

Curtis-Straus LLC, a wholly owned subsidiary of BV CPS

Report No EK0244-1

Client Keurig Inc.

Address 55 Walkers Brook Drive

Reading, MA 01867

Phone 781-205-7221

Items tested B81

FCC ID YMSK5E3U8R7I4G481

FRN 0019667195

Equipment Type Part 15.247 Digital Transmission Systems

Equipment Code DTS

FCC/IC Rule Parts 47 CFR 15.247

Test Dates | May 17, 2010 & July 16 and 21, 2010

Prepared by

Matthew Burman - Test Engineer

Authorized by

Mairaj Hussain - EMC Supervisor

Issue Date

August 5, 2010

Conditions of Issue

This Test Report is issued subject to the conditions stated in the 'Conditions of Testing' section on page 28 of this report.

Curtis-Straus LLC is accredited by the American Association for Laboratory Accreditation for the specific scope of accreditation under Certificate Number 1627-01. This report may contain data which is not covered by the A2LA accreditation.

Contents

Contents	2
Summary	3
Test Methodology	3
Product Tested - Configuration Documentation	4
Statement of Conformity	
Modifications Required for Compliance	
Test Results	
Bandwidth	7
Peak Power	10
Band Edge Measurements	
Duty Cycle Correction Calculation	
Radiated Spurious Emissions	
Conducted Spurious Emissions	
Power Spectral Density	20
AC Line Conducted Emissions	
Occupied Bandwidth	
Measurement Uncertainty	
Product Documentation	
Conditions Of Testing	

Form Final Report REV 7-20-07 (DW)

Summary

This test report supports an application for certification of a transmitter operating pursuant to 47 CFR 15.247. The product is the B81.

We found that the product met the above requirements with modification (see *Modifications* Required for Compliance section on page 6). Ranganarayan Narasimhan from Keurig Inc. was present during the testing. The test sample was received in good condition.

Test Methodology

Radiated emission and AC Line conducted testing was performed according to the procedures specified in ANSI C63.10 (2009) and C63.4 (2009). Radiated Emissions were maximized by rotating the device around its axes as well as varying the test antenna's height and polarity. The device antenna cannot be maximized separately.

Radiated emissions about the digital circuitry within the coffee brewer were not tested due to exemption. Section 15.103(d), a digital device utilized exclusively as an appliance.

Conducted emission at the antenna port was performed, as required by rule section.

The EUT receives backscattered RFID information at the same time that it transmits the data, it does not contain a dedicated receive mode.

The EUT operating voltage is 120Vac 60Hz.

Low operating channel frequency = 910MHz

Mid operating channel frequency = 915MHz

High operating channel frequency = 922MHz

The following bandwidths were used during radiated spurious and line conducted emissions.

Frequency	RBW	VBW
0.15-30MHz	9kHz	30kHz
30-1000MHz	120kHz	1MHz
1-25GHz	1MHz	3MHz

Release Control Record

Issue No. Reason for change Date Issued

1 Original Release August 5, 2010

Product Tested - Configuration Documentation

			EUT Con	figuratio	n				
K0244									
Keurig Inc.									
Alexander No	<u>, </u>								
	MN			PN			SN		
	B81						Sample 1		
Coffee Brewe	er								
902-928MHz									
	MN						SN		
		No.					Max	In/Out	
Port Type	No. of ports	Populated	Cable Type	Shielded	Ferrites	Length	Length	NEBS Type	Unpopulated Reason
AC	1	1	3-wire AC	no	none	1.5m	1.5m	indoor	·
ption:									
2-928MHz.									
	Keurig Inc. 55 Walkers E Reading, MA Alexander Re Alexander Re Coffee Brewe 902-928MHz Port Type AC ption:	Keurig Inc. 55 Walkers Brook Drive Reading, MA 01867 Alexander Rojas Alexander Rojas MN B81 Coffee Brewer 902-928MHz MN Port Type No. of ports AC 1 ption:	Keurig Inc. 55 Walkers Brook Drive Reading, MA 01867 Alexander Rojas Alexander Rojas MN B81 Coffee Brewer 902-928MHz MN No. Port Type No. of ports Populated AC 1 1 ption:	Keurig Inc. 55 Walkers Brook Drive Reading, MA 01867 Alexander Rojas Alexander Rojas MN B81 Coffee Brewer 902-928MHz MN No. Port Type No. of ports Populated Cable Type AC 1 1 3-wire AC ption:	Keurig Inc. 55 Walkers Brook Drive Reading, MA 01867 Alexander Rojas Alexander Rojas MN PN B81 Coffee Brewer 902-928MHz MN MN Port Type No. of ports Populated Cable Type Shielded AC 1 1 3-wire AC no	Keurig Inc. 55 Walkers Brook Drive Reading, MA 01867 Alexander Rojas Alexander Rojas MN PN B81 Coffee Brewer 902-928MHz MN MN Port Type No. of ports Populated Cable Type Shielded Ferrites AC 1 1 3-wire AC no none ption:	Keurig Inc. 55 Walkers Brook Drive Reading, MA 01867 Alexander Rojas Alexander Rojas MN PN B81 Coffee Brewer 902-928MHz MN MN Port Type No. of ports Populated Cable Type Shielded Ferrites Length AC 1 1 3-wire AC no none 1.5m	Max	No. Port Type No. of ports No. Poulated Cable Type AC 1 1 3-wire AC No. No.

