

SEQUENCE LISTING

<110> Cambridge Antibody Technology
Cambridge Antibody Technology Limited
Medical Research Council
McCafferty, John
Pope, Anthony
Johnson, Kevin
Hoogenboom, Hendricus
Griffiths, Andrew
Jackson, Ronald
Holliger, Kasper
Marks, James
Clackson, Timothy
Chiswell, David
Winter, Gregory
Bonert, Timothy

<120> Methods for Producing Members of Specific Binding Pairs

<130> 213839-00013

<140> US 09/726,219
<141> 2000-11-20

<150> GB 9015198.6
<151> 1990-07-10

<150> GB 9022845.3
<151> 1990-10-19

<150> GB 9022845.3
<151> 1990-10-19

<150> GB 9024503.6
<151> 1990-11-12

<150> GB 9104744.9
<151> 1991-03-06

<150> GB 9110549.4
<151> 1991-05-15

<150> PCT/GB91/01134
<151> 1991-07-10

<150> US 07/971,857
<151> 1993-01-08

<150> US 08/484,893
<151> 1995-06-07

<160> 272

<170> PatentIn version 3.1

<210> 1

<211> 5
<212> PRT
<213> Bacteriophage fd

<400> 1

Gln Val Gln Leu Gln
1 5

<210> 2
<211> 5
<212> PRT
<213> Bacteriophage fd

<400> 2

Val Thr Val Ser Ser
1 5

<210> 3
<211> 5
<212> PRT
<213> Bacteriophage fd

<400> 3

Leu Glu Ile Lys Arg
1 5

<210> 4
<211> 75
<212> DNA
<213> Artificial Sequence

<220>
<223> oligonucleotide for mutagensis

<400> 4
actttcaaca gtttctgcgg ccgccccgtt gatctcgagc tcctgcagg ggacctgtgc 60
actgtgagaa tagaa 75

<210> 5
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 5
aggtgcagct gcaggaggta gg 22

<210> 6
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 6
ggtgacctcg agtgaagatt tgggctcaac ttcc 34

<210> 7
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 7
tgaggacwcw gccgtctact actgtgc 27

<210> 8
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> oligonucleotide probe distinguishing between pAb D1.3 and pAB NQ1
1

<400> 8
gtagtcaagc ctataatctc tctc 24

<210> 9
<211> 51
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 9
tattctcaca gtgcacaaac tggtaacgg acaccagaaa tgcctgttct g 51

<210> 10
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 10		
acatgtacat gcggccgctt tcagccccag agcggcttt		39
<210> 11		
<211> 33		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR primer		
<400> 11		
tttaatgagg atccacaggt gcagctgcaa gag		33
<210> 12		
<211> 30		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR primer		
<400> 12		
aacgaatgga tcccgttga tctcaagctt		30
<210> 13		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> oligonucleotide for mutagensis - removal of a BamH1 site		
<400> 13		
caaacgaatg ggtcctcctc atta		24
<210> 14		
<211> 26		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> oligonucleotide for mutagensis - introduction of a BamH1 site		
<400> 14		
ccrccaccctt cgatccrcc accctc		26
<210> 15		
<211> 15		
<212> PRT		
<213> Artificial Sequence		

<220>
<223> linker between VH and VLK

<400> 15

Gly Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser
1 5 10 15

<210> 16
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> primer for reverse transcription

<400> 16
ctggacaggg atccagagtt cca 23

<210> 17
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> primer for reverse transcription

<400> 17
ctggacaggg ctccatagtt cca 23

<210> 18
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 18
tgaggagacg gtgaccgtgg tcccttggcc cc 32

<210> 19
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 19
aggtsmarct gcagsagtcw gg 22

<210> 20
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 20
ccgtttgatt tccagcttgg tgcc 24

<210> 21
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 21
ccgttttatt tccagcttgg tccc 24

<210> 22
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 22
ccgttttatt tccaactttg tccc 24

<210> 23
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 23
ccgtttcagc tccagcttgg tccc 24

<210> 24
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 24
gacattgagc tcacccagtc tcca 24

<210> 25
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 25
tggagactcg gtgagctcaa tgtc 24

<210> 26
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 26
gggaccacgg tcaccgtctc ctca 24

<210> 27
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 27
catgaccaca gtgcacaggt smarctgcag sagtcwgg 38

<210> 28
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 28
gagtcatattc gcggccgccc gtttgatttc cagcttggtg cc 42

<210> 29
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 29
gagtcattct gcggccgccc gttttatttc cagcttggtc cc 42

<210> 30
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 30
gagtcattct gcggccgccc gttttatttc caactttgtc cc 42

<210> 31
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 31
gagtcattct gcggccgccc gtttcagctc cagcttggtc cc 42

<210> 32
<211> 69
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 32
cacagtgcac tggtcgtcac accccccgggg ccagagcttg tcctcaatgt ctccagcacc 60
ttcggtctg 69

<210> 33
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 33
gatctcgagc ttaaaggga aggagtgtgg cac 33

<210> 34
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 34
tgcgaaagctt tggagccttt tttttggag attttcaacg 40

<210> 35
<211> 43
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 35
cagtgaattc ctattaagac tccttattac gcagtagtgc agc 43

<210> 36
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> sequencing primer

<400> 36
gaatttctg tatgagg 17

<210> 37
<211> 5
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<222> (2)..(2)
<223> X = A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W or Y

<220>
<221> misc_feature
<222> (4)..(5)
<223> X = A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W or Y

<400> 37

Asp Xaa Gly Xaa Xaa
1 5

```

<210> 38
<211> 5
<212> PRT
<213> Homo sapiens

<220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> X = D or, N

<220>
<221> MISC_FEATURE
<222> (2)..(2)
<223> X = A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W or Y

<220>
<221> MISC_FEATURE
<222> (4)..(5)
<223> X = A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W or Y

<400> 38

Xaa Xaa Gly Xaa Xaa
1 5

<210> 39
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 39
tcgcggccca gccggccatg gccsaggtsm arctgcagsg tcwgg 45

<210> 40
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oilgonucleotide probe for Vk-b

<400> 40
gagcgggtaa ccactgtact 20

<210> 41
<211> 20

```

<212> DNA		
<213> Artificial Sequence		
<220>		
<223> oilgonucleotide probe for Vk-d		
<400> 41		
gaatggata gtactaccct		20
<210> 42		
<211> 43		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR primer		
<400> 42		
cagtgaattc ttattaagac tccttattac gcagtatgtt agc		43
<210> 43		
<211> 40		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR primer		
<400> 43		
tgcgaagctt tggaggcctt tttttggag attttcaacg		40
<210> 44		
<211> 38		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR primer		
<400> 44		
catgaccaca gtgcacaggt smarctgcag sagtcwgg		38
<210> 45		
<211> 57		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR primer		
<400> 45		
catgccatga ctgcggcccc agccggccat ggccsaggtt marctgcags agtcwgg		57

<210> 46
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 46
ccacgattct gcggccgctg aagat^tttggg ctcaactt^tc ttgtcgac 48

<210> 47
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 47
ccacgattct gcggccgctg actctccgcg gttgaagctc tttgtgac 48

<210> 48
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 48
cacagtgcac tcgacattga gctcacccag tctcca 36

<210> 49
<211> 54
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 49
catgaccacg cggcccagcc ggccatggcc gacattgagc tcacccagtc tcca 54

<210> 50
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 50		
ttctgcggcc gcccgttca gctcgagctt ggtccc		36
<210> 51		
<211> 21		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> oligonucleotide for mutagensis - Ala166 to Arg		
<400> 51		
tagcatttgc gcgagggtcac a		21
<210> 52		
<211> 42		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR primer		
<400> 52		
tggagactgg gtgagctcaa tgcggagtg agaatagaaa gg		42
<210> 53		
<211> 72		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR primer		
<400> 53		
aagcccagca acaccaaggt ggacaagaaa gttgagccca aatctagctg ataaaccgat		60
acaattaaag gc		72
<210> 54		
<211> 21		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR primer		
<400> 54		
cggaaataccca aaaagaactg g		21
<210> 55		
<211> 33		
<212> DNA		

<213> Artificial Sequence

<220>

<223> PCR primer

<400> 55
cacagtgcac aggtccaaact gcaggagagc ggt 33

<210> 56
<211> 24
<212> DNA
<213> Artificial Sequence

<220>

<223> PCR primer

<400> 56
cggtgacgag gctgccttga cccc 24

<210> 57
<211> 24
<212> DNA
<213> Artificial Sequence

<220>

<223> PCR primer

<400> 57
ggggtcaggg cagcctcgac accg 24

<210> 58
<211> 28
<212> DNA
<213> Artificial Sequence

<220>

<223> PCR primer

<400> 58
tgggctctgg gtcatctgga tgtccgat 28

<210> 59
<211> 24
<212> DNA
<213> Artificial Sequence

<220>

<223> PCR primer

<400> 59
gacatccaga tgacccagag ccca 24

<210> 60
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 60
gagtcattct gcggccgcac gtttatttc cacctggtc cc 42

<210> 61
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 61
gaggagattt tccctgt 17

<210> 62
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 62
ttggagcctt acctggc 17

<210> 63
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 63
tagccccctt attagcgttt gcc 24

<210> 64
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 64

gcgatgggtg ttgtcattgt cggc

24

<210> 65
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 65
ggaattcgtq cacaqaqtgc aacttcaact aaaaattac

40

```
<210> 66
<211> 40
<212> DNA
<213> Artificial Sequence
```

<220>
<223> PCB primer

<400> 66
ggatccaca accacttgc ac tgaatcagc gtttatcttcg

40

<210> 67
<211> 43
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 67
ggaaattcata cacagaagaa aatgtatctta ggcaaaaaaaq ggg

43

<210> 68
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primers

<400> 68
ggatccaca gccccagcta gcaccacgat gtctatttg aactc

45

<210> 69
<211> 17
<212> DNA
<212> Artificial Sequence

23203

<223> sequencing primer

<400> 69
gaattttctg tatgagg

17

<210> 70
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> sequencing primer

<400> 70
gaagtttccct tggccc

17

<210> 71
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> sequencing primer

<400> 71
actaccaggg gggctct

17

<210> 72
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 72
gggatccgcg gccgcgggtgt cagagttggc agtcaatccg aacac

45

<210> 73
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> primer for reverse transcription

<400> 73
ggaattctta tgaagattct gttagggccca c

31

<210> 74
<211> 33
<212> DNA

<213> Artificial Sequence

<220>

<223> PCR primer

<400> 74
aaccagccat ggccagtc tggtgacgca gcc 33

<210> 75

<211> 36

<212> DNA

<213> Artificial Sequence

<220>

<223> oligonucleotide for mutagenesis - randomization of Phe91 and Phe92 of the light chain

<220>

<221> misc_feature

<222> (16)..(21)

<223> n = a, c, g or t

<400> 75
cgtccgagga gtactnnnn natgttgaca gtaata 36

<210> 76

<211> 33

<212> DNA

<213> Artificial Sequence

<220>

<223> oligonucleotide for mutagenesis - randomization of Tyr32 of the light chain

<220>

<221> misc_feature

<222> (16)..(18)

<223> n = a, c, g or t

<400> 76
ctgataaccat gctaannnat tgtgattatt ccc 33

<210> 77

<211> 33

<212> DNA

<213> Artificial Sequence

<220>

<223> oligonucleotide for mutagenesis - randomization of Tyr101 of the light chain

<220>

<221> misc_feature
<222> (16)..(18)
<223> n = a, c, g or t

<400> 77
ccagtagtca agcctnnnat ctctctctct ggc 33

<210> 78
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> sequencing primer

<400> 78
caggagctga ggagatttc c 21

<210> 79
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> sequencing primer

<400> 79
tccgcctgaa ccgcctccac c 21

<210> 80
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> oligonucleotide probe for CD2 of the NQ11 antibody

<400> 80
aaaccaggcc ccgtaatcat agcc 24

<210> 81
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 81
caggtgcagc tggtgcagtc tgg 23

<210> 82
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 82
caggtcaact taagggagtc tgg 23

<210> 83
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 83
gaggtgcagc tggtgaggc tgg 23

<210> 84
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 84
caggtgcagc tgcaggagtc ggg 23

<210> 85
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 85
gaggtgcagc tgttgagtc tgc 23

<210> 86
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 86

caggtacagc tgcagcagtc agg

23

<210> 87
<211> 56
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 87
gtcctcgcaa ctgcggccca gccggccatg gcccagggtgc agctggtgca gtctgg

56

<210> 88
<211> 56
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 88
gtcctcgcaa ctgcggccca gccggccatg gcccagggtca acttaaggga gtctgg

56

<210> 89
<211> 56
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 89
gtcctcgcaa ctgcggccca gccggccatg gcccagggtgc agctggtgga gtctgg

56

<210> 90
<211> 56
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 90
gtcctcgcaa ctgcggccca gccggccatg gcccagggtgc agctgcagga gtcggg

56

<210> 91
<211> 56
<212> DNA
<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 91
gtcctcgcaa ctgcggccca gccggccatg gcccaggtgc agctgttgca gtctgc 56

<210> 92
<211> 56
<212> DNA
<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 92
gtcctcgcaa ctgcggccca gccggccatg gcccaggtac agctgcagca gtcagg 56

<210> 93
<211> 24
<212> DNA
<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 93
tgaggagacg gtgaccaggg tgcc 24

<210> 94
<211> 24
<212> DNA
<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 94
tgaagagacg gtgaccattg tccc 24

<210> 95
<211> 24
<212> DNA
<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 95
tgaggagacg gtgaccaggg ttcc 24

<210> 96
<211> 24
<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 96
tgaggagacg gtgaccgtgg tccc 24

<210> 97

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 97
gtcccaccttg gtgttgctgg gcct 24

<210> 98

<211> 24

<212> DNA

<213> Artificial Sequence.

