Функция Эйлера

Лемма 4

Функция Эйлера мультипликативна, то есть, если $a,b\in\mathbb{N}$ взаимно просты, то $\varphi(ab)=\varphi(a)\varphi(b)$.

Доказательство. • Запишем числа от 1 до ab в таблицу $a \times b$ так, что в первой строке — числа от 1 до a, во второй — от a+1 до 2a, итд, в b строке — числа от (b-1)a+1 до ba.

1	2	3		a-3	a-2	a-1	а	
a+1	a+2	a+3		2a-3	2a-2	2a-1	2a	
(b-1)a+1	(b-1)a+2	(b-1)a+3		ba-3	ba-2	ba-1	ba	

b строк

- Все числа в i столбце принадлежат одному вычету $\bar{i}=i+a\mathbb{Z}$ по модулю a. Эти числа взаимно просты с a, если и только если (i,a)=1.
- Вычеркнем все столбцы с номерами i, не взаимно простыми с a. Останутся ровно $\varphi(a)$ столбцов.

Пусть a = 8; b = 3.

PS функция Эйлера от 8 это 4 (нам подходят 1, 3, 5, 7)

функция Эйлера от 3 это 2 (нам подходят 1, 2)

функция Эйлера от 24 это 8 (нам подходят 1, 5, 7, 11, 13, 15, 17, 19)

1	2	3	4	5	6	7	8
9	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24
ПСВ 3		ПСВ 3		ПСВ 3		ПСВ 3	

То есть в этой табличке мы получили все варианты остатков по модулю ab.

- Все числа, взаимно простые с ab, должны быть взаимно простыми и с a, они лежат в оставшихся $\varphi(a)$ столбцах.
- Рассмотрим оставшийся столбец, пусть числа в нем имеют вид $j, a+j, \ldots, (b-1)a+j$. Эти числа образуют ПСВ (mod b) в силу теоремы 13 (так как получены из ПСВ $0,1,\ldots,b-1$ умножением на a, взаимно простое с b и прибавлением $j\colon 0\to j, 1\to a+j,\ldots,b-1\to (b-1)a+j$).

- Значит, среди чисел j, a+j, ..., (b-1)a+j ровно $\varphi(b)$ взаимно простых с b. Остальные числа точно не взаимно просты с ab, вычеркнем их.
- Оставшиеся $\varphi(a)\varphi(b)$ чисел взаимно просты и с a, и с b, а значит, взаимно просты с ab. Значит, осталось ровно $\varphi(ab)$ чисел (все числа от 1 до ab, взаимно простые с ab).

1	2	3	4	5	6	7	8
9	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24
ПСВ 3		ПСВ 3		ПСВ 3		ПСВ 3	

Лемма 5

Если $p \in \mathbb{P}$, $n \in \mathbb{N}$, то $\varphi(p^n) = p^n - p^{n-1}$.

Доказательство. • Посчитаем количество чисел от 1 до p^n , не взаимно простых с p^n .

- ullet Пусть $(a,p^n)=d>1.$ Так как $p^n \ \vdots \ d$, должно быть $d \ \vdots \ p$.
- Следовательно, числа от 1 до p^n , не взаимно простые с p^n это в точности числа от 1 до p^n , кратные p. Их количество равно $\frac{p^n}{p}=p^{n-1}$.

Комментарии: действительно, что у нас может быть не взаимно простого с простым числом в какой-то степени? Собственно, все числа, кратные р (то есть каждое p-тое). Их как раз p^{n-1} .

