

510.84 I 16 r no.667-672 cop.2

UIUCDCS-R-74-667 ho.667 Cop. 2

July, 1974

ON FINDING THE MAXIMAL ELEMENTS IN A SET OF PLANE VECTORS

bу

Foong Frances Yao

THE LIBRARY OF THE

APR 1 1975

HNINEROTT OF ILLINOIS

DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN · URBANA, ILLINOIS

ON FINDING THE MAXIMAL ELEMENTS IN A SET OF PLANE VECTORS

Ву

Foong Frances Yao

July, 1974

DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
URBANA, ILLINOIS 61801

^{*}Supported in part by the National Science Foundation under contract NSF GJ 41538.

Digitized by the Internet Archive in 2013

510.84 Ilbr m667-672 cap.2

Abstract

Let F be a set of n vectors in the plane. A partial order is defined on F in a natural manner. It is known that the maximal elements of F can be found in S(n) + n-l comparisons, where S(n) is the minimum number of comparisons required to sort n numbers. In this note we show that S(n) + n-l comparisons are necessary.

1. Introduction

Let $F = \{(x_i, y_i) | i=1,2,...,n\}$ be a set of n distinct vectors in the plane. A vector $(x_i y_i) \in F$ is said to be an maximal element of F if for any $(x_j, y_j) \in F$ where $1 \le j \le n$ and $j \ne i$, we have either $x_j < x_i$ or $y_j < y_i$. We will use $F^{(max)}$ to denote the set of maximal elements of F.

As noted by Luccio and Preparata [1], it is possible to find $F^{(max)}$ by using no more than S(n)+n-1 pairwise comparisons among the numbers $\{x_1,x_2,\ldots,x_n,y_1,y_2,\ldots,y_n\}$, where S(n) is the minimax number of comparisons for sorting n numbers. If we denote by V(n) the minimum number of comparisons required to find $F^{(max)}$ for any set F of n vectors, we will show that

$$V(n) \ge S(n) + n-1 \tag{1}$$

In fact we will prove that S(n) + n-1 comparisons are necessary even for algorithms whose input is restricted to those F's satisfying $x_i > y_j$ for all $1 \le i$, $j \le n$. Under this restriction, we can assume that the algorithms to be considered contain only comparisons of the form $x_i : x_j$ or of the form $y_k : y_\ell$. Let A be any such algorithm. If T_A is the decision of A, we will show that some subtree T_A of T_A is isomorphic to the decision tree T_A of a sorting algorithm A (for n numbers). This implies that $V(n) \ge S(n)$. The algorithm A, however, is not an optimal sorting algorithm. In fact, the height of T_A can be reduced by n-1 when some redundant comparisons are removed. This then leads to

$$V(n) \ge S(n) + n-1$$
.

Details of the above scheme of proof are given in the next two sections.

2. Definition of T

Let us consider those sets of vectors $F = \{(x_i,y_i) | 1 \le i \le n\}$ with the property

$$x_i > x_j \text{ iff } y_i < y_j$$
 for all i,j. (2)

For F satisfying (2), all n vectors are maximal elements. The following lemma is essential to the proof of (1) in the next section.

Lemma Let A be an algorithm for finding maximal vectors. If F satisfies (2), then there exists a permutation (i_1, i_2, \dots, i_n) of $(1, 2, \dots, n)$ such that when A is applied to F, the following statements are ture:

(i) Algorithm # establishes

$$x_{i_1} > x_{i_2} > \dots > x_{i_n}$$
 and $y_{i_1} < y_{i_2} < \dots < y_{i_n}$ (3)

(ii) The following comparisons are made:

$$x_{i_1}: x_{i_2}$$
 $x_{i_2}: x_{i_3}$... $x_{i_{n-1}}: x_{i_n}$ (4)
 $y_{i_1}: y_{i_2}$ $y_{i_2}: y_{i_3}$... $y_{i_{n-1}}: y_{i_n}$

<u>Proof</u>: Since every vector of F is an maximal element, algorithm $\not A$ must establish, for any $i \neq j$, either $(x_i > x_j) \Lambda(y_i < y_j)$ or $(x_i < x_j) \Lambda(y_i > y_j)$. Therefore (3) is true. All the comparisons in (4) have to be made since they are necessary for establishing (3).

