

دانشکده مهندسی کامپیوتر دانشگاه صنعتی امیرکبیر

# حالتهای آدرسدهی و مجموعه دستورالعملها

در میکروکنترلرهای AVR

#### فهرست مطالب

- حالتهای آدرسدهی (Addressing modes)
  - مجموعه دستورالعملها

### اسمبلی میکروکنترلرهای ۸ بیتی AVR

• میکروکنترلر RISC تقویت شده AVR، حالتهای آدرسدهی قدرتمند و موثری را برای دسترسی به حافظه برنامه (فلش) و حافظه داده (SRAM)، فایل ثبات، حافظه I/O و حافظه توسعهیافته I/O فراهم مینماید.

#### پرچمها (خلاصه)

#### علائم و اختصارات ثبات وضعیت (SREG) حاوی بیت های وضعیت (پرچمها)

| علامت پرچم | نام پرچم                                             |
|------------|------------------------------------------------------|
| С          | پرچم نقلی                                            |
| Z          | پرچم صفر                                             |
| N          | پرچم منفی                                            |
| V          | پرچم سرريز                                           |
| s: N ⊕ V   | پرچم تست مقادیر علامتدار                             |
| Н          | پرچم نیمهتوازن                                       |
| Т          | بیت انتقال (مورد استفاده در دستورالعملهای BST و BLD) |
|            | <u></u>                                              |
| 1          | پرچم وقفه سراسری                                     |

#### علائم و اختصارات ثباتها و عملوندها

علائم و اختصارات ثباتها و عملوندها و منظور از استفاده از آنها در دستورالعملهای میکروکنترلرهای ۸ بیتی AVR

| نام ثبات                     | عمليات                                                                  |
|------------------------------|-------------------------------------------------------------------------|
| Register file Rd destination | ثبات مقصد (و منبع) در فایل ثبات                                         |
| Rr Source                    | ثبات منبع در فایل ثبات                                                  |
| R → result                   | نتیجه بعد از اجرای دستورالعمل                                           |
| K                            | داده ثابت                                                               |
| k                            | آدرس ثابت                                                               |
| b                            | بیت در فایل ثبات یا ثبات I/O (سه بیت) ۶۸ بیت بیت در فایل ثبات یا ثبات ا |
| S                            | بیت در ثبات وضعیت (سه بیت)                                              |
| X,Y,Z                        | ثبات آدرسدهی غیر مستقیم<br>(X=R27:R26, Y=R29:R28 and Z=R31:R30)         |
| Α                            | آدرس محل ١/٥                                                            |

### علائم و اختصارات ثباتها و عملوندها

علائم و اختصارات ثباتهای ورودی/خروجی و منظور از استفاده از آنها در دستورالعملهای میکروکنترلرهای ۸ بیتی AVR:

• ثبات های RAMPX، RAMPY و RAMPZ ثباتهای متصل به ثبات های X، Y و Y هستند که آدرسدهی غیرمستقیم کل فضای داده میکروکنترلرهای با بیش از Y بایت فضای داده و واکنشی داده ثابت در میکروکنترلرهای خانواده ATmega با بیش از Y بایت حافظه برنامه را امکان پذیر میسازند.

• ثبات RAMPD ثبات متصل به ثبات Z است که آدرسدهی مستقیم کل فضای داده میکروکنترلرهای با بیش از 64K بایت فضای داده را امکانپذیر میسازد.

### علائم و اختصارات ثباتها و عملوندها

- ثبات EIND ثبات متصل به ثبات Z است که پرش و فراخوانی غیرمستقیم به کل فضای داده میکروکنترلرهای با بیش از 64K کلمه (128K بایت) و فضای برنامه را امکان پذیر میسازد.
  - پشته <mark>(STACK</mark>) برای ذخیرهسازی <mark>آدرس بازگشت</mark> و <mark>ثباتهای پوش شد</mark>ه، و <mark>ثبات SP</mark> ثبات اشارهگر پشته میباشد.

### علائم و اختصارات وضعیت پرچمها

علائم مورد استفاده جهت بیان چگونگی تغییر وضعیت پرچمها بازاء اجراء هر دستورالعمل:

↔: پرچم توسط دستورالعمل تغییر کرده است.

0: پرچم توسط دستورالعمل صفر شده است.

1: پرچم توسط دستورالعمل یک شده است.

-: پرچم توسط دستورالعمل تغییر نکرده است.

**توجه**: در مباحث و جداولی که در ادامه میآیند، OP به معنای بخش کد عملیاتی کلمه دستورالعمل است.

ب) حالت آدرس دهی مستقیم توسط ثبات (با دو ثبات Rd و Rr

تبات ها : ثبات ها على register file داء نه شبات ها على على



الف) حالت آدرسدهی مستقیم توسط ثبات (با تنها یک ثبات (Rd

الف) حالت آدرسدهی مستقیم توسط ثبات (با تنها یک ثبات Rd). در این مود، عملوند دستورالعمل در ثبات Rd قرار می گیرد.