Теорема 16

Если $n \in \mathbb{N}$ имеет каноническое разложение $n = p_1^{k_1} \dots p_m^{k_m}$, то

$$\varphi(n) = n\left(1 - \frac{1}{p_1}\right) \dots \left(1 - \frac{1}{p_m}\right).$$

Доказательство. • Докажем индукцией по количеству простых делителей s, что $\varphi(p_1^{k_1}\dots p_s^{k_s})=\prod_{i=1}^s \varphi(p_i^{k_i}).$

- ullet База для s=1 очевидна.
- Переход $s \to s+1$. Так как $(p_1^{k_1} \dots p_s^{k_s}, \ p_{s+1}^{k_{s+1}})=1$, по Лемме 4 и индукционному предположению имеем

$$\varphi(p_1^{k_1} \dots p_s^{k_s} \cdot p_{s+1}^{k_{s+1}}) = \varphi(p_1^{k_1} \dots p_s^{k_s}) \cdot \varphi(p_{s+1}^{k_{s+1}}) = \left(\prod_{i=1}^s \varphi(p_i^{k_i})\right) \cdot \varphi(p_{s+1}^{k_{s+1}}) = \prod_{i=1}^{s+1} \varphi(p_i^{k_i}).$$

• Следовательно,

$$\varphi(n) = \prod_{i=1}^{m} \varphi(p_i^{k_i}) = \prod_{i=1}^{m} (p_i^{k_i} - p_i^{k_i-1}) = \prod_{i=1}^{m} p_i^{k_i} \left(1 - \frac{1}{p_i}\right) = n \cdot \prod_{i=1}^{m} \left(1 - \frac{1}{p_i}\right).$$

Алгебра. Гл 2. Целые чи

Д.В.Карп

Сумма функции Эйлера по делителям числа

Теорема 17

Для любого
$$n \in \mathbb{N}$$
 $\sum_{d \in \mathbb{N}, \ d \mid n} \varphi(d) = n.$

Давайте немного посмотрим на примерах: пусть n = 12. Тогда сумма будет равна $\varphi(1) + \varphi(2) + \varphi(3) + \varphi(4) + \varphi(6) + \varphi(12) = 1+1+2+2+4=12$

n = 14. . Тогда сумма будет равна $\qquad \varphi(1) + \varphi(2) + \varphi(7) + \varphi(14) =$ = 1+1+6+6 = 14

Пусть n = 13. Тогда $\varphi(1) + \varphi(13) = 13$

Доказательство. • Рассмотрим все \mathbb{N} числа от 1 до n — их как раз n штук. Каждое из них имеет НОД с n — и этот НОД — делитель n.

ullet Для любого $d \mid n$ подсчитаем количество всех чисел из $\{1, \ldots, n\}$, чей НОД с n равен d.

Число 14. Хотим для каждого делителя d посмотреть, сколько ({1, ..., n}, n)=d. То есть для 14:

14 = 1*2*7, делители 14 – это 1, 2, 7, 14.

 $({1, ..., 14}, 14) = 1$, это выполняется для 1, 3, 5, 9, 11, 13, то есть таких 6 штук.

({1, ..., 14}, 14) = 2, это выполняется для 2, 4, 6, 8, 10, 12, то есть таких 6 штук.

 $({1, ..., 14}, 14) = 7$, это выполняется для 7, то есть таких 1 штука.

 $({1, ..., 14}, 14) = 14$, это выполняется для 14, то есть таких 1 штука.

• Такие числа делятся на d, значит, их нужно искать среди d, 2d, ..., $n=\frac{n}{d}d$. Так как $d=(kd,n)=(kd,\frac{n}{d}d)=d\cdot(k,\frac{n}{d})\iff (k,\frac{n}{d})=1,$ количество чисел из $\{1,\ldots,n\}$, чей НОД с n равен d — это в точности количество таких $k\in\{1,\ldots,\frac{n}{d}\}$, что $(k,\frac{n}{d})=1$, а это количество равно $\varphi(\frac{n}{d})$.

k∈{1, 2, 7, 14}

$$\varphi(1) + \varphi(2) + \varphi(7) + \varphi(14) = 14$$

• Если d пробегает все натуральные делители n, то $d' = \frac{n}{d}$ также пробегает все натуральные делители n. Поэтому, $n = \sum_{d \in \mathbb{N}, \ d \mid n} \varphi(\frac{n}{d}) = \sum_{d' \in \mathbb{N}, \ d' \mid n} \varphi(d')$.

Другой вариант доказательства:

1 Случай: если n – простое число, то делители n – это 1 и, собственно, n. Тогда $\varphi(1)+\varphi(n)=n$.

