

00/10/10
31c61 U.S. PTO

Please type a plus sign (+) inside this box → +

PTO/SB/05 (4/98)
Approved for use through 09/30/2000. OMB 0651-0032

Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

UTILITY PATENT APPLICATION TRANSMITTAL

(Only for new nonprovisional applications under 37 C.F.R. § 1.53(b))

Attorney Docket No. EPI-067191

First Inventor or Application Identifier Jonathan W. Nyce

Title LOW ADENOSINE ANTI-SENSE OLIGONUCLEOTIDE...

Express Mail Label No. EJ 664079305 US

APPLICATION ELEMENTS

See MPEP chapter 600 concerning utility patent application contents.

- * Fee Transmittal Form (e.g., PTO/SB/17)
(Submit an original and a duplicate for fee processing)
- Specification [Total Pages]
 - Descriptive title of the Invention
 - Cross References to Related Applications
 - Statement Regarding Fed sponsored R & D
 - Reference to Microfiche Appendix
 - Background of the Invention
 - Brief Summary of the Invention
 - Brief Description of the Drawings (if filed)
 - Detailed Description
 - Claim(s)
 - Abstract of the Disclosure
- Drawing(s) (35 U.S.C. 113) [Total Sheets]
- Oath or Declaration [Total Pages]
 - a. Newly executed (original or copy)
 - b. Copy from a prior application (37 C.F.R. § 1.63(d)) (for continuation/divisional with Box 16 completed)
 - i. DELETION OF INVENTOR(S)
Signed statement attached deleting inventor(s) named in the prior application, see 37 C.F.R. §§ 1.63(d)(2) and 1.33(b).

* NOTE FOR ITEMS 1 & 13: IN ORDER TO BE ENTITLED TO PAY SMALL ENTITY FEES, A SMALL ENTITY STATEMENT IS REQUIRED (37 C.F.R. § 1.27), EXCEPT IF ONE FILED IN A PRIOR APPLICATION IS RELIED UPON (37 C.F.R. § 1.28).

ADDRESS TO: Assistant Commissioner for Patents
Box Patent Application
Washington, DC 20231

- Microfiche Computer Program (Appendix)
- Nucleotide and/or Amino Acid Sequence Submission (if applicable, all necessary)
 - a. Computer Readable Copy
 - b. Paper Copy (identical to computer copy)
 - c. Statement verifying identity of above copies

ACCOMPANYING APPLICATION PARTS

- Assignment Papers (cover sheet & document(s))
- 37 C.F.R. § 3.73(b) Statement Power of (when there is an assignee) Attorney (2)
- English Translation Document (if applicable)
- Information Disclosure Statement (IDS)/PTO-1449 Copies of IDS Citations
- Preliminary Amendment
- Return Receipt Postcard (MPEP 503) (Should be specifically itemized)
 - * Small Entity Statement(s) Statement filed in prior application, (PTO/SB/09-12) Status still proper and desired
- Certified Copy of Priority Document(s) (if foreign priority is claimed)
- Other: checks, cover letter

16. If a CONTINUING APPLICATION, check appropriate box, and supply the requisite information below and in a preliminary amendment.

 Continuation Divisional Continuation-in-part (CIP) of prior application No: 60,127958

Prior application information: Examiner _____

Group / Art Unit: _____

For CONTINUATION or DIVISIONAL APPS only: The entire disclosure of the prior application, from which an oath or declaration is supplied under Box 4b, is considered a part of the disclosure of the accompanying continuation or divisional application and is hereby incorporated by reference. The incorporation can only be relied upon when a portion has been inadvertently omitted from the submitted application parts.

17. CORRESPONDENCE ADDRESS

<input type="checkbox"/> Customer Number or Bar Code Label	(Insert Customer No. or Attach bar code label here)				or <input checked="" type="checkbox"/> Correspondence address below
Name	Viviana Amzel, Ph.D. ARTER & HADDEN, LLP				
Address	725 South Figueroa Street Suite No. 3400				
City	Los Angeles,	State	CA	Zip Code	90017
Country	USA	Telephone	(213) 430-3520		Fax (213) 617-9255

Name (Print/Type)	Viviana Amzel, Ph.D. <i>Viviana Amzel</i>	Registration No. (Attorney/Agent)	30,930
Signature			Date APRIL 4, 2000

Burden Hour Statement: This form is estimated to take 0.2 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, Patent and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Box Patent Application, Washington, DC 20231.

73999\01905

04-06-00

A

SEQ. BOX

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of: : Appl. Ref.: EPI-067191
Nyce et al : Atty Ref.: 73999/01905
Appl. No: not yet assigned : Priority: US 60/127,958
Filing Date: herewith :

For: **LOW ADENOSINE ANTI-SENSE OLIGONUCLEOTIDE, COMPOSITIONS,
KIT & METHOD FOR TREATMENT OF AIRWAY DISORDERS
ASSOCIATED WITH BRONCHOCONTRICTION, LUNG
INFLAMMATION, ALLERGY(IES) & SURFACTANT DEPLETION**

COVER LETTER

Box: New Application

Assistant Commissioner of Patents & Trademarks
Washington, DC 20231

Sir\Madam:

Enclosed for filing are the following:

1. Utility Patent Application Transmittal Form
2. Fee Transmittal Form
3. Assignments (?) and Recordation form and \$40.00
4. U.S. Non-Provisional Patent Application
5. Sequence Listing, Declaration and diskette
6. IDS & 1449-PTO Form Listing References
7. Declarations (?)
8. Small Entity Status form
9. Postcard

Respectfully submitted.
ARTER & HADDEN

Viviana Amzel, Ph.D.

Attorney for Applicant

Citicorp Building
725 South Figueroa St. #3400
213-430-3520 Ph.
213-617-9255 Fax

I hereby certify that this paper or fee is being deposited with the United States Postal Service via Express Mail service in an Express Mail Package under label No. EJ664079305US under 37 CFR 1.8 on the date indicated above and is addressed to the Assistant Commissioner for Patents, Washington D C 20231, on April 4, 2000, by Jenny R. Wilson

**VERIFIED STATEMENT (DECLARATION) CLAIMING SMALL ENTITY
STATUS (37 CFR 1.9(f) AND 1.27 (d)) - NONPROFIT ORGANIZATION**

Docket No.
P66 42161

Serial No. To Be Assigned	Filing Date Herewith	Patent No.	Issue Date

Applicant/ **Jonathan W. Nyce and W. James Metzger**

Patentee:

Invention:

Low Adenosine Anti-Sense Oligonucleotide, Compositions, Kit & Method for Treatment of Airway Disorders

Associated with Bronchoconstriction, Lung Inflammation, Allergy(ies) & Surfactant Depletion

I hereby declare that I am an official empowered to act on behalf of the nonprofit organization identified below:

NAME OF ORGANIZATION: **East Carolina University**

ADDRESS OF ORGANIZATION: **103 Spilman Building**

Greenville, North Carolina 27858

DRAFTED BY
SUSAN M. SPILMAN
SPILMAN PATENT
AND TRADEMARK
OFFICE, INC.

TYPE OF NONPROFIT ORGANIZATION:

- University or other Institute of Higher Education
- Tax Exempt under Internal Revenue Service Code (26 U.S.C. 501(a) and 501(c)(3))
- Nonprofit Scientific or Educational under Statute of State of The United States of America

Name of State:	Citation of Statute:
----------------	----------------------
- Would Qualify as Tax Exempt under Internal Revenue Service Code (26 U.S.C. 501(a) and 501(c)(3)) if Located in The United States of America
- Would Qualify as Nonprofit Scientific or Educational under Statute of State of The United States of America if Located in The United States of America

Name of State:	Citation of Statute:
----------------	----------------------

I hereby declare that the above-identified nonprofit organization qualifies as a nonprofit organization as defined in 37 C.F.R. 1.9(e) for purposes of paying reduced fees to the United States Patent and Trademark Office regarding the invention described in:

- the specification to be filed herewith.
- the application identified above.
- the patent identified above.

I hereby declare that rights under contract or law have been conveyed to and remain with the nonprofit organization with regard to the above identified invention.

If the rights held by the above-identified nonprofit organization are not exclusive, each individual, concern or organization having rights to the invention is listed on the next page and no rights to the invention are held by any person, other than the inventor, who could not qualify as an independent inventor under 37 CFR 1.9(c) or by any concern which would not qualify as a small business concern under 37 CFR 1.9(d) or a nonprofit organization under 37 CFR 1.9(e).

Each person, concern or organization to which I have assigned, granted, conveyed, or licensed or am under an obligation under contract or law to assign, grant, convey, or license any rights in the invention is listed below:

- no such person, concern or organization exists.
- each such person, concern or organization is listed below.

FULL NAME _____

ADDRESS _____

Individual Small Business Concern Nonprofit Organization

FULL NAME _____

ADDRESS _____

Individual Small Business Concern Nonprofit Organization

FULL NAME _____

ADDRESS _____

Individual Small Business Concern Nonprofit Organization

FULL NAME _____

ADDRESS _____

Individual Small Business Concern Nonprofit Organization

Separate verified statements are required from each named person, concern or organization having rights to the invention averring to their status as small entities. (37 CFR 1.27)

I acknowledge the duty to file, in this application or patent, notification of any change in status resulting in loss of entitlement to small entity status prior to paying, or at the time of paying, the earliest of the issue fee or any maintenance fee due after the date on which status as a small entity is no longer appropriate. (37 CFR 1.28(b))

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application, any patent issuing thereon, or any patent to which this verified statement is directed.

NAME OF PERSON SIGNING: Richard R. Eakin

TITLE IN ORGANIZATION: Chancellor

ADDRESS OF PERSON SIGNING: East Carolina University
103 Spilman Building
Greenville, North Carolina 27858

SIGNATURE: Richard R. Eakin DATE: 4/21/99

**LOW ADENOSINE ANTI-SENSE OLIGONUCLEOTIDE, COMPOSITIONS, KIT
& METHOD FOR TREATMENT OF AIRWAY DISORDERS ASSOCIATED
WITH BRONCHOCONSTRICION, LUNG INFLAMMATION,
ALLERGY(IES) & SURFACTANT DEPLETION**

5

BACKGROUND OF THE INVENTION

Field of the Invention

This patent relates to a composition comprising oligonucleotides (oligos) that are anti-sense to adenosine receptors, and contain low amounts of or no adenosine (A). These agents are suitable for the treatment, among others, of pulmonary diseases associated with inflammation, impaired airways, including lung disease and diseases whose secondary effects afflict the lungs of a subject. Examples of these diseases are allergies, asthma, impeded respiration, allergic rhinitis, pain, cystic fibrosis, and cancers such as leukemias, e.g. colon cancer, and the like. The present agent may be administered prophylactically or therapeutically in conjunction with other therapies, or may be utilized as a substitute for therapies that have significant, negative side effects.

15 **Background of the Invention**

Respiratory ailments, associated with a variety of diseases and conditions, are extremely common in the general population, and more so in certain ethnic groups, such as African Americans. In some cases they are accompanied by inflammation, which aggravates the condition of the lungs. Asthma, for example, is one of the most common diseases in industrialized countries. In the United States it accounts for about 20 1% of all health care costs. An alarming increase in both the prevalence and mortality of asthma over the past decade has been reported, and asthma is predicted to be the preeminent occupational lung disease in the next decade. While the increasing mortality of asthma in industrialized countries could be attributable to the depletion reliance upon beta agonists in the treatment of this disease, the underlying causes of asthma remain poorly understood.

25 Adenosine may constitute an important mediator in the lung for various diseases, including bronchial asthma. Its potential role was suggested by the finding that asthmatics respond favorably to aerosolized adenosine with marked bronchoconstriction whereas normal individuals do not. An asthmatic rabbit animal model, the dust mite allergic rabbit model for human asthma, responded in a similar fashion to aerosolized adenosine with marked bronchoconstriction whereas non-asthmatic rabbits showed no 30 response. More recent work with this animal model suggested that adenosine-induced bronchoconstriction and bronchial hyperresponsiveness in asthma may be mediated primarily through the stimulation of adenosine receptors. Adenosine has also been shown to cause adverse effects, including death, when administered therapeutically for other diseases and conditions in subjects with previously undiagnosed hyper reactive airways.

35 A handful of medicaments have been available for the treatment of respiratory diseases and conditions, although in general they all have limitations. Theophylline, an important drug in the treatment of asthma, is a known adenosine receptor antagonist which was reported to eliminate adenosine-mediated bronchoconstriction in asthmatic rabbits. A selective adenosine A₁ receptor antagonist, 8-cyclopentyl-1, 3-dipropylxanthine (DPCPX) was also reported to inhibit adenosine-mediated bronchoconstriction and 40 bronchial hyperresponsiveness in allergic rabbits. The therapeutic and preventative applications of currently available adenosine A₁ receptor-specific antagonists are, nevertheless, limited by their toxicity. Theophylline, for example, has been widely used in the treatment of asthma, but is associated with frequent, significant toxicity resulting from its narrow therapeutic dose range. DPCPX is far too toxic to be useful clinically. The fact that, despite decades of extensive research, no specific adenosine receptor 45 antagonist is available for clinical use attests to the general toxicity of these agents. Anti-sense oligonucleotides have received considerable theoretical consideration as potential useful pharmacological agents in human disease. Their practical application in actual models of human disease, however, has been somewhat elusive. One important impediment to their effective application has been a difficulty in finding

an appropriate route of administration to deliver them to their site of action. Many in vivo experiments were conducted by administering anti-sense oligonucleotides directly to specific regions of the brain. These applications, however, necessarily have limited clinical utility due to their invasive nature. Although anti-sense oligonucleotides have received considerable theoretical consideration for their potential use as pharmacological agents in human disease, finding practical and effective applications for these agents in actual models of human disease, however, have been few and far between, particularly because they had to be administered in large doses. Another important consideration in the pharmacologic application of these molecules is their route of administration. Many in vivo applications have involved the direct administration of anti-sense oligonucleotides to limited regions of the brain. Such applications, however, have limited clinical utility due to their invasive nature. The systemic administration of anti-sense oligonucleotides as pharmacological agents has been found to have also significant problems, not the least of which being an inherent difficulty in targeting disease-involved tissues. That is, the necessary dilution of the anti-sense oligonucleotide in the circulatory system makes extremely difficult to attain a therapeutic dose at the target tissue by intravenous or oral administration. The bioavailability of orally administered anti-sense oligonucleotides is very low, of the order of less than about 5%. Anti-sense oligonucleotides have been used in therapy by many, including the present inventor, who in his previous work successfully treated various diseases and conditions by direct administration of these agents to the lung. In many instances, other workers have had to face the difficulties associated with the delivery of DNA molecules to a desired target. Thus, the route of administration may be of extreme importance for treating generalized diseases and conditions as well as those which are localized. In contrast, up to the present time, the delivery of anti-sense agents to the lung has been relatively undeveloped. As described by the present inventor in more detail below, the lung is an excellent target for the direct administration of anti-sense oligonucleotides and provides a non-invasive and a tissue-specific route.

Clearly, there exist presently no effective therapies for treating these ailments, or at least no therapies which are effective and devoid of significant detrimental side effects. Accordingly, there is still a need for an agent for the treatment of adenosine mediated ailments afflicting the pulmonary and respiratory ailments affecting the lung airways, including respiratory problems, bronchoconstriction, inflammation, allergy(ies), depletion or hyposecretion of surfactant, etc., which is highly effective and sufficiently selective to avoid detrimental side effects produced by other therapies. In addition, there is a definite need for making available a delivery method that will require low amounts of therapeutic agents and will be effective for the rapid and targeted access of tissue genes of mRNAs and the reversal of untoward effects afflicting a subject.

SUMMARY OF THE INVENTION

The present invention generally relates to a pharmaceutical or veterinary composition, comprising an anti-sense oligonucleotide(s) (oligo(s)) which is (are) effective for alleviating bronchoconstriction and/or lung inflammation, allergy(ies), and/or surfactant depletion and/or hyposecretion, when administered to a mammal, the oligo containing about 0 to about 15% adenosine (A) and being anti-sense to a target selected from the group consisting of the initiation codon, the coding region, the 5'-end and the 3'-end genomic flanking regions, the 5' and 3' intron-exon junctions, and regions within 2 to 10 nucleotides of the junctions of a gene encoding a target polypeptide associated with lung airway dysfunction or anti-sense to the polypeptide mRNA; combinations of the oligos; and mixtures of the oligos; and a pharmaceutically or veterinarily acceptable carrier or diluent. The targets are typically molecules associated with airway disease, cancer, etc., such as transcription factors, stimulating and activating peptide factors, cytokines, cytokine receptors, chemokines, chemokine receptors, adenosine receptors, bradykinin receptors, endogenously produced specific and non-specific enzymes, immunoglobulins and antibodies, antibody receptors, central nervous system (CNS) and peripheral nervous and non-nervous system receptors, CNS and peripheral nervous and non-nervous system peptide transmitters, adhesion molecules, defensins, growth factors, vasoactive peptides and receptors, binding proteins, and malignancy associated proteins, among others. Examples are oligo(s) targeted to adenosine receptor(s) and it(they) are typically

present in the composition in an amount effective to reduce adenosine mediated effect(s), such as airway obstruction, inflammation, allergy(ies), and surfactant depletion, among others. The adenosine receptor is preferably selected from the group consisting of the adenosine A₁, A_{2b}, and A₃ receptors, and in some instances even adenosine A_{2a} receptors. The oligo of the invention may be applied to the preparation of a medicament for (a) reducing adenosine-mediated bronchoconstriction, impeded respiration, inflammation, allergy(ies), depletion production of surfactant, and other detrimental pulmonary effects in a subject in need of treatment, and/or for (b) treating specific diseases and conditions such as asthma, cystic fibrosis, allergic rhinitis, COPD, etc. For the first time this invention provides the targeted administration of one or more oligonucleotides directly into the respiratory system. The oligos may be directed to any target and are intended for fast delivery through the mucosal tissue of the lungs for hybridization to a desired target polynucleotide, e. g. mRNA, to prevent gene transcription and translation, such that protein expression will be reduced, hampered, or completely stopped. Thus, this invention also provides a more general method for administering oligonucleotides that are anti-sense to targeted genes and mRNAs associated with any type of diseases, by direct administration into the respiratory system, e. g. by inhalation, by introduction of a solution or aerosol into the respiratory airways, and/or directly into the lung.

The present oligos, moreover, are suitable for reducing effects mediated by a variety of target proteins and genes, for example adenosine-mediated effects, including pulmonary, respiratory, and other associated effects, e. g. bronchoconstriction, inflammation, immune mediated reactions, allergy(ies) and other airway problems, which may be caused by different conditions, including cancer. Examples of diseases and conditions, which may be treated preventatively, prophylactically and therapeutically with the agent of this invention, are pulmonary vasoconstriction, inflammation, allergies, asthma, impeded respiration, respiratory distress syndrome, pain, cystic fibrosis, allergic rhinitis, pulmonary hypertension, pulmonary vasoconstriction, emphysema, chronic obstructive pulmonary disease (COPD), bronchitis, and cancers such as leukemias, lymphomas, carcinomas, and the like, e.g. colon cancer, breast cancer, lung cancer, pancreatic cancer, hepatocellular carcinoma, kidney cancer, melanoma, hepatic metastases, etc., as well as all types of cancers which may metastasize or have metastasized to the lung(s), including breast and prostate cancer. The present agents are also suitable for administration before, during and after other treatments, including radiation, chemotherapy, antibody therapy, phototherapy and cancer, and other types of surgery. The present agent is effectively administered prophylactically and therapeutically in conjunction with other therapies, or by itself for conditions without known therapies or as a substitute for therapies that have significant negative side effects. The oligo(s) may be administered by any means known to a subject, e. g. to the lungs of the subject, more generally through any and all systemic and topical routes. This oligonucleotide(s) (oligo(s)) employed are anti-sense to a target DNA or RNA, e. g. an adenosine receptor DNA or RNA, and preferably consist essentially of up to about 15% adenosine (A), and more preferably contain no adenosine. The oligos are provided in the form of specific compositions and formulations, with a carrier or diluent, and optionally with other therapeutic agents and additives which are used for administration by specific routes, e.g. into the respiratory system, topically, transdermally, parenterally, by implantation, and the like. The oligo is also provided as a capsule or cartridge, and in the form of a kit. The oligos of the invention may be produced by selection of specific targeted segments of the gene or mRNA encoding the adenosine receptor as described below. In one preferred embodiment, the selection is made to obtain oligos that consist essentially of less than about 15% adenosine (A). This may be done by selecting the target as done above, which includes genes, genomic flanking regions, RNAs and polypeptide associated with an ailment afflicting the lung airways, obtaining the sequence of a mRNA(s) corresponding to the target gene(s) and/or their genomic flanking region(s) and/or the juxtap-membrane regions thereof, and mRNA(s) encoding the target polypeptide(s), selecting at least one segment of the mRNA(s), and synthesizing one or more anti-sense oligonucleotide(s) to the selected mRNA segment(s), and substituting, if necessary, an alternative, e. g. a universal base(s) or other base(s) for one or more A to reduce the proportion of A present in the oligonucleotide to less than about 15%, and down to no adenosine. Similarly, alternative and/or universal bases may be substituted for adenosine, e. g. specific

adenosine A1, A2b and A3 receptor antagonists or A2a receptor agonists, theophylline, enprophylline, and many other adenosine receptor antagonists known in the art as well as agonists with significantly reduced agonist activity with respect to adenosine, e. g. less than 0.5%, less than 0.3%, and the like.

The invention will now be described in general in conceptual and experimental terms, with reference to specific examples. Other objects, advantages and features of the present invention will become apparent to those skilled in the art from the description that follows.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

This invention arose from a desire by the inventor to improve on prior art treatments for pulmonary and other diseases, which technology is generally fraught with detrimental side effects and by the need of administering high doses of therapeutical agents. The present invention arises from the inventor's own discovery that adenosine receptor targeted anti-sense oligonucleotides (oligos) may be utilized therapeutically in the treatment of diseases or conditions which impair respiration, cause inflammation and/or allergy(ies), constrict bronchial tissue, obstruct the lung airways, depletion surfactant secretion, or otherwise impede normal breathing. In general, many diseases and conditions are associated with or cause inflammation, constrict bronchial tissue or the lung airways, depletion secretion of surfactant, augment allergy(ies), or otherwise impede normal breathing. This treatment is selective for specific targets associated with or mediating these symptoms, and the agents are administered in up to 1000-fold lower doses than those seen in the art. The inventor, in addition, wanted to provide a treatment which would improve the outcome and life style of patients undergoing other procedures or being administered other therapies, including antibody therapy, chemotherapy, radiation, phototherapy, and surgery e.g. cancer surgery, and that could be effectively administered preventatively, prophylactically or therapeutically. He reasoned that he could further improve on this discovery by selecting oligos of reduced adenosine content, or reducing the adenosine content of otherwise targeted anti-sense oligos corresponding to endogenous polynucleotide sequences. The present invention is premised on the discovery by the inventor that oligonucleotides are metabolized in vivo to their mononucleotides. Adenosine (A)-containing oligonucleotides break down and release adenosine which, in turn, activates adenosine receptors, thereby causing bronchoconstriction, inflammation, surfactant depletion, allergy(ies), and the like. He, thus, conceived of employing low adenosine-free adenosine oligos to avoid these side effects upon their administration. He succeeded in this endeavor and is providing in this patent novel and improved compositions, formulations and methods which afford greatly improved results when compared with previously known treatments for preventing and alleviating bronchoconstriction, allergy(ies), inflammation, breathing difficulties, surfactant depletion and blockage of airways, as well as for other conditions which affect the lung directly or indirectly. In different embodiments, one or more nucleic acids of the invention may be formulated alone, and/or with one or more surfactant components and/or with a carrier, and/or with other therapeutic agents and/or formulation agents known in the art. The compositions of this invention, thus, may be incorporated into a variety of formulations for systemic and topical administration. Moreover, the inventor also provides a broad method for delivery of anti-sense oligonucleotides (oligos) through the respiratory system, as a fast means of starting treatment to address acute attacks of asthma and other diseases and conditions that have a rapid onset. In addition, the present agents have long half-lives and may be administered at very low doses. This makes them ideal for once a week type therapies. In the past, anti-sense oligonucleotides received considerable theoretical consideration as being potentially useful as pharmacologic agents for the treatment of human disease. Wagner, R., Nature 372: 333-335 (1994). However, it has been difficult to actually apply these molecules to alleviating and curing human diseases. One important consideration in the pharmacologic application of these molecules has been the failure of various routes of administration to deliver the compounds to its target while avoiding invading the circulation and, therefore, other untargeted tissues which, thus, produces a plethora of side effects. Most in vivo experiments utilizing anti-sense oligonucleotides involved a direct application of the oligo to limited regions of the brain. See, Wahlestedt, C., Trends in Pharmacol. Sci. 15: 42-46 (1994); Lai, .. et al., Neuroreport 5: 1049-1052 (1994); Standifer, K., et al., Neuron 12: 805-810

(1994); Akabayashi, A., et al., Brain Res. 21: 55-61 (1994). Others applied them into the spinal fluid. See, e.g. Tseng, L., et al., European J. Pharmacol. 258: R1-3 (1994); Raffa, R., et al., European J. Pharmacol. 258: R5-7 (1994); Gillardon, F., et al., European J. Neurosci. 6: 880-884 (1994). Such applications, clearly, have no practical clinical utility due to their invasive nature. Thus, the systemic administration of 5 anti-sense oligonucleotides poses significant problems with respect to their pharmacologic application, not the least of which is the difficulty in selectively targeting disease-involved tissues. The systemic administration of anti-sense oligonucleotides also poses significant problems with respect to their pharmacologic application, not the least of which is the difficulty in selectively targeting disease-involved tissues.

10 The respiratory system, and in particular the lung, as the ultimate port of entry into the organism, however, is an excellent route of administration for anti-sense oligonucleotides. This is so not only for the treatment of lung disease, but also when utilizing the lung as a means for delivery, particularly because of its non-invasive and tissue-specific nature. Thus, local delivery of antisense oligonucleotides directly to the target tissue enables the therapeutic use of these compounds. Fomivirsen (ISIS 2302) is an example of 15 a local drug delivery into the eye to treat cytomegalovirus (CMV) retinitis, for which a new drug application has been filed by ISIS. The administration of a drug through the lung offers the further advantage that inhalation is non-invasive whereas direct injection into the vitreous of the eye is invasive. The composition and formulations of this invention are highly efficacious for preventing and treating diseases and conditions associated with bronchoconstriction, difficult breathing, impeded and obstructed 20 lung airways, allergy(ies), inflammation and surfactant depletion, among others. Examples of diseases and conditions which are suitably treated by the present method are diseases and conditions, including Acute Respiratory Distress Syndrome (ARDS), asthma, adenosine administration e.g. in the treatment of SupraVentricular Tachycardia (SVT) and other arrhythmias, and in stress tests to hyper-sensitized individuals, ischemia, renal damage or failure induced by certain drugs, infantile respiratory distress 25 syndrome, pain, cystic fibrosis, pulmonary hypertension, pulmonary vasoconstriction, emphysema, chronic obstructive pulmonary disease (COPD), lung transplantation rejection, pulmonary infections, and cancers such as leukemias, lymphomas, carcinomas, and the like, including colon cancer, breast cancer, lung cancer, pancreatic cancer, hepatocellular carcinoma, kidney cancer, melanoma, hepatic metastases, etc., as well as all types of cancers which may metastasize or have metastasized to the lung(s), including breast and 30 prostate cancer. The invention will be described with respect to the adenosine receptors as targets, but is similarly applicable to any other target with respect to the pulmonary administration of anti-sense oligos. The examples provided below show a complete inhibition of such adenosine receptor associated symptoms in a rabbit model for human bronchoconstriction, allergy(ies) and inflammation as well as the elimination of the ability of the adenosine receptor agonist par excellence, adenosine, to cause bronchoconstriction in 35 hyper-responsive monkeys, which are animal models for human hyper-responsiveness to adenosine receptor agonists. The pharmaceutical composition and formulations of the invention, therefore, are suitable for preventing and alleviating the symptoms associated with stimulation of adenosine receptors, such as the adenosine A₁ receptors. The compositions and formulations of this invention, thus, are also suitable for prevent the untoward side effects of adenosine-mediated hyperresponsiveness in certain 40 individuals, which are generally seen in diseases affecting respiratory activity.

The method of the present invention may be used to treat airway diseases and conditions in a subject of any kind and for any reason, with the intention that the adenosine content of anti-sense compounds be minimized, reduced or eliminated so as to prevent its liberation upon anti-sense degradation. Examples of diseases and conditions, which may be treated preventatively, prophylactically and therapeutically with the compositions and formulations of this invention, are pulmonary vasoconstriction, 45 inflammation, allergies, asthma, allergic rhinitis, impeded respiration, Acute Respiratory Distress Syndrome (ARDS), renal damage and failure associated with ischemia as well as the administration of certain drugs, side effects associated with adenosine administration e.g. in SupraVentricular Tachycardia (SVT) and in adenosine stress tests, infantile Respiratory Distress Syndrome (infantile RDS), ARDS, pain,

cystic fibrosis, pulmonary hypertension, pulmonary vasoconstriction, emphysema, chronic obstructive pulmonary disease (COPD), lung transplantation rejection, pulmonary infections, and cancers such as leukemias, lymphomas, carcinomas, and the like, e.g. colon cancer, breast cancer, lung cancer, pancreatic cancer, hepatocellular carcinoma, kidney cancer, melanoma, metastatic cancer such as hepatic metastases, 5 lung, breast and prostate metastases, among others. The present compositions and formulations are suitable for administration before, during and after other treatments, including radiation, chemotherapy, antibody therapy, phototherapy and cancer, and other types of surgery. The present compositions and formulations may also be administered effectively as a substitute for therapies that have significant negative side effects. The terms "anti-sense" oligonucleotides generally refers to small, synthetic oligonucleotides, 10 resembling single-stranded DNA, which in this patent are applied to the inhibition of gene expression by inhibition of a target messenger RNA (mRNA). See, Milligan, J. F. et al., J. Med. Chem. 36(14), 1923-1937 (1993), the relevant portion of which is hereby incorporated in its entirety by reference. For consistency's sake, all RNAs and oligonucleotides are represented in this patent by a single strand in the 5' to 3' direction, when read from left to right, although their complementary sequence(s) is (are) also 15 encompassed within the four corners of the invention. In addition, all nucleotide bases and amino acids are represented utilizing the recommendations of the IUPAC-IUB Biochemical Nomenclature Commission, or by the known 3-letter code (for amino acids). Nucleotide sequences are presented herein by single strand only, in the 5' to 3' direction, from left to right. In addition, nucleotide and amino acids are represented herein in the manner recommended by the IUPAC-IUB Biochemical Nomenclature Commission, or (for 20 amino acids) by three letter code, in accordance with 37 CFR 1.822 and established usage. See, e.g., PatentIn User Manual, 99-102 (Nov. 1990) (U.S. Patent and Trademark Office, Office of the Assistant Commissioner for Patents, Washington, D.C. 20231); U.S. Patent No. 4,871,670 to Hudson et al. at col. 3, lines 20-43. The present method utilizes anti-sense agents to inhibit or down-regulate gene expression of target genes, including those listed in Tables 1 and 2 below. This is generally attained by hybridization of 25 the anti-sense oligonucleotides to coding (sense) sequences of a targeted messenger RNA (mRNA), as is known in the art. The exogenously administered agents of the invention decrease the levels of mRNA and protein encoded by the target gene and/or cause changes in the growth characteristics or shapes of the thus treated cells. See, Milligan et al. (1993); Helene, C. and Toulme, J. Biochim. Biophys. Acta 1049, 99-125 (1990); Cohen, J. S. D., Ed., Oligodeoxynucleotides as Anti-sense Inhibitors of Gene Expression; CRC 30 Press: Boca Raton, FL (1987), the relevant portion of which is hereby incorporated in its entirety by reference. As used herein, "anti-sense oligonucleotide or anti-sense oligo" is generally a short sequence of 35 synthetic nucleotide that (1) hybridizes to any segment of a mRNA encoding a targeted protein under appropriate hybridization conditions, and which (2) upon hybridization causes a decrease in gene expression of the targeted protein. The terms "desAdenosine" (desA) and "des-thymidine" (desT) refer to oligonucleotides substantially lacking either adenosine (desA) or thymidine (desT). In some instances, the des A or des T sequences are naturally occurring, and in others they may result from substitution of an undesirable nucleotide (A) by another lacking its undesirable activity, such as acting as an agonist or having a triggering effect at the adenosine A receptor(s). In the present context, the substitution is generally accomplished by substitution of A with a "universal or alternative base", presently known in the art or to be 40 ascertained at a later time. As used herein, the terms "prevent", "preventing", "treat" or "treating" refer to a preventative, prophylactic, maintenance, or therapeutic treatment which decreases the likelihood that the subject administered such treatment will manifest symptoms associated with adenosine receptor stimulation. The term "down-regulate" refers to inducing a decrease in production, secretion or availability and, thus, a decrease in concentration, of intracellular target product, be it a receptor e.g. adenosine A₁, 45 A_{2a}, A_{2b}, A₃, bradykinin 2B, GATA-3, or other receptors, or an increase in concentration of the adenosine A_{2a} receptor. The present technology relies on the design of anti-sense oligos targeted to mRNAs associated with ailments involving lung airway pathology(ies), and on their modification to reduce the occurrence of undesirable side effects caused by their release of adenosine upon breakdown, while preserving their activity and efficacy for their intended purpose. In this manner, the inventor targets a specific gene to

design one or more anti-sense oligonucleotide(s) (oligos) that selectively bind(s) to the corresponding mRNA, and then reduces, if necessary, their content of adenosine via substitution with an alternative or a universal base, or an adenosine analog incapable of significantly, or having substantially reduced ability for, activating or antagonizing adenosine A₁, A_{2a} or A₃ receptors or which may act as an agonist at the adenosine A_{2a} receptor. Any number of adenosines present may be substituted by an alternative and/or universal base, such as heteroaromatic bases, which binds to a thymidine base but has less than about 0.3 of the adenosine base agonist or antagonist activity at the adenosine A₁, A_{2a}, A_{2b} and A₃ receptors. Based on his prior experience in the field, the inventor reasoned that in addition to "downregulating" specific genes, he could increase the effect of the agent(s) administered by either selecting segments of RNA that are devoid, or have a low content, of thymidine (T) or, alternatively, substitute one or more adenosine(s) present in the designed oligonucleotide(s) with other nucleotide bases, so called universal bases, which bind to thymidine but lack the ability to activate adenosine receptors and otherwise exercise the constricting effect of adenosine in the lungs, etc. Given that adenosine (A) is a nucleotide base complementary to thymidine (T), when a T appears in the RNA, the anti-sense oligo will have an A at the same position.

In one aspect of this invention, the anti-sense oligonucleotide has a sequence which specifically binds to a portion or segment of a mRNA molecule which encodes a protein associated with impeded breathing, allergy(ies), lung inflammation, depletion of lung surfactant or lowering of lung surfactant, airway obstruction, bronchitis, and the like. One effect of this binding is to reduce or even prevent the translation of the corresponding mRNA and, thereby, reduce the available amount of target protein in the subject= lung. In one preferred embodiment of this invention, the phosphodiester residues of the anti-sense oligonucleotide are modified or substituted. Chemical analogs of oligonucleotides with modified or substituted phosphodiester residues, e.g., to the methylphosphonate, the phosphotriester, the phosphorothioate, the phosphorodithioate, or the phosphoramidate, α = methoxy ethyl and similar modifications, which increase the in vivo stability of the oligonucleotide are particularly preferred. The naturally occurring phosphodiester linkages of oligonucleotides are susceptible to some degree of degradation by cellular nucleases. Many of the residues proposed herein, on the contrary, are highly resistant to nuclease degradation. See, Milligan et al.; Cohen, J. S. D., supra. In another preferred embodiment of the invention, the oligonucleotides may be protected from degradation by adding a "3'-end cap" by which nuclease-resistant linkages are substituted for phosphodiester linkages at the 3' end of the oligonucleotide. See Tidd, D. M. and Warenius, H.M., Be. J. Cancer 60: 343-350 (1989); Shaw, J.P. et al., Nucleic Acids Res. 19: 747-750 (1991), the relevant section of which are incorporated in their entireties herein by reference. Phosphoramidates, phosphorothioates, and methylphosphonate linkages all function adequately in this manner for the purposes of this invention, as do α' modifications, such as α' methoxy ethyl, and the like. The more extensive the modification of the phosphodiester backbone the more stable the resulting agent, and in many instances the higher their RNA affinity and cellular permeation. See, Milligan, et al., supra. In addition, a plurality of substitutions to the carbohydrate ring are also known to improve stability of nucleic acids. Thus, the number of residues which may be modified or substituted will vary depending on the need, target, and route of administration, and may be from 1 to all the residues, to any number in between. Many different methods for replacing the entire phosphodiester backbone with novel linkages are known. See, Millikan et al, supra. Preferred backbone analogue residues include phosphoramidate, phosphorothioate, methylphosphonate, phosphotriester, phosphotriester, thioformacetal, phosphorodithioate, phosphoramidate, formacetal, triformacetal, thioether, carbamate, boranophosphate, 3'-thioformacetal, 5'-thioether, carbonate, C₅-substituted nucleotides, 5'-N-carbamate, sulfate, sulfonate, sulfamate, sulfonamide, sulfone, sulfite, 2'-O methyl, sulfoxide, sulfide, hydroxylamine, methylene(methylimino) (MMI), methoxymethyl (MOM), and methoxyethyl(MOE), and methyleneoxy(methylimino) (MOMI) residues, and combinations thereof. Phosphorothioate and methylphosphonate-modified oligonucleotides are particularly preferred due to their availability through automated oligonucleotide synthesis. See, Millikan et al, supra. Where appropriate, the agent of this

invention may be administered in the form of their pharmaceutically acceptable salts, or as a mixture of the anti-sense oligonucleotide and its salt. In another embodiment of this invention, a mixture of different anti-sense oligonucleotides or their pharmaceutically acceptable salts is administered. A single agent of this invention has the capacity to attenuate the expression of a target mRNA and/or various agents to enhance or attenuate the activity of a pathway. By means of example, the present method may be practiced by identifying all possible deoxyribonucleotide segments which are low in thymidine (T) or deoxynucleotide segments low in adenosine (A) of about 7 or more mononucleotides, preferably up to about 60 mononucleotides, more preferably about 10 to about 36 mononucleotides, and still more preferably about 12 to about 21 mononucleotides, in a target mRNA or a gene, respectively. This may be attained by searching for mono nucleotide segments within a target sequence which are low in, or lack thymidine (RNA), a nucleotide which is complementary to adenosine, or that are low in adenosine (gene), that are 7 or more nucleotides long. In most cases, this search typically results in about 10 to 30 such sequences, i.e. naturally lacking or having less than about 40% adenosine, anti-sense oligonucleotides of varying lengths for a typical target mRNA of average length, i.e., about 1800 nucleotides long. Those with high content of T or A, respectively, may be fixed by substitution of a universal base for one or more As. The agent(s) of this invention may be of any suitable length, including but not limited to, about 7 to about 60 nucleotides long, preferably about 12 to about 45, more preferably up to about 30 nucleotides long, and still more preferably up to about 21, although they may be of other lengths as well, depending on the particular target and the mode of delivery. The agent(s) of the invention may be directed to any and all segments of a target RNA. One preferred group of agent(s) includes those directed to an mRNA region containing a junction between an intron and an exon. Where the agent is directed to an intron/exon junction, it may either entirely overlie the junction or it may be sufficiently close to the junction to inhibit the splicing-out of the intervening exon during processing of precursor mRNA to mature mRNA, e.g. with the 3' or 5' terminus of the anti-sense oligonucleotide being positioned within about, for example, within about 2 to 10, preferably about 3 to 5, nucleotide of the intron/exon junction. Also preferred are anti-sense oligonucleotides which overlap the initiation codon, and those near the 5' and 3' termini of the coding region. The flanking regions of the exons may also be targeted as well as the spliced segments in the precursor mRNAs. The mRNA sequences of the adenosine receptors and of many other targets are derived from the DNA base sequence of the gene expressing either receptors, e. g. the adenosine receptors, the enzymes, factors, or other targets associated with airway disease. For example, the sequence of the genomic human A₁ adenosine receptor is known and is disclosed in U.S. Patent No. 5,320,963 to Stiles, G., et al. The A₃ adenosine receptor has been cloned, sequenced and expressed in rat (see, Zhou, F., et al., P.N.A.S. (USA) 89: 7432 (1992)) and human (see, Jacobson, M. A., et al., U.K. Patent Application No. 9304582.1 (1993)). The sequence of the adenosine A_{2b} receptor gene is also known. See, Salvatore, C. A., Luneau, C. J., Johnson, R. G. and Jacobson, M., Genomics (1995), the relevant portion of which is hereby incorporated in its entirety by reference. The sequences of many of the remaining exemplary target genes are also known. See, GenBank, NIH. The sequences of those genes whose sequences are not yet available may be obtained by isolating the target segments applying technology known in the art. Once the sequence of the gene, its RNA and/or the protein are known, an anti-sense oligonucleotides may be produced according to this invention as described above to reduce the production of the targeted protein in accordance with standard techniques. The sequences for the adenosine A_{2a} bradykinin, and other genes as well as methods for preparation of oligonucleotides are also known as those of many other target genes and mRNAs for which this invention is suitable. Thus, anti-sense oligonucleotides that downregulate the production of target sequences associated with airway disease, including the adenosine A₁, A_{2a}, A_{2b}, A₃, bradykinin, GATA-3, COX-2, and many other receptors, may be produced in accordance with standard techniques. Examples of diseases and conditions which are suitably treated by the present method are diseases and conditions, including Acute Respiratory Distress Syndrome (ARDS), asthma, adenosine administration e.g. in the treatment of SupraVentricular Tachycardia (SVT) and other arrhythmias, and in stress tests to hyper-sensitized individuals, ischemia, renal damage or failure induced by certain drugs, infantile respiratory distress

syndrome, pain, cystic fibrosis, pulmonary hypertension, pulmonary vasoconstriction, emphysema, chronic obstructive pulmonary disease (COPD), pulmonary transplantation rejection, pulmonary infections, and cancers such as leukemias, lymphomas, carcinomas, and the like, including colon cancer, breast cancer, lung cancer, pancreatic cancer, hepatocellular carcinoma, kidney cancer, melanoma, hepatic metastases, etc., as well as all types of cancers which may metastasize or have metastasized to the lung(s), including breast and prostate cancer.

The adenosine receptors discussed above are mere examples of the high power of the inventors technology. In fact, a large number of genes may be targeted in a similar manner by the present agent(s), to reduce or down-regulate protein expression. By means of example, if the target disease or condition is one associated with impeded or reduced breathing, bronchoconstriction, chronic bronchitis, pulmonary bronchoconstriction and/or hypertension, chronic obstructive pulmonary disease (COPD), pulmonary transplantation rejection, pulmonary infections, allergy, asthma, cystic fibrosis, respiratory distress syndrome, cancers, which either directly or by metastasis afflict the lung, the present method may be applied to a list of potential target mRNAs, which includes the targets listed in Table 1 and Table 2 below, among others. The anti-sense agent(s) of the invention have a low A content to prevent its liberation upon in vivo degradation of the agent(s). For example, if the system is the pulmonary or respiratory system, a large number of genes is involved in different functions, including those listed in Table 1 below.

Table 1: Pulmonary Disease or Condition Pulmonary and Inflammation Targets

Nf6B Transcription Factor	Interleukin-8 Receptor (IL-8 R)
20 Interleukin-5 Receptor (IL-5R)	Interleukin-4 Receptor (IL-4R)
Interleukin-3 Receptor (IL-3R)	Interleukin-1 β (IL-1 β)
Interleukin-1 β Receptor (IL-1 β R)	Eotaxin
Tryptase	Major Basic Protein
β 2-adrenergic Receptor Kinase	Endothelin Receptor A
25 Endothelin Receptor B	Preproendothelin
Bradykinin B2 Receptor (B2BR)	IgE (High Affinity Receptor)
Interleukin-1 (IL-1)	Interleukin 1 Receptor (IL-1 R)
Interleukin-9 (IL-9)	Interleukin-9 Receptor (IL-9 R)
Interleukin-11 (IL-11)	Interleukin-11 Receptor (IL-11 R)
30 Inducible Nitric Oxide Synthase	Cyclooxygenase (COX)
Intracellular Adhesive Molecule 1 (ICAM-1)	Vascular Cellular Adhesion Molecule (VCAM)
Substance P	Endothelial Leukocyte Adhesion Molecule Endothelin ETA (ELAM-1)
Rantes	GM-CSF, Endothelin-1
Receptor	Neutrophil Chemotactic Factor
35 Cyclooxygenase-2 (COX-2)	Defensin 1,2,3
Monocyte Activating Factor	Platelet Activating Factor
Neutrophil Elastase	5-lipoxygenase
Muscarinic Acetylcholine Receptors	Substance P
Tumor Necrosis Factor α	Histamine Receptor
40 Phosphodiesterase IV	CCR-1 CC Chemokine Receptor
Substance P Receptor	Interleukin-4 (IL-4)
Chymase	Interleukin-5 (IL-5)
Interleukin-2 (IL-2)	Interleukin-7 (IL-7)
Interleukin-12 (IL-12)	Interleukin-12 Receptor (IL-12R)
45 Interleukin-6 (IL-6)	Interleukin-1 (IL-1)
Interleukin-8 (IL-8)	Interleukin-14
Interleukin-7 Receptor (IL-7R)	CCR-3 CC Chemokine Receptor
Interleukin-14 Receptor (IL-14R)	CCR-5 CC Chemokine Receptor
50 CCR-2 CC Chemokine Receptor	GATA-3 Transcription Factor
CCR-4 CC Chemokine Receptor	MAP Kinase
Prostanoid Receptors	Interleukin-15 Receptor (IL-15R)
Neutrophil Adherence Receptor	
Interleukin-15 (IL-15)	

	Interleukin-11 (IL-11)	Interleukin-11 Receptor (IL-11R)
	NFAT Transcription Factors	STAT 4
	MIP-1 α	MCP-2
	MCP-3	MCP-4
5	Cyclophilin (A, B, etc.)	Phospholipase A2
	Basic Fibroblast Growth Factor	Metalloproteinase
	CSBP/p38 MAP Kinase	Tryptase Receptor
	PDG2	Interleukin-3 (IL-3)
	Interleukin-10 (IL-10)	Cyclosporin A - Binding Protein
10	FK506-Binding Protein	$\alpha 4\beta 1$ Selectin
	Fibronectin	$\alpha 4\beta 7$ Selectin

Table 1: Pulmonary Disease or Condition Pulmonary and Inflammation Targets

	cMad CAM-1	LFA-1 (CD11a/CD18)
	PECAM-1	LFA-1 Selectin
15	C3bi	PSGL-1
	E-Selectin	P-Selectin
	CD-34	L-Selectin
	p150,95	Mac-1 (CD11b/CD18)
	Fucosyl transferase	VLA-4
20	STAT-1	STAT-2
	CD-18/CD11a	CD11b/CD18
	ICAM2 and ICAM3	C5a
	CCR3 (Eotaxin Receptor)	CCR1, CCR2, CCR4, CCR5
	LTB-4	AP-1 Transcription Factor
25	Protein kinase C	Cysteinyl Leukotriene Receptor
	Tachykinin Receptors (tach R)	I6B Kinase 1 & 2
	Interleukin-2 Receptor (IL-2R)	(e.g., Substance P, NK-1 & NK-3 Receptors)
	STAT 6	c-mas
	NF-Interleukin-6 (NF-IL-6)	Interleukin-10 Receptor (IL-10R)
30	Interleukin-3 (IL-3)	Interleukin-2 Receptor (IL-2R)
	Interleukin-13 (IL-13)	Interleukin-12 Receptor (IL-12R)
	Interleukin-14 (IL-14)	Interleukin-6 Receptor (IL-6R)
	Interleukin-16 (IL-16)	Interleukin-13 Receptor (IL-13R)
	Medullasin	Interleukin-16 Receptor (IL-16R)
35	Adenosine A ₁ Receptor (A ₁ R)	Tryptase-I
	Adenosine A _{2b} Receptor (A _{2b} R)	Adenosine A ₃ Receptor (A ₃ R)
	β Tryptase	STAT-3
	Adenosine A _{2a} Receptor (A _{2a} R)	IgE Receptor β Subunit (IgE R β)
	Fc-epsilon receptor CD23 antigen	IgE Receptor α Subunit (IgE R α)
40	IgE Receptor Fc Epsilon Receptor (IgERFc ξ R)	Substance P Receptor
	Histidine decarboxylase	Tryptase-1
	Prostaglandin D Synthase	Eosinophil Cationic Protein
	Eosinophil Derived Neurotoxin	Eosinophil Peroxidase
	Endothelial Nitric Oxide Synthase	Endothelial Monocyte Activating Factor
45	Neutrophil Oxidase Factor	Cathepsin G
	Macrophage Inflammatory Protein-1-	Interleukin-8 Receptor α Subunit (IL-8 R α)
	Alpha/Rantes Receptor	Endothelin Receptor ET-B

These genes, and others, are involved in the normal functioning of respiration as well as in diseases associated with respiratory pathologies, including cystic fibrosis, asthma, pulmonary hypertension and vasoconstriction, chronic obstructive pulmonary disease (COPD), pulmonary transplantation rejection, pulmonary infections, chronic bronchitis, respiratory distress syndrome (ARDS), allergic rhinitis, lung cancer and lung metastatic cancers and other airway diseases, including those with inflammatory response.

Anti-sense oligos to the target receptors, e. g. the adenosine A₁, A_{2a}, A_{2b}, and A₃ receptors, CCR3 (chemokine receptors), bradykinin 2B, CAM (vascular cell adhesion molecule), and eosinophil receptors,

among others, have been shown to be effective in down-regulating the expression of their genes. Some of these act to alleviate the symptoms or reduce respiratory ailments and/or inflammation, for example, by "down regulation" of the adenosine A₁, A_{2a}, A_{2b}, and/or A₃ receptors and CCR3, bradykinin 2B, VCAM (vascular cell adhesion molecule) and eosinophil receptors. These agents may be utilized by the present method alone or in conjunction with anti-sense oligos targeted to other genes to validate pathway and/or networks in which they are involved. For better results, the oligos are preferably administered directly into the respiratory system, e.g., by inhalation or other means, of the experimental animal, so that they may reach the lungs without widespread systemic dissemination. This permits the use of low agent doses as compared with those administered systemically or by other generalized routes and, consequently, reduces the number and degree of undesirable side effects resulting from the agent=s widespread distribution in the body. The agent(s) of this invention has (have) been shown to reduce the amount of receptor protein expressed by the tissue. These agents, thus, rather than merely interacting with their targets, e.g. a receptor, lower the number of target proteins that other drugs may interact with. In this manner, the present agent(s) afford(s) extremely high efficacy with low toxicity. Anti-sense oligonucleotides to the A₁ , A_{2b}, A₃, bradykinin B2, GATA-3, CAM (vascular cell adhesion molecule), eosinophil receptors, and COX-2 receptors, among others, have been shown to be effective in the down-regulation of the respective receptor proteins in the cell. One novel feature of this treatment, as compared to traditional treatments for adenosine-mediated bronchoconstriction, is that administration is direct to the lungs, or in situ to other tissues, organs or systems of the body. Additionally, a receptor protein itself is reduced in amount, rather than merely interacting with a drug, and toxicity is reduced. Other proteins that may be targeted with anti-sense agents for the treatment of lung conditions include, but are not limited to: CCR3 (chemokine) receptors, human A₂, adenosine receptor, human A_{2b} adenosine receptor, human IgE receptor β, human Fc-epsilon receptor CD23 antigen, human histidine decarboxylase, human beta tryptase, human tryptase-I, human prostaglandin D synthase, human cyclooxygenase-2, human eosinophil cationic protein, human eosinophil derived neurotoxin, human eosinophil peroxidase, human intercellular adhesion molecule-1 (ICAM-1), human vascular cell adhesion molecule-1 (VCAM-1), human endothelial leukocyte adhesion molecule-1 (ELAM 1), human P selectin, human endothelial monocyte activating factor, human IL-3, human IL-4, human IL-5, human IL-6, human IL-8, human monocyte-derived neutrophil chemotactic factor, human neutrophil elastase, human neutrophil oxidase factor, human cathepsin G, human defensin 1, human defensin 3, human macrophage inflammatory protein-1-alpha, human muscarinic acetylcholine receptor HM3, human fibronectin, human GM-CSF, human tumor necrosis factor α, human leukotriene C4 synthase, human major basic protein, and human endothelin 1. Although not intended to be exclusive, a more extensive list of genes is provided below. Some of these act to alleviate the symptoms or reduce respiratory ailments and/or inflammation, for example, by "down regulation" of the adenosine A₁, A_{2a}, A_{2b}, and/or A₃ receptors and CCR3, bradykinin 2B, VCAM (vascular cell adhesion molecule) and eosinophil receptors. These agents are preferably administered directly into the respiratory system, e.g., by inhalation or other means, so that they may reach the lungs without widespread systemic dissemination. This permits the use of substantially lower doses of the agent of the invention as compared with those administered by the prior art, systemically or by other generalized routes and, consequently, reduce undesirable side effects resulting from the agent=s widespread distribution in the body. The agent(s) of this invention has (have) been shown to reduce the amount of receptor protein expressed by the tissue. These agents, thus, rather than merely interacting with their targets, e.g. a receptor, lower the number of target proteins that other drugs may interact with. In this manner, the present agent(s) afford(s) extremely high efficacy with low toxicity. In these latter targets, and in target genes in general, it is particularly imperative to eliminate or reduce the adenosine content of the corresponding anti-sense oligonucleotide to prevent their breakdown products from liberating adenosine.

As used herein, the term "treat" or "treating" asthma refers to a treatment which decreases the likelihood that the subject administered such treatment will manifest symptoms of the lung disease. The term "downregulate" refers to inducing a decrease in production, secretion or availability (and thus a

decrease in concentration) of the targeted intracellular protein. The present invention is concerned primarily with the treatment of human subjects. However, the agents and methods disclosed here may also be employed for veterinary purposes, such as is the case in the treatment of other mammals, such as cattle, horses, wild animals, zoo animals, and domestic animals, e. g. dogs and cats. Targeted proteins are preferably mammalian and more preferably of the same species as the subject being treated. In general, "anti-sense" refers to the use of small, synthetic oligonucleotides, resembling single-stranded DNA, to inhibit gene expression by inhibiting the function of the target messenger RNA (mRNA). Milligan, J. F. et al., J. Med. Chem. 36(14), 1923-1937 (1993). In the present invention, inhibition of gene expression of the A₁ or A₃ adenosine receptor is desired. Gene expression is inhibited through hybridization to coding (sense) sequences in a specific messenger RNA (mRNA) target by hydrogen bonding according to Watson-Crick base pairing rules. The mechanism of anti-sense inhibition is that the exogenously applied oligonucleotides decrease the mRNA and protein levels of the target gene or cause changes in the growth characteristics or shapes of the cells. Id. See, also Helene, C. and Toulme, J., Biochim. Biophys. Acta 1049, 99-125 (1990); Cohen, J. S. D., Ed., Oligodeoxynucleotides as Anti-sense Inhibitors of Gene Expression; CRC Press: Boca Raton, FL (1987). As used herein, "anti-sense oligonucleotide" is defined as a short sequence of synthetic nucleotide that (1) hybridizes to any coding sequence in an mRNA which codes for the targeted protein, according to hybridization conditions described below, and (2) upon hybridization causes a decrease in gene expression of the A₁ or A₃ adenosine receptor. The receptors discussed above are mere examples of the high power of the present technology. In fact, a large number of genes may be targeted in a similar manner by practicing the present methods, to significantly down-regulate or obliterate protein expression and observe any changes wrought to one or more functions within a system, e.g. the respiratory system and other lung disease associated targets. By means of example, in the respiratory system, the targets may be associated with difficulties of breathing, bronchoconstriction, inflammation, allergic rhinitis, chronic bronchitis, surfactant depletion, and others associated with diseases and conditions such as chronic obstructive pulmonary disease (COPD), pulmonary transplantation rejection, pulmonary infections, inhalation burns, Acute Respiratory Distress Syndrome (ARDS), cystic fibrosis, pulmonary fibrosis, radiation pulmonitis, tonsilitis, emphysema, dental pain, oral inflammation, joint pain, esophagitis, cancers afflicting the respiratory system either directly such as lung cancer, esophageal cancer, and the like, or indirectly by means of metastases, among others. These functions are of great interest because of their association with respiratory dysfunction, as is the case in asthma, allergies, allergic rhinitis, pulmonary bronchoconstriction and hypertension, chronic obstructive pulmonary disease (COPD), pulmonary transplantation rejection, pulmonary infections, allergy, asthma, cystic fibrosis (CF), Acute Respiratory Distress Syndrome (ARDS) as well as infantile and pregnancy-related RDS, cancer, etc., which either directly or by metastasis afflict the lung, the present anti-sense oligonucleotides may be directed to a list of target mRNAs, which includes the targets listed in Table 1 above, among others.

The oligos of this invention may be obtained by first selecting fragments of a target nucleic acid having at least 4 contiguous nucleic acids selected from the group consisting of G and C and/or having a specific type and/or extent of activity, and then obtaining a first oligonucleotide 4 to 60 nucleotides long which comprises the selected fragment and has a thymidine (T) nucleic acid content of up to and including about 15%, preferably, about 12%, about 10%, about 7%, about 5%, about 3%, about 1%, and more preferably no thymidine. The latter step may be conducted by obtaining a second oligonucleotide 4 to 60 nucleotides long comprising a sequence which is anti-sense to the selected fragment, the second oligonucleotide having an adenosine base content of up to and including about 15%, preferably about 12%, about 10%, about 7%, about 5%, about 3%, about 1%, and more preferably no adenosine. When the selected fragment comprises at least one thymidine base, an adenosine base may be substituted in the corresponding anti-sense nucleotide fragment with a universal base selected from the group consisting of heteroaromatic bases which bind to a thymidine base but have less than about 10%, preferably less than about 1%, and more preferably less than about 0.3% of the adenosine base agonist activity at the adenosine A₁, A_{2a}, A_{2b} and A₃ receptors, and heteroaromatic bases which have no activity at the adenosine

A_{2a} receptor, when validating in the respiratory system. Other adenosine activities in other systems may be determined in other systems, as appropriate. The analogue heteroaromatic bases may be selected from all pyrimidines and purines, which may be substituted by O, halo, NH₂, SH, SO, SO₂, SO₃, COOH and branched and fused primary and secondary amino, alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, 5 aryl, heteroaryl, alkoxy, alkenoxy, acyl, cycloacyl, arylacyl, alkynoxy, cycloalkoxy, aroyl, arylthio, arylsulfoxy, halocycloalkyl, alkylcycloalkyl, alkenylcycloalkyl, alkynylcycloalkyl, haloaryl, alkylaryl, alkenylaryl, alkynyl aryl, arylalkyl, arylalkenyl, arylalkynyl, arylcycloalkyl, which may be further substituted by O, halo, NH₂, primary, secondary and tertiary amine, SH, SO, SO₂, SO₃, cycloalkyl, 10 heterocycloalkyl and heteroaryl. The pyrimidines and purines may be substituted at all positions as is known in the art, but preferred are those which are substituted at positions 1, 2, 3, 4, 7 and/or 8. More preferred are pyrimidines and purines such as theophylline, caffeine, dyphylline, etophylline, acephylline piperazine, bamifylline, enprofylline and xantine having the chemical formula

wherein R¹ and R² are independently H, alkyl, alkenyl or alkynyl and R³ is H, aryl, dicycloalkyl, 15 dicycloalkenyl, dicycloalkynyl, cycloalkyl, cycloalkenyl, cycloalkynyl, O-cycloalkyl, O-cycloalkenyl, O-cycloalkynyl, NH₂-alkylamino-ketoxyalkyloxy-aryl, mono and dialkylaminoalkyl-N-alkylamino-SO₂aryl, among others. Similar modifications in the sugar are also embodiments of this invention. Reduced adenine content of the anti-sense oligos corresponding to the thymidines (T) present in the target RNA serves to prevent the breakdown of the oligos into products that free adenine into the system, e.g. the lung, brain, heart, kidney, etc., tissue environment and, thereby, to prevent any unwanted effects due to it. 20 By means of example, the Nf6B transcription factor may be selected as a target, and its mRNA or DNA searched for low thymidine (T) or deoxymidine (desT) fragments. Only desT segments of the mRNA or DNA are selected which, in turn, will produce desA anti-sense as their complementary strand. When a number of RNA desT segments are found, the sequence of the anti-sense segments may be deduced. Typically, about 10 to 30 and even larger numbers of desA anti-sense sequences may be obtained. These 25 anti-sense sequences may include some or all desA anti-sense oligonucleotide sequences corresponding to desT segments of the mRNA of the target, such as anyone of those shown in Table 1 above, in Table 2 below, and others associated with functions of the brain, cardiovascular and renal systems, and many others. When this occurs, the anti-sense oligonucleotides found are said to be 100% A-free. For each of the original desA anti-sense oligonucleotide sequences corresponding to the target gene, e.g. the NF6B 30 transcription factor, typically about 10 to 30 sequences may be found within the target gene or RNA which have a low content of thymidine (RNA). In accordance with this invention, the selected fragment sequences may also contain a small number of thymidine (RNA) nucleotides within the secondary or tertiary or quaternary sequences. In some cases, a large adenine content may suffice to render the anti-sense oligonucleotide less active or even inactive against the target. In accordance with this invention, 35 these so called "non-fully desA" sequences may preferably have a content of adenine of less than about 15%, about 12%, about 10%, about 7%, about 5%, and about 2% adenine. Most preferred is no adenine content (0%). In some instances, however, a higher content of adenine is acceptable and the oligonucleotides still fail to show detrimental "adenine activity". A particular important embodiment is that where the adenine nucleotide is "fixed" or replaced by a "Universal or alternative" base that may 40 base-pair with similar or equal affinity to two or more of the four nucleotide present in natural DNA: A, G, C, and T.

A universal or alternative base is defined in this patent as any compound, more commonly an

adenosine analogue, which has substantial capacity to hybridize to thymidine, while at the same time having reduced, or substantially lacking, ability to bind adenosine receptors or other molecules through which adenosine may exert an undesirable side effect in the experimental animal or in a cell system. Alternatively, adenosine analogs which completely fail to activate, or have significantly reduce ability for activating, adenosine receptors, such as the adenosine A₁, A_{2b} and/or A₃ receptors, most preferably A₁ receptors, and those that may even act as agonists of the adenosine A_{2a}, receptor, may be used. One example of a universal base is α -deoxyribofuranosyl-(5-nitroindole), and an artisan will know how to select others. This "fixing" step generates further novel sequences, different from those anti-sense to the ones found in nature, that permits the anti-sense oligonucleotide to bind, preferably equally well, with the target RNA. Other examples of universal or alternative bases are 2-deoxyribosyl-(5-nitroindole). Other examples of universal bases are 3 - nitropyrrole - 2' - deoxynucleoside, 5 - nitro-indole, 2 - deoxyribosyl - (5 - nitroindole), 2'-deoxyribofuranosyl - (5-nitroindole), 2' - deoxyinosine, 2' -deoxynebularine, 6H, 8H-3,4-dihydropyrimido [4, 5 - c] oxazine - 7 - one and 2 - amino - 6 -methoxy aminopurine. In addition to the above, Universal bases which may be substituted for any other base although with somewhat reduced hybridization potential, include 3 - nitropyrrole 2' - deoxynucleoside 2 - deoxyribofuranosyl - (5 - nitroindole), 2' - deoxyinosine and 2' - deoxynebularine (Glen Research, Sterling, VA). More specific mismatch repairs may be made using "P" nucleotide, 6H, 8H - 3, 4 - dihydropyrimido [4,5 - c] [1, 2] oxazin - 7 - one, which base pairs with either guanine (G) or adenine (A) and "K" nucleotide, 2 - amino - 6 - methoxyaminopurine, which base pairs with either cytidine (C) or thymidine (T), among others. Others which are known in the art or will become available are also suitable. See, for example, Loakes, D. and Brown, D. M., Nucl. Acids Res. 22:4039-4043 (1994); Ohtsuka, E. et al., J. Biol. Chem. 260(5):2605-2608 (1985); Lin, P.K.T. and Brown, D. M., Nucleic Acids Res. 20(19):5149-5152 (1992; Nichols, R. et al., Nature 369(6480): 492-493 (1994); Rahmon , M. S. and Humayun, N. Z., Mutation Research 377 (2): 263-8 (1997); Amosova, O., et al., Nucleic Acids Res. 25 (!0): 1930-1934 (1997); Loakes D. & Brown, D. M., Nucleic Acids Res. 22 (20): 4039-4043 (1994), the entire sections relating to universal bases and their preparation and use in nucleic acid binding being incorporated herein by reference. When non-fully desT sequences are found in the naturally occurring target, they typically are selected so that about 1 to 3 universal base substitutions will suffice to obtain a 100% "desA" anti-sense oligonucleotide. Thus, the present method provides either anti-sense oligonucleotides to different targets which are low in, or devoid of, A content, as well as anti-sense oligonucleotides where one or more adenosine nucleotides, e. g. about 1 to 3, or more, may be "fixed" by replacement with a "Universal" or "replacement" base. Universal bases are known in the art and need not be listed herein. An artisan will know which bases may act as universal bases, and replace them for A. Table 2 below provides a selected number of targets to which the agents of the invention are effectively applied. Others, however, may also be targeted.

35

Table 2:

<u>Transforming Oncogenes</u>	<u>Cancer Targets</u>
ras	thymidylate synthetase
src	thymidylate synthetase
myc	dihydrofolate reductase
bcl 2	thymidine kinase
	deoxycytidine kinase
	ribonucleotide reductase
Angiogenesis factors	Adhesion Molecules
Oncogenes	Folate Pathway Enzymes
DNA repair genes	(One Carbon Pool)
	Telomerase
	HMG CoA Reductase
	Farnesyl Transferase
	Glucose-6-Phosphate Transferase

A group of preferred targets for the treatment of cancer are genes associated with any of different types of cancers, or those generally known to be associated with malignancies, whether they are regulatory or involved in the production of RNA and/or proteins. Examples are transforming oncogenes, including, but not limited to, ras, src, myc, and BCL-2, among others. Other targets are those to which present cancer chemotherapeutic agents are directed to, such as various enzymes, primarily, although not exclusively, thymidylate synthetase, dihydrofolate reductase, thymidine kinase, deoxycytidine kinase, ribonucleotide reductase, and the like. The present technology is particularly useful in the treatment of cancer ailments given that traditional cancer therapies are fraught with the unresolved problem of selectively killing cancer cells while preserving normal living cells from the devastating effects of treatments such as chemotherapy, 5 radiotherapy, and the like. The present technology provides the ability of selectively attenuating or enhancing a desired pathway or target. This approach provides a significant advantage over standard treatments of cancer because it permits the selection of a pathway, including primary, secondary and possibly tertiary targets, which are not generally expressed simultaneously in normal cells. Thus, the present agent may be administered to a subject to cause a selective increase in toxicity within tumor cells 10 that, for instance, express all three targets while normal cells that may express only one or two of the targets will be significantly less affected or even spared. A group of preferred targets for the treatment of cancers are genes associated with different types of cancers, or those generally known to be associated with malignancies, whether they are regulatory or involved in the production of RNA and/or proteins. Examples are transforming oncogenes, including, but not limited to, ras, src, myc, and BCL-2, among others. Other 15 targets are those to which present cancer chemotherapeutic agents are directed to, such as various enzymes, primarily, although not exclusively, thymidylate synthetase, dihydrofolate reductase, thymidine kinase, deoxycytidine kinase, ribonucleotide reductase, and the like.

In one embodiment, at least one of the mRNAs to which the oligo of the invention is targeted encodes a protein such as transcription factors, stimulating and activating factors, intracellular and 20 extracellular receptors and peptide transmitters in general, interleukins, interleukin receptors, chemokines, chemokine receptors, endogenously produced specific and non-specific enzymes, immunoglobulins, antibody receptors, central nervous system (CNS) and peripheral nervous and non-nervous system receptors, CNS and peripheral nervous and non-nervous system peptide transmitters, adhesion molecules, defensines, growth factors, vasoactive peptides and receptors, and binding proteins, among others; or the mRNA is corresponding to an oncogene and other genes associated with various diseases or conditions. Examples of target proteins are eotaxin, major basic protein, preproendothelin, eosinophil cationic protein, P-selectin, STAT 4, MIP-1 α , MCP-2, MCP-3, MCP-4, STAT 6, c-mas, NF-IL-6, cyclophilins, PDG2, cyclosporin A-binding protein, FK5-binding protein, fibronectin, LFA-1 (CD11a/CD18), PECAM-1, C3bi, PSGL-1, CD-34, substance P, p150,95, Mac-1 (CD11b/CD18), VLA-4, CD-18/CD11a, CD11b/CD18, C5a, 25 CCR1, CCR2, CCR4, CCR5, and LTB-4, among others. Others are, however, suitable, as well. In another embodiment, at least one of the mRNAs to which the oligo is targeted encodes intracellular and extracellular receptors and peptide transmitters such as sympathomimetic receptors, parasympathetic receptors, GABA receptors, adenosine receptors, bradykinin receptors, insulin receptors, glucagon receptors, prostaglandin receptors, thyroid receptors, androgen receptors, anabolic receptors, estrogen receptors, progesterone receptors, receptors associated with the coagulation cascade, adrenohypophyseal 30 receptors, adrenohypophyseal peptide transmitters, and histamine receptors (HisR), among others. However others are also contemplated. The encoded sympathomimetic receptors and parasympathomimetic receptors include acetylcholinesterase receptors (AcChaseR) acetylcholine receptors (AcChR), atropine receptors, muscarinic receptors, epinephrine receptors (EpiR), dopamine receptors (DOPAR), and norepinephrine receptors (NEpiR), among others. Further examples of encoded receptors are adenosine A₁ receptor, adenosine A_{2B} receptor, adenosine A₃ receptor, endothelin receptor A, endothelin receptor B, IgE high affinity receptor; muscarinic acetylcholine receptors, substance P receptor, histamine receptor, CCR-1 CC chemokine receptor, CCR-2 CC chemokine receptor, CCR-3 CC chemokine receptor (Eotaxin Receptor), interleukin-1 β receptor (IL-1 β R), interleukin-1 receptor (IL-1R), interleukin-1 β receptor (IL-40 45

1 β R), interleukin-3 receptor (IL-3R), CCR-4 CC chemokine receptor, cysteinyl leukotriene receptors, prostanoid receptors, GATA-3 transcription factor receptor, interleukin-1 receptor (IL-1R), interleukin-4 receptor (IL-4R), interleukin-5 receptor (IL-5R), interleukin-8 receptor (IL-8R), interleukin-9 receptor (IL-9R), interleukin-11 receptor (IL-11R), bradykinin B2 receptor, sympathomimetic receptors, parasympathomimetic receptors, GABA receptors, adenosine receptors, bradykinin receptors, insulin receptors, glucagon receptors, prostaglandin receptors, thyroid receptors, androgen receptors, anabolic receptors, estrogen receptors, progesterone receptors, receptors associated with the coagulation cascade, adrenohypophyseal receptors, and histamine receptors (HisR). Others are also contemplated even though not listed herein. The encoded enzymes for development of the oligos of the invention include synthetases, kinases, oxidases, phosphatases, reductases, polysaccharide, triglyceride, and protein hydrolases, esterases, elastases, and , polysaccharide, triglyceride, lipid, and protein synthases, among others. Examples of target enzymes are tryptase, inducible nitric oxide synthase, cyclooxygenase (Cox), MAP kinase, eosinophil peroxidase, β 2-adrenergic receptor kinase, leukotriene c-4 synthase, 5-lipoxygenase, phosphodiesterase IV, metalloproteinase, tryptase, CSBP/p38 MAP kinase, neutrophil elastase, phospholipase A₂, cyclooxygenase 2 (Cox-2), fucosyl transferase, chymase, protein kinase C, thymidylate synthetase, dihydrofolate reductase, thymidine kinase, deoxycytidine kinase, and ribonucleotide reductase, among others. Any enzyme associated with a disease or condition, however, is suitable as a target for this invention. Suitable encoded factors for application of this invention are, among others, Nf6B transcription factor, granulocyte macrophage colony stimulating factor (GM-CSF), AP-1 transcription factor, GATA-3 transcription factor, monocyte activating factor, neutrophil chemotactic factor, granulocyte/macrophage colony-stimulating-factor (G-CSF), NFAT transcription factors, platelet activating factor, tumor necrosis factor α (TNF α), and basic fibroblast growth factor (BFGF). Additional factors are also within the invention even though not specifically mentioned. Suitable adhesion molecules for use with this invention include intracellular adhesion molecules 1 (ICAM-1), 2 (ICAM-2) and 3 (ICAM-3), vascular cellular adhesion molecule (VCAM), endothelial leukocyte adhesion molecule-1 (ELAM-1), neutrophil adherence receptor, mad CAM-1, and the like. Other known and unknown factors (at this time) may also be targeted herein. Among the cytokines, lymphokines and chemokines preferred are interleukin-1 (IL-1), interleukin-1 β (IL-1 β), interleukin-3 (IL-3), interleukin-4 (IL-4), interleukin-5 (IL-5), interleukin-8 (IL-8), interleukin-9 (IL-9), interleukin-11 (IL-11), CCR-5 CC chemokine, and Rantes. Others, however, may also be targeted, as they are known to be involved in specific diseases or conditions to be treated, or for their generic activities, such as inflammation. Examples of defensins for the practice of this invention are defensin 1, defensin 2, and defensin 3, and of selectins are α 4 β 1 selectin, α 4 β 7 selectin, LFA-1 selectin, E-selectin, P-selectin, and L-selectin. Examples of oncogenes, although not an all inclusive list, are ras, src, myc, and bcBCL. Others, however, are also suitable for use with this invention.

The agents administered in accordance with this invention are preferably designed to be anti-sense to target genes and/or mRNAs related in origin to the species to which it is to be administered. When treating humans, the agents are preferably designed to be anti-sense to a human gene or RNA. The agents of the invention encompass oligonucleotides which are anti-sense to naturally occurring DNA and/or RNA sequences, fragments thereof of up to a length of one (1) base less than the targeted sequence, preferably at least about 7 nucleotides long, oligos having only over about 0.02%, more preferably over about 0.1%, still more preferably over about 1%, and even more preferably over about 4% adenosine nucleotides, and up to about 30%, more preferably up to about 15%, still more preferably up to about 10% and even more preferably up to about 5%, adenosine nucleotide, or lacking adenosine altogether, and oligos in which one or more of the adenosine nucleotides have been replaced with so-called universal bases, which may pair up with thymidine nucleotides but fail to substantially trigger adenosine receptor activity. Examples of human sequences and fragments, which are not limiting, of anti-sense oligonucleotide of the invention are the following fragments as well as shorter segments of the fragments and of the full gene or mRNA coding sequences, exons and intron-exon junctions encompassing preferably 7, 10, 15, 18 to 21, 24, 27, 30, n-1 nucleotides for each sequence, where n is the sequence=s total number of nucleotides. These fragments

may be selected from any portion of the longer oligo, for example, from the middle, 5'- end, 3'- end or starting at any other site of the original sequence. Of particular importance are fragments of low adenosine nucleotide content, that is, those fragments containing less than or about 30%, preferably less than or about 15%, more preferably less than or about 10%, and even more preferably less than or about 5%, and most preferably those devoid of adenosine nucleotide, either by choice or by replacement with a universal base in accordance with this invention. The agent of the invention includes as a most preferred group sequences and their fragments where one or more adenosines present in the sequence have been replaced by a universal base (B), as exemplified here. Similarly, also encompassed are all shorter fragments of the B-containing fragments designed by substitution of B(s) for adenosine(s) (A(s)) contained in the sequences, 10 fragments thereof or segments thereof, as described above. A limited list of sequences and fragments is provided below.

Some of the examples of anti-sense oligonucleotide sequence fragments target the initiation codon of the respective gene, and in some cases adenosine is substituted with a universal or alternative base adenosine analogue denoted as "B", which lacks ability to bind to the adenosine A₁ and/or A₃ receptors. In fact, such replacement nucleotide acts as a "spacer". Many of the examples shown below provide one such sequence and many fragments overlapping the initiation codon, preferably wherein the number of nucleotides n is about 7, about 10, about 12, about 15, about 18, about 21 and up to about 28, about 35, about 40, about 50, about 60.