ب) حالت آدرسدهی مستقیم توسط ثبات (با دو ثبات Rd و Rr). در این مود، عملوندها در ثبات های Rd و Rr قرار می گیرند. نتیجه در ثبات Rd گذاشته می شود

## **حالتهای آدرسدهی** کار با حافظہ دارہ (SRAM)

#### د) حالت آدرس دهی مستقیم داده



د) حالت آدرسدهی مستقیم داده. در آین مود، یک آدرس داده ۱۶ بیتی در ۱۶ بیت کم ارزش یک آدرس داده Rd/Rr بیتی قرار دارد. Rd/Rr بیک دستورالعمل دو کلمهای قرار دارد.

#### ج) حالت آدرس دهی مستقیم الاستان الاستا



ج) حالت آدرسدهی مستقیم ورود/خروجی. در این مود، آدرس عملوند در  $\frac{9}{4}$  بیت از کلمه دستورالعمل قرار می گیرد. A آدرس ثبات مبداء یا مقصد است.



• در این مود، آدرس عملوند نتیجه حاصل جمع محتوای ثباتهای  $\frac{\mathbf{Y}}{\mathbf{Y}}$  با  $\frac{\mathbf{Z}}{\mathbf{Y}}$  بیت آدرس موجود در کلمه دستورالعمل میباشد.  $\mathbf{R}$  و  $\mathbf{R}$  ثباتهای مبدا و مقصد را مشخص میکنند



- در این مود، آدرس عملوند، محتوای یکی از ثبات های  $rac{Z}{V_i X}$  یا  $rac{Z}{V_i}$  است.
- آدرس دهی غیرمستقیم ثبات زیرمجموعهای از حالت آدرسدهی غیرمستقیم داده است، چرا که فضای داده از ۰ تا ۳۱ همان فایل ثبات را تشکیل میدهد.
  - در میکروکنترلرهای AVR بدون حافظه SRAM، حالت آدرسدهی غیرمستقیم داده را حالت آدرسدهی غیرمستقیم داده را حالت آدرسدهی غیرمستقیم ثبات مینامند.



• در این حالت ثبات X X Z <mark>قبل از عملیات، یک واحد کاهش</mark> می یابد. آدرس عملوند کاهش یافته محتوای یکی از ثباتهای X X یا X است.

| ST <sup>(2)</sup> | -Z, Rr | Store Indirect and Pre-Decrement |
|-------------------|--------|----------------------------------|
|                   |        |                                  |



• در این حالت ثبات X X یا X <mark>قبل از عملیات، یک واحد افزایش</mark> مییابد. آدرس عملوند افزایش Xیافته محتوای یکی از ثباتهای X، Yیا X است.

برای اینکه در در کلاک انجام شودار وس مای رقت استفاده در تود

ST<sup>(2)</sup> Z+, Rr Store Indirect and Post-Increment



LPM Rd, Z; Load Program memory; Rd  $\leftarrow$  (Z)

• در این مود<mark>، آدرس بایتی معینی در حافظه برنامه ت</mark>وسط محتوای <mark>ثبات Z</mark> تعریف می شود.

• 1۵ بیت پر ارزش آدرسِ کلمه را انتخاب می کنند.

• برای  $\frac{\text{LPM}}{\text{LPM}}$ ، اگر بیت کم ارزش 0 شود، بایت پائین انتخاب و اگر 1 باشد، بایت پرارزش انتخاب می شود. اگر  $\frac{\text{ELPM}}{\text{ELPM}}$  بکار رود، ثبات  $\frac{\text{RAMPZ}}{\text{RAMPZ}}$  برای توسعه ثبات  $\frac{\text{RAMPZ}}{\text{enhanced load program}}$ 

ELPM Rd, Z; Extended Load Program memory; Rd  $\leftarrow$  (RAMPZ: Z)

z+; Store Program Memory and Post- Increment by 2; (RAMPZ:Z) ← R1:R0 Z ←Z+2



#### Post Increament

حالت آدرسدهی حافظه برنامه با پسافزایش با استفاده از +LPM Z و +ELPM Z

- در این حالت آدرس بایتی ثابت توسط محتوای ثبات  ${f Z}$  تعریف می شود.
  - <u>۱۵ بیت پرارزش آدرس کلم</u>ه را انتخاب می کنند.
- اگر بیت <mark>کم ارزش صفر</mark> شود، <mark>بایت پائین</mark> انتخاب و اگر <mark>یک</mark> باشد، <mark>بایت پرارزش</mark> انتخاب میشود.
  - اگر <u>+ELPM Z+</u> بكار رود، ثبات <u>RAMPZ</u> براى توسعه ثبات Z بكار مىرود.



\* تعل د استقال داده انجام مي تود



بصورت پش فرض

• در این حالت اجرای برنامه از آدرس موجود در ثبات Z ادامه مییابد (یعنی اینکه مقدار موجود در ثبات Z در ثبات Z قرار می گیرد).

نقط 16ست اول ع ملاد بقیدائی صفی دود ماند ۱۲۸۵ ادرس دهی ماند



• در این حالت اجرای برنامه از آدرس PC+K+1 ادامه مییابد. آدرس نسبی k از 2048 تا 2048تغییر مینماید.

