МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский Авиационный Институт» (Национальный Исследовательский Университет)

Институт: №8 «Информационные технологии и прикладная математика» Кафедра: 806 «Вычислительная математика и программирование»

Курсовая работа по курсу «Вычислительные системы» І семестр Задание 4 «Процедуры и функции в качестве параметров»

Группа:	М8О-107Б-20
Студент:	Алапанова Эльза Халилевна
Преподаватель:	Зайцев Валентин Евгеньевич
Оценка:	
Дата:	

Содержание

Постановка задачи	3
Теоретическая часть	4
Метод половинного деления	
Метод итераций	4
Метод Ньютона	4
Проверка условий сходимости	5
Описание алгоритма	7
Описание программы	8
Использованные в программе структуры данных	8
Использованные в программе переменные	8
Использованные в программе функции	8
Программа	10
Входные и выходные данные	13
Входные данные	13
Выходные данные	13
Протокол исполнения и тесты	14
Тест #1	14
Тест #2	14
Тест #3	14
Тест #4	14
Вывод	16
Список литературы	17

Постановка задачи

Составить программы на языке Си с процедурами решения трансцендентных алгебраических уравнений различными численными методами (итераций, Ньютона и половинного деления — дихотомия). Нелинейные уравнения оформить как параметры-функции, разрешив относительно неизвестной величины в случае необходимости. Применить каждую процедуру к решению двух уравнений, заданных двумя строками таблицы, начиная с варианта с заданным номером. Если метод неприменим, дать математическое обоснование и графическую иллюстрацию, например, с использованием gnuplot.

Вариант 13 Уравнение $x * tgx - \frac{1}{3} = 0$ Отрезок [0.2, 1]

Теоретическая часть

Метод половинного деления

Метод половинного деления — простейший численный метод для решения нелинейных уравнений вида f(x)=0. Предполагается только непрерывность функции f(x). Для начала итераций необходимо знать отрезок $[x_L, x_R]$ значений x, на концах которого функция принимает значения противоположных знаков. Это можно проверить так: $f(x_L) * f(x_R) < 0$. Из непрерывности следует, что на отрезке существует хотя бы один корень уравнения. Далее нужно найти значение x_M середины отрезка $x_M = \frac{x_L + x_R}{2}$. Вычислим значение функции $f(x_M)$ в середине отрезка. Если значения функции в середине отрезка и на левой границе разные $f(x_M) * f(x_L) < 0$, то нужно переместить правую границу в середину отрезка, иначе левую границу в середину отрезка. Затем нужно повторить алгоритм начиная с вычисления значения x_M . Алгоритм заканчивается тогда, когда $f(x_M)$ =0 либо x_L = x_R .

Метод итераций

Метод итераций — довольно простой численный метод решения уравнений. Метод основан на принципе сжимающего отображения, который применительно к численным методам в общем виде так же может называться методом простой итерации. Идея состоит в замене исходного уравнения f(x)=0 на эквивалентное ему $x=\phi(x)$. При чём должно выполнятся условие сходимости $|\phi^{(1)}(x)|<0$ на всём отрезке [a,b]. Итерации начинаются со значения x_M середины отрезка. Однако $\phi(x)$ может выбрано неоднозначно. Сохраняет корни уравнения такое преобразование: $\phi(x) = x - \lambda_0 * f(x)$. Здесь λ_0 — постоянная, которая не зависит от количества шагов. В данном случае мы возьмём $\lambda_0 = \frac{1}{f^{(1)}(x_M)}$, что приводит к простому методу одной касательной и имеет условие сходимости $\lambda_0 * f^{(1)}(x) > 0$. Тогда итерационный процесс выглядит так: $x_{k+1} = x_k - \lambda_0 * f(x_k)$. Условием окончания итераций является достижение нужной точности между предыдущим и следующим значением.

Метод Ньютона

Метод Ньютона — итерационный численный метод нахождения корня заданной функции, который является частным случаем метода итераций. А именно за λ_0 берётся значение производной в каждой новой точке. Тогда итерационный процесс имеет вид $x_{k+1} = x_k - \frac{f(x_k)}{f^{(1)}(x_k)}$. Условие окончания итераций и начальное значение абсолютно такие же, как и в методе итерации.

