Avaliação de Técnicas de Estimação da Matriz Origem-Destino do Tráfego de Veículos em Cidades

Luciano Urgal Pando Orientador: Ricardo Lüders

Programa de Pós-graduação em Engenharia Elétrica e Informática Industrial UTFPR

14/06/2018

Sumário

- Introdução
- 2 Descrição do problema
- 3 Técnicas de estimação da matriz OD
- Resultados
 - Estudo de caso do Porto (Portugal)
 - Estudo de caso de Curitiba (Brasil)
- Conclusão

Introdução

Introdução

- Compreender o padrão de deslocamento é fundamental para o planejamento urbano. Fluxos entre diferentes origens e destinos (OD) podem ser representados pela chamada matriz origem destino;
- A matriz origem destino não é disponível diretamente, e então, diversas técnicas têm sido aplicadas para a sua estimação;
- A dissertação realiza um comparativo entre técnicas de estimação da matriz origem-destino.

Introdução

Motivação

- Planejamento urbano utilizando dados provenientes de monitoração, como sensores de tráfego. Geração crescente de dados;
- Interesse econômico: Pesquisas de campo sobre origem destino são caras, demoradas e trabalhosas. (Pesquisa OD de Curitiba com custo aproximado de 6 milhões de reais);
- Diversas técnicas de estimação da matriz OD disponíveis na literatura. Auxiliar na decisão de qual técnica utilizar em trabalhos futuros.

Introdução

Objetivo geral

 Avaliar diferentes técnicas de estimação da matriz OD que utilizam dados de sensores, usando métricas já definidas na literatura.

Objetivos específicos

- Comparar PSO, GA, LS e MILP na estimação da matriz OD;
- Considerar as cidades do Porto e Curitiba como estudos de caso, pois utilizam diferentes fontes de dados de fluxo de veículos para a estimação da matriz origem-destino;
- Para o estudo de caso de Porto, Identificar origens e destinos, assim como a distribuição do fluxo de veículos na rede viária, quando se utilizam dados de viagens de táxi para a estimação da matriz origem-destino;
- Avaliar a influência da qualidade e quantidade de informação proveniente dos sensores (número e posicionamento dos sensores).

Matriz Origem-Destino

Tabela: Informações de fluxos OD entre nós A, B e C em veículos/min da Matriz origem-destino X

	Α	В	С
Α		2	1
В	10		1
C	5	2	

- Linhas representam as origens;
- Colunas representam os destinos.

Matriz Origem-Destino

Representação em grafo direcionado da Matriz OD

Matriz OD distribuida em uma rede viária

Trafégo da Matriz Origem-Destino (ODM) na rede viária

- Conjunto de pares origem-destino (OD) $w \in W$
- ullet Fluxo de veículos por par OD (Matriz OD) q_w
- Conjunto de rotas por par OD
- Probabilidade de uso de uma rota por par OD
- Prob. de uso de um arco por par OD: (traffic) Assignment Matrix

Estimação da Matriz Origem-Destino

Distribuição do tráfego de acordo com q_w e p_{wz}

$$v_z = \sum_{w \in W} q_w.p_{wz} + e \tag{1}$$

$$s.t.q_w >= 0 (2)$$

Estimação de \overline{q}_w através \overline{v}_z

$$\forall z (v_z \approx \overline{v}_z) \tag{3}$$

$$\forall w(q_w \approx \overline{q}_w) \tag{4}$$

Estimação da Matriz Origem-Destino

Dados de entrada

- Conjunto de pares origem-destino (OD) $w \in W$
- Topologia da rede (Grafo direcionado)
- Medições de sensores de tráfego v_z
- Probabilidade de uso de um arco por par OD: (traffic)
 Assignment Matrix

Saida

• Fluxo de veículos q_w por par OD (Matriz OD)

Algoritmo genético (GA)

Cada indivíduo é uma solução candidata contendo np valores reais; Utiliza parâmetros $P_{crossover}$, $P_{mutacao}$, pop, t_{ga} .

