trường thet chuyên hoàng văn thụ

TOAN HOE NHU PROT WEN KIN CUUNG, CANG PAR GIVA, CANG SANG BEP I CHÎ BIẾT PĂNG. CUỐT CỦNG CHỦNG TỐT SỆ THÂNG

01010100000

HÒA BÌNH THÁNG 1 NĂM 2007

LỜI NÓI ĐẦU

Học toán và làm toán là hai vấn đề hoàn toàn khác nhau. Đó là hai mặt không thể tách rời của toán học, trong đó học toán là cơ bản và làm toán là một vấn đề đặc biệt quan trọng. Học toán sẽ giúp cho chúng ta nắm được những điều cơ bản nhất và những vận dụng ban đầu của lý thuyết cơ sở. Làm toán nghĩa là đào sâu suy nghĩ, phát triển một bài toán ở mức độ tư duy cao hơn, nhờ đó sẽ giúp chúng ta có một cái nhìn toàn diện và sâu sắc hơn về một vấn đề. Và hệ quả tất yếu của việc đào sâu suy nghĩ đó là những sáng tạo toán học như những khái niệm, những bài toán, những ứng dụng hay lý thuyết mới. Đó mới là mục đích sâu sắc nhất của toán học. Với tinh thần đó, nhóm những cựu học sinh trường THPT Chuyên Hoàng Văn Thụ – Hòa Bình đã cùng nhau xây dựng nên tờ Tập san Toán học 2007 nhằm mục đích động viên phong trào học toán ở trường Chuyên Hoàng Văn Thụ nói riêng và các bạn học sinh của Tỉnh Hòa Bình nói chung. Tờ báo được hoàn thành với sự tâm huyết, lòng yêu toán và hướng tới mái trường cũ của những học sinh đã từng học tập dưới mái trường Hoàng thân yêu. Đó cũng là món quà mà những cựu học sinh muốn gửi tặng đến các thầy cô giáo với lòng biết ơn sâu sắc!

Đây là lần thứ hai Tập san ra mắt, nhưng với quy mô và nội dung phong phú hơn rất nhiều so với lần ra mắt trước đó. Nội dung của Tập san là những bài viết với nội dung tìm tòi, sáng tạo, những kinh nghiệm, ứng dụng và những phương pháp học toán. Hy vọng rằng dù với một lượng kiến thức không nhiều, nhưng Tập san sẽ mang lại cho các bạn nhiều điều bổ ích và lý thú.

Vì khả năng của Ban biên tập còn nhiều hạn chế và thời gian có hạn, nên trong quá trình biên tập, chắc chắn không tránh khỏi những thiếu sót và nhiều điểm không được như mong muốn, rất mong nhận được sự thông cảm và những đóng góp xây dựng của các bạn độc giả. Và chúng tôi cũng hy vọng rằng, với truyền thống hào hùng của trường THPT Chuyên Hoàng Văn Thụ, các bạn thế hệ sau sẽ tiếp tục phát huy và không ngừng nâng cao vị thế của tuổi trẻ Hòa Bình trong mắt bạn bè ở mọi miền đất nước. Hy vọng rằng Tập san sẽ được các bạn khóa sau duy trì và hoàn thiện hơn nữa về mọi mặt. Ban biên tập xin được cảm ơn tất cả các bạn đã tham gia và ủng hộ nhiệt tình để tờ Tập san được ra mắt đúng như dự kiến. Xin trân trọng giới thiêu cùng ban đọc!

Chúc các bạn thành công trong học tập và thành đạt trong cuộc sống!

Hòa Bình tháng 1 năm 2007 **Ban biên tập**

Tập san TOÁN HỌC 2007

HỘI ĐỒNG BIÊN TẬP

Trưởng ban biên tập: NGUYỄN LÂM TUYỀN Phó ban biên tập: BÙI LÊ VŨ Cộng tác viên: NGUYỄN THÁI NGỌC, LƯU NHƯ HÒA, TRẦN QUANG THỌ PHẠM THÁI SƠN, NGUYỄN DUY HOÀNG

MỤC LỤC

PHẦN 1. SÁNG TẠO TOÁN HỌC

Giới thiệu phương pháp tính một số lớp tích phân dạng hàm lượng giác – Cao Trung Chinh	1
Tổng quát hóa bài toán - Đỗ Thị Thu Hà	3
Xung quanh bài toán bất đẳng thức thi Toán Quốc tế 2005 – Nguyễn Anh Tuấn	5
Thử đi tìm bất đẳng thức trong tam giác – Dương Thị Hương – Nguyễn Như Thắng	9
Một sự tình cờ – Nguyễn Lâm Tuyền.	12
Sử dụng tính chất hàm đơn ánh để giải bài toán phương trình hàm – Nguyễn Thái Ngọc	15
Lời giải các bài thi Toán Quốc tế 2003 – Hà Hữu Cao Trình	17
Số phức với hình học phẳng – Vũ Hữu Phương.	20
Phương trình hàm và sự trù mật – Bùi Lê Vũ	23
Dãy số và sự trù mật trên R ⁺ – Hồ Sỹ Tùng Lâm	26
Một số bài toán số học về dãy tổng các lũy thừa – Trần Quốc Hoàn	28
Cân bằng hệ số trong bất đẳng thức Cô-si – Nguyễn Lâm Tuyền	30
Phương pháp sử dụng định nghĩa để tính giới hạn – Lê Bảo Khánh	35
Điểm Lemoine trong tam giác – Lê Văn Đính	38
Câu chuyện đường tròn và elipse – Lưu Như Hòa	40
Một số phương pháp xác định giới hạn của dãy số – Nguyễn Lâm Tuyền	41
Một lớp các bài toán bất đẳng thức – Nguyên Minh Phúc	46
Một số khái niệm về góc định hướng – Trần Quang Thọ.	48
Tiêu chuẩn hội tụ tổng quát – Bùi Lê Vũ – Nguyễn Thái Ngọc	52
	55
Ứng dụng định lý Stolz trong tìm giới hạn của dãy số – Ngô Nhất Sơn	
Ứng dụng của một bài toán tổng quát – Nguyễn Hà Thuật	57
Tập dượt sáng tạo – Đặng Phùng Hưng.	59
Vận dụng định lý sách giáo khoa linh hoạt – Trịnh Anh Tuấn	61
Mở rộng khái niệm tâm tỉ cự cho tứ diện – Hoàng An Giang	64
Phương pháp logic mệnh đề – Phạm Phúc Lân.	66
Phép chiếu và ứng dụng của phép chiếu – Nguyễn Lâm Tuyền	69
Một số bài toán bất đẳng thức chọn lọc – Lưu Như Hòa	73
Sử dụng đẳng thức để chứng minh bất đẳng thức – Vũ Việt Dũng	75
Tiếp cận toán bằng vật lý – Nguyễn Lâm Tuyền	78
Bất đẳng thức Schur và ứng dụng – Trương Quốc Hưng	81
Một số bài tập về toán rời rạc – Bùi Mạnh Quân	83
Sử dụng hàng điểm điều hòa để giải bài toán cực trị – Trần Thị Linh Phương	85
PHẨN II. LỊCH SỬ VÀ ỨNG DỤNG TOÁN HỌC	
Sự phát triển của số học – Phùng Ngọc Thắng	87
Toán học và tự động hóa – Nguyễn Lâm Tuyền	90
Dùng đa thức để phát hiện lỗi đường truyền – Nguyễn Lâm Tuyền	93
Cấu trúc tự nhiên – Nguyễn Thái Ngọc	95
PHẦN III. TOÁN HỌC VÀ NGOẠI NGỮ	
Học toán và ngoại ngữ – Ngô Thành Long.	97
Phương tích của điểm với đường tròn – Lưu Như Hòa	98
Phép nghịch đảo – Lưu Như Hòa	99
PHẦN IV. NHỮNG BÀI TOÁN HAY VÀ CÁC BÀI TOÁN TỰ SÁNG TẠO	
Các bài toán tự sáng tạo – Nguyễn Lâm Tuyền	103
Những bài toán hay – Nhiều tác giả	109

PHÂN I

Sáng tạo Toán học

Giới Thiệu Phương Pháp TÍNH MỘT SỐ LỚP TÍCH PHÂN DẠNG HÀM LƯỢNG GIÁC

THẦY CAO TRUNG CHINH GV. THPT Chuyên Hoàng Văn Thu, Hoà Bình

ể giúp học sinh có thêm những kiến thức mang tính hệ thống, tôi xin giới thiệu một số lớp tích phân dạng hàm số lượng giác thường gặp trong các kì thi tốt nghiệp cũng như thi đại học. Hi vọng qua bài viết này, các em có thể rút ra nhiều điều bổ ích cho bản thân.

I. Dang $\int f(\sin x, \cos x) dx$.

1. Nếu f(sinx, cosx) là hàm hữu tỉ thì đặt $t = tg\frac{x}{2}$.

2. Một số hiện tượng cá biệt.

- Nếu f(-sinx, cosx) = -f(sinx, cosx) thì đặt x = cost.
- Nếu f(sinx, -cosx) = -f(sinx, cosx) thì đặt x = sint.
- Nếu f(-sinx, -cosx) = f(sinx, cosx) thì đặt x = tgt.

Qua các cách đổi biến như trên, ta có thể tính các tích phân một cách đơn giản và nhanh chóng. Sau đây là một số ví dụ cu thể.

1. Ví dụ 1. Tính
$$I = \int \frac{dx}{\sin x}$$
.

Lời giải.

$$Dat t = tg\frac{x}{2} \implies dt = \frac{dx}{2\cos^2\frac{x}{2}},$$

$$\sin x = \frac{2t}{1+t^2} \cdot \text{Vây}$$

$$I = \int \frac{dx}{\sin x} = \int \frac{dt}{t} = \ln|t| + c = \ln\left|tg\frac{x}{2}\right| + c$$

2.Ví dụ 2. Tính
$$I = \int \frac{\sin^3 x dx}{\sqrt[3]{\cos^2 x}}$$
.

Lòi giải. Đặt $t = \cos x \implies dt = -\sin x dx$.

$$I = -\int \frac{1 - t^2}{\sqrt[3]{t^2}} dt = \int \left(t^{\frac{4}{3}} - t^{-\frac{2}{3}} \right) dt =$$

$$\frac{3}{7} t^{\frac{7}{3}} - 3t^{\frac{1}{3}} + c = \frac{3}{7} \sqrt[3]{\cos^7 x} - 3\sqrt[3]{\cos x} + c$$

Các bạn hãy tự giải hai ví dụ sau:

3. Ví dụ3. Tính
$$I = \int \frac{\cos^3 x + \cos^5 x}{\sin^2 x + \sin^4 x} dx$$
.

4.Ví du 4.

$$Tinh I = \int \frac{dx}{\sin^2 x + 2\sin x \cos x - \cos^2 x}$$

<u>Chú ý:</u> Ở đây mọi nguyên hàm được hiểu là trên mỗi khoảng của tập xác định.

II. Dạng $\int \sin^m x \cos^n x dx$.

- Nếu m hoặc n là số nguyên dương lẻ thì tương ứng ta đặt t = cosx hoặc t = sinx
- Nếu m và n đều là số nguyên dương chẵn thì chúng ta dễ dàng sử dụng công thức hạ bậc và góc nhân đôi để giải quyết bài toán.
- $N\acute{e}u$ (m+n) $l\grave{a}$ $s\acute{o}$ $nguy\^{e}n$ $ch\~{a}n$ $th\grave{i}$ $d\~{a}t$ t=tgx $ho\~{a}c$ t=cotgx.

Tùy theo từng điều kiện của bài toán mà ta có thể chọn lựa cách đặt cho phù hợp. Sau đây là một số ví du:

1.Ví dụ1. Tính $\int \sin^4 x \cos^5 x dx$.

Lời giải. Đặt
$$t = sinx$$
, ta có $dt = cosxdx$
Vậy $\int \sin^4 x \cos^5 x dx =$

$$= \int t^4 (1 - t^2)^2 dt = \int (t^4 - 2t^6 = t^8) dt$$

$$= \frac{1}{5} t^5 - \frac{2}{7} t^7 + \frac{1}{9} t^9 + c$$

$$= \frac{1}{5} \sin^5 x - \frac{2}{7} \sin^7 x + \frac{1}{9} \sin^9 x + c.$$

$$2.Vi du 2.Tinh \int \frac{\sin^3 x dx}{\cos x^3 \sqrt{\cos x}}.$$

Lời giải.

Ta có
$$\int \frac{\sin^3 x dx}{\cos x^3 \sqrt{\cos x}} = \int \sin^3 x \cos^{-\frac{4}{3}} x dx$$

Đặt $t = \cos x$ (do $m = 3$, $n = -\frac{4}{3}$), ta có $dt = -\sin x dx$. Vậy $\int \sin^3 x \cos^{-\frac{4}{3}} x dx = -\int (1-t^2) t^{-\frac{4}{3}} dt$
 $= \int \left(t^{\frac{2}{3}} - t^{-\frac{4}{3}}\right) dt$
 $= \frac{3}{5} t^{\frac{5}{3}} - 3t^{-\frac{1}{3}} + c$
 $= \frac{3}{5} \cos^{\frac{5}{3}} x - 3\cos^{-\frac{1}{3}} x + c$

3. Ví dụ3.
$$T$$
inh $I = \int \sin^2 x \cos^4 x dx$.

Lời giải. Ta sử dụng công thức hạ bậc: $\sin x \cos x = \frac{1}{2} \sin 2x$, $\cos^2 x = \frac{1 + \cos 2x}{2}$ và để dàng giải quyết bài toán.

4.Ví dụ 4.
$$T$$
inh $I = \int \frac{dx}{\sqrt[3]{\sin^{11} x \cos x}}$.

Lòi giải. Dễ thấy
$$m = -\frac{11}{3}$$
, $n = -\frac{1}{3}$ và

 $m+n=\text{-}4\ \text{nên}\ \text{ta}\ \text{dặt}\ t=tgx\ ,\ \text{ta}\ \text{có}$ $ngay\,dt=(1+tg2x)dx\ .\ \text{Vậy:}$

$$I = \int \frac{dx}{\sqrt[3]{tg^{11}x\cos^{12}x}} = \int \frac{dx}{\cos^4 x \sqrt[3]{tg^{11}x}}$$

$$= \int \frac{\left(1+t^2\right)^2}{\left(1+t^2\right)t^{\frac{-11}{3}}} dt = \int \left(1+t^2\right)t^{\frac{-11}{3}} dt$$

$$= \int \left(t^{\frac{-11}{3}} + t^{\frac{-5}{3}}\right) dt$$

$$= -\frac{3}{8}t^{\frac{-8}{3}} - \frac{3}{2}t^{\frac{-2}{3}} + c$$

$$= -\frac{3}{8}tg^{\frac{-8}{3}}x - \frac{3}{2}tg^{\frac{-2}{3}}x + c$$

Để kết thúc bài viết, tôi xin đưa ra một số bài tập để các em luyện tập thêm về phương pháp trên.

III. Bài tập.

Tính các tích phân sau:

$$a) I_{I} = \int \frac{\sin^{2} x \cos x}{\sin x + \cos x} dx$$

$$b) I_2 = \int \frac{\cos^3 x dx}{\sin^2 x + \sin x}$$

$$c) I_3 = \int \frac{\sin 2x dx}{\cos^3 x - \sin^2 x - 1}$$

$$d) I_4 = \int \frac{\sin^3 x dx}{\sqrt[3]{\cos^2 x}}$$

$$e) I_5 = \int \frac{\cos^4 x dx}{\sin^2 x} ./.$$

Giáo dục không phải là sự chuẩn bị cho cuộc sống; Chính giáo dục là cuộc sống. Jonh Dewey

TÖNG QUÁT HÓA

Bài Toán

Đỗ THỊ THU HÀ CHUYÊN TOÁN K97 - 00 Sv. Khoa Kế toán – Kiểm toán Đai học kinh tế Quốc dân - Hà Nôi

Chào các ban - Những người đã, đang và sẽ tiếp tục gắn bó với Toán học trên con đường đi tìm vẻ đẹp lông lẫy của nó! Chắc hẳn tất cả chúng ta đều đã từng kinh ngạc và thán phục trước các phát minh của những nhà toán học và cũng đã từng hỏi, tai sao những kết quả đẹp như vậy lại không phải do chính chúng ta sáng tao ra. Trong khi đó, trên thực tế, nếu chúng ta được đối mặt với nhiều trong số các phát minh đó thì chúng ta có thể tìm ra lời giải dễ dàng trong tầm kiến thức của mình. Hay đơn giản hơn, những ban yêu toán đã từng tham dự giải bài trên tạp chí Toán học và Tuổi trẻ, đã có bao giờ các ban muốn trở thành người ra đề toán hay chưa? Hay bạn cho rằng đó là công việc của thầy cô, của những người đang nghiên cứu toán học? Câu trả lời là không phải! Chúng ta đều có thể tao cho mình một cái gì đó trên nền tảng những gì chúng ta đã biết và đã có, và cái chúng ta cần chỉ là một chút sáng tạo. Tôi muốn cùng các ban thử sức với một trong những phương pháp - phương pháp tổng quát hóa!

Khi các bạn giải xong một bài toán, bạn hãy nên tự hào một chút về cách giải của mình và hãy tự hỏi xem, liệu cách giải đó có còn phù hợp nếu bạn thay đổi chi tiết ở đề bài. Theo tôi, cách giải tối ưu phải là cách giải sử dụng ít nhất những dữ liệu đã có ở đề bài. Khi đó với những giả thiết không cần thiết, bạn có thể thay đổi nó mà cách giải vẫn giữ nguyên. Đó là một cách "tổng quát hóa". Điều này có vẻ hơi trái quy luật vì cách làm là tổng quát bài toán dựa trên cách

giải bài toán. Nhưng tôi nghĩ là rất tự nhiên và "dễ làm". Chúng ta hãy xem xét một số ví du:

1. Ví dụ 1. Tìm hàm $f: [0;1] \rightarrow R$, liên tục trong [0;1] thỏa mãn: $f(x) \ge 2x$. $f(x^2)$

Tôi xin đưa ra 2 cách giải khác nhau. a) Lời giải 1. Từ $f(x) \ge 2x$. $f(x^2)$ suy ra $x.f(x) \ge 2x^2 f(x^2)$, $\forall x \in (0;1]$ Thay $x = 0 \Rightarrow f(0) \ge 0$ Đặt g(x) = x.f(x), $\forall x \in (0;1]$ $\Rightarrow g(x) \ge 2 g(x^2)$ $\Rightarrow \frac{1}{2}g(x^{\frac{1}{2}}) \ge g(x)$.

Bằng quy nạp, ta chứng minh được:

 $2^n g(x) \le g(x^{\frac{1}{2^n}}), \ \forall n \ge 1. \ \text{Vi } g(x) \text{ liên tục}$ $\text{trong } [0; 1] \text{ nên } \lim_{n \to +\infty} g(x^{\frac{1}{2^n}}) = g(1).$

$$\Rightarrow \lim_{n \to +\infty} \frac{1}{2^n} \cdot \lim_{n \to +\infty} g(x^{\frac{1}{2^n}}) \ge g(x)$$

$$\Rightarrow 0 \ge f(x), \ \forall \ x \in (0;1]$$
1

Mặt khác, với
$$x \in [\frac{1}{2};1)$$
 ta có $f(x) \ge 2x$. $f(x^2) \ge f(x^2) \ge ... \ge f(x^{2^n})$

$$J(x) \ge 2x \cdot J(x) \ge J(x) \ge \dots \ge J(x)$$

$$\Rightarrow f(x) \ge \lim_{n \to +\infty} f(x^{2^n}) = f(0) \ge 0$$
(2)

Từ (1) và (2) ta có
$$f(x) = 0, \forall x \in [\frac{1}{2}; 1)$$

Với $x \in (0; \frac{1}{2})$. Bằng quy nạp ta chứng minh được: $f(x) \ge 2^n x^{2^n - 1} f(x^{2^n})$

$$\Rightarrow V \acute{o}i \ n \ \text{đủ lớn thì} \ f(x) \ge 0 \qquad (3)$$

$$\text{Từ (1) và (3) ta } \acute{o}f(x) = 0, \forall x \in (0; \frac{1}{2})$$

$$\text{Vậy } f(x) = 0, \forall x \in (0; 1] . \text{ Vì } f(x) \text{ liên tục}$$

$$\text{trong [0; 1] } n \acute{e}n f(x) = 0, \ \forall x \in [0; 1]$$

Nhận xét. Từ cách chứng minh trên, ta thấy: Số 2 trong điều kiện hoàn toàn có thể thay bằng số a > 0 bất kỳ, khi đó ta có bài toán:

Bài toán 1.1. Tìm tất cả các hàm số f(x): $[0;1] \rightarrow R$, liên tục trong đoạn [0;1] thỏa mãn điều kiện: $f(x) \ge ax f(x^2)$, $\forall a > 0$.

Hơn nữa, ta có thể thay đổi thành bài toán tổng quát sau mà lời giải không thay đổi.

Bài toán 1.2. Tìm tất cả các hàm số $f: [0;1] \to R$, liên tục trong [0;1] thỏa mãn điều kiện $f(x) \ge ax^{\alpha-1} f(x^{\alpha})$, trong đó $\alpha > 1$.

b) Lời giải 2. Do f(x) liên tục trong [0;1] nên f(x) có nguyên hàm trong [0;1]. Gọi F(x) là một nguyên hàm của f(x) trong [0;1].

$$\operatorname{Dat} g(x) = F(x) - F(x^2)$$

$$\Rightarrow g'(x) = F'(x) - 2x F(x^2)$$

=
$$f(x) - 2x$$
. $f(x^2) \ge 0$, $\forall x \in [0;1]$

 \Rightarrow g(x) là hàm không giảm trên [0;1].

Mà g(0) = g(1) = 0 nên g(x) = 0), với mọi $x \in [0;1]$

$$\Rightarrow F(x) = F(x^2) = \dots = F(x^{2^n})$$

$$\Rightarrow F(x) = \lim_{n \to +\infty} F(x^{2^n}) = F(0), \forall x \in (0;1)$$

$$\Rightarrow f(x) = 0, \forall x \in (0;1)$$

Do f(x) liên tục trong [0;1] nên $f(x) = 0, \forall x \in [0;1]$.

Như vậy, theo cách giải thứ 2, ta có thể khái quát được bài toán như sau:

Bài toán 2.1. Cho hàm $g: [0;1] \rightarrow [0;1]$ có đạo hàm trong [0;1] thỏa mãn điều kiện hàm [g(x)-x]đơn điệu trên [0;1], g(0)=0 và g(1)=1. Tìm tất cả các hàm

 $s\delta' f: [0;1] \rightarrow R$, liên tục trong [0;1], thỏa $m\tilde{a}n: f(x) \ge g'(x)$, f(g(x)), $\forall x \in [0;1]$.

Có ban sẽ tư hỏi tai sao lai có thể đưa ra một bài toán như vây. Rất đơn giản: Ban hãy thử tổng quát hóa bằng cách thay x^2 bằng một hàm g(x) bất kì, và áp dung hoàn toàn tương tư cách trên ban sẽ thấy cần phải bổ sung giả thiết để có một cách giải hoàn chỉnh. Vì như tôi đã nói ở trên, cách tổng quát hóa bài toàn ở đây là xuất phát từ cách giải chứ không phải từ đề bài. Tất nhiên, với giả thiết quá cu thể như trên sẽ dẫn đến thu hẹp hướng tổng quát của bài toán, và để có được một đề bài thực sư tổng quát tôi rất mong chờ ở khả năng sáng tao của các ban. Sau đây, mời các ban cùng theo dõi ví du 2, cùng với 2 cách giải ở cả ví du trước, tôi xin đề xuất ví dụ 3 khá thú vị:

2.Ví dụ 2. Giải phương trình

$$f(x) - \frac{1}{2}f(\frac{x}{2}) = x^2 \operatorname{trên} tập tất cả các hàm}$$

liên tục trong đoạn $\left[-\frac{1}{2}, \frac{1}{3}\right]$.

 \boldsymbol{Loi} giải. Gọi F(x) là một nguyên hàm của

$$f(x)$$
 trong $[-\frac{1}{2}; \frac{1}{3}]$. Đặt $g(x) = F(x) - F(\frac{x}{2})$,

ta có:
$$g'(x) = f(x) - \frac{1}{2}f(\frac{x}{2}) = x^2$$

$$\Rightarrow g(x) = \frac{1}{3}x^3 + c.$$

$$Vi g(0) = 0 \text{ nên } c = 0.$$

$$\Rightarrow g(x) = \frac{1}{3}x^3. \text{ Vây } F(x) = F(\frac{x}{2}) + \frac{1}{3}x^3$$

$$\Rightarrow F(x) = \frac{1}{3}x^3 + \frac{1}{3}\left(\frac{x}{2}\right)^3 + \dots + \frac{1}{3}\left(\frac{x}{2^{n-1}}\right) + \dots$$

$$+ F(\frac{x}{2^n}) = \frac{8}{21}x^3(1 - \frac{1}{2^{3n}}) + F(\frac{x}{2^n}), \text{ v\'oi}$$

mọi
$$x \in [-\frac{1}{2}; \frac{1}{3}]$$
. Khi n đủ lớn, ta có:

$$F(x) = \frac{8}{21}x^3 + F(0) \ \forall x \in [-\frac{1}{2}; \frac{1}{3}].$$

$$\Rightarrow f(x) = \frac{8}{7}x^3, \forall x \in \left[-\frac{1}{2}; \frac{1}{3}\right].$$

Thử lại thấy đúng.

Nhận xét. Qua cách giải trên ta thấy điều đầu tiên là giả thiết $x \in [-\frac{1}{2}; \frac{1}{3}]$ là không cần thiết, ta có thể mở rộng tập xác định là [-1;1] mà kết quả không thay đổi. Thứ hai, giả thiết x^2 cũng có thể khái quát thành 1 đa thức. Như vậy, ta có thể khái quát như sau:

Bài toán 2a. Cho g(x) là đa thức bậc n có tập xác định là [-1;1]. Tìm hàm $f:[-1;1] \to R$, liên tục trên R và thỏa $m\tilde{a}n: f(x) - \frac{1}{3}f(\frac{x}{2}) = g'(x)$.

Các bạn hãy thử tìm điều kiện cho g(x) nếu ta muốn khái quát g(x) thành một hàm liên tục bất kì.

Trở lại bài toán vi $d\mu$ 1, với cách giải trình bày ở bài toán vi $d\mu$ 2, ta hoàn toàn có thể thay đổi giả thiết $f(x) - 2xf(x^2) \ge 0$ bởi $f(x) - 2x f(x^2) = g'(x)$.

Các bạn hãy đưa ra một đề bài có các điều kiện rằng buộc cho g(x) để tạo thành một bài toán hoàn chỉnh.

Kết hợp các hướng tổng quát trên, tôi xin đề xuất một bài toán tổng quát hơn:

3. Ví du 3.

Cho các hàm số g: $[0;1] \rightarrow \mathbb{R}$, $f:[0;1] \rightarrow [0;1]$ trong đó g, h có đạo hàm trên [0;1], h(0) = 0, h(1) = 1 và g là đa thức bậc n Tìm hàm $f:[0;1] \rightarrow \mathbb{R}$, thỏa mãn:

$$f(x) - h'(x).f(h(x)) = g'(x).$$

Mời các bạn hãy giải bài toán này và tiếp tục! Sau đây là bài tập để các bạn tự luyện:

Bài tập. Cho f(x) có đạo hàm trong (0;1), liên tục trong [0;1], ngoài ra f(0) = f(1) = 0. Chứng minh rằng tồn tại một số $c \in (0;1)$ thỏa mãn điều kiện:

$$f(c) = 1996.f(c).$$

Chúc các ban thành công!

Xung Quanh Bài Toán Bất Đẳng Thức THI TOÁN QUỐC TẾ 2005

NGUYỄN ANH TUẤN CHUYÊN TOÁN K97-00 Sv. Lớp D2000VT, Học viện Công nghệ Bưu chính Viễn thông.

Trong kỳ thi Olympic Toán Quốc tế lần thứ 46 tổ chức tại Mexico có bài toán về bất đẳng thức (BĐT) như sau:

Bài toán 1. Cho 3 số thực dương x, y, z thỏa mãn điều kiên $xyz \ge 1$. Chứng minh rằng:

$$\frac{x^5 - x^2}{x^5 + y^2 + z^2} + \frac{y^5 - y^2}{y^5 + z^2 + x^2} + \frac{z^5 - z^2}{z^5 + x^2 + y^2} \ge 0 \tag{1}$$

Lời giải 1. BĐT (1) tương đương với:

$$\frac{\left(x^{5} + y^{2} + z^{2}\right) - \left(x^{2} + y^{2} + z^{2}\right)}{x^{5} + y^{2} + z^{2}} + \frac{\left(y^{5} + z^{2} + x^{2}\right) - \left(x^{2} + y^{2} + z^{2}\right)}{y^{5} + z^{2} + x^{2}} + \frac{\left(z^{5} + x^{2} + y^{2}\right) - \left(x^{2} + y^{2} + z^{2}\right)}{z^{5} + x^{2} + y^{2}} \ge 0$$

$$\Leftrightarrow \frac{1}{x^{5} + y^{2} + z^{2}} + \frac{1}{y^{5} + z^{2} + x^{2}} + \frac{1}{z^{5} + x^{2} + y^{2}} \le \frac{3}{x^{2} + y^{2} + z^{2}}$$

$$(2)$$

Ta sẽ chứng minh:

$$\frac{1}{x^5 + y^2 + z^2} \le \frac{3(y^2 + z^2)}{2(x^2 + y^2 + z^2)^2}.$$

Thật vậy, theo giả thiết $xyz \ge 1$ ta có:

$$\frac{1}{x^5 + y^2 + z^2} \le \frac{1}{\frac{x^4}{yz} + y^2 + z^2} \le$$

$$\leq \frac{1}{\frac{2x^4}{y^2 + z^2} + y^2 + z^2} \tag{3}$$

Áp dụng BĐT Bunhiacôpxky ta có:

$$\left(\left(\sqrt{\frac{y^2 + z^2}{2}} \right)^2 + y^2 + z^2 \right) \times$$

$$\times \left(\left(\sqrt{\frac{2x^4}{y^2 + z^2}} \right)^2 + y^2 + z^2 \right) \ge$$

$$\geq \left(x^2 + y^2 + z^2\right)^2$$

$$\Leftrightarrow \frac{1}{\frac{2x^4}{y^2 + z^2} + y^2 + z^2} \le \frac{3(y^2 + z^2)}{2(x^2 + y^2 + z^2)^2} (4)$$

Từ (3) và (4) suy ra

$$\frac{1}{x^5 + y^2 + z^2} \le \frac{3(y^2 + z^2)}{2(x^2 + y^2 + z^2)^2}.$$

Cũng tương tự:

$$\frac{1}{y^5 + z^2 + x^2} \le \frac{3(z^2 + x^2)}{2(x^2 + y^2 + z^2)^2}$$

$$\frac{1}{z^5 + x^2 + y^2} \le \frac{3(x^2 + y^2)}{2(x^2 + y^2 + z^2)^2}$$

Cộng theo vế các BĐT trên ta thu được $(2) \Rightarrow$ đpcm.

Đẳng thức xảy ra \Leftrightarrow x = y = z = 1

Lời giải 2.

Áp dụng BĐT Bunhiacôpxky ta có:

$$(x^5 + y^2 + z^2) \left(\frac{1}{x} + y^2 + z^2\right) \ge$$

$$\geq \left(x^2 + y^2 + z^2\right)^2$$

$$\Rightarrow \frac{1}{x^5 + y^2 + z^2} \le \frac{\frac{1}{x} + y^2 + z^2}{\left(x^2 + y^2 + z^2\right)^2}.$$

Thêm hai BĐT tương tự nữa:

$$\frac{1}{y^5 + z^2 + x^2} \le \frac{\frac{1}{y} + z^2 + x^2}{\left(x^2 + y^2 + z^2\right)^2}$$
 và

$$\frac{1}{z^5 + x^2 + y^2} \le \frac{\frac{1}{z} + x^2 + y^2}{\left(x^2 + y^2 + z^2\right)^2}$$

Ta suy ra:

$$\frac{1}{x^5 + y^2 + z^2} + \frac{1}{y^5 + z^2 + x^2} + \frac{1}{z^5 + x^2 + y^2} \le \frac{1}{z^5 + x^2 + y^2} \le \frac{1}{x} + \frac{1}{y} + \frac{1}{z} + 2(x^2 + y^2 + z^2) \le \frac{1}{(x^2 + y^2 + z^2)^2}$$

Mặt khác từ giả thiết $xyz \ge 1$

$$\Rightarrow \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \le yz + zx + xy \le$$

 $\leq x^2 + y^2 + z^2$, do đó từ BĐT trên suy ra (2)

⇒ фрст.

Đẳng thức xảy ra \Leftrightarrow x = y = z = 1.

Bằng cách 2, ta chứng minh được bài toán tổng quát sau:

Bài toán 2. Cho n số thực dương $x_1, x_2, ..., x_n$ $(n \ge 3)$ thoả mãn điều kiện $x_1x_2...x_n \ge 1$. Chứng minh rằng:

$$\frac{x_1^{2n+1} - x_1^n}{x_1^{2n+1} + x_2^n + x_3^n + \dots + x_n^n} + \frac{x_2^{2n+1} - x_2^n}{x_2^{2n+1} + x_1^n + x_3^n + \dots + x_n^n} + \dots + \frac{x_n^{2n+1} - x_n^n}{x_n^{2n+1} + x_2^n + x_3^n + \dots + x_{n-1}^n} \ge 0 (5)$$

Chứng minh. Theo BĐT Cô-si và giả thiết

$$x_1 x_2 ... x_n \ge 1$$
 ta có: $x_1^{2n+1} \ge \frac{x_1^{2n}}{x_2 x_3 ... x_n} \ge$

$$\geq \frac{(n-1)x_1^{2n}}{x_2^n + x_2^n + \dots + x_n^n}$$
 (6)

Mặt khác, áp dụng BĐT Bunhiacôpxky ra

$$có: \left(\sqrt{\frac{x_{2}^{n} + ... + x_{n}^{n}}{n-1}}\right)^{2} + x_{2}^{n} + ... + x_{n}^{n}\right) \times \left(\sqrt{\frac{(n-1)x_{1}^{2n}}{x_{2}^{n} + ... + x_{n}^{n}}}\right)^{2} + x_{2}^{n} + ... + x_{n}^{n}\right) \times \left(\sqrt{\frac{(n-1)x_{1}^{2n}}{x_{2}^{n} + ... + x_{n}^{n}}}\right)^{2} + x_{2}^{n} + ... + x_{n}^{n}\right) \times \left(\sqrt{\frac{(n-1)x_{1}^{2n}}{x_{2}^{n} + ... + x_{n}^{n}}}\right)^{2} + x_{2}^{n} + ... + x_{n}^{n}\right) \times \left(\sqrt{\frac{(n-1)x_{1}^{2n}}{x_{2}^{n} + ... + x_{n}^{n}}} + x_{2}^{n} + x_{2}^{n} + x_{3}^{n} + ... + x_{n}^{n}\right)^{2}} \times \left(\sqrt{\frac{(n-1)x_{1}^{2n}}{x_{2}^{n} + ... + x_{n}^{n}}}\right)^{2}} \times \left(\sqrt{\frac{(n-1)x_{$$

Từ (6) và (7) suy ra:

$$\frac{1}{x_1^{2^{n+1}} + x_2^{n} + x_3^{n} + \dots + x_n^{n}} \le$$

$$\le \frac{1}{\frac{(n-1)x_1^{2^n}}{x_2^{n} + \dots + x_n^{n}} + x_2^{n} + x_3^{n} + \dots + x_n^{n}}} \le$$

$$\le \frac{n}{n-1} \frac{(x_2^{n} + \dots + x_n^{n})}{(x_1^{n} + x_2^{n} + \dots + x_n^{n})^{2}}.$$

Cùng với n -1 BĐT tương tự khác, cộng vế với vế ta thu được:

$$\frac{1}{x_1^{2n+1} + x_2^n + x_3^n + \dots + x_n^n} + \frac{1}{x_2^{2n+1} + x_1^n + x_3^n + \dots + x_n^n} + \dots + \frac{1}{x_2^{2n+1} + x_1^n + x_2^n + \dots + x_n^n} \le \frac{1}{x_n^{2n+1} + x_1^n + x_2^n + \dots + x_n^n} \le \frac{n}{x_1^n + x_2^n + \dots + x_n^n} + \frac{x_1^n + x_2^n + \dots + x_n^n}{x_1^{2n+1} + x_2^n + x_3^n + \dots + x_n^n} + \dots + \frac{x_1^n + x_2^n + \dots + x_n^n}{x_2^{2n+1} + x_1^n + x_3^n + \dots + x_n^n} + \dots + \frac{x_1^n + x_2^n + \dots + x_n^n}{x_2^{2n+1} + x_1^n + x_2^n + \dots + x_n^n} \le n$$

$$\Leftrightarrow \left(\frac{x_1^n + x_2^n + \dots + x_n^n}{x_1^{2n+1} + x_2^n + x_3^n + \dots + x_n^n} - 1\right) + \\
+ \left(\frac{x_1^n + x_2^n + \dots + x_n^n}{x_2^{2n+1} + x_1^n + x_3^n + \dots + x_n^n} - 1\right) + \dots + \\
+ \left(\frac{x_1^n + x_2^n + \dots + x_n^n}{x_n^{2n+1} + x_1^n + x_2^n + \dots + x_n^n} - 1\right) \le 0$$

$$\Leftrightarrow (5)$$

Đẳng thức xảy ra $\Leftrightarrow x_1 = x_2 = ... = x_n = 1$

Một dạng tổng quát khác của Bài toán 1 như sau:

Bài toán 3. Cho số tự nhiên $n \ge 3$ và 3 số thực dương x, y, z thoả mãn điều kiện $xyz \ge 1$. Chứng minh rằng:

$$\frac{x^{n} - x^{2}}{x^{n} + y^{2} + z^{2}} + \frac{y^{n} - y^{2}}{y^{n} + z^{2} + x^{2}} + \frac{z^{n} - z^{2}}{z^{n} + x^{2} + y^{2}}$$

$$\geq 0 (8)$$

Hay là:
$$\frac{1}{x^n + y^2 + z^2} + \frac{1}{y^n + z^2 + x^2} + \frac{1}{z^n + z^2 + y^2} \le \frac{3}{z^2 + y^2 + z^2}$$

Bằng phương pháp tương tự như lời giải 2 chúng ta có thể chứng minh được Bài toán 3 đúng với $n \le 8$. Sau đây ta chứng minh trong trường hợp n = 6:

Áp dụng BĐT *Bunhiacôpxky* tổng quát ta có: $(x^6 + y^2 + z^2)(1 + y^2 + z^2)(1 + y^2 + z^2) \ge (x^2 + y^2 + z^2)^3$

$$\Rightarrow \frac{1}{x^6 + y^2 + z^2} \le \frac{\left(1 + y^2 + z^2\right)^2}{\left(x^2 + y^2 + z^2\right)^3}.$$

Thêm hai BĐT tương tự nữa, suy ra

$$\frac{1}{x^6 + y^2 + z^2} + \frac{1}{y^6 + z^2 + x^2} + \frac{1}{z^6 + x^2 + y^2} \le$$

$$\leq \frac{\left(1+y^2+z^2\right)^2+\left(1+z^2+x^2\right)^2+\left(1+x^2+y^2\right)^2}{\left(x^2+y^2+z^2\right)^3} (9)$$

Ta sẽ chứng minh

$$(1+y^{2}+z^{2})^{2} + (1+z^{2}+x^{2})^{2} + (1+x^{2}+y^{2})^{2}$$

$$\leq 3(x^{2}+y^{2}+z^{2})^{2} \quad (10)$$
Đặt $u = x^{2}, v = y^{2}, t = z^{2}$ thì ta có (10)
$$\Leftrightarrow (1+u+v)^{2} + (1+v+t)^{2} +$$

$$+ (1+t+u)^{2} \leq 3(u+v+t)^{2}$$

$$\Leftrightarrow 3+4(y+v+t)+2(uv+vt+tu)+$$

$$+2(u^{2}+v^{2}+t^{2}) \leq 2(u^{2}+v^{2}+t^{2})+$$

$$+4(uv+vt+tu)+(u+v+t)^{2}$$

$$\Leftrightarrow (u+v+t)^{2}-4(y+v+t)+$$

$$+2(uv+vt+tu)-3 \geq 0 \quad (11)$$

Từ giả thiết $xyz \ge 1$, suy ra $uv + vt + tu \ge 2$ $3\sqrt[3]{(uvt)^2} = 3\sqrt[3]{(xyz)^4} \ge 3$, do đó (11) đúng và ta có (10). Vậy từ (9) và (10) ta có đọcm.

Tôi dự đoán rằng BĐT (8) đúng với mọi n, mong các bạn cùng quan tâm tới việc chứng minh bài toán này. Sau đây là một bài toán mới mà tôi đã phát hiện ra trong quá trình mở rộng bài toán trên.

Tìm tất cả các số nguyên n sao cho bất đẳng thức (BĐT) sau đúng với mọi x, y, z khác không:

$$(x^{2} + xy + y^{2})^{n} + (y^{2} + yz + z^{2})^{n} + (z^{2} + zx + x^{2})^{n} \le 3(x^{2} + y^{2} + z^{2})^{n}$$
 (12)

Lời giải. Với n = 0 thì BĐT (12) hiển nhiên đúng với mọi x, y, $z \neq 0$. Ta xét các trường hợp sau:

i) Với n < 0. Đặt n = -m (m > 0), khi đó BĐT (12) trở thành:

$$\frac{1}{\left(x^2 + xy + y^2\right)^m} + \frac{1}{\left(y^2 + yz + z^2\right)^m} + \frac{1}{\left(z^2 + zx + x^2\right)^m} \le \frac{3}{\left(x^2 + y^2 + z^2\right)^m}$$

BĐT này không đúng với mọi x, y, $z \neq 0$. Thật vậy, cố đinh x sao cho $y \rightarrow 0$, $z \rightarrow 0$ thì vế trái $\to +\infty$, trong khi đó vế phải $\to \frac{3}{x^{2m}}$, vô lý.

ii)
$$V \acute{o}i$$
 $n = 1$. Khi đó (12) có dạng: $(x^2 + xy + y^2) + (y^2 + yz + z^2) +$

$$+(z^2+zx+x^2) \le 3(x^2+y^2+z^2)$$

$$\Leftrightarrow xy + yz + zx \le x^2 + y^2 + z^2$$
. BĐT này đúng với mọi $x, y, z \Rightarrow (12)$ đúng.

ii) $V \acute{o}i \ n = 2$. BĐT (12) có dang:

$$(x^2 + xy + y^2)^2 + (y^2 + yz + z^2)^2 +$$

$$+(z^2+zx+x^2)^2 \le 3(x^2+y^2+z^2)^2$$

$$\Leftrightarrow 2(x^3y + y^3x + y^3z + z^3y + z^3x + x^3z) \le$$

$$\leq (x^4 + y^4 + z^4) + 3(x^2y^2 + y^2z^2 + z^2x^2)$$

$$\Leftrightarrow \frac{1}{2}(x-y)^4 + \frac{1}{2}(y-z)^4 + \frac{1}{2}(z-x)^4 \ge 0$$

BĐT cuối đúng \Rightarrow BĐT (12) đúng với n=2.

iii) Với $n \ge 3$, ta sẽ chứng minh rằng khi đó (12) không đúng. Thật vậy, ta có (12) \Leftrightarrow

$$\left(\frac{x^2 + xy + y^2}{x^2 + y^2 + z^2}\right)^n + \left(\frac{y^2 + yz + z^2}{x^2 + y^2 + z^2}\right)^n +$$

$$+\left(\frac{z^2 + zx + x^2}{x^2 + y^2 + z^2}\right)^n \le 3\tag{13}$$

Chọn x = 1,1; y = 1; z = 0,1 thì ta có:

$$\left(\frac{x^2 + xy + y^2}{x^2 + y^2 + z^2}\right)^n + \left(\frac{y^2 + yz + z^2}{x^2 + y^2 + z^2}\right)^n +$$

$$+ \left(\frac{z^2 + zx + x^2}{x^2 + y^2 + z^2}\right)^n > \left(\frac{x^2 + xy + y^2}{x^2 + y^2 + z^2}\right)^n =$$

$$= \left(\frac{3,31}{2,22}\right)^n > 1,49^n.$$

Bằng quy nạp ta chứng minh được $1,49^n > 3$ với mọi $n \ge 3$. Từ đó suy ra (13) không đúng với mọi $x, y, z > 0 \implies$ đpcm.

Từ những phân tích trên ở các trường hợp trên ta đi đến kết luận: t a c a c a c s b nguyên n phải t m l a n = 0, 1, 2.

THỬ ĐI TÌM MỘT BẤT ĐẨNG THỰC TRONG TAM GIÁC

DƯƠNG THỊ HƯƠNG CHUYÊN TOÁN K98 – 01

NGUYỄN NHƯ THẮNG Sv. Lớp 3 CLC, K51 ĐHSP Hà Nội 1

Tất cả chúng ta đều biết đến những đinh lí, những kết quả lý thú hay những chứng minh độc đáo trong toán học. Và liệu đã có đôi lần bạn đã tự hỏi vì sao người ta lại nghĩ ra những điều tuyết diệu như thế? Thật khó để có thể trả câu hỏi này một cách thật chính xác. Nhưng như thế không có nghĩa là chúng ta sẽ chiu "bó tay"! Muc đích của bài viết này là đặt chúng ta đứng ở vi trí "những nhà khảo cổ" thử đi tìm một chút gì đó, có thể chỉ là một "trò chơi" cho riêng mình! Tôi phải lưu ý các ban rằng, chúng ta sẽ thử làm nhà "khai khoáng", "khảo cổ", "tìm kiếm" chứ không phải là nhà phát minh bởi có thể, những gì chúng ta tìm thấy sẽ không có gì là quá mới la!

Thông thường, để có thể tìm kiếm, khai thác được, ta phải có một "khu mỏ" hay một mảnh đất màu mỡ.

Bạn đã bao giờ để ý đến điều này chưa: " $V \acute{o}i$ mọi tam giác ABC và các số thực x, $y, z \in R$ và với một điểm M bất kỳ thì:

$$(x\overrightarrow{MA} + y\overrightarrow{MB} + z\overrightarrow{MC})^2 \ge 0 "?$$

Không quá đặc biệt, nhưng bạn thử biến đổi lại xem nào! Không mấy khó khăn, bạn có thể nhận được bất đẳng thức (BĐT):

$$(x+y+z)(xMA^2+yMB^2+zMC^2)$$

 $\geq a^2 yz + b^2 zx + c^2 xy$ (*), với a, b, c lần lượt là 3 canh BC, CA, AB của tam giác ABC.

Đây chính là "khu mỏ" mà chúng ta sẽ khai thác.

MỘT. Ngay lập tức ta sẽ gặp một hệ quả: $x + y + z = 0 \Rightarrow a^2yz + b^2zx + a^2xy$, và với x = b, y = c - a, z = a - b ta được một kết quả quen biết:

$$a^{2}(c-a)(a-b) + b^{2}(a-b)(b-c) + c^{2}(b-c)(c-a) \le 0$$

HAI. Một ví dụ khác ít tầm thường hơn là với bộ số (x, y, z) = (1, 1, 1) thì từ (*) ta nhân được:

$$MA^{2} + MB^{2} + MC^{2} \ge \frac{1}{3} (a^{2} + b^{2} + c^{2})$$

Ta gặp lại một kết quả quen thuộc trong tam giác. Đẳng thức xảy ra ⇔

$$\Leftrightarrow x \overrightarrow{MA} + y \overrightarrow{MB} + z \overrightarrow{MC} = 0$$

$$\Leftrightarrow \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = 0$$

 $\Leftrightarrow M$ là trọng tâm tam giác.

BA. Thử với bộ (x, y, z) = (a, b, c) ta được: $(a+b+c)(aMA^2 + bMB^2 + cMC^2)$

$$\geq a^2bc + b^2ca + c^2ab$$

$$\Leftrightarrow aMA^2 + bMB^2 + cMC^2 \ge abc$$

Ta thấy lại kết quả đặc trưng cho tâm đường tròn nội tiếp tam giác *ABC*. Những vấn đề tương tự được xét cho trực tâm, tâm đường tròn ngoại tiếp, đường tròn bàng tiếp v. v ... Như vậy, với mỗi bộ số (x, y, z) thay vào (*) ta sẽ thu được một BĐT. Các bạn hãy thử chon vài bô nào đó nhé!

BÔN. Nhưng như thế thì công việc của chúng ta chưa có gì là thú vị cả. Thử lấy $(x, y, z) = (a^2, b, 1)$ xem nào! Ta có:

$$(a^2+b+1)(a^2MA^2+bMB^2+MC^2) \ge$$

$$\geq a^2b + b^2a^2 + c^2a^2b$$

Điều này có vẻ "ngô ngộ"! Bạn đã nghĩ ra cách nào khác để chứng minh điều "ngồ ngộ" ấy hay chưa?

Xin các bạn đừng vội bực mình vì công việc khai thác của chúng ta quá chậm chạp. Trên đây chúng ta đã sử dụng "công nghệ" khá cũ kỹ là khi thay bộ (x, y, z) bởi những bộ số cố định. Việc làm này không phải là không có lợi ích gì nhưng xem ra "sản

phẩm" của chúng ta chưa được phong phú lắm.

Sau đây là một vài cải tiến nho nhỏ nhưng sẽ mang lại những kết quả bất ngờ.

NĂM. Trong (*) thay

$$(x, y, z) = \left(\frac{a}{MA}, \frac{b}{MB}, \frac{c}{MC}\right) \text{ với}$$

 $M \notin \{A; B; C\}$ ta có:

$$\left(\frac{a}{MA} + \frac{b}{MB} + \frac{c}{MC}\right)(aMA + bMB + cMC) \ge 2$$

$$\ge abc\left(\frac{a}{MB.MC} + \frac{b}{MC.MA} + \frac{c}{MA.MB}\right)$$

$$\Leftrightarrow \frac{MB.MC}{bc} + \frac{MC.MA}{ca} + \frac{MA.MB}{ab} \ge 1. (1)$$

Dễ thấy khi $M \in \{A, B, C\}$ thì (1) trở thành đẳng thức. Vậy (1) đúng với mọi M.

Suy diễn một chút, chúng ta sẽ có ngay những kết quả quen thuộc:

$$\frac{MA}{a} + \frac{MB}{b} + \frac{MC}{c} \ge \sqrt{3}$$

$$\frac{m_a}{a} + \frac{m_b}{b} + \frac{m_c}{c} \ge \frac{3\sqrt{3}}{2}$$

$$\frac{a}{m_a} + \frac{b}{m_b} + \frac{c}{m_c} \ge 2\sqrt{3}$$

$$\left(\frac{MA}{a}\right)^n + \left(\frac{MB}{b}\right)^n + \left(\frac{MC}{c}\right)^n \ge 3\left(\frac{1}{\sqrt{3}}\right)^n$$

 $\mathring{\text{O}}$ đây m_a , m_b , m_c lần lượt là độ dài các trung tuyến ứng với các đỉnh A, B, C của tam giác ABC.

SÁU. Chúng ta cũng thử làm điều tương tự

khi:
$$(x, y, z) = \left(-\frac{a}{MA}, \frac{b}{MB}, \frac{c}{MC}\right)$$
 ta có:

$$\left(-\frac{a}{MA} + \frac{b}{MB} + \frac{c}{MC}\right) \left(-aMA + bMB + cMC\right)$$

$$\geq abc\left(\frac{a}{MB.MC} - \frac{b}{MC.MA} - \frac{c}{MA.MB}\right)$$

$$\Leftrightarrow \left(-aMA + bMB + cMC\right)$$

$$\times \left(-\frac{MB.MC}{bc} + \frac{MC.MA}{ca} + \frac{MA.MB}{ab}\right)$$

$$\geq \left(aMA - bMB - cMC\right).$$

Để ý là khi M không nằm trên cung lớn BC chứa A thì: (-aMA + bMB + cMC) > 0 (BĐT $Ptôlêm\hat{e}$) nên ta thu được:

$$-\frac{MB.MC}{bc} + \frac{MC.MA}{ca} + \frac{MA.MB}{ab} \ge -1 \quad (2)$$

Khi $M \in BC$ không chứa A thì $M \in \{A; B; C\}$ cũng đúng. Vậy (2) đúng với điểm M bất kỳ.

Ta đã tìm thấy một "họ hàng" của BĐT Ptôlêmê: Khi $M \in BC$ thì (2) và BĐT $Ptôlêm\hat{e}$ là tương đương. Nhưng tiếc rằng, trong khi BĐT $Ptôl\hat{e}m\hat{e}$ thì ai cũng biết còn người "anh em" này thì chẳng mấy ai biết đến! Thật đáng thương!

BÁY. Và nếu chúng ta thay

$$(x, y, z) = \left(\frac{1}{MA^2}, \frac{1}{MB^2}, \frac{1}{MC^2}\right) \text{ thì từ (*)}$$

ta thu được:

$$\left(\frac{1}{MA^{2}} + \frac{1}{MB^{2}} + \frac{1}{MC^{2}}\right) \cdot (1+1+1) \ge$$

$$\ge \left(\frac{a}{MB.MC}\right)^{2} + \left(\frac{b}{MC.MA}\right)^{2} + \left(\frac{c}{MA.MB}\right)^{2}$$

$$\Leftrightarrow \left(MB.MC\right)^{2} + \left(MC.MA\right)^{2} + \left(MA.MB\right)^{2} \ge$$

$$\ge \frac{1}{3} \left(a^{2}MA^{2} + b^{2}MB^{2} + c^{2}MC^{2}\right) (3)$$

(3) vẫn đúng khi $M \in \{A; B; C\}$.

Bạn thử chứng minh (3) khi $M \equiv G$ xem nào, chắc cũng không đơn giản lắm!

TÁM. Trong (*) thay

$$(x, y, z) = \left(\frac{1}{MA}, \frac{1}{MB}, \frac{1}{MC}\right) \text{ta được}$$

$$\left(MB.MC + MC.MA + MA.MB\right) \left(MA + MB + MC\right)$$

$$\geq a^2 MA + b^2 MB + c^2 MC$$

Giả sử tam giác ABC tù tại A, khi đó ta có: $MB \ge c - MA$, $MC \ge b - MA$.

Dấu bằng xẩy ra $\Leftrightarrow M \equiv A$. Do đó $a^2MA + b^2MB + c^2MC \ge$

$$(a^2-b^2-c^2)MA+bc(b+c) \ge bc(b+c)$$
 (4).

Đẳng thức xẩy ra $\Leftrightarrow M \equiv A$.

Ta thấy rằng (4) đúng cả trong trường hợp $M \in \{A; B; C\}$ và khi $M \equiv A$ thì có dấu đẳng thức. Như vây ta có bài toán:

Cho tam giác *ABC* tù ở *A*. Tìm giá trị nhỏ nhất của biểu thức.

$$(MB.MC + MC.MA + MA.MB)(MA + MB + MC)$$

Ta thấy rằng những bất đẳng thức thu được ở trên đều đúng với mọi M. Do đó khi thay M bởi những vị trí đặc biệt ta lại thu được khá nhiều kết quả, tính chất thú vị.

Các ban thấy đấy, xuất phát từ (*), mỗi lần thay (x, y, z) bởi một bộ nào đó, ta thu được một kết quả mới. Công việc của nhà tìm kiếm là phải biết chắt lọc, giữ lại những gì có giá trị từ những thứ tưởng chừng như tầm thường. Có một lần làm thử, chúng ta mới thấy rằng, để có những gì chúng ta đang được học hôm nay không phải là dễ. Tôi hi vọng sau bài viết này, mỗi chúng ta sẽ rút ra một điều gì đó cho riêng mình để có thể học môn Toán vui vẻ hơn, và những ai say mê muốn làm những nhà "khảo cổ", hãy cứ bắt tay vào công việc của mình dẫu biết rằng chúng ta có thể chẳng thu luợm được gì to tát. Nhưng, có một điều tôi tin chắc là sau khi những lần như thế, bạn sẽ thấy Toán học càng đáng yêu hơn.

Nếu bạn cảm thấy thích công việc tìm kiếm, mày mò những điều mới mẻ (dù chỉ cho riêng mình) tôi có thể giới thiệu với bạn một vài mảnh đất "màu mỡ", phù hợp với những gì bạn mong muốn:

A. MÅNH ĐẤT 1:

Mảnh đất này đòi hỏi bạn phải có một vài sự chuẩn bị về số phức. Trong số thực, ta có đẳng thức:

$$\frac{(m-b)(m-c)}{(a-b)(a-c)} + \frac{(m-c)(m-a)}{(b-c)(b-a)} + \frac{(m-a)(m-b)}{(c-a)(c-b)} = 1$$

Để có được đẳng thức trên hoặc những đẳng thức tương tự, bạn có thể dựa vào công thức nội suy Lagrăng cho đa thức và so sánh hệ số. Chẳng hạn, ví dụ trên khai triển x^2 tại a, b, c. Do các số phức tính toán như số thực nên trong các số phức cũng có các đẳng thức như vậy. Vận dụng tính chất "nhãn" (hoặc chuẩn) của tổng và tích cho mỗi số phức tương ứng với một điểm. Chẳng hạn từ đẳng thức trên ta thu được:

$$\left| \frac{(m-b)(m-c)}{(a-b)(a-c)} + \frac{(m-c)(m-a)}{(b-c)(b-a)} + \frac{(m-a)(m-b)}{(c-a)(c-b)} \right| \ge 1$$

$$\Rightarrow \frac{MA.MC}{AB.AC} + \frac{MC.MA}{BC.BA} + \frac{MA.MB}{CA.CB} \ge 1$$

Theo cách đó, bạn sẽ thu được rất nhiều điều thú vi.

B. MÅNH ĐẤT 2:

Gọi a', b', c' là ba cạnh của tam giác A'B'C' tương ứng. Các điểm M, N như trên hình vẽ.

Xuất phát từ kết quả $a'.NA + b'.NB + c'.NC \ge a'.MA + b'.MB + c'.MC$. Hãy tìm cách giải trọn vẹn bài toán sau:

Cho tam giác ABC và x, y, z > 0. Hãy tìm điểm M trong tam giác ABC sao cho:

 $S_{(M)} = xMA + yMB + zMC nhỏ nhất.$

Chắc các bạn cũng đã biết khi x = y = z thì ta có bài toán điểm *Toricelli* của tam giác **C. MẢNH ĐẤT 3.**

Trước hết, các bạn hãy chứng minh với x + y > 0, y + z > 0, z + x > 0 thì ta có:

$$xMA + yMB + zMC \ge 4\sqrt{xy + yz + zx}.S_{ABC}$$

Từ đó hãy xây dựng một vài tính chất mới!

Vẫn còn nhiều vùng đất mới đang chờ in dấu chân các bạn. Chúc thành công!

Một Sụ TÌNH CỞ

NGUYỄN LÂM TUYỀN CHUYÊN TOÁN K99 – 02 Sv. Lớp Điều khiển Tự Động 1 - K47 ĐH Bách Khoa Hà Nội

Trong cuộc sống, nhiều điều thú vị đôi khi đến với chúng ta một cách nhẹ nhàng, man mác ... Làm cho ta thêm yêu đời, yêu cuộc sống! Bài viết này tôi xin trình bày "một niềm vui nho nhỏ" mà tôi tình cờ có được khi đang "thả hồn" với những bài toán hóc búa. Thân tặng tới các bạn, đặc biệt là các em lớp chuyên Toán K01-04 – những người rất tâm huyết với tờ báo này. Hy vọng rằng qua bài viết này phần nào sẽ giúp ích cho các bạn trong quá trình học toán.

I/ Thử thách.

Năm còn học lớp 10 Chuyên Toán, có hai bài toán khiến tôi rất trăn trở. Đó là hai bài toán thi học sinh giỏi Quốc gia, vừa quen lại vừa la:

Bài toán HSG1. Cho đa thức $P(x) = x^3 - 9x^2 + 24x - 27$. Chứng minh rằng với mỗi số tự nhiên n, tồn tại số nguyên a_n sao cho $P(a_n)$ chia hết cho 3^n .

Bài toán HSG2. Cho đa thức $P(x) = x^3 + 153x^2 - 111x + 38$.

i) Chứng minh rằng với mỗi số tự nhiên n, tồn tại ít nhất 9 số nguyên a thuộc đoạn $[1;3^{2000}]$ sao cho $P(a_n)$ chia hết cho 3^{2000} .

ii) Hỏi trong đoạn [1;3 2000] có tất cả bao nhiều số nguyên a sao cho $P(a_n)$ chia hết cho 3^{2000} .