2 Случай: если n – составное число, n = $p_1^{\alpha_1} * p_2^{\alpha_2} * p_3^{\alpha_3} * p_4^{\alpha_4} * ... * p_s^{\alpha_s}$ (каноническое разложение)

Заметим одну интересную вещь:

$$\varphi(1) + \varphi(p) + \varphi(p^2) + \varphi(p^3) + \dots + \varphi(p^l) = 1 + (p - p^0) + (p^2 - p) + (p^3 - p^2) + \dots + (p^l - p^{l-1}))$$

Телескоп \odot , останется только p^l .

$$n = \left(\varphi(1) + \varphi(p_1) + \varphi(p_1^2) + \dots + \varphi(p_1^{\alpha_1})\right) * \left(\varphi(1) + \varphi(p_2) + \varphi(2) + \dots + \varphi(p_2^{\alpha_2})\right) * \dots * \left(\varphi(1) + \varphi(p_s) + \varphi(p_s^2) + \dots + \varphi(p_s^s)\right)$$

Если раскрыть скобки, будут получаться слагаемые вида $\varphi(p_i) * \varphi(p_j) * ... * \varphi(p_q)$, но вследствие мультипликативности функции Эйлера получим $\varphi(p_i * p_i * p_q)$, где произведение р-шек это делитель n.

21. Кольцо вычетов и его обратимые элементы. Поле вычетов по простому модулю.

Кольцо вычетов

ullet Вычеты по модулю $m\in\mathbb{Z}$ — они же вычеты по модулю идеала $m\mathbb{Z}$ — образуют кольцо вычетов $\mathbb{Z}_m:=\mathbb{Z}/m\mathbb{Z}$.

Лемма 6

Обратимые элементы \mathbb{Z}_m — это в точности вычеты из ΠpCB (mod m).

 $\Pi p C B$ — приведённая система вычетов, например: m = 42. Тогда приведенная система вычетов: 1, 5, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41. (то есть числа из полной системы вычетов, но взаимно простые c m)

Доказательство. ullet Если $\overline{a}\in\mathbb{Z}_m$ обратим, то существует такой $\overline{b}\in\mathbb{Z}_m$, что $\overline{a}\overline{b}=\overline{1}\iff ab\equiv_m 1$. Тогда (ab,m)=1, а значит и (a,m)=1.

ullet Наоборот, пусть (a,m)=1. По Теореме 13 тогда $0,a,2a,\ldots,(m-1)a-\Pi {\sf CB}\pmod m$. Значит, $\exists b:\ ab\equiv_m 1\Rightarrow \overline{ab}=\overline{1}.$

Комментарии: как мы знаем, (наверное, привет сравнению по модулю идеала). Если аb и m отличаются на 1, то, конечно, они взаимно простые. Если выкинем b, никаких новых делителей точно не появится, поэтому НОД останется 1. Вот мы и получили, что \bar{a} это вычет из ПрСВ (mod m)

(обратим, если имеет обратный)

• Если вычет \overline{a} обратим, то обратный вычет $(\overline{a})^{-1}$ единственен (это доказано в общем случае для кольца ранее, а в данном случае следует из доказательства Леммы 6).

Теорема 18

Если $p \in \mathbb{P}$, то \mathbb{Z}_p — поле.

Доказательство. Так как все некратные p числа взаимно просты с p, ПрСВ \pmod{p} — это все ненулевые вычеты. Тогда по Лемме 6, все ненулевые элементы \mathbb{Z}_p обратимы.

Про кольцо нам уже сказали выше. Что нам не хватает для поля? Обратного элемента по умножению. А мы знаем, что ненулевые элементы обратимы.

Алгоритм поиска обратного вычета

- ullet Пусть $a \in \mathbb{Z}$, $m \in \mathbb{N}$, причем (a,m) = 1. Как найти обратный вычет a^{-1} ?
- ullet Пусть r остаток от деления a на m. Тогда $0 \le r < m$.

a = km + r

Пусть у нас есть кольцо по модулю 26. Тогда ПрСВ: 1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25.

