Université de Bretagne-Sud

STA2209 : Statistique Bayésienne

Problème 2 : Rupture

Soit le processus de Poisson N(t), t > 0; N(t) désigne le nombre d'événements se produisant dans l'intervalle [0, t]. L'intensité du processus $\lambda(s)$ a la forme suivante :

$$\lambda(s) = \begin{cases} \lambda_1 & \text{si} \quad 0 \le s \le \tau \\ \lambda_2 & \text{si} \quad s > \tau \end{cases}$$

Les trois paramètres inconnus λ_1 , λ_2 et τ sont des réels positifs et $\tau \in [0, T]$. Supposons que l'on observe n dates d'événements $t = (t_1, t_2, \dots, t_n)$ dans la fenêtre [0, T]. On a : N(T) = n.

1. En raisonnant sur les interarrivées qui suivent des lois exponentielles d'après la définition précédente de l'intensité du processus de Poisson, montrer que la vraisemblance, que l'on notera $f(t|\lambda_1, \lambda_2, \tau)$, a la forme suivante :

$$\lambda_1^{N(\tau)} e^{-\lambda_1 \tau} \lambda_2^{N(T)-N(\tau)} e^{-\lambda_2 (T-\tau)}$$

2. On suppose que λ_1 , λ_2 et τ sont indépendants. On note $\pi(\tau)$ la loi a priori sur τ . On se donne les lois a priori suivantes sur λ_i , (i = 1, 2):

$$\pi(\lambda_i) \propto \lambda_i^{b_i} e^{-a_i \lambda_i}$$
, $(i = 1, 2)$.

Exprimer la loi a posteriori de $(\lambda_1, \lambda_2, \tau)$.

On notera : $r_1(\tau) = N(\tau) + b_1 + 1$, $r_2(\tau) = N(T) - N(\tau) + b_2 + 1$, $S_1(\tau) = \tau + a_1$ et $S_2(\tau) = (T - \tau) + a_2$.

- 3. Calculer la loi a posteriori de τ .
- 4. Montrer que la loi a posteriori de λ_1 peut se mettre sous la forme :

$$\pi(\lambda_1|t) \propto \sum_{i=0}^n \Gamma(r_{2i}) \lambda_1^{r_{1i}-1} I_i^{(1)}$$

avec

$$I_i^{(1)} = \int_{t_i}^{t_{i+1}} e^{-\lambda_1 S_1(\tau)} S_2(\tau)^{-r_{2i}} \pi(\tau) d\tau$$

 $r_{1i} = i + b_1 + 1, r_{2i} = n - i + b_2 + 1, t_0 = 0$ et $t_{n+1} = T$

Donner un résultat similaire pour λ_2 .

5. On souhaite tester l'existence du point τ dit point de rupture. On note M_0 le modèle d'intensité constante et M_1 le modèle avec un point de rupture. On s'intéresse donc au test : M_0 contre M_1 . Soit λ_0 , l'intensité sous M_0 .

En considérant une loi a priori sur λ_0 de la forme $\lambda_0^{b_0}e^{-a_0\lambda_0}$, calculer le facteur de Bayes :

$$B_{01}^{(n)}(t,T) = \frac{f(t|M_0)}{f(t|M_1)}$$

en fonction de λ_i , a_i , b_i , i=1,2, r_{ij} , i=1,2, $j=1,\cdots,n$ et $I_i^{(3)}$. N.B. :

$$f(t|M_0) = \int_0^{+\infty} f(t|\lambda_0) \pi(\lambda_0) d\lambda_0$$

$$f(t|M_1) = \int_0^T \int_0^{+\infty} \int_0^{+\infty} f(t|\lambda_1, \lambda_2, \tau) \pi(\lambda_1, \lambda_2, \tau) d\lambda_1 d\lambda_2 d\tau$$

$$I_i^{(3)} = \int_{t_i}^{t_{i+1}} S_1(\tau)^{-r_{1i}} S_2(\tau)^{-r_{2i}} \pi(\tau) d\tau$$

A.E. Raftery, V. E. Akman, "Bayesian analysis of a Poisson process with a change-point", Biometrika (1986), 73.1. pp. 85-89.