(Các bạn có thể tham khảo thêm ở các số tạp chí Toán học và Tuổi trẻ tháng 01, 02, 09 năm 2001)

Sau nhiều ngày suy nghĩ tôi đã phát hiện ra một cách chứng minh, nhưng khá dài và chỉ cho riêng Bài toán HSG1 (xin không nêu ra ở đây).

II/ Tình cờ.

Bẩng đi một thời gian để rồi tình cờ lật lại trang sách. Ý tưởng chợt lên, tôi hạ bút viết như đã được "lập trình" sẩn. Tôi đã có một lời giải mới cho Bài toán HSG1, nhưng tất nhiên là với "phong cách" hoàn toàn khác.

Lời giải đó như sau.

Ta có
$$P(x) = x^3 - 9x^2 + 24x - 27$$

= $(x - 3)^3 - 3(x - 3) - 9$
 $\Rightarrow P(3x+3) = 9(3x^3 - x - 1).$

Bài toán quy về việc chứng minh: Với mỗi n, tồn tại $b_n \in \mathbb{N}^*$ sao cho $Q(b_n)$ chia hết cho 3^n . Ở đây $Q(x) = 3x^3 - x - 1$.

Ta sẽ chứng minh điều này bằng quy nạp theo n. Với n = 1 chọn $b_1 = 2$.

Giả sử khẳng định đúng tới n.

Ta có
$$Q(b_n+Q(b_n)) =$$

= $3(b_n+Q(b_n))^3 - (b_n+Q(b_n)) - 1$
= $(3b_n^3 - b_n - 1) + 9b_nQ(b_n)(b_n + Q(b_n)) +$
+ $3Q^3(b_n) - Q(b_n)$
= $3[3b_nQ(b_n)(b_n + Q(b_n)) + Q^3(b_n)]$

Chọn $b_{n+1} = b_n + Q(b_n)$ thì $Q(b_{n+1})$ chia hết cho 3^{n+1} . Tóm lại ta có điều phải chứng minh.

Vội vàng đem áp dụng cho Bài toán HSG2 nhưng ... không thành công! Tôi quyết định quay trở lại Bài toán HSG1 với mục đích mở rộng nó và đã đưa ra được bài toán tổng quát sau.

Bài toán A. Xét tập hợp các đa thức có dạng $\mathscr{T} = \{ P(x) = ax^3 + bx^2 + cx + d \mid a \neq 0, b \equiv 0 \pmod{3}, c \cong 0 \pmod{3}, a + c \cong 0 \pmod{3} \}$

O(mod3)}. Khi đó với mỗi số nguyên dương n, tồn tại số nguyên a_n sao cho $P(a_n)$ chia hết cho 3^n .

Chứng minh. Ta chứng minh bằng quy nạp. Với n = 1, ta có P(0) = d, $P(-1) = -a + b - c + d \equiv -(a + c) + d \equiv 0 \pmod{3}$, $P(1) = a + b + c + d \equiv (a + c) + d \pmod{3}$. Lưu ý rằng trong 3 số hạng liên tiếp của một cấp số cộng có công sai không chia hết cho 3, luôn tồn tại một số chia hết cho 3. Vậy với n = 1, bài toán đúng.

Giả sử tồn tại a_k để $P(a_k)$ chia hết cho 3^k . Ta có $P(a_k + hP(a_k)) = a(a_k + hP(a_k))^3 + b(a_k + hP(a_k))^2 + c(a_k + hP(a_k)) + d =$ $= P(a_k) \cdot (3a \cdot a_k^2 \cdot h + 3a \cdot a_k h^2 P(a_k) + h^3 P^2(a_k) + bh^2 P(a_k) + (2ba_k + c)h + 1)$

Ta thấy $2ba_k + c \cong 0 \pmod{3} \Rightarrow$ tồn tại $h \in \{1; 2\}$ sao cho $(2ba_k + c)h + 1 \equiv 0 \pmod{3}$. Từ đó chọn $a_{k+1} = a_k + hP(a_k)$ thì ta có $P(a_{k+1})$ chia hết cho 3^{k+1} (đpcm).

Tất nhiên là cũng với xu hướng đó, tôi tìm cách mở rộng bài toán thêm nữa, nhưng quả thực là rất khó khăn. Sau một vài phép thử và dự đoán tôi đưa ra bài toán sau mà theo tôi, ở một khía cạnh nào đó, nó mở rộng cho Bài toán HSG1.

Bài toán B. Cho số nguyên tố lẻ p và đa thức $Q(x) = (p-1)x^p - x - 1$. Chứng minh rằng với mỗi số nguyên dương n, tồn tại vô hạn số nguyên dương a_n mà $Q(a_n)$ chia hết cho p^n .

Với lời giải cũng giống như cách chứng minh Bài toán HSG1.

Đặc biệt trường hợp n = p, ta có bài toán riêng nhưng dường như lại "khó" hơn vì với bài toán mới này, chúng ta sẽ không dễ dàng nghĩ ngay tới phương pháp quy nạp để chứng minh.

Bài toán C. Cho số nguyên tố lẻ p và đa thức $Q(x) = (p-1)x^p - x - 1$. Chứng minh

rằng tồn tại vô hạn số nguyên dương a mà Q(a) chia hết cho p^p .

Tò mò, tôi thử tìm một lời giải khác cho bài toán mới này. Và cũng tình cờ tôi đưa ra được một lời giải mới, và tất nhiên là cũng với "phong cách" hoàn toàn mới: Sử dụng khái niệm *hệ thặng dư* của lý thuyết đồng dư thức.

Bài toán C cũng chính là nội dung của bài T8/336 trên Tạp chí Toán học và Tuổi trẻ tháng 06/2005 do tôi đề xuất. Xuất sứ của bài T8/336 là như vậy và có lẽ, đó cũng là *một sự tình cờ*.

Chứng minh Bài toán C.

Nhận xét: Giá trị tại p^p điểm nguyên dương liên tiếp của đa thức Q(x) lập thành một hệ thặng dư đầy đủ $(modp^p)$.

Thật vậy, trong p^p số nguyên dương liên tiếp, giả sử có u > v sao cho $Q(u) \equiv Q(u) \pmod{p^p} \Leftrightarrow (p-1)u^p - u - 1$ $\equiv (p-1)u^p - u - 1 \pmod{p^p}$

$$\Leftrightarrow (p-1)(u^p-v^p)-(u-v)\equiv 0 \pmod{p^p} \ (*).$$

Theo định lý Fermat nhỏ, ta có $u^p \equiv u \pmod{p}$, $v^p \equiv v \pmod{p}$. Do đó từ (*) ta có $(p-2)(u-v) \equiv 0 \pmod{p}$. Lại có (p;p-2)=1, suy ra $u \equiv v \pmod{p}$.

Cũng từ (*) ta có

$$(u-v)((p-1)(u^{p-1}+u^{p-2}v+...+v^{p-1})-1) \equiv$$

 $\equiv 0 \pmod{p^p}. \quad \text{Mặt khác } u \equiv v \pmod{p} \Rightarrow$ $\Rightarrow (p-1) \left(u^{p-1} + u^{p-2}v + ... + v^{p-1} \right) - 1 \equiv$

$$\equiv (p-1).p-1 \cong 0 \pmod{p^p}.$$

Suy ra $u \equiv v \pmod{p^p}$.

Chú ý là $0 < u - v < p^p \implies u = v$. Nhận xét được chứng minh.

Hệ quả là trong p^p số nguyên dương liên tiếp, tồn tại duy nhất một số a để Q(a) chia hết cho p^p . Và do đó hiển nhiên là trong tập hợp vô hạn các số nguyên dương, tồn tại vô số số a mà Q(a) chia hết cho p^p . Bài toán được chứng minh.

Trong lời giải Bài toán B ta chỉ ra được sự tồn tại của a_n nhưng đã không chỉ ra được có bao nhiều số như vậy. Cái thú vị ở cách giải Bài toán C không chỉ là ở sự mới lạ trong cách tư duy mà còn khắc phục được điểm hạn chế của phương pháp trước đó. Khá bất ngờ với lời giải trên, tôi chợt nhớ đến bài toán HSG2 mà mình chưa giải được. Đem áp dụng phương pháp mới này cho bài toán đó và tôi đã thành công!

Nhưng tôi lai đi từ bài toán ...tổng quát:

Bài toán D. Xét tập hợp các đa thức có dạng $\mathscr{T} = \{ P(x) = ax^3 + bx^2 + cx + d \mid a \neq 0, b \equiv 0 \pmod{3}, c \equiv 0 \pmod{3}, a + c \cong 0 \pmod{3} \}$. Khi đó giá trị tại 3^n điểm nguyên dương liên tiếp của đa thức $P(x) \in \mathscr{T}$ lập thành một hệ thặng dư đầy đủ $(\bmod 3^n)$.

Chứng minh. Trong 3^n số nguyên dương liên tiếp giả sử có u > v mà $Q(u) \equiv Q(v)$ $(mod3^n) \Leftrightarrow au^3 + bu^2 + cu + d \equiv av^3 + bv^2 + cv + d (mod3^n) \Leftrightarrow a(u^3 - v^3) + b(u^2 - v^2) + c(u - v) \equiv 0 (mod3^n)$ (*).

Ta có $b\equiv 0 \pmod{3}$, $u^3\equiv u \pmod{3}$, $v^3\equiv v \pmod{3}$ nên từ (*) $\Rightarrow a(u^3 - v^3) + b(u^2 - v^2) + c(u - v) \equiv 0 \pmod{3}$

 \Rightarrow $(a + c)(u - v) \equiv 0 \pmod{3} \Rightarrow u \equiv v \pmod{3}$, do $(a + c) \cong 0 \pmod{3}$.

Cũng từ (*) ta có $(u - v)[a(u^2 + uv + v^2) + b(u + v) + c] \equiv 0 \pmod{3^n}$.

Mà $u \equiv v(mod3)$, $c \cong 0(mod3) \Rightarrow a(u^2 + uv + v^2) + b(u + v) + c \cong 0(mod3) \Rightarrow u \equiv v (mod3^n)$. Vậy $u = v \Rightarrow \text{đpcm}$.

Hệ quả là: Trong 3^n số nguyên dương liên tiếp tồn tại duy nhất một số a để Q(a) chia hết cho 3^n .

Đây chính là sự tổng quát cho Bài toán HSG2. Cụ thể, lời giải của bài toán HSG2 như sau:

Lòi giải Bài toán HSG2. Ta có $P(x) = x^3 + 153x^2 - 111x + 38 \notin \mathscr{T}$. Giả sử P(x) chia hết cho $3^{2000} \Rightarrow P(x)$ phải chia hết cho 3

 $\Rightarrow x \text{ c\'o dang } 3k + 1 \Rightarrow P(x) = P(3k + 1) =$ $= 3^{3}(k^{3} + 52k^{2} 22k + 3).$

* Nếu $k = 3m + 2 \Rightarrow$

 $P(x) = 3^3(27m^3 + 495m^2 387m + 263)$ không chia hết cho 3^4 với mọi m.

* Nếu $k = 3m + 1 \Rightarrow$

 $P(x) = 3^4 (9m^3 + 165m^2 129m + 26)$ không chia hết cho 3^5 với mọi m.

* Nếu $k = 3m \Rightarrow$

 $P(x) = 3^4(9m^3 + 156m^2 + 22m + 1).$

Ta thấy đa thức $Q(m) = (9m^3 + 156m^2 + 22m + 1) \in \mathscr{T}$ và $1 \le x \le 3^{2000} \Leftrightarrow 0 \le m \le 3^{1998} - 1$. Vậy P(x) chia hết cho $3^{2000} \Leftrightarrow x = 9m + 1$ và Q(m) chia hết cho 3^{1996} .

Theo hệ quả của Bài toán D suy ra: Trong 9.3^{1996} số nguyên liên tiếp $0, 1, 2, ..., 3^{1998}-1$ tồn tại đúng 9 số nguyên a mà Q(a) chia hết cho $3^{1996} \Leftrightarrow$ Trong đoạn [1; 3^{2000}] tồn tại đúng 9 số nguyên a mà P(a) chia hết cho 3^{2000} .

Ta cũng dễ dàng nhận ra là trong đoạn $[1;3^n]$ $(n \ge 1998)$ tồn tại 3^{n-1998} số nguyên a mà P(a) chia hết cho 3^{2000} . Bài toán HSG2 đã được giải quyết tron ven!

III/ Lời kết.

Chỉ một chút thay đổi đề bài theo ý tưởng của mình các bạn có thể tạo ra được những bài toán mới cũng khá "hóc búa" đấy chứ! Vấn đề đặt ra ở đây là trong trường hợp tổng quát, đa thức P(x) bậc n thì kết quả sẽ ra sao? Bản thân tôi cũng chưa có điều kiện để tìm hiểu thêm, mong các bạn cùng quan tâm coi như một bài tập trước khi kết thúc bài viết này.

Như vậy đấy các bạn ạ, từ *một sự tình cờ* tôi đã giải được một bài toán khó và tìm ra được nhiều điều thú vị. Nhưng để có được sự "tình cờ" đó là cả một quá trình nỗ lực không ngừng và một trái tim đam mê Toán học mãnh liệt. Cuối cùng xin chúc các bạn thành công và tìm ra được nhiều "công trình" cho riêng mình trong quá trình học tập và vươn lên ở tất cả các lĩnh vực!

SỬ DỤNG TÍNH CHẤT HÀM ĐƠN ÁNH ĐỂ GIẢI BÀI TOÁN PHƯƠNG TRÌNH HÀM

NGUYỄN THÁI NGỌC CHUYÊN TOÁN K99-02

Sv. Lớp ĐT8 – K48, Khoa Điện tử Viễn thông - ĐH Bách Khoa Hà Nội

Trong các kì thi Học sinh giỏi, ta thường gặp các bài toán về giải phương trình hàm. Đây là dạng toán khá quen thuộc với các bạn. Trong cuốn "Phương trình hàm" của GS - TS.Nguyễn Văn Mậu, tác giả đã đề cập tương đối sâu về một lớp phương trình hàm. Trong phạm vi bài viết này, tôi xin được nêu ra một phương pháp để giải dạng toán nói trên khá hiệu quả. Đó là phương pháp sử dụng tính chất hàm đơn ánh. Trước hết, tôi xin nêu định nghĩa và một số nhận xét xoay quanh hàm đơn ánh:

Định nghĩa hàm đơn ánh.

Hàm số $f: X \rightarrow Y$

$$x \rightarrow y = f(x)$$

được gọi là một hàm đơn ánh nếu $\forall x_1, x_2$ thuộc X mà $x_1 \neq x_2$ suy $ra f(x_1) \neq f(x_2)$

Nhân xét 1.

Cho f là một hàm số xác định, liên tục trong khoảng (a,b), khi đó, nếu các số u, v thuộc (a,b) sao cho u < v và f(u) < f(v) thì với bất kỳ w thuộc (u,v) luôn có:

$$f(u) < f(w) < f(v)$$
.

Chứng minh. Để chứng minh nhận xét trên ta thừa nhận định lý về giá trị trung gian sau:

Cho f(x) là hàm số xác định, liên tục trong đoạn [a,b], khi đó f(x) lấy tất cả các giá trị từ f(a) đến f(b).

Trở lại nhận xét trên, ta sẽ chứng minh bằng phản chứng. Thật vậy, nếu f(u) < f(v) < f(w) (hoặc f(w) < f(u) < f(v)) thì từ giả thiết liên tục của f và định lí về giá trị trung gian của một hàm số liên tục suy ra f(v) là giá trị trung gian của f(u) và f(w). Do đó sẽ tồn tại v' thuộc [u;w] sao cho f(v') = f(u) và $v' \le w < v$ do vậy $v' \ne v$. Điều này mâu thuẫn với giả thiết đơn ánh của f. Nhận xét được chứng minh .

Hệ quả. Cho f là một đơn ánh, xác định và liên tục trên khoảng (a,b) và các số a', $b' \in (a,b)$ với a' < b'. Khi đó:

- i) Nếu f(a') < f(b') thì f tăng ngặt trên [a,b] tức là f(u) < f(v) nếu a' < u < v < b'.
- ii) Nếu f(a') > f(b') thì giảm ngặt trên [a',b'] nghĩa là f(u) > f(v) nếu a' < u < v < b.

Ta sẽ chứng minh điều khẳng định thứ nhất. Vì f(a') < f(b') nên nếu a' < u < b' thì theo Nhận xét l ta có: f(a') < f(u) < f(v).

Vì f(a') < f(u) nên nếu $a' < u < v \Rightarrow f(a')$ < f(u) < f(v) < f(b').

Tương tự cho khẳng định 2.

Nhân xét 2.

Điều kiện ắt có và đủ để một hàm số xác định liên, tục trên khoảng (a,b) đơn ánh là hàm số f(x) đơn điệu ngặt trên khoảng đó.

Chứng minh.

a) Nếu f đơn điệu ngặt thì f đơn ánh:

Cho $u \neq v$. Khi đó hoặc u > v hoặc u < v, do vậy f(u) < f(v) hoặc f(u) > f(v) nghĩa là $f(u) \neq f(v)$.

b) Nếu f đơn ánh thì f đơn điệu ngặt: Với $a' < b' \in (a,b)$. Khi đó hoặc f(a') < f(b') hoặc f(a') > f(b') do vậy ta sẽ chứng minh:

Hoặc (i): Nếu f(a') < f(b') thì f tăng ngặt.

Hoặc (ii): Nếu f(a') > f(b') thì f giảm ngặt.

Xét (i), cho u < v; u, $v \in (a,b)$ đặt $w = min \{a'; u\}$; $z = max\{b'; v\}$ khi đó a', b', u, v đều thuộc đoạn [w, z].

Theo hệ quả của $Nhận \ xét \ 1$, vì f đơn ánh nên tăng ngặt trên [w,z]. Vì $u \neq v$, u, $v \in [w,z]$ nên f(u) < f(v) và u, v là hai điểm bất kì (u < v) trên (a,b) nên f tăng ngặt trên (a,b).

Muốn chứng minh (ii) chỉ cần thay f bởi -f và lập luận tương tư .

Như vậy là chúng ta đã có một số nhận xét và hệ quả khá hay về hàm đơn ánh. Sau đây xin được đi vào một số bài toán cụ thể: **Bài toán 1.** Tìm tất cả các hàm số liên tục

Bài toán 1. Tìm tất cả các hàm số liên tục $f: R \rightarrow R$ thoả mãn điều kiện

$$f(x.f(y)) = y. f(x), \forall x,y \in R.$$

Lòi giải. Cho $x = y = 0 \Rightarrow f(0) = 0$. Dễ thấy $f(x) \equiv 0$ là một nghiệm của phương trình hàm.

Xét
$$f(x) \neq 0$$
. Cho $x = y = 1 \Rightarrow f(f(1)) = f(1)$. Suy ra: $f(x,f(f(1))) = f(1),f(x) = f(x,f(1)) = f(x)$.

 $V \hat{q} y f(1) = 1$. Giả sử tồn tại $x_1 \neq x_2$ mà $f(x_1)$ = $f(x_2)$. Ta có $f(x.f(x_1)) = x_1.f(x)$, $\forall x \in R$ và $(x.f(x_2)) = x_2.f(x)$, $\forall x \in R$.

$$\Rightarrow x_1. f(x) = x_2. f(x) , \forall x \in \mathbb{R}$$

$$\Rightarrow x_1 = x_2 (vi f(x) \neq 0)$$
, mâu thuẫn.

Vậy f là đơn ánh và do f liên tục nên theo $Nh \hat{q} n x \acute{e} t \ 2$ suy ra f đơn điệu ngặt .

Có f(1) > f(0) vậy f tăng ngặt (Hệ quả của Nhận xét 1)

Có
$$f(f(x.f(y))) = f(y.f(x)) = x.f(y), \ \forall x \in R$$

Nếu $f(x.f(y)) > x.f(y)$

$$\Leftrightarrow x.f(y) = f(f(x.f(y))) > f(x.f(y)) > x.f(y), \text{ vô lí}$$

Nếu $f(x.f(y)) < x.f(y)$

$$\Leftrightarrow x.f(y) = f(f(x.f(y))) < f(x.f(y)) < x.f(y)$$
, vô lí
Vậy $f(x.f(y)) = x.f(y)$

Thay
$$x = 1 \Rightarrow f(1) = x, \forall x$$

Thử lại thấy $f(x) \equiv 0$, $f(1) \equiv x$ là hai nghiệm của phương trình hàm

Bài toán 2. Tìm tất cả các hàm f(x) xác định trên R có hữu han nghiệm thoả mãn:

$$f(x^4+y) = x^3 \cdot f(x) + f(f(y)), \ \forall x, y \in R.$$
(APMO- 2002)

Lòi giải. Cho $x = 0 \Rightarrow f(f(y)) = f(y), \forall y \in R$ $\Rightarrow f(x^4 + y) = x^3.f(x) + f(y), \forall x, y \in R.$

$$\Rightarrow f(x^4+y) = -x^3 \cdot f(-x) + f(y), \ \forall x, y \in R$$

$$\Rightarrow f(0) = 0$$

Cho
$$y = 0 \Rightarrow f(x^4) = x^3.f(x), \ \forall x \in R$$

Nếu $\exists x_0 \neq 0$ sao cho $f(x_0) = 0$

 $\Rightarrow f(x_0^4) = 0$. Nếu $x_0 \neq \pm 1$ thì tồn tại dãy: x_1

$$= x_0$$
, $x_n = x_{n-1}^4$, $\forall n = 2, 3,$

Đây là dãy vô số số hạng khác nhau mà f(x) nhận làm nghiệm. Trái giả thiết.

Nếu $x_0 = \pm 1$ tức là f(1) = f(-1) = f(0) thì ta có f(2) = 2.f(1) = 0.

Vậy 2 là nghiệm của f, trái với điều trên.

Vậy x = 0 là nghiệm duy nhất của hàm f(x).

$$\text{C\'o} f(x^4 + y) = x^3 \cdot f(x) + f(y) = f(x^4) + f(y)$$

Nếu
$$x \ge 0 \Rightarrow f(x+y) = f(x) + f(y)$$

Nếu
$$x < 0 \Rightarrow f(x+y) = f(-|x|-y) = -f(|x|-y)$$

= $-(f(-x) + f(-y)) = f(x) + f(y)$.

$$V_{ay}^{2} f(x+y) = f(x) + f(y), \forall x, y \in R.$$

Giả sử
$$\exists x_1 \neq x_2 \text{ mà } f(x_1) = f(x_2)$$

$$\Rightarrow f(x_1+y) = f(x_2+y), \forall y \in R.$$

 $\Leftrightarrow f(x_1 - x_2) = 0$. Hay f nhận $x_1 - x_2 \neq 0$ làm nghiệm (Vô lí).

Vây f là đơn ánh.

Do
$$f(f(y))=f(y) \Rightarrow f(y)=y, \ \forall y \in R$$
.

Thử lại thấy $f(y) \equiv y$ là nghiệm duy nhất của phương trình hàm.

Bài toán 3. Tìm tất cả các hàm $f: N^* \rightarrow N^*$ thỏa mãn

$$f(m+f(n)) = n + f(m+2003), \forall m,n \in N^*$$

Lời giải. Giả sử $\exists n_1 \neq n_2 \text{ mà } f(n_1) = f(n_2)$

 $\Rightarrow f(f(n_1)+m) = n_1 + f(m+2003), \ \forall m, \in \mathbb{N}^* \text{ và}$ $f(f(n_2)+m) = n_2 + f(m+2003), \ \forall m, \in \mathbb{N}^*, \text{ Vô lí.}$ Vây f là đơn ánh.

Ta có: f(f(1)+f(n)) = n + f(f(1)+2003) = n+1 + f(2003+2003) = f(f(n+1)+2003).

Từ đó
$$f(f(1)+f(n)) = f(f(n+1)+2003)$$
.

Do f là đơn ánh nên

$$f(1) + f(n) = f(n+1) + 2003.$$

Bằng quy nạp ta suy ra: f(n) = an + b.

Thay vào điều kiện của bài ta xác định được: a=1, b=2003.

Vậy f(n)=n+2003, $\forall n \in N^*$.

Cuối cùng xin nêu một số bài toán mà ta có thể sử dụng tính chất hàm đơn ánh để giải quyết . Chúc các bạn thành công!

- 1. Tìm tất cả các hàm số $f:Q \rightarrow Q$ thoả mãn : $f(f(x)+y)=x+f(y), \forall x,y \in Q$.
- 2. Tìm tất cả các hàm số $f: R \rightarrow R$ thoả mãn

 $f(y-f(x))=f(x^{2002}-y)-2001.y.f(x), \ \forall x,y \in R.$ (Chon học sinh giỏi quốc gia 2001-2002).

LÒI GIẢI CÁC BÀI THI TOÁN QUỐC TẾ 2003

HÀ HỮU CAO TRÌNH CHUYÊN TOÁN K99 – 02 Lớp K6 CNKHTN Toán, ĐHKHTN - ĐHQG Hà Nội

Tôi cũng xin chia sẻ một số kinh nghiệm trong giải toán với các bạn qua lời giải đề thi toán quốc tế 2003. Hi vọng rằng qua đây các bạn sẽ rút ra cho mình nhiều điều bổ ích.

Bài số 1. Lấy A là một tập con 101 phần tử của tập S gồm các số tự nhiên từ 1 đến 1000000. Chứng minh rằng: tồn tại các số $t_1, t_2,..., t_{100}$ thuộc S sao cho các tập

 $A_i = \{x + t_i / x \in A\}, i = 1, 2,..., 100 \ dôi$ một không giao nhau.

Lời giải. Xét tập D = $\{x - y/x, y \in A\}$, ta thấy D có nhiều nhất 101.100 + 1 phần tử, trong đó chắc chắn chứa phần tử 0.

Nhận xét: A_i , A_j có giao khác rỗng khi và chỉ khi t_i - $t_j \in D$ (*), nên ta chỉ cần chọn 100 phần tử không thỏa mãn (*). Ta chọn bằng quy nap:

Việc chọn 1 phần tử là tầm thường. Giả sử chọn được k phần tử, $k \le 99$ không vi phạm (*). Như vậy, ta vẫn còn ít nhất 10^6 - $10101.k \ge 1$ sự lựa chọn nữa cho phần tử thứ k+1. Tóm lại, ta có thể chọn được 100 số t_1 , t_2 ,..., t_{100} không vi phạm (*). Theo nguyên lý quy nạp, bài toán được chứng minh.

* *Chú* ý: Phát biểu tổng quát sau vẫn đúng nhờ phép chứng minh tương tự.

"Nếu A là tập con k phân tử của tập S gồm các số tự nhiên từ 1 đến n và m là số nguyên dương thỏa mãn: $n > (m-1)(C_2^k + 1)$, thì tồn tại m số $t_1, t_2,..., t_m$ thuộc S thỏa mãn các tập A_i xác định như trên đôi một không giao nhau".

Bài số 2. Tìm tất cả các cặp số nguyên dương (a; b) thỏa mãn $\frac{a^2}{2ab^2 - b^3 + 1}$ là một số nguyên dương.

Lòi giải. Giả sử cặp (a; b) thỏa mãn bài toán. Do $k = \frac{a^2}{2ab^2 - b^3 + 1} > 0$ nên $2ab^2 - b^3 + 1 > 0$ và $a \ge \frac{b}{2}$.

Mặt khác, ta có $a^2 \ge b^2(2a - b) + 1 > 0$ nên hoặc a > b hoặc 2a = b (*)

Xét hai nghiệm (a_1, a_2) của phương trình $a^2 - 2kb^2a + k(b^3-1) = 0$, với giả sử $a_1 \ge a_2$. Theo định lý Vi- et, ta có $a_1 + a_2 = 2kb^2 \Rightarrow a_1 \ge kb^2 > 0$.

Hơn nữa, từ $a_1 a_2 = k(b^3 - 1)$, ta có $0 \le a_2 = \frac{k(b^3 - 1)}{a_1} \le \frac{k(b^3 - 1)}{kb^2} < b$. Kết hợp với

$$(*) \Rightarrow a_2 = 0 \text{ hoặc } a_2 = \frac{b_2}{2}.$$
- Nếu $a_2 = 0$ thì b^3 - $1 = 0 \Rightarrow a_1 = 2k, b = 1.$
- Nếu $a_2 = \frac{b_2}{2}$ thì $k = \frac{b^2}{4}$ và $a_1 = \frac{b^2}{2} - \frac{b}{2}.$

Như vậy, ta đã tìm được (a;b) dưới dạng $(2t;\ 1)$ hoặc $(t;\ 2t)$ hoặc $(8t^4$ - $t;\ 2t)$, $t\in N^*$. Thử lại đều thấy thỏa mãn.

Chú ý: Có thể suy được (*) bằng cách sau: Xét hàm $f(b) = 2ab^2 - b^3 + 1$, hàm này tăng trên $\left[0; \frac{4a}{3}\right]$, giảm trên $\left[\frac{4a}{3}; +\infty\right]$ và ta có:

$$f(a) = a^{3} + 1 > a^{2}, f(2a-1) = 4a^{2} - 4a + 2 > a^{2},$$

$$f(2a+1) = -4a^{2} - 4a < 0.$$

$$\Rightarrow$$
 Nếu $b \ge a$ và $\frac{a^2}{f(b)}$ nguyên dương thì $b =$

2a. Thật vậy, nếu
$$a \le b \le \frac{4a}{3}$$
 thì $f(b) \ge f(a)$

$$> a^2 \Rightarrow \frac{a^2}{f(b)} < 1$$
, vô lý. Còn nếu b $> \frac{4a}{3}$

thì:

17

Cambo Storeson State

i) Nếu b > 2a + 1 thì f(b) < f(2a+1) < 0, vô lý.

 \vec{ii}) Nếu $b \le 2a-1$ thì $f(b) \ge f(2a-1) > a^2$, vô lý.

Bài 3. Mỗi cặp cạnh đối diện của lục giác lồi có tính chất sau: khoảng cách

trung điểm của chúng gấp $\frac{\sqrt{3}}{2}$ lần tổng độ dài của chúng.

Chứng minh rằng tất cả các góc của lục giác bằng nhau.

Lời giải.

Cách 1. Ta sẽ chứng minh *nhận xét* sau: *Nếu* $\angle QPR \ge 60^{\circ} và L là trung điểm của QR thì$

$$PL \leq \frac{\sqrt{3}}{2}QR$$
. Dấu bằng xảy ra khi và chỉ khi PQR là tam giác đều.

Chứng minh nhận xét. Lấy S sao cho QRS là tam giác đều và P nằm trong phần giao của nửa mặt phẳng bờ QR chứa S với phần hình tròn ngoại tiếp QRS.Vậy P nằm trong cả (L, LS)

$$\Rightarrow$$
 PL < LS = $\frac{\sqrt{3}}{2}$ QR ($dpcm$)

Trở lại bài toán của ta, gọi lục giác lồi là ABCDEF. Xét một đường nối trung điểm N của DE với trung điểm M của AB, $AE \cap BD$ = P. Không mất tổng quát giả sử $\angle APB \ge 60^{\circ}$. Vì tổng 3 góc tạo bởi các đường chéo chính liên tiếp bằng 180° . Theo nhân xét trên, ta có :

$$MN = \frac{\sqrt{3}}{2}(AB+DE) \ge PM+PN \ge MN$$

Dấu bằng buộc xảy ra theo giả thiết $\Rightarrow ABP$ là tam giác đều. Đến lúc đó, ta

có thể giả sử một trong hai góc còn lại tạo bởi các đường chéo chính $\geq 60^{\circ}$ và chứng minh tương tự, ta có ngay *ABCDEF* có tất cả các góc bằng nhau.

Cách 2. Sử dụng vectơ và nhận xét ở cách 1, các bạn hãy tự chứng minh (!).

Bài 4. Cho ABCD là một tứ giác nội tiếp. Gọi P, Q, R là các chân đường vuông góc hạ từ D xuống BC, CA, AB. Chứng minh: PQ=QR khi và chỉ khi phân giác của ∠ABC,∠ADC và đường chéo AC đồng quy.

Lời giải.

Cách 1. Ta biết P, Q, R thẳng hàng (đường thẳng Simson). Dễ dàng có được :

$$\Delta DCA \sim \Delta DAR$$
$$\Delta DAB \sim \Delta DPQ$$
$$\Delta DBC \sim \Delta DRQ$$

$$\Rightarrow \frac{DA}{DC} = \frac{DR}{DP} = \frac{DB \cdot \frac{QR}{BC}}{DB \cdot \frac{PQ}{BA}} = \frac{QR}{PQ} \frac{BA}{BC} \text{ nên PQ}$$

$$= QR \iff \frac{DA}{DC} = \frac{BA}{BC} (1)$$

Theo tính chất của đường phân giác, (1) xảy ra khi và chỉ khi phân giác $\angle ABC$, $\angle ADC$ chia AC theo cùng một tỷ số, tức là chúng đồng quy, (dpcm).

Cách 2. Giả sử phân giác $\angle ABC$, $\angle ADC$ lần lượt cắt AC ở L và M. Từ $\frac{LA}{LC} = \frac{BA}{BC}$ và

$$\frac{MA}{MC} = \frac{DA}{DC} \Rightarrow L \equiv M$$
 khi và chỉ khi

$$\frac{BA}{BC} = \frac{DA}{DC} \Leftrightarrow AB.CD = CB.AD (1)$$

Đặt $\alpha = \angle ACB$, $\gamma = \angle CAB$, ta có: các tứ giác PDQC và APQR nội tiếp nên $\angle PDQ$ hoặc bằng α hoặc bằng 180° - α . $\angle QDR$ hoặc bằng γ hoặc bằng 180° - γ . Theo đính lý hàm số sin ta có:

$$PQ = CDsin \alpha$$
, $QR = ADsin \gamma$

$$\Rightarrow PQ = QR \Leftrightarrow \frac{\sin \alpha}{\sin \gamma} = \frac{DA}{DC}$$

Mặt khác
$$\frac{\sin \alpha}{\sin \gamma} = \frac{BC}{BA}$$
 nên ta có luôn

$$PQ = QR \Leftrightarrow AB.CD = CB.AD$$
 (2)

Từ (1) và (2) suy ra đpcm.

Bài 5. Cho n là số nguyên dương và $x_1 \le x_2 \le ... \le x_n$ là các số thực.

a) Chứng minh rằng:

$$\left(\sum_{i,j=1}^{n} |x_i - x_j|\right)^2 \le \frac{2(n^2 - 1)}{3} \sum_{i,j=1}^{n} (x_i - x_j)^2$$

b) Chứng minh rằng dấu đẳng thức xảy ra khi và chỉ khi $x_1,x_2,...,x_n$ là một cấp số cộng. **Lời giải.**

a) Không mất tổng quát, ta giả sử $\sum_{i=1}^{n} x_{i} = 0 \text{ (do 2 vế của bất đẳng thức (BĐT)}$ chỉ phụ thuộc $(x_{i} - x_{i})$). Ta có :

$$\sum_{i,j=1}^{n} |x_i - x_j| = 2 \sum_{i < j} (x_i - x_j)$$

=
$$2\sum_{i=1}^{n} x_i (2i - n - 1)$$
. Sử dụng BĐT Cauchy -

Schwarz, ta có:

$$\left(\sum_{i,j=1}^{n} \left| x_i - x_j \right| \right)^2 \le 4 \sum_{i=1}^{n} (2i - n - 1)^2 \sum_{i=1}^{n} x_i^2$$

$$= 4 \frac{n(n+1)(n-1)}{3} \sum_{i=1}^{n} x_i^2$$

Măt khác, ta có:

$$\sum_{i,j=1}^{n} (x_i - x_j)^2 = n \sum_{i=1}^{n} x_i^2 - \sum_{i=1}^{n} x_i \sum_{j=1}^{n} x_j +$$

$$+n\sum_{i=1}^{n}x_{j}^{2}=2n\sum_{i=1}^{n}x_{i}^{2}$$
. Do vậy nên:

$$\left(\sum_{i,j=1}^{n} \left| x_i - x_j \right| \right)^2 \le \frac{2(n^2 - 1)}{3} \sum_{i,j=1}^{n} (x_i - x_j)^2$$

b) Dấu bằng xảy ra nếu $x_i = k(2i-n-1)$ với k nào đó, nghĩa là $x_1, x_2, ..., x_n$ là một cấp số cộng. Mặt khác, giả sử $x_1, x_2, ..., x_n$ là một cấp số cộng với công sai d. Ta có:

$$x_i = \frac{d}{2}(2i - n - 1) + \frac{x_1 + x_n}{2}$$
. Giảm tất cả

đi một lượng $\frac{x_1 + x_n}{2}$, ta thu được

$$x_i = \frac{d}{2}(2i - n - 1)$$
 và $\sum_{i=1}^n x_i = 0$. Từ đó, ta

có đẳng thức.

Bài 6. Cho p là một số nguyên tố. Chứng minh rằng: tồn tại số nguyên tố q thỏa mãn với mọi số nguyên n, số n^p - p không chia hết cho q.

Lòi giải. Ta có:
$$\frac{p^p-1}{p-1} = 1 + p + ... + p^{p-1} = 1$$

 $\equiv p + 1 (\bmod \, p^2)$. Do đó ta có thể lấy ít nhất

một ước nguyên tố của $\frac{p^p-1}{p-1}$ sao cho nó

không đồng dư với $1 \pmod{p}$. Đặt ước này là q và ta chứng minh đó là số cần tìm.

Thật vậy, giả sử tồn tại số tự nhiên n sao cho $n^p \equiv p \pmod{q}$.

Ta có $n^{p^2} \equiv p^p \equiv 1 \pmod{q}$ (theo định nghĩa của q). Mặt khác, từ định lý nhỏ Fermat $n^{q-1} \equiv 1 \pmod{q}$. Từ $p^2/q-1$, ta có : $(p^2,q-1)=q$. Từ đó dẫn đến $n^p \equiv 1 \pmod{q}$, nên ta có $p \equiv 1 \pmod{q}$. Hơn thế, $l+p+p^2+...+p^{p-l} \equiv p \pmod{q}$, theo cách lấy q ta có $p \equiv 0 \pmod{q}$, vô lý.

Vậy ta có đpcm.

Cuối cùng, rất mong các bạn sẽ luôn say mê, tìm tòi để học tốt bộ môn toán. Các bạn hãy quyết tâm thật cao và hãy tin rằng: "Chỉ biết rằng cuối cùng chúng tôi sẽ thắng"!

SỐ PHỦ (VỚI HÌNH HỌC PHẨNG

VŨ HỮU PHƯƠNG CHUYÊN TOÁN K00 – 03

Sv. Lớp ĐT8 – K48, Khoa Điện tử Viễn thông - ĐH Bách Khoa Hà Nội

Các bạn thân mến, để giải các bài toán hình học phẳng, chúng ta có khá nhiều phương pháp như sử dụng vector, tọa độ, các phép biến hình.. nhưng có lẽ số phức là công cụ mà nhiều bạn còn chưa hoặc ít sử dụng vì tính mới lạ của nó. Bài viết này xin được trao đổi với các bạn một số kinh nghiệm mà tôi có về số phức.

I. Định nghĩa số phức.

Trước hết, các bạn hãy làm quen với đơn vị ảo mà người ta kí hiệu là i được xác định bởi đẳng thức: $i^2 = -1$ (điều này cho phép khai căn bất kì số thực nào).

Với đơn vị ảo, người ta thiết lập các biểu thức dạng: z = a + ib; $a, b \in R(1)$.

1. Định nghĩa.

Mỗi biểu thức z = a + ib; $a, b \in R$ được gọi là một số phức.

2. Môt số khái niêm liên quan.

Trong biểu thức (1), a được gọi là phần thực, b được gọi là phần ảo của số phức z. Để gọn hơn, người ta kí hiệu:

$$a = im(z) = I(z); b = re(z) = R(z).$$

Biểu thức (1) được gọi là biểu diễn đại số của số phức và các bạn chú ý rằng khii b = 0 thì z = a là một số thực, khi a = 0, $b \ne 0$ thì ta gọi z = ib là số thuần ảo.

Số phức $\overline{z} = a - ib$ được gọi là số phức liên hợp của số phức z.

Tập hợp các số phức z được kí hiệu là $C = \{a + ib / a, b \in R\}.$

II. Phép tính trên C.

Tính chất giao hoán, kết hợp trong C giống như trong R.

Các phép cộng, trừ, nhân, chia những số phức với biểu diễn đại số như sau:

1.
$$(a+ib) + (c+id) = (a+c) + i(b+d)$$

2.
$$(a+ib) - (c+id) = (a-c) + i(b-d)$$

$$3. (a+ib)(c+id) = (ac-bd) + i(ad+bc)$$

$$4. \frac{a+ib}{c+id} = \frac{ac+bd}{c^2+d^2} + i\frac{bc-ad}{c^2+d^2}, \ \mathring{o} \ \mathring{d}ay \ c^2+d^2$$

III. Dạng hình học, lượng giác của số phức. Nhãn.

1. Dang hình học.

Trong mặt phẳng tọa độ Oxy, nếu điểm M có tọa độ M(a;b) thì người ta biểu diễn nó bởi số phức z=a+ib, gọi là nhãn của điểm M.

Tóm lại: Điểm M(a;b) có nhãn là z = a + ib. Người ta cũng nói vector \overrightarrow{OM} có nhãn là z = a + ib.

2. Dang lượng giác.

Vẫn với điểm M trên (khác gốc tọa độ), ta xét góc định hướng $\varphi = (Ox, OM)$. Đặt $r = \sqrt{a^2 + b^2}$ ta có $\cos \varphi = \frac{a}{r}$, $\sin \varphi = \frac{b}{r}$, do đó $z = r(\cos \varphi + i \sin \varphi)$ (2)

Biểu diễn (2) được gọi là biểu diễn lượng giác của số phức *z*.

Người ta gọi r là modul của z, kí hiệu |z| Đồng thời, gọi φ là argument của z, viết tắt là argz, tất nhiên argz nhận vô số giá trị : $argz = \varphi + k2\pi$, $k \in Z$, và ta thường dùng $\varphi \in [0; 2\pi]$. Với hai số phức

$$z_1 = r_1 \left(\cos \varphi_1 + i \sin \varphi_1 \right)$$

$$z_2 = r_2 \left(\cos \varphi_2 + i \sin \varphi_2 \right) \text{ ta có:}$$

$$z_2 z_2 = r_1 r_2 \left[\cos(\varphi_1 + \varphi_2) + i \sin(\varphi_1 + \varphi_2) \right]$$

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \left[\cos(\varphi_1 - \varphi_2) + i \sin(\varphi_1 - \varphi_2) \right]$$

Để cho tiện, bắt đầu từ đây ta kí hiệu điểm bởi chữ in hoa và nhãn của nó là chữ in thường. Ví dụ: điểm \mathbf{Z} có nhãn là z = a + ib.

Bây giờ, ta xét hai điểm Z_1 , Z_2 có nhãn tương ứng la

$$z_1 = r_1 \left(\cos \varphi_1 + i \sin \varphi_1\right)$$

$$z_2 = r_2 \left(\cos \varphi_2 + i \sin \varphi_2\right)$$

Lúc này thì tổng $z_3 = z_1 + z_2$ sẽ biểu diễn vị trí của điểm Z_3 mà $\overrightarrow{OZ_3} = \overrightarrow{OZ_1} + \overrightarrow{OZ_2}$ Hiệu $w = z_1 - z_2$ sẽ là nhãn của $\overrightarrow{Z_1Z_2}$.

Góc đinh hướng

$$(\overrightarrow{OZ_1}, \overrightarrow{OZ_2}) = \arg z_1 - \arg z_2 = \arg \frac{z_1}{z_2}$$

Với 4 điểm Z_1 , Z_2 , U_1 , U_2 , ta có:

$$\operatorname{arg}\left(\overrightarrow{Z_1Z_2}, \overrightarrow{U_1U_2}\right) = \operatorname{arg}\frac{U_1 - U_2}{Z_1 - Z_2}$$

IV. Tính chất.

$$1) z + \overline{z} = 2R(z)$$

2)
$$\frac{z_1 z_2}{z_1 z_2} = \frac{z_1}{z_1} \frac{z_2}{z_2}$$
; $\frac{z_1 + z_2}{z_1 + z_2} = \frac{z_1}{z_1} + \frac{z_2}{z_2}$

3) z.
$$\bar{z} = |z|^2$$

4)
$$\overrightarrow{Z_1}\overrightarrow{Z_2} \perp \overrightarrow{U_1}\overrightarrow{U_2} \iff \frac{z_2 - z_1}{u_2 - u_1} = \frac{\overline{z_2} - \overline{z_1}}{\overline{u_2} - \overline{u_1}}$$

V. Một số bài toán.

Bài toán 1. Cho ba hình vuông ABCD, BEFC, EPQF như hình vẽ. Chứng minh

$$r\check{a}ng: \angle ACD + \angle AFD + \angle AQD = \frac{\pi}{2}.$$

Lòi giải. Dựng hệ trục tọa độ như hình vẽ và nhận \overrightarrow{AB} làm vecto đơn vị của trục hoành. Suy ra nhãn của A, B, C, D, E, F, P, Q tương ứng là: a = 0; b = 1; c = 1 + i; d = i; e = 2; f = 2 + i; p = 3; q = 3 + i.

Từ đó:
$$\angle ACD + \angle AFD + \angle AQD =$$

$$=(AB,AC) + (AE,AF) + (AP,AQ) =$$

$$= argc + argf + argq =$$

$$= arg(c.f.q) =$$

=
$$\arg(1+i)(2+i)(3+i) = \arg(10i) = \frac{\pi}{2}$$
 (dpcm)

Bài toán 2. Cho tứ giác lồi ABCD. Dựng ra phía ngoài các tam giác cân đồng dạng ABP,BCD,CDR,DAS, mà P,Q,R,S tương ứng là các đỉnh cân. Chứng minh: nếu PQRS là hình bình hành thì ABCD cũng là hình bình hành.

Lòi giải.

Đặt
$$(\overrightarrow{AB}, \overrightarrow{AP}) = \varphi$$
, thế thì $\varphi = \arg \frac{p-a}{p-b}$ hay

là
$$\frac{p-a}{p-b} = \frac{AP}{AB} (\cos \varphi + i \sin \varphi)$$

$$m\grave{a}\frac{AP}{AB} = \frac{1}{2\cos\varphi} \, n\hat{e}n \, \frac{p-a}{p-b} = \frac{1}{2} (1 + tg\,\varphi) \, suy$$

ra
$$p = \frac{1}{2} (1 + tg\varphi)(b - a) + a$$
.

Tương tự như vậy ta cũng có:

$$q = \frac{1}{2} (1 + tag\varphi)(c - b) + b,$$

$$r = \frac{1}{2}(1 + tg\varphi)(d - c) + c$$
$$s = \frac{1}{2}(1 + tg\varphi)(a - d) + d$$

Do *PQRS* là hình bình hành nên s + q = p + r. Từ đây dễ dàng suy ra đọcm.

Nhận xét. Bài này khi ra cho chúng tôi, thầy giáo đã cho điều kiện nhẹ hơn là PQRS là hình chữ nhật để có thể sử dụng định lý "con nhím". Nhưng rõ ràng với số phức, ta vẫn giải quyết bài toán một cách bình thường và cũng hết sức tự nhiên. Tất nhiên, số phức không phải lúc nào cũng là hướng giải quyết tốt cho các bài toán, bởi vì trong tay các bạn còn rất nhiều "vũ khí" khác, nhưng các bạn hãy cố gắng sử dụng nó thường xuyên. Để kết thúc, xin giới thiệu với các bạn một bài thi học sinh giỏi Quốc gia mà tự tôi đã tìm ra lời giải bằng số phức.

Bài toán 3. Xét các tam giác ABC không đều có các đường cao AD, BE, CF. Lấy A', B', C' sao cho AA' = k. AD; BB' = k.BE; $CC' = k.CF.(k \neq 0)$. Tìm tất cả các giá trị của k sao cho với mọi tam giác ABC không đều thì $\Delta ABC \sim \Delta A'B'C'$.

(Thi HSGQG Bảng A- 1995)

Lời giải. Dựng hệ trục tọa độ như hình vẽ, ta có $AA' = k.AD \Rightarrow a' = k(d-a) + a$ $\Rightarrow a' = a + \frac{k}{2} \left(b + c - a \right) - \frac{bc}{a} \right), \quad \text{vì}$ $d = \frac{1}{2} \left(b + c + a - \frac{bc}{a} \right). \text{ Dựng hệ trục tọa độ}$ như hình vẽ, ta có: $AA' = k.AD \Rightarrow a' = k(d-a) + a$ $\Rightarrow a' = a + \frac{k}{2} \left[\left(b + c - a \right) - \frac{bc}{a} \right] \text{vì}$ $d = \frac{1}{2} \left(b + c + a - \frac{bc}{a} \right). \text{Tương tự}$ $b' = b + \frac{k}{2} \left(c + a - b \right) - \frac{ca}{b} \right),$ $c' = c + \frac{k}{2} \left(a + b - c \right) - \frac{ab}{c} \right)$

Do đó
$$\frac{b'-a'}{c'-a'}$$
=

$$\frac{\frac{k}{2}\left(a-b-\frac{ac}{b}-b+a+\frac{bc}{a}\right)+b-a}{\frac{k}{2}\left(a-c-\frac{ba}{c}-c+a+\frac{bc}{a}\right)+c-a}$$

$$=\frac{b-a}{c-a}\cdot\frac{(k-1)-\frac{kc(a+b)}{2ab}}{(k-1)-\frac{kb(a+c)}{2ac}},\quad \text{R\~{o}} \quad \text{r\`{a}ng},$$

 $\triangle ABC \sim \triangle A'B'C'$ tương đương với một trong hai điều kiện sau: $\frac{b'-a'}{c'-a'} = \frac{b-a}{c-a}$ (1) hoặc là

$$\frac{b'-a'}{c'-a'} = \frac{\overline{b-a}}{\overline{c-a}} \quad (2). \quad \text{Trong} \quad \text{do} \quad (1)$$

$$\Leftrightarrow c^2a + c^2b = b^2a + b^2c \Leftrightarrow$$

$$a(c-b)(c+b) + cb(c-b) = 0$$

$$\Leftrightarrow ab + bc + ca = 0 \text{ .Nhưng với}$$

$$a = R(\cos\varphi_1 + i\sin\varphi_1),$$

$$\begin{aligned} b &= R \left(\cos \varphi_2 + i \sin \varphi_2 \right), \\ c &= R \left(\cos \varphi_3 + i \sin \varphi_3 \right) \text{th} \end{aligned} \quad \text{ta} \quad \text{c\'o:} \\ ab + bc + ca = 0 \quad \text{R} = 0, \text{ v\^o } \text{l\'y}. \end{aligned}$$

$$V_{a}^{2}y: \Delta ABC \sim \Delta A'B'C' \Leftrightarrow (2)$$

$$\Leftrightarrow b \left[(k-1) - \frac{kc(a+b)}{2ab} \right] =$$

$$= \left((k-1) - \frac{kb(a+c)}{2ac} \right) \Leftrightarrow k = \frac{2}{3}.$$

Vậy $k = \frac{2}{3}$ là giá trị cần tìm./.

PHƯƠNG TRÌNH HÀM

và Sự Trù Mất

BÙI LÊ VŨ CHUYÊN TOÁN K01-04

Sv. Lóp 04TT, Khoa Toán Tin, ĐHKHTN - ĐHQG TP Hồ Chí Minh

Phương trình hàm là một chuyên đề quan trọng trong toán học phổ thông, đặc biệt là trong các kì thi học sinh giỏi. Cũng như nhiều vấn đề khác trong Toán học, phương trình hàm cũng mang vẻ đẹp riêng của nó. Bài viết này xin được quan sát vẻ đẹp đó dưới góc độ là mối liên hệ giữa phương trình hàm và sự trù mật.

I / Tập hợp trù mật.

1. Định nghĩa.

Cho hai tập hợp A và B, $A \subseteq B$. Nói A trù mật trong B nếu $\forall x \in B, \forall \varepsilon > 0, \exists x \in A$ sao cho $|x - x| < \varepsilon$.

2. Một số ví du.

2.1. Ví dụ 1. Cho tập hợp

$$S_1 = \left\{ \frac{k}{2^n} / k \in \mathbb{Z}, n \in \mathbb{N} \right\}$$
. Chứng minh r**ằ**ng

t**ậ**p S_1 trù mật trong R.

Chứng minh. Do $\lim_{n\to\infty}\frac{1}{2^n}=0$ nên $\forall b>a$,

$$\exists n_0 \text{ sao cho: } \forall n > n_0 \text{ ta có } b - a > \frac{1}{2^n}$$

$$\Rightarrow 2^n b > 2^n a + 1, \forall n > n_0$$

$$\Rightarrow \exists k \in Z \, d\vec{e}' \, b > \frac{k}{2^n} > a$$

 $\Rightarrow \forall x \in \mathbb{R}, \ \forall \ \varepsilon > 0, \ \exists k \in \mathbb{Z}, \ n \in \mathbb{N} \text{ sao cho}$

$$x + \varepsilon > \frac{k}{2^n} > x - \varepsilon$$

 \Rightarrow S₁ trù mật trong R (đpcm).

2.2. Ví dụ 2. Cho tập hợp

$$S_2 = \left\{ \sqrt{a} - \sqrt{b} / a, b \in N \right\}. \ Chứng minh rằng
$$S_2 trù mật trong R.$$$$

Chứng minh. Do $\lim_{n\to\infty} (\sqrt{n+1} - \sqrt{n}) =$

$$=\lim_{n\to\infty}\frac{1}{\sqrt{n+1}+\sqrt{n}}=0$$
 nên $\forall \ \varepsilon > 0$, tồn tại

$$n_0$$
 sao cho $\sqrt{n+1} - \sqrt{n} < \varepsilon$, $\forall n > n_0$.

Do
$$\lim_{n\to\infty} (\sqrt{n_0} - \sqrt{n}) = -\infty$$

nên
$$\forall x \in R, \forall \varepsilon > 0, \exists n_l \text{ sao}$$

cho: $\sqrt{n_0} - \sqrt{n} < \varepsilon, \forall n > n_l$. Xét dãy (U_n)

xác định bởi:
$$U_n = \sqrt{n_0 + n} - \sqrt{n_1} \ \forall x \in \mathbb{N}.$$

Ta có
$$U_{n+1}$$
 - $U_n = \sqrt{n_0 + n + 1} - \sqrt{n + n_0} < \varepsilon$

và
$$U_0 = \sqrt{n_0} - \sqrt{n_1} < x - \varepsilon$$

$$\Rightarrow \exists m \in \mathbb{N}^* \text{ de } U_{m-1} < x - \varepsilon < U_m$$

$$\Rightarrow x + \varepsilon > U_{m-1} + 2\varepsilon > U_m > x - \varepsilon$$

$$\Rightarrow |U_m - x| < \varepsilon$$
. Do $U_m \in S_2$ nên S_2 trù mật trong R (đpcm).

2. 3. Ví dụ 3. Giả sử tập N được chia thành 2 tập hợp con A và B, mỗi tập chứa vô hạn

phần tử. Đặt
$$S_3 = \left\{\frac{a}{b}/a, b \in N\right\}$$
. Chứng

minh r**ằ**ng S_3 trù mật trong $[0;+\infty)$

Chứng minh. Do B có vô hạn phần tử nên

$$\forall k \in \mathbb{N}, \ \forall \ \varepsilon > 0, \ \exists b \in \mathbf{B} \text{ sao cho } b > \frac{k}{2\varepsilon}$$

$$\Rightarrow b(x + \varepsilon) > b(x - \varepsilon) + k, \ \forall x \in [0; +\infty)$$

 $\Rightarrow \exists a \in A \text{ dể } b(x + \varepsilon) > a > b(x - \varepsilon) \text{ (do } A$ có vô hạn phần tử)

$$\Rightarrow x + \varepsilon > \frac{a}{b} > x - \varepsilon$$

 $\Rightarrow S_3$ trù mật trong $[0; +\infty)$

3. Dinh lý. Cho hai hàm số $f(x), g(x): X \to X$, trong đó f(x) liên tục,

E PO POSE CONTROL

g(x) liên tục hoặc đơn điệu. Và A là tập hợp trù mật trong X. Khi đó, nếu $f(x) = g(x) \ \forall \ x \in A$ thì $f(x) = g(x) \ \forall \ x \in X$.

Chứng minh. Ta có nhận xét: Với tập A trù mật trong tập X thì $\forall x \in X$, tồn tại dãy (x_n) thỏa mãn $x_n \in A$, $\forall n \in N$ và $\lim_{n \to +\infty} x_n = x$.

Thật vậy, nếu $x \in A$ thì tầm thường. Nếu $x \notin A$, theo định nghĩa ta có: $\forall x \in X, \forall \varepsilon > 0, \exists \overline{x} \in A$ sao cho $|x - \overline{x}| < \varepsilon$. Mặt khác, dễ có tồn tại dãy (ε_n) thỏa mãn $0 < \varepsilon_n < \varepsilon, \forall n \in N$. Với mỗi $n \in N, \exists x_n \in A$ thỏa $|x - \overline{x}| < \varepsilon_n$

 $\Rightarrow \lim_{n \to +\infty} x_n = x$. Nhận xét được chứng minh.

Chú ý. Từ đây ta có thể dễ dàng chứng minh được nhận xét mạnh hơn: Tồn tại hai dãy $\left(x_{n_1}\right)$ và $\left(x_{n_2}\right)$ thỏa mãn

$$i)$$
 $x_{n_1}, x_{n_2} \in A, \forall n \in N$

ii)
$$x_{n_1} < x < x_{n_2}, \forall n \in N$$
 (*)

$$iii) \lim_{n_1 \to +\infty} x_{n_1} = \lim_{n_2 \to +\infty} x_{n_2} = x$$

Trở lai bài toán, xét 2 trường hợp:

- Trường hợp1: g(x) liên tục. Theo nhận xét trên, $\forall x \in X$, tồn tại dãy (x_n) thỏa mãn $x_n \in A, \forall n \in N$ và $\lim_{n \to \infty} x_n = x$

$$\Rightarrow g(x_n) = f(x_n) \text{ với mọi } n \in \mathbb{N}$$

$$\Rightarrow$$
 g(x) = f(x).

- Trường hợp 2: g(x) đơn điệu. Không giảm tổng quát, giả sử g(x) tăng. Ta có: tồn tại hai dãy $\left(x_{n}\right)$ và $\left(x_{n}\right)$ thỏa mãn (*)

$$\Rightarrow f(x_{n_1}) = g(x_{n_1}) < g(x) < g(x_{n_2}) = f(x_{n_2})$$

$$\Rightarrow g(x) = f(x)$$

Vậy định lý được chứng minh. Từ đây, ta có thể thiết lập được một số bài toán .

II. Môt số Bài toán.

Các tập S_1 , S_2 , S_3 được định nghĩa trong các ví du ở mục trên.

Bài toán 1. Tìm tất cả các hàm số $f: R \rightarrow R$ liên tục và thỏa mãn :

$$f(x + y) + f(x - y) = 2 f(x) chy.$$

Trong đó chy =
$$\frac{1}{2} \left(e^y + e^{-y} \right)$$

Lòi giải. Đặt

$$b = \frac{e^2 f(0) - ef(1)}{e^2 - 1}, \ a = f(0) - b,$$

ta có
$$f(0) = a + b$$
, $f(1) = ae + be^{-1}$.

Cho
$$x = y = \frac{1}{2}$$
, ta có

$$f(0) + f(1) = f\left(\frac{1}{2}\right)\left(e^{\frac{1}{2}} + e^{-\frac{1}{2}}\right)$$

$$\Rightarrow f(\frac{1}{2}) = ae^{\frac{1}{2}} + be^{-\frac{1}{2}}$$

Bằng quy nạp, dễ dàng chứng minh được

$$f(\frac{1}{2^n}) = ae^{\frac{1}{2^n}} + be^{-\frac{1}{2^n}}, \forall n \in \mathbb{N}. \text{ Từ đó, cũng}$$

bằng quy nạp, ta chứng minh được $f\left(\frac{k}{2^n}\right) = ae^{\frac{k}{2}} + be^{-\frac{k}{2}}, \forall n \in \mathbb{N}.$

Do S_I trù mật trong R nên ta có $f(x) = ae^x + be^{-x}$, $\forall x \in R$. Thử lại thấy thỏa mãn và đó là hàm cần tìm.

Bài toán 2. Tìm tất cả các số thực dương k sao cho tồn tại hàm $f: R \to R$ liên tục và thỏa mãn:

$$i) \ f(x.f(y)) = y^k f(x), \ \forall x, y \in R$$

ii)
$$f(x^{2^n} - y^{2^n}) = \prod_{i=1}^{n-1} f(x^{2^i} - y^{2^i}) (\sqrt{x} - \sqrt{y}) \forall$$

 $x, y \in N$ và n là một số tự nhiên cho trước.

Lời giải. Giả sử tồn tại số k > 0 thỏa mãn điều kiện bài toán. Từ i) ta giả sử f(x) = f(y)

$$\Rightarrow f(xf(y)) = f(xf(x))$$

$$\Rightarrow y^k f(x) = x^k f(x) \Rightarrow x = y$$

$$\Rightarrow f$$
 đơn ánh.

