روش تولید کدهای همینگ

یک روش تولید کدهای همینگ به این شکل است که بیتهای چک کننده در لابلای داده قرار می گیرند. در این روش اگر داده n=k+m است، m تعداد بیتهای این روش اگر داده k بیت باشد کلمه کد تولید شده دارای n بیت است که n=k+m است، m تعداد بیتهای چک کننده است و برابر است با کوچک ترین عددی که در نا مساوی n < m صدق کند. اگر بیتهای کلمه کد تولید شده را بتر تیب از b_n تامیم، روش تولید کلمه کد به صورت زیر است:

- ۱. بیتها را به ترتیب از ۱ تا n شماره گذاری کنید (..., 2, 3, ...).
- شماره بیتها را به صورت باینری در m بیت بنویسید (... ,010 ,010 ,010).
- ۳. بیتهایی که شماره آنها توانی از ۲ است چک بیت هستند. (بیتهایی که شماره آنها به باینری فقط یک بیت یک دارد).
- ۴. بقیه بیتها با شماره به غیر از توان ۲ بترتیب بیتهای دادهها هستند (بیتهایی که شماره آنها به باینری ۲ یا بیشتر از ۲ بیت یک دارد).
- ۵. هر بیت داده با توجه به شماره آن بیت به باینری حداقل با ۲ یا بیشتر از ۲ چک بیت منحصر بفرد چک می شوند.

به عنوان نمونه:

- أ. چک بیت _C1 بیتهای ۳، ۵، ۷، ۹، ۱۱، ۱۳، ... را چک می کند.
- ب. چک بیت _{C2} بیتهای ۳، ۶-۲، ۱۱-۱۰، ۱۲–۱۵، ... را چک میکند.
 - ج. چک بیت ۵-۲ بیتهای ۵-۷، ۲۱-۲۰، ۲۳-۲۰، ... را چک میکند.
 - د. چک بیت دی ایتهای ۹-۲۴، ۲۸ ۳۱-۲۴، ... را چک می کند.

برای شرح بیشتر به شکل ۱ توجه کنید.

گیرنده با دریافت کلمه کد \underline{r} با استفاده از روابط نشان داده شده در شکل ۲ قسمت ب، نشانه تشخیص و تصحیح کلمه کد دریافتی را تولید می کند. اگر عدد $\underline{s}_8 s_4 s_2 s_1)_2$ صفر بود آنگاه هیچ خطایی تشخیص داده نشده است. در غیر اینصورت کلمه کد دریافتی حتما دارای خطا میباشد. اگر $\underline{s} \leq n$ باشد یک خطا اتفاق افتاده $\underline{s} > n$ باشد، آنگاه بیش یک بیت خطا است که $\underline{b} = \underline{r} + \underline{e}$ است. اگر $\underline{b} = \underline{r} + \underline{e}$ و $\underline{e} = (e_n e_{n-1} \cdots e_3 e_2 e_1) = decode(s)$ باشد، آنگاه بیش یک بیت خطا وجود دارد و کلمه کد دریافتی قابل تصحیح نیست.

موقعیت بیت		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
بیتهای کد شده داده		C ₁	C ₂	d ₁	C ₄	d ₂	d ₃	d_4	C ₈	d_5	d ₆	d ₇	d ₈	d ₉	d ₁₀	d ₁₁	C ₁₆	d ₁₂	d ₁₃	d ₁₄	d ₁₅	
پوشش هر چک بیت	C ₁	1		1		1		1		1		1		1		1		1		1		
	C ₂		1	1			1	1			1	1			1	1			1	1		
	C ₄				1	1	1	1					1	1	1	1					1	
	C ₈								1	1	1	1	1	1	1	1						
	C ₁₆																1	1	1	1	1	

الف) محل قرارگیری چک بیتها و پوشش هر چک بیت
$$b_i = \begin{cases} c_i, & \text{if } i = 2^j \\ d_{i-\lceil \log_2 i \rceil + 1}, & \text{if } i \neq 2^j \end{cases} \quad \text{for } i = 1, 2, \cdots, n$$

$$) \quad \text{محل قرارگیری چک بیتها در کلمه کد}$$

$$c_j = \begin{pmatrix} \sum_{\substack{1 \leq i < \binom{n}{2} \\ \text{and} \\ j+2i-(i \bmod j) \leq n}} b_{j+2i-(i \bmod j)} \end{pmatrix} \bmod 2 \ , \qquad j=1,2,4,8,...,2^m$$

$$0 = \, c_1 + c_1 = b_1 + b_3 + b_5 + b_7 + b_9 + b_{11} + b_{13} + b_{15} + \, \cdots$$

$$0 = c_2 + c_2 = b_2 + b_3 + b_6 + b_7 + b_{10} + b_{11} + b_{14} + b_{15} + \cdots$$

$$0 = c_4 + c_4 = b_4 + b_5 + b_6 + b_7 + b_{12} + b_{13} + b_{14} + b_{15} + \cdots$$

$$0 = c_4 + c_4 = b_4 + b_5 + b_6 + b_7 + b_{12} + b_{13} + b_{14} + b_{15} + \cdots$$

$$0 = c_8 + c_8 = b_8 + b_9 + b_{10} + b_{11} + b_{12} + b_{13} + b_{14} + b_{15} + \cdots$$

د) چک بیتها بر اساس رابطه توازن زوج تولید میشوند. شکل ۱. روش تولید کد همینگ.

الف) دریافت کلمه کد $\underline{r} = \underline{b} + \underline{e}$ توسط گیرنده

$$s_1 = r_1 + r_3 + r_5 + r_7 + r_9 + r_{11} + r_{13} + r_{15} + \cdots$$

$$\begin{aligned} s_2 &= r_2 + r_3 + r_6 + r_7 + r_{10} + r_{11} + r_{14} + r_{15} + \cdots \\ s_4 &= r_4 + r_5 + r_6 + r_7 + r_{12} + r_{13} + r_{14} + r_{15} + \cdots \end{aligned}$$

$$S_4 = r_4 + r_5 + r_6 + r_7 + r_{12} + r_{13} + r_{14} + r_{15} + \cdots$$

$$s_8 = r_8 + r_9 + r_{10} + r_{11} + r_{12} + r_{13} + r_{14} + r_{15} + \cdots$$

ب) روابط تولید نشانه تشخیص و تصحیح خطا در گیرنده.

 $s = (\cdots \ s_8 s_4 s_2 s_1)_2 = \begin{cases} = \ 0, & no \ error \ detected, \\ \leq n, & one \ bit \ error \ is \ considered \ and \ s \ is \ the \ position \ of \ errored \ bit, \\ > n, & more \ than \ one \ bit \ errors \ are \ detected \ and \ the \ code \ is \ uncorrectable. \end{cases}$

ج) روش تشخیص خطا.

if $s \leq n$ then one bit error is considered and s is the position of errored bit, that is $\underline{e} = (e_n e_{n-1} \cdots e_3 e_2 e_1) = decode(s)$, and $\underline{b} = \underline{r} + \underline{e}$

د) روش تصحیح خطا.

شکل ۲. روش تشخیص و تصحیح خطا با استفاده از کد همینگ.