

Введение в технику физического эксперимента

Лектор – проф. Пальчиков Евгений Иванович

ВТФЭ-2024

Науки, технологии и выживание человека в современном мире

Задачи курса

Обработка данных, полученных в эксперименте

Пальчиков Евгений Иванович д.т.н., проф. НГУ, в.н.с. ИГиЛ

Новосибирский Государственный университет Сибирское Отделение Российской академии Наук

Проблема цивилизации настоящего времени

- Значительная часть настоящих научных открытий недоступна в момент открытия пониманию и осмыслению для 99% человечества
- Через 50 лет 90% человечества пользуется многими из этих открытий, не догадываясь об этом, либо догадываясь, но не понимая «как оно работает».
- Поверхностные знания из интернета добавляют решимости но не реальных компетенций
- Непонимание таит опасность вплоть до смертельных исходов и системных кризисов

Возможные пути решения

- Ликвидация безграмотности населения в области естественных наук.
- Создание и применение альтернативных методов обучения естественным наукам (для школьников и взрослых).
- Пропаганда использования естественнонаучных знаний в жизни (в пику гороскопам, гадалкам и т.д.) и достижений науки
- Популяризация научных знаний и развитие интеллекта

Введение. Эволюция интеллекта. Развитие второй сигнальной системы. Школа

Историческое развитие интеллекта

- Интеллектом называют некоторый набор способностей, свойственных человеку: обучаться на основе опыта, адаптироваться к новым ситуациям, сопоставлять полученные знания и применять их для управления окружающей средой.
- Интеллект определяет познавательные способности человека, такие как ощущение, восприятие, память, представление, мышление, воображение. Главным свойствам интеллекта, по-видимому, является то, что он позволяет распознавать и предвидеть опасности, разрешать трудные ситуации, которые постоянно встречаются в жизни человека.
- Гуманитарные аспекты интеллекта, связанные с письменностью, речью и человеческими отношениями интенсивно развиваются последние несколько тысяч лет.
- Последние несколько сотен лет развились и приобрели большое значение для жизни человечества естественнонаучные аспекты интеллекта.

Первая и вторая сигнальная системы

- На достижениях естественных фундаментальных наук (физики, химии, биологии) держатся современные достижения цивилизации, созданные за последние двести лет техника, окружающие нас предметы и материалы, медицина, накопление и использование информации и др.
- Незнание естественных наук, или их игнорирование, приводит к поражению или ограничению возможностей человека в любых видах деятельности человека таким же, как, например, неумение читать.
- Вторая сигнальная система (речь, письменность) в школьном и юношеском возрасте только формируется. Причем у разных детей с разной скоростью. На первое место выступает первая сигнальная система (увидеть, услышать, потрогать, лизнуть).

К сожалению, в условиях современного аудиовизуального информационного взрыва, для многих первая сигнальная система остается главной на всю оставшуюся жизнь.

Место естественных наук в современной цивилизации

- Естественные науки физика, химия, биология науки о природе
- Деление на науки о природе весьма условно и придумано людьми природе все равно, как назовут и рассортируют свои знания люди
- Законы физики, химии, биологии придуманы людьми на основе наблюдений и экспериментов. Природе всё равно какие значки напишут и какие слова скажут люди

- Законы природы необходимы людям для того, чтобы предсказывать те явления, которые еще не произошли до проведения эксперимента
- Собственно на этом держатся достижения цивилизации техника, окружающие нас предметы и материалы, медицина, накопление и использование информации и др.
- Незнание естественных наук (или их игнорирование) приводит к поражению или ограничению возможностей в любых видах деятельности человека (таким же, как, например, неумение читать)

Естественные науки

- Физика наука, которая пытается объяснить законы функционирования Вселенной. Первоначально термины «физика» и «философия» были синонимами.
- **Химия** наука о веществах, их свойствах, строении и превращениях. Химия занимается в основном изучением взаимодействий между атомами и молекулами, полученными в результате таких взаимодействий.
- **Биология** наука, объектами изучения которой являются живые существа и их взаимодействие с окружающей средой.

Структура общества 112 лет назад. 1912 г.

Н. Я. Рубакинъ.

РОССІЯ ВЪ ЦИФРАХЪ

Страна. Народъ. Сословія Классы.

Опыть статистической характеристики сословно-классоваго состава населенія русскаго государства.

