

Stock Prediction

Using Autoregression

Emil Westling

INTRODUCTION

- This report offers a comprehensive exploration of stock prediction through autoregressive models.
- Concentrates on two companies, *Apple* and *Amazon*, which constitute 7.29% and 3.51% of the S&P 500 index, respectively.
- The forecasting will be done by not only using past pricing data but also incorporating a variety of exogenous variables.
- The exogenous variables include S&P 500 pricing data, sentiment analysis, and daily trading volumes.
- Two forecasting models, one for price and one for direction prediction, are used.

DATA

- The API *yfinance* was used to fetch pricing data for *Apple*, *Amazon*, and the *S&P 500* index.
- Tweet time series data set was found on Kaggle. All data spanned from 2021-09-30 to 2022-09-29.
- Sentiment scores were calculated for each tweet calculated using a NLP language library.
- After preprocessing, the resulting data frames consisted of a closing price, trading volume, tomorrow's closing price, direction of tomorrow's price, and a sentiment score for each date.
- The closing price of the S&P 500 index was also stored.

PIPELINE

- Data collection: fetch pricing data from yfinance and a tweet dataset from Kaggle.
- Data preprocessing: generating a sentiment scores, adding columns to the company data frames and removing bad and unnecessary data.
- Data visualization: generate various plots to get to know the data.
- Model generation: generate AR models using Statsmodels' AutoReg library.

MODEL

$$y_{t} = \delta_{0} + \delta_{1}t + \phi_{1}y_{t-1} + ... + \phi_{p}y_{t-p} + \sum_{t}\kappa_{j}x_{t,j} + \epsilon_{t}$$

- Models were created using the Statsmodels' *AutoReg* library. The equation above is the underlying forecasting equation.
- φ are the weights for each price observation and κ are the weights for the exogenous variables.
- δ_0 is the y-intercept whereas δ_1 t encodes a linear time trend relationship
- The two models were identical aside from the fact that one model was only concerned with the direction of the predicted price.

RESULTS

	Company	Amazon MAE Direction	MAE Price	Apple MAE Direction	MAE Price
Lag	Exog				
10	NA	1.019868	3.346440	0.953642	2.762461
	S&P500	0.993377	4.859555	0.940397	2.795329
	Sentiment	1.033113	3.356564	0.953642	2.744114
	Volume	1.006623	3.360806	0.953642	2.755890
15	NA	1.033113	3.411418	0.966887	2.839545
	S&P500	0.993377	5.569160	1.059603	2.787392
	Sentiment	1.006623	3.413289	1.006623	2.829494
	Volume	1.006623	3.443118	0.980132	2.835158
20	NA	1.086093	3.424944	0.993377	2.853466
	S&P500	0.993377	5.841501	0.980132	2.768990
	Sentiment	1.033113	3.474168	0.953642	2.837408
	Volume	1.086093	3.447584	0.980132	2.851404

- The bolded scores are the best performing forecasts for that company.
- The model predicts direction much better than price.
- Exogenous variables does not improve the performance significantly.
- The lower the lag, the better performance in general.
- For Amazon, the exogenous variable S&P 500 does poorly predicting price, but particularly well predicting direction.
- The predictions are fairly similar across the board indicating little impact of the exogenous variables.

CONCLUSION

- This project served as a great introduction to the field of computational finance
- To expand on this project, it would be necessary to explore different models, companies, exogenous variables, and prediction horizons.