<220>

<223> PCR Primer

<400> 98
tggaaagaggc acgttctttt cttt 24

<210> 99

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 99
gacatccaga tgacctcagtc tcc 23

<210> 100

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 100
gatgttgtga tgactcagtc tcc 23

<210> 101
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 101
gaaatttgtgt tgacgcagtc tcc 23

<210> 102
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 102
gacatcgtga tgaccaggc tcc 23

<210> 103
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 103
gaaacgacac tcacgcagtc tcc 23

<210> 104
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 104
gaaattgtgc tgactcagtc tcc 23

<210> 105
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 105

acgttgatt tccacccttgg tc

24

<210> 106
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 106
acgttgatc tccagcttgg tc

24

<210> 107
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 107
acgttgata tccactttgg tc

24

<210> 108
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 108
acgttgatc tccacccttgg tc

24

<210> 109
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 109
acgttaatc tccagtcgtg tc

24

<210> 110
<211> 48
<212> DNA
<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 110
gagtcattct cgacttgcgg ccgcacgttt gatccacc ttggccc 48

<210> 111
<211> 48
<212> DNA
<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 111
gagtcattct cgacttgcgg ccgcacgttt gatccagg ttggccc 48

<210> 112
<211> 48
<212> DNA
<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 112
gagtcattct cgacttgcgg ccgcacgttt gatccact ttggccc 48

<210> 113
<211> 48
<212> DNA
<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 113
gagtcattct cgacttgcgg ccgcacgttt gatccacc ttggccc 48

<210> 114
<211> 48
<212> DNA
<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 114
gagtcattct cgacttgcgg ccgcacgttt aatccagg cgtgtccc 48

<210> 115
<211> 24
<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 115
agactctccc ctgttgaagc tctt 24

<210> 116

<211> 54

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 116
gagtcattct cgacttgccg ccgcattatta agactctccc ctgttgaagc tctt 54

<210> 117

<211> 48

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 117
gagtcattct cgacttgccg ccgcagactc tccccgttg aagcttt 48

<210> 118

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 118
cagtctgttt tgacgcagcc gcc 23

<210> 119

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 119
cagtctggcc tgactcagcc tgc 23

<210> 120
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 120
tcctatgtgc tgactcagcc acc

23

<210> 121
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 121
tcttctgagc tgactcagga ccc

23

<210> 122
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 122
cacgttatac tgactcaacc gcc

23

<210> 123
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 123
caggctgtgc tcactcagcc gtc

23

<210> 124
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 124

aattttatgc tgactcagcc cca

23

<210> 125
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 125
acctaggacg gtgacaccttgg tccc

24

<210> 126
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 126
acctaggacg gtcagcttgg tccc

24

<210> 127
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 127
acctaataacg gtgagctggg tccc

24

<210> 128
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 128
gagtcattct cgacttgcgg ccgcacctag gacggtgacc ttgggtccc

48

<210> 129
<211> 48
<212> DNA
<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 129
gagtcattct cgacttgcgg ccgcacctag gacggtcagc ttggtccc 48

<210> 130
<211> 48
<212> DNA
<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 130
gagtcattct cgacttgcgg ccgcacytaa aacggtgagc tgggtccc 48

<210> 131
<211> 27
<212> DNA
<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 131
tgaagattct gtaggggccca ctgtctt 27

<210> 132
<211> 57
<212> DNA
<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 132
gagtcattct cgacttgcgg ccgcattatta tgaagattct gtaggggccca ctgtctt 57

<210> 133
<211> 48
<212> DNA
<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 133
gagtcattct cgacttgcgg ccgcgtgcaga ttctgttaggg gctgtctt 48

<210> 134
<211> 28
<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 134
gcaccctggt caccgtctcc tcaggtgg 28

<210> 135

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 135
ggacaaatggt caccgtctct tcaggtgg 28

<210> 136

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 136
gaaccctggt caccgtctcc tcaggtgg 28

<210> 137

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 137
ggaccacaggt caccgtctcc tcaggtgc 28

<210> 138

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 138
aagcccagca acaccaaggt ggac 24

<210> 139
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 139
ggagactggg tcatctggat gtccgatccg cc 32

<210> 140
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 140
ggagacttag tcatcacaac atccgatccg cc 32

<210> 141
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 141
ggagactgca tcaacacaat ttccgatccg cc 32

<210> 142
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 142
ggagactggg tcatcacgat gtccgatccg cc 32

<210> 143
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 143

ggagactgct tgagtgtcgt ttccgatccg cc 32

<210> 144
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 144
ggagactgag tcagcacaat ttccgatccg cc 32

<210> 145
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 145
ggagactggg tcatctggat gtcggccatc gctgg 35

<210> 146
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 146
ggagactgct tcatcacaac atcggccatc gctgg 35

<210> 147
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 147
ggagactgct tcaacacaat ttccgatccg cc 35

<210> 148
<211> 35
<212> DNA
<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 148
ggagactggg tcatcacat gtcggccatc gctgg 35

<210> 149
<211> 35
<212> DNA
<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 149
ggagactgctg ttagtgcgt ttccggccatc gctgg 35

<210> 150
<211> 35
<212> DNA
<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 150
ggagactgctg tcagcacaat ttccggccatc gctgg 35

<210> 151
<211> 42
<212> DNA
<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 151
ggcggtcg tcaacacaga ctgcgatccg ccaccgccag ag 42

<210> 152
<211> 42
<212> DNA
<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 152
gcaggctgag tcagagcaga ctgcgatccg ccaccgccag ag 42

<210> 153
<211> 42
<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 153
ggtgtgctgag tcagcacata ggacgatccg ccaccgccag ag 42

<210> 154

<211> 42

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 154
gggtcctgag tcagctcaga agacgatccg ccaccgccag ag 42

<210> 155

<211> 42

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 155
ggcggttgag tcagtataac gtgcgatccg ccaccgccag ag 42

<210> 156

<211> 42

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 156
gacggctgag tcagcacaga ctgcgatccg ccaccgccag ag 42

<210> 157

<211> 42

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 157
tggggctgag tcagcataaa attcgatccg ccaccgccag ag 42

<210> 158
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 158
ggcggctgcg tcaacacaga ctgggccatc gctggttggg ca 42

<210> 159
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 159
gcaggctgag tcagagcaga ctgggccatc gctggttggg ca 42

<210> 160
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 160
ggtggctgag tcagcacata ggaggccatc gctggttggg ca 42

<210> 161
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 161
gggtcctgag tcagctcaga agaggccatc gctggttggg ca 42

<210> 162
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 162

ggcggtttag	tcagtataac	gtgggcccattc	gctgggttgggg	ca	42												
<210>	163																
<211>	42																
<212>	DNA																
<213>	Artificial Sequence																
<220>																	
<223>	PCR Primer																
<400>	163																
gacggcttag	tcagcacaga	ctgggcccattc	gctgggttgggg	ca	42												
<210>	164																
<211>	42																
<212>	DNA																
<213>	Artificial Sequence																
<220>																	
<223>	PCR Primer																
<400>	164																
tggggcttag	tcagcataaa	attgggcccattc	gctgggttgggg	ca	42												
<210>	165																
<211>	118																
<212>	PRT																
<213>	Homo sapiens																
<400>	165																
Gln	Val	Gln	Leu	Val	Gln	Ser	Gly	Ala	Glu	Val	Lys	Lys	Pro	Gly	Ala		
1					5					10					15		
Ser	Val	Lys	Val	Ser	Cys	Lys	Ala	Ser	Gly	Tyr	Thr	Phe	Thr	Ser	Tyr		
20								25					30				
Gly	Ile	Ser	Trp	Val	Arg	Gln	Ala	Pro	Gly	Gln	Gly	Leu	Glu	Trp	Met		
35								40					45				
Gly	Trp	Ile	Ser	Ala	Tyr	Asn	Gly	Asn	Thr	Lys	Tyr	Ala	Gln	Lys	Ile		
50								55					60				
Gln	Gly	Arg	Val	Thr	Met	Ile	Thr	Asp	Thr	Ser	Thr	Ser	Thr	Ala	Tyr		
65								70					75		80		
Met	Glu	Leu	Arg	Ser	Leu	Arg	Ser	Asp	Asp	Thr	Ala	Val	Tyr	Tyr	Cys		
															95		

Val Arg Leu Leu Pro Lys Arg Thr Ala Thr Leu His Tyr Tyr Ile Asp
100 105 110

Val Trp Gly Lys Gly Thr
115

<210> 166
<211> 65
<212> PRT
<213> Homo sapiens

<400> 166

Asn Asn Tyr Val Ser Trp Tyr Gln His Leu Pro Gly Thr Ala Pro Asn
1 5 10 15

Leu Leu Ile Tyr Asp Asn Asn Lys Arg Pro Ser Gly Ile Pro Asp Arg
20 25 30

Phe Ser Gly Ser Lys Ser Gly Thr Ser Ala Thr Leu Gly Ile Thr Gly
35 40 45

Leu Gln Thr Gly Asp Glu Ala Asp Tyr Tyr Cys Gly Ile Trp Asp Gly
50 55 60

Arg
65

<210> 167
<211> 115
<212> PRT
<213> Homo sapiens

<400> 167

Gln Val Gln Leu Val Gln Ser Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
20 25 30

Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

Ala Val Ile Ser Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val
50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Lys Thr Gly Tyr Ser Ser Gly Trp Gly Tyr Phe Asp Tyr Trp Gly
100 105 110

