Database Management Systems - I, CS 157A

Advanced Topics of Interest: "MapReduce and SQL"

Outline

MapReduce and SQL

MapReduce and SQL

Introduction

It is all about divide and conquer

.

Introduction

Different workers:

- Different threads in the same core
- Different cores in the same CPU
- Different CPUs in a multi-processor system
- □ Different machines in a distributed system

Parallelization Problems:

- How do we assign work units to workers?
- What if we have more work units than workers?
- What if workers need to share partial results?
- How do we aggregate partial results?
- □ How do we know all the workers have finished?
- What if some workers die?

Introduction

General Themes:

- □ Parallelization problems arise from:
 - Communication between workers
 - Access to shared resources (e.g., data)
- Thus, we need a synchronization support!
- ☐ This is tricky:
 - Finding bugs is hard
 - Solving bugs is even harder

- Patterns for Parallelism:
 - Master/Workers

Producer/Consumer Flow (pipeline)

■ Work Queues

Introduction: Evolution

- Functional Programming
- MapReduce
- Google File System (GFS)

v

Introduction

- Functional Programming:
 - MapReduce = functional programming meets distributed processing on steroids
 - Not a new idea... dates back to the 50's (or even 30's)
 - What is functional programming?
 - Computation as application of functions
 - Theoretical foundation provided by lambda calculus
 - ☐ How is it different?
 - Traditional notions of "data" and "instructions" are not applicable
 - Data flows are implicit in program
 - Different orders of execution are possible
 - □ Exemplified by LISP and ML (MetaLanguage general purpose Functional Programming Language)

Introduction: Lisp → MapReduce?

- What does this have to do with MapReduce?
- After all, Lisp is about processing lists
- Two important concepts in functional programming:
 - Map: do something to everything in a list
 - Fold: combine results of a list in some way

Introduction: Map

- Map is a higher-order function* (function that takes one or more functions as arguments)
- How map works:
 - Function is applied to every element in a list
 - Result is a new list

^{* &}lt;a href="https://en.wikipedia.org/wiki/Higher-order_function">https://en.wikipedia.org/wiki/Higher-order_function

Introduction: Fold

- Fold is also a higher-order function
- How fold works:
 - Accumulator set to initial value
 - □ Function applied to list element and the accumulator
 - Result stored in the accumulator
 - Repeated for every item in the list
 - Result is the final value in the accumulator

Lisp → **MapReduce**

- Let's assume a long list of records: imagine if...
 - We can distribute the execution of map operations to multiple nodes
 - We have a mechanism for bringing map results back together in the fold operation
- That's MapReduce! (and Hadoop)
- Implicit parallelism:
 - We can parallelize execution of map operations since they are isolated
 - □ We can reorder folding if the fold function is commutative (a+b = b+a) and associative ((2*3)*4) = (2*(3*4))

Typical Problem

- Iterate over a large number of records
- Map: extract something of interest from each
- Shuffle and sort intermediate results
- Reduce: aggregate intermediate results
- Generate final output

Key idea: provide an abstraction at the point of these two operations

м

MapReduce

Programmers specify two functions:

map
$$(k, v) \rightarrow \langle k', v' \rangle^*$$

reduce $(k', v') \rightarrow \langle k', v' \rangle^*$

- □ All v' with the same k' are reduced together
- Usually, programmers also specify:
 - partition (k', number of partitions) → partition for k'
 - □ Often a simple hash of the key, e.g. hash(k') mod N
 - □ Allows reduce operations for different keys in parallel

It's just divide and conquer!

Recall these problems?

- How do we assign work units to workers?
- What if we have more work units than workers?
- What if workers need to share partial results?
- How do we aggregate partial results?
- How do we know all the workers have finished?
- What if some workers die?

MapReduce Runtime

- Handles data distribution:
 - Gets initial data to map workers
 - Shuffles intermediate key-value pairs to reduce workers
 - Optimizes for locality whenever possible
- Handles scheduling:
 - Assigns workers to map and reduce tasks
- Handles faults:
 - Detects worker failures and restarts
- Everything happens on top of GFS (later)

w

"Hello World": Word Count

```
Map(String input_key, String input_value):
  // input_key: document name
   // input_value: document contents
   for each word w in input_values:
      EmitIntermediate(w, "1");
Reduce(String key, Iterator intermediate_values):
  // key: a word, same for input and output
   // intermediate values: a list of counts
   int result = 0:
   for each v in intermediate values:
      result += ParseInt(v);
      Emit(AsString(result));
```

Behind the scenes...

Bandwidth Optimizations

- Take advantage of locality
 - Move the process to where the data is!
- Use "Combiner" functions output of the mapper
 - Executed on same machine as mapper
 - □ Results in a "mini-reduce" right after the map phase
 - Reduces key-value pairs to save bandwidth

When can you use combiners?

^{* &}lt;a href="http://www.tutorialspoint.com/map_reduce/map_reduce_combiners.htm">http://www.tutorialspoint.com/map_reduce/map_reduce_combiners.htm

Skew Problem

- Issue: reduce is only as fast as the slowest map
- Solution: redundantly execute map operations, use results of first to finish
 - □ Addresses hardware problems...
 - But not issues related to inherent distribution of data

Data, Data, More Data:

- All of this depends on a storage system for managing all the data...
- That's where GFS (Google File System), and by extension HDFS in Hadoop

Assumptions

- High component failure rates
 - Inexpensive commodity components fail all the time
- "Modest" number of HUGE files
 - ☐ Just a few millions (!!!)
 - □ Each is 100MB or larger; multi-GB files is typical
- Files are write-once, mostly appended to
 - Perhaps concurrently
- Large streaming reads
- High sustained throughput favoured over low latency

М

GFS Design Decisions

- Files stored as chunks
 - ☐ Fixed size (64MB)
- Reliability through replication
 - Each chunk replicated across 3+ chunk servers
- Single master to coordinate access, keep metadata
 - Simple centralized management
- No data caching
 - Little benefit due to large data sets, streaming reads
- Familiar interface, but customize the API
 - Simplify the problem; focus on Google apps
 - Add snapshot and record append operations

GFS Architecture

- Single master
- Multiple chunk servers

Can anyone see a potential weakness in this design?

