

Thresholding

Distinct foreground & background needed

Threshold = 10

How do we determine the best threshold?

Biased on A Practical Introduction to Computer Vision with OpenCV by Kenneth Dawson-Howe ◎ Wiley & Sons Inc. 2014

Slide 3

Variations – Adaptive Thresholding

The adaptive thresholding algorithm is

Divide the image into sub-images,

Compute thresholds for all sub-images,

Interpolate thresholds for every point using bilinear interpolation.

Based on A Practical Introduction to Computer Vision with OpenCV by Kenneth Dawson-Howe © Wiley & Sons Inc. 2014

Slide 7

q

Mathematical Morphology – Local maxima

Can be used to locate local maxima and minima

Mat dilated, thresholded_input, local_maxima, thresholded_8bit; dilate(input, dilated, Mat());

compare(input, dilated, local_maxima, CMP_EQ);

threshold(input, thresholded_input, threshold, 255,

THRESH_BINARY);

Slide 17

thresholded_input.convertTo(thresholded_8bit, CV_8U);

bitwise_and(local_maxima, thresholded_8bit, local_maxima);

Based on A Practical Introduction to Computer Vision with OpenCV by Kenneth Dawson-Howe © Wiley & Sons Inc. 2014