Gln Gly Thr
115

<210> 168
<211> 101
<212> PRT
<213> Homo sapiens

<400> 168

Ser Ser Glu Leu Thr Gln Asp Pro Ala Val Ser Val Ala Leu Gly Gln
1 5 10 15

Thr Val Arg Ile Thr Cys Gln Gly Asp Ser Leu Arg Ser Tyr Tyr Ala
20 25 30

Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Ile Tyr
35 40 45

Gly Lys Asn Asn Arg Pro Ser Gly Ile Pro Asp Arg Phe Ser Gly Ser
50 55 60

Ser Ser Gly Asn Thr Ala Ser Leu Thr Ile Thr Gly Ala Gln Ala Glu
65 70 75 80

Asp Glu Ala Asp Tyr Tyr Cys Asn Ser Arg Asp Ser Ser Gly Asn His
85 90 95

Val Val Phe Gly Gly
100

<210> 169
<211> 100
<212> PRT
<213> Homo sapiens

<400> 169

Ser Leu Thr Cys Ser Val Ser Gly Asp Ser Ile Ser Ser Gly Gly Tyr
1 5 10 15

Ser Trp Ile Arg Gln Pro Ser Gly Lys Gly Ile Glu Trp Ile Gly Ser
20 25 30

Val His His Ser Gly Pro Thr Tyr Tyr Asn Pro Ser Leu Lys Ser Arg
35 40 45

Val Thr Met Ser Val Asp Thr Ser Lys Asn Gln Phe Ser Leu Lys Ile
50 55 60

Lys Cys Ser Val Thr Ala Ala Asp Thr Ala Met Tyr Phe Cys Ala Arg
65 70 75 80

Glu Gly Gly Ser Thr Trp Arg Ser Leu Tyr Lys His Tyr Tyr Met Asp
85 90 95

Val Trp Gly Lys
100

<210> 170

<211> 111

<212> PRT

<213> Homo sapiens

<400> 170

Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Glu
1 5 10 15

Thr Leu Ser Leu Val Cys Thr Val Ser Gly Gly Ser Leu Ser Phe Ser
20 25 30

Tyr Trp Gly Trp Ile Arg Gln Pro Pro Gly Lys Gly Leu Glu Trp Ile
35 40 45

Gly Tyr Ile Ser His Arg Gly Thr Asp Tyr Asn Ser Ser Leu Gln Ser
50 55 60

Arg Val Thr Ile Ser Ala Asp Thr Ser Lys Asn Gln Phe Ser Leu Lys
65 70 75 80

Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala Arg
85 90 95

Ser Phe Ser Asn Ser Phe Phe Gly Tyr Trp Gly Gln Gly Thr
100 105 110

<210> 171
<211> 111
<212> PRT
<213> Homo sapiens

<400> 171

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Gln
1 5 10 15

Ser Leu Met Ile Ser Cys Gln Gly Ser Gly Tyr Ser Phe Ser Asn Tyr
20 25 30

Trp Ile Gly Trp Val Arg Gln Met Pro Gly Lys Gly Leu Glu Trp Met
35 40 45

Gly Ile Ile Tyr Pro Gly Asp Ser Asp Thr Arg Tyr Ser Pro Ser Phe
50 55 60

Gln Gly Gln Val Thr Ile Ser Ala Asp Lys Ser Ile Ser Thr Ala Tyr
65 70 75 80

Leu His Trp Ser Ser Leu Lys Ala Ser Asp Thr Ala Leu Tyr Tyr Cys
85 90 95

Ala Arg Leu Val Gly Gly Thr Pro Ala Tyr Trp Gly Gln Gly Thr
100 105 110

<210> 172
<211> 88
<212> PRT
<213> Homo sapiens

<400> 172

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Gln
1 5 10 15

Ser Leu Arg Ile Ser Cys Lys Gly Ala Gly Tyr Ser Phe Ser Thr Tyr
20 25 30

Trp Ile Gly Trp Val Arg Gln Met Pro Gly Lys Gly Leu Glu Trp Met
35 40 45

Gly Ile Ile Tyr Pro Asp Asp Ser Asp Thr Arg Tyr Ser Pro Ser Phe
50 55 60

Glu Gly Gln Val Thr Ile Ser Val Asp Lys Ser Ile Thr Thr Ala Tyr
65 70 75 80

Leu Trp Trp Ser Ser Leu Lys Ala
85

<210> 173

<211> 102

<212> PRT

<213> Homo sapiens

<400> 173

Glu Ile Val Leu Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
1 5 10 15

Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser Asn Tyr
20 25 30

Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
35 40 45

Tyr Ala Ala Ser Thr Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
50 55 60

Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Asn Ser Leu Gln Pro
65 70 75 80

Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Thr Ile Ile Ser Phe Pro
85 90 95

Leu Thr Phe Gly Gly Gly
100

<210> 174

<211> 102

<212> PRT

<213> Homo sapiens

<400> 174

Ser Ser Glu Leu Thr Gln Asp Pro Ala Val Ser Val Ala Phe Gly Gln
1 5 10 15

Thr Val Arg Ile Thr Cys Gln Gly Asp Ser Leu Arg Ser Ser Tyr Ala
20 25 30

Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Leu Leu Val Ile Tyr
35 40 45

Gly Glu Asn Ser Arg Pro Ser Gly Ile Pro Asp Arg Phe Ser Gly Ser
50 55 60

Ser Ser Gly Asn Thr Ala Ser Leu Thr Ile Thr Gly Ala Gln Ala Glu
65 70 75 80

Asp Glu Ala Asp Tyr Tyr Cys Asn Ser Arg Asp Ser Arg Gly Thr His
85 90 95

Leu Glu Val Phe Gly Gly
100

<210> 175

<211> 103

<212> PRT

<213> Homo sapiens

<400> 175

His Val Ile Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln
1 5 10 15

Ser Ile Thr Ile Ser Cys Thr Gly Ser Ser Arg Asp Val Gly Gly Tyr
20 25 30

Asn Tyr Val Ser Trp Tyr Gln His His Pro Gly Lys Ala Pro Lys Leu
35 40 45

Leu Ile Ser Glu Val Thr Asn Arg Pro Ser Gly Val Ser Asn Arg Phe
50 55 60

Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu
65 70 75 80

Gln Ala Glu Asp Glu Ala Asp Tyr Phe Cys Ala Ser Tyr Thr Ser Ser
85 90 95

Lys Thr Tyr Val Phe Gly Gly
100

<210> 176
<211> 94
<212> PRT
<213> Homo sapiens

<400> 176

Gln Ser Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln
1 5 10 15

Ser Ile Thr Ile Ser Cys Ser Gly Ser Ser Ser Asp Ile Gly Arg Tyr
20 25 30

Asp Tyr Val Ser Trp Tyr Gln His Tyr Pro Asp Lys Ala Pro Lys Leu
35 40 45

Leu Ile Tyr Glu Val Val His Arg Pro Ser Gly Ile Ser His Arg Phe
50 55 60

Ser Ala Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Glu Leu
65 70 75 80

Gln Pro Gly Asp Glu Ala Asp Tyr Tyr Cys Ala Ser Tyr Thr
85 90

<210> 177
<211> 69
<212> DNA
<213> Artificial Sequence

<220>
<223> oligonucleotide for mutagenesis

<400> 177
acaactttca acagttgagg agacggtgac cgttaagcttc tgcagttgga cctgagcgga 60
gtgagaata 69

<210> 178
<211> 51
<212> DNA

```

<213> Artificial Sequence

<220>
<223> oligonucleotide for mutagenesis

<400> 178
acaactttca acagttccc gtttgcgtc gagctccgc agttggacct g      51

<210> 179
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> sequencing primer

<400> 179
gtcgctttc cagacgttag t      21

<210> 180
<211> 26
<212> DNA
<213> Bacteriophage fd

<400> 180
tctcactccg ctgaaactgt tgaaag      26

<210> 181
<211> 62
<212> DNA
<213> Artificial Sequence

<220>
<223> engineered insertion site for VH

<400> 181
tctcactccg ctcaggtcca actgcagaag cttacggta ccgtctccctc aactgttgaa      60
ag      62

<210> 182
<211> 59
<212> DNA
<213> Artificial Sequence

<220>
<223> engineered insertion site for Fv

<400> 182
tctcactccg ctcaggtcca actgcaggag ctcgagatca aacggaaac tggtaaag      59

<210> 183

```

<211> 272
<212> PRT
<213> Artificial Sequence

<220>
<223> scFv of genetically engineered anti-hen egg-white lysozyme (HEL)
monoclonal antibody D1.3

<400> 183

Met Lys Tyr Leu Leu Pro Thr Ala Ala Ala Gly Leu Leu Leu Leu Ala
1 5 10 15

Ala Gln Pro Ala Met Ala Gln Val Gln Leu Gln Glu Ser Gly Pro Gly
20 25 30

Leu Val Ala Pro Ser Gln Ser Leu Ser Ile Thr Cys Thr Val Ser Gly
35 40 45

Phe Ser Leu Thr Gly Tyr Gly Val Asn Trp Val Arg Gln Pro Pro Gly
50 55 60

Lys Gly Leu Glu Trp Leu Gly Met Ile Trp Gly Asp Gly Asn Thr Asp
65 70 75 80

Tyr Asn Ser Ala Leu Lys Ser Arg Leu Ser Ile Ser Lys Asp Asn Ser
85 90 95

Lys Ser Gln Val Phe Leu Lys Met Asn Ser Leu His Thr Asp Asp Thr
100 105 110

Ala Arg Tyr Tyr Cys Ala Arg Glu Arg Asp Tyr Arg Leu Asp Tyr Trp
115 120 125

Gly Gln Gly Thr Thr Val Thr Val Ser Ser Gly Gly Gly Ser Gly
130 135 140

Gly Gly Gly Ser Gly Gly Ser Asp Ile Glu Leu Thr Gln Ser
145 150 155 160

Pro Ala Ser Leu Ser Ala Ser Val Gly Glu Thr Val Thr Ile Thr Cys
165 170 175

Arg Ala Ser Gly Asn Ile His Asn Tyr Leu Ala Trp Tyr Gln Gln Lys
180 185 190

Gln Gly Lys Ser Pro Gln Leu Leu Val Tyr Tyr Thr Thr Thr Leu Ala
195 200 205

Asp Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Gln Tyr
210 215 220

Ser Leu Lys Ile Asn Ser Leu Gln Pro Glu Asp Phe Gly Ser Tyr Tyr
225 230 235 240

Cys Gln His Phe Trp Ser Thr Pro Arg Thr Phe Gly Gly Thr Lys
245 250 255

Leu Glu Ile Lys Arg Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu Asn
260 265 270

<210> 184

<211> 889

<212> DNA

<213> Artificial Sequence

<220>

<223> nucleotide sequence encoding scFv of genetically engineered anti-hen egg-white lysozyme (HEL) monoclonal antibody D1.3 and surrounding sequence

<400> 184

gcatgcaa at tctatttcaa ggagacagtc ata atgaa at ac ttatgcc tacggc agcc 60

gctggattgt tattactcgc tgccca acca gc gatggccc agg tgc agct gcagg agtca 120

ggacctggcc tgg tggcgcc ctc ac a gac ctgtccatca catgcaccgt ctcagg gttc 180

tcatta accg gctatggtgt aa actgggtt cgc cagc ctc cagaa agg tctgg agtgg 240

ctggga atga tttggg gtga tgg aa acaca gactata att cag ctct caa atcc agactg 300

agcatc agca aggaca actc caa gagccaa gttttcttaa aa atgaa acag tctgc acact 360

gatg acac ag ccagg tacta ctgtgccaga gagag a gatt atagg ctt ga ctactgggc 420

caagg cacca cgg tc accgt ctcc tc aggt ggagg cggtt cagg cggagg tgg ctct gg 480

gg tggc ggat cgg acatc ga gtc actc ag tctcc agc ct cc tctgc gtctgtgg a 540

gaa actgtca ccatc acatg tcg agca agt ggg aatattc aca attt attt agcatggat 600

cagc agaa ac aggaaa atc tcctc agc tc ggtctt att ataca aca ac ct tagc agat 660

ggtgt gccat caagg ttca g tggc agtgg a tc agga acac aatatt ctct caa gatca ac 720

agc ctg caac ctg aagat tt tggg agtt tactgt caac atttt ggag tactc ct cg 780

acgttcggtg gagggaccaa gctcgagatc aaacggaaac aaaaactcat ctcagaagag 840
gatctgaatt aataatgatc aaacggtaat aaggatccag ctcgaattc 889

<210> 185
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> amino acids encoded by the nucleotide sequence around the cloning site in gene III of fd-CAT2

<400> 185

His Ser Ala Gln Val Gln Leu Gln Glu Leu Glu Ile Lys Arg Ala Ala
1 5 10 15

Ala Glu Thr Val
20

<210> 186
<211> 60
<212> DNA
<213> Artificial Sequence

<220>
<223> nucleotide sequence around the cloning site in gene III of fd-CAT 2

<400> 186
cacagtgcac aggtccaact gcaggagctc gagatcaaac gggcgccgc agaaactgtt 60

<210> 187
<211> 241
<212> PRT
<213> Artificial Sequence

<220>
<223> VH of Fab D1.3 from genetically engineered anti-hen egg-white lys ozyme (HEL) monoclonal antibody

<400> 187

Met Lys Tyr Leu Leu Pro Thr Ala Ala Ala Gly Leu Leu Leu Leu Ala
1 5 10 15

Ala Gln Pro Ala Met Ala Gln Val Gln Leu Gln Glu Ser Gly Pro Gly
20 25 30

Leu Val Ala Pro Ser Gln Ser Leu Ser Ile Thr Cys Thr Val Ser Gly
35 40 45

Phe Ser Leu Thr Gly Tyr Gly Val Asn Trp Val Arg Gln Pro Pro Gly
50 55 60

Lys Gly Leu Glu Trp Leu Gly Met Ile Trp Gly Asp Gly Asn Thr Asp
65 70 75 80

Tyr Asn Ser Ala Leu Lys Ser Arg Leu Ser Ile Ser Lys Asp Asn Ser
85 90 95

Lys Ser Gln Val Phe Leu Lys Met Asn Ser Leu His Thr Asp Asp Thr
100 105 110

Ala Arg Tyr Tyr Cys Ala Arg Glu Arg Asp Tyr Arg Leu Asp Tyr Trp
115 120 125

Gly Gln Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro
130 135 140

Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr
145 150 155 160

Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr
165 170 175

Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro
180 185 190

Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr
195 200 205

Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn
210 215 220

His Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser
225 230 235 240

Ser

<210> 188

<211> 236
<212> PRT
<213> Artificial Sequence

<220>
<223> VL of Fab D1.3 from genetically engineered anti-hen egg-white lysozyme (HEL) monoclonal antibody

<400> 188

Met Lys Tyr Leu Leu Pro Thr Ala Ala Ala Gly Leu Leu Leu Leu Ala
1 5 10 15

Ala Gln Pro Ala Met Ala Asp Ile Glu Leu Thr Gln Ser Pro Ala Ser
20 25 30

Leu Ser Ala Ser Val Gly Glu Thr Val Thr Ile Thr Cys Arg Ala Ser
35 40 45

Gly Asn Ile His Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Gln Gly Lys
50 55 60

