(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 21. Juli 2005 (21.07.2005)

PCT

(10) Internationale Veröffentlichungsnummer WO 2005/066468 A2

(51)	Internationale Patentklassifikation ⁷ :	F01N 3/00

(21) Internationales Aktenzeichen: PCT/EP2004/013604

(22) Internationales Anmeldedatum:

1. Dezember 2004 (01.12.2004)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität: 103 61 286.6 24. Dezember 2003 (24.12.2003) DE

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): DAIMLERCHRYSLER AG [DE/DE]; Epplestrasse 225, 70567 Stuttgart (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): FRANZ, Jens [DE/DE]; Geislinger Strasse 65e, 70327 Stuttgart (DE).

HOFMANN, Uwe [DE/DE]; Grundstrasse 48, 64385 Reichelsheim (DE).

- (74) Anwälte: KREISER, André usw.; DaimlerChryler AG, Intellectual Property Management, IPM-C106, 70546 Stuttgart (DE).
- (81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW,

[Fortsetzung auf der nächsten Seite]

- (54) Title: METHOD FOR REGENERATING A NITROGEN OXIDE ACCUMULATOR CATALYST
- (54) Bezeichnung: VERFAHREN ZUR REGENERATION EINES STICKOXID-SPEICHERKATALYSATORS

(57) Abstract: The invention relates to a method for regenerating a nitrogen-oxide accumulator catalyst (4) arranged in an exhaust pipe (3) of an internal combustion engine (1). According to said method, when a predetermined release threshold value for the nitrogen oxide concentration in the exhaust gas on the output side of the nitrogen oxide accumulator catalyst (4) is exceeded, a constant value is fixed in a first regeneration phase (11) for the air ratio λ_M of the air-fuel mixture introduced into the internal combustion engine (1). A second regeneration phase (12) follows a first regeneration phase (11). According to the invention, the temporal modification d λ_M /dt of the air ratio λ_M is adjusted in the second regeneration phase (12), according to the mass flow of the exhaust gas flowing through the nitrogen oxide accumulator catalyst (4) or according to an internal combustion engine operational variable connected to the exhaust gas mass flow.

WO 2005/066468 A2

GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Veröffentlicht:

 ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

(57) Zusammenfassung: Es wird ein Verfahren zur Regeneration eines in einer Abgasleitung (3) einer Brennkraftmaschine (1) angeordneten Stickoxid-Speicherkatalysators (4) vorgeschlagen. Bei dem Verfahren wird bei Überschreiten eines vorgebbaren Auslöseschwellenwertes für die Stickoxidkonzentration im Abgas ausgangsseitig des Stickoxid-Speicherkatalysators (4) in einer ersten Regenerationsphase (11) für die Luftzahl λ_M des der Brennkraftmaschine (1) zugeführten Luft-Kraftstoffgemisches ein konstanter Wert eingestellt. An die erste Regenerationsphase (11) schliesst sich eine zweite Regenerationsphase (12) an. Erfindungsgemäss wird in der zweiten Regenerationsphase (12) die zeitliche Änderung d λ_M /dt der Luftzahl λ_M in Abhängigkeit vom Massenstrom des durch den Stickoxid-Speicherkatalysator (4) strömenden Abgases oder in Abhängigkeit von einer mit dem Abgasmassenstrom verknüpften Brennkraftmaschinenbetriebsgrösse eingestellt.

Verfahren zur Regeneration eines Stickoxid-Speicherkatalysators

Die Erfindung betrifft ein Verfahren zur Regeneration eines in einer Abgasleitung einer Brennkraftmaschine angeordneten Stickoxid-Speicherkatalysators mit den Merkmalen des Oberbegriffs des Anspruchs 1.

In der Offenlegungsschrift DE 101 13 947 A1 ist ein Verfahren zur Regeneration eines in einer Abgasleitung einer Brennkraftmaschine angeordneten Stickoxid-Speicherkatalysators beschrieben. Stickoxid-Speicherkatalysatoren werden insbesondere in Kraftfahrzeugen eingesetzt, die eine Brennkraftmaschine aufweisen, die mit einem zwischen mager und fett wechselnden Luft-Kraftstoffgemisch betrieben werden kann. Bei einem Betrieb mit einem mageren Luft-Kraftstoffgemisch entzieht das im Katalysatormaterial des Stickoxid-Speicherkatalysators beispielsweise vorhandene Barium-Carbonat dem dann oxidierenden Abgas Stickoxid (NOx) unter Bildung von festem Barium-Nitrat. Aufgrund der damit verbundenen Materialerschöpfung wird von Zeit zu Zeit eine Regeneration des NOx-Speicherkatalysators notwendig. Die sogenannte Nitrat-Regeneration geschieht dadurch, dass die Brennkraftmaschine für eine gewisse Zeit mit einem fetten Luft-Kraftstoffgemisch betrieben wird. Das in dem resultierenden reduktionsmittelhaltigen Abgas instabile Barium-Nitrat zersetzt sich hierbei wieder unter Rückbildung von Barium-Carbonat und unter Freisetzung von NOx. Letzteres wird von den dann im Abgas vorhandenen Reduktionsmitteln (H2, CO und

2

HC) an der auf dem NOx-Speicherkatalysator aufgebrachten Edelmetallkomponente überwiegend zu unschädlichem Stickstoff (N_2) reduziert.

