

Cursos

Ciência da Computação | Sistemas de Informação | Sistemas para Internet

Disciplina

Lógica Matemática

TAUTOLOGIA

É toda proposição composta cujo resultado é todo verdadeiro.

Exemplo:

Renato é vascaíno ou Renato não é vascaíno.

TAUTOLOGIA

Uma proposição que é sempre verdadeira, independentemente das circunstâncias. Em lógica, isso é representado por uma afirmação que é verdadeira em todas as linhas de uma tabela verdade.

p ^ q	pvq	(p^q) → (pvq)
V	V	V
F	F	V
V	V	V
F	F	V

TUDO VERDADE

CONTRADIÇÃO

É toda proposição composta cujo resultado é todo falso.

Exemplo:

Marcos Antônio é flamenguista e Marcos Antônio não é flamenguista.

CONTRADIÇÃO

Uma proposição que é sempre falsa, independentemente das circunstâncias. Em uma tabela verdade, isso é representado por uma afirmação que é falsa em todas as linhas.

р	~p	p ← →~p
V	F	F
F	V	F

CONTINGÊNCIA

São proposições cujo os resultados **não são todos verdadeiros nem todos falsos**.

Exemplo:

Renato é vascaíno ou Marcos Antônio é flamenguista.

CONTINGÊNCIA

Uma proposição que pode ser verdadeira ou falsa, dependendo das circunstâncias. Em uma tabela verdade, isso é representado por uma afirmação que é verdadeira em algumas linhas e falsa em outras.

р	q	p ^ q	p ←→ (p ^ q)
V	V	V	V
V	F	F	F
F	V	F	V
F	F	F	V

1. Considere a seguinte proposição:

"Ao participar de um concurso público, João será aprovado ou não será aprovado."

Do ponto de vista lógico, a proposição acima é um exemplo de:

- (A) tautologia
- (B) silogismo
- (C) contradição
- (D) equivalência

1. Considere a seguinte proposição:

"Ao participar de um concurso público, <u>João será aprovado</u> ou não será aprovado."

AFIRMAÇÃO

NEGAÇÃO DA AFIRMAÇÃO

Do ponto de vista lógico, a proposição acima é um exemplo de:

- (A)) tautologia 🗸
- (B) silogismo
- (C) contradição
- (D) equivalência

2. A proposição (A $^{\circ}$ B) \rightarrow (A $^{\vee}$ B) é uma tautologia.

TABUAI	DA LÓGICA
e ^	Tudo V dá V
ou V	Tudo F dá F
ouou <u>v</u>	Iguais dá F Diferentes dá V
se,então →	V com F dá F
se e somente se ↔	Iguais dá V Diferentes dá F

2. A proposição (A $^{\circ}$ B) \rightarrow (A $^{\circ}$ B) é uma tautologia.

Α	В	A ^ B	AvB	$(A \land B) \rightarrow (A \lor B)$
V	V			
V	F			
F	V			
F	F			

TABUAI	DA LÓGICA
e ^	Tudo V dá V
ou v	Tudo F dá F
ouou <u>v</u>	Iguais dá F Diferentes dá V
se,então →	V com F dá F
se e somente se	Iguais dá V Diferentes dá F

2. A proposição (A $^{\circ}$ B) \rightarrow (A $^{\circ}$ B) é uma tautologia.

Α	В	A ^ B	AvB	$(A \land B) \rightarrow (A \lor B)$
V	V	V	V	
V	F	F	V	
F	V	F	V	
F	F	F	F	

TABUAI	DA LÓGICA
e ^	Tudo V dá V
ou V	Tudo F dá F
ouou <u>v</u>	Iguais dá F Diferentes dá V
se,então →	V com F dá F
se e somente se ↔	Iguais dá V Diferentes dá F

