

Analog IC Design

Lecture 06 Basic Amplifier Stages

Dr. Hesham A. Omran

Integrated Circuits Lab (ICL)
Electronics and Communications Eng. Dept.
Faculty of Engineering
Ain Shams University

MOSFET in Saturation

The channel is pinched off if the difference between the gate and drain voltages is not sufficient to create an inversion layer

$$I_D = \frac{\mu_n C_{ox}}{2} \frac{W}{L} \cdot V_{ov}^2 (1 + \lambda V_{DS})$$

Regions of Operation Summary

$$V_{GS} < V_T$$

ON

$$V_{GS} > V_T$$

Triode

$$V_{DS} < V_{ov}$$

Or

$$V_{GD} > V_T$$

Pinch-Off (Saturation)

$$V_{DS} \ge V_{ov}$$

Or

$$V_{GD} \leq V_T$$

$$I_D = \mu C_{ox} \frac{W}{L} \left(V_{ov} V_{DS} - \frac{V_{DS}^2}{2} \right)$$

$$I_D = \frac{\mu C_{ox}}{2} \frac{W}{L} V_{ov}^2 (1 + \lambda V_{DS})$$

Long-Channel Square-Law Assumptions

- $\Box \text{ Square-Law: } I_D = \frac{\mu C_{ox}}{2} \frac{W}{L} V_{ov}^2 (1 + \lambda V_{DS})$
- ☐ Valid "relatively" if
 - Relatively long channel length
 - Moderate overdrive voltage (e.g., $V_{ov} \approx 100 300 mV$)
 - For small V_{ov} : weak inversion and subthreshold operation
 - ID-VGS relation becomes exponential
 - For large V_{ov} : velocity saturation happens before pinch-off
 - ID-VGS relation becomes linear
- If the above assumptions are not valid
 - Use gm/ID design methodology
- ☐ Actually, better to use gm/ID even if the above assumptions are valid!

Low-Frequency Small-Signal Model

$$g_{m} = \frac{\partial I_{D}}{\partial V_{GS}} = \mu C_{ox} \frac{W}{L} V_{ov} = \sqrt{\mu C_{ox} \frac{W}{L} \cdot 2I_{D}} = \frac{2I_{D}}{V_{ov}}$$

$$g_{mb} = \eta g_{m}, \quad \eta \approx 0.1 - 0.25$$

$$r_{o} = \frac{1}{\frac{\partial I_{D}}{\partial V_{DS}}} = \frac{1}{\lambda I_{D}}, \quad \lambda \propto \frac{1}{L}$$

$$g_{mv_{gs}} \longrightarrow g_{mb} v_{bs} \longrightarrow r_{o} \longrightarrow p_{mb} v_{bs}$$

$$v_{bs} \longrightarrow s$$

Large and Small Signal Analysis

	Large Signal Analysis	Small Signal Analysis
Model	Large signal model	Small signal model
Linearity	Non-linear	Linear
Simulation	DC and transient analysis	AC analysis
Purpose	Calculate bias point, signal swing, distortion, etc.	Calculate A_v , R_{in} , R_{out} , BW , etc .
VDC	\checkmark	s.c.
IDC	\checkmark	O.C.
Capacitor	o.c. (in DC)	?
Inductor	s.c. (in DC)	?

Today

- ☐ Why Amplifiers?
- ☐ Rin/out Shortcuts
- GmRout Method
- Basic Amplifier Topologies
 - Common Source
 - Common Gate
 - Common Drain

Why Amplifiers?

- All the physical signals in the world around us are analog
 - Voice, light, temperature, pressure, etc.
- We (will) always need an "analog" interface circuit to connect between our physical world and our digital electronics

Analog Design Octagon

Direct Analysis on Schematics

- No need to draw the small signal model every time
- $oldsymbol{\square}$ Just remember we have two VCCSs and r_o between D and S

Intrinsic Gain

$$|v_{out}| = -(g_m v_{in}) r_o$$

$$|A_v| = \left| \frac{v_{out}}{v_{in}} \right| = g_m r_o$$

- \square $g_m r_o$ is the max gain that can be obtained from a single transistor
- Common approximations that we usually use

$$g_m r_o \gg 1$$

$$r_o \gg \frac{1}{g_m}$$

$$r_o + \frac{1}{g_m} \approx r_o$$

$$r_o / / \frac{1}{g_m} \approx \frac{1}{g_m}$$

Rin/out Shortcuts

☐ Find equivalent impedance looking from Gate, Source, and Drain

Looking From Drain

- But $v_y = i_x R_S$ and $g_m r_o \gg 1$ $R_x = \frac{v_x}{i_x} \approx r_o [1 + (g_m + g_{mb})R_S]$

Looking From Drain

- $\Box \text{ But } v_y = i_x R_S \text{ and } g_m r_o \gg 1$ $R_x = \frac{v_x}{i_x} \approx r_o [1 + (g_m + g_{mb}) R_S]$

 \square Special case: $R_S = 0$ (G and S ac s.c.)

$$R_{x} \approx r_{o}$$

(Active load)

Drain is a high-impedance node (H.I.N.)