Human Receptor-related Antisense Polynucleotide

20 5'-GGCGGCCCTGG AAAGCTGAGA TGGAGGGCGG CATGGCGGGC ACAGGGCTGGG C TGCTTTCT TTTCTGGGCC
TCTGTGGTCT GTT TTTCCT GGCCTGCTG GGGCGCTCTC CGCCGCCCGC CTGGCTCCCG GBGCCCCBTGB
TGGGCBTGCC GTC GTTCTTG CCCTCCTTTG GCTGCCGTGC CCGCTCCCCG GCCTCTGGC GGGTGGCCGT
TGGGCCCGTG TTC CCCTGGG GCCTGGGGCT CCCTTCTCTC GCCCTTCTTG CTGGGCCTCT GCTGCTGCTG
GTGCTGTGGC CCC CGTACA CCGAGGAGCC CATGATGGGC ATGCCACAGA CGACAGGCGT BCBCCGBGGB
25 GCCCBTGBTG GGCFTGCCBC BGBCGBCBGG C GGC GCC GTG CCG CGT CTT GGT GGC GGC GG GTT CGC GCC
CGC GCG GGG CCC CTC CGG TCC GTT CGC GCC CGC GCG GGG CCC CTC CGG TCC CGG GTC GGG GCC CCC
CGC GGC C GCC TCG GGG CTG GGG CGC TGG TGG CCG GG CCG CGC CTC CGC CTG CCG CTT CTG GCT GGG
CCC CGG GCG CCC CCT CCC CTC TTG CTC GGG TCC CCG TG ACA GCG CGT CCT GTG TCT CCA GCA GCA TGG
CCG GGC CAG CTG GGC CCC BCB GCG CGT CCT GTG TCT CCB GCB GCB TGG CCG GGC CBG CTG GGC CCC ACA
30 GAG CAG TGC TGT TGT TGG GCA TCT TGC CTT CCC AGG G BCB GBG CB TGC TGT TGT TGG GCB TCT TGC CTT
CCC BGG GCC CTT TTC TGG TGG GGT GGT GCT GTT GGG CTT TCT TCT GTT CCC BCB GBG CBG TGC TGT
TGT TGG GCB TCT TGC CTT CCC BGG GCC CTT TTC TGG TGG GGT GCT GTT GGT GGG C TTT CTT CTG TTC
CC TTT CCC CTG GGT CTT CC CTC CTG CTC TTT TTT C ATT TGC TCT CCT ATT ACT TTC TGT GTC CAT TTT
TTC ATT AAC CGA GCT GT BTT TGC TCT CCT BTT BCT TTC TGT GTC CBT TTT TTC BTT BBC CGB GCT GT GCC
35 TGT GTC TGT CCT CCT GCT TCG TTC CTC TCG TTC CTG CTT GGT GCC CTT GGC G GTC CTG CTC CTC CCG GCT
GTG G GTC GTG GCC CTG GCT CCG GCT GGT GGG CTC CCC TGG CCT TCG CTG GCT GGC GGC GTG C GGG
TCT TGC TCT GGG CCT GGC TGT GGC CGT GGT TGG GGG TCT TC GCT GCC TCC GTT TGG GTG GC TCT CTG
AAT ATT GAC CTT CCT CCA TGG CGG TCC TGC TTG GAT TCT CCC GA TCT CTG BBT BTT GBC CTT CCT CCB
TGG CGG TCC TGC TTG GBT TCT CCC GB GCC TTT CCT GGT TCT CTT GTT GGT TTT GGG GTT TGG CTT ACA
40 GTA GAG TAG GGG ATT CCA TGG CAG GAG CCA TCT TCT TCA TGG ACT CC TTC AAG GAG ACC TTA GGT TTC
TGA GGG ACT GCT AAC ACG CCA TCT GGA GC BCB GTB GBG TBG GGG BTT CCB TGG CBG GBG CCB TCT TCT
TCB TGG BCT CC TTC BBG GBG BCC TTG GGT TTC TGB GGG BCT GCT BBC BCG CCB TCT GGB GC GTT GTT
TTT GGG GTT TGG CTT GCC TTT CCT GGT TCT CTT BCB GTB GBG TBG GGG BTT CCB TGG CBG GBG CCB TCT
TCT TCB TGG BCT CC TTC BBG GBG BCC TTG GGT TTC TGB GGG BCT GCT BBC BCG CCB TCT GGB GC GCC TGT
45 GTC TGT CCT CCT GCT TCG TTC CTC TCG CTT GGT GCC CTT GGC G GTC CTG CTC CTC CCG GCT GTG
G GTC CTC GCC CTG GCT CCG GCT GGT GGG CTC CCC TGG CCT TCG CTG GCT GGC GGC GTG C CCC BGB BCG
BGB CCC GGB CCG BCB GGC CGT GGT TGG GGG TCT TC GCT GCC TCC GTT TGG GTG GC GAT CTC TGA ATA
TTGA CCT TCC ATG GCG GTC CTG CTT GGA GBT CTC TGB BTB TTGB CCT TCC BTG GCG GTC CTG CTT GGB
TCT GGG GTG TCC TGG CCT TCG TGG TTC CTC TTC CTT CGT TTG CCG TCC GCG GGG GCC CCC GGG CCT GGC
50 TGC GCT CCT GCC CCG CCT CTT TCC CGG GCT CTT GCG CTG GGG GGT GCT CC CGT GTG TTT GCG CCC TC

CTC CTG GTC GCG CTT GTC GTT TTG GGG CCG GCT TTG CCC GCC TCC CGG CGC CTG GCC CGG CC TTC CTG
 5 GGC TGC GTG CGC CTT CTG TTC TTC CTG GCT CTG GGG TGT CCT GGC CTT CGT GGT TCC TCT TCC TTC
 GTT TGC CGT CCG CGG GGG CCC CCG GGC CT GGC TGC GCT CCT GCC CGG CCT CTT TCC CGG GCT CTT GCG
 CTG GGG GGT GCT CCC GTG TGT TTG CGC CCT CCT GGT CGC GCT TGT CGT TTT GG GGC CGG CTT TGC
 CCG CCT CCC GGC GCC TGG CCC GGC CTT CCT GGG CTG CGT GCG CGT TCT GTT CTT CCT GGC GCA GGA
 10 GAC AGG GCA GGG CGA TCA GGA GCA GCG TGA GCC AAA GGA GGA CCA TCG GGA ACG CAG CTC CGG AAC
 GCA GGA CAG AGG TGC C GC BGG BGB CBG GGC BGG GCG BTC BGG BGC BGC GTG BGC CBB BGG BGG BCC
 BTC GGG BBC GCB GCT CCG GBB CGC BGG BCB GBG GTG CC TCT GCC CTG TCC GCC GGC TCT TCG GTG GCT
 CGG CCC CGC TCC TTG TCT TGC CGC GGG TTG GTT CCT GGG CCT GGT TCT TGC GGG CGT TTC GGT CTG CTG
 GCT GGT CTG GGC CCG CGG TGC GGC GGG TGG CTT GCT GTT CTG CCT GGG CTC TCC CCT CTC CTC CTT TTC
 15 TCC CTT CCT CTG TCT TGC CTC CCT CCT CTG GGT CCT CTT GGC CTG GGC GCT CTT CCC CTC CGG CGG CTG
 CGG GCG CTC GTG CTG CCT GGT CCG CTC CCT GGG GGT GCT CCT TCC CTT TCC CGG CTC GTG GGG TTT GCG
 GGG CTG GGC TGC CCT GGG GGG TCT GGG CCT TTT GGG GTC GGC TGG CTG CTG CCT CGG GCC TGG GCT
 TCC CTG TGC CCC T T CCT CTG CTG GGT CCC CCT CCC GTT CCA AGC TGC ACC GCA CAG ACC GGC GCT ACA
 GGA CAG AGC CAG GCA AGC ACC CAT GGG GAT CCA GGC CCA GCT GTT CCB BGC TGC BCC GCB CBG BCC
 GGC GCT BCB GGB CBG BGC CBG BGC BCC CBT GGG GBT CCB GGC CCB GCT G CTCAGTGGCC
 CCCAAAGGA TGA GTAATAC ATGCGCCACG ATGATCATAT CCTTTTACT ATGAGGCCGT GTCTGTCGT
 TCTTCCCTT GCTCTGGTG TGTCTTGTCT GTGCCCTGCC TCTCTGCC CGTGTCTGTC GTGTCTTCC TTTGCTCTTG
 20 GTGTGTCTT GCTGTGCCCT GCCTCTCTGC GGGGGTGGCT TCCCTGCCCG TCTCTGGGCC GTCCCCTGCC
 TCGGCCCCGC GCCCGCTCG GCTCCTCTCC CTCTGGCCCG GCTCGGGCG GGGCGGGCG GTGGGCGGGC
 GGCCTGCCCG TGCCCGCGGC GCTGGCCCGT GCTGGCCGTC GGCTGCCGCG TGCTGGCTGC CCTGCTGGCC
 GCGCCGGGGC CTG TCCGCCT CTGCGGGCGC TGTCTCTGG CTTGTCTTCC GGCTCTCTG CTGGGGTGGG
 GCTGGCGGC CGGCCCGGGTG CTGGGGCTCC TCAGGGGGGGGG GGGCTCTTCC GGCTGTCTC CCTCCGGGGC
 25 GGGGGTTTCT GGGCGTGGGG GTCTTGCTG GCCTCCGGGC TCCCTGTTGT CTTGCCTTCC TTCTCTGGTC
 GGTTGTGGCT CGGGGCTCCG TGGGTCCCTG GCGCCGTT GTGTTTGTCT TTTCCCTG GCGTCCCTGT
 GCCCCTCTCC TCTCCTTCT CTGCTTCTCG CTCTCTTTC TGGGGCCCTC CCTGCTGCTC TTGGTTTGG
 GCTTTTTTC TCTTCTCTCT TTTCCTGCG TGGGCCTCC GCACGCCCT TGCCACCTCC TGCGCAGGGC
 AGCGCTTGG GGCCAGCGCC GCTCCCGCGC CGGCCAGCAG GGCAAGCCAG AGCGCGCAGC CGACGGCCAG
 30 CATGCTTCCCT CCTCGGCTAC CACTCCATGG TCCCGCAGAG GCGGACAGGC GCBGCGCTC TTGCCBCCTC
 CTGCGCBGGG CBGCGCCTTG GGGCCBGCAGC CGCTCCCGGC GCGGCCBGB GGGCBGCCBG CBGCGCGBG
 CCGBCGGCCB GCBTGCTTCC TCCCTGGCTB CCBCTCCBTG GTCCCGCBGB GGCGGBCBGG C GCTGCCGGC
 GGGGTGTGCG CTTCGCGCTC CGTGCTCGG TTCTCTGTCT CCCGGTCCCC CTTGCCTGGC GTCTCGGGCC
 TTCGCTCTCT TCCCTCTCTT CCTTCCGCTC CGTGGGGGCT GCTTGGTGGG GGCTGTGCCT CGGGGTCCCG
 35 GGGCTTCTGG CCCTGCCGT TCATGGTGGC TAGGTGGGC GTTCBTGGTG GCTBGGTGGG GC GGG GTG GGT
 BGG CCG TGT CTG GGGGTT GGC CBT GTT GGT TGC CTCT TGG TGG TGC GCC GGG CGCG TCT TGG CTT TCT
 TCT CCT TCG GGC CCT CGG GCC GGT GCT TGT GGGCT CCT CCC GGG CGG CCT CCC CGG GCG GGG GCT TCT
 TGGCG CTG GCG GGG GGG CCT CCTGCT CTG TGG CTG GGC GTT CCT TGG TGT TCT GGG TGGTGG CGG GCG
 TGG TGG CCT CTG TGTGGG CCC GCG GCT GCB GGG GTTG CCT GTC TGC TTC GTCCCT TGC GCT CCC GGG CCG
 40 CCGGG GTG GGT AGG CCG TGT CTG GGGGTT GGC CAT GTT GGT TGC CGGG CCC GCG GCT GCA GGG G
 ACAGGGGCTG TAACTTCATC TGCAAGTGGC ATGCCAGTGA AATTAGATC ATCAAATCC CACATCTGTG
 GATCTGTAAT ATTGACATG TCCCTTCAG TTTCAGCAAT GGTTGATCT AACTGAAGCA CGGCCAGGB
 CBGGGGCTGT BBTCCTCBTC TGCBGGTGGC BTGCCBGTGB BBTTTBGBTG BTCCBBTCC CBCBTCTGTG
 GBTCTGTBTT BTTTGBCBTG TCCCTTCAG TTTCBGCB TGGTTTGBTG TBBCTGBBGC BCCGGCCBGG
 45 TGGCTCGGTG CCTCTGCCCT TGTTGTTGCG GCGCTCGGTT GGTGTGGCCC CTGTGGTGCT TCGTTTCCCC
 CTCTTCTCT TTGTCTGGGG GTTCTTGTGG CGGGCTGCTT GTCTCGTTC GCCCTGTCGG CGGGGAAGGC
 TCTCTCTCT CCCAGATC CGCGACAGGC CGCAGGCAAG AACCAAGCGA ACCAGGGCGC GTCCGCACAG
 ACTTGGAGGC GGCTGCATGC TGCTACCTGC TCCAGAAGCG TCCGGTGGCC GCCGCGCC CTGTCGGCG
 GGBBGCCCTCT CTCCCTCTCCC CBGBTCCCGC BCBGGCCGCB GGCBGBBCC BGCGCBBCCB GGGCGCGTCC
 50 GCBBCGBCTT GGBGGCGGCT GCBTGCTGCT BCCTGCTCGGGCG GGBBGCCCTCCG GTGGCCGCG CGCGTCCGGT
 GGCCGCCCGC CCTCTCTCTT CTCCCCGTGG CCCTGTGGG CGGGTCCTGC CGTCCCTGTCT CCTTTTCTT
 TGCTGTCTTG TCTTCCCGTC TCTGCTTT GTCTGCTTC CCCGTCTCCT CCCACTGCTT CTCCCGGGGG

	CTTCCCCGGC	TTCGGGTGGC	CGGTGTCCCG	GGCTCCGGCG	CGGC GGCGGC	TTCGGCTGCG	GGTGGGTGGC
	GCGGGCTGCC	GGGT'CCGCGC	GGCGCCTGGG	CCCCTGTGCT	GCTTTTGCT	TGTTCCGTT	TGGCTGCTCC
	GGTCTGTGTT	GTGGTTGTT	TGTTCTTCT	TGGGTGTGGG	CCTTGCCTT	TTGGCTGTGG	GCCCTTTGGG
5	GCCTTGGCTT	CTGGCTCGTC	TGTCCCTCCCC	GTCTCCCTCCC	ACTGCTTCT	CCCGGGGCT	TCCCCGGCTT
	CGGGTGGCCG	GTGTCCCAGG	CTCCGGCGCG	GCGGCGGCTT	CGGCTGCGGG	TGGGTGGCGC	GGGCTGCCGG
	GTCCGCGCGG	CGCC'GGGCC	CTTGTGCTGC	TTTTGCTTG	TTCCGTTCTG	GCTGCTCCGG	TCTGTGTTGT
	GGTTGTTTG	TTTC'TCTTG	GGTGTGGGCC	TTGCGGTTT	GGCTGTGGGC	CCTTGGGGC	CTTGGCTTCT
	GGCTCCAT	CCACATGATT	GCTTAGATT	GTGCTGTATC	TCTCAGGATT	ATCACTGATT	ACACATCAA
10	CCAGTGCCAG	CCAA'AAGGAT	GCCCTGAGGC	AAAGGGTTTC	CATCTTGAGG	CAAATTGAG	GACBTCCBC
	BTGBTTGCTT	BGBT'ITGTGC	TGTBTCTCT	BGGBTTBTCB	CTGBTTBCBC	BTCCBBCCBG	TGCCBGCCBB
	BBGGGBTGCC	TGBGG BBBG	GGTTCCBTC	TTGBGGCB	TTTBGBBGGGCTBBGBT	GBTCCBCB	BCTBCCBCGT
	TGCCCBCBC	BGBG JTCBCC	BCB BTGBCG	TGTBGGCBG	TGCCCBBGG	BCB BTTGCC	BGGCTGGTTG
	CBCGBBCTGB	TTGGGTTCCG	BGGTGTBGT	GGBGBTGTT	GGGGBGBGGT	CTGBGTCCBC	CGGGBGGBCG
	TTBTCCBTTT	CGBBGCTBGG	CGGTBBBGC	CTBCTBTCTG	TBCBCBCCC	CCCTCTGCBG	CBGBGTCCTG
15	TCGTGGCGCC	TGGGGCTCBG	GGTCCGGGC	TAAGATGATC	CACATCACTA	CCACGTTGCC	CACCACAGAG
	GTCACCACAA	TGACCGTGT	GGCAGCTGCC	CAAAGGACAA	TTTGCCAGGC	TGGTTGCACG	AACTGATTGG
	GTTCCGAGGT	GT TA JTGAG	ATGTTGGGG	AGAGGTCTGA	GTCCACCGGG	AGGACGTTAT	CCATTTGAA
	GCTAGGCCT	AAAC CCCTAC	TATCTGTACA	CAACCCCCCT	CTGCAGCAGA	GTCCTGTCGT	GGCGCTGGG
	GCTCAGGGTC	CGT CCTGTG	TGGCGCCTGG	GGCTCTCTT	TTGTGGGCTC	TTTGGTGGCT	GTGGCTGTGG
20	TCTCTGTGGT	TGCTGCCCTG	GGTCTGGGGG	TGTGGCCTT	GGGCCGTCT	CTGGCTCCTC	CTCGTGGGCC CCC
	GGTGBCBTTG	BGCB'ITGCG	CGCGGTCCCG	TTBBGBGTGG	GCCC GCCA	CCAGCCACTC	CACTTGGGGG
	CGGGTGGCCA	GCACGAACAG	CACCCAGAGG	AAGGGGGGCG	GCCCAGAA	GCAGCCCGCA	GGCCAGGATC
	AGGTCTGCTG	CGG CCGGAGA	TAATGGCATT	CACCA CGCG	CGGCCCAGCG	CACGCCGCGC	ATCCGGCCCG
	GGTTCTGACC	TGCA GCCCCC	GTCTCCTTGG	CATT CCTGGG	CCCCAGTCAC	TCCTCTCC	GCCCCCCTTG
25	CTGGGGCAGG	GACGGGGTG	BCB TTGBCB	TGT CGCGCG	GTCCC GTTB	GBGTGGGCC	GCCAGCCAG
	CCACTCCACT	TGGGGCGGG	TGGCCAGCAC	GAACAGCAC	CAGAGGAAGG	GGGGCGGCC	AGAAGGGCAG
	CCCGCAGGCC	AGGA TCA GGT	CTGCTCGGC	CGGAGATAAT	GGCATT CACC	ACGCGCGGC	CCAGCGCACG
	CCGCGCATCC	GGCC CGGGTT	CTGACCTGCA	GCCCCCGTCT	CCTTGGCATT	CCTGGGCC	AGTCACTCCT
	CTCCCTGCC	CCCT'IGCTGG	GGCAGGGACG	GCCGTGTTGT	CBGTGGTCT	GCCC GTTGB	GGTBGGCGC
30	TCCBBCBTT	CCCT ITTCTC	CTTGTITTC	GTTCTCTT	CCGTCTGTGG	TT ATGCCG	CCATCTCAGC
	TTTCCAGGCC	GCCT ACATCG	GCATCGAGGT	GCTCATCGCC	CTGGCTCTG	TGCCCGGAA	CGTGCTGGTG
	ATCTGGCGG	TGAAGGTGAA	CCAGGCGCTG	CGGGATGCCA	CCTTCTGCTT	CATCGTCTCG	CTGGCGGTGG
	CTGATGTGGC	CGTGGGTG	CTGGTCATCC	CCCTCGCCAT	CCTCATCAAC	ATTGGGCCAC	AGACCTACTT
	CCACACCTGC	CTCA TGGTT	CCTGTCCGGT	CCTCATCCTC	ACCCAGAGCT	CCATCCTGGC	CCTGCTGGCA
35	ATTGCTGTGG	ACCGCTACCT	CCGGGTCAAG	ATCCCTCTCC	GGTACAAGAT	GGTGGT GACC	CCCCGGAGGG
	CGGCGGTGGC	CAT AGCCGC	TGCTGGATCC	TCTCTTCTG	GGTGGGACTG	CCCTCTATGT	TTGGCTGGAA
	CAATCTGAGT	GC GG TGGAGC	GGGCCTGGC	AGCCAACGGC	AGCATGGGGG	AGCCCGTGAT	CAAGTGCAG
	TTCGAGAAGG	TCAT CAGCAT	GGAGTACATG	GTCTACTTCA	ACTTCTTGT	GTGGGTGCTG	CCCCCGCTTC
	TCCTCATGGT	CCTCATCTAC	CTGGAGGTCT	TCTACCTAAT	CCGCAAGCAG	CTCAACAAGA	AGGTGTCGGC
40	CTCCCTCCGGC	GACCCGCAGA	AGTACTATGG	GAAGGAGCTG	AAGATGCCA	AGTCGCTGGC	CCTCATCCTC
	TTCCCTTTG	CCCT CAGCTG	GCTGCCCTTG	CACATCCTCA	ACTGCATCAC	CCTCTTCTG	CCGTCCTGCC
	ACAAGCCCAG	CAT CTTACC	TACATTGCCA	TCTTCTCAC	GCACGGCAAC	TCGGCCATGA	ACCCCATTTG
	CTATGCCCTC	CGCA ICCAGA	AGTTCCCGT	CACCTTCTT	AAGATTGGA	ATGACCATT	CCGCTGCCAG
	CCTGCACCTC	CCATTGACGA	GGATCTCCA	GAAGAGAGGC	CTGATGACTA	G ATGAGTGTCA	GAAGTGTGAA
45	GGGTGCTGT	TCTG AATCCC	AGAGCCTCT	CTCCCTCTG	GAGGCTGGCA	GGTGAGGAAG	GGTTAACCT
	CACTGGAAAGG	AATCCCTGGA	GCTAGCGCT	GCTGAAGGGC	TCGAGGTGTG	GGGGCACTTG	GACAGAACAG
	TCAGGCAGCC	GGGAGCTCTG	CCAGCTTGG	TGACCTGGG	CCGGGCTGGG	AGCGCTGC	CGGGAGCCGG
	AGGACTATGA	GCTG CCGCGC	GTTGTCCAGA	GCCCAAGGCCA	GCCCTACCGC	CGCGGCCGG	AGCTCTGTTC
	CCTGGAACTT	TGGGCACTGC	CTCTGGGACC	CCTGCCGGCC	AGCAGGGCAGG	ATGGTGCTT	CCTCGTGCC
50	CTTGGTGCC	GTCT GCTGAT	GTGCCCAGCC	TGTGCCGCC	ATGCCG	CCATCTCAGC	TTTCCAGGCC
	GCCTACATCG	GCATCGAGGT	GCTCATGCC	CTGGTCTCTG	TGCCCGGAA	CGTGCTGGT	ATCTGGGCC
	TGAAGGTGAA	CCAC GCGCTG	CGGGATGCCA	CCTTCTGCTT	CATCGTGTG	CTGGCGGTGG	CTGATGTGGC

CGTGGGTGCC CTGGTCATCC CCCTCGCCAT CCTCATCAAC ATTGGGCCAC AGACCTACTT CCACACCTGC
 CTCATGGTG CCTGTCGGT CCTCATCCTC ACCCAGAGCT CCATCCTGGC CCTGCTGGCA ATTGCTGTGG
 ACCGCTACCT CCGGGTCAAG ATCCCCTCTC GGTACAAGAT GGTGGTGACC CCCCGGAGGG CGGCGGTGGC
 CATAGCCGGC TGCTGGATCC TCTCCTTCGT GGTGGGACTG ACCCCTATGT TTGGCTGGAA CAATCTGAGT
 5 GCGGTGGAGC GGGCTGGGC AGCCAACGGC AGCATGGGG AGCCCCGTGAT CAAGTGGAG TTCGAGAAGG
 TCATCAGCAT GGAGTACATG GTCTACTTCA ACTTCTTTGT GTGGGTGCTG CCCCCGCTTC TCCTCATGGT
 CCTCATCTAC CTGGAGGTCT TCTACCTAA CCGCAAGCAG CTCAACAAGA AGGTGTCGGC CTCCCTCCGGC
 GACCCGCAGA AGTAATATGG GAAGGAGCTG AAGATGCCA AGTCGCTGGC CCTCATCCTC TTCCCTCTTG
 CCCTCAGCTG GCTGCCCTTG CACATCCTCA ACTGCATCAC CCTCTTCTGC CCGTCCTGCC ACAAGCCAG
 10 CATCCTTAC TACATGCCA TCTTCCTCAC GCACGGCAAC TCGGCCATGA ACCCCATTGT CTATGCCCTC
 CGCATCCAGA AGTTCGCGT CACCTTCCTT AAGATTGGA ATGACCATT CCGCTGCCAG CCTGCACCTC
 CCATTGACGA GGATCTCCC GAAGAGAGGC CTGATGACTA GACCCCGCCT TCCGCTCCC CCAGCCACAA
 TCCAGTGGGG TCTCA GTCCA GTCCTCACAT GCCCGCTGTC CCAGGGGTCT CCCTGAGCCT GCCCCAGCTG
 GGCTGTTGGC TGGGC GCATG GGGGAGGCTC TGAAGAGATA CCCACAGAGT GTGGTCCCTC CACTAGGAGT
 15 TAACTACCT ACACCTCTGG GCCCTGCAGG AGGCCTGGG GGGCAAGGGT CCTACGGAGG GACCAGGTGT
 CTAGAGGCAA CAGTCTTCTG AGCCCCCACC TGCCCTGACCA TCCCATGAGC AGTCCAGCGC TTCAGGGCTG
 GGCAGGTCCT GGGGAGGCTG AGACTGCAGA GGAGCCACCT GGGCTGGGAG AAGGTGCTTG GGCTCTGCG
 GTGAGGCAGG GGAGCTGCT TGTCTTAGAT GTTGGTGGTG CAGCCCCAGG ACCAAGCTTA AGGAGAGGAG
 20 AGCATCTGCT CTGAGACGGA TGGAGGAGA GAGGTGAGG ATGCACTGGC CTGTTCTGTA GGAGAGACTG
 GCCAGAGGCA GCTAA GGGGC AGGAATCAAG GAGCCTCCGT TCCCACCTCT GAGGACTCTG GACCCCAGGC
 CATAACAGGT GCTAGGGTGC CTGCTCTCT TGCCCTGGC CAGCCCAGGA TTGTACGTGG GAGAGGAGA
 AAGGGTAGGT TCAGIAATCA TTTCTGATGA TTGCTGGAG TGCTGGCTCC ACGCCCTGGG GAGTGAGCTT
 GGTGCGGTAG GTGCTGGCT CAAACAGCCA CGAGGTGGTA GCTCTGAGCC CTCCTTCTTG CCCTGAGCTT
 TCCGGGGAGG AGCCIGGAGT GTAATTACCT GTCATCTGG CCACCAAGCTC CACTGCCCC CGTTGCCGGG
 25 CCTGGACTGT CCTAG GTGAC CCCATCTCTG CTGCTCTGG GCCTGATGGA GAGGAGAAC CTAGACATGC
 CAACTCGGGA GCATTCTGCC TGCCCTGGAA CGGGGTGGAC GAGGGAGTGT CTGTAAGGAC TCAGTGTG
 CTGTAGGCGC CCCTGGGGTG GGTTCAGCAG GTCAGCAGCAG GCAGAGGAGG AGTACCCCC TGAGAGCATG
 TGGGGGAAGG CCTGCTGTC ATGTGAATCC CTCAATACCC CTAGTATCTG GCTGGTTTT CAGGGGCTTT
 GGAAGCTCTG TTGCA GTGTT CGGGGGTCT AGGACTTTAG GGATCTGGGA TCTGGGAAG GACCAACCCA
 30 TGCCCTGCCA AGCCTGGAGC CCCTGTGTT GGGGCAAGG TGGGGGAGCC TGGAGCCCT GTGTGGGAGG
 GCGAGGCGGG GGAGCCTGGA GCCCCCTGTT GGGAGGGCGA GGCGGGGGAT CCTGGAGCCC CTGTGTCGGG
 GGGCGAGGGA GGGGAGGTGG CGTCGGTTG ACCTTCTGAA CATGAGTGTCA AACTCCAGGA CTGCTTCCA
 AGCCCTTCCC TCTGTIGGAA ATTGGGTGTG CCCTGGCTCC CAAGGGAGGC CCATGTGACT AATAAAAAC
 TGTGAACCT CGCA TTGTTGTTT TTTTAATAAA AGAATCTGGA AGATAAAATAG TCTTGAAGAG AGACAAAGGA
 35 AGGAAAATTT AAATCTTAG ATTCAAGCAG AAGAATTCCA TGTGGAAAGGT TTGGGTTGTT GTTGGTGTG
 TTGTTGTTGTT TTTTTCTTT TGTTTTTT TGAGATGGAG TCTCGCTGTG TTACCGGGAG
 CGACAGAGCC GCACGCCGA GTCGAGTCCC AGCCAGCTAC CATCCCTCTG GAGCTTACCG GCCGGCCTTG
 GCTTCCCCAG GAATCCCTGG AGCTAGCGGC TGCTGAAGGC GTGAGGGTGT GGGGGCACTT GGACAGAAC
 40 GTCAGGCAGC CGGGAGCTCT GCCAGCTTTG GTGACCTTGG GTGCTTGCCT CGTCCCCCTT GGTGCCCGTC
 TGCTGATGTG CCCAGCCTGT GCCCGCCATG CCGCCCTCCA TCTCAGCTTT CCAGGCCGCC TACATCGGCA
 TCGAGGTGCT CATGCCCTG GTCTCTGTG CCGGGAAACGT GCTGGTGATC TGGGCGGTGA AGGTGAACCA
 GGCCTGCGG GATGCCACT TCTGCTTCA CCGTCTGCTG GCGGTGGCTG ATGTGGCCGT GGGTGCCCTG
 GTCATCCCCC TCGCCATCCT CATCAACATT GGGCCACAGA CCTACTTCCA CACCTGCCCT ATGGTTGCCCT
 GTCCGGTCTCT CATCCCTACC CAGAGCTCCA TCCTGGCCCT GCTGGCAATT GCTGTGGACC GCTACCTCCG
 45 GGTCAAGATC CCTCTCGGT ACAAGATGGT GGTGACCCCC CGGAGGGCGG CGGTGCCAT AGCCGGCTGC
 TGGATCCTCT CCTCGTGGT GGGACTGACC CCTATGTTG GCTGGAACAA TCTGAGTGC GGGAGCGGG
 CCTGGGCAGC CAACGCCAGC ATGGGGGAGC CCGTGATCAA GTGCGAGTTC GAGAAGGTCA TCAGCATGGA
 GTACATGGTC TACTTCAGT TCTTGTGTT GGTGCTGCC CCGCTTCTCC TCATGGCTT CATCTACCTG
 GAGGTCTTCT ACCTAACTCG CAAGCAGCTC AACAAAGAAGG TGTCGGCCTC CTCCGGCGAC CCGCAGAACT
 50 ACTATGGAA GGAGCTGAAG ATCGCCAAGT CGCTGGCCCT CATCCCTCTC CTCTTITGCC TCAGCTGGCT
 GCCTTTCGAC ATCCTCAACT GCATCACCT CTTCTGCCCG TCCTGCCACA AGCCAGCAT CCTTACCTAC
 ATTGCCATCT TCCTCA CGCA CGGCAACTCG GCCATGAACC CCATTGTCTA TGCCCTCCGC ATCCAGAACT

	TCCGCGTCAC	CTT CCTTAAG	ATTTGGAATG	ACCATTCCG	CTGCCAGCCT	GCACCTCCC	TTGACGAGGA
	TCTCCCAGAA	GAGAGGCCTG	ATGACTAGAC	CCCGCCTITCC	GCTCCCACCG	CCCACATCCA	GTGGGGTCTC
	AGTCCAGTCC	TCACATGCC	GCTGTCCCAG	GGGTCTCCCT	GAGCCTGCC	CAGCTGGGCT	GTTGGCTGGG
5	GGCATGGGGG	AGCCTCTGAA	GAGATACCCA	CAGAGTGTGG	TCCCTCACT	AGGAGTTAAC	TACCCCTACAC
	CTCTGGGCC	TGCAGGGAGGC	CTGGGAGGGC	AAGGGTCCTA	CGGAGGGACC	AGGTGTCTAG	AGGCAACAGT
	GTTCTGAGCC	CCCACCTGCC	TGACCATCCC	ATGAGCAGTC	CAGAGCTTCA	GGGCTGGCA	GGTCCTGGGG
	AGGCTGAGAC	TGCAGAGGAG	CCACCTGGC	TGGGAGAAGG	TGCTTGGGCT	TCTGCGGTGA	GGCAGGGGAG
10	TCTGCTTGTC	TTAGATGTTG	GTGGTGCAGC	CCCAGGACCA	AGCTTAAGGA	GAGGAGAGCA	TCTGCTCTGA
	GACGGATGGA	AGGAGAGAGG	TTGAGGATGC	ACTGGCCTGT	TCTGTAGGAG	AGACTGGCCA	GA
	AGGCTCAGAA	GCGGCAGGCG	GAGGCGCGGT	CCGGGCGCTA	TGGCCATGCC	CGGGGGGTCT	CACCGGGCTG
	CCCCTCGCCC	GGCGCGCCCT	CGGTAGGGGG	CGCCCCGGGG	CCAGCTGGCC	CGGCCATGCT	GCTGGAGACA
	CAGGACGCG	TGTACGTGGC	GCTGGAGCTG	GTACATGCCG	CGCTTCGGT	GGCGGGCAAC	GTGCTGGTGT
15	GCGCCGCGGT	GGGCACGGCG	AAACACTCTGC	AGACGCCAC	CAACTACTTC	CTGGTGTCCC	TGGCTGCCG
	CGACGTGGCC	GTGGGGCTCT	TCGCCATCCC	CTTGCCATC	ACCATCAGCC	TGGGCTTCTG	CACTGACTTC
	TACGGCTGCC	TCTTCCTCGC	CTGCTTCGTG	CTGGTGTCA	CGCAGAGCTC	CATCTTCAGC	CTTCTGGCG
	TGGCAGTCGA	CAGATACCTG	GCCATCTGTG	TCCCGCTCAG	GTATAAAAGT	TTGGTCACGG	GGACCCGAGC
	AAGAGGGGTC	ATIGCTGTCC	TCTGGGTCT	TGCCCTTGGC	ATCGGATTGA	CTCCATTCT	GGGGTGGAAC
20	AGTAAAAGACA	GTGCCACCAA	CAACTGCACA	GAACCCCTGGG	ATGGAACCAC	GAATGAAAGC	TGCTGCCTG
	TGAAGTGTCT	CTTIGAGAAT	GTGGTCCCCA	TGAGCTACAT	GGTATATTTC	AATTCTTTG	GGTGTGTTCT
	GCCCCCACTG	CTTATAATGC	TGGTGTACTA	CATTAAGATC	TTCCCTGGGG	CCTGCAGGCA	GCTTCAGCGC
	ACTGAGCTGA	TGGACCAACTC	GAGGACCACC	CTCCAGCGGG	AGATCCATGC	AGCCAAGTCA	CTGGCCATGA
	TTGTGGGGAT	TTTIGGCCCTG	TGCTGGTTAC	CTGTGATGC	TGTTAACTGT	GTCACTCTTT	TCCAGCCAGC
25	TCAGGGTAAA	AATAAGCCCA	AGTGGGCAAT	GAATATGGCC	ATTCTCTGT	CACATGCCAA	TTCAGTTGTC
	AATCCCATTG	TCTATGCTTA	CCGGAACCGA	GACTTCCGCT	ACACTTTCA	CAAATTATTC	TCCAGGTATC
	TTCTCTGCCA	AGCAGATGTC	AAGAGTGGG	ATGGTCAGGC	TGGGGTACAG	CCTGCTCTCG	GTGTGGGCT
	ATGATCTAGG	CTC'CGCCTC	TTCCAGGAGA	AGATACAAAT	CCACAAGAAA	CAAAGAGGAC	ACGGCTGGTT
	TTCATTGTGA	AAGATAGCTA	CACCTCACAA	GGAAATGGAC	TGCCTCTCTT	GAGCACTTCC	CTGGAGCTAC
	CACGTATCTA	GCTAATATGT	ATGTGTCAGT	AGTAGCACCA	AGGATTGACA	AATATATTIA	TGATCTATT
30	AGCTGCTTTT	ACTGTGTGGA	TTATGCCAAC	AGCTTGAATG	GATTCTAAC	GACTCTTTG	TTTTAAAAG
	TCTGCCTTGT	TTATGGTGA	AAATTACTGA	AACTATTTC	CTGTGAAACA	GTGTGAACTA	TTATAATGCA
	AATACTTTT	AACTTAGAGG	CAATGGAAAA	ATAAAAGTTG	ACTGTACTAA	AAATGTATAC	TTGTTGCCAG
	GAAGGTGACC	TCAAAAATTA	AAAGTATAAT	TATTCCGCCG	GGCATGGTGG	CTCACACCTG	TAATTCCAGC
	ACTTTGGGAG	GCCAAGGCAG	GCGGATCACG	AGGTCAGGAG	TTCAAAACCA	GCCTGTCCAA	TATAGT
	GGGCAATTG	TTAGTTATCC	GCCGCCACCA	AGACGCGGC	CGGCGCCTGG	ACCGGAGGGG	CCCCGCGCGG
35	GCGCGAACCT	TGGGCTCGGG	CGAGTGGGTG	GTGCTCCGCC	CAGCCCGAGA	CGGGCGGGCG	CGCGGGCCAA
	TGGGTGCCGC	CTC' TGGCCG	CGGGGGGCC	CGACCCGTGG	GTCCCGGCCA	CCAGCGCCCC	AGCCCCGAGG
	CTCAGAACGCG	GCA GGCAG	GCGCGGTCCG	GGCGCTATGG	CCATGCCCG	CGGGTCTCAC	CGGGCTGCC
	CTCGCCCGC	GCG' CTTCGG	TAGGGGCCG	CCGGGGCCCA	GCTGGCCCG	CCATGCTGCT	GGAGACACAG
	GACGCGCTGT	ACG' TGGCGCT	GGAGCTGGTC	ATGCCCGCGC	TTTCGGTGGC	GGGCAACGTG	CTGGTGTGCG
40	CCGCGGTGGG	CAC GCGAAC	ACTCTGCAGA	CGCCCCACCAA	CTACTTCTG	GTGCCCTGG	CTGCGGCCGA
	CGTGGCCGTG	GGGCTCTCG	CCATCCCCCT	TGCCATCAC	ATCAGCTGG	GCTTCTGCAC	TGACTTCTAC
	GGCTGCCTCT	TCC' CGCCTG	CTTCGTGCTG	GTGCTCACGC	AGAGCTCCAT	CTTCAGCCTT	CTGGCCGTGG
	CAGTCGACAG	ATA CCTGGCC	ATCTGTCAGC	CGCTCAGGTA	TAAAAGTTG	GTCACGGGGA	CCCGAGCAAG
45	AGGGGTCATT	GCTGTCTCT	GGGTCTTG	CTTGGCATC	GGATTGACTC	CATTCTGGG	GTGGAACAGT
	AAAGACAGTG	CCA CCAACAA	CTGCACAGAA	CCCTGGGATG	GAACCACGAA	TGAAAGCTGC	TGCCCTGTGA
	AGTGTCTCTT	TGAGAATGTG	GTCCCCATGA	GCTACATGGT	ATATTTCAAT	TTCTTGGGT	GTGTTCTGCC
	CCCACTGCTT	ATA ATGCTGG	TGATCTACAT	TAAGATCTC	CTGGTGGCT	GCAGGCAGCT	TCAGCGCACT
	GAGCTGATGG	ACC ACTCGAG	GACCACCTC	CAGCGGGAGA	TCCATGCAGC	CAAGTCACTG	GCCATGATTG
50	TGGGGATTTT	TGCCCTGTGC	TGGTTACCTG	TGCATGCTGT	TAACTGTGTC	ACTCTTTCC	AGCCAGCTCA
	GGGTAAAAT	AAGCCAAGT	GGGCAATGAA	TATGGCCATT	CTTCTGTCA	ATGCCAATT	AGTTGTCAAT
	CCCATTGTCT	ATGCTTACCG	GAACCGAGAC	TTCCGCTACA	CTTTTCACAA	AATTATCTCC	AGGTATCTC
	TCTGCCAACG	AGA GTCAAG	AGTGGGAATG	GTCAGGCTGG	GGTACAGCCT	GCTCTCGGTG	TGGGCCTATG

	ATCTAGGCTC	TCG CCTCTTC	CAGGAGAAGA	TACAAATCCA	CAAGAACAA	AGAGGACACG	GCTGGTTTC
	ATTGTGAAAG	ATAGCTACAC	CTCACAAAGGA	AATGGACTGC	CTCTCTTGAG	CACTTCCCTG	GAGCTACAC
	GTATCTAGCT	AATATGTATG	TGTCAGTAGT	AGGCTCCAAG	GATTGACAAA	TATATTATG	ATCTATTAG
5	CTGCTTTAC	TGTGTGGATT	ATGCCAACAG	CTTGAATGGA	TTCTAACAGA	CTCTTTGTT	TTTAAAAGTC
	TGCGCTTGT	ATGGTGGAAA	ATTACTGAAA	CTATTTACT	GTGAAACAGT	GTGAACATT	ATAATGCAA
	TACTTTTAA	CTTAGAGGCA	ATGGAAAAAT	AAAAGTTGAC	TGACTAAAAA	ATG	GAATTCCAG
	GTGGCTGGC	TGGTGACCT	AAGTGTGTCT	CCTGCCTTA	TTCTCTCTAG	TGGGTTATT	TTTCATGTGG
10	TATCTTGCC	ACAGCATGCT	GTGTTGGAC	ACAAACCCCT	TTCCCTGGTT	TCTCTGACCC	AGCTGAGATG
	GAATGATTCC	AAAAGAACTC	ACCTATGTAC	TGGGGTAGGG	GAGGGAGGGT	TTTTGCAGT	ATTTAACTAA
	GGTCAAAAGA	GTCCTATATA	GTGAGAAAGG	CTTCTTTTTT	TTTTTTTTT	TTTTTGGCA	GAGTGCTGCC
	TCCTAGAAAT	TTCCTTGGT	AACTCCCTC	TCTGAAGCAC	AGATAAAAGAA	AACAATTACA	GTAGAAACAT
	TTATGAGGGA	CACATTGGAG	GCCGATGAAG	CTTTCAAGT	TCCAGCAGT	CAGGGATGTG	GGCAGAACTG
15	ACATTGGAA	ATACTAGAAT	GATGGAAATT	CAGTTGGAGA	GGACTGCCT	TTTAATGTC	TGGGGAGTCT
	GCTCAGGGAG	AAATGACAAG	TCTGGGGGG	ACAAGTATGG	GATTGGTAA	GAATTGGATC	AACTTGGAT
	ACAGGGTGGG	GGTGGGAGT	GGAAATCAATG	AATGATGCCA	GAGCAGATCA	ACTAACAAAGA	GGACCCGTGAT
	GAGCCCCAGG	CAGAGCGTC	TCCCTTATGC	CCCACCTCTGA	AGTGTGTT	AGTAAACACC	AGAACGCCAT
	TGTTGTTACT	GCTGAATT	ATTTTGGCT	GTACATATT	AGATGTTAA	GGTAAAATG	ATAAAGCCCT
	CAAGCCACTG	TGTGGGTTG	GGTCCAAGT	TTCCCTCTG	CTGCCTCT	AACACGCCTG	GTTAAAATAA
20	TCCCTTGG	TGGTGCTGAG	AAGCACCTGA	ACCAAGTGGG	TCCCCAAATA	ACAATGGCGT	GCAAGTGTCT
	GGTCCCAGA	AGTTGGTGAC	TAGGTAAGCA	GCTTCAGGG	GAGGGGCTG	ATTCCCAGAC	AGTCGCCTGT
	TCCTCGGGG	ATGGGGCTGA	GGCTTGGG	ATGTGGGCGAG	GAGGATATGC	CATTGATT	TGTTGCACAC
	GTTCTTTCC	CTTCTTCTG	TATGTCGGT	CATTCTGCTA	TTCTGTCGTT	CCTCACATAG	GTTGGACATT
	GGCCGGCTGC	CAGCATAACT	GCCAGTGTGA	TTTGCTAGG	TGTGAGCTGA	GAAAGAGAGG	TGGAGGCTAA
25	GCAGGTGTGA	TGCTCTCAG	AGGTGCTGAG	TTTTGCCCT	TCTGAGCAGG	GAATCTTGC	TTATCCCTT
	GACCAAGGAT	CTTGTGTGCA	AAGGCTGGT	ATCGGCTGTG	CTCAGCAAAG	CGTCAACTCG	TGCAAGAACT
	TAGCAGGAAT	AGTTCTGGCT	AAGGTTAGGA	GGCTGCCACC	AAAGTCTCTT	TTTGTCTCCT	CTGCTTCTCC
	CGTTTGCCTC	CTTATCATGA	GATCTTTG	CTAACGCTGC	AGAAAGATTG	CATAGTCAGT	GCTTCCAGCT
	CTGCTCCCAC	CTGATCCTGC	ACTGCTCCT	GGTCCCTGAA	TGAATGAACT	CTGATACCCA	ATCTTGCTC
	GAGCCTCTC	TATGCCACTC	ATGGCTCCT	TTCTGCTCTT	TCCATCTT	TGCTGAGAGT	TCTGAGCTCT
30	GTACTTCCTC	TTGGGCCATC	TCACCTCTG	AAACACCCCT	GAAGAGGGTT	GCTTATCTG	ATGGAACCTCA
	AAAAGCCAA	AAGCTGCAGG	CAGAGCGTT	GAGGACATCT	TTTGGGGAA	CTAAGAGCAG	CAGCACTTC
	AGATTCACTC	CATATAGAGC	TGTCTACAG	CATTCTGAA	ACTTGAGGAT	GTGCGGTGCA	TAAAGGGCT
	GGAAGTGTAC	CACCTGTGAT	GAGCCCTTC	TAAGGAGAAG	GGTTTCCAAG	AGATCACCCC	ACCAGAAAAG
	GGTAGGAATG	AGCAAGTTGG	GAATTTAGA	CTGTCACTGC	ACATGGACCT	CTGGGAAGAC	GTCTGGCGAG
35	AGCTAGGCC	ACTGGCCCTA	CAGACGGATC	TTGCTGGCTC	ACCTGTCCT	GTGGAGGTT	CCCTGGGAAG
	GCAAGATGCC	CAACAAACAGC	ACTGCTCTGT	CATTGGCAA	TGTTACCTAC	ATCACCATGG	AAATTTCAT
	TGGACTCTGC	GCCATAGTGG	GCAACGTGCT	GGTCATCTGC	GTGGTCAAGC	TGAACCCAG	CCTGCAGAC
	ACCACCTTCT	ATTCTATTGT	CTCTCTAGCC	CTGGCTGACA	TTGCTGTTG	GGTGTGGTC	ATGCCTTGG
40	CCATTGTTGT	CAGCTGGG	ATCACAATCC	ACTTCTACAG	CTGCCTTTT	ATGACTTGCC	TACTGTTAT
	CTTTACCCAC	GCCCTCATCA	TGTCCTTGCT	GGCCATCGCT	GTGGACCGAT	ACTTGCGGT	CAAGCTTAC
	GTCAGGTAGC	CTGCGGCGT	GGGTGGGAG	CAATTGAGGC	AGCTGGAAA	TGAGGCTACA	AAGCCAGAGC
	CTGCTGAATT	TTATTGGA	CTGTACATAT	TTAGATGCTT	AAGGTAAAAA	TGATAAAGCC	CTCAAGCCAC
	TGTGTGGGTT	GGGICCAAGT	GTTCCTGCT	GCTGCCTCTC	TAACACGCC	GGTAAAATA	ATCCCTTGG
45	ATGGTGTGTA	GAAGCACCTG	AACCAAGTGG	GTCCCCAAAT	AACTATGGCG	TGCAAGTGT	TGGTTCCAG
	AAGTTGGTGA	CTAGGTAAGC	GAATCAGGGA	GAGGGGCTGA	TTCCCAGACA	GTGCCCTGTT	CCTGCTGGGA
	TGGGGCTGAG	GCTGGGGAA	TGTGGGCAGG	AGGATATGCC	ATTGATTCT	GTTGCACACG	TTCTTTCCC
	TTCTTTCTGT	ATGCTGGTC	ATTCTGCTAT	TCTGTCGTT	CTCACATAGG	TTGGACATTG	GCCGGCTGCC
	AGCATAAGT	CCAGTGTGAT	TTTGCTAGG	TGTGAGCTGA	GAAAGAGAGG	TGGAGGCTAA	GCAGGTGTGA
50	TGCTCTCAG	AGGTGCTGAG	TTTTGCCCT	TCTGAGCAGG	GAATCTTGC	TTATCCCTT	GACCAAGGAT
	CTTTGCTCCA	AAGGCTGGG	ATCGGCTGTG	CTCAGCAAAG	CGTCAACTCG	TGCAAGAACT	TAGCAGGAAT
	AGTTCTGGCT	AAGGTTAGGA	GGCTGCCACC	AAAGTCTCTT	TTTGTCTCCT	CTGCTTCTCC	CGTTGCCTC
	CTTATCATGA	GATCTTTTG	CTAAGCTGGC	AGAAAGATTG	CATAATCAGT	GCTTCCAGCT	CCGCTCCCAC

	CTGATCCTGC	ACTGTCCCTCT	GGTCCCTGAA	TGAATGAACT	CTGATAACCA	ATCTTGTCTC	GAGCCTCTC
	TATGCCACTC	ATGGCTCCCTC	TTCTGCTCTT	TCCATCTTTT	TGCTGAGAGT	TACTGAGCTC	TGTACTTCCT
	CTTGGCCCCT	CTCACTTCCCT	GAAACACCCC	TGAAGAGGGT	TGCTTATCTT	GATGGAACTC	AAAAAGCCAA
5	AAAGCTGCAG	GCAGAGGCGT	TGAGGACATC	TGTTTGGGGA	ACTAAGAGCA	GCAGCACTTT	CAGATTCACT
	CCATATAGAG	CTGTCCTACA	GCATTCTGGA	AACTTGAGGA	TGTGCGGTGC	ATAAAGGGGC	TGGAAGTGC
	CCACCTGTGA	TGA/GCCCTTT	CTAAGGAGAA	GGGTTCCAA	GAGATCACCC	CACCAAGAAA	GGGTAGGAAT
	GAGCAAGTTG	GGAATTCTAG	ACTGTCACTG	CACATGGACC	TCTGGGAAGA	CGTCTGGCGA	GAGCTAGGCC
10	CACTGGCCCT	ACA/GACGGAT	CTTGCTGGCT	CACCTGTCCC	TGTGGAGGTT	CCCCTGGGAA	GGCAAGATGC
	CCAACAACAG	CAC/GCTCTG	CGAATTCGGG	GGACATCTGT	TTGGGAAACT	AAGAGCAGCA	GCACITTCAG
15	ATTCACTCCA	TATAAGAGCTG	TCCTACAGCA	TTCTGGAAAC	TTGAGGATGT	GCGGTGCATA	AACGGGCTGG
	AAGTGACCCA	CCT/GTGTGATGA	GCCCTTCTA	AGGAGAAGGG	TTTCCAAGAG	ATCACCCCCAC	CAGAAAAGGG
	TAGGAATGAG	CAAGTTGGGA	ATTTTAGACT	GTCACTGCAC	ATGGACCTCT	GGGAAGACGT	CTGGCGAGAG
	CTAGGCCAC	TGECCTACA	GACGGATCTT	GCTGGCTCAC	CTGTCCTGT	GGAGGTTCCC	CTGGGAAGGC
20	AAGATGCCCA	ACAACAGCAC	TGCTCTGTCA	TTGGCCAATG	TTACCTACAT	CACCATGGAA	ATTTTCATTG
	GAECTCTGCGC	CATAGTGGGC	AACGTGCTGG	TCATCTGCGT	GGTCAAGCTG	AACCCAGCC	TGCAGACACC
	CACCTTCTAT	TTCAATTGTCT	CTCTAGCCCT	GGCTGACATT	GCTGTTGGGG	TGCTGGTCAT	GCCTTGGCC
	ATTGTTGTCA	GCC/GGGCAT	CACAATCCAC	TTCTACAGCT	GCCTTTTAT	GAATTGCCTA	CTGCTTATCT
25	TTACCCACGC	CTCCATCATG	TCCTTGCTGG	CCATCGCTGT	GGACCGATAC	TTGCGGGTCA	AGCTTACCGT
	CAGATACAAG	AGGGTCACCA	CTCACAGAAG	AATATGGCTG	GCCCTGGGCC	TTTGTGGCT	GGTGTACATC
30	CTGGTGGGAT	TGA/CCCCAT	GTTCGGCTGG	AAACATGAAAC	TGACCTCAGA	GTACCACAGA	AATGTCACCT
	TCCTTTCATG	CCAATTGTT	TCCGTATGA	GGATGGACTA	CATGGTATAC	TTCAGCTTCC	TCACCTGGAT
	TTTCATCCCC	CTGCTTGTCA	TGTGCGCCAT	CTATCTTGAC	ATCTTTTACA	TCATTCGGAA	CAAACTCAGT
	CTGAACCTAT	CTAACTCCAA	AGAGACAGGT	GCATTTTATG	GACGGGAGTT	CAAGACGGCT	AAGTCCTTGT
35	TTCTGGTTCT	TTTCTTGTTT	GCTCTGTATC	GGCTGCCTTT	ATCTCTCATC	AACTGCATCA	TCTACTTTAA
	TGGTGAGGTA	CCACAGCTTG	TGCTGTACAT	GGGCATCCCTG	CTGTCCTCATG	CCAACCTCAT	GATGAACCC
	ATCGTCTATG	CCTTAAGGAT	AAAGAAGTTC	AAGGAAACCT	ACCTTTTGT	CCTCAAAGCC	TGTGTGGCT
	GCCATCCCTC	TGAATTCTTG	GACACAAGCA	TTGAGAAGAA	TTCTGAGTAG	TTATCCATCA	GAGATGACTC
40	TGTCTCATTG	ACCTCAGAT	TCCCCATCAA	CAAACACTTG	AGGGCCTGTA	TGCCTGGGCC	AAGGGATT
	TACATCCTTG	ATTACTTCCA	CTGAGGTGGG	AGCATCTCCA	GTGCTCCCCA	ATTATATCTC	CCCCACTCCA
	CTACTCTCTT	CCTCACTTC	ATTTTCCTT	TGTCCTTTCT	CTCTAATTCA	GTGTTTGGGA	GGCCTGACTT
	GGGGACAACG	TATTATTGAT	ATTATTGTCT	GTTCCTTCTC	TTCCCAATAG	AAGAATAAGT	CATGGAGCCT
	GAAGGGTGCC	TAG/TGACTT	ACTGACAAAAA	GGCTCTAGTT	GGGCTGAACA	TGTGTGTGGT	GGTGACTCAT
45	TTCCATGCCA	TTGTGAATT	GAGCAGAGAA	CCTGCTCTCG	GAGGATGCCT	AGGAGATGTT	GGGAACAGAA
	GAAATAAACT	GAGTTAAGG	GGGACTTAAA	CTGCTGAATT	CAGATTACAA	AACTGCAGGA	CTGGGCAGGG
	AGCAGACAGT	GAGCAAACGC	CAGCAGGGCT	GCTGTGAATT	TGTGTAAGGA	TTGAGGGACA	GTTGCTTTTC
	AGCATGGGCC	CAGGAATGCC	AAGGAGACAT	CTATGCACGA	CCTTGGAAA	TGAGITGTATG	TCTCCGGTAA
50	AAACACGGAG	ACTATTCTT	GCCCTGCCCA	ATTTCGAGG	GAGCATGGCT	GTGAGGATGG	GGTGAACCTCA
	CGCACAGCCA	AGGACTCCAA	AATCACAAACA	GCATTAACGT	TCTTATTTCG	TGCCACACCT	GAGCCAGCCT
	GCTCTTCCC	AGGAGTGGAG	GAGGCCTGGG	GGGAGGGAGA	GGAGTGAETG	AGCTTCCCTC	CCGTGTGTT
	TCCGTCCCTG	CCCCAGCAAG	ACAACCTAGA	TCTCCAGGAG	AACTGCCATC	CAGCTTGGT	GCAATGGCTG
	AGTGCACAAG	TGAGTTGTTG	CCCTGGGTTT	CTTAATCTA	TTCAGCTAGA	ACTTGAAGG	ACAATTCTT
	GCATTAATAA	AGGTTAAGCC	CTGAGGGGTC	CCTGATAACA	ACCTGGAGAC	CAGGATTTA	TGGCTCCCCT
	CACTGATGGA	CAACGAGGTC	TGTGCCAAAG	AAGAATCCAA	TAAGCACATA	TTGAGCACTT	GCTGTATATG
	CAGTATTGAG	CACTGTAGGC	AAGACCCAAG	AAAGAGAAGG	AGCCATCTCC	ATCTTGAAGG	AACTCAAAGA
45	CTCAAGTGGG	AACCACGGG	CACTGCCACC	ACCAGAAAGC	TGTCGACGA	GACGGTCGAG	CAGGGTGCTG
	TGGGTGATAT	GGACAGCAGA	AGGGGGAGAC	CAAGGTTCCA	GCTCAACCAA	TAACTATTGC	ACAACCACCT
	GTCCCTGCCCT	CAGTCCCTT	TTATGTAACA	TGAAGTCGTT	GTGAGGGTTA	AAGGCAGTAA	CAGGTATAAA
	GTACTTAGAA	AAGCAAGGG	TGCTACGTAC	ATGTGAGGCA	TCATTACCGA	GACGTAACGT	GGATATGTTT
	ACTATAAGGA	AAACACACTG	AGGTCTAGAA	ATAGCTCCGT	GGAGCAGAAT	CAGTATTGGG	AGCCGGTGGC
50	GGTGTGAAGC	ACCA/GTGTCT	GGCACACAGT	AGGTGCTCAT	TGGCTCCCTT	CCACCTGTCA	TTCCCACCA
	CCTGAGGCC	CAACCGCCAC	ACACACAGGA	GCATTGGAG	AGAAGGCCAT	GTCTCAAAG	TCTGATTGTT
	GATGAGGCAG	AGGAAGATAT	TTCTAATCGG	TCTTGCCAG	AGGATCACAG	TGCTGAGACC	CCCCACCAC

AGCCGGTACC TGGGAGGG GAGAGTCAG GCCTGCTAG GGACTGTTCC TGTCTCAGCA ACCAAGGGAT
 TGITCCTGTC AATCAATGGT TTATTGGAAG GTGGCCAGT ATGAGCCCTA GAAGAGTGTG AAAAGGAATG
 GCAATGGTGT TCACCATCGG CAGTGCCAGG GCAGCACTCA TTCACTTGAT AAATGAATAT TTATTAGCTG
 GTTGGAGAGC TAGAACCTGG AGAGCTAGAA CCTGGAGAAC TAGAACCTGG AGGGCTAGAA CCTGGAGAGG
 5 CTAGAACCAA GAAGGGCTAG AACCTGGAGG GGCTAGAACC TAGAGAACG AAAACCTGAG CTAGAACGCTG
 GAGGACTAGA ACCTGAGGG CTGGAATCTG AAGGGCTAGA ACCTGGAGGG CTGGAATCTG GAGAGCTAGA
 ACCTGGAGGG CTAGAACCTG GAGGGCTAGA ACCTAGAACG GCTAGAACCT GGAGGGCTGG AATCTGGAGA
 GCTAGAACCT GGAGGGCTAG AACCTGGAGG GCTAGAACCT AGAACGGCTA GAACCTGGAG GGCTAGAACC
 TGGCAGGTTA GAACCTAGAA GGGCTAGAAC CTGGAGAGCC AGAACCTGGA GGGCTAGAAC CTGGAAGGGC
 10 TAGAACCTGT AGAGCTAGAA CATGGAGAGC TAGAACCCGG CAGGCTAGAA CCTGGCAAGC TAGAACCTGG
 AGGGAATGAA CCTGGAGGG TAGAACCTGG AGAATGAGAA AAATTACAT GGCAAAGAGC CCATAATCC
 TGACCAATCC AACTCTGAAT TTAAAGCAA AAGCGTAAA AAAAAGATTC CCTCCCTTACCC CCAACCCAC
 TCTTTTTTCC CACCAACCCAC TCTCCTCTGC CTCAGTAAGT ATCTGGAGGA AGAAAACAGG TGAAAGAAGA
 AGTAAAAAACC ATTATGATT AGTATTAGAA TGAAGTCAAA CTGTGCCACA CATGGTGAAT GAAAAAAAGA
 15 AAAAAGAGGC TGTGTGTG CACACAGGGC AGTCATTAG CACCAGAGCA CGTGATGGTC TGAGACTCTC
 TTAGGAGCAG AGCTCTGCCG CAATGGCCAT GTGGGGATCC ACACCTGGTC TGAGGGCAA CTGAGTCTGC
 GGGAGAAAGAG CGGCCTATG CATGGTGTAG ATGCCCTGAT AAAGAACATC TGTCTGTGA AAGACTCAAT
 GAGCTTTAT GTTGTAAACA GGAAGCATT CACATCCAAA CGAGAAAATC ATGAAACAT GTGTCTTTTC
 TGTAGAGCAT AATAATGGA TGAGGTTTT GCAAAAAAAA AAAAAAAA ATGCCGCCCT CCATCTCAGC
 20 TTTCCAGGCC GCCTACATCG GCATCGAGGT GCTCATCGCC CTGGTCTCTG TGCCCCGGAA CGTGCTGGTG
 ATCTGGCGG TGAAAGGTGAA CCAGGCGCTG CGGGATGCCA CCTCTGCTT CATCGTCTCG CTGGCGGTGG
 CTGATGTGGC CGTGGGTGCC CTGGTCATCC CCCTCGCCAT CCTCATCAAC ATTGGGCCAC AGACCTACTT
 CCACACCTGC CTCACTGGTG CCTGTCCGGT CCTCATCCTC ACCCAGAGCT CCATCCTGGC CCTGCTGGCA
 ATTGCTGTGG ACCGCTACCT CCGGGTCAAG ATCCCTCTCC GGTACAAGAT GGTGGTGACC CCCCGGAGGG
 25 CGGCGGTGGC CATAGCCGGC TGCTGGATCC TCTCCTTCGT GGTGGGACTG ACCCCTATGT TTGGCTGGAA
 CAATCTGAGT GCGGIGGAGC GGGCCTGGGC AGCCAACGGC AGCATGGGG AGCCCGTGT CAAGTGCAG
 TTCGAGAAAGG TCATCAGCAT GGAGTACATG GTCTACTTCA ACTTCTTTGT GTGGGTGCTG CCCCCGCTTC
 TCCTCATGGT CCTCATCTAC CTGGAGGTCT TCTACCTAAT CCGCAAGCAG CTCAACAAGA AGGTGTGGC
 CTCCTCCGGC GACCCGAGA AGTACTATGG GAAGGAGCTG AAGATGCCA AGTCGCTGGC CCTCATCCTC
 30 TTCCTCTTG CCCTCAGCTG GCTGCCTTG CACATCCTCA ACTGCATCAC CCTCTCTGC CGTCCCTGCCCC
 ACAAGCCCAG CATCCCTAAC TACATTGCCA TCTTCCTCAC GCACGGCAAC TCGGCCATGA ACCCCATTGT
 CTATGCCTTC CGCATCCAGA AGTCCCGCGT CACCTCCTT AAGATTGGA ATGACCATT CCCTGCCAG
 CCTGCACCTC CCATTGACGA GGATCTCCCA GAAGAGAGGC CTGATGACTA G ATGAGTGTCA GAAGTGTGAA
 GGGTGCCTGT TCTGAATCCC AGAGCCTCTT CTCCTCTGT GAGGCTGGCA GGTGGAGGAAG GTTTAACCT
 35 CACTGGAAGG AATCCCTGGA GCTAGCGGCT GCTGAAGGCG TCGAGGTGTG GGGGCACTTG GACAGAACAG
 TCAGGCAGCC GGGAGCTCTG CCAGCTTTGG TGACCTTGGG CCGGGCTGGG AGCGCTGCCG CGGGAGGCCGG
 AGGACTATGA GCTGCCGCGC GTTGTCCAGA GCCCAGCCCA GCCCTACCGC CGCGGCCCG AGCTCTGTT
 CCTGGAACCT TGGGACTGCTC CTCTGGGACC CCTGCCGGCC AGCAGGCAAGG ATGGTGCTT CCTCGTGGCCC
 CTTGGTGGCC GTCTCTGAT GTGCCAGCC TGTGCCAGCC ATGCCGCCCT CCATCTCAGC TTCCAGGCC
 40 GCCTACATCG GCATCGAGGT GCTCATCGCC CTGGTCTCTG TGCCCCGGAA CGTGCTGGTG ATCTGGCGG
 TGAAGGTGAA CCAGGCGCTG CGGGATGCCA CCTCTGCTT CATCGTGTG CTGGCGGTGG CTGATGTGGC
 CGTGGGTGCC CTGGTCTATCC CCCTCGCCAT CCTCATCAAC ATTGGGCCAC AGACCTACTT CCACACCTGC
 CTCATGGTTG CCTGICCGGT CCTCATCCTC ACCCAGAGCT CCATCCTGGC CCTGCTGGCA ATTGCTGTGG
 ACCGCTACCT CCGGCTCAAG ATCCCTCTCC GGTACAAGAT GGTGGTGACC CCCCGGAGGG CGGCGGTGGC
 45 CATAGCCGGC TGCTGATCC TCTCCTTCGT GGTGGGACTG ACCCCTATGT TTGGCTGGAA CAATCTGAGT
 GCGGTGGAGC GGGCCTGGGC AGCCAACGGC AGCATGGGG AGCCCGTGT CAAGTGCAG TTGAGAAAGG
 TCATCAGCAT GGAGTACATG GTCTACTTCA ACTTCTTTGT GTGGGTGCTG CCCCCGCTTC TCCTCATGGT
 CCTCATCTAC CTGGAGGTCT TCTACCTAAT CCGCAAGCAG CTCAACAAGA AGGTGTGCCG CCTCCCTGGC
 GACCCGAGA AGTACTATGG GAAGGAGCTG AAGATGCCA AGTCGCTGGC CCTCATCCTC TTCCCTTTG
 50 CCCTCAGCTG GCTGCTTTG CACATCCTCA ACTGCATCAC CCTCTCTGC CCGTCCTGCC ACAAGCCCAG
 CATCCTAAC TACATTGCCA TCTTCCTCAC GCACGGCAAC TCGGCCATGA ACCCCATTGT CTATGCCTTC
 CGCATCCAGA AGTCCCGCGT CACCTCCTT AAGATTGGA ATGACCATT CCGCTGCCAG CCTGCACCTC

CCATTGACGA GGATCTCCC GAAGAGAGGC CTGATGACTA GACCCCGCCT TCCGCTCCCA CCAGCCCACA
 TCCAGTGGGG TCTCAGTCCA GTCCCTCACAT GCCCGCTGTC CCAGGGGTCT CCCTGAGCCT GCCCCAGCTG
 GGCTGTTGGC TGCGGGCATG GGGGAGGCTC TGAAGAGATA CCCACAGAGT GTGGTCCCTC CACTAGGAGT
 TAACTACCCT ACA CCTCTGG GCCCTGCAGG AGGCCTGGGA GGGCAAGGGT CCTACGGAGG GACCAGGTGT
 5 CTAGAGGCAA CAC TGTTCTG AGCCCCCACC TGCCTGACCA TCCCATGAGC AGTCCAGCGC TTCAAGGGCTG
 GGCAGGTCTT GGGGAGGCTG AGACTGCAGA GGAGCCACCT GGGCTGGAG AAGGTGCTTG GGCTTCTGCG
 GTGAGGCAGG GGA GTCTGCT TGTCTTAGAT GTGGTGGTG CAGCCCCAGG ACCAAGCTTA AGGAGAGGAG
 AGCATCTGCT CTGAGACGGA TGGAGGAGA GAGGTGAGG ATGCACTGGC CTGTTCTGTA GGAGAGACTG
 GCCAGAGGCA GCTAAGGGC AGGAATCAAG GAGCCTCCGT TCCACCTCT GAGGAACCTG GACCCAGGC
 10 CATAACCAGGT GCTAGGGTGC CTGCTCTCCT TGCCCTGGGC CAGCCCAGGA TTGTACGTGG GAGAGGCAGA
 AAGGGTAGGT TCAGTAATCA TTTCTGATGA TTTGCTGGAG TGCTGGCTCC ACGCCCTGGG GAGTGAGCTT
 GGTGCGGTAG GTGCTGGCCT CAAACAGCCA CGAGGTGGTA GCTCTGAGCC CTCCCTCTTG CCCTGAGCTT
 TCCGGGGAGG AGCCTGGAGT GTAATTACCT GTCACTCTGG CCACCAGCTC CACTGGCCCC CGTTGCCGG
 CCTGGACTGT CCTAGGTGAC CCCATCTCTG CTGCTTCTGG GCCTGATGGA GAGGAGAAC GAGACATGC
 15 CAACTCGGGA GCA ITCTGCC TGCCCTGGAA CGGGGTGGAC GAGGGAGTGT CTGTAAGGAC TCAGTGTGA
 CTGTAGGCAGC CCC'GGGGTG GGTTTAGCAG GCTGCAGCAG GCAGAGGAGG AGTACCCCCC TGAGAGCATG
 TGGGGGAAGG CCTTGCTGTC ATGTGAATCC CTCAATACCC TAGTATCTG GCTGGTTTT CAGGGGCTTT
 GGAAGCTCTG TTGCAAGGTGT CCGGGGGTCT AGGACTTTAG GGATCTGGGA TCTGGGAAG GACCAACCCA
 TGCCTGCCA AGCCTGGAGC CCCTGTGTTG GGGGGCAAGG TGGGGAGCC TGGAGCCCC GTGTGGGAGG
 20 GCGAGGCGGG GGA GCTTGGAA GCCCCCTGTG GGGAGGGCGA GGCGGGGGAT CCTGGAGCCC CTGTCGCGG
 GGGCGAGGGA GGGGAGGTGG CCGTCGGTTG ACCTTCTGAA CATGAGTGTG AACTCCAGGA CTTGCTTCCA
 AGCCCTTCCC TCTCTTGGAA ATTGGGTGTG CCCTGGCTCC CAAGGGAGGC CCATGTGACT AAAAAAAAC
 TGTGAACCCCT CGCAATTGTG TTTTAATAAA AGAATCTGGA AGATAAAATAG TCTTGAAGAG AGACAAAGGA
 AGGAAAATTT AAA'CCCTTAG ATTCAAGCAG AAGAATTCCA TGTGGAAGGT TTGGTTGTT GTGTTGTTG
 25 TTTGGTGTGT TTTITGTTT TTGTTTTTT TGTTTTTT TGAGATGGAG TCTCGCTGTG TTACCGGGAG
 CGACAGAGCC GCA CGGCCGA GTCGAGTCCC AGCCAGCTAC CATCCCTCTG GAGCTTACCG GCCGGCCTTG
 GCTTCCCCAG GAATCCCTGG AGCTAGCGGC TGCTGAAGGC GTCGAGGTGT GGGGGCACTT GGACAGAAC
 GTCAGGCAGC CGGGAGCTCT GCCAGCTTT GTGACCTTGG GTGCTTGCT CGTCCCCCTT GGTGCCGTC
 TGCTGATGTG CCCAGCCTGT GCCCCCATG CCGCCCTCCA TCTCAGCTT CCAGGCCGCC TACATCGGCA
 30 TCGAGGTGCT CATGCCCTG GTCTCTGTG CCGGGAACGT GCTGGTGT GGGCGGTGA AGGTGAACCA
 GCGCTGCGG GATGCCACCT TCTGCTTCAT CGTGTGCTG CGGGTGGCTG ATGTGGCCGT GGGTGCCTG
 GTCATCCCCC TCGCCATCT CATCAACATT GGGCCACAGA CCTACTTCCA CACCTGCCTC ATGGTTGCT
 GTCCGGTCCCT CATCTCACC CAGAGCTCCA TCCTGGCCCT GCTGGCAATT GCTGTGGACC GCTACCTCCG
 GGTCAAGATC CCTCTCCGGT ACAAGATGGT GGTGACCCCC CGGAGGGCGG CGTGGCCAT AGCCGGCTGC
 35 TGGATCCTCT CCTTGTGGT GGGACTGACC CCTATGTTG GCTGGAACAA TCTGAGTGC GGGAGCGGG
 CCTGGGCAGC CAA CGCAGC ATGGGGGAGC CCGTGATCAA GTGCGAGTTC GAGAAGGTCA TCAGCATGGA
 GTACATGGTC TACITCAACT TCTTGTGTG GGTGCTGCC CCGCTTCTCC TCATGGTCT CATCTACCTG
 GAGGTCTCT ACCTAATCCG CAAGCAGCTC AACAAAGAAGG TGCGGCCCT CTCCGGCGAC CCGCAGAAAGT
 ACTATGGGAA GGAGCTGAAG ATCGCAAGT CGCTGGCCCT CATCCTCTTC CTCTTGCCTC TCAGCTGGCT
 40 GCCTTGACAC ATCCCTCAACT GCATCACCC CTTCTGCCG TCCTGCCACA AGCCAGCAT CCTTACCTAC
 ATTGCCATCT TCCTCACGCA CGGCAACTCG GCCATGAACC CCATTGTCTA TGCCCTCCGC ATCCAGAAAGT
 TCCGCGTCAC CTTCCTTAAG ATTTGGAATG ACCATTCCG CTGCCAGCT GCACCTCCCA TTGACGAGGA
 TCTCCCAAGA GAGAGGCTG ATGACTAGAC CCCGCCCTCC GCTCCCACCG CCCACATCCA GTGGGTCTC
 AGTCCAGTCC TCACATGCC GCTGTCCAG GGGCTCCCT GAGCCTGCC CAGCTGGCT GTGGCTGGG
 45 GGCATGGGG AGGCTCTGAA GAGATACCA CAGAGTGTGG TCCCTCCACT AGGAGTTAAC TACCTACAC
 CTCTGGGCCCT TGCAAGGAGG CTGGGAGGG AAGGGCTTA CGGAGGGACC AGGTGTCTAG AGGCAACAGT
 GTTCTGAGCC CCCACCTGCC TGACCATCCC ATGAGCAGTC CAGAGCTCA GGGCTGGCA GGTCTGGGG
 AGGCTGAGAC TGCAAGGGAG CCACCTGGG C TGGGAGAAGG TGCTTGGCT TCTGCGGTGA GGCAGGGAG
 TCTGCTTGTG TTAGATGTTG GTGGTGCAGC CCCAGGACCA AGCTTAAGGA GAGGAGAGCA TCTGCTCTG
 50 GACGGATGGA AGGAAGAGAGG TTGAGGATGC ACTGGCCTGT TCTGTAGGAG AGACTGGCCA GA CCCAGCCCCG
 AGGCTCAGAA CGGGCAGGCG GAGGCGCGGT CGGGCGCTA TGGCCATGCC CGGGGGTCT CACGCGCTG
 CCCCTCGCCC GGGCGCCTT CGGTAGGGGG CGCCCGGGGC CCAGCTGGCC CGGCCATGCT GCTGGAGACA

	CAGGACGCGC	TGTACGTGGC	GCTGGAGCTG	GTCATGCCG	CGCTTCCGGT	GGCGGGCAAC	GTGCTGGTGT
	GCGCCGCGT	GGC CACGGCG	AACACTCTGC	AGACGCCAC	CAACTACTTC	CTGGTGTCCC	TGGCTGCCG
	CGACGTGGCC	GTC GGGCTCT	TCGCCATCCC	CTTGCCATC	ACCATCAGCC	TGGGCTTCTG	CACTGACTTC
5	TACGGCTGCC	TCT TCCTCGC	CTGCTTCGTG	CTGGTGTCA	CGCAGAGCTC	CATCTTCAGC	CTTCTGGCCG
	TGGCAGTCGA	CAGATACCTG	GCCATCTGTG	TCCCGCTCAG	GTATAAAAGT	TTGGTCACGG	GGACCCGAGC
	AAGAGGGGTC	ATI'GCTGTCC	TCTGGGTCCCT	TGCCCTTGGC	ATCGGATTGA	CTCCATTCCCT	GGGGTGGAAC
	AGTAAGAGACA	GTGCCACCAA	CAACTGCCA	GAACCCCTGGG	ATGGAACAC	GAATGAAAGC	TGCTGCCTTG
	TGAAGTGTCT	CTT'GAGAAT	GTGGTCCCCA	TGAGCTACAT	GGTATATTTC	AATTCTTTG	GGTGTGTTCT
	GCCCCCACTG	CTT ATAATGC	TGGTGTACTA	CATTAAGATC	TTCCCTGGG	CCTGCAGGCA	GCTTCAGCGC
10	ACTGAGCTGA	TGGACCAC	GAGGACCAC	CTCCAGCGGG	AGATCCATGC	AGCCAAGTCA	CTGGCCATGA
	TTGTGGGAT	TTT'GCCCTG	TGCTGGTAC	CTGTGCA	TGTTAAC	GTCACTCTT	TCCAGCCAGC
	TCAGGGTAAA	ATAAAGCCCA	AGTGGCAAT	GAATATGGCC	ATTCTCTGT	CACATGCCA	TTCAGTTGTC
	AATCCCATTG	TCT ATGCTTA	CCGGAACCGA	GACTTCCGCT	ACACTTTCA	CAAATTATC	TCCAGGTATC
	TTCTCTGCCA	AGCAGATGTC	AAGAGTGGG	ATGGTCAGGC	TGGGGTACAG	CCTGCTCTCG	GTGTGGGCT
15	ATGATCTAGG	CTC'CGCCTC	TTCCAGGAGA	AGATACAAAT	CCACAAGAAA	CAAAGAGGAC	ACGGCTGGTT
	TTCATTGTGA	AAG ATAGCTA	CACCTCACAA	GGAAATGGAC	TGCCTCTT	GAGCACTTCC	CTGGAGCTAC
	CACGTATCTA	GCT AATATGT	ATGTGTCAGT	AGTAGCACCA	AGGATTGACA	AATATATT	TGATCTATT
	AGCTGCTTT	ACTGTGTGGA	TTATGCCAAC	AGCTTGAATG	GATTCTAAC	GACTCTTTG	TTTTAAAAG
	TCTGCCCTGT	TTAT'GGTGG	AAATTACTGA	AACTATT	CTGTGAAACA	GTGTGAACTA	TTATAATGCA
20	AATACTTTT	AACT'AGAGG	CAATGGAAA	ATAAAAGTTG	ACTGTACTAA	AAATGTATAC	TTGTTGCCAG
	GAAGGTGACC	TCA AAAATT	AAAGTATAAT	TATTCCGGCCG	GGCATGGTGG	CTCACACCTG	TAATTCCAGC
	ACTTTGGGAG	GCC AAGGCA	GCGGATCAG	AGGTCAAGG	TTCAAAACCA	GCCTGTCAA	TATAGTG
	GGGCAATTG	TTAGTTATCC	GCCGCCACCA	AGACCGGGCA	CGGCGCCTGG	ACCGGAGGGG	CCCCGCGCGG
	GCGCGAACCT	TGGGCTCGGG	CGAGTGGGTG	GTGCTCCGCC	CAGCCCCAGA	CGGGCGGGCG	CGCGGGCCAA
25	TGGGTGCCGC	CTC' TGGCCG	CGGGGGGCC	CGACCCGTGG	GTCCC GGCA	CCAGCGCCCC	AGCCCCGAGG
	CTCAGAAGCG	GCA'GGCGGAG	GCGCGGTCCG	GGCGCTATGG	CCATGCCCG	CGGGTCTCAC	GCGGCTGCC
	CTCGCCCGC	GCG'CTTCGG	TAGGGGGCGC	CCGGGGGCCA	GCTGGCCCG	CCATGCTGCT	GGAGACACAG
	GACGCGCTGT	ACG'GGCGCT	GGAGCTGGTC	ATCGCCGCGC	TTTCGGTGGC	GGCAACGTG	CTGGTGTGCG
	CCGCGGTGGG	CAC'GGCGAAC	ACTCTGCAGA	CGCCCACCAA	CTACTTCTG	GTGTCCCTGG	CTGCGGCCGA
30	CGTGGCCGTG	GGG CTCTTCG	CCATCCCC	TGCCATCACC	ATCAGCCTGG	GCTTCTGCAC	TGACTTCTAC
	GGCTGCCTCT	TCC'CGCCTG	CTTCGTGCTG	GTGCTCACGC	AGAGCTCCAT	CTTCAGCCTT	CTGGCCGTGG
	CAGTCGACAG	ATA' CCTGGCC	ATCTGTGTCC	CGCTCAGGT	TAAAAGTTG	GTCACGGGGA	CCCGAGCAAG
	AGGGGTCA	GCT'GTCCCT	GGGTCCCTG	CTTGGCATE	GGATTGACTC	CATTCTGGG	GTGGAACAGT
	AAAGACAGTG	CCA'CCAACAA	CTGCACAGA	CCCTGGGATG	GAACCACAA	TGAAAGCTGC	TGCCTGTGA
35	AGTGTCTCTT	TGAGAATGTG	GTCCCCATGA	GCTACATGGT	ATATTCAAT	TTCTTGGGT	GTGTTCTGCC
	CCC ACTGCTT	ATA' TGCTGG	TGATCTACAT	TAAGATCTTC	CTGGTGGCCT	GCAGGCAGCT	TCAGCGCACT
	GAGCTGATGG	ACC ACTCGAG	GACCACCTC	CAGCGGGAGA	TCCATGCAGC	CAAGTCACTG	GCCATGATTG
	TGGGGATTTT	TGCCCTGTGC	TGGTTACCTG	TGCATGCTGT	TAACTGTGTC	ACTCTTTCC	AGCCAGCTCA
	GGGTAAAAAT	AAG CCCAAGT	GGGCAATGAA	TATGGCCATT	CTTCTGTAC	ATGCCAATT	AGTTGTCAAT
40	CCC ATTGTCT	ATG'CTTACCG	GAACCGAGAC	TTCCGCTACA	CTTTTCACAA	AATTATCTCC	AGGTATCTTC
	TCTGCCAAC	AGA'GTCAAG	AGTGGGAATG	GTCAGGCTGG	GGTACAGCCT	GCTCTCGGTG	TGGGCCTATG
	ATCTAGGCTC	TCG'CTCTTC	CAGGAGAAGA	TACAAATCCA	CAAGAAACAA	AGAGGACACG	GCTGGTTTC
	ATTGTGAAAG	ATAGCTACAC	CTCACAAGGA	AATGGACTGC	CTCTCTTGAG	CACTCCCTG	GAGCTACAC
	GTATCTAGCT	AATA' TGTATG	TGTCAGTAGT	AGGCTCCAAG	GATTGACAA	TATATTATG	ATCTATT
45	CTGCTTTAC	TGTGTGGATT	ATGCCAACAG	CTTGAATGGA	TTCTAACAGA	CTCTTTGTT	TTTAAAAGTC
	TGCCTTGTTT	ATGGTGGAAA	ATTACTGAA	CTATTTACT	GTGAAACAGT	GTGAACTATT	ATAATGCAA
	TACTTTAA	CITACAGGCA	ATGGAAAAT	AAAAGTTGAC	TGTACTAAA	ATG	GAATTCCAG
	GTGGCTGGC	TGG'GACCT	AA GTGTGTCT	CCTGCCTTA	TTCTCTCTAG	TGGGTTATT	TTTCATGTGG
	TATCTTGCC	ACAC CATGCT	GTGTTGGAC	ACAAACCCCT	TTCTTGTT	TCTCTGACCC	AGCTGAGATG
50	GA CTGATTCC	AAA.GAAC	ACCTATGTAC	TGGGGTAGGG	GAGGGAGGGT	TTTTGCA	ATTTAACTAA
	GGTTCAAAGA	GTG'CTATATA	GTGAGAAAGG	CTTCTTTTTT	TTTTTTTTT	TTTTTGGCA	GAGTGCTGCC
	TCCTAGAAAT	TTCTCTGGT	AACTCCCTC	TCTGAAGCAC	AGATAAAGAA	AACAATTACA	GTAGAAACAT

	TTATGAGGG	CACATTGGAG	GCCGATGAAG	CTTTCAAGT	TCCAGCAGTG	CAGGGATGTG	GGCAGAACTG
	ACATTGGAAA	ATACTAGAAT	GATGGAAATT	CAGITGGAGA	GGACTGCCCT	TTTAATGTC	TGGGGAGTCT
	GCTCAGGGAG	AAATGACAAG	TCTGGCGGGG	ACAAGTATGG	GATTGGTAA	GACTTGGATC	AACTTGGGAT
5	ACAGGGTGGG	GGTGGGGAGT	GGAATCAATG	AATGATGCCA	GAGCAGATCA	ACTAACAAAGA	GGACCCTGAT
	GAGCCCCAGG	CACAGGCAGTC	TCCCTTATGC	CCCACTCTGA	AGTGGTTGTT	AGTAAACACC	AGAACGCAT
	TGTTGTTACT	GCTGAATTTC	ATTTTGGGCT	GTACATATTT	AGATGCTAA	GGTAAAATG	ATAAAGCCCT
	CAAGCCACTG	TGTGGGTTTG	GGTCCAAGTG	TTCCTTCTTG	CTGCCTCTCT	AACACGCCTG	GTTAAAATAA
10	TCCCTTGGG	TGG'GCTGAG	AAGCACCTGA	ACCAAGTGGG	TCCCCAAATA	ACAATGGCGT	GCAAGTGTCT
	GGTTCCCAA	AGTTGGTGAC	TAGGTAAGCA	GCTTCAGGG	GAGGGGGCTG	ATTCCCAGAC	AGTCGCCTGT
	TCCTGCGGGG	ATG3GGGCTGA	GGCTTGGGG	ATGTGGGCAG	GAGGATATGC	CATTGATTTC	TGTTGCACAC
	GTTCTTTCC	CTTCTTCTG	TATGTCCTG	CATTCTGCTA	TTCTGTCCTT	CCTCACATAG	GTTGGACATT
15	GGCCGGCTGC	CAGCATAAGT	GCCAGTGTGA	TTTGCTAGG	TGTGAGCTGA	GAAAGAGAGG	TGGAGGCTAA
	GCAGGTGTGA	TGCTTCTCAG	AGGTGCTGAG	TTTTGCCCT	TCTGAGCAGG	GAATCTTGC	TTATCCCTT
	GACCAAGGAT	CTT'GCTGCA	AAGGCTGGG	ATCGGCTGTG	CTCAGCAAAG	CGTCAACTCG	TGCAAGAACT
20	TAGCAGGAAT	AGTTCTGGCT	AAGGTTAGGA	GGCTGCCACC	AAAGTCTCTT	TTTGTTCCT	CTGCTTCTCC
	CGTTTGCCTC	CTTATCATGA	GATCTTTTG	CTAACGCTGGC	AGAAAGATTG	CATAGTCAGT	GCTTCCAGCT
	CTGCTCCCAC	CTGATCCTGC	ACTGTCCTCT	GGTCCCTGAA	TGAATGAACT	CTGATACCCA	ATCTTGTCTC
	GAGCCTCTC	TATGCCACTC	ATGGCTCCTC	TTCTGCTCTT	TCCATCTTT	TGCTGAGAGT	TCTGAGCTCT
25	GTACTTCCTC	TTGCCCCATC	TCACITCTG	AAACACCCCT	GAAGAGGGTT	GCTTATCTTG	ATGGAACCTCA
	AAAAGCCAAA	AAGCTGCAGG	CAGAGCGTT	GAGGACATCT	TTTGGGGAA	CTAACAGCAG	CAGCACTTTC
	AGATTCAAGTC	CATATAGAGC	TGTCCTACAG	CATTCTGGAA	ACTTGAGGAT	GTGCGGTGCA	TAAAGGGGCT
	GGAAGTGAAC	CACCTGTGAT	GAGCCCTTTC	TAAGGAGAG	GGTTTCCAAG	AGATCACCCC	ACCAGAAAAG
30	GGTAGGAATG	AGCAAGTTGG	GAATTTAGA	CTGCACTGC	ACATGGACCT	CTGGGAAGAC	GTCTGGCGAG
	AGCTAGGCC	ACTGGCCCTA	CAGACGGATC	TTGCTGGCTC	ACCTGTCCCT	GTGGAGGTT	CCCTGGGAAG
35	GCAAGATGCC	CAA CAACAGC	ACTGCTCTG	CATTGGCCAA	TGTTACCTAC	ATCACCATGG	AAATTTCAT
	TGGACTCTGC	GCCATAGTGG	GCAACGTGCT	GGTCATCTGC	GTGGTCAAGC	TGAACCCCCAG	CCTGCAGACC
	ACCACCTTCT	ATTTCATTGT	CTCTCTAGCC	CTGGCTGACA	TTGCTGTTGG	GGTGCCTGGTC	ATGCCCTTGG
	CCATTGTGT	CAGCCTGGGC	ATCACAATCC	ACTTCTACAG	CTGCCTTTT	ATGACTTGCC	TACTGTTAT
40	CTTTACCCAC	GCCTCCATCA	TGCTCTTGCT	GGCCATCGCT	GTGGACCGAT	ACTTGCGGGT	CAAGCTTACC
	GTCAGGTAGC	CTGGGGCGTG	GGGTGGGCAG	CAATTGAGGC	AGCTGGAAA	TGAGGCTACA	AAGCCAGAGCS
	CTGCTGAATT	TTATTTGGA	CTGTACATAT	TTAGATGCTT	AAGGTAAAAA	TGATAAAGCC	CTCAAGCCAC
	TGTGTGGGTT	GGG'CCAAGT	GTTCTTGCT	GCTGCCTCTC	TAACACGCC	GGTAAAATA	ATCCCTTGG
45	ATGGTGCTGA	GAAGCACCTG	AACCAAGTGG	GTCCCCAAAT	AACTATGGCG	TGCAAGTGT	TGGTTCCCAG
	AAGTTGGTGA	CTACIGTAAGC	GACTCAGGG	GAGGGGCTGA	TTCCCAGACA	GTCGCCTGTT	CCTGCTGGGA
50	TGGGGCTGAG	GCT'GGGGAA	TGTGGGCAGG	AGGATATGCC	ATTGATTCT	GTTGCACACG	TTCTTTCCC
	TTCTTCTGT	ATGTCCTGGTC	ATTCTGCTAT	TCTGCGTT	CTCACATAGG	TTGGACATTG	GCCGGCTGCC
	AGCATAAGTG	CCACIGTGAT	TTTGCTAGGG	TGTGAGCTGA	GAAAGAGAGG	TGGAGGCTAA	GCAGGTGTGA
	TGCTTCTCAG	AGGT'GCTGAG	TTTTGCCCT	TCTGAGCAGG	GAATCTTGC	TTATCCCTT	GACCAAGGAT
	CTTGCTCCA	AAGGCTGGG	ATCGGCTGTG	CTCAGCAAAG	CGTCAACTCG	TGCAAGAACT	TAGCAGGAAT
40	AGTTCTGGCT	AAGGTTAGGA	GGCTGCCACC	AAAGTCTCTT	TTTGTTCCT	CTGCTTCTCC	CGTTTGCCTC
	CTTATCATGA	GATCTTTTG	CTAACGCTGGC	AGAAAGATTG	CATAATCAGT	GCTTCCAGCT	CCGCTCCCAC
	CTGATCCTGC	ACTCTCCCT	GGTCCCTGAA	TGAATGAACT	CTGATACCCA	ATCTTGTCTC	GAGCCTTCTC
	TATGCCACTC	ATGGCTCCTC	TTCTGCTCTT	TCCATCTTT	TGCTGAGAGT	TACTGAGCTC	TGTACTTCT
45	CTTGGCCCAT	CTCACTTCC	AAAACACCC	TGAAGAGGGT	TGCTTATCTT	GATGGAACTC	AAAAGCCAA
	AAAGCTGCAG	GCAGAGGCAGT	TGAGGACATC	TGTTGGGGAA	ACTAACAGCA	GCAGCACTTT	CAGATTCAAGT
	CCATATAGAG	CTGICCTACA	GCATTCTGGA	AACTTGAGGA	TGTGCGGTGC	ATAAAGGGGC	TGGAAGTGTAC
	CCACCTGTGA	TGAGCCCTT	CTAAGGAGAA	GGGTTCCAA	GAGATCACCC	CACCAAGAAA	GGGTAGGAAT
50	GAGCAAGTTG	GGAATTGGT	ACTGTCACTG	CACATGGACC	TCTGGGAAGA	CGTCTGGCGA	GAGCTAGGCC
	CACTGGCCCT	ACACACGGAT	CTTGCTGGCT	CACCTGTCCC	TGTGGAGGTT	CCCCTGGAA	GGCAAGATGC
	CCAACAACAG	CACTGCTCTG	CGAATTGGG	GGACATCTGT	TTGGGAAACT	AAGAGCAGCA	GCACCTTCAG
	ATTCACTGCA	TATAGAGCTG	TCCTACAGCA	TTCTGGAAAC	TTGAGGATGT	GCGGTGCATA	AACGGGCTGG
	AAGTGACCCA	CCTGTGATGA	GCCCTTCTA	AGGAGAAGGG	TTTCCAAGAG	ATCACCCCCAC	CAGAAAAGGG

