MATH50003 (2022-23)

Problem Sheet 1

This problem sheet tests the representation of numbers on the computer, using modular and floating point arithmetic.

Problem 1 With 8-bit signed integers, what are the bits for the following: 10, 120, -10.

Problem 2 What is π to 5 binary places? Hint: recall that $\pi \approx 3.14$.

Problem 3 What are the single precision F_{32} (Float32) floating point representations for the following:

$$2,31,32,23/4,(23/4) imes 2^{100}$$

Problem 4 Let $m(y)=\min\{x\in F_{32}: x>y\}$ be the smallest single precision number greater than y. What is m(2)-2 and m(1024)-1024?

Problem 5 Suppose x=1.25 and consider 16-bit floating point arithmetic (F_{16}) . What is the error in approximating x by the nearest float point number $\mathrm{fl}(x)$? What is the error in approximating 2x, x/2, x+2 and x-2 by $2\otimes x$, $x\otimes 2$, $x\oplus 2$ and $x\ominus 2$?

Problem 6 For what floating point numbers is $x \oslash 2 \neq x/2$ and $x \oplus 2 \neq x+2$?

Problem 7 What are the exact bits for $1 \oslash 5$, $1 \oslash 5 \oplus 1$ computed using half-precision arithmetic (Float16) (using default rounding)?

Problem 8 Explain why the following does not return 1. Can you compute the bits explicitly?

```
In [1]: Float16(0.1) / (Float16(1.1) - 1)
```

Out[1]: Float16(1.004)

Problem 9 Find a bound on the *absolute error* in terms of a constant times machine epsilon $\epsilon_{\rm m}$ for the following computations

$$(1.1 * 1.2) + 1.3$$

 $(1.1 - 1)/0.1$

implemented using floating point arithmetic (with any precision). That is, each number is rounded first using fl and each operation is replaced by its floating point analogues $\oplus, \otimes, \ominus, \oslash$.