Active Load (Source OFF)

Bonus Question

- Assume M1 and M2 have the same gm and ro, and neglect body effect
- Find Rout

Looking From Source

- But $v_y = i_x R_D$ and $g_m r_o \gg 1$ $R_x = \frac{v_x}{i_x} \approx \frac{1}{g_m + g_{mh}} \left(1 + \frac{R_D}{r_o} \right)$

Looking From Source

$$\square$$
 But $v_y = i_x R_D$ and $g_m r_o \gg 1$

$$R_{x} = \frac{v_{x}}{i_{x}} \approx \frac{1}{g_{m} + g_{mb}} \left(1 + \frac{R_{D}}{r_{o}} \right)$$

$$R_{\chi} \approx \frac{1}{g_m + g_{mh}}$$

(Diode connected)

Source is a low impedance node (L.I.N.)

Diode Connected (Source Absorption)

- Always in saturation
- \Box Bulk effect: $g_m \to g_m + g_{mb}$

Bonus Question

- Assume M1, M2, and M3 have the same gm and ro. Ignore body effect.
- Find Req

Rin/out Shortcuts Summary

Amplifier Model

O.C. voltage gain

$$v_{out,oc} = A_v v_{in}$$

$$A_v = \frac{v_{out,oc}}{v_{in}}$$

Rin/out

$$R_{in} = \frac{v_{in}}{i_{in}}$$

$$R_{in} = \frac{v_{in}}{i_{in}}$$

$$R_{out} = \frac{v_{x}}{i_{x}} @ v_{in} = 0$$

Amplifier Model

Transconductance

$$i_{out,sc} = G_m v_{in}$$

$$G_m = \frac{i_{out,sc}}{v_{in}}$$

□ Thevenin ⇔ Norton

$$A_{v}v_{in} = (G_{m}v_{in})R_{out}$$

$$A_{v} = \frac{v_{out,oc}}{v_{in}} = G_{m}R_{out}$$

S.C. Current Gain

$$A_i = \frac{\iota_{out,sc}}{\iota_{in}} = G_m R_{in}$$

Why GmRout?

$$R_{out} = \frac{v_x}{i_x} @ v_{in} = 0$$

$$G_m = \frac{i_{out,sc}}{v_{in}}$$

$$A_v = G_m R_{out}$$

$$A_i = G_m R_{in}$$

- ☐ Divide and conquer
 - Rout simplified: vin=0
 - Gm simplified: vout=0
 - We already need Rin/out
 - We can quickly and easily get
 Rin/out from the shortcuts

Basic Amplifier Topologies

(a) Common Source (CS)

(c) Common Drain (CD) or Source Follower

Topology	Input	Output
Common-Source	Gate	Drain
Common-Gate	Source	Drain
Common-Drain (Source-Follower)	Gate	Source

Common Source (CS)

lue KCL at v_x

$$i_{out,sc} + g_m(v_{in} - v_x) + g_{mb}(-v_x) - \frac{v_x}{r_o} = 0$$

 \Box But $v_x = -i_{out,sc}R_S$ and $g_mr_o \gg 1$

$$G_{m} = \frac{i_{out,sc}}{v_{in}} \approx \frac{-g_{m}}{1 + (g_{m} + g_{mb})R_{S}}$$

$$R_{out} \approx R_{D}//r_{o}[1 + (g_{m} + g_{mb})R_{S}]$$

$$A_{v} = G_{m}R_{out}$$

Common Source (CS)

lue KCL at v_{χ}

$$i_{out,sc} + g_m(v_{in} - v_x) + g_{mb}(-v_x) - \frac{v_x}{r_o} = 0$$

 \square But $v_x = -i_{out,sc}R_S$ and $g_mr_o \gg 1$

$$G_{m} = \frac{i_{out,sc}}{v_{in}} \approx \frac{-g_{m}}{1 + (g_{m} + g_{mb})R_{S}}$$

$$R_{out} \approx R_{D}//r_{o}[1 + (g_{m} + g_{mb})R_{S}]$$

$$A_{v} = G_{m}R_{out}$$

- \Box If R_D is ac o.c.: $A_v = -g_m r_o$
- $\Box \text{ If } R_S = 0: \qquad A_v = -g_m(R_D//r_o)$

Common Source (CS)

$$G_{m} = \frac{i_{out,sc}}{v_{in}} \approx \frac{-g_{m}}{1 + (g_{m} + g_{mb})R_{S}}$$

$$R_{out} \approx R_{D} / / r_{o} [1 + (g_{m} + g_{mb})R_{S}]$$

$$A_{v} = G_{m}R_{out}$$

☐ If S and B are connected (for PMOS):

$$A_{v} \approx \frac{-R_{D}//R_{LFD}}{\frac{1}{g_{m}} + R_{S}} = -\frac{Drain Res.}{\frac{1}{g_{m}} + Source Res}$$

