UNIVERSIDAD DE SAN ANDRÉS - IRM Respuestas

Práctica 4: Funciones trigonométricas

- 1. Se pueden verificar los gráficos con la aplicación GeoGebra.
 - (a) Para $f(x) = \operatorname{sen}(x)$: $\operatorname{Dom}(f) = \mathbb{R}$, $C_0(f) = \{x \in \mathbb{R}/x = k\pi \text{ tal que } k \in \mathbb{Z}\}$
 - (b) $f(x) = \cos(x)$: $Dom(f) = \mathbb{R}$, $C_0(f) = \{x \in \mathbb{R}/x = k\pi + \frac{\pi}{2} \text{ tal que } k \in \mathbb{Z}\}$
 - (c) $f(x) = \operatorname{tg}(x)$: $\operatorname{Dom}(f) = \mathbb{R} \setminus \{x \in \mathbb{R}/x = k\pi + \frac{\pi}{2} \text{ tal que } k \in \mathbb{Z}\}, C_0(f) = \{x \in \mathbb{R}/x = k\pi + \frac{\pi}{2} \text{ tal que } k \in \mathbb{Z}\}$ $k\pi$ tal que $k \in \mathbb{Z}$
- 2. (a) $\cos(\frac{7}{6}\pi) = -\frac{\sqrt{3}}{2}$
 - (b) $sen(-\frac{1}{4}\pi) = -\frac{\sqrt{2}}{2}$
 - (c) $tg(7\pi) = 0$
- 3. Sea $t \in (0, \frac{\pi}{2})$ tal que $\cos(t) = \frac{1}{10}$. Sin hallar t, usando propiedades, calcular:
 - (a) $sen(t) = \sqrt{1 \frac{1}{100}}$
 - (b) $\operatorname{sen}(\frac{\pi}{2} t) = \frac{1}{10}$.
 - (c) $\cos(\pi + t) = -\cos(\pi + t \pi) = -\cos(t) = -\frac{1}{10}$
 - (d) $\operatorname{sen}(\frac{\pi}{2} + t) = \frac{1}{10}$.
 - (e) $\cos(3\pi t) = \cos(\pi t) = -\cos(-t) = -\frac{1}{10}$
 - (f) $\cos(t + \frac{3}{2}\pi) = \sqrt{1 \frac{1}{100}}$.
- 4. Sea $t \in (\pi, \frac{3}{2}\pi)$ tal que $\cos(t) = -\frac{4}{5}$. Sin hallar t, usando propiedades, calcular:
 - (a) $sen(t) = -\sqrt{1 \frac{16}{25}}$.
 - (b) $\cos(\frac{11}{2}\pi t) = \frac{4}{5}$.
 - (c) $tg(\pi t) = -\frac{5}{4}\sqrt{1 \frac{16}{25}}$.
- 5. Hallar todos los $x \in \mathbb{R}$ que verifican
 - (a) sen(x) = 0.
- (g) $sen(x) = \frac{1}{2}$.
- (m) $sen(x) = \frac{\sqrt{2}}{2}$. (s) tg(x) = -1.

- (b) $\cos(x) = 0$.
- (h) $\cos(x) = \frac{1}{2}$.
- (n) $\cos(x) = \frac{\sqrt{2}}{2}$. (t) $tg(x) = \frac{1}{\sqrt{3}}$.

- (c) sen(x) = 1.
- (i) $sen(x) = -\frac{1}{2}$.
- (o) $sen(x) = -\frac{\sqrt{2}}{2}$. (p) $cos(x) = -\frac{\sqrt{2}}{2}$. (q) tg(x) = 0. (u) $tg(x) = -\frac{1}{\sqrt{3}}$. (v) $tg(x) = \sqrt{3}$.

- (d) $\cos(x) = 1$.
- (j) $\cos(x) = -\frac{1}{2}$.

- (e) sen(x) = -1.
- (k) $sen(x) = \frac{\sqrt{3}}{2}$.

- (f) $\cos(x) = -1$.
- (1) $\cos(x) = \frac{\sqrt{3}}{2}$.
- (r) tg(x) = 1.
- (w) $tg(x) = -\sqrt{3}$.

