dimease programming problem is one of the most widely used method in operational reseases. We can define the general form of a linear programming problem as to find the values of decision variable $x_1, x_2, x_3, \dots, x_n$ which optimizes (either maximizes are minimizes) the objective function $x = c_1x_1 + c_2x_3 + \dots + c_nx_n$ subject to the linear constraints.

 $a_{11}a_{1} + a_{12}a_{2} + a_{13}a_{3} + \cdots + a_{1n}a_{n} \leq = \geq b,$ $a_{21}a_{1} + a_{22}a_{2} + a_{33}a_{3} + \cdots + a_{2n}a_{n} \leq = \geq b_{2}$:

 $a_{m_1}^{\alpha} + a_{m_2}^{\alpha} + a_{m_3}^{\alpha} + a_{m_3}^{\alpha} + \cdots + a_{m_n}^{\alpha} + a_{m_n}^{\alpha} + \cdots + a_{m_n}^$

Find X which optimizes Max/Min z = cx subject to the conductionts $AX \le = \ge B$ with mannegative systetions $X \ge 0$

Standard from of LPP

Finding a a a ... an which maximize.

Z= Gai+ Seg+ ... + Chan subject to the constraints

dudi+dibast + divar = p

d = 1 x + d = 2 x + + d = p

a 2 + a 2 + + a m 2 = pm

where 3,20; with nonnegativity condition 2,20 such that i=1 to n.

Stack voolable.

If the consisecuints of LPP is of the form

 $a_{11}^{2} a_{1} + a_{12}^{2} a_{2}^{2} + \cdots + a_{1n}^{2} a_{n} \leq b_{1}^{2}$

then the nonnegative variable or such that

01/01/01/2 = 01 + 01/02/04 = 01.

Ps called the slack variable

2 weplus variable

If the constocaint of the LPP of the form

03/2/4 0 10 20 + + dindu > P!

then a nonnegative variable x_{n+1} such that $a_{i_1}x_{i_1} + a_{i_2}x_{i_2} + \cdots + a_{i_n}x_{n+1} - x_{n+1} = b_i^2$ is called a scurplus variable.

23/11/21 Tuesday 1 Convert the following LPP to standard form

Minimize $x = \alpha_1 + 2\alpha_2 - 4\alpha_3$ Subject to the constraint, $2\alpha_1 + \alpha_2 + 2\alpha_3 \le 16$ $\alpha_1 + \alpha_2 + \alpha_3 = 8$ $-\alpha_1 + 2\alpha_2 - \alpha_3 \ge -7$

 $9(1+x_2 \leq 2$ $2(1+x_2) = 2$

elns:

Standwed from is,

Introduce & stack variable say of and of

Maximilize Z= Clax (-z)

= $Moxlamize(Z^*) = Minimize(-Z)$

= -21-3x2+ 4x3+0x+0x+0x+0xe

Subject to

· 2x1+ x2+ 2x3+ x4= 16

$$3(1+3)+3(5)$$
 $3(1+3)+3(5)$
 $3(1+3)+3(5)$
 $3(1+3)+3(5)$

with 99>0 where i=18 to 6

@ Reaseite the following LPP in the standard form

Maximixe Z= 8x1+x2+423

Subject to -22,7442224

8, + 8x2+0(3 ≥ 5

 $3x_1 + 3x_3 \leq 2$

where α_1 $\alpha_2 \geq 0$ and α_3 unscalarited.

ans:

standard form,

Let $\alpha_3 = \alpha_3' - \alpha_3''$ where $\alpha_3', \alpha_3' \ge 0$

Interoderce stack vascrattes ay and as and surplus vascrable as

Max Z = 201, +x2+4x3+0.(04)+095+0x6

 $= 8\alpha_1 + \alpha_2 + 14\alpha_3' - 14\alpha_3'' + 0\alpha_4 + 0\alpha_5 + 0\alpha_6$

$$3x_{1} + 3x_{2} + x_{3} - x_{3}^{"}) + x_{6} = 3$$

$$3x_{1} + 3x_{2} + x_{3}^{"} - x_{3}^{"} - x_{5} = 5$$

Different solutions of LPP.

