	TP1 SAD - Blanchon Vasapolli	Pt		A B C D	Note	
ı	Préparation du travail					
1	Compléter le schéma TI avec l'instrumentation et les liaisons nécessaires à la conception de la boucle de régulation.	2,0	Α		2	
2	Quel est le nom de la grandeur réglée ?	0,5	Α		0,5	
3	Quel est le principe utilisé pour mesurer la grandeur réglée ?	0,5	Α		0,5	
4	Quelle est la grandeur réglante ?	0,5	Α		0,5	
5	Donner une grandeur perturbatrice.	0,5	В		0,375	
6	Etablir le schéma de câblage complet en tenant compte de la nature des signaux utilisés. Prévoir les convertisseurs, alimentations, générateurs nécessaires. Faire apparaître les polarités.	1,0	Α		1	
II.	Etude du procédé					
1	Paramétrer les entrées-sorties de votre régulateur en fonction de la nature des signaux utilisés.	1,0	Α		1	
2	Tracer la caractéristique statique de votre procédé. On prendra au moins 6 mesures (3 pour les régulations de température et niveau).	1,0	Α		1	
3	En déduire le gain statique du procédé autour du point de fonctionnement.	1,0	Α		1	
4	En déduire le sens d'action à régler sur le régulateur.	1,0	В		0,75	Mettre la phrase dans le bon sens.
5	Déterminer le modèle de Broïda du procédé, en faisant un échelon de 10% autour du point de fonctionnement.	3,0	Α		3	
III.	Etude du régulateur					
1	Déterminer la structure interne (parallèle, série ou mixte) du correcteur PID utilisé par Lintools.	1,5	Α		1,5	
2	En déduire le réglage du régulateur en utilisant le tableau de réglage fourni dans le cours.	1,5	Α		1,5	
IV.	Performances et optimisation					
1	Programmer votre régulateur pour assurer le fonctionnement de la régulation.	1	Α		1	
2	Mesurer les performances de votre régulation en réponse à un échelon de consigne de 10%. On mesurera le temps de réponse à 10%, la valeur du premier dépassement et la précision relative.	1,5	В		1,125	
3	Améliorer votre réglage pour réduire au maximum la valeur du temps de réponse. On donnera le nom et la valeur des paramètres modifiés.	1	Α		1	
4	Mesurer à nouveau les performances de votre régulation, comparer les avec celles obtenues à la question précédente.	1,5	Α		1,5	
			Not	e sur : 20	19,3	

I. Préparation du travail

1)

- 2) La pression du réservoir
- Le principe utilisé est le capteur PT, il mesure la déformation de ces membranes.
- 4) la grandeur réglante est le débit d'entrée.
- 5) Une grandeur perturbatrice peut être l'ouverture de la Ve.

II. Etude du procédé

1-

Tagliame	01M01_06		LIN Name	01M01_06	
Туре	AI_UIO		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
			-		
MODE	AUTO		Alarms		
Fallback	AUTO		Node	>00	
			Sitello	1	
PV	0.0	%	Channel	1	
HR	100.0	%	InType	mA	
LR	0.0	%	HR_in	20.00	mA
LK	0.0	/0	LR_in	4.00	mA
HiHi	100.0	%	AI	0.00	mA
Hi	100.0	%	Res	0.000	Ohms
Lo	0.0	%			
LoLo	0.0	%	CJ_type	Auto	
Hyst	0.5000	%	CJ_temp	0.000	
			LeadRes	0.000	Ohms
Filter	0.000	Secs	Emissiv	1.000	
Char	Linear		Delay	0.000	Secs
UserChar	Lilical		Delay	0.000	3603
userchar			CDI-	I II-	
DV - 67 4	0.000	0/	SBreak	Up	
PVoffset	0.000	%	PVErrAct	Up	
Alm0nTim	0.000	Secs	Options	>0000	
Alm0fTim	0.000	Secs	Status	>0000	

FagHame -	02P01_06		LINN	lame	02P01_06	
Туре	AO_UIO		DBas	e	<local></local>	
Task	3 (110ms)		Rate		0	
MODE	AUTO		Alarn	ns		
Fallback	AUTO		Node	;	>00	
			Sitell	lo	2	
OP	0.0	%	Chan	nel	1	
HR	100.0	%	OutT	уре	mA	
LR	0.0	%	HR_o	ut	20.00	mA
			LR_o	ut	4.00	mA
Out	0.0	%	A0		0.00	mA
Track	0.0	%				
Trim	0.000	mA	Optio	ons	>0000	
			Statu	IS	>0000	

2)

X	Y
0	0
20	3,7
40	42,6
60	58,1
80	62,1
100	62,6

3- Le gain statique $K = \Delta S/\Delta E = 62,6-3,7/100-20 = 0,74$

$$K = 0,74$$

4) procédé direct car quand on augmente <u>PV, OP augmente</u>. Donc régulateur inverse

T0=8,5sec

$$\begin{split} &K=0.74\\ &40\% \text{ de } X=3.68\% &T2=16\text{sec}\\ &28\% \text{ de } X=2.57\% &T1=14\text{sec}\\ &T=2.8\ (14\text{-}8.5)\text{-}1.8(16\text{-}8.5)\\ &T=1.9\text{s}\\ &To=5.5(16\text{-}14)\\ &To=11\text{s}\\ &H(p)=(1\text{*}e^{-1.9p})/(1\text{+}11p) \end{split}$$

III. Etude du régulateur

1)

T0=42min57,5sec

Delta = 50-30 =20% A=0,5=100/200

Ti=43min5sec-42min57,5= 7,5sec

```
AxDelta = 0,5*20= 10= Deltap et Delta i donc structure mixte

2)
kr = T/to = 1,9/11= 0,17(On prend PI)
A= 100/XP = 0,8/0,74*0,17 = 6,36 XP=100/6,36=15,72%
Ti= 1,25*0,75*1,9= 1,78sec
Td=0sec
```

IV. Performances et optimisation

1)

XP=15,72% Ti= 1,78sec Td=0sec

le système met du temps a se stabiliser.

3) Il faut augmenter Xp pour diminuer le temps de reponse et on augmente un peu Ti

TagName	bison		LIN Name	bison	
Туре	PID		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
Mode	AUTO		Alarms		
FallBack	AUTO				
			HAA	100.0	%
→PV	60.3	%	LAA	0.0	%
SP	60.0	%	HDA	100.0	%
OP	62.8	%	LDA	100.0	%
SL	60.0	%			
TrimSP	0.0	%	TimeBase	Secs	
RemoteSP	0.0	%	ΧР	100.0	%
Track	0.0	%	TI	3.00	
			TD	0.00	
HR_SP	100.0	%			
LR_SP	0.0	%	Options	00101100	
HL_SP	100.0	%	SelMode	00000000	
LL_SP	0.0	%			
			ModeSel	00010001	
HR_OP	100.0	%	ModeAct	00010001	
LR_OP	0.0	%			
HL_OP	100.0	%	FF_PID	50.0	%
LL_OP	0.0	%	FB_OP	62.8	%

T0=36sec T1=58sec

100%=10% 95%=9,5% 105%=10,5% T=T1-T0=58-36=22sec

Il n'y a pas de depassement x=W Pas d'erreur statique = 0