Algorithm 2 Pseudo-código do GA

- 1: Inicializa a população com pop indivíduos aleatórios
- 2: Avalia a adequação de cada indivíduo de acordo com a função fitness
- 3: t=1
- 4: while $t \leq t_{aa}$ do
- 5: Seleção de pais
- 6: Realiza crossover. População passa a ser (2.pop)
- 7: Realiza mutação dos novos indivíduos
- 8: Avalia a adequação dos novos indivíduos
- 9: Somente os (pop) indivíduos de melhor adequação sobrevivem
- 10: t = t + 1
- 11: end while

Otimização por nuvem de partículas (PSO)

Cada partícula é uma solução candidata contendo np valores reais; Utiliza parâmetros w_i , w_f , c1, c2, s, t_{pso} .

```
Algorithm 1 Pseudo-código do PSO
```

- Inicializa o enxame com s partículas aleatórias
- 2: Avalia a adequação de cada partícula de acordo com a função fitness
- 3: \mathbf{best}^{global} é a partícula de melhor adequação
- 4: t=1
- 5: while $t \leq t_{pso}$ do
- 6: for Cada partícula p^t do
- 7: Calcula velocidade da partícula \mathbf{p}^t (Equação 25)
- 8: Desloca partícula \mathbf{p}^t (Equação 26)
- 9: Reavalia a adequação da partícula \mathbf{p}^t
- 10: Atualiza a melhor posição da partícula (Melhor entre $\mathbf{best}_p \in \mathbf{p}^t$)
- 11: Atualiza a melhor posição global (Melhor entre \mathbf{best}_{global} e \mathbf{best}^t))
- 12: end for
- 13: t = t + 1
- 14: end while

Funções fitness do GA e PSO

$$\min_{q_w} \sum_{z \in Z} |v_z - \bar{v}_z| \tag{5}$$

$$\min_{q_w} \sum_{z \in Z} (v_z - \bar{v}_z)^2 \tag{6}$$

$$\min_{q_w} \sum_{z \in Z} GEH(z) \tag{7}$$

$$GEH(z) = \frac{\sqrt{2(\overline{v}_z - v_z)^2}}{\overline{v}_z + v_z}$$
 (8)

Mínimos quadrados (LS)

Dados de entrada

- Assignment matrix A (ns × np);
- Fluxos b de veículos observados por sensores ($ns \times 1$).

Dados de saída - elementos da matriz OD

• Fluxos x de veículos estimados por par OD $(np \times 1)$

Solução pela pseudo-inversa $(A^TA)^{-1}$

$$Ax = b (9)$$

$$x = (A^T A)^{-1} A^T b \tag{10}$$

Modelo de programação linear inteira mista (MILP)

Tabela 18: Variáveis do modelo de programação linear inteira mista

Variável	Tipo	Símbolo	Quantidade
Fluxo estimado por par OD w	\mathbb{R}	q_w	np pares OD
Fluxo estimado no arco z	\mathbb{R}	\overline{v}_z	ns sensores
Folga superior no arco z	\mathbb{R}	F_{z+}	ns sensores
Folga inferior no arco z	\mathbb{R}	F_{z-}	ns sensores
Total			$(np+3\cdot ns)$

Função fitness

$$\min_{q_w} \sum_{z \in Z} (F_{z+} + F_{z-}) \tag{11}$$

Modelo de programação linear inteira mista (MILP)

Restrições do modelo MILP

$$\overline{v}_z = \sum_{w \in W} p_{wz} \cdot q_w \tag{12}$$

$$v_z = (\overline{v}_z + F_{z+} - F_{z-}) \tag{13}$$

$$q_w \ge 0 \tag{14}$$

$$F_{z+} \ge 0 \tag{15}$$

$$F_{z-} \ge 0 \tag{16}$$

Métricas de desempenho

Tabela 16: Métricas utilizadas para avaliar a qualidade da ODME

	MAE	RMSE	R^2 ODM	TDD	GEH	pGEH5	R^2 arcos
		Minimizar				Maximizar	Maximizar
Variável analisada	Matriz OD	Matriz OD	Matriz OD	Matriz OD	Arcos	Arcos	Arcos
		$[0,+\infty)$			$[0,+\infty)$	[0,1]	[0,1]

$$MAE = \frac{\sum_{w \in W} |\overline{q}_w - q_w|}{np} \tag{17}$$

$$RMSE = \frac{\sqrt{\frac{1}{np} \sum_{w \in W} (\overline{q}_w - q_w)^2}}{\sum_{w \in W} q_w}$$
(18)

$$TDD = \frac{\left|\sum_{w \in W} \overline{q}_w - \sum_{w \in W} q_w\right|}{\sum_{w \in W} q_w} \tag{19}$$

Métricas de desempenho

Tabela 16: Métricas utilizadas para avaliar a qualidade da ODME

	MAE	RMSE	R^2 ODM	TDD	GEH	pGEH5	R^2 arcos
		Minimizar				Maximizar	Maximizar
Variável analisada	Matriz OD	Matriz OD	Matriz OD	Matriz OD	Arcos	Arcos	Arcos
		$[0,+\infty)$			$[0,+\infty)$	[0,1]	[0,1]

$$R^{2} = \left(\frac{n(\sum xy) - (\sum x)(\sum y)}{\sqrt{(n\sum x^{2} - (\sum x)^{2})(n\sum y^{2} - (\sum y)^{2})}}\right)^{2}$$
(20)

$$GEH(z) = \frac{\sqrt{2(\overline{v}_z - v_z)^2}}{\overline{v}_z + v_z}$$
 (21)

$$GEH = \frac{\sum_{z \in Z} GEH(z)}{ns}$$
 (22)

