Graph Algorithms: Home Assignment

Valeran MAYTIE

Exact exponential algorithms for Graph Coloring Problem

- 1. The first non-trivial algorithm for 3-Colour.
 - (a) Intuitively the root has 3 options then the children are constrained by their parents, so they only have 2 as we have a root and n-1 children then, there are $3 \times 2^{n-1}$ coloring options.

We can proof this property by induction on n.

- n=0, the case where the tree contains no vertex is not interesting
- n=1, if we have one vertex, so we have $3=3\times 2^{1-1}$ 3-coloring options
- n+1, by hypothesis induction, we know that a tree with n-vertices has $3 \times 2^{n-1}$ 3-coloring options.

If we had a vertex on a tree, then it has two possible color options, so there is $3 \times 2^{n-1} \times 2 = 3 \times 2^n$ 3-coloring options.

(b) The 3-coloring algorithm Which uses the *spanning_tree* which returns the spanning tree: S. We define *top* and *child*, the function who return the top of the tree and the child of a vertex. The function return a map with vertex key and color ($C = \{c_1, c_{2,3}\}$).

Algorithm 1 $\mathcal{O}^*(3^n)$ algorithm for 3-coloring with spanning tree

```
1: function REC COLORING(G : graph, S: spanning tree, v:vertex, \phi: color)
       for n \in CHILD(S, v) do
2:
           colors = possible colors(G, n)
3:
           for c \in \text{colors do}
4:
               \phi[n] \leftarrow c
5:
               if REC COLORING(G, S, n, \phi) then
6:
                  break
7:
               return false
8:
9:
       return true
10:
11: function 3-COLORING(G : graph)
       S = SPANNING TREE(G)
       top = TOP(S)
13:
       \phi = \{ \text{top} \to c_1 \}
14:
       return REC COLORING(G, S, top(S), \phi)
15:
```

2. (a) To reduce to 2-Sat, we want to find clauses containing exactly 2 literals that allow us to find the colors of the nodes outside the dominating set (X : the dominating set and C : the set of colors). We define the variable:

$$\mathcal{V} = \bigcup_{v \in V(G) \backslash X} \{ v_c | \forall c \in C \}$$

All vertices have 3 variables representing if variable i is true then the node can have the color i. We define a function Cl which return a set of clauses for a vertex v (represent the possible colors for v):

$$Cl(v) = \begin{cases} \{(v_1 \lor v_1), (\neg v_1 \lor \neg v_1)\} & |\phi(X \cap N_G(v))| = 3\\ \{(v_y \lor v_y) | \{y\} = \phi(X \cap N_G(v)) \backslash C\} & |\phi(X \cap N_G(v))| = 2\\ \{(v_i \lor v_j) | \{i, j\} = \phi(X \cap N_G(v)) \backslash C\} & |\phi(X \cap N_G(v))| = 1 \end{cases}$$

 $\phi(X \cap N_G(v))$ is the set of colors link to a vertex v.

The first case is here to make the formula false (we can not choose a color if the node is already linked to 3 different colors in X). In the second case y represent the last color.

Finally, we define the set \mathcal{C} of clauses :

$$\mathcal{C} = \bigcup_{v \in V(G) \backslash X} Cl(v) \cup \{ (\neg v_c \vee \neg n_c) | \forall n, c \in (N_G(v) \backslash X) \times (\phi(X \cap N_G(v)) \backslash C) \}$$
$$\cup \{ (\neg v_c \vee \neg v_c) | \forall c \in \phi(N_X(v)) \}$$

The middle union represents the constraints between the external nodes of X. The last union prevents an external node to have the same colors that a neighbor in X.

Proof:

• Coloring \Rightarrow 2-Sat :

We assume that the vertices $V(G)\backslash X$ can be colored.

We define for all v, $v_{c(v)} = true$ and for other color c we define $v_c = false$.

All clauses generated by Cl are satisfied (the first case does not occur because the graph can be colored).

We need to make a case disjunction for the other clauses of the form $(\neg v_c \lor \neg n_c)$. If we have $v_c = true$ then v has the color c has the color c and n cannot have the color c because they are neighbors, then $n_c = false$. Otherwise, v has not the color c, so $v_c = false$.

