13. (Stein Chapter 3 Thm 6.2) If f is a nowhere vanishing holomorphic function in a simply connected region Ω , then there exists a holomorphic function g on Ω such that $f(z) = e^{g(z)}$.

Let $\omega \in \Omega$, and write $f(\omega) = e^{V}$ for some $w \in C$ (which we can do because f does not vanish in SZ). For any $z \in \Omega$, let Y be a path in SZ connecting ω to z. Define $g(z) = \int_{Y}^{f'(\xi)} d\xi + W$. Note the choice of Y does not matter because SZ is simply connected. Then $g'(z) = \frac{f'(z)}{f(z)}$ and we have:

$$\frac{\partial}{\partial z} \left(\frac{f(z)}{e^{g(z)}} \right) = \frac{f'(z)e^{g(z)} - f(z)g'(z)e^{g(z)}}{e^{2g(z)}}$$

$$= \frac{f'(z)e^{g(z)} - f(z)\left(\frac{f'(z)}{f(z)}\right)e^{g(z)}}{e^{2g(z)}}$$

$$= \frac{f'(z)e^{g(z)} - f'(z)e^{g(z)}}{e^{2g(z)}}$$

$$= \frac{e^{2g(z)}}{e^{2g(z)}}$$

$$= 0$$

$$\Rightarrow \frac{f'(z)}{e^{g(z)}} = \lambda \in C$$

And since $g(\omega) = W$ (8 becomes trivial), $\frac{f(\omega)}{e^{g(\omega)}} = \frac{e^W}{e^W} = 1$, so $f(z) = e^{g(z)}$ for $z \in \Sigma$, as desired.