Л. Йовков

НПМГ "Акад. Л. Чакалов"

28. 03. 2020

Нека \boldsymbol{a} е дадена права и α е дадена равнина. Знаем, че ако \boldsymbol{a} не лежи в α и не е успоредна на нея, то \boldsymbol{a} има само една обща точка с α . Тази точка се нарича пробод на правата с равнината (вж. фигура 1).

Фигура 1: Пресичащи се права и равнина

І. ПРАВА, УСПОРЕДНА НА РАВНИНА

Въвеждаме следното определение.

Дефиниция 1

Права и равнина се наричат успоредни, ако нямат общи точки.

Ако правата \boldsymbol{a} е успоредна на равнината α , пишем $\boldsymbol{a} \parallel \alpha$ (вж. фигура 2).

Фигура 2: Права, успоредна на равнина

Теорема 1

Ако права, нележаща в една равнина, е успоредна на някоя права в равнината, то правата и равнината са успоредни.

Доказателство 1

Нека $a \notin \alpha$, $b \in \alpha$, $b \parallel a$. Нека още $\beta = (a; b)$. Тогава $\alpha \cap \beta = b$. Допускаме, че $a \cap \alpha = A$. Тогава:

$$A \in a, a \in \beta \Rightarrow A \in \beta;$$

 $A \in \beta, A \in \alpha \Rightarrow A \in (\alpha \cap \beta);$
 $A \in (\alpha \cap \beta), \alpha \cap \beta = b \Rightarrow A \in b.$

Оттук $a \cap b = A$ — противоречие.

Фигура 3: Критерий за успоредност на права и равнина

Вярна е и обратната теорема:

Теорема 2

Ако права и равнина са успоредни, то в равнината съществува права, успоредна на дадената права.

В сила е следната теорема (без доказателство, вж фигура 3).

Теорема 3

Ако права и равнина са успоредни, пресечницата на всяка равнина, минаваща през правата, с дадената равнина е права, успоредна на дадената права.

На фигура 3 $\boldsymbol{a} \parallel \alpha$ и $\boldsymbol{a} \in \beta$. Пресечницата на равнините α и β е правата \boldsymbol{b} . Тогава $\boldsymbol{a} \parallel \boldsymbol{b}$.

Следствие 1

Ако права е успоредна на равнина и през точка от равнината прекараме права, успоредна на дадената, то втората права лежи в равнината.

Много важна и често използвана е следната

Теорема 4

Ако права е успоредна на две пресичащи се равнини, то тя е успоредна на тяхната пресечница.

Геометричният смисъл е показан на фигура 4.

На фигура 4 е даден правоъгълният паралелепипед *ABCDA*₁*B*₁*C*₁*D*₁. Имаме:

$$A_1B_1 \parallel AB$$
, $AB \in \alpha \Rightarrow A_1B_1 \parallel \alpha$;
 $A_1B_1 \parallel C_1D_1$, $C_1D_1 \in \beta \Rightarrow A_1B_1 \parallel \beta$.

Така получаваме, че правата A_1B_1 е успоредна едновременно на двете пресичащи се равнини α и β , значи е успоредна на тяхната пресечница. Понеже $\alpha \cap \beta = CD$, то по теорема $A_1B_1 \parallel CD$, което се и очаква.

Фигура 4: Права, успоредна на две пресичащи се равнини

Доста често използвана е и следната

Теорема 5

Ако една равнина пресича две равнини и е успоредна на тяхната пресечница, то пресечниците и́ с двете равнини са успоредни прави.

По означенията на фигура 5:

$$\alpha \cap \beta = CD; \quad \gamma = (ABC_1D_1);$$
 $\gamma \cap \alpha = AB, \quad \gamma \cap \beta = C_1D_1;$
 $CD \parallel \gamma \Rightarrow (\gamma \cap \alpha) \parallel (\gamma \cap \beta)$
 $\Rightarrow AB \parallel C_1D_1.$

Фигура 5: Успоредни пресечници

Както се вижда от чертежа, $AB \parallel CD \parallel C_1D_1$. Следователно е вярна следната

Теорема 6

Ако две прави в пространството са поотделно успоредни на трета права, то те са успоредни помежду си.

Да разгледаме един пример с приложение на споменатите вече теореми.

Пример 1

Даден е куб $ABCDA_1B_1C_1D_1$ с ръб a. Точка M е среда на ръба C_1D_1 . Равнината, определена от точките A, C и M, пресича ръба A_1D_1 в точка N. Да се намери периметърът на четириъгълника ACMN.

