246 Séries de Fourier. Exemples et applications.

I - Coefficients de Fourier

1. Définitions

Notation 1. — Pour tout $p \in [1, +\infty]$, on note $L_p^{2\pi}$ l'espace des fonctions $f : \mathbb{R} \to \mathbb{C}$, 2π périodiques et mesurables, telles que $||f||_p < +\infty$.

[**Z-Q**] p. 73

— Pour tout $n \in \mathbb{Z}$, on note e_n la fonction 2π -périodique définie pour tout $t \in \mathbb{R}$ par $e_n(t) = e^{int}$.

Remarque 2.

$$1 \le p < q \le +\infty \implies L_q^{2\pi} \subseteq L_p^{2\pi} \text{ et } \|.\|_p \le \|.\|_q$$

Proposition 3. $L_2^{2\pi}$ est un espace de Hilbert pour le produit scalaire

$$\langle .,. \rangle : (f,g) \mapsto \frac{1}{2\pi} \int_0^{2\pi} f(t) \overline{g(t)} dt$$

Définition 4. Soit $f \in L^{2\pi}_1$. On appelle :

p. 268

— Coefficients de Fourier complexes, les complexes définis par

$$\forall n \in \mathbb{Z}, c_n(f) = \frac{1}{2\pi} \int_0^{2\pi} f(t)e^{-int} dt = \langle f, e_n \rangle$$

— Coefficients de Fourier réels, les complexes définis par

$$\forall n \in \mathbb{N}, \, a_n(f) = \frac{1}{\pi} \int_0^{2\pi} f(t) \cos(nt) \, \mathrm{d}t \, \operatorname{et} \, \forall n \in \mathbb{N}^*, \, b_n(f) = \frac{1}{\pi} \int_0^{2\pi} f(t) \sin(nt) \, \mathrm{d}t$$

Remarque 5. Soit $f \in L_1^{2\pi}$.

- On utilise en général les coefficients réels lorsque f est à valeurs réelles.
- Si f est paire (resp. impaire), les coefficients $b_n(f)$ (resp. $a_n(f)$) sont nuls.
- -- $\forall n \in \mathbb{N}, a_n(f) = c_n(f) + c_{-n}(f) \text{ et } \forall n \in \mathbb{N}^*, b_n(f) = i(c_n(f) + c_{-n}(f)).$
- On pourrait plus généralement définir les coefficients de Fourier d'une fonction Tpériodique pour toute période T > 0.

Exemple 6. On définit $\forall \alpha \in \mathbb{R} \setminus \mathbb{Z}$, $f_{\alpha} : t \mapsto \cos(\alpha t)$. Alors,

$$\forall n \in \mathbb{N}, a_n(f_\alpha) = (-1)^n \frac{2\alpha \sin(\alpha \pi)}{\pi(\alpha^2 - n^2)} \text{ et } \forall n \in \mathbb{N}^*, b_n(f_\alpha) = 0$$

2. Propriétés structurelles des espaces $L_p^{2\pi}$

a. L'algèbre $L_1^{2\pi}$

Proposition 7. Tout comme sur $L_1(\mathbb{R})$, on a un opérateur de convolution sur $L_1^{2\pi}$:

[BMP] p. 125

$$\forall f, g \in L_1^{2\pi}, \, \forall x \in \mathbb{R}, \, f * g(x) = \frac{1}{2\pi} \int_0^{2\pi} f(y)g(x-y) \, \mathrm{d}y$$

qui munit $L_1^{2\pi}$ d'une structure d'algèbre normée.

Proposition 8. Soient $f \in L_1^{2\pi}$, $a \in \mathbb{R}$ et $k, n \in \mathbb{Z}$.

[AMR08] p. 174

- (i) $f * e_n = c_n(f)e_n$.
- (ii) $|c_n(f)| \le ||f||_1$.
- (iii) $c_{-n}(f) = c_n(x \mapsto f(-x)).$
- (iv) $c_n(\overline{f}) = \overline{c_{-n}(f)}$.
- (v) $c_n(x \mapsto f(x-a)) = e_n(a)c_n(f)$.
- (vi) $c_n(e_k f) = c_{n-k}(f)e_n$.
- (vii) $c_n(f') = inc_n(f)$ si f est continue et \mathcal{C}^1 par morceaux.

