IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of:

Koichiro YAMASHITA

Application No.:

Group Art Unit:

Filed: July 30, 2003

Examiner:

For:

MOVING PICTURE REPRODUCING DEVICE AND MOVING PICTURE

REPRODUCING METHOD

SUBMISSION OF CERTIFIED COPY OF PRIOR FOREIGN APPLICATION IN ACCORDANCE WITH THE REQUIREMENTS OF 37 C.F.R. § 1.55

Commissioner for Patents PO Box 1450 Alexandria, VA 22313-1450

Sir:

In accordance with the provisions of 37 C.F.R. § 1.55, the applicant(s) submit(s) herewith a certified copy of the following foreign applications:

Japanese Patent Application No(s). 2002-224100 and 2003-097496.

Filed: July 31, 2002 and March 31, 2003, respectively.

It is respectfully requested that the applicant(s) be given the benefit of the foreign filing date(s) as evidenced by the certified papers attached hereto, in accordance with the requirements of 35 U.S.C. § 119.

Respectfully submitted,

STAAS & HALSEY LLP

Date: July 30, 2003

Stephen T. Boughner

Registration No. 45,317

1201 New York Ave, N.W., Suite 700

Washington, D.C. 20005 Telephone: (202) 434-1500 Facsimile: (202) 434-1501

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開發号

特開平11-355728

(43)公鵝日 平成11年(1999)12月24日

(51) Int.CL.8		織別記号	ΡI		
H04N	5/93		H04N	5/93	A
	7/24			7/13	2

審査前求 有 請求項の数2 OL (全 6 頁)

(21)出劇番号	特顯平10-162300	(71) 出庭人 000004237
(22)出題日	平成10年(1998) 6月10日	日本電気株式会社 東京都雅区芝五丁目?後1号
		(72) 発明者 田中 三雅 東京都港区芝五丁目7番1号 日本電気株
		式会社内
		(74)代理人 弁理士 岩林 鬼 (外4名)
		1

(54) 【発明の名称】 オーディオ・ビデオ同期再生方法および装置

(57)【變約】

【課題】 ビデオデータに記載されているフレームレートを使用しないでオーディオとビデオのA V 同期を制御できる構成を提供する。

【解決手段】 圧縮記録されたオーディオ・ビデオデータを分離するAV分離部と、分離されたビデオデータの伸長処理を行うビデオ処理部と、分離されたオーディオデータの伸長処理を行うオーディオ処理部と、オーディオ・ビデオ同期制御を行うAV同期処理部と、ビデオデータを表示するCRTモニタおよびオーディオ・ビデオデータを表示するCRTモニタおよびオーディオ・ビデオデータを表示するCRTモニタおよびオーディオ・ビデオラ朝再生装置において、前記AV同期処理部は、相前後するタイムスタンプ間の差分時間を算出するタイムスタンプ監視部と、前記タイムスタンプ間のフレーム数を算出する差分フレームカウンタと、前記算出した差分時間と差分フレーム数からフレームレートを算出するフレーム

				. 4	
				•	
	•				
				-	
				-	
		•			

特開平11-355728

(2)

【特許請求の範囲】

【韻求項 】】 タイムスタンプ間の差分時間と差分フレ ーム教を使用してフレームレートを算出し、算出したフ レームレートを使用してAV同期制御を実行することを 特徴とするオーディオ・ビデオ同期再生方法。

【鼬求項2】 圧縮記録されたオーディオ・ビデオデー タを分離するAV分離部と 分離されたビデオデータの 伸長処理を行うビデオ処理部と、分離されたオーディオ データの伸長処理を行うオーディオ処理部と、オーディ たビデオデータを表示するCRTモニタおよび伸長され たオーディオデータを再生するスピーカから構成される オーディオ・ビデオ同期再生装置において、

前記AV同期処理部は、相前後するタイムスタンプ間の 差分時間を算出するタイムスタンプ監視部と、前記タイ ムスタンプ間のフレーム敷を算出する差分フレームカウ ンタと、前記算出した差分時間と差分フレーム数からフ レームレートを算出するフレームレート生成部を具有す ることを特徴とするオーディオ・ビデオ同期再生装置。 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、圧縮記録されたオ ーディオ及びビデオデータを同期再生するオーディオ・ ビデオ同期再生方法およびその装置に関するものであ

