Oscillateur linéaire à un degré de liberté

Table des matières

1	Oscillateur harmonique non amorti						
	1.1	Définition					
	1.2	Exemp	oles	2			
		1.2.1	Mouvement d'un point au voisinage de la position d'équilibre stable	2			
		1.2.2	Particule élastiquement liée	3			
2	Régime libre d'un oscillateur harmonique amortie						
	2.1	1 Oscillateur harmonique amortie unidimensionnel					
	2.2	Exemp	oles	6			
		2.2.1	Particule élastiquement liée avec frottement fluide	6			
		2.2.2	Pendule simple amorti	7			
3	Régimes de variation d'un oscillateur harmonique amortie-Portrait						
	de p	le phase					
	3.1	Portra	it de phase	8			
		3.1.1	Définitions	8			
		3.1.2	Propriétés des trajectoires de phase	8			
		3.1.3	Exemple	8			
	3.2	Divers régimes de variation d'un oscillateur harmonique amortie					
		3.2.1	Régime apériodique : $\Delta > 0, \lambda > \omega_0, Q < \frac{1}{2} \dots \dots \dots$	9			
		3.2.2	Régime critique : $\Delta = 0$; $\lambda = \omega_0$; $Q_c = \frac{1}{2}$	9			
		3.2.3	Régime pseudo-périodique : $\Delta < 0; \lambda < \omega_0; Q > \frac{1}{2}$	10			
		3.2.4	Interprétation énergétique du régime pseudo-périodique	11			
4	Résonance mécanique						
	4.1	Réponse d'un oscillateur harmonique amortie à une excitation sinusoïdale					
	4.2	Régime sinusoïdal forcé-résonance en élongation					
	4.3	Résonance en vitesse					
	4.4	Analog	gie électro-mécanique	15			

On se limite à l'étude d'un oscillateur unidimensionnel pour le quel le vecteur position \overrightarrow{OM} ne dépend que d'une seule variable spatiale .

1 Oscillateur harmonique non amorti

1.1 Définition

Définition: On appelle oscillateur harmonique unidimentionnel tout système physique (point matériel) dont le mouvement est décrit par une équation de type:

$$\frac{d^2x}{dt^2} + \omega_0^2 x = 0$$

- \bullet x: paramètre du système évoluant au cours du temps
- $\omega_0 = \frac{2\pi}{T_0}$: pulsation propre du système
- la solutione de cette équation s'écrit :

$$x(t) = X_m \cos(\omega_0 t + \varphi)$$

- $ightharpoonup X_m$: amplitude qui dépend des conditions initiales
- $\blacktriangleright \ \varphi$: phase à l'origine dépendant des conditions initiales
- ▶ $T_0 = \frac{2\pi}{\omega_0}$ indépendant des conditions initiales

1.2 Exemples

1.2.1 Mouvement d'un point au voisinage de la position d'équilibre stable

- \blacktriangleright Soit x_e la position d'équilibre stable d'un système physique
- $ightharpoonup DL_2$ de l'énergie potentiel

$$E_p(x) = E_p(x_e) + (x - x_e) \left(\frac{dE_p}{dx}\right)_{x=x_e} + \frac{(x - x_e)^2}{2} \left(\frac{d^2E_p}{dx^2}\right)_{x=x_e}$$

▶ position d'équilibre stable : $\left(\frac{dE_p}{dx}\right)_{x=x_0} = 0$ et

$$k = \left(\frac{d^2 E_p}{dx^2}\right)_{x=x_e} > 0$$

$$E_p(x) = E_p(x_e) + \frac{k}{2}(x - x_e)^2$$

► Approximation harmonique

Approximation harmonique : On se limite aux petits mouvements au voisinage d'un équilibre stable x_e , il existe une cuvette parabolique de potentiel au voisinage de cette position d'équilibre tel que :

$$E_p(x) = E_p(x_e) + \frac{k}{2}(x - x_e)^2$$

avec:
$$k = \left(\frac{d^2 E_p}{dx^2}\right)_{x=x_e} > 0$$

- \blacktriangleright l'équation du mouvement de l'oscillateur dans le cadre de l'approximation harmonique se déduit à partir de l'énergie mécanique E_m
- ▶ l'énergie mécanique se conserve donc $E_m = cte \Rightarrow \frac{dE_m}{dt} = 0$

