题目:课程资料整理

作者: 数学强基 2301 刘欣楠

关键词:数学专业课、专业基础课、知识点、作业

Title:			
Name:			
Supervisor:			

ABSTRACT

KEY WORDS: Wikipedia; Free encyclopedia; Winner; Good morning

目 录

I	抽象	2代数	1
抽貨	象代	数定义及主要定理	2
绪ì	仑		4
第-	一章	群	6
1	.1	循环群	6
1	.2	图形的对称 (性) 群	7
1	.3	n 元对称群	8
1	.4	子群, Lagrange 定理	9
1	.5	群的直积	9
1	.6	群的同态,正规子群,商群,群同态进本定理	9
1	.7	可解群, 单群, Jordan-Holder 定理	9
1	.8	群在集合上的作用,轨道-稳定子定理	9
1	.9	Sylow 定理	15
1	.10	有限 Abel 群和有限生成的 Abel 群的结构	17
1	.11	自由群	17
第-	二章	环的理想,域的构造	18
2	2.1	环同态, 理想, 商环	18
2	2.2	理想的运算,环的直和	20
2	2.3	素理想和极大理想	25
2	2.4	有限域的构造,构造扩域的途径	27
2	2.5	分式域	32
第	三章	整环的整除性	33
3	3.1	整除关系,不可约元,素元,最大公因子	33
3	3.2	欧几里得整环, 主理想整环, 唯一因子分解整环	34
3	3.3	诺特环	37
第[四章	域扩张, 伽罗瓦理论	39
4	l.1	域扩张的性质	39
II	数	学分析	40
数	学分	析定义及主要定理	41
积分	分表		42

uuku 的课程整理

第一章 多元函数极限4	43
1.1 \mathbb{R}^n 中的点集	43
1.1.1 邻域、开集 4	43
1.1.2 聚点、闭集4	44
1.1.3 连通集4	46
1.2 多元函数的极限4	47
1.3 连续映射 4	48
第二章 多元函数的微分 5	50
2.1 微分的定义5	50
2.2 方向导数与偏导数5	50
2.3 有限增量定理与泰勒公式5	51
2.4 反函数定理5	51
2.5 隐函数定理5	52
第三章 含参变量的积分与反常积分5	53
专题一 欧拉积分5	54
3ε .1 第一型欧拉积分	54
3ε.2 第二型欧拉积分5	55
3ε.2.1 定义	55
3ε.2.2 性质 5	57
3arepsilon.2.3 应用	51
第四章 重积分 <i>6</i>	59
4.1 若尔当测度 \dots 6.1	59
4.1.1 简单集合的测度 ϵ	59
4.2 闭矩形上的积分7	70
4.3 有界集上的积分7	70
4.4 富比尼定理7	70
4.5 变量替换7	70
4.6 反常重积分7	70
专题二 双曲几何下的面积7	74
第五章 曲线积分7	75
5.1 曲线的弧长7	75
5.2 第一型曲线积分7	77
5.3 第二型曲线积分7	78
5.4 格林公式	80
5.5 応用・调和函数	22

第六章	曲面积分	84
6.1	曲面的面积	. 84
6.2	第一型曲面积分	85
6.3	曲面的侧与定向	85
6.4	第二型曲面积分	85
6.5	高斯公式	. 85
6.6	斯托克斯公式	85
第七章	Fourier 分析初步	86
7.1	Fourier 级数定义	. 86
7.2	局部化原理	. 88
III 常	常微分方程	92
	·方程定义及主要定理	
	フィスクスエヌス・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
1.1	线性方程	
1.2	变量可分离方程	
1.3	全微分方程	
1.3	3.1 积分因子	
1.4	变量替换法	. 97
1.5	一阶隐式微分方程	
第二章	二阶及高阶微分方程	. 98
2.1	可降阶的高阶方程	. 98
2.1	1.1 不显含未知函数 x 的方程 \dots	. 98
2.1	1.2 不显含自变量 t 的方程	. 98
2.1	1.3 全微分方程和积分因子	99
2.2	线性微分方程的基本理论	99
2.2	2.1 线性微分方程的有关概念	99
2.2	2.2 齐次线性方程解的性质和结构	100
2.3	线性齐次常系数方程	.100
2.4	微分方程组	.101
第三章	非线性微分方程组	102
3.1	自治微分方程与非自治微分方程、动力系统	.102
3.2	自治微分方程组解的性质	105
参考文	献	106
致谢		107

Part I 抽象代数

这部分内容主要参考丘维声《近世代数》[2]

抽象代数定义及主要定理

R	环	4
	零因子	4
F	域	4
G	群	4
$\langle a \rangle$	循环群	6
a	元素的阶	6
F^*	F^*	6
	群作用	9
	作用的核	10
	忠实的作用	10
Z(G)	中心	11
	自同构,内自同构	12
Aut	自同构群	12
Inn	内自同构群	12
G(x)	轨道,完全代表系	12
G_x	稳定子群	13
	轨道-稳定子定理	13
G(x)	共轭类	13
	类方程	14
$C_G(x)$	中心化子	14
	作用的传递, 齐性空间	14
F(g)	不动点集	14
	Burnside 引理	14
Ω_0	作用的不动点,不动点集	15
$ G = p^m$	<i>p</i> -群	15
	Sylow 第一定理	15
	Sylow 第二定理	
	Sylow 第三定理	
	四元数	17
	环同态	18
I	理想	
	单环	19
	左理想	19
R/I	商环, 同余类	19

抽象代数定义及主要定理

$\pi:R\to R/I$	自然环同态20
	环同态基本定理20
	第一环同构定理20
	第二环同构定理20
(S)	由 S 生成的理想21
(a)	主理想21
I+J,IJ	理想的运算21
I + J = R	理想的互素22
$a \equiv b \pmod{I}$	同余 23
	中国剩余定理24
$\operatorname{rad} I$	理想的根24
	幂零元、幂零根24
	理想的内直和24
	整环25
P	素理想25
M	极大理想26
	环的特征27
	扩环29
	扩域、域扩张、子域29
$R[\widetilde{lpha}]$	元素生成的子环29
$a_0 + a_1 \widetilde{\alpha} + \dots + a_n \widetilde{\alpha}^n$	元素在 R 上的多项式29
	超越元、代数元、极小多项式30
	超越数、代数数31
$\mathbb{Q}[\xi_n]$	分圆域31

绪论

定义 0.1

设 R 是一个非空集合, 在其上定义加法和乘法, 若满足下列性质

- (1) (加法交換律) $a + b = b + a, \forall a, b \in R$.
- (2) (加法结合律) $(a+b)+c=a+(b+c), \forall a,b,c \in R$.
- (3) 存在零元, 记作 0.
- (4) 存在**负元**, 记作 -a.
- (5) (乘法结合律) $(ab)c = a(bc), \forall a, b, c \in R$.
- (6) (乘法分配律) a(b+c) = ab + ac, (b+c)a = ba + ca.

则称 R 是一个**环**.

定义 0.2

如果环 R 中有一个元素 e 具有下述性质:

$$ea = ae = a, \quad \forall a \in R,$$

那么称 e 是 R 的**单位元**

定义 0.3

设 R 是一个环. 对于 $a \in R$, 如果存在 $c \in R$ 且 $c \neq 0$, 使得 ac = 0(或 ca = 0), 那 么称 a 是一个**左零因子**(或**右零因子**). 二者统称**零因子**.

定义 0.4

设F是交换幺环,如果F中每个非零元素都是可逆元,那么称F是一个域.

定义 0.5

设 G 是一个非空集合. 如果在 G 上定义了一个代数运算, 通常称作乘法, 并且满足:

- (1) $(ab)c = a(bc), \forall a, b, c \in G$ (结合律);
- (2) G 中存在单位元 e.

(3) G中每个元素都可逆.

那么称 G 是一个**群**.

定义 0.6

当群 G 中只有有限个元素时, 称 G 为**有限群**, 且元素个数称为 G 的阶, 记作 |G|. 否则称 G 是**无限群**.

注. 只有有限阶群才有群的阶, 做题时要注意题设条件.

第一章 群

§ 1.1 循环群

定义 1.1

设 G 是一个群, 如果 G 的每一个元素都能写成 G 的某个元素 a 的整数次幂的形式, 那么称 G 为**循环群**, 称 a 是 G 的一个**生成元**, 并记 $G = \langle a \rangle$.

定义 1.2

对于群 G 中元素 a, 如果存在最小的正整数 n, 使得 $a^n = e$. 则称 a 的**阶**为 n, 记作 |a| = n. 如果不存在这样的 n, 则称 a 是**无限阶元素**.

- **命题 1.1.** 有限群 G 是循环群, 当且仅当 $\exists a \in G, s.t. |a| = |G|$.
- **命题 1.2.** 设 $a \in G$, |a| = n 则

$$a^m = e \Leftrightarrow n \mid m$$
.

命题 1.3. 设 $a \in G$, |a| = n 则

$$|a^k| = \frac{n}{(n,k)}.$$

- **命题 1.4.** 若 $a, b \in G$, ab = ba, |a| = n, |b| = m, (n, m) = 1 则 |ab| = nm.
- **命题 1.5.** 设 G 是有限 Abel 群, 则 $\exists a \in G, s.t. \forall b \in G, |b| ||a|$.

定理 1.6

设m是大于1的整数,则 \mathbb{Z}_m^* 为循环群当且仅当m为下列情形之一:

$$2, 4, p^r, 2p^r$$
, 其中 p 是奇素数, $r \in \mathbb{N}^*$

定理 1.7

有限域 F 的所有非零元组成的集合 F^* 对于乘法构成群, 且是循环群.

定义 1.3

群同构

命题 1.8. 设 σ 是 G 到 \widetilde{G} 的一个群同构映射,则

- (1) $\sigma(e) = \tilde{e}$.
- (2) $\sigma(a^{-1}) = \sigma(a)^{-1}$.
- (3) $\sigma(a)$ 与 a 的阶相同.

定理 1.9

- (1) 任意一个无限循环群都与 $(\mathbb{Z},+)$ 同构;
- (2) 对于 m > 1, 任意一个 m 阶循环群都与 $(\mathbb{Z}_m, +)$ 同构;
- (3) 1 阶循环群都与加法群 {0} 同构.

定理 1.10

设 m_1, m_2 是大于 1 的整数, 则 $(\mathbb{Z}_{m_1} \oplus \mathbb{Z}_{m_2}, +)$ 是循环群当且仅当 $(m_1, m_2) = 1$.

习题 1.1

1. 证明: 若 \mathbb{Z}_m^* 是循环群, 则 \mathbb{Z}_m^* 的生成元个数等于 $\varphi(\varphi(m))$.

证明.
$$|\mathbb{Z}_m^*| = \varphi(m)$$
, 设 a 是 \mathbb{Z}_m^* 的生成元, 那么 $|a| = \varphi(m)$. 则有 $b = a^k \in \mathbb{Z}_m^*$ 是生成元 $\Leftrightarrow |a^k| = \varphi(m) \Leftrightarrow \frac{\varphi(m)}{(\varphi(m), k)} \Leftrightarrow (\varphi(m), k) = 1$.

2. 证明: 如果群 G 的阶为偶数, 那么 G 必有 2 阶元.

证明. 反设 G 中没有 2 阶元,则对于 G 中每个个非单位元 a 都有 $a \neq a^{-1}$. 从而可以将 G 的元素和对应的逆元两两配对,也即除去单位元后元素个数为偶数,所以总个数为奇数矛盾. 故 G 中有 2 阶元.

§ 1.2 图形的对称 (性) 群

定义 2.1

平面上 (或空间中) 的一个变换 σ 如果保持任意两点的距离不变, 那么称 σ 是平面上 (或空间中) 的一个**正交点变换** (或**保距变换**)(isometry).

定义 2.2

平面上 (或空间中) 的一个正交点变换 σ 如果使得图形 Γ 的像与自身重合, 那么称 σ 是图形 Γ 的**对称 (性) 变换**.

容易验证, Γ 的所有对称变换构成一个群,称为图形 Γ 的对称(性)群.

我们一般用 τ 来表示图形关于直线反射 (轴对称) 的对称变换, 用 σ 来表示关于图形中心旋转得到的对称变换.

用 D_n 表示正 n 边形的对称群.

当 n=4 时, 正方形一共有四条对称轴对应 $\tau_1, \tau_2, \tau_3, \tau_4$, 且每转动 90° 都重合对应 着 $\sigma, \sigma^2, \sigma^3, \sigma_4 = I$.

经过研究, $D_4 = \{I, \sigma, \sigma^2, \sigma^3, \tau_1, \tau_2, \tau_3, \tau_4\}$. 同时 τ_i 也可以由 σ 和 τ_1 表示. 所以也可以把 D_4 简单的记作

$$D_4 = \langle \sigma, \tau | \sigma^4 = \tau^2 = I, (\tau \sigma)^2 = I \rangle.$$

类似的, 对于 D_n 也可以记作 $\langle \sigma, \tau | \sigma^n = \tau^2 = (\tau \sigma)^2 = I \rangle$.

由于 $\tau \sigma = \sigma^{-1} \tau = \sigma^{n-1} \tau \neq \sigma \tau$, 所以 D_n 是非 Abel 群.

我们称 D_n 为**二面体群**, 且有 $|D_n| = 2n$.

§ 1.3 n 元对称群

定义 3.1

对于非空集合 Ω , 设 S_{Ω} 是全部 Ω 到自身的双射构成的集合, 容易验证 S_{Ω} 是一个群, 我们称之为**全变换群** (full transformation group).

特别的, 当 Ω 是有限集合时, 称 Ω 到自身的双射为 Ω 上的一个**置换** (permutation). 当 $|\Omega| = n$ 时, 称 Ω 上的置换为 n **元置换**, 并称 S_{Ω} 为 n **元对称群**, 记作 S_n .

定义 3.2

如果一个 n 元置换 σ 把 i_1 映成 i_2 , 把 i_2 映成 i_3 , · · · , 把 i_r 映成 i_1 , 并且保持其余元素不变, 那么称 σ 为 r — **轮换**, 简称为**轮换**, 记作 $(i_1i_2i_3\cdots i_{r-1}i_r)$.

特别地, 当 r=2 时, 也称为**对换**. 恒等映射 I 记作 (1).

如果两个轮换之间没有公共元素,则称它们不相交.

性质 3.1.

$$(i_1 i_2 \cdots i_{r-1} i_r)^{-1} = (i_r i_{r-1} \cdots i_2 i_1) \tag{1.1}$$

$$(i_1 i_2 \cdots i_{r-1} i_r) = (i_1 i_r)(i_1 i_{r-1}) \cdots (i_1 i_3)(i_1 i_2). \tag{1.2}$$

定理 3.2

 S_n 中任一非单位元的置换都能表示成一些两两不相交的轮换的乘积, 并且除了轮换的排列次序外, 表示法是唯一的.

注. 在计算多个轮换复合时,注意运算顺序是从右至左,因为轮换本质上是函数映射的复合.

推论 3.3

 S_n 中每个置换都可以表示成一些对换的乘积.

命题 3.4. S_n 中一个置换表示成对换的乘积, 其中对换的个数的奇偶性只和这个置换本身有关, 与表示方式无关.

FrankDura Blog

例 3.5.

111

当我们将 b_i 映射到 $1 \sim n$ 时,每次操作都会改变 a_i 对换数目的奇偶性,而最终状态是 a_i 也变为 $1 \sim n$, 所以只需计算初始的奇偶性就可以判断.

§ 1.4 子群, Lagrange 定理 § 1.5 群的直积

§ 1.6 群的同态, 正规子群, 商群, 群同态进本定理 § 1.7 可解群, 单群, Jordan-Holder 定理

§ 1.8 群在集合上的作用, 轨道-稳定子定理

定义 8.1

设G是一个群, Ω 是一个非空集合. 如果映射

$$\sigma: G \times \Omega \to \Omega$$
$$(a,x) \mapsto a \circ x$$

满足:

$$(ab) \circ x = a \circ (b \circ x), \quad \forall \ a, b \in G, \ \forall \ x \in \Omega,$$

 $e \circ x = x, \quad \forall \ x \in \Omega.$

那么称群 G 在集合 Ω 上有一个作用.

注. 可理解为 $a \circ x$ 运算, 就是 G 中元素 a 在 Ω 上的作用.

更直接的, 我们任给 $a \in G$ 就可以得到一个 Ω 到自身的映射 $\psi(a)$:

$$\psi(a): \quad \Omega \quad \to \quad \Omega$$
$$x \quad \mapsto \quad a \circ x.$$

容易验证 $\psi(a)$ 是 Ω 上的可逆变换, 从而 $\psi(a)$ 是 Ω 到自身的双射, 即 $\psi(a) \in S_{\Omega}$. 由此, 我们令

$$\psi: G \to S_{\Omega}$$

$$a \mapsto \psi(a),$$

则 ψ 是 G 到 S_{Ω} 的一个映射. 可以类似的验证 ψ 保持运算, 即 ψ 是 G 到 S_{Ω} 的同态.

命题 8.1. 设群 G 在集合 Ω 上有一个作用, 任给 $a \in G$, 令

$$\psi(a)x := a \circ x, \quad \forall \ x \in \Omega,$$

则 $\psi: a \mapsto \psi(a)$ 是 G 到 S_{Ω} 的一个群同态.

定义 8.2

我们称同态 ψ 的核 Ker ψ 为这个**作用的核**. 可以得到, $a \in G$ 是这个作用的核 $\Leftrightarrow a \circ x = x$, $\forall x \in G$.

定义 8.3

当 $Ker\psi = \{e\}$ 时, 称这个作用是**忠实的**, 此时 ψ 是一个单同态.

命题 8.2. 设群 G 到非空集合 Ω 上的全变换群 S_{Ω} 有一个同态 ψ , 令

$$a \circ x := \psi(a)x, \quad \forall \ a \in G, \forall \ x \in \Omega,$$

则 G 在 Ω 上有一个作用.

1. 群 *G* 在集合 *G* 上的左平移

设 G 是一个群,令

$$G \times G \rightarrow G$$

 $(a,x) \mapsto ax.$

容易验证这是G在集合G上的作用,称该作用为G在集合G上的左平移.

并且左平移的核 $\Leftrightarrow ax = x \Leftrightarrow a = e$, 即左平移是忠实的作用. 所以 $G \cong \text{Im}\psi$, 即 $G \ni G$ 上的一个变换群同构.

定理 8.3.(Cayley)

任意一个群都同构于某一集合上的变换群.

2. 群 G 在左商集 $(G/H)_l$ 上的左平移

设H是G的子群,令

$$G \times (G/H)_l \rightarrow (G/H)_l$$

 $(a, xH) \mapsto axH.$

容易验证这是 G 在 $(G/H)_l$ 上的作用, 称之为 G 在 $(G/H)_l$ 上的左平移.

注: 当题目中有子群时, 优先考虑在其左商集上的左平移.

3. 群 G 在集合 G 上的共轭作用

令

$$G \times G \rightarrow G$$

 $(a,x) \mapsto axa^{-1}.$

容易验证, 这是 G 在 G 上的作用, 称之为共轭作用.

定义 8.4

设 $Z(G) := \{b \in G | bx = xb, \forall x \in G\}$, 易得 Z(G) 是共轭作用的核. 我们称 Z(G) 为群 G 的中心, 它是由与 G 中每个元素都可交换的元素组成的集合.

群 G 在集合 G 上的共轭作用引出了一个 G 到 S_G 的同态 σ , 把 a 在 σ 下的像记作 σ_a , 于是

$$\sigma_a(x) = a \circ x = axa^{-1}, \quad \forall \ x \in G. \tag{1.3}$$

容易验证 σ_a 是 G 到自身的同构映射.

群 G 到自身的一个同构映射称为 G 的一个**自同构**. 由 (1.3) 式定义的 σ_a 称为 G 的一个**内自同构**.

此外, 群 G 的所有自同构组成的集合对于映射的乘法构成一个群, 称它为**自同构** \pmb{H} , 记作 $\mathbf{Aut}(G)$.

群 G 的所有内自同构组成的集合是上述的 $Im\sigma$, 它是 S_G 的一个子群, 称它是 G 的**内自同构群**, 记作 Inn(G).

由于 G 的每个内自同构 σ_a 是 G 的一个自同构, 因此 Inn(G) < Aut(G). 更进一步的, 可以验证 $Inn(G) \triangleleft Aut(G)$.

定理 8.4

对于群 G 有

$$G/Z(G) \cong \operatorname{Inn}(G)$$
.

证明. 由于 $Ker\sigma = Z(G)$, $Im\sigma = Inn(G)$, 根据群同态基本定理 $G/Z(G) \cong Inn(G)$.

引理 8.5

集合 Ω 上的二元关系:

$$y \sim x : \Leftrightarrow \exists a \in G, \ s.t. \ y = a \circ x.$$
 (1.4)

是等价关系.

定义 8.6

我们称

$$G(x) := \{a \circ x | a \in G\},\$$

为 x 的 G-**轨道**. 且 G(x) 是等价关系 (1.4) 中的一个等价类. 于是 Ω 的所有 G-轨道组成的集合是 Ω 的一个划分. Ω 的任意两条轨道要么相等, 要么不交. 且所有轨道的并是 Ω .

若 Ω 的子集 $I = \{x_i\}$ 使得

$$\Omega = \bigcup_{i \in I} G(x_i), \tag{1.5}$$

且当 $i \neq j$ 时有 $G(x_i) \cap G(x_j) = \emptyset$. 那么就称 I 为 Ω 的 G-轨道的**完全代表系**.

我们称

$$G_x := \{ g \in G | g \circ x = x \},$$

为x的**稳定子群**.

容易验证 G_x 是 G 的子群. 且 G_x 中的每个元素作用 x 保持 x 不变.

引理 8.6

任给 $a, b \in G$, $aG_x = bG_x \Leftrightarrow b^{-1}a \in G_x \Leftrightarrow a \circ x = b \circ x$.

因此 G_x 的某个陪集中的元素对 x 的作用是相同的. 从而考虑

$$\varphi: (G/G_x)_l \to G(x)$$

$$aG_x \mapsto a \circ x,$$

由引理 8.6 可知 φ 是 $(G/G_x)_l$ 到 G(x) 的一个单射, 从其定义可知这也是个满射, 由此 φ 是双射. 于是我们有 $|G(x)| = |(G/G_x)_l|$.

定理 8.7

(轨道-稳定子定理) 设群 G 在集合 Ω 上有一个作用, 则对于任给 $x \in \Omega$, 有

$$|G(x)| = |(G/G_x)_l| = [G:G_x]$$
 (1.6)

推论 8.8

如果有限群 G 在 Ω 上有一个作用, 那么对于 $x \in \Omega$ 有

$$|G| = |G_x||G(x)|.$$

下面考虑上述讨论在共轭作用中的应用.

定义 8.8

我们称共轭作用中的 G-轨道 $G(x) = \{axa^{-1}|a \in G\}$ 为 x 的**共轭类**.

当且仅当 $x \in Z(G)$ 时,有 |G(x)| = 1.

当 G 为有限群时, 我们称

$$|G| = |Z(G)| + \sum_{j=1}^{r} |G(x_j)|$$
 (1.7)

为有限群 G 的**类方程**. 其中 Z(G) 为 G 的中心, $\{x_1, x_2, \dots, x_r\}$ 为 G 的非中心元素的共轭类的完全代表系.

定义 8.10

在共轭作用下, 我们称 $C_G(x) := G_x = \{g \in G | g \circ x = x\} = \{g \in G | gx = xg\}$ 为 x 在 G 里的**中心化子**.

推论 8.9

运用轨道-稳定子定理可知, $|G(x)| = [G: C_G(x)]$.

定义 8.11

如果群 G 在 Ω 上的作用只有一条轨道, 即 $\forall x, y \in \Omega$, $\exists g \in G$, $s.t.y = g \circ x$, 那么称 G 在 Ω 上的这个作用是**传递的**. 并称 Ω 是群 G 上的一个**齐性空间**.

命题 8.10. 设群 G 在集合 Ω 上有一个作用, 则对任一给定 $x \in \Omega$, 对于轨道 G(x) 有 $\forall y \in G(x)$, G_x 和 G_y 彼此共轭, 即存在 $a \in G$, 使得 $G_y = aG_xa^{-1}$. 从而 $|G_x| = |G_y|, [G:G_x] = [G:G_y]$.