м

Single master

- From distributed systems we know this is a
 - Single point of failure
 - Scalability bottleneck
- GFS solutions:
 - Shadow masters
 - Minimize master involvement
 - Never move data through it, use only for metadata (and cache metadata at clients)
 - Large chunk size (minimize seeks)
 - Master delegates authority to primary replicas in data mutations (chunk leases)
- Simple, and good enough!

Metadata

- Global metadata is stored on the master
 - File and chunk namespaces
 - Mapping from files to chunks
 - Locations of each chunk's replicas
- All in memory (64 bytes for Metadata / chunk)
 - Fast
 - Easily accessible
- Master has an operation (Edit) log for persistent logging of critical metadata updates
 - Persistent on local disk
 - Replicated
 - Checkpoints for faster recovery

Mutations

- Mutation = write or append
 - Must be done for all replicas
- Goal: minimize master involvement
- Lease mechanism:
 - Master picks one replica as primary; gives it a "lease" for mutations
 - Primary defines a serial order of mutations
 - All replicas follow this order
 - Data flow decoupled from control flow

Relaxed Consistency Model

- "Consistent" = all replicas have the same value
- "Defined" = replica reflects the mutation, consistent
- Some properties:
 - Concurrent writes leave region consistent, but possibly undefined
 - Failed writes leave the region inconsistent
- Some work has moved into the applications:
 - □ E.g., self-validating, self-identifying records
 - Google apps can live with it
 - What about other apps?

Master's Responsibilities (1/2)

- Metadata storage
- Namespace management/locking
- Periodic communication with chunk servers
 - □ Give instructions, collect state, track cluster health
- Chunk creation, re-replication, rebalancing
 - Balance space utilization and access speed
 - □ Spread replicas across racks to reduce correlated failures
 - Re-replicate data if redundancy falls below threshold
 - Rebalance data to smooth out storage and request load

Master's Responsibilities (2/2)

Garbage Collection

- Simpler, more reliable than traditional file delete
- Master logs the deletion, renames the file to a hidden name
- □ Lazily garbage collects hidden files

Stale replica deletion

Detect "stale" replicas using chunk version numbers

Fault Tolerance

- High availability
 - Fast recovery: master and chunk servers re-startable in a few seconds
 - □ Chunk replication: default 3 replicas
 - Shadow masters
- Data integrity
 - □ Checksum every 64KB block in each chunk

Parallelization Problems

- How do we assign work units to workers?
- What if we have more work units than workers?
- What if workers need to share partial results?
- How do we aggregate partial results?
- How do we know all the workers have finished?
- What if some workers die?

Managing Dependencies

- Remember: Mappers run in isolation
 - ☐ You have no idea in what order the mappers run
 - You have no idea on what node the mappers run
 - ☐ You have no idea when each mapper finishes
- Question: what if your computation is a non-commutative operation on mapper results?
- Answer: Cleverly "hide" dependencies in the reduce stage
 - ☐ The reducer can hold state across multiple map operations
 - □ Careful choice of partition function
 - □ Careful choice of sorting function
- Example: computing conditional probabilities

Other things to beware of...

- Object creation overhead
- Reading in external resources is tricky
 - Possibility of creating hotspots in underlying file system

- 1. Communication cost = total I/O of all processes.
- 2. Elapsed communication cost = max # of I/O along any path.
- 3. (*Elapsed*) *computation costs* analogous, but count only running time of processes.

M/R Application: Example: Cost Measures

- For a map-reduce algorithm:
 - □ Communication cost = input file size + 2 × (sum of the sizes of all files passed from Map processes to Reduce processes) + the sum of the output sizes of the Reduce processes
 - □ Elapsed communication cost is the sum of the largest input + output for any map process, plus the same for any reduce process

M/R Application: What Cost Measures Mean

- Either the I/O (communication) or processing (computation) cost dominates:
 - Ignore one or the other.
- Total costs tell what you pay in rent from your friendly neighborhood cloud.
- Elapsed costs are wall-clock time using parallelism

Join By Map-Reduce

- Our first example of an algorithm in this framework is a map-reduce example
- Compute the natural join $R(A,B) \bowtie S(B,C)$
- R and S each are stored in files
- Tuples are pairs (a,b) or (b,c)
- Use a hash function h on B-values to [1..k] buckets.
- A Map process turns input tuple R(a,b) into key-value pair (b,(a,R)) and each input tuple S(b,c) into (b,(c,S))

Map-Reduce Join – (2)

- Map processes send each key-value pair with key b to Reduce process h(b) = b mod k
 - \square Hadoop does this automatically; just tell it what k is
- Each Reduce process matches all the pairs (b,(a,R))
 with all (b,(c,S)) and outputs (a,b,c)

Cost of Map-Reduce Join

- Total communication cost = $O(|R|+|S|+|R\bowtie S|)$
- Elapsed communication cost = O(s)
 - □ We're going to pick k and the number of Map processes so I/O limit s is respected
- With proper indexes, computation cost is linear in the input + output size
 - So computation costs are like comm costs

END