11. Mjerenje kapaciteta, induktiviteta i otpora

1. Teorijski uvod

Stvarne komponente koje se vrlo često koriste u području elektrotehnike su: otpornici, kondenzatori i zavojnice. Najjednostavniji matematički modeli otpornika/kondenzatora/zavojnica su otpornik/kapacitet/induktivitet s pomoću kojih predstavljamo (modeliramo) komponente. Svojstva otpornika/kapaciteta/induktiviteta se nazivaju otpornost/kapacitivnost/induktivnost. Budući da komponente nisu idealne pri matematičkom modeliranju komponenti potrebno je koristiti složenije modele, npr. pri modeliranju otpornika ponekada je potrebno koristiti serijski spoj induktiviteta i otpora, tj. kada je potrebno uvažiti parazitske induktivnosti stvarne komponente. Matematički model otpornika može biti još složeniji ako se uvaže parazitske kapacitivnosti, skin-efekt i sl.

Kako je u primjeni potrebno prikazati ovisnost modula impedancije $|Z(\omega)|$ i faznog pomaka $\varphi(\omega)$ u širokom rasponu frekvencija koristi se logaritamsko mjerilo na osi frekvencije. Također je uobičajeno u praksi modul impedanciju prikazati s pomoću decibela $|Z(\omega)|_{dB}$, dok se fazni pomak prikazuje u linearnom mjerilu. Takav način prikaza naziva se Bodeov dijagram.

$$|Z(\omega)|_{dB} = 20 \log \frac{|Z(\omega)|[\Omega]}{|Z_B|[\Omega]}$$
 [dB] (1)

Gdje je $|\mathbf{Z}_B|$ bazna ili normirajuća vrijednost. Općenito 0 [dB] odgovara upravo baznoj vrijednosti otpora u $[\Omega]$. U vježbi se koristi bazna impedancija od 1 $[\Omega]$.

U nastavku će se uočiti kako se mogu koristiti iste nadomjesne sheme za modeliranje različitih komponenti. Tako se na primjer pojavljuje ista nadomjesna shema pri modeliranju otpornika i kondenzatora, slike 1.c,d) i 2.c,d). Iako se radi o istim nadomjesnim shemama u modelu otpornika kapacitet se smatra parazitskim utjecajem, dok se kod modela kondenzatora otpor smatra parazitskim utjecajem.

1.1. Nadomjesne sheme otpornika

Utjecaj parazitskih efekata ovisi o tehnologiji izvedbe otpornika (žični, metal-flim, ...). Na slici 1. su prikazane nadomjesne sheme otpornika s pripadnim fazorskim dijagramom. Kut θ *ili* φ predstavlja fazni pomak (kut impedancije) a δ kut gubitaka. U tablici 1. nalaze se pripadne formule za serijsku i paralelnu nadomjesnu shemu otpornika.

Slika 1. Nadomjesna shema otpornika i dijagrami impedancije/admitancije

Tablica 1. Formule za impedanciju nadomjesne sheme otpornika

	women at 1 officers and transfer massing sine of officers					
SERIJA		PARALELA				
	$Z(\omega) = R_s + j\omega L_s$	$Y(\omega) = G_P + j\omega C_P$				
	$\omega=2\pi f$	$ Y(\boldsymbol{\omega}) = \sqrt{G_p^2 + \left(\boldsymbol{\omega}C_p\right)^2}$				

$$|Z(\omega)| = \sqrt{R_s^2 + (\omega L_s)^2}$$

$$\varphi(\omega) = \theta(\omega) = \tan^{-1} \frac{\omega L_s}{R_s}$$

$$Z(\omega) = \frac{1}{|Y(\omega)|}$$

$$|Z(\omega)| = \frac{1}{|Y(\omega)|}$$

$$\varphi(\omega) = -\theta_Y(\omega)$$

Gdje je:

 $Z(\omega)$ – (kompleksna) impedancija ovisna o kružnoj frekvenciji

 ω – kružna frekvencija ili kutna brzina

f – frekvencija

 $|Z(\omega)|$ – iznos/modul impedancije ovisan o kružnoj frekvenciji

 $\varphi(\omega)$ – fazni pomak ovisan o kružnoj frekvenciji

1.2. Nadomjesne sheme kondenzatora

Utjecaj parazitskih efekata ovisi o vrsti dielektrika (keramika, plastika, tantal-oksid, elektrolitski). Na slici 2. prikazane su dvije najčešće nadomjesne sheme kondenzatora, odnosno slike 2.a,b) predstavljaju fazorski dijagram i serijsku nadomjesnu shemu, dok su na slikama 2.c,d) prikazani fazorski dijagram i paralelna nadomjesna shema. Vrlo često se za otpor u serijskoj nadomjesnoj shemi koristi termin ESR (engl. equivalent series resistance). U tablici 2. se nalaze se najvažnije formule za serijsku nadomjesnu shemu, dok se formule za paralelnu mogu pronaći u tablici 1.

