Computer Vision HW2 Report

B04901147 電機四 黃健祐

Problem 1

Assume X is a continuous random variable that denotes the estimated probability of a binary classifier. The instance is classified as positive if X > T and negative otherwise. When the instance is positive, X follows a PDF $f_1(x)$. When the instance is negative, X follows a PDF $f_2(x)$. Please specify which regions (A ~ E) represent the cases of False Positive and False Negative, respectively. Clearly explain why.

False Positive: B and C.

They are classified to be negative while they are in fact positive.

False Negative: E

It is classified to be positive while it is in fact negative.

There are three ROC curves in the plot below. Please specify which ROC curves are considered to have reasonable discriminating ability, and which are not. Also, please answer that under what circumstances will the ROC curve fall on curve (b)?

(a) and (b) have reasonable discriminating ability as their P_D are always greater than or equal to P_{FA} while (c) does not.

When two classes follow identical distribution, the ROC curve falls on (b).

Problem 2

PCA

Perform PCA on the training data. Plot the mean face and the first five eigenfaces and show them in the report.

mean face	eigenface 1	eigenface 2	eigenface 3	eigenface 4	eigenface 5

Take $person_{8}$ _ $image_{6}$, and project it onto the above PCA eigenspace. Reconstruct this image using the first n = { 5, 50, 150, all } eigenfaces. For each n, compute the mean square error (MSE) between the reconstructed face image and the original $person_{8}$ _ $image_{6}$. Plot reconstructed images with the corresponding MSE values in the report.

n	5	50	150	279
images		630		50
MSE	694.02	119.45	38.78	0

Reduce the dimension of the image in testing set to dim = 100. Use t-SNE to visualize the distribution of test images.

LDAImplement LDA and plot first 5 Fisherfaces.

Fisherface 1	Fisherface 2	Fisherface 3	Fisherface 4	Fisherface 5

Use t-SNE to visualize the distribution of the projected testing data, which has the dimension of 30.

KNN

Validation Accuracy of PCA

k\n	3	10	39
1	0.736	0.946	0.950
3	0.618	0.814	0.857
5	0.589	0.732	0.818

Validation Accuracy of LDA

k\n	3	10	39
1	0.425	0.850	0.933
3	0.442	0.800	0.879
5	0.425	0.771	0.854

According to the validation accuracy above, (k, n) = (1,39) is selected to evaluate accuracy on testing set. The result is shown below.

Accuracy on Testing Set

PCA	0.958
LDA	0.917

Theoretically, LDA should have better performance than PCA since it takes labels into consideration. However, in this test, PCA surpassed LDA. The reason may be that the training data is insufficient (7 images for each person).

Problem 3

Build a CNN model and train it on the given dataset. Show the architecture of your model in the report.

Layer (Type)	Output Shape	Number of Parameters
Conv2D	(None,24,24,6)	156
MaxPooling2D	(None,12,12,6)	0
Conv2D	(None,8,8,16)	2416
MaxPooling2D	(None,4,4,16)	0
Flatten	(None,256)	0
Dense	(None,120)	30840
Dense	(None,84)	10164
Dense	(None,10)	850

Report your training / validation accuracy, and plot the learning curve (loss, accuracy) of the training process.

	Accuracy	Loss
Training	0.9974	0.0088
Validation	0.9873	0.0678

Visualize at least 6 filters on both the first and the last convolutional layers.

conv2d_1

Filter 1	Filter 2	Filter 3	Filter 4	Filter 5	Filter 6

conv2d_2

Filter 1	Filter 2	Filter 3	Filter 4	Filter 5	Filter 6
15	Very			4	2

Visualize high-level and low-level features of 1000 validation data (100 for each class) extracted from different layers, and explain what you have observed from the two t-SNE plots.

From the two plots we can observe that in the first convolution layer, the images are preliminarily classified (with some basic features) while in the second convolution layer, the images are further clearly classified with more specific features.

High-Level Features