The Shortest Path in Line Arrangements

Ligeng Zhu¹

¹ Department of Computing Science Simon Fraser University

CMPT 406, 2017 Fall

Outline

Problem Definition

Related Works

Faster solution

Problem Definition

By given lines from two centrals, compute the shortest path between extreme up-left point s and extrem right-bottom point t.

Shortest Path on Planar Graph

Theorem

The shortest path in a planar graph is $O(n^2)$. [5]

Planar graph: edges do not intersect.

Shortest Path on Planar Graph

Simple proof:

$$dist[s, t] = min(dist[s, m] + dist[m, t])$$

∀m, t is connected

Each edge is considered at most twice.

$$O(|E|) = O(n^2)$$

Special case: only vertical and horizontal

Theorem

The shortest path in a grid graph is $O(n^{1.5})$. [3]

Theorem

The special case can be further improved to O(nlgn). M. van Kreveld

Special case: only k-slope

Theorem

The shortest path with k-slope line arrangements is $O(n + k^2)$. [2]

Note: k can be as worse as $2 \times n$.

Randomization approach

Theorem

The shortest path in a grid graph has 2 approximation that runs in O(nlgn) time. [4]

Note: Find the shortest path on dual problem.

Theorem

The shortest path in a grid graph has $1+\epsilon$ approximation of SPLA in time $O(nlogn+min(n,\frac{1}{\epsilon^2})+\frac{1}{\epsilon}log\frac{1}{\epsilon})$

Note: very, very complex.

Conclusion

Constraints	Time complexity
No	$O(n^2)$
Verticial and Horizontal	$O(n^{1.5}), O(nlgn)$
K slopes	$O(n+k^2)$
2 approximation	O(nlgn)
$1+\epsilon$ approximation	$O(nlogn + min(n, \frac{1}{\epsilon^2}) + \frac{1}{\epsilon}log\frac{1}{\epsilon})$

Observation of some cases

Observation

Mid points are not used in the shortest path.

Observation of some cases

Assumption

The shortest path will never use the mid points.

True ? Yes. kavitha etc [6] proved it.

Theorem

The shortest s-t path is always one of s-u-t or s-r-t.

Let's start from a simple case.

Figure 2: The line l(x) is any arbitrary line in the open cone defined by the lines l_1 and l_2 .

Path s - y - x - t, s - u - x - tAssume |suxt| is the shorter path

Let k be a point that satisfies |sk| + |kx| = |su| + |ux| (k lies between s and y)

Let's start from a simple case.

Figure 2: The line l(x) is any arbitrary line in the open cone defined by the lines l_1 and l_2 .

$$|syxt| = |sy| + |yx| + |xt| = |sk| + |ky| + |yx| + |xt| = |suxt| = |su| + |ux| + |ut|$$

Since
$$|sk| + |kx| = |su| + |ux|$$

We have $|suxt| = |sk| + |kx| + |ut|$

$$|suxt| = |sk| + |ky| + |yx| + |xt|$$

 $|syxt| = |sk| + |kx| + |xt|$

Let's start from a simple case.

Figure 2: The line l(x) is any arbitrary line in the open cone defined by the lines l_1 and l_2 .

$$|suxt| = |sk| + |ky| + |yx| + |xt|$$

 $|syxt| = |sk| + |kx| + |xt|$
 $|suxt| - |syxt| = |ky| + |yx| - |kx| > 0$

$$|suxt| - |syxt| > 0$$

Similar proof can be done with |suxt| and |syxt|.

Proof of kavitha's theorem

Generalize to more edges

Suppose the shortest s-t path (call it SP (s, t)) travels along line k1, then bends into li for some $2 \le i < n$ and then bends into k, j for some j > 1.

This contradicts kavitha's theorem applied to the lines I1, Ii+1, k1, kj, and Ii.

Kavitha's solution

Given two central points k and j and shoot n and m lines from the central respectively. To find the shortest path between left-up point to right-down point, the algorithm operates as following.

- Find the lines with smallest and largest slop for k, name as lk₁ and lk₂
- ② Find the lines with smallest and largest slop for j, name as jn_1 and jm_2
- Ocompute the four intersection points. A: (lk_1, jn_1) , B: (lk_1, jm_2) , C: (lk_2, jn_1) , D: (lk_2, jm_2) ,
- The shortest path is either ABC or ACD

Time complexity : O(n)

Summary

Method	Constraints	Time complexity
Naive	No	$O(n^2)$
[3]	Vertical and Horizontal	$O(n^{1.5}), O(nlgn)$
[2]	K slopes	$O(n+k^2)$
[1]	2 approximation	O(nlgn)
[4]	$1+\epsilon$ approximation	$O(nlogn + min(n, \frac{1}{\epsilon^2}) + \frac{1}{\epsilon}log\frac{1}{\epsilon})$
Kavitha	No	<i>O</i> (<i>n</i>)

Reference I

P. Bose, W. S. Evans, D. G. Kirkpatrick, M. McAllister, and J. Snoeyink.

Approximating shortest paths in arrangements of lines. In *CCCG*, volume 96, pages 143–148, 1996.

D. Eppstein and D. Hart.

Shortest paths in an arrangement with k line orientations.

In Symposium on Discrete Algorithms: Proceedings of the tenth annual ACM-SIAM symposium on Discrete algorithms, volume 17, pages 310–316, 1999.

D. Eppstein and D. W. Hart.

An efficient algorithm for shortest paths in vertical and horizontal segments.

In Workshop on Algorithms and Data Structures, pages 234–247. Springer, 1997.

Reference II

D. Hart.

Approximating the shortest path in line arrangements. In *CCCG*, pages 105–108, 2001.

M. R. Henzinger, P. Klein, S. Rao, and S. Subramanian. Faster shortest-path algorithms for planar graphs. *journal of computer and system sciences*, 55(1):3–23, 1997.

T. Kavitha and K. R. Varadarajan.
On shortest paths in line arrangements.
In *CCCG*, pages 170–173, 2003.