

SEQUENCE LISTING

<110> Monsanto Company

<120> TRANSGENIC PLANTS CONTAINING ALTERED LEVELS OF STEROID COMPOUNDS

<130> MTC6783.1

<160> 33

<170> PatentIn version 3.0

<210> 1

<211> 585

<212> PRT

<213> Arabidopsis thaliana

<400> 1

Met Lys Pro Phe Val Ile Arg Asn Leu Pro Arg Phe Gln Ser Thr Leu
1 5 10 15

Arg Ser Ser Leu Leu Tyr Thr Asn His Arg Pro Ser Ser Arg Phe Ser
20 25 30

Leu Ser Thr Arg Arg Phe Thr Thr Gly Ala Thr Tyr Ile Arg Arg Trp
35 40 45

Lys Ala Thr Ala Ala Gln Thr Leu Lys Leu Ser Ala Val Asn Ser Thr
50 55 60

Val Met Met Lys Pro Ala Lys Ile Ala Leu Asp Gln Phe Ile Ala Ser
65 70 75 80

Leu Phe Thr Phe Leu Leu Tyr Ile Leu Arg Arg Ser Ser Asn Lys
85 90 95

Asn Lys Lys Asn Arg Gly Leu Val Val Ser Gln Asn Asp Thr Val Ser
100 105 110

Lys Asn Leu Glu Thr Glu Val Asp Ser Gly Thr Asp Val Ile Ile Val
115 120 125

Gly Ala Gly Val Ala Gly Ser Ala Leu Ala His Thr Leu Gly Lys Glu
130 135 140

Gly Arg Arg Val His Val Ile Glu Arg Asp Phe Ser Glu Gln Asp Arg
145 150 155 160

Ile Val Gly Glu Leu Leu Gln Pro Gly Gly Tyr Leu Lys Leu Ile Glu
165 170 175

Leu Gly Leu Glu Asp Cys Val Lys Lys Ile Asp Ala Gln Arg Val Leu
180 185 190

Gly Tyr Val Leu Phe Lys Asp Gly Lys His Thr Lys Leu Ala Tyr Pro
195 200 205

Leu Glu Thr Phe Asp Ser Asp Val Ala Gly Arg Ser Phe His Asn Gly
210 215 220

Arg Phe Val Gln Arg Met Arg Glu Lys Ala Leu Thr Leu Ser Asn Val
225 230 235 240

Arg Leu Glu Gln Gly Thr Val Thr Ser Leu Leu Glu Glu His Gly Thr
245 250 255

Ile Lys Gly Val Arg Tyr Arg Thr Lys Glu Gly Asn Glu Phe Arg Ser
260 265 270

Phe Ala Pro Leu Thr Ile Val Cys Asp Gly Cys Phe Ser Asn Leu Arg
275 280 285

Arg Ser Leu Cys Lys Pro Lys Val Asp Val Pro Ser Thr Phe Val Gly
290 295 300

Leu Val Leu Glu Asn Cys Glu Leu Pro Phe Ala Asn His Gly His Val
305 310 315 320

Val Leu Gly Asp Pro Ser Pro Ile Leu Met Tyr Pro Ile Ser Ser Ser
325 330 335

Glu Val Arg Cys Leu Val Asp Val Pro Gly Gln Lys Leu Pro Pro Ile
340 345 350

Ala Asn Gly Glu Met Ala Lys Tyr Leu Lys Thr Arg Val Ala Pro Gln
355 360 365

Val Pro Thr Lys Val Arg Glu Ala Phe Ile Thr Ala Val Glu Lys Gly
370 375 380

Asn Ile Arg Thr Met Pro Asn Arg Ser Met Pro Ala Asp Pro Ile Pro
385 390 395 400

Thr Pro Gly Ala Leu Leu Gly Asp Ala Phe Asn Met Arg His Pro
405 410 415

Leu Thr Gly Gly Met Thr Val Ala Leu Ala Asp Ile Val Val Leu
420 425 430

Arg Asp Leu Leu Arg Pro Ile Arg Asn Leu Asn Asp Lys Glu Ala Leu
435 440 445

Ser Lys Tyr Ile Glu Ser Phe Tyr Thr Leu Arg Lys Pro Val Ala Ser
450 455 460

Thr Ile Asn Thr Leu Ala Asp Ala Leu Tyr Lys Val Phe Leu Ala Ser
465 470 475 480

Ser Asp Glu Ala Arg Thr Glu Met Arg Glu Ala Cys Phe Asp Tyr Leu
485 490 495

Ser Leu Gly Gly Val Phe Ser Ser Gly Pro Val Ala Leu Leu Ser Gly
500 505 510

Leu Asn Pro Arg Pro Leu Ser Leu Val Leu His Phe Phe Ala Val Ala
515 520 525

Ile Tyr Ala Val Cys Arg Leu Met Leu Pro Phe Pro Ser Ile Glu Ser
530 535 540

Phe Trp Leu Gly Ala Arg Ile Ile Ser Ser Ala Ser Ser Ile Ile Phe
545 550 555 560

Pro Ile Ile Lys Ala Glu Gly Val Arg Gln Met Phe Phe Pro Arg Thr
565 570 575

Ile Pro Ala Ile Tyr Arg Ala Pro Pro
580 585

<210> 2
<211> 418
<212> DNA
<213> Arabidopsis thaliana

<220>
<221> Unsure
<222> (1)..(418)
<223> n=a, c, g or t

<400> 2
cttacgcgtg gttatngacg cttctcgccct ttgttctgac atggatgatt tttcacctca 60
tcaagatgaa gaaggcggca accggagatt tagaggccga ggcagaagca agaagagatg
gtgcaacgga tgtcatcatt gtngggcgg gtgttgcagg cgcttctctt gcttatgcnt 120
tagctaagga tngacgacga gtacatgtga tagagangga cttaaaagag ccacaaagat
tcatggaga nctgatgcaa ncgggaggtc gcttcatgt taagcccagc ttggcctcga 180
agattgttnt ggaggacatn gacgcacaag aatncgaaaan cctttggcat atnccaagnn 240
tggaaaacacg cgaaatggcc tttccanatg aaaagaantt tcctcatgag ccagtagg 300
360
418

<210> 3
<211> 354
<212> DNA
<213> Arabidopsis thaliana

<220>
<221> Unsure
<222> (1)..(354)
<223> n=a, c, g or t

<400> 3
gcaatgactt acgcgtggtt atggacgctt ctngcctttn tnctgacatg gatggtttt 60

cacctcanca agatgaagaa ggccggcaacc ggagatttag agggcgaggc agaagcaaga 120
agagatggtg caacggatgt natcattgtt ggggcgggtn ttgcaggcgc ttctnttgct 180
tatncttag ctaaggatgg acgacgagta catgtgatag agagggactt aaaagagcca 240
caaagattca tgggaganct gatgcaagcg gggaggtcgc ttcatgttag cccagnttgg 300
cctcgaagat ttttttgnna gggcataaga cgnaccaana agcggaatnc ct 354

<210> 4
<211> 1829
<212> DNA
<213> *Arabidopsis thaliana*

<400> 4
gaattcccg gtcgaccac gcgtccgctt atagataagg atatggcctt tacgaacgtt 60
tgcctatgga cgctactcgc cttcatgctg acttggacag tggttctacgt cacaaacagg 120
gggaagaagg cgacgcagtt ggcggatgcg gtgggtgaag agcgagaaga cggtgctact 180
gacgttatca tcgttggggc tggagttaggc ggctcggctc tcgcatatgc tttgctaag 240
gacgggcgtc gagtccatgt aatagagagg gacctgagag aaccagagag aatcatgggt 300
gagtttatgc aaccaggagg acgactcatg ctctctaagc ttggtcttga agattgttg 360
gagggaatag atgcccaaaa agccacgggc atgacagttt ataaggacgg aaaagaagca 420
gtcgcatctt ttcccgtgga caacaacaat ttcccttttgc atccttcggc tcgatcttt 480
cacaatggcc gattcgtcca acgattgcgg caaaaggctt cttctttcc caatgtgcgc 540
ctggaagaag gaacggtgaa gtcttgata gaagaaaaag gagtgatcaa aggagtgaca 600
tacaaaaata ggcgcaggcga agaaacaaca gccttggcac ctctcactgt agtatgcgac 660
ggttgctact caaaccttcg ccggctcttt aatgacaaca atgcggaggt tctgtcatac 720
caagttggtt ttatctaaa gaactgtcag cttgaagaac ccgaaaagtt aaagttgata 780
atgtctaaac ctccttcac catgttgtat caaatcagca gcaccgacgt tcgttggtt 840
tttgaagttc tcccccaacaa cattccttct atttcaaattgt gtgaaatggc tactttcgtg 900
aagaacacta ttgctcctca ggtaccttta aaactccgca aaatattttt gaaaggatt 960
gatgaaggag aacatataaa agccatgccca acaaagaaga tgacagctac tttgagcgag 1020
aagaaaggag tgatTTTATT gggagatgca ttcaacatgc gtcatccagc aatcgcatct 1080
ggaatgatgg ttttattatc tgacattctc attttacgcc gtcttctcca gccattaagc 1140
aaccttggca atgcgcaaaa aatctcacaa gttatcaagt cttttatga tatccgcaag 1200

ccaatgtcag cgacagttaa cacgttagga aatgcattct ctcaagtgct agttgcatacg 1260
acggacgaag caaaagagggc aatgagacaa ggttgctatg attacctctc tagtggtggg 1320
tttcgcacgt cagggatgtat ggcttgcta ggcggcatga accctcgatcc gatctctctc 1380
atctatcatc tatgtgctat cactctatcc tccattggcc atctactctc tccatttccc 1440
tctcccccttg gcatttggca tagccttcga ctttttggtt tggctatgaa aatgttggtt 1500
ccccatctca aggctgaagg agttagccaa atgttgttc cagtcaacgc cgccgcgtat 1560
agcaaaaagct atatggctgc aacggctttaaaaactg gtgctttaaa ctgcaaaata 1620
taaacatataatataatcccg aatctttgtg attctgcata tattgtgttc tacaattatt 1680
ctcatataaaa tgaaaattgt tctacgtaaa agtaaaaaga aggaattgta atactaataa 1740
aacgagtttt taattctgtt gaatgcttgt gtatattggt gaaaaaaaaaaaaaaa 1800
aaaaaaaaaaa aaaaaaaaaaag ggcggccgc 1829

