

CHAPTER 12

Q. 12.4

Fundamentals of Heat and Mass Transfer [EXP-7090] (https://holooly.com/sources/fundamentals-of-heat-and-mass-transfer-exp-7090/)

Consider a large isothermal enclosure that is maintained at a uniform temperature of 2000 K. Calculate the emissive power of the radiation that emerges from a small aperture on the enclosure surface. What is the wavelength λ_1 below which 10% of the emission is concentrated? What is the wavelength λ_2 above which 10% of the emission is concentrated? Determine the maximum spectral emissive power and the wavelength at which this emission occurs. What is the irradiation incident on a small object placed inside the enclosure?

Step-by-Step

Report Solution (https://holooly.com/report-a-problem/)

Verified Answer

Known: Large isothermal enclosure at uniform temperature.

Find:

- 1. Emissive power of a small aperture on the enclosure.
- 2. Wavelengths below which and above which 10% of the radiation is concentrated.
- 3. Spectral emissive power and wavelength associated with maximum emission.
- 4. Irradiation on a small object inside the enclosure.

Assumptions: Areas of aperture and object are very small relative to enclosure surface.

Analysis:

1. Emission from the aperture of any isothermal enclosure will have the characteristics of blackbody radiation. Hence, from Equation 12.32,

$$E=E_b(T)=\sigma T^4=5.670 imes 10^{-8} W/m^2\cdot K^4(2000K)^4$$

$$E=9.07 imes 10^5 W/m^2$$

2. The wavelength λ_1 corresponds to the upper limit of the spectral band $(0 o \lambda_1)$ containing 10% of the emitted radiation. With $F_{(0 o \lambda_1)}=0.10$ it follows from Table 12.2 that $\lambda_1 T=2195 \mu m\cdot K$. Hence

Table 12.2 Blackbody radiation functions

Table 12.2 Blackbody radiation functions			
$\lambda T \ (\mu m \cdot K)$	$F_{(0 o\lambda)}$	$I_{\lambda,b}(\lambda,T)/\sigma T^5 \ (\mu m\cdot K\cdot sr)^{-1}$	$rac{I_{\lambda,b}(\lambda,T)}{I_{\lambda,b}(\lambda_{\max},T)}$
200	0	$0.375034 imes 10^{-27}$	0

HOLOOLY https:// Fro loo	o ly.com)	$0.490335 imes 10^{-13}$	0
600	0	0.104046×10^{-8}	0.000014
800	0.000016	$0.991126 imes 10^{-7}$	0.001372
1,000	0.000321	$0.118505 imes 10^{-5}$	0.016406
1,200	0.002134	$0.523927 imes 10^{-5}$	0.072534
1,400	0.00779	$0.134411 imes 10^{-4}$	0.186082
1,600	0.019718	0.24913	0.344904
1,800	0.039341	0.375568	0.519949
2,000	0.066728	0.493432	0.683123
2,200	0.100888	$0.589649 imes 10^{-4}$	0.816329
2,400	0.140256	0.658866	0.912155
2,600	0.18312	0.701292	0.970891
2,800	0.227897	0.720239	0.997123

HOLOGIY (https:// ho loc		$0.722318 imes 10^{-4}$	1
3,000	0.273232	$0.720254 imes 10^{-4}$	0.997143
3,200	0.318102	0.705974	0.977373
3,400	0.361735	0.681544	0.943551
3,600	0.403607	0.650396	0.900429
3,800	0.443382	$0.615225 imes 10^{-4}$	0.851737
4,000	0.480877	0.578064	0.800291
4,200	0.516014	0.540394	0.748139
4,400	0.548796	0.503253	0.69672
4,600	0.57928	0.467343	0.647004
4,800	0.607559	0.433109	0.59961
5,000	0.633747	0.400813	0.554898
5,200	0.65897	$0.370580 imes 10^{-4}$	0.513043
5,400	0.68036	0.342445	0.474092
5,600	0.701046	0.316376	0.438002
5,800	0.720158	0.292301	0.404671

HOLOOLY (https:// /ho loo	0.737818 ly.com)	0.270121	0.373965
6,200	0.75414	$0.249723 imes 10^{-4}$	0.345724
6,400	0.769234	0.230985	0.319783
6,600	0.783199	0.213786	0.295973
6,800	0.796129	0.198008	0.274128
7,000	0.808109	0.183534	0.25409
7,200	0.819217	$0.170256 imes 10^{-4}$	0.235708
7,400	0.829527	0.158073	0.218842
7,600	0.839102	0.146891	0.20336
7,800	0.848005	0.136621	0.189143
8,000	0.856288	0.127185	0.176079
8,500	0.874608	$0.106772 imes 10^{-4}$	0.147819
9,000	0.890029	$0.901463 imes 10^{-5}$	0.124801
9,500	0.903085	0.765338	0.105956
10,000	0.914199	$0.653279 imes 10^{-5}$	0.090442
10,500	0.92371	0.560522	0.0776