Bei dem in der in der Offenlegungsschrift DE 101 13 947 A1 beschriebenen Verfahren zur Regeneration eines Stickoxid-Speicherkatalysators wird bei Überschreiten eines vorgebbaren Schwellenwertes für die Stickoxidkonzentration im Abgas ausgangsseitig des Stickoxid-Speicherkatalysators die Regeneration des Stickoxid-Speicherkatalysators ausgelöst. Die Regeneration umfasst dabei eine erste Phase, in welcher das der Brennkraftmaschine zugeführte Luft-Kraftstoffgemisch vergleichsweise stark angefettet wird und eine sich an die erste Regenerationsphase anschließende zweite Regenerationsphase, in welcher das der Brennkraftmaschine zugeführte Luft-Kraftstoffgemisch vergleichsweise wenig angefettet wird.

Eine auf der Basis des beschriebenen Verfahrens über lange Zeit andauernde NOx-Verringerung erfordert demnach einen Mager-Fett-Wechselbetrieb der Brennkraftmaschine, wobei allerdings der für die Nitrat-Regenerationen notwendige Fett-Betrieb den im Mager-Betrieb erzielten Kraftstoffverbrauchsvorteil der Brennkraftmaschine schmälert. Mit Blick auf den Kraftstoffverbrauch ist daher ein möglichst hoher Zeitanteil des Mager-Betriebs anzustreben. Aus diesem Grund ist eine möglichst kurze Regenerationsdauer anzustreben. Andererseits ist eine möglichst vollständige Regeneration des Stickoxid-Speicherkatalysators erstrebenswert, damit dieser nach erfolgter Regeneration in der Lage ist, möglichst viel Stickoxid zu speichern. Dabei sollte jedoch aus Emissionsgründen ein Durchbrechen von schädlichen Reduktionsmitteln vermieden werden.

Aufgabe der Erfindung ist es daher, ein Verfahren für eine möglichst effiziente und effektive Regeneration eines Stickoxid-Speicherkatalysators anzugeben.

3

Diese Aufgabe wird erfindungsgemäß durch ein Verfahren mit den Merkmalen des Anspruchs 1 gelöst.

Bei dem erfindungsgemäßen Verfahren wird bei Überschreiten eines Auslöseschwellenwertes für die Stickoxid-Konzentration im Abgas ausgangsseitig des Stickoxid-Speicherkatalysators eine Regeneration ausgelöst. Dabei wird zunächst ein erster Regenerations modus mit einer konstanten Luftzahl $\lambda_{\mathtt{M}}$ des in der Brennkraftmaschine verbrannten Luft-Kraftstoffgemisches eingestellt. Im Anschluss an den ersten Regenerationsmodus wird erfindungsgemäß ein zweiter Regenerationsmodus mit einem veränderlichen Wert für die Luftzahl λ_{M} eingestellt. Im zweiten Regenerationsmodus ist dabei vorgesehen, dass die zeitliche Änderung d $\lambda_{\text{M}}/\text{dt}$ der Luftzahl λ_{M} in Abhängigkeit vom Massenstrom des durch den Stickoxid-Speicherkatalysator strömenden Abgases oder in Abhängigkeit von einer mit dem Abgasmassenstrom verknüpften Brennkraftmaschinenbetriebsgröße eingestellt wird. Unter Luftzahl, auch als Lambdawert bezeichnet, wird hier wie üblich das Stöchiometrie-Verhältnis aus dem Gehalt des Sauerstoffs und dem Gehalt an Kraftstoff bzw. an reduzierenden Bestandteilen in dem der Brennkraftmaschine zugeführten Luftkraftstoffgemisch bzw. im Abgas verstanden. Im folgenden wird für die Luftzahl des der Brennkraftmaschine zugeführten Luft-Kraftstoffgemisches die Bezeichnung $\lambda_{\mathtt{M}}$ gewählt. Dabei wird während der Regeneration für das der Brennkraftmaschine zugeführte Luft-Kraftstoffgemisch vorzugsweise ein Lambdawert von $\lambda_M \leq 1,0$, also ein stöchiometrisches oder reduzierendes Luft-Kraftstoffgemisch eingestellt.

Vorzugsweise wird die Abhängigkeit der zeitlichen Änderung d λ_M/dt der Luftzahl λ_M vom Massenstrom des durch den Stickoxid-Speicherkatalysator strömenden Abgases oder von einer mit dem Abgasmassenstrom verknüpften Brennkraftmaschinen-

4

betriebsgröße so gewählt, dass dem Stickoxid-Speicherkatalysator im zweiten Regenerationsmodus bei einem vergleichsweise kleinen Abgasmassenstrom ein Abgas mit einem zeitlich ansteigenden Reduktionsmittelgehalt und bei einem höheren Abgasmassenstrom ein Abgas mit einem zeitlich abnehmenden Reduktionsmittelgehalt zugeführt wird. Die Abhängigkeit wird dabei außerdem vorzugsweise so gewählt, dass sich bei üblichen Fahrzuständen des entsprechenden Kraftfahrzeugs im Laufe der zweiten Regenerationsphase ein allmählich ansteigender Lambdawert ergibt. Damit wird der Tatsache Rechnung getragen, dass mit fortschreitender Regeneration der Reduktionsmittelbedarf allmählich abnimmt. Es wird daher auch ein Überschuss an zugeführtem Reduktionsmittel und ein dadurch verursachter Reduktionsmittelschlupf vermieden. Da bei kleinem Abgasmassenstrom ein abnehmender Lambdawert eingestellt wird, steigt die Aufenthaltsdauer des Reduktionsmittels im Katalysatorvolumen bei kleinem Abgasmassenstrom und das Reduktionsmittel kann daher auch bei hoher Konzentration vollständig umgesetzt werden, wodurch ein Reduktionsmittelschlupf vermieden wird.