(На основаніи оффиціальныхъ и научныхъ изследованій).

Издательство "Въстника Знанія" (В. В. Битнера).

C.-HETEPBYPT'L

1912 г.

Культура, книги, искусство показывают жизнь меньшей части общества того времени.

Наукой, техникой и технологией занималась ничтожная часть общества. Не только в России.

На 1000 человек

Тенденции современной цивилизации

- 1. Все меньшее количество людей становится занятыми в конкретной производственной сфере из-за возрастающей производительности.
- 2. Количество производственных сфер растет.
- 3. Все меньше тех людей, которые могут независимо воспроизвести технологию создания продукта или сам продукт.
- 4. Все меньшее число людей понимают как работают устройства которыми они пользуются. Всё большее число людей склоняется к мистике, оккультизму. Многие шарлатаны этим пользуются и существуют на этом.
- 5. Увеличение контингента малограмотных людей без жизненно необходимых видов деятельности и безработных.

ПРИМЕРЫ

Незнание порождает беспокойство обывателя. Например – «Чем меня кормят?»

- Производство с/х продуктов. Ранее более 50 % населения. Сейчас менее 10%.
- Производство сотовых телефонов, авиационных двигателей менее 80 тыс. человек на Земле знает, КАК их делать. И могут создать новые изделия. Это 1/100000 часть населения Земли. А пользуются телефонами и самолетами почти все.
- Производство чипов процессоров.
- Производство автомобилей < 1 млн. чел. 1/8000 населения.

Задачи курса «Введение в технику физического эксперимента»

Курс лекций посвящён обзору методов физического эксперимента и достижений техники физического эксперимента — с начала 20-го столетия до настоящего времени.

- Курс предназначен для обучения специалистов, которые будут в своей последующей работе либо непосредственно заниматься экспериментальной деятельностью, либо использовать данные реальных экспериментов.
- Для ориентации в окружающей действительности и для поддержания контактов с экспериментаторами курс необходим также и будущим теоретикам.

• создание представлений

- об устройстве и принципе работы технологически сложных компонентов современных физических установок,
- о технологиях создания, физических характеристиках и принципах работы современных физических установок
- о том, как обеспечивать необходимые для исследований условия эксперимента,
- как количественно измерять различные явления в природе и физические параметры в создаваемых установках.

Полученные представления должны помочь осознанно выбрать интересные для себя области знаний для более глубокого изучения в будущем.

• получение компетенций

- получить предпосылки для овладения навыками работы на технологически сложных компонентах современных физических установок,
- использовать полученные знания для создания комплексов измерения и физических установок. Уметь ориентироваться в информации получаемой из эксперимента.
- Уметь обрабатывать и представлять полученные данные своим коллегам согласно общепринятым нормам, существующим в научном сообществе.
- Уметь профессионально осмысливать результаты, полученные другими экспериментаторами.
- Уметь грамотно и критически подбирать теоретические модели к наблюдаемым явлениям.

Рост физфака НГУ в 2013 году

Гистограмма содержит 13 бинов по 4 см. Выборка – 194 человека.

Рост физфака НГУ в 2013 году

Гистограмма содержит 25 бинов по 2 см. Выборка – 194 человека.

Рост физфака НГУ в 2013 году

Гистограмма содержит 48 бинов по 1 см. Выборка – 194 человека.

Рост физфака НГУ в 2019 году

Гистограмма содержит 12 бинов по 4 см. Выборка – 194 человека.

Рост физфака НГУ в 2019 году

Гистограмма содержит 24 бина по 2 см. Выборка – 194 человека.

Рост физфака НГУ в 2022 году

Гистограмма содержит 15 бинов по 3 см. Выборка – 168 человек.

Рост физфака НГУ в 2022 году

Гистограмма содержит 23 бина по 2 см. Выборка – 168 человек.

Рост физфака НГУ в 2022 году

Гистограмма содержит 44 бина по 1 см. Выборка – 168 человек.