• دستورالعملهای میکروکنترلرهای ۸ بیتی AVR شامل گروههای زیر هستند:
الف - دستورالعملهای حسابی و منطقی
ب - دستورالعملهای انشعاب
ج - دستورالعملهای انتقال داده
د - دستورالعملهای بیتی و تست بیت

ه- دستورالعملهای کن<mark>ترل</mark> میکروکنترلر

توجه: معانی اعداد نوشته شده در داخل پرانتزها در ستونهای ۶ و ۷ در اسلایدهای بعد به شرح زیر است:

- ۱) این دستورالعمل ها در تمام میکروکنترلرهای ۸ بیتی AVR وجود ندارد.
- ۳) زمانهای چرخه برای تمام دسترسیهای به حافظه داده فرض بر دسترسی به حافظه RAM خارجی معتبر حافظه RAM خارجی معتبر نیستند.
  - ۴) در صورت دسترسی به SRAM داخلی یک چرخه ساعت دیگر اضافه شود.
    - ۵) تعداد چرخههای ساعت برای میکروکنترلر ATtiny10.

| Mnemonics           | Operands | Description                     | Operation                                                        | Flags             | #Clocks | #Clocks- |
|---------------------|----------|---------------------------------|------------------------------------------------------------------|-------------------|---------|----------|
|                     |          |                                 |                                                                  | وها المان كداسكان |         | XMEGA    |
|                     |          |                                 |                                                                  | تغيير دارند       |         |          |
| ADD                 | Rd, Rr   | Add without Carry               | $Rd \leftarrow Rd + Rr$                                          | Z,C,N,V,S,H       | 1       |          |
| ADC /               | Rd, Rr   | Add with Carry                  | $Rd \leftarrow Rd + Rr + C$                                      | Z,C,N,V,S,H       | 1       |          |
| ADIW <sup>(1)</sup> | Rd, K    | Add Immediate to Word           | Rd + 1:Rd ← <u>Rd + 1:Rd + K</u><br>رجیتر <sub>ه</sub> که ربعدیش | Z,C,N,V,S         | 2       |          |
| SUB                 | Rd, Rr   | Subtract without Carry          | Rd ← Rd - Rr                                                     | Z,C,N,V,S,H       | 1       |          |
| SUBI                | Rd, K    | Subtract Immediate              | Rd ← Rd - K                                                      | Z,C,N,V,S,H       | 1       |          |
| SBC                 | Rd, Rr   | Subtract with Carry             | $Rd \leftarrow Rd - Rr - C$                                      | Z,C,N,V,S,H       | 1       |          |
| SBCI                | Rd, K    | Subtract Immediate with Carry   | $Rd \leftarrow Rd - K - C$                                       | Z,C,N,V,S,H       | 1       |          |
| SBIW <sup>(1)</sup> | Rd, K    | Subtract Immediate from<br>Word | $Rd + 1:Rd \leftarrow Rd + 1:Rd - K$                             | Z,C,N,V,S         | 2       |          |
| AND                 | Rd, Rr   | Logical AND                     | $Rd \leftarrow Rd \cdot Rr$                                      | Z,N,V,S           | 1       |          |
| ANDI                | Rd, K    | Logical AND with Immediate      | $Rd \leftarrow Rd \bullet K$                                     | Z,N,V,S           | 1       |          |
| OR                  | Rd, Rr   | Logical OR                      | Rd ← Rd v Rr                                                     | Z,N,V,S           | 1       |          |
| ORI                 | Rd, K    | Logical OR with Immediate       | Rd ← Rd v K                                                      | Z,N,V,S           | 1       |          |
| EOR                 | Rd, Rr   | Exclusive OR                    | $Rd \leftarrow Rd \oplus Rr$                                     | Z,N,V,S           | 1       |          |

