Cascaded Text Generation with Markov Transformers

Yuntian Deng, Alexander Rush
Harvard University, Cornell University

Fully Autoregressive vs Nonautoregressive

Fully Autoregressive

- Decoding: beam search
- Fluent but serial

Nonautoregressive [Gu et al 2018]

- Decoding: Argmax at each position
- Parallel but disfluent

Markov Random Field Framework

• An *m*-th order MRF

$$P^{(m)}(x_{1:L};\theta) \propto \exp \sum_{l=m}^{L-m} f_l^{(m)}(x_{l:l+m};\theta)$$

• L = 5, m = 1

$$f_2^{(1)}(x_{2:3})$$
 $l=1$

- Special cases
 - m = 0: nonautoregressive
 - m = L 1: fully autoregressive
 - 0 < m < L 1: bounded-order models (this work)

Bounded-order models

- Faster than fully autoregressive: Parallel Decoding [Rush 2020, Simo et al 2019]
- More fluent than nonautoregressive
- Allows accuracy/speed tradeoff

Parameterization: Markov Transformer

Parallel Time Complexity

- $f_l^{(m)}(x_{l:l+m})$ can be computed in parallel O(1)
- Parallel tree decoding takes $O(\log L)$ time
- In practice, as fast as nonautoregressive
 - parallel tree decoding takes <1% total time

Extension: Variable Length Generation

- ullet Nonautoregressive Decoding needs to specify length L
 - An inappropriate length limits the achievable score
- MRF allows considering multiple length values
 - Specify the maximum possible length
 - Introduce a special padding symbol
 - End-of-sentence/padding always transition to padding

A Real Example

K = 5, max length 8, Source: eine erstaunliche frau .

m	$x_{1:1+m}$	$x_{2:2+m}$	$x_{3:3+m}$	$x_{4:4+m}$	$x_{5:5+m}$	$x_{6:6+m}$	$x_{7:7+m}$	$x_{8:8+m}$
	an	amazing	woman	woman	eos	eos	eos	pad
	amazing	woman	amazing		•	pad	pad	-
0	incredible	an	an	amazing	woman		•	-
	this	remarkable	•	eos	amazing	woman	woman	-
	remarkable	incredible	women	an	women	women	women	-

A Real Example (K = 5)

m	$x_{1:1+m}$	$x_{2:2+m}$	$x_{3:3+m}$	$x_{4:4+m}$	$x_{5:5+m}$	$x_{6:6+m}$	$x_{7:7+m}$
	an amazing	amazing woman	woman .	. eos	eos pad	pad pad	pad pad
	an incredible	incredible woman	amazing woman	woman .	. eos	eos pad	eos pad
1	this amazing	remarkable woman	women .	amazing woman	woman .	. eos	-
	an remarkable	woman amazing	woman woman		women .	woman eos	-
	amazing woman	amazing women	an amazing	. woman	• •	-	-

A Real Example (K = 5)

m	$x_{1:1+m}$	$x_{2:2+m}$	$x_{3:3+m}$	$x_{4:4+m}$	$x_{5:5+m}$	$x_{6:6+m}$
	an amazing woman	amazing woman .	woman . eos	. eos pad	eos pad pad	pad pad pad
	an incredible woman	incredible woman .	women . eos	woman . eos	. eos pad	eos pad pad
2	this amazing woman	remarkable woman .	woman woman	eos	woman . eos	. eos pad
	an remarkable woman	amazing women .	woman	. woman .	eos	-
	an amazing women	amazing woman woman	woman . woman	woman	-	-

Results I: Speed/Accuracy Tradeoff

Translation on IWSLT (w/ distillation [5])

Results I: Speed/Accuracy Tradeoff

Translation on IWSLT (w/ distillation [5])

Results II: Repetitions

• Fewer Repetitions

Results III: Number of Sequences Scored

- Autoregressive (AR) w/ Beam search only scores KL sequences
- Cascaded decoding can score exponential number of sequences

Conclusions

- Nonautoregressiveness is sufficient but unnecessary for fast text generation
- Bounded-order MRFs enable parallel decoding
 - Faster than fully autoregressive
 - More fluent than nonautoregressive
- Cascaded search efficiently decodes a bounded-order MRF
- Markov transformer can parameterize the entire cascade

More Details

- Code, pretrained models, logs: https://github.com/harvardnlp/cascaded-generation
- Paper: https://arxiv.org/pdf/2006.01112.pdf

References

- [1]: Gu, Jiatao, James Bradbury, Caiming Xiong, Victor OK Li, and Richard Socher. "Non-autoregressive neural machine translation." arXiv preprint arXiv:1711.02281 (2017).
- [2]: Rush, Alexander M. "Torch-Struct: Deep Structured Prediction Library." arXiv preprint arXiv:2002.00876 (2020).
- [3]: Särkkä, Simo, and Ángel F. García-Fernández. "Temporal parallelization of bayesian filters and smoothers." arXiv preprint arXiv:1905.13002 (2019).
- [4]: Weiss, David, and Benjamin Taskar. "Structured prediction cascades." In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 916-923. 2010.
- [5]: Kim, Yoon, and Alexander M. Rush. "Sequence-level knowledge distillation." arXiv preprint arXiv:1606.07947(2016).