Доска Гальтона

Падение шаров на доске Гальтона

Введение в технику физического эксперимента

Лекция 1

Представление данных, полученных в эксперименте. Математические модели. Определения.

$$x_1, \dots x_k, \dots x_n$$
 – значения, полученные из эксперимента – члены выборки \overline{x} – среднее значение измеренной величины

X – истинное значение измеренной величины Ошибки

- Систематические (пример взвешивание с помощью неточных гирь, измерение некалиброванным прибором или прибором со сбитым нулем)
- Случайные (влияние на результат множества непредсказуемых факторов; обычно достаточно порядка 10 знакопеременных факторов)
- Промахи (недосмотр экспериментатора при записывании результата, случайная однократная помеха в аппаратуре в момент измерения)

Свойства случайных ошибок

- **Независимость** отклонение каждого члена выборки от истинного значения не зависит от отклонений других членов выборки и характеризуется определённым законом распределения
- Симметрия случайные ошибки разных знаков встречаются одинаково часто
- Концентрация малые по абсолютной величине случайные ошибки встречаются чаще, чем большие

Цель нашей дальнейшей деятельности

Статистическая обработка результатов измерений

Как следует оценивать точность значения величины Х при наличии в измерениях случайных ошибок

Кривая распределения результатов

Кривая распределения результатов

Дискретное распределение

$$F_i = \frac{n_i}{n}$$

 F_i – доля членов выборки на i -ый бин $F_i = rac{n_i}{n}$ $rac{n_i$ - количество членов выборки в бине m – число бинов, x_i – координата бина, п – число всех членов выборки

$$\overline{x} = rac{1}{n} \sum_{k=1}^n x_k^{} pprox \sum_{i=1}^m x_i^{} \cdot F_i^{}$$
 Среднее значение по выборке – наилучшая оценка X

$$\tilde{\sigma} = \sqrt{\frac{\sum_{k=1}^{n} (\bar{x} - x_k)^2}{n-1}} = \sqrt{\frac{\sum_{k=1}^{n} x_k^2 - n\bar{x}^2}{n-1}}$$

Эмпирический стандарт – наилучшая оценка среднеквадратиичной ошибки (отклонения от среднего) для одного отдельно взятого члена выборки (одного измерения)

$$\sum_{i=1}^{m} F_i = 1$$

Непрерывное распределение

$$f(x) = rac{1}{\sigma \sqrt{2\pi}} \cdot e^{rac{-(x-X)^2}{2\sigma^2}}$$
 $f(x)$ - плотность вероятности – доля членов выборки на

f(x) - плотность 1-ый -интервал по х

$$ar{x} = \int_{-\infty}^{+\infty} x \cdot f(x) dx$$
 Среднее. Для нормального распределения $\bar{x} = X$

$$\sigma = \sqrt{\int_{-\infty}^{+\infty} (x - X)^2 \cdot f(x) dx}$$

Среднеквадратичное отклонение (корень из дисперсии) для нормального распределения ошибок. Полуширина распределения f(x) по точкам перегиба.

$$\int_{-\infty}^{+\infty} f(x) dx = 1$$

Переход между дискретной и непрерывной моделями. Оценка X и σ по $\overline{\chi}$ и $\widetilde{\sigma}$

Можно показать, что наилучшей оценкой **истинного значения** X величины X будет **среднее значение** выборки

$$X \approx \overline{x} = \frac{1}{n} \sum_{k=1}^{n} x_k$$

А наилучшей оценкой среднеквадратичной ошибки σ служит **эмпирический стандарт** (или **стандартная ошибка**) отдельного измерения $\widetilde{\sigma}$:

$$\widetilde{\sigma} = \sqrt{\frac{\displaystyle\sum_{k=1}^{n}(\overline{x}-x_{k})^{2}}{n-1}}$$
 Причём, при увеличении числа измерений
$$\lim_{n\to\infty}(\widetilde{\sigma}) = \sigma$$

Генеральной совокупностью называется полный набор всех значений, которые может принимать случайная величина при бесконечном числе испытаний.

Цель статистической обработки заключается в попытке наилучшим образом описать характеристики всей генеральной совокупности по отдельной ограниченной выборке.