Обратный вычет к 1 – это 1, 3 – это 9, 5 – это 21 и тд

m = 26

- ullet Если r=0, то (a,m)>1 и обратного вычета не существует.
- ullet Если r > 0, то с помощью алгоритма Евклида ищем d = (r, m) = (a, m).

$$55 = 2*26 + 3$$
, $d = (3, 26) = 1$

1 = 55*x + 26y, x=9, y=-19 (как частный случай решения)

 $55 * 9 \equiv 1 (mod \ 26)$ (х это и есть вычет)

- Если d > 1, то обратного вычета не существует.
- ullet Если d=1, то при помощи (выполненного ранее) алгоритма Евклида ищем линейное представление НОД: 1=ax+my.
- ullet Тогда $ax\equiv 1\pmod m$, а значит, $(\overline{a})^{-1}=\overline{x}$ в \mathbb{Z}_m .

Линейное сравнение с одним неизвестным

Алгебра. Глава 2. Целые числа

Д.В.Карпов

ullet Пусть $a,b\in\mathbb{Z}$, $m\in\mathbb{N}$. Нужно решить (относительно x) сравнение

$$ax \equiv b \pmod{m}$$
. (*)

- \bullet Пусть d=(a,m). Если $b \not \mid d$, то очевидно, (*) решений не имеет.
- ullet Если $b \ \dot{} \ d$, то пусть a = a'd, b = b'd, m = m'd. Тогда

$$(*) \iff ax-b \ \vdots \ m \iff a'x-b' \ \vdots \ m' \iff a'x \equiv b' \pmod{m'}.$$

- ullet Так как (a',m')=1, существует обратный вычет $(\overline{a'})^{-1}$ в $\mathbb{Z}_{m'}$.
- Пусть $s \in (\overline{a'})^{-1}$. Тогда $x \equiv b's \pmod{m'}$ решение сравнения (**), а значит, и исходного сравнения (*).

$$5x \equiv 15 \pmod{10} \qquad 6x \equiv 7 \pmod{2}$$

$$d=(5,10)=5$$
 $d=(6,2)=2$, 7 на 2 не делится, ежу понятно, что решений нет

Дальше сокращаем на d:

$$x \equiv 3 \pmod{2}$$

(1,2) = 1, существует обратный вычет для 1 в Z по m', то есть по 2. Это 1 в нашем случае. Тогда $x\equiv 3*1 (mod\ 2)$ — наше решение.

Алгоритмы поиска решения для КТО

- ullet Пусть m_1, \dots, m_k попарно взаимно простые натуральные числа, $m = m_1 \dots m_k, \ a_1, \dots, a_k \in \mathbb{Z}$.
- ullet Мы ищем такое a, что $a \equiv_{m_1} a_1, \ldots, a \equiv_{m_k} a_k$ (*).
- Будет использоваться алгоритм поиска обратного вычета, описанный выше.

Алгоритм 1.

ullet Пусть $m_i' = rac{m_1 \dots m_k}{m_i}$. Тогда $(m_i', m_i) = 1$. $b_i \in \{0, 1, \dots, m_i - 1\}$ — такое число, что $b_i \cdot m_i' \equiv 1 \pmod{m_i}$ (мы найдем b_i с помощью алгоритма поиска обратного вычета).

Утверждение

$$a = a_1b_1m_1' + a_2b_2m_2' + \cdots + a_kb_km_k'$$
 — решение (*).

Доказательство. Так как $m_j' \ \vdots \ m_i$ при всех $j \neq i$, для любого $i \in \{1, \dots, k\}$

$$a \equiv a_i b_i m_i' \equiv a_i \pmod{m_i}$$
.

- Как сказано выше, все решения системы (*) это в точности числа, сравнимые с a по модулю m.
- ullet Поделив a на m с остатком, мы найдем решение системы среди чисел $0,1,\ldots,m-1$.

Алгоритм 2

• Индукцией по s найдем x_s , удовлетворяющее первым s сравнениям:

$$x_s \equiv_{m_1} a_1, \ldots, x_s \equiv_{m_s} a_s.$$

ullet База s=1 очевидна: подойдет $x_1=a_1$.

