Analyzing the interplay between societal trends and socio-demographic variables with local pattern mining: Discovering exceptional trends in adolescent alcohol use in the Netherlands – Supplementary material

Rianne M. Schouten¹ (\boxtimes), Gonneke W.J.M. Stevens², Saskia A.F.M. van Dorsselaer³, Elisa L. Duinhof³, Karin Monshouwer³, Mykola Pechenizkiy¹, and Wouter Duivesteijn¹

- ¹ Eindhoven University of Technology, Data Mining Group, Eindhoven, the Netherlands, {r.m.schouten,m.pechenizkiy,w.duivesteijn}@tue.nl
- ² Utrecht University, Department of Interdisciplinary Social Science, Utrecht, the Netherlands, g.w.j.m.stevens@uu.nl
- National Institute of Mental Health and Addiction, Utrecht, the Netherlands, {sdorsselaer,eduinhof,kmonshouwer}@trimbos.nl

Abstract. Over the last two decades, alcohol use has been in decline among Dutch adolescents. However, the declining trend has been flatlining: prevalence of monthly alcohol use among Dutch 12-to-16-year-olds decreased from 54% in 2003 to 26% in 2013, but merely to 23% in 2019. Dutch governmental policy makers aim to decrease this prevalence further. To do so effectively, it would benefit them to know whether social group memberships correspond to exceptional alcohol use trends. With traditional statistical approaches, it is challenging to analyze such a relation between societal trends and social group memberships: only a few socio-demographic variables can be included, subgroups must be pre-defined, and linearity assumptions are required. We resolve these issues and automatically identify social subgroups of the Dutch adolescent population by deploying Exceptional Model Mining for Repeated Cross-Sectional data (EMM-RCS) on data that interleaves two quadrennial studies: the Health Behaviour in School-Aged Children study (HBSC), and the Dutch National School Survey on Substance Use (DNSSSU). Our findings confirm existing knowledge that age, educational level, and migration background are important descriptors of monthly alcohol use, and provide further insights into the existence of an interplay effect with life satisfaction, urbanization degree, and truancy.

Keywords: Adolescent Alcohol Use · Exceptional Model Mining · Intersectionality · Local Pattern Mining · Validation of Subgroups · Trend Analysis

Table 1: Demographics and descriptive statistics of all descriptive attributes.

