

Álgebra Lineal

Cambio de Base

Bases

Definición

Un conjunto de vectores $\{v_1,..,v_n\}$ es una base para el espacio vectorial $\mathbb V$ si:

1
$$\mathbb{V} = \langle \{v_1, .., v_n\} \rangle$$
.

2
$$\{v_1, ..., v_n\}$$
 es L.I

Teorema

Si $B = \{v_1, v_2, \dots, v_n\}$ es una base para un espacio vectorial \mathbb{V} , entonces cada vector en \mathbb{V} se puede escribir de una y sólo una forma como combinación lineal de los vectores de B.

Coordenadas

Definición

Sea $B = \{v_1, v_2, \dots, v_n\}$ una base de un espacio vectorial $\mathbb V$. Los únicos escalares $\lambda_1, \lambda_2, \dots, \lambda_n$ que permiten expresar a un vector $v \in \mathbb V$ como combinación lineal (ordenada) de los elementos de la base B

$$v = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n$$

se denominan las coordenadas del vector v en la base B.

Denotamos las coordenadas de un vector v en una base B como un vector columna:

$$[v]_B = (\lambda_1, \lambda_2, \dots, \lambda_n)^t$$

Definición

La dimensión de un espacio vectorial no nulo $\mathbb V$ es el número de vectores en una base para $\mathbb V$. Con frecuencia escribimos $\dim(\mathbb V)$ para la dimensión de $\mathbb V$.

Definición

La dimensión de un espacio vectorial no nulo $\mathbb V$ es el número de vectores en una base para $\mathbb V$. Con frecuencia escribimos $\dim(\mathbb V)$ para la dimensión de $\mathbb V$.

Observación:

 Dos bases de un mismo espacio vectorial tendrán igual cantidad de vectores.

Definición

La dimensión de un espacio vectorial no nulo $\mathbb V$ es el número de vectores en una base para $\mathbb V$. Con frecuencia escribimos $\dim(\mathbb V)$ para la dimensión de $\mathbb V$.

Observación:

- Dos bases de un mismo espacio vectorial tendrán igual cantidad de vectores.
- Como el conjunto {0} es linealmente dependiente, es natural decir que el espacio vectorial {0} tiene dimensión cero.

Definición

La dimensión de un espacio vectorial no nulo $\mathbb V$ es el número de vectores en una base para $\mathbb V$. Con frecuencia escribimos $\dim(\mathbb V)$ para la dimensión de $\mathbb V$.

Observación:

- Dos bases de un mismo espacio vectorial tendrán igual cantidad de vectores.
- Como el conjunto {0} es linealmente dependiente, es natural decir que el espacio vectorial {0} tiene dimensión cero.
- $\dim(\mathbb{R}^n) = n$, una de sus posibles bases es la canónica.

Definición

La dimensión de un espacio vectorial no nulo $\mathbb V$ es el número de vectores en una base para $\mathbb V$. Con frecuencia escribimos $\dim(\mathbb V)$ para la dimensión de $\mathbb V$.

Observación:

- Dos bases de un mismo espacio vectorial tendrán igual cantidad de vectores.
- Como el conjunto {0} es linealmente dependiente, es natural decir que el espacio vectorial {0} tiene dimensión cero.
- $\dim(\mathbb{R}^n) = n$, una de sus posibles bases es la canónica.
- $\dim(P_n) = n + 1$, la base estándar es $\{1, t, t^2, ..., t^n\}$.

Ejemplo Sea
$$B=\{(1,0,-1),(3,2,1),(0,-1,2)\}$$
 una base de \mathbb{R}^3 y sea $\nu=(-10,-13,4)\in\mathbb{R}^3.$

Ejemplo Sea
$$B = \{(1,0,-1),(3,2,1),(0,-1,2)\}$$
 una base de \mathbb{R}^3 y sea $v = (-10,-13,4) \in \mathbb{R}^3$. Busquemos $[v]_B$.

Ejemplo Sea $B = \{(1,0,-1),(3,2,1),(0,-1,2)\}$ una base de \mathbb{R}^3 y sea $v = (-10,-13,4) \in \mathbb{R}^3$. Busquemos $[v]_B$.

$$(-10,-13,4) = \lambda_1(1,0,-1) + \lambda_2(3,2,1) + \lambda_3(0,-1,2)$$

Ejemplo Sea $B = \{(1,0,-1),(3,2,1),(0,-1,2)\}$ una base de \mathbb{R}^3 y sea $v = (-10,-13,4) \in \mathbb{R}^3$. Busquemos $[v]_B$.

$$(-10,-13,4) = \lambda_1(1,0,-1) + \lambda_2(3,2,1) + \lambda_3(0,-1,2)$$

o lo que esquivalente

$$\begin{cases} \lambda_1 + 3\lambda_2 &= -10 \\ 2\lambda_2 - \lambda_3 &= -13 \\ -\lambda_1 + \lambda_2 + 2\lambda_3 &= 4 \end{cases}$$

Ejemplo Sea $B = \{(1, 0, -1), (3, 2, 1), (0, -1, 2)\}$ una base de \mathbb{R}^3 y sea $v = (-10, -13, 4) \in \mathbb{R}^3$. Busquemos $[v]_B$.

$$(-10, -13, 4) = \lambda_1(1, 0, -1) + \lambda_2(3, 2, 1) + \lambda_3(0, -1, 2)$$

o lo que esquivalente

$$\begin{cases} \lambda_1 + 3\lambda_2 &= -10 \\ 2\lambda_2 - \lambda_3 &= -13 \\ -\lambda_1 + \lambda_2 + 2\lambda_3 &= 4 \end{cases} \rightarrow \begin{pmatrix} 1 & 3 & 0 \\ 0 & 2 & -1 \\ -1 & 1 & 2 \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{pmatrix} = \begin{pmatrix} -10 \\ -13 \\ 4 \end{pmatrix}$$

Ejemplo Sea $B = \{(1, 0, -1), (3, 2, 1), (0, -1, 2)\}$ una base de \mathbb{R}^3 y sea $v = (-10, -13, 4) \in \mathbb{R}^3$. Busquemos $[v]_B$.

$$(-10,-13,4) = \lambda_1(1,0,-1) + \lambda_2(3,2,1) + \lambda_3(0,-1,2)$$

o lo que es equivalente

$$\begin{cases} \lambda_1 + 3\lambda_2 &= -10 \\ 2\lambda_2 - \lambda_3 &= -13 \\ -\lambda_1 + \lambda_2 + 2\lambda_3 &= 4 \end{cases} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{pmatrix} = \begin{pmatrix} 2 \\ -4 \\ 5 \end{pmatrix}$$
$$(-10, -13, 4) = 2(1, 0, -1) + (-4)(3, 2, 1) + 5(0, -1, 2)$$

Por lo tanto,

$$[v]_B = [(-10, -13, 4)]_B = (2, -4, 5)^t$$

Ejemplo Tomemos las bases $C = \{(1,0), (0,1)\}$ y $B = \{(1,-1), (1,0)\}$ de \mathbb{R}^2 .