Переход
$$s \to s+1$$
. • Пусть $n_s = m_1 \dots m_s$.

Будем искать решение в виде $x_{s+1} = x_s + c_s n_s$.

- ullet Тогда $x_{s+1}-x_s \ \vdots \ m_j$ для всех $j \in \{1,\dots,s\}$, поэтому, x_{s+1} удовлетворяет первым s сравнениям.
- ullet Подберем c_s так, чтобы $x_{s+1} \equiv a_{s+1} \pmod{m_{s+1}}$:

$$x_s + c_s n_s \equiv a_{s+1} \pmod{m_{s+1}} \iff c_s n_s \equiv a_{s+1} - x_s \pmod{m_{s+1}} \iff c_s \equiv (a_{s+1} - x_s) \cdot (n_s)^{-1} \pmod{m_{s+1}}.$$

- Так как $(n_s, m_{s+1}) = 1$, обратный вычет $(n_s)^{-1}$ существует и может быть найден с помощью описанного выше алгоритма.
- ullet Второй алгоритм решения КТО на первый взгляд сложнее, чем первый, но требует применения k-1 алгоритмов поиска обратного вычета (а не k): мы не ищем обратный вычет по модулю m_1 .
- ullet Поэтому, целесообразно нумеровать модули так, чтобы m_1 оказался самым большим.

Функция Мёбиуса

Алгебра. Гла 2. Целые чис.

Д.В. Карпо

Определение

Функция Мёбиуса $\mu(n):=$ $\begin{cases} 1, & \text{если } n=1, \\ (-1)^k, & \text{если } n=p_1\dots p_k - \text{произведение различных простых чисел,} \\ 0, & \text{если } n$ делится на квадрат простого числа.

Лемма 8

Пусть
$$m,d\in\mathbb{N}$$
, $m\in d$. Тогда $\sum\limits_{d\mid n\mid m}\mu(\frac{m}{n})=\left\{egin{array}{ll} 1,& m=d,\ 0,& m>d. \end{array}
ight.$

(суммирование ведется по всем п, кратным d и делящим т).

Доказательство. ullet Пусть $k:=rac{m}{d}=p_1^{t_1}\dots p_r^{t_r}$ — каноническое разложение. Тогда

$$\sum_{d \mid n \mid m} \mu(\frac{m}{n}) = \sum_{s \mid p_{1} \dots p_{r}} \mu(s) = \sum_{\ell=0}^{r} C_{r}^{\ell} (-1)^{\ell} = (1-1)^{r}$$

(так как ненулевое значение μ достигается только на произведениях различных простых).

ullet Наша сумма равна 0 во всех случаях, кроме r=0 (а это в точности $k=1\iff m=d$). В последнем случае сумма равна 1.

Формула обращения Мёбиуса. Аддитивный вариант

Теорема 20

Пусть
$$f,g:\mathbb{N} o$$
, причем $f(m)=\sum\limits_{d\mid m}g(d)$. Тогда $g(m)=\sum\limits_{n\mid m}\mu(\frac{m}{n})f(n).$

Доказательство.

$$\sum_{n \mid m} \mu(\frac{m}{n}) f(n) = \sum_{n \mid m} \mu(\frac{m}{n}) \cdot \sum_{d \mid n} g(d) =$$

$$\sum_{d \mid m} \left(g(d) \cdot \sum_{d \mid n \mid m} \mu(\frac{m}{n}) \right) = g(m)$$

по Лемме 8.

