Mixed Analog-Digital VLSI Mini-Project II: 4-Bit Shift Register

Qingmu Deng

February 23, 2021

Project Links

Project Github: https://github.com/QingmuDeng/MADVLSI/tree/main/mini2
Project zip file: https://github.com/QingmuDeng/MADVLSI/blob/main/mini2/Deng-mini2.zip?raw=true

1 Background

The D flip-flop design in this project is inspired by the thesis work by Sivilotti. [Sivilotti91] One important aspect of the D flip-flop operation is the ratio between the strength ratio of the pull up/down transistors and that of the pass transistors. Too strong of a pass transistor could potentially propagate the behaviors of downstream flip-flops upstreams and result in set/reset issues. The equation of merit is

$$\frac{S_{Q_{pull}}}{S_{pass}} > \frac{(\phi - V_{Tn} - nV_A)}{2n(\phi - V_{Tn})V_A - n^2V_A^2} \tag{1}$$

where ϕ is the clock voltage, V_{Tn} the threshold voltage of the transistors, n the subthreshold slope factor, and V_A the voltage at the drain of the pass transistor. Plotting the righthand side equation against the clock voltage, while assuming $V_A = V_{Tn} = 0.52V$ and n = 1.4, gives us Figure 1. The

Figure 1: Minimal ratio of the pull/pass transistor strength ratio.

conclusion is that a ratio of 1 should work, as will be shown in the simulations of the next section. In actual D flip-flop design, we adopt the alternative schematic shown in Figure 2 for better schematic and layout symmetry.

Figure 2: Alternative CSRL Design to be used in the rest of the project.

2 Schematic Capture and Simulation

To design a rising-edge triggered complementary set-reset logic D flip-flop, I joined two set-reset latches that are inverted version of one another. The layout driven schematic of this design is shown in Figure 3. The strength ratio of the pull up/down transistor to that of the pass transistor is chosen to be 1, because it not only provides a consistent transistor size for subsequent layout but has been proven to work in Figure 5. Similar tests were performed with hierarchical schematics shown in Figure 6.

Next, I daisy-chained four D flip-flop together to form a 4-bit shift register as shown in Figure 7. I also created the test harness in Figure 8 to validate the functionality of the shift register. The results in Figure 9 shows that the shift register is capable of shifting a bit through the entire device without glitches.

(a) Rising-edge D flip-flop symbol created in Xschem.

(b) D flip-flop layout-driven schematic created in Xschem.

Figure 3: D flip-flop design in Xschem.

Figure 4: D flip-flop strength ratio test harness created in Xschem.

Figure 5: Pull up/down-to-Pass ratio test result for a ratio of 1.

Figure 6: D flip-flop function test harness created in Xschem.

Figure 7: NAND2 schematic created in Xschem.

Figure 8: D flip-flop function test harness created in Xschem.

Figure 9: D flip-flop function test harness created in Xschem.

3 Layout Design

To begin with, I laid out my D flip-flop design in Magic. As shown in Figure 10, a **standalone** cell has the following dimensions.

• Width: $3.40~\mu\mathrm{m}$ • Height: $9.90~\mu\mathrm{m}$

However, the standalone cell include extra *nwell* region necessary for meeting the DRC at the cell level. When abutting adjecent cells together to form a shift register, individual D flip-flop are allowed to overlap, resulting in the following **effective** dimensions.

• Width: $3.15 \mu m$ • Height: $9.90 \mu m$

Figure 11 shows such a design. The overall size of the shift register without inverter is

• Width: $12.85 \mu m$ • Height: $9.90 \mu m$

To allow for the accommodation of the shift register design for digital data whose inverse is not readily available, Figure 12 shows a design with inverter staged before the first D flip-flop to generate the inverse signal for input. The overall size of the design with an inverter is

• Width: $14.35 \mu m$ • Height: $9.90 \mu m$

. There are no design rule violations.

Figure 10: Magic layout of the D flip-flop.

Figure 11: Magic layout of the shift register by abutting four D flip-flops.

Figure 12: Magic layout of the shift register with inverter.

4 Layout versus Schematic

Finally, I performed Layout-versus-Schematic comparison at all levels of the shift register. There are three listings below:

- 1. Layout versus Schematic for D Flip Flop
- 2. Layout versus Schematic for Shift Register without Inverter
- 3. Layout versus Schematic for Shift Register with Inverter

Listing 1: Layout versus Schematic for D Flip Flop

Equate elements: no current cell. Equate elements: no current cell.