<210> 5
<211> 530
<212> PRT
<213> Arabidopsis thaliana

<400> 5

Glu Phe Pro Gly Arg Pro Thr Arg Pro Leu Ile Asp Lys Asp Met Ala
1 5 10 15

Phe Thr Asn Val Cys Leu Trp Thr Leu Leu Ala Phe Met Leu Thr Trp
20 25 30

Thr Val Phe Tyr Val Thr Asn Arg Gly Lys Lys Ala Thr Gln Leu Ala
35 40 45

Asp Ala Val Val Glu Glu Arg Glu Asp Gly Ala Thr Asp Val Ile Ile
50 55 60

Val Gly Ala Gly Val Gly Gly Ser Ala Leu Ala Tyr Ala Leu Ala Lys
65 70 75 80

Asp Gly Arg Arg Val His Val Ile Glu Arg Asp Leu Arg Glu Pro Glu
85 90 95

Arg Ile Met Gly Glu Phe Met Gln Pro Gly Gly Arg Leu Met Leu Ser
100 105 110

Lys Leu Gly Leu Glu Asp Cys Leu Glu Gly Ile Asp Ala Gln Lys Ala
115 120 125

Thr Gly Met Thr Val Tyr Lys Asp Gly Lys Glu Ala Val Ala Ser Phe
130 135 140

Pro Val Asp Asn Asn Asn Phe Pro Phe Asp Pro Ser Ala Arg Ser Phe
145 150 155 160

His Asn Gly Arg Phe Val Gln Arg Leu Arg Gln Lys Ala Ser Ser Leu
165 170 175

Pro Asn Val Arg Leu Glu Glu Gly Thr Val Lys Ser Leu Ile Glu Glu
180 185 190

Lys Gly Val Ile Lys Gly Val Thr Tyr Lys Asn Ser Ala Gly Glu Glu
195 200 205

Thr Thr Ala Leu Ala Pro Leu Thr Val Val Cys Asp Gly Cys Tyr Ser
210 215 220

Asn Leu Arg Arg Ser Leu Asn Asp Asn Asn Ala Glu Val Leu Ser Tyr
225 230 235 240

Gln Val Gly Phe Ile Ser Lys Asn Cys Gln Leu Glu Glu Pro Glu Lys
245 250 255

Leu Lys Leu Ile Met Ser Lys Pro Ser Phe Thr Met Leu Tyr Gln Ile
260 265 270

Ser Ser Thr Asp Val Arg Cys Val Phe Glu Val Leu Pro Asn Asn Ile
275 280 285

Pro Ser Ile Ser Asn Gly Glu Met Ala Thr Phe Val Lys Asn Thr Ile
290 295 300

Ala Pro Gln Val Pro Leu Lys Leu Arg Lys Ile Phe Leu Lys Gly Ile
305 310 315 320

Asp Glu Gly Glu His Ile Lys Ala Met Pro Thr Lys Lys Met Thr Ala
325 330 335

Thr Leu Ser Glu Lys Lys Gly Val Ile Leu Leu Gly Asp Ala Phe Asn
340 345 350

Met Arg His Pro Ala Ile Ala Ser Gly Met Met Val Leu Leu Ser Asp
355 360 365

Ile Leu Ile Leu Arg Arg Leu Leu Gln Pro Leu Ser Asn Leu Gly Asn
370 375 380

Ala Gln Lys Ile Ser Gln Val Ile Lys Ser Phe Tyr Asp Ile Arg Lys
385 390 395 400

Pro Met Ser Ala Thr Val Asn Thr Leu Gly Asn Ala Phe Ser Gln Val
405 410 415

Leu Val Ala Ser Thr Asp Glu Ala Lys Glu Ala Met Arg Gln Gly Cys
420 425 430

Tyr Asp Tyr Leu Ser Ser Gly Gly Phe Arg Thr Ser Gly Met Met Ala
435 440 445

Leu Leu Gly Gly Met Asn Pro Arg Pro Ile Ser Leu Ile Tyr His Leu
450 455 460

Cys Ala Ile Thr Leu Ser Ser Ile Gly His Leu Leu Ser Pro Phe Pro
465 470 475 480

Ser Pro Leu Gly Ile Trp His Ser Leu Arg Leu Phe Gly Leu Ala Met
485 490 495

Lys Met Leu Val Pro His Leu Lys Ala Glu Gly Val Ser Gln Met Leu
500 505 510

Phe Pro Val Asn Ala Ala Tyr Ser Lys Ser Tyr Met Ala Ala Thr
515 520 525

Ala Leu
530

<210> 6
<211> 2038
<212> DNA
<213> Arabidopsis thaliana

<400> 6
gaattcccg gtcgacccac gcgtccgcgg acgcgtggaa ttgagaacaa atagatttgg 60
ttatatatgg cttttacgca cgtttgtta tggacgttag tcgccttcgt gctgacgtgg 120
acggtgttct accttaccaa catgaagaag aaggcgacgg atttggctga tacggtggt 180
gaggatcaa aagacggtgc tgctgacgtc attatcgctg gggctgggt aggtggttcg 240
gctctcgcat atgctcttgc taaggatggg cgtcgagttc atgtgatcga gagggacatg 300
agagaaccag aaagaatgtat gggtgagttt atgcaacctg gcggacgact catgcttct 360
aaacttggcc ttcaagattt ctttggaaatc atagatgcac agaaagccac gggtttggca 420
gtttataaaag atggaaaaga agcagacgca cttttccag tggataacaa caattttct 480
tatgaacctt ctgctcgatc ttttccaaat ggccgattcg tccaacaact gcgtcgaaag 540
gtttttctc tttccaaatgt ggcgcctggaa gaagggacgg tgaagtcttt actagaagaa 600
aaaggagtgg tcaaaggagt gacatacaag aataaagaag gcgaagaaac aacagccttgc 660
gcacctctca ctgtggatcg cgacgggtgc tactcaaacc ttctcggtc tcttaatgtat 720
gacaacaatg ctgagattat gtcgtacata gttggttaca tctcaaagaa ttgtcggctt 780
gaagaaccccg aaaagctaca cttgatattt gtcgtacata ctttcaccat ggtataccaa 840
ataagcagca ctgacgttcg ttgtggttt gaggttctcc ccggaaaattt tccttctatt 900
gcaaatggtg aaatgtctac tttcatgaag aatactatag ttcctcaggt acctccaaaa 960
ctccgcaaaa tattttgaa aggtatagat gagggagcac acataaaaagt ggtgccggca 1020

aagcgcatga catctacttt aagaagaag aaagggtgtga ttgttattggg agatgcattc 1080
 aatatgcgtc atccagttgt tgcacatctgga atgatggttt tactgtcgga cattctcatt 1140
 ctacccgtc ttcttcagcc attaagcaac ctcggcgatg caaacaaagt ctcagaagtt 1200
 atcaattcct tttatgatat ccgcaagcca atgtcggcga cggttaaacac attgggaaat 1260
 gcattttctc aagtactaat tggatcaacg gatgaagcaa aagaggcaat gagacagggt 1320
 gtctatgatt acctttgttag tggcgggttt cgtacgtcag ggatgtatggc tctgctcggc 1380
 ggcataatc ctcgtcctct ctctctcgtc tatcatctt gtgccatcac tctatcctcc 1440
 attggccaac tgctctctcc atttccctct ccccttcgca tttggcatag cctcaagctt 1500
 tttggtttgg ccatgaaaat gttggttccc aatctcaaag ctgaaggagt tagccaaatg 1560
 ttgtttccag caaatgcagc cgcgtatcac aaaagctata tggctgcaac cactctctaa 1620
 actttgatgc tctcaatcgc aatataatag gagcacgaat ctatgtgatt gtgcatttgg 1680
 taaacgtgta ttgcagtgtctataatttatt agtatgtAAC gggaaaaagt tctaaacaca 1740
 aaaaaataaa ctttgaatgttataatgtgtt gaatttatttttgttaca agtaatgctc 1800
 tttttttta gcttcacaca tgtatttatttggagctaattttttgttctctgttcaatgtt 1860
 tttttgtttt cttactgtat ttactttgaa aagtttcgtt ttatacatat tggacatttt 1920
 ttaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa aaaaaaaaaaaaaa 1980
 aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa aaaaaaaaaagg gcggccgc 2038