ریزپردازنده ۱

| G01.f                 | D. 1                         |                                          | D.1. (APP. D.1                                                                                                         | 7.631116    | 4 |     |
|-----------------------|------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------|---|-----|
| COM                   | Rd                           | One's Complement                         | Rd ← \$FF - Rd                                                                                                         | Z,C,N,V,S   | 1 |     |
| NEG                   | الله Rd بيتي Rd              | Two's Complement                         | Rd ← \$00 - Rd → 2000                                                                                                  | Z,C,N,V,S,H | 1 |     |
| SBR                   | Rd,K                         | Set Bit(s) in Register                   | Rd ← Rd v K                                                                                                            | Z,N,V,S     | 1 |     |
| CBR                   | Rd,K                         | Clear Bit(s) in Register                 | $Rd \leftarrow Rd \cdot (\$FFh - K)$                                                                                   | Z,N,V,S     | 1 |     |
| INC                   | Rd                           | Increment                                | $Rd \leftarrow Rd + 1$                                                                                                 | Z,N,V,S     | 1 |     |
| DEC                   | Rd                           | Decrement wis zen Hag                    | Rd ← Rd - 1                                                                                                            | Z,N,V,S     | 1 |     |
| TST                   | Rd                           | Test for Zero or Minus.                  | roflag Rd ← Rd • Rd                                                                                                    | Z,N,V,S     | 1 |     |
| CLR                   | Rd                           | Clear Register                           | Rd ← Rd ⊕ Rd                                                                                                           | Z,N,V,S     | 1 |     |
| SER                   | Rd                           | Set Register                             | Rd ← \$FF                                                                                                              | None        | 1 |     |
| MUL <sup>(1)</sup>    | Rd,Rr                        | Multiply Unsigned                        | $R1:R0 \leftarrow Rd \times Rr (UU)$                                                                                   | Z,C         | 2 |     |
| MULS <sup>(1)</sup>   | Rd,Rr                        | Multiply Signed                          | $R1:R0 \leftarrow Rd \times Rr (SS)$                                                                                   | Z,C         | 2 |     |
| MULSU <sup>(1)</sup>  | Rd,Rr                        | Multiply Signed with Unsigned            | $R1:R0 \leftarrow Rd \times Rr (SU)$                                                                                   | Z,C         | 2 |     |
| FMUL <sup>(1)</sup>   | Rd,Rr                        | Fractional Multiply Unsigned             | $R1:R0 \leftarrow Rd \times Rr <<1 (UU)$                                                                               | Z,C         | 2 |     |
| FMULS <sup>(1)</sup>  | Rd,Rr                        | Fractional Multiply Signed               | $R1:R0 \leftarrow Rd \times Rr <<1 (SS)$                                                                               | Z,C         | 2 |     |
| FMULSU <sup>(1)</sup> | Rd,Rr                        | Fractional Multiply Signed with Unsigned | $R1:R0 \leftarrow Rd \times Rr <<1 \text{ (SU)}$                                                                       | Z,C         | 2 |     |
| DES                   | K<br>شداریر ۱۵ کا<br>۱۱ کآرد | Data Encryption                          | if $(H = 0)$ then R15:R0 $\leftarrow$ Encrypt(R15:R0, K) else if $(H = 1)$ then R15:R0 $\leftarrow$ Decrypt(R15:R0, K) |             |   | 1/2 |

ریزپردازنده ۱ محمد <mark>م</mark>هدی همایون پور

ادامه مجموعه دستورالعمل های عملیات حسابی و منطقی در میکروکنترلرهای ۸ بیتی AVR (ادامه)

#### **DES Instruction Description:**

The module is an instruction set extension to the AVR CPU, performing DES iterations. The 64-bit data block (plaintext or cipher text) is placed in the CPU register file, registers R0-R7, where LSB of data is placed in LSB of R0 and MSB of data is placed in MSB of R7. The full 64-bit key (including parity bits) is placed in registers R8-R15, organized in the register file with LSB of key in LSB of R8 and MSB of key in MSB of R15. Executing one DES instruction performs one round in the DES algorithm. Sixteen rounds must be executed in increasing order to form the correct DES cipher text or plaintext. Intermediate results are stored in the register file (R0-R15) after each DES instruction. The instruction's operand (K) determines which round is executed, and the half carry flag (H) determines whether encryption or decryption is performed.

## مراع شرور العمل ا

| Mnemonics             | Operands | Description                         | Operation                                              | Flags       | #Clocks                | #Clocks-<br>XMEGA  |
|-----------------------|----------|-------------------------------------|--------------------------------------------------------|-------------|------------------------|--------------------|
| RJMP                  | k        | Relative Jump                       | $PC \leftarrow PC + k + 1$                             | None        | 2                      |                    |
| IJMP <sup>(1)</sup>   |          | Indirect Jump to (Z)                | PC(15:0) ←Z<br>PC(21:16) ← 0                           | None        | 2                      |                    |
| EIJMP <sup>(1)</sup>  |          | Extended Indirect Jump to (Z)       | PC(15:0) ← Z                                           | None        | 2                      |                    |
| JMP <sup>(1)</sup>    | k        | Jump                                | PC ← k                                                 | None        | 3                      |                    |
| RCALL                 | k        | Relative Call Subroutine            | $PC \leftarrow PC + k + 1$                             | None        | 3/4 <sup>(3) (5)</sup> | 2/3(3)             |
| ICALL <sup>(1)</sup>  |          | Indirect Call to (Z)                | $PC(15:0) \leftarrow Z,$ $PC(21:16) \leftarrow 0$      | None        | 3/4 <sup>(3)</sup>     | 2/3 <sup>(3)</sup> |
| EICALL <sup>(1)</sup> |          | Extended Indirect Call to (Z)       | $PC(15:0) \leftarrow Z,$ $PC(21:16) \leftarrow EIND$   | None        | 4 <sup>(3)</sup>       | 3 <sup>(3)</sup>   |
| CALL <sup>(1)</sup>   | k        | call Subroutine                     | PC ← k                                                 | None        | 4 / 5 (3)              | 3/4 <sup>(3)</sup> |
| RET                   |          | Subroutine Return                   | تخارت PC ← STACK                                       | None        | 4 / 5 (3)              |                    |
| RETI                  |          | Interrupt Return                    | PC ← STACK                                             | I           | 4 / 5 (3)              |                    |
| CPSE                  | Rd,Rr    | Compare, Skip if Equal              | if $(Rd = Rr) PC \leftarrow PC + 2 \text{ or } 3$      | None        | 1/2/3                  |                    |
| СР                    | Rd,Rr    | Compare                             | Rd - Rr                                                | Z,C,N,V,S,H | 1                      |                    |
| CPC                   | Rd,Rr    | Compare with Carry                  | Rd - Rr -C                                             | Z,C,N,V,S,H | 1                      |                    |
| CPI                   | Rd,K     | Compare with Immediate              | Rd - K                                                 | Z,C,N,V,S,H | 1                      |                    |
| SBRC                  | Rr, b    | Skip if Bit in Register Cleared     | if $(Rr(b) = 0) PC \leftarrow PC + 2 \text{ or } 3$    | None        | 1/2/3                  |                    |
| SBRS                  | Rr, b    | Skip if Bit in Register Set 0,4657  | if $(Rr(b) = 1) PC \leftarrow PC + 2 \text{ or } 3$    | None        | 1/2/3                  |                    |
| SBIC                  | A, b     | Skip if Bit in I/O Register Cleared | if $(I/O(A,b) = 0)$ PC $\leftarrow$ PC + 2 or 3        | None        | 1/2/3                  | 2/3/4              |
| SBIS                  | A, b     | Skip if Bit in I/O Register Set     | If $(I/O(A,b) = 1) PC \leftarrow PC + 2 \text{ or } 3$ | None        | 1/2/3                  | 2/3/4              |
| BRBS                  | s, k     | Branch if Status Flag Set           | if $(SREG(s) = 1)$ then $PC \leftarrow PC + k + 1$     | None        | 1/2                    |                    |