Решение 1

1. Нека $\gamma = (ACM)$. Тогава пресечниците на γ съответно с равнините (АВСО) и (CC_1D_1D) са правите AC и СМ. Ще намерим пресечниците на γ със стените $A_1B_1C_1D_1$ и ADD_1A_1 . Нека $\gamma \cap A_1 D_1 = N$. 2. Понеже *AC* ∥ *A*₁ *C*₁ и $AC \in \gamma$, то по теорема 1 имаме $A_1C_1 \parallel \gamma$. Освен това $\gamma \cap (A_1 B_1 C_1 D_1) = MN$ и от $A_1C_1 \parallel \gamma$ по теорема 3 имаме *MN* ∥ *A*₁ *C*₁. Така т. *N* е средата на ръба A_1D_1 .

- 3. Понеже $\triangle CC_1M \simeq \triangle AA_1N$, то AN = CM. Така четириъгълникът ACMN е равнобедрен трапец.
- 4. Остана да пресметнем дължините на страните му. С Питагорова теорема намираме

$$AC = A_1 C_1 = a\sqrt{2}, MN = \frac{a\sqrt{2}}{2}$$
и $CM = AN = \frac{a\sqrt{5}}{2}$.

Окончателно търсеният периметър е

$$P_{ACMN} = a \frac{3\sqrt{2} + 2\sqrt{5}}{2}. \quad \Box$$

Пример 2

Даден е куб $ABCDA_1B_1C_1D_1$. Точките O_1 и O_2 са съответно центровете на квадратите ABB_1A_1 и BCC_1B_1 . Докажете, че правата O_1O_2 е успоредна на равнината (ABCD).

Решение 2

В $\triangle AB_1C$ отсечката O_1O_2 е средна отсечка, следователно $O_1O_2 \parallel AC$. Но $AC \in (ABCD)$. Тогава по теорема 1 веднага получаваме $O_1O_2 \parallel (ABCD)$. \square

Пример 3

Дадена е триъгълна пирамида *ABCD*, в която *AD* = *DB*. Точките *P* и *Q* от ръбовете *AC* и *BC* са такива, че *DP* и *DQ* са ъглополовящите на ъглите *ADC* и *BDC*. Да се докаже, че правата *PQ* е успоредна на равнината *ABD*.

Решение 3

Да означим *AD* = *DB* = *a*, *CD* = *b* и да разгледаме *AACD*.

Понеже в него DP е ъглополовяща, то по свойството на ъглополовящата DA PA имаме $\overline{DC} = \overline{PC} = \overline{b}$, откъдето AP = ax, $\tilde{C}P = bx$. Аналогично получаваме BQ = ay, CQ = by. Сега в $\triangle ABC$ е изпълнено CP CQ b $\frac{1}{PA} = \frac{1}{QB} = \frac{1}{a}$ и по теоремата на Талес $PQ \parallel AB$. Но $AB \in (ABD)$, следователно $PQ \parallel (ABD)$, което и трябваше да се докаже. 🗆

ІІ. ПРАВА, ПЕРПЕНДИКУЛЯРНА НА РАВНИНА

Да разгледаме куба, изобразен на фигура 6. Правата AA_1 е перпендикулярна едновременно на правите AB и AD. Обаче AB и AD задават равнината (ABCD), следователно $AA_1 \perp (ABCD)$.

Теорема 7

Ако права е перпендикулярна на две пресичащи се прави от една равнина, то тя е перпендикулярна на равнината.

Фигура 6: Перпендикулярност на права и равнина

Въвеждаме следната

Дефиниция 2

Казваме, че правата \boldsymbol{a} е перпендикулярна на равнината α , ако е перпендикулярна на всяка права от α .

Тогава е ясно, че ъгълът между правата \boldsymbol{a} и коя да е права \boldsymbol{m} от α (независимо дали \boldsymbol{a} пресича \boldsymbol{m} , или е кръстосана с нея) ще бъде прав:

$$\mathbf{a}\perp\alpha$$
, $\mathbf{m}\in\alpha\Rightarrow\measuredangle(\mathbf{a};\mathbf{m})=\mathbf{90}^{\circ}$.

Следствие 2

Ако права и равнина са перпендикулярни, всяка права, успоредна на дадената права, е перпендикулярна на равнината.

По означенията на фигура 6: $AA_1 \perp (ABCD)$, $CC_1 \parallel AA_1 \Rightarrow CC_1 \perp (ABCD)$.

В практиката често се използват и следващите теореми, които ще дадем без доказателство.

Теорема 8

През дадена точка съществува единствена права, перпендикулярна на дадена равнина.

Теорема 9

Ако две прави са перпендикулярни на една и съща равнина, то те са успоредни помежду си.