Ejemplo Tomemos las bases $C = \{(1,0),(0,1)\}$ y $B = \{(1,-1),(1,0)\}$ de \mathbb{R}^2 . Tomemos el vector v = (3,2).

Ejemplo Tomemos las bases $C = \{(1,0),(0,1)\}$ y $B = \{(1,-1),(1,0)\}$ de \mathbb{R}^2 . Tomemos el vector v = (3,2).

• Calculemos las coordenadas de v en la base C, es decir, $[v]_C$:

Ejemplo Tomemos las bases $C = \{(1,0),(0,1)\}$ y $B = \{(1,-1),(1,0)\}$ de \mathbb{R}^2 . Tomemos el vector v = (3,2).

• Calculemos las coordenadas de v en la base C, es decir, $[v]_C$:

$$v = (3, 2)$$

Ejemplo Tomemos las bases $C = \{(1,0),(0,1)\}$ y $B = \{(1,-1),(1,0)\}$ de \mathbb{R}^2 . Tomemos el vector v = (3,2).

• Calculemos las coordenadas de v en la base C, es decir, $[v]_C$:

$$v = (3,2) = \frac{3}{2}(1,0) + \frac{2}{2}(0,1)$$

Ejemplo Tomemos las bases $C = \{(1,0),(0,1)\}$ y $B = \{(1,-1),(1,0)\}$ de \mathbb{R}^2 . Tomemos el vector v = (3,2).

• Calculemos las coordenadas de v en la base C, es decir, $[v]_C$:

$$v = (3,2) = \frac{3}{2}(1,0) + \frac{2}{2}(0,1)$$

Entonces el vector de coordenadas de v en la base C es $[v]_C = (3,2)^t$.

Ejemplo Tomemos las bases $C = \{(1,0),(0,1)\}$ y $B = \{(1,-1),(1,0)\}$ de \mathbb{R}^2 . Tomemos el vector v = (3,2).

• Calculemos las coordenadas de v en la base C, es decir, $[v]_C$:

$$v = (3,2) = \frac{3}{2}(1,0) + \frac{2}{2}(0,1)$$

Entonces el vector de coordenadas de v en la base C es $[v]_C = (3,2)^t$.

• Calculemos las coordenadas de v en la base B, es decir, $[v]_B$:

Ejemplo Tomemos las bases $C = \{(1,0),(0,1)\}$ y $B = \{(1,-1),(1,0)\}$ de \mathbb{R}^2 . Tomemos el vector v = (3,2).

• Calculemos las coordenadas de v en la base C, es decir, $[v]_C$:

$$v = (3,2) = \frac{3}{2}(1,0) + \frac{2}{2}(0,1)$$

Entonces el vector de coordenadas de v en la base C es $[v]_C = (3,2)^t$.

• Calculemos las coordenadas de v en la base B, es decir, $[v]_B$:

$$v = (3, 2) =$$

Ejemplo Tomemos las bases $C = \{(1,0),(0,1)\}$ y $B = \{(1,-1),(1,0)\}$ de \mathbb{R}^2 . Tomemos el vector v = (3,2).

• Calculemos las coordenadas de v en la base C, es decir, $[v]_C$:

$$v = (3,2) = \frac{3}{2}(1,0) + \frac{2}{2}(0,1)$$

Entonces el vector de coordenadas de v en la base C es $[v]_C = (3,2)^t$.

• Calculemos las coordenadas de v en la base B, es decir, $[v]_B$:

$$v = (3,2) = (-2)(1,-1) + 5(1,0)$$

Ejemplo Tomemos las bases $C = \{(1,0),(0,1)\}$ y $B = \{(1,-1),(1,0)\}$ de \mathbb{R}^2 . Tomemos el vector v = (3,2).

• Calculemos las coordenadas de v en la base C, es decir, $[v]_C$:

$$v = (3,2) = \frac{3}{2}(1,0) + \frac{2}{2}(0,1)$$

Entonces el vector de coordenadas de v en la base C es $[v]_C = (3,2)^t$.

• Calculemos las coordenadas de v en la base B, es decir, $[v]_B$:

$$v = (3,2) = (-2)(1,-1) + 5(1,0)$$

Entonces el vector de coordenadas de v en la base B es $[v]_B = (-2,5)^t$.

Vimos que
$$[v]_B = (-2,5)^t$$
 donde $B = \{(1,-1),(1,0)\}.$

Vimos que $[v]_B = (-2,5)^t$ donde $B = \{(1,-1),(1,0)\}$. Y si tomamos la base $D = \{(1,0),(1,-1)\}$, ¿quién sería el vector de coordenadas $[v]_D$?.

Vimos que
$$[v]_B=(-2,5)^t$$
 donde $B=\{(1,-1),(1,0)\}$. Y si tomamos la base $D=\{(1,0),(1,-1)\}$, ¿quién sería el vector de coordenadas $[v]_D$?. Como
$$v=(3,2)=(-2)(1,-1)+5(1,0)$$

Vimos que $[v]_B = (-2,5)^t$ donde $B = \{(1,-1),(1,0)\}$. Y si tomamos la base $D = \{(1,0),(1,-1)\}$, ¿quién sería el vector de coordenadas $[v]_D$?. Como

$$v = (3,2) = (-2)(1,-1) + 5(1,0)$$

entonces

$$v = (3,2) = 5(1,0) + (-2)(1,-1)$$

Vimos que $[v]_B = (-2,5)^t$ donde $B = \{(1,-1),(1,0)\}$. Y si tomamos la base $D = \{(1,0),(1,-1)\}$, ¿quién sería el vector de coordenadas $[v]_D$?. Como

$$v = (3,2) = (-2)(1,-1) + 5(1,0)$$

entonces

$$v = (3,2) = 5(1,0) + (-2)(1,-1)$$

y por lo tanto

$$[v]_D = (5,-2)^t$$

lo cual es diferente a $[v]_B = (-2,5)^t$.

Vimos que $[v]_B = (-2,5)^t$ donde $B = \{(1,-1),(1,0)\}$. Y si tomamos la base $D = \{(1,0),(1,-1)\}$, ¿quién sería el vector de coordenadas $[v]_D$?. Como

$$v = (3,2) = (-2)(1,-1) + 5(1,0)$$

entonces

$$v = (3,2) = 5(1,0) + (-2)(1,-1)$$

y por lo tanto

$$[v]_D = (5,-2)^t$$

lo cual es diferente a $[v]_B = (-2,5)^t$.

