Funciones de una variable II

Ejercicios resueltos - Guillem de la Calle Vicente

Ejercicio 1. Demostrar que si $f:[a,b]\to\mathbb{R}$ es una función integrable tal que $\int_a^b |f(x)|dx=0$ y f es continua entonces f es la función nula (i.e. f(x)=0 para todo x).

¿Se puede eliminar la hipótesis de continuidad?

Solución Si no fuese cero en algún sitio, por continuidad mantendría el signo en un intervalo pequeño y, por tanto, la integral seria positiva.

No se puede eliminar la hipótesis de continuidad. Contraejemplo: para integración en sentido Lebesgue, la funcion caracteristica de los racionales; en sentido Riemann, la función que vale cero en todas partes menos en un punto.

Ejercicio 2. Calcular
$$I = \int \frac{\cos^4(x)}{1 + \sin(x)} dx$$
.

Solución

$$\int \left(\frac{\cos^4 x}{1+\sin x}\right) dx = \int \left[\frac{\cos^4 x (1-\sin x)}{1-\sin^2 x}\right] dx$$

$$= \int \left[\frac{\cos^4 x (1-\sin x)}{\cos^2 x}\right] dx$$

$$= \int \cos^2 x (1-\sin x) dx$$

$$= \int \cos^2 x dx - \int \cos^2 x \sin x dx$$

$$= \int \left[\frac{1+\cos(2x)}{2}\right] dx - \int \cos^2 x \sin x dx$$

$$= \frac{x}{2} + \frac{\sin(2x)}{4} + \frac{\cos^3 x}{3} + c$$

Solución

$$\cos^4 x = \cos^2 x \cdot \cos^2 x = (1 - \sin^2 x)(1 - \sin^2 x) =$$

$$= (1 + \sin x)(1 - \sin x)(1 - \sin^2 x)$$

$$I = \int (1 - \sin x)(1 - \sin^2 x)dx = \int (\sin^3 x - \sin^2 x - \sin x + 1)dx =$$

$$\int (1 - \cos^2 x)\sin x dx - \int \frac{1}{2} [1 - \cos(2x)] dx - \int \sin x dx + \int dx =$$

$$-\cos x + \frac{1}{3}\cos^3 x - \frac{1}{2}x + \frac{1}{4}\sin(2x) + \cos x + x + C = \frac{1}{3}\cos^3 x + \frac{1}{2}\cos x + \frac{1}{2}x + C$$

Ejercicio 3. Calcular $I_n = \int_0^{2\pi} \sin^n(t) dt$ para todo $n \in \mathbb{N}$.

Solución Para $n \in \mathbb{N}$, $n \geq 2$, integrando por partes con $u = \sin^{n-1}(t)$ y $dv = \sin(t)dt$, es

$$I_n = \left[-\sin^{n-1}(t)\cos(t) \right]_0^{2\pi} - \int_0^{2\pi} (-\cos(t))(n-1)\sin^{n-2}(t)\cos(t)dt$$
$$= -\sin^{n-1}(2\pi)\cos(2\pi) + \sin^{n-1}(0)\cos(0) + \int_0^{2\pi} (n-1)\sin^{n-2}(t)(1-\sin^2(t))dt$$

$$= (n-1) \int_0^{2\pi} (\sin^{n-2}(t) - \sin^n(t)) dt = (n-1)I_{n-2} - (n-1)I_n$$
$$\Rightarrow I_n = (n-1)I_{n-2} - (n-1)I_n \Rightarrow I_n = \frac{n-1}{n}I_{n-2}.$$

Si n es par:

Si
$$n = 0$$
, $I_0 = \int_0^{2\pi} 1 dt = 2\pi$, y si $n = 2k$, $k \in \mathbb{N}$, $k \ge 1$,
$$I_n = I_{2k} = \frac{2k-1}{2k} I_{2k-2} = \frac{2k-1}{2k} \frac{(2k-2)-1}{2k-2} I_{2k-4} = \frac{2k-1}{2k} \frac{2k-3}{2k-2} \frac{2k-5}{2k-4} I_{2k-6} = \cdots$$

$$= \frac{2k-1}{2k} \frac{2k-3}{2k-2} \frac{2k-5}{2k-4} \cdots \frac{5}{6} I_{2k-(2k-4)} = \frac{2k-1}{2k} \frac{2k-3}{2k-2} \frac{2k-5}{2k-4} \cdots \frac{5}{6} \frac{3}{4} I_{2k-(2k-2)}$$

$$= \frac{(2k-1)!!}{(2k)!!} I_0 = \frac{(2k-1)!!2\pi}{(2k)!!}.$$

Si n es impar:

