Reine Stoffe und Stoffgemenge

Arten von Gemengen:

Aggregatzustände der Bestandteile vor Bildung des Gemenges	Homogenes Gemenge (homogene Systeme)	Heterogene Gemenge (heterogene Systeme)
fest-fest	Mischkristallbildende Legierungen (Messing, Bronze, Lötzinn)	Gesteine (z.B. Granit), Erze mit Gangart
fest-flüssig	Echte Lösungen (z.B. Salzlösungen)	fest in flüssig Suspension, Aufschlämmungen (Lehm in Wasser) flüssig in fest (Wasser in Lehm)
fest-gasförmig	Wasserstoff in Metallen (Platin, Palladium, Stahl)	fest in gasförmig (Rauch, Staub) gasförmig in fest; poröses Material (Ziegel- oder Bimsstein)
flüssig-flüssig	Echte Lösungen (Essig; Essigsäure in Wasser)	Emulsionen (z.B. Milch Fetttröpfchen in Wasser)
flüssig-gasförmig	Echte Lösungen (Selterswasser; CO ₂ in Wasser)	flüssig in gasförmig Nebel (z.B. Wasser in Luft) gasförmig in flüssig Schaum
gasförmig in gasförmig	Da sich alle Gase unbegrenzt mischen; handelt es sich bei allen Gasgemischen um homogene Gemenge	

Wichtige physikalische Trennverfahren:

Aggregatzustände der	Physikalische	Trennverfahren
Bestandteile des zu	Eigenschaft; die zum	
trennenden Gemenges	Trennen ausgenutzt wird	
Fest-fest	Dichte	Schlämmen u. Sedimentieren
z.B. Erze mit Gangart	Benetzbarkeit	Flotation
		(Schaumschwimmverfahren)
	Teilchengröße	Sieben (Klassieren)
	Löslichkeit	Extrahieren
	Magnetismus	Magnetscheiden
Fest-flüssig	Dichte	Sedimentieren u. Dekantieren
Suspensionen und		Zentrifugieren
Aufschlämmungen	Siedepunkt	Abdampfen, Destillieren,
		Trocknen
	Teilchengröße	Filtrieren
Echte Lösungen	Löslichkeit	Eindampfen; Auskristallisieren
Fest-gasförmig	Dichte	Sedimentieren, Zyklonieren
z.B. Rauch, Staub	Teilchengröße	Filtrieren
	Elektrische Ladung	Elektrofiltrieren
Flüssig-flüssig	Dichte	Absetzenlassen im
z.B. Alkohol in Wasser,		Scheidetrichter
Öl in Wasser		Zentrifugieren
	Siedepunkt	Destillieren
	Löslichkeit	Extrahieren
Flüssig-gasförmig	Dichte	Sedimentieren, Zyklonieren
Nebel, Schaum	Löslichkeit	Abtreiben des Gases (durch
		Temperaturerhöhung,
		Auswaschen (mit Hilfe einer
		anderen Flüssigkeit)
Gasförmig-gasförmig	Kondensationspunkt	Kondensieren
	Absorbierbarkeit	Absorption (Aufsaugen)
	Adsorbierbarkeit	Adsorption (Anlagern an
		Oberfläche)
	Teilchengröße	Diffusion
	Masse	Zentrifugieren

Bei homogenen Gemischen sind die einzelnen Bestandteile mit dem Auge nicht zu erkennen (echte Lösungen, Gasgemische, Legierungen)

Bei heterogenen Gemischen kann man einzelne Komponenten erkennen (evtl. Mikroskop).

Homogene Gemenge bestehen aus einer Phase.

Heterogene Gemenge bestehen aus zwei oder mehr Phasen.

Gemenge, bei denen die eine Phase in der anderen mehr oder weniger verteilt ist, werden als disperse Systeme bezeichnet. Der verteilte Stoff heißt disperse Phase und das Verteilungsmittel (Dispersionsmittel).

Reine Stoffe können durch physikalische Verfahren weder in andere Stoffe zerlegt werden, noch eine Änderung ihrer physikalischen Eigenschaften (Dichte, Siedepunkt, etc.) erfahren.

SI - Einheiten (Basisgrößen)

Basisgrößen sind festgelegte Größen, aus denen alle anderen Größen mit ihren dazugehörigen Einheiten abgeleitet werden können.

- Länge (m)
- Zeit (s)
- Masse (kg)
- Temperatur (K)
- Stromstärke (A)
- Lichtstärke (candela cd)
- Stoffmenge (mol)

Siehe Küster-Thiel (S. 190)

Dichte: Masse pro Volumen in g/ml oder g/cm³ oder kg/L oder kg/m³

Stoffmenge: Masse pro Molarer Masse

Das Mol ist die Stoffmenge, die soviel gleichartige elementare Teilchen enthält, wie Atome in 12 g des Kohlenstoffisotops 12 C. 1 mol = 6.10 23 Teilchen.

Dimensionen:

```
1 kg = 1000 g = 1000.000 mg (10 ^6) = 1.000.000.000 \mug (10 ^9) = 10 ^{12} ng 1 g = 0,001 kg = 1000 mg = 10 ^6 \mug = 10 ^9 ng = 10 ^{12} pg

1 L = 1000ml =1000.000 \mul
1 L = 1000 cm<sup>3</sup>
1 m<sup>3</sup> = 1000 L
1 dl = 10 ml = 0.01 L
```