2. A proposição (A $^{\circ}$ B) \rightarrow (A $^{\circ}$ B) é uma tautologia.

Α	В	A ^ B	AvB	$(A \land B) \rightarrow (A \lor B)$
V	V	V	V	V
V	F	F	V	V
F	V	F	V	V
F	F	F	F	V

TABUAI	DA LÓGICA
e ^	Tudo V dá V
ou V	Tudo F dá F
ouou <u>v</u>	Iguais dá F Diferentes dá V
se,então →	V com F dá F
se e somente se	Iguais dá V Diferentes dá F

2. A proposição (A $^{\circ}$ B) \rightarrow (A $^{\vee}$ B) é uma tautologia.

Α	В	A ^ B	AvB	$(A \land B) \rightarrow (A \lor B)$
V	V	V	V	V
V	F	F	V	V
F	V	F	V	V
F	F	F	F	V

Α	В	$B \rightarrow A$	A → (B→A)
V	V		V
V	F		V
F	F		V
F	V		F

TABUAL	DA LÓGICA
e	Tudo V dá V
ou v	Tudo F dá F
ouou <u>v</u>	Iguais dá F Diferentes dá V
se,então →	V com F dá F
se e somente se ↔	Iguais dá V Diferentes dá F

Α	В	$B \rightarrow A$	$A \rightarrow (B \rightarrow A)$
V	V	V	V
V	F	V	V
F	F	V	V
F	V	\ F	F
	•		

TABUADA LÓGICA		
e ^	Tudo V dá V	
ou V	Tudo F dá F	
ouou <u>v</u>	Iguais dá F Diferentes dá V	
se,então →	V com F dá F	
se e somente se	Iguais dá V Diferentes dá F	

Α	В	$B \rightarrow A$	$A \rightarrow (B \rightarrow A)$
V	V	V	V
V	F	V	V
F	F	V	V
F /	V	F	F
	•		

TABUADA LÓGICA		
e ^	Tudo V dá V	
ou V	Tudo F dá F	
ouou <u>v</u>	Iguais dá F Diferentes dá V	
se,então →	V com F dá F	
se e somente se	Iguais dá V Diferentes dá F	

Α	В	Е	$s \to A$		$A \rightarrow ($	B→A)
V	٧		V		V	\bigvee V
V	F		V		V	V
F	F		V		V	V
F /	V		F		F	V
				·		

TABUADA LÓGICA		
e ^	Tudo V dá V	
ou V	Tudo F dá F	
ouou <u>v</u>	Iguais dá F Diferentes dá V	
se,então →	V com F dá F	
se e somente se ↔	Iguais dá V Diferentes dá F	

3. Se A e B são proposições simples, então, completando a coluna em branco na tabela abaixo, se necessário, conclui-se que a última coluna da direita corresponde à tabela-verdade da proposição composta $A \rightarrow (B\rightarrow A)$

Α	В	$B \rightarrow A$	$A \rightarrow (B \rightarrow A)$
V	V	V	V/V
V	F	V	VV
F	F	V	VV
F	V	F /	F V
			ALGO ERRADO

NÃO ESTÁ CERTO

4. Na tabela abaixo, a última coluna da direita corresponde à tabela-verdade da proposição (\neg A) v B \rightarrow \neg (AvB).

A	В	¬A	(¬A) v B	¬(AvB)	(¬A)v B → ¬(AvB)
V	V				V
V	F				F
F	V				V
F	F				V

TABUADA LÓGICA		
e ^	Tudo V dá V	
ou V	Tudo F dá F	
ouou <u>v</u>	Iguais dá F Diferentes dá V	
se,então →	V com F dá F	
se e somente se	Iguais dá V Diferentes dá F	

4. Na tabela abaixo, a última coluna da direita corresponde à tabela-verdade da proposição $(\neg A)$ v B \rightarrow \neg (AvB).

