CS630 Graduate Algorithms

October 22, 2024 by Dora Erdos and Jeffrey Considine

• min-cut KT ch. 13.2

min st-cut in directed graphs

Max Flow Min Cut theorem: given a directed graph G(V,E) with source s, sink t and edge capacities the value of the max flow is = the capacity of the min st-cut

 \Rightarrow find the min-cut through the max-flow.

min st-cut in undirected unweighted graph

Find the min st-cut in the undirected, unweighted graph G(V,E) with source s and sink t.

capacity/weight of a cut = number of edges between S and V-S.

How?

Global min-cut: Given an undirected graph G(V,E), find a cut that partitions the nodes into two sets A and V-A with minimum weight.

no designated source or sink

$$weight(C) = \sum_{edge\ e\ in\ C} w(e)$$

works for unweighted and weighted graphs (today: unweighted)

Deterministic algorithm (using st-cuts):

Global min-cut: Given an undirected graph G(V,E), find a cut that partitions the nodes into two sets A and V-A with minimum weight.

no designated source or sink

$$weight(C) = \sum_{edge\ e\ in\ C} w(e)$$

works for unweighted and weighted graphs (today: unweighted)

Deterministic algorithm:

For each pair of vertices *u*, *v* assign *u* as source *v* as sink, and run the min st-cut algorithm

• since this is an undirected graph, it doesn't matter which of u and v is the source

running time:

- there are O(n²) iterations
- each requires a run of FF. We know that C is at most the max degree D.
- in total O(n²mD)

Global min-cut: Given an undirected graph G(V,E), find a cut that partitions the nodes into two sets A and V-A with minimum weight.

Deterministic algorithm — speed up:

claim: it's enough to fix one source s, and compute the min-cut between s and every other node.

runtime:

Global min-cut: Given an undirected graph G(V,E), find a cut that partitions the nodes into two sets A and V-A with minimum weight.

Deterministic algorithm — speed up:

claim: it's enough to fix one source s, and compute the min-cut between s and every other node.

proof:

- in any min-cut A and V-A, the node s is assigned to one of the two. wlog we can assume that s is assigned to A.
- let v be some other node in A
- since s and v are both in A, this means that any cut separating the two is larger than the min-cut
- This implies that if v were the source instead of s, the same set A would have been found.

Randomized algorithm for min-cut

- O(nmD) is polynomial, but slow
 - if $n = 10^6$, $m = O(n^2)$, D = 10, then we get $O(10^{19})$
- idea: make random choices
- give up on finding an exact solution, i.e. the true min-cut
 - do we really give up...?
- make it very fast
 - we can get O(n)
- result: the algorithm will find the min-cut with high(ish) probability
 - trick: repeat the algorithm multiple times and return the best of the outputs

multi graphs

simple graph: each pair of vertices are connected by at most one edge

multi graph: vertices may have multiple edges between them

Contraction algorithm

Contraction algorithm. [Karger 1995]

contraction operation:

- select an edge (u,v) at random
- replace u and v by a single super-node w
 - hereby deleting all edges between (u,v)
 - all edges previously adjacent to either u or v are now connected to w
 - keep parallel edges but delete self loops

Contraction algorithm

Contraction algorithm. [Karger 1995]

- Pick an edge e = (u, v) uniformly at random.
- Contract edge e.
 - replace *u* and *v* by single new super-node *w*
 - preserve edges, updating endpoints of *u* and *v* to *w*
 - keep parallel edges, but delete self-loops
- Repeat until graph has just two nodes v_1 and v_2 .
- Return the cut (all nodes that were contracted to form v₁).

Reference: Thore Husfeldt

Claim. The contraction algorithm returns a min cut with prob $\geq 2 / n^2$.

the contraction algorithm finds a min-cut, iff none of the edges in the min-cut get contracted.

goal: compute the probability of the event that the min-cut edges are not selected for contraction

Intuition:

vertices connected by multi-edges are more likely to be contracted implies that larger cuts are more likely to be contracted

- Pf. Consider a global min-cut (A^*, B^*) of G.
 - Let F^* be edges with one endpoint in A^* and the other in B^* .
 - Let $k = |F^*| = \text{size of min cut.}$
 - pick a random edge to contract —> what is the probability that this edge is in F*?

Claim. The contraction algorithm returns a min cut with prob $\geq 2 / n^2$.

- Pf. Consider a global min-cut (A^*, B^*) of G.
 - $F^* = edges in the min cut, k = |F^*| = size of min cut.$
 - observation: each node has degree at least k

• number of edges IEI =

- Pf. Consider a global min-cut (A^*, B^*) of G.
 - $F^* = edges in the min cut, k = |F^*| = size of min cut.$
 - observation: each node has degree at least k
 - if some node v had degree less than k, then separating v from the rest of the graph creates a cut smaller than k
 - number of edges $|E| = \frac{1}{2}kn$
 - each vertex has degree $\geq k$, there are n vertices. This way each edge is counted twice.

