离散数学作业(5.29)

中国人民大学 信息学院 崔冠宇 2018202147

P80, **T1** 用 I 表示所有整数的集合, 在 (I, +) 上建立两个自同态映射.

解: 例1. $f:(I,+) \to (I,+), f(x) = x$.

证明: $\forall a, b \in I$, f(a+b) = a+b = f(a) + f(b), 所以 f 是同态映射, 进一步的, 是自同态.

例2. $g:(I,+)\to (I,+), g(x)=2x$.

证明: $\forall a, b \in I$, g(a+b) = 2(a+b) = 2a + 2b = g(a) + g(b), 所以 g 是同态映射, 进一步的, 是自同态. (事实上, 所有的 $h_c: (I, +) \to (I, +)$, $h_c(x) = cx$ $(c \in I)$ 都是自同态, 这些自同态与整数一一对应.)

P80, T5 f 是从 < S, ● > 到 < P, * > 的同态映射, g 是从 < P, * > 到 < Q, \triangle > 的同态映射, 证明: $f \circ g : S \to Q$ 也是同态映射.

证: 因为 f 是同态, 所以 $\forall s_1, s_2 \in S$, $f(s_1 \bullet s_2) = f(s_1) * f(s_2)$. (且 $f(s_1), f(s_2) \in P$)

同样的, $\forall p_1, p_2 \in P$, $g(p_1 * p_2) = g(p_1) \triangle g(p_2)$. 所以对 $\forall x, y \in S$,

 $(f \circ g)(x \bullet y) = g(f(x) * f(y)) = g(f(x)) \triangle g(f(y)) = ((f \circ g)(x)) \triangle ((f \circ g)(y)), \ \mathbb{P} \ f \circ g : S \to Q$ 也是同态映射. \square

P80, **T7** 证明代数 < X, $\circ >$ 上的两个同余关系的交仍是一个同余关系.

证: 设 E_1, E_2 是 $< X, \circ >$ 上的两个同余关系, 即它们都是等价关系, 满足自反性、对称性和传递性, 而且若 $< x_1, x_2 > \in E_i, < y_1, y_2 > \in E_i, 则 <math>< x_1 \circ y_1, x_2 \circ y_2 > \in E_i \ (i = 1, 2).$

由于 $E_1 \cap E_2 \subseteq E_1$ 且 $E_1 \cap E_2 \subseteq E_2$, 显然:

- ① 自反性: $\forall x \in X, \langle x, x \rangle \in E_1, \langle x, x \rangle \in E_2,$ 故 $\langle x, x \rangle \in E_1 \cap E_2.$
- ③ 传递性: 若 < x, y >, < y, z > $\in E_1 \cap E_2$, 即 < x, y >, < y, z > $\in E_1 且 < x, y >$, < y, z > $\in E_2$, 則 < x, z > $\in E_1 且 < x, z >$ $\in E_2$, 即 < x, z > $\in E_1 \cap E_2$.

 $E_1 \cap E_2$ 保持自反性、对称性以及传递性, 是等价关系, 下面证明仍然是同余关系.

若 $< x_1, x_2 >, < y_1, y_2 > \in E_1 \cap E_2$,即 $< x_1, x_2 >, < y_1, y_2 > \in E_1 且 < x_1, x_2 >, < y_1, y_2 > \in E_2$,则 $< x_1 \circ y_1, x_2 \circ y_2 > \in E_1 且 < x_1 \circ y_1, x_2 \circ y_2 > \in E_1 \cap E_2$,所以 $E_1 \cap E_2$ 是同余关系. \square

以下选做题尝试:

P83, T1 (题目略).

解: ① 容易验证 E 是等价关系, 因为它满足自反对称传递. 又因为若 $< x, y > \in E, < *x, *y > \in E$ 且 $< \circ x, \circ y > \in E$, 所以是同余关系.

② 根据等价关系 E, 可将 Z 划分为三部分: $[a_1] = \{a_1, a_3\}$, $[a_2] = \{a_2, a_5\}$, $[a_4] = \{a_4\}$. 根据商代数的定义, $\langle Z, *, \circ \rangle$ 到 $\langle Z/E, \bullet, \triangle \rangle$, 应当有 $\bullet([x]) = [*x]$, $\triangle([x]) = [\circ x]$, 故可得运算表:

[x]	$\bullet([x])$	$\triangle([x])$
$[a_1]$	$[a_4]$	$[a_1]$
$[a_2]$	$[a_1]$	$[a_2]$
$[a_4]$	$[a_2]$	$[a_1]$

自然同态 $g_E(x) = [x]$.

P83, T4 给出 $< E_6, +_6, \times_6 >$ 的全部自同态.(没看懂 E_6 是什么, 按 Z_6 理解的.)

解: 假定 $\varphi :< E_6, +_6, \times_6 > \to < E_6, +_6, \times_6 >$ 是同态映射, 则应该满足: $\forall x, y \in E_6,$

$$\varphi(x +_6 y) = \varphi(x) +_6 \varphi(y), \tag{1}$$

$$\varphi(x \times_6 y) = \varphi(x) \times_6 \varphi(y). \tag{2}$$

注意到 [1] 的特殊性(生成元), 在(2)中令 x = y = [1], 则有 $\varphi([1]) = \varphi([1]) \times_6 \varphi([1])$, 穷举得 $\varphi([1]) = [0]$ 或 $\varphi([1]) = [1]$ 或 $\varphi([1]) = [3]$ 或 $\varphi([1]) = [4]$.

① 若 $\varphi([1]) = [0]$, 则利用(1)式, 可得下表:

x	[0]	[1]	[2]	[3]	[4]	[5]
$\varphi(x)$	[0]	[0]	[0]	[0]	[0]	[0]

所以 $\varphi(x) = [0]$.

② 若 $\varphi([1]) = [1]$, 则利用(1)式, 可得下表:

	x	[0]	[1]	[2]	[3]	[4]	[5]
Ī	$\varphi(x)$	[0]	[1]	[2]	[3]	[4]	[5]

所以 $\varphi(x) = [x]$.

③ 若 $\varphi([1]) = [3]$, 则利用(1)式, 可得下表:

x	[0]	[1]	[2]	[3]	[4]	[5]
$\varphi(x)$	[0]	[3]	[0]	[3]	[0]	[3]

所以 $\varphi(x) = [3x]$.

④ 若 $\varphi([1]) = [4]$, 则利用(1)式, 可得下表:

m	[0]	[1]	[0]	[2]	[4]	[ដ]
\mathcal{A}	[U]	[1]		ြေ	[4]	ြ
$\varphi(x)$	[0]	[4]	[2]	[0]	[4]	[2]

所以 $\varphi(x) = [4x]$.