UFCG - Universidade Federal de Campina Grande

2016.2

Professor: Leandro Balby Marinho **Monitora:** Ivyna Rayany Santino Alves

6ª lista de exercícios

- **01.** Dada uma álgebra < S, ° >, mostre para cada caso se temos semigrupo, monóide, grupo ou nenhum.
 - **a.** R(Reais) e x + y = $(x + y)^2$
 - **b.** N(Naturais) e x * y = max(x,y)
- **02.** Defina uma operação no conjunto dos inteiros(Z) que sejam:
 - a. Associativa mas não comutativa
 - b. Nem associativa e nem comutativa
- **03**. Demonstre as seguintes propriedades das álgebras booleanas da expressão: Justifique cada passo da demonstração na expressão a seguir:

$$x + (x . y) = x, x . (x + y) = x$$

- **04**. Em cada caso abaixo, defina e justifique se há bijeção, isomorfismo ou homomorfismo:
 - **a.** Se G = (Q*, .) e J = (R*, .), então f : Q \rightarrow R, f(x) = x^2
 - **b.** $f: \langle Z, + \rangle \rightarrow \langle P, + \rangle$ dada por f(x) = 2x (P é o conjunto dos números pares)
 - **c.** Se G = $(R_+^*, .)$ e J = $(R_+, +)$, então f: $R_+^* \to R_+, f(x) = \log x$
 - 05. Mostre que essas expressões são válidas:
 - **a.** $x \oplus y = (x + y) \cdot (xy)'$
 - **b.** $x \oplus y = (x \cdot y') + (x' \cdot y)$