- \square If $R_S \gg \frac{1}{g_m} \& R_D \ll R_{LFD} : A_v \approx \frac{-R_D}{R_S} \rightarrow Linear$
- \square R_S reduces $G_m \rightarrow$ Source degeneration
 - But improves linearity

Common Gate (CG)

 $lue{}$ KCL at v_{out}

$$i_{out,sc} + (g_m + g_{mb})(-v_{in}) - \frac{v_{in}}{r_o} = 0$$

lacksquare But $g_m r_o \gg 1$

$$G_{m} = \frac{i_{out,sc}}{v_{in}} \approx g_{m} + g_{mb}$$

$$R_{out} \approx R_{D} / / r_{o} (why?)$$

$$A_{v} = G_{m} R_{out}$$

Common Gate (CG)

lue KCL at v_{out}

$$i_{out,sc} + (g_m + g_{mb})(-v_{in}) - \frac{v_{in}}{r_o} = 0$$

lacksquare But $g_m r_o \gg 1$

$$G_{m} = \frac{i_{out,sc}}{v_{in}} \approx g_{m} + g_{mb}$$

$$R_{out} \approx R_D / / r_o \left(\mathbf{why}? \right)$$

 $A_v = G_m R_{out}$

- \Box If R_D is ac o.c.: $A_v = (g_m + g_{mb})r_o$
- $\Box \text{ If } R_D \ll r_o: \qquad A_v \approx (g_m + g_{mb}) R_D$

- $lue{}$ For PMOS connect S and B: $(g_m + g_{mb}) \rightarrow g_m$
- \square Note that $A_i = G_m R_{in} \approx 1$ (Current Buffer)

Common Drain (CD) – Source Follower

lacksquare KCL at v_x

$$i_{out,sc} - g_m v_{in} - \frac{v_x}{r_o} = 0$$

 $oldsymbol{\square}$ But $v_{\chi}=-i_{out,sc}R_{D}$ and $g_{m}r_{o}\gg1$

$$G_m = \frac{i_{out,sc}}{v_{in}} \approx \frac{g_m}{1 + R_D/r_o}$$

$$R_{out} \approx R_S / / \frac{1}{g_m + g_{mb}} \left(1 + \frac{R_D}{r_o} \right)$$

$$A_v = G_m R_{out}$$

Common Drain (CD) – Source Follower

lacksquare KCL at v_x

$$i_{out,sc} - g_m v_{in} - \frac{v_x}{r_o} = 0$$

 \square But $v_{\chi} = -i_{out,sc}R_D$ and $g_mr_o \gg 1$

$$G_m = rac{i_{out,sc}}{v_{in}} pprox rac{g_m}{1 + R_D/r_o}$$

$$R_{out} \approx R_S / / \frac{1}{g_m + g_{mb}} \left(1 + \frac{R_D}{r_o} \right)$$

$$A_v = G_m R_{out}$$

- ☐ If S and B are connected (for PMOS):

$$A_v \approx 1$$

Why Source Follower?

- Buffer
- Level-shifter

Summary of Basic Topologies

	CS	CG	CD (SF)
	R _D , V _{out} v _{in} i _{out,sc} v _x	R _D , Vout	iout,sc RD V _x Vout Rs
	Voltage & current amplifier	Current buffer	Voltage buffer
Rin	∞	$R_S//\frac{1}{g_m + g_{mb}} \left(1 + \frac{R_D}{r_o}\right)$	∞
Rout	$R_D / / r_o [1 + (g_m + g_{mb}) R_S]$	$R_D//r_o$	$R_S//\frac{1}{g_m + g_{mb}} \left(1 + \frac{R_D}{r_o}\right)$
Gm	$\frac{-g_m}{1+(g_m+g_{mb})R_S}$	$g_m + g_{mb}$	$\frac{g_m}{1+R_D/r_o}$

Q: CS With Diode-Connected Load

- Find the gain using GmRout (ignore body effect)
 - Express the gain in terms of (W/L)₁ and (W/L)₂
- This is a "linear" CS amplifier

Q: Complementary CS (Inverter Amp)

Find the gain using GmRout

Output Signal Swing

Thank you!

Voltage Amplifier Model

What If the Amplifier Is Loaded?

Voltage gain

$$A'_{v} = A_{v} \frac{R_{L}}{R_{out} + R_{L}}$$

$$= G_{m} R_{out} \frac{R_{L}}{R_{out} + R_{L}}$$

$$= G_{m} (R_{out} / / R_{L})$$

Current gain

$$A_i' = A_i \frac{R_{out}}{R_{out} + R_L}$$

Input and Output Impedances

MOSFET Amplifier

MOSFET Amplifier

MOSFET Amplifier

Time

CS Large Signal Behavior

- \Box Large signal gain is non-linear: Av = f(vin)
- ☐ Small signal gain is also non-linear: gm = f(vin)
- ☐ For linear gain, Av should NOT be f(vin)
- Av and gm are max at edge of triode
 - But they are highly non-linear
 - And the available signal swing vanishes