Statement of Conformity

The B81 has been found to conform to the following parts of 47 CFR and as detailed below:

Part 15	Comments
15.15(b)	There are no controls accessible to the user that
	varies the output power.
15.19	The label is shown in the label exhibit.
15.21	Information to the user is shown in the instruction
	manual exhibit.
15.27	Modification was required for compliance, see
	modifications required for compliance section.
15.31	The EUT was tested in accordance with the
	measurement standards in this section.
15.33	Frequency range was investigated according to
	this section, unless noted in specific rule section
	under which the equipment operates.
15.35	The EUT emissions were measured using the
	measurement detector and bandwidth specified in
	this section, unless noted in specific rule section
45.000	under which the equipment operates.
15.203	The antenna for this device is hardwired to the
45.005	PCB.
15.205	The fundamental is not in a Restricted band and
15.209	the spurious and harmonic emissions in the
	Restricted bands comply with the general emission
	limits of 15.209.
15.207	EUT meets the AC Line conducted emissions
	requirements of 15.207.
15.247	The unit complies with the requirements of 15.247

Modifications Required for Compliance

To pass spurious emissions, the length of the coaxial cable was shortened and soldered it to the component side of board rather than the underside. Prior to this modification the product was failing.

Spurious	Emissio	ns Tabl	le												
Date:	16-Jul-10			Company:	Keurig									Work Order:	K0244
Engineer:	Matthew Burm	an		EUT Desc:	B81								EUT Operatir	ng Voltage/Frequency:	120Vac 60Hz
Temp:	24 7°C			Humidity:	48%				Pressure:	1014mBar			·		
		Freque	ncv Range:									-	Measurement Distance: 3	3 m	
Notes:	Spurious Emis	sions - Harm	onics of the I	Fundamenta	al	Duty Cycle	Correctio	n Factor of 20dB							
	With new comp		.011100 01 1110 1	· unuumumum		Daily Oyolo	00110000	4000 01 2005							
Antenna		Peak	Average	Preamp	Antenna	Filter	Cable	Adjusted	Adjusted	FCC Cla	ss B High Frequen	cy - Peak	FCC Clas	s B High Frequency -	Average
Polarization	Frequency	Reading	Reading	Factor	Factor	Factor	Factor	Peak Reading	Avg Reading	Limit	Margin	Result	Limit	Margin	Result
(H / V)	(MHz)	(dBµV)	(dBµV)	(dB)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(Pass/Fail)	(dBµV/m)	(dB)	(Pass/Fail)
v	2718.28	65.15	45.2	22.1	29.1	0.3	3.3	75.8	55.8	74.0	1.8	Fail	54.0	1.8	Fail
cable	2718.28	66.0	46.0	22.1	29.1	0.3	3.3	76.6	56.6	74.0	2.6	Fail	54.0	2.6	Fail
d fundamental fre	2736.7	67.0	47.0	22.1	29.1	0.3	3.3	77.6	57.6	74.0	3.6	Fail	54.0	3.6	Fail
added to front of	2736.7	66.44	46.4	22.1	29.1	0.3									Fail
temoved foil shiel	2736.7	66.27	46.3	22.1	29.1	0.3 3.3 76.9 56.9 74.0 2.9 Fail 54.0 2.9								Fail	
th strip of copper	2736.7	68.0	48.0	22.1	29.1	0.3	3.3	78.6	58.6	74.0	4.6	Fail	54.0	4.6	Fail
foil in middle	2736.7	66.0	46.0	22.1	29.1	0.3	3.3	76.6	56.6	74.0	2.6	Fail	54.0	2.6	Fail
foil on top portion	2736.7	65.5	45.5	22.1	29.1	0.3	3.3	76.1	56.1	74.0	2.1	Fail	54.0	2.1	Fail
	2736.7	64.4	44.4	22.1	29.1	0.3	3.3	75.0	55.0	74.0	1.0	Fail	54.0	1.0	Fail
	2736.7	63.5	43.5	22.1	29.1	0.3	3.3	74.1	54.1	74.0	0.1	Fail	54.0	0.1	Fail
Cable araingemer	2736.7	66.4	46.4	22.1	29.1	0.3	3.3	77.0	57.0	74.0	3.0	Fail	54.0	3.0	Fail
removed kcup	2736.7	65.11	45.1	22.1	29.1	0.3	3.3	75.7	55.7	74.0	1.7	Fail	54.0	1.7	Fail
v	3652.75	51.0	31.0	20.9	31.6	0.3	4.0	66.0	46.0	74.0	-8.0	Pass	54.0	-8.0	Pass
v	4529.85	49.3	29.3	20.1	32.4	0.4	4.5	66.5	46.5	74.0	-7.5	Pass	54.0	-7.5	Pass
v	5441.45	41.0	21.0	19.6	34.2	0.4 5.0 61.0 41.0 74.0 -13.0 Pass 54.0 -13.0 Pass								Pass	
Tabl	e Result:		Pass	by		-4.6	dB						Worst Freq:	2718.28	MHz
Test Site: Analyzer:	1DCC-OATS-3 Brown	BM-I			EMIR-HIGI Asset #151						High Pass Filter: Antenna:	Asset #1310 Yellow Horn		Cable 3: Preselector:	

Test Results

Bandwidth

LIMIT

The minimum 6 dB bandwidth shall be at least 500 kHz. [15.247(a) (2)]