Conclusion (1/5) 679 (124) 572 (10.0) 6034 (11.5) 5006 (10.4) 6037 (12.0)	Survey Year	DNSSSU 2003	HBSC 2005	DN	DNSSSU 2007	HBSC 2009	DNSSSU 2011	HBSC 2013	DNSSSU 2015	HBSC 2017	DNSSSU 2019	
Description Property Proper	Total $n(\%)$	(12.8)	(10.0)	6234 (11.8)	5490 (10.4)	6374 (12.1)	5421	(11.8)	(11.5)	(09.5)	
Billy Gill (3.6) 2500 (6.8) 2500 (6.8) 2500 (6.8) 2500 (7.8) 2500	Gender $n(\%)$											
Habic group n/8) White graph n/8) No., Western 100 (14.7) 911 (17.3) 766 (13.8) 7770 (14.0) 881 (14.0) 882 (15.5) 922 (14.8) 1001 (12.5) 3730 (78.4) 3700 (78.4) 3700 (78.8) Mining Mining No. (14.0) 100 (14.7) 911 (17.3) 776 (12.8) 770 (14.0) 881 (14.0) 882 (15.5) 922 (14.8) 1001 (12.5) 373 (18.0) Mining No. (14.1) 100 (14.7) 911 (17.3) 776 (12.8) 770 (14.0) 881 (14.0) 882 (15.5) 922 (14.8) 1001 (12.5) 373 (18.0) Mining No. (14.1) 100 (14.7) 110 (14.1) 120 (16.0)	Boy Girl Missing	(46.6) (53.4) (00.0)	(49.5) (50.5) (00.0)	3049 (3185 (48.9) 51.1) 00.0)	2686 (48.9) 2804 (51.1) 0 (00.0)	3250 (51 3124 (49 0 (00	2668 2753	3172 (50.9) 3060 (49.1) 0 (00.0)	(48.7) (51.3) (00.0)	(51.8) (48.1) (00.1)	
Durch Non-Western 1011 (14.7) 911 (174.7) 5056 (98.8) 4478 (15.1) 770 (14.0) 881 (14.0) 881 (14.0) 881 (15.0) 876 (78.0) 1781 (78.4) 370 (78.2) 805 (78.0) 1781 (78.4) 370 (78.2) 805 (78.0) 1814 (14.0) 881 (14.0) 88	group											
Ves	Dutch Non-Western Western Missing	(79.1) (14.7) (06.1) (00.1)	(76 (17 (05	5036 (796 (376 (26 (80.8) 12.8) 06.0) 00.4)	4478 (81.6) 770 (14.0) 239 (04.4) 3 (00.1)	5079 891 388	4266 (78 838 (15 315 (05 2 (00	(79.6) (14.8) (05.4) (00.1)	(78.4) (16.5) (05.1) (00.0)	(73.8) (18.6) (07.3) (00.3)	
Nome (Nome	oes father have a job											
No. Problem	know/no	(90.4) (06.2) (02.1) (01.2)	(86.4) (06.1) (05.3) (02.1)	5715 (292 (156 (71 ((04 (04 (05)	(90 (05 (00	4384 (80 355 (06 289 (05 393 (07	(90.1) (05.9) (03.8) (00.2)	(87.8) (04.6) (04.8) (02.8)	(90.9) (04.7) (04.2) (00.2)	
Yes	mother have a job)										
Ves with both parents $n(\%)$ Ves (78.8) 4121 (78.2) 4022 (79.0) 4397 (80.1) 4756 (74.6) 3098 (73.8) 4676 (75.0) 4611 (76.1) 3650 (73.1) 80 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	know/no	(72.0) (25.0) (00.7) (02.4)	(70.6) (25.2) (02.0) (02.3)	4763 (1350 (142 (79 (76.4) 21.7) 00.7) 01.3)	4039 (73.6) 1086 (19.8) 83 (01.5) 282 (05.1)	5768 320 238 48	3970 952 94 405	4988 (80.0) 1177 (18.9) 63 (01.0) 4 (00.1)	4783 (78.9) 1006 (16.6) 100 (01.7) 171 (02.8)	(83.1) (15.3) (01.4) (00.1)	
Yes Assat (78.8) 4121 (78.2) 4922 (79.0) 4397 (80.1) 4756 (74.6) 3998 (73.8) 4676 (75.0) 4611 (76.1) 3660 (73.1) 1436 (13.5) 1336 (19.5) 1033 (10.5) 77 (20.1) 48 (00.3) 46 (03.1) 148 (03.5) 160 (13.1) 142 (26.2) 1533 (24.4) 142 (23.8) 1346 (23.8) 1346 (23.5) 1346 (23.8) 1346 (23.8) 1346 (23.8) 1346 (23.8) 1346 (23.8) 1346 (23.8) 1346 (23.8) 1346 (23.8) 1346 (23.8) 1343 (23.8) 1343 (23.2) 1343 (23.2) 1343 (23.2) 1343 (23.2) 1343 (23.2) 1347 (23.1) 1343 (23.2) 1343 (23	with both parents											
