

APPROVED
BY
DRAFTSMAN

Application No.: 09/960,445
Docket No.: 10302
Title: Method of Kick Detection and Cuttings Bed Buildup
Detection using a Drilling Tool
Inventors: Gzara et al.
Page 1/27

FIG. 1

COPY OF PAPERS
ORIGINALLY FILED

FIG. 2

FIG. 3A

Application Serial No.: 09/900,445
Filing Date: 19.03.02

Title: Method of Kick Detection and Cuttings Bed Buildup
Detection using a Drilling Tool
Inventors: Gzara et al.
Page 3/27

FROM FIG. 3A {

COPY OF PAPERS
ORIGINALLY FILED

FROM FIG. 2 {

DOWNHOLE COMPUTER

QUADRANT/SENSOR
POSITION DETERMINATION

310

DATA ACQUISITION PROGRAM

- FAR NEUTRON COUNT RATE
- NEAR NEUTRON COUNT RATE
- SHORT SPACED GAMMA RAY
- COUNT RATE
- LONG SPACED GAMMA RAY
- COUNT RATE
- STANDOFF

315

FIG. 3B

PROGRAMS

BULK DENSITY PER ENTIRE BORE-
HOLE AND QUADRANT

320

ROT DENSITY PER ENTIRE BORE-
HOLE AND QUADRANT

301

326

Avg PEF PER ENTIRE
BOREHOLE AND QUADRANT

330

ROT PEF PER ENTIRE BOREHOLE AND
QUADRANT

335

NEUTRON POROSITY PER ENTIRE
BOREHOLE AND QUADRANT

340

ROT NEUTRON POROSITY PER ENTIRE
BOREHOLE AND QUADRANT

345

ULTRASONIC STANDOFF (CALIPER)
PER QUADRANT

350

FIG. 4A

FIG. 4B

FIG. 5A

FIG. 5B

FIG. 6A

COPY OF PAPERS
ORIGINALLY FILED

MAGNETOMETER SECTION

QUADRANT/SENSOR POSITION DETERMINATION COMPUTER PROGRAM

DETERMINE DOWN DIRECTION

- DETERMINE $\vec{H}'(t)$ VECTOR FROM $H_x(t)$, $H_y(t)$, $\Delta\theta(t)$

- DETERMINE DOWN DIRECTION ANGLE

$$\theta = \cos^{-1} \frac{H_x(t)}{(H_x^2 + H_y^2)^{1/2}}$$

$\Delta\vec{H}'(t) = \theta(t)$ AS MEASURED FROM TOOL X-AXIS
 $\Delta\vec{D}(t) = \theta(t) - \phi$ AS MEASURED FROM TOOL X-AXIS

- DETERMINE BOTTOM QUADRANT

$$Q_{BOT}(t) = \Delta\vec{D}(t) - 45^\circ \text{ TO } \Delta\vec{D}(t) + 45^\circ$$

$$Q_{LEFT}(t) = \Delta\vec{D}(t) + 45^\circ \text{ TO } \Delta\vec{D}(t) + 135^\circ$$

$$Q_{TOP}(t) = \Delta\vec{D}(t) + 135^\circ \text{ TO } \Delta\vec{D}(t) + 225^\circ$$

$$Q_{RIGHT}(t) = \Delta\vec{D}(t) + 225^\circ \text{ TO } \Delta\vec{D}(t) - 45^\circ$$

- DETERMINE QUADRANT OF SENSOR

$\Delta\vec{S}(t)$ IS MEASURED FROM X-AXIS AND $\vec{H}'(t)$ VECTOR

$\Delta\vec{S}$ IS α DEGREES FROM X-AXIS

$\Delta\vec{H}'(t)$ IS $\theta(t)$ DEGREES FROM X-AXIS

$\Delta\vec{S}(t) = \alpha$ AS MEASURED FROM X-AXIS IS

IN Q_{BOT} WHEN $\Delta\vec{S}(t) = \alpha$ IS BETWEEN $\theta(t) - \phi - 45^\circ$
AND $\theta(t) - \phi + 45^\circ$, ETC.