Cho x = 1, ta có $f(f(y)) = y^k f(1)$.

Tại đây, cho y = I và y = xy ta được

$$f(f(1)) = f(1) \Rightarrow f(1) = 1$$

$$\Rightarrow f(f(xy)) = (xy)^k f(1) = (xy)^k$$

Tại i) cho x = f(x), ta có $f(f(xy)) = y^k f(f(x))$

 $= (xy)^k \Rightarrow f(xy) = f(x)f(y), \forall x, y \in R.$

Vậy f nhân tính, kết hợp với ii) dễ dàng suy ra: $f(\sqrt{x} - \sqrt{y}) = (\sqrt{x} - \sqrt{y}) \forall x, y \in N$. Do S_2 trù mật trong R nên f(x) = x, $\forall x \in R$. Thay vào i) ta có k = 1 thỏa mãn các điều

ORDO STANSON THE

kiện bài toán. Vậy k = 1 là giá trị duy nhất cần tìm.

Bài toán 3. Kí hiệu

$$S = \left\{ \frac{2p}{2k+1} / p \in \mathbb{Z}, k \in \mathbb{N} \right\}. \ Tim \ tất \ cả các$$

hàm số $f: R \rightarrow R$ liên tục và thỏa mãn các điều kiên:

i) $\forall x \in S \text{ thi } f(x) \in S, f^2(0) \in S$

$$ii)\,f(xf(x)+f(y))=y+f^2(x),\,)\,\forall\,x,\,y\in\,S.$$

Lời giải. Cho $x = 0 \Rightarrow f(f(y)) = f^2(0) + y$ với mọi $y \in S \Rightarrow f$ đơn ánh trong S.

Cho $x = f(x) \in S$, ta có:

$$f(f(x).f(f(x)) + f(y)) = [f(f(x))]^2 + y$$

$$\Rightarrow f(f(x)(x+a) + f(y)) = [(x+a)]^2 + y,$$

trong đó a = f'(0). Tại đây, cho $x = -a \in S$, ta có $f(f(y)) = y \Rightarrow a = 0 \Rightarrow f(0) = 0$.

Cho $y = 0 \Rightarrow f(xf(x)) = f'(x)$ (1)

Tại đây, cho x = f(x), ta có

$$f(f(x).f(f(x))) = [f(f(x))]^2$$

$$\Rightarrow f(xf(x)) = x^2 \tag{2}$$

Từ (1) và (2) suy ra
$$f(x) = x^2$$
, $\forall x \in S$

Giả sử tồn tại $y_0 \in S$ ($y_0 \neq 0$) sao cho $f(y_0)$

= - y_0 thì tại phương trình hàm ban đầu, cho $y = y_0$ ta có:

$$f(xf(x) - y_0) = y_0 + f^2(x) = x^2 + y_0$$

$$\Rightarrow [f(xf(x) - y_0)]^2 = (x^2 + y_0)^2$$

$$\Rightarrow (xf(x) - y_0)^2 = (x^2 + y_0)^2$$

$$\Rightarrow f(x) = -x, \forall x \in S$$

Vậy
$$f(x) = x, \forall x \in S \text{ hoặc } f(x) = -x, \forall x \in S$$
 (*)

Nhân xét.

1/. Theo $vi \ du \ 3$, xét tập $A = \{2p / p \in Z^+\}$; $B = \{2k + 1/k \in N \}$, khi đó tập

$$S' = \left\{ \frac{2p}{2k+1} / p \in Z^+, k \in N \right\} \text{trù mật trong}$$

 $\{0;+\infty\}$. Từ đây, dễ dàng suy ra tập S trù mật trong R (**)

Từ (*) và (**) suy ra $f(x) = x, \forall x \in R$ hoặc $f(x) = -x, \forall x \in R$. Thử lại thấy thỏa mãn và đó là 2 hàm cần tìm.

2/. Qua 3 bài toán trên ta thấy một số kết quả về sự trù mật đã giúp một phần không nhỏ trong việc định hướng giải PTH.

Tiếp theo, tôi thấy rằng "sự trù mật" không mạnh bằng "sự phủ kín" và tôi đã cố gắng trả lời câu hỏi: Liệu "sự phủ kín" có mối liên hệ nào với phương trình hàm?

Bài toán 4. Tìm tất cả các hàm số $f: R_+^* \to R_+^*$ thỏa mãn :

$$f(x+y) = f(x^2+y^2) \,\forall x, y > 0.$$

Lòi giải. Đặt
$$x + y = \sqrt{2a}$$
, $x^2 + y^2 = b$

$$\Rightarrow f(\sqrt{2a}) = f(b), \forall 2a > b \ge a > 0$$

Cố định
$$a > 0$$
, ta có: $f(b) = const$, $\forall b \in [a; 2a)$. Kí hiệu $\Delta_n = \left[2^{n-1}a; 2^n a\right]$

Do
$$\lim_{n \to +\infty} 2^{n-1} a = \lim_{n \to +\infty} 2^n a = +\infty$$
 nên tập

hợp các đoạn Δ_n phủ kín $(0; +\infty)$ (vì Δ_n $\cap \Delta_{n+1} = \{2^n a\}$)

 $\Rightarrow \forall x > 0$, tồn tại $n \in \mathbb{Z}$ sao cho $x \in \Delta_n$

 $\Rightarrow f(x) = const.$ Thử lại thấy đúng.

Vậy f(x) = c, c ∈ R là hàm cần tìm.

Từ ý tưởng này, ta có thể thiết lập được rất nhiều bài toán dạng như sau:

Cho hai hàm n biến $g,h: X^* \to X$ được liên hệ với nhau bởi bất đẳng thức kép trong X. Tìm tất cả các hàm $f: X \to X$ thỏa mãn: f(g()) = f(h()).

Ví dụ như bài toán sau:

Bài toán 5. Cho dãy hàm số $\{f_n(x)\}_1^{\infty}$ thỏa mãn $f_n(x):(1;+\infty) \to (1;+\infty)$ sao cho

$$f_n \left[\left(\frac{x+y}{2} \right)^n \right] = f_n \left(\frac{x^n + y^n}{2} \right) \forall x, y > 1$$

Xác định $\sum_{n=0}^{\infty} f_n(x)$.

(Bài toán này xin "bỏ ngỏ" cho các bạn)

Trên đây là một số kết quả tôi khai thác được và chắc chắn rằng còn rất nhiều những kết quả đẹp nữa, rất mong nhân được sự trao đổi của các bạn. Để kết thúc bài viết, xin phép được bày tỏ một điều rất tâm đắc mà tôi đã học được từ người thầy của mình: "Học toán cũng như làm bất kì một việc gì, chúng ta hãy quyết tâm thật cao, tôi tin rằng bạn và tôi sẽ đạt được những kết quả tương xứng với sư cố gắng đó"...

DÃY SỐ VÀ SỰ TRÙ MẬT TRÊN R

HỒ SỸ TÙNG LÂM CHUYÊN TOÁN K01-04, PTNK ĐHQG TP Hồ Chí Minh Sv. Lớp CNKHTN K3, Khoa Toán Tin ĐHKHTN - ĐHQG TP Hồ Chí Minh

I. Định nghĩa.

Ở đây tôi xin được nêu ra hai định nghĩa của sự trù mật.

Xét các tập M, X, R sao M ⊂ X ⊂ R.

1. Định nghĩa 1.

Tập M^{c^x} gọi là trù mật trên tập X nếu và chỉ nếu với mọi $p, q \in X$, p > q, tồn tại $m \in M$ sao cho p > m > q.

2. Định nghĩa 2.

 $T_{ap} M^{c^x}$ gọi là trù mật trên tập X nếu và chỉ nếu với mọi $x \in X$, tồn tại dãy sao cho $\lim x_n = x$.

Lưu ý rằng hai định nghĩa trên là tương đương. Việc chứng minh chúng tương đương coi như bài tập.

Một số định nghĩa khác:

3. Định nghĩa 3.

Nói rằng tập $A \subset R$ bị chặn trên nếu tồn tại $x \in R$ sao cho $x \le z$ với mọi $z \in A$. Phần tử z như thế được gọi là cận trên của tập A.

Giả sử tập A bị chặn trên, z được gọi là cận trên đúng của A nếu z là cận trên bé nhất của A. Cận trên đúng của A được ký hiệu là supA.

4. Định nghĩa 4.

Nói rằng tập $A \subset R$ bị chặn dưới nếu tồn tại $x \in R$ sao cho $z \le x$ với mọi $z \in A$. Phần tử z như thế được gọi là cận dưới của tập A.

Giả sử tập A bị chặn dưới, z được gọi là cận dưới đúng của A nếu z là cận dưới lớn nhất của A. Cận dưới đúng của A được ký hiệu là infA.

5. Tiên đề về cân trên.

Mọi tập $A \subset R$, $A \neq \emptyset$ bị chặn trên đều có cận trên đúng.

II. Một số tính chất.

1. Tính chất 1.

Tập Q các số hữu tỷ là trù mật trên R.

2. Tính chất 2.

Nếu tập A trù mật trên R^+ thì tập $B = \left\{ \frac{1}{r}, r \in A \right\} \text{ cũng trù mật trên } R^+.$

Việc chứng minh hai tính chất trên xem như bài tập.

III. Một số bài toán mở rộng.

1. Bài toán 1.

Cho dãy số $\{a_n\}$ dương, tăng, không bị chặn. Chứng minh rằng tập hợp

$$A = \left\{ \frac{m}{a_n} / m, n \in N^+ \right\} tr u mật trên R^+.$$

Chứng minh. Ta sử dụng bổ đề sau:

 $B\mathring{o}$ $d\hat{e}$: $V\acute{o}i$ moi $s\acute{o}$ $\alpha > 0$ $v\grave{a}$ $d\tilde{a}y$ $\{a_n\}$ có tính chất $\lim_{n\to\infty} a_n = \infty$ thì ta cũng có $\lim_{n\to\infty} \alpha a_n$

$$= \infty$$
. Xét $p, q \in \mathbb{R}^+$ thỏa mãn $p > q$.

Suy ra $\lim_{n\to\infty} (p-q)a_n = \infty$. Do đó, tồn tại

số
$$n_0 \in N^+$$
 sao cho $(p - q) a_{n_0} > 2$

$$\Rightarrow p\,a_{n_0} > [p\,a_{n_0} - 1] > q\,a_{n_0}$$

Chọn
$$m_0 = [p \, a_{n_0}] - 1$$
, ta có $p > \frac{m_0}{a_{n_0}} > q$.

Vậy A trù mật trên R^+ .

Nhận xét. Áp dụng Bài toán 1, ta có Q^+ trù mật trên R^+ , $\left\{\frac{m}{2^n}\right\}$ trù mật trên R^+ .

Áp dụng tính chất 2, ta có tập A' $= \left\{ \frac{a_n}{m}, m, n \in N^+ \right\} \text{ cũng trù mật trên } R^+.$

2. Bài toán 2.

Cho $\{a_n\}$ và $\{b_n\}$ là hai dãy số dương, tăng ngặt và không bị chặn. Đặc biệt, tập hợp $\{a_{n+1}-a_n\}$ bị chặn. Chứng minh rằng tập hợp

$$B = \left\{ \frac{a_m}{b_n} / m, n \in N^+ \right\} trù mật trên R^+.$$

Chứng minh. Xét $p, q \in R^+, p > q$. Đặt $M = Sup\{|a_{n+1} - a_n|\}, K = Max\{a_1, M\}.$

Vì $\lim_{n\to\infty} b_n = \infty$ nên tồn tại m_0 sao cho $(p-q)b_{m_0} > K$.

Ta có tồn tại n_0 sao cho $pb_{n_0}>a_{n_0}>qb_{n_0}$. Thật vậy, do $K=Max\big\{a_1,M\big\}$ mà $\lim_{n\to\infty}a_n=\infty$ nên suy ra tồn tại số tự nhiên N thỏa mãn $a_N>b_{n_0}>a_{N-1}$, hơn nữa $(p-q)b_{m_0}>K$ nên $pb_{m_0}>a_N$. Chọn $n_0=N$ là xong.

Vậy
$$p > \frac{a_{n_0}}{b_{m_0}} > q \implies B$$
 trù mật trên R^+ .

Nhận xét. Áp dụng Bài toán 2 ta có hệ quả sau:

Cho $f: R^+ \rightarrow R^+$ thỏa mãn:

- i) $f kh \dot{a} vi tr \hat{e} n R^+$.
- ii) $\lim_{x \to \infty} f(x) = \infty$

iii)
$$|f'(x)| < M, \forall x \in R^+ \setminus (0;1)$$

Cho $\{b_n\}$ là dãy số dương, tăng, không bị chăn. Ta có:

$$B' = \left\{ \frac{f(m)}{b_n} / m, n \in \mathbb{N}^+ \right\}$$
 trù mật trên \mathbb{R}^+ .

Do đó tập $\left\{ \frac{\sqrt{n}}{2^m} / m, n \in \mathbb{N}^+ \right\}$ trù mật trên \mathbb{R}^+ .

3. Bài toán 3.

Cho dãy số dương $\{a_n\}$ tăng thỏa $\lim_{n\to\infty} \frac{a_n}{n} = k$, $k \in \mathbb{R}^+$.

Cho dãy số dương $\{b_n\}$ tăng, không bị chặn. Chứng minh rằng tập hợp $C = \left\{\frac{a_m}{b_n}/m, n \in N^+\right\}$ trù mật trên R^+ .

Chứng minh. Xét $p, q \in R^+, p > q$.

Do
$$\lim_{n\to\infty} \frac{a_n}{n} = k$$
 nên chọn $\varepsilon > 0$ sao cho $\frac{p-q}{p+q}.k > \varepsilon$. Ta có tồn tại N sao cho: $\left|\frac{a_n}{n} - k\right| < \frac{p-q}{n+q}.k - \varepsilon$, $\forall n \ge N$.

$$\Longleftrightarrow \frac{p-q}{p+q}.k + \varepsilon > \frac{a_n}{n} > \frac{p-q}{p+q}.k - \varepsilon, \forall n \ge N.$$

Đặt
$$\alpha = \frac{q}{\frac{2q}{p+q}k + \varepsilon} < \frac{p}{\frac{2q}{p+q}k - \varepsilon} = \beta.$$

Áp dụng Bài toán 1, tồn tại vô số bộ (m, n) sao cho $\alpha < \frac{n}{b} < \beta$.

Chú ý. Theo Bài toán 1, chỉ có sự tồn tại hữu hạn, nhưng sự tồn tại dẫn đến sự tồn tại vô hạn vì nếu ta chọn $\alpha < \alpha_1 < \alpha_2 < ... < \alpha_n < \beta$ thì

giữa (α_i, α_j) tồn tại một số, cho n dần tới vô cùng thì ta có vô số số. Do đó, có thể chọn $n_0 > N$ và m_0 sao cho $\alpha < \frac{n_0}{b} < \beta$. Mà

$$\begin{split} \frac{p-q}{p+q}. & \text{ k + } \mathcal{E} > \frac{a_{n_0}}{n_0} > \frac{p-q}{p+q}. \text{ k - } \mathcal{E} \text{ . Nhân v\'e} \\ \text{theo v\'e, ta c\'o: } & q < \frac{a_{n_o}}{b_{m}} < p \text{ .} \end{split}$$

Vây C trù mật trên R^+ .

Nhận xét. Áp dụng Bài toán 3, ta có tập $\left\{m! \middle| \sin\frac{1}{n} \middle| \right\}$ trù mật trên R^+ . Nếu $\lim_{n \to \infty} \frac{a_n}{n} = \infty$ thì Bài toán 3 không còn đúng nữa. Thật vậy, chọn $a_n = 2^n$, $b_m = 2^m$. Rõ ràng lúc này C không trù mật trên R^+ . Nếu $\lim_{n \to \infty} \frac{a_n}{n} = 0$ thì Bài toán 3 cũng không còn đúng nữa. Thật vậy, chọn $a_n = 2^k$, nếu $2^{2^k} \le n \le 2^{2^{k+1}} - 1$ và $b_m = 2^m$.

Cuối cùng xin chúc các bạn học tập vui vẻ và có kết quả cao.

một số bài toán số học về

DÃY TỔNG CÁC LŨY THỪA

TRẦN QUỐC HOÀN

Chuyên Toán K02 – 05, THPT Chuyên Nguyễn Trãi – Hải Dương Sv. Lớp K50CA - ĐH Công Nghê - ĐHOG Hà Nôi

Trong bài báo này chúng ta đề cập đến một số bài toán số học liên quan đến dãy tổng các lũy thừa. Cho $a_1, a_2, ..., a_m$ là các số nguyên dương cố định cho trước. Xét dãy số sau $u_n = a_1^n + a_2^n + ... + a_m^n$ trong đó n = 0, 1, 2, ...

Bài toán 1. Biết rằng tập hợp các ước nguyên tố của dãy u_n là hữu hạn. Chứng minh rằng $a_1 = a_2 = ... = a_m$.

Lòi giải. Trước hết đặt $d = (a_1, a_2, ..., a_m)$ ta có thể viết $a_i = db_i$, trong đó $(b_1, b_2, ..., b_m) = 1$. Khi đó dãy

 $v_n = b_1^n + b_2^n + ... + b_m^n$ cũng có hữu hạn các ước nguyên tố là $p_1, p_2, ..., p_k$

Chọn x nguyên dương sao cho $p_i^x > m$ với mọi i = 1, 2, ..., k. Khi đó với mọi số t nguyên dương lớn hơn x, đặt

 $n(t) = t \cdot \prod_{\substack{i=1 \ s=1}}^k \varphi(p_i^x) \text{ thì với mọi } i = 1, 2, ..., k$ ta có $b_s^{n(t)} \equiv 0 \vee 1 \pmod{p_i^x} \text{ với mọi } s = 1, 2,$..., m. $(b_s^{n(t)} \equiv 0 \pmod{p_i^x}) \text{ khi và chỉ khi}$ $b_s \text{ chia hết cho } p_i)$.

Chú ý là các b_i nguyên tố cùng nhau và $p_i^x > m$ nên dễ thấy $u_{n(t)}$ sẽ không chia hết cho p_i^x với mọi i = 0, 1, ..., k. Do đó dễ có

 $u_{n(t)} \leq \prod_{i=1}^k p_i^{x-1}, \forall t > x$, điều này chỉ xẩy ra khi $b_1 = b_2 = \dots = b_m = 1$ hay $a_1 = a_2 = \dots = a_m$. Bài toán được chứng minh.

Xuất sứ. Bài toán này được đặt ra khi tác giả đi tìm lời giải cho một bài toán rất thú vị nhưng hoàn toàn khác trên mathlink contest (sẽ có dịp giới thiệu với bạn đọc trong những dịp khác). Sau đó mới nó được chọn làm đề thi giải toán online tháng 10 năm 2006 trên trang web www.diendantoanhoc.net, có rất

nhiều bài toán tổng quát cũng như kéo theo từ bài toán này mà các thành viên của trang web này đã đề ra. Sau đây tôi xin giới thiệu 4 trong số các bài toán đó. Bạn đọc có thể tìm lời giải tương tự bài toán trên (tuy có xử lý một số kỹ thuật khó hơn).

Bài toán 1.1. Cho n > 1 là số nguyên dương. Chứng minh rằng với bất kỳ n số nguyên dương $a_1, a_2, ..., a_n$ luôn tồn tại một số nguyên dương k sao cho số $a_1^k + a_2^k + ... + a_n^k$ có một ước nguyên tố không là ước nguyên tố của $na_1a_2...a_n$.

Bài toán 1.2. Cho số nguyên dương $\{a_n\}$ với m là số nguyên dương cho trước và m số nguyên dương $k_1, k_2, ..., k_m$. Dãy số mới được xác định như sau:

 $u_n = k_1 a_1^n + k_2 a_2^n + ... + k_m a_m^n$. Chứng minh rằng dãy số $\{u_n\}$ có hữu hạn ước nguyên tố khi và chỉ khi $a_1 = a_2 = ... = a_m$.

Bài toán 1.3. Cho m nguyên dương lớn hơn 1 và $P_1(x), P_2(x), ..., P_m(x)$ là các đa thức hệ số nguyên không âm không đồng nhất với 0. Các số nguyên dương $a_1, a_2, ..., a_m$ đôi một phân biệt. Xác định hàm số $f: N \to N$ sao

cho
$$f(n) = \sum_{i=1}^{m} P_i(n) a_i^n$$
 với mọi $n \in \mathbb{N}$.

Chứng minh rằng tập hợp các ước nguyên tố của hàm f là vô hạn.

Bài toán 1.4. Hàm $f: N \to Z$ được gọi là hàm gần đa thức nếu f(m) - f(0) chia hết cho m với mọi m. Khi đó với mọi $f_1, f_2, ..., f_n$ là các hàm gần đa thức và các số nguyên dương phân biệt $a_1, a_2, ..., a_n$ thì tập các số

nguyên dương có dạng $\sum_{i=1}^{n} f_i(k)a_i^k$ có vô số ước nguyên tố.

Bài toán 2. Biết rằng với mọi n đủ lớn thì u_n là số chính phương. Chứng minh rằng m là số chính phương.

Lời giải. Trước hết ta chứng minh bổ đề sau: Bổ đề: Cho a là số nguyên dương sao cho với mọi p nguyên tố đủ lớn ta có a là số chính phương theo modp. Khi đó ta có kết luận a là số chính phương.

Chứng minh. Phản chứng, giả sử a không là số chính phương. Khi đó không giảm tổng quát ta giả sử a không có ước nguyên tố chính phương nào khác 1 suy ra $a = p_1 p_2 ... p_k$ với $p_1 < p_2 < ... < p_k$ là các số nguyên tố phân biệt.

Theo bài ra tồn tại N_0 sao cho với mọi số nguyên tố $p > N_0$ thì $\begin{bmatrix} a \\ p \end{bmatrix} = 1$ hay

$$\prod_{i=1}^{k} \begin{bmatrix} p_i \\ p \end{bmatrix} = 1. \text{ X\'et c\'ac trường hợp sau:}$$

Trường hợp 1: $p_1 > 2$, đặt

$$s = \prod_{i=1}^{k} \begin{bmatrix} p \\ p_i \end{bmatrix} = \prod_{i=1}^{k} \begin{bmatrix} p \\ p_i \end{bmatrix} \begin{bmatrix} p_i \\ p \end{bmatrix} = (-1)^{\sum \frac{(p-1)(p_i-1)}{4}}$$

Nhận xét rằng: Tồn tại b số nguyên dương sao cho $(b; p_1) = 1$ và $\begin{bmatrix} b \\ p_1 \end{bmatrix} = -1$ (điều này là hiển nhiên vì trong một hệ thặng dư thu gọn mod p_1 thì có đúng $\frac{p-1}{2}$ số chính phương mod p_1). Khi đó ta chỉ việc chọn số t nguyên dương sao cho

$$\begin{cases} t \equiv 1 \pmod{8} \\ t \equiv b \pmod{p_1} \quad ; i = 2,...k \\ t \equiv 1 \pmod{p_i} \end{cases}$$

Khi đó tồn tại số nguyên tố $p > N_0$ sao cho $p \equiv t \pmod{8p_1...p_k}$ (Theo nguyên tắc

Dirichlet). Từ đây suy ra
$$\begin{bmatrix} p \\ p_1 \end{bmatrix} = -1$$
 và

$$\begin{bmatrix} p \\ p_i \end{bmatrix} = 1, \forall i = 2, ..., k \text{ nên ta sẽ có } s = -1$$

nhưng với chú ý rằng p -l chia hết cho 8 nên s = l theo công thức trên. Điều này mâu thuẫn với kết quả vừa có.

Trường hợp 2: $p_1 = 2$ suy ra

$$\begin{bmatrix} p_1 \\ p \end{bmatrix} = \begin{bmatrix} 2 \\ p \end{bmatrix} = (-1)^{\frac{p^2 - 1}{8}}$$
Đặt

$$s = \prod_{i=2}^{k} \begin{bmatrix} p \\ p_i \end{bmatrix} = \begin{bmatrix} p_1 \\ p \end{bmatrix} \prod_{i=2}^{k} \begin{bmatrix} p_i \\ p \end{bmatrix} \begin{bmatrix} p \\ p_i \end{bmatrix} =$$

$$= (-1)^{\frac{p^2-1}{8} + \sum_{i=2}^{k} \frac{(p-1)(p_i-1)}{4}} (1)$$

Rỗ ràng nếu k=1 hay $a=p_1=2$ ta có ngay mâu thuẫn (Chẳng hạn, chọn p nguyên tố đủ lớn có dạng 8n+3). Ta chỉ cần xét khi k>1. Bây giờ lập luận tương tự trường hợp 1 sẽ tồn tại số nguyên tố p sao cho $p>N_0$

và
$$p \equiv 1 \pmod{8}$$
, $\begin{bmatrix} p \\ p_2 \end{bmatrix} = -1$ và

$$\begin{bmatrix} p \\ p_i \end{bmatrix} = 1, \forall i = 3, ..., k . \text{ Từ đó ta cũng dễ thấy}$$

mâu thuẫn như trên. Bố đề được chứng minh. Trở lại Bài toán 2, giả sử tồn tại N sao cho mọi n > N thì a_n là số chính phương. Xét tất cả các số nguyên tố p > N + 1 và $p > Max\{a_i\}$ thì $u_{p-1} \equiv m \pmod{p}$ vậy m là số chính phương modp với mọi p nguyên tố đủ lớn nên suy ra là số chính phương (theo bổ đề trên). Bài toán được chứng minh.

Xung quanh dãy số này tôi xin được đề xuất 3 bài toán sau, rất mong sự quan tâm đến lời giải của chúng.

Bài toán 3. Tồn tại hay không dãy số nguyên $a_1, a_2, ...$ sao cho dãy số có vô hạn số hạng khác không và đồng thời dãy số $u_n = a_1^n + a_2^n + ... + a_n^n$ có hữu hạn ước nguyên tố. (Chú ý rằng nếu dãy có hữu hạn số khác không thì nó như hệ quả của bài toán 1 ta có tất cả các số hạng khác không của dãy a_n đều bằng nhau).

Bài toán 4. Biết rằng dãy u_n có hữu hạn ước số chính phương. Chứng minh rằng $a_1 = a_2 = ... = a_m$

Bài toán 5. Cho A là một cấp số cộng dạng ax + b với a, b nguyên, a > 0. (a, b) = 1, x Biết rằng dãy u_n chứa hữu hạn ước nguyên tố trong A. Chứng minh rằng $a_1 = a_2 = ... = a_m$.

CÂN BẰNG HỆ SỐ TRONG BẮT ĐẮNG THỰC CỐ-SI

NGUYỄN LÂM TUYỀN CHUYÊN TOÁN K99 –02

Sv. Lớp Điều khiển Tự Động 1 - K47, ĐH Bách Khoa Hà Nội

Vử dung bất đẳng thức (BĐT) đã biết mà đặc biệt là BĐT Cô-si là phương pháp thường được áp dụng để giải các bài toán về BĐT nói chung. Những bài toán cực tri, nhất là trường hợp có thêm các điều kiện phụ thường gây khó khăn cho người giải trong việc ước lượng hệ số và xét điều kiên để dấu đảng thức xẩy ra. Bài viết này trình bày một phương pháp đánh giá thông qua BĐT Cô-si để từ đó, chuyển bài toán cực tri về việc giải một phương trình (PT) hoặc hệ phương trình (HPT) mà việc giải quyết là dễ dàng hoặc có đường lối rõ ràng hơn, đó là phương pháp cân bằng hê số. Cũng từ phương pháp này, với một chút sáng tạo, chúng ta có thể tổng quát và tao ra được những bài toán mới.

Trước hết xin nêu lại mà không chứng minh hai BĐT quen thuộc sau:

$$a_1 + a_2 + \dots + a_n \ge n\sqrt[n]{a_1 a_2 \dots a_n}$$

$$\alpha_1 a_1 + \alpha_2 a_2 + \dots + \alpha_n a_n \ge$$

$$\geq (\alpha_{1} + \alpha_{2} + ... + a_{n}) (a_{1}^{\alpha_{1}} a_{2}^{\alpha_{2}} ... a_{n}^{\alpha_{n}})^{\frac{1}{a_{1} + a_{2} + ... + a_{n}}}$$

Trong hai BĐT trên thì $a_1, a_2, ..., a_n$ không âm, $\alpha_1, \alpha_2, ..., \alpha_n$ dương và dấu đẳng thức xẩy ra khi và chỉ khi $a_1 = a_2 = ... = a_n$.

Chúng ta bắt đầu tù bài toán sau:

Ví dụ 1. Cho các số thực dương x, y thỏa mãn điều kiện $x^3 + y^3 = 1(1)$. Tìm giá trị lớn nhất (Max) của biểu thức $P(x; y) = \sqrt{x} + \sqrt{y}$

Phương pháp suy luận:

Sự chênh lệch về số mũ của các biểu thức $x^3 + y^3$ và $P(x;y) = \sqrt{x} + \sqrt{y}$ gợi cho ta sử dụng BĐT Cô-si để hạ bậc của $x^3 + y^3$. Nhưng ta cần áp dụng cho bao nhiều số và là những số nào? Căn cứ vào bậc của các biến số x và y trong các biểu thức trên, ta thấy cần phải áp dụng BĐT Cô-si lần lượt cho x^3 và y^3 cùng với 5 hằng số dương tương ứng khác để làm xuất hiện \sqrt{x} và \sqrt{y} . Mặt khác do x, y dương và vai trò của chúng như nhau nên ta dự đoán P(x;y) đạt Max khi x=y.

Từ (1) suy ra $x = y = \frac{1}{\sqrt[3]{2}}$ và ta đi đến lời giải như sau.

Lòi giải. Áp dụng BĐT Cô-si cho 6 số dương: $1 \text{ số } x^3 \text{ và } 5 \text{ số } \frac{1}{2}$, ta có:

$$x^{3} + 5.\frac{1}{2} \ge 6\sqrt[6]{x^{3}.\left(\frac{1}{2}\right)^{5}} = 6.2^{-\frac{5}{6}}\sqrt{x}$$

Dấu "=" xẩy ra
$$\Leftrightarrow x = \frac{1}{\sqrt[3]{2}}$$

Tương tự như vậy:

$$y^3 + 5.\frac{1}{2} \ge 6\sqrt[6]{y^3.\left(\frac{1}{2}\right)^5} = 6.2^{-\frac{5}{6}}\sqrt{y}$$

Dấu "=" xẩy ra
$$\Leftrightarrow y = \frac{1}{\sqrt[3]{2}}$$

Công theo vế các BĐT trên ta được:

$$(x^3 + y^3) + 5 \ge 6.2^{-\frac{5}{6}} \left(\sqrt{x} + \sqrt{y}\right) (2)$$

Dấu "=" xẩy ra
$$\Leftrightarrow x = y = \frac{1}{\sqrt[3]{2}}$$
.

30

Từ (1) và (2) suy ra:

$$P(x; y) = \sqrt{x} + \sqrt{y} \le \sqrt[6]{2^5}$$

Dấu bằng xẩy ra $\Leftrightarrow x = y = \frac{1}{\sqrt[3]{2}}$, thỏa mãn điều kiện (1).

Vậy
$$Max\{P(x; y)\} = \sqrt[6]{2^5}$$
.

Ví dụ 2. Cho các số thực dương x, y thỏa mãn điều kiện $x^3 + y^3 \le 1(3)$. Tìm giá trị lớn nhất (Max) của biểu thức

$$P(x; y) = \sqrt{x} + 2\sqrt{y}$$

Phương pháp suy luận:

Ở ví dụ 1, chúng ta đã nhanh chóng dự đoán được $\operatorname{Max} P(x;y)$ đạt được khi x=y, từ đó tính được x,y. Nhưng trong bài toán này, vai trò của x và y là không bình đẳng. Tuy nhiên ta hãy giả sử P(x;y) đạt Max khi

$$\begin{cases} x = \alpha \\ y = \beta \end{cases}$$
 nào đó và dự đoán α, β ở điều kiện

biên của (3), tức là $\alpha^3 + \beta^3 = 1$ (4). Ta viết:

$$x^{3} + 5 \cdot \alpha^{3} \ge 6\sqrt[6]{x^{3} \cdot (\alpha^{3})^{5}} = 6 \cdot \alpha^{\frac{5}{2}} \sqrt{x}$$
$$y^{3} + 5 \cdot \beta^{3} \ge 6\sqrt[6]{y^{3} \cdot (\beta^{3})^{5}} = 6 \cdot \beta^{\frac{5}{2}} \sqrt{y}$$

Suy ra

$$(x^3 + y^3) + 5.(\alpha^3 + \beta^3) \ge 6.\alpha^{\frac{5}{2}}\sqrt{x} + 6.\beta^{\frac{5}{2}}\sqrt{y}$$

Để xuất hiện P(x; y) ở vế phải, ta cần chon α, β sao có tỷ lê:

$$6.\alpha^{\frac{5}{2}}\sqrt{x}:6.\beta^{\frac{5}{2}}\sqrt{y}=1.\sqrt{x}:2.\sqrt{y}$$

$$\Leftrightarrow \left(\frac{\alpha}{\beta}\right)^{\frac{5}{2}} = \frac{1}{2} \Leftrightarrow \frac{\alpha}{\beta} = \frac{1}{\sqrt[5]{4}} (5)$$

Vậy từ (4) và(5) ta thu được HPT:

$$\begin{cases} \frac{\alpha}{\beta} = \frac{1}{\sqrt[5]{4}} \iff \begin{cases} \alpha = \frac{1}{\sqrt[3]{1 + 2\sqrt[5]{2}}} \\ \alpha^3 + \beta^3 = 1 \end{cases} \Leftrightarrow \begin{cases} \alpha = \frac{1}{\sqrt[3]{1 + 2\sqrt[5]{2}}} \\ \beta = \frac{\sqrt[5]{4}}{\sqrt[3]{1 + 2\sqrt[5]{2}}} \end{cases}$$

Bằng cách làm ngược lại các bước trên ta sẽ thu được $Max\{P(x;y)\} = \sqrt[6]{\left(1+2\sqrt[5]{2}\right)^5}$

Nhận xét. Từ cách phân tích trên ta thấy có thể thay đổi dữ kiện của bài toán sao cho HPT sau khi cân bằng hệ số có thể giải được. Chẳng han như các bài toán dưới đây:

Bài toán 1. Cho các số nguyên dương m, p, q sao cho $m \ge Max\{p, q\}$. Hãy tìm GTLN của biểu thức $P(x; y) = ax^p + y^q$ trong hai trường hợp sau, biết rằng a là hằng số dương và x, y là các biến số không âm thỏa mãn điều kiện $x^m + y^m \le 1$:

$$i) p = \frac{m+q}{2}$$

$$ii) p = \frac{2m+q}{2}$$

Bài toán 2. Cho các số thực dương a, b, c, d và các số nguyên m, n thỏa mãn điều kiện m > n > 0. Tìm giá trị lớn nhất của biểu thức $P(x; y; z) = ax^n + by^n + cz^n$ trong đó x, y, z là các biến số không âm thỏa mãn điều kiên $x^m + y^m + z^m \le d$.

Ví dụ 3. Tìm giá trị nhỏ nhất của biểu thức $P(x; y; z) = a(x^2 + y^2) + z^2$. Trong đó a là số thực dương và x, y, z là các biến số thỏa mãn điều kiện xy + yz + zx = 1 (6)

Phương pháp suy luận:

Do vai trò của x và y là như nhau nên ta dự đoán P(x; y; z) đạt Min khi $x = y = \alpha z (\alpha > 0)$ (7). Áp dụng BĐT Cô-si cho hai số dương ta có

$$x^{2} + y^{2} \ge 2|xy| \ge 2xy$$

$$x^{2} + (\alpha z)^{2} \ge 2x|\alpha z| \ge 2\alpha xz \Leftrightarrow$$

$$\Leftrightarrow \frac{1}{\alpha}x^{2} + \alpha z^{2} \ge 2xz$$

$$y^{2} + (\alpha z)^{2} \ge 2y|\alpha z| \ge 2\alpha yz \Leftrightarrow$$

$$\Leftrightarrow \frac{1}{\alpha}y^{2} + \alpha z^{2} \ge 2yz$$

Từ các BĐT trên suy ra:

$$\left(1 + \frac{1}{\alpha}\right)\left(x^2 + y^2\right) + 2\alpha z^2 \ge 2\left(xy + yz + zx\right)$$

Vế phải của BĐT trên là hằng số, vì vậy ta cần tìm α để có tỷ lệ:

$$\left(1 + \frac{1}{\alpha}\right) : 2\alpha = a : 1$$

$$\Leftrightarrow 2a\alpha^2 - \alpha - 1 = 0 \implies \alpha = \frac{1 + \sqrt{1 + 8a}}{4a},$$

$$\alpha = \frac{1 - \sqrt{1 + 8a}}{4a} < 0 \text{ loại.}$$

Cùng với (6) và (7) ta có HPT:

$$\begin{cases} xy + yz + zx = 1 \\ x = y = \alpha z \end{cases} \Leftrightarrow \begin{cases} (\alpha^2 + 2\alpha)z^2 = 1 \\ x = y = \alpha z \end{cases}$$

Giải HPT này với α như trên ta được:

$$\Leftrightarrow \begin{cases} z = \pm \frac{16a^2}{\sqrt{8a+1}\left(\sqrt{8a+1}+1\right)^2} \\ x = y = \pm \frac{4a}{\sqrt{8a+1}\left(\sqrt{8a+1}+1\right)} \end{cases}$$

Bằng cách làm ngược lại ta tính được

$$Min\{P(x; y; z)\} = \frac{xy + yz + zx}{\alpha} = \frac{4}{1 + \sqrt{1 + 8a}}$$

Nhận xét. Bằng cách làm tương tự như trên chúng ta có thể giải trọn vẹn được bài toán tổng quát hơn sau:

Bài toán 3. Cho các hằng thực dương a, b, c và các biến số x, y, z thỏa mãn điều kiện $xy + yz + zx \ge 1$. Tìm giá trị nhỏ nhất của biểu thức $P(x; y; z) = ax^2 + by^2 + cz^2$.

Ví dụ 4. Xét các số thực dương a, b, c thỏa mãn điều kiện $21ab+2bc+8ca \le 12$. Hãy tìm giá trị nhỏ nhất của biểu thức $P(a;b;c) = \frac{1}{a} + \frac{2}{b} + \frac{3}{c}$.

(Đề thi chọn ĐTVN dự thi IMO 2001) **Phương pháp suy luân:**

Đặt
$$a = \frac{1}{x}, b = \frac{1}{y}, c = \frac{1}{z}$$
. Điều kiện của

bài toán tở thành $2x+8y+21z \le 12xyz$ (9).

Và ta cần tìm Min của biểu thức P(x; y; z) = x + 2y + 3z

Giả sử
$$P(x; y; z)$$
 đạt Min khi
$$\begin{cases} x = \alpha z \\ y = \beta z \end{cases}$$

Áp dụng BĐT Cô-si suy rộng ta có: $12xyz \ge 2x + 8y + 21z \ge$

$$\geq 2\alpha \left(\frac{x}{\alpha}\right) + 8\beta \left(\frac{y}{\beta}\right) + 21z \geq$$

$$\geq (2\alpha + 8\beta + 21) \left(\left(\frac{x}{\alpha} \right)^{2\alpha} \left(\frac{y}{\beta} \right)^{8\beta} z^{21} \right)^{\frac{1}{2\alpha + 8\beta + 21}}$$

$$\Rightarrow x^{8\beta+21}y^{2\alpha+21}z^{2\alpha+8\beta} \ge A(\alpha,\beta) \quad (10)$$

Trong đó biểu thứcA(lpha,eta) chỉ phụ thuộc vào lpha,eta .

Cũng theo BĐT Cô-si suy rộng ta có:

$$P(x, y, z) = x + 2y + 3z$$

$$= \alpha \left(\frac{x}{\alpha}\right) + 2\beta \left(\frac{y}{\beta}\right) + 3z \ge$$

$$\geq (\alpha + 2\beta + 3) \left(\left(\frac{x}{\alpha} \right)^{\alpha} \left(\frac{y}{\beta} \right)^{2\beta} z^{3} \right)^{\frac{1}{\alpha + 2\beta + 3}}$$

$$= B(\alpha, \beta) \left(x^{\alpha} y^{2\beta} z^{3}\right)^{\frac{1}{\alpha+2\beta+3}} (11)$$

Trong đó biểu thức $B(\alpha, \beta)$ chỉ phụ thuộc vào α, β .

Đối chiếu (10) và (11) ta thấy cần chọn α, β sao cho có tỷ lệ:

$$\alpha: 2\beta: 3 = (8\beta + 21): (2\alpha + 21): (8\beta + 2\alpha)$$

$$\Leftrightarrow \begin{cases} \frac{8\beta + 21}{8\beta + 2\alpha} = \frac{\alpha}{3} \\ \frac{2\alpha + 21}{8\beta + 2\alpha} = \frac{2\beta}{3} \end{cases}$$

$$\Leftrightarrow \begin{cases} 2\alpha^2 + 8\alpha\beta = 24\beta + 63 \\ 16\beta^2 + 4\alpha\beta = 6\alpha + 63 \end{cases}$$

Từ PT thứ nhất $\Rightarrow \beta = \frac{2\alpha^2 - 63}{8(3-\alpha)}$. Thay

vào PT thứ hai ta có:

$$16\left(\frac{2\alpha^2 - 63}{8(3 - \alpha)}\right)^2 + 4\frac{2\alpha^2 - 63}{8(3 - \alpha)}\alpha = 6\alpha + 63$$

$$\Leftrightarrow 4\alpha^3 + 78\alpha^2 - 306\alpha - 567 = 0$$

$$\Leftrightarrow (2\alpha - 9)(2\alpha^2 + 48\alpha + 63) = 0$$

$$\Leftrightarrow \alpha = \frac{9}{2}(\text{ do } \alpha > 0) \Rightarrow \beta = \frac{15}{8}.$$

Khi P(x, y, z) đạt Min thì tất cả các BĐT trên đều trở thành đẳng thức, nghĩa là

$$\begin{cases} 2x + 8y + 21z = 12 \\ x = \alpha z = \frac{9}{2}z \iff \begin{cases} x = 3 \\ y = \frac{5}{4} \\ z = \frac{2}{3} \end{cases}$$

Tới đây, điểm mấu chốt của bài toán đã được giải quyết và ta đi đến một lời giải tương đối ngắn gọn cho bài toán như sau:

Lời giải. Đặt
$$x = 3x_1$$
, $y = \frac{5}{4}y_1$, $z = \frac{2}{3}z_1$ khi đó điều kiện (9) trở thành

do then kight (9) the thanh
$$2.3x_1 + 8.\frac{5}{4}y_1 + 21.\frac{2}{3}z_1 \le 12.3x_1.\frac{5}{4}y_1.\frac{2}{3}z_1$$

$$\Leftrightarrow 3x_1 + 5y_1 + 7z_1 \le 15x_1y_1z_1.$$

$$P(x, y, z) = P(x_1, y_1, z_1) =$$

$$= 3x_1 + 2.\frac{5}{4}y_1 + 3\frac{2}{3}z_1$$

$$= \frac{1}{2}(6x_1 + 5y_1 + 4z_1)$$

Áp dụng BĐT Cô-si tổng quát cho 15 số dương ta có:

$$15x_{1}y_{1}z_{1} \ge 3x_{1} + 5y_{1} + 7z_{1} \ge 15\sqrt[15]{x_{1}^{3}y_{1}^{5}z_{1}^{7}}$$
(12)

$$P(x, y, z) = \frac{1}{2}(6x_{1} + 5y_{1} + 4z_{1}) \ge$$

$$\ge \frac{1}{2}.15\sqrt[15]{x_{1}^{6}y_{1}^{5}z_{1}^{4}}$$
(13)

Từ (12) suy ra
$$x_1^6 y_1^5 z_1^4 \ge 1$$
, do đó từ (13) ta được $P(x, y, z) \ge \frac{15}{2}$

Đẳng thức xẩy ra
$$\Leftrightarrow x_1 = y_1 = z_1 = 1$$

$$\Leftrightarrow x = 3x_1 = 3, y = \frac{5}{4}y_1 = \frac{5}{4}, z = \frac{2}{3}z_1 = \frac{2}{3}$$

$$\Leftrightarrow a = \frac{1}{3}, b = \frac{4}{5}, c = \frac{3}{2}$$

$$\text{Vây Min } P(a, b, c) = \frac{15}{2}.$$

Nhận xét. Sở dĩ ta đặt các biến mới x_1, y_1, z_1 là vì ta đã xác định được bộ số (x,y,z) để P(x,y,z) đạt Min. Mặt khác việc xét dấu bằng sẽ trở nên dễ dàng hơn bếu các biến tham gia khi xẩy ra dấu đẳng thức là bằng nhau và đều bằng 1.

Một điều thú vị và đáng chú ý ở đây là các BĐT (12), (13) tương đối đơn giản, nhưng qua phép đổi biến đã trở thành BĐT khác phức tạp hơn rất nhiều. Chúng ta hãy thử vận dụng điều này để tạo ra những bài toán mới rất thú vị, xuất phát từ bổ đề sau:

Bổ đề: Cho các số thực $\alpha, \beta, \gamma, \lambda \ge 0$ và x, y, z, t > 0. Khi đó ta có:

$$\alpha x + \beta y + \gamma z + \lambda t \le (\alpha + \beta + \gamma + \lambda) xyzt$$
thì
$$(\beta + \gamma + \lambda) x + (\gamma + \lambda + \alpha) y + (\lambda + \alpha + \beta) z +$$

$$+ (\alpha + \beta + \gamma) t \ge 3(\alpha + \beta + \gamma + \lambda) \qquad (14)$$
ii) Nếu
$$(\beta + \gamma + \lambda) x + (\gamma + \lambda + \alpha) y + (\lambda + \alpha + \beta) z +$$

$$+ (\alpha + \beta + \gamma) t \ge 3(\alpha + \beta + \gamma + \lambda) \qquad thì$$

$$\alpha x + \beta y + \gamma z + \lambda t \ge (\alpha + \beta + \gamma + \lambda) xyzt \qquad (15)$$
Chứng minh. Trường hợp $\alpha = \beta = \gamma = \lambda = 0$
thì bổ đề hiển nhiên đúng. Ta xét khi

i) Áp dụng BĐT Cô-si suy rộng ta có:
$$(\alpha + \beta + \gamma + \lambda) xyzt \ge \alpha x + \beta y + \gamma z + \lambda t \ge$$

 $\alpha^2 + \beta^2 + \gamma^2 + \lambda^2 > 0.$

$$\geq (\alpha + \beta + \gamma + \lambda) (x^{\alpha} y^{\beta} z^{\gamma} t^{\lambda})^{\frac{1}{\alpha + \beta + \gamma + \lambda}}$$

$$\Rightarrow x^{\beta + \gamma + \lambda} y^{\gamma + \lambda + \alpha} z^{\lambda + \alpha + \beta} t^{\alpha + \beta + \gamma} \geq 1$$
Như vậy: $(\beta + \gamma + \lambda) x + (\gamma + \lambda + \alpha) y + (\lambda + \alpha + \beta) z + (\alpha + \beta + \gamma) t \geq$

$$\geq 3(\alpha + \beta + \gamma + \lambda) \times$$

$$\times \left(x^{\beta+\gamma+\lambda}y^{\gamma+\lambda+\alpha}z^{\lambda+\alpha+\beta}t^{\alpha+\beta+\gamma}\right)^{\frac{1}{\alpha+\beta+\gamma+\lambda}} \ge$$

$$\ge 3\left(\alpha+\beta+\gamma+\lambda\right)$$
Doing this $x^{\alpha}y$ ra $\iff x-y-z-t-1$

Đẳng thức xẩy ra $\Leftrightarrow x = y = z = t = 1$.

ii) Áp dụng BĐT Cô-si suy rộng ta có:
$$3(\alpha + \beta + \gamma + \lambda) \ge (\beta + \gamma + \lambda)x + \\ + (\gamma + \lambda + \alpha)y + (\lambda + \alpha + \beta)z + (\alpha + \beta + \gamma)t \ge \\ \ge 3(\alpha + \beta + \gamma + \lambda)\times$$

$$\times \left(x^{\beta+\gamma+\lambda}y^{\gamma+\lambda+\alpha}z^{\lambda+\alpha+\beta}t^{\alpha+\beta+\gamma}\right)^{\frac{1}{\alpha+\beta+\gamma+\lambda}}$$

$$\Rightarrow 1 \ge x^{\beta+\gamma+\lambda}y^{\gamma+\lambda+\alpha}z^{\lambda+\alpha+\beta}t^{\alpha+\beta+\gamma}$$

$$\Leftrightarrow \left(x^{\alpha}y^{\beta}z^{\gamma}t^{\lambda}\right)^{\frac{1}{\alpha+\beta+\gamma+\lambda}} \ge xyzt$$
Như vây:

$$\alpha x + \beta y + \gamma z + \lambda t \ge$$

$$\geq (\alpha + \beta + \gamma + \lambda) \left(x^{\alpha} y^{\beta} z^{\gamma} t^{\lambda} \right)^{\frac{1}{\alpha + \beta + \gamma + \lambda}} \geq$$

$$\geq (\alpha + \beta + \gamma + \lambda) xyzt$$

Đẳng thức xảy ra $\Leftrightarrow x = y = z = t = 1$. Bổ đề được chứng minh.

Sử dung bố đề trên bằng cách thay vào những giá trị đặc biệt và bằng những cách phát biểu khác nhau, ta sẽ có những kết quả khác nhau:

- Với
$$t=1, \lambda=0, \alpha=3, \beta=5, \gamma=7$$
, thay x , y , z , t lần lượt bởi $3x$, $\frac{5}{4}y$, $\frac{2}{3}z$ vào (14), sau đó đặt $a=\frac{1}{x}$, $b=\frac{1}{y}$, $c\frac{1}{z}$ ta được Bài toán ví du 4.

- Thay
$$t = 1, \lambda = 1, \alpha = 1, \beta = 2, \gamma = 3$$
 vào (14)
và đặt $x = \frac{1}{2a}, y = \frac{2}{3b}, z = \frac{4}{3c}$ ta có bài toán:

Bài toán 4. Cho các số thực dương a, b, c thỏa mãn điều kiên 72ab + 9bc + 24ca + + $18abc \le 56$. Chứng minh rằng:

$$\frac{3}{a} + \frac{10}{b} + \frac{16}{c} \ge 15$$
. Đẳng thức xảy ra khi nào?

- Thay
$$t = 1, \lambda = 1, \alpha = \frac{1}{2}, \beta = \frac{1}{3}, \gamma = \frac{1}{6}$$
 vào

(14) và đặt
$$x = \frac{1}{2a}$$
, $y = \frac{2}{3b}$, $z = \frac{4}{3c}$ ta có bài

toán sau:

toán sau:

Bài toán 5. Cho các số thực dương a, b, c thỏa mãn điều kiên $8a^2(b+c)+27abc \le 16$.

Chứng minh rằng:
$$\frac{5}{4a} + \frac{10}{9b} + \frac{22}{9c} \ge 6$$
. Đẳng thức xảy ra khi nào?

- Vì khi xẩy ra đẳng thức ở hai Bài toán 4 và 5 đều có
$$a = \frac{1}{2}, b = \frac{2}{3}, c = \frac{4}{3}$$
 nên khi kết hợp hai bài toán trên ta có:

Bài toán 6. Cho các số thực dương a, b, c thỏa mãn điều kiên 72ab + 9bc + 24ca + $18abc \le 56 \text{ và } 8a^2(b+c) + 27abc \le 16.$

Chứng minh rằng:
$$\frac{17}{4a} + \frac{19}{9b} + \frac{166}{9c} \ge 21$$
.
Đẳng thức xảy ra khi nào?

- Thay
$$t = \frac{1}{x}$$
, $\lambda = 1$, $\alpha = 1$, $\beta = 2$, $\gamma = 3$ vào (14) và đặt $x = \frac{1}{2a}$, $y = \frac{2}{3b}$, $z = \frac{4}{3c}$ ta có bài

Bài toán 7. Cho các số thực a, b, c dương thỏa mãn điều kiện $\frac{3}{a} + \frac{10}{3b} + \frac{16}{3c} + 12a \le 21$,

chứng minh rằng
$$\frac{1}{2a} + \frac{4}{3b} + \frac{4}{c} + 2a \ge \frac{28}{9abc}$$
.
Đẳng thức xảy ra khi nào?

Bằng cách thay đổi dữ kiện bài toán theo hướng trên chúng ta sẽ có được rất nhiều bài toán mới. Các bạn hãy thử tiếp tục suy nghĩ theo hướng trên và theo hướng tổng quát cho trường hợp nhiều biến hơn nữa. Để kết thúc bài viết này, đề nghi các ban giải một số bài tập sau và hãy cố gắng mở rộng chúng theo cách của mình. Đó là một việc làm thực sự cần thiết khi học toán . Chúc các bạn thành công!

(Xem tiếp trang 80)

PHUONG PHÁP SỬ DỤNG ĐỊNH NGHĨA

ĐỂ TÍNH GIỚI HẠN

LÊ BẢO KHÁNH LỚP 12A TOÁN, K01- 04 - THPT CHUYÊN NGUYỄN HUỆ, HÀ TÂY Sv. Khoa Kinh tế Đối ngoại, ĐH Ngoại Thương Hà Nôi

Lời Ban biên tập. Các bạn thân mến! Như các bạn đã biết, có rất nhiều phương pháp để tính giới hạn của một dãy số. Mỗi phương pháp đều có những điểm mạnh đặc trưng cho riêng mình. Tuy không phải là một phương pháp mới lạ, nhưng sử dụng định nghĩa để tính giới hạn vẫn là một phương pháp kinh điển, nó mang một sắc thái và vẻ đẹp riêng. Và cũng đúng như tác giả bài báo này nhận xét, đây là một phương pháp rất sâu sắc về mặt toán học. Để vận dụng thành thạo phương pháp này thì chúng ta cần phải có một cái nhìn sâu sắc về bản chất cũng như ý nghĩa của lý thuyết giới hạn. Xin giới thiệu cùng ban đọc:

I. Định nghĩa.

Trước hết, chúng ta hãy cùng nhắc lại về đinh nghĩa giới han của một dãy số:

Cho dãy số thực (x_n) , $a \in R$. Ta nói $\lim_{n \to \infty} x_n = a$ nếu $\forall \varepsilon > 0$, $\exists N$ sao cho $\forall n > N$ thì $|x_n - a| < \varepsilon$.

II. Vài tính chất thát cơ bản.

- Giới hạn của một dãy nếu tồn tại thì duy nhất.
- $\lim_{n\to\infty} x_n = a$, $a \in (p; q)$ thì tồn tại N sao cho $\forall n > N, x_n \in (p; q)$.

- $N\acute{e}u$ $\lim_{n\to\infty}x_n=a$, $x_n>b$ với mọi n>N thì a $\geq b$.
- $N\acute{e}u$ $\lim_{n\to\infty}x_n=a$, $\lim_{n\to\infty}y_n=b$ $v\grave{a}$ $x_n\geq y_n$ $v\acute{o}i$ $m\acute{o}i$ n>N, $th\grave{i}$ $a\geq b$
- $N\acute{e}u$ $\lim_{n\to\infty}x_n=a$ thì $\lim_{n\to\infty}\left|x_n\right|=\left|a\right|$. $Di\grave{e}u$ ngược lại không đúng.
- $-\lim_{n\to\infty} x_n = 0 \iff \lim_{n\to\infty} |x_n| = 0.$

Trong các bài toán về tìm giới hạn, ta có thể dùng một số dấu hiệu/phương pháp như nguyên lý đơn điệu, nguyên lý kẹp, ... Tuy nhiên, trong một số bài toán khó cần phải vận dụng trực tiếp định nghĩa để chứng minh nhưng điều này đòi hỏi chúng ta phải hiểu biết một các tương đối sâu về giới hạn. Tôi xin bắt đầu các ví dụ từ cơ bản đến phức tạp.

III. Một số ví dụ minh họa. 1. Bài toán1.

Cho dãy số thực (x_n) không âm thỏa mãn

$$\lim_{n\to\infty}\frac{x_n}{n}=0$$
. Chứng minh rằng

$$\lim_{n\to\infty}\frac{\underset{i=1,n}{Max}\left\{x_{i}\right\}}{n}=0.$$

Lời giải. Từ giả thiết, suy ra với mọi $\varepsilon > 0$, tồn tại số tự nhiên m sao cho $\frac{x_n}{n} < \varepsilon$, $\forall n \ge m$

$$\Rightarrow \exists n_0 \ge m \text{ thỏa } \frac{\underbrace{Max}_{i=1,n} \{x_i\}}{n_0} < \varepsilon$$

Nếu
$$(m-1) \ge k \ge 1$$
 thì ta có $\frac{x_k}{n} < \frac{x_k}{k} < \varepsilon$

Nếu
$$n \ge k \ge m$$
 thì ta có: $\frac{x_n}{n} < \frac{x_k}{k} < \varepsilon$

Vậy ta luôn có
$$\frac{Max}{n} \{x_i\}$$

$$\Rightarrow \lim_{n \to \infty} \frac{Max}{n} \left\{ x_i \right\} = 0 \text{ (dpcm)}$$

2. Bài toán 2.

Cho dãy số thực (a_n) không âm thỏa mãn $\lim_{n\to\infty} \frac{a_n}{n} = 0$ và $n \ge \sum_{i=1}^{n} a_i$. Chứng minh $\sum_{i=1}^{n} a_i$

$$\underset{n\to\infty}{\text{rằng }} \lim_{n\to\infty} \frac{\sum_{i=1}^{n} a_i}{n^2} = 0.$$

Lời giải. Theo Bài toán 1 ta có:

$$\lim_{n\to\infty} \frac{Max_{\{x_i\}}}{n} = 0. \text{ Mặt khác, dễ thấy}$$

$$\frac{M\underline{ax}\left\{x_{i}\right\}}{n} \geq \frac{M\underline{ax}\left\{x_{i}\right\}}{n} \cdot \frac{\sum_{i=1}^{n} a_{i}}{n} \geq \frac{\sum_{i=1}^{n} a_{i}}{n^{2}} \geq 0$$

Theo nguyên lý kep, suy ra đpcm.

3. Bài toán 3.

Đây là một bổ đề có nhiều ứng dụng.

Với dãy số thực
$$(x_n)$$
. Đặt $S_n = \sum_{i=1}^{n} x_i$ và kí

 $\begin{aligned} & \underset{n \to \infty}{\text{hiệu}} & \underset{n \to \infty}{\lim} S_n = \sum_{1}^{\infty} x_i \;. \; \textit{X\'et} \;\; \textit{dãy} \;\; \textit{s\'o} \;\; \left(c_n\right) \;\; \textit{thỏa} \\ & \textit{mãn điều kiện} \;\; 0 < c_n < 1 \;, \textit{với mọi } n = 0, 1, 2 \;, \end{aligned}$

...
$$D \check{a} t \ x_n = \prod_{i=1}^{n} (1 - c_i), \ y_n = \prod_{i=1}^{n} (1 + c_i).$$

Khi đó 3 khẳng đinh sau là tương đương:

$$1. \sum_{1}^{\infty} c_n = +\infty.$$

$$2. \lim_{n\to\infty} y_n = +\infty.$$

3.
$$\lim_{n\to\infty} x_n = 0$$
.

Chứng minh.

1 ⇒ 2. Theo bất đẳng thức *Bernoulli*, ta có :

$$y_n = \prod_{i=1}^{n} (1 + c_i) \ge 1 + \sum_{i=1}^{n} c_i$$

$$\Rightarrow \lim_{n\to\infty} y_n = +\infty$$
.

2
$$\Rightarrow$$
3. Do $x_n y_n = \prod_{i=1}^n (1 - c_i^2) < 1$ nên dễ có $\lim_{n \to \infty} x_n = 0$.

$$3$$
 ⇒ 1. Giả sử $\sum_{1}^{\infty} c_n < +\infty$, ta có ngay tồn tại

$$n_0 \in N^*$$
 sao cho $\sum_{i=n_0+1}^m c_i < \frac{1}{2}$, với mọi $m > n_0$.

Khi đó, với mọi $m > n_0$, ta có:

$$x_m = x_{n_0} \cdot \prod_{i=n_0+1}^m (1 - c_i) \ge x_{n_0} \cdot \left(1 - \sum_{i=n_0+1}^m c_i\right) > \frac{x_{n_0}}{2}$$

(Cũng theo bất đẳng thức Bernoulli)

$$\Rightarrow \lim_{n\to\infty} x_n > 0$$
, trái giả thiết \Rightarrow đpcm.

