Cryptanalysis

Introduction to Public Key Systems: RSA

John Manferdelli JohnManferdelli@hotmail.com

© 2004-2020, John L. Manferdelli.

This material is provided without warranty of any kind including, without limitation, warranty of non-infringement or suitability for any purpose. This material is not guaranteed to be error free and is intended for instructional use only.

Public Key (Asymmetric) Cryptosystems

- An asymmetric cipher is a pair of key dependant maps, (E(PK,-), D(pK,-)), based on related keys (PK, pK).
- D(pK, E(PK,x))=x, for all x.
- PK is called the public key. pK is called the private key.
- Given PK it is infeasible to compute pK and infeasible to compute x given y= E(PK, x).

Diffie, Hellman, Ellis, Cocks, Williamson. Diffie and Hellman, "New Directions in Cryptography", IEEE Trans on IT 11/1976. CESG work in 1/70-74.

Uses of Public-Key Ciphers

- Symmetric Key Distribution
- Key Exchange and other protocols
- Digital Signatures
- Sealing Symmetric Keys (SMIME)
- Authentication
- Proving Knowledge without disclosing secrets (used in anonymous authentication)
- Symmetric Key systems cannot do any of these. However, symmetric key systems are *much* faster than Public Key systems.

Symmetric Key Distribution

- Imagine you are the head of security for Microsoft and insist that all Microsoft financial communications transmitted over the Internet be encrypted for your finance machines. You buy "black boxes" for every Internet egress point, each with a known Public Key (the private key is generated on the black box and is known only to that hardware).
- Every day, just before 0^h Zulu, you generate a new symmetric key K_d, encrypt it and transmit E(PK_i, K_d) to each black box, i, (Hopefully, using a mechanism that insures that it comes from you or what happens?)
- What's good about this? Keys are never touched by humans.
- What would you do if you were worried that some black boxes could be compromised (i.e.- private keys determined)?

Diffie Hellman Key Exchange (simplified)

A1: s= min(p size), $N_a in \{0, ... 2^{256}-1\}$

A2: Check
$$(p,q,g) X$$
,
Auth_B, pick y in $\{0,...q-1\}$

$$K = X^y$$

B2: Check Y, Auth_A

Digital Signatures

- I want to send you messages you can rely from time to time, like:
 - M="I, John Manferdelli, promise on March 1, 2013, that (1) I will give everyone in CS 294-90 an A, (2) I will eat my vegetables."
- How can I prove (electronically) they come from me?
 - I generate a public/private key pair PK_{JLM}, pK_{JLM}.
 - One day in class I personally give you PK_{IIM} on a piece of paper.
 - When I send a message like M I also transmit: D(pK_{JLM}, SHA-256(M)).
 - When you get M, you calculate SHA-256(M) and compare it to E(PK_{JLM}, SHA-256(M)), if it matches, you can tell it's from me.

Sealing Symmetric Keys (Key encapsulation)

- I want to send you a confidential document, M (like an email). I know your public key PK_{you} (maybe you told it to me, maybe it's in a directory, maybe someone I trust gave it to me and vouched for it).
- I generate a new symmetric key, K, at random.
- I encrypt M with CBC-AES using K and transmit to you:
 - 1. IV
 - 2. $CBC-AES_{\kappa}(IV,M)$
 - 3. $E(PK_{you}, K)$
 - 4. I may also sign the message so you can be sure it came from me
- This is essentially how S/MIME mail works.

Authentication

- I am on a physically secure line (no one can eavesdrop or modify messages between me and the other end point) so I'm not worried about confidentiality.
- I want to make sure you, my lawyer, is on the other end and I know your public key PK_{vou}.
- Before I say anything I'd regret reading in the New York Times, I generate a (big) random number, N and append the date and time, calling this entire message, M. I transmit M and ask you to apply $D(pK_{you}, M)$. If $E(PK_{you}, M)=M$, I can be sure it's my attorney; otherwise, I take the fifth.

Trapdoor functions

- Public Key systems are based on "computationally hard" "trap door problems".
 - Find a function y=f(x) which is easy to compute but hard to invert without "secret" information, t forming the trapdoor. With t, it is easy to compute g(t, f(x))=x
- Some trapdoors
 - Factoring: $f(x) = x^e \pmod{n}$. n = pq, p, q are "large" primes —thousands of bits long. Knowledge of p and q is the trapdoor.
 - Discrete Log: $h=g^a \pmod{p}$. $f(x)=(xh^b,g^b)$, b selected at random by encryptor. a is the trapdoor.
 - Elliptic curve discrete log: Given Elliptic curve E(a,b): $y^2=x^3+ax+b$, over a finite field Z_p , and a base point B=nP. Message is encoded as point on E(a,b), M. f(M)=(M+rB,rP). r is picked randomly by encryptor. Trapdoor is n.

Existing Public-Key Ciphers

- Rivest Shamir Andelman (1978)
 - Based on factoring
- El Gamal (1984)
 - Based on discrete log
- Elliptic Curve (1985, Miller-Koblitz)
 - Based on elliptic curve discrete log (over finite fields).
- New NIST PK systems
 - Based on shortest vector in lattice

Math for RSA

Some Number Theory

- Fundamental Theorem of Arithmetic
- Euclidean algorithm for GCD
- Solving congruences
- Chinese remainder theorem
- Integer arithmetic mod n
- Fermat's Theorem
- Quadratic Reciprocity: Legendre and Jacobi symbols.
- Primality testing

Fundamental Theorem of Arithmetic

- Let n be any positive integer, n can be written as a product of primes in an essentially unique way (except for units and the order of the primes).
- It may be hard to actually carry out this factorization.
- Easy to get rid of small factors.
- Suppose n=ab and a as well as b are "large."
- Example: Factor 9,313,729.
 - $= 2713 \times 3433$
- Have to try factors until about n^{1/2}.
- Factoring is hard

Greatest common divisor

- gcd(a,b):= max{teZ, t>0: t|a and t|b. Sometimes simply denoted (a,b).
 - -(4,6)=2, (12,36)=12, (2,5)=1
- Euclid's algorithm: If a,b ε Z⁺, a>b, \exists q, r ε Z⁺: a=bq+r, 0 \leq r<b.
 - If r=0, $b \mid a$.
- **Plucker**: ∃x,yεZ: (a,b)= ax+by

Proof (and efficient computation) uses Euclidean algorithm. Suppose a>b. a=bq+r and t|a, t|b \rightarrow t|r. Put s=(a,b) and a=r₀ and b=r₁. We have r₀=q₁r₁+r₂, and s|r₂. We compute successively r_{i-1}=q_ir_i+r_{i+1}, noting that s|r_i. Eventually, we come to a k: r_{k-1}=q_kr_k+r_{k+1}, and r_k=q_{k+1}r_{k+1}. We claim (a,b)= r_{k+1}. Observe that using these recursions, we can write r_k= ax+by; for example, the first two recursions give r₂=a-bq₁ and b=r₂q₂+r₃, yielding r₃=b-r₂q₂=b-q₂(a-bq₁)= aq₂+b(1-q₁q₂). It is also clear by induction that r_{k+1}|s and r_{k+1}|r_i, i<k+1. Thus r_{k+1}|a and r_{k+1}|b so s|r_{k+1}. Since r_{k+1}|s and s|r_{k+1}, |s|=|r_{k+1}|.

Chinese Remainder Theorem

- If $x=a_1 \pmod{m_1}$ and $x=a_2 \pmod{m_2}$ and $(m_1, m_2)=1$, then the simultaneous equations have a unique solution mod m_1m_2 .
- Proof: $k_1m_1+k_2m_2=1$. Set $a=a_2k_1m_1+a_1k_2m_2$. This is a solution. Also a practical computational method.

