详谈Skip-gram

前文介绍WordEmbedding是留下了一个坑,即CBOW和Skip-gram算法。 这两个算法正好是个逆过程,实际效果来说,Skip-gram要好一些。因此,本文里将详细探讨Skip-gram算法。

写在前面

学生时代,每次读论文时,我都会跳过Introduction/Background部分,直接看Solution部分。随着年纪的增长,开始注重阅读这部分内容,即提出问题部分。而在学习Solution部分时,更加注重论文作者为什么会想到这个办法来解决问题。实话实说,用这种方式读论文,效率非常低,就笔者自己来说,看论文的速度以及比不上学生时代十分之一了。但是,依旧乐此不疲……

书接上文,闲话少叙。

提出问题:如何用数学表示语义信息

我们上文提到一个关于词向量的结论,基于分布式假说思想,就把语义表达的问题就简化了,即学习词之间的搭配关系。

词向量模型就是学习词(Tokens)之间的搭配关系

解决问题

一个具体的例子

我们用一个例子来说明。

已知:现在有四个词(Token),分别是a,b,c,d。现在我们要表达下面这个搭配关系:

求: $\{a,b\}$, $\{b,c\}$, 以及 $\{c,d\}$ 有搭配关系

解: 我们用 Y 表示:有搭配关系; 用 N 表示:没有搭配关系。

我们就可以用下面这个二维的表格来求解。

	а	b	С	d
a	N/A	Υ	N	N
b	Υ	N/A	N	N
С	N	Υ	N/A	Υ
d	N	N	Υ	N/A

现实的世界往往比这个更加复杂,比如我们需要表达这样的语义:

• a和b最像, a和c次之, a和d最不像。

如何用数学来表达这样的概念呢?这里,我们就要引入概率这个数学工具了。现在我们将上述的语义转化为概率。

$$P_{(a,b)}=0.6$$
 $P_{(a,c)}=0.3$ $P_{(a,d)}=0.1$ 其中, $\sum_i P_{(a,i)}=1$

我们也用概率方式,把(b,c)和(c,d)关系也表示出来。这样上面的二维表格,就可以表示为:

	а	b	с	d
a	N/A	0.6	0.3	0.1
b	0.6	N/A	0.1	0.3

	а	b	С	d
С	0.3	0.1	N/A	0.6
d	0.1	0.3	0.6	N/A

接下来我们把上述例子推广的更加一般的情况,专业术语叫"泛化"。

更加一般的例子

先回顾一下BoW的工作流程,如下:

第一步:分词,即将原始的文本,改成计算机统一能处理的最小单位Token的集合。

第二步:统计各Token在文本中出现的频率,得到基于频率的词汇表。

第三步:参考第二步得到基于频率的词汇表,将第一步得到Tokens表示后的文本,用向量化表示出来。

其中,第二部提到了一个非常重要的概念——词汇表(Vocabulary Table)。我们用的Tokens是可以用有限个词,表述出来的。如果结合到上述二维表格,换句话说,是可以用有限的行和列表示出来的。假设,词汇表里面有n个词,上面的二维表格就可以表示为,如下图:

	W_1	W_2	 W_n
W_1	N/A	$P_{(w_1,w_2)}$	 $P_{\left(w_{1},w_{n} ight)}$
W_2	$P_{\left(w_1,w_2 ight)}$	N/A	 $P_{(w_2,w_n)}$
W_n	$P_{(w_1,w_n)}$	$P_{(w_2,w_n)}$	 N/A

Tips: 以开源的词汇表vocab.txt 为例,一共有28,998个词,此时n就等于28,998。

至此,我们就解决用数学表示语义的问题。

如何用计算机技术来解决这个问题

当我们解决了语义表示的问题后,该如何算出概率值呢?在BoW模型中,是基于频率来计算概率值。全局上,必须维护这一张表格。如果要表示 W_i 和 W_j 的关系,只需要查表,取到 $P_{(w_i,w_j)}$ 的值即可。使用上,非常方便。但是,有个致命的缺点,就是无法表示"一词多义"。换句话说, W_i 和 W_j 的关系一定等于 $P_{(w_i,w_i)}$ 的值。

"一词多义"的问题,我们后面再讨论,现在先解决如何在计算机里面表示二维表格的问题。 我们先取 W_1 行或者列,用数学来表示,就是下面这个矩阵。

$$W_1 = egin{bmatrix} 0 \ P_{(w_1,w_2)} \ P_{(w_1,w_3)} \ \dots \ P_{(w_1,w_n)} \end{bmatrix}$$
其中, $\sum_{i=1}^n P_{(w_1,w_i)} = 1$

