Risk-averse Distributional Reinforcement Learning A CVaR optimization approach

Silvestr Stanko¹

¹Department of Computer Science Czech Technical University

Sunday 3rd June, 2018

Outline

- Introduction
 - Motivation
 - Reinforcement Learning
 - Risk
 - Risk-averse Reinforcement Learning
- CVaR Value Iteration
 - Previous results
 - Linear-time improvement
- CVaR Q-learning
 - Var-based policy improvement
- Deep CVaR Q-learning

Reinforcement Learning

Reinforcement Learning - Goal

Definition

 $Z^{\pi}(x_t)$ Is a random variable representing the discounted reward along a trajectory generated by the MDP by following the policy π , starting at state x_t .

$$Z^{\pi}(x_t) = \sum_{t=0}^{\infty} \gamma^t R(x_t, \pi(x_t))$$

Reinforcement Learning goals

Our goal is to find a globally optimal policy π^*

$$\pi^* = \arg\max_{\pi} \mathop{\mathbb{E}} Z^{\pi}(x_0)$$

Potential problems

Problems

- Solutions should be robust to small environment changes
- Solutions should avoid catastrophic events and be safe

Solution

Instead of maximizing the expected return, focus on other criteria that take into account the **risk** of the potential reward.

Motivation

Figure: Simulation vs Real world

Figure: Critical Applications

Figure: Al safety

Risk-averse Reinforcement Learning - example

Figure: Greedy agent

Figure: Risk-averse agent

Value-at-Risk, Conditional Value-at-Risk

Risk

Risk-averse Reinforcement Learning - goals

Definition

 $Z^{\pi}(x_t)$ Is a random variable representing the discounted reward along a trajectory generated by the MDP by following the policy π , starting at state x_t .

$$Z^{\pi}(x_t) = \sum_{t=0}^{\infty} \gamma^t R(x_t, \pi(x_t))$$

Reinforcement Learning with CVaR

For a given α , our goal is to find a globally optimal policy π^*

$$\pi^* = \arg\max_{\pi} \mathsf{CVaR}_{\alpha}(Z^{\pi}(x_0))$$

Original Contributions

Faster CVaR Value Iteration

- Polynomial → linear time.
- Formally proved for increasing, unbounded distributions.
- Experimentally verified for general distributions.

CVaR Q-learning

- Sampling version of CVaR Value Iteration.
- Based on the distributional approach.
- Experimentally verified.

Oistributional Policy improvement

- Proved monotonic improvement for distributional RL.
- Used as a heuristic for extracting π^* from CVaR Q-learning.

Deep CVaR Q-learning

- TD update → loss function.
- Experimentally verified in a deep learning context.

CVaR Value Iteration

Theorem (CVaR Value Iteration)

The following Bellman operator is a contraction:

$$\mathbf{T}C(x,y) = \max_{a} \left[R(x,a) + \gamma \min_{\xi} \sum_{x'} p(x'|x,a)\xi(x')C(x',y\xi(x')) \right]$$

Linear interpolation

CVaR VI computational complexity

Problem

- CVaR Value Iteration requires computing a Linear Program for each state and atom.
- LP computation is slow

Solution

CVaR Value Iteration with quantile representation.

$\alpha \text{CVaR}_{\alpha}$ describes a quantile function

Lemma

Any discrete distribution has a piece-wise linear $\alpha \text{CVaR}_{\alpha}$ function. Similarly, any a piece-wise linear $\alpha \text{CVaR}_{\alpha}$ function can be seen as representing a certain discrete distribution.

$$\alpha\mathsf{CVaR}_\alpha\Rightarrow\mathsf{VaR}$$

$$rac{\partial}{\partial lpha} lpha \mathsf{CVaR}_lpha(Z) = rac{\partial}{\partial lpha} \int_0^lpha \mathsf{VaR}_eta(Z) deta = \mathsf{VaR}_lpha(Z)$$

$$\alpha \mathsf{CVaR}_{\alpha} \Leftarrow \mathsf{VaR}$$

$$\alpha \mathsf{CVaR}_{\alpha}(Z) = \int_{0}^{\alpha} \mathit{VaR}_{\beta}(Z) \mathsf{d}\beta$$

Next state CVaR computation

Linear-time Computation

Theorem

Solution to minimization problem

$$\min_{\xi \in \mathcal{U}_{CVaR}(\alpha, p(\cdot|x, a))} \sum_{x'} p(x'|x, a) \xi(x') \textit{CVaR}_{\xi(x')\alpha} \left(Z^{\pi}(x') \right)$$

can be computed by setting

$$\xi(x') = \frac{F_{Z(x')}(F_{Z(x,a)}^{-1}(\alpha))}{\alpha}$$

The computational complexity is $O(n \cdot m)$ where n is the number of transition states and m is the number of atoms.

Proved for increasing unbounded distributions

CVaR Value Iteration - Experiments

Q-learning

Problem

- In practice, we often don't have access to the transition probabilities p(x'|x,a)
- We need to learn through direct interaction with the environment.