300

302

310

FIG. 6B

COPY OF PAPERS
ORIGINALLY FILED

FIG. 6C

FIG. 6D

FIG. 6E

FIG. 6F

APPROVE
BY
DRAFTSMAN

COPY OF PAPERS
ORIGINALLY FILED

Application Serial No.: 09/960,445
Docket No.: 19.0302
Title: Method of Kick Detection and Cuttings Bed Buildup
Detection using a Drilling Tool
Inventors: Gzara et al.
Page 7/27

FIG. 7A

FIG. 7B

FIG. 8

315

DATA ACQUISITION COMPUTER PROGRAM: LONG AND SHORT SPACED GAMMA RAY COUNT RATES

COPY OF PAPERS
ORIGINALLY FILED

FIG.9

320

COMPUTER PROGRAM FOR BULK DENSITY OUTPUTS

FROM FIG.8

COPY OF PAPERS
ORIGINALLY FILED

Application Serial No.: 09/960,441
 Docket No.: 19.0302
 Title: Method of Kick Detection and Cuttings Bed Buildup
 Detection using a Drilling Tool
 Inventors: Gzara et al.
 Page 10/27

FIG. 10A-1

326

TO FIG. 10A-2

FIG.10A-2

COPY OF PAPERS
ORIGINALLY FILED

FROM
FIG.8
FROM
FIG.9

FROM FIG. 10A-1

DETERMINE:

- THEORETICAL STANDARD DEVIATION
- STANDARD DEVIATION OF SAMPLES
- DELTA COUNT RATE
- ROTATIONAL BULK DENSITY

$\rho_{bROT\text{RIGHT}}$
330
 $\Delta\rho_{ROT\text{RIGHT}}$

HARD WINDOW COUNT RATE SAMPLES IN
QTOP LONG OR SHORT, COUNT RATE,
PL AND PS (TOP)

DETERMINE:

- THEORETICAL STANDARD DEVIATION
- STANDARD DEVIATION OF SAMPLES
- DELTA COUNT RATE
- ROTATIONAL BULK DENSITY

$\rho_{bROT\text{TOP}}$
331
 $\Delta\rho_{ROT\text{TOP}}$

FROM
FIG.8
FROM
FIG.9

HARD WINDOW COUNT RATE SAMPLES IN
QLEFT LONG OR SHORT, COUNT RATE,
PL AND PS (LEFT)

DETERMINE:

- THEORETICAL STANDARD DEVIATION
- STANDARD DEVIATION OF SAMPLES
- DELTA COUNT RATE
- ROTATIONAL BULK DENSITY

$\rho_{bROT\text{LEFT}}$
332
 $\Delta\rho_{ROT\text{LEFT}}$

Application Serial No.: 09/960,445
 Docket No.: 19.0302
 Title: Method of Kick Detection and Cuttings Bed Buildup
 Detection using a Drilling Tool
 Inventors: Gzara et al.
 Page 12/27

FIG. 10B

FIG. 10C

COPY OF PAPERS
ORIGINALLY FILED

$$\Delta CR = \sqrt{\sigma^2_{\text{MEAS}} - \sigma^2_{\text{THEOR}}}$$

$$\Delta PROT = (ds) \left[\ln \left(\frac{CR + \Delta CR}{CR - \Delta CR} \right) \right]$$

$$\rho_{bROT TOP} = D \rho_L TOP + E \rho_S TOP + F \Delta PROT$$

ρ_L = LONG SPACING DENSITY

ρ_S = SHORT SPACING DENSITY

$$\Delta CR TOP = A \sqrt{\sigma^2_{\text{MEAS TOP}} - \sigma^2_{\text{THEOR TOP}}} \\ \Delta PROT TOP = (ds) \left[\ln \left(\frac{CR TOP + \Delta CR TOP}{CR TOP - \Delta CR TOP} \right) \right]$$

$$\rho_{bROT TOP} = D \rho_L TOP + E \rho_S TOP + F \Delta PROT TOP$$

ρ_L = LONG SPACING DENSITY TOP

ρ_S = SHORT SPACING DENSITY TOP

FIG. 10D-1

FIG. 10D-2

Application Serial No.: 09/960,445

Docket No.: 19.0302

Title: Method of Kick Detection and Cuttings Bed Buildup

Detection using a Drilling Tool

Inventors: Gzara et al.

