In the laboratory, 2 sets of related values of current and voltage at two temperatures have been measured for the diode 1N4001:

- At 25°C: $(V_{D1}, I_{D1}) = (540 \text{ mV}, 1\text{mA})$, and $(V_{D2}, I_{D2}) = (450 \text{ mV}, 0.1\text{mA})$
- At 75°C: (V_{D1}, I_{D1}) = (420 mV, 1mA), and (V_{D2}, I_{D2}) = (315 mV, 0.1mA)
- a. Calculate the constants of the diode equation: n and I_s for each temperature.
- b. Calculate the temperature coefficient [mV/K] of the diode at current = 1 mA.

$$V_{D_2} = n V_{\rm T} \ln \frac{I_{D_2}}{I_S} \& V_{D_1} = n V_{\rm T} \ln \frac{I_{D_1}}{I_S} \rightarrow n = \frac{V_{D_2} - V_{D_1}}{V_T \ln \frac{I_{D_2}}{I_{D_1}}} \& I_S = I_{D_1} e^{-\frac{V_{D_1}}{n V_T}}$$

$$V_T = \frac{KT_K}{q} \rightarrow V_T (25 \text{ °C}) = 25.7 \text{ mV } \& V_T (75 \text{ °C}) = 30 \text{ mV}$$
At 25 °C: $n = \frac{450 \text{ mV} - 540 \text{ mV}}{25.7 \text{ mV } \ln \frac{0.1 \text{ mA}}{1 \text{ mA}}} = 1.52 \& I_S = 1 \text{mA} e^{-\frac{540 \text{ mV}}{1.52 \times 25.7 \text{ mV}}} = 1 \text{ nA}$
At 75 °C: $n = \frac{315 \text{ mV} - 420 \text{ mV}}{30.0 \text{ mV } \ln \frac{0.1 \text{ mA}}{1 \text{ mA}}} = 1.52 \& I_S = 1 \text{mA} e^{-\frac{420 \text{ mV}}{1.52 \times 30.0 \text{ mV}}} = 100 \text{ nA}$

$$\frac{\Delta V_D}{\Delta T} = \frac{420 \text{ mV} - 540 \text{ mV}}{75 \text{ °C} - 25 \text{ °C}} = -2.4 \text{ mV/ °C}$$

$$I_D pprox I_S e^{rac{V_D}{nV_T}}$$
 $V_D = n V_T \ln rac{I_D}{I_S}$

- The ideal model
- a. Draw the equivalent circuit and calculate I, I_{R_2} , V_{R1} , V_D and V_{R2}
 - When V < 0
 - When V = 0
 - When V > 0
- b. The I-V curve.
- c. The I_{R_2} -V curve.
- d. The I_D -V curve.
- e. The V_{R1} -V curve, with V_{R1} denoting the voltage across R1.
- f. The V_D -V curve, with V_D denoting the voltage across diode.

Lec. 1: assignment 1.2 -ideal model

$$\begin{array}{c|cccc}
 & & & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & \\
\hline
 & & & \\
\hline
 & & & \\
\hline
 & & & &$$

$$\begin{array}{c|cccc}
 & & & & I = V/R_1 \\
\hline
 & & & & I_{R_2} = 0 \\
\hline
 & & & & V_{R_1} = IR_1 = V \\
 & & & & V_D = V_{R_2} = 0
\end{array}$$

2. Constant voltage drop model

Draw the equivalent circuit and calculate I, I_{R_2} , V_{R1} , V_D and V_{R2}

- When $V < V_{D,on}$
- When $V = V_{D,on}$
- When $V = \frac{R_1 + R_2}{R_2} V_{D,on}$
- When $V > \frac{R_1 + R_2}{R_2} V_{D,on}$
- a. The I-V curve.
- b. The I_{R_2} -V curve.
- c. The I_D -V curve.
- d. The V_{R1} -V curve, with V_{R1} denoting the voltage across R1.
- e. The V_D -V curve, with V_D denoting the voltage across diode.

Lec. 1: assignment 1.2 —constant voltage drop

If we assume $V = V_{D,on}$, the diode is on \rightarrow the voltage drop $across R_1$ will be $0 \rightarrow I = 0$ (1) $V_{D,on} + R_2 V_D However, I_{R2} = \frac{V_{D,on}}{R_2} \neq 0$ And $I = I_D + I_{R2} \neq 0$ (2) (1) And (2) conflicts \rightarrow the diode should be off \rightarrow same results as for $V < V_{D,on}$ $I = I_{R_2} = V/(R_1 + R_2)$ $V_{R1} = VR_1/(R_1 + R_2)$ $V_D = V_{R2} = VR_2/(R_1 + R_2)$

Lec. 1: assignment 1.2 –constant voltage drop

$$V = \frac{R_1 + R_2}{R_2} V_{D,on}$$

$$If we assume V = V_{D,on}, the diode is on \rightarrow I = \frac{V - V_{D,on}}{R_1} = \frac{V_{D,on}}{R_2}$$

$$(1)$$

$$The diode is about to turn on \rightarrow I_D = 0$$

$$And, I_{R2} = \frac{V_{D,on}}{R_2}$$

$$And I = I_D + I_{R2} = \frac{V_{D,on}}{R_2} (2)$$

$$(1) And (2) true \rightarrow the diode should be on$$

$$I = I_{R_2} = \frac{V_{D,on}}{R_2}$$

$$V_{R_1} = IR_1 = \frac{R_1 V_{D,on}}{R_2}$$

$$V_D = V_{R_2} = V_{D,on}$$

Lec. 1: assignment 1.2 –constant voltage drop

$$V > \frac{R_{1} + R_{2}}{R_{2}} V_{D,on}$$

$$the diode is on \rightarrow I = \frac{V - V_{D,on}}{R_{1}}$$

$$I_{R2} = \frac{V_{D,on}}{R_{2}}$$

$$I_{D} = I - I_{R2} = \frac{V - V_{D,on}}{R_{1}} - \frac{V_{D,on}}{R_{2}}$$

$$V_{R1} = IR_{1} = V - V_{D,on}$$

$$V_{D} = V_{R2} = V_{D,on}$$

Lec. 1: assignment 1.2 -constant voltage drop

Assuming the constant voltage drop model and the diode in reverse and forward bias regions,

- a. The I-V curve.
- b. The I_{R_2} -V curve.
- c. The I_D -V curve.
- d. The V_{R1} -V curve, with V_{R1} denoting the voltage across R1.
- e. The V_D -V curve, with V_D denoting the voltage across diode.
- f. The V_{R2} -V curve, with V_{R2} denoting the voltage across R2.