定义 8.12

对于给定的 $g \in G$, 我们称 $F(g) := \{x \in \Omega | g \circ x = x\}$ 为 g 的**不动点集**. 即 g 存在于哪些 x 的稳定子群中.

定理 8.11.(Burnside 引理)

设有限群 G 在有限集合 Ω 上有一个作用, 则 Ω 的 G-轨道条数 r 为

$$r = \frac{1}{|G|} \sum g \in G|F(g)|.$$

证明. 考虑集合

$$S = \{(g, x)|g \circ x = x\}.$$

一方面,
$$|S| = \sum_{x \in \Omega} |G_x| = r|G|$$
.
另一方面, $|S| = \sum_{g \in G} |F(g)|$.

设群 G 在集合 Ω 上有一个作用, 对于 $x \in \Omega$, 若 x 的 G-轨道只含一个元素 (即 x 自身), 则称 x 是群 G 的一个**不动点**. 群 G 的所有不动点组成的集合称为群 G 的**不动点**. **点集**, 记作 Ω_0 .

定义 8.14

若有限群 G 的阶是素数 p 的方幂, 即 $|G| = p^m$, $(m \ge 1)$, 则称 G 是 p-群.

命题 8.12. 设 p-群 G 在集合 Ω 上有一个作用, 则

$$|\Omega_0| \equiv |\Omega| (\bmod p).$$

推论 8.13

p-群 G 必有非平凡中心, 即 $Z(G) \neq \{e\}$.

推论 8.14

设 p 是素数, 则 p^2 阶群要么是循环群, 要么同构于 $(\mathbb{Z}_p, +) \oplus (\mathbb{Z}_p, +)$, 从而 p^2 阶群都是 Abel 群.

§ 1.9 Sylow 定理

引理 9.1

设 $n = p^l m$, 其中 (m, p) = 1, p 是素数, 则对 $1 \le k \le l$, 有

$$p^{l-k}|C_n^{p^k}, \quad p^{l-k+1} \nmid C_n^{p^k}.$$

定理 9.2.(Sylow 第一定理)

设群 G 的阶 $n = p^l m$, 其中 p 为素数, (m, p) = 1, l > 0, 则对 $1 \le k \le l$, G 中必有 p^k 阶子群, 其中 p^l 阶子群 (即 p 的最高方幂阶子群) 称为 G 的 Sylow p-子群.

证明. 设集合 Ω 中的元素形如:

$$A = \{a_1, a_2, \dots, a_{p^k}\}, \quad \sharp \vdash a_i \in G.$$

对于 $q \in G$, 令

$$g \circ A := \{ga_1, ga_2, \dots, ga_{p^k}\}.$$

容易验证这是 G 在 Ω 上的作用.

我们取 Ω 的 G-轨道完全代表系 $\{A_i\}$, 从而 $|\Omega| = \sum_{i=1}^{r} |G(A_i)|$.

由引理可知, $p^{l-k+1} \nmid |\Omega|$. 于是至少存在一个 i 满足 $p^{l-k+1} \nmid |G(A_i)|$.

根据轨道稳定子定理 $|G|=|G(A_i)||G_{A_i}|$. 由 p^l 恰好整除 |G|, 所以 $|G_{A_i}|$ 含有的 p 因子至少为 k 阶. 即

$$|G_{A_i}| = p^k q \geqslant p^k$$
.

另一方面, 对于任意 $g \in G_{A_i}$, 有 $g \circ A_i = A_i$. 于是对于 $a \in A_i$, 有 $ga \in A_i$. 从而

$$G_{A_i}a = \{ga|g \in G_{A_i}\} \subseteq A_i.$$

因此

$$|G_{A_i}| = |G_{A_i}a| \leqslant |A_i| = p^k.$$

综上, $|G_{A_i}| = p^k$. 从而 G_{A_j} 就是 G 的一个 p^k 阶子群.

定理 9.3.(Sylow 第二定理)

设群 G 的阶 $n = p^l m$, 其中 p 为素数, (m, p) = 1, l > 0, 则

- (1) 对于 $1 \le k \le l$, G 的任一 p^k 阶子群一定包含于 G 的某个 Sylow p-子群中;
- (2) G 的任意两个 Sylow p-子群在 G 中共轭.

推论 9.4

有限群 G 的 Sylow p-子群是正规子群, 当且仅当 G 的 Sylow p-子群的个数为 1.

定理 9.5.(Sylow 第三定理)

设群 G 的阶 $n=p^lm$, 其中 p 为素数, (m,p)=1, l>0, 则 G 的Sylow p-子群的个数 r 满足

$$r \equiv 1 \pmod{p}, \quad \coprod r \mid m.$$

推论 9.6

2p 阶群或者是循环群,或者同构于二面体群 D_p .

定义 9.1

形如 $a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k}$, 且满足 $a, b, c, d \in \mathbb{R}$,

$$\mathbf{i}^2=\mathbf{j}^2=\mathbf{k}^2=-1,\quad \mathbf{i}\mathbf{j}=-\mathbf{j}\mathbf{i}=\mathbf{k},\quad \mathbf{j}\mathbf{k}=-\mathbf{k}\mathbf{j}=i,\quad \mathbf{k}\mathbf{i}=-\mathbf{i}\mathbf{k}=\mathbf{j},$$

称为四元数.

定义 9.2

称 $Q = \{\pm 1, \pm i, \pm j, \pm k\}$ 为四元数群, 容易验证 Q 对于上述乘法构成一个群.

§ 1.10 有限 Abel 群和有限生成的 Abel 群的结构 § 1.11 自由群

第二章 环的理想,域的构造

§ 2.1 环同态, 理想, 商环

定义 1.1

若非空集合 $R_1 \subseteq R$, R 是一个环, 如果 R_1 对于 R 的加法和乘法也构成环, 则称 R_1 是 R 的**子环**.

命题 1.1. 环 R 的子集 R_1 是的子环, 当且仅当

$$a, b \in R \Rightarrow a - b \in R \land ab \in R$$
.

定义 1.2

如果环 R 到环 \widetilde{R} 有一个映射 σ , 满足:

$$\sigma(a+b) = \sigma(a) + \sigma(b),$$

$$\sigma(ab) = \sigma(a) + \sigma(b),$$

$$\sigma(1) = \widetilde{1}.$$

那么称 σ 是**环同态**.

注: 只有存在单位元才需验证上述最后一条条件.

性质 1.2. 设 σ 是 R 到 \widetilde{R} 的环同态,则

$$\sigma(0) = \widetilde{0}, \quad \sigma(-a) = -\sigma(a).$$

定义 1.3

称 Ker σ 为 R 到 \widetilde{R} 的**环同态核**.

定义 1.4

如果环R的一个非空子集I对R的减法封闭,并且具有"左,右吸收性",即

$$a \in I, r \in R \Rightarrow ra \in I \land ar \in I,$$

那么称 $I \in R$ 的一个理想或双边理想.

推论 1.3

理想是加法子群.

定义 1.5

称 R 和 $\{0\}$ 是环 R 的**平凡的理想**.

如果 R 只有平凡的理想, 那么称 R 是**单环**.

推论 1.4

设环 R 有单位元,则 R 的每个非平凡理想均不含有单位元.

推论 1.5

域 F 没有非平凡理想.

证明. 由于存在逆元, 非零理想中必存在幺元, 进而非零理想就是 F.

推论 1.6

设 R 是交换幺环,则

R 是域 \Leftrightarrow R 没有非平凡理想.

证明. 考虑 Ra 是 R 的理想, Ra = R 可得存在 ba = e, 由此 a 有逆元.

定义 1.6

如果环R的子集J对减法封闭,并且具有"左吸收性",即

$$b \in J, r \in R \Rightarrow rb \in J$$
.

则称 $J \in R$ 的**左理想**.

定义 1.7

设I是环R的一个理想,令

$$R/I := \{r + I | r \in R\}.$$

并在 R/I 中规定

$$(r_1 + I)(r_2 + I) := r_1 r_2 + I.$$

则 R/I 成为一个环, 称它为环 R 对于理想 I 的**商环**, 它的元素 r+I 称为模 I 的**同余 类**.

定义 1.8

设I是环R的一个理想,令

$$\pi: R \to R/I$$

$$r \mapsto r+I.$$

则 π 是环 R 到 R/I 的一个环同态, 且是满同态, $Ker\pi = I$. 称 π 为 R 到 R/I 的**自然环 同**态.

定理 1.7.(环同态基本定理)

设 σ 是环 R 到 \widetilde{R} 的一个环同态, 则 Ker σ 是 R 的一个理想, 且 Im $\sigma \cong R/$ Ker σ .

定理 1.8.(第一环同构定理)

设I是环R的一个理想,H是R的一个子环,则

- (1) $H + I \in R$ 的一个子环.
- (2) $H \cap I$ 是 H 的一个理想, 且 $H/H \cap I \cong (H+I)/I$.

命题 1.9. 设 I 是环 R 的一个理想,则商环 R/I 的所有理想组成的集合为 $\{K/I|K$ 是 R 的包含 I 的理想 $\}$.

定理 1.10.(第二环同构定理)

设 I, J 是环 R 的理想, 且 $I \subseteq J$, 则 J/I 是 R/I 的一个理想, 且有环同构:

$$(R/I)/(J/I) \cong R/J.$$

§ 2.2 理想的运算, 环的直和

命题 2.1. 设 R 是含有单位元的交换环, 任给 $a \in R$, 令

$$\{ar|r\in R\}=:aR=Ra:=\{ra|r\in R\}$$

则 Ra, aR 是 R 的理想.

命题 2.2. 若 $\{I_j|j\in J\}$ 是环 R 的一族理想, 则 $\bigcap_{j\in J}I_j$ 也是 R 的理想.

定义 2.1

设 S 是环 R 的非空子集, 把 R 的所有包含 S 的理想的交集称为由 S 生成的理想, 记作 (S). 如果 S 是有限集, 那么称 (S) 是**有限生成的**. 若 $S = \{a_1, a_2, \ldots, a_n\}$, 则把 (S) 记作 (a_1, a_2, \ldots, a_n) .

定义 2.2

环 R 中由一个元素生成的理想称为**主理想**, 记作 (a).

性质 2.3. 若 R 是有单位元的交换环,则 Ra = (a).

命题 2.4. 设 R 是一个环 (不一定有单位元, 也不一定是交换环), 则元素 a 生成的理想 (a) 为

$$(a) = \left\{ r_1 a + a r_2 + m a + \sum_{i=1}^n x_i a y_i | r_1, r_2, x_i, y_i \in R, m \in \mathbb{Z}, n \in \mathbb{N}^* \right\}.$$

命题 2.5. 若 R 是有单位元的交换环, $a_1, a_2, \ldots, a_n \in R$, 则

$$(a_1, a_2, \dots, a_n) = \{ \sum_{i=1}^n r_i a_i | r_i \in R, i = 1, 2, \dots, n \}.$$

定义 2.3

设 A, B 是环 R 的两个非空子集, 定义

$$A + B := \{ a + b | a \in A, b \in B \}$$

$$AB := \left\{ \sum_{i=1}^{n} a_i b_i \middle| a_i \in A, b_i \in B, i = 1, 2, \dots, n, n \in \mathbb{N}^* \right\}$$

定义 2.4

若 I,J 是环 R 的两个理想,则 I+J,IJ 都是 R 的理想,分别称他们为理想的**和、 积**,并且有

$$IJ \subset I \cap J \subset I + J$$
.

性质 2.6. 设 I, J, K 都是环 R 的理想, 则

$$I + J = J + I,$$

 $(I + J) + K = I + (J + K),$
 $(IJ)K = I(JK),$
 $I(J + K) = IJ + IK,$
 $(J + K)I = JI + KI.$

例 2.7. 在整环 Z 中,

$$(n)(m) = \left\{ \sum_{i=1}^{t} (k_i n)(l_i m) \middle| k_i l_i \in \mathbb{Z}, 1 \leqslant i \leqslant t, t \in \mathbb{N}^* \right\},$$

$$(2.1)$$

$$(n) \cap (m) = ([n, m]),$$
 (2.2)

$$(n) + (m) = \{kn + lm | k, l \in \mathbb{Z}\} = ((n, m)). \tag{2.3}$$

定义 2.5

设 R 是有单位元的环, I, J 是 R 的理想. 如果 I + J = R, 那么称 I 与 J **互素**.

例 2.8. 在整数环 Z 中,

$$(n,m) = 1 \Leftrightarrow (n) + (m) = (1) = \mathbb{Z}.$$

命题 2.9. 设 R 是有单位元的环, I, J, K 都是 R 的理想. 如果 I 和 J 都与 K 互素, 那么 IJ 也与 K 互素.

例 2.10. 在整数环 \mathbb{Z} 中, (n) 与 (m) 互素当且仅当 (n,m)=1.

命题 2.11. 设 R 是有单位元的交换环, I, J 是 R 的理想, 则

$$I + J = R \Rightarrow IJ = I \cap J.$$

例 2.12. 在整数环 Z 中,

$$(n)+(m)=\mathbb{Z}\Rightarrow ([n,m])=(nm)\Rightarrow (n)\cap (m)=(n)(m).$$

定义 2.6

设 R_1, R_2, \ldots, R_s 都是环, 在笛卡尔积 $R_1 \times R_2 \times \cdots \times R_s$ 中规定

$$(a_1, a_2, \dots, a_s) + (b_1, b_2, \dots, b_s) := (a_1 + b_1, a_2 + b_2, \dots, a_s + b_s),$$
 (2.4)

$$(a_1, a_2, \dots, a_s) \times (b_1, b_2, \dots, b_s) := (a_1b_1, a_2b_2, \dots, a_sb_s).$$
 (2.5)

容易验证, 上述加法和乘法构成一个环, 称它为环 R_1, R_2, \ldots, R_s 的**直和**, 记作 $R_1 \oplus R_2 \oplus \cdots \oplus R_s$, 零元为 $(0_1, 0_2, \ldots, 0_s)$.

如果每个环有单位元则 $(1_1, 1_2, ..., 1_s)$ 是直和的单位元.

如果每个环都是交换环,那么直和是交换环.

定义 2.7

设 I 是环 R 的一个理想, 对于 $a,b \in R$, 如果

$$a - b \in I$$
.

那么称 a = b **模** I **同余**, 记作 $a \equiv b \pmod{I}$.

容易验证, 模 I 同余是等价关系. 任给 $r \in R$, r 的等价类

$$\overline{r} = \{x \in R | x \equiv r \pmod{I}\}
= \{x \in R | x - r \in I\} = \{x \in R | x - r = b, b \in I\}
= \{r + b | b \in I\} = r + I.$$

我们称 r + I 为模 I 同余类.

性质 2.13. 若 $a \equiv b \pmod{I}$, $c \equiv d \pmod{I}$, 则

$$a + c \equiv b + d \pmod{I},$$

 $ac \equiv bd \pmod{I},$
 $ca \equiv db \pmod{I}$

定理 2.14

设 R 是有单位元的环, 若它的理想 I_1, I_2, \ldots, I_s 两两互素, 则有环同构:

$$R/(I_1 \cap I_2 \cap \dots \cap I_s) \cong R/I_1 \oplus R/I_2 \oplus \dots \oplus R/I_s.$$
 (2.6)

定理 2.15.(中国剩余定理)

设 m_1, m_2, \ldots, m_s 是两两互素的大于 1 的整数, 任给整数 b_1, b_2, \ldots, b_s , 则一次同余方程

$$\begin{cases} x \equiv b_1 \pmod{m_1}, \\ x \equiv b_2 \pmod{m_2}, \\ \dots \\ x \equiv b_s \pmod{m_s}, \end{cases}$$

$$(2.7)$$

在 ℤ 中有解, 它的一个解是

$$a = \sum_{i=1}^{s} b_i v_i \prod_{j \neq i} m_j,$$

其中 v_i 满足 $u_i m_i + v_i \prod_{j \neq i} m_j = 1, i = 1, 2, \dots, s$. 它的全部解为

$$a + km_1m_2 \cdots m_s, \quad k \in \mathbb{Z}.$$

定义 2.8

设I是交换环R的一个理想. 令

$$rad I := \{ r \in R \mid r^n \in I, \exists n \in \mathbb{N}^* \},\$$

称 rad I 是理想 I 的**根**, 且 rad I 是 R 的一个理想.

定义 2.9

若环 R 中元素 a, 满足 $\exists n \in \mathbb{N}^*$, s.t. $a^n = 0$, 那么称 a 是**幂零元**. 并且如果 R 有单位元且 a 是幂零元, 则 1 - a 可逆.

定义 2.10

在交换环 R 中, 所有幂零元组成的集合是 R 的一个理想, 且它是零理想 (0) 的根, 称为 R 的**幂零根**.

定义 2.11

设 I_1, I_2, \ldots, I_s 都是环 R 的理想, 并且

$$R = I_1 + I_2 + \cdots I_s$$

$$I_i \cap \left(\sum_{j \neq i} I_j\right) = (0), \quad i = 1, 2, \dots, s.$$

则

(1) 环 R 的每个元素 x 都可以唯一表示成

$$x = x_1 + x_2 + \dots + x_s, \quad x_i \in I_i, i = 1, 2, \dots, s.$$

(2) 有环同构

$$R \cong I_1 \oplus I_2 \oplus \cdots \oplus I_s$$

并称 R 是其理想 $I_1, I_2, ..., I_s$ 的**内直和**.

§ 2.3 素理想和极大理想

注 3.1. 本节中主要研究含幺环.

定义 3.1

若 R 交换幺环, 且 R 没有非零的零因子, 则称 R 是整环.

定义 3.2

设 R 是交换幺环, P 是 R 的理想, 且 $P \neq R$. 如果从 $ab \in P$ 可以推出 $a \in P$ 或者 $b \in P$, 那么称 P 是一个**素理想**.

例 3.2. 在整环 \mathbb{Z} 中, 设 p 是大于 1 的整数. 则

$$p$$
 是素数 \Leftrightarrow (p) 是素理想

例 3.3. 在域 F 上的一元多项式环 F[x] 中, 设 p(x) 是次数大于 0 的多项式, 则

$$p(x)$$
 不可约 \Leftrightarrow $(p(x))$ 是素理想

推论 3.4

设 R 是交换幺环,则

(0) 是 R 的一个理想 $\Leftrightarrow R$ 是整环

例 3.5. 整数环 ℤ 的每一个理想都是由一个非负整数生成的主理想.

证明. 取理想中最小的正元素为除数做带余除法.

推论 3.6

 \mathbb{Z} 的全部素理想为 (0),(p), 其中 p 是素数.

定理 3.7

设R是交换幺环,P是R的一个理想,则

商环 R/P 是整环 ⇔ P 是 R 的素理想.

定义 3.3

设 R 是环, M 是 R 的理想, 且 $M \neq R$. 如果 R 中包含 M 的理想只有 M 和 R, 那 么称 M 是 R 的一个**极大理想**.

定理 3.8

设R是交换幺环,I是R的一个理想,则

商环 R/I 是域 ⇔ I 是 R 的极大理想

证明. 利用推论 1.6 和极大理想定义即可直接得到.

例 3.9. 域 F 上一元多项式环 F[x] 的每一个理想都是主理想, 其中非 (0) 的主理想可以由首项系数为 1 的多项式生成.

证明. 类比例 3.5 取次数最低 (非 0 次) 的多项式做带余除法.

例 3.10. 在整环 \mathbb{Z} 中, 设 p 是大于 1 的整数, 则

p 是素数 \Leftrightarrow (p) 是极大理想

- **例 3.11.** 域 F 上的一元多项式环 F[x] 中, 设 p(x) 是次数大于 0 的多项式,则 p(x) 不可约 $\Leftrightarrow (p(x))$ 是 F[x] 的极大理想.
- **例 3.12.** 域 F 上的一元多项式环 F[x] 中, M 是 F[x] 的一个理想,则 F[x]/M 是域 $\Leftrightarrow M = (p(x)), \quad \text{其中 } p(x)$ 是不可约多项式.

定理 3.13

在幺环 R 中必存在极大理想.

定义 3.4

设 R 是幺环, 令 $\mathbb{Z}e := \{ne | n \in \mathbb{Z}\}$. 则有 $\mathbb{Z}e$ 是 R 的子环, 且存在非负整数 m 满足环同构 $\mathbb{Z}/(m) \cong \mathbb{Z}e$, 我们称 m 是环 R 的**特征**.

注 3.14. 环的特征也定义为, 最小的正整数 m 满足 $\forall r \in R, mr = 0$. 如果不存在这样的正整数, 则称环的特征为 0.

可以理解为环中单位元的加法阶.

命题 3.15. 如果 R 是整环, 那么 R 的特征是 0 或者一个素数.

§ 2.4 有限域的构造,构造扩域的途径

由上节, 我们已经知道若 p(x) 是 F[x] 上的不可约多项式, 那么 F[x]/(p(x)) 是一个域.

在具体研究这个域的性质前,我们先补充几个概念.

定理 4.1

设域 F 的单位元为 e, 则要么 $\forall n \in \mathbb{N}^*$ 有 $ne \neq 0$, 要么存在一个素数 p, 使得 pe = 0 且对于 0 < l < p, $le \neq 0$.

定义 4.1

设域 F 的单位元为 e.

如果 $\forall n \in \mathbb{N}^*$ 有 $ne \neq 0$, 则称**域** F **的特征**为 0.

如果存在素数 p, 使得 pe = 0 且对于 0 < l < p, $le \neq 0$, 则称**域** F **的特征**为 p.

例 4.2. 构造含 4 个元素的域.

解. 考虑在 $\mathbb{Z}_2[x]$ 中取不可约多项式 $x^2 + x + \overline{1}$, 则 $\mathbb{Z}_2[x]/(x^2 + x + \overline{1})$ 是一个域, 任取 f(x) 做带余除法, 可得余数就是不同等价类的代表元, 由此可知该域仅有四个元素. 当我们记 $u = x + (x^2 + x + \overline{1})$, 则

$$\mathbb{Z}_2[x]/(x^2+x+\overline{1})=\{0,1,u,1+u\}.$$

$$\mathbb{Z}(\overline{1} + (x^2 + x + \overline{1})) = (\overline{1} + \overline{1}) + (x^2 + x + \overline{1}) = \overline{0} + (x^2 + x + 1)$$

该步中, $\overline{1} + \overline{1} = \overline{0}$ 因为在 \mathbb{Z}_2 中.

由此, 该四元域的特征为 2. 我们有 $u^2 + u + 1 = (x^2 + x + \overline{1}) + (x^2 + x + \overline{1}) = (x^2 + x + \overline{1}) = 0$.

且满足 u+(1+u)=1+2u=1+0=1 (利用域的特征为 2), $u(1+u)=u+u^2=-1=1$. (利用 $u^2+u+1=0$)

定理 4.3

设 F_q 是含 q 个元素的有限域, 其中 $q = p^r$, p 为素数, $r \ge 1$. 如果 $F_q[x]$ 的 n 次不可约多项式为 $m(x) = a_0 + a_1 x + \cdots + a_n x^n$, 那么 $F_q[x]/(m(x))$ 是含 q^n 个元素的域, 并且它的每一个元素可以唯一地表示成

$$c_0 + c_1 u + \dots + c_{n-1} u^{n-1},$$

其中 $c_i \in F_q$, i = 0, 1, ..., n - 1; u = x + (m(x)), u 满足

$$a_0 + a_1 u + \dots + a_n u^n = 0.$$

注意到, 尽管 m(x) 在 F_q 中无根, 但是在我们构造出来的域 $F_q[x]/(m(x))$ 中, 元素 u = x + m(x), 有 m(u) = 0, 即 $u \neq m(x)$ 的根.

由此,对于当前域中不可约多项式 m(x), 我们可以通过该方法构造出一个更大的域,使其在更大的域中有根.

例 4.4. 在实数域 \mathbb{R} 中, 多项式 $x^2 + 1$ 不可约, 那么就考虑域 $\mathbb{R}[x]/(x^2 + 1)$. 则取 $u = x + (x^2 + 1)$, 那么 $\mathbb{R}[x]/(x^2 + 1)$ 中的元素可唯一表示为

$$c_0 + c_1 u$$
, $c_0, c_1 \in \mathbb{R}$.

