——2020— Utilizing the Noise: Quantum Simulation of an Open System

Shin Sun, Li-Chai Shi Mi-Ying Huang, Yu-Ching Shen, Yuan-Ho Yao National Taiwan University

Model System: Simple Symmetric Dimer Model

https://www.ks.uiuc.edu/Research/fmo/

https://image.taiwantoday.tw/images/content/img20190215145331815_800.jpg

Model System: Simple Symmetric Dimer Model

|e>
$$H = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 $H = a_1^+ a_2^- + a_1^- a_2^+$ |g> $a_n^+ = \frac{1}{2}(X_n - iY_n)$ $a_n^- = \frac{1}{2}(X_n + iY_n)$

$$\widetilde{H} = \frac{1}{2} (X_1 X_2 + Y_1 Y_2)$$

Map the system to a two-qubit system with qubit Hamiltonian.

Trotterization and Quantum Evolution Circuit

Use local quantum gates by the a Jordan-Wigner-like transformation.

Use trotter expansion to propagate the dynamics.

$$e^{i(A+B)t} = \lim_{n \to \infty} (e^{iAt/n} e^{iBt/n})^n \quad |\Psi(t+\delta t)> \approx e^{-iA\delta t} e^{-iB\delta t} |\Psi(t)>$$

Quantum circuits for time evolution:

Introduce the Noise

Different Decoherence Rates

Data Fitting

Outlook

Extending our methods to asymmetric dimer model

More systematic analysis to gain more insight into the dynamics of open quantum system

END THANK YOU