CRT Example

- N= 1517= 37 x 41, solve $5 x^2 = 2 \pmod{1517}$.
- First solve $5 x^2 = 2 \pmod{37}$ and $5 x^2 = 2 \pmod{41}$.
 - (15)5 + (-2)37 = 1 and (-8)5 + (1)41 = 1 so:
 - $x^2 = 2 \times 15 = 30 \pmod{37}$ and $x^2 = 2 \times (-8) = 25 \pmod{41}$.
 - $-20^2 = 30 \pmod{37}$ and $5^2 = 25 \pmod{41}$.
- Use CRT
 - -(10)37+(-9)41=1
 - (5)(10)(37)+(20)(-9)(41)= 538= y (mod 1517)
 - $-5 (538)^2 = 2 \pmod{1517}$.

Solving Congruences (mod p)

- Solve ax=b (mod p)
 - Procedure: If (a,p) does not divide b, there is no solution if b≠0(mod p) and everything is a solution if b=0(mod p). After dividing both sides by (a,b), this leaves us with (a, p)=1. We find u,v such that au+pv=1. (ub) is the solution.
 - This is very fast even if a, b and p are enormous integers.
- We can also solve recurrences of the form ax=b (mod p^e)

Solving Congruence Example

- Solve 5x=2 (mod 37)
- (15)5 + (-2)37 = 1 so the solution is $(2x15)=30 \pmod{37}$
- 5x30= 150= 4x37+2
- If only all problems were this easy

A little group theory

- A group, G, is a with an operation * (usually written as multiplication) such that:
 - a*(b*c)=(a*b)*c
 - a*1=1*a=a
 - $\forall a \exists a^{-1}: a^*a^{-1} = 1$
- S is a subgroup of G If S⊆G and S is a group.
- Lagrange's Theorem: if S is a subgroup of a finite group G, then
 |S| | |G|.

Proof: Let $a\varepsilon G$ then $Sa=\{sa: s\varepsilon S\}$. Sa=Sb or $Sa\cap Sb=\emptyset$. [If $s_1a=s_2b$, then $ss_1^{-1}s_1a=sa\varepsilon Sb$ for any $s\varepsilon S$, similarly $ss_2^{-1}s_2b=sa\varepsilon Sa$ so Sa=Sb.] Thus G is a disjoint union of Sa_i for selected $a_i\varepsilon G$.

- Example (cyclic groups):
 - $C_n = \{g^1, g^2, ...g^n = 1\}$. $g^i g^j = g^{(i+j)(mod n)}, g^0 = 1$.
- $C_6 = \{1, g, g^2, g^3, g^4, g^5\}$. $S_0 = \{1\}$, $S_1 = \{1, g^2, g^4\}$ and $S_2 = \{1, g^3\}$ are all subgroups of C_6 . Note that $1 \mid 6, 3 \mid 6$ and $2 \mid 6$.

Multiplicative group mod p

- \mathbb{Z}_p^* is the multiplicative group mod p.
- $\mathbb{Z}_p^* = p 1$
- So, if $a \in \mathbb{Z}_p^*$, $a^{p-1} = 1 \pmod{p}$
- A theorem (we won't prove it) is that \mathbb{Z}_p^* is a cyclic group. The generators are called primitive elements.
- Since p-1 is even (unless p=2), \mathbb{Z}_p^* always has a subgroup of order $\frac{p-1}{2}$.

Primitive roots mod p

- Wilson's theorem: a^{p-1} =1 (mod p)
 Proof: The size of the multiplicative group, Z_p*, is p-1. <aⁱ, i=1,....>=S is a subgroup of the multiplicative group. |S|= smallest t≥1: a^t=1. By Lagrange, t=|S| | |Z_p*|=p-1 so a^{p-1} =1 (mod p).
- Generators mod p are also called primitive roots primitive roots are "irreducible" solutions to $x^{p-1}=0=0$
- Example: p=11, 2 is a primitive root

i	2 ⁱ (mod 11)
1	2
2	4
3	8
4	5 (=16)
5	10

i	2 ⁱ (mod 11)
6	9 (=20)
7	7
8	3
8	6
10	1

Composite moduli and $\varphi(n)$

- $Z_n^* = \{0 < x < n: (x,n) = 1\}.$
- Z_n^* is a multiplicative group: Proof: $x, y \in Z_n^* \to (x,n)=(y,n)=1$ so (xy, n)=1 and $xy \in Z_n^*$. If $ax=ay \pmod{n}$, and $a,x,y \in Z_n^*$ then x=y since a(x-y)=kn and $(a,n)=1 \to (x-y)|n$ so $x=y \pmod{n}$. Now, since Z_n^* is finite, $x^i=x^j$ for some $i\neq j$. So i>j, $x^{(i-j)}=1 \pmod{n}$ by the cancellation property and Thus $xx^{(i-j-1)}=1 \pmod{n}$ and $x^{(i-j-1)}$ is the inverse of x.
- $\varphi(n) = |\mathbb{Z}_n^*|$.
- If a $\mathbf{\tilde{\epsilon}} \, \mathbf{\tilde{Z}_n}^*$, $a^{\varphi(n)} = 1 \pmod{n}$ For n=p, $\varphi(p) = p-1$ and this is just Wilson's theorem.
- If (a, b) = 1, $\varphi(ab) = \varphi(a)\varphi(b)$
- Proof: Since (a,b)=1, $\exists x,y \ \epsilon \ Z$: ax+by=1. Suppose $(a_i,a)=1$ and $(b_j,b)=1$, put $t_{ij}=b_iax+a_iby$. $t_{ij}=a_i \pmod a$ and $t_{ij}=b_j \pmod b$. By the CRT, t_{ij} is unique mod ab and further, $(t_{ij},a)=1=(t_{ij},b)$. There are f(a)f(b) such t_{ij} so $|\mathbb{Z}_{ab}^*|=\varphi(a)\varphi(b)$.

The Multiplicative Group (mod n)

- $\bullet \quad \varphi(p^e) = (p-1)p^{e-1}$
- If $n = \prod_{i=1}^{k} p_i^{e_i}$, $\varphi(n) = n \prod_{i=1}^{k} (1 \frac{1}{p_i})$ Proof: $f(n) = f(\prod_{i=1}^{k} p_i^{e[i]}) = \prod_{i=1}^{k} f(p_i^{e[i]}) = \prod_{i=1}^{k} (p_i - 1) p_i^{e[i] - 1} = n P_{i=1}^{k} (1 - 1/p_i)$.
- $|\mathbb{Z}_n^*| = \varphi(n)$ so $(a,n)=1 \rightarrow a^{\varphi(n)} = 1 \pmod{n}$ Proof: $|\mathbb{Z}_n^*| = \varphi(n)$ so by Lagrange's Theorem the size of the subgroup generated by a which is the smallest integer |a|, such that $a^{|a|}=1$ divides $\varphi(n)$ so $\varphi(n) = |a|m$. As a result, $a^{f(n)}=a^{|a|m}=1^m=1$.