Α	В	¬A	(¬A) v B	¬(AvB)	(¬A)v B → ¬(AvB)
V	V	F			V
V	F	F			F
F	V	V			V
F	F	V			V

TABUADA LÓGICA		
e ^	Tudo V dá V	
ou V	Tudo F dá F	
ouou <u>v</u>	Iguais dá F Diferentes dá V	
se,então →	V com F dá F	
se e somente se ↔	Iguais dá V Diferentes dá F	

4. Na tabela abaixo, a última coluna da direita corresponde à tabela-verdade da proposição $(\neg A)$ v B \rightarrow \neg (AvB).

Α	В	¬A	(¬A) v B	¬(AvB)	(¬A)v B → ¬(AvB)
V	V	F	V	V/F	V
V	F	F	F	V/F	F
F	V	V	V	V F	V
F	F	V	V	F V	V

TABUAL	TABUADA LÓGICA				
e	Tudo V dá V				
ou v	Tudo F dá F				
ouou <u>v</u>	Iguais dá F Diferentes dá V				
se,então →	V com F dá F				
se e somente se ↔	Iguais dá V Diferentes dá F				

4. Na tabela abaixo, a última coluna da direita corresponde à tabela-verdade da proposição (\neg A) v B \rightarrow \neg (AvB).

Α	В	¬A	(¬A) v B	¬(AvB)	(¬A)v B → ¬(AvB)
V	V	F	V	V/F	VF
V	F	F	F	V/F	F V
F	V	V	V	V F	V F
F	F	V	V	F V	V V

5. Na tabela abaixo, a última coluna da direita corresponde à tabelaverdade da proposição $\neg(A \land B) \rightarrow A \land (\neg B)$

Α	В	¬В	¬(A ^ B)	A ^ (¬B)	¬(A^B) → A ^ (¬ B)
V	V				F
V	F				V
F	V				V
F	F				V

TABUAI	DA LÓGICA
e	Tudo V dá V
ou v	Tudo F dá F
ouou <u>v</u>	Iguais dá F Diferentes dá V
se,então →	V com F dá F
se e somente se ↔	Iguais dá V Diferentes dá F

5. Na tabela abaixo, a última coluna da direita corresponde à tabelaverdade da proposição $\neg(A \land B) \rightarrow A \land (\neg B)$

Α	В	¬В	¬(A ^ B)	A ^ (¬B)	¬(A^B) → A ^ (¬ B)
V	V	F	V/F	F	F V
V	F	V	F V	V	V V
F	V	F	F V	F	V F
F	F	V	F V	F	V F

6. A última coluna da tabela-verdade abaixo corresponde à proposição $(\neg P) \lor (Q \to R)$.

Р	Q	R	¬P	$Q \rightarrow R$	(¬P) v (Q → R)
V	V	V			V
V	V	F			F
V	F	V			V
V	F	F			V
F	V	V			V
F	V	F			V
F	F	V			V
F	F	F			V

TABUAI	TABUADA LÓGICA				
e ^	Tudo V dá V				
ou v	Tudo F dá F				
ouou <u>v</u>	Iguais dá F Diferentes dá V				
se,então →	V com F dá F				
se e somente se ↔	Iguais dá V Diferentes dá F				

6. A última coluna da tabela-verdade abaixo corresponde à proposição $(\neg P) \lor (Q \to R)$.

Р	Q	R	¬P	$Q \rightarrow R$	(¬P) v (Q → R)
V	V	V	F	V	V
V	V	F	F	F	F
V	F	V	F	V	V
V	F	F	F	V	V
F	V	V	V	V	V
F	V	F	V	F	V
F	F	V	V	V	V
F	F	F	V	V	V

Considerando as alternativas abaixo, assinale a que representa uma tautologia.

- B p A q
- (c) p x p
- D p v ~p
- (E) $p \rightarrow q$

Considerando as alternativas abaixo, assinale a que representa uma tautologia.