Organização das atividades desenvolvidas

Resumo dos estudos de caso: Porto e Curitiba

	Curitiba (Brasil)	Porto (Portugal)
Fontes dos dados	IPPUC	OSM e UCI (2015)
Assign. matrix	PTV VISUM	Agrupamento espacial e Map
		matching
Nós	191	153840
Arcos	594	221446
Sensores	71	Agrupamento espacial, map
		matching e NSLP
Pontos OD	29	Agrupamento espacial
Pares OD	841	Agrupamento espacial
$q_{w} > 0$	183	Agrupamento espacial

Estudo de caso do Porto

- Agrupamento espacial;
- Map matching;
- Configuração dos algoritmos GA e PSO;
- Influência da função fitness na ODME;
- Influência da localização dos sensores na ODME;
- Comparação das técnicas de OMDE;
- Influência do número de sensores na ODME.

Dataset de corridas de taxi de Porto

Tabela 22:	Atributos	dos	dados	de	corridas	de	táxi do	Porto
------------	-----------	-----	-------	----	----------	----	---------	-------

Atributo	Tipo	Descrição
TRIP ID	String	Identificador da corrida
CALL TYPE	Caractere	A (corrida iniciada através da central de táxis)
		B (corrida iniciada em ponto de táxi)
		C (Outros casos)
ORIGIN CALL	Inteiro	ID do ponto de táxis, se CALL TYPE = B
TAXI ID	Inteiro	ID do motorista
TIMESTAMP	Inteiro	Início da viagem (segundos).
TIMESTAMP DATATYPE	Inteiro Caractere	Início da viagem (segundos). B (Feriado ou outro dia especial)
		B (Feriado ou outro dia especial)
		B (Feriado ou outro dia especial) C (dia anterior a um dia tipo B)
DATATYPE	Caractere	B (Feriado ou outro dia especial) C (dia anterior a um dia tipo B) A (demais dias)

Agrupamento espacial baseado em densidade

Problema

- Cada corrida possui um ponto de origem e um de destino;
- É necessário definir áreas para serem OD;
- É necessário definir um número de clusters.

Solução

- Novo dataset contendo somente as origens e destinos;
- CascadeKMeans para definir número de clusters (Weka);
- Áreas definidas a partir de agrupamento baseado em densidade (Weka).

Agrupamento espacial baseado em densidade

Resultado

- 13 áreas/regiões de origem ou destino;
- Cada instância da base de dados de corrida de táxis têm sua origem e seu destino identificados a uma das 13 áreas;
- Matriz OD real para o estudo de caso do Porto está definida.

Agrupamento espacial baseado em densidade

Map Matching

Descrição do problema

- Dados georreferenciados (trajetórias)
- Dados topográficos (rede viária)
- O objetivo é mapear os dados georreferenciados à malha viária. (Imagem modificada de Xie et al. 2017)

Map matching para o estudo de caso de Porto

Problema

- Existe um dataset contendo dados georreferenciados, UCI (2015);
- Existe uma base de dados geográfica (rede viária, OSM);
- Os dados não estão relacionados.

Solução

- Identificar trajetórias na topologia utilizando map matching;
- Variações no processo de identificação dos trajetos;
- Métricas propostas para identificar a melhor solução:
 Número de nós identificados e conectividade.

Map matching de uma corrida de táxi

Resultado

- Cada instância da base de dados de corrida de táxis têm seu trajeto na rede viária definido;
- A combinação da matriz OD real com essa nova informação permite obter uma **assignment matrix** e **fluxos** v_z ;
- Os dados de entrada para estimação da matriz OD estão disponíveis. Os experimentos de estimação da matriz OD podem ser realizados.

