Regression

En este laboratorio se trabajará un conjunto de datos que indica ciertas características físicas y rutinarias de las personas. Se pretende crear varios modelos de regresión lineal y polinomial. En base a dichos modelos, desarollados con las características de distintos usuarios, será posible predecir los 'charges' de cada persona.

Este conjunto de datos contiene las siguientes características:

- · 'Age': edad la persona
- 'BMI': índice de masa corporal de la persona
- · 'Children': si tiene hijos o no
- · 'Smoker': si fuma o no
- 'Sex': si el consumidor es mujer u hombre
- 'Region': región del consumidor
- 'Charges': cargos de del ususario

Import Libraries

```
In [1]: 1 import pandas as pd
2 import numpy as np
3 import matplotlib.pyplot as plt
4 import seaborn as sns
5 %matplotlib inline
```

Get the Data

```
In [2]: 1 df = pd.read_csv('insurance.csv')
```

Check the head of ad_data

```
In [3]: 1 df.head() #visualizacion de algunas filas
```

Out[3]:		age	sex	bmi	children	smoker	region	charges
	0	19	0	27.900	0	1	3	16884.92400
	1	18	1	33.770	1	0	2	1725.55230
	2	28	1	33.000	3	0	2	4449.46200
	3	33	1	22.705	0	0	1	21984.47061
	4	32	1	28.880	0	0	1	3866.85520

Preparación de los datos - datos faltantes

```
In [4]: 1 print("Cantidad de registros: ", len(df))
```

Cantidad de registros: 348

1 df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 348 entries, 0 to 347 Data columns (total 7 columns): Column Non-Null Count Dtype 0 348 non-null int64 age 1 348 non-null int64 sex 2 bmi 348 non-null float64 3 children 348 non-null int64 4 smoker 348 non-null int64 region 348 non-null int64 348 non-null charges float64 dtypes: float64(2), int64(5) memory usage: 19.2 KB

In [6]:

In [5]:

1 df.describe() #visualizacion de algunas filas

Out[6]:

	age	sex	bmi	children	smoker	region	charges
count	348.000000	348.000000	348.000000	348.000000	348.000000	348.000000	348.000000
mean	39.591954	0.508621	30.676552	1.091954	0.232759	1.497126	14016.426293
std	14.417015	0.500646	5.625850	1.192021	0.423198	1.104089	12638.887852
min	18.000000	0.000000	15.960000	0.000000	0.000000	0.000000	1137.011000
25%	27.000000	0.000000	26.782500	0.000000	0.000000	1.000000	4888.466125
50%	40.000000	1.000000	30.300000	1.000000	0.000000	2.000000	9719.305250
75%	53.000000	1.000000	34.777500	2.000000	0.000000	2.000000	19006.316150
max	64.000000	1.000000	49.060000	5.000000	1.000000	3.000000	51194.559140

Exploración de los datos

Preparación de los datos – datos categóricos

Label Encoder para codificar los campos de sex y smoker

Out[3]:

	age	sex	bmi	children	smoker	region	charges	labeled_sex
0	19	0	27.900	0	1	3	16884.92400	0
1	18	1	33.770	1	0	2	1725.55230	1
2	28	1	33.000	3	0	2	4449.46200	1
3	33	1	22.705	0	0	1	21984.47061	1
4	32	1	28.880	0	0	1	3866.85520	1
				•••				
343	63	1	36.765	0	0	0	13981.85035	1
344	49	0	41.470	4	0	2	10977.20630	0
345	34	0	29.260	3	0	2	6184.29940	0
346	33	1	35.750	2	0	2	4889.99950	1
347	46	1	33.345	1	0	0	8334.45755	1

348 rows × 8 columns

Out[4]:

	age	sex	bmi	children	smoker	region	charges	labeled_sex	labeled_smoker
0	19	0	27.900	0	1	3	16884.92400	0	1
1	18	1	33.770	1	0	2	1725.55230	1	0
2	28	1	33.000	3	0	2	4449.46200	1	0
3	33	1	22.705	0	0	1	21984.47061	1	0
4	32	1	28.880	0	0	1	3866.85520	1	0
343	63	1	36.765	0	0	0	13981.85035	1	0
344	49	0	41.470	4	0	2	10977.20630	0	0
345	34	0	29.260	3	0	2	6184.29940	0	0
346	33	1	35.750	2	0	2	4889.99950	1	0
347	46	1	33.345	1	0	0	8334.45755	1	0