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Yes No Missing	(78.8) (19.5) (01.6)	(78.2) (20.7) (01.1)	4922 (1264 (48 (79.0) 20.3) 00.8)	(80.1) (19.8) (00.1)	4756 1600 18	3998 (73.8) 1423 (26.2) 0 (00.0)	4676 (75.0) 1553 (24.9) 3 (00.0)	(76.1) (23.8) (00.1)	(73.1) (26.8) (00.1)	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	School level $n(\%)$											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	VMBO-p/t VMBO-t/HAVO HAVO/VWO VWO Missing	(28.4) (31.4) (22.7) (16.0) (01.6)	(26.3) (31.4) (24.1) (17.8) (00.5)	1532 (2059 (1474 (1169 (24.6) 33.0) 23.6) 18.8) 00.0)	995 (18.1) 1982 (36.1) 1984 (22.7) 1266 (23.1) 0 (00.0)	1543 2081 1294 1436	1337 1486 1418 1180	1370 (22.0) 2147 (34.5) 1566 (25.1) 1149 (18.4) 0 (00.0)	(18.4) (32.6) (23.1) (25.9) (00.0)	(21.5) (32.4) (24.8) (21.3) (00.1)	
$ \begin{array}{c} \text{hours} \\ h$	kipped classes											
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		5817 (85.7) 285 (04.2) 196 (02.9) 163 (02.4) 73 (01.1) 149 (02.2) 108 (01.6)	4470 (84.8) 281 (05.3) 176 (03.3) 131 (02.5) 48 (00.9) 86 (01.6) 80 (01.5)	5395 (271 (206 (153 (79 (97 (33 (86.5) 04.3) 03.3) 02.5) 01.3) 01.6) 00.5)	4645 (84.6) 236 (04.3) 170 (03.1) 101 (01.8) 28 (00.5) 64 (01.2) 246 (04.5)	5716 (89.7) 242 (03.8) 143 (02.2) 111 (01.7) 51 (00.8) 68 (01.1) 43 (00.7)	4649 213 110 64 26 49 310	0414100	(86.0) (04.9) (02.9) (01.8) (01.5) (02.0)	(88.3) (04.2) (02.6) (02.1) (01.0) (01.8) (00.1)	
$ \begin{array}{c} \text{rry high} \\ \text{sigh} \\ \text{older} \\ \text{older} \\ \text{other} \\ \text$	degree n(
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Very high High Moderate Low None Missing $n(\%)$	(15.0) (28.2) (18.0) (23.6) (15.2) (00.0)	(13.8) (24.7) (20.5) (19.9) (21.1) (00.0)	1033 (1778 (1778 (1234 (1278 (911 (0 (16.6) 28.5) 19.8) 19.5) 14.6) 00.0)	731 (13.3) 1351 (24.6) 1089 (19.8) 1070 (19.5) 1249 (22.8) 0 (00.0)	1234 1881 1048 1495 716	1070 1422 801 1480 648	1143 (18.3) 1842 (29.6) 821 (13.2) 1669 (26.8) 757 (12.1) 0 (00.0)	(15.8) (33.8) (16.1) (25.5) (08.7)	(18.5) (31.6) (14.1) (25.7) (10.1) (00.0)	
betweed $M(SD)$ 13.8 (1.2) 13.8 (1.2) 13.9 (1.2) 13.8 (1.3) 13.8 (1.2) 13.8 (1.2) 13.8 (1.2) 13.8 (1.2) 13.8 (1.2) 13.8 (1.2) 13.7 (1.3) 13.7 (1.2) issing $n(\%)$ 0 (0.0) 0 (
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(%) M(S	.8 (1 0 (0	0 (0	0.0	(1.2) (0.0)	.8 (1	.8 (1 0 (0	13.8 (1 0 (0	.8 (1 0 (0	0 (0	.7 (1.2) 0 (0.0)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	satisfaction											
	Observed $M(SD)$ Missing $n(\%)$	G T	9F	7.7 52	(0.8)	7.F	6F	7.6 (1 205 (3	0 (0	6 (1	(1.6) (0.0)	

