Jonne Kurokallio

Python case / Pre-assignment

Data

- This dataset is public available for research. The details are described in [Cortez et al., 2009]. Please include this citation if you plan to use this database:
 - P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis. Modeling wine preferences by data mining from physicochemical properties. In Decision Support Systems, Elsevier, 47(4):547-553. ISSN: 0167-9236.
- Wine database with thousands of wine samples with 11 features such as pH and acidity.
- Qualities evaluated by tree experts
- Problem: determine usability of future samples.
- It is unnecessary to divide the wine into 10 categories, so I divide it into three classes based on it's usability.

Quality	Class/Usable
[0,5]	1 / Unusable
]5,7]	2 / Cheaper or maybe usable
]7,10]	3 / Usable

Preprocessing the data

- Processed with Pandas
- Scaling the features
 - Scaling subtracts the mean value of the observation and then divides it by the unit variance of the observation
 - This eliminates the dominating (if exist) feature values
- Checking linearity
- Feature selection
 - 1. with Lasso before trying models
 - 2. with ExtraTreeClassifier before trying the models
 - 3. with Recursive Feature Elimination after training the model to see if this makes any difference

Linear equivalence

Feature selection

Lasso

Alpha value	0.1	0.01	0.0001
Total number of features used	2/11	9/11	11/11
Accuracy (%)	12	23	23

ExtraTreeClassifier

- Recursive Feature Elimination
 - SVM- linear

Nro. of features	The importance of features
7	[3 1 5 1 2 1 4 1 1 1 1]
8	[2 1 4 1 1 1 3 1 1 1 1]
9	[1 1 3 1 1 1 2 1 1 1 1]

Random Forest

Nro. of features	The importance of features
7	[5 1 3 1 1 1 1 1 4 2 1]
8	[4 1 2 1 1 1 1 1 3 1 1]
9	[3 1 1 1 1 1 1 1 2 1 1]

Trained models without feature selection

Model generated	Linear regression	Polynomial regression	Logistic regression	K- means	Random forest	Naive Bayes	SVM-linear	SVM-rbf
Accuracy (right/all)(%)	23.0	25.4	70.5	72.5	79.4	64.8	70.2	73.6
Accuracy (Cross Validation) (%)	21.9	-	70.6	62.3	72.6	65.5	71.0	62.7
Training and testing time	2	1s	103s	5s	8s	2s	986s	11s

RF and SVM-linear with feature selection

Model	Random forest	SVM-linear
Accuracy (right/all)(%)	78.8	69.8
Accuracy (Cross Validation) (%)	72.0	71.0
Training and testing time	7s	1478s

Analysis of the results

Confusion matrix (Random Forest with out Feature selection)

Label	Unusable (1)	Usable/cheap (2)	Usable (3)
Unusable (1)	345	182	0
Usable/cheap (2)	88	808	1
Usable (3)	0	31	15

Permutation analysis

- Random Forest wit
- p.value = 0.009

Future work

- More study on the feature selection
 - Better and more accurate results with fewer features
- Try different scaling method
- Tune in more parameters