Ser Pro Gln Leu Leu Val Tyr Tyr Thr Thr Leu Ala Asp Gly Val
65 70 75 80

Pro Ser Arg Phe Ser Gly Ser Gly Thr Gln Tyr Ser Leu Lys
85 90 95

Ile Asn Ser Leu Gln Pro Glu Asp Phe Gly Ser Tyr Tyr Cys Gln His
100 105 110

Phe Trp Ser Thr Pro Arg Thr Phe Gly Gly Thr Lys Leu Glu Ile
115 120 125

Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp
130 135 140

Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn
145 150 155 160

Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu
165 170 175

Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp
180 185 190

Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr
195 200 205

Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser
210 215 220

Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Ser
225 230 235

<210> 189

<211> 1526

<212> DNA

<213> Artificial Sequence

<220>

<223> nucleotide sequence of Fab D1.3 from genetically engineered anti-hen egg-white lysozyme (HEL) monoclonal antibody

<400> 189

gcatgcaa at tctatttcaa ggagacagtc ataatgaa at acctattgcc tacggcagcc 60

gctggattgt tattactcg c tgcccaacca gcgatggccc aggtgcagct gcaggagtca 120

ggacctggcc tggtggcgcc ctcacagagc ctgtccatca catgcaccgt ctcagggttc 180

tcattaaccg gctatggtgt aaactgggtt cgccagcctc cagggaaaggg tctggagtgg 240

ctgggaatga tttggggta tggaaacaca gactataatt cagctctcaa atccagactg 300

agcatcagca aggacaactc caagagccaa gttttcttaa aatgaacag tctgcacact 360

gatgacacag ccaggtacta ctgtgccaga gagagagatt ataggcttga ctactgggc 420

caaggcacca cggtcaccgt ctctcagcc tccaccaagg gccccatcgtt cttccccctg 480

gcaccctcct ccaagagcac ctctggggc acagcggccc tgggctgcct ggtcaaggac 540

tacttccccg aaccggtgac ggtgtcgtgg aactcaggcg ccctgaccag cggcgtgcac 600

accttccccg ctgtcctaca gtcctcagga ctctactccc tcagcagcgt ggtgaccgtg 660

ccctccagca gcttgggcac ccagacctac atctgcaacg tgaatcacaa gcccagcaac 720

accaaggctcg acaagaaaatg tgagccaaa tcttcataat aaccgggag cttgcacatgca 780

aattctat tt caaggagaca gtcataatga aataccattt gcctacggca gccgctggat 840

tgttattact cgctgccaa ccagcgatgg ccgacatcga gctcacccag tctccagcct 900

ccctttctgc gtctgtggga gaaactgtca ccatcacatg tcgagcaagt gggaaatattc 960

acaattat tt agcatggat cagcagaaac agggaaaatc tcctcagctc ctggcttatt 1020

ataacaacaac cttagcagat ggtgtccat caaggtagtggc tcaggaacac 1080
aatattctct caagatcaac agcctgcagc ctgaagattt tggagttat tactgtcaac 1140
atttttggag tactcctcg acgttcggtg gaggcacaa gctcgagatc aaacggactg 1200
tggctgcacc atctgtcttc atcttcccgc catctgatga gcagttgaaa tctgaaactg 1260
cctctgttgt gtgcctgctg aataacttct atcccagaga ggccaaagta cagtggagg 1320
tggataacgc cctccaatcg ggttaactccc aggagagtgt cacagagcag gacagcaagg 1380
acagcaccta cagcctcagc agcaccctga cgctgagcaa agcagactac gagaaacaca 1440
aagtctacgc ctgcgaagtc acccatcagg gcctgagctc gcccgtcaca aagagctca 1500
accgcggaga gtcatagtaa gaattc 1526

<210> 190

<211> 249

<212> PRT

<213> Artificial Sequence

<220>

<223> scFv form of the anti-oxazalone antibody NQ11

<400> 190

Gln Val Gln Leu Gln Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Thr Ser Gly Phe Thr Phe Ser Asn Tyr
20 25 30

Tyr Met Gly Trp Val Arg Gln Pro Pro Gly Lys Ala Leu Glu Trp Leu
35 40 45

Gly Ser Val Arg Asn Lys Val Asn Gly Tyr Thr Thr Glu Tyr Ser Ala
50 55 60

Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Phe Gln Ser Ile
65 70 75 80

Leu Tyr Leu Gln Ile Asn Thr Leu Arg Thr Glu Asp Ser Ala Thr Tyr
85 90 95

Tyr Cys Ala Arg Gly Tyr Asp Tyr Gly Ala Trp Phe Ala Tyr Trp Gly
100 105 110

Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Ser Gly Gly
115 120 125

Gly Gly Ser Gly Gly Gly Ser Asp Ile Glu Leu Thr Gln Thr Pro
130 135 140

Leu Ser Leu Pro Val Ser Leu Gly Asp Gln Ala Ser Ile Ser Cys Arg
145 150 155 160

Ser Ser Gln Ser Ile Val His Ser Asn Gly Asn Thr Tyr Leu Glu Trp
165 170 175

Tyr Leu Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile Tyr Lys Val
180 185 190

Ser Asn Arg Phe Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser
195 200 205

Gly Thr Asp Phe Thr Leu Lys Ile Ser Arg Val Glu Ala Glu Asp Leu
210 215 220

Gly Val Tyr Tyr Cys Phe Gln Gly Ser His Val Pro Tyr Thr Phe Gly
225 230 235 240

Gly Gly Thr Lys Leu Glu Ile Lys Arg
245

<210> 191
<211> 747
<212> DNA
<213> Artificial Sequence

<220>
<223> nucleotide sequence encoding scFv form of the anti-oxazalone anti
body NQ11

<400> 191
caggtgcagc tgcaggagtc aggaggaggc ttggcacagc ctgggggttc tctgagactc 60
tcctgtcaa cttctgggtt caccttcagt aattactaca tgggctgggt ccgccagcct 120
ccaggaaagg cacttgagtg gttgggttct gttagaaaca aagttaatgg ttacacaaca 180
gagttacagtg catctgtgaa gggcggttc accatctcca gagataattt ccaaagcatc 240
ctctatcttc aaataaacac cctgagaact gaggacagtg ccacttatta ctgtgcaaga 300
ggctatgatt acggggcctg gtttgcttac tggggccaag ggacccttgtt caccgtctcc 360

tcaggtggag gcgggttcagg cggagggtggc tctggcggtg gcggatcgga catcgagctc 420
acccaaactc cactctccct gcctgtcagt ctggagatc aagcctccat ctcttgcaga 480
tctagtcaga gcattgtaca tagtaatgga aacacctatt tagaatggta cctgcagaaa 540
ccaggccagt ctccaaagct cctgatctac aaagttcca accgatttc tgggtccc 600
gacaggttca gtggcagtgg atcggggaca gattcacac tcaagatcag cagagtggag 660
gctgaggatc tgggagtttta ttactgcttt caaggttcac atgttccgta cacgttcgga 720
ggggggacca agctcgagat caaacgg 747

<210> 192
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> amino terminus of phoAla 166

<400> 192

Arg Thr Pro Glu Met Pro Val Leu
1 5

<210> 193
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> 5' insertion site of phoAla 166 in frame to geneIII

<400> 193
tctcacagtg cacaaactgt tgaacggaca ccagaaatgc ctgttctg 48

<210> 194
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> carboxy terminus of phoAla 166

<400> 194

Lys Ala Ala Leu Gly Leu Lys
1 5

<210> 195

<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> 3' insertion site of phoAla 166 in frame to geneIII

<400> 195
aaagccgctc tggggctgaa agcggccgca gaaaactgttg aaagt 45

<210> 196
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<223> amino terminus of scFv PCR product

<400> 196

Gln Val Gln Leu Gln Glu
1 5

<210> 197
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<223> carboxy terminus of scFv PCR product

<400> 197

Lys Leu Glu Ile Lys Arg
1 5

<210> 198
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> 5' end of scFv PCR product

<400> 198
tttaatgagg atccacaggt gcagctgcaa gag 33

<210> 199
<211> 27
<212> DNA
<213> Artificial Sequence

<220>

<223> 3' end of scFv PCR product

<400> 199

aagcttgaga tcaaacggga tccattc

27

<210> 200

<211> 15

<212> DNA

<213> Artificial Sequence

<220>

<223> site in geneIII for introduction of BamHI site via oligo G3 Bamlink

<400> 200

gagggtggtg gctct

15

<210> 201

<211> 15

<212> DNA

<213> Artificial Sequence

<220>

<223> site in geneIII for introduction of BamHI site via oligo G3 Bamlink

<400> 201

gagggtggcg gctct

15

<210> 202

<211> 15

<212> DNA

<213> Artificial Sequence

<220>

<223> site in geneIII for introduction of BamHI site via oligo G3 Bamlink

<400> 202

gagggtggcg gctct

15

<210> 203

<211> 15

<212> DNA

<213> Artificial Sequence

<220>

<223> site in geneIII for introduction of BamHI site via oligo G3 Bamlink

<400> 203

gagggtggcg gcact

15

<210> 204

<211> 15

<212> DNA

<213> Artificial Sequence

<220>

<223> site in geneIII for introduction of BamHI site via oligo G3 Bamlink

<400> 204
gagggcggcg gctct 15

<210> 205

<211> 15

<212> DNA

<213> Artificial Sequence

<220>

<223> site in geneIII for introduction of BamHI site via oligo G3 Bamlink

<400> 205
gaggggtggtg gttct 15

<210> 206

<211> 15

<212> DNA

<213> Artificial Sequence

<220>

<223> site in geneIII for introduction of BamHI site via oligo G3 Bamlink

<400> 206
gagggcggcg gctct 15

<210> 207

<211> 15

<212> DNA

<213> Artificial Sequence

<220>

<223> site in geneIII for introduction of BamHI site via oligo G3 Bamlink

<400> 207
gagggcggcg gctct 15

<210> 208

<211> 15

<212> DNA

<213> Artificial Sequence

<220>

<223> site in geneIII for introduction of BamHI site via oligo G3 Bamlink

<400> 208
gagggcggcg gttct 15

<210> 209
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> site in geneIII for introduction of BamHI site via oligo G3 Bamlink

<400> 209
gagggcggcg gctct 15

<210> 210
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> site in geneIII for introduction of BamHI site via oligo G3 Bamlink

<400> 210
gagggcggcg gttct 15

<210> 211
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> site in geneIII for introduction of BamHI site via oligo G3 Bamlink

<400> 211
gagggcggcg gctct 15

<210> 212
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> site in geneIII for introduction of BamHI site via oligo G3 Bamlink

<400> 212
gagggtggcg gatcc 15

<210> 213
<211> 11
<212> DNA
<213> Artificial Sequence

<220>
<223> site in geneIII for introduction of BamHI site via oligo G3 Bamlink

<400> 213

gagggtggcg g

11

<210> 214
<211> 114
<212> PRT
<213> Artificial Sequence

<220>
<223> VH of scFv from mouse immunized with 2-phenyl-5-oxazolone

<400> 214

Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Ala Arg Pro Gly Ala
1 5 10 15

Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr
20 25 30

Thr Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile
35 40 45

Gly Tyr Ile Asn Pro Ser Ser Gly Tyr Thr Asn Tyr Asn Gln Lys Phe
50 55 60

Lys Asp Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala Tyr
65 70 75 80

Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys
85 90 95

Ala Asn Arg Tyr Gly Ala Tyr Trp Gly Gln Gly Thr Thr Val Thr Val
100 105 110

Ser Ser

<210> 215
<211> 114
<212> PRT
<213> Artificial Sequence

<220>
<223> VH of scFv from mouse immunized with 2-phenyl-5-oxazolone

<400> 215

Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Ala Lys Pro Gly Ala
1 5 10 15

Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Arg Asp
20 25 30

Trp Met His Trp Leu Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile
35 40 45

Gly Tyr Ile Asn Pro Ser Thr Gly Tyr Thr Glu Tyr Asn Gln Lys Phe
50 55 60

Lys Asp Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala Tyr
65 70 75 80

Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Asn Tyr Gly Leu Tyr Trp Gly Gln Gly Thr Thr Val Thr Val
100 105 110

Ser Ser

<210> 216

<211> 115

<212> PRT

<213> Artificial Sequence

<220>

<223> VH of scFv from mouse immunized with 2-phenyl-5-oxazolone

<400> 216

Gln Val Gln Leu Gln Gln Ser Gly Pro Glu Leu Val Lys Pro Gly Ala
1 5 10 15

Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr
20 25 30

Val Met His Trp Val Lys Gln Lys Pro Gly Gln Gly Leu Glu Trp Ile
35 40 45

Gly Tyr Ile Asn Pro Tyr Asn Asp Gly Thr Lys Tyr Asn Glu Lys Phe
50 55 60

Lys Asp Lys Ala Thr Leu Thr Ser Asp Lys Ser Ser Ser Thr Ala Tyr

65 70 75 80

Met Glu Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys
85 90 95

Ala Ile Tyr Arg Ser Phe Pro Tyr Trp Gly Gln Gly Thr Thr Val Thr
 100 105 110

Val Ser Ser
115

<210> 217
<211> 116
<212> PRT
<213> Artificial Sequence

<220>
<223> VH of scFv from mouse immunized with 2-phenyl-5-oxazolone

<400> 217

Gln Val Gln Leu Gln Gln Ser Gly Pro Glu Leu Val Lys Pro Gly Ala
1 5 10 15

Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ser Phe Thr Gly Tyr
20 25 30