$$I_n = \int_0^{\pi} \sin^n(t)dt + \int_{\pi}^{2\pi} \sin^n(t)dt \stackrel{z=t-\pi}{=} \int_0^{\pi} \sin^n(t)dt + \int_0^{\pi} \sin^n(z+\pi)dz$$
$$= \int_0^{\pi} \sin^n(t)dt + \int_0^{\pi} \sin^n(z+\pi)dz = \int_0^{\pi} \sin^n(t)dt + \int_0^{\pi} (-\sin(z))^n dz$$
$$= \int_0^{\pi} \sin^n(t)dt - \int_0^{\pi} \sin^n(z)dz = 0,$$

o razonando recursivamente como en el caso par, si $n=2k+1,\,k\in\mathbb{N},$ como

$$I_1 = \int_0^{2\pi} \sin(t)dt = [-\cos(t)]_0^{2\pi} = -\cos(2\pi) + \cos(0) = -1 + 1 = 0,$$

$$I_n = I_{2k+1} = \frac{2k}{2k+1} \frac{2k-2}{2k-1} \frac{2k-4}{2k-3} \cdots \frac{4}{5} \frac{2}{3} I_1 = 0.$$

Por lo tanto,

$$I_n = \begin{cases} 2\pi & si & n = 0 \\ \frac{(n-1)!!2\pi}{n!!} & si & n \text{ par }, n \ge 2 \\ 0 & si & n \text{ impar} \end{cases}$$

Solución Para cada $n \in \mathbb{N}$, calcularemos $\int_{\gamma} \left(z - \frac{1}{z}\right)^n \frac{dz}{z}$ siendo $\forall t \in [0, 2\pi] : \gamma(t) = e^{it}$. Como la única singularidad que tiene la función:

$$f(z) = \frac{\left(z - \frac{1}{z}\right)^n}{z} = \frac{(z^2 - 1)^n}{z^{n+1}}$$

en el interior de la curva γ es un polo de orden n+1 en z=0, entonces, el Teorema de los Residuos nos asegura que:

$$\forall n \in \mathbb{N} : \int_{\gamma} \left(z - \frac{1}{z} \right)^n \frac{dz}{z} = 2\pi i \operatorname{Res}(f(z), z = 0)$$

Además, como:

$$f(z) = \frac{\left(z - \frac{1}{z}\right)^n}{z} = \frac{\sum_{k=0}^n \binom{n}{k} z^k (-1)^{n-k} \left(\frac{1}{z}\right)^{n-k}}{z} = \sum_{k=0}^n \binom{n}{k} (-1)^{n-k} z^{2k-n-1}$$

entonces:

$$\operatorname{Res}(f(z),z=0) = \left\{ \begin{array}{ll} (-1)^{\frac{n}{2}} {n \choose \frac{n}{2}} & si & n \text{ es par} \\ \\ 0 & si & n \text{ es impar} \end{array} \right.$$

por lo que:

$$\forall n \in \mathbb{N} : \int_{\gamma} \left(z - \frac{1}{z} \right)^n \frac{dz}{z} = \begin{cases} 2(-1)^{\frac{n}{2}} {n \choose \frac{n}{2}} \pi i & si \quad n \text{ es par} \\ 0 & si \quad n \text{ es impar} \end{cases}$$

Como, para cada $n \in \mathbb{N}$, se verifica que:

$$\int_{\gamma} \left(z - \frac{1}{z} \right)^n \frac{dz}{z} = \int_0^{2\pi} (e^{it} - e^{-it}) \left(\frac{ie^{it}}{e^{it}} \right) dt$$
$$= i \int_0^{2\pi} (2i \sin t)^n dt$$
$$= 2^n i^{n+1} I_n$$

entonces, utilizando lo de antes, resulta que:

$$\forall n \in \mathbb{N} : I_n = \begin{cases} \frac{(-1)^{\frac{n}{2}}}{2^{n-1}i^n} \binom{n}{\frac{n}{2}} \pi & si \quad n \text{ es par} \\ 0 & si \quad n \text{ es impar} \end{cases}$$

y, como, para cada $n \in \mathbb{N}$, se verifica que:

$$\frac{(-1)^{\frac{n}{2}}}{i^n} = (-1)^{\frac{n}{2}}(-i)^n = (-1)^{\frac{n}{2}}i^n = (-1)^{\frac{n}{2}}(-1)^{\frac{n}{2}} = (-1)^n = 1$$

entonces:

$$\forall n \in \mathbb{N} : I_n = \begin{cases} \frac{1}{2^{n-1}} \binom{n}{\frac{n}{2}} \pi & si \quad n \text{ es par} \\ 0 & si \quad n \text{ es impar} \end{cases}$$

Ejercicio 4. Dada la serie de potencias $\sum_{n=0}^{\infty} \frac{(n+1)(n+2)}{n!} x^n$, estudiar dónde converge uniformemente. Hallar el valor de $\sum_{n=0}^{\infty} \frac{(n+1)(n+2)}{n!}$.

