A Reproducible Mp3-Player application using Build Root

Contents

Description	3
Work Development Steps in building the image:	
Post build scripts and overlay configurations 1	

Table of figures

Figure 1 Enable openssh	4
Figure 2 configure the root system password	
Figure 3 alsa utils	
Figure 4 Enable madplay mpg123	
Figure 5 changing the ulibc to ulibc	
Figure 6 Enable nano as text editor	
Figure 7 Enable bash	
Figure 8 show packages in busy box	
Figure 9 rpi-wifi-firmware	
Figure 10 ifupdown-scripts	
Figure 11 install wpa_passphrase binary	
• • • • • • • • • • • • • • • • • • • •	

Description

This project is an assignment-series aimed to develop a functional Mp3 player reproducible by build root (without any manual modifications after the build) using all the knowledge and tools we got so far in the course and with Extra help from the Open source community of Linux.

Main Features of developed MP3 Player:

- Auto detection of mass-storage devices that can be connected via USB (e.g. Flash, USB-HDD, Memory Card).
- Manual Control of Music Player (Play/Pause, Skip, Rewind, Shuffle), either via Push Buttons or Keyboard Commands.
- Ability to play music on different output devices (3.5mm Audio Jack, Bluetooth Audio, HDMI).
- Streaming of the currently played music on the terminal (SSH terminal over Ethernet/Wi-Fi, Serial terminal).
- Audio Notifications about System changes (e.g. Inserting/removing storage/audio devices).

Work Development Steps in building the image: Enabling the SSH

This is achieved using build root menuconfig as follows:

Target packages →Networking application → openssh

Figure 1 Enable openssh

Changing the root file system password and configuring the overlay folder

This is achieved using build root menuconfig as follows:

System configuration \rightarrow root password \rightarrow put the password System configuration \rightarrow Root file systems overlay directories

Figure 2 configure the root system password

Enabling sound driver related packages Alsa, madplay, mpg123, bluez-alsa

This is achieved using build root menuconfig as follows:

Target packages \rightarrow audio and video application \rightarrow

- Select Alsa utils and select all inside alsa-utils
- Select madplay
- Select mpg123
- Select bluez-alsa

```
The process of the control of the co
```

Figure 4 Enable madplay mpg123

Figure 3 alsa utils

Changing the C library from ulibc to glibc

This is achieved using build root menuconfig as follows:

Toolchain c library → select glibc instate of ulibc

```
Address to serve address address address address address at several [] Hightighted Nature are between Pressing WV servers a Pending and address addres
```

Figure 5 changing the ulibc to ulibc

Changing the default editor from vi to nano

This is achieved using build root menuconfig as follows:

Target packages → text editors and viewers → nano

Figure 6 Enable nano as text editor

Adding bash language as a default shell scripting language

This is achieved using build root menuconfig as follows:

Target packages \rightarrow select show packages that are also provided by busy box System configuration \rightarrow select bash in /bin/sh

```
| Tries | Age | Ag
```

Figure 7 show packages in busy box

Figure 8 Enable bash

Enabling Wifi

This is achieved using build root menuconfig as follows:

Target packages -> Hardware handling -> Firmware -> select rpi-wifi-firmware Target packages -> Networking applications -> wpa_supplicant -> select Enable nl80211 support ,enable Autoscan

Figure 9 rpi-wifi-firmware

Target packages -> Networking applications -> Select ifupdown scripts and select openssh

Figure 10 ifupdown-script

Target packages -> Networking applications -> Install wpa_passphrase binary

```
| According to Assembly (1971) | According to Assembly (1971) | According according to Assembly (1971) | According to Assemb
```

Figure 11 install wpa_passphrase binary

Post build scripts and overlay configurations

Configuring a static IP address to Raspberry-pi

This is achieved using overlay folder by modifying the interfaces file in the following path "/etc/network/interfaces"

A static IP address for Ethernet connection is configured to be able to access raspberry pi through SSH over Ethernet.

Accessing raspberry pi through SSH

This is achieved using overlay folder by modifying the sshd_config file in the following path "/etc/ssh/sshd config"

This step is necessary to permit the root login because it is disabled by default.

Cross compilation of Hello.c to run on the Raspberry-pi

This is achieved using the following steps:

- 1. Export PATH=<Buildroot path>/output/host/bin: \$PATH
- 2. aarch64 to build the application
- 3. aarch64-linux-gcc Hello.c -o Hello.o

Enabling the sound driver on raspberry pi

This is achieved using the following steps:

- 1. Appending the following line "dtparam=audio=on" in config.txt file in the following path: "buildroot/package/rpi-firmware/config.txt"
- 2. By using the overlay folder to run script "S55audio" in the end of the boot process to enable sound driver, The script will be in the following path: "etc/init.d"

Enabling the Bluetooth driver on raspberry pi

This is achieved using the overlay folder to run script "S55audio" in the end of the boot process to enable Bluetooth driver, The script will be in the following path: "etc/init.d"

Enabling the Wifi driver op raspberry pi

This is achieved using overlay folder by modifying the interfaces file in the following path "/etc/network/interfaces"

This step is necessary to enable the wifi interface, give this interface a static IP,

Configure the Wifi network

This is achieved using overlay folder by modifying the interfaces file in the following path "/etc/wpa supplicant/wpa supplicant.conf"

Enabling the final application on the raspberry pi at start up

This can be achieved by more than one methods:

- 1. By using the overlay folder to run script "S55audio" in the end of the boot process to run application scripts as daemons, The script will be in the following path:" etc/init.d"
- 2. By using the overlay folder to run script "runApplication.sh" at the beginning of accessing the terminal to run application scripts as background processes, The script will be in the following path:" etc/profile.d"