Solution

Q-learning: Sampling version of Value Iteration.

18 / 29

CVaR estimation

Requirements:

- Store a single value
- Expected value of updates is CVaR

Recursive CVaR Estimation

$$V_{t+1} = V_t + \beta_t \left[1 - \frac{1}{\alpha} \mathbb{1}_{(V_t \ge r)} \right]$$

$$C_{t+1} = (1 - \beta_t) C_t + \beta_t \left[V_t + \frac{1}{\alpha} (r - V_t)^{-} \right]$$

CVaR Q-learning

Pseudocode

- Sample a transition x, a, x', r
- Create a target distribution d
- Sample from the target distribution
- Update current estimates of VaR and CVaR towards the sample

Improvement

- Sample from target distribution
- Update proportionally to the target distribution

VaR-based Policy Improvement

Theorem

Let π be a fixed policy, $\alpha \in (0,1]$. By following policy π' from the following algorithm, we will improve $CVaR_{\alpha}(Z)$ in expectation:

$$CVaR_{lpha}(Z^{\pi}) \leq CVaR_{lpha}(Z^{\pi'})$$

VaR-based Policy Improvement

$$a = \arg \max_a \operatorname{CVaR}_{\alpha}(Z(x_0, a))$$

 $s = \operatorname{VaR}_{\alpha}(Z(x_0, a))$

Take action a, observe x, r

while
$$x$$
 is not terminal do

$$s = \frac{s - \eta}{\gamma}$$

$$a = \arg \max_{a} \mathbb{E} \left[(Z(x, a) - s)^{-} \right]$$

Take action a, observe x, r

end while

CVaR Q-learning - Experiments

Approximate Q-learning

Problem

Q-learning is intractable for large state spaces.

Solution

Use approximate Q-learning.

- Formulate CVaR Q-learning update as a minimizing argument
- Use methods of convex optimization to find the optimal point

TD update \rightarrow loss function

Standard RL

$$egin{aligned} Q(x,a) &= (1-eta)Q(x,a) + eta \mathcal{T} Q(x,a) \ &\downarrow \ &\min_{ heta} \mathbb{E}\left[\left(Q_{ heta}(x,a) - \mathcal{T} Q(x,a)
ight)^2
ight] \end{aligned}$$

CVaR RL

$$V(x, a, y_i) = V(x, a, y_i) + \beta \mathbb{E}_{j} \left[1 - \frac{1}{y_i} \mathbb{1}_{(V(x, a, y_i) \ge \mathcal{T} d_j)} \right]$$

$$C(x, a, y_i) = (1 - \beta)C(x, a, y_i) + \beta \mathbb{E}_{j} \left[V(x, a, y_i) + \frac{1}{y_i} (r + \gamma d_j - V(x, a, y_i))^{-} \right]$$

$$\downarrow$$
????

Quantile loss

TD update \rightarrow loss function

VaR loss

$$\mathcal{L}_{\mathsf{VaR}} = \sum_{i=1}^{N} \mathop{\mathbb{E}}_{j} \left[(r + \gamma d_{j} - V_{i}(x, a))(y_{j} - \mathbb{1}_{(V_{i}(x, a) \geq r + \gamma d_{j})}) \right]$$

CVaR loss

$$\mathcal{L}_{\mathsf{CVaR}} = \sum_{i=1}^{N} \underset{j}{\mathbb{E}} \left[\left(V_i(x, a) + \frac{1}{y_i} \left(r + \gamma d_j - V_i(x, a) \right)^- - C_i(x, a) \right)^2 \right]$$

$$\mathcal{L} = \mathbb{E}\left[\mathcal{L}_{\mathsf{VaR}} + \mathcal{L}_{\mathsf{CVaR}}\right]$$

Deep CVaR Q-learning

- Model: Convolutional Neural Network
 - 1 Input: $84 \times 84 \times 4$
 - 2 Convolution: $8 \times 8 \times 32$ (stride 4)
 - 3 Convolution: $4 \times 4 \times 64$ (stride 2)
 - **1** Convolution: $3 \times 3 \times 32$ (stride 1)
 - Fully connected: 256 hidden units
 - **6** Output: $|A| \times 100$
- Replay Memory
- Target network C'
- Optimizer: Adam (Stochastic Gradient Descent)

Deep CVaR Q-learning - Experiments

• Video: $\alpha = 1$

2 Video: $\alpha = 0.3$

Summary

Faster CVaR Value Iteration

- Polynomial \rightarrow linear time.
- Formally proved for increasing, unbounded distributions.
- Experimentally verified for general distributions.

CVaR Q-learning

- Sampling version of CVaR Value Iteration.
- Based on the distributional approach.
- Experimentally verified.

Oistributional Policy improvement

- Proved monotonic improvement for distributional RL.
- Used as a heuristic for extracting π^* from CVaR Q-learning.

Deep CVaR Q-learning

- TD update \rightarrow loss function.
- Experimentally verified in a deep learning context.