Mole

- 1.) If 1.0 L of unknown gas X contains 3.0×10^{22} molecules at a certain temperature and pressure, how many molecules are present in 5.0 L of oxygen gas at the same temperature and pressure?
- 2.) Calculate the molar mass of each of the following.
- a.) NO
- b.) H₂O
- c.) NH₃
- d.) CO₂
- e.) CH4
- f.) AgNO₃
- g.) Ca(OH)2
- h.) Al(NO₃)₃
- i.) FeCl₃
- j.) SnC₂O₄
- k.) $Sn(C_2O_4)_2$
- I.) (NH₄)₃PO₄
- m.) CH₃COOH
- n.) CH₃CH₂CH₂CH₃
- 0.) $Ni(H_2O)_2(NH_3)_4CI_2$
- p.) Al₂(SO₄)₃
- 3.) Calculate the molar mass of each of the following.
- a.) Co₃(AsO₄)₂ 8H₂O
- b.) Pb(C2H3O2)2 3H2O c.) MgSO4 7H2O d.) KAI(SO4)2 12H2O

More mole

- 1.) Calculate the number of moles contained in the following.
- a.) 10.6 g of SO₂ (g) at STP
- b.) 7.51 × 10²⁴ molecules of HNO₃
- c.) 425 g of Ca(OH)₂
- d.) 4.25×10^{23} molecules of Fe₂O₃
- e.) 0.950 kg of NaOH
- f.) 25.0 L of N₂ (g) at STP

- g.) 5.50 × 10²² molecules of CCI₄
- h.) 0.120 g of NO2 (g) at STP
- 2.) Calculate the volume of the following gases at STP.
- a.) 0.235 mol of B₂H₆ (g)
- b.) 9.36 mol of SiH₄ (g)
- c.) 2.5×10^{23} molecules of C_2H_6 (g)
- 3.) Calculate the mass of each of the following.
- a.) 0.125 mol of CO2 (g) at STP
- b.) 5.48 mol of FeCl₃ (s)
- c.) 6.54 × 10²³ molecules of HCN (g) at STP
- d.) 15.4 mol of Ni(OH)₂ (g)
- 4.) Calculate the mass of 1 mol of each of the following.
- a.) Na₂B₄O₇•10H₂O
- b.) My grandmother has a mass of 52 kg
- c.) A bismuth atom having a mass of 3.52×10^{-22} g
- d.) An electron having a mass of 9.1 × 10⁻³¹ g
- e.) Cu₃(OH)₂(CO₃)₂
- f.) A book having a mass of 1.34 kg
- 5.) An unknown gas sample contains only one of the compounds SO₃, CH₄, NF₃, or C_2H_2 . If 1 molecule of the gas has a mass of 1.18 × 10^{-22} g, which type of molecule is contained in the sample?
- 6a.) General Saunders "Kelowna Fried Chicken" features the Super Barrel, containing 2 mol of chickens (deep fried). How many drumsticks are contained in the Super Barrel?6b.) How many drumsticks, wings, and thighs are in the Super Barrel altogether?

Percent Composition

- 1.) Calculate the percentage composition of the following:
- a.) C₂H₆
- b.) FeCl₂
- c.) FeCl₃
- d.) $C_2H_4O_2$
- e.) CaCO₃
- f.) NaOH
- g.) CaCl₂•2H₂O
- h.) (NH₄)₃PO₄
- i.) Ag(NH₃)₂Cl
- j.) C₁₇H₁₅N₃O₂Cl

Empirical Formula

- 1.) Find the empirical formula for the following compounds:
- a.) 15.9% B and 84.1% F
- b.) 87.5% Si and 12.5% H
- c.) 43.7% P and 56.5% O
- d.) 77.9% I and 22.1% O
- e.) 77.7% Fe and 22.3% O
- f.) 70.0% Fe and 30.0% O
- g.) 72.4% Fe and 27.6% O

Molecular Formula

- 1.A gas has the empirical formula **CH**₂. If **0.850 L** of the gas at STP has a mass of **1.59 g**, what is the molecular formula?
- 2.A gas has the percentage composition: **30.4% N** and **69.6% O**. If the **density** of the gas is **4.11 g/L** at STP, what is the molecular formula?
- 3.A compound has an empirical formula **C**₅**H**₁₁. If **0.0275 mol** of the compound has a mass of **3.91 g**, what is the molecular formula?
- 4. When a sample of nickel carbonyl is heated, **0.0600 mol** of a gas containing carbon and oxygen is formed. The gas has a mass of **1.68 g** and is **42.9% C** by mass. What is the molecular formula of the gas?
- 5.A gas sample is analyzed and found to contain **33.0% Si** and **67.0% F**. If the gas **density** is **7.60** g/L at STP, what is the molecular formula?
- 6.A gas has the percentage composition: **78.3% B** and **21.7% H**. A sample bulb is filled with the unknown gas and weighed. The mass of the unknown gas is found to be **0.986 times** the mass of a sample of nitrogen gas in the same bulb under the same conditions. What is the molecular formula of the unknown gas?
- 7.A gas has an empirical formula **CH**₂. If **0.500 L** of the gas at STP has a mass of **0.938 g**, what is the molecular formula of the compound?
- 8.A sample of gas has an empirical formula of **O** and a molar mass which is **3 times that of CH**₄. What is the molecular formula of the gas?