Phe Met Asn Trp Val Lys Gln Ser His Gly Lys Ser Leu Glu Trp Ile
35 40 45

Gly Arg Ile Asn Pro Tyr Asn Gly Asp Thr Phe Tyr Asn Gln Lys Phe
50 55 60

Lys Asp Lys Ala Thr Leu Thr Val Asp Lys Ser Ser Ser Ser Thr Ala His
65 70 75 80

Met Glu Leu Leu Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys
..... 85 90 95

Val Gly Ile Thr Thr Arg Phe Ala Tyr Trp Gly Gln Gly Thr Thr Val
100 105 110

Thr Val Ser Ser
115

<210> 218

<211> 113

<212> PRT

<213> Artificial Sequence

<220>

<223> VH of scFv from mouse immunized with 2-phenyl-5-oxazolone

<400> 218

Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Ala Pro Ser Gln
1 5 10 15

Ser Leu Ser Ile Thr Cys Thr Val Ser Gly Phe Ser Leu Thr Ser Tyr
20 25 30

Gly Val His Trp Val Arg Gln Pro Pro Gly Lys Gly Leu Glu Trp Leu
35 40 45

Gly Val Ile Trp Ala Gly Gly Ser Thr Asn Tyr Asn Ser Ala Leu Met
50 55 60

Ser Arg Leu Ser Ile Ser Lys Asp Asn Ser Lys Ser Gln Val Phe Leu
65 70 75 80

Lys Met Asn Ser Leu Gln Thr Asp Asp Thr Ala Met Tyr Tyr Cys Ala
85 90 95

Arg Asp Arg Gly Asp Tyr Trp Gly Gln Gly Thr Thr Val Thr Val Ser
100 105 110

Ser

<210> 219

<211> 114

<212> PRT

<213> Artificial Sequence

<220>

<223> VH of scFv from mouse immunized with 2-phenyl-5-oxazolone

<400> 219

Gln Val Lys Leu Gln Gln Ser Gly Pro Glu Leu Ala Lys Pro Gly Ala
1 5 10 15

Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr

20

25

30

Leu Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Lys Trp Ile
35 40 45

Gly Tyr Ile Asn Pro Ser Thr Gly Tyr Thr Glu Tyr Asn Gln Lys Phe
50 55 60

Lys Asp Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala Tyr
65 70 75 80

Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Asp Tyr Gly Tyr Trp Gly Gln Gly Thr Thr Val Thr Val
100 105 110

Ser Ser

<210> 220

<211> 114

<212> PRT

<213> Artificial Sequence

<220>

<223> VH of scFv from mouse immunized with 2-phenyl-5-oxazolone

<400> 220

Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Arg Pro Gly Ala
1 5 10 15

Ser Val Lys Leu Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Arg Tyr
20 25 30

Leu Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile
35 40 45

Gly Tyr Ile Asn Pro Ser Thr Gly Tyr Thr Glu Tyr Asn Gln Lys Phe
50 55 60

Lys Asp Glu Ala Thr Leu Thr Ala Asp Lys Ser Ser Asn Thr Ala Tyr
65 70 75 80

Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Asp Tyr Gly Tyr Trp Gly Gln Gly Thr Thr Val Thr Val
100 105 110

Ser Ser

<210> 221
<211> 114
<212> PRT
<213> Artificial Sequence

<220>
<223> VH of scFv from mouse immunized with 2-phenyl-5-oxazolone

<400> 221

Gln Val Gln Leu Gln Gln Ser Gly Pro Glu Leu His Lys Pro Gly Ala
1 5 10 15

Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ser Phe Ser Arg Asn
20 25 30

Tyr Met His Trp Val Lys Gln Ser His Gly Lys Ser Leu Glu Trp Ile
35 40 45

Gly Tyr Ile Ala Pro Phe Asn Gly Gly Thr Thr Tyr Asn Gln Lys Phe
50 55 60

Lys Asp Lys Ala Thr Leu Thr Val Asp Arg Ser Ser Ser Thr Ala Tyr
65 70 75 80

Met His Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys
85 90 95

Ala Thr Asp Tyr Gly Arg Asp Trp Gly Gln Gly Thr Thr Val Thr Val
100 105 110

Ser Ser

<210> 222
<211> 114
<212> PRT

<213> Artificial Sequence

<220>

<223> VH of scFv from mouse immunized with 2-phenyl-5-oxazolone

<400> 222

Gln Val Lys Leu Gln Gln Ser Gly Pro Glu Leu Ala Arg Pro Gly Val
1 5 10 15

Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr
20 25 30

Ala Met His Trp Val Lys Gln Ser Gln Ser Lys Ser Leu Glu Trp Ile
35 40 45

Gly Val Ile Ser Thr Tyr Asn Gly Asn Thr Asn Tyr Asn Gln Lys Phe
50 55 60

Lys Gly Lys Ala Thr Met Thr Val Asp Lys Ser Ser Ser Thr Ala Tyr
65 70 75 80

Met Glu Leu Ala Arg Leu Thr Ser Glu Asp Ser Ala Ile Tyr Tyr Cys
85 90 95

Ala Arg Asp Tyr Gly Asp Tyr Trp Gly Gln Gly Thr Thr Val Thr Val
100 105 110

Ser Ser

<210> 223

<211> 114

<212> PRT

<213> Artificial Sequence

<220>

<223> VH of scFv from mouse immunized with 2-phenyl-5-oxazolone

<400> 223

Gln Val Lys Leu Gln Gln Ser Gly Ala Glu Leu Ala Arg Pro Gly Ala
1 5 10 15

Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Arg Tyr
20 25 30

Thr Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile
35 40 45

Gly Tyr Ile Asn Pro Ser Ser Gly Tyr Thr Asn Tyr Asn Gln Lys Phe
50 55 60

Lys Asp Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala Tyr
65 70 75 80

Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Asp Arg Gly Ala Tyr Trp Gly Gln Gly Thr Thr Val Thr Val
100 105 110

Ser Ser

<210> 224

<211> 114

<212> PRT

<213> Artificial Sequence.

<220>

<223> VH of scFv from mouse immunized with 2-phenyl-5-oxazolone

<400> 224

Gln Val Lys Leu Gln Gln Ser Gly Ala Glu Leu Ala Lys Pro Gly Ala
1 5 10 15

Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Arg Asp
20 25 30

Trp Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile
35 40 45

Gly Tyr Ile Asn Pro Ser Thr Gly Tyr Thr Glu Tyr Asn Gln Lys Phe
50 55 60

Lys Asp Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala Tyr
65 70 75 80

Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Asn Tyr Gly Leu Tyr Trp Gly Gln Gly Thr Thr Val Thr Val
100 105 110

Ser Ser

<210> 225
<211> 114
<212> PRT
<213> Artificial Sequence

<220>
<223> VH of scFv from mouse immunized with 2-phenyl-5-oxazolone

<400> 225

Gln Val Gln Leu Gln Gln Ser Gly Leu Glu Leu Ala Lys Pro Gly Ala
1 5 10 15

Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Tyr
20 25 30

Leu Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile
35 40 45

Gly Tyr Ile Asn Pro Ser Thr Gly Tyr Thr Glu Tyr Asn Gln Lys Phe
50 55 60

Lys Asp Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala Tyr
65 70 75 80

Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Asp Tyr Gly Tyr Trp Gly Gln Gly Thr Thr Val Thr Val
100 105 110

Ser Ser

<210> 226
<211> 114
<212> PRT
<213> Artificial Sequence

<220>

<223> VH of scFv from mouse immunized with 2-phenyl-5-oxazolone

<400> 226

Gln Val Lys Leu Gln Gln Ser Gly Ala Glu Leu Ala Lys Pro Gly Ala
1 5 10 15

Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Tyr
20 25 30

Trp Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile
35 40 45

Gly Tyr Ile Asn Pro Ser Thr Gly Tyr Thr Glu Tyr Asn Gln Lys Phe
50 55 60

Lys Asp Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala Tyr
65 70 75 80

Met Gln Leu Ser Ser Leu Thr Ser Asp Asp Ser Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Asp Tyr Gly Tyr Phe Trp Gly Gln Gly Thr Thr Val Thr Val
100 105 110

Ser Ser

<210> 227

<211> 114

<212> PRT

<213> Artificial Sequence

<220>

<223> VH of scFv from mouse immunized with 2-phenyl-5-oxazolone

<400> 227

Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Lys Pro Gly Ala
1 5 10 15

Ser Val Lys Leu Ser Cys Lys Thr Ser Gly Tyr Thr Phe Thr Ser Tyr
20 25 30

Thr Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile
35 40 45

Gly Tyr Ile Asn Pro Ser Ser Gly Tyr Thr Asn Tyr Asn Gln Lys Phe
50 55 60

Lys Asp Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala Tyr
65 70 75 80

Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Asp Tyr Gly Tyr Trp Gly Gln Gly Thr Thr Val Thr Val
100 105 110

Ser Ser

<210> 228

<211> 114

<212> PRT

<213> Artificial Sequence

<220>

<223> VH of scFv from mouse immunized with 2-phenyl-5-oxazolone

<400> 228

Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Ala Lys Pro Gly Ala
1 5 10 15

Ser Val Lys Met Ser Cys Glu Ala Ser Gly Tyr Thr Phe Thr Ser His
20 25 30

Leu Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile
35 40 45

Gly Tyr Ile Asn Pro Arg Thr Gly Tyr Thr Glu Tyr Asn Gln Lys Phe
50 55 60

Lys Asp Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala Tyr
65 70 75 80

Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Asp Tyr Gly Ala Tyr Trp Gly Gln Gly Thr Thr Val Thr Val
100 105 110

Ser Ser

<210> 229
<211> 114
<212> PRT
<213> Artificial Sequence

<220>
<223> VH of scFv from mouse immunized with 2-phenyl-5-oxazolone

<400> 229

Gln Val Lys Leu Gln Gln Ser Gly Ala Glu Leu Ala Lys Pro Gly Ala
1 5 10 15

Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr
20 25 30

Trp Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile
35 40 45

Gly Tyr Ile Asn Pro Ser Thr Gly Tyr Thr Glu Tyr Asn Gln Lys Phe
50 55 60

Lys Asp Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala Tyr
65 70 75 80

Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Asp Tyr Gly Tyr Tyr Trp Gly Gln Gly Thr Thr Val Thr Val
100 105 110

Ser Ser

<210> 230
<211> 114
<212> PRT
<213> Artificial Sequence

<220>
<223> VH of scFv from mouse immunized with 2-phenyl-5-oxazolone

<400> 230

Gln Val Lys Leu Gln Gln Ser Gly Ala Glu Leu Ala Lys Pro Gly Ala
1 5 10 15

Ser Val Lys Met Ser Cys Lys Ala Thr Gly Tyr Thr Phe Thr Ser Tyr
20 25 30

Leu Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile
35 40 45

Gly Tyr Ile Asn Pro Ser Thr Gly Tyr Thr Glu Tyr Asn Gln Lys Phe
50 55 60

Lys Asp Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala Tyr
65 70 75 80

Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Asp Tyr Gly Tyr Trp Gly Gln Gly Thr Thr Val Thr Val
100 105 110

Ser Ser

<210> 231

<211> 114

<212> PRT

<213> Artificial Sequence

<220>

<223> VH of scFv from mouse immunized with 2-phenyl-5-oxazolone

<400> 231

Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Ala Lys Pro Gly Ala
1 5 10 15

Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr
20 25 30

Val Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile
35 40 45

Gly Tyr Ile Asn Pro Ser Ser Gly Tyr Thr Asn Tyr Asn Gln Lys Phe
50 55 60

Lys Asp Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala Tyr
65 70 75 80

Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Asn Tyr Gly Ile Tyr Trp Gly Gln Gly Thr Thr Val Thr Val
100 105 110

Ser Ser

<210> 232

<211> 114

<212> PRT

<213> Artificial Sequence

<220>

<223> VH of scFv from mouse immunized with 2-phenyl-5-oxazolone

<400> 232

Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Ala Lys Pro Gly Ala
1 5 10 15

Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Thr Phe
20 25 30

Leu Met His Trp Leu Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile
35 40 45