For n composite, multiplicative group need not be cyclic

- $a^{\varphi(n)} = 1 \pmod{n}$, but there may be an $m \mid \varphi(n)$ with this property too.
- Thus, the multiplicative group may not be cyclic
- Example 1:
 - n = 15 = 3×5, $\varphi(15) = \varphi(3)\varphi(5) = 2 \times 4 = 8$, but if (a, 15)=1, a⁴=1 (mod 15)
 - Another example: $\varphi(2800) = 960$, but if (a, 2800)=1, a^{60} =1 (mod 2800)

a	a ⁴ (mod 15)
2	1
4	1
7	1
8	1

a	a ⁴ (mod 15)
11	1
13	1
14	1
1	1

$\varphi(n)$

- Examples: $\varphi(1) = 1$, $\varphi(5) = 4$, $\varphi(25) = 20$, $\varphi(135) = 40$.
- Special case for RSA: n = pq, $\varphi(pq) = \varphi(p)\varphi(q) = (p-1)(q-1)$.
- e=5 and (e, (p-1)(q-1))=1
- There are integers d, m: $ed + m\varphi(n) = 1$
- Put x= a^e (mod n):
 - $x^d = a^{ed} \pmod{n} = a^{1-m\varphi(n)} \pmod{n} = a.$
- Example:
 - n= 13x17=221. $\varphi(221)=12\times16=192$.
 - -5(-115)+192(3)=1. d=-115=192-115=77 (mod f(n)).
 - $a = 53 \text{ so } x = 53^5 = 53^2 53^2 53 \pmod{221} = 157x157x53 = 66 \pmod{221}$
 - $-66^{77}=66^{64} \times 66^8 \times 66^4 \times 66^1 \pmod{221}$.
 - 66¹(mod 221)= 66, 66²(mod 221)= 157, 66⁴(mod 221)= 118, 66⁵(mod 221)= 1.
 - $-66^{77}=66^{64}\times66^{8}\times66^{4}\times66^{1}\pmod{221}=1\times1\times118\times66=7788-35(221)=53.$

Solving Congruences (mod n)

- Solve ax=b (mod n)
 - Same as for n=p, except some equations will not have solutions.
 - Procedure: If (a,n) does not divide b, there is no solution if b>0 (mod n) and everything is a solution if b=0 (mod n). After dividing both sides by (a,n), This leaves us with $\left(a,\frac{n}{(a,n)}\right)=1$. We find u,v such that au+pn=1. (ub) is the solution.

Solving Congruence Example mod n

- Solve 3x=2 (mod 55)
 - -3(-18)+55(1)=1
 - $-3(-18)=3(55-18)=3(37)=1 \pmod{55}$
 - $-3(37x2)=2 \pmod{55}$
 - So 74= 19 (mod 55) is a solution: 3x19=57=2 (mod 55)

Quadratic Residues

- Which elements, x, of \mathbb{Z}_p^* have square roots?
 - Is there a y $\mathbf{\varepsilon} \mathbb{Z}_p^*$ such that $x=y^2$?
 - Suppose g is a generator, look at {g, g²,...,g^(p-1)}.
 - Even if $x = g^{2k}$ and $y = g^k$, then $y^2 = x$.
- If $x \in \mathbb{Z}_p^*$ has a square root, y, then $x^{(p-1)/2}=y^{(p-1)}=1 \pmod{p}$.
- If $x^{(p-1)/2} \neq 1$ then x does not have a square root.
- Since $x^{(p-1)}=1$, $x^{(p-1)/2}$ is 1 or -1 (mod p). This leads to:
 - If $x^{(p-1)/2} = 1 \pmod{p}$ then x has a square root.
 - If $x^{(p-1)/2} = -1$ (mod p) then x does not have a square root.
- Define (a/p)=1 if a has a square root and (a/p)=-1. This is called the *Legendre* symbol.
- $(a/p)=a^{(p-1)/2}$.
- If a and b both have square roots so does ab. If neither a nor b has a square root ab has a square root. If only one of a, b has a square root then ab does not have a square root.
- $\bullet \quad \left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$

Law of Quadratic Reciprocity

- If p and q are primes, define $\left(\frac{a}{p}\right) = 1$ if there is an x: $x^2 = a \pmod{p}$, 0 of p|a, and -1 is there is no such x.
- $\bullet \quad \left(\frac{a}{p}\right) = a^{\frac{p-1}{2}} \pmod{p}$
- $\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right)$ • $\left(\frac{p}{q}\right) \left(\frac{q}{p}\right) = -1^{\frac{p-1q-1}{2}}$
- This allows us to solve quadratic equations in a prime field.

Quadratic Reciprocity Example

	7	11	13	17	29	31
7		-1	-1	-1	1	1
11	1		-1	-1	-1	-1
13	-1	-1		1	1	-1
17	-1	-1	1		-1	-1
29	1	-1	1	-1		-1
31	-1	1	-1	-1	-1	

- $(7/11)(11/7)=(-1)^{5\times 3}=-1$
- $(7/13)(13/7)=(-1)^{6\times 3}=1$
- $(7/17)(17/7)=(-1)^{8\times 3}=1$
- $(11/31)(31/11)=(-1)^{15\times 5}=-1$

Entry in row i, column j is p[i]^{([j]-1)/2}

Large Integer Computation

- Almost all public key algorithms are based on "hard" number theory problems over enormous (e.g.- 2048 bit) integers.
- We need to know how to do arithmetic on computers with huge numbers
 - Addition/subtraction
 - Multiplication
 - Modulus
 - Modular inverses
 - Exponentiation
 - Testing Primality
 - Factoring

Algorithm Timings

- Adding two m-bit numbers takes O(m) time.
- Multiplying two m-bit numbers takes <O(m²).
- Multiplying a 2m-bit number and reducing modulo and m-bit number takes O(m²).
- Computing (a, b) for a, b< n takes O(ln²(n)) time (i.e.- fast). This is Euclid's Algorithm and it started Knuth, Euclid and everyone else off on computational complexity. If n has m bits this is O(m²).
- Testing a number n for primality takes O(n^{clg(lg(n))})=O(2^{cmlg(m)}).
- Best known factoring: $O(n^{c(\lg(n)^{(1/3)}(\lg(\lg(n))^{(2/3))}})=O(2^{cm(m^{(1/3)}(\lg(m)^{(2/3))}})$. [a lot longer].

Primes are plentiful

- Euclid: There are infinitely many primes
- Prime Number Theorem: The number of primes, $\pi(n)$, less than or equal to n is asymptotically equal to $\frac{n}{\ln(n)}$.
 - Spookily accurate even for pretty small n.
 - First proof using complex analysis sketched by Riemann, finished by Hadamard and de la Vallee-Poussin. "Elementary" proof by Erdos and Selberg.
- Chebyshev's Theorem: For x>200, $c_1 \frac{x}{\ln(x)} < p(x) < c_2 \frac{x}{\ln(x)}$, $c_1 = \frac{2}{3}$, $c_2 = 1.7$ Pretty easy to prove.
- Bertrand's Postulate: For all n>2 there is a prime between n and 2n

Prime Distribution Example

n	p(n)	n/ln(n)	p(n)/(n/ln(n))
10	4	4.34	.9217
50	14	12.78	1.10
100	25	21.71	1.15
500	95	80.46	1.17
1000	168	144.76	1.16
10 ⁶	78498	72382	1.08
10 ⁹	50847478	48254949	1.05

Factoring and exponents

- Suppose n is the product of two (possibly unknown) primes, p. If $\varphi(n)$ is known, we can calculate p and q.
- Proof:
 - If p and q are known, $\varphi(n) = (p-1)(q-1)$.
 - Set $\varphi(x) = x^2 Ax + 1$ where $A = 1 \varphi(n) + n + 1$. p and q are the roots of $\varphi(x) = 0$. We can solve this equation.
- Note: If $(e, \varphi(n) = 1)$, we can calculate d: $ed = 1 \pmod{\varphi(n)}$ if we know p and q, this theorem tells us if we know a universal exponent, we can calculate d.

Universal Exponent Theorem

- Suppose n is composite, say, n=pq. Given r>0, a^r = 1 (mod n), for all a: (a,n)=1, we can factor n.
 - So if we know $\varphi(pq)$, we can factor n.
- Method: Let $r=2^km$, m, odd. Put $b_0=a^m$ (mod n) and $b_{i+1}=b_i^2$ (mod n).
 - 1. If $b_0 = 1$, pick another a.
 - 2. If $b_{i+1} = 1$ and $b_i = -1$, pick another a.
 - 3. If $b_{i+1}=1$ and $b_i>=\pm 1$, $d=(b_i-1, n)$ is a non-trivial factor of n.