Finally, the clauses of the form $(v_c \wedge v_c)$ (last union) is true because v is linked to a vertex in X which has the color c, so $v(x) \neq c$.

• 2-Sat \Rightarrow Coloring :

We assume that the formula for a dominating set X is satisfiable.

So we have for all variable v in $V(G)\backslash X$ a c such that $v_c=true$, thanks to the function Cl.

The same vertex v has no neighbor n such that $n_c = true$. Because we have the clause $(\neg v_c \lor \neg n_c)$, if $v_c = true$ then $n_c = false$.

And thanks to the last union we can not have v_c is v is linked to a vertex who has the color c in X.

Example: $C = \{R, G, B\}$ (R: Red, G: Green, B: Blue)

For this graph we have the formula :

$$\begin{split} & \left(v_{1_G} \vee v_{1_G}\right) \wedge \left(\neg v_{1_B} \vee \neg v_{1_B}\right) \wedge \left(\neg v_{1_R} \vee \neg v_{1_R}\right) \wedge \left(\neg v_{1_G} \vee \neg v_{2_G}\right) \wedge \\ & \left(v_{2_G} \vee v_{2_B}\right) \wedge \left(\neg v_{2_R} \vee \neg v_{2_R}\right) \wedge \left(\neg v_{2_G} \vee \neg v_{1_G}\right) \wedge \left(\neg v_{2_B} \vee \neg v_{1_B}\right) \wedge \\ & \left(v_{3_B} \vee v_{3_B}\right) \wedge \left(\neg v_{3_R} \vee \neg v_{3_R}\right) \wedge \left(\neg v_{3_G} \vee \neg v_{3_G}\right) \end{split}$$

Now, we can construct $c: V(G) \to [3]$. If the formula is not satisfiable then c can not be constructed. Otherwise, we can define c like that :

$$c(x) = \begin{cases} \phi(x) & \text{if } x \in X \\ c & x_c = \text{true} \end{cases}$$

If the formula is satisfiable we necessarily have c such that $x_c = true$ (by construction).

(b) Let G a graph such as $V(G) \ge 2$ and T the corresponding BFS tree. We have S_i the set of vertices at layer i of tree T.

We define the sets $D_e = \{v | v \in S_i, \exists k, i = 2 \times k\}$ (vertices in an even layer) and $D_o = \{v | v \in S_i, \exists k, i = 2 \times k + 1\}$ (vertices in an odd layer).

 D_e and D_o are distinct sets because in a BFT tree we can not have the same vertex several times, so the layer where the even and odd layers intersect is empty.

 D_e De is a dominating set, because each layer is linked to the layer below and above it, so it is linked to all the other remaining vertices. We apply the same argument to D_o .

We can deduce that the upper bound of the smallest dominating set is $\frac{n}{2}$ (n = |V(G)|). If $|D_e| < |D_o|$, then the smallest is D_e otherwise the smallest is D_o . So the worst case is when $|D_e| = |D_o| = \frac{n}{2}$. Example:

(c) The BFS_tree, bi_party and 2-Sat functions have a polynomial complexity. We use 3-coloring (Algorithm-1) on a graph such that $|V(G)| = \frac{n}{2}$, then the complexity is $\mathcal{O}^*(3^{\frac{n}{2}}) = \mathcal{O}^*((\sqrt{3})^n)$. Therefor, the algorithm below has a complexity of $\mathcal{O}^*((\sqrt{3})^n)$.

3

Algorithm 2 $\mathcal{O}^*((\sqrt{3})^n)$ algorithm for 3-coloring with the smallest dominating set

```
1: function 3-COLORING-OPT(G: graph)
2: T = \operatorname{BFS\_TREE}(G)
3: D_e, D_o = \operatorname{BI\_PARTY}(T)
4: X = D_e
5: if |D_o| < B then
6: X \leftarrow D_o
7: \phi = 3\operatorname{-COLORING}(X)
8: \phi \leftarrow 2\operatorname{-SAT}(G, X, \phi)
```

- 3. (a)
 - (b)