Условие сходимости метода можно записать как $|f(x)*f^{(2)}(x)| < (f^{(1)}(x))^2$.

Проверка условий сходимости

Пусть уравнение $f_1(x)$. Функция непрерывна на заданном промежутке, значит метод дихотомии применим к ней. Найдём производную $f_1^{(1)}(x)$ для заданной функций:

$$f_1^{(1)}(x) = tgx + \frac{x}{\cos^2(x)}$$

$$\lambda_1 = f1^{(1)}(x_M) = 1.564962...$$

Проверим условия сходимости для метода итераций, построив графики производных сжимающих отображений:

$$y = \lambda_1 * f_1^{(1)}(x)$$

Уравнение удовлетворяет условию сходимости метода итераций.

Проверим условия сходимости для метода Ньютона, построив графики левых и правых частей неравенства.

$$y_1 = \left| f_1(x) * f_1^{(2)}(x) \right|$$

$$y2 = \left(f_1^{(1)}(x)\right)^2$$

Уравнение удовлетворяет условию сходимости метода Ньютона.

Описание алгоритма

Рассмотрим алгоритм решения. Сперва нужно найти машинное эпсилон, на котором будет основываться точность вычисления. Это можно сделать просто деля 1 на 2 за $O(\log(10^{16}))\sim O(1)$. Опишем каждую из функций решения уравнений разными методами. Для метода дихотомии достаточно просто выполнять итерации, пока $x_R-x_L>\epsilon$. Корень с помощью такого метода рассчитывается примерно за $O(\log_2 10^k)\sim O(k*\log_2 10)$. Все функции, их производные и сжимающие отображения зададим в виде функций-параметров. Алгоритмы для решения уравнений методом итерации и Ньютона реализованы так же, как и было описано в теории. Невозможно оценить из сложность, так как она зависит от самой функции. Будем сохранять все корни и сразу же из выводить, не затрачивая память на новые переменные.

Описание программы

Использованные в программе структуры данных

Название структуры	Переменные в структуре	Смысл структуры
root_x	int steps double x	steps – то самое N, число итераций, затраченное на вычисление корня. х – то самое х ₀ , искомое значение корня

Использованные в программе переменные

Название переменной	Тип переменной	Смысл переменной
k	int	То самое число K, используемое для вычисления точности. Так же обозначает, что вывод должен быть с точность до K знаков после запятой
e0	double	То самое машинное эпсилон. В случае с double ε =2.20 * 10 ⁻¹⁶
acc	double	Точность вычислений. Именно с этой переменной мы будем сравнивать ответы A_1 и A_2
x0	root	Значение корня, которое будут возвращать функции после вычисления.

Использованные в программе функции

Название функции	Тип возвращаемой переменной	Смысл функции
square	double	Возвращает квадрат числа
do_nothing	double	Копирует значение в память, где double выделяется 64 бита, а не 80 бит
solve_binary_search	root	Решение уравнения методом половинного деления. Принимает f — функцию-параметр $f(x)$, $1-x_L$, $r-x_R$, k и асс

solve_iteration	root	Решение уравнения методом итерации. Принимает f — функцию-параметр $\phi(x)$, $x0$ — x_M , k и асс
solve_newton	root	Решение уравнения методом Ньютона. Принимает f — функцию-параметр $f(x)$, derivative_ f — функцию-параметр $f^{(1)}(x)$, $x0 - x_M$, k и асс
f13	double	To самое $f_1(x)$
squeeze_f13	double	To самое $\varphi_1(x)$
d_dx_f13	double	To самое $f_1^{(1)}(x)$