Observación: Si cambio el orden de los vectores de la base, entonces cambio el vector de coordenadas.

Algunas consideraciones

 El vector de coordenadas en una base depende del orden de los vectores en dicha base.

Algunas consideraciones

• El vector de coordenadas en una base depende del orden de los vectores en dicha base. La base $\{(1,0),(1,-1)\}$ es distinta a la base $\{(1,-1),(1,0)\}$.

Algunas consideraciones

- El vector de coordenadas en una base depende del orden de los vectores en dicha base. La base $\{(1,0),(1,-1)\}$ es distinta a la base $\{(1,-1),(1,0)\}$.
- Considerando la base canónica C en \mathbb{R}^n , para todo $v \in \mathbb{R}^n$ se tiene que $[v]_C = v^t$
- Si v, w son vectores de \mathbb{V} y k un escalar, entonces

$$[v + w]_B = [v]_B + [w]_B$$
$$[kv]_B = k[v]_B$$

Coordenadas de un vector en la base canónica

Cuando trabajamos con la base canónica C en \mathbb{R}^n , es decir,

$$C = \{ \underbrace{(1,0,0,\cdots,0)}_{e_1}, \underbrace{(0,1,0,\cdots,0)}_{e_2}, \underbrace{(0,0,1,\cdots,0)}_{e_3}, \cdots, \underbrace{(0,0,0,\cdots,1)}_{e_n} \}$$

Coordenadas de un vector en la base canónica

Cuando trabajamos con la base canónica C en \mathbb{R}^n , es decir,

$$\mathcal{C} = \{\underbrace{(1,0,0,\cdots,0)}_{e_1},\underbrace{(0,1,0,\cdots,0)}_{e_2},\underbrace{(0,0,1,\cdots,0)}_{e_3},\cdots,\underbrace{(0,0,0,\cdots,1)}_{e_n}\}$$

Entonces para todo

$$v = (v_1, v_2, \cdots, v_n) \in \mathbb{R}^n$$

Coordenadas de un vector en la base canónica

Cuando trabajamos con la base canónica C en \mathbb{R}^n , es decir,

$$C = \{\underbrace{(1,0,0,\cdots,0)}_{e_1},\underbrace{(0,1,0,\cdots,0)}_{e_2},\underbrace{(0,0,1,\cdots,0)}_{e_3},\cdots,\underbrace{(0,0,0,\cdots,1)}_{e_n}\}$$

Entonces para todo

$$v = (v_1, v_2, \cdots, v_n) \in \mathbb{R}^n$$

tenemos que

$$v = (v_1, v_2, \cdots, v_n)$$

Cuando trabajamos con la base canónica C en \mathbb{R}^n , es decir,

$$\textit{C} = \{\underbrace{(1,0,0,\cdots,0)}_{e_1},\underbrace{(0,1,0,\cdots,0)}_{e_2},\underbrace{(0,0,1,\cdots,0)}_{e_3},\cdots,\underbrace{(0,0,0,\cdots,1)}_{e_n}\}$$

Entonces para todo

$$v = (v_1, v_2, \cdots, v_n) \in \mathbb{R}^n$$

$$v=(v_1,v_2,\cdots,v_n)=v_1e_1$$

Cuando trabajamos con la base canónica C en \mathbb{R}^n , es decir,

$$\textit{C} = \{\underbrace{(1,0,0,\cdots,0)}_{e_1},\underbrace{(0,1,0,\cdots,0)}_{e_2},\underbrace{(0,0,1,\cdots,0)}_{e_3},\cdots,\underbrace{(0,0,0,\cdots,1)}_{e_n}\}$$

Entonces para todo

$$v = (v_1, v_2, \cdots, v_n) \in \mathbb{R}^n$$

$$v = (v_1, v_2, \cdots, v_n) = v_1 e_1 + v_2 e_2$$

Cuando trabajamos con la base canónica C en \mathbb{R}^n , es decir,

$$\textit{C} = \{\underbrace{(1,0,0,\cdots,0)}_{e_1},\underbrace{(0,1,0,\cdots,0)}_{e_2},\underbrace{(0,0,1,\cdots,0)}_{e_3},\cdots,\underbrace{(0,0,0,\cdots,1)}_{e_n}\}$$

Entonces para todo

$$v = (v_1, v_2, \cdots, v_n) \in \mathbb{R}^n$$

$$v = (v_1, v_2, \cdots, v_n) = v_1 e_1 + v_2 e_2 + v_3 e_3$$

Cuando trabajamos con la base canónica C en \mathbb{R}^n , es decir,

$$C = \{\underbrace{(1,0,0,\cdots,0)}_{e_1},\underbrace{(0,1,0,\cdots,0)}_{e_2},\underbrace{(0,0,1,\cdots,0)}_{e_3},\cdots,\underbrace{(0,0,0,\cdots,1)}_{e_n}\}$$

Entonces para todo

$$v = (v_1, v_2, \cdots, v_n) \in \mathbb{R}^n$$

$$v = (v_1, v_2, \dots, v_n) = v_1 e_1 + v_2 e_2 + v_3 e_3 + \dots + v_n e_n$$

Cuando trabajamos con la base canónica C en \mathbb{R}^n , es decir,

$$C = \{\underbrace{(1,0,0,\cdots,0)}_{e_1},\underbrace{(0,1,0,\cdots,0)}_{e_2},\underbrace{(0,0,1,\cdots,0)}_{e_3},\cdots,\underbrace{(0,0,0,\cdots,1)}_{e_n}\}$$

Entonces para todo

$$v = (v_1, v_2, \cdots, v_n) \in \mathbb{R}^n$$

tenemos que

$$v = (v_1, v_2, \dots, v_n) = v_1 e_1 + v_2 e_2 + v_3 e_3 + \dots + v_n e_n$$

Luego en la base canónica tenemos que

$$[v]_C = v^t$$

Ejemplo Sea
$$B = \{(1, -1), (-1, 0)\}$$
 base de \mathbb{R}^2 y sea $[w]_B = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$ para algún $w \in \mathbb{R}^2$. Podemos entonces conocer w .

Ejemplo Sea $B=\{(1,-1),(-1,0)\}$ base de \mathbb{R}^2 y sea $[w]_B=\begin{pmatrix} -1\\2 \end{pmatrix}$ para algún $w\in\mathbb{R}^2$. Podemos entonces conocer w.

$$w = -1(1, -1) + 2(-1, 0) = (-3, 1)$$

Ejemplo Sea $B = \{(1, -1), (-1, 0)\}$ base de \mathbb{R}^2 y sea $[w]_B = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$ para algún $w \in \mathbb{R}^2$. Podemos entonces conocer w.

$$w = -1(1, -1) + 2(-1, 0) = (-3, 1)$$

Existen otras bases para \mathbb{R}^2 .