<210> 7
 <211> 517
 <212> PRT
 <213> Arabidopsis thaliana

<400> 7

Met Ala Phe Thr His Val Cys Leu Trp Thr Leu Val Ala Phe Val Leu
 1 5 10 15

Thr Trp Thr Val Phe Tyr Leu Thr Asn Met Lys Lys Lys Ala Thr Asp
 20 25 30

Leu Ala Asp Thr Val Ala Glu Asp Gln Lys Asp Gly Ala Ala Asp Val
 35 40 45

Ile Ile Val Gly Ala Gly Val Gly Gly Ser Ala Leu Ala Tyr Ala Leu
 50 55 60

Ala Lys Asp Gly Arg Arg Val His Val Ile Glu Arg Asp Met Arg Glu
 65 70 75 80

Pro Glu Arg Met Met Gly Glu Phe Met Gln Pro Gly Gly Arg Leu Met
85 90 95

Leu Ser Lys Leu Gly Leu Gln Asp Cys Leu Glu Asp Ile Asp Ala Gln
100 105 110

Lys Ala Thr Gly Leu Ala Val Tyr Lys Asp Gly Lys Glu Ala Asp Ala
115 120 125

Pro Phe Pro Val Asp Asn Asn Phe Ser Tyr Glu Pro Ser Ala Arg
130 135 140

Ser Phe His Asn Gly Arg Phe Val Gln Gln Leu Arg Arg Lys Ala Phe
145 150 155 160

Ser Leu Ser Asn Val Arg Leu Glu Glu Gly Thr Val Lys Ser Leu Leu
165 170 175

Glu Glu Lys Gly Val Val Lys Gly Val Thr Tyr Lys Asn Lys Glu Gly
180 185 190

Glu Glu Thr Thr Ala Leu Ala Pro Leu Thr Val Val Cys Asp Gly Cys
195 200 205

Tyr Ser Asn Leu Arg Arg Ser Leu Asn Asp Asp Asn Asn Ala Glu Ile
210 215 220

Met Ser Tyr Ile Val Gly Tyr Ile Ser Lys Asn Cys Arg Leu Glu Glu
225 230 235 240

Pro Glu Lys Leu His Leu Ile Leu Ser Lys Pro Ser Phe Thr Met Val
245 250 255

Tyr Gln Ile Ser Ser Thr Asp Val Arg Cys Gly Phe Glu Val Leu Pro
260 265 270

Glu Asn Phe Pro Ser Ile Ala Asn Gly Glu Met Ser Thr Phe Met Lys
275 280 285

Asn Thr Ile Val Pro Gln Val Pro Pro Lys Leu Arg Lys Ile Phe Leu
290 295 300

Lys Gly Ile Asp Glu Gly Ala His Ile Lys Val Val Pro Ala Lys Arg
305 310 315 320

Met Thr Ser Thr Leu Ser Lys Lys Gly Val Ile Val Leu Gly Asp
325 330 335

Ala Phe Asn Met Arg His Pro Val Val Ala Ser Gly Met Met Val Leu
340 345 350

Leu Ser Asp Ile Leu Ile Leu Arg Arg Leu Leu Gln Pro Leu Ser Asn
355 360 365

Leu Gly Asp Ala Asn Lys Val Ser Glu Val Ile Asn Ser Phe Tyr Asp
370 375 380

Ile Arg Lys Pro Met Ser Ala Thr Val Asn Thr Leu Gly Asn Ala Phe
385 390 395 400

Ser Gln Val Leu Ile Gly Ser Thr Asp Glu Ala Lys Glu Ala Met Arg
405 410 415

Gln Gly Val Tyr Asp Tyr Leu Cys Ser Gly Gly Phe Arg Thr Ser Gly
420 425 430

Met Met Ala Leu Leu Gly Gly Met Asn Pro Arg Pro Leu Ser Leu Val
435 440 445

Tyr His Leu Cys Ala Ile Thr Leu Ser Ser Ile Gly Gln Leu Leu Ser
450 455 460

Pro Phe Pro Ser Pro Leu Arg Ile Trp His Ser Leu Lys Leu Phe Gly
465 470 475 480

Leu Ala Met Lys Met Leu Val Pro Asn Leu Lys Ala Glu Gly Val Ser
485 490 495

Gln Met Leu Phe Pro Ala Asn Ala Ala Tyr His Lys Ser Tyr Met
500 505 510

Ala Ala Thr Thr Leu
515

<210> 8
<211> 392
<212> DNA
<213> Arabidopsis thaliana

<400> 8
aaatccatatt gagaacaaat agatttggtt atatatggct tttacgcacg tttgtttatg 60
gacgttagtc gccttcgtgc tgacgtggac ggtgttctac cttaccaaca tgaagaagaa 120
ggcgacggat ttggctgata cggtggctga ggatcaaaaa gacggtgctg ctgacgtcat 180
tatcgtcggg gctgggtgtag gtggttcggc tctcgcatat gctctgctaa gtgtgcgcct 240
ggaagaagga acggtaagt cttaactaga agaaaaagga gtggtcaaag gagtgacata 300
caagaataaa gaatgcgaac aaacaacagc cttggcacct ctcactgtgg tatgcgacgg 360
ttgctaattca aacccttcgtc ggtctcttaa tg 392

<210> 9
<211> 110
<212> PRT
<213> Arabidopsis thaliana

<400> 9

Met Ala Phe Thr His Val Cys Leu Trp Thr Leu Val Ala Phe Val Leu

1	5	10	15
---	---	----	----

Thr Trp Thr Val Phe Tyr Leu Thr Asn Met Lys Lys Lys Ala Thr Asp
 20 25 30

Leu Ala Asp Thr Val Ala Glu Asp Gln Lys Asp Gly Ala Ala Asp Val
 35 40 45

Ile Ile Val Gly Ala Gly Val Gly Gly Ser Ala Leu Ala Tyr Ala Leu
 50 55 60

Leu Ser Val Arg Leu Glu Glu Gly Thr Val Lys Ser Leu Leu Glu Glu
 65 70 75 80

Lys Gly Val Val Lys Gly Val Thr Tyr Lys Asn Lys Glu Cys Glu Gln
 85 90 95

Thr Thr Ala Leu Ala Pro Leu Thr Val Val Cys Asp Gly Cys
 100 105 110

<210> 10
 <211> 457
 <212> DNA
 <213> *Arabidopsis thaliana*

<220>
 <221> Unsure
 <222> (1) .. (457)
 <223> n=a, c, g or t

<400> 10
 cacaaagcaa aaaaatctct gtaaaaggcag aacgataatg gagtcacaat tatggaattt 60
 gatcttacct cttttgatct cttctctcct catctccctc gtcgcattct atggattttt 120
 cgtcaaaaccg aagcgaaacg gtctccgtca cgatcgaaaa actgtttcta ccgtcaccc 180
 cgacgtcgga tctgttaata ttaccggaga tactgtcgct gatgtcattt ttgttggagc 240
 tggtgttgct ggttctgttc ttgcttatac tcttgaaag gggaaattta aacgcccagt 300
 tcatgtgatt gaaagagatt tatcgagcc tgatcgatt gttggggagt tgttacagcc 360
 tgngggttac ctcaagttac tggagtgtgg aattggagat tgtgtgaaag aaatagatgc 420
 tcagcntgtg tatggttatg cacttttaa aaatggg 457

.
 <210> 11
 <211> 152
 <212> PRT
 <213> *Arabidopsis thaliana*

<220>
 <221> UNSURE
 <222> (1) .. (152)