348 rows × 9 columns

On Hot Encoder para el region

Out[5]:		age	sex	bmi	children	smoker	region	charges	labeled_sex	labeled_smoker	0	1	2	3
	0	19	0	27.900	0	1	3	16884.92400	0	1	0.0	0.0	0.0	1.0
	1	18	1	33.770	1	0	2	1725.55230	1	0	0.0	0.0	1.0	0.0
	2	28	1	33.000	3	0	2	4449.46200	1	0	0.0	0.0	1.0	0.0
	3	33	1	22.705	0	0	1	21984.47061	1	0	0.0	1.0	0.0	0.0
	4	32	1	28.880	0	0	1	3866.85520	1	0	0.0	1.0	0.0	0.0
	343	63	1	36.765	0	0	0	13981.85035	1	0	1.0	0.0	0.0	0.0
	344	49	0	41.470	4	0	2	10977.20630	0	0	0.0	0.0	1.0	0.0
	345	34	0	29.260	3	0	2	6184.29940	0	0	0.0	0.0	1.0	0.0
	346	33	1	35.750	2	0	2	4889.99950	1	0	0.0	0.0	1.0	0.0
	347	46	1	33.345	1	0	0	8334.45755	1	0	1.0	0.0	0.0	0.0

348 rows × 13 columns

a	ige	sex	bmi	children	smoker	charges	labeled_sex	labeled_smoker	region_0	region_1	region_2
0	19	0	27.900	0	1	16884.92400	0	1	0	0	
1	18	1	33.770	1	0	1725.55230	1	0	0	0	1
2	28	1	33.000	3	0	4449.46200	1	0	0	0	1
3	33	1	22.705	0	0	21984.47061	1	0	0	1	C
4	32	1	28.880	0	0	3866.85520	1	0	0	1	C

Dividir en training y test - preparación escala

Preparación de los datos - escala

```
In [8]:
          1 | from sklearn.preprocessing import StandardScaler
          2 | sc=StandardScaler()
          3 | data=sc.fit_transform(data)
          4 print(data, target)
        [[-4.94245241e-01]
         [ 5.50655000e-01]
         [ 4.13589721e-01]
         [-1.41899085e+00]
         [-3.19798523e-01]
         [-8.78740049e-01]
         [ 4.91912738e-01]
         [-5.22726338e-01]
         [-1.50692010e-01]
         [-8.60939363e-01]
         [-7.93296758e-01]
         [-7.80836278e-01]
         [ 6.62799319e-01]
         [ 1.62759647e+00]
         [ 2.03879231e+00]
         [-1.08166786e+00]
         [ 1.84145023e-02]
         [-1.21606304e+00]
         [ 1.71303977e+00]
           0 22005400- 041
In [9]:
          1 #Splitting en train y test
          2 | from sklearn.model_selection import train_test_split
          3 |x_trainA,x_testA,y_trainA,y_testA =train_test_split(data,target,test_size=.3)
          4 x_trainB,x_testB,y_trainB,y_testB =train_test_split(data,target,test_size=.3)
          5 | x_trainBp,x_testBp,y_trainBp,y_testBp =train_test_split(data,target,test_size=.3)
             print(x_trainA,y_trainB)
         [-1.3006163]
         [-1.43590151]
         [ 0.94761029]
         [ 0.11987841]
         [-0.97931392]
         [ 0.72866186]
         [-0.72565415]
         [ 0.53819452]
         [ 0.44118078]
         [-0.18451331]
         [ 0.27118424]
         [ 1.9996308 ]
         [ 1.14341783]
         [ 0.30589557]
         [ 0.9298096 ]
         [-0.30288787]
         [ 0.52573404]
         [-0.7425648]
         [ 1.42199856]
         [ 1 01611303]
```

Modelación lineal

```
In [10]:
           1 from sklearn.metrics import mean_squared_error,r2_score
           2 #Usando bmi
           3 n = x_{trainA.shape[1]}
           4 r = np.linalg.matrix_rank(x_trainA)
           5 U, sigma, VT = np.linalg.svd(x_trainA, full_matrices=False)
           6 print(U, sigma, VT)
          [ 0.01388207]
          [ 0.0013782 ]
          [-0.09217755]
          [ 0.12524467]
          [ 0.13032436]
          [-0.09932262]
          [-0.02111761]
          [-0.05399609]
          [ 0.02593937]
          [-0.02111761]
          [-0.01157224]
          [ 0.07115426]
          [ 0.04491846]
          [ 0.02024565]
          [ 0.03827578]
          [-0.01157224]
          [-0.03657998]
          [ 0.08243007]
          [ 0.05161696]
          [ 0.00221551]
In [11]:
           1 D_plus = np.diag(np.hstack([1/sigma[:r], np.zeros(n-r)]))
           2 V = VT.T
           3 print(D_plus)
              print(V)
         [[0.06271764]]
```