Lemme 9 (Riemann-Lebesgue). Soit $f \in L_1^{2\pi}$. Alors $(c_n(f))$ tend vers 0 lorsque n tend vers $\pm \infty$.

[ВМР] р. 126

Théorème 10. Soit c_0 l'espace des suites de complexes qui convergent vers 0 en $-\infty$ et $+\infty$. L'application

$$\mathscr{F} : \begin{array}{ccc} L_1^{2\pi} & \to & c_0 \\ f & \mapsto & (c_n(f))_{n \in \mathbb{Z}} \end{array}$$

est un morphisme d'algèbres de $(L_1^{2\pi}, +, *, \|.\|_1)$ dans $(c_0, +, \cdot, \|.\|_{\infty})$ continu, de norme 1.

b. Propriétés hilbertiennes de $L_2^{2\pi}$

Théorème 11. Soit H un espace de Hilbert et $(\epsilon_n)_{n\in I}$ une famille orthonormée dénombrable de H. Les propriétés suivantes sont équivalentes :

- (i) La famille orthonormée $(\epsilon_n)_{n\in I}$ est une base hilbertienne de H.
- (ii) $\forall x \in H, x = \sum_{n=0}^{+\infty} \langle x, \epsilon_n \rangle \epsilon_n$.
- (iii) $\forall x \in H$, $||x||_2 = \sum_{n=0}^{+\infty} |\langle x, \epsilon_n \rangle|^2$.

Remarque 12. L'égalité du Théorème 11 Point (iii) est appelée égalité de Parseval.

Théorème 13. La famille $(e_n)_{n\in\mathbb{Z}}$ est une base hilbertienne de $L_2^{2\pi}$.

p. 123

p. 109

Corollaire 14.

$$\forall f \in L_2^{2\pi}, f = \sum_{n=-\infty}^{+\infty} c_n(f)e_n$$

Exemple 15. On considère $f: x \mapsto 1 - \frac{x^2}{\pi^2}$ sur $[-\pi, \pi]$. Alors,

p. 272

$$\frac{\pi^4}{90} = \|f\|_2 = \sum_{n=0}^{+\infty} \frac{1}{n^4}$$

Remarque 16. L'égalité du Corollaire 14 est valable dans $L_2^{2\pi}$, elle signifie donc que

[BMP] p. 124

$$\left\| \sum_{n=-N}^{N} c_n(f) e_n - f \right\|_2 \longrightarrow_{N \to +\infty} 0$$

3. Séries de Fourier

Définition 17. Soit $f \in L_1^{2\pi}$. On appelle **série de Fourier** associée à f la série $(S_N(f))$ définie par

GOU20] p. 269

$$\forall N \in \mathbb{N}, S_N(f) = \sum_{n=-N}^{N} c_n(f) e_n \stackrel{(*)}{=} \frac{a_0(f)}{2} + \sum_{n=1}^{N} (a_n(f) \cos(nx) + b_n(f) \sin(nx))$$

Remarque 18. L'égalité (*) de la définition précédente est justifiée car,

$$\forall n \in \mathbb{N}^*, \forall x \in \mathbb{R}, c_n(f)e^{inx} + c_{-n}(f)e^{-inx} = a_n(f)\cos(nx) + b_n(f)\sin(nx)$$

II - Divers modes de convergence

Nous avons vu que pour $f \in L_2^{2\pi}$, il y a convergence dans $L_2^{2\pi}$ de $(S_N(f))$ vers f. Cette section est dédiée à l'étude d'autres modes de convergence. En particulier, nous allons nous poser plusieurs questions :

[AMR08] p. 178

- Pour quelles fonctions f y a-t-il convergence de $(S_N(f))$?
- Y a-t-il convergence vers f?
- De quel type de convergence s'agit-il?

