MATH142B Sample Final

Instructions

- 1. **Read this**: For any multi-part question, you may assume the results of all previous parts when solving subsequent parts even if you were unable to prove the previous parts.
- 2. You may not use any type of calculator or electronic devices during this exam.
- 3. You may use one pages of notes (written on both sides), but no books or other assistance during this exam.
- 4. Write your Name, PID, and Section on the front of your Blue Book.
- 5. Read each question carefully, and answer each question completely.
- 6. Show all of your work; no credit will be given for unsupported answers.

Questions

1. For $x \in [0,1]$, define the function

$$f(x) = \begin{cases} 0, & x = 1/m, & m \in \mathbb{Z}, & m \ge 1. \\ 1, & \text{otherwise.} \end{cases}$$

For each n > 0, define the function

$$f_n(x) = \begin{cases} 0, & x = 1/m, & m \in \mathbb{Z}, & 1 \le m \le n. \\ 1, & \text{otherwise.} \end{cases}$$

- (a) Prove that the f_n converges pointwise to f.
- (b) Prove that the convergence is *not* uniform.
- (c) Prove that f is integrable.
- 2. This question outlines a method of using Taylor series to prove the Geometric Sum Formula,

$$1 + x + x^{2} + \ldots + x^{n} = \frac{1 - x^{n+1}}{1 - x}.$$

Let $p_n(x) = 1 + x + \ldots + x^n$ and $f(x) = \frac{1}{1-x}$.

(a) Show by induction that

$$f^{(k)}(x) = \frac{k!}{(1-x)^{k+1}}$$

and hence that p_n is the n'th Taylor polynomial for f at $x_0 = 0$.

1

(b) Use the Cauchy Integral Remainder Theorem to show that the remainder is given by $R_n(x) = \frac{x^{n+1}}{1-x}$. Conclude that the Geometric Sum Formula is true. *Hint*: You may find the following formula useful:

$$\int \frac{(t-a)^m}{(t-b)^{m+2}} dt = \frac{1}{(m+1)(a-b)} \frac{(t-a)^{m+1}}{(t-b)^{m+2}}.$$

- (c) Lastly, prove that $R_n(x) \to 0$ for $x \in (-1,1)$, but that this is not true for any other x. Thus $\frac{1}{1-x}$ is analytic on (-1,1).
- 3. Uniform limits of uniformly continuous functions.
 - (a) Prove that if (f_n) is a sequence of **uniformly continuous** functions converging **uniformly** to f then f is also **uniformly continuous**. Be sure to note where you use uniform convergence and where you use uniform continuity.
 - (b) Let $f(x) = \sum_{k=0}^{\infty} c_k x^k$ be a convergent power series for $x \in D$. Prove that f is uniformly continuous on any closed interval [-r, r] properly contained in D ($[-r, r] \subseteq D$). Hint: Use part (a) and what you know about convergence of power series.
- 4. Let f(x) be function on I = (a, b) (we allow $a = -\infty, b = \infty$) with infinitely many derivative. Let p_n be its n'th Taylor polynomial and R_n the remainder.

Let
$$F(x) = \int_a^x f$$
. Let $P_0(x) = 0$, $R_0(x) = F(x)$. Let $P_n(x) = \int_a^x p_{n-1}$, and $R_n(x) = \int_a^x r_{n-1}$ for $n \ge 1$.

(a) Show by induction that

$$\frac{d^k}{dx^k} \int_a^x t^n dt = \frac{n!}{(n-k+1)!} x^{n-k+1}$$

for all $k \geq 1$.

(b) Show by induction that

$$\frac{d^k}{dx^k} \int_a^x f = \frac{d^{k-1}}{dx^{k-1}} f$$

for all $k \geq 1$.

- (c) Using parts (a) and (b), prove that P_n is the *n*'th Taylor polynomial for F and that R_n is the *n*'th remainder. Don't forget to consider n = 0.
- 5. Let $f(x) = \sum_{k=0}^{\infty} a_k x^k$ have domain of convergence D. Show that on D, the n'th Taylor polynomial for f at $x_0 = 0$ is $p_n(x) = \sum_{k=0}^n a_k x^k$. Hint: You can do this by direct calculation.

6. The Frensel integral,

$$S(x) = \int_0^x \sin(t^2) dt$$

occurs in the study of optics. It cannot be expressed in terms of elementary functions (i.e. there is no anti-derivative of $\sin(t^2)$ that may be expressed in terms of elementary functions like polynomials, trig functions, exponentials, logarithms etc.)

Recall the *n*'th Taylor polynomial, $q_n(y)$ for $\sin(y)$ at $y_0 = 0$ is

$$q_n(y) = \sum_{k=0}^{\lfloor \frac{n-1}{2} \rfloor} (-1)^k \frac{y^{2k+1}}{(2k)!}$$

where $\lfloor \frac{n-1}{2} \rfloor$ is the largest integer less than or equal to $\frac{n-1}{2}$. The remainder may be written

$$S_n(x) = \frac{(-1)^{\lfloor \frac{n+1}{2} \rfloor}}{(n+1)!} F(c(x)) x^{n+1}$$

where $F = \sin$ when n is even and $F = \cos$ when n is odd and c(x) is between 0 and x.

(a) Show that the n'th Taylor polynomial, $r_n(t)$ of $\sin(t^2)$ at $t_0 = 0$ is given by

$$r_n(t) = \sum_{k=0}^{\lfloor \frac{n-1}{2} \rfloor} (-1)^k \frac{t^{4k+2}}{(2k)!}.$$

Hint: Since sin is analytic on \mathbb{R} , you can apply the result of question 5 to $\sin(t^2)$.

(b) Show that the n'th Taylor polynomial, $p_n(x)$ of S is given by

$$p_n(x) = \sum_{k=0}^{\lfloor \frac{n-1}{2} \rfloor} (-1)^k \frac{y^{4k+3}}{(4k+3)(2k)!}.$$

Hint: Use the result of question 4.

(c) Show that the remainder satisfies

$$|R_n(x)| \le \frac{1}{(n+2)!} |x|^{n+2}$$

and hence that, $R_n(x) \to 0$ as $n \to \infty$ for every $x \in \mathbb{R}$. Therefore S(x) is analytic on \mathbb{R} .

3