Page 14/27

COPY OF PAPERS
ORIGINALLY FILED

FIG. 11A

330
1

COMPUTER PROGRAM FOR AVERAGE PHOTOELECTRIC EFFECT (PEF) OUTPUTS

FROM
FIG. 8

TOTAL SOFT WINDOW COUNT RATE SHORT OR LONG
TOTAL HARD WINDOW COUNT RATE SHORT OR LONG

FROM
FIG. 9
PAVG

- DETERMINE MACROSCOPIC CROSS-SECTION UAVG

$$UAVG = \left[\frac{K}{\left(\frac{\text{SOFT COUNT RATE}}{\text{HARD COUNT RATE}} \right) - B} \right] - C$$

- DETERMINE PEF_{Avg}

$$PEF_{AVG} = \frac{UAVG}{PAVG}$$

PEF_{Avg}

FROM
FIG. 8

SOFT WINDOW COUNT RATE IN QBOT SHORT OR LONG
HARD WINDOW COUNT RATE IN QBOT SHORT OR LONG

FROM
FIG. 9
PAVG_{BOT}

- DETERMINE MACROSCOPIC CROSS-SECTION UAVG_{BOT}

$$UAVG_{BOT} = \left[\frac{K}{\left(\frac{\text{SOFT COUNT RATE } Q_{BOT}}{\text{HARD COUNT RATE } Q_{BOT}} \right) - B} \right] - C$$

- DETERMINE PEF_{Avg}_{BOT}

$$PEF_{AVG}_{BOT} = \frac{UAVG_{BOT}}{PAVG_{BOT}}$$

PEF_{Avg}_{BOT}

FROM
FIG. 8

SOFT WINDOW COUNT RATE IN QRIGHT SHORT OR LONG
HARD WINDOW COUNT RATE IN QRIGHT SHORT OR LONG

TO FIG. 11B

FIG. 11B

FROM FIG. 11A

FROM
FIG. 9
PAVGRIGHT

- DETERMINE MACROSCOPIC CROSS-SECTION UAVGRIGHT

$$UAVGRIGHT = \left[\frac{K}{\left(\frac{\text{SOFT COUNT RATE } Q_{RIGHT}}{\text{HARD COUNT RATE } Q_{RIGHT}} \right) - B} \right] - C$$

- DETERMINE PEFAVGRIGHT

$$PEFAVGRIGHT = \frac{UAVGRIGHT}{PAVGRIGHT}$$

PEFAVGRIGHT

330
FROM
FIG. 8

SOFT WINDOW COUNT RATE IN QTOP SHORT OR LONG
 HARD WINDOW COUNT RATE IN QTOP SHORT OR LONG

FROM
FIG. 9
PAVGTOP

- DETERMINE MACROSCOPIC CROSS-SECTION UAVGTOP

$$UAVGTOP = \left[\frac{K}{\left(\frac{\text{SOFT COUNT RATE } Q_{TOP}}{\text{HARD COUNT RATE } Q_{TOP}} \right) - B} \right] - C$$

- DETERMINE PEFAVGTOP

$$PEFAVGTOP = \frac{UAVGTOP}{PAVGTOP}$$

PEFAVGTOP

FROM
FIG. 8

SOFT WINDOW COUNT RATE IN QLEFT SHORT OR LONG
 HARD WINDOW COUNT RATE IN QLEFT SHORT OR LONG

FROM
FIG. 9
PAVGLEFT

- DETERMINE MACROSCOPIC CROSS-SECTION UAVGLEFT

$$UAVGLEFT = \left[\frac{K}{\left(\frac{\text{SOFT COUNT RATE } Q_{LEFT}}{\text{HARD COUNT RATE } Q_{LEFT}} \right) - B} \right] - C$$