[[1.]]

```
1 | X_plus = V.dot(D_plus).dot(U.T)
In [12]:
          2 w = X_plus.dot(y_trainA)
             print(X_plus)
           3
             print(w)
         [[-2.98739874e-03 1.66886770e-03 -1.85659117e-03 1.46931343e-03
           -2.43424829e-03 1.00368678e-03 -2.85436255e-03 -2.76333780e-03
           -9.14835029e-04 -4.59711242e-04 1.21787262e-02 -5.30502910e-03
            3.53137428e-03 2.08898197e-03 -1.59401976e-03 4.42761804e-03
           -1.45398167e-03 2.93271145e-03 -1.52400071e-03 2.88719907e-03
            1.38951586e-04 -2.18918163e-03 6.17109224e-03 5.12780848e-03
            9.33667737e-04 4.26307329e-03 -1.24392454e-03 6.45817032e-03
           -9.30661747e-03 3.70642189e-03 3.53137428e-03 3.39833809e-03
            4.06351901e-03 1.86842198e-03 6.24811319e-03 6.63321793e-03
           -3.65257966e-03 -7.60793132e-04 2.88719907e-03 -1.94411498e-03
            8.64373028e-05 1.20674201e-03 6.19209796e-03 -3.05391683e-03
            7.55746932e-03 -5.29730286e-04 1.85791912e-03 1.62685627e-03
           -9.01603844e-03 2.86619336e-03 -1.03043889e-02 4.66218184e-03
           -2.07014926e-03 -3.65257966e-03 -1.65703690e-03 -5.86518145e-03
            5.32386181e-03 -7.51062899e-03 -3.38650729e-03 -1.39096453e-03
           -1.66403880e-03 -5.38205005e-03 2.33404862e-03 7.55746932e-03
           -5.11597768e-03 -5.64812242e-03 3.72742760e-03 4.71542046e-04
           -3.85213393e-03 2.86619336e-03 -2.85436255e-03 2.11698958e-03
            1.73538579e-03 -7.25783610e-04 1.06670392e-03 7.86555311e-03
            4.49763709e-03 1.20324106e-03 3.65740856e-03 -1.19141025e-03
            2.06797625e-03 -2.92088064e-03 5.59343513e-03 3.99700092e-03
           -2.05614545e-03 -1.99312831e-03 -5.29730286e-04 -1.80407689e-03
            4.00750378e-03 7.38942361e-03 1.86842198e-03 1.80190389e-03
            7.02604892e-04 3.86046378e-03 -7.61565756e-03 4.49763709e-03
           -2.18918163e-03 -5.78115860e-03 1.80190389e-03 8.70650598e-04
            8.64373028e-05 -5.78115860e-03 7.85505025e-03 8.17363691e-03
           -6.22928048e-03 -1.32444644e-03 -3.38650729e-03 1.62685627e-03
           -1.32444644e-03 -7.25783610e-04 4.46262756e-03 2.81718003e-03
            1.26975915e-03 2.40056671e-03 -7.25783610e-04 -2.29421020e-03
            5.16981991e-03 3.23729429e-03 1.38951586e-04 1.13672297e-03
            6.39165223e-03 -2.22419116e-03 -4.38077772e-03 2.46708480e-03
            4.70769422e-03 -5.31553196e-03 -1.45748262e-03 -4.45079676e-03
           -1.27120782e-04 -5.92747426e-04 2.47408671e-03 4.39610947e-03
           -4.38427867e-03 -3.45652633e-03 2.16600291e-03 7.24334940e-05
            6.92379697e-03 2.60712289e-03 -5.11597768e-03 8.04132506e-04
           -1.45398167e-03 4.19655520e-03 -3.45652633e-03 5.32736276e-03
           -1.29993977e-03 -1.19141025e-03 4.66218184e-03 -5.98071288e-03
           -2.12266354e-03 -6.83772183e-04 -3.93193150e-04 2.39706576e-03
           -2.32221782e-03 4.52914566e-03 -2.65480828e-03 -2.99440064e-03
           -6.83772183e-04 5.40088276e-03 -4.59711242e-04 8.04132506e-04
            8.64373028e-05 1.20324106e-03 -3.68758918e-03 -4.22673582e-03
            4.86173612e-03 -2.18918163e-03 -2.25569972e-03 7.38942361e-03
            1.28719148e-02 -4.25474344e-03 2.18700863e-03 4.72869993e-03
           -4.31776058e-03 -5.22800815e-03 3.38505862e-04 -2.85436255e-03
           -2.22419116e-03 -2.22419116e-03 -1.59401976e-03 4.19655520e-03
           -4.84990531e-03 -4.58383294e-03 4.93875706e-03 1.56456347e-04
            5.16981991e-03 4.36532524e-04 -1.45748262e-03 1.07020487e-03
           -4.46480057e-03 -2.63657918e-04 8.01959501e-03 -3.13443873e-03
            8.56646789e-04 3.78344284e-03 4.39610947e-03 8.70650598e-04
            1.62685627e-03 -1.99312831e-03 3.86396474e-03 6.71096322e-04
           -3.45652633e-03 -5.29730286e-04 -5.92119669e-03 2.60012099e-03
           -3.31998920e-03 -1.72355499e-03 -1.24392454e-03 2.06797625e-03
            4.26307329e-03 -8.24232800e-03 -4.65035104e-03 -2.84035874e-03
            4.32258948e-03 1.00368678e-03 -5.45907100e-03 -1.39096453e-03
           -4.30375677e-03 3.39833809e-03 6.46589656e-04 -2.58829018e-03
           -2.43424829e-03 -7.51062899e-03 -1.91610736e-03 5.32386181e-03
```

```
-3.76461013e-03 -2.76333780e-03 5.06551568e-04 -1.32444644e-03
           -9.37313557e-03 4.86173612e-03 3.55237999e-03]]
         [3796.66725941]
In [13]:
              error = np.linalg.norm(x_trainA.dot(w) - y_trainA, ord=2) ** 2
              print(error)
         93133829264.44078
In [14]:
             np.linalg.lstsq(x_trainA, y_trainA)
         <ipython-input-14-038c38aaba46>:1: FutureWarning: `rcond` parameter will change to the de
         fault of machine precision times ``max(M, N)`` where M and N are the input matrix dimensi
         ons.
         To use the future default and silence this warning we advise to pass `rcond=None`, to kee
         p using the old, explicitly pass `rcond=-1`.
           np.linalg.lstsq(x_trainA, y_trainA)
Out[14]: (array([3796.66725941]), array([9.31338293e+10]), 1, array([15.94447688]))
         modelo 2 (con librería)
In [15]:
              from sklearn.linear_model import LinearRegression
           2 lr=LinearRegression()
In [16]:
           1 #Training La data con BMI
           2 lr.fit(x_trainB,y_trainB)
           3 \text{ w2} = \text{lr.coef}[0]
              print(w2)
         2750.702214787475
         modelo 3 (con librería)
```

