- 1. Rappeler la valeur de $R_3 = \sum_{k=0}^{n} k^3$ en fonction de $n \in \mathbb{N}$
- 2. Soit $k \in \mathbb{N}$, développer $(k+1)^5 k^5$.
- 3. A l'aide de la somme téléscopique $\sum_{k=0}^n (k+1)^5 k^5$ donner la valeur de $R_4 = \sum_{k=0} k^4$ en fonction de $n \in \mathbb{N}$. (On pourra garder une formule développée, malgré ce que j'ai pu dire en classe...)
- 4. Soit $x \in \mathbb{N}$, on note $R_x(n) = \sum_{k=0}^n k^x$ Ecrire une fonction Python qui prend en paramètre $n \in \mathbb{N}$ et $x \in \mathbb{N}$ et rend la valeur de $R_x(n)$
- 5. Soit $x \in \mathbb{N}$, on note $R_x(n) = \sum_{k=0} k^x$. Ecrire une fonction Python qui prend en paramètre $n \in \mathbb{N}$ et $x \in \mathbb{N}$, qui affiche un message d'erreur si x n'est pas un entier positif et rend la valeur de $R_x(n)$ sinon.
- 6. Montrer que les suites $a_n = \sum_{i=1}^n \frac{1}{k^2}$ et $b_n = a_n + \frac{1}{n}$ sont adjacentes.
- 7. Ecrire une fonction Python qui prend en paramètre e > 0 et qui rend le premier rang $n_0 \in \mathbb{N}$ tel que $|a_{n_0} b_{n_0}| \le e$ et la valeur de a_{n_0}