Partie II) Seconde version

Dans ce second jeu, on ne remet pas la bille tirée au premier tirage dans l'urne. Le jeu devient donc : Le joueur tire au hasard une bille dans l'urne. On note X la variable aléatoire égale au résultat du numéro obtenu. On ne remet pas la bille dans l'urne et on effectue un deuxième tirage. La variable aléatoire Y vaut 1 si ce numéro est impair et 0 si ce numéro est pair. À la fin du jeu, le nombre de points du joueur vaut toujours X+Y.

- 1. (a) Montrer que : $P_{(X \text{ est paire})}(Y=1) = \frac{N}{2N-1}$ et que $P_{(X \text{ est impaire})}(Y=1) = \frac{N-1}{2N-1}$.
 - (b) À l'aide de la formule des probabilités totales appliquée au système complet d'événements ((X est paire), (X est impaire)), calculer P(Y = 1).
 - (c) En déduire la loi de Y.
- 2. (a) Donner la valeur de $P((X=1)\cap (Y=1))$ en justifiant votre réponse.
 - (b) Les variables X et Y sont-elles indépendantes?
- 3. On rappelle que le but du jeu est d'obtenir le plus de points possibles. Est-ce qu'une version du jeu est favorable en moyenne au joueur?

Exercice 4

On définit la suite $(u_n)_{n\in\mathbb{N}^*}$ par :

$$u_1 = 1, \ u_2 = 1, \ et \ pour \ tout \ n \in \mathbb{N}^* : (n+1)u_{n+2} - (2n+1)u_{n+1} + nu_n = \ln\left(1 + \frac{1}{n}\right). \quad (\star)$$

On admet qu'il existe une unique suite, notée $(u_n)_{n\in\mathbb{N}^*}$, satisfaisant (\star) .

Le but de cet exercice est de savoir si il est possible d'obtenir une variable aléatoire X_u à valeurs dans \mathbb{N}^* de loi :

$$\forall n \in \mathbb{N}^*, \quad P(X_u = n) = \frac{\alpha_u}{nu_n}, \text{ où } \alpha_u \text{ est un réel positif indépendant de } n.$$
 (1)

1. Dans cette question uniquement, on s'intéresse à la suite $(v_n)_{n\in\mathbb{N}^*}$ définie par :

$$v_1 = 1, \ v_2 = 1, \ et \ pour \ tout \ n \in \mathbb{N}^* : (n+1)v_{n+2} - (2n+1)v_{n+1} + nv_n = 0. \quad (\star\star)$$

On admet qu'il existe une unique suite, notée $(v_n)_{n\in\mathbb{N}^*}$, satisfaisant $(\star\star)$.

On souhaite savoir si il est possible d'obtenir une variable aléatoire X_v à valeurs dans \mathbb{N}^* de loi :

$$\forall n \in \mathbb{N}^*, \quad P(X_v = n) = \frac{\alpha_v}{nv_n}, \text{ où } \alpha_v \text{ est un réel positif indépendant de } n.$$
 (2)

- (a) Calculer v_3 et v_4 .
- (b) Par récurrence montrer la propriété $\mathcal{P}(n)$: « $v_n = 1$ et $v_{n+1} = 1$ », définie pour tout $n \in \mathbb{N}^*$.
- (c) Soit $N \in \mathbb{N}^*$. On note $S_N = \sum_{k=1}^N \frac{1}{k}$.
 - i. Montrer que : $S_{2N} S_N \geqslant \frac{1}{2}$.
 - ii. Déterminer la monotonie de la suite $(S_n)_{n\in\mathbb{N}^*}$ et en déduire, à l'aide du théorème de la limite monotone, que : $\lim_{n\to +\infty} S_n = +\infty$.
 - iii. En déduire la nature de la série de terme général $\frac{1}{nv_n}$. La variable aléatoire X_v définie en (2) existe-t-elle?
- 2. Calculer u_3 et u_4 . On exprimera chaque résultat sous la forme $a+b\ln(2)+c\ln(3)$ où a,b et c sont des réels.
- 3. Python

Soit $N \in \mathbb{N}^*$. On rappelle que l'instruction np.ones(N) modélise les N premiers termes d'une suite sous forme d'un tableau de longueur N dont tous les éléments valent 1.

Pour tout $k \in [0, N-1]$, la commande u[k] modélise le terme u_{k+1} .

