

Queen's International Innovation Challenge Smarter Cities & Better Future

MIE 1624 Group 15

Objective: Bring convenience to the blind

285 million people are visually impaired worldwide, including over **39 million** blind people

Vision-to-Language problems have always been challenging

Our project: fusing both **image captioning prototype** and a **text-to-speech synthesizer**

Methodology: Architecture of the Model

Methodology: Mathematical Interpretation

CNN: the visual feature of RGB image is embedded to as the input to the RNN

$$\mu = W_{\mu} (CNN(I))$$

Embedding of visual feature

RNN (LSTM): represented each word by a one-hot vector S_t

$$x_t = W_t S_t, t \in \{0 \cdots N - 1\}$$

Word embedding parameter

Decode the features μ , x_t and internal hidden parameter h_t into a probability

$$p_{t+1} = LSTM(\mu, x_t, h_t), t \in \{0 \cdots N - 1\}$$

EXPERIMENTAL IMPLEMENTATION

Dataset

MSCOCO dataset provided by Microsoft

80K training images,40K validation images and40K test images.

Vocabulary

6325 unique words from the training captions that appear at least 10 times

Less frequently words are replaced by a special **OUT- OF-VOCABULARY** token

A cat sitting in front of a delicious chocolate donut.

A cat looking at a donut on a plate.

A cat is looking over a chocolate covered donut on a plate.

A cat stares at a chocolate topped donut, with the caption reading, "DONUT WANT." Cat looks at donut with words "donut want" along bottom

Start and the end of the caption is marked with a special **START** and **STOP** token

EXPERIMENTAL IMPLEMENTATION

- Re-scale the image to the dimension of 224*224 in RGB channel.
- Implement the pretrained model
 ResNet50 from PyTorch
- Extract feature representations of the image from last convolution layer of ResNet50
- Use linear mapping to map the features to the same shape of embedding features of RNN part.

CNN encoder

- Based on LSTM cell-model
- Obtain feature representation of image which is used as the first input to LSTM
- Obtain the score vector of each word with hidden layers and final linear mapping
- Add the soft-max layer to get the probability vector of each word
- Use cross-entropy loss to construct objective function

RNN decoder

EXPERIMENTAL IMPLEMENTATION

Training

- The neural network is trained using the mini-patch stochastic gradient descent (SGD) method.
- The base learning rate is 0.001. The learning rate drops 50% in every
 20,000 iterations.
- Model is selected based on total loss value applied on validation set.
- Implement model with PyTorch framework and train it on GTX TITANX 12GB
- Use metrics BLEU-4 to quantitatively evaluate performance.

Inference & Web structure

- Feed images to the pre-trained model
- RNN generates word embedding probability vector which is continually fed to RNN to generate next word.
- RNN decoder will generate captions iteratively until it meets STOP token.
- Build a web application in python using Flask framework
- Use IBM Text2Speech API to generate audio file

Result: Training and Validation Losses

Result: Positive Result

Text: a living room filled with furniture and a piano .

Text: a bathroom with a shower , toilet , and sink .

Text: a dog sitting on a desk next to a computer monitor .

Result: Positive Result

Text: a red train traveling down train tracks near a forest .

Text: a group of people walking down a city street.

Text: a bus is parked on the side of the road

Problem Existed