Интеграл вероятностей (Error Function - функция ошибок)

Функция $\Phi(t)$ полученная интегрированием f(x) называется интегралом вероятностей.

$$\Phi(t) = \frac{1}{\sqrt{2\pi}} \int_{0}^{t} e^{-\frac{\theta^{2}}{2}} d\theta = erf(t)$$

Пусть X=0 (функция симметрична относительно начала координат). Тогда вероятность P того, что x попадёт в интервал от $-x^*$ до $+x^*$, то есть $(/x/< x^*)$ будет

$$\int_{-x^*}^{+x^*} f(x)dx = P(|x| < x^*) = 2\Phi(\frac{x^*}{\sigma})$$

В общем случае $X\ne 0$. Тогда используется подстановка

$$t = \frac{x^*}{\sigma}; \quad \theta = \frac{x - X}{\sigma}$$

Интеграл ошибок

Значения $P(/x/< x^*) = 2\Phi(t)$ для t, выраженного в долях среднеквадратичной ошибки $t = \Delta x/\sigma$

t	P	t	P	t	P
0	0	1.2	0.77	2.6	0.990
0.05	0.04	1.3	0.80	2.7	0.993
0.1	0.08	1.4	0.84	2.8	0.995
0.15	0.12	1.5	0.87	2.9	0.996
0.2	0.16	1.6	0.89	3.0	0.997
0.3	0.24	1.7	0.91	3.1	0.9981
0.4	0.31	1.8	0.93	3.2	0.9986
0.5	0.38	1.9	0.94	 3.3	0.9990
0.6	0.45	2.0	0.95	3.4	0.9993
0.7	0.51	2.1	0.964	3.5	0.9995
0.8	0.57	2.2	0.972	3.6	0.9997
0.9	0.63	2.3	0.978	3.7	0.9998
1.0	0.68	2.4	0.984	3.8	0.99986
1.1	0.73	2.5	0.988	3.9	0.99990

Как пользоваться функцией Ф(t)

Существует взаимно-однозначное соответствие:

$$2\Phi(t) = P \quad \Leftrightarrow \quad t = t(P)$$

С вероятностью P отклонение x от X не превышает $t(P) \cdot \sigma = x^*$

$$|x-X| < t(P) \cdot \sigma$$

Для определения вероятности нахождения члена выборки в интервале и для определения интервала по заданной вероятности **пользуются таблицами** интеграла ошибок.

Внимание! Таблицы могут отличаться по значениям в два раза!

- для
$$P$$
= $2\Phi(t)$ - и для $\Phi(t)$

Полезно помнить следующие интервалы и связанные сними вероятности:

$$\pm \sigma$$
 $P(t) = 0,683$
 $\pm 2\sigma$ $P(t) = 0,955$
 $\pm 3\sigma$ $P(t) = 0,997$

Стандартная ошибка среднего значения

С какой точностью найденное нами значение $\overline{\mathcal{X}}$ соответствует истинному значению X? Распределение значений $\overline{\mathcal{X}}$ вокруг X является также Гауссовым

$$f_1(x) = \frac{1}{S_x \sqrt{2\pi}} \cdot e^{-\frac{(X - \bar{x})^2}{2S_x^2}}$$

Со стандартным отклонением $S_{\scriptscriptstyle x}$:

$$S_{x} = \frac{\tilde{\sigma}}{\sqrt{n}} = \sqrt{\frac{\sum_{k=1}^{n} (\bar{x} - x_{k})^{2}}{n(n-1)}} = \sqrt{\frac{\sum_{k=1}^{n} x_{k}^{2} - n\bar{x}^{2}}{n(n-1)}}$$

Эта величина характеризует точность результата серии измерений.

Видно, что точность результата возрастает с увеличением числа измерений как

$$\frac{1}{\sqrt{n}}$$

Доверительная вероятность. Доверительный интервал.

Границы интервала $(\bar{x} - \varepsilon, \bar{x} + \varepsilon)$ который с заданной вероятностью P_x покрывает истинное значение X.

Для среднего значения, полученного из серии измерений \Longrightarrow с вероятностью P отклонение \bar{X} от X не превышает $\frac{t(P)\cdot\sigma}{\sqrt{n}}$

$$\left| \overline{x} - X \right| < t(P) \frac{\sigma}{\sqrt{n}}$$

Распределение Стьюдента

Количество членов выборки n – конечно.