Compléter la fonction Python suivante afin qu'elle renvoie la liste des N premiers termes de la suite $(u_n)_{n\in\mathbb{N}^*}$ qui satisfait (\star) .

- 4. Pour tout $n \in \mathbb{N}^*$, on pose $w_n = \frac{e^{n(u_{n+1} u_n)}}{n}$.
 - (a) Calculer w_1 .
 - (b) Montrer que la suite $(w_n)_{n\in\mathbb{N}^*}$ est constante.
 - (c) En déduire que, pour tout $n \in \mathbb{N}^*$, $u_{n+1} u_n = \frac{\ln(n)}{n}$.
 - (d) Soit N un entier supérieur ou égal à 3. À l'aide d'un télescopage, montrer que $u_N=1+\sum_{n=2}^{N-1}\frac{\ln(n)}{n}$.
- 5. Dans cette question on souhaite déterminer le comportement de u_N quand N est très grand. Pour cela, on définit la fonction $f: \left\{ \begin{array}{ccc} [2,+\infty[& \to & \mathbb{R} \\ t & \mapsto & \frac{\ln(t)}{t} \end{array} \right.$ et N un entier supérieur ou égal à 4.
 - (a) Etudier les variations de la fonction f sur $[3, +\infty[$
 - (b) Montrer que: $\forall k \in \mathbb{N}, k \geqslant 3$, $f(k+1) \leqslant \int_{k}^{k+1} f(t) dt \leqslant f(k)$.
 - (c) En sommant la relation précédente pour k entre 3 et N-1, montrer que :

$$\sum_{k=4}^{N} f(k) \leqslant \int_{3}^{N} f(t) \, dt \leqslant \sum_{k=3}^{N-1} f(k).$$

(d) En déduire, en utilisant la question 4d, que :

$$1 + f(2) + \int_3^N f(t) dt \le u_N \le \int_3^N f(t) dt + 1 + f(2) + f(3).$$

- 6. Le but de cette question est de calculer $\int_3^N f(t) dt$, pour N un entier supérieur ou égal à 3.
 - (a) Calculer la dérivée de la fonction définie sur \mathbb{R}_+^* par $t\mapsto (\ln(t))^2$
 - (b) En déduire la valeur de $\int_3^N f(t) dt$.
- 7. Déduire des questions 5d et 6b que : $\lim_{N\to+\infty} \frac{u_N}{\ln(N)^2} = \frac{1}{2}$.
- 8. Dans cette question, on admet que $\sum \frac{1}{nu_n}$ et $\int_2^{+\infty} \frac{1}{t \ln(t)^2} dt$ ont la même nature.
 - (a) Soit $A \in [2, +\infty[$. Déterminer la valeur de $\int_2^A \frac{1}{t} \times \frac{1}{\ln(t)^2} dt$.
 - (b) Déterminer la nature de la série de terme général $\frac{1}{nu_n}$. Conclure.

FIN

Correction exarcise 4; 1) a) En remplaçant n par 1 dans (**) or a: (1+1) 02 - (2×1+1) 02 + 01 = 0 d'où 203=3v2-v1 $2v_3 = 3-1$ $v_3 = 1$. De nême en remplagent n par 2 on a: 30-4-50-3+20=0 3 v4 = 5 v3 - 2 v2

1) b) Montrois pour récoverce que la propriété: 9(n): " 1 et v, = 1 et vraiz sur N*

> initialisation: 2 enoué nous dit déjà que $v_1 = v_2 = 1$. Dis lors, la propriéte est vérifice au rang 1.

hérédité: Fixons n dans N* tel que J'(n) soit vérifiée. On a done on 1 = 1.

La relation donnée peu (**) nous donne:

(n+1)0-n+2 - (2n+1) vn+1 +nvn =0

Par hypothète de récurrer e on a alors:

(n+1) mn+2 - (2n+1) +n=0

(n+1) $v_{n+2} = 2n+1 \cdot n$ $v_{n+2} = \frac{n+2}{n+2} = 1$

On a dorc v_{n+2} = v_{n+2} = 1 et S(n+1) est verifiée.