上面这个表示法,隐含的意思就是 W_1 和词汇表里其他词所蕴含的语义。而这个结构,对应计算机里的数据结构就是一维数组,即向量。这样,我们就把一个人类的语言(Word),通过分词(Tokenizer)转换为词(Token),然后转换为了向量(Vector),这个过程被形象的成为"Word to Vector"。

我们还是以上面这个 W_1 为例,来详细描述 "Word to Vector" 的过程,如下图所示:

$$\mathsf{W_1} \longrightarrow \boxed{ f(\mathsf{n}) } \qquad \qquad \underbrace{ \begin{bmatrix} 0 \\ P_{(w_1,w_2)} \\ P_{(w_1,w_3)} \\ \dots \\ P_{(w_1,w_n)} \end{bmatrix} }_{}$$

因为最终输出是一个概率值,且总和为1,我们很容易想到用Softmax函数。同时,我们把 W_1 用独热码做一个编码,上面这个过程就变成了下图:

现在实现Word2Vec的整体流程,我们还剩下最后一步,找到一个数学模型(即,用函数来描述)。一般来说,数学模型就是一个或者一组数学公式。因为现实世界过于复杂,找到一组精确的数学公式来描述,非常难。随着人工智能邻域的神经网络技术发展,我们一般直接训练一个神经网络来对应。所以上图,笔者就直接用神经网络(NN)来代替函数(Function)了。接下来,我们就动手设计一个NN模型。

动手设计神经网络模型

我们来看看,这个数学模型要做什么事情。这个NN需要把输入 W_1 和词汇表中的其他词,即 $W_2,W_3,...,W_n$,的搭配关系表述出来。 我们来看一下这个模型需要哪些功能:

模型设计目标:

- 主要目标是学习词向量,即把词映射到向量空间中的点,使得具有相似含义或上下文的词在向量空间中的位置相近。
- 这个目标并不需要复杂的网络结构或深层的隐藏层来达成,因为主要的任务是进行词汇间的相似性比较,而不是进行复杂的模式识别或特征提取。
- 尽量减少模型的参数量,提高训练效率。
- 因为输入为独热码,存在大量的稀疏矩阵,需要这个模型能降维,且不需要非线性变换,即不需要激活函数。

综上,该模型只需要1层隐藏层就足够了,这既是因为模型的设计目标相对简单,也是因为单层隐藏层已经能够在保证性能的同时提高训练效率。基于上述设计,我们得到了模型架构,如下图所示:

其中,输入层和输出层都是N维的,即词汇表长度。隐藏层为K维,表示有K个特征值。通俗的讲,就是我们比较 W_i 和 W_j 是否相似,我们取了k个点去比较,用来量化 W_i 和 W_j 的相似度。

Tips:为了便于理解,后面的例子中,我们直接给N和K取值:

$$N = 10,000$$
$$K = 300$$

简化计算的小技巧

我们以上面这个例子为例,输入层是10,000维,隐藏层是300维。按照正常逻辑,从输入层到隐藏层,就需要做一次矩阵乘法。详细技术如下:

$$ec{a} = egin{bmatrix} 1 \ 0 \ 0 \ ... \ 0 \end{bmatrix}, ec{b} = egin{bmatrix} w_1 & w_2 & ... & w_{300} \end{bmatrix} \ ec{a} imes ec{b} = 1 imes w_1 + 0 imes w_2 + ... + 0 imes w_{300} = w_1 \end{cases}$$

从上述推导过程我们发现,由于 \vec{a} 是稀疏矩阵,在做矩阵乘法时,即 $\vec{a} \times \vec{b}$ 的过程占用了大量的计算资源,结果却是只是得到一个 w_1 。 如何简化计算呢?非常简单,我们把矩阵乘法,直接变成查找,即先找到 \vec{a} 中非0元素的位置i(因为独热码,只有一个为1)。然后查找 \vec{b} 中,位置为i的权重 w_i 。这样就避免了耗时的矩阵乘法运算。

训练网络模型

上文讲到,这个网络模型的核心部分,其实就是那个隐藏层(300维),我们需要用训练数据,得到这个隐藏层300个参数的权重。如何给这300个参数赋权重呢?在上一篇《词表达考古史》中提到,在Word2Vec的模型中,常用的有两种方法,一个是CBOW(给定上下文,预测中心词),另一个就是Skip-Gram(给定中心词,预测上下文)。在实际工作中,Skip-Gram的效果要好于CBOW,所以笔者这里只讲介绍Skip-Gram。

准备训练数据

传统办法就是选择监督学习,每一个训练数据都需要做标记(Labeling)。如果能采用无监督学习,这将极大的减少.我们的训练工作。我们一起来看一下,Word2Vec是怎么做的吧。

例子: 训练语料" The quick brown fox jumps over the lazy dog. ",选择中心词(Input Word)为" fox ",如何用Skip-gram生成上下文呢?

