Data Mining Note

Chauncey Liu

November 13, 2017

Contents

1	\mathbf{Ass}	sociation Rules and Frequent Pattern Mining	2
	1.1	The Frequent Pattern Mining Model	2
	1.2	Association Rules	3
		1.2.1 Mining Association Rules	3
		1.2.2 Itemset Lattice	3
		1.2.3 Anti-monotonicity (downward closure) property	3
		1.2.4 Computing the Association Rules	3
		1.2.5 Interestingness of Association Rules	4
	1.3	The Apriori Algorithm	4
		1.3.1 Approach	4
		1.3.2 Candidate Generation	5
		1.3.3 Support Counting	5
		1.3.4 Hash Tree	5
		1.3.5 Methods of Efficiency Improvement	6
	1.4	Enumeration-Tree Algorithms	6
	1.5	Suffix-based Pattern Growth Methods	6
	1.6	Constraint-Based Association Mining	6
	1.7	Multi-level Association Rules	6
	1.8	Pattern Summarization	6

1 Association Rules and Frequent Pattern Mining

1.1 The Frequent Pattern Mining Model

Basic Concepts:

- Items $I = \{i_1, i_2, ..., i_m\}$, a set of literals
- Itemset X (transaction): set of items $X \subseteq I$
- Database D: set of transactions T_i where $T_i \subseteq I$
- T contains X: $X \subseteq T$
- Items in transactions or itemsets are sorted in lexicographic order
- Length of itemset: number of elements of itemset
- \bullet k-itemset: itemset of length k

Supermarket example:

- Items $I = \{Bread, Butter, Milk, Eggs, Yogurt\}$
- Itemset X, Transaction T:

$$-X_1 = \{Bread, Butter\}, X_2 = \{Eggs, Milk\}$$
$$-T_1 = \{Bread, Butter, Milk\}, T_2 = \{Eggs, Milk, Yogurt\}$$

• Database D: set of transactions T_i where $T_i \subseteq I$

$$-T_1 = \{Bread, Butter, Milk\}, T_2 = \{Eggs, Milk, Yogurt\}$$

- D = \{T_1, T_2\} = \{\{Bread, Butter, Milk\}, \{Eggs, Milk, Yogurt\}\}

• T contains X: $X \subseteq T$

$$- X_1 = \{Bread, Butter\}, T_1 = \{Bread, Butter, Milk\}$$
$$- X_1 \subseteq T_1$$

- Items in transactions or itemsets are sorted in lexicographic order
- Length of itemset: number of elements of itemset
- ullet k-itemset: itemset of length k

Further Concept

• Support of itemset X in D: percentage of transactions in D containing X

$$- sup(X, D) = \frac{|T \in D|X \subseteq T|}{|D|}$$

 \bullet Frequent itemset X in D: item set X with

$$- freq(X, D) :\Leftrightarrow sup(X, D) \ge minsup$$

• Association rule: implication of the form $X \Rightarrow Y$

– where
$$X \subseteq I, Y \subseteq I$$
 and $X \cap Y = \emptyset$

- Support s of association rule $X \Rightarrow Y$ in D:
 - indicates how frequently the itemset appears in the dataset
 - support of $X \cup Y$ in D

$$-s = \frac{|T \in D|(X \cup Y) \subseteq T|}{|D|}$$

- Confidence c of association rule $X \Rightarrow Y$ in D:
 - indicates how often the rule has been found to be true
 - percentage of transactions containing Y in the subset of all transactions in D that contain X

$$-c = \frac{|T \in D|(X \cup Y) \subseteq T|}{|T \in D|X \subseteq T|} = \frac{\sup(X \cup Y)}{\sup(X)}$$

1.2 Association Rules

1.2.1 Mining Association Rules

1. Determine the frequent itemsets in the database

Naive algorithm: count the frequencies of all k-itemsets $\subseteq I$, inefficient since $\binom{m}{k}$ such itemsets

2. Generate the association rules from the frequent itemsets

Itemset X frequent and $A \subseteq X$

 $A \Rightarrow (X - A)$ satisfies minimum support constraint (confidence remaining to be checked)

1.2.2 Itemset Lattice

- Lattice: a partially ordered set with unique least upper bound and greatest lower bound.
- Itemset lattice:
 - elements: itemsets $X_1 \subseteq I, X_2 \subseteq I, ..., X_n \subseteq I$
 - partial order: $X_1 < X_2 :\Leftrightarrow X_1 \subset X_2$
 - least upper bound: ${\cal I}$
 - greatest lower bound: \varnothing

Figure 1: Itemset Lattice

1.2.3 Anti-monotonicity (downward closure) property

Each subset of a frequent itemset is also frequent.

$$\forall T_1 \subseteq I, T_2 \subseteq I : T_1 \subseteq T_2 \land freq(T_2, D) \Rightarrow freq(T_1, D)$$

because of

$$\forall T_1 \subseteq I, T_2 \subseteq I : T_1 \subseteq T_2 \Rightarrow sup(T_1, D) \ge sup(T_2, D)$$

If one subset is not frequent, then superset cannot be frequent.

This property makes frequent itemset mining efficient, since in practice most itemsets are infrequent.

