Definition 0.1. A Binary Operation on a set S is a mapping * from $S \times S \to S$ that associates elements in $S \times S$ to an element in S.

Definition 0.2. A Group is a pairing of a set \mathcal{G} and a binary operator $*(\mathcal{G},*)$ such that

- 1. * is associative, i.e. a * (b * c) = (a * b) * c.
- 2. $\exists e \in \mathcal{G} \ \ni x * e = e * x = x$. This is called the identity.
- 3. $\forall x \in \mathcal{G}, \exists y \in \mathcal{G} \ni x * y = y * x = e. y \text{ is called the inverse of } x.$

If * is commutative, then \mathcal{G} is called <u>abelian</u>.

Theorem 0.1. Let * be a binary operation on S. If there is an identity, it is unique.

Proof. Let e, f be identities in $(\mathcal{S}, *)$. Then e * f = e and e * f = f, so e = f.