Álgebra

Licenciatura em Ciências da Computação/Licenciatura em Matemática - 2° ano

Exercícios - Folha 1 2020/21

1. Considere a operação binária * definida em $S = \{a, b, c, d, e\}$ pela tabela de Cayley

- (a) Determine b * d, c * c e [(a * c) * e] * a.
- (b) Determine (a*b)*c e a*(b*c). Pode concluir que a operação é associativa? Porquê?
- (c) Determine (b*d)*c e b*(d*c). Que pode concluir sobre a associatividade da operação?
- (d) A operação * é comutativa?
- 2. Seja $n \in \mathbb{N}$.
 - (a) Mostre que as igualdades

$$[a]_n \oplus [b]_n = [a+b]_n$$
 e $[a]_n \otimes [b]_n = [ab]_n$,

para todo $a,b\in\mathbb{Z}$, definem, em \mathbb{Z}_n , duas operações binárias.

- (b) Mostre que as operações \oplus e \otimes são comutativas e associativas.
- (c) Identifique o elemento identidade de (\mathbb{Z}_n, \oplus) e o elemento identidade de (\mathbb{Z}_n, \otimes) .
- (d) Mostre que qualquer elemento de \mathbb{Z}_n admite um elemento simétrico.
- (e) Justifique que nem todo o elemento de \mathbb{Z}_n admite elemento inverso.
- (f) Construa a tabela de Cayley de (\mathbb{Z}_5,\oplus) , de (\mathbb{Z}_5,\otimes) , de (\mathbb{Z}_6,\oplus) e de (\mathbb{Z}_6,\otimes) .
- (g) Identifique o conjunto dos elementos invertíveis de \mathbb{Z}_5 e o conjunto dos elementos invertíveis de \mathbb{Z}_6 .
- 3. Seja n um inteiro positivo. Prove que:
 - (a) Se n é ímpar, então nenhum elemento diferente da identidade de (\mathbb{Z}_n,\oplus) é o seu próprio simétrico;
 - (b) Se n é par, então exatamente um elemento diferente da identidade de (\mathbb{Z}_n, \oplus) é o seu próprio simétrico;
 - (c) Em (\mathbb{Z}_n, \oplus) , ou

$$[0]_n \oplus [1]_n \oplus \cdots \oplus [n-1]_n = [0]_n$$

ou

$$[0]_n \oplus [1]_n \oplus \cdots \oplus [n-1]_n = \left[\frac{n}{2}\right]_n.$$

4. Suponha que * é uma operação binária, definida num conjunto não vazio S, que admite identidade 1_S e tal que

$$x * (y * z) = (x * z) * y \quad \forall x, y, z \in S.$$

Prove que a operação * é comutativa e associativa.