- DETERMINE PEFAVGLEFT

$$PEFAVGLEFT = \frac{UAVGLEFT}{PAVGLEFT}$$

PEFAVGLEFT

COPY OF PAPERS
ORIGINALLY FILED

FIG. 12A

335

COPY OF PAPERS
ORIGINALLY FILEDFROM
FIG. 8FROM
FIG. 10A-1 P_{bROT} FROM
FIG. 8**COMPUTER PROGRAM FOR ROTATIONAL PHOTOELECTRIC
EFFECT (PEF) OUTPUTS**

TOTAL SOFT WINDOW COUNT RATE
SAMPLES LONG OR SHORT
TOTAL HARD WINDOW COUNT RATE
SAMPLES LONG OR SHORT
COUNT RATES

DETERMINE :

- THEORETICAL STANDARD DEVIATIONS
(SOFT AND HARD)
- STANDARD DEVIATIONS OF SAMPLES
(SOFT AND HARD)
- DELTA COUNT RATES (SOFT AND HARD)
- MACROSCOPIC CROSS-SECTION U_{ROT}

$$U_{ROT} = \left[\frac{K}{\left(\frac{\text{SOFT COUNT RATE} - \Delta C_{R,SOFT}}{\text{HARD COUNT RATE} - \Delta C_{R,HARD}} \right) - B} \right] - C$$

$$\bullet PEF_{ROT} = \frac{U_{ROT}}{P_{bROT}}$$

 PEF_{ROT}

SOFT WINDOW COUNT RATE SAMPLES
IN QBOT LONG OR SHORT
HARD WINDOW COUNT RATE SAMPLES
IN QBOT LONG OR SHORT
COUNT RATES

TO FIG. 12B

FIG.12B

FROM FIG.12A

COPY OF PAPERS
ORIGINALLY FILED

FROM
FIG.10A-1

$P_{bROTBOT}$

335 ~

DETERMINE:

- THEORETICAL STANDARD DEVIATIONS (SOFT AND HARD)
- STANDARD DEVIATIONS OF SAMPLES (SOFT AND HARD)
- DELTA COUNT RATES (SOFT AND HARD)
- MACROSCOPIC CROSS-SECTION $UROTBOT$

$$UROTBOT = \left[\frac{K}{\left(\frac{\text{SOFT COUNT RATE} - \Delta CR SOFT}{\text{HARD COUNT RATE} - \Delta CR HARD} \right) - B} \right] - C$$

$$\bullet PEFRBOT = \frac{UROTBOT}{P_{bROTBOT}}$$

$PEFRBOT$

FROM
FIG.8

SOFT WINDOW COUNT RATE SAMPLES
IN QRIGHT LONG OR SHORT
HARD WINDOW COUNT RATE SAMPLES
IN QRIGHT LONG OR SHORT
COUNT RATES

FROM
FIG.10A-2

$P_{bROTRIGHT}$

DETERMINE:

- THEORETICAL STANDARD DEVIATIONS (SOFT AND HARD)
- STANDARD DEVIATIONS OF SAMPLES (SOFT AND HARD)
- DELTA COUNT RATES (SOFT AND HARD)
- MACROSCOPIC CROSS-SECTION $UROTRIGHT$

$$UROTRIGHT = \left[\frac{K}{\left(\frac{\text{SOFT COUNT RATE} - \Delta CR SOFT}{\text{HARD COUNT RATE} - \Delta CR HARD} \right) - B} \right] - C$$

$$\bullet PEFRROTRIGHT = \frac{UROTRIGHT}{P_{bROTRIGHT}}$$

$PEFRROTRIGHT$

FROM
FIG.8

SOFT WINDOW COUNT RATE SAMPLES
IN QTOP LONG OR SHORT
HARD WINDOW COUNT RATE SAMPLES
IN QTOP LONG OR SHORT
COUNT RATES

TO FIG.12C

FIG. 12C

COPY OF PAPERS
ORIGINALLY FILED

FROM
FIG.10A-2

$P_{bROT\ TOP}$

335

FROM
FIG.8

FROM
FIG.10A-2

$P_{bROT\ LEFT}$

FROM FIG. 12B

DETERMINE:

