COL100: Introduction to Computer Science

3.1: Recursion and induction

Problem: Given a nonzero real $x \in \mathbb{R}$ and a natural number $n \in \mathbb{N}$, compute x^n .

$$power(x, n) = \begin{cases} 1 & \text{if } n = 0, \\ x \cdot power(x, n - 1) & \text{otherwise.} \end{cases}$$

= 0.008

$$power(x, n) = \begin{cases} 1 & \text{if } n = 0, \\ x \cdot power(x, n - 1) & \text{otherwise.} \end{cases}$$

- 1. Does this algorithm always terminate?
 - Yes, *n* decreases by 1 on each recursive step.
- 2. Does it give the correct result for all *x* and *n*?
 - •

$$fastPower(x, n) = \begin{cases} 1 & \text{if } n = 0, \\ fastPower(x^2, \lfloor n/2 \rfloor) & \text{if } n \text{ is even,} \\ x \cdot fastPower(x^2, \lfloor n/2 \rfloor) & \text{if } n \text{ is odd.} \end{cases}$$

What about this version? Does *it* always give the correct result? How can we prove that?

The principle of mathematical induction

How to prove a statement about infinitely many numbers? e.g.

"Prove that $n^3 + 2n$ is divisible by 3 for all $n \in \mathbb{N}$."

Write an infinitely long proof? Prove that $0^3 + 2 \cdot 0$ is divisible by 3, and that $1^3 + 2 \cdot 1$ is divisible by 3, and $2^3 + 2 \cdot 2$ is divisible by 3, and...

The principle of mathematical induction **Version 1**

A property P holds for all natural numbers, provided

- 1. (base case:) P holds for 0, and
- 2. (induction step:) if P holds for an arbitrary $n \in \mathbb{N}$, then it also holds for n + 1.

Example: Prove that $1 + 2 + \cdots + n = n (n + 1)/2$.

Base case: For n = 0, we have 0 on the left and $0 \cdot 1/2 = 0$ on the right.

Induction step: Assume $1+2+\cdots+n=n$ (n+1)/2 (induction hypothesis). We have to show that $1+2+\cdots+n+(n+1)=(n+1)$ (n+2)/2.

$$1 + 2 + \cdots + n + (n + 1)$$

= $n (n + 1)/2 + (n + 1)$
= $(n + 1) (n + 2)/2$.

By induction, the result follows.

Example: Prove that $n^3 + 2n$ is divisible by 3 for all $n \in \mathbb{N}$.

Base case: Prove that $0^3 + 2 \cdot 0$ is divisible by 3.

Induction step: Assume that $n^3 + 2n$ is divisible by 3. Prove that $(n + 1)^3 + 2(n + 1)$ is divisible by 3.

Complete this proof yourself.

Correctness of power

We want to prove that $power(x, n) = x^n$ for all nonzero $x \in \mathbb{R}$ and all $n \in \mathbb{N}$.

Here x^n is the correct mathematical definition,

$$x^n = \underbrace{x \cdot x \cdots x}_{n \text{ times}}$$

power(x, n) is the function we have defined,

$$power(x, n) = \begin{cases} 1 & \text{if } n = 0, \\ x \cdot power(x, n - 1) & \text{otherwise.} \end{cases}$$

To prove: $power(x, n) = x^n$ for all nonzero $x \in \mathbb{R}$ and all $n \in \mathbb{N}$.

Proof by induction on *n*.

Base case: $power(x, 0) = 1 = x^0$ for all nonzero $x \in \mathbb{R}$.

Induction step: Assume power(x, n) = x^n .

$$power(x, n+1)$$

$$= x \cdot power(x, n)$$

$$= x \cdot x^{n}$$

$$= x^{n+1}.$$

Exercise: Prove using induction that if a line of unit length is given, then a line of length \sqrt{n} can be constructed using a *straightedge and compass* for any positive integer n.

Exercise: Prove that the factorial function defined in the last class is correct: factorial(n) = n! for all $n \in \mathbb{N}$.