Aplicaciones de Datos Sintéticos en la Creación y Validación de Modelos Predictivos

Repaso

- Se definieron dos modelos de simulacion para series de tiempo, uno con deriva y otro sin ella (Geometric Brownian Motion y Proceso de Ornstein-Uhlenbeck).
- Se simularion diferentes puntos de TP y SL para un modelo de trading sobre datos simulados.
- Se observo que los parametros obtenidos eran optimos para la simulacion, y funcionaron bien frente a los datos reales.

Repaso

- Se simulo una serie de precios con su correspondiente deriva y se verifico que el comportamiento promedio coincidia con la ecuacion de Black-Scholes.
- Se realizo una validacion cruzada de la estrategia de trading sobre un Block_bootstrap y se obtuvieron resultados similares a los obtenidos con los datos reales.
- Se utilizaron los datos simulados y bootrap para generear intervalos de confianza.

Bootstrap y Simulaciones para Cálculo de P-valores

Introducción

- **Objetivo**: Explicar cómo el Bootstrap y las simulaciones se utilizan para calcular p-valores cuando no se cumplen los supuestos de normalidad.
- Importancia: En muchos casos, las distribuciones de los datos no son normales y los métodos paramétricos no son adecuados.

Bootstrap

• **Definición**: Método de remuestreo que permite estimar la distribución de una estadística.

Proceso:

- i. Generar múltiples muestras aleatorias con reemplazo del conjunto de datos original.
- ii. Calcular la estadística de interés para cada muestra.
- iii. Usar la distribución de estas estadísticas para hacer inferencias.

Solución del Problema de los Tanques Alemanes con Bootstrap

Introducción

- Problema: Durante la Segunda Guerra Mundial, los Aliados querían estimar el número total de tanques alemanes basándose en números de serie observados en tanques capturados.
- **Objetivo**: Estimar el número total de tanques (N) a partir de una muestra de números de serie.

Enfoque Clásico

• Estimación de N: La fórmula clásica para estimar el número total de tanques es:

$$\hat{N}=m+rac{m}{k}-1$$

donde:

- $\circ m$ es el número máximo observado en la muestra.
- $\circ \; k$ es el tamaño de la muestra.

Enfoque Bootstrap

• **Bootstrap:** Técnica de remuestreo que nos permite estimar la distribución de una estadística sin hacer supuestos paramétricos.

Proceso:

- i. Generar múltiples muestras bootstrap a partir de la muestra original.
- ii. Calcular la estadística de interés (estimación de N) para cada muestra.
- iii. Usar la distribución de estas estimaciones para hacer inferencias.

Paso 1: Datos de la Muestra

• **Supongamos**: Observamos los siguientes números de serie de tanques capturados: [48, 84, 39, 54, 77].

```
# Generar datos de muestra simulando números de serie de tanques capturados
np.random.seed(1234) # Para reproducibilidad
sample_size = 5
true_N = 100
sample_data = np.random.randint(1, true_N + 1, size=sample_size)
print(f"Datos de la muestra: {sample_data}")
```

Paso 2: Estadística Observada

• Estimación de N: La fórmula clásica para estimar el número total de tanques es:

$$\hat{N}=m+rac{m}{k}-1$$

donde:

- $\circ m$ es el número máximo observado en la muestra.
- $\circ k$ es el tamaño de la muestra.

```
def estimate_total_tanks(data):
    m = np.max(data)
    k = len(data)
    N_hat = m + (m / k) - 1
    return N_hat

# Estimación observada
observed_estimate = estimate_total_tanks(sample_data)
print(f"Estimación observada de N: {observed_estimate}")
```

Estimación observada de N: 99.8

Paso 3: Generación de Muestras Bootstrap

• **Remuestreo**: Generar múltiples muestras con reemplazo a partir de los datos originales.

```
# Número de muestras bootstrap
n_bootstrap = 1000

# Generar muestras bootstrap y calcular estimaciones
bootstrap_estimates = np.array([estimate_total_tanks(
    np.random.choice(
        sample_data,
        size=len(sample_data),
        replace=True))
    for _ in range(n_bootstrap)])
```