Universal Exponent Example

- Let n= 1517. Note that a¹⁴⁴⁰=1 (mod n).
 - $-1440=2^{5}(45)$, m= 45.
 - $-b_0 = 2^{45} = 401 \pmod{1517}$
 - b₁= 401² =1(mod 1517). Try again.
 - $-b_0 = 3^{45} = 776 \pmod{1517}$
 - $-b_1 = 776^2 = 1444 \pmod{1517}$
 - $-b_2 = 1444^2 = 778 \pmod{1517}$.
 - $-b_3 = 778^2 = 1 \pmod{1517}$.
 - (778-1, 1517)= (777, 1517)=37.

Representing Large Integers

- Numbers are represented in base 2^{ws} where ws is the number of bits in the "standard" unsigned integer (e.g. – 32 on IA32, 64 on x64)
- Each number has three components:
 - Sign
 - Size in 2^{ws} words
 - -2^{ws} words where n= i[ws-1]2^{ws(size-1)} + ...+ i[1]2^{ws} + i[0]
 - Assembly is often used in inner loops to take advantage of special arithmetic instructions like "add with carry"

Classical Algorithms Speed

- For two numbers of size s₁ and s₂ (in bits)
 - Addition/Subtraction: $O(s_1)+O(s_2)$ time and $max(s_1, s_2)+1$ space
 - Multiplication/Squaring: $O(s_1) \times O(s_2)$ time and space (you can save roughly half the multiplies on squaring)
 - Division: $O(s_1) \times O(s_2)$ time and space
 - Uses heuristic for estimating iterative single digit divisor: less than 1 high after normalization
 - Extended GCD: O(s₁) x O(s₂)
 - Modular versions use same time (plus time for one division by modulus) but smaller space
 - Modular Exponentiation (a^e (mod n)): O((size e)(size n)²) using repeated squaring
 - Solve simultaneous linear congruence's (using CRT): O(m²) x time to solve 1 where m= number of prime power factors of n

Karasuba Multiplication

- $(a2^k+b)(c2^k+d)=ac2^{2k}+(ad+bc)2^k+bd$
 - 4 multiplies
 - Asymptotically n²
- To save 1 multiply compute
 - t= (a+b)(c+d)= ac+ad+bc+bd
 - ac
 - bd
 - t-ac-bd= ad+bc
 - 3 multiplies, 2 adds
 - Asymptotically n^{lg(3)}, lg(3) is about 1.58

Integer Squaring

- Reduced number of multiplies because of symmetry
 - $a = 2^n a_1 + a_0, b = 2^n b_1 + b_0$
 - $ab = 2^{2n}a_1b_1 + 2^n(a_1b_0 + b_1a_0) + b_0a_0$
 - 4 multiplies
 - $a^2 = 2^{2n}a_1^2 + 2^{n+1}a_1a_0 + a_0^2$
 - 3 multiplies
- Cost: If a is t words long, a² takes (t+1)t/2 single precision multiplies

Integer Division Algorithm

- $x = (x_n x_{n-1} ... x_0)_b, y = (y_n y_{n-1} ... y_0)_b$
- $x/y=q=(q_{n-1} q_{n-1} ... q_0)_b$, x mod y= r = $(r_n r_{n-1} ... r_0)_b$
- Key Step: Estimate Quotient
 - If y_t s [b/2], the estimate
 - $-q_{i-t-1}=(x_ib+x_{i-1})/y_t$ is at most 2 greater than the correct value
 - If $q_{i-t-1} = (x_ib^2 + x_{i-1}b + x_{i-2})/(y_tb + y_{t-1})$ is at most 1 greater than the correct value

Integer Division

```
1. Normalize: while (x>=yb^{n-t}) q_{n-t}++; x-=yb^{n-t};
2. For (i=n, downto t+1)
2.1 if(x_i=y_t) q_{i-t-1}=b-1
else q_{i-t-1}=[x_ib+x_{i-1}/y_t]
2.2 while (q_{i-t-1}(y_tb+y_{t-1})>(x_ib^2+x_{i-1}b+x_{i-2})) q_{i-t-1}-2
2.3 x-=q_{i-t-1}yb^{i-t-1}
2.4 if(x>0) x+=yb^{i-t-1}; q_{i-t-1}++;
3. r=x
4. return (q,r)
```

Cost: (n-t)(t+3) multiplies, (n-t) divisions.

Extended Binary GCD

```
Input: x = (x_n x_{n-1} ... x_0)_b, y = (y_n y_{n-1} ... y_0)_b. Output: a, b, v: ax + by = v = gcd(x,y).
   1. q=1
   2. while (x\&1==y\&1==0) x/= 2, y/= 2, q*=2
   3. u=x, v=y, A=1, B=0, C=0, D=1
   4. while (u\&1==0)
            11/= 2
                if (A=B=0 \pmod{2}) A/=2, B/=2
           else A= (A+y)/2, B= (B-x)/2
   5. while (v&1==0)
            v/= 2
                if (C=D=0 \pmod{2}) C/=2, D/=2
           else C= (C+y)/2, D= (D-x)/2
   6. if (u>=v) u==v, A==C, B==D
          else v=u, C=A, D=B
   7. if (u==0) a= C, b= D, return (a,b,qv)
          else goto 4
```

Cost: 2([lg(x)]+[lg(y)]+2) iterations

Montgomery Multiplication

- Motivation: Modular reduction is expensive (a divide operation). Can we replace the divide with some cheap operation (like shifting?)
- Let A, B, and M be *n*-block integers represented in base x with $0 \le M < x^n$.
- Let $R = x^n$. gcd(R, M) = 1.
- The *Montgomery Product* of A and B modulo M is the integer ABR⁻¹ mod M.
- Let $M' = -M^{-1} \mod R$ and $S = ABM' \mod R$.
- Fact: $(AB+SM)/R \equiv ABR^{-1} \pmod{M}$.

Montgomery Multiplication and Timing

• (r, n)= 1, r= ab (mod n), a*=ar (mod n), rr'-nn'=1, all t words long.

```
MontPro(a*, b*)
    t = a* b* ,m = rn' (mod n), u = (mn+t)/r
    if(n>u) u = n;
    return(u)
MontMult(a,b,n)
    Compute n', a*, b*
    x* = MontPro(a*, b*)
    return(MontPro(x*,1))
```

Cost: Reduction takes 2t(t+1) multiplies, no divisions. Multiply takes 4t(t+1) vs 2t(t+1) for classical.

Exponentiation and Timing

- Right to left squaring and multiplication
- Left to right squaring and multiplication
- Left to right k-ary
- Square and multiply exponentiation (SME) timing, if bitlen(e)=t+1 and wt(e) is the Hamming weight, SME takes t squarings and wt(e) multiplies.

Montgomery Exponentiation and Timing

$$x = (x_1 x_{l-1} ... x_0)_b$$
, $e = (e_t e_{t-1} ... e_0)_b$, $m = (m_{l-1} m_{l-2} ... m_0)_b$, $R = b^l$, $m' = -m^{-1} \pmod{b}$

MontExp(x,e,m)

- 1. $x^{\#}=MontMult(x, R^2, m), A=R (mod m)$
- 2. for(i= t downto 0)
 - 2.1 A = MontMult(A,A)
 - 2.2 if $(e_i==1)$ A= MontMult(A, $x^{\#}$)
- 3 return(MontMult(A,1))

Cost: Total: 3l(l+1)(t+1). [For Classical: 2l(l+1) plus I divisions.]