In Ausgestaltung der Erfindung der Erfindung wird der erste Regenerationsmodus nach einer vorgebbaren ersten Zeitspanne beendet. Im ersten Regenerationsmodus wird vorzugsweise eine vergleichsweise niedrigen Luftzahl von etwa $\lambda_{\text{M}}=0.8$ eingestellt. Die Zeitspanne für die Aufrechterhaltung des ersten Regenerationsmodus (erste Regenerationsphase) ist dabei auch vom Volumen des Stickoxid-Speicherkatalysators abhängig und wird vorzugsweise vergleichsweise kurz, beispielsweise etwa eine Sekunde gewählt. Bevorzugt wird die Zeitspanne und der Lambdawert der ersten Phase der Regeneration des Stickoxid-Speicherkatalysators, wenn dieser noch eine vergleichsweise große Menge an Stickoxiden bzw. Sauerstoff gespeichert hat, so gewählt, dass unter Vermeidung

5

eines Reduktionsmittelschlupfes bereits ein großer Teil der gespeicherten Stickoxide oder des gespeicherten Sauerstoffs reduziert wird. Die Wahl von vorgebbaren und vorzugsweise fest applizierten Werten für die Dauer und die Luftzahl in der ersten Regenerationsphase trägt der Tatsache Rechnung, dass nach Beendigung der mageren Speicherphase eine Mindestmenge an Stickoxiden im Stickoxid-Speicherkatalysator gespeichert ist.

In weiterer Ausgestaltung der Erfindung wird der zweite Regenerationsmodus nach einer vorgebbaren zweiten Zeitspanne beendet. Vorzugsweise wird die zweite Zeitspanne fest appliziert und so gewählt, dass unter Berücksichtigung der Speicherkapazität des Stickoxid-Speicherkatalysators der größte Teil der gespeicherten Stickoxide mit Beendigung dieser Regenerationsphase reduziert ist.

In weiterer Ausgestaltung der Erfindung wird in einem dritten Regenerations modus die zeitliche Änderung d $\lambda_{\text{M}}/\text{dt}$ der Luftzahl $\lambda_{\mathtt{M}}$ in Abhängigkeit vom Abgasmassenstrom oder in Abhängigkeit von einer mit dem Abgasmassenstrom verknüpften Brennkraftmaschinenbetriebsgröße und in Abhängigkeit vom Messwert einer ausgangsseitig des Stickoxid-Speicherkatalysators in der Abgasleitung angeordneten Lambdasonde eingestellt. Dabei wird unter einer Lambdasonde ein Sensor verstanden, welcher ein vom Lambdawert des Abgases abhängiges Signal liefert. Ein NOx-Sensor, vorzugsweise mit Lambdafunktionalität, ist ebenfalls einsetzbar. Durch die zusätzliche Berücksichtigung des ausgangsseitig des Stickoxid-Speicherkatalysators vorhandenen Lambdawerts des Abgases kann der Fortschritt der Regeneration besonders zuverlässig erfasst und durch die dementsprechende Einstellung der Luftzahl der Brennkraftmaschine berücksichtigt werden. Damit kann eine Überversorgung des Stickoxid-Speicherkatalysators mit Reduktionsmitteln und ein damit verbundener Reduktionsmittelschlupf vermieden werden. Dies ist besonders wichtig gegen Ende der Regeneration, wenn nur

6

noch geringe Stickoxidmengen im Stickoxid-Speicherkatalysator gespeichert sind.

Der dritte Regenerationsmodus kann anstelle des zweiten Regenerationsmodus eingestellt werden, jedoch wird vorzugsweise gemäß einer weiterer Ausgestaltung der Erfindung der dritte Regenerationsmodus unmittelbar nach Beendigung des zweiten Regenerationsmodus eingestellt.

In weiterer Ausgestaltung der Erfindung wird die Einstellung der Luftzahl $\lambda_{ exttt{M}}$ auf einen Wertebereich mit einem vorgebbaren unteren Grenzwert λ_{min} und einem vorgebbaren oberen Grenzwert $\lambda_{ exttt{max}}$ begrenzt. Mit dieser Maßnahme kann einerseits ein zu starkes Absinken der Luftzahl und damit ein Reduktionsmittelschlupf vermieden werden. Andererseits wird vermieden, dass die Luftzahl zu stark ansteigt und dadurch unter Umständen sogar der für die Regeneration bevorzugte fette Bereich verlassen wird und somit keine Regeneration mehr stattfindet. Vorzugsweise wird bei Erreichen des unteren Grenzwertes $\lambda_{ exttt{min}}$ die Luftzahl solange auf dem unteren Grenzwert gehalten, bis durch ein Ansteigen des Abgasmassenstroms wieder ein Anstieg der Luftzahl eingeleitet wird. Entsprechend ist es vorzugsweise vorgesehen, bei Erreichen des oberen Grenzwertes λ_{max} für die Luftzahl diese auf diesem Grenzwert zu halten, bis durch ein Absinken des Abgasmassenstroms wieder ein Absinken der Luftzahl eingeleitet wird.