	TAGGAATGAG	CAAGTTGGGA	ATTTTAGACT	GTCACTGCAC	ATGGACCTCT	GGGAAGACGT	CTGGCGAGAG
	CTAGGCCAC	TGGCCCTACA	GACGGATCIT	GCTGGCTCAC	CTGTCCCTGT	GGAGGTTCCC	CTGGGAAGGC
	AAGATGCCA	ACAACAGCAC	TGCTCTGTCA	TTGGCCAATG	TTACCTACAT	CACCATGGAA	ATTTTCATTG
5	GACTCTGCGC	CATAGTGGGC	AACGTGCTGG	TCATCTGCGT	GGTCAAGCTG	AACCCCAGCC	TGCAGACCAC
	CACCTTCTAT	TTCATTGTCT	CTCTAGCCCT	GGCTGACATT	GCTGTTGGGG	TGCTGGTCAT	GCCTTTGGCC
	ATTGTTGTCA	GCCCTGGGCAT	CACAATCCAC	TTCTACAGCT	GCCTTTTAT	GACTTGCCTA	CTGCTTATCT
	TTACCCACGC	CTCCATCATG	TCCTTGCTGG	CCATCGCTGT	GGACCGATAC	TTGCGGGTCA	AGCTTACCGT
10	CAGATACAAG	AGGGTCACCA	CTCACAGAAG	AATATGGCTG	GCCCTGGGCC	TTTGTCTGGCT	GGTGTCTTC
	CTGGTGGGAT	TGACCCCCAT	GTGGCTGG	AACATGAAAC	TGACCTCAGA	GTACCACAGA	AATGTACACT
	TCCTTTCATG	CCAATTTGTT	TCCGTATGA	GGATGGACTA	CATGGTATAC	TTCAAGCTTC	TCACCTGGAT
	TTTCATCCCC	CTGGTTGTCA	TGTGCCCCAT	CTATCTTGAC	ATCTTTTACA	TCATTGGAA	CAAACCTCAGT
15	CTGAACCTAT	CTAACTCCAA	AGAGACAGGT	GCATTTATG	GACGGGAGTT	CAAGACGGCT	AAGTCCTIGT
	TTCTGGTTCT	TTTCTTGTTT	GCTCTGTATC	GGCTGCCCTT	ATCTCTCATC	AACTGCATCA	TCTACTTTAA
	TGGTGAGGTA	CCACAGCTG	TGCTGTACAT	GGGCATCCCTG	CTGTCCCCATG	CCAACCTCCAT	GATGAACCC
20	ATCGTCTATG	CCTATAAAAAT	AAAGAAGTTC	AAGGAAACCT	ACCTTTTGAT	CCTCAAAGCC	TGTGTGGTCT
	GCCATCCCTC	TGA'TCTTTG	GACACAAGCA	TTGAGAAGAA	TTCTGAGTAG	TTATCCATCA	GAGATGACTC
	TGTCTCATTG	ACCTTCAGAT	TCCCCATCAA	CAAACACTTG	AGGGCCTGTA	TGCTGGGCC	AAGGGATTTT
	TACATCCTTG	ATTACTTCCA	CTGAGGTGGG	AGCATCTCCA	GTGCTCCCCA	ATTATATCTC	CCCCACTCCA
25	CTACTCTCTT	CCTCCACTTC	ATTTTCTT	TGTCCTTTCT	CTCTAATTCA	GTGTTTGGAA	GGCCTGACTT
	GGGGACAACG	TATTATTGAT	ATTATTGTCT	GTTCCTCTTC	TTCCAATAG	AAGAATAAGT	CATGGAGCCT
	GAAGGGTGCC	TAGITGACTT	ACTGACAAAAA	GGCTCTAGTT	GGGCTGAACA	TGTGTGTGGT	GGTGACTCAT
	TTCCATGCCA	TTGIGGAATT	GAGCAGAGAA	CCTGCTCTCG	GAGGATGCT	AGGAGATGTT	GGGAACAGAA
30	GAAATAAAACT	GAGTTAACAGG	GGGACTTAAA	CTGCTGAATT	C AAATGATAGA	CCGTCATAA	TTTGTAAAT
	GCTTTTAAAT	ATGAATGCTT	TAAGCCGGGT	GCAGTGCCTC	ACATCTGAA	TCCCAGCACT	TTGGAGCCGA
35	GCGGGTGGAT	TGTGTGAGGT	CAGGAGTTCG	AGACCAACCT	GGCCAACATG	GCAAAACCTC	ACTCTCTACC
	AAAAATACAA	AAAATAGCCA	GGCATGGTGG	CAGGCACCTG	TGATCCCAGC	TACTCAGGAG	GCTGAGACAG
	GAGAACATCGCT	TGAACCCGGG	AGGCAAGGTT	GCAGTGAGCC	AAGATTACGC	CATTGACTC	CAGCCTGGGT
	GACAGAGAGA	GACCTCCGTCT	CAAAAAAAA	AAAAAAA	AAAAAAATTAC	GCTTCAAACA	CATGATCTCT
40	CAACACTGTT	GAA'TTTCTT	TCTATGAGCC	CAGGAGGGCC	TCTCAGAGAG	GAAAGCTCCT	AGGTCTTCCCT
	TTCCCTCTGC	AAACTCCCTG	CCTTGAAGGT	TCAGAAGGAC	TGTGCGTGT	CGTTGCATCC	TTTGCAAGTG
	TCCAAACCCCT	GATCCCAGCT	GTGCTTAGGG	GTTCTGCAA	ACCTTTTCCA	GGTGTAAATT	ACCTCCCAC
	TCATTTCTG	TTTACCAACT	CAGCTTTTG	TTTGTAGTGT	TTTGAATTCC	CTGAACGTAC	CGTTGTCTGA
45	TCTCCACCTC	CCAACTGAAT	TAGGGGAGCT	GGGCTTCTGG	AAACCCAGGT	GCCGGGTGTT	GCAGAGTGGC
	TGAAAGCTGG	GATGTGGCAG	ATCCGTGGCT	ACATTATGTC	ACACACACAC	ACCCACATAC	CCACACATGC
50	ACACACACAC	ACAACCCGC	ACTCACACAC	TTGGACATGC	ATAGACCACA	GCTTCCACA	CCCTTCCTAG
	ACAGGGGTCA	CTTGATATCC	TGGAGAGAGT	GTGAAGTCCT	GGAAATGGAAA	GAGGGGGGAT	TAAGCCCCAC
	CTCTAGCCAT	GGGACTGAGA	CAAGTCACCA	CCAACCCATC	TGCGCCTTGT	TTACCTCCTC	TGTGAGGCAA
	GCACAGAGCC	CATGCCCTGCC	CCCCCTGGATG	GGAGTGTATGT	GAAACTGAA	GGGCGGTAG	AGCAAGGGTC
	GGGAATGGAA	GGCCCTTGGG	AAAAAAGGCC	CTTCAACTA	GGGGCACAGA	GGAGGCCCTG	GGCTGAGAAC
55	TTGACAGCAC	CTTGTAAATTG	GTAAGCCAAG	CCCGAAGGGA	CTGGAAATAC	TCAGATGTGT	CTGTCTCCCT
	TATTAGTTTC	AAAGTCCCTC	AAGACCTGT	CTCCATCACA	GTGCTCCAGT	CCAGACCCCT	CCTCTGAGCT
	CCAGACCCCTG	CTGGACCCAA	CCAGCCCTAT	GGGGTCGATC	CCCCACCTGC	CTGGAATTCT	CCAAAGAAC
	TCCCCTTAA	CAGTCCAGC	CTTTAACAGT	TCCAGTCTAA	ACACATGACC	TTTCTCCTCT	AAATCAGCCC
	CCCATCTCTG	CCTITGCAGG	AGATGGAAGC	CATGACACCT	GCCTCGCCCC	TGTCCTCACC	CCATCCATGT
60	CCAATCAAGC	ACTAGGCATG	TCAGGTTTAC	CCTCTAAACT	CCTCTGGAAT	CCAGTCTCTC	AGTCTCCATC
	ATCCCAGGTC	GAAGCTAATG	GGCTAACTGG	TCCTTGCTTC	CACTCTACCC	CCACTGCAGT	CCTGACTTCC
	TGAGCAGCAG	CCAGGGCCTA	ATCGATATT	ACACCAAGCG	CCAACCTGAC	TGAGATATCC	TCCTGCACCA
	TCATCCCTCC	ACCCGTGTTA	GTTCTGCTCA	CCCTCAGTGT	TCTCATCAAT	AATCCACTCC	CCTCACAGGC
	GCGTTGGGA	CCCCATGTTT	TATGCTCTCA	CAGGACCTTT	TGCTTGATTT	TTCACGTAC	TTAGGTCAGT
65	TTGCAGTTAT	TAATGACTG	AGCAATGTCT	GGCTTCTCCA	GTAGACTGTC	AGCTCCTAGC	CATTGTATAC
	CTAGCACCGC	TGTC TGGGAG	CACGTGACAA	ACGTCCAGTG	AGTCAGGGAC	TCAGCAGTCT	CCATTCTCC
	GCCCTGCTGG	AGAATGCGTG	TATTGGCAA	TCCCCAGCCC	CTGTGCCATC	TAACCATCTT	TTCTTCTCTG

	TTCAGCCCAG	GTTGTTGGCCTC	ACTCACATCC	CACTCTGAGT	CCAAATGTT	TCTCCCTGGA	AGATATCAA
	GTTTCTGTCT	GTTCTGTGAGG	ACTCCGTGCC	CACCAACGGCC	TCTTTCAGGT	GAGTCAAAGG	GATTCCCTCAG
	TTCACTAGTT	AGGGGGAGGTG	GGCAGACACC	CTGGAGAAGT	CCCTGGAAAG	CTCAACTCTC	ATGCCCGGA
5	CAACAGTTGA	AGGAACCATG	GTGATGTTAA	GCCCCAAAGAC	AAAACCTCTC	AGGTGTCCAA	GTCCCTGTTG
	GAATCTGGG	AGCAGAGGGG	ATGTTCTGTG	GTCTAGAGGA	AGAGGGGCTC	AGGGAGGAGA	AGGGCACATT
	CCTGGTTGTT	ATATGTTTCT	ATCTATCCA	GATGAACCTG	GAAGTGAAGG	GAAGAGAGTT	AAACATTA
	GTAAATACCC	AGTGATGATCAG	ACAGCAATGT	GCCAGATTGC	CTTGGAAACA	AAATATCTCC	AACACATGGC
10	TGACATTGG	TGGGAGATCA	GAACACCCCTA	AAGAGAGAA	TTAAGGGGAG	GGGGAGGAGG	ACCTGAGCCA
	GAGTAGAAGC	AGAGGATAGG	GAGATCTGTT	CTTGGGGACA	GCATTGCAA	GAAACAAGGC	TGAGGGTCC
	ACTCCAACCT	CTCCACCCCTG	CTGCAGGTGC	TGCCTATGAT	GAAGATGAGC	AGATGGCCAT	CTCAGCTGGG
	GCCACAGTGC	ACTGGACCTA	TAGTTTCCAA	TTCCGCACTC	AGCAGGCATC	TTTCTGATGA	TCCGATGGCT
15	TCTCAGAGCC	AGGGATGGGC	CAGGATCCAT	CCCCTTGGCT	ACTGTCTGTC	TGAGAAATT	ATAAGCAGCA
	TCTGGTGCTA	TACITGGTC	TCTAGTGA	TAGCTCATGA	AAGATGATAG	ACTCTCCAAG	CCAGGGGTAT
	GCAGGAAATG	GGTITTCCTG	AGCTACAGAA	ATGGGGTTGA	GGGGTGGACC	AAGGGACTAC	CCAGGGGAAG
20	TCTTACCTTC	AGAC-GACTCT	GGAAAGGAGG	CTGCAAGTTT	TCATGGGTCA	AGAATTCA	GCCCAGTAGA
	GACAGCTTAT	CTCTGTTCCA	AGATGTCTGG	GGCCTTGGTT	GGAAGATTCA	AAGGCTAGGA	AACCAGGAGC
	CACCAAAAGC	GTAACTGGGG	CCAGAGGATC	CACTTCAAG	GTGGCAAGTT	GGTCCCCCCC	ATGTGGCTGC
	TTGAGTATCC	TCACATGGCG	GTCACATCC	TTCCAAGTAA	GCAATGCAA	AGGCCAAGAA	AGATGCTGCA
25	AAGATGTTAT	GACCTAGCCT	CAGAAATCAC	ACACCATCCC	TGCCACCAT	AGTAAGAAGT	CCAGCCCACG
	TCCAGGAGAA	GAGGAAGCAG	ATTCCCTCTT	TTGAAATGAA	GAATATCAAG	TAATTGGGG	GGCATATGAA
	AGCCACCACA	CACCACAGGG	ATCTTTTCTAG	AGCATACTTC	TTATACCATC	ACTGTAGTTC	CTTAAGACTC
	AGGGGCAAAG	CCTCACTTCC	TTAGCACCCCA	GTGAAGACCA	CGCTTACTCC	CTCACTCAAC	CTCTGCTAC
30	TTCCCACCTC	TCCIGTCCAA	CATCTAGTGT	CACTTCCAG	AACATACCA	CAGTTCCCC	AGTTCTGTGC
	CTCTGCTCAG	GCTGTTCCCC	CTGCCTGGTC	CACTTGTCTT	CCTTCTGTC	CGGTCAAAAT	GCTTCTTATC
35	CTTCAAGACC	CAGCTCTAGA	GTCACCTCCA	ACCCCTTACC	CACCAGCCCC	CTCTCCAAGT	CTGTGTCCCC
	CAACCCCCCT	GCTCCTTCCA	GGGCACCCCTC	CACCCCTCTGG	GCCACAGTTG	TCAGGAGTCA	GGCAGGGCAG
	GGGCCGGGTG	GTGTTCTTCTT	TGTGTTCTTG	CACTCAGGGC	AGAGCTCAGC	ACAGAGCAGA	CGCTCAAAA
	ACATTTAAAG	GATAGAAGCA	TTGATTTGTG	GGTCCCCCAG	TCTGGCTCCA	GGATGCCAGC	CAGCTGCTCC
40	TAGAACAAA	CGGACTTTTC	CTGGGAAATC	CCAGAGGTGA	TGATCAGTAA	TCTCTCCCGT	GACTCGTAGT
	TCAGCTCTTC	CTCCATGAGC	CTGACTATCA	GTGGACCTTC	CAGAAAGAGC	CCCTTTTCCT	TCTCTCACCC
	ACAGCACAGG	GCACTGGGAA	AATGCCCAAT	GAGTCCTGCC	TCTGGGTTGT	GCTTGGACT	TTTCAGTGTG
	TCTCGCATCC	ACTCTTCAAC	TTGAATGTTG	CAACAGCCAT	GAAAAAAGAA	ATGCAAAGCG	ATTCAAGGATG
45	AGAGCAATAC	CCTACTCCAA	AGAAGGCAAC	ATAGAAGCTC	AGAGAGATCA	AGCAATTTC	CCAAGACCAC
	ACAGCTAGGA	GTGGAACACTA	TGGCTGTCCA	AGCCCCATGC	CTCTGCTGAA	GGTAGAGATG	AATTACAGCA
50	ACAAGTCTAG	AAAGGGTGCCT	GCCCTATGGT	CTGTGAGTCT	TGCCCTAAGAA	TGAAAGAGGA	GCCAGTGGGT
	TAAAGATGAG	GTCACCAACA	ACGGTGGTGT	TGGAGTTTAC	CACTGATAAT	AAGGGTGC	AATGTAAATT
	ACTAATGTTT	ATTCAAGCCTA	GTGCAGTGC	TGGGGCATTT	TGCACATTGT	CTCTGATCCC	TATGACAACC
	CTGAGAGGTA	GTGGTTTTAA	CTGCCATGTT	ACAGGTGAGG	TCATTGTGGT	TCAAGGACGT	TAAGTAACCT
	CCCCAGCGTG	ACAC'GGCTTA	TAAGTAAGGC	AGCCAGGATG	TGAACCCAGT	AGGACTATCT	GGCTGCAAAG
55	TCCCCACCCC	CCTCGCCATC	TGTATCCTCC	AATCACTTC	GTGCTTGCT	GCATAGAAGG	TAACGGAAAT
	CACGATGCCA	CAGACTGTCC	AGGAAGACAG	AAACTAGGCA	GATGGGCTGG	CCATGGCTC	CAAGCCAGAC
	TGGAATCTCC	AGG'CTGGAA	TGATATCATT	TTTCTCTTTT	AATAAAATTAA	CTCACCCACC	ACACGGCTTT
	GAGAGGCTCA	AAG'TGACCA	ACTCCCTGG	GAGGGCCCCG	GTTGATAAGG	AAGGAACGTG	AATCCTCCCA
60	TCACGGAAGC	TTCAAGGAGG	TCAAGGGTCC	AAACACTTGAG	ATTGTTAGT	CTGTTGGTGG	ATACTGGCCA
	AGGAAATATC	CCACTGGAGC	CTCGAGATGA	AGAACATGAG	GCCCCCGTT	AGAACCAAGG	ATCAGAGGGG
	GCTCTGTAAG	ACCCAGGGG	GTCAGGTGCA	CTGGAGCGCG	GGCATGCGA	AAACAGCCTG	AGCTCCACCT
	CGGCTTCTCC	TTGICCTGGC	TGGTTGCTCT	TAACCCCTGT	CTCCTTCTGG	ACCAGTTTT	GTCCTTCCCT
	TGTGACCGCT	GAGGGGTAAC	AGCCTCTTC	CACTTCTTT	CAGCGCCGAC	ATGCTCAATG	TCACCTTGCA
65	AGGGCCCACT	CTTAACGGGA	CCTTGCCTCA	GAGCAAATGC	CCCCAAGTGG	AGTGGCTGGG	CTGGCTCAAC
	ACCATCCAGC	CCCCCTTCTC	CTGGGTGCTG	TTCGTGCTGG	CCACCCCTAGA	GAACATCTT	GTCCTCAGCG
	TCTTCTGCTC	GCACAAAGAGC	AGCTGCACGG	TGGCAGAGAT	CTACCTGGGG	AACCTGGCCG	CAGCAGACCT
	GATCCTGGCC	TGCCGGCTGC	CCTTCTGGC	CATCACCATC	TCCAACAACT	TCGACTGGCT	CTTGGGGAG

	ACGCTCTGCC	GCG TGGTGAA	TGCCATTATC	TCCATGAACC	TGTACAGCAG	CATCTGTTTC	CTGATGCTGG
	TGAGCATCGA	CCG CTACCTG	GCCCTGGTGA	AAACCATGTC	CATGGGCCGG	ATGCGCGCG	TGCGCTGGC
	CAAGCTCTAC	AGC ITGGTGA	TCTGGGGGTG	TACGCTGCTC	CTGAGCTCAC	CCATGCTGGT	GTTCCGGACC
5	ATGAAGGAGT	ACAGCGATGA	GGGCCACAAC	GTACCCGCTT	GTGTACATCG	CTACCCATCC	CTCATCTGGG
	AAGTGTTCAC	CAA CATGCTC	CTGAATGTCG	TGGGCTTCCT	GCTGCCCTG	AGTGTACATCA	CCTTCTGCAC
	GATGCAGATC	ATG CAGGTGC	TGCGGAACAA	CGAGATGCAG	AAGTCAAGG	AGATCCAGAC	GGAGAGGAGG
	GCCACGGTGC	TAG TCCCTGGT	TGTGCTGCTG	CTATTCA	TCTGCTGGCT	GCCCTTCCAG	ATCAGCACCT
10	TCCTGGATAC	GCTGCATCGC	CTCGGCATCC	TCTCCAGCTG	CCAGGACGAG	CGCATCATCG	ATGTAATCAC
	ACAGATCGCC	TCC TCATGG	CCTACAGCAA	CAGCTGCCTC	AACCCACTGG	TGTACGTGAT	CGTGGGCAAG
	CGCTTCCGAA	AGA AGTCTTG	GGAGGTGTAC	CAGGGAGTGT	GCCAGAAAGG	GGGCTGCAGG	TCAGAACCCA
	TTCAGATGGA	GAA CTCCATG	GGCACACTGC	GGACCTCCAT	CTCCGTGAA	CGCCAGATT	ACAAACTGCA
	GGACTGGGCA	GGG AGCAGAC	AGTGAGCAA	CGCCAGCAGG	GCTGCTGTG	ATTGTGTAA	GGATTGAGGG
15	ACAGTTGCTT	TTCA GCATGG	GCCCAGGAAT	GCCAAGGAGA	CATCTATGCA	CGACCTTGGG	AAATGAGTTG
	ATGTCTCCGG	TAA AACACCG	GAGACTAATT	CCTGCCCTGC	CCAATTTCG	AGGGAGCATG	GCTGTGAGGA
	TGGGGTGAAC	TCA CGCACAG	CCAAGGACTC	CAAAATCACA	ACAGCATTAC	TGTTCTTATT	TGCTGCCACA
	CCTGAGGCCAG	CCTGCTCCTT	CCCAGGAGTG	GAGGAGGCCT	GGGGGCAGGG	AGAGGAGTGA	CTGAGCTCC
	CTCCCGTGTG	TTCT CCGTCC	CTGCCCTCAGC	AAGACAACCT	AGATCTCCAG	GAGAACTGCC	ATCCAGCTT
	GGTGCAATGG	CTG AGTGCAC	AA GTGAGTTG	TTGCCCTGGG	TTTCTTAAT	CTATTCA	AGAACATTGA
20	AGGACAATIT	CTTG CATTAA	TAAAGTTAA	GCCCTGAGGG	GTCCCTGATA	ACAACCTGGA	GACCAGGATT
	TTATGGCTCC	CCTC ACTGAT	GGACAAGGAG	GTCTGTGCCA	AAGAAGAAC	CAATAAGCAC	ATATTGAGCA
	CTTGCTGTAT	ATGC AGTATT	GAGCACTGTA	GGCAAGAGGG	AAGAAAGAGA	AGGAGCCATC	TCCATCTTGA
	AGGAACCTAA	AGA CTCAAGT	GGGAACGACT	GGGCACTGCC	ACCACCAAA	AGCTGTTGA	TGAGACGGTC
	GAGCAGGGTG	CTG TGGGTGA	TATGGACAGC	AGAAGGGGG	GCCAGGTTCC	AGCTCACCAA	TACTATTGCA
25	CACCACCTGT	CCTGCCCTC	GCCCTTCAAA	GATGAGCTGT	TCCCAGCCGCC	ACTCCAGCTC	TGGCTTCTGG
	GCTCCGAGGA	GGGGTGGGGGA	CGGTGGTGAC	GGTGGGGACA	TCAGGCTGCC	CCGCACTGACC	AGGGAGCGAC
	TGAAGTGC	ATGCCGCTT	CTCCGGAGAA	GGTGGGTGCC	GGGCAGGGGC	TGCTCCAGCC	GCCTCACCTC
	TGCTGGGAGG	ACA ACTGTC	CCAGCACAGA	GGGAGGGAGG	GAGGGCAGGGC	AGCGGGGAGA	AGTTCCCTG
	TGGTCGTGGG	GAGT GAGCTCTCA	ATATTTAGT	GAAAGCTATA	GATGAGGCTC	CATAGGGGAT	AAAGCACAGA
30	CACACCTTT	CAGAGGCTT	GTGGACTCTG	GGCAGCCTGT	CCATAGACCT	CTGCCCCAA	CTGGCAAGTC
	AGGAAAATCC	AGA TAAGGA	GCCCCAATGT	GGTGAACAG	CCAGGTGCAC	AGATGAGTC	ACCACACAGC
	CAGGCCAGGG	AGGGCCTTCA	CTCAAGAGCC	TACAGCCAGT	TCACAGCCAA	GCCAGGGCTA	GCGCCAGGCC
	ACCCATAAAC	TGA TCTGAGA	CTCTGTTCC	CTGTCTCCAT	GATGATGGGA	TCAGGCTTGA	TTGCTGGTT
	GTAGGCTTGT	TATC AATCAA	GTCACAGGG	AGAGGAGCTG	ATGGGCTGGG	GGGACGTCCT	CTGGCCCTCC
35	TGTCTCTTCC	CCAC ATCCAC	TGGGCCACT	CTTATCTGT	CTCTTCTGAA	GGAAAGGTTT	TAAGGCTTCA
	AAAAAAAATG	TTT GAAAGT	CCCTGCCCTT	TCCAGCTCT	ACCGTCTCAG	CCCTGGGAGT	GTAAAGTGCT
	GCAGATAAGT	AGT AAGTCTT	TGAGCAAAAC	TGAGAAAGCC	AGCCTGAGCC	TTGACATGGG	AGAAACCTCC
	GCCATACATC	TCCGAAGAAA	CGGCCGCGTG	TCTCAGGGGA	GCGCAAACAC	CCGTACCCAG	GAAACAGGAC
	AGCTTCTGCC	ACTG TCGCCC	TTGGGAGCCG	TACGTGGCAT	GACAAAGAAA	TCCCAGGACT	CCGCCTGCC
40	ACCTGGCCAC	CCTCTGTTA	CACCTTCCCG	GTAAACGCC	ACTGTTACA	TCCAAAATC	AGACACAAAA
	TAACCACCTC	AAGA AGATAA	ATAATGATAA	GAAATAATG	TTACCGAGG	CAAATTATT	CACATGGGGC
	TTCCCAGGCC	ACTT GTGGT	CAGCCGGGAG	GGACGTTTT	GCCGTCCCAC	GACTCCAACG	GGCAGGCCGG
	CCTACGCAA	CATC GAAATC	TTCCAAGAGC	CTCCCTGGCC	CCCAGGGCTC	AGAGGGTGGC	AGAGCGGAGA
	GCGAAGGTGG	CCG CAGCCTT	CCCAGGCCCA	CAGCCAGCCT	GGCTCCAGCT	GGGCAGGAGT	GCAGAGCTCA
45	GCTGGAGGCG	AGGGGAGT	GGCCAGGAGG	CTGATGACAT	CACTACCCAG	CCCTCAAAG	ATGAGCTGTT
	CCCAGGCCA	CTCCAGCTCT	GGCTTCTGGG	CTCCAGGAGG	GGGTGGGGAC	GGTGGTGCAG	GTGGGGACAT
	CAGGCTGCC	CGCA GTACCA	GGGAGCGACT	GAAGTGCCA	TGCCGCTTC	TCCGGAGAAG	GTGGGTGCCG
	GGCAGGGGCT	GCT CAGCCG	CCTCACCTCT	GCTGGGAGGA	CAAACGTCC	CAGCACAGAG	GGAGGGAGGG
	AGGGCAGGCA	GC GG 3GAGAA	GTTCCTCTGT	GGTCGTGGGG	AGTTGGGAAA	AGTCCCTTC	CTTCCGGAGG GAGG
50	CAGATTACA	AACTGCGAGA	CTGGGCA	AGCAGACAGT	GAGCAAACGC	CAGCAGGGCT	GCTGTGAATT
	TGTGTAAGGA	TTGAGGGACA	GTTGCTTTTC	AGCATGGGCC	CAGGAATGCC	AAGGAGACAT	CTATGCACGA
	CCTTGGGAAA	TGAC TTGATG	TCTCCGGTAA	AAACACGGAG	ACTAATTCT	GCCCTGCCA	ATTTTGAGG
	GAGCATGGCT	GTG AGGATGG	GGTGAACCTCA	CGCACAGCCA	AGGACTCAA	AATCACAAACA	GCATTACTGT

	TCTTATTGCTGCCACACCT	GAGCCAGCCT	GCTCCCTCCC	AGGAGTGGAG	GAGGCCTGGG	GGGAGGGAGA
	GGAGTGACTGACCTCCCTC	CCGTGTGTT	TCCGTCCTG	CCCCAGCAAG	ACAACCTAGA	TCTCCAGGAG
	AACTGCCATCAGCTTGCT	GCAATGGCTG	AGTCACAAG	TGAGTTGTTG	CCCTGGTTT	CTTTAATCTA
5	TTCAGCTAGAACTTGAGG	ACAATTCTT	GCATTAATAA	AGGTTAACCC	CTGAGGGGTC	CCTGATAACAA
	ACCTGGAGACAGGATTITA	TGGCTCCCT	CACTGATGGA	CAAGGAGGTC	TGTGCCAAAG	AAGAATCCAA
	TAAGCACATA TTGAGCACTT	GCTGTATATG	CAGTATTGAG	CACTGTAGGC	AAGACCCAAG	AAAGAGAAGG
	AGCCATCTCCATCTGAAGG	AACTCAAAGA	CTCAAGTGGG	AACGACTGGG	CACTGCCACC	ACCAGAAAGC
	TGTCGACGAGACGGTCGAG	CAGGGTGCCTG	TGGGTGATAT	GGACAGCAGA	AGGGGGAGAC	CAAGGTTCCA
10	GCTCAACCAA TAACTATTGC	ACAACCACCT	GTCCCTGCC	CAGTCCCTT	TTATGTAACA	TGAAGTCGTT
	GTGAGGGTTAAAGCAGTAA	CAGGTATAAA	GTACTTAGAA	AAGCAAAGGG	TGCTACGTAC	ATGTGAGGCA
	TCATTACGCA GACGTAACTG	GGATATGTTT	ACTATAAGGA	AAAGACACTG	AGGTCTAGAA	ATAGCTCCGT
	GGAGCAGAAT CAGTATTGGG	AGCCGGTGGC	GGTGTGAAGC	ACCACTGTCT	GGCACACAGT	AGGTGCTCAT
	TGGCTCCCTT CCACCTGTCA	TTCCCACAC	CCTGAGGCC	CAACCGCCAC	ACACACAGGA	GCATTTGGAG
15	AGAAGGCCAT GTCTCAAAG	TCTGATTGT	GATGAGGCAG	AGGAAGATAT	TTCTAATCGG	TCTTGCCCAG
	AGGATCACAG TGCAGGACC	CCCCACCAAC	AGCCGGTACC	TGGGAAGGGG	GAGATGCAG	GCCTGCTCAG
	GGACTGTTCC TGTCTCAGCA	ACCAAGGGAT	TGTCCTGTC	AATCAATGGT	TTATTGGAAG	GTGGCCCAGT
	ATGAGCCCTA GAAGAGTGTG	AAAAGGAATG	GCAATGGTGT	TCACCATCGG	CAGTGCAGG	GCAGCACTCA
	TTCACTTGAT AAATGAATAT	TTATTAGCTG	GTTGGAGAGC	TAGAACCTGG	AGAGCTAGAA	CCTGGAGAAC
20	TAGAACCTGG AGGGCTAGAA	CCTGGAGAGG	CTAGAACCAA	GAAGGGCTAG	AACCTGGAGG	GGCTAGAACCC
	TAGAGAAGCT AAAACCTGAG	CTAGAACGCTG	GAGGACTAGA	ACCTGGAGGG	CTGGAATCTG	AAGGGCTAGA
	ACCTGGAGGG CTGGAAATCTG	GAGAGCTAGA	ACCTGGAGGG	CTAGAACCTG	GAGGGCTAGA	ACCTAGAACGG
	GCTAGAACCT GGACGGCTGG	AATCTGGAGA	GCTAGAACCT	GGAGGGCTAG	AACCTGGAGG	GCTAGAACCT
	AGAAGGGCTA GAACTGGAG	GGCTAGAAC	TGGCAGGTTA	GAACCTAGAA	GGGCTAGAAC	CTGGAGAGCC
25	AGAACCTGGA GGGCTAGAAC	CTGGAAGGGC	TAGAACCTGT	AGAGCTAGAA	CATGGAGAGC	TAGAACCCGG
	CAGGCTAGAA CCTCGCAAGC	TAGAACCTGG	AGGAATGAA	CCTGGAGGGC	TAGAACCTGG	AGAATGAGAA
	AAATTACAT GGCAAGAGC	CCATAAAATCC	TGACCAATCC	AACTCTGAAT	TTTAAAGCAA	AAGCGTGAAA
	AAAAAGATTCCCTCTTACC	CCCAACCCAC	TCTTTTTCC	CACCACCCAC	TCTCCTCTGC	CTCAGTAAGT
	ATCTGGAGGA AGAACAACAGG	TGAAAGAAGA	AGTAAAAAAC	ATTTAGTATT	AGTATTAGAA	TGAAGTCAA
	CTGTGCCACA CATCTGTAA	GAAAAAAAAA	AAAAAGAGGC	TGTGTTTGT	CACACAGGGC	AGTCATTCA
30	CACCAAGAGCA CGTGATGGTC	TGAGACTCTC	TTAGGAGCAG	AGCTCTGCCG	CAATGGCCAT	GTGGGGATCC
	ACACCTGGTC TGACGGGCAA	CTGAGTCTGC	GGGAGAAGAG	CGGCCCTATG	CATGGTGTAG	ATGCCCTGAT
	AAAGAACATC TGCTCTGTGA	AAGACTCAAT	GAGCTGTTAT	TGTGAAACAA	GGAAGCATT	CACATCCAAA
	CGAGAAAATC ATGTAACAT	GTGCTTTTC	TGTAGAGCAT	AATAAATGGA	TGAGGTTTT	GCAAAAAAAA
35	AAAAAAAGAAATGATAGA	CCGTCAATAA	TTTGTAAAT	GCTTTTAAAT	ATGAATGCTT	TAAGCCGGGT
	GCAGTGCCTC ACACTGTAA	TCCCAGCACT	TTGGAGCCGA	GGGGGTGGAT	TGTGTGAGGT	CAGGAGTTCG
	AGACCAACCT GGCCAACATG	GCAAAACCTC	ACTCTCTACC	AAAAATACAA	AAATTAGCCA	GGCATGGTGG
	CAGGCACCTG TGATCCCAGC	TACTCAGGAG	GCTGAGACAG	GAGAACCGCT	TGAACCCGGG	AGGCAAGGTT
	GCAGTGAGCC AAGATTACGC	CATTGTACTC	CAGCCTGGGT	GACAGAGAGA	GACTCCGTCT	CAAAAAAAA
40	AAAAAAAGAAATATTAC	GCTTCAAACA	CATGATCTCT	CACCACTGTT	GAATTTCTT	TCTATGAGCC
	CAGGAGGGCC TCTCAGAGAG	GAAAGCTCCT	AGGTCTTCCC	TTCCCTCTGC	AAACTCCCTG	CCTTGAAGGT
	TCAGAAGGAC TGTCTGTGCT	CGTTGCATCC	TTTGCAGTG	TCCAAACCT	GATCCCAGCT	GTGCTTAGGG
	GTCCTGCAA ACCCTTTCCA	GGTGTAAATT	ACCTCCCAC	TCATTTCTG	TTTACCAACT	CAGCTTTTG
	TTTCTAGTGTTGTTGATTCC	CTGAACTGAC	CGTTGTCTGA	TCTCCACCTC	CCAACCTGAAT	TAGGGGAGCT
45	GGGCTCTGG AACACCCAGGT	GCCGGGTGTT	GCAGAGTGGC	TGAAAGCTGG	GATGTGGCAG	ATCCGTGGCT
	ACATTATGC ACACACACAC	ACCCACATAC	CCACACATGC	ACACACACAC	ACACACCCGC	ACTCACACAC
	TTGGACATGC ATACACCACA	GCTTCCACA	CCCTCCTAG	ACAGGGTCA	CTTGGTATCC	TGGAGAGAGT
	GTGAAGTCCT GGAATGGAAA	GAGGGGGGAT	TAAGCCCCAC	CTCTAGCCAT	GGGACTGAGA	CAAGTCACCA
	CCAACCCATC TGCCCTTGT	TTACCTCTC	TGTGAGGCAA	GCACAGAGCC	CATGCCCTGCC	CCCCTGGATG
50	GGAGTGATGT GAAACTTGA	GGGCGGTCA	AGCAAGGGTC	GGGAATGGAA	GGCCCTTGGG	AAAAAAGGCC
	CTTTCAACTA GGGGCACAGA	GGAGGCCCTG	GGCTGAGAAC	TTGACAGCAC	CTTGTAAATTG	GTAAGCCAAG
	CCCGAAGGGGA CTGGAAATAC	TCAGATGTGT	CTGCTCCCT	TATTAGGTT	AAAGTCCTC	AAGACCCCTGT
	CTCCATCACA GTGCTCCAGT	CCAGACCCCT	CCTCTGAGCT	CCAGACCCCTG	CTGGACCCAA	CCAGCCCTAT

	GGGGTGCAT	CCCCCACCTGC	CTGGAATTCT	CCAAAGAACCC	TCCCCTTAA	CAGTTCCAGC	CTTTAACAGT
	TCCAGCTAA	ACACATGACC	TTTCTCCTCT	AAATCAGCCC	CCCATCTCG	CCTTGCAAGG	AGATGGAAGC
	CATGACACCT	GCC'CGCCCC	TGTCCCTCAC	CCATCCATGT	CCAATCAAGC	ACTAGGCATG	TCAGGTTAC
	CCTCTAAACT	CCTCTGGAAT	CCAGTCTCTC	AGTCTCCATC	ATCCCAGGTC	GAAGCTAATG	GGCTAACTGG
5	TCCTTGCTTC	CACTCTACCC	CCACTGCACT	CCTGACTTCC	TGAGCAGCAG	CCAGGGCCTA	ATCGATATT
	ACACCAAGCG	CCAACCTGAC	TGAGATATCC	TCCTGCACCA	TCATCCCTCC	ACCCCTGTTA	GTTCTGCTCA
	CCCTCAGTGT	TCTCATCAAT	AATCCACTCC	CCTCACAGGC	GCGTTGGGA	CCCCATGTT	TATGCTCTCA
	CAGGACCTT	TGCTTGATTT	TTCACTGTAC	TTAGGTCACT	TTGCAGTTAT	TAAGTGACTG	AGCAATGTCT
	GGCTTCTCCA	GTACACTGTC	AGCTCCTAGC	CATTGTATAC	CTAGCACCGC	TGTGTTGGAG	CACGTGACAA
10	ACGTCCAGTG	AGTCAGGGAC	TCAGCAGTCT	CCATTCTCC	GCCCTGCTGG	AGAATGCGTG	TATTTGGCAA
	TCCCCAGCCC	CTGTGCCATC	TAACCATCTT	TTCTTCTCTG	TTCAAGCCAG	GTGTGGCCTC	ACTCACATCC
	CACTCTGAGT	CCAATGTT	TCTCCCTGGA	AGATATCAAT	TTTCTGTCT	GTTCTGAGG	ACTCCGTGCC
	CACCACGGCC	TCTITCAGGT	GAGTCAAAGG	GATTCCCTAG	TTCACTAGTT	AGGGGAGGTG	GGCAGACACC
	CTGGAGAACT	CCCTGGAAAG	CTCAACTCTC	ATGCCCGGA	CAACAGTTGA	AGGAACCATG	GTGATGTTAA
15	GCCCAAAGAC	AAAACCTCTC	AGGTGTCCAA	GTCCCTGTTG	GAATCTGGG	AGCAGAGGGA	ATGTTCTGTG
	GTCTAGAGGA	AGAAGGGCTC	AGGGAGGAGA	AGGGCACATT	CCTGGTTGTT	ATATGTTCT	ATCTATCCCA
	GATGAACCTG	GAAGTGAGG	GAAGAGAGT	AAACATTTAA	GTAAATACCC	AGTGGATCAG	ACAGCAATGT
	GCCAGATTGC	CTTC GAAACA	AAATATCTCC	AACACATGGC	TGACATTGG	TGGGAGATCA	GAACACCCCTA
	AAGAGAGAAT	TTAAGGGGAG	GGGGAGGAGG	ACCTGAGCCA	GAGTAGAACG	AGAGGATAGG	GAGATCTGTT
20	CTTGGGGACA	GCATTGCAA	GAAACAAGG	TGAGGGGTCC	ACTCCAACCT	CTCCACCTG	CTGCAGGTGC
	TGCCTATGAT	GAACATGAGC	AGATGGCCAT	CTCAGCTGGG	GCCACAGTGC	ACTGGACCTA	TAGTTTCCAA
	TTCCGCACTC	AGCAAGGCATC	TTTCTGTGTA	TCCGATGGCT	TCTCAGAGCC	AGGGATGGGC	CAGGATCCAT
	CCCCTGGCT	ACTCTTTGTC	TGAGAAATT	ATAAGCAGCA	TCTGGTCTA	TACTTGGTC	TCTAGTGAGT
	TAGCTCATGA	AAGATGATAG	ACTCTCCAAG	CCAGGGGTAT	GCAGGAAATG	GGTTTCTGT	AGCTACAGAA
25	ATGGGGTTGA	GGGTGGACC	AAGGGACTAC	CCAGGGGAAG	TCTTACCTTC	AGAGGACTCT	GGAAAGGAGG
	CTGCAAGTTT	TCATGGGTCA	AGAATTCAAG	GCCCAGTAGA	GACAGTTAT	CTCTGTTCCA	AGATGCTG
	GGCCTTGGTT	GGAAAGATTCA	AAGGCTAGGA	AACCAGGAGC	CACCAAAAGC	GTAACTGGGG	CCAGAGGATC
	CACTTCAAG	GTGCAAGT	GGTCCCCCCC	ATGTGGCTGC	TTGAGTATCC	TCACATGGCG	GTCACATCC
	TTCCAAGTAA	GCAATGCAAA	AGGCCAAGAA	AGATGCTGCA	AAGATGTTAT	GACCTAGCCT	CAGAAATCAC
30	ACACCATCCC	TGCCACCATT	AGTAAGAAGT	CCAGCCCACG	TCCAGGAGAA	GAGGAAGCAG	ATTCCCTCC
	TTGAAATGAA	GAATATCAAG	TAATTCCGGG	GGCATATGAA	AGCCACCACA	CACCACAGGG	ATCTTTTAG
	AGCATACTTC	TTATACCATC	ACTGTAGTTC	CTTAAGACTC	AGGGGCAAAG	CCTCACTTCC	TTAGCACCC
	GTGAAGACCA	CGCCTACTCC	CTCACTCAAC	CTCTGCTAC	TTCCCACCTC	TCCTGTCCAA	CATCTAGTGT
	CACTTCCAG	AAACATACCAA	CAGCTCCCC	AGTTCTGTG	CTCTGCTCAG	GCTGTTCCCC	CTGCCTGGTC
35	CACTTGTCC	CCTCTTGTC	CGGTCAAAT	GCTTCTTATC	CTTCAAGACC	CAGCTCTAGA	GTCACCTCCA
	ACCCCTTACC	CACCAGCCCC	CTCTCCAAGT	CTGTGTCCCA	CAACCCCCCT	GCTCCCTCCA	GGGCACCC
	CACCCCTCTGG	GCCACAGTTG	TCAGGAGTC	GGCAGGGCAG	GGGCCGGGTG	GTGTCTTCTT	TGTGTTCTG
	CACTCAGGGC	AGAGCTCAGC	ACAGAGCAGA	CGCTAAAAAA	ACATTTAAAG	GATAGAAGCA	TTGATTGAGT
	GGTCCCCCAG	TCTGGCTCCA	GGATGCCAGC	CAGCTGCTCC	TAGAAGCAA	CGGACTTTTC	CTGGGAAATC
40	CCAGAGGTGA	TGA' CAGTAA	TCTCTCCCGT	GACTCGTAGT	TCAGCTCTTC	CTCCATGAGC	CTGACTATCA
	GTGGACCTTC	CAGAAAGAGC	CCCTTTCC	TCTCTCACCC	ACAGCACAGG	GCACTGGGAA	AATGCCCAAT
	GAGTCCTGCC	TCTCGTTGT	GCTTTGGACT	TTTCAGTGTG	TCTCGCATCC	ACTCTCAAC	TTGAATGTT
	CAACAGCCAT	GAAGAAAGAA	ATGCAAAGCG	ATTAGGATG	AGAGCAATAC	CCTACTCCAA	AGAAGGCAAC
	ATAGAAGCTC	AGAGAGATCA	AGCAATTGTC	CCAAGACCAC	ACAGCTAGGA	GTTGAACTCA	TGGCTGTCCA
45	AGCCCCATGC	CTCTGCTGAA	GGTAGAGATG	AATTACAGCA	ACAAGTCTAG	AAAGGTGCCT	GCCCTATGGT
	CTGTGAGTCT	TGCTTAAGAA	TGAAAGAGGA	GCCAGTGGGT	TAAAGATGAG	GTCACCAACA	ACGGTGGTGT
	TGGAGTTAC	CACTGATAAT	AAGGGTCAA	AATGAAATT	ACTAATGTT	ATTGAGCCTA	GTGCACTGCC
	TGGGGCATT	TGCACTTGT	CTCTGATCC	TATGACAACC	CTGAGAGGTA	GTGGTTTAA	CTGCCATGTT
	ACAGGTGAGG	TCATTGTGGT	TCAAGGACGT	TAAGTAACCT	CCCCAGCGTG	ACACGGCTTA	TAAGTAAGGC
50	AGCCAGGATG	TGAACCCAGT	AGGACTATCT	GGCTGCAAAG	TCCCCACCC	CCTCGCCATC	TGTATCCTCC
	AATCACTTCA	GTGCTTGCT	GCATAGAAGG	TAACGGAAAT	CACGATGCCA	CAGACTGTCC	AGGAAGACAG
	AAACTAGGCA	GATGGGCTGG	CCATGGCTC	CAAGCCAGAC	TGGAATCTCC	AGGTCTGGAA	TGATATCATT

	TTTCTCTTT	AATAAATTAA	CTCACCCACC	ACACGGCTTT	GAGAGGCTCA	AAGTTGACCA	ACTCCCTTGG
	GAGGGCCCCG	GTGATAAGG	AAGGAACGTG	AATCCTCCCA	TCACGGAAGC	TTCAAGGAGG	TCAAGGGTCC
5	AACACTTGAG	ATTGTTAGTG	CTGTTGGTGG	ATACTGGCCA	AGGAAATATC	CCAGTGGAGC	CTCGAGATGA
	AGAACATGAG	GCCCCGTTT	AGAACCAAGG	ATCAGAGGGG	GCTCTGTAAG	ACCCAGGGGA	GTCAGGTGCA
	CTGGAGCGCG	GGCATGCAGA	AAACAGCCTG	AGCTCCACCT	CGGCTCTCC	TTGTCCTGGC	TGGTTGTCT
	TAACCCCTGT	CTCCTCTGG	ACCAGTTTT	GTCTTCCCT	TGTGACCGCT	GAGGGTAAC	AGCCTCTTC
10	CACTTTCTT	CAGGCCGAC	ATGCTCAATG	TCACCTTGCA	AGGGCCCAC	CTTAACGGGA	CCTTGCCCA
	GAGCAAATGC	CCCCAAGTGG	AGTGGCTGGG	CTGGCTCAAC	ACCATCCAGC	CCCCCTTCCT	CTGGGTGCTG
	TTCGTGTGG	CCACCCCTAGA	GAACATCTT	GTCTCAGCG	TCTTCTGCCT	GCACAAGAGC	AGCTGCACGG
15	TGGCAGAGAT	CTACCTGGGG	AACCTGGCCG	CAGCAGACCT	GATCCTGGCC	TGCGGGCTGC	CCTTCTGGC
	CATCACCATC	TCCAACAATC	TCGACTGGCT	CTTGGGGAG	ACGCTCTGC	GCGTGGTGA	TGCCATTATC
	TCCATGAACC	TGTACAGCAG	CATCTGTTT	CTGATGCTGG	TGAGCATCGA	CCGCTACCTG	GCCCTGGTGA
	AAACCATGTC	CATCGGCCGG	ATGCGCCGG	TGCGCTGGGC	CAAGCTCTAC	AGCTGGTGA	TCTGGGGGTG
	TACGCTGCTC	CTGAGCTCAC	CCATGCTGGT	GTTCGGACC	ATGAAGGAGT	ACAGCGATGA	GGGCCACAAC
20	GTCACCGCTT	GTGTACATCAG	CTACCCATCC	CTCATCTGGG	AAGTGTTCAC	CAACATGTC	CTGAATGTCG
	TGGGCTTCCT	GCTGCCCCTG	AGTGTATCA	CCTTCTGCAC	GATGCAGATC	ATGCAGGTGC	TGCGGAACAA
	CGAGATGCAG	AAGTCAAGG	AGATCCAGAC	GGAGAGGAGG	GCCACGGTGC	TAGTCCTGGT	TGTGCTGCTG
	CTATTATCA	TCTGCTGGCT	GCCCTTCCAG	ATCAGCACCT	TCCTGGATAC	GCTGCATCGC	CTCGGCATCC
	TCTCCAGCTG	CCACGACGAG	CGCATCATCG	ATGTAATCAC	ACAGATCGCC	TCCTTCATGG	CCTACAGCAA
25	CAGCTGCCTC	AACC'CACTGG	TGTACGTGAT	CGTGGGCAAG	CGCTCCGAA	AGAAGTCTTG	GGAGGTGTAC
	CAGGGAGTGT	GCCAGAAAGG	GGGCTGCAGG	TCAGAACCCA	TTCAAGATGGA	GAACCTCATG	GGCACACTGC
	GGACCTCCAT	CTCCGTGGAA	CGCCAGATT	ACAAACTGCA	GGACTGGCA	GGGAGCAGAC	AGTGAGCAA
	CGCCAGCAGG	GCTGCTGTGA	ATTGTGTA	GGATTGAGGG	ACAGTTGCTT	TTCAGCATGG	GCCCAGGAAT
	GCCAAGGAGA	CATCTATGCA	CGACCTTGGG	AAATGAGTTG	ATGTCTCCGG	TAAAACACCG	GAGACTAATT
30	CCTGCCCTGC	CCAATTTCAG	AGGGAGCATG	GCTGTGAGGA	TGGGGTGAAC	TCACGCACAG	CCAAGGACTC
	CAAAATACA	ACAGCATTAC	TGTTCTTATT	TGCTGCCACA	CCTGAGCCAG	CCTGCTCC	CCCAGGAGTG
	GAGGAGGCCT	GGGGGCAGGG	AGAGGAGTGA	CTGAGCTTCC	CTCCCGTGTG	TTCTCCGTCC	CTGCCCCAGC
	AAGACAACCT	AGATCTCCAG	GAGAACTGCC	ATCCAGCTTT	GGTGCAATGG	CTGAGTGCAC	AAGTGAGTTG
	TTGCCCTGGG	TTTCTTAAAT	CTATTCACT	AGAACTTGA	AGGACAATT	CTTGCACTAA	TAAAGGTTAA
35	GCCCTGAGGG	GTCCCTGATA	ACAACCTGGA	GACCAGGATT	TTATGGCTCC	CCTCACTGAT	GGACAAGGAG
	GTCTGTGCCA	AAGAAGAACATC	CAATAAGCAC	ATATTGAGCA	CTTGCTGTAT	ATGCAGTATT	GAGCACTGTA
	GGCAAGAGGG	AAGAAAGAGA	AGGAGCCATC	TCCATCTGA	AGGAACTCAA	AGACTCAAGT	GGGAACGACT
	GGGCACTGCC	ACCACCAGAA	AGCTGTTCGA	TGAGACGGTC	GAGCAGGGTG	CTGTTGGTGA	TATGGACAGC
	AGAAGGGGGA	GCCAGGTTCC	AGCTCACCAA	TACTATTGCA	CACCACCTGT	CCTGCCTC	CTGCAGAAA
40	CAGCCTGAGC	TCCACCTCGG	CTTCTCTTG	CCCTGGCTGG	TTGTCCTAA	CCCCGTCTC	CTTCTGGACC
	AGTTTTGTC	CTTCCCTTGT	GACCCCTGAGG	GGTAACAGCC	TCTTTCCAC	TTTCTTCAG	CGCCGACATG
	CTCAATGTCA	CCTTCAAGG	GCCCCACTCT	AACGGGACCT	TTGCCCGAG	CAAATGCC	CAAGTGGAGT
	GGCTGGCTG	GCTAACACC	ATCCAGCCCC	CCTTCCTCTG	GGTGCTGTT	GTGCTGGCCA	CCCTAGAGAA
	CATCTTGTC	CTCAACGTCT	TCTGCCGTCA	CAAGAGCAGC	TGCACGGTGG	CAGAGATCTA	CCTGGGAAC
45	CTGGCCCGAG	CAGACCTGAT	CTTGGCCTGC	GGGCTGCCCT	TCTGGGCCAT	CACCATCTCC	AACAACTTCG
	ACTGGCTCTT	TGGGGAGACG	CTCTGCCCG	TGGTGAATGC	CATTATCTCC	ATGAACCTGT	ACAGCAGCAT
	CTGTTTCTG	ATGCTGGTGA	GCATCGACCG	CTACCTGGCC	CTGGTGAAA	CCATGTCCAT	GGGCCGGATG
	CGCGCGTGC	GCTGGCCAA	GCTCTACAGC	TTGGTATCT	GGGGGTGAC	GCTGCTCTG	AGCTCACCCA
	TGCTGGTGT	CCGGACCATG	AAGGAGTACA	GCGATGAGGG	CCACAACTGC	ACCGCTGTG	TCATCAGCTA
50	CCCACCCCTC	ATCTGGGAAG	TGTTCACCAA	CATGCTCCTG	AATGTCGTGG	GCTTCCTGCT	GCCCCCTGAGT
	GTCATCACCT	TCTGACAGAT	GCAGATCATG	CAGGTGCTGC	GGAACAACGA	GATGCAGAAG	TTCAAGGAGA
	TCCAGACGGA	GAGGAGGGCC	ACGGTGTAG	TCCTGGTTGT	GCTGCTGCTA	TTCATCATCT	GCTGGCTGCC
	CTTCCAGATC	AGCACCTTCC	TGGATACGCT	GCATGCCCTC	GGCATCCTCT	CCAGCTGCCA	GGACGAGCGC
	ATCATCGATG	TAATCACACA	GATCGCCTCC	TTCATGGCCT	ACAGCAACAG	CTGCCTCAAC	CCACTGGTGT
	ACGTGATCGT	GGGCAAGCGC	TTCCGAAAGA	AGTCTTGGGA	GGTGTACCA	GGAGTGTGCC	AGAAAGGGGG
	CTGCAGGTCA	GAACCCATT	AGATGGAGAA	CTCCATGGGC	ACACTGCGGA	CCTCCATCTC	CGTGGAACGC
	CAGATTCA	AACTGCAGGA	CTGGGCAGGG	AGCAGACAGT	GAGCAAACGC	CAGCAGGGCT	GCTGTGAATT

	TGTGTAAGGA	TTGAGGGACA	GTTGCTTTTC	AGCATGGGC	CAGGAATGCC	AAGGAGACAT	CTATGCACGA
	CCTTGGAAA	TGAGTTGATG	TCTCCGGTAA	AACACCGGAG	ACTAATTCC	GNCTGCCCCA	ATTTTGAGG
	GAGCATGGCT	GTGAGGGATGG	GGTGAACCTCA	CGCACAGCCA	AGGACTCCAA	AATACAACA	GCATTACTGT
5	TCTTATTGTC	TGCCACACCT	GAGCCAGCCT	GCTCCTTCCC	AGGAGTGGAG	GAGGCCTGGG	GGCAGGGAGA
	GGAGTGACTG	AGCCTCCCTC	CCGTGTGTT	TCCGTCCTG	CCCCAGCAAG	ACAACCTAGA	TCTCCAGGAG
	AACTGCCATC	CAGCTTGGT	GCAATGGCTG	AGTCACAAAG	TGAGTTGTTG	CCCTGGTTT	CTTTAATCTA
	TTCAGCTAGA	ACTITGAAGG	ACAATTCTT	GCATTAATAA	AGGTTAACCC	CTGAGGGGTC	CCTGATAACA
10	ACCTGGAGAC	CAGGATTITA	TGGCTCCCT	CACTGATGGA	CAAGGGAGGT	CTGTGCCAA	GAAGAACCCA
	ATAAGCACAT	ATTCAAGCACT	TGCTGTATAT	GCAGTATTGA	GCACGTAGG	CAAGAGGGAA	GAAAGAGAAG
	GAGCCATCTC	CATCTTGAAG	GAACCTAAAG	ACTCAAGTGG	GAACGACTGG	CACTGCCACC	ACCAGAAAGC
	TGTCGACGA	GACCGTCGAG	CAGGGTGCTG	TGGGTGATAT	GGACAGCAGA	AGGGGGAGAC	CAAGGTTCCA
	GCTCAACCAA	TAATATTGTC	ACAACCACCT	GTCCCTGCC	CAGTTCCCTC	TTCTGTAACA	TGAAGTCGTT
15	GTGAGGGTTA	AAGGCAGTAA	CAGGTATAAA	GTACTTAGAA	AAGCAAAGGG	TGCTACGTAC	ATGTGAGGCA
	TCATTACGCA	GACGTAACTG	GGATATGTTT	ACTATAAGGA	AAAGACACTG	AGGTCTAGA	TGATCCTATC
	ACAACCTGAG	AGTAGTTTTT	ACTCCATT	CAGGTGAGGT	CATTGTTGTT	CAAGGACGTT	AAGTAACCTC
	CCCAGCTCAC	ACGGCTTATA	AGTAAGGCAG	CCAGGATGTG	AACCCAGTAG	GAATATCTGG	CTGCAAAGTC
	CCCACCTCC	CTCCCCTATC	GTATCCTCA	ATCATCTCA	GTGCTTGCT	GATAGAACGGT	ACGGAAATAC
	GATGCCACAG	ACTCTCCAGG	AAGACAGAAA	CTAGGCAGAT	GGGCTGGCA	TGGCTCCAA	GCCAGACTGG
20	AATCTCCAGG	TCTCGAATGA	TATCATTTT	CTCTTTAAT	AAATTAACTC	ACCCACCACA	CGGCTTTGAG
	AGGCTCAAAG	GTGACCAACT	CCCTTGGGAG	GGCCCCGGTT	GATAAGGAAG	GAATGTGAAT	CCTCCCATCA
	CGGAAGCTTC	AAGGAGGTCA	AGGGTCCAAC	ACTTGAGATT	GTTAGTGTG	TTGGTGGATA	CTGCAGAATA
	TCCAGTGGAG	CCTCAGATGA	AGAACATGAG	GCCCCGTTA	GATCCAAGGA	TCAGAGGGGG	CTCTGTAAGA
	CCCAGGGGAG	TCAGGTGAC	TGGAGCGCG	GCTCAGAAA	ACAGCCTGAG	CTCCACCTCG	GCTTCTCC
25	GCCCTGGCTG	GTCCTCCTA	ACCCCTGTCT	CCTCTGGAC	CAGTTTTGT	CCTTCCCTG	TGACCTGAGG
	GGTAACAGCC	TCTTTCCAC	TTTCTTCAG	CGCCGACATG	CTCAATGTCA	CCTTGAAGG	GCCCACCTC
	AACGGGACCT	TTGCCAGAG	CAAATGCC	CAAGTGGAGT	GGCTGGGTG	GCTCAACACCC	ATCCAGCCCC
	CCTTCCTCTG	GGTGTGTT	GTGCTGGCA	CCCTAGAGAA	CATCTTGT	CTCAGCGTCT	TCTGCCTGCA
	CAAGAGCAGC	TGCA CGGTGG	CAGAGATCTA	CCTGGGGAC	CTGGCCGAG	CAGACCTGAT	CCTGGCCTGC
30	GGGCTGCCCT	TCTGGGCCAT	CACCATCTC	AAACAACCTG	ACTGGCTT	TGGGGAGACG	CTCTGCCGCG
	TGGTGAATGC	CATIATCTCC	ATGAACCTGT	ACAGCAGCAT	CTGTTTCTG	ATGCTGGTGA	GCATCGACCG
	CTACCTGGCC	CTGGTAAAAA	CCATGTCCAT	GGGCGGATG	CGCGCGTGC	GCTGGGCCAA	GCTCTACAGC
	TTGGTGAATCT	GGGGGTGTAC	GCTGCTCTG	AGCTCACCA	TGCTGGTGT	CCGGACCATG	AAGGAGTACA
	GCGATGAGGG	CCACAAACGTC	ACCGCTTGTG	TCATCAGCTA	CCCATCCCTC	ATCTGGGAAG	TGTTCACCAA
35	CATGCTCCTG	AATCTCGTGG	GCTTCTGTG	GGCCCTGAGT	GTCATCACCT	TCTGCACGAT	GCAGATCATG
	CAGGTGCTGC	GGAAACAACGA	GATCAGAAG	TTCAAGGAGA	TCCAGACGGA	GAGGAGGGCC	ACGGTGCTAG
	TCCTGGTTG	GCTGCTGCTA	TTCATCATCT	GCTGGCTGCC	CTTCCAGATC	AGCACCTTCC	TGGATACGCT
	GCATCGCCTC	GGCATCCTCT	CCAGCTGCCA	GGACGAGCGC	ATCATCGATG	TAATCACACA	GATGCCTCC
	TTCATGGCCT	ACAGCAACAG	CTGCCTCAAC	CCACTGGTGT	ACGTGATCGT	GGGCAAGCGC	TTCCGAAAGA
40	AGTCTGGGA	GGTGTACCG	GGAGTGTGCC	AGAAAGGGGG	CTGCAGGTCA	GAACCCATTC	AGATGGAGAA
	CTCCATGGGC	ACACTGCGGA	CCTCCATCTC	CGTGGAACGC	CAGATTACA	AACTGCAGGA	CTGGCAGGG
	AGCAGACAGT	GAGCAACACG	CAGCAGGGCT	GCTGTGATT	TGTGTAAGGA	TTGAGGGACA	GTTGCTTTTC
	AGCATGGGCC	CAGCAATGCC	AAGGAGACAT	CTATGCACGA	CCTTGGAAA	TGAGTGTGTA	TGTCTCCGGT
	AAAACACCGG	AGACTAAATC	CTGCCCTGCC	CAATTTCGA	GGGAGCATGG	CTGTGAGGAT	GGGGTGAACCT
45	CACGCACAGC	CAACGACTCC	AAAATCACAA	CAGCATTACT	GTTCTTATT	GCTGCCACAC	CTGAGCCAGC
	CTGCTCCCTC	CCAGGAGTGG	AGGAGGCC	GGGGAGGGAG	AGGAGTGACT	GAGCTCCCT	CCCGTGTGTT
	CTCCGTCCCT	GCCCCAGCAA	GACAACCTAG	ATCTCCAGGA	GAACGCCAT	CCACGTTTGG	TGCAATGGCT
	GAGTGCACAA	GTGAGTTGTT	GCCCTGGGTT	TCTTAATCT	ATCAGCTAGA	ACTTGAAAGG	ACAATTCTT
	GCATTAATAA	AGGTTAACCC	CTGAGGGGTC	CCTTGATAAC	AACCTGGAGA	CCAGGATTT	ATGGCTCCCC
50	TCACTGATGG	ACAAGGAGGT	CTGTGCCAA	GAAGAATCAA	TAAGCACATA	TGAGCACTTC	TGTATATCAG
	TATTGAGCAC	TGTAGGCA	ATGTTCTCTC	CCTGGAAGAT	ATCAATGTTT	CTGTCGTTT	GTGAGGACTC
	CGTGCCACC	ACGGCCTCTT	TCAGCGCCGA	CATGCTCAAT	GTCACCTTGC	AAGGGCCAC	TCTTAACGGG
	ACCTTGCCC	AGAGCAAATG	CCCCCAAGTG	GAGTGGCTGG	GCTGGCTAA	CACCATCCAG	CCCCCTTCC

	TCTGGGTGCT	GTTCGTGCTG	GCCACCCCTAG	AGAACATCTT	TGTCCCTCAGC	GTCTTCTGCC	TGCACAAGAG
	CAGCTGCACG	GTGGCAGAGA	TCTACCTGGG	GAACCTGGCC	GCAGCAGACC	TGATCCTGGC	CTGCGGGCTG
	CCCTTCTGGG	CCATCACCAT	CTCCAACAAC	TTCGACTGGC	TCTTGGGGA	GACGCTCTGC	CGCGTGGTGA
5	ATGCCATTAT	CTCCATGAAC	CTGTACAGCA	GCATCTGTTT	CCTGATGCTG	GTGAGCATCG	ACCGCTACCT
	GGCCCTGGTG	AAAACCATGT	CCATGGGCCG	GATGCGCGGC	GTGCGCTGGG	CCAAGCTCTA	CAGCTTGGTG
	ATCTGGGGGT	GTACGCTGCT	CCTGAGCTCA	CCCATGCTGG	TGTTCCGGAC	CATGAAGGAG	TACAGCGATG
	AGGCCACAA	CGTCACCGCT	TGTGTCATCA	GCTACCCATC	CCTCATCTGG	GAAGTGTCA	CCAACATGCT
10	CCTGAATGTC	GTGGGCTTCC	TGCTGCCCT	GAGTGTATC	ACCTTCTGCA	CGATGCAGAT	CATGCAGGTG
	CTGCGGAACA	ACGAGATGCA	GAAGTTCAAG	GAGATCCAGA	CGGAGAGGAG	GGCCACGGTG	CTAGTCCTGG
	TTGTGCTGCT	GCTATTCTATC	ATCTGCTGGC	TGCCCTTCCA	GATCAGCAC	TTCTGGATA	CGCTGCATCG
	CCTCGGCATC	CTCTCCAGCT	GCCAGGACGA	GCGCATCATC	GATGTAATCA	CACAGATCGC	CTCCTTCATG
	GCCTACAGCA	ACAGCTGCCT	CAACCCACTG	GTGTACGTGA	TCGTGGGAA	GCGCTTCCGA	AAGAAGTCTT
15	GGGAGGTGTA	CCAGGGAGTG	TGCCAGAAAG	GGGGCTGCAG	GTCAGAACCC	ATTCAAGATGG	AGAAACTCCAT
	GGGCACACTG	CGGACCTCCA	TCTCCGTGGA	ACGCCAGATT	CACAAACTGC	AGGACTGGGC	AGGGAGCAGA
	CAGTGAGCAA	ACGCCAGCAG	GGCTGCTGTG	AATTGTGTA	AGGATTGAGG	GACAGTTGCT	T ATGTTCTCTC
	CCTGGAAGAT	ATCAATGTTT	CTGTCTGTT	GTGAGGACTC	CGTGCCCCACC	ACGGCCCTT	TCAGCGCCGA
	CATGCTCAAT	GTCACTTGC	AAGGGCCAC	TCTTAACGGG	ACCTTGCCTC	AGAGCAAATG	CCCCCAAGTG
20	GAGTGGCTGG	GCTGGCTCAA	CACCATCCAG	CCCCCCTTCC	TCTGGGTCT	GTTCGTGCTG	GCCACCCCTAG
	AGAACATCTT	TGTCCTCAGC	GTCTTCTGCC	TGCACAAGAG	CAGCTGCACG	GTGGCAGAGA	TCTACCTGGG
	GAACCTGGCC	GCAGCAGACC	TGATCCTGGC	CTGCGGGCTG	CCCTTCTGGG	CCATCACCAT	CTCCAACAAC
	TTCGACTGGC	TCTTGGGGG	GACGCTCTGC	CGCGTGGTGA	ATGCCATTAT	CTCCATGAAC	CTGTACAGCA
	GCATCTGTTT	CCTGATGCTG	GTGAGCATCG	ACCGCTACCT	GGCCCTGGTG	AAAACCATGT	CCATGGGCCG
25	GATGCGCGGC	GTGCGCTGGG	CCAAGCTCTA	CAGCTGGTG	ATCTGGGGT	GTACGCTGCT	CCTGAGCTCA
	CCCATGCTGG	TGTCCGGAC	CATGAAGGAG	TACAGCGATG	AGGGCCACAA	CGTCACCGCT	TGTGTATC
	GCTACCCATC	CCTCATCTGG	GAAGTGTCTA	CCAACATGCT	CCTGAATGTC	GTGGGCTTCC	TGCTGCCCT
	GAGTGTATC	ACCTTCTGCA	CGATGCAGAT	CATGCAGGTG	CTGCGGAACA	ACGAGATGCA	GAAGTTCAAG
	GAGATCCAGA	CGGAGAGGAG	GGCCACGGTG	CTAGTCTGG	TTGTGCTGCT	GCTATTCTATC	ATCTGCTGGC
30	TGCCCTTCCA	GATCAGCAC	TTCCCTGGATA	CGCTGCATCG	CCTCGGCATC	CTCTCCAGCT	GCCAGGACGA
	GCGCATCATC	GATCTAATCA	CACAGATCGC	CTCCCTCATG	GCCTACAGCA	ACAGCTGCC	CAACCCACTG
	GTGTACGTGA	TCGTGGGCAA	GCGCTTCCGA	AAGAAGTCTT	GGGAGGTGTA	CCAGGGAGTG	TGCCAGAAAG
	GGGGCTGCAG	GTCAAGACCC	ATTCAAGATGG	AGAAACTCCAT	GGGCACACTG	CGGACCTCCA	TCTCCGTGGA
35	ACGCCAGATT	CACAAACTGC	AGGACTGGGC	AGGGAGCAGA	CAGTGAGCAA	ACGCCAGCAG	GGCTGCTGTG
	AATTGTGTA	AGGAATGAGG	GACAGTTGCT	T GCCCTTCAA	GATGAGCTGT	TCCCAGGCC	ACTCCAGCTC
	TGGCTCTGG	GCTCCGAGGA	GGGGTGGGG	CGGTGGGGAC	ATCAGGCTGC	CCCGCAGTAC	CAGGGAGCGA
40	CTGAAGTGCC	CATGCCGCTT	GCTCCGGAGA	AGGTGGGTG	CGGGCAGGGG	CTGCTCCAGC	CGCCTCACCT
	CTGCTGGGAG	GACAAACTGT	CCCAGCACAG	AGGGAGGGAG	GGAGGGCAGG	CAGCGGGAG	AAGTTCCCT
	GTGGCTGTG	GGAGTT	GCCCTTCAA	GATGAGCTGT	TCCCAGGCC	ACTCCAGCTC	TGGCTCTGG
	GCTCCGAGGA	GGGCTGGGG	CGGTGGTGAC	GGTGGGGACA	TCAGGCTGC	CCGCACTTAC	AGGGAGCGAC
45	TGAAGTGCCC	ATGCCGCTT	CTCCGGAGAA	GGTGGGGTGC	GGGCAGGGGC	TGCTCCAGCC	GCCTCACCTC
	TGCTGGGAGG	ACAAACTGTC	CCAGCACAGA	GGGAGGGAGG	GAGGGCAGGC	AGCAGGGAGA	AGTTTCCCTG
	TGGTCGTGGG	GAGTI	GAGCTCTCA	ATATTCTAGT	GAAAGCTATA	GATGAGGCTC	CATAGGGAT AAAGCACAGA
	CACACCTTT	CAGAGGGCTT	GTGGACTCTG	GGCAGCCTGT	CCATAGACCT	CTGTCCCCAA	CTGGCAAGTC
	AGGAAACTCC	AGATTAAGGA	GCCCCAATGT	GGTGAACAG	CCAGGTGCAC	AGATGAGTC	ACCACACAGC
50	CAGGCCAGGG	AGGGCCTTCA	CTCAAGAGCC	TACAGCCAGT	TCACAGCCAA	GCCAGGGCTA	GCGCCAGGCC
	ACCCATAAAC	TGATCTGAGA	CTCTGTTCC	CTGCTCCAT	GATGATGGGA	TCAGGCTTGA	TTGCTGGTTT
	GTAGGCTGT	TATGAAATCAA	GTCACAGGGGA	AGAGGAGCTG	ATGGGCTGGG	GGGACGTCCT	CTGGCCCTCC
	TGTCTCTTCC	CCAGATCCAC	TGGGCCACT	CTTATCTGTT	CTCTTCTGAA	GGAAAGGTTT	TAAGGCTTC
	AAAAAAATG	TTTIGAAAGT	CCCTGCCCTT	TCCAGCTCCT	ACCGTCTCAG	CCCTGGGAGT	GTAAAGTGT
	GCAGATAGTT	AGTAAGTCTT	TGAGAAAAC	TGAGAAAGCC	AGCCTGAGCC	TTGACATGGG	AGAAACCTCC
	GCCATACATC	TCCGAGAAA	CGGCCGCGTG	TCTCAGGGGA	GCGCAAACAC	CCGTACCCAG	GAAACAGGAC
	AGCTTCTGCC	ACTGTCGCC	TTGGGAGCCG	TACGTGGCAT	GACAAAGAAA	TCCCAGGACT	CCGCCTGCC
	ACCTGGCCAC	CCTCTGTTA	CACCTTCCCG	GTAAACGCC	ACTGTTACA	TCCAAAAC	AGACACAAAA

TAACCACCTC AAGAAGATAA ATAATGATAA GAAATAAATG TTACGCGAGG CAAATTATT CACATGGGGC
 TTCCCAGGCC ACTITGTGGT CAGCCGGAG GGACGTTTT GCCGTCCCAC GACTCCAACG GGCAGCCGGG
 CCTACGAAA CATC-GAAATC TTCCAAGAGC CTCCCTGGCC CCCAGGGCTC AGAGGGTGGC AGAGCAGGAGA
 5 GCAGAAGGTGG CGCGAGCCTT CCCGGCCCCA CAGCCAGCCT GGCTCCAGCT GGGCAGGAGT GCAGAGCTCA
 GCTGGAGGCG AGGGGGAAGT GCCCAGGAGG CTGATGACAT CACTACCCAG CCCTCAAAG ATGAGCTGTT
 CCCGCCCA CTCCAGCTCT GGCTTCTGGG CTCCGAGGAG GGGTGGGAC GGTGGTGACG GTGGGGACAT
 CAGGCTGCC CGCA GTACCA GGGAGCGACT GAAGTGCCCA TGCCGCTTGC TCCGGAGAAG GTGGGTGCCG
 GGCAGGGCT GCTCAGCCG CCTCACCTCT GCTGGGAGGA CAAACTGTCC CAGCACAGAG GGAGGGAGGG
 10 AGGGCAGGCA GCGG 3GAGAA GTTCCCTGT GGTCGTGGGG AGTTGGGAAA AGTCCCTC CTTCCGGAGG GAGG
 CAGATTCACA AACTGCGAGA CTGGGCAGGG AGCAGACAGT GAGCAAACGC CAGCAGGGCT GCTGTGAATT
 TGTGTAAGGA TTGAGGGACA GTTGTCTTC AGCATGGGC CAGGAATGCC AAGGAGACAT CTATGCACGA
 CCTTGGAAA TGAGTTGATG TCTCCGTTAA AACACCGGAG ACTAATTCT GCCCTGCCA ATTTTGAGG
 GAGCATGGCT GTGAGGATGG GGTGAACCTCA CGCACAGCCA AGGACTCCAA AATCACAACA GCATTACTGT
 15 TCTTATTGTC TGCCACACCT GAGCCAGCCT GCTCCCTCCC AGGAGTGGAG GAGGCTGGG GGGAGGGAGA
 GGAGTGAETG AGC TCCCTC CCGTGTGTT CTCGCTCTG CCCCAGCAAG ACAACTTAGA TCTCCAGGAG
 AACTGCCATC CAGCTTTGGT GCAATGGCTG AGTGCACAAG TGAGTTGTT CGCTGGGTTT CTTAATCTA
 TTCAGCTAGA ACTITGAAGG ACAATTCTT GCATTAATAA AGGTTAACCC TGAGGGGTC CCTGATAACA
 ACCTGGAGAC CAGGATTTA TGGCTCCCT CACTGATGGA CAAGGAGGTC TGTGCCAAAG AAGAATCCAA
 20 TAAGCACATA TTGAGCACCT GCTGTATATG CAGTATTGAG CACTGTAGGC AAGACCCAAG AAAGAGAAGG
 AGCCATCTCC ATCTGAGG AACTCAAAGA CTCAAGTGGG AACGACTGGG CACTGCCACC ACCAGAAAGC
 TGTCGACGA GACCGTCGAG CAGGGTGTG TGGGTGATAT GGACAGCAGA AGGGGGAGAC CAAGGTTCCA
 GCTCAACCAA TAACATTGTC ACAACCACCT GTCCCTGCC CAGTCCCTT TTATGTAACA TGAAGTCGTT
 GTGAGGGTTA AAGCAGTAA CAGGTATAAA GTACTTAGAA AAGCAAAGGG TGCTACGTAC ATGTGAGGCA
 25 TCATTACGCA GACCTAATG GGATATGTT ACTATAAGGA AAAGACACTG AGGTCTAGAA ATAGCTCCGT
 GGAGCAGAAT CAGTATTGGG AGCCGGTGGC GGTGTGAAGC ACCAGTGTCT GGCACACAGT AGGTGCTCAT
 TGGCTCCCTT CCACCTGTCA TTCCCACAC CCTGAGGCC CAACGCCAC ACACACAGGA GCATTGGAG
 AGAAGGCCAT GTCTCAAAG TCTGATTGT GATGAGGCAG AGGAAGATAT TTCTAATCGG TCTTGCCAG
 AGGATCACAG TGCTGAGACC CCCACCAAC AGCCGGTACC TGGGAAGGG GAGAGTGCAG GCCTGCTCAG
 GGACTGTTCC TGTCAGCA ACCAAGGGAT TGTCTGTG AATCAATGGT TTATTGAAAG GTGGCCCAGT
 30 ATGAGCCCTA GAAC AGTGTG AAAAGGAATG GCAATGGTGT TCACCATCGG CAGTGCAGG GCAGCACTCA
 TTCACTTGAT AAATGAATAT TTATTAGCTG GTTGGAGAGC TAGAACCTGG AGAGCTAGAA CCTGGAGAAC
 TAGAACCTGG AGGCCTAGAA CCTGGAGAGG CTAGAACCA GAAGGGCTAG AACCTGGAGG GGCTAGAAC
 TAGAGAAGCT AAAACCTGAG CTAGAACCTG GAGGACTAGA ACCTGGAGGG CTGGAATCTG AAGGGCTAGA
 ACCTGGAGGG CTGCAATCTG GAGAGCTAGA ACCTGGAGGG CTAGAACCTG GAGGGCTAGA ACCTAGAAGG
 35 GCTAGAACCT GGAC GGCTGG AATCTGGAGA GCTAGAACCT GGAGGGCTAG AACCTGGAGG GCTAGAACCT
 AGAAGGGCTA GAACCTGGAG GGCTAGAACCT TGGCAGGTAA GAACCTAGAA GGGCTAGAAC CTGGAGAGCC
 AGAACCTGGA GGGCTAGAAC CTGGAGGGC TAGAACCTGT AGAGCTAGAA CATGGAGAGC TAGAACCCGG
 CAGGCTAGAA CCTGGCAAGC TAGAACCTGG AGGAATGAA CCTGGAGGGC TAGAACCTGG AGAATGAGAA
 AAATTACAT GGCAAAGAGC CCATAAACCC TGACCAATCC AACTCTGAAT TTAAAGCAA AAGCGTGAAA
 40 AAAAAGATTG CCTCTTACCC CCCAACCCAC TCTTTTTC CACCACCCAC TCTCCTCTGC CTCAGTAAGT
 ATCTGGAGGA AGAA AACAGG TGAAAGAAGA AGTAAAAAACC ATTTAGTATT AGTATTAGAA TGAAGTCAAA
 CTGTGCCACA CATGGTGAAT GAAAAAAA AAAAGAGGC TGTGTTTGT CACACAGGGC AGTCATTCA
 CACCAAGAGCA CGTCATGGTC TGAGACTCTC TTAGGAGCAG AGCTCTGCC CAATGGCCAT GTGGGGATCC
 ACACCTGGTC TGAGGGGCAA CTGAGTCTGC GGGAGAAGAG CGGCCCTATG CATGGTGTAG ATGCCCTGAT
 45 AAAGAACATC TGCTCTGTGA AAGACTCAAT GAGCTGTAT TGTGAAACA GGAAGCATT CACATCCAAA
 CGAGAAAATC ATGT'AAACAT GTGTCTTTTCT TGTAGAGCAT AATAATGGA TGAGGTTTT GCAAAAAAAA
 GAAAAAAA AAATGATAGA CCGTCAATAA TTTGTTAAAT GCTTTTAAAT ATGAATGCTT TAAGCCGGGT
 GCAGTGCCTC ACATCTGAA TCCCAGCACT TTGGAGCCGA GCGGGTGGAT TGTGTGAGGT CAGGAGTCG
 AGACCAACCT GGCCAACATG GCAAAACCTC ACTCTCTACC AAAAATACAA AAATTAGCCA GGCATGGTGG
 50 CAGGCACCTG TGATCCCAGC TACTCAGGAG GCTGAGACAG GAGAATCGCT TGAACCCGGG AGGCAAGGTT
 GCAGTGAGCC AAGATTACGC CATTGTACTC CAGCCTGGGT GACAGAGAGA GACTCCGTCT CAAAAAAA
 GAAAAAAA AAAAATTAC GCTTCAAACA CATGATCTCT CACCACTGTT GAATTTCCTT TCTATGAGCC

	CAGGAGGGCC	TCTCAGAGAG	GAAAGCTCCT	AGGTCTTCC	TTCCCTCTGC	AAACTCCCTG	CCTTGAAGGT
	TCAGAAGGAC	TGTGCGTGCT	CGTTGCATCC	TTTGCAGTG	TCCAAACCT	GATCCCAGCT	GTGCTTAGGG
	GTTCTGCAA	ACC'TTTCCA	GGTGTAAATT	ACCTCCCCT	TCATTTCTG	TTTACCAACT	CAGCTTTTG
5	TTTTAGTGTG	TTGAATTCC	CTGAACGTAC	CGTTGTCTGA	TCTCCACCTC	CCAACGTAA	TAGGGGAGCT
	GGGCTTCTGG	AAA'CAGGT	GCCGGGTGTT	GCAGAGTGGC	TGAAAGCTGG	GATGTGGCAG	ATCCGTGGCT
	ACATTCATGC	ACAC'ACACAC	ACCCACATAC	CCACACATGC	ACACACACAC	ACACACCCGC	ACTCACACAC
	TTGGACATGC	ATAGACCCACA	GCTTCCACA	CCCTCCTAG	ACAGGGGTCA	CTTGGTATCC	TGGAGAGAGT
	GTGAAGTCCT	GGAATGGAAA	GAGGGGGAT	TAAGCCCCAC	CTCTAGCCAT	GGGACTGAGA	CAAGTCACCA
	CCAACCCATC	TGCCCTTGT	TTACCTCTC	TGTGAGGCA	GCACAGAGCC	CATGCCTGCC	CCCCTGGATG
10	GGAGTGATGT	GAAACCTGAA	GGGCGGTAG	AGCAAGGGTC	GGGAATGGAA	GGCCCTTGGG	AAAAAAAGGCC
	CTTTCAACTA	GGGCACAGA	GGAGGCCCTG	GGCTGAGAAC	TTGACAGCAC	CTTGTAAATTG	GTAAGCCAAG
	CCCGAAGGGG	CTGGAAATAC	TCAGATGTG	CTGTCCTCC	TATTAGTTTC	AAAGTCCCTC	AAGACCCCTGT
	CTCCATCACA	GTGCTCCAGT	CCAGACCCCT	CCTCTGAGCT	CCAGACCCCTG	CTGGACCCCAA	CCAGCCCTAT
	GGGGTCGCAT	CCCCACCTGC	CTGGAATTCT	CCAAAGAAC	TCCCCTTAA	CAGTCCAGC	CTTTAACAGT
15	TCCAGTCTAA	ACAC'ATGACC	TTTCTCTC	AAATCAGCCC	CCCATCTCTG	CCTTGCAGG	AGATGGAAGC
	CATGACACCT	GCCTCGCCCC	TGTCCTCACC	CCATCCATGT	CCAATCAAGC	ACTAGGCATG	TCAGGTTTAC
	CCTCTAAACT	CCTCTGGAAT	CCAGTCTCTC	AGTCTCCATC	ATCCCAGGTC	GAAGCTAATG	GGCTAACTGG
	TCCTTGCTTC	CACTCTACCC	CCACTGCAGT	CCTGACTTCC	TGAGCAGCAG	CCAGGGCCTA	ATCGATATT
	ACACCAAGCG	CCAACCTGAC	TGAGATATCC	TCCTGCACCA	TCATCCCTCC	ACCCGTTTA	GTTCAGTCTCA
20	CCCTCAGTGT	TCTCATCAAT	AATCCACTCC	CCTCACAGGC	GCGTTGGGA	CCCCATGTT	TATGCTCTCA
	CAGGACCTTT	TGCTGATTT	TTCACTGTAC	TTAGGTAGT	TTGCACTTAT	TAAGTGACTG	AGCAATGTCT
	GGCTTCTCCA	GTAGACTGTC	AGCTCCTAGC	CATTGTATAAC	CTAGCACCGC	TGTGTTGGAG	CACGTGACAA
	ACGTCCAGTG	AGTC'AGGGAC	TCAGCAGTCT	CCATTCTCC	GCCCTGCTGG	AGAATGCGTG	TATTTGGCAA
	TCCCCAGCCC	CTGIGCCATC	TAACCATCTT	TTCTCTCTG	TTCAAGCCAG	GTGTGGCCTC	ACTCACATCC
25	CACTCTGAGT	CCAATGTT	TCTCCCTGGA	AGATATCAAT	GTTTCTGTCT	GTTCGTGAGG	ACTCCGTGCC
	CACCACGGCC	TCTTCAGGT	GAGTCAAAGG	GATTCTCAG	TTCACTAGTT	AGGGGAGGTG	GGCAGACACC
	CTGGAGAACT	CCCTGGAAAG	CTCAACTCTC	ATGCCCGGA	CAACAGTTGA	AGGAACCATG	GTGATGTTAA
	GCCCAAAGAC	AAAACCTCTC	AGGTGTCCA	GTCCCTGTTG	GAATCTGGG	AGCAGAGGG	ATGTTCTGTG
	GTCTAGAGGA	AGAGGGGCTC	AGGGAGGAGA	AGGGCACATT	CCTGGTTGTT	ATATGTTCT	ATCTATCCCA
30	GATGAACTTG	GAAC TGAAGG	GAAGAGAGTT	AAACATTAAA	GTAATACCC	AGTGGATCAG	ACAGCAATGT
	GCCAGATTG	CTTGGAAACA	AAATATCTCC	AAACATGGC	TGACATTGG	TGGGAGATCA	GAACACCCCTA
	AAGAGAGAAT	TTAAGGGAG	GGGGAGGAGG	ACCTGAGCCA	GAGTAAAGC	AGAGGATAGG	GAGATCTGTT
	CTTGGGGACA	GCATTGCAA	GAAACAAGGC	TGAGGGGTCC	ACTCCAACCT	CTCCACCCCTG	CTGCAGGTGC
	TGCCTATGAT	GAAGATGAGC	AGATGGCCAT	CTCAGCTGGG	GCCACAGTGC	ACTGGACCTA	TAGTTTCCAA
35	TTCCGCACTC	AGCAGGCATC	TTTCTGTGA	TCCGATGGCT	TCTCAGAGCC	AGGGATGGGC	CAGGATCCAT
	CCCCCTGGCT	ACTGTCTTG	TGAGAAATT	ATAAGCAGCA	TCTGGTGTCA	TACTTTGGTC	TCTAGTGAGT
	TAGCTCATGA	AAGATGATAG	ACTCTCCAAG	CCAGGGGTAT	GCAGGAAATG	GGTTTCTGT	AGCTACAGAA
	ATGGGGTTGA	GGGTGGACC	AAGGGACTAC	CCAGGGGAAG	TCTTACCTTC	AGAGGACTCT	GGAAAGGAGG
	CTGCAAGTTT	TCATGGTCA	AGAATTCTAGA	GCCCAGTAGA	GACAGTTAT	CTCTGTCCA	AGATGTCTGG
40	GGCCTTGGTT	GGAAAGATTCA	AAGGCTAGGA	AACCAGGAGC	CACCAAAAGC	GTAACTGGGG	CCAGAGGATC
	CACTTCAAG	GTGC CAAGTT	GGTTCCCCCC	ATGTGGCTGC	TTGAGTATCC	TCACATGGCG	GCTCACATCC
	TTCCAAGTAA	GCAATGCAA	AGGCCAAGAA	AGATGCTGCA	AAGATGTTAT	GACCTAGCCT	CAGAAATCAC
	ACACCATCCC	TGCCACCATT	AGTAAGAAGT	CCAGCCACG	TCCAGGAGAA	GAGGAAGCAG	ATTCCCTCCT
	TTGAAATGAA	GAATATCAAG	TAATTGGGG	GGCATATGAA	AGCCACCCACA	CACCACAGGG	ATCTTTTAG
45	AGCATACTTC	TTATACCATC	ACTGTAGTTC	CTTAAGACTC	AGGGGCAAAG	CCTCACTTCC	TTAGCACCCA
	GTGAAGACCA	CGC'TACTCC	CTCACTCAAC	CTCTTGCTAC	TTCCCAACCTC	TCCTGTCCA	CATCTAGTGT
	CACTTCCAG	AACATACCAA	CAGTTCCCC	AGTTCTGTGC	CTCTGCTAG	GCTGTTCCCC	CTGCCTGGTC
	CACTTGTCC	CCTCTTGTC	CGGTCAAAT	GCTTCTTATC	CTTCAAGACC	CAGCTCTAGA	GTCACCTCCA
	ACCCCTTACC	CACCAGCCCC	CTCTCCAAGT	CTGTGTCCCA	CAACCCCCCT	GCTCCCTCCA	GGGCACCCCTC
50	CACCCCTG	GCCACAGTTG	TCAGGAGTC	GGCAGGGCAG	GGGCCGGGTG	GTGTCTTCTT	TGTGTTCTTG
	CACTCAGGGC	AGACCTCAGC	ACAGAGCAGA	CGCTAAAAAA	ACATTAAAG	GATAGAAGCA	TTGATTTGTG
	GGTCCCCCAG	TCTGGCTCCA	GGATGCCAGC	CAGCTGCTCC	TAGAAGCAA	CGGACTTTTC	CTGGGAAATC