Step	1	2	3
# MontMult	1	3/2 t	1
# SP Mult	2l(l+1)	3tl(l+1)	l(l+1)

Montgomery Example

- Suppose N = 79, a = 61 and b = 5
- $R = 10^2 = 100$. RR'-NN'=1, R'=64, N'=81.
 - $a' = 61.100 = 17 \pmod{79}$
 - b' = 5·100 = 26 (mod 79)
 - abR (mod 79)= 61x5x100 (mod 79)= 6
 - $X = a'b' = 442 = abR^2 \pmod{N}$
 - m = (X(mod R))(N' (mod R)) = 42x81 = 2 (mod R)
 - x = (X+mN)/R = (442+2x79)/100 = 6

Primality testing may be easy

Fermat test: If a⁽ⁿ⁻¹⁾ ≠1 (mod n) for any a<n, n is not prime.

```
Testprime(n, k)

// check to see that no small primes p≤B divide n.

for(i=1; i≤k; i++) {

 pick a<n randomly

 compute a<sup>n-1</sup> (mod n).

 If a<sup>(n-1)</sup>(mod n)≠1 then return "n is not prime"

}

return "n is prime"
```

- Intuition: If Testprime(n, 20) returns "n is not prime", it isn't, otherwise n is prime with an error of 1 in 10⁶.
- Unfortunately, some composite numbers, n, have the property that all a: 0<a<n will pass Fermat test. These are called Carmichael numbers. n=561= 3x11x17 is a Carmichael number.
- There are better tests, however!

Witnesses and liars

- $b^{n-1}=1 \pmod{n}$, we say b is a "witness" to n's primality.
- If bⁿ⁻¹¹1 (mod n) b is said to be a "witness" to n's compositeness.
- b is a liar iff $b^{(n-1)}=1 \pmod{n}$ and n is *not* prime.
 - 2 is a liar for 341, 561, 645.
 - **Theorem**: There are infinitely many numbers for which 2 is a liar **Proof**: $d \mid n \rightarrow 2^d-1 \mid 2^n-1$. Suppose n is a 2-pseudo-prime, so is $m=2^n-1$: m is obviously composite. Since n is a 2 pseudo-prime $n \mid k=2^n-2$ so $2^n-1 \mid 2^k-1$.
- n is a Carmichael number if n is composite and every 1<b<n is a liar. 561 is a Carmichael number.
- Alford, Granville, Pomerance: There are infinitely many Carmichael numbers.
 Bummer.

Some facts about Carmichael numbers

• **Theorem**: n is an odd composite Carmichael number iff it is square-free and for every prime p|n, (p-1)|(n-1).

Proof: If n is a Carmichael number, $a^{p-1}=1 \pmod{n}$ so p-1|n-1. If $p^2|n$ then p(p-1)|f(n) and there is an a: (a,n)=1 whose order is p. Hence p|n-1 which is impossible.

• **Theorem**: If n is an odd composite Carmichael number, n is divisible by at least 3 distinct primes.

Proof: Suppose the theorem is false. If n is prime, it is not a Carmichael number so n=pq, p \neq q. (p-1)|(pq-1) and (q-1)|(pq-1), thus (p-1) \geq (pq-1)/2 and (q-1) \geq (pq-1)/2 so p \geq (pq+1)/2 and q \geq (pq+1)/2. Hence 4pq \geq (pq+1)²= (pq)²+2pq+1 and 0 \geq (pq)²-2pq+1=(p-1)(q-1), which is Impossible.

Miller Rabin Test

- Miller-Rabin:
 - Pick a $\mathbf{\varepsilon} \mathbb{Z}_p^*$ at random. $a^{n-1} = 1 \pmod{n}$, $n-1 = 2^s d$
 - If (a, n)=1 and either a^d=1 (mod n) or a^{dk}= -1(mod n), k=2^r, r<s, declare n prime.
 - Otherwise declare n composite
- If this declares n is composite, n is composite.
- We will show that if n is composite, at least $\frac{3}{4}$ of $a \in \mathbb{Z}_n^*$, will fail the Miller Rabin test.
- Thus if we run Miller-Rabin t times and get "prime" back every time, then the probability that n is not prime is $\leq 2^{-2t}$.

Miller Rabin Test is sufficient

• Theorem: Let n be an odd composite number with n-1= 2^sd and put L= {aeZ_n*: (a, n)=1 and either a^d=1 (mod n) or a^{dk}= -1(mod n), k=2^r, r<s }. Then $|\mathcal{L}| \leq \frac{n-1}{4}$. Note that the elements of L are the liars in the Miller Rabin test and this result says at least 3/4 elements in \mathbb{Z}_n^* will act as witnesses to n's compositeness. Proof: Suppose $n = \prod_{p|n} p^{e(p)}$ and let m= 2^sd, M={a ϵ Z_n*: (a,n)=1, a^m=1 (mod n)}, L={a ϵ Z_n*: (a,n)=1, a^m=±1 (mod n)}, K={a ϵ Z_n*: (a,n)=1, a^m=±1 (mod pe), \forall p|n}, J={a ϵ Z_n*: (a,n)=1, aⁿ⁻¹=1 (mod n)}. Then M⊆L⊆K⊆J⊆Z_n*.

If $x \in K$, $x^2 \in M$, so $|K|/|M| = 2^k$, $k \ge 0$ and so $|K|/|L| = 2^j$, $j \ge 0$. If $j \ge 2$, we're done. If j = 1, n = pq and so n is not a Carmichael number and thus J is a proper subset of Z_n^* so $|Z_n^*|/|J| \ge 2$. Since $|J|/|K| \ge 2$, $|Z_n^*|/|L| \ge |Z_n^*|/|K| \ge 4$. So j = 0. But then $n = p^e$, and $|Z_n^*| = (p-1)p^{e-1}$ and J has a cyclic group of order p-1. The cyclic subgroups of $Z/(p^eZ)$ have $|Z_n^*|/|K| \ge 4$ unless n = 9 and we can verify the theorem holds for n = 9.

Summary for prime testing

- Deterministic test
 - n is prime if m does not divide n for all m<√n.
 - Deterministic tests too slow
- Randomized tests
 - Fermat test doesn't work for Carmichael composite
 - Solovay-Strassen
 - Miller-Rabin works fine
 - If the extended Riemann Hypothesis is true, the Miller-Rabin test is dispositive as to the primality of n if we try all bases up to $2(\ln(n))^2$.

Testing Primality - Miller Rabin

- MR(n, .25, t), n>3, n, odd. Set n-1= 2^sr, r, odd. (t>3, in practice)
- Takes \sim O(lg(n)³).

```
for(i=1; i<=t) {
        Choose a, 1 < a < n-1. 2 is a good choice first time.
        Compute y=a^r \pmod{n}
        If y>=1 and y>=n-1) {
           j=1
           while (j \le (s-1), y \ge n-1)
              y = y^2 \pmod{n}
              if (y=1)
                 return("no")
              j = j+1
           if(y>=n-1)
            return("no")
        return("yes")
```

Primality Testing Example

- From Trappe and Washington. n=561.
- $n-1=560=2^4x5x7$. Pick a=2.
 - $-b_0 = 2^{35} = 263 \pmod{n}$
 - $-b_1 = b_0^2 = 166 \pmod{n}$
 - $-b_2=b_1^2=67 \pmod{n}$
 - $-b_3=b_2^2=1 \pmod{n}$
- 561 is composite. In fact, (b₂-1, 561)=33.

RSA Public-Key Cryptosystem

Alice (Private Keyholder)

- Select two large random primes p and q.
- Publish the product n=pq.
- Use knowledge of p and q to compute Y.

<u>Anyone (Public Key Holder)</u>

- To send message Y to Alice, compute Z=Y^X mod n.
- Send Z and X to Alice.

Rivest, Shamir and Adleman, "On Digital Signatures and Public Key Cryptosystems." CACM, 2/78.

