

Examen final du 9/01/2019 Licence Sciences et Technologies, 2ème année

INF 302: Langages et Automates Année académique 2018/2019

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures (8h \rightarrow 10h).
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- Matériel nécessaire : stylo à encre noire.
- Matériel conseillé : blanc correcteur (tipex), crayon à papier et gomme.
- 5 feuilles A4 R/V autorisées.
- Tout dispositif électronique est interdit (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.
- Le barème est donné à titre indicatif.

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données ailleurs seront ignorées.
- Vous devez rendre 1) une copie double de type examen sans aucune inscription (à l'exception de vos informations d'identification) 2) et la feuille de réponse.
- Les réponses finales sont à indiquer avec un stylo à encre noire. Ne pas utiliser de feutre.
- Sauf mention contraire dans l'énoncé, répondre à une question consiste à marquer <u>toutes les cases</u> correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ texte prévu à cet effet (si celui-ci est présent).
- Pour marquer une case, il faut colorier entièrement les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Voir Figure 1. Colorier avec un stylo <u>noir</u>. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner la case).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole 4 peuvent présenter une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse (une seule case à cocher).
- Pour les questions avec une unique bonne réponse, cocher plusieurs cases annule la réponse.
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication Réservé enseignant). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

FIGURE 1 – Comment marguer une case.

— Attention, certaines questions peuvent être coupées entre deux pages.

Sujet

Rappels et notations. Pour un ensemble E, nous notons |E| le cardinal de E.

Un AEFD est un automate à états fini et déterministe. Un AEFND est un automate à états fini et non-déterministe. Un ϵ -AEFND est un automate à états fini avec ϵ -transitions et non-déterministe. Pour un automate quelconque, nous notons $\mathcal{L}(A)$ le langage reconnu par A.

Pour un langage L, nous notons $\operatorname{Pref}(L)$ et $\operatorname{Suf}(L)$ les fermetures de L par préfixe et suffixe, respectivement. Le symbole · dénote l'opérateur de concaténation entre mots ou entre langages selon le contexte. Pour une expression régulière e, $\mathcal{L}(e)$ désigne le langage dénoté par cet expression régulière. Deux expressions régulières sont sémantiquement équivalentes, lorsqu'elles dénotent les mêmes langages, c'est-à-dire $\mathcal{L}(e) = \mathcal{L}(e')$, ce que nous notons $e \equiv e'$.

Partie 1 : Compréhension du cours (8 points)

Question 1 \clubsuit (1 point) Soit un AEFD A sur un alphabet Σ dont la fonction de transition est notée δ . Soit $u \in \Sigma^*$ dont l'exécution sur A n'est pas définie. Indiquer les affirmations que l'on peut déduire.

u n'est pas accepté par A . A n'est pas complet. $u \notin \mathcal{L}(A)$.				
Il y a un état q de A et un symbole e de Σ tel que (q,e) n'est pas dans le domaine de δ .				
$oxed{e}$ A a au moins un état non accessible. A a au moins un état accessible.				
g A a au moins un état non co-accessible. h A a au moins un état co-accessible.				
i A n'a pas d'état accepteur.				
j Toutes les affirmations données dans les réponses entre a et i peuvent être déduites.				
k Aucune des affirmations données dans les réponses entre a et i ne peut être déduite.				

Question 2 \clubsuit (1 point) Soient L_1 et L_2 deux langages à états. Nous notons L_1^R et L_2^R les langages miroirs de L_1 et L_2 , respectivement. Indiquer les langages à états.

```
L_1^R \cup L_2^R \qquad \qquad \operatorname{Pref}(L_1) \setminus \operatorname{Pref}(L_2) \qquad \qquad \operatorname{Pref}(L_1) \cup \operatorname{Pref}(L_2) \qquad \qquad L_1 \cdot L_2
L_1 \cap L_2 \qquad \qquad \operatorname{Pref}(L_1) \cap \operatorname{Pref}(L_2) \qquad \qquad L_1^R \setminus L_2^R \qquad \qquad L_1 \setminus L_2
L_1^R \cdot L_2^R \qquad \qquad L_1^R \cap L_2^R \qquad \qquad \operatorname{Pref}(L_1) \cdot \operatorname{Pref}(L_2) \qquad \qquad L_1 \cup L_2
\qquad \qquad \operatorname{Tous les langages proposés.} \qquad \qquad \operatorname{n} \quad \operatorname{Aucun des langages proposés.}
```

Question 3 \clubsuit (1 point) Soit Σ un alphabet tel que $\{a,b\} \subseteq \Sigma$. Indiquer les langages réguliers.