	CCAGAGGTGA	TGA`CAGTAA	TCTCTCCGT	GACTCGTAGT	TCAGCTCTTC	CTCCATGAGC	CTGACTATCA
	GTGGACCTTC	CAGA`AAGAGC	CCCTTTCCCT	TCTCTCACCC	ACAGCACAGG	GCACTGGAA	AATGCCAAT
	GAGTCCTGCC	TCTC`GGTTGT	GCTTTGGACT	TTTCAGTGTG	TCTCGCATCC	ACTCTTCAAC	TTGAATGTG
5	CAACAGCCAT	GAA`AAAGAA	ATGCAAAGCG	ATTCAAGGATG	AGAGCAATAC	CCTACTCCAA	AGAAGGCAAC
	ATAGAAGCTC	AGAG`AGATCA	AGCAATTGTC	CCAAGACCAC	ACAGCTAGGA	GTGGAACCTA	TGGCTGTCCA
	AGCCCCATGC	CTCTGCTGAA	GGTAGAGATG	AATTACAGCA	ACAAGTCTAG	AAAGGTGCCT	GCCCTATGGT
	CTGTGAGTCT	TGCC`AAAGAA	TGAAAGAGGA	GCCAGTGGGT	TAAAGATGAG	GTCACCAACA	ACGGTGGTGT
10	TGGAGTTAC	CACTGATAAT	AAGGGTGCAA	AATGTAAATT	ACTAATGTTT	ATTGAGCCTA	GTGCAGTGC
	TGGGGCATT	TGCA`CATTGT	CTCTGATCCC	TATGACAACC	CTGAGAGGTA	GTGGTTTAA	CTGCCATGTT
	ACAGGGTAGG	TCATTGTGGT	TCAAGGACGT	TAAGTAACCT	CCCCAGCGTG	ACACGGCTTA	TAAGTAAGGC
	AGCCAGGATG	TGA`ACCCAGT	AGGACTATCT	GGCTGCAAAG	TCCCCACCCC	CCTCGCCATC	TGTATCCTCC
	AATCACTTCA	GTGCTTGTG	GCATAGAAGG	TAACGGAAAT	CACGATGCCA	CAGACTGTCC	AGGAAGACAG
	AAACTAGGCA	GATGGGCTGG	CCATGGCTC	CAAGCCAGAC	TGGAATCTCC	AGGTCTGGAA	TGATATCATT
15	TTTCTCTTT	AATA`ATTAA	CTCACCCACC	ACACGGCTTT	GAGAGGCTCA	AAGTTGACCA	ACTCCCTGG
	GAGGGCCCCG	GTTCATAAGG	AAGGAACGTG	AATCCTCCCA	TCACGGAAGC	TTCAAGGAGG	TCAAGGGTCC
	AAACATTGAG	ATTGTTAGTG	CTGTTGGTGG	ATACTGGCCA	AGGAAATATC	CCAGTGGAGC	CTCGAGATGA
	AGAACATGAG	GCCC`CCGTTT	AGAACCAAGG	ATCAGAGGGG	GCTCTGTAAG	ACCCAGGGGA	GTCAGGTGCA
	CTGGAGCGCG	GGC`ATGCAGA	AAACAGCCTG	AGCTCCACCT	CGGCTTCTCC	TTGTCCTGGC	TGGTTGTCT
20	TAACCCCTGT	CTCC`TTCTGG	ACCAGTTTT	GTCCTTCCCT	TGTGACCCT	GAGGGGTAAC	AGCCTCTTTC
	CACTTTCTT	CAGC`GCCGAC	ATGCTCAATG	TCACCTTGCA	AGGGCCACT	CTTAACGGGA	CCTTTGCCA
	GAGCAAATGC	CCCC`AAGTGG	AGTGGCTGGG	CTGGCTCAAC	ACCATCCAGC	CCCCCTTCCT	CTGGGTGCTG
	TTCGTGTCTGG	CCACCCCTAGA	GAACATCTTT	GTCCTCAGCG	TCTTCTGCT	GCACAAGAGC	AGCTGCACGG
	TGGCAGAGAT	CTAC`CTGGGG	AACCTGGCCG	CAGCAGACCT	GATCCTGGCC	TGCGGGCTGC	CCTTCTGGC
	CATCACCATC	TCCA`ACAAC	TCGACTGGCT	CTTGGGGAG	ACGCTCTGCC	GCGTGGTGAA	TGCCATTATC
25	TCCATGAACC	TGTACAGCAG	CATCTGTTTC	CTGATGCTGG	TGAGCATCGA	CCGCTACCTG	GCCCTGGTGA
	AAACCATGTC	CATGGGCCGG	ATGCGCGCG	TGCGCTGGC	CAAGCTCTAC	AGCTGGTGA	TCTGGGGGTG
	TACGCTGCTC	CTGA`GCTCAC	CCATGCTGGT	GTCCTGGGACC	ATGAAGGAGT	ACAGCGATGA	GGGCCACAAC
	GTCACCCGCTT	GTGT`CATCAG	CTACCCATCC	CTCATCTGGG	AAGTGTTCAC	CAACATGCTC	CTGAATGTG
	TGGGCTCTT	GCTG`CCCCTG	AGTGTATCA	CCTCTGAC	GATGCAGATC	ATGCAGGTGC	TGCGGAACAA
30	CGAGATGCAG	AAG`TCAAGG	AGATCCAGAC	GGAGAGGAGG	GCCACGGTGC	TAGTCCTGGT	TGTGCTGCTG
	CTATTCTATCA	TCTG`CTGGCT	GCCCTTCCAG	ATCAGCACCT	TCCTGGATAC	GCTGCATCGC	CTCGGCATCC
	TCTCCAGCTG	CCAGGACGAG	CGCATCATCG	ATGTAATCAC	ACAGATGCC	TCCTTCATGG	CCTACAGCAA
	CAGCTGCCTC	AACC`ACTGG	TGTACGTGAT	CGTGGGCAAG	CGCTTCCGAA	AGAAGTCTTG	GGAGGTGTAC
	CAGGGAGTGT	GCCAGAAAGG	GGGCTGCAGG	TCAGAACCCA	TTCAGATGGA	GAACATCCATG	GGCACACTGC
35	GGACCTCAT	CTCC`GTGGAA	CGCCAGATT	ACAAACTGCA	GGACTGGCA	GGGAGCAGAC	AGTGAGCAA
	CGCCAGCAGG	GCTC`CTGTGA	ATTGTGTAA	GGATTGAGGG	ACAGTTGCTT	TTCAGCATGG	GCCCAGGAAT
	GCCAAGGAGA	CATCTATGCA	CGACCTGGG	AAATGAGTTG	ATGTCTCCGG	TAAAACACCG	GAGACTAATT
	CCTGCCCTGC	CCAA`TTTG	AGGGAGCATG	GCTGTGAGGA	TGGGGTGAAC	TCACGCACAG	CCAAGGACTC
	CAAAATACA	ACAGCATTAC	TGTTCTTATT	TGCTGCCACA	CCTGAGCCAG	CCTGCTCCTT	CCCAGGAGTG
40	GAGGAGGCCT	GGGG`GCAGGG	AGAGGAGTGA	CTGAGCTCC	CTCCCGTGT	TTCTCCGTCC	CTGCCCAAGC
	AAGACAAC	AGA`CTCCAG	GAGAACTGCC	ATCCAGCTTT	GGTGCAATGG	CTGAGTGCAC	AAAGTGAGTTG
	TTGCCCTGGG	TTTC`TTTAAT	CTATTCACT	AGAACATTG	AGGACAATT	CTTGATTA	TAAAGGTTAA
	GCCCTGAGGG	GTCC`CTGATA	ACAACCTGG	GACCAGGATT	TTATGGCTCC	CCTCACTGAT	GGACAAGGAG
	GTCTGTGCCA	AAGA`AGAATC	CAATAAGCAC	ATATTGAGCA	CTTGTGTAT	ATGCAGTATT	GAGCACTGTA
45	GGCAAGAGGG	AAG`AAGAGA	AGGAGCCATC	TCCATCTGA	AGGAACCTAA	AGACTCAAGT	GGGAACGACT
	GGGCACTGCC	ACCACCAAGAA	AGCTGTTCGA	TGAGACGGTC	GAGCAGGGTG	CTGTTGGTGA	TATGGACAGC
	AGAAGGGGGA	GCCAGGTTCC	AGCTCACCAA	TACTATTGCA	CACCACCTGT	CCTGCCTC	CTGCAGAAA
	CAGCCTGAGC	TCCA`CCTCGG	CTTCTCCTTG	CCCTGGCTGG	TTGTCCTTAA	CCCCGTCTC	CTTCTGGACC
	AGTTTTGTC	CTTCCCTTGT	GACCCCTGAGG	GGTAACAGCC	TCTTTCCAC	TTTCTTCAG	CGCCGACATG
50	CTCAATGTCA	CCTT`GCAAGG	GCCCACCTT	AACGGGACCT	TTGCCCAGAG	CAAATGCC	CAAGTGGAGT
	GGCTGGGCTG	GCTCAACACC	ATCCAGCCCC	CCTTCCTCTG	GGTGCTGTTC	GTGCTGGCCA	CCCTAGAGAA
	CATCTTGTC	CTCAGCGTCT	TCTGCCTGCA	CAAGAGCAGC	TGCACGGTGG	CAGAGATCTA	CCTGGGAAAC

	CTGGCCGCAG	CAGACCTGAT	CCTGGCCTGC	GGGCTGCCCT	TCTGGGCCAT	CACCATCTCC	AACAACCTCG
	ACTGGCTCTT	TGGGGAGACG	CTCTGCCCG	TGGTGAATGC	CATTATCTCC	ATGAACCTGT	ACAGCAGCAT
5	CTGTTCTTG	ATGCTGGTGA	GCATCGACCG	CTACCTGGCC	CTGGTGAAA	CCATGTCCAT	GGGCCGGATG
	CGCGCGTGC	GCTCGGCCAA	GCTCTACAGC	TTGGTGTACT	GGGGGTGTAC	GCTGCTCCTG	AGCTCACCCA
10	TGCTGGTGT	CCGGACCAGAT	AAGGAGTACA	GCGATGAGGG	CCACAACGTC	ACCGCTGTG	TCATCAGCTA
	CCCATCCCTC	ATCTGGGAAG	TGTTCACCAA	CATGCTCCTG	AATGTCGTGG	GCTTCTGCT	GCCCCCTGAGT
	GTCATCACCT	TCTGCAACGAT	GCAGATCATG	CAGGTGCTGC	GGAACAACGA	GATGCAGAAG	TTCAAGGAGA
15	TCCAGACGGA	GAGGAGGGCC	ACGGTGCTAG	TCCCTGGTTGT	GCTGCTGCTA	TTCATCATCT	GCTGGCTGCC
	CTTCCAGATC	AGCACCTTCC	TGGATACGCT	GCATGCCCTC	GGCATCCTCT	CCAGCTGCCA	GGACGAGCGC
20	ATCATCGATG	TAATCACACA	GATCGCCTCC	TTCATGGCCT	ACAGCAACAG	CTGCCCTAAC	CCACTGGTGT
	ACGTGATCGT	GGGCAAGCGC	TTCCGAAAGA	AGTCTTGGGA	GGTGTACAG	GGAGTGTGCC	AGAAAGGGGG
	CTGCAGGTCA	GAAC'CCATT	AGATGGAGA	CTCCATGGGC	ACACTGCGGA	CCTCCATCTC	CGTGGAACGC
25	CAGATTACA	AACTGCAGGA	CTGGGCAGGG	AGCAGACAGT	GAGCAAACGC	CAGCAGGGCT	GCTGTGAATT
	TGTGTAAGGA	TTGAGGGACA	GTTGCTTTTC	AGCATGGGCC	CAGGAATGCC	AAGGAGACAT	CTATGCACGA
30	CCTTGGAAA	TGACTTGATG	TCTCCGGTAA	AACACCGGAG	ACTAATTCT	GNCCTGCCA	ATTTTGCAGG
	GAGCATGGCT	GTGAGGATGG	GGTGAACCTA	CGCACAGCCA	AGGACTCCAA	AATCACAAACA	GCATTACTGT
	TCTTATTTCG	TGCCACACCT	GAGCCAGCT	GCTCCTTCCC	AGGAGTGGAG	GAGGCCTGGG	GGCAGGGAGA
35	GGAGTGACTG	AGCTTCCCTC	CCGTGTGTT	TCCGTCCCTG	CCCCAGCAAG	ACAACCTAGA	TCTCCAGGAG
	AACTGCCATC	CAGCTTGGT	GCAATGGCTG	AGTGCACAAG	TGAGTTGTTG	CCCTGGTTT	CTTTAATCTA
40	TTCAGCTAGA	ACTTTGAAGG	ACAATTCTT	GCATTAATAA	AGGTTAAGCC	CTGAGGGGTC	CCTGATAACA
	ACCTGGAGAC	CAGGATTTTA	TGGCTCCCT	CACTGATGGA	CAAGGGAGGT	CTGTGCCAAA	GAAGAATCCA
	ATAAGCACAT	ATTGAGCACT	TGCTGTATAT	GCAGTATTGA	GCACTGTAGG	CAAGAGGGAA	GAAAGAGAAG
45	GAGCCATCTC	CATCITGAAG	GAACCTAAAG	ACTCAAGTGG	GAACGACTGG	CACTGCCACC	ACCAGAAAGC
	TGTTGACGA	GACGGTCGAG	CAGGGTGTCTG	TGGGTGATAT	GGACAGCAGA	AGGGGGAGAC	CAAGGTTCCA
50	GCTCAACCAA	TAACATTATGC	ACAACCACCT	GTCCCTGCC	CAGTCCCTC	TTCTGTAACA	TGAAGTCGTT
	GTGAGGGTTA	AAGCAGTAA	CAGGTATAAA	GTACTTAGAA	AAGCAAAGGG	TGCTACGTAC	ATGTGAGGCA
	TCATTACGCA	GACCTAACTG	GGATATGTTT	ACTATAAGGA	AAAGACACTG	AGGTCTAGA	TGATCCTATC
	ACAACCTGAG	AGTAGTTTTT	ACTCCATT	CAGGTGAGGT	CATTGTGGTT	CAAGGACGTT	AAGTAACCTC
55	CCCAGCTCAC	ACGGCTTATA	AGTAAGGCAG	CCAGGATGT	AACCCAGTAG	GACTATCTGG	CTGCAAAGTC
	CCCACCTCC	CTCGCCATCT	GTATCCTCA	ATCATCTCA	GTGCTTTGCT	GATAGAAGGT	ACGGAATAAC
	GATGCCACAG	ACTGTCCAGG	AAGACAGAAA	CTAGGCAGAT	GGGCTGGCA	TGGTCTCAA	GCCAGACTGG
60	AATCTCCAGG	TCTGGAATGA	TATCATT	CTCTTTAAT	AAATTAACTC	ACCCACCACA	CGGCTTTGAG
	AGGCTCAAAG	GTGACCAACT	CCCTGGGAG	GGCCCCGGTT	GATAAGGAAG	GAATGTGAAT	CCTCCCATCA
	CGGAAGCTTC	AAGCAGGTCA	AGGGTCCAAC	ACTTGAGATT	GTTAGTGTCTG	TTGGTGGATA	CTGCAGAATA
65	TCCAGTGGAG	CCTCAGATGA	AGAACATGAG	GCCCCGTTA	GATCCAAGGA	TCAGAGGGGG	CTCTGTAAGA
	CCCAGGGGAG	TCACTGTGAC	TGGAGCGCG	GCTGCAGAAA	ACAGCCTGAG	CTCCACCTCG	GCTTCTCCCT
	GCCCTGGCTG	GTTCCTCTTA	ACCCCTGTCT	CCTTCTGGAC	CAGTTTTGT	CCTTCCCTTG	TGACCTGAGG
70	GGTAACAGCC	TCTTCTTCAC	TTTCTTTCAG	CGCCGACATG	CTCAATGTCA	CCTGCAAGG	GCCCCACTCTT
	AACGGGACCT	TTGGCCAGAG	CAAATGCC	CAAGTGGAGT	GGCTGGGCTG	GCTCAACACC	ATCCAGCCCC
75	CCTTCCTCTG	GGTGTGTT	GTGCTGGCA	CCCTAGAGAA	CATCTTGTC	CTCAGCGTCT	TCTGCCTGCA
	CAAGAGCAGC	TGCACTGGT	CAGAGATCTA	CCTGGGGAAC	CTGGCCGAG	CAGACCTGAT	CCTGGCCTGC
	GGGCTGCCCT	TCTGGGCCAT	CACCATCTCC	AACAACCTCG	ACTGGCTCTT	TGGGGAGACG	CTCTGCCGCG
80	TGGTGAATGC	CATTATCTCC	ATGAACCTGT	ACAGCAGCAT	CTGTTTCTG	ATGCTGGTGA	GCATCGACCG
	CTACCTGGCC	CTGGTAAAAA	CCATGTCCAT	GGGGCGGATG	CGCGGGTGC	GCTGGGCCAA	GCTCTACAGC
85	TTGGTGTACT	GGGGGTGTAC	GCTGCTCTG	AGCTCACCA	TGCTGGTGT	CCGGACCATG	AAGGAGTACA
	GCGATGAGGG	CCACAAACGTC	ACCGCTTGTG	TCATCAGCTA	CCCATCCCTC	ATCTGGGAAG	TGTTCACCAA
	CATGCTCTG	AATGTCGTGG	GCTTCCTGCT	GCCCCTGAGT	GTCATCACCT	TCTGCACGAT	GCAGATCATG
90	CAGGTGCTGC	GGAAACAACGA	GATGCAGAAG	TTCAAGGAGA	TCCAGACGGA	GAGGAGGGCC	ACGGTGCTAG
	TCCTGGTTGT	GCTGCTGCTA	TTCATCATCT	GCTGGCTGCC	CTTCCAGATC	AGCACCTTCC	TGGATACGCT
95	GCATGCCCTC	GGCATCCTCT	CCAGCTGCCA	GGACGAGCGC	ATCATCGAT	TAATCACACA	GATGCCCTCC
	TTCATGGCCT	ACAGCAACAG	CTGCCTCAAC	CCACTGGTGT	ACGTGATCGT	GGGCAAGCGC	TTCCGAAAGA
100	AGTCTTGGGA	GGTGTACAG	GGAGTGTGCC	AGAAAGGGGG	CTGCAGGTCA	GAACCCATTC	AGATGGAGAA

	CTCCATGGGC	ACACTGCGGA	CCTCCATCTC	CGTGGAACGC	CAGATTACA	AACTGCAGGA	CTGGCAGGG
	AGCAGACAGT	GAGCAAACGC	CAGCAGGGCT	GCTGTGAATT	TGTGTAAGGA	TTGAGGGACA	GTTGCTTTTC
5	AGCATGGGCC	CAGGAAATGCC	AAGGAGACAT	CTATGCACGA	CCTTGGAAA	TGAGTGTGTA	TGTCTCCGGT
	AAAACACCGG	AGACTAATTG	CTGCCCTGCC	CAATTTCGA	GGGAGCATGG	CTGTGAGGAT	GGGGTGAAC
10	CACGCACAGC	CAAGGACTCC	AAAATCACAA	CAGCATTACT	GTTCTTATTG	GCTGCCACAC	CTGAGCCAGC
	CTGCTCCCTC	CCAGGAGTGG	AGGAGGCCTG	GGGGAGGGAG	AGGAGTGACT	GAGCTCCCT	CCCGTGTGTT
	CTCCGTCCCT	GCCCCAGCAA	GACAACCTAG	ATCTCCAGGA	GAAC TGCCAT	CCACGTTGG	TGCAATGGCT
	GAGTGCACAA	GTGAGTTGTT	GCCCTGGGTT	TCTTTAATCT	ATCAGCTAGA	ACTTTGAAGG	ACAATTCTT
15	GCATTAATAA	AGGITAAGCC	CTGAGGGGTC	CCTTGATAAC	AACCTGGAGA	CCAGGATTTT	ATGGCTCCCC
20	TCACTGATGG	ACAAGGAGGT	CTGTGCCAAA	GAAGAATCAA	TAAGCACATA	TGAGCACTTC	TGTATATCAG
	TATTGAGCAC	TGTAGGCA	ATGTTCTCTC	CCTGGAAAGAT	ATCAATGTTT	CTGTCCTGTT	GTGAGGACTC
	CGTCCCCACC	ACGCCCTCTT	TCAGCGCCGA	CATGCTCAAT	GTCACCTTGC	AAGGGCCCAC	TCTTAACGGG
	ACCTTTGCC	AGAGCAAATG	CCCCCAAGTG	GAGTGGCTGG	GCTGGCTCAA	CACCATCCAG	CCCCCCCTCC
25	TCTGGGTGCT	GTTCGTGCTG	GCCACCCTAG	AGAACATCTT	TGTCCCTCAGC	GTCTCTGCC	TGCAACAAGAG
	CAGCTGCACG	GTGCCAGAGA	TCTACCTGGG	GAACCTGGCC	GCAGCAGACC	TGATCCTGGC	CTGCGGGCTG
	CCCTTCTGGG	CCATCACCAT	CTCCAACAAAC	TTCGACTGGC	TCTTGGGGA	GACGCTCTGC	CGCGTGGTGA
	ATGCCATTAT	CTCCATGAAC	CTGTACAGCA	GCATCTGTTT	CCTGATGCTG	GTGAGCATCG	ACCGCTACCT
	GGCCCTGGTG	AAAACCATGT	CCATGGGGCG	GATGCGCGGC	GTGCGCTGGG	CCAAGCTCTA	CAGCTTGGTG
30	ATCTGGGGGT	GTACGCTGCT	CCTGAGCTCA	CCCATGCTGG	TGTTCCGGAC	CATGAAGGAG	TACAGCGATG
	AGGGCCACAA	CGTCACCAGCT	TGTGTCATCA	GCTACCCATC	CCTCATCTGG	GAAGTGTCA	CCAACATGCT
	CCTGAATGTC	GTGGGCTTCC	TGCTGCCCT	GAGTGTCTAC	ACCTTCTGCA	CGATGCAGAT	CATGCAGGTG
	CTGCGGAACA	ACGAGATGCA	GAAGTTCAAG	GAGATCCAGA	CGGAGAGGAG	GGCCACGGTG	CTAGTCCTGG
	TTGTGCTGCT	GCTAATCATC	ATCTGCTGGC	TGCCCTTCCA	GATCAGCACC	TTCCTGGATA	CGCTGCATCG
35	CCTCGGCATC	CTCTCCAGCT	GCCAGGACGA	GCGCATCCTC	GATGTAATCA	CACAGATCGC	CTCCTTCATG
	GCCTACAGCA	ACACCTGCCT	CAACCCACTG	GTGTACGTGA	TCGTGGCAA	GCGCTTCCGA	AAGAAGTCTT
	GGGAGGTGTA	CCACGGAGTG	TGCCAGAAAAG	GGGGCTGCAG	GTCAGAACCC	ATTCAAGATGG	AGAAACTCCAT
	GGGCACACTG	CGGACCTCCA	TCTCCGTGGA	ACGCCAGATT	CACAAACTGC	AGGACTGGGC	AGGGAGCAGA
	CAGTGAGCAA	ACGCCAGCAG	GGCTGCTGTG	AATTGTTGTA	AGGATTGAGG	GACAGTTGCT	T ATGTTCTCTC
40	CCTGGAAGAT	ATCAATGTTT	CTGTCTGTT	GTGAGGACTC	CGTCCCCACC	ACGGCCCTCTT	TCAGCGCCGA
	CATGCTCAAT	GTCACCTTGC	AAGGGCCAC	TCTTAACGGG	ACCTTGCCTC	AGAGCAAATG	CCCCCAAGTG
	GAGTGGCTGG	GCTCGCTCAA	CACCATCCAG	CCCCCCTTCC	TCTGGGTGCT	GTTCGTGCTG	GCCACCCTAG
	AGAACATCTT	TGTCCTCAGC	GTCTCTGCC	TGCACAAGAG	CAGCTGCACG	GTGGCAGAGA	TCTACCTGGG
	GAACCTGGCC	GCAC CAGACC	TGATCCTGGC	CTGCGGGCTG	CCCTTCTGGG	CCATCACCAT	CTCCAACAAAC
45	TTCGACTGGC	TCTTGGGGA	GACGCTCTGC	CGCGTGTGTA	ATGCCATTAT	CTCCATGAAC	CTGTACAGCA
	GCATCTGTTT	CCTGATGCTG	GTGAGCATCG	ACCGCTACCT	GGCCCTGGTG	AAAACCATGT	CCATGGGCCG
	GATGCGCGGC	GTGCGCTGGG	CCAAGCTCTA	CAGCTTGGTG	ATCTGGGGGT	GTACGCTGCT	CCTGAGCTCA
	CCCATGCTGG	TGTTCCGGAC	CATGAAGGAG	TACAGCGATG	AGGGCCACAA	CGTCACCGCT	TGTGTATCA
	GCTACCCATC	CCTCATCTGG	GAAGTGTCTA	CCAACATGCT	CCTGAATGTC	GTGGGCTTCC	TGCTGCCCT
	GAGTGTCTAC	ACCTCTGCA	CGATGCAGAT	CATGCAGGTG	CTGCGGAACA	ACGAGATGCA	GAAGITCAAG
50	GAGATCCAGA	CGGAGGGAG	GGCCACGGTG	CTAGTCTGG	TTGTGCTGCT	GCTATTCTAC	ATCTGCTGGC
	TGCCCTTCCA	GATCAGCACC	TTCCCTGGATA	CGCTGCATCG	CCTCGGCATC	CTCTCCAGCT	GCCAGGACGA
	GCGCATCCTC	GATGTAATCA	CACAGATCGC	CTCCCTCATG	GCCTACAGCA	ACAGCTGCCT	CAACCCACTG
	GTGTACGTGA	TCGTGGGCA	CGCTTCCGA	AAGAAGTCTT	GGGAGGTGTA	CCAGGGAGTG	TGCCAGAAAG
	GGGGCTGCA	GTCPGAACCC	ATTCAGATGG	AGAAACTCCAT	GGGCACACTG	CGGACCTCCA	TCTCCGTGGA
55	ACGCCAGATT	CACAAACTGC	AGGACTGGGC	AGGGAGCAGA	CAGTGAGCAA	ACGCCAGCAG	GGCTGCTGTG
	AATTGTTGTA	AGGAATGAGG	GACAGTTGCT	T GCCCTTCAA	GATGAGCTGT	TCCCGCCGCC	ACTCCAGCTC
	TGGCTCTGG	GCTCGAGGA	GGGGTGGGGA	CGGTGGGAC	ATCAGGCTGC	CCCGCAGTAC	CAGGGAGCGA
	CTGAAGTGCC	CATGCCGCTT	GCTCCGGAGA	AGGTGGGTGC	CGGGCAGGGG	CTGCTCCAGC	CGCCTCACCT
	CTGCTGGGAG	GACAAACTGT	CCCAGCACAG	AGGGAGGGAG	GGAGGGCAGG	CAGCGGGGAG	AAGTTCCCT
60	GTGGCTGG	GGAGTT	GCCCTTCAA	GATGAGCTGT	TCCCGCCGCC	ACTCCAGCTC	TGGCTCTGG
	GCTCCGAGGA	GGGCTGGGGA	CGGTGGTGCAC	GGTGGGGACA	TCAGGCTGCC	CCGCAGTAC	AGGGAGCGAC
	TGAAGTGCCC	ATGCCGCTTG	CTCCGGAGAA	GGTGGGTGCC	GGGCAGGGGC	TGCTCCAGCC	GCCTCACCTC

TGCTGGGAGG ACA^AACTGTC CCAGCACAGA GGGAGGGAGG GAGGGCAGGC AGCGGGGAGA AGTTCCCTG
 TGGCTGGG GAGT^I GAGCTCTCA ATATTTAGT GAAAGCTATA GATGAGGCTC CATAAGGGAT AAAGCACAGA
 CACACCTTT CAGAGGGCTT GTGGACTCTG GGCAGCCTGT CCATAGACCT CTGTCCTCAA CTGGCAAGTC
 5 AGGAAACTCC AGATTAAGGA GCCCCAATGT GGTTAACAG CCAGGTGCAC AGATGAGTCA ACCACACAGC
 CAGGCCAGGG AGGGCCTTC CTCAGAGCC TACAGCCAGT TCACAGCCAA GCCAGGGCTA GCGCCAGGCC
 ACCCATAAAC TGA^TCTGAGA CTCTGTTCC CTGTCTCCAT GATGATGGGA TCAGGCTTGA TTGCTGGTT
 GTAGGCTTGT TATGAATCAA GTCACAGGGAGA AGAGGAGCTG ATGGGCTGGG GGGACGTCCT CTGGCCCTCC
 TGTCTCTCC CCAAGATCCAC TGGGCCACT CTTATCTGTT CTCTTCTGAA GGAAGGGTTT TAAGGCTTCA
 AAAAAAAATG TTT^TGAAAGT CCCTGCCCT TCCAGCTCT ACCGTCTAG CCCTGGGAGT GTAAAGTGCT
 10 GCAGATAGTT AGT^AAGTCTT TGAGCAAAAC TGAGAAAGCC AGCCTGAGCC TTGACATGGG AGAAACCTCC
 GCCATACATC TCCGAAGAAA CGGCCGCGTG TCTCAGGGGA GCGCAAACAC CCGTACCCAG GAAACAGGAC
 AGCTTCTGCC ACTGTGCCCC TTGGGAGCCG TACGTGGCAT GACAAAGAAA TCCCAGGACT CCGCCTGCC
 ACCTGGCCAC CCTCTGTTA CACCTTCCGC GTAAACGCC ACTGTTACA TCCAAAACTC AGACACAAAA
 TAACCACCTC AAG^AAGATAA ATAATGATAA GAAATAAATG TTACGCGAGG CAAATTATT CACATGGGC
 15 TTCCCAGGCC ACTTTGTGGT CAGCCGGAG GGACGTTTT GCCGTCCTCAC GACTCCAACG GGCAGGCCGG
 CCTACGCAAAC CATCGAAATC TTCCAAGAGC CTCCCTGGCC CCCAGGGCTC AGAGGGTGGC AGAGCGGAGA
 GCGAAGGTGG CCGCAGCCTT CCCGGCCCCA CAGCCAGCCT GGCTCCAGCT GGGCAGGAGT GCAGAGCTCA
 GCTGGAGGCG AGGGGGAAGT GCCCAGGAGG CTGATGACAT CACTACCCAG CCCTCAAAG ATGAGCTGTT
 CCCGCCGCCA CTCCAGCTCT GGCTTCTGGG CTCCAGGAG GGGTGGGAC GGTGGTACG GTGGGGACAT
 20 CAGGCTGCC CGCAGTACCA GGGAGCGACT GAAGTGCCCA TGCGCTTGC TCCGGAGAAG GTGGGTGCCG
 GGCAGGGGCT GCTCAGCCG CCTCACCTCT GCTGGGAGGA CAAACTGTCC CAGCACAGAG GGAGGGAGGG
 AGGGCAGGCA GCGGGAGAAG GTTTCCCTGT GGTCGTGGGG AGTTGGGAAA AGTCCCTTC CTTCCGGAGG GAGG
 GAATTGGGA AAA^AGTGAAG GTGTAAAAGC AGCACAAGTG CAATAAGAGA TATTTCTCA AATTGCCTC
 AAGATGGAAA CCC^TTGCTT CAGGGCATCC TTTGGCTGG CACTGGTGG ATGTGTAATC AGTGATAATC
 25 CTGAGAGATA CAGCACAAAT CTAAGCAATC ATGTGGATGA TTTCACCACT TTTCGTGGCA CAGAGCTCAG
 CTTCTGGTT ACCACTCATC AACCCACTAA TTTGGCTCTA CCCAGCAATG GCTCAATGCA CAACTATTGC
 CCACAGCAGA CTA^AATTAC TTCAGCTTC AAATACATTA ACACTGTGAT ATCTGTACT ATTTCATCG
 TGGGAATGGT GGGGAATGCA ACTCTGCTCA GGATCATTAA CCAGAACAAA TGTATGAGGA ATGGCCCCAA
 CGCGCTGATA GCC^AGTCTTG CCCTTGGAGA CCTTATCTAT GTGGTCATTG ATCTCCCTAT CAATGTATT
 30 AAGCTGCTGG CTGGCGCTG GCCTTTGAT CACAATGACT TTGGCGTATT TCTTGCAAG CTGTTCCCT
 TTTGCAGAA GTCTCGGTG GGGATCACC CGTCAACCT CTGCGCTCTT AGTGGTACCA GGTACAGAGC
 AGTTGCCTCC TGGAGTCGTG TTCAGGAAT TGGGATTCCCT TTGGTAACTG CCATTGAAAT TGTCTCCATC
 TGGATCCTGT CCTTATCCT GGCCATTCCCT GAAGCGATTG GCTTCGTCAT GGTACCCCTT GAATATAGGG
 GTGAACAGCA TAA^AACCTGT ATGCTCAATG CCACATCAAA ATTCAATGGAG TTCTACCAAG ATGTAAGGAA
 35 CTGGTGGCTC TTCCGGTCT ATTTCTGTAT GCCCTTGGTG TGCACTGCGA TCTTCTACAC CCTCATGACT
 TGTGAGATGT TGA^ACAGAAG GAATGGCAGC TTGAGAATTG CCCTCAGTGA ACATCTTAAG CAGCGTCGAG
 AAGTGGCAAAC AACAGTTTC TGCTTGGTT TAATTTTG TCTTGCTGG TCCCTCTTC ATTTAAGCCG
 TATATTGAAG AAA^ACTGTGT ATAACGAGAT GGACAAGAAC CGATGTGAAT TACTTAGTTT CTTACTGCTC
 ATGGATTACA TCGCTATTAA CTGGCAACC ATGAATTCTAT GTATAAACCC CATAGCTCTG TATTTGTGA
 40 GCAAGAAATT TAA^AATTGT TTCCAGTCAT GCCTCTGCTG CTGCTGTTAC CAGTCCAAA GTCTGATGAC
 CTCGGTCCCC ATGAACGGAA CAAGCATCCA GTGGAAGAAC CACGATCAA ACAACCACAA CACAGACGGG
 AGCAGCCATA AGG^ACAGCAT GAACTGACCA CCCTAGAAC CACTCCTCGG TACTCCCTA ATCCTCTCGG
 AGAAAAAAAT CAC^AAGGCAA CTGTGAGTCC GGGATCTCT TCTCTGATCC TTCTCCTTA ATTCACTCCC
 ACACCCAAGA AGA^AATGCTT TCCAAAACCG CAAGGGTAGA CTGGTTTATC CACCCACAAC ATCTACGAAT
 45 CGTACTTCTT TAATIGATCT AATTACATA TTCTCGTGT TGTATTCTAGC ACTAAAAAAAT GGTGGGAGCT
 GGGGGAGAAT GAA^AACTGTT AAATGAAACC AGAAGGATAT TTACTACTTT TGATGAAAA TAGAGCTTTC
 AAGTACATGG CTAGCTTTA TGGCAGTTCT GGTGAATGTT CAATGGAAC TGGTCACCAT GAAACTTTAG
 AGATTAACGA CAAAGTTTC TACTTTTTT AAGTGAATTT TTTGTCTTC AGCCAAACAC AATATGGGCT
 CAAGTCACCT TTA^TTGAAA TGTCATTGG TGCCAGTATC CCGAATTG GCCACCATGG AAACCCCTTG
 50 CCTCAGGGCA TCCCTTGGC TGGCACTGGT TGGATGTGA ATCAGTGATA ATCCTGAGAG ATACAGCACAA
 AATCTAACGA ATCA^ATGTTGA TGATTTCAAC ACTTTCTGT GCACAGAGCT CAGCTTCTG GTTACCACTC
 ATCAACCCAC TAA^ATTGGTC CTACCCAGCA ATGGCTCAAT GCACAACTAT TGCCACAGC AGACTAAAAT

	TACTTCAGCT	TTCAAATACA	TTAACACTGT	GATATCTTGT	ACTATTTCA	TCGTGGAAAT	GGTGGGAAAT
	GCAACTCTGC	TCAGGATCAT	TTACCAGAAC	AAATGTATGA	GGAATGGCCC	CAACCGCCTG	ATAGCCAGTC
5	TTGCCCTTGG	AGAC'CTTATC	TATGTGGTCA	TTGATCTCCC	TATCAATGTA	TTAAGCTGC	TGGCTGGCG
	CTGGCCTTTT	GATCACAAATG	ACTTTGGCGT	ATTCTTTGC	AAGCTGTTCC	CCTTTTGCA	GAAGTCCTCG
10	GTGGGGATCA	CCGT'CCTCAA	CCTCTGCGCT	CTTAGTGTG	ACAGGTACAG	AGCAGTTGCC	TCCTGGAGTC
	GTGTTCAAGG	AAT'TGGGATT	CCITTGGTAA	CTGCCATTGA	AATTGCCTCC	ATCTGGATCC	TGTCCTTAT
	CCTGGCCATT	CCTGAAGCGA	TTGGCTTCGT	CATGGTACCC	TTTGAATATA	GGGGTGGACA	GCATAAAAACC
	TGTATGCTCA	ATGCCACATC	AAAATTCATG	GAGTTCTACC	AAGATGTAAA	GGACTGGTGG	CTCTTCGGGT
15	TCTATTCTG	TATG CCTTG	GTGTGCACTG	CGATCTCTA	CACCCCTCATG	ACTGGTGAGA	TGTTGAACAG
	AAGGAATGGC	AGCTTGAGAA	TTGCCCTCAG	TGAACATCTT	AAGCAGCGTC	GAGAAGTGGC	AAAAACAGTT
	TTCTGCTTGG	TTGTAAATT	TGCTCTTGC	TGGTCCCTC	TTCATTTAAG	CCGTATATTG	AAGAAAACGT
	TGTATAACGA	GATC GACAAG	AACCGATGTG	AATTACTTAG	TTTCTTACTG	CTCATGGATT	ACATCGGTAT
20	TAACTTGGCA	ACCA TGAATT	CATGTATAAA	CCCCATAGCT	CTGTATTTG	TGAGCAAGAA	ATTTAAAAAT
	TGTTTCCAGT	CATGCCCTCTG	CTGCTGCTGT	TACCAGTCCA	AAAGTCTGAT	GACCTCGGTC	CCCATGAACG
25	GAACAAAGCAT	CCAGTGGAAAG	AACCACGATC	AAAACAACCA	CAACACAGAC	CGGAGCAGCC	ATAAGGACAG
	CATGAACCTGA	CCACCCCTAG	AAGCACTCCT	GAATTGGGAA	AAAAGTGAAG	GTGAAAAGC	AGCACAAGTG
	CAATAAGAGA	TATITCCTCA	AATTGCTCTC	AAAGATGGAAA	CCCTTGCC	CAGGGCATCC	TTTTGGCTGG
	CACTGGTTGG	ATGTGTAATC	AGTGATAATC	CTGAGAGATA	CAGCACAAAT	CTAAGCAATC	ATGTGGATGA
30	TTTCACCACT	TTTCGTGGCA	CAGAGCTCAG	CTTCTGGTT	ACCACTCATC	AACCCACTAA	TTTGGTCCTA
	CCCAGCAATG	GCTCAATGCA	CAACTATTGC	CCACAGCAGA	CTAAAATTAC	TTCAGCTTTC	AAATACATTA
	ACACTGTGAT	ATCT TGTACT	ATTTTCATCG	TGGGAATGGT	GGGGAATGCA	ACTCTGCTCA	GGATCATT
	CCAGAACAAA	TGTATGAGGA	ATGGCCCCAA	CGCGCTGATA	GCCAGTCTT	CCCTGGAGA	CCTTATCTAT
35	GTGGTCATTG	ATCTCCCTAT	CAATGTATT	AAGCTGCTGG	CTGGGCGCTG	GCCTTTGAT	CACAATGACT
	TTGGCGTATT	TCTT TGAAG	CTGTTCCCT	TTTGCGAGAA	GTCCTCGGTG	GGGATCACCG	TCCTCAACCT
40	CTGCGCTCTT	AGTG ITGACA	GGTACAGAGC	AGTGCCTCC	TGGAGTCGTG	TTCAGGGAAT	TGGGATTCC
	TTGGTAAC	CCAT TGAAT	TGTCTCCATC	TGGATCCTGT	CCTTTATCCT	GGCCATTCC	GAAGCGATTG
	GCTTCGTAT	GGTA CCCTTT	GAATATAGGG	GTGAACAGCA	AAAACCTGT	ATGCTCAATG	CCACATCAA
	ATTCACTGGAG	TTCTACCAAG	ATGTAAGGA	CTGGTGGCTC	TCGGGTTCT	ATTCTGTAT	GCCCTTGGTG
45	TGCACTGCGA	TCTT TACAC	CCTCATGACT	TGTGAGATGT	TGAACAGAAAG	GAATGGCAGC	TTGAGAATTG
	CCCTCAGTGA	ACAT CTTAAG	CAGCGTCGAG	AAGTGGCAA	AACAGTTTC	TGCTTGGTTG	TAATTTTGC
	TCTT TGTGG	TTCCCTCTTC	ATTTAAGCCG	TATATTGAAG	AAAACTGTGT	ATAACGAGAT	GGACAAGAAC
	CGATGTGAAT	TAC TTAGTT	CTTACTGCTC	ATGGATTACA	TCGGTATTAA	CTTGGCAACC	ATGAATT
50	GTATAAACCC	CATA GCTCTG	TATTTTGTGA	GCAAGAAATT	AAAAATTGT	TTCCAGTCAT	GCCTCTGCTG
	CTGCTGTTAC	CAGT CCAAAA	GTCTGATGAC	CTCGGTCCCC	ATGAACGGAA	CAAGCATCCA	GTGGAAGAAC
	CACGATCAA	ACAACCAAA	CACAGACCGG	AGCAGCCATA	AGGACAGCAT	GAAC	CCCTAGAAAG
	CACTCCTCGG	TACT CCAA	ATCCTCTCGG	AGAAAAAAAT	CACAAGGCAA	CTGTGAGTCC	GGGAATCTCT
	TCTCTGATCC	TTCT CCAA	ATTCACTCCC	ACACCAAGA	AGAAATGCTT	TCCAAAACCG	CAAGGGTAGA
	CTGGTTTATC	CACCCACAAC	ATCTACGAAT	CGTACTTCTT	TAATTGATCT	AATTACATA	TTCTGCGTGT
	TGTATTTCAGC	ACTA AAAAT	GGTGGGAGCT	GGGGGAGAAAT	GAAGACTGTT	AAATGAAACC	AGAAGGATAT
55	TTACTACTTT	TGCA TGGAAA	TAGAGTTTC	AAGTACATGG	CTAGCTTTA	TGGCAGTTCT	GGTGAATGTT
	CAATGGGAAC	TGGT CACCAT	GAAACTTTAG	AGATTAACGA	CAAGATTTC	TACTTTTTT	AAGTGATT
	TTTGTCCCTC	AGCC AAACAC	AATATGGGCT	CAAGTCACTT	TTATTGAAA	TGTCATTG	TGCCAGTATC
	CCGAATT	AAAC AGAAA	GCCTGGTAG	CTCTGGTGA	TCCCAAAGA	ATGTGGCAGT	TGCTAGCCAT
	GCTCTGAAAT	ATGTATAAAC	AGTACATCAT	ATGACTAAGA	GTTTGACTT	GGGGTTAGAT	TTTATGTGTT
60	TGAACCCAA	ATTAGTTATT	TAATAGTTGG	CACCCAAAAA	CAAGTTACTT	AACCTCACTA	AGGTTCACTT
	TTCCTGTTA	TAAT ATGTAG	ATAGTGTAG	TATGTACTTT	ATAGGATTAT	TGTAAAAAAT	AAATGAAATA
	TCAGATTAT	TTAG TATAAC	ACCTGGCATA	TGTTGGTAT	TCAGAATTAG	TTGCTGCTGT	TTTATTCTGC
	TCTCCCTG	ATCCCAC	TCTAAGTTGT	AAACTAAATA	GTTGTACACA	GATTGACAGA	TTAAGAAAGG
	CTTGTGATTG	TGCTAGACCT	ATGCCTATGC	CTCTGTCTCA	CCAGATTCCA	GGTGTATATG	TGGAGGTGGG
	ATAGGGAGTG	GAGTAAGTGG	GTAAATATTA	AATTGCCAG	TTGGGCACCA	TCCTGAATAT	TATCTCTAA
	GAAAGAAGCA	AAACCAGGCA	CAGCTGATGG	GTAAACCAGA	TATGATACAG	AAAACATTTC	CTTCTGCTT
	TTGGTTTAA	GCCTATATT	GAAGCCTTAG	ATCTCTCCAG	CACAGTAAGC	ACCAGGAGTC	CATGAAGAAG ATG

	GATCTTCATG	TGGAAATGACT	GGTTTCATTG	AATAGACTTA	ATTCAGCAGT	CTGTGGGAA	GAGCAAGGTA
	TGATAGAATG	GTTCCTCAAG	TGCTTCAGAT	GTGAAGTGGG	TTTAAATATA	CTGTCCTGT	CTTCTTCAGA
	GTTTGGTAA	AGATAAAAATA	GGACACTCAT	TTAAAAGCAA	TCTTGCAAA	TGACAAGCCA	CTATAGACAT
5	TAATAGAGTT	TTCATTTCGA	GTATTATCAT	TAATATCAGA	TCCTGGAAGA	AGGTTGAGCC	TTGACCTAGA
	GCAAAAAAAC	AGAAGAATTG	GTAAAGGAAT	CCTGGAGAAA	GCCCCCTGCTG	TGTATTTAAA	GGAGAAAGGG
	AGATCATGTT	GGGAATTAT	AATATTAAAA	GTAAACAAAA	GCTAGGAAGT	AAAATAAAAT	AAATTATATG
	GCCTAGATCC	CCATAAGTAA	TGGTTTAACT	TCTGCCTTCC	TGTGTTCTGA	GCCAGATTAG	GGCACAGTAG
10	AGAAAAGAGGA	GTCCTGAAA	ATGTTTCCA	TTTCGCTGGT	CAGACAGCGG	ATCATCAGTG	AATCAGATGA
	AAATTTGTGG	ATTATGCAC	TAACTGATCA	GCAGGAAATT	AAACAAGAAA	AGCGTTGGTA	GCTCTGGTGA
15	ATCCCCAAAG	AATTGGCAG	TTGCTAGCCA	TGCTCCTGAA	TATGTATAAA	CAGTACATCA	TATGACTAAG
	AGTTTGACTT	AGGCGTTAGA	TTTTATGTGT	TTGAACCCCA	AATTAGTTAT	TTAATAGTTG	GCACCCCCAA
	ACAAGTTACT	TAACCTCACT	AAGATTCACT	TTTCCTGTT	ATAAAATGTA	GATAGTGATA	GTATGTACTT
	TATAGGATTA	TTGTGAAAAA	TAATGAAAT	ATCAGATTAA	TTTAGGATAA	CACCTGGCAT	ATGTTGGTA
20	TTCAGTAATT	AGTIGCTGCT	GTTTTATTCT	GCTCTCCCTT	GCATCCCAC	TTTCTAAGTT	GTAAACTAAA
	TAGTTGTACA	CAGATTGACA	GATTAAGAAA	GGCTTGTGAT	TGTGCTAGAC	CTATGCCCT	CTCTCACCAAG
	ATTCCAGGTG	TATATGTGGA	GGTGGGATAG	GGAGTGGAGT	AAGTGGGTA	ATATTAAATT	GCCCAGTTGG
	GCACCACCT	GAATATTATC	TCTAAAGAAA	GAAGCAAAAC	CAGGCACAGC	TGATGGGTTA	ACCAGATATG
25	ATACAGAAAA	CATTCCTTC	TGCTTTTGG	TTTAAGGCT	ATATTGAAAG	CCTTAGATCT	CTCCAGCAC
	GTAAGCACCA	GGAGTCCATG	AAGAAGATGG	CTCTGCCAT	GGAAATCCCCT	ACTCTACTGT	GTGTAGCCTT
30	ACTGTTCTTC	GGTAAGTAGA	GATTCAATTG	CCCCTCCAG	GGAGGCCAA	ATGAATTGG	GGAGCAGCTG
	GGGTAGGAAC	CTTACTGTG	GGTGGTGACT	TTTCTAGGA	CATGTGCAA	CTATTGGCA	TTTCCCAGGG
	ACTCTGTAGT	GGAGCCAAGC	TAGAAAGCAG	AGGCAAGTGG	GCTGAGCAAC	ACCTAAGGAG	GAAGCCAGAC
	TGAAAGCTTG	GTTCCTTGCA	TTTGCTCTGG	CATCTTCCAG	AGTGCAAATT	TCCTACCAAG	GTAATGAGGG
35	TAGAGGAGAG	AAAAGAAGCTC	TTTCTTCCCC	TGATTCTCAT	TCCTGAAAAG	ACGGTTGGTC	CTTAAAATTC
	CATGGATGTA	GATCTTATCC	CCACACCCAG	ATTCTAGTCC	TCTGGAGATA	AAGAAGACTG	CTGGACACTA
	ATGTATCCTC	TCTGGACTTT	TGCAGCTCCA	GATGGCGTGT	TAGCAGGTGA	GTCCTCTGTT	TTGTTCCCT
	TGGGTATCA	ACA'GTCTGG	GCATTGCTT	CCTCTCACTA	TTTTCTCGT	CCCATCACTT	CTGCTTTCTA
40	ATGAGCATGA	ATCTGTTCC	TGGCCAGACT	ACTTCCCTC	TCCACCTTG	CTTGTCTTC	TTTTTTCCC
	TGATTCAATTG	CATCTCTCA	AGTCATTCTC	TCCTCTGTT	AGTCATAAA	CCATGCTGT	TGCACATATA
45	CATGTCTCAT	TCTCTCCT	AGACACTTTG	GCATGATCTC	GCTCAATAAT	TACATTATTA	TTATTATTGC
	CATTTTATAA	TTGAGGATGC	TGAAACTCAG	TGATTTCTG	GTGGTTACAT	GGCTAAGGAA	CTGGATTTCA
	ACGTAAGTTC	CTTCGATCTA	AGTCCAGTTC	TCTTCTGACT	ATATCACCC	TTGTTATCA	CCATGTATCT
50	ACTCTTTGG	TCTCTGTTCA	AATTGCACT	ACATCCCTT	GTTCCAGGAA	GCCATTCAAG	ACTGACTTTC
	TTAGTGCCTC	TCACTACTTT	CTGGAACCTGA	CATATGTTT	TCACTCTGTA	TATACTTACA	ATTAAATAGT
	CATAAAATATT	CAGAGCTTGG	AGAAAACCTA	TATTTCATCC	AGTCCAGTAA	ATTATCCAT	CCATAATTCA
	CTCATTCTATT	CACATAATAA	ATATTAAATG	TAACAATGGT	TGAACATGGC	AGACAGTGT	TCTACCTCAA
	AAGAGATTGC	AGTCCTCATT	TACAGATACT	GAATTGAAAT	TAACAGAACT	AGAGTGAGTC	AGCTCAAATC
	ACATAGTGAA	TTGGTTTCTT	TGTTTTTAAA	TCTCCTGCAT	ATGTGCTCG	TCTTCTCCC	TGTGTTGGC
	GTTCCCTGGG	GCACCAATAC	TAATTCTCC	TTCCCTAGA	AATCAAAACAA	GGGTCTTATC	ACCAACAGAA
55	TAAGGACAGG	TTGACCACTG	ATTGTCAGAA	TATTGCTCG	TTTGTACTTT	TAAGCCTAGA	CAGTTTCAA
	TGACTTTTT	TCTCTCTACA	TGTCTTTCA	TATTTTATC	TTCTTGAGT	CCCTCAGAAA	CCTAAGGTCT
	CCTTGAACCC	TCCATGGAAT	AGAATATTAA	AAGGAGAGAA	TGTGACTCTT	ACATGTAATG	GGAACAATT
	CTTGTGAAGTC	AGTICACCA	AATGGTTCCA	CAATGGCAGC	CTTTCAGAAG	AGACAAATT	AAGTTGAAT
	ATTGTGAATG	CCAAATTGTA	AGACAGTGG	GAATACAAAT	GTCAGCACCA	ACAAGTTAAT	GAGAGTGAAC
60	CTGTGTACCT	GGAAAGCTTC	AGTGGTAAGT	TCCAGGGATA	TGGAAATACA	GATCTCTCAT	GTGAGGGATG
	GCTCATCTGA	AGATGGGAAA	AAACAGGTTA	TTCCAAGGGT	TAGGACACCA	GAGTGGGATT	CAAGGCCTCT
	CATTTTAAG	ACCCCTGCAT	TGGCTGGCA	CAGTGGCTCA	CGCCTGTAAT	CCCAGCACTT	TGGGAGGCTG
	AGGCAGGTGG	ATCAAGGAGT	CAGGAGATCG	AGACCATCCG	GCTAACATGG	TGAAACCCCA	TCTCTGCTAA
	AAAATATATA	TATATAAAAT	TAGCCGGCG	TAGTGGTGGG	CACCTGTAGT	CCCAGGTACT	CGGGAGGCTG
65	AGGCAGGAGA	ATGGGTGTGAA	CCCAGGAGGT	GGAGGTTGCA	GTGAGCTGAG	ATCACGCCAC	TGCCCTCCAG
	CCTGGGCTAC	AGACCAAGAC	TCCGTCTCAA	AAAATAAAATA	AATAAATAAA	AAAGACCCCT	GCATCTCTT
	TCTTCTACCC	CCTCTCCCTT	TGATTACTTG	TATGCCCTCT	TTCAATATT	TAGTCATCTC	TCAATATTAT

	TCCTCCACCC	TATTITCCTC	TATCTTTCT	GCCTAGATT	AGGTATATAT	TATGGGTCA	AACAGCATGA
	CATATATGTG	AAACATTCAA	AGAGCTGTGT	ATCTGGAATA	GGATCAAAAG	GTTGACTTA	AAGTTTGCT
	CTGCATAATC	CATATGGCAG	GACCTGAATA	TTAGGTTGTA	CTCTCGTTA	TGAAACATAT	CTGGGTACAT
5	TTCCATTATGT	CCTCTGTTGT	TACTTAAGAA	CACATATTTC	ATGCTTGT	CATTTTATC	ACTCCTACTG
	CCAACAAATA	GCATAGCATG	CTTAGGCACA	TGTGGCTAA	TTAGCAAATG	TTGAATAAAC	AAATTAATGA
	TTTGAATAG	TGACCAATAG	GTCTCTTTA	TACTCTATAT	TTTCTCTTG	AGTAAAAAAA	AATGTTCAA
	CCTCCATATG	TAATTCAA	ACACAAACTA	AAGCAATGTA	GAATAGCTTC	TTTATTCCCT	GGAGTAGGTT
	CTAGAGAAGT	CCTAAAGGAT	TGGTCCTAAA	TTAATTATGC	TTATTATGCT	AGCGATATT	CCTTCAAAAA
10	TTCTCCTTA	ATGAATGCTT	TTAATTTTT	ACAAAAGCAT	TAACCATAGA	ATGTGATTCT	TGTCTTTCAC
	TGACTCATT	GTGACAAATA	TTTGTGAGT	ACCTACCAAC	TCCTAAGTAT	TGCTACCAAC	TCCTAAATAC
	TGTGTTGGGC	ATTCAGAATA	GAATGTAGAA	CTAGACAGGG	TCCCTGACTT	CTTGGAGCAC	AGAGCAGTAT
	GGGAAGAGGA	CAT'AAATAA	AGAATTACAT	AAGTAATTAA	TTAAATTAT	ACATGTTTG	AAGAAGTTT
	TTTTGACAA	CTATAATTAA	CACTAGAACT	GGGAAGTTTC	TATAAGGTAA	GAGAGGACAA	AATAGACACT
15	CTCCTAAGCT	AAAATTCCC	AGAAAGACTG	TTTATTTCC	CCTAACTAAC	TAGAACTAGC	AACAGAAGAT
	CTGAAAGGAA	TTCTGGCTT	CAAGTGTCC	ATGTATGGAC	TCATCAGGG	GGTCCGAGAG	GCTTTGTGGC
	CCCAGACTGA	CTTTCAGGA	GGGGAAAGGA	TTTATCAATA	CACAAGACAG	GCTCTAAC	TTATTTGTG
	CCCTTAAAG	ATCCACTTTA	TGAGCCAAA	AGTGAGTTAA	TGATAATTCA	TAGTTTCTGA	CACATGCTCT
	ATGCGTGGCT	CTCTTTCTC	TATTCAATT	CTCTCTCTTC	ATTATTGTT	AAATAAATAA	TGTAATGAAT
	GTTCCTCAGA	CTGGCTGCTC	CTTCAGGCC	CTGCTGAGGT	GGTGATGGAG	GGCCAGCCCC	TCTTCCTCAG
20	GTGCCATGGT	TGGAGGAAC	GGGATGTGTA	CAAGGTGATC	TATTATAAGG	ATGGTGAAGC	TCTCAAGTAC
	TGGTATGAGA	ACCACAAACAT	CTCCATTACA	AATGCCACAG	TTGAAGACAG	TGGAACCTAC	TACTGTACGG
	GCAAAGTGTG	GCACCTGGAC	TATGAGTCTG	AGCCCCCTAA	CATTACTGTA	ATAAAAGGTG	AGTTGGTAAA
	GGAAAGGAAA	AGCACTCCATA	GCAGGGGAAG	GAAGAGAGAA	CTTCTGAGCC	TGAGCAGTTG	CAGCTTGTAG
	AAGGGGGCA	CCTCTGATAC	ACTGAAAGC	CTACCAAGACT	TGCAATGAGG	AGACCTGGGT	GATAGTATAT
25	ATCTCAATCT	CTGTITCAA	GCCTGACTT	GTAAATGGT	GATAGTAATA	CCTGTTGCA	CTATGAAATT
	TTTATGAAGA	TTAATGTGGT	AATATTGTG	AAATGACTTT	GTAAACTGTT	AAGCACTACC	CAAGCATAAC
	AGATTGTGAT	TACTATTTG	ATCTCAAAGT	CATCTGTTGC	TCCTGGGGGA	ACACTTATAT	TTATCAAATT
	GAAAAAAAGT	TTCAAAGTTG	AATGAAGAAA	GGATATAAAG	AGCTGAGGA	GCCCATTCCA	GCTTAGGAGG
	GCTGGGAAAG	GAA ^c CCAGCA	AGTCAGTAAG	CTGTGTGCT	GTGTATTGAG	GGAGGAGGGA	ATGGACTTGA
30	TATGGAGAGG	GTACGGAGGT	GGACTGCCTC	TATGGCCTGT	AAGAAAAACT	GCTCTCTCCA	AACTCTTAT
	AAGAGAGGGA	GCC ^c GTGAAG	TATTCACTT	TGAAGGAGAA	AGTTAGACTT	TTCCCTCACA	CACTTTGTAC
	ATAATAATGT	TTAAAAAAAGC	ATGAGGTCAA	AATACATAAT	TAAGTCCTAG	CAGTTCTCTG	TTAACTAATT
	TGAGACTGAA	GTGCTATGTA	CTTGTCTCTA	GGCTCCAGT	ATCTTCATCT	GTAAAACAGA	ATATTGGTC
	TAGATTCCAT	TAGAAATCATT	TGATAACTTA	AAAAATATAT	TGATGCTCAT	GTCTCATTT	TTGAGATTCT
35	GATTTAATTG	GTGGGGGTG	CAGCCTGGGT	ATACGTATT	TTCATAGGTC	TTTCACATAA	TGGTAATGGG
	TAGCCAATAT	TGAGAACATC	TTGTCTAGGT	GATCTTAAA	TGATTCTGG	ATGTAATATT	CTGAGGCTCT
	ATAATTGAG	ACTAACACAA	AAAATCGGT	CAGTTATAA	ACAGACTAAC	AGAACCACAA	AATAATAGAA
	TTGGAAGGCA	ATTTAACTAG	TGCAATTCT	TCATTTGCC	TAACAGGCAT	GTAAGAAATG	ATGATTGATT
	GAGTAATAGG	CATTGATGAC	CCCTGTCTC	ACTTTGTCCC	CTTCCACCC	CTTAATTATA	TGTGAATTCT
40	GGTCTTGTCA	TTTCGAATAA	GGGGTTTATC	TTTCCATTG	TCTTCCCCCTC	TGGGCACGGC	ACACTGGCTA
	CTGGAGTTAA	GAGGAATGTC	TTAGGACTCC	CTGTGGCTCC	AGGGAGCAC	AACAGAGCAA	CTCAACCTAG
	TGTTAATCTG	AGTGTTTCT	CTGTGCTTCT	GGATGCCACA	TCACGCTAA	AATGAAGGAC	AAAGCTTGGT
	CTTCTCTTAA	GGGA GGATGA	AACTCTGAAC	CTCATTCTTC	AGTCCCCAAG	ATGAATTATG	TTTCTCATTG
	CATCTGTGTT	CCACFACAGC	TCCCGCTGAG	AAGTACTGGC	TACAATT	TATCCCATTG	TTGGTGGTGA
45	TTCTGTTGTC	TGTGGACACA	GGATTATTTA	TCTCAACTCA	GCAGCAGGTC	ACATTCTCT	TGAAGATTAA
	GAGAACCAAGG	AAACGGCTTC	GAACCTCTGAA	CCCACATCT	AAGCCAAAC	CCAAAAACAA	CTGATATAAT
	TACTCAAGAA	ATATITGCAA	CATTAGTTT	TTTCCAGCAT	CAGCAATTGC	TACTCAATTG	TCAAACACAG
	CTTGCAATAT	ACATAGAAAC	GTCTGTGCTC	AAGGATT	AGAAATGCTT	CATTAACACTG	AGTGAACACTG
	GTAAAGTGGC	ATGTAATAGT	AAGTGCTAA	TTAACATTGG	TTGAATAAT	GAGAGAATGA	ATAGATTCT
50	TTATTAGCAT	TTGTAAAAGA	GATGTTCAAT	TTCAATAAAA	TAAATATAAA	ACCATGTAAC	AGAATGCTTC
	TGAGTATTCA	AGGCTTGCTA	GTGGTTGT	TTGTTTCTA	CTAAAGGCAA	GGACCATGAA	GTTCTAGATT
	GGAAATGTCC	TCTCTGACT	ATTGCAAGTG	CGATCTAGGA	ATGAAAAGAC	ATAGGAGGAT	GCCAGTGAGG

	TGGATCATT	TTATGCTTCT	TCTTCAGCTT	ACTAAATATG	AACTTTCACT	TCTTGGCAGA	ATCAGGGACA
	GTCTCAAGAC	ATACGACTCT	CAGGATGAAG	TAGAGTCCAG	GATTCCTCTG	TGATTTGTTT	GCCCCTCCCA
5	AATTATATC	TTGAACCTAT	GTCTTGATC	TTTATACAGC	ACCTGAACCA	AGCATTTGG	AGAAATTCCA
	GCTAATAATA	ATAAACAAAAA	CCTTCGGCTC	TGAAAACAGT	CCAGGACTGA	ATAAGATCTT	GGGCAAAAGA
10	ACTAGACAGT	TTTCGTTTAT	TTTCCCTTTC	ATTTATGTC	TTCATCATAG	TCATTGGAGG	CTCATTCTTC
	TTGTCATGGA	GTAAATGGGA	TTAAAGTTC	TACTAAGAGT	CTCCAGCATIC	CTCCACCTGT	CTACCACCGA
	GCATGGGCCT	ATATTTGAAG	CCTTAGATCT	CTCCAGCACCA	GTAAGCACCA	GGAGTCCATG	AAGAAGATGG
15	CTCCTGCCAT	GGAATCCCCCT	ACTCTACTGT	GTGTAGCCTT	ACTGTTCTC	GCTCCAGATG	GCGTGTAGC
	AGTCCCTCAG	AAACCTAAGG	TCTCCTTGA	CCCTCCATGG	AATAGAATAT	TTAAAGGAGA	GAATGTGACT
20	CTTACATGTA	ATGGGAACAA	TTTCTTGA	GTCAGTTCCA	CCAAATGGTT	CCACAATGGC	AGCCTTTCAAG
	AAGAGACAAA	TTCAAGTTG	AATATTGTGA	ATGCCAAATT	TGAAGACAGT	GGAGAAATACA	AATGTCAGCA
	CCAACAAGTT	AATCAGAGTG	AACCTGTGTA	CCTGGAAGTC	TTCAGTGACT	GGCTGCTCCT	TCAGGGCTCT
25	GCTGAGGTGG	TGATGGAGGG	CCAGCCCCCT	TTCCCTCAGGT	GCCATGGTTG	GAGGAACCTGG	GATGTGTACA
	AGGTGATCTA	TTATAAGGAT	GGTGAAGCTC	TCAAGTACTG	GTATGAGAAC	CACAACATCT	CCATTACAAA
30	TGCCACAGTT	GAAGACAGTG	GAACCTACTA	CTGTACGGGC	AAAGTGTGGC	AGCTGGACTA	TGAGTCTGAG
	CCCCCTCAACA	TTACTGTAAT	AAAAGCTCCG	CGTGAGAAGT	ACTGGCTACA	ATTTTTTATC	CCATTGTTGG
	TGGTGATTCT	GGTTGCTGTG	GACACAGGAT	TATTATCTC	AACTCAGCAG	CAGGTACAT	TTCTCTTGAA
35	GATTAAGAGA	ACCAAGGAAAG	GCTTCAGACT	TCTGAACCCA	CATCCTAAGC	CAAACCCCAA	AAACAACCTGA
	TATAATTACT	CAAGAAATAT	TTGCAACATT	AGTTTTTTC	CAGCATCAGC	AATTGCTACT	CAATTGTCAA
40	ACACAGCTTG	CAATATACAT	AGAAACGCTC	GTGCTCAAGG	ATTTATAGAA	ATGCTTCATT	AAACTGAGTG
	AAACTGGTTA	AGTGGCATGT	AATAGTAAGT	GCTCAATTAA	CATTGGTTGA	ATAAATGAGA	GAATGAATAG
	ATTCATTAT	TAGCATTITGT	AAAAGAGATG	TTCAATTTC	ATAAAATAAA	TATAAAACCA	TGTAACAGAA
45	TGCTTCTGAG	AAAAAaaaaaa	AAAAAaaaaaa	AAAAAaaaaaa	TCTCAATATA	ATAATATTCT	TTATTCCTGG
	ACAGCTCGGT	TAATGAAAAA	ATGGACACAG	AAAGTAATAG	GAGAGCAAAT	CTTGCTCTCC	CACAGGAGCC
50	TTCCAGTGTG	CCTGATTG	AAAGTCTTGA	AAATATCTCCC	CAGGAAGTAT	CTTCAGGCAG	ACTATTGAAG
	TCGGCCTCAT	CCCCACCACT	GCATACATGG	CTGACAGTTT	TGAAAAAAAGA	GCAGGAGTTC	CTGGGGGTAA
	CACAAATTCT	GACTGCTATG	ATATGCCTT	GTTTGGAAC	AGTTGTCTGC	TCTGTACTTG	ATATTTCACA
	CATTGAGGG	GACATTTTTT	CATCATTAA	AGCAGGTTAT	CCATTCTGGG	GAGCCATATT	TTTTTCTATT
	TCTGGAATGT	TGTCATTAT	ATCTGAAAGG	AGAAATGCAA	CATATCTGGT	GAGAGGAAGC	CTGGGAGCAA
55	ACACTGCCAG	CAGCATAGCT	GGGGGAACGG	GAATTACCAT	CCTGATCATC	AACCTGAAGA	AGAGCTTGGC
	CTATATCCAC	ATCCACAGTT	GCCAGAAATT	TTTGAGACC	AAGTGTCTTA	TGGCTTCCCT	TTCCACTGAA
	ATTGTAGTGA	TGATGCTGTT	TCTCACCAT	CTGGGACTTG	GTAGTGTCTGT	GTCACTCACA	ATCTGTGGAG
	CTGGGGAAAGA	ACTCAAAGGA	AACAAGGTT	CAGAGGATCG	TGTTTATGAA	GAATTAACAA	TATATTTCAGC
	TACTTACAGT	GAGTGGAG	ACCCAGGGGA	AATGTCTCT	CCCATTGATT	TATAAGAATC	ACGTGTCCAG
60	AAACACTCTGA	TTCAACAGCCA	AGGATCCAGA	AGGCCAAGGT	CTTGTAAAGG	GGCTACTGGA	AAAATTCTA
	TTCTCTCCAC	AGCCTGCTGG	TTTT	AAGCTTTCA	AAGGTGCAAT	TGGATAACIT	CTGCCATGAG
	ATTGGGACAC	AAGGGGGAC	AATTCCAGAA	GAAGGGCACA	TCTCTTCTT	TTCTGCACTT	CTTTCTCACC
	TTCTCAACTC	CTACTAAAAT	GTCTCATT	CAGGTTCTGT	AAATCCTGCT	AGTCTCAGGC	AAAATTATGC
	TCCAGGAGTC	TCAATTTC	TTATTCATA	TTAGTCTT	TTTAGTAGAC	TTCTCAATT	TTCTATTCTAT
65	CACAAGTAAA	AGCCTGTTGA	TCTTAATCAG	CCAAGAAACT	TATCTGTCTG	GCAAATGACT	TATGTATAAAA
	GAGAACATC	AATGTCATGA	GGTAACCCAT	TTCAACTGCC	TATTCAAGGC	ATGCAGTAAG	AGGAAATCCA
	CCAAGTCTCA	ATATAATAAT	ATTCTTATT	CCTGGACAGC	TCGGTTAATG	AAAAAAATGGA	CACAGAAAGT
	AATAGGAGAG	CAAATCTTGC	TCTCCCACAG	GAGCCTTCCA	GGTAGGTACA	AGGTATTATT	TTTTTCTACC
	CTCAGTCACT	TGTGGCAGGG	GAAGTCATAG	TCACGGTCT	TAGGAGATGA	AACTTTATTG	ATTTAGGCAT
70	GGATCCATCT	AGTTAAATT	ATATATTGGG	TATGAGGAAG	CTACTTGCTG	TACTTTCCAT	GTGGTTCTCT
	CTCCCTGGAG	AGGAACATT	TTACTCAGCT	TGCAAACCTGG	AAATAGATT	TCTCACATTA	GAAGCTCATT
	TTCTGGGTAT	GAGACAGGAG	AGTTCATACT	GTGTATGTAG	ATCTCTGGCT	TCTGGGTCTG	ACATGTGCTG
	AGGGACACAT	ATCCTTCACA	CATGCTTTA	TAATACTTG	ATAAAAGTAAC	CTGCTTCTTG	ATTGGTCTTT
	ATAATCCATA	AGCTGTGGGA	TGCTTCTCTG	AAGATGAAAAA	TAGTAATAGA	GTCCCATCTA	GCTATTCAA
75	GCCATTCCCT	CATTGTATT	TGTGCACATG	AAGTGGGGT	TTGTTACTGA	CAAATATAT	TCAGATACAT
	TTCTATGTTA	AAAGGATTGT	GAGATGCATA	GGTAAATGTG	TTTATTTCA	GTTTTACTTG	TCAACATAGA
	TGAATGAGAA	AGAACCTGAA	AGTAACACTG	GATTAAGAAT	AGGAAAATT	GGCATGGATT	TTGCTCCATT

	TTGTCCCAC	TAATCACTTG	GATA GTGTT	AGGTGTTCT	GGTCAGTTAC	TTGGATGCTC	TGAGCTTAG
	TTTCTTGGTG	ATTACAATGA	AGATTTGAAT	TACAGGATGG	CTTGAAAAAA	ATAAACAAA	CTCCCTTTC
	TGTCTGCGA	GAATGTTGCA	CAGGGAGTT	CAGAATGTT	TCATGACTGA	ATTGCTTTA	AATTTCACAG
	TGTGCCTGCA	TTTGAAAGTCT	TGGAAATATC	TCCCCAGGAA	GTATCTTCAG	GCAGACTATT	GAAGTCGGCC
5	TCATCCCCAC	CACTGCATAC	ATGGCTGACA	GT TTGAAAAA	AAGAGCAGGA	GTTCCTGGGG	GTGAGTGAGC
	CTCCTCCAAC	TTTGACTAGA	GTAAGGGTT	GGTCTAGAAA	AGAATATTGA	GTGCACTCAA	CTGTTTCCC
	ACTTGGATT	ATGA GAGGTG	TTAGGTCTT	TAAAAAACAT	GGTAGATAAA	GAGTTGACAC	TAACTGGGTC
	CTTTGGGAA	GAGCCAGAAG	CATTTCTCA	TAAAGACTTT	AAATTGCTAG	GACGAGAATG	GCCAACAGGA
	GTGAAGGATT	CATAACTTTA	TCTTTACTTA	GATGTAAGA	ACAATTACTG	ATGTTCAACA	TGACTACATA
10	CATAAAGGCG	CATC GAGAAA	AGTATTGGCC	TTCCATGCAT	TAGG TAGTGC	TTGTATCAAT	TCTTATAGTG
	GCTAGGGTAT	CTTGGAAAAT	CTTACGTGT	GATCATTCT	CAGGACAGTC	TAGGACACTA	ACGCAGTTTC
	TCATGTTGG	CTTCTATTAT	TAAAAAAATGA	TACAATCTG	GGAAAATTTC	TTTGATTTTC	ATGAAATTCA
	TGTGTTTTC	TATAAGGTAAAC	ACAAATTCTG	ACTGCTATGA	TATGCCCTTG	TTTTGGAACA	GTTGTCTGCT
	CTGTACTTGA	TATTTCACAC	ATTGAGGGAG	ACATTTTTTC	ATCATTAA	GCAGGTTATC	CATTCTGGGG
15	AGCCATATTT	GTGAGTATAT	ATCTATAATT	GT TTGAAA	TAACACTGAA	CATAGTTTT	TCTCTTCTC
	AGATCTAAC	AGTIGTTAT	TCCCAGTATT	AAGATGATAT	TTATAATTCT	TAATTATAAA	TATATGTGAG
	CATATATAAC	ATAGATATGC	TCATTAACAA	CAACAAAAGA	TTCTTTTAC	AATTAACGGT	GGGTTAAACA
	TTTAGCCCAC	AGTTTATCC	CATGAGAAC	CTGAATCTAA	TACAAGTTAA	ATGACTTGCC	TAAGGGCCAC
	TTGACTAATA	GTAATGAAAC	CTAAACTTTC	AGAATCCAAC	TCCAGGAACA	TACTCTAGC	ACTATTCATC
20	AATAAAGTTA	TATGATAAAAT	ACATACAAC	TTATCTGTCA	ACTAAAATA	ACAACAGAGG	CTGGGCATGG
	TGGCTCACAC	CCGTAAATCCC	AGCACTTTGG	GAGGCTGAGG	CAGGTGGATC	ACCTGAGGTC	AGGAGTTGAG
	GACCAGCCTG	ACCAACATGG	TGAAACCTCA	TCTCTACTAA	ATATAAAA	TTAGCTGAGT	GTGATAGTGC
	ATACCTGTAA	TCCA GCTACT	TAAGAGGCTG	AGGCAGGAGG	CTTGTGAA	CCTGGAAGGC	AGAGGTTGCA
	GTGAGCTGAG	ATTGTGCCAT	TGCACTCCAG	CCTGGGCAAT	AAGTGCAC	TCTGCTCAA	AATAATAATA
25	ATAATAATAG	AAAATAAAAGT	TGTCTTCATG	AAAATGAGG	AAAGAGATTG	CTGGGGTGAG	AAACATTAAG
	ATCAATGGGC	ATAI GGTGAC	CTTCTATGCC	CTAGAAACTC	TTT TANGTA	TTTCTCCTG	GTATCTTT
	TACNCATCGT	TCTA'CTGG	AAAATAGGTG	GATGAGTGAG	ATAATAACGG	TATATACTTT	TTAAAGGTCT
	AATTGACATA	TATAAATTGC	AAGTATTTC	GATGTCATT	TGCTAACCTT	GACACACATA	GACACACATG
	AAAACATCAC	CACATTAATA	CAATGTATGT	ATCCATCATT	CCAAAAGCTT	CCCTGTGTAT	CTTGTAACT
30	CTTTCTTCCT	CCCTCCACTC	CTTGTCCCT	CGTTCCCAG	AAAACATTGA	TCTGCTTCCT	GTGAATATAA
	ATTAACCTAC	ATTITTTAGA	GCTTTATATA	AGTATGTTCT	CTTACTGTT	TGTCTCCTT	CGCTGCACAG
	TTATTTTGAG	ATTCTTCAAG	TTTTTCTT	ATATCGATAC	TTCATTCA	AGAATATATT	TTAATTCTAG
	ACTATGTAC	ATTGACTTTG	TCGTCTGCTA	AATCCTTAGT	GCTCAGATGA	CTTGTTCAGG	ACTCTCCTG
	AACCTGTACC	TCTGTANAT	TGAAACTTGT	CTCTACTGTC	TTTTTATTTC	AAACACAGCT	TATTAGGTGT
35	CTCTCAACCC	ATCAAACNCA	CAATCTGAGT	CTTTAGGAGA	TTGCTTGA	TTTGCTAT	TGACTTATAT
	NTATATNAAA	TNTG TAAATG	TTTGGTAAAAA	ATATCATCAT	GTACNTITIC	ATAAITACGC	TATNTNCACA
	TGATATATGT	CAGACTCTGG	AAATATGCAT	GCCACAGACA	CGTGTGTTCT	GCCTAAAGGG	GCTGATGGAA
	GACNCACATA	CNA TAGACG	ATTGCAGTAG	AATGAGAGTG	GTGGTCTAAN	CAGTACATGT	CCTGATGTTG
	CTCGGACAGT	TACTACNCCA	AGAGTACCCC	CTGCATTGTC	AGGGTTAGCA	TCTCCTGGAA	GCCTCATGTA
40	AATGAAGAAT	TTCATGCTCC	ATCCAGGACC	TAATGAATAA	GAATCTGCAT	TTTAGCAAGA	CCCTCATATG
	ATTCAATATAC	ACTTITTTT	TTTTTTTTA	GATGGAGTCT	CACTCTGTC	GCCCAGGCTG	GAGTGAATG
	GCATGATCTT	GGCTCACTGC	AACCTCTGCC	TCCCCGGGTT	AAGTGAATTCT	CCTGCTCAG	CCTCCCTAGT
	AGCTGGGACT	ACAC GTGCAT	GCCACAGTGG	CTGGCTAATT	TTTGTATTTC	TAGTAGAGAC	AGGGTTTCAC
	CATTTGGTC	AGGCTGGTCT	TGAACTCATG	ACCTCCGGTG	ATTCCCCCGC	CTCGGCTTCC	CAAAGTGCTG
45	GGATTACAGA	CATCAGCCAC	CACACCGGCC	TTATTCTGAT	ACNCATTAA	TTCTGAGAAG	CACTCTATAG
	AAAATAAGAA	TAAGAAAATA	TTGGGCTCAC	AGGTGACATT	AATAAGTAAC	TTTATCGAGT	ACCCCAAATT
	TTACCTATGT	TTGGAAGATG	GGGTTAAAAG	GACACATTGA	AAACAAGAAC	TCATTGTGGC	TTTTTTTCC
	TCCTTTTGA	ACAGTTTCT	ATTTCTGGAA	TGTTGTCAAT	TATATCTGAA	AGGAGAAATG	CAACATATCT
	GGTGAAGTGC	CCGT TTCTGT	CTTGTCCAT	CCTGAAAAG	ATAAGAAGAA	CAGAGTTTA	AGAGTCTTAA
50	GGGAAACACA	TCTTGTCTC	CTATATTACT	TGTGAATGTG	GATATATGAT	TTTGTGAA	TCTATTGTTG
	GTCCTAAGGC	TTTTGCAAC	AGAAGTTGGA	TATATCATT	GAAACATAAA	TTGTACCA	TAACATACAT
	GAAGTTATG	TTTACCTTGA	CGTTCTTCTA	AAAAGTGTCC	TACACCGGCA	TTGCTTGT	AGGCATATTG