Table 2: Proportion and descriptions of top-17 validated subgroups of adolescents with exceptional deviations of the prevalence of monthly alcohol use. Subgroup descriptions are conjunctions of conditions 1, 2 and 3 (in that order). The prevalence trends can be clustered into five main trend groups.

TG SG Cov Description					
			condition 1	condition 2	condition 3
	1	0.11	age: 12	skipped classes: 0	urbanity: at least moderate
1	2	0.15	age: 12	life satisf: 7-10	skipped classes: 0
1	3	0.14	age: 12	life satisf: 7-10	
	10	0.09	age: 12	skipped classes: 0	
	4	0.35	age: 12-13	skipped classes: 0	life satisf: 7-10
	5	0.37	age: 12-13	skipped classes: 0	life satisf: 6-10
	7	0.40	age: 12-13	skipped classes: 0	
2	9	0.25	age: 12-13	life satisf: 6-10	urbanity: at least moderate
4	12	0.37	age: 12-13	life satisf: 7-10	
	14	0.40	age: 12-13	life satisf: 6-10	
	16	0.41	age: 12-13	skipped classes: 0-1	
	17	0.43	age: 12-13		
3	6	0.26	age: 15-16	ethnicity: dutch, western	1
J	8	0.24	age: 15-16	ethnicity: dutch	
4	11	0.48	age: 14-16	ethnicity: dutch, western	1
-4	15	0.44	age: 14-16	ethnicity: dutch	
5	13	0.32	age: 15-16		

Table 3: Proportion and descriptions of top-14 validated subgroups of adolescents with exceptional deviations in the course of the trend in monthly alcohol use (i.e. exceptional slope deviations). Subgroup descriptions are conjunctions of conditions 1 and 2 (in that order); there are no subgroups with 3 conditions. The trends can be clustered into five main trend groups.

\mathbf{TG}	TG SG Cov Description						
			condition 1	condition 2	condition 3		
	1	0.19	age: 12				
	4	0.15	age: 12-13	life satisf: 9-10			
	5	0.29	age: 12-13	life satisf: 8-10			
1	8	0.37	age: 12-13	life satisf: 7-10			
1	10	0.54	age: 12-14	ethnicity: dutch			
	14	0.53	age: 12-14	mother job: yes			
	2	0.1	urbanity: very high	age: 14-16			
2	7	0.14	urbanity: very high	life satisf: 0-9			
	13	0.14	urbanity: very high	age: 13-16			
	3	0.26	age: 15-16	school level: at least $vmbo-p/t$			
3	9	0.32	age: 15-16				
	12	0.11	skipped classes: ≥ 1				
4	6	0.23	school level: at least havo	urbanity: at most moderate			
5	11	0.13	school level: $vmbo-p/t$ - $have$	ethnicity: western, non-western			

Table 4: Proportion and descriptions of top-10 validated subgroups of adolescents with exceptionally horizontal trends in monthly alcohol use. Subgroup descriptions are conjunctions of conditions 1, 2 and 3 (in that order). The subgroups are clustered into four main trend groups.

$\overline{\mathbf{TG}}$	TG SG Cov Description						
			condition 1	condition 2	condition 3		
	1	0.09	ethnicity: non-western	life satisf: 0-8	skipped classes: 0-2		
- 1	3	0.09	ethnicity: non-western	life satisf: 0-8	skipped classes: 0-4		
1	4	0.08	ethnicity: non-western	life satisf: 0-8	school level: $\leq \text{havo/vw}$		
	6	0.08	ethnicity: non-western	age: 13-16	school level: \geq vmbo-t		
	2	0.08	ethnicity: non-western	age: 14-16	urbanity: \geq moderate		
2	9	0.09	ethnicity: non-western	age: 14-16	urbanity: \geq little		
	10	0.08	ethnicity: non-western	age: 14-16	skipped classes: 0-2		
3	5	0.10	ethnicity: non-western	complete family: yes	skipped classes: 0-4		
3	8	0.10	ethnicity: non-western	complete family: yes	father job: yes,no		
4	7	0.11	school level: $\geq \text{havo/vwo}$	ethnicity: (non)-western	n life satisf: 0-8		