4. Bài toán 4.

Cho 2 dãy (x_n) , (y_n) thỏa mãn $\lim x_n = 0$,

$$\sum_{1}^{\infty} |y_n| < +\infty . Chứng minh rằng:$$

$$\lim_{n\to\infty} \left(\sum_{1}^{n} x_{i} y_{n+1-i} \right) = 0$$

Lời giải. Từ giả thiết suy ra tồn tại các số K, L > 0 sao cho $|x_n| < K$, với mọi $n \ge 1$ và $\sum_{n=1}^{\infty} |y_n| < L$. Ngoài ra ta còn có:

Với mọi $\varepsilon > 0$, tồn tại số tự nhiên m sao cho $\sum_{i=1}^{n} \left| y_i \right| < \frac{\varepsilon}{K+I}$, $\forall n > m$.

Với mọi $\varepsilon > 0$, tồn tại số tự nhiên n_0 sao cho $x_n < \frac{\varepsilon}{K+L}$, $\forall n > n_0$.

Chọn N = Max $\{m; n_0\}$ thì với mọi n > N, ta có:

$$\left| \sum_{i=1}^{n} x_{i} y_{n+1-i} \right| = \left| \sum_{i=1}^{N} x_{i} y_{n+1-i} \right| + \left| \sum_{i=N+1}^{n} x_{i} y_{n+1-i} \right| \le$$

$$\le K \frac{\mathcal{E}}{K+L} + L \frac{\mathcal{E}}{K+L} = \mathcal{E} \Rightarrow \text{dpcm}$$

5. Bài toán 5.

Cho dãy số thực dương (a_n) thỏa mãn :

$$1) \sum_{1}^{\infty} a_n < +\infty$$

2) $a_{n+1} < a_n(1+a_n)$ với mọi n.

Chứng minh rằng $\lim_{n\to\infty} na_n = 0$

Lời giải. Giả sử $\lim_{n\to\infty} na_n \neq 0$. Chọn ε bất kì sao

cho $1 > \varepsilon > 0$. Từ giả thiết phản chứng, ta thấy có vô số n để $na_n > \varepsilon$. Chọn m > 1 sao cho $ma_m > \varepsilon \implies a_{m-1}(1+a_{m-1}) > a_m >$

$$> \frac{\varepsilon}{m} > \frac{\varepsilon}{m+1} (1 + \frac{\varepsilon}{m+1}) \Rightarrow \mathrm{a}_{\scriptscriptstyle \mathrm{m-1}} > \frac{\varepsilon}{m+1} \dots$$

Tiếp tục quá trình này, ta được

$$a_{m-\left[\frac{m}{2}\right]} > \frac{\varepsilon}{m+\left[\frac{m}{2}\right]}$$

Lấy tổng lai, ta được:

$$a_m + \dots + a_{m-\left[\frac{m}{2}\right]} > \frac{\mathcal{E}}{m} + \dots + \frac{\mathcal{E}}{m + \left[\frac{m}{2}\right]} > \frac{\mathcal{E}}{4}$$

Quá trình này có thể tiếp diễn, suy ra ta có thể chọn được vô số tổng rời có độ lớn

vượt
$$\frac{\mathcal{E}}{4} \Rightarrow \sum_{1}^{\infty} a_n = +\infty$$
, Mâu thuẫn \Rightarrow đpcm.

6. Bài toán 6.

Cho dãy số thực không âm (a_n) thỏa mãn $\sum_{1}^{\infty} a_n < +\infty . Với mỗi <math>x > 0$, kí hiệu N(x) là số số $a_n > x$. Chứng minh rằng $\lim_{x \to 0} xN(x)$.

Lòi giải. Do
$$\sum_{1}^{\infty} a_n < +\infty$$
 nên $\forall \ \varepsilon > 0, \ \exists \ n_0$

sao cho
$$\sum_{n_0+1}^{\infty} a_n < \frac{\mathcal{E}}{2}$$

$$\Rightarrow$$
 Với $x < \frac{\varepsilon}{2n_0}$ thì $N(x) \le n_0 + \frac{\varepsilon}{2x} < 2n_0$

Chú ý rằng từ
$$\sum_{n_0+1}^{\infty} a_n < \frac{\mathcal{E}}{2}$$
 suy ra có không

quá
$$\frac{\mathcal{E}}{2x}$$
 số $a_i > x$, $i \ge n_0 + 1$.

$$\Rightarrow xN(x) < \varepsilon \Rightarrow \text{dpcm}.$$

Trên đây là một số ví dụ gắn trực tiếp với định nghĩa và mở rộng định nghĩa giới hạn dãy. Có rất nhiều bài toán và đề thi cần sử dụng định nghĩa để trực tiếp tìm giới hạn (Như câu 3 - đề thi HSGQG 2000 - 2001 Bảng A) mong các bạn chú ý và tìm hiểu thêm!

Điểm LEMOINE Trong Tam Giác

LÊ VĂN ĐÍNH LỚP 3CLC – K51 TOÁN, ĐHSP HÀ NỘI I

Chúng ta hẳn ai cũng biết đến bài toán nổi tiếng sau:

Bài toán 1:Tìm điểm M trong mặt phẳng Δ ABC sao cho tổng MA+MB+MC đạt giá trị nhỏ nhất.

Đây là một bài toán khó được đặt ra khá lâu trước khi Toricelli - người đầu tiên tìm ra lời giải. Thế nhưng khi nâng các đại lượng trong Bài toán 1 lên bậc hai thì vấn đề lại hết sức đơn giản . Đó là nội dung bài toán mà chúng ta sau này đều biết rằng, trọng tâm G của $\triangle ABC$ là lời giải duy nhất của nó.

Bài toán 1a:

Tìm điểm M nằm trên mặt phẳng tam giác ABC sao cho đại lượng $MA^2 + MB^2 + MC^2$ đạt giá trị nhỏ nhất.

Một bài toán khác cũng được đặt ra một cách rất tự nhiên từ Bài toán 1.

Cho điểm M nằm trong tam giác ABC, gọi H, J, K lần lượt là hình chiếu của M trên các cạnh BC, CA, AB tương ứng. Xác định vị trí của điểm M sao cho tổng S = MH + MJ + MK đạt giá trị nhỏ nhất.

Việc phát triển Bài toán 1 theo hướng nâng các đại lượng của tổng S lên bậc hai sẽ dẫn ta tới khái niệm sau, trong đó a, b, c là ký hiệu độ dài ba cạnh BC, CA và AB của tam giác ABC.

Điểm Lemoine trong tam giác:

Điểm L thuộc mặt phẳng chứa tam giác ABC được gọi là điểm Lemoine của tam giác đó nếu $a^2.\overrightarrow{LA}+b^2.\overrightarrow{LB}+c^2.\overrightarrow{LC}=\overrightarrow{0}$.

Dễ thấy rằng diểm *Lemoine* của một tam giác thì nằm trong tam giác đó. Định lý sau cho ta một tiêu chuẩn để nhận biết điểm *Lemoine*.

Định lí 1:

Cho điểm L nằm trong $\triangle ABC$. Gọi H, J, K lần lượt là hình chiếu của L trên các cạnh BC, CA, AB tương ứng. Khi đó L là điểm Lemoine của $\triangle ABC$ nếu và chỉ nếu L là trong tâm của tam giác HJK.

Chứng minh đẳng thức này dựa trên 2 đẳng thức véctơ quen thuộc sau mà việc chi tiết hoá không có gì là khó khăn, các bạn hãy thiết lập coi như bài tập.

$$S(\Delta LBC)\overrightarrow{LA} + S(\Delta LCA)\overrightarrow{LB} + S(\Delta LAB)\overrightarrow{LC} = \overrightarrow{0},$$

và
$$\frac{a}{LH}\overrightarrow{LH} + \frac{b}{LJ}\overrightarrow{LJ} + \frac{a}{LK}\overrightarrow{LK} = \vec{0}$$
, trong đó $S(\Delta XYZ)$ chỉ diện tích của ΔXYZ .

Một đặc trưng đưa đến cách dựng điểm Lemoine được chỉ ra trong định lí sau:

Đinh lí 2:

Các đường đối trung của ΔABC tại điểm Lemoine của nó.

Chứng minh. Gọi AM, AD, AS lần lượt là trung tuyến , phân giác, và đường đối trung (là đường đối xứng với trung tuyến qua phân giác) xuất phát từ đỉnh A của tam giác ABC.

Trên các tia AB, AC lần lượt lấy các điểm C_1 , B_1 sao cho AB = AB₁, AC=AC₁.

Ký hiệu $S_1 = AS \cap B_1C_1$ và gọi B_2 và C_2 lần lượt là giao điểm của đường thẳng BC với các đường thẳng qua B_1 , C_1 và song song với AS.

Từ tính đối xứng, dễ thấy S_1 là trung điểm B_1C_1 , do đó theo định lí Talet, S là trung điểm B_2C_2 : $\overline{B_2S} + \overline{C_2S} = \vec{0}$ (1)

Cũng theo định lí Talet ta có:

$$\frac{BS}{C_2S} = \frac{AB}{AC_1} = \frac{AB}{AC} = \frac{a}{b} \frac{CS}{B_2S} = \frac{CA}{B_1A} = \frac{CA}{BA} = \frac{b}{c}$$

Từ đó và (1) suy ra $b^2 . BS + c^2 . CS = 0$ (2).

Vậy, nếu gọi L là điểm Lemoine của tam giác ABC thì $a^2.\overrightarrow{LA} + b^2.\overrightarrow{LB} + c^2.\overrightarrow{LC} = \vec{0}$

$$\Leftrightarrow a^2 \left(\overrightarrow{LS} + \overrightarrow{SA} \right) + b^2 \cdot \left(\overrightarrow{LS} + \overrightarrow{SB} \right) +$$

$$c^2\left(\overrightarrow{LS} + \overrightarrow{SC}\right) = \vec{0}$$

$$\Leftrightarrow (a^2 + b^2 + c^2)\overrightarrow{LS} + a^2\overrightarrow{SA} +$$

$$+b^2 \overrightarrow{SB} + c^2 \overrightarrow{SC} = \overrightarrow{0}$$

$$\Leftrightarrow (a^2 + b^2 + c^2)\overrightarrow{LS} + a^2\overrightarrow{SA} = \overrightarrow{0}$$

 \Rightarrow L nằm trên đường đối trung SA. Tương tự như vậy, ta cũng có L nằm trên hai dường đối trung còn lai của $\Delta ABC \Rightarrow$ đpcm.

Bây giờ ta trở lại xét bài toán đã nêu ở trên.

Bài toán 1b.

Tìm điểm M nằm trong $\triangle ABC$ sao cho tổng các bình phương các khoảng cách từ M đến các cạnh của tam giác là nhỏ nhất.

Lời giải. Vẫn ký hiệu *H*, *J*, *K* như ở hình vẽ thứ nhất. Ta có:

$$4S_{\Delta ABC}^2 = (a.MH + b.MJ + c.MK)^2 \le$$

$$\leq (a^2 + b^2 + c^2)(MH^2 + MJ^2 + MK^2)$$

$$\Rightarrow MH^2 + MJ^2 + MK^2 \ge \frac{4S_{\Delta ABC}^2}{a^2 + b^2 + c^2}$$

Đẳng thức xảy ra khi và chỉ khi

$$\frac{MH}{a} = \frac{MJ}{b} = \frac{MK}{c} \Leftrightarrow$$

$$\Leftrightarrow \frac{S(\Delta MBC)}{a^2} = \frac{S(\Delta MCA)}{b^2} = \frac{S(\Delta MAB)}{c^2}$$

$$\Leftrightarrow a^2.\overrightarrow{MA} + b^2.\overrightarrow{MB} + c^2.\overrightarrow{MC} = \overrightarrow{0}$$

 $\Leftrightarrow M$ là điểm Lemoine của $\triangle ABC$

Lời kết. Điểm Lemoine của $\triangle ABC$ có nhiều tính chất thú vị khác. Chẳng hạn, nó cũng là điểm làm cực tiểu biểu thức $a^2MA^2 + b^2MB^2 + c^2MC^2$, hay các hình chiếu của nó lên các cạnh của $\triangle ABC$ tạo thành một tam giác nội tiếp $\triangle ABC$ có tổng bình phương các cạnh nhỏ nhất mà trong khuôn khổ bài viết không thể trình bày cặn kẽ được.

Để kết thúc xin nhắc lại các hệ thức xác định trọng tâm, tâm đường tròn nội tiếp và điểm *Lemoine* của một tam giác:

$$\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$$

$$a.\overrightarrow{IA} + b.\overrightarrow{IB} + c.\overrightarrow{IC} = \overrightarrow{0}$$

$$a^{2}.\overrightarrow{LA} + b^{2}.\overrightarrow{LB} + c^{2}.\overrightarrow{LC} = \overrightarrow{0}$$

Những hệ thức này gợi ý cho ta nghiên cứu các điểm *M* thoả mãn:

$$a^{k}.\overrightarrow{MA} + b^{k}.\overrightarrow{MB} + c^{k}.\overrightarrow{MC} = \overrightarrow{0}$$

Những tính chất của điểm M như thế đang chờ bạn khám phá. Chúc các bạn thành công!

Tôi nghe thì tôi sẽ quên Tôi nghĩ thì tôi sẽ nhớ Tôi học thì tôi sẽ hiểu

câu chuyện TRÙN DUÒNG

ELIPSE

LUU NHU HOÀ CHUYÊN TOÁN K02 – 05 Sv. Lớp Điều Khiến Tư đông, KSTN - K50 Đại học Bách Khoa Hà Nôi

Tường tròn luôn là đề tài hấp dẫn đối với mỗi học sinh khi học về hình học. Nếu biết đào sâu suy nghĩ, ban sẽ khám phá ra những điều thú vi mà nếu không phải ban phát hiện ra chúng thì cũng chẳng ai nói cho ban cå.

Ta xét định lý 1.

Bài toán Pascal. Nếu 1 luc giác nôi tiếp trong một đường tròn thì 3 giao điểm của 3 căp canh đối diên thẳng hàng.

Chứng minh. (Bạn đọc tự vẽ hình).

Giả sử ABCDEF là luc giác nội tiếp. Các cặp cạnh đối AB, DE, BC, EF, CD, FA cắt nhau theo thứ tư tai A', B', C'. Goi P, Q, R tương ứng là giao điểm của các cặp đường thẳng AB và EF, AB và CD, CD và EF.

Theo đinh lý *Mê-nê-la-uyt* trong tam giác POR với các cát tuyến BCB', DEA', CFA ta có các hê thức:

$$\frac{CQ}{CR} \cdot \frac{B'R}{B'P} \cdot \frac{BP}{BQ} = \frac{DQ}{DR} \cdot \frac{ER}{EP} \cdot \frac{A'P}{A'Q} =$$

$$= \frac{C'Q}{C'R} \cdot \frac{FR}{FP} \cdot \frac{AP}{AQ} = 1$$

Nhân các vế của 3 đẳng thức trên với nhau và chú ý đến phương tích các điểm P, Q, R với đường tròn:

$$\frac{AP}{FQ}.\frac{BP}{EQ} = \frac{AQ}{CQ}.\frac{BQ}{DQ} = \frac{CR}{ER}.\frac{DR}{FR} = 1$$

ta có
$$\frac{B'R}{B'P} \cdot \frac{A'P}{A'Q} \cdot \frac{C'Q}{C'R} = 1$$

Suy ra A', B', C' thẳng hàng.

Sau khi chứng minh bài toán trên, tôi đã thử mở rộng nó cho elipse (Thay đường tròn bởi elipse). Tôi đã cố gắng xây dựng khái niêm về phương tích của một điểm với elipse nhưng đã thất bai. Moi chuyên chỉ sáng tỏ khi tôi học về phép chiếu song song. Thât vây, nếu ta đem chiếu mặt phẳng chứa đường tròn ngoại tiếp lục giác lên một mặt phẳng không song song với nó thì thay cho đường tròn, ta có đường elipse.

Ta có định lý 2. Một lục giác nội tiếp trong môt elip thì 3 giao điểm của 3 cặp canh đối sẽ thẳng hàng.

Quá sung sướng vì phát hiện của mình, tôi liền tìm và mở rông một loạt đính lý khác có "dính dáng" đến đường tròn.

Đinh lý 3. (Đinh lý Briasong).

Các đường chéo nối các đỉnh đối diện của một lục giác ngoại tiếp đường tròn thì đồng quy.

Đinh lý 4. (đinh lý Newton).

Điều kiên cần và đủ để tứ giác ngoại tiếp đường tròn là trung điểm 2 đường chéo với tâm của đường tròn nôi tiếp thẳng hàng.

Dưa vào phép chiếu song song, ta có thể thay cụm từ "đường tròn" bằng "elipse". Nếu như ta thay phép chiếu song song bởi phép chiếu xuyên tâm thì cum từ "đường tròn" được thay bởi "conic" và ta thu được đinh lý:

Định lý 5. Một lục giác nội tiếp trong một đường conic thì 3 giao điểm của 3 cặp canh đối diên sẽ thẳng hàng.

Đó cũng là nội dung của đinh lý Pascal mà ông trình bày trong công trình "Nghiên cứu về Conic" (1640).

Câu chuyện về đường tròn và đường elip vẫn còn nhiều hấp dẫn dành cho ban đọc khám phá. Sau đây là một số vấn đề tôi đưa ra để cùng nghiên cứu:

- 1. Định lý Briasong sẽ biến đổi như thế nào qua phép chiếu xuyên tâm?
- 2. Hãy tìm điều kiện cần và đủ cho tứ giác nội tiếp được elipse.

Một số phương pháp xác định

GIỚI HẠM CỦA DÃY SỐ

NGUYỄN LÂM TUYỀN CHUYÊN TOÁN K99 – 02

Sv. Lớp Điều khiển Tự động 1 - K47, ĐH Bách Khoa Hà Nội

ãy số là một chủ đề quan trọng trong trương trình toán phổ thông, đặc biệt là các kì thi Học sinh giỏi toán. Bài viết này xin được giới thiệu về giới hạn của dãy số, một vấn đề mà khi tìm hiểu đến, người làm toán luôn tìm thấy những điều mới lạ và thú vị.

Cũng như các lĩnh vực khác của toán học, giới hạn dãy số rất đa dạng về thể loại và phong phú về phương pháp. Ngoài một số cách thông thường như sử dụng định nghĩa, định nghĩa tích phân, định nghĩa đạo hàm, hay chứng minh một dãy đơn điệu và bị chặn sau đó giải phương trình truy nó để tìm giới hạn v.v ... Chúng ta cũng cần chú ý tới một số phương pháp khác tương đối hiệu quả cho dạng toán này. Sau mỗi phương pháp ở bài báo này đều có nêu ví du áp dung.

I. Phương pháp sử dụng định lí Lagrange. Trước hết xin nhắc lai

Định lí Lagrange: $Gi\mathring{a}$ sử hàm số f(x) xác định và có đạo hàm trên đoạn [a;b], khi đó tồn tại một điểm $c \in (a;b)$ sao cho

$$f'(c) \cdot (a - b) = f(a) - f(b).$$

Từ đó ta có hệ quả sau:

Hệ quả. Giả sử hàm số f(x) có đạo hàm trên miền xác định D, thoả mãn điều kiện $|f'(x)| \le c < 1$ với c là hằng số và phương trình f(x) = x có nghiệm duy nhất β thuộc D, khi đó dãy số (x_n) (n = 0, 1, 2, ...) xác định bởi x_0 thuộc D và $x_{n+1} = f(x_n)$ có giới hạn là β khi n dần tới vô hạn.

Chứng minh. Giả sử $|f'(x)| \le c < 1$.

Theo định lí Lagrange, với mỗi n, tồn tại c $_n$ nằm giữa x $_n$ và β sao cho

$$f(x_n) - f(\beta) = (x_n - \beta) \cdot f'(c_n) \Rightarrow |x_{n+1} - \beta|$$

$$= |x_n - \beta| \cdot |f'(c_n)| \le$$

$$\le |x_n - \beta| \cdot c \le \dots \le |x_0 - \beta| \cdot c^{n+1}$$

$$\text{Vây } 0 \le |x_n - \beta| \le |x_0 - \beta| \cdot c^n$$

$$\Rightarrow \lim_{n \to +\infty} x_n = \beta, \text{ do } \lim_{n \to +\infty} c^n = 0.$$

Nhận xét được chứng minh.

Cần lưu ý rằng hàm số g(x) = f(x) - x có g'(x) = f'(x) - 1 < 0 nên sự tồn tại của β là duy nhất.

I.1. Ví dụ 1. Dãy số (x_n) được xác định như sau:

$$x_0 = a$$
, $x_{n+1} = \frac{1}{2006} .ln(x_n^4 + 2006) - 2007$,

 $v\acute{o}i\ moi\ n=0,1,2\,\dots$

Chứng minh rằng dãy số (x_n) có giới hạn hữu hạn khi $n \to +\infty$.

Lời giải. Xét hàm số

$$f(x) = \frac{1}{2006} \cdot \ln(x^4 + 2006) - 2007.$$

Nhận thấy f(x) xác định, liên tục trên R và dãy (x_n) được viết lại như sau:

$$x_0 = a, x_{n+1} = f(x_n) \text{ v\'oi m\'oi } n = 0, 1, 2 \dots$$

Ta có:
$$f'(x) = \frac{4x^3}{2006(x^4 + 2006)}$$

Theo bất đẳng thức Côsi thì

$$x^4 + 2006 > \frac{x^4}{3} + \frac{x^4}{3} + \frac{x^4}{3} + 27 \ge 4|x^3|.$$

Từ đó suy ra
$$|f'(x)| < \frac{1}{2006}$$
.

Gọi β là nghiệm của phương trình f(x) = x, β tồn tại và duy nhất vì hàm số

$$g(x) = f(x) - x$$
 liên tục, $g'(x) = f'(x) - 1 < 0$
và có $g(0) = \frac{1}{2003} . \ln 2006 - 2007 < 0$,

 $\lim_{x\to +\infty} g(x) = +\infty. \text{ Do đó theo hệ quả trên ta}$ có $\lim_{x\to +\infty} x_n = \beta, \text{ (đpcm)}.$

1.2. Ví dụ 2. Cho số thực c > 2. Dãy số (x_n) , n = 0, 1, 2, 3,... được xác định theo cách sau : $x_0 = \sqrt{c}$, $x_{n+1} = \sqrt{c - \sqrt{c + x_n}}$ (n = 0, 1, 2,...) nếu các biểu thức dưới dấu căn là không âm. Chứng minh rằng: dãy (x_n) được xác định với mọi giá trị n và tồn tại $\lim_{n \to +\infty} x_n$.

(VietNam 1999 - 2000)

Lời giải.

* Ta chứng minh (x_n) xác định với mọi n bằng qui nạp. Từ giả thiết

$$c > 2 \Rightarrow c - \sqrt{c + x_o} = c - \sqrt{c + \sqrt{c}} > c - 2\sqrt{c} > 0$$

 $\Rightarrow x_t$ được xác định.

Giả sử x_k $(k \ge 1)$ đã được xác định. Khi đó do $0 < x_k < \sqrt{c} < c$

$$\Rightarrow c - \sqrt{c + x_k} > c - \sqrt{2c} > 0$$

 $\Rightarrow x_{k+1}$ được xác định \Rightarrow đpcm.

* Ta có
$$0 \le x_n \le \sqrt{c}$$
, $\forall n$.

Xét hàm số $f(x) = \sqrt{c - \sqrt{c + x}}$ trên $[0; \sqrt{c}]$.

Ta có :
$$f'(x) = \frac{-1}{4\sqrt{c - \sqrt{c + x}}.\sqrt{c + x}}$$

Chú ý $c > 2 \Rightarrow$

$$\Rightarrow c(c-2) + \frac{3}{4}\sqrt{c}.(\sqrt{c} - \frac{3}{4}) + \frac{1}{64} > 0$$

$$\Rightarrow (c - \frac{1}{8})^2 > c + \sqrt{c} \Rightarrow c - \sqrt{c + \sqrt{c}} > \frac{1}{8}$$

Vậy

$$4.\sqrt{c - \sqrt{c + x}}.\sqrt{c + x} > 4.\sqrt{c - \sqrt{c + \sqrt{c}}}.\sqrt{c} >$$

$$>\sqrt{\frac{1}{8}}.\sqrt{2}=2 \Rightarrow |f'(x)|<\frac{1}{2}.$$

Xét hàm số g(x) = f(x) - x trên [0; \sqrt{c}]. Ta có g'(x) = f'(x) - 1 < 0 và g(0) > 0, $g(\sqrt{c}) < 0 \Rightarrow$ phương trình f(x) = x có duy nhất nghiệm trên [0; \sqrt{c}]. Gọi nghiệm đó là α , khi đó theo nhận xét trên ta có $\lim_{n \to \infty} x_n = \alpha$ (đpcm)

I.3. Bài tập.

Bài tập 1. Dãy số (x_n) được xác định bởi x_0 $\in R$ và $x_{n+1} = \frac{2}{3} \operatorname{arctg} \frac{x_n^2}{\sqrt{3}} - (1 + \frac{\pi}{9})$, với mọi $n = 1, 2, 3, \dots$

Chứng minh rằng dãy này có giới hạn hữu hạn khi $n \rightarrow +\infty$. Tìm giới hạn đó.

Bài tập 2. $D\tilde{a}y$ số (y_n) có y_0 tuỳ ý, thoả

$$m\tilde{a}n:y_{n+1} = \frac{\sqrt{1+y_n^2}}{3} - \ln\sqrt{y_n + \sqrt{y_n^2 + 1}}, \forall n.$$

Chứng minh rằng: tồn tại $\lim_{n\to+\infty} y_n$

Bài tập 3. Cho dãy số (z_n) thoả mãn: $16z_{n+1} = 6cosz_n + 3cos2z_n + 2cos3z_n - 3(8\pi - 1), với mọi n \in N. Tìm \lim_{n \to \infty} z_n.$

Bài tập 4. Cho số thực $a \notin (\frac{1}{2};0)$ và số thực b tuỳ ý. Dãy số (x_n) với n=0,1,2,... được xác định theo cách sau: $x_0=b, x_{n+1}=\frac{a}{3}.\ln(x_n^2+a^2)-a^2$, với mọi n=0,1,2,... Chứng minh rằng dãy số (x_n) có giới hạn hữu hạn khi $n \to +\infty$.

Bài tập 5. Giả sử $0 < \alpha < \frac{\pi}{2}$. Xét dãy số (u_n) được xác định bởi:

$$\frac{u_n}{u_1} > 0 \quad \text{và} \quad u_{n+1} = u_n \quad \sin^2 \alpha \quad + \frac{2002 \cdot \cos^2 \alpha}{u_n^{tg^2\alpha}} \text{v\'et} \quad n = 1, 2, 3...Ch\'eng minh}$$

rằng dãy số (u_n) có giới hạn khi $n \to +\infty$ và tính giới hạn đó.

II. Phương pháp sử dụng công thức tổng quát.

II.1. Ví dụ 2. Cho dãy số không âm (u_n) thoả mãn điều kiện:

$$4u_{n+2} \le (\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n})u_{n+1} + \dots + \frac{1}{n+n}u_{n+1} + \dots + \frac{$$

$$+(\frac{1}{n+n}+\frac{1}{n+n+1}+...+\frac{1}{n+3n}).u_n$$

 $v\acute{o}i\ moi\ n=1,2,3...$

Chứng minh rằng dãy số (u_n) hội tụ và tìm giới hạn đó.

Lòi giải. Với mọi n = 1, 2, 3, ... ta có:

$$\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n} < 1 \text{ và}$$

$$\frac{1}{n+n} + \frac{1}{n+n+1} + \dots + \frac{1}{n+3n} < (2n+1) \cdot \frac{1}{n+n} \le \frac{3}{2}$$

Như vậy ta có: $4u_{n+2} \le u_{n+1} + \frac{3}{2} u_n$, với mọi $n = 1, 2, 3 \dots$

Xét dãy (v_n) như sau: $v_1 = u_1$, $v_2 = u_2 v \dot{a}$

$$4v_{n+2} = v_{n+1} + \frac{3}{2}v_n$$
, $\forall n = 1, 2, 3...$

Phương trình đặc trưng $4X^2 - X - \frac{3}{2} = 0$

$$\Rightarrow X_1 = \frac{3}{4}, X_2 = -\frac{1}{2}$$

$$\Rightarrow v_n = C_1 \cdot (\frac{3}{4})^n + C_2 \cdot (-\frac{1}{2})^{n}$$

$$\Rightarrow \lim_{n \to +\infty} v_n = 0 \quad (*)$$

Tiếp theo, ta chứng minh bằng quy nạp rằng: $v_n \ge u_n \ge 0$ với mọi n = 1, 2, 3, ...

Thật vậy, với n = 1, 2 thì (**) đúng theo cách định nghĩa dãy (v_n) .

Giả sử (**) đã đúng với mọi $n \le k+1$. Khi đó ta có:

$$4v_{k+2} = v_{k+1} + \frac{3}{2}v_k \ge u_{k+1} + \frac{3}{2}u_k \ge 4u_{k+2}$$

 $\Rightarrow v_{k+2} \ge u_{k+2} \ge 0$. Nhận xét (**) được chứng minh. Cuối cùng, sử dụng định lí kẹp trong lý thuyết giới hạn dãy số và (*), (**) ở trên ta được $\lim u_n = 0$.

II.2. Nhận xét. Yêu cầu của phương pháp là phải nắm vững cách giải của phương trình sai phân và kĩ năng biến đổi truy hồi.

II.3.Bài tâp.

Bài tập 1. Giả sử phương trình $ax^2 + bx + c = 0$, $(a \ne 0)$, có hai nghiệm thực phân biệt. Xét dãy số (x_n) được xác định bởi số x_o cho trước và điều kiện $x_n(ax_{n-1} + b) + c = 0$ với n = 1, 2, 3... Hãy tìm $\lim_{n \to +\infty} x_n$ theo x_0 .

Bài tập 2. Cho dãy số không âm (y_n) có tính chất: $y_{n+2} \le uy_n + vy_n$ $(\forall n)$, trong đó u, v là các số thực dương và u + v < 1. Tìm $\lim_{n \to \infty} y_n$.

III. Phương pháp sử dụng định lí Stolz -Cesaro.

Định lí Stolz. Cho các dãy số (x_n) và (y_n) . Giả sử rằng (y_n) là dãy dương

tăng,
$$\lim_{n\to +\infty} y_n = +\infty$$
 và $\lim_{n\to +\infty} \frac{x_{n+1}-x_n}{y_{n+1}-y_n} = L$, khi

đó ta cũng có $\lim_{n\to+\infty} \frac{x_n}{y_n} = L$.

Chứng minh. Từ định nghĩa giới hạn và giả thiết $\lim_{n\to+\infty}\frac{x_{n+1}-x_n}{y_{n+1}-y_n}=L$, suy ra với mọi $\varepsilon>0$ bất kỳ tồn tại số tự nhiên N_0 sao cho với mọi $k\geq N_0$, luôn có:

$$\left| \frac{x_{k+1} - x_k}{y_{k+1} - y_k} - L \right| < \frac{\varepsilon}{2}$$

$$\Leftrightarrow -(y_k - y_{k-1}) \cdot \frac{\varepsilon}{2} < x_k - x_{k-1} - L \cdot (y_k - y_{k-1}) < \varepsilon$$

$$<(y_k-y_{k-1}).\frac{\varepsilon}{2}$$

Cho $k = N_o^2$, $N_o + 1$,...., n - 1 rồi cộng theo từng vế các BĐT đó ta được:

$$-(y_n - y_{N_0}) \cdot \frac{\varepsilon}{2} < x_n - x_{N_0} - L \cdot (y_n - y_{N_0}) < \varepsilon$$

$$<(y_n-y_{N_0}).\frac{\varepsilon}{2} \Rightarrow -\frac{\varepsilon}{2} < \frac{x_n}{y_n} - L - z_n < \frac{\varepsilon}{2}$$
 (1)

Trong đó
$$z_n = \frac{x_{N_0} - Ly_{N_0}}{v}$$
.

Vì $\lim_{n\to +\infty} y_n = +\infty$, $\lim_{n\to +\infty} z_n = 0 \Rightarrow$ tồn tại số tự nhiên M_0 sao cho với mọi $n > M_0$ thì:

$$-\frac{\varepsilon}{2} < z_n < \frac{\varepsilon}{2} \quad (2)$$

Từ (1) và (2) suy ra với mọi $n > Max\{N_0; M_0\}$ ta luôn có:

$$-\frac{\varepsilon}{2} < \frac{x_n}{y_n} - L < \frac{\varepsilon}{2} \Leftrightarrow \left| \frac{x_n}{y_n} - L \right| < \varepsilon$$

$$\Leftrightarrow \lim_{n \to +\infty} \frac{x_n}{y_n} = L \text{ (dpcm)}.$$

Trường hợp đặc biệt, với $x_n = v_1 + v_2 + ... + v_n$ và $y_n = n$, ta có định lí:

Định lí Cesaro về trung bình của một dãy số:

Cho dãy
$$(v_n)$$
 và đặt $w_n = \frac{v_1 + v_2 + ... + v_n}{n}$. Khi đó nếu (v_n) hội tụ đến

L khi n tăng lên vô hạn thì dãy (w_n) cũng hội tụ đến L khi n tăng lên vô hạn.

III.1.Ví dụ 3. Cho k số thực âm phân biệt $a_1, a_2, ..., a_k$ $(k \ge 1)$. Dãy số (T_n) được xác định bởi $T_i > 0$ (i = 1, 2, ..., k) cho trước thoả mãn điều kiện :

$$T_{n+1} = T_n + \sum_{i=1}^k T_n^{a_i}, v\acute{o}i \ moi \ n \ge k.$$

Tìm tất cả các số thực α sao cho dãy số (U_n) xác định bởi $U_n = \frac{T_n^{\alpha}}{n}$, n = 0, 1, 2, ... có giới hạn hữu hạn khác không khi n dần

tới vô hạn và tìm giới hạn đó. **Lời giải.**

* Trước hết ta chứng minh $\lim_{n\to +\infty} T_n = +\infty$.

Giả sử ngược lại, dãy (T_n) bị chặn. Khi đó, do (T_n) là một dãy dương, tăng nên tồn tại giới hạn $\lim_{n\to+\infty} T_n = \beta$ hữu hạn, từ

đó
$$\beta = \beta + \sum_{i=1}^k \beta^{a_i}$$
, vô lí.

* Tiếp theo đặt $a=Max\{a_i\}$ và xét dãy $v_n=T_{n+1}^{1-a}-T_n^{1-a}$. Ta sẽ chứng minh $\lim v_n=1-a$.

Thât vây, ta có:

$$v_n = (T_n + \sum_{i=1}^k T_n^{a_i})^{1-a} - T_n^{1-a} =$$

$$= T_n^{1-a} . [(1 + \sum_{i=1}^k T_n^{a_i-1})^{1-a} - 1].$$

Đặt $x_n = T_n^{a-1}$ với chú ý $\lim_{n \to +\infty} x_n = 0$ (vì a < 0) thì ta có:

$$v_n = \frac{\left[1 + \sum_{n} x_n^{\frac{(a_i - 1)}{a - 1}}\right]^{1 - a} - 1}{x_n}$$

Xét hàm số
$$f(x) = \left[1 + \sum_{i=1}^{k} x^{\frac{(a_i - 1)}{a - 1}}\right]^{1 - a} - 1$$
.
Ta có $f(0) = 0$ và

$$f'(x) = (1-a) \left(\sum_{i=1}^{k} x^{\frac{a_i - a}{a - 1}} \right) \cdot \left(1 + \sum_{i=1}^{k} x^{\frac{(a_i - 1)}{a - 1}} \right)^{-a}.$$

Do các $a_i < a < 0 \Rightarrow f'(0) = 1$ - a. Sử dung định nghĩa đạo hàm, ta thấy

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x} = 1 - a \quad (*)$$

Hay nói riêng
$$\lim_{n\to+\infty} \frac{f(x_n)}{x_n} = 1 - a$$

 $(\operatorname{do} f(0) = 0, \lim_{n\to+\infty} x_n = 0)$

$$\Rightarrow \lim_{n\to+\infty} v_n = 1-a$$
.

* Cuối cùng, áp dụng định lý Cesaro với $v_n = T_{n+1}^{1-a} - T_n^{1-a}$ ta được

$$\lim_{n\to+\infty} w_n = \lim_{n\to+\infty} \frac{T_{n+1}^{1-a} - T_1^{1-a}}{n} = \lim_{n\to+\infty} v_n = 1-a.$$

$$\Rightarrow \lim_{n \to +\infty} \frac{T_n^{1-a}}{n} = 1 - a.$$

Vậy $\alpha = 1 - a$ là một giá trị cần tìm. Mặt khác vì $\lim_{n \to +\infty} T_n = +\infty$ nên:

$$\lim_{n \to +\infty} T_n^{\alpha - (1-a)} = \begin{cases} +\infty, & \alpha > 1-a \\ 0, & \alpha < 1-a \end{cases}$$

Cuối cùng, vì
$$U_n = \frac{T_n^{1-a}}{n} . T_n^{\alpha - (1-a)}$$
 và

$$\lim_{n \to +\infty} \frac{T_n^{1-a}}{n} = 1 - a \text{ nên}$$

$$\lim_{n \to +\infty} U_n = \begin{cases} +\infty, & \alpha > 1 - a \\ 0, & \alpha < 1 - a \end{cases}$$

- * Kết luận. Đặt $a = Max\{a_i\}$.
- Nếu a=1 thì không tồn tại số α thoả mãn đề bài.
- Nếu $a \neq 1$ thì giá trị duy nhất cần tìm là $\alpha = 1 a$. Và lúc đó $\lim_{n \to +\infty} U_n = 1 a$.

Nhân xét.

- i) Đây là bài toán tổng quát của bài toán số 3 trong đề thi chọn Đội tuyển Việt Nam dự thi IMO năm 1996. Các bạn cũng có thế thấy một số trường hợp đặc biệt của bài toán này trên tạp chí Toán học và Tuổi trẻ hoặc trong các đề thi Olympic. Nhưng trong các trường hợp đặc biệt đó, bài toán còn có lời giải sơ cấp hơn thông qua các bất đẳng thức đánh giá và vận dụng nguyên lý kẹp.
- ii) Đây là dạng toán khó và điển hình trong lý thuyết giới han của dãy số. Trong lời giải trên, chúng ta thấy sự hiện diện của nhiều phương pháp tìm/chứng minh giới hạn. Trong đó, các bạn lưu ý phương pháp sử dụng định nghĩa đạo hàm (*). Đây là một phương pháp "mạnh" và tương đối tinh tế. Về bản chất, tuy chỉ là một trường hợp riêng của quy tắc L'hospital, nhưng rất hiệu quả trong việc xét các giới hạn dạng $\frac{0}{0}$, $\frac{\infty}{\infty}$ cấp 1. Sử dụng định nghĩa đạo hàm, trong lời giải trên chúng ta đã chứng minh được $\lim v_n = 1 - a$ một cách nhanh chóng mà không kém phần tự nhiên. Các bạn hãy tìm hiểu thêm về kỹ thuật cũng như ứng dung

III.2. Bài tâp.

của phương pháp này.

Bài tập 1. Cho dãy số (T_n) (n = 0, 1, 2, ...)được xác đinh bởi $T_1 > 0$ cho trước, $T_{n+1} =$

$$T_n + \frac{1}{\sqrt{T_n}}$$
, với mọi $n = 0, 1, 2, ...$

Hãy tìm tất cả các số thực α sao cho dãy

 $s\delta(U_n)$ xác định bởi $U_n = \frac{T_n^{\alpha}}{r} (\forall n \ge 1)$ có giới hạn hữu hạn khi n dần tới vô hạn.

(Đề dự tuyển Việt Nam 1996)

Bài tập 2. Cho dãy số a xác định như sau:

$$a_1 = 2$$
, $a_{n+1} = a_n + \frac{1}{a_n^2}$, $n = 1, 2, ...$
Chứng minh rằng $\lim_{n \to +\infty} \frac{a_n^3}{n} = 3$.

(Đề thi Olympic 30 - năm 2001)

Bài tập 3. Cho a > -1. Lập dãy số (v_n) , n =0, 1, 2, ... như sau:

$$v_1 = a$$
, $v_{n+1} = \frac{nv_n^3 + 1}{v_n^2 \cdot \sqrt[3]{n^3 + n^2}}$ với $n = 0, 1, 2,$

... Tìm $\lim_{n\to\infty} \sqrt[n]{C_{2n}^n} v_n$ theo các trường hợp của a, trong đó C_n^k số tổ hợp chập k của n phần tử.

Bài tập 4. Cho 2 dãy số x_n và u_n (n = 0, 1, 2,...) được xác đinh theo cách sau:

$$\begin{cases} u_{n+1} = u_n + \frac{1}{u_n^k} + \sum_{i=1}^{2007} u_n^{-i}, & \forall n \ge 1 \\ x_n = \frac{2006.u_n^{\frac{2007}{2006}}}{n+1} \end{cases}$$

Tìm tất cả các số thực dương k sao cho $d\tilde{a}y x_n d\hat{a}n tới 2007 khi n dần tới vô hạn.$ (Lời giải mời các bạn xem trong chuyên mục "Những bài toán hay và các bài toán tư sáng tao")

Bài tập 5. Tìm giới hạn sau, trong đó k là số tự nhiên cho trước: $\lim_{n\to+\infty}\frac{1^k+2^k+...+n^k}{n^{k+1}}$.

Trên đây là một số phương pháp giải các bài toán về giới han của dãy số. Hi vọng rằng các ban sẽ tìm tòi ra nhiều phương pháp khác và không chỉ trong lĩnh vực này mà còn trong tất cả các lĩnh vực khác của toán học.

Có thể nói "Toán học như một viên kim cương, càng mài giữa càng sáng đep". Và chúng ta hãy cùng làm cho toán học ngày càng sáng hơn, đep hơn các ban nhé!

MỘT LỚP các bài toán BẤT ĐẮNG THỰC

NGUYỄN MINH PHÚC CHUYÊN TOÁN K05 – 08 Lớp 11T, THPT Chuyên Hoàng Văn Thụ

C ác bạn thân mến! Khi học môn Toán, không ít bạn kể cả học sinh chuyên Toán, đều cảm thấy môn Toán có nhiều điều thật khó hiểu. Nhưng thực chất mỗi vấn đề đều có một chìa khóa riêng của nó, việc tìm ra chìa khóa phụ thuộc vào mức độ lẫn công sức mà bạn bỏ ra. Đôi khi chỉ cần bỏ ra chút ít thời gian đào sâu suy nghĩ, ta có thể khai thác được những hệ thống kiến thức một cách hữu ích.

Trong bài viết này tôi xin giới thiệu một cách áp dụng hiệu quả BĐT Cauchy vốn đã rất quen thuộc đối với các bạn học sinh THCS lẫn cấp THPT.

Như các bạn đã biết, trong chương trình THCS, ta thường gặp những bài toán BĐT có dang sau:

$$\frac{a^{3}}{b} + \frac{b^{3}}{c} + \frac{c^{3}}{a} \ge a^{2} + b^{2} + c^{2} (1)$$
Hay $a^{5} + b^{5} + c^{5} \ge a^{4}b + b^{4}c + c^{4}a$ (2)
(a, b, $c \in R_{+}^{*}$)

Khi dùng BĐT Cauchy để giải toán, mỗi bài ta đều có những cách ghép các hệ số khác nhau. Như ở BĐT(1), ta có thể ghép các hệ số như sau: $\frac{a^3}{b} + \frac{a^3}{b} + b^2 \ge 3a^2; \frac{b^3}{c} + \frac{b^3}{c} + a^2 \ge 3b^2;$ $\frac{c^3}{a} + \frac{c^3}{a} + a^2 \ge 3c^2.$

Cộng các BĐT trên vế theo vế ta có ngay điều phải chứng minh. Sau khi giải nhiều bài toán dạng trên, hẳn các bạn cũng nhận ra rằng hai vế của các BĐT luôn đồng bậc và bậc của biến ở vế lớn hơn cũng lớn hơn. Tôi

cũng đã suy nghĩ như vậy và tự đặt cho mình bài toán sau:

Chứng minh rằng với mọi a, b, c $\in R_+^*$ và m, $n \in N^*$, m > n ta luôn có:

$$\frac{a^{m}}{b^{n}} + \frac{b^{m}}{c^{n}} + \frac{c^{m}}{a^{n}} \ge a^{m-n} + b^{m-n} + c^{m-n} \quad (I)$$

Để chứng minh bài toán trên, ta áp dụng trực tiếp BĐT *Cauchy* cho m số dương:

$$(m-n)\frac{a^m}{b^n}+nb^{m-n}\geq na^{m-n},$$

$$(m-n)\frac{b^m}{c^n}+nc^{m-n}\geq nb^{m-n},$$

$$(m-n)\frac{c^m}{a^n} + na^{m-n} \ge nc^{m-n}$$

Cộng vế các BĐT trên rồi rút gọn ta có (I). Rỗ ràng (1) chỉ là trường hợp riêng của (I) ứng với m = 3, n = 2. Nhưng chỉ với BĐT(I) quá trình tìm kiếm của chúng ta vẫn chưa kết thúc. Với trực giác, ta cảm thấy còn có một biểu thức nằm giữa hai vế của (I). Vẫn là biểu thức có cùng bậc là (m - n), nhưng bậc của biến lại giảm đi. Ta xét bài toán:

 $V\acute{o}i\ a,b,c\in R_{+}^{*}$. Chứng minh:

$$\frac{a^5}{b^2} + \frac{b^5}{c^2} + \frac{c^5}{a^2} \ge \frac{a^4}{b} + \frac{b^4}{c} + \frac{c^4}{a} (3)$$

Áp dụng trực tiếp BĐT *Cauchy* cho 5 số dương ta có:

$$4\frac{a^{5}}{b^{2}} + b^{3} \ge 5\frac{a^{4}}{b} ; 4\frac{b^{5}}{c^{2}} + c^{3} \ge 5\frac{b^{4}}{c} ;$$
$$4\frac{c^{5}}{a^{2}} + a^{3} \ge 5\frac{c^{4}}{a} ;$$

Carlo Tablesia Tale

Cộng vế với vế các BĐT trên ta được:

$$4(\frac{a^{5}}{b^{2}} + \frac{b^{5}}{c^{2}} + \frac{c^{5}}{a^{2}}) + a^{3} + b^{3} + c^{3} \ge$$

$$\ge 5(\frac{a^{4}}{b} + \frac{b^{4}}{c} + \frac{c^{4}}{a})$$
Mà theo (I) với $m = 4$, $n = 1$ thì
$$\frac{a^{4}}{b} + \frac{b^{4}}{c} + \frac{c^{4}}{a} \ge a^{3} + b^{3} + c^{3} \quad \text{nên ta có}$$
ngay (3).

Bằng cách chứng minh hoàn toàn tương tự ví dụ trên ta có cách giải bài toán sau:

 $V\acute{o}i \ a, b, c \in R_+^*, m, n, k \in N^*, m \ge n \ge k \ thi \ ta \ c\acute{o}:$

$$\frac{a^{m}}{b^{n}} + \frac{b^{m}}{c^{n}} + \frac{c^{m}}{a^{n}} \ge \frac{a^{m-k}}{b^{n-k}} + \frac{b^{m-k}}{c^{n-k}} + \frac{c^{m-k}}{a^{n-k}} \ge$$

$$\ge a^{m-n} + b^{m-n} + c^{m-n} \text{ (II)}$$
Hay $M \ge N \ge P$.

Lòi giải. Áp dụng BĐT Cauchy cho m số dương ta có:

$$(m-k)\frac{a^{m}}{b^{n}} + kb^{m-n} \ge m\frac{a^{m-k}}{b^{n-k}};$$

$$(m-k)\frac{b^{m}}{c^{n}} + kc^{m-n} \ge m\frac{b^{m-k}}{c^{n-k}};$$

$$(m-k)\frac{c^{m}}{c^{n}} + ka^{m-n} \ge m\frac{a^{m-k}}{a^{n-k}}$$

Cộng theo từng vế các BĐT trên ta có:

$$(m-k)M + kP \ge mN$$

Nhưng theo (I) thì $N \ge P \Leftrightarrow kN \ge kP$, từ đó ta có được (II).

Tiếp theo ta kéo dài chuỗi BĐT ra với bài toán sau:

Với mọi
$$a,b,c \in \Re^*_+; m,n \in N^*$$
 ta có:

$$a^{m+n} + b^{m+n} + c^{m+n} \ge a^m b^n + b^m c^n + c^m a^n$$

Chứng minh thật dễ dàng, chỉ cần áp dụng BĐT cho (m + n) số dương:

$$ma^{m+n} + nb^{m+n} \ge (m+n)a^mb^n;$$

 $mb^{m+n} + nc^{m+n} \ge (m+n)b^mc^n;$
 $mc^{m+n} + na^{m+n} \ge (m+n)c^ma^n$

Cộng tất cả lại ta được ngay (III). Như vậy tổng kết lại ta có chuỗi BĐT sau:

$$a,b,c \in R_{+}^{*}; m,n,k,r \in N^{*}; m \ge n \ge k; m-n \ge r$$
:

$$A \ge B \ge C \ge D$$

Trong đó

$$B = \frac{a^{m-k}}{b^{n-k}} + \frac{b^{m-k}}{c^{n-k}} + \frac{c^{m-k}}{a^{n-k}},$$

$$C = a^{m-n} + b^{m-n} + c^{m-n}$$

$$D = a^{m-n-r}b^{r} + b^{m-n-r}c^{r} + c^{m-n-r}a^{r}$$

Vậy là sau một số nhận xét về các bài toán quen thuộc và áp dụng BĐT *Cauchy* đúng cách, chúng ta đã có thể giải một loạt các bài toán phổ biến mà không gặp quá nhiều khó khăn. Chiếc chìa khóa ở đây chính là sự kết hợp hệ số đúng cách trong BĐT *Cauchy*. Khi dùng chìa khóa này bạn có thể mở thêm nhiều cánh cửa khác mà chúng ta chưa thể "tham quan" hết trong bài viết này.

Cuối cùng, xin chúc các bạn học giỏi và thành công trong cuộc sống!

(III)

Một số khái niệm về GÓC ĐỊNH HƯỚNG

TRẦN QUANG THỌ CHUYÊN TOÁN K01 - 04 Sv. Lớp Kinh tế quản lý công, ĐH Kinh Tế Quốc Dân Hà Nội

Góc định hướng làmột khái niệm rất mơ hồ, phức tạp nhưng đó cũng là một công cụ mạnh trong hình học phẳng. Tôi xin giới thiệu một số vấn đề liên quan đến khái niệm này.

I. Góc định hướng giữa hai vecto.

1. Định nghĩa.

Cho hai vecto \overrightarrow{AB} , \overrightarrow{CD} khác $\overrightarrow{0}$. Mỗi một sự quay xung quanh điểm A, theo một hướng xác định của \overrightarrow{AB} sao cho vecto mới nhận được cùng hướng với \overrightarrow{CD} , được gọi là góc định hướng giữa haivecto \overrightarrow{AB} , \overrightarrow{CD} .

2. Một số quy ước.

Trên một mặt phẳng, hướng ngược với hướng quay của kim đồng hồ định hướng gọi là hướng dương. Hướng trùng với hướng quay của kim đồng hồ định hướng gọi là hướng âm.

Như vậy, góc giữa hai vectơ được gọi là dương/âm nếu sự quay sinh ra nó là sự quay theo hướng dương/âm.

II. Cách đo góc định hướng giữa hai vectơ.

1. Đinh nghĩa.

Số đo theo rađian/độ của góc định hướng giữa hai vectơ chính là số đo theo rađian/độ của cung định hướng mà nó sinh ra.

Hai góc định hướng giữa hai vectơ được gọi là bằng nhau nếu số đo của chúng bằng nhau.

2. Các công thức cơ bản.

Nhờ định nghĩa góc định hướng giữa hai vectơ và số đo góc của nó ta, có công thức:

$$(1.1)$$
 $(\overrightarrow{AB}, \overrightarrow{CD}) \equiv \alpha \pmod{2\pi}$

Trong đó α là số đo theo rađian của một trong các góc $(\overrightarrow{AB}, \overrightarrow{CD})$.

$$(1.2) \overrightarrow{AB} \uparrow \uparrow \overrightarrow{CD} \Leftrightarrow \left(\overrightarrow{AB}, \overrightarrow{CD} \right) \equiv 0 \pmod{2\pi}$$

$$(1.3)(\overrightarrow{AB}, \overrightarrow{CD}) \equiv -(\overrightarrow{CD}, \overrightarrow{AB}) \pmod{2\pi}$$

$$(1.4)(\overrightarrow{AB}, \overrightarrow{CD}) \equiv \pi + (-\overrightarrow{AB}, \overrightarrow{CD}) \pmod{2\pi}$$
$$\equiv \pi + (\overrightarrow{AB}, -\overrightarrow{CD}) \pmod{2\pi}$$

$$(1.5)(\overrightarrow{AB},\overrightarrow{CD}) \equiv (-\overrightarrow{AB},-\overrightarrow{CD}) \pmod{2\pi}$$

3. Hê thức Saclo.

$$(\overrightarrow{AB}, \overrightarrow{CD}) \equiv (\overrightarrow{AB}, \overrightarrow{EF}) + (\overrightarrow{EF}, \overrightarrow{CD}) \pmod{2\pi}$$

Hê quả.

$$(\overrightarrow{AB}, \overrightarrow{CD}) \equiv (\overrightarrow{EF}, \overrightarrow{CD}) - (\overrightarrow{EF}, \overrightarrow{AB}) + (\text{mod } 2\pi)$$

CIP TSUMBLEVO NE

III. Cung định hướng.

1. Đinh nghĩa.

Khi vectơ \overrightarrow{AB} quay quanh điểm A theo một hướng xác định để sinh ra góc $\left(\overrightarrow{AB},\overrightarrow{CD}\right)$ thì điểm B thực hiện một chuyển động, quỹ đạo chuyển động đó được gọi là một cung định hướng.

Cung định hướng được gọi là dương/âm nếu góc định hướng sinh ra nó là góc dương/âm.

2. Cách đo cung định hướng.

Nếu cung định hướng là dương thì tỉ số giữa độ dài của nó và độ dài của vecto sinh ra nó được coi là số đo của cung định hướng đó tính theo rađian.

Hai cung định hướng được gọi là bằng nhau nếu số đo của chúng bằng nhau.

3. Các công thức cơ bản.

Theo định nghĩa cung định hướng và số đo của nó, ta có ngay các công thức cơ bản sau, đúng với các cung định hướng trong cùng một đường tròn.

Ký hiệu sở $BB' \equiv \alpha \pmod{2\pi}$ (2.1) là số đo cung BB', trong đó α là số đo theo rađian của một trong các cung định hướng BB'.

- (2.2) B trùng B' \Leftrightarrow sđ $BB' \equiv 0 \pmod{2\pi}$
- $(2.3) \operatorname{sd} BB' \operatorname{sd} BB' \pmod{2\pi}$

4. Hê thức Saclo.

Theo định nghĩa cung định hướng và số đo của nó ta có hệ thức sau:

 $sdAB \equiv sdAC + sdCB \pmod{2\pi}$

Hệ quả. Cho ba điểm *A*, *B*, C cùng thuộc một đường tròn ta thì ta có hệ thức sau:

 $sd AB \equiv sdCB - sdCA \pmod{2\pi}$

IV. Góc định hướng giữa hai đường thẳng. 1. Định nghĩa.

Cho hai đường thẳng AB, CD và O là một điểm bất kì trên đường thẳng AB. Mỗi sự quay quanh điểm O theo một hướng xác định của vecto \overrightarrow{AB} sao cho sau khi quay, vecto mới nhận được cùng hướng hoặc ngược

hướng với vectơ CD, được gọi là một góc đinh hướng giữa hai đường thẳng AB và CD.

Góc định hướng giữa hai đường thẳng được là góc dương/âm nếu góc giữa hai vectơ sinh ra nó dương/âm.

2. Số đo góc định hướng giữa hai đường thẳng.

a. Đinh nghĩa.

Số đo tính theo rađian/độ của góc định hướng giữa hai đường thẳng chính là số đo góc tính theo rađian/độ của góc định hướng giữa hai vectơ sinh ra nó.

Hai góc định hướng giữa hai đường thẳng được gọi là bằng nhau nếu số đo của chúng bằng nhau.

b. Các công thức cơ bản.

Từ địnhnghĩa và số đo góc định hướng giữa hai đường thẳng ta có:

$$(3.1)$$
 $(AB, CD) \equiv \alpha \pmod{2\pi}$

Trong đóα là số đo theo rađian/độ của một trong các góc định hướng (AB,CD).

$$(3.2) (AB, CD) \equiv (\overrightarrow{AB}, \overrightarrow{CD}) \pmod{2\pi}$$

$$Ho\check{a}c(AB,CD) \equiv (-\overrightarrow{AB},\overrightarrow{CD}) \pmod{2\pi}$$

$$Ho\check{a}c\ (AB,CD) \equiv \left(\overrightarrow{AB},-\overrightarrow{CD}\right) \pmod{2\pi}$$

$$(3.3) (AB, CD) \equiv (\overrightarrow{AB}, \overrightarrow{CD}) \pmod{\pi}$$

(3.4) AB song song hoặc trùng với CD \Leftrightarrow (AB,CD) \equiv 0 (mod Π)

$$(3.5) (AB, CD) \equiv -(CD, AB) \pmod{\pi}$$

c. Hê thức saclo.

$(AB,CD) \equiv (AB,EF) + (EF,CD) \pmod{\Pi}$

Chứng minh. Theo (3.3), ta có:

$$(AB, CD) \equiv (\overrightarrow{AB}, \overrightarrow{CD}) \pmod{\pi}$$

Cũng theo (3.3) ta có:

$$(AB, EF) \equiv (\overrightarrow{AB}, \overrightarrow{EF}) \pmod{\pi}$$

$$(EF, CD) \equiv (\overrightarrow{EF}, \overrightarrow{CD}) \pmod{\pi}$$

$$\Rightarrow$$
 $(AB, EF) + (EF, CD) \equiv$

$$\equiv (\overrightarrow{AB}, \overrightarrow{EF}) + (\overrightarrow{EF}, \overrightarrow{CD}) \pmod{\pi}$$

$$\Rightarrow (AB, EF) + (EF, CD) \equiv$$

$$\equiv (\overrightarrow{AB}, \overrightarrow{EF}) + (\overrightarrow{EF}, \overrightarrow{CD}) \pmod{2\pi}$$

$$\equiv (\overrightarrow{AB}, \overrightarrow{CD}) \pmod{2\pi}$$

Mà
$$(AB, CD) \equiv (\overrightarrow{AB}, \overrightarrow{CD}) \pmod{\pi}$$

$$\Rightarrow$$
 $(AB, EF) + (EF, CD) \equiv$

 $(AB, CD) \pmod{\pi}$

 $H\hat{e}qu\hat{a}$. $(AB,CD) \equiv (EF,CD) - (EF,AB) \pmod{\Pi}$

VI. Các định lý.

1. Định lý 1.

Cho ΔABC và ΔA'B'C' khi đó các điều kiên sau tương đương:

a. △ABC và △A'B'C' bằng nhau và cùng hướng

b.
$$AB = A'B'$$

 $AC = A'C'$
 $(\overrightarrow{AB}, \overrightarrow{AC}) \equiv (\overrightarrow{A'B'}, \overrightarrow{A'C'}) \pmod{2\pi}$

c.
$$BC = B'C'$$

 $(\overrightarrow{BA}, \overrightarrow{BC}) \equiv (\overrightarrow{B'A'}, \overrightarrow{B'C'}) \pmod{2\pi}$
 $(\overrightarrow{CA}, \overrightarrow{CB}) \equiv (\overrightarrow{C'A'}, \overrightarrow{C'B'}) \pmod{2\pi}$

d.
$$BC = B'C'$$

 $(BA,BC) \equiv (B'A',B'C') \pmod{\Pi}$
 $(CA,CB) \equiv (C'A',C'B') \pmod{\Pi}$

2. Định lý 2.

Cho ABC và A'B'C', các điều kiện sau tương đương:

a. $\triangle ABC$ và $\triangle A'B'C'$ đồng dạng, cùng hướng.

b.
$$\frac{AB}{AC} = \frac{A'B'}{A'C'}$$
$$(\overrightarrow{AB}, \overrightarrow{AC}) \equiv (\overrightarrow{A'B'}, \overrightarrow{A'C'}) \pmod{2\pi}$$

c.
$$(\overrightarrow{BA}, \overrightarrow{BC}) \equiv (\overrightarrow{B'A'}, \overrightarrow{B'C'}) \pmod{2\pi}$$

 $(\overrightarrow{CA}, \overrightarrow{CB}) \equiv (\overrightarrow{C'A'}, \overrightarrow{C'B'}) \pmod{2\pi}$

d.
$$(\overrightarrow{BA}, \overrightarrow{BC}) \equiv (\overrightarrow{B'A'}, \overrightarrow{B'C'}) \pmod{2\pi}$$

 $(\overrightarrow{CA}, \overrightarrow{CB}) \equiv (\overrightarrow{C'A'}, \overrightarrow{C'B'}) \pmod{2\pi}$

e.
$$(BC,B'C') \equiv (CA,C'A')$$

 $\equiv (AB,A'B') \pmod{2\pi}$

3. Địnhlý 3.

a.

$$\begin{cases} a // a' \\ b // b' \end{cases} \Rightarrow (a,b) \equiv (a',b') \pmod{2\pi}$$

b.

$$\begin{cases} a \perp a' \\ b \perp b' \end{cases} \Rightarrow (a,b) \equiv (a',b') \pmod{\pi}$$

4. Định lý 4.