1. Convergence au sens de Cesàro

Définition 19. Pour tout $N \in \mathbb{N}$, la fonction $D_N = \sum_{n=-N}^N e_N$ est appelé **noyau de Dirichlet** d'ordre N.

p. 184

Proposition 20. Soit $N \in \mathbb{N}$.

- (i) D_N est une fonction paire, 2π -périodique, et de norme 1.
- (ii)

$$\forall x \in \mathbb{R} \setminus 2\pi \mathbb{Z}, D_N(x) = \frac{\sin((N + \frac{1}{2})x)}{\sin(\frac{x}{2})}$$

(iii) Pour tout $f \in L_1^{2\pi}$, $S_N(f) = f * D_N$.

Définition 21. Pour tout $N \in \mathbb{N}$, la fonction $K_N = \frac{1}{N} \sum_{j=0}^{N-1} D_j$ est appelé **noyau de Fejér** d'ordre N.

Notation 22. Pour tout $N \in \mathbb{N}^*$, on note $\sigma_N = \frac{1}{N} \sum_{k=0}^{N-1} S_n(f)$ la somme de Cesàro d'ordre N de la série de Fourier d'une fonction $f \in L_1^{2\pi}$.

Proposition 23. Soient $N \in \mathbb{N}^*$ et $f \in L_1^{2\pi}$.

- (i) K_N est une fonction positive et de norme 1.
- (ii)

$$\forall x \in \mathbb{R} - 2\pi \mathbb{Z}, K_N(x) = \frac{1}{N} \left(\frac{\sin(\frac{Nx}{2})}{\sin(\frac{x}{2})} \right)^2$$

- (iii) $K_N = \sum_{n=-N}^{N} \left(1 \frac{|n|}{N}\right) e_n$.
- (iv) $\sigma_N(f) = f * K_N$.

[**DEV**] p. 190

Théorème 24 (Fejér). Soit $f : \mathbb{R} \to \mathbb{C}$ une fonction 2π -périodique.

- (i) Si f est continue, alors $\|\sigma_N(f)\|_{\infty} \le \|f\|_{\infty}$ et $(\sigma_N(f))$ converge uniformément vers f.
- (ii) Si $f \in L_p^{2\pi}$ pour $p \in [1, +\infty[$, alors $\|\sigma_N(f)\|_p \le \|f\|_p$ et $(\sigma_N(f))$ converge vers f pour $\|.\|_p$.

Corollaire 25. L'espace des polynômes trigonométriques $\{\sum_{n=-N}^N c_n e_n \mid (c_n) \in \mathbb{C}^{\mathbb{N}}, N \in \mathbb{N}\}$ est dense dans l'espace des fonction continues 2π -périodiques pour $\|.\|_{\infty}$ et est dense dans $L_p^{2\pi}$ pour $\|.\|_p$ avec $p \in [1, +\infty[$.

Application 26. L'application ${\mathscr F}$ du Théorème 10 est injective.

[**BMP**] p. 128

Application 27 (Théorème de Weierstrass). Toute fonction continue sur un intervalle compact [a, b] est limite uniforme sur [a, b] d'une suite de polynômes.

[AMR08] p. 192

2. Convergence ponctuelle

Théorème 28 (Dirichlet). Soient $f : \mathbb{R} \to \mathbb{C}$ 2π -périodique, continue par morceaux sur \mathbb{R} et $t_0 \in \mathbb{R}$ tels que la fonction

[**GOU20**] p. 271

$$h \mapsto \frac{f(t_0 + h) + f(t_0 - h) - f(t_0^+) - f(t_0^-)}{h}$$

est bornée au voisinage de 0. Alors,

$$S_N(f)(t_0) \longrightarrow_{N \to +\infty} \frac{f(t_0^+) + f(t_0^-)}{2}$$

Contre-exemple 29. Soit $f : \mathbb{R} \to \mathbb{R}$ paire, 2π -périodique telle que :

$$\forall x \in [0, \pi], f(x) = \sum_{p=1}^{+\infty} \frac{1}{p^2} \sin\left((2^{p^3} + 1)\frac{x}{2}\right)$$

Alors f est bien définie et continue sur \mathbb{R} . Cependant, sa série de Fourier diverge en 0.