Paso 4: Inferencias Estadísticas

• **Distribución de Bootstrap:** Usar la distribución de las estimaciones bootstrap para calcular el intervalo de confianza.

```
# Intervalo de confianza del 95%
ci_lower = np.percentile(bootstrap_estimates, 2.5)
ci_upper = np.percentile(bootstrap_estimates, 97.5)
print(f"Intervalo de confianza del 95%: [{ci_lower}, {ci_upper}]")
```

```
Intervalo de confianza del 95%: [63.8, 99.8]
```

Paso 5: Prueba de Hipótesis

• **P-valor**: Calcular el p-valor para la hipótesis nula de que el número total de tanques es 95 o mas.

```
p_value = np.sum(bootstrap_estimates < 95) / n_bootstrap
print(f"P-valor: {p_value}")</pre>
```

```
P-valor: 0.326
```

No existe evidencia significativa para rechazar la hipótesis nula de que el número total de tanques es 95 o más.

Conclusión

- **Bootstrap**: Método efectivo para estimar la distribución de una estadística cuando los supuestos paramétricos no son aplicables.
- Ventaja: No requiere suposiciones sobre la distribución subyacente de los datos.
- Aplicación: Útil en problemas de estimación donde se dispone de muestras limitadas.

Recapitulación

- Bootstrap y simulacion son herramientas para la generacion de datos sinteticos y la validacion de modelos.
- Se pueden utilizar para calcular intervalos de confianza y p-valores.
- Se pueden aplicar a problemas de estimacion y optimizacion numerica.

Optimización de Portafolios con Métodos Numéricos

Metodo de Fuerza Bruta

Descarga y Preparación de Datos

```
import yfinance as yf
import pandas as pd
from datetime import datetime
import numpy as np
import random
import matplotlib.pyplot as plt
from deap import base, creator, tools, algorithms
stocks = [
    "AGRO.BA", "ALUA.BA", "AUSO.BA", "BBAR.BA", "BHIP.BA", "BMA.BA", "BPAT.BA", "BRIO.BA", "SUPV.BA", "BOLT.BA", "BYMA.BA", "CVH.BA", "CGPA2.BA", "CAPX.BA",
    "CADO.BA", "CELU.BA", "CECO2.BA", "CEPU.BA", "COME.BA", "INTR.BA", "CTIO.BA",
    "CRES.BA", "DOME.BA", "DYCA.BA", "EDN.BA", "FERR.BA", "FIPL.BA", "GARO.BA",
    "DGCU2.BA", "GBAN.BA", "GGAL.BA", "OEST.BA", "GRIM.BA", "VALO.BA", "HAVA.BA",
    "HARG.BA", "INAG.BA", "INVJ.BA", "IRSA.BA", "SEMI.BA", "LEDE.BA", "LOMA.BA",
    "LONG.BA", "METR.BA", "MIRG.BA", "MOLI.BA", "MORI.BA", "PAMP.BA", "PATA.BA",
    "POLL.BA", "RIGO.BA", "ROSE.BA", "SAMI.BA", "TECO2.BA", "TXAR.BA",
    "TRAN.BA", "TGNO4.BA", "YPFD.BA", "BTC-USD", "ETH-USD"
start date = "2011-01-02"
end date = datetime.now().strftime('%Y-%m-%d')
data = yf.download(stocks, start=start date, end=end date)
data.interpolate(method='linear', inplace=True)
```

Dividir Datos en Entrenamiento y Prueba

```
training_data = data[:'2023-12-31']
testing_data = data['2024-01-01':]
returns_train = training_data['Adj Close'].pct_change()
returns_test = testing_data['Adj Close'].pct_change()
nStocks = len(stocks)
R_train = returns_train.mean()
S_train = returns_train.cov()
R_test = returns_test.mean()
S_test = returns_test.cov()
```

Generación y Evaluación de Portfolios Aleatorios

```
def weights(w):
    w = np.clip(w, 0, 1)
    return w / sum(w)
def portfolio_return(w, R):
    return sum(w * R)
def portfolio volatility(w, S):
    return np.dot(w.T, np.dot(S, w))
n_{portfolios} = 100000
random_portfolios = []
for _ in range(n_portfolios):
    w = np.random.rand(nStocks)
    w = weights(w)
    ret = portfolio_return(w, R_train)
    vol = portfolio_volatility(w, S_train)
    random_portfolios.append((w, ret, vol))
```