- 1. Feasible solution.
- a. Basic solution.
- a. Basic feasible solution.
- 3. Optimum Basic teasible solution

1. Feasible Solution

-A feasible extration to any set of mon megative value of the contract vacciables which satisfy the constraint

2. Basic solution

Consider the standard LPP

Max Z = CX

Subject to the constaunts

with X >0

Here It is an mxn matrix (Amxn) with nxm Now suppose n-m owniables are set to zero then the resulting system of m equations and m anknowns has a unique solution couled the basic solution. denoted by XB

Basic Vareables

The m variables associated with XB are called basic variable and the seemaining m-m variable are called non basic variable

The maximum noid basic solution is nom

3. Basic feasible solution

The basic solution which satisfy the mon negative restouction is called a basic feasible solution.

4. Optimum basic feasible solution

of basic feasible solution which optimizes the

depende function et LPP is called optimum basic

Degenerate Solution

A basic solution is called a degenerate solution if one one more of the basic variable becomes equal xero

If all the basic variables are positive then the base solution is called a mondegenerale solution

The all the basic solution of a $\alpha_1 + \alpha_2 + 4\alpha_3 = 11$ $8\alpha_1 + \alpha_2 + 5\alpha_3 = 14$

one:
$$n = 3$$
 $m = 9$

Mox. possible solution, = ${}^{m}C_{m} = {}^{3}C_{3} = 3$ No of variables to be set zero = m-m = 3-2=1

Let
$$\alpha_{1} = 0$$
 $\alpha_{3} + 4 + \alpha_{3} = 11$
 $\alpha_{3} + 5 + \alpha_{3} = 14$

$$\alpha_3 = 73$$

x2- [-15] is a basic soll not feasible

$$63x_1 + 10x_3 = 28$$

and
$$2x_1 = 11 - 4x_{\frac{5}{2}}$$

"
$$\chi_{g} = \left[\begin{array}{c} \chi_{g} \\ 0 \\ 5/2 \end{array}\right]$$
 -leadble solution

$$Q_1 = 3$$

$$\alpha_{a} = 11 - 6 = 5$$
.

$$\alpha_1 + 2\alpha_2 + \alpha_3 = 4$$

$$2\alpha_1 + \alpha_2 + 5\alpha_3 = 5$$
.

Maximum possible solution = m (m = 3.

No: of vareable to set zero = n-m = 3-2=1

$$8x_3 + x_3 = 4$$

$$-8x^{9} + 10x^{3} = 10$$

$$-9x_3=6$$

$$x^3 = \sqrt[3]{3}$$

$$\alpha_3 = \frac{10}{3} = \frac{5}{3}$$

$$x = \begin{bmatrix} 0 \\ 5/3 \end{bmatrix}$$
 is a feasible

Let
$$\alpha_{9} = 0$$

$$\alpha_{1} + \alpha_{9} = 4$$

$$\alpha_{1} + \delta \alpha_{3} = 5$$

$$\alpha_{1} + \delta \alpha_{3} = 8$$

$$\alpha_{1} + \delta \alpha_{3} = 5$$

$$-3\alpha_{3} = 3$$

$$-3\alpha_3 = 3$$

$$x_1 = \overline{y}$$

$$x = \begin{bmatrix} 5 \\ 0 \end{bmatrix}$$
 is a basic solution but not feasible solution.

het
$$x_3 = 0$$

$$-2x_1 + x_2 = 5$$

$$x_1 + 2x_0 = 4$$

$$x_1 = 2$$

$$x = \begin{cases} 2 & \text{is a -feasible solution.} \\ 0 & \text{odd} \end{cases}$$

14 Dec 21 Tuesday

Simplex Method.