- Pf. Consider a global min-cut (A^*, B^*) of G.
 - $F^* = edges in the min cut, k = |F^*| = size of min cut.$
 - In first step, algorithm contracts an edge in F^* probability k / |E|.
 - size of IEI?
 - Every node has degree $\geq k \Rightarrow |E| \geq \frac{1}{2}kn$
 - Thus, algorithm contracts an edge in F^* with probability \leq

- Pf. Consider a global min-cut (A^*, B^*) of G.
 - $F^* = edges in the min cut, k = |F^*| = size of min cut.$
 - After j iterations, we have (contracted) graph G' with n' = n-j nodes
 - if none of the edges in F* have been contracted:
 - the min-cut in G' still has size k
 - number of edges $|E'| \ge \frac{1}{2}kn'$
 - the algorithm contracts an edge in F* with probability $\frac{2}{n'}$

- Pf. Consider a global min-cut (A^*, B^*) of G.
 - $F^* = edges in the min cut, k = |F^*| = size of min cut.$
 - After j iterations, we have (contracted) graph G' with n' = n-j nodes
 - the algorithm contracts an edge in F* with probability $\frac{2}{n'}$
 - E_j = event that an edge in F* is *not* contracted in iteration j

$$P(E_1 \cap E_2 \cap \dots E_{n-2}) =$$

- Pf. Consider a global min-cut (A^*, B^*) of G.
 - $F^* = edges in the min cut, k = |F^*| = size of min cut.$
 - After j iterations, we have (contracted) graph G' with n' = n-j nodes
 - the algorithm contracts an edge in F* with probability $\frac{2}{n'}$
 - E_j = event that an edge in F* is *not* contracted in iteration j

$$\begin{split} P(E_1 \cap E_2 \cap \dots E_{n-2}) &= P(E_1) \cdot P(E_2 \,|\, E1) \cdot \dots \cdot P(E_{n-2} \,|\, E_1 \cap E_2 \cap \dots \cap E_{n-3}) \\ & \qquad \geq \left(1 - \frac{2}{n}\right) \left(1 - \frac{2}{n-1}\right) \dots \left(1 - \frac{2}{4}\right) \left(1 - \frac{2}{3}\right) \\ & \qquad \qquad = \left(\frac{n-2}{n}\right) \left(\frac{n-3}{n-1}\right) \left(\frac{n-4}{n-2}\right) \dots \left(\frac{2}{4}\right) \left(\frac{1}{3}\right) \\ & \qquad \qquad = \frac{2}{n(n-1)} \geq \frac{2}{n^2} \end{split}$$

Contraction algorithm: example execution

Amplification. To amplify the probability of success, run the contraction algorithm many times.

...

Contraction algorithm

Amplification. To amplify the probability of success, run the contraction algorithm many times.

with independent random choices,

Claim. If we repeat the contraction algorithm $n^2 \ln n$ times, then the probability of failing to find the global min-cut is $\leq 1 / n^2$.

Pf. By independence, the probability of failure is at most

$$\left(1 - \frac{2}{n^2}\right)^{n^2 \ln n} = \left[\left(1 - \frac{2}{n^2}\right)^{\frac{1}{2}n^2}\right]^{2\ln n} \le \left(e^{-1}\right)^{2\ln n} = \frac{1}{n^2}$$

$$(1 - 1/x)^x \le 1/e$$

max number of global min-cuts in undirected graphs

How many global min-cuts on a cycle of length-n?

How many global min-cuts (in worst case) are there in an undirected unweighted graph?

Union bound

Event space (universe) Ω of all possible outcomes of a random trial

event $E_i \subseteq \Omega$ one (set of) possible outcome

example of events:

- roll 2 with a dice
- roll an even number with a dice
- process p_i is unsuccessful at accessing the database after t attempts
- the

intuitively: union of sets is less than the sum of individual sets

Union bound: given events $E_1, E_2, ...E_r$ we have $P\left(\bigcup_{i=1}^r E_i\right) \leq \sum_{i=1}^r P(E_i)$

Number of global min-cuts

Claim: An undirected graph on n nodes has at most $\binom{n}{2}$ global min-cuts.

Number of global min-cuts

Claim: An undirected graph on n nodes has at most $\binom{n}{2}$ global min-cuts.

proof:

- $C_1, C_2, ... C_r$ are the global min-cuts
- Let E_i be the event that C_i is returned by the Contraction Algorithm
- And $E = \bigcup_{i=1}^{r} E_i$ the event that the contraction algorithm returns *a* min-cut
- we know $P(E_i) \ge \frac{2}{n^2}$ from previous proof

$$P(E) = P(\cup_{i=1}^{r} E_i) = \sum_{i=1}^{r} P(E_i) \ge \frac{r}{n^2}$$
 Union bound suggests \le , however the events E_i are

independent (as the contraction as finally
$$1 \geq P(E) = \frac{r}{n^2} \to n^2 \geq r$$
 return one of C_i in one specific run)

Union bound suggests \leq , however the events E_i are independent (as the contraction algorithm can only return one of C_i in one specific run)

Global min cut: context

Remark. Overall running time is slow since we perform $\Theta(n^2 \log n)$ iterations and each takes $\Omega(m)$ time.

Improvement. [Karger–Stein 1996] $O(n^2 \log^3 n)$.

- Early iterations are less risky than later ones: probability of contracting an edge in min cut hits 50% when $n/\sqrt{2}$ nodes remain.
- Run contraction algorithm until $n / \sqrt{2}$ nodes remain.
- Run contraction algorithm twice on resulting graph and return best of two cuts.

Extensions. Naturally generalizes to handle positive weights.

Best known. [Karger 2000] $O(m \log^3 n)$. \leftarrow faster than best known max flow algorithm or deterministic global min cut algorithm

Best known deterministic. [Nagamochi-Ibaraki 1992] $O(mn + n^2 \log n)$