[0002]

【従来の技術】従来、画像及び音声データの再生技術と しては、MPEG(Moving PictureExpert Group)デー タのようなデジタル圧縮符号化されたオーディオ・ビデ 生するシステムにおいて、通常はデータに記載されてい るタイムスタンプを使用してオーディオとビデオの同期 {AV同期} を制御する。

【0003】しかし、再生システムの時間分解能が低い 場合は、データに記載されているタイムスタンプに合わ せて正確にAV同期制御を行えない問題があった。

【0004】とれを回避するため、オーディオデータに 記載されているビットレートと再生バイト数からオーデ ィオ再生時間を算出し、このオーディオ再生時間とビデ 開始してから現在までに出力された理想的なフレーム数 を算出し、実際に出力されたフレーム数と比較すること でAV同期を調御する方法が提案されている。

フレームレート=フレーム数/差分時間

【0013】本発明では、このようにして算出したフレ ームレートを用いてAV同期制御を行う。このため、ビ デオ伸長処理の負荷を軽減するためにフレーム構成を変 更した場合でも、正確にAV同期制御を行うことが可能 となる。

[0014]

*【0005】また、映画データのように24フレーム毎 秒のデータを 図5に示すような既知の3:2ブルダウ ンなどによりNTSCの6 0フィールド毎秒に変換され るデータにはフレームレートとして30フレーム毎秒と 記載される。

【0006】とのように3:2プルダウンされたデータ はインターレス表示の環境で再生するために加工された ものであり、ノンインターレス表示の環境で再生する場 台は、図5(c)に示すようなフレーム構成のデータに オ・ビデオ同期制御を行うAV同期処理部と、伸長され 10 変換され、データに記述されている30フレーム毎秒で 表示される。

> 【0007】しかし、データの俥畏処理をソフトウェア で実現し、AV同期制御を行う場合、再生システムのC PUやグラフィックスが高性能でなければビデオ処理に 多大な時間が費やされることから、AV同期を制御する ためにコマ落とし処理を頻繁に行わなければならない。 【0008】とれを回避するため、フィールド構成のデ ータを30フレーム毎秒で伸長して表示するのではな く、元の24フレーム毎秒で伸長し表示することが考え

> 【0009】との場合、ビデオデータに記載されている フレームレートと、実際に再生するフレームレートが異 なるため、AV同期はデータに記載されているタイムス タンプを使用しなければならないという問題があった。 [0010]

【発明が解決しようとする課題】本発明は、従来技術の 上記問題点に鑑み、MPEGデータのようなデジタル圧 縮されたオーディオ・ビデオデータをそれぞれ伸長し て、オーディオとビデオを再生する際、ビデオデータに オデータをそれぞれ伸長して、オーディオとビデオを再 30 記載されているフレームレートを使用しないでオーディ オとビデオの同期合わせ(AV同期)を制御できる構成 を提供するものである。

[0011]

【課題を解決するための手段】本発明は、上記の課題を 解決するために、ビデオデコーダはビデオデータの伸長 処理を施す。差分フレームカウンタはタイムスタンプ間 のプレーム数を算出する。タイムスタンプ監視部はプレ ームに付加されているタイムスタンプを取得し、最新の タイムスタンプと1つ前のタイムスタンプを使用して差 オデータに記載されているフレームレートとから再生を 40 分時間を算出する。フレームレート生成部は、タイムス タンプ間のフレーム数と差分時間を用いて次式よりフレ ームレートを算出する。

[0012] (1)

【発明の実施の形態】本発明の実施の形態について図面 を参照して説明する。図1を参照すると、本発明のオー ディオ・ビデオ同期再生装置は、デジタル圧縮符号化さ れたオーディオ・ビデオデータを格納するデータ記録接 置しと、データ記録装置しからデータを読み出し、多重 50 化されて記録されているオーディオ・ビデオデータを分

				• .	•
			·		
		.*			
			•		

特開平11-355728

(3)

離するAV分離部2と、AV分離部2によって分離され たビデオデータの伸長処理を行うビデオ処理部3と、A V分離部2によって分離されたオーディオデータの伸長 処理を行うオーディオ処理部4と、AV同期制御を行う AV同期処理部5と、伸長されたビデオデータを表示す るCRTモニタ6と、伸長されたオーディオデータを再 生するスピーカ?から構成されている。