<223> X=any amino acid

<400> 11

Thr Lys Gln Lys Asn Leu Cys Lys Ser Arg Thr Ile Met Glu Ser Gln
1 5 10 15

Leu Trp Asn Trp Ile Leu Pro Leu Leu Ile Ser Ser Ser Leu Leu Ile Ser
20 25 30

Phe Val Ala Phe Tyr Gly Phe Phe Val Lys Pro Lys Arg Asn Gly Leu
35 40 45

Arg His Asp Arg Lys Thr Val Ser Thr Val Thr Ser Asp Val Gly Ser
50 55 60

Val Asn Ile Thr Gly Asp Thr Val Ala Asp Val Ile Val Val Gly Ala
65 70 75 80

Gly Val Ala Gly Ser Ala Leu Ala Tyr Thr Leu Gly Lys Gly Lys Phe
85 90 95

Lys Arg Arg Val His Val Ile Glu Arg Asp Leu Ser Glu Pro Asp Arg
100 105 110

Ile Val Gly Glu Leu Leu Gln Pro Xaa Gly Tyr Leu Lys Leu Leu Glu
115 120 125

Cys Gly Ile Gly Asp Cys Val Glu Glu Ile Asp Ala Gln Xaa Val Tyr
130 135 140

Gly Tyr Ala Leu Phe Lys Asn Gly
145 150

<210> 12

<211> 1486

<212> DNA

<213> Arabidopsis thaliana

<400> 12

cgtttttac aaatttcctt tgttggttt ccacagattt aaagaacctt aacgagagaa 60

aaaaatggac tgggattact atacgctgtt gaagacgagt gtggctatta ttatagtgtt 120

tgttgtggcc aaactcataa cctcctccaa atccaagaag aaaacaagtg tcgtcccact 180

ccctccagtt cttcaagcgt ggcctccatt tatcgatcc ctaatccgct tcattgaaagg 240

tccaatagtg ctacttagag aggaatatcc taagcttggaa agtgtttca cagtgaagct 300

tcttcacaaa aacatcactt ttctcatcggt tccccaaatgc tcgtcccact ttttcaacgc 360

ttatgaatct gaactcagcc agaaagaaat ttacaaatcc aatgtgccta cttttggccc 420

cggagttgtg tttgatgttg actatcccgt tcggatggag cagttccgat tcttctccag 480

cgctctcaag gattacttct caaaatgggg agaaagtggg gaagtggatc taaaggccga 540
 gtttagagcgt ctaatcacct tgactgctag tagatgtcta ttgggtcgag aagtccgtga 600
 ccaactttt gatgatgttg ctccattgtt ccatgacctt gataaaggca tgcaacccat 660
 aagtgtcatc ttcccaaagc tccccattcc agtcacaat tgtcgtgacc gtgctcgccg 720
 aaagattgca aaaatcttt caaacatcat agcaacaaga aaacgctctg gtgacaaatc 780
 agagaacgac atgctacaat gtttcatcga ctcaaagtac aaagacggta gagagacaac 840
 tgaatctgaa gtaactggtt tgctcattgc tggtttgc gcaggacaac atacaagctc 900
 tatcaactgcc acatggaccg gtgcattatct aattcaaaaac aaacactggt ggtccgcggc 960
 tttggacgag cagaagaaaac tgattggaaa acatgggac aagatcgact acgatgttt 1020
 gtctgagatg gatttctgt ttgcagtgc aaaagaagct ttaaggcttc accctccaaa 1080
 gatcttactg ctgagaacag tacacagtga tttcaccgtg acaactcgag aaggaaagca 1140
 atatgagata ccaaagggtc atatcggtgc aacttctcct gcattcgcca accgcttacc 1200
 tcatgtctac aaagatccgg aaaatttga tccggataga tttcaaagg aaagagaaga 1260
 ggataaagca gctggttcgt gttcatacat ctcttggga gctggtaggc acgagtgtcc 1320
 tggatca tttgcgttct tgcagatcaa agccgtatgg tgtcacttat tgagaaactt 1380
 tgagcttgag ttatgttcac cttccctga aatcaactgg aatgctttgg tcgttggc 1440
 taaaaggaaat gtcatggttc gttacaagcg tcgtccctt tcttaa 1486

<210> 13
 <211> 473
 <212> PRT
 <213> *Arabidopsis thaliana*

<400> 13

Met Asp Trp Asp Tyr Tyr Thr Leu Leu Lys Thr Ser Val Ala Ile Ile
1 5 10 15

Ile Val Phe Val Val Ala Lys Leu Ile Thr Ser Ser Lys Ser Lys Lys
20 25 30

Lys Thr Ser Val Val Pro Leu Pro Pro Val Leu Gln Ala Trp Pro Pro
35 40 45

Phe Ile Gly Ser Leu Ile Arg Phe Met Lys Gly Pro Ile Val Leu Leu
50 55 60

Arg Glu Glu Tyr Pro Lys Leu Gly Ser Val Phe Thr Val Lys Leu Leu
65 70 75 80

His Lys Asn Ile Thr Phe Leu Ile Gly Pro Glu Val Ser Ser His Phe
85 90 95

Phe Asn Ala Tyr Glu Ser Glu Leu Ser Gln Lys Glu Ile Tyr Lys Phe
100 105 110

Asn Val Pro Thr Phe Gly Pro Gly Val Val Phe Asp Val Asp Tyr Pro
115 120 125

Val Arg Met Glu Gln Phe Arg Phe Phe Ser Ser Ala Leu Lys Asp Tyr
130 135 140

Phe Ser Lys Trp Gly Glu Ser Gly Glu Val Asp Leu Lys Ala Glu Leu
145 150 155 160

Glu Arg Leu Ile Thr Leu Thr Ala Ser Arg Cys Leu Leu Gly Arg Glu
165 170 175

Val Arg Asp Gln Leu Phe Asp Asp Val Ala Pro Leu Phe His Asp Leu
180 185 190

Asp Lys Gly Met Gln Pro Ile Ser Val Ile Phe Pro Lys Leu Pro Ile
195 200 205

Pro Ala His Asn Cys Arg Asp Arg Ala Arg Gly Lys Ile Ala Lys Ile
210 215 220

Phe Ser Asn Ile Ile Ala Thr Arg Lys Arg Ser Gly Asp Lys Ser Glu
225 230 235 240

Asn Asp Met Leu Gln Cys Phe Ile Asp Ser Lys Tyr Lys Asp Gly Arg
245 250 255

Glu Thr Thr Glu Ser Glu Val Thr Gly Leu Leu Ile Ala Gly Leu Phe
260 265 270

Ala Gly Gln His Thr Ser Ser Ile Thr Ala Thr Trp Thr Gly Ala Tyr
275 280 285

Leu Ile Gln Asn Lys His Trp Trp Ser Ala Ala Leu Asp Glu Gln Lys
290 295 300

Lys Leu Ile Gly Lys His Gly Asp Lys Ile Asp Tyr Asp Val Leu Ser
305 310 315 320

Glu Met Asp Phe Leu Phe Arg Ser Ala Lys Glu Ala Leu Arg Leu His
325 330 335

Pro Pro Lys Ile Leu Leu Arg Thr Val His Ser Asp Phe Thr Val
340 345 350

Thr Thr Arg Glu Gly Lys Gln Tyr Glu Ile Pro Lys Gly His Ile Val
355 360 365

Ala Thr Ser Pro Ala Phe Ala Asn Arg Leu Pro His Val Tyr Lys Asp
370 375 380

Pro Glu Asn Phe Asp Pro Asp Arg Phe Ser Lys Glu Arg Glu Glu Asp
385 390 395 400

Lys Ala Ala Gly Ser Cys Ser Tyr Ile Ser Leu Gly Ala Gly Arg His
405 410 415

Glu Cys Pro Gly Gly Ser Phe Ala Phe Leu Gln Ile Lys Ala Val Trp
420 425 430

Cys His Leu Leu Arg Asn Phe Glu Leu Glu Leu Val Ser Pro Phe Pro
435 440 445

Glu Ile Asn Trp Asn Ala Leu Val Val Gly Ala Lys Gly Asn Val Met
450 455 460

Val Arg Tyr Lys Arg Arg Pro Phe Ser
465 470

<210> 14

<211> 523

<212> DNA

<213> Arabidopsis thaliana

<400> 14

gacactatacg aagagctatg acgtcgcatg cacgcgtacg taagctcgga attcggctcg 60

agcttggttca caaaaagatt acttttctta ttggtcctga agtctctgct cattttttca 120

aagcttctga atctgatctt agtcagcagg aagtgtatca gttcaatgtc cctacttttg 180

gtcctggagt tgttttcgat gttgattatt ctgtttcgtc aggagcagtt cggttcttca 240

ctgaggcact tagagttaac aagttgaagg gttatgtgga tatgatggtt actgaagctg 300

aggattactt ctctaaatgg ggagagagtg gtgaagtga tattaagggtt gagctagaga 360

ggctccatcat cttgactgca agtgatgttt actgggtcga gaagttcggt atcagcttt 420

tgtatgtgtc tctgctttgt tccatgacct tgacaatgga atgctccca tcagtgcgtc 480

ccatcagtgt tctcttccca tatctcccaa ttccagctca ccg 523

<210> 15

<211> 87

<212> PRT

<213> Arabidopsis thaliana

<400> 15

His Tyr Arg Arg Ala Met Thr Ser His Ala Arg Val Arg Lys Leu Gly
1 5 10 15

Ile Arg Leu Glu Leu Val His Lys Lys Ile Thr Phe Leu Ile Gly Pro
20 25 30

Glu Val Ser Ala His Phe Phe Lys Ala Ser Glu Ser Asp Leu Ser Gln

35

40

45

Gln Glu Val Tyr Gln Phe Asn Val Pro Thr Phe Gly Pro Gly Val Val
50 55 60

Phe	Asp	Val	Asp	Tyr	Ser	Val	Arg	Gln	Glu	Gln	Phe	Gly	Ser	Ser	Leu
65					70					75					80

Arg His Leu Glu Leu Thr Ser
85

```
<210> 16
<211> 1852
<212> DNA
<213> Arabidopsis thaliana
```

<400> 16
tcgaccccg gcgtggatc agttcaagc ttaagagac ttgcggaa 60
aaagcgacga ttcttctcc atcgtgagag caaatctcca gagccgttt ctcttcttct 120
tcttcctcct cgccgcgtct ctgaaactcc atcatcgat caatcaaatt gttccctcct 180
ccaaattgaa aaacaatgga attggattcg gagaacaaat tggtgaagac gggtttggtt 240
atagtggcga cacttgttat agccaaactc atcttcttct tcttcacttc tgattctaag 300
aagaagcgtc ttccctcctac tcttaaagct tggcctccat tggttgaaag tcttatcaaa 360
ttcttgaaag gaccttattat tatgcttaga gaggaatacc ctaagcttgg aagtgtgttt 420
actgttaatc ttgttcacaa aaagattact ttcttatttgc tgcctgaagt ctctgctcat 480
tttttcaaag cttctgaatc tgatcttagt cagcaggaag tgtatcagtt caatgtccct 540
acttttggtc ctggagttgt ttgcgtatgtt gattattctg ttgcgtcaggc gcagtttcgg 600
ttcttcactg aggcacttag agttaacaag ttgaagggtt atgtggatat gatggttact 660
gaagctgagg attacttctc taaatgggaa gagagtgggtg aagttgatataaagttgag 720
ctagagaggc tcatacatctt gactgcaagt agatgtttac tgggtcgaga agttcgtat 780
cagcttttg atgatgtctc tgctttgttc catgaccccttgc acaatggaaat gttcccatc 840
agtgttctct tcccatatct cccaaatccca gtcacccgccc gtcgtgaccg tgcccgagaa 900
aagctttcg agatttcgc aaaaatcatt gggtcgagaa aacgctctgg aaaaacagag 960
aacgacatgc tgcagtgttt catcgaatca aagtacaaag atggtagaca gacaaccgaa 1020
tctgaagtca ctggtttgct cattgctgct ctgtttgcag gacaacacac gagctctatc 1080
actttcacct ggaccggc ttatctgtatcgatc gataacaaag agtacttctc agctgcttt 1140
gatgagcaga agaacctgat tgcgaaacat ggagacaaga tcgatcatga tatcttatcc 1200

gagatggatg ttctctaccc ctgcattaaag gaagcggtga ggcttcaccc tccactcatc 1260
 atgttaatga gaggcctcgca cagtgatttc agcgtgacag ctggatgg aaaaacttac 1320
 gatatcccaa agggtcacat cgttgcaacc tcccctgcat ttgccaaccg cttaccgcac 1380
 atcttcaaag accccgacac ctacgaccca gaaagattct cccctggaag agaagaggac 1440
 aaagccgcag gggcattctc gtacattgca ttcggagggg gaaggcacgg gtgccttgg 1500
 gagccgttg cttacctgca gatcaaagcc atatggagtc atttggtag gaacttcgag 1560
 cttgagctag tttcaccgtt ccctgagatt gactggaacg ctatgggtt tgtagttaaa 1620
 ggcaatgtga tggtgcgtta caagaggcgc cagcttctt aaagacaagt ttaagggttat 1680
 tgtagcttg gatccccctc tctgggttct gctttgcctt tgccctctc tggttttagt 1740
 tttgttgtg aataattctt ctgttttat aaactgttgt tactcttaa ttgacattta 1800
 ttttaagct tcctaagttt gtggttcaaa aaaaaaaaaa ggccgcgtta ct 1852