Solución Como:

$$\lim_{n \to +\infty} \frac{(n+1)(n+2)}{n!} = \lim_{n \to +\infty} \frac{(n+1)(n+2)}{n(n-1)} \lim_{n \to +\infty} \frac{1}{(n-2)!} = 0$$

entonces, el radio de convergencia de esta serie de potencias es $+\infty$, por lo que es uniformemente convergente en \mathbb{R} .

Como:

$$\forall n \in \mathbb{N} \setminus \{1\} : \frac{(n+1)(n+2)}{n!} = \frac{n^2 + 3n + 2}{n!} = \frac{n(n-1) + 4n + 2}{n!} = \frac{1}{(n-2)!} + \frac{4}{(n-1)!} + \frac{2}{n!}$$

entonces:

$$\sum_{n=0}^{+\infty} \frac{(n+1)(n+2)}{n!} = 2 + 6 + \sum_{n=2}^{+\infty} \frac{(n+1)(n+2)}{n!}$$

$$= 8 + \sum_{n=2}^{+\infty} \frac{1}{(n-2)!} + 4 \sum_{n=2}^{+\infty} \frac{1}{(n-1)!} + 2 \sum_{n=2}^{+\infty} \frac{1}{n!}$$

$$= 8 + \sum_{n=0}^{+\infty} \frac{1}{n!} + 4 \sum_{n=1}^{+\infty} \frac{1}{n!} + 2 \sum_{n=2}^{+\infty} \frac{1}{n!}$$

$$= 8 + e + 4(e-1) + 2(e-2)$$

$$= 7e$$

Ejercicio 5. Calcula las primitivas siguientes:

(a)
$$\int x^2 \cdot \arctan(x) dx$$

(b)
$$\int \frac{x+7}{x^2-x-2} \, dx$$

Solución a)

$$I = \int x^2 \arctan x \, dx \quad \text{Partes:} \left\{ \begin{array}{l} u = \arctan x \\ dv = x^2 \, dx \end{array} \right. \\ \left. \begin{array}{l} du = \frac{1}{1+x^2} \, dx \\ v = \frac{x^3}{3} \end{array} \right.$$

$$I = \frac{x^3}{3} \arctan x - \frac{1}{3} \int \frac{x^3}{1+x^2} \, dx \\ H = \int \frac{x^3}{1+x^2} \, dx = \int \frac{x+x^3-x}{1+x^2} \, dx = \int \frac{x(1+x^2)-x}{1+x^2} \, dx = \int \left(x-\frac{x}{1+x^2}\right) \, dx = \int x \, dx - \frac{1}{2} \int \frac{2x}{1+x^2} \, dx = \frac{x^2}{2} - \frac{1}{2} \ln|1+x^2| \underbrace{=}_{1+x^2>0} \frac{x^2}{2} - \ln\sqrt{1+x^2} \right.$$

$$I = \frac{x^3}{3} \arctan x - \frac{1}{3} \left(\frac{x^2}{2} - \ln\sqrt{1+x^2}\right) + C = \underbrace{\left[\frac{x^3}{3} \arctan x - \frac{1}{6}x^2 + \ln\sqrt[6]{1+x^2} + C\right]}_{1+x^2} \right.$$

$$\left. \begin{array}{l} I = \int \frac{x+7}{x^2-x-2} \, dx & x^2-x-2 = (x+1)(x-2) \\ \frac{x+7}{x^2-x-2} = \frac{A}{x+1} + \frac{B}{x-2} = \frac{A(x-2) + B(x+1)}{x^2-x-2} \to A(x-2) + B(x+1) = x+7 \to 1 \\ \left. \begin{array}{l} x = 2 \to B = 3 \\ x = -1 \to A = -2 \end{array} \right.$$

$$\left. \begin{array}{l} I = \int \left(\frac{3}{x-2} + \frac{-2}{x+1}\right) \, dx = 3 \ln|x-2| - 2 \ln|x+1| + C = \underbrace{\ln\left|\frac{|x-2|^3}{(x+1)^2} + C\right|}_{1+x^2} \right. \right.$$