【0015】ビデオ処理部3は、AV分離部2によって 分離された圧縮ビデオテータを格納する圧縮ビデオバッ ダ情報〉の解析、及び伸長を実行するビデオデコーダ1 2と、伸長したビデオデータを格納するフレームバッフ ァ13と、フレームバッファ13内のビデオデータをC RTモニタ6に送信するビデオ表示制御部14から機成 される。

【0016】オーディオ処理部4は、AV分離部2によ って分離された圧縮オーディオデータを格納する圧縮オ ーディオバッファ21と、圧縮オーディオデータの属性 情報(オーディオヘッダ情報)の解析、及び伸長を実行 するオーディオデコーダ22と、伸長したオーディオデ 26 4にてタイムスタンプ間のフレーム數(差分フレーム ータを格納するPCMバッファ23と、PCMバッファ 23内のオーディオデータをスピーカ?に送信するオー ディオ再生制御部24から構成される。

【0017】AV同期処理部5は、再生開始から現在ま でに伸長され、再生されたオーディオデータの積算デー タ量を保存するオーディオデータカウンタ31と、積算 データ畳とオーディオペッダ情報を用いてオーディオの 再生経過時間(基準時間)を算出するクロック生成部3 2と、ビデオペッダ情報からタイムスタンプを取得し、 前回のタイムスタンプとの差分時間を算出するタイムス 30 タンプ監視部33と、タイムスタンプ間のフレーム数 **〈差分フレーム数〉を算出する差分フレームカウンタ3** 4と、差分時間と差分フレーム数を用いてフレームレー 卜を算出するフレームレート生成部35と、再生開始か ら現在までに伸長され、表示されたビデオデータの補算 フレーム数 (実フレーム数) を保存するビデオフレーム カウンタ36と、フレームレートと墓準時間を用いて本 来伸長され、表示されるべきビデオのフレーム数(理想 フレーム数)を算出し、実フレーム数と比較してオーデ 落とし数を設定するなどして次回のビデオの仲長方法を 設定するAV同期制御部37から構成される。

【0018】次に、図2のフローチャートを参照して本 真ែ形態の全体の動作について説明する。

【0019】ステップA1では、データ記録装置1から 多重化された圧縮オーディオ・ビデオデータを読み込む み、AV分離部2において、オーディオデータとビデオ データに分離し、ビデオデータは圧縮ビデオバッファ1 1に絡納し、オーディオデータは圧縮オーディオバッフ ァ21に格納する。ステップA2では、オーディオの値 59 リ秒=24フレーム毎秒

猥処理、及び再生処理を行う。また、ここで、オーディ オヘッダ情報の解析も行う。ステップA3では、後述す るようにAV同期処理(図3参照)を行う。ステップA4 では、ビデオの伸張・表示処理を行う。また、ここで、 ビデオペッダ情報の解析も行う。ステップA5では、デ ータ記録装置1内に未処理のデータが残っているかを判 別し、残っているときはステップA1に戻る。残ってい ないときは再生処理を停止する。

【0020】次に、AV同期処理(ステップA3)につい ファ11と、圧縮ビデオデータの属性情報(ビデオヘッ 10 て詳細に説明する。図3はAV間期制御の処理手順を示 **ずフローチャートである。**

> 【0021】ステップB1では、オーディオデータカウ ンタ31からオーディオデータの再生積算データ量を取 得する。ステップB2では、クロック生成部32にて、 オーディオペッダ情報と再生精算データ畳を用いて、オ ーディオの再生経過時間(基準時間)を算出する。ステ ップB3では、タイムスタンプ監視部33にて最新のタ イムスタンプと1つ前のタイムスタンプから差分時間を 算出する。ステップB4では、差分フレームカウンタ3 数)を取得する。ステップB5では、フレームレート生 成部35にて差分時間と差分フレーム数を用いてフレー ムレートを算出する。算出式には前出の式(1)を用い る。ステップB6では、AV同期制御部37にてステッ プB2で求めた基準時間と、ステップB5で求めたフレ ームレートを使用して運想フレーム数を算出する。そし て、この理想プレーム数と実プレーム数を比較し、オー ディオの再生に対してのビデオの再生の造総を検証す る。次に、このビデオの進捗に従って、コマ落としフレ ーム数を設定するなどして、次段のステップA4におけ るビデオの仰長方法を設定する。