	ACATGATCAA	ATAA^AATAAT	TAGTTTCA	TTAAGGAGAA	TATTGAGGA	AAGACCGTAC	GTGTTCATGT
	GGTCCTGAA	GGCAGTCCAG	TGAGAAAGTA	ATATATGCTT	CATTAAACAA	TGCGGACATIT	TTCAGGGTT
	CCCTTTTAA	CCAAAATTG	GAAGCAATGT	GGAATTACT	GGATGCATCC	AGCCCTGAAA	TGAAGATAGG
5	TTTATTGAAT	GTGCCAGCAA	GTGCAGGCC	AGGTCTGAGT	GTTCTTCATT	ATTATCAGGT	GAGAGGAAGC
	CTGGGAGCAA	ACACTGCCAG	CAGCATAAGCT	GGGGGAACGG	GAATTACCAT	CCTGATCATC	AACCTGAAGA
	AGAGCTTGGC	CTATATCCAC	ATCCACAGTT	GCCAGAAATT	TTTGAGACC	AAGTCTTAA	TGGCTTCCTT
	TTCCACTGTA	TGTA^TTTTT	TTTGTGTGGG	AAGACTAAGA	TTCTGGGTCC	TAATGTAAGT	AAGAACCCCT
	CTTCTCCTGT	TCCA^GAACA	CCATCCTTT	CTGTAACCTC	TATTACACAG	TATACTGGTT	CTGTAAGTTC
10	ACACAGCCC	GGG^GATGCT	GGCTGCCAC	TCCCCTCAAC	CCAGGCAAAT	TCCTGGGGT	TAAAGTTATC
	TACTGCAAGT	GACGATCTCT	GGGTTTTCT	GTGCCGTGT	TTGTGTGTG	GTGTGTGTG	GTGTGTGTG
	GTATGTGTC	CTTAAAGG	ACTGGTCAGA	TGGTAGGGAG	ATGAAAACAG	GAGATGCTAT	AAGAAAATAA
	ACTTTGGGG	CGAA^TACCAA	TGTGACTCTT	TTTGTGTGTC	ATTGTTGCT	GTTCAATAGG	AAATTGTA
	GATGATGCTG	TTCTCACCA	TTCTGGACT	TGGTAGTGCT	GTGTCACTCA	CAATCTGTGG	AGCTGGGGAA
15	GAACCTCAAAG	GAAC^CAAGGT	AGATAGAAC	CCGATATAAA	ATCTGAATG	ACAGGTTAAC	GAATTGGAGC
	TTTATTCCCT	AAAATATGGC	CTGGGTTTTC	TGAAACATT	CTTCCAGAAA	ATAGTTCTC	CAAGTTTAT
	TACTTTGGTT	TACA^AATCTC	ACATTTAAAT	CACATTTAT	ACCATAAGTA	GCACACATT	CATAATATTC
	CTCTGAATGA	GGGTGGGAT	AATAGGACTG	ATATGTTAGA	AATGCCCTAA	AGTGTGTGGA	GCATGAGAGA
	TGGATGTACA	GAAC^GCTTGT	GAGGAAACCA	CCCAGGTATC	TGGCCTTGT	TTCTGCCCA	GAACTAGCCG
20	CCTATTCTG	TTTCIGTTT	ATTCCITITGT	TTCTTGACTT	TTCCITTCCA	ACTTGCTCTA	AAACCTCAGT
	TTTCTTCCCT	TTCTGATTCA	TGACTACCA	ATGTTTCAC	TTGCCTCACC	CGTCATTAC	ACCTTTGATA
	AGAACCAACCA	GACCTTGTGC	TCATGTACTT	GCCCCATGTCT	GATGGAAGAA	ACATACTCTC	TCCATCTGTC
	CACTTTCTG	AGGCATTCAA	GTCTAGGCC	CTTTAAAAT	CACTCTCCTC	CAGGCTGGC	ACGGTGTAC
	GCCTGTAATC	TCAGCACTT	GTGAGGCTGA	GGAGGGCGGA	TCACTTGAAG	TCAGGAGTTC	AAAACCAGCC
25	TGGCCAATG	GCAAAACCAA	ATCTTCTCA	ATTATAACCA	AATCTTAAAC	CAAATCTCTA	CTAAAAAATA
	CAACAAAACA	AAACAAACAA	AACAAAAAAC	AAAAAGGAA	CATTAGCCC	GCGTGGTGGC	AGGTACCTGA
	GGTTCCAGAT	ACTTGGGAGG	CTGAAGCAGG	AGAATCGTT	GAGCCCAAGA	GATGGAGGTT	GCAGTGAGCC
	GAGATCATGC	CACTGACCA	CAGCCAGGGT	GACAGAGCCA	TACTTCCCAG	CACATTGGGA	GGCCAAAGCT
	GAAGAATAAT	TTGAGGTGAG	GATTGGAGA	CCAGCCTGGC	CAACATGGT	AAACTCCGTC	TGTACTAAA
	ATATAAAACT	TAGTGGGCA	TGGGGCACA	CACCTGTAAT	TTCAGCTACT	TAGGAGGCTG	AGGCAGGAGA
30	ATTGCTTGAA	CCCGGGAGGC	GGAAGTTGCA	GTGAGCCAAG	ATCGTGGCCA	CTGCACTCCA	GCCTGGGTGA
	CATAGTGAGA	TTCTGTC	AAAAAAATAA	AAGAAATT	AAAATCACT	CTCTTCCAAA	GATAGATAAA
	TAAGACAGCA	GATAACTAA	GGAATAACCT	CACCAACTTG	TCATTGACTG	ACATGATTT	TTTGGCCCA
	CTTGGCCAGC	TAGTCTGGTT	TGGTTTCTG	GAAATGAAAG	AAATAATCAG	AGTTAATGA	CAGAGAGCGT
	GAGACCCAGA	AAG^CAAAAG	TAGATGAGGT	AAGTCTCTG	AGCGAGACTT	CTAGGGATGG	GAAATTGTTG
35	GTGATTGATA	TGAATGATT	TTTCCCTT	CAGGTTCCAG	AGGATCGTGT	TTATGAAGAA	TTAACATAT
	ATTCACTAC	TTACAGTGA	TTGAAGACC	CAGGGAAAT	GTCTCCTCCC	ATTGATTAT	AAGAATCACG
	TGTCCAGAAC	ACTCTGATT	ACAGCCAAGG	ATCCAGAAGG	CCAAGGTTT	GTAAAGGGC	TACTGGAAA
	ATTCTATT	TCTCACAGC	CTGCTGGTT	TACATTAGAT	TTATTCGCT	GATAAGAATA	TTTGTGTTCT
	GCTGCTTCTG	TCCACCTAA	TATGCTCCT	CTATTGTAG	ATATGATAGA	CTCCTATT	TCTTGTGTTA
40	TATTATGACC	ACACACATCT	CTGCTGGAAA	GTCAACATGT	AGTAAGCAAG	ATTTAATGT	TTGATTATAA
	CTGTGCAAAT	ACAGAAAAAA	AGAAGGCTGG	CTGAAAGTTG	AGTTAAACTT	TGACAGTTG	ATAATATTG
	GTTCTTAGGG	TTTTTTTTT	TTTAGCATT	CTTAATAGTT	ACAGTTGGC	ATGATTGT	CCATCCACCC
	ATACCCACAC	AGTCACAGTC	ACACACACAT	ATGTATTACT	TACACTAT	ATAACTCCT	ATGCAAATAT
	TTTACCA	GTCAATAATA	CATTTTGCC	AAGACATGAA	GTTTATAAA	GATCTGTATA	ATTGCCTGAA
45	TCACCAGCAC	ATTCACTGAC	ATGATATTAT	TTGCAGATTG	ACAAGTAGGA	AGTGGGGAAC	TTTATTAAG
	TTACTCGTTG	TCTGGGGAGG	TAAATAGTT	AAAAACAGGG	AAATTATAAG	TGCAGAGATT	AACATTTCAC
	AAATGTTAG	TGAAACATT	GTGAAAAAAG	AAGACTAAAT	TAAGACCTGA	GCTGAAATAA	AGTGACGTGG
	AAATGAAAT	AATCGTTATA	TCTAAACAT	GTAGAAAAAG	AGTAACTGGT	AGATTTGTT	AACAAATTAA
	AGAATAAAAGT	TAGA^CAAGCA	ACTGGTTGAC	TAATACATTA	AGCGTTGAG	TCTAAGATGA	AAGGAGAAC
50	CTGGTTATGT	TGAT^GAATG	ATAAAAAGGG	TCGGGCGCGG	AGGCTCACGC	CTGTAATCCC	AGCCCTTTGG
	GAGGCCGAGG	TGGCAGATC	ACGAAGTCAG	TAGTTGAGA	CCAGCCTGGC	CAACATAGT	AAACCCCGTC
	TCTACTAAAA	ATACAAAAAA	AAAATTAGCT	GGGTGTGGT	GCAGTCACCT	GTAGTCCCAG	CTACTTGGGA

GGATGAGGCA GGAGAATCGC TTGAACCTGG GAGGC GGAGG TTGCAGTGAG CCGAGATCGC ACCAGTGCAC
 TCCAGCCTG GTGACAATGG GAGACTCCAT CTCAAAAAAA AAAAAAAA AAAAAAGATA AAAAGTCAGA
 AATCTGAAAA GTGGAGGAAG AGTACAAATA GACCTAAATT AAGTCTCATT TTTGGCTTT GATTTGGGG
 AGACAAAGGG AAA'GCAGCC ATAGAGGGCC TGATGACATC CAATACATGA GTTCTGGTAA AGATAAAATT
 5 TGATACACGG TTTGGTGTCA TTATAAGAGA AATCATTATT AAATGAAGCA AGTTAACACT CTAAGAGAAT
 TATTTGAGA TAGAAGTGA GCTAAGCTAA ACTTCACATG CCTATAATTG GAGGAAAAA CTAAGGATAA
 AATCTAGCCT AGAAGATACA ATAATTAGTC ATAAACATGC ATTGTGAAAC TGTAGAGAGC AGGTAGCCC
 AAATAGAGAA AGATTAGATA AAGAGAAAAT AAGTATCCAT CAGAGACAGT ATCTCTAGGC TTGGGCAAGA
 10 GAAAAGTCCA CAGIGATAAG CAACTCCACC TAAGGCATGA ATATGCGGCA GAGAAAACAG CAATAGTGA
 TGAATGCAA AGGTGCTGAG CAAATTCCAC ACATGAGTAT TGTGCATGAG TAAATGAATA AAACATTGC
 AAAGACCTT AGAGAAAGAG AATGGGAGCA TATGTGCGAA ATAAGATAGT TGATTATGAA TAGAAGGTAG
 TGAAGAAAAG CAAAGCTAAGA AAAAATTCTG TTATATAAAAG AAGGAAAAGA TAGTTTATGT TTTAGCCTA
 AGTATAAGAG TCCTACAGAT GGACTGAAAA AAATCAGTCT GAGAGTATTA GTCACAATTA ATGAAATAAT
 15 TACATTTAT GTATGAGGA TGCCAAGATT AAAAGGTGAC AGGTAGATGT TAATTCCCT AGATTGTGAA
 AGTGTACACG ACAATCACAC AACAAATAAT TAAAGTGAATT GGTATGCTT ATTAAATTGT AGGGCCTGAG
 GTTTCCATT CTCA'TTTTC TAAAATACAA TTTGTTTCT CCAAATTGTA CAGCAGAATA AAAACCTAC
 CCTTCACTG TGTAICATGC TAAGCTGCAT CTCTACTCTT GATCATCTGT AGGTATTAAT CACATCACTT
 CCATGGCATG GATCTTCACA TACAGACTCT TAACCCTGGT TTACCAAGGAC CTCTAGGAGT GGATCCAATC
 TATATCTTA CAGITGTATA GTATATGATA TCTCTTITAT TTCACTCAAT TTATATTTC ATCATTGACT
 20 ACATATTCT TATA CACAAC ACACAATTAA TGAATTTTT CTCAAGATCA TTCTGAGAGT TGCCCCACCC
 TACCTGCCCT TTATAGTACG CCCACCTCAG GCAGACACAG AGCACAATGC TGGGGTCTC TTCACACTAT
 CACTGCCCA AATIGCTTT CTAAATTTC AACTCAATGT CATCTTCTCC ATGAAGACCA CTGAATGAAC
 ACCTTTCAT CCAGCCTAA TTTCTTGCT CATAACTACT CTATCCCACG ATGCAGTATT GTATCATTAA
 TTATTAGTGT GCTTGTGACC TCCTTATGTA TTCTCAATT CCTGTATTG TGCAATAAT TGGAATAATG
 25 TAACTTGATT TCTTATCTGT GTTGTGTG TGATGCAAGA TTTAGGTACT TATCAAGATA ATGGGAATT
 AAGGCATCAA TAAATGATG CCAAAGACCA AGAGCAGTTT CTGAAGTCTC CCTTTCTAC AGCTCTTAT
 CAAACAGAAC ACTCTATAAA CAACCCATAG CCAGAAAACA GGATGTAGGA ACAATCACCA GCACACTCTA
 TAAACAACCC ATAGCCAGAA AACAGAATGT AAGGACAATC ACCAGCCATC TTTGTCAAT AATTGATGGA
 ATAGAGTTGA AAGGAACCTGG AGCATGAGTC ATATTGACC AGTCAGTCT CACTTTATT TACTTGCTAT
 30 GTAAACTTGA GAAAGCTTT TTCTCTTGT GAACCTCAGG TTTTACATCT GAAAATGAGA AATTGGAAC
 AAAAGATTCC TAACTGGTCT TTCTGTTCCC ATATTCTGT ATTTCATCAAT ATTAGGATT TTTGGTAATC
 ACAATTACTT AGTTGTGGT TGAGATAGCA ACACGAATCA GAACTATTG GTGGACATAT TTTCAAAGGA
 GTAGCTCTCC ACTTGGGTA AAGAAGTGT GCNGGTCGTG GTGGCTCACG CCTGTAATCC CAGCACTTTA
 GGGAGGCCAA GGCGGGTGG TCACGAGGTC AGGAGATCGA GACCACCTG GCTAACACGG TGAAACCCCG
 35 TCTCTACTAA AAAATACAAA AAATTAGCA GCGTGGTGG CGGGCGCTG TAGTCCACAG TACTCGGAG
 GCTGAGGCAG GAGATGGCA TGAAACAGGG AGGGGGAGCT TGCGTGAGC CGAGATAGCG CCACTGCAGT
 CCCTCCTGGG CAAAAGAGCA AGACTGCCTC TCAAAAAAAA AAAAAAAA AAAAAAGAA GTGTGTGGAG
 TAGCAGGACA CCTC CAACAA TAATATTTC CAAATCCCT CTGAAAAATG CTAATCAAAG GGTTTTTTC
 CTAAAAATTG TCTTAGAAAT AAAATTCCC TTGGGAGA CCGAGGCTGG CAGATCACGA GGTCAAGGAGA
 40 TAGAGACCAC GGTGAAACCC CGTCTCTACT AAAATACTA AAAATTAGCC GGGGNTGGT GGTGGGTACA
 CCTGTAGTCC CAGCTACTTG GAGGCTGAGG CTGGAGAAC ACCTGAAC GCCACGTGCT GCTGGGTCTC
 AGTCCTCCAC TTCCCGTGTCT CTCTGGAAAGT TGTCAAGGAGC AATGTTGCGC TTGTACGTGT TGGTAATGGG
 AGTTCTGCC TTCAACCTTC AGCCTGCAGC ACACACAGGG GCTGCCAGAA GCTGCCGGTT TCGTGGGAGG
 CATTACAAGC GGGAGTTCAAG GCTGGAAGGG GAGCCTGTAG CCCTGAGGTG CCCCCAGGTG CCCTACTGGT
 45 TGTGGCCTC TGTCAGCCCC CGCATCAACC TGACATGGCA TAAAATGAC TCTGCTAGGA CGGTCCCAGG
 AGAAGAAGAG ACACGGATGT GGGCCCAGGA CGGTGCTCTG TGGCTTCTGC CAGCCTGCA GGAGGACTCT
 GGCACCTACG TCTGCACTAC TAGAAATGCT TCTACTGTG ACAAATGTC CATTGAGCTC AGAGTTTTG
 AGAATACAGA TGCJTTCTG CCGTTCATCT CATAACCGCA AATTAAACC TTGTCAACCT CTGGGTATT
 AGTATGCCCT GACCTGAGTG AATTACCCCG TGACAAAAT GACGTGAAGA TTCAATGGTA CAAGGATTCT
 50 CTTCTTTGG ATAAAGACAA TGAGAAATT CTAAGTGTGA GGGGGACAC TCACCTACTC GTACACGATG
 TGGCCCTGGG AGATGCTGGC TATTACCGCT GTGTCTGAC ATTGCCCCAT GAAGGCCAGC AATACAACAT
 CACTAGGAGT ATTGAGCTAC GCATCAAGAA AAAAAAGAA GAGACCATT CTGTGATCAT TTCCCCCCTC

AAGACCATAT CAGCTTCTCT GGGGTCAAGA CTGACAATCC CGTGTAAGGT GTTTCTGGGA ACCGGCACAC
 CCTTAACCAC CATGCTGTGG TGGACGGCCA ATGACACCCA CATAGAGAGC GCCTACCCGG GAGGCCCGGT
 GACCGAGGGG CCAGCCAGG AATATTCAA AAATAATGAG AACTACATTG AAGTGCCTT GATTTTGAT
 CCTGTACCAA GAGAGGATT GCACATGGAT TTTAAATGTG TTGTCCATAA TACCTGTAGT TTTCAGACAC
 5 TACGCACCCAC AGTCAGGAA GCCTCCTCCA CGTCTCCTG GGGCATTTGT CTGGCCCCAC TTTCACTGGC
 CTTCTGGTT TTGGGGGAA TATGGATGCA CAGACGGTGC AAACACAGAA CTGAAAAGC AGATGGTCTG
 ACTGTGCTAT GGCCATCATCA TCAAGACTT CAATCCTATC CCAAGTAAA TAAATGGAAT GAAATAATT
 AAACACAAAA AAAA.AAAAAA AAAAAAAA GCGGAGCCG ACTCGGAGCG CGCGCGCGG CCGGAGGAG
 10 CCGAGCGCAG CGGC CGCGC GTGGGGCGC CGGTGCCCC GCGCGCCAG GGAGCGCAG GAATGTGACA
 ATCGCGGCC CGCA.CCGTAG CACTCCTCGC TCGGCTCCTA GGGCTCTCGC CCTCTGAGCT GAGCCGGTT
 CCGCCCGGGC TGGGATCCCC TCAACCTCCA CGGGCGTCCG TCCAGGTAGA CGCACCCCT GAAAGATGGT
 ACTCCCTCC GAGAACGCTGG ACCCCCTGGT AAAAGACAAG GCCTCTCCTA AGAAGAATAT GAAAGTGT
 CTCAGACTTA TTGTTTCTAG AGCTCTACTG ATTCTTCTC TGAGGCTGA TAAATGCAAG GAACGTGAAG
 15 AAAAATAAT TTTAGTGTCA TCTGCAAATG AAATTGATGT TGTCCTGT CCTCTTAACC CAAATGAACA
 CAAAGGCACT ATAACTTGGT ATAAAGATGA CAGCAAGACA CCTGATCTA CAGAACAAAGC CTCCAGGATT
 CATCAACACA AAGAGAAACT TTGGTTTGT CCTGCTAAGG TGGAGGATTC AGGACATTAC TATTGCGTGG
 TAAGAAATTG ATCTTACTGC CTCAGAATTAA AAATAAGTGC AAAATTGTG GAGAATGAGC CTAACCTATG
 TTATAATGCA CAACCCATAT TTAAGCAGAA ACTACCCGTT GCAGGAGACG GAGGACTTGT GTGCCCTAT
 20 ATGGAGTTIT TTAAAAATGA AAATAATGAG TTACCTAAAT TACAGTGGTA TAAGGATTGC AAACCTCTAC
 TTCTTGACAA TATACACTTT AGTGGAGTCA AAGATAGGCT CATCGTGATG AATGTGGCTG AAAAGCATAG
 AGGGAACATAT ACTIGTCATG CATCCTACAC ATACTTGGGC AAGCAATATC CTATTACCCG GGTAAATAGAA
 TTTATTACTC TAGAGGAAAA CAAACCCACA AGGCGTGTGA TTGTGAGCCC AGCTAATGAG ACAATGGAAG
 TAGACTTGGG ATCCAGATA CAATTGATCT GTAATGTCAC CGGCCAGTT AGTGCACATTG CTTACTGGAA
 25 GTGGAATGGG TCACATAATTG ATGAAGATGA CCCAGTGCTA GGGGAAGACT ATTACAGTGT GGAAAATCCT
 GCAAACAAAA GAAGGAGTAC CCTCATCACA GTGCTTAATA TATCGGAAAT TGAAAGTAGA TTTTATAAAC
 ATCCATTAC CTGTTTGCC AAGAATACAC ATGGTATAGA TGACAGCAT ATCCAGTTAA TATATCCAGT
 CACTAATTTC CAGAAGCACA TGATTGGTAT ATGTCACG TTGACAGTCA TAATTGTGTG TTCTGTTTC
 ATCTATAAAA TCTICAAGAT TGACATTGTG CTTGGTACA GGGATTCTG CTATGATTT CTCCAATAA
 AAGCTTCAGA TGGAAAGACC TATGACGCAT ATATACTGTA TCCAAAGACT GTTGGGAAG GGTCTACCTC
 30 TGACTGTGAT ATTITGTGT TTAAAGTCTT GCCTGAGGTC TTGGAAAAG AGTGTGGATA TAAGCTGTTC
 ATTTATGGAA GGGATGACTA CGTTGGGAA GACATTGTG AGGTCTTAA TGAAAACGTA AAGAAAAGCA
 GAAGACTGAT TATCATTITA GTCAGAGAAA CATCAGGCTT CAGCTGGCTG GGTGGTTCAT CTGAAGAGCA
 AATAGCCATG TATAATGCTC TTGTTAGGA TGGAATTAAA GTTGTCTGC TTGAGCTGGA GAAAATCCAA
 GACTATGAGA AAATGCCAGA ATCGATTAAA TTCATTAAGC AGAAACATGG GGCTATCCGC TGGTCAGGGG
 35 ACTTTACACA GGGACCCACAG TCTGCAAAGA CAAGGTTCTG GAAGAATGTC AGGTACCCACA TGCCAGTCCA
 GCGACGGTCA CCTCATCTA AACACCAAGT ACTGTCACCA GCCACTAAGG AGAAACTGCA AAGAGAGGCT
 CACGTGCCTC TCGGGTAGCA TGGAGAAGTT GCCAAGAGTT CTTTAGGTGC CTCCTGTCTT ATGGCGTTGC
 AGGCCAGGTT ATGCCTCATG CTGACTTGCA GAGTTCATGG AATGTAACTA TATCATCCTT TATCCCTGAG
 GTCACCAGGA ATCACG-3' (SEQ.ID NO:3002)

40 Human Enzyme-related Antisense Polynucleotide

5'-CTT GCT CCT GGG GGC CTC CTG GTC CCT CTG GCT G TT CCC GGC CCT GGB CTG GGG CBG GGG CCG CGT
 BGG CGC GGC TCG CTC GGB CGG GCB GCG CCB GCB GCB GGC TCB GCB TCC TGG CCB CGG BBT TCC GGT
 GTG CGG GGC CTG GTG CC CCT GGG CCT CGG GTG CTG CCT GT GCG CTG CCT TCT CTC CTC GTC CTC GCC
 GGG GCC CTT GCT GCC CTG GCT GT GCC CTG GGG GTC TGG GTT CGG CTG T CCC CBG CBG GBC CBG TCC CBT
 45 CCB CBG CGT GTG BTG BGT BGC CBT TCT CCT GCB GCC GBG GGG CGC GGG CGB GCB TCG C TTT GGG CTT
 TTC TCC TTT GGT T TGB GCG CCB GGB CGC CGC BCB GCB GCB GGG CGC GGG CGB GCB TCG CBG CGG CGG
 GCB GGG GGGCTCCCGC CGCGBGBGGT TBGGGCTCC CBGGBCCBCC CGCBBCCGC GGBCGTTBC
 BTTGCGCCBCG CBGTGCGCGG CCGBCBTGBC GBBGTTGGGC GCBBTGBC GBBGTTGGCCT
 CCGCGCBGCT GCBC GGBCBC CBTGBBGCC CBCGCGTGGG GCGCGCTCG CGGCCCCCCC BCBBTCTCCG
 50 BGGCCBGCAG GGTCCCCC BGCGBCBGG CGGCGBGGBC BCBGGCGBGG BGBCBGCGB GTCGGCGGCC
 GBGGGTCBTG GTGCGGCTGG GGCTCCGGGG TCTCTGCCCC TCCGTGCTGG TGGGGCTGGG GCTCCGGGG
 TCTCTGCCCC TCCGGCCGC GTGGGGCCGC GCTGCCGGC CCCCCCTGC CGGGTGGGCT CCCGCCGCC
 GCCGGCCTGC CGGCCCTCG TGGGTCTGC TGGCCGGGTC CGGGTCCCCGG GGGTGGGCG CGBGTCGGCG

GCCGBGGGTC CCCTCCBCBT CTGCTCTGBC CTGCTGGBC CTGGBTCTGB BGBTBCGCCB TGTBGGGGCG
 GGBGTGGGGC CTGCTCTCCC GGCCTCCGBT GBTCTCCCT GCCTCBGCCB CBGTTGGTBG GBGBBBGGCC
 BGCBBGBCB GGBGTGGCTG CBTCTTCCCT GGTGGGGCCT GCTCTCCCCG CCTCCGTGTG TTGCTGGGTG
 5 TTTCCCGTC TCTGGTCTGC CTTCGGGGGT CGT CCGGGGCTGC BGCBCCCTCB TCBGCTCTTG CCTGGBGTGG
 CTCBGCTGG GCCTGCBGGG CCBCCBGGBG BBTGGCBGB BGGBTGGCGB GGGTCTCBT GGCTGGGTG
 BCBGBTCTC TBGCTBGGCB GGGTGBCCBG BGBGGGCG TCC TCB TGG CTG GGG GCC TGG GCC TGC BGG
 GCC GCT CTT GCC TGG BGT GGC TC GCC CBG BGT CTT CCC TGG T CGCTGCBTC TGCTCCGGGG CTGCBGCB
 CTCBCBGCCTC TTGCCTGGBGTG GCTCBGCGTGG GCCTGCBGGG CCBCCBGGB BTGGCBGCBG GBTGGCBG
 10 TCCCTCBTGGC TGGGC TCBCCCT GGBGGBGGGB GBGCBGGGGG TCCTCBTGGC TGTTGGTCCCT CTCTCCCGTC CT
 CGG TTT CCT TTG CGG TC TTG GCC CGG GCT CCG GGT G CCC GCC CGC CCG CCC GCC GC CCC GCC GGG
 CTG TCC CCG CCC CGC CCC GGC CGG GGG CGC CCC TCC CGC CCC TCT GTT GG GCC GGC GCG GGC
 GTC GG CGG CTC GCG CCT GGG GTT CCC TCT CCT CCC CCT GTG C GCC TGC CTC TTG CTC TTCTGC GTC CGC
 TGC CTT CTC CC CTC TCC TCG GCC GTT GCC TGT CG CCG TCC TGT CGC CCT TCC GTG GTG C TGT TGT
 CTC TTC TGC CCT C GGT GTG CTG GTG CTG GTG GTG CCT CTG CCC GTG CTC GCCCTG CCT GGG CTG
 15 GCC TCT TCG GGT GTG GCT TTG GGG CTC TCT TGG TTG CCC TTT CTC TGT GTG CCT CTC CTC CCT GGC
 TTG GTC GT TGT CTG GGG TGG TGC TCC TCT CCC TGG CGG TTT GT CCT GTT TTC TGT CTT CCT
 CT TTC CTC CTG TTT CTC CGT TTG GCT TGC TGC TTG CGG GGC TGT CTC C TTT GCC CCT GTG GGC TTT CCC
 TGG TCC GGT CTT CTC CTT GGG GGT C GCC CTT CTT GGT GGG CTGGCT CGT CTG TCT TTT TCC C TCC
 GGG TGG CCG TTG TGG GCG GTG TGG TCC GCC T TGC CTC TGC TGG TCT TTC CTGGTBGBC GCGCTCGB
 20 TCGGGTGGC CGGT CGGTGBG CGGCGGCGBCB CGCGGBBGGC CCTGCGCGCC GBGBTBCBCTG CBGGGBBGB
 TBGGCTTGC BGBGGBCCTC CBGGBGGGTG BCBGCBGCCB GTBGBGCTBC CTCGCTCTC BTGGTBCCG
 CGGTGTGGTG GCBCCGGCTG TGTGTGBBGG CGBGCTGGGC CCCGCTCTGCT GCTCTCTGCT CCCGCTCGTC CTTCA
 TGG TA CCGTCGGTG GGTGGCCTCG GGTGGGCCGG TGTTGGGCCGG CGCGCGCTCG CGTGGCTCCG GCTCTTCTT
 CCCGGCTCCGT CGGCCCGGGG GCCTTGGCT CCCTCGCTC TCBTGGTBCC G BCCGGCGGB CGGCCBGGG
 25 GGBCTGGGBG TGGCTTTCTC CCCGCCGTC TCBCCCBCC CGCTGBGCTC BGCGCCTBBG BCTGCTTT
 CTGGBGCCTC TTGCBBGCC BCBBBCBGB CBGBGBBBBT CBTGBGCBB TBTCBCBTT TGBBBBBBBG
 GGBTCBBB CCTCCCGTC CCCGTTGCC TGGCGCGC TGCGGTTCC TCCTGGTTTT CTCCCGCCG
 TTCTCCGGTC TGTTCCTT GTGGGCTCTC TGCTTTTG GCTGTTCTT TCCTGCTTGG CGTCTTTTCC
 30 TTTCTTGTG CTCGGTTGTG GGTCCGCTGG TCCCTGCC CGGTCTGTG CCTTTGTGGG
 CGCGCTCGCG GTTCTCGTG GGTTCTCCC CGCCGTTCTC TGCTGTGGG CCTTTGTGGG CTTCTTGTCT
 TTTGGCTGT TCTTCTCCTG CTTGGCGTC TTTCTTTCT TGTTGCTCGG TTGTTGGTCC GCTGGTCTT
 TGCCCTGTGT GTTCTGCTG GGBGCTGBT CTGCBGATT TGTTGCTCGG BBCCCTGBTB CTCBCCB
 TCBGCTCTGG BGCBBGCBG BBBGBCBGC BGGGGGBGBG GBBGBCBGC CBTCTCCCB GBGBGGCTGC
 CTGBGCBBT GCTGTTTCTC CTTTCCBGC TTGGGTTTTB TBBCTCCCBG BBGCBGBG BGGGGCB
 35 CGTTTCTTC TCTCGCTGGT TTCTCTTCC TGGCAGTGGG TGTTGGTGGG GGTGGGTGG CTTCTTGT
 CCTGGGGGTG TCCCTTGCT CTGGGCTTT CTCCCCCTTT CCTTCTCTG TGTTTCTCGG GGGCTCTCCT
 CTGTCTCTGT GTCCCTGCC TGGCCCTCTT CCCTCTCTG TCTCTCTG TGTTTCTCGG CCCGCTCTCC
 CTCTCCCTGAC CTCCCTTCC TCCGCTGGGT GGGGCCCTGC CTGTTCTCTG CTCCCTGGCT
 TCTGTGTGTC TTCTCCCTCT GTTGGCTGGC TTCTCTCTC TTGTTGCTTC CTGGGTGCC
 40 TCTTGGGTCC TTGGTGCTTG GGCTGGG GCGCTCTGGG GTGCBGGGGC CBTCCTGCTG CGCCTGGGCG
 CTGCTGTGCG TCCGCTGTG GGGGGGCCGG GGTGGCTGGG CCCTGCTTC CGCACGACCC CGGGCCGACC
 CGAGGCTCGG GGGCCTGTG TCTGGCGCTG GTGGGCTTG GCCCCCTCTG GGGCTGGGTT
 CCTGGGCCTG GGGCCTTG GGTGCGGGGC CGGGGGGCCG GGGGGCCGCT GTTGTGGGC
 CTGTGGCTGC CGGTGCCCCC GGTGGTGGC GCGCTCTGC TGCGGTCGTT GGGCTGGTC
 45 TTTCCTGGGG TCCGCTGTGG GTGCTCCGGT TCCTCGTGC GCTGCTGCT
 CGTGGTGGTC CGCCCCCCCCT GGCCTCTGC TCGGGGCTCG GCTGGTTGCC CGTGTGCTGCT
 TCTTCCTGGT GGCTCTGGC CGGGCCGTC TCGGGGCTCT GCTGGTTGCC CTTGTGCTGT
 CCTTCCTCTT CGCCCGGCCGC CGCTCCCCGC CCGCTCGTGC CCTGGGCCCG GCCTCTCTC
 TCGGGCGGC GGCCTGGC TCCGTTGGG GCTGCCCTCG GCGCTTCCGG
 50 TTCCGCTGT GCTGCTGGCC CTCGTGGGC CCTCTGGCC TCCGGTGTCC TGTGGTCCCC CGGCTGGTGG
 CGGGGCCGGT TGGGGGGCG TGGGGCGCC CGGGCTCTCC GGGCTGCCCT TCTCCGCCGG
 CCTCTGCTGT TCCCTGGCT TCTCTGGG TGTTGCTGGG TGCGGGGTC
 CCTCCGCGCTG CTGGGGCTTC TGCGGTCTTG GGGTGTCTG TGCCCCCGCT
 GTCGCCGGCC TCGTCTCCCTC CTGGGTGCGC GGCCTGGCTGG
 55 TGGGGTGCGB GGCCCBTCCT GCTGCGCTG GGCCTGCTG TGCGTCCGTC TGCTGGGGGG CGGGGGTGGC
 TGGGGCCCTGC TTGCGCGACG ACCCCGGCC GACCCGAGGC TCGGGGGGCT GTGTTCTGGC
 TTGGGGCCCT CTGGGGGGCTG GGTTCCTGC TGCGCTGGG CGCTGGCGTC TTGGGGTGC
 GCCGGGGGGC CGCTGTTCGT GGGCCTGGGG GTGCCCTGTGG
 CTGCTGCCGG TCGTCTGGCTG GGTCCCCCG CCCGTTCCCT
 60 TGCCGCTGCT GCCTCTGCTT TCCGGCCGTC GCGGGCTGGT GGTCCGCC
 TCTGGCTGGT TGCCGGTGC CTTGGCGCG GTCTCTTCC TGTTGGCTCT
 GTCTCGTGT CGCTCTTGTG CTGGTCCGGC CGCTCTTCC
 CGCTCTTGTG TCTTCCGCC CGCGCCGCTCC CGGCCGCTCC

	GTCGCCCTGG	CCCGGCCTCC	TCCTGGCCGC	TGTCTCGGGC	GGCGGCCCTG	GCGCTCCGTT	TGGGGCTGCC
	TCTGGCGCTT	CCGGCCCTCG	GCCTGGGCGC	TCTCTTCCGC	CTGTGCTGGT	GGCCCTCGTG	GGCCCCCTCCT
	GGCCTCCGGT	GTCC TGTGGT	CCCCGGCTG	GTGGCCGGGC	CGGTTGGGCG	GGCGTGGGCG	CCGGCGGGTC
5	CTCCGGGCTG	CCCT TCTCCG	CCGGGGGTCC	CGCGCTCCTG	CTGTTCCCTG	GGCTCTCTG	CCTCTCTCCT
	GGGTGGGTGC	TGGC TGCCGG	GGTCTCCGGG	CTTGCCTCCGC	GCTGCTGGC	GTTCTCGGGT	CTTGGGGTTG
	TCTGTGGCCC	CGCT CGTGTG	GCCCTCCGTC	GCCCCTCGCC	GGCCTCGTCC	CCTCTGGGT	GCGCGCGGG
	CTGGTCTGG	CGT TTTGCTC	CTTCCTGG	CTGCCCCBGT	TTTGBTCTT	CBCBTGCCGT	GGGGBGGBCB
	BTGGCTGCCT	CCCCGGGGTT	TCTGCTGCTT	GCTGCTTCTT	TCCCCTCTCC	CTTCTTCCC	GTCTCCTTTT
10	TGCCTCTTG	GGT CCTGTGTT	GTTCCTGGCC	TGCTTGGTGG	CGGTTGTGC	GTTCTCTCTC	TCTTCTCTTG
	GGTCTCCGCT	TCTCGTCCCTG	CCTTTCTG	TCTCTGTCGC	GCCGTTCTC	CTCCGGCGTC	CTCCTGCCCT
	GTGCTTTG	CCTC GGGTGG	TGCGGGTCCC	GGTGCTCCCC	CGGCGGGCCG	GCTGGTTGCC	TGGGCCTGTC
	TGGTGGGTG	TGGC GCCGCT	GGGTTGGGGG	TGTGGTGGGC	TCTTCTGTGG	CCTGTGGGC	TGTTGGTGTG
	TCTGTGGCG	TGTGCTGGGT	CTTGGGGCTT	CCTCCCTTGT	GCTGGGTGCG	GCCTCCCCGC	CCCCCTTCTG
15	GGCCGGTGGC	CTGGC TCCCTT	GTGGGCCTT	CTGGCTCTT	CCCTGTCTT	CTTCGCCCTCG	TGGCTGCTGG
	GCCGCCGCCG	CCAAGATGGC	GGACCTGGAG	GCGGTGCTGG	CCGACGTGAG	CTACCTGATG	GCCATGGAGA
	AGAGCAAGGC	CACC CCGGCC	GCGCGCGCCA	GCAAGAAAGAT	ACTGCTGCC	GAGCCCAGCA	TCCGCAGTGT
	CATGCAGAAG	TACCTGGAGG	ACCGGGGCGA	GGTGACCTT	GAGAAGATCT	TTTCCCAGAA	GCTGGGGTAC
	CTGCTCTCC	GAGA CTTCTG	CCTGAACCAC	CTGGAGGAGG	CCAGGGCCCTT	GGTGAATTTC	TATGAGGAGA
20	TCAAGAAGTA	CGAGAAGCTG	GAGACGGAGG	AGGAGCGTGT	GGCCCGCAGC	CGGGAGATCT	TCGACTCAT
	CATCATGAAG	GAGC TGCTGG	CCTGCTCGCA	TCCCTTCTCG	AAGAGTGCCA	CTGAGCATGT	CCAAGGCCAC
	CTGGGGAAGA	AGCAGGTGCC	TCCGGATCTC	TTCCAGCCAT	ACATCGAAGA	GATTGTCAA	AACCTCCGAG
	GGGACGTGTT	CCAGAAATTG	ATTGAGAGCG	ATAAAGTTCAC	ACGGTTTGC	CAGTGGAAAGA	ATGTGGAGCT
	CAACATCCAC	CTGACCATGA	ATGACTTCAG	CGTGCATCG	ATCATTGGC	GCGGGGGCTT	TGGCGAGGTC
	TATGGGTGCC	GGAA GGCTGA	CACAGGCAAG	ATGTACGCCA	TGAAGTGCCT	GGACAAAAG	CGCATCAAGA
25	TGAAGCAGGG	GGAC ACCCTG	GCCCTGAACG	AGGCCATCAT	GCTCTCGCTC	GTCAGCACTG	GGGACTGCCC
	ATTCAATTGTC	TGCA TGTAT	ACCGCTTCCA	CACGCCAGAC	AAGCTCAGCT	TCATCTGGA	CCTCATGAAC
	GGTGGGAGCC	TGCA CTACCA	CCTCTCCAG	CACGGGGTCT	TCTCAGAGGC	TGACATGCC	TTCTATGCCG
	CCGAGATCAT	CCTG GGCCTG	GAGCACATGC	ACAACCGTT	CGTGGTCTAC	CGGGACCTGA	AGCCAGCAA
	CATCCTCTG	GACCG AGCATG	GCCACGTGCG	GATCTCGGAC	CTGGGCCTGG	CCTGTGACTT	CTCCAAGAAG
30	AAGCCCCATG	CCAGCGTGGG	CACCCACGGG	TACATGGCTC	CGGAGGTCT	GCAGAAGGGC	GTGGCCTACG
	ACAGCACTGC	CGACTGGTTC	TCTCTGGGT	GCATGCTTT	CAAGTTGCTG	CGGGGGCACA	GCCCCCTCCG
	GCAGCACAAG	ACCA AAGACA	AGCATGAGAT	CGACCGCATG	ACGCTGACGA	TGGCCGTGGA	GCTGCCGAC
	TCCTTCTCCC	CTGA ACTACG	CTCCCTGCTG	GAGGGGTTGC	TGAGAGGGGA	TGTCAACCGG	AGATTGGGCT
	GCCTGGGCCG	AGGG GCTCAG	GAGGTGAAAG	AGAGCCCCCTT	TTTCCGCTCC	CTGGACTGGC	AGATGGTCTT
35	CTTGAGAAG	TACCCCTCCCC	CGCTGATCCC	CCCACGAGGG	GAGGTGAACG	CGGCCGACGC	CTTCGACATT
	GGCTCCTTCG	ATGA GGGAGGA	CACAAAAGGA	ATCAAGTTAC	TGGACAGTGA	TCAGGAGCTC	TACCGCAACT
	TCCCCCTCAC	CATC CCGGAG	CGGTGGCAGC	AGGAGGTGGC	AGAGACTGTC	TTCGACACCA	TCAACGCTGA
	GACAGACCGG	CTGGAGGCTC	GCAAAGAACG	CAAGAACAAAG	CAGCTGGGCC	ATGAGGAAGA	CTACGCCCTG
	GGCAAGGACT	GCATCATGCA	TGGCTACATG	TCCAAGATGG	GCAACCCCTT	CCTGACCCAG	TGGCAGCGGC
40	GGTACTTCTA	CCTG TCCCC	AACCGCCTCG	AGTGGCGGGG	CGAGGGCGAG	GCCCCGCGAGA	GCCTGCTGAC
	CATGGAGGAG	ATCCAGTCGG	TGGAGGAGAC	GCAGATCAAG	GAGCGCAAGT	GCCTGCTCCT	CAAGATCCGC
	GGTGGGAAAC	AGTICATT	GCAGTGGCAT	AGCGACCCCTG	AGCTGGTGC	GTGGAAGAAG	GAGCTGCGCG
	ACGCCTACCG	CGAG GCCCAG	CAGCTGGTGC	AGCAGGGTGC	CAAGATGAAG	AACAAGCCGC	GCTCGCCCGT
	GGTGGAGCTG	AGCA AGGTGC	CGCTGGTCA	GCGCCGGCAGT	GCCAACGGCC	TCTGACCCGC	CCACCCGCCT
45	CCAGGAAGCT	ACCT GAGGA	GGTGAAGTCT	AGCAGGATGAG	TAGGAGTTGT	CCACGGAGGA	AGGTACACAG
	AAGGGCTTCC	AGGC CAGGA	AACAGCAGAG	GCACAGAAAGT	GAGAATGGGT	GGGTGAGTTG	GTGGGAAAC
	TCCAGGTGCA	GAGGATGGTA	GCGAAACAAA	CTGGAGCATT	AAGGTCCAAG	TCCTCCAAGA	TCTTGACTTG
	CAGATTAAGG	AGTITGTTCA	CCTAATCTGC	TTTGGGCAGA	GTGTGGTGAG	TCCTAGAGAC	CCCTCTAGGT
	CTCTCCTCTC	AGTAGCCCCA	GAAGGCCTGG	AGAGCTGCTT	CTGGGTGCCA	AGCAGGCAGT	GACTCCATCA
50	GATCTAGATT	TGGG AAAAGC	ATCCCTGGTC	AGGGCCTGCA	TCAGGGCACT	GGCTGGCCAT	GAGGACCCCTG
	AGAAGTAGAC	AGATTCACTGG	AGATTCTAG	GAGGCCAGAC	AGGAGACTAT	GGTGACAAT	TAGATTAGAG
	AAGGGGAGAG	AATC AAGGAG	CAGTTGGGT	AAAAGAAAAC	TGAGGCTGAC	ATGGGTATAT	GGGTGGCGAG
	TGACTCACC	CCCA CTGAGA	GGAGAACCTC	ACAAGCTCTG	ACATGCTCTG	GTTCCAGGTT	CTGTTGGGGC
	TGATCCAAGA	TGGTAGCCTA	GAGGTGCACA	GAGATGGGGG	CCTTGCTTTG	CAAAGGATG	CTGGCTGCTG
55	GCCCACAGCA	TGGTAATGAG	ATTTGAGCTT	TATGTGCCA	GGGCTGGGAG	GAGGGTCTG	TCACTTTGAA
	AGCAAAGAGA	GGCT CTAGAG	AGGGGCATGT	TGAGATAGGA	ATGCTGCCCT	GAGACACCTG	GCTTTCCCCA
	CTCTGGTGG	CTCT CAGCAG	GGTGGGTTTC	CCCTGCCAGG	CAGCACTGAA	CCTCTGTGCG	CTTCCGGCTG
	GGAGAGTTT	TACCGTAACT	ACATGTGAA	CCATCCTGAA	GGAAACATCTG	GATGGGATGG	GGTACAGGGA
	AGGGAGCTGC	CAAGAGTGC	GGCCAGGGAC	CTGGGTCTAT	GAGCTGGTGTG	GGGGGTGGGG	TTGGGTGCG
60	GGTACTTGAT	CCTG AGTGGG	CCTTCTGCGG	CCAGGATTGG	TTCTAGAGTA	GGAGGGGTGG	GATCGGGGAT
	GGGGGAAGCC	TGTA ACTGCG	CTGCAGTTGT	CAGGTCCCAG	GTTCTGGGTG	ACCTACTAAG	GATTCTGGG
	CCAGTGTGGG	TCCCAGGTTA	GACGTCTCTAG	TCCTGAGTCC	GTGTCCACAG	TTCTGGGTGT	TGAGTCTAGG

	ACAGTGATCT	GGAC TTGACA	GTCCAATCTA	GGTCTGAGTC	CTGACCCCCAA	GTCTAGAGTT	CAGGGTCATG
	GTAGTAGCCT	AGGGTCAGAA	TCAAGGTGG	GGTCAGTAAC	CAGGATGGGA	TCGAGGTCAT	GGTCAAAT
	CTGGATCTGG	GGAC CTGTTG	GGGGTCTGAG	GTGAGTGTGCG	CAGTCTGGGT	ATGGCGTTGG	AGACCCAGGG
5	CTGTGATCTG	AGGT CATGGT	TAGAGTCTCA	GGTGGTGGGC	CAAGGTTGA	GTCTGGGTC	CTGTTTGGAG
	TCGGGTGTCA	GGTC GTGGAC	TGCGTCCAAG	GTCAGGGAGT	CCGGGGTTAT	AGCCAGGGTC	TGAGATGAAA
	GTCCCAGATG	GTGTCAGAG	GTCTGAATCT	GTGCTTGGT	GAGCGTCCAG	GTTCCCTGTG	ATCACGTTG
	GTGTCAGGGC	TGCGGCCCGA	CTGGGAGGCC	TGGGATCCAG	AGATGTGACC	CGAGGTTGTG	GTCAGAGAAAT
	GGGTCTCGGG	TCGICCTCGT	GCGGGTCCC	TGTCGTGTT	CAGGCCCGGG	TCTCCGTCCA	GCATCGAGGG
10	CCGAGGTAC	GGCC AGGGTC	TGAGCCCCG	GTCCAGGTG	TGGTCCGGGG	TCAGATTCCG	CGCGGCCCTCC
	AGGGGCGCC	GTCC CCCGCC	GGCTCGGGCC	CTCGCGGGCT	CGCTGGCGTT	GTGCGGGCA	GGCGGGGCCG
	GAGGCGCGG	CGGC TCCGGG	GGCGCGGGCC	GGCGCGGGC	GGCGCGGGCG	CCCCGACTGC	AGTCCCAGCG
	GGAGCGGAGC	GCAG AGCGCG	GGGCCGGGCC	CGGAGCCGGC	GCCATGGGGC	GGCGCCGCCT	GTGAGCGGCG
	GCGAGCGGAG	CCGC GGGCGC	CGAGCAGGGC	CAGGCAGGGAG	CGTCGGCGCC	CGAGGCCGAG	CGAGGCCGCG
	CCGGGCCGGG	CCGAGCGCCG	AGCAGCAGG	AGCGAGCGGC	GCGCGGGCGG	CGGCGGGAGG	AGGCAGCGCC
15	GCCGCCAAGA	TGGC GGACCT	GGAGGCGGTG	CTGCGGACG	TGAGCTACCT	GATGCCATG	GAGAAGAGCA
	AGGCCACGCC	GGCCGCGCGC	GCCAGCAAGA	AGATACTGCT	GCCCCAGCCC	AGGTGAGGAG	AAGCT
	TCCCAGTTAA	TAC ATATCA	ATATGCAATT	TATTAATACA	TCTCTCATG	TCCACTCCCC	CTGTATCTT
	CCATTCTTGA	CTTG CATTTC	CATCCTCCTT	ACCTCCCTA	GAGGCCAAC	CATTTCCTT	GAAAAACCTG
	GCATTTCCA	GAAA AAAAAG	TGAAGGCTG	GGAGCTGTC	GTTGCTCTGA	TTTGTCCCT	CTGCCCTTGC
20	TTCCAAATGT	GGTT GAAAG	AAGCACTATT	GAAAATCCC	AAACGCACC	CCTGCAGGGT	TGGCTCTACC
	CTGTAGCCAT	GGAC ACATGC	TGTTGATACC	ACCTGCCTCA	TGAGTCTCAC	ATAAATTGCC	CTTTCACACT
	ATCTACCCCA	TCAGCCTTAC	CAAAACCATA	CCTGCATCCT	GGGCAGCATC	TGCCCTCAA	GAGACTAAGG
	AATCTCTTG	CAACCAAGAA	TGACTAGACC	AATGAGACAC	CCTTTAAGGC	CCCAGCACAA	TATAGAAATC
	CCACAATATG	GTAATCCCG	TAAGGAGCTA	TCAAGCCATT	GCAGGACCAT	CTAGAAATACA	ACTAGAGTAT
25	AGTTCTTTC	AATCCAGGAA	CTATACTCTA	ACAGCTTGGC	TCACAGGAAC	CAGAAGTGA	GATGATGAGG
	ATCAGGCTG	AGCC TGTGAG	CACCACTCTC	ACCACTGACA	CCAACCCACAG	ATAAACAAG	CATCTTGTG
	ACCCCTGGGA	TGGA AAGAAT	AGTTGTTGCC	TTATCAACCT	CCCCCACAGC	CCACACAGAA	AAGATAAAAT
	CATCATGGCT	ACAGTGTAC	AGAAGATGAT	GACCCAAGGA	GTAGGCCTGC	CTGAGTGAAT	GCTGAGAGTG
	ATAATGGGAG	CAGT AGCATC	TCAGAGACTA	CAGCAGAAC	CATCCACATA	AAGAGCTTG	CCCAAACCTA
30	TGATAAAAGG	CACCCCTCAGA	GAECTCTCCT	ACTTTAATAT	TAGCCCATTG	CAGAAATGGT	GAGTGGAAAG
	AGAAAATCTA	GGAA GAACCC	CTTAAAAAAG	CAAAATGCTT	TTAGGTTTG	TGCTGAAGAG	CCTGGAAAAG
	AAATAAGGAC	ACACACGCTG	AGAAATCTTC	CTCCTGCC	AAACACTGGGA	TAATCTCAA	GGATCTCTCC
	ATATCTCATT	CTCTGGATA	CACTGTCCAC	TCAGAAATAT	TGTGCAGAGT	GCAGTAATT	AAAAGTGAGC
	TATTGTGTTA	GGAGTGAAGG	CAAGAGTATC	GTAAAATAAA	TCAAATTGTA	AATGAATTCT	CTTAAATTGC
35	TTTATAGATG	TTTA ATGTAA	GCCAGCAGCT	ATTAACGAT	AAACCTTAA	TTCGAGAAAA	ACTTGGTCAT
	TCAGAAACTA	TAGA AACAGG	CAGGACTTAT	TGCGAGGGCA	AAACACAGAGT	GAGCTCCAGC	CTGCTTCAGG
	AAAATCTGCC	AGTC CCATGA	AGGATGTACT	CTGCTGCTC	CACTGCACTA	CTGCTCAGTA	TGAGCCCATG
	CCATCAGCTG	TCCCTGACCC	ACAGGAGTTC	TTTAGAAGAG	ACTGGTCAAC	AAAAGTTCT	AGGGTGTGTT
	ATACCTGCCA	ACTCGAGGGT	AAAACAAGT	TGCATAGAAA	TGCTCAATCA	AGAAAGACAC	AGTCATTACT
40	CAGAGAATAA	TAA CAGCCT	GGCAGCACAT	GAATGAATAG	AAAAAAGATG	TTACATGCAA	AGCATGAAAT
	AACCAAATT	CATA ACAGAT	GTAAATCTGT	AATGTGTTTA	GGAGAAATT	GAGGAAGTAT	AAGATTATT
	CTTTCATCAA	AAAA ATTATA	GCCAATGAGG	ATATATCTAT	CAATTATCCA	TCAAGTGGT	ATATGGCAGC
	ACAAGGTAAA	ACACAAAGGA	ATAAAACCAA	CGTTTATTAA	GAACCAATCA	TGTGGCATTT	CACATTGAGC
	ATCATATT	ATTCTGAAA	AAATCCTGT	ACTGTATCAT	TCTTCATATT	TTATGGATGC	AGTAACTAAG
45	GCTGAGAACT	TTAA AATT	TCCTAAGTTC	AGACACATAG	CTAAGTGGCA	GAACCAAGAT	TCAAACCTAC
	CCCATCTAAC	TGCAGAGCAA	ACTGCATGCC	TTAAATGTCA	AAGTGAATAC	TAGCACAGTT	AATACAATGT
	TTGGAAACTC	AGAC AAGGAA	TGATCCCTCT	GCATTATAGT	TACTAAGGAA	TCATTGCCAT	TATTTAAATG
	CCAGTGTCTC	TACATCAGGC	CCAAATTTC	TGTCTACTA	ACTGTGAATC	AAGACTTGAT	TCAACCTCTA
	CTTGAGTATC	TGCCGCAATG	AGAAATCACT	TACCTCCACT	AACCACACAT	TTATTTATA	ACAACAGATT
50	GTTAGTAAGT	CCTTCTTAT	ACATACTCAA	CAGCTGCTTC	CCAAGATGCT	GTAGGATTAT	GTCTAGAGTC
	AAACTAGCCA	GAAG CAATGT	CCAAAATACA	CCATAACACT	GTGAGCAA	GGTCTACTA	CCACTTGT
	GGCCAAACA	TTCT AGGCAG	CACTGGATAT	CTGAATCATC	AATTATTTCC	ACAAACACTG	ACCCCTCTAC
	CAGTCACCC	CACT AGAAGA	ATTAATTCCA	CATGATAATA	GCTCCCTCAT	GTTACTCCCT	TCTAAGTC
	ATTGTACACC	CCTT TATCTG	ATTAACAGAG	TCTAAGTCAC	ATGACCTAA	TGCAAGAGAA	CTGGGAATGG
55	ACGTTGTGG	ATTCTACCTT	AGTAAGGCAA	AGTTATCATT	GGGAATTCT	CTAATACAGG	AAGGGTGTTC
	CAGAGACATT	AAGGAGCCAT	ATAAATGGAA	AATGTCCACT	ACAATCCATC	ACTTGGTTGC	CCACACATCAA
	CATTCTTCT	TTTG CACAC	TTAAAGTTTC	CAAGAACAA	AATTATCCA	CTGAACATAA	TCTTACTAT
	CTTTTATATA	AAGAAAATT	AGACTTGACT	CAGCAGAACT	GAAATAACCC	AGCTCTAAC	GTTACTGCTT
	TTAACTTCAA	GTAC TGTGTC	TCTAGGTGAT	ACCTGCTCCA	ACAATAGTT	GGTCACATTT	TCAATTGAT
60	ATTCTCTAGT	CTCCCACCTT	GATAACTGTA	CCCTAAACCA	TAAGTTCAC	TACCAACATG	CTATATATAA
	AATAACCAA	GGGGGAAGAA	GAAAGAGAAA	AAGGAAATCT	CTTAAAATAC	ACAGGTATAC	ATATGACAAA
	GCAAAGAAGG	AAA TGTGAGC	AGATAGTGCA	GTCCTCGTTT	CTGAAATTGG	TCCCCTGACT	GGGGCTATAC

	CTATTCCATT	TCCTCACCCCT	CAGCCAGGCA	GGTGGAGCAA	AAACCTTAAGT	CTTGGTGGAT	CTGAATCTTG
	ATGCTGTGGA	GCTCTCTTAC	TAGCCCCAGA	CTACCTGCCT	CTCAATTCT	AATTATATCA	GTGAAAGCAA
	ACAGCTTGA	TTTGTAAAG	CCTCTGATT	TTTGGTCTAA	CTGATGTAAG	ACCACAAGGA	CAAGAGTTCT
5	CCAGCTCCGG	ATTCTCTTCT	GTTCTGTTAA	TGGTGAATG	CCCGAGAGAA	GAGTGCCTA	CTTGGCAA
	TAAAAAAATAC	AGGATTCCAG	TTAAATTCAA	ATTAGATAA	ACAACAATT	TTTAGTATTA	GTGTGTCCC
	TTCAATATT	GGACATACTT	AACTAAAAAA	TGATTGTTG	TTCATCTGAA	ATACAAATT	AACTGGGCAT
	TCTGAATATT	CTCTGGCAAC	CCCCGAGAGA	GTGAAGAAG	TGGTACAAGG	ACACTTAAGA	AGACCAGATT
	TGAAAAGACA	TTACGGATGT	GTTTAAATGT	CTTATTCTAG	AGAGAGTTAG	AGCTGTAGGT	AGAACTTGGG
10	AAATTAAAGTT	AAAAGCAGAC	ACAGAGACCT	GGCCAATATA	TACTAAGGAG	TGGATCACTC	TGGTCACAAG
	CCCAACCTGA	GACC AAGGGC	ATAGTGAGAT	GATTGGGAA	AGGCACTT	ACACTACTCA	TCCCCGTCTT
	TGAACCTAAAT	GCCITATAAA	TCTCCAAGAG	AAATGACAGT	CCACCATGTG	GACTGCTTC	TGTAAGTCCA
	GGGAAAATAA	AAGCTATGTG	CTTGAACACC	ACTTCTGATA	TTATAAGGTG	TGTGATCTT	GTCATGTTAA
	TGGGTCTGAG	TATCAATTCT	ACAATTGTA	AGTGACAGTA	ATGGTGTGTC	CCCAGGTTGT	TGTGAAAGC
15	TTGATTCTTA	ATGCAACAGT	AGGAAACCCC	AGCCTCTCTG	GAGCAAACAC	CCTCTACAT	CTTACTTCC
	CCTGCACATT	GGCAGGACTC	TATTCCCTCA	TTTCTCTCA	GTGCTAGAGC	AGAAAGGGAC	CTTGATTGAA
	TATCAGGAAA	ATCIATTTCT	GAACCATAAG	CTATGATAGC	TGATTTAAA	AATTGACTAT	CATGACATGA
	TAATGATCAT	AATGGTAATA	CATATTGATA	GGGTGCGGT	GAAAGTAATA	ATATATCTAA	GAGTTGTGAC
	AATATATGAT	ACGCCTGAC	TCTCAGAAAA	TGCTAATTCC	AATCCAATT	GCTCTTGCA	TAAAGTTCTG
20	TCCTAGGGTC	TGTCTTTTC	CCACATCTAC	CCTCCTTGG	TCTCTCTTCT	GTCTTTTC	TGTGGTTCA
	AGGAGGAGAG	AGA'CCAGGT	CAATGTTTT	CAAATTACAA	GGAATTATCA	TTTAAATGGG	GAAGAAGCTC
	AAGTTTGAC	GTGTAGTGG	ATTGGAGTGG	AGTGGAGTGG	AATGGAAACT	AACAGGAAGA	CACTGCACAT
	GGTTAACAGA	AAGATTTGTT	CCTGAAACCT	TTAATTGTTG	CTTACATACT	CACACATACA	TATGTGCATG
	CACTGGGACT	CTGCAATATG	CATTCTGAC	TATGGAACAT	AGCCATAAAA	GTCTTGAC	TGAACGTTCA
25	GTGGGCCCTT	CACAAGCTGC	CCTAATTGGG	AAAGAAAAAC	ATGGTCCCTC	CATTCCCTGC	CCCCAACTCC
	AGAAAAGTCA	CCATAGTGA	GGGTACATCT	GAGAAGCCAG	CACTTGGAG	TTCAGGCTC	AAGTTCTT
	CTAGAAAAAC	ACTGGGTGAT	TCTAGGGAA	CTTCCGATCA	GAAACAGCCA	ATTCAAGAGT	AGAGAAGAAA
	ACGTGACCAT	GCACCTTCTG	TGGTTACCG	CCTTGGCCCT	CTCTTGCC	CTGGAGTTA	TAAAACCCAA
	GACTGGAAAG	GAAACCAGC	ATTGCTCAG	GCAGCCTCTC	TGGGAAGATG	CTGCTTCTTC	CTCTCCCCCT
30	GCTGCTCTTT	CTCTGTGCT	CCAGAGCTGA	AGCTGGTGAN	TATCAGGGTT	CTTCCCTCTG	AAATCTGCAG
	TATCAGCTCC	TGAAACAAAG	ATGTTAGTC	TGAAATAGCT	GACTCCTAAA	CAGGGTTC	AGATCTCTT
	TCAAGAGTCC	CACAGAGGAA	ATTTCCACTT	GGGATGTGTG	CCACCCACC	CCCACCCCCA	CCCACTGCCA
	TTCTCTACAG	CCTAAGACAC	CCCCAGGAAC	AAGGAATTTC	ACCTCAATTG	TAGAAAAGCC	CAGAGCAAGT
	GGAAGGAAAA	GGGGTATCCC	CAGGAAAACA	GACATGTCT	CTTAATCTTC	TGAGCATCAG	GGCTACCCAT
35	TACTTTGTGA	CTTCTCACT	CTGTGACCAT	GCTCAAGAGC	TATGGAGAAA	TCTAAAACAG	GAACCTGGAC
	AGTGGGTCT	ACACAGAGAC	AGAGGAGAGT	GGGCCAGGGC	AAGGTGGGAG	TGGGAGAAGT	CTGAGATGAA
	AAACATCAGAA	TGGAGCAGAG	GCAAGAATGA	GATTTCACCT	GGGAGGTTAT	GGGTGGGAA	AGATACGAAA
	TACAGGAGAC	AGGAAGGGGA	AGATGGGCGG	AACACAGGGT	GAGAATGAGA	TTCCAGGGAA	GCCTAGCTCA
	GCTTTAACCC	AATTGTCCA	TTCATTGGAG	AGAGTATCTA	TGGCCGTGTT	CAAACCCCTGG	GGTGCTCTGT
40	TCCAGGGGAG	ATCATCGGGG	GCACAGAATG	CAAGCCACAT	TCCCCCCCT	ACATGGCTA	CCTGGAAATT
	GTAACCTCCA	ACGGTCCCTC	AAAATTGTTG	GGTGGTTTCC	TTATAAGACG	GAACCTTGTG	CTGACGGCTG
	CTCATTGTG	AGGAAGGTGA	GACAACAGGG	TCTATTATC	TCCAAATGGG	AGATGAACAA	CCAGAGTAGC
	ATCCAGGAAT	ACACCTGCAC	TGGGACTGA	AGAGGGGGTC	CTGGGTCTTG	TCAACTTICA	GGAGAGGGAA
	GACTTTGGC	TGAAAGACCT	TAGTCTGTGT	TTGAATAGTT	CCTTGAGCCT	CAGTCACTGA	GCTAAGCTCC
45	CTTCGGAGGA	AAACGAGGTC	CTGTCCGAAG	GTCCCTCTTG	TTGCAGTAGC	ACCCCTCACC	CCTACCCAAAC
	TCAAGACACA	CGGCTCACTT	TTCAGGGCCC	CACCCAGTCT	CAGGGCCACT	TCCTCTATGG	CTTTTCAAG
	AAACACTGGCT	CTAGTTCTCA	GGGTCTGAA	CCCATCATTT	TATGGGAGCA	GAGAACAGGT	CTACATAAGA
	CCCCCACTTT	CCCGTTTAA	CTGATATCTC	CTGCTTCAGG	GGCTGGCCCT	CATGCAGGGT	TCCCTGAATT
	AGGAAGTGTG	AACCTCTGCC	CCTGAGTCCT	CCCTGGCCTG	TTCAGTCCCC	AGCAATTCCA	GGGTCGTAG
50	AAATTGTGTC	TGTTCTCTGA	GAAAGCTCTT	TCATGAGTTA	AGCCTGAGCC	CTCAAATGCC	ACAAGTGGCC
	CATGAAAAGG	GAGATGGGTA	GAGTCGGCN	ACCCAGTGCAC	AGAGTTAGT	CCTCTTTCT	CAGAATGAGC
	TCACCTCAGA	AGAAACCCCA	AGCCATCACT	GTGCCCTCCT	TTTCCCTCCT	TCTTCCTCAC	AGCAGGTCTA
	TAACAGTCAC	CCTTGAGCC	CATAACATAA	CAGAGGAAGA	AGACACATGG	CAGAAGCTTG	AGGTTATAAA
	GCAATTCCGT	CATCCAAAAT	ATAACACTTC	TACTCTTCAC	CACGATATCA	TGTTACTAA	GGTGACAACA
55	CCTCTCTTCT	CCCTTCCAC	TTCCCATTC	CCTAACGCTTC	TCCTTCAGGT	CCTCATTGCC	CTGAATTCTT
	CTTAGGACTT	GGCTATAACA	TGAAGCTACT	CACCCGTCC	CTCCCTGATC	ACCTCCA	GTCCAGAGCC
	CATTCGAGG	ACTGACAGTC	CTTCATTCCC	TTCACAGTTG	AAGGAGAAAG	CCAGCCTGAC	CCTGGCTGTG
	GGGACACTCC	CCTTCCCATC	ACAATTCAAC	TTTGTCCCAC	CTGGGAGAAT	GTGCCGGGTG	GCTGGCTGGG
	GAAGAACAGG	TGCTTTGAAG	CCGGGCTCAG	ACACTCTGCA	AGAGGTGAAG	CTGAGACTCA	TGGATCCCCA
60	GGCCTGCAGC	CACTTCAGAG	ACTTTGACCA	CAATCTTCAG	CTGTGTGTG	GCAATCCCAG	GAAGACAAAAA
	TCTGCATTTA	AGGTGATCCT	CCAACTAGGT	TTCTCTCCA	AAACTCACTG	TTCAGGGACC	TGAATGCTCT
	TAGAAGGAGA	TGGC GTCAGC	AGGTTGTCAG	TCAGGTGACA	GGGTGAGCAT	CACAGGAATT	GCTGTCTTCC
	CGTGGTCAA	GACAGCCTCT	GACCATCCAT	TCCAGTCTAC	TGCACTGGG	GCATGGGTG	ACTGTGGAGA

	ATGTGGATGA	CGGTCCCAAG	AAAGGAAGAA	GGGGCATTG	AACTAGATGT	ATAAGTGAGG	AGCTCCACCT
	CCTGGGCTG	ACTTCTAGTC	TCACCTGTGAC	TCCAAGCTGG	CTGGCAGACA	GGAGTGGAGG	ACTTCCCAGG
5	CTCACCTCT	TCTCTCTCT	CTCCCCCTAC	AGGGAGACTC	TGGGGGCCCT	CTTCTGTGTG	CTGGGGTGGC
	CCAGGGCATC	GTATCCTATG	GACGGTCGGA	TGCAAAGCCC	CCTGCTGTCT	TCACCCGAAT	CTCCCATTAC
10	CGGCCCTGGA	TCAACCAGAT	CCTGCAGGCA	AATTAATCCT	GGATCCTGAG	CCAGCCTGAA	GGGAAGCTGG
	AACTGGACCT	TAGCAGCAAA	GTGTGTGCAA	CTCATTCTGG	TTCTACCCCT	GGTCCCCTCA	GCCACAACCC
	TAAGCCTCCA	AGACGTCTCC	TACAGGTAAC	AGAACATTCA	ATAAAACTTCA	GTGAAGACAC	AGCTTCTAGT
	CGTGAGTGTG	TGTCCTCTC	TGCTGCTCTC	TTCTCCTGCA	CATGTGACCT	GATTCCCAGC	CCAAGCACCA AGGA
15	CACCGCTCCT	GTCAGCCAAC	AAATATCCAT	TGAGCGACAC	CTGTGTCTCA	GGTGTGCTC	TGGGCCCTGG
	GAGAAGTGCA	TCAGTGGGCT	TGGTAGTACA	GGGTAGGGAT	GGAGTGAAGG	GTAGGGAGGA	AGAATGTCCC
	CAGGCTGGTA	GGACGTGGGG	TGGGGGGTTT	CAGTCTCAA	ACTCCCCATGA	AAACCAGAGA	GAAGTTTCAG
	AACTCCACCC	AAGAGGCTGG	GTTCCTAGGG	CCAGAGCTG	CCCTCCCCCA	CCCTAGAATG	GGCTATAAAA
20	GTCCCTTCCC	AGCTACGTCC	AGAGAAGAGC	TGGAGGAAGT	GAGAGGTGCG	CTGGGGGTCC	TCAAAGTGAG
	AGGGGAGCAG	AGGATCCTCC	CGTGCAGGCT	GTGGATGTCA	CTCACTTCCC	AGCTGGTGAA	GCCTCGCTGC
25	AGAGATGCAT	CTGCTCCAG	CCCTGGCAGG	GGTCTGGCC	ACACTCGTCC	TCGCCCAGCC	CTGTGAGGGC
	ACTGACCCAG	GTAATAGTCC	CCTAGACAGG	CAAGGAGGAG	GGAGGGGAAA	TGGAAGGGGA	AGCACTTGGG
	TCTTGGAGGG	GGTCTTGTGG	CTTGTGAAAC	CCTGAGTCCC	CATCTCTTG	AACAGCCTCC	CCTGGGGCAG
	TGGAGACCTC	GGTCTCTGCGA	GACTGCATAG	CAGAGGCCAA	TTTGTGTTG	GATGCTGCCT	ACAATTGGAC
30	CCAGAAGAGG	TGGACTTGGG	TCTGGGGCT	GCATGGGCCT	GGGAGGATCA	GT	TAATACCTTG
	GAGCCCATGT	CCCGTGTGA	TGTTATTTC	CCACCAAGTC	CGGGCTGTCT	CCAACCAGAT	TGTGCGCTTC
	CCCAATGAGA	GACIGACCTC	CGACCGTGGC	CGAGCCCTCA	TGTTCATGCA	GTGGGGCCAG	TTCATTGACC
	ATGACCTGGA	CTTCCTCCCC	GAGTCCCCGG	CCAGAGTGGC	CTTCACTGCA	GGC GTT GACT	GTGAGAGGAC
35	CTGCCCCAG	CTGCCCCCT	GCTTCCCCAT	CAAGGTACCT	ACCCTCAGCC	AATCTCCAT	GCCCTTGTGT
	GGCCCTCCCC	AAAGGCAAGG	TGCTGGGGT	GGGGATCTGG	AAGACTGGAG	CACCATCCTT	AAGGAGCTGC
40	CTGTGGAGCT	AGGGTATGAG	ACAGAGACAC	AAG CACTGTCTCC	TCTTCCATCT	CAGATCCCAC	CCAATGACCC
	CCGCATCAAG	AACCAAGCGT	ACTGCATCCC	TTTCTCCGC	TCGGCACCT	CATGCCCTCA	AAACAAGAAC
	AGAGTCCGCA	ACCAAGATCAA	CGCGCTCAC	TCCTTGTGG	ACGCCAGCAT	GGTGTATGGC	AGTGAGGTCT
	CCCTCTCGCT	GC GGCTCCGC	AACCGGACCA	ACTACCTGGG	GCTGCTGGCC	ATCAACCAGC	GCTTCAAGA
45	CAACGGCCGG	GCCCTGCTGC	CCTTCGACAA	CCTGCACGAT	GACCCCTGTC	TCCTCACCAA	CCGCTCGGG
	CGCATCCCC	GCTTCTGGC	AGGTCAGACA	GGGAGGAAGG	TGGTGTCTTC	CCAGGAAACA	GCCATCCCTG
	GGGTCCCAAC	TGGGAAGCAA	TGGTGGGATG	TGGTGAAGGT	ACATGGTTG	GGACCTCAGT	ATTAGGCACA
	CCATAAGCAT	GGATCTGTGC	AC TGAAGAGATG	GAGGTCCAGT	GAGGGCCAGG	AGTTTGGCCC	ACCCCGTCTC
50	TCCCATCCCC	AGCCCTGGGT	CTACCCCTGGT	AGAAAGACAT	TTCTCTGGGA	AAGGCTGCAG	TAAATCTGAG
	CTTGGGGTTT	TCAAAGGTGAC	ACCCGATCAA	CGGAAACCCC	CAAACCTGGCA	GCCATGACA	CCCTCTTAT
55	GCGAGAGCAC	AACCGGCTGG	CCACCGAGCT	GAGACGCCTG	AATCCCCGGT	GGAATGGAGA	CAAACGTAC
	AATGAGGCTC	GGAAACATCAT	GGGGGCCATG	GTCCAGGTAA	GGAGCTCTGC	ATCCCAGCAT	CCCCCTTAT
	CCACCCACCA	ATAGTAAATT	AATGTTGTCA	CATTGACGT	GATGACAATA	AAGAATATGT	CTGAGCCACC
	CTTGAAAAG	GCAAGGGTAT	GGGTGAGTAG	CCTCTGGGG	ATGTTCTCC	TGTCTTCCCT	TCCAGATCAT
60	CACCTACCGA	GACTCTCTG	CCCTGGTTCT	GGGCAAGGCC	CGGGCCAGGA	GAACCCCTGGG	GCAACTACAGG
	GGGTACTGCT	CCAAATGTGGA	CCCACGGGTG	GCCAATGTCT	TCACCCCTGGC	CTTCGCTTT	GGCCACACAA
	TGCTCCAGCC	CTTCATGTTC	CGCTTGGACA	GTCAGTACCG	GGCCTCCGCA	CCCAACTCGC	ATGTCCCAC
	TAGCTCTGCC	TTCTTGCCA	GCTGGCGGAT	CGTGTATGAA	GGTGACCAAGG	TTTCCAGGG	GGCAAATGGG
	GGTGAGGGTG	GGGAGCATGC	CCTCCCTAG	GTGG TCCAGCTG	TCATGTCTCT	CCAGAACTCT	GTTTCTGAC
	AAACGTTACT	AACATACCCG	ACTGGTTGT	CCAGCTCTGG	GCTAGCTGG	CATCATGTGA	TAACCCAAGT
65	AGCTTCCCAG	AGGCCTGGTCC	AATCTGTGCT	GCTCACATT	CCTGCCACCA	GGGGGCATCG	ACCCCATCCT
	CCGGGGCCTC	ATGGCCACCC	CTGCAAGCT	GAACCGTCAG	GATGCCATGT	TAGTGGATGA	GCTCCGGGAC
	CGGCTGTTTC	GGCAAGTGTG	GAGGATTGGG	CTGGACCTGG	CAGCTCTCAA	CATGCAACGA	AGCCGGGACCC
	ACGGCCTCC	AGGTGAGGGG	GCTGTCCACC	TCTTCTCCCA	GCTTGTCTCG	GGCCAGGCTG	CTCAAGGGGT
	TCTGGGAAGA	CCCTGGTACC	CGACTGCCG	GTAGGTTCTG	GTGGCAGAAA	CGAGGTGTTT	TCACCAAAAG
70	ACAGCGCAAG	GCCCTGAGCA	GAATTCTCTT	GTCTCGAATT	ATATGTGACA	ATACCGGTAT	CACCA CGGGT
	TCAAGGGACA	TCTTCAGAGC	CAACATCTAC	CCTCGGGCT	TTGTGAACTG	CAGCCGTATC	CCCAGGTTGA
	ACCTATCAGC	CTGGCTAGGG	ACATGAGGCT	TCTGCAGGTA	AGGGGAGGCC	ACCTCCAGCA	CCCTGGGCTG
	GTAAAGCCTC	ACATCTTCC	CTGGATGGAT	GGCTGAGTCC	TCTTAGGTCT	CTAACAGAG	AAAACAGAAC
	TTGTCACTAG	GTACCTTT	CAAGTGGCTT	CCCAATGTGC	TAGTTCTGG	GCTGACAGTC	AATTCCAGGC
75	CCTAGGACTT	TGGGGGAAA	TTAGGAGCAT	CCAACTA	GAATTCCGTG	GCCAGGACCC	CTGCCAGGGC
	ACTGACCCAG	CCTCCCTGG	GGCAGTGGAG	ACCTCGGTCC	TGCGAGACTG	CATAGCAGAG	GCCAAGTTGC
	TGGTGGATGC	TGCCCTACAAT	TGGACCCAGA	AGAGCATCAA	GCAGCGGCTT	CGCAGCGGTT	CAGCCAGGCC
	CATGGACCTC	CTGTCTACT	TCAAACAAAC	GGTAGCAGCC	ACCAGGACAG	TTGTTCGGGC	CGCAGATTAT
	ATGCATGTGG	CTTCTGGGCT	GCTTGAAGAG	AAGTTACAAC	CCCAGCGGTC	CGGACCCCTC	ATTGTCACTG
80	ATGTGCTAAC	AGAACACACAG	CTGCGGCTGC	TGTCCCAGGC	CAGTGGCTGT	GCTCTCCGGG	ACCAGGCGA
	GCGCTGCAGC	GACAAGTACC	GCACCATCAC	TGGACGGTGC	AACAACAAGA	GGAGACCCCTT	GCTAGGGGCC
	TCCAACCAGG	CTCTGGCTCG	CTGGCTGCC	GCCGAGTATG	AGGATGGGCT	GTCGCTCCCC	TTCGGCTGGA

	CCCCCAGCAG	GAGGCAGCAAT	GGCTTCCTTC	TCCCTTGTG	CCGGGCTGTC	TCCAACCAGA	TTGTGCGCTT
	CCCCAATGAG	AGACTGACCT	CCGACCGTGG	CCGAGCCCTC	ATGTTCATGC	AGTGGGGCCA	GTTCATTGAC
5	CATGACCTGG	ACTTCTCCCC	GGAGTCCCCG	GCCAGAGTGG	CCTTCACTGC	AGGCCGTTGAC	TGTGAGAGGA
	CCTGCGCCCA	GCTGCCCCCC	TGCTTTCCA	TCAAGATCCC	ACCCAATGAC	CCCCGCATCA	AGAACCGAGCG
10	TGACTGCATC	CCTTCTTCC	GCTCGGCCACC	CTCATGCCCC	CAAACAAGA	ACAGAGTCCG	CAACCAGATC
	AACGCGCTCA	CCTCTTTGT	GGACGCCAGC	ATGGTGTATG	GCAGTGAGGT	CTCCCTCTCG	CTGGGGCTCC
	GCAACCGGAC	CAACTACCTG	GGGCTGCTGG	CCATCAACCA	GCGCTTCAA	GACAACGGCC	GGGCCCTGCT
	GCCCTTCGAC	AACCTGCACG	ATGACCCCCG	TCTCCTCACCC	AACCGCTCGG	CGCGCATCCC	CTGCTTCCTG
15	GCAGGGTACA	CCCCATCAAC	GGAAACCCCC	AAACTGGCAG	CCATGCACAC	CCTCTTATG	CGAGAGCACA
	ACCGGCTGGC	CACCGAGCTG	AGACGCCCTGA	ATCCCCGGTG	GAATGGAGAC	AAACTGTACA	ATGAGGCTCG
	GAAGATCATG	GGGGCCATGG	TCCAGATCAT	CACTTACCGA	GACTTTCTGC	CCCTGGTTCT	GGGCAAGGCC
	CGGGCCAGGA	GAACCCCTGGG	GCACATACAGG	GGGTACTGCT	CCAATGTGGA	CCACAGGGTG	GCCAATGTCT
20	TCACCCCTGGC	CTTCCGCTTT	GGCCACACAA	TGCTCCAGCC	CTTCATGTTC	CGCTTGGACA	GTCAGTACCG
	GGCCTCCGCA	CCCCACTCGC	ATGTCCCCACT	TAGCTCTGCC	TTCTTGCCTA	GCTGGCGGAT	CGTGTATGAA
25	GGGGGCATCG	ACCCATCCT	CGGGGCCCTC	ATGGCCACCC	CTGCCAAGCT	GAACCGTCAG	GATGCCATGT
	TAGTGGATGA	GCTCCGGGAC	CGGCTTTTC	GGCAAGTGGAG	GAGGATTGGG	CTGGACCTGG	CAGCTCTCAA
	CATGCAACGA	AGCC'GGGACC	ACGGCCTTCC	AGGTACAAAT	GCTTGGAGGC	GCTTCTGTGG	GCTCTCCAG
	CCCCGGAATT	TGGCACAGCT	TAGCCGGGTG	CTGAAAAAAC	AGGACTTGC	AAGGAAGTTC	CTGAATTGTT
30	ATGGAACACC	TGAC'AACATT	GACATCTGGA	TTGGGGCCAT	CGCTGAGCCT	CTTTGCCGG	GGGCTCGAGT
	GGGGCCTCTT	CTGGCTTGT	TGTCGAGAA	CCAGTTCAGA	AGAGCCGAGA	CGGAGACAGG	TTCTGGTGGC
	AGAACGAGGT	GTTCACCCA	AAGACAGCGC	AAGGCCCTGA	CGACAATTTC	CTTGTCTCGA	ATTATATGTG
	ACAATACCGG	TATCACCACG	GTTTCAAGGG	ACATCTTCAG	AGCCAACATC	TACCCCTCGGG	GCTTTGTGAA
35	CTGCAGCCGT	ATCCCCAGGT	TGAACCTATC	AGCCTGGCGA	GGGACATGAG	GCTTCTGCAG	GAGTCTATCC
	CAAGTCTCCA	ACTTITGGAG	ACAAGGGAA	GGGGAGGACC	ATGAGGCTGC	CTTGTCTCCC	TGGAGCAAGT
40	GCAGGCTCGT	GACGCCCTGT	CTGGCTACAG	CTCAGAGCTG	GGTCCCCAG	CCAGGAGTGA	AGGCTGGGG
	CTCCTATCAG	CAATGGACCT	TCGGCTTGG	GAGCCTCTTA	GGTATTAGGC	TATGAATCAG	CGCCACGTG
	AAAGGCTTGG	GAGC'CAAGCC	ATGTGGTCTT	GCACCCCAGG	CAAGAAAAGT	CAGCTGGAGG	TTTACAGCA
	CTTTCTACTG	TTTC'CAGCC	CTCCCTCCCC	TCCCTCACCA	TGACTAAGAG	ACCACTCGGT	CCTAGCCTCC
45	AGACACCCCA	CAAIACTCCT	CTGAGCCTGA	GGCCAGGCG	CATGCTCTGC	TTCTACCAAT	AAAGCACTGC
	CGGAATTTC	CATAATGATG	GGAATACTGT	ATTTCAGGCA	TTATAAGGAA	TGAAATTATA	GGCCGGGCAT
	TGTGGCTAAC	CCTTGTAAATC	CTAGCACTTT	GAGAGGCTGA	AGTGGGCAGA	TCACCTGAGC	TTCAAGGTT
	GAGACCAGCA	TGG'CAACAT	GGTGAACACCC	AGTCTCTACC	AAAAACACAA	AAATATTAGC	TGGGTGTGGT
50	GGTGCATGCC	TGTA'GTCCCCA	GCTACTCAGG	AGGCTGAGGT	GGGAGGATCG	CTTGAGCCTG	GGAGGCAGAA
	GTTGCAATGA	GCACAGATCG	TGCCACTCCG	CTCCAGTCTT	GGTGACAGAA	TGAGACTCCA	TCTCAAAAT
55	AAATAAATAA	ATAA'ATAAAA	TAAATGAAAT	GAAATTATAA	GAAATTACCA	CTTTTCATG	TAAGAAGTGA
	TCATTTCCAT	TATA'AGGGAA	GGAAATTAAAT	CCTACCTGCC	ATTCCACCAA	AGCTTACCTA	GTGCTAAAGG
	ATGAGGTGTT	AGTA'AGACCA	ACATCTCAGA	GGCCTCTCTG	TGCCAATAGC	CTTCCTTCC	TTCCCTTCCA
	AAAACCTCAA	GTGA'CTAGTT	CAGAGGCCTG	TCTGGAATAA	TGGCATCATC	TAATATCACT	GGCCTTCTGG
60	AACCTGGGCA	TTTCCAGTG	TGTTCCATAC	TGTCAATATT	CCCCCAGCTT	CCTGGACTCC	TGTACAAGC
	TGGAAAAGTG	AGAC GATGGA	CAGGGATTA	CCAGAGAGCT	CCCTGCTGAG	GAAAAAATCT	CCCAGATGCT
	GAAAGTGAGG	CCAT'GTGGCT	TGGCCAAATA	AAACCTGGCT	CCGTGGTGC	TCTGTCTTAG	CAGCCACCC
	GCTGATGAAAC	TGCCACCTTG	GACTTGGGAC	CAGAAAGAGG	TGGGTTGGGT	GAAGAGGCAC	CACACAGAGT
	GATGTAACAG	CAAC ATCAGG	TCACCCACAG	GCCCTGGCAG	TCACAGTCAT	AAATTAGCTA	ACTGTACACA
	AGCTGGGAC	ACTCCCTTG	GAAACCAAA	AAAAAAA	AAAAAAGAGA	CCTTATGCA	AAAACAACTC
65	TCTGGATGGC	ATGGGGTGTG	TATAAATACT	TCTTGGCTGC	CAGTGTGTT	ATAACTTTGT	AGCGAGTCCA
	AAACTGAGGC	TCCC GCCGCA	GAGAACTCAG	CCTCATTCC	GCTTTAAAAT	CTCTGGGCCA	CCTTTGATGA
	GGGGACTGGG	CAG'TCTAGA	CAGTCCCAGA	GTTCTCAAGG	CACAGGTCTC	TTCTGGTTT	GACTGTCCTT
	ACCCCGGGGA	GGCA'GTGCG	CCAGCTGCAA	GGTGAGTTGC	CATATGTATG	GGAATACTGT	ATTCAGGCA
	TTATAAGGAA	TGAAATTATA	GGCCGGGCAT	TGTGGCTAAC	CCTTGTAAATC	CTAGCACTTT	GAGAGGCTGA
70	AGTGGGCAGA	TCACTTGAGC	TTCAGAGTT	GAGACCAGCA	TGGACAACAT	GGTGAACACCC	AGTCTCTACC
	AAAAACACAA	AAAT'ATTAGC	TGGGTGTGGT	GGTGCATGCC	TGTAGTCCC	GCTACTCAGG	AGGCTGAGGT
	GGGAGGATCG	CTTGAACCTG	GGAGGCAGAA	GTTGAATGA	GCAGAGATCG	TGCCACTCCG	CTCCAGTCTT
	GGTGACAGAA	TGAC ACTCCA	TCTCAAAAT	AAATAAATAA	ATAAATAAA	TAAATGAAAT	GAAATTATAA
	GAAATTACCA	CTTCTTCATG	TAAGAAGTGA	TCATTCCAT	TATAAGGAA	GGAATTAAAT	CCTACCTGCC
75	ATTCCACCAA	AGCTTACCTA	GTGCTAAAGG	ATGAGGTGTT	AGTAAGACCA	ACATCTCAGA	GGCCTCTCTG
	TGCCAATAGC	CTTCCCTTCC	TTCCCTTCCA	AAAACCTCAA	GTGACTAGTT	CAGAGGCCTG	TCTGGAATAA
	TGGCATCATC	TAATATCACT	GGCCTTCTGG	AACCTGGGCA	TTTCCAGTG	TGTTCCATAC	TGTCAATATT
	CCCCCAGCTT	CCTG'GACTCC	TGTCAACAGC	TGGAAAAGTG	AGAGGATGGA	CAGGGATTAA	CCAGAGAGCT
	CCCTGCTGAG	AAAAAAATCT	CCCAGATGCT	GAAAGTGAGG	CCATGTGGCT	TGGCCAAATA	AAACCTGGCT
80	CCGTGGTGC	TCTG'CTTAG	CAGCCACCC	GCTGATGAAC	TGCCACCTTG	GAATTGGGAC	CAGAAAGAGG
	TGGGTTGGGT	GAAGAGGCAC	CACACAGAGT	GATGTAACAG	CAAGATCAGG	TCACCCACAG	GCCCTGGCAG
	TCACAGTCAT	AAATTAGCTA	ACTGTACACA	AGCTGGGAC	ACTCCCTTG	GAAACCAAA	AAAAAAA

