Discrete Fourier Transform

I.Nelson SSN College of Engineering

Discrete Time Fourier Transform (DTFT)

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n}$$

Inverse Discrete Time Fourier Transform (IDTFT)

$$x(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

Why Discrete Fourier Transform?

- DTFT is not a computationally convenient representation of the sequence.
- \triangleright DFT is the representation of a sequence x(n) by samples of its spectrum X(ω).
- DFT is a powerful computational tool for performing frequency analysis of discrete time signals.

DFT

$$X(\frac{2\pi}{N}k) = \sum_{n=0}^{N-1} x(n)e^{-j\frac{2\pi}{N}kn}$$

;
$$k = 0,1,\ldots,N-1$$

IDFT

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(\frac{2\pi}{N}k) e^{j\frac{2\pi}{N}kn} \qquad ; \quad n = 0,1,\dots,N-1$$

$$n = 0,1,\ldots,N-1$$

DFT
$$X(k) = \sum_{n=0}^{N-1} x(n)e^{-j\frac{2\pi}{N}kn}$$

;
$$k = 0,1,...,N-1$$

IDFT

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j\frac{2\pi}{N}kn}$$

;
$$n = 0,1,\ldots,N-1$$

Sampling in Frequency domain

Let us first consider the sampling the Fourier transform of an aperiodic discrete time sequence.

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n}$$

or

$$X(\omega) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n}$$

We sample $X(\omega)$ periodically in frequency at a spacing of $2\pi/N$ radians between successive samples. Let N be the number of samples in the frequency domain.

At $\omega = 2\pi/N$, $X(\omega)$ becomes,

$$X(\frac{2\pi}{N}k) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\frac{2\pi}{N}kn} \qquad ; \quad k = 0,1,\dots,N-1$$

Subdividing the previous expression into

$$X(\frac{2\pi}{N}k) = \dots + \sum_{n=-N}^{-1} x(n)e^{-j\frac{2\pi}{N}kn} + \sum_{n=0}^{N-1} x(n)e^{-j\frac{2\pi}{N}kn} + \sum_{n=0}^{N-1} x(n)e^{-j\frac{2\pi}{N}kn} + \dots + \sum_{n=-N}^{2N-1} x(n)e^{-j\frac{2\pi}{N}kn} + \dots$$

$$=\sum_{l=-\infty}^{\infty}\sum_{n=lN}^{lN+N-1}x(n)e^{-j\frac{2\pi}{N}kn}$$

changing n to n-IN and interchanging the summation we get,

$$=\sum_{n=0}^{N-1}\sum_{l=-\infty}^{\infty}x(n-lN)e^{-j\frac{2\pi}{N}kn}$$

$$= \sum_{n=0}^{N-1} x_p(n) e^{-j\frac{2\pi}{N}kn}$$

when no aliasing, $x(n) = x_p(n)$; $0 \le n \le N-1$

therefore

$$X(k) = \sum_{n=0}^{N-1} x(n)e^{-j\frac{2\pi}{N}kn} \qquad ; \quad k = 0,1,\dots,N-1$$

Multiply on both sides by $e^{j\frac{2\pi}{N}mk}$ and sum the product from k = 0 to N-1

$$\sum_{k=0}^{N-1} X(k) e^{j\frac{2\pi}{N}km} = \sum_{k=0}^{N-1} \sum_{n=0}^{N-1} x(n) e^{-j\frac{2\pi}{N}kn} e^{j\frac{2\pi}{N}km}$$

$$\sum_{k=0}^{N-1} X(k) e^{j\frac{2\pi}{N}km} = \sum_{k=0}^{N-1} \sum_{n=0}^{N-1} x(n) e^{-j\frac{2\pi}{N}k(n-m)}$$

$$\sum_{k=0}^{N-1} X(k) e^{j\frac{2\pi}{N}km} = \sum_{n=0}^{N-1} x(n) \sum_{k=0}^{N-1} e^{-j\frac{2\pi}{N}k(n-m)}$$

The inner summation can be given as,

$$\sum_{k=0}^{N-1} e^{-j\frac{2\pi}{N}k(n-m)} = \begin{cases} N & ; & n-m=0, \pm N, \pm 2N, \dots \\ 0 & ; & otherwise \end{cases}$$

Therefore,

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j\frac{2\pi}{N}kn} \qquad ; \qquad n = 0,1,2,\dots N-1$$

The no. of complex multiplications = N^2 The no. of complex additions = N(N-1)

Twiddle Factor:

- Let us define a term, $W_N = e^{-j2\pi/N}$ which is know as twiddle factor.
- The magnitude of the twiddle factor is given by $|e^{-j2\pi/N}| = 1$ and the phase angle is given by $\angle e^{-j2\pi/N} = -2\pi/N$
- From the magnitude and phase angle values of W_N, we find that the twiddle factor is a vector on the unit circle and it represents N equally spaced samples.

- From the magnitude and phase angle values of W_N, we find that the twiddle factor is a vector on the unit circle and it represents N equally spaced samples.
- Let us consider the term W_N^{kn} where kn=r.

• i.e.,
$$W_N^{kn} = W_N^r$$

• For N=8, let $r=1, 2, \ldots, 16$

$$W_8^r = e^{-j2\pi kn/N} = e^{-j\pi r/4}$$

Compute

kn=r	Wr ₈	e ^{-jπr/4}	Magnitude	Phase angle
0	W ⁰ ₈	1	1	0
1	W ¹ ₈	$(1/\sqrt{2})$ -j $(1/\sqrt{2})$	1	- π/4
2	W ² ₈	-j	1	-π/2
3	W ³ ₈	-(1/√2)-j(1/√2)	1	-3π/4
4	W ⁴ ₈	-1	1	-π
5	W ⁵ ₈	-(1/√2)+j(1/√2)	1	-5 π/4
6	W ⁶ ₈	j	1	-3π/2
7	W ⁷ ₈	$(1/\sqrt{2})+j(1/\sqrt{2})$	1	-7 π/4
8	W ⁸ ₈	1	1	-2π
9	W ⁹ ₈	$(1/\sqrt{2})$ -j $(1/\sqrt{2})$	1	-9π/4
10	W ¹⁰ ₈	- j	1	-5 π/2
11	W ¹¹ ₈	-(1/√2)-j(1/√2)	1	-11 π/4
12	W ¹² ₈	-1	1	-3π
13	W ¹³ ₈	$-(1/\sqrt{2})+j(1/\sqrt{2})$	1	-13 π/4
14	W ¹⁴ ₈	j	1	-7 π/2
15	W ¹⁵ ₈	$(1/\sqrt{2})+j(1/\sqrt{2})$	1	-15 π/4
16	W ¹⁶ ₈	1	1	-4π

- From the above figure we can find that W_N^r is a periodic function of r with period N, which is known as periodicity property of twiddle factor, i.e., $W^r = W^{r\pm N} = W^{r\pm 2N} = \dots$
- From the table we find the symmetry property of twiddle factor. $W^{\,r} = -\,W^{\,r\pm\frac{N}{2}}$

SSN