【0022】次に、キーフレーム(Iピクチャ)毎にフ レームレートを算出する方法を具体例に基づいて説明す る。図4はフレーム算出の具体例を示す図である。

【0023】本方法によると、この例では60プレーム 目がキーフレーム (『食+】ピクチャ) であるため、こ のプレームのタイムスタンプ (2500ミリ秒) がタイ ムスタンプ監視部33に送信される。タイムスタンプ監 視部33では、今回のタイムスタンプ(2500ミリ ィオの再生に対するビデオの再生の進捗を検出し、コマ 40 秒)と前回のタイムスタンプ(2000ミリ秒)を使用 して差分時間を求める。この例では差分時間は500ミ リ秒 (2500ミリ秒-2000ミリ秒) となる。ま た、差分フレームカウンタ34では、48フレーム目の 前回のキーフレーム!n以降に検出されたフレームが差 分フレーム数になるため、【n+1ピクチャ(60)フレ ーム目)検出時には差分プレーム数は12となる。この 時プレームレート生成部35では、式(1)を使用して フレームレートを算出する。

【0024】フレームレート= 12フレーム/500ミ

	•	
		,

(4) 特別平11-355728

【0025】本方法では以上のようにしてフレームレートを算出することができる。

[0026]

【発明の効果】以上説明したように、本発明によれば、 再生システムの時間分解能が低い場合でも、データに記 載されているフレームレートを使用せずに正確にAV同 期間御を実行することができる。その理由は、3:2プ ルダウンしたデータをノンインターレス環境で元の24 フレーム毎秒で再生するとき、オーディオの再生時間に 台わせてビデオを再生でき、これにより正確にAV同期 10 を合わせることができるためである。

【0027】また、本発明によれば、伝送路エラーやデータエラーが発生し、フレームレートを正常に取得できない場合でも、算出したフレームレートを使用するため正確にAV同期制御を実行することができる。

【図面の簡単な説明】

- 【図1】本実施形態のシステム構成を示すプロック図
- 【図2】実施形態の全体の処理手順を示すフローチャー
- 【図3】A V同期制御の処理手順を示すフローチャート
- 【図4】フレーム算出の具体例を示す図
- 【図5】3:2ブルダウンの概念図
- 【符号の説明】

- * 1 データ記録装置
 - 2 AV分離部
 - 3 ビデオ処理部
 - 4 オーディオ処理部
 - 5 A V 同期処理部6 CR T モニタ
 - 7 スピーカ
 - 11 圧縮ビデオバッファ
 - 12 ビデオデコーダ
 - 13 フレームバッファ
 - 14 ビデオ表示制御部
 - 21 圧縮オーディオデコーダ
 - 22 オーディオデコーダ
 - 23 PCMバッファ
 - 24 オーディオ再生制御部
 - 31 オーディオカウンタ
 - 32 クロック生成部
 - 33 タイムスタンフ監視部
 - 34 差分プレームカウンタ
 - 35 フレームレイト生成部 36 ビデオフレームカウンタ
 - o o
 - 37 AV同期制御部

【図1】

		•
		•
·		
•	•	
·		
		-

(5) 特別平11-355728

			•	
				,
•				
		,		
		÷		

(6)

特関平11-355728

[図5]

(a) フレームテータ (24フレーム毎秒)

(b) フィールドテータ (60フィールド毎秒)

(c) フレームデータ(30フレーム気砂)

. . . .

					• • •	•
•						
	-					
						•
				• .		
			٠			
		1				
				•		
				•		

(12) United States Patent Tanaka

(10) Patent No.:

US 6,337,883 B1

(45) Date of Patent:

Jan. 8, 2002

METHOD AND APPARATUS FOR SYNCHRONOUSLY REPRODUCING AUDIO DATA AND VIDEO DATA

(75) Inventor: Mitsumasa Tanaka, Tokyo (JP)

(73) Assignee: NEC Corporation, Tokyo (JP)

Subject to any disclaimer, the term of this (*) Notice: patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/329,340

(22)

Filed:

Jun. 10, 1999 (30)Foreign Application Priority Data

(51)	Int. Cl. ⁷ H04N 7/12
	U.S. Cl
(58)	Field of Search
	386/98, 104–166, 111, 112; 348/423.1;
	375/240.01, 240.25, 240.28; H04N 7/12

(JP) 10-162300

(56)References Cited

U.S. PATENT DOCUMENTS

5,502,573 A	+	3/1996	Fujinami 386/98
5,594,859 A	•	1/1997	Palmer et al 395/330
6,130,987 A	*	10/2000	Tanaka 386/94

FOREIGN PATENT DOCUMENTS

JР 6-343065 12/1994 JP 8-212701 8/1996

1b	8-214296	8/1996
JP	8-251543	9/1996
JP	8-322043	12/1996

^{*} cited by examiner

Primary Examiner-Nhon T Diep

(74) Attorney, Agent, or Firm-Sughrue Mion, PLLC

(57)**ABSTRACT**

An apparatus for synchronously reproducing a video data and audio data includes a separating section, an audio data processing section, a video data processing section, and a synchronization processing section. The separating section separates a multiplexed compressed audio and video data into a compressed video data and a compressed audio data. The audio data processing section expands the compressed audio data to reproduce an audio data from the expanded audio data, and outputs the audio data to the synchronization processing section. The video data processing section expands the compressed video data in response to a control signal to reproduce a video data from the expanded video data, and outputs a signal indicative of each of frames, and a signal indicative of each of time stamps to the synchronization processing section. The synchronization processing section calculates a frame rate based on the audio data supplied from the audio data processing section, and the frame signal and the time stamp signal supplied from the video data processing section, and outputs the control signal to the video data processing section based on the calculated frame rate without using a frame rate written in the video

4 Claims, 5 Drawing Sheets

U.S. Patent Jan. 8, 2002 Sheet 1 of 5 US 6,337,883 B1

Fig. 1A PRIOR ART

FRAME DATA (24 FRAMES/SEC.)

Fig. 1B PRIOR ART

FIELD DATA (60 FIELDS/SEC.)

Fig. 1C PRIOR ART

FRAME DATA (30 FRAMES/SEC.)

Fig. 3

- Frieg. 4

METHOD AND APPARATUS FOR SYNCHRONOUSLY REPRODUCING AUDIO DATA AND VIDEO DATA

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a method and apparatus for synchronously reproducing a compressed audio data and video data.

2. Description of the Related Art

Conventionally, as a reproduce technique of a video data and an audio data, there is known an audio data and video data reproducing system, in which the audio data and video data which have been digitally coded and compressed, like 15 an MPEG (Moving Picture Expert Group) data are respectively expanded. In this system, the synchronization between the audio data and the video data (to be referred to as AV synchronization, hereinafter) is generally controlled, using time stamps which are written in the data.

However, there is a case that it is not possible to perform the AV synchronization control correctly in accordance with the time stamps which have been written in the data, when a time resolution of the reproducing system is low

In order to avoid such a problem, the following method is 25 proposed. That is, an audio reproduction time is calculated from a bit rate which has been written in the audio data, and a reproduce byte count. The number of frames to be outputted till the present time after the start of the reproduction is calculated based on the calculated audio reproduction time and the frame rate which has been written in the video data. The calculated number of frames and the number of frames which have been actually outputted are compared with each other and the AV synchronization is controlled based on the comparing result.

Also, a 24-frame/sec data such as a movie data shown in ... FIG. 1A is converted into a 60-field/sec data of the NTSC system shown in FIG. 1B by the known 3:2 pull down. In this case, a frame rate of 30 frames/sec is written in the converted data. The converted data by the 3:2 pull down has been processed to be reproduced in an interlace display mode. The converted data is converted into the data of a frame structure shown in FIG. 1C, and displayed in the frame rate of 30 frames/sec which has been written in the data, when being reproduced in the non-interlace display mode.

However, when the data expanding process of a data and the AV synchronization control are realized with a software, a great deal of time is spent on the video data processing, if 50 a CPU and a graphic process in the reproducing system are not highly efficient. Therefore, it is necessary to frequently perform the intermittent removal of the frames for control of the AV synchronization.

the data of the field structure is not expanded in the 30 frames/sec but in the original 24 frames/sec. In this case, the frame rate which has been written in the video data and the actual frame rate are different from each other. Therefore, the time stamps which have been written in the data must be 60 used for the AV synchronization.