►
$$E_m = E_c + E_p = \frac{1}{2}m\dot{x}^2 + E_p(x_e) + \frac{k}{2}(x - x_e)^2$$

 $\frac{dE_m}{dt} = 0 = m\dot{x}\ddot{x} + k(x - x_e)\dot{x}$
on pose $X = x - x_e$ donc $\dot{X} = \dot{x}$

$$\ddot{X} + \frac{k}{m}X = 0$$

on pose $\omega_0 = \sqrt{\frac{k}{m}}$: pulsation propre du système

$$\ddot{X} + \omega_0^2 X = 0$$

Conclusion : le point matériel au voisinage de sa position d'équilibre stable se comporte comme un oscillateur harmonique non hamortie à une dimension de pulsation propre $\omega_0 = \sqrt{\frac{k}{m}}$

1.2.2 Particule élastiquement liée

Considérons une particule M de masse m fixée à l'extrimité d'un resort de raideur k et de longueur au repos l_0 . La particule est astreinte à se déplacer sans frottement le long d'un axe horizontale ox .

$$\overrightarrow{F} = -k(l - l_0)\overrightarrow{e}_x = -kX\overrightarrow{e}_x$$

► PFD:
$$\overrightarrow{F} + \overrightarrow{P} + \overrightarrow{R} = m \overrightarrow{a}$$

 $-kX + 0 + 0 = m\ddot{X}$; on pose $\omega_0 = \sqrt{\frac{k}{m}}$

$$\ddot{X} + \omega_0^2 X = 0$$

c'est une équation de type oscillateur harmonique

Conclusion: la particule élastiquement liée se comporte comme un oscillateur harmonique de pulsation $\omega_0 = \sqrt{\frac{k}{m}}$

▶ la solution de cette équation s'écrit : $X(t) = X_m \cos(\omega t + \varphi)$ les conditions initiales $\begin{cases} \text{la vitesse v(t=0)} &= V_0 \\ \text{la position x(t=0)} &= X_0 \end{cases}$

la position
$$x(t=0) = X_0$$

•
$$X(0) = X_m \cos \varphi = X_0$$

•
$$\dot{X}(0) = V_0 = -X_m \omega_0 \sin \varphi$$

$$\tan \varphi = -\frac{V_0}{X_0 \omega_0}$$

$$X_m = \sqrt{X_0^2 + \left(\frac{V_0}{\omega_0}\right)^2}$$

- \blacktriangleright énergie potentielle E_p
 - la force de rappel élastique : $\overrightarrow{F} = -kX\overrightarrow{e}_x$

•
$$dE_p = -\delta W = -\overrightarrow{F}dX\overrightarrow{e}_x = kXdX = d(\frac{1}{2}kX^2 + cte)$$

$$E_p(x) = \frac{1}{2}kX^2$$

avec $E_p(0) = 0$, il s'agit d'une cuvette parabolique de potentiel

la position d'équilibre x = 0 est stable car $\left(\frac{d^2 E_p}{dx^2}\right)_{x=0} = k > 0$