Map matching de uma corrida de táxi

Configuração dos algoritmos GA e PSO (iRace)

Tabela 25: Seleção de parâmetros do PSO, para o Porto

Parâmetro	Intervalo avaliado	Valor Selecionado
s	[20;2500]	862
t_{pso}	3000000/s	3480
c1	[0,01;1,0]	0,13
c2	[0,01;1,0]	1,00
w_i	[0,01;1,0]	0,85
w_f	[0,01;1,0]	0,25
$reset_t$	[20,500]	85

Tabela 26: Seleção de parâmetros do GA, para Porto

Parâmetro	Intervalo avaliado	Valor	
Farametro	intervato avaitado	selecionado	
pop	[20,1500]	515	
t_{ga}	3000000/pop	5825	
P_c	[0,01;1,0]	0,28	
P_m	[0,01;1,0]	0,98	
vMut	[0,01;1,0]	0,01	

- 1000 experimentos para cada seleção de parâmetros. Limite de 3.000.000 avaliações de fitness por experimento:
- Cada seleção de parâmetros levou cerca de 12 horas para cada algoritmo, utilizando 8 threads de um processador AMD Ryzen 1700 3 Ghz (lançado em 2017).

Funções fitness para GA e PSO

$$\min_{q_w} \sum_{z \in Z} |v_z - \bar{v}_z| \tag{27}$$

$$\min_{q_w} \sum_{z \in Z} (v_z - \bar{v}_z)^2 \tag{28}$$

$$\min_{q_w} \sum_{z \in Z} GEH(z) \tag{29}$$

Influência da função fitness na ODME (GA)

Métrica	Função objetivo	Mínimo	Média	Mediana	Máximo	Desvio padrão	p-value ANOVA
	Equação 27	10,86767	13,30929	12,76822	19,53625	1,945	
MAE	Equação 28	11,14313	14,31201	13,92296	19,17522	2,086	0,017
	Equação 29	10,34039	12,8993	12,54277	16,7681	1,723	
	Equação 27	97,79227	145,27042	131,43525	295,12815	47,618	
RMSE	Equação 28	99,9748	153,97209	146,645	260,3932	44,895	0,416
	Equação 29	89,36184	138,50392	122,89202	248,24941	42,793	
	Equação 27	0,30809	0,32847	0,32479	0,38935	0,018	
GEH	Equação 28	0,34937	0,3728	0,37158	0,40176	0,011	0,000
	Equação 29	0,28768	0,30949	0,30504	0,36069	0,018	
	Equação 27	0,98996	0,99136	0,99146	0,99228	$5,8 \cdot 10^{-4}$	
R^2 Arcos	Equação 28	0,99384	0,99415	0,99415	0,99441	$1, 2 \cdot 10^{-4}$	0,000
	Equação 29	0,98878	0,99068	0,9908	0,9915	$6, 1 \cdot 10^{-4}$	
	Equação 27	0,43062	0,77613	0,81555	0,88717	0,113	
R^2 ODM	Equação 28	0,51011	0,75684	0,77293	0,88481	0,105	0,485
	Equação 29	0,53249	0,79023	0,82798	0,90281	0,102	
	Equação 27	0,20769	8,6391	7,84774	31,85538	6,484	
TDD	Equação 28	0,81897	9,10822	7,17805	27,46652	6,886	0,948
	Equação 29	0,12278	8,62535	6,82644	25,82952	6,158	

Resultados

- Equação 28 superior em R2 Arcos
- Equação 29 superior em GEH e MAE (empate com Eq. 27)
- Empates em RMSE, R² ODM e TDD

Influência da função fitness na ODME (PSO)

Métrica	Função objetivo	Mínimo	Média	Mediana	Máximo	Desvio padrão	p-value ANOVA
	Equação 27	9,36434	11,63505	10,81801	21,98346	2,486	
MAE	Equação 28	10,73506	12,04275	11,52271	15,26974	1,320	0,321
	Equação 29	8,75937	11,23562	10,19799	17,25993	2,195	
	Equação 27	84,07547	151,39068	123,79863	475,95861	78,009	
RMSE	Equação 28	108,79722	137,97824	116,72612	267,79211	45,614	0,647
	Equação 29	88,36997	152,44179	117,49723	339,31932	72,466	
	Equação 27	0,27226	0,27808	0,27745	0,28872	0,004	
GEH	Equação 28	0,33203	0,33877	0,33847	0,34838	0,003	0,000
	Equação 29	0,26371	0,26762	0,26743	0,27409	0,002	
	Equação 27	0,9925	0,99301	0,99297	0,99352	$2,8 \cdot 10^{-4}$	
R^2 Arcos	Equação 28	0,99467	0,99474	0,99474	0,99478	$2, 2 \cdot 10^{-4}$	0,000
	Equação 29	0,99113	0,9916	0,99155	0,99222	$2,7 \cdot 10^{-4}$	
	Equação 27	0,23103	0,78012	0,84005	0,91617	0,149	
R^2 ODM	Equação 28	0,50981	0,80535	0,85714	0,86741	0,102	0,605
	Equação 29	0,37854	0,77007	0,85442	0,91178	0,161	
	Equação 27	0,12483	6,69107	4,23159	41,0173	8,025	$\overline{}$
TDD	Equação 28	0,89732	5,05938	4,95665	14,014	3,148	0,595
	Equação 29	0,04891	5,89024	3,41138	25,68239	6,343	

Resultados

- Equação 28 superior em R2 Arcos
- Equação 29 superior em GEH
- Empates nas métricas relacionadas à matriz OD

Network Sensor Location Problem (NSLP)

Definir o número e localização dos sensores. A proposta é utilizar nove regras, segundo Ye e Wen (2017).