Ejemplo Sea $B = \{(1, -1), (-1, 0)\}$ base de \mathbb{R}^2 y sea $[w]_B = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$ para algún $w \in \mathbb{R}^2$. Podemos entonces conocer w.

$$w = -1(1, -1) + 2(-1, 0) = (-3, 1)$$

Existen otras bases para \mathbb{R}^2 .

¿Podemos encontrar el vector de coordenadas de w en otra base B_1 , es decir $[w]_{B_1}$?

Ejemplo Sea $B = \{(1, -1), (-1, 0)\}$ base de \mathbb{R}^2 y sea $[w]_B = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$ para algún $w \in \mathbb{R}^2$. Podemos entonces conocer w.

$$w = -1(1, -1) + 2(-1, 0) = (-3, 1)$$

Existen otras bases para \mathbb{R}^2 .

¿Podemos encontrar el vector de coordenadas de w en otra base B_1 , es decir $[w]_{B_1}$?

¿Existe algún método que nos permita conocer $[w]_{B1}$ conociendo las coordenadas de w en la base B sin necesidad de calcular el vector w?

Dada dos bases

$$B_1 = \{v_1, \dots, v_n\}$$
 y $B_2 = \{u_1, \dots, u_n\}$

de un espacio vectorial V de dimensión finita n.

Dada dos bases

$$B_1 = \{v_1, \dots, v_n\}$$
 y $B_2 = \{u_1, \dots, u_n\}$

de un espacio vectorial V de dimensión finita n. Queremos **determinar** un procedimiento que nos permita conocer las coordenadas del vector w en la base B_2 conociendo las coordenadas de dicho vector en la base B_1

conocemos
$$[v]_{B_1} = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$$
 y queremos hallar $[v]_{B_2} = \begin{pmatrix} d_1 \\ \vdots \\ d_n \end{pmatrix}$

Sean
$$B_1 = \{v_1, \dots, v_n\}$$
 y $B_2 = \{u_1, \dots, u_n\}$ dos bases de V .

Sean
$$B_1 = \{v_1, \dots, v_n\}$$
 y $B_2 = \{u_1, \dots, u_n\}$ dos bases de V .

Definición

La matriz

$$I_{B_1B_2} = ([v_1]_{B_2} \dots [v_n]_{B_2})$$

cuyas columnas son las vectores coordenadas $[v_1]_{B_2}, \ldots, [v_n]_{B_2}$ se llama matriz cambio de base de la base B_1 a la base B_2 .

Sean $B_1 = \{v_1, ..., v_n\}$ y $B_2 = \{u_1, ..., u_n\}$ dos bases de V.

Definición

La matriz

$$I_{B_1B_2} = ([v_1]_{B_2} \dots [v_n]_{B_2})$$

cuyas columnas son las vectores coordenadas $[v_1]_{B_2}, \ldots, [v_n]_{B_2}$ se llama matriz cambio de base de la base B_1 a la base B_2 .

Definición

Para cada vector $v \in V$

$$[v]_{B_2} = I_{B_1B_2}.[v]_{B_1}.$$

Ejemplo Dadas las bases $\mathcal{B}_1 = \left\{ \left(1,2\right), \left(0,1\right) \right\}$ y $\mathcal{B}_2 = \left\{ \left(1,1\right), \left(2,3\right) \right\}$.

Ejemplo Dadas las bases
$$B_1 = \{(1,2), (0,1)\}$$
 y $B_2 = \{(1,1), (2,3)\}$.

1 Determinar la matriz cambio de base $I_{B_1B_2}$.

```
Ejemplo Dadas las bases B_1 = \{(1,2)\,,(0,1)\} y B_2 = \{(1,1)\,,(2,3)\} .
```

- **①** Determinar la matriz cambio de base $I_{B_1B_2}$.
- ② Sabiendo que $[v]_{B_1} = (1,3)^t$, hallar $[v]_{B_2}$.

Ejemplo Dadas las bases $B_1 = \{(1,2),(0,1)\}$ y $B_2 = \{(1,1),(2,3)\}$.

- Determinar la matriz cambio de base $I_{B_1B_2}$.
- ② Sabiendo que $[v]_{B_1} = (1,3)^t$, hallar $[v]_{B_2}$.
- 1. Debemos hallar las coordenadas de los vectores de la base B_1 en la base B_2 . Supongamos que

$$[(1,2)]_{B_2} = \begin{pmatrix} c_{11} \\ c_{21} \end{pmatrix}$$
 y $[(0,1)]_{B_2} = \begin{pmatrix} c_{12} \\ c_{22} \end{pmatrix}$

Ejemplo Dadas las bases $B_1 = \{(1,2), (0,1)\}$ y $B_2 = \{(1,1), (2,3)\}$.

- Determinar la matriz cambio de base $I_{B_1B_2}$.
- ② Sabiendo que $[v]_{B_1} = (1,3)^t$, hallar $[v]_{B_2}$.
- 1. Debemos hallar las coordenadas de los vectores de la base \mathcal{B}_1 en la base \mathcal{B}_2 . Supongamos que

$$[(1,2)]_{B_2} = \begin{pmatrix} c_{11} \\ c_{21} \end{pmatrix}$$
 y $[(0,1)]_{B_2} = \begin{pmatrix} c_{12} \\ c_{22} \end{pmatrix}$

$$(1,2) = c_{11}(1,1) + c_{21}(2,3)$$

Ejemplo Dadas las bases $B_1 = \{(1,2),(0,1)\}$ y $B_2 = \{(1,1),(2,3)\}$.

- Determinar la matriz cambio de base $I_{B_1B_2}$.
- ② Sabiendo que $[v]_{B_1} = (1,3)^t$, hallar $[v]_{B_2}$.
- 1. Debemos hallar las coordenadas de los vectores de la base \mathcal{B}_1 en la base \mathcal{B}_2 . Supongamos que

$$[(1,2)]_{B_2} = \begin{pmatrix} c_{11} \\ c_{21} \end{pmatrix} \text{ y } [(0,1)]_{B_2} = \begin{pmatrix} c_{12} \\ c_{22} \end{pmatrix}$$

$$= c_{11} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + c_{21} \begin{pmatrix} 2 \\ 3 \end{pmatrix} \qquad \Rightarrow \begin{pmatrix} c_{11} + 2c_{21} \\ c_{22} \end{pmatrix}$$

$$(1,2) = c_{11}(1,1) + c_{21}(2,3) \Rightarrow \begin{cases} c_{11} + 2c_{21} &= 1 \\ c_{11} + 3c_{21} &= 2 \end{cases}$$

Ejemplo Dadas las bases $B_1 = \{(1,2), (0,1)\}$ y $B_2 = \{(1,1), (2,3)\}$.