- \blacktriangleright énergie mécanique E_m
 - la force $\overrightarrow{F} = -KX\overrightarrow{e}_x$ est conservative donc E_m est une constante de mouvement

$$E_m(t) = E_m(0) = E_p + E_c$$

- $E_p = \frac{1}{2}kx^2 = \frac{1}{2}kX_m^2\cos^2(\omega_0 t + \varphi)$
- $E_c = \frac{1}{2}m\dot{X}^2 = \frac{1}{2}m\omega_0^2 X_m^2 \sin^2(\omega_0 t + \varphi)$
- $E_m = \frac{1}{2}kX_m^2(\cos^2(\omega_0 t + \varphi) + \sin^2(\omega_0 t + \varphi))$

$$E_m = \frac{1}{2}kX_m^2 = \frac{1}{2}m\omega_0^2 X_m^2$$

Conclusion : L'énergie mécanique E_m d'une particule élastiquement liée est une constante du mouvement

$$E_m = \frac{1}{2}kX_m^2 = \frac{1}{2}m\omega_0^2 X_m^2$$

- $\blacktriangleright\,$ valeurs moyennes de E_c et de E_p : équipartition de l'énergie
 - $\langle E_c \rangle = \frac{1}{T_0} \int_0^{T_0} E_c(t) dt$

•
$$\langle E_p \rangle = \frac{1}{T_0} \int_0^{T_0} E_p(t) dt$$

$$\begin{cases}
\cos^2(\omega_0 t + \varphi) = \frac{1}{2} + \frac{\cos 2(\omega_0 t + \varphi)}{2} \\
\sin^2(\omega_0 t + \varphi) = \frac{1}{2} - \frac{\cos 2(\omega_0 t + \varphi)}{2}
\end{cases}$$
avec $\omega_0 T_0 = 2\pi$

• donc

$$<\cos^2(\omega_0 t + \varphi)> = <\sin^2(\omega_0 t + \varphi)> = \frac{1}{2}$$

• donc
$$\langle E_p \rangle = \langle \frac{1}{2}kX^2 \rangle = \frac{1}{2}kX_m^2 \langle \cos^2(\omega_0 t + \varphi) \rangle = \frac{1}{4}kX_m^2$$

$$|\langle E_p \rangle = \frac{1}{4}kX_m^2$$

•
$$\langle E_c \rangle = \langle \frac{1}{2}m\dot{X}^2 \rangle = \frac{1}{2}mX_m^2\omega_0^2 \langle \sin^2(\omega_0 t + \varphi) \rangle = \frac{1}{4}m\omega_0^2X_m^2 = \frac{1}{4}kX_m^2$$

Conclusion

$$\langle E_c \rangle = \langle E_p \rangle = \frac{1}{4}kX_m^2 = \frac{1}{4}m\omega_0^2X_m^2$$

on dit qu'il y a l'équipartition de l'énergie

2 Régime libre d'un oscillateur harmonique amortie

2.1 Oscillateur harmonique amortie unidimensionnel

Définition : On appelle oscillateur harmonique amortie unidimensionnel tout système physique caractérisé par une équation de type :

$$\ddot{X} + 2\lambda \dot{X} + \omega_0^2 X = 0$$

- λ : coefficient d'amortissement de l'oscillateur
- ω_0 : pulsation propre de l'oscillateur

▶ le facteur de qualité

$$Q = \frac{\omega_0}{2\lambda}$$

 \triangleright le temps de relaxation τ

$$\tau = \frac{Q}{\omega_0} = \frac{1}{2\lambda}$$

▶ l'équation s'écrit sous la forme

$$\ddot{X} + \frac{\omega_0}{Q}\dot{X} + \omega_0^2 X = 0$$
$$\ddot{X} + \frac{1}{\tau}X + \omega_0^2 X = 0$$

$$\ddot{X} + \frac{1}{\tau}X + \omega_0^2 X = 0$$

2.2Exemples

2.2.1 Particule élastiquement liée avec frottement fluide

• la force des frottements fluides de la forme

$$\overrightarrow{F}_d = -\alpha \overrightarrow{V} = -\alpha \dot{X} \overrightarrow{e}_x$$

• la force de rappel

force de rappel
$$\overrightarrow{F} = -k(l - l_0)\overrightarrow{e}_x = -kX\overrightarrow{e}_x$$