In weiterer Ausgestaltung der Erfindung wird in Abhängigkeit eines die Alterung des Stickoxid-Speicherkatalysators repräsentierenden Alterungsfaktors der Auslöseschwellenwert zur Auslösung der Regeneration des Stickoxid-Speicherkatalysators vorgegeben und/oder die zeitliche Änderung d $\lambda_\text{M}/\text{dt}$ der Luftzahl λ_M eingestellt. Vorzugsweise wird der die Alterung repräsentierende Alterungsfaktor aus der aktuellen Stickoxid-Speicherfähigkeit des Stickoxid-Speicherkatalysators und Vergleich mit der Stickoxid-Speicherfähigkeit des Stickoxid-Speicherfähigkeit des Stickoxid-Speicherfähigkeit des Stickoxid-

7

ungealterten Zustand abgeleitet. Die aktuelle StickoxidSpeicherfähigkeit kann beispielsweise durch Messung des
Stickoxidschlupfes während der mageren Speicherphase und
Vergleich mit der Stickoxid-Rohemission der
Brennkraftmaschine ermittelt werden. Dabei ist es vorteilhaft, die Speicherfähigkeit des Stickoxid-Speicherkatalysators bei vorgebbaren Referenzbedingungen beispielsweise
hinsichtlich Drehzahl, Last und/oder Abgastemperatur zu
ermitteln und mit einem vorab unter den gleichen Bedingungen
ermittelten Referenzwert des ungealterten StickoxidSpeicherkatalysators zu vergleichen.

Mit der Anpassung des Auslöseschwellenwerts an den Alterungszustand des Stickoxid-Speicherkatalysators kann auf ein alterungsbedingtes Absinken der Stickoxidspeicherkapazität reagiert werden. Vorzugsweise wird mit zunehmender Alterung des Stickoxid-Speicherkatalysators der Auslöseschwellenwert abgesenkt. Damit erfolgen die Regenerationen in kürzeren Abständen, womit der geringeren Speicherkapazität Rechnung getragen wird. Durch die alterungsabhängige Einstellung der zeitlichen Änderung d λ_{M}/dt der Luftzahl λ_{M} in der zweiten bzw. der dritten Regenerationsphase kann auf die alterungsbedingt verminderte Menge an eingespeicherten Stickoxiden reagiert und die Regeneration entsprechend angepasst werden. Vorzugsweise ist mit zunehmender Alterung des Stickoxid-Speicherkatalysators bei einem bestimmten Abgasmassenstrom eine stärkere Änderung der Luftzahl λ_{M} vorgesehen, so dass die Dauer der Regeneration verkürzt wird.

Im Folgenden wird die Erfindung anhand von Zeichnungen und zugehörigen Beispielen näher erläutert. Dabei zeigen:

Fig. 1 eine schematische Darstellung einer Brennkraftmaschine mit einer Abgasleitung, in der ein Stickoxid-Speicherkatalysator angeordnet ist und

8

Fig. 2 ein Diagramm zur Verdeutlichung eines typischen Verlaufs der Regeneration des Stickoxid-Speicherkatalysators

Fig. 1 zeigt in einer schematischen Prinzipdarstellung eine Brennkraftmaschine 1 mit einer Ansaugluftleitung 2, einer Abgasleitung 3 mit einem darin angeordneten Stickoxid-Speicherkatalysator 4 und einem elektronischen Motorsteuergerät 7. Die Brennkraftmaschine 1 ist hier beispielhaft als vierzylindriger, magerlauffähiger Ottomotor ausgeführt. Stromauf und stromab des Stickoxid-Speicherkatalysators 4 sind eine erste Abgasmesssonde 5 und eine zweite Abgasmesssonde 6 in der Abgasleitung angeordnet, deren Signalleitungen 8 zum Motorsteuergerät 7 führen. Das Motorsteuergerät 7 ist ferner mit einer Signalleitung 9 mit dem Motor 1 zur Einstellung und Erfassung der Motorbetriebsparameter verbunden. Weitere Einrichtungen zur Steuerung des Motorbetriebes wie Einspritzventile, Kraftstoffversorgung, Abgasrückführung, Einlassluftregelung und dergleichen sind aus Gründen der Übersichtlichkeit nicht dargestellt. Ebenfalls nicht dargestellt sind Verbindungen des Steuergerätes 7 zu Sensoren zur Erfassung weiterer Betriebsgrößen wie Motordrehzahl, aktuelle Fahrgeschwindigkeit des zugehörigen Kraftfahrzeuges, eingelegte Fahrstufe und dergleichen. Es versteht sich jedoch, dass das Steuergerät 7 über die üblichen Möglichkeiten zur Erfassung und gegebenenfalls Beeinflussung des Betriebszustands des Motors 1 und des zugehörigen Kraftfahrzeuges verfügt. Ferner können selbstverständlich weitere hier nicht dargestellte Abgasreinigungskomponenten, wie beispielsweise ein vorzugsweise stromauf des Stickoxid-Speicherkatalysators 4 angeordneter, als Oxidationskatalysator ausgebildeter Startkatalysator, vorhanden sein.

Die Abgasmesssonden 5, 6 sind vorzugsweise als sogenannte Lambdasonden zur Erfassung der Luftzahl des Abgases, nachfolgend als Abgaslambda λ_A bezeichnet, an der entsprechenden

9

Stelle in der Abgasleitung 3 ausgeführt. Besonders bevorzugt ist eine Ausführung der zweiten Abgasmesssonde 6 als kombinierte NOx-/Lambdasonde, mit welcher sowohl der Stickoxid-Gehalt im Abgas als auch dessen Luftzahl ermittelt werden kann. Ebenfalls vorteilhaft ist es, die zweite Abgasmesssonde als sogenannte binäre Lambdasonde mit einem sehr steilen Kennlinienverlauf in einem engen Bereich um eine Luftzahl von $\lambda=1,0$ auszuführen. Die erste Abgasmesssonde 5 wird vorzugsweise zur Regelung der Luftzahl $\lambda_{\rm M}$ des dem Motor zugeführten Luft-Kraftstoffgemisches eingesetzt. Dabei ist es vorteilhaft, die erste Abgasmesssonde vor dem in Strömungsrichtung gesehen ersten in der Abgasleitung 3 vorgesehenen Abgaskatalysator anzuordnen.

