TreeShrink: efficient detection of outlier tree leaves

Uyen Mai Siavash Mirarab

University of California at San Diego

Long branches are suspect

Long branches are suspect

Idea: find errors in the data by building a phylogeny and detecting long branches

A gene tree from the 1KP plant dataset (Wicket *et al,* PNAS, 2014)

For unrooted trees?

Diameter: the longest path between any two species

A gene tree from the 1KP plant dataset (Wicket *et al,* PNAS, 2014)

For unrooted trees?

Diameter: the longest path between any two species

An optimization problem

The *k*-shrink problem:

- Given:
 - a tree with n leaves and branch lengths
 - some $1 \le k \le n$

An optimization problem

The *k*-shrink problem:

- Given:
 - a tree with n leaves and branch lengths
 - some $1 \le k \le n$
- Find:
 - for every $1 \le i \le k$:
 - the set of i leaves that should be removed to reduce the tree diameter maximally

An optimization problem

The *k*-shrink problem:

- Given:
 - · a tree with 1/2 leaves and branch lengths
 - We have a polynomial time solution
- Find.
 - for every $1 \le i \le k$:
 - the set of i leaves that should be removed to reduce the tree diameter maximally

Running Time

- k-shrink can be solved in $O(k^2h+n)$ where h= the tree height
 - by default, we set $k=O(n^{0.5})$

Running Time

- k-shrink can be solved in $O(k^2h+n)$ where h = the tree height
 - by default, we set $k=O(n^{0.5})$
- Fast enough: processes a tree of n=203,452 leaves with k=2255 in 28 mins

How many do we remove?

- How do we decide how many things to remove?
 - We have the optimal removals for $1 \le i \le k$. What i should we use?

How many do we remove?

- How do we decide how many things to remove?
 - We have the optimal removals for $1 \le i \le k$. What i should we use?
- Find an i where the corresponding reduction in the diameter is unexpectedly high
 - needs statistical tests to find outliers

Let $v_i = \frac{\text{the diameter after } i\text{-1 removals}}{\text{the diameter after } i \text{ removals}}$

Let $v_i = \frac{\text{the diameter after } i\text{-1 removals}}{\text{the diameter after } i \text{ removals}}$

- Equisetum diffusum, Anomodon attenuatus
- Equisetum diffusum, Smilax bona-nox, Klebsormidium subtile
- Equisetum diffusum, Smilax bona-nox, Klebsormidium subtile, Anomodon attenuatus
- Equisetum diffusum, Smilax bona-nox, Klebsormidium subtile, Nephroselmis pyriformis, Anomodon attenuatus
- Equisetum diffusum, Smilax bona-nox, Klebsormidium subtile, Nephroselmis pyriformis, Pyramimonas parkeae, Anomodon attenuatus

Three statistical tests of TreeShrink

- The "per-gene" test: requires only a single tree
- The "all-gene" test: requires a collection of gene trees
- The "per-species" test: requires a collection of gene trees

Statistical tests

- The "per-gene" test (input: a single tree)
 - Fit a log-normal distribution to the signatures
 - Remove taxa with outlier signatures
 - Outlier: CDF above $1-\alpha$ fore a given α (false positive tolerance)
- The "all-gene" test
- The "per-species" test

Statistical tests

- The "per-gene" test
- The "all-gene" test (input: a collection of gene trees)
 - Combine all signature values <u>across all genes</u>
 - Compute a kernel density over the empirical distribution
 - Remove the taxa of the outlier signatures
 - Outlier: CDF above $1-\alpha$ fore a given α
- The "per-species" test

Statistical tests

- The "per-gene" test
- The "all-gene" test
- The "per-species" test (input: a collection of gene trees)
 - Compute a kernel density function <u>for each species</u> over its signatures across genes
 - Remove the taxa of the outlier signatures
 - Outlier: CDF above $1-\alpha$ for a given α

Methods

- The three tests of TreeShrink
- Alternative filtering methods
 - RootedFiltering: root gene trees and remove taxa X standard deviations more distant to the root than average
 - RogueNarok: rogue taxon removal based; finds unstable nodes based on bootstrap replicates
 - RandomFiltering: randomly choose what to remove.

Measurements

- Effects of filtering on taxon occupancy
 - Proportion of data retained for each species
- Effects of filtering on gene tree discordance
 - Reduction in pairwise MS distance of gene trees on controlled amount of filtering

Datasets

•	6 p	hyloge	nomic	datasets
---	-----	--------	-------	----------

- Gene number: 95 1478
- Species number: 26 164

	Genes	Species
Plants	852	104
Insects	1478	144
Mammals	424	37
Frogs	95	164
Metazoa- Cannon	213	78
Metazoa- Rouse	393	26

Results: outgroup removal

- Percent of the data removed for α =0.05 for
 - All species
 - Outgroups

Results: outgroup removal

- Percent of the data removed for α =0.05 for
 - All species
 - Outgroups

Impact of filtering on discordance

Plant dataset

TreeShrink versus alternative methods (discordance)

TreeShrink versus alternative methods (discordance)

Results: TreeShrink versus Alternative Methods

TreeShrink versus alternative methods (occupancy)

{} ab

Solution space

k = 3

The TreeShrink tool is publicly available https://github.com/uym2/TreeShrink

Uyen Mai

A single HIV tree

- 648 HIV-1 partial *pol* sequences
 - 639 subtype B
 - 7 non-subtype B
 - 2 unassigned

- TreeShrink
- RogueNarok
- TreeShrink and RogueNarok
- Unassigned Subtype

Results: TreeShrink versus Alternative Methods

Results: The 3 Tests of TreeShrink

Results: The 3 Tests of TreeShrink

• Can be done in other ways too (e.g., $O(n.k+k^2logk)$), but harder to implement

Can be just outgroups