0,93189 0,483321 0,066913 11,500 0,939959 0,418725 0,05797 12,000 0,945098 0,364394 × 10 ⁻⁵ 0,038689 14,000 0,962898 0,217641 0,030131 15,000 0,968933 0,171866 × 10 ⁻⁵ 0,0137429 0,019026 18,000 0,98086 0,908240 × 10 ⁻⁶ 0,012574 20,000 0,985602 0,62331 0,008629 25,000 0,99534 0,140469 × 10 ⁻⁶ 0,001945 40,000 0,997967 0,473891 × 10 ⁻⁶ 10 ⁻⁷ 0,000656 50,000 0,998953 0,201605 0,000279 75,000 0,999713 0,418597 × 10 ⁻⁸ 100,000 0,999905 0,135752 0,000019					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H (ht	Ctps:// ho loo	0.93189 ly.com)	0.483321	0.066913
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		11,500	0.939959	0.418725	0.05797
14,000 0.962898 0.217641 0.030131 15,000 0.968933 0.171866×10^{-5} 0.023794 16,000 0.973814 0.137429 0.019026 18,000 0.98086 0.908240×10^{-6} 0.012574 20,000 0.985602 0.62331 0.008629 25,000 0.992215 0.276474 0.003828 30,000 0.99534 0.140469×10^{-6} 0.001945 40,000 0.997967 0.473891×10^{-6} 0.000656 50,000 0.998953 0.201605 0.000279 75,000 0.999713 0.418597×10^{-8} 0.000058		12,000	0.945098		0.050448
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		13,000	0.955139	0.279457	0.038689
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		14,000	0.962898	0.217641	0.030131
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		15,000	0.968933		0.023794
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		16,000	0.973814	0.137429	0.019026
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		18,000	0.98086		0.012574
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		20,000	0.985602	0.62331	0.008629
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		25,000	0.992215	0.276474	0.003828
10^{-7} $50,000$ 0.998953 0.201605 0.000279 $75,000$ 0.999713 0.418597×10^{-8} 0.000058		30,000	0.99534		0.001945
75,000 0.999713 0.418597×10^{-8} 0.000058		40,000	0.997967		0.000656
10-8		50,000	0.998953	0.201605	0.000279
100,000 0.999905 0.135752 0.000019		75,000	0.999713		0.000058
		100,000	0.999905	0.135752	0.000019

The wavelength λ_2 corresponds to the lower limit of the spectral band $(\lambda_2 o \infty)$ containing 10% of the emitted radiation. With

$$F_{(\lambda_2 o \infty)} = 1 - F_{(0 o \lambda_2)} = 0.1$$

$$F_{(0
ightarrow\lambda_2)}=0.9$$

it follows from Table 12.2 that $\lambda_2 T = 9382 \mu m \cdot K$. Hence

$$\lambda_2=4.69 \mu m$$

3. From Wien's displacement law, Equation 12.31, $\lambda_{ ext{max}}T=2898\mu m\cdot K$ Hence

$$\lambda_{\max}T=C_3$$
 (12.31)

$$\lambda_{\rm max}=1.45 \mu m$$

Holock emissive power associated with this wavelength may be computed from (https://holooly.com)

Fauation 12.30 or from the third column of Table 12.2. For $\lambda_{
m max}T=2898\mu m\cdot K$ it follows

from Table 12.2 that

$$E_{\lambda,b}(\lambda,T)=\pi I_{\lambda,b}(\lambda,T)=rac{C_1}{\lambda^5[\exp(C_2/\lambda T)-1]}$$
 (12.30)

$$I_{\lambda,b}(1.45\mu m,T) = 0.722 \times 10^{-4} \sigma T^5$$

Hence

$$I_{\lambda,b}(1.45\mu m,2000K)=0.722 imes 10^{-4}(\mu m\cdot K\cdot sr)^{-1} imes 5.67$$

$$imes 10^{-8} W/m^2 \cdot K^4 (2000 K)^5$$

$$I_{\lambda,b}(1.45 \mu m, 2000 K) = 1.31 imes 10^5 W/m^2 \cdot sr \cdot \mu m$$

Since the emission is diffuse, it follows from Equation 12.16 that

$$E_{\lambda}(\lambda) = \pi I_{\lambda,e}(\lambda)$$
 (12.16)

$$E_{\lambda,b}=\pi I_{\lambda,b}=4.12 imes 10^5 W/m^2\cdot \mu m$$

Holr@@lf of any small object inside the enclosure may be approximated as being

(https://holooly.com)

eമുലുമ \pm ക്കarphiസ്റ്റെൻസ്റ്റെയിൽ കാര്യാർ വരുന്നു വരുന്നു

 $E_b^{\rm Let}$ Al write high-quality human-like original **essays** on any topic.

Start Free Trial (https://www.holooly.org/writewise/)

✓ No Payment Required

 $G=9.07 imes 10^5 W/m^2$

Terms & Policies(https://holooly.com/support/)

Contact Us(https://holooly.com/contact-us/)

Site Map(https://holooly.com/sitemap_index.xml) 2023 © Holooly.com