Selección y Prueba de los Mejores 10 Portfolios

```
top_10_portfolios = sorted(random_portfolios, key=lambda x: x[1]/x[2], reverse=True)[:10]
results = []
for w, ret, vol in top_10_portfolios:
    ret test = portfolio return(w, R test)
    vol_test = portfolio_volatility(w, S_test)
    results.append((w, ret test, vol test))
def print_non_zero_weights(results):
    for i, (w, ret, vol) in enumerate(results):
        print(f"Portfolio {i+1}:")
        non zero indices = np.where(w > 0)[0]
        for idx in non zero indices:
            print(f" {stocks[idx]}: {w[idx]:.4f}")
        print(f" Expected return: {ret}")
        print(f" Expected volatility: {vol}")
        print()
print non zero weights(results)
```

Cálculo de la Línea de Mercado de Capitales (CML)

```
all_returns = [x[1] for x in random_portfolios]
all_volatilities = [x[2] for x in random portfolios]
risk free rate = 0.02/365 # Tasa libre de riesgo diaria
best_portfolio = top_10_portfolios[0]
best_return = best_portfolio[1]
best_volatility = best_portfolio[2]
sharpe_ratio = (best_return - risk_free_rate) / best_volatility
cml_x = np.linspace(min(all_volatilities), max(all_volatilities), 100)
cml y = risk free rate + sharpe ratio * cml x
```


Metodo de Algoritmos Genéticos

Algoritmos Genéticos (GA)

¿Qué es un Algoritmo Genético?

- Inspiración Biológica: Los algoritmos genéticos se basan en el proceso de selección natural.
- Optimización y Búsqueda: Se utilizan para resolver problemas de optimización y búsqueda en grandes espacios de soluciones.
- **Población de Individuos:** Se trabaja con una población de soluciones potenciales (individuos).
- Evolución de la Población: La población evoluciona a través de generaciones, aplicando operadores genéticos.

Componentes de un Algoritmo Genético

- 1. Individuos: Representan posibles soluciones al problema.
- 2. Población: Conjunto de individuos.
- 3. Función de Fitness: Evalúa la calidad de cada individuo.
- 4. Selección: Escoge individuos para reproducirse basándose en su fitness.
- 5. Cruce (Crossover): Combina dos individuos para producir nuevos individuos (hijos).
- 6. Mutación: Introduce variaciones aleatorias en los individuos.
- 7. Generaciones: Iteraciones del proceso de selección, cruce y mutación.

Flujo de un Algoritmo Genético

- 1. Inicialización: Crear una población inicial aleatoria.
- 2. Evaluación: Calcular el fitness de cada individuo.
- 3. Selección: Seleccionar los mejores individuos para reproducirse.
- 4. Cruce y Mutación: Generar nueva población aplicando cruce y mutación.
- 5. Reemplazo: La nueva población reemplaza a la antigua.
- 6. **Iteración:** Repetir los pasos 2-5 hasta que se cumpla un criterio de parada.

Implementación de la Estrategia de Algoritmo Genético

```
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
creator.create("Individual", list, fitness=creator.FitnessMin)

toolbox = base.Toolbox()

# Generador de atributos para individuos
toolbox.register("attr_float", random.uniform, 0, 1)

# Inicializadores de estructura
toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_float, n=nStocks)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
```

Registro de la Función de Evaluación y Operadores Genéticos

```
# Función de evaluación
def fitness(w):
    w = weights(w)
    ret = portfolio_return(w, R_train)
    vol = portfolio_volatility(w, S_train)
    # Calcular la distancia a la CML
    cml_return = risk_free_rate + sharpe_ratio * vol
    distance_to_cml = np.abs(ret - cml_return)
    return distance_to_cml,
toolbox.register("evaluate", fitness)
# Operadores genéticos
toolbox.register("mate", tools.cxBlend, alpha=0.5)
toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=0.1, indpb=0.1)
toolbox.register("select", tools.selTournament, tournsize=3)
```

Ejecución del Algoritmo Genético

```
def run_ga():
    random.seed(123)
    pop = toolbox.population(n=300)
    ngen = 50
    cxpb = 0.7
    mutpb = 0.2
    algorithms.eaSimple(pop, toolbox, cxpb, mutpb, ngen, stats=None, halloffame=None, verbose=True)
    top_10 = tools.selBest(pop, 10)
    return top_10

top_10_ga_individuals = run_ga()
```