RSA Details

- Encryption: E(Y)= Y^e mod n.
- Decryption: D(Y)= Y^d mod n.
 - $D(E(Y))= (Y^e \mod n)^d \pmod n = Y^{ed} \pmod n = Y$
- Speedup: Compute mod p and mod q then assemble using CRT
- Remember (p,q)= 1 \rightarrow there are p', q': p'p + q'q = 1
- Saves roughly factor of 4 in time

RSA Example

- p=691, q=797, n=pq=550727. $f(n)=690 \times 796=2^3 \times 3 \times 5 \times 23 \times 199$.
- Need (e, f(n))=1, pick e=7.
- 1= 7 x 78463 + (-1)f(n), so d= 78463.
- $78463 = 2^{16} + 2^{13} + 2^{12} + 2^9 + 2^6 + 2^5 + 2^4 + 2^3 + 2^2 + 2^1 + 2^0 =$ 65536+8192+4096+512+64+32+16+8+4+2+1. Use this in the successive squaring calculation.
- Public Key: <n=550727, e=7>
- Private Key: <p=691, q=797, d=78463>.
- Encrypt 10. 10⁷ (mod n)= 86914.
- Decrypt: $(86914)^{78463}$ (mod n)=10.
- Successive squares: 86914, 271864, 268188, 407871, 97024, 79965, 460755, 375388,444736, 362735, 289747, 500129, 378508,532103, 446093, 371923, 66612.

RSA Signatures

An additional property

$$D(E(Y)) = Y^{ed} \mod n = Y$$

$$E(D(Y))=Y^{de} \mod n=Y$$

Only Alice (knowing the factorization of n) knows D. Hence only Alice can compute $D(Y) = Y^d \mod n$.

This D(Y) serves as Alice's signature on Y.

Old days: p and q should be "strong primes"

p is a "strong prime" if

- 1. p-1 has a large prime factor, r.
- 2. p+1 has a large prime factor, s.
- 3. r-1 has a large prime factor, t.

Other criteria (X9.31)

- If e is odd (e,p-1) = 1 = (e, q-1)
- (p-1, q-1) should be "small"
- p/q should not be near the ratio of two small integers
- p-q has a large prime factor
- Add Frobenius test
- Add a Lucas test

Doesn't matter: ECM does just as well on strong primes.

Gordan's Algorithm

Gordan's algorithm

- 1. Generate 2 primes, s,t of roughly same length.
- 2. Pick i_0 . Find first prime in sequence, (2it+1), $i=i_0$, i_0+1 ,...; denote this prime as r=(2it+1).
- 3. Compute, $p_0 = 2(s^{(r-2)} \pmod{r})s-1$.
- 4. Select j_0 . Find first prime in sequence, (p_0+2jrs) , $j=j_0,j_0+1,...$; denote this prime as $p=(p_0+2jrs)$.
- 5. return(p)

Attacks

- Elementary
 - Common Modulus: $K_1 = (e_1, d_1, pq), K_2 = (e_2, d_2, pq)$
- Low Public Exponent
 - Wiener: Let N=pq, q<p<2q, d<1/3 $n^{1/4}$, given <N,e> and ed=1 (mod f(n)), we can find d efficiently.
 - Uses continued fractions
 - Coppersmith's Theorem: Let N be an integer and f a monic polynomial over Z, X=N^{1/d-e} for some e≠0. Given <N, f>, we can efficiently find all integers $|x_0|$ <X satisfying $f(x_0)$ = 0 (mod N). Running time is dominated by LLL on lattice with dimension O(min(1/ ϵ , lg(N)).

Attacks, continued

- Related Messages and low exponents
 - Coppersmith's theorem can be used to strengthen Franklin-Reiter Related Message attack if e=3 and pad is <1/9 message length.
- Timing/Glitching
- Bleichenbacher's Attack on PKCS 1
- Factoring
 - Pollard rho
 - p-1
 - Quadratic Sieve
 - Number Field Sieve
- Reference: Boneh, Twenty years of attacks on RSA. Notices AMS.

Common Modulus Attack

- $(e_1, e_2)=1$.
- $c_1 = m^{e_1} \pmod{n}$
- $c_2 = m^{e_2} \pmod{n}$
- $d_1e_1+d_2e_2=1$
- $(c_1)^{d1}(c_2)^{d2} = m$, oops!

Small exponent attack on RSA

- If q , <math>n = pq, $1 \le d$, e < f(n) and d < 1/3 $n^{1/4}$, d can be calculated quickly.
- Proof:
 - q<Vn, n-f(n)<3Vn. $ed = 1 + \varphi(n)k$. So, $\varphi(n) < ed < \frac{1}{2}n^{\frac{1}{4}}$. kn ed =
 - $k(n-\varphi(n))-1.$ $0<\frac{k}{d}-\frac{e}{n}<\frac{1}{3d^2}.$ By continued fractions result, the successive approximations A/B with k=A, d=B and $C=\frac{ed-1}{k}$ allows us to compute $\varphi(n) = C$.
 - Now use the previous result.

Short plaintext

- c= m^e (mod n), m, unknown (but small).
- Make two lists: cx^{-e} (mod n) and y^e with x,y "small."
- When they match:
 - $cx^{-e} = y^e \pmod{n}$ and $c = (xy)^e \pmod{n}$.

Glitching Attack

- n=pq. <e,d> are the encryption and decryption exponents. Attack is on private key which is used for signing, say, a hash. Let pp' + qq' = 1.
 - Suppose signer uses the CRT, m_1 = m (mod p) and m_2 = m (mod q). The correct solution is m_1^d = a_1 (mod p) and m_2^d = a_2 (mod q) and the CRT gives $y=a_2pp'+a_1qq'$.
- Suppose the computation is done on a w-bit (e.g.-32) machine which miscomputes a x b for two specific w-bit values a, b.
 - We want m around \sqrt{n} satisfying p<m<q involving a and b; for example, m= c_k $2^{wk} + c_{k-1} 2^{w(k-1)} + ... + a 2^w + b$.
 - We submit m for signing. Because of the error, the signer will (mis)compute y=
 m^d (mod n) in a way we can take advantage of.
 - In normal squaring, m_1^2 will be computed correctly (mod p) but m_2^2 will be computed incorrectly (mod q). We get $m_1^d = a_1$ (mod p) [correct] and $m_2^d = a_2'$ (mod q) [wrong!]. $y \neq y' = a_2'p'p + a_1qq'$.
 - Resulting y' will be correct (mod p) but wrong (mod q).
 - Now $(y'^e m, n) = q$. Oops.

Glitching Attack Example

- p=37, q=41. n=pq=1517. $f(n) = 36 \times 40 = 2^5 \times 3^2 \times 5 = 1440$.
- Note as before that $10(37)+(-1)41=1.c=01517 \sim 38$. We pick m= 39.
- Now imagine an RSA scheme with e=7 and the foregoing parameters.
 - 3 (1440) +(-617) 7=1, so d= -617=823 (mod 1440).
 - $m_1 = m \pmod{37} = 2, m_2 = m \pmod{41} = 39.$
 - $d_1 = d \pmod{36} = 31, d_2 = d \pmod{40} = 23.$
 - $-2^{31}=22 \pmod{37}$, $39^{23}=33 \pmod{41}$.
 - By the CRT, $y=m^d \pmod{n} = (10)(37)(33)+(-9)(41)22=1058$. We confirm $1058^7=39 \pmod{n}$.
- Now suppose w=3, $39=4 \times 8+7$ and suppose the error in the computer is that it thinks $4 \times 7=26$.
 - Computing m_2^2 (mod 41) we get 13 instead of the correct answer, 4.
 - Using the usual exponentiation procedure, we would compute 39^{23} (mod 41) =12 (wrong!) and y'= (10)(37)(12)+(-9)(41)22 = 873. 873^7 (mod n)=1334.
 - (1334-39,1517)= (1295, 1517)=37. Bingo!