Subcircuit summary:

Circuit 1: layout/dff_lvs.spice	Circuit 2: schem/dff_lvs.spice
sky130_fd_prpfet_01v8 (8)	sky130_fd_prpfet_01v8 (8)
sky130_fd_prnfet_01v8 (8)	sky130_fd_prnfet_01v8 (8)
Number of devices: 16	Number of devices: 16
Number of nets: 13	Number of nets: 13

Resolving automorphisms by property value.

Resolving automorphisms by pin name.

Netlists match uniquely.

Circuits match correctly.

Cells have no pins; pin matching not needed.

 $Device\ classes\ layout/dff_lvs.spice\ and\ schem/dff_lvs.spice\ are\ equivalent.$

Circuits match uniquely.

Listing 2: Layout versus Schematic for 4-bit Shift Register

Equate elements: no current cell. Equate elements: no current cell.

Subcircuit summary:

Circuit 1: dff	Circuit 2: dff
sky130_fd_prpfet_01v8 (8)	sky130_fd_prpfet_01v8 (8)
sky130_fd_prnfet_01v8 (8)	sky130_fd_prnfet_01v8 (8)
Number of devices: 16	Number of devices: 16
Number of nets: 13	Number of nets: 13

Resolving automorphisms by property value.

Resolving automorphisms by pin name.

Netlists match uniquely.

Circuits match correctly.

Subcircuit pins:

Circuit 1: dff	Circuit 2: dff
	_
nD	nD
D	D
CLK	CLK
VN	GND **Mismatch**
VP	VDD **Mismatch**
Q	Q
nQ	nQ

Cell pin lists are equivalent.

Device classes dff and dff are equivalent.

Subcircuit summary:

Circuit 1: layout/shiftreg_4_lvs.spice	Circuit 2: schem/shiftreg_4_lvs.spice
dff (4) Number of devices: 4 Number of nets: 13	dff (4) Number of devices: 4 Number of nets: 13

Circuits match uniquely.

Netlists match uniquely.

Cells have no pins; pin matching not needed.

Device classes layout/shiftreg_4_lvs.spice and

schem/shiftreg_4_lvs.spice are equivalent.

Circuits match uniquely.

Listing 3: Layout versus Schematic for 4-bit Shift Register with Inverter

Flattening unmatched subcell shiftreg₋₄ in circuit layout/sreg.spice (0)(1 instance)

Equate elements: no current cell. Equate elements: no current cell.

Subcircuit summary:

Circuit 1: dff	Circuit 2: dff
sky130_fd_prpfet_01v8 (8) sky130_fd_prnfet_01v8 (8)	sky130_fd_prpfet_01v8 (8) sky130_fd_prnfet_01v8 (8)
Number of devices: 16	Number of devices: 16
Number of nets: 13	Number of nets: 13

Resolving automorphisms by property value.

Resolving automorphisms by pin name.

Netlists match uniquely.

Circuits match correctly.

Subcircuit pins:

Circuit 1: dff	Circuit 2: dff
nD D CLK VN VP Q nQ	nD D CLK GND **Mismatch** VDD **Mismatch** Q nQ
Cell pin lists are equivalent. Device classes dff and dff are equivalent. Cell inverter disconnected node: CLK	
Subcircuit summary: Circuit 1: inverter	Circuit 2: inverter

$sky130_fd_pr_nfet_01v8$ (1)	$ sky130_fd_pr_nfet_01v8 $ (1)
$sky130_fd_pr_pfet_01v8$ (1)	$ sky130_fd_pr_pfet_01v8 $ (1)
Number of devices: 2	Number of devices: 2
Number of nets: 4	Number of nets: 4

Circuits match uniquely. Netlists match uniquely.

Subcircuit pins:

	Circuit 1: inverter	Circuit 2: inverter
	nD	Y **Mismatch**
	D	A **Mismatch**
-	VP	VP
7	VN	VN

Cell pin lists are equivalent.

Device classes inverter and inverter are equivalent.

Subcircuit summary:

Circuit 1: layout/sreg.spice	Circuit 2: schem/sreg_lvs.spice
inverter (1)	inverter (1)
dff (4)	dff (4)
Number of devices: 5	Number of devices: 5
Number of nets: 13	Number of nets: 13

Circuits match uniquely.

Netlists match uniquely.

Cells have no pins; pin matching not needed.

Device classes layout/sreg.spice and schem/sreg_lvs.spice are equivalent. Circuits match uniquely.