Prueba y Visualización de los Resultados del GA

```
ga results = []
for individual in top_10_ga_individuals:
    w = weights(individual)
    ret test = portfolio return(w, R test)
    vol test = portfolio volatility(w, S test)
    ga_results.append((w, ret_test, vol_test))
ga returns = [x[1] for x in ga results]
ga volatilities = [x[2] \text{ for } x \text{ in ga results}]
plt.scatter(ga_volatilities, ga_returns, c='orange', marker='s', s=50, label='GA Portfolios')
plt.title('Riesgo vs Retorno de Portfolios')
plt.xlabel('Volatilidad (Riesgo)')
plt.ylabel('Retorno')
plt.legend()
plt.grid(True)
plt.show()
print_non_zero_weights(ga_results)
```


Segun GA

```
Portfolios
Portfolio 1:
  ETH-USD: 0.0307
  BTC-USD: 0.0307
  RIGO.BA: 0.0307
  POLL.BA: 0.0307
 MOLI.BA: 0.0307
  Retorno Esperado: 0.0023
  Volatilidad Esperada: 0.0003
Portfolio 2:
  ETH-USD: 0.0322
  YPFD.BA: 0.0322
  ROSE.BA: 0.0322
  HARG.BA: 0.0322
  VALO.BA: 0.0322
  Retorno Esperado: 0.0020
  Volatilidad Esperada: 0.0003
Portfolio 3:
  YPFD.BA: 0.0268
 MIRG.BA: 0.0268
  SEMI.BA: 0.0268
  IRSA.BA: 0.0268
  INAG.BA: 0.0268
  Retorno Esperado: 0.0023
  Volatilidad Esperada: 0.0002
```

Segun Optimizacion Numerica Aleatoria

```
Top 10 Random Portfolios
Portfolio 1:
  CRES.BA: 0.0366
  PATA.BA: 0.0352
  DGCU2.BA: 0.0348
  GBAN.BA: 0.0343
  VALO.BA: 0.0333
  Retorno Esperado: 0.0025
  Volatilidad Esperada: 0.0003
Portfolio 2:
  CGPA2.BA: 0.0356
  OEST.BA: 0.0356
  POLL.BA: 0.0345
  FERR.BA: 0.0332
  LONG.BA: 0.0327
  Retorno Esperado: 0.0025
  Volatilidad Esperada: 0.0002
Portfolio 3:
  CADO.BA: 0.0349
  FIPL.BA: 0.0348
  HARG.BA: 0.0345
  CVH.BA: 0.0343
  PAMP.BA: 0.0341
  Retorno Esperado: 0.0022
  Volatilidad Esperada: 0.0003
```

Relaciones entre Activos y Rendimiento Futuro

Optimización de Portfolios:

- Generar portfolios utilizando métodos aleatorios y algoritmos genéticos nos permite explorar diferentes combinaciones de activos.
- La evaluación de estos portfolios en términos de retorno y volatilidad ayuda a identificar las mejores combinaciones.

Relaciones entre Activos:

- El análisis de los pesos de los activos en los portfolios óptimos proporciona información sobre las relaciones entre diferentes activos.
- Identificar los activos que consistentemente aparecen con pesos significativos puede revelar activos líderes y seguidores.

Rendimiento Futuro:

- Evaluar los portfolios óptimos con datos de prueba (futuros) permite prever su desempeño potencial.
- Portfolios que se desempeñan bien en ambos conjuntos de datos (entrenamiento y prueba) pueden ser indicativos de estrategias robustas.

Introducción a Dynamic Time Warping (DTW)

Métricas Basadas en Alineación

- Objetivo: Evaluar la similitud entre series temporales.
- **Definición:** Una serie temporal es una secuencia de características: $X=(x_1,x_2,\ldots,x_T)$.
- Métrica de alineación: Utiliza una alineación temporal para evaluar la similitud.

Comparación entre DTW y Distancia Euclidiana

- **Distancia Euclidiana:** Calcula la suma de las distancias entre puntos con el mismo índice temporal.
- **Dynamic Time Warping (DTW):** Busca la alineación temporal que minimiza la distancia entre series.

