melbourne-train

July 30, 2024

1 Data Analysis Project

1.1 Student Information

Name: Ramesh Chandra Soren

Enrollment No: 2022CSB086

Department: Computer Science and Technology

1.2 Project: Overfitting and Underfitting Analysis using Regression Models

1.2.1 Dataset: Melbourne Housing Snapshot

This notebook demonstrates an analysis of overfitting and underfitting issues using various regression models on the Melbourne Housing Snapshot Dataset.

1.2.2 Table of Contents

- 1. Import Libraries
- 2. Load and Explore the Dataset
- 3. Data Preprocessing
- 4. Model Development and Evaluation
- 5. Learning Curves for Overfitting/Underfitting Analysis
- 6. Residual Plots
- 7. Feature Importance
- 8. Summary and Analysis

2 Overfitting and Underfitting Analysis using Regression Models

This notebook demonstrates an analysis of overfitting and underfitting issues using various regression models on the Melbourne Housing Snapshot Dataset.

2.1 1. Import Libraries

First, we'll import the necessary libraries for our analysis.

```
[]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split, learning_curve
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error, r2_score
```

2.2 2. Load and Explore the Dataset

We'll load the Melbourne Housing Snapshot Dataset and take a look at its structure.

```
[]: # Load the dataset
# Make sure you've uploaded the melbourne.csv file to your Colab environment
df = pd.read_csv('melb_data.csv')

# Display the first few rows and dataset info
print(df.head())
print("\nDataset Information:")
print(df.info())
```

	Suburb		Address	Roo	ms	Туре		Pric	e Method	SellerG	\	
)	Abbotsford	85 Tu	rner St		2	h	148	30000.	0 S	Biggin		
	Abbotsford	25 Bloom	burg St		2	h	103	35000.	0 S	Biggin		
	Abbotsford	5 Cha	rles St		3	h	146	35000.	O SP	Biggin		
,	Abbotsford	40 Federa	tion La		3	h	85	50000.	O PI	Biggin		
Ļ	Abbotsford	55a	Park St		4	h	160	00000.	O VB	Nelson		
	Date	Distance	Postcode	•••	Ва	throom	ı C	Car L	andsize	Building	Area	
	3/12/2016	2.5	3067.0			1.0) 1	1.0	202.0		${\tt NaN}$	
	4/02/2016	2.5	3067.0			1.0) (0.0	156.0		79.0	
	4/03/2017	2.5	3067.0	•••		2.0) (0.0	134.0	1	50.0	
3	4/03/2017	2.5	3067.0	•••		2.0) 1	L.O	94.0		${\tt NaN}$	
	4/06/2016	2.5	3067.0	•••		1.0) 2	2.0	120.0	1-	42.0	
	YearBuilt	CouncilAre	a Lattit	ıde	Lo	ngtitu	ıde		R	egionname	\	
)	NaN	Yarr	a -37.79	996		144.99	84	Nort	hern Met	ropolitan		
	1900.0	Yarr	a -37.80	079		144.99	34	Nort	hern Met	ropolitan		
2	1900.0	Yarr	a -37.80	093		144.99	44	Nort	hern Met	ropolitan		
3	NaN	Yarr	a -37.79	969		144.99	69	Nort	hern Met	ropolitan		
ŀ	2014.0	Yarr	a -37.80	072		144.99	941	Nort	hern Met	ropolitan		

Property count 0 4019.0 1 4019.0

```
3
         4019.0
4
        4019.0
[5 rows x 21 columns]
Dataset Information:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 13580 entries, 0 to 13579
Data columns (total 21 columns):
 #
     Column
                    Non-Null Count
                                   Dtype
    _____
                    _____
 0
     Suburb
                    13580 non-null
                                    object
 1
     Address
                    13580 non-null
                                    object
 2
    Rooms
                    13580 non-null
                                    int64
 3
                    13580 non-null
                                   object
    Туре
 4
    Price
                    13580 non-null
                                   float64
                    13580 non-null
 5
    Method
                                   object
 6
    SellerG
                    13580 non-null
                                    object
 7
    Date
                    13580 non-null
                                    object
 8
    Distance
                    13580 non-null
                                    float64
 9
    Postcode
                    13580 non-null float64
 10 Bedroom2
                    13580 non-null float64
 11 Bathroom
                    13580 non-null float64
 12 Car
                    13518 non-null float64
 13 Landsize
                    13580 non-null float64
                    7130 non-null
                                    float64
 14 BuildingArea
 15
    YearBuilt
                    8205 non-null
                                    float64
 16 CouncilArea
                    12211 non-null
                                   object
 17
    Lattitude
                    13580 non-null
                                   float64
    Longtitude
                    13580 non-null
                                   float64
 18
 19
    Regionname
                    13580 non-null
                                   object
 20 Propertycount 13580 non-null float64
dtypes: float64(12), int64(1), object(8)
memory usage: 2.2+ MB
None
```