Cho bốn điểm A, B, C, D nằm trên đường tròn (O). Khi đó

$$2(\overrightarrow{AB}, \overrightarrow{CD}) = 2(\overrightarrow{AB}, \overrightarrow{DC}) = 2(AB, CD)$$

$$\equiv sdAB + sdCD \equiv sdAD + sdBC \pmod{2\pi}$$

5. Đinh lý 5.

Cho đường tròn (O) và các điểm A, B, M nằm trên (O) . Ta có:

a.
$$2(\overrightarrow{MA}, \overrightarrow{MB}) \equiv (\overrightarrow{OA}, \overrightarrow{OB}) \pmod{2\pi}$$

b.
$$2(MA,MB) \equiv (OA,OB) \pmod{\Pi}$$

6. Đinh lý 6.

Qua phép quay tâm O, góc quay α các điểm A, B biến thành các điểm A', B'. Khi đó:

$$(\overrightarrow{AB}, \overrightarrow{A'B'}) \equiv \alpha \pmod{2\pi}$$

$(AB, A'B') \equiv \alpha \pmod{\pi}$

7. Đinh lý 7.

Qua phép biến hình f, các điểm A, B, C, D lần lượt biến thành A',B',C',D'. Khi đó:

a. Nếu f là một trong các phép biến hình sau đây: Tịnh tiến, đối xứng tâm, quay, vị tự, thì

$$(\overrightarrow{AB}, \overrightarrow{CD}) \equiv (\overrightarrow{A'B'}, \overrightarrow{C'D'}) \pmod{2\pi}$$

b. Néu f là phép đối xứng trục thì:
$$\left(\overline{AB}, \overline{CD}\right) \equiv \left(\overline{C'D'}, \overline{A'B'}\right) (\text{mod } 2\pi)$$

$$(AB,CD) \equiv (C'D',A'B') \pmod{\pi}$$

8. Định lý 8.

Cho tam giác ABC, các điều kiện sau là tương đương:

$$b.\left(\overrightarrow{BA},\overrightarrow{BC}\right) \equiv \left(\overrightarrow{CA},\overrightarrow{CB}\right) \pmod{2\pi}$$

c.
$$(BA,BC) \equiv (CB,CA) \pmod{\Pi}$$

VI. Một số bài tập áp dụng.

Bài số 1. Cho tam giác ABC đều, M thuộc đường tròn ngoại tiếp tam giác ABC. MA, MB, MC cắt các đường thẳng BC, CA, AB tại A_1 , B_1 , C_1 . Chứng minh rằng tồn tại duy nhất một đường thẳng tiếp xúc với các đường tròn đường kính MA_1 , MB_1 , MC_1 .

Lời giải. Các bạn tự vẽ hình.

Ta có :
$$(MC_1, C_0C_1) \equiv (MC,BA)$$
.
 $M\grave{a} (MC,BA) \equiv (MC,MB) + (MB,BC) +$

 $+ (BC,BA)(mod\Pi)$

 $\equiv (MB,BC)(mod\Pi)$

 $\equiv (MB,BC)(mod\Pi)$

 $\equiv (MC_0, C_0 A_0) (mod \Pi)$

 $\Rightarrow C_0 A_0$ là tiếp tuyến của đường tròn $(MC_1 C_0)$

Và C_0A_0 là tiếp tuyến của đường tròn (MA_1A_0)

Và C_0B_0 là tiếp tuyến của đường tròn $(MB_1B_0) \Rightarrow$ đpcm.

- 2. Bài tập 2. Các chất điểm A, B lần lượt chuyển động đồng thời trên các đường tròn tâm O_1 và O_2 với vận tốc góc như nhau (theo cùng một hướng). Chứng minh rằng đỉnh C của tam giác đều ABC cũng chuyển động đồng thời trên một đường tròn nào đó.
- 3. Bài tập 3. Cho tam giác ABC, hai đường thẳng đối xứng với AB và BC qua cạnh AC cắt nhau tại K. Chứng minh rằng đường thẳng BK đi qua tâm đường tròn nội tiếp tam giác ABC.

"Những phát minh của tôi được bắt nguồn từ đâu ư? Hồi tôi còn đi học, các bạn của tôi luôn hiểu rất nhanh còn tôi thì không được như vậy. Vì vậy khi học vấn đề nào thì tôi cũng phải học tập nhiều hơn và suy nghĩ lâu hơn các bạn, thậm chí nhiều vấn đề về sau này tôi mới hiểu. Bởi lý do đó cho nên các vấn đề tôi thường hiểu sâu hơn so với các bạn. Chỉ có vậy thôi"

Albert Einstein –

Ciêu Chuẩn Hội Cụ TỐNG QUÁT

BÙI LÊ VŨ CHUYÊN TOÁN K01-04 Sv. Lớp 04TT, Khoa Toán Tin, ĐHKHTN, ĐHQG TP Hồ Chí Minh

> NGUYỄN THÁI NGỌC CHUYÊN TOÁN K99-02 Sv. Lớp ĐT8 – K48 Khoa Điện tử Viễn thông ĐH Bách Khoa Hà Nôi

Chúng ta đã tiếp xúc với rất nhiều phương pháp, tiêu chuẩn tìm giới hạn dãy số. Bài viết này tôi xin được giới thiệu một tiêu chuẩn hội tụ tổng quát.

Tiêu chuẩn hội tụ tổng quát:

Giả sử với mỗi số thực n thuộc tập hợp các số tự nhiên N, c_{1n} ,..., c_{nn} là các số thực sao cho:

(i)
$$\lim_{n\to\infty} c_{in} = 0$$
 với mọi i.

(ii)
$$c_n = \sum_{i=1}^n c_{in} \rightarrow c$$

(iii)
$$k_n = \sum_{i=1}^n |c_{in}|$$
 là dãy bị chặn

(nếu c_{ij} không âm thì không cần điều kiện này)

$$\lim_{n\to\infty} x_n = x$$

Khi đó ta có:
$$\lim_{n\to\infty}\sum_{i=1}^n x_i c_{in} = xc.$$

Chứng minh. Do $k_n = \sum_{i=1}^n |c_{in}|$ là dãy bị chặn, giả sử $\{k_n\}$ bị chặn bởi k. Ta có: với mọi ε

> 0, do $\lim_{n \to \infty} x_n = x$ nên tồn tại số tự nhiên N sao cho:

$$\left|x_i - x\right| < \frac{\mathcal{E}}{2k} \text{ với mọi } i,j \geq N.$$

$$M = Sup\{|x_i - x|, i \in N\}$$
. Ta có:

$$\left| \sum_{i=1}^{n} (x_i - x) c_{in} \right| \le \left| \sum_{i=1}^{N} (x_i - x) c_{in} \right| +$$

$$\left| \sum_{i=N+1}^{n} (x_i - x) c_{in} \right| \le \sum_{i=1}^{N} |x_i - x| |c_{in}|$$

$$+\sum_{i=N+1}^{n} \left| x_i - x \right| \left| c_{in} \right| \leq NM. \left| c_{in} \right| + \frac{\varepsilon}{2k}.$$

$$\Rightarrow \sum_{i=N+1}^{n} |c_{in}| < NM.|c_{in}| + \frac{\varepsilon}{2}$$
, với mọi $n \ge N$.

Do $\lim_{n\to\infty} c_{in} = 0$ nên luôn tồn tại $N_0 > N$

sao cho:
$$|c_{in}| < \frac{\mathcal{E}}{2NM}$$
, với mọi $n \ge N_0$

Như vậy, với mọi $\varepsilon > 0$, tồn tại N_0 sao cho với mọi $n \ge N_0$ ta có $\left| \sum_{i=1}^n (x_i - x) c_{in} \right| < \varepsilon$.

Suy ra
$$\lim_{n \to \infty} \sum_{i=1}^{n} (x_i - x) c_{in} = 0$$

$$\Rightarrow \lim_{n \to \infty} \sum_{i=1}^{n} x_i c_{in} = \lim_{n \to \infty} \sum_{i=1}^{n} x c_{in} = xc \text{ (dpcm)}$$

Một cách chủ động, ta khai thác tiêu chuẩn hội tu tổng quát.

Xét dãy
$$c_{in} = \frac{1}{n}$$
, n = 1, 2, ..., ta có $\lim_{n \to \infty} c_{in}$

=0, với mọi
$$i$$
, và $c_n = \sum_{i=1}^n c_{in} = 1$. Ta thu được:

Kết quả 1.

"Cho dãy số thực $\{a_n\}$ hội tụ về a. Với mọi n, ta đặt $b_n = n^{-1} \cdot \sum_{i=1}^n a_i$ Khi đó dãy $\{b_n\}$ cũng hôi tu về a"

Xét dãy
$$c_{in}=\frac{2^{i}}{2^{n+1}}$$
, ta có $\lim_{n\to\infty}c_{in}=0$ với mọi i và $c_{n}=\sum_{i=1}^{n}c_{in}=1-\frac{1}{2^{n}}$. Do đó $\lim_{n\to\infty}c_{n}=1$. Ta thu được:

Kết quả 2:

"Cho dãy số thực $\{a_n\}$ hội tụ về a. Với mọi n, ta đặt $b_n = n^{-1} \cdot \sum_{i=1}^n 2^i a_i$ Khi đó dãy $\{b_n\}$ cũng hội tụ về a"

Xét dãy $c_{in} = \frac{2i}{n(n+1)}$, ta có $\lim_{n \to \infty} c_{in} = 0$ với mọi i và $c_n = \sum_{i=1}^n c_{in} = 1$. Ta thu được:

Kết quả 3:

"Cho dãy số thực $\{a_n\}$ hội tụ về a. Với mọi n, ta đặt $b_n = n^{-1} \frac{2}{n(n+1)} \cdot \sum_{i=1}^n a_i$ Khi đó dãy $\{b_n\}$ cũng hội tụ về a" 2^{n-i}

Xét dãy
$$c_{in} = \frac{2^{n-i}}{(n-i)!}$$
.

Dễ thấy $\lim_{n\to\infty} c_{in} = 0$. Lại có:

$$\sum_{i=1}^{n} \frac{2^{n-i}}{(n-i)!} = \frac{2^{n-1}}{(n-1)!} + \frac{2^{n-2}}{(n-2)!} + \dots + 1 \to e^{2}.$$

Vậy ta thu được kết quả:

Kết quả 4:

"Cho dãy số thực $\{x_n\}$ trong đó $\lim_{x\to\infty} x_n = x . \text{ Khi dố } y_n = \sum_{i=1}^n \frac{2^{n-i}}{(n-i)!} x_i \text{ cũng}$ hôi tư và hội tự về $e^2 x$ "

Sau khi dùng phương pháp định nghĩa và thu được 4 kết quả trên, tôi đã rút ra được một kết quả mở rộng.

Kết quả 5:

Cho cácdãy số thực $\{a_n\}$, $\{b_n\}$, $\{v_n\}$, $\{u_n\}$ thỏa mãn các điều kiện sau:

- $(i) \lim_{n\to\infty} a_n = a$
- (ii) $\lim_{n\to\infty} v_n = \infty$, $v_n \neq 0$ với mọi n.

(iii)
$$\lim_{n\to\infty} v_n^{-1} \sum_{i=1}^n u_i = 1$$
, $\sum_{i=1}^n |u_i| v_n^{-1}$ bị chặn.

(iv)
$$b_n = v_n^{-1} \sum_{i=1}^n u_i a_i$$

Khi đó, ta có
$$\lim_{n\to\infty} b_n = a$$

Chứng minh. Đặt $c_{in} = v_n^{-1} u_i$. Do (ii) nên $\lim_{n \to \infty} c_{in} = 0$. Cũng theo giả thiết, ta có:

$$c_n = \sum_{i=1}^n c_{in} = v_n^{-1} \sum_{i=1}^n u_i$$
, do đó $\lim_{n \to \infty} c_n = 1$. Hơn

nữa
$$k_n = \sum_{i=1}^n |c_{in}| = \sum_{i=1}^n |u_i| v_n^{-1}$$
 là dãy bị chặn.

Vậy, điều kiện của tiêu chuẩn hội tụ tổng quát đã thỏa mãn và ta sẽ có $\lim_{n\to\infty}b_n=$

$$\lim_{n\to\infty}\sum_{i=1}^n a_i c_{in} = a.$$

Bây giờ chúng ta sẽ xem xét tiêu chuẩn nói trên tổng quát như thế nào nhé!

Tiêu chuân Stolz: Tiêu chuẩn này thường được phát biểu dưới hai dạng tương đương như sau: (các bạn hãy tự chứng minh sự tương đương này xem như bài tập). *Dạng 1:*

Giả sử $\{x_n\}$ và $\{y_n\}$ là hai dãy số thực sao cho:

(i) $\{y_n\}$ là dãy tăng và $\lim_{n\to\infty} y_n = \infty$

(ii)
$$\lim_{n\to\infty} \frac{x_n - x_{n-1}}{y_n - y_{n-1}} = L$$

Khi đó
$$\lim_{n\to\infty} \frac{x_n}{y_n} = L$$
.

Dang 2:

Giả sử $\{U_n\}$ và $\{V_n\}$ là hai dãy số thực sao cho:

(i) $V_n > 0$ với mọi n và $\lim_{n \to \infty} \sum_{i=1}^n V_i = +\infty$

(ii)
$$\lim_{n\to\infty} \frac{U_n}{V_n} = t$$
.

Khi đó,
$$\lim_{n\to\infty} \frac{U_1 + U_2 + ... + U_n}{V_1 + V_2 + ... + V_n} = t$$
.

Chứng minh:

Đặt
$$x_n = \frac{U_n}{V_n}$$
, $c_{in} = \frac{V_i}{V_1 + ... + V_n}$, $i = 1, 2, ..., n$.

Ta có
$$\lim_{n\to\infty} x_n = t$$
 và $c_n = \sum_{i=1}^n c_{in} = 1$,

$$\lim_{n\to\infty} c_n = 0$$

Theo tiêu chuẩn hội tụ tổng quát, ta có:

$$\lim_{n\to\infty}\sum_{i=1}^n x_i c_{in} = xc \text{ hay là:}$$

$$\lim_{n \to \infty} \frac{U_1 + U_2 + ... + U_n}{V_1 + V_2 + ... + V_n} = 1$$

Tiêu chuẩn trung bình Cesaro.

Cho các dãy số thực $\{a_n\}$, $\{b_n\}$, $\{v_n\}$ thỏa mãn các điều kiện:

(i)
$$\lim_{n\to\infty} a_n = a$$
, $\lim_{n\to\infty} b_n = b$, $b_n > 0$ với mọi n .

$$(ii) v_n = \frac{b_n a_1 + ... + b_1 a_n}{n} \ v \acute{o}i \ m \acute{o}i \ n.$$

Khi đó
$$\lim v_n = ab$$
.

Chứng minh.

Đặt
$$c_{in} = \frac{b_{n+1-i}}{n}$$
, suy ra $\lim_{n\to\infty} c_{in} = 0$.

Hơn nữa, $c_n = \sum_{i=1}^n c_{in} = \frac{\sum_{i=1}^n b_i}{n}$ nên theo kết

quả 1, ta có $\lim_{n\to\infty} c_n = b$. Theo tiêu chuẩn hội tụ tổng quát, ta có

$$\lim_{n\to\infty} v_n = \lim_{n\to\infty} \sum_{i=1}^n a_i c_{in} = ab.$$

Chúng ta thấy đấy, chỉ cần linh hoạt trong cách chọn dãy $\{c_{in}\}$ là chúng ta có thể

sáng tạo ra được rất nhiều bài toán. Sau đây mời các bạn làm một số bài toán tương tự coi như bài tập trước khi kết thúc bài viết này:

Bài tập 1:

Cho dãy số $\left\{x_n\right\}$ có giới hạn $\lim_{n\to\infty}x_n=x$ và các số thực $\alpha\neq\frac{1}{2};a,b>0$. Đặt :

$$y_n = \sum_{i=1}^n \frac{\left(i^2 + ai + b\right)^{\alpha}}{n^{2\alpha} + 1} x_i$$
. Tìm giới hạn dãy số $\{y_n\}$ khi $n \to \infty$

Bài tập 2:

Dãy số $\{x_n\}$ có giới hạn $\lim_{n\to\infty} x_n = x$.

Tìm giới hạn của các tổng sau:

a)
$$\sum_{i=1}^{n} \frac{n+i^2}{n^3+i^3} x_i$$
 khi $n \to \infty$.

b)
$$\sum_{i=1}^{n} \frac{i^{i-1}}{n^{i}} x_{i}$$
 khi $n \to \infty$.

Bài tâp 3:

Cho $u_0, u_1, \alpha \in R$. Và dãy $\{u_n\}$ thoả mãn:

$$u_{n+1} = \frac{1}{n+1} \sum_{i=0}^{n} u_i$$
. Tîm $\lim_{n \to \infty} \sum_{i=0}^{n} \frac{u_i^{\alpha}}{n+1}$.

Ứng Dụng Định lý Stolz

trong Tim Giới Hạn của Dãy Số

NGÔ NHẤT SƠN CHUYÊN TOÁN K01-04

Sv. K49 Khoa Điện tử viễn thông, ĐH Bách Khoa Hà Nôi

pịnh lý *Stolz* tỏ ra rất có hiệu quả trong việc tìm giới hạn của dãy số. Bài viết này xin giới thiệu một số ví dụ thể hiện ứng dụng trực tiếp của định lý này đối với việc tìm giới hạn của dãy số.

I. Định lý Stolz.

 \dot{C} ho hai dãy số thực (a_n) và (b_n) thỏa mãn:

$$i) b_1 < b_2 < \dots < b_n$$

$$ii) \lim_{n \to +\infty} b_n = \infty$$

$$iii) \lim_{n \to +\infty} \frac{a_{n+1} - a_n}{b_{n+1} - b_n} = k$$

Khi đó ta cũng có $\lim_{n\to+\infty} \frac{a_n}{b_n} = k$

II. Một số bài toán.

1. Bài toán 1. Cho dãy số thực dương (a_n) thỏa mãn :

$$a_{n+1}^2 = a_1 + a_2 + \dots + a_n, \forall n \ge 1$$

Chứng minh rằng: $\lim \frac{a_n}{b_n} = \frac{1}{2}$.

Lòi giải. Dễ thấy dãy (a_n) tăng và $a_{n+1}^2 = a_n^2 + a_n, \forall n \ge 1$, nên $\lim_{n \to +\infty} a_n = +\infty$

Măt khác:

$$a_{n+1} - a_n = \sqrt{a_n(a_n + 1)} - a_n$$

$$\Rightarrow (a_{n+1} - a_n) \left(\sqrt{a_n(a_n + 1)} + a_n \right) =$$

$$= a_n(a_n + 1) - a_n^2$$

$$a_{n+1} - a_n = \frac{a_n}{\sqrt{a_n(a_n+1)} + a_n} = \frac{1}{\sqrt{1 + \frac{1}{a_n} + 1}}.$$

Xét dãy: $b_n = n$, ta thấy dãy (b_n) tăng và

$$\lim_{n \to \infty} \frac{a_{n+1} - a_n}{b_{n+1} - b_n} = \lim_{n \to \infty} \frac{1}{\sqrt{1 + \frac{1}{a_n} + 1}} = \frac{1}{2}.$$

Theo định lý Stolz, suy ra đpcm.

2. Bài toán **2.** Cho dãy số dương (x_n) thỏa mãn $x_{n+1} = x_n + \frac{1}{x_n}, \forall n \ge 1$

Chứng minh rằng
$$\lim_{n\to+\infty} \frac{x_n}{\sqrt{2n}} = 1$$

Lời giải. Từ giả thiết, ta có:

$$x_{n+1}^2 = x_n^2 + \frac{1}{x_n^2} + 2, \forall n \ge 1$$

Đặt $a_{n+1} = x_{n+1}^2$, $b_n = 2n$. Khi đó (a_n) ,

 (b_n) tăng và $b_n \to +\infty$ và $x_n \to +\infty$.

Ta lai có:

$$\lim_{n \to +\infty} \frac{a_{n+1} - a_n}{b_{n+1} - b_n} = \lim_{n \to +\infty} \frac{x_{n+1}^2 - x_n^2}{2} =$$

$$= \lim_{n \to +\infty} \frac{2 + \frac{1}{x_n^2}}{2} = 1$$

Theo định lý Stolz suy ra:

$$\lim_{n \to +\infty} \frac{a_n}{b_n} = 1 \Rightarrow \lim_{n \to +\infty} \frac{x_n^2}{2n} = 1.$$

3. Bài toán 3. Cho dãy (x_n) xác định như sau:

i)
$$0 < x_0 < 1$$

$$ii) x_{n+1} = x_n (1-x_n)$$

Chứng minh rằng:

a)
$$\lim_{n \to \infty} nx_n = 1$$
.

b)
$$\lim_{n \to +\infty} \frac{n(1 - nx_n)}{\ln n} = 1$$

Lời giải.

a) Ta có:
$$x_{n+1} = x_n(1-x_n) \text{ và } 0 < x_0 < 1 \text{ nên}$$

$$x_n \neq 0, \Rightarrow \frac{1}{x_{n+1}} - \frac{1}{x_n} = \frac{1}{1 - x_n}, \forall n \geq 0$$

Đặt
$$a_n = n$$
, $b_n = \frac{1}{x_n}$

Dễ dàng chứng minh được (x_n) giảm và $\rightarrow 0$ nên $b_n \rightarrow +\infty$. Vậy, theo định lý Stolz,

ta có
$$\lim_{n\to+\infty} nx_n = \lim_{n\to+\infty} \frac{a_n}{b_n} = 1.$$

b) Ta có:

$$\lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n = e \implies \lim_{n \to +\infty} \ln\left(1 + \frac{1}{n}\right)^n = 1$$

Theo kết quả phần a) ta có:

$$\lim_{n \to +\infty} \frac{nx_n}{1 - x_n} = 1 \Rightarrow \lim_{n \to +\infty} \frac{\frac{x_n}{1 - x_n}}{\ln\left(1 + \frac{1}{n}\right)} = 1$$

$$\Rightarrow \lim_{n \to +\infty} \frac{\frac{1}{x_{n+1}} - \frac{1}{x_n} - 1}{\ln(n+1) - \ln n} = 1$$

$$\Rightarrow \lim_{n \to +\infty} \frac{\frac{1}{x_{n+1}} - (n+1) - \left(\frac{1}{x_n} - n\right)}{\ln(n+1) - \ln n} = 1$$

Đặt
$$a_n = \frac{1}{x_n} - n$$
 và $b_n = \ln n$, ta có ngaydãy

 (b_n) tăng và $b_n \to +\infty$

$$\Rightarrow \lim_{n \to +\infty} \frac{a_n}{b_n} = \lim_{n \to +\infty} \frac{a_{n+1} - a_n}{b_{n+1} - b_n} = 1$$

$$\Rightarrow \lim_{n \to +\infty} \frac{1 - nx_n}{x_n \ln n} = 1 \Rightarrow \lim_{n \to +\infty} \frac{n(1 - nx_n)}{\ln n} = 1$$

Bài toán được giải quyết. Sau đây là một số đề bài để các bạn tự luyện:

Bài tập 1. Cho dãy (U_n) xác định như sau:

$$U_0 > 0$$
, $U_{n+1} = U_n - e^{\frac{-1}{U_n^2}}$, $\forall n \in N$

Chứng minh rằng $\lim_{n\to\infty} U_n^2 \ln n = 1$.

Bài tâp 2. Cho dãy (U_n) xác định như sau:

$$U_0 = 3$$
, $U_{n+1} = U_n^2 - 2$, $\forall n \in N$

Tính
$$\lim_{n\to+\infty} 2^n \sqrt{\prod_{i=1}^{n-1} U_i}$$

Cuối cùng, rất mong qua bài viết này các bạn sẽ có nhiều kinh nghiệm khi giải các bài toán về giới han.

"Nếu như tôi đã phát hiện những chân lý mới mẻ nào đó trong Khoa học thì tôi có thể khẳng định rằng tất cả các chân lý đó đều, hoặc là những hệ quả trực tiếp của năm hay sáu bài toán chủ yếu mà tôi đã giải được, hoặc tùy thuộc vào các bài toán đố và tôi xem chúng như những cuộc chiến đấu trong đó niềm vui thắng lợi thuộc về tôi"

- Decartes -

ÚNG DỤNG CỦA MỘT BÀI TOÁN TỔNG QUÁT

NGUYỄN HÀ THUẬT CHUYÊN TOÁN K01-04

Sv. Lóp Tin 6 – K49, Khoa CNTT, ĐH Bách Khoa Hà Nội

Da thức là một mảng toán hay và khó trong chương trình toán trung học phổ thông. Chính vì thế nó thường được khai thác trong các đề thi Học sinh giỏi trong, ngoài nước và một số khu vực. Để làm tăng thêm vẻ đẹp của mảng toán đa thức, trong phạm vi bài viết này tôi xin trình bày về một bài toán đa thức tổng quát, có nhiều ứng dụng.

I. Bài toán gốc.

Cho P(x),Q(x),H(x) là các đa thức thỏa mãn điều kiên:

- i) P(x), Q(x), H(x) có các hệ số thực.
- ii) $Min\{\deg P(x); \deg Q(x)\} \ge 1$, trong đó ký hiệu deg chỉ bậc của đa thức.

iii)
$$Max\{\deg P(x); \deg Q(x)\} = \deg(P+Q)$$

Khi đó, với mọi số nguyên dương k, tồn tại không quá một đa thức hệ số thực f(x) có bậc k, có hệ số bậc cao nhất bằng l và thỏa mãn đồng nhất thức

$$f(P(x)).f(Q(x)) = f(H(x))$$
 (1).

Chứng minh. Giả sử f(x) là có bậc k thỏa mãn điều kiện đề bài và $\varphi(x)$ là đa thức có bậc bé hơn k. Ta sẽ chứng minh rằng: Nếu đa thức $(f + \varphi)$ thỏa mãn (1) thì đa thức $\varphi(x)$ phải đồng nhất với đa thức không.

Thật vậy, gọi a, b, c lần lượt là hệ số bậc cao nhất của P(x), Q(x) và $\varphi(x)$.

Đặt $\deg H(x) = h$, $\deg P(x) = p \ge 1$ và $\deg Q(x) = q \ge 1$. Khi đó từ $(1) \implies \deg H(x) = \deg P(x) + \deg Q(x)$, hay là h = p + q. Đặt $\deg \varphi(x) = l$ thì $0 \le l \le k - 1$. Vì giả thiết f(x) và $(f + \varphi)(x)$ đều thỏa mãn (1) nên ta có các đồng nhất:

$$\begin{split} &f(P(x)).f(Q(x))=f(H(x))\,\text{và}\\ &\left(f(P)+\varphi(P)\right).\left(f(Q)+\varphi(P)\right)=f(H)+\varphi(H)\\ \text{Từ đây suy ra} \end{split}$$

 $f(P).\varphi(Q) + f(Q).\varphi(P) + \varphi(P).\varphi(Q) = \varphi(H)$ (2). Bây giờ ta so sánh số hạng có bậc cao nhất ở hai vế của (2). Ta thấy:

$$\deg\{f(P).\varphi(Q)\} = kp + lq$$

$$\deg\{f(Q).\varphi(P)\} = kq + lp$$

$$\deg\{\varphi(P).\varphi(Q)\} = lp + lq$$

$$\deg\{\varphi(H)\} = lh = lp + lq$$

Bậc của đa thức vế phải là l(p+q), còn của vế trái là $Max\{kp+lq;kq+lp;l(p+q)\}$. Do đó, nếu $p \neq q$ thì hiển nhiên ta có bậc của vế trái lớn hơn vế phải.

Nếu p=q thì xét hệ số cao nhất hai vế của (2): Dễ thấy hệ số bậc cao nhất của vế phải là $c(ab)^l$ trong khi của vế trái là $c(ab)^l = c(ab)^l (a^{k-l} + b^{k-l})$. Lưu ý là từ điều kiện iii) của giả thiết ta có $a \neq -b$, nên từ trên ta có mâu thuẫn. Dẫn đến $\varphi(x) \equiv 0$ (đpcm).

II. Một số bài toán hệ quả.

Bài 1. Tìm tất cả các đa thức f(x) thỏa mãn $f^2(x) = f(x^2), \forall x \in R(3)$

Lời giải. Nếu deg
$$f(x) < 1$$
. Ta có

$$\int f(x) = 0, \forall x \in R$$
$$f(x) = 1, \forall x \in R$$

Nếu deg $f(x) = n \ge 1$. Ta thấy $f(x) = x^n$ là đa thức thỏa mãn (3). Ta chứng minh f(x) tồn tại duy nhất với mỗi $n \in N^*$. Thật vậy, giả sử tồn tại đa thức $\varphi(x)$ thỏa mãn điều kiện $0 < \deg \varphi(x) = k < n$ và $(f + \varphi)$ thỏa mãn (3). Thay vào (3) ta có:

$$\varphi^{2}(x) + f^{2}(x) + 2\varphi(x)f(x) = \varphi^{2}(x) + f^{2}(x)$$

$$\Rightarrow \varphi^{2}(x) + 2\varphi(x)f(x) = \varphi^{2}(x) \ (\forall x \in R)$$

So sánh bậc hai vế ta thấy bậc của vế trái là n + k lớn hơn bâc của vế phải là 2k

⇒ đpcm. Vậy tất cả các đa thức cần tìm là

$$\begin{cases} f(x) = 0, \forall x \in R \\ f(x) = 1, \forall x \in R \\ f(x) = x^n, \forall x \in R \end{cases}$$

Chú ý. Ngoài cách giải trên, ta có thể giải quyết bài toán theo hướng khác như sau:

Xét khi deg
$$f(x) = n \ge 1$$
. Giả sử $f(x) = a_0 x^n + a_1 x^{n-1} + ... + a_{n-1} x + a_n, (a_0 \ne 0)$

Gọi k là số nguyên dương nhỏ nhất thỏa mãn $a_k \neq 0$

$$\Rightarrow f(x) = a_0 x^n + a_k x^{n-k} + \ldots + a_{n-1} x + a_n. \text{ Thay}$$
 vào (3) suy ra ngay $a_0 = 1$. Mặt khác, so sánh hệ số của x^{2n-k} của hai vế ta có $2a_0 a_k = 0 \Rightarrow a_k = 0$.

Vây
$$a_n = a_{n-1} = ... = a_1 = 0$$

 $\Rightarrow f(x) = a_0 x^n = x^n$.

Bài 2. Tìm tất cả các đa thức f(x) thỏa mãn $f(x).f(2x^2) = f(2x^3 + x), \forall x \in R(4)$ (Đề Dự tuyển Quốc tế 1979)

Lòi giải. Nếu deg f(x) < 1. Ta có

$$\begin{cases} f(x) = 0, \forall x \in R \\ f(x) = 1, \forall x \in R \end{cases}$$

Nếu deg $f(x) = n \ge 1$. Trước hết ta chứng minh f(x) không có nghiệm thực. Thật vậy, giả sử

$$f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n, (a_0 \neq 0)$$

Thay f(x) vào (4) và so sánh hệ số cao nhất, hệ số tự do của hai vế đẳng thức vừa nhận được, ta có:

$$\begin{cases} a_n^2 = a_n \\ a_0^2 \cdot 2^n = a_0 \cdot 2^n \end{cases} \Rightarrow \begin{cases} a_0 = 1 \\ a_n = 0 \cdot a_n = 1 \end{cases}$$

Nếu $a_n = 0$, viết

$$f(x) = x^k . g(x), g(x) \neq \forall x \in R$$

Thay vào (4) ta có

$$x^{k} \cdot (2x^{2})^{k} \cdot g(x) \cdot g(x^{2}) = (2x^{3} + x)^{k} g(2x^{3} + x)$$

, với mọi $x \in R \Rightarrow$

$$(2x^2)^k . g(x) . g(x^2) = (2x^2 + 1)^k g(2x^3 + x),$$

với mọi $x \in R$.

Cho
$$x = 0 \Rightarrow g(0) = 0$$
, vô lý.

Với $a_n = 1$, giả sử x_0 là nghiệm thực (khác 0) của f(x). Từ (4) suy ra dãy số đơn điệu vô hạn sau đây đều là nghiệm của f(x): $x_{k+1} = 2x_k^3 + x_k$ với mọi k = 0, 1, 2, ... Đó là điều vô lý, thành thử f(x) vô nghiệm thực. Chứng tỏ f(x) có bậc chắn (vì đa thức bâc lẻ luôn luôn có nghiệm thực).

Bây giờ ta tìm tất cả các đa thức f(x) có bâc chẵn 2n thỏa mãn (4).

Nhận thấy rằng đa thức $f(x) = (x^2 + 1)^n$, $\forall x \in R$ thỏa mãn (4). Ta sẽ chứng minh với mỗi n thì đa thức f(x) như trên là duy nhất. Giả sử tồn tại đa thức F(x) có bậc 2n nhưng khác $f(x) = (x^2 + 1)^n$, thỏa mãn điều kiện (1).

Phân tích F(x) = f(x) + g(x) trong đó $0 < \deg\{g(x)\} = k < 2n$. Thay vào (4) ta có:

$$F(x).F(2x^{2}) = F(2x^{3} + x), \forall x \in R$$

$$\Leftrightarrow (f(x) + g(x)).(f(2x^{2}) + g(2x^{2})) =$$

$$= f(2x^{3} + x) + g(2x^{3} + x), \forall x \in R$$

$$\Leftrightarrow g(x).f(2x^{2}) + g(2x^{2}).f(x) +$$

$$+g(x).g(2x^{2}) = g(2x^{2} + x), \forall x \in R.$$

So sánh bậc ở hai vế của đồng nhất thức trên ta thấy bậc của vế trái là 2n + k trong khi bậc của vế phải là 3k < 2n + k. Mâu thuẫn nhận được chứng tỏ không tồn tại đa thức thức F(x) có bậc 2n nhưng khác

$$f(x) = (x^2 + 1)^n$$
 đồng thời thỏa mãn (1).

Vậy tất cả các đa thức cần tìm là:

$$f(x) = 0, \forall x \in R$$

$$f(x) = 1, \forall x \in R$$

$$f(x) = (x^{2} + 1)^{n}, \forall x \in R$$

Để hiểu sâu thêm về bài toán tổng quát trên, mời các bạn làm một số bài tập sau: **Bài tập.** Tìm tất cả các đa thức có hệ số thực f(x) thỏa mãn:

a)
$$f^2(x-2) = f(x^2-2), \forall x \in R$$

(Dè thi Học sinh giỏi Acmenia 1996)

b)
$$f(x).f(x-1) = f(x^2), \forall x \in R$$

($D\hat{e}$ thi Học sinh giới Ai xơ len 1997)

Tập Dượt SÁNG TẠO

ĐẶNG PHÙNG HƯNG CHUYÊN TOÁN K02 – 05 Sv. ĐH Kinh tế Quốc dân Hà Nôi

Không ngừng phát triển và sáng tạo sau mỗi bài toán là một điều cần thiết với mỗi học sinh yêu toán. Niềm vui sẽ tăng lên khi các bạn tìm được những kết quả mới mẻ từ bài toán vừa giải xong. Dưới đây là một ví dụ mà tôi đã hoàn thành. Xin giới thiệu cùng ban đoc:

Bài toán gốc (Bài toán con nhím).

Cho tam giác $A_1A_2A_3$. Gọi M là điểm bất kì nằm trong tam giác $A_1A_2A_3$. M_1M_2 M_3 là các điểm thoả mãn MM, MM_2 , MM_3 lần lượt vuông góc và bằng A_3A_2 , A_2A_1 , A_1A_3 . Đồng thời các tia MM_1 , MM_2 , MM_3 lần lượt cắt các đường A_3A_2 , A_3A_1 , A_1A_2 . Chứng minh rằng:

$$\overrightarrow{MM}_1 + \overrightarrow{MM}_2 + \overrightarrow{MM}_3 = \overrightarrow{0}$$

Lời giải. Trước hết ta nhắc lại 2 tính chất cơ bản của phép quay vecto:

-
$$N\acute{e}u \stackrel{\rightarrow}{a} + \stackrel{\rightarrow}{b} = \stackrel{\rightarrow}{c} thi$$

$$Q^{\alpha} \begin{pmatrix} \stackrel{\rightarrow}{c} \end{pmatrix} = Q^{\alpha} \begin{pmatrix} \stackrel{\rightarrow}{a} \end{pmatrix} + Q^{\alpha} \begin{pmatrix} \stackrel{\rightarrow}{c} \end{pmatrix}$$
- $Q^{\alpha} \begin{pmatrix} \stackrel{\rightarrow}{A} \end{pmatrix} = \stackrel{\rightarrow}{0} \iff \stackrel{\rightarrow}{A} = \stackrel{\rightarrow}{0}$

Cả hai tính chất trên đúng với mọi góc quay α .

Trở lại bài toán. Xét phép quay

$$Q^{90^0} (\overrightarrow{MM}_1 + \overrightarrow{MM}_2 + \overrightarrow{MM}_3) =$$

$$Q^{90^0} (\overrightarrow{MM}_1) + Q^{90^0} (\overrightarrow{MM}_2) +$$

$$+Q^{90^0}$$
 $(\overrightarrow{MM}_3) = \overrightarrow{A_1A_2} + \overrightarrow{A_2A_3} + \overrightarrow{A_3A_1} = \overrightarrow{0}$

Từ đó, theo tính chất 2 ta có ngay điều phải chứng minh.

Bây giờ ta sẽ mở rộng bài toán.

I. Mở rộng cho tam giác.

Nhận thấy 2 điều rằng:

$$\overrightarrow{A} = \overrightarrow{0} \iff k \overrightarrow{A} = \overrightarrow{0}, \forall k \neq 0$$

$$Q^{\alpha}(\vec{A}) = \overset{\rightarrow}{0} \Leftrightarrow \vec{A} = \overset{\rightarrow}{0}, \forall \alpha$$

1. Bài toán. Cho tam giác $A_1A_2A_3$ và M là điểm thuộc miền trong tam giác. M_1 , M_2 , M_3

là các điểm thỏa mãn
$$\left(\overrightarrow{MM}_1, \overrightarrow{A_2} \overrightarrow{A_3}\right)$$

$$= \left(\overrightarrow{MM}_{2}, \overrightarrow{A_{3}}\overrightarrow{A_{1}}\right) = \left(\overrightarrow{MM}_{3}, \overrightarrow{A_{1}}\overrightarrow{A_{2}}\right) = \alpha$$

$$v \hat{a} \frac{MM_1}{A_2 A_3} = \frac{MM_2}{A_3 A_1} = \frac{MM_3}{A_1 A_2} = k$$
. Chứng minh

rằng:
$$\overrightarrow{MM}_1 + \overrightarrow{MM}_2 + \overrightarrow{MM}_3 = \overrightarrow{0}$$

Lời giải. Xét phép quay vecto:

$$Q^{90^{0}} (\overrightarrow{MM}_{1} + \overrightarrow{MM}_{2} + \overrightarrow{MM}_{3}) =$$

$$Q^{90^{0}}(\overrightarrow{MM}_{1}) + Q^{90^{0}}(\overrightarrow{MM}_{2}) + Q^{90^{0}}(\overrightarrow{MM}_{3}) = \frac{1}{k}(\overrightarrow{A_{1}A_{2}} + \overrightarrow{A_{2}A_{3}} + \overrightarrow{A_{3}A_{1}}) = \overrightarrow{0}$$

2. Hệ quả.

Từ bài toán trên, ta có thể suy ra các bài toán sau:

2.1. *Hệ quả 1*. Với M là trọng tâm tam giác thì:

$$\overrightarrow{MM}_1 + \overrightarrow{MM}_2 + \overrightarrow{MM}_3 = \overrightarrow{0}$$

2.2. Hệ quả **2.** Với $\overrightarrow{i_1}, \overrightarrow{i_2}, \overrightarrow{i_3}$ là các vecto đơn

vị lần lượt cùng hướng với $\overrightarrow{MA}_1, \overrightarrow{MA}_2, \overrightarrow{MA}_3$. Khi đó:

$$\overrightarrow{i_1} \sin \angle M_2 M M_3 + \overrightarrow{i_2} \sin M_3 M M_1 + \overrightarrow{i_3} \sin M_1 M M_2 = \overrightarrow{0}$$

Chứng minh. Từ A_1 , A_2 , A_3 lần lượt vẽ các đường thẳng vuông góc với MA_1 , MA_2 , MA_3 và chúng cắt nhau tại B_1 , B_2 , B_3 . Theo bài toán "con nhím", ta có :

$$\overrightarrow{i_1} B_2 B_3 + \overrightarrow{i_2} B_3 B_1 + \overrightarrow{i_3} B_1 B_2 = \overrightarrow{0}$$

$$\Leftrightarrow \overrightarrow{i_1} \sin B_1 + \overrightarrow{i_2} \sin B_2 + \overrightarrow{i_3} \sin B_3 = \overrightarrow{0}$$
Từ đó suy ra $dpcm$.

2.3. Hệ quả 3.

$$S_{A_2MA_3} \overrightarrow{A_1M} + S_{A_1MA_3} \overrightarrow{A_2M} + S_{A_1MA_2} \overrightarrow{A_3M} = \overset{\rightarrow}{0}$$

Hệ thức này được chứng minh từ *Hệ quả* 2.1. Từ đây ta suy ra:

 \overrightarrow{OA} sin $2A + \overrightarrow{OB}$ sin $2B + \overrightarrow{OC}$ sin $2C = \overrightarrow{0}$ với tam giác ABC nhọn và O là tâm đường tròn ngoại tiếp tam giác.

 $a\overrightarrow{IA} + b\overrightarrow{IB} + c\overrightarrow{IC} = \overrightarrow{0}$ với I là tâm đường tròn nội tiếp tam giác.

II. Mở rộng bài toán cho đa giác.

Cho đa giác $A_1A_2...A_n$. M là điểm nằm trong đa giác. M_i là các điểm thỏa mãn: $(\overrightarrow{MM_1}, \overrightarrow{A_2A_3}) = (\overrightarrow{MM_2}, \overrightarrow{A_3A_4}) = =$

$$= \left(\overrightarrow{MM_n}, \overrightarrow{A_1 A_2}\right) = \alpha \quad v\hat{a}$$

$$= \left(\overrightarrow{MM_1}, \overrightarrow{MM_2}\right) = MM_1$$

 $\frac{MM_1}{A_2A_3} = \frac{MM_2}{A_3A_4} = \dots = \frac{MM_n}{A_1A_2} = k$

Chứng minh rằng:

$$\overrightarrow{MM}_1 + \overrightarrow{MM}_2 + \dots + \overrightarrow{MM}_n = \overrightarrow{0}$$

Chứng minh. Tương tự phần trên nên xin dành cho bạn đọc coi như bài tập kết thúc bài báo này.

Bằng niềm say mê, ham thích học tập và sáng tạo, tôi xin chúc các bạn sẽ tìm được những kết quả đẹp từ những bài toán đầu.

Không có chiến thắng nào vinh quang hơn là chiến thắng chính bản thân mình.

-V.I.LeNin-

Vận dụng định lý Sách Giáo Khoa Loinh Hoạt

TRINH ANH TUẤN

CHUYÊN TOÁN, K2001 – 2004 Sv. Lớp Ô Tô - K49, Khoa Cơ Khí - ĐH Bách Khoa Hà Nội

Lác ban thân mến!

Việc đọc và thuộc định lý sách giáo khoa quả thật là dễ dàng. Song để ứng dụng nó một cách tối ưu thì quả thật là khó khăn. Sau đây tôi cùng bạn tìm hiểu một vài ví dụ để thấy điều đó.

Ai cũng biết trọng tâm của tam giác là giao điểm của 3 đường trung tuyến, là điểm chia trung tuyến theo tỉ số 1 : 3 ... Nhưng, để áp dụng vào bài toán sau đây, phải thật "khéo léo":

1. Bài toán **1.** Cho $\triangle ABC$ và G là trọng tâm của tam giác đó. Một đường thẳng bất kỳ đi qua G cắt AB, AC lần lượt tại H và K. Chứng minh rằng $\frac{AC}{AK} + \frac{AB}{AH} = 3$.

Lời giải.

Ký hiệu *S(XYZ)* là diện tích của tam giác *XYZ*, ta có:

$$\frac{S(AHG)}{S(ABI)} = \frac{\frac{1}{2}.AH.AG.\sin HAG}{\frac{1}{2}.AB.AI.\sin BAI} = \frac{AH}{AB}.\frac{AG}{AI}$$

Tương tự như vậy:

$$\frac{S(AGK)}{S(AIC)} = \frac{AK}{AC} \cdot \frac{AG}{AI}$$
$$\frac{S(AHK)}{S(ABC)} = \frac{AK}{AC} \cdot \frac{AH}{AB}$$

Áp dụng các đẳng thức vừa thiết lập ở trên,

ta có:
$$\frac{S(AHK)}{S(ABC)} = \frac{S(AHG)}{2S(ABC)} + \frac{S(AKG)}{2S(ABC)}$$

$$\Leftrightarrow 2\frac{AK}{AC} \cdot \frac{AH}{AB} = \frac{AH}{AB} \cdot \frac{AG}{AI} + \frac{AK}{AC} \cdot \frac{AG}{AI}$$

$$\Leftrightarrow \frac{AC}{AK} + \frac{AB}{AH} = 2 \cdot \frac{AI}{AG} = 3.$$

Bây giờ ta xét bài toán khó hơn sau:

2. Bài toán **2.** Cho tứ diện SABC với G là trọng tâm của tứ diện đó. Mặt phẳng (P) qua G cắt AB, AC lần lượt tại H, K. Chứng minh

$$r \check{a} ng:$$
 $\frac{4}{9} \le \frac{V(ASHK)}{V(ABCD)} \le \frac{1}{2}$

Ở đây, ký hiệu V chỉ thể tích của tứ diện.

Lời giải.

Từ Bài toán 1 trên, ta có
$$\frac{AC}{AK} + \frac{AB}{AH} = 3$$
.
 Đặt $\frac{AC}{AK} = \frac{1}{x}$, $(0 < x \le 1) \Rightarrow \frac{AB}{AH} = 3 - \frac{1}{x}$.
 Để ý là $\frac{AB}{AH} \ge 1$ nên $x \le \frac{1}{2}$. Sử dụng công thức tính thể tích cho các tứ diện SAKH và SABC và với chú ý: Hai tứ diện này có cùng đường cao hạ từ đỉnh S tương ứng, ta được:

$$\frac{V(SAKH)}{V(SABC)} = \frac{S(AKH)}{S(ABC)} = \frac{\frac{1}{2}.AH.AK.\sin A}{\frac{1}{2}.AB.AC.SinA} =$$

$$= \frac{AH}{AB}.\frac{AK}{AC} = \frac{x}{3x-1}.x = \frac{x^2}{3x-1}$$
Đặt $f(x) = \frac{x^2}{3x-1}$ và xét sự biến thiên của hàm số này trên miền $\left(\frac{1}{2};1\right)$ ta dễ dàng

có được $\frac{4}{9} \le f(x) \le \frac{1}{2}$, từ đó có được kết quả của bài toán.

3. Mở rộng bài 1.

Cho tứ diện SABC với trọng tâm G. Một mặt mặt phẳng (P) bất kỳ đi qua trọng G cắt các cạnh SA, SB, SC lần lượt tại A', B', C'.

Chứng minh rằng:
$$\frac{SA}{S'A'} + \frac{SB}{S'B'} + \frac{SC}{S'C'} = 4$$

Giả sử $SG \cap MP(ABC) = G'$. Tương tự như Bài toán 1, thông qua một kết quả quen biết về tỷ lệ thể tích của hai hình chóp tam giác hình thành trên cùng một góc tam diện, ta thiết lập được các tỷ lệ thức sau:

$$\frac{V(SA'B'G)}{V(SABG')} = \frac{SA'.SB'.SG}{SA.SB'.SG'}$$

$$\frac{V(SA'C'G)}{V(SACG')} = \frac{SA'.SC'.SG}{SA.SC'.SG'}$$

$$\frac{V(SC'B'G)}{V(SCBG')} = \frac{SC'.SB'.SG}{SC.SB'.SG'}$$

$$\frac{V(SA'B'C')}{V(SABC)} = \frac{V(SA'B'G)}{3V(SABG')} + \frac{V(SA'C'G)}{3V(SACG')} + \frac{V(SC'B'G)}{3V(SCBG')}$$

$$\Rightarrow \frac{SA}{S'A'} + \frac{SB}{S'B'} + \frac{SC}{S'C'} = 4$$
Bài toán được chứng minh.

4. Bài toán 3.

Cho hình hộp ABCD.A'B'C'D'. Chứng minh rằng đường thẳng AC' đi qua trọng tâm của tam giác A'BD và điểm này chia đoạn thẳng AC' theo tỉ số1: 2.

Lời giải.

(Xem hình vẽ trang sau)

Lời giải.

Ký hiệu $O = BD \cap AC$, $I = AC' \cap A'O$. Ta có $\frac{IO}{IA'} = \frac{AO}{A'C'} = \frac{1}{2}$. Mà O là trung điểm của BD nên suy ra I là trọng tâm của tam giác A'BD.

Từ Bài toán 3 là một bài toán đơn giản có trong sách giáo khoa, nếu linh hoạt một chút ta sẽ chứng minh được bài toán khó trên tạp chí Toán học và Tuổi trẻ sau:

5. Bài toán 4.

Cho tứ diện ABCD và một điểm M bất kỳ thuộc mặt phảng (BCD). Qua M kẻ các đường thẳng MA_1 song song AB cắt mặt phẳng (ACD) tại B_1 . Các điểm C_1 , A_1 được xác định tương tự. Chứng minh rằng đường thẳng AM đi qua trọng tâm của tam giác $A_1B_1C_1$.

Lời giải.

Dễ thấy M, A, A₁, B₁, C₁ cùng thuộc một hình hôp. Trong đó M và A ở hai phía đối

nhau qua mặt phẳng $(A_1B_1C_1)$. Vậy, áp dụng bài toán trên ta có ngay điều phải chứng minh.

Sau đây là hai bài tập dành cho bạn đọc

Bài tập 1.

Giả sử G là trọng tâm của tứ diện ABCD và M là một điểm bất kỳ thuộc mặt phẳng (BCD). Qua M dựng đường thẳng song song với BG cắt mặt phẳng (ACD) tại B_1 . Tương tự xác định các điểm C_1 , D_1 . Chứng minh rằng đường thẳng MG đi qua trọng tâm của tam giác $B_1C_1D_1$.

Bài tập 2.

Cho tứ diện SABCcó các cạnh SA = a, SB = b, SC = c. Một mặt phẳng bất kỳ (P) đi qua trọng tâm G của tứ diện cắt SA, SB, SC tại D, E, F tương ứng. Tìm giá trị nhỏ nhất của biểu thức:

$$\frac{1}{SD^2} + \frac{1}{SE^2} + \frac{1}{SF^2}$$

Từ các ví dụ trên ta thấy nếu biết vận dụng linh hoạt, chính xác và thêm một chút sáng tạo thì tôi tin chắc rằng các bạn có thể giải được rấtnhiều bài toán khó khác nhau.

Chúc các bạn ngày càng học tốt môn toán!

Không có việc gì khó Chỉ sợ lòng không bền Đào núi và lấp biển Quyết chí ắt làm nên

- Hồ Chí Minh -

mở Rộng KHÁI NIỆM

TÂM TỈ CỰ CHO TỬ DIỆN

HOÀNG AN GIANG CHUYÊN TOÁN K01-04

Sv. Lớp Điện tử 4 – K49, Khoa Điện tử Viễn thông - ĐH Bách Khoa Hà Nội

Trong hình học phẳng, đặc biệt là trong tam giác, khái niệm tâm tỉ cự và một số tính chất của nó là một công cụ để giải toán rất hay, nhất là những bài toán liên quan tới việc tính độ dài khoảng cách giữa một số điểm đặc biệt trong tam giác.

Bài viết này sẽ mở rộng vấn đề trên cho trường hợp tứ diện.

I. Khái niệm và tính chất của tâm tỉ cự trong tam giác.

1. Định lý 1.

Cho 3 đIểm A, B, C không thẳng hàng và 3 số thực x, y, z thoả mãn $x + y + z \neq 0$. Khi đó tồn tại duy nhất điểm M sao cho :

$$x.\overrightarrow{MA} + y.\overrightarrow{MB} + z.\overrightarrow{MC} = \overrightarrow{O}$$

Điểm M như vậy được gọi là tâm tỉ cự của 3 điểm A, B, C ứng với bộ số (x, y, z).

2. Một số tính chất.

a. Cho tam giác ABC và \overrightarrow{G} là trọng tâm tam giác . Khi đó $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{O}$.

b. Cho tam giác ABC và I là tâm đường tròn nội tiếp tam giác. Đặt AB = c, BC = a, CA = b. Khi đó ta có $a.\overrightarrow{IA} + b.\overrightarrow{IB} + c.\overrightarrow{IC} = \overrightarrow{O}$. Ta có thể khái quát 2 tính chất trên như sau:

Cho tam giác ABC và M là một điểm bất kỳ nằm trong tam giác. Đặt $S_a = S_{MBC}$, $S_b = S_{MCA}$, $S_c = S_{MAB}$. Khi đó :

$$S_a . \overrightarrow{MA} + S_b . \overrightarrow{MB} + S_c . \overrightarrow{MC} = \overrightarrow{O}$$

II. Mở rộng vấn đề cho tứ diện.

1. *Định lý* 2.

Trong không gian cho bốn điểm A, B, C, D không đồng phẳng và các số thực x, y, z, t thoả mãn $x + y + z + t \neq 0$. Khi đó tồn tại duy nhất một điểm M sao cho

$$x.\overrightarrow{MA} + y.\overrightarrow{MB} + z.\overrightarrow{MC} + t.\overrightarrow{MD} = \overrightarrow{O}$$
 (*).

Chứng minh. Ta có:

$$x.\overline{MA} + y.\overline{MB} + z.\overline{MC} + t.\overline{MD} = \overline{O}$$

$$\Leftrightarrow x.\overline{MA} + y.(\overline{MA} + \overline{AB}) +$$

$$+ z.(\overrightarrow{MA} + \overrightarrow{AC}) + t.(\overrightarrow{MA} + \overrightarrow{AD}) = \overrightarrow{O}$$

$$\Leftrightarrow (x+y+z+t).\overrightarrow{MA} + y.\overrightarrow{MA} +$$

$$+ z.\overrightarrow{AC} + t.\overrightarrow{AD} = \overrightarrow{O}$$

$$\Leftrightarrow \overrightarrow{AM} = \frac{y.\overrightarrow{AB} + z.\overrightarrow{AC} + t.\overrightarrow{AD}}{x + y + z + t}$$

 \Rightarrow Luôn tồn tại M thoả mãn (*)

Bây giờ ta chứng minh M là duy nhất. Thật vậy, giả sử tồn tại điểm M' khác M thoả mãn (*), khi đó:

$$\overrightarrow{O} = x.\overrightarrow{MA} + y.\overrightarrow{MB} + z.\overrightarrow{MC} + t.\overrightarrow{MD}$$

$$= -\left(x.\overrightarrow{M'A} + y.\overrightarrow{M'B} + z.\overrightarrow{M'C} + t.\overrightarrow{M'D}\right)$$

$$= (x + y + z + t)\overrightarrow{MM'}$$

Vì
$$x + y + z + t \neq 0$$
 nên $\overrightarrow{MM'} = 0$
 $\Rightarrow M' \equiv M$. Vậy tồn tại duy nhất M thoả mãn
(*). Điểm M thoả mãn định lý 2 được gọi là

(*). Điểm M thoả mãn định lý 2 được gọi là tâm tỉ cự của tứ điểm A, B, C, D theo bộ số (x, y, z, t).

2. Tính chất.

Tương tự như trong tam giác ta chứng minh được tính một số tính chất sau:

a. Cho tứ diện ABCD và 1 điểm M bất kỳ nằm trong tứ diện.

$$\begin{split} & D \breve{\alpha}t \, V_a = V_{MBCD} \; ; \, V_b = V_{MCAD} \; ; \, V_c = V_{MDAB} \; ; \\ & V_d = V_{\overrightarrow{MABC}} . \; Khi \; \overrightarrow{do} \; : \\ & V_c . \overrightarrow{MA} + V_b . \overrightarrow{MB} + V_c . \overrightarrow{MC} + V_d . \overrightarrow{MD} = \overrightarrow{O} \end{split}$$

b. Cho tứ diện ABCD và G là trọng tâm tứ diên. Khi đó :

$$\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} = \overrightarrow{O}$$

 $H\hat{e}$ quả: Với M là điểm bất kỳ ta luôn có: $4\overrightarrow{MG} = \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD}$ c. Cho tứ diện ABCD và I là tâm mặt cầu nội tiếp tứ diên. Khi đó:

$$S_{a}.\overrightarrow{IA} + S_{b}.\overrightarrow{IB} + S_{c}.\overrightarrow{IC} + S_{d}.\overrightarrow{ID} = \overrightarrow{O}$$
 trong đó $S_{a}, S_{b}, S_{c}, S_{d}$ lần lượt là diện tích các tam giác BCD, CDA, DAB, ABC.

III. Úng dụng để tính khoảng cách giữa các điểm đặc biệt trong tứ diện.

Ta ký hiệu G, H, O, I lần lượt là trọng tâm, trực tâm (nếu có), tâm mặt cầu ngoại tiếp và nội tiếp tứ diện ABCD. Đặt AB = a, BC = b, CD = c, DA = d, AC = e, BD = f.

• Tính
$$OG$$
: Ta có

$$4\overrightarrow{OG} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD}$$

$$\Rightarrow 16OG^{2} = OA^{2} + OB^{2} + OC^{2} + OD^{2} + CA^{2} +$$

$$\Rightarrow OG^2 = = R^2 - \frac{1}{16} (a^2 + b^2 + c^2 + d^2 + e^2 + f^2).$$

Bằng cách tương tự, ta tính được các kết quả sau:

$$OI^{2} = R^{2} - \frac{\sum_{a,b,c,d,e,f} S_{a} S_{b} a^{2}}{\left(\sum_{a,b,c,d,e,f} S_{a}\right)^{2}}$$

$$HG^2 = R^2 - \frac{1}{16} \sum_{a,b,c,d,e,f} a^2$$

$$OH^2 = 4R^2 - \frac{1}{4} \sum_{a,b,c,d,e,f} a^2$$

Đây chỉ là một ứng dụng của tâm tỉ cự cho tứ diện. Rất mong các bạn mở rộng và khái quát vấn đề này thêm nữa!

PHƯƠNG PHÁP LOGIC MỆNH ĐỀ

PHẠM PHÚC LÂN CHUYÊN TOÁN K01 – 04 Sv. Lớp TĐH3 – K49, Khoa Điện, ĐH Bách Khoa Hà Nội

Lôgic suy luận là dạng toán chưa được khai thác nhiều trong các đề thi học sinh giỏi, có lẽ vì trong nó mang cả nguồn gốc, nền tảng của sự phát triển toán học nên việc phát triển nó chỉ được thể hiện qua những vấn đề khác. Phương pháp logic mệnh đề có thể giúp ta dễ dàng một số bài toán phức tạp đòi hỏi tư duy nhưng nó cũng đòi hỏi bạn phải có những hiểu biết nhất định về vấn đề này.

I. Một số vấn đề về phương pháp logic mệnh đề.

1. Nguyên tắc giải toán.

Phương pháp lôgic mệnh đề sử dụng các phép toán logic như: tuyển, hội, kéo theo, ... để suy ra kết quả.

2. Quy trình giải toán.

Gồm 3 bước:

mênh đề:

a, Bước 1: Chọn các biến mệnh đề thích hợp, biểu diễn các mệnh đề của bài toán qua các biến và diễn đat thêm một số quan hệ.

b, Bước 2: Dùng các phép suy luận logic để suy ra các giá tri của biến.

c, Bước 3: Kết luận các mệnh đề.

3. Nhắc lại các phép toán và một số công thức hay sử dụng.

a, Các phép toán tuyển, hội, kéo theo. Cho 2 mệnh đề A và mệnh đề B. Khi đó Mệnh đề "A và B" là hội của 2 mệnh đề A và mệnh đề B. Ký hiệu: $A ^{\circ}B$.

Mệnh đề "A hoặc B" là tuyển của 2 mệnh đề A và mệnh đề B. Ký hiệu: AvB.