- B p A q
- (c) p x p
- D p v ~p
- (E) $p \rightarrow q$

Um exemplo de tautologia é apresentado na alternativa:

- A prova está fácil.
- B João estudou para a prova do concurso público.
- Porto Alegre é a capital do Rio Grande do Sul.
- D Maria é uma moça estudiosa.
- E O Brasil é um país grande.

Um exemplo de **tautologia** é apresentado na alternativa:

- A prova está fácil.
- B João estudou para a prova do concurso público.
- Porto Alegre é a capital do Rio Grande do Sul.
- D Maria é uma moça estudiosa.
- E O Brasil é um país grande.

É uma tautologia, ou seja, uma proposição sempre verdadeira, a proposição mostrada na alternativa:

- (A) A prova está difícil.
- B João é alto.
- C Tapejara é uma cidade bonita.
- D O Brasil é um país localizado na América do Sul.
- (E) Maria é alta.

É uma tautologia, ou seja, uma proposição sempre verdadeira, a proposição mostrada na alternativa:

- (A) A prova está difícil.
- B João é alto.
- C Tapejara é uma cidade bonita.
- D O Brasil é um país localizado na América do Sul.
- (E) Maria é alta.

р	q	pvq	p v q -> p
V	V		
V	F		
F	V		
F	F		

TAUTOLOGIA, CONTRADIÇÃO OU CONTINGÊNCIA?

TABUAI	DA LÓGICA
e ^	Tudo V dá V
ou V	Tudo F dá F
ouou <u>v</u>	Iguais dá F Diferentes dá V
se,então →	V com F dá F
se e somente se ↔	Iguais dá V Diferentes dá F

р	q	pvq	p v q -> p
V	V	V	V
V	F	V	V
F	V	V	F
F	F	F	V

TAUTOLOGIA, CONTRADIÇÃO OU CONTINGÊNCIA?

CONTINGENCIA

р	q	pvq	p ^ ~(p v q)
V	V		
V	F		
F	V		
F	F		

TAUTOLOGIA, CONTRADIÇÃO OU CONTINGÊNCIA?

VAMOS PRATICAR

TABUADA LÓGICA		
e ^	Tudo V dá V	
ou V	Tudo F dá F	
ouou <u>v</u>	Iguais dá F Diferentes dá V	
se,então →	V com F dá F	
se e somente se ↔	Iguais dá V Diferentes dá F	

р	q	pvq	p ^ ~(p v q)
V	V	V	V F F
V	F	V	V F F
F	V	V	F F F
F	F	F	F F V

TAUTOLOGIA, CONTRADIÇÃO OU CONTINGÊNCIA?

CONTRADIÇÃO

REFERENCIAS

QUESTÕES - QCONCURSOS

RACIOCÍNIO LÓGICO - PROF RENATO OLIVEIRA
(@MATEMATICAPRAPASSAR)

SISTEMAS NUMÉRICOS

Uniesp Ciência da Computação | Sistemas de Informação | Sistemas para Internet | Lógica Matemática | Profa. Priscilla Almeida

SISTEMAS NUMÉRICOS

AULA 05

- Sistemas de Numeração
 - Decimal
 - Binário
 - Octal
 - Hexadecimal
 - <u>Conversões</u>
 - Exercícios

OS NÚMEROS

"Acredita-se que a necessidade de criação de números veio com a necessidade de contar. Seja o número de animais, alimentos, ou coisas do tipo. Como a evolução nos legou algumas características, como os cinco dedos em cada mão e cinco dedos em cada pé, seria muito natural que os primeiros sistemas de numeração fizessem uso das bases 10 (decimal) e 20 (vigesimal)".

Sistema de numeração decimal

O sistema de numeração normalmente utilizado, o sistema decimal, apresenta dez dígitos (algarismos), são eles: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

No sistema decimal, <u>10 é a base do sistema</u>.

Obs.: para um sistema de base N, os dígitos vão de 0 à N-1.