且有 $u^2 + 1 = 0$.

更进一步的考虑到复数域的映射 $\sigma: c_0 + c_1 u \mapsto c_0 + c_1 i$.

容易验证这是双射,即

$$\mathbb{R}[x]/(x^2+1) \cong \mathbb{C}.$$

更一般的,我们有如下结论:

定理 4.5

设 F 是一个域, $p(x) = x^r + b_{r-1}x^{r-1} + \cdots + b_1x + b_0$ 是 F 上的一个不可约多项式, 那么 F[x]/(p(x)) 是一个域, 并且 $\sigma: a \mapsto a + (p(x))$ 是 F 到 F[x]/(p(x)) 的一个单的环同态, 从而可以把 a 和 a + (p(x)) 等同. 又取 u = x + (p(x)), 则 F[x]/(p(x)) 的每

个元素可以唯一表成

$$c_0 + c_1 u + \dots + c_{r-1} u^{r-1},$$

其中 $c_i \in F$, 并且 $u \neq p(x)$ 在 F[x]/(p(x)) 中的根.

定义 4.2

设 R 和 \widetilde{R} 都是有幺环, 如果 \widetilde{R} 有一个子环 \widetilde{R}_1 且与 \widetilde{R} 具有相同的幺元, 并且 \widetilde{R}_1 与 R 环同构, 那么把 \widetilde{R} 称为 R 的一个**扩环**, 此时可以把 R 看作是 \widetilde{R} 的一个子环.

定义 4.3

设 F 和 K 都是域, 如果 F 与 K 的一个子环 K_1 环同构, 那么称 K 是 F 的一个**扩** 域, 或者称 K 是 F 上的一个**域扩张**, 记作 K/F, 此时可以把 F 看成是 K 的一个**子域**.

定义 4.4

设 R 是交换幺环, \widetilde{R} 是 R 的一个扩环, 且 \widetilde{R} 是交换环. 任意取定 $\widetilde{a} \in \widetilde{R}$, 我们把 \widetilde{R} 中包含 $R \cup \{\widetilde{a}\}$ 的所有子环的**交**称为 R **添加** \widetilde{a} **得到的子环**, 或者 \widetilde{a} **在** R **上生成的子 环**, 记作 $R[\widetilde{a}]$.

定义 4.5

考虑 $R[\widetilde{\alpha}]$ 中元素的形式, 对于任意的 $a_0, a_1, \ldots, a_n \in R$, 有

$$a_0 + a_1 \widetilde{\alpha} + \dots + a_n \widetilde{\alpha}^n \in R[\widetilde{\alpha}].$$

容易验证

$$R[\widetilde{\alpha}] = \{a_0 + a_1 \widetilde{\alpha} + \dots + a_n \widetilde{\alpha}^n | a_0, a_1 \dots, a_n \in R, n \in \mathbb{N}\}.$$

其中 $a_0 + a_1 \widetilde{\alpha} + \cdots + a_n \widetilde{\alpha}^n$ 称为 $\widetilde{\alpha}$ 在 R 上的一个多项式.

下面我们来研究在什么条件下 $F[\tilde{\alpha}]$ 是一个域. 由于域中非零元都不是零因子, 因此显然有一个必要条件 \tilde{R} 是整环. 所以接下来的讨论都建立在 \tilde{R} 是整环的情况下.

考虑下述对应法则:

$$\sigma_{\widetilde{a}}: F[x] \to \widetilde{R}$$

$$f(x) = \sum_{i=0}^{n} a_{i} x^{i} \mapsto f(\widetilde{\alpha}) := \sum_{i=0}^{n} a_{i} \widetilde{\alpha}^{i}.$$
(2.8)

容易验证, $\sigma_{\tilde{a}}$ 是 F[x] 到 \tilde{R} 的一个环同态, 并且有 $\mathrm{Im}\sigma_{\tilde{a}}=F[\tilde{\alpha}]$ 于是根据环同态基

本定理得

$$F[x]/\mathrm{Ker}\sigma_{\widetilde{a}} \cong F[\widetilde{\alpha}].$$

又 $\operatorname{Ker}\sigma_{\widetilde{a}} = \{f(x) \in F[x] | \widetilde{\alpha} \ \mathbb{E}f(x) \text{ 的一个根} \}$. 由于 $\operatorname{Ker}\sigma_{\widetilde{a}} \ \mathbb{E}F[x] \text{ 的一个理想, 且}$ F[x] 的理想都是主理想, 因此 $\operatorname{Ker}\sigma_{\widetilde{a}} = (0)$ 或者 $\operatorname{Ker}\sigma_{\widetilde{a}} = (m(x))$, 其中 m(x) 是首项系数为 1 的多项式.

下面, 我们对这两种情况分别讨论.

定义 4.6

(1) 当 $Ker\sigma_{\tilde{a}} = (0)$ 时, 则 $\tilde{\alpha}$ 不是 F[x] 中任何非零多项式的根, 此时称 $\tilde{\alpha}$ 是 F 上 的**超越元**. 并且有

$$F[\widetilde{\alpha}] \cong F[x]/(0) \cong F[x].$$

由 F[x] 不是域, 从而 $F[\tilde{\alpha}]$ 不是域.

(2) 当 $\operatorname{Ker} \sigma_{\widetilde{a}} = (m(x))$ 时, 则 $\widetilde{\alpha}$ 是 F[x] 中非零多项式 m(x) 的一个根, 此时称 $\widetilde{\alpha}$ 是 F 上的**代数元**. 且 F[x] 中以 $\widetilde{\alpha}$ 为根的多项式都是 m(x) 的倍式. 因此 m(x) 是所有以 $\widetilde{\alpha}$ 为根的非零多项式中次数最低的, 称之为 $\widetilde{\alpha}$ 在 F 上的**极小多项式**.

并且有 m(x) 是不可约的, 否则设 $m(x) = m_1(x)m_2(x)$, 则有 $0 = m(\tilde{\alpha}) = m_1(\tilde{\alpha})m_2(\tilde{\alpha})$. 由于 \tilde{R} 是整环, 所以有 $m_1(\tilde{\alpha}) = 0$ 或者 $m_2(\tilde{\alpha}) = 0$. 那么不妨设 $m_1(\tilde{\alpha}) = 0$ 就有 $m_1(x) \in \text{Ker}\sigma_{\tilde{\alpha}}$, 但显然有 $m_1(x) \notin (m(x))$, 故产生矛盾.

由此, m(x) 是不可约的, 从而 F[x]/(m(x)) 是一个域, 又 $F[\widetilde{\alpha}] \cong F[x]/(m(x))$, 故 $F[\widetilde{\alpha}]$ 是一个域.

在之前, 我们已经知道, F[x]/(m(x)) 的每一个元素可以唯一表示成

$$c_0 + c_1 u + \dots + c_{r-1} u^{r-1}$$

其中u = x + m(x). 那么根据环同态基本定理中用到的环同态映射

$$\psi(f(x) + (m(x))) = \sigma_{\widetilde{a}}(f(x)) = f(\widetilde{\alpha}).$$

从而 $\psi(c_0 + c_1 u + \dots + c_{r-1} u^{r-1}) = \psi(c_0 + c_1 x + \dots + c_{r-1} x^{r-1} + (m(x)))$ = $c_0 + c_1 \widetilde{\alpha} + \dots + c_{r-1} \widetilde{\alpha}^{r-1}$, 特别的, 有 $\psi(u) = \widetilde{\alpha}$.

因此 $F[\tilde{\alpha}]$ 的每个元素都可以唯一的表示成

$$c_0 + c_1 \widetilde{\alpha} + \dots + c_{r-1} \widetilde{\alpha}^{r-1}$$
.

综上所述, 我们得到了定理:

定理 4.6

设 F 是一个域, \widetilde{R} 是 F 的一个扩环, 且 \widetilde{R} 是整环. 任取 $\widetilde{\alpha} \in \widetilde{R}$.

- (1) 若 $\tilde{\alpha}$ 是 F 上的超越元, 则 $F[\tilde{\alpha}]$ 同构于 F[x], 从而 $F[\tilde{\alpha}]$ 不是域.
- (2) 若 $\tilde{\alpha}$ 是 F 上的代数元, 且 $\tilde{\alpha}$ 在 F 上的极小多项式为 m(x), 则 m(x) 在 F 上不可约, 且 $F[\tilde{\alpha}]$ 是同构于 F[x]/(m(x)) 的域. $F[\tilde{\alpha}]$ 中的元素可以唯一的表成

$$c_0 + c_1 \widetilde{\alpha} + \cdots + c_{r-1} \widetilde{\alpha}^{r-1}$$
.

注 4.7. 当 $F[\tilde{\alpha}]$ 是域时, 我们将其记作 $F(\tilde{\alpha})$.

定义 4.7

当我们取 $F = \mathbb{Q}$, $\widetilde{R} = \mathbb{C}$ 时, 如果复数 $t \in \mathbb{Q}$ 上的代数元, 那么称 $t \in \mathbb{C}$ 相应的, 如果 $t \in \mathbb{Q}$ 是超越元, 那么称之为**超越数**.

定义 4.8

在复数域 \mathbb{C} 中的一个本原 n 次单位根 $\xi_n = e^{i\frac{2\pi}{n}}$ 是一个代数数. 于是 $\mathbb{Q}[\xi_n]$ 是一个域, 称它为**第** n **个分圆域**. 由于本原 n 次单位根有 $\varphi(n)$ 个,分别记作 $\eta_1, \eta_2, \ldots, \eta_{\varphi(n)}$, 令

$$f_n(x) = (x - \eta_1)(x - \eta_2) \cdots (x - \eta_{\varphi(n)})$$

则称 $f_n(x)$ 是 n **阶分圆多项式**. 可以证明 $f_n(x) = m_{\xi_n}(x)$, 其中 $m_{\xi_n}(x)$ 是 ξ_n 在 \mathbb{Q} 上的 极小多项式, 从而

$$\mathbb{Q}(\xi_n) \cong \mathbb{Q}[x]/(f_n(x)).$$

定义 4.9

如果一个复数 α 是一个首项系数为 1 的整系数多项式的根, 那么称 α 是一个**代数整数**.

定义 4.10

对于任意整数 n, m, 复数 m + ni 是代数整数, 称这种形式的代数整数为**高斯整数**.

§ 2.5 分式域

定义 5.1

设 R 是一个整环, 如果有一个域 F 使得从 R 到 F 有一个单的环同态 σ , 并且 F 中每个元素都可以表成 $\sigma(a)\sigma(b)^{-1}$, 即 ab^{-1} 的形式, 其中 $a \in R, b \in R^*$, 那么把 F 称为 R 的**分式域**. 我们常常把 ab^{-1} 记作 $\frac{a}{b}$.

例 5.1. 考虑 \mathbb{Z} 到 \mathbb{Q} 的映射 $\sigma(a) = a$. 那么根据定义 \mathbb{Q} 是 \mathbb{Z} 的分式域.

定理 5.2

设 R 是一个整环,则存在 R 的分式域,并且在环同构的意义下, R 的分式域是唯一的.

任一域 F 上的 n 元多项式环 $F[x_1,\ldots,x_n]$ 是一个整环. 于是存在 $F[x_1,\ldots,x_n]$ 的分式域, 记作 $F(x_1,\ldots,x_n)$, 它的元素可以表示成

$$\frac{f(x_1,\ldots,x_n)}{g(x_1,\ldots,x_n)},$$

其中 $g(x_1,\ldots,x_n)\neq 0$.

定义 5.2

 $F(x_1,...,x_n)$ 的元素 $\frac{f(x_1,...,x_n)}{g(x_1,...,x_n)}$ 称为 n 元分式, 其中 $f(x_1,...,x_n)$ 称为分子, $g(x_1,...,x_n)$ 称为分母.

若 $l(x_1,\ldots,x_n)\neq 0$, 则有

$$\frac{f(x_1, \dots, x_n)l(x_1, \dots, x_n)}{g(x_1, \dots, x_n)l(x_1, \dots, x_n)} = \frac{f(x_1, \dots, x_n)}{g(x_1, \dots, x_n)}.$$
(2.9)

上式称为 n 元分式的基本性质.

第三章 整环的整除性

§ 3.1 整除关系, 不可约元, 素元, 最大公因子

定义 1.1

设 R 是整环, 对于 $a,b \in R$, 若存在 $c \in R$, 使得 a = bc, 则称 b **整除** a, 记作 $b \mid a$. 否则称 b **不能整除** a, 记作 $b \nmid a$. 当 $b \mid a$ 时, 称 $b \not\in a$ 的**因子**, $a \not\in b$ 的**倍元**.

性质 1.1.

- (1) 由整除的定义立即得到: 在整环 R 中, $b \mid a \Leftrightarrow (a) \subseteq (b)$.
- (2) 任意元素都是0的一个因子. 特别的,0也是0的因子.
- (3) 在整环中 u 可逆 $\Leftrightarrow \exists v \in R, s.t. uv = 1 \Leftrightarrow u \mid 1 \Leftrightarrow 1 \in (u) \Leftrightarrow (u) = R.$
- (4) 设 u 可逆, 则 $\forall a \in R$, 有 $a = u(u^{-1}a)$, 从而 $u \mid a$. 因此可逆元是 R 中任意元素的因子.
- (5) 若 $b \mid a_1, b \mid a_2$ 则有

$$b \mid (r_1 a_1 + r_2 a_2), \quad \forall \ r_1, r_2 \in R.$$

定义 1.2

在整环 R 中, 若 $b \mid a \wedge a \mid b$, 则称 a = b 相伴, 记作 $a \sim b$.

容易验证,相伴是 R 上的一个等价关系.

命题 1.2. 在整环 R 中, $a \sim b$ 当且仅当存在可逆元 u 使得 a = bu.

推论 1.3

在整环 R 中, 若 $a \sim b$, $c \sim d$, 则 $ac \sim bd$.

定义 1.3

在整环 R 中, 若 $b \mid a$ 但是 $a \nmid b$ (即 b 是 a 的一个因子, 但是 b 不是 a 的相伴元), 则称 b 是 a 的一个**真因子**.

定义 1.4

在整环 R 中, a 的任一相伴元, 以及 R 中任一可逆元都是 a 的因子, 称这些因子是 a 的**平凡因子**. 其他因子称为 a 的**非平凡因子**.

定义 1.5

在整环 R 中, 设 $a \neq 0$, 且 a 不可逆. 如果 a 只有平凡因子, 那么称 a 是**不可约的**, 否则称 a 是**可约的**.

利用相伴的性质可以推出,不可约元的相伴元也是不可约元.

定义 1.6

设 $a \neq 0$, 且 a 不可逆. 如果从 $a \mid bc$ 可以推出 $a \mid b$ 或 $a \mid c$, 那么称 a 是一个**素元**.

命题 1.4. 在整环 R 中, 素元一定是不可约元.

命题 1.5. 在整环 R 中, a 为素元当且仅当 (a) 是非零素理想

定义 1.7

在整环 R 中, 对于 $a,b \in R$. 如果有 $c \in R$ 使得 $c \mid a \land c \mid b$ 那么称 c 是 a 与 b 的一个公因子 d 满足: 对于 a,b 的任一公因子 c 有 $c \mid d$. 那么称 d 是 a,b 的一个**最大公因子**.

性质 1.6. 若 d_1 , d_2 是 a 与 b 的最大公因子, 那么从定义 1.7 得出, $d_1 \sim d_2$. 反之, 若 d_1 是 a, b 的最大公因子, 且 $d_1 \sim d_2$, 则 d_2 也是 a 与 b 的一个最大公因子. 记作 (a,b).

命题 1.7. 在整环 R 中, 如果每一对元素都有最大公因子, 那么对任意 $a,b,c \in R$, 有 $(ca,cb) \sim c(a,b)$.

§ 3.2 欧几里得整环, 主理想整环, 唯一因子分解整环

定义 2.1

设 R 为整环, 如果存在 R^* ($R^* = R \setminus \{0\}$) 到 \mathbb{N} 的一个映射 δ , 使得对任意 $a, b \in R \land b \neq 0$, 都有 $h, r \in R$ 满足

$$a = hb + r$$
, $r = 0$ 或 $r \neq 0$ 且 $\delta(r) < \delta(b)$,

那么称 R 是一个**欧几里得整环**.

定理 2.1

欧几里得整环 R 的每一个理想都是主理想.

定义 2.2

设 R 为整环, 如果 R 的每一个理想都是主理想, 那么称 R 是一个**主理想整环**.

定理 2.2

设R是主理想整环,则

a 是不可约元 ⇔ (a) 是非零极大理想.

推论 2.3

设 R 是主理想整环,则 R 的不可约元 a 一定是素元.

定义 2.3

整环 R 如果满足下列两个条件:

(1) R 中每个非零且不可逆的元素 a 可以分解成有限多个不可约元的乘积

$$a = p_1 p_2 \cdots p_s;$$

(2) 上述分解在相伴的意义下是唯一的, 即如果 a 有两个这样的分解式:

$$a = p_1 p_2 \cdots p_s = q_1 q_2 \cdots q_t$$

那么 s = t, 并且可以通过适当的调换位置使得 $p_i \sim q_i$.

那么称 R 是一个唯一因子分解整环或者高斯整环.

定理 2.4

整环 R 如果满足下列两个条件:

- (1) **因子链条件**: 在整环 R 中, 如果序列 a_1, a_2, a_3, \ldots 中, 每一个 a_i 是 a_{i-1} 的真因子, 那么这个序列是有限序列.
- (2) 每一个不可约元都是素元.

那么称 R 是唯一因子分解整环.

命题 2.5. 设 R 是整环, 如果 R 的每一对元素都有最大公因子, 那么 R 的每一个不可约元都是素元.

基于上述命题, 我们可以将定理 2.4 中的条件 2 进行替换.

定理 2.6

若 R 是唯一因子分解整环,则 R 的每一对元素都有最大公因子.

定理 2.7

主理想整环都是唯一因子分解整环.

定义 2.4

设 R 是唯一因子分解整环, 任 给 $f(x) = a_0 + a_1x + \cdots + a_nx^n \in R[x]$. 用 (a_0, a_1, \ldots, a_n) 表示 a_0, a_1, \ldots, a_n 的最大公因子. 如果有 $(a_0, a_1, \ldots, a_n) \sim 1$, 那么称 f 是一个本原多项式.

命题 2.8. R[x] 中的可逆元只能是 0 次多项式, 且是 R 的可逆元. 反之, R 的可逆元也是 R[x] 的可逆元. 根据定义, R[x] 的可逆元是零次本原多项式.

命题 2.9. 若 p(x) 是 R[x] 中的一个不可约元,则 $p(x) \neq 0$, p(x) 不是 R 的可逆元,并且 p(x) 的因式只有 R 的可逆元和 p(x) 的相伴元. 从而 p(x) 要么是 R 的一个不可约元,要么是一个次数大于 0 的不可约的本原多项式.

反之, R[x] 的一个不可约的本原多项式是 R[x] 的一个不可约元.

引理 2.10

设 R 是唯一因子分解整环, 则 R[x] 中任一非零多项式 f(x) 可以写成

$$f(x) = df_1(x),$$

其中 $d \in R$ 且 $d \neq 0$, $f_1(x)$ 是一个本原多项式, 并且 d 和 $f_1(x)$ 在相伴的意义下由 f(x) 唯一确定.

引理 2.11.(高斯引理)

设 R 是唯一因子分解整环, 则 R[x] 中两个本原多项式的乘积还是本原多项式.

引理 2.12

设 R 是唯一因子分解整环, F 是 R 的分式域, 则 R[x] 中两个本原多项式 g(x) 与 f(x) 在 F[x] 中相伴当且仅当 g(x) 与 h(x) 在 R[x] 中相伴.

引理 2.13

§ 3.3 诺特环

定义 3.1

设R是一个交换环,如果R的每一条**理想升链**

 $I_1 \subsetneq I_2 \subsetneq I_3 \subsetneq \cdots$

都有限, 那么称 R 满足**理想升链条件**, 此时称 R 是一个**诺特环 (Noether ring)**.

推论 3.1

主理想整环都是诺特环.

证明. 因为主理想整环都是唯一因子分解整环,则对于该环的每一个理想升链,取其中每个主理想的代表元,就构成了一个因子链,从而是有限的. □

定理 3.2

设 R 是一个交换环,则 R 是诺特环当且仅当 R 的每一个理想都是有限生成的.

定理 3.3.(希尔伯特 (Hilbert) 基定理)

如果 R 是一个有单位元 $1(\neq 0)$ 的诺特环, 那么 R 上的一元多项式环 R[x] 也是诺特环.

推论 3.4

如果 R 是有幺元的诺特环, 那么 R 上的 n 元多项式环 $R[x_1, x_2, \ldots, x_n]$ 也是诺特环.

证明. 考虑 $R[x_1, x_2]$ 可以视作 $R[x_1]$ 上的一元多项式环 $R[x_1][x_2]$,从而利用归纳法可知 n 元多项式环也是诺特环.

命题 3.5. 域 F 是诺特环, 因为 F 只有平凡的理想, 从而 $F[x_1, x_2, \ldots, x_n]$ 是诺特环. 因此 $F[x_1, x_2, \ldots, x_n]$ 的每个理想都是有限生成的.

第四章 域扩张,伽罗瓦理论

§ 4.1 域扩张的性质

定义 1.1

如果域扩张 K/F 可以在 F 上添加一个元素 α 得到, 即 $K = F(\alpha)$, 那么称 K 是 F 上的一个**单扩张**.

如果域 F 的一个子环是域, 那么称它为 F 的一个**子域**.

定义 1.2

设 K/F 是一个域扩张, S 是 K 的一个非空子集. 我们把 K 中包含 $F \cup S$ 的一切子域的交称为 F **添加** S **得到的子域**, 或 S **在** F **上生成的子域**, 记作 F(S). 若 $S = \{a_1, a_2, \ldots, a_n\}$, 则把 F(S) 写成 $F(a_1, a_2, \ldots, a_n)$.

Part II 数学分析

这部分内容主要参考陆亚明《数学分析入门》[1].

数学分析定义及主要定理

简单曲线	75
第一型曲线积分	77
R ³ 上的光滑曲线段	78
格林公式	80

积分表

$$\int \sqrt{x^2 \pm a^2} \, dx$$

$$\frac{1}{2} \left(x \sqrt{x^2 \pm a^2} \pm a^2 \ln \left| x + \sqrt{x^2 \pm a^2} \right| \right)$$

$$\int 1$$
1

第一章 多元函数极限

§ 1.1 \mathbb{R}^n 中的点集

1.1.1 邻域、开集

定义 $1.1.(\varepsilon$ -邻域、去心邻域)

设 $a \in \mathbb{R}^n$, ε 是一个正实数, 我们称集合

$$\{x \in \mathbb{R}^n : |\boldsymbol{x} - \boldsymbol{a}| < \varepsilon\}$$

为 \boldsymbol{a} 的 ε -邻域, 记作 $B(\boldsymbol{a}, \varepsilon)$.

称 $B(\boldsymbol{a}, \varepsilon) \setminus \{\boldsymbol{a}\} = \{\boldsymbol{x} \in \mathbb{R}^n : 0 < |\boldsymbol{x} - \boldsymbol{a}| < \varepsilon\}$ 为 \boldsymbol{a} 的去心邻域.

定义 1.2.(内点、内部)

设 $E \subseteq \mathbb{R}^n$ 且 $\mathbf{a} \in E$. 若存在 $\varepsilon > 0$ 使得 $B(\mathbf{a}, \varepsilon) \subseteq E$, 则称 \mathbf{a} 是 E 的内点. E 的全体内点所成之集被称作 E 的内部,记作 E° .

定义1.3.(外点、外部)

设 $E \subseteq \mathbb{R}^n$. 若 $\mathbf{a} \in \mathbb{R}^c$ 的内点, 则称 $\mathbf{a} \to E$ 的外点. E 的全体外点所成之集被称作 E 的外部.

定义 1.4.(边界点、边界)

设 $E \subseteq \mathbb{R}^n$. 若 \boldsymbol{a} 既不是 E 的内点, 也不是 E 的外点, 则称 \boldsymbol{a} 为 E 的边界点. E 的全体边界点所成之集被称作 E 的边界, 记作 ∂E .