We now turn to the definition of T' as mentioned in Sec. 1. Let A be an algorithm for finding maximal vectors and T its decision tree. For any input F, there is a unique path in T which determines the actual computing process when A is applied to F. We shall say it is the path traversed by F.

<u>Definition 1</u> For any algorithm # that finds maximal vectors, T' is defined to be the subtree of T consisting of all those paths traversed by the F's satisfying (2).

3. Constructing a sorting algorithm from T

Let T'_{A} be the subtree obtained from T_{A} as in Definition 1. We will transform T'_{A} into the decision tree T'_{A} for an algorithm A' which sorts n numbers.

<u>Definition 2</u> Let $\{z_1, z_2, \dots, z_n\}$ represent n distinct numbers. We define a new decision tree T_p based on T_p as follows:

- (i) Replace any comparison of the form $x_i:x_j$ at an internal node of T_i with $z_i:z_j$. Also replace the branching labels $x_i>x_j$ and $x_i< x_j$ on the arcs with $z_i>z_j$ and $z_i< z_j$ respectively.
- (ii) Replace any comparison $y_i:y_j$ by $z_i:z_j$. However, the branching label $y_i > y_j$ is replaced by $z_i < z_j$ while $y_i < y_j$ is replaced by $z_i > z_j$. (iii) Leave the external nodes blank at present.

We will show that the tree T_j so obtained indeed represents a sorting algorithm. But first note that the tree structures of T_j and T_j' are isomorphic in a natural way. Let us denote by α this isomorphic mapping from T_j' onto T_j . If N is a node performing $x_i:x_j$ in T_j' , then $\alpha(N)$ is a node in T_j performing $z_i:z_j$. Similarly if C is an arc in T_j' with branching label $y_i > y_j$, then $\alpha(C)$ is an arc in T_j with branching label $z_i < z_j$. For a set P of nodes and arcs in T_j' , we shall also use $\alpha(P)$ to denote the set of corresponding nodes and arcs in T_j .

The following lemma is obvious from the definition of $T_{\mathbf{A}}$.

Lemma 2

Let Z = $\{z_1, z_2, ..., z_n\}$ be a set of n distinct numbers, and $F = \{(x_i, y_i) | i = 1, 2, ..., n\} \text{ be a set of vectors satisfying (2)}.$ Moreover, assume that

$$x_i > x_j$$
, $y_i < y_j$ iff $z_i > z_j$ for all i,j. (5)

Then the path P traversed by Z in $T_{\boldsymbol{g}}$ corresponds to the path Q traversed by F in $T_{\boldsymbol{g}}$ in the sense that $P = \alpha(Q)$.

Lemma 2 implies that, if $x_i:x_j$ (or $y_i:y_j$) is performed when $\not =$ is applied to F, then $z_i:z_j$ is performed when $\not =$ is applied to Z for F,Z satisfying (5).

We are now ready to prove that d is a sorting algorithm.

Theorem 1

- (i) \mathbf{z} is a sorting algorithm for $Z = \{z_1, z_2, \dots, z_n\}$.
- (ii) For any input Z, there are n-l comparisons each of which is performed twice in %.

