Problem 5

I.

Suppose that the potential in an one-dimensional space along the x-axis is given as V(x) = 0 for Region A (x < 0) and $V(x) = V_0$ ($V_0 > 0$) for Region B ($x \ge 0$), as shown in Fig. 1. Also suppose a wave function $\Psi(x,t) = \phi(x)e^{-i\omega t}$ for a particle with mass m in this space. Here, i is the imaginary unit, ω is the angular frequency and t is time. $\phi(x)$ is given as a solution of the time-independent Schrödinger equation:

$$\left\{-\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + V(x)\right\}\phi(x) = E\phi(x),\tag{1}$$

where E (E > 0) is the energy of this particle and \hbar is the reduced Planck constant (given by the Planck constant divided by 2π). Answer the following questions.

(1) Prove that a general solution of Eq. (i) in Region A is given by the following equation (ii) with arbitrary constants C_1 and C_2 . In addition, give an expression for α , where α is a positive real number.

$$\phi(x) = C_1 e^{-i\alpha x} + C_2 e^{i\alpha x}.$$
 (ii)

(2) Give a general solution of $\phi(x)$ in Region B satisfying Eq. (i) when $E < V_0$.

Next, suppose that the particle in Region A moves towards the positive direction in the x-axis. Consider the reflection of this particle by the potential interface existing at x = 0, and the penetration of the particle into Region B.

- (3) Suppose that the wave function of the injected particle is given by $\Psi_{\rm in}(x,t) = \phi_{\rm in}(x)e^{-i\omega t}$, choose an appropriate term for $\phi_{\rm in}(x)$ from the two terms in the right side of Eq. (ii), and briefly describe the reason why.
- (4) Explain the boundary conditions for $\phi(x)$ and $\frac{d}{dx}\phi(x)$ which must be satisfied at the interface at x=0.
- (5) When the energy E of the injected particle is equal to $\frac{V_0}{2}$, give an expression for C_1 using C_2 . Then, choose the correct statement from the following: (a) $|C_1| > |C_2|$, (b) $|C_1| = |C_2|$, or (c) $|C_1| < |C_2|$.
- (6) Under the same conditions as Question (5), and when the wave function of the particle in Region B is given by $\Psi_{\rm B}(x,t) = \phi_{\rm B}(x)e^{-i\omega t}$, show that $|\phi_{\rm B}(0)|$ is larger than $|\phi_{\rm in}(x)|$. In addition, explain the reason why this relationship does not conflict with the energy conservation law for the energy transport by this particle, in about 3 lines.

Fig. 1

II.

Consider a semiconductor, in which the bandgap $E_{\rm g}$ is 1.0 eV, the effective masses $m_{\rm e}$ and $m_{\rm h}$ of an electron in the conduction band and a hole in the valence band are $0.10m_0$ and $0.30m_0$ (m_0 is the mass of a free electron in a vacuum), respectively, and the relative dielectric constant ε_r is 10. Also suppose that impurities which become monovalent ions are doped in this semiconductor to make it a n-type semiconductor, and that such impurities create an impurity level at $E_{\rm imp}$ near the bottom of the conduction band, as shown in Fig. 2. Answer the following questions.

- (1) Give the sign of charge of the impurity ionized in the semiconductor.
- (2) For an absolute temperature T, the free carrier density ρ varies with respect to 1/T, as shown in Fig. 3. For the points labeled (a) and (b) in Fig. 3, choose the most appropriate Fermi level positions from V to Z in Fig. 2, and describe the reason why, in about 3 lines each. You may omit the temperature dependence of E_g .
- (3) Around the point labeled (c) in Fig. 3, the free carrier density ρ is almost independent of temperature. Describe the reason for this, in about 3 lines.
- (4) In a hydrogen atom, an electron with a negative single charge is bound by an atomic nucleus with a positive single charge. In the hydrogen atomic model, the ground state energy E_1 and the Bohr radius a_B are given by

$$E_1 = -\frac{e^2}{2(4\pi\epsilon_0)a_{\rm B}} \cong -14 \text{ [eV]} \text{ and}$$

 $a_{\rm B} = \frac{\epsilon_0 h^2}{\pi m_0 e^2} \cong 0.053 \text{ [nm]},$

where e, ε_0 and h are the elementary charge, the dielectric constant of vacuum and the Planck constant, respectively. Based on this hydrogen atomic model, obtain approximate values of the ionization energy $\Delta E_{\rm imp}$ and the effective Bohr radius $a_{\rm B}^*$ for the present impurity.

- (5) Choose the most appropriate point from (a) to (c) in Fig. 3 which corresponds to the situation at room temperature (300 K), and describe the reason why, using values of the Boltzman constant $k_{\rm B} \ (\cong 1.4 \times 10^{-23} \ [{\rm J/K}])$ and the elementary charge $e \ (\cong 1.6 \times 10^{-19} \ [{\rm C}])$.
- (6) For an impurity which becomes a divalent ion, the energy level of the impurity is not normally given based on the hydrogen atomic model in Question (4). Describe the reason for this, in about 5 lines. In addition, briefly describe which is larger, the ionization energy for the divalent ion or ΔE_{imp} for the monovalent ion.