In [17]:

1 target_c=df['charges']

2 data_c=df.drop(columns=['charges'])
3 data c=sc.fit transform(data c)

-3.85213393e-03 3.44735142e-03 -1.03386740e-03 -6.84544807e-03 -4.68886151e-03 1.07020487e-03 2.39706576e-03 -2.05614545e-03 8.64373028e-05 -1.87409593e-03 -1.25792835e-03 1.04072444e-02

```
In [18]:
           1 | x_trainC,x_testC,y_trainC,y_testC=train_test_split(data_c,target_c,test_size=.3)
           2 | x_trainCp,x_testCp,y_trainCp,y_testCp=train_test_split(data_c,target_c,test_size=.3)
           3 | print(x_trainC, y_trainC)
         [[-1.49982813 0.98290472 0.550655 ... -0.56850147 1.63191847
            -0.55522129]
           \begin{bmatrix} 0.0978062 & -1.01739261 & 0.17061036 & \dots & -0.56850147 & -0.61277571 \end{bmatrix}
            -0.55522129]
           [ 0.0978062 -1.01739261 1.14341783 ... -0.56850147 -0.61277571
            1.80108368]
           [ 0.44511801 -1.01739261 -0.52272634 ... 1.75901042 -0.61277571
           -0.55522129]
           [-0.11058089 0.98290472 0.71620138 ... -0.56850147 -0.61277571
             1.80108368]
           [ 1.27866635  0.98290472  1.11760683  ...  1.75901042  -0.61277571
            -0.55522129]] 1
                              1725.55230
                  7358.17565
         228
         215
                  7371.77200
         247
                  1986.93340
         341
                 13352.09980
         50
                  2211.13075
         267
                 14590.63205
         88
                  8026.66660
         129
                  6082.40500
         55
                 47496.49445
         Name: charges, Length: 243, dtype: float64
In [19]:
           1 lr_c = LinearRegression()
           2 lr_c.fit(x_trainC, y_trainC)
           3 \ w3 = 1r_c.coef_[0]
              print(w3)
```

