excellent2 • EN

Excellent Numbers 2 (excellent2)

A positive integer is called *excellent* if its decimal representation contains only the digits 1 and 5, and it is divisible by 3. For example, **15** and **111** are *excellent* numbers $(15 = 5 \cdot 3 + 0 \text{ and } 111 = 37 \cdot 3 + 0)$, while **151** is not $(151 = 50 \cdot 3 + 1)$.

Figure 1: 1515 is considered by many an Angel Number¹ and also happens to be an excellent number!

Alex observed that there are many excellent numbers formed by N digits, and thus he started counting them. However, this is taking too much time, so he gave this task as a homework for you: help him count how many excellent numbers of N digits exist! Since the answer can be big, print it modulo $10^9 + 7$.

Among the attachments of this task you may find a template file excellent2.* with a sample incomplete implementation.

Input

The first line of the input file contains a single integer T, the number of test cases. T test cases follow, each preceded by an empty line.

Each test case consists of:

• a line containing 64-bit integer N, representing the number of digits for which we have to find the answer.

Output

The output file must contain T lines corresponding to the test cases, each consisting of integer ans, representing the number of excellent numbers with N_i digits modulo $10^9 + 7$.

excellent2 Page 1 of 2

¹ An Angel Number, in Numerology, is a number with a predictable pattern that is believed to be a sign from the universe.

The *modulo* operation $(a \mod m)$ can be written in C/C++/Python as (a % m) and in Pascal as $(a \mod m)$. To avoid the *integer overflow* error, remember to reduce all partial results through the modulus, and not just the final result!

Notice that if $x < 10^9 + 7$, then 2x fits into a C/C++ int and Pascal longint.

Constraints

- $1 \le T \le 10$.
- $1 \le N \le 10^{18}$.

Scoring

Your program will be tested against several test cases grouped in subtasks. In order to obtain the score of a subtask, your program needs to correctly solve all of its test cases.

- Subtask 1 (0 points)	Examples.
<u>=</u> 8888	

- Subtask 2 (13 points)
$$N \le 20$$
.

- Subtask 3 (24 points)
$$N \le 2000$$
.

- Subtask 4 (34 points)
$$N \le 200000$$
.

Examples

input	output
5	10
5	2
3	342
10	251936681
39	897205658
952	33120000
002	

Explanation

In the first testcase of the sample case, we have N=5. There are 10 excellent numbers with 5 digits. In increasing order they are: 11115, 11151, 11511, 15111, 15555, 51111, 51555, 55155, 55515 and 55551.

In the **second testcase** we have N=3. There are 2 excellent numbers with 3 digits: 111 and 555.

In the **fourth testcase** there are $183\,251\,937\,962$ excellent numbers with N=39 digits. This number modulo 10^9+7 is $251\,936\,681$.

excellent2 Page 2 of 2