Nachfolgend werden vorteilhafte Ausführungsführungsformen zur Durchführung der Regeneration des Stickoxid-Speicherkatalysators 4 erläutert, wobei auf Messsignale der Abgasmesssonden 5, 6 zurückgegriffen wird. Zur Erläuterung wird das in der Fig. 2 dargestellte Diagramm herangezogen, in welchem ein typischer Verlauf der Luftzahl λ_{M} skizziert ist. Die entsprechenden Werte können dabei als Messwerte von der Lambdasonde 5 geliefert werden.

Ausgehend von einer mageren Speicherphase 10 wird in den Regenerationsmodus geschaltet, der drei aufeinanderfolgende Regenerationsphasen 11, 12, 13 umfasst, in denen drei verschiedene Regenerationsmodi eingestellt werden. Mit Beendigung der dritten Regenerationsphase 13 wird wieder zurück in eine weitere magere Speicherphase 14 geschaltet.

Die Regeneration des Stickoxid-Speicherkatalysators 4 wird vorzugsweise bei Erreichen eines Schwellenwertes für die ausgangsseitig des Stickoxid-Speicherkatalysators durch die Abgasmesssonde 6 erfasste Stickoxidkonzentration vom Motorsteuergerät 7 ausgelöst. Die Stickoxidkonzentration kann auch mit dem aktuellen Abgasmassenstrom mabgas bewertet werden, so dass der Stickoxidmassenstrom ausgangsseitig des Stickoxid-

10

Speicherkatalysators 4 erhalten wird, und bei Erreichen eines entsprechenden Schwellenwertes für den Stickoxidmassenstrom die Regeneration ausgelöst wird. Ebenfalls vorteilhaft ist es, den Stickoxidmassenstrom während der mageren Speicherphase 10 zu integrieren, wodurch ein integraler Wert für den Stickoxidschlupf während der mageren Speicherphase erhalten wird. Die Regeneration wird in diesem Fall bei Erreichen eines Schwellenwertes für den integralen Stickoxidschlupf ausgelöst. Nachfolgend wird ein typischer Verlauf der Regeneration erläutert.

Nachdem die Regeneration ausgelöst wurde, wird vorzugsweise sprunghaft zunächst für eine erste Regenerationsphase 11 ein erster Regenerationsmodus mit einer vergleichsweise fetten Luftzahl von etwa $\lambda_{\text{M}}=0.8$ eingestellt und für eine vorgebbare erste Zeitspanne beibehalten. Diese erste Zeitspanne ist vorzugsweise im Motorsteuergerät 7 einprogrammiert und beträgt etwa eine Sekunde. Es kann jedoch auch vorgesehen sein, die erste Zeitspanne adaptiv an die Speicherkapazität bzw. an die Alterung des Stickoxid-Speicherkatalysators 4 anzupassen und gegebenenfalls zu verändern, vorzugsweise zu verkürzen. Darauf wird weiter unten näher eingegangen.

Nach Ablauf der ersten Zeitspanne für die erste Regenerationsphase 11 wird in die zweite Regenerationsphase 12 übergegangen und in einem zweiten Regenerationsmodus die Luftzahl λ_M in Abhängigkeit vom Abgasmassenstrom m_{Abgas} geändert. Es ist hierzu vorgesehen, die zeitliche Änderung d λ_M/dt der Luftzahl λ_M in Abhängigkeit vom Massenstrom m_{Abgas} des durch den Stickoxid-Speicherkatalysator 4 strömenden Abgases einzustellen. An Stelle des Abgasmassenstroms m_{Abgas} kann jedoch auch eine mit dem Abgasmassenstrom m_{Abgas} verknüpfte Brennkraftmaschinenbetriebsgröße, wie beispielsweise die Motordrehzahl und/oder die Motorlast herangezogen werden. Vorzugsweise wird die zeitliche Änderung d λ_M/dt der Luftzahl λ_M entsprechend eines im Motorsteuergerät 7 gespeicherten Kennfeldes in Abhängigkeit vom Abgasmassenstrom m_{Abgas} eingestellt. Es kann

11

jedoch auch eine im Motorsteuergerät 7 gespeicherte funktionelle Abhängigkeit zur Einstellung der zeitlichen Änderung d $\lambda_{\text{M}}/\text{dt}$ der Luftzahl λ_{M} herangezogen werden. Beispielhaft ist in der Fig. 3 eine lineare Abhängigkeit in Diagrammform dargestellt.

Nachfolgend wird unter Bezug auf die Fig. 1 bis 3 der weitere Ablauf der Regeneration des Stickoxid-Speicherkatalysators 4 erläutert. Dabei wird die Abhängigkeit der zeitlichen Änderung d λ_{M} /dt von der Luftzahl λ_{M} mit d λ_{M} /dt = f(m_{Abgas}) bezeichnet. Es versteht sich, dass auch eine andere funktionelle Abhängigkeit für die Änderung d λ_{M} /dt der Luftzahl λ_{M} vom Abgasmassenstrom m_{Abgas} als die im Diagramm der Fig. 3 dargestellte lineare Abhängigkeit vorgesehen sein kann. Beispielsweise ist auch eine treppenförmige Abhängigkeit vorteilhaft. Diese kann in Form einer Wertetabelle oder in Form eines Kennfeldes im Motorsteuergerät 7 abgespeichert sein. In jedem Fall ist eine Abhängigkeit d λ_{M} /dt = f(m_{Abgas}) vorgesehen, mit der sich unter den üblichen Motorbetriebszuständen ein allmähliches Ansteigen der Luftzahl λ_{M} ergibt.