Corollaire 30. Soient $f: \mathbb{R} \to \mathbb{C}$ 2π -périodique, \mathscr{C}^1 par morceaux sur \mathbb{R} . Alors,

$$\forall x \in \mathbb{R}, S_N(f)(x) \longrightarrow_{N \to +\infty} \frac{f(x^+) + f(x^-)}{2}$$

En particulier, si f est continue en x, la série de Fourier de f converge vers f(x).

Exemple 31. En reprenant la fonction de l'Exemple 15,

$$\forall x \in [-\pi, \pi], f(x) = \frac{2}{3} - \frac{4}{\pi^2} \sum_{n=1}^{+\infty} (-1)^n \frac{\cos(nx)}{n^2}$$

3. Convergence normale

Proposition 32. Soit $f \in L_1^{2\pi}$ et telle que sa série de Fourier converge normalement. Alors, la somme $g: x \mapsto \sum_{n=-\infty}^{+\infty} c_n(f)e_n(x)$ est une fonction continue 2π -périodique presque partout égale à f. De plus, si f est continue, l'égalité f(x) = g(x) est vraie pour tout x.

[**BMP**] p. 128

Proposition 33. Soit $f : \mathbb{R} \to \mathbb{C}$ 2π -périodique continue et \mathscr{C}^1 par morceaux sur \mathbb{R} . Alors $(S_N(f))$ converge normalement vers f.

Application 34 (Développement eulérien de la cotangente).

[AMR08] p. 211

$$\forall u \in \mathbb{R} \setminus \pi \mathbb{Z}$$
, $\operatorname{cotan}(u) = \frac{1}{u} + \sum_{n=1}^{+\infty} \frac{2u}{u^2 - n^2 \pi^2}$

III - Applications

1. Calcul de sommes, de produits et d'intégrales

Application 35. En utilisant l'Exemple 31, avec $x = \pi$, on retrouve

[**GOU20**] p. 272

$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

Application 36.

$$\forall t \in]-\pi, \pi[, \sin(t) = t \prod_{n=1}^{+\infty} \left(1 - \frac{t^2}{n^2 \pi^2}\right)$$

Application 37 (Sommes de Gauss).

[AMR08] p. 221

$$\forall m \in \mathbb{N}^*, \sum_{n=0}^{m-1} e^{\frac{2i\pi n^2}{m}} = \frac{1+i^{-m}}{1+i^{-1}}$$

Application 38 (Intégrales de Fresnel).

$$\int_{-\infty}^{+\infty} \cos(2\pi u^2) \, du = \int_{-\infty}^{+\infty} \sin(2\pi u^2) \, du = \frac{1}{2}$$

Application 39. Soit a > 0. En considérant la fonction $t \mapsto \frac{1}{\cosh(a) + \cos(t)}$, on en déduit que

[AMR11] p. 325

[GOU20]

p. 284

$$\forall n \in \mathbb{N}, \int_0^{\pi} \frac{\cos(nt)}{\cosh(a) + \cos(t)} dt = (-1)^n \frac{\pi e^{-na}}{\sinh(a)}$$

2. Équations fonctionnelles

[DEV]

Théorème 40 (Formule sommatoire de Poisson). Soit $f : \mathbb{R} \to \mathbb{C}$ une fonction de classe \mathscr{C}^1 telle que $f(x) = O\left(\frac{1}{x^2}\right)$ et $f'(x) = O\left(\frac{1}{x^2}\right)$ quand $|x| \to +\infty$. Alors :

$$\forall x \in \mathbb{R}, \sum_{n \in \mathbb{Z}} f(x+n) = \sum_{n \in \mathbb{Z}} \widehat{f}(2\pi n) e^{2i\pi nx}$$

où \widehat{f} désigne la transformée de Fourier de f .

