ON THE PROPERTY OF THE PROPERT

Actividad 9: Invariante de lazo

EDyA 361075 Carlos Eduardo Sánchez Torres 24 de abril de 2021

1. Descripción de la actividad

Diseñar el algoritmo, en pseudocódigo, que encuentre el valor mínimo en un arreglo (ningún valor se repite) realizar el análisis del algoritmo y determinar si es correcto, usando la invariante de lazo.

2. Resultados

```
minOf(A)
min = 1
for i=2 to A.length
if A[min] > A[i]
min = i
return min
```

Listing 1: Pseudocódigo para encontrar el mínimo.

La linea 4 y 5 se procesarán n veces, con su costo respectivo, es decir: $T(n) = c_1 + c_2(n-1) + c_3n + c_4n + c_5 + c_6$. En el peor de los casos, la eficiencia del algoritmo: O(n) = n.

2.1. Demostración por invariante de ciclo sobre que el algoritmo es correcto

Sobre el problema:

Entrada. Una secuencia de n números $A = [a_1, a_2, ..., a_n]$, todos diferentes.

Salida. El índice min tal que $a_{min} < a_i$, para todo $i \neq min$.

Invariante de ciclo:

Inicialización. Para i=2 y min=1, es cierto que a_{min} es el menor. Si $a_1>a_2$, entonces min=i (obteniendo el menor). Si no min=1 es el menor (el primer elemento de la secuencia).

Mantenimiento. Para a_{i+1} , a_{i+2} y así sucesivamente, min cambia solo cuando es encontrado un elemento menor, a saber, $a_{min} > a_i$. Preservándose la invariante del bucle.

Terminación. El algoritmo finaliza cuando i > A.length = n porque cada iteración incrementa i por 1. Sustituyendo i = n, si $a_{min} > a_n$, entonces min = n (el menor). Si no min es el encontrado en el mantenimiento.

Referencias

[1] Cormen, T. H., &; Leiserson, C. E. (2009). Introduction to Algorithms, 3rd edition. In Introduction to algorithms, 3rd edition.