|      |      |                                    |                                                        |      |     | _    |
|------|------|------------------------------------|--------------------------------------------------------|------|-----|------|
| BRBC | s, k | Branch if Status Flag Cleared      | if $(SREG(s) = 0)$ then $PC \leftarrow PC + k + 1$     | None | 1/2 |      |
| BREQ | k    | Branch if Equal                    | if $(Z = 1)$ then $PC \leftarrow PC + k + 1$           | None | 1/2 |      |
| BRNE | k    | Branch if Not Equal                | if $(Z = 0)$ then $PC \leftarrow PC + k + 1$           | None | 1/2 |      |
| BRCS | k    | Branch if Carry Set                | if $(C = 1)$ then $PC \leftarrow PC + k + 1$           | None | 1/2 |      |
| BRCC | k    | Branch if Carry Cleared            | if $(C = 0)$ then $PC \leftarrow PC + k + 1$           | None | 1/2 |      |
| BRSH | k    | Branch if Same or Higher           | if $(C = 0)$ then $PC \leftarrow PC + k + 1$           | None | 1/2 |      |
| BRLO | k    | Branch if Lower                    | if $(C = 1)$ then $PC \leftarrow PC + k + 1$           | None | 1/2 |      |
| BRMI | k    | Branch if Minus                    | if $(N = 1)$ then $PC \leftarrow PC + k + 1$           | None | 1/2 |      |
| BRPL | k    | Branch if Plus                     | if $(N = 0)$ then $PC \leftarrow PC + k + 1$           | None | 1/2 |      |
| BRGE | k    | Branch if Greater or Equal, Signed | if $(N \bigoplus V=0)$ then $PC \leftarrow PC + k + 1$ | None | 1/2 |      |
| BRLT | k    | Branch if Less Than, Signed        | if $(N \bigoplus V=1)$ then $PC \leftarrow PC + k + 1$ | None | 1/2 |      |
| BRHS | k    | Branch if Half Carry Flag Set      | if $(H = 1)$ then $PC \leftarrow PC + k + 1$           | None | 1/2 |      |
| BRHC | k    | Branch if Half Carry Flag Cleared  | if $(H = 0)$ then $PC \leftarrow PC + k + 1$           | None | 1/2 |      |
| BRTS | k    | Branch if T Flag Set               | if $(T = 1)$ then $PC \leftarrow PC + k + 1$           | None | 1/2 |      |
| BRTC | k    | Branch if T Flag Cleared           | if $(T = 0)$ then $PC \leftarrow PC + k + 1$           | None | 1/2 |      |
| BRVS | k    | Branch if Overflow Flag is Set     | if $(V = 1)$ then $PC \leftarrow PC + k + 1$           | None | 1/2 |      |
| BRVC | k    | Branch if Overflow Flag is Cleared | if $(V = 0)$ then $PC \leftarrow PC + k + 1$           | None | 1/2 |      |
| BRIE | k    | Branch if Interrupt Enabled        | if $(I = 1)$ then $PC \leftarrow PC + k + 1$           | None | 1/2 |      |
| BRID | k    | Branch if Interrupt Disabled       | if $(I = 0)$ then $PC \leftarrow PC + k + 1$           | None | 1/2 |      |
|      |      | •                                  |                                                        |      | 1   | ::!> |

