Bio393: Genetic Analysis

Genetic interactions: epistasis

George Beadle

Ed Tatum

Arginine mutant complementation experiment

	arg-a	arg-b	arg-c	arg-d	arg-e	arg-f	arg-g	arg-h	arg-i
arg-a									
arg-b									
arg-c									
arg-d									
arg-e									
arg-f									
arg-g									
arg-h									
arg-i									

Arginine mutant complementation experiment

Three genes

$$arg1 = [a, d, f, g]$$

 $arg2 = [b, c]$
 $arg3 = [e, h, i]$

Precursor → Ornithine → Citrulline → Arginine

Mutants accumulate precursor for previous step

Mutants accumulate precursor for previous step

Epistasis the effect of one gene is dependent on another gene

William Bateson

arg1 arg2 arg3
Precursor → Ornithine → Citrulline → Arginine

1. Single mutants fail in a step in a biosynthesis pathway

arg1 arg2 arg3
Precursor → Ornithine → Citrulline → Arginine

1. Single mutants fail in a step in a biosynthesis pathway

- 1. Single mutants fail in a step in a biosynthesis pathway
- 2. Double mutants fail in the most upstream step in a biosynthesis pathway

- 1. Single mutants fail in a step in a biosynthesis pathway
- 2. Double mutants fail in the most upstream step in a biosynthesis pathway

- 1. Single mutants fail in a step in a biosynthesis pathway
- 2. Double mutants fail in the most upstream step in a biosynthesis pathway
- 3. What will the single and double mutants accumulate?

- 1. Single mutants fail in a step in a biosynthesis pathway
- 2. Double mutants fail in the most upstream step in a biosynthesis pathway
- 3. What will the single and double mutants accumulate?

- 1. Single mutants fail in a step in a biosynthesis pathway
- 2. Double mutants fail in the most upstream step in a biosynthesis pathway
- 3. What will the single and double mutants accumulate?
- 4. Pathways can be branched

X

B = black

b = brown

E = color

e = no color

The *C. elegans* germline

The *C. elegans* germline

Judith Kimble

C. elegans germline mutants

C. elegans germline mutants

glp-1(0) = all meiotic germ cells

C. elegans germline mutants

glp-1(0) = all meiotic germ cells

glp-1(0) = all meiotic germ cells

glp-1(gf) = all mitotic germ cells

glp-1(0) = all meiotic germ cells

glp-1(gf) = all mitotic germ cells

Mutant	Phenotype
glp-1(0)	meiotic cells
glp-1(gf)	mitotic cells
lag-2(0)	meiotic cells
fbf-1(0)	meiotic cells
gld-1(0)	mitotic cells

glp-1 → GSC prolif.

	Phenotype	Mutant
glp-1→GSC prolif.	meiotic cells	glp-1(0)
	mitotic cells	glp-1(gf)
lag-2→GSC prolif.	meiotic cells	lag-2(0)
	meiotic cells	fbf-1(0)
	mitotic cells	gld-1(0)

	Phenotype	Mutant
glp-1→GSC prolif.	meiotic cells	glp-1(0)
	mitotic cells	glp-1(gf)
lag-2→GSC prolif.	meiotic cells	lag-2(0)
fbf-1 → GSC prolif.	meiotic cells	fbf-1(0)
	mitotic cells	gld-1(0)

	Phenotype	Mutant
glp-1→GSC prolif.	meiotic cells	glp-1(0)
	mitotic cells	glp-1(gf)
lag-2→GSC prolif.	meiotic cells	lag-2(0)
fbf-1 → GSC prolif.	meiotic cells	fbf-1(0)
gld-1 → GSC prolif.	mitotic cells	gld-1(0)

Mutant	Phenotype
glp-1(0)	meiotic cells
glp-1(gf)	mitotic cells
lag-2(0)	meiotic cells
fbf-1(0)	meiotic cells
gld-1(0)	mitotic cells
glp-1(0); lag-2(0)	meiotic cells

Mutant	Phenotype
glp-1(0)	meiotic cells
glp-1(gf)	mitotic cells
lag-2(0)	meiotic cells
fbf-1(0)	meiotic cells
gld-1(0)	mitotic cells
glp-1(0); lag-2(0)	meiotic cells

You can only do epistasis tests with mutants that have opposing phenotypes

Mutant	Phenotype
glp-1(0)	meiotic cells
glp-1(gf)	mitotic cells
lag-2(0)	meiotic cells
fbf-1(0)	meiotic cells
gld-1(0)	mitotic cells
glp-1(gf); lag-2(0)	mitotic cells

Mutant	Phenotype
glp-1(0)	meiotic cells
glp-1(gf)	mitotic cells
lag-2(0)	meiotic cells
fbf-1(0)	meiotic cells
gld-1(0)	mitotic cells
glp-1(gf); lag-2(0)	mitotic cells

glp-1 → GSC prolif.

lag-2 → GSC prolif.

Mutant	Phenotype
glp-1(0)	meiotic cells
glp-1(gf)	mitotic cells
lag-2(0)	meiotic cells
fbf-1(0)	meiotic cells
gld-1(0)	mitotic cells
glp-1(gf); lag-2(0)	mitotic cells

glp-1 → GSC prolif.

lag-2 → GSC prolif.

Which phenotype is epistatic?

Mutant	Phenotype
glp-1(0)	meiotic cells
glp-1(gf)	mitotic cells
lag-2(0)	meiotic cells
fbf-1(0)	meiotic cells
gld-1(0)	mitotic cells
glp-1(gf); lag-2(0)	mitotic cells

glp-1 → GSC prolif.

lag-2 → GSC prolif.