Repeated Squaring

```
// Compute y = x^d \pmod{N}

// where, in binary, d = (d_0, d_1, d_2, ..., d_n) with d_0 = 1

s = x

for i = 1 to n

s = s^2 \pmod{N}

if d_i == 1 then

s = s \cdot x \pmod{N}

end if

next i
```

Timing Attack (Kocher)

- Attack on repeated squaring
 - Does not work if CRT or Montgomery used
 - In most applications, CRT and Montgomery multiplication are used
- This attack originally designed for smartcards
- Can be generalized (differential power analysis)
- Recover private key bits one (or a few) at a time
 - Private key: $d = d_0$, d_1 ,..., d_n with $d_0 = 1$
 - Recover bits in order, d₁, d₂, d₃,...

Kocher's Attack

- Suppose bits d_0 , d_1 ,..., d_{k-1} , are known
- We want to determine bit d_k
- Randomly select C_i for j=0,1,...,m-1, obtain timings T(C_i) for C_i^d (mod N)
- For each C_i emulate steps i=1,2,...,k-1 of repeated squaring
- At step k, emulate d_k= 0 and d_k= 1
- Variance of timing difference will be smaller for correct choice of d_k

Example from Mark Stamp

Preventing Timing Attack

- RSA Blinding
- To decrypt C, generate random r
 Y = reC (mod N)
- Decrypt Y then multiply by r^{-1} (mod N): $r^{-1}Yd = r^{-1}(r^eC)^d = r^{-1}rC^d = C^d \text{ (mod N)}$
- Since r is random, timing information is hidden

Factoring

- Security of RSA algorithm depends on (presumed) difficulty of factoring
 - Given n = pq, find p or q and RSA is broken
- Factoring like "exhaustive search" for RSA
- What are best factoring methods?
- How does RSA "key size" compare to symmetric cipher key size?

Trial Division

- Expected work is about $\frac{\sqrt{\pi}}{2}$
- Trying only prime numbers reduces search
- $\pi(n) \approx n/\ln(n)$ is number of primes up to n.

Fast generic factoring algorithms

- Pollard p-1
- Elliptic curve factoring
- Pollard r
- Quadratic sieve
- Number field sieve
- Last three exploit basic idea of finding x, y with x²=y² (mod n) using methods that make it likely that (x-y) and (x+y) "split" the factors of n.

Pollard p-1

- Goal: Factor n.
 - Pick an integer B.
 - Compute $k = \prod_{t \le B} t$, where t=q^e, largest power of q (prime) ≤B.
 - If n has a factor p and p-1 has small factors, it is likely that a random a
 has the property that p-1 | k and thus that a^k=1 (mod p).
 - Compute (a^k-1, n).
- Lenstra's Elliptic Curve Factoring Method is an extension of this idea.
- Example:
 - n=1241143, B=13, k= 8.9.5.7.11.13.
 - a=2, 2^k= 861526 (mod 1241143), (861525, 1241143)= 547.
 1241143/547=2269.
 - n=547.2269.

Kraitchik's observation

- We want to factor n= pq.
- Suppose we find x, y such that $n|x^2-y^2$ using unrelated "random" processes for generating x and y.
- $x^2=y^2 \pmod{n}$, $(x-y)(x+y)=0 \pmod{n}$.
- If $(x-y)(x+y) \mid pq$, it is much more likely that p and q will appear in different factors than that pq will divide one of the factors.
 - The odds are $n^{1/2}$:1 for nearly equal p and q.
- To factor, compute ((x-y), n) and in the "likely" case well get (x-y, n)= p or (x-y, n)= q.

Factoring – Pollard ρ

- $f(x) = x^2 + 1 \pmod{n}$.
- $x_{i+1} = f(x_i) \pmod{n}$.
- Look at (x_i-x_i, n) .
 - Actually, use Floyd's trick and look at (x_m-x_{2m}, n) .
- Loop expected after about $\sqrt{\frac{n}{2}}$ steps).

Pollard ρ factoring Example

- We use our old favorite n=1517.
- $f(x) = x^2 + 1 \pmod{1517}$
 - $x_{i+1} = f(x_i)$
 - $-x_0=952, x_1=656, x_2=1026, x_3=1396, x_4=989,$
 - $-x_5=1174, x_6=841, x_7=360, x_8=656$
 - $-952^2 = 656 = 360^2 \pmod{1517}$
 - -952 360 = 592
 - -(592, 1517) = 37.

Quadratic sieve: motivating example

- Goal: factor n= 7429.
- Pick a "base" B of small primes.
 - B= $\{-1,2,3,5,7\}$. A number is "B-smooth" if all its prime factors are $\leq B$.
- Put $f(x) = (x + 1 \sqrt{n})^2 \pmod{n}$
- $f(x)=(x+86)^2 \pmod{7429}$
- Compute f(x) for small |x| small and try to fully factor over the base
 - $f(-3) = 83^2 = (-1)^1 2^2 3^3 5^1$
 - $f(1) = 87^2 = 2^2 5^1 7^1$
 - $f(2) = 88^2 = 3^2 5^1 7^1$
- Multiply both sides of a set of these equations so that the primes occur with even exponents
 - $(87.88)^2 = (2.3.5.7)^2 \pmod{7429}$
- Compute (x-y, n)
 - -87.88-2.3.5.7=227-210=17. (17, 7429)= 17.

Linear algebra step

- Let **B**={p: p<B} and |**B**|= k.
- If we have r>k "smooth" numbers
 - $x_i^2 = \prod_{j < k} p_j^{e[i,j]}$
 - Solve $\sum_{i < k} t_i e[i,j] = 0 \pmod{2}$, j = 1,2,...,k using Gaussian elimination.
 - Need "non-trivial" solution. It t_i= 1, include equation i
 - For large sets, we use a more efficient solver: block Weidemann
- Previous example

```
- f(1)=87^2=2^23^05^17^1, f(2)=88^2=2^03^25^17^1

From f(1): t_1(2), t_1(0), t_1(1), t_1(1) \rightarrow 0, 0, t_1, t_1

From f(2): t_2(0), t_2(2), t_2(1), t_2(1) \rightarrow 0, 0, t_2, t_2

Solve: t_1+t_2=0, t_1+t_2=0. Solutions are (t_1, t_2)=(0,0), (1,1).

First solution is "trivial," second leads to the factorization on previous page
```

Quadratic Sieve: basic parameters

- Pick the mechanism for generating fully factored squares.
- Pick the size of the required number of fully factored squared for reduction.
 - In our case, this is determined by the (pre-specified) interval [-C,C].
- Pick the factor base (B) of primes.
 - Tradeoff between size of B and effort to fully factor trial square
 - Tradeoff between the size of B and C to ensure sufficient relations for the linear algebra phase.
- Pick the mechanism to accelerate factoring
 - Sieving in our case
 - Some more recent mechanisms involve ECM
- Use Linear algebra to solve equations

Generating fully factored squares over factor base: sieving

- Solve $f(x)=0 \pmod{p}$, $p \in B$.
 - $x^2+ax+b= 0 \pmod{p}$
 - Solve using the quadratic formula mod p
 - Reduces to finding square roots mod p.
 - Let g generate \mathbb{Z}_p^* . If $a = g^{2m}$, $\sqrt{a} = g^m$.
- Two solutions for each f(x): every factor in interval is some multiple of p away from these (sieving).
- Divide all equations by highest power of p possible for each p ε B. Fully factored entries will be ± 1 (see table on next slide).
- If $-C \le s \le C$ is the sieving interval and $q \mid x, q \mid (x \pm kq)$. This is the sieve.