Gly Tyr Ile Asn Pro Ser Thr Gly Tyr Thr Glu Tyr Asn Gln Lys Phe
50 55 60

Lys Asp Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala Tyr
65 70 75 80

Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Asp Tyr Gly Tyr Trp Gly Gln Gly Thr Thr Val Thr Val
100 105 110

Ser Ser

<210> 233
<211> 114
<212> PRT
<213> Artificial Sequence

<220>
<223> VH of scFv from mouse immunized with 2-phenyl-5-oxazolone

<400> 233

Gln Val Lys Leu Gln Gln Ser Gly Ala Glu Leu Ala Arg Pro Gly Ala
1 5 10 15

Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr
20 25 30

Thr Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Gly Trp Ile
35 40 45

Gly Tyr Ile Asn Pro Ser Ser Gly Tyr Thr Asn Tyr Asn Gln Lys Phe
50 55 60

Lys Asp Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala Tyr
65 70 75 80

Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Asp Tyr Gly Tyr Trp Gly Gln Gly Thr Thr Val Thr Val
100 105 110

Ser Ser

<210> 234
<211> 114
<212> PRT
<213> Artificial Sequence

<220>
<223> VH of scFv from mouse immunized with 2-phenyl-5-oxazolone

<400> 234

Gln Val Lys Leu Gln Gln Ser Gly Ala Glu Leu Ala Lys Pro Gly Ala
1 5 10 15

Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr
20 25 30

Thr Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile
35 40 45

Gly Tyr Ile Asn Pro Thr Thr Gly Tyr Thr Glu Tyr Asn Gln Lys Phe
50 55 60

Lys Asp Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala Tyr
65 70 75 80

Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Asp Tyr Gly Tyr Tyr Trp Gly Gln Gly Thr Thr Val Thr Val
100 105 110

Ser Ser

<210> 235

<211> 114

<212> PRT

<213> Artificial Sequence

<220>

<223> VH of scFv from mouse immunized with 2-phenyl-5-oxazolone

<400> 235

Gln Val Lys Leu Gln Gln Ser Gly Ala Glu Leu Ala Lys Pro Gly Ala
1 5 10 15

Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Arg Asp
20 25 30

Trp Met His Trp Leu Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile
35 40 45

Gly Tyr Ile Asn Pro Ser Thr Gly Tyr Thr Glu Tyr Asn Gln Lys Phe
50 55 60

Lys Asp Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala Tyr

65 70 75 80

Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Asn Tyr Gly Tyr Tyr Trp Gly Gln Gly Thr Thr Val Thr Val
 100 105 110

Ser Ser

<210> 236
<211> 109
<212> PRT
<213> Artificial Sequence

<220>
<223> VL of scFv from mouse immunized with 2-phenyl-5-oxazolone

<400> 236

Glu Arg Val Ser Leu Thr Cys Arg Ala Ser Gln Glu Ile Ser Ser Gly
20 25 30

Tyr Leu Ser Trp Leu Gln Gln Lys Pro Asp Gly Ser Ile Lys Arg Leu
 35 40 45

Ile	Tyr	Ala	Ala	Ser	Thr	Leu	Glu	Ser	Gly	Val	Pro	Lys	Arg	Phe	Ser
50						55						60			

Gly Ser Arg Ser Gly Ser Asp Tyr Ser Leu Thr Ile Ser Ser Leu Glu
65 70 75 80

Ser Glu Asp Phe Ala Asp Tyr Tyr Cys Leu Gln Tyr Ala Ser Tyr Pro
85 90 95

Thr Phe Gly Ala Gly Thr Lys Leu Glu Ile Lys Arg Ala
100 105

<210> 237
<211> 110
<212> PRT
<213> Artificial Sequence

<220>

<223> VL of scFv from mouse immunized with 2-phenyl-5-oxazolone

<400> 237

Asp Ile Glu Leu Thr Gln Ser Pro Ala Ile Met Ser Ala Ser Pro Gly
1 5 10 15

Glu Lys Val Thr Met Thr Cys Arg Ala Ser Ser Ser Val Ser Ser Ser
20 25 30

Tyr Leu His Trp Tyr Gln Gln Lys Pro Gly Ala Ser Pro Lys Val Trp
35 40 45

Ile Tyr Ser Thr Ser Asn Leu Ala Ser Gly Val Pro Ala Arg Phe Ser
50 55 60

Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser Ser Val Glu
65 70 75 80

Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Tyr Ser Gly Tyr Pro
85 90 95

Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Ile Lys Arg Ala
100 105 110

<210> 238

<211> 110

<212> PRT

<213> Artificial Sequence

<220>

<223> VL of scFv from mouse immunized with 2-phenyl-5-oxazolone

<400> 238

Asp Ile Glu Leu Thr Gln Ser Pro Thr Thr Met Ala Ala Ser Pro Gly
1 5 10 15

Glu Lys Ile Thr Ile Thr Cys Ser Ala Ser Ser Ser Ile Ser Ser Asn
20 25 30

Tyr Leu His Trp Tyr Gln Gln Lys Pro Gly Phe Ser Pro Lys Leu Leu
35 40 45

Ile Tyr Arg Thr Ser Asn Leu Ala Ser Gly Val Pro Ala Arg Phe Ser

50

55

60

Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Gly Thr Met Glu
65 70 75 80

Ala Glu Asp Val Ala Thr Tyr Tyr Cys Gln Gln Gly Ser Thr Ile Pro
85 90 95

Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Ile Lys Arg Ala
100 105 110

<210> 239

<211> 110

<212> PRT

<213> Artificial Sequence

<220>

<223> VL of scFv from mouse immunized with 2-phenyl-5-oxazolone

<400> 239

Asp Ile Glu Leu Thr Gln Ser Pro Thr Thr Met Ala Ala Ser Pro Gly
1 5 10 15

Glu Lys Ile Thr Ile Thr Cys Ser Ala Ser Ser Ser Ile Ser Ser Asn
20 25 30

Tyr Leu His Trp Phe Gln Gln Lys Pro Gly Phe Ser Pro Lys Leu Leu
35 40 45

Ile Ser Arg Thr Ser Asn Leu Ala Ser Gly Val Pro Ala Arg Phe Ser
50 55 60

Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Gly Thr Met Glu
65 70 75 80

Ala Glu Asp Val Ala Thr Tyr Tyr Cys Gln Gln Gly Ser Thr Ile Pro
85 90 95

Phe Thr Phe Gly Ser Gly Thr Lys Leu Glu Ile Lys Arg Ala
100 105 110

<210> 240

<211> 108

<212> PRT

<213> Artificial Sequence

<220>

<223> VL of scFv from mouse immunized with 2-phenyl-5-oxazolone

<400> 240

Asp Ile Glu Leu Thr Gln Ser Pro Ala Ile Met Ser Ala Ser Pro Gly
1 5 10 15

Glu Lys Val Thr Ile Thr Cys Ser Ala Ser Ser Ser Val Asn Tyr Met
20 25 30

His Trp Phe Gln Gln Lys Pro Gly Thr Ser Pro Lys Leu Trp Ile Tyr
35 40 45

Arg Thr Ser Asn Leu Ala Ser Gly Val Pro Thr Arg Phe Ser Gly Ser
50 55 60

Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser Arg Met Glu Ala Glu
65 70 75 80

Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Arg Ser Ser Tyr Pro Pro Thr
85 90 95

Phe Gly Ser Gly Thr Lys Leu Glu Ile Lys Arg Ala
100 105

<210> 241

<211> 108

<212> PRT

<213> Artificial Sequence

<220>

<223> VL of scFv from mouse immunized with 2-phenyl-5-oxazolone

<400> 241

Asp Ile Glu Leu Thr Gln Ser Pro Ala Ile Met Ser Ala Phe Pro Gly
1 5 10 15

Glu Lys Val Thr Met Thr Cys Ser Ala Ser Ser Ser Val Ser Tyr Met
20 25 30

His Trp Tyr Gln Gln Lys Ser Gly Thr Ser Pro Lys Arg Trp Ile Tyr
35 40 45

Asp Thr Ser Lys Leu Ala Ser Gly Val Pro Ala Arg Phe Ser Gly Ser

50 55 60

Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser Ser Met Glu Ala Glu
65 70 75 80

Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Phe Ser Ser Asn Pro Leu Thr
85 90 95

Phe Gly Ala Gly Thr Lys Leu Glu Leu Lys Arg Ala
100 105

<210> 242
<211> 108
<212> PRT
<213> Artificial Sequence

<220>
<223> VL of scFv from mouse immunized with 2-phenyl-5-oxazolone

<400> 242

Asp Ile Glu Leu Thr Gln Ser Pro Ala Ile Met Ser Ala Ser Pro Gly
1 5 10 15

Glu Lys Val Thr Met Thr Cys Ser Ala Ser Ser Ser Ile Asn Tyr Met
20 25 30

His Trp Tyr Gln Gln Lys Pro Gly Ala Ser Pro Lys Arg Trp Ile Tyr
35 40 45

Asp Thr Ser Lys Leu Ala Ser Gly Val Pro Ala Arg Phe Ser Gly Ser
50 55 60

Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser Ser Met Glu Ala Glu
65 70 75 80

Asp Ala Ala Thr Tyr Tyr Cys His Gln Arg Ser Ser Tyr Pro Trp Thr
85 90 95

Phe Gly Gly Thr Lys Leu Glu Ile Lys Arg Ala
100 105

<210> 243
<211> 108
<212> PRT
<213> Artificial Sequence

<220>

<223> VL of scFv from mouse immunized with 2-phenyl-5-oxazolone

<400> 243

Asp Ile Glu Leu Thr Gln Ser Pro Ala Ile Met Ser Ala Ser Pro Gly
1 5 10 15

Glu Lys Val Thr Met Thr Cys Ser Ala Ser Ser Ser Val Ser Tyr Met
20 25 30

His Trp Tyr Gln Gln Lys Ser Gly Thr Ser Pro Lys Arg Trp Ile Tyr
35 40 45

Asp Thr Ser Lys Leu Ala Ser Gly Val Pro Ala Arg Phe Ser Gly Ser
50 55 60

Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser Ser Met Glu Ala Glu
65 70 75 80

Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp Ser Ser Asn Pro Leu Thr
85 90 95

Phe Gly Ala Gly Thr Lys Leu Glu Ile Lys Arg Ala
100 105

<210> 244

<211> 108

<212> PRT

<213> Artificial Sequence

<220>

<223> VL of scFv from mouse immunized with 2-phenyl-5-oxazolone

<400> 244

Asp Ile Glu Leu Thr Gln Ser Pro Ala Ile Met Ser Ala Ser Pro Gly
1 5 10 15

Glu Lys Val Thr Ile Thr Cys Ser Ala Ser Ser Ser Val Ser Tyr Ile
20 25 30

His Trp Pro Gln Gln Lys Pro Gly Thr Ser Pro Lys Leu Trp Ile Tyr
35 40 45

Ser Thr Ser Asn Leu Ala Ser Gly Val Pro Ala Arg Phe Ser Gly Ser

50

55

60

Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser Arg Met Glu Ala Glu
65 70 75 80

Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Tyr His Ser Tyr Pro Leu Thr
85 90 95

