Panduan Analisis Spasial Curah Hujan Tahunan Menggunakan Google Earth Engine

Disusun oleh Defani Arman Alfitriansyah 15 Oktober 2025

Daftar Isi

Daftar Isi

1	Abstrak	3			
2	Metodologi Analisis				
	2.1 Tahap 1: Definisi Wilayah Kajian (Area of Interest - AOI)	4			
	2.2 Tahap 2: Sentralisasi Tampilan Peta	5			
	2.3 Tahap 3: Akuisisi dan Agregasi Data Citra	5			
	2.4 Tahap 4: Definisi Parameter Visualisasi	6			
	2.5 Tahap 5: Penambahan Layer ke Peta	8			
3	Konstruksi Legenda Kartografis Dinamis 3.1 Tahap 6: Alur Kerja Pembuatan Legenda	8			
4	Skrip Lengkap	9			

1 Abstrak

Panduan ini menyajikan alur kerja metodologis untuk analisis curah hujan tahunan menggunakan platform Google Earth Engine (GEE). GEE merupakan platform komputasi awan yang dirancang untuk analisis geospasial berskala planet.¹ Fundamental platform ini adalah paradigma komputasi sisi server (*server-side computing*), di mana instruksi yang ditulis oleh pengguna dieksekusi pada infrastruktur Google, bukan pada mesin lokal. Hal ini memungkinkan pemrosesan data dalam volume petabyte secara efisien. Analisis ini menggunakan dataset CHIRPS Daily² untuk studi kasus di Provinsi Jawa Barat, mencakup tahapan akuisisi data, pra-pemrosesan, agregasi temporal, visualisasi, hingga pembuatan legenda kartografis dinamis.

Konsep Kunci Seluruh GEE API dibangun di atas konsep Objek dan Method.

- **Objek**: Representasi wadah data dalam GEE. Contohnya ee. Image (citra tunggal), ee. ImageCollection (koleksi citra), dan ee. FeatureCollection (koleksi data vektor).
- **Method**: Merupakan fungsi atau operasi yang dapat diterapkan pada sebuah objek, diakses melalui notasi titik (misal: nama0bjek.namaMethod()).

Pemahaman terhadap kedua konsep ini esensial untuk menyusun alur kerja analisis yang efektif di dalam platform GEE.

¹N. Gorelick et al., "Google Earth Engine: Planetary-scale geospatial analysis for everyone," *Remote Sensing of Environment* 202 (2017): 18-27.

²C. Funk et al., "The climate hazards infrared precipitation with stations - A new environmental record for monitoring extremes," *Scientific Data* 2, no. 150066 (2015).

2 Metodologi Analisis

Berikut adalah dekomposisi metodologis dari setiap tahapan dalam skrip analisis.

2.1 Tahap 1: Definisi Wilayah Kajian (Area of Interest - AOI)

Tahap inisial ini bertujuan untuk mendefinisikan batas geografis analisis guna membatasi lingkup komputasi pada wilayah relevan, yaitu Provinsi Jawa Barat.

```
var aoi = ee.FeatureCollection('FAO/GAUL/2015/level1')
    .filter(ee.Filter.eq('ADM1_NAME', 'Jawa Barat'))
    .geometry();
```

Listing 1: Mendefinisikan AOI.