MEASUREMENTS / RESULTS

Measured 6dB bandwidth =

Data Table

Date:	08-Jul-10		Company: K	eurig						Work Order:	: K0244	
Engineer:	Matthew Burma	an	EUT Desc: B	81					EUT Opera	ting Voltage/Frequency:	: 120Vac 60Hz	
Temp:	26°C		Humidity: 2	5%	Pr€	essure: 1013mBar	ar					
	Freque	ency Range	: 902-928MHz			•		M	easurement Distance:	Conductive		
	6dB bandwidth RBW = 100kH:		00kHz									
Antenna		6dB								FCC 15.247 (a)(2)		
Polarization	Frequency	Bandwidth				Limit	Margin	Result	Limit	Margin	Result	
(H / V)	(MHz)	(MHz)				(dBµV/m)	(dB)	(Pass/Fail)	(MHz)	(MHz)	(Pass/Fail)	
low channel	910.0	5.8120							0.5	5.3	Pass	
mid channel	915.0	4.5900							0.5	4.1	Pass	
high channel	920.0	6.1450							0.5	5.6	Pass	
Tabi	le Result:	Pass										
Test Site:	EMC4		Cable 1: E	MIR-HIGH-21								

Rev: 7-Jul-2010

Spectrum Analyzers / Receivers / Preselectors	Range	MN	Mfr	SN		Cat	Calibration Due
Rental SA #5	9kHz-26.5 GHz	E4407B	Agilent	MY44220066		I	11-Feb-2011
Preamps /Couplers Attenuators / Filters HF 20dB 50W Attenuator	Range 0 009-18 GHz	MN PF 7019-20	Mfr Pastornack	SN	Asset	Cat	Calibration Due 8-May-2011

All equipment is calibrated using standards traceable to NIST or other nationally recognized calibration standard.

PLOT Low Channel

Mid Channel

Transmit Freq Error 79.362 kHz x dB Bandwidth 4.590 MHz

C:temp.gif file saved

High Channel

page

Peak Power

LIMIT

Conducted Output Power 1 Watt [15.247(b) (3)]

MEASUREMENTS / RESULTS

DATA TABLE

Date:	08-Jul-10		Company:	Keurig							Work Order	: K0244		
Engineer:	Matthew Burma	an, TT	EUT Desc:	B81						EUT Operatin	g Voltage/Frequency	: 120Vac 60Hz		
Temp:	24.8°C		Humidity:	44%		Pressure:	1014mBar							
	Freque	ncy Range:	902-928MH	łz					N	leasurement Distance: C	onductive			
	POP Option 2, RBW = 1MHz,		lz							1 Watt = 30dBm				
Antenna	Frequency	Positing	Filter		Cable	Adjusted				FCC 15.247 (b)(3)				
Polarization	Frequency	Reading	Factor		Factor	Reading	Limit	Margin	Result	Limit	Margin	Result		
(H / V)	(MHz)	(dBm)	(dB)		(dB)	(dBm)	(dBµV/m)	(dB)	(Pass/Fail)	(dBm)	(dB)	(Pass/Fail)		
low channel	910.01	7.7	19.4		1.1	28.2				30.0	-1.8	Pass		
mid channel	913.2	3.1	19.4		1.1	23.6				30.0	-6.4	Pass		
high channel	922.3	4.3	19.4		1.1	24.8				30.0	-5.2	Pass		
Tabl	le Result:	Pass	by	-1.8	dB					Worst Freq:	910.01	MHz		
Test Site:	EMC4 Asset #1491		Cable 1: Attenuator:	EMIR-HIG										

Rev: 7-Jul-2010

Spectrum Analyzers / Receivers /Preselectors Rental SA #5	Range 9kHz-26.5 GHz	MN E4407B	Mfr Agilent	SN MY44220066	Asset 1491	Cat I	Calibration Due 11-Feb-2011
Preamps /Couplers Attenuators / Filters	Range	MN	Mfr	SN	Asset	Cat	Calibration Due
HF 20dB 50W Attenuator	0.009-18 GHz	PE 7019-20	Pasternack	1	791	П	8-May-2011

All equipment is calibrated using standards traceable to NIST or other nationally recognized calibration standard.

PLOTS Sample Plot

Band Edge Measurements

LIMITS

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that...the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval,...the attenuation required under this paragraph shall be 30dB..

[15.247(d)]

MEASUREMENTS / RESULTS

Rev: 7-Jul-2010							
Spectrum Analyzers / Receivers / Preselectors	Range	MN	Mfr	SN	Asset	Cat	Calibration Due
Rental SA #5	9kHz-26.5 GHz	E4407B	Agilent	MY44220066	1491	I	11-Feb-2011
Preamps /Couplers Attenuators / Filters	Range	MN	Mfr	SN	Asset	Cat	Calibration Due
HF 20dB 50W Attenuator	0.009-18 GHz	PE 7019-20	Pasternack	1	791	Ш	8-May-2011

All equipment is calibrated using standards traceable to NIST or other nationally recognized calibration standard.

PLOTS

Low Channel

ACCHIEDITED ACCHIED

High Channel

Duty Cycle Correction Calculation

MEASUREMENTS / CALCULATIONS

PLOTS

100ms window

Duration of a single transmitting pulse

Each transmission lasts for 157.5µs, which is 0.1575ms

In 100ms, 47 transmissions occur.

 $0.1575 \times 47 = 7.4205 ms$

 $DCCF = 20 \times \log (7.4205/100)$

DCCF = -22.61dB

A maximum duty cycle correction factor of 20dB was applied to average readings.

Rev: 7-Jul-2010							
Spectrum Analyzers / Receivers / Preselectors	Range	MN	Mfr	SN	Asset	Cat	Calibration Due
Rental SA #5	9kHz-26.5 GHz	E4407B	Agilent	MY44220066	1491	I	11-Feb-2011
Preamps /Couplers Attenuators / Filters HF 20dB 50W Attenuator	Range 0.009-18 GHz	MN PE 7019-20	Mfr Pasternack	SN 1	Asset 791	Cat	Calibration Due 8-May-2011
TII ZOUD JOW Allendaloi	0.009-10 GHZ	FL /019-20	rasiciliack	ļ.	191	111	0-11/1ay-2011

All equipment is calibrated using standards traceable to NIST or other nationally recognized calibration standard.

