ESP8266 PWM 接口参考

Version 1.2
Espressif Systems IOT Team
http://bbs.espressif.com
Copyright © 2016

免责申明和版权公告

本文中的信息,包括供参考的 URL 地址,如有变更,恕不另行通知。

文档"按现状"提供,不负任何担保责任,包括对适销性、适用于特定用途或非侵权性的任何担保,和任何提案、规格或样品在他处提到的任何担保。本文档不负任何责任,包括使用本文档内信息产生的侵犯任何专利权行为的责任。本文档在此未以禁止反言或其他方式授予任何知识产权使用许可,不管是明示许可还是暗示许可。

Wi-Fi 联盟成员标志归 Wi-Fi 联盟所有。

文中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特此声明。

版权归© 2016 乐鑫信息技术有限公司所有。保留所有权利。

Table of Contents

1.	概述	1
	1.1. 特性描述	1
	1.2. 实现方式	1
	1.3. 配置说明	1
	1.4. 参数说明	2
2.	pwm.h 详解	3
		3
	2.2. 接口说明	3
	2.2.1. pwm_init	
	2.2.2. pwm_set_period	4
	2.2.3. pwm_set_duty	4
	2.2.4. pwm_get_period	5
	2.2.5. pwm_get_duty	5
	2.2.6. pwm_start	5
3.	自定义通道	6

1. 概述

1.1. 特性描述

ESP8266 系统的 PWM(Pulse Width Modulation)由 FRC1 在软件上实现,可实现同频率、不同占空比的多路 PWM,可用来控制彩灯、蜂鸣器和电机等设备。

说明:

FRC1 是一个 23 bit 的硬件定时器。

PWM 的特性如下所示。

- 使用 NMI(Non Maskable Interrupt)中断,更加精确。
- 可扩展最多 8 路 PWM 信号。
- >14 bit 分辨率, 最小分辨率 45 ns。
- 无需配置寄存器,调用函数接口即可完成配置。

注意:

- PWM 驱动接口不能跟硬件定时器 (hw_timer) 接口函数同时使用,因为二者共用同一个硬件定时器。
- 如需使用 PWM 驱动,请勿调用 wifi_set_sleep_type(LIGT_SLEEP);将自动睡眠模式设置为 Light Sleep。因为 Light Sleep 在睡眠期间会停 CPU,停 CPU 期间不能响应 NMI 中断。
- 如需进入 Deep Sleep, 请先将 PWM 关闭, 再进行休眠。

1.2. 实现方式

ESP8266 系统提供了一种经过优化的软件算法,通过在 FRC1 定时器上挂载 NMI,实现在 GPIO(General Purpose Input Output)端口输出多组 PWM 信号。

PWM 的时钟源由高速系统时钟提供,其频率高达 80 MHz。PWM 通过预分频器将时钟源16分频,其输入时钟频率为 5MHz。PWM 通过 FRC1 来产生粗调定时,结合高速系统时钟的微调,可将分辨率提高到 45 ns。

说明:

NMI 拥有最高中断优先级,可以保证 PWM 输出波形的准确度。

1.3. 配置说明

在定时中断内,为尽快退出程序只在每次 PWM 周期开始时载入下一个周期的定时参数。

- 设置完各个通道的占空比后,系统会调用 pwm_start() 函数来计算定时周期。在此之前系统会进行保护操作,即保存当前的各通道参数,并清除计算完成标志, PWM 周期到来会使用保存后的参数。
- PWM 周期中断后会使用新的参数,因此计算完成后需要设置标志位。这样在实现占空比渐变(如控制 RGB 彩灯)的过程中,能保证颜色平滑过渡。
- 可在 user_light.h 中配置采用的 GPIO。SDK 代码示例使用 5 路 PWM,实际可以自行扩展,最多扩展至8路PWM,具体参见"第 3 章 自定义通道"。最小分辨率 45 ns,频率在 1KHz 时,占空比最小可以达到 1/22222。

1.4. 参数说明

- 最小分辨率: 45 ns (近似对应于硬件 PWM 的输入时钟频率为 22.72 MHz): >14 bit PWM @ 1 KHz
- PWM 周期: 1000 μs (1 KHz) ~ 10000 μs (100 Hz)

2.

pwm.h 详解

2.1. 代码示例

```
#ifndef ___PWM_H__
#define ___PWM_H___
                                       //最多 8 路PWM。
#define PWM_CHANNEL_NUM_MAX 8
                                       //定义单个 PWM 通道参数结构体。
struct pwm_single_param {
   uint16 gpio set;
                                        //需要置位的 GPIO。
                                        //需要清零的 GPIO。
   uint16 gpio_clear;
   uint32 h time;
                                        //需要写入 FRC1 LOAD 寄存器的计数值。
};
                                        //定义 PWM 参数结构体。
struct pwm param {
   Uint32 period;
                                        //PWM 周期。
   Uint32 freq;
                                        //PWM 频率。
   uint32 duty[PWM_CHANNEL_NUM_MAX]; //PWM 占空比。
};
void pwm_init(uint32 period, uint32 *duty,uint32 pwm_channel_num,uint32
(*pin_info_list)[3]);
void pwm start(void);
void pwm_set_duty(uint32 duty, uint8 channel);
uint32 pwm_get_duty(uint8 channel);
void pwm set freq(uint32 period);
uint32 pwm_get_freq(void);
```