Slika 2. Nadomjesne sheme kondenzatora i dijagrami impedancije/admitancije

Tablica 2. Formule za impedanciju nadomjesnih shema kondenzatora

SERIJA
$$Z(\omega) = R_s - j \frac{1}{\omega C_s}$$

$$|Z(\omega)| = \sqrt{R_s^2 + \left(\frac{1}{\omega C_s}\right)^2}$$

$$\varphi(\omega) = \theta(\omega) = \tan^{-1} \frac{-1}{\omega R_s C_s}$$

$$= -\frac{\pi}{2} + \tan^{-1} \omega R_s C_s$$

1.3. Nadomjesne sheme zavojnice

Utjecaj parazitskih efekata kod zavojnica ovisni o geometriji zavojnice (udaljenosti između zavoja, višeslojni namoti, promjeru i specifičnoj otpornosti vodiča ...) i vrsti jezgre (zračna jezgra, feromagnetska ...). Model zavojnice s feromagnetskom jezgrom je posebno složen jer treba uvažiti krivulju magnetiziranja jezgre, zato će se razmatrati zavojnice bez feromagnetske jezgre ili eventualno s fermagnetskom jezgrom unutar linearnog područja krivulje magnetiziranja. Na slici 3. prikazane su dvije najčešće nadomjesne sheme zavojnica, odnosno slike 3.a,b) predstavljaju fazorski dijagram i serijsku nadomjesnu shemu, dok su na slikama 3.c,d) prikazani fazorski dijagram i paralelna nadomjesna shema. U tablici 3. se nalaze se najvažnije formule za paralelnu nadomjesnu shemu, dok se formule za seriju mogu pronaći u tablici 1.

Slika 3. Nadomjesne sheme zavojnice i dijagrami impedancije/admitancije

Tablica 3. Formule za impedanciju nadomjesnih shema zavojnica

Paralela
$Y(\omega) = G_P - j(\omega L_P)^{-1}$
$ Y(\omega) = \sqrt{G_p^2 + \left(\omega L_p\right)^{-2}}$
$\theta_{Y}(\omega) = \tan^{-1} \frac{-1}{\omega L_{P} G_{P}} = -\frac{\pi}{2} + \tan^{-1} \omega L_{P} G_{P}$
$Z(\omega) = \frac{1}{Y(\omega)}$
$ Z(\omega) = \frac{1}{ Y(\omega) }$ $\varphi(\omega) = -\theta_Y(\omega)$
$\varphi(\omega) = -\theta_Y(\omega)$

2. Pitanja za pripremu

- 1. Objasniti pojmove:
 - a. Otpornik, otpor, otpornost
 - b. Kondenzator, kapacitet, kapacitivnost
 - c. Zavojnica, induktivitet, induktivnost

3	Koliko	iznosi faktor dobrote, kut gubitaka, kut impedancije i kut admitancije kod:
3.	Koliko a.	iznosi faktor dobrote, kut gubitaka, kut impedancije i kut admitancije kod: Idealnog otpornika (otpora)
3.	a.	Idealnog otpornika (otpora)
3.	a. b.	
3.	a. b.	Idealnog otpornika (otpora) Idealnog kondenzatora (kapaciteta)

4. Nacrtajte ovisnost $|\mathbf{Z}(\boldsymbol{\omega})|_{dB}$ i $\boldsymbol{\varphi}(\boldsymbol{\omega})$ za slučaj serijskog RL spoja, pri čemu je $R=100~[\Omega]$, L=1~[mH] i raspon frekvencija od 10 [Hz] do 10 [MHz]. Neka je bazna impedancija 1 $[\Omega]$.

3. Popis opreme

 RLC metar (HAMEG HM8018 RLC), otpornik, blok kondenzator, elektrolitski kondenzator, zavojnica, spojni vodiči

4. Rad na vježbi

Izmjeriti nadomjesne parametre otpornika, kondenzatora i zavojnice pri različitim frekvencijama s pomoću funkcijskog generatora.