Radiated Spurious Emissions

LIMITS

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a). [15.247(d)]

MEASUREMENTS / RESULTS

Date:	17-May-10		Company:	Keurig							Work Order:	K0244
Engineer:	Arik Zwirner		EUT Desc:	B81						EUT Operating	Voltage/Frequency:	120V/60Hz
Temp:	26°C		Humidity:	21%		Pressure:	1012mBar					
	Freque	ency Range:	30-1000MH	Ηz					Me	easurement Distance: 3 r	n	
	902-928MHz e RBW = 120kH:			and	quasi pea	k readings						
Antenna			Preamp	Antenna	a Cable Adjusted		CISPR Class B FCC					
Polarization	Frequency	Reading	Factor	Factor	Factor	Reading	Limit	Margin	Result	Limit	Margin	Result
(H / V)	(MHz)	(dBµV)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(Pass/Fail)	(dBµV/m)	(dB)	(Pass/Fail)
V	80.2	40.9	22.6	8.2	0.5	27.0	40.5	-13.5	Pass	40.0	-13.0	Pass
V	90.4	46.3	22.6	8.0	0.6	32.3	40.5	-8.2	Pass	43.5	-11.2	Pass
V	94.2	38.1	22.6	8.6	0.6	24.7	40.5	-15.8	Pass	43.5	-18.8	Pass
V	155.0	37.8	22.6	12.8	0.7	28.7	40.5	-11.8	Pass	43.5	-14.8	Pass
V	189.8	29.6	22.6	11.8	0.7	19.5	40.5	-21.0	Pass	43.5	-24.0	Pass
V	206.0	29.1	22.6	11.7	0.8	19.0	40.5	-21.5	Pass	43.5	-24.5	Pass
V	930.0	28.5	22.0	23.1	1.9	31.5	47.5	-16.0	Pass	46.0	-14.5	Pass
Tabi	le Result:	Pass	by	-8.2	dB					Worst Freq:	90.4	MHz
Test Site:	EMI Chamber	2	Cable 1:	Asset #150	8			Cable 2:	Asset #1506		Cable 3:	
Analumon	Asset #1327		Preamp:	Blue			Antenna: Red-Black Preselector:					

Rev: 17-May-2010 Spectrum Analyzers / Receivers /Preselectors SA EMI Chamber (1327)	Range 9kHz-13.2 GHz	MN E4405B	Mfr Agilent	SN MY45103416	Asset 1327	Cat I	Calibration Due 11-Mar-2011
Radiated Emissions Sites EMI Chamber 2	FCC Code 719150	IC Code 2762A-7	VCCI Code R-3033, G-107			Cat I	Calibration Due 15-Feb-2011
Preamps /Couplers Attenuators / Filters Blue	Range 0.009-2000MHz	MN ZFL-1000-LN	Mfr CS	SN N/A	Asset 759	Cat II	Calibration Due 6-Apr-2011
Antennas Red-Black Bilog	Range 30-2000MHz	MN JB1	Mfr Sunol	SN A091604-2	Asset 1106	Cat I	Calibration Due 28-Oct-2010
Meteorological Meters Temp./Humidity/Atm. Pressure Gauge CHAMBER2 Thermohygrometer		MN 7400 Perception II 35519-044	Mfr Davis Control Company	SN N/A 72457639	Asset 965 1347	Cat 	Calibration Due 6-Apr-2011 18-Aug-2011

All equipment is calibrated using standards traceable to NIST or other nationally recognized calibration standard.

Radiated	Emissio	ns Tabl	е											
Date:	21-Jul-10			Company:	Keurig								Work Order:	K0244
Engineer:	Nate Sanford			EUT Desc:	B81							EUT Operation	ng Voltage/Frequency:	120VAC/60Hz
Temp:	25.9°C			Humidity:	37%							•		
		Freque	ency Range:	1-10GHz							М	easurement Distance: 3	3 m	
Notes:	Radio cable le	ngth shorten	ed to proper	length and s	oldered to o	opposite s	ide of board		EUT Max Freq: 914MHz					
Antenna		Peak	Average	Preamp	Antenna	Cable	Adjusted	Adjusted	FCC Cla	ss B High Frequer	ncy - Peak	FCC Clas	ss B High Frequency -	Average
Polarization	Frequency	Reading	Reading	Factor	Factor	Factor	Peak Reading	Avg Reading	Limit	Margin	Result	Limit	Margin	Result
(H / V)	(MHz)	(dBµV)	(dBµV)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(Pass/Fail)	(dBµV/m)	(dB)	(Pass/Fail)
Н	2742.0	61.2	41.2	22.3	29.2	3.2	71.3	51.3	74.0	-2.7	Pass	54.0	-2.7	Pass
V	2748.0	57.7	37.7	22.2	29.2	3.2	67.9	47.9	74.0	-6.1	Pass	54.0	-6.1	Pass
н	3658.0	55.6	35.6	21.5	32.1	3.6	69.8	49.8	74.0	-4.2	Pass	54.0	-4.2	Pass
V	3671.0	50.9	30.9	21.5	32.2	3.7	65.3	45.3	74.0	-8.7	Pass	54.0	-8.7	Pass
н	4572.0	50.0	30.0	20.8	32.8	4.4	66.4	46.4	74.0	-7.6	Pass	54.0	-7.6	Pass
V	4565.0	48.9	28.9	20.8	32.8	4.4	65.3	45.3	74.0	-8.7	Pass	54.0	-8.7	Pass
Н	7312.0	41.8	21.8	20.2	36.9	5.6	64.1	44.1	74.0	-9.9	Pass	54.0	-9.9	Pass
V	7306.0	38.9	18.9	20.2	36.9	5.6	61.2	41.2	74.0	-12.8	Pass	54.0	-12.8	Pass
Tab	le Result:		Pass	by	-2.7	dB						Worst Freq:	2742.0	MHz
	EMI Chamber	1		Cable 1:	Asset #150	15				Cable 2:	Asset #1507		Cable 3:	
Analyzer:	Asset #1327			Preamp:	Brown					Antenna:	Black Horn		Preselector:	