Problema de Formulación de DTW

- ullet Series temporales: $X=(x_1,x_2,\ldots,x_T)$ y $Y=(y_1,y_2,\ldots,y_U)$.
- Objetivo: Encontrar la alineación que minimice la distancia Euclidiana acumulada.
- Función de costo:

$$DTW(X,Y) = \min_{\pi} \sum_{(i,j) \in \pi} d(x_i,y_j)$$

donde π es una secuencia de pares de índices que representa la alineación.

Solución Algorítmica

- Programación dinámica: Resuelve el problema de alineación de forma eficiente.
- Recurrencia:

$$DTW(i,j) = d(x_i,y_j) + \min egin{cases} DTW(i-1,j) \ DTW(i,j-1) \ DTW(i-1,j-1) \end{cases}$$

Análisis de DTW entre BTC y ETH

Obtención y Normalización de Datos

```
import yfinance as yf
import numpy as np
import matplotlib.pyplot as plt
from fastdtw import fastdtw
from scipy.spatial.distance import euclidean
# Obtener datos de precios de Bitcoin y Ethereum desde Yahoo Finance
btc data = yf.download("BTC-USD", start="2024-01-01", end="2024-07-31")
eth_data = yf.download("ETH-USD", start="2024-01-01", end="2024-07-31")
# Calcular precios de cierre diarios
btc_prices = btc_data['Close']
eth_prices = eth_data['Close']
# Normalizar los precios
btc_aligned = btc_prices / np.mean(btc_prices)
eth aligned = eth prices / np.mean(eth prices)
```

Cálculo de DTW y Gráficos

```
btc_array = np.array(list(enumerate(btc_aligned, start=1)))
eth array = np.array(list(enumerate(eth aligned, start=1)))
# Calcular DTW
distance, path = fastdtw(btc array, eth array, dist=euclidean)
# Imprimir la distancia DTW
print(f"Distancia DTW: {distance}")
# Graficar la alineación DTW
fig, ax = plt.subplots()
for (map btc, map eth) in path:
    ax.plot([btc aligned.index[map btc], eth aligned.index[map eth]], [btc aligned[map btc], eth aligned[map eth]], color='gray')
ax.plot(btc_aligned, label='BTC', color='steelblue')
ax.plot(eth_aligned, label='ETH', color='orange')
ax.legend()
plt.title('DTW entre BTC v ETH')
plt.show()
# Graficar las series de tiempo originales
fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True)
ax1.plot(btc_aligned, label='BTC', color='steelblue')
ax1.set title('Precio Bitcoin (BTC)')
ax1.set vlabel('Precio Normalizado')
ax2.plot(eth_aligned, label='ETH', color='orange')
ax2.set title('Precio Ethereum (ETH)')
ax2.set_ylabel('Precio Normalizado')
ax2.set xlabel('Fecha')
plt.tight layout()
plt.show()
```


Analizando distancias entre series temporales

```
for i in range(n):
    for j in range(i+1, n):
        # Cast the normalized data to arrays with enumerated indices
        asset i array = np.array(list(enumerate(normalized data.iloc[:, i], start=1)))
        asset j array = np.array(list(enumerate(normalized data.iloc[:, j], start=1)))
        # Perform DTW
        try:
            distance, _ = fastdtw(asset_i_array, asset_j_array, dist=euclidean)
            distance_matrix[i, j] = distance
            distance_matrix[j, i] = distance
        except Exception as e:
            print(f"An error occurred: {e}")
            distance_matrix[i, j] = np.nan
            distance matrix[j, i] = np.nan
        print("Processed pair ({}, {})".format(stocks[i], stocks[j]))
```

Algunos Activos Argentinos

	AGRO.BA	ALUA.BA	AUSO.BA	BBAR.BA	BHIP.BA
AGRO.BA	0	2572.97	3341.41	2897.71	4179.12
ALUA.BA	2572.97	0	1676.47	1713.26	3067.97
AUSO.BA	3341.41	1676.47	0	992.444	1802.23
BBAR.BA	2897.71	1713.26	992.444	0	1582.03
BHIP.BA	4179.12	3067.97	1802.23	1582.03	0
BMA.BA	3267.91	1972.56	1018.87	604.273	1236.2
BPAT.BA	3058.32	2073.25	1315.02	1194.4	1801.43
BRIO.BA	3515.73	2612.08	1846.92	1236.98	1227.12

Analizando series Proximas

Analizando series Distantes

Propiedades de DTW

- Invarianza a desplazamientos temporales: DTW puede alinear patrones similares que ocurren en diferentes momentos.
- Alineación flexible: Puede manejar series de diferentes longitudes y velocidades.