In conjunction with the above, a video and audio data reproducing system is disclosed in Japanese Laid Open Patent application (JP-A-Heisei 8-251543). In this reference, time data for a video data and an audio data are 65" calculated in units of frames based on a frame update data and a frame rate data. The time data are compared with each

other to determine whether the reproduction of the video data proceeds more than that of the audio data.

Also, an MPEG system decoder is disclosed in Japanese Laid Open Patent applications (JP-A-Heisei 8-212701 and JP-A-Heisei 8-214296). In this reference, reproduction times are set based on decoding operation times of decoders (2, 3) and SCR and PTS for each register (11, 21). The PTS is read out from each register and transferred to a corresponding control circuit. Bit streams are transferred from bit buffers to decode core circuits (13, 23). Each of the control 10 circuit calculates the reproduction time based on the decode operation time of the decoder, and SCR and PTS.

A signal processing method is described in Japanese Laid Open Patent application (JP-A-Heisei 6-343065). In this reference, a decoding system for a compressed vide signal and a compressed audio signal includes a local access unit counter for a digital AV application. An access unit header is generated and lost due to a storage media error or a transmission error there. A value called an access unit count is included in each of elementary streams to suppress the generation of an AV sync error. The value is stored in a register (238, 244). An encoder (228, 230) detects the loss of the access unit header or an error of that to correct AV synchronization.

SUMMARY OF THE INVENTION

Therefore, an object of the present invention is to provide a method and apparatus for synchronously reproducing an audio data and video data, in which AV synchronization control of the audio data and the video data can be performed without using a frame rate which has been written in the video data, when the audio data and video data which have been digitally compressed, like an MPEG data, are expanded and reproduced, respectively.

In order to achieve an aspect of the present invention, an apparates for synchronously reproducing a video data and audio data, includes a separating section, an audio data processing section, a video data processing section, and a synchronization processing section. The separating section separates a multiplexed compressed audio and video data into a compressed video data and a compressed audio data. The audio data processing section expands the compressed audio data to reproduce an audio data from the expanded audio data; and outputs the audio data to the synchronization processing section. "The video data processing section 45 expands the compressed video data in response to a control signal to reproduce a video data from the expanded video data, and outputs a signal indicative of each of frames, and a signal indicative of each of time stamps to the synchronization processing section. The synchronization processing section calculates a frame rate based on the audio data supplied from the audio data processing section, and the frame signal and the time stamp signal supplied from the video data processing section, and outputs the control signal to the video data processing section based on the calculated In order to avoid this problem, it could be considered that 55 frame rate without using a frame rate written in the video data.

> In this case, the synchronization processing section includes a time stamp monitoring section calculating a time difference between the two time stamps, a frame difference counter counts a number of frames/between the two time stamps, a calculating section calculating the frame rate from the number of frame difference and the time difference, and a control section outputting the control signal to the video Adata processing section based on the calculated frame rate.

> In order to achieve another aspect of the present invention, a method of synchronously reproducing a video data and audio data, includes:

separating a multiplexed compressed audio and video data into a compressed video data and a compressed audio data;

expanding the compressed audio data to reproduce an audio data from the expanded audio data;

a video data processing section expanding the compressed video data in response to a control signal to reproduce a video data from the expanded video data;

generating a signal indicative of each of frames, and a signal indicative of each of time stamps;

calculating a frame rate based on the audio data, the frame signal and the time stamp signal; and

generating the control signal based on the calculated frame rate without using a frame rate written in the video data.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A to 1C are conceptual diagrams of a 3:2 pull down process;

FIG. 2 is a block diagram illustrating the system configuration of an apparatus for synchronously reproducing an video data and audio data according to an embodiment of the present invention;

FIG. 3 is a flow chart to explain the procedure of the 25 whole apparatus in the embodiment;

FIG. 4 is a flow chart to explain the procedure of an AV synchronization control; and

FIG. 5 is a diagram to explain a specific example of frame calculation.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

An audio data and video data synchronously reproducing apparatus of the present invention will be described with reference to the attached drawings.