- THEORETICAL STANDARD DEVIATIONS (SOFT AND HARD)
- STANDARD DEVIATIONS OF SAMPLES (SOFT AND HARD)
- DELTA COUNT RATES (SOFT AND HARD)
- MACROSCOPIC CROSS-SECTION $UROT\ TOP$

$$UROT\ TOP = \left[\frac{K}{\left(\frac{\text{SOFT COUNT RATE} - \Delta CR\ SOFT}{\text{HARD COUNT RATE} - \Delta CR\ HARD} \right) - B} \right] - C$$

$$\bullet PEFROT\ TOP = \frac{UROT\ TOP}{P_{bROT\ TOP}}$$

$PEFROT\ TOP$

SOFT WINDOW COUNT RATE SAMPLES
IN QLEFT LONG OR SHORT
HARD WINDOW COUNT RATE SAMPLES
IN QLEFT LONG OR SHORT
COUNT RATES

DETERMINE:

- THEORETICAL STANDARD DEVIATIONS (SOFT AND HARD)
- STANDARD DEVIATIONS OF SAMPLES (SOFT AND HARD)
- DELTA COUNT RATES (SOFT OR HARD)
- MACROSCOPIC CROSS-SECTION $UROT\ LEFT$

$$UROT\ LEFT = \left[\frac{K}{\left(\frac{\text{SOFT COUNT RATE} - \Delta CR\ SOFT}{\text{HARD COUNT RATE} - \Delta CR\ HARD} \right) - B} \right] - C$$

$$\bullet PEFROT\ LEFT = \frac{UROT\ LEFT}{P_{bROT\ LEFT}}$$

$PEFROT\ LEFT$

FIG. 12D

FROM
FIG. 8COPY OF PAPERS
ORIGINALLY FILED

COMPUTER PROGRAM FOR ROTATIONAL PHOTOELECTRIC
EFFECT (PEF) OUTPUTS

TOTAL SOFT WINDOW COUNT RATE SAMPLES LNG. OR SHT.
TOTAL HARD WINDOW COUNT RATE SAMPLES LNG. OR SHT.
ACQUISITION TIME SAMPLES

- DETERMINE MACROSCOPIC CROSS-SECTION U's AS A FUNCTION OF ACQUISITION TIME

$$U_t = \left[\frac{K}{\left(\frac{\text{SOFT COUNT RATE}}{\text{HARD COUNT RATE}} \right) - B} \right] - C$$

- DETERMINE STANDARD DEVIATION FROM U_t 's
- DETERMINE PEF_{ROT} FROM DISTRIBUTION OF U_t 's

 PEF_{ROT} FROM
FIG. 8

SOFT WINDOW COUNT RATE SAMPLES IN QBOT LNG. OR SHT.
HARD WINDOW COUNT RATE SAMPLES IN QBOT LNG. OR SHT.
ACQUISITION TIME SAMPLES

- DETERMINE MACROSCOPIC CROSS-SECTION U_{BOT} 's AS A FUNCTION OF ACQUISITION TIME

$$U_{t BOT} = \left[\frac{K}{\left(\frac{\text{SOFT COUNT RATE}}{\text{HARD COUNT RATE}} \right) - B} \right] - C$$