Restricciones Adicionales

- Banda de Sakoe-Chiba: Limita la alineación a una banda alrededor de la diagonal.
- Paralelogramo de Itakura: Limita la pendiente máxima de la alineación.

Conclusión

- **Uso de DTW:** Útil para comparar series temporales con desplazamientos y deformaciones temporales.
- Ventajas sobre la Distancia Euclidiana: Proporciona una evaluación de similitud más precisa para series temporales.

Análisis de Transformada Wavelet

• **Objetivo**: Introducir la Transformada Wavelet y su aplicación en el análisis de series temporales.

• Teoría:

- Transformada Wavelet Continua (CWT) vs. Transformada Wavelet Discreta (DWT).
- Casos de uso en finanzas para detectar patrones en diferentes escalas.

• Implementación:

Análisis de la Transformada Wavelet en R

Carga de Datos y Preprocesamiento

```
#instalar paquetes necesarios
#install.packages("quantmod")
#install.packages("WaveletComp")
library(quantmod)
library(WaveletComp)
# Obtener datos de precios de YPF desde Yahoo Finance
getSymbols("YPFD.BA", src = "yahoo", from = "2014-01-01", to = "2024-01-01")
# Extraer precios de cierre
ypf_ba <- Cl(`YPFD.BA`)</pre>
ypf_ba <- ypf_ba[!is.na(ypf_ba)]</pre>
# Convertir a data frame
ypf_df <- data.frame(date = index(ypf_ba), price = as.vector(ypf_ba))</pre>
```

Transformada Wavelet y Visualización del Espectro

```
# Realizar transformada wavelet
ypf_wavelet <- analyze.wavelet(ypf_df, my.series = "price", loess.span = 0)
# Graficar el espectro de potencia wavelet
wt.image(ypf_wavelet, main = "Espectro de Potencia de YPF")</pre>
```

Explicación:

- **Transformada Wavelet**: Se utiliza analyze.wavelet del paquete WaveletComp para realizar la transformada wavelet en los precios de cierre de YPF.
- **Espectro de Potencia**: wt.image se utiliza para visualizar el espectro de potencia, mostrando la variabilidad de los componentes de frecuencia a lo largo del tiempo.

Interpretación del Espectro de Potencia

Estructuras Horizontales

- Estructuras Horizontales:
 - Representan patrones de frecuencia que permanecen constantes durante un período prolongado.
 - Indican la presencia de ciclos o componentes de frecuencia que dominan durante ese tiempo.

Interpretación del Espectro de Potencia

Estructuras Verticales

- Estructuras Verticales:
 - Representan cambios rápidos en la frecuencia.
 - Pueden indicar eventos de corta duración o anomalías en la serie temporal, como picos o caídas bruscas.

Interpretación del Espectro de Potencia

Grupos

• Grupos:

- Conjuntos de estructuras horizontales y verticales que muestran un patrón recurrente.
- Indican la presencia de ciclos o patrones complejos que se repiten en la serie temporal.

Estrategias de Trading

Estrategia HODL

```
# HODL strategy ------
hodl_return = (test_prices[-1] - test_prices[0]) / test_prices[0]
print("HODL Cumulative Return: {:.2f}%".format(hodl_return * 100))
```

- HODL: Mantener el activo a largo plazo sin realizar cambios en la posición.
- Ventaja: Simple de implementar.
- Desventaja: No aprovecha las oportunidades de mercado a corto plazo.
- **Retorno**: Calcula el retorno acumulado desde el inicio hasta el final del periodo de prueba.

