Ekstremizacija neregularnih grafov z modifikacijo skupne σ -nepravilnosti

Tinč Arifović, Manca Kavčič

27. december 2024

1 Opis problema

Imamo tri probleme, za katere iščemo rešitve.

- 1. Naj bo $f(n)=\frac{1}{n}.$ Ali je največja vrednost $\sigma_t^{f(n)}(G)$ dosežena, ko je G neregularen graf?
- 2. Naj bo f(n)=c, kjer je c realno število iz intervala (0,1). Ali je največja vrednost $\sigma_t^{f(n)}(G)$ dosežena, ko je G neregularen graf?
- 3. Naj bo f(n) pozitivna funkcija, za katero velja $\lim_{n\to\infty} f(n) = 0$. Identificirajte drevesa, ki dosežejo največjo vrednost $\sigma_t^{f(n)}(G)$.

Popolna σ -nepravilnost je podana kot

$$\sigma_t(G) = \sum_{u,v \subseteq V(G)} (d_G(u) - d_G(v))^2,$$

kjer $d_G(z)$ označuje stopnjo vozlišča z v grafu G. Natančneje, definiramo indeks $\sigma_t^{f(n)}(G)$ kot

$$\sigma_t^{f(n)}(G) = \sum_{u,v \subseteq V(G)} |d_G(u) - d_G(v)|^{f(n)},$$

kjer je n=|V(G)|, f(n) pa je funkcija definiran za $n\geq 4$. Najina naloga je odgovoriti na zgoraj podana vprašanja s pomočjo računalniškega testiranja. Za manjše grafe bova uporabila sistematičen pristop iskanja, za večje grafe pa stohastičen. Poleg tega se bova pri 2. problemu še posebej osredotočila na vrednosti zelo blizu 0 in 1.

2 Potek dela

Najprej bova generirala grafe z vključno največ 9 vozlišči, torej manjše grafe, s stohastično metodo pa bova generirala grafe z večjim številom vozlišč (torej jih bova generirala slučajno). Ker iz definicije regularnih grafov sledi, da imajo vsa vozlišča enako stopnjo, bo za vse regularne grafe vrednost $\sigma_t^{f(n)}(G) = 0$, ne glede na f(n). Iz tega dejstva se zdi da bo pri vseh treh vprašanjih odgovor pritrdilen. Za vse generirane grafe bova izračunala popolno σ -nepravilnost, glede na podane probleme in izrisala graf ali grafe, za največje vrednosti.

Prvi problem

Najprej za $f(n) = \frac{1}{n}$. Pri manjših graf, kjer je $f(n) = \frac{1}{n}, \frac{1}{n}$ ni zelo majhen, zato bo $\sigma_t^{f(n)}(G)$ bolj občutljiv na razlike v stopnjah. Največjo vrednost bo dosegel graf, kjer so razlike v stopnjah največje. Primeri so grafi z ekstremnimi razlikami, kot so zvezdni grafi (eno vozlišče ima stopnjo n-1, ostala pa stopnjo 1). Za večje grafe postane $f(n)=\frac{1}{n}$ zelo majhen, kar pomeni, da so razlike v stopnjah vozlišč potencirane z zelo majhnim eksponentom. To zmanjša vpliv velikih razlik med stopnjami na $\sigma_t^{f(n)}(G)$. Neregularni grafi bodo še vedno imeli večjo vrednost $\sigma_t^{f(n)}(G)$, kot regularni grafi, saj za regularne grafe velja $\sigma_t^{f(n)}(G)=0$. Ta primer, bi lahko spadal pod 3. problem, saj velja $\lim_{n\to\infty}\frac{1}{n}=0$.

2.2Drugi problem

Pri f(n) = c, $c \in (0,1)$, pa pomeni, da je eksponent konstanten, neodvisen od števila vozlišč n. Za manjše grafe bo $\sigma_t^c(G)$ odvisen predvsem od raznolikosti stopenj vozlišč, saj je eksponent c fiksiran. Neregularni grafi bojo še vedno imeli večjo vrednost $\sigma_{\iota}^{c}(G)$ kot regularni. Zdi se da bojo grafi z največjimi razlikami med stopnjami ponovno zvezndi grafi in grafi z izoliranim vozliščem in enim popolnim podgrafom. Za večje grafe eksponent $c \in (0,1)$ zmanjša vpliv velikih razlik med stopnjami, saj manjši eksponent zmanjšuje učinek večjih vrednosti $|d_G(u) - d_G(v)|$, torej ko bo c blizu 0, bo $\sigma_t^c(G) \approx 1$. Kljub temu bodo neregularni grafi še vedno imeli večje vrednosti $\sigma_t^c(G)$ kot regularni. Največje vrednosti bodo doseženi v grafih z največjimi razlikami stopenj.

2.3 Tretji problem

Ko je f(n) pozitivna funkcija, za katero velja $\lim_{n\to\infty} f(n) = 0$. To pomeni, da se eksponent v izrazu $\sigma_t^{f(n)}(G)$ zmanjšuje proti 0, ko n postaja zelo velik. Za f(n), ki hitro padajo proti 0 postanejo večje razlike manj pomembne, saj je $\sigma_t^{f(n)}(G) \approx 1$. Za manjše grafe, kjer pa je f(n) še vedno relativno velika, bodo razlike v stopnjah močno vplivale na vrednost $\sigma_t^{f(n)}(G).$ Zdi se da bi drevesa, ki dosežejo največjo vrednost $\sigma_t^{f(n)}(G)$ lahko bila zvezdna drevesa. Za večje grafe pa postanje razlike med stopnjami manj pomembne, saj je $\left|d_G(u) - d_G(v)\right|^{f(n)} \approx$ 1 za vse u, v. Pri tem delu, sva se odločila, da bova za pozitivne funkcije, katere $\lim_{n\to\infty} f(n) = 0$. izbrala 9 različnih funkcij, ki različno hitro konvergirajo proti 0. Funkcije so razvrščene glede na hitrost njihovega približevanja vrednosti 0, od najhitreje padajočih do najpočasneje padajočih:

1.
$$e^{-x^2}$$

4.
$$\frac{1}{r^2}$$

7.
$$\frac{\sin^2(x)}{x}$$
8.
$$\frac{1}{\sqrt{x}}$$

$$2. \ \frac{e^{-x}}{\sqrt{x}}$$

5.
$$e^{-\sqrt{x}}$$

8.
$$\frac{1}{\sqrt{x}}$$

3.
$$e^{-x}$$

6.
$$\frac{|\cos(x)|}{x}$$

9.
$$\frac{1}{\ln^2(x)}$$