Функция Эйлера через формулу обращения Мёбиуса

Теорема 21

Пусть $n=p_1^{k_1}\dots p_s^{k_s}$ — каноническое разложение числа n. Тогда $\varphi(n)=n(1-\frac{1}{p_1})\dots(1-\frac{1}{p_s}).$

Доказательство. ullet По Теореме 17, $\sum_{d\in\mathbb{N},\;d\mid m} \varphi(d)=m.$

• По Формуле обращения Мёбиуса,

$$\varphi(n) = \sum_{d \in \mathbb{N}, d \mid n} \mu(d) \cdot \frac{n}{d}.$$

ullet Напомним, что при $d=p_{i_1}\dots p_{i_t}$ мы имеем $\mu(d)=(-1)^t$ (здесь i_1,\dots,i_t — различные индексы), $\mu(1)=1$, а в остальных случаях $\mu(d)=0$. Поэтому,

$$\varphi(n) = n - \sum_{1 \le i \le s} \frac{n}{p_i} + \sum_{1 \le i_1 < i_2 \le s} \frac{n}{p_{i_1} p_{i_2}} - \sum_{1 \le i_1 < i_2 < i_3 \le s} \frac{n}{p_{i_1} p_{i_2} p_{i_3}} + \cdots = n \left(1 - \sum_{1 \le i \le s} \frac{1}{p_i} + \sum_{1 \le i_1 < i_2 \le s} \frac{1}{p_{i_1} p_{i_2}} - \sum_{1 \le i_1 < i_2 < i_3 \le s} \frac{1}{p_{i_1} p_{i_2} p_{i_3}} + \cdots \right) = n \left(1 - \frac{1}{p_1} \right) \left(1 - \frac{1}{p_2} \right) \dots \left(1 - \frac{1}{p_s} \right). \quad \Box$$

Формула обращения Мёбиуса. Мультипликативный вариант

Теорема 22

Пусть
$$K-$$
 поле, $f,g:\mathbb{N}\to K\setminus\{0\}$, причем $f(m)=\prod\limits_{d\mid m}g(d).$ Тогда $g(m)=\prod\limits_{n\mid m}f(n)^{\mu(\frac{m}{n})}.$

Доказательство.

$$\prod_{n \mid m} f(n)^{\mu(\frac{m}{n})} = \prod_{n \mid m} \left(\prod_{d \mid n} g(d) \right)^{\mu(\frac{m}{n})} = \prod_{d \mid m} g(d)^{\frac{\sum_{d \mid n \mid m} \mu(\frac{m}{n})}{m}} = g(m)$$

по Лемме 8.

Сумма мультипликативной функции по делителям числа

Теорема 23

Пусть $f: \mathbb{N} \to -$ мультипликативная функция, $g(n) = \sum\limits_{d \mid n} f(d)$. Тогда g — мультипликативная функция.

Доказательство. ullet Пусть $a,b\in\mathbb{N}$, (a,b)=1.

- ullet $a=p_1^{k_1}\dots p_s^{k_s}$ и $b=q_1^{\ell_1}\dots q_t^{\ell_t}$ канонические разложения.
- ullet Так как (a,b)=1, все эти простые различны и $ab=p_1^{k_1}\dots p_s^{k_s}q_1^{\ell_1}\dots q_t^{\ell_t}$ каноническое разложение.
- ullet По Теореме 8, $d \mid ab \iff d = p_1^{k_1'} \dots p_s^{k_s'} q_1^{\ell_1'} \dots q_t^{\ell_t'}$, где $0 \leq k_i' \leq k_i$ для всех $i \in \{1,\dots,s\}$ и $0 \leq \ell_j' \leq \ell_j$ для всех $j \in \{1,\dots,t\}$.
- ullet Следовательно, $d=d_ad_b$, где $d_a\,|\,a$ и $d_b\,|\,b$, причем $(d_a,d_b)=1$ и такое представление единственно:

$$d_a=p_1^{k_1'}\dots p_s^{k_s'}$$
 u $d_b=q_1^{\ell_1'}\dots q_t^{\ell_t'}$.

• Таким образом,

$$g(ab) = \sum_{d \mid ab} f(d) = \sum_{d_a \mid a} \sum_{d_b \mid b} f(d_a d_b) = \sum_{d_a \mid a} \sum_{d_b \mid b} f(d_a) f(d_b) =$$

$$\left(\sum_{d_a \mid a} f(d_a)\right) \left(\sum_{d_b \mid b} f(d_b)\right) = g(a)g(b).$$