Estrategia de Media Móvil Simple (SMA)

```
# SMA Strategy -----
def optimize sma(train prices):
    best return = -np.inf
    best short window = 0
    best long window = 0
    param grid = ParameterGrid({'short window': range(2, 10), 'long window': range(20, 50, 5)})
    for params in param grid:
        short ma = train prices.rolling(window=params['short window']).mean()
        long ma = train prices.rolling(window=params['long window']).mean()
        signals = np.where((short ma > long ma) & (short ma.shift(1) <= long ma.shift(1)))[0]
        if len(signals) < 2:</pre>
            continue
        returns = [(train prices.iloc[signals[i + 1]] - train prices.iloc[signals[i]]) / train prices.iloc[signals[i]] for i in range(len(signals) - 1)]
        cumulative return = np.prod([1 + r for r in returns]) - 1
        if cumulative return > best return:
            best return = cumulative return
            best_short_window = params['short_window']
            best long window = params['long window']
    return best short window, best long window
best short window, best long window = optimize sma(train prices)
short ma = test prices.rolling(window=best short window).mean()
long ma = test prices.rolling(window=best long window).mean()
long signals sma = np.where(short ma > long ma) & (short ma.shift(1) <= long ma.shift(1)))[0]
```

- Optimización: Busca las mejores ventanas de media móvil corta y larga.
- **Señales**: Genera señales de compra cuando la media móvil corta cruza por encima de la media móvil larga.

Estrategia de Índice de Fuerza Relativa (RSI)

```
# RSI Strategy -----
def optimize rsi(train prices):
    best return = -np.inf
    best window = 0
    param grid = ParameterGrid({'window': range(10, 20)})
    for params in param_grid:
        rsi = RSIIndicator(train prices, window=params['window']).rsi()
        signals = np.where((rsi < 30) & (rsi.shift(1) >= 30))[0]
        if len(signals) < 2:</pre>
            continue
        returns = [(train_prices.iloc[signals[i + 1]] - train_prices.iloc[signals[i]]) / train_prices.iloc[signals[i]] for i in range(len(signals) - 1)]
        cumulative return = np.prod([1 + r for r in returns]) - 1
        if cumulative return > best return:
            best return = cumulative return
            best window = params['window']
    return best window
best rsi window = optimize rsi(train prices)
rsi = RSIIndicator(test_prices, window=best_rsi_window).rsi()
long_signals_rsi = np.where((rsi < 30) & (rsi.shift(1) >= 30))[0]
```

- Optimización: Busca la mejor ventana para el cálculo del RSI.
- **Señales**: Genera señales de compra cuando el RSI cae por debajo de 30 y luego sube por encima.

Estrategia de Bandas de Bollinger

```
# Bollinger Bands Strategy -----
def optimize bbands(train prices):
    best return = -np.inf
    best window = 0
    param grid = ParameterGrid({'window': range(10, 30, 2), 'window dev': [1, 2, 3]})
    for params in param grid:
        bbands = BollingerBands(close=train prices, window=params['window'], window dev=params['window dev'])
        signals = np.where((train prices < bbands.bollinger lband()) & (train prices.shift(1) >= bbands.bollinger lband().shift(1)))[0]
        if len(signals) < 2:</pre>
            continue
        returns = [(train_prices.iloc[signals[i + 1]] - train_prices.iloc[signals[i]]) / train_prices.iloc[signals[i]] for i in range(len(signals) - 1)]
        cumulative_return = np.prod([1 + r for r in returns]) - 1
        if cumulative return > best return:
            best return = cumulative return
            best window = params['window']
            best window dev = params['window dev']
    return best window, best window dev
best bbands window, best bbands window dev = optimize bbands(train prices)
bbands = BollingerBands(close=test prices, window=best bbands window, window dev=best bbands window dev)
long signals bbands = np.where((test prices < bbands.bollinger lband()) & (test prices.shift(1) \geq bbands.bollinger lband().shift(1)))[0]
```

- **Optimización**: Busca las mejores ventanas y desviaciones para las Bandas de Bollinger.
- **Señales**: Genera señales de compra cuando el precio cae por debajo de la banda inferior y luego sube por encima.