4098.962376236883

Evaluación de modelos

modelo 1

```
171861827.5824608
-20.756528196400208
10664.75573459395
```

```
In [22]: 1 #test data
    print(mean_squared_error(lr.predict(x_testA),y_testA))
        print(r2_score(lr.predict(x_testA),y_testA))
        print(mean_absolute_error(lr.predict(x_testA), y_testA))

106911476 47814861
```

106911476.47814861 -15.032345689714223 8240.152805604483

Out[26]: [<matplotlib.lines.Line2D at 0x1403dcf0400>]

modelo 2

```
In [27]: 1 #train data
2 print(mean_squared_error(lr.predict(x_trainB),y_trainB))
3 print(r2_score(lr.predict(x_trainB),y_trainB))
4 print(mean_absolute_error(lr.predict(x_trainB), y_trainB))
```

154730820.70977762 -19.89548300409495 9978.182784924107

```
In [28]: 1 #test data
2 print(mean_squared_error(lr.predict(x_testB),y_testB))
3 print(r2_score(lr.predict(x_testB),y_testB))
4 print(mean_absolute_error(lr.predict(x_testB), y_testB))
```

146557520.95492962 -17.511210971213572 9829.078774840393

Out[32]: [<matplotlib.lines.Line2D at 0x1403dfcb7c0>]

OLS Regression Results

=========	:========	========	========	========	:=======	=====		
Dep. Variable	: :	charges	R-squared:			1.000		
Model:		OLS	Adj. R-squ	ared:		1.000		
Method:	Lea	ast Squares	F-statisti	c:	3.2	3.216e+31		
Date:		17 Apr 2021	Prob (F-st	atistic):	0.00			
Time:	•	23:52:57	Log-Likeli	hood:	8212.5			
No. Observati	.ons:	348	AIC:		-1.641e+04			
Df Residuals:		338	BIC:		-1.6	537e+04		
Df Model:		9						
Covariance Ty	pe:	nonrobust						
========	coef	std err	t	P> t	[0.025	0.975]		
const	-3.183e-12	3.88e-12	-0.820	0.413	-1.08e-11	4.46e-12		
age	-2.593e-13	6.17e-14	-4.202	0.000	-3.81e-13	-1.38e-13		
sex	-4.547e-13	7.54e-13	-0.603	0.547	-1.94e-12	1.03e-12		
bmi	4.192e-13	1.43e-13	2.936	0.004	1.38e-13	7e-13		
children	-2.842e-13	6.29e-13	-0.452	0.652	-1.52e-12	9.54e-13		

region 0 -1.137e-12 1.6e-12 -0.711 0.478 -4.28e-12 2.01e-12 1.961e-12 1.54e-12 1.270 0.205 region_1 -1.08e-12 5e-12 0.046 -2.006 -6.58e-14 region_2 -3.411e-12 1.7e-12 -6.76e-12 2.274e-13 1.64e-12 0.138 0.890 -3e-12 3.46e-12 region_3 ______ Omnibus: 67.483 Durbin-Watson: 1.435 Prob(Omnibus): 0.000 Jarque-Bera (JB): 102.646

1.72e-12

1.0000 1.23e-16 8.11e+15

 Skew:
 -1.299
 Prob(JB):
 5.14e-23

 Kurtosis:
 3.576
 Cond. No.
 2.37e+20

Notes:

smoker

charges

7.731e-12

labeled_sex -5.684e-13 7.54e-13

labeled_smoker 6.594e-12 1.72e-12

[1] Standard Errors assume that the covariance matrix of the errors is correctly specifie d.