Komponen Kode	Jenis Komponen	Deskripsi Teknis
var aoi	Deklarasi Variabel	Deklarasi variabel aoi untuk menyimpan objek geometri hasil operasi.
=	Operator Assignment	Operator yang menugaskan hasil eksekusi di sisi kanan ke variabel di sisi kiri.
ee.FeatureCollecti	i ∞ bjek GEE	Konstruktor untuk memanggil koleksi fitur vektor dari katalog data GEE.
('')	Argumen (String ID)	String ID unik 'FAO/GAUL/2015/level1' yang merujuk pada dataset Global Administrative Unit Layers.
•	Operator Titik	Operator untuk mengakses method yang dimiliki oleh objek sebelumnya.
.filter()	Method	Method untuk menyaring koleksi berdasarkan kriteria yang didefinisikan.
ee.Filter.eq()	Kriteria Filter	Mendefinisikan filter kesetaraan (equals) untuk mencocokkan nilai atribut.
'ADM1_NAME',	Argumen	Argumen terdiri dari nama kolom
'Jawa Barat'	Filter	atribut ('ADM1_NAME') dan nilai yang dicari ('Jawa Barat').
.geometry()	Method	Method untuk mengekstraksi hanya komponen geometri dari fitur dan mengabaikan atribut lainnya.
;	Akhir Statement	Terminator standar untuk sebuah statement dalam sintaks JavaScript.

2.2 Tahap 2: Sentralisasi Tampilan Peta

Tahap ini menyesuaikan viewport peta pada antarmuka GEE agar berpusat pada AOI yang telah didefinisikan.

```
Map.centerObject(aoi, 8);
```

Listing 2: Sentralisasi peta.

Komponen Kode	Jenis Komponen	Deskripsi Teknis
Мар	Objek Global GEE	Objek bawaan yang merepresentasikan panel peta interaktif pada GEE.
•	Operator Titik	Operator akses method.
centerObject	Method	Method untuk mengatur pusat dan level zoom peta berdasarkan objek masukan.
()	Panggilan Method	Sintaks pemanggilan method dengan argumen di dalamnya.
aoi	Argumen Pertama	Variabel objek geometri yang akan dijadikan pusat tampilan.
,	Pemisah Argumen	Karakter pemisah antar argumen.
8	Argumen Kedua	Nilai integer yang merepresentasikan level zoom peta.
;	Akhir Statement	Terminator statement.

2.3 Tahap 3: Akuisisi dan Agregasi Data Citra

Tahap ini merupakan inti dari analisis, mencakup pemanggilan koleksi data, penyaringan temporal, agregasi menjadi data komposit tunggal, dan pemotongan spasial (clipping). Data ini krusial untuk berbagai analisis hidrologis dan agrikultur, seperti sebagai indikator awal potensi kekeringan maupun banjir.³

```
var citraCurahHujan = ee.ImageCollection("UCSB-CHG/CHIRPS/DAILY")
    .filter(ee.Filter.date('2023-01-01', '2023-12-31'))
    .sum()
    .clip(aoi);
```

Listing 3: Akuisisi, filter, agregasi, dan kliping data.

³M. H. I. Dore, "Climate change and changes in global precipitation patterns: What do we know?," *Environment International* 31, no. 8 (2005): 1167-1181.

Komponen Kode	Jenis Komponen	Deskripsi Teknis
var citra	Deklarasi Variabel	Mendeklarasikan variabel untuk menyimpan objek ee. Image hasil akhir.
ee.ImageCollection	Objek GEE	Konstruktor untuk memanggil seri waktu data citra raster.
("")	Argumen (ID Dataset)	ID unik "UCSB-CHG/CHIRPS/DAILY" untuk dataset CHIRPS Daily.
.filter()	Method	Method untuk menyaring koleksi citra.
ee.Filter.date	Filter Temporal	Mendefinisikan filter berdasarkan rentang tanggal yang terdapat pada metadata citra.
('', '')	Argumen Tanggal	Mendefinisikan rentang tanggal dari 1 Januari 2023 hingga 31 Desember 2023.
.sum()	Method Reducer	Method agregasi yang menjumlahkan nilai piksel dari semua citra dalam koleksi, menghasilkan satu citra komposit.
.clip(aoi)	Method Geoprosesing	Method untuk memotong data raster citra komposit menggunakan poligon aoi sebagai batas.
;	Akhir Statement	Terminator statement.