- R1, Cobertura de todos os pares OD;
- R2, Fração de fluxo OD em relação ao arco (q_w/v_a) ;
- R3, Cobertura de rotas;
- R4, Maximização de fluxo (v_a);
- R5, Fração de fluxo OD em relação a rotas (p_{wa}) ;
- R6, Maximização de rotas;
- R7, Maximização de pares OD;
- R8, Não redundância dos arcos;
- R9, Minimização do número de sensores.

Influência da alocação de sensores na ODME (GA)

Tabela 29: Resultados do GA para	a critérios de escolha de sensores, para o Porto
----------------------------------	--

Tabela	20. Itesuitados c	io GA pai	a criterios	de esconia	i de senso	res, par	a o i oi to
Métrica	Critério de escolha	Mínimo	Média	Mediana	Máximo	Desvio padrão	p-value ANOVA
	Menos rotas	30,86833	37.05226	35,24839	47.15096	4,493	111111111111111111111111111111111111111
MAE	Mais rotas	12,2536	15.83797	15,8158	20,99185	2,474	0.000
	Mais fluxo	17,96483	21.39172	20,99966	29.81795	2,533	0,000
	Mais fluxo/rotas	13,75931	19,07086	18,55761	23,67368	2,326	
	Menos rotas	412.22141	496,39805	485,61495	584.72518	47,133	
RMSE	Mais rotas	108,68122	177,44101	166,46044	292,95476	55,379	0.000
	Mais fluxo	137,17443	201,78858	190,50677	344,72919	48,583	· '
	Mais fluxo/rotas	105,75229	195,70995	187,65252	310,59334	53,148	
	Menos rotas	0,05869	0,47947	0,49546	0,61922	0,103	
R^2	Mais rotas	0,45407	0,71021	0,73401	0.86673	0,124	$1,6 \cdot 10^{-10}$
ODM	Mais fluxo	0,30913	0,61991	0,64508	0,78369	0,114	
	Mais fluxo/rotas	0,38355	0,63487	0,64399	0,8642	0,127	
	Menos rotas	55,89925	81,94593	79,09295	127,95449	16,697	
TDD	Mais rotas	1,9005	$13,\!18891$	9,84184	32,95365	8,554	0,000
	Mais fluxo	9,11579	22,97202	22,52626	45,90968	7,605	
	Mais fluxo/rotas	5,58078	18,54723	15,56353	36,59141	8,884	

<u>Re</u>sultados

- "Mais rotas" superior em MAE, R2 ODM e TDD
- Empate em RMSE entre três critérios de escolha

Influência da alocação de sensores na ODME (PSO)

Tabela 30: Resultados do PSO para critérios de escolha de sensores, para o Porto

Métrica	Critério de escolha	Mínimo	Média	Mediana	Máximo	Desvio padrão	p-value ANOVA
	Menos rotas	36,11661	58,35329	57,41902	81,62047	11,599	MINOVI
MAE	Mais rotas	11,30395	14,5663	14,05105	20,23376	2,275	0,000
	Mais fluxo	16,98548	21,42774	21,33242	29,16685	3,103	
	Mais fluxo/rotas	14,35948	18,20084	18,18849	22,62569	2,281	
	Menos rotas	458,45051	666,43096	662,50109	829,64584	107,921	
RMSE	Mais rotas	108,27874	165,61693	144,16464	347,30729	59,844	0,000
	Mais fluxo	142,59114	237,54566	223,74847	376,60357	69,416	
	Mais fluxo/rotas	120,72471	191,41823	167,19605	315,60038	60,694	
	Menos rotas	0,00766	0,12384	0,13682	0,29446	0,084	
R^2	Mais rotas	0,40654	0,75441	0,80823	0,86851	0,123	0,000
ODM	Mais fluxo	0,32226	0,57129	0,58536	0,78829	0,142	
	Mais fluxo/rotas	0,4088	0,66846	0,7203	0,83572	0,134	
	Menos rotas	20,0167	129,81258	123,32993	226,2199	47,263	
TDD	Mais rotas	0,17986	5,6951	4,72531	28,39905	5,420	0,000
	Mais fluxo	1,47423	11,95243	9,22528	43,7242	10,299	
	Mais fluxo/rotas	0,07921	6.29968	3,12204	20,11625	5,705	