Which phenotype is epistatic?

lag-2 → glp-1 → GSC prolif.

Parallel gene action can NEVER be formally excluded by phenotype alone

 $lag-2 \rightarrow glp-1 \rightarrow GSC prolif.$

Parallel gene action can NEVER be formally excluded by phenotype alone

$$lag-2 → glp-1 → GSC prolif.$$

Null alleles have to be used

1. Decide what is the output phenotype; keep it consistent

1. Decide what is the output phenotype; keep it consistent

- 1. Decide what is the output phenotype; keep it consistent
- 2. Look at single mutants and make a model with output

- 1. Decide what is the output phenotype; keep it consistent
- 2. Look at single mutants and make a model with output

- 1. Decide what is the output phenotype; keep it consistent
- 2. Look at single mutants and make a model with output
- Look at double mutants and make a model with output and respect to single mutant models - epistatic gene acts downstream

- 1. Decide what is the output phenotype; keep it consistent
- 2. Look at single mutants and make a model with output
- Look at double mutants and make a model with output and respect to single mutant models - epistatic gene acts downstream
- 4. Remember parallel but don't assume it is always parallel (*i.e.* make linear models for regulatory epistasis)

- 1. Decide what is the output phenotype; keep it consistent
- 2. Look at single mutants and make a model with output
- Look at double mutants and make a model with output and respect to single mutant models - epistatic gene acts downstream
- 4. Remember parallel but don't assume it is always parallel (*i.e.* make linear models for regulatory epistasis)

- 1. Decide what is the output phenotype; keep it consistent
- 2. Look at single mutants and make a model with output
- Look at double mutants and make a model with output and respect to single mutant models - epistatic gene acts downstream
- 4. Remember parallel but don't assume it is always parallel (*i.e.* make linear models for regulatory epistasis)
- 5. Remember two negatives make a positive

Mutant	Phenotype
glp-1(0)	meiotic cells
glp-1(gf)	mitotic cells
lag-2(0)	meiotic cells
fbf-1(0)	meiotic cells
gld-1(0)	mitotic cells
glp-1(gf); lag-2(0)	mitotic cells
glp-1(gf); fbf-1(0)	meiotic cells
glp-1(0); gld-1(0)	mitotic cells
lag-2(0); fbf-1(0)	meiotic cells
lag-2(0); gld-1(0)	mitotic cells

glp-1 → GSC prolif. lag-2 → GSC prolif. fbf-1 → GSC prolif. gld-1 → GSC prolif.

lag-2 → glp-1 → GSC prolif.

Mutant	Phenotype
glp-1(0)	meiotic cells
glp-1(gf)	mitotic cells
lag-2(0)	meiotic cells
fbf-1(0)	meiotic cells
gld-1(0)	mitotic cells
glp-1(gf); lag-2(0)	mitotic cells
glp-1(gf); fbf-1(0)	meiotic cells
glp-1(0); gld-1(0)	mitotic cells
lag-2(0); fbf-1(0)	meiotic cells
lag-2(0); gld(0)	mitotic cells

glp-1 → GSC prolif. lag-2 → GSC prolif. fbf-1 → GSC prolif. gld-1 → GSC prolif.

Mutant	Phenotype
glp-1(0)	meiotic cells
glp-1(gf)	mitotic cells
lag-2(0)	meiotic cells
fbf-1(0)	meiotic cells
gld-1(0)	mitotic cells
glp-1(gf); lag-2(0)	mitotic cells
glp-1(gf); fbf-1(0)	meiotic cells
glp-1(0); gld-1(0)	mitotic cells
lag-2(0); fbf-1(0)	meiotic cells
lag-2(0); gld(0)	mitotic cells

glp-1 → GSC prolif. lag-2 → GSC prolif. fbf-1 → GSC prolif. gld-1 → GSC prolif.

 $lag-2 \rightarrow glp-1 \rightarrow fbf-1 \rightarrow GSC prolif.$

Mutant	Phenotype
glp-1(0)	meiotic cells
glp-1(gf)	mitotic cells
lag-2(0)	meiotic cells
fbf-1(0)	meiotic cells
gld-1(0)	mitotic cells
glp-1(gf); lag-2(0)	mitotic cells
glp-1(gf); fbf-1(0)	meiotic cells
glp-1(0); gld-1(0)	mitotic cells
lag-2(0); fbf-1(0)	meiotic cells
lag-2(0); gld(0)	mitotic cells

glp-1 → GSC prolif. lag-2 → GSC prolif. fbf-1 → GSC prolif. gld-1 → GSC prolif.

Mutant	Phenotype
glp-1(0)	meiotic cells
glp-1(gf)	mitotic cells
lag-2(0)	meiotic cells
fbf-1(0)	meiotic cells
gld-1(0)	mitotic cells
glp-1(gf); lag-2(0)	mitotic cells
glp-1(gf); fbf-1(0)	meiotic cells
glp-1(0); gld-1(0)	mitotic cells
lag-2(0); fbf-1(0)	meiotic cells
lag-2(0); gld(0)	mitotic cells

glp-1 → GSC prolif. lag-2 → GSC prolif. fbf-1 → GSC prolif. gld-1 → GSC prolif.

 $lag-2 \rightarrow glp-1 \rightarrow fbf-1 \rightarrow gld-1 \rightarrow GSC prolif.$