定义 1.5.(开集)

设 $D \subseteq \mathbb{R}^n$, 若 G 中每个点均为内点, 则称 G 是 \mathbb{R}^n 中的开集. 即 G 是开集, 当且仅当 $G = G^\circ$.

命题 1.1. 设 $E \subseteq \mathbb{R}^n$, 则 E° 是开集.

命题 1.2. 我们有

- (1) \emptyset 和 \mathbb{R}^n 都是开集.
- (2) 设 $(G_{\lambda})_{\lambda \in L}$ 是一族开集, 则 $\bigcup_{\lambda \in L} G_{\lambda}$ 也是开集.

(3) 设 G_1, \dots, G_m 是开集, 则 $\bigcap_{j=1}^m G_j$ 也是开集.

定义 1.6.(邻域)

设 $E \subseteq \mathbb{R}^n$, 若开集 G 满足 $E \subseteq G$, 则称 G 是 E 的一个邻域. 特别的, 当 $E = \{a\}$ 时我们称 G 是 a 的一个邻域.

1.1.2 聚点、闭集

定义 1.7.(闭集)

设 $F \subset \mathbb{R}^n$, 若 F^c 是 \mathbb{R}^n 中的开集, 则称 F 是 \mathbb{R}^n 中的闭集.

命题 1.3. 我们有

- (1) \emptyset 和 \mathbb{R}^n 都是闭集.
- (2) 设 $(G_{\lambda})_{\lambda \in L}$ 是一族闭集,则 $\bigcap_{\lambda \in L} G_{\lambda}$ 也是闭集.
- (3) 设 G_1, \dots, G_m 是开集, 则 $\bigcup_{j=1}^m G_j$ 也是闭集.

定义 1.8.(聚点、导集)

设 $E \subset \mathbb{R}^n$, $\mathbf{a} \in \mathbb{R}^n$. 若对任意的 $\varepsilon > 0$ 均有

$$(B(\boldsymbol{a},\varepsilon)\backslash\{\boldsymbol{a}\})\cap E\neq\varnothing,$$

则称 $a \in E$ 的聚点. 称 E 的全体聚点所成之集为 E 的导集, 记作 E'

定义 1.9.(孤立点)

设 $E \subseteq \mathbb{R}^n$, 如果 $\mathbf{a} \in E \setminus E'$, 则称 $\mathbf{a} \in E$ 的孤立点.

定义 1.10.(闭包)

设 $E \subset \mathbb{R}^n$, 称 $E \cup E'$ 为 E 的闭包, 记作 \overline{E} .

- **命题 1.4.** 设 $E \subseteq \mathbb{R}^n$, 则 \overline{E} 是闭集.
- **命题 1.5.** 设 $E \subseteq \mathbb{R}^n$, 则 E 是闭集当且仅当 $E = \overline{E}$.

命题 1.6. 设 $E \subseteq \mathbb{R}^n$, 则 $\overline{E} = E^{\circ} \cup \partial E$.

定义 1.11.(极限、收敛)

设 $\{x_m\}$ 是 \mathbb{R}^n 中的一个点列, 如果存在 $a \in \mathbb{R}^n$, 使得对任意的 $\varepsilon > 0$, 均存在正整数 N 满足

$$|\boldsymbol{x}_{m} - \boldsymbol{a}| < \varepsilon, \quad \forall m > N.$$

则称 a 为 $\{x_m\}$ 的极限, 并称 $\{x_m\}$ 收敛于 a.

定义 1.12.(柯西列)

若 \mathbb{R}^n 中的点列 $\{x_m\}$ 满足: 对任意的 $\varepsilon > 0$, 均存在正整数 N 使得

$$|\boldsymbol{x}_{l} - \boldsymbol{x}_{m}| < \varepsilon, \quad \forall l, m > N,$$

则称 $\{x_m\}$ 是柯西列.

定理 1.7.(柯西收敛准则)

 \mathbb{R}^n 中的点列 $\{x_m\}$ 收敛当且仅当它是柯西列.

定理 1.8.(压缩映像原理)

设 $E \in \mathbb{R}^n$ 中的闭集, $f: E \to E$. 如果存在 $\theta \in (0,1)$ 使得

$$|f(\boldsymbol{x}) - f(\boldsymbol{y})| \le \theta |\boldsymbol{x} - \boldsymbol{y}|, \quad \forall \boldsymbol{x}, \boldsymbol{y} \in E,$$

那么存在唯一的 $a \in E$ 使得 f(a) = a. 我们称 a 为 f 的不动点.

定义 1.13.(闭矩形)

形如 $[a_1,b_1] \times [a_2,b_2] \times \cdots \times [a_n,b_n]$ 的集合为 \mathbb{R}^n 中的闭矩形.

定义 1.14.(直径)

对 \mathbb{R}^n 的任意非空子集 E 记

$$\operatorname{diam}(E) = \sup_{\boldsymbol{x}, \boldsymbol{y} \in E} |\boldsymbol{x} - \boldsymbol{y}|,$$

并称之为 E 的**直径**.

定理 1.9.(闭矩形套定理)

设闭矩形列 $\{I_m\}$ 满足 $I_{m+1}\subseteq I_m(\forall m\in\mathbb{Z}_{>0})$ 以及 $\lim_{m\to\infty}\operatorname{diam}(I_m)=0$,那么存在唯一的 $\boldsymbol{a}\in\mathbb{R}^n$ 使得

$$\bigcap_{m=1}^{\infty} I_m = \{\boldsymbol{a}\}.$$

定义 1.15.(紧集)

设 $K \subset \mathbb{R}^n$, 如果 K 的每个开覆盖均有有限子覆盖, 那么我们称 K 是一个**紧集**,

命题 1.10. \mathbb{R}^n 中的闭矩形是紧集.

定义 1.16.(有界)

设 $E \subseteq \mathbb{R}^n$. 若存在 M > 0, 使得对任意的 $\mathbf{x} \in E$ 均有 $|\mathbf{x}| \leq M$, 则称 E 是**有界**的.

定理 1.11

设 $K \subseteq \mathbb{R}^n$,则 K 是紧集当且仅当它是有界闭集.

定理 1.12.(波尔查诺-魏尔斯特拉斯定理)

 \mathbb{R}^n 的任意一个有界无限子集必有聚点.

1.1.3 连通集

定义 1.17.(开(闭)子集)

设 $A \subseteq E \subseteq \mathbb{R}^n$. 若存在 \mathbb{R}^n 中的开集 (相应的, 闭集) S 使得 $A = E \cap S$, 则称 A 是 E 上的开子集 (相应的, 闭子集).

命题 1.13. 设 $E \subseteq \mathbb{R}^n$, $A, B \subseteq E$, 那么

- (1) $A \neq E$ 的开子集当且仅当对任意的 $a \in A$, 存在 a 的邻域 U 使得 $E \cap U \subset A$.
- (2) $B \notin E$ 的闭子集当且仅当 $E \setminus B \notin E$ 的开子集.

定义 1.18.(连通集)

设 $E \subseteq \mathbb{R}^n$. 若不存在 E 的两个非空开子集 A 和 B 使得 $A \cup B = E$ 且 $A \cap B = \emptyset$, 则称 $E \not \in \mathbb{R}^n$ 中的**连通集**.

定义1.19.(区域、闭区域)

 \mathbb{R}^n 中的连通开集被称作**区域**. 如果 E 是区域,那么也将 \overline{E} 称作**闭区域**. 要注意的是, **闭区域**不是**区域**.

命题 1.14. 设 $E \in \mathbb{R}$ 的非空子集, 那么 $E \in \mathbb{R}$ 中的连通集当且仅当 $E \in \mathbb{R}$ 是区间.

命题 1.15. 设 $E \in \mathbb{R}^n$ 中的连通集, 且 $E \subseteq S \subseteq \overline{E}$, 那么 S 也是 \mathbb{R}^n 中的连通集. 特别的 $\overline{E} \in \mathbb{R}^n$ 中的连通集.

§ 1.2 多元函数的极限

定义 2.1.(极限)

设 $E \subseteq \mathbb{R}^n$, $f: E \to \mathbb{R}^m$, \boldsymbol{a} 是 E 的聚点. 若存在 $\boldsymbol{b} \in \mathbb{R}^m$, 使得对任意的 $\varepsilon > 0$, 均存在 $\delta > 0$ 满足

$$|f(\boldsymbol{x}) - \boldsymbol{b}| < \varepsilon, \quad \forall \boldsymbol{x} \in (B(\boldsymbol{a}, \delta) \setminus \{\boldsymbol{a}\}) \cap E,$$

则称 b 为 f 沿 E 中元素趋于 a 的**极限**.

命题 2.1. (极限的唯一性) 设 $E \subseteq \mathbb{R}^n$, $f: E \to \mathbb{R}^m$, $a \in E$ 的聚点. 如果 $b \in c \in f$ 沿 E 中元素趋于 a 的极限, 则 b = c.

定理 2.2.(海涅归结原理)

 $\lim_{\substack{\boldsymbol{x} \to \boldsymbol{a} \\ \boldsymbol{x} \in E}} f(\boldsymbol{x}) = \boldsymbol{b}$ 的充要条件是: 对于 E 中满足 $\lim_{k \to \infty} \boldsymbol{x}_k = \boldsymbol{a}$ 且 $\boldsymbol{x}_k \neq \boldsymbol{a}$ ($\forall k$) 的任一序列 $\{x_k\}$ 均有 $\lim_{k \to \infty} f(\boldsymbol{x}_k) = \boldsymbol{b}$.

定理 2.3.(柯西收敛准则)

 $\lim_{\substack{m{x} op m{a} \ E}} f(m{x})$ 存在的重要条件是: 对任意的 $\varepsilon > 0$, 存在 $\delta > 0$, 使得对于任意的 $m{x}, m{y} \in (B(m{a}, \delta) \backslash \{m{a}\}) \cap E$ 有

$$|f(\boldsymbol{x}) - f(\boldsymbol{y})| < \varepsilon.$$

定理 2.4.(夹逼定理)

设 $E \subseteq \mathbb{R}^n$, \boldsymbol{a} 是 E 的聚点, f, g, h 均是定义在 E 上的函数, 并且存在 $\delta > 0$, 使得存在 $(B(\boldsymbol{a}, \delta) \setminus \{\boldsymbol{a}\}) \cap E$ 内有 $f(\boldsymbol{x}) \leq g(\boldsymbol{x}) \leq h(\boldsymbol{x})$. 如果

$$\lim_{\substack{\boldsymbol{x} \to \boldsymbol{a} \\ \boldsymbol{x} \in E}} f(\boldsymbol{x}) = \lim_{\substack{\boldsymbol{x} \to \boldsymbol{a} \\ \boldsymbol{x} \in E}} h(\boldsymbol{x}) = A,$$

那么 $\lim_{\substack{\boldsymbol{x} \to \boldsymbol{a} \\ \boldsymbol{x} \in E}} g(\boldsymbol{x}) = A.$

§ 1.3 连续映射

定义 3.1.(连续)

设 $E \subseteq \mathbb{R}^n$, $f: E \to \mathbb{R}^m$. 又设 $\mathbf{a} \in E$. 若对任意的 $\varepsilon > 0$, 存在 $\delta > 0$, 使得对任意的 $\mathbf{x} \in E \cap B(\mathbf{a}, \delta)$ 均有

$$|f(\boldsymbol{x}) - f(\boldsymbol{a})| < \varepsilon,$$

则称 f 在 a 处连续. 若 f 在 E 的每一点处均连续, 则称 f 在 E 上连续.

注 3.1. 按照上述定义, E 上的任一映射 f 在 E

定理 3.2

设 $E \subseteq \mathbb{R}^n$ 且 $f: E \to \mathbb{R}^m$, 则下列命题等价:

- (1) f 在 E 上连续.
- (2) 对 \mathbb{R}^m 中任意的开集 G, $f^{-1}(G)$ 均是 E 的开子集.
- (3) 对 \mathbb{R}^m 中任意的闭集 F, $f^{-1}(F)$ 均是 E 的闭子集.

命题 3.3. 设 $E \subseteq \mathbb{R}^n$ 且 $f = (f_1, \dots, f_m)^T : E \to \mathbb{R}^m$, 那么 $f \in E$ 上的连续函数当且 仅当每个 f_i $(1 \le j \le m)$ 均是 E 上的连续函数.

定理 3.4

设 $f: \mathbb{R}^n \to \mathbb{R}^m$ 是连续映射. 若 $K \in \mathbb{R}^n$ 中的紧集, 则 f(K) 是 \mathbb{R}^m 中的紧集.

定义 3.2.(凸集)

 \mathbb{R}^n 的子集 S 被称为凸集当且仅当对任意的 $x, y \in S$ 均有

$$\{(1-\lambda)\boldsymbol{x} + \lambda\boldsymbol{y} : \lambda \in [0,1]\} \subseteq S.$$

第二章 多元函数的微分

§ 2.1 微分的定义

定义 1.1.(可微)

设 $E \subseteq \mathbb{R}^m$, $f: E \to \mathbb{R}^m$. 又设 $a \notin E$ 的一个内点. 若存在线性映射 $L: \mathbb{R}^n \to \mathbb{R}^m$ 使得

$$\lim_{\boldsymbol{h}\to 0}\frac{f(\boldsymbol{a}+\boldsymbol{h})-f(\boldsymbol{a})-L\boldsymbol{h}}{|\boldsymbol{h}|}=\boldsymbol{0},$$

则称 f 在 a 处可微. 若 f 在 E 中每个点处均可微, 我们就称 f 在 E 上可微.

§ 2.2 方向导数与偏导数

定义 2.1.(方向导数)

设 $E \subseteq \mathbb{R}^n$, $f: E \to \mathbb{R}^m$, 且 a 是 E 的一个内点. 对 \mathbb{R}^n 中给定的非零向量 u, 若极限

$$\lim_{t\to 0} \frac{f(\boldsymbol{a}+t\boldsymbol{u})-f(\boldsymbol{a})}{t}$$

存在, 我们就称 f 在 a 处沿方向 u 是可微的, 并将上述极限称为 f 在 a 处沿方向 u 的方向导数, 记作 $\frac{\partial f}{\partial u}(a)$.

命题 2.1. 设 $E \subseteq \mathbb{R}^n$, $f: E \to \mathbb{R}^m$, 且 a 是 E 的一个内点. 若 f 在 a 处可微, 则 f 在 a 处的所有方向导数均存在, 并且对于 \mathbb{R}^n 中的任意非零向量 u 有

$$\frac{\partial f}{\partial \boldsymbol{u}}(\boldsymbol{a}) = f'(\boldsymbol{a})\boldsymbol{u}.$$

定义 2.2.(雅可比矩阵)

$$f'(\boldsymbol{a}) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(\boldsymbol{a}) & \frac{\partial f_1}{\partial x_2}(\boldsymbol{a}) & \cdots & \frac{\partial f_1}{\partial x_n}(\boldsymbol{a}) \\ \frac{\partial f_2}{\partial x_1}(\boldsymbol{a}) & \frac{\partial f_2}{\partial x_2}(\boldsymbol{a}) & \cdots & \frac{\partial f_2}{\partial x_n}(\boldsymbol{a}) \\ \vdots & \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1}(\boldsymbol{a}) & \frac{\partial f_m}{\partial x_2}(\boldsymbol{a}) & \cdots & \frac{\partial f_m}{\partial x_n}(\boldsymbol{a}) \end{bmatrix}$$

$$(2.1)$$

定义 2.3.(偏导数的链式法则)

如果 $f(x_1, x_2, ..., x_m)$ 是一个 m 元可微函数, 并且每个 x_j 均是 n 元可微函数 $x_j(t_1, t_2, ..., t_n)$, 那么我们也可以把 f 看作变量 $t_1, t_2, ..., t_n$ 的函数, 于是由链式法则及 (2.1) 知

因此对 $1 \le j \le n$ 有

$$\frac{\partial f}{\partial t_j} = \sum_{i=1}^m \frac{\partial f}{\partial x_i} \cdot \frac{\partial x_i}{\partial t_j}.$$
(2.2)

这一公式也被称作偏导数的链式法则.

定义 2.4.(中值定理)

1

§ 2.3 有限增量定理与泰勒公式

定义 3.1.(范数)

设 $L \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$, 定义 L 的范数 ||L|| 为

$$||L|| = \sup_{|\boldsymbol{h}|=1} |L\boldsymbol{h}|.$$

并且我们有 $|L\mathbf{x}| \leq ||L|| \cdot |\mathbf{x}|, \quad \forall \mathbf{x} \in \mathbb{R}^n$.

定理 3.1.(有限增量定理)

设 $E \in \mathbb{R}^n$ 中的凸开集, $f: E \to \mathbb{R}^m$ 在 E 上可微, 且存在 M > 0 使得对任意的 $\mathbf{x} \in E$ 均有 $\|f'(\mathbf{x})\| \leq M$. 那么对任意的 $\mathbf{a}, \mathbf{b} \in E$ 有

$$|f(\boldsymbol{b}) - f(\boldsymbol{a})| \leqslant M|\boldsymbol{b} - \boldsymbol{a}|.$$

§ 2.4 反函数定理

定理 4.1.(反函数定理)

设 $E \in \mathbb{R}^n$ 中的开集, $f: E \to \mathbb{R}^n$ 且 $f \in C^1(E)$. 又设 $\mathbf{a} \in E$. 若 $f'(\mathbf{a})$ 非奇异, 那 么必存在 \mathbf{a} 的邻域 U 使得 V = f(U) 是 \mathbb{R}^n 中的开集, 且 $f|_U: U \to V$ 是双射. 此外, g 表示 $f|_U$ 的逆映射, 则 $g \in C^1(V)$, 并且对任意的 $\mathbf{y} \in V$ 有

$$g'(\boldsymbol{y}) = f'(g(\boldsymbol{y}))^{-1}.$$

换种说法,如果有

- $E \in \mathbb{R}^n$ 中的开集.
- $f: E \to \mathbb{R}^n \coprod f \in C^1(E)$
- $\mathbf{a} \in E$, $f'(\mathbf{a})$ 非奇异, 即 $\det f'(\mathbf{a}) \neq 0$

那么

- 存在 a 的邻域 U 使得 V = f(U) 是 \mathbb{R}^n 中的开集
- $f|_U:U\to V$ 是双射.
- 若设 $g = f|_{U}^{-1} 则 g \in C^{1}(E)$, 并且对任意的 $\mathbf{y} \in V$ 有

$$g'(\mathbf{y}) = f'(g(\mathbf{y}))^{-1}.$$

§ 2.5 隐函数定理

定理 5.1.(隐函数定理)

设 $E \in \mathbb{R}^{n+m}$ 中的开集, $f = (f_1, f_2, \dots, f_m)^T : E \to \mathbb{R}^m$ 连续可微. 又设 $\mathbf{a} \in \mathbb{R}^n$ 及 $\mathbf{b} \in \mathbb{R}^m$, 使得 $(\mathbf{a}, \mathbf{b}) \in E$ 且 $f(\mathbf{a}, \mathbf{b}) = \mathbf{0}$. 现将 f 的雅可比矩阵写成如下分块矩阵

$$\begin{bmatrix} \frac{\partial f}{\partial \boldsymbol{x}} & \frac{\partial f}{\partial \boldsymbol{y}} \end{bmatrix}$$

的形式,其中

$$\frac{\partial f}{\partial \boldsymbol{x}} = \left(\frac{\partial f_i}{\partial x_j}\right)_{1 < i < m, 1 < j < n}, \qquad \frac{\partial f}{\partial \boldsymbol{y}} = \left(\frac{\partial f_i}{\partial x_{n+j}}\right)_{1 < i, j < m}.$$

那么当

$$\det \frac{\partial f}{\partial \boldsymbol{y}}(\boldsymbol{a}, \boldsymbol{b}) \neq 0$$

时, 存在 a 的邻域 U, b 的邻域 V 以及唯一的连续可微映射 $g: U \to V$, 使得

- (1) q(a) = b.
- (2) 对任意的 $\mathbf{x} \in U$ 有 $f(\mathbf{x}, g(\mathbf{x})) = \mathbf{0}$.
- (3) 对任意的 $\mathbf{x} \in U$ 有 $\det \frac{\partial f}{\partial \mathbf{y}}(\mathbf{x}, g(\mathbf{x})) \neq 0$, 并且

$$g'(\boldsymbol{x}) = -\left(\frac{\partial f}{\partial \boldsymbol{y}}(\boldsymbol{x}, g(\boldsymbol{x}))\right)^{-1} \frac{\partial f}{\partial \boldsymbol{x}}(\boldsymbol{x}, g(\boldsymbol{x})).$$

定义 5.1

在上述定理中, y = q(x)

第三章 含参变量的积分与反常积分

专题一 欧拉积分

§ $3\varepsilon.1$ 第一型欧拉积分

定义 1.1

我们称 $\mathbf{B}(a,b) = \int_0^1 x^{a-1} (1-x)^{b-1} \mathbf{d}x \ (a,b>0)$ 为第一型欧拉积分.

下面我们给出几个它的简单性质.

性质 1.1. 作变量替换 x = 1 - t 易知 $\mathbf{B}(a, b) = \mathbf{B}(b, a)$ 也就是说第一型欧拉积分具有对称性.

性质 1.2. 当 b > 1 时,由分部积分可得

$$\begin{split} \mathbf{B}(a,b) &= \int_0^1 (1-x)^{b-1} \mathrm{d} \frac{x^a}{a} \\ &= \frac{x^a (1-x)^{b-1}}{a} \bigg|_0^1 + \frac{b-1}{a} \int_0^1 x^a (1-x)^{b-2} \mathrm{d} x \\ &= \frac{b-1}{a} \int_0^1 x^{a-1} (1-x)^{b-2} \mathrm{d} x - \frac{b-1}{a} \int_0^1 x^{a-1} (1-x)^{b-1} \mathrm{d} x \\ &= \frac{b-1}{a} \mathbf{B}(a,b-1) - \frac{b-1}{a} \mathbf{B}(a,b). \end{split}$$

其中第三个等号用到了 $x^a = x^{a-1} - x^{a-1}(1-x)$.

曲此
$$B(a,b) = \frac{b-1}{a+b-1}B(a,b-1).$$

那么由对称性, 我们也能得到 $B(a,b) = \frac{a-1}{a+b-1}B(a-1,b)$ (a>1). 而当 a,b 均为正整数时, 我们有

$$B(n,m) = \frac{(n-1)!(m-1)!}{(n+m-1)!}.$$

性质 1.3. 我们作变量替换 $x = \frac{y}{1+y}$ 可将 $\mathbf{B}(a,b)$ 转化为无穷积分, 这种形式也有很好的性质.

$$B(a,b) = \int_0^\infty \frac{y^{a-1}}{(1+y)^{a+b}} dy$$

而如果令 b = 1 - a (0 < a < 1) 我们就得到

$$B(a, 1 - a) = \int_0^\infty \frac{y^{a-1}}{1+y} dy$$

而这个积分的值是可以计算的, 就是

$$B(a, 1 - a) = \frac{\pi}{\sin a\pi}$$

§ $3\varepsilon.2$ 第二型欧拉积分

3ε .2.1 定义

定义 2.1

我们称

$$\Gamma(a) = \int_0^\infty x^{a-1} e^{-x} \mathrm{d}x \ (a > 0)$$

为第二型欧拉积分.

其实这个 $\Gamma(a)$ 函数在我们之前的课程中也定义过, 不过当时我们是用阶乘函数, 用无穷乘积的形式来定义的.

$$\Gamma(x) = \Pi(x-1) = x^{-1}\Pi(x),$$

$$\frac{1}{\Gamma(x)} = x \prod_{n=1}^{\infty} (1 + \frac{x}{n})(1 + \frac{1}{n})^{-x}.$$

下面我们先来探究这两个证明是否等价.

