The Examination Paper of Jinan University

线	For Instructor Only	Academic Year: 20_2220_23 Semester: 1 st []2 nd [] Course Title:Advanced Mathematics I Date of the Examination26/12/2022 Instructor's NameLianghui Xia	Course Type Compulsory[
	For Student Only	School/College Major Name Student N Mainland Student [] Non-mainland Student	To

Section No.	I	II	III	IV	V	VI	VII	VIII	Total Score
Score									
Evaluator									

Score Section I: Choice questions (There are 10 questions, each question has four choices, but only one is true, choose the one which is true, each question is 2 marks, and the total score of this section is 20 marks)

- 1. For the following limits, () exists
- A. $\lim_{x\to 0} \frac{1}{e^x 1}$; B. $\lim_{x\to \infty} \frac{x^2}{1 x^2}$; C. $\lim_{x\to \infty} \sin x$; D. $\lim_{x\to 0} e^{\frac{1}{x}}$.

- 2. If $f(x) = \begin{cases} x \sin \frac{1}{x}, & x > 0 \\ \ln(a + x^2), & x \le 0 \end{cases}$ is continuous on $(-\infty, +\infty)$, then a = (
 - A. 0;
 - B. 1;
 - C. 2;
- D. 3

江

3. If f(x) satisfies $\lim_{x \to 1} \frac{f(x)}{\ln x} = 1$, then ()

A.
$$f(1) = 0$$

B.
$$\lim_{x \to 1} f(x) = 0$$
;

C.
$$f'(1) = 1$$
;

A.
$$f(1) = 0$$
; B. $\lim_{x \to 1} f(x) = 0$; C. $f'(1) = 1$; D. $\lim_{x \to 1} f'(x) = 1$

摋

ゴ

殺

4. If $f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$, then at x = 0, f(x) is ()

A. discontinuous;

B. continuous but non-differentiable;

C.continuous and differentiable;

D. discontinuous but differentiable.

$$5. \lim_{n\to\infty} \left(\frac{n-2}{n+1}\right)^n = ($$

A. e; B. e^{-1} ; C. e^{-2} ; D. e^{-3}

6. If f(x) is differentiable at x = a, then f'(a) = (

A.
$$\lim_{h \to 0} \frac{f(a) - f(a+h)}{h}$$

A.
$$\lim_{h \to 0} \frac{f(a) - f(a+h)}{h};$$
 B.
$$\lim_{h \to 0} \frac{f(a-h) - f(a)}{h};$$

C.
$$\lim_{h\to 0} \frac{f(a+2h)-f(a)}{h}$$

C.
$$\lim_{h \to 0} \frac{f(a+2h) - f(a)}{h}$$
; D. $\lim_{h \to 0} \frac{f(a+2h) - f(a+h)}{h}$.

7. If $y = x^x$, then y' = (

A.
$$x^{x-1}$$

A. x^{x-1} ; B. $x^x \ln x$; C. $x^x (\ln x + \frac{1}{x})$; D. $x^x (1 + \ln x)$

8. If the derivative of y = f(x) is continuous, and $\lim_{x \to a} \frac{f'(x)}{x - a} = 2$, then ()

A. f(x) has a local maximum at x = a;

B. f(x) has a local minimum at x = a;

C. (a, f(a)) is an inflection point;

D. there is no local extremum at x = a.

9. If $\int x f(x) dx = e^{-x^2} + C$, then f(x) = (

A. xe^{-x^2} ; B. $-xe^{-x^2}$; C. $2e^{-x^2}$; D. $-2e^{-x^2}$.

10. $\int \frac{1}{1 - \sqrt{x}} dx = ($

- A. $\sqrt{x} \ln(1 \sqrt{x}) + C$; B. $2(\sqrt{x} \ln(1 \sqrt{x})) + C$;
- C. $\sqrt{x} + \ln(1 \sqrt{x}) + C$; D. $-2(\sqrt{x} + \ln(1 \sqrt{x})) + C$.

Score

线

Filling blanks (There are 8 questions, each question is 3 Section II: marks, the total score of this section is 24 marks)

- 1. The domain of the function $f(x) = \sqrt{4 x^2} + \ln(x^2 1)$ is ______.
- $2. \lim_{x\to 0} \frac{x + x\cos x}{\sin x\cos x} = \underline{\qquad}.$
- $3. \lim_{x\to\infty} \left(\frac{x}{1+x}\right)^x = \underline{\hspace{1cm}}$
- 4. The discontinuous points of the function $f(x) = \frac{x-1}{x^2-3x+2}$ are_____
- 5. If $f'(x_0) = 5$, then $\lim_{\varepsilon \to 0} \frac{f(x_0 3\varepsilon) f(x_0)}{5\varepsilon} = \underline{\hspace{1cm}}$.
- 6. The vertical asymptote of the curve $f(x) = \frac{-2x-4}{x^3+2x^2}$ is _____
- 7. The horizontal asymptote of the curve $y = \frac{x^2 + 2x 3}{2x^2 x + 1}$ is _____
- 8. $\int (\frac{1}{x} \cos x + x \frac{1}{\sqrt{1 x^2}} + 2) dx = \underline{\hspace{1cm}}$

Score

摋

Section III: Calculation (There are 7 questions, each question is 6 marks, the total score of this section is 42 marks)

1. Find $\lim_{x\to 9} \frac{\sqrt{x-3}}{x-0}$

3. Find the derivative of $h(x) = \left(\frac{1}{x^2} - 5\right)^{-2}$.

4. Given $y - xy^2 + x^2 + 1 = 0$. Find y'.

긱

5. Find $\lim_{x \to 1} \left(\frac{x}{x-1} - \frac{1}{\ln x} \right)$.

6. Find $\int \frac{1}{1+e^x} dx$.

鈛

江

7. Find $\int x \arctan x dx$

摋

Student name:	Student No.

Score
Score

Section IV: Application problems (There are two questions, each one is 7 marks, the total score of this section is 14 marks.)

- 1. (7 marks) For $f(x) = x^3(x+2)$
 - (1) Find all critical points.
 - (2) Find the open intervals on which the function is increasing and decreasing. Identify the function's local extreme values, if any, saying where they occur.
 - (3) Find where the graph of f is concave up and where it is concave down.
 - (4) Find all inflection points.

摋

긱

殺

鈛

户

潊

2. (7 marks) Find the volume of the largest right circular cone that can be inscribed in a sphere of radius 3.