	AAAAAAAGAGA	CCTTATGCA	AAAACAAC	TCTGGATGCC	ATGGGGTGAG	TATAAATACT	TCTTGGCTGC
	CAGTGTGTT	ATAACTTTGT	AGCGAGTCGA	AAACTGAGGC	TCCGGCCGCA	GAGAACCTAG	CCTCATTCT
5	GCTTTAAAT	CTCTGGGCCA	CCTTGATGA	GGGGACTGGG	CAGTTCTAGA	CAGTCCGAA	GTTCTCAAGG
	CACAGGTCTC	TTCTGGTTT	GACTGTCCCT	ACCCCGGGGA	GGCAGTGCAG	CCAGCTGCAA	GGTGAGTTGC C
10	CTGCTTAA	ATCTCTCGGC	CACCTTGAT	GAGGGGACTG	GGCAGTTCTA	GACAGTCCC	AAGTTCTCAA
	GGCACAGGTC	TCTCTCTGGT	TTGACTGTCC	TTACCCCGGG	GAGGCAGTGC	AGCCAGCTGC	AAGCCCCACA
	GTGAAGAAC	TCTGAGCTA	AATCCAGATA	AGTGACATAA	GTGACCTGCT	TTGTAAGGCC	ATAGAGATGG
15	CCTGTCTTG	AAAAATTCTG	TTCAAGACCA	AATTCCACCA	GTATGCAATG	AATGGGGAAA	AAGACATCAA
	CAACAATGTG	GAGAAAGCCC	CCTGTGCCAC	CTCCAGTCCA	GTGACACAGG	ATGACCTTCA	GTATCACAA
20	CTCAGCAAGC	AGCAGAAATGA	GTCCCCCGAG	CCCCCTCGTG	AGACGGGGAA	GAAGTCTCA	GAATCTCTGG
	TCAAGCTGGA	TGCAACCCCCA	TTGTCCTCC	CACGGCATGT	GAGGATCAA	AACTGGGCA	GCGGGATGAC
	TTTCCAAGAC	ACACITTCACC	ATAAGGCCA	AGGGATTTA	ACTTGCAGGT	CCAAATCTTG	CCTGGGGTCC
25	ATTATGACTC	CCAAAAGTTT	GACCAGAGGA	CCCAGGGACA	AGCCTACCCC	TCCAGATGAG	CTTCTACCTC
	AAGCTATCGA	ATTGTCAAC	CAATATTACG	GCTCTTCAA	AGAGGCAAA	ATAGAGGAAC	ATCTGGCCAG
30	GGTGGAAAGCG	GTAAACAAAGG	AGATAGAAAC	AAACAGGAACC	TACCAACTGA	CGGGAGATGA	GCTCATCTTC
	GCCACCAAGC	AGGCCTGGCG	CAATGCCCA	CGCTGCATTG	GGAGGATCCA	GTGGTCCAAC	CTGCAGGTCT
	TCGATGCCCG	CAGCTGTTC	ACTGCCGGG	AAATGTTGA	ACACATCTGC	AGACACGTGC	GTTACTCCAC
	CAACAATGGC	AACATCAGGT	CGGCCATCAC	CGTGTCCCC	CAGCGGAGTG	ATGGAAGCA	CGACTTCCGG
35	GTGTGGAATG	CTCAGCTCAT	CCGCTATGCT	GGCTACCGA	TGCCAGATGG	CAGCATCAGA	GGGGACCCCTG
40	CCAACGTGGA	ATTCACTCG	CTGTGCATCG	ACCTGGGCTG	GAAGCCCAAG	TACGGCCGCT	TCGATGTGGT
	CCCCCTGGTC	CTGCAGGCCA	ATGGCCGTGA	CCCTGAGCTC	TCGAAATCC	CACCTGACCT	TGTGCTTGAG
	GTGGCCATGG	AAACATCCCA	ATACGAGTGG	TTTGGGAAC	TGGAGCTAAA	GTGGTACGCC	CTGCTGCAG
	TGGCCAACAT	GCTGCTTGAG	GTGGCGGCC	TGGAGTTCCC	AGGGTCCCCC	TTCAATGGCT	GGTACATGGG
45	CACAGAGATC	GGACTCCGGG	ACTTCTGTGA	CGTCCAGCGC	TACAACATCC	TGGAGGAAGT	GGGCAGGAGA
	ATGGGCCTGG	AAACGCACAA	GCTGGCCTCG	CTCTGAAAG	ACCAGGCTGT	CGTTGAGATC	AACATTGCTG
	TGATCCATAG	TTTTAGAAAG	CAGAATGTGA	CCATCATGGA	CCACCACTCG	GCTGCAGAAT	CCTTCATGAA
	GTACATGCA	AATGAATACC	GGTCCCGTGG	GGGCTGCCG	GCAGACTTGA	TTTGGCTGGT	CCCTCCCATG
50	TCTGGGAGCA	TCACCCCCGT	GTTCACCCAG	GAGATGCTGA	ACTACGTCCT	GTCCCTTTTC	TACTACTATC
	AGGTAGAGGC	CTGAAAACC	CATGTCGGC	AGGACGAGAA	GC GGAGACCC	AAGAGAAGAG	AGATTCCATT
55	GAAAGTCTTG	GTCAAAGCTG	TGCTCTTGC	CTGTATGCTG	ATGCGCAAGA	CAATGGCGTC	CCGAGTCAGA
	GTCAACATCC	TCTT'GCGAC	AGAGACAGGA	AAATCAGAGG	CGCTGGCCTG	GGACCTGGGG	GCCTTATTCA
	GCTGTGCCTT	CAACCCCAAG	GTTGTCCTCA	TGGATAAGTA	CAGGCTGAGC	TGCTGGAGG	AGGAACGGCT
	GCTGTTGGTG	GTGACAGTA	CGTTGGCAA	TGGAGACTGC	CCTGGCAATG	GAGAGAAACT	GAAGAAATCG
60	CTCTTCATGC	TGAAAGAGCT	CAACAACAA	TTCAAGGTACG	CTGTGTTGG	CCTGGCTCC	AGCATGTACC
	CTCGGTTCTG	CGCCATTGCT	CATGACATTG	ATCAGAAGCT	GTCCCACCTG	GGGGCCTCTC	AGCTCACCCC
	GATGGGAGAA	GGGGATGAGC	TCAGTGGGCA	GGAGGACGCC	TTCCGCAGCT	GGGCGTGCA	AACCTTCAAG
	GCAGCCTGTG	AGACGTTGA	TGTCCAGGC	AAACAGCACA	TTCAAGATCCC	CAAGCTCTAC	ACCTCCAATG
	TGACCTGGG	CCCGCACAC	TACAGGCTCG	TGCAAGACTC	ACAGCCTTIG	GACCTCAGCA	AAGCCCTCAG
	CAGCATGCA	GCCAAGAACG	TGTTCACCAT	GAGGCTCAAA	TCTCGGCAGA	ATCTACAAAG	TCCGACATCC
65	AGCCGTGCCA	CCATCTGGT	GGAACTCTCC	TGTGAGGATG	GCCAAGGCT	GAACATACCTG	CCGGGGGAGC
	ACCTTGGGGT	TTGCCAGGC	AACCAGCCGG	CCCTGGTCCA	AGGCATCTG	GAGCGAGTGG	TGGATGGCCC
	CACACCCAC	CAGACAGTGC	GCCTGGAGGA	CCTGGATGAG	AGTGGCAGCT	ACTGGGTCA	TGACAAGAGG
	CTGCCCCCT	GCTCACTCG	CCAGGCCCTC	ACCTACTCCC	CGGACATCAC	CACACCCCCA	ACCCAGCTGC
70	TGCTCCAAA	GCTGCCCCAG	GTGGCCACAG	AAGAGCCTGA	GAGACAGAGG	CTGGAGGCC	TGTGCCAGCC
	CTCAGAGTAC	AGCAAGTGG	AGTTCACCA	CAGCCCCACA	TTCCCTGGAGG	TGCTAGAGGA	GTTCCTGGTCC
	CTGCGGGTGT	CTGCTGGCTT	CCTGCTTTCC	CAGCTCCCCA	TTCTGAAGCC	CAGGTTCTAC	TCCATCAGCT
	CCTCCCGGG	TCACACGCC	ACGGAGATCC	ACCTGACTGT	GGCCGTGGTC	ACCTACCACA	CCGGAGATGG
	CCAGGGTCCC	CTGCACCAC	GTGTCTGAG	CACATGGCTC	AACAGCCTGA	AGCCCCAAGA	CCCAGTGCCC
75	TGCTTTGTGC	GGAAAGCCAG	CGCCTTCCAC	CTCCCCGAGG	ATCCCTCCCA	TCCTTGATC	CTCATCGGGC
	CTGGCACAGG	CATCGTGCC	TTCCGCAGTT	TCTGGCAGCA	ACGGCTCCAT	GACTCCCAGC	ACAAGGGAGT
	GCGGGGAGG	CGCATGACCT	TGGTGTGG	GTGCCGCCG	CCAGATGAGG	ACCACATCTA	CCAGGAGGAG
	ATGCTGGAGA	TGGCCAGAA	GGGGGTGCTG	CATCGGGTGC	ACACAGCTTA	TTCCCGCTG	CCTGGCAAGC
	CCAAGGTCTA	TGTTCAAGGAC	ATCCTGCCG	AGCAGCTGGC	CAGCGAGGTG	CTCCGTGTG	TCCACAAGGA
	GCCAGGCCAC	CTCTATGTTT	GCGGGGATGT	GCGCATGGCC	CGGGACGTGG	CCCACACCT	GAAGCAGCTG
80	GTGGCTGCCA	AGCTAAATT	GAATGAGGAG	CAGGTCGAGG	ACTATTTCTT	TCAGCTCAAG	AGCCAGAAGC
	GCTATCACGA	AGATATCTTC	GGTGCTGTAT	TTCCCTACGA	GGCGAAGAAG	GACAGGGTGG	CGGTGCAGCC
	CAGCAGCTG	GAGATGTCAG	CGCTCTGAGG	GCCTACAGGA	GGGGTTAAAG	CTGCCGGCAC	AGAACTTAAG
	GATGGAGCCA	GCTCTGCA	ATCTGAGGTC	ACAGGGCTG	GGGAGATGGA	GGAAAGTGAT	ATCCCCCAGC
	CTCAAGTCTT	ATTCTCTCA	CGTTGCTCCC	CATCAAGCCC	TTTACTTGAC	CTCCTAACAA	GTAGCACCT
85	GGATTGATCG	GAGCCCTCCTC	TCTCAAAC	GGGCCTCCCT	GGTCCCTTG	AGACAAAATC	TTAAATGCCA
	GGCCTGGCGA	GTGGGTGAAA	GATGGAACCT	GCTGCTGAGT	GCACCACTTC	AAGTGACCAC	CAGGAGGTGC
	TATCGCACCA	CTGTGTTTT	AACTGCCCTG	TGTACAGTTA	TTTATGCC	TGTATTAA	AAACTAACAC

CCAGTCGTGTT CCCCATGGCC ACTTGGGTCT TCCCTGTATG ATTCCCTGAT GGAGATATTG ACATGAATTG
 CATTCTACTT TAATC GAATTCCCAC TCTGCTGCCT GCTCCAGCAG ACGGACGCAC AGTAACATGG GCAACTTGAA
 GAGCGTGGCC CAGGAGCCTG GGCCACCCCTG CGGCCCTGGGG CTGGGGCTGG GCCTTGGGCT GTGCGGCAAG
 5 CAGGGCCCAG CCACCCCCGGC CCCTGAGCCC AGCCGGGCC CAGCATCCCT ACTCCACCA GCGCCAGAAC
 ACAGCCCCCC GAGCTCCCCG CTAACCCAGC CCCAGAGGG GCCAAGTTC CCTCGTGTGA AGAACTGGGA
 GGTGGGAGC ATCA.CCTATG ACACCCCTCAG CGCCCAAGGG CAGCAGGATG GGCCCTGCAC CCCAAGACGC
 TGCTGGGCT CCCTGGTATT TCCACGGAAA CTACAGGGCC GGCCCTCCCC CGGCCCTGAGC GCTCCCAGGC
 AGCTGCTGAG TCACGCCGG GACTTCATCA ACCAGTACTA CAGCTCCATT AAGAGGAGCG GCTCCCAGGC
 10 CCACGAACAG CGGCTTCAAG AGGTGGAAGC CGAGGTGGCA GCCACAGGCA CCTACCAAGCT TAGGGAGAGC
 GAGCTGGTGT TCGGGGCTAA GCAGGGCTGG CGCAACGCTC CCCCGCTGGT GGGCCGGATC CAGTGGGGGA
 AGCTGCAGGT GTTCGATGCC CGGGACTGCA GGTCATGCACA GGAAATGTT ACCTACATCT GCAACCACAT
 CAAGTATGCC ACCAACCGGG GCAACCTTCG CTCCGCCATC ACAGTGTTC CGCAGCGCTG CCCTGGCCGA
 GGAGACTTCC GAATCTGGAA CAGCCAGCTG GTGCGCTACG CGGGCTACCG GCAGCAGGAC GGCTCTGTGC
 15 GGGGGGACCC AGCCAACGTG GAGATCACCG AGCTCTGCAT TCAGCACCGC TGGACCCCCAG GAAACGGTTCG
 CTTCGACGTG CTGCCCCCTGC TGCTGCAGGC CCCAGATGAG CCCCCAGAAC TCTTCTTCT GCCCCCGAG
 CTGGTCCCTG AGGTGCCCCC GGAGCACCCC ACGCTGGAGT GGTTGCAAG CCGCTGGTACG CGCTGGTACG
 CCCTCCCCGGC AGTGTCCAAC ATGCTGCTGG AAATTGGGG CCTGGAGTT CCCGCAGCCC CTTTCAGTGG
 CTGGTACATG AGCACTGAGA TCGGCACAG GAAACCTGTGT GACCTCTCAC GCTACAAACAT CCTGGAGGAT
 20 GTGGCTGTCT GCATGGACCT GGATACCCGG ACCACCTCGT CCCTGTGGAA AGACAAGGCA GCAGTGGAAA
 TCAACGTGGC CGTGTGCAAGT AGTTACCAAGC TAGCCAAAGT CACCATCGT GACCACACG CGGCCACGGC
 CTCTTTCATG AAGCACCTGG AGAATGAGCA GAAGGCCAGG GGGGGCTGCC CTGCAGACTG GGCCTGGATC
 GTGCCCCCCA TCTCGGGCAG CCTCACTCTC GTTTCCATC AGGAGATGGT CAACTATTTC CTGTCCCCGG
 CTTTCCGCTA CCAGCCAGAC CCCTGGAAGG GGAGTGCCTG CAAGGGCACC GGATCACCA GGAAGAAGAC
 25 CTTTAAAGAA GTGGCCAACG CCGTGAAGAT CTCCGCCTCG CTCATGGGCA CGGTGATGGC GAAGCGAGTG
 AAGGCACAA TCCITGTATGG CTCCGAGACC GGCCGGGCC AGAGCTACG ACAGCAGCTG GGGAGACTCT
 TCCGGAAGGC TTTTGTATCCC CGGGTCTGT GTATGGATGA GTATGACGTG GTGTCCTCG AACACGAGAC
 GCTGGTCTG GTGGTAACCA GCACATTGG GAATGGGGAT CCCCCGGAGA ATGGAGAGAG CTTTGCAGCT
 30 GCCCTGATGG AGATGTCCGG CCCCTACAAAC AGCTCCCCTC GGCCGGAACAA GCACAAAGAGT TATAAGATCC
 GCTTCAACAG CATCTCTGC TCAGACCCAC TGGTGTCTC TTGGCGGCGG AAGAGGAAGG AGTCCAGTAA
 CACAGACAGT GCAGGGGCC TGGGCACCC CAGGTTCTGT GTGTTGGGC TCGGCTCCCG GGCATACCC
 CACTTCTGCG CCTTGTCTG TGCGTGGAC ACACGGCTGG AGGAACCTGG CGGGGAGCGG CTGCTGCAGC
 35 TGGGCCAGGG CGAC'GAGCTG TGCGGCCAGG AGGAGGCCCT CGAGGCTGG GCCCAGGCTG CCTTCCAGGC
 CGCCCTGTGAG ACCTCTGTG TGGGAGAGGA TGCCAAGGCC GCCGCCGGAG ACATCTTCAG CCCCAAACGG
 AGCTGGAAGC GCCAGGGTA CCGGCTGAGC GCCCAGGCC AGGGCTGCA GTTGTGCCA GGTCTGATCC
 ACGTGCACAG GCGCAAGATG TTCCAGGCTA CAATCCGCTC AGTGGAAAAC CTGCAAAGCA GCAAGTCCAC
 GAGGGCACC ATCTTGTGC GCCTGGACAC CGGAGGCCAG GAGGGGCTGC AGTACCAAGCC GGGGGACAC
 40 ATAGGTGTCT GCCC3CCCAA CGGGCCCCGG CTTGTGGAGG CGCTGCTGAG CCGCGTGGAG GACCCGCCGG
 CGCCCCACTGA GCCCGTGGCA GTAGAGCAGC TGGAGAAGGG CAGCCCTGGT GGCCCTCCCC CCGGCTGGGT
 GCAGGGACCCCG CGGCTGCCCG CCGTGCACGCT GCGCCAGGCT CTCACCTTCT TCCTGGACAT CACCTCCCCA
 CCCAGCCCTC AGCTCTTGC GCTGCTCAGC ACCTTGGCAG AAGAGCCAG GGAACAGCAG GAGCTGGAGG
 CCCTCAGCCA GGATCCCCGA CGCTACGAGG AGTGGAAAGTG GTTCCGCTGC CCCACGCTGC TGGAGGTGCT
 45 GGAGCAGTTC CCGTGGTGG CGCTGCCCTGC CCCACTGCTC CTCACCCAGC TGCTCTGCT CCAGCCCCGG
 TACTACTCAG TCAGCTCGGC ACCCAGCACC CACCCAGGAG AGATCCACCT CACTGTAGCT GTGCTGGCAT
 ACAGGACTCA GGATGGGCTG GGCCCCCTGC ACTATGGAGT CTGCTCCACG TGGCTAAGCC AGCTCAAGCC
 CGGAGACCCCT GTGCCCTGCT TCATCCGGGG GGCTCCCTCC TTCCGGCTGC CACCCGATCC CAGCTTGCCC
 50 TGCATCTGG TGGGTCAGG CACTGGCATT GCCCCCTTCC GGGGATTCTG GCAGGAGCGG CTGCAATGACA
 TTGAGAGCAA AGGGCTGCAG CCCACTCCCA TGACTTTGGT GTTCGGCTGC CGATGCTCCC AACCTGACCA
 TCTCTACCGC GACCGAGGTGC AGAACGCCA GCAGCGCGGG GTGTTTGGCC GAGTCCTCAC CGCCTCTCC
 CGGGAAACCTG ACAACCCCAA GACCTACGTG CAGGACATCC TGAGGACGGA GCTGGCTGCG GAGGTGCACC
 55 GCGTGTGTT CCTC3AGCGG GGCCACATGT TTGTCTGCGG CGATGTTACC ATGGCAACCA ACAGTCCTGCA
 GACCGTGCAG CGCATCCTGG CGACGGAGGG CGACATGGAG CTGGACGAGG CGGGCGACGT CATCGCGTG
 CTGCGGGATC AGCAACGCTA CCACGAAGAC ATTTCGGGC TCACGCTGCG CACCCAGGAG GTGACAAGCC
 GCATACCCAC CCACAGCTTT TCCTTGCAAG AGCGTCAGTT GCGGGGCGCA GTGCCCTGGG CGTTCGACCC
 TCCCGCTCA GACACCAACA GCCCCCTGAGA GCGCCCTGGC TTTCCCTTCC AGTTCCGGGA GAGCGGCTGC
 CCGACTCAGG TCCC3CCGAC CAGGATCAGC CCCGCTCCCTC CCCTCTGAG GTGGTGCCTT CTCACATCTG
 TCCAGAGGCT GCAAGGATT AGCATTATTC CTCCAGGAAG GAGCAAACG CCTCTTTCC CTCTCTAGGC
 CTGTTGCCTC GGGCCTGGGT CCGCCTTAAT CTGGAAGGCC CCTCCCAAGCA GCGGTACCCC AGGGCCTACT
 60 GCCACCCGCT TCCITTTCT TAGTCCGAAT GTTAGATTCC TCTTGCCTCT CTCAGGAGTA TCTTACCTGT
 AAAGTCTAAAT CTCTAAATCA AGTATTATT ATTGAAGATT TACCATAGG GACTGTGCCA GATGTTAGGA
 GAACTACTAA AGTGCCTACC CCAGCTC-3' (SEQ. ID NO:3003)

Human Factor Related Anti-sense Oligonucleotide

5'-CCT CCT TCC TGG TCT GTC TGC CBG BCB BBT TTG GGB BGT GBB CBG TTT TGG BBC CBT GTT TCC CBG TCT
 CTG BGC TGT GGC GCC CTG CTG CTC TTT CTG CT TCC CTT GGT GGG TTG GGC C GCT GGT TGT TCT GGG GTT
 C TTG CTG CCC CTT CTG TCC C TGT TTG CTG GTG TCT GCG C CCC CBB CBG BBG BBG CBG BCB BBT TTG GGB
 5 BGT GBB CBG TTT TG3 BBC CBT GTT TCC TGT GCG CTC GGC CTG GTC CCG G GGG TCT CCT CTT GTT GTT GC
 TTG CGC CTC CTG CTG GGG GT CC CTC TGT TCT TGT TTT GGG GGC GGG CCC GGC CGT TGT CTT G GTT TGG
 GGG TTT CCG TTG GGG TTC TCC TGG CCC GGG CCT TGC CC GGC CGT GGT CCC GGC TTC GTTCCT GTC TCC
 GTC TCG GCT CTT CTG GGG CCT TGC GCT GTC TTT GGT G GCB CCG TCC BGT GBT GGT GCG GTB CTT GTC
 GCT GCB GCG CTC GGC CTG GTC CCG GBG BGC GCG CGG GCC GGG GGC TGC TGG G GGT TGG CCC GGG GTG
 10 CCC C GCC GCT GGG TGC CCT CGT CCT CTG CGG TC GTG TCT CCT GGC TCT GGT TCC CC GCT GCG CCC GTT
 GTC CTC TGG GGT GGC CTT C GCT CCC GGG TCT GGT TCT TGT GT TGG GGG TCC CTT TTT GGG CCT GTT GT
 GGC GTG GCT TGT GT'G TTC GGT TTC TGC CCT GTC CTC CGG CGT CCC CGG BGC CTC CCC GGG GCB GGB TGB
 CTT TTG BGG GGG BCB CBG BTG TCT GGG CBT TGC CBG GTC CTG GGB BCB GBG CCC CGB GCB GGB CCB GGB
 GTG CGG GCB GCG CGG GCC GGG GGC TGC TGG GBG CCB TBG CGB GGC TGB G CCT CTT TTC TGT TTT TCC C
 15 CTC TGC CTT TGT TTG GGT TCG CTT CCT TTC TGC TTC C C TG TGT CTC CTG TCT CCG CTT TTT TCT TC
 GTC TTT GTT GTT TT C TCT TCC TTG CTG BGC BBG BTB TCT BGB TTC TGG GGT GGT CTC GBT TTT BBBB GCT
 TGB GBB GCT GCB BHC BTT BTC CBB BGT BTB TTT GBG GCT CCB BGG BTC BCG BCC BTC TTC CCB GGC BTT
 TT BGT TGC TGT CCT BBG TGB GBG CTG BGB BCT GTG BBG CBB TCB TGB CTT CBB GBG TTC TTT TCB
 CCC GTT CTT GGC TTC TTC TGT C CGT TGG CTT CTC GTT GTC CC TGT GGG CTT CTC GTT GTC CC CCC TTC
 20 GGG GGC TGG TGG GGC CGT CCT TGC CTG CTG G GTT CTT GGC TTC TTC TGT CCG T TGG CTT CTC GTT GTC
 CC TGT GGG CTT CTC GTT GTC CC CCC TTC GGG GGC TGG TGG GGC CGT CCT TGC CTG CTG G TTT TCT CTT
 TCG CTT TCT TTT CGT CTC CTG CTT TT TTG CTG TTT TTT CTC CTT CTC TCC TTT CTT TTC TTT
 TCT CTT TCG CTT TCT TTT CGT CTC CTG CTT TT TTG CTG TTT TTT CTC CTT CTC TCC TCT CTC TCC TTT CTT
 TTC CTC TGT CTT GT TCT GTC CTT CGT GGG GCT CTG TGT CGC GTG G GTG CGG CCG TGG CC GGC GGB
 25 CCB GGB GTT GGB GCB GGB GCB GGG GCB GGC TCB TGT TTG GBT CGG CBG GBG GCB CTC CTC TGG
 TTG GCT TCC TTC GGC GGC BCB TGC TBG CBG GBB GBB CBG BGG GGG BBG CBG TTG GGB GGT GBG BCC CBT
 TBB TBG GTG TCG E TCCCTGTTTC CCCCCCTTTCG TTCTGCGTTT GCCTTGGCG TTTTTGTTT GTTTCTCTC
 TCCGCTTTTC TTCTCCCT GTGGGGBTTT CTGTGGGGBT GGCBTBCBCG TBGGCBGCTC CBBGBGCTBG
 CBBBCTCBBB TGCBGBBGB C TCCCTBGGC TCTGBBBCGG TGGGAATTTC TGTGGGGBTG GCATACACGT
 30 AGGCAGCTCC AAGA GCTAGC AAAC TCAAAT GCAGAAGCATC CTCATGGCTC TGAAACG GGGGGTGGCT
 TCCTGCCGCG TCTCTGGGCC GTCCCCTCCC TCGGCCCGC GCGCGCTCG GCTCCTCTCC CTCTGGCCCG
 GCTCGGGCGC GGGC GGGGCG GTGGGCGGGC GGGCGCTGCC TCGCGCGGC GCTGGCCCGT GCTGGCCGTC
 GGCTGCGCGC TGCTGGCTGC CCTGCTGCC GCGCCGGGC CTGCTGCCCT CTGCGGGCGC TGTCTCCTGG
 CTTGCTTCC GGCTCTTCTG CTGGGGTGGG GCTGGCGGC CGGCCCGGTG CTGGGGCTCC TCGGGGGGG
 35 GGGCTCTCC GGGCTGTCTC CCTCCGGGC GGGGGTTTCT GGGCGTGGG GCTTGGCTG GCCTCCGGC
 TCCTGTTGT CTTG CCTTCC TTCTCTGGC GGTGTGGCT CGGGGCTCC TGGGCTCC TGCCTCC
 GTGTTTGTC TTTT CCCCCTG GCGTCCCTGT GCCCCTCTCC TCTCCTTCT CTGCTTCTCG CTCTCCTT
 TGGGGCCCTC CCTGCTGCTC TTGGTTTGG GCTTTTTTC TCTTCCCTCT TTTTCTGCG TGGGCCCTCC
 40 GCACGCCCTC TGCC ACCTCC TGCGCAGGC AGCGCTTGG CGCCAGCGCC GCTCCCGGC CGGCCAGCAG
 GCGGACAGGC GCBGCGCTC TTGCCBCTC CTGCGCBGGG CBGCGCCTT GGGCCBGC GCGCTCCCGC
 GCGGCCBGB GGGCBGCBG CBGCGCGC CGBCGCGCC GCBTGTCTC TCCCTGGCTB CCBCTCCBTG
 GTCCCGCBG GGGC GBCBGG C GGGGTGGBBB GTTTGGBT BTGCTTTBT GCBCTGBCBT CTBBGTTCTT
 TBGCBCTCT TGGCBBBBCT GCBCTTCBC BCBGBGCTGC BGBBBTCBGG BBGGCTGCCB BGBGBGCCBC
 45 GGCCBGTTG GBBC TCBTGT TTBCBCBCB TGBGBTGGT CCTTCCGGC TTGTGTGCTC TGCTGTCT
 TGGTCTCTC CGGTGGTTTC TTCTGGCTC TTGCTCTTTC TCTTGG CCCT TGGC CGGGGBTGGG GGTCTGGBC
 GGCBCTBGB GCBTCCBGGG CTCCCTTCCB GTCTTCTTG TCCGCTGCCB GCBCCCTTC BTTCBGBG
 CTGBTGGCCT CCBCCBGGG CBTGBTBGG TBGBBBCTBG GBGGCCGGCC TCCBCCBGGG BCCTGGTCT
 TCTGTCCTC TGCCCTCTG GGGTTTCCG TCTGGGTGGG CTTTCCCTCT GGGGCTGCTG CTGGGCTCTT
 50 CTTTTGTT CTGG CCTGGT GCTCTCTCGT GCCCCTTCCC TTGGGTGCT TGTGTTTGTG GCCTCCBCC
 GGGBCBTG GTCTTGTCTT CTGGGCTCGT GCCCCBTCCC GGCTTCTCTC TGGTCTCGT CTCTGTGGT
 TTTGCCCTG CTTCCTTTG CCTGTTGAGG GGGCAGCAGT TGGGCCCCAA AGGCCCTCTC GTTCACCTTC
 TGGCACGGAGTT GCATCCCCATA GTCAAACCTCT GTGGCTGCTG CATAGCTCTC TGTGGTGTG
 TCCCGGCTTC TCTCTGGITC CAAGGGAGB GGGGGCBGB GTTGGGCCCC BBBGCCCTC TCGTTCBCT
 55 TCTGGCBGG BGTTGCBTCC CCBTBGTCBB BCTCTGTGGT CGTGTCTBGG TCCTCTGTGG TGTTTGGBGT
 TTCCBTCCCG GCTTCTCTCT GTTCCBGG GB GGGCBGGGG CBGTGGCGG GCBTGTBGG CBBGCBGCB
 GGGTGTGGTG TCCCBGGBT BTGGGGBGGC BGBTGCBGB GCGCBGBGG CBGTGCBBT GBGGBTGCB
 GCGBGGCGTG CCGCGGBGBC CTTCTGGTB CCTGTGGGB GGCTGTCGBB GGGGGTGTGG TGTCCGTTG
 GCGGTTCTT CGGG TGTTC TTCTCTGGT TGGCCTGCTG CTCGCTGTT CGCTCCGCTC CGGGGTTCTG
 60 CTCGCTCTGT CGCCCTTCC TTCCCTGTCG TGTCTCTCCC TTCCCTGCCT CT GBTGTTTGTG
 CBBGGBTBGC TTGCTBTCT BBGGBCBCTB TTTBGBCTB GGBBBBCGCT GTBGGTCBGBB BGBTGTTGCTT

BCCTTCBCBC BGBGCTGCBG BBBTCBGGBBGG CTGCCBBGBGBG CCBCGGCCBGC TTGGGBTGBT GTTTBCBCBC
 BGTGBGGTGC TCCGGTGGCT TTTTGCTGT GTGCTCTGCT GTCTCTG TTC CTTCCGGTGG TTTCTTCCTG
 GCTCTGTCC TTTC'CTTGG CCCTTGGCCC CTTGBCBGG BBGCTCTGGG GCBGGGBGCT GGCBGGGCC
 BGGGGGGTGG CTTCCTGCBG TGTCCBGBGT GCBCTGTGCC BCBGCBGCBG CTGCBGGGCC BTCBGCTTCB
 5 TGGGGCTCTG GGTGGCBGGT CCBGCBTGG GTCTGGGTGG GGCTGGGCTG CBGGCTCCGG
 CGGGTCCBGCCTGGCTG GGGGCTGGG CTGCBGGCTC CGGGGGGCG GGTGGGGCT GCGTGGCTGG
 GGCTCCCCG CAGGCCCTGC GGTCCBGCCTB TGGGCTGGG GGCTGGGCT CBGGCTCCGG CGGGCGGGT
 GCGGGCTGCG TGC'GGGGC TGCCCCGAG GCCCTGC GCBCCGCTG GBGCCCCGGG GCCCCCCTGT
 10 CTTCTGGGG BGCC'CCTCCT CGGCCBGCTC CBCGTCCCGG BTCBTGTCTT CBGTGCTCBT GGTGTCTTCTT
 CCBGGGGBGB GBGGGGCTGG TCCTCTGCTG TCCTTGTGG TGCTCBTGGT GTCTCTTCCG CCCTGGGGCC
 CCCCTGTCTT CTTGGGGCTT CTTCCCTCTG GGGGCCGTCT CTCTCCCTCT CTTCGCTCTC TCTCTTCTC
 TCTCTCTCTT CCCCCTTCCC GCTCTTCTG TCTCGGTGTC TGGTTTCTC TCTCCGCTGG CTGCTGTCT
 15 GGCCTGCGCT CTTC GCCTGT GCTGTTCTC CTCCGGTTCC TGCTCTCT TGCTGTGCGCC CCCTCTGGGG
 TCTCCCTCTG GGTGGTGGTC TTGTTGCTTG GGCTGGGCTC CGTGTCTCCB GTGCTCBTGG TGTCCGCTGB
 GGGBGCGTCT GCTG'CGCTG GTCTCTGCTGTC CTGCTGGTGT CTCTBGGTGT CCTTCCGCC CTGGGGCC
 CCTGCTCTCT TGGG'GCCTCT TCCCTCTGGG GGGCGTCTC TCTCCCTCTC TTGCGTCTCT CTCTCTCT
 CTCTCTCTC CCCTTCTCCC CTCTTCTGT CTGGGTGTC GGTTTCTCT CTCCGCTGGC TGCGCTGTCT
 20 GCCTGCGCTC TTGC CCTGTG CTGTTCTCC TCCGGTTCT TGCTCTCTG TCTGTGCCCC CCTCTGGGG
 CTCCCTCTGG CGTC GTGGTC TTGTTGCTTG GGCTGGGCTC CGTGTCTCCB GTGCTCBTGG TGTCCGCTGB
 GGGBGCGTCT GCTGC C CTGCTGBGGC TTGGGTCTCC GGGCGBTCT CTGCBGBBGB TGCTCBBBGG GCTCCGGCBG
 TTCCCTCTG BTCT'GTGCTG GTCGTBCCBG TCGGBCCBGT BBTTCBGBC BTCTTGGCT CCTBTTCTT
 CTGCBBCBG CTGBGTGGBG BCBBGBBBBB BGBCTGCCB GGCCBCBGG BTTTCBTGT TGGBTTTGC
 GBCGGBCBGT CCCCC CGGGGT GCTGAGTTT TCTGGTTCT TGCGCGC GTGGTCGCTC CGCGTTCTC
 25 TGGTTCTCC GGTC CCGCGG GGTGCTGTCT GGTCGCTGTC GTGGCTTGGG TCTCCGGCG GTTTCTTCC
 TTTCCCGC CGGCCCTCT CACTGGAGGC ACCGGGCAGT CCTCCATGGG AGGGTTGGG TTGGCCGGGG
 CTGCCCCGTG CCT'CTCTG GCTGGTCCC CTGTTGCTCTT GGGCCCCGG TCCCCTGCT CGGCCCTCCG
 GTTCTTGGC CTCTGCTCTC GCCTGCTGTC TTGTCCTGTC CCCTCCCTCG TTGCGTTCC CTCTCTCT
 30 TCTCCAGGC CTTCCTCCGC TTCCGCTGCT GGGGCCCGCG CGGGGGGGG GCTCGCTCC GCGGCTGCG
 CCCGGCTGG GGGC'TCTCTGG TCTCCGGGGC CTGCGCTCG CGGGCTCGGG GCTCGTGC CGCGCGCG
 CGTCCGCGGT GGGG'GGCGCT GTCCCCGGGT GGTGTTGTC TGCTGCCCCGT GGGCTTGGG TCTCCCTCC
 CGTGGGGTCC TGGC CGTGGT GGGGGCGTC TGGTGCCTCG TCTGCCCCGT GGGGCTTCGG GCTCGGGGCT
 GTTCGCCCCC CCTG CCGCTC TGTGGCTCC GGGGCTCCTC GTTTCTGCT CTTGGGTGT CCTTCTCGC
 35 GTGTGGCCCC GGGG'CCCCGC CCTGCTGGC TGGGCGGGGT CGCTGCCCTG GGCTTCTGGC CGGTCTGGT
 GTCTGTCGGT GCTI'GTCTCG GGTGTTCTGGC CTCTGTC GGCCTTCTGC TGCCTCTGC TCCGCCCTCC
 TGGTGGCTCG GCTGGGGGTG CCCGTGCGGG GGTGGGTGTG GGGTGGTTC GGGGCTCTCC CCTTCCC GTT TCA
 TCT TGG CTT TAT CCTCT CCC CTT GTT CCT CCC CTCT CCT GCT CTG GRG TCT CCT C TTC CCT CCC TCC CCT
 GCC GTG TTG TCT GTG' GGT GTC GTT TCG CTC TTG TTG CCC TGG GCC CCT CCC TGC TGG GGG GGA GTT TCA
 TCT TGG GTT TCB TCT TGG CTT TBT CCTCT CCC CTT GTT CCT CCC CTCT CCT GCT CTG GRG TCT CCT C TTC
 CCT CCC TCC CCT GCC GTG TTG TCT GTG GGT GTC GTT TCG CTC TTG TTG CCC TGG GCC CCT CCC TGC TGG
 40 GGG GGB GTT TCB TCT TGG GGG GGB GTT TCB TCT TGG CTT T CCGTGTGTC BGTGGTGCTG CCCGTTGBG
 GTBTGGCGCT CCBCCBBTC CCTTTCTCC TTGTTTCCG TTCTCTTGC CGTCTGTGGT T GCTCAGCCTC
 CAAAGGAGCC AGCCCTCTCC CAGTTCTGA AATCTGAGT GTTGCCCTGC AGTCGCCATG AGAACCTCCT
 ACCTCTGCT GTTACTCTC TGCTTACTTT TGTCTGAGAT GGCCCTCAGGT GGTAACTTT TCACAGGCCT
 TGGCACAGA TCTCATCATT ACAATTGCGT CAGCAGTGGA GGGCAATGTC TCTATTCTGC CTGCCGATC
 45 TTTACAAAAA TTCAAGGCAC CTGTTACAGA GGGAAAGGCCA AGTGTGCAA GTGAGCTGGG AGTGACCAGA
 AGAAATGACG CAGAAGTGA ATGAACTTT TATAAGCATT CTTTAATAA AGGAAAATTG CTTTGAAGT AT
 ATCCTTAAG TCAATGGACT TTGCACTAGT CACACCATCT TTTGTTACTT TGGACTTCCC CAGCTATGTT
 CAATAATTAC TGTCTTCCC TTGGGCCCA TTGTAATGGC TACAGCCTCG ACAAAAAGTC TACACTTGA
 AGCATTAAAGG CTCCGACATC AGCACCAAT TTTACATCTT TACCATCACT TCAAGTGGG TGAGGAGCCA
 50 GTAGCCTGGA CACTGGTCTC ATCTGGTGA AGACTGTGGG TAATGGAAGC ATTCTGTGG GGTGCTGGCA
 GGACATGTGC ATGGCGAGGC AGGTCACTAG CAGCAAGTGA GAGCTGCCCT TTACTTTCTA AAGGTGACAT
 AGCAAATATA CAA'AAAAAA TAAATAAATT ATTAATTAG GTAGAGCACA TAAAGGCTTT ATTTCATATT
 CCATTTCTCT GTATGTTTC TTCACCAGGA AGAAATAGTT TTAGTGTAG GAATGAATGA GTCTGCCCT
 CAATTCCAGC CTGCTCAACA CACAAGGAAA CAAAGCCCTG ACAATCAGAG TGACTCCCTG GTGACTAAGC
 55 TCCCAGCTCT GGAT'GCATAT TTGTTTAGCA GTTCTGACAG CATTGACCC AGCCCTCTCT CTGCATATCC
 CATCAGAACCTT TCT'TTTTT TTGTTTCTT TGAGACTGAG TCTTGCTCTG TCGGAAGCGA CTCCCTGTGCC
 TCAGCCTCCC AAA'ACCTGG AATTATAGGC GTAAGCCATC ATGCCTGGCT AATTGGTGA TTTTCATGG
 AGATGGGGTT TTGCGATGTT GGTCAAATTG GTCTCACACT CCTGACCTCA TGTGATCCAC CTGCGCTCAGC
 CTCCCAAACG GCTC GGATGA CAGGTGAAG CCACCATGCT AGGCTCAGAA ATTCCTTTT ATAAAATGT
 60 CATTAAGGAT CTTC GCTGCA CAATATCGTT ACCAGCTTCC TTTAAATCCA CTTCTGGCCT GCCAGGAATC
 AGGTTCTCA GAAC'CTGACA TTTAAATGA AGAGGTCAGG CAGTTCATGA GGAAAGCCTC ATTGTCCCCA
 TGTCTCTGTC ACTGCTGCAC CCCTGAGACA TCACAGACAT GGACACTGGG GCCTGTTGT TTCTCAAAC

	GCCCTTAGAT	CGAAAGAGGG	AGGAACCAGG	ATGAATGCCA	CTCATTTC	CAAGAAAGGC	CCTCTCCTGA
	GTGCCCGGA	TGGCGCTCTG	TCCATTGCC	GGGGCCGCCA	ATTGCTACTC	TGGGTTACGG	AGGAAGGACA
	GGGTCTGAG	AGAC'ACCAGA	GACCTCACAC	AGCCCTGAAA	ACATGGGGCT	CCTTCATAAG	TGTTTCCCCT
5	CACCAACAGG	GAGACCACGT	GGAGGCCCTG	CAGCCCCACT	CGGTGCTTCT	CCACCAAATC	CCAAGGGCAG
	TGACGCTGAC	GTCTGTGAA	AGCAGAGAAA	GCCCTGGCTC	CCAAAGCCCT	GAAGTCCCTG	TGGAGCTGAC
	ATCCCCTGAG	TGACGGTGTG	AATGGAAGGA	ACTCAAGTGC	GGGTGGTAGG	CCACCTCTG	GCCCAGGCCT
	GGGTGAACTC	TGACGGGACA	CATGTAGTCA	CAATCCCATC	CTCCCATTC	CCTTCAGA	GGAAGGAAGT
	GGGCATCCAT	CTGCCCTCATC	TCTCTCCCGT	GGGGAAGATG	GGGAGTTCA	GGGAAACTTT	CACATAAATT
10	TCACCAGCTC	AGATCTCCTG	TGAGGATGGG	GCCCCACCATG	CTCCCGGTGC	TGCCAGAGGC	CCTGAGCCCC
	TCCCAGGGTC	CCTGGGTTTG	AGCCAGCCT	GTATCATCCC	CAGGAGCTGA	ATGTCAGAGC	AATGGATAGA
	ATTAGATGGA	AAGAGCTCTC	AATTGACCT	GAGACTGTCC	CCAGATACTC	AGGAAAAAAC	GGACGTCGCA
	CAGAGTGGC	AGCAGGTGAG	TGGCAGGTTA	TAGGTCCTGA	GTTTGAGTTT	GTTCTCACGT	GAGACAGACC
	CAGCCCCCTCA	CTCCATTACAC	ACACTGGGTT	TTAAATGGTG	CAAGATAGGA	GCAATTTCCT	GGTCCAAGA
15	GCAGGAGGAA	GGGATTTTCT	GGGGTTTCTC	GAGTCCAGAT	TTGCATAAGA	TCTCTGAGT	GTGCATTGTT
	CTTTGAGGAC	CATTCTCTGA	CTCACCAAGGT	AAGTGGCTGA	ATTCTAACCT	CTGTAATGAG	CATTGCACCC
	AATACCAGTT	CTGAACCTCTA	CCTGGTGACC	AGGGACCAGG	ACCTTTATAA	GGTGGAAAGGC	TTGATGTCTC
	CCCCAGACTC	AGCICCTGGT	GAAGCTCCC	GCCATCAGCC	ATGAGGGTCT	TGTATCTCCT	CTTCTCGTT
	CTCTTCATAT	TCCTGATGCC	TCTTCCAGGT	GAGATGGGCC	AGGGAAATAG	GAGGTTGGC	CAAATGGAAG
20	AATGGCGTAG	AAGTCTCTG	TCTCCTCTCA	TTCCCCCTCA	CCTATCTC	CCTCATCCCT	CTCTCTCCTT
	CCTCTCTCTG	TGTGTCCTCT	CCATCCTTT	CTCTGCTTC	TCTCTCTCT	TCCCTCTCTC	TCTTTTTCT
	GTCTTTCTTT	TTCTCTCTC	CCTAGAGCAT	GTCTTCTTT	CTTCTCTTT	CCTTCTTTCT	ACCCACACTT
	TTAGACTGAA	TGCCCTATTT	AATTGAACAA	AGCATTGCCT	CCTCAATAG	AAAAGGAGTT	TGAGAACCCA
	ATGGACACCT	CACTCGTTCT	TCTAAGCCAA	TATGAAGGAG	CCCAGTAGCT	TGTAATATC	ATCTCTTCAC
25	TGCTTTCCAT	GCTACAACGT	CTGAGACTAT	GGTTGAAACC	TGTTAGGTGA	CTTTTAAAT	AAAAGGCAGA
	AATTTCGATT	TTATCTAAAG	AAAGTAGTAT	AGAATGTCA	TTTCTAAATT	TTTATATTTA	AAGGGTAGAT
	ACTGCAACCT	AGAGAATTCC	AGATAATCTT	AAGGCCAGC	CTATACTGTG	AGAACTACTG	CAGCAAGACA
	CTCTGCCTCC	AGGACTTTTC	TGATCAGAGG	CCCTGAGAAC	AGTCCCTGCC	ACTAGGCCAC	TGCAGGTTCA
	CAGGACAGGG	TACAGCCCAT	TGAAACCTAC	TTTAAACCT	GGATGCCTAA	CCTTCATTTC	CTCCCTGATA
30	TTATGAAAAT	AAAATAAAAAA	CCATGAAAGG	ATAAAAGAGG	GAGAGTGGAA	GGGAAGGATG	GAGAAAGGGA
	AAAAGAAAAT	TTGAGAGTAA	ATCCTAAAC	AATTAATCTA	ATAGATATCA	TCTTGTGAAA	TCCTCATTTC
	ACCAATCTTA	TTTA'TGAGTC	CTGGGTTTG	TGAGAACAA	GGGGTTCTGA	GAGGCACCAG	AGACCTCATG
	TTTTCAAAAA	CCTAGAACAG	TATAATGAAG	GAAGGCGGGG	AGGCAGGGAG	GCAGGGAGGC	AGGGAGGCAG
	GGAGGCGGGC	AGGTGGGGAG	GGAGGGACGG	AAGGAGGGAG	GGAGGGAGGG	AGGGAGGGAG	GGAGGGATAA
35	AAAAAGAAGA	ATGAGGTGA	AACCAGGACT	TAGATATTAG	AAACAAGCA	TTACAAAATT	TATTTCATG
	GTAAATTGTG	GTTCICAAC	GTAAGITACT	TGGTGTAAAT	TTCCATTAA	ACAATTTCAG	TAAGTTGCAT
	CTTTTATCC	CATC'CAGGT	CAAATACTTA	ACAGACTAAA	TGATTGAAA	AAGCAAAGT	TTACTGGCTT
	GTGTGTGTTA	AAATGGAGGT	ATGGTGGCTT	TGATATTATC	TTCTTGTGGT	GGAGCTGAAT	TCACAAGAGA
	TCGTTGCTGA	GCTCTACCA	GACCCACCT	GGAGGCCCCA	GTCACTCAGG	AGAGATCAGG	GTCTTTCACA
40	ATCAGGTTCT	ACAAAATAA	ACATCCCCC	AACCACAGCA	GTGCCAGTTT	CCATGTCAGA	AACTTAGATC
	CAAATGACTG	ACTCGCGTCT	CATTATCATG	ATGGAAAAGC	CCAGGCTTGA	GAAAGAACCC	CGCTCGGAT
	TTACTCAAGG	CGATACTGAC	ACAGGGTTT	TGTTTTTCCA	ACATGAGTTT	TGAGTTCTTA	CACGCTGTT
	GCTCTTTTG	TGTGTTTTTT	CCCTGTTAGG	TGTTTTGGT	GGTATAGGGC	ATCCTGTTAC	CTGCCTTAAG
	AGTGGAGCCA	TATCTCATCC	AGTCTTTGC	CCTAGAACGGT	ATAAACAAAT	TGGCACCTGT	GGTCTCCCTG
45	GAACAAAATG	CTGCAAAAG	CCATGAGGAG	GCCAAGAACG	TGCTGTGGCT	GATGCGGATT	CAGAAAGGGC
	TCCCCTCATCA	GAGACGTGCG	ACATGTAAAC	CAAATTAAAC	TATGGTGTCC	AAAGATAACGC	AATCTTATC
	CTAGTAATTG	TGGTCATTGG	GTGATGTTGG	TTTGGGCAGG	CCATCTCTAA	TATCCTGAA	ACACCTTTT
	CTGCTCTCCA	GGAAGGGGTC	AGGGCTGCCA	CAGCAGGGCT	TGGAGTGCCT	TCCAGGGTCA	CAGGCATCTG
	TATTCTTGG	ATTCTTGAC	CTTCCCCATT	TATTCCCGGC	ATTTCTCTAA	AACGTGTGCT	TTGCTCCTCC
50	TGCATCCTCC	CCTTGCATGC	CCTCACCTAC	CCCACATCTT	CCCTAAAAAA	AGCAAGCCCA	ACTCAAAGAC
	CAGTCCCTC	ATGGAATCAT	AGTGGATCTG	CCAAGGGAGG	GGATGCCAG	TCCTCTGTT	TTCACAAAGAC
	TCCCTCTTC	TGGCTAAGGT	TTCTTATGCA	ATTAT CTGCAGTGGT	AAAAAGATT	TATATCTGCT	GTGATGAA
	TGCAGCACCC	ACTAGCCACA	TAGTGTCTGT	GAGCACTTGC	AATGCGGCTA	GGGTGATTT	AATTAACCTA
	AAAGAGAACAA	GCCAGGGGA	GCATGTGGCT	GCCATATTGG	ATGGTGCTGC	TTTGAGAACAA	AAATGAGAGA
	AATGAAGCCT	CTATITACCT	TGGTGGCGG	AACACATTGA	AGGGACTCTG	TATTGATACC	AGGCTTCAA
55	CTTTGGGAAG	TGTACTGGCC	AACTTAAACA	CATCCACAGG	AGAATGAAGA	GGTTGGGAA	GGGACCAAGAA
	ACCAGGCATT	GAGGACAATG	AGAAGAGTTT	TTCAAAAGTG	GAATTACTGC	AAAAAGTGG	AAAATAGCCT
	TTGGATGGAA	GTTACTGATG	AGACAATTTC	CATCGGTGTG	AAAGCCATCT	TTCCAACAGA	GATCTGCAAC
	ATGAGAACAT	ACTGTCCTCT	AGGGTAGCGA	TGGCCTCTTG	TATTAGTCCG	CTCAGGCTAC	CAGATTTCATC
	GTTTAAACTG	CCCA'AAACA	GACCAGGCA	TTTAAACAAC	AGAAATTAT	TTCCCTCGCAG	TCCTGGAGGC
60	AGGAAGTCTG	CGATCAAGGT	GGAAAGCAGG	TTGGCTTCTT	CTCAGGTGTC	TGTCCTTGGC	TGGTAGATGA
	CCGCCGCCTC	CCTGGGTCT	CACATGGCT	TTCTCTGTG	TGTGTCTGTC	CCAATCTCTT	CTTATAAGGA
	TCGAAGTCTT	ATGGATCAGA	GCACACCCCA	ATGACCGTGT	TTAACCTGAA	TCACCTCTT	AAAGTTTCTC

	TCTCCAAATA	CAATCACCTC	CTGAGGCACT	GTTAGGGCTT	CGACACAGGA	ATTCTTTCC	TAGGGGATTC
	AGTCAGTCC	AAA CGCCTA	CCAGTGGAGA	CTTGCAACAT	GGCGGCCCTGC	TGGTCCCTCG	CCAGGAATAT
	CACAGGCAC	TGT'CCCTGT	TGCATGGAAT	AGAAGGCTAT	TCCAGAGTAC	TGTCTCTATT	TATCAGATCT
	GGGATACTGG	GAGA AGGGCA	AAATAAAAGTC	CAAGTAGAAA	AAAAAAACTAT	GAAAGTTTA	GAGAGTAACC
5	ATAATTCAG	CCCGATGTGA	AACGATCCTA	GATTCACTG	GAAATAGTGA	TGTGGAAGT	GAGGGGGCCG
	GGATTCAAGG	CAGA GGGAAC	AGCGTAAC TG	AAGGCATGGA	AGGAGGGAAAG	TGTAGGCTGT	GTGGAAGAG
	TGGCAGCTGC	TTCCACATT	CTAAAACACA	GGATGTGATT	TTGGGGTGTG	TTGAGACAAG	GCAGAAAAC
	TGTTGGAAA	AATA ACTTGA	ATTCCCTGCA	CATTAAAAT	CTCTCAGCAG	AAGAAAACCC	CACTCAGAAC
10	CCCACGTTC	ATTCCTTGGC	TTGTATTGG	SCACAGCTGG	CATAGCCCCA	GACTGAGTAA	GCTCTTCAGA
	CACCTCATTT	CATGAGTAGC	CCCCAAAGATC	AATCATGGC	CAATTCTTG	GAAGAGAAGA	CTCTCCGGTG
	TTTGCAGTT	ATT TTTCTG	CTTCGCGAG	ATGTTCTAA	ATCGTTGCAG	CTACAAGCCA	TGAGTCTGAA
	GTGTTGTGT	TCCCCTCTTA	CAGGTGGTAA	CTTCTCACA	GGCCTTG GCC	ACAGATCTGA	TCATTACAAT
	TGCGTCAGCA	GTGG AGGGCA	ATGTCCTAT	TCTGCCTGCC	CGATCTTAC	CAAATTCAA	GGCACCTGTT
15	ACAGAGGGAA	GGCC AAAGTGC	TGCAAGTGA	CTGAGAGTGA	CCAGAAGAAA	TGACGAGAAA	GTGAAATGAA
	CTTTTATAA	GCAT TCTTT	AATAAAAGAA	AATTGCTTT	GAAGTATAC	TCCTTGGGC	CAAATGAAT
	CTTGTGCTC	AATTGGAAGA	GGTAAAGAAG	TAGGGGGTTA	GGGTGCATGG	TGTTGAAACGT	GAGACAGGTC
	GAACCACAAA	GCC GCCTGG	AAAAGGGGAG	TGACGTCCTA	GGCTTCAGTG	ATGTCACCTC	CACTTGT TT
	GATCCACAAA	CCA CAGGTG	ACTGATTG	GTCA GCTCAG	CCTCCAAAGG	AGCCAGCCTC	TCCCCAGTTC
20	CTGAAATCCT	GAGT GTTGC	TGCCAGTCG	CATGAGAACT	TCCTACCTTC	TGCTGTTAC	TCTCTGCTTA
	CTTTTGTCTG	AGATGGCCTC	AGGTGGTAAC	TTTCTCACAG	GCCTTGGCA	CAGATCTGAT	CATTACAATT
	GCGTCAGCAG	TGG AGGGCA	TGTCTCTATT	CTGCCTGCC	GATCTTAC	AAAATTCAAG	GCACCTGTTA
	CAGAGGGAA	GCCA AGTGC	GCAAGTGA	TGGGAGTGA	CAGAAGAAAAT	GACGCAGAAG	TGAATGAAC
	GAATTCACAT	TTCTCACCTT	TTGATGTATT	AAGAAAAGTAT	GGAGAAATAT	ATCCTCTATC	AAATTTCAT
	GCCTTCAATA	ATTCTAATT	CATCA GTCAG	TGTTTTTCCA	TCCCTTACTG	TGATGATGCC	CTTTCTTCCA
25	AACTTTTCA	TTGCATCAGA	GATGATGTTA	CCAATTCTT	TGTCTCCATT	TGCAAAATT	GTAGCAACCT
	GTGCAATTTC	TTCA GGT	GTCACAGTT	TAGACTGTT	TTAAGTTC	GCAATTACAG	CATCAACAGC
	TAACATCACA	CCTCTTTGA	TTTCCACTGG	ATTAGCACCT	TTGCTAACCT	TCTGGAAGGC	TTATTGGA
	ATAGAGCATA	CCAC TACAGC	AGCAGTGATA	GTGCCATCCC	CCAGTCTCTC	CATTGTGTT	ATTGGCAACA
	TCTTGGACAA	GTTAGCTCC	AATGCTTTA	TATTTATCCT	TTAAGTCAAT	TGACTTGCA	TCAGTCACAC
30	CATCTTTGT	TACT ITGGG	CTTCCCCAGC	TATGTTCAAT	AATTACTGTT	CTTCCCTTG	GCCCCATTGT
	AATGGCTACA	GCAT CGACAA	AAAGTCTACA	CTTGAAGCA	TTAAGGCTCA	GACATCAGCA	CCAAATTITA
	CATCTTAC	ATCA CTTC	GTGAGGTGAG	GAGCCAGTAG	CCTGGACACT	GGTCTCATCT	GGTGAAGAC
	TGTGGGTAAT	GGAA GCATT	CTGTGGGGT	GTGCAGGAC	ATGTGCATGG	TGAGGCAGGT	CATCAGCAGC
	AAAGTGAGAGC	TGCCCTTCTAC	TTTCTAAAGG	TGACATAGCA	AGTATACAAA	AAAAAATAAA	ATATTAATT
35	AGGCAGAGCA	CATA AAGGCT	TTATTTCTA	TTCCATTTC	CTGTATGCTT	TCTTACCAAG	GAAGAAATAG
	TTTTAGTGT	AGGA ATGAAT	GAGTCTGCC	CTCAATTCCA	GCCTGCTCAG	CACACAAGGA	AACAAAGCCC
	TGACAATCAG	AGT GACTCCC	TGGTGACTAA	GCTCCAGTCC	TGGATGCTA	TTTGTGTTAGC	AGTTCTGACA
	GCATCTGACC	CAG CCTCTC	TTTGCA TAC	CCACCAGAAC	CTTCTTTT	TTTTTTTTTC	TTTGAGACTG
	AGTCTTGT	TGTC 3GAAGC	GATTCCCGT	CCTCAGCCTC	CCAAATACCT	GGAATTATAG	GCGTAAGCCA
40	TCATGCC	CTAA TTTTG	TATTTTCT	GGAGATGGGG	TTTGCCATG	TTGGTCAAAT	TGGTCTCAC
	CTCC	CATG TGATCC	ACCTGCC	GCCTCCAAA	GTGCTGGGAT	GACAGGTGTA	AGCCACCATG
	CTAGGCTCAG	AAA TTTCC	TTATAAAAAT	GTCATTAAGG	ATCTGGCTG	CACAATATCG	TTACCAGCTT
	CCTTAAATC	CACCTCTGG	CTGCCAGGAA	TCAGGGTTCT	TCAGAACCTG	ACATTTAAA	TGAAGAGGTC
	AGGCAGGTCA	TGAGGAAAGC	CTCATTGTCC	CCATGTCTCT	GTCACTGCTG	CACCCCTGAG	ACATCACAGA
45	CATGGACACT	GGGC CCTG	TGTTTCTAA	ACTGCCCTA	GATCGAAAGA	GGGAGGAACC	AGGATGAATG
	CCACTCATTT	TCCC AAGAAA	GGCCCTCTCC	TGAGTGC	GGATGGGCT	CTGCCATTG	CCTGGGCG
	CCAATTGCTA	CTCT GGGT	CGGAAGAAGG	ACAGGGCTCT	GAGAGACACC	AGAGACCTCA	CACAGCCCTG
	AAAACATGGG	GCTCTTCTCAT	AAGTGT	CATCACCAAC	AGGGAGACCA	CGTGGAGGCC	TTGCAGCC
	ACTCGGTGCT	TCTC CACCA	ATCCAAGGG	CAGTGA	GACGTCTGTG	GAAAGCAGAG	AAAGCCCTGG
50	CTCCAAAGC	CCTGAAGTCC	TGTGGAGCTG	ACATTCC	AGTGACGGT	TGAATGGAAG	GAAC
	GCGGGTGGTA	GGCC ACCTCC	TGGCCCAGGC	CTGGGTGAAC	TCTGAGGGGA	CACATGTA	CCAATCCC
	TCCTCCCATT	CTCC TCTCA	GAGGAAGGAA	GTGGGCATCC	ATCTGCC	TCTCTCTCCC	GTGGGAAAGA
	TGGGGAGTTT	CAGC GGA	TTCACATAAA	TTTCA	TCAGATCTC	TGTGAGGATG	GGGCCCACCA
	TGCTCCCGGT	GCTGCCAGAG	GCCCTGAGCC	CCTCCAGGT	CCCTGGGTT	GAGCCAGCCC	TGTATCATCC
55	CCAGGAGCTG	AATC TCCGAA	CAATGGATAG	AATTAGATGG	AAAGAGCTC	CAATTGGCC	TGAGACTGTC
	CCCAGATACT	CAGG AAAAAC	AGGACGTCG	ACAGAGTGGG	CAGCAGGTGA	GTGGCAGGTT	ATAGGTCTG
	AGTTTGAGTT	TGTT CTCA	TGAGACAGAC	CCAGCCCCTC	ACTCCATTCA	CACACTGGGT	TTAAATG
	GCAAGATAGG	AGG AATTTC	TGGTCCCAAG	AGCAGGAGGA	AGGGATTTC	TGGGGTTCC	TGAGTCCAGA
	TTTGATAA	ATC TCTGAG	TGTGCA	TCTTGAGGA	CCATTCTCTG	ACTCACCAGG	TAAGTGGCTG
60	AATTCTAAC	TCTGTAATGA	GCATTGCACC	CAATACCA	TCTGA	ACCTGGTGAC	CAGGGACCA
	GACCTTATA	AGG TGGAGG	CTTGATGTCC	TCCCCAGACT	CAGCTCTGG	TGAAGCTCCC	AGCCATCAGC
	CATGAGGGTC	TTGT ATCTCC	TCTTCTCG	CCTCTCAT	TTCTGTATG	CTCTCCAGG	TGAGATGGG

	CAGGGAAATA	GGAGGGTGG	CCAAATGGAA	GAATGGCGTA	GAAGTCTCT	GTCTCCTCTC	ATTCCCCCTC
5	ACCTATCTCT	CCCTCATCCC	TCTCTCTCT	TCCTCTCTCT	GTGTGCCCC	TCCATCCTT	TCTCTGCCT
	CTCTCTCTTC	TTCCCTCTCT	CTCTTTTTT	CTGTCTTCT	TTTCCTCTC	TCCCTAGAGC	ATGTCTTCT
	TTCTTCTCT	TTCC TTCTT	CTACCCACAC	TTTAGACTG	AGTAGACTGA	ATGCCCTATT	TAATTGAACC
	AAGCATTGCT	TCCTICAATA	GAAAAGGAGT	TTGAGAACCC	AATGGACAAC	TCACTCGTT	TTCTAAGCCA
10	ATATGAAGGA	GCCCAGTAGT	TTGTAATAT	CATCTCTTCA	CTGCTTCCA	TGCTACAACT	GCTGAGACTA
	TGGTTGAAAC	CTGTTAGGTG	ACTTTTAAA	AAAAGGCAG	AAATTGAT	TTTATCTAAA	GAAAGTAGTA
	TAGAATGTCA	TTTCTAAAT	TTTATATTT	AAAGAGTAGA	TACTGCAACC	TAGAGAATT	CAGATAATCT
	TAAGGCCAG	CCTTACTGT	GAGAACTACT	GCAGCAGACA	CTCTGCCCC	AGGACTTTTC	TGATCAGAGG
15	CCCTGAGAAC	AGTCCTGCC	ACTAGGCCAC	TGCAGGTCA	CAGGACAGGG	ACAGCCATT	GAAACCAACT
	TTTAAACCTG	GATGCCAAC	CTTCATTTTC	TCCTGTATAT	TATGAAAATA	AAATAAAAAC	CATGAAAGGA
	TAAAAGAGGG	AGACTGGAAG	GGAGGATGG	AGAAAGGGAA	AAAGAAAATT	TGAGAGTAAA	TCCTAAAACA
	ATTATCTAA	TAGATATCAT	CTTGTGAAAT	CCTCATTAA	CCAATCTTAT	TTATGAGTCC	TGGGTTTGT
	GAGAACATG	GGGTCTGAG	AGGCACCAAGA	GACCTCATAT	TTTCCAAAAC	CTAGAACAGT	ATAATGAAGG
20	AAGGAGGGAA	GGACGGAGGG	AGGGAGGGAA	GGAGGGAGG	AGGGAGGGAG	GGAGGGAAAC	AAAAGAAGA
	ATGAGGTGAA	AACCAAGGACT	TAGATATTAG	AAACAAGCCA	TTACAAAATT	TATTTCTATG	TTAATTGTG
	GTTTCAACT	GTAAGTTACT	TGGTGTAAAT	TTCCATTAA	ACAATTTCAG	TAAGTTGCAT	CTTTTTATC
	CCATCTCAGA	TCAAATACCT	AACAGACTAA	ATGATTGAA	AAAGCAAAAG	TTTACTGCT	TGTGTGTG
	AAAATGGAGG	TATGGTGGCT	TTGATATTAT	CTTCTGTGG	TGGAGCTGAA	TTACAAGAG	ATCGTTGCTG
25	AGCTCCTGCC	AGACCCCACC	TGGAGGCCCC	AGTCACTCAG	GAGAGATCAG	GGTCTTCAC	AATCAGGTT
	TACAAAAATA	AAACATCCCCC	AAACCACAGC	AGTGCAGTT	TCCATGTCAG	AAACTTAGAT	CCAAATGACT
	GACTCGCGTC	TCATTATCAT	GATGGAAAAG	CCCAGGCTTG	AGAAAGAAC	CCGCTCGGA	TTTACTCAAG
	GCGATACTGA	CACAGGGTTT	GTGTTTTCC	AACATGAGTT	TTGAGTTCTT	ACACGCTGTT	TGCTCTTTT
	GTGTGTTTT	TCCCTGTTAG	GTGTTTTGG	TGGTATAGGC	GATCCTGTTA	CCTGCCCTAA	GAGTGGAGCC
30	ATATGTCATC	CAGICTTTG	CCCTAGAAGG	TATAAACAAA	TTGGCACCTG	TGGTCTCCCT	GGAACAAAAT
	GCTGCAAAAA	GCCATGAGGA	GGCCAAGAAG	CTGCTGTGGC	TGATGCGGAT	TCAGAAAGGG	CTCCCTCATC
	AGAGACGTGC	GACATGTAAA	CCAAATTAAA	CTATGGTGT	CAAAGATACG	CAATCTTAT	CCTAGTAATT
	GTGGTCATTG	GGTCATGTTG	GTGGGGCAG	GCCATCTCTA	ATATCCTTGA	AACACCTTT	TCTGCTCTCC
	AGGAAGGGGT	CAGGGCTGCC	ACAGCGGGGC	TTGGAGTGC	GAATTCCCTG	TAAGCCCTGT	TACAGGGCT
35	GCACCCAGA	TACAACCTGA	CTGTGTCCA	AGGCGGGCAA	CTCAACCCTT	AGATATTGAA	TGGGTCCTCAT
	GGCACCAATG	CTTAAACACC	AGCAGCCCTC	ACAACCACAG	ATCGTGTGTT	AAGGATGAGG	AGGTAGTTCT
	CTGGATGCAC	AGGTTCAAT	CCAAATGGGC	TCATGACGCC	GCAGCACACA	CCCAGTCTGC	AGCCTGAAGA
	GTGGAGCAT	TGCA TTCACA	GAAAGCATCC	AGACATGATC	ATGGGCTCAG	GGATACACCT	GTTCTCCGAT
	GTGTACCACT	GAACGATGGA	AACTCCTATG	CCTCCCGAGAA	AGCACCACTC	AAGCTTTCG	TGAATGCTTC
40	TCTGAAGGCC	CACAGGCTG	AGAGGCTGTG	CAACACCAAGC	AGTAAAGTGA	ATGCCAGAC	TCCCACCTCC
	TTTCTGGGT	GGCCATCTGG	AAAGGCCACT	CCCACCCCTG	TGGCTAATGC	CTCAGACCAAG	TTCTGGGCC
	AGATGATCCT	AGAC'ATTGT	TTAAGCTTAA	ACTGTTCTATT	GGCCAAGCAA	ACAGGTGATA	GTACCTCTG
	GGAACCACAT	GCCCCGTGTA	CATCCAGATC	TCAGGAGAAC	CCAAAATGT	CTGTTCCACA	TAGCAACAGA
	AGCCCCAGGT	GCACTCAGTC	TCACCTGGGT	GTTCTCCAAAC	ATCCCAGCTC	AGCCAAATGG	CTTCTATTAG
45	TTTTTATGGT	TAGACCCAG	GTCTCGGGGA	CACTGCTTAA	AAAACACATT	CCAAATCCTC	CTCTGTGTG
	AGGTGGCATT	CCTATCCCAA	TCTCTTGC	GGCGTATAC	TGTGATACGC	AGCCAGGCTG	TCCCAGAGGC
	CTTAAATATT	CCCTGGTGC	AGGTAGTTCA	GCTTAGCCAC	AGCCATGCA	TCACAGGCTC	AACTGTGTTA
	GGAGCCATTG	AGAACTCCATA	GTGGGTTGCT	GCCTGGGCT	GGCCAGGGCT	GACCAAGGTA	GATGAGAGGT
	TCCTCTGTGG	AGTICTACIT	TAACCTCACC	TTCCCACCAA	ATTCTCAAC	TGTCTTGTG	ACCACAATT
50	TTTAATGGAC	CCAAACAGAAA	GTAACCCCGG	AAATTAGGAC	ACCTCATCCC	AAAAGACCTT	AAATAGGGG
	AAGTCCACTT	GTGCAAGGCT	GCTCTTGTCT	ATAGAAGACC	TGGGACAGAG	GACTGCTGTC	TGCCCTCTCT
	GGTCACCCCTG	CCTAGCTAGA	GGATCTGTAA	GTACTACAA	ACTTAAACCT	TACACTGAGT	TTTCATCAT
	GAAGCTATGC	CTCCAACTCG	ACCTCTGACT	GTGGGGCCGC	CCCAGAGGGGA	CCCAGCGGGT	GAATCCCTGC
	TAGGAACGTC	TGTC CGGACC	TCTGGTACT	GCTGGGGACG	ATGGCTTCCA	GCTAACTTAA	TAGAGAAACT
55	CAAGCAGTTT	CCTTCTAAAT	ACACATGTCA	CATGTCCTGG	TTGACATGTC	CAGTAAGAAG	ACTATCACAG
	GTCTTGGAA	CATICTTTG	AGAGAAACCT	ATTAGGTCC	TTGGTCTGTT	TTCAATCAG	GTTGTTGAT
	TTTGCTATT	GAGITGTG	AATTCTTAT	GTATTCACT	ATTGCCCCCT	TCTGCCATGT	AGGTTTTGCA
	AATATTTCT	CTCATTTCT	GGGTTATCTT	TTCACTCGGT	TGATTGTTTC	CTTGCTGTG	CAGATGCTT
	AGCGTTAAAT	GAAGCCACAC	TTGTCTATT	TCCCTTTAT	TGCCGTGCCCC	TTTGGTGTCA	TAGCCAAGAA
60	ATCATTACCT	ACATCAATGT	CAAAAGCTT	ATCCTCTAT	ACACTCTAG	TAGTTTATGG	TTTCAGTTG
	TACATTCTAGG	TTTCAATT	ATTCTGAGTT	GATGTTCTTA	CATGGTGTGA	GATAAAGATT	TAAATACATA
	CATATATAAA	ATCATGAGGT	AGTGTACACT	ATAAATATAC	AATTGTAAT	TGTTACTCAA	GTCTAAGTAG
	AGGTGGAAAT	AATAAACCTT	CTTTTTTTA	CTTAAACCAC	TCTGTGTCA	TGAGCTGATT	TCACCTTGT
	CCTGATAAAA	TCATGTCTT	CTCCACCCCTG	ATTCCCTACAG	GAGACTACTC	ACCCCTAAC	CTCAAAACCC
	TCTTCATGAG	GATCGTAAGT	CACCTGAATC	CTGAAGTGA	TTACTCGCTA	TTCCATTGGA	ACTCATATAG
	GACACCAGAA	TCTAGACCTC	CAGAGAACAG	CAGGACCCAT	CTTCAGAAAA	TAAGAAGCAT	TTGTCCTCTG
	AGCCTGTTGA	ATCAAGTGC	AATTCTATT	CTTTTTGGAA	TGTTAAAAAG	TGAATCATAA	TATTAAGCA

	GGTGAACCCA	CGAGTAACAT	AGCAGGGTCT	TTCTTGTCA	TATTAGCTCC	AACCTAGCAC	AGACATTAAC
	GGTACAGATG	TATACTAGCA	TGAAACTGGG	AGAACAGGAG	CATTGAGCA	ACCTTGAGAC	CAATGGGCCT
	CTCTTATAAA	ATG CACACCT	CCTCTCACTG	AGATTGAGGA	AGGTTCTTG	TCTCCGAGCC	TTCTCCCAGT
5	AGAGCTATAA	ATCCAGGCTG	GCTCCTCCCT	CCCCACACAG	CTGCTCTGC	TCTCCCTCCCT	CCAGGTGACC
	CCAGCCATGA	GGACCCCTCGC	CATCCTGCT	GCCATTCTCC	TGGTGGCCCT	GCAGGCCAG	GCTGAGCCAC
	TCCAGGCAAG	AGCTGATGAG	GTTGCTGAG	CCCCGGAGCA	GATTGAGCG	GACATCCCAG	AAGTGGTGTG
	TTCCCTTGCA	TGGGACGAAA	GCTGGCTCC	AAAGCATCCA	GGTGAGAGAG	GCAGGCATGC	AGAGCTGCTA
10	AGTCTAGAGG	GAAGGACGGG	AGAGAGGTT	CAGAGTTGGG	TCTCAGCAGT	CTATGTCACT	GAGGTGGCTT
	CACTTAGAAT	CTC'GGGCAT	TGATTTCTC	ATCTAGAAAT	TGAACAGAGA	GCCAATAAA	CCTGAGAAC
	TTTATTTCTC	CAA/GACTTG	ATTCCAAGAA	ACATCTGTGA	AATTCACTAA	GTTTAAGATA	TGAAGAGACA
	GACTAGTTAT	TTC'GGATCT	AAACAACTAG	ACTTAGTTGT	AAAGAGAAAC	TTTACTCTA	TCTACAGAAG
15	AGCTTTAAA	AAC'GCAGCC	AAGCCTGAGG	GTAAGTTCA	GTGTGTGTTG	GATGGGGCAG	GAATGCAAA
	ATGAGAGCAA	AGC AGAATGA	GTCTCAAATT	CTGTGTGACA	AGCACTGCTC	TGCGTGTGTTA	TTCCATCGA
	CTGAGGGTGT	TCG'GCTACC	GGCTGCAATG	CAGCCAGCAT	CACCTGTCA	CTAGCATGTG	ACTCCCCGA
20	GATTCTTTT	CTTA.CCCACT	GCTAACTCA	TACTCAATTG	CTCATGCTC	CCCTGTCCCA	GGCTCAAGGA
	AAAACATGGA	CTGCTATTGC	AGAATACCA	CGTGCATTG	AGGAGAACGT	CGCTATGGAA	CCTGCATCTA
	CCAGGGAAGA	CTCTGGGCAT	TCTGCTGCTG	AGCTTGCAGA	AAAAGAAAAA	TGAGCTAAA	ATTGCTTTG
	AGAGCTACAG	GG A ATTGCTA	TTACTCCTGT	ACCTCTGCT	CAATTCTCTT	TCCTCATCTC	AAATAATGC
25	CTTGTACAA	GAT'ITCTGTG	TTTCCACCTC	TTTAATGTGT	GATATGTGTC	TGTGTCAGA	CACTTGGGAT
	ACACGTACCA	AAA CGCAAAA	TCAAATTTTT	GAACAATATA	CCTACCTTGC	TATAGAAGAC	CTGGGACAGA
	GGACTGCTGT	CTG'GCCCTCTC	TGGTCACCTC	GCCTAGCTAG	AGGATCTGTG	ACCCAGCCA	TGAGGACCT
	CGCCATCCTT	GCTGCCATT	TCCTGGTGGC	CCTGCAGGCC	CAGGCTGAGC	CACTCAGGC	AAGAGCTGAT
30	GAGGTTGCTG	CAG CCCCGGA	GCAGATTGCA	GCGGACATCC	CAGAA GTG	TGTTTCCCTT	GCATGGGACG
	AAAGCTTGGC	TCCAAGCAT	CCAGGCTCAA	GGAAAAACAT	GGACTGCTAT	TGCAAGAAC	CAGCGTGCAT
	TGCAAGGAGAA	CGT'CGCTATG	GAACCTGCAT	CTACCAGGG	AGACTCTGGG	CATTCTGCTG	CTGAGCTTGC
	AGAAAAAGAA	AA^TGAGCTC	AAAATTGCT	TTGAGAGCTA	CAGGGATTG	CTATTACTCC	TGTACCTCT
35	GCTCAATTTC	CTTT GATCAAAATT	TTTACCTATT	ATGCATTG	TATATAAATA	AGTATATAAA	TGCACACACA
	GACACAGCAA	TGA'GGTGAA	CAGTCTCAT	ACAATTATAT	GGATGAATCT	CATAAAATGC	TGAGTTAAAG
	AAATCAGACC	AAA GAACATA	TAUTGAAAGA	TTCTCTCAT	ATACAAAGTT	CAAAAATAGG	TGGACCAATT
40	CATGGTGGTG	TTAGAAATCA	GAAGAGAGG	TACCTTGTG	GGGAGGGGAC	AGTTAATGC	CCAGAAGCGG
	TAAATAAGGA	ATCCTCTGGG	GAGTGGTAA	GATCTGGATG	CTGGCTACAG	GATGTGTTGG	TTGTAAAAAT
	GCATTTTTT	ATAT'CTAGCT	TTTCCATGT	GTATATTATA	CTTCAAAGAA	GTTCAGTTAA	TAATTCTCA
	TGTCACTGTA	GAG'AGCTCA	GTTAGCCCCA	GCAAGCCTCT	GGCTTAATCT	TGTTTACCT	TAAGCCATCA
45	GTCATTACA	AGT AGGAAA	TTCACAGGG	AAAGTAGAGT	ATAAAATCCA	GAATGAAGGT	TTACTGGGTA
	AGAGTCTCTC	CAT'TTCCAA	AGCCCCTTA	TTCTTGATT	CCAGTTCTA	AGAAGTCTCA	GCATTGTC
	TTTTTCATGT	ATCITACAA	AAGACAGCAT	GTGCTCTAA	CACCTGATAC	ATTGTATCTA	CCAGCACTG
	GTAAACAGAA	AAA ACCACA	TTTTCTGTG	AGGAGAAATT	TGGTGCCTAT	TTCTTACCA	GCACCAATAA
50	GTGGGACCAA	TAGGTGGGAT	TAAGATA	GTAGAAAGTA	TTTAAAACCT	GCCAGGGGGC	AATAGCTGA
	AAATAAGTAA	ATTGGTCTA	TAGAATGGAA	GTACAGGCT	TCTTCTTT	TTCCCACAAG	ATCTGCTCT
	TGAGCCCTA	GAG ACTTTTC	TGTCTGTTAC	TGTTCTTCA	TCCTCATCT	GCAGAGCCAG	CCCTGAGAAG
	TGCAGACCAA	AGCCAGGGAA	GGCTCTGCA	AGATGTACAA	ATGGAAGTC	CCTTAATAAC	CTCTGACTGC
55	TGCGCATAAT	ACA'TTCACT	CAAAGAGGG	GTAAACAA	GGAACAGAA	ACAGAGGCCA	GAAATAATGC
	TGAACACTGA	CAACCATCTG	ATCTTGACA	AAATCCACAA	AAACAAGCA	TGGAGAAAGG	ACTCCCTATT
	CCATAATGGT	GCTGGGATAA	CTGTCTAGCT	ATATACAGAA	GATTGAACCT	GGGGCCCTTC	CTTACATCAT
	ATACAAAAAA	TAATCTCAAGA	TGGAGTAAAG	ACTTAAATCT	AAAACAAAC	ACTAAAAAA	CCCTGGAAGA
60	TAGCCTGGG	AATACCATTC	TGGACATAGG	ACCTGGCAAA	GACTTCATGA	CAAGACACCA	AAAGCAATAG
	CAACAAAAAC	CAA ATTGACT	AATGAAACTA	ATGAAACTCT	TTAGTTGTAC	AACAGATAGT	TTATCTGTAC
	AACAAAATAA	ACT ATCAACA	GAGTAAACAA	CCTACAGAA	GGAAAAATT	TTTGCAAACT	ATGCATCTGA
	CAAAGGTCTA	ATA'CCAGAA	TCTATAAGGA	ATTAAACAA	ATTTACAAGC	AAAAAAATGA	CCTCATTAAA
	AAGTGGCAA	AGG ACATGAA	CAGATGTTT	TCAAAATAAG	ACATTACAC	ATCCAACAAAC	CATATGAAA
	GATGTTAAC	ATCA.CTAATC	ATTAGAGGA	TACAAATCAA	AAGCATAATA	AGATACCATC	TAATACCACT
	AGGAATGACT	ACT ATTTAAA	AGTCAGACAA	TAACAGATGC	TGGTGAAGGT	TGTGGAGAAA	AGGGAATGTT
	TATGCACTGC	TAGT'GGGAAT	GTAAACTAGT	TCAGCCATTG	TGGAAGAGAG	TGTGGTGTATT	CCTCAAAGAA
	TGTAAAACCG	AAC'GCCTT	CAATCCAGCA	ATCCCATTAT	TGGATATACA	CCAAAAGGAA	TAGAAATTGT
55	TTTACCGTAA	AGGC'GCATGC	ATGCATATGT	TCATTACAGC	ACTATTTACG	ATAGCAAAGA	CATGGAATCG
	TCTAAATGCC	CATCAGTGGT	AGACTAGCTA	AAAAAAA	AATGTGGTAC	ATATACATCA	CAGAATAGTA
	TGCAGCCATA	AAA ATGAACA	AGATCATCAT	GTCCTTGC	GCAACATGGA	TGTAGITGGA	GGCCATTATC
	CTAAGCAAAT	TAAT'GCAGGA	ACAGAAAGCC	AAATACCACA	TGTTCTCATT	TATAAGTGC	AGCTAAATAT
	TGAGTACACA	TGGA.CACAAA	GAAGGGAACA	ATAGACATGG	GACCTACTG	AGAATAGAGG	GTGGGAGGAG
	GGTGAGGATC	AAA AGTACC	CATAGGACAC	TGTGCTTATT	ACCTGGGTA	TGAAATAATT	TGCACACCAA
	ACCCCTGTGA	CAC CAATT	ACCTATATAG	AAAACCTGTG	CATGTACCC	TGAACCTAAA	AGTTAATGGT
60	GGGGGGGTGG	GGTAAAGCTA	CTTGTGGTA	TAATCTGAG	CATTCTAT	AAAATAAAAT	ATTACCTCA

