## SÉRIE DE TD D'ANALYSE MATHÉMATIQUE 4

## Fonctions définies par des intégrales

## Exercice 1. Posons:

$$\mathscr{F}(x) = \int_0^1 \frac{\mathrm{d}t}{(1+t)t^{1-x}}.$$

- (1) Déterminer le domaine de définition  $\mathcal{D}$  de  $\mathcal{F}$ .
- (2) Étudier la continuité de F sur D.
- (3) Calculer  $\mathscr{F}(x+1) + \mathscr{F}(x)$ , pour tout  $x \in \mathscr{D}$ .
- (4) Déduire un équivalent de  $\mathscr{F}$  en  $0^+$ .
- (5) Calculer  $\lim_{x \to +\infty} \mathscr{F}(x)$ .

**Exercice 2.** Considérons les deux fonctions F et G définies pour tout  $x \in \mathbb{R}$  par :

$$F(x) = \int_0^1 \frac{e^{-x^2(1+t^2)}}{1+t^2} dt \text{ et } G(x) = \left(\int_0^x e^{-t^2} dt\right)^2.$$

- (1) Montrer que F et G sont de classe  $\mathscr{C}^1$  sur  $\mathbb R$  et préciser F' et G'.
- (2) Montrer que la fonction F + G est constante.
- (3) Calculer  $\lim_{x\to +\infty} F(x)$  et déduire la valeur de l'intégrale de Gauss  $\int_0^{+\infty} e^{-t^2} dt$ .

## **Exercice 3.** Posons:

$$\mathscr{F}(x) = \int_0^{+\infty} e^{-t^2} \cos(xt) dt.$$

- (1) Déterminer le domaine de définition de  $\mathscr{F}$ .
- (2) Montrer que  $\mathscr{F}$  est de classe  $\mathscr{C}^1$  sur son domaine de définition.
- (3) Exprimer  $\mathscr{F}'$  en fonction de  $\mathscr{F}$ .

  Effectuer une intégration par partie.
- (4) En déduire l'expression de  $\mathscr{F}$ .

Exercice 4 (Fonction gamma d'Euler). Considérons la fonction suivante :

$$\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt.$$

(1) Montrer que le domaine de définition de  $\Gamma$  est  $]0, +\infty[$ .

- (2) Montrer que  $\Gamma$  est continue sur  $]0, +\infty[$ .
- (3) Montrer que  $\Gamma$  est de classe  $\mathscr{C}^1$  sur  $]0, +\infty[$ .
- (4) Montrer que pour tout x > 0, on a :  $\Gamma(x+1) = x\Gamma(x)$ . En déduire que pour tout  $n \in \mathbb{N}$ , on a :  $\Gamma(n+1) = n!$ .
- (5) Calculer  $\Gamma\left(\frac{1}{2}\right)$ .

Exercice 5 (Concours de l'année 2021-2022). Considérons la fonction  ${\mathscr F}$  donnée par :

$$\mathscr{F}(x) = \int_0^{+\infty} \frac{(1 - e^{-t})e^{-tx}}{t} dt.$$

- (1) Justifier que  $\mathscr{F}$  est bien définie sur  $]0, +\infty[$ .
- (2) Montrer que  $\mathscr{F}$  est de classe  $\mathscr{C}^1$  sur  $]0, +\infty[$ .
- (3) Montrer que  $\lim_{x\to +\infty} \mathscr{F}(x) = 0$ .
- (4) Calculer  $\mathcal{F}'(x)$  et déduire l'expression de  $\mathcal{F}(x)$  sur  $]0, +\infty[$ .

On pourra utiliser le fait que la fonction  $t \longmapsto \frac{1-e^{-t}}{t}$  est bornée sur  $]0, +\infty[$ .

**Exercice 6** (Examen de l'année 2021-2022). Soit f la fonction définie par :

$$f(t,x) = \frac{\arctan(tx)}{t(1+t^2)}, \ \forall (t,x) \in ]0, +\infty[\times \mathbb{R}.$$

Considérons la fonction  $\mathscr{F}(x) = \int_0^{+\infty} f(t,x) dt$ .

- (1) Montrer que pour tout  $x \in \mathbb{R}$ , la fonction  $t \longmapsto f(t,x)$  est prolongeable par continuité en 0. En déduire le domaine de convergence de l'intégrale  $\int_0^1 f(t,x) \, dt$ .
- (2) Déterminer le domaine de convergence de l'intégrale  $\int_1^{+\infty} f(t,x) dt$ . En déduire que  $\mathscr{F}$  est définie sur  $\mathbb{R}$ .
- (3) Justifier que  $\mathscr F$  est de classe  $\mathscr C^1$  sur  $\mathbb R$  puis écrire  $\mathscr F'(x)$  sous forme intégrale.
- (4) Donner une expression explicite de  $\mathscr{F}'(x)$  pour tout  $x \geq 0$ .
  - On pourra utiliser l'identité :

$$\frac{1}{(1+t^2x^2)(1+t^2)} = \frac{1}{1-x^2} \left( \frac{1}{1+t^2} - \frac{x^2}{1+t^2x^2} \right), \ \forall x \in \mathbb{R}^+ \setminus \{1\}.$$

- (5) Déduire une expression explicite de  $\mathscr{F}(x)$  pour tout  $x \in \mathbb{R}$ .
  - $\blacksquare$  Remarquer que  $\mathscr{F}$  est impaire.
- (6) Déduire de ce qui précède la valeur de l'intégrale  $\int_0^{+\infty} \left(\frac{\arctan(t)}{t}\right)^2 dt$ .