- (a) $\{x \in \mathbb{R}/x = k\pi \text{ tal que } k \in \mathbb{Z}\}.$
- (b) $\{x \in \mathbb{R}/x = \frac{\pi}{2} + k\pi \text{ tal que } k \in \mathbb{Z}\}.$
- (c) $\{x \in \mathbb{R}/x = \frac{\pi}{2} + 2k\pi \text{ tal que } k \in \mathbb{Z}\}.$

- (d) $\{x \in \mathbb{R}/x = 0 + 2k\pi \text{ tal que } k \in \mathbb{Z}\}.$
- (e) $\{x \in \mathbb{R}/x = \frac{3}{2}\pi + 2k\pi \text{ tal que } k \in \mathbb{Z}\}.$
- (f) $\{x \in \mathbb{R}/x = \pi + 2k\pi \text{ tal que } k \in \mathbb{Z}\}.$
- (g) $\{x \in \mathbb{R}/x = \frac{\pi}{6} + 2k\pi \text{ tal que } k \in \mathbb{Z}\} \cup \{x \in \mathbb{R}/x = \frac{5}{6}\pi + 2k\pi \text{ tal que } k \in \mathbb{Z}\}.$
- (h) $\{x \in \mathbb{R}/x = \frac{\pi}{3} + 2k\pi \text{ tal que } k \in \mathbb{Z}\} \cup \{x \in \mathbb{R}/x = \frac{5}{3}\pi + 2k\pi \text{ tal que } k \in \mathbb{Z}\}$.
- (i) $\{x \in \mathbb{R}/x = -\frac{\pi}{6} + 2k\pi \text{ tal que } k \in \mathbb{Z}\} \cup \{x \in \mathbb{R}/x = -\frac{5}{6}\pi + 2k\pi \text{ tal que } k \in \mathbb{Z}\}.$
- (j) $\{x \in \mathbb{R}/x = \frac{2}{3}\pi + 2k\pi \text{ tal que } k \in \mathbb{Z}\} \cup \{x \in \mathbb{R}/x = -\frac{2}{3}\pi + 2k\pi \text{ tal que } k \in \mathbb{Z}\}.$
- (k) $\{x \in \mathbb{R}/x = \frac{\pi}{3} + 2k\pi \text{ tal que } k \in \mathbb{Z}\} \cup \{x \in \mathbb{R}/x = \frac{2}{3}\pi + 2k\pi \text{ tal que } k \in \mathbb{Z}\}.$
- (1) $\{x \in \mathbb{R}/x = \frac{\pi}{6} + 2k\pi \text{ tal que } k \in \mathbb{Z}\} \cup \{x \in \mathbb{R}/x = \frac{11}{6}\pi + 2k\pi \text{ tal que } k \in \mathbb{Z}\}.$
- (m) $\{x \in \mathbb{R}/x = \frac{\pi}{4} + 2k\pi \text{ tal que } k \in \mathbb{Z}\} \cup \{x \in \mathbb{R}/x = \frac{3}{4}\pi + 2k\pi \text{ tal que } k \in \mathbb{Z}\}.$
- (n) $\{x \in \mathbb{R}/x = \frac{\pi}{4} + 2k\pi \text{ tal que } k \in \mathbb{Z}\} \cup \{x \in \mathbb{R}/x = \frac{7}{4}\pi + 2k\pi \text{ tal que } k \in \mathbb{Z}\}.$
- (o) $\{x \in \mathbb{R}/x = -\frac{\pi}{4} + 2k\pi \text{ tal que } k \in \mathbb{Z}\} \cup \{x \in \mathbb{R}/x = -\frac{3}{4}\pi + 2k\pi \text{ tal que } k \in \mathbb{Z}\}.$
- (p) $\{x \in \mathbb{R}/x = \frac{3\pi}{4} + 2k\pi \text{ tal que } k \in \mathbb{Z}\} \cup \{x \in \mathbb{R}/x = \frac{5}{4}\pi + 2k\pi \text{ tal que } k \in \mathbb{Z}\}.$
- (q) $\{x \in \mathbb{R}/x = k\pi \text{ tal que } k \in \mathbb{Z}\}.$
- (r) $\{x \in \mathbb{R}/x = \frac{\pi}{4} + 2k\pi \text{ tal que } k \in \mathbb{Z}\} \cup \{x \in \mathbb{R}/x = -\frac{3}{4}\pi + 2k\pi \text{ tal que } k \in \mathbb{Z}\}..$
- (s) $\{x \in \mathbb{R}/x = \frac{3}{4}\pi + k\pi \text{ tal que } k \in \mathbb{Z}\}.$
- (t) $\{x \in \mathbb{R}/x = \frac{1}{6}\pi + k\pi \text{ tal que } k \in \mathbb{Z}\}.$
- (u) $\{x \in \mathbb{R}/x = \frac{5}{6}\pi + k\pi \text{ tal que } k \in \mathbb{Z}\}.$
- (v) $\{x \in \mathbb{R}/x = \frac{1}{3}\pi + k\pi \text{ tal que } k \in \mathbb{Z}\}.$
- (w) $\{x \in \mathbb{R}/x = \frac{2}{3}\pi + k\pi \text{ tal que } k \in \mathbb{Z}\}.$
- 6. Para cada una de las siguientes funciones f, hallar Im(f), los máximos y mínimos de f en el intervalo I indicado:
 - (a) Para $f(x)=-3\cos(x-\frac{\pi}{2})+2$, Im(f)=[-1,5]. El valor mínimo es -1 y se alcanza en $x=\frac{5\pi}{2}$. El máximo es 5 y se alcanza en $x=\frac{3\pi}{2}$ y en $x=\frac{7\pi}{2}$.
 - (b) Para $f(x) = \text{sen}(\pi x) 2$, Im(f) = [-3, -1]. El valor máximo es -1 y se alcanza en $x = \frac{1}{2}$. El valor mínimo es -3 y se alcanza en $x = -\frac{1}{2}$ y en $x = \frac{3}{2}$.
 - (c) Para $f(x)=\frac{1}{4}\cos(-3x+\pi)+1$, Im(f)=[3/4,5/4]. El valor máximo es 5/4 y se alcanza en $x=\frac{\pi}{3},\ x=\pi$ y en $x=\frac{5\pi}{3}$. El valor mínimo es 3/4 y se alcanza en $x=0,\ x=\frac{2\pi}{3},\ x=\frac{4\pi}{3}$ y $x=2\pi$.
- 7. (a) Las raíces de $f(x) = 2\text{sen}(3x \pi) + 1$, en $I = \mathbb{R}$ son $x = \frac{\pi}{3} + \frac{7}{18}\pi + \frac{2k}{3}\pi$ y $x = \frac{\pi}{3} + \frac{11}{18}\pi + \frac{2k}{3}\pi$, con $k \in \mathbb{Z}$.
 - (b) Las raíces de $f(x) = 3\cos(\frac{\pi}{3} \frac{x}{2}) + 3$, en $I = [\pi, 8\pi]$ son $x = \frac{8}{3}\pi$ y $x = \frac{20}{3}\pi$.
 - (c) Las raíces de $f(x) = 2 6 \operatorname{tg}^2(4x)$, en $I = [-\pi/2, \pi/2]$ son $x = \pm \frac{\pi}{24}$, $x = \pm \frac{7}{24}\pi$, $x = \pm \frac{5}{24}\pi$ y $x = \pm \frac{11}{24}\pi$.
 - (d) Las raíces de $f(x) = 12\cos^2(2x) 6$, en $I = \left[-\frac{3\pi}{2}, -\frac{3\pi}{4}\right]$ son $x = -\frac{7}{8}\pi$, $x = -\frac{9\pi}{8}$ y $x = \frac{-11\pi}{8}$.
 - (e) Las raíces de $f(x) = \cos^2(\pi x \pi/2) 3\cos(\pi x \pi/2) + 2$, en I = [-2, 3] son $x = \frac{1}{2}$, $x = \frac{5}{2}$ y $x = \frac{-3}{2}$.
- 8. Sea $f(x) = 3\cos(t x + \pi) + 2$.
 - (a) Im(f) = [-1, 5].
 - (b) Todos los $t \in [-7, 7]$ para los cuales x = 1 es un mínimo de f son t = 0, $t = -2\pi$ y $t = 2\pi$.