首先,我们需要定义什么是上下文,用最简单粗暴的方式,就是选一个长度一致的上下文窗口,在这个窗口内所有的词,都认为是中心词的上下文。这个思路就是copy TCP中的滑动窗口的算法。需要定义2个参数,即skip_window和num_skips参数。

- skip_window:表示从当前input word的一侧(左边或右边)选取词的数量。若设置 skip_window=2,我们获得窗口中的词(包含Input Word)最大值为5。以上面这句话为例,设置 skip_window=2,那么我们最终获得窗口中的词为 ['quick', 'brown', 'fox', 'jumps', 'over']。
- num_skips: 表示从整个窗口中选取多少个不同的词作为我们的output word。还是以上面这句话为例,设置 skip_window=2, num_skips=2 时,我们将会得到两组(input word, output word)形式的训练数据,即 ('fox', 'quick')和('fox', 'brown')。

我们设置 $skip_window = 2$,将获得下表中的训练语料。

Input Word	Span + Input Word	Training Samples
The	<i>The</i> quick brown	(the, quick); (the, brown)
quick	The <i>quick</i> brown fox	(quick, the); (quick, brown); (quick, fox)
brown	The quick <i>brown</i> fox jumps	(brown, the); (brown, quick); (brown, fox); (
fox	quick brown <i>fox</i> jumps over	(fox, quick); (fox, brown); (fox, jumps); (fox,
jumps	brown fox <i>jumps</i> over the	(jumps, brown); (jumps, fox); (jumps, over)
over	fox jumps <i>over</i> the lazy	(over, fox); (over, jumps); (over, the); (over, I
the	jumps over the lazy dog	(the, jumps); (the, over); (the, lazy); (the, do
	The quick brown fox jumps over	TheThe quick brownquickThe quick brown foxbrownThe quick brown fox jumpsfoxquick brown fox jumps overjumpsbrown fox jumps over theoverfox jumps over the lazy

在论文《Distributed Representations of Words and Phrases and their Compositionality》,Word2Vec作者提出以下两个创新点:

- 1. 对高频词进行二次抽样以减少训练样本的数量。
- 2. 使用他们称为"负采样"的技术修改优化目标,这使得每个训练样本仅更新模型权重的一小部分。 值得注意的是,对高频词进行下采样和应用负采样不仅减轻了训练过程的计算负担,还提高了生成的词向量的质量。

二次抽样高频词 (Subsampling Frequent Words)

还是以上面表格为例,对于 the 这种常用高频单词,这样的处理方式会存在下面两个问题:

- 1. 当我们得到成对的单词训练样本时,("fox", "the") 这样的训练样本并不会给我们提供关于 "fox" 更多的语义信息,因为作为英语中最高频的 "the" 在每个单词的上下文中几乎都会出现。
- 2. 由于在文本中"the"这样的常用词出现概率很大,因此我们将会有大量的("the",…)这样的训练样本,而这些样本数量远远超过了我们学习"the"这个词向量所需的训练样本数。

Word2Vec通过"二次抽样"模式来解决这种高频词问题。

"二次抽样"的基本思想:对于我们在训练原始文本中遇到的每一个单词,它们都有一定概率被我们从文本中删掉,而这个被删除的概率与单词的频率 有关。

如果我们设置窗口大小 span=4 (即 skip\ window=2), 并且从我们的文本中"二次抽样"到 the (即删除所有的 the), 那么会有下面的结果:

- 1. 由于我们删除了文本中所有的 the ,那么在我们的训练样本中, the 这个词永远也不会出现在我们的上下文窗口中。
- 2. 当 the 作为input word时,我们的训练样本数至少会减少 span 个。具体请常考表格第一行(2个,特殊情况)和最后一行(4个,一般情况)。

用这个方法就能帮助我们解决了高频词带来的问题。

采样率

word2vec的C代码实现了一个方程,用于计算保留词汇表中给定单词的概率。

其中, w_i 表示单词,而 $z(w_i)$ 表示该单词在语料库总单词数中所占的比例。例如,如果单词"peanut"在包含10亿个单词的语料库中出现1,000次,那么z('peanut') = 1E-6(即0.000001)。