ریزپردازنده ۱ محمد مهدی همایون پور

| Mnemonics          | Operands              | Description                           | Operation                                     | Flags | #Clocks                            | #Clocks<br>XMEGA |
|--------------------|-----------------------|---------------------------------------|-----------------------------------------------|-------|------------------------------------|------------------|
| MOV                | Rd, Rr                | Copy Register                         | Rd ← Rr                                       | None  | 1                                  |                  |
| MOVW(1)            | Rd, Rr                | Copy Register Pair                    | Rd+1:Rd ← Rr+1:Rr                             | None  | 1                                  |                  |
| LDI فارباعانط دان  | Rd, K                 | Load Immediate                        | $Rd \leftarrow K$                             | None  | 1                                  |                  |
| LDS <sup>(1)</sup> | Rd, k                 | Load Direct from data space           | $Rd \leftarrow (k)$                           | None  | 1 <sup>(5)</sup> /2 <sup>(3)</sup> | 2(3)(4)          |
| LD <sup>(2)</sup>  | Rd, X                 | Load Indirect                         | $Rd \leftarrow (X)$                           | None  | 1 <sup>(5)</sup> /2 <sup>(3)</sup> | 1(3)(4)          |
| LD <sup>(2)</sup>  | Rd, X+                | Load Indirect and Post-<br>Increment  | $Rd \leftarrow (x) \\ X \leftarrow X+1$       | None  | 2 <sup>(3)</sup>                   | 1(3)(4)          |
| LD <sup>(2)</sup>  | Rd, -X                | Load Indirect and Pre-<br>Decrement   | $X \leftarrow X - 1$ ,<br>Rd $\leftarrow (X)$ | None  | 2 <sup>(3)</sup> /3 <sup>(5)</sup> | 2(3)(4)          |
| LD <sup>(2)</sup>  | Rd, Y                 | Load Indirect                         | $Rd \leftarrow (Y)$                           | None  | 1 <sup>(5)</sup> /2 <sup>(3)</sup> | 1 (3)(4)         |
| LD <sup>(2)</sup>  | Rd, Y+                | Load Indirect and Post-<br>Increment  | $Rd \leftarrow (Y)$ $Y \leftarrow Y+1$        | None  | 2 <sup>(3)</sup>                   | 1 (3)(4)         |
| LD (2)             | Rd, -Y                | Load Indirect and Pre-<br>Decrement Y | $Y \leftarrow Y-1$ $Rd \leftarrow (Y)$        | None  | 2 <sup>(3)</sup> /3 <sup>(5)</sup> | 2(3)(4)          |
| LDD <sup>(1)</sup> | Rd, Y+g<br>رَيِّنَ هُ | Load Indirect with Displacement       | $Rd \leftarrow (Y + q)$                       | None  | 2 <sup>(3)</sup>                   | 2(3)(4)          |

| [· = (o)           |         |                            |                         | 1       | . (5) (5 (0)                       | . (0) (4)               |
|--------------------|---------|----------------------------|-------------------------|---------|------------------------------------|-------------------------|
| LD <sup>(2)</sup>  | Rd, Z   | Load Indirect              | $Rd \leftarrow (Z)$     | None    | 1 <sup>(5)</sup> /2 <sup>(3)</sup> | 1 (3)(4)                |
| LD <sup>(2)</sup>  | Rd, Z+  | Load Indirect and Post-    | Rd ← (Z)                | None    | 2(3)                               | 1(3)(4)                 |
|                    | ,       | Increment                  | Z← Z+1 <sup>′</sup>     |         |                                    |                         |
| LD <sup>(2)</sup>  | Rd, -Z  | Load Indirect and Pre-     | Z← Z-1                  | None    | 2(3)/3(5)                          | 2(3)(4)                 |
|                    |         | Decrement                  | $Rd \leftarrow (Z)$     |         |                                    |                         |
| LDD <sup>(1)</sup> | Rd, Z+q | Load Indirect with         | $Rd \leftarrow (Z + q)$ | None    | 2(3)                               | 2(3)(4)                 |
|                    |         | Displacement               | ,                       |         |                                    |                         |
| STS <sup>(1)</sup> | k, Rr   | Store Direct to Data Space | $(k) \leftarrow Rd$     | None    | 1 <sup>(5)</sup> /2 <sup>(3)</sup> | 2(3)                    |
|                    |         |                            |                         |         |                                    |                         |
| ST <sup>(2)</sup>  | X, Rr   | Store Indirect             | (X) ← Rr                | None    | $1^{(5)}/2^{(3)}$                  | 1(3)                    |
| OT(3)              | V 5     |                            | 00 5                    | <b></b> | 4 (F) (Q(2)                        | 4 (2)                   |
| ST <sup>(2)</sup>  | X+, Rr  | Store Indirect and Post-   | (X) ← Rr                | None    | 1 <sup>(5)</sup> /2 <sup>(3)</sup> | <b>1</b> <sup>(3)</sup> |
|                    |         | Increment                  | X ← X+1                 |         |                                    |                         |
| ST <sup>(2)</sup>  | -X, Rr  | Store Indirect and Pre-    | X ← X-1                 | None    | 2(3)                               | 2(3)                    |
|                    |         | Decrement                  | (X) ← Rr                |         |                                    |                         |
| ST <sup>(2)</sup>  | Y, Rr   | Store Indirect             | $(Y) \leftarrow Rr$     | None    | 1 <sup>(5)</sup> /2 <sup>(3)</sup> | 1(3)                    |
|                    |         |                            |                         |         |                                    |                         |
| ST <sup>(2)</sup>  | Y+, Rr  | Store Indirect and Post-   | (Y) ← Rr                | None    | $1^{(5)}/2^{(3)}$                  | 1(3)                    |
|                    |         | Increment                  | Y ← Y+1                 |         |                                    |                         |
| ST <sup>(2)</sup>  | -Y, Rr  | Store Indirect and Pre-    | Y ← Y-1                 | None    | 2 <sup>(3)</sup>                   | 2(3)                    |
|                    |         | Decrement                  | $(Y) \leftarrow Rr$     |         |                                    |                         |
| STD <sup>(1)</sup> | Y+q, Rr | Store Indirect with        | (Y + q) ← Rr            | None    | 2(3)                               | 2(3)                    |
|                    |         | Displacement               | a 69 63                 |         |                                    |                         |
| ST <sup>(2)</sup>  | Z, Rr   | Store Indirec              | (Z) ← Rr                | None    | 1 <sup>(5)</sup> /2 <sup>(3)</sup> | 1(3)                    |
|                    |         |                            |                         |         |                                    |                         |