Gemäß der in Fig. 3 dargestellten Abhängigkeit existiert ein Wertebereich für den Abgasmassenstrom mabgas, dem negative Werte für die Änderung d λ_{M}/dt der Luftzahl zugeordnet sind, bei welchem also ein Absinken der Luftzahl $\lambda_{\mathtt{M}}$ eingestellt wird. Ebenso existiert ein Wertebereich für den Abgasmassenstrom m_{Abgas} , dem positive Werte für d λ_{M}/dt zugeordnet sind, bei welchem also ein Ansteigen der Luftzahl λ_{M} eingestellt wird. Gemäß des in Fig. 2 dargestellten beispielhaften Verlaufs der Luftzahl liegt in den Zeitabschnitten 15, 17, 19 ein Abgasmassenstrom m_{Abgas} vor, bei welchem ein Ansteigen der Luftzahl λ_{M} entsprechend der in Fig. 3 dargestellten Abhängigkeit erfolgt. Dagegen liegt im Zeitabschnitt 18 ein Abgasmassenstrom mabgas vor, bei welchem ein Absinken der Luftzahl λ_{M} entsprechend der in Fig. 3 dargestellten Abhängigkeit erfolgt. Entsprechend liegt im Zeitabschnitt 16 ein Abgasmassenstrom mabgas vor, bei welchem eine gleichblei-

12

bende Luftzahl λ_M entsprechend der in Fig. 3 dargestellten Abhängigkeit eingestellt wird. Vorzugsweise wird ein Ansteigen bzw. ein Absinken der Luftzahl λ_M jedoch nur eingestellt, sofern ein vorgebbarer oberer Grenzwert λ_{max} von beispielsweise λ_{max} = 0,95 bzw. ein unterer Grenzwert λ_{min} von beispielsweise λ_{min} = 0,8 für die Luftzahl λ_M nicht erreicht ist.

Die entsprechende Vorgehensweise ist in dem in der Fig. 4 dargestellten Ablaufdiagramm verdeutlicht. Demgemäss wird nach Eintritt in die zweite Regenerationsphase 12 im Abfrageblock 22 abgefragt, ob die Luftzahl λ_{M} größer als ein vorgebbarer unterer Grenzwert λ_{min} ist. Ist dies nicht der Fall, so wird mit dem Funktionsblock 23 eine konstante Luftzahl $\lambda_{\mathtt{M}}$ eingestellt. Ist die Luftzahl $\lambda_{\mathtt{M}}$ größer als ein vorgebbarer unterer Grenzwert λ_{min} , so wird zum Abfrageblock 24 weitergegangen und abgefragt, ob die Luftzahl λ_{M} kleiner als ein vorgebbarer oberer Grenzwert λ_{max} ist. Ist dies nicht der Fall, so wird mit dem Funktionsblock 23 eine konstante Luftzahl λ_M eingestellt, andernfalls wird mit dem Funktionsblock 25 eine Änderung d λ_{M}/dt der Luftzahl nach einer vorprogrammierten funktionellen Abhängigkeit $d\lambda_{M}/dt = f(m_{Abgas})$ vom Abgasmassenstrom m_{Abgas} , beispielsweise entsprechend der im Diagramm der Fig. 3 dargestellten Abhängigkeit, vorgenommen.

Vorzugsweise wird die zweite Regenerationsphase 12 nach einer im Motorsteuergerät einprogrammierten zweiten Zeitspanne beendet und das kontinuierliche Durchlaufen des Ablaufdiagramms nach Fig. 4 abgebrochen. Es kann jedoch auch vorgesehen sein, die zweite Zeitspanne adaptiv an die Speicherkapazität bzw. an die Alterung des Stickoxid-Speicherkatalysators anzupassen und gegebenenfalls zu verändern, vorzugsweise zu verkürzen.

Nach Ablauf der zweiten Zeitspanne für die zweite Regenerationsphase 12 wird in die dritte Regenerationsphase 13

13

übergegangen. In dieser wird in einem dritten Regenerationsmodus zur Einstellung der Luftzahl λ_{M} zusätzlich zum Abgas $massenstrom m_{Abgas}$ die ausgangsseitig des Stickoxid-Speicherkatalysators 4 erfasste Luftzahl $\lambda_{\mathtt{A}}$ des Abgases bzw. das hierzu in Relation stehende Ausgangssignal der zweiten Abgasmesssonde 6 berücksichtigt. Hierzu kann es vorgesehen sein, aus der erfassten Luftzahl $\lambda_{\mathtt{A}}$ einen beispielsweise dazu proportionalen ersten Korrekturfaktor k1 abzuleiten, mit welchem der wie oben beschrieben ermittelte Wert für die Änderung d $\lambda_{\text{M}}/\text{dt}$ der Luftzahl λ_{M} infolge der Abhängigkeit $d\lambda_M/dt = f(m_{Abgas})$ multipliziert wird. Im Falle eines zur Luftzahl $\lambda_{\mathtt{A}}$ proportionalen ersten Korrekturfaktors $k_{\mathtt{1}}$ ist es vorteilhaft, die Proportionalität mit dem Wert der Luftzahl λ_{A} zu Beginn der dritten Regenerationsphase 13 zu verknüpfen, wodurch der Fortschritt der Regeneration bewertet werden kann. Der Verfahrensablauf in der dritten Regenerationsphase 13 entspricht somit dem in der Fig. 4 dargestellten Ablaufdiagramm für die zweite Regenerationsphase 12, wobei im Unterschied zum Verfahrensablauf der zweiten Regenerationsphase 12 im Funktionsblock 25 nunmehr der entsprechend qeänderte Eintrag $d\lambda_M/dt = k_1*f(m_{Abgas})$ zu berücksichtigen ist.

