Task 4

Defines file path

```
addpath('classes');
```

Task description

Implementer varianten av RK4-metoden beskrevet i avsnitt 4.4. Dere kan om dere vil implementere varianten av Runge Kutta Fehlberg-metoden (RKF45) som er beskrevet i avsnitt 4.5. Vær nøye på å implementere metoden nøyaktig slik den st°ar. En liten feil i koefisientene vil gjøre metoden omtrent like unøyaktig som Eulers metode.

Parameter initialization

```
X0 = eye(3); % X-matrix
I = eye(3); % Moment of intertia matrix
L = [1 0 0]'; % Torque vector

h = 0.1; % Step size
n = 10000; % Number of iterations
TOL = 1e-50; % Tolerance
```

RKF45

RK4

```
rk4 = RK4(h, n);

[~, W] = rk4.solve(X0, I, L);

W4 = W{end}

W4 = 3x3

1.0000 0 0

0 0.5624 -0.8269

0 0.8269 0.5624
```

The exact solution

```
X = Q(x) [1 0 0 0 0 cos(x) -sin(x)
```

Calculates the error

RK4

RKF45

We can see from this that RK4 and RKF45 are more accurate than newtons method, even on this trivial example.

Checks if energy is conserved

Final energy: 5.000000e-01

```
w0 = (X0 * I)^(-1) * L;
E0 = Energy.calculate(L, X0 * w0);
```

RK4

```
w1 = (W4 * I)^(-1) * L;
E1 = Energy.calculate(L, W4 * w1);
fprintf('Initial energy: %i \nFinal energy: %i \nDifference: %i', E0, E1, abs(EI)
Initial energy: 5.000000e-01
```

Difference: 0

RKF45

```
w1 = (W45 * I)^{(-1)} * L;
E1 = Energy.calculate(L, W45 * w1);
fprintf('Initial energy: %i \nFinal energy: %i \nDifference: %i', E0, E1, abs(E3)
```

Initial energy: 5.000000e-01 Final energy: 5.000000e-01 Difference: 0