3^{-n} Decimal Problem

Ting-Yo Kuo

1 Outline

1.1 Difinition of Problem

Consider a problem:

Definition

For $n \in \mathbb{N}$, define

$$A_n = \frac{1}{3^n 10^{3^k}}$$

and

$$A = \sum_{n=1}^{\infty} A_n$$

Definition

Given a real number $a = 0.a_1a_2a_3... \in [0,1)$ which does not end with repeating 9 and $n \in \mathbb{N}$, the *n*-th term of *a* is a_n .

Now given $n \in \mathbb{N}$, find the *n*-th to (n+9)-th terms of A? Consider $n=10^2, 10^8, 10^{16}$.

1.2 Outline of Solution

Since n is at most 10^{16} , it's sufficient to approximate A to be $\sum_{n=1}^{33} A_n$. Then we find k-th term of A by finding around k-th terms of A_n and sum them all. For $k \leq 16$, we find it in directly way, by finding its repetend. For k > 16, let a = 16, b = k - 16, then simulating 3^b divides the repetend of $1/3^a$. With some regularity, we can jump with the length 3^{a-2} when simulating. In conclusion, we get a solution with time complexity $O(\sqrt{n} \log n)$, which is good enough to halt in 1 minutes.

2 Properties of the repetend of $1/3^k$

Fact

- 1. If $a \in \mathbb{Q}$, then a has a repeating decimal representation.
- 2. If the repetend of $1/3^n = 0.a_1 \dots a_k \overline{a_{k+1} \dots a_{k+l}}$, then k = 0.
- 3. Long division algorithm

Definition

When $a \in [0,1)$ is in the form $0.a_1a_2...a_k\overline{a_{k+1}a_{k+1}...a_{k+l}}$ with least k and l, and $a_{k+1},...,a_{k+l}$ not all zero, $a_{k+1}...a_{k+l}$ is called the **repetend** of a. The length of the repetend of a is l.

Property

The length of the repetend of 1/3 is 1. For $n \ge 2$, the length of the repetend of $1/3^n$ is 3^{n-2} .

Proof. Induction on n. $1/3 = 0.\overline{3}$ and $1/9 = 0.\overline{1}$ are trivial. For $1/3^n$, we generate the repetend of $1/3^n$ by 3 dividing the repetend of $1/3^{n-1}$. Let the repetend of $1/3^{n-1} = 0.\overline{a_1 \dots a_{3l}}$ and $1/3^{n-2} = 0.\overline{b_1 \dots b_l}$. If $a_1 \dots a_{3l} = 0 \pmod{3}$, then $b_1 \dots b_l b_1 \dots b_l b_1 \dots b_l = 0 \pmod{9}$, thus $b_1 \dots b_l = 0 \pmod{3}$. Then the length of the repetend of $1/3^{n-1}$ can be l < 3l, a contradiction. If $a_0 \dots a_{3l} = 1 \pmod{3}$, then $a_1 \dots a_{3l} a_1 \dots a_{3l} = 1 \pmod{3}$. And $a_1 \dots a_{3l} a_1 \dots a_{3l} a_1 \dots a_{3l} = 1 \pmod{3}$. Hence the length of the repetend of $1/3^n$ is a factor of 9l. On the other hand, it is similar for the case $a_1 \dots a_{3l} = 2 \pmod{3}$. Also, it is larger than 3l, therefore, it is exactly 9l. By induction, $9l = 3^{n-2}$.

Property

Let $n, m \in \mathbb{N} \cup \{0\}$, then

$$10^{n3^{m-2}} = 1 \pmod{3^m}$$

Proof. Consider n = 1. Induction on m. Clear for m = 3, 9. Given m, let n = m - 2. By induction, $10^{3^{n-3}} = 1 \pmod{3^{m-1}}$, then $10^{3^{n-2}} = 10^{3^{n-3}} 10^{3^{n-3}} 10^{3^{n-3}}$. Thus $10^{3^{n-2}} = 1 \pmod{3^m}$. And it's clear for n = 0 and n > 1.

3 Algorithm to solve the problem

We consider solving A_n only, then we can get solution by summing A_1 to A_{33} .

