ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ

УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФИЗТЕХ-ШКОЛА РАДИОТЕХНИКИ И КИВЕРНЕТИКИ

Изучение поглощения космических лучей в свинце

Работу выполнил: Шурыгин Антон Алексеевич, группа Б01-909

Долгопрудный, 2021

Содержание

Цель работы: измерить зависимость интенсивности космического излучения в лаборатории от толщины свинца.

Оборудование:

1 Экспериментальная установка

Основой установки является телескоп, отбирающий для регистрации лишь те частицы, которые приходят в определенном направлении внутри телесного угла, определяемого геометрией детекторов. Установка состоит из двух детекторов частиц — сцинтилляционных счетчиков, набора свинцовых фильтров и электронных схем, служащих для регистрации и дискриминации сигналов от детекторов.

Рис. 1 Схема экспериментальной установки

Регистрация световых вспышек от сцинтилляторов производится с помощью ФЭУ-85, напряжение питания на каждый ФЭУ подается от стабилизированного высоковольтного выпрямителя. Сигналы с ФЭУ поступают на усилители-формирователи, а затем на схему двойных совпадений. Схема совпадений формирует на выходе сигнал только в том случае, если в обоих детекторах появились сигналы, совпадающие во времени в

интервале, равной разрешающему времени схемы. Число зарегистрированных импульсов регистрируется пересчетным прибором.

2 Ход работы и обработка данных

Ниже представлены результаты измерений, число частиц измерялось за время = 900 с.

No	d, см	Ni	σ_d , cm	$\sigma_{\text{Ni,ctat}}$
1	0	1127	0	113
2	0,92	1053	0,01	105
3	2,54	1012	0,01	101
4	4,42	937	0,01	94
5	5, 68	924	0,01	92
6	7,36	898	0,01	90
7	8, 84	864	0,01	86
8	10,55	842	0,01	84
9	13, 16	811	0,01	81

Таблица 1 : данные для графика

Известно, что мягкая (электронно-фотонная) компонента космического излучения почти полностью поглощается слоем свинца толщиной $10-15\,$ см, а жесткая (мюонная) — практически не поглощается. Имея это в виду, вычитаем из значений n на предыдущем графике значение, соответствующее $d=131\,$ мм.

Построим графики зависимости по таблицам 1, 2.

No	d, см	Ni	σ_d , cm	$\sigma_{\text{Ni,crar}}$
1	0	1127	0	113
2	0,92	1053	0,01	105
3	2,54	1012	0,01	101
4	4,42	937	0,01	94
5	5, 68	924	0,01	92
6	7,36	898	0,01	90
7	8, 84	864	0,01	86
8	10,55	842	0,01	84
9	13, 16	811	0,01	81

Таблица 2 : данные для графика

Рис. 2 Зависимость числа прошедших частиц от толщины свинца

Рис. 3 Зависимость числа прошедших частиц (мягкая компонента) от толщины свинца