Mệnh đề "A kéo theo B" là phép kéo theo của 2 mênh đề A và mênh đề B.

Ký hiệu: $A \rightarrow B$.

b, Một số công thức thường sử dụng:

Trước hết ta cần quy định:

 \overline{A} : là phủ định của mệnh đề A.

A=1: Biểu diễn cho mệnh đề A có giá trị chân lí đúng.

A=0: Biểu diễn cho mệnh đề A có giá tri chân lí sai.

A = B: Biểu diễn cho 2 mệnh đề A và B có giá trị chân lí như nhau.

Các công thức:

$$A \longrightarrow B = A \vee B$$

$$A \wedge (B \vee C) = A \wedge B \vee A \wedge C$$

$$A \vee B \wedge C = (A \vee B) \wedge (A \vee C)$$

$$\overline{A \vee B} = \overline{A} \wedge \overline{B}$$

$$\overline{A \wedge B} = \overline{A} \vee \overline{B}$$

$$A \Leftrightarrow B = A \wedge B \vee \overline{A} \wedge \overline{B}$$

$$A \wedge (A \vee B) = A$$

$$A \lor (A \land B) = A$$

$$A \lor B = B \lor A$$

$$A \wedge B = B \wedge A$$

$$A \wedge (B \wedge C) = (A \wedge B) \wedge C$$

$$A \lor (B \lor C) = (A \lor B) \lor C$$

$$A \lor A = A$$

$$A \land A = A$$

$$A \lor \overline{A} = 1$$

$$A \land \overline{A} = 0$$

$$\overline{A} = A$$

II. Một số bài toán.

Bài toán 1. Ba bạn An, Bình, Vinh ngồi làm bài xung quanh một chiếc bàn. Các bạn đã làm đổ mực ra bàn. Khi thầy giáo hỏi 3 bạn trả lời như sau:

An nói: Vinh không làm đổ mực, đó là do Bình.

Bình nói: Vinh làm đổ mực, An không làm.

Vinh nói: Bình không làm đổ mực.

Trong 3 bạn có 2 bạn nói sai còn 1 bạn nói đúng. Hãy tìm ra người làm đổ mực.

Lời giải. Ký hiệu: a là mệnh đề "An làm đổ mực", b là mệnh đề "Bình làm đổ mực", c là mệnh đề "Vinh làm đổ mực". Ta có:

An nói:
$$A = c \wedge b$$

Bình nói: $B = a \wedge c$
Vinh nói: $C = b$
Vì 2 trong 3 mệnh đề trên là đúng nên: $T = A \vee B = c \wedge b \vee c \wedge a = 1$

$$H = A \lor C = \overline{c} \land b \lor \overline{b} = \overline{c} \lor \overline{b} = 1$$

$$K = B \lor C = c \land \overline{a} \lor \overline{b} = 1$$

$$K = B \lor C = c \land a \lor b = 1$$

$$T = K = H = 1$$
$$T \wedge K \wedge H = 1$$

$$\Leftrightarrow \overline{(c \land b \land \overline{c} \lor \overline{c} \land b \land \overline{b} \lor c \land \overline{c} \land \overline{a} \lor c}$$

$$\wedge \overline{a} \wedge \overline{b}) \wedge (c \wedge a \vee \overline{b}) = 1$$

$$\Leftrightarrow (\bar{c} \land b \lor c \land a \land \bar{b}) \land (c \land \bar{a} \lor \bar{b}) = 1$$

$$\Leftrightarrow (\overline{c} \wedge \overline{b} \wedge c \wedge \overline{a} \vee c \wedge b \wedge \overline{b} \vee c \wedge \overline{a} \wedge \overline{b} \wedge c$$

$$\wedge \overline{a} \vee c \wedge \overline{a} \wedge \overline{b} \wedge \overline{b} = 1$$

$$\Leftrightarrow c \wedge \overline{a} \wedge \overline{b} = 1$$

$$\Leftrightarrow \begin{cases} c = 1 \\ -a = 1 \\ \bar{b} = 1 \end{cases}$$

Vậy: An không làm đổ mực.

Bình không làm đổ mực. Vinh làm đổ mưc.

Bài toán trên có thể giải được bằng phép suy luận trực tiếp, song phương pháp này gặp nhiều khó khăn khi giải các bài toán có số lượng mệnh đề lớn như bài toán sau.

Bài toán 2. Bốn bạn Hùng, Nhàn, Nam, Tâm quyết định đi du lịch ở 4 địa điểm khác nhau: Hạ Long, Đồ Sơn, Sầm Sơn, Hội An. Ho cùng thoả thuân:

- 1, Nếu Hùng không đi Hạ Long thì Nam không đi Đồ Sơn.
- 2, Nếu Nhàn không đi Hạ Long và Hội An thì Hùng đi Hạ Long.
- 3, Nếu Nam không đi Hội An thì Nhàn đi Sầm Sơn.
- 4, Nếu Tâm không đi Hạ Long thì Nhàn đi Hạ Long.
- 5, Nếu Tâm không đi Hạ Long thì Nhàn đi Ha Long.

Hỏi 4 bạn sẽ đi du lịch ở đâu?

Lời giải. Chọn các biến mệnh đề như sau:

Hùng đi Hạ Long: a_l

Nhàn đi Hạ Long: b,

Nhàn đi Hội An: b_h

Nhàn đi Sầm Sơn: b_s

Nam đi Hội An: c_h

Nam đi Đồ Sơn: c_d

Tâm đi Hạ Long: d₁

Tâm đi Đồ Sơn: d_d

Năm thoả thuận của các bạn là:

$$M = \overline{a_l} \rightarrow \overline{c_d} \equiv a_l \vee \overline{c_d}$$

$$N = \left(\overline{b_l} \wedge \overline{b_h}\right) \to a_l \equiv b_l \vee b_h \vee a_l$$

$$H = \overline{c_h} \rightarrow b_s \equiv c_h \vee b_s$$

$$P = \overline{d_l} \rightarrow b_l \equiv d_l \vee b_l$$

$$Q = \overline{d_d} \rightarrow \overline{b_l} \equiv d_d \vee \overline{b_l}$$

Vì hướng đi được cả 4 người nhất trí nên: $M \wedge N \wedge P \wedge H \wedge Q = 1$

Ta có:

$$M \wedge N = (a_{l} \vee \overline{c_{d}}) \wedge (b_{l} \vee b_{h} \vee a_{l}) =$$

$$= (a_{l} \wedge b_{l}) \vee (a_{l} \wedge b_{h}) \vee (a_{l} \wedge a_{l}) \vee$$

$$\vee (\overline{c_{d}} \wedge b_{l}) \vee (\overline{c_{d}} \wedge b_{h}) \vee (\overline{c_{d}} \wedge b_{l})$$

$$= (a_{l} \wedge b_{h}) \vee a_{l} \vee (\overline{c_{d}} \wedge b_{l}) \vee$$

$$\vee (\overline{c_{d}} \wedge b_{h}) \vee (\overline{c_{d}} \wedge a_{l})$$

$$= a_{l} \vee (\overline{c_{d}} \wedge b_{l}) \vee (\overline{c_{d}} \wedge b_{h})$$

$$M \wedge N \wedge H =$$

$$= \left[a_{l} \vee (\overline{c_{d}} \wedge b_{l}) \vee (\overline{c_{d}} \wedge b_{l}) \wedge (\overline{c_{d}} \wedge b_{l}) \right] \wedge$$

$$\wedge (c_{h} \wedge b_{s})$$

$$= (a_{l} \wedge c_{h}) \vee (a_{l} \wedge b_{s}) \vee (\overline{c_{d}} \wedge b_{l} \wedge c_{h}) \vee (\overline{c_{d}} \wedge b_{l} \wedge b_{s})$$

$$= (a_{l} \wedge c_{h}) \vee (a_{l} \wedge b_{s}) \vee (\overline{c_{d}} \wedge b_{l} \wedge c_{h})$$

$$M \wedge N \wedge H \wedge P = \left[(a_{l} \wedge c_{h}) \vee (a_{l} \wedge b_{s}) \vee (a_{l} \wedge b_{s}) \vee (a_{l} \wedge b_{l} \wedge b_{l}) \vee$$

$$(a_{l} \wedge b_{s} \wedge d_{l}) \vee (a_{l} \wedge c_{h} \wedge b_{l}) \vee$$

$$(a_{l} \wedge b_{s} \wedge d_{l}) \vee (a_{l} \wedge c_{h} \wedge b_{l}) \vee$$

$$(a_{l} \wedge b_{s} \wedge d_{l}) \vee (a_{l} \wedge b_{s} \wedge b_{l}) \vee$$

$$(\overline{c_{d}} \wedge b_{l} \wedge c_{h} \wedge d_{l}) \vee (\overline{c_{d}} \wedge b_{l} \wedge c_{h} \wedge b_{l})$$

$$= (\overline{c_{d}} \wedge b_{l} \wedge c_{h})$$

$$\text{Vi} M \wedge N \wedge H \wedge P = 1$$

$$\text{Nên } \overline{c_{d}} \wedge b_{l} \wedge c_{h} = 1$$

$$\Rightarrow \begin{cases} \overline{c_{d}} = 1 \\ b_{l} = 1 \\ c_{k} = 1 \end{cases}$$

Vậy Nhàn đi Hạ Long, Nam đi Hội An Theo mệnh đề 5: Tâm không đi Đồ Sơn nên Tâm đi Sầm Sơn, Hùng đi Đồ Sơn.

III. Bài tập tự luyện:

Bài tập 1. Thành lập đội bóng trường THPT Chuyên Hoàng Văn Thụ có 10 bạn tham gia dự tuyển. Cụ thể là:

Lớp 12 Toán có các bạn: Vũ, Sơn, Lân, Tâm, Thiên. Lớp 12 Tin có các bạn: Hoà, Tuấn Anh, Hùng, Minh, Trung.

Hai lớp đưa ra các yêu cầu như sau:

- 1, Lớp 12 Toán không chấp nhận Tuấn Anh và Minh cùng được vào đội tuyển.
- 2, Lớp 12 Tin yêu cầu Vũ và Thiện không cùng được tuyển.
- 3, Lớp 12 Toán yêu cầu: Trung không được tuyển nếu Tuấn Anh và Hoà cùng được tuyển.
- 4, Lớp 12 Tin yêu cầu: Nếu Tuấn Anh được tuyển thì Lân và Thiện phải ngồi trên khán đài.
- 5, Nếu Trung không được tuyển thì Tâm cũng phải ngồi nhà.
- 6, Sơn sẽ từ giã sân cỏ nếu Trung được đá.
- 7, Nếu Lân được đá thì Hùng sẽ nghỉ.

Sau 15 phút suy nghĩ thầy Trực đã chọn được 6 bạn vào đội tuyển mà không làm các bạn bất hoà.

Hỏi thầy Trực đã chọn ai?

Đáp số: Lân, Vũ, Tâm, Hoà, Minh, Trung.

Bài tập 2. Năm bạn Vũ, Lân, Thịnh, Sơn, Tiến đá bóng trong nhà đa chức năng một trong 5 bạn đã đá vỡ cửa kính. Khi thầy Phú hỏi các ban đã trả lời như sau.

Vũ: "Chỉ có thể là Tiến hoặc Sơn làm vỡ!"

Tiến cãi lại: "Em và Thịnh không làm vỡ kính".

Son: "Cả hai bạn trên đều nói sai!"

Lân: "Không! một trong hai bạn trên đã nói đúng!".

Thịnh: "Lân ạ, Bạn nói không đúng!".

Một cách tình cờ, thầy Phú đã biết được 3 trong 5 câu nói là đúng. Sau 15 phút thầy Phú đã tìm ra Sơn đã đá vỡ kính. Hỏi thầy đã suy luận như thế nào?

PHÉP CHIẾU

VÀ ÚNG DỤNG CỦA PHÉP CHIẾU

NGUYỄN LÂM TUYỀN CHUYÊN TOÁN K99 – 02 Sv. Lớp Điều khiển Tự Động 1 - K47 ĐH Bách Khoa Hà Nôi

Trong chương trình toán phổ thông, chúng ta đã được làm quen với một trong những kỹ thuật chứng minh trong hình học, đó là phép chiếu. Tuy nhiên đây là phương pháp mà các bạn thường ít sử dụng. Bài viết này xin được trình bày về phép chiếu và ứng dụng của kỹ thuật này trong việc chứng minh các đẳng thức véc tơ.

I. Định nghĩa.

Cho hai định dạng hình học X, Y là các đường thẳng hoặc mặt phẳng. Giữa X và Y có các quan hệ: Song song (//), trùng (\equiv) hoặc cắt nhau (\cap). Chẳng hạn khi X = duờng thẳng, Y = duờng thẳng và nếu hai đường thẳng này cắt nhau tại I thì ta viết $X \cap Y = I$. Như vậy ký hiệu hoàn toàn như quy ước của các quan hệ hình học đã biết.

1. Định nghĩa 1. Hình chiếu của một điểm.

Cho hai định dạng hình học X và Y không cùng là mặt phẳng, có quan hệ cắt nhau và một điểm A. Qua A dựng định dạng hình học Z có cùng tính chất và song song với X. Khi đó điểm $A' = Z \cap Y$ được gọi là hình chiếu của điểm A theo phương X lên giá chiếu Y.

Chẳng hạn, khi X = duờng thẳng, Y = duờng thẳng ta có khái niệm về hình chiếu của một điểm theo phương đường thẳng lên một đường thẳng. Không có khái niệm về hình chiếu của một điểm lên một mặt phẳng theo phương mặt phẳng (Úng với trường hợp

 $X = m \ddot{a}t \ ph \mathring{a}ng$, $Y = m \ddot{a}t \ ph \mathring{a}ng$ đã loại trừ trong định nghĩa trên).

2. Định nghĩa 2. Hình chiếu của một véctơ.

Hình chiếu của một véctơ \overrightarrow{AB} theo phương X lên giá chiếu Y là một véctơ $\overrightarrow{A'B'}$, trong đó A', B' lần lượt là hình chiếu của các điểm A và B theo phương X lên giá chiếu Y.

Minh họa cho một vài phép chiếu véc tơ:

Phương chiếu là đường thẳng, giá chiếu là mặt phẳng

Phương chiếu là mặt phẳng, giá chiếu là đường thẳng

ORDO TODIRECTO THE

II. Tính chất và định lý.

1. Tính chất 1.

Hình chiếu của một véc tơ tổng bằng tổng các hình chiếu của các véc tơ thành phần.

Không mấy khó khăn để nhận ra tính đúng đắn của tính chất này. Các bạn có thể chứng minh trong trường hợp tổng của hai véc tơ, từ đó suy ra được cho trường hợp $n \ge 2$ véc tơ.

2. Tính chất 2.

Hình chiếu của một véctơ bằng véctơ - không khi và chỉ khi véc tơ chiếu đó có phương trùng với phương chiếu.

Lưu ý trường hợp véc tơ chiếu bằng véctơ - không, khẳng định vẫn hoàn toàn đúng.

3. Định lý chiếu.

Một véc tơ có hình chiếu theo ít nhất hai phương khác nhau (Hai phương có tồn tại quan hệ cắt) đều bằng véc tơ - không khi và chỉ khi đó là véc tơ - không.

Định lý này suy trực tiếp từ tính chất của véc tơ - không và tính chất 2 ở trên phép chiếu.

III. Các bước chứng minh một đẳng thức véc tơ.

Bước 1. Chuyển đẳng thức véc tơ cần chứng minh thành dạng đẳng thức có vế phải là véc tơ - không.

 $Bu\acute{o}c$ 2. Ký hiệu véc tơ bên vế trái là \overrightarrow{T} và chọn hai phương chiếu khác nhau, sau đó chứng minh hình chiếu của véc tơ \overrightarrow{T} theo các phương đó (Lên giá chiếu tương ứng) đều bằng véc tơ - không.

Bước 3. Dựa vào định lý chiếu mở mục 3, kết luận được đẳng thức véc tơ cần chứng minh.

IV. Ký hiệu.

Khi chiếu một véc tơ a theo phương chiếu X lên giá chiếu Y, ta được véc tơ \overrightarrow{a} . Để cho gọn, ta ký hiệu $\overrightarrow{a} = Ch_Y^X(\overrightarrow{a})$. Trong đó các định dạng hình học X, Y được ký hiệu

theo quy ước thông thường. Chẳng hạn hình chiếu \overrightarrow{a} của véc tơ \overrightarrow{a} theo phương đường thẳng l lên mặt phẳng (α) được viết là: $\overrightarrow{a} = Ch_{(\alpha)}^l(\overrightarrow{a})$.

V. Một số ví dụ áp dụng.

1. Ví du 1.

Cho tam giác ABC và I là tâm đường tròn nội tiếp tam giác đó. Đặt a = BC, b = CA, c = AB. Chứng minh rằng:

$$a.\overrightarrow{IA} + b.\overrightarrow{IB} + c.\overrightarrow{IC} = \overrightarrow{0}$$

Lòi giải. Đặt $\overrightarrow{T} = a.\overrightarrow{IA} + b.\overrightarrow{IB} + c.\overrightarrow{IC}$ và ký hiệu $A' = AI \cap BC$. Ta có: $Ch_{BC}^{AI}(\overrightarrow{T}) =$

$$= Ch_{BC}^{AI}\left(a.\overrightarrow{IA}\right) + Ch_{BC}^{AI}\left(b.\overrightarrow{IB}\right) + Ch_{BC}^{AI}\left(c.\overrightarrow{IC}\right)$$

$$= \vec{0} + b.\overrightarrow{A'B} + c.\overrightarrow{A'C}$$

$$= b \cdot \left(\overrightarrow{A'B} + \frac{c}{b} \cdot \overrightarrow{A'C} \right)$$

 $= \vec{0}$ (Theo tính chất đường phân giác).

Tương tự $Ch_{CA}^{BI}(\vec{T}) = \vec{0}$, do đó theo định lý chiếu ta có $\vec{T} = \vec{0}$, đpcm.

2. Ví du 2.

Cho tứ diện ABCD và điểm M bất kỳ nằm trong tứ diện đó. Ký hiệu V_A , V_B , V_C , V_D lần lượt là thể tích của các hình tứ diện nhỏ MBCD, MCDA, MDAB và MABC. Chứng minh rằng:

$$V_A . \overrightarrow{MA} + V_B . \overrightarrow{MB} + V_C . \overrightarrow{MA} + V_D . \overrightarrow{MD} = \overrightarrow{0}$$

Lời giải.

Đặt $\overrightarrow{T} = V_A.\overrightarrow{MA} + V_B.\overrightarrow{MB} + V_C.\overrightarrow{MA} + V_D.\overrightarrow{MD}$. Ký hiệu $A' = AM \cap mp(BCD)$.

Ta có:
$$Ch_{AM}^{(BCD)}\left(\overrightarrow{T}\right) = Ch_{AM}^{(BCD)}\left(V_{A}.\overrightarrow{MA}\right) +$$

$$+ \operatorname{Ch}^{\scriptscriptstyle (BCD)}_{\scriptscriptstyle AM}\left(V_{\scriptscriptstyle A}.\overrightarrow{MA}\right) + \operatorname{Ch}^{\scriptscriptstyle (BCD)}_{\scriptscriptstyle AM}\left(V_{\scriptscriptstyle A}.\overrightarrow{MA}\right) =$$

$$= V_A . \overrightarrow{MA} + (V_B + V_C + V_D) \overrightarrow{MA}$$

= $V_A.\overrightarrow{MA} + (V - V_A)\overrightarrow{MA}$ ' (V là thể tích của tứ diên ABCD).

$$=V_{A}.\overrightarrow{A'A}+V.\overrightarrow{MA'}$$

$$= V.\left(\frac{V_A}{V}\overrightarrow{A'A} + \overrightarrow{MA'}\right)$$

= $\vec{0}$ (vì $\frac{V_A}{V} = \frac{MA'}{AA'}$ là tỷ lệ thể tích của hai tứ diện chung đáy MBCD và ABCD).

Tương tự: $Ch_{BM}^{(CDA)}(\vec{T}) = \vec{0}$, từ đó theo định lý chiếu ta có đọcm.

3. Ví du 3.

a) Cho tam giác ABC. Ký hiệu H, G, O lần là trực tâm, trọng tâm và tâm đường tròn ngoại tiếp của tam giác. Chứng minh rằng:

$$\overrightarrow{HG} = 2\overrightarrow{GO}$$

b) Giả sử ABCD có các đường cao đồng quy tại một điểm H (ABCD là một tứ diện trực tâm). Gọi G, O lần lượt là trọng tâm và tâm mặt cầu ngoại tiếp của tứ diện. Chứng minh rằng G là trung điểm của đoạn thẳng HO, nghĩa là $\overrightarrow{HG} = \overrightarrow{GO}$.

Lời giải.

a) Đặt $\overrightarrow{T} = \overrightarrow{HG} - 2.\overrightarrow{GO}$, ta cần chứng minh $\overrightarrow{T} = \overrightarrow{0}$. Thật vậy, Giả sử $AH \perp BC = H'$, $AG \cap BC = M$. Kẻ $GG' \perp BC$ như trên hình vẽ.

Ta có $OM \perp BC$, do đó:

$$Ch_{BC}^{AH}\left(\overrightarrow{T}\right) = Ch_{BC}^{AH}\left(\overrightarrow{HG}\right) - Ch_{BC}^{AH}\left(2.\overrightarrow{GO}\right) =$$

$$= \overrightarrow{H'G'} - 2.\overrightarrow{G'M}.$$

Nhưng dễ thấy $\frac{G'M}{H'G'} = \frac{GM}{GA} = \frac{1}{2}$ nên ta có ngay $Ch_{BC}^{AH}(\vec{T}) = \overline{H'G'} - 2.\overline{G'M} = \vec{0}$.

Tương tự như vậy: $Ch_{CA}^{BH}\left(\vec{T}\right)=\vec{0}$, từ đó có đọcm.

b) Đặt $\overrightarrow{T} = \overrightarrow{HG} - \overrightarrow{GO}$, ta cần chứng minh $\overrightarrow{T} = \overrightarrow{0}$. Ký hiệu như sau: $AH \cap (BCD) = H'$, $AG \cap (BCD) = G_A$, $GG' \perp (BCD) = G'$, $OO' \perp (BCD) = O'$.

Dễ thấy H' là trực tâm, G_A là trọng tâm và O' là tâm đường tròn ngoại tiếp của tam giác BCD. Thực hiện phép chiếu vuông góc véc tơ \overrightarrow{T} lêm mặt phẳng (BCD) ta có:

$$Ch_{(BCD)}^{AH}(\overrightarrow{T}) = \overrightarrow{H'G'} - \overrightarrow{G'O'}$$

Nhưng theo tính chất của trọng tâm tứ diện thì $\overrightarrow{AG} = 3.\overrightarrow{GG_A}$ và theo kết quả của phần a) $\overrightarrow{H'G_A} = 2\overrightarrow{G_AO'}$, nên ta có $\overrightarrow{H'G'} = \overrightarrow{G'O'} \Rightarrow Ch_{(BCD)}^{AH}(\overrightarrow{T}) = \overrightarrow{0}$.

Cũng như vậy, $Ch_{(CDA)}^{BH}(\vec{T}) = \vec{0}$, nên theo định lý chiếu, ta có đpcm.

Trên đây là một số khái niệm và ứng dung của phép chiếu (song song). Như các ban đã thấy, phép chiếu tương đối hiệu quả trong việc chứng minh các đẳng thức véc tơ. Điều quan trọng trong phép chúng minh này là chúng ta cần phải lựa chọn phương chiếu và giá chiếu sao cho hợp lý thì lời giải mới sử dụng phép tương tự và ngắn gọn được. Úng dung phép chiếu để chứng minh đẳng thức véc tơ chỉ là một khía canh nhỏ của phép chiếu, thực tế còn nhiều ứng dung quan trọng khác của kỹ thuật này mà nội dung nằm ngoài khuôn khổ của bài báo. Các ban hãy chú ý tìm hiểu thêm và để kết thúc, mời các ban giải các bài tâp sau. Lưu ý là mỗi một cách chiếu khác nhau sẽ cho ta một lời giải khác nhau.

III. Bài tập.

Bài 1. Cho tam giác đều ABC tâm O. Giả sử M là một điểm bất kỳ nằm trong tam giác và D, E, F lần lượt là hình chiếu của M lên các cạnh BC, CA và AB tương ứng. Chứng minh rằng $\overrightarrow{MD} + \overrightarrow{ME} + \overrightarrow{MF} = \frac{3}{2} \overrightarrow{MO}$.

Hãy mở rộng bài toán cho trường hợp tứ diên đều.

Bài 2. Vẽ qua trọng tâm G của tam giác ABC một đường thẳng d. Gọi H, I, K tương ứng là hình chiếu của A, B, C trên d. Chứng minh rằng trong ba đoạn thẳng AH, BI và CK, có một đoạn bằng tổng hai đoạn thẳng còn lại.

Bài 3. Cho tam giác ABC và một điểm M bất kỳ nằm trong tam giác. Các đường thẳng AM, BM, CM lần lượt cắt các cạnh BC, CA và AB tại A', B', C'. Chứng minh rằng M là trọng tâm của tam giác ABC khi và chỉ khi M là trọng tâm của tam giác A'B'C'.

Bài 4. Cho tứ diện ABCD với I là tâm mặt cầu nội tiếp. Chứng minh rằng:

$$S_A.\overrightarrow{IA} + S_B.\overrightarrow{IB} + S_C.\overrightarrow{IA} + S_D.\overrightarrow{ID} = \overrightarrow{0}$$

Trong đó S_A , S_B , S_C , S_D là diện tích các mặt đối diện với các đỉnh A, B, C, D của tứ diện.

Bài 5. Giả sử rằng đã có các đẳng thức véc tơ ở các bài toán trên. Hãy thiết lập các đẳng thức đại số mới dựa trên bình phương của các đẳng thức véc tơ đó.

Bài 6. Giả sử M là một điểm nằm trong tứ diện ABCD. Các đường thẳng AM, BM, CM, DM theo thứ tự cắt các mặt phẳng (BCD), (CDA), (DAB), (ABC) tại A', B', C', D'. Mặt phẳng (α) qua M, song song với mặt phẳng (BCD) lần lượt cắt A'B', A'C', A'D' tại XYZ. Chứng minh rằng M là trọng tâm của tam giác X

MỘT SỐ ĐÀI TOÁN ĐẤT ĐẮNG THỰC CHỌN LỌC

LƯU NHƯ HOÀ CHUYÊN TOÁN K02-05 Sv. Lớp Điều Khiển Tự động, KSTN - K50 Đai học Bách Khoa Hà Nôi

Bất đẳng thức (BĐT) là một dạng toán không đòi hỏi nhiều kiến thức nhưng lại hay xuất hiện trong các kỳ thi Học sinh giỏi Toán. Vì thế nó được khá nhiều bạn chọn để viết trong tập san này. Tôi cũng xin được đóng góp một bài viết về dạng toán này, qua đó muốn giới thiệu tới các bạn một số dạng toán về BĐT thường xuất hiện trong các kỳ thi toán những năm gần đây.

Bài số 1. (Japan 1997). Cho a, b, c > 0. Chứng minh rằng:

$$S = \frac{(b+c-a)^2}{(b+c)^2 + a^2} + \frac{(c+a-b)^2}{(c+a)^2 + b^2} + \frac{(a+b-c)^2}{(a+b)^2 + c^2} \ge \frac{3}{5}$$
 (*)

Lòi giải. Không mất tính tổng quát ta giả sử a + b + c = 3. Khi đó ta có:

$$S = \sum \frac{(2a-3)^2}{a^2 + (a-3)^2} \text{ và}$$

$$(*) \Leftrightarrow \sum \frac{(2a-3)^2}{a^2 + (a-3)^2} \ge \frac{3}{5}$$

$$\Leftrightarrow \sum \frac{1}{2a^2 - 6a + 9} \le \frac{3}{5}$$

$$Nhận xét: \frac{1}{2x^2 - 6x + 9} \le \frac{2x+3}{25}, \forall x > 0 \text{ (***)}$$
Thât vây,

(**) \Leftrightarrow $(x-1)^2(2x+1) \ge 0, \forall x > 0$, luôn đúng. Thành thử

$$\sum \frac{1}{2a^2 - 6a + 9} \le \sum \frac{2a + 3}{25} = \frac{3}{5}.$$

Dấu bằng xẩy ra \Leftrightarrow a = b = c.

Bài toán tương tư:

Đề thi USA – 2003

Cho x, y, z > 0. Chứng minh rằng

$$\sum \frac{(2x+y+z)^2}{2x^2+(y+z)^2} \le 8$$

Bài số 2. (Đề thi chọn ĐT trường PTNK TP Hồ Chí Minh 2004).

Cho x, y, z thỏa mãn hệ điều kiện

$$\begin{cases} x + y + z = 4 \\ x^2 + y^2 + z^2 = 6 \end{cases}$$

Tìm giá trị lớn nhất (GTLN) và giá trị nhỏ nhất (GTNN) của biểu thức $S = x^6 + y^6 + z^6$.

Lòi giải. Ta có
$$xy + yz + zx =$$

$$= \frac{1}{2} \left[(x + y + z)^2 - (x^2 + y^2 + z^2) \right] = 5$$
Đặt $xyz = a$.

Điều kiện cho hệ
$$\begin{cases} x + y + = 4 \\ xy + yz + zx = 5 \end{cases}$$
 có
$$xyz = a$$

nghiệm thực tương đương với điều kiện cho phương trình bậc ba sau có nghiệm (có thể là nghiệm bội) $t^3 - 4t^2 + 5t - a = 0$.

Dễ thấy điều kiện này là
$$\frac{50}{27} \le a \le 2$$

Lại có
$$x^6 + y^6 + z^6 =$$

= $(x^2 + y^2 + z^2)^3 - 3(x^2 + y^2)(y^2 + z^2)(z^2 + x^2)$

$$= (x^2 + y^2 + z^2)^3 - 3(x^2y^2 + y^2z^2 + z^2x^2)(x^2 + y^2 + z^2) + \mathbf{B} \grave{a} i \, s\acute{o} \, \mathbf{4}. \, Cho \quad 0 0, \forall a \in \left\lceil \frac{50}{27}; 2 \right\rceil \qquad \qquad \sum \frac{a^p}{b^p + c^p} \le \sum \frac{a^q}{b^q + c^q}, \forall a, b, c > 0 \quad (*)$$

Nên

$$\frac{10438}{243} = f\left(\frac{50}{27}\right) \le f(a) \le f(2) = 66$$

Vây GTLN của biểu thức S là 66 khi

$$(x,y,z) = (1,1,2)$$
. GTNN của S là $\frac{10438}{243}$ khi

$$(x,y,z) = (\frac{5}{3}, \frac{5}{3}, \frac{2}{3}).$$

Bài toán tương tư.

 $Vi\hat{e}t\ Nam - B - 2004$.

Cho x, y, z > 0 thỏa mãn điều kiên x + y+ z = 4 va xyz = 2. Tìm GTLN và GTNN $c\vec{u}a P = x^4 + v^4 + z^4$.

Bài số 3.

a) Cho tam giác ABC tù. Hãy tìm số thực k bé nhất sao cho

 $S = \sin^3 A + \sin^3 B + \sin^3 C < k$ là đúng với mọi tam giác tù ABC.

Đề bài như trên nhưng với điều kiên ABC là tam giác bất kỳ.

Lời giải.

a) Cho
$$A \rightarrow \frac{\pi}{2}, B \rightarrow \frac{\pi}{2}, C \rightarrow 0$$
 thấy $S \rightarrow 2$. Để có $S = \sin^3 A + \sin^3 B + \sin^3 C < k$ với mọi tam giác ABC thì $k \ge 2$.

Không mất tính tổng quát, ta giả sử

$$A > \frac{\pi}{2} > B \ge C$$
. Khi đó

 $\sin^2 B + \sin^2 C < \sin^2 A$

và $\sin A > \sin B \ge \sin C$. Vây nên

$$S = \sin^3 A + \sin^3 B + \sin^3 C <$$

$$<\sin^3 A + \sin A(\sin^2 B + \sin^2 C) < 2\sin^3 A < 2$$

Vây k = 2 là tất cả các giá tri cần tìm.

b) Lời giải xin được dành cho bạn đọc xem như một bài tập.

$$\sum \frac{a^{p}}{b^{p} + c^{p}} \le \sum \frac{a^{q}}{b^{q} + c^{q}}, \forall a, b, c > 0 \ (*)$$

Lời giải.

$$(*) \Leftrightarrow \sum \left(\frac{a^q}{b^q + c^q} - \frac{a^p}{b^p + c^p} \right) \ge 0$$

$$\Leftrightarrow \sum \frac{a^{q}(b^{p}+c^{p})-a^{p}(b^{q}+c^{q})}{(b^{q}+c^{q})(b^{p}+c^{p})} \ge 0$$

$$\iff \sum \frac{a^{p}b^{p}(a^{q-p}-b^{q-p}) + a^{p}c^{p}(a^{q-p}-c^{q-p})}{(b^{q}+c^{q})(b^{p}+c^{p})} \ge 0$$

$$\Leftrightarrow \sum \left\{ a^{p} b^{p} (a^{q-p} - b^{q-p}) \times \left(\frac{1}{(b^{p} + c^{p})(b^{q} + c^{q})} - \frac{1}{(a^{p} + c^{p})(a^{q} + c^{q})} \right) \right\} \ge 0$$

Dễ thấy (**) luôn đúng do $a^p b^p (a^{q-p} - b^{q-p}) \times$

$$\times \left(\frac{1}{(b^{p} + c^{p})(b^{q} + c^{q})} - \frac{1}{(a^{p} + c^{p})(a^{q} + c^{q})} \right) \ge 0$$
với mọi $a, b, c > 0$.

Cùng với các biểu thức hoán vi khác, ta có đpcm.

Bài số 5.

Cho a, b, c > 0. Chứng minh rằng $\left(\frac{a}{a+b}\right)^2 + \left(\frac{b}{b+c}\right)^2 + \left(\frac{c}{c+a}\right)^2 \ge \frac{3}{4}$

Lòi giải. Đặt
$$x = \frac{a}{b}$$
, $y = \frac{b}{c}$, $z = \frac{c}{a}$ ta có $x, y, z > 0$ và $xyz = 1$. Ta cần chứng minh
$$\sum \frac{1}{(x+1)^2} \ge \frac{3}{4}$$

Nhận xét. Với
$$x > 0$$
 thì $\frac{x}{x+1} + \frac{1}{(x+1)^2} \ge \frac{3}{4}$
(*)

Thật vậy $(*) \Leftrightarrow (x-1)^2 \ge 0$ luôn đúng. Giả sử $x \ge y \ge z$. Ta có $xy \ge 1$ và $z \le 1$

Lại có
$$\frac{1}{x^2+1} + \frac{1}{y^2+1} - \frac{2}{xy+1} =$$

$$= \frac{(x-y)^2(xy-1)}{(1+x^2)(1+y^2)(1+xy)} \ge 0$$

Vậy nên

$$\sum \frac{1}{(x+1)^2} \ge \frac{1}{2} \left(\frac{1}{x^2+1} + \frac{1}{y^2+1} \right) + \frac{1}{(z+1)^2} \ge$$

$$\ge \frac{1}{1+xy} + \frac{1}{(z+1)^2} \ge \frac{z}{z+1} + \frac{1}{(z+1)^2} \ge \frac{3}{4}$$
Vây ta có đợcm

Bài toán tương tư.

Đề chọn ĐTVN năm 2005.

Cho a, b, c > 0. Chứng minh rằng

$$\left(\frac{a}{a+b}\right)^3 + \left(\frac{b}{b+c}\right)^3 + \left(\frac{c}{c+a}\right)^3 \ge \frac{3}{8}$$

Korean 2000.

Cho a, b, c > 0. Chứng minh rằng

$$1 \le \left(\frac{a}{a+b}\right)^{\frac{3}{2}} + \left(\frac{b}{b+c}\right)^{\frac{3}{2}} + \left(\frac{c}{c+a}\right)^{\frac{3}{2}} \le \frac{3\sqrt{2}}{2}$$

Bài số 6. (Dựa theo một bài IMO)

Cho (a_n) là dãy các số nguyên dương phân biệt. Hỏi (a_n) phải thỏa mãn điều kiện

gì để chuỗi
$$\sum_{k=1}^{\infty} \left(\frac{a_k}{k^2}\right)$$
 có giá trị hữu hạn?

Có thể so sánh chuỗi trên với một chuỗi điều hòa dẫn đến câu trả lời là không tồn tại dãy số nào như vậy. Việc chứng minh tường minh xin được dành cho bạn đọc coi như bài tập trước khi kết thúc bài viết này.

Trên đây là một số bài toán về BĐT đã từng xuất hiện trong một số kỳ thi Toán gần đây. Chúc các bạn tìm thấy được nhiều điều bổ ích.

SỬ DỤNG ĐẮNG THỰC

để Chứng minh BẤT Đẳng Thức

VŨ VIỆT DŨNG LỚP 12T, CHUYÊN TOÁN K04 – 07 *THPT Chuyên Hoàng Văn thu*

Bất đẳng thức là dạng toán có nhiều cách khác nhau để chứng minh. Chúng ta thường thấy các bất đẳng thức có điều kiện đi kèm như a+b+c=1, abc=1, ... Và trong nhiều trường hợp, chúng ta phải tự tạo ra những đẳng thức để chứng minh bất đẳng thức. Sau đây là một số ví dụ cụ thể.

Ví du 1.

Cho a, b, c là 3 số đôi một khác nhau. Chứng minh rằng:

$$\frac{a^3 - b^3}{(a - b)^3} + \frac{b^3 - c^3}{(b - c)^3} + \frac{c^3 - a^3}{(c - a)^3} \ge \frac{9}{4}$$

Lời giải. Đây là bất đẳng thức khá quen thuộc, việc chứng minh đi từ đẳng thức sau:

$$-\left(1 - \frac{a+b}{a-b}\right)\left(1 - \frac{b+c}{b-c}\right)\left(1 - \frac{c+a}{c-a}\right) =$$

$$= \left(1 + \frac{a+b}{a-b}\right)\left(1 + \frac{b+c}{b-c}\right)\left(1 + \frac{c+a}{c-a}\right)$$

$$\Leftrightarrow \frac{a+b}{a-b}\frac{b+c}{b-c} + \frac{b+c}{b-c}\frac{c+a}{c-a} +$$

$$+ \frac{c+a}{c-a}\frac{a+b}{a-b} = -1$$

$$\text{Dặt } x = \frac{a+b}{a-b}, y = \frac{b+c}{b-c}, z = \frac{c+a}{c-a}$$

$$\text{thì } xy + yz + zx = -1. \text{ Mặt khác, ta luôn có}$$

$$(x+y+z)^2 \ge 0$$

$$\Leftrightarrow x^2 + y^2 + z^2 \ge -2(xy + yz + zx)$$

$$\Rightarrow \left(\frac{a+b}{a-b}\right)^2 + \left(\frac{b+c}{b-c}\right)^2 + \left(\frac{c+a}{c-a}\right)^2 \ge 2$$

$$\Leftrightarrow \left(\frac{a+b}{a-b}\right)^2 + 1 + \left(\frac{b+c}{b-c}\right)^2 +$$

$$+1 + \left(\frac{c+a}{c-a}\right)^2 + 1 \ge 5$$

$$\Leftrightarrow \frac{a^2+b^2}{\left(a-b\right)^2} + \frac{b^2+c^2}{\left(b-c\right)^2} + \frac{c^2+a^2}{\left(c-a\right)^2} \ge \frac{5}{2}(1)$$
Lại có
$$\left(\frac{a+b}{a-b}\right)^2 - 1 + \left(\frac{b+c}{b-c}\right)^2 - 1 + \left(\frac{c+a}{c-a}\right)^2 - 1 \ge -1$$

$$\Leftrightarrow \frac{ab}{\left(a-b\right)^2} + \frac{bc}{\left(b-c\right)^2} + \frac{ca}{\left(c-a\right)^2} \ge -\frac{1}{4}(2)$$
Công từng vế (1) và (2) ta có đpcm.

Ví du 2.

Chứng minh rằng với mọi số thực a, b,c, x, y, z thì

$$a(y+z)+b(z+x)+c(x+y)+$$

 $+\sqrt{(a^2+b^2+c^2)[(y+z)^2+(z+x)^2+(x+y)^2]} \ge$

$$\geq \frac{4}{3}(a+b+c)(x+y+z)$$

Lời giải. Bất đẳng thức đã cho tương đương với:

$$\sqrt{(a^2+b^2+c^2)[(y+z)^2+(z+x)^2+(x+y)^2]} \ge$$

$$\geq a \left(\frac{4x+y+z}{3}\right) + b \left(\frac{4y+x+z}{3}\right) + c \left(\frac{4z+x+y}{3}\right)$$

Chỉ cần nhận thấy rằng

$$\left(\frac{4x+y+z}{3}\right)^2 + \left(\frac{4y+z+x}{3}\right)^2 + \left(\frac{4z+x+y}{3}\right)^2 =$$
Lòi giải. Trong tam giác *ABC* ta có đẳng

= $(x+y)^2 + (y+z)^2 + (z+x)^2$ thì bài toán sẽ trở nên đơn giản. Thật vậy áp dụng bất đẳng thức *Bunhiacopski* ta có:

$$\left(a^2+b^2+c^2\right)\left[\left(\frac{4x+y+z}{3}\right)^2+\right]$$

$$+\left(\frac{4y+z+x}{3}\right)^{2}+\left(\frac{4z+x+y}{3}\right)^{2} \ge$$

$$\ge \left[a\left(\frac{4x+y+z}{3}\right)+b\left(\frac{4y+z+x}{3}\right)+c\left(\frac{4z+x+y}{3}\right)\right]^{2}$$

$$\Rightarrow \text{dpcm.}$$

Ví du 3.

Chứng minh rằng trong tam giác ABC ta có:

$$a^4 + b^4 + c^4 \ge \frac{16}{9} m_a m_b m_c (m_a + m_b + m_c)$$

Lời giải. Với mọi a, b, c ta luôn có đẳng thức sau:

Ví du 4.

Gọi r là bán kính đường tròn nội tiếp tam giác ABC. Chứng minh tằng:

$$\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} \le \frac{1}{4r^2}$$

Lời giải. Trong tam giác ABC ta có đẳng thức sau: $\frac{1}{4r^2} = \frac{1}{(b+c-a)(c+a-b)} + \frac{1}{(c+a-b)(a+b-c)} + \frac{1}{(a+b-c)(b+c-a)}$

Ta có

$$\frac{1}{(b+c-a)(c+a-b)} = \frac{1}{c^2 - (a-b)^2} \ge \frac{1}{c^2}$$
$$\frac{1}{(c+a-b)(a+b-c)} = \frac{1}{a^2 - (b-c)^2} \ge \frac{1}{a^2}$$
$$\frac{1}{(a+b-c)(b+c-a)} = \frac{1}{b^2 - (c-a)^2} \ge \frac{1}{b^2}$$

Cộng từng vế bất đẳng thức trên \Rightarrow đpcm.

Sau đây là một số đẳng thức (bạn đọc tự chứng minh), hy vọng qua đó các bạn có thể sáng tạo ra nhiều bất đẳng thức hay và đẹp hơn.

$$1)\frac{a-b}{a+b+2c} \cdot \frac{b-c}{b+c+2a} \cdot \frac{c-a}{c+a+2b} =$$

$$= \frac{a-b}{a+b+2c} + \frac{b-c}{b+c+2a} + \frac{c-a}{c+a+2b}$$

2)
$$\frac{a^2}{(a-b)(a-c)} + \frac{b^2}{(b-a)(b-c)} + \frac{c^2}{(c-a)(c-b)} = 1$$

3)
$$\frac{(1+a)(1+b)}{(c-a)(c-b)} + \frac{(1+b)(1+c)}{(a-b)(a-c)} + \frac{(1+c)(1+a)}{(b-c)(b-a)} = -1$$

4)
$$(z+y-x)^2 + (x+z-y)^2 + (x+y-z)^2 =$$

= $\left(\frac{5x-z-y}{3}\right)^2 + \left(\frac{5y-x-z}{3}\right)^2 + \left(\frac{5z-x-y}{3}\right)^2$

5)
$$\left(\frac{x+y+z-t}{2}\right)^2 + \left(\frac{y+z+t-x}{2}\right)^2 + \left(\frac{z+t+x-y}{2}\right)^2 + \left(\frac{z+t+x-y}{2}\right)^2 + \left(\frac{z+t+x-y}{2}\right)^2 = x^2 + y^2 + z^2 + t^2$$

6)
$$\frac{a-b}{c} \cdot \frac{b-c}{a} \cdot \frac{c-a}{b} = \frac{a-b}{c} + \frac{b-c}{a} + \frac{c-a}{b}$$

7) Trong tứ giác ABCD ta có:

$$S = \sqrt{(p-a)(p-b)(p-c)(p-d) - abcd\cos^2 \frac{B+D}{2}}$$

trong đó p là nữa chu vi còn a, b, c, d là độ dài các canh của tứ giác.

- 8) Cho tam diện O.ABC vuông tại O, khi đó: $S_{ABC}^2 = S_{OAB}^2 + S_{OAC}^2 + S_{OBC}^2$.
- 9) Đặt $S = a_1 + a_2 + ... + a_n$ ta luôn có:

$$\left(\frac{2S - na_1}{n}\right)^2 + \left(\frac{2S - na_2}{n}\right)^2 + \dots$$

$$\dots + \left(\frac{2S - na_n}{n}\right)^2 = a_1^2 + a_2^2 + \dots + a_n^2, \forall n \in \mathbb{N}^*$$

10)
$$\frac{y+z+2x}{z-y} \cdot \frac{x+y+2z}{y-x} + \frac{x+y+2z}{y-x} \cdot \frac{z+x+2y}{x-z} + \frac{z+x+2y}{x-z} \cdot \frac{y+z+2x}{z-y} = -1$$

11)
$$\frac{c}{a-b} \cdot \frac{a}{b-c} + \frac{a}{b-c} \cdot \frac{b}{c-a} + \frac{b}{c-a} \cdot \frac{c}{a-b} = -1$$

Chú ý là trong các đẳng thức nói trên thì điều kiện là mẫu số ở các phân thức là khác không.

Tiếp cận Toán bằng Vật Lý

NGUYỄN LÂM TUYỀN CHUYÊN TOÁN K99 – 02 Sv. Lớp Điều khiển Tự động 1 K47 ĐH Bách Khoa Hà Nội

Người ta thường nói "Vận dụng Toán vào Vật lý" nhưng ít khi nói vận dụng theo chiều hướng ngược lại, có chẳng chỉ là từ vấn đề Vật lý cụ thể mà đặt ra nhiệm vụ nghiên cứu mới cho Toán học. Bài báo này xin được giới thiệu với bạn đọc một hướng vận dụng ngược lại, đó là cách tiếp cận toán học bằng vật lý.

Trong toán học Phổ thông, ai cũng biết tới bài toán nổi tiếng của Toricelli sau: "Cho tam giác nhọn ABC, tìm trong tam giác một điểm M sao cho tổng MA + MB + MC đạt giá trị bé nhất". Ta cũng biết rằng điểm M thỏa mãn bài toán là điểm nằm trong tam giác và nhìn ba cạnh AB, BC, CA của tam giác đó dưới một góc 120° . Điểm M đó còn được gọi là điểm Toricelli.

Bài toán trên có một lời giải rất đẹp bằng phép quay. Nội dung lời giải cũng như phần mở rộng của bài toán này cũng đã được đề cập đến trong nhiều tài liệu, đặc biệt là tạp chí THTT, ở đây tác giả bài báo xin không nêu lại.

Chúng ta hãy để ý một số hiện tượng: Tại sao một chú chim lại xù lông mỗi khi trời rét? Một viên bi tại sao đặt trên đỉnh dốc lại tự động lăn xuống dưới? Hay tại sao một giọt Anilin khi nhỏ vào trong nước lại có hình dạng một khối cầu? ...

Có thể giải thích một cách định tính như sau thông qua nguyên lý về "mức năng

lượng cực tiểu" trong lý thuyết vật lý. Để cân bằng năng lượng cơ thể với môi trường khi trời rét thì chú chim cần phải trao đổi nhiệt (cụ thể là cung cấp năng lượng) nhằm chống lại tác động từ phía môi trường. Nhưng để mức "tổn thất" năng lượng là ít nhất, chú chim phải "xù lông" để hạn chế dẫn nhiệt. Viên bi chuyển động xuống dưới để có được mức thế năng cực tiểu. Giọt Anilin có dạng hình cầu để có được mức năng lượng tự do (là thế năng phụ tiềm tàng của các phân tử lớp bề mặt) đạt cực tiểu. Vì với một khối chất có thể tích nhất định thì hình cầu là hình có diện tích bề mặt nhỏ nhất!

Trường hợp đặc biệt và điển hình của nguyên lý về "mức năng lượng cực tiểu" là nguyên lý "thế năng cực tiểu" trong trường lực thế. Trường lực thế là trường mà ở đó công dịch chuyển một vật không phụ thuộc vào dạng đường dịch chuyển mà chỉ phụ thuộc vào điểm đầu và điểm cuối của dịch chuyển, ví dụ trường trọng lực của trái đất là một trường thế. Nội dung của nguyên lý này là: "Mọt vật/hệ vật trong tự nhiên đều có xu hướng tự dịch chuyển về trạng thái có mức thế năng cực tiểu". Vì tại đó động năng không thể tăng được nữa và ban đầu nếu vật đứng yên thì sẽ đứng yên mãi mãi.

Bây giờ, chúng ta sẽ giải bài toán Toricelli có áp dụng nguyên lý thế năng cực tiểu.

Chọn mặt đất phẳng là phương làm mốc tính thế năng. Hướng dương là hướng lên trên (phía ra xa mặt đất). Trong không gian ta dựng tam giác nhọn ABC có phương (ABC) song song với phương mặt đất. Lấy những đoạn dây treo không khối lượng, không giãn, có chiều dài $l_1 = l_2 = l_3 = l$ và những quả nặng có khối lượng đơn vị. Nối các đoạn dây lại một điểm chung M, đầu còn lại nối với các quả nặng và vắt chúng qua các đỉnh của tam giác ABC như trong hình vẽ 1.

Giả thiết các sợi dây dịch chuyển không ma sát tại các đỉnh và giả thiết môi trường

thực nghiệm là lý tưởng. Rõ ràng hệ sẽ tự động chuyển dịch theo mức thế năng giảm dần và sẽ dừng lại tại trạng thái mà hệ đã đạt tới mức thế năng cực tiểu, vị trí cân bằng bền.

Ký hiệu các khoảng cách, chiều dài cũng như các lực tác dụng như trên hình vẽ . Theo đó thì thế năng tại vị trí cân bằng là:

$$W_t = (h_a + h_b + h_c).mg$$
 đạt Min

$$\Leftrightarrow (h_a + h_b + h_c) \det Min$$

$$\Leftrightarrow$$
 $(x_a + x_b + x_c)$ đạt Min (vì $x_a + h_a =$

$$x_b + h_b = x_c + h_c = h = const$$

$$\Leftrightarrow$$
 $(MA + MB + MC)$ đạt Min (vì

$$MA + x_a = MB + x_b = MC + x_c = l = const$$

Điểm M ở vị trí cân bằng (đứng yên), do đó họp lực \overrightarrow{P} tác dụng lên nút M phải bằng $\overrightarrow{0}$. Các lực tác dụng lên nút M có modul (độ lớn) chính bằng trọng lực các quả nặng (m.g) và có chiều hướng từ M ra các đỉnh tương ứng (H.2).

Ta có $\overrightarrow{P_1} + \overrightarrow{P_2} + \overrightarrow{P_3} = \overrightarrow{0}$ và vì $\left| \overrightarrow{P_1} \right| = \left| \overrightarrow{P_2} \right| = \left| \overrightarrow{P_3} \right| = mg \Rightarrow \Delta A_1 B_1 C_1$ đều $\Rightarrow \angle AMB = \angle BMC = \angle CMA = 120^0$ (*). M chính là điểm Toricelri cần tìm. Vì ΔABC nhọn nên vị trí của M như trên tồn tại và duy nhất.

Vấn đề sẽ khác đi nếu $\triangle ABC$ có một góc lớn hơn 120° , giả sử là góc A. Khi đó sẽ không tồn tại điểm M thỏa mãn (*) và hiển nhiên là, bài toán chưa được giải quyết. Nhưng chúng ta chú ý hai sự kiện sau:

Sự kiện 1: Khi điểm M trong tam giác và nhìn hai cạnh AB, AC các góc bằng nhau ($\angle AMB = \angle AMC$) thì điểm M có xu hướng chuyển đông về phía điểm A.

Không mấy khó khăn để nhìn thấy tính đúng đắn của sự kiện này vì hợp lực \overrightarrow{P} khi đó có hướng về phía điểm A.

Sự kiện 2: Khi điểm M trong tam giác và nhìn hai cạnh AB, AC các góc không bằng nhau (chẳng hạn $\angle AMB > \angle AMC$) thì điểm M có xu hướng dịch chuyển về phía cạnh có góc nhìn nhỏ. Cụ thể, khi $\angle AMB > \angle AMC$ thì hợp lực \overrightarrow{P} có hướng về phía cạnh AC.

Từ 2 sự kiện trên, ta đi đến kết luận: Thế năng của hệ tự do giảm dần (điều này tương

ứng với tổng MA + MB + MC nhỏ dần) ứng với vị trí của điểm M chuyển động theo đường zic zắc và có xu hướng tiến về phía điểm A. Lưu ý rằng điểm M ≡ A cũng vẫn thỏa mãn điều kiên của điểm M trong sư kiên 1. Vây điểm A chính là điểm cần tìm. Bài toán đã được giải quyết.

Từ cách tiếp cân vấn đề như trên, tôi xin đề xuất một số bài toán sau:

Vấn đề 1. Trong tam giác *ABC*, tìm tập hợp tất cả các điểm M nhìn 2 cạnh AB, AC của tam giác đó các góc bằng nhau.

Ván đề 2. Cho tam giác *ABC*, tìm trong tam giác một điểm M sao cho tổng xMA + yMB+ zMC đat giá tri bé nhất, trong đó x, y, z là các số thực dương cho trước.

Vấn đề 3. Cho đa giác lồi $A_1A_2 \dots A_n$. Tìm điểm trên hình đa giác đó điểm M sao cho tổng $MA_1 + MA_2 + ... + MA_n$ đạt giá trị bé nhất. Chứng minh rằng có duy nhất một điểm *M* thỏa mãn điều kiện đó.

Vấn đề 2 cũng không phải là mới la, nó cũng đã được đề cập và giải quyết trong một số trường hợp trên tạp chí THTT (năm 1994) của thầy Nguyễn Minh Hà. Mời các bạn xem xét các bài toán trên theo cách tiếp cân bằng vật lý và bằng thuần túy toán học.

Như vây đấy các ban a, mối liên hệ giữa Toán học và các môn học khác cũng thật thú vi!

Không ai tắm hai lần trên một dòng sông

Triết học

CÂN BẰNG HỆ SỐ ... (tiếp trang 34)

BÀI TẬP

Bài tập 1. Tìm giá trị nhỏ nhất của biểu thức

$$\frac{x^{1000}}{y^{99}} + \frac{y^{1000}}{z^{99}} + \frac{z^{1000}}{t^{99}} + \frac{t^{1000}}{x^{99}}$$

trong đó x, y, z, t là các số thực dương thỏa $m\tilde{a}n x^2 + v^2 + z^2 + t^2 = 1$

Bài tâp 2. Gọi x là số lớn nhất trong ba số dương x, y, z. Tìm giá trị nhỏ nhất của biểu

thức
$$\frac{x}{y} + \sqrt{1 + \frac{y}{z}} + \sqrt[3]{1 + \frac{z}{x}}$$
.

Bài tập 3. Cho các số thực dương a, b, c, d thỏa mãn điều kiên:

$$Max\left\{\frac{12}{ab} + \frac{6}{bc} + \frac{4}{ca}; \frac{15}{bc} + \frac{6}{cd} + \frac{32}{db}\right\} \le 32$$

Tìm giá tri nhỏ nhất của biểu thức

$$P(a,b,c,d) = 5a + \frac{13}{3}b + \frac{22}{3}c + \frac{7}{4}a$$
.

(ĐS: MinP(a,b,c,d) = 18 đat được khi

$$a = \frac{1}{2}, b = \frac{3}{2}, c = \frac{3}{4}, d = 2$$

Bài tập 4. Cho các số thực dương a_i, b_i (i = 1, 2, 3) và x_1, x_2, x_3, x_4 thỏa mãn các điều kiện $a_1x_1 + a_2x_2 + a_3x_3 \le (a_1 + a_2 + a_3)x_1x_2x_3$ $va b_1 x_1 + b_2 x_2 + b_3 x_4 \le (b_1 + b_2 + b_3) x_2 x_3 x_4$

Chứng minh rằng khi đó ta có bất đẳng thức: $(a_2 + a_3)x_1 + (a_1 + a_3 + b_2 + b_3)x_2 +$ $+(a_1+a_2+b_1+b_3)x_3+(b_1+b_4)x_4 \ge$

$$\geq 2(a_1 + a_2 + a_3 + b_1 + b_2 + b_3)$$

Và đẳng thức xẩy ra khi và chỉ khi:

$$x_1 = x_2 = x_3 = x_4 = 1./.$$

Keep it simple: As simple as possible, but no simpler

BẤT ĐẮNG THỰC SCHUR VÀ ỨNG DỤNG

TRƯƠNG QUỐC HƯNG CHUYÊN TOÁN K04 – 07 **Lớp 12T, THPT Chuyên Hoàng Văn Thu**

1. Bất đẳng thức Schur.

Cho các số thực $x, y, z \ge 0; r > 0$ ta có bất đẳng thức (BĐT) sau

$$x^{r}(x-y)(x-z) + y^{r}(y-z)(y-x) + +z^{r}(z-x)(z-y) \ge 0.$$

Dấu đẳng thức xẩy ra khi x = y = z = 1 hoặc hai trong ba số x, y, z bằng nhau và số còn lại bằng 0.

Chứng minh. Không mất tính tổng quát giả sử $x \ge y \ge z$. Khi đó

$$x^{r}(x-y)(x-z) \ge y^{r}(x-y)(y-z),$$

lại có $z^r(z-x)(z-y) \ge 0$ nên ta có đpcm.

Đặc biệt, với r = 1 ta có một BĐT có khá nhiều ứng dung:

"Với x, y, z là các số không âm ta luôn có:

$$x(x-y)(x-z)+y(y-z)(y-x)+$$

+ $z(z-x)(z-y) \ge 0$ ".

Cụ thể là khi khai triển BĐT trên ta viết được dưới ba dạng sau:

a)
$$x^3 + y^3 + z^3 + 3xyz \ge$$

$$\geq xy(x+y) + yz(y+z) + zx(z+x)$$

b)
$$xyz \ge (x + y - z)(y + z - x)(z + x - y)$$

c)
$$4(x+y+z)(xy+yz+zx) \le$$

$$\leq \left(x + y + z\right)^3 + 9xyz$$

Xét một số ví du cu thể sau:

2. Ví dụ 1. (IMO – 2000).

Cho a, b, c là các số thực dương thỏa mãn abc = 1. Chúng minh rằng:

$$\left(a-1+\frac{1}{b}\right)\left(b-1+\frac{1}{c}\right)\left(c-1+\frac{1}{a}\right) \le 1$$

Lòi giải. Đặt $x = a, y = 1, z = \frac{1}{b} = ac$. Khi đó

$$a = \frac{x}{y}, b = \frac{y}{z}, c = \frac{z}{x}$$
. Ta có BĐT đã cho

tương đương với

$$\frac{(x-y+z)}{y} \cdot \frac{(y-z+x)}{z} \cdot \frac{(z-x+y)}{x} \le 1$$

Đây chính là BĐT b) khi r = 1 của BĐT Schur. Vậy ta có đpcm. Dấu đẳng thức xẩy ra khi a = b = c = 1.

3. Ví du 2.

Cho a, b, c là các số thực dương thỏa mãn a + b + c = 1. Chứng minh rằng:

$$5(a^2+b^2+c^2) \le 6(a^3+b^3+c^3)+1(*)$$

Lời giải. BĐT Schur có hai vế là đồng bậc. Nếu muốn áp dụng thì ta cần phải chuyển BĐT(*) cho hai vế có cùng bậc. Cụ thể ta làm như sau:

$$(*) \Leftrightarrow 5(a^2+b^2+c^2)(a+b+c) \le$$

$$\leq 6(a^3 + b^3 + c^3) + (a+b+c)^3$$
 (Vì $a+b+$

c = 1). Khai triển BĐT trên ta có:

$$2(a^3 + b^3 + c^3 + 3abc) \ge$$

$$\geq 2(a^2b + ab^2 + b^2c + bc^2 + c^2a + ca^2)$$

$$\Leftrightarrow 2(a^3+b^3+c^3+3abc) \ge$$

$$\geq ab(a+b)+bc(b+c)+ca(c+a)$$

Đây là BĐT a) trong trường hợp r = 1 của BĐT Schur, do vậy ta có đpcm.