- Determinar la matriz cambio de base $I_{B_1B_2}$.
- ② Sabiendo que $[v]_{B_1} = (1,3)^t$, hallar $[v]_{B_2}$.
- 1. Debemos hallar las coordenadas de los vectores de la base \mathcal{B}_1 en la base \mathcal{B}_2 . Supongamos que

$$[(1,2)]_{B_2} = \begin{pmatrix} c_{11} \\ c_{21} \end{pmatrix} \text{ y } [(0,1)]_{B_2} = \begin{pmatrix} c_{12} \\ c_{22} \end{pmatrix}$$

$$(1,2) = c_{11}(1,1) + c_{21}(2,3) \Rightarrow \begin{cases} c_{11} + 2c_{21} & = 1 \\ c_{11} + 3c_{21} & = 2 \end{cases}$$

$$(0,1) = c_{21}(1,1) + c_{22}(2,3)$$

Ejemplo Dadas las bases $B_1 = \{(1,2), (0,1)\}$ y $B_2 = \{(1,1), (2,3)\}$.

- Determinar la matriz cambio de base $I_{B_1B_2}$.
- ② Sabiendo que $[v]_{B_1} = (1,3)^t$, hallar $[v]_{B_2}$.
- 1. Debemos hallar las coordenadas de los vectores de la base \mathcal{B}_1 en la base \mathcal{B}_2 . Supongamos que

$$[(1,2)]_{B_2} = \begin{pmatrix} c_{11} \\ c_{21} \end{pmatrix} \text{ y } [(0,1)]_{B_2} = \begin{pmatrix} c_{12} \\ c_{22} \end{pmatrix}$$

$$(1,2) = c_{11}(1,1) + c_{21}(2,3) \Rightarrow \begin{cases} c_{11} + 2c_{21} & = 1 \\ c_{11} + 3c_{21} & = 2 \end{cases}$$

$$(0,1) = c_{21}(1,1) + c_{22}(2,3) \Rightarrow \begin{cases} c_{12} + 2c_{22} & = 0 \\ c_{12} + 3c_{22} & = 1 \end{cases}$$

$$\begin{cases} c_{11} + 2c_{21} &= 1 \\ c_{11} + 3c_{21} &= 2 \end{cases}$$

$$\begin{cases} c_{11} + 2c_{21} &= 1 \\ c_{11} + 3c_{21} &= 2 \end{cases} \Rightarrow \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} c_{11} \\ c_{21} \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$\begin{cases} c_{11} + 2c_{21} &= 1 \\ c_{11} + 3c_{21} &= 2 \end{cases} \Rightarrow \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} c_{11} \\ c_{21} \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
$$\begin{cases} c_{12} + 2c_{22} &= 0 \\ c_{12} + 3c_{22} &= 1 \end{cases}$$

$$\begin{cases} c_{11} + 2c_{21} &= 1 \\ c_{11} + 3c_{21} &= 2 \end{cases} \Rightarrow \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} c_{11} \\ c_{21} \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
$$\begin{cases} c_{12} + 2c_{22} &= 0 \\ c_{12} + 3c_{22} &= 1 \end{cases} \Rightarrow \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} c_{12} \\ c_{22} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$\begin{cases} c_{11} + 2c_{21} &= 1 \\ c_{11} + 3c_{21} &= 2 \end{cases} \Rightarrow \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} c_{11} \\ c_{21} \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
$$\begin{cases} c_{12} + 2c_{22} &= 0 \\ c_{12} + 3c_{22} &= 1 \end{cases} \Rightarrow \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} c_{12} \\ c_{22} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Podemos resumir en un mismo sistema

$$\begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$$

$$\begin{cases} c_{11} + 2c_{21} &= 1 \\ c_{11} + 3c_{21} &= 2 \end{cases} \Rightarrow \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} c_{11} \\ c_{21} \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
$$\begin{cases} c_{12} + 2c_{22} &= 0 \\ c_{12} + 3c_{22} &= 1 \end{cases} \Rightarrow \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} c_{12} \\ c_{22} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Podemos resumir en un mismo sistema

$$\begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$$

$$\left(\begin{array}{cc|c}1&2&1&0\\1&3&2&1\end{array}\right)$$

$$\begin{cases} c_{11} + 2c_{21} &= 1 \\ c_{11} + 3c_{21} &= 2 \end{cases} \Rightarrow \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} c_{11} \\ c_{21} \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
$$\begin{cases} c_{12} + 2c_{22} &= 0 \\ c_{12} + 3c_{22} &= 1 \end{cases} \Rightarrow \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} c_{12} \\ c_{22} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Podemos resumir en un mismo sistema

$$\begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$$

$$\left(\begin{array}{cc|c} 1 & 2 & 1 & 0 \\ 1 & 3 & 2 & 1 \end{array}\right) \to \left(\begin{array}{cc|c} 1 & 2 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{array}\right)$$

$$\begin{cases} c_{11} + 2c_{21} &= 1 \\ c_{11} + 3c_{21} &= 2 \end{cases} \Rightarrow \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} c_{11} \\ c_{21} \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
$$\begin{cases} c_{12} + 2c_{22} &= 0 \\ c_{12} + 3c_{22} &= 1 \end{cases} \Rightarrow \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} c_{12} \\ c_{22} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Podemos resumir en un mismo sistema

$$\begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$$

$$\left(\begin{array}{cc|c} 1 & 2 & 1 & 0 \\ 1 & 3 & 2 & 1 \end{array}\right) \to \left(\begin{array}{cc|c} 1 & 2 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{array}\right) \to \left(\begin{array}{cc|c} 1 & 0 & -1 & -2 \\ 0 & 1 & 1 & 1 \end{array}\right)$$

$$\begin{cases} c_{11} + 2c_{21} &= 1 \\ c_{11} + 3c_{21} &= 2 \end{cases} \Rightarrow \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} c_{11} \\ c_{21} \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
$$\begin{cases} c_{12} + 2c_{22} &= 0 \\ c_{12} + 3c_{22} &= 1 \end{cases} \Rightarrow \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} c_{12} \\ c_{22} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Podemos resumir en un mismo sistema

$$\begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$$

$$\left(\begin{array}{cc|c} 1 & 2 & 1 & 0 \\ 1 & 3 & 2 & 1 \end{array}\right) \to \left(\begin{array}{cc|c} 1 & 2 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{array}\right) \to \left(\begin{array}{cc|c} 1 & 0 & -1 & -2 \\ 0 & 1 & 1 & 1 \end{array}\right)$$

$$\begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} = \begin{pmatrix} -1 & -2 \\ 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} = \begin{pmatrix} -1 & -2 \\ 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} = \begin{pmatrix} -1 & -2 \\ 1 & 1 \end{pmatrix}$$
$$[(1,2)]_{B_2} = \begin{pmatrix} c_{11} \\ c_{21} \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} = \begin{pmatrix} -1 & -2 \\ 1 & 1 \end{pmatrix}$$

$$[(1,2)]_{B_2} = \begin{pmatrix} c_{11} \\ c_{21} \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$[(0,1)]_{B_2} = \begin{pmatrix} c_{12} \\ c_{22} \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$