Question 4 \clubsuit (1 point) Soient A et B deux AEFDs complets et P l'automate produit de A et B. Les ensembles d'états de ces automates sont respectivement Q_A, Q_B et Q_P . Les ensembles d'états accepteurs/finaux de ces automates sont respectivement F_A, F_B et F_P . Indiquer les affirmations que l'on peut déduire.

```
|Q_P| \le |Q_A| \times |Q_B|.
```

$$|F_P| \le |F_A| \times |F_B|.$$

,	Si un mot est accepté par P , alors il est accepté par A et par B .					
d	$oxed{\mathbb{E}} Q_P > Q_A \ imes Q_B .$					
e	Si pour A ou B (ou les deux) tous les états sont accessibles, alors les états de P sont tous accessibles.					
f	f $ F_P > F_A \times F_B $.					
	Si pour A et B tous les états sont accessibles, alors les états de P sont tous accessibles.					
,	Si un mot est accepté par A et par B , alors il est accepté par P .					
	P est complet.					
j]	Les affirmations données dans les réponses entre a et i sont toutes correctes.					
k	Aucune des affirmations données dans les réponses entre a et i n'est correcte.					
	tion 5 \$\\$ (1 point) Soit un AEFD A sur un alphabet Σ dont la fonction de transition est notée $u \in \Sigma^*$ dont l'exécution sur A est définie. Indiquer les affirmations que l'on peut déduire.					
a	Les états de A sont tous accessibles. b $u \in \mathcal{L}(A)$. c u est accepté par A . d A est complet. e Les états de A sont tous co-accessibles. f A a des états accepteurs. g Toutes les affirmations données dans les réponses entre a et f peuvent être déduites. Aucune des affirmations données dans les réponses entre a et f ne peut être déduite.					
	tion $6 \ $ (1 point) Soient e et e' deux expressions régulières. Indiquer les équivalences sémantiques expressions régulières qui sont correctes.					
[a $e + \emptyset \equiv \emptyset + e \equiv \emptyset$ b $(\emptyset)^* \equiv \emptyset$ $(\emptyset)^* \equiv \epsilon$ $e \cdot \emptyset \equiv \emptyset \cdot e \equiv \emptyset$ $e^* + \epsilon \equiv \epsilon + e^* \equiv e^*$ f $e + \epsilon \equiv \epsilon + e \equiv \epsilon$ g $e + \epsilon \equiv \epsilon + e \equiv e$ $e^* \cdot \epsilon \equiv \epsilon \cdot e^* \equiv e^*$ i $e \cdot \emptyset \equiv \emptyset \cdot e \equiv e$ d $e + \emptyset \equiv \emptyset + e \equiv e$ $k e \cdot \epsilon \equiv \epsilon \cdot e \equiv \epsilon$ d $e \cdot \epsilon \equiv \epsilon = e$ $m \text{Les équivalences données dans les réponses entre a et l sont toutes correctes.}$ $n \text{Aucune des équivalences données dans les réponses entre a et l n'est correcte.}$					
ensen	tion 7 \clubsuit (1 point) Nous considérons un alphabet Σ tel que $\{a,b\} \subseteq \Sigma$ et quelques langages nble de mots) définis sur Σ . Indiquer les langages à états. Un langage reconnu par un AEFD non-complet sur Σ .					
	L'ensemble des mots qui ne contiennent pas plus de deux occurrences du symbole b .					
[C]	L'ensemble des mots qui contiennent deux fois plus d'occurrences de a que d'occurrences de b .					
	L'ensemble des préfixes du langage universel.					
1	Un langage reconnu par un AEFND non-complet sur Σ .					
	Un langage reconnu par un ϵ -AEFND non-complet sur Σ .					
	L'ensemble des mots qui contiennent autant d'occurrences de a que d'occurrences de b et pas plus de 42 occurrences du symbole a .					
	Un langage reconnu par un AEFD sur Σ .					

Un langage reconnu par un AEFND sur Σ .					
Un langage reconnu par un ϵ -AEFND sur Σ .					
L'ensemble des mots qui contiennent deux fois plus d'occurrences de a que d'occurrences de b et pas plus de 42 occurrences du symbole a .					
Le langage vide.					
O Tous les langages proposés dans les réponses entre a et n.					
P Aucun des langages proposés dans les réponses entre a et n.					
Question 8 (0,5 point) Soit L un langage à états sur l'alphabet $\{a,b,c\}$. Nous considérons le langage L_h sur l'alphabet $\{0,\ldots,9\}$ obtenu en remplaçant, dans tous les mots de L , chaque occurrence de a par $4\cdot 2$, chaque occurrence de b par ϵ et chaque occurrence de c par $5\cdot 6$. L _h est nécessairement un langage à états. b L_h n'est pas nécessairement un langage à états.					
\square D_h if est pas necessarement un langage a etails.					
Partie 2: Minimisation d'automates (2 points)					
Question 9 (2 points) Considérons l'automate représenté dans la Figure 2-i- sur l'alphabet $\Sigma = \{a,b\}$. L'automate correct résultant de l'algorithme de <i>minimisation</i> est celui représenté dans :					
la Figure 3-iv b la Figure 3-iii e la Figure 2-i- car cet automate est déjà minimal. d la Figure 3-ii					
Partie 3 : Déterminisation d' ϵ -AEFND (2 points)					
Question 10 (2 points) Considérons l' ϵ -AEFND représenté dans la Figure 2-ii Le déterminisé de cet automate est celui représenté dans					
a la Figure 4-ii d la Figure 4-iv					
Partie 4 : Automate vers expression régulière (3 points)					

 $oxed{i}$ L'ensemble des mots qui contiennent autant d'occurrences de a que d'occurrences de b.