FIG. 2 is a block diagram illustrating the structure of the audio data and video data synchronous reproduction apparatus according to an embodiment of the present invention. Referring to FIG. 2, the audio data video synchronous reproduce apparatus of the present invention is composed of a data storage unit 1 as a data recorder, an AV separating section 2, a video data processing section 3, an audio data processing section 4, an AV synchronization processing section 5, a CRT monitor 6 and a speaker 7.

The data storage unit 1 stores an audio data and an video data which have been digitally coded and compressed. The AV separating section 2 reads out a multiplexed compressed data from the data storage unit 1 to separates into a compressed audio data and a compressed video data. The video data processing section 3 performs an expanding process of the compressed video data supplied from the AV separating section 2. The audio data processing section 4 performs an expanding process of the compressed audio data supplied from the AV separating section 2. The AV synchronization processing section 5 performs an AV synchronization control. The CRT monitor 6 displays the expanded video data and the speaker 7 reproduces the expanded audio data.

The video data processing section 3 is composed of a 60 compressed video data buffer 11, a video decoder 12, a frame buffer 13, and a video display control section 14. The compressed video data buffer 11 stores the compressed video data supplied from the AV separating section 2. The video decoder 12 executes analysis and an expanding process of attribute information of the compressed video data, e.g., video header information in response to a control signal

4

from the AV synchronization processing section 5. The frame buffer 13 stores the expanded video data. The video display control section 14 controls the CRT monitor 6 to display the expanded video data stored in the frame buffer 13.

The audio data processing section 4 is composed of a compressed audio data buffer 21, an audio decoder 22, a PCM buffer 23, and an audio reproduction control section 24. The compressed audio data buffer 21 stores the compressed audio data supplied from the AV separating section 2. The audio decoder 22 executes analysis and an expanding process of attribute information of the compressed audio data, e.g., audio header information. The PCM buffer 23 stores the expanded audio data. The audio reproduction control section 24 controls the speaker 7 to output the expanded audio data stored in PCM buffer 23.

The AV synchronization processing section 5 is composed of an audio data counter 31, a clock generating section 32, a time stamp monitoring section 33, a frame difference counter 34, a frame rate generating section 35, a video frame counter 36, and an AV synchronization control section 37.

The audio data counter 31 counts a total amount of audio data which have been reproduced till the present time after start of the reproduction. The clock generating section 32 calculates a reproduction time or an audio reference time using the total amount of audio data and the audio header information. The time stamp monitoring section 33 detects a current time stamp from the video header information and calculates a time difference between the current stamp and a previous time stamp. The frame difference counter 34 counts the number of frames between the current time stamp and the previous time stamp in response to the detection of the time stamp by the monitoring section 33. The frame rate generating section 35 calculates a frame rate using the time difference and the frame difference. The video frame counter 36 counts the total number of frames of video data which have been expanded and displayed from the reproduction start to the present time, as an actual frame count. The AV synchronization control section 37 calculates the number of frames of the video data which should be originally expanded and displayed, as the target number of frames using the frame rate and the reference time. Then, the actual number of frames and the target number of frames are compared such that the progress of the reproduction of the video data to the reproduction of the audio data can be detected. Thus, the AV synchronization control section 37 sets the number of fields to be removed for a thin-down method and sets a video data expanding method for the next video data and outputs a control signal to the video data decoder 12.

Next, the operation of the audio and video data synchronous reproduction apparatus in this embodiment will be described with reference to the flow chart of FIG. 3.

In a step A1, the AV separating section 2 reads a multiplexed compressed audio data and video data from the data storage unit 1 and separates into the compressed audio data and the compressed video data. Then, the AV separating section 2 stores the compressed video data in the compressed video data buffer 11 and stores the compressed audio data in the compressed audio data buffer 21.

In a step A2, the expanding process and reproducing process of the compressed audio data are performed. Also, at this time, the analysis of the audio header information is performed.

In a step A3, the AV synchronization process is performed to be later mentioned.

In a step A4, the expanding process and displaying process of the compressed video data are performed. Also, at this time, the analysis of the video header information is performed.

In a step A5, whether or not un-processed data is left in 5 data storage unit 1 is determined. When any data is left, the control returns to the step A1. When any data is not left, the control stops the reproducing process.

Next, the AV synchronization control process (step A3) will be described in detail. FIG. 4 is a flow chart showing the procedure of the AV synchronization control.