代码中还有一个名为 sample 的参数,它控制子采样的程度,默认值为0.001。 sample 的值越小,单词被保留的可能性就越低。

 $P(w_i)$ 是保留该单词的概率:

$$egin{aligned} P(w_i) &= (\sqrt{rac{z(w_i)}{sample}} + 1) \cdot rac{sample}{z(w_i)} \ &= (\sqrt{rac{z(w_i)}{0.001}} + 1) \cdot rac{0.001}{z(w_i)} \end{aligned}$$

我们用Google把上面这个公式画出来 (sample=0.001),如下图所示

plot y = (sqrt(x / 0.001) + 1) * 0.001 / x

X

All Images

Images Video

Videos Shopping

News

Books

Finance

: More

Tools

Graph for $(\sqrt{x/0.001} + 1) \cdot 0.001/x$

若读者有兴趣,可以对应Google画的的这个图,找到对应 Sample=0.001 时,纵坐标 $P(w_i)$ 和横坐标 $Z(w_i)$ 的关系。

负采样 (Negative Sampling)

我们先给出负采样的解释。

负采样(Negative Sampling)通过让每个训练样本只修改一小部分权重(而不是全部)来解决这个问题。

从定义而知,负采样是解决模型训练时的问题,采用用修改小部分数据来代替修改全部的参数。这样做的好处就是极大的简化训练模型是的计算量。我们来看一下,负采样具体是如何做的。

先来回顾一下,上文的例子。我们以fox为Input Word,就得到4组训练样本(Training Sample)。

Source Text	Training Samples (Input Word, Output Word)		
The quick brown \emph{fox} jumps over the lazy dog.	(fox, quick); (fox, brown); (fox, jumps); (fox, over)		

我们采用(fox, quick)为训练样本,正确的输出是一个独热码(最终通过Softmax转成概率值),即Input Word (fox)对于Output Word(quick)的神经元为1,其他都是0;我们得到这个向量就是1个1,9999个0;如果按照这种做法,我们模型需要更新权重参数的个数为:

$$300 \times 10,000 = 3,000,000$$

Tips: 这里, 我们称1的叫"正样本(Positive Sample)", 为0的叫"负样本(Negative Sample)"

现在,我们来开始优化这个算法。显然,1个1,9999个0就是让人很不爽的地方。负采样,也就是对这部分动心思。简言之,用少数几个0来代替9999个0。如果,我们用5作为负采样(即5个0来代替9999个0),加上1个正样本。就只用改变输出层6个神经元即可。这样的话,每次更新权重参数的个数为:

$$6 \times 300 = 1,800$$

相对于3百万的权重来说,相当于只计算了0.06%的权重,这样计算效率就大幅度提高。这就是负采样(Negative Sampling)的核心思想。

那么,我们如何定negative words(即,上面例子中的5)这个值呢?我们使用"一元模型词分布(unigram distribution)"来选择"negative words"。一个单词被选作negative sample的概率跟它出现的频次有关,出现频次越高的单词越容易被选作negative words。例如,假设你的整个训练语料库是一个词列表,而你通过从列表中随机选择来挑选5个负样本。在这种情况下,选择"quick"这个词的概率等于"quick"在语料库中出现的次数除以语料库中总词频的次数。这可以用以下公式表示:

$$P(w_i) = rac{f(w_i)}{\sum_{i=0}^n \left(f(w_i)
ight)}$$

作者在他们的论文中指出,他们尝试了这个公式的多种变体,表现最好的是将词频提高到3/4次幂:

$$P(w_i) = rac{{f(w_i)}^{3/4}}{\sum_{j=0}^n \left({f(w_j)}^{3/4}
ight)}$$

在C代码中实现这种选择方式的方式很有趣。他们有一个包含1亿个元素的大型数组(他们称之为一元词表)。他们将词汇表中每个词的索引多次填充到这个表中,并且一个词的索引在表中出现的次数由 $P(w_i) \times table_size$ 给出(即**负采样概率** * 1亿 = **单词在表中出现的次数**)。

然后,为了实际选择一个负样本,你只需生成一个介于0到1亿之间的随机整数,并使用表中该索引处的词。由于高概率词在表中出现的次数更多,因此你更有可能选择这些词。一个单词的负采样概率越大,那么它在这个表中出现的次数就越多,它被选中的概率就越大。

至此, Word2Vec中的Skip-gram模型就讲完了。

参考文献

<u>Distributed Representations of Words and Phrases and their Compositionality</u>

Word2Vec Tutorial - The Skip-Gram Model

Word2Vec Tutorial Part 2 - Negative Sampling