у

Podemos verificar

$$[(1,2)]_{\mathcal{B}_2} = \begin{pmatrix} -1\\1 \end{pmatrix}$$

$$[(1,2)]_{B_2} = \begin{pmatrix} -1\\1 \end{pmatrix} \Rightarrow (1,2) = (-1)(1,1) + 1(2,3) = (1,2)$$
$$[(0,1)]_{B_2} = \begin{pmatrix} -2\\1 \end{pmatrix}$$

$$[(1,2)]_{B_2} = {-1 \choose 1} \Rightarrow (1,2) = (-1)(1,1) + 1(2,3) = (1,2)$$

$$[(0,1)]_{B_2} = {-2 \choose 1} \Rightarrow (0,1) = (-2)(1,1) + 1(2,3) = (0,1)$$

$$[(1,2)]_{B_2} = \begin{pmatrix} -1\\1 \end{pmatrix} \Rightarrow (1,2) = (-1)(1,1) + 1(2,3) = (1,2)$$
$$[(0,1)]_{B_2} = \begin{pmatrix} -2\\1 \end{pmatrix} \Rightarrow (0,1) = (-2)(1,1) + 1(2,3) = (0,1)$$

Por lo tanto la matriz $I_{B_1B_2}$ es

$$I_{B_1B_2} = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} = \begin{pmatrix} -1 & -2 \\ 1 & 1 \end{pmatrix}$$

$$[(1,2)]_{B_2} = \begin{pmatrix} -1\\1 \end{pmatrix} \Rightarrow (1,2) = (-1)(1,1) + 1(2,3) = (1,2)$$
$$[(0,1)]_{B_2} = \begin{pmatrix} -2\\1 \end{pmatrix} \Rightarrow (0,1) = (-2)(1,1) + 1(2,3) = (0,1)$$

Por lo tanto la matriz $I_{B_1B_2}$ es

$$I_{B_1B_2} = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} = \begin{pmatrix} -1 & -2 \\ 1 & 1 \end{pmatrix}$$

2. Sabiendo que $[v]_{B_1} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$, hallar $[v]_{B_2}$

$$[(1,2)]_{B_2} = \begin{pmatrix} -1\\1 \end{pmatrix} \Rightarrow (1,2) = (-1)(1,1) + 1(2,3) = (1,2)$$
$$[(0,1)]_{B_2} = \begin{pmatrix} -2\\1 \end{pmatrix} \Rightarrow (0,1) = (-2)(1,1) + 1(2,3) = (0,1)$$

Por lo tanto la matriz $I_{B_1B_2}$ es

$$I_{B_1B_2} = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} = \begin{pmatrix} -1 & -2 \\ 1 & 1 \end{pmatrix}$$

2. Sabiendo que $[v]_{B_1} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$, hallar $[v]_{B_2}$

$$[v]_{B_2} = I_{B_1B_2}.[v]_{B_1}$$

$$[(1,2)]_{B_2} = \begin{pmatrix} -1\\1 \end{pmatrix} \Rightarrow (1,2) = (-1)(1,1) + 1(2,3) = (1,2)$$
$$[(0,1)]_{B_2} = \begin{pmatrix} -2\\1 \end{pmatrix} \Rightarrow (0,1) = (-2)(1,1) + 1(2,3) = (0,1)$$

Por lo tanto la matriz $I_{B_1B_2}$ es

$$I_{B_1B_2} = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} = \begin{pmatrix} -1 & -2 \\ 1 & 1 \end{pmatrix}$$

2. Sabiendo que $[v]_{B_1} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$, hallar $[v]_{B_2}$

$$[v]_{B_2} = I_{B_1B_2}.[v]_{B_1} = \begin{pmatrix} -1 & -2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix} = \begin{pmatrix} -7 \\ 4 \end{pmatrix}.$$

$$[v]_{B_1} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

$$[v]_{B_1} = \begin{pmatrix} 1 \\ 3 \end{pmatrix} \Rightarrow v = (1)(1,2) + 3(0,1) = (1,5)$$

$$[v]_{B_1} = \begin{pmatrix} 1 \\ 3 \end{pmatrix} \Rightarrow v = (1)(1,2) + 3(0,1) = (1,5)$$

 $[v]_{B_2} = \begin{pmatrix} -7 \\ 4 \end{pmatrix}$

$$[v]_{B_1} = \begin{pmatrix} 1 \\ 3 \end{pmatrix} \Rightarrow v = (1)(1,2) + 3(0,1) = (1,5)$$

$$[v]_{B_2} = {7 \choose 4} \Rightarrow v = (-7)(1,1) + 4(2,3) = (1,5)$$

```
Ejemplo Sea \mathbb{V}=\mathbb{R}^3, dadas las bases B_1=\{(6,3,3)\,,(4,-1,3)\,,(5,5,2)\} y B_2=\{(2,0,1)\,,(1,2,0)\,(1,1,1)\} .
```

Ejemplo Sea $\mathbb{V} = \mathbb{R}^3$, dadas las bases $B_1 = \{(6,3,3), (4,-1,3), (5,5,2)\}$ y $B_2 = \{(2,0,1), (1,2,0), (1,1,1)\}$.

1 Determinar la matriz cambio de base $I_{B_1B_2}$.

Ejemplo Sea $\mathbb{V} = \mathbb{R}^3$, dadas las bases $B_1 = \{(6,3,3), (4,-1,3), (5,5,2)\}$ y $B_2 = \{(2,0,1), (1,2,0), (1,1,1)\}$.

- **1** Determinar la matriz cambio de base $I_{B_1B_2}$.
- ② Sabiendo que $[v]_{B_1} = (1,3,0)^t$, hallar $[v]_{B_2}$.