Resultados

- "Mais rotas" superior em MAE e R2 ODM
- Empate em RMSE e TDD: "Mais rotas" e "Mais fluxo/rotas"

Influência da alocação de sensores na ODME (MILP e LS)

Tabela 31: Resultados do MILP para critérios de escolha de sensores, Porto

	Menos rotas	Mais rotas	Mais fluxo	Mais fluxo/rotas
MAE	16,378	9,16	10,86	10,773
RMSE	376,61	99,003	$97,\!506$	107,435
R^2 ODM	0,738	0,894	0,892	0,875
TDD	0,691	2,839	5,459	2,635

Tabela 32: Resultados do LS para critérios de escolha de sensores, Porto

	Menos rotas	Mais rotas	Mais fluxo	Mais fluxo/rotas
MAE	13,671	16,259	24,589	19,651
RMSE	238,184	164,606	327,058	191,925
R^2 ODM	0,809	0,753	0,437	0,694
TDD	8,731	2,096	4,899	2,616

- "Mais rotas" superior em MAE e R2 ODM para MILP
- "Mais rotas" superior para RMSE e TDD para LS

Comparação das técnicas de ODME

Tabela 33: Comparação das técnicas de estimação da matriz OD para Porto

Tabel	Tabela 33. Comparação das tecinicas de estimação da matriz OD para 1 orto									
Métrica	Técnica	Mínimo	Média	Mediana	Máximo	Desvio	p-value			
						padrão	ANOVA			
	PSO	8,75937	11,23562	10,19799	17,25993	2,195				
MAE	GA	10,34039	12,8993	12,54277	16,7681	1,723	0,000			
	LS	16,25877	16,25877	16,25877	16,25877	0				
	MILP	9,15974	9,15974	9,15974	9,15974	0				
	PSO	88,36997	152,44179	117,49723	339,31932	72,466				
RMSE	GA	89,36184	138,50392	122,89202	248,24941	42,793	$9,7 \cdot 10^{-8}$			
	LS	164,60557	164,60557	164,60557	164,60557	0				
	$_{ m MILP}$	99,00264	99,00264	99,00264	99,00264	0				
	PSO	0,26371	0,26762	0,26743	0,27409	0,002				
GEH	GA	0,28768	0,30949	0,30504	0,36069	0,018	0,000			
	LS	0,97954	0,97954	0,97954	0,97954	0				
	MILP	0,27001	0,27001	0,27001	0,27001	0				
	PSO	0,99113	0,9916	0,99155	0,99222	$2,7 \cdot 10^{-4}$				
R^2	GA	0,98878	0,99068	0,9908	0,9915	$6, 1 \cdot 10^{-4}$	0,000			
Arcos	LS	0,95856	0,95856	0,95856	0,95856	0				
	MILP	0,99328	0,99328	0,99328	0,99328	0				
	PSO	0,37854	0,77007	0,85442	0,91178	0,161				
R^2	GA	0,53249	0,79023	0,82798	0,90281	0,102	$2,0\cdot 10^{-7}$			
ODM	LS	0,75296	0,75296	0,75296	0,75296	0				
	MILP	0,89398	0,89398	0,89398	0,89398	0				
	PSO	0,04891	5,89024	3,41138	25,68239	6,343				
TDD	GA	0,12278	8,62535	6,82644	25,82952	6,158	$9.3 \cdot 10^{-8}$			
	LS	2,09616	2,09616	2,09616	2,09616	0				
	MILP	2,83939	2,83939	2,83939	2,83939	0				

Comparação das técnicas de ODME

- MILP superior em MAE, RMSE, R2 ODM e R2 Arcos
- PSO superior em GEH
- LS superior em TDD
- MILP superior em 3 de 4 métricas para ODM
- Empate 1x1 entre PSO e MILP para métricas de arcos
- Entre as 6 métricas, MILP é superior em 4.

Influência do número de sensores na ODME

- MAE e RMSE menores para maior número de sensores
- PSO mais próximo de MILP com mais sensores

Influência do número de sensores na ODME

- R2 ODM com comportamento similar a RMSE
- TDD com ponto mínimo para MILP e LS em 750 sensores
- PSO e GA com menor TDD para mais sensores

Influência do número de sensores na ODME

- GEH menor para menos sensores para PSO, GA e MILP
- R2 Arcos com valores muito próximos para PSO, GA e MILP

Estudo de caso de Curitiba

- Definição da Assigment Matrix;
- Configuração dos algoritmos GA e PSO;
- Influência da função fitness na ODME;
- Comparação das técnicas de OMDE.