Rev: 27	7-Jul-2010							
Spe	ectrum Analyzers / Receivers / Preselectors	Range	MN	Mfr	SN	Asset	Cat	Calibration Due
·	SA EMI Chamber (1327)	9kHz-13.2 GHz	E4405B	Agilent	MY45103416	1327	I	11-Mar-2011
	Radiated Emissions Sites	FCC Code	IC Code	VCCI Code			Cat	Calibration Due
	EMI Chamber 1	719150	2762A-6	R-3032, G-106			I	15-Feb-2011
	Preamps /Couplers Attenuators / Filters	Range	MN	Mfr	SN	Asset	Cat	Calibration Due
	Brown	1-18GHz	CS	CS	N/A	1523	II	17-Jul-2010
	Antennas	Range	MN	Mfr	SN	Asset	Cat	Calibration Due
	Black Horn	1-18GHz	3115	EMCO	9703-5148	56	I	6-Jul-2011
	Meteorological Meters		MN	Mfr	SN	Asset	Cat	Calibration Due
	Temp./Humidity/Atm. Pressure Gauge		7400 Perception II	Davis	N/A	965	- 1	6-Apr-2011
	CHAMBER1 Thermohygrometer		35519-044	Control Company	72457642	1345	Ш	18-Aug-2011

All equipment is calibrated using standards traceable to NIST or other nationally recognized calibration standard.

Conducted Spurious Emissions

LIMITS

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth that contains the highest level of desired power...
[15.247(d)]

MEASUREMENTS / RESULTS

Asset Cat Calibration Due Spectrum Analyzers / Receivers / Preselectors Range MN Mfr SN Rental SA #1 (Brown) 9kHz-26.5GHz E4407B Agilent SG44210511 1510 25-Mar-2011 **Radiated Emissions Sites** FCC Code IC Code **VCCI** Code Cat Calibration Due 1DCC-OATS-3M-I 7-Jul-2011 719150 2762A-8 R-3109 Ш

Preamps / Couplers Attenuators / FiltersRangeMNMfrSNAssetCatCalibration DueHF 20dB 50W Attenuator0.009-18 GHzPE 7019-20Pasternack1791II8-May-2011

All equipment is calibrated using standards traceable to NIST or other nationally recognized calibration standard.

Power Spectral Density

LIMIT

...the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band during any time interval of continuous transmission. [15.247(e)]

MEASUREMENTS / RESULTS

Data Tables

	08-Jul-10		Company:	Keurig							Work Order	: K0244
Engineer:	Matthew Burma	an, TT	EUT Desc:	B81						EUT Operating	y Voltage/Frequency	: 120Vac 60Hz
Temp:	24.8°C		Humidity:	46%		Pressure:	1014mBar					
	Freque	ncy Range	: 902-928MH	Hz					М	easurement Distance: Co	onductive	
Notes:	PSD Option 2											
Antenna			Filter		Cable	Adjusted			<u> </u>		FCC 15.247 (e)	
Polarization	Frequency	Reading	Factor		Factor	Reading	Limit	Margin	Result	Limit	Margin	Result
(H / V)	(MHz)	(dBm)	(dB)		(dB)	(dBm)	(dBµV/m)	(dB)	(Pass/Fail)	(dBm)	(dB)	(Pass/Fail)
low channel	910.0	-32.8	19.4		1.1	-12.3				8.0	-20.3	Pass
mid channel	913.4	-12.7	19.4		1.1	7.8				8.0	-0.2	Pass
	920.62275	-13.5	19.4		1.1	7.0				8.0	-1.0	Pass
igh channel	le Result:	Pass	by	-0.2	4D					Worst Freg:	913.4	MU

Rev	<i>,.</i> -	7 1	 l n	വ	ın	

Spectrum Analyzers / Receivers /Preselectors Rental SA #5	Range 9kHz-26.5 GHz	MN E4407B	Mfr Agilent	SN MY44220066	Asset 1491	Cat I	Calibration Due 11-Feb-2011
Preamps /Couplers Attenuators / Filters	Range	MN	Mfr	SN	Asset	Cat	Calibration Due
HF 20dB 50W Attenuator	0.009-18 GHz	PE 7019-20	Pasternack	1	791	Ш	8-May-2011

All equipment is calibrated using standards traceable to NIST or other nationally recognized calibration standard.

PLOTS

Low Channel

Mid Channel

ACCHEDITED ACCHEDITED

High Channel

AC Line Conducted Emissions LIMITS

Frequency of	Quasi-peak limit	Average limit
emission (MHz)	(dBµV)	(dBµV)
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

^{*}Decreases with the logarithm of the frequency.