- ▶ On peut obtenir l'équation du mouvement soit à partir du PFD où du bilan énergétique (théorème de l'énergie mécanique)
- ▶ théorème de l'énergie mécanique : $dE_m = \delta W(\overrightarrow{F}_{nc}) = \overrightarrow{F}_d \cdot \overrightarrow{V} \cdot dt$

$$dE_m = -\alpha V^2 dt < 0$$

avec :
$$V = \dot{X}$$

- $E_m = E_c + E_p = \frac{1}{2}m\dot{X}^2 + \frac{1}{2}kX^2$
- $d(\frac{1}{2}m\dot{X}^2 + \frac{1}{2}kX^2) = -\alpha \dot{X}^2 dt$

$$\boxed{\ddot{X} + \frac{\alpha}{m}\dot{X} + \frac{k}{m}X = 0}$$

ightharpoonup on pose $\omega_0^2 = \frac{k}{m}$ et $2\lambda = \frac{\alpha}{m}$

$$\ddot{X} + 2\lambda \dot{X} + \omega_0^2 X = 0$$

Conclusion : la particule élastiquement liée avec frottements fluides se comporte comme un oscillateur harmonique amortie avec un coefficient d'amortissement λ 2m

2.2.2 Pendule simple amorti

•
$$\overrightarrow{OM} = l\overrightarrow{e}_r$$

•
$$\overrightarrow{V} = l \dot{\theta} \overrightarrow{e}_{\theta}$$

•
$$\overrightarrow{F}_d = -\alpha l \dot{\theta} \overrightarrow{e}_{\theta}$$

▶ bilan énergétique : $dE_m = \delta W(\overrightarrow{F}_{nc}) = \delta W(\overrightarrow{F}_d) = -\alpha V^2 dt$

$$ightharpoonup E_m = E_c + E_p \text{ avec}$$

•
$$E_c = \frac{1}{2}mV^2 = \frac{1}{2}ml^2\dot{\theta}^2$$

•
$$E_p = mgl(1 - \cos\theta)$$
 avec $E_p = 0$ pour $\theta = 0$

•
$$E_m = \frac{1}{2}ml^2\dot{\theta}^2 + mgl(1-\cos\theta)$$

•
$$dE_m = ml^2\dot{\theta}\left(\ddot{\theta} + \frac{g}{l}\sin\theta\right)dt = -\alpha l^2\dot{\theta}^2dt$$

$$\ddot{\theta} + \frac{\alpha}{m}\dot{\theta} + \omega_0^2 \sin\theta = 0$$

avec
$$\omega_0 = \sqrt{\frac{g}{l}}$$
 et $\lambda = \frac{\alpha}{2m}$

$$\ddot{\theta} + 2\lambda\dot{\theta} + \omega_0^2\sin\theta = 0$$

▶ Dans le cadre de l'approximation harmonique : petits angles $\sin \theta \approx \theta$

$$\ddot{\theta} + 2\lambda\dot{\theta} + \omega_0^2\theta = 0$$

Conclusion : le pendule simple amorti se comporte comme un oscillateur harmonique amorti de pulsation $\omega_0 = \sqrt{\frac{g}{l}}$ et de coefficient d'amortissement $\lambda = \frac{\alpha}{2m}$

3 Régimes de variation d'un oscillateur harmonique amortie-Portrait de phase

3.1 Portrait de phase

3.1.1 Définitions

Définitions

- plan de phase : est un plan de type (O,x,\dot{x}) (x paramètre linéaire ou angulaire de position) dans lequel l'état mécanique de M est représenté ,à un instant t donné, par le point de phase $P(x(t),\dot{x}(t))$.
- trajectoire de phase : c'est la courbe décrite par l'évolution du point P au cours du temps pour les conditions initiales données . Elle du point du phase $P_0(x(0); \dot{x}(0))$.
- portrait de phase : c'est lensembles des trajectoires de phase obtenus pour divers conditions initiales .