| ST <sup>(2)</sup>                      | Z+, Rr    | Store Indirect and Post-<br>Increment           | (Z) ← Rr<br>Z ← Z+1       | None | 1 <sup>(5)</sup> /2 <sup>(3)</sup> | 1(3)             |
|----------------------------------------|-----------|-------------------------------------------------|---------------------------|------|------------------------------------|------------------|
| ST <sup>(2)</sup>                      | -Z, Rr    | Store Indirect and Pre-<br>Decrement            | Z ← Z-1                   | None | 2 <sup>(3)</sup>                   | 2 <sup>(3)</sup> |
| STD <sup>(1)</sup>                     | Z+q,Rr    | Store Indirect with Displacement                | $(Z + q) \leftarrow Rr$   | None | 2 <sup>(3)</sup>                   | 2 <sup>(3)</sup> |
| LP <sup>(1)</sup> (2) ~ ~ \( \times \) | باحانظ بر | Load Program Memory                             | R0 ← (Z)                  | None | 3                                  | 3                |
| LPM <sup>(1)</sup> (2)                 | Rd, Z     | Load Program Memory                             | $Rd \leftarrow (Z)$       | None | 3                                  | 3                |
| LPM <sup>(1)</sup> (2)                 | Rd, Z+    | Load Program Memory and Post- Increment         | Rr ← (Z)<br>Z ← Z+1       | None | 3                                  | 3                |
| ELPM <sup>(1)</sup>                    |           | Extended Load Program Memory                    | R0 ← (RAMPZ:Z)            | None | 3                                  |                  |
| ELPM <sup>(1)</sup>                    | Rd, Z     | Extended Load Program<br>Memory                 | Rd ← (RAMPZ:Z)            | None | 3                                  |                  |
| ELPM <sup>(1)</sup>                    | Rd, Z+    | Extended Load Program Memory and Post-Increment | Rd ← (RAMPZ:Z)<br>Z ← Z+1 | None | 3                                  |                  |

| SPM <sup>(1)</sup>  |                                         | Store Program Memory                          | (RAMPZ:Z) ← R1:R0                               | None | - |                  |
|---------------------|-----------------------------------------|-----------------------------------------------|-------------------------------------------------|------|---|------------------|
| SPM <sup>(1)</sup>  | Z+<br>ارتباه با شیات های های هوچنده فاد | Store Program Memory and Post- Increment by 2 | $(RAMPZ:Z) \leftarrow R1:R0$ $Z \leftarrow Z+2$ | None | - | -                |
| IN /                | Rd, A Lio !                             | In From I/O Location                          | Rd ← I/O(A)                                     | None | 1 |                  |
| OUT                 | A, Rr                                   | Out To I/O Location                           | I/O(A) ← Rr                                     | None | 1 |                  |
| PUSH <sup>(1)</sup> | Rr                                      | Push Register on Stack                        | STACK ← Rr                                      | None | 2 | 1 <sup>(3)</sup> |
| POP <sup>(1)</sup>  | Rd                                      | Pop Register from Stack                       | Rd ← STACK                                      | None | 2 | 2 <sup>(3)</sup> |