	TTAGAGTAAT	TAACATTAT	TAAGCAAAGA	GCCAAGTACC	TTACACACAT	GATGTTTAAT	CTCACAAATGA
	TCTTTAATCT	CATPACAACC	GTCCATTGTA	TGTACATATG	TGGAAATG	GCCTTGGAGA	GATTAAATGC
	ATGGGGCATG	CCA'TTGACT	AGAAAATGGA	AGCATCAGGA	TTAAACTCA	GTTCTGAATG	GTTTTGTAGG
	CTTTGTTTT	TCCACATTAT	AGCATGGCCT	GCCATGAAGA	ACAGGTCTT	TCTGGTGT	GTCTTGT
5	GTTTAAGTGA	AGC^AAATATT	TATTTAAATA	TTCAAGATAT	GCTGTTAAAT	TTTACTCAA	AAATTGAGT
	ACAGTATGGA	TCT'CTGAAG	CCAAATAACT	CTTATTCAAT	GCTTAGTTGA	GAAATTAT	GGAGTAGTC
	TCAATTGTTA	TGTA-GTTCCA	CTGCAAAGGT	AAGTCTTATG	GAAAGATTCA	CTGTAATT	TTTCCTCAT
	TTGGACATCA	GCT'TTTCTT	TTCCCTCAGAC	CCGCTGAAAG	ATAATTTTA	AAATAAAAC	CTTGT
	TATCAAGTGG	GGA CATT	TCCAAATGAA	AACCGTGTAT	TCATTTATA	TGATAAAATC	AATGTTATTA
10	TTTTAAAAT	TTTGATTTAA	AAATCATAA	AAATAAATT	TCAGATATA	CCTGAAATTC	TACCATCCAG
	AGATAATAGT	GCT'AAAGAT	TTGATATATA	GACACACAC	CATATATACA	TATATATCAT	CCTAAACTTC
	TTTGATAAAA	TGTA-TATAAA	GTTTTAATA	AAAACTAGGA	GATTAATGCC	CTTGAATGA	AAATAAATAC
	AATGTGTATG	CTT'AACATC	TTGCCCTTAC	TTTATAACAT	TTATCACAGC	AGTCATGAGA	TAATGATT
	CATGGTCATT	GTTA-GTAAGC	TAATAGCTAA	GTGCGATGAC	TCTGGAGCTA	GCCTCCCTGG	ATTTTAATCC
15	CAGATCTGTC	ACTGACCAGC	TGAGCAATAC	TAGGTAATT	GCTCTGTT	CTTAGTTCT	TCATCTGAA
	AATAGAGATA	AAA ATAATAT	CCACCTCATC	GGATTGGTGT	GAGCATTAA	TGAGCATAAG	TATGTAGGCC
	ACTTAACAAC	AATGCCCTCA	CATACTGAAC	ACAAATATAC	GAGCTGTTGT	CTTATTGGC	TCATGTTT
	CCTACCACTA	AGCCGCGATGC	ATGCAAGGAC	CATGTTGGTT	TTGTCACACA	TTGCATCCCC	AACCTGGTAT
	ACAGTGTGCA	TTC^ATAGTT	GTGACTATT	ATTACTAGTG	GCATTTAAC	AATATCTGTT	AAATGAGTGA
20	AGAAATACCC	ATT'ACTGCA	AGTGTGCTA	ATATTGATGG	CATAATGGGG	GAAACTCAA	CTCTGGAGTC
	AAACAGGTTT	TAACACCTTA	TTCCCTCATC	CTCAGTTATT	GACGTTTTT	TTTGGCAGG	TGTGTGTG
	GGACAACTTA	TTG^AACTTTT	CTGAATTTC	AGCTTCGCGAT	ATATAAAATA	GAGATAGTGA	TTCAATTCTG
	CAATGTATGG	ATT'GAGACA	ATTGTGTAAG	TTTATCAATA	AATAGTAGCT	ATTTTGTAT	AAGTATTACA
	TATAATATCC	AGGC^CACTGC	TTTGCAAAAC	CCAAAAGGGG	CACCAATTCA	GCAGAAATACA	ACATAAATGG
25	TGTCCCTGGA	GCAGTGCAGT	ATAGGAACCC	TGAGGGGACC	TACAGTATAC	TTTATAGTT	ATAGATTACA
	AATTATCCCT	TTATCAGAGT	CTCTCAAGGT	TGGATGT	TGAGGTCCAT	AAGAGCAATT	TAGGATTAAAC
	AGTAGCTGCA	GAA ACCATCT	GCAGTGTAT	TCTCATTTA	AATCCGCGGG	AAAGAAGACA	GCTATAAACT
	TGGGACCTGG	GTTC'AAGCAT	TTAAATGCC	AAAGTCACCA	TTTCTAA	CACAAACAAAT	ACCCAGTGA
	AGAGGGAGAA	GGGAAGTAAA	TGCGCTCGAA	TAAGCAAGTT	AATGTCAGTA	GTTGACTGT	ATGCATATTG
30	ATGAACAAATA	GAGGAACCAA	TGTCAATCA	GATGAGCAGG	ATATTGCGA	ATAAACAGTT	GCCTTGAGG
	AAAAATGATT	TTCTTGGCAA	GTTCCTTATC	AGCATTACAA	AGCTAAAAGC	TACCGTTATC	ATCACTTATA
	CTAGCATACC	CTG^TGTGCA	AATGCTGCT	GTGTTGCGAT	CTGCTATTGT	TGATGCC	TGCATGAATC
	AGGACTCCAG	CCCACAAGTT	TTCCCAGAAC	TTCTTATGG	CCATCATCTT	TAAGTGTCTG	GTGAAACAGTC
	ATAGTTGGT	ACAC'AAAAGG	GTCAACCTGG	GGGATGGCTA	GGGTTGACT	CAGTCGTTAC	ATTCAATAG
35	AGCAGGAAGG	GGAAATGGTG	GCCTGTAAACC	TCAGGAAATT	TTGCCAGTTG	GTCCACCCCA	CTCTCTCT
	CCTGCTCTGA	GGAA GTGGCA	CAGCCTAGAA	CAGCACCACA	GGTGAGAGAA	ATGCAAACCC	TAACCAGAGA
	AGCAGACTCT	TTGC^CAGTAG	TAATAGTICA	GGACCACCA	CAGCTTTAT	AAAAATT	AATAACACTC
	AAGTATTGGC	AGA AGAAAT	AATCTGGGT	TAACATATAAC	TAGAATATTG	ACTCTTC	TGTGGAAGAA
	TCAGCCAATC	ACA TTGTTT	ACATCAGTT	CCCTGAAGAA	GAAAATACA	CTGATGTTGC	AGCAAGACAA
40	ATTTAAGCTA	GATGTTAAATA	ACTTCTT	GCCTGTAAATG	CTAGGCTAAT	TACATATTGG	AACTATT
	TCAGGGAAGA	ATTGTGTAGG	GTTCAGGG	AGAATTCTGA	AGAAAATATA	GAGCTGAAAT	GATCTTG
	CTCACTGAAA	CTGC^AGGGTT	TAGATCCACA	CTGATACTCG	TTCTATTATC	ACTGTAATGA	AGGCTGATGG
	AATAAGTAAA	AATGTTTTGT	ATTAGTATGT	TTTACACTT	ATTGCAAGG	CATAATAGG	TTAGGTTT
	ATCTTAATT	AATCTAACAA	TGTATTGTG	ACAAGCTGTG	AGCAGTTTC	AGGAGTTAGG	TATCTGCCA
45	TGACTGATT	TTCAAGGAGT	AATCATCTGG	TAGAAGGGTC	ATACACAATA	GGAAGATGTG	TGTGACAGGT
	TGTGATCATT	ACTATAATCA	CACAGAGAGC	TGTAGAATT	TAGGCTGGCA	GGGTGGCTCA	CGCCTGTAAT
	CCCAGCACTT	TGGGAGGCCA	AGGCAGGGCG	ATCAAGAGGT	CAGGAGATGG	AGACCATCCT	GGCTAACACG
	GTGAAACCCC	GTCIGTACTA	AAAATACAA	AAAAAA	AGCCAGGGCT	GGTGGTGGGC	GCCTGTAGTC
	CCAGCTACTT	GGGAGGCTGA	GGCAGGAGAA	TGGCGTGAAC	CCGGGAGGTG	GAGCTTCAG	TGAGCGAGA
50	TCGCATCACT	GCAATCCAAC	CTGGGCGACA	GAGGGAGACT	CAGTCTAAA	AAAAAA	AAAAAAAGTC
	ATGTTAGATC	CAGA GGGGTA	GCAACTGGGG	CTGGGCTGTC	AGTCAACTCA	GTCAACTCAG	TCAACTCTG
	TCCCCCACAG	GAG ATGCCAG	TGATGCATT	TCATGCCAA	CATTGTCAGT	CAGCATCATT	GAATTACTCC
	TGATTATAGA	GAC ACAGCTG	CAAACGATT	CCCATTAAAT	ATGATGTTTC	TTGCAATGTT	TGGAAGGTAC
	TCCTTTTGT	TAAGGAAAT	CCCCCTTCT	GGCTTGTGA	AAGTTTTTC	TTTCATTTT	AAAATCGT
55	AATTCCCTT	TGCAATATTG	AGGTGGTTAT	ATGGTTTCTC	TTCTCTAA	TGTTAATATG	TGATTTAAT
	GGTTAGAAAT	TTTC TAATGT	AAATTCCACT	CATATTGCAG	AAATAAACCT	AAACTGAGCA	TGAGGCTATA
	TTTTTATTT	GCTT CTATAT	TTGGTTGCTA	TACAGTATT	TGTTTAAGAT	TTGTTACAT	ATATTG
	ATGGGATTGG	ACT ATTTTTC	CTTCTTCCG	ATTTTTATCT	GGTTTTAA	TTAAGGATAT	TTAGACTTA
	TGAAATATT	GGCA AACAAAT	CCTTGGCAAG	TAATTTTG	GGGAATTGT	TTGGCTATT	TTGAGTATTA
60	CCCAATATAT	TTTAATTAAG	TTATTCTTAA	TGTTTCTTA	ATAAAAAAA	TTACCTACTC	TAGAGATATT
	CTTTATGTAC	TCCAGATTTT	GTCTATTAT	ACCACTTTTC	TTTTTCCTC	GATGAGTGT	ATAGATGTC
	ATCTATT	TTATCTTCTT	GTATCTTCTC	TTATTCCCTG	TTCTTATTAA	CTTCTGAAGT	TTATTATT

	CTTTTTCCA	CTTC'CTTATG	GTTTATTCTT	TCAATTTC	TCTAACTCT	TAAGTTGGGT	GTTTAATT
	TAGCTTGCTT	TGC'TTTTTA	GGATAAGCAT	TAAAACATCA	AATTTCCTT	GTTATTCTT	TGCTGCACCC
	CAAATTGTTG	ATA'TTTCTAT	TGTCTAATT	CTATTCAATT	AGAATACCTT	AAAGTTCTT	TTTGGTTTT
	AAAAACTAAC	TTT'TAAATT	GACAATAAA	AATTGTGTAT	ATTTATTG	CACAGCATAT	GGCTTGAAA
5	TATATGTACA	TTG'GGAATG	GCTAAATT	GCTTATTAA	GTATGCATTA	TCTCACATAC	TTATCATTT
	TTGTGGTAG	AGCTATGTGA	CTTTGAAC	TATGAGTTAT	TTAAATATT	TTAAATTATT	AAGCATATTG
	GGATTAAAG	TAA'TTACCT	TTTATTATT	AACTTAAAC	AAGTAGAAC	GTAAACCTGT	ATGATTCTAC
	ATCATTGAAA	TTTATTGACA	TTGCTTCAT	AGTCTATTAT	ATGGTCTACT	TTTGTTCATG	TTACATCTGT
10	AGTAGAATTG	GCT'ATAGTT	GAGTAAAGTA	CACATATGTC	TATGAAATC	AGTGTAAATCC	AGAGAAAAAG
	AGAAATTAC	TGA'ATATATT	GTCTAGGTG	CTATTATATG	TTGTCTATGTT	TAATCCTCAC	CACAATTGTA
	TGAGGCAGCC	ATA'ATTAATT	CCACTTACA	CATGAGGAGC	CTGAGGGTTA	AAAAAAAAGC	TAGCTCTACT
	ATTGTAAG	AATGAAGCAA	AGATACAAAT	GAAGGCCAC	ATATCCTATA	ACTAGATATT	TAAGCATT
	AATTCAAGCT	TTA'AACTGC	TAAATAAAAT	GTGCTCCAAT	TTCTATATTG	ACAGACATAC	CTTCCAATG
15	AGCTGGGTT	CGA'ATTAGA	AATCTTGT	GCTTCAGAGT	CCACACTGAA	ATGTGGAGGC	ACATAGTGAG
	TTGGTCCCCA	GCC'TCAGTC	CACCCACCTT	CTCTTACTA	AATCACCTT	CACATACATG	TATGAACACC
	CCAGCCTCCA	AGTC'CAAACC	CTAAACAAAAA	TGGGACACCC	TTGTGCATAC	ACAGAGACAC	AGCCCACCT
	CAGGAAACCC	TGG'AAAAGTC	CATACAAGTT	CTGGAAGCAA	GCTTGGGACG	GTTTGTAG	TGTGGCTAT
	AAGGGAGGCC	TCAGAAGACA	GGTTTCTTA	ATTCTGTGAA	CTTCTCCCAG	AGTGAAGAGG	GTGCTGGAGG
20	AGGGTCAGAG	TGAGGACTTC	TAAAGCATGG	GTCTCTAGTA	GGGGCCACTC	TTGCCAAGT	CTAAGAAGGG
	TAATAGAATA	GCACACTACT	ACTAGATACT	AGAACCCAGA	TACAAGCACA	GGTCTCTGA	AATTAATAAT
	AATAATAACT	ATTACCAATT	TTATACCACT	AGCTGTATT	TATTTAGTGC	TTATTATTG	CCAGTCACTG
	TTCTAAATT	TTTACATGTA	TTATACAAT	GCCATATAAC	TGCCATATGA	GGGATGTACC	CTCATTGTC
	CCATTAAACC	GATC AGAAA	CTGGCATAAA	ACGTTAAGT	AACTTGTC	AGTTACAGAG	CTTAGTGAAG
25	CCACAATGTT	GCT'AAATTG	CTCTCAAAT	TCAAAGGGAT	GGGAAGGACA	CCTAAAGTCAT	AGAGCTTTA
	AGAATCAGAG	CTAGAAGGAA	TCTTACATGT	TATCTAGTCA	GCCTCCTCCC	ATTACAGTCC	AAGAGAAGAT
	GGCCCTGAGT	TAC'GTAGC	TATTTTGCA	TGTGAATTG	AAGTGAATAT	ACATCTACT	GAAGATAAAA
	GATATTAAA	GATATCGCTG	GATATAGGAA	CAGTGGTTT	AAATCTCTAG	GCTTAACTT	TTCTCAGAAC
	AAGAAATCCT	TTT'GGTTT	AATCTATATG	CACATCTGTA	TTTTCTCAA	TTATCGGGTA	GTAAAATATA
30	ACTTTCTTC	TGTAATATTT	TTTAACTTTA	ATGAGTGTTC	CTCATAATAG	AAAAGTTGG	AAACCATTC
	TATGGGTATA	TAC'TTCTAA	AGGGATAGTA	ATTCTCTAG	AATATTCTT	TAATGCTCCA	GAAGTAATT
	GCACAATTGT	GCA'GTCTGT	GCATCATCAA	CTATACATTC	TGCCCTTTA	CTCCAAATCC	ACATGAAACT
	GATTATACAG	TCA'AGGCAG	GCCCAGTGGA	GAGGCATT	TGGAGACTTC	CTGGTACATT	GAGACAGGGT
	CGGCCAGTCT	GCG' TAGGGT	CTTGGTCAA	ACTGCATTTC	TGAAACTAAA	CTCAGATTGC	TTCTTITAA
35	GGGGTCAGAA	CTG'ATTCAA	TCTACATT	TAAAAGCCTT	AGATGTGGG	CTTTCTTAT	TCCCAGTCTC
	CGCTATTGGT	CTTGTGAAT	CCACAGGCAA	TTGGGCCACA	TCCTTGACTC	TCTCTTAT	TAAGAATTAA
	ACAGCTAAGT	TCA'GCAGAG	GAAATATAAC	AAAGGAGGGA	CTTCCCTACA	AGATCTTGA	AAAATGGAAC
	ATTGCTATAA	GTC'ATTTTA	GCCAGAACTG	TTGTTTATA	TTTCCCTTC	TGAATACTT	GTTACACCTC
	CTCCCAGCCA	ACCCCCCCCCC	TCCCTGACCC	CAACTAGTC	GAGACAAAG	CCTTCACAAT	GGTTTACACT
40	TGAACCTTCC	TGG'CCCACC	CTCATCATCA	CGCCTGAATA	ATTACATTCA	CTGACTGGTC	TCCCCTGCTT
	CCGTTTATCT	CCAC'CCCTAA	ACCCCTGAC	ACCTTAATCT	TCCCAGAATA	CCATTGTGAT	CCTGTTCCAC
	TCTTGCTCAA	GTTC'CCCCAG	AAACTAGAGT	ACAAACTTA	TAAGCTT	AGTTGAAAGC	CACTCTATCT
	CTTTTTCATC	CCCAGGTCTC	TGCCAAGGCA	GTATAACCTG	TCCAACATCT	CTAACTTC	TACCTTTGTC
	TTAGATACTA	GAC'CTCCTC	CTGGTTTCTA	ATTAAACCTG	ATCTAGGATC	TAATTTG	TCTGAATTCT
45	GTGCCCCTTT	GCC'AGTGT	CTCTTCTCC	TCTGAGGCC	AGCATCTCTG	AGCTGAC	CTTAGCATAG
	CCATAGCACA	CACAGCCTA	GCTTGCA	CAGGGTGT	ACCTTCCCTC	CCCTCCAGA	TGCTGGATCC
	CCAGGGATAG	GAA'CTCTGCC	CTTATGTGTC	CATAGCCCC	GGTAGTATGT	CTTGAGTC	TACATTTCA
	GCAAATGTTT	AAT'GGTTAA	TTGAAGACAA	CTGCCCCATG	CCTTAAGGCT	CTCTTTTGC	TAAACATGCC
	TGTGTCTTT	GTCATTGAA	AACTATT	ATCTATTT	TTCCCTGACAT	AGGGGTAGT	TCCGAGGATG
50	CTGAAATCAA	GAG'CATAGC	TTATTCTCTC	AAAATTGCTT	TCAAGAGTGA	TTTGTGTG	AATTGAGAAC
	TGGCTGCCTA	CTT'GGACT	ACCCACTCA	GCAAGAGTGT	TTGAAACAA	ATCTATTCTA	AGTAATT
	TATCCCTTT	TCT'PATGGC	ATTAGACACA	CAGCTTTT	AAACTACCTT	TCGTTATCTA	TTAACACAGAC
	ATTCACTAAC	TCT'ATGACA	CTGTCTAGCT	ATATGAACCT	AGACAAACTA	ATATCTCTGA	GCTTCAGTT
	CTTAAAATT	AAA'TGAGGA	CAATACCATC	TATGGCCGGG	GATTAATGC	TATGAGGAAT	GTAAACCAGA
55	TGTCAAGTAC	CATC TCTCTA	AAATCCAGAT	AAAATGAATT	AAAATACTG	GCCGCAAACC	CTCTCTAAAGA
	GTTCTCAAAA	TTCT'CAGAGA	GCTTAATT	CATGCTCACC	ATAGCACC	TTTCTTCTA	AATATTG
	TTCTACCAAA	ATA'TTTGTC	CCAATT	TTTTATGGC	TATTTCTCA	TATCCACTT	CCCAAAC
	AGAAGCAGCC	CCT'CACCTT	AAACTCCTC	TTCAAAGCAA	CCTAAATACA	GGTCTGGGTT	TGTATTCTA
	GTGGGATGTT	ACAGAGGTTA	GTGTGATGCA	GAGGAGGAGT	CATGCTGTT	AAATCCATAC	TAGTCCCCAG
60	AGGCCAGGCT	GCT'CTGCCA	CCCCTACCC	TCCCGCCACA	GAGCTCTCA	GCTCTCACA	TTTCTAGTTC
	TTCTCTCTC	ACTT'CATTA	CCTTCTCT	TTTTTTTTT	CTTCTCATGT	GTCACGGGA	GCAGAGAAA
	TTAACTCCTC	TAAC TTTCT	TAACACAGAG	TGCCTTAATT	ACATATTACT	ATTGTTGAG	TTCCCTGCCAA
	CACTACCGTCT	GTAC GGTCA	ACCTGCTATA	TTAGAGGCTT	ATCAAAAAAA	GATAGCTTTC	TCCTAAAGAAG

	GGATTTGGAT	GCC'ACTAAG	ATAACTGGAT	GCCAAGATAA	GTTAACCTA	ACAAACTTA	TTATTATTAT
	TATTATTATT	ATTAGAGATA	GGTACTTATT	CTGTCACCCA	GACTGCACTG	CAGGGATGCA	ATAATAGCTC
5	ACTGCAGCCT	CAAAGTCCTG	AGTCATGCA	ATCCTCTGC	TTCACTCCC	TGAGTAGCTA	GGACTACAGG
	CATATGCTAC	TCTGCCAGC	TACTTTAAA	AAAATAATT	GGGATGGGGT	CTTGTGTTAT	TGCCAGGCT
	CGTCTCAAAC	TTCTGGTTC	AAGCAATCCT	CCTGCCTTT	ACCTCCCTAA	TTGTTGGAGT	TACAGGCATG
	AGCCACAGCA	CTCAACCAAG	ATTTAAAAAC	TTTAAAAGA	AATCACATA	CTTACTGTTA	TCATCATTAT
	GGTTACTACC	AGTCITAAAAA	CAATTGGTAT	TGAAAACACC	ACTACCAGAT	CAAGCTCAA	ACCAAGATGT
10	CAAGTAAATA	TTATGTGAG	ACCTCTGAGC	CCAAGCCTGC	AGGTATACAC	CCAGATGGCC	TGAAGCAAGT
	GAAGAACATAC	AAAAGAACTG	AAAATGCCG	GTTCCTGCCT	TAACTGATGA	CATCCACCA	TTGTGATTG
	TTCCTGCCCT	ACCI TGACTG	AGGGATTAAC	CTTGTGAAAT	TCCCTCCCT	GGCTCAGAAG	CTCCCCGACT
	GAGTACCTTG	TGACCCCCAC	CCCTGCCAC	AAGTAAAAAA	CCCCCTTGA	CTGTAATT	CCACTACCCA
	CCAAATCCT	ATAAACAGC	CTCACCCCTA	TCTCCCTCG	CTGACTCTCT	TTTCAGACTC	AACCTGCCTG
15	CACCTAGGTG	ATTCAAAAGC	TTTATTGCTC	ACACAAAGCC	TGTTTGGGG	TCTCTTCACA	CAGACCATGT
	GACATTGGT	GCCGTAACTC	AGATGGGGA	ACCTCCCTG	GGAGATCAGT	CCCCGTCTAT	CCTGCTCTT
	GCTCCATGAG	AAAAGATCCAC	CTATGACCTC	TGGCCTCAG	ACCAACAGC	CCAAGGAACA	TCTCACCAAT
	TTTAAATTGG	GTAAGTGGCC	TCTTTTACT	CTCTCTCCA	GCCTCTCTA	CTATCCCTCA	ACATCTTCT
	CCTTCATC	TTGGCACCCAC	GCTTCAACT	CTCCCTTCCC	TTAATTTCAG	TTCTTTCTT	TTTCTGGTAG
	AGACAGAGGA	AACGTGTTCT	ATCTGTGAAC	CCAAAACCTC	AGCACTGGTC	ATGGACTTGG	AAAGACAGTC
20	TTCCTTGAT	GTAAATCAC	TGCAGGGATG	CCTGCCTGAT	TATTCACTCA	CATTTCAGAG	CTGTCTGATC
	ACTGCAGGGA	CGCCTGCTG	GATCCTTCAC	CTTAGTGGCA	AGTACCACTT	TGCCTGGGTG	GCAAGCACCA
	CCTCTCTGG	GGGGCAAGCA	CCACCTCTCC	TGGGGGGCAA	GTACCCCCCA	ACCCCTTCTC	TCCATGTC
	CACCTCTCT	TCTCTGGGCT	TGCCCTCTTC	ACTATGGGCC	ACCTTCCACC	CTCCATTCTC	CCCTTTCTC
	CCTTACGCTG	TGTCTCAAG	AACTTAAAAC	CTCTTCAACT	CACGTCTGAC	CTAAACACCA	AATGCCTTAC
25	TTTCTCTGC	AATACCGCTT	GACCCCAATA	CAAACTAAC	AATGGTTCCA	AATAGCCTGA	AAACGGCACT
	TTCAATTCT	CCATCCCACA	AGATCTAAAT	AATTCTGTC	GTAAAATGGA	CAAATGGTCT	GAGGTGCC
	ACATCTGGC	ATTCTTTAC	ACGTCGGTCC	CTCCCTAGTC	TCTGTTCCC	ATGCAACTCA	TCCCCAAATCC
	TCCTCTTTC	CCTCCTGCC	GTCCCCCTAG	TCCCAACCCC	AAAGTTCGCT	GAGTCTTCC	AATCTTCTT
	TTCTACTGAC	CCATCTGACC	TCTCCCTCT	TCCCCAGACT	GCTCTCTCT	AGGTCGCTCC	CCGCCAGGCT
30	GAATCAGGCT	CCAATTCTTC	CTCAGCGTCC	GCTCCTCCAC	CCTATAATCC	TTCTATCACC	TCCCCCTCTC
	ACACCTGGTC	CAGCTTACAG	TTTCATTCTG	TGACTAGCCC	TCCCCCACCT	GCCCAACAAAT	TTCCCTTAA
	AGAGGGGCT	GGAGCTAAAG	GCATAGTC	GGTTAATGCT	CCTTTTCTT	TATCCAACCT	CTCCCATCTC
	AGTTAGTATT	TAGCCTTTT	TTCATCAAAT	ATGAATACCT	AGCCCACCTC	ATGGCTCATT	TGGCAGCAAC
	TCCTAGACAT	TTTACAGCCT	TGGACCCAGA	GGGGCCAGAA	GGTCATCTTA	TTCTCAATAT	GCATTTATT
35	ACCCAATCCA	CTCCCACAT	TAGAAAAGC	TCCAAAAGTT	AGACTCCGGC	CCTCAAACCC	CACAACAGGA
	CTTAATTAAAC	CTTGCCCTCA	AAGCGTACAA	TAATAGAGTA	GAGGCAGCCA	AGTAGCAACA	TATTTCTGAG
	TTGCAATTCC	TTGCCCTCAC	TGTGAGAGAA	ACCCCAGCCA	CATCTCCAGT	ACACAAGAAC	TTCAAAATGC
	CTAAGCCACA	GTGGTCAAGC	ATTCCTACAG	GACCTCCTCC	ATCAGGATCT	TGCTTCAAGT	GCCAGAAATC
	TGGCCACTGG	GCCAGGAAT	GCCCTCAGCC	TGGGATTCTC	CCTAAGCCAT	GTTCCATCTG	TGTGGGACCC
40	CACTGGAAAT	CGGACTGTCC	AACTTGCCC	GCACCCACTC	CCAGAGCCCC	TGGAACCTG	GCCCAAGGCT
	CTCTGACTGA	CTCCCTTCCC	GATCTTCTG	GCTTAGTGGC	TGAAGACTGA	TGCTGCC	TCGCCCTAGA
	AGCCTCTGG	ACCACTACAG	ATGCTTTGG	TAACTCTTAC	AGTGGAGGGT	AAGTCCGTCC	CCTTCTTAAT
	CAATGCAAGAG	GCTACCCACT	CCACATTAC	TTCTCTTCAA	GGTCCTGT	CCCTGTCTT	CATAATGTT
	GTGGGTATTG	ATGCCAGGC	TTCTAAACCC	CTTAAAACCTC	CCCAACTCTG	GTGCCGATT	AAACAAACATT
45	CTTTTATACA	CTTCCTTTA	GTTATCCCCA	CCTGCCAGT	TCCCTTATTA	GGCTGAGACA	TTTAACCAA
	ATTATTGCT	TCCCCGACTA	TTCTGGACT	ACAGCCACAT	CTCATGCTG	CCCTCTTCC	CAACCCAAA
	GTGGCAACTC	CTTIGCCACT	TCCTCTCATA	TCCCCCTACC	TTAACCCACA	GGTATGGGAC	ACCTCTACTC
	CCTCCCTGGC	AAACAAATCAC	ACCCCTCATTA	CTATCCCATT	AAAACCTAAT	CACCTTACCC	TGGGTCAACG
	CCAGTATCCC	ATCCCACAAAC	AGGTTTAAA	GGGATTAAAG	CCTGTTATCA	CTTGCTGT	ACAACATGTC
50	CTTTTAAAGC	CTGIAAACTC	TCCTTACAAT	TCCCCCATTT	TACCTGTCCA	AAAACGGAC	ATGCCCTACA
	GGTTAGTTCA	GGATCTGTGC	CTTATCAACC	AAATTGTCTT	GCCTATCCAC	GCCATGGTGC	CAAACCCATA
	TACTCTCTA	TCCTCAATAC	CTCCCTCCAA	AACCCCTCCA	TAACCCCTAT	TCTGTTCTGG	ATCTAAACAC
	ATGCTTCTT	TACTATTCTAT	TTGCACCCCT	CATCCCAGCC	TCTCTTCACT	TTCACCTGGG	CTGACCCCTGA
	CACCCATCAG	CCTCAGCAAC	TTACCTGGG	TGTACTGCCG	CAAGGCTTCA	TGGACAGCCC	CCATTACCTC
	AGTCAACCCA	AATTCCTCT	TCATCCATTA	CCTATCCAGG	CATAGTTCTT	CATGAAAACA	CACGTGCTCT
55	CCCTGCTGAT	CATGTCAGC	TAATCTCCCC	AACCCAGGA	CTGGCAAATT	GACTTACTC	ACATGCCCA
	AATCAGGACA	CTAAAGTACC	TCTTGGTCTG	GGTAGACACT	TTCACTGGAT	AGGTAGATGC	CTTCCCCACA
	GGGCCTAAGA	AGGDCACCGT	GGTCATTCT	TCCCTCTGT	CAGACATAAT	TCCTGGTTT	GGCCTTCCC
	CCTCTATACA	GTCTGATAAT	GGACAAGCT	TTACTAGTC	AAGCACGCAA	GCAGTTCTC	AGGCTCTTGG
	TATTCACTG	AACCTTCATA	CCCCTTACCG	TCCTCAATCC	TTAGGAAAGG	TAGAACTGAT	TAATGGTCTT
60	TTAAAAAACAC	ACCTCACCAA	GCTCAGCCTC	CAACTTAAA	AGGACTGGAC	AGTACTTTA	CCACTTGCCA
	TTCTCAGAAAT	TCGGGCCTGT	CCTCGAAATG	CTACAAGGTA	CAGCCCATT	AAGATTCTGT	ATGGACGCTC
	CTTTTATTA	GGCCCGAGTC	TCATTCAGA	CACCAAGCCA	ACTTGAACTG	TGCCCCAAA	ACTTGTCTC

	CCTACAATCT	TCTGTCTAGT	CATACTCCTA	TTCAACCATT	TCAACTACTT	GTAATGCC	TGCCCTTTT
	TACAGTGCTG	ATT'ATACTT	TTCCCTCCAAA	CCATCATAAC	TGATATCTCC	TGGTTTAC	TCAAACGCC
	ACCCCTTAAGT	CTCTCTTAAA	GTGGATAGAA	GATCTTCAGT	GACAAGGTAC	ACTCCAATAC	TTTCACCTA
	ATAAAGCCCT	ATTCTTACT	TTTATATTCA	CTCTTATTCT	TGTTCCCAT	CTTATGCCAC	TCTCTACCTC
5	TCCCCAGCTA	TCTCACCCAC	ACTATCAATC	TCACACTC	TCTCCTAGCC	ATTCTAATC	CTTCTTTAAC
	AAACAATTGC	TGGCTTACA	ATTCTCTT	CCTCCAAAAT	CACCGAGTCC	TCAATTACT	CACTGCTAAA
	AAAGGGGACT	CTGCTATTT	TTAAATGAAG	AGTGTGTTT	TTACCTAAAT	CAACTGGCC	TGGTATATGA
	CAACATAAAA	AAAACTCAAG	GATAGAGCCA	AAAACCTTG	CAACCAAGCA	AGTAATTATG	CTGAACCCCC
	TTGGGCAC	TAAT'TAGATG	TCCTGGTT	TCCCGATTCT	TAATCCTT	ATACCTGTTT	TTCTCTTCT
10	CTTATGCAGA	CCTGTGTCT	TCCATTAGT	TTCTCAATT	ATACAAAACC	GTATCCAGGC	CATCACCAAT
	CATTCTATAC	GACAATGTT	TTAAGGGAGG	AGACCACCC	TCATATTGTC	TTATGCCAA	TTTCTGCCTC
	CAAAGAAAGA	AGTAAAAATG	AAAAGGCAGA	AATGAAATCC	ACAGGAGAC	AGCCTGATGC	CACACCTGG
	GCCTGGTGGT	TAAGATCAAC	CCCTGACCTA	ATCAGTTATG	TTATCTATAG	ATTACAGACA	TTGTATGGAA
	AAGCACTGTG	AAAATCCCTG	TCTGTTCTG	TTCTCTTAAT	TACCACTA	CGCACCCCT	AGTCATGTAC
15	CCCCTGTTG	CTCCCTTGC	TTGCTCAATC	AGTCATGACC	CTCTCACCGA	GACCCCTTA	GAGTTGTAAG
	CCCTTAAGAG	GAAAGGAAAT	TGTTCACTCG	GAGAGCTGG	TTTTGAGAC	ATGAGTCTTG	CCAATGCTCC
	CAGCTGAATA	AAGCCCTTCC	TTCTTTAACT	CAGTGTCTGA	GGGGTTTTGT	CTGTGTCTTG	TCCTGCTACA
	GTTTCATCTA	ACAAACCCAT	AATATCACCC	CTTACCCACAA	AATCTCCTT	CAGCTTAATC	TCTCCCACCTC
	TAGGTTCTCA	CGCCACCCCT	AATCCTGCTC	GAAGCAGCCC	TGAGAAACAT	CGCCCCTTAT	CTCTCCACAC
20	CACCCCCAAA	AAATTCTACT	GCCCCAACAC	TTTACCACTA	TTTCGTTT	TTTTCTTAT	TAATATAAGA
	AGATAGAAAT	GTCAGGCCCTC	TGAGCCCCAG	CCTGCACGTA	TACATCCACA	TGGCCTGAAG	CAAGTGAAGA
	ATCACAAAAG	AAAGTGAATAT	GGCTGGTCC	TGCCCTTAACT	GATGATATT	CACCAATTGTG	ATTGTTCTT
	GCGCCACCTT	GACTGAGGG	TTAACCTGT	GAATTCCCT	CCCCGGTCTC	AGAAAGCTCCC	CCACTGAGCA
	CCCTGTGACC	CCCCCCCCAA	CCCACAACTG	AAAAACCCCC	TTTGACTGTA	ATTTCCACT	ACCCACCCAA
25	ATCCTATAAA	ACAGCCCCAC	CCCATCTCCC	TTTGCTGACT	CTATTTTGG	ACTCAGCCCA	CCTGCACCCCA
	GGTGATTCAA	AAAGCTTCA	GCTCACACAA	AGCTGTTT	GTGGTCTCT	CACACCGACA	CGCGTGATAAA
	TTATTATATT	ACTTITAATC	AAAACCTTT	CAGAGTCTCG	CAGGGAAAGC	TGTATATATC	TCATAAAATG
	TTGGGGCCCA	CTGCATCAGA	CAAGGCCACA	AAGGCCAAAG	GGAAGTAAG	ATTCATTAT	TTCTCCTAAT
	AATTCCCTG	TCCITTGTCA	TAATGGTGG	GTAGGCTGTT	ATGGTATGG	CAGATTTCT	TTCCATAAAA
30	TGTCCATAAT	AGGAACATTG	AAACAGAAGGG	AAAAATCAA	TTGCTGAAGT	TGAAAGAGGG	CAATGCAAAG
	AACTTTGGAG	AAAGAACTGT	ACAGAGAAGT	CAACTGGCAG	ATGGGAGGA	TTAAAGGGGG	AAAAATATAG
	ATGTCTAAAG	AATACATT	TTCATTTC	ACAGTGAAT	TTGGACAAGA	AGCCTCTTC	TTGCTCTT
	CTATTCTCAT	TAATATCATT	GAGCTCAAGC	AATCCTCTG	CCTCAGCTTC	CCGACTAGCT	AGGACTACAG
	GTATGTGCTA	CTATGCCAG	CTAATT	AAAAATTAGA	TTTAATTG	GTGAACATT	TCTGTAGGAA
35	ACTACAATAA	TACAGGCCAG	GCACATTGAT	CTTGGGTGAA	CAAATCAGAA	GGAATGAATA	ATTCTGTGTT
	CCTGGGACTC	TGACAAATTTC	ATGAACTTGG	TACTCTGAGT	AAAGCATAGG	AGGAGTTATT	TCATAAAATG
	TGGAGCACAA	TCATGTGACA	AAGATAATGG	GATCCCCATT	TCATAAAATAA	ATCTGAAGTT	CAGAGAGAGT
	AACAACCTGGC	CAGGGTCACA	TCACGGAGAC	AGAGGCAGGG	TTCCCACTGA	TGCCTCTGAC	TCCCTGTCCC
	AGGCCCTTCC	TCCTCCCGCA	AGCAGAAGTG	CAGGGGGCAG	AGCTGACCT	GTGCACTGAA	AATCTGAGGG
40	CTGAGTTCC	ATTGGAACAC	AAGTGAAGA	CTTCTGGCT	TCTAATCTCA	GGATAAGGAC	TCAGAGCTCC
	ATCTGTTCCA	GCCTTAGGAT	AAGAACCCAGA	ATCTTACACC	ATGAAAGCAT	GAAAGGTAAG	ATTGAGTGA
	GGAAAAAAA	AAAAGGTC	TGTGTTTCAG	ATTCAAGTTCA	CAAAGCAGTT	TCATACTTAA	GGTACCATCA
	CAATAACCC	GTGCGGTAA	CAAGGCAAAT	TTCATTCTTG	TTTATGGG	ATAGGAAGTA	AGTCTCAGGG
	AGGTTAAGAC	CAAAGTTCT	GGAGAATT	ATATTATGAA	TCTTGATTTA	TGGGATTACT	ATTATGTAAT
45	TCCTAAGATC	ATATAGGAAT	CCTAGAGCTT	GAATATAGAA	CTTATTTT	AAATCTATAT	ACATCATAAT
	TACAAGGAGT	AGTGTCCATT	TGGGTTCTT	GGCCCTGATG	TGTTAGTGG	ATAAACATT	TTGTCAGGGT
	TGCCATGTG	GTCTGTGAC	GTGTGCACTG	TACACCTCA	GGGGATGTAC	CCTAAACCAC	ATGAATGTGA
	TTTGCACATC	CAACATTTAC	AGTGTACTAT	AGGGAGAATC	TTTGCAACA	GCTTTGCTA	TAATACAGAA
	TCTGAGATGT	CTTGAGAAA	AAAAAGTGT	ATCATTACCA	AAAATTATT	CTCATAATGT	GTGCAAATT
50	GTATGAAATC	TATA TTGGCC	ATGGGACAAG	GAGGTATTTC	CAGCTAGCTT	CTGAAAGGGC	TCTATTCTCT
	CATAAGAATT	CAGCTGTGTA	CATTAGGTGA	TATCTGCCA	GGTCATCAGA	TGCCATAGAG	AAAGAGGGTT
	TGCTGAAACT	TATA.TCAGCA	GTGCACTGTA	TGCTCTTCT	GATTTATTG	AACATTCTT	TATTGAGTGT
	CAAGTAATGC	ACTAGATACT	CCAGGGATCT	GACACAAACT	CTGCCCTGAA	GGAGCATGTA	ATCTCACTGG
	GGAGAAAACA	AAAACATATGA	TAATTCTAAA	ATAACAAACT	AGGCAAAC	GTTAACACTT	AAAAGCAGG
55	CTTTATTCAA	ATGCAAATT	GCATGTTACA	GGGTAAACCTT	TCAGTAAGAA	GCCAGGAAGA	GGAGCTCATC
	ATGGGTTGGA	TTACTAAAGG	ACTAGTTATA	AAAGAAGTGG	TGGGGTTGAG	GGAGGCCTGA	GATGAAATT
	AAAGAATATG	TAGAATCTAG	GTAAGTGGAT	AAAAGGTCTG	GGGGCAGGGG	AAAGGAGAGC	ATTCATTGT
	GAATCAAGGA	ATTCTCCAC	CTGTTTAAAC	TCTTCCATAT	GACATCAAAG	AGATGTCACT	TGCAGCTAGC
	ATTTCAGTGA	TGTTITCTTA	CTAATAATAT	CGTGATAAAA	GAAACATTGA	CTATAAGAAA	TAGGAATGGG
60	TCTCATAAAA	GGAAACAGCA	AAACCCCCAA	ACTAAAAAAC	AGCGCAGGCT	ATTCTCTCT	TCTCTCTT
	TGCTTGGCAC	TCATGAGATG	CTAGGTGTTGG	AAGTCAGGCCA	ACTGAAAAG	AGAGGTGGCT	GAAGAAGGTG
	GGGAGGCTGA	AGCCAGTTAA	ATAGGATGGT	CCAATTCA	GACGGCGAGG	CTACAGTGCA	AATAGGACTC

	TTTCAACTTG	AGCA GGACCC	CATTACTTCA	CTGGAGTTAG	AAAGAAAAGGA	GAGCGTAGAC	TTTTGAACT
	TTCTATAAGA	GTGTACCTCC	ACAGTATACA	GAAGACGACG	TGAAATTGTA	TCTGCAAGAA	AACTGAGTCC
5	ATATTCACAT	ATGTATCAA	TTTGCACCTC	ATTAGAAGT	GTCTGTCACTC	AAGTACAGCA	CTGAATTGAA
	ACTGAAAACA	AGA GTCAAGA	AAGAGCAAAG	TCAGCCATCT	TTATATTCCA	CATGAATCCT	TTCCCTTTAT
	GGTCTTATT	GTTCCTCCT	AGAAAAGACA	AAAAGCTGAG	CTGTATAAAC	ACCTGTGGGC	TGGGGGTTGA
	GGGATAAATG	AGGGGCGAAA	TGGAAGCTGA	AGGAACGTGTT	GGTCAGGTAG	AAATCTCCC	AGATGCAC TG
10	AAGGAAACAC	ACT CATGTT	TGACGTAGGA	GGTGCACCA	CACAAAACGT	TTCATGGAAG	GATTTAAAGG
	ATCTCATGAT	TTTATGATT	CCAAGAATT	TCTTCACCA	AGGGCGATT	AATATGGGT	ATTCAACTG
	AAAGAAAAC	AAAAGATAAT	AAGAGTTAA	AAATTGCAA	ACTTGGAGTG	TTAGTAGTAA	AGGTAAATAT
15	TCATTAGAGA	TGAC AAGAGG	AGCAAGGAAA	TGCTTTCAGC	TGAAATCTC	AGACAAGAGG	CCAGGCTTTA
	GGAACCTCTG	AAG ATGAACA	AATGTAAGCA	AACCTAGTA	GCAGCACTTC	TCAGATTTC	ATGTGCTTAC
	CACTCAGAGA	TGG GTTAAA	ATGCAGACT	TGATTAGTA	GGTCTGAGTG	GAGCCTGAGA	TTCTGCACCC
	CTAACAAAGCT	CTT AGTGTAT	GCTTATGCCA	CTGGCGCACA	GACCCCACCT	GGAGAAATT	TTGTGGTGCA
20	TACGGTCTT	GTCTCCAGAT	CTAATGAGTC	TGAAGGACAG	TGTAGATTGA	TTTTTAAAT	TTATGTTAT
	TTTAATTAA	TTTAATTAA	TTTATTATT	TATTATT	TGAGATGGAG	TCTCACTCTG	TTGCCAGTC
	CGGAGTGCAG	TGGCACGGAG	GCAGCTCATG	CAACCACGGC	CTCCTGGTT	CAAGCGATT	TTCCGCCTCA
	ACTTCCTGAG	TAGC TGGGAA	TACAGGCACG	TGCCAGCACA	CCCAGCTAAT	TTTGTATT	TTAGTAGAGA
25	TGGGGTTCA	CCAC ATTGGC	CAAGCTAATC	TCAAACCTCT	GACCTCATGA	TCCACCTGCC	ACGGCCTCCG
	AAAGTGTG	GAT' ACAGGC	GTGAGCCACC	GAGCCCAGCT	GTAGATTGAT	TTTGAGCAGT	GGAAAGTCAA
30	GGAATTAGAA	GGC ATGCTTA	AATGAAAAGT	GAAATTGGAG	AAAATTAA	CTCATGAAAT	AGTGGTGGTT
	ATAAACTCGT	GATA ATTAT	ATCCTGGAT	ATAATTAA	GAGATGGTA	CACATTAGT	TTAAAGAAAT
	AAGTGACACT	TTT ITGTGT	GACACAAC	TCTTATTCTT	GGAAAGGACA	AGGAGAGAAT	GAAATATGGT
	ATGTCTTCAC	AGCACCTTC	AAAGGGAGAA	CCAGATTCTG	AGGAGCTGGT	CTCATGATGA	ACTGT CAGGG
35	TAAACCAACAG	TTCA GAGCT	GCAAATGTGC	TTGCCAAAT	AGAGACAAA	AAATGTTCT	GAAAACAAA
	TTTCACATAT	GCCCTCCTCT	GAGGTTGGCA	TCATATCTC	CTGTGTATCT	TGGGTGAGC	TTCTATCCTG
	CCAGAATT	GACAGTAGAA	ACCAAATGAG	GTGATAAAC	GAGTCATT	GCAGAAGAGT	CAAATAACC
	CAGCAAGAA	TGA ACCACA	AATGCCAAG	GAGTCATTCA	TTCACCATTC	AAAAGCTAAT	AGAAATGAAC
40	ACAAACT	ATGA AAATT	ACCCAAGAAC	TTAAAAAAA	AAAAAAAGGC	TCATGGTGT	TAGTGTGATA
	GTATTCA	TACCTTGAC	TTGTTCTAA	AACACACC	ACTTCTACCC	CACCCCTCCT	CAGTGCCTG
	ACACAATGGT	TTCA GGTGTA	AAAAAAAAC	CACGTTACTG	GAAAAGGAGG	GTGCCCTGG	CTTGCCACTC
	TAAGCTGGTA	GTCA AGGGTC	TTGAGTTCTA	AAAGCATA	CGTTAAGAGC	ATGATTCTG	GATCCAAATG
45	AGTATGGATC	TCAGCATTGC	CATTATTGT	GACCTCAGGC	TATTTATT	CTCTGTGCT	GTTCTTTAT
	CAGTAATGAA	GATGTTCAT	GACCTTCTC	CCACAGACTT	AAAGGCA	TCATGATT	AAGACATGTA
	AACCATTCA	AAAC GTATAC	AACATGGA	TAATATTG	TAAGGTTA	TGATTATTG	AACTAACT
50	GTCACCTGCT	CAAGGCCTAT	AGAAAAC	CTTAATTAGT	TCAACTACAA	AAAGAGTTG	AATGTGATAT
	CCACCAAGAT	CATA TTCAGA	CCTAGAATT	TGTGATTCTT	ATGAATTAA	ACAGCCTTGG	TCAATAAATG
	AGAGCTGGC	AAA AATTCT	TCTTGTCTG	GCCTTCTAG	ACCATCTGGT	GAAGCATTCA	AGACTTATGT
	TATTGGGCC	AGCC TTCC	TCCAAC	ACTCCACAA	TCCTCAATAA	GCCATGGGCT	CAAGAAAGT
55	CTGCTCAGT	GCCCTGAAA	AATGCTTCA	TAGTCTCA	ACCATACCAC	TGCTTACACA	ATTCCTTCC
	TACAGACTGC	CTTC CTTCC	TGCTTTCTC	CATATACCA	AATCCTATCT	ATTCTTCATA	AGCAACCTTC
	TTTATAACAT	TTCTGATAAC	CACCAAGCA	AATGACCTT	TCCTCTTAA	ATATAGCACC	CATTGGCAT
	TACCATGCTC	TGCC TTGTAT	TTTCTGATT	TTTCTCTTC	TATATTCTG	TCTTAAC	CCAGCTAGGT
60	AATAATTTC	CTGA AATCAG	GGACCAGGCT	GACTCCTT	GCTGTCTCAA	GAAAGCTTAG	CAGTTCCAA
	CACAAAATG	TTCA ATAAAC	AACTATTAA	TGACTGATTA	TAAAAAATCA	GTGAACCATT	AAACTAAATA
	TAGCAATTG	CTTAGCATGG	TAATTAGCT	TTTCTAATA	TTCTCCAGC	CAGTCTCTCC	TCCTGTGCT
	CAAGGACATC	TTAAAAAAA	AAAATCTAGT	TGATCTGCTT	CCATCTAGT	GCAATTAAA	CAGGTGGTTC
	CGGTAGCCAG	AAA CAGCTC	TGGGTAGATT	GTGCCAGAA	ATACCTTAC	TCAGTAGGTG	CGAGTTGAA
	AGAAAATCTC	ACATCTGTGG	GTTCCTG	ACAGACATAG	GGAGACCA	CCAGAGAAAG	AAGCCTTCC
	TCACTAGACT	CCAT TGCAC	TAGTAAAGAG	AAGACAGAGT	AATTAAAAG	AATAAAAGA	ACCTCACTG
65	ATCGTACATC	CTCA TCCAGT	TACCCCTG	CCACTTCTC	TTCACAGCCA	AACATTAA	AAGAGATGAC
	TGCTTGTCT	GTCT CTACTT	TCTCATCTC	AGTAATGTC	AATGCTTGGC	CGTCTGACCT	CTGTCTTGAT
	GTCTGCACTG	CAA ATAGTCT	CCCCACTGAC	ACCTTGTG	CATCCAGGGG	ATACTTACTG	GTTCTCTTGG
	CAATGTTGA	AAAC GTTCCC	CTTCTTTGT	TTCTTGGCA	TTCA TACCC	CACACTCTT	CTCCTCTTCC
	TTCTCCCTGC	CTGGCAACAT	CTTTCTATT	CTCTTCCCT	TAGGTGACTT	ATTAGATAAT	GATGTTCC
70	TGGCTCCAT	ACTCTCTCCC	AGGTCTCTT	CCATTCTAA	AGCACTCACA	CCCTCCCTGG	ATGATAGTAC
	CCACTCTGA	GATGGCAGTT	ACCTCTGAA	ATGTGAGGG	CCCAATCTCA	CTTCTCTGC	CATAGCCTCT
	GTGTTTGG	TAGG TCCAAT	GAGCCACAGT	GAATGATGTG	CATACACCC	AAGCTCAGTA	CAAAACTGAA
	CCCATGATCT	TTACCTCCAA	AACCTCTCAT	TCTTTATGT	TCCCTCTCA	GAAGTAAACA	GGACTACCAT
	CCGCCAGTTT	CCAGGTGAGA	AAGATGATAA	TTGATTCTT	CTCTCTCA	TTTAGCCAAT	TAACAGACAC
75	ATTCA GTAA	TATCACCTCC	TCTTATTCA	TGAACCCATT	CTTACTACTA	GTTCCCTAGA	CAGGCGCCAT
	CGGTTTAAAT	CTAA GAATG	CAAATGCC	CAAACAAAGT	CTCTTGAAT	CCAGGCTCAC	CTGTCTCCC
	CACTTGCCAT	ACTG CTCTGC	AGGGTGACCT	TATAAGATGC	CAGAGGTAAG	GCTACTCACT	GTTAAACCC

	CTTTAGTGAT	ATCC CAAAAG	ACCTCAAGAT	AAAGCCCATA	TCACATGGCT	TATA CATTAG	TTTATGATCT
	GGCTTCTGGT	GCC CATT TT	TCCCCACTT	TTCCCTTGCA	TTCTAAGCAA	TGGCCCATAC	TAAGTTGTG
	ATTGGTAGGA	TGG TGCCCA	AACCAGCATC	CAATCCCTC	AGAAATCATC	TCAC TTCATT	TCTAGCATT
	TAAAGGAAGC	TCA GTTGTC	AGCTGGTAC	TGAATATGTC	ACCAAAGTCC	TCCTTCATA	GTTTATTTA
5	CTTAAACTCT	CCT CCTAAA	ATTCCAGAGC	AAGTCACTAA	ACCCTAGATA	CTGAGAAATA	TTTTCCATC
	TTCATTTCTG	CCAC GTGGGC	CATCAACTT	CACATGTCTG	CATCTCCTCC	CACTGTGCTA	TTTCTCCAGT
	AGAAGAAATT	TGAGCTCAA	GACCAAATG	AAAAAATCTT	GCCTCCTTG	GGAAGCTGTA	GGTAGAATT
	ATGCTCCCTA	TCTT CCCAC	ATTTCTGAAG	GACAATGCCT	GTTAGAGCAA	TTGAATGCAA	ATAGTCAATT
	GAATAAGCAT	TTA TCATT	CTCAATAAGT	GCTTGTCAA	TTGAATATT	CTTAAATAAT	ATATTAAGA
10	ACAAGAAGAA	CAC ACCACAA	TGTTTTAAC	CCTCAGAAAA	AATTCTGAGG	TAATCAGAAA	AATCTCCCTT
	TACATAAACT	GCC CTTTCT	AATAGGGATT	ACTTGTTCGT	TCATTCATC	ATTCA GCTCC	ACTAGCACCA
	AAAAGCACAG	CTC GAAAGG	AAGCTAGTAG	ATTATCACC	TTATCTGGTC	ATTGGATGTA	GGACCCCAAGG
	TAAATAAACT	ACTA TGGGGT	TAATGTGTCT	AGCTAGAGCA	GGAAGTAACT	TAAGGAAGTA	GAGAATGAAT
15	CAGCAGATGT	GGA AACTCCT	CGCCACTAA	AAAACCTACC	TTCTCTTGA	TTTCTGCCT	GAAAATAGAA
	AATAGAGAAA	AGG CATTAGC	AAAAATTAGA	CAATTAAAG	TTTTCAAGT	AAGGGAGAAG	GAAGACTCCC
	ACTCTCAAAA	CTG CTTTTG	AAGTATATTA	GGTATTGTT	AGGTGGACCC	TATCTGTGTC	AAAGGAGATT
	TGAGGAACTG	GCT AATAAA	CAGTGGTAGA	CACTAATACA	GAACAGACAT	GTTGATGAG	ATGCCCTCTG
	AGGTTCCAIT	CCAT CTCGG	TGCTACTCAA	GAAGACAGAA	25441 TTGCTAAATT	GCCTGGTGGC	AAGACCCAAT
20	ATGTCCATT	AAG GTTTAT	CCCTCCCAA	TCTGCATCT	CATCCTACCT	GCAGATTCTT	CCCTTGAGGG
	ACAGCTGCTA	ATACTGTAAA	ACTATGTGC	ATTACAGCTC	ACAGCATCAT	CTCTATGAGA	ATCCACAAGA
	GAATTTCACT	TTGC TCTTG	TGGTAGGAAT	TGTGAGGCCT	CATCTGAGTA	ACTAATGTGT	TTTATCTTA
	CAAACACAAG	GAATATCACA	TGGTCTCT	TTGACTGGCT	GTAAGGAAAC	TCAGAGCTAG	ATCTGAGACC
	CTCTCCTACC	AAGTATATA	AACTTTGTGA	CATACATTT	TGTGCCATAA	CTTCAACCTT	GGTTCCAAT
25	GATTTTGTA	CCCI AAGTTT	AAATTGGCT	TTCTTTTTT	TTTTTTGTA	CTCAATAAAA	CATCAAGCTC
	ATTTTATTATT	GC GAAGAGCG	AAACAACAA	GCTTCCACAG	CGTGGAGGG	GACCGAGTG	GGTTGCCAA
	ATTGGCTTCT	TTTCTTACT	TTTAATTAA	TTTAATTG	CTATACTGAA	CACATTGTT	ACTGTTCTCA
	CATTCTTTT	GA AAAAAGCA	GAATATAAT	AAGTAGATAA	CTTAAAAAAA	ACTCTTGAG	CAGAAAGAAT
	CATTGGGAG	GCA ATATATT	TCAGTGGCTG	TAAGTGGCA	TTCTAGAAC	ATCCTACCCA	GGTGAAGGCC
	CTATTTGCC	ACC TGTAGTG	TAGTGTGTAT	TTGAACAGCT	ACTTTCTTT	CTAAACTACA	ATTTCTCAT
30	CTGTTAAAGA	GGC ATAATAA	TTGTATCATC	CTCATGGGT	TGATAAAA	AAATATTCC	AAGTATTAG
	TTCAGGTCC	AGC ACGTAGA	CAGTGTGCA	TTACTGTTT	AATCCTTAA	AGTATTAAG	ACTACTATT
	GAAATCTTT	CTTCTAAAAT	TCAGCCTGCT	GATGACCAAG	TGCACTTGAG	CAGGGGAAT	CAAATCTGAA
	TTAATTTCAG	ATTCTGGTTA	GCTTCACATA	AAATTTTT	TTAGGGATGA	TGAACCTAAC	AGCAATAGAT
	GAGTAAGAAT	CTG TCCCTAC	TGAGAGAGTT	TCATTTGAA	GAAAAGGAA	CTAAGGGGGC	ATGTGTTAG
35	TTTCATGCC	TGGTCTAAC	CTGTGTGTTG	GTTCTGGTGG	GAAATTCTC	CAACCGAGGA	AAAAACCAAGT
	TCACAAATCT	GAAGACCAAGT	GATTTAGAA	GATGTATCTG	GACTGGAGTC	TAATCTCTGA	CTCTGGGTCC
	TGCTGATATG	GTATTTTG	GATTTGGCT	AAAACATCAT	TGCCCTGGTT	TCCTTATT	CCAAACAGGG
	CCAATGGTAG	TGACTAATCA	GAAAATGATA	ATGCCCTGGTG	CACAAAATGT	GTCTAGATGA	GCCCAGTCAC
	AAGGACACAT	GTT CTGGAA	CTGTTCTTA	TTCCCTTCC	AAAAGAAAGG	AGGGAAAGTC	TCCATACTAA
40	GACTACTAGG	GCAC GGGACA	AAGTGTAGA	GTCAGAAGAT	TCATCTGAGG	ACAGAAGAAT	AGGGGTGAAG
	GCTCTAGTCA	CTTC ATTGGC	TACCATGCTC	TAATAGTTA	CCTGTGCCCT	TTTCTAACT	ATTAGAACCC
	AAAAAGCCTA	TAA ATTCTCT	CTCTCTCTCT	CTCTCTCTCT	GTGTATATAT	ATACATATAC	ACACACACAT
	AGACACACAC	ACACACCTAA	ACACACACAT	AGAGATTTAT	GACTTTTAC	TTTATCCTT	GTAAATGCCA
	TTAACTATAT	TTG TCTTAG	ATTTAGCCTG	GGAATGTAGC	CATTATTCT	ACCATTGCCT	CCATAGGAAA
45	AATACTCTC	ATGT ITTAA	GGACCAACCT	ACAACAAAAA	TCTTGGAAA	GCAGAACAT	TTGTAAGTTG
	GTGAAAATGG	AAG ATGTTGT	TTTATAATG	AAGACTTTTT	TTTTTTTTT	TTTGAGACA	GGGCCTCACT
	CTGTTGTGGA	GTGC AGTGGT	GCTGTATGG	CTTACTGCAG	CCTTGACCTC	CTGGGTTCAA	GTGATCCTCC
	CACCTCAGTC	TCC TGGGTAG	CTGGGACTAC	ATGTGCATGC	TACCATGCC	GACTAATT	TTGTATT
	GTAGAGATGT	GGT TCGCCA	TGTTGCCAG	GCTGGTCTTG	AACTCGTGG	CTCAAGTAAT	CCTCTGCCT
50	CAGCCTCAA	AAG I GCTGGG	ATTAGAGGTG	ACAGCCAAGG	TGCCCTGGCC	ACAGATGAAG	ACTATTAA
	GTTATCTAA	AGAT ACCCTA	AGCTTCTAC	CAAGCCAGTG	ATCTTTGGG	GCTTCTGTT	TCTTGTGTTG
	CATAACTGTA	ACTA GCCTAA	CTGCCGTTA	TCTGTTTCC	GTTTGCCCA	CACTGATTCC	CACAGCAGTT
	TTCAAGTTAT	CGGT ITGAGA	TCTTGTACAG	AAATGACTCC	AAGGTAAAAA	ATTTAAAAC	AACCCCTCTA
	ATTTTTTAC	CCTT GCTTAT	AAAACAGCT	TAGCCAGCTA	ACCCCTCACT	ACATGCAAAT	GAGTTGATT
55	CTATTCTTT	GATT CTACAA	ACACTTATTA	AAAGATTTA	GAATT CGGAA	ATAAAATAGCT	TCCTTATTAA
	GGTGAATTAC	AGCC CAAAG	TCCTTAAAT	TATTAGACA	ATAGCCACCT	TATCCCAGGG	GGCAGTGTGT
	AATAACCCAC	CCTG TTCTCT	ATCCGTAGT	TCTGCCATCA	TCGCCAAGG	TAGGAAGAAA	GACAGGACAA
	CCGGGGTCAA	GATT TGAAGT	CTCAATGGAA	AGAATAATCA	GTGGTTGGAG	AAA ACTGTCA	TTCTTCTTT
	GCCTTAATGC	AGT CTTGAT	ACTTATACTT	AGTACTGTAT	AGTACTTAGT	ACTGTATAAT	ACTATAAGAT
60	AGTGAGATT	AATC AGCACA	GAATTCTAA	TAGCAAGGGC	AGAGACATT	TAACTGCTCA	GTGCTCTCAG
	GTTATACATA	GCTA ATGAAG	TTCTTGCA	TCAACAATCC	CCACCCCCCT	CACACACTTT	GTCTTCTGG
	ATTGGTTAGA	AAAC TTACCT	AGCGCCCACT	ATTCTCAAAT	TTAAATGAAA	GATAAGATCA	GAGTGGCACG

	CAATTAGGGA	CTGATAAATA	ATATTTTGT	AATTGCCAGT	GTAAATGGAC	AGGGGGCAAC	CTTTACATAC
	CATATTCAGT	GAACAGAATA	CGTACTAACT	AATTGATGG	AAGGAAAATT	AAAATGACAA	TCAACTGAGC
	CCACAGAAAG	GCAACACAGA	GCAGTTGGTT	AGCAAATTGTT	TCGAGATCAT	CCCTGAACCTT	GAAACAGGTA
5	TATCTTTTT	TTTTTTTTT	TTGAGACAGA	GTCTCACTCT	GTCACCAGGC	TGGAGTGCAA	TGGTGCGGTC
	TCAGCTACT	GCAACCTCCG	CCTCCCAGGGT	TCAAGTGATT	CTTCTGTC	AGCCTCCCAGA	GTAGCTGGGA
	TTACAGGTGC	CCGCACACAC	GCCTGGCTAA	TTTTGTATT	TTTAGTAGAG	ACAGGGTTTC	ACCATGTTGG
	CCAGGCTGGT	CTTCAACTGC	TGAGCTCATG	ATCCGCCCGC	CTCGGCTCC	CAAAGTGTG	GGATTACAGG
	CATGAGCCAC	CACACCTGGC	CAAACACAGG	ATATCTTAA	AGCTGCCAA	TGTCCATGAA	TGTTACAGCC
10	TTGAATGGTT	CTTCCAGGTG	AGTTTGGCCA	AATGTGGCAC	CATACACCA	AGGCCTGCTG	CAGGCTAGTG
	GGTTGCTCAC	ACTTTAAAGC	TGAGACACAC	TCATGCCCTA	AGGTAAGGG	AGTGATAATC	TGGGCAGCAG
	ATGTTAACTT	CTCAAGGCAG	TCCTCCTCT	CTTTCTCT	CCAGTGACGG	ATGGTTGGAA	AGCATATATG
	GTGCATTGG	TTACAGCTGT	GGCCTGGTG	AAATAGATACT	TGGGAGAATA	CATGGGAATT	TCTCCCAGGG
	TTAATGCAAT	GCCCCATGT	TGGGAACCG	GTGACTCTTG	AAGAGGTCAG	GTATTGGGA	GCAGTGCCTT
15	GAAACCTTAG	TGGACATTAG	ACCCACTTCC	TAGTGGATT	GTAGCATTGA	AATCCAAGGC	ATGTAGGCTC
	TTAGAGGACA	GAGATAGTGT	GTCATTTTT	CAGAAATTAA	TAAGAGCAGG	CCAGGCGTGG	TGGCTCACAC
	CTGTAATCCA	AGCCCTTTGG	GAGGCCAAGG	CAGGCAGATC	ACGAGGTCAG	GAGATCGAGA	CCACTCTGGC
	TAACACAGTG	AAAACCCGTG	TCTACTAAAA	ATACAAAAAA	TTAGCTGGC	ATGGTGGCAC	GCTCCTGTAG
	TCCCAGCTAC	TTGGGAGGCT	GAGGTGGAG	AAATAGCTGA	ACCCAGAAGG	CGGAGGTTGC	AGTGAGCTGA
20	AATTGCAACCA	CTGCACTCTA	GCCTGGTGC	AGAGTGAGGC	TCTGTC	AAAAAAAAAA	GTATTAAAGA
	ATTACATAAG	AGCAAGAAC	CATTAGAATA	TCTCACTTAG	TTGTTATCAG	CCTAGCAAGC	TGCCTTGAAG
	GTAATAGACA	TTTTAAAGA	TTTATCAGAT	GAAAAGCGAA	AATCAGCCAA	CCTGTTAA	TGAAGGTGTG
	TCCTGGCTG	ATTIACATGT	CTCCAGGGAC	TGATGGCTCT	AGAATGTA	GCTTGCATC	CTGCTTGTG
	TGAATCTATC	ACATTTAA	TCTCTGGGT	TTCTTTTTT	TTTCTTTTC	ACTTTAAAGT	TGTGTTCTTT
25	TCATGTGAAG	TTAAACTCAC	ATACCTTTT	TTAACATCCT	TGCCAGCCAA	ATGATAAAATG	CCAACCCAGA
	GAATGCAGTA	ACCATGACTG	CCACTGGAA	GAAGAGGGGG	TTATAATCAC	CCTCCTTAAT	CATTGAGAAA
	CTTTGTCCA	ATTCTGAAAG	AGAAATCACT	AAGGCACATA	GCATGAGACC	ACCAAGCATT	TTTCCCTAGT
	CTATCTCATG	ATATTTGACT	TTTTCTCTC	TTACATCTCC	CAGTAGTAGC	CCATTGATG	CCATTGACA
	GATGAGGAAA	CTGGCATGGG	AAGGCCCTG	ATGAGTCTAC	AGCATAGGCA	AAGACTGGAC	CAGCCTTGCT
30	AGTCTAATGC	CTACAGAAC	TCAATGCCA	GATTGTGGT	TCATAGAGT	CCTGAAATG	CACCTAAAAA
	TGTTGGCAAG	AATGGTCACTC	GTGTTATTA	GCTCCATGGA	CTTGTCA	GACTGGA	CTGAAACACA
	GAGAAGAGCT	AAAAGCCTAA	TACAACCTCA	GGAAAAATAA	AAGCCAATGA	TCTGA	ATAATTCA
	AGTCAAAGGA	AATCTTAAAT	GCTTTACTT	AAAAGCAGTT	GTGCAAAAT	AAGCACTTGA	TTTTTACATG
	CCAAGGACCT	GCACAAATT	CTTCTCAATG	CAGTAGTTAC	CACTTCCCTC	TACTTCC	ACGAATAAGT
35	AAAAGGGCAT	GTGAGAGAT	ACTCTTGAA	GTGAAACTA	AGTCATTG	GGAGCCTCTA	TTTGAAAATA
	CTGGTATAAA	AAAATATCTG	TCTCTGATA	CTAACATTG	AAGGAATCTA	CTTTTACA	TATTGGCAGA
	GGGTCTGATT	CTATCCTTAG	TTCTTCCCAT	TACTTGATG	AACCTTTCA	AGGTGATTG	ATCCCCACAC
	CCAAATATAT	GATTGAGAGA	AGGCTCAAGT	TCCCAGGAGC	TCCAGACAGA	AGGTACCTGT	TGGCTTGTG
	AAGATGAGGA	GGAAATGAAC	ACTAGCTAGG	CCTTAAAGGG	AAATGTCTCT	GATAGGCCTA	ATACACAGTC
40	CTCTGCTAA	GGCCCTCCCTG	CCTCTCTCTG	CTCATCCACT	CTACTCCCTG	GCCCTGGGCA	CGCAGCACAC
	AGAGATCAGC	ATTCTGACA	GCTTCTGTAG	ATCCTACCAT	TTAAAGACIT	TTGTCATCCA	TGCAGATAGT
	CTCAGGAGCA	GACACAGGT	GCTATTCTT	CACATGCTAG	CTTAACATGC	ATTGCTTTA	GCACCTATTG
	CCAGGCCTG	TGTCAGGTGG	AGGGTATACA	AAGATGAACA	AGACATGATT	CTTCTCATAT	ACAGATAGAT
	TTTGGAGGCA	TTACCTTAGT	GATGATTCTAG	GAGTATCCAT	TATTGGGGA	AGTAGGTGGT	CATTAGTGA
45	CTTTTACAGG	CATTCAATG	GGCTAACAGA	GATGTTAGAT	TGTAGTGGAA	TAGAAGAATG	GGTAAAAAGT
	AAATCAGTGA	GTTCAGATT	TAGGAGTTAA	GATGGCAAGA	GGTGAGAAC	AAAAAAGGAA	ATGATTGTCA
	TTAAAGGAGG	AGGAAAGAAC	AGCCAAAGAT	TTTACAGTGA	TTAAGCATA	CAAATTATT	TCTAGGCCAC
	ATATTCTTAG	CAAAACAACA	TGTAATGTT	TATGTATGTC	TTTCCTCAT	TCTGCTCATC	CATCAGCTCC
	ATCGTTAAGA	TTTCAGTTT	CCAGGACAA	CTTACTCACT	TTGACATATT	GGACTAGGAT	TTGACCAGAT
50	TCCAGATGAT	TCACAAATGG	TTTCTCTT	CCCAATTAAAC	TCAGTCCCTT	CTGAGCAGAT	GAAGGTACAT
	GCAGAGGTA	AGCAGAAGCT	GGCCAGGGGA	TGGCTACAGT	TCATGATCCC	CAAATCTGGT	GCTGATAGAG
	GCTCACACTG	AATCACTTC	ATGAAAAAGA	AAAAAAAGAA	AAAGACAAA	CAGTATTCT	GAGTAGAGAC
	CCTCCCTGA	GCAAGGATT	TTTAGCCAA	GCTGCTGAC	TACATTACTT	GTGATATTGC	TTCCAGGCTT
	TATTTCTTG	AGAAATGATGG	TGGGTGGTA	ATGAGAGATG	AAGGCAAGGA	AGCATTGAAA	GCTGTGGGGA
55	GAGGAGTAGC	TACTCCAGGC	TGCTGCCCTA	GCTAAGGTGA	CCCTCCCTT	CTGCTGGAAG	TACCATGCCA
	TATGGCCTCT	GCATCAAGGG	CTCTTATGGG	ATATTCTAG	AGAATCTG	CCGTTCTAC	TGTTCTGATA
	TCTACCAAG	CATTTGAAA	AACATCCAA	TTCACTGAAG	CAAGTCAAC	TTCCGTAAT	TCCAGTAGGT
	GGGTTGACAG	TTTATAATT	TCAATAAGGG	ATTTTGATAG	CACTTCTAAG	AATTAACATA	CTTAAACAA
	TGCATCAGGA	GCATACCTGT	AGAAAAGTTA	ACCAAAACTT	CGTAAGTCA	GATGACATTG	GTTTCTCCC
60	ATATGGAGAT	AAGCTTGGCA	GTTAAAAATG	AAAAAAAGAA	AAAACCTAC	CTTATTCAA	ACTTGAAAAG
	ATCAAGAGAT	TGTGTTTTTG	TTTTTCAGTT	GTTATTCTCC	TAAGAGTTA	TGCA	AAAGTAAAAG
	TGATTTAAG	AATAAGCCAA	ATAAAACAC	CAAGAAAGAC	CTCCACTACC	CTGGGAAGGA	AACTGGTTGG
	TATTAAGTAG	GACACACAT	AAAACAGGTG	TTATTGAGAG	GAGAAGAAC	AAAATGTAAC	TGAGGTTCAA

	CAAGACATTA	TTTATGCAAT	GGCAATGAGA	AAAATAAAA	ACACAGTATA	ACCATGCTGT	ATTGCTATAA
	GTCATGTTAC	ACACTGGGAG	ATGGCTTCAG	GGGTATTGG	TTTTTACTTT	TTGTTTGGGA	GGTTTTCAA
5	AAAAATTAG	TTAGAATAAG	TCCTTGAGA	AAACATCACAG	TAGGTTAAC	AAAGTTAGGT	TAAATTAGGC
	TCCTAAGTT	GACTCTCAG	CAAACCTCTA	CTGAATGTT	TGACTGTAAG	CCCAGGATTG	CATGACAAA
	CCTCTAGTCT	GAAGTTACTC	ACCTTGACAG	GTTGGTTCTG	GAGATGACCA	GTTTCAAAT	GGTCACAGG
	TGGTTCTTC	AATCCAGTT	AAGTTGTT	CTTCAGAGCA	GCTGAAGGCC	CACTGTGAGC	TGAAGCTGAA
	GTTTCCAAA	GGGIGAGTAC	AGTCCATGGT	ACCCAGCTCT	GGGGCCTCCA	AAGGCTCAC	CTGAATCACT
	TCAATAGGG	AAGAACAGT	ATGGGGAAAGA	GTTAAGAGGA	ACTGACGCC	GGATTGAAAT	CCTAGCCCTG
10	CCACTTGATA	ACCACTGTGCC	TTAAACAAAG	GTTACTTGA	CCCTCCA	TCAGTTCTT	CATCTATATA
	AGAGGAATAA	TGAATTGTTG	TTATCTTAT	CAAATTGATA	TGGAAACTAA	ATGTAATTCA	ATTAGCATAA
	GTCAAGGACC	TTACAAACAA	GCCTGACTCA	TCAGAAATT	TAAGTAAACA	TTAGCTAGTC	TTCATATTAT
	TATCTTCAGC	ATTAICTGTA	GTGAGAAATCC	TTAAAGCCAA	ATAGGTGTA	CTGGGAATG	CCAGCTTAGT
	CGGGAAATAA	CTATCACATC	AGAGCCCCCTG	AGTCTACTAG	AGTATTGGG	GCAAGATGTT	CAGAGAAAGA
	GTGGGCTCTC	ATAATAAGCC	TTCTTGCAA	GGAGAGAA	AAAAGCTCA	GGAAGCATT	TGACCTCAAT
15	TCGTCTTCT	ATTCTAGCTC	AGTTCAGAA	TTTAACACTC	TTTGATTTG	ACAACCCCTC	CCAGAAACTG
	TATCTATTTC	CCTGTTCTGA	TTGGTGTAC	AAATGGTAA	TTAAGACTT	GGAAATCAA	GTTTCACAT
	TTTAGACCCCT	GCCATGCCAT	TTAGTAAACA	GTACAAC	CATGTCTAT	TCCTCATCTG	TCAAATTAA
	GCCATTATTG	CTACCTTGCT	CTAGAGACTT	CAAGGAGAA	TGGACTCA	GAATCAGAA	AATTTTGTA
	TTTGGAAACT	ATATGAGATG	AGATTAGGG	GAAACATGGG	AACTAAGAGA	AAATGTTATC	TTTTTCATT
20	GATTAAAGA	GTATCTATT	TATATCAAGC	ATTACTCTG	GGCTGAAAGA	GCTTAGATT	CACCCGTAG
	GACAAAATGG	TAGGTAGAAA	TTAATGGGT	GATTGTCATG	TATGTGTGAT	GTGTTTAAT	TGCTTTAAT
	TGATCAGTCT	CCCTGTTAGTA	TGAATAATGT	ATTTGAGGGG	AGCTAATT	AAATTGTTG	ACTCATCTAA
	TAAACTATTG	CAAGAATCTA	GAAGAAAGAT	AATGACGGCA	ATGGTAGTAG	AGTTGACAAG	TGGAAGACAA
	ATTAGAAAAA	CACTAAGTTG	AAAAAAATTG	TAGAATGTTA	CCCTGCATAA	ATGTTGGGG	AGTTAAGAGA
25	GTCTCATACC	AGGGTGCCCA	TGTAAATGGT	GATTCCACAT	ACTGAGATAA	GAAATACGAA	GAGAAAAGCT
	GAATGGGAAAC	AAATGGTTT	ATAGTCTTT	AAACATCCC	AAGGACATCC	TTAGCATATT	TGAGTTCAGA
	GCTGGAGATA	GGCITATCG	TCCAAAGATC	ACATAGATT	GTGAGTCGGC	AAAAGTCAGT	AAGTTGACC
	AAAGGATACA	TGTAGATTAG	AGTCAGAAGA	GCAATATACA	AAAGACAAA	GCTGAGAAAT	TATAGTAGTT
	TATGGTCTG	GATAAGTGT	CATGAAGGAT	CTCAGGAGAA	ATGATCACAG	GTAGAAAGAA	TGAGAAAAGA
30	GTGATATGAG	AGAAACCAAG	ACAAAGAAAA	GTAAAATGTT	AAAATGAGT	GAAATAGGCA	TACCAATAAT
	AAAAAAATGAG	AAAAATAGGC	ATACCAATAA	CATAAGGGTT	AAAAAAATAGA	GTTCAAAAT	GGGGTGAGGG
	TAAAGTATT	GGAGGGAGTC	ATGGCCCAGG	GATCAAGTGA	AATGAGTTAG	ATCTATAGAT	CTATTCAGT
	TGGTGTACAT	TTAAATGTT	TTTGGTTTA	ATTCTTTATT	GTTCACAAAC	ATTGTTTTT	AAAAAAATT
	AATTGTCCAA	TTCAATTCTAG	GCTCACAAGC	AAGTGCCTCA	TATATACAGG	CATTGTTG	ATCCAAAGA
35	TGCAATGATA	AATAGGACAC	TTACTGATCT	CAAGAAGTT	TCAGTACAG	AGGAGACGGA	CAAGTGAACA
	GATGACTTCA	ACATAAGTGG	GAGAAATGAG	GAAGAAATAT	GTGGAGCTAT	CAGAACTAAG	AAAGCTTCTC
	AGAAGAAACT	GTCITTGAAAC	AATGTCTAA	AGATGACATG	TTTTTGGCC	ATGTGCAAAA	TGAGAGAGAA
	GGCCACCAGC	AAACTCAGTG	TGCTACAGAG	CACATGTGTT	AAGTGTGGAG	AACTGCAAGA	AGGAAAGGAA
	CTACTAGAAG	GAAGAACGAA	GATACTTCT	GGGTAACTCA	GCCTCTAA	GATAATGGC	ATAGTTCTT
40	CCAGACCTTA	GAGITCTAAT	TAATCTAAC	AGCTCATTAG	ATCGTGAGCT	TCTTGAGAGC	GGGAATCTAC
	CATGCTAATT	CCTTATGGTA	ACCCGTACAG	CTTTATCCC	AACACTGTGC	TTCTGTGGT	ACTCAAAAAG
	ACTTGTGAG	AAAGTAGTCG	AAACCTCATG	CTGACTTATG	AAATCTTAC	GGAAAGGTAA	CAATATTGTG
	AAAGCAGAGC	TTTCGTATCA	AAACCTCCC	TTTCTCAGAG	TGGCTAGTAT	CATTGTTG	CAACCAGCTT
	CATGATAAGC	TATAATGATT	CCTGTGACTT	TACCTAAGAA	GAAGCAAAGA	AAGGAAAGAG	ACTTACAAA
45	CTGACACTGG	GGCCATAGT	ACCCCACATC	ACAGTTGCAG	GTGTAATT	TGATGATTTC	TACACATTCT
	CCATGGCCAC	TGCAATGACCA	GGGCTGGCA	GAAGCTTAA	GGAGGTCA	AAAAAAATAT	TTAATGTGA
	TTACATTITA	GTACCTAAAG	TCATTTCTT	AGACATAGAT	AACCTTTGT	CTGAGATGAT	TTAAATAATC
	AGGAAAGGTT	TATITGTAAA	TTCATAGCAT	AAAAATCATA	TGCTAAATT	TTTACGTATA	AAATACACTA
	AGCATATAGT	CATAAGGCATT	TATTTGCTTT	TGGAATGAA	TTACCAATAC	TAATATTCTG	TAACACTTAT
50	AGGAAACTTA	GTGCATAC	TTGAAACTCT	TGAAATTACT	TGTTTTAAT	GAGTGAGAAG	GTAAATGAT
	GACCTGACCT	CAATCATTIC	TGCATGCAAT	TATTCTTGG	CAATCCCTT	CTTTATAGAA	ATCAAAGATI
	AAAAAGTCCA	AATITGCTAA	AACGGTAGAG	TCCAATT	AAGAGACCAA	ATTAACATATG	GTTCATTATI
	AAAACATCAC	TTGGAAAATG	CTGGCTGTT	TGGAATTGTA	GAAGATT	CAGAAATATT	CATACACCAA
	AGATAGTGCA	ATTITATAT	AAAATTATAT	AAGGTTAGAC	CAAGAAGGAA	GCACCGCAGCA	CCACACTCTC
55	TACTTCACAA	TGTGAAAATC	GAGGTGATGT	GAGCCTAAGT	TTCCAACTGG	CCCCAGCTGT	CAGCTTCTCC
	TCCCCCTGCC	TATTATCAAA	GGCACTGATT	GTCTAGCTCT	TCCTCTGTAC	TTCCTACGTA	GATCTATCAT
	TTTGATGTTAA	CTTGATT	GGGTATAGCT	TTTGTGACA	GGGACAAATC	TTACACACCA	AAAATTCTTA
	GGAGTGACAC	GATCAGAGAT	TATATAGAGG	GCTAGATGTA	TTTGTAGATG	AACCAGAAGC	TGTCTCATC
	CCCCCACCTT	TCCAATGGGGT	AAATCTGAGT	ATTCTCTTAA	CCGTGGCCCT	TCCTGAGTCT	GAGGCAGCAT
60	AGCCGTCCTG	TCACCTCCCTA	CCTGTGTAAC	AGAGGGCTGC	CTTAGTTT	TGGCAGGC	CATCGTTCCA
	TTTGCCTGCA	TCTTGTGTT	TCTTGATATA	GATCTCCACG	CAGTCCTCCT	TGTTCTTCTT	GTTGTTGGC
	TCACCATCTC	CCCACTTCTC	TGCTCTTCA	GTAAGAGATT	TGTTGGTTCC	CACCCACGTC	CATATTCTC