Phe Gly Ala Gly Thr Lys Leu Glu Ile Lys Arg Ala
100 105

<210> 245
<211> 110
<212> PRT
<213> Artificial Sequence

<220>
<223> VL of scFv from mouse immunized with 2-phenyl-5-oxazolone

<400> 245

Asp Ile Glu Leu Thr Gln Ser Pro Thr Thr Met Ala Ala Ser Pro Gly
1 5 10 15

Glu Lys Ile Thr Ile Thr Cys Ser Ala Ser Ser Ser Ile Ser Ser Asn
20 25 30

Tyr Leu His Trp Phe Gln Gln Lys Pro Gly Phe Ser Pro Lys Leu Leu
35 40 45

Ile Tyr Arg Thr Ser Asn Leu Ala Ser Gly Val Pro Ala Arg Phe Ser
50 55 60

Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Gly Thr Met Glu
65 70 75 80

Ala Glu Asp Val Ala Thr Tyr Tyr Cys Gln Gln Gly Ser Ser Ile Pro
85 90 95

Leu Thr Phe Gly Gly Thr Lys Leu Glu Ile Lys Arg Ala
100 105 110

<210> 246
<211> 110
<212> PRT
<213> Artificial Sequence

<220>

<223> VL of scFv from mouse immunized with 2-phenyl-5-oxazolone

<400> 246

Asp Ile Glu Leu Thr Gln Ser Pro Thr Thr Met Ala Ala Ser Pro Gly
1 5 10 15

Glu Met Ile Thr Ile Thr Cys Ser Ala Ser Ser Ser Ile Ser Ser Asn
20 25 30

Tyr Leu His Trp Tyr Gln Gln Lys Pro Gly Phe Ser Pro Lys Leu Leu
35 40 45

Ile Tyr Arg Thr Ser Asn Leu Ala Ser Gly Val Pro Ala Arg Phe Ser
50 55 60

Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Gly Ala Met Glu
65 70 75 80

Ala Glu Asp Val Ala Thr Tyr Tyr Cys Gln Gln Gly Ser Ser Ile Pro
85 90 95

Tyr Thr Phe Gly Ala Gly Thr Lys Leu Glu Ile Lys Arg Ala
100 105 110

<210> 247

<211> 110

<212> PRT

<213> Artificial Sequence

<220>

<223> VL of scFv from mouse immunized with 2-phenyl-5-oxazolone

<400> 247

Asp Ile Glu Leu Thr Gln Ser Pro Thr Thr Met Ala Ala Ser Pro Gly
1 5 10 15

Glu Lys Ile Thr Ile Thr Cys Ser Ala Ser Ser Ser Ile Ser Ser Asn
20 25 30

Tyr Leu His Trp Tyr Gln Gln Lys Pro Gly Phe Ser Pro Lys Leu Leu
35 40 45

Ile Tyr Arg Thr Ser Asn Leu Ala Ser Gly Val Pro Ala Arg Phe Ser

50

55

60

Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Gly Thr Met Glu
65 70 75 80

Ala Glu Asp Val Ala Thr Tyr Tyr Cys Gln Gln Gly Ser Ser Ile Pro
85 90 95

Tyr Thr Phe Gly Gly Thr Lys Leu Glu Ile Lys Arg Ala
100 105 110

<210> 248

<211> 110

<212> PRT

<213> Artificial Sequence

<220>

<223> VL of scFv from mouse immunized with 2-phenyl-5-oxazolone

<400> 248

Asp Ile Glu Leu Thr Gln Ser Pro Thr Thr Met Ala Ala Ser Pro Gly
1 5 10 15

Glu Lys Ile Thr Ile Thr Cys Ser Ala Ser Ser Ser Ile Ser Ser Asn
20 25 30

His Leu His Trp Tyr Gln Gln Lys Pro Gly Phe Ser Pro Lys Leu Leu
35 40 45

Ile Tyr Arg Thr Ser Asn Leu Ala Ser Gly Val Pro Ala Arg Phe Ser
50 55 60

Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Gly Thr Met Glu
65 70 75 80

Ala Glu Asp Val Ala Thr Tyr Tyr Cys Gln Gln Gly Ser Gly Ile Pro
85 90 95

Tyr Thr Phe Gly Gly Thr Lys Leu Glu Ile Lys Arg Ala
100 105 110

<210> 249

<211> 110

<212> PRT

<213> Artificial Sequence

<220>

<223> VL of scFv from mouse immunized with 2-phenyl-5-oxazolone

<400> 249

Asp Ile Glu Leu Thr Gln Ser Pro Thr Thr Met Ala Ala Ser Pro Gly
1 5 10 15

Glu Lys Ile Thr Ile Thr Cys Ser Ala Ser Ser Ser Ile Ser Ser Asn
20 25 30

Tyr Leu His Trp Tyr Gln Gln Lys Pro Gly Phe Ser Pro Lys Leu Leu
35 40 45

Ile Tyr Arg Thr Ser Asn Leu Ala Ser Gly Val Pro Ala Arg Phe Ser
50 55 60

Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Gly Thr Met Glu
65 70 75 80

Ala Glu Asp Val Ala Thr Tyr Tyr Cys Gln Gln Gly Ser Ser Ile Pro
85 90 95

Phe Thr Phe Gly Gly Thr Lys Leu Glu Ile Lys Arg Ala
100 105 110

<210> 250

<211> 110

<212> PRT

<213> Artificial Sequence

<220>

<223> VL of scFv from mouse immunized with 2-phenyl-5-oxazolone

<400> 250

Asp Ile Glu Leu Thr Gln Ser Pro Ala Ile Met Ser Ala Ser Pro Gly
1 5 10 15

Glu Lys Ile Thr Ile Thr Cys Ser Ala Ser Ser Ser Ile Ser Ser Asn
20 25 30

Tyr Leu His Trp Tyr Gln Gln Lys Pro Gly Phe Ser Pro Lys Leu Leu
35 40 45

Ile Tyr Arg Thr Ser Asn Leu Ala Ser Gly Val Pro Ala Arg Phe Ser

50

55

60

Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Gly Thr Met Glu
65 70 75 80

Ala Glu Asp Val Ala Thr Tyr Tyr Cys Gln Gln Gly Ser Ser Ile Pro
85 90 95

Tyr Thr Phe Gly Gly Thr Lys Leu Glu Ile Lys Arg Ala
100 105 110

<210> 251

<211> 108

<212> PRT

<213> Artificial Sequence

<220>

<223> VL of scFv from mouse immunized with 2-phenyl-5-oxazolone

<400> 251

Asp Ile Glu Leu Thr Gln Ser Pro Ala Ile Met Ser Ala Ser Pro Gly
1 5 10 15

Glu Lys Val Thr Met Thr Cys Ser Ala Ser Ser Ser Val Ser Tyr Met
20 25 30

His Trp Tyr Gln Gln Lys Ser Gly Thr Ser Pro Lys Arg Trp Ile Tyr
35 40 45

Asp Thr Ser Lys Leu Ala Ser Gly Val Pro Ala Arg Phe Ser Gly Ser
50 55 60

Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser Ser Met Glu Ala Glu
65 70 75 80

Asp Val Ala Thr Tyr Tyr Cys Gln Gln Trp Ser Ser Asn Pro Leu Thr
85 90 95

Phe Gly Ala Gly Thr Lys Leu Glu Ile Lys Arg Ala
100 105

<210> 252

<211> 108

<212> PRT

<213> Artificial Sequence

<220>

<223> VL of scFv from mouse immunized with 2-phenyl-5-oxazolone

<400> 252

Asp Ile Glu Leu Thr Gln Ser Pro Ala Ile Met Ser Ala Ser Pro Gly
1 5 10 15

Glu Lys Val Thr Leu Thr Cys Ser Ala Ser Ser Ser Val Arg Tyr Val
20 25 30

Asn Trp Phe Gln Gln Lys Ser Gly Thr Ser Pro Lys Arg Trp Ile Tyr
35 40 45

Asp Thr Ser Lys Leu Ala Ser Gly Val Pro Ala Arg Phe Ser Gly Ser
50 55 60

Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser Ser Met Glu Ala Glu
65 70 75 80

Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp Thr Ser Asn Pro Pro Thr
85 90 95

Phe Gly Gly Thr Lys Leu Glu Ile Lys Arg Ala
100 105

<210> 253

<211> 108

<212> PRT

<213> Artificial Sequence

<220>

<223> VL of scFv from mouse immunized with 2-phenyl-5-oxazolone

<400> 253

Asp Ile Glu Leu Thr Gln Ser Pro Ala Ile Met Ser Ala Ser Pro Gly
1 5 10 15

Glu Lys Val Thr Met Thr Cys Ser Ala Ser Ser Ser Val Ser Tyr Met
20 25 30

His Trp Tyr Gln Gln Lys Ser Gly Thr Ser Pro Lys Arg Trp Ile Tyr
35 40 45

Asp Thr Ser Lys Leu Ala Ser Gly Val Pro Ala Arg Phe Ser Gly Ser

50 55 60

Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser Ser Met Glu Ala Glu
65 70 75 80

Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp Ser Thr Asn Ala Leu Thr
85 90 95

Phe Gly Ala Gly Thr Lys Leu Glu Ile Lys Arg Ala
100 105

<210> 254
<211> 110
<212> PRT
<213> Artificial Sequence

<220>
<223> VL of scFv from mouse immunized with 2-phenyl-5-oxazolone

<400> 254

Asp Ile Glu Leu Thr Gln Ser Pro Ala Ile Met Ser Ala Ser Pro Gly
1 5 10 15

Glu Lys Val Thr Met Thr Cys Ser Ala Ser Ser Ser Val Thr Ser Asn
20 25 30

Tyr Leu Asn Trp Tyr Gln Gln Lys Ser Gly Ala Ser Pro Lys Leu Trp
35 40 45

Val Tyr Ser Thr Ser Asn Leu Ala Ser Gly Val Pro Ala Arg Phe Ser
50 55 60

Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser Ser Val Glu
65 70 75 80

Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Tyr Ser Gly Tyr Pro
85 90 95

Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Ile Lys Arg Ala
100 105 110

<210> 255
<211> 110
<212> PRT
<213> Artificial Sequence

<220>

<223> VL of scFv from mouse immunized with 2-phenyl-5-oxazolone

<400> 255

Asp Ile Glu Leu Thr Gln Ser Pro Ala Ile Met Ser Ala Ser Pro Gly
1 5 10 15

Glu Lys Val Thr Met Thr Cys Ser Ala Ser Ser Ser Val Ser Ser Asn
20 25 30

Tyr Leu Asn Trp Tyr Gln Gln Lys Ser Gly Ala Ser Pro Lys Leu Trp
35 40 45

Ile Tyr Ser Thr Ser Asn Leu Ala Ser Gly Val Pro Ala Arg Phe Ser
50 55 60

Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser Arg Met Glu
65 70 75 80

Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Arg Ser Ser Tyr Pro
85 90 95

Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Ile Lys Arg Ala
100 105 110

<210> 256

<211> 110

<212> PRT

<213> Artificial Sequence

<220>

<223> VL of scFv from mouse immunized with 2-phenyl-5-oxazolone

<400> 256

Asp Ile Glu Leu Thr Gln Ser Pro Ala Ile Met Ser Ala Ser Pro Gly
1 5 10 15

Glu Lys Val Thr Met Thr Cys Ser Ala Ser Ser Ser Val Ser Ser Asn
20 25 30

Tyr Leu His Trp Tyr Gln Gln Lys Ser Gly Ala Ser Pro Lys Leu Trp
35 40 45

Ile Tyr Ser Thr Ser Asn Leu Ala Ser Gly Val Pro Ala Arg Phe Ser

50

55

60

Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser Ser Val Glu
65 70 75 80

Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Tyr Ser Gly Tyr Pro
85 90 95

Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Ile Lys Arg Ala
100 105 110

<210> 257

<211> 110

<212> PRT

<213> Artificial Sequence

<220>

<223> VL of scFv from mouse immunized with 2-phenyl-5-oxazolone

<400> 257

Asp Ile Glu Leu Thr Gln Ser Pro Ala Ile Met Ser Ala Ser Pro Gly
1 5 10 15

Glu Lys Val Thr Met Thr Cys Ser Ala Ser Ser Ser Val Ser Ser Asn
20 25 30

Tyr Leu His Trp Phe Gln Gln Lys Ser Gly Ala Ser Pro Lys Leu Trp
35 40 45

Ile Tyr Ser Thr Ser Asn Leu Pro Ser Gly Val Pro Ala Arg Phe Ser
50 55 60

Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser Ser Val Glu
65 70 75 80

Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Tyr Ser Gly Tyr Pro
85 90 95

Leu Thr Phe Gly Gly Thr Lys Leu Glu Ile Lys Arg Ala
100 105 110

<210> 258

<211> 110

<212> PRT

<213> Artificial Sequence

<220>

<223> VL of scFv from mouse immunized with 2-phenyl-5-oxazolone

<400> 258

Asp Ile Glu Leu Thr Gln Ser Pro Thr Thr Met Ala Ala Ser Pro Gly
1 5 10 15

Glu Lys Ile Thr Ile Thr Cys Ser Ala Ser Ser Ser Ile Ser Ser Asn
20 25 30

Tyr Leu His Trp Tyr Gln Gln Lys Pro Gly Phe Ser Pro Lys Leu Leu
35 40 45

Ile Tyr Arg Thr Ser Asn Leu Ala Ser Gly Val Pro Ala Arg Phe Ser
50 55 60

Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Gly Thr Met Glu
65 70 75 80

Ala Glu Asp Val Ala Thr Tyr Tyr Cys Gln Gln Gly Ser Ser Ile Pro
85 90 95

Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Ile Lys Arg Ala
100 105 110

<210> 259

<211> 41

<212> PRT

<213> Artificial Sequence

<220>

<223> residues encoded by insertion site and surrounding sequence in pH
EN1

<400> 259

Leu Leu Ala Ala Gln Pro Ala Met Ala Gln Val Gln Leu Gln Val Asp
1 5 10 15

Leu Glu Ile Lys Arg Ala Ala Ala Glu Gln Lys Leu Ile Ser Glu Glu
20 25 30

Asp Leu Asn Gly Ala Ala Thr Val Glu
35 40

<210> 260
<211> 126
<212> DNA
<213> Artificial Sequence

<220>
<223> insertion site and surrounding sequence in pHEN1

<400> 260
ttactcgccgg cccagccggc catggcccag gtgcagctgc aggtcgacct cgagatcaaa 60
cgggcggccg cagaacaaaa actcatctca gaagaggatc tgaatggggc cgcatagact 120
gttgaa 126