Estrategia de Filtro CUSUM

```
# CUSUM Filter Strategy -----
def cusum_filter(prices, threshold):
    n = len(prices)
    S = np.zeros(n)
    long signals = np.zeros(n)
    for t in range(1, n):
        S[t] = max(0, S[t-1] + prices[t] - prices[t-1])
        if S[t] >= threshold:
            long signals[t] = 1 # Generate a long signal
            S[t] = 0 # Reset S[t]
    return np.where(long signals == 1)[0]
# Optimize CUSUM threshold
def optimize_cusum(train_prices):
    best return = -np.inf
    best threshold = 0
    param_grid = ParameterGrid({'threshold': range(500, 1500, 100)})
    for params in param grid:
        signals = cusum filter(train prices.values, params['threshold'])
        if len(signals) < 2:</pre>
            continue
        returns = [(train prices.iloc[signals[i + 1]] - train prices.iloc[signals[i]]) / train prices.iloc[signals[i]] for i in range(len(signals) - 1)]
        cumulative return = np.prod([1 + r for r in returns]) - 1
        if cumulative return > best return:
            best return = cumulative return
            best threshold = params['threshold']
    return best threshold
best cusum threshold = optimize cusum(train prices)
long signals cusum = cusum filter(test prices.values, best cusum threshold)
```

- Optimización: Busca el mejor umbral para el filtro CUSUM.
- **Señales**: Genera señales de compra cuando la suma acumulada de cambios de precios excede el umbral.

Comparación de Estrategias

- **HODL**: Retorno acumulado simple manteniendo el activo.
- SMA: Cruce de medias móviles para generar señales de compra.
- RSI: Uso del índice de fuerza relativa para identificar puntos de sobreventa.
- Bandas de Bollinger: Identificación de puntos de compra cuando el precio cae por debajo de la banda inferior.
- CUSUM: Filtro acumulativo para detectar cambios significativos en los precios.

Cada estrategia se optimiza utilizando un conjunto de entrenamiento y se evalúa utilizando un conjunto de prueba.

Retornos cumulativos para las estrategias

Estrategia	Retorno Cumulativo (%)
HODL	49.89
SMA	52.87
RSI	-6.00
Bollinger Bands	0.00
CUSUM Filter	51.06

Entrenamiento de RF con Bootstrap

Random Forest Naive

- **Definición**: Random Forest es un algoritmo de aprendizaje supervisado que utiliza múltiples árboles de decisión para mejorar la precisión y evitar el sobreajuste.
- Funcionamiento:
 - i. **Entrenamiento**: Cada árbol de decisión se entrena con una muestra aleatoria del conjunto de datos.
 - ii. **Predicción**: Las predicciones de todos los árboles se combinan (votación) para obtener la predicción final.
- Ventaja: Simplicidad y capacidad de manejar datos grandes y complejos.
- **Desventaja**: Puede no captar completamente la variabilidad y patrones presentes en los datos debido al uso de muestras fijas para cada árbol.

Random Forest con Bootstrap

Definición: Random Forest con Bootstrap utiliza la técnica de remuestreo (bootstrap)
 para mejorar la estimación de los parámetros del modelo.

• Funcionamiento:

- i. **Bootstrap**: Se generan múltiples conjuntos de datos remuestreados a partir del conjunto de datos original.
- ii. **Entrenamiento**: Se entrena un modelo Random Forest en cada conjunto de datos remuestreado.
- iii. **Promedio**: Las predicciones y métricas de rendimiento se promedian sobre todos los modelos.
- Ventaja: Mejora la robustez y precisión del modelo al reducir el sesgo y la varianza.
- **Desventaja**: Mayor complejidad computacional debido al entrenamiento de múltiples modelos.

Comparación

Aspecto	Random Forest Naive	Random Forest con Bootstrap
Muestras de Entrenamiento	Fijas	Remuestreadas (Bootstrap)
Robustez	Moderada	Alta
Varianza	Moderada	Baja
Sesgo	Moderado	Bajo
Computación	Menor	Mayor

Random Forest para Prediccion de Señales

Estrategia	Retorno Cumulativo (%)	
Random Forest Bootstraped	53.93	
CUSUM Filter	51.06	
Random Forest basico	25.14	
HODL	49.89	
SMA	52.87	
RSI	-6.00	
Bollinger Bands	0.00	

Preguntas

Recursos Adicionales

• Libros:

 Advances in Financial Machine Learning por Marcos López de Prado (Capítulo 13)

• Online:

- Repositorio en Github para código adicional y ejemplos.
- Romain Tavenard, "An introduction to Dynamic Time Warping", 2021. Link