Sieve Example

• n= 7429, m=86. B={-1,2,3,5,7}

S	-3	-2	-1	0	1	2	3
$F(s) = (s+m)^2 - n$	-540	-373	-204	-33	140	315	492
p=2	-135		-51		35		123
p=3	-5		-17	-11		35	41
p=5	-1				7	7	
p=7					1	1	

•
$$83^2 = -540 = -2^3 \cdot 5 \cdot 17 \pmod{7429}$$

•
$$87^2 = 140 = 2 \cdot 5 \cdot 17 \pmod{7429}$$

•
$$88^2 = 315 = 3^2 \cdot 5 \cdot 7 \pmod{7429}$$

•
$$540 \cdot 140 = 2^4 \cdot 5^2 \cdot 17^2$$

•
$$(83^2 \cdot 87^2) = 2^4 \cdot 5^2 \cdot 17^2$$

•
$$(83 \cdot 87 - 2^2 \cdot 5 \cdot 17) = 7221 - 6887 = 340$$

•
$$(7429,340) = 17$$

Quadratic sieve experimental results

 To analyze QS, we need to finds a good interval and estimate sieving and solving times

# of decimal digits	50	60	70	80	90	100	110	120
# factor base x 1000	3	4	7	15	30	51	120	245
# sieving interval x 10 ⁶	.2	2	5	6	8	14	16	26

Quadratic Sieve Analysis

- Define $L_n[u, v] = \exp((v \lg n)^u (\lg(\lg(n)))^{1-u}).$
- $\psi(x, B)$ is number of B-smooth numbers $\leq x$.
- Theorem [deBruijn, 1966]: Let e>0, then for x>10, w<n(x)^(1-e), $\psi(x, x^{1/w}) = xw^{-w+f(x,w)}$ where $\frac{f(x,w)}{w} \to 0$ as $w \to \infty$.
- If a, u, v >0, then y(n^a, L_n[u,v])= n^aL_n[1-u,-(a/v)(1-u)+o(1)] as n $\rightarrow \infty$.
- For QS generate numbers, set a= ½.
- Probability of finding an $L_n[u,v]$ -smooth number is $L_n[1-u,-1/(2v)(1-u)+o(1)]$.
- Size of factor base is ~ L_n[u,v].
- Choose u = 1/2. $L_n[1/2, x] L_n[1/2, y] = L_n[1/2, x+y]$.
- Size of sieving interval is $L_n[1/2, v] L_n[1/2, 1/(4v)] = L_n[1/2, v+1/(4v)]$.
- Sieving time is $L_n[1/2, v+1/(4v)]$.
- Solving sparse equations is $L_n[1/2, 2v+o(1)]$.
- Total time is minimized when v=1/2 and is $L_n[1/2, 1+o(1)]$.

Three more algorithms

- Multiple Polynomial Quadratic Sieve: Use many polynomials (shorter sieve intervals)
- Number Field Sieve: Extends QFS by allowing elements to be algebraic integers in algebraic number field.
- Elliptic Curve Factoring Method: Does arithmetic over elliptic curve mod n. Q = kP. Operations project mod p if p|n. If Q is the identity (0:1:0) mod p, third coordinate, z, is 0 mod p. Then (z,n)=p. Now check to see if the difference of two points (for different k) have last coordinates: $(z_1-z_2, n)=p$.
- Pre-NFS, best factoring took $L_n(\frac{1}{2}, 1)$.
- NFS takes $L_n(\frac{1}{3}, \sqrt[3]{\frac{64}{9}})$.

Factoring Algorithms

Work Factors

Method	f(x)
Trial Division	n/lg(n)
Quadratic Sieve	(n lg(n)) ^{1/2}
Number Field Sieve	1.9223 n ^{1/3} lg(n) ^{2/3}

- Quadratic Sieve: L_n[1/2, 1+o(1)]
- ECM: $L_p[1/2, -V(1/2)]$ where p is smallest prime dividing n.
- NFS (Pollard again): $L_n[1/3, (64/9)^{(1/3)}]$.
- QS best for N up to 390 bit 117 digits), then NFS.

RSA Caution: Homomorphism

Commutivity

- Given plain/cipher pairs (p_i , c_i), i= 1, 2,..., n, one can produce product pairs like ($p_1p_5p_2$, $c_1c_5c_2$) of corresponding plain/cipher pairs.
- Solution: padding

Factoring projects

- On August 22, 1999, the 155-digit (512 bit) RSA Challenge Number was factored with the General Number Field Sieve.
- Sieving took 35.7 CPU-years in total on...
 - 160 175-400 MHz SGI and Sun workstations
 - 8 250 MHz SGI Origin 2000 processors
 - 120 300-450 MHz Pentium II PCs
 - 4 500 MHz Digital/Compaq boxes
- Total CPU-effort: 8000 MIPS years over 3.7 months.
- 768-bit problem took 2,000 core years

RSA Summary

- RSA is a great algorithm.
- Just don't do anything stupid.
 - Reasonable exponents
 - Good padding
 - Good prime generation

End

Square roots mod p -- general comments

- We want x: x²= a (mod p).
- Remember, we can check to see if a is a quadratic residue by computing $(\frac{a}{n})$.
- If we know a generator of \mathbb{Z}_p^* , g and $g^n=a$, then $g^{n/2}=x$ (mod p).
- Of course, this requires solving the discrete log problem so it does not offer a practical computational method.
- Since there is no order relation, approximations (e.g.-Newton's method) don't help much.
- Reference: Cohn, Computational Number Theory.

Square roots mod p --- simple cases

- We want x: $x^2 = a \pmod{p}$. First check (a/p)=1.
- p= 3 (mod 4):
 - $x = a^{(p+1)/4} \pmod{p}$
 - Example: $x^2 = 7 \pmod{31}$, $x = 7^8 \pmod{31} = 10$. $100 = 7 \pmod{31}$.
- $p = 5 \pmod{8}$
 - $b=a^{(p-1)/4}=\pm 1 \pmod{p}$.
 - If b=1, $x = a^{(p+3)/8}$ (mod p).
 - If b = -1, $x = (2a) (4a)^{(p-5)/8}$ (mod p).
 - Example 1: p=13. a=9. $b=9^3=1 \pmod{p}$. $x=9^2=3 \pmod{p}$.
 - Example 2: p=29. a= 6. 6^7 = -1 (mod p). x= (12)(24)³= 8 (mod 29). 8^2 = 6 (mod 29).
- This leaves the hard case, p=1 (mod 8).

General case - Tonelli-Shanks

```
• We want x: x<sup>2</sup>= a (mod p)
• p-1=2<sup>e</sup> x q, q, odd.
Square-Root(a)
          Choose n: (n/p) = -1; z = n^q \pmod{p}; Q = (q-1)/2.
    2. y=z; r=e; x=a^Q \pmod{p}; b=ax^2 \pmod{p}; x=ax \pmod{p};
    3. // Now if R=2^{r-1}, ab=x^2, y^R=-1, b^R=1;
         if(b==1)
              return(x);
         M=2^m; for smallest m>0: b^M=1 \pmod{p}
         if(m=r)
               return "non-residue"
         TT= 2^{r-m-1}; t= y^{TT} (mod p); y= t^2 (mod p); r=m; x=xt; b=by; goto 3;
```

Tonelli-Shanks example

- We want x: $x^2=a \pmod{p}$. p=41, a=5, g=7.
- p-1= 2^3 x 5. Note 6^{20} = -1(41) so 6 is a non-residue.
- a= 5; n=6; $z= 6^5 = 27 \pmod{41}$.

Step	m	t	у	r	X	b
0	3		27	3	2	9
1	2	2	32	2	13	1

• $x=13. 13^2 \pmod{41} = 5.$