合肥工学大学

EDA 训练 课程设计报告

学生姓名	文华
学 号	2017218007
专业班级	物联网工程 17-2 班
· 一/-///	胡庆新

2019 年 12 月 24 日

目 录

1.	任务要求	3
2.	使用 AD 的步骤简述	6
3.	SCH 绘制	8
	3.1 进入 SCH	8
	3.2 加载 SCH 库	12
4.	仿真及结果	13
5.	PCB 绘制	19
6.	DRC 检查	27
7.	总结与感想	28
8.	附录	28

1. 任务要求

- 1.1 建立一个工程文件, 绘制两张原理图:
- 1) 第一张:测量放大器电路的原理图(参考后页的图1)。
- 2) 第二张: 绘制整流稳压电路(图2)。
- 1.2 按要求绘制一块 PCB 版。这个 PCB 是与前面说的两张原理图对应的。
- 1.3 完成"测量放大电路"的电路模拟仿真。

具体要求:

- 1) 在原理图中,建两张图纸,分别画出图 1、图 2。图 1 中的元件封装方式可以按表格中所列的直插式的,鼓励大家把封装改为贴片(SMD)的。
- 2) 修改图 2 中的部分内容: 一是在 Vin 和 GND 间加上一个图 1 中 Vs 那样的插头,且不画出 GND 字样;二是把图中右边的+Vo 改为网络标号 (NetLabe1) VCC,-Vo 改为 VEE, 0V 改为 GND。图 2 中的元件封装及参数选择见附件 4、稳压电源手册,输入电压 5V,输出电压±15V。需要制作元件库。
- 3) 完成"测量放大电路"的电路模拟仿真(工作点分析、瞬态分析和小信号分析)。应发现图 1 中的错误,并修改。
- 4) 制作一块双面 PCB 板, 机械尺寸见图 3。
- 5) 要在这块 PCB 板的 TopOver1ay 层放上你的学号。学号的位置到 PCB 板的 左边的距离是你的学号的最后两位乘以 10。例如你的学号后两位是 22,则字符的位置到左边的距离是 220mi1。
- 6) 这块 PCB 中,要求网络标号 VCC、VEE 线的宽度为 20mi1,与其他线和地线(或称地网络)的间距不小于 24mi1。地线应尽量宽。其他线宽为 10mi1,与其他线的线间距不小于 10mi1,与地线的间距不小于 24mi1。并双面铺铜,铺铜连接到地网络。

图 1.1 测量放大电路

图中 VCC 和 VEE 分别可取+15V 和-15V。

原理图元件库:

- 1) Miscellaneous Connectors. IntLIB.
- 2) Miscellaneous Deivces. IntLib.
- 3) NSC Amplifier. IntLib.

图 1.2 稳压电路

图 1.3 PCB 的机械结构要求

表 1.1 元件清单

元件	值	符号	元件库名称	元件库中名称	封装(Footprint)
电阻 R1	10k		Miscellaneous Deivces.IntLib	RES2	AXIAL0.4
电阻 R2	5.6k		Miscellaneous Deivces.IntLib	RES2	AXIAL0.4
电阻 R3	5.6k		Miscellaneous Deivces.IntLib	RES2	AXIAL0.4
电阻 R4	5.6k		Miscellaneous Deivces.IntLib	RES2	AXIAL0.4
电阻 R5	5.6k		Miscellaneous Deivces.IntLib	RES2	AXIAL0.4
电阻 R6	20k		Miscellaneous Deivces.IntLib	RES2	AXIAL0.4
电阻 R7	20k		Miscellaneous Deivces.IntLib	RES2	AXIAL0.4
电阻 R8	510k		Miscellaneous Deivces.IntLib	RES2	AXIAL0.4
电阻 Rfl	10k		Miscellaneous Deivces.IntLib	RES2	AXIAL0.4
电阻 Rf2	510k		Miscellaneous Deivces.IntLib	RES2	AXIAL0.4
可调电阻 R*	100k		Miscellaneous Deivces.IntLIB	Res Adj2	AXIAL0.6
电容 C1	22u		Miscellaneous Deivces.IntLib	CAP	RAD-0.3
电容 C2	22u	+	Miscellaneous Deivces.IntLib	CAP	RAD-0.3
电容 C3	30p	+	Miscellaneous Deivces.IntLib	CAP	RAD-0.3
电容 C4	30p	+	Miscellaneous Deivces.IntLib	CAP	RAD-0.3

(续表)

电容 C3	30p	+	Miscellaneous Deivces.IntLib	CAP	RAD-0.3
电容 C4	30p	+	Miscellaneous Deivces.IntLib	CAP	RAD-0.3

图 3 板子的说明:

- 1) 板子为长方形,长 3910mi1,高 2550mi1
- 2) 四周有 4 个上螺丝的孔,圆心到两个相邻边的距离都是 200mi1,圆的直径 138mi1,但打孔的孔径为 120mi1,宽出来的 18mi1 是考虑螺丝的头比较大,所以布线时不能进入这个圆内,也不能在圆内放元件。
- 3) 由于加工和安装需要,长方形的每个边周围留出 50mi1 禁止布线和放元件。例如底边向上有 50mi1 不能布线,左边的边的右边 50mi1 范围内不能布线和放元件。
- 4) Vs 插头必须放在图 3 中的左上角, Vo 放在右上角。另个插头的 PIN1 焊盘中心距离上边 800mi1, Vs 的 PIN1 中心和 PIN2 中心距离左边 200mi1, Vo 的 PIN1 中心和 PIN2 中心距离右边 200mi1。

2. 使用 AD 的步骤简述

流程图如下所示。

3. SCH 绘制

(用一个例子介绍你如何完成绘制 sch 的操作步骤;可分小节 3.1 等介绍要点如如何进入 sch 编辑界面、如何加载 lib、如何制作 lib、如何添加新的 sheet、如何放置元件、如何连线等)

本小节以截图展示为主,

3.1 进入 SCH

选择 dzsx.PrjPCB 右键选择 Add New to Project 下的 Schematic Library,并将新建的.SchLib 另存为 dzsx.SchLib。

图 3.1 新建. SchLib 文件

3.2 加载与制作 lib

选择 dzsx.PrjPCB 右键选择 Add New to Project 下的 PCBLibrary,并将新建的.PcbLib 另存为 exercise2.PcbLib。

图 3.2 新建. PcbLib 文件

图 3. 3 新建好的. SchLib 文件与. PcbLib 文件

打开 exercise2.PcbLib, 进入 PCB Library。

图 3.4 打开. PcbLib 文件

图 3.5 加载 lib

3.3 新建 sheet、放置元件与连线

新建 sheet、放置元件与连线如图所示。

图 3.6 新建 sheet

图 3.7 放置元件

图 3.8 连线

3.4 加载 SCH 库

在 Components 中选择对应的.SCHLIB, 选择需要的元件。

图 3.9 加载 SCH 库

4. 仿真及结果

打开 dzsx1 下的 dzsx1. Pr jPCB 工程,选中 exercise1. SchDoc,按要求将电源电压调为 100 uV、频率调为 50 kHz, VCC 为 15V、VEE 为-15V。

图 4.1 选择仿真选项

图 4.2 设置 Active Signals

图 4.3 设置 Transient Analysis 参数

图 4.4 设置 AC Small Signal Analysis 参数

图 4.5 AC Analysis 上半部分

图 4.6 AC Analysis 下半部分

图 4.7 Operating Point

图 4.8 Transient Analysis 上半部分

图 4.9 Transient Analysis 下半部分

5. PCB 绘制

图 5.1 开始绘制 PCB 板

图 5.2 设置 PCB 形状与大小

图 5.3 update 的结果

图 5.4 开始布局

图 5.5 布局完成

图 5.6 线距规则 all_to_GND

图 5.7 线距规则 VCC_to_all

图 5.8 线距规则 VEE_to_all

图 5.9 线距规则 all_to_all

图 5.1 0 线宽规则 all_wire

图 5.11 线宽规则 GND

图 5.1 2 线宽规则 VEE

图 5.1 3 线宽规则 VCC

图 5.14 线距优先级

图 5.15 线宽优先级

6. DRC 检查

DRC 检查无任何错误与警告。

图 6.1 DRC 检查结果

7. 总结与感想

通过本次 EDA 实训,我基本掌握了 Altium Designer (我用的 AD 版本是 19.0.6)的使用方法,熟悉了绘制电路原理图、制作元件、封装元件与制作 PCB 等流程。在排错的过程中,多方求证、力求完美解决,锻炼了自己解决问题的耐性与认识问题的角度。非常感谢这门课设給我如此切身体验,也感谢在完成课设的过程中帮助过我的老师与同学!

1. 附录

(用截屏的方式,把你的两张原理图,一张 PCB TopLayer 含丝印层、一张 PCB BottomLayer 含丝印层共计 4 张图以图片的形式贴在 word 文件中,称为 附录 1、附录 2、附录 3、附录 4。)

图 1.1 原理图 1

图 1.2 稳压电源原理图

图 1.3 Top Layer与Top Overlay

图 1.4 Bottom Layer与 Bottom Overlay

EDA 训练成绩评定表

学号	2017218007	姓名	文华	班级	物联网工程 17-2 班	
序号		评价	权重 (%)	得分(百分制)		
1	设计报告(EM2) 报告的格式规 规范及流畅程度 出、论述是否系	观范程度 度; 主题		50		
2	验收(EM1、EM 笔试成绩情 是否完成设 练程度。 自我陈述、 性、逻辑思维、		50			
总评成绩						
指导教师(签章):						