<210> 17
 <211> 488
 <212> PRT
 <213> Arabidopsis thaliana

<400> 17

Met Glu Leu Asp Ser Glu Asn Lys Leu Leu Lys Thr Gly Leu Val Ile
1 5 10 15

Val Ala Thr Leu Val Ile Ala Lys Leu Ile Phe Ser Phe Phe Thr Ser
20 25 30

Asp Ser Lys Lys Arg Leu Pro Pro Thr Leu Lys Ala Trp Pro Pro
35 40 45

Leu Val Gly Ser Leu Ile Lys Phe Leu Lys Gly Pro Ile Ile Met Leu
50 55 60

Arg Glu Glu Tyr Pro Lys Leu Gly Ser Val Phe Thr Val Asn Leu Val
65 70 75 80

His Lys Lys Ile Thr Phe Leu Ile Gly Pro Glu Val Ser Ala His Phe
85 90 95

Phe Lys Ala Ser Glu Ser Asp Leu Ser Gln Gln Glu Val Tyr Gln Phe
100 105 110

Asn Val Pro Thr Phe Gly Pro Gly Val Val Phe Asp Val Asp Tyr Ser
115 120 125

Val Arg Gln Glu Gln Phe Arg Phe Phe Thr Glu Ala Leu Arg Val Asn
130 135 140

Lys Leu Lys Gly Tyr Val Asp Met Met Val Thr Glu Ala Glu Asp Tyr
145 150 155 160

Phe Ser Lys Trp Gly Glu Ser Gly Glu Val Asp Ile Lys Val Glu Leu
165 170 175

Glu Arg Leu Ile Ile Leu Thr Ala Ser Arg Cys Leu Leu Gly Arg Glu
180 185 190

Val Arg Asp Gln Leu Phe Asp Asp Val Ser Ala Leu Phe His Asp Leu
195 200 205

Asp Asn Gly Met Leu Pro Ile Ser Val Leu Phe Pro Tyr Leu Pro Ile
210 215 220

Pro Ala His Arg Arg Asp Arg Ala Arg Glu Lys Leu Ser Glu Ile
225 230 235 240

Phe Ala Lys Ile Ile Gly Ser Arg Lys Arg Ser Gly Lys Thr Glu Asn
245 250 255

Asp Met Leu Gln Cys Phe Ile Glu Ser Lys Tyr Lys Asp Gly Arg Gln
260 265 270

Thr Thr Glu Ser Glu Val Thr Gly Leu Leu Ile Ala Ala Leu Phe Ala
275 280 285

Gly Gln His Thr Ser Ser Ile Thr Ser Thr Trp Thr Gly Ala Tyr Leu
290 295 300

Met Arg Tyr Lys Glu Tyr Phe Ser Ala Ala Leu Asp Glu Gln Lys Asn
305 310 315 320

Leu Ile Ala Lys His Gly Asp Lys Ile Asp His Asp Ile Leu Ser Glu
325 330 335

Met Asp Val Leu Tyr Arg Cys Ile Lys Glu Ala Leu Arg Leu His Pro
340 345 350

Pro Leu Ile Met Leu Met Arg Ala Ser His Ser Asp Phe Ser Val Thr
355 360 365

Ala Arg Asp Gly Lys Thr Tyr Asp Ile Pro Lys Gly His Ile Val Ala
370 375 380

Thr Ser Pro Ala Phe Ala Asn Arg Leu Pro His Ile Phe Lys Asp Pro
385 390 395 400

Asp Thr Tyr Asp Pro Glu Arg Phe Ser Pro Gly Arg Glu Glu Asp Lys
405 410 415

Ala Ala Gly Ala Phe Ser Tyr Ile Ala Phe Gly Gly Arg His Gly
420 425 430

Cys Leu Gly Glu Pro Phe Ala Tyr Leu Gln Ile Lys Ala Ile Trp Ser
435 440 445

His Leu Leu Arg Asn Phe Glu Leu Glu Leu Val Ser Pro Phe Pro Glu
450 455 460

Ile Asp Trp Asn Ala Met Val Val Gly Val Lys Gly Asn Val Met Val
465 470 475 480

Arg Tyr Lys Arg Arg Gln Leu Ser
485

<210> 18
<211> 1852
<212> DNA
<213> Arabidopsis thaliana

<400> 18
tcgaccccgc gtccgcggac gcgtgggatc agcttcaagc ttaagagagc ttgcggaa 60
aaagcgacga tttcttctcc atcgtgagag caaatctcca gagccgtttt ctcttcttct 120
tcttcctcct cgcgcgtct ctgaaaactcc atcatcgat caatcaaatt gcttcctcct 180
ccaaattgaa aaacaatgga attggattcg gagaacaaat tggtaagac gggtttggtt 240
atagtggcga cacttgatc agccaaactc atcttcttct tcttcacttc tgattctaag 300
aagaagcgtc ttcctcctac tcttaaagct tggcctccat tggttggaag tcttatcaaa 360
ttcttgaaag gacctattat tatgcttaga gaggataacc ctaagcttgg aagtgtgttt 420
actgttaatc ttgttcacaa aaagattact tttcttattt gtcctgaagt ctctgctcat 480
ttttcaaaat cttctgaatc tgatcttagt cagcaggaag tgtatcagtt caatgtccct 540
actttggcgc ctggagttgt tttcgatgtt gattattctg ttcgtcagga gcagtttcgg 600
ttcttcactg aggcaacttag agttaacaag ttgaagggtt atgtggatat gatggttact 660
gaagctgagg attacttctc taaatgggaa gagagtggtg aagttgatat taagggttag 720
ctagagaggc tcatacatctt gactgcaagt agatgtttac tgggtcgaga agttcgtgat 780
cagcttttg atgatgtctc tgctttgttc catgacccctt acaatggaaat gcttcccattc 840
agtgttctct tcccatatct cccaaattcca gtcacccgcc gtcgtgaccg tgccccgagaa 900
aagctttcgagtttttccgc aaaaatcatt gggtcgagaa aacgctctgg aaaaacagag 960
aacgacatgc tgcagtgtttt catcgaatca aagtacaaag atggtagaca gacaaccgaa 1020
tctgaagtca ctgggttgct cattgctgct ctgtttgcag gacaacacac gagctctatc 1080
acttccaccc ggaccgggtgc ttatctgatc cgataacaaag agtacttctc agctgctctt 1140
gatgagcaga agaacctgtat tgcgaaacat ggagacaaga tcgatcatga tatcttatcc 1200
gagatggatg ttctctaccg ctgcattaag gaagcggtga ggcttcaccc tccactcattc 1260

atgttaatga gagcctcgca cagtgattc agcgtgacag ctccggatgg aaaaacttac 1320
gatatccaa agggtcacat cgttgcaacc tcccctgcat ttgccaaccg cttaccgcac 1380
atcttcaaag accccgacac ctacgaccca gaaagattct cccctggaag agaagaggac 1440
aaagccgcag gggcatttc gtacattgca ttcggagggg gaaggcacgg gtgccttgg 1500
gagccgtttgc tttacctgca gatcaaagcc atatggagtc atttggtagt gaacttcgag 1560
cttgagctag tttcaccgtt ccctgagatt gactggaacg ctatgggtt tggagttaaa 1620
ggcaatgtga tggtgcgtt caagaggcgc cagcttctt aaagacaagt ttaaggttat 1680
tgcagctttg gatTTTCTC tctggTTCTC gCTTGCCTT TGTCCCTCTC TGGTTTGT 1740
tttgggttg aataattctt ctgttttat aaactgttgt tactctttaa ttgacattta 1800
tttttaagct tcctaagttt gtggttcaaa aaaaaaaaaa ggccgcgtta ct 1852