Da mit weiter fortschreitender Regeneration sich die Luftzahl λ_A des Abgases der eingestellten Luftzahl λ_M von oben annähert, wird entsprechend dem in Fig. 2 mit dem Bezugszeichen 20 versehenen Regenerationsabschnitt die Luftzahl λ_M weiter "hochgezogen". Wird der obere Grenzwert λ_{max} erreicht, so verharrt die Luftzahl λ_M bei diesem oberen Grenzwert, sofern nicht durch ein sehr starkes Absinken des Abgasmassenstroms ein Absinken der Luftzahl λ_M veranlasst wird. Dieses Verharren der Luftzahl λ_M entspricht dem in Fig. 2 mit dem Bezugszeichen 21 versehenen Regenerationsabschnitt.

Die Regeneration wird beendet und zu einem Motorbetrieb mit einer mageren oder stöchiometrischen Luftzahl λ_M übergegangen, wenn von der zweiten Abgasmesssonde 6 ausgangsseitig des Stickoxid-Speicherkatalysators 4 ein vorgebbarer unterer

14

Schwellenwert für die Luftzahl $\lambda_{\mathtt{A}}$ des Abgases von beispielsweise λ_A = 0,98 unterschritten wird, was einem Durchbruch von Reduktionsmittel entsprechen würde. Insbesondere bei einer als sogenannter Binärsonde ausgebildeten zweiten Abgasmesssonde 6 ist es auf Grund des steilen Kennlinienverlaufs um $\lambda = 1.0$ vorteilhaft, die Regeneration zu beenden, wenn das Messsignal dieser Sonde einen vorgebbaren oberen Grenzwert überschreitet. Hierbei wird davon ausgegangen, dass das Messsignal der als Binärsonde ausgebildeten zweiten Abgasmesssonde 6 sich gegenläufig zum Wert der Luftzahl $\lambda_{\mathtt{A}}$ verhält. Die Beendigung der Regeneration kann jedoch auch auf der Basis eines im Motorsteuergerät 7 abgelegten Rechenmodells erfolgen. Die Regeneration wird in diesem Fall beendet, wenn die insgesamt in den Stickoxid-Speicherkatalysator eingetragene Reduktionsmittelmenge die notwendige Reduktionsmittelmenge zur Reduktion der zu Beginn der Regeneration gespeicherten Stickoxidmenge übersteigt. Besonders vorteilhaft ist es, die Regeneration dann zu beenden, wenn eines der beiden genannten Kriterien eintritt. In diesem Zusammenhang ist es vorteilhaft, das abgelegte Rechenmodell für die Reduktionsmittelbilanzierung mit Hilfe des von der Abgasmesssonde 6 gelieferten Messwertes im Sinne einer bestmöglichen Übereinstimmung zu korrigieren bzw. zu adaptieren.

Die erläuterte erfindungsgemäße Vorgehensweise zur Regeneration eines Stickoxid-Speicherkatalysators 4 kann in vorteilhafter Weise an eine im Laufe der Zeit zunehmende Alterung des Stickoxid-Speicherkatalysators 4 angepasst werden. Eine solche Alterung kann beispielsweise durch eine im Laufe der Zeit zunehmende Schwefelvergiftung auf Grund des im Kraftstoff vorhandenen Schwefels auftreten. Bei dieser wird Schwefel in Form von Sulfaten im Stickoxid-Speicherkatalysator 4 eingelagert, was dessen Speicherkapazität für Stickoxide verringert. Eine Alterung mit einer entsprechenden Abnahme der Stickoxidspeicherkapazität kann jedoch auch durch thermische Überlastung verursacht sein.

15

Um den Alterungszustand des Stickoxid-Speicherkatalysators 4 zu erfassen und zu bewerten, ist es daher vorgesehen, dessen Stickoxid-Speicherkapazität laufend oder von Zeit zu Zeit zu ermitteln. Zu diesem Zweck kann während der mageren Speicherphase der aus dem Stickoxid-Speicherkatalysator 4 austretende Stickoxidschlupf beispielsweise mittels der Abgasmesssonde 6 ermittelt und mit dem Stickoxideintrag verglichen werden. Letzterer kann auf der Basis eines im Motorsteuergerät 7 hinterlegten Stickoxid-Emissionskennfelds des Motors 1 zur Verfügung gestellt sein. Erfindungsgemäß ist vorgesehen, aus der im Vergleich zum Neuzustand festgestellten Abnahme der Stickoxidspeicherfähigkeit des Stickoxid-Speicherkatalysators 4 einen Alterungsfaktor zu bilden und anhand dieses Alterungsfaktors die Regeneration bzw. den Mager-Fett-Wechselbetrieb des Motors 1 an den Alterungszustand des Stickoxid-Speicherkatalysators 4 anzupassen.

