

Department of Computer Engineering

Course: DWMM

Mini-Project – Phase 3 Report

Guidance By - Kumavat Ma'am

Topic: Analytical Query Processing on Dairy Management System

By

Roll No	SRN	Name of Student
38	202200930	Shyamal S. Patil
39	202200931	M. Asad Shaikh

Index

SNO	Topic	Page No
1	Analytical Query Processing	3
2	Outcome	8

Analytical Queries:

In our Dairy Management System with a multidimensional model, we can execute various analytical queries to extract valuable insights for decision-making. Here are a few samples analytical queries that we can run using SQL:

Customer Analysis:

1. Top Customers by Total Spending

Category: Customer Analysis

Query:

SELECT

cd.CustomerName,

SUM(ds.SalesAmount) AS TotalSpending

FROM DairySalesFact ds

JOIN CustomerDimension cd ON ds.CustomerKey = cd.CustomerKey

GROUP BY CustomerName

ORDER BY TotalSpending DESC;

Output:

Time Analysis:

2. Average Sales Amount per Month

Category: Time Analysis

Query:

SELECT

td.CalendarYear,

td.CalendarMonth,

AVG(ds.SalesAmount) AS AvgSalesAmount

FROM DairySalesFact ds

JOIN TimeDimension td ON ds.DateKey = td.DateKey

GROUP BY CalendarYear, CalendarMonth

ORDER BY Calendar Year, Calendar Month;

Output:

Product Analysis:

3. Top Selling Products:

To find the top-selling products

Category: Product Analysis

Query:

SELECT

pd.Product_Name,

SUM(ds.QuantitySold) AS TotalQuantitySold

FROM DairySalesFact ds

JOIN Product_Dim pd ON ds.ProductKey = pd.Product_ID

GROUP BY Product_Name

ORDER BY TotalQuantitySold DESC;

Output:

Supplier_Name	TotalSalesAmount

6. Products Needing Reorder

Category: Product Analysis

Query:

SELECT

pd.Product_Name,

pd.Max_Order_Quantity - pd.Quantity_In_Stock AS ReorderQuantity

FROM Product_Dim pd

WHERE pd.Quantity_In_Stock < pd.ReorderPoint;

Output:

Supplier_Name	TotalPurchases	TotalAmountPurchased

Sales Analysis:

7. Total Sales Amount and Profit by Date:

This query will help us to calculate the total sales amount and profit for each date.

Category: Sales Analysis

Query:

SELECT

DateKey,

SUM(SalesAmount) AS TotalSalesAmount,

SUM(Profit) AS TotalProfit

FROM DairySalesFact

GROUP BY DateKey

ORDER BY DateKey;

Output:

Inventory Analysis:

8. Quarterly Profit Analysis

Category: Profit Analysis

Query:

SELECT

td.CalendarYear,

td.CalendarQuarter,

SUM(s.Profit) AS TotalProfit

FROM DairySalesFact s

JOIN TimeDimension td ON s.DateKey = td.DateKey

GROUP BY CalendarYear, CalendarQuarter

ORDER BY Calendar Year, Calendar Quarter;

Output:

CalendarYear	CalendarQuarter	TotalProfit
2023	4	30

Customer Geography Analysis:

9. Customer Geography Analysis

Category: Customer Analysis

Query:

SELECT

cd.CustomerCountry AS Country,

SUM(ds.SalesAmount) AS TotalSalesAmount

FROM DairySalesFact ds

JOIN CustomerDimension cd ON ds.CustomerKey = cd.CustomerKey

GROUP BY Country

ORDER BY TotalSalesAmount DESC;

Output:

Country TotalSalesAmour	
India	750

Outcome:

Indexing:

Utilize indexing to enhance query performance. Create indexes on foreign keys, frequently queried columns, and dimension keys. This will significantly improve data retrieval from fact and dimension tables.

Partitioning:

Consider partitioning large tables to optimize query performance. For instance, partition the Sales_Dim table based on time, creating separate partitions for different years or months. This reduces the amount of data scanned during queries.

Aggregate Tables:

Create aggregate tables to pre-compute summary statistics. For example, store pre-computed monthly or yearly sales totals. This accelerates complex aggregation queries and contributes to efficient decision-making within our Dairy Management System.