represent the expected maximum concentration in surface soil, foliage (trees and shrubs), grass, moss bags, and snow from areas in Ontario not exposed to the influence of a pollution source. Urban ULN guidelines are based on samples collected from urban centers, whereas rural ULN guidelines were developed from non-urbanized areas. Samples were collected by Phytotoxicology staff using standard sampling procedures (reference: Ontario Ministry of the Environment. 1989. Ontario Ministry of the Environment "Upper Limit of Normal" Contaminant Guidelines for Phytotoxicology Samples. Phytotoxicology Section, Air Resources Branch: Technical Support Sections NE and NW Regions, Report No. ARB-138-88-Phyto. ISBN: 0-7729-5143-8.). Chemical analyses were conducted by the MOE Laboratory Services Branch.

The ULN is the arithmetic mean plus three standard deviations of the suitable background data for each chemical element and parameter. This represents 99% of the sample population. This means that for every 100 samples that have not been exposed to a pollution source, 99 will fall within the ULN.

The ULNs do not represent maximum desirable or allowable limits. Rather, they are an indication that concentrations that exceed the ULN may be the result of contamination from a pollution source. Concentrations that exceed the ULNs are not necessarily toxic to plants, animals, or people. Concentrations that are below the ULNs are not known to be toxic.

ULNs are not available for all elements. This is because some elements have a very large range in the natural environment and the ULN, calculated as the mean plus three standard deviations, would be unrealistically high. Also, for some elements, insufficient background data is available to confidently calculate ULNs. The MOE Phytotoxicology ULNs are constantly being reviewed as the background environmental data base is expanded. This will result in more ULNs being established and may amend existing ULNs.

For more information on these guidelines please refer to Ontario Ministry of the Environment "Upper Limit of Normal" Contaminant Guidelines for Phytotoxicology Samples, MOEE Report Number ARB-138-88-Phyto, ISBN 0-7729-5143-8.

ų.		

APPENDIX H

Table H-1:

Ministry of the Environment Guideline Concentrations for Selected Metals in Soil.

Element	Table F	Table A	OTR_{98}	
Aluminum (Al)			30000	
Arsenic (As)	17	20		
Barium (Ba)	210	750		
Beryllium (Be)	1.2	1.2		
Calcium (Ca)			55000	
Cadmium (Cd)	1	12		
Cobalt (Co)	21	40		
Chromium (Cr)	71	750		
Copper (Cu)	85	225		
Iron (Fe)			35000	
Magnesium (Mg)			20000	
Manganese (Mn)			2200	
Molybdenum (Mo)	2.5	40		
Nickel (Ni)	43	150		
Lead (Pb)	120	200		
Selenium (Se)	1.9	10		
Strontium (Sr)			64	
Sulphur (S)			0.079	
Vanadium (V)	91	200		
Zinc (Zn)	160	600		

Sulphur data are presented as a percentage. All other data are presented as dry weight concentrations in $\mu g/g$. Table F values represent background concentrations expected in Ontario for all other land uses than agriculture. (See Appendix E). --= OTR₉₈ values are used where Table F values do not exist, especially for elements that are also nutrients (i.e., calcium and magnesium) (See Appendix F). Table A values are effects based guidelines that are based on the most sensitive receptors within the residential/parkland land use classification (See Appendix E).

Table H-2:
Ministry of the Environment Guideline Upper Limit of Normal (ULN)
Concentrations for Selected Metals in Tree Foliage and Forage.

Element	Tree Foliage	Forage	
Aluminum (Al)	500	NG	
Arsenic (As)	2	8	
Barium (Ba)	NG	NG	
Boron (B)	75	20	
Beryllium (Be)	NG	NG	
Calcium (Ca)	30000	NG	
Cadmium (Cd)	1	2	
Chlorine (Cl)	0.15%	1	
Cobalt (Co)	2	8	
Chromium (Cr)	8	5	
Copper (Cu)	20	20	
Iron (Fe)	500	500	
Potassium (K)	NG	NG	
Magnesium (Mg)	7000	NG	
Manganese (Mn)	NG	NG	
Molybdenum (Mo)	1.5	6	
Nickel (Ni)	30	25	
Lead (Pb)	30	20	
Selenium (Se)	0.5	0.5	
Strontium (Sr)	NG	NG	
Sulphur (S)	0.4	0.5	
Vanadium (V)	5	6	
Zinc (Zn)	250	100	

Chlorine and sulphur data are presented as a percentage. All other data are presented as dry weight concentrations in $\mu g/g$. Upper Limit of Normal concentrations for both tree foliage and forage are based on unwashed samples from rural areas. NG = no guideline has been established for that element

ī.			