Descrição do estudo de caso

- Problema pré-definido pelo IPPUC usando o software PTV VISUM 17;
- Rede fechada com 191 nós e 594 arcos;
- 29 nós de origem ou destino nas fronteiras. 183 pares OD válidos;
- 71 sensores nos arcos.

Definição da Assignment Matrix (VISUM)

Problema: Forma como veículos transitam na rede é desconhecida

- Qual o conjunto de rotas para cada par OD?
- Qual a probabilidade de uso de arco por par OD?

Solução através do equilíbrio de usuário

- Motoristas buscam minimizar a duração de suas viagens;
- Motoristas têm conhecimento pleno do ambiente;
- Equilíbrio de tempo de viagem entre todas as rotas de um mesmo par OD.

Saída: Probabilidades de uso de arco por par OD

• (Traffic) Assignment matrix: $ns \times np$

T-Flow Fuzzy (VISUM)

- T-Flow Fuzzy é uma ferramenta integrada ao VISUM
- Uma sequência de procedimentos no VISUM é utilizada para obtenção da matriz OD

Algorithm 3 Pseudo-código da aplicação do T-Flow Fuzzy

- 1: Matriz OD resposta é inicialmente a matriz OD semente
- 2: Procedimento de equilíbrio de usuário para definir a assignment matrix
- 3: t=1
- 4: while $t \leq 5$ do
- 5: Atualização da matriz OD resposta através do *T-Flow Fuzzy*
- 6: Procedimento de equilíbrio de usuário para redefinir a assignment matrix
- 7: Reduz os desvios máximos aceitos nos sensores
- 8: t = t + 1
- 9: end while

Configuração dos algoritmos GA e PSO (iRace)

Tabela 34: Seleção de parâmetros do PSO, para Curitiba

Parâmetro	Intervalo avaliado	Valor		
rarametro	Intervalo avallado	selecionado		
S	[20;2500]	1404		
t_{pso}	3000000/s	2136		
c1	[0,01;1,0]	0,44		
c2	[0,01;1,0]	0,89		
w_i	[0,01;1,0]	0,90		
w_f	[0,01;1,0]	0,07		
$reset_t$	[20,500]	71		

Tabela 35: Seleção de parâmetros do GA, para Curitiba

Parâmetro	Intervalo avaliado	Valor	
rarametro		selecionado	
pop	[20,1500]	50	
t_{ga}	3000000/pop	40000	
P_c	[0,01;1,0]	0,85	
P_m	[0,01;1,0]	0,34	
vMut	[0,01;1,0]	0,10	

- 1000 experimentos para cada seleção de parâmetros. Limite de 3.000.000 avaliações de fitness por experimento:
- Cada seleção de parâmetros levou cerca de 12 horas para cada algoritmo, utilizando 8 threads de um processador AMD Ryzen 1700 3 Ghz (lançado em 2017).

Funções fitness para GA e PSO

$$\min_{q_w} \sum_{z \in Z} |v_z - \bar{v}_z| \tag{27}$$

$$\min_{q_w} \sum_{z \in Z} (v_z - \bar{v}_z)^2 \tag{28}$$

$$\min_{q_w} \sum_{z \in Z} GEH(z) \tag{29}$$

Influência de função fitness

Tabela 36: Resultados do GA para diferentes funções fitness, para Curitiba

Métrica	Função objetivo	Mínimo	Média	Mediana	Máximo	Desvio padrão	p-value ANOVA
	Equação 27	3,28577	3,90071	3,84033	5,29251	0,377	
GEH	Equação 28	2,31036	2,40437	2,39622	2,4810	0,051	0,000
	Equação 29	3,03151	3,61156	3,52315	4,89015	0,417	
	Equação 27	0,71831	0,77418	0,77465	0,83099	0,025	
pGEH5	Equação 28	0,85915	0,88357	0,88732	0,90141	0,011	0,000
	Equação 29	0,70423	0,76714	0,77465	0,8169	0,033	
	Equação 27	0,82842	0,88432	0,88854	0,91597	0,021	
R^2	Equação 28	0,9572	0,95914	0,95947	0,96017	$8,0 \cdot 10^{-4}$	0,000
Arcos	Equação 29	0,82246	0,88262	0,88887	0,9090	0,21	