Lorchesion: La propriété S(n) est initialisée au rang e et hériditure à portir de celuici; elle est donc vruie sur N* par principe de récurrence

() (bonne)

i)
$$S_{2N} - S_1 = \frac{1}{8x_2} \frac{1}{4x_1} - \frac{1}{8x_2} \frac{1}{4x_1} + \frac{1}{4x_1} \frac{1}{4x_2} + \dots + \frac{1}{4x_n}$$

Come Southin $\frac{1}{2x_1} \frac{1}{4x_1} + \frac{1}{4x_1} \frac{1}{4x_1} + \frac{1}{4x_1} \frac{1}{4x_1} + \dots + \frac{1}{4x_n}$

One $S_{2N} \cdot S_1 \cdot \frac{1}{N+2} + \frac{1}{NN_2} + \frac{1}{4x_1} \frac{1}{N} > \frac{1}{4x_1} + \dots + \frac{1}{4x_n} = N \cdot \frac{1}{4x_n} = \frac{1}{4x_n}$

N banne

E) Vorner focus (1) a); So. surpline in close (4)

2 u _5 - 3 u _2 + u _1 = R(5)

1 u _3 = 1 + \frac{1}{2} R(5)

3 u _4 - 5 u _5 + 2 u _1 = R(5)

3 u _4 - 5 u _5 + 2 u _1 = R(1 + \frac{1}{2})

3 u _1 + R(2) + 2 u _2 + 2 u _1

3 u _2 + R(2) + 2 u _3 + 2 u _5

3 u _1 + R(2) + 2 u _3 + 2 u _5

3 u _1 + R(2) + 2 u _3 + 2 u _5

3 u _2 + R(2) + 2 u _3 + 2 u _5

3 u _1 + R(2) + 2 u _3 + 2 u _5

3 u _2 + R(2) + 2 u _3 + 2 u _5

3 u _1 + R(2) + 2 u _3 + 2 u _5

3 u _1 + R(2) + 2 u _3 + 2 u _5

3 u _1 + R(2) + 2 u _3 + 2 u _5

3 u _1 + R(2) + 2 u _3 + 2 u _5

3 u _1 + R(2) + 2 u _3 + 2 u _5

3 u _1 + R(2) + 2 u _3 + 2 u _5

3 u _1 + R(2) + 2 u _3 + 2 u _5

3 u _1 + R(2) + 2 u _3 + 2 u _5

3 u _1 + R(2) + 2 u _3 + 2 u _5

3 u _1 + R(2) + 2 u _3 + 2 u _5

3 u _1 + R(2) + 2 u _3 + 2 u _5

3 u _1 + R(2) + 2 u _3 + 2 u _5

3 u _1 + R(2) + 2 u _3 + 2 u _5

3 u _1 + R(2) + 2 u _3 + 2 u _5

3 u _1 + R(2) + 2 u _3 + 2 u _5

3 u _1 + R(2) + 2 u _3 + 2 u _5

3 u _1 + R(2) + 2 u _3 + 2 u _5

3 u _1 + R(2) + 2 u _3 + 2 u _5

3 u _1 + R(2) + 2 u _3 + 2 u _5

3 u _1 + R(2) + 2 u _3 + 2 u _5

4 u _1 + 2 u _3 + 2 u _5

4 u _1 + 2 u _3 + 2 u _5

4 u _1 + 2 u _3 + 2 u _5

4 u _1 + 2 u _3 + 2 u _5

4 u _1 + 2 u _3 + 2 u _5

4 u _1 + 2 u _3 + 2 u _5

4 u _1 + 2 u

$$h \cdot C$$
 Par $h \cdot b$ $1 = w_n = \frac{e^n (u_{n+1} - u_n)}{n}$ $\forall n \in \mathbb{N}^*$

alord $n = e^n (u_{n+1} - u_n)$
 $n(u_{n+1} - u_n) = \ln(n)$
 $u_{n+1} = \frac{\ln(n)}{n} + u_n$

4. d) Par 4. c)
$$u_n = \frac{\ln(n-1)}{n-2} + u_{n-1} \stackrel{\text{del}}{=} \frac{\ln(n-2)}{n-1} + \frac{\ln(n-2)}{n-2} + u_{n-2} = \dots = \frac{\ln(n-2)}{(n-1)} + \dots + \frac{\ln(2)}{2} + 1$$

$$u_n = \sum_{k=2}^{n-2} \frac{\ln(n)}{n} + 1.$$

S) a)
$$\begin{cases} \begin{cases} 2, +\infty \\ \end{cases} \xrightarrow{k} \begin{cases} k \end{cases} \end{cases}$$

$$\begin{cases} \begin{cases} k \\ \end{cases} \xrightarrow{k} \end{cases} \xrightarrow{k} \end{cases} \xrightarrow{k}$$
 \xrightarrow{k} } \xrightarrow{k} } \xrightarrow{k} \tau_{k} } \xrightarrow{k} } \xrightarrow{k} \tau_{k} } \xrightarrow{k} \tau_{k} } \xrightarrow{k} } \xrightarrow{k} \tau_{k} } \xrightarrow{k}