3.1.2 Propriétés des trajectoires de phase

- ▶ Sens de parcours d'une trajectoire de phase : toutes les trajectoires de phases sont parcourues dans le même sens ,il s'agit du sens horaire .
- ▶ Deux trajectoires de phase d'un système libre ne peuvent pas se couper : il ne peut y avoir deux évolutions différentes du système en partant du même état initial.
- ▶ Pour un système de mouvement périodique : les trajectoires de phase sont fermées
- ▶ les positions d'équilibres : sont situées sur l'axe des espaces (ox) ,car pour ces points la vitesse de M est nulle.
- ▶ les points de rebroussement : sont des points où la vitesse change du signe
- ▶ l'évolution du système est réversible si la trajectoire de phase est symétrique par rapport à l'axe des espaces (ox)

3.1.3 Exemple

- trajectoires de phase ouvertes ⇒ absence de périodicité du système
- trajectoires de phase non symétriques par rapport à ox \Rightarrow irréversibilité de l'évolution
- P_1 ; P_2 les points de rebroussement
- Remarque : si les trajectoires de phase sont des cercles le mouvement est sinusoïdal

3.2 Divers régimes de variation d'un oscillateur harmonique amortie

- l'équation : $\ddot{X} + 2\lambda \dot{X} + \omega_0^2 X = 0$
- ▶ l'équation caractéristique : $r^2 + 2\lambda r + \omega_0^2 = 0$ $\Delta = 4\lambda^2 - 4\omega_0^2 = 4(\lambda^2 - \omega_0^2)$

3.2.1 Régime apériodique : $\Delta > 0, \lambda > \omega_0, Q < \frac{1}{2}$

$$r_{1,2} = -\lambda \pm \sqrt{\lambda^2 - \omega_0^2}$$

• la solution de l'équation

$$X(t) = Ae^{r_1t} + Be^{r_2t} = e^{-\lambda t} (Ae^{\sqrt{\lambda^2 - \omega_0^2}} + Be^{-\sqrt{\lambda^2 - \omega_0^2}})$$

A et B sont des constantes

Pour $t \to 0$; $X(t) \to 0$: mouvement sans oscillation

• Représentation graphique

Portrait de phase

3.2.2 Régime critique : $\Delta = 0$; $\lambda = \omega_0$; $Q_c = \frac{1}{2}$

• la solution

$$X(t) = (At + B)e^{-\lambda t}$$

 $t \to 0; X(t) \to 0$: pas d'oscillation

le retour vers l'état d'équilibre s'effectue sans oscillation mais plus rapidement que pour le régime apériodique .

• représentation graphique

Portrait de phase

3.2.3 Régime pseudo-périodique : $\Delta < 0; \lambda < \omega_0; Q > \frac{1}{2}$

• la solution

$$r_{1,2} = -\lambda \pm j\sqrt{\omega_0^2 - \lambda^2} = -\lambda \pm j\Omega$$

$$\Omega = \sqrt{\omega_0^2 - \lambda^2}$$
; pseudo-pulsation

$$X(t) = Ae^{-\lambda t}\cos(\Omega t + \varphi)$$

• le retour ver l'état d'équilibre s'effectue par des oscillations de pseudo-période

$$T = \frac{2\pi}{\Omega}$$

• représentation graphique

• le portarait de phase

• la période propre $T_0=\frac{2\pi}{\omega_0}$ (en absence des frottements) $T=\frac{2\pi}{\omega_0\sqrt{1-\left(\frac{\lambda}{\omega_0}\right)^2}} \ \mathrm{donc}$

$$T = \frac{2\pi}{\omega_0 \sqrt{1 - \left(\frac{\lambda}{\omega_0}\right)^2}} \, \text{donc}$$

$$T = \frac{T_0}{\sqrt{1 - \frac{1}{4Q^2}}} > T_0$$

• le décrément logarithmique : $X(t+T) = e^{-\delta}X(t)$

$$\delta = \lambda T = \ln \left(\frac{X(t)}{X(t+T)} \right)$$

$$\delta = \lambda \frac{T_0}{\sqrt{1 - \frac{1}{4Q^2}}} = \frac{2\pi}{\sqrt{4Q^2 - 1}}$$