Tabela 37: Resultados do PSO para diferentes funções fitness, para Curitiba

rabela of reconstatos do reso para ancrences rangoes juness, para currenta							
Métrica	Função	Mínimo	Média	Mediana	Máximo	Desvio	p-value
171001100	objetivo		Wiccia	modiana	mouni	padrão	ANOVA
	Equação 27	2,11188	2,69738	2,6456	3,39812	0,354	
GEH	Equação 28	2,0017	2,02524	2,01876	2,09212	0,020	0,000
	Equação 29	2,10559	2,4113	2,40728	2,80228	0,187	
	Equação 27	0,80282	0,84319	0,84507	0,88732	0,023	
pGEH5	Equação 28	0,88732	0,89202	0,88732	0,90141	0,006	0,000
	Equação 29	0,80282	0,84178	0,84507	0,90141	0,024	
	Equação 27	0,88309	0,92709	0,92924	0,95214	0,017	
R^2	Equação 28	0,96283	0,96339	0,96349	0,96362	$2, 2 \cdot 10^{-4}$	0,000
Arcos	Equação 29	0,88017	0,92435	0,9282	0,94543	0,013	

Influência de função fitness

- Mesma função fitness escolhida (Equação 28), independente de métrica (GEH, pGEH5 ou R² Arcos) ou algoritmo (GA ou PSO);
- Função fitness (Equação 28) que foi a segunda opção para o estudo de caso do Porto.

Comparação das técnicas de ODME

Tabela 38: Comparação das técnicas de estimação da matriz OD para Curitiba

	•					Desvio	p-value
Métrica	Técnica	Mínimo	Média	Mediana	Máximo		
						padrão	ANOVA
	PSO	2,0017	2,02524	2,01876	2,09212	0,020	
	GA	2,31036	2,40437	2,39622	2,481	0,051	
GEH	LS	7,14832	7,14832	7,14832	7,14832	0	0,000
	MILP	1,83757	1,83757	1,83757	1,83757	0	
	VISUM	1,861	1,861	1,861	1,861	0	
	PSO	0,88732	0,89202	0,88732	0,90141	0,006	
	GA	0,85915	0,88357	0,88732	0,90141	0,011	
pGEH5	LS	0,42254	$0,\!42254$	$0,\!42254$	0,42254	0	0,000
	MILP	0,87324	0,87324	0,87324	0,87324	0	
	VISUM	0,73239	0,73239	0,73239	0,73239	0	
	PSO	0,96283	0,96339	0,96349	0,96362	$2, 2 \cdot 10^{-4}$	
R^2	GA	0,9572	0,95914	0,95947	0,96017	$8,0\cdot 10^{-5}$	
Arcos	LS	0,79595	0,79595	0,79595	0,79595	0	0,000
	MILP	0,95345	0,95345	0,95345	0,95345	0	
	VISUM	0,91047	0,91047	0,91047	0,91047	0	

Comparação das técnicas de ODME

- MILP superior na métrica GEH
- **PSO** superior nas métricas R^2 Arcos e pGEH5
- PSO superior em 2 de 3 métricas, para arcos
- Não é possível aplicar métricas ODM
- Somente PSO, GA e MILP obtiveram bons valores pGEH5

Fluxo de veículos na rede viária (PSO)

Conclusão

Conclusão

- MILP com melhor desempenho para Porto, nas métricas para matriz OD. Empate para métricas de arcos com PSO.
- PSO com melhor desempenho para Curitiba;
- Função fitness afeta o desempenho do GA e PSO, mas está mais relacionada às métricas e ao problema do que à decisão entre GA e PSO;
- Para Porto, mesmo critério de escolha de sensores independente da técnica utilizada. Número de sensores afeta as técnicas em intensidades diferentes;
- Necessidade de se utilizar várias métricas para compreender a estimação da matriz OD. As métricas são complementares.

Conclusão

Trabalhos futuros

- Inclusão das técnicas de inferência bayesiana e máxima verossimilhança na comparação;
- Uso de dados de veículos sonda e map matching para obter uma matriz OD semente, bem como probabilidades de uso de arco por par OD, para estimação da matriz OD em Curitiba;
- Uso de dados de **veículos sonda** e *map matching* como um auxílio para o **NSLP** em redes viárias reais, como de Curitiba.

Agradecimentos

- Um agradecimento ao Engenheiro Francisco Caron Malluceli, que disponibilizou dados para o estudo de caso de Curitiba, representando o IPPUC.
- Um agradecimento ao projeto Vinnova/KTH, graças ao qual ocorreu o Summer School em Estocolmo/Suécia.

Obrigado!

Iuciano.pando@ifpr.edu.br Iuders@utfpr.edu.br