证明. 当 s > 0 时有

$$\Gamma(s) = \frac{1}{s} \prod_{n=1}^{\infty} (1 + \frac{s}{n})^{-1} (1 + \frac{1}{n})^{s}$$

$$= \frac{1}{s} \cdot \lim_{N \to \infty} \prod_{n=1}^{N} (1 + \frac{s}{n})^{-1} (1 + \frac{1}{n})^{s}$$

$$= \frac{1}{s} \cdot \lim_{N \to \infty} \frac{N! \cdot N^{s}}{(s+1)(s+2) \cdots (s+N)}.$$

注意到极限中的内容和我们之前推导的 B 函数的递推式相似, 不难发现, 当我们取 a = N + 1, b = s 时, 我们有

$$B(s, N+1) = \frac{N}{s+N}B(s, N) = \dots = B(s, 1)\frac{N!}{(s+1)(s+2)\cdots(s+N)}$$

又由
$$B(s,1) = \int_0^1 x^{s-1} (1-x)^0 dx = \frac{1}{s}$$
 我们可以得到

$$\Gamma(s) = \frac{1}{s} \cdot \lim_{N \to \infty} \frac{N! \cdot N^s}{(s+1)(s+2) \cdots (s+N)}$$

$$= \lim_{N \to \infty} \mathbf{B}(s,1) \frac{N! \cdot N^s}{(s+1)(s+2) \cdots (s+N)}$$

$$= \lim_{N \to \infty} \mathbf{B}(s,N+1) N^s$$

$$= \lim_{N \to \infty} N^s \int_0^1 x^{s-1} (1-x)^N dx.$$

接着我们做变量替换 $x \to \frac{x}{N}$

$$\begin{split} \Gamma(s) &= \lim_{N \to \infty} N^s \int_0^1 x^{s-1} (1-x)^N \mathrm{d}x \\ &= \lim_{N \to \infty} N^s \int_0^N \left(\frac{x}{N}\right)^{s-1} (1-\frac{x}{N})^N \mathrm{d}\frac{x}{N} \\ &= \lim_{N \to \infty} \int_0^N x^{s-1} (1-\frac{x}{N})^N \mathrm{d}x. \end{split}$$

下面我们考虑证明

$$\lim_{N \to \infty} \left(\int_0^N x^{s-1} e^{-x} dx - \int_0^N x^{s-1} (1 - \frac{x}{N})^N dx \right) = 0.$$

由伯努利不等式 x > -1 时,有 $(1+x)^N \ge 1 + Nx$.

和不等式 $e^t \ge 1 + t$, 把 $t = \frac{x}{N}$ 带入得到 $e^{\frac{x}{N}} \ge 1 + \frac{x}{N}$ 即 $e^x \ge (1 + \frac{x}{N})^N$.

我们可以得到

$$0 \leqslant e^{-x} - (1 - \frac{x}{N})^N = e^{-x} \left[1 - e^x (1 - \frac{x}{N})^N \right] \leqslant e^{-x} \left[1 - (1 - \frac{x^2}{N^2})^N \right] \leqslant \frac{e^{-x} x^2}{N}.$$

进而有

$$\left| \int_0^N e^{-x} x^{s-1} \mathrm{d}x - \int_0^N \left(1 - \frac{x}{N} \right)^N x^{s-1} \mathrm{d}x \right| \leqslant \int_0^N \frac{e^{-x} x^{s+1}}{N} \mathrm{d}x < \frac{1}{N} \int_0^{+\infty} e^{-x} x^{s+1} \mathrm{d}x.$$

易知 $\int_0^{+\infty} e^{-x} x^{s+1} dx$ 收敛, 故当 $N \to \infty$ 时, $\frac{1}{N} \int_0^{+\infty} e^{-x} x^{s+1} dx \to 0$. 讲而可知

$$\lim_{N \to \infty} \left(\int_0^N x^{s-1} e^{-x} dx - \int_0^N x^{s-1} (1 - \frac{x}{N})^N dx \right) = 0.$$

即
$$\int_0^N x^{s-1}e^{-x}\mathrm{d}x = \int_0^N x^{s-1}(1-\frac{x}{N})^N\mathrm{d}x, \quad N \to \infty.$$
故这两种定义方式等价.

除此之外, Γ 函数,还有两种定义方式.

第一种是上述证明过程中出现过的极限定义,也称欧拉-高斯公式,

$$\Gamma(s) = \lim_{N \to \infty} \frac{N! \cdot N^s}{s(s+1)(s+2)\cdots(s+N)}.$$

第二种则引入了欧拉常数
$$\gamma$$
. 设 $H_n = \sum_{i=1}^n \frac{1}{i}$, 则称 $\gamma = \lim_{n \to \infty} H_n - \ln n$.

$$\Gamma(s) = \frac{e^{-\gamma s}}{s} \prod_{n=1}^{\infty} \left(1 + \frac{s}{n}\right)^{-1} e^{\frac{s}{n}}.$$

$3\varepsilon.2.2$ 性质

从我们证明两种定义方式等价的过程中,不难发现这两类欧拉积分并不是孤立的, 下面我们就来探究这两类欧拉积分的关系.

接下来,我们证明

性质 2.1.

$$\mathbf{B}(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}, \qquad \forall p > 0, q > 0.$$

证明. 对 B(p,q) 用 $x = \sin^2 \theta$ 换元得到

$$B(p,q) = 2 \int_0^{\frac{\pi}{2}} \sin^{2p-1}\theta \cos^{2q-1}\theta d\theta.$$

对 $\Gamma(p)$ 用 $x = s^2$ 换元得到

$$\Gamma(p) = 2 \int_0^\infty s^{2p-1} e^{-s^2} \mathrm{d}s.$$

我们考虑

$$\Gamma(p)\Gamma(q) = 4 \int_0^\infty s^{2p-1} e^{-s^2} ds \int_0^\infty t^{2q-1} e^{-t^2} dt.$$

下面我们进行极坐标变换, 令 $s = r \sin \theta$, $t = r \cos \theta$ 则有 $r^2 = s^2 + t^2$, $\mathbf{d}s\mathbf{d}t = r\mathbf{d}r\mathbf{d}\theta$. 又由 Γ 函数的连续性, 我们可以对积分符号进行交换, 进而得到.

$$\begin{split} \Gamma(p)\Gamma(q) &= 4 \int_0^\infty r^{2p+2q-2} e^{-r^2} r \mathrm{d}r \int_0^{\frac{\pi}{2}} \sin^{2p-1}\theta \cos^{2q-1}\theta \mathrm{d}\theta \\ &= 4 \int_0^\infty r^{2(p+q)-1} e^{-r^2} \mathrm{d}r \int_0^{\frac{\pi}{2}} \sin^{2p-1}\theta \cos^{2q-1}\theta \mathrm{d}\theta \\ &= \int_0^\infty r^{(p+q)-1} e^{-r} \mathrm{d}r \cdot 2 \int_0^{\frac{\pi}{2}} \sin^{2p-1}\theta \cos^{2q-1}\theta \mathrm{d}\theta \\ &= \Gamma(p+q) \mathbf{B}(p,q). \end{split}$$

进而得到

$$B(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$$

推论 2.2

在上述证明过程中, 我们取 $q=\frac{1}{2}$, 则对于 j>-1 我们有

$$\int_0^\pi \sin^j \theta \; \mathrm{d}\theta = \mathrm{B}\left(\frac{j+1}{2},\frac{1}{2}\right) = \frac{\Gamma\left(\frac{j+1}{2}\right)\Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{j+2}{2}\right)}$$

性质 2.3. (余元公式)

$$\Gamma(p)\Gamma(1-p) = \frac{\pi}{\sin p\pi}$$

为了证明这个事情, 我们先证明一个引理.

引理 2.4

$$\sin x = x \prod_{n=1}^{\infty} \left(1 - \frac{x^2}{n^2 \pi^2} \right)$$

证明. 通过二倍角公式, 我们可以将 $\sin(2n+1)x$ 不断升幂, 可以将其表示为形如 $\sin x \cdot P(\sin^2 x)$ 的式子, 其中 P(x) 表示关于 x 的 n 次多项式.

因为 $\lim_{x\to 0} \sin(2n+1)x\sin(x) = 2n+1$, 所以 P(x) 的常数项为 2n+1.

同时我们有, $\sin(2n+1)x$ 的根为 $\frac{k\pi}{2n+1}$, $k \in \mathbb{Z}$, 所以 $\sin^2\frac{k\pi}{2n+1}$, $k=1,2,\ldots,n$ 恰为 P(x) 的 n 个根.

所以

$$P(x) = (2n+1)\left(1 - \frac{x}{\sin^2\frac{\pi}{2n+1}}\right)\left(1 - \frac{x}{\sin^2\frac{2\pi}{2n+1}}\right)\cdots\left(1 - \frac{x}{\sin^2\frac{n\pi}{2n+1}}\right)$$

即

$$P(x) = (2n+1) \prod_{k=1}^{n} \left(1 - \frac{x}{\sin^2 \frac{k\pi}{2n+1}} \right)$$

故我们有

$$\frac{\sin(2n+1)x}{\sin x} = P(\sin^2 x) = (2n+1) \prod_{k=1}^n \left(1 - \frac{\sin^2 x}{\sin^2 \frac{k\pi}{2n+1}}\right)$$

帶入 $x \to \frac{x}{2n+1}$

$$\Rightarrow \frac{\sin x}{(2n+1)\sin\frac{1}{2n+1}x} = \prod_{k=1}^{n} \left(1 - \frac{\sin^2\frac{1}{2n+1}x}{\sin^2\frac{k\pi}{2n+1}}\right)$$

$$\frac{\sin x}{(2n+1)\sin\frac{1}{2n+1}x\prod_{k=1}^{m}\left(1-\frac{\sin^2\frac{1}{2n+1}x}{\sin^2\frac{k\pi}{2n+1}}\right)} = \prod_{k=m+1}^{n}\left(1-\frac{\sin^2\frac{1}{2n+1}x}{\sin^2\frac{k\pi}{2n+1}}\right)$$

当 $n \to \infty$ 时, 左边为

$$\frac{\sin x}{x \prod_{k=1}^{m} \left(1 - \frac{x^2}{k^2 \pi^2}\right)}$$

对于右边,我们考虑下列不等式,当 n 充分大时.

(1)
$$\frac{2}{\pi}x < \sin x < x, x \in (0, \frac{\pi}{2})$$

(2)
$$\sin^2 \frac{1}{2n+1}x < \frac{x^2}{(2n+1)^2}$$

(3)
$$\sin^2 \frac{k\pi}{2n+1} > \frac{4k^2}{(2n+1)^2}$$

$$(4) \frac{\sin^2 \frac{1}{2n+1} x}{\sin^2 \frac{k\pi}{2n+1}} < \frac{x^2}{4k^2}$$

其中由(1)可得(2),(3),进而可知(4).

于是我们有

$$1 > \prod_{k=m+1}^{n} \left(1 - \frac{\sin^2 \frac{1}{2n+1} x}{\sin^2 \frac{k\pi}{2n+1}} \right) > \prod_{k=m+1}^{n} \left(1 - \frac{x^2}{4k^2} \right) > \prod_{k=m+1}^{\infty} \left(1 - \frac{x^2}{4k^2} \right)$$

所以 $n \to \infty$ 时,

$$1 > \frac{\sin x}{x \prod_{k=1}^{m} \left(1 - \frac{x^2}{k^2 \pi^2}\right)} > \prod_{k=m+1}^{\infty} \left(1 - \frac{x^2}{4k^2}\right)$$

由
$$\prod\limits_{k=1}^{\infty}\left(1-\frac{x^2}{4k^2}\right)$$
 收敛,
可知 $m\to\infty$ 时

$$\prod_{k=m+1}^{\infty} \left(1 - \frac{x^2}{4k^2} \right) = 1$$

所以由夹逼定理, 我们可以得到

$$\sin x = x \prod_{k=1}^{\infty} \left(1 - \frac{x^2}{k^2 \pi^2} \right).$$

下面由Γ函数的极限定义来证明余元公式

证明.

$$\Gamma(p)\Gamma(1-p) = \lim_{N \to \infty} \frac{N! \cdot N^p \cdot N! \cdot N^{1-p}}{p(p+1) \cdots (p+N)(1-p)(1-p+1) \cdots (1-p+N)}$$

$$= \lim_{N \to \infty} \frac{N \cdot N! \cdot N!}{p(1-p^2)(2^2-p^2) \cdots (N^2-p^2)(1+N-p)}$$

$$= \lim_{N \to \infty} \frac{N}{1-p+N} \cdot \frac{1}{p \prod_{k=1}^{N} (1-\frac{p^2}{k^2})}$$

由引理 2.4 可知

$$\sin p\pi = p\pi \prod_{n=1}^{\infty} \left(1 - \frac{p^2}{n^2}\right)$$

故

$$\Gamma(p)\Gamma(1-p) = 1 \cdot \frac{\pi}{\sin p\pi} = \frac{\pi}{\sin p\pi}.$$

性质 2.5. (倍元公式, 也称勒让德公式)

$$\Gamma\left(\frac{1}{2}\right)\Gamma(2x) = 2^{2x-1}\Gamma(x)\Gamma\left(x + \frac{1}{2}\right)$$

在之前的作业中, 我们已经用无穷乘积的定义方式证明过该公式, 下面我们用另一种方式再次证明这个问题.

证明. 由前面给出的性质

$$\frac{\Gamma(\frac{1}{2})}{\Gamma(x+\frac{1}{2})} = \frac{\mathbf{B}(x,\frac{1}{2})}{\Gamma(x)}, \quad \frac{\Gamma(x)}{\Gamma(2x)} = \frac{\mathbf{B}(x,x)}{\Gamma(x)}.$$

带入之后,我们只需证明

$$B\left(x, \frac{1}{2}\right) = 2^{2x-1}B(x, x)$$

$$\Leftrightarrow \int_0^1 t^{x-1} (1-t)^{-\frac{1}{2}} dt = 2^{2x-1} \int_0^1 t^{x-1} (1-t)^{x-1} dt$$

接下来通过若干次变量替换可得

$$\begin{split} 2^{2x-1} \int_0^1 t^{x-1} (1-t)^{x-1} \mathrm{d}t &= \int_0^1 (2t)^{x-1} (2-2t)^{x-1} \mathrm{d}(2t) = \int_0^2 t^{x-1} (2-t)^{x-1} \mathrm{d}t \\ &= \int_{-1}^1 (1+t)^{x-1} (1-t)^{x-1} \mathrm{d}t = \int_{-1}^1 (1-t^2)^{x-1} \mathrm{d}t \\ &= 2 \int_0^1 (1-t^2)^{x-1} \mathrm{d}t = 2 \int_0^1 (1-t)^{x-1} \mathrm{d}\sqrt{t} \\ &= 2 \int_0^1 (1-t)^{x-1} \cdot \frac{1}{2} t^{-\frac{1}{2}} \mathrm{d}t = \int_0^1 (1-t)^{x-1} t^{-\frac{1}{2}} \mathrm{d}t \\ &= \int_0^1 t^{x-1} (1-t)^{-\frac{1}{2}} \mathrm{d}t \end{split}$$

这样我们就证明了

$$\int_0^1 t^{x-1} (1-t)^{-\frac{1}{2}} dt = 2^{2x-1} \int_0^1 t^{x-1} (1-t)^{x-1} dt$$

即

$$\Gamma\left(\frac{1}{2}\right)\Gamma(2x) = 2^{2x-1}\Gamma(x)\Gamma\left(x + \frac{1}{2}\right)$$

3ε .2.3 应用

在之前的作业中, 我们已经证明过了斯特林 (Stirling) 公式. 下面我们用另外的两种方式进行证明.

引理 2.6

对于任意给定的 a 有,

$$\frac{\Gamma(x)}{\Gamma(x+a)} = x^{-a} + O\left(x^{-a-1}\right)$$

证明. 先假定 a > 1,

$$\begin{split} \frac{\Gamma(x)\Gamma(a)}{\Gamma(x+a)} &= \mathbf{B}(x,a) \\ &= \int_0^1 (1-y)^{a-1} y^{x-1} \mathrm{d}y \\ &= \int_0^\infty (1-e^{-t})^{a-1} e^{-xt} \mathrm{d}t \\ &= \int_0^{\frac{1}{\sqrt{x}}} (1-e^{-t})^{a-1} e^{-xt} \mathrm{d}t + \int_{\frac{1}{\sqrt{x}}}^\infty (1-e^{-t})^{a-1} e^{-xt} \mathrm{d}t \\ &\triangleq I_1 + I_2 \end{split}$$

下面我们分别对 I_1 和 I_2 进行估计.

$$I_{1} = \int_{0}^{\frac{1}{\sqrt{x}}} (1 - e^{-t})^{a-1} e^{-xt} dt$$

$$= \int_{0}^{\frac{1}{\sqrt{x}}} (t + O(t^{2}))^{a-1} \cdot e^{-xt} dt$$

$$= \int_{0}^{\frac{1}{\sqrt{x}}} t^{a-1} (1 + O(t))^{a-1} \cdot e^{-xt} dt$$

当 x 充分大时, t 在 0 附近, 我们有, $(1+O(t))^{a-1} \sim 1 + (a-1)O(t) \sim 1 + O(t)$

$$\begin{split} I_{1} &= \int_{0}^{\frac{1}{\sqrt{x}}} t^{a-1} (1 + O(t))^{a-1} \cdot e^{-xt} \mathrm{d}t \\ &= \int_{0}^{\frac{1}{\sqrt{x}}} t^{a-1} (1 + O(t)) \cdot e^{-xt} \mathrm{d}t \\ &= \int_{0}^{\frac{1}{\sqrt{x}}} t^{a-1} \cdot e^{-xt} \mathrm{d}t + \int_{0}^{\frac{1}{\sqrt{x}}} O(t) \cdot t^{a-1} \cdot e^{-xt} \mathrm{d}t \\ &= \int_{0}^{\frac{1}{\sqrt{x}}} t^{a-1} \cdot e^{-xt} \mathrm{d}t + O\left(\int_{0}^{\frac{1}{\sqrt{x}}} \cdot t^{a} \cdot e^{-xt} \mathrm{d}t\right) \end{split}$$

作换元 t = xt

$$\begin{split} I_1 &= \int_0^{\frac{1}{\sqrt{x}}} t^{a-1} \cdot e^{-xt} \mathrm{d}t + O\left(\int_0^{\frac{1}{\sqrt{x}}} \cdot t^a \cdot e^{-xt} \mathrm{d}t\right) \\ &= x^{-a} \int_0^{\sqrt{x}} t^{a-1} \cdot e^{-t} \mathrm{d}t + O\left(\int_0^{\frac{1}{\sqrt{x}}} \cdot t^a \cdot e^{-xt} \mathrm{d}t\right) \\ &= x^{-a} \int_0^{\infty} t^{a-1} \cdot e^{-t} \mathrm{d}t + O\left(x^{-a} \int_{\sqrt{x}}^{\infty} t^{a-1} \cdot e^{-t} \mathrm{d}t\right) + O\left(x^{-a-1} \int_0^{\sqrt{x}} \cdot t^a \cdot e^{-t} \mathrm{d}t\right) \end{split}$$

由 Γ 函数收敛, $\int_0^{\sqrt{x}} \cdot t^a \cdot e^{-t} dt \sim O(1)$. 而 $\int_{\sqrt{x}}^{\infty} t^{a-1} \cdot e^{-t} dt = O\left(\int_{\sqrt{x}}^{\infty} e^{-\frac{t}{2}} dt\right) = O\left(\frac{1}{x}\right)$.

$$I_1 = x^{-a}\Gamma(a) + O(x^{-a-1})$$

$$I_2 = \int_{\frac{1}{\sqrt{x}}}^{\infty} (1 - e^{-t})^{a-1} \cdot e^{-xt} dt = O\left(\int_{\frac{1}{\sqrt{x}}}^{\infty} e^{-xt} dt\right) = O\left(\frac{1}{xe^{\sqrt{x}}}\right) = O\left(x^{-a-1}\right).$$

因此

$$I_1 + I_2 = x^{-a}\Gamma(a) + O(x^{-a-1})$$

$$\Rightarrow \frac{\Gamma(x)}{\Gamma(x+a)} = x^{-a} + O(x^{-a-1})$$

对于 0 < a < 1 的情况, 我们取 $k \in \mathbb{Z}_{\geqslant 1}$ 使得 a + k > 1 可以得到

$$\frac{\Gamma(x)}{\Gamma(x+a+k)} = x^{-a-k} + O(x^{-a-k-1})$$

进而通过 Γ 函数的递推公式可以得到相应的结论.

定理 2.7.(斯特林公式)

$$\log \Gamma(s) = \left(s - \frac{1}{2}\right) \log s - s + \frac{1}{2} \log 2\pi + O\left(\frac{1}{s}\right).$$

证明. 我们先对x为正整数的情形进行估计

$$\log \Gamma(n) = \log[(n-1)!] = \sum_{k=1}^{n-1} \log k = \sum_{k=1}^{n-1} \int_{k}^{k+1} \log k dt$$

$$= \sum_{k=1}^{n-1} \int_{k}^{k+1} \log k - \log t dt + \int_{k}^{k+1} \log t dt$$

$$= \int_{1}^{n} \log t dt - \sum_{k=1}^{n-1} \int_{k}^{k+1} \log \frac{t}{k} dt$$

$$= n \log n - n + 1 + \sum_{k=1}^{n-1} \int_{0}^{1} \log \frac{t+k}{k} dt$$

$$= n \log n - n + 1 + \sum_{k=1}^{n-1} \int_{0}^{1} \log(1 + \frac{t}{k}) dt$$

$$= n \log n - n + 1 + \sum_{k=1}^{n-1} \left(\frac{1}{2k} + O\left(\frac{1}{k^{2}}\right)\right)$$

$$= n \log n - n + 1 - \frac{1}{2} \log n + C + O\left(\frac{1}{n}\right)$$

$$= \left(n - \frac{1}{2}\right) \log n - n + C + O\left(\frac{1}{n}\right)$$

下面我们将这个结论推广到任意实数上,令 x = n + a, 0 < a < 1由引理可知

$$\log \frac{\Gamma(n)}{\Gamma(n+a)} = \log(n^{-a} + O(n^{-a-1}))$$

$$= \log n^{-a} + \log\left(1 + O\left(\frac{1}{n}\right)\right)$$

$$= -a\log n + O\left(\frac{1}{n}\right)$$

从而

$$\begin{split} \log \Gamma(x) &= \log \Gamma(n) + a \log n + O\left(\frac{1}{n}\right) \\ &= (n - \frac{1}{2}) \log n - n + C + a \log n + O\left(\frac{1}{2}\right) \\ &= (x - a - \frac{1}{2}) \log(x - a) - x + a + C + a \log(x - a) + O\left(\frac{1}{x}\right) \\ &= (x - \frac{1}{2}) [\log x + \log(1 - \frac{a}{x})] - x + a + C + O\left(\frac{1}{x}\right) \\ &= (x - \frac{1}{2}) \log x - x + C + (x - \frac{1}{2}) \left(-\frac{a}{x} + O\left(\frac{1}{x^2}\right)\right) + a + O\left(\frac{1}{x}\right) \\ &= (x - \frac{1}{2}) \log x - x + C + O\left(\frac{1}{x}\right) \end{split}$$

下面我们来确定常数C的值.

