Задача 6. Два ядовитых газа X_1 и Y_1 сгорают в избытке кислорода синим пламенем. При взаимодействии X_1 с хлором образуется другое ядовитое вещество X_2 (реакция N_2 I), при взаимодействии Y_1 с хлорной водой образуется жёлтый осадок вещества Y_2 (реакция N_2 I). Вещество I0 реагирует с избытком раствора едкого кали с образованием соли I1 и бинарного соединения I1 ионного строения (реакция I2). Вещество I3 растворяется в концентрированном горячем растворе гидроксида калия с образованием соли I3 и бинарного соединения I4 ионного строения (реакция I2).

Для качественного определения вещества X_1 используют реакцию с бумажкой, смоченной раствором хлорида двухвалентного металла Z_2 , в котором массовая доля хлора равна 40,11 % (реакция № 5). Для количественного определения X_1 используют реакцию с оксидом иода Z_3 , в котором массовая доля иода равна 76,05 % (реакция № 6). В ходе этой реакции образуется простое вещество.

Для качественного определения вещества Y_1 используют реакцию с бумажкой, смоченной раствором нитрата свинца(II) (реакция N_2 7).

Задания:

- 1) Идентифицируйте вещества X_1 – X_3 , Y_1 – Y_4 , Z_1 – Z_3 . Приведите необходимые расчёты, необходимые для вывода формул веществ Z_2 и Z_3 . Атомные массы элементов необходимо брать с точностью до целых, значение атомной массы хлора примите равной 35,5.
- 2) Напишите уравнения реакций № 1–7.
- 3) Каковы аналитические признаки реакций №6 и №7?

Решение и критерии оценивания

- 1) По описанию можно сделать вывод, что газ X_1 монооксид углерода CO, газ Y_1 сероводород. При взаимодействии X_1 с хлором образуется фосген COCl₂ (X_2), также являющийся ядом. При взаимодействии Y_1 с хлорной водой образуется желтый осадок серы (Y_2) и хлороводород. При взаимодействии фосгена COCl₂ с гидроксидом калия образуются карбонат калия (X_3) и хлорид калия (Z_1). При взаимодействии серы с концентрированным раствором гидроксида калия образуются сульфит калия X_2 SO₃ (X_3) и сульфид калия X_2 SO₄ (X_3).
- Выведем формулу хлорида двухвалентного металла Z₂. В общем виде формулу этого вещества можно записать как MeCl₂. Выразим молярную массу хлорида металла M(MeCl₂) через массовую долю хлора:

$$M(MeCl_2)=rac{2\cdot M(Cl)}{\omega(Cl)}=rac{71}{0,4011}pprox 177$$
 (г/моль)

Поэтому молярная масса металла равна 106 г/моль (177 - 71). Следовательно, металл — палладий Pd, а вещество \mathbb{Z}_2 – хлорид палладия(II) $PdCl_2$.

3) Выведем формулу оксида иода **Z**3. Пусть масса оксида иода равна 100 г, тогда можно найти массы и количества веществ иода и кислорода:

$$m(I) = 0.7605 \cdot 100 \ \Gamma = 76.05 \ \Gamma$$

$$m(O) = 100 \ \Gamma - 76.05 \ \Gamma = 23.95 \ \Gamma$$

$$n(I) = 76.05 \ \Gamma : 127 \ \Gamma / \text{моль} \approx 0.6 \ \text{моль}$$

$$n(O) = 23.95 \ \Gamma : 16 \ \Gamma / \text{моль} \approx 1.5 \ \text{моль}$$

Отсюда можно найти соотношение иода и кислорода, которое составляет 0,6:1,5=1:2,5=2:5. Следовательно, вещество **Z**₃ – оксид иода(V) I_2O_5 .

4) При реакции между монооксидом углерода и оксидом иода (V), который является веществом белого цвета, образуется темный-серый иод. При реакции между сероводородом и нитратом свинца (II) образуется черный осадок сульфида свинца (II).

Формулы веществ

X ₁	X ₂	X3	Y ₁	Y ₂	Y3	Y4	\mathbf{Z}_1	\mathbb{Z}_2	\mathbb{Z}_3
CO	COCl ₂	K ₂ CO ₃	H_2S	S	K ₂ SO ₃	K_2S	KCl	PdCl ₂	I_2O_5

Уравнения реакций:

- 1) $CO + Cl_2 \rightarrow COCl_2$
- 2) $H_2S + Cl_2 \rightarrow S + 2HCl$
- 3) $COCl_2 + 4KOH \rightarrow K_2CO_3 + 2KCl + 2H_2O$
- 4) $3S + 6KOH \rightarrow 2K_2S + K_2SO_3 + 3H_2O$
- 5) $CO + PdCl_2 + H_2O \rightarrow CO_2 + Pd + 2HCl$
- 6) $5CO + I_2O_5 \rightarrow I_2 + 5CO_2$
- 7) $H_2S + Pb(NO_3)_2 \rightarrow PbS + 2HNO_3$

Критерии оценивания

- 1) За правильно определенные вещества $X_1 X_3$, $Y_1 Y_4$, $Z_1 Z_3$ по 1 баллу. За вещества Z_2 и Z_3 баллы ставятся только при наличии соответствующего расчета, иначе 0 баллов. Итого: 10 баллов
- 2) За каждую правильно уравненную реакцию по 1 баллу. Если реакция написана и не уравнена, но вещества взяты правильные, то 0,5 балла. Итого: 7 баллов
- 3) За каждый верно указанный аналитический признак по 1,5 балла. Итого: 3 балла.

Всего 20 баллов