Ejemplo Sea $\mathbb{V} = \mathbb{R}^3$, dadas las bases $B_1 = \{(6,3,3), (4,-1,3), (5,5,2)\}$ y $B_2 = \{(2,0,1), (1,2,0), (1,1,1)\}$.

- **①** Determinar la matriz cambio de base $I_{B_1B_2}$.
- ② Sabiendo que $[v]_{B_1} = (1,3,0)^t$, hallar $[v]_{B_2}$.

$$(6,3,3) = \alpha_1(2,0,1) + \alpha_2(1,2,0) + \alpha_3(1,1,1)$$

El sistema

$$\left(\begin{array}{ccc|c}
2 & 1 & 1 & 6 \\
0 & 2 & 1 & 3 \\
1 & 0 & 1 & 3
\end{array}\right)$$

Ejemplo Sea $\mathbb{V} = \mathbb{R}^3$, dadas las bases

$$B_1 = \{(6,3,3), (4,-1,3), (5,5,2)\} \text{ y } B_2 = \{(2,0,1), (1,2,0), (1,1,1)\}$$

$$(4,-1,3) = \beta_1(2,0,1) + \beta_2(1,2,0) + \beta_3(1,1,1)$$

El sistema

$$\left(\begin{array}{ccc|c}
2 & 1 & 1 & 4 \\
0 & 2 & 1 & -1 \\
1 & 0 & 1 & 3
\end{array}\right)$$

Ejemplo Sea $\mathbb{V} = \mathbb{R}^3$, dadas las bases

$$\mathcal{B}_{1} = \left\{ \left(6,3,3\right), \left(4,-1,3\right), \left(5,5,2\right) \right\} \text{ y } \mathcal{B}_{2} = \left\{ \left(2,0,1\right), \left(1,2,0\right) \left(1,1,1\right) \right\}$$

$$(4,-1,3) = \beta_1(2,0,1) + \beta_2(1,2,0) + \beta_3(1,1,1)$$

El sistema

$$\left(\begin{array}{ccc|c}
2 & 1 & 1 & 4 \\
0 & 2 & 1 & -1 \\
1 & 0 & 1 & 3
\end{array}\right)$$

$$(5,5,2) = \gamma_1(2,0,1) + \gamma_2(1,2,0) + \gamma_3(1,1,1)$$

$$\left(\begin{array}{ccc|c}
2 & 1 & 1 & 5 \\
0 & 2 & 1 & 5 \\
1 & 0 & 1 & 2
\end{array}\right)$$

Podemos resumirlo en el siguiente sistema

$$\begin{pmatrix} 2 & 1 & 1 \\ 0 & 2 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} \alpha_1 & \beta_1 & \gamma_1 \\ \alpha_2 & \beta_2 & \gamma_2 \\ \alpha_3 & \beta_3 & \gamma_3 \end{pmatrix} = \begin{pmatrix} 6 & 4 & 5 \\ 3 & -1 & 5 \\ 3 & 3 & 2 \end{pmatrix}$$

Escribimos la matriz ampliada y resolvemos

$$\left(\begin{array}{ccc|c} 2 & 1 & 1 & 6 & 4 & 5 \\ 0 & 2 & 1 & 3 & -1 & 5 \\ 1 & 0 & 1 & 3 & 3 & 2 \end{array}\right)$$

Llevar a forma escalón reducida (en este caso la identidad por?)

$$\left(\begin{array}{ccc|c} 1 & 0 & 0 & 2 & 2 & 1 \\ 0 & 1 & 0 & 1 & -1 & 2 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{array}\right) \Rightarrow I_{B1B2} = \left(\begin{array}{ccc|c} 2 & 2 & 1 \\ 1 & -1 & 2 \\ 1 & 1 & 1 \end{array}\right)$$

Sabiendo que $[v]_{B_1} = (1,3,0)^t$, hallar $[v]_{B_2}$.

$$[v]_{B_2} = I_{B_1B_2} \cdot [v]_{B_1}$$

$$= \begin{pmatrix} 2 & 2 & 1 \\ 1 & -1 & 2 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} = \begin{pmatrix} 8 \\ -2 \\ 4 \end{pmatrix}$$

Son COORDENADAS, ¿Podemos verificar que el vector es v = (18, 0, 12)?

Observación:

Si $B_1 = \{v_1, \dots, v_n\}$ y $B_2 = \{u_1, \dots, u_n\}$ son bases de un espacio vectorial \mathbb{V} , entonces se puede probar que los conjuntos de vectores coordenadas

$$\{[v_1]_{B_2},\ldots,[v_n]_{B_2}\}$$
 y $\{[u_1]_{B_1},\ldots,[u_n]_{B_1}\}$

son bases de \mathbb{R}^n .

Observación:

Si $B_1 = \{v_1, \dots, v_n\}$ y $B_2 = \{u_1, \dots, u_n\}$ son bases de un espacio vectorial \mathbb{V} , entonces se puede probar que los conjuntos de vectores coordenadas

$$\{[v_1]_{B_2},\ldots,[v_n]_{B_2}\}$$
 y $\{[u_1]_{B_1},\ldots,[u_n]_{B_1}\}$

son bases de \mathbb{R}^n .

Por lo tanto las matrices

$$I_{B_1B_2}$$
 y $I_{B_2B_1}$

tienen inversa y además

$$I_{B_1B_2} = (I_{B_2B_1})^{-1} \text{ y } I_{B_2B_1} = (I_{B_1B_2})^{-1}.$$

Observación:

Si $B_1 = \{v_1, \dots, v_n\}$ y $B_2 = \{u_1, \dots, u_n\}$ son bases de un espacio vectorial \mathbb{V} , entonces se puede probar que los conjuntos de vectores coordenadas

$$\left\{ [v_1]_{B_2} , \ldots, [v_n]_{B_2} \right\} \ y \ \left\{ [u_1]_{B_1} , \ldots, [u_n]_{B_1} \right\}$$

son bases de \mathbb{R}^n .

Por lo tanto las matrices

$$I_{B_1B_2}$$
 y $I_{B_2B_1}$

tienen inversa y además

$$I_{B_1B_2} = (I_{B_2B_1})^{-1} \text{ y } I_{B_2B_1} = (I_{B_1B_2})^{-1}.$$

Luego podemos probar que

$$[v]_{B_2} = I_{B_1B_2} [v]_{B_1} y [v]_{B_1} = (I_{B_1B_2})^{-1} [v]_{B_2}.$$

Adicional ejemplo

Para ver ustedes! Encontrar las coordenadas(o vector coordenadas) para un vector genérico en una base, como ya explicamos en la clase anterior

Ejemplo Sea
$$B = \{(1,0,-1),(3,2,1),(0,-1,2)\}$$
 una base de \mathbb{R}^3 y sea $(x,y,z) \in \mathbb{R}^3$.

```
Ejemplo Sea B = \{(1, 0, -1), (3, 2, 1), (0, -1, 2)\} una base de \mathbb{R}^3 y sea (x, y, z) \in \mathbb{R}^3. Busquemos [(x, y, z)]_B.
```

Ejemplo Sea $B = \{(1, 0, -1), (3, 2, 1), (0, -1, 2)\}$ una base de \mathbb{R}^3 y sea $(x, y, z) \in \mathbb{R}^3$. Busquemos $[(x, y, z)]_B$.