- DETERMINE STANDARD DEVIATION FROM $U_{t BOT}$'s
- DETERMINE $PEF_{ROT BOT}$ FROM DISTRIBUTION OF $U_{t BOT}$'s

 $PEF_{ROT BOT}$

TO FIG. 12E

FIG. 12ECOPY OF PAPER
ORIGINALLY FILED

FROM FIG. 12D

FROM
FIG. 8

**SOFT WINDOW COUNT RATE SAMPLES IN QRIGHT LNG. OR SHT.
HARD WINDOW COUNT RATE SAMPLES IN QRIGHT LNG. OR SHT.
ACQUISITION TIME SAMPLES**

- DETERMINE MACROSCOPIC CROSS-SECTION U_{RIGHT} 's AS A FUNCTION OF ACQUISITION TIME

$$U_{RIGHT} = \left[\frac{K}{\left(\frac{\text{SOFT COUNT RATE}}{\text{HARD COUNT RATE}} \right) - B} \right] - C$$

PEFRORTRIGHT

- DETERMINE STANDARD DEVIATION FROM U_{RIGHT} 's
- DETERMINE PEFRORTRIGHT FROM DISTRIBUTION OF U_{RIGHT} 's

335—

FROM
FIG. 8

**SOFT WINDOW COUNT RATE SAMPLES IN QTOP LNG. OR SHT.
HARD WINDOW COUNT RATE SAMPLES IN QTOP LNG. OR SHT.
ACQUISITION TIME SAMPLES**

- DETERMINE MACROSCOPIC CROSS-SECTION U_{TOP} 's AS A FUNCTION OF ACQUISITION TIME

$$U_{TOP} = \left[\frac{K}{\left(\frac{\text{SOFT COUNT RATE}}{\text{HARD COUNT RATE}} \right) - B} \right] - C$$

PEFRORTTOP

- DETERMINE STANDARD DEVIATION FROM U_{TOP} 's
- DETERMINE PEFRORTTOP FROM DISTRIBUTION OF U_{TOP} 's

TO FIG. 12F

FIG. 12F**FROM FIG. 12E****FROM FIG. 8**

335

COPY OF PAPERS
ORIGINALLY FILED

**SOFT WINDOW COUNT RATE SAMPLES IN QLEFT LNG. OR SHT.
HARD WINDOW COUNT RATE SAMPLES IN QLEFT LNG. OR SHT.
ACQUISITION TIME SAMPLES**

- DETERMINE MACROSCOPIC CROSS-SECTION ULEFT's AS A FUNCTION OF ACQUISITION TIME

$$U_{tLEFT} = \left[\frac{K}{\left(\frac{\text{SOFT COUNT RATE}}{\text{HARD COUNT RATE}} \right) - B} \right] - C$$

- DETERMINE STANDARD DEVIATION FROM U_{tLEFT} 's
- DETERMINE PEFRONTLEFT FROM DISTRIBUTION OF U_{tLEFT} 's

PEFRONTLEFT

FIG. 13

350

COMPUTER PROGRAM FOR ULTRASONIC STANDOFF OUTPUTS**FROM FIG. 4A-B**

- RECORD STANDOFF AS A FUNCTION OF QUADRANT
- DEVELOP HISTOGRAM OF ALL STANDOFFS AND HISTOGRAM OF STANDOFFS PER QUADRANT
- DETERMINE STANDOFFAVG, STANDOFFMAX, STANDOFFMIN FOR EACH QUADRANT
- DETERMINE HOLE SHAPE:
HORIZONTAL DIAMETER ————— H DIAMETER
VERTICAL DIAMETER ————— V DIAMETER