Sistema de numeração decimal

```
Ex.: 328451_{10}

= 3 x 10^5 + 2 x 10^4 + 8 x 10^3 + 4 x 10^2 + 5 x 10^1 + 1 x 10^0

= 300000 + 20000 + 8000 + 400 + 50 + 1

= 328451 \rightarrow Grandeza
```


Este sistema de numeração, como o próprio nome sugere, apresenta <u>base 2</u>. Os números 0 e 1 são os dígitos deste sistema.

Para representarmos à quantidade <u>zero</u>, utilizamos o algarismo (0), para representarmos a quantidade <u>um</u> utilizamos o algarismo (1).

E para representarmos a quantidade dois, se nós não possuímos o algarismo (2) nesse sistema ?

Basta lembrar-se de como é obtido o número dez no sistema de numeração decimal, onde os dígitos vão de 0 a 9.

Representamos a quantidade de uma dezena utilizando o algarismo 1 (um) seguido do algarismo 0 (zero).

Neste caso, o algarismo 1 (um) significa que temos um grupo de uma dezena e o algarismo 0 (zero) nenhuma unidade, o que significa dez.

No sistema binário agimos da mesma forma, para representarmos a quantidade dois, utilizamos o algarismo (1) seguido do algarismo (0). Sendo assim, a numeração em binário vai tornarse:

Decimal	Binário
0	0
1	1
2	10
3	11
4	100
5	101

O sistema binário é de grande importância, pois apresenta correspondência direta com os estados de um sistema digital. Por exemplo: para o dígito 0 pode-se atribuir o valor de tensão 0 V (também conhecido como "terra" ou "GND", significando que não há tensão elétrica presente) e para o dígito 1 pode-se atribuir o valor de tensão de +5 V.

Bit 1 Bit 0

Ou seja, os computadores só entendem bits.

Só conseguem manipular ou armazenar internamente as informações através de impulsos elétricos que são medidos pela intensidade 0 e 1.

Bit 1 Bit 0

Regra geral: multiplica-se cada dígito pelo valor da base elevada a uma dada potência, definida pela posição do dígito, e finalmente realiza-se a soma.

```
Ex.: 11001101_2
= 1 \times 2^7 + 1 \times 2^6 + 0 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0
= 128 + 64 + 0 + 0 + 8 + 4 + 0 + 1
= 205_{10}
```

Regra geral: multiplica-se cada dígito pelo valor da base elevada a uma dada potência, definida pela posição do dígito, e finalmente realiza-se a soma.

Ex.: 11001101₂

Regra geral: multiplica-se cada dígito pelo valor da base elevada a uma dada potência, definida pela posição do dígito, e finalmente realiza-se a soma.

ATIVIDADE 2 mins

Converter 110101, para decimal:

Regra geral: multiplica-se cada dígito pelo valor da base elevada a uma dada potência, definida pela posição do dígito, e finalmente realiza-se a soma.

ATIVIDADE

Converter 110101, para decimal:

Sistema octal de numeração

A base de um sistema numérico é igual o número de dígitos que ela usa. Portanto, o sistema octal, que apresenta base 8, tem 8 dígitos a saber: 0, 1, 2, 3, 4, 5, 6, 7 (base $N = 8 \rightarrow dígitos 0 \rightarrow N-1 = 7$).

Sua utilidade nos sistemas digitais vem do fato de que, associando-se os algarismos de um número binário (bits) em grupos de três, obtém-se uma correspondência direta com os dígitos do sistema octal.

Regra geral: multiplica-se cada dígito pelo valor da base elevada a uma dada potência, definida pela posição do dígito, e finalmente realiza-se a soma.

```
1247,235_8 = ?_{10}
= 1 \times 8^3 + 2 \times 8^2 + 4 \times 8^1 + 7 \times 8^0 + 2 \times 8^{-1} + 3 \times 8^{-2} + 5 \times 8^{-3}
= 512 + 128 + 32 + 7 + 1/8 + 3/64 + 5/512
= 679,1816406_{10}
1247,235_8 = 679,1816406_{10}
```

Sistema hexadecimal de numeração

Este sistema apresenta base igual a 16. Portanto 16 dígitos distintos. São usados os dígitos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.

