Que sait-on sur l'univers d'une succession d'épreuves indépendantes $E_1,...,E_n$?

Il est égal à l'union des univers $\,\Omega_1$,..., $\,\Omega_n$.

Il est égal à l'intersection des univers $\,\Omega_1$,..., Ω_n .

Il est égal au produit cartésien des univers $\,\Omega_1$,..., $\,\Omega_n$.

Cela dépend, on ne peut rien conclure.

Qu'est-ce qui caractérise une épreuve de Bernoulli?

Elle a plusieurs issues possibles (2 ou 3).

La probabilité de succès est habituellement notée $\,1-p\,.$

Elle est de paramètre $\,p$, qui est la probabilité de l'échec.

On considère généralement une issue comme étant le « succès » et l'autre « l'échec ».

Quelle est la condition pour que X , variable aléatoire, suive une loi de Bernoulli de paramètre $\,p\,$?

Que X prenne seulement les valeurs 0 et 1.

P(X=1)=p

Que X prenne seulement les valeurs 0 et 1, que $P(X=1)=p\,$ et $P(X=2)=1-p\,$.

Que $\,X\,$ prenne les valeurs 0 et 1 et que $\,P(X=1)=p$.

Parmi les propositions suivantes, laquelle n'est pas une condition pour que X suive une loi binomiale de paramètres (n;p) ?

Les épreuves sont au nombre de p.

Les épreuves doivent se succéder de manière indépendante.

Les épreuves doivent être identiques.

Les épreuves sont au nombre de $\,n\,.$

Que vaut $\,P(X=k)$, $\,X\,$ suivant une loi binomiale de paramètres $\,(n;p)\,$?

 $egin{pmatrix} n \ k \end{pmatrix} p^{1-k} (1-p)^k$

- $egin{pmatrix} n \ k \end{pmatrix} p^k (1-p)^{n-k}$
- $egin{pmatrix} n \ k \end{pmatrix} p^k (1-p)^{1-k}$

Que sait-on sur l'univers d'une succession d'épreuves indépendantes E_1 ,..., $E_n\,$?

Il est égal à l'union des univers $\,\Omega_1$,..., Ω_n .

Il est égal à l'intersection des univers $\Omega_1,...,\Omega_n$.

 $^{ t I}$ Il est égal au produit cartésien des univers $\,\Omega_{1}$,..., $\,\Omega_{n}$.

Cela dépend, on ne peut rien conclure.

L'univers d'une succession d'épreuves indépendantes est égal au produit cartésien des univers Ω_1 ,..., Ω_n .

Qu'est-ce qui caractérise une épreuve de Bernoulli?

Elle a plusieurs issues possibles (2 ou 3).

La probabilité de succès est habituellement notée $\,1-p\,.$

Elle est de paramètre $\,p$, qui est la probabilité de l'échec.

On considère généralement une issue comme étant le « succès » et l'autre « l'échec ».

On appelle épreuve de Bernoulli de paramètre p toute expérience aléatoire ne comptant que deux issues (l'une nommée « succès », l'autre « échec ») dont la probabilité que le « succès » se réalise est p.

Quelle est la condition pour que X , variable aléatoire, suive une loi de Bernoulli de paramètre $\,p\,$?

Que X prenne seulement les valeurs 0 et 1.

P(X=1)=p

Que X prenne seulement les valeurs 0 et 1, que $P(X=1)=p\,$ et $\,P(X=2)=1-p\,$.

Que $\,X\,$ prenne les valeurs 0 et 1 et que $\,P(X=1)=p$.

On dit qu'une variable X suit la loi de Bernoulli de paramètre p si : les valeurs prises par X sont 0 et 1 et que P(X=1)=p .

Parmi les propositions suivantes, laquelle n'est pas une condition pour que X suive une loi binomiale de paramètres (n;p) ?

Les épreuves sont au nombre de $\,p\,.\,$

- Les épreuves doivent se succéder de manière indépendante.
- Les épreuves doivent être identiques.
- Les épreuves sont au nombre de $\,n\,.$

X suit une loi binomiale de paramètres (n;p) si X est la variable aléatoire comptant le nombre de succès sur un schéma de Bernoulli de paramètres (n;p).

Que vaut $\,P(X=k)\,$, $\,X\,$ suivant une loi binomiale de paramètres $\,(n;p)\,$?

$$\binom{n}{k} p^{1-k} (1-p)^k$$

$$egin{pmatrix} n \ k \end{pmatrix} p^k (1-p)^{n-k}$$

$$egin{pmatrix} n \ k \end{pmatrix} p^k (1-p)^{1-k}$$

$$p^k(1-p)^{1-k}$$

Si
$$X$$
 suit une loi binomiale de paramètres n et p , on a $P(X=k)=egin{pmatrix}n\\k\end{pmatrix}p^k(1-p)^{n-k}$.