4.1. Postupak mjerenja nadomjesnih parametara otpornika

S pomoću RLC metra izmjeriti nadomjesne parametre otpornika $(R_x, L_x, |\mathbf{Z}|, \theta)$ iznosa nazivnog otpora $R_1 \epsilon [1\Omega, 1M\Omega]$, točnu vrijednost pitati demonstratora/laboranta/nastavnika. Mjerenja je potrebno napraviti pri svim frekvencijama koje RLC metar omogućava.

Tablica 4. Rezultati mjerenja za otpornik

f[kHz]	R_s []	L_s []	R_p []	<i>C_p</i> []	Z []	θ [°]
0.1						
0.12						
1						
10						
25						

4.2. Postupak mjerenja nadomjesnih parametara kondenzatora

S pomoću RLC metra izmjeriti nadomjesne parametre kondenzatora $(C_x, R_x, |\mathbf{Z}|, \theta)$ za:

a. Elektrolitski kondenzator nazivne kapacitivnosti $C_1 \in [1\mu F, 1mF]$. Uključiti opciju BIAS pri mjerenju parametara elektrolitskog kondenzatora, također pri spajanju paziti na polarizaciju kondenzatora.

Tablica 5. Rezultati mjerenja za elektrolitski kondenzator

f[kHz]	C_s []	R_s []	<i>C_p</i> []	R_p []	Z []	θ [°]
0.1						
0.12						
1						
10						
25						

b. Blok kondenzator nazivne kapacitivnosti $C_2 \in [1nF, 1\mu F]$. Pri mjerenju kapaciteta blok kondenzatora opcija BIAS nije potrebna.

Tablica 6. Rezultati mjerenja za blok kondenzator

f[kHz]	C_s []	R_s []	C_p []	R_p []	Z []	θ[°]
0.1						
0.12						
1						
10						
25						

4.3. Mjerenje nadomjesnih parametara zavojnice

S pomoću RLC metra izmjeriti nadomjesne parametre zračne zavojnice $(R_x, L_x, |\mathbf{Z}|, \theta)$ iznosa nazivnog induktiviteta $L_1 \epsilon [1\mu H, 10mH]$. Mjerenja je potrebno napraviti pri svim frekvencijama koje RLC metar omogućava.

Tablica 7. Rezultati mjerenja za blok kondenzator

f[kHz]	R_s []	L_s []	R_p []	L_p []	Z []	θ [°]
0.1						
0.12						
1						
10						
25						

5. Pitanja za izvještaj

1. Na temelju izmjerenih vrijednosti nadomjesnih parametara otpornika (tablica 4.) nacrtajte ovisnost modula impedancije $|\mathbf{Z}|$ i kuta impedancije \mathbf{o} o frekvenciji. Objasniti kako bi trebale izgledati karakteristike modula i kuta impedancije idealnog otpornika i navesti u kojem rasponu frekvencija dolazi do odstupanja izmjerene karakteristike od idealne.

5.) nacrtajte ovisnost modula impedancije Z i kuta impedancije 0 o frekvenciji. Objasniti kak				
bi trebale izgledati karakteristike modula i kuta impedancije idealnog kondenzatora i navesti u				
kojem rasponu frekvencija dolazi do odstupanja izmjerene karakteristike od idealne.				

3. Na temelju izmjerenih vrijednosti nadomjesnih parametara blok kondenzatora (tablica 6.) nacrtajte ovisnost modula impedancije |Z| i kuta impedancije \mathbf{e} o frekvenciji. Objasniti kako bi trebale izgledati karakteristike modula i kuta impedancije idealnog otpornika i navesti u kojem rasponu frekvencija dolazi do odstupanja izmjerene karakteristike od idealne.

4.	Va temelju izmjerenih vrijednosti nadomjesnih parametara zavojnice (tablica 7.) nacrta	ajte
	visnost modula impedancije $ m{Z} $ i kuta impedancije $m{o}$ o frekvenciji. Objasniti kako bi treb	ale
	zgledati karakteristike modula i kuta impedancije idealne zavojnice i navesti u kojem raspo	onu
	rekvencija dolazi do odstupanja izmjerene karakteristike od idealne.	

6. Komentari i prijedlozi za poboljšanje vježbi