 $(x, y, z) = \lambda_1(1, 0, -1) + \lambda_2(3, 2, 1) + \lambda_3(0, -1, 2)$

Ejemplo Sea $B = \{(1, 0, -1), (3, 2, 1), (0, -1, 2)\}$ una base de \mathbb{R}^3 y sea $(x, y, z) \in \mathbb{R}^3$. Busquemos $[(x, y, z)]_B$.

$$(x, y, z) = \lambda_1(1, 0, -1) + \lambda_2(3, 2, 1) + \lambda_3(0, -1, 2)$$

$$\begin{cases} \lambda_1 + 3\lambda_2 &= \mathbf{x} \\ 2\lambda_2 - \lambda_3 &= \mathbf{y} \\ -\lambda_1 + \lambda_2 + 2\lambda_3 &= \mathbf{z} \end{cases}$$

Ejemplo Sea $B = \{(1, 0, -1), (3, 2, 1), (0, -1, 2)\}$ una base de \mathbb{R}^3 y sea $(x, y, z) \in \mathbb{R}^3$. Busquemos $[(x, y, z)]_B$.

$$(x, y, z) = \lambda_1(1, 0, -1) + \lambda_2(3, 2, 1) + \lambda_3(0, -1, 2)$$

$$\left\{ \begin{array}{cccc} \lambda_1 + 3\lambda_2 & = & \mathbf{x} \\ 2\lambda_2 - \lambda_3 & = & \mathbf{y} \\ -\lambda_1 + \lambda_2 + 2\lambda_3 & = & \mathbf{z} \end{array} \right. \rightarrow \left. \left(\begin{array}{ccc} 1 & 3 & 0 \\ 0 & 2 & -1 \\ -1 & 1 & 2 \end{array} \right) \left(\begin{array}{c} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{array} \right) = \left(\begin{array}{c} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{array} \right)$$

Ejemplo Sea $B = \{(1, 0, -1), (3, 2, 1), (0, -1, 2)\}$ una base de \mathbb{R}^3 y sea $(x, y, z) \in \mathbb{R}^3$. Busquemos $[(x, y, z)]_B$.

$$(x, y, z) = \lambda_1(1, 0, -1) + \lambda_2(3, 2, 1) + \lambda_3(0, -1, 2)$$

$$\begin{cases} \lambda_{1} + 3\lambda_{2} &= x \\ 2\lambda_{2} - \lambda_{3} &= y \\ -\lambda_{1} + \lambda_{2} + 2\lambda_{3} &= z \end{cases} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \lambda_{1} \\ \lambda_{2} \\ \lambda_{3} \end{pmatrix} = \begin{pmatrix} \frac{5x - 3z - 6y}{8} \\ \frac{x + z + 2y}{8} \\ \frac{x + z - 2y}{4} \end{pmatrix}$$

Ejemplo Sea $B = \{(1, 0, -1), (3, 2, 1), (0, -1, 2)\}$ una base de \mathbb{R}^3 y sea $(x, y, z) \in \mathbb{R}^3$. Busquemos $[(x, y, z)]_B$.

$$(x, y, z) = \lambda_1(1, 0, -1) + \lambda_2(3, 2, 1) + \lambda_3(0, -1, 2)$$

o lo que es equivalente

$$\begin{cases} \lambda_{1} + 3\lambda_{2} &= x \\ 2\lambda_{2} - \lambda_{3} &= y \\ -\lambda_{1} + \lambda_{2} + 2\lambda_{3} &= z \end{cases} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \lambda_{1} \\ \lambda_{2} \\ \lambda_{3} \end{pmatrix} = \begin{pmatrix} \frac{5x - 3z - 6y}{8} \\ \frac{x + z - 2y}{8} \\ \frac{x + z - 2y}{4} \end{pmatrix}$$

Entonces,

$$[(x,y,z)]_B = \left(\frac{5x - 3z - 6y}{8}, \frac{x + z + 2y}{8}, \frac{x + z - 2y}{4}\right)^t$$

Es decir,

Ejemplo Sea $B = \{(1, 0, -1), (3, 2, 1), (0, -1, 2)\}$ una base de \mathbb{R}^3 y sea $(x, y, z) \in \mathbb{R}^3$. Busquemos $[(x, y, z)]_B$.

$$(1,0,0) = \left(\frac{5}{8}\right)(1,0,-1) + \left(\frac{1}{8}\right)(3,2,1) + \left(\frac{1}{4}\right)(0,-1,2)$$

$$\begin{cases} \lambda_1 + 3\lambda_2 &= 1\\ 2\lambda_2 - \lambda_3 &= 0\\ -\lambda_1 + \lambda_2 + 2\lambda_3 &= 0 \end{cases} \rightarrow$$

$$\begin{pmatrix}1&0&0\\0&1&0\\0&0&1\end{pmatrix}\,\begin{pmatrix}\lambda_1\\\lambda_2\\\lambda_3\end{pmatrix}=\begin{pmatrix}\frac{5}{8}\\\frac{1}{8}\\\frac{1}{4}\end{pmatrix}$$

Es decir,

Ejemplo Sea $B = \{(1, 0, -1), (3, 2, 1), (0, -1, 2)\}$ una base de \mathbb{R}^3 y sea $(x, y, z) \in \mathbb{R}^3$. Busquemos $[(x, y, z)]_B$.

$$(1,0,0) = \left(\frac{5}{8}\right)(1,0,-1) + \left(\frac{1}{8}\right)(3,2,1) + \left(\frac{1}{4}\right)(0,-1,2)$$

o lo que es equivalente

$$\begin{cases} \lambda_1 + 3\lambda_2 &= 1\\ 2\lambda_2 - \lambda_3 &= 0\\ -\lambda_1 + \lambda_2 + 2\lambda_3 &= 0 \end{cases} \rightarrow$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{pmatrix} = \begin{pmatrix} \frac{5}{8} \\ \frac{1}{8} \\ \frac{1}{4} \end{pmatrix}$$

Por ejemplo:

$$[(1,0,0)]_B = \left(\frac{5}{8}, \frac{1}{8}, \frac{1}{4}\right)^t$$