[47 CFR 15.207(a)]

MEASUREMENTS / RESULTS

Temp:	Matthew Burm	an		Company: Keurig Inc. Work Order:							
	00.000	iaii	E	UT Desc:	B81	Test Site:				CEMI02	
Motoci	22.3°C			Humidity:	23%	Pressure				1001mBar	
Notes:	Noise Floor										
Measure	ment Device:	Asset #1494	1 LISN		EUT Operating Voltage/Frequency: 120Vac 60Hz						
Range:	0.15-30MHz				Spectrum Analyzer: Blue						
					Impedance	nce FCC/CISPR B FCC/CISPR B					
	Q.P. Re	adings	Ave. Re	eadings	Factor					Overall	
Frequency	QP1	QP2	AV1	AV2		qp Limit	qp Margin	AVE Limit	AVE Margin	Result	
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dBµV)	(dB)	(dBµV)	dB	(dBµV)	dB	(Pass/Fail	
0.15	13.5	14.8	13.5	14.8	20.1	66.0	-31.1	56.0	-21.1	Pass	
1.00	9.7	10.5	9.7	10.5	20.1	56.0	-25.4	46.0	-15.4	Pass	
5.00	6.1	6.8	6.1	6.8	20.1	56.0	-29.1	46.0	-19.1	Pass	
10.00	4.2	4.7	4.2	4.7	20.1	60.0	-35.3	50.0	-25.2	Pass	
	3.6	2.3	3.6	2.3	20.2	60.0	-36.3	50.0	-26.2	Pass	
15.00		5.1	2.7	5.1	20.3	60.0	-34.6	50.0	040	Pass	
	3.6									-26.2 -24.6	

Rev: 18-May-2010							
LISNs/Measurement Probes	Range	MN	Mfr	SN	Asset	Cat	Calibration Due
230VAC LISN Asset 1494	10kHz-50MHz	9252-50-R-24-BNC	Solar	84715	1494	I	13-Apr-2011
Spectrum Analyzers / Receivers / Preselectors	Range	MN	Mfr	SN	Asset	Cat	Calibration Due
Blue	9kHz-1.8GHz	8591E	Agilent	3223A00227	70	I	13-Jun-2010
Conducted Test Sites (Mains / Telco)	FCC Code		VCCI Code			Cat	Calibration Due
CEMI 2	719150		C-3361, T-1576			Ш	NA
Meteorological Meters		MN	Mfr	SN	Asset	Cat	Calibration Due
Temp./Humidity/Atm. Pressure Gauge		7400 Perception II	Davis	N/A	965	- 1	6-Apr-2011
CEMI2 Thermohygrometer		35519-044	Control Company	72436083	1336	II	18-Aug-2011

All equipment is calibrated using standards traceable to NIST or other nationally recognized calibration standard.

Occupied Bandwidth

REQUIREMENT

When an occupied bandwidth is no specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99% emission bandwidth, as calculated or measured. [RSS-GEN 4.6.1]

Low Channel

Transmit Freq Error -64.068 kHz x dB Bandwidth 7.711 MHz

C:temp.gif file saved

Rev: 7-Jul-2010							
Spectrum Analyzers / Receivers / Preselectors	Range	MN	Mfr	SN	Asset	Cat	Calibration Due
Rental SA #5	9kHz-26.5 GHz	E4407B	Agilent	MY44220066	1491	I	11-Feb-2011
Preamps /Couplers Attenuators / Filters	Range	MN	Mfr	SN	Asset	Cat	Calibration Due
HF 20dB 50W Attenuator	0.009-18 GHz	PE 7019-20	Pasternack	1	791	- II	8-May-2011

All equipment is calibrated using standards traceable to NIST or other nationally recognized calibration standard.

Mid Channel

Occupied Bandwidth 5.7610 MHz

Occ BW % Pwr 99.00 % x dB -26.00 dB

R L

Transmit Freq Error 263.941 kHz x dB Bandwidth 10.984 MHz

C:temp.gif file saved

High Channel

*** Agilent** 20:21:42 May 17, 2010

Occupied Bandwidth 5.7035 MHz

Occ BW % Pwr 99.00 % × dB -26.00 dB

Transmit Freq Error 2.288 MHz x dB Bandwidth 12.191 MHz

C:temp.gif file saved

Measurement Uncertainty

The listed uncertainties are the worst case uncertainty for the entire range of measurement. Please note that the uncertainty values are provided for informational purposes only and are not used in determining the PASS/FAIL results.

Measurement Radiated Emissions (30-1000MHz)	Expanded Uncertainty k=2	Maximum allowable uncertainty
NIST CISPR	5.6dB 4.6dB	N/A 5.2dB (Ucispr)
Radiated Emissions (1-26.5GHz)	4.6dB	N/A
Radiated Emissions (above 26.5GHz)	4.9dB	N/A
Magnetic Radiated Emissions	5.6dB	N/A
Conducted Emissions NIST	3.9dB	N/A
CISPR	3.6dB	3.6dB (Ucispr)
Telco Conducted Emissions (Current)	2.9dB	N/A
Telco Conducted Emissions (Voltage)	4.4dB	N/A
Electrostatic Discharge	11.5%	N/A
Radiated RF Immunity (Uniform Field)	1.6dB	N/A
Electrical Fast Transients	23.1%	N/A
Surge	23.1%	N/A
Conducted RF Immunity	3dB	N/A
Magnetic Immunity	12.8%	N/A
Dips and Interrupts	2.3V	N/A
Harmonics	3.5%	N/A
Flicker	3.5%	N/A
Radio frequency (@ 2.4GHz)	3.23 x 10 ⁻⁸	1 x 10 ⁻⁷
RF power, conducted	0.40dB	0.75dB
Maximum frequency deviation: Within 300Hz and 6kHz of audio frequency / Within 6kHz and 25kHz of audio frequency	3.4% 0.3dB	5% 3dB
Adjacent channel power	1.9dB	3dB
Conducted spurious emission of transmitter, valid up to 12.75GHz	2.39dB	3dB
Conducted emission of receivers	1.3dB	3dB
Radiated emission of transmitter, valid up to 26.5GHz	3.9dB	6dB
Radiated emission of transmitter, valid up to 80GHz	3.3dB	6dB
Radiated emission of receiver, valid up to 26.5GHz	3.9dB	6dB
Radiated emission of receiver, valid up to 80GHz	3.3dB	6dB
Humidity	2.37%	5%
Temperature	0.7°C	1.0°C
Time	4.1%	10%
RF Power Density, Conducted	0.4dB	3dB
DC and low frequency voltages	1.3%	3%
Voltage (AC, <10kHz)	1.3%	2%
Voltage (DC)	0.62%	1%
The above reflects a 95% confidence level		