1.2.4 Computing the Association Rules

- \bullet Given a frequent itemset X
- For each subset A of X, form the rule $A \Rightarrow (X A)$
- Compute confidence of the rule $A \Rightarrow (X A)$
 - $confidence(A \Rightarrow (X A)) = \frac{sup(X)}{sup(A)}$
- Discard rules that do not have minimum confidence
- Store frequent itemsets with their supports in a hash table
 - no DB acesses, no disk I/O

1.2.5 Interestingness of Association Rules

- Filter out misleading association rules
- Expected support for the rule $A \Rightarrow B$
 - $-P(A \cup B) = P(A) \cdot P(B)$
 - assuming the idependence of A and B
- Interestingness measure for rule $A \Rightarrow B$
 - $-\frac{P(A\cup B)}{P(A)}-P(B)$
 - The larger this measure, the more interesting the discovered association between A and B
- An alternative interestingness measure is the lift of an association rule
- If A and B are independent, then $P(A \cup B) = P(A) \cdot P(B)$

- i.e.
$$\frac{P(A \cup B)}{P(A) \cdot P(B)} = 1$$

- We define the lift of a rule $A \Rightarrow B$ as follows:
 - $lift(A \Rightarrow B) = \frac{P(A \cup B)}{P(A) \cdot P(B)}$
 - Can also be formulated as:

*
$$lift(A \Rightarrow B) = \frac{P(A \cup B)/P(A)}{P(B)} = \frac{support_{actual}}{support_{expected}}$$

- * as the ratio of the conditional probability P(B|A) and the unconditional probability P(B)
- A lift >> 1 indicates that the discovered association between A and B is interesting.

1.3 The Apriori Algorithm

1.3.1 Approach

- ullet Determine first the frequent 1-itemsets, then frequent 2-itemsets, ...
- \bullet To determine the frequent k+1-items, consider only the k+1-items for which all k-subsets are frequent
- Calculation of support: one database scan counting the support for all relevant itemsets

Algorithm 1 Algorithm Apriori

```
/* C_k : set of candidate itemsets of length k */
/* F_k : set of all frequent itemsets of length k */
```

function Apriori(D, minsup)

while
$$F_k \neq \emptyset$$
 do

Generate C_{k+1} by joining itemset-pairs in F_k ;

Prune itemsets from C_{k+1} that violate anti-monotonicity;

Determine F_{k+1} by counting support of C_{k+1} in D and retaining itemsets fron C_{k+1} with support at least minsup;

$$\mathbf{k} = \mathbf{k} + 1;$$
return $\cup_k F_k$;

1.3.2 Candidate Generation

Requirements for set C_k of candidate itemsets

- Superset of F_k
- \bullet Significantly smaller than set of all k-subsets of I

Step1: Join

- Frequent k-1-itemsets p and q, p and q are joined if they aggre in their first k-2 items
- E.g. $p \in F_{k-1} = \{1, 2, 3\}, q \in F_{k-1} = \{1, 2, 4\} \Rightarrow (1, 2, 3, 4) \in C_k$
- Choose first k-2 items to avoid duplication without missing any candidates

Step2: Pruning

- Remove all elements from C_k having a k-1-subset not contained in F_{k-1}
- E.g. $F_3 = \{(1,2,3), (1,2,4), (1,3,4), (1,3,5), (2,3,4)\}$
- After join step: $C_4 = \{(1, 2, 3, 4), (1, 3, 4, 5)\}$
- In pruning step: remove (1,3,4,5) since subsets (1,4,5),(3,4,5) are missing
- $C_4 = \{(1, 2, 3, 4)\}$

1.3.3 Support Counting

```
for each candidate c \in c_k do c.count = 0;
for each transaction T \in D do CT := subset(C_k, T); // all candidates from C_k that are contained in transaction T for each candidate c \in CT do c.count++;
F_k := \{c \in C_k | (c.count/|D|) \ge minsup\}
```

To achieve one scan over the database D, $subset(C_k, T)$ should be implemented properly. Thus we need Hash Tree.

1.3.4 Hash Tree

Hash tree as a data stucture for C_k

- Leaf node: records list of itemsets (with frequencies)
- Inner node: contains hash table (apply hash function to d-th elements), each hash bucket at level d references son node at level d+1
- Root has level 1

Finding an itemset

- Start from the root
- \bullet At level d: apply hash function h to the d-th element of the itemset.

Inserting an itemset

- Find the corrsponding leaf node and insert new itemset
- In case of overflow:
 - Covert leaf node into inner node and create all its son nodes (new leaves).
 - Distribute all entries over the new leaf nodes according to hash function h.

Find all candidates contained in $T = (t_1t_2t_3...t_m)$

- At root
 - Determine hash values $h(t_i)$ for each item t_i in T
 - Continue search in all correspoding son nodes
- \bullet At inner node of level d
 - Assumption: innder node has been reached by hashing t_i
 - Determine hash values and continue search for all items t_k in T with k > i
- At leaf node
 - For each itemset X in this node, test whether $X \subseteq T$

1.3.5 Methods of Efficiency Improvement

- Support counting using a hash table
 - Hash table instad of hash tree, support counters for hash buckets
 - k-itemset with correspoding bucket counter; minsup cannot be frequent
 - * more efficient access to candidates but inaccurate counts
- Reduction of transactions
 - Transactions that do not contain any frequenct k-itemset are irrelevant
 - Remove such transactions for future phases
 - * more efficient database scan, but additional writing of database
- Partitioning of the database
 - Itemset is only frequent if frequent in at least one partition
 - Form memory-resident partions of the database
 - * more efficient on partitions, but expensive combination of intermediate results
- Sampling
 - Apply algorithm to sample to find frequent itemsets
 - Count support of these frequent itemsets in the whole database
 - Determine further candicates and support counting on the whole database
- 1.4 Enumeration-Tree Algorithms
- 1.5 Suffix-based Pattern Growth Methods
- 1.6 Constraint-Based Association Mining
- 1.7 Multi-level Association Rules
- 1.8 Pattern Summarization