4.486

-0.753

3.826

0.000

0.000

0.452

0.000

4.34e-12

1.000

-2.05e-12

3.2e-12

1.11e-11

9.16e-13

9.98e-12

1.000

[2] The smallest eigenvalue is 2.2e-30. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

modelo 3

In [37]: 1 #train data 2 print(mean_squared_error(lr_c.predict(x_trainC),y_trainC)) 3 print(r2_score(lr_c.predict(x_trainC),y_trainC)) 4 print(mean_absolute_error(lr_c.predict(x_trainC), y_trainC))

40211847.45231889 0.6394121730976938 4446.509843020969

```
In [38]:
        1 #test data
        2 print(mean_squared_error(lr_c.predict(x_testC),y_testC))
          print(r2_score(lr_c.predict(x_testC),y_testC))
        4 print(mean_absolute_error(lr_c.predict(x_testC), y_testC))
       27813558.779042557
       0.7940053673577131
       4066.795234775514
In [40]:
        1 X3 = sm.add_constant(df)
        2 est = sm.OLS(target_c, X3)
        3 est2 = est.fit()
        4 print(est2.summary())
                             OLS Regression Results
       ______
                                     R-squared:
       Dep. Variable:
                               charges
                                                                 1.000
       Model:
                                  OLS Adj. R-squared:
                                                                1.000
                      Least Squares F-statistic:
                                                            3.216e+31
       Method:
                      Sun, 18 Apr 2021 Prob (F-statistic):
       Date:
                                                                 0.00
       Time:
                              00:03:07
                                     Log-Likelihood:
                                                               8212.5
                                                           -1.641e+04
       No. Observations:
                                  348
                                      AIC:
                                       BIC:
       Df Residuals:
                                  338
                                                            -1.637e+04
       Df Model:
                                   9
                      nonrobust
       Covariance Type:
       ______
                                                 P>|t| [0.025
                       coef std err
                                      t
                                      -0.820
                  -3.183e-12 3.88e-12
                                                 0.413 -1.08e-11 4.46e-12
       const
                  -2.593e-13 6.17e-14
                                      -4.202
                                                0.000 -3.81e-13 -1.38e-13
       age
                  -4.547e-13 7.54e-13
                                       -0.603
                                                 0.547
                                                       -1.94e-12 1.03e-12
       sex
                  4.192e-13 1.43e-13
                                                 0.004 1.38e-13
       bmi
                                       2.936
                                                                    7e-13
                                                0.652 -1.52e-12 9.54e-13
       children
                 -2.842e-13 6.29e-13
                                      -0.452
                   7.731e-12 1.72e-12
                                       4.486
                                                      4.34e-12 1.11e-11
       smoker
                                               0.000
       charges
                      1.0000 1.23e-16 8.11e+15
                                                 0.000
                                                          1.000
                                                                    1.000
                                                      -2.05e-12 9.16e-13
       labeled_sex -5.684e-13 7.54e-13
                                      -0.753
                                                 0.452
       labeled_smoker 6.594e-12 1.72e-12
                                       3.826
                                                0.000
                                                        3.2e-12 9.98e-12
                                      -0.711
       region_0 -1.137e-12 1.6e-12
                                                0.478
                                                       -4.28e-12
                                                                 2.01e-12
       region_1
                   1.961e-12 1.54e-12
                                               0.205 -1.08e-12
                                       1.270
                                                                    5e-12
                  -3.411e-12 1.7e-12
       region_2
                                       -2.006
                                                 0.046 -6.76e-12 -6.58e-14
```

Omnibus:	67.483	Durbin-Watson:	1.435					
Prob(Omnibus):	0.000	Jarque-Bera (JB):	102.646					
Skew:	-1.299	Prob(JB):	5.14e-23					
Kurtosis:	3.576	Cond. No.	2.37e+20					

2.274e-13 1.64e-12

Notes:

region_3

[1] Standard Errors assume that the covariance matrix of the errors is correctly specifie d.

0.138

0.890

-3e-12 3.46e-12

[2] The smallest eigenvalue is 2.2e-30. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

Regresion polinomial

```
In [42]: 1  from sklearn.pipeline import make_pipeline
2  from sklearn.preprocessing import PolynomialFeatures
3  grado=2
4  polyreg=make_pipeline(PolynomialFeatures(grado),LinearRegression())
5  polyreg.fit(x_trainBp,y_trainBp)
Out[42]: Pipeline(stans=[('polynomialfeatures', PolynomialFeatures()))
```


151094918.98186207 -18.985998061181988 9887.623463530665

154562639.28068462 -22.267578920673483 9897.778353929572

modelo 3

print(mean_squared_error(polyreg3.predict(x_testCp),y_testCp))

print(mean_absolute_error(polyreg3.predict(x_testCp), y_testCp))

print(r2_score(polyreg3.predict(x_testCp),y_testCp))

23072669.07394339 0.7875220543392588 2657.909713619047