DRAFT GENOME OF ARABIDOPSIS THALIANA

<210> 19
<211> 488
<212> PRT
<213> Arabidopsis thaliana

<400> 19

Met Glu Leu Asp Ser Glu Asn Lys Leu Leu Lys Thr Gly Leu Val Ile
1 5 10 15

Val Ala Thr Leu Val Ile Ala Lys Leu Ile Phe Ser Phe Phe Thr Ser
20 25 30

Asp Ser Lys Lys Lys Arg Leu Pro Pro Thr Leu Lys Ala Trp Pro Pro
35 40 45

Leu Val Gly Ser Leu Ile Lys Phe Leu Lys Gly Pro Ile Ile Met Leu
50 55 60

Arg Glu Glu Tyr Pro Lys Leu Gly Ser Val Phe Thr Val Asn Leu Val
65 70 75 80

His Lys Lys Ile Thr Phe Leu Ile Gly Pro Glu Val Ser Ala His Phe
85 90 95

Phe Lys Ala Ser Glu Ser Asp Leu Ser Gln Gln Glu Val Tyr Gln Phe
100 105 110

Asn Val Pro Thr Phe Gly Pro Gly Val Val Phe Asp Val Asp Tyr Ser
115 120 125

Val Arg Gln Glu Gln Phe Arg Phe Phe Thr Glu Ala Leu Arg Val Asn
130 135 140

Lys Leu Lys Gly Tyr Val Asp Met Met Val Thr Glu Ala Glu Asp Tyr
145 150 155 160

Phe Ser Lys Trp Gly Glu Ser Gly Glu Val Asp Ile Lys Val Glu Leu
165 170 175

Glu Arg Leu Ile Ile Leu Thr Ala Ser Arg Cys Leu Leu Gly Arg Glu
180 185 190

Val Arg Asp Gln Leu Phe Asp Asp Val Ser Ala Leu Phe His Asp Leu
195 200 205

Asp Asn Gly Met Leu Pro Ile Ser Val Leu Phe Pro Tyr Leu Pro Ile
210 215 220

Pro Ala His Arg Arg Arg Asp Arg Ala Arg Glu Lys Leu Ser Glu Ile
225 230 235 240

Phe Ala Lys Ile Ile Gly Ser Arg Lys Arg Ser Gly Lys Thr Glu Asn
245 250 255

Asp Met Leu Gln Cys Phe Ile Glu Ser Lys Tyr Lys Asp Gly Arg Gln
260 265 270

Thr Thr Glu Ser Glu Val Thr Gly Leu Leu Ile Ala Ala Leu Phe Ala
275 280 285

Gly Gln His Thr Ser Ser Ile Thr Ser Thr Trp Thr Gly Ala Tyr Leu
290 295 300

Met Arg Tyr Lys Glu Tyr Phe Ser Ala Ala Leu Asp Glu Gln Lys Asn
305 310 315 320

Leu Ile Ala Lys His Gly Asp Lys Ile Asp His Asp Ile Leu Ser Glu
325 330 335

Met Asp Val Leu Tyr Arg Cys Ile Lys Glu Ala Leu Arg Leu His Pro
340 345 350

Pro Leu Ile Met Leu Met Arg Ala Ser His Ser Asp Phe Ser Val Thr
355 360 365

Ala Arg Asp Gly Lys Thr Tyr Asp Ile Pro Lys Gly His Ile Val Ala
370 375 380

Thr Ser Pro Ala Phe Ala Asn Arg Leu Pro His Ile Phe Lys Asp Pro
385 390 395 400

Asp Thr Tyr Asp Pro Glu Arg Phe Ser Pro Gly Arg Glu Glu Asp Lys
405 410 415

Ala Ala Gly Ala Phe Ser Tyr Ile Ala Phe Gly Gly Arg His Gly
420 425 430

Cys Leu Gly Glu Pro Phe Ala Tyr Leu Gln Ile Lys Ala Ile Trp Ser
435 440 445

His Leu Leu Arg Asn Phe Glu Leu Glu Leu Val Ser Pro Phe Pro Glu
450 455 460

Ile Asp Trp Asn Ala Met Val Val Gly Val Lys Gly Asn Val Met Val
465 470 475 480

Arg Tyr Lys Arg Arg Gln Leu Ser
485

<210> 20
<211> 1249
<212> DNA
<213> Arabidopsis thaliana

<400> 20
ctttctccct gtaaaaaaat ggactcggtg gctctctact gcaccgctgg tctcattgcc 60
ggccgcgtct actggttcat atgcgtccta ggtccagcag aacaaaagg caaacgagcc 120
tctgatctct ccggcggctc aatctccgca gaaaaagtca aagacaacta taaccaatac 180
tggtctttct tccgcaaacc aaaagagatc gaatcagccg agaaagtacc tgacttcgtc 240
gacacgttct acaatcttgt cactgatacc tacgagtggg gatggggaca atctttccat 300
ttctctcctc atgtccctgg aaaatccgac aaagacgcca caagaatcca cgaagaaatg 360
gccgtcgatc tcatcaaagt gaaaccggga caaaagattc ttgacgctgg ttgcggcgtg 420
ggtggccga tgagagccat cgccggccat tccaaggccc aagtcaactgg aatcaactatc 480
aacgagtacc aagtgcacg agccaagctt cacaacaaga aagctggact tgattctctc 540
tgcaacgtcg tttgtggtaa cttttaaag atgccgttcg atgaaaacac gtttgacgga 600
gcttactcga tcgaagctac gtgtcacgct cctaagctcg aagaagtata ctggagatc 660
ttcagagtga taaaaccagg atcttgttc gtgtcctacg aatgggtcac cactgaaaaa 720
tacagagacg atgacgaaga acacaaggac gtgattcaag ggatcgagag aggagacgca 780
cttcctggac taagaagcta cgctgatata gccgtgacgg cgaagaaagt tgggttttag 840
gtagtgaagg agaaagattt ggctaaacca ccgtctaaac cgtggtgaa ccggtaaag 900
atgggaagga ttgcttattt gagaaccat gttgtggttg tgattcttc tgctattggg 960
gttgctccta aaggaactgt tgatgttcat aagatgttgt ttaagactgc tgattatttg 1020
accagaggtg gtgagactgg aatcttctct ccgatgcata tgattctctg tagaaaacca 1080
gagaaaagctt ctgaatgaat gattgagaat acttcttcct tggctcggtt ttcttcttct 1140
ttctttctaa gttcatgttt ttcccccttaa gaatctctt gtccgtcgta ttaatgttat 1200
cacttggtg tttattgtat tttttttttt caatttgcta aattactcc 1249

<210> 21

<211> 1444
 <212> DNA
 <213> Nicotiana tabacum

<400>	21					
gcacaggtac	tcttccat	ttctctttg	aaaggtaaaa	ggttctctcc	aagaatacag	60
agatccttc	tctacataga	ttttgtgtat	atcttgtat	ttggaaaga	aatgtcaaaa	120
caaggggctt	ttgatctggc	atctggggtt	ggtggcaaaa	ttaacaagga	ggaagttctc	180
tctgctgtt	acaagtatga	gaagtaccat	ggttattatg	gaggtgaaga	agaagagaga	240
aagaataact	atactgacat	ggttaacaaa	tactatgatc	tttgcactag	cttctacgaa	300
tacggctggg	gagagtcat	ccatTTGCA	cccaggtgga	aaggagaatc	actccaagag	360
agcattaaaa	ggcatgagca	ctttcttgcc	ttgcaactgg	gattgaaacc	aggacaaaag	420
gtcttggacg	taggatgtgg	aattgggtgg	ccgttaagag	aaattgctcg	attcagctct	480
acatcagtt	caggcctcaa	caataatgaa	tatcagatat	ctagggaca	ggtgttgaac	540
cgcAAAGTAG	gattggatca	gacttgcaac	tttgtaaagg	gtgatttcat	aaaaatgcca	600
ttccctgaca	atagctttga	tgcagtgtac	gcaatagaag	ctacctgcca	tgcaccagat	660
ccattggat	gctataaaga	gatttacgg	gtgctgaagc	ctggtaatg	tttcgctgt	720
tatgagtgg	gcatgaccga	ttcttacaac	cccaataacg	aagagcacaa	caggatcaag	780
gccgaaattg	agctcgaaaa	tggcctccct	gaggtagat	tgacaacaca	gtgcctcgaa	840
gcagccaaac	aagctggttt	tgaagttgta	tgggacaagg	atctggctga	tgactcacct	900
gttccatgg	acttgccttt	ggatacaggt	cacttctcg	tcaatcgctt	ccgcctaaca	960
gcagttggca	gactttcac	cagaaatctg	gttccggcgc	ttgaataacgt	gggacttgct	1020
cctaaaggta	gtcaaagggt	tcaagcttc	ttagagaaag	ctgcagaagg	tcttgcgt	1080
ggtgccaaga	aagggatttt	cacaccaatg	tacttctcg	tggttcgcaa	ccccatttca	1140
gactctcagt	aatatggagt	ttagtcactt	agcttttgc	tttagctgc	aaatctgtaa	1200
gatttctcg	acagaacttt	acacattgaa	tatgaccgcc	ctaattaagg	tgactacagt	1260
ttttggaggg	cgttgtgggt	ggagggtttc	tttttctgt	ttgcttgc	ggcacaattt	1320
gatttcatgt	cttgcatttt	ttgccattga	tgtccttgc	ctaaagatata	tacctattga	1380
caagctcata	aaggtggca	tttgctaata	tatgggttt	caggtaaaaaa	aaaaaaaaaa	1440
aaaa						1444