نی توانیم ما در ماه مام کیم: حکارکیم ؟ ابتدا از دمتن ۱۱ استفاره نیم بعداز دمتن ۱۷ میم

|           | Ι        |                              |                                 |           | # C7 1              | u co    |
|-----------|----------|------------------------------|---------------------------------|-----------|---------------------|---------|
| Mnemonics | Operands | Description                  | Operation                       | Flags     | #Clocks             | #Clocks |
|           |          |                              |                                 |           |                     | XMEGA   |
| LSL       | Rd       | Logical Shift Left           | $Rd(n+1) \leftarrow Rd(n)$      | Z,C,N,V,H | 1                   |         |
|           |          |                              | Rd(0) ← 0                       |           |                     |         |
|           |          |                              | C ← Rd(7)                       |           |                     |         |
| LSR       | Rd       | Logical Shift Right          | $Rd(n) \leftarrow Rd(n+1)$      | Z,C,N,V   | 1                   |         |
| LOIX      | i Ku     | 3                            | $Rd(7) \leftarrow 0$            | 2,0,14, 0 | 1                   |         |
|           |          |                              | $C \leftarrow Rd(0)$            |           |                     |         |
|           |          |                              | , ,                             |           |                     |         |
| ROL       | Rd       | Rotate Left Through Carry    | $Rd(0) \leftarrow C$            | Z,C,N,V,H | 1                   |         |
|           |          |                              | $Rd(n+1) \leftarrow Rd(n)$      |           |                     |         |
|           |          |                              | C ← Rd(7)                       |           |                     |         |
| ROR       | Rd       | Rotate Right Through Carry   | Rd(7) ← C                       | Z,C,N,V   | 1                   |         |
|           |          |                              | $Rd(n) \leftarrow Rd(n+1)$      | , , ,     |                     |         |
|           |          |                              | C ← Rd(0)                       |           |                     |         |
| ASR       | Rd       | Arithmetic Shift Right       | Rd(n) ← Rd(n+1), n=06           | Z,C,N,V   | 1                   |         |
|           |          |                              | ` ' ` '                         |           | 1                   |         |
| SWAP      | Rd       | Swap Nibbles                 | $Rd(30) \leftrightarrow Rd(74)$ | None      | 1                   |         |
| BSET      | S ~ 3bit | Flag Set                     | SREG(s) ← 1                     | SREG(s)   | 1                   |         |
| BCLR      | A, b     | Flag Clear                   | SREG(s) ← 0                     | SREG(s)   | 1 <sup>(5)</sup> /2 | 1       |
| SBI       | A, b     | Set Bit in I/O Register      | I/O(A, b) ← 1                   | None      | 1 <sup>(5)</sup> /2 | 1       |
| СВІ       | Rr, b    | Clear Bit in I/O Register    | I/O(A, b) ← 0                   | None      | 1                   |         |
| BST       | Rd, b    | Bit Store from Register to T | $T \leftarrow Rr(b)$            | T         | 1                   |         |

| _   |       |                                 |                      |      |   |  |
|-----|-------|---------------------------------|----------------------|------|---|--|
| BLD | B, Rd | Bit load from T to Register     | $Rd(b) \leftarrow T$ | None | 1 |  |
| SEC |       | Set Carry                       | C ← 1                | C    | 1 |  |
| CLC |       | Clear Carry                     | C ← 0                | С    | 1 |  |
| SEN |       | Set Negative Flag               | N ← 1                | N    | 1 |  |
| CLN |       | Clear Negative Flag             | N ← 0                | N    | 1 |  |
| SEZ |       | Set Zero Flag                   | Z ← 1                | Z    | 1 |  |
| CLZ |       | Clear Zero Flag                 | Z ← 0                | Z    | 1 |  |
| SEI |       | Global Interrupt Disable        | I ← 1                | I    | 1 |  |
| CLI |       | Global Interrupt Disable        | I ← 0                | I    | 1 |  |
| SES |       | Set Signed Test Flag            | S ← 1                | S    | 1 |  |
| CLS |       | Clear Signed Test Flag          | S ← 0                | S    | 1 |  |
| SEV |       | Set Two's Complement Overflow   | V ← 1                | V    | 1 |  |
| CLV |       | Clear Two's Complement Overflow | V ← 0                | V    | 1 |  |
| SET |       | Set T in SREG                   | T ← 1                | T    | 1 |  |
| CLT |       | Clear T in SREG                 | T ← 0                | T    | 1 |  |
| SEH |       | Set Half Carry Flag in SREG     | H ← 1                | Н    | 1 |  |

| Mnemonics | Operands | Description                                        | Operation                       | Flags | #Clocks | #Clocks<br>XMEGA |
|-----------|----------|----------------------------------------------------|---------------------------------|-------|---------|------------------|
| BREAK(1)  |          | Break  2000 start debug ().  (Cul break point /se) | (See specific descr. for BREAK) | None  | 1       |                  |
| NOP       |          | No Operation                                       |                                 | None  | 1       |                  |
| SLEEP     |          | Sleep                                              | (see specific descr. for Sleep) | None  | 1       |                  |
| WDR       |          | Sleep                                              | (see specific descr. for WDR)   | None  | 1       |                  |

AVR مجموعه دستورالعمل های کنترل میکروکنترلر در میکروکنترلرهای AVR بیتی BREAK توجه BREAK توجه BREAK بیست.