Hierzu ist es vorteilhaft, den für das Auslösen der Regeneration maßgeblichen Schwellenwert für die ausgangsseitig des Stickoxid-Speicherkatalysators 4 erfasste Stickoxidkonzentration oder den Schwellenwert für den integralen Stickoxidschlupf in der mageren Speicherphase in Abhängigkeit vom Alterungsfaktor herabzusetzen. Dies kann nach einer vorgegebenen geeigneten funktionellen Abhängigkeit, im einfachsten Fall proportional erfolgen. Ferner ist es vorteilhaft, die erste Zeitspanne für die erste Regenerationsphase 11 und/oder die zweite Zeitspanne für die zweite Regenerationsphase 12 in Abhängigkeit vom Alterungsfaktor anzupassen. Dies kann ebenfalls nach einer vorgegebenen geeigneten funktionellen Abhängigkeit erfolgen. Im einfachsten Fall werden die erste und/oder die zweite Zeitspanne proportional zum Alterungsfaktor verkürzt.

Erfindungsgemäß ist ferner vorgesehen, die funktionelle Abhängigkeit $d\lambda_M/dt=f(m_{Abgas})$ der zeitlichen Änderung $d\lambda_M/dt$ von der Luftzahl λ_M in der zweiten Regenerationsphase 12

16

und/oder die funktionelle Abhängigkeit $d\lambda_M/dt = k_1*f(m_{Abgas})$ in der dritten Regenerationsphase 13 in Abhängigkeit vom Alterungsfaktor einzustellen. Hierzu ist es vorteilhaft, bei einer Verfahrensführung für die zweite Regenerationsphase 12, welche dem in der Fig. 4 dargestellten Ablaufdiagramm entspricht, im Funktionsblock 25 nunmehr den geänderten Eintrag $d\lambda_M/dt = k_2*f(m_{Abgas})$ zu berücksichtigen, wobei der zweite Korrekturfaktor k_2 dem Alterungsfaktor des Stickoxid-Speicherkatalysators 4 entspricht oder von ihm abgeleitet ist. Ebenso wird bei einer analogen Verfahrensführung der dritten Regenerationsphase 13, gemäß dem in der Fig. 4 dargestellten Ablaufdiagramm im Funktionsblock 25 nunmehr der geänderte Eintrag $d\lambda_M/dt = k_1*k_2*f(m_{Abgas})$ berücksichtigt.

Werte für den Alterungsfaktor bzw. den zweiten Korrekturfaktor k_2 können durch Vorversuche mit unterschiedlich gealterten Speicherkatalysatoren ermittelt und im Motorsteuergerät 7 abgelegt sein.

17

Patentansprüche

1. Verfahren zur Regeneration eines in einer Abgasleitung (3) einer Brennkraftmaschine (1) angeordneten Stickoxid-Speicherkatalysators (4), wobei bei Überschreiten eines eine Regeneration des Stickoxid-Speicherkatalysators (4) auslösenden vorgebbaren Auslöseschwellenwertes für die Stickoxidkonzentration im Abgas ausgangsseitig des Stickoxid-Speicherkatalysators (4) in einem ersten Regenerationsmodus für die Luftzahl $\lambda_{\rm M}$ des in der Brennkraftmaschine (1) verbrannten Luft-Kraftstoffgemisches ein konstanter Wert eingestellt wird, und sich an den ersten Regenerationsmodus ein zweiter Regenerationsmodus anschließt,

dadurch gekennzeichnet,

dass im zweiten Regenerationsmodus ein veränderlicher Wert für die Luftzahl λ_M derart vorgesehen ist, dass die zeitliche Änderung d λ_M /dt der Luftzahl λ_M in Abhängigkeit vom Massenstrom des durch den Stickoxid-Speicherkatalysator (4) strömenden Abgases oder in Abhängigkeit von einer mit dem Abgasmassenstrom verknüpften Brennkraftmaschinenbetriebsgröße eingestellt wird.

18

- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der erste Regenerationsmodus nach einer vorgebbaren ersten Zeitspanne beendet wird.
- 3. Verfahren nach Anspruch 1 oder 2,
 dadurch gekennzeichnet,
 dass der zweite Regenerationsmodus nach einer
 vorgebbaren zweiten Zeitspanne beendet wird.
- 4. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass in einem dritten Regenerationsmodus die zeitliche Änderung d $\lambda_{\text{M}}/\text{dt}$ der Luftzahl λ_{M} in Abhängigkeit vom Abgasmassenstrom oder in Abhängigkeit von einer mit dem Abgasmassenstrom verknüpften Brennkraftmaschinenbetriebsgröße und in Abhängigkeit vom Messwert einer ausgangsseitig des Stickoxid-Speicherkatalysators (4) in der Abgasleitung (3) angeordneten Lambdasonde (6) eingestellt wird.
- 5. Verfahren nach Anspruch 4,
 dadurch gekennzeichnet,
 dass der dritte Regenerationsmodus unmittelbar nach
 Beendigung des zweiten Regenerationsmodus eingestellt
 wird.
- 6. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Einstellung der Luftzahl λ_M auf einen Wertebereich mit einem vorgebbaren unteren Grenzwert λ_{min} und einem vorgebbaren oberen Grenzwert λ_{max} begrenzt wird.

19

7. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass in Abhängigkeit eines die Alterung des Stickoxid-Speicherkatalysators (4) repräsentierenden Alterungsfaktors der Auslöseschwellenwert zur Auslösung der Regeneration des Stickoxid-Speicherkatalysators (4) vorgegeben wird und/oder die zeitliche Änderung d $\lambda_{\text{M}}/\text{dt}$ der Luftzahl λ_{M} eingestellt wird.

Fig. 1

Fig. 2

Fig. 3

Fig. 4