Find the repetend of 3^{-n} , brutal method. Let $V := \emptyset, d := 1, A = ()$ while $d \notin V$ do $V := V \cup \{d\}$ d := 10dLet $a \in \mathbb{N} \cup \{0\}$ be maximum such that $a3^n \leq d$ A := (A, a) $d := d - a3^n$ end while return A

The above algorithm is allowed for $n \leq 17$, at the limit of time and space.

4 Derivation for n > 17

For n>17, let m=17, l=n-17. By long division algorithm, to get the k-th term of $1/3^n$, we can simulate $\frac{3^{-m}}{3^l}$, where we replace 3^{-m} with $0.\overline{a_1 \dots a_{3^{m-2}}}$, the repetend of 3^{-m} . To get the k-th term of 3^{-n} , it's equivalent to first compute the remainder, $a_1 \dots a_{k-1} \mod 3^l$, where we define $a_i = a_j \Leftrightarrow i = j \pmod{3^{m-2}}$. Next, we split $a_1 \dots a_{k-1}$ into N or N+1 pieces, where N is maximum satisfying $N3^{m-2} \leq k-1$, say $a_1 \dots a_{N3^{m-2}} a_{N3^{m-2}+1} \dots a_{k-1}$. Although $N \approx 10^{16}$, we have fast algorithm to compute $a_1 \dots a_{N3^{m-2}} \mod 3^l$, by

$$a_{1} \dots a_{N3^{m-2}} \pmod{3^{l}}$$

$$= (a_{1} \dots a_{3^{m-2}}) (10^{(N-1)3^{m-2}} + 10^{(N-2)3^{M-2}} + \dots + 10^{0}) \pmod{3^{l}}$$

$$= (a_{1} \dots a_{3^{m-2}} \mod{3^{l}}) \sum_{i=0}^{N-1} (10^{i3^{m-2}} \mod{3^{l}})$$

$$= (a_{1} \dots a_{3^{m-2}} \mod{3^{l}}) N$$

$$(1)$$

Hence we have the following method.

```
Algorithm Given k, n \in \mathbb{N}, n > 17, find k-th term of 3^{-n} m := 17, l := n - 17, a_1 \dots a_{3^{m-2}} := \text{the repetend of } 3^{-m} N := \text{the maximum satisfying } N3^{m-2} \le k - 1 a := (a_1 \dots a_{3^{m-2}} \mod 3^l) N \mod 3^l \mathbf{return} \ \ aa_1a_2 \dots a_{k-1-N3^{m-2}} \mod 3^l
```

Thus we have a method to get k-th term of A_n . Each step of the above algorithm is $O(\sqrt{k})$. Thus totally $O(\sqrt{k} \log k)$ to find all A_n , $1 \le n \le 33$.

5 Carry of the summation of A_n

The problem ask (n-1)-th term to (n+9)-th terms, but we can't only fetch those term, we also need to take (n+10)-th, (n+11)-th or more into consideration, since it may carry to (n+9)-th term of A.

Property

For $n = 10^{16}$, we need to consider at most (n + 11)-th term.

Proof. Let the carry from 3^{-34} -th term be c. Then the carry from $(3^{-34}-1)$ -th term is at most $\lfloor (c+9\times 33)/10 \rfloor$, the carry from $(3^{-34}-2)$ -th term is at most $\lfloor (\lfloor (c+9\times 33)/10 \rfloor + 9\times 33)/10 \rfloor$. Define a sequence $a_1=c$, $a_n=\lfloor (a_{n-1}+297)/10 \rfloor$. Since a_n is bounded above by sequence $b_1=c$, $b_n=(b_{n-1}+297)/10$. And solve it that $b_n=b_1\times 10^{-(n-1)}+29.7\sum_{i=0}^{n-2}10^i=c10^{1-n}+29.7/90(10^n-10)$. Now take $n=3^{34}-3^{33}+9$, which is large enough that a_n is at most 2 digits. Thus if we consider (n+11)-th term, it will not affect (n+9)-th term.

6 Conclude

In conclusion, we have the following method to solve the problem.

```
Given k \le 10^{16}, find the (k-1)-th term to (k+9)-th term of A.

for n=1 to 33 do

if k \le 3^{17} then

apply algorithm of section 3, find (k-1)-th to (k+11)-th term of A_n

else

apply algorithm of section 4, find (k-1)-th to (k+11)0th term of A_n.

end if

end for

add those terms

return the (k-1)-th to (k+9)-th term
```