

MEJORA DEL ÁRBOL DE DECISIÓN PARA EL DIAGNOSTICO DE COMPLICACIONES DEL SÍNDROME METABÓLICO.

Arnulfo González, Dr. Baidya Saha, Dr. Rodrigo Macías CIMAT A.C.

INTRODUCCIÓN

- Actualmente el Síndrome Metabólico (SM) es una entidad bien reconocida y de alta prevalencia a nivel mundial.
- Se encuentra relacionado a enfermedades crónicas como la diabetes, hígado graso no alcohólico y la presencia retinopatía.
- Su diagnostico es caro y/o invasivo.
- El detectar trastornos metabólicos previos a las complicaciones del SM ayudará al tratamiento oportuno.
- Escogimos el algoritmo de árbol de decisión por ser similar a la toma de decisiones por un medico al momento de diagnosticar una enfermedad.

OBJETIVOS

- 1. Clasificar las complicaciones del síndrome metabólico mediante el uso del árbol de decisión con variables bioquímicas y metabolómicas.
- 2. Uso de árbol de decisión para clasificación por su facilidad de interpretación.
- 3. Mejorar el algoritmo de decisión par automatizar el diagnostico de las complicaciones del síndrome metabólico.
- 4. Seleccionar las características mas importantes mediante el método de paso hacia delante, Neighborhood components analysis, y análisis de factores, reduciendo así las dimensiones.
- 5. Generar meta características para incrementar la eficiencia del árbol de decisión para clasificar las complicaciones del SM.

Material y Métodos

Base de datos	Fuente	E/C	Variables
Diabetes	UANL	40/40	57
NAFLD	UNAM / NIH	31/106	82
Retinopatía	UNAM / NIH	39/19	82

Los datos fueron analizados mediante R y Matlab.

Generalized Cost Sensitive Look Ahead Decision Tree (GCSLADT)(D,d) % D: conjunto de datos, d: tamaño de profundidad Input: atributos valuados en el conjunto de datos D Output: Un GCSLADT

if D es "puro" u otro criterio de paro se cumple then termina

forall $Atributos \in D$ **do**| Computar el criterio de **información teórico** si particionamos en a **end**

a_{mejor} = El mejor subconjunto de atributos de tamaño d, acorde a los criterios de información teórico computados antes

Árbol = Crea una rama de decisión que prueba a_{mejor} en la raíz D_I = Inducción de los sub-datos de D basados en a_{mejor}

return Árbol

CRITERIO DE INFORMACIÓN

Información teórico: Encontrar un atributo con un valor de limite que maximiza la reducción de entropía para realizar la partición de datos.

$$(k^*, \tau^*) = \operatorname{argmax}_{k, \tau} G(k, \tau)$$

Donde $G(k,\tau)=E_{antes}-E_{despus}$. E denota la entropía, que es una medida de incertidumbre en los datos.

 E_{antes} y $E_{despues}$, la entropía antes y después de la partición. $E_{antes} = E(D) = \sum_{i=1}^{m} f(w_i, D) p(c_i, D) log_2(p(c_i, D))$

 $E_{despues} = \frac{|D_l(k,\tau)|}{|D|} E(D_l(k,\tau)) + \frac{|D_r(k,\tau)|}{|D|} E(D_r(k,l))$

META-FEATURES

Las meta-características resultan de aplicar, una operación algebraicas o booleanas entre las variables de la base de datos.

	Bioquímico	Bioquímico
	_	+ Metadata
Exactitud	83%	88.3%
# Hojas	7	13
T de árbol	7	13

SELECCIÓN DE CARACTERÍSTICAS

Método de Selección	Forward selection +	NCA + DT	Factor analysis +
	logistic regression		DT
Exactitud	90%	81%	87.5%
# Hojas	7	7	7
T de árbol	13	13	13

LOOK AHEAD DECISION TREE

En este algoritmo se toma en cuenta los nodos adelante del nodo actual para tomar la decisión de clasificación.

COST SENSITIVE DECISION TREE

CARACTERÍSTICAS Y RESULTADOS

Bioquímicas	Inflamatorias	Metabolómicas			
Matsuda	PCR	Aminoácidos	Acilcarnitinas		
Ac.Úrico	GMCSF	Arginina	CO	C8	C16_1
Colesterol total	IFNg	Glicina	C2	C8_1	C16_10H
Triglicéridos	IL10	Alanina	C3	C10	C160H
HDL-C	IL2	Leucina	C4OH_C3DC	C10_1	C18
LDL-C	IL4	Succinil cetona	C4	C10_2	C18_1
ALT	IL8	Citrulina	C5	C12_1	C18_10H
AST	TNFa	Metionina	C5_1	C14	C18_2
Glucosa		Fenilalanina	C5OH_C4DC	C14_1	C180H
Urea		Tirosina	C5DC_C6OH	C14_2	
Creatinina		Ornitina	C6	C140H	
		Prolina	C6_DC	C16	
		Valina			
C4.5	5 / NAF	LD	Exa	ctitud	ROC

C4.5 / NAFLD	Exactitud	ROC
FS/LR	90%	93%
Bioquímico + Metadata	88.3%	81%
DT / Análisis de factores	87.5%	89.5%
Metadata/FS	86%	90%
		•

RESULTADOS

C4.5	Exactitud	AUC
Diabetes	91.2%	90%
NAFLD	97.6%	95.9%
Retinopatía	91.6%	94.6%

ATP III SÍNDROME METABÓLICO + FAT + BMI

	Sens	Esp	VPP	VPN	Exactitud
Bioquímico	75%	89%	64.5%	91.5%	83%
Bioquímico	80%	90%	64%	95%	88.3%
+ Metadata					
FS / LR	82%	92%	74%	95%	90%
ATPIII SM	23%	78%	70%	31%	40.14%

CONCLUSION

- GCSLADT supera otras variantes de árbol de decisión para el diagnóstico de complicaciones del síndrome metabólico.
- La incorporación de meta características ayuda a dar mayor exactitud del árbol de decisión para clasificar las complicaciones del síndrome metabólico.
- La función de costos clase sensible también incrementa la exactitud del árbol de decisión para clasificar el NAFLD porque los datos no son balanceados.
- GCSLADT puede demostró tener una mejor exactitud que el utilizar un árbol de decisión creado por el experto para clasificar NAFLD.
- El algoritmo de árbol de decisión pudo clasificar adecuadamente al paciente con diabetes, NAFLD y retinopatía con las acilcarnitinas de cadena larga.

REFERENCIAS

- [1] Thierry Poynard, Vlad Ratziu, Sylvie Naveau, Dominique Thabut, Frederic Charlotte, Djamila Messous, Dominique Capron, Annie Abella, Julien Massard, Yen Ngo, et al. The diagnostic value of biomarkers (steatotest) for the prediction of liver steatosis. *Comparative hepatology*, 4(1):10, 2005.
- [2] H Haller. Epidermiology and associated risk factors of hyperlipoproteinemia. *Zeitschrift fur die gesamte innere Medizin und ihre Grenzgebiete*, 32(8):124–128, 1977.
- 3] Kurt George Matthew Mayer Alberti and PZ ft Zimmet. Definition, diagnosis and classification of diabetes mellitus and its complications. part 1: diagnosis and classification of diabetes mellitus. provisional report of a who consultation. *Diabetic medicine*, 15(7):539–553, 1998.