Jest donc décraissante sur [3, 100[

Po: Pause desin:

En " mathe " ça dome:

5.6)
$$\begin{cases} K+1 \\ S(k) \text{ d} t \in \begin{cases} K+1 \\ S(k) \text{ d} t \end{cases} \text{ at a son } [K, k+1] \text{ f at distribute. } Et \text{ comme } S(K) \text{ at an nondre fixed on a}: \\ \binom{K+1}{K} S(K) \text{ d} t : \left[S(K) + \int_{K}^{K+1} : S(K) \times (K+1-K) = S(K) \right] \\ d' \text{ coin } \binom{K+1}{K} S(k) \text{ d} t \in S(K) \end{cases}$$

On fait pareil mutalis mutandis pour l'autre égaleté.

5.c)
$$\int_{3}^{N} g(t) dt = \int_{3}^{4} g(t) dt + ... + \int_{N-1}^{N} g(t) dt = \sum_{k=3}^{N-1} \int_{k}^{k+2} g(t) dt$$

Et par S. le) or a un encadrerent de charque turne de la sonne.

Abos
$$N-1$$

$$\sum_{K=3}^{N-1} g(K+1) \subseteq \int_{3}^{N} g(k) dk \in \sum_{K=3}^{N-1} g(K)$$

$$O_{\Lambda} = \sum_{K=3}^{N-1} g(K+1) = g(4) + ... + g(N) = \sum_{K=4}^{N} g(K)$$

D'air le resultat

5.d)
$$f$$
 on 4.d) $V_{N} = \sum_{k=2}^{N-1} \frac{l_{n}(k)}{k} + 1 = \sum_{k=2}^{N-1} \frac{l_{n}(k)}{k} + 1 = 1 + \frac{l_{n}(k)}{l_{n}(k)} + \frac$

$$\mathcal{D}_{k} = \sum_{k=2}^{N-2} \{k\} + 1 = \{(2) + \{(3) + \sum_{k=4}^{N} \{(k) - \{(k) + (2) + \{(3) + \{(3) + \{(4) + (2) + \{(4) + (2) + \{(4) + (2) + \{(4) + (2) + \{(4) + (2) + \{(4) + (2) + \{(4) + (2) + \{(4) + (2) + \{(4) + (2) + \{(4) + (2) + \{(4) + (2) + \{(4) + (2) + \{(4) + (2) + \{(4) + (2) + \{(4) + (2) + \{(4) + (2) + \{(4) + (2) + \{(4) + (2) + \{(4) + (2) + (2) + \{(4) + (2) + \{(4) + (2) + (2) + \{(4) + (2) + (2) + \{(4) + (2) + (2) + (2) + \{(4) + (2) + (2) + \{(4) + (2)$$

6. a) Soit
$$g: t \longrightarrow (\ln(t))^2$$

$$g'(t) = 2 \times \frac{1}{t} \times \ln(t) = 2 f(t)$$

6.6) d'air
$$\int_{3}^{V} g(t)dt = \frac{1}{2} \int_{3}^{N} g(t)dt = \frac{1}{2} \int_{3}^{N} g'(t)dt = \frac{1}{2} \left[(\ln(t))^{2} \right]_{3}^{N} = \frac{\ln(N)^{2} - \ln(3)^{2}}{2}$$

7) bonus: for S.c) & 6.6):

$$\frac{\ln(N)^{2} - \ln(3)^{2}}{2} + 4f(2) \leq U_{N} \leq \frac{\ln(N)^{2} - \ln(3)^{2}}{2} + 2 + f(3)$$

$$\frac{1}{2} - \frac{\ln(3)^{2}}{2\ln(N)^{2}} + \frac{1}{\ln(N)^{2}} + \frac{1$$

Donc pour théorème des épendames
$$\frac{VV}{l_m(W)^2}$$
 $\frac{1}{N-5400}$ $\frac{1}{2}$