Como no sistema de numeração octal, o hexadecimal apresenta equivalência direta entre seus dígitos e grupos de quatro dígitos binários. A tabela a seguir mostra esta equivalência:

Sistema hexadecimal de numeração

Como no sistema de numeração octal, o hexadecimal apresenta equivalência direta entre seus dígitos e grupos de quatro dígitos binários. A tabela a seguir mostra esta equivalência:

Decimal	Binário	Hexadecimal	
0	0000	0	
1	0001	1 1 1	
2	0010 2		
3	0011	3	
4	0100 4		
5	0101 5		
6	0110	6	
7	0111	111 7	
8	1000 8		
9	1001	9	
10	1010	Α	
11	1011	В	
12	1100	1100 C	
13	1101	D I	
14	1110	E	
15	1111	F	

Regra geral: multiplica-se cada dígito pelo valor da base elevada a uma dada potência, definida pela posição do dígito, e finalmente realiza-se a soma.

```
AFC0,7D<sub>16</sub> = ?<sub>10</sub>
= A \times 16^{3} + F \times 16^{2} + C \times 16^{1} + 0 \times 16^{0} + 7 \times 16^{-1} + D \times 16^{-2}
= 10 \times 16^{3} + 15 \times 16^{2} + 12 \times 16^{1} + 0 \times 16^{0} + 7 \times 16^{-1} + 13 \times 16^{-2}
= 44992,48828_{10}
AFC0,7D<sub>16</sub> = 44992,48828<sub>10</sub>
```

Decimal	Binário	Octal	Hexadecimal
0	0000	0	0
1	0001	1	
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	Е
15	1111	17	F

п

Conversão de bases

- ☐ Sistema Binário (base 2) 0 1
- ☐ Sistema Octal (base 8) 0 1 2 3 4 5 6 7
- ☐ Sistema Decimal (base 10) 0 1 2 3 4 5 6 7 8 9
- □ Sistema Hexadecimal (base 16)
 0 1 2 3 4 5 6 7 8 9 A B C D E F

Conversão de bases

- ☐ Sistema Binário (base 2) 0 1
- ☐ Sistema Octal (base 8) 0 1 2 3 4 5 6 7
- □ Sistema Decimal (base 10)
 0 1 2 3 4 5 6 7 8 9
- □ Sistema Hexadecimal (base 16)
 0 1 2 3 4 5 6 7 8 9 A B C D E F

Agora veremos conversão de decimal para qualquer outra base

☐ divide-se o número decimal por 2

Exemplo: converter 4₁₀ para binário (base 2):

Resposta = 100_2

☐ divide-se o número decimal por 2

Exemplo: converter 23₁₀ para binário (base 2):

Resposta = 10111₂

☐ divide-se o número decimal por 2

converter 0₁₀ para binário (base 2):

converter 1_{10} para binário (base 2):

converter 2₁₀ para binário (base 2):

☐ divide-se o número decimal por 2

converter 0₁₀ para binário (base 2): 0₂

converter 1₁₀ para binário (base 2): 1₂

converter 2₁₀ para binário (base 2): 10₂

☐ divide-se o número decimal por 2

converter 10₁₀ para binário (base 2):

converter 17₁₀ para binário (base 2):

converter 30₁₀ para binário (base 2):

☐ divide-se o número decimal por 2

converter 10₁₀ para binário (base 2): 1010₂

converter 17₁₀ para binário (base 2): 10001₂

converter 30₁₀ para binário (base 2): 11110₂

PRESENÇA

Aulas disponíveis em:

ae3jkei