TOPOLOGIE

Question 2

Author Brandon Lin

Contents

1 Exercice 2 3

1 Exercice 2

Notations

- $(x_n^{(p)})_{n\in\mathbb{N}}\in K_p^{\mathbb{N}}$ une suite de K_p
- $(x_{\phi_n(n)}^{(p)})$ une sous-suite de $(x_n^{(p)})$
- λ_p un vecteur dans K_p
- $(x_n)_{n\in\mathbb{N}}\in K^{\mathbb{N}}$ une suite de K

$$x_n = \left(x_n^{(1)}, \dots, x_n^{(p)}\right) \in \prod_{t=1}^p K_t^{\mathbb{N}}$$

- $(x_{\phi(n)})$ une sous-suite de (x_n)
- λ un vecteur dans K

Résolution générale

Comme $(E_0, d_0), \ldots, (E_n, d_n)$ sont des espaces métriques compactes, soit $(x_n)_{n \in \mathbb{N}} \in K^{\mathbb{N}}$ une suite de K

$$x_n = \left(x_n^{(0)}, \dots, x_n^{(p)}\right) \in \prod_{t=0}^p K_t^{\mathbb{N}}$$

De la suite $\left(x_n^{(0)}\right) \in K_0^{\mathbb{N}}$ on extrait une sous-suite $\left(x_{\phi_0(n)}^{(0)}\right)$ qui tend vers $\lambda_0 \in K_0$.

De la suite $(x_{\phi_0(n)}^{(0)})$, on extrait une sous-suite $(x_{\phi_0\circ\phi_1(n)}^{(1)})$ qui tend vers $\lambda_1\in K_1$.

De même façon pour tout $p \in \mathbb{N}$, on extrait une sous-suite $\left(x_{\phi_0 \circ \ldots \circ \phi_p(n)}^{(p)}\right)$ qui tend vers $\lambda_p \in K_p$.

On a donc une sous-suite de $(x_n)_{n\in\mathbb{N}}\in K^{\mathbb{N}}$, en sachant que toutes les sous-suites d'une suite convergent convergent vers la même valeur :

$$x_{\phi_0 \circ \dots \circ \phi_p(n)} = \left(x_{\phi_0 \circ \dots \circ \phi_p(n)}^{(0)}, \dots, x_{\phi_0 \circ \dots \circ \phi_p(n)}^{(p)}\right) \xrightarrow[n \to +\infty]{d} (\lambda_0, \dots, \lambda_p) \in \prod_{t=0}^p K_t = K$$

On a trouvé une sous-suite qui converge vers un limite dans K. Donc, pour n'importe quelle distance d, K est toujours un ensemble compact.

Résolution avec la distance définie

Avec d définie dans l'énoncé, on veut montrer que, en notant $\psi = \phi_0 \circ \dots \phi_p$ et $\Lambda = (\lambda_0, \dots, \lambda_p)$:

$$d(x_{\psi(n)}, \Lambda) = \sum_{n=0}^{\infty} \frac{1}{2^p} \cdot \min(1, d_p(x_{\psi(n)}^{(p)}, \lambda_p)) \underset{n \to +\infty}{\longrightarrow} 0$$

Dans la partie Résolution générale, on a déjà parlé de la convergence de $(x_{\psi(n)}^{(p)})_{n\in\mathbb{N}}$ vers λ_p pour n'importe quel valeur de p.

En conséquence, pour n'importe quell valeur de ε_0 , on peut toujours en déduire les valeurs (dépendant de ε_0) (N_1, \ldots, N_p) , lorsque $\psi(n) > N = \max(N_1, \ldots, N_p)$, ici N est un nombre entier fini car tous les N_1, \ldots, N_p sont finis :

$$d_p(x_{\psi(n)}^{(p)}, \lambda_p) \le \varepsilon_0$$

Soit $\varepsilon>0$, on prend $\varepsilon_0=\frac{1}{2}\varepsilon$ et ensuite on obtient le valeur de N (la méthode est dans la paragraphe au-dessus), lorsque n>N,

$$d(x_{\psi(n)}, \Lambda) \leq \sum_{p=0}^{\infty} \frac{1}{2^p} \cdot \varepsilon_0 = \sum_{p=0}^{\infty} \frac{1}{2^p} \frac{1}{2} \varepsilon < \varepsilon$$

Donc,
$$d(x_{\psi(n)}, \Lambda) \xrightarrow[n \to +\infty]{} 0$$
.