Class Equation

Daniel Rostovtsev

Date: 5 November, 2017

Proposition

Let $*: G \times G \to G$ be defined by $*((g,h)) = ghg^{-1}$. Then G * G is a group action of G on itself.

Proof.
$$e * x = exe = x$$
 and $g * (h * x) = g * (hxh^{-1}) = ghxh^{-1}g^{-1} = (gh)x(gh)^{-1} = (gh) * x$

Centralizer

The center of an element $x \in G$, denoted Z(x), is: $Z(x) = \{g \in G : gxg^{-1} = x\} = \{g \in G : gx = xg\}$

Conjugacy Class

The conjugacy of an element $x \in G$, denoted C(x), is: $C(x) = \{x' \in G : x' = gxg^{-1}\}$

Proposition

$$|G| = |Z(x)||C(x)| \ \forall x \in G$$

Proof. Under conjugation, Z(x) is the stabilizer of x, and C(x) is the orbit of x. Since conjugation is a group action, it follows by the orbit stabilizer theorem that |G| = |Z(x)||C(x)| for all $x \in G$.

Class Equation

$$|G| = \sum |C_i| = 1 + \sum |C_j|$$

Proof. Since under conjugation C(x) are orbits which partition G, it then follows that $G = \bigcup C_i$ where each C_i is a distinct conjugacy class. However, for the identity, $C(e) = \{e\}$, so $|G| = \sum C_i = 1 + \sum C_j$.