3.2.4 Interprétation énergétique du régime pseudo-périodique

▶ la solution : $x(t) = Ae^{-\lambda t}\cos(\Omega t + \varphi)$

▶ Hypothèse : l'amortissement est trés faible : $\lambda \to 0; Q >> 1; \omega_0 >> \lambda$

•
$$\Omega = \omega_0 \sqrt{1 - \frac{1}{4Q^2}} \approx \omega_0$$

•
$$T = \frac{T_0}{\sqrt{1 - \frac{1}{4Q^2}}} \approx T_0$$

$$x(t) = Ae^{-\lambda t}\cos(\omega_0 t + \varphi)$$

$$x(t) = Ae^{-\lambda t}\cos(\omega_0 t + \varphi)$$

$$E_p = \frac{1}{2}kx^2 = \frac{1}{2}kA^2e^{-2\lambda t}\cos^2(\omega_0 t + \varphi)$$

►
$$E_c = \frac{1}{2}m\dot{x}^2 = \frac{1}{2}A^2m\left[-\omega_0e^{-\lambda t}\sin(\omega_0t + \varphi) - \lambda e^{-\lambda t}\cos(\omega_0t + \varphi)\right]^2$$

 $\lambda << \omega_0$ et sin et cos sont bornées donc

$$E_c \approx \frac{1}{2} m A^2 \omega_0^2 e^{-2\lambda t} \sin^2(\omega_0 t + \varphi)$$

$$E_m = E_c + E_p = \frac{1}{2}kA^2e^{-2\lambda t}$$

▶ la diminution relative de l'énergie mécanique au cours d'une pseudo-période : $E_m(t) - E_m(t+T)$

$$E_m(t)$$

$$\bullet \ E_m = \frac{1}{2}kA^2e^{-2\lambda t}$$

•
$$E_m(t+T) = E_m(t)e^{-2\lambda t}$$

•
$$\frac{E_m(t) - E_m(t+T)}{E_m(t)} = 1 - e^{-2\lambda t}$$

•
$$\lambda T \approx \lambda \frac{2\pi}{\omega_0} = \lambda T_0 << 1 \Rightarrow 1 - e^{-2\lambda T_0} \approx 2\lambda T_0 = \frac{2\pi}{Q}$$

$$\boxed{\frac{E_m(t) - E_m(t+T)}{E_m(t)} = \frac{2\pi}{Q}}$$

$$Q = 2\pi \frac{E_m(t)}{E_m(t) - E_m(t+T)}$$

Résonance mécanique 4

4.1 Réponse d'un oscillateur harmonique amortie à une excitation sinusoïdale

Une particule élastiquement liée (raideur k) en mouvement rectiligne sur ox, soumise à :

- la force des frottements fluide $\overrightarrow{F}_d = -\alpha V \overrightarrow{e}_x$
- la force excitatrice sinusoïdale $\overrightarrow{F}_e = F\cos\omega t \overrightarrow{e}_x$

- $ightharpoonup \operatorname{RFD}: m\overrightarrow{a} = \overrightarrow{P} + \overrightarrow{R} + \overrightarrow{F}_d + \overrightarrow{F}_e$
 - projection sur ox : $m\ddot{x} = -kx \alpha \dot{x} + F \cos \omega t$

$$\boxed{\ddot{x} + \frac{\alpha}{m}\dot{x} + \frac{k}{m}x = \frac{F}{m}\cos\omega t}$$

• on pose :
$$A = \frac{F}{m\omega_0^2}$$
 et $\omega_0 = \sqrt{\frac{k}{m}}$

$$\ddot{x} + \frac{\omega_0}{Q}\dot{x} + \omega_0^2 x = \omega_0^2 A \cos \omega t$$