<210> 22

<211> 1421
<212> DNA
<213> Arabidopsis thaliana

<400> 22 ctctctctct ctctctttgt gtcttcctca ctcttaacga aaatggactc tttaaacactc 60
ttcttcaccg gtgcactcggt cgccgtcggt atctactgggt tcctctgcgt tctcggtcca 120
gcagagcgta aaggcaaacg agccgttagat ctctctggtg gctcaatctc cgccgagaaaa 180
gtccaagaca actacaaaca gtactggtct ttcttccgcc gtc当地aaaaga aatcgaaacc 240
gccgagaaag ttccagactt cgtcgacaca ttctacaatc tcgtcaccga catatacgag 300
tggggatggg gacaatcctt ccacttctca ccatcaatcc ccggaaaatc tcacaaagac 360
gccacgcgcc tccacgaaga gatggcggtt gatctgatcc aagtcaaacc tggtaaaaag 420
atcctagacg tcggatgcgg tgtcggtt ccgatgcgag cgattgcatt tcactcgca 480
gctaacctgtg tcgggattac aataaacgag tatcaggtga acagagctcg tctccacaat 540
aagaaaagctg gtctcgacgc gctttgcgag gtcgtgtgt gtaacttcct ccagatgccg 600
ttcgatgaca acagttcga cggagcttat tccatcgaag ccacgtgtca cgc当地ccgaag 660
ctggaaagaag tgtacgcaga gatctacagg gtgttcaaacc ccggatctat gtatgtgtcg 720
tacgagtggg ttacgacgga gaaatttaag gcggaggatg acgaacacgt ggaggtaatc 780
caagggattt agagaggcga tgcgttacca gggcttaggg cttacgtgga tatagtctgag 840
acggctaaaa aggttgggtt tgagatagtg aaggagaagg atctggcgag tccaccggct 900
gagccgtgggt ggacttaggct taagatgggt aggcttgctt attggaggaa tcacattgtg 960
gttcagattt tgtcagcggt tggagttgct cctaaaggaa ctgttcatgt tcatgagatg 1020
ttgtttaaga ctgctgattt tttgaccaga ggaggtgaaa ccgaaatatt ctctccgatg 1080
catatgattt tctgcagaaaa accggagtca ccggaggaga gttcttgaga aaggtagaaaa 1140
ggaaacatca ccggaaaaaaat tatggagaat tttctcaatt ttttttttatt tttaagttaa 1200
atcaacttgg ttattgtact atttttgtgt tttaatttgg tttgtgttcc aagaattatt 1260
agttttttt tttttttttt catatgagaa tcttactctt gatttctccg ccgtagagcc 1320
ggcgagacat aggggattat tagtattttt aagtgtgttt aagattgatt aacaagttag 1380
taaaataaaaa tgtactttagg tgtcgaaaaaaa aaaaggaattt c 1421

<210> 23
<211> 1175
<212> DNA

<213> Arabidopsis thaliana

<400> 23

cagtgtagt aat tagcat tactactgtt gacttgtca ataaaggtaa agtaagatca	60
atccggcgca atcttcattc gtttccggc accgatctcg gtggatctcc gattcacatg	120
gcggcgata atgcttatct gatgcagttt gttgacgaaa cctctttta caaccgaatc	180
gttctgagtc atctttgcc ggcgaatcta tggaaaccct tacctcattt tctccagaca	240
tggctccgaa attacctcgc cggaacccta ctatacatca tctccggtt cctctgggtc	300
ttctacatct attaccgtaa aatcaacgtt taccttcca aagatgcaat tcctacaata	360
aaggctatgc gtttgc当地 atgaaggcta tgccatggta cactcttctt	420
ccaactgtct ccgagagtat gattgaacgt gggtggacca aatgtttgc tagcataggc	480
gaattcgggtt ggattctgta ttttgtttac atcgccatct atcttgggtt cgttgggtt	540
ggatatttatt ggatgcacag agagcttcat gacattaagc ctctctataa gtatctccat	600
gccacccatc atatctacaa caagcagaat acactcttc cattgccgg gcttgcattt	660
caccctggtag acgggataact tcaggctgta ccgcattgtga tagcgctgtt tatagtgcc	720
attcatttca caactcatat aggtcttttgc ttcatggaaag cgatatgggc ggcgaacatc	780
catgactgca tccatggcaa catctggcca gtaatgggtg caggatacca tacgatacac	840
cacacgacat acaaggataa ctatggcat tataccatat ggatggattt gatgtttggc	900
tctcttaggg atcctcttctt agaagaagat gacaacaaag acagcttcaa gaaagcagag	960
tgaggatgcc cacttggggg ttgttcttct gtgttgttctt gtgttgtgt tgtccaaagt	1020
ttcagccttt cttgttcttt ttcttcttct tcttattcat gtgtctctct caaccttcc	1080
aattatatttgc ttacaaacat ttgctgtcta gttaaaaca tgtaaatgtt tgatgtatctt	1140
tccccaaaaaaa aaaaaaaaaact aaattactca cactg	1175

<210> 24

<211> 1431

<212> DNA

<213> Hevea brasiliensis

<400> 24

atggcacgacg cctccatga cgtgtggac ctcgaagata cggatccaa ctacctcatc	60
gatgaagatc accgtctcgta tacttgcctt cccgctaata tatctactaa gactaccatt	120
attgccgcac ctaccaaatt gcctacctcg gaacccttaa ttgcaccctt agtctcgag	180
gaagacgaaa tgatcgtaa ctccgtcgat gatggaaaga taccctccta ttctctggag	240

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

tcgaagctcg	gggactgcaa	acgagcggct	gcgattcgac	gcgaggcttt	gcagaggatg	300
acaaggaggt	cgcttggaaagg	cttgcagta	gaagggttcg	attacgagtc	gatttttagga	360
caatgctgtg	aatgccagt	gggatacgtg	cagattccgg	tggggattgc	ggggccgttg	420
ttgctgaacg	ggcgggagta	ctctgttcca	atggcgacca	cggagggttg	tttggtggcg	480
agcactaata	gagggtgtaa	ggcgatttac	ttgtcaggtg	ggccaccag	cgtcttggtg	540
aaggatggca	tgacaagagc	gcctgttcta	agattcgcgt	cggcgactag	agccgcggag	600
ttgaagttct	tcttggagga	tcctgacaat	tttgataacct	tggccgtagt	ttttaacaag	660
tccagtagat	ttgcgaggct	ccaaggcatt	aatgctcaa	ttgctggtaa	gaatcttat	720
ataagattca	gctgcagcac	tggcgatgca	atggggatga	acatggttc	taaagggtt	780
caaaaacgttc	ttgaatttct	tcaaagtat	ttttctgata	tggatgtcat	tggaatctca	840
ggaaattttt	gttcggataa	gaagcctgct	gctgtaaatt	ggattgaagg	acgtggcaaa	900
tcagttgttt	gtgaggcaat	tatcaaggaa	gaggtggtga	agaaggtgtt	aaaaaccaat	960
gtggcctccc	tagtggagct	taacatgctc	aagaatcttgc	ctggttctgc	tgttgctgg	1020
gttttgggtg	gatttaatgc	ccatgcaggc	aacatcgat	ctgcaatctt	tattgccact	1080
ggccaggatc	cagcacagaa	tgttgagagt	tctcattgca	ttaccatgtat	ggaagctgtc	1140
aatgatggaa	aggatctcca	tatctctgtg	accatgcctt	ccattgaggt	gggtacagtc	1200
ggaggtggaa	ctcaacttgc	atctcagtct	gcttgcctca	atttgcttgg	ggtgaagggt	1260
gcaaacaag	agtcgccagg	atcaaactca	aggctcccttgc	ctgccatcgat	agctgggtca	1320
gttttggctg	gtgagctctc	cttgatgtct	gccattgcag	ctggcagct	tgtcaagagt	1380
cacatgaagt	acaacagagc	cagcaaagat	atgtctaaag	ctgcattctta	g	1431

