CS329 Machine Learning(H) Project Proposal: Modification of Focal Loss in Object Detection

Zubin Zheng: 12112328, Dahui Li: 12112411

Department of computer science and engineering, SUSTech

2023/12/9

- Introduction
- 2 Literature Review
- 3 Methodology
- 4 Experiments
- 6 Conclusion
- Reference

Introduction 0000

Background

Introduction

In autonomous driving, object detection and object tracking are crucial tasks that play a significant role in the decision-making process during the operation of intelligent vehicles.

We are interested in Camera-based 2D Object Detection.

- **Object detection**: an important computer vision task that deals with detecting instances of visual objects of a certain class (such as humans, animals, or cars) in digital images.
- **Goal**: develop computational models and techniques that provide the knowledge: What objects are where?
- Metrics: accuracy (including classification accuracy and localization accuracy) and speed[ZCS+23].

Background

Introduction

0000

Object Detection Milestones

Fig. 1: A road map of object detection[ZCS+23].

- two-stage detectors: higher accuracy one-stage detectors: faster, simple
- question: could a simple one-stage detector achieve similar accuracy?

Motivation

Introduction

- **Obstacle**: the extreme foreground-background class imbalance (T.-Y. Lin et al. found)[LGG+17].
 - training is inefficient as most locations are easy negatives that contribute no useful learning signal
 - the easy negatives can overwhelm training and lead to degenerate models.

Solutions

- hard negative mining
- reshape loss function

Inspired by $[LGG^+17]$, we are interested in the design of loss function in RetinaNet. We want to explore whether we can improve the performance of object detection by modifying the loss function.

- 2 Literature Review

Related work: **Loss Function**[ZCS⁺23]

• A general form of the loss function:

 Classification loss: MSE/L2 loss, CE loss Label Smooth:

$$H(q',p) = -\sum_{k=1}^{K} log p(k) q'(k) = (1 - \epsilon) H(q,p) + \epsilon H(u,p)$$

Localization loss:

$$Smooth_{L1}(x) = \begin{cases} 0.5x^2 & \text{if } |x| < 1 \\ |x| - 0.5 & \text{else} \end{cases}$$

Related work: **Loss Function**[LGG⁺17]

- Balanced Cross Entropy: $CE(p_t) = -\alpha_t log(p_t)$
- Focal Loss: $\left\lceil FL(p_t) = -\alpha_t (1-p_t)^{\gamma} log(p_t) \right\rceil$ where p_t is the probability of samples being correctly classified, α is a weighting factor, γ is a tunable focusing parameter.

Fig. 2: Comparison of Cross Entropy and Focal Loss[LGG+17]

CS329 Machine Learning(H) Project Proposal: Modification of Focal Loss in Object Detection

Literature Review Reference

Related work: **RetinaNet**[LGG⁺17]

RetinaNet forms a single FCN comprised of a ResNet-FPN backbone, a classification subnet, and a box regression subnet.

Fig. 3: The one-stage RetinaNet network architecture[LGG⁺17]

Focal Loss is used on the output of the classification subnet. RetinaNet is efficient and accurate: the best model, based on a ResNet-101-FPN backbone, achieves a COCO test-dev AP of 39.1 while running at 5 fps, surpassing the previously best published single-model results from both one and two-stage detectors.

- 3 Methodology

Novelty

- Possible drawback: Focal Loss down-weights all samples, for easy samples, the weight reduction is greater. However, for hard samples, it is not necessary to down-weight them.
- Novelty: We have modified the definition of Focal Loss to have the following properties:
 - down-weights easy samples
 - increases the loss weight of hard samples

Proposed method

- System setup: We still use the framework of RetinaNetNet, the only difference is that we have used the modified Focal Loss, denoted FL*, and the settings of other parameters of the RetinaNet remain unchanged.
- Focal Loss* is defined as:

$$FL^*(p_t) = -\alpha_t \left(\frac{1 - p_t}{p_t}\right)^{\gamma} log(p_t)$$

where $\left(\frac{1-p_t}{p_t}\right)^{\gamma}$ is the modified modulating factor.

Literature Review Methodology Experiments Conclusion Reference 0000 0000 0000 000 000

Proposed method

Fig. 4: Comparison of Cross Entropy, Focal Loss and Focal Loss*

- 4 Experiments

Experiments Setting

At present, we have found the RetinaNet source code on the GitHub repository and completed model training using Focal Loss on the coco dataset used in the paper.

(https://github.com/0SliverBullet/CS329-Machine-Learning-H-Project)

- Experiment Platform: the HPC-Al service platform from the Department of Computer Science and Engineering
- Resources:
 - Source code: https://github.com/open-mmlab/mmdetection
 - Dataset: coco2017
- Parameter Settings: epochs=12, optimizer='SGD', γ =2.0, $\alpha_t = 0.25$

oduction Literature Review Methodology **Experiments** Conclusion Reference

Fig. 5: Training Process

Fig. 6: The loss varies with the number of iterations

detector	mAP	mAP_{50}	mAP_{75}	mAP _S	mAP_M	mAP_L
retinanet_r50_fpn_1x_coco	0.3280	0.5010	0.3500	0.1740	0.3530	0.4380

(a) results of pretrained model

(b) results of our trained model

Fig. 7: Results Comparison of pretrained model and our trained model

Literature Review Methodology Experiments Conclusion Reference 0000 0000 000 000 000 000

Fig. 8: Object Detection in SUSTech Campus

- 6 Conclusion

Goals and Objectives

- What we have done:
 - Literature review
 - Modified the Focal Loss
 - Run the source code in coco and get a trained model as baseline
- Goal: Performance comparison between original and modified loss functions, expect an improvement in performance(AP).

Task assignments and Project schedule

Dates	Tasks	Remarks
Week4	Read the final project requirements	Final project is issued
Week5	Assess difficulty level, decide which job to do and which task to be done:	-
Week6	Camera-based 2D Object Detection	
Week7	Roughly read the papers in the task we have chosen	
Week8	Choose the one that we are interested in: RetinaNet	
Week9	Search for the source code on the GitHub repository	
Week10		
Week11	Thoroughly read the paper: Focal Loss for Dense Object Detection Read the source code Download the original dataset coco used in the paper Compare the running results with the experimental results in the paper	
Week12	Modify the definition of loss function and run on coco Prepare for the proposal presentation and write proposal report	Final project proposal
Week13	Find other different datasets and test on them	
Week14	Performance comparison between original and modified loss functions tune parameters, analysis, modification on loss function	
Week15	Test our code in SUSTech campus Summarize this project and write the final report	Final project submission DDL

- Reference

- [LGG⁺17] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár
 - Focal loss for dense object detection.
 - In Proceedings of the IEEE international conference on computer vision, pages 2980–2988, 2017.
- [ZCS⁺23] Zhengxia Zou, Keyan Chen, Zhenwei Shi, Yuhong Guo, and Jieping Ye.
 - Object detection in 20 years: A survey.
 - Proceedings of the IEEE, 2023.

Thanks!