Definitions and Postulates

Objectives

- 1. Use symbols for lines, segments, rays, and distances; find distances.
- 2. Name angles and find their measures.
- 3. State and use the Segment Addition Postulate and the Angle Addition Postulate.
- 4. Recognize what you can conclude from a diagram.
- 5. Use postulates and theorems relating points, lines, and planes.

1-3 Segments, Rays, and Distance

In the diagram, point B is between points A and C. Note that B must lie on \overrightarrow{AC} .

Segment AC, denoted \overline{AC} , consists of points A and C and all points that are between A and C. Points A and C are called the *endpoints* of \overline{AC} .

Ray AC, denoted \overrightarrow{AC} , consists of \overrightarrow{AC} and all other points P such that C is between A and P. The *endpoint* of \overrightarrow{AC} is A, the point named first.

 \overrightarrow{SR} and \overrightarrow{ST} are called **opposite rays** if S is between R and T.

The hands of the clock shown suggest opposite rays.

On a number line every point is paired with a number and every number is paired with a point. In the diagram, point J is paired with -3, the *coordinate* of J.

The **length** of \overline{MJ} , denoted by MJ, is the distance between point M and point J. You can find the length of a segment on a number line by subtracting the coordinates of its endpoints:

$$MJ = 4 - (-3) = 7$$