2.2. 接口说明

2.2.1. pwm_init

名称	pwm_init
含义	PWM 初始化。

//\ / /	
代码示例	<pre>pwm_init (uint32 freq, uint32 *duty, uint32 pwm_channel_num,uint32 (*pin_info_list)[3]);</pre>
描述	PWM GPIO,参数和定时器初始化。
参数	uint32 freq: PWM 的周期。uint32 *duty: 各通道占空比参数。
	• uint32 pwm_channel_num: PWM 通道数。
	• uint32 (*pin_info_list)[3]: PWM 各通道的 GPIO 硬件参数,该参数是一个 n x 3 的数组指针。数组中定义了 GPIO 的寄存器,对应 PIN 脚的 IO 复用值,和 GPIO 对应的序号。例如:初始化一个 3 通道的 PWM。
	<pre>uint32 io_info[][3] = {{PWM_0_OUT_IO_MUX,PWM_0_OUT_IO_FUNC,PWM_0_OUT_IO_NUM}, {PWM_1_OUT_IO_MUX,PWM_1_OUT_IO_FUNC,PWM_1_OUT_IO_NUM}, {PWM_2_OUT_IO_MUX,PWM_2_OUT_IO_FUNC,PWM_2_OUT_IO_NUM}}; pwm_init(light_param.pwm_period,light_param.pwm_duty,3,io_info);</pre>
调用	系统初始化时调用。目前只能调用一次。
返回值	无

2.2.2. pwm_set_period

名称	pwm_set_period
含义	设置 PWM 周期。
代码示例	<pre>pwm_set_period (uint32 period)</pre>
描述	设置 PWM 周期,单位 μs。 例如:1KHz PWM,参数为 1000 μs。
参数说明	uint32 period: PWM 周期。
调用	设置完成后需要调用 pwm_start() 才起作用。
返回值	无

2.2.3. pwm_set_duty

名称	pwm_set_duty
含义	设置 PWM 某个通道信号的占空比。
代码示例	<pre>pwm_set_duty (uint32 duty, uint8 channel)</pre>
描述	设置 PWM 占空比。设置各路 PWM 信号高电平所占的时间,duty 的范围随PWM周期改变。最大值为:period*1000/45 (以1kHz为例:duty 范围是 0~22222)。

参数说明	 uint32 duty: 设置高电平时间参数,占空比的值为 (duty*45)/ (period*1000)。 uint8 channel: 当前要设置的 PWM 通道,在 PWM_CHANNEL 定义的范围内。
调用	设置完成后需要调用 pwm_start() 才起作用。
返回值	无

2.2.4. pwm_get_period

名称	pwm_get_period
描述	获取当前 PWM 周期。
代码示例	<pre>pwm_get_period (void)</pre>
参数说明	无
返回值	PWM 周期,单位 μs。

2.2.5. pwm_get_duty

名称	pwm_get_duty
描述	获取对应 channel 的当前 PWM 信号的 duty 参数。
代码示例	<pre>pwm_get_duty (uint8 channel)</pre>
参数说明	uint8 channel:当前要获取的 PWM 通道,在 PWM_CHANNEL 定义的范围内。
调用	设置完成后需要调用 pwm_start() 才起作用。
返回值	channel 对应的通道的占空比,占空比的值为 (duty*45)/ (period*1000)。

2.2.6. pwm_start

名称	pwm_start
描述	PWM 更新参数。
代码示例	pwm_start (void)
参数说明	无
调用	PWM 相关参数设置完成后,需要调用 pwm_start() 才起作用。
返回值	无

3.

自定义通道

用户还可以增加 PWM 通道,如需增加 GPIO4 为 PWM 输出的第四通道,设置步骤如下所示。

1. 修改初始化参数。

2. 修改 user light.h 文件。

```
#define PWM 0 OUT IO MUX PERIPHS IO MUX MTDI U
#define PWM_0_OUT_IO_NUM 12
#define PWM_0_OUT_IO_FUNC FUNC_GPIO12
#define PWM 1 OUT IO MUX PERIPHS IO MUX MTDO U
#define PWM 1 OUT IO NUM 15
#define PWM 1 OUT IO FUNC FUNC GPIO15
#define PWM_2_OUT_IO_MUX PERIPHS_IO_MUX_MTCK_U
#define PWM 2 OUT IO NUM 13
#define PWM_2_OUT_IO_FUN CFUNC_GPI013
#define PWM 3 OUT IO MUX PERIPHS IO MUX GPIO4 U
#define PWM 3 OUT IO NUM 4
#define PWM 3 OUT IO FUNC FUNC GPIO4
#define PWM_4_OUT_IO_MUX PERIPHS_IO_MUX_GPIO5_U
#define PWM 4 OUT IO NUM 5
#define PWM_4_OUT_IO_FUNC FUNC_GPIO5
#define PWM_CHANNEL 5
```

---结束