- 9. (a) Los $x \in [0, 2\pi]$ de la ecuación 2sen(2x) + 1 = 0 son $x = \frac{7}{12}\pi$, $x = \frac{11}{12}\pi$, $x = \frac{19}{12}\pi$, $x = \frac{23}{12}\pi$
 - (b) Los $x \in [0,2\pi]$ de la ecuación $2\cos^2(x) + 3\mathrm{sen}(x) 3 = 0$ son $x = \frac{\pi}{6}, \ x = \frac{\pi}{2}$ y $x = \frac{5}{6}\pi$.
 - (c) Los $x \in [0, 2\pi]$ de la ecuación $\operatorname{tg}(\frac{x}{2}) + 1 = 0$ es $x = \frac{3}{2}\pi$.
 - (d) Los $x \in [0, 2\pi]$ de la ecuación $\cos(x) \cdot \sin(2x) \cos(2x) \cdot \sin(x) = \frac{1}{2} \sin x = \frac{5}{6}\pi$ y $x = \frac{\pi}{6}$.
 - (e) Los $x \in [0, 2\pi]$ de la ecuación $\frac{1}{\cos^2(x)} + \frac{1}{\sin^2(x)} = 4$ son $x = \frac{1}{4}\pi$, $x = \frac{3}{4}\pi$, $x = \frac{5}{4}\pi$ y $x = \frac{7}{4}\pi$.
- 10. Sea $f(x) = a \operatorname{sen}(\frac{\pi}{3}x \pi) + b$.
 - (a) a = 10, b = 5.
 - (b) Tomando $a = 10, b = 5, f(x) = 10 \operatorname{sen}(\frac{\pi}{3}x \pi) + 5$. El mínimo de f en [-2, 4] es $x = \frac{3}{2}$.
 - (c) Los ceros de f en [-2,4] son $x=\frac{1}{2}$ y $x=\frac{5}{2}$.