STAT 3690 Lecture 34

zhiyanggeezhou.github.io

Zhiyang Zhou (zhiyang.zhou@umanitoba.ca)

Apr 22, 2022

Clustering

- Problem: given observations x_1, \ldots, x_n group the observations into K populations
 - Unknown K
 - Unsupervised: no label/training data
- Why
 - Summarize a representation of the full data set
 - Exploration for structure of the data
 - Checking the validity of pre-existing group assignments
 - Assistance for prediction: sometimes clustering prior to prediction
- Clustering $C: \mathbb{Z}^+ \to \mathbb{Z}^+$
 - -C(i) = k: assign x_i to group k

K-means

• Within-cluster scatter

$$W = \frac{1}{2} \sum_{k=1}^{K} \frac{1}{n_k} \sum_{i:C(i)=k} \sum_{j:C(j)=k} \|\boldsymbol{x}_i - \boldsymbol{x}_j\|_2^2 = \sum_{k=1}^{K} \sum_{i:C(i)=k} \|\boldsymbol{x}_i - \bar{\boldsymbol{x}}_k\|_2^2$$

- $\|\boldsymbol{x}_i \boldsymbol{x}_j\|_2$: the Euclidean distance between \boldsymbol{x}_i and \boldsymbol{x}_j $\bar{\boldsymbol{x}}_k = n_k^{-1} \sum_{i:C(i)=k} \boldsymbol{x}_i$ Smaller W is better

- To minimize the within-cluster scatter

$$\min_{C} W = \min_{C, m{c}_1, ..., m{c}_K} \sum_{k=1}^K \sum_{i: C(i)=k} \|m{x}_i - m{c}_k\|_2^2$$

- Implementation:
 - 1. Specify K and start with an initial guess for c_1, \ldots, c_K , then repeat
 - a. Labeling each point based the closest center: for each i, put X_i to the kth cluster such that c_k is closest to x_i
 - b. Replacing each center by the average of points in its cluster: for each k, take $c_k = \bar{x}_k$
 - 2. Terminate when W doesn't change
- Comments
 - Always converge

- No guarantee to lead to the smallest ${\cal W}$
- Typically run K-means multiple times and pick up the result with the smallest W
 - * Since the resulting clustering depends on the initial cluster centers
- Example (iris)
- An application to image compression/color quantization
 - Basic idea: compress images by reducing the color palette of an image to K colors

Figure 1: Image compression with K-means clustering (http://opencvpython.blogspot.com/2012/12/k-means-clustering-2-working-with-scipy.html)