2

4019.0

2.3 3. Data Preprocessing

In this step, we'll check for missing values, select features and target variable, and normalize the features.

```
[]: # Check for missing values
print("Missing values:")
print(df.isnull().sum())

# Select features and target
# Adjust these based on the actual columns in your dataset
```

Missing values:

0 1 1 1	
Suburb	0
Address	0
Rooms	0
Туре	0
Price	0
Method	0
SellerG	0
Date	0
Distance	0
Postcode	0
Bedroom2	0
Bathroom	0
Car	62
Landsize	0
BuildingArea	6450
YearBuilt	5375
CouncilArea	1369
Lattitude	0
Longtitude	0
Regionname	0
Propertycount	0
dtype: int64	

Shape of training set: (10864, 7) Shape of testing set: (2716, 7)

2.4 4. Model Development and Evaluation

We'll create a function to train and evaluate our models, then apply it to Linear Regression, Decision Tree, and Random Forest regressors.

```
[]: def train_evaluate_model(model, X_train, X_test, y_train, y_test):
         model.fit(X_train, y_train)
         y_train_pred = model.predict(X_train)
         y_test_pred = model.predict(X_test)
         train_mse = mean_squared_error(y_train, y_train_pred)
         test_mse = mean_squared_error(y_test, y_test_pred)
         train_r2 = r2_score(y_train, y_train_pred)
         test_r2 = r2_score(y_test, y_test_pred)
         print(f"Train MSE: {train_mse:.2f}")
         print(f"Test MSE: {test_mse:.2f}")
         print(f"Train R2: {train_r2:.4f}")
         print(f"Test R2: {test_r2:.4f}")
         return model, y_train_pred, y_test_pred
     # Linear Regression
     print("Linear Regression:")
     lr_model, lr_train_pred, lr_test_pred =_
      otrain_evaluate_model(LinearRegression(), X_train, X_test, y_train, y_test)
     # Decision Tree
     print("\nDecision Tree:")
     dt_model, dt_train_pred, dt_test_pred =_
      →train_evaluate_model(DecisionTreeRegressor(random_state=42), X_train, __
     →X_test, y_train, y_test)
     # Random Forest
     print("\nRandom Forest:")
     rf_model, rf_train_pred, rf_test_pred = __
      otrain_evaluate_model(RandomForestRegressor(random_state=42), X_train, ___
      →X_test, y_train, y_test)
    Linear Regression:
    Train MSE: 229734929577.10
    Test MSE: 223129520570.14
```

Train R2: 0.4418 Test R2: 0.4383

Decision Tree:

Train MSE: 743128918.30 Test MSE: 233234371329.80 Train R2: 0.9982 Test R2: 0.4128

Random Forest:

Train MSE: 21554415326.57 Test MSE: 132467864596.03

Train R2: 0.9476 Test R2: 0.6665

2.5 5. Learning Curves for Overfitting/Underfitting Analysis

We'll plot learning curves to visualize how the model's performance changes with increasing amounts of training data.

```
[]: def plot_learning_curve(model, X, y, title):
         train_sizes, train_scores, val_scores = learning_curve(
             model, X, y, cv=5, n_jobs=-1, train_sizes=np.linspace(0.1, 1.0, 10),
             scoring='neg_mean_squared_error')
         train_scores_mean = -np.mean(train_scores, axis=1)
         train_scores_std = np.std(train_scores, axis=1)
         val_scores_mean = -np.mean(val_scores, axis=1)
         val_scores_std = np.std(val_scores, axis=1)
         plt.figure(figsize=(10, 6))
         plt.title(title)
         plt.xlabel("Training examples")
         plt.ylabel("Mean Squared Error")
         plt.grid()
         plt.fill_between(train_sizes, train_scores_mean - train_scores_std,
                          train_scores_mean + train_scores_std, alpha=0.1, color="r")
         plt.fill_between(train_sizes, val_scores_mean - val_scores_std,
                          val_scores_mean + val_scores_std, alpha=0.1, color="g")
         plt.plot(train_sizes, train_scores_mean, 'o-', color="r", label="Training_
      ⇔score")
         plt.plot(train_sizes, val_scores_mean, 'o-', color="g", __
      ⇔label="Cross-validation score")
         plt.legend(loc="best")
         plt.show()
     plot_learning_curve(lr_model, X_scaled, y, "Learning Curve - Linear Regression")
     plot_learning_curve(dt_model, X_scaled, y, "Learning Curve - Decision Tree")
     plot_learning_curve(rf_model, X_scaled, y, "Learning Curve - Random Forest")
```


2.6 6. Residual Plots

We'll create residual plots to visualize the performance of our models.

```
[]: def plot_residuals(y_true, y_pred, title):
    residuals = y_true - y_pred
    plt.figure(figsize=(10, 6))
    plt.scatter(y_pred, residuals)
    plt.title(title)
    plt.xlabel('Predicted values')
    plt.ylabel('Residuals')
    plt.axhline(y=0, color='r', linestyle='--')
    plt.show()

plot_residuals(y_test, lr_test_pred, "Residual Plot - Linear Regression")
    plot_residuals(y_test, dt_test_pred, "Residual Plot - Decision Tree")
    plot_residuals(y_test, rf_test_pred, "Residual Plot - Random Forest")
```


2.7 7. Feature Importance

We'll examine feature importance for the Random Forest model to understand which features are most influential in the prediction.

```
[]: feature_importance = pd.DataFrame({
    'feature': features,
    'importance': rf_model.feature_importances_
}).sort_values('importance', ascending=False)

plt.figure(figsize=(10, 6))
sns.barplot(x='importance', y='feature', data=feature_importance)
plt.title('Feature Importances (Random Forest)')
plt.show()
```


2.8 8. Summary and Analysis

Based on our analysis, we can draw the following conclusions and make recommendations.

```
[]: print("Summary and Analysis:")
    print("1. Linear Regression:")
    print(" - Baseline performance")
    print(" - May be underfitting if the relationship between features and target⊔
      →is complex")
    print("\n2. Decision Tree:")
              - Better performance on training data, but lower on test data")
    print("
              - Likely overfitting due to high complexity")
    print("
              - Consider pruning or setting max_depth to reduce overfitting")
    print("\n3. Random Forest:")
              - Best overall performance")
    print("
    print("
              - Less prone to overfitting compared to Decision Tree")
              - Good balance between training and test performance")
    print("\nRecommendations:")
    print("1. Feature engineering: Create new features or transform existing ones⊔
      ⇔to capture non-linear relationships")
    print("2. Hyperparameter tuning: Use techniques like GridSearchCV to find ∪
      ⇔optimal parameters")
```

Summary and Analysis:

- 1. Linear Regression:
 - Baseline performance
- May be underfitting if the relationship between features and target is $\operatorname{complex}$
- 2. Decision Tree:
 - Better performance on training data, but lower on test data
 - Likely overfitting due to high complexity
 - Consider pruning or setting max_depth to reduce overfitting
- 3. Random Forest:
 - Best overall performance
 - Less prone to overfitting compared to Decision Tree
 - Good balance between training and test performance

Recommendations:

- 1. Feature engineering: Create new features or transform existing ones to capture non-linear relationships
- 2. Hyperparameter tuning: Use techniques like GridSearchCV to find optimal parameters
- 3. Regularization: Apply regularization to Linear Regression (Lasso, Ridge, or Elastic Net)
- 4. Ensemble methods: Explore other ensemble methods like Gradient Boosting
- 5. Cross-validation: Use k-fold cross-validation for more robust performance estimation
- 6. Handle outliers: Investigate and potentially remove or transform outliers in the dataset