Product Documentation

The following documentation has been provided by the client for inclusion in this report.

Conditions Of Testing

[Bureau Veritas Consumer Products Services, Inc., a Massachusetts corporation], and/or its affiliates (collectively, the "Company") will conduct, at the request of the Submitter ("Client"), the tests specified on the submitted Test Request Form or equivalent in accordance with, and subject to, the following terms and conditions (collectively, "Conditions"):

- 1. All orders for tests are subject to acceptance by the Company, and no order will constitute a binding commitment of the Company unless and until such order is accepted by it, as evidenced by the issuance of a written report ("Test Report") by the Company. The Test Report is issued solely by the Company, is intended for the exclusive use of Client and shall not be published, used for advertising purposes, copied or replicated for distribution to any other person or entity or otherwise publicly disclosed without the prior written consent of the Company. By submitting a request for services to the Company, Client consents to the disclosure to accreditation bodies of those records of Client relevant to the accreditation body's assessment of the Company's competence and compliance with relevant accreditation criteria. The Company shall not be liable for any loss or damage whatsoever resulting from the failure of the Company to provide its services within any time period for completion estimated by the Company. If Client anticipates using the Test Report in any legal proceeding, arbitration, dispute resolution forum or other proceeding, it shall so notify the Company prior to submitting the Test Report in such proceeding. The Company has no obligation to provide a fact or expert witness at such proceeding unless the Company agrees in advance to do so for a separate and additional fee.
- 2. The Test Report will set forth the findings of the Company solely with respect to the test samples identified therein. Unless specifically and expressly indicated in the Test Report, the results set forth in such Test Report are not intended to be indicative or representative of the quality or characteristics of the lot from which a test sample is taken, and Client shall not rely upon the Test Report as being so indicative or representative of the lot or of the tested product in general. The Test Report will reflect the findings of the Company at the time of testing only, and the Company shall have no obligation to update the Test Report after its issuance. The Test Report will set forth the results of the tests performed by the Company based upon the written information provided to the Company. The Test Report will be based solely on the samples and written information submitted to the Company by Client, and the Company shall not be obligated to conduct any independent investigation or inquiry with respect thereto.
- 3. The Company may, in its sole discretion, destroy samples which have been furnished to the Company for testing and which have not been destroyed in the course of testing. The Company may delegate the performance of all or a portion of the services contemplated hereunder to an affiliate, agent or subcontractor of the Company, and Client consents to such delegation.
- 4. These Conditions and the Test Report represent the entire understanding of the parties hereto with respect to the subject matter hereof and of the Test Report, and no modification, variance or extrapolation with respect thereto shall be permitted without the prior written consent of the Company.
- 5. The names, service marks, trademarks and copyrights of the Company and its affiliates, including the names "BUREAU VERITAS," "BUREAU VERITAS CONSUMER PRODUCTS SERVICES," "BVCPS", "MTL", "ACTS", "MTL-ACTS" and CURTIS-STRAUS (collectively, the "Marks") are and shall remain the sole property of the Company or its affiliates and shall not be used by Client except solely to the extent that Client obtains the prior written approval of the Company and then only in the manner prescribed by the Company. Client shall not contest the validity of the Marks or take any action that might impair the value or goodwill associated with the Marks or the image or reputation of the Company or its affiliates.
- 6. Payment in full shall be due 30 days after the date of invoice. Interest shall be due on overdue amounts from the due date until paid at an interest rate of 1.5% per month or, if less, the maximum rate permitted by law. The Company reserves the right, at any time and from time to time, to revoke any credit extended to Client. Client shall reimburse the Company for any costs it incurs in collecting past due amounts, including court costs and fees and expenses of attorneys and collection agencies. The Test Report may not be used or relied upon by Client if and for so long as Client fails to pay when due any invoice issued by the Company or any affiliate of it to Client or any affiliate or subsidiary of Client together with interest and penalties, if any, accrued thereon.
- 7. The Company disclaims any and all responsibility or liability arising out of or in connection with e-mail transmissions of such information.
- 8. Client understands and agrees that the Company is neither an insurer nor a guarantor, that the Company does not take the place of Client or any designer, manufacturer, agent, buyer, distributor or transportation or shipping company, and that the Company disclaims all liability in such capacities. Client further understands that if it seeks assurance against loss or damage, it should obtain appropriate insurance.
- 9. Client agrees that the Company, by providing the services, does not take the place of Client nor any third party, nor does the Company release them from any of their obligations, nor does the Company otherwise assume, abridge, abrogate or undertake to discharge any duty of any third party to Client or any duty of Client or any third party to any other third party, and Client will not release any third party from its obligations and duties with respect to the tested goods.
- 10. Client shall, on a timely basis, (a) provide adequate instructions to the Company in order to enable the Company to perform properly its services, (b) provide, or cause Client's suppliers and contractors to provide, the Company with all documents necessary to enable the Company to perform its services, (c) furnish the Company with all relevant information regarding Client's intended use and purposes of the tested goods, (d) advise the Company of essential dates and deadlines relevant to the tested goods and (e) fully exercise all rights and remedies available to Client against third parties in respect of the tested goods.
- 11. The Company shall undertake due care and ordinary skill in the performance of its services to Client, and the Company shall accept responsibility only were such skill has not been exercised and, even in such event, only to the extent of the limitation of liability set forth herein.
- 12. If Client desires to assert a claim arising from or relating to (i) the performance, purported performance or non-performance of any services by the Company or (ii) the sale, resale, manufacture, distribution or use of any tested goods, it must submit that claim to the Company in a writing that sets forth with particularity the basis for such claim within 60 days from discovery of the potential claim and not more than six months after the date of issuance of the Test Report to Client. Client waives any and all such claims including, without limitation, claims that the Test Report is inaccurate, incomplete or misleading or that additional or different testing is required, unless and then only to the extent that Client submits a written claim to the Company within both such time periods.