考虑倍元公式

$$\Gamma(2x)\Gamma(\frac{1}{2}) = 2^{2x-1}\Gamma(x)\Gamma(x+\frac{1}{2})$$

对两边取对数得

$$\log \Gamma(2x) + \log \Gamma(\frac{1}{2}) = (2x - 1)\log 2 + \log \Gamma(x) + \log \Gamma(x + \frac{1}{2})$$

再带入我们得到的估计式,并整理可得

$$x \log(1 + \frac{1}{2x}) - \frac{1}{2} - \frac{1}{2} \log 2 + C + O\left(\frac{1}{x}\right) = \log \Gamma(\frac{1}{2})$$

当 $x \to +\infty$ 时, $x \log(1 + \frac{1}{2x}) - \frac{1}{2} = x \cdot \frac{1}{2x} - \frac{1}{2} = 0$

$$C = \log \Gamma(\frac{1}{2}) + \frac{1}{2} \log 2, \qquad x \to +\infty$$

下面我们来求 $\Gamma(\frac{1}{2})$

由余元公式
$$\Gamma(p)\Gamma(1-p) = \frac{\pi}{\sin p\pi}$$

我们取
$$p=\frac{1}{2}$$
,则有 $\Gamma(\frac{1}{2})^2=\pi\Rightarrow\Gamma(\frac{1}{2})=\sqrt{\pi}$

故
$$C = \log \sqrt{\pi} + \frac{1}{2} \log 2 = \log \sqrt{2\pi}$$
 综上, 我们就得到了斯特林公式

$$\log \Gamma(s) = \left(s - \frac{1}{2}\right) \log s - s + \frac{1}{2} \log 2\pi + O\left(\frac{1}{s}\right).$$

除了这种方式之外,下面再通过书本习题 14.2 中的一组题来证明这件事. 16. 设 $s \ge 2$, 利用 (14.17) 以及变量替换证明

$$\Gamma(s) = (s-1)^s e^{1-s} \int_{-1}^{+\infty} ((1+x)e^{-x})^{s-1} dx.$$

证明. 做变量替换 $x \to (s-1)(x+1)$ 则有

$$\Gamma(s) = \int_0^{+\infty} e^{-x} x^{s-1} dx$$

$$= \int_{-1}^{+\infty} e^{-(s-1)(x+1)} [(s-1)(x+1)]^{s-1} dx$$

$$= (s-1)^s e^{1-s} \int_{-1}^{+\infty} ((1+x)e^{-x})^{s-1} dx$$

17. 设 $s \ge 2$, 并记 $\delta = s^{-0.4}$, 利用 2.24 证明

$$\int_{-\delta}^{\delta} ((1+x)e^{-x})^{s-1} \mathrm{d}x = \sqrt{\frac{2\pi}{s}} + O\left(\frac{1}{s\sqrt{s}}\right).$$

证明. 因为当 $|x| \leq \delta$ 时

$$\log((1+x)e^{-x})^{s-1} = (s-1)(\log(1+x) - x) = (s-1)(-\frac{x^2}{2} + \frac{x^3}{3} + O(x^4)).$$
所以 $((1+x)e^{-x})^{s-1} = e^{-\frac{s-1}{2}x^2}(1 + \frac{(s-1)}{3}x^3 + O(sx^4)),$ 进而有
$$\int_{-\delta}^{\delta} ((1+x)e^{-x})^{s-1} dx = \int_{-\delta}^{\delta} e^{-\frac{s-1}{2}x^2} dx + \int_{-\delta}^{\delta} e^{-\frac{s-1}{2}x^2} \frac{x^3}{3} dx + O\left(s\int_{-\delta}^{\delta} e^{-\frac{s-1}{2}x^2} x^4 dx\right)$$

$$= \int_{-\infty}^{\infty} e^{-\frac{s-1}{2}x^2} dx + O\left(\int_{\delta}^{\infty} e^{-\frac{s-1}{2}x^2} dx\right) + \int_{-\delta}^{\delta} e^{-\frac{s-1}{2}x^2} \frac{x^3}{3} dx$$

$$+ O\left(s\int_{0}^{\delta} e^{-\frac{s-1}{2}x^2} x^4 dx\right)$$

其中

(1)

$$\int_{-\infty}^{+\infty} e^{-\frac{s-1}{2}x^2} dx = \sqrt{\frac{2}{s-1}} \int_{-\infty}^{+\infty} e^{-x^2} dx = \sqrt{\frac{2\pi}{s-1}}.$$

(2)

$$\int_{\delta}^{+\infty} e^{-\frac{s-1}{2}x^{2}} dx = \sqrt{\frac{2}{s-1}} \int_{\delta\sqrt{\frac{s-1}{2}}}^{+\infty} e^{-x^{2}} dx \ll \frac{1}{\sqrt{s}} \int_{\delta\sqrt{\frac{s-1}{2}}}^{+\infty} e^{-x} dx
= \frac{1}{\sqrt{s}} \cdot e^{-\delta\sqrt{\frac{s-1}{2}}} \ll \frac{1}{s\sqrt{s}}.$$
(3.1)

(3) $e^{-\frac{s-1}{2}x^2}\frac{x^3}{3}$ 是奇函数积分是 0.

(4)

$$s \int_0^\delta e^{-\frac{s-1}{2}x^2} x^4 \mathrm{d}x = s \int_0^{\frac{s-1}{2}\delta^2} e^{-x} \frac{4}{(s-1)^2} x^2 \mathrm{d}\sqrt{\frac{2}{s-1}x}$$

$$= \frac{2\sqrt{2}s}{(s-1)^{\frac{5}{2}}} \int_0^{\frac{s-1}{2}\delta^2} e^{-x} x^{\frac{3}{2}} dx \ll \frac{1}{s\sqrt{s}}.$$

所以有

$$\int_{-\delta}^{\delta} ((1+x)e^{-x})^{s-1} \mathrm{d}x = \sqrt{\frac{2\pi}{s}} + O\left(\frac{1}{s\sqrt{s}}\right).$$

18. 通过考察被积函数的单调性证明

$$\int_{-1}^{-\delta} ((1+x)e^{-x})^{s-1} \mathrm{d}x + \int_{\delta}^{+\infty} ((1+x)e^{-x})^{s-1} \mathrm{d}x \ll \frac{1}{s\sqrt{s}}.$$

证明. 一方面, 因为 $(1+x)e^{-x}$ 在 $[-1,-\delta]$ 上单调递增, 故而

$$\int_{-1}^{-\delta} ((1+x)e^{-x})^{s-1} dx \le ((1-\delta)e^{\delta})^{s-1} = \exp((s-1)(\log(1-\delta)+\delta))$$

$$= \exp\left(-\frac{s\delta^2}{2} + O(s\delta^3)\right) \ll e^{-\frac{1}{2}s^{0.2}} \ll \frac{1}{s\sqrt{s}}.$$
(3.2)

另一方面, 由 $(1+x)e^{-x}$ 在 $\mathbb{R}_{\geq 0}$ 上单调递减,以及 $(1+x)e^{-\frac{x}{2}}$ 在 $\mathbb{R}_{\geq 1}$ 上单调递减且 $(1+x)e^{-\frac{x}{2}} \geq (1+x)e^{-x}$ 知

$$\int_{\delta}^{+\infty} ((1+x)e^{-x})^{s-1} dx = \int_{\delta}^{1} ((1+x)e^{-x})^{s-1} dx + \int_{1}^{+\infty} ((1+x)e^{-x})^{s-1} dx$$

$$\ll ((1+\delta)e^{-\delta})^{s-1} + \int_{1}^{+\infty} e^{-\frac{s-1}{2}x} dx$$

$$= \exp\left((s-1)(\log(1+\delta) - \delta)\right) + \frac{2}{s-1}e^{-\frac{s-1}{2}}$$

$$= \exp\left(-\frac{s\delta^{2}}{2} + O(s\delta^{3})\right) + \frac{2}{s-1}e^{-\frac{s-1}{2}}$$

$$\ll e^{-\frac{1}{2}s^{0.2}} + e^{-\frac{s-1}{2}} \ll \frac{1}{s\sqrt{s}}.$$
(3.3)

所以有

$$\int_{-1}^{-\delta} ((1+x)e^{-x})^{s-1} \mathrm{d}x + \int_{\delta}^{+\infty} ((1+x)e^{-x})^{s-1} \mathrm{d}x \ll \frac{1}{s\sqrt{s}}.$$

19. 对 $s \ge 2$ 证明斯特林公式

$$\log \Gamma(s) = \left(s - \frac{1}{2}\right) \log s - s + \frac{1}{2} \log 2\pi + O\left(\frac{1}{s}\right).$$

证明. 有了前几题的铺垫, 我们可以得到

$$\log \Gamma(s) = s \log(s - 1) + 1 - s + \log \left(\sqrt{\frac{2\pi}{s}} + O\left(\frac{1}{s\sqrt{s}}\right) \right)$$

$$= s \log(s - 1) + 1 - s + \log \left(\sqrt{\frac{2\pi}{s}} \left(1 + O\left(\frac{1}{s}\right) \right) \right)$$

$$= s \log(s - 1) + 1 - s + \frac{1}{2} \log 2\pi - \frac{1}{2} \log s + O\left(\frac{1}{s}\right)$$

$$= (s - \frac{1}{2}) \log s - s + \frac{1}{2} \log 2\pi + O\left(\frac{1}{s}\right) + s \left(\log \left(1 - \frac{1}{s}\right) + \frac{1}{s}\right)$$

$$= (s - \frac{1}{2}) \log s - s + \frac{1}{2} \log 2\pi + O\left(\frac{1}{s}\right)$$

至此, 我们已经重新证明了斯特林公式. 但在此之中我们取 $\delta=s^{-0.4}$ 这个值并不是唯一的, 下面我们在来观察一下 δ 的取值. 我们设 $\delta=s^{-\alpha}$.

首先我们先关注所有用到 δ 取值的等式,(3.1),(3.2)(3.3).

其中 (3.1) 最后一步要成立就得满足 $\alpha < \frac{1}{2}$

(3.2) 最后一步要满足 $3\alpha > 1 \land 2\alpha < 1 \Rightarrow \frac{1}{3}\alpha < \frac{1}{2}$

(3.3) 要求与 (3.2) 相同

综上 α 的取值范围为 $(\frac{1}{3}, \frac{1}{2})$.

第四章 重积分

§ 4.1 若尔当测度

4.1.1 简单集合的测度

定义 1.1

设 I_j $(1 \le j \le n)$ 是 \mathbb{R} 中的有界区间, 我们称 $I_1 \times I_2 \times \cdots \times I_n$ 为 \mathbb{R}^n 中的矩形. 若 \mathbb{R}^n 中的子集 E 可表为有限多个矩形的并, 则称 E 是 \mathbb{R}^n 中的简单集合. 特别的, 空集也是简单集合.

命题 1.1. 设 $E, F \in \mathbb{R}^n$ 中的简单集合,则 $E \cup F$, $E \cap F$, $E \setminus F$, $E \Delta F$ 也均是 \mathbb{R}^n 中的简单集合. 此外,对任意的 $\mathbf{a} \in \mathbb{R}^n$, $E + \mathbf{a} = \{\mathbf{x} + \mathbf{a} : \mathbf{x} \in E\}$ 是 \mathbb{R}^n 中的简单集合.

定义 1.2

我们用 |I| 来表示 \mathbb{R} 中有界区间 I 的长度, 由此我们定义 \mathbb{R}^n 中矩形 $Q = I_1 \times I_2 \times \cdots \times I_n$ 的体积 |Q| 为

$$|Q| = \prod_{j=1}^{n} |I_j|$$

根据这个定义知, $|Q| = |\overline{Q}|$.

命题 1.2. 设 $E \in \mathbb{R}^n$ 中的一个简单集合, 那么

- (1) E 可表为有限多个两两不相交的矩形的并,并称之为 E 的划分.
- (2) 若 E 可用如下两种方式写成互不相交的矩形的并

$$E = \bigcup_{i=1}^{m} Q_i = \bigcup_{j=1}^{k} Q'_j,$$

则

$$\sum_{i=1}^{m} |Q_i| = \sum_{j=1}^{j} |Q_j'|.$$

定义 1.3

设 $E \in \mathbb{R}^n$ 中的一个简单集合, $E = Q_1 \cup \cdots \cup Q_m$ 是 E 的一个划分, 则记

$$\mu(E) = \sum_{i=1}^{m} |Q_i|$$

并称之为的测度.

命题 1.3. 设 E, F 均是 \mathbb{R}^n 中的简单集合,则

(1) (有限可加性) 若 $E \cap F = \emptyset$, 则 $\mu(E \cup F) = \mu(E) + \mu(F)$;

§ 4.2 闭矩形上的积分

§ 4.3 有界集上的积分

§ 4.4 富比尼定理

§ 4.5 变量替换

§ 4.6 反常重积分

定义 6.1

设 $E \subseteq \mathbb{R}^n$, 如果若尔当可测集列 $\{E_m\}$ 满足

则称 $\{E_m\}$ 是 E 的一个**穷竭**. 注: 该名称并不是通用的, 仅在陆亚明《数学分析入门》中使用.

定义 6.2

设 $E \subseteq \mathbb{R}^n$, $f: E \longrightarrow \mathbb{R}$. 如果对 E 的使得 f 在每个 E_m 上均可积的任意穷竭 $\{E_m\}$, 极限

$$\lim_{m \to \infty} \int_{E_m} f$$

都存在且相等,那么我们就称 f 在 E 上**可积**,并将上述极限值记作

$$\int_{E} f$$
,

此时也称积分 $\int_E f$ **收敛**. 否则就称 $\int_E f$ **发散**, 或称 f 在 E 上**不可积**.

引理 6.1

设 $E \subseteq \mathbb{R}^n$, f 是定义在 E 上的函数. 若存在 E 的一个穷竭 $\{E_m\}$, 使得 f 在每个 E_m 上均可积, 那么对于 E 的任一穷竭 $\{F_k\}$, 只要 f 在每个 F_k 上有界, 它就在每个 F_k 上可积.

证明. 考虑 $\{E_m \cap F_k : m \ge 1\}$ 是 F_k 的穷竭. 考虑 F_k 的不连续点由 $E_m \cap F_k$ 的内部的不连续点和 $\partial(E_m \cap F_k)$ 中的不连续点构成. 又 E_m 可积, $E_m \cap F_k$ 若当可测. 那么就有上述两部分的点均为勒贝格零测集. 由此 f 在 F_k 上可积.

命题 6.2. 设 E 若尔当可测且 f 在 E 上可积, $\{E_m\}$ 是 E 的一个穷竭, 那么 $\lim_{m\to\infty}\mu(E_m)=\mu(E)$ 并且

$$\lim_{m \to \infty} \int_{E_m} f = \int_E f.$$

命题 6.3. 设 $E \subseteq \mathbb{R}^n$, $f: E \longrightarrow \mathbb{R}^n$ 是一个非负函数, 那么 $\int_E f$ 收敛的充要条件是: 存在 E 的穷竭 $\{E_m\}$ 使得 f 在每个 E_m 上均可积, 并且极限

$$\lim_{m\to\infty}\int_{E_{--}}f$$

存在.

命题 6.4. (比较判别法) 设 $E \subseteq \mathbb{R}^n$, f 与 g 均是定义在 E 上的非负函数并且

$$f(x) \leqslant g(x), \quad \forall x \in E.$$

又设存在 E 的穷竭 $\{E_m\}$ 使得 f 与 g 均在每个 E_m 上可积. 如果 $\int_E g$ 收敛, 那么 $\int_E f$ 也收敛.

命题 6.5. 设 $E \neq \mathbb{R}^n$ 的一个无界子集, f 是定义在 E 上的非负函数. 又设对任意的 $m \geq 1$, $B(\mathbf{0}, m) \cap E$ 均是若尔当可测集且 f 在其上可积. 此外, 还设存在常数 p > n, 使得 $\frac{1}{|\mathbf{x}|^p}$ 在 $(E \cap B(\mathbf{0}, m)) \setminus B(\mathbf{0}, 1)$ $(m \geq 1)$ 上可积, 并且当 $|\mathbf{x}|$ 充分大时有

$$f(\boldsymbol{x}) << \frac{1}{|\boldsymbol{x}|^p},$$

那么
$$\int_{E} f$$
 收敛.

命题 6.6. 设 $E \in \mathbb{R}^n$ 中的有界集, f 是定义在 E 上的非负函数, 且 $\mathbf{x}_0 \in \partial E$ 是 f 的唯一奇点. 又设对任意的 $m \geqslant 1$, $E \setminus B(\mathbf{x}_0, \frac{1}{m})$ 均是若尔当可测集且 f 在其上可积, 此外, 还假设存在常数 p < n, 使得函数 $\frac{1}{|\mathbf{x} - \mathbf{x}_0|^p}$ 在 $E \setminus B(\mathbf{x}_0, \frac{1}{m})$ $(m \geqslant 1)$ 上可积, 并且当 $\mathbf{x} \to \mathbf{x}_0$ $(\mathbf{x} \in E)$ 时有

$$f(\boldsymbol{x}) << \frac{1}{|\boldsymbol{x} - \boldsymbol{x}_0|^p},$$

那么 $\int_{E} f$ 收敛.

引理 6.7

设 $E \subseteq \mathbb{R}^n$, $f \ni g$ 是定义在 E 上的非负函数. 如果 $\int_E f \ni \int_E g$ 均收敛, 那么 $\int_E f + g$ 也收敛且

$$\int_{E} f + g = \int_{E} f + \int_{E} g.$$

命题 6.8. 设 $E \subseteq \mathbb{R}^n$, $f: E \longrightarrow \mathbb{R}$. 如果 $\int_E f$ 收敛, 那么 $\int_E |f|$ 也收敛.

命题 6.9. 设 $E, F \subseteq \mathbb{R}^n$, 函数 f 在 $E \cup F$ 上有定义, g 在 E 上有定义.

(1) 若
$$\int_{E} f$$
 收敛,则对任意的 $a \in \mathbb{R}$, $\int_{E} af$ 收敛,且

$$\int_{E} af = a \int_{E} f.$$

(2) 若
$$\int_{E} f$$
 和 \int_{g} 均收敛,则 $\int_{E} (f+g)$ 也收敛,且

$$\int_{E} (f+g) = \int_{E} f + \int_{E} g.$$

(3) 若 E 和 F 无公共内点, 且 $\int_E f$ 与 $\int_F f$ 均收敛, 则 $\int_{E \cup F} f$ 收敛, 且

$$\int_{E \cup F} f = \int_{E} f + \int_{F} f.$$

定理 6.10

设
$$E\subseteq \mathbb{R}^n,\; f:E\longrightarrow \mathbb{R},\;$$
那么 $\int_E f\;$ 收敛当且仅当 $\int_E |f|\;$ 收敛.

注 6.11. 此处重积分与一元反常积分略有差异,在本节定义 6.2 中需针对任意穷竭,对应到一元中其实就是在考虑黎曼重排,而一元中仅仅是条件收敛,即意味着可以黎曼重排使极限为任意值时,在本节定义 6.2 下是发散的.而当一元情形是绝对收敛的,在该定义下才是收敛的,故在多元中收敛与绝对值收敛等价.

定理 6.12

设 $E \in \mathbb{R}^n$ 中的开集, $\varphi: E \longrightarrow \varphi(E)$ 是一个连续可微的双射, 并且对任意的 $\mathbf{x} \in E$ 而言 $\varphi'(\mathbf{x})$ 均非奇异. 又设定义在 $\varphi(E)$ 的函数 f 在 $\varphi(E)$ 的任一若尔当可测紧 子集上可积. 那么当

$$\int_{\varphi(E)} f \quad - : \int_{E} (f \circ \varphi) |\det \varphi'|$$

中有一个收敛时,另一个必收敛,且有

$$\int_{\varphi(E)} f = \int_{E} (f \circ \varphi) |\det \varphi'|$$

专题二 双曲几何下的面积

第五章 曲线积分

§ 5.1 曲线的弧长

定义 1.1

对于空间中的参数方程

$$\begin{cases} x = x(t), \\ y = y(t), & t \in [a, b] \\ z = z(t), \end{cases}$$
 (5.1)

所定义的曲线段 C, 如果对任意的 $a \le t_1 < t_2 \le b$, 当 $t_1 = a$ 与 $t_2 = b$ 不同时成立时有

$$(x(t_1), y(t_1), z(t_1)) \neq (x(t_2), y(t_2), z(t_2)),$$

则称 C 是**简单曲线**. 更进一步的, 如果有 (x(a), y(a), z(a)) = (x(b), y(b), z(b)) 则称 C 为**简单闭曲线**.

定义 1.2

设曲线段 C 由 (5.1) 所定义. 若存在 $s\in\mathbb{R}$, 使得对任意的 $\varepsilon>0$ 而言, 存在 $\delta>0$, 对由区间 [a,b] 的任意一组满足 $\max_i \Delta t_i<\delta$ 的分点

$$a = t_0 < t_1 < \dots < t_n = b$$

所定义的曲线上的点 $M_i(x(t_i), y(t_i), z(t_i))$ 均有

$$\left| \sum_{1 \le i \le n} \overline{M_{i-1} M_i} - s \right| < \varepsilon,$$

那么就称曲线段 C 是**可求长的**, 并称 s 是 C 的**弧长**.

类似也可以给出由参数方程

$$\begin{cases} x = x(t), \\ y = y(t), \end{cases} \quad t \in [a, b]$$
(5.2)

所定义的平面上的曲线段及其弧长定义.

命题 1.1. 设 C 是由 (5.1) 给出的可求长的曲线段, $\varphi:[c,d]\longrightarrow[a,b]$ 是严格单调的满

射,并记

$$C_1: \begin{cases} x = x(\varphi(u)), \\ y = y(\varphi(u)), \quad u \in [c, d] \\ z = z(\varphi(u)), \end{cases}$$

那么 C_1 也是可求长的曲线, 且其弧长等于 C 的弧长. 简而言之, 曲线的弧长与参数方程的选取无关.

命题 1.2. 如果 x(t), y(t), z(t) 均在区间 [a, b] 上连续可导,则由 (5.1) 所定义的曲线段 C 是可求长的,且弧长为

$$s = \int_{a}^{b} \sqrt{[x'(t)]^{2} + [y'(t)]^{2} + [z'(t)]^{2}} dt.$$

命题 1.3. 如果 x(t), y(t) 均在区间 [a,b] 上连续可导, 那么平面上由 (5.2) 所定义的曲线 段 C 是可求长的, 且弧长为

$$s = \int_a^b \sqrt{[x'(t)]^2 + [y'(t)]^2} dt.$$

推论 1.4

对于定义在平面上的极坐标方程 $r = r(\theta)$ ($\theta \in [\alpha, \beta]$) 可以将其视作由参数方程

$$\begin{cases} x = r(\theta)\cos\theta, \\ y = r(\theta)\sin\theta, \end{cases} \quad \theta \in [\alpha, \beta]$$
 (5.3)

那么此时就有

$$s = \int_{\alpha}^{\beta} \sqrt{[r'(\theta)]^2 + [r(\theta)]^2} d\theta.$$

例 1.5. 设
$$a>0$$
. 对于**星形线 (astroid)**
$$\begin{cases} x=a\cos^3t,\\ y=a\sin^3t, \end{cases} \ (t\in[0,2\pi]) \ \text{而言, 其弧长为}$$

$$\int_{0}^{2\pi} \sqrt{[x'(t)]^{2} + [y'(t)]^{2}} dt$$

$$= 3a \int_{0}^{2\pi} \sqrt{\cos^{4} t \sin^{2} t + \sin^{4} t + \cos^{2} t} dt$$

$$= 3a \int_{0}^{2\pi} |\sin t \cos t| dt = 6a.$$

例 1.6.

命题 1.7. 简单曲线 C 的弧长在正交变换下保持不变.

§ 5.2 第一型曲线积分

定义 2.1

设 C 是一条可求长的曲线, 其两端点是 A 和 B (若是闭曲线则 A 和 B 是一个点), f 是定义在 C 上的一个函数. 如果存在实数 I, 使得对任意的 $\varepsilon > 0$, 均存在 $\delta > 0$, 当我们依次取分点

$$A = M_0, M_1, \ldots, M_n = B$$

时, 只要 $\max_{1\leqslant i\leqslant n}\Delta s_i<\delta$ (其中 Δs_i 表示曲线段 $\widehat{M_{i-1}M_i}$ 的弧长), 就对任意的 $\pmb{\xi}_i\in\widehat{M_{i-1}M_i}$ 有

$$\left| \sum_{i=1}^{n} f(\boldsymbol{\xi}_i) \Delta s_i - I \right| < \varepsilon,$$

那么就称 I 为 f 在 C 上的**第一型曲线积分** (line integral of the first kind), 记作

$$I = \int_C f \, \mathrm{d}s.$$

特别地, 当 C 是闭曲线时, 我们也采用记号

$$I = \oint_C f \, \mathrm{d}s.$$

注 2.1. 当第一型曲线积分存在时, 积分值与曲线的定向无关.

- **命题 2.2.** 设 C 时一条可求长曲线, f 与 g 是定义在 C 上的两个函数,
 - (1) 如果 f 与 g 在 C 上的第一型曲线积分都存在,那么对任意的 $\alpha, \beta \in \mathbb{R}, \alpha f + \beta g$ 在 C 上的第一型曲线积分存在并且,

$$\int_C (\alpha f + \beta g) \, \mathrm{d}s = \alpha \int_C f \, \mathrm{d}s + \beta \int_C g \, \mathrm{d}s.$$

(2) 如果 $C = C_1 \cup C_2$, C_1 , C_2 均是可求长曲线, 且公共点为端点, 那么当 C_1 , C_2 的第一型曲线积分都存在时, f 在 C 上的第一型曲线积分也存在, 且

$$\int_C f \, \mathrm{d}s = \int_{C_1} f \, \mathrm{d}s + \int_{C_2} f \, \mathrm{d}s.$$

定义 2.2

设 $C \in \mathbb{R}^3$ 中的**光滑曲线段**,即存在参数方程

$$\begin{cases} x = x(t), \\ y = y(t), & t \in [a, b] \\ z = z(t), \end{cases}$$

表示 C, 且 x(t), y(t), z(t) 均在 [a, b] 上连续可微.

