

Introduction to Algorithms

Module Code: CELEN086

Lecture 7

(18/11/24)

Lecturer & Convenor: Manish Dhyani Email: manish.dhyani@nottingham.edu.cn

Semester 1 :: 2024-2025

Coursework: Introduction to Algorithm

- Weighting: 25%
- CW will be available on Moodle for the access From 22/11/2024 on Moodle.
- Deadline for submission 06/12/2024 by 4pm
- Late submission will be penalized according to university policy.
- **You may use any algorithm from the lectures and seminars. Any algorithm you use must be written out in full.**

Linear and non-linear data structure

Data structures are conceptual tools for storing, sorting and manipulating various forms of data.

Linear data structure:

data elements are sequentially connected.

Non-linear data structure:

data elements are hierarchically connected and are present at various levels.

Example of linear data structure

Students register list

Example of non-linear data structure

Students registered modules

Example of non-linear data structure

Tree data structure

A tree is a set of nodes that are either empty or store a value.

Nodes are connected via branches (or called edges).

Root of a tree:

a principal node from which all other nodes and branches develop

Size of a tree:

total number of nodes in the tree

Subtrees:

smaller trees that descend from root or other lower nodes

Node

Parent node: A is the parent node of B, E, F

the node with a branch from itself to any other successive node

<u>Child node</u>: C, D are children nodes of B

a descendant of any node

Sibling nodes: G,H,I are sibling nodes

nodes that belong to the same parent

Leaf nodes: E, C, D, G, H, I are all the leaf nodes

nodes with no child

<u>Degree of a node</u>: degree(A) = 3 degree(B) = 2 degree(C) = 0 total number of children of a node

Height and Depth

Level

Root node is at level 0; root node's children are at level 1,... and so on.

tree depth = tree height = 2

Height of a node

The number of edges from the leaf node upwards to the particular node in the longest path.

Maximum height of nodes is called Height of Tree.

Depth of a node

Total number of edges from the root node to the particular node.

Maximum depth of nodes is called Depth of Tree.

Height of C: 0

Height of B: 1

Height of E: 0

Height of A: 2

(one of the longest paths: CB-BA)

Depth of A: 0

Depth of B: 1

Depth of E: 1

Depth of C: 2

Binary tree

A binary tree is a tree in which:

each node has <u>at most two</u> children nodes (maximum degree = 2)

Examples of binary trees:

Create a binary tree

- leaf nil
 Creating/representing an empty tree
- node(leaf, x, leaf) cons(x,nil)
 Creating a leaf node that stores value x

Note: Leaf and leaf node are different!

node(leaf,5,leaf)

• node(left-subtree, x, right-subtree) node(node(leaf,5,leaf),7,leaf)

cons(x,list)

Making a larger tree
(storing x in parent node of two given subtrees)

Basic functions

Like list commands, we have basic functions that work on binary trees.

isLeaf(tree)isEmpty(list)

to return Boolean value True if the tree is empty (a leaf); False if the tree is non-empty

root(tree) head(list)

to return the value stored in the root

left(tree)

to return the left subtree

right(tree)

to return the right subtree

tail(list)

Example

Consider the binary tree T:

$$root(T) = A$$

$$right(left(T)) = \bigcirc$$

$$root(right(left(T))) = D$$

$$left(right(left(T))) = leaf$$

How to obtain the value stored in the leaf node **(G)** ?

Use left/right to walk down in a binary tree and use root to retrieve the value.

Algorithm: tree size

Design a recursive algorithm that computes the size (total number of nodes) of a binary tree.

Analysis: Decomposing the problem into

smaller instances of the same problem.

Tree sizes of smaller trees: left/right subtrees

Recursions stop at leafs.

numbers of nodes in current tree

- = numbers of nodes in left subtree
- + numbers of nodes in right subtree

+1

Algorithm: tree size

```
Algorithm: size(T)
Requires: a binary tree T
Returns: total number of nodes in T (size of T)

1. if isLeaf(T)
2. return 0
3. else
4. return size(left(T))+size(right(T))+1
5. endif
```

Question to think:

Can we replace Lines 1&2 by following statements, and maintain the rest of above algorithm? Why?

```
    if isLeaf(left(T)) && isLeaf(right(T)) // checking leaf node
```

2. return 1

CELEN086 :: Introduction to Algorithms

Trace

Trace: size
$$(9)$$
 $1) = 5$

return

return

Requires: a binary tree T

Returns: total number of nodes in T (size of T)

- 1. if isLeaf(T)
- return 0
- 3. else
- return size(left(T))+size(right(T))+1

return size(leaf) + size(leaf) +1

5. endif

$$=3+1+1=5$$

return size (
$$\frac{3}{3}$$
)+size ($\frac{7}{7}$) + 1
=1+1+1=3

$$size(leaf) + size(leaf) + 1$$
 return $size(leaf) + size(leaf) + 1$

= 0+0+1=1

$$= 0+0+1=1$$

$$= 0+0+1=1$$

(backtracking)

Algorithm: search in a binary tree

Design a recursive algorithm that searches for a node value in a binary tree.

Algorithm: search(x, T)

Requires: a binary tree T and an element x

Returns: True if x occurs in T; False otherwise

- 1. if isLeaf(T)
- return False
- 3. elseif x = = root(T)
- 4. return True
- 5. else
- 6. return search(x, left(T)) || search(x, right(T))
- 7. endif

Note:

In general, when we describe the time complexity of algorithms without any particular specifications (best/average/worst), we are aiming on the worst case scenario.

What is the time complexity of this algorithm? O(n)

(Assume the size of tree is n and the height of tree is h.)

Algorithm: sum of all node values in a binary tree

Design a recursive algorithm that find sum of all node values in a binary tree.

```
Algorithm: sumBT(T)
Requires: a binary tree T
Returns: a number i.e. sum of all node values in T

1. if isLeaf(T)
2. return 0
3. else
4. return sumBT(left(T)) + sumBT(right(T)) + root(T)
5. endif
```


Review Tree Data structure

Semester 1 :: 2024-2025