<u>Proof</u>: Consider any set of n distinct numbers $Z = \{z_1, z_2, ..., z_n\}$. Assume $z_1 > z_1 > ... > z_n$. Now consider the following set of vectors:

 $F = \{(x_i,y_i) | 1 \le i \le n, \text{ where } x_i > x_i > \dots > x_i \text{ and } y_i < y_i < \dots < y_i, \}$ When \not is applied to F, the comparisons

$$x_{i_{1}}:x_{i_{2}} \quad x_{i_{2}}:x_{i_{3}} \quad \dots \quad x_{i_{n-1}}:x_{i_{n}}$$

$$y_{i_{1}}:y_{i_{2}} \quad y_{i_{2}}:y_{i_{3}} \quad \dots \quad y_{i_{n-1}}:y_{i_{n}}$$
(6)

are performed according to Lemma 1. Therefore, when λ is applied to Z, each of the n-l comparisons

$$z_{i_1} : z_{i_2} \qquad z_{i_2} : z_{i_3} \qquad \dots \qquad z_{i_{n-1}} : z_{i_n}$$

will be performed twice (duplicate images of $x_i : x_i$ and $y_i : y_i$ under mapping α) by Lemma 2 and (6). Since the comparisons in (7) suffice to extablish $z_i > z_i > \dots > z_i$, we have sorted Z.

As a result of Theorem 1, we can clearly remove the redundant comparisons from $\mathcal S$ to obtain a sorting algorithm which makes n-1 fewer comparisons than $\mathcal S$ for any input $Z = \{z_1, z_2, \ldots, z_n\}$. This shows that the height h of $T_{\mathcal S}$ satisfies

$$h_{\lambda} \geq S(n) + n-1.$$

On the other hand, since T_{A} is isomorphic to a subtree of T_{A} , the height h_{A} of T_{A} must then satisfy

$$h_{A} \geq S(n) + n-1. \tag{8}$$

Since (8) is true for any algorithm \not that finds the maximal vectors, we thus obtain our main result:

Theorem 2 $V(n) \ge S(n) + n-1$

As mentioned in Sec. 1, S(n) + n-1 is an upper bound for V(n) since $F^{(max)}$ can be found by sorting the vectors of F into non-increasing order by their first coordinates, and then making a sequential search on their second coordinates. Therefore we have V(n) = S(n) + n-1.

Acknowledgement

H.T. Kung has also considered this problem independently in [2] and obtained a weaker result.

REFERENCES

- [1] Luccio, F., and Preparata, F.P., On Finding the Maxima of a Set of Vectors, Instituto di Scienze dell'Informazione, Università di Pisa, Corso Italia 40, 56100 Pisa, Italy, 1973.
- [2] Kung, H.T., On the Computational Complexity of Finding the Maxima of a Set of Vectors, 15th Annual Symposium of SWAT, October, 1974.

BLIOGRAPHIC DATA EET	1. Report No. UIUCDCS-R-74-667	2.	3. Recipient's Accession No.
Title and Subtitle			5. Report Date
On Finding th	July, 1974		
Vectors	6.		
Author(s)	8. Performing Organization Rept.		
Foong Frances Yao			No. UIUCDCS-R-74-667
Performing Organization Name and Address			10. Project/Task/Work Unit No.
University of	Illinois		
Department of	11. Contract/Grant No.		
Urbana, IL 61801			1 NOD OF 12500
	·		NSF GJ 41538
Sponsoring Organization	Name and Address		13. Type of Report & Period
National Scie	nce Foundation		Covered
1800 G St. N.	W.		
Washington, D.C. 20550			14.
Supplementary Notes			

. Abstracts

Let F be a set of n vectors in the plane. A partial order is defined on F in a natural manner. It is known that the maximal elements of F can be found in S(n) + n-1 comparisons, where S(n) is the minimum number of comparisons required to sort n numbers. In this note we show that S(n) + n-1comparisons are necessary.

. Key Words and Document Analysis. 17a. Descriptors

Maximal element, decision tree

b. Identifiers/Open-Ended Terms

c. COSATI Field/Group

Availability Statement -	19. Security Class (This	21. No. of Pages
	Report)	10
Unlimited	UNCLASSIFIED	10
OH LIMIT OCC	20. Security Class (This	22. Price
	Page	
	UNCLASSIFIED	

UNIVERSITY OF ILLINOIS-URBANA
610.84 IL6R no. C002 no.667-672(1974
Raport /

3 0112 088401382