Laws

Law	Formula	Law of
Idempotent	$p \wedge p = p$ $p \vee p = p$	Conjunction Disjunction
Commutative	$p \wedge q = q \wedge p$	Conjunction Disjunction
Associative	$(p \wedge q) \wedge r = p \wedge (q \wedge r)$ $(p \vee q) \vee r = p \vee (q \vee r)$	Conjunction Disjunction
Distributive	$p \wedge (q \vee r) = (p \wedge q) \vee (p \wedge r)$ $p \vee (q \wedge r) = (p \vee q) \wedge (p \vee r)$	And over Or Or over And
De Morgans	$\neg (p \land q) = \neg p \lor \neg q$ $\neg (p \lor q) = \neg p \land \neg q$	First Second
De Morgans (II)	$\neg \forall x \ P(x) \equiv \exists x \ \neg P(x)$ $\neg \exists x \ P(x) \equiv \forall x \ \neg P(x)$	
Identity	p	Conjunction Disjunction
Domination	p	Conjunction Disjunction
Negation	p	Contradiction Tautology
Double Negation	¬ (¬ p) = p	Involution Law
Contrapositive	$p \rightarrow q \equiv \neg q \rightarrow \neg p$	
Absorption	$p \vee (p \wedge q) \equiv p$ $p \wedge (p \vee q) \equiv p$	Left Absorption Law Right Absorption Law
Implication	$p \rightarrow q \equiv \neg p \lor q$ $\neg (p \rightarrow q) \equiv p \land \neg q$	Conditional Law Negation of Conditional Law
Bi-Implication	$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$	Bi-Conditional Law

Non Equivalances

Law	Conditional Non-Equivalence	Description
Converse	$p \rightarrow q \neq q \rightarrow p$	Order of conditional is reversed
Inverse	p → q ≠ ¬q → ¬p	Negation of both sides of inverse

De Morgans Law

- When a negation "passes" over a quantifier, it causes the quantifier to "flip".
- Existential becomes Universal, and Universal becomes Existential

$$\neg \exists x \forall y (P(x) + Q(y) = 0) \equiv \forall x \exists y \neg (P(x) + Q(y) = 0)$$

 Note: the negation can be applied to the expression, converting the "=" operator to "≠".

$$orall x \exists y \neg (P(x) + Q(y) = 0) \equiv orall x \exists y (P(x) + Q(y)
eq 0)$$

Tautology and Contradiction

- A compound proposition is a <u>tautology</u> if the proposition is always true.
- A compound proposition is a contradiction if the proposition is always false

Tautology truth table:

р	¬р	p ∨ ¬p
Т	F	Т
F	Т	Т

Contradiction truth table:

р	¬р	р∧¬р
Т	F	F
F	Т	F

Conditional Statements

Proposition:	p → q	Ex: If it is raining today, the game will be cancelled.
Converse:	$q \rightarrow p$	Ex: If the game is cancelled, it is raining today.

Proposition:	$p \rightarrow q$	Ex: If it is raining today, the game will be cancelled.
Contrapositive:	¬q → ¬p	Ex: If the game is not cancelled, then it is not raining today.
Inverse:	¬p → ¬q	Ex: If it is not raining today, the game will not be cancelled.