- 13. CLIENT SHALL, EXCEPT TO THE EXTENT OF COMPANY'S LIABILITY TO CLIENT HEREUNDER (WHICH IN NO EVENT SHALL EXCEED THE LIMITATION OF LIABILITY HEREIN), HOLD HARMLESS AND INDEMNIFY THE COMPANY, ITS AFFILIATES AND THEIR RESPECTIVE DIRECTORS, OFFICERS, EMPLOYEES, AGENTS AND SUBCONTRACTORS AGAINST ALL ACTUAL OR ALLEGED THIRD PARTY CLAIMS FOR LOSS, DAMAGE OR EXPENSE OF WHATSOEVER NATURE AND HOWSOEVER ARISING FROM OR RELATING TO (i) THE PERFORMANCE, PURPORTED PERFORMANCE OR NON-PERFORMANCE OF ANY SERVICES BY THE COMPANY OR (ii) THE SALE, RESALE, MANUFACTURE, DISTRIBUTION OR USE OF ANY TESTED GOODS.
- 14. EXCEPT AS MAY OTHERWISE BE EXPRESSLY AGREED TO IN WRITING BY THE COMPANY AND NOTWITHSTANDING ANY PROVISION TO THE CONTRARY CONTAINED HEREIN OR IN ANY TEST REPORT, NO WARRANTY OR GUARANTEE, EXPRESS OR IMPLIED, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR USE, IS MADE.
- 15. (A) IN NO EVENT WHATSOEVER SHALL THE COMPANY BE LIABLE FOR ANY CONSEQUENTIAL, SPECIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES IN CONNECTION WITH, RELATING TO OR ARISING OUT OF THE TEST REPORT OR THE SERVICES PROVIDED BY THE COMPANY HEREUNDER, INCLUDING WITHOUT LIMITATION LOSS OF OR DAMAGE TO PROPERTY; LOSS OF INCOME, PROFIT OR USE; OR ANY CLAIMS OR DEMANDS MADE AGAINST CLIENT OR ANY OTHER PERSON BY ANY THIRD PARTY IN CONNECTION WITH, RELATING TO OR ARISING OUT OF THE SERVICES PROVIDED BY THE COMPANY HEREUNDER.

(B)NOTWITHSTANDING ANY PROVISION TO THE CONTRARY CONTAINED HEREIN, AND IN RECOGNITION OF THE RELATIVE RISKS AND BENEFITS TO CLIENT AND THE COMPANY ASSOCIATED WITH THE TESTING SERVICES CONTEMPLATED HEREBY, THE RISKS HAVE BEEN ALLOCATED SUCH THAT UNDER NO CIRCUMSTANCES WHATSOEVER SHALL THE LIABILITY OF THE COMPANY TO CLIENT OR ANY THIRD PARTY IN RESPECT OF ANY CLAIM FOR LOSS, DAMAGE OR EXPENSE, OF WHATSOEVER NATURE OR MAGNITUDE, AND HOWSOEVER ARISING, EXCEED AN AMOUNT EQUAL TO FIVE (5) TIMES THE AMOUNT OF THE FEES PAID TO THE COMPANY FOR THE SPECIFIC SERVICES WHICH GAVE RISE TO SUCH CLAIM OR U.S.\$10,000, WHICHEVER IS THE LESSER AMOUNT.

- 16. The Company shall not be liable for any loss or damage resulting from any delay or failure in performance of its obligations hereunder resulting directly or indirectly from any event of force majeure or any event outside the control of the Company. If any such event occurs, the Company may immediately cancel or suspend its performance hereunder without incurring any liability whatsoever to Client.
- 17. Company's services, including these Conditions, shall be governed by, and construed in accordance with, the local laws of the country where the Company performs the tests or, in the case of tests performed in the United States of America, the laws of Massachusetts without regard to conflicts of laws principles. If any aspect(s) of these Conditions is found to be illegal or unenforceable, the validity, legality and enforceability of all remaining aspects of these Conditions shall not in any way be affected or impaired thereby. Any proceeding related to the subject matter hereof shall be brought, if at all, in the courts of the country where the Company performs the tests or, in the case of tests performed in the United States of America, in the courts of Massachusetts. Client waives the right to interpose any counterclaim or setoffs of any nature in any litigation arising hereunder.

Rev 160009121(2)_#684340 v13CS