H DIAMETER
V DIAMETER

FIG. 14A

340

COMPUTER PROGRAM FOR AVERAGE
NEUTRON POROSITY

FROM
FIG. 4A-B

FROM
FIG. 13

COPY OF PAPERS
ORIGINALLY FILED

FAR NEUTRON COUNT RATE
NEAR NEUTRON COUNT RATE
H DIAMETER OF HOLE
V DIAMETER OF HOLE

• DETERMINE AVG NEUTRON
POROSITY

POROSITY_{Avg}

FROM
FIG. 4A-B

FROM
FIG. 13

FAR NEUTRON COUNT RATE IN QBOT
NEAR NEUTRON COUNT RATE IN QBOT
H DIAMETER OF HOLE
V DIAMETER OF HOLE

• DETERMINE AVG NEUTRON
POROSITY_{BOT}

POROSITY_{Avg BOT}

FROM
FIG. 4A-B

FROM
FIG. 13

FAR NEUTRON COUNT RATE IN QRIGHT
NEAR NEUTRON COUNT RATE IN QRIGHT
H DIAMETER OF HOLE
V DIAMETER OF HOLE

• DETERMINE AVG NEUTRON
POROSITY_{RIGHT}

POROSITY_{Avg RIGHT}

FROM
FIG. 4A-B

FROM
FIG. 13

FAR NEUTRON COUNT RATE IN QTOP
NEAR NEUTRON COUNT RATE IN QTOP
H DIAMETER OF HOLE
V DIAMETER OF HOLE

TO FIG. 14B

FIG. 14B**FROM FIG. 14A**FROM
FIG. 4A-BFROM
FIG. 13

340 ~

- DETERMINE AVG NEUTRON POROSITY TOP

POROSITY_{AVG TOP}

FAR NEUTRON COUNT RATE IN QLEFT
 NEAR NEUTRON COUNT RATE IN QLEFT
 H DIAMETER OF HOLE
 V DIAMETER OF HOLE

- DETERMINE AVG NEUTRON POROSITY LEFT

POROSITY_{AVG LEFT}**FIG. 15A**COMPUTER PROGRAM FOR ROTATIONAL NEUTRON POROSITYFROM
FIG. 4A-B

345 ~

TOTAL NEUTRON COUNT RATES
 AS A FUNCTION OF TIME
 NEAR AND FAR

- DEVELOP HISTOGRAMS OF NEAR AND FAR NEUTRON COUNT RATES
- DETERMINE STANDARD DEVIATION OF NEAR AND FAR COUNT RATES
- DETERMINE ROTATIONAL NEUTRON POROSITY

ROT NEUTRON
POROSITY OF
BOREHOLE

TO FIG. 15B

FIG. 15B

FROM
FIG.4A-B

COPY OF PAPERS
ORIGINALLY FILED

345

FROM FIG. 15A

NEUTRON COUNT RATES IN QBOT AS A FUNCTION OF TIME NEAR AND FAR

- DEVELOP HISTOGRAMS OF NEAR AND FAR NEUTRON COUNT RATES
- DETERMINE STANDARD DEVIATION OF NEAR AND FAR COUNT RATES
- DETERMINE ROTATIONAL NEUTRON POROSITY IN QBOT

ROT NEUTRON
POROSITY
IN QBOT

FROM
FIG. 4A-B

NEUTRON COUNT RATES IN QRIGHT AS A FUNCTION OF TIME NEAR AND FAR

- DEVELOP HISTOGRAMS OF NEAR AND FAR NEUTRON COUNT RATES
- DETERMINE STANDARD DEVIATION OF NEAR AND FAR COUNT RATES
- DETERMINE ROTATIONAL NEUTRON POROSITY IN QRIGHT

ROT NEUTRON
POROSITY
IN QRIGHT

TO FIG. 15C

FIG. 15C

345

FROM
FIG. 4A-B

Application Serial No.: 09/960,445

Docket No.: 19.0302

Title: Method of Kick Detection and Cuttings Bed Buildup

Detection using a Drilling Tool

Inventors: Gzara et al.

Page 26/27

COPY OF PAPERS
ORIGINALLY FILED

FIG. 16B

FIG. 16A

BY	CLASS	SUBCLAS
DRAFTER/MAN		

Application Serial No.: 09/960,445

Docket No.: 19.0302

Title: Method of Kick Detection and Cuttings Bed Buildup

Detection using a Drilling Tool

Inventors: Gzara et al.

Page 27/27

COPY OF PAPERS
ORIGINALLY FILED