От фигура 6: $AB \perp (BCC_1B_1)$, $A_1B_1 \perp (BCC_1B_1) \Rightarrow AB \parallel A_1B_1$.

Пример 4

Дадена е триъгълна пирамида *ABCD*, на която всички ръбове са равни. Да се докаже, че *AD*⊥*BC*.

Решение 4

Нека точка M е среда на ръба BC. Понеже стените са равностранни триъгълници, то $BC\bot AM$ и $BC\bot DM$. Но AM, $DM \in (AMD)$, откъдето по теорема 7 $BC\bot (AMD)$. Накрая, тъй като $AD \in (AMD)$, то $BC\bot AD$.

Пример 5

Основата на триъгълна пирамида **АВСО** е правоъгълен триъгълник АВС с хипотенуза *АВ* и катет BC = 12. Околните ръбове *DA* и **DC** са равни. Разстоянията от върха D до средите на ACи AB са равни на 5. Ако H е петата на перпендикуляра, спуснат от върха D до равнината на основата на пирамидата, да се намери дължината на **DH**.

Решение 5

$$\triangle ABC \Rightarrow MN = 6$$

2.
$$DA = DC \Rightarrow DM \perp AC$$
 (1)

3.
$$\angle C = 90^{\circ}$$
, $MN \parallel AB \Rightarrow MN \perp AC$ (2)

$$(1), (2) \Rightarrow AC \perp (MND)$$

$$AC \in (ABC)$$
, to $AC \perp DH$,

откъдето
$$DH \in (MND)$$

$$\Rightarrow H \in MN$$
.

$$\Rightarrow HM = HN = 3$$

6.
$$\angle MHD = 90^{\circ} \Rightarrow$$

$$MH^2 + DH^2 = DM^2$$

$$\Rightarrow DH = 4\Box$$

Задача 1

Дадена е правилна четириъгълна пирамида ABCDQ с връх Q и $AC\bot BD = O$. Докажете, че $QO\bot (ABCD)$.

Задача 2

Даден е правоъгълен $\triangle ABC$ с катети AC=a и $BC=a\sqrt{3}$. Отсечката CD=2a е перпендикулярна на катетите. Намерете разстоянието от точка D до средата на хипотенузата.

Задача 3

Върху ръбовете AB и A_1B_1 на куба $ABCDA_1B_1C_1D_1$ да избрани точки Q и P, такива, че $AQ:QB=A_1P:PB_1=1:2$. Докажете, че четириъгълникът QDD_1P е правоъгълник, и намерете лицето му, ако дължината на ръба на куба е a.

Задача 4

Дадена е триъгълна пирамида ABCD, в която AC = BC = 7, $AB = 4\sqrt{6}$, $DA = DB = 2\sqrt{10}$ и DC = 3. Намерете дължината на перпендикуляра, спуснат от точка D към равнината (ABC).

Задача 5

Основата ABCD на четириъгълна пирамида ABCDM е правоъгълник и MA = MB = MC = MD = 10, AB = 8, BC = 6. Намерете дължината на перпендикуляра, спуснат от точка M към основата на пирамидата.

Задача 6

В правилен тетраедър всичките ръбове имат дължина 3. Намерете разстоянието от връх на тетраедъра до срещуположната стена.

Задача 7

В правилна триъгълна призма $ABCA_1B_1C_1$ ръбовете AB и AA_1 имат дължини съответно 4 и 3. Ако M е средата на AC, а N — на BC, намерете разстоянието между точката A и равнината (C_1MN) .

Задача 8

Даден е правоътълен паралелепипед $ABCDA_1B_1C_1D_1$ с ръбове AB=20, BC=15 и $AA_1=5$. Намерете разстоянието от точка C до равнината (DBC_1) .

Задача 9

Даден е куб $ABCDA_1B_1C_1D_1$ с ръб 1. Намерете разстоянието от точка A до равнината (DMD_1) , където M е средата на AB.

Задача 10

Основата на четириъгълна пирамида ABCDV е правоъгълник ABCD, за който AB=4 и BC=3. Ръбът $DV \perp (ABC)$ и DV=4. Намерете разстоянието от точка D до равнината (ACV).

Задача 11

Дадена е триъгълна пирамида ABCD, за която $\angle ACB = 120^{\circ}$, $BC = 2\sqrt{3}$, ръбът BD е перпендикулярен на равнината (ABC) и BD = 3. Да се намери разстоянието от точка B до равнината (ACD).

Задача 12

Намерете разстоянието между правите CB_1 и AD_1 в куба $ABCDA_1B_1C_1D_1$ с дължина на ръба a.