Для малых n функция распределения ошибок зависит от n :

$$\left| \overline{x} - X \right| < t(P, \nu) \frac{\widetilde{\sigma}}{\sqrt{n}} = t(P, n-1) \cdot S_x$$

параметр v = n-1

Всегда $t(P) < t(P, \nu)$. При $n \to \infty$ \Longrightarrow равенство,

т. е. распределение Стьюдента переходит в Гауссово (нормальное)

Правила обработки прямого многократного измерения

- Провести многократные измерения не меняя условия эксперимента, записать результаты в таблицу.
- Рассчитать среднее значение по формуле $\bar{x} = \frac{1}{n} \sum_{k=1}^{n} x_k$ Вычислить эмпирический стандарт $\tilde{\sigma} = \sqrt{\frac{\sum_{k=1}^{n} (\bar{x} x_k)^2}{n-1} }$
- Вычислить среднеквадратичную ошибку среднего $S_x = \frac{\widetilde{\sigma}}{\sqrt{n}} = \sqrt{\frac{\sum_{k=1}^{n} (\overline{x} x_k)^2}{n(n-1)}}$
- В случае большой выборки, задавшись требуемым уровнем доверительной вероятности P по таблице функции ошибок определить t(P) и модуль доверительного интервала $\Delta x = S_x \cdot t(P)$
- Округлив результаты, записать ответ в виде:

 $X = \overline{x} \pm \Delta x$ при доверительной вероятности P

В случае малой выборки из *п* измерений

- Провести многократные измерения не меняя условия эксперимента, записать результаты в таблицу.

Рассчитать среднее значение по формуле
$$\bar{x} = \frac{1}{n} \sum_{k=1}^{n} x_k$$
Вычислить эмпирический стандарт $\bar{\sigma} = \sqrt{\frac{\sum_{k=1}^{n} (\bar{x} - x_k)^2}{n-1}}$
Вычислить среднеквадратичную ошибку среднего $S_x = \frac{\bar{\sigma}}{\sqrt{n}} = \sqrt{\frac{\sum_{k=1}^{n} (\bar{x} - x_k)^2}{n(n-1)}}$

- Задавшись требуемым уровнем доверительной вероятности P по таблице коэффициентов Стьюдента определить t(P, n-1) и модуль доверительного интервала $\Delta x = S_x \cdot t(P, \nu)$
- Округлив результаты, записать ответ в виде : $X=ar{\chi}\pm\Delta\chi$ при доверительной вероятности P

Коэффициент Стьюдента

Величины t для различных значений доверительного уровня P

n -1	P=68,3%	P=95%	P=99%	P=99,73%
(1)	(1.8)	(12.7)	(64)	(235)
2	1.32	4.70	9.9	19.2
3	1.20	3.18	5.8	9.2
4	1.15	2.78	4.6	6.6
5	1.11	2.57	4.0	5.5
6	1.09	2.45	3.7	4.9
7	1.08	2.37	3.5	4.5
8	1.07	2.31	3.4	4.3
9	1.06	2.26	3.2	4.1
10	1.05	2.23	3.2	4.0
15	1.03	2.13	3.0	3.6
20	1.03	2.09	2.8	3.4
30	1.02	2.04	2.8	3.3
50	1.01	2.01	2.7	3.2
100	1.00	1.98	2.6	3.1
200	1.00	1.97	2.6	3.0
предел	1.00	1.96	2.58	3.0

Рекомендуемая литература

- 1. Методы обработки экспериментальных данных: методические указания./ Составители Князев Б.А., Росляков Г.В./ Новосиб. ун-т.- Новосибирск, 1985.- 28 с.
- 2. Начала обработки экспериментальных данных: учебное пособие./ Составители Князев Б.А., Черкасский В.С. ./ Новосиб. ун-т.- Новосибирск, 1996.- 95 с.
- 3. Попов П.В., Нозик А.А. Обработка результатов учебного эксперимента. МФТИ. http://npm.mipt.ru/books/lab-intro/
- 4. Тейлор Дж. Введение в теорию ошибок. Пер. с англ.- М.: Мир, 1985.- 272 с.
- 5. Зайдель А.Н. Погрешности измерения физических величин. Ответственный редактор академик Ж. И. Алфёров. Л.: Наука, 1985.- 112 с.

Задача – эксперимент

- В конце лекции показывается эксперимент, который выглядит несколько необычно, как фокус
- Желающие могут попытаться найти объяснение, предложив физическую модель наблюдаемого явления
- На следующей лекции, кто посчитает нужным, может сдать свою версию объяснения на листочке бумаги
- Сдавать решения не обязательно
- Набравшие более трех полностью решенных задач могут получить автоматический зачет по ВТФЭ