In a step B1, the total amount of audio data to be reproduced is read from the audio data counter 31. In a step B2, the reproduction time of the audio data as the reference time is calculated using the audio header information and the total amount of reproduced audio data, in the clock generating section 32.

In a step B3, the time difference is calculated from the current time stamp and the previous time stamp in the time stamp monitoring section 33. In a step 134, the frame difference between the current and previous time stamps is read out from the frame difference counter 34.

In a step B5, in the frame rate generating section 35, a frame rate is calculated from the following equation (1) 25 using the time difference and the frame difference:

In a step B6, the target number of frames is calculated in the AV synchronization control section 37 using the reference time calculated in the step B2 and the frame rate calculated in the step B5. After that, the target number of frames and the actual number of frames are compared and the progress of the reproduction of the video data to the reproduction of the audio data is verified.

Next, the number of frames to be removed is set in accordance with the progress of this video data, a video data expanding method for the next frame is set.

Next, a method of calculating the frame rate for every key frame (1 picture) will be described based on a specific example. FIG. 5 shows the specific example of the frame rate calculation.

In this example, because the 60th frame is a key frame (I_{n+1} picture), the time stamp at 2500 ms of this frame is transmitted to the time stamp monitoring section 33. In the time stamp monitoring section 33, a time difference is determined using the current time stamp at 2500 ms and the previous time stamp at 2000 ms. In this example, the time difference is 500 ms (=2500 ms-2000 ms). Also, the frame difference counter 34 counts the frames detected after the previous key frame at the 48th frame to determine the frame difference. Therefore, when the I_{n+1} picture at the 60th frame is detected, the frame differences is 12. At this time, the frame rate generating section 35 calculates the frame rate as follows, using the above equation (1).

frame rate=12 frames/500 ms=24 frames/sec.

The frame rate can be calculated in the present invention as above mentioned.

As described above, according to the present invention, the AV synchronization control can be correctly executed without using the frame rate which is written in the data, even when the time resolution of the reproducing apparatus is low. In this way, when the data subjected to 3:2 pull down 65 is reproduced in the original 24 frames/sec in the non-interlace mode, the video data can be reproduced in syn-

chronous with the reproduction of the audio data. Thus, the AV synchronization can be correctly adjusted.

Also, according to the present invention, the use of the calculated frame rate allows the correct AV synchronization control, even when the frame rate can not be normally acquired due to a transmission path error and a data error.

What is claimed is:

- 1. An apparatus for synchronously reproducing a video data and audio data, comprising:
 - a separating section separating a multiplexed compressed audio and video data into a compressed video data and a compressed audio data;
 - an audio data processing section expanding said compressed audio data to reproduce an audio data from the expanded audio data, and outputting the audio data;
 - a video data processing section expanding said compressed video data in response to a control signal to reproduce a video data from the expanded video data, and outputting a signal indicative of each of frames, and a signal indicative of each of time stamps; and
 - a synchronization processing section calculating a frame rate based on said audio data supplied from said audio data processing section, and said frame signal and said time stamp signal supplied from said video data processing section, and outputting said control signal to said video data processing section based on said calculated frame rate without using a frame rate written in said video data.
- 2. An apparatus for synchronously reproducing a video data and audio data according to claim 1, wherein said synchronization processing section includes:
 - a time stamp monitoring section calculating a time difference between said two time stamps;
- a frame difference counter counting a number of frames between said two time stamps;
- a calculating section calculating said frame rate from the number of frame difference and said time difference;
- a control section outputting said control signal to said video data processing section based on said calculated frame rate
- 3. A method of synchronously reproducing a video data and audio data, comprising:
 - separating a multiplexed compressed audio and video data into a compressed video data and a compressed audio data;
 - expanding said compressed audio data to reproduce an audio data from the expanded audio data;
 - a video data processing section expanding said compressed video data in response to a control signal to reproduce a video data from the expanded video data;
 - generating a signal indicative of each of frames, and a signal indicative of each of time stamps; and
 - calculating a frame rate based on said audio data, said frame signal and said time stamp signal;
 - generating said control signal based on said calculated frame rate without using a frame rate written in said video data.
- 4. A method according to claim 3, wherein said calculating includes:
 - calculating a time difference between said two time stamps;
 - counting a number of frames between said two time stamps; and

7

calculating said frame rate from the number of frame difference and said time difference.

3

* * *