<210> 25
<211> 476
<212> PRT
<213> Hevea brasiliensis

<400> 25

Met Ala Arg Ala Ser His Asp Val Trp Asp Leu Glu Asp Thr Asp Pro
1 5 10 15

Asn Tyr Leu Ile Asp Glu Asp His Arg Leu Val Thr Cys Pro Pro Ala
20 25 30

Asn Ile Ser Thr Lys Thr Thr Ile Ile Ala Ala Pro Thr Lys Leu Pro
35 40 45

Thr Ser Glu Pro Leu Ile Ala Pro Leu Val Ser Glu Glu Asp Glu Met
50 55 60

Ile Val Asn Ser Val Val Asp Gly Lys Ile Pro Ser Tyr Ser Leu Glu
65 70 75 80

Ser Lys Leu Gly Asp Cys Lys Arg Ala Ala Ala Ile Arg Arg Glu Ala
85 90 95

Leu Gln Arg Met Thr Arg Arg Ser Leu Glu Gly Leu Pro Val Glu Gly
100 105 110

Phe Asp Tyr Glu Ser Ile Leu Gly Gln Cys Cys Glu Met Pro Val Gly
115 120 125

Tyr Val Gln Ile Pro Val Gly Ile Ala Gly Pro Leu Leu Leu Asn Gly
130 135 140

Arg Glu Tyr Ser Val Pro Met Ala Thr Thr Glu Gly Cys Leu Val Ala
145 150 155 160

Ser Thr Asn Arg Gly Cys Lys Ala Ile Tyr Leu Ser Gly Gly Ala Thr
165 170 175

Ser Val Leu Leu Lys Asp Gly Met Thr Arg Ala Pro Val Val Arg Phe
180 185 190

Ala Ser Ala Thr Arg Ala Ala Glu Leu Lys Phe Phe Leu Glu Asp Pro
195 200 205

Asp Asn Phe Asp Thr Leu Ala Val Val Phe Asn Lys Ser Ser Arg Phe
210 215 220

Ala Arg Leu Gln Gly Ile Lys Cys Ser Ile Ala Gly Lys Asn Leu Tyr
225 230 235 240

Ile Arg Phe Ser Cys Ser Thr Gly Asp Ala Met Gly Met Asn Met Val
245 250 255

Ser Lys Gly Val Gln Asn Val Leu Glu Phe Leu Gln Ser Asp Phe Ser
260 265 270

Asp Met Asp Val Ile Gly Ile Ser Gly Asn Phe Cys Ser Asp Lys Lys
275 280 285

Pro Ala Ala Val Asn Trp Ile Glu Gly Arg Gly Lys Ser Val Val Cys
290 295 300

Glu Ala Ile Ile Lys Glu Glu Val Val Lys Lys Val Leu Lys Thr Asn
305 310 315 320

Val Ala Ser Leu Val Glu Leu Asn Met Leu Lys Asn Leu Ala Gly Ser
325 330 335

Ala Val Ala Gly Ala Leu Gly Gly Phe Asn Ala His Ala Gly Asn Ile
340 345 350

Val Ser Ala Ile Phe Ile Ala Thr Gly Gln Asp Pro Ala Gln Asn Val
355 360 365

Glu Ser Ser His Cys Ile Thr Met Met Glu Ala Val Asn Asp Gly Lys
370 375 380

Asp Leu His Ile Ser Val Thr Met Pro Ser Ile Glu Val Gly Thr Val
385 390 395 400

Gly Gly Gly Thr Gln Leu Ala Ser Gln Ser Ala Cys Leu Asn Leu Leu
405 410 415

Gly Val Lys Gly Ala Asn Lys Glu Ser Pro Gly Ser Asn Ser Arg Leu
420 425 430

Leu Ala Ala Ile Val Ala Gly Ser Val Leu Ala Gly Glu Leu Ser Leu
435 440 445

Met Ser Ala Ile Ala Ala Gly Gln Leu Val Lys Ser His Met Lys Tyr
450 455 460

Asn Arg Ala Ser Lys Asp Met Ser Lys Ala Ala Ser
465 470 475

<210> 26

<211> 1431

<212> DNA

<213> Hevea brasiliensis

<400> 26

atggcacgca cctccatga cgtgtggac ctcgaagata cgatccaa ctacccatc 60

gatgaagatc accgtctcgtaacttgcct cccgctaata tatctactaa gactaccatt 120

attgccgcac ctaccaaatt gcctacctcg gaacccttaa ttgcaccctt agtctcgag 180

gaagacgaaa tgatcgtaa ctccgtcgatggaaaga taccctccta ttctctggag 240

tcgaagctcg gggactgcaa acgagcggct gcgattcgac gcgaggcttt gcagaggatg 300

acaaggaggt cgctggaagg cttgccagta gaagggttcg attacgagtc gatttttagga 360

caatgctgtg aaatgccagt gggatacgtg cagattccgg tggggattgc gggccgttg 420

ttgctgaacg ggcgggagta ctctgttcca atggcgacca cggagggttg ttttgtggcg 480

agcactaata gagggtgtaa ggcgatttac ttgtcaggtg gggccaccag cgtttgttg 540

aaggatggca tgacaagagc gcctgttgta agattcgct cggcgactag agccgcggag 600

ttgaagttct tcggagggatc tcctgacaat tttgataacct tggccgtagt ttttaacaag 660

tccagtagat ttgcgaggct ccaaggcatt aaatgctcaa ttgtcgtaa gaatcttat 720

ataagattca gctgcagcac tggcgatgca atggggatga acatggtttc taaagggtt 780

caaaaacgttc ttgaatttct tcaaagtat ttttctgata tggatgtcat tggaatctca	840
ggaaatttt gttcgatata gaagcctgct gctgtaaatt ggattgaagg acgtggcaaa	900
tcaagggttt gtgaggcaat tatcaaggaa gaggtggta agaagggttt gaaaaccaat	960
gtggcctccc tagtggagct taacatgctc aagaatcttg ctggttctgc tggtgctgg	1020
gctttgggtg gatttaatgc ccatgcaggc aacatcgat ctgcaatctt tattgccact	1080
ggccaggatc cagcacagaa tggtagagat ttcattgca ttaccatgat ggaagctgtc	1140
aatgatggaa aggatctcca tatctctgt accatgcctt ccattgaggt gggtagtc	1200
ggaggtggaa ctcaacttgc atctcagtct gcttgcata atttgcgg ggtgaagggt	1260
gcaaacaag agtcgccagg atcaaactca aggctccttgc tgccatcgat agctggttca	1320
gttttggctg gtgagctctc cttgatgtct gccattgcag ctggcagct tgtcaagagt	1380
cacatqaaqt acaacagatc cgccaaagat atgtctaaag ctgcataat g	1431

卷之三

<210> 27
<211> 476
<212> PRT
<213> *Hevea brasili*

<400> 27

Met Ala Arg Ala Ser His Asp Val Trp Asp Leu Glu Asp Thr Asp Pro
1 5 10 15

Asn	Tyr	Leu	Ile	Asp	Glu	Asp	His	Arg	Leu	Val	Thr	Cys	Pro	Pro	Ala	
								20					25			30

Thr Ser Glu Pro Leu Ile Ala Pro Leu Val Ser Glu Glu Asp Glu Met
50 55 60

Ile	Val	Asn	Ser	Val	Val	Asp	Gly	Lys	Ile	Pro	Ser	Tyr	Ser	Leu	Gl
65				70					75					80	

Ser Lys Leu Gly Asp Cys Lys Arg Ala Ala Ala Ile Arg Arg Glu Ala
85 90 95

Leu Gln Arg Met Thr Arg Arg Ser Leu Glu Gly Leu Pro Val Glu Gly
100 105 110

Phe Asp Tyr Glu Ser Ile Leu Gly Gln Cys Cys Glu Met Pro Val Gly
 115 120 125

Tyr Val Gln Ile Pro Val Gly Ile Ala Gly Pro Leu Leu Leu Asn Gly
 130 135 140

Arg Glu Tyr Ser Val Pro Met Ala Thr Thr Glu Gly Cys Leu Val Ala
145 150 155 160

Ser Thr Asn Arg Gly Cys Lys Ala Ile Tyr Leu Ser Gly Gly Ala Thr
165 170 175

Ser Val Leu Leu Lys Asp Gly Met Thr Arg Ala Pro Val Val Arg Phe
180 185 190

Ala Ser Ala Thr Arg Ala Ala Glu Leu Lys Phe Phe Leu Glu Asp Pro
195 200 205

Asp Asn Phe Asp Thr Leu Ala Val Val Phe Asn Lys Ser Ser Arg Phe
210 215 220

Ala Arg Leu Gln Gly Ile Lys Cys Ser Ile Ala Gly Lys Asn Leu Tyr
225 230 235 240

Ile Arg Phe Ser Cys Ser Thr Gly Asp Ala Met Gly Met Asn Met Val
245 250 255

Ser Lys Gly Val Gln Asn Val Leu Glu Phe Leu Gln Ser Asp Phe Ser
260 265 270

Asp Met Asp Val Ile Gly Ile Ser Gly Asn Phe Cys Ser Asp Lys Lys
275 280 285

Pro Ala Ala Val Asn Trp Ile Glu Gly Arg Gly Lys Ser Val Val Cys
290 295 300

Glu Ala Ile Ile Lys Glu Glu Val Val Lys Lys Val Leu Lys Thr Asn
305 310 315 320

Val Ala Ser Leu Val Glu Leu Asn Met Leu Lys Asn Leu Ala Gly Ser
325 330 335

Ala Val Ala Gly Ala Leu Gly Gly Phe Asn Ala His Ala Gly Asn Ile
340 345 350

Val Ser Ala Ile Phe Ile Ala Thr Gly Gln Asp Pro Ala Gln Asn Val
355 360 365

Glu Ser Ser His Cys Ile Thr Met Met Glu Ala Val Asn Asp Gly Lys
370 375 380

Asp Leu His Ile Ser Val Thr Met Pro Ser Ile Glu Val Gly Thr Val
385 390 395 400

Gly Gly Gly Thr Gln Leu Ala Ser Gln Ser Ala Cys Leu Asn Leu Leu
405 410 415

Gly Val Lys Gly Ala Asn Lys Glu Ser Pro Gly Ser Asn Ser Arg Leu
420 425 430

Leu Ala Ala Ile Val Ala Gly Ser Val Leu Ala Gly Glu Leu Ser Leu
435 440 445

Met Ser Ala Ile Ala Ala Gly Gln Leu Val Lys Ser His Met Lys Tyr
450 455 460

Asn Arg Ser Ala Lys Asp Met Ser Lys Ala Ala Ser
465 470 475

<210> 28
<211> 22
<212> DNA
<213> Artificial sequence

<220>
<221> misc_feature
<222> (1)..(22)
<223> Primer

<400> 28
gagatctgaa ccctaacgag ag 22

<210> 29
<211> 26
<212> DNA
<213> Artificial sequence

<220>
<221> misc_feature
<222> (1)..(26)
<223> Primer

<400> 29
ggagctctta agaaaaggga cgacgc 26

<210> 30
<211> 26
<212> DNA
<213> Artificial sequence

<220>
<221> misc_feature
<222> (1)..(26)
<223> Primer

<400> 30
gtctctgaat cagaaatcct tctatac 26

<210> 31
<211> 25
<212> DNA
<213> Artificial sequence

<220>

<221> misc_feature
<222> (1)..(25)
<223> Primer

<400> 31
catgtcaaat ttcactgctt catcc 25

<210> 32
<211> 31
<212> DNA
<213> Artificial sequence

<220>
<221> misc_feature
<222> (1)..(31)
<223> Primer

<400> 32
gagatctcca cagatttaaa gaaccctaac g 31

<210> 33
<211> 31
<212> DNA
<213> Artificial sequence

<220>
<221> misc_feature
<222> (1)..(31)
<223> Primer

<400> 33
ggagctcggt ttttaagaaa agggacgacg c 31