2.4 Tahap 4: Definisi Parameter Visualisasi

Tahap ini mendefinisikan parameter untuk rendering data raster, termasuk rentang nilai dan palet warna untuk simbologi .

```
var parameterVisual = {
  min: 1000.0,
  max: 5000.0,
  palette: [
    '#ffffcc', '#ffeda0', '#fed976', '#feb24c',
    '#fd8d3c', '#fc4e2a', '#e31a1c', '#b10026'
  ]
};
```

Listing 4: Mendefinisikan parameter visualisasi.

Komponen Kode	Jenis Komponen	Deskripsi Teknis
var parameter	Deklarasi	Mendeklarasikan variabel untuk
	Variabel	menyimpan objek JavaScript.
$\{ \dots \}$	Objek	Objek literal yang berisi pasangan
	JavaScript	kunci-nilai sebagai parameter.
min:	Kunci (Key)	Kunci untuk mendefinisikan nilai
		minimum data.
1000.0	Nilai (Value)	Nilai curah hujan (mm) terendah
		dalam rentang visualisasi.
max:	Kunci (Key)	Kunci untuk mendefinisikan nilai
		maksimum data.
5000.0	Nilai (Value)	Nilai curah hujan (mm) tertinggi
		dalam rentang visualisasi.
palette:	Kunci (Key)	Kunci yang nilainya adalah daftar
		(Array) kode warna.
[]	Array	Array berisi daftar string kode warna
	JavaScript	heksadesimal.

Visualisasi Palet Warna Palet warna sekuensial ini merepresentasikan curah hujan dari rendah (kuning) ke tinggi (merah tua).

Warna	Keterangan
	Rentang nilai terendah ($\leq 1000 \text{ mm/tahun}$).
	Gradasi kedua.
#fed976	Gradasi ketiga.
#feb24c	Gradasi keempat.
#fd8d3c	Gradasi kelima.
#fc4e2a	Gradasi keenam.
#e31a1c	Gradasi ketujuh.
#b10026	Rentang nilai tertinggi (\geq 5000 mm/tahun).

2.5 Tahap 5: Penambahan Layer ke Peta

Tahap ini mengaplikasikan parameter visualisasi ke data citra dan menampilkannya sebagai sebuah layer pada peta.

```
Map.addLayer(citraCurahHujan, parameterVisual, 'Curah Hujan Tahunan
2023 (mm)');
```

Listing 5: Menampilkan data sebagai layer di peta.

Komponen Kode	Jenis Komponen	Deskripsi Teknis
Map.addLayer	Method	Method dari objek Map untuk merender data geospasial.
citraCurahHujan	Argumen Pertama	Objek ee.Image yang akan ditampilkan.
parameterVisual	Argumen Kedua	Objek JavaScript berisi parameter visualisasi.
'Curah'	Argumen Ketiga	String yang akan menjadi nama layer pada panel kontrol.

3 Konstruksi Legenda Kartografis Dinamis

GEE menyediakan API Antarmuka Pengguna (ui) untuk membangun komponen interaktif. Bagian ini merinci pembuatan legenda secara terprogram.

3.1 Tahap 6: Alur Kerja Pembuatan Legenda

Alur kerja ini mencakup pembuatan panel, penambahan judul, iterasi untuk membuat setiap baris legenda, dan penambahan akhir ke peta.

```
var legenda = ui.Panel({ style: { position: 'bottom-left' } });

var judulLegenda = ui.Label({
  value: 'Curah Hujan Tahunan (mm)',
  style: { fontWeight: 'bold', fontSize: '15px' }
});

legenda.add(judulLegenda);

for (var i = 0; i < 8; i++) {
  // ... Logika pembuatan setiap baris ...
}

Map.add(legenda);</pre>
```

Listing 6: Sintaks pembuatan panel legenda.