▶ la solution

$$x(t) = x_1(t) + x_2(t)$$

- $x_1(t)$: solution de l'équation homogène correspond au régime libre
- $x_2(t)$: solution particulière correspond au régime forcé
- $x_1(t) + x_2(t)$: caractérise le régime transitoire pendant l'existance de $x_1(t)$
- ▶ le passage du régime transitoire au régime établi (sinusoïdal forcé) peut être visualisé par les trajectoires de phase : par exemple dans le cas du régime libre pseudo-périodique :

- en rouge (spire logarithmique) : régime transitoire
- en vert (ellipse) : régime établi

4.2 Régime sinusoïdal forcé-résonance en élongation

- la solution en régime sinusoïdal forcé : $x(t) = X \cos(\omega t + \varphi)$
- en notation complexe : $\underline{x} = Xe^{j(\omega t + \varphi)} = \underline{X}e^{j\omega t}$ avec : $\begin{cases} \underline{X} = Xe^{j\varphi} \\ \arg \underline{X} = \varphi \end{cases}$
- $\ddot{\underline{x}} + \frac{\omega_0}{O}\dot{\underline{x}} + \omega_0^2\underline{x} = \omega_0^2 A e^{j\omega t}$
- $\underline{\dot{x}} = j\omega\underline{x} \text{ et } \underline{\ddot{x}} = -\omega^2\underline{x}$
- $\left(-\omega^2 + j\omega\frac{\omega_0}{Q} + \omega_0^2\right)\underline{X}e^{j\omega t} = \omega_0^2 A e^{j\omega t}$

• on pose $u = \frac{\omega}{\omega_0}$

$$X = \frac{A}{1 - u^2 + j\frac{u}{Q}}$$

$$\begin{cases} X = \frac{A}{\sqrt{(1-u^2)^2 + \frac{u^2}{Q^2}}} \\ \tan \varphi = -\frac{u}{Q(1-u^2)} \end{cases}$$

- ullet si X passe par un maximum on dit qu'il y a résonance d'élongation
- on pose $g(u)=(1-u^2)^2+\frac{u^2}{Q^2}$ à la résonance g(u) doit être minimale donc $\left(\frac{dg}{du}\right)_{u=u_r}=0$

$$u_r^2 = 1 - \frac{1}{2Q^2}; Q > \frac{1}{\sqrt{2}}$$

- Conclusion
 - ▶ si $Q > \frac{1}{\sqrt{2}}$: résonance : $u_r = \frac{\omega_r}{\omega_0} = \sqrt{1 \frac{1}{2Q^2}}$
 - ▶ si $Q < \frac{1}{\sqrt{2}}$: absence du résonance
 - ▶ l'amplitude maximale est

$$X_{max} = X(u_r) = \frac{AQ}{\sqrt{1 - \frac{1}{4Q^2}}}$$

• Représentation graphique

4.3 Résonance en vitesse

•
$$v = \frac{dx}{dt} = \frac{d}{dt} \left(X \cos(\omega t + \varphi) \right) = \omega X \cos\left(\omega t + \varphi + \frac{\pi}{2}\right)$$

on pose $V = X\omega = \frac{\omega A}{\sqrt{(1-u)^2 + \frac{u^2}{Q^2}}}$ et $\phi = \varphi + \frac{\pi}{2}$

$$V = \frac{\omega_0 A}{\sqrt{\frac{1}{Q^2} + \left(u - \frac{1}{u}\right)^2}}$$

4.4 Analogie électro-mécanique

grandeur électrique	grandeur mécanique	grandeur électrique	grandeur mécanique
	$m\ddot{x} + 2\lambda\dot{x} + kx = F$	e	F
L	m	$\frac{1}{2}Li^2$	$\frac{1}{2}m\dot{x}^2$
R	2λ	$\frac{1}{2C}q^2$	$\frac{1}{2}kx^2$
С	$\frac{1}{k}$	$\omega_0 = \frac{1}{\sqrt{LC}}$	$\omega_0 = \sqrt{\frac{k}{m}}$
q	x	$Q = \frac{1}{R} \sqrt{\frac{L}{C}}$	$Q = \frac{\sqrt{km}}{\lambda}$
i	v		