	CTATCTCCG	GATTCCTATC	CAGTAGTAAG	AACGACTGAA	AGGCAGAGTC	TTCTCCAGAT	ACTCAATTTC
	CGCCTTGT	TGTA TGGCAA	CTAAATCTGT	GTAATTGTCT	CGGCAGAAC	TTCTAGCCCT	TTGCCAGTTC
	ATGGGTTTT	CAGAATAATG	GTAAGTCCAG	CAGTCGGTTC	CATGATGTGC	CAGGAATCT	GCAAGACATC
5	AGTGTGACCT	ATGCAGACTT	ACATAATGTT	ACAGCTAAA	AGAACCTAG	ACTACTCCAG	GCTGAGCTAG
	ACACTTAGAG	ATGA GGAAAC	AGAGCCTAAG	AGTGTATGTG	ACCATCTAG	GATCACAGAA	TAGTTGTTG
	CAGATTTGAA	GTACAACCTA	GACCTCTGG	CTTGAATATA	AGATGTTTT	ATCTAAGGTT	CTATTGAAA
	CAAATTTAGT	GGTTTTCTAG	GTTTATTTC	TTATAAATT	TTTCTCAA	ATTATTCAG	GTGAAATTAA
	ACCAACATAT	TTTGACATT	CATATTCTT	TTCTTTGTA	GCTGTTAATG	ATTTACAAC	AATTACCGTG
10	TAATATCATA	TAAC TATACA	ATTACGTAT	ACTTTTAAT	CCTGGAATCA	TTTCTGAAAG	GCCAACACAT
	ATGTACCTAT	GGGAGAAGCA	TAATAAGGAC	AGGAAGAAC	GTGACATACT	TTAAAGTAAC	CTCTTTACA
	TAAAAAACAT	TTT ATTTCAC	CATAGGAAGA	ACTGCTTCTG	GAAAAGCCA	ATATACCACT	CAACTCTTAT
	ATATCTAACT	GTATAATT	TAAAAAGAAC	AATTACAAA	GCCAAATGGT	ATAGGATTAT	GAAATTCTATT
	AGATCATGTT	CTATAACCAA	AGAGACTCAA	CTGATGATGT	TTAATAAACAA	TATGGACCCA	TCAAATATGA
15	GGGCTTGAA	GAT TCTAAT	TAACACATA	ATTACACAA	GACTTCATAA	TAATATATGG	CATTCTAACG
	ATGGTATGAT	CTACATGAAT	CACTATTAA	TACAGTAAG	AAACAGATAT	AATTGATGGT	AAAGAGCATC
	ATAAAATAAA	CATTTGAAC	AGAGTTTGA	ATGAGCATTC	CACTAGAATG	CAAGTTCTAA	GAGGGAAAAAA
	ACTGTTGTG	CCACTGCTGT	ATCCTTAGT	CCTAGCATAA	ATTTCACACAA	TTGTAGGGAC	TCAGAAAATA
	CCTGTTGTAT	GAAAAGAGCA	CTAAGTTCT	ATGTGACACA	GTGAGACAT	GGCATAAGGA	ATGTTGGAAC
20	GGGAGAGTTA	GCAT' GTTGC	TTGGCTAGAG	CTGAAAATCC	AGGCTAGGG	GAAAGAAGAC	ATTAGTTTAC
	TTAGGAAATG	AAA ACCAAG	TTCAAAGCTA	TTGCTGGAGA	GTCTTCAAGA	ATCAGATATA	AAATTGTC
	CAACAATGGG	AGA AGGACCA	AAAAATGATA	AACCCCCGTC	CCTTAATAAG	CTCGTATTGT	AATTGAGATTG
	ATGACATTA	TGTACACTGA	ACTATGAATA	AAAAATAGAA	AATGAGGTGC	TAATAATTG	GTACAGATTG
	TAAGTACCTT	AAAC GAGATT	TCTTAATTAA	CATTATTCT	TTATAATTG	GGGGATTGT	GGGGTTATTG
25	GGATTGAAAC	TCTACAGCAT	GGGCTATTAT	AGGTTAAAAA	TAGTGTTCAG	GAGTTCTGG	GGAAGAACTA
	AAGGTAAGAA	GAA AGAGAT	GTTCACAGAA	GGGATAGAA	TAACAGCTCT	GTGAAATAAT	TTTCCCTTAG
	ACTATGTATA	ACTAGTGGAT	ATTTAAGAAA	AATGAATATA	AGTAAAATAG	ACTTAGCGAT	ATATAAATAT
	CATAACATAC	CAC ACAGAG	CATTGTCCAC	CCCCACAAC	TGAAGATGTT	CCATAAGTCC	CTCTGGGTGC
	TCTGACATT	CCAT 3GAAAT	ATCTGCAAAT	GAAATACAA	ATTATATT	GATGTATACT	CTTAAACCAC
30	ACATTATAG	CCTTGAGGT	GGTGTCTACA	ACTTTCTAA	TAATCAGAAAT	AAAACACATA	TGTCTACTAA
	CCCTGCTG	GGTAACAGGT	TTCTCAGACA	TAGATGAAAA	ATTACTCAA	TTTACATCA	GAACGTATGC
	ACAGTTTGT	TTTGTCTAT	TTTATTTTA	CGCTTAGTC	TCAAGTTGCT	AATCGGTACT	GCCCTGAATT
	TTTCTATGG	TTTG 3TAATT	TTTATACCTG	CTTITCTGCT	GAGCTATTAG	ATAAAACAT	TTAATATTAA
	CTATGTAT	TTTT TAAAGT	ATTGTTGCTG	CTTAATTAAAC	TATTGATGCT	TATATTAAAT	GTTATAGCCT
35	CACTCTTGAT	CATA ATGGGT	CAATGCCCA	AATACCTAAA	AAAAAAA	ATTAGATAGC	CAGACACCAAG
	GAAAGAAAAG	TAT TCTTTT	TTTAAATAAA	AGAAATACCT	TTTGAGCAA	CTGAAATGAC	AAAGTCACAA
	ATTCCTGCA	CACC ITAAAAA	TATACTTAAT	GTAATGACG	AGTTATGGG	TGCAAGCAC	CAACATGGCA
	CATGTATACA	TGTGTGACAA	ACCTGTATGT	TGTGCACATG	TACCCCTAGAA	CTTAAAGTAT	AATTITAA
	AAATTCTATC	TTCC AAAGCA	TATCACTTCT	CAGGTAGACA	CAGTGTATT	TGCAAAAGAT	CTGATTTC
40	TAGTATTCT	TCAAAGAGTCT	CCCCAGAGAC	AAAGTCAGA	AGAGGAAATC	AGCATATCTG	AGAAGAAAGA
	TTTCAGGATC	ACTT TTTTG	AGGGTCTGAG	AAAATGTTA	GTTTCTATAT	TATTAAAAC	CAGAATTGAA
	ATGGGGTGAT	TCCIACTCTT	GCCACCTGCC	TCTACAACCC	CAAGAGTTTC	TATCTGAGCA	TCTAAACGTC
	TTTTAGGCTG	AAAC GCTCAC	CATGGCTT	CTTGGTCCCT	CTCTAGTTCT	TCTGCAGCCC	ATTGAGCCTC
	TTGACTTAGC	ACAAGGGTCT	CAGGTCTT	CCCAAAGGG	GTGTGCTGTG	CTGCAGGTAG	ACTGCACTGA
45	ATGTCAACAG	AAA GCTTGC	TTTCTTCT	TTCTCTAAC	CAGTCTCACA	TCCTCCCT	CCTCCCCCTT
	TCCCTCCCT	TCCT CTCGA	CTTCTT	CTCTTCCCC	ACCCCTTCC	TAGACTGGCC	TCTATTGCT
	CCCAC TGAGA	CAA AATGAA	CTGCTGATCA	GAAAGTAATG	TGACTAGATT	CTCTCTTCC	TCCCTCCCTT
	CTATCCTCC	TTCCATTCTC	CTATGCATCT	TTCCCTACCC	TCCTCCTCCT	TCACTCATTG	TTGTTGCTGT
	TCTCTTCCCT	CTTC ITTTTC	CTCCGCTCC	TCTCTTCTA	TCTTCCAC	TTCTGTTCT	TGTTGGITC
50	TTGTTCTCT	CTTCTCCCTT	CTCTCTCTCC	TCCTCCTCCT	TCTTTCCAC	CACCCCTCCCC	TATCTTTTC
	ATAAAATGCTA	AACTAACTCT	TGGCTACCTG	TGGTAAATGG	CCCTTGGAAA	TTGCAAATAC	TACAAATCAA
	AACTGCATT	CAGACATATT	TATGATGTTT	GCAAAACTTC	AGTAGAGCTA	AGCAGTGGAC	TTGACTCGTT
	TCGGTTCCCT	CACC TCCGTC	TTTCCCTGCT	CACCACCTAG	TGGACGTCT	TGTTAGTGGC	ACTTCCTGAA
	GTTAACCCCT	GAAC AGAGCC	CATGCTCTCT	AGCTTTAC	CGTGTAGGTT	TGGGAGCTA	CAAGTACCTT
	TAATATTCTT	GGAC TATAAA	ATGAGATGGT	TTTATAAGAC	TGCATGTGAA	ATTAGGACCC	ATATGATGAA
55	GGACAATAAA	AAGGAAGACC	CACTGATGTG	AGTCATGAG	TCAAATGCA	ATCAGATTG	CATTTT TAGG
	AAAATAATAA	TAAC AACAAC	AAAAACTCTG	AAGCTCAGCG	CCCCATATT	ATTATATTGT	TTAATCTTA
	TAACAGCTCT	CTGCTATAGA	TATGATTATT	ATCCCCATT	TAAAGAGTCT	CAAAGAGGTT	AAGAAACAAA
	TTCAAAACT	AGCGAAAGAC	AAGAAATAAC	TAAGATCAGA	GCAGAACCAT	AGGAGGTAGA	GACACGAAA
	AGCCTCAA	AAATCAATAA	ATCCAGGAGC	TGCATTTGA	AAAGATTAAC	AAAATAGATG	GACCACTAGC
60	TAGACTAATA	AGAAAAGAAGA	ATCAATAGAC	ACAATAAAAA	ATGGTAAAGG	GGATATTACC	ACTGATCCCG
	TAGAAATACA	AACTACCAC	AGAGATTACT	ATAAACATCT	TTACACAAAT	AAACTAGAAA	ATCTAGAAGA
	AATGGATAAA	TTCC TGGACA	CATACACCT	CCCAAGACTA	AACCAGGAAG	AAGTCAAATC	CCTGAATAGA

	CTAATAACAA	GTTCTGAAAT	TAAGGCAGCA	ATTAATAGCC	TACCAACTAA	AAAAAGCCCA	GGACCAGATG
	GATTACACAGC	CAAATTCTAC	CAGAGGTACA	AAGAGGTGCT	GGTACCATTC	CTTCTGAAAC	TATTCCAGAG
	AATAGAAAAAA	GAGGAACCTCC	TCCCTCACTC	ATTTTATGAG	GCCAGCATCA	TCCTGATACT	AAAACCTGGC
	AGAGACACAA	CAA AAAAGA	AAATTCAGG	CCAATATCCC	TGATGAACAT	CATTGCAGAA	ATACTCAATA
5	AAATACGGCA	AACTGAATCC	AGCAGCACAT	CAAAAAGCTT	ATCAACCACA	ATCAAGTTGG	CTTCATCCCT
	GGAATGCAAG	GCTCGTTCAA	CATACACAAA	TCAATAAACAA	GAATCCATTA	CGTAAACAGA	ACCAATCACA
	AAAACCACGT	GATIATCTCA	ATAGATGCAG	AAAAGGCCCT	GGATAAAAATT	CAACACCCCT	TCATGCTAAA
	AACTCTCAAT	AAACTAGGTA	TTGATGGAAC	GTATCTCAA	ATAATAAGAG	CTATTATGAA	CAAACCCACA
	GCCAATAGCA	TACTGAATGG	GCAAAAACGT	AAAGC GTTCC	CTTTAAAAC	TGGCACAAGA	CAAGTATGCC
10	TCTCTCACCA	CTCTGTTCA	ACATAGTATT	GGAAGTTCTG	GCCAGGGCAA	TCAGGCAAGA	GAAAGAAAATA
	AAAGTGATTTC	AAATAGAAGA	GAGGAAGTCA	AATTGTGTCT	GTTTGAGAT	GACATGATTG	TATATTAGA
	AAATCCCAT	GTCTCAGGCC	AAAATCTCT	TAAACTGATC	AGCAACTTC	GCAAAGTCTC	AGGTTACAAA
	ATCAATGTGA	AAAATCACA	AGAATTCTCA	TACAGCAATA	ATAGACAAAC	AGAGAGCCAA	ATCATGAGTG
	AACTCCCAT	CACGATTGCT	ACAAAGAGAA	AAAATACCT	AGGAATCCAA	CTTACAAGGA	ATGTGAAGGA
15	CCTATTCAAG	GAGAACTACA	AACCACTGCT	CAAGGAAATA	AGAGAGGACA	CAAATGAATG	GAAAAACATT
	CCATGCTCAT	GGGTAGGAAG	AATCAATATC	ATGAAAATGA	CCATACGTC	CAAGGTAATT	TATAGATTCA
	GTGCTATCCC	CATCAAGCTA	CTACTGACTT	TTTTCACAGA	ATTAGAAAAAA	AACTACTTTA	AATTTCATAT
	GGAAACAAAAA	AAG GCTTGT	ATAGCCAAGA	CAATCCTAAG	AAAAAGAAC	AAAGCTGGAG	GCATCATGCT
	ACCTGACTTC	AAACTATATACT	ACAAGGCTAT	AGTAACCAAA	ACAGCATGGT	GCTGGTACAA	AAACAGATAT
20	ATGGACCAAC	GGAA CAGAAC	AGAGGCATCA	GAATAAACAC	CACACATCTA	CAACCATCTG	ATCTTTGACA
	AAGCTGACAA	AAA CAGCAA	TTGGGAAAGG	ATTCCCCATT	TAATAATGA	TGTTGGAAA	ACTGGCTAGC
	CATATGCAGA	AAAC TGAAC	TGGATCCCTT	CCTTACACCT	TATATAAAA	TTAACTCAAG	ATGGATTAAA
	GACTTAAATG	GAAGACCTAA	AACCATAAAA	ATTCTAGGAG	AAAACCTAGG	CAATACCATT	CAGGACGTAG
	GTATGGCAA	AGACTTCATG	ACTAAAACAC	CAAAAGCAAC	AGCAACAAA	GCCAAAATTG	ACAAATGGGA
25	TCTAATTAAC	CTAA AGAGCT	TCTGCACAGT	AGAAAAAAA	AAACTATCAT	CAAAGTGAAC	AGGAAACCTA
	CAGAAATGGGA	GAA ATTTT	GCAATCTATT	CACCTGACAA	AGGGCTAATA	TCCAAAATCT	ACAAGAAAAT
	TAAACAAATT	TACA AGAAAA	AACAAACAC	ACCATCAAAA	AGTGAGTGAA	GGATATGAAC	AGATGCTTCT
	CAAAGAGAAGA	AGT TATGCA	GTCAACAAAC	ATATGAAAAA	AAGCTCATCA	TCACTGGTCA	TTAGAGAAAT
	GCAAATCAAA	ACCA CAATGA	GATGCCATCT	CATGCCAGTT	AGAATGGCGA	TTATTAAAAA	GTCAGGAAAC
30	AACAGATGCT	GGAC AGGATG	TGGAGAAATA	AGAATGCTTT	TTACAGTGT	GTTGGAAGTG	TAATTAGTT
	CAATCATTTG	GGAAAGACAAT	GTGGCGATT	CTCAAGGATC	TATAACTAGA	AAAACCATT	GACCCAGCAA
	TCCCATTACT	GGGTATATAC	CCAAAGGATT	ATAAATCATT	CTACGATAAA	GACACATGCA	CACTTATGTT
	TATTGAGGCA	CTAT CACAA	CAGCAAAGAG	TTGGAACCAA	CCCAAATGCC	CACCAATGAT	AAACTGGATA
	AAGATGATGT	GGC ACATATA	CATCATGAA	TACTATACAG	CCATAAAA	GGATGAGTTC	ATGTCCTTTG
35	CAGGGACATG	GATG AAGCTG	GAAACCGTCA	TTCTCAGCAA	ACTAACACTG	GAACAGAAA	CCAAACATTA
	CCCATTCTCA	CTCA AAGTG	GGAGTTGAAC	AATGAGAACAA	CATGGACACA	GGGAGGGAA	CATCACACAC
	TGGGGCATGT	CAGGGGATGT	GGGGCTAGGG	GAGGAACAGC	ATTAGGAGAA	ATACCTAATG	TAGATGACAG
	GTTGATGAAAT	GCAG CAAACC	ACCATGGCAC	ATGTATACCT	ATGTAACAAA	CCTGCACGTT	CTGCTCATGT
	ATCCCAGAAA	TTAAAGTATA	ATTTAAAAAA	AGTTAAAAAA	AAGAAAGTTG	CCTTAGTCAC	ATAACTAGTA
40	AGAGACATGG	TTGCGAATTT	GAACAGAGGC	CAATCAGTTC	CAAATCCATG	CTCTTGATCA	TTAAGCTGAA
	CTTATGGCAG	GAAC TTGAA	GACATGGTAA	AATGGGGAAA	AACGTGGAGC	CAGGGAGACT	TGTGAAAGTG
	CCAGTGTCC	CACTATACCC	TGAAAAGAAGT	ATCTAGACTT	ACTTTTTCT	AAGTCTCTC	CTCTAATTCT
	CTCAATCTCT	CTCTCTCTTT	CTCTAAGAGA	TGGGAATGCT	GCTCTGTAC	TCAGGCTAGA	GTGCA GTGGT
	GCGATCATAG	CTCATGAC	TCAAGGAATC	CTAGGGTCTA	GTGCCCCCTC	TCCCTCAGCC	TCCCCTGTAG
45	CTAAGACTAC	AGGC ACATGC	CCCAACCCCTC	GACTAATT	TTTATTTTTT	ATTTTTGTAG	AGACAGGATC
	TCACATATGTT	GTC CAGGCTG	TAATTCTGTC	TTGAAGCTTG	TCCAATCAGG	CTTTCAGCCA	CACCAATTCC
	CTGAGACTGC	TCTC ACCAAG	GTCCTACACT	TCACTAACAC	AAACAGCCTA	TTCTCCATCC	TCATCTTA
	TCACCAGGG	GTC CTGGTT	TTCCCTCTAC	TTCACTGGCT	ATTTCTCTG	TATCATGTGT	TGATTCTCCC
	TCATCTCCCC	AACC CCAAA	CCCTTGAGT	ACTCCAGAGA	TCACCGCTT	GCTCTCTGT	GTCTAACCTC
50	ACTAACTTGG	TGGTCCAATT	CACACTCTG	ACTTGAATA	CCATTAAAT	GCGAACGAAT	TCTAAATTCT
	GTACAACCAG	AACC ATTCTC	CTGTAGCCAA	ATGCCACTC	AACATCTCA	TCCCCAAACA	AATT TAGTTG
	TTCAATAAGC	CTCTCATATT	TTACATATCC	CAAAC TGAAAC	TTCTGAATT	CTCCTCCAAT	CTGTAGGGCT
	CTTCCCACAG	CCTT CCATC	TCAGTGGATT	ATAACTCCAT	CCTTCCAGTT	ACTCAGACCA	AAACTTTTGG
	AGTTAACTGA	GACA CCTCTC	TTTTTTTCA	CAAGTCATAT	CCAATGTGTC	AAACAAATT	GGTAGTGGAA
55	ATATTGCGGG	ATT TTAAG	AAATCAGAGA	GACCGATGGG	GTTCAGGAGG	ATATT TATT	TTAGGTGCA
	CTGGCCAAGT	CAGATTAACA	TCCAAAGGAC	TGAGCCCTGA	ACAAAGAGTT	AAGTTACCTT	TTAAGCATTT
	TGTGGGTGG	GAGAGAGGGG	TATCTGTGCA	GGGGGAAGCA	TACTACAGAA	GTGAGAAATA	AAGACAGTTA
	TTCAATTAT	TGAGACATGC	ATTACATCAT	TTCTTACTTT	TCAAGAAGAA	ACATGTTTG	CGACTTGAGT
	TTATCTGTCT	AGTGACCTTG	CAGCTGCACA	GCTAGAGAAA	CAGGGTCTTC	ACAATGCCTG	GGAAAGGAGG
60	AGAGGTAAGT	CTCACTAGCC	ACAGAAAAAC	AGGCAGTTAA	TTTTTAAAGG	GCTCCAGCTC	TTTCTCTTT
	TCAGGGGGAG	TTGCGTTTG	TTACATACAA	CTGAGTTTCC	GCTTACACAT	TATTTAATT	CTTTTAATT
	CTGTTCCAAA	AGAA GCCAGA	TACAAAAGGT	TACATGTTGT	CTGATTCCAT	TTATATGAAA	CATATAGAAAG

	AGGTAATCC	ATAGAGACAG	AAAGTAGATT	AGAGGTTCCC	AGGGGCTGAG	GAAGAAATGG	GGACTAACTG
	CTTATAGGGT	ACACAGTTT	CTTCTGATAA	AAATATTTG	GAACTAGATA	GACATTTGT	TAGGCCATTC
	TTGCATTGTT	ATAAAGAATT	ACCTGAGACT	TGGTAATTG	TAAGAGAAAAG	ATGTTTAATT	GGCTTACACT
5	TCTGCAAGCT	TTACAGGAAG	CATGGTGCCG	ATATCTGCTC	AGCTTCTGGT	AAGGCCCTCAG	GAAGCTTACA
	ATCATGGCAG	AAGGTGAAAG	GGGAGCAGGC	ATATCACATA	GCAAAAGCAG	GAGCAAGAGA	GGGATGTGGG
	GAGGTGACAG	TCATTTTAA	ACAGCCAGAT	CTTGTGAGAA	CTCATTCACT	ATCATGAAGA	CAGTACCAAG
	AGGATGGTAC	TAATTCATTC	ATGAGAAACC	CCACCCCTCAT	GATCAAATCA	CCTCCACCA	GGCCCCACCT
	CCAACACTGG	GGATTACAAAT	TTGACATGAG	ATTGAGTGA	GAACACGGAT	CCAAACCATA	TCAGAGATGG
10	TGGTTATACA	ATCGGATAAA	CGTCACTGGG	TTGTACACTT	TAAGATGTT	GTTTATGTT	GTGTGAACCT
	CACCTCAATA	AAAAAAAAT	TTAACATGTAC	ATTCAAGCCAA	AAGAAGATT	GGAATAGGAA	AGGTCACTGGA
	GATATATTAA	CAGCCTTTG	ATGGGTGGTA	AGGAAAAGAG	TGGTTATTAG	ACTGTTTGT	GGCCCTCAA
	AGGTAGAACT	AGATCGAGTT	GGTGAGCATT	ATAAAACCAT	CACAAAACCC	TGGAGAGAGG	ACCCAGTGCT
	GAAGAACCGT	TTGCCTGCCA	TGAGACATGA	GGGAAGTACC	AGTGAATGCC	ATTGAAAGAGCA	GCATCCCTGG
15	GTCCAAGGGG	TGGTCAAAGG	ACCACTACCC	AACCCCTTCCC	TAGCCTACGC	CTCCATTACAA	GATGACCGCA
	AGATTTATT	GCTCATTGCT	GCCAACCAAG	GCTGCACTCA	CTGCAGTTGC	TATCAGTTA	TCATGGTAA
	AAGGAATGTG	CAGTAGAGAA	CTAACTAAC	GCCCACCTAC	CTCCACAACT	CTATCAGGAC	AAATCACCAC
	GGCTCACATT	TCCTACATT	TGGCATGTA	GCCCCCTCTTA	CTGTCGTCA	TCTATCTCCT	ACACAGTTCA
	CCTAAACTGT	TCTCTCCTGA	CCCAACCTTG	ATTTCATCC	CAAATGCTT	CTTGGCCATCT	CTGGGATTCC
20	TGTCTTCACC	ATCACAAAC	TCCCCCTCAAT	CTTCCAGTTT	CCTGTTCAAA	CTTTCTCCT	ACCTCCTTGC
	TTTGTCTTAA	GCCCCACTGC	CTCCCTAGGA	CATCACTTCC	CCTGCGAGTC	TCTCAAGATG	ACAATATTAA
	TTCTCCACAC	AGCACATACT	TCAGGGTTGG	AAGGCAGGGG	CAATCTTCTC	CTTTATAATG	AGTGCCTCTT
	ATATATGTTT	ATTCACTGTC	CCTCTTGTAA	AACACACACA	CACACACACA	CAAAGAAGAA	ATAAAATAAC
	TCTGCTTCTT	TGAAAGCTGT	GACACTGAGA	TAACACATCT	CACTGTCCTC	ATTGAGTGA	CCTCTCAACT
25	CCTCATGCAA	GATIGGCTTT	GGCACCTAGT	TCCTGATCTT	CCTTTCCCTG	TAAGCACTTC	TCATAGTCTT
	ACGGGACTTC	ACCATCCATG	GCACAACCAA	TACCACAGCC	CAGATCCTCA	GCTCTCAAT	GACATTTTCC
	TCCACTAGAC	TTGAGCTACC	TCCTTCCCTA	GGCACAGCCT	CAACCTCGAC	AACACCTAAG	ACTGTACCGT
	CTCTAAAGTC	ACATGTTCAA	ACACCTCACT	CTTTAACAC	TGTCTCTAT	TCTTGCAGT	GTATTGCTCA
	AGTATCTCAT	TGCAATGCTT	TTTACTTCTA	CCTCATTGAA	CCTCCAGGCC	ATAAACACATT	TCCTTATTTC
30	TAACCATCAG	GTTCCTCCTT	ACTTGTGTTG	TTGTTTATTG	GTTTCTTTT	TTTTTTTTT	TTTGAGACAG
	GGTCTCACTC	TGTTGCCAG	GCTGGAGTGC	AGTGGTATGA	TCTCGGCTCA	CTGCAGCCCTC	CATCTCCCTG
	GTTCAAGTGA	TTCTCATGTC	TCAGCCTCC	GAGTAGCTGG	GACTACAGGT	GCATGCCACT	ACGCCCTGGCT
	AAGATTTGT	ATTITATTA	GAGAAGGGGT	TTTGCCTATG	TGGCCAAGCT	GGTCTCGAAC	TCCTAACCTC
	AGGTGATCCA	CCTGCCCTCG	CCTCCCAAAG	TGCTGAGATT	ATAGGCATGA	GCCACTATGC	CCCACCTGGT
35	TTCTCCTTAT	TTAT TCAAG	TCTATGCTGC	ACTATTAAAA	CTGCCCTGAC	AAAAATTATA	ATAGTGAGAA
	AATTATGACA	GTGAAGAGA	TCTGAAATAA	TCAACCCCCA	TCTTGCCTT	ACCTTCCAGA	CTGCCCTTAA
	TAATTCTGTA	GCTTGGGCCA	AGCTATCTT	GGCAGAAATT	TAGTTTATAG	TTAAATGAT	AATAGCCCTT
	CTCCAAAAC	AAACTGCCTT	TGTAAAACTA	ATAAAAGACC	ACCAATGAAA	GGTTAGGAGG	ATGAGAGGAG
	CCTGAATTCT	GCTAAGGTGT	AGATGTAAC	AATTACCAAC	TGTTATTCCG	GAGGTACAA	GATTGCAAC
40	ATCGCCAATT	ACTCCTGCG	ATAACAGCAC	TATCATAGAA	TCTGATTGGC	CTTTGAGAT	GTCTTTTCAG
	ATTCTTACAT	TTCAACTGGT	GGCTCTACCT	GGACCCATCA	ACAAGTCTG	TGGCTCCACC	CAGAAGCAGA
	CTTAACATGC	ACAAGGACCA	TTTCCACAC	CGCTATGATT	GCATCCCAAC	CAATCAGCAG	CAACCATTC
	TCTGCTGCC	AAATTATCCT	TGAAAAATCT	TAGCCTTAGA	ATTTGGGGG	AGGCTGATTT	CAGTAATAAC
	AAAACCCCGG	TCTCCATT	GGCTGGCTCT	GCATGAATT	AATTCTTCT	CTATTGCAGT	TCCCACATCTG
45	ATAAAATCACC	TTTACTGGG	CAGCAAACAA	AAGGAACCC	TTGGACAGTT	ACACTGTTGG	CAGATATATC
	TTGCTTCCAA	AATIGGATT	TTGTTTAATG	AATTATTCT	GTTTCTTGA	TATTACAAC	TGTGAATGTT
	GTGTCTGAAT	TCTCTTATT	TCTTGTGAA	AAGAACTATA	TTGCTACAGC	CAGTACATAC	AGATGGATAG
	CTAATTACTC	AACACGGGGG	GATGTGACCA	TCACCGCACT	GTGCAAATGA	ATGTTACCA	TTGTCACATT
	TTCCCAAAC	ACATAGTGT	ATATGGTATA	TGACCCAATC	AACGGTGGCA	AAGCTCCAGA	AATACCACAT
50	AGACATCAGG	GACACTTAA	ACTAATCAGC	CTATAGCCT	TTTCAGTAA	TTTCCAAAC	TGGTTGTGCA
	TCCAAATCAC	TTGGTAACAT	AAAAAAACA	AAAAAAATATA	CACGCAACAT	TCGCTCCAA	TCCTACTGAA
	TCAGAATATT	TTGGGTTGGT	TCAGGAACAT	TCAGGAGTTT	TTCAGGGTCC	AAGGTTTATA	TAATTGAGG
	TCTCTTTG	AGAAAGGAA	CGTAAAAGCG	TCTTGTGTTT	ATAGATCTT	CAAAGATGTA	TTACCATGTA
	AACACATTCC	TAGCACCCAG	GCCCTGTAA	TTTAAAGGTT	TATCTAAGTA	ATGGGCCCTG	AAGCTTAATT
55	TTCATTATCT	TCAGGGCAA	TTACCTGTGG	GTAGGGTTT	AGGAATATAT	CTCTCTGTGT	ATGTGTGTGC
	ACATTAGCAT	GTACCGCTGT	GTGGATT	TTTTTTTTT	TTTTTTTTT	TGAGACAGAG	TCTCGCTCTG
	TCGCCAGGCT	GGAC TGCAGT	GGCGTGA	CTGCTCACTG	CAAACCTCCGC	CTCCCAGGCT	CAAGCGATTC
	TTCTGCCCA	GCCTTTGAG	TAGCTGGAC	TATAGGCACG	CACCACTATG	CCCAGCTAAT	TTTGTATTT
	TTAGTAGAGT	TGGC GTTTCG	CCATGTTGC	CAGGATGGTC	TTGATCTCTT	GACCTCGTGA	TCCACCCGCC
60	TCCACCTCCC	AAAGTGCTGG	GATTACAGGC	GTGAGTCACC	ATGCCAGCA	CTTGTGTGGA	TGTTTTAAGC
	TCCCAGGTGA	GTGAATACAA	AACTAGATCT	TTCCCTTCTG	TAGCATCTGT	ACTGTTACT	CTATGCATCT
	CAATTTTTT	TCTTITAGTA	TCTTCTCTT	TTCTCTCTTA	TTACTTCTC	TTGTGCTATT	TTTACACCTC
	CTTTTTTAA	AAATTTTTTC	CCTTTTATTT	CTATTGACCT	TTAGCCCTCA	CAATGATTCC	TACAAGCCCC

	ATTTCTGTAA	ATGGGGATTG	AAATAATTGC	TGGACTTTG	AGAGATAGAT	ATATTAATT	GCAAACCTGGC
	AGTAGTGGGG	GCAGTTGATA	CATAACTAGG	TTTAAAGTC	TAGCCTCTG	AGACCACTCA	TTCCATTGTT
	GAAAAGTGAT	TCTA.CTTCTT	ATTATGAGCC	AAAATATGCA	TTCATTCACC	CATGCATTGA	TTTATTCTT
5	CAATAAATAT	TTGTGGATG	TCCACTCTGT	ATCAGGAATG	TGCTAGGTTC	TGGGAATACA	GCAATGAACA
	AGGTAATT	TCCCCTACCCCC	TAAGGAACCT	AGAGTTAGT	GGGGAAGACA	GACATTAAC	AAACAATTGT
	GCAAGTAATA	ATCTATAATT	ATTATTACA	ATTAAGGAA	GGAAGAGACA	TATGGATTAT	GAGGGCATTA
	AAGAGGAGAC	CTACTGTAAAG	TAGCCAGTTC	TCGTGAAGGG	ACATGTATTA	GTTGGAGTTTC	TCCAGAGAAA
	CAGAACCAAT	GGTC.TGTGTG	TGTGTGTG	CGTGTGTGCG	TGTGTGTGTT	GGGGTGTGGG	GGTGTGGTAT
10	TTTTATAGA	AATTGTCTCA	CACAATTATG	GAAGCTGAGA	AGTCCCATGG	CCTGCTGTCT	ACGAGCTGAG
	AACCAGAAA	GCC.GTGGAA	TACTTCAAG	TCCAAAGGCC	CTGGAACCAA	GAGTGCAGT	GTGGAAGGC
	AGGAGAAGAT	GGG'GTCCA	GCTTAAAAAG	ACAGTGAATT	CACTCTTTT	GCTCTACATA	GGGCCTCAAT
	GGGTTGGATC	ATGC CCACCC	ACATTGGTGA	AGGAATCCT	CTTAGTCTAC	CAATTAATA	CTAATCTCTT
	TGGAAATACT	CTCACAGACA	CACTGAGAAA	TAATGTTTA	TCAGGGTGT	AGAAATCTTC	TGGAGTTAAA
15	CAATGGTGT	AGCIGTACACA	TCACATACAT	TTTAAAGGG	TGGGTTTAT	GGAAAGTGAG	TTTATCTAA
	ATAAAATTTC	TAAGAAAAGAG	ACTTAACACA	GAGATAAAC	TAAGCACATT	TATTGTCAAC	CTTATAGTG
	TTATGTCAAA	TAGGTCTGAC	ATAAGCTAA	ATAAATATAT	ACTTTAAAAA	TTATAAAATA	TTTAAGTTA
	TAATTTAAAAA	TTCTCAATAA	AACTCAAACA	CAAACCACAC	TGGTATTTC	CACAGCTAAT	TTCTAATGCA
	GTTCACATAA	ATATITACAA	CACTTAAACA	ATTTCAAAGA	AAATAACACT	GTATTCATA	CATAGCCTGA
20	TCACAGTAGT	TGTCTCTCT	TATTTCCAG	AGTTTTCTG	CCCCTTAAA	AGAACCTCTG	CTGTTCTGAT
	CCTTATCACA	TCTCTGTTT	GACTGTGGC	TTTGGTGTG	CCAGTGTTC	GCCAGAACTT	CTCTGAAACT
	TTTTTTCA	CACATGCTAA	GTTAATGGAA	GTGTAGGAGA	GTTTGATTC	TCACACTCCT	CAAGGCTAGA
	GCAGCTTGG	CAAT TACTGA	CTGAGAATT	TTCATTGCCA	GTGATCACT	GAAAACGTGGA	GATTCCTTG
	GAATTGTTAA	ATCTGTTAT	AAATAAACAT	AAATGCTTG	TCACACAGGC	ATTCCCTCT	TCCAGAGCAC
25	CCTAACATAC	AGAAGAAAAC	AAATAGGGAA	TAACATTAG	ACATCTTCAT	TCGTTAAAAA	TCTACCAGAT
	GAECTTTTA	CATG GTGAGT	TTCTATTGT	AATTAAAAT	CTTCCATAAT	ATACAAGAAT	TATGTTTACA
	TATCATATCT	GACAAACATC	TTTGTAGGAA	TGCAAAGCAC	ATCCATCTT	CTGTATTCTT	TTCCAACAAA
	GACATTATA	AAAATATACC	TTTGTGTGTT	TGCAATTATG	CTTTTATTAG	TTCAAAACGT	TTGGCCTCAT
	GGAAGTTTT	CATC GTGGAA	ACCACATATT	TCTGAAAAAA	TATCTGACAA	TATACAAACC	TTCCATTCA
30	TTTTTACTCT	CCAA TCTAC	CATGTTTCA	AAAACAACT	GTAGTAAAAA	CACTCAGAAC	TTTATTCTGG
	TTAACATCAT	GCCTTGCTAG	GGGACAATAG	TTTCCCTTT	TGAAATAAAAT	TTAAAACAGA	TGTAACATAA
	TTTGTAAATA	AAACATGAGG	GGGTAACTCA	GAATAAGTAA	CTTTTACCAT	ATCATAGTTG	ACAGCATTAA
	CAAGTTTTT	AAAGTCCCTAC	CACACTTGA	TTGAATGAAG	AAGTATGGAA	GATTATAATA	TATTCAATGC
	AAGTAAAAAT	ATCACAAATCC	TTAAGAACTC	TTAAGAAGC	ACTGAATCCC	ATAGGGATGA	AAGTGATTA
35	ATTGTGCATA	GTAACCCCTCG	CACAGAGCAT	TCAGTAGGAT	TTGCACCAT	AACAACCTC	CATGCATTG
	CCTGTGGGCA	TTCAACATCT	GTCATTTT	TAAGTTATAA	TATTTTTAGT	CATTTTTTC	CTCTAAACTC
	TGGATAATT	TTATTCATTC	TTATGACAGC	AACTGTGTAA	TCAGCTGTC	AAACACTGTG	AAGGGCAAAA
	GAAAGAAAGC	CACAAATAT	TGTGTTCTG	TGCCAGATT	TTACAGCGAG	CAAGGGAGAG	TTAGAAAAGG
	AATTCTGAGA	TTTCAGAGTC	TTGGTCTCTT	CACCTTGCT	TGGAAGAAA	TATCCTTCC	CTTCATTAGC
40	CAACACTTTC	TTGA TCTGA	GAGTAGGGAA	GGGAACACTG	AGTCTTTCA	GTTGAAGGCC	GTCCCTGCT
	GCTGGACTTT	GATCTATTGA	AGTGGTGTATG	GGTGGTGC	TTTCAGCCAT	AAAGGCATCT	GGCATAGTAG
	GCAAGAAGGG	CCAGAGACCC	GAGGAGAGTT	ATCTGTCTCT	GTAACTTCA	GTGTATCCCT	CTAGTTCCCC
	AGATGCACCT	GTTC.TGTAA	ATATAAACAT	GCATGTCTC	AGAACACTTA	ATATTCTGCA	TACTGATCAT
	GACAACAAAA	TGTACCTTCT	AACACAGACA	CTCTCACTAG	GATAGACCAT	GTAGGAACAT	CAGAATTCTAT
45	TCAGTTAGGA	CAGTGTATGAT	GTCTACATAT	TATACCTCTG	TCAAAACCTA	CAGAATATAC	AACACAGCAC
	AGAGTGAATT	CTAATGTAGC	CTGTGGACAT	TAATGAATAA	TAATGTATCA	ATATTGGCC	ATCAGTTGTA
	ACACTAATAT	AAGATGTTAA	TAACAGGGGG	AATTGAAGGG	GTGGTGGGGA	GATATGTTGG	AACTCTTGT
	GCTTCTGCT	CAATTTTCT	GTAAACTTAA	AACCGCACAC	ACAAAAAAAG	TTATTTAAT	TTTTAAAAAA
	GTATTCAAGAG	GGACTTGACC	TTTCAAATT	CTCTCAAAGC	AGGTGCGAGT	AGTAAAGAAC	ACAAATTITA
50	GAACCAGACT	GCCAGAGTTT	GAATCTGGC	TACACCACTT	ACTAGCTT	AGATTTCAGA	CAATTACTT
	AACTTCTCTG	TCTCATTTTC	TTCATCTGTG	TGATAAGAAA	TAAAGTAACA	GGCCAGGCC	AGTGGCTCAC
	GCCTGTAATC	CCAG CACTTT	GAGAGGCCA	GGCGGGTGA	TCAGGAGTTC	AAGATCAGCC	TGGCCAACAT
	GACAAAAAAA	TACA AAATCT	CTACTAAAAA	TACAAAAATT	AGCTGGGTG	GGTGGCAGGC	ACCTGTAATC
	CCAGCTACTC	AGGA 3GCTGA	GGCAGGAGAA	TTGCTTGAAC	GCAGGAGGTG	GAGGTGCGAG	TGAGCCAAGA
	TCATGCCACT	GCAC TCCAGT	CTAGGCAACA	GAATGAGACT	CCATCTCAA	ATTAACAAAA	AAAAAAAGTAA
55	AAAGAAAAGA	TAAGAAAATAT	AGTACCAAGCC	CCTATCTCG	AGTTCCTAGC	TTAGAAAAAT	TCCCGAGAATA
	TAATAAGTGC	AATGTAAGGG	TCAGCTATCT	TCATTATTAT	TATCTATCAT	AAATGAAATT	ACACAATAAA
	GCTAGATCCG	TTCTTTTCT	CTCCTCTAC	AAAAAATAAA	GCAACTTTC	AGAACAAATAC	CCAGGTGATG
	ATTCTCCCC	TGCTCCTCC	CTAAGATATT	GGCAAGTTG	GAGGGTTCAA	GGAGAAACAG	AGCATGTAGA
	GAAGATACCT	CTCTCATAAC	CATTTGTGAT	TTACAAGTCT	TACCTGATTC	TTTTGAACCTT	AAAGGATGTA
60	AGAAGGCTT	TGGTAGCTTC	CATCTGATTC	AAGGCTTGG	CAGCTGCTGT	GGAATACATG	AGAACACTAG
	GTAAAGCACT	GTCTCCAAC	ATGAAGAGAG	AAAATATGT	CCAATGTTCA	ATGGCATGCT	TTGTATAAGA
	ATGCAACTTA	CCTGGCAGGA	ACAAATTCT	TTGCTGCAA	AGAAAAGACA	AACAACCAT	AATTCAAGACT

	AAATGACTT	TAAGGATATA	TTAAATCCAG	ATACAATATG	ACTTAATTCA	TCAAGTGGT	CAAACTCGAT
	GCTTCAGGGC	CTCTGTAAATA	ATCAGAGCAC	AAGCATGGCT	CTGTGGCATC	TAGGGTAAAAA	TGCAAAGTGC
	ACAGCCATCC	AAACGGCAT	GCAGCTTCCT	AATGCCAGCA	AATAGCTACG	GGGTCACTTT	GCCCAATTCA
5	GCTCCCAATT	TTTCATGAGA	AGTCCAAGT	CTTAATTAA	ATGTGAGATT	TCCTATTG	TAAACGTCAG
	AACTTAAC	AAAAATGTTT	TAAGTACTCT	TAAACATGTA	AGCCAAACAA	ACCATGAGTG	TAGTCAGATG
	TGCTTCCATA	TTCCATATGA	GAGACTCTCA	ATTAAAGGC	TGTACTCCAA	ATAAATCTCC	TTAGGAAGAA
	TTTTATCCAT	TTTCCTTAGA	GTGCTCATC	TGGCAGTTCC	ATTGCAACAT	TCCGGGAGGC	ATCATATAAT
	TCAACATGAA	TAGCACCCCC	TGGAGTTGTA	CAATATTAGG	CACGACTAAC	ATTTTATT	CCTGAAACAC
10	TTCCCACACT	GAGITGTACT	ACTAACTCTT	TTCTTAATAC	TTCTGTTAA	TTATACTGCA	TTTATCCAG
	ATTCTAATT	TTGT'TAAAT	CAGTAAGCAA	GACCAGTACT	TATCAATGAG	AAAGAAATGT	ATTTTCAAAA
	ACATTTTGA	AGTACATTCA	TAAACTTCCT	CACCTTCCG	TAAGCATTTC	CGAAGCCAGA	GGAGAAATGG
	TGCTAATGTC	AGGA3GGAGA	GTCCAGCAGC	AGAAAGTCCA	GCTACCAAGG	GAATGTTGGA	CTCAGTGGGA
15	GCTAAGGAAG	TAACAGACGA	AGAAAAGTCA	TGAGGAAGAA	TTGATGTAA	AGTCTCTCCG	TCCTGTCCCT
	TTGGCCTTT	TTCTGTACAT	TCATTACTAG	GAGCAGAAGA	GCTATCTAGT	TTAATACAAG	AAGCAGAGAT
	GTGGCATTAC	AGGCCTTGA	GATCTGCTCC	AAGCCACCTT	TGAAGCTATT	TCCACCATTG	GCAGGCAGAA
	CTCTAACTTG	CCAAGCTCGT	TCACAATACC	ACACCAACACC	TTGGTTAAATA	AACACTGCAC	TTGCTTGCCTC
	TCTTGCTCTC	ACTCCCTCTT	GTTCCTCATT	TCCCCTTCT	CCTCTCCTCT	CTCTGTCTCC	TTTTTCCAGT
20	TGTCAGAATT	CTACCTTTTC	CATCAACATG	CAACCTCTGT	TTTTCTCTA	TCCCCATACAA	ACTTAATATT
	CACAACTTGT	CAACCTGGGC	GAACCTTCCTG	GTTTGGATAT	AATGAATAGT	TGATTACTGT	AACAAGATAG
	CTCCCCCTT	TTCTTTTAA	TCACCAAGACA	ACCACCATCA	ATCAATGCAT	CACCTTCACA	GGTAGGTAGC
	AGGCCAGACC	AGTCCTCTGT	GGCTCCACAT	GTCCGAGCTG	CAGAGCCATT	GAGCGTCCAT	CCTTCAGGAC
	AGGCGAACTT	GCACACAGTG	CCAAACACGG	GCTCCCCACT	GCAGCTCATG	TTGATCTTTC	CCGGAACCTGC
	CAGGCTTGAA	CATTITACCA	CTGCAAATGT	TAGGTACACA	GGCAGAGTTT	CAGAAAAATC	TACTGGAAA
25	CTTCCAAAAC	TTGCCTTAA	GTCAACAATG	AATGTAAGT	GTAAGCGCTA	CTTAGTTTC	AGCATGTAGG
	AAATTAGGAC	CAAACCCCTT	TGGGGCAATC	TAGTTTCAGA	AACTTTATGA	AGTATTGAC	CTGTACCTA
	AAAAAGTCTG	CACI CAATT	TACCTTGCA	GGAGGAACC	TCTCTGTCC	ATTGCTCTG	AGATGTGCAC
	TCAAGTTGAG	TTGATCCATG	TAATTCAAAT	CCCTCTCAC	AGCTGAAGGC	ACAAGAGGAC	TTGAGGTGA
	ATTCTCCAAT	AGGGGAATGA	GCACACCTCA	CCAAACCCCTT	CGGGGGCTGG	TGGACAGCAT	CGCATCTCAC
30	AGCTGGAACA	CACCAAGAGAG	CACTTTAGAA	GTTGTTTGC	ATCTCCAGCA	ATACGTTTC	CAAGGTAACC
	AAAGTCCCAA	GCTCTTCAAT	AGTTCTTTT	ATCTTAAAT	AAAATAAAAA	CAAAGACTGT	ACCTTCACAT
	GTGGGCTTCT	CGTTGTCCCA	CTCCCCCTGT	GGGCCACATT	GGAGCCTTT	GGATCCCTTC	AACACAAAAC
	CCTGCTCACA	GGAGAACTCA	CAGCTGGACC	CATAACGGAA	ACTGCCAGAA	GCACTAGGAA	GACAATTCAT
	GTAGCCTCGC	TCGG3GTTGG	ACAAGGCTGT	GCACTGGAA	GCTGAGACAT	CAAATGATG	GTCAGAAAAT
35	ATTGCACTGG	AACTAGAGAG	TACTTGGCGT	TTGTTGAGTG	AACCCAGTTC	ATTCAAGCAA	CACTTGGAGA
	ACTGAAGATT	CTTATAATT	CCCTGGACAA	ATGGGAAGAT	GGCTGTGTTT	TCTTGAATT	TCAGCCCCCT
	CACTGATCAT	GGCACTAATT	AAAAGACTAA	TTAATCAGAA	CATTAGTTCC	TGAGCACTGT	TCTTCTAACAA
	CACAAAATAA	ATTATGGTCC	AAGGAAAGAT	TTCACCGAGT	CTGAGGACAA	CATATGGGTC	ATGGATGTTT
	ATAGATGGTG	CCAAAGAGAA	AGAAAAAGAAA	GCACCCCTAT	AAAATTGTC	TGTTTGAG	TTTGGTTTTT
40	GTGTTATGTT	TTGCTACTGG	AAATCATTCT	GTGCTGGCTT	TGGCTAGGAC	AAGGCCAGTG	CCTGATAGTA
	AAAAGTCTT	GTTTCAATA	TCCTTGCTCT	CACTTTAAAG	TGAATTAAAA	TTTACTGCTT	ATATATGCAT
	CAAACTATC	TCTGTAGCTG	ACACCATGCT	TGAAACAGTC	TCATCACTGC	TAATTATGAG	CCATTCTCAGA
	AGACAGGGTGT	GATGAGAGTT	TTACATTCAA	ATCATGTTCT	CATTATTCTG	CTTTCGAAT	TTTCTAATAT
	GATTCCTTA	GATTAGGAAT	TCTGTCTATT	CCATGCTAAT	GTCTACAAAG	TTTATCAGC	ACATCACAGT
45	TAAGGGGGGG	CAGCAAGAGAA	TTCATTCTTA	ACACATATGA	TCCTTTCCCT	GGCCAAACAT	TAGTTCTTTT
	AAATGAATCT	CAAAGATACG	AGGGTTGCTC	ATCAAATCTG	ATTCTATAG	TTAAAGTGGG	TATTGGTTTT
	TTTTTCACT	GTCCAAGTTT	GAAGATGGTT	GTTCTTAAG	AAAGTATAAA	TCGAAGGATC	TCAAGCTTAC
	CTTCACAAAC	TGGCATTTGC	TGTGTCCACT	GCCCTTGAGT	GGTGCATTCA	ACCTGGGCTG	GTCCCTGCAA
	CATGAAGCCT	TCCTCACAGG	TGAAGTTGCA	GGATGATTG	AAGGTGAACT	CTCCAGCAGG	GGAATGGCTG
50	CACCTCACAG	AGCCATTCTG	AGGCTGGGG	ACGCCCTGC	ATGTACAGC	TGTAACAAAT	ATACGCATTG
	ATATTAGCAC	GGCCTAGAAAT	TAGCTGCC	ATTTCAGTA	TGGGTTGAGA	GAAAGAATGT	TCACAGTAAG
	TCTCCATGTG	GAACAACTCT	ACCTTACAC	GTTGGCTCT	CGTTGTCCCA	ATTCCCAGAT	GAGGTACACT
	GAAGGCTCTG	GGCTCCCATT	AGTCAAATC	CTTCTTCACA	GTCAAATGTA	CAGGGTGTGT	TCCATGGGAA
	GCTTCCAGGG	TTT3GAAAC	ATTCCACGAA	CCCATTGGCT	GGATTGTC	CAGCATCACA	CTCAACCACT
	GAGGATTAA	AAGAGCACCA	TGAATTTTAC	AGAAGAATGA	TCTTTTCACT	TCCTATTGAG	CTGGGTGCCT
55	AACAGAGTGA	GGAAGCTGCC	TTCAAAGGGT	AGATCCAAA	GTCCTATGTC	AATTCTTAGG	GACATGCACA
	GCCAGAATAA	AAGCTTTTAT	TCTTTTCTAT	GGATATTCTA	TCTTTCTGA	TTTCCACTTT	GCCTATGCTG
	AGTGGTCTCT	AATCTATGTT	ATCATTTACG	TGAGGTTAAA	ATTTAAAAAA	AATAGATTCC	AGATTAGGAG
	TTATGACTAG	TACTGACATA	CGTAGGCTAT	TCATTATT	TAGCCCATCA	GAGCCTGAAG	AACTGATT
60	TCTTTTTTG	GCCTCTGGTT	CAGAAAGATA	AAATAAGAG	AGAAAAAGAG	ATACTAAGAC	TGCTTGACTA
	TCATGGTCTT	AAGTTAGTCC	CATGGCTTGG	AAAAGTTAA	CAGGGAAACAA	AGATGAGAAA	TCCATTGAGA
	TTCTAGAGC	TTTATGTTT	TATGGCTCC	CTTACAAATC	ACCAGAGCCT	CAGAAACACC	CATTTCAGC
	ATAGAATAAA	AAAACCTCTC	TCAACCAAG	CAGGTACTGG	GTTGGCAATA	TACATTGGCT	GAGAGAACAA

	ATTGTATTAA	AAACAAAAAC	AAAAAAAAAAA	CTTCCCTGA	AGTTTGAAA	ATGTAAGTTG	AATCAAAAAA	
	CAGAACAAAT	GAGGGATGAG	TTACAGAACG	TTCTGTGCAT	TCTCAGAGGG	ATTTACCATT	GCAGGCTGGA	
5	ATAGGAGCAC	TCCATTCTCC	AGAGGACATA	CACTGCATGG	TCTCCATGCT	GCTTGGCAGG	TAACCCCTAT	
	CACAGCTGAT	AGAC CAGGAA	GAATTGTAGC	TGAAGTTTC	CAGTGGGTGA	CTGCAAACCA	GGCTTCCATG	
10	CTCAGGGGAT	TCCAGGGCTG	TACAGTTCAC	AACTGAAAAA	GAAACCCAAA	TCAGTTCTGC	TCATCTCTCA	
	CCTTAAACAG	ATAA GAACAC	TGGAAACTAG	AACTACAGTT	TGGTTTTTT	TTTTTTAGT	TTAAAAAATT	
	ATAAAATTTC	TAATGGAATT	TGTAAAATTG	ACTGTAATT	TACCCCTTT	CTTTTATTCA	AGAAAATGCT	
	GATCCATAAC	AACAAACAACA	AAAAGCAGT	GATGACAACC	ATAAAAAAGA	AATATTGAGT	GATATGGGA	
15	GAGTAGTGT	ATTGTGTTA	CCTCAAAC	GTTCAAATT	TATGAACAAA	CACAGCAAAC	TTAGGTACCA	
	10	CAACAAATT	CTTGTACTT	TTCTCACAA	TGCTAAAAAT	ACTACAGTAA	GCTTCCAACC	AGGATGAGAA
	CCATTCAAA	AGCITATATT	CAAATTAAAG	TACTAGAATA	CATTACAAAT	TTTAAAACCC	TAATGCTGCA	
	CTGTCTACTA	TAGTAGGCCAC	TATCTGTGT	GCTACTCAA	TTTAAAACCTG	AATTGTTGA	AATCAAATAA	
	CATTAAAT	TCAGTTCCCTC	AGTGTACCA	GCCACATTTC	AAGTACTCAA	TAACCACATG	TGGCTCATAG	
20	GTACACACTG	GAAC ACACAG	CTATGGAA	TTTCCATT	CACAAAAGCT	CTACTGCACA	ACGCTGTGCT	
	15	AAGGAATCTT	GGAC AGAAGC	TCATCTAACT	CTCTTAATGT	ACAAATTAG	GAACGTGAGAC	CTCATTTCAT
	TCAGTGACT	TGCTCCATGC	TACACGGCTA	GTCATTACAG	AGCCAGAGGC	CAGAGCATGA	ACCAAGATAC	
	CCTGGACTCT	GTAACTCACT	CATTCTACT	GCAACGTCTT	GTTACCCACT	AGATGAGGTG	AGTACATGTT	
	CCTCGCAGGG	ACAC AGAATT	ACAGTTTATT	GAATGTGTCC	TGTGTGCCAG	GCACCATGTA	ACCATGAGCC	
25	TATGAAGTT	ACAC TATTAT	TATCCTCATT	TTACAAATGAG	AAAACGTACA	TAGAGAGTTA	AACTATCTG	
	20	TCAGGTGCC	AAAATAAATA	ACTGGTGAAT	CTAGGACTCA	AACCCAGCAG	GGTCTGACTT	
	GTCACGATC	ACCAATATGAC	ACCATCTGCA	CCAGGGAAAGG	GAAGGCATGC	AGACCTGACT	CATAGTCTCA	
	CTAGGACGTG	AGA1GGTGT	ACCATCTAA	GTGAAGAAAG	AGGCAAGAAC	CAGACTTACT	TTGCTCACAC	
	TTGAGTCCAC	TGAAGCCAGG	GTCACACTG	CAAGTGTAA	TATTGATGGT	CTCTACACAT	TCACCGTGCG	
	CACTGCAGGA	TGTA ITGGTA	CAGGCAGCTA	CGGAAAATAC	AAAGCATGAT	GAGGAGGACT	ATTACTGTGCG	
30	TTATACTGAG	TGCCITTGAT	TTAGAATCA	ACAGTGTGCA	ACAGAGACAT	CAGCAGTCCT	ACAGAGTGCC	
	ATAGACTTA	ACTGAAGTGT	TTTACAAAGT	TCCAAATCTG	AGTTTCAGGC	CCACCTATCC	TAAACCTTGA	
	TGCTAATGTA	TAGCTGTGGC	TGGCACCTAC	CGTAGAAAAT	TTACTTCTTC	ACAAACTCTG	AAGACAGTT	
	CCCTACCACA	AATAAACAAAG	TAATTAAAT	ATGATTGTTG	TGTGTGCTT	TTTATATGTA	AAGAACTACA	
	TATTGCTA	CAGTATTAT	ATATATT	TATATATACA	TACACACATA	TATGTGTGTA	TATGTGTGTA	
35	TGTATATATA	AAAAATGTAT	ATAAATGCTG	TAGGCTATAT	ATATATACAC	ACACACATAT	ATGTGTGTT	
	GTATATATGT	GTGT GTGTGT	ATATATATAC	ATATCCACAT	ATTCTTGCCC	ACATTCACAC	AAAACAGCAA	
	AAGAGAGAAA	CTTIAKGAGT	TAACACGAAAT	CTTTGGAAC	ATAAAATGAC	CACAATAGAG	AGCAGTTTT	
	GCATGCTGTA	AATTGCCAA	GATGCCACAC	CACTGAAACT	ACCTCCCACT	GCTGCCGCAA	ACTCCCTACC	
	TGTGTAGCAT	AGGC CAAGCT	TCTTCTTGCT	GCACCTCTCA	TCATTCCACA	TGCCACATC	TTTTCTCTC	
40	TTGATGTAGA	TCTCCACGCA	GTCCTCATCT	TTTGCCTAT	TGTTGGGTT	ACCTGGAGCC	CAGTTCTGG	
	CTTCTCTGT	CAGA GGTTC	TGGGTTCTA	CCCAGACCCA	CACATTGTTG	ACTTTCTGA	TTCCAATCCA	
	GTAATAACTT	GGTGAATAGC	TCAATATGGA	GTTAGGTAC	TCAATCTCTT	CTTTGTTTTG	AATTGCAACC	
	AGGTGTGTG	ACCTTGTCTG	ACAATAAGCA	CTGGCCTCAT	CATAAGTCAT	AGCTCCGTG	GAGGTGTTG	
	AAGACCAGGC	TCCACTCTCT	TTAATGAGAA	GCACAGTGG	GAGAAAAAGA	AAAGAAATGG	TAGAGTTGG	
45	TACTGTTGT	GTAACTCT	GACAACGTG	CTTTTATTG	TCTTATT	GGCAATGTTT	GTGACATGGC	
	CCAGACTTT	CTCACTTTTT	CAAAGTAAG	AAGTACGTAT	GAAGAAACAG	CGACTTATTG	TTTATCTCTT	
	TTGTGACTGC	CACCACTAG	GTACCTTATC	CACACTCACT	CACAACATTA	TAGTATACCC	ATTITGTTAGT	
	AGAATAATAA	TCAGAATAAC	TAAGCTTAT	TGAGCACTTA	GTATGCACCA	AGAACACTG	TATGAGGTAC	
	TTTCCATGAA	CCAT GCTATT	GAATCCTCAC	AATGCATCTG	GGAAATAGGT	CATTATGATC	CACACTTAC	
50	ACTTAAGGAA	AGGGAGACAC	CAAGAGGTA	AGTAAATGAC	CCCAAGCCCA	GGGAAGAACAA	CATTGCGAGT	
	AGAGGTCAAG	GATC CTGCCA	GATATCCTGT	GCAGGACAGC	CCCAGACAAG	CAAGGATATT	TCAGTCTGAA	
	ATATCTATAG	TGCG AGAATG	AGAAATCTTG	GTCTAATGGC	ACTGACTTAC	CCAAAGTGAG	AGCTGAGAGA	
	AACTGTGAAG	CAAT CATGAC	TTCAAGAGTT	CTTTCACCC	AAAGGTTAG	GCTGAAATA	CTTCCCTGGG	
	GAGATAAAAC	ACAA AATGAA	TTAAAGAAGG	AAATCGTGGG	TAGCTAGTTA	CATTATTCTA	CCATGATGTT	
55	TAAGGCAGCA	TCCTAAGATT	TTGGGCAAAG	GACACTAGTG	CAATAATCTT	TATTTCAGAG	TTAATCAAA	
	TAATAAAACA	AATT TAAGA	CTTTCATTAT	TTAGGTCAA	GAGAAAAGAC	AGGTTTTAGC	TACAATACAA	
	TAAGAGCTTG	TACAGATGTG	GTCCCCCTTA	GAAGGCCTT	TGCATATCTG	TGTTTCATGG	CCCGAGGCTG	
	CCCTTATAAA	GCCTCTGCA	CTTACCGTT	TGGGAAGCAG	TTGTTCAAAC	ACAGGATCTC	TCAGGGGGT	
	ATCACTGCTG	CCTCTGCTC	AGGTCACTAT	AGGAGTTTG	ATGTGAAGTC	AGCCAAGAAC	AGCTGAACAC	
60	TACTTCGGCT	GAGGCCCTT	TATAGGAGGG	ATTGCTTCT	GTGAATAATA	GGAGGATATT	GTCCACATCC	
	AGTAAAGAGG	AAATCCCCAA	TGGCATCAA	AAACTTCCC	GGGAATATCC	ACGATGCTTA	AAATTACAAT	
	GATGTCAGAA	ACTCTGTCTC	TTGAAGCTAC	TTCACCTTG	TCCATGCCCT	TATATCGTAT	ATGCAATT	
	ATTAATATGA	CAAAAATGCA	TGATTTTAA	TTATAATAAC	ATAAAAGCTA	TGTCTTAAA	AAGTTGTA	
	ACTTTGCTTG	TTAG AGTGT	CTCTCATGTA	GTTGTGGTAG	TAATTAGAAT	TTCAGAAACA	GAAGGAAACC	
	AAGAATAGGT	TTGICATCCA	TAGTCTACTA	CCTTCAATT	CTCATTCTATA	GCTGTGGATA	ACCAATCACT	
	ACTCATT	TCTCTTTT	TCACCTGCCA	ATTCAACATA	TTTAACATGTC	ACTGTCTCAC	AGAGGAATGA	
	CTCACAAAGGT	AGATATTAAT	CTTCAGATT	TGCACGGCAG	TTATGCCTAA	ATTAAAATAT	TATCTAAAAA	

	TAATATCTAA	CACTCAAATG	GTTAAAATAA	TGCCATTATTT	AAAAAAAAGA	AAAATGGGAA	ATAGATATT
	ACATCTGGGA	AAGTTTCATG	GTTCGTTAG	TGAAAAAAAT	AAAAAGGAGG	CCAGGCACAG	TGGCTCACCGC
5	CTGTAATCCC	ACCACTTGG	GAGGCCGAGG	CAGGCCGATC	ACCTGAGGCC	GGGAGTTCAA	GACCAGCCTG
	ACCAACATGG	AGAAACGCCA	TCTCTACTAA	AAATACAAAA	TTAGCTGGC	ATGGTGGCGC	ATGCCTGTAA
10	TCCCAGCTAC	TCGGGAGGCT	GAGGCAGGAG	AATCGCTTGA	ACCCGGGAAG	TGGAGGTTGC	AGTGAGCCAA
	GATCACGCCA	GTGCACTCCA	GCCTGGAAA	CGAGTGAAAC	TCTGTCTTAA	AAAAAAAAGA	AAAAAAAAGA
	AAGAAAAGAA	AAAATATAAA	ACGGAAAAC	ATATATATAT	ATTTAATTGG	TCAAAATTTT	GTTTAAAATT
	TTTGAATGT	TAATGTGCAA	AGAATAAAAA	TTCTTCCACA	ATGTTAACAG	TGACTAACCT	TGGATGGCAG
15	GATTGGGAT	AATTTTATA	TCCTTCATTA	TTATTTTCAG	GATTTAAAG	TTTTTCAAA	TTTCCCTTTT
	TTTCACCTT	ATAGTAACAA	GAATACAGTT	TAAAGAAAAC	TGTCTCTAGG	CCAGGCATGA	TGGCTCATGC
	CTGTAATCCC	AGCACTTGG	GAGGCTGAGG	TGGGTTGATC	ACCTGAGGTC	AGGAGTTCCA	GACCAGCGTG
	GCCAATATGG	TGAAACCTG	TCTCTACTAA	AAATACAAAA	ATTAGCCGGG	GTGTAGTGGC	GCATGCCTGT
20	AATCCCAGCT	ACTGGGGAGC	CTGATGCAAG	AGAATCGCTT	GAACCCAGGA	GGCAGAGGTT	GCAGTGAGCT
	GAAATCACAC	CATTGCACTC	CAGCCTGGC	GACAGAGCAA	GACTCCATCT	CAAAAAAAAGA	AAAAAAAAGA
25	AAAAGAAAAG	AAAAGAAATT	TGTTTCCAAA	TGCAACAGAA	GGAGATGTAT	GTGGTATCCT	ATATTCCCTGC
	TCTTCATTT	GACAATTCTT	CTGGGTGATT	GTATACATTC	CCCCATCTCG	CATCTTACCC	TATCTAAATG
	ATGGTAACAG	TAATGGGGAA	TCATTITTAAT	TTCCATATTTC	TGTAGGTTT	CAGAGCTCAA	GTCAAGCTAA
	TATTCTATAT	CTACAGCCTT	TCAAAATAGG	AGGTCATATCT	AAAAATGTAC	TGTCAAGCAGA	CCTGAACGAG
30	TAGTGGTAAA	AGCCTCGTTT	TTCTCTTAC	TTGTTAGCAC	TGGTCTTCT	GTGTTCTAA	AGATGTCAAG
	ACCCAAAAAA	AAAACAAGAA	AAGAGAAGAA	AAATTCCAAA	AAAGACAAC	GATTAGAAAA	AAATAACTTA
	ATTAACGAAT	TTAATTCAAC	CCCTATCAA	AAGCATAGAA	TTTATTCCCT	CCACCTTACC	ACTCTCTTAC
	ATGATCCAGA	TACI GACATT	ATTCCAATTC	TTTATCCAC	TTTACTTAGC	TCAATGTGGT	TGTTGCTTCA
35	ATAAATTCA	AAGAGTAATC	ACTCATATAG	TGTTTATTAA	GATTTTAGGG	CAGAATGTCA	AGTTGGGTTA
	ATACATTATC	TGTA TGTATT	TTATTTTAA	TAAAGTATGA	ATACATAATC	TGCTATTTTT	AAAAAGCATG
40	GTCAAATGTA	TAGAGTAGGCC	AAATCTTAA	AAACAATTAA	TCTTCGATAT	CAATAAAAGTA	CCTAATAATT
	ATATTGCTAA	TAGAAATTAG	TCGTTAACAT	CCCTAGATAA	CTAACTTTAT	TATTGCGAAT	TTTCATAAAC
	TAAGTTTATA	GTTCATCTCT	TCCCCTTTT	AAAATTAGTT	CAAAGATATC	AAAAATAGC	CCCAGTGGTG
	ATGAAGTTTC	TATTITACTT	ACATATATAT	GTCCTGGACC	CCCATTATA	ATCTCTAACAA	TTTATTGAGT
45	GCTTACTATG	TGGCAGGCCA	TATTCTGAGC	ATTTTGTATG	TTCACCTATT	GATTATTCAA	TCCGTACAAC
	AGCCTATGAA	ATACGTACTC	CTATTATCCC	CATTITACAG	ATGAGGAAT	TGAGAATCTG	GGGATTTTAT
	CTCATTCAAA	AGCACAGAGC	TAAGGGTTGA	AACCAGGCAG	TTGATATCC	GAGCCCACTC	CCTTACCTGC
	TACTCCAAAC	CATCATTCT	TTTGTGTTA	TGCCCCGAGA	TTCTTGTTC	TACCCAAGTT	TCCTGTACTC
50	TTCTTGCCCT	CTTC'CCCG	AGACATCCTT	GACCATCACA	GCTCTCCACT	GAGATAACTG	TGTCCTGGGT
	TCTGAGACAT	GGGG GCTGGA	AGGGACCCCA	GGGACAGTGA	GCAGTAGGG	GAGGATGCAG	TGAGAACAGA
	CCCTGGATCC	CCGG'GCATA	GGCAGGGAGA	AAAGTGGACAA	AGGAAAAAAC	AAGCAAGGCA	GGTGGAGCCA
	TGCCTAGGTA	AAAGTGTATCC	CTAAGCCACA	GTTCCCAGAA	GTTCTGATT	CAAAGCAAA	TTTTCTCTAA
55	GGTCAAAGGG	CAAATGTGATT	ATTCTAAATT	CTAAACTGAT	TATTTCTAAA	TTGAGAAAGC	TTCAGGGAGA
	GATCCAATA	TTCGAAGGAT	AAGAGAAATG	AGGAGTGGAA	GAGATAGGTG	AGTAACAGTA	ACTTAAATGT
	AGACTATATA	TAATATATAA	TATATGTAGA	GTATATATAT	ATAATTACAA	TATATTATAT	ATGTGGAATA
60	TATATATTAT	TTATATATAT	TTATATATT	TATATATATA	GATATTTTA	TATTTTATAT	ATAAAATATAG
	ATATTTTTAT	ATTTATATA	TAATATAGA	TATTTTTATA	TATATTATAT	ATAAAATATAT	GTAAAATACT
	GTGAAAGAAG	AATA GAATCT	TGAGACCTCA	AATTCACTAT	GCCAAAGGG	AAAGTAAGCT	TGGGAAATGA
	GTCATGCAA	AACTGCCCTC	CTTTGTCTCC	CAAATACCTG	TAATTCACA	TGCTTACTTT	ATCTTATATA
	AAATGTAGAT	GTACTGAGCA	TGAGATCCAT	GCATAATTTC	CCTCTAGTCC	CTTCTTTITA	CATGTAAGT
65	GTAGACTCAC	TGAGTGTTC	AGAGCCTGC	CACAATGTAA	ACACTTGCT	CATTGCCAAC	CCATCTTTCG
	TTTATTTCT	CCCCCTCCCG	CTTGCTCTT	CCCCCTCTAA	GATGGAAGTT	CCCAAAACTC	TCTTGGAAA
	AAGCGCAGGT	CACAGATCCT	ACAGTGATTT	GTGTTCTTT	TACCTGGGAC	AAAATAAAC	TCTAATCTGT
	TGAGATATGC	TTCAGTTACT	TTTGGTTTA	CAATATGTAC	ATGTATGTAT	ATAATTATA	TGTATATAAT
70	ATATGTACTT	GTTTAACCA	GAGGTATGTT	ATTCAAAATC	CATTATCCT	TACAATTACC	TGCATTCTCC
	CACAGTATTT	TCTG'GTCCC	TGCCCCCGAG	GTTGTCACTG	CAAATCAGGT	ACATGGATAC	TGGGAGCTGA
	TGGGCTCCCC	TCTG'GCTACC	TGGGCTGCTG	AAGGGGCCAT	AGACAGACCC	AGCTTCCCTC	TCGTGGAGAG
	GCCCTGGGCC	AGCC CTGCGT	GGGAGTGGGA	TTACAACCAG	ACTATAGCTT	CTTCACCTGC	TTTTTCCCTAT
75	CAGGATTTC	TAAGAGGCAA	TTGCTTGT	TTTGAGGGTG	GGGGCAAATC	AGGGGGAGTT	GAAGAGGAAA
	TTGGGTAAGA	TTTGAAATAGT	TGGGCATTT	GAATATTATG	AATATCATCT	CCCTCTTCAA	ATAATCCAAA
	ATATACCCCC	AAGAAACAGG	CTGATTAGAG	GTGCTTCAAG	GCTCCACTGA	ATCTCCCAAG	CTCTGAAGAT
	GTAGCTAGCT	GTTACCGGAT	TGCCGGTTTT	CAAGCCTCGC	CTCACATGGA	CCCTCTTGGC	AGTTTCTCGC
	ATGGGGAAAG	CATCCGCTAC	ATAGATGGGA	ATGAAAAGAG	GAAAGAAGAC	GGTGCACACT	CAGGCACACC
	CCGGTGTCTG	CCACCAGTGC	TATTTAATCT	CTGAGGTGTC	ACCCCTCTG	GCTTTATTGT	CTCTTCCCTGG
80	AAGTCTCTG	TCCTCTCTC	CACACCTTT	AATCAGGCAT	CAAAGACTTT	AACCAGTTT	GCTGTGTGCC
	CAGGCCACT	CATTCTCACT	TTTATGGCAA	AGGGAGTGGG	AGACAGAGAG	ATAGCCAGAA	AGAAGAGATT
	GGGACCCCA	AGAC AAATGT	TAGAATTAA	ACCAAGGCAA	CCCTGTGGAC	AGGAGATTAT	TGGGTTTAGT
	GAAAGCAGC	ACTGGCCACA	ACCACACGTG	GCAAAAGCAT	CTATCGAGGA	GTGAAGTTAT	ATTTGGTGA

	TGTGACCGGG	AAGCAGGGC	AGTGGTGTCC	TCCTGCCTTC	CTGAGGCACT	CTGTTCCCTT	ACCTCTCGA
	AGGCTTATT	TACCCCTGAG	TGCTTAGTT	TGAAAGCCTT	AGTCCCCTCT	CTCCCATAAA	AAAGCTCTAC
	TCTGCTAAC	TCTAAGTTAC	CTTGCAAG	TCTTAGGTAG	AGGGAGGAAA	TCCCAATAAA	GATTCCACCC
	TATCTGAAA	ATACAAACAT	GGTATTCTT	GCATCCCCTA	AATTGTGAAA	GAAAATGTGT	ATCACCAACAG
5	TAGAGAATGG	CATTTTTGT	TTGATCAAA	CCTAAATATA	TTTGATGAAA	ATGTGTCTGG	TTCTAAGTTT
	ATTCCCCAGA	AAGCAGTGT	TACTCACTT	GAATTATAG	ACATCTTATA	ATATCTGAGT	CGAGTAGGAG
	CTCCGGCTC	TACCTCACTC	TTTCTCCCA	CACCCAGGGG	GAAGTGTAGG	GTTCTCAGAC	TTTAGAATAA
	AGAGGAATCA	CCTC GACAAC	TCACCTAAAA	TGCACATCTT	CAGGTCTCAT	ACTCAGAGGC	TCTGACTCAA
10	CAGGTCTGGG	TGGGCCAA	GAATTGGGC	TTTAAATGAG	TATCTCAGAT	GATTCTAATA	CAGAATGTGT
	AAGATGACCA	GATCCTATCA	CACTTAGAT	TATTGCCATA	GGGCCACCTA	ACTTGGAGAA	AATGTTAGTA
	AGACCCGTG	GTTCGTGCTC	AGCTATAGGT	ACCAGAATT	TGATCAAAT	TTACTATCAT	TGTGACACTT
	CTCTTCGAA	CTGGAAAGCC	AGAACCCAC	TTGTAAGTG	CTGGGAAAT	ACAAGGAAAA	TTTAGGGTGA
	GTAGCATT	GAATCTTAC	ACATGGAAAG	TAATGTATA	AGAATTCTTA	CCAATAAAAA	AAAAGCAAGA
15	GAGAATAGCT	GCTAAGAAAT	TAACACAAAT	ATGTATATAT	TAGTTATTCT	CTTTCTCCT	CTGATTCCAG
	AGGACTTTGT	AATTCCTACTA	ATTCTTCTT	AGCTTCCAGG	ATGATCTGAG	ACTTGAATT	TTCATGTGCT
	TTTGCTTCC	TATTGGCAG	CATCTTATCT	TGAAGTTCC	GCTTTCTGCT	TGGGACCTA	AAAACTAACT
	AATGGGAATT	TCTTCAAAT	GAGCAAAC	TGGTGAATT	CCAAAGCGGA	AGAAACAAGT	GAGGATCAGG
	CTGGTTAATT	AAGAGAACTT	TTCCCTGAATG	TAGCCAGACT	GTGTCGAC	TGTTGTTAAC	ATGAGGGAAAG
20	AAATACCCCT	GGATTTAGA	AGAGCCCCTT	GTGGGTTTC	CTTGGCCATT	TGTGCTGCTT	TTTTGTAAAG
	TCAGAAATT	CCTGAAGGAC	TATTATTAGC	TTTGTCTCA	CGTCAGAAAA	CTTCTGCTCT	GGCCACTTTT
	AAACATATAA	CTTGGATTTT	ACTGTATTAG	AAAATGTAAC	AATTACAGAC	AGCACTAAAA	GGACACCAAA
	GGGCAAAGAA	AATGGGTAAAC	TTTTTTTCT	TCCCCAAATC	TAAAATAGGT	GATTTGGAG	AAGTAGGAGA
	AAAACCTGGA	TTTCTAGAT	CTCTTCTAG	CTCAACAACT	GATAGTTA	ATTATGTAAG	TCTTTGATAT
25	TTGGAAATGA	TTGGATTAAC	CGGATAACAA	TGAATATT	AATACAGTGA	TTTGGCCAGG	AGCAGTGGCT
	CATGCCIGTA	ATCC CAGCAT	TTGGGGAGGC	TGAGGCGGGT	GGATCACCTA	AGGCCGGGAG	TTCCAGACCA
	GCCTGGCCAA	CATGGTGAAA	CCCCATCTCT	ACTAAAAATA	CAAATTAGC	CAGGCGTGGT	GGTCAAGAC
	TGTAATCCCA	GCAACTCGGG	AGGCTGAGGC	AGGAGAATTG	CTTGAACCCG	GGAGGCAGAG	GTGCACTGTA
	GCCAAGATCA	CGCATTGCA	CTCCAGCCTG	GGCAACAAAGA	GCGAAATTCC	ATCTCAATAA	ATAAATAAAT
30	AAATACAGT	ATTAAACACA	AGAGATTCT	ATTTCACACT	AATGAGCTCT	GTCACTGGGG	CAAGCTTCTT
	TGCCTCATTA	AGTCTCAGAT	TTCCCGAGAG	CTTATTATT	TATACCAAGA	GTGCTTACT	ACCGTCTCTG
	CTAGCTGTGA	CATAATATGA	CAAAGGTAT	AAATATGGGA	AAAGGCACTA	ATTATATATCA	AAGCGTTCTT
	CGTTTTCTCCT	TGCTGTGAAG	TTTTTAGCTA	ATAATTCTA	AGAATATACC	ATATTAGAG	TGTTTACTAT
	GCATGGGCCT	GGCACTTCAC	ATACATTGCT	TCTTACAAAT	TTTACAAAGT	GAAAGGTAGA	TATTAATCTC
35	ATTTTATGGA	GGACAAGATA	GAGATCTGG	GAGGTTACAT	AACTTGCCAG	TGTTTTTCA	GTTAATAAAT
	GGTAGGGTGG	AGA TCAATC	TGTGTTACTC	TAAGTCCGT	GTCCTTTTA	TTGGCTCCAT	GCCTACTCAG
	ATTTAAATCT	CAGCAGGGAA	GTAAACCTTA	GTGTTACAT	GAGAAAATGT	TACAGCAGCC	TTCTCGGCTT
	CCTTACCCC	CATCCAGTT	TCACGAGCTT	AGTGCCTTAG	ATCGGGTTCC	TTAGAAGCA	GACCTCGAAA
	TAAGGATGTG	GGTGCAGTC	ATTTATTGAA	AAGATGATCC	CAAGAAAGCC	TAGTAGGAGA	GTGAGGAAGT
40	GAGATGGGA	AAGGAAGAAA	CTCCACAAGA	AGTGTGTTAA	TAAGCAGGTT	ACCGCTGTGG	GCAGCCATGG
	GGCTCAGCTG	CACTAACAA	CTCTGTCTAG	TACAGAAAAC	CTCAGGGTCT	CCCCAAGGAG	GGGCAAGAAG
	TCTGCTTAGG	GTATATATCC	GCCAACCTAG	TCACTGGCTG	AGAGCTGATC	CTGGGAGGGC	ATGGTTAATT
	CCTCTGCACT	TTCAAGTGG	TTCTGTGGT	CAGAAAAAGC	CCTCTACAAT	GAATTCCAGA	TGCTTGTATT
	TAATCTGAC	ATGATCTGAA	TGCTGTGTTG	GGACAGGGTG	GGCGTTATTA	GTTTCTGTTC	ATTACTGTAA
45	CAGATTACTA	CAAACCTGAT	GGCTGCAAC	AACACATATT	TATTATGTC	TAGTTGTGT	GGGTCAAGAAG
	TACAGGTAG	CTCAACTAGT	TTCTCTGCTC	TAGGTTTCAC	ATTGCCAATA	TCAAGGTGTC	ATCCAGTTGG
	GCTCTCTTG	GGAGGCTTG	GGATGAATCC	ACTTCAAGC	TCATTCAAGAT	TGTTGGCAGA	ATCCAGTTCC
	TTGTGGTTGC	AGGACCAAGG	TCCTGTGTC	CTTGCTGGCT	GTTGGCCAGG	AGTCATTCTT	AGCTTCTAGA
	GACTACCTGT	ACTCTCTGAC	TCGTGTCTCC	ACTTCACCTT	TCAAACCAAGC	AGCGGCTAGT	CGAGTCCCTC
50	TCTTCAAATG	TCTCAACTG	TGCCTTCACC	TCATTTCTCC	TCTGTGTACC	ATGTCCTGCCT	CTACTGCTTG
	TAAGGGCTCA	TGGCATTACA	TTGGATTAT	TCAATCCAGG	ATAATCTCA	TATTTAAGG	CTAGCTGA
	AGTGTCTTA	ATCCCATCTA	CAAAGCTCT	TCCAATAGTA	CTGTATTAGT	CCATTTCAT	GCTACTGATA
	AAGACATACC	CAACACTGGG	CAATTCAAA	AAGAAAGAGG	TTTAATTAGA	TTTACAGTTTC	CACATGGCTG
	GGGAAGCCTC	ACAATCATGG	CAGAAGTCAA	GGAAGAGCAA	GTCATGTCTT	ACATAGATGG	CAGCAGGCAA
	AGAGAGAGAG	CTTGTGCAAG	GAACCTCT	TTTAAAACC	ATCAGATCTC	ATAATACTTA	TTCACATATCA
55	CAAGAACAGC	ATGGGAAAGT	CTTGCCCCCA	TGATTCAATT	ACTCCCACCA	GGTCCCTCCC	ACAACATGCA
	GGAAATTCAAG	ATGAGATTG	TGTGGGACA	CAGCCAAACC	ATATCAAGTA	CCTAGATTCA	TGTTTGATT
	AACAACCAGG	GAGCAGAAAT	CTTCAGGAGT	GGGGGGCATC	TTTAGAATT	TGCCCAACAA	GGCTGGGCGC
	GGTGGCTCAC	ACCTGTAATC	CCAGCACTT	GGGAGGCCAA	GGTGGGTGGA	TCATGAGGTC	AAGAGATCGA
	GACCACCTG	GCCATGGTGA	AACCCATT	CTACTAAAAAA	TACAAAAATT	AGCCAGGTAT	GGTGGTGGGC
60	ACCTGTAGTC	CCAGCTACTC	AGGAGGCTGA	GGTAGGAGAA	TCACTTGAAAC	CCAGGAAGCG	GAGGTTGCAG
	TGAGCCAAGA	TTGCGCCGCT	GCACCTCAC	CTGGGAGAC	GAGCAAGACT	GTCTAAAAAA	AAAAGAATT
	TGCCCACAT	AGTAAGCTGT	CCTACAGAGA	CATAACCCAG	GAATTAGGTG	AATGGCTAAC	CTAAATTAGC

	ACTGTGATGT	GTTTCTGAC	TTGGTCCTTA	TAGCTCCTCT	GCTTAGATGT	GGAACTAATC	CATGAATGCA
	AGGGTTGTC	TAGAGTTTA	AGTGGGAGTT	AAATATCCAA	AGTACAGGGAG	ATATTATGGG	TGCCTCATCC
	ATGCCCCCT	GGCATTATC	TTTCTTGGAT	AACCCAACCTC	TATTAGTTT	TATATCTCAC	TTGTTCTAT
5	ACTCTGTGAA	CTGATGTCCC	ATAAATAGAC	ATTTCATTTC	GCCAGTCTTC	TTGAACAATA	ATTACGATTA
	TTAACATCTAGC	AGTTATCATT	AATTGGCCAC	TTCACATTAG	ACACAGCACT	TAGGACTTAA	GAATACCATG
	TCATTTGATC	ATCATTAATAT	GGTCAGGAAT	TAAGTATTGC	TATCCAATT	TTACAAAGAA	GGCACTGAGG
	GTTAGAGTTT	AAATAACTTG	CTTAAGATGT	CATAGCCTGT	AAGTGACAAA	ACTAGGACTC	AAATACAGGT
	CCATCTGACT	CCAAAGTCTA	TGTTCTTGGC	TACCACACTG	CCTCTCTAC	AAGTGACCTG	TGGTTTACT
10	ACTATATTCA	CACTCTACTA	ACTTTACCAT	CTCCCATGAG	TCTGTCTAGA	GGAGGGCACA	CACAGCACAG
	AAAACACATG	AATC CAAAT	AAGGAAGGGC	CTACTTACTA	CACAGAGCCA	TTCTAATACC	TGATGTTGC
	TCTAACTCCAG	TTTTACTATT	AATTAGTTC	TGGTGCCTAA	GTTTTTACTG	AGAAATGGGG	ATAATTITGG
	AAGTCATAAT	GATC CTTCT	TCTCATAGGG	TATTTTATTT	GTTGTTGTAT	CTCCAGGCC	CAACACAGCC
	TGGCTTTAG	AAAATGATCA	AAAATACCTG	TTGAATGAAT	AAATGGAGTC	ACCTGAAACA	TGTTAAACAT
15	TTGTTCATGT	GTCC AATCG	TGGATTTCAG	GATAGTAAGC	ATCCTAAAAG	GAAAGCATGC	ACACTGTTCT
	TGCTACATTA	ATTTCACACA	ATATAAAAAAA	AGAAAAGCAT	CTGAAAAAAAG	CTGCCAGCCG	CTGTGTCTCC
	TAATATCAAA	CTGA GACAG	ATATGGAGAA	GCTAAAGGGAG	AGGGATGATG	GGCCATGCCT	CTAACCTCAT
	CATGGCAAAA	GTCCCTGGGGG	TCAGACCCGA	GGAGAGCAGG	AAGTGTCTT	TGAGGGATAC	ATTTCACAG
	TGGAATAAT	GAGA CTTAAA	TAATATTAT	ATACACAGTT	CAACTGTTT	TATGTGTAAA	GGTAGTAGGT
20	TTTCACAGTA	AGGA AGCACT	TCTTTTTT	TTTGTGAG	ACAGAGTCTC	GCTCTGTCTC	CCAGCCTGGA
	GTACAGTGGT	GCTATCTCGG	CTCACTGCA	TCTCTGCCTC	CTGGATTCAA	GTGATTCTCC	TGCCTCAGCC
	TCCCGAGTAG	CTGGGACAAAC	AGGTGTGTC	CATTACACCT	GGCTAATT	TGTATTTTA	GCAGAGATGC
	GGTTTCACCA	TGTT GGCAG	GCTGATCTG	AACTCCTGAC	CTCAGGTGTT	CTGCCCGCCT	CTGCCTCCCA
	ATGTGCTGGG	ATTACAGGCA	TGAGCCACTG	CACTCACCAA	GCACCTCTAC	TGATAGCATT	TACAAACCC
25	TCTTAGAATA	TTTA AAAATT	CTAACAGAG	AGTAAATTGA	GCCTCCCCAA	CTAATACTAG	GAGGTTATAA
	CCTTCATACC	AAAA CTGGAC	AATGCTGCA	CAAAGAAGG	AAGCCAATGA	GGCCACCTAG	AAGGAAGACT
	GGGCATTGGG	CCCAGTGAGT	CCTGGAAC	TCATCTGTC	CAGCCACCCC	GGCATGGCCT	GTATGAGTGG
	ATGAGGGTGA	CTTGTCCACA	GACAATAGCC	ATCTAGCTG	GATAAAGGAG	TCAAGGTAGT	CAGCTGCATC
	TCTTCACCT	GTTC CCAAT	GTTACACAGG	TTGAAAAGCT	AAGGTTATG	TAAGCAAGC	ATCAAAGATG
30	ATGAAATGAT	CAACCTGACA	ATGAGTACTA	TGCTGCATTG	TCCAGAAAGG	AACTGTGGAA	GATTTGGGC
	TGAATTCAA	AACAGAATT	CCTCACTCTC	TGGATGTTGG	CTTACITGGC	CTTGATGTT	CAGAGGTGGT
	GCCTTTGTT	TGTTGAACAA	TGTTGATT	GGAGAGAAAA	CAGAGTGA	AAACCCACAA	GTCATTCCCT
	GGGGAGTATT	ACCGGAATAC	AGAGGATAAT	TTCAGCAAGC	CAGCAAGGCC	TCATCTCTGC	TTCTAAATAGA
	TAGGAAGAAA	GGA GAGAGG	AAACAATACTT	TTTAAGAAG	CTCAGCTTA	TCGCCTTATC	TCATAGAAAG
35	ATGCCCTCAG	TCTGCTCTGGC	TAAGGTAAT	TGGCATGGG	AAGTCTTAT	CTGTGATTCT	AACAAGTGGA
	ATGTTCCCT	TCAT AAGAG	AGCCTTGCT	GGCTGGGG	AATGAAACAC	TTTCTCCGAT	ATGAGTGGC
	TGTAACCCCT	GCTA CAAAT	ACTCAGAAGA	AATAAGGCGG	TTGTGGAGCA	GTCAGGAATG	AGTCACITGC
	CTCCCTGGAA	