<210> 261
<211> 734
<212> PRT
<213> Artificial Sequence

<220>
<223> scFvB18

<400> 261

Pro His Glu Thr Tyr Arg Ser Glu Arg His Ile Ser Ser Glu Arg Ala
1 5 10 15

Leu Ala Gly Leu Asn Val Ala Leu Gly Leu Asn Leu Glu Gly Leu Asn
20 25 30

Gly Leu Asn Ser Glu Arg Gly Leu Tyr Ala Leu Ala Gly Leu Leu Glu
35 40 45

Val Ala Leu Leu Tyr Ser Pro Arg Gly Leu Tyr Ala Leu Ala Ser Glu
50 55 60

Arg Val Ala Leu Leu Tyr Ser Leu Glu Ser Glu Arg Cys Tyr Ser Leu
65 70 75 80

Tyr Ser Ala Leu Ala Ser Glu Arg Gly Leu Tyr Thr Tyr Arg Thr His
85 90 95

Arg Pro His Glu Thr His Arg Ser Glu Arg Thr Tyr Arg Thr Arg Pro
100 105 110

Met Glu Thr His Ile Ser Thr Arg Pro Val Ala Leu Leu Tyr Ser Gly
115 120 125

Leu Asn Ala Arg Gly Pro Arg Gly Leu Tyr Ala Arg Gly Gly Leu Tyr
130 135 140

Leu Glu Gly Leu Thr Arg Pro Ile Leu Glu Gly Leu Tyr Ala Arg Gly
145 150 155 160

Ile Leu Glu Ala Ser Pro Pro Arg Ala Ser Asn Ser Glu Arg Gly Leu
165 170 175

Tyr Gly Leu Tyr Thr His Arg Leu Tyr Ser Thr Tyr Arg Ala Ser Asn
180 185 190

Gly Leu Leu Tyr Ser Pro His Glu Leu Tyr Ser Ser Glu Arg Leu Tyr
195 200 205

Ser Ala Leu Ala Thr His Arg Leu Glu Thr His Arg Val Ala Leu Ala
210 215 220

Ser Pro Leu Tyr Ser Pro Arg Ser Glu Arg Ser Glu Arg Thr His Arg
225 230 235 240

Ala Leu Ala Thr Tyr Arg Met Glu Thr Gly Leu Asn Leu Glu Ser Glu
245 250 255

Arg Ser Glu Arg Leu Glu Thr His Arg Ser Glu Arg Gly Leu Ala Ser
260 265 270

Pro Ser Glu Arg Ala Leu Ala Val Ala Leu Thr Tyr Arg Thr Tyr Arg
275 280 285

Cys Tyr Ser Ala Leu Ala Ala Arg Gly Thr Tyr Arg Ala Ser Pro Thr
290 295 300

Tyr Arg Gly Leu Tyr Ser Glu Arg Ser Glu Arg Thr Tyr Arg Thr Tyr
305 310 315 320

Arg Pro His Glu Ala Ser Pro Thr Tyr Arg Thr Arg Pro Gly Leu Tyr
325 330 335

Gly Leu Asn Gly Leu Tyr Thr His Arg Thr His Arg Val Ala Leu Thr
340 345 350

His Arg Val Ala Leu Ser Glu Arg Ser Glu Arg Gly Leu Tyr Gly Leu
355 360 365

Tyr Gly Leu Tyr Gly Leu Tyr Ser Glu Arg Gly Leu Tyr Gly Leu Tyr
370 375 380

Gly Leu Tyr Gly Leu Tyr Ser Glu Arg Gly Leu Tyr Gly Leu Tyr Gly
385 390 395 400

Leu Tyr Gly Leu Tyr Ser Glu Arg Gly Leu Asn Ala Leu Ala Val Ala
405 410 415

Leu Gly Leu Tyr Thr His Arg Gly Leu Asn Gly Leu Ser Glu Arg Ala
420 425 430

Leu Ala Leu Glu Thr His Arg Thr His Arg Ser Glu Arg Pro Arg Gly
435 440 445

Leu Tyr Gly Leu Thr His Arg Val Ala Leu Thr His Arg Leu Glu Thr
450 455 460

His Arg Cys Tyr Ser Ala Arg Gly Ser Glu Arg Ser Glu Arg Thr His
465 470 475 480

Arg Gly Leu Tyr Ala Leu Ala Val Ala Leu Thr His Arg Thr His Arg
485 490 495

Ser Glu Arg Ala Ser Asn Thr Tyr Arg Ala Leu Ala Ala Ser Asn Thr
500 505 510

Arg Pro Val Ala Leu Gly Leu Asn Gly Leu Leu Tyr Ser Pro Arg Ala
515 520 525

Ser Pro His Ile Ser Leu Glu Pro His Glu Thr His Arg Gly Leu Tyr
530 535 540

Leu Glu Ile Leu Glu Gly Leu Tyr Gly Leu Tyr Thr His Arg Ala Ser
545 550 555 560

Asn Ala Ser Asn Ala Arg Gly Ala Leu Ala Pro Arg Gly Leu Tyr Val
565 570 575

Ala Leu Pro Arg Ala Leu Ala Ala Arg Gly Pro His Glu Ser Glu Arg

580

585

590

Gly Leu Tyr Ser Glu Arg Leu Glu Ile Leu Glu Gly Leu Tyr Ala Ser
595 600 605

Pro Leu Tyr Ser Ala Leu Ala Ala Leu Ala Leu Glu Thr His Arg Ile
610 615 620

Leu Glu Thr His Arg Gly Leu Tyr Ala Leu Ala Gly Leu Asn Thr His
625 630 635 640

Arg Gly Leu Ala Ser Pro Gly Leu Ala Leu Ala Ile Leu Glu Thr Tyr
645 650 655

Arg Pro His Glu Cys Tyr Ser Ala Leu Ala Leu Glu Thr Arg Pro Thr
660 665 670

Tyr Arg Ser Glu Arg Ala Ser Asn His Ile Ser Thr Arg Pro Val Ala
675 680 685

Leu Pro His Glu Gly Leu Tyr Gly Leu Tyr Gly Leu Tyr Thr His Arg
690 695 700

Leu Tyr Ser Leu Glu Thr His Arg Val Ala Leu Leu Glu Gly Leu Ile
705 710 715 720

Leu Glu Leu Tyr Ser Ala Arg Gly Ala Leu Ala Ala Leu Ala
725 730

<210> 262

<211> 770

<212> DNA

<213> Artificial Sequence

<220>

<223> scFvB18

<400> 262
ttctattctc acagtgcaca ggtccagctg cagcagtctg gggctgagct tgtgaaggct 60
ggggcttcag tgaagctgtc ctgcaaggct tctggctaca cttcacccag ctactggatg 120
cactgggtga agcagaggcc tggacgaggc cttgagtggta ttggaaggat tgatccta 180
agtgggtgta ctaagtacaa tgagaagttc aagagcaagg ccacactgac tgttagacaaa 240
ccctccagca cagcctacat gcagctcagc agcctgacat ctgaggactc tgcggtctat 300

tattgtcaa gatacgacta cggttagtagc tactactttg actactgggg ccaaggacc 360
acggtcacccg tctcctcagg tggaggcggt tcaggcggag gtggctctgg cggcggcga 420
tcccaggctg ttgggacaca ggaatctgca ctcaccacat cacctggtga aacagtcaca 480
ctcacttgc gctcaagtac tggggctgtt acaactagta actatgcca 540
gaaaaaccag atcatttatt cactggtcta ataggtggta ccaacaaccg agctccaggt 600
gttcctgcca gattctcagg ctccctgatt ggagacaagg ctgccctcac catcacaggg 660
gcacagactg aggatgaggc aatatatttc tgtgctctat ggtacagcaa ccattgggtg 720
ttcggtggag gaaccaaact gactgtcctc gagatcaaac gggcggccgc 770

<210> 263
<211> 35
<212> PRT
<213> Artificial Sequence

<220>
<223> carboxy terminus of Human CH1 and hinge from pJM1-Fab D1.3
<400> 263

Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Ser
1 5 10 15

Thr Lys Thr His Thr Ser Gly Gly Glu Gln Lys Leu Ile Ser Glu Glu
20 25 30

Asp Leu Asn
35

<210> 264
<211> 30
<212> PRT
<213> Artificial Sequence

<220>
<223> pelB leader and amino terminus of VK from pJM1-Fab D1.3
<400> 264

Met Lys Tyr Leu Leu Pro Thr Ala Ala Ala Gly Leu Leu Leu Pro Ala
1 5 10 15

Ala Gln Pro Ala Met Ala Asp Ile Glu Phe Thr Gln Ser Pro
20 25 30

<210> 265
 <211> 241
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> linker region of pJM1-Fab D1.3

<400> 265
 aaccccagca acaccaaggc cgacaagaaa gttgagccca aatcttcaac taagacgcac 60
 acatcaggag gtgaacagaa gctcatctca gaagaggatc tgaattaata agggagcttg 120
 catgcaaatt ctatttcaag gagacagtca taatgaaata cctattgcct acggcagccg 180
 ctggattgtt attacctgct gcccaaccag cgatgccga catcgagtcc acccagtctc 240
 c 241

<210> 266
 <211> 108
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> light chain of D1.3

<400> 266

Asp	Ile	Gln	Met	Thr	Gln	Ser	Pro	Ala	Ser	Leu	Ser	Ala	Ser	Val	Gly
1				5					10				15		

Glu	Thr	Val	Thr	Ile	Thr	Cys	Arg	Ala	Ser	Gly	Asn	Ile	His	Asn	Tyr
									25				30		

Leu	Ala	Trp	Tyr	Gln	Gln	Lys	Gln	Gly	Lys	Ser	Pro	Gln	Leu	Leu	Val
									40			45			

Tyr	Tyr	Thr	Thr	Leu	Ala	Asp	Gly	Val	Pro	Ser	Arg	Phe	Ser	Gly	
						50			55			60			

Ser	Gly	Ser	Gly	Thr	Gln	Tyr	Ser	Leu	Lys	Ile	Asn	Ser	Leu	Gln	Pro
					65			70		75			80		

Glu	Asp	Phe	Gly	Ser	Tyr	Tyr	Cys	Gln	His	Phe	Trp	Ser	Thr	Pro	Arg
									85		90		95		

Thr	Phe	Gly	Gly	Gly	Thr	Lys	Leu	Glu	Ile	Lys	Arg			
									100		105			

<210> 267
<211> 108
<212> PRT
<213> Artificial Sequence

<220>
<223> light chain from clone M1F

<400> 267

Asp Ile Glu Leu Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Leu Gly
1 5 10 15

Glu Arg Val Ser Leu Thr Cys Arg Ala Ser Gln Asp Ile Gly Ser Ser
20 25 30

Leu Asn Trp Leu Gln Gln Glu Pro Asp Gly Thr Ile Lys Arg Leu Ile
35 40 45

Tyr Ala Thr Ser Ser Leu Asp Ser Gly Val Pro Lys Arg Phe Ser Gly
50 55 60

Ser Arg Ser Gly Ser Asp Tyr Ser Leu Thr Ile Ser Ser Leu Glu Ser
65 70 75 80

Glu Asp Phe Val Asp Tyr Tyr Cys Leu Gln Tyr Ala Ser Ser Pro Trp
85 90 95

Thr Phe Gly Gly Thr Lys Leu Glu Leu Lys Arg
100 105

<210> 268
<211> 109
<212> PRT
<213> Artificial Sequence

<220>
<223> light chain from M21

<400> 268

Asp Ile Glu Leu Thr Gln Ser Pro Ala Leu Met Ala Ala Ser Pro Gly
1 5 10 15

Glu Lys Val Thr Ile Thr Cys Ser Val Ser Ser Ser Ile Ser Ser Ser
20 25 30

Asn Leu His Trp Tyr Gln Gln Lys Ser Glu Thr Ser Pro Lys Pro Trp
35 40 45

Ile Tyr Gly Thr Ser Asn Leu Ala Ser Gly Val Pro Val Arg Phe Ser
50 55 60

Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser Ser Met Glu
65 70 75 80

Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp Ser Ser Tyr Pro
85 90 95

Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Ile Lys Arg
100 105

<210> 269
<211> 15
<212> PRT
<213> Artificial Sequence

<220>
<223> linker between VH-HuH2 and VK-HuK3

<400> 269

Gly Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser
1 5 10 15

<210> 270
<211> 15
<212> PRT
<213> Artificial Sequence

<220>
<223> linker between VH-HuH1 and VK-HuK4

<400> 270

Gly Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser
1 5 10 15

<210> 271
<211> 15
<212> PRT
<213> Artificial Sequence

<220>
<223> linker between VH-HuH2 and VK-HuK4

<400> 271

Gly Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser
1 5 10 15

<210> 272

<211> 15

<212> PRT

<213> Artificial Sequence

<220>

<223> linker between VH-HuH1 and VK-HuK3

<400> 272

Gly Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser
1 5 10 15