取分点,求黎曼和,用积分第一中值定理及闵可夫斯基不等式进行等价,可得上述 光滑曲线段的第一型曲线积分为

$$\int_C f(x, y, z) \, \mathrm{d}s = \int_a^b f(x(t), y(t), z(t)) \sqrt{[x'(t)]^2 + [y'(t)]^2 + [z'(t)]^2} \, \mathrm{d}t. \tag{5.4}$$

类似地,如果是平面上的曲线,则有

$$\int_C f(x,y) \, \mathrm{d}s = \int_a^b f(x(t), y(t)) \sqrt{[x'(t)]^2 + [y'(t)]^2} \, \mathrm{d}t. \tag{5.5}$$

§ 5.3 第二型曲线积分

定义 3.1

设 C 是 \mathbb{R}^3 中的一条**定向**的可求长的曲线, **起点**为 A, **终点**为 B, 在 C 上定义映射 $f=(P,Q,R)^T:C\longrightarrow\mathbb{R}^3$. 若存在实数 I, 使得对任意的 $\varepsilon>0$, 均存在 $\delta>0$, 当我们在 C 上从 A 到 B 依次取分点

$$A = M_0, M_1, \dots, M_n = B$$

时, 只要 $\max_{1 \leq i \leq n} \overline{M_{i-1}M_i} < \delta$, 就对任意的 $\boldsymbol{\xi}_i \in \widehat{M_{i-1}M_i}$ 有

$$\left| \sum_{i=1}^{n} \left\langle f(\boldsymbol{\xi}_i), \overline{M_{i-1}M_i} \right\rangle - I \right| < \varepsilon,$$

则称 I 为 $f = (P, Q, R)^T$ 沿定向曲线 C 的**第二型曲线积分 (line integral of the second kind)**. 也称作 f 沿道路 \widehat{AB} 的**第二型曲线积分**, 记作

$$I = \int_C P \, \mathrm{d}x + Q \, \mathrm{d}y + R \, \mathrm{d}z = \int_{\widehat{AB}} P \, \mathrm{d}x + Q \, \mathrm{d}y + R \, \mathrm{d}z.$$

特别地, 当 C 是闭曲线时, 我们也采用记号

$$I = \oint_C P \, \mathrm{d}x + Q \, \mathrm{d}y + R \, \mathrm{d}z.$$

类似可定义 \mathbb{R}^2 中定向曲线 C 的第二型曲线积分

$$\int_C P \, \mathrm{d}x + Q \, \mathrm{d}y.$$

注 3.1. 在计算第二型曲线积分时,需注意曲线的定向,因为对于以 A, B 为端点的曲线

$$\int_{\widehat{AB}} P \, \mathrm{d}x + Q \, \mathrm{d}y + R \, \mathrm{d}z = -\int_{\widehat{BA}} P \, \mathrm{d}x + Q \, \mathrm{d}y + R \, \mathrm{d}z$$

命题 3.2. 设 \widehat{AB} 是 \mathbb{R}^3 中的一条可求长的定向曲线, $f = (P_1, Q_1, R_1)^T$ 和 $g = (P_2, Q_2, R_2)^T$ 均是从 \widehat{AB} 到 \mathbb{R}^3 的映射.

(1) 若 f,g 沿 \widehat{AB} 的第二型曲线积分均存在,则对任意的 $\alpha,\beta\in\mathbb{R}$, $\alpha f+\beta g$ 沿 \widehat{AB} 的第二型曲线积分也存在,并且等于

$$\alpha \left(\int_{\widehat{AB}} P_1 \ \mathrm{d}x + Q_1 \ \mathrm{d}y + R_1 \ \mathrm{d}z \right) + \beta \left(\int_{\widehat{AB}} P_2 \ \mathrm{d}x Q_2 \ \mathrm{d}y R_2 \ \mathrm{d}z \right).$$

(2) 设 $D \neq \widehat{AB}$ 上一点, 如果 $f \approx \widehat{AD}$ 和 \widehat{DB} 的第二型曲线积分均存在, 则 $f \approx \widehat{AB}$ 的第二型曲线积分也存在, 并且等于

$$\int_{\widehat{AD}} P_1 \, dx + Q_1 \, dy + R_1 \, dz + \int_{\widehat{DB}} P_1 \, dx + Q_1 \, dy + R_1 \, dz.$$

设 \widehat{AB} 是 \mathbb{R}^3 中的定向光滑曲线段,再设

$$f(P,Q,R)^T:\widehat{AB}\longrightarrow \mathbb{R}^3.$$

则有

$$\int_{\widehat{AB}} P \, dx + Q \, dy + R \, dz = \int_{a}^{b} [P(x(t), y(t), z(t))x'(t) + Q(x(t), y(t), z(t))y'(t) + R(x(t), y(t), z(t))z'(t)] \, dt$$

§ 5.4 格林公式

定义 4.1

对于 \mathbb{R}^2 平面上的有界闭区域 D, 其边界 ∂D , 是由有限条光滑曲线组成. 当在边界上行走时, 如果与之相邻的区域的内部总是在左侧, 则称这个方向是**正向**

定理 4.1.(格林公式)

设 S 是 \mathbb{R}^2 中的有界闭区域, ∂S 由有限多条分段光滑曲线组成, 若 $P,Q\in C^1(S)$, 则

$$\int_{\partial S} P \, dx + Q \, dy = \iint_{S} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dx \, dy \tag{5.6}$$

其中 ∂S 的定向为正向.

在定理 4.1 条件下, 再设 u(x,y) 在 S 上连续可微, 那么将 (5.6) 中的 P 换为 uP, 并取 Q=0 可得

$$\int_{\partial S} u P \, \mathrm{d}x = - \iint\limits_{S} \frac{\partial (u P)}{\partial y} \, \mathrm{d}x \, \mathrm{d}y = - \iint\limits_{S} \left(P \frac{\partial u}{\partial y} + u \frac{\partial P}{\partial y} \right) \, \mathrm{d}x \, \mathrm{d}y,$$

也即

$$-\iint_{S} u \frac{\partial P}{\partial y} dx dy = \int_{\partial S} u P dx + \iint_{S} P \frac{\partial u}{\partial y} dx dy.$$
 (5.7)

同理,将Q换为uQ可得,

$$\iint_{S} u \frac{\partial Q}{\partial x} dx dy = \int_{\partial S} u Q dy - \iint_{S} Q \frac{\partial u}{\partial x} dx dy.$$
 (5.8)

相加后可得,

$$\iint\limits_{S} u \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \left(\int_{\partial S} u P dx + u Q dy \right) - \iint\limits_{S} \left(Q \frac{\partial u}{\partial x} - P \frac{\partial u}{\partial y} \right) dx dy.$$
 (5.9)

以上三式均被称作平面上的分部积分公式.

定义 4.2

对于 \mathbb{R}^2 中的一个区域 D, 若 D 中任意一条简单闭曲线所围成的区域均包含于 D, 则称 D 是**单连通的 (simply connected)**, 否则称 D 为**多连通的 (multiply connected)** 或者称作**复连通的**.

命题 4.2. 利用格林公式计算闭曲线围成的面积. 设 $S \in \mathbb{R}^2$ 中的一个有界闭区域, 且 ∂S 由有限多条光滑曲线组成, 那么由格林公式知

$$\mu(S) = \iint\limits_{S} dx dy = \int_{\partial S} x dy = -\int_{\partial S} y dx.$$
 (5.10)

更进一步的,有

$$\mu(S) = \frac{1}{2} \int_{\partial S} x \, \mathrm{d}y - y \, \mathrm{d}x. \tag{5.11}$$

虽然看上去 (5.11) 和 (5.10) 没有实质上的差异. 但在实际计算中, 如果曲线有一定的对称性 (5.11) 能带来很大的便利.

定理 4.3

设 $D \in \mathbb{R}^2$ 中的一个单连通区域, $P,Q \in C^1(D)$, 则下列命题等价:

(1) 对 D 中任意两点 A,B 以及 D 中从 A 到 B 的任意两条分段光滑曲线 C_1,C_2 有

$$\int_{C_1} P \, \mathrm{d}x + Q \, \mathrm{d}y = \int_{C_2} P \, \mathrm{d}x + \, \mathrm{d}y.$$

即第二型曲线积分与路径无关.

(2) 对于 D 中由有限多条光滑曲线组成的任一闭曲线 C 有

$$\int_C P \, \mathrm{d}x + Q \, \mathrm{d}y = 0.$$

(3) 在
$$D$$
 上有 $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$.

§ 5.5 应用: 调和函数

定义 5.1

设 D 是一个平面 (闭) 区域, f 是定义在 D 上的具有二阶偏导数的函数, 若在 D 上有

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0,$$

则称 $f \in D$ 上的**调和函数 (harmonic function)**.

通常记

$$\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2},$$

并称 $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$ 为**拉普拉斯算子 (Laplace operator).**

性质 5.1. (拉普拉斯算子在正交变换下的不变性) 设 $f \in \mathbb{C}^2$ 类的调和函数,

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 是一个正交矩阵, $g(x,y) = f(ax + by, cx + dy)$. 则有 $\Delta f = \Delta g$.

证明. 记 x' = ax + by, y' = cx + dy, 利用偏导数的链式法则可得

$$\Delta g = \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2}$$

$$= \frac{\partial}{\partial x} \left(\frac{\partial g}{\partial x'} \cdot \frac{\partial x'}{\partial x} + \frac{\partial g}{\partial y'} \cdot \frac{\partial y'}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{\partial g}{\partial x'} \cdot \frac{\partial x'}{\partial y} + \frac{\partial g}{\partial y'} \cdot \frac{\partial y'}{\partial y} \right)$$

$$= \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x'} \cdot a + \frac{\partial f}{\partial y'} \cdot c \right) + \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x'} \cdot b + \frac{\partial f}{\partial y'} \cdot d \right)$$

$$= \frac{\partial}{\partial x'} \left(\frac{\partial f}{\partial x'} \cdot a + \frac{\partial f}{\partial y'} \cdot c \right) \frac{\partial x'}{\partial x} + \frac{\partial}{\partial y'} \left(\frac{\partial f}{\partial x'} \cdot a + \frac{\partial f}{\partial y'} \cdot c \right) \frac{\partial y'}{\partial x}$$

$$+ \frac{\partial}{\partial x'} \left(\frac{\partial f}{\partial x'} \cdot b + \frac{\partial f}{\partial y'} \cdot d \right) \frac{\partial x'}{\partial y} + \frac{\partial}{\partial y'} \left(\frac{\partial f}{\partial x'} \cdot b + \frac{\partial f}{\partial y'} \cdot d \right) \frac{\partial y'}{\partial y}$$

$$= (a^2 + b^2) \frac{\partial^2 f}{\partial x'^2} + (c^2 + d^2) \frac{\partial^2 f}{\partial y'^2} + (ac + ac + bd + bd) \frac{\partial^2 f}{\partial x' \partial y'}$$

$$= \frac{\partial^2 f}{\partial x'^2} + \frac{\partial^2 f}{\partial y'^2} = \Delta f.$$

上述最后一行利用了正交矩阵的性质,任意两行向量点积是 0,即 ac + bd = 0.

更进一步的, 如果是 n 元调和函数 $g(x_1, x_2, ..., x_n) = f(x'_1, x'_2, ..., x'_n)$ 其中, $(x'_1, ..., x'_n)^T = A(x_1, ..., x_n)^T$, 且 A 是 n 阶正交矩阵.

那么有
$$\frac{\partial x_i'}{\partial x_j} = a_{i,j}$$
.

则

$$\Delta g = \sum_{i=1}^{n} \frac{\partial^{2} g}{\partial x_{i}^{2}}$$

$$= \sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} \left(\sum_{j=1}^{n} \frac{\partial g}{\partial x'_{j}} \cdot \frac{\partial x'_{j}}{\partial x_{i}} \right)$$

$$= \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{\partial}{\partial x'_{k}} \left(\sum_{j=1}^{n} \frac{\partial f}{\partial x'_{j}} \cdot a_{j,i} \right) \frac{\partial x'_{k}}{\partial x_{i}}$$

$$= \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{\partial}{\partial x'_{k}} \left(\sum_{j=1}^{n} \frac{\partial f}{\partial x'_{j}} \cdot a_{j,i} \right) a_{k,i}$$

$$= \sum_{k=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} a_{k,i} a_{j,i} \frac{\partial^{2} f}{\partial x'_{k} \partial x'_{j}}$$

$$= \sum_{k=1}^{n} \frac{\partial^{f}}{\partial x'_{k}^{2}} = \Delta f.$$

利用到了
$$\sum_{i=1}^{n} a_{j,i} a_{k,i} = \begin{cases} 1, & j=k \\ 0, & j \neq k \end{cases}$$

引理 5.2

设 D 是平面上由有限多条光滑曲线所围城的有界闭区域, u 和 v 是定义在 D 上的两个函数, 且 $u \in C^2(D), v \in C^1(D), 则$

$$\iint\limits_{D}v\Delta u\;\mathrm{d}x\;\mathrm{d}y=-\int\limits_{D}\left(\frac{\partial u}{\partial x}\;\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\;\frac{\partial v}{\partial y}\right)$$

第六章 曲面积分

§ 6.1 曲面的面积

定义 1.1

设 Ω 时 \mathbb{R}^2 中的一个区域, $D \subseteq \Omega$, 且 D 是由分段光滑曲线所围成的有界闭区域. 若存在 Ω 上的映射

$$\mathbf{r}(u,v) = (x(u,v), y(u,v), z(u,v)), \quad (u,v) \in \Omega$$
 (6.1)

满足

- (1) $r \in C^1(\Omega)$.
- (2) \mathbf{r} 在 D° 上是双射, 并且对任意的 $(u,v) \in D^{\circ}$ 有 $\mathbf{r}_u \times r_v \neq \mathbf{0}$, 其中 × 为向量积且 称 $\mathbf{r}(D)$ 为 \mathbb{R}^3 中的一个**光滑曲面**.

若 $S \subset \mathbb{R}^3$ 由有限多个光滑曲面拼接而成,则称之为**分片光滑曲面**.

定义 1.2

设 Ω, D, \mathbf{r} 如定义 1.1 中所给出, $S = \mathbf{r}(D)$ 是由方程 (6.1) 定义的光滑曲面, 那么 S 的面积为

$$\iint\limits_{D} |\boldsymbol{r}_{u} \times \boldsymbol{r}_{v}| \, \mathrm{d}u \, \mathrm{d}v. \tag{6.2}$$

如果 S 是由若干光滑曲面拼接而成,且这些光滑曲面至多在边界处有公共点,那么 S 的面积就定义为 S_i 的面积和.

命题 1.1. 和曲线积分类似, 曲面的面积和参数方程的选取无关.

定义 1.3.(高斯 (Gauss) 系数)

为了方便我们将, $\frac{\partial x}{\partial u}$ 记作 x_u . 同理有 y_u, z_u, x_v, y_v, z_v . 我们设

$$\begin{cases}
E = |\mathbf{r}_{u}|^{2} = x_{u}^{2} + y_{u}^{2} + z_{u}^{2} \\
F = \langle \mathbf{r}_{u}, \mathbf{r}_{v} \rangle = x_{u}x_{v} + y_{u}y_{v} + z_{u}z_{v} \\
G = |\mathbf{r}_{v}|^{2} = x_{v}^{2} + y_{v}^{2} + z_{v}^{2}
\end{cases} (6.3)$$

我们称 E, F, G 为**高斯 (Gauss) 系数**或曲面的第一基本量.

此时,式(6.2)就变为

$$\iint\limits_{D} \sqrt{EG - F^2} \, \mathrm{d}u \, \mathrm{d}v. \tag{6.4}$$

§ 6.2 第一型曲面积分 § 6.3 曲面的侧与定向 § 6.4 第二型曲面积分 § 6.5 高斯公式 § 6.6 斯托克斯公式

第七章 Fourier 分析初步

定义

设 S 是一个非空集合, 我们用 \mathbb{C}^S 表示从 S 到 \mathbb{C} 的全部映射所成之集, 也即定义在 S 上的全体复值函数所成之集.

对任意的 $f,g \in \mathbb{C}^S$ 以及 $\lambda \in \mathbb{C}$, 令

$$(f+g)(x) = f(x) + g(x), (\lambda f)(x) = \lambda f(x),$$
 $\forall x \in S.$

则在上述运算下 \mathbb{C}^S 是 \mathbb{C} 上的线性空间, 从而 \mathbb{C}^S 有一个基.

§ 7.1 Fourier 级数定义

定义 1.1.(复值函数积分)

对于复值函数 $g(x)=u(x)+\mathrm{i} v(x),\ u(x),v(x)\in\mathbb{R}[x]$. 若 u(x),v(x) 均在 [a,b] 上可积,则定义

$$\int_a^b g(x) \, \mathrm{d}x = \int_a^b u(x) \, \mathrm{d}x + \mathrm{i} \int_a^b v(x) \, \mathrm{d}x.$$

不难验证,按上述定义的复值函数积分,也满足实值函数积分的运算法则,如分部积分以及微积分学基本定理.

定义 1.2

设 ℓ 是一个正常数, 记 $e(t) := e^{2\pi i t}$, 我们称形如

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{2\pi nx}{\ell} + b_n \sin \frac{2\pi nx}{\ell} \right) \tag{7.1}$$

$$\sum_{n\in\mathbb{Z}} c_n e\left(\frac{nx}{\ell}\right) \tag{7.2}$$

的关于变量 x 的函数项级数为**三角级数 (trigonometric series)**, 其中 (7.1) 的级数收敛 是指极限

$$\lim_{N \to \infty} \sum_{n=-N}^{N} c_n e\left(\frac{nx}{\ell}\right)$$

存在. 我们称以上两个级数的部分和为三角多项式 (trigonometic ploynomial).

利用欧拉公式 $e^{\mathrm{i}\theta}=\cos\theta+\mathrm{i}\sin\theta$, 我们可以探究 (7.1) 和 (7.2) 之间的关系. 如果记

$$\begin{cases}
c_0 = \frac{a_0}{2}, \\
c_n = \frac{a_n - ib_n}{2}, \quad c_{-n} = \frac{a_n + ib_n}{2}, \quad \forall n \geqslant 1.
\end{cases}$$
(7.3)

那么就可以将 (7.1) 变为 (7.2) 的形式.

注 1.1. $a_n, b_n \in \mathbb{R} \Leftrightarrow c_n = \overline{c_{-n}}$.

我们把在区间 [a,b] 上黎曼可积,或者在 [a,b] 上有有限多个奇点但积分 $\int_a^b |f(x)| \, \mathrm{d}x$ 收敛的全体实值函数所成之集记作 $\mathscr{R}[a,b]$.

定义 1.3

设 ℓ 是一个正实数, f(x) 是定义在 \mathbb{R} 上的以 ℓ 为周期的函数, 并且 $f \in \mathcal{R}[0,\ell]$. 我们记

$$a_n = \frac{2}{\ell} \int_0^{\ell} f(x) \cos \frac{2\pi nx}{\ell} \, \mathrm{d}x, \quad \forall n \geqslant 0.$$
 (7.4)

$$b_n = \frac{2}{\ell} \int_0^{\ell} f(x) \sin \frac{2\pi nx}{\ell} dx, \quad \forall n \geqslant 0.$$
 (7.5)

$$c_n = \frac{1}{\ell} \int_0^{\ell} f(x)e\left(-\frac{nx}{\ell}\right) dx, \quad \forall n \geqslant 0.$$
 (7.6)

由上三式定义的三角级数称作 f(x) 的 Fourier **级数 (Fourier series)** 或 Fourier **展开式 (Fourier expansion)**, 记作

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{2\pi nx}{\ell} + b_n \sin \frac{2\pi nx}{\ell} \right)$$

$$f(x) \sim \sum_{n \in \mathbb{Z}} c_n e\left(\frac{nx}{\ell}\right)$$

称 a_n, b_n, c_n 为 f(x) 的 Fourier 系数. 通常将 c_n 记作 $\hat{f}(n)$.

注 1.2. 上述定义中采用 \sim 的记号是因为目前我们并不知道 f(x) 的 Fourier 级数是否 收敛于 f(x).

定义 1.4

设 f 是定义在 $(0,\ell)$ 上的函数, 如果以 2ℓ 为周期的函数 g 满足

$$g(x) = \begin{cases} f(x), & x \in (0, \ell) \\ f(-x), & x \in (-\ell, 0). \end{cases}$$

则称 g 为 f 的**偶性延拓**, 此时 g 是 $(-\ell,\ell)\setminus\{0\}$ 上的偶函数. 如果以 2ℓ 为周期的函数 h 满足

$$h(x) = \begin{cases} f(x), & x \in (0, \ell) \\ -f(-x), & x \in (-\ell, 0). \end{cases}$$

则称 g 为 f 的**奇性延拓**, 此时 h 是 $(-\ell, \ell)\setminus\{0\}$ 上的奇函数.

为了方便, 我们将 f 作偶性延拓/奇性延拓得到的函数仍记作 f.

定义 1.5

如果对 f 做偶性延拓, 那么它的 Fourier 级数中只含有余弦项, 称为 f(x) 的**余弦 级数**, 记作

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{\pi nx}{\ell},$$

其中

$$a_n = \frac{1}{\ell} \int_{-\ell}^{\ell} f(x) \cos \frac{\pi nx}{\ell} \, \mathrm{d}x = \frac{2}{\ell} \int_{0}^{\ell} f(x) \cos \frac{\pi nx}{\ell} \, \mathrm{d}x. \tag{7.7}$$

如果对 f 做奇性延拓, 那么它的 Fourier 级数中只含有正弦项, 称为 f(x) 的**正弦 级数**, 记作

$$f(x) \sim \sum_{n=1}^{\infty} b_n \sin \frac{\pi nx}{\ell},$$

其中

$$b_n = \frac{1}{\ell} \int_{-\ell}^{\ell} f(x) \sin \frac{\pi nx}{\ell} dx = \frac{2}{\ell} \int_0^{\ell} f(x) \sin \frac{\pi nx}{\ell} dx.$$
 (7.8)

§ 7.2 局部化原理

引理 2.1.(黎曼-勒贝格引理)

设 $f \in \mathcal{R}[a,b]$ (这里 a 可以是 $+\infty$, b 可以是 $+\infty$), 那么

$$\lim_{\lambda \to \infty} \int_a^b f(x)e(\lambda x) \, \mathrm{d}x = 0.$$

特别地, $\lim_{|n| \to \hat{f}(n)} = 0$.

注 2.2. 由引理 2.1 以及

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{\sin \theta} \qquad \sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{\sin \theta}$$

我们可以推出

$$\lim_{\lambda \to \infty} \int_{a}^{b} f(x) \cos \lambda x \, dx = 0,$$
$$\lim_{\lambda \to \infty} \int_{a}^{b} f(x) \sin \lambda x \, dx = 0.$$

进而可以得到

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = 0.$$

下面研究 $f(x) \in \mathcal{R}[0,1]$ 的 Fourier 级数的收敛性问题. 而对于周期是一般的正实数的情形, 可以通过伸缩变换或者类似的讨论研究.

此时 Fourier 级数为

$$f(x) \sim \sum_{n \in \mathbb{Z}} \hat{f}(n)e^{(nx)},$$

其中

$$\hat{f}(n) = \int_0^1 f(t)e(-nt) dt.$$
 (7.9)

用

$$S_N(x) = \sum_{n=-N}^{N} \hat{f}(n)e(nx)$$

表示该 Fourier 级数的部分和, 那么将 (7.9) 代入可得

$$S_N(x) = \sum_{n=-N}^{N} e(nx) \int_0^1 f(t)e(-nt) dt = \int_0^1 f(t) \sum_{n=-N}^{N} e(n(x-t)) dt$$

$$= \int_0^1 f(t)D_N(x-t) dt.$$
(7.10)

定义 2.1.(狄利克雷核)

上式中 $D_N(y) := \sum_{n=-N}^N e(ny)$ 称为**狄利克雷核 (Dirichlet kernel)**.