Komponen Kode	Jenis Komponen	Deskripsi Teknis
ui.Panel	Objek UI GEE	Konstruktor untuk membuat widget panel sebagai kontainer.
ui.Label	Objek UI GEE	Konstruktor untuk membuat widget teks statis.
legenda.add()	Method	Method untuk menambahkan widget anak ke dalam widget induk.
for ()	Struktur Kontrol	Perulangan for untuk melakukan iterasi pembuatan komponen UI.
Map.add(legenda)	Method	Method untuk menambahkan widget UI ke dalam peta.

4 Skrip Lengkap

Berikut adalah skrip final yang mengintegrasikan seluruh tahapan metodologi.

```
var aoi = ee.FeatureCollection('FAO/GAUL/2015/level1')
     .filter(ee.Filter.eq('ADM1_NAME', 'Jawa Barat'))
     .geometry();
  Map.centerObject(aoi, 8);
6
  var citraCurahHujan = ee.ImageCollection("UCSB-CHG/CHIRPS/DAILY")
     .filter(ee.Filter.date('2023-01-01', '2023-12-31'))
     .sum()
9
     .clip(aoi);
10
11
  var parameterVisual = {
12
    min: 1000.0,
13
    max: 5000.0,
14
    palette: [
15
       '#ffffcc', '#ffeda0', '#fed976', '#feb24c',
16
       '#fd8d3c', '#fc4e2a', '#e31a1c', '#b10026'
17
18
19
  };
20
  Map.addLayer(citraCurahHujan, parameterVisual, 'Curah Hujan Tahunan
21
      2023 (mm)');
22
23
  var legenda = ui.Panel({
     style: { position: 'bottom-left', padding: '8px 15px', border: '1px
       solid #cccccc' }
  });
25
26
  var judulLegenda = ui.Label({
27
    value: 'Curah Hujan Tahunan (mm)\nProvinsi Jawa Barat',
```

```
style: { fontWeight: 'bold', fontSize: '15px', margin: '0 0 6px 0',
       whiteSpace: 'pre' }
  });
30
  legenda.add(judulLegenda);
31
32
  var nSteps = parameterVisual.palette.length;
33
  var step = (parameterVisual.max - parameterVisual.min) / (nSteps - 1)
34
35
  for (var i = 0; i < nSteps; i++) {
36
     var minVal = parameterVisual.min + i * step;
37
     var color = parameterVisual.palette[i];
     var label;
39
     if (i === 0) {
40
       label = '< ' + Math.round(minVal);</pre>
41
     } else if (i === nSteps - 1) {
42
       label = '> ' + Math.round(minVal);
43
44
     } else {
       var maxVal = minVal + step;
45
       label = Math.round(minVal) + ' - ' + Math.round(maxVal);
46
47
48
    var colorBox = ui.Label({ style: { backgroundColor: color, padding:
49
       '8px', margin: '0 0 4px 0' } });
    var description = ui.Label({ value: label, style: { margin: '0 0 4
50
     px 6px' } });
51
     var barisLegenda = ui.Panel({
52
       widgets: [colorBox, description],
53
       layout: ui.Panel.Layout.flow('horizontal')
54
55
     legenda.add(barisLegenda);
56
  }
57
58
  var sumberLabel = ui.Label('Sumber Data: CHIRPS Daily v2.0',
     { margin: '8px 8px 4px 8px', fontSize: '10px' });
60
  legenda.add(sumberLabel);
61
62
  Map.add(legenda);
```

Listing 7: Skrip Lengkap Analisis Curah Hujan Tahunan di Jawa Barat.

Pustaka

- [1] Dore, M. H. I. (2005). Climate change and changes in global precipitation patterns: What do we know?. *Environment International*, 31(8), 1167-1181. https://doi.org/10.1016/j.envint.2005.03.004
- [2] Funk, C., et al. (2015). The climate hazards infrared precipitation with stations A new environmental record for monitoring extremes. *Scientific Data*, 2, 150066. https://doi.org/10.1038/sdata.2015.66
- [3] Gorelick, N., et al. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. *Remote Sensing of Environment*, 202, 18-27. https://doi.org/10.1016/j.rse.2017.06.031