Ví du 3. (IMO – 1984).

Cho x, y, z là các số thực không âm thỏa mãn x + y + z = 1. Chứng minh rằng

$$0 \le xy + yz + zx - 2xyz \le \frac{7}{27}(*)$$

Lời giải. Chúng ta chuyển BĐT này về dạng đồng bậc. Dựa vào giả thiết x + y + z = 1 ta có: (*) \Leftrightarrow

$$0 \le (x+y+z)(xy+yz+zx) - 2xyz \le$$

$$\le \frac{7}{27}(x+y+z)^{3}$$

$$\Leftrightarrow 0 \le x^{2}y + xy^{2} + y^{2}z + yz^{2} + z^{2}x + zx^{2} + xyz \le$$

$$\le \frac{7}{27}(x+y+z)^{3}$$

Rõ ràng BĐT bên trái luôn đúng do *x*, *y*, *z* không âm.

Ta có BĐT ở vế phải tương đương với $(x+y+z)(xy+yz+zx)-2xyz \le$

$$\leq \frac{7}{27} \left(x + y + z \right)^3 (1)$$

Mặt khác theo BĐT c) ở trên ta có $(x + y + z)(xy + yz + zx) \le$

$$\leq \frac{1}{4} \Big[(x+y+z)^3 + 9xyz \Big] (2)$$

Theo BĐT AM – GM ta có:

$$xyz \le \frac{1}{27} \left(x + y + z \right)^3 (3)$$

Từ (2) và (3) suy ra BĐT(1) được chứng minh.

Ví du 4. (APMO - 2004).

Cho a, b, c là các số thực dương. Chứng minh rằng:

$$(a^2+2)(b^2+2)(c^2+2) \ge 9(ab+bc+ca)(*)$$

Lời giải. Ta có

$$(*) \Leftrightarrow (abc)^{2} + 2(a^{2}b^{2} + b^{2}c^{2} + c^{2}a^{2}) +$$

$$+4(a^{2} + b^{2} + c^{2}) + 8 \ge 9(ab + bc + ca)(1)$$

Do $x^2 + y^2 \ge 2xy$ đúng với mọi x, y nên ta có $a^2 + b^2 + c^2 \ge ab + bc + ca$.

Cũng vậy, do $x^2y^2 + 1 \ge 2xy$ đúng với mọi x, y nên ta có

$$2(a^{2}b^{2} + b^{2}c^{2} + c^{2}a^{2}) + 6 \ge 4(ab + bc + ca)$$

Khi đó BĐT(1) được chứng minh khi BĐT sau được chứng minh:

$$(abc)^2 + 2 \ge 2(ab + bc + ca) - (a^2 + b^2 + c^2)(2)$$

Dùng BĐT AM - GM hai lần và dùng BĐT c) ở trên ta có:

$$(abc)^{2} + 2 \ge 3\sqrt[3]{(abc)^{2}} \ge 9\frac{abc}{a+b+c} \ge$$

$$\geq 4(ab+bc+ca) - (a+b+c)^2 =$$

$$= 2(ab+bc+ca) - (a^2+b^2+c^2)$$

Vậy (2) được chứng minh hay (*) được chứng minh. Sau đây là một số bài tập nhỏ cho ban đọc:

Bài tập 1. (Chọn ĐT Mỹ năm 2003).

Cho a, b, c là các số thực thuộc khoảng $\left(0, \frac{\pi}{2}\right)$. Chứng minh rằng

$$\frac{\sin a \sin(a-b)\sin(a-c)}{\sin(b+c)} + \frac{\sin b \sin(b-c)\sin(b-a)}{\sin(c+a)} + \frac{\sin c \sin(c-a)\sin(c-b)}{\sin(a+b)} \ge 0$$

Bài tâp 2. (Chon ĐT Mỹ năm 2002).

Cho các số thực a, b, c dương. Chứng minh rằng

$$\frac{a+b+c}{3} - \sqrt[3]{abc} \le$$

$$\le \max\left\{ \left(\sqrt{a} - \sqrt{b}\right)^2, \left(\sqrt{b} - \sqrt{c}\right)^2, \left(\sqrt{c} - \sqrt{a}\right)^2 \right\}$$

"Một cuộc sống cân bằng là gì ư? Hãy học một thứ gì đó và nghĩ một thứ gì đó và vẽ và sơn và nhảy và chơi hàng ngày"

- Robert Fulghum -

một số bài tập về Toán Rời Rạc

BÙI MẠNH QUÂN CHUYÊN TOÁN K04 – 07 **Lớp 12T, THPT Chuyên Hoàng Văn Thụ**

Rời rạc là một dạng toán không có một phương pháp giải cụ thể, để giải được bài toán dạng này cần dựa trên những suy luận logic và chính xác. Đó là điều rất có ý nghĩa trong việc rèn luyện trí thông minh, sự logic và tính linh hoạt, giúp nâng cao hiệu quả giải quyết công việc trong nhiều lĩnh vực: Từ học tập đến Khoa học và đời sống.

Sau đây là một số bài toán mà tôi muốn gửi đến các ban.

Bài số 1. Một dãy có 2007 phòng, ban đầu trong mỗi phòng có một người. Sau mỗi ngày có 2 người nào đó chuyển sang phòng kề với phòng mình đang ở nhưng theo 2 chiều ngược nhau. Hỏi:

- a) Liệu có một ngày nào đó không có người nào ở trong phòng chẳn hay không?
- b) Liệu có một ngày nào đó có 1004 người ở phòng 2007 được không?

c)

Lời giải.

a) Tô đen các ô chắn như hình vẽ:

Khi đó có 1004 ô trắng và 1003 ô đen. Gọi S_n là tổng số người trong các phòng chắn (tức là trong các ô đen) sau ngày thứ n.

Sau mỗi ngày có 2 người chuyển sang phòng kề với nó. Nên họ sẽ chuyển từ ô màu đen sang ô màu trắng. Có các khả năng sau xẩy ra:

- i) $S_{n+1} = S_n$ nếu 2 người di chuyển có một người ở ô đen, một người ở ô trắng.
- ii) $S_{n+1} = S_{n-2}$ nếu 2 người di chuyển cùng ở ô trắng.
- iii) $S_{n+1} = S_{n-2}$ nếu 2 người di chuyển cùng ô đen.

Từ đó suy ra $S_{n+1} \equiv S_n \pmod{2} \forall n \in N$

- \Rightarrow $S_n \equiv S_0 \equiv 1 \pmod{2} \ \forall n \in N$. Yêu cầu của bài toán là tồn tại n để $S_n = 0$ nên không thể thực hiện được.
- b) Giả sử mỗi người khi ở phòng nào thì ghi số phòng đó vào một chiếc bảng của riêng mình. Gọi T_n là tổng các số ghi trên bảng của tất cả các thành viênsau bước chuyển thứ n. Ta có: $T_n = T_0 = 1 + 2 + ... + 2007 = 2015028 = 1004.2007$.
- \Rightarrow Không thể tồn tại một ngày nào đó có 1004 người ở phòng 2007, vì nếu như vậy thì các phòng còn lại sẽ không có người vì tổng không đổi T_n đã đủ, và đây là điều vô lý.

Bài số 2. Cho a = 1, b = 2 thực hiện trò chơi như sau: Từ 2 số a, b được phép viết a + b + ab.

- a) Hỏi có thể viết được 2001 không?
- b) Hỏi có thể viết được 11111 không?

Lời giải. Từ các số viết được có thể lập ra dãy sau:

$$\begin{cases} u_1 = 1, u_2 = 2 \\ u_n = u_i + u_j + u_i u_j \end{cases} (i, j < n, i \neq j)$$

Xét dãy
$$(v_n)$$
: $v_n = u_n + 1$

$$\Rightarrow \begin{cases} v_1 = 2, v_2 = 3(*) \\ v_n = u_n + 1 = (u_i + 1)(u_j + 1) = v_i v_j (**) \end{cases}$$

Từ công thức (*) và (**) $\Rightarrow v_n$ chỉ có thể phân tích được thành:

$$v_n = 2^{\alpha} 3^{\beta} (\alpha, \beta \in N^+)$$

Từ đó
$$\Rightarrow v_n = 2^{\alpha} 3^{\beta} (\alpha, \beta \in N^+)$$

Mà 2001 + 1 = 2.7.143, 11111 + 1 = 8.3.463, vì thế không thể viết được các số 2001 và 11111.

Bài số 3. Chia hình tròn thành 12 phần bằng nhau như hình vẽ. Ban đầu A_1 được đánh dấu (-): Các điểm từ A_2 đến A_{12} được đánh dấu (+) ... Mỗi lần cho phép lấy ra k đỉnh liên tiếp và đổi dấu đồng thời các đỉnh đó. Hỏi có thể tồn tại trạng thái A_2 dấu (-), các đỉnh còn lại mang dấu (+) được không?

- a) Cho k = 3.
- b) Cho k = 4.

Lời giải. Đồng nhất (+) = 1 và (-) = -1

a) Khi k = 3.

Tô màu A_2 , A_3 , A_5 , A_6 , A_8 , A_9 , A_{11} , A_{12} . Mỗi lần đổi dấu thì có chẵn đỉnh tô màu đổi dấu.Nên tích các số ở các đỉnh được tô màu luôn không đổi và bằng 1.

Giả sử có được trạng thái như trên yêu cầu của đề bài thì tích các số ở đỉnh được tô màu là -1. Điều này mâu thuẫn.Vì vậy không tồn tại trạng thái A_2 mang dấu (-): các đỉnh khác mang dấu (+).

b) Khi k = 4.

Tô màu các đỉnh lẻ $A_1, A_3, ..., A_9, A_{11}$. Mỗi lần đổi dấu cũng có chắn đỉnh được tô màu bị đổi dấu. Do đó tích các số ở cả đỉnh được tô màu luôn bằng (-1) không đổi.

Giả sử có trạng thái thỏa mãn đề bài thì tích các số ở đỉnh tô màu bằng 1. Điều này là mâu thuẫn. Do vậy không tồn tại trạng thái như đã yêu cầu.

Qua một số ví dụ ở trên, tôi hy vọng các bạn có thể thấy phần nào sự thú vị của Toán rời rạc. Chúc các bạn học tốt và có được nhiều thành công!

Lời Ban biên tập. Những bài toán rồi rạc mà bạn Bùi Mạnh Quân giới thiệu là những bài toán rất hay và thú vị đúng như cái vốn có của Toán rời rạc. Mong các bạn chú ý tìm tòi thêm nhiều bài toán hay khác. Điều đó sẽ giúp cho việc học – làm toán trở nên phong phú và ý nghĩa.

SỬ DỤNG HÀNG ĐIỂM ĐIỀU HÒA ĐỂ GIẢI BÀI TOÁN CỰC TRỊ

TRẦN THỊ LINH PHƯƠNG CHUYÊN TOÁN K06 – 09. **Lớp 10T, THPT Chuyên Hoàng Văn Thu**

Lời Ban biên tập. Trong quá trình chuẩn bị ra mắt tờ Tập san, chúng tôi đã nhận được rất nhiều ý kiến đóng góp và bài viết gửi về. Trong đó có cả những bạn mới học lớp 10. Chúng tôi xin trân trọng cảm ơn mọi sự đóng góp quý báu đó của các bạn. Hy vọng rằng những bạn học sinh Phổ thông sẽ tiếp tục công việc mà các thế hệ đi trước còn chưa hoàn thành ... Sau đây là bài viết của tác giả nhỏ tuổi nhất trong Tập san này, với nội dung về hàng điểm điều hòa.

I. Định nghĩa.

Trên một trục cho 4 điểm A, B, C, D. Ta nói A, B, C, D lập thành 1 hàng điểm điều hòa nếu (A, B, C, D) = -1.

II. Môt số tính chất.

1. Tính chất 1(Hệ thức Đề Các).

A, B, C, D là hàng điểm điều hòa thì $\frac{2}{AB} = \frac{1}{AC} + \frac{1}{AD} (1)$

Chứng minh.

Từ
$$(A,B,C,D) = -1$$
 ta có: $\frac{\overline{CB}}{\overline{CA}} = -\frac{\overline{DB}}{\overline{DA}}$
Hay: $\frac{\overline{CA} + \overline{AB}}{\overline{CA}} = -\frac{\overline{DA} + \overline{AB}}{\overline{DA}}$

$$\Leftrightarrow 1 + \frac{\overline{AB}}{\overline{CA}} = -1 - \frac{\overline{AB}}{\overline{DA}}$$

$$\Leftrightarrow 2 = \frac{\overline{AB}}{\overline{AC}} + \frac{\overline{AB}}{\overline{AD}}$$

$$\Leftrightarrow \frac{2}{\overline{AB}} = \frac{1}{\overline{AD}} + \frac{1}{\overline{AC}}$$

2. Tính chất 2.

Gọi SC và SD lần lượt là phân giác trong và ngoài của tam giác ABS. Khi đó (A, B, C, D) là một hàng điểm điều hòa (2)

Chứng minh.

Vì SC là phân giác trong của tam giác

$$SAB$$
 nên: $\frac{CA}{CB} = \frac{SA}{SB} \Rightarrow \frac{\overline{CA}}{\overline{CB}} = -\frac{SA}{SB}$

Vì *SD* là phân giác ngoài của tam giác *SAB* nên:

$$\frac{DA}{DB} = \frac{SA}{SB} \Rightarrow \frac{\overline{DA}}{\overline{DB}} = \frac{SA}{SB} \Rightarrow \frac{\overline{CA}}{\overline{CB}} = -\frac{\overline{DA}}{\overline{DB}}$$
$$\Rightarrow (A, B, C, D) = -1 \text{ (dpcm)}.$$

III. Một số bài toán.

Bài toán 1. Cho góc xOy và một điểm M cố định trên đường phân giác Ot của góc đó. Một đường thẳng Δ bất kỳ quay quanh M cắt xOy tại P và Q. Tìm vị trí của đường thẳng Δ để biểu thức $\frac{1}{OP \cdot OQ}$ đạt giá trị lớn nhất.

Lời giải.

Qua M kẻ đường thẳng vuông góc với Ot cắt Ox và Oy lần lượt tại A và B. Lấy I trên trục Ox sao cho OI = OQ.

Ta có MA là phân giác trong của tam giác IMP và $MD \perp MA$. Do đó MO là phân giác ngoài của tam giác IMP.

Theo tính chất 2 ta có *I*, *A*, *P*, *O* là hàng điểm điều hòa. Theo hệ thức Đề Các ta có:

$$\frac{1}{\overline{OP}} + \frac{1}{\overline{OI}} = \frac{2}{\overline{OA}} = const.$$

Mà OI = OQ nên $\frac{1}{OP} + \frac{1}{OQ} = \frac{2}{OA} = \frac{2}{OA}$ = const Theo bất đẳng thức Cauchy thì $\frac{1}{OP \cdot OQ}$ đạt giá trị lớn nhất khi $\frac{1}{OP} = \frac{1}{OQ}$ hay khi P = A, Q = B. Từ đó ta tính được giá trị cụ thể của $\frac{1}{OP \cdot OQ}$.

Bài toán 2.

Cho tam giác ABC cân tại A và một đường thẳng Δ song song với BC. Điểm I di động trên Δ . BI cắt AC tại M, CI cắt AB tại N. Tìm vị trí của I để giá trị của biểu thức $\frac{1}{CM \cdot BN}$ đạt giá trị lớn nhất.

Lời giải.

Vẽ đường cao AH, $gi\vec{a}$ sử $AH \cap \Delta = P$, $AH \cap BM = K$, $CK \cap AB = R$, $CP \cap AB = S$.

Vì đường thẳng Δ song song với BC nên theo định lý Ta - lét ta có:

$$\frac{PQ}{QH} = \frac{IP}{HC}; \frac{PK}{HK} = \frac{IP}{BH} = \frac{IP}{HC}$$
Do đó:
$$\frac{\overline{PQ}}{\overline{QH}} = -\frac{\overline{KP}}{\overline{KH}} \Rightarrow (K, P, Q, H) = -1$$

Khi đó các tia CK, CP, CQ, CH lập thành một chùm điều hòa. Lại có AB cắt chùm điều hòa tại R, S, N, $B \Rightarrow (R$, S, B, N) = -1 (Một tính chất quen thuộc của chùm điều hòa).

Như vậy, theo hệ thức Đề - Các thì:

1 1 2 1 1 2

$$\frac{1}{\overline{BN}} + \frac{1}{\overline{BR}} = \frac{2}{\overline{BS}} \Rightarrow \frac{1}{\overline{BN}} + \frac{1}{\overline{CM}} = \frac{2}{\overline{BS}} = const$$
Do vậy theo bất đẳng thức *Cauchy* ta có
$$\frac{1}{\overline{CM} \cdot BN}$$
 đạt giá trị lớn nhất khi $BN = CM$,
hay là khi $I \equiv P$.

PHÂN II

Lịch sử và ứng dụng Toán học

MỞ ĐẦU

Khi xã hội càng phát triển thì sự phân hóa giữa các ngành nghề càng giảm mặc dù tính chuyên môn hóa và sự phân công lao động trong xã hội ngày càng trở nên sâu sắc. Cùng với xu hướng đó, mối liên hệ giữa những ngành khoa học cơ bản là Toán học – Vật lý học – Hóa học cũng ngày càng gần nhau và mật thiết hơn. Có những thời điểm chúng ta sẽ không thể hoặc không nhất thiết phải phân biệt giữa Toán học và Vật lý, Toán học và Hóa học ... Bởi đơn giản, nhiệm vụ của ta là giải quyết một vấn đề thực tế - cụ thể, cần phải vận dụng kiến thức lý luận tổng hợp.

Nhà toán học Polya đã nói: "Giải được bài toán là một thành công, nhưng sẽ thông minh hơn nếu chúng ta nghĩ ra cách thứ hai!". Và sẽ còn tuyệt vời hơn thế nữa khi những sự thông minh bắt nguồn từ toán học đó được ứng dụng vào trong thực tế, vào khoa học kỹ thuật để phục vụ cho cuộc sống con người.

Đã từng học Toán, đã từng yêu Toán và đã từng gặp nhiều khó khăn khi định hướng nghành nghề khi còn học Phổ thông. Chúng tôi cũng đã từng đặt ra những câu hỏi mơ hồ rằng học toán để làm gì? Chứng minh bất đẳng thức để làm gì? ... Có lẽ đã có không ít bạn cũng đã từng thắc mắc như thế. Chính vì vậy BBT đã có ý tưởng và quyết định thêm chuyên mục "Úng dụng toán học". Chuyên mục tuy chỉ mang tính giới thiệu nhưng chúng tôi hy vọng sẽ phần nào giúp các bạn bước đầu hình dung được vị trí cũng như mục đích của toán học trong Khoa học kỹ thuật cũng như trong đời sống. Xin giới thiệu cùng bạn đọc.

SỰ PHÁT TRIỀM CỦA SỐ ĐỰC

PHÙNG NGỌC THẮNG CHUYÊN TOÁN K01 – 04 Sv. Lớp K45B Toán, Đại Học Vinh – Nghệ An

Các bạn thân mến, số học là một trong những bộ môn đã xuất hiện từ rất lâu trong lĩnh vực toán học. Qua bao giai đoạn thăng trầm, qua bao thế hệ các nhà toán học xây dựng và phát triển, số học đã dần khẳng định vị trí của mình trong bầu trời Toán học. Bài viết này xin được giới thiệu với các bạn đôi nét về sự phát triển số học bằng những gì mà tôi đã biết và sưu tầm được.

I. Sự phát triển về số.

Khi đếm các vật riêng biệt, đơn vị là số nhỏ nhất, nghĩa là không cần chia nó ra thành nhiều thành phần và thường là cũng không thể làm được (Ví dụ trong khi đếm các viên đá, nếu thêm nửa viên thì ta được 3 viên chứ không phải là 2,5 viên, cũng như không thể bầu được 2,5 người vào đoàn chủ tịch!). Tuy nhiên, trong những phép đo các đại lượng một cách sơ sài, việc chia đơn vị thành nhiều thành phần cũng cần thiết, thí dụ như đo chiều dài bằng bước chân ... Vì thế, ngay từ hồi cổ xưa đã hình thành khái niệm phân số. Về sau, người ta thấy cần phải mở rộng hơn khái niệm số. Do đó xuất hiện những số vô tỷ, số âm và số phức.

Số "không" tham gia vào hàng ngũ các số khá muộn. Thoạt đầu, từ "không" có nghĩa là không có số. Thực vậy, chẳng hạn nếu lấy 3 bớt đi 3 thì coi như không còn lại gì cả. Việc coi cái "không có gì" đó là một cơ sở khi xét đến những số âm.

II. Chữ số.

Chữ số là cách viết dùng để chỉ số. Thời cổ, các số được biểu thị bằng những nét thẳng (các cái gạch): Một gạch biểu thị cho số một, hai gạch biểu thị cho số hai v.v ... Cách ghi đó bắt nguồn từ những nhát khắc. Hiện nay, cách ghi đó còn được giữ trong những "chữ số La Mã" để biểu thị các số 1, 2, 3, ...

Để biểu thị những chữ số tương đối lớn, cách đó không dùng được. Vì vậy, đã xuất hiện những ký hiệu cho số 10 (theo hệ đếm thập phân), và ở một số dân tộc, cho số 5(tương ứng với hệ ghi cơ số năm) theo số ngón tay trên một bàn tay. Về sau, những ký hiệu cho các số lớn được hình thành. Những ký hiệu này ở những dân tộc khác nhau có hình thức khác nhau và thay đổi theo thời gian. Cả những *hệ ghi số* tức là những cách kết hợp các chữ số để biểu thị các số lớn cũng khác nhau. Tuy vậy, trong phân lớn những hệ ghi số, cơ sở thập phân có giá trị cơ bản, do hệ đếm thập phân là hệ đếm ưu tiên.

III. Những hệ ghi số của một số dân tộc.

1. Hệ ghi số cố Hy - Lạp.

Thời cổ Hy - Lạp có cách ghi số được phổ biến gọi *là cách ghi số Attich* (Attich là một xứ ở Hy Lap, có thủ đô là Athen). Những số 1, 2, 3, 4 được biểu thị bằng những gạch: | || III IIII. Số 5 được ghi băng dấu | 1. (Lối viết cổ của chữ "pi", chữ đầu của từ "pentê" nghĩa là năm). Những số 6, 7, 8, 9 được ký hiệu bằng [1, [1]], [1]] . Số 10 được ký hiệu bằng Δ (Chữ đầu của từ "đêca", nghĩa là mười.). Những số 100, 1000 và 10 000 được ký hiệu bằng H, X, M là những chữ cái đầu của những từ chỉ số tương ứng. Những số 50, 500, 5000 được ký hiệu bằng cách phối hợp các dấu chỉ 5 và 10, 5 và 100, 5 và 1000, cụ thể là: $\lceil A \rceil \lceil H \rceil \lceil M \rceil$. Còn những số khác, trong pham vi chục nghìn đầu tiên được ghi như sau: $HH^{A} = 256$, $XX^{H} HHH = 7800$.

Vào thế kỷ thứ III trước công nguyên, cách ghi số Attich được thay thế bằng một hệ gọi là *hệ ghi số lôni* (một xứ ở Tiểu á). Thời cổ đại, những dân tộc Do Thái, Å - rập và nhiều dân tộc khác ở Cận Đông cũng đều dùng cách ghi số bằng các bảng chữ cái như

88

vậy. Không rõ cách đó xuất hiện trước nhất ở dân tộc nào.

2. Cách ghi số Xlavo.

Các dân tộc Xlavo phương Nam và phương Đông dùng cách ghi số bằng các chữ cái. Một số lấy giá trị số theo thứ tự trong bảng chữ cái Xlavo. Một số khác (Trong số đó có dân tộc Nga) chỉ lấy những chữ nào có cả trong bảng chữ cái Hy Lạp và chỉ những chữ đó làm chữ số. Trên các chữ biểu thị số người ta đặt một đầu đặc biệt. Như vậy, giá trị của các chữ tăng theo trình tự sắp xếp các chữ trong bảng chữ cái Hy Lạp (Trình tự trong bảng chữ cái Xlavo hơi khác một chút).

Tại nước Nga, cách ghi số Xlavơ còn được giữ đến cuối thế kỉ 17. Dưới triều Piôt đại đế, *cách ghi số A rập* được phổ biến hơn, cách ghi này ngày nay người Nga vẫn dùng. Cách đánh số Xlavo chỉ còn trong các sách thần học.

3. Chữ số La Mã.

Người cổ La Mã dùng cách ghi số gọi là "cách ghi số La Mã", cách này còn dùng đến ngày nay. Chúng ta hiện dùng cách đó để ghi lại một số những niên hiệu, đánh trang sách... Dạng mới nhất của những chữ số La mã như sau : I = 1, V = 5, L = 50, C = 100, D = 500, M = 1000.

Trước kia hình dạng của chúng có hơi khác. Chẳng hạn, như số 1000 được biểu thị bằng dấu (/) và số 500 bằng dấu /).

Về nguồn gỗc của chữ số La Mã, không có ý kiến nào đáng tin cậy cả. Có thể là chữ số V thoạt đầu tiên được dùng để biểu thị bàn tay, còn chữ số X thì do hai chữ số năm hợp lại. Cũng vậy, dấu chỉ 1000 có thể được tạo thành bằng cách ghép hai dấu chỉ số 500(hoặc ngược lại)

Trong cách ghi số La Mã người ta thấy rõ vết tích của hệ đếm cơ số năm. Còn trong ngôn ngữ của người La Mã (ngôn ngữ La Tinh) thì không thấy vết tích nào của hệ đếm cơ số năm. Như thế nghĩa là người La Mã đã mượn những chữ số này của dân tộc khác (rất có thể là người xứ Etoruri)

Tất cả các số nguyên (cho tới 5000), đều được viết nhờ cách ghép lại những chữ số trên. Theo cách này, nếu một chữ số lớn đứng trước một chữ số bé thì chúng cộng với nhau và ngược lại. Theo cách viết chữ số La

Mã, mười hai chữ số đầu tiên được kí hiệu như sau:

I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII.

Với cách kí hiệu đó, các phép tính số học trên những số đó gặp rất nhiều khó khăn. Tuy vậy, cách ghi số La Mã vẫn chiếm ưu thế ở nước Italia cho tới thể kỷ 13, còn ở các nước Tây âu thì đến thế kỷ 16.

4. Cách ghi số theo vị trí của người Ấn Độ.

Các miền khác nhau ở Ấn Độ có những hệ ghi số khác nhau. Một trong những hệ đó được phổ biến trên toàn thế giới và ngày nay đang được sử dụng rộng rãi. Theo hệ ấy, các chữ số có dạng của những tính từ chỉ số tương ứng trong ngôn ngữ cổ Ấn Độ (Theo bảng chữ cái Đêvanagari)

Đầu tiên người ta biểu thị những số 1, 2, 3, 4, ...; 9, 10, 20, 30, ... 90, 100, 1000 bằng những dấu phẩy. Dựa vào đó người ta ký hiệu những số khác. Về sau, người ta đưa thêm dấu đặc biệt (Chấm đậm, vòng tròn) để chỉ những hàng trống. Những dấu chỉ những số lớn hơn 9, không được dùng đến nữa và cách ghi số Đêvanagari chuyển thành hệ ghi số thập phân theo vi trí. Cho đến nay người ta vẫn chưa biết bước chuyển tiếp đó được thực hiện như thế nào và vào thời nào. Vào khoảng giữa thể kỷ thứ VIII, hệ ghi số theo vi trí được sử dung rộng rãi ở Ấn Độ. Trong khoảng thời gian này, hệ đó cũng đã thâm nhập vào các nước khác(Đông Dương, Trung quốc, Tây Tạng, các vùng thuộc các nước Cộng hòa Trung Á của Liên Xô, ...) Trong việc truyền bá cách ghi số Ấn Độ vào đất Á rập, sách chỉ dẫn do Môhamet ở xứ Khôrêzmi (Ngày nay là miền Khôrêzmi thuộc nước Cộng hòa Uzbêkistan) có một vai trò quyết đinh. Sách này ở Tây Âu đã được dịch sang tiếng Latin vào thế kỷ thứ XII. Đến thế kỷ thứ XIII, cách ghi số An Độ qua tay người Á- rập, nên gọi nó là cách ghi số "Á rập". Cách goi tên sai về mặt lịch sử đó cho đến hiên nay vẫn tồn tai.

Hình dáng của những chữ số Ân Độ đã trải qua nhiều biến đổi. Dạng những chữ số ngày nay chúng ta viết được hình thành vào thế kỷ thứ XVI.

Finish! Chúc các bạn luôn say mê tìm kiếm vẻ đẹp toán học.

Toán học và Tự ĐỘNG HÓA

NGUYỄN LÂM TUYỀN CHUYÊN TOÁN K99 – 02

Sv. Lớp Điều khiển Tự Động 1 - K47, ĐH Bách Khoa Hà Nội

Công nghệ thông tin và Tự động hóa là hai lĩnh vực công nghệ đang phát triển tương đối mạnh mẽ trong những năm gần đây. Tôi xin được giới thiệu một số khái niệm cơ bản về Kỹ thuật Điều khiển tự động. Qua đó phần nào sẽ giúp các bạn hiểu được vai trò của Toán học trong Tự động hóa và ứng dụng của lĩnh vực này trong thực tế.

Trong hầu hết các phương tiện giao thông và một số thiết bị máy móc khác, chúng ta biết đến bộ giảm chấn hay còn gọi là bộ giảm xóc. Nó có tác dụng làm "mềm" hóa các xung động mạnh không mong muốn để đảm bảo an toàn, tránh gây mệt nhọc cho con người và bảo vệ máy móc, đảm bảo cho một hệ thống/dây chuyền sản xuất hoạt động một cách bình thường, tron tru.

Chúng ta xét một bộ giảm chấn đơn giản như trong hình vẽ:

Hình 1. Bộ giảm chấn đơn giản.

Trong đó các ký hiệu được hiểu như sau:

U(t) [*N*]: Lực ép lên bộ giảm chấn. Nguyên nhân chính gây ra độ dịch chuyển (độ lún) y(t) của nó.

 F_c [N]: Lực cản (lực đàn hồi) của lò xo có đô cứng c.

 F_d [N]: Lực cản của bộ giảm tốc có hệ số cản d. Tương tự như lò xo nhưng "mềm dẻo" hơn. Được chế tạo bằng khí nén hoặc bằng dầu

 F_m [N]: Hợp lực tác dụng lên bộ giảm chấn.

Chọn hệ trục tọa độ Oy có chiều hướng xuống dưới. Gốc tọa độ O là vị trí của hệ thống cần giảm chấn (được cô về vật có khối lượng m, gắn chặt với bộ giảm chấn) ở vị trí cân bằng, nghĩa là khi chưa có lực ép U(t) tác động lên bộ giảm chấn. Xẩy ra, chẳng hạn như khi \hat{o} - tô đi trên đoạn đường bằng phẳng, không có "ổ gà".

Theo đinh luât II của Newton, ta có:

$$F_m = \frac{d^2 y}{dt^2}$$

Trong đó hợp lực $F_m = U(t) - F_c - F_d$, với $F_c = c.y(t)$, $F_d = d.\frac{dy(t)}{dt}$. Hai đẳng thức sau cùng có được nhờ bản chất của thiết bị, đã được khảo sát trong lý thuyết vật lý.

Sắp xếp lại các đẳng thức trên, ta thu

được:
$$m.\frac{d^2y(t)}{dt^2} + d.\frac{dy(t)}{dt} + c.y(t) = U(t)$$
 (*)

Hàm số "quan trọng" nhất ở đây là y(t), vì y(t) chính là đô dịch chuyển (hay ly đô) của

bộ giảm chấn. Đây là một hàm theo biến thời gian t, với gốc thời gian là thời điểm ta khảo sát, thông thường là khi bắt đầu xuất hiện "chấn động" làm nảy sinh $U(t) \neq 0$ (U(t) ta đang xét là đại lượng vô hướng). Hiển nhiên điều ta mong muốn là dao động y(t) tắt dần theo thời gian, nghĩa là $\lim_{t\to\infty} y(t) = 0$. Và tất nhiên, $y(t) \to 0$ càng nhanh càng tốt. Lúc đó hầu như không có ảnh hưởng xấu từ "ổ gà" hay các tác động đột ngột không mong muốn khác.

Để khảo sát tiêu chí trên, ta sẽ khảo sát y(t) thông qua phương trình vi phân (PTVP) (*). Trong Toán học, (*) còn được biểu diễn/ký hiệu ở hai dạng khác:

$$m.y''(t) + d.y'(t) + c.y(t) = U(t)$$

hoặc là:
$$m. y(t) + d. y(t) + c. y(t) = U(t)$$

Ta chuyển (*) về dạng đại số thông qua phép biến đổi *Laplace*. Đó là dạng phương trình đặc trưng mà nhiều bạn đã quen biết khi giải các bài toán sai phân liên quan đến dãy số. Chỉ khác là ở đây, "đối tượng" ta khảo sát là quá trình liên tục chứ không phải là quá trình rời rạc như ở dãy số. Cụ thể, phương trình đặc trưng của PTVP (*) là: $m.p^2 + d.p + c = 0$ (**)

Trong Toán học, người ta cũng chỉ ra rằng nghiệm của (*) sẽ có dạng:

$$y(t) = y_0(t) + y_{ad}(t)$$

Trong đó $y_0(t)$ là nghiệm riêng của (*) có vế phải, đặc trưng cho quá trình xác lập, nghĩa là khi thời gian khảo sát là đủ lớn. Nghiệm riêng là một nghiệm bất kỳ thỏa mãn (*) và thỏa mãn đầy đủ các yêu cầu về sơ kiện. Ở đây để đơn giản ta coi như thời điểm khảo sát là mốc thời gian $t_0 = 0$ bắt đầu từ lúc gặp chấn động đột ngột mà không chịu ảnh hưởng của các chấn động trước/sau đó. Khi xét nhiều quá trình chồng chéo nhau (chẳng hạn khi gặp liên tiếp các "ổ gà" trên đường) thì có phức tạp hơn nhưng kết quả hoàn toàn như nhau. Vì bài báo chỉ mang tính giới thiệu nên chỉ xét các trường hợp giản đơn. Hơn nữa các kết quả của lý thuyết

Toán học như đã đề cập trên, coi như đã có sẫn.

Quay trở lại vấn đề, $y_{qd}(t)$ là nghiệm tổng quát thuần nhất của (*) nghĩa là khi (*) không có vế phải. Nó đặc trưng cho quá trình quá độ, đó là quá trình phức tạp nhất, gây ra dao động của bộ giảm chấn.

Quá trình xác lập là một quá trình ổn đinh. Vấn đề chỉ còn xét quá trình quá độ $y_{qd}(t)$. Nghiệm này có dạng: $y_{qd}(t) = C_1 e^{p_1 t} + C_2 e^{p_2 t}$

Trong đó p_1 , p_2 là nghiệm của PT đặc trưng (**): $m.p^2 + d.p + c = 0$

Nếu $\Delta = d^2 - 4mc \ge 0$ thì PT(**) có 2 nghiệm thực. Nếu $\Delta < 0$ thì (**) có 2 nghiệm phức liên hợp $p_{1,2} = -\alpha \pm i\beta$ ($\alpha = \frac{d}{2m}$, $\beta = \frac{\Delta}{2m}$, i là đơn vị ảo: $i^2 = -1$).

Hệ thức O - Le: $e^{i\varphi} = \cos \varphi + i \sin \varphi$ do nhà Toán học O - Le phát minh ra, và ứng với $\varphi = \pi$ thì ta có $e^{i\pi} = -1$ chính là đẳng thức được coi là "đẹp nhất mọi thời đại" vì trong đó có mặt cả 3 số siêu việt e, i, π !

Nhờ có đẳng thức trên mà ta viết lại được nghiêm tổng quát của (*):

$$\begin{aligned} y_{qd}(t) &= C_1.e^{p_1t} + C_2.e^{p_2t} \\ &= C_1.e^{(-\alpha+i\beta)t} + C_2.e^{(-\alpha-i\beta)t} \\ &= 2C.e^{-\alpha t}.\cos\beta t \\ (\text{Vì } y_{qd}(0) &= 0 \Longrightarrow C_1 = -C_2 = C) \end{aligned}$$

Rỗ ràng nếu có $\alpha > 0$ thì sẽ có $\lim_{t \to \infty} e^{-\alpha t} = 0 \Rightarrow \lim_{t \to \infty} y_{qd}(t) = 0$. Như vậy α là hệ số đặc trưng cho sự tắt dần của dao động, còn thành phần điều hòa $\cos \beta t$ đặc trưng cho khả năng dao động của hệ.

Dưới đây là một số dạng đồ thị của y(t) trong một số trường hợp khác nhau của các hệ số đặc trưng α , β :

Hình 2. Đồ thị độ lún y(t) khi $\Delta < 0, \alpha > 0$

Hình 3. Đồ thị độ lún y(t) khi $\Delta < 0, \alpha < 0$

Hình 4. Đồ thị độ lún y(t) khi $\Delta \ge 0, \alpha > 0$

Hệ giảm chấn ta đang khảo sát xẩy ra ở trường hợp có $\alpha > 0$. Và như đã đề cập, mong muốn của ta là $y(t) \rightarrow 0$ càng nhanh càng tốt. Vì vậy nếu chọn các thiết bị có hệ số c, d hợp lý, ta sẽ có dạng đồ thị y(t) với tốc đô tắt dần như mong muốn. Chẳng han,

chọn lò xo có độ cứng c và bộ giảm tốc có hệ số d sao cho $\Delta = d^2 - 4mc \ge 0$ thì hệ sẽ tắt dần mà không có dao động (Xem hình vẽ 4).

Tất nhiên bộ giảm chấn nói trên chỉ là một ví du đơn giản về một hệ thống mà ta cần làm "mềm hóa" quá trình quá đô, là quá trình mà ta không mong muốn. Trong thực tế nói chung và lĩnh vực Tư đông hóa nói riêng, các hê thống là hết sức phức tạp. Các hê thống cần tác động yếu tố điều khiển để thu được đặc tính như mong muốn được gọi là đối tượng điều khiển. Muốn can thiệp vào đối tương điều khiển thì chúng ta cần có một sư hiểu biết nhất định về đối tương đó. Công việc tìm hiểu và biểu diễn thông tin dưới một dang thống nhất được gọi là mộ hình hóa hệ thống. Trong đó mô hình hóa toán học của hệ thống là biểu diễn các thông tin có được dưới dạng một mô hình toán học, chẳng han như phương trình vi phân (*) ở trên. Đây là một việc làm hết sức quan trọng của quá trình tổng hợp hệ thống. Vì sư mô hình hóa càng chính xác thì quá trình tác động của chúng ta cũng sẽ chính xác hơn.

Một trong những nhiệm vụ của người Kỹ sư Tự động hóa là lựa chọn thiết bị/cài đặt các thông số (thiết kế hệ thống) để hệ thống máy móc thiết bị ổn định ($y(t) \rightarrow 0$), chẳng hạn chỉnh định để $\alpha > 0$. Tùy từng chỉ tiêu chất lượng cụ thể đặt ra, bằng kinh nghiệm hoặc bằng kỹ thuật chuyên nghành, người kỹ sư sẽ định hướng được để chọn lựa các thông số phù hợp./.

Đơn giản hóa, đơn giản như có thể, nhưng không thể đơn giản hơn

-Albert Einstein-

Dùng Đa Thức Để Phát Fiện Lỗi Đường Truyền

NGUYỄN LÂM TUYỀN CHUYÊN TOÁN K99 – 02 Sv. Lớp Điều Khiển Tự Động 1 - K47 ĐH Bách Khoa Hà Nôi

Agày nay khi công nghệ thông tin (CNTT) đang phát triển mạnh mẽ hơn bao giờ hết thì những khái niệm như máy vi tính, mạng internet, hệ vi xử lý ... đã không còn quá xa lạ với chúng ta. CNTT đã xâm nhập vào mọi nơi, mọi lĩnh vực, đã đến với vùng sâu, vùng xa.

Có lẽ ai cũng đã biết tới vai trò của Toán học ở khía cạnh cung cấp thuật toán trong kỹ thuật lập trình cũng như cách thức tổ chức dữ liệu, mã lệnh thực thi chương trình. Bài viết này xin được giới thiệu một vấn đề mà có lẽ còn nhiều bạn chưa biết đến, đó là cách mã hóa dữ liệu để phát hiện và sửa lỗi trong lý thuyết truyền tin.

Có hai dạng biểu diễn thông tin thông dụng là tín hiệu tương tự (Analog) và tín hiệu số (Digital), trong đó tín hiệu số được sử dung phổ biến hơn nhờ một số tính năng đặc trưng riêng của nó, tuy nhiên "số" hay "tương tự" thực chất cũng chỉ là một quy ước và chúng đều truyền dưa trên tín hiệu chuẩn là dòng điện hoặc điện áp. Chẳng hạn, sau đây là một cách mã hóa "bit" đơn giản trong lý thuyết truyền tin. Ở đó, người ta quy ước bit "0" ứng với mức điện áp từ 0 - 0.5 V, trong khi đó bit "1" ứng với mức điện áp từ 4.5 - 5 V. Khoảng từ 0.5 - 4.5 V là "đải chết", hay vùng không xác định (don't care). Khi điện áp rơi vào khoảng này thì người ta coi như là không có tín hiệu (số). Khi thu, phát tín hiệu thì các bít tín hiệu số được phát và được nhân biết tuân theo quy tắc trên.

Muốn truyền thông tin thì nhiệm vụ đầu tiên bên phía phát là mã hóa dữ liệu dưới dạng một gói tin theo một quy tắc mà tất nhiên, bên phía nhân cũng phải biết được

Một cách mã hóa bit đơn giản

quy tắc đó. Đó là công đoạn đóng gói dữ liệu, nó giống như việc bỏ một lá thư vào trong bì thư và dán tem, ghi địa chỉ trước khi gửi. Bên nhân sau khi thu được gói tin dưới dạng một chuỗi số nhị phân thì tiến hành tách ra để thu được thông tin cần thiết. Ví dụ, ký tự "A" được mã hóa thành một số nhị phân 8 bit là 10101010, công đoan mã hóa gói tin người ta thêm vào một số bit cần thiết để phục vụ cho mục đích riêng, chẳng hạn thêm 2 bit đầu và cuối để phát hiện điểm khởi đầu và kết thúc của một gói tin được truyền/nhân. Cu thể sẽ có một gói tin gồm 10 bit sẽ được truyền đi là **1**10101010**0**. Khi nhân, hai bit đầu và cuối sẽ được tách ra, và dưa vào chuỗi bit vừa nhân, tra bảng mã người ta biết được ký tư vừa nhân là ký tư "Ä".

Trong kỹ thuật truyền dẫn thông tin , mặc dù đã sử dụng kỹ thuật số nhưng do tác động của nhiễu và do chất lượng môi trường truyền dẫn mà thông tin được truyền tải không tránh khỏi bị sai lệch. Vấn đề đặt ra là làm thế nào để hạn chế lỗi cũng như khi lỗi đã xẩy ra thì phải có biện pháp khắc phục. Có một số dạng lỗi là: Lỗi phát hiện được nhưng không sửa được, lỗi phát hiện được sửa được và lỗi không phát hiện được.

Biện pháp khắc phục thứ nhất là sử dụng các thiết bị phần cứng cao cấp và các biện pháp bọc lót đường truyền để giảm tác động của nhiễu. Song đây chỉ là một biện pháp hạn chế chứ không thể loại trừ hoàn toàn khả năng bị lỗi. Mặt khác giá thành cao cũng là một yếu tố cản trở đến việc thực hiện trong thực tế.

93

Biện pháp thứ hai là bảo toàn dữ liệu, tức là xử lý giao thức (mã hóa hay quy ước) để phát hiện lỗi, trong đó phát hiện lỗi đóng vai trò hàng đầu. Vì khi đã phát hiện được lỗi thì có thể có cách khôi phục giữ liệu, hoặc đơn giản là bên nhận yêu cầu gửi lại dữ liệu. Chúng tôi xin được giới thiệu với các bạn một phương pháp phát hiện lỗi là phương pháp sử dụng đa thức.

Đây là phương pháp được sử dụng trong hầu hết các hệ thống truyền thông. Ý tưởng ở đây là thông tin kiểm lỗi (*checksum*) phải được tính bằng một thuật toán thích hợp, trong đó giá trị mỗi bit của thông tin nguồn đều được tham gia nhiều lần vào quá trình tính toán.

Để tính toán thông tin checksum đó người ta dùng một đa thức phát G (Generator polynomial) có dạng nhị phân đặc biệt, các hệ số của nó chỉ có giá trị bằng "0" hoặc "1" tương ứng với các chữ số trong một dãy bit.

Vi dụ. Dạng đa thức G = 1011, tức là $x^3 + x + 1$. Giả sử đa thức G có bậc n. Dãy bit mang thông tin nguồn I (*Infomation*) được thêm vào n bit "0" và coi như 1 đa thức nhị phân P. Đa thức P được chia cho đa thức G dựa vào quy tắc đơn giản của phép trừ có nhớ như sau:

- i) 1 1 = 0.
- ii) 0 0 = 0.
- iii) 1 0 = 1.
- iv) 0-1=1.

Như vậy, với quy ước này, rõ ràng là phép cộng (không nhớ) và phép trừ (không nhớ) đều cho cùng một kết quả.

- i') 1 + 1 = 0. ii') 0 + 0 = 0.
- iii') 1 + 0 = 0.
- iv') 0 + 1 = 1.

Do đó, nếu đa thức P chia cho G có phần dư là R, nghĩa là P – R chia hết cho G, thì P + R (bằng P - R) cũng chia hết cho G. Thật ra, về bản chất, quan hệ "cộng", "trừ" hay "chia hết" ở đây chẳng qua chỉ là một quy ước. Nó cho phép ta thu được một kết quả duy nhất sau một phép tính, cụ thể ở đây là phép chia, nhờ đó người ta có thể kiểm tra được số bị chia có bị thay đổi hay không dựa vào việc kiểm tra số dư khi mà số chia không đổi.

Ví dụ. Thông tin cần truyền I = 110101. Đa thức quy ước G = 1011 ($x^3 + x + 1$). Thêm 3 bit "0" vào thông tin nguồn I, ta có P = 110101000. Chia P cho G theo kiểu nhị phân:

Dãy bit được truyền đi D = P + R = 110101111. Giả sử dữ liệu nhận được là D' = 110101111. Chia đa thức D' cho G được số dư là 0000. Do đó xác suất không có lỗi là rất cao.

Ngược lại, nếu dữ liệu ta thu được là D'' = 110101111 thì D'' chia cho G dư 0001 thì chắc chắn D" nhận được là bị lỗi.

Phương pháp này có vẻ như rất phức tạp, nhưng sự thực là việc thực hiện nó lại rất đơn giản. Phép chia đa thức nhị phân ở đây được thực hiện thuần túy bởi các phép trừ không có nhớ (chính là phép XOR bit). Bên cạnh đó, để kiểm tra, chỉ cần phép so sánh và sao chép bit thông thường. Nhờ vậy mà quá trình tính toán của vi xử lý là rất nhanh.

Còn rất nhiều vấn đề chuyên ngành mà trong phạm vi hạn hẹp của Tập san này không đủ để đề cập tới. Vì vậy, nếu các bạn thật sự quan tâm đến thì các chuyên ngành Công nghệ Thông tin, Điện tử – Tự động hóa ... trong các trường Đại học Kỹ thuật đang chào đón các bạn. Xin chúc các bạn thực hiện được những ước mơ của mình!

Cấu Trúc

TƯ NHIỆN

NGUYỄN THÁI NGỌC CHUYÊN TOÁN K99-02

Sv. Lớp ĐT8 – 48, Khoa Điện tử Viễn Thông, ĐH Bách Khoa Hà Nội

Con người chúng ta thường sử dụng hệ đếm cơ số 10 để biểu diễn các con số. Tuy nhiên trong máy tính, chúng ta thấy rằng các trang thái thường chỉ tồn tai ở 2 dang đối lập nhau, chẳng hạn trạng thái bật công tắc với tắt công tắc, trang thái có dòng điên với không có dòng điên, hay trang thái có điên áp với không có điện áp, v.v... Do đó, để lưu trữ thông tin trong máy tính, người ta sử dung hê đếm cơ số 2 (tương ứng với 2 trang thái) mà không sử dung hệ đếm cơ số 10. Quy ước cho cách biểu diễn hệ đếm cơ số 2 là hai ký tư "0" và "1". Việc biểu diễn các ký hiệu khác mà con người mong muốn sẽ trở thành một chuỗi bit 0, 1. Ví dụ, ký tự "A" biểu diễn dưới dang 8 bit trong bảng mã ASCII là 01000001.

Từ đó con người xây dựng nên vô số các ký hiệu khác nhau. Dữ liệu sẽ được lưu trữ dưới dạng các ô nhớ. Chẳng hạn một ô nhớ có p cột biểu diễn số. Thì dung lượng của ô nhớ đó là 2^p tương ứng với 2^p trạng thái khác nhau mà ô nhớ có thể biểu diễn được.

Ví dụ: p = 10 thì dung lượng của ô nhớ sẽ là 2^{10} tương đương với 1Kb.

Người ta thấy rằng số lượng thiết bị N để biểu diễn một ô nhớ như vậy sẽ tỷ lệ thuận với số cột biểu diễn số. Tức là: $N = \alpha 2p$. Trong đó số 2 là số trạng thái có thể có của một cột biểu diễn số.

Có một bài toán đặt ra:

Có tồn tại một cách biểu diễn số khác trong máy tính không? Tìm hệ đếm tối ưu để có thể thiết kế một bộ nhớ máy tính có dung lượng M sao cho số lượng thiết bị là tối thiểu.

Để giải quyết bài toán này, ta gọi r là cơ số của hê đếm, p là số cột biểu diễn số.

Lý luận tương tự như với trường hợp r=2 là hệ cơ số tự nhiên, ta có hệ phương trình sau:

$$\begin{cases} M = r^p \\ N = \alpha r p \end{cases}$$
 (*)

Từ (*) ta rút N theo M sẽ được phương trình sau:

$$N = \alpha \ln M \left(\frac{r}{\ln r} \right).$$

 $\mathring{\text{O}}$ đây M là cố đinh. Chúng ta khảo sát sự biến thiên của N theo r và sẽ tìm được N đạt giá tri Min khi r=e.

Như vậy là: số lượng thiết bị biểu diễn ô nhớ sẽ là nhỏ nhất khi chúng ta sử dụng hệ đếm *e*.

Tuy nhiên, một vấn đề rất khó khăn của con người đó là tìm ra những phần tử cơ bản của cấu trúc tự nhiên có hệ đếm là cơ số e và đây vẫn chỉ là vấn đề của tương lai. Nhiều nhà nghiên cứu cho rằng, tổ chức bộ nhớ trong não con người là ở dạng cơ số e. Đó là cấu trúc tự nhiên mà con người đang hướng đến!

PHÂN III

Học Toán và Ngoại ngữ

ĐỘC TOÁN VÀ NGOẠI NGỮ

NGÔ THÀNH LONG LỚP 12A TOÁN, K01- 04, KHỐI PTCT – TIN, ĐH KHTN, ĐHQG HÀ NỘI Sv. Khoa Cầu đường, ĐH Mosscow.

vẻ đẹp toán học. Tôi cũng muốn gia nhập vào "đội tìm kiếm" đó bằng một vấn đề rất đáng phải quan tâm đối với các bạn học sinh giỏi toán. Qua lời tâm sự của những người bạn tôi đã từng tham gia các kỳ thi Quốc tế thì so với các nước, chúng ta không thua về kiến thức mà thua về ngoại ngữ. Điều này thể hiện rõ qua các cuộc giao lưu giữa các đoàn với nhau. Vì vậy, qua đây tôi chỉ muốn nhấn mạnh tầm quan trọng của việc học ngoại ngữ đối với các bạn học sinh giỏi toán. Tôi xin giới thiệu về một số đề toán và lời giải bằng tiếng Anh để các bạn tham khảo.

Petersburg City
Mathematical Olimpiad(Russia)

Problem 1. In how many zeroes can the number $I^n + 2^n + 3^n 4^n$ end for $n \in \mathbb{N}$?

Solution. There can no zeroes (i, e, n = 4), one Zero (n = 1) or two zeroes (n = 2). In fact, for $n \ge 3$, 2^n and 4^n are divisible by 8, write $1^n + 3^n$ is congnient to 2 or 4 mod 8. Thus the sum cannot end in 3 or more zeroes.

Problem 2. The diagonals of parallelogram ABCD meet at O. The circumcicle of triangle ABO meets AD at E and the circumcicle of DOE meets BE at F. Show that $\angle BCA = \angle FCD$.

Solution. We use directed angles.From cycle quadrilaterals, $\angle EDF = \angle EOD = \angle DAB = \angle BCD$ so BFDC is algo cyclic. Thus $\angle BCF = \angle BDF = \angle OEF = \angle OAB = \angle ACD$ whence $\angle BCA = \angle FCD$.

Problem 3. In a 10x10 table are writer the numbers from 1 to 100. From each row we select the third largest number. Show that the sum of these numberes is not less than the sum of the numbers in some row. **Solution.** Let $a_0 > ... > a_9$ be the numbers Selected. Then at most 20 number exceed a_0 (the largest and second – largest in each row) show $a_0 \ge 80$. Semilarly

 $a_1 \ge 72$ (this time, the largest and second – largest in each row, and the elements of the row coutaining a_0 may exceed a_1).

Hence: $a_0 + ... + a_9 \ge 80 + 72 + (a_9 + 7) + (a_9 + 6) + ... + a_9 = 8a_9 + 180$.

Mean while, the row containing a_9 has sum at most: $100 + 99 + a_9 + ... + (a_9 - 7) = 8a_9 + 171$ When is iess than the sum of the a_y .

Problem 4. The set M cousists of n point, in the plane, no three lyning on a line. For eace triagle with wertices in M, count the nuber of points of M lying in is merior Prave that the arithmetic mean these numbers does not exceed $\pi/4$.

Solution. It suffices to show that if p_1 , p_2 , p_3 , p_4 are four then randomly shosen points of the set, then the probaboliti that p_4 lies in $p_1p_2p_3$ is at most 1/4. In fact, at most one these four point lies inside the triargle fromed by the other three, from each resulf follows

Problem 5. Show that for any natural number n, bet wen n^2 and $(n + 1)^2$ one can find three oistinct natural numbers a, b, c such that $a^2 + b^2$ divisible by c.

Solution (We must as sume n > 1) Take: $a = n^2 + 2$, $b = n^2 + n + 1$, $c = n^2 + 1$ then: $a^2 + b^2 = (2n^2 + 2n + 5).c$

Problem 6. A country contains 1998 cities, any two joined by a direct flight. The ticket prices on each of these flights are different. Is it possible that any two trips visiting each city of origin have different to tal prices?

Solution. Yes. Choose the prices to be distinct powers of 2, then every subset of flights has a different to tal price.

Cuối cùng, để kết thúc bài viết tôi xin chúc tờ báo của các bạn thành công để tiếp tục phát huy truyền thống vốn có của khối chuyên Toán THPT chuyên Hoàng Văn Thụ!

BBT. Ngày nay tiếng Anh là công cụ quan trọng cho tất cả mọi người. Với học sinh chuyên Toán điều ấy cũng không phải ngoại lệ. Chính vì thế BBT quyết định giới thiệu một số bài báo Tiếng Anh về Toán sơ cấp của các tác giả nước ngoài cho bạn đọc. Hai bài báo dưới đây trích từ tờ Mathematical Excalibur của đại học Hong Kong, của bạn Lưu Như Hòa gửi tới Ban biên tập.

Phương tích của điểm với đường tròn.

Power of Points Respect to Circles

Kin-Yin Li

Intersecting Chords Theorem. Let two lines through a point P not on a circle intersect the inside of the circle at chords AA' and BB', then $PA \cdot PA' = PB \cdot PB'$. (When P is outside the circle, the limiting case A = A' refers to PA tangent to the circle.)

This theorem follows from the observation that triangles ABP and A'B'P are similar and the corresponding sides are in the same ratio. In the case P is inside the circle, the product $PA \cdot PA'$ can be determined by taking the case the chord AA' passes through P and the center O. This gives $PA \times PA' = r^2 - d^2$, where r is the radius of the circle and d = OP. In the case P is outside the circle, the product $PA \cdot PA'$ can be determined by taking the limiting case PA is tangent to the circle. Then $PA \times PA' = d^2 - r^2$. The *power* of a point P with respect to a circle is the number $d^2 - r^2$ as mentioned above. (In case P is on the circle, we may define the power to be 0 for convenience.) For two circles C_1 and C_2 with different centers O_1 and O_2 , the points whose power with respect to C_1 and C_2 are equal form a line perpendicular to line O_1O_2 . (This can be shown by setting coordinates with line O1 O2 as the x-axis.) This line is called the radical axis of the two circles. In the case of the three circles C_1, C_2, C_3 with noncollinear centers O_1, O_2, O_3 the three radical axes of the three pairs of circles intersect

at a point called the *radical center* of the three circles. (This is because the intersection point of any two of these radical axes has equal power with respect to all three circles, hence it is on the third radical axis too.) If two circles C_1 and C_2 intersect, their radical axis is the line through the intersection point(s) perpendicular to the line of the centers. (This is because the intersection point(s) have 0 power with respect to both circles, hence they are on the radical axis.) If the two circles do not intersect, their radical axis can be found by taking a third circle C_3 intersecting both C_1 and C_2 . Let the radical axis of C_1 , C_3 intersect the radical axis of C_2 , C_3 at P. Then the radical axis of C_1 , C_2 is the line through P perpendicular to the line of centers of C_1 , C_2 .

We will illustrate the usefulness of the intersecting chords theorem, the concepts of power of a point, radical axis and radical center in the following examples.

Example 1. (1996 St. Petersburg City Math Olympiad)

Let BD be the angle bisector of angle B in triangle ABC with D on side AC. The circumcircle of triangle BDC meets AB at E, while the circumcircle of triangle ABD meets BC at F.

Prove that AE = CF.

Solution. By the intersecting chords theorem, $AE \times AB = AD \times AC$ and

$$CF \times CB = CD \times CA$$
, so $\frac{AE}{CF} = \frac{AD}{CD} \times \frac{BC}{AB}$.

However, $\frac{AB}{CB} = \frac{AD}{CD}$ by the angle bisector theorem. So AE = CF.

Example 2. (1997 USA Math Olympiad)

Let ABC be a triangle, and draw isosceles triangles BCD, CAE, ABF externally to ABC, with BC, CA, AB as their respective bases. Prove the lines through A, B, C, perpendicular to the lines EF, FD, DE, respectively, are concurrent.

Solution. Let C1 be the circle with center D and radius BD, C2 be the circle with center E and radius CE, and C3 be the circle with center E and radius E. The line through E perpendicular to E is the radical axis of E, E, the line through E perpendicular to E is the radical axis of E axis of E.

Example 3. (1985 IMO) A circle with center O passes through vertices A and C of triangle ABC and intersects side AB at K and side BC at N. Let the circumcircles of triangles ABC and KBN intersect at B and M. Prove that OM is perpendicular to BM.

Solution. For the three circles mentioned, the radical axes of the three pairs are lines AC, KN and BM. (The centers are noncollinear because two of them are on the perpendicular bisector of AC, but not the third.) So the axes will concur at the radical center P. Since $\widehat{PMN} = \widehat{BKN} = \widehat{NCA}$, it follows that P, M, N, C are concyclic. By power of a point, $BM \times BP = BN \times BC = BO^2 - r^2$ and $PM \times PB = PN \times PK = PO^2 - r^2$, where r is the radius of the circle through A, C, N, K. Then $PO^2 - BO^2 = BP(PM - BM) = PM^2 - BM^2$ This implies OM is perpendicular to BM. (See remarks below.)

Remarks. By coordinate geometry, it can be shown that the locus of points X such that $PO^2 - BO^2 = PX^2 - BX^2$ is the line through O perpendicular to line BP. This is a useful fact.

Example 4. (1997 Chinese Math Olympiad)

Let quadrilateral ABCD be inscribed in a circle. Suppose lines AB and DC intersect at P and lines AD and BC intersect at Q. From Q, construct the tangents QE and QF to the circle, where E and F are the points of tangency. Prove that P, E, F are collinear.

Solution. Let M be a point on PQ such that $\widehat{CMP} = \widehat{ADC}$. Then D,C,M,Q are concyclic and also, B,C,M,P are concyclic. Let r_1 be the radius of the circumcircle C1 of ABCD and C1 be the center of C1. By power of a point, $PO_1^2 - r_1^2 = PC \times PD = PM \times PQ$ and $QO_1^2 - r_1^2 = QC \times QB = QM \times PQ$ Then $PO_1^2 - QO_1^2 = (PM - QM)PQ = PM^2 - QM^2$ which implies $O_1M \perp PQ$. The circle C2 with QO1 as diameter passes through M, E,F and intersects C1 at E, F. If C1 is the radius of C2 and C2 is the center of C2, then $PO_1^2 - r_1^2 = PM \times PQ = PO_2^2 - r_2^2$. So P lies on the radical axis of C1, C2, which is the line EF.