Программа

```
#include <math.h>
#include <stdio.h>
typedef struct root_x root;
struct root_x{
      double x;
      int steps;
};
double square(double x){
      return x*x;
}
double do_nothing(double x){
      return x;
}
root solve_binary_search(double f(double), double I, double r, int k, double acc){
      int step=0;
      double m;
      while(r-l>acc){
            step++;
            m=(l+r)/2.0;
            if(f(m)*f(I)<0){
                   r=m;
            }else{
                   I=m;
            }
      root ans={m, step};
      return ans;
}
root solve_iteration(double f(double), double x0, int k, double acc){
      int step=0;
      double cur=x0;
```

```
double prev=cur+1;
      while(fabs(cur-prev)>acc){
            prev=cur;
            cur=f(prev);
            step++;
      }
      root ans={cur, step};
      return ans;
}
root solve_newton(double f(double), double derivative_f(double), double x0, int k,
double acc){
      int step=0;
      double cur=x0;
      double prev=cur+1;
      while(fabs(cur-prev)>acc){
            prev=cur;
            cur=prev-f(prev)/derivative f(prev);
            step++;
      }
      root ans={cur, step};
      return ans;
}
double f13(double x){
      return x*tan(x)-1.0/3.0;
}
double squeeze_f13(double x){
      return x-f13(x)/1.564962;
}
double d dx f13(double x){
      return tan(x)+x/square(cos(x));
}
int main(){
      int k;
      scanf("%d", &k);
      double e0=1.0;
```

```
while(do_nothing(1.0+e0/2.0)>1.0){
        e0=e0/2.0;
}
printf("Machine epsilon equals %.8e\n", e0);
printf("-----\n");
double acc=e0*pow(10, 16-k);
root x0;

printf("Answer for x*tg(x)-1/3=0\n");
x0=solve_binary_search(f13, 0.2, 1.0, k, acc);
printf("%.*f | %d\n", k, x0.x, x0.steps);

x0=solve_iteration(squeeze_f13, (0.2+1.0)/2.0, k, acc);
printf("%.*f | %d\n", k, x0.x, x0.steps);

x0=solve_newton(f13, d_dx_f13, (0.2+1.0)/2.0, k, acc);
printf("%.*f | %d\n", k, x0.x, x0.steps);

return 0;
```

}

Входные и выходные данные

Входные данные

Единственная строка содержит одно целое число K $(0 \le K \le 16)$ — коэффициент для точности вычисления искомого корня.

Выходные данные

Программа должна вывести значение машинного эпсилон, а затем 6 строк. В каждой строке необходимо вывести искомое значение корня x_0 с точность K знаков после запятой и N — число итераций. В первых трёх строках для первого уравнения, а в следующих трёх для другого. Следует выводить сначала значения, полученные методом дихотомии, потом методом итерации, затем методом Ньютона.

Протокол исполнения и тесты

Тест #1

Ввод:
3 Вывод: Machine epsilon equals 2.22044605e-016
Answer for x*tg(x)-1/3=0 0.548 9 0.547 3 0.547 3
Тест #2 Ввод: 6 Вывод:
Machine epsilon equals 2.22044605e-016
Answer for x*tg(x)-1/3=0 0.547160 19 0.547161 6 0.547161 4
Тест #3 Ввод: 10 Вывод: Machine epsilon equals 2.22044605e-016
Answer for x*tg(x)-1/3=0 0.5471607571 32 0.5471607573 11 0.5471607573 5
Тест #4 Ввод: 16 Вывод: Маchine epsilon equals 2.22044605e-016
Answer for $x*tg(x)-1/3=0$

0.5471607572603301 | 52 0.5471607572603301 | 17 0.5471607572603300 | 5

Вывод

В работе описаны идеи и принципы трёх численных методов: дихотомии, итераций и Ньютона. Проверены условия сходимости данных уравнений методам и проведены нужные вычисления для использования методов. Составлен алгоритм решения уравнений, на основе которого составлена программа на языке Си. Описан формат ввода и вывода, проведено тестирование программы, составлен протокол исполнения программы.

Список литературы

- 1. Метод бисекции [Электронный ресурс] URL: https://ru.wikipedia.org/wiki/Meтод_бисекции
- 2. Метод Ньютона [Электронный ресурс] URL: https://ru.wikipedia.org/wiki/Метод Ньютона
- 3. Метод простой итерации [Электронный ресурс] URL: https://ru.wikipedia.org/wiki/Метод простой итерации