首先, $D_N(y)$ 是以 1 为周期的偶函数.

$$y = 0$$
 时,有 $D_N(0) = 2N + 1$.

 $y \in (0,1)$ 时,有

$$D_N(y) = \frac{e(-Ny)(e((2N+1)y) - 1)}{e(y) - 1} = \frac{e\left(\frac{2N+1}{2}y\right) - e\left(-\frac{2N+1}{2}y\right)}{e\left(\frac{y}{2}\right) - e\left(-\frac{y}{2}\right)}$$
$$= \frac{\sin(2N+1)\pi y}{\sin \pi y}.$$

那么在 (7.10) 中作变量替换 $t \mapsto x - t$ 可得

$$S_N(x) \int_{x-1}^x f(x-t) D_N(t) dt.$$

又被积函数的周期是 1. 所以

$$S_N(x) = \int_0^{\frac{1}{2}} (f(x+t) + f(x-t)) D_N(t) dt.$$
 (7.11)

此外, $D_N(t)$ 是偶函数.

$$\int_0^{\frac{1}{2}} D_N(t) \, dt = \frac{1}{2} \int_{-\frac{1}{2}}^{\frac{1}{2}} D_N(t) \, dt = \frac{1}{2} \sum_{n=-N}^N \int_{-\frac{1}{2}}^{\frac{1}{2}} e(nt) \, dt = \frac{1}{2}.$$
 (7.12)

上述求和考虑交换积分求和号后用等比数列求和公式.

定理 2.3.(黎曼局部化原理)

假设 f 是以 1 为周期的函数并且 $f \in \mathcal{R}[0,1]$, 那么对给定的 x, f 的 Fourier 级数 在点 x 处收敛于 s 当且仅当存在 $\delta > 0$ 使得

$$\lim_{N \to \infty} \int_0^0 (f(x+t) + f(x-t) - 2s) \frac{\sin(2N+1)\pi t}{t} dt = 0.$$
 (7.13)

定理 2.4.(迪尼判别法)

设 f 是以 1 为周期的函数并且 $f \in \mathcal{R}[0,1]$, 如果对给定的 x 及 s, 存在 $\delta \in (0,1)$ 使得 $\frac{f(x+t)+f(x-t)-2s}{t}$ 是关于变量 t 的属于 $\mathcal{R}[0,\delta]$ 的函数 (单独定义该函数在 0 处的值), 那么 f 的 Fourier 级数在 x 处收敛于 s.

定义 2.2

设 f(x) 在 x_0 的邻域 $(x_0 - \delta, x_0 + \delta)$ (事实上, 只要求去心邻域内) 内有定义, 若存在常数 L > 0 及 $\alpha > 0$ 使得对任意的 $x \in (x_0 - \delta, x_0)$ 有

$$|f(x) - f(x_0 - 0)| \le L|x - x_0|^{\alpha},$$

且对任意的 $x \in (x_0, x_0 + \delta)$ 有

$$|f(x) - f(x_0 + 0)| \le L|x - x_0|^{\alpha}$$
.

则称 f(x) 在 x_0 附近满足 α **阶利普希茨条件**

注. 上述定理中 $f(x_0 - 0)$ 和 $f(x_0 + 0)$ 分别表示 f(x) 在 x_0 处的左/右极限.

注 2.5. 一般而言, 我们不会去研究 $\alpha > 1$ 时的情况, 因为当 $\alpha > 1$ 时, 考虑

$$\left| \frac{f(x) - f(x_0)}{x - x_0} \right| \leqslant Lx^{\alpha - 1},$$

当 $x \to x_0$ 时,右侧为 0 即 f'(x) = 0, f(x) 是常值函数.

推论 2.6

设 f 以 1 为周期且 $f \in \mathcal{R}[0,1]$, $\alpha \in (0,1]$. 如果 f 在 x 的附近满足 α 阶利普希茨条件, 那么 f 的 Fourier 级数在 x 处收敛于 $\frac{f(x+0)+f(x-0)}{2}$. 特别地, 若 x 是 f 的 连续点, 则 f 的 Fourier 级数在 x 处收敛于 f(x).

证明. 考虑证明
$$s = \frac{f(x+0) + f(x-0)}{2}$$
 满足定理 2.4 的条件.

Part III 常微分方程

常微分方程定义及主要定理

Bernoulli 方程 Riccati 方程 平衡点

第一章 一阶微分方程

定理 0.1.(解的存在唯一性)

§ 1.1 线性方程

- (1) 线性齐次方程: 形如 y' + p(x)y = 0. 考虑积分因子 $e^{\int p(x)dx}$. 其解为 $y = Ce^{-\int p(x)dx}$.
- (2) 线性非齐次方程: 形如 y' + p(x)y = g(x). 考虑如上积分因子. 其解为 $y = e^{-\int p(x)dx} (C + \int g(x)e^{\int p(x)dx} dx)$.
- (3) Bernoulli 方程: 形如 $y' + p(x)y = g(x)y^{\alpha}$. 当 $a \neq 0, 1$ 时, 两边同乘 y^{-a} 得

$$y^{-a}y' + p(x)y^{1-a} = g(x)$$

引入新变量 $z = y^{1-a}$ 可得 z' + (1-a)p(x)z = (1-a)g(x). 之后用线性方程求解即可.

§ 1.2 变量可分离方程

(1) 变量可分离: 形如 y' = f(x)g(y). 当 $g(y) \neq 0$ 时, 可化为

$$\frac{\mathrm{d}y}{g(y)} = f(x)\mathrm{d}x$$

那么就可以对两边同时积分

$$\int \frac{\mathrm{d}y}{g(y)} = \int f(x)\mathrm{d}x + C.$$

注: 该方法当 g(y) = 0 时一般会存在特解.

(2) 齐次方程: 形如 $\frac{dy}{dx} = F(\frac{y}{x})$. 引入新变量 y = xz, 则 $\frac{dy}{dx} = z + x\frac{dz}{dx}$. 可将方程变为

$$z + x \frac{\mathrm{d}z}{\mathrm{d}x} = F(z)$$

整理后即

$$\frac{\mathrm{d}z}{\mathrm{d}x} = \frac{F(z) - z}{x}.$$

这样就转化为了变量可分离方程.

(3) 线性分式方程: 形如

$$\frac{dy}{dx} = \frac{a_1x + b_1y + c_1}{a_2x + b_2y + c_2}.$$

当

$$\det \left| \begin{array}{cc} a_1 & a_2 \\ b_1 & b_2 \end{array} \right| \neq 0$$

那么就可以做变量替换 $x = u + x_0, y = v + y_0$.

整理后可得

$$\frac{\mathrm{d}v}{\mathrm{d}u} = \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{a_1u + b_1v}{a_2u + b_2v}$$

再上下同时除以 u, 就可以得到转化为齐次方程.

§ 1.3 全微分方程

定义 3.1

设u = F(x,y)是一个连续可微得二元函数,则它的全微分为

$$\mathrm{d} u = \mathrm{d} F(x,y) = \frac{\partial F(x,y)}{\partial x} \mathrm{d} x + \frac{\partial F(x,y)}{\partial y} \mathrm{d} y.$$

定义 3.2

若有函数 F(x,y), 使得

$$dF(x,y) = M(x,y)dx + N(x,y)dy,$$

则称

$$M(x,y)\mathrm{d}x + N(x,y)\mathrm{d}y = 0$$

为**全微分方程**, 此时解就为 F(x,y) = C.

定理 3.1

设函数 M(x,y) 和 N(x,y) 在一个矩形区域 R 中连续且有连续得一阶偏导数,则

$$M(x,y)dx + N(x,y)dy = 0$$

为全微分方程得充要条件是

$$\frac{\partial M(x,y)}{\partial x} = \frac{\partial N(x,y)}{\partial x}.$$

当我们在 R 中任取一点 $P(x_0, y_0)$ 就可以得到一个解

$$F(x,y) = \int_{x_0}^{x} M(s,y) ds + \int_{y_0}^{y} N(x_0,s) ds.$$

1.3.1 积分因子

定义 3.3

如果有函数 $\mu(x,y)$ 使得方程

$$\mu(x,y)M(x,y)dx + \mu(x,y)N(x,y)dy = 0$$

是全微分方程, 则称 $\mu(x,y)$ 是**积分因子**.

定理 3.2

微分方程有一个仅依赖于 x 的积分因子的充要条件是

$$\frac{\partial M(x,y)}{\partial y} - \frac{\partial N(x,y)}{\partial x}$$
$$\frac{\partial N(x,y)}{\partial x}$$

仅与
$$x$$
有关. 且积分因子 $\mu(x,y) = \exp\left(\int \frac{\partial M(x,y)}{\partial y} - \frac{\partial N(x,y)}{\partial x} dx\right)$.

同理,有一个仅依赖于 y 的积分因子的充要条件是

$$\frac{\partial N(x,y)}{\partial x} - \frac{\partial M(x,y)}{\partial y}$$
$$\frac{\partial M(x,y)}{\partial x}$$

仅与y有关.

常见积分因子:

$$xdy - ydx + xydx = 0,$$

$$xdy - ydx + x^2dy = 0,$$

$$xdy - ydx + x^2dy = 0,$$

$$\frac{1}{x^2}$$

$$xdy - ydx + y^2dy = 0,$$

$$\frac{1}{y^2}$$

$$xdy - ydx + (x^2 + y^2)dy = 0,$$

$$\frac{1}{x^2 + y^2}$$

§ 1.4 变量替换法

(1) 形如
$$\frac{dy}{dx} = f(ax + by + c)$$

引入变量 $z = ax + by + c$ 得到 $\frac{dz}{dx} = a + b\frac{dy}{dx}$.
可将方程化为

$$\frac{\mathrm{d}z}{\mathrm{d}x} = a + bf(z).$$

就变为了变量可分离方程,其通解为

$$\int \frac{\mathrm{d}z}{a + bf(z)} = x + C.$$

(2) 形如 yf(xy)dx + xg(xy)dy = 0引入变量 z = xy, 则 $dy = \frac{xdz - zdx}{x^2}$ 原方程可化为

$$\frac{z}{x}(f(z) - g(z))\mathbf{d}x + g(z)\mathbf{d}z = 0.$$

这是个变量可分离方程.

(3) Riccati 方程. 形如

$$\frac{\mathrm{d}y}{\mathrm{d}x} = p(x)y^2 + q(x)y + f(x).$$

(1) Clairaut 方程.

第二章 二阶及高阶微分方程

n 阶方程的一般形式

$$F(t, x, x', \dots, x(n)) = 0.$$
 (2.1)

当 $n \ge 2$ 时, 统称为高阶微分方程. 一般的 n 阶微分方程的通解含有 n 个独立的任意常数.

§ 2.1 可降阶的高阶方程

2.1.1 不显含未知函数 x 的方程

定义 1.1

更一般的,设未知函数 x 及其直到 k-1 阶导数均不显含,即形如

$$F(t, x^{(k), x^{(k+1)}, \dots, x^{(n)}}) = 0. (2.2)$$

考虑令 $x^{(k)} = y$, 就可把上述方程化为关于 y 的 n - k 阶方程

$$F(t, y, y', \dots, y^{(n-k)}) = 0. (2.3)$$

如果能求得 $y = \varphi(t, c_1, c_2, \dots, c_{n-k})$. 则对 y 进行 k 次积分即可得到 x.

2.1.2 不显含自变量 t 的方程

定义 1.2

一般形式为

$$F(x, x', \dots, x^{(n)}) = 0.$$
 (2.4)

考虑用 y = x' 作为新的未知函数, 而把 x 作为新的自变量, 因为

$$\frac{dx}{dt} = y,$$

$$\frac{d^2x}{dt^2} = \frac{dy}{dt} = \frac{dy}{dx} \frac{dx}{dt} = y \frac{dy}{dx}$$

$$\frac{d^3x}{dt^3} = y \left(\frac{dy}{dx}\right)^2 + y^2 \frac{d^2y}{dx^2},$$
.....

通过此方法可以将方程降低一阶.

2.1.3 全微分方程和积分因子

定义 1.3

若高阶微分方程可看作

$$F(t, x, x', \dots, x^{(n)}) = \frac{d}{dt} \phi(t, x, x', \dots, x^{(n-1)}).$$

则称原方程是**全微分方程**. 并且 $\phi(t,x,x',\ldots,x^{(n-1)})=c_1$ 的通解也是原方程的通解.

类似的, 我们也可以选择适当的**积分因子**使原方程乘上积分因子后是全微分方程.

例 1.1. 设
$$y = a \operatorname{ch} \frac{x}{a} = \frac{a}{2} (e^{x/a} + e^{-x/a})$$
 表示的曲线叫做**悬链线**.

§ 2.2 线性微分方程的基本理论

2.2.1 线性微分方程的有关概念

定义 2.1

将未知函数 x 及其各阶导数均为一次的 n 阶方程称为 n **阶线性微分方程**. 它的一般形式是

$$\frac{d^n x}{dt^n} + a_1(t) \frac{d^{n-1} x}{dt^{n-1}} + \dots + a_{n-1}(t) \frac{dx}{dt} + a_n(t)x = f(t),$$
 (2.5)

定理 2.1

如果方程 (2.5) 的系数 $a_i(t)$ 及右端函数 f(t) 在区间 a < t < b 上连续, 则对任一 $t_0 \in (a,b)$ 及任意 $x_0, x_0^{(1)}, \ldots, x_0^{(n-1)}$, 方程 (2.5) 存在唯一的解 $x = \varphi(t)$, 满足下列初始条件:

$$\varphi(t_0) = x_0, \quad \frac{\mathrm{d}\varphi(t)}{\mathrm{d}t}\bigg|_{t=t_0} = x_0^{(1)} \cdots.$$

为了方便描述,引入下述记号:

$$L[x] = \frac{d^n x}{dt^n} + a_1(t) \frac{d^{n-1} x}{dt^{n-1}} + \dots + a_{n-1}(t) \frac{dx}{dt} + a_n(t)x,$$
 (2.6)

并把 L 称为**线性微分算子**.

性质 2.2. L[cx] = cL[x], 其中 c 是常数.

性质 2.3. $L[x_1 + x_2] = L[x_1] + L[x_2]$.

2.2.2 齐次线性方程解的性质和结构 设齐次线性方程

$$L[x] = 0 (2.7)$$

定理 2.4.(叠加原理)

如果 $x_1(t), x_2(t), \dots, x_k(t)$ 是方程 (2.7) 的 k 个解, 则它们的线性组合 $\sum_{i=1}^k c_i x_i(t)$ 也是该方程的解.

§ 2.3 线性齐次常系数方程

对于常系数微分方程

$$\frac{d^n x}{dt^n} + a_1 \frac{d^{n-1} x}{dt^{n-1}} + \dots + a_{n-1} \frac{dx}{dt} + a_n x = 0.$$
 (2.8)

称

$$F(\lambda) := \lambda^{n} + a_{1}\lambda^{n-1} + \dots + a_{n-1}\lambda + a_{n} = 0.$$
 (2.9)

为 (2.8) 的特征方程.

§ 2.4 微分方程组

第三章 非线性微分方程组

§ 3.1 自治微分方程与非自治微分方程、动力系统

对于一般的 n 阶非线性微分方程

$$y^{(n)} = G(t, y, y', y'', \dots, y^{(n-1)})$$
(3.1)

可通过变换 $x_y, x_y', \ldots, x_n = y^{(n-1)}$ 化为如下一阶微分方程组

$$\frac{\mathrm{d}x_1}{\mathrm{d}t} = x_2, \cdots, \frac{\mathrm{d}x_{n-1}}{\mathrm{d}t} = x_n, \frac{\mathrm{d}x_n}{\mathrm{d}t} = G(t, x_1, x_2, \dots, x_n).$$

所以我们接下来研究更一般的一阶微分方程组

$$\begin{cases}
\frac{dx_1}{dt} = f_1(t, x_1, x_2, \dots, x_n), \\
\frac{dx_2}{dt} = f_2(t, x_1, x_2, \dots, x_n), \\
\vdots \\
\frac{dx_n}{dt} = f_n(t, x_1, x_2, \dots, x_n),
\end{cases} (3.2)$$

我们将上述方程组简记为向量形式

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = \boldsymbol{F}(t, \boldsymbol{x}) \tag{3.3}$$

其中,

$$m{x} = \left[egin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_n \end{array}
ight], \quad m{F}(t, m{x}) = \left[egin{array}{c} f_1(t, x_1, x_2, \dots, x_n) \\ f_2(t, x_1, x_2, \dots, x_n) \\ \vdots \\ f_n(t, x_1, x_2, \dots, x_n) \end{array}
ight].$$

如果上述方程组有初值

$$\mathbf{x}(t_0) = \mathbf{x}_0 = (x_{01}, x_{02}, \dots, x_{0n})^T.$$
 (3.4)

则该初始值问题也存在类似定理 0.1 的解的存在唯一性定理.

定义 1.1

微分方程组 (3.2) 在 n+1 维空间 $\mathbb{R}^{n+1}=\{t,x_1,x_2,\ldots,x_n\}$ 中确定了一个向量场,而初始值问题 (3.3),(3.4) 的解 $\boldsymbol{x}(t,t_0,\boldsymbol{x}_0)$ 就是向量场中的一条**积分曲线**. 当 (3.3) 中函数 \boldsymbol{F} 满足解的唯一存在性条件时,向量场中任一点有且仅有一条积分曲线经过.

定义 1.2

如果把 t 理解为时间参数, 只考虑 x_1, x_2, \ldots, x_n 构成的空间 \mathbb{R}^n , 我们将这个空间 称为方程组 (3.3) 的**相空间**, 积分曲线在相空间的投影曲线称为方程组的**轨线**.

定义 1.3

当方程组 (3.3) 中的函数 F 显含 t 时, 称该方程组为**非自治微分方程组**. 如果函数 F 中不显含 t, 即

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = \boldsymbol{F}(\boldsymbol{x}),\tag{3.5}$$

则称为自治微分方程组.

定义 1.4

系统 (3.3) 的常数解 $x = x^*$ 称为系统的**平衡点** (**奇点或驻点**)

定义 1.5

系统 (3.3) 的解 $\mathbf{x} = \mathbf{x}(t)$, 若存在常数 T > 0 满足 $\forall t \in \mathbb{R}, s.t.$ $\mathbf{x}(t+T) = \mathbf{x}(t)$. 则称 $\mathbf{x}(t)$ 是一个周期解.

定义 1.6

设 (3.3) 的右端函数 $\mathbf{F}(t, \mathbf{x})$ 对于 $x \in G \subset \mathbb{R}^n, t \in \mathbb{R}$ 连续, 关于 \mathbf{x} 满足 Lipschitz 条件且有一个解 $\mathbf{x} = \mathbf{\Phi}(t)$.

现给定 $t_0 \in \mathbb{R}$ 并设 $\Phi_0 = \Phi(t_0)$. 如果对于任意的 $\varepsilon > 0$, 存在至多依赖 ε, t_0 的 $\delta > 0$, 使得对于 (3.3) 的任意满足 $x(t_0) = x_0$ 的解 $x(t, t_0, x_0)$, 只要

$$\|\boldsymbol{x}_0 - \boldsymbol{\Phi}_0\| < \delta \tag{3.6}$$

就有

$$\|\boldsymbol{x}(t, t_0, \boldsymbol{x}_0) - \boldsymbol{\Phi}(t)\| < \varepsilon, \quad \forall t \geqslant t_0$$
 (3.7)

就称解 $x = \Phi(t)$ 是 Lyapunov 意义下稳定的, 简称**稳定的**, 否则称**不稳定的**.

特别的, 如果 δ 至多依赖 ε 而与 t_0 的取值无关, 那么称该解是 Lyapunov 一致稳定的.

定义 1.7

如果 (3.3) 的解 $\mathbf{x} = \mathbf{\Phi}(t)$ 是稳定的, 且存在一个常数 $\delta_0 > 0$, 使得对一切满足

$$\|\boldsymbol{x}_0 - \boldsymbol{\Phi}_0\| < \delta_0 \tag{3.8}$$

的解 $\boldsymbol{x}(t,t_0,\boldsymbol{x}_0)$ 都有

$$\lim_{t \to +\infty} \|\boldsymbol{x}(t, t_0, \boldsymbol{x}_0) - \boldsymbol{\Phi}(t)\| = 0.$$
(3.9)

则称该解是渐进稳定的.

定义 1.8

如果 (3.3) 的解 $\mathbf{x} = \mathbf{\Phi}(t)$ 是渐进稳定的且存在区域 D_0 , 只要 $\mathbf{x}_0 \in D_0$ 就有

$$\lim_{t \to +\infty} \|\boldsymbol{x}(t, t_0, \boldsymbol{x}_0) - \boldsymbol{\Phi}(t)\| = 0.$$

则称 D_0 为该解的**吸引域**.

特别的,如果某个解的吸引域是全空间,则称此解是全局渐进稳定的.

注 1.1. 在研究某个解的稳定性时, 总可以用变换

$$y(t) = x(t) - \Phi(t) \tag{3.10}$$

从而将 (3.3) 化为

$$\frac{\mathrm{d}\boldsymbol{y}}{\mathrm{d}t} = \boldsymbol{G}(t, \boldsymbol{y}),\tag{3.11}$$

其中 $G(t, y) = F(t, y + \Phi) - F(t, \Phi)$. 且显然有 G(t, 0) = 0. 即该特解对应着新方程的零解, 所以我们接下来主要研究零解.

习题 3.1

1. 试给出一阶微分方程

$$\frac{\mathrm{d}x}{\mathrm{d}t} = a(t)x$$

的零解稳定或渐进稳定的充要条件.

解. 该方程的解为 $x(t) = x(0)e^{\int_0^t a(s) ds}$.

根据稳定性定义, 取 $t_0 = 0$, 则要求 $|x_0| < \delta$ 时 $|x(t)| < \varepsilon$

那么则需要 $e^{\int_0^t a(s) ds}$ 有界.

渐近稳定, 又需满足 $\lim_{t\to +\infty} \|\boldsymbol{x}(t)\| = 0$.

那么还需要条件
$$\lim_{t\to+\infty} e^{\int_0^t a(s) \, ds} = 0.$$

2. 给定极坐标系下的微分方程

$$\frac{\mathrm{d}\theta}{\mathrm{d}t} = 1, \quad \frac{\mathrm{d}r}{\mathrm{d}t} = \left\{ \begin{array}{ll} r^2 \sin\frac{1}{r}, & r > 0, \\ 0, & r = 0. \end{array} \right.$$

- (1) 证明平衡点 (0,0) 是稳定的, 但不是渐近稳定的.
- (2) 试作出 (0,0) 邻域的相图.
- (1) **证明.** 当 $r \in (\frac{1}{2k\pi + \pi}, \frac{1}{2k\pi})$ 时, $\frac{dr}{dt} > 0$, 那么当 r_0 在这个区间内时, 根据 r 的连续性且 $r = \frac{1}{2k\pi}$ 时 $\frac{dr}{dt} = 0$, 可推出 $r(t) \leqslant \frac{1}{2k\pi}$.

类似的可以证明 $r(t) \geqslant \frac{1}{2k\pi + \pi}$.

那么只需取最大的 k 满足 $\frac{1}{2k\pi} < \sqrt{\varepsilon}$, 那么当 $r_0^2 < \delta = \frac{1}{2k\pi}$ 时就有 $r(t)^2 < \varepsilon$. 进而说明 (0,0) 是稳定的.

同时在上述过程中我们也说明了 r(t) 在 $t \to +\infty$ 时不是 0.

§ 3.2 自治微分方程组解的性质 习题 3.2

1.

解. 解空间: $x(t) = x_0 \cos t$, $y(t) = x_0 \sin t$. 轨线: $x^2 + y^2 = x_0^2$.

2.

解.

参考文献

- [1] 陆亚明. 数学分析入门 [M]. [S.l.]: 高等教育出版社, 2023.
- [2] 丘维声. 近世代数 [M]. [S.l.]: 北京大学出版社, 2015.

致 谢