Solve the LPP, Minimire z = x = 3x + 2x3 Subject to $3\alpha_1 - \alpha_2 + 2\alpha_3 \leq 7$ -221+42 <12 -471+ 3x2+80g < 10 21 22 23 50

ans: Intereduce stack variable and write upp in stat form

$$3\alpha_{1} - \alpha_{2} + 3\alpha_{3} + \alpha_{4} = 7$$
 $-3\alpha_{1} + 4\alpha_{2} + \alpha_{5} = 12$
 $-4\alpha_{1} + 3\alpha_{4} + 8\alpha_{3} + \alpha_{6} = 10$

Max $z^* = -\alpha_1 + 8\alpha_3 - 2\alpha_3 + 0\alpha_4 + 0\alpha_5 + 0\%$

7° ≥0 where i=1 to 6.

Moco cue have to find mitial basic feasible soln.

This forms the initial basic feasible solution.

1st Simplex table.

		1		temprises Min screeningshipsen						
	(cost)	X _B	8(X 2	α_3	x^{*}	25	α _e .	В	Ratio
		Voel	cos. of	consta	iant	and	anato	٧		B/x;
	0	α_{μ}	3		Q	1	0	0	7	
	O	α_{5}	- 2	4	0	0	\	0	12	12 = 3
	0 (α^e	-4	3	8	0	0)	10	10 = 33
coe of objects	Balance and the second									
	Zi = CBXj		· O	0	0	0	0	O		
for so		g.	-1	3	2	0	0	0		
	Dj = Z	1°-5°.	1	-3 1	2	0	0	0		

```
19 - net evaluation.
      18 29 > 0 then optimum solution.
      If Dj <0 fer any then eansider vector correspond
       the most negative value and the column
       is called a privotal column
      This vectore is called incoming vector.
     If all si ave negative it is called imbounded so
   Now decaus. the column Ratio B/x; and the
  minimum value among this is but going vector.
     x is incoming vector
    as is outgoing vector.
  IInd simplex table.
[ In the new table we make entry to be I
by dividing . - ie; the second seows to make
pluotal element 1.
and makes other elements reso.
R2/4
```

note.

 $R_1 \longrightarrow R_1 + R_4$

CB	XB	α_{i}	$\mathfrak{A}^{\mathfrak{s}}$	X3	at	25	€ S	В	Patro B/x;
0	XH	5/2	0	2	J	1/4	0	10	$\frac{10}{5/2} = 14$
	A.				O		0	3.	-
0	2	-5/2	0	8	0	^3/4	1	1.	_
スプロ	CBX6	-3/2	3.	0	0	3/4	0		
	g°	-1	3	-2	0	0	0		
Δĵ=	7-g	1/2	0	Q	0	3/4	0		

not optimum solution.

a, is incoming vector.

of leaves the basis and of enters the basis

or, is incoming vector

X4 is outegoing vector.

3°d & mple table

$$R_{1} \longrightarrow \frac{3}{5}R_{1}$$

$$R_{2} \longrightarrow \frac{R_{1}}{3}+R_{2}$$

CB	NB.	X,	$\mathfrak{A}_{\mathfrak{A}}$	α_3	X "	α_{5}	χ_{ϵ}	В.
14	X 4.1	1	0	4/5	2/5.	40	0	4
3)(₂	0	1	8/5	1/3	3/10	0	5
0	X6.	0	0	18	1 -	-1/2	,	1;
Z3 = CBN9			3	2/5	. 1/5	415	0	
G		-\	3	-2	O		0	
1 = 2 - cj.				1	1	1	}	

Hence the averent basic feasible solution is optimum.

Solutions.

$$\alpha_{a} = 5$$

No the solution of LPP is min(x) = -11 at
$$x_1 = 4$$
, $x_2 = 5$, $x_3 = 0$