Phép Nghịch đảo

Inversion

Kin Y. Li

In algebra, the method of logarithm transforms tough problems involving multiplications and divisions into simpler problems involving additions and subtractions. For every positive number x, there is a unique real number $\log x$ in base 10. This is a one-to-one correspondence between the positive numbers and the real numbers.

In geometry, there are also transformation methods for solving problems. In this article, we will discuss one such method called *inversion*. To present this, we will introduce the *extended plane*, which is the plane together with a point that we would like to think of as infinity. Also, we would like to think of *all* lines on the plane will go through *this point at infinity*! To understand this, we will introduce the *stereographic projection*, which can be described as follow.

Consider a sphere sitting on a point O of a plane. If we remove the north pole N of the sphere, we get a punctured sphere. For every point P on the plane, the line NP will intersect the punctured sphere at a unique point S_n . So this gives a one-to-one correspondence between the plane and the punctured sphere. If we consider the points P on a circle in the plane, then the S_n points will form a circle on the punctured sphere. However, if we consider the points P on any line in the plane, then the S_p points will form a punctured circle on the sphere with N as the point removed from the circle. If we move a point P on any line on the plane toward infinity, then S_p will go toward the same point N! Thus, in this model, all lines can be thought of as going to the same infinity.

Now for the method of inversion, let O be a point on the plane and r be a positive number. The <u>inversion</u> with center O and radius r is the function on the extended plane that sends a point $X \neq O$ to the <u>image</u> point X on the ray OX such that $OX \cdot OX' = r^2$ When X = O, X' is taken to be the point at infinity. When X is infinity, X' is taken to be O. The circle with center O and

Carlo Television of the

radius r is called the *circle of inversion*.

The method of inversion is based on the following facts.

- (1) The function sending X to X 'described above is a one-to-one correspondence between the extended plane with itself. (This follows from checking (X')' = X)
- (2) If X is on the circle of inversion, then X' = X If X is outside the circle of inversion, then X' is the midpoint of the chord formed by the tangent points T_1 , T_2 of the tangent lines from X to the circle of inversion. (This follows from $OX \cdot OX' = (r \sec \angle T_1 OX)(r \cos \angle T_1 OX) = r^2$).
- (3) A circle not passing through O is sent to a circle not passing through O. In this case, the images of concyclic points are concyclic. The point O, the centers of the circle and the image circle are collinear. However, the center of the circle is <u>not</u> sent to the center of the image circle!
- (4) A circle passing through O is sent to a line which is not passing through O and is parallel to the tangent line to the circle at O. Conversely, a line not passing through O is sent to a circle passing through O with the tangent line at O parallel to the line.
 - (5) A line passing through O is sent to itself.
- (6) If two curves intersect at a certain angle at a point $P \neq O$, then the image curves will also intersect at the same angle at P'. If the angle is a right angle, the curves are said to be <u>orthogonal</u>. So in particular, orthogonal curves at P are sent to orthogonal curves at P'. A circle

orthogonal to the circle of inversion is sent to itself. Tangent curves at P are sent to tangent curves at P.

(7) If points A, B are different from O and points O, A, B are not collinear, then the equation

$$OA \cdot OA' = r^2 = OB \cdot OB'$$
 implies $\frac{OA}{OB} = \frac{OB'}{OA'}$

Along with $\angle AOB = \angle B'OA'$ they imply $\triangle OAB = \triangle OB'A'$ are similar. Then

$$\frac{A'B'}{AB} = \frac{OA'}{OB} = \frac{r^2}{OA OB}$$
 so that $A'B' = \frac{r^2}{OA OB} AB$

The following are some examples that illustrate the powerful method of inversion. In each example, when we do inversion, it is often that we take the point that plays the <u>most significant role</u> and where <u>many circles and lines intersect</u>.

Example 1. (Ptolemy's Theorem)

For coplanar points A, B, C, D, if they are concyclic, then $AB \cdot CD + AD \cdot BC = AC \cdot BD$

Solution. Consider the inversion with center D and any radius r. By fact (4), the circumcircle of $\triangle ABC$ is sent to the line through A', B', C'. Since A'B'+B'C'=A'C', we have by fact (7) that

$$\frac{r^2}{AD \cdot BD} AB + \frac{r^2}{BD \cdot CD} BC = \frac{r^2}{AD \cdot CD} AC$$

Multiplying by $\frac{AD \cdot BD \cdot CD}{r^2}$, we get the desired

equation.

Remarks. The steps can be reversed to get the converse statement that if $AB \cdot CD + AD \cdot BC = AC \cdot BD$ then A,B,C,D are concyclic.

Example 2. (1993 USAMO)

Let ABCD be a convex quadrilateral such that diagonals AC and BD intersect at right

angles, and let *O* be their intersection point. Prove that the reflections of *O* across *AB*, *BC*, *CD*, *DA* are concyclic.

Solution. Let P, Q, R, S be the feet of perpendiculars from O to AB, BC, CD, DA, respectively. The problem is equivalent to showing P, Q, R, S are concyclic (since they are the midpoints of

O to its reflections). Note OSAP, OPBQ, OQCR, ORDS are cyclic quadrilaterals. Let their circumcircles be called C_A , C_B , C_C , C_D , respectively.

Consider the inversion with center O and any radius r. By fact (5), lines AC and BD are sent to themselves. By fact (4), circle C_A is sent to a line L_A parallel to BD, circle C_B is sent to a line L_B parallel to AC, circle C_C is sent to a line L_C parallel to BD, circle C_D is sent to a line L_D parallel to AC. Next C_A intersects C_B at O and O. This implies C_A intersects C_B at C_A intersects C_A intersects C_A intersects C_A at C_A intersects C_A intersects C_A intersects C_A at C_A intersects C_A intersects

Since $AC \perp BD$, P'Q'R'S' is a rectangle, hence cyclic. Therefore, by fact (3), P, Q,

R, S are concyclic.

Example 3. (1996 IMO)

Let P be a point inside triangle ABC such that $\angle APB - \angle ACB = \angle APC - \angle ABC$.

Let *D*, *E* be the incenters of triangles *APB*, *APC*, respectively. Show that *AP*, *BD*, *CE* meet at a point.

Solution. Let lines AP, BD intersect at X, lines AP, CE intersect at Y. We have to

show X = Y. By the angle bisector theorem, $\frac{BA}{BP} = \frac{XA}{XP}$. Similarly, $\frac{CA}{CP} = \frac{YA}{YP}$. As X, Y

are on AP, we get X = Y if and only if $\frac{CA}{CP} = \frac{BA}{BP}$.

Consider the inversion with center A and any radius r. By fact (7), $\triangle ABC$, $\triangle AC'B'$ are similar, $\triangle APB$, $\triangle AB'P'$ are similar and $\triangle APC$, $\triangle AC'P'$ are similar. Now $\angle B'C'P' = \angle AC'P' - \angle AC'B'$ = $\angle APC - \angle ABC$ = $\angle APB - \angle ACB = \angle AB'P - \angle AB'C' = \angle C'B'P'$

So $\Delta B'C'P'$ is isosceles and P'B' = P'C'. From $\Delta APB, \Delta AB'P'$ similar and $\Delta APC, \Delta AC'P'$ similar, we get $\frac{BA}{BP} = \frac{P'A}{P'B'} = \frac{P'A}{P'C'} = \frac{CA}{CP}$ Therefore, X = Y.

Example 4. (1995 Israeli Math Olympiad)

Let PQ be the diameter of semicircle H. Circle O is internally tangent to H and tangent to PQ at C. Let A be a point on H and B a point on PQ such that $AB \perp PQ$ and is tangent to O. Prove that AC bisects $\angle PAB$.

Solution. Consider the inversion with center C and any radius r. By fact (7), $\triangle CAP, \triangle CP'A'$ similar and $\triangle CAB, \triangle CB'A'$ similar. So AC bisects PAB if and only if $\angle CAP = \angle CAB$ if and only if $\angle CP'A' = \angle CB'A'$.

By fact (5), line PQ is sent to itself. Since circle O passes through C, circle O is sent to a line O' parallel to PQ. By fact (6), since H is tangent to circle O and is orthogonal to line PQ, H is sent to the semicircle H' tangent to line O' and has diameter P'Q'. Since segment AB is tangent to circle O and is orthogonal to PQ, segment AB is sent to $\widehat{A'B'}$ on the semicircle tangent to line O' and has diameter CB'. Now observe that $\widehat{A'Q'}$ and $\widehat{A'C}$ are symmetrical with respect to the perpendicular bisector of CQ' so we get $\angle CP'A' = \angle CB'A'$.

In the solutions of the next two examples, we will consider the nine-point circle and the Euler line of a triangle. Please consult Vol. 3, No. 1 of Mathematical Excalibur for discussion if necessary.

Example 5. (1995 Russian Math Olympiad)

Given a semicircle with diameter AB and center O and a line, which intersects the semicircle at C and D and line AB at M (MB < MA, MD < MC). Let K be the second point of intersection of the circumcircles of triangles AOC and DOB. Prove that $\angle MKO = 90^{\circ}$

Solution. Consider the inversion with center O and radius r = OA. By fact (2), A, B, C, D are sent to themselves. By fact (4), the circle through A, O, C is sent to line AC and the circle through D, O, B is sent to line DB. Hence, the point K is sent to the intersection K' of lines AC with DB and the point M is sent to the intersection M' of line AB with the circumcircle of $\triangle OCD$. Then the line MK is sent to the circumcircle of OM'K'.

To solve the problem, note by fact (7), $\angle MKO = 90^{\circ}$ if and only if $\angle K'M'O = 90^{\circ}$

Since $BC \perp AK'$, $AD \perp BK'$ and O is the midpoint of AB, so the circumcircle of $\triangle OCD$ is the nine-point circle of $\triangle ABK'$ which intersects side AB again at the foot of perpendicular from K' to AB. This point is M'. So $\angle K'M'O = 90^\circ$ and we are done.

Example 6. (1995 Iranian Math Olympiad)

Let M, N and P be points of intersection of the incircle of triangle ABC with sides AB, BC and CA

respectively. Prove that the orthocenter of $\triangle MNP$, the incenter of $\triangle ABC$ and the circumcenter of $\triangle ABC$ are collinear.

Solution. Note the incircle of $\triangle ABC$ is the circumcircle of $\triangle MNP$. So the first two points are on the Euler line of $\triangle MNP$. Consider inversion with respect to the incircle of $\triangle ABC$ with center I. By fact (2), A, B, C are sent to the midpoints A', B', C' of PM, MN, NP, respectively. The circumcenter of $\triangle A'B'C'$ is the center of the nine point circle of $\triangle MNP$, which is on the Euler line of $\triangle MNP$. By fact (3), the circumcircle of $\triangle ABC$ is also on the Euler line of $\triangle MNP$.

PHÂN IV

Những bài toán hay và Các bài toán tự sáng tạo

BBT. Trong chuyên mục này, xin được giới thiệu với bạn đọc những bài toán được đánh giá là hay, sâu sắc về mặt toán học và độc đáo về lời giải. Bên canh đó còn có những bài toán do chính các tác giả đề xuất sáng tao nên. Thật khó để đưa ra một định nghĩa chính xác thế nào là một bài toán hay/môt lời giải hay, vì điều đó còn phu thuộc vào quan điểm và sở thích của mỗi người yêu toán. "Môt bài toán hay là bài toán có nhiều lời giải", "Lời giải một bài toán được gọi là hay khi sử dung ít nhất các dữ kiện của đề bài", "Những bài toán có lời giải sơ cấp nhất mới là những bài toán hay", "Một bài toán hay là một bài toán mà sau khi giải được, chúng ta 'à' lên một tiếng khe khẽ!", v.v ...

Đó là một vài đinh nghĩa trong vô số các quan điểm khác nhau. Nhưng những định nghĩa đó là không thật quan trọng, điều đáng chú ý là những bài toán dưới đây đều là những bài toán chọn lọc, đã từng xuất hiện trong các kỳ thi Olympic, trên các tạp chí Toán học, những bài toán do chính các ban chuyên Toán xây dựng nên trong quá trình mày mò, suy nghĩ và có cả những sư tình cờ ... Không ai có thể khẳng định rằng "Tôi sẽ nghĩ ra 1 bài toán ngay bây giờ!" mà những bài toán mới sẽ chỉ được hình thành trên nền tảng lý thuyết sâu sắc, một sư đào sâu suy nghĩ cần thiết. Và chắc chắn, đối với các ban yêu toán, ai cũng đã có được những bài toán của riêng mình ...

CÁC BÀI TOÁN TỰ SÁNG TẠO

Sau đây là những bài toán do tác giả Nguyễn Lâm Tuyền đề xuất:

Bài T1/2007. Tìm tất cả các đa thức P(x) có hệ số thực thỏa mãn điều kiện

$$P(x).P(2x^2) = P(\alpha x^3 + x), \forall x \in R (1)$$

Trong đó α là số thực thuộc đoạn $\left[0;2\right]$. Lời giải.

i) Trường hợp $\alpha = 0$.

Khi đó ta có $P(x).P(2x^2) = P(x)$ hay $P(x)(P(2x^2)-1)=0$ với mọi $x \in R$. Do đó, với mọi $x \in R$ thì P(x)=0 hoặc là $P(2x^2)=1$. Nếu P(x) khác hằng số thì P(x)=0 hoặc P(x)=1 tại vô hạn giá trị của x. Điều này không thể xẩy ra, vậy P(x) là một đa thức hằng. Nghĩa là $P(x)\equiv 0$ hoặc $P(x)\equiv 1$.

ii) Trường hợp 2: $0 < \alpha < 2$. Với đa thức P(x) là hằng, P(x) = a, ta có $a^2 = a$ nên a = 0 hoặc a = 1. Ta thấy $P(x) \equiv 0$ hoặc $P(x) \equiv 1$ thỏa mãn bài ra.

Xét khi P(x) khác hằng số

$$P(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n, (a_0 \neq 0),$$

 $n \in \mathbb{N}^*$

Với x = 0, ta thu được $P(0) = a_n = 0$ hoặc $P(0) = a_n = 1$. Nếu $a_n = 0$ thì

$$P(x) = x^{m}.Q(x), Q(0) \neq 0, m \in N^{*}$$

Thay vào điều kiện bài ra, ta thu được

$$(2x^2)^m \cdot Q(x) \cdot Q(x^2) = (\alpha x^2 + 1)^m Q(\alpha x^3 + x)$$

và Q(x) = 0, trái với giả thiết. Vậy nên $a_n = 1$. Đồng nhất hệ số bậc cao nhất hai vế

của (1) ta được
$$a_0 = \left(\frac{\alpha}{2}\right)^n$$
. Từ điều kiện bài

ra ta thấy nếu $P(x_0) = 0$ thì $P(\alpha x_0^3 + x_0) = 0$

Xét dãy số $x_{n+1} = \alpha x_n^3 + x_n$, (n = 0, 1, 2, ...), $x_0 \neq 0$. Ta thấy $\{x_n\}$ là dãy đơn điệu tăng khi $x_0 > 0$ và là dãy đơn điệu giảm khi $x_0 < 0$. Từ đó suy ra nếu P(x) có một nghiệm thực khác 0 thì nó sẽ có vô số nghiệm thực. Điều này không thể xẩy ra. Vậy $P(x) \neq 0$ với mọi $x \in R$. Suy ra P(x)

chỉ có nghiệm phức $z_1, z_2, ..., z_n$

$$z_1.z_2...z_n = (-1)^n.\frac{a_n}{a_0} = \left(-\frac{2}{\alpha}\right)^n$$

$$\Rightarrow |z_1|.|z_2|...|z_n| = \left(\frac{2}{\alpha}\right)^n. \text{ Vậy nên tồn tại } z_k$$
với $|z_k| \ge \frac{2}{\alpha}$. Điều này dẫn đến

$$\left|\alpha z_k^2 + 1\right| \ge \alpha \left|z_k^2\right| - 1 \ge \alpha \left(\frac{2}{\alpha}\right)^2 - 1 = \frac{4}{\alpha} - 1 > 1$$

(do
$$0 < \alpha < 2$$
) $\Rightarrow \left| \alpha z_k^3 + z_k \right| > \left| z_k \right|$. Ta thu được $P(x)$ có vô số nghiệm. Điều này không thể xẩy ra. Như vậy trong trường hợp này cũng chỉ có 2 đa thức hằng thỏa mãn bài ra là $P(x) \equiv 0$ hoặc $P(x) \equiv 1$.

iii) Trường hợp $\alpha = 2$. Ta có

$$P(x).P(2x^2) = P(2x^3 + x), \forall x \in R.$$

Đây là bài toán quen thuộc, và như chúng ta đã biết, kết quả trong trường hợp này là

$$P(x) = 0, \forall x \in R$$

$$P(x) = 1, \forall x \in R$$

$$P(x) = (x^{2} + 1)^{n}, \forall x \in R$$

(Các bạn có thể xem chứng minh chi tiết trong bài báo "Úng dụng của một bài toán tổng quát của tác giả Nguyễn Hà Thuật, trang 57 – Phần I – Sáng tạo toán học").

Nhân xét.

1). Có thể tổng quát bài toán trên như sau: Cho các số thực k,α sao cho $0 \le \alpha \le k$. Tìm tất cả các đa thức P(x) có hệ số thực thỏa mãn điều kiên

$$P(x).P(kx^2) = P(\alpha x^3 + x), \forall x \in R$$

- 2). Hai bài toán nói trên là một minh họa cho hướng tổng quát các bài toán tìm đa thức thỏa mãn một đẳng thức.
- 3). Bài toán T1/2007 trong trường hợp $\alpha = 1$ chính là bài T10/348 tạp chí THTT tháng 6/2006 do tác giả đề xuất. Đây là dạng toán khó vì có liên quan đến nghiệm số phức và các tính chất của đa thức.

Bài T2/2007. Chứng minh rằng:

$$\frac{x_1^m}{x_2^n + x_3^n + \dots + x_n^n} + \frac{x_2^m}{x_1^n + x_3^n + \dots + x_n^n} + \dots$$

$$+\frac{x_n^m}{x_1^n+x_2^n+...+x_{n-1}^n} \ge \frac{n}{n-1} \sqrt[n]{\left(\frac{2003}{n}\right)^{m-n}}$$

trong đó các số m, n nguyên, x_i (i = 1, 2, ..., n) dương thỏa mãn điều kiện $m \ge n > 1$ và $x_1^n + x_2^n + ... + x_n^n \ge 2003$.

Lời giải. Do vai trò đối xứng của bất đẳng thức (BĐT) trên, không mất tính tổng quát ta giả thiết $x_1 \le x_2 \le ... \le x_n$.

Đặt
$$S = x_1^n + x_2^n + ... + x_n^n$$
. Ta có

$$\frac{x_1^m}{S - x_1^n} \le \frac{x_2^m}{S - x_2^n} \le \dots \le \frac{x_n^m}{S - x_n^n} \text{ và}$$

 $S - x_1^n \ge S - x_2^n \ge ... \ge S - x_n^n$, do đó theo BĐT Trêbưsep cho hai dãy đơn điều ngược chiều

$$\left(\frac{x_1^m}{S - x_1^n} + \frac{x_2^m}{S - x_2^n} + \dots + \frac{x_n^m}{S - x_n^n}\right) \times$$

$$\times \left(S - x_1^n + S - x_2^n + \ldots + S - x_n^n\right) \ge$$

 $\geq n\left(x_1^m + x_2^m + ... + x_n^m\right)$. Từ BĐT này suy ra:

$$\left(\frac{x_1^m}{S - x_1^n} + \frac{x_2^m}{S - x_2^n} + \dots + \frac{x_n^m}{S - x_n^n}\right) \ge$$

$$\geq \frac{n}{n-1} \cdot \frac{x_1^m + x_2^m + \dots + x_n^m}{x_1^n + x_2^n + \dots + x_n^m} (1)$$

Với x > 0, áp dung BĐT Cô-si ta có:

$$nx^m + (m-n) \ge mx^n$$

Thay $x = x_i \sqrt[n]{\frac{n}{S}}$, i = 1, 2, ... rồi cộng từng vế:

$$n\left(\sqrt[n]{\frac{n}{S}}\right)^{m}\left(x_{1}^{m}+x_{2}^{m}+\ldots+x_{n}^{m}\right)+n(m-n)\geq mn$$

Do đó
$$x_1^m + x_2^m + ... + x_n^m \ge n \left(\sqrt[n]{\frac{n}{S}} \right)^m (*).$$

Bởi vậy

$$\frac{x_1^m + x_2^m + \dots + x_n^m}{x_1^n + x_2^n + \dots + x_n^n} \ge \frac{n}{S} \cdot \left(\sqrt[n]{\frac{n}{S}} \right)^m =$$

$$= \left(\frac{S}{n} \right)^{\frac{m}{n} - 1} = \sqrt[n]{\left(\frac{S}{n} \right)^{m - n}} \ge \sqrt[n]{\left(\frac{2003}{n} \right)^{m - n}}$$
(2)

Từ (1) và (2) ta nhận được BĐT cần chứng minh. Đẳng thức xẩy ra

$$\Leftrightarrow x_1 = x_2 = \dots = x_n = \sqrt[n]{\frac{S}{n}} = \sqrt[n]{\frac{2003}{n}}.$$

Nhân xét.

Bài toán trên xuất sứ từ bài toán trường hợp riêng sau đây:

Cho các số thực dương a, b, c thỏa mãn điều kiện $a^2b^2+b^2c^2+c^2a^2\geq a^2b^2c^2$. Chứng minh rằng

$$\frac{a^2b^2}{c^3(a^2+b^2)} + \frac{b^2c^2}{a^3(b^2+c^2)} + \frac{c^2a^2}{b^3(c^2+a^2)} \ge \frac{\sqrt{3}}{2}.$$

Đây là một bài toán tương đối cơ bản và hay. Nó có nhiều lời giải khác nhau, trong đó có lời giải rất đẹp sau đây:

Đặt
$$x = \frac{3}{\sqrt{a}}, y = \frac{3}{\sqrt{b}}, z = \frac{3}{\sqrt{c}}.$$

Ta có $x^2 + y^2 + z^2 \ge 3$ và BĐT cần chứng minh có dang

$$\frac{x^3}{y^2 + z^2} + \frac{y^3}{z^2 + x^2} + \frac{z^3}{x^2 + y^2} \ge \frac{3}{2} \ (**).$$

Áp dụng BĐT Cô-si ta có $2x^3 + 1 \ge 3x^2$.

Mặt khác, vì $x^2 + y^2 + z^2 \ge 3$, suy ra

$$\frac{2x^3}{y^2 + z^2} + \frac{1}{3} \ge \frac{8}{3} \cdot \frac{x^2}{y^2 + z^2}$$

Tương tự:

$$\frac{2y^3}{z^2 + x^2} + \frac{1}{3} \ge \frac{8}{3} \cdot \frac{y^2}{z^2 + x^2},$$
$$\frac{2z^3}{x^2 + y^2} + \frac{1}{3} \ge \frac{8}{3} \cdot \frac{z^2}{x^2 + y^2}.$$

Cộng 3 BĐT trên theo từng vế và áp dụng

BĐT Nesbit
$$\frac{x^2}{y^2 + z^2} + \frac{y^2}{z^2 + x^2} + \frac{z^2}{x^2 + y^2} \ge \frac{3}{2}$$
 ta thu được (**).

Bài T2/2007 là bài toán T10/232 trên THTT 6/2003 do tác giả đề xuất. Nó bắt nguồn từ bài toán nói trên.

Như tác giả cũng đã đề cập đến trong các bài viết về bất đẳng thức. Khi giải các bài toán về bất đẳng thức, chúng ta thường đặt ẩn phụ sao cho các biến mới khi xẩy ra dấu bằng đều là các giá trị đặc biệt, thường là cố tình lấy sao cho giá trị đó bằng 1. Khi đó, bài toán đỡ rắc rối và cũng dễ trình bày hơn.

Bất đẳng thức (*) ở trên không phải là một kết quả quá xa lạ. Các bạn có thể tìm thấy trong các tài liệu về bất đẳng thức, hoặc trong cuốn "Tuyển tập đề thi vô địch 19 nước trong đó có Việt Nam". Tuy nhiên theo chứng minh trên là một lời giải khá mới mẻ cho bài toán này bằng cách vận dụng bất đẳng thức Cô-si.

Bài T3/2007. Kí hiệu \mathcal{T} là tập hợp tất cả các đa thức bậc 2007 có đúng 11 nghiệm thực kể cả nghiêm bôi. Với mỗi $P(x) \in \mathcal{T}$ đặt

$$Q_p(x) = (x^{20} + 1)P(x) - P'(x)$$

và gọi S_n là số nghiệm thực của đa thức

$$Q_p(x)$$
. Tim $\min_{P \in T} S_p$.

Lời giải. Kí hiệu $x_1 < x_2 < ... < x_k$ là các nghiệm thực bội t_i tương ứng của đa thức P(x). Khi đó ta có $t_1 + t_2 + ... + t_k = 11$ và $P(x) = G(x) \prod_{1 \le i \le k} (x - x_i)^{t_i}$, trong đó đa thức G(x) vô nghiêm thực.

Sử dụng một tính chất quen thuộc của đa thức: $N\acute{e}u \ x_i \ là nghiệm bội t_i của đa thức <math>P(x)$ thì x_i là nghiệm bội t_i –1 của đa thức P'(x). Từ đó suy x_i cũng là nghiệm

bội $t_i - 1$ của đa thức

$$Q_p(x) = (x^{20} + 1)P(x) - P'(x)$$

với $i = 1, 2, ..., k$.

Xét hàm số $f(x) = e^{\frac{-x^{21}}{21}x}$. P(x). Nhận thấy $f(x_i) = 0$ với i = 1, 2, ..., k nên theo định lí Roll, f(x) phải có ít nhất 1 nghiệm ứng với mỗi khoảng $(x_j; x_{j+1})$, $j = \overline{1, k-1}$. Như vậy đa thức $Q_n(x)$ có ít nhất

$$\left(\sum_{1 \le i \le k} \left(t_i - 1\right)\right) + (k - 1) = 10$$

nghiệm trên $[x_1; x_k]$.

Tiếp theo, xét hàm số
$$h(x) = \frac{Q(x)}{P(x)}$$
 trên

$$(x_k; +\infty)$$
, ta có: $h(x) = x^{20} + 1 - \frac{P'(x)}{P(x)} =$

$$= x^{20} + 1 - \frac{G'(x)}{G(x)} - \sum_{1 \le i \le k} \frac{t_i}{x - x_i}.$$

Rõ ràng: khi $x \to +\infty$ thì $h(x) \to +\infty$ và khi $x \to x_k^+$ thì $h(x) \to -\infty$ nên theo định lý Bônxanô-Côsi thì h(x) có ít nhất một nghiệm thực trong $(x_k; +\infty)$. Vậy $Q_p(x)$ có ít nhất 11 nghiệm hay $S_p \ge 11$.

Bây giờ ta chỉ ra một đa thức P(x) mà $S_P = 1$. Xét lớp các đa thức P(x) dạng $P_k(x) = k.x^{11} + x^{2007} \in T(k \in N^*)$.

Ta có:

$$Q_P(x) = (x^{20} + 1)(k.x^{11} + x^{2007}) - (11k.x^{10} + 2007x^{2006}) = x^{10}.R(x), \text{ trong d\'o}$$
 đa thức $R(x) =$

=
$$x^{2017} + x^{1997} - 2007x^{1996} - kx^{21} + kx - 11k$$

có nghiệm vì R(x) bậc lẻ.

Ngoài ra
$$R'(x) = 2017x^{2016} + 1997x^{1996} -$$

 $-2007.1996x^{1995} + 21kx^{20} + k$ bậc chẩn nên hàm có cực tiểu, dẫn đến với k đủ lớn thì $R'(x) > 0 \implies R(x)$ có duy nhất 1 nghiệm. Từ đó suy ra đa thức $Q_p(x)$ có đúng 11 nghiệm.

$$V \hat{a} y \, \underset{P \in T}{Min} \, S_P = 11.$$

Nhân xét.

Cái phức tạp của bài toán trên là chỉ ra được nghiệm thứ 11 và đa thức P(x) để biểu thức S_P đạt giá trị nhỏ nhất. Còn việc áp dụng định lý Roll để chứng minh $S_P \geq 10$, là một tư duy quen thuộc của các bạn chuyên Toán khi giải các bài toán liên quan đến nghiệm của đa thức.

Bài T4/2007. Tìm tất cả các dãy số (u_n) (n = 0, 1, 2,) sao cho u_n là số tự nhiên và $u_{n+1} > u_{u_{n}}$ với mọi n = 0, 1, 2, ...

Lời giải. Giả sử u_k là số hạng nhỏ nhất trong dãy (u_n) . Khi đó nếu $k \ge 1$ thì từ giả thiết ta có $u_n > u_{u_{k-1}}$, trái với điều giả sử. Vậy u_0 là số hạng nhỏ nhất và duy nhất của dãy (u_n) .

Nhận xét: Số hạng nhỏ thứ k (k = 1, 2, 3., ...) trong dãy (u_n) là u_{k-1} và duy nhất.

Thật vậy, với k = 1 nhận xét đúng theo chứng minh trên. Giả sử nhận xét đúng với k = 1, 2, ..., m. Vì mọi số hạng của dãy (u_n) đều là số tự nhiên và do tính duy nhất của u_k nên $u_k \ge k$ với mọi k = 1, 2, ..., m. (*)

Gọi u_j ($j \ge m+1$) là số hạng nhỏ nhất thứ m+1. Theo giả thiết ta có $u_j > u_{u_{i_{j-1}}} \Rightarrow u_{u_{u_{j-1}}} \in \left\{u_0, u_1,, u_{m-1}\right\}$

$$\Rightarrow u_{u_{i,1}} \in \{0,1,2,...,m-1\}$$

Kết hợp với (*) suy ra
$$u_{j-1} \le m \le u_m \Longrightarrow j-1 \le m \Longleftrightarrow j \le m+1$$

Vậy j = m + 1. Nhận xét được chứng minh. Từ nhận xét trên suy ra dãy (u_n) tăng ngặt. Do đó từ giả thiết $u_{n+1} > u_{u_{n}}$ và từ (*) suy ra $n+1>u_{u_n}\geq u_n\geq n$. Nhưng vì $u_n\in N$ với mọi n nên $u_n=n$.

Thử lại ta thấy dãy $u_n = n \pmod{n} = 0, 1, 2, ...$ thoả mãn mọi yêu cầu của bài toán.

Bài T5/2007. Tìm tất cả các hàm số f(x) xác định, có đạo hàm liên tục tại mọi điểm trên [a,b] và thoả mãn các điều kiện sau:

- i) Phương trình $f(\alpha) + f'(\alpha) = 0$ vô nghiệm trên [a,b].
- ii) Phương trình f(x) = 0 có vô số nghiệm trên [a,b].

Lời giải. Giả sử hàm số f(x) thoả mãn các điều kiện của bài bài toán. Khi đó từ điều kiện ii) suy ra tồn tại dãy số vô hạn (W_n)

$$(n = 1, 2, 3, ...) \text{ mà } f(W_n) = 0 \text{ và}$$

$$a \leq W_1 \leq W_2 \leq \ldots \leq W_n \leq \ldots \leq b$$
.

Dễ thấy dãy (W_n) tăng và bị chặn nên tồn tại giới hạn $\lim_{n\to\infty} W_n = \alpha \in [a;b]$.

Theo định lí Roll: với mỗi i, tồn tại $C_i \in \left(W_i; W_{i+1}\right)$ sao cho $f'(C_i) = 0$, mặt khác do $W_i \leq C_i \leq W_{i+1}$ nên $\lim_{n \to +\infty} C_n = \alpha$.

Cuối cùng, vì f(x) và f'(x) là các hàm liên tục nên:

$$f(\alpha) = f\left(\lim_{n \to +\infty} W_n\right) = \lim_{n \to +\infty} f\left(W_n\right) = 0$$
$$f'(\alpha) = f'\left(\lim_{n \to +\infty} C_n\right) = \lim_{n \to +\infty} f'\left(C_n\right) = 0$$
$$\Rightarrow f(\alpha) + f'(\alpha) = 0 \text{, mâu thuẫn với i). Vậy}$$

Bài T6/2007. Giả sử rằng phương trình $1+(a_1+a_2)x+(a_3+a_4)x^2+(a_5+a_6)x^3=0$ (1) có một nghiệm thuộc đoạn [0,1]. Chứng minh rằng phương trình:

không tồn tai hàm số nào thoả mãn đề bài.

$$x^6 + a_1 x^5 + a_2 x^4 + a_3 x^3 + a_4 x^2 + a_5 x + a_6 = 0$$

có nghiệm thực.

Lời giải. Giả sử $x_0 \in [0,1]$ là một nghiệm thoả mãn điều kiện đề bài của phương trình

(1). Ta có nhận xét là
$$x_0 \neq 0$$
 và $\frac{1}{x_0}$ là

nghiêm của phương trình:

$$x^{3} + (a_{1} + a_{2})x^{2} + (a_{3} + a_{4})x + (a_{5} + a_{6}) = 0$$

 $\Leftrightarrow k^{3} + a_{2}k^{2} + a_{4}k + a_{6} = -(a_{1}k^{2} + a_{3}k + a_{5})(2)$
Đặt $f(x) = x^{6} + a_{1}x^{5} + a_{2}x^{4} + a_{3}x^{3} + a_{4}x^{2} + a_{5}x + a_{6}$. Ta cần chứng minh phương trình $f(x) = 0$ có nghiệm.

Thật vậy, dựa vào (2) ta có:

$$f(\sqrt{k}) = (k^3 + a_2k^2 + a_4k + a_6) +$$

$$+ \sqrt{k}(a_1k^2 + a_3k + a_5) =$$

$$= -(a_1k^2 + a_3k + a_5) + \sqrt{k}(a_1k^2 + a_3k + a_5) =$$

$$= (-1 - \sqrt{k})(a_1k^2 + a_3k + a_5)$$

$$\begin{split} f\left(-\sqrt{k}\right) &= \left(k^3 + a_2k^2 + a_4k + a_6\right) - \\ &-\sqrt{k}\left(a_1k^2 + a_3k + a_5\right) = -\left(a_1k^2 + a_3k + a_5\right) - \\ &-\sqrt{k}\left(a_1k^2 + a_3k + a_5\right) \\ &= \left(-1 - \sqrt{k}\right)\left(a_1k^2 + a_3k + a_5\right) \\ &\Rightarrow f\left(\sqrt{k}\right)f\left(-\sqrt{k}\right) = \\ &= \left(1 - k\right)\left(a_1k^2 + a_3k + a_5\right)^2 \leq 0 \text{ (do } k \geq 1\text{)} \\ &\Rightarrow \text{ Phương trình } f\left(x\right) = 0 \text{ có nghiệm thực} \\ &\Rightarrow \text{ dpcm.} \end{split}$$

Bài T7/2007. Cho 2 dãy số x_n và u_n (n = 0, 1, 2, ...) được xác định theo cách sau :

$$\begin{cases} u_{n+1} = u_n + \frac{1}{u_n^k} + \sum_{i=1}^{2007} u_n^{-i}, & \forall n \ge 1 \\ x_n = \frac{2006.u_n^{\frac{2007}{2006}}}{n+1} \end{cases}$$

Tìm tất cả các số thực dương k sao cho dãy x_n dần tới 2007 khi n dần tới vô hạn.

Lời giải. Đặt
$$b = \underset{1 \le i \le 2007}{Max} \{-k; -i\}$$
. Ta có

$$x_n = \frac{2006.u_n^{\frac{2007}{2006}}}{n+1} = \frac{u_n^{\frac{2007}{2006}}}{n} \cdot \frac{2006n}{n+1} \, (*)$$

Áp dụng bài toán ví dụ 3 - trang 44 phần1 thì dãy số $\left\{\frac{u_n^{\alpha}}{n}\right\}$ có giới hạn hữu hạn khác
0 khi và chỉ khi $\alpha = b$, hơn nữa lúc đó ta
còn có $\lim_{n\to\infty} \frac{u_n^{\alpha}}{n} = 1 - b$ (1). Từ (*) ta thấy, do $\lim_{n\to\infty} \frac{2006n}{n+1} = 2006 \text{ nên để } \lim_{n\to\infty} x_n = 2007 \text{ thì}$ phải có $\lim_{n\to\infty} \frac{u_n^{\frac{2007}{2006}}}{n} = \frac{2007}{2006}$ (2). Vậy từ (1) và
(2) ta suy ra $1-b = \frac{2007}{2006} \Leftrightarrow b = -\frac{1}{2006} \Rightarrow$

 $k = \frac{1}{2006}$. Và đây cũng là tất cả các giá trị cần tìm của k.

Còn rất nhiều những bài toán mới do tôi tình cờ phát hiện ra hoặc từ sự tổng quát hóa, thay đổi dữ kiện đề bài mà tôi không có điều kiện trình bày lời giải để các bạn tiện theo dõi. Tôi xin được nêu ra đề bài một vài trong số những bài toán như thế. Mời các bạn tham khảo. Và nếu có điều kiện, rất vui khi được trao đổi với các ban!

Bài T8/2007. Cho tam giác *ABC* nhọn (điều kiện chặt hơn là các góc của tam giác ABC đều nhỏ hơn hoặc bằng $4ar\cos\frac{\sqrt{3}-1}{2}-\pi\approx 94^{\circ}$) nội tiếp đường tròn

tâm O, bán kính R. Nối A với tâm đường tròn nội tiếp I cắt đường tròn tâm O lần nữa tại A'. Tương tự ta có B' và C'. Kí hiệu a, b, c; R_a , R_b , R_c là các cạnh; các bán kính đường tròn bàng tiếp ứng với các đỉnh A, B, C và a', b', c'; R_a , R_b , R_c là các cạnh; các bán kính đường tròn bàng tiếp ứng với các đỉnh A', B', C'. Khi đó ta có các bất đẳng thức sau:

1)
$$3(IA.IB + IB.IC + IC.IA) \ge 24(r^2 + 4Rr) = 2(ab + bc + ca) - -(a^2 + b^2 + c^2) > 0.$$

2)
$$\frac{9}{2}$$
R ≥ 3 R $\left(\sin\frac{A}{2} + \sin\frac{B}{2} + \sin\frac{C}{2}\right) \geq$

$$\geq R_a + R_b + R_c \, .$$

$$3) 3\left(\sin\frac{A}{2} + \sin\frac{B}{2} + \sin\frac{C}{2}\right) \ge$$

$$\geq (\sin A + \sin B + \sin C) \left(tg \frac{A}{2} + tg \frac{B}{2} + tg \frac{C}{2} \right)$$

4)
$$\frac{27}{2}R \ge 3(R_a' + R_b' + R_c') \ge$$

$$\geq 9R + R_a + R_b + R_c \geq 3(R_a + R_b + R_c)$$

$$5) 3r' \ge R + r (\ge 3r)$$

6) $d \ge \sqrt{3}d'$ (d và d' là các khoảng cách giữa tâm đường tròn nội tiếp và ngoại tiếp các tam giác ABC và A'B'C')

7)
$$3\frac{a'b'c'}{a'+b'+c'} \ge 2R^2 + \frac{abc}{a+b+c}$$
.

Bài T9/2007. Cho tam giác ABC bất kỳ. Chứng minh rằng:

$$\left(\frac{\sqrt{3}}{2}\right)^{\sin A} + \left(\frac{\sqrt{3}}{2}\right)^{\sin B} + \left(\frac{\sqrt{3}}{2}\right)^{\sin C} \ge$$

$$\geq 3\left(\frac{\sqrt{3}}{2}\right)^{\frac{\sqrt{3}}{2}} \geq$$

$$\geq (\sin A)^{\frac{\sqrt{3}}{2}} + (\sin B)^{\frac{\sqrt{3}}{2}} + (\sin C)^{\frac{\sqrt{3}}{2}}$$

Bài T10/2007. Cho tam giác nhọn ABC. Chứng minh rằng:

$$\left(\sin A\right)^{\sin B} + \left(\sin B\right)^{\sin C} + \left(\sin C\right)^{\sin A} \le \left(\frac{\sqrt{3}}{2}\right)^{\frac{3\sqrt{3}}{2}}$$

Bài T11/2007. Cho hàm số f(x) xác định, có đạo hàm tới cấp 2 và thoả mãn điều kiện sau với mọi x:

$$2007 \left[f(x) + f''(x) \right] \ge 5x + \frac{19}{2}$$

Chứng minh rằng:

$$f(189x) + f(\pi + 189x) \ge \frac{19 + 5\pi + 1890x}{2007}$$

với mọi số thực x.

Bài T12/2007. Cho tứ diện ABCD nội tiếp một mặt cầu tâm O và gọi G là trọng tâm của tứ diện. Lấy điểm M nằm bên trong hoặc trên mặt của hình cầu đường kính OG. Các đường thẳng MA, MB, MC, MD cắt mặt cầu tâm O lần nữa tại các điểm A_I , B_I , C_I , D_I theo thứ tự. Chứng minh rằng

$$V(A_lB_lC_lD_l) \ge V(ABCD)$$

trong đó kí hiệu V chỉ thể tích của tứ diện.

Xuất sứ: Đây là bài toán tương tự trong không gian của một bài toán hình học phẳng đã có trên tạp chí Toán học và tuổi trẻ. Nó

được hình thành sau khi tôi giải được bài toán về tỷ lệ thể tích tứ diện sau đây:

$$\frac{V(A_1B_1C_1D_1)}{V(ABCD)} = \frac{MA_1.MB_1MC_1.MD_1}{MA.MB.MC.MD}$$

Tuy nhiên, lưu ý là đẳng thức trên đúng với mọi điểm M trong không gian. Bài T12/2007 cũng chính là nội dung bài T12/333 trên tạp chí Toán học và Tuổi trẻ do tôi đề xuất.

Bài T13/2007. Cho a, b, c là 3 cạnh của $\triangle ABC$. Chứng minh rằng:

$$\sqrt[3]{abc} \ge \sqrt{\frac{4r^2}{3} \cdot \frac{tg\frac{A}{2}tg\frac{B}{2}tg\frac{C}{2}}{tg\frac{A}{2}tg\frac{B}{2}tg\frac{C}{2}}}.$$

Dấu đẳng thức xảy ra khi nào?

Ngoài ra nếu đặt $p = \frac{a+b+c}{2}$, hãy chứng minh rằng

$$\sqrt[3]{abc} \ge \sqrt{\frac{4}{3} \cdot ((p-a)(p-b) + (p-b)(p-c) + (p-c)(p-a))}$$
.

Bài T14/2007. Cho các số thực a, b thỏa mãn điều kiện $\begin{cases} a,b \in [0,1] \\ a^3 + b^3 > 1 \end{cases}$

Chứng minh rằng:

$$a^6 + b^6 + 1 + 3a^2b^2 \ge 2a^3 + 2b^3 + 2a^3b^3$$
.

Bài T15/2007. Cho n (n > 1) số thực

$$x_1, x_2, \dots, x_n \;.\;\; \text{D} \check{\mathbf{a}} \mathbf{t} \quad S_k = \sum_{1 \leq i_1 < i_2 < \dots < i_k \leq n} x_{i_1} x_{i_2} \dots x_{i_k} \;,$$

với mọi k = 1, 2, 3, ..., n. Với mỗi số nguyên k mà 1 < k < n, chứng minh rằng:

$$(n-k-1)S_{k+1}S_{k-1} \le (n-k)S_k^2$$

Bài T16/2007. Giả sử A, B, C là ba góc của một tam giác. Tìm giá trị nhỏ nhất của biểu thức:

$$T = \left(tg\frac{A}{2} + tg\frac{B}{2}\right) \left(tg\frac{B}{2} + tg\frac{C}{2}\right) \left(tg\frac{C}{2} + tg\frac{A}{2}\right).$$

NHỮNG BÀI TOÁN HAY

Bài T17/2007. (Bùi Lê Vũ).

Cho dãy số thực (x_n) được xác định bởi $x_0, x_1 \in R$ và công thức:

$$x_{n+2} = \frac{1+x_{n+1}}{x_n}, \forall n = 0, 1, 2 \dots$$

Tim x_{1998} .

(Vô địch Ireland 98 - 99)

Lời giải. Dễ dàng kiểm tra tính đúng đắn của các biểu thức sau:

$$x_2 = \frac{1+x_1}{x_0}, x_3 = \frac{1+x_1+x_0}{x_1x_0}, x_4 = \frac{1+x_0}{x_1}$$

$$x_5 = \frac{1 + x_4}{x_3} = x_0 \Rightarrow x_6 = x_1 \Rightarrow \dots$$

$$\Rightarrow x_{n+5} = x_n, \forall n = 0;1;2...$$

Vậy
$$x_{1998} = x_3 = \frac{1 + x_1 + x_0}{x_1 x_0}$$
.

Bài T18/2007. (Bùi Viết Lôc).

Tìm tất cả bộ 4 số tự nhiên (x, y, z, t) thỏa mãn: $\begin{cases} (x+y)(y+z)(z+x) = txyz \\ (x, y) = (y, z) = (z, x) = 1 \end{cases}$ (Romania - 95-96)

Lời giải. Ta có txyz = (x+y)(y+z)(z+x) == x(y + z)(z + x) + xy(y + z) + yz(y + z) $\Rightarrow yz(y+z) \stackrel{.}{:} x$.

Do x, y, z đôi một nguyên tố cùng nhau nên (y+z): $x \Rightarrow (x+y+z)$: x

Tương tự, ta có (x + y + z): y và

(x + y + z) : z. Vẫn do x, y, z đôi một nguyên tố cùng nhau nên (x + y + z): xyz $\Rightarrow (x + y + z) \ge xyz$. Công việc còn lại là đơn giản, xin dành cho bạn đọc.

Bài T19/2007. (Bùi Lê Vũ).

Cho $x_i \in R$, với i = 1, 2, ..., n thỏa mãn:

$$\sum_{i=1}^{n} |x_i| = 1, \sum_{i=1}^{n} x_i = 0.$$

Chứng minh rằng $\left| \sum_{i=1}^{n} \frac{x_i}{i} \right| \le \frac{1}{2} - \frac{1}{2n}$.

Lòi giải. Đặt
$$A = \{i/x_i > 0\}$$
, $B = \{i/x_i < 0\}$

$$\text{Ta có: } \sum_{i \in A} x_i + \sum_{i \in B} x_i = 0, \sum_{i \in A} x_i - \sum_{i \in B} x_i = 1$$

$$\Rightarrow \sum_{i \in A} x_i = -\sum_{i \in B} x_i = \frac{1}{2}$$

$$\Rightarrow \left|\sum_{i=1}^n \frac{x_i}{i}\right| = \left|\sum_{i \in A} \frac{x_i}{i} + \sum_{i \in B} \frac{x_j}{j}\right| \le \frac{1}{2} - \frac{1}{2n}.$$

Bài T20/2007. (Nguyễn Lâm Tuyền).

Xét các số thực dương x, y, z thỏa mãn hệ điều kiện:

$$\begin{cases} \frac{2}{5} \le z \le \min\{x; y\} \\ 1 \end{cases}$$

$$xz \ge \frac{4}{15} (2)$$

$$yz \ge \frac{1}{5} (3)$$

Tìm giá trị lớn nhất của biểu thức

$$P(x, y, z) = \frac{1}{x} + \frac{2}{y} + \frac{3}{z}$$
(VietNamB - 2001)

Lời giải.

* Từ (1) ta có
$$x \ge z \ge \frac{2}{5}$$
.
Nếu $x > \frac{2}{3} \Rightarrow \frac{1}{x} + \frac{1}{z} < \frac{3}{2} + \frac{5}{2} = 4$
Nếu $\frac{2}{5} \le x \le \frac{2}{3}$
 $\Rightarrow 15\left(x - \frac{2}{5}\right)\left(x - \frac{2}{3}\right) \le 0$
 $\Leftrightarrow 15x^2 - 16x + 4 \le 0 \Leftrightarrow \frac{15x}{4} + \frac{1}{x} \le 4$

Vậy
$$\frac{1}{x} + \frac{1}{z} \le \frac{15x}{4} + \frac{1}{x} \le 4$$

Đẳng thức xảy ra khi $x = \frac{2}{3}, z = \frac{2}{5}$.
Tương tự, ta có $\frac{1}{y} + \frac{1}{z} \le \frac{9}{2}$.

Đẳng thức xảy ra khi
$$y = \frac{1}{2}, z = \frac{2}{5}$$

Vây MaxP = 13.

Bài T21/2007. (Nguyễn Lâm Tuyền).

Tìm tất cả các hàm số f(x) xác định trên tập các số thực R thỏa mãn hệ thức:

 $f(y - f(x)) = f(x^{2002} - y) - 2001yf(x)$, với mọi số thực x, y.

(VietNamB - 2002)

Lời giải. Lần lượt thay y = f(x), $y = x^{2002}$ vào phương trình hàm ban đầu ta được:

$$f(0) = f(x^{2002} - f(x)) - 2001f^{2}(x)$$
, với mọi $x \in R$ (1)

$$x \in R$$
 (1)
 $f(x^{2002} - f(x)) = f(0) - 2001x^{2002}f(x)$, với mọi
 $x \in R$ (2)

Cộng (1) và (2) theo từng vế, ta được: $x^{2002}f(x) = -f^2(x) \le 0 \implies f(x) \le 0$ với mọi $x \in R$ và với x = 0 thì f(0) = 0.

Vậy từ (1) ta có:

$$2001f^{2}(x) = 2001f^{2}(x) + f(0) = f(x^{2002} - f(x)) \le 0 \Rightarrow f(x) = 0, \forall x \in \mathbb{R}.$$

Thử lại thấy hàm số này thỏa mãn. Vậy $f(x) \equiv 0, \forall x \in R$.

Bài T22/2007. (Nguyễn Lâm Tuyền).

Cho hai n - giác đều bằng nhau (n \geq 3) $A_1A_3...A_{2n-1}$ được tô màu xanh và $A_2A_4...A_{2n}$ được tô màu đỏ. Hai n - giác đều đó được xếp chồng lên nhau sao cho phần chung là một 2n - giác $B_1B_2....B_{2n}$. Chứng minh rằng tổng độ dài các cạnh được tô màu xanh và tổng độ dài các cạnh được tô màu đỏ của 2n - giác đó bằng nhau.

(Olympic Toán APMO - 2001)

Lời giải. Với chú ý ta dựng các điểm B_i sao cho mọi hình chiếu của A_{i+1} đều thuộc đoạn B_iB_{i+1} . Ký hiệu các tam giác $B_iA_iB_{i+1}$ là T_i ($\forall i=\overline{1,n}$), với quy ước $T_1\equiv T_{n+1}$. Vì $A_1A_3...A_{2n-1}$ và $A_2A_4...A_{2n}$ là các n - giác đều nên các tam giác T_i đôi một đồng dạng. Gọi h_i là độ dài đường cao hạ từ các đỉnh A_i xuống các cạnh x_i tương ứng của tam giác T_i .

Theo tính chất của tam giác đồng dạng, ta

có:
$$k = \frac{h_1}{x_1} = \frac{h_2}{x_2} = \dots = \frac{h_{2n}}{x_{2n}} = \frac{h_1 + h_3 + \dots + h_{2n-1}}{x_1 + x_3 + \dots + x_{2n-1}} = \frac{h_2 + h_4 + \dots + h_{2n}}{x_2 + x_4 + \dots + x_{2n}}$$

Để ý là $x_1+x_3+...+x_{2n-1}$ và $x_2+x_4+...+x_{2n}$ là tổng các cạnh tô màu xanh, đỏ tương ứng của 2n - giác $B_1B_2....B_{2n}$. Vì vậy, việc chứng minh bài toán quy về việc chứng minh $h_1+h_3+...+h_{2n-1}=$ $h_2+h_4+...+h_{2n}$. Gọi S_i là diện tích của các tam giác

 $A_{i-1}A_iA_{i+1}$, và S là diện tích 2n - giác $A_1A_2...A_{2n}$, P là diện tích của hai n - giác đều $A_1A_3...A_{2n-1}$ và $A_2A_4...A_{2n}$. Khi đó S - P = $=S_1+S_3+...+S_{2n-1}$ $=S_2+S_4+...+S_{2n}$. Do vậy $h_1+h_3+...+h_{2n-1}=h_2+h_4+...+h_{2n}$. Bài toán được chứng minh.

Bài T23/2007. (Bùi Lê Vũ).

Cho hàm f(x) khả vi trên [0;1] và k > 0 để $|f'(x)| \le k |f(x)|, \forall x \in [0;1]$. Chứng minh rằng nếu f(0) = 0 thì $f(x) = 0, \forall x \in [0;1]$.

Lời giải.

Chia đoạn [0;1]thành n đoạn $[x_i;x_{i+1}]$ sao

cho
$$x_1 - x_0 = x_2 - x_1 = \dots = x_n - x_{n-1} < \frac{1}{k}$$

Do f(x) liên tục trên [0;1] nên tồn tại một số a nằm giữa 0 và x_i sao cho:

$$|f(a)| = Max_{[0;1]}|f(x)|$$
. Nếu $f(a) \neq 0$ thì theo

định lý Lagrăng ta có tồn tại một số c nằm giữa 0 và a sao cho:

$$f'(c) = \frac{f(a) - f(0)}{a} = \frac{f(a)}{a}$$

$$\Rightarrow |f'(c)| = \frac{|f(a)|}{a} > kf(c). \text{ Mâu thuẫn.}$$
Vây ta có điều phải chứng minh.

Bài T24/2007. (Bùi Lê Vũ).

Tìm tất cả các đa thức P(x) với hệ số thực thỏa mãn: $P(x).P(x-1) = P(x^2)$.

(Ai xơ len - 1996)

Lời giải. Giả sử a là nghiệm của P(x), từ giả thiết suy ra : a^2 , a^4 , a^8 , ... cũng là nghiệm của $P(x) \in N$. Tồn tại $n \in N^*$ sao cho $a^n = 1$

$$\Rightarrow$$
 a = $\cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n}$

Tương tự, từ P(a) = 0 ta có : a+1, $(a+1)^2$, $(a+1)^4$, ... cũng là nghiệm của P(x)

$$\Rightarrow a+1 = \cos\frac{2\pi}{m} + i\sin\frac{2\pi}{m}, m \in N^*$$

$$\Rightarrow \cos\frac{2\pi}{n} = \cos\frac{2\pi}{m} - 1; \sin\frac{2\pi}{n} = \sin\frac{2\pi}{m}$$

$$\Rightarrow \cos\frac{2\pi}{n} = -\frac{1}{2}; \sin\frac{2\pi}{n} = \frac{\sqrt{3}}{2}$$

$$\Rightarrow a = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$$

 \Rightarrow a là nghiệm của $P_1(x) = x^2 + x + 1$. Dễ thấy $P_1(x)$ bất khả quy nên suy ra

$$P(x) = (x^2 + x + 1)^n$$
.

Thử lại thấy thỏa mãn.

Bài T25/2007. (Bùi Lê Vũ).

Mỗi điểm trong mặt phẳng được tô bởi một màu đen hoặc đỏ. CMR ta có thể tìm được 3 điểm cùng màu mà mỗi cặp điểm có khoảng cách bằng 1 hoặc $\sqrt{3}$.

(China - 1996)

Lời giải. Dế thấy có vô số điểm được tô màu đen, vô số điểm được tô màu đỏ(1)

Ta gọi 2 điểm A, B là có tính chất (*) nếu chúng thỏa mãn hai điều kiên sau:

+) Hai điểm được tô bởi hai màu khác nhau.

+) AB = 2

Ta chứng minh tồn tại 2 điểm có tính chất (*). Thật vậy, giả sử ngược lại thì ta có: với mọi 2 điểm A, B thuộc mặt phẳng mà AB = 2 thì đều cùng màu.

Từ nhận xét (1) suy ra tồn tại 2 điểm C,D khác màu mà CD > 2. Vẽ đường tròn (C;2),(D;2) cắt [CD] tại C_1 , D_1 , ... Tiếp tục

như vậy, ta thu được các điểm $\boldsymbol{C}_{i},\,\boldsymbol{D}_{i}$ có tính chất:

- +) Các điểm nằm trên $(C_i; 2)$ thì cùng màu với C
- +) Các điểm nằm trên $(D_i;\ 2)$ thì cùng màu với D.

Từ cách dựng trên, dễ thấy luôn tồn tại i, j sao cho (C; 2) và (D; 2) không rời nhau. Gọi P là một điểm chung của hai đường tròn này, ta có:

- +) P cùng màu với C
- +) P cùng màu với D (mâu thuẫn)

Vậy nhận định được chứng minh.

Công việc còn lại là đơn giản, xin dành cho ban đọc.

Chú ý : ta có thể mở rộng bài toán thay vì 1 bởi vô số và 1, $\sqrt{3}$ bởi các số a, b thỏa mãn điều kiên nào đó .

Bài T26/2007. (Lê Bảo Khánh).

Cho a, b là 2 số nguyên dương phân biệt thỏa mãn: $ab(a+b) : (a^2 + ab + b^2)$

Chứng minh: $|a-b| > \sqrt[3]{ab}$

Lời giải. Đặt $(a,b) = d \Rightarrow a = du, b = dv.$ Trong đó (u,v) = 1

 \Rightarrow duv(u+v) : (u²+uv+v²)

Do (u,v) = 1 nên ta có: $(u^2+uv+v^2; uv(u+v)) = 1 \Rightarrow d: (u^2+uv+v^2)$

- \Rightarrow d \geq u²+uv+v² > uv
- \Rightarrow dpcm.

Bài T27/2007. (Bùi Lê Vũ).

Tập hợp gồm 2ⁿ phần tử được chia thành các tập con đôi một không giao nhau. Xét một thuật toán chuyển một số phần tử của một tập con này vào tập con khác. Ngoài ra, số phần tử được chuyển bằng số phần tử của tập con thứ hai (tập hợp này phải có số phần tử không lớn hơn tập đầu tiên). Chứng minh rằng sau một số hữu hạn lần các phép chuyển như vậy, ta có thể nhận được một số tập con trùng nhau với tập hợp lúc ban đầu (gồm 2ⁿ phần tử).

Lời giải. Xét các tập con (nếu có thể có) mà chúng chứa một số lẻ các phần tử. Vì tổng các phần tử là chắn, nên số các tập có vô số

cá phần tử lẻ cũng phải là số chẫn. Ta chia các tập này thành từng đôi một (theo một thứ tự tùy ý). Với các tập hợp của mỗi cặp ta áp dung thuật toán như đã nêu trên bài toán, có nghĩa là từ tập hợp lớn sang tập hợp nhỏ hơn. Khi đó, tất cả số phần tử của các tập đều là chẩn. Xét các tập mà số phần tử của nó không chia hết cho 4. Vì tổng số các phần tử chia hết cho 4 nên ta suy ra số các tập con như vậy cũng phải là số chẵn. Ta lại chia các tập này thành tổng cặp một cách tùy ý và với mỗi một cặp ta lai áp dung thuật toán đã nêu trên. Lúc này, số các phần tử ở mỗi tập con đều chia hết cho 4. Tương tư, ta lập lai các bước này sao cho cá phần tử của mỗi tâp chia hết cho 8, 16, ...Khi mà tổng số các phần tử của tập bất kì chia hết cho 2^n , thì tất cả 2^n phần tử sẽ nằm trong một tập hợp. Đó là điều phải chứng minh.

Bài T28/2007. (Bùi Lê Vũ).

Tồn tại hay không hàm f: $R \rightarrow R$ thỏa mãn :

- i) f(1) = 1
- ii) f giới nội

iii)
$$f\left(x + \frac{1}{x^2}\right) = f(x) + f^2\left(\frac{1}{x}\right) \forall x \neq 0$$

Lời giải. Giả sử tồn tại hàm số f thỏa mãn đề bài. Xây dựng dãy (x_n) như sau:

$$\begin{cases} x_{1} = 2 \\ x_{n+1} = x_{n}^{2} + \frac{1}{x_{n}}, \\ x_{n+1} = x_{n} + \frac{1}{x_{n}^{2}}, \left| f\left(\frac{1}{x_{n}}\right) \right| \ge 1 \end{cases}$$

Dễ dàng quy nạp được $f(n) > n, \forall n \in N$ \Rightarrow f không giới nội (mâu thuẫn).

Vậy không tồn tại hàm f thỏa mãn điều kiện đề bài.

Mathematics is an art, as an art choses the beauty and freedom

-P.Morse-

TRƯỜNG THPT CHUYỂN HOÀNG VĂN THỤ - HÒA BÌNH

BÙI LÊ VŨ

NGUYỄN LÂM TUYỀN