Application 41 (Identité de Jacobi).

$$\forall s > 0, \sum_{n = -\infty}^{+\infty} e^{-\pi n^2 s} = \frac{1}{\sqrt{s}} \sum_{n = -\infty}^{+\infty} e^{-\frac{\pi n^2}{s}}$$

3. Inégalités remarquables

Application 42 (Inégalité isopérimétrique). Soit $\gamma:[0,1]\to\mathbb{R}^2$ une courbe de Jordan (ie. $\gamma(0)=\gamma(1), \gamma$ est injective sur]0,1[et $\gamma'\neq 0)$ de classe \mathscr{C}^1 de longueur L et enfermant une surface S. Alors,

 $S \leq \frac{L^2}{4\pi}$

avec égalité si et seulement si γ définit un cercle.

Application 43 (Inégalité de Wirtinger). Soit $f : [a, b] \to \mathbb{C}$ de classe \mathscr{C}^1 telle que f(a) = f(b) = 0. Alors,

$$\int_{a}^{b} |f(x)|^{2} dx \le \frac{(b-a)^{2}}{\pi} \int_{a}^{b} |f'(x)|^{2} dx$$

De plus, la constante $\frac{(b-a)^2}{\pi}^2$ est optimale.

p. 215

[AMR08]

[Z-Q] p. 106

Application 44 (Inégalité de Bernstein). Soient $\lambda>0$ et $\lambda_1,\dots,\lambda_n\in\mathbb{R}$ distincts et tels que $\max_{j\in \llbracket 1,n\rrbracket}|\lambda_j|<\lambda.$ On définit

$$h: t \mapsto \sum_{j=1}^{n} a_j e^{i\lambda_j t}$$
 où $a_1, \dots, a_n \in \mathbb{C}$

Alors h et sa dérivée h' sont bornées et on a :

$$||h'||_{\infty} \le \lambda ||h||_{\infty}$$

Annexes

Hypothèses sur f	Convergence de sa série de Fourier $(S_N(f))$
$f \in L_2^{2\pi}$	Convergence pour $\ .\ _2$.
f continue	Convergence uniforme au sens de Cesàro.
$f \in L_p^{2\pi} \ (p \in L_p[1, +\infty[)$	Convergence pour $\ .\ _p$ au sens de Cesàro.
$f \mathscr{C}^1$ par morceaux	Convergence ponctuelle vers une valeur moyenne.
f continue et \mathscr{C}^1 par morceaux	Convergence normale.

Figure 1 – Convergence d'une série de Fourier selon les hypothèses sur la fonction de départ.

Bibliographie

Analyse de Fourier dans les espaces fonctionnels

[AMR08]

Mohammed El-Amrani. *Analyse de Fourier dans les espaces fonctionnels. Niveau M1*. Ellipses, 28 août 2008.

https://www.editions-ellipses.fr/accueil/3908-14232-analyse-de-fourier-dans-les-espaces-fonctionnels-niveau-m1-9782729839031.html.

Suites et séries numériques, suites et séries de fonctions

[AMR11]

Mohammed El-Amrani. *Suites et séries numériques, suites et séries de fonctions*. Ellipses, 15 nov. 2011.

https://www.editions-ellipses.fr/accueil/3910-14234-suites-et-series-numeriques-suites-et-series-de-fonctions-9782729870393.html.

Objectif agrégation

[BMP]

Vincent BECK, Jérôme Malick et Gabriel Peyré. *Objectif agrégation*. 2^e éd. H&K, 22 août 2005. https://objectifagregation.github.io.

Les maths en tête [GOU20]

Xavier Gourdon. Les maths en tête. Analyse. 3e éd. Ellipses, 21 avr. 2020.

 $\verb|https://www.editions-ellipses.fr/accueil/10446-les-maths-en-tete-analyse-3e-edition-9782340038561.html.|$

Analyse pour l'agrégation

[Z-Q]

Claude Zuily et Hervé Queffélec. *Analyse pour l'agrégation. Agrégation/Master Mathématiques.* 5° éd. Dunod, 26 août 2020.

 $\verb|https://www.dunod.com/prepas-concours/analyse-pour-agregation-agregationmaster-mathematiques.||$