Le langage universel.

entre 0 et 3. Appliquer la méthode en suivant les consignes données dans les questions (dans l'ordre).

Pour cela, nous utilisons la méthode associant des équations aux états.

Question 11 4 (1 point) Écrire le système d'équations associé à cet automate. Ensuite, indiquer les équations correctes parmi les suivantes. Il y a une équation correcte par état.

Nous considérons l'automate dans la Figure 2-iii-. Nous souhaitons trouver l'expression régulière associée à cet automate, c'est à dire l'expression régulière qui dénote le langage accepté par cet automate.

Les états sont numérotés de 0 à 3 et X_i dénote le langage accepté à partir de l'état numéro i, pour i

Question 12 (0,5 point) Nous utilisons la définition de X_2 dans la définition de X_1 , puis simplifions. L'équation que nous obtenons pour X_1 est

Question 13 (0,5 point) Nous utilisons l'équation trouvée pour X_1 à la question précédente dans la définition de X_3 , puis simplifions. L'équation que nous obtenons pour X_3 est

Question 14 (0,75 point) Nous utilisons l'équation trouvée pour X_3 à la question précédente et souhaitons lui appliquer le lemme d'Arden.

Question 15 (0,25 point) L'expression régulière associée à l'automate est

a celle trouvée pour X_3 celle trouvée pour X_0

Partie 5 : Expression régulière vers automate (2 points)

Question 16 (1 point) Considérons l'expression régulière $(a \cdot d + b^* \cdot c)^* \cdot (c \cdot d^* + a \cdot a)$. L' ϵ -AEFND équivalent à cette expression régulière est celui représenté dans

Question 17 (1 point) Considérons l'expression régulière $(a+b)^* \cdot (c \cdot d)$. L' ϵ -AEFND résultant de la traduction compositionnelle d'expressions régulières vers automates est celui représenté dans

Partie 6 : Lemme de l'itération (4 points)

Question 18 (1 point) Considérons le langage dénoté par l'expression régulière

$$(a^* + b) \cdot b \cdot a \cdot (b^* + b + \epsilon).$$

La constante d'itération minimale de ce langage est :

4 b 2 c 3 d 0 e 6 f 5 g 1

Question 19 (3 points) Démontrer que le langage $\{b^n \cdot a^m \mid n, m \in \mathbb{N}, n \neq m\}$, sur l'alphabet $\{a, b\}$, est non régulier.

Champ Libre

Question 20 Vous pouvez utiliser l'espace de texte de cette question comme champ libre où vous pouvez ajouter toute information concernant l'examen que vous jugerez utile.

 $(\mbox{-i-})\;$ Un automate sur lequel on applique l'algorithme de minimisation (Partie 2).

(-ii-) Un automate sur lequel on applique l'algorithme de déterminisation (Partie 3).

 $(\mbox{-}iii\mbox{-})$ Un automate pour lequel on cherche une expression régulière équivalente (Partie 4).

FIGURE 2 – Des automates à utiliser pour les exercices. L'état initial est indiqué par une flèche entrante, sans état source. Les états accepteurs/finaux sont indiqués par des doubles cercles.

FIGURE 3 – Des automates résultant possiblement de l'application de l'algorithme de minimisation sur l'automate de la Figure 2-i-.

FIGURE 5 – Des automates résultant possiblement de la traduction compositionnelle d'expressions régulières vers ϵ -AEFND, pour l'expression $(a+b)^* \cdot (c \cdot d)$.

FIGURE 6 – Des automates correspondant possiblement à l'expression régulière $(a \cdot d + b^* \cdot c)^* \cdot (c \cdot d^* + a \cdot a)$.

Examen final du 9/01/2019 Licence Sciences et Technologies, 2ème année

 $\begin{array}{c} {\rm INF~302: Langages~et~Automates} \\ {\rm Ann\'{e}e~acad\'{e}mique~2018/2019} \end{array}$

Feuille(s) de réponses

()
O 1 2 3 4 5 6 7 8 9 Codez votre numéro d'anonymat ci-contre et recopiez le manuellement dans la boite.
et recopiez le manacionem dans la solica
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 Numéro d'anonymat :
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9 Indiquez la salle d'examen
0 1 2 3 4 5 6 7 8 9 et numéro de place ci-dessous.
0 1 2 3 4 5 6 7 8 9 Salle d'examen : Numéro de place :
0 1 2 3 4 5 6 7 8 9
Question 1: E E E E E E E E E E
Question 1.
Question 2:
Question 3:
Question 4: d d e f k
Question 5: a b c d e f g
Question 6: a b m f g m i k m n
Question 7:
Question 8:
Question 9: b c d e
Question 10: a c d
Question 11: b c d e f g li j li l
Question 12: a b c d f
Question 13: b c d e
Question 14: a b c d e g h
Question 15: a
Question 16: a b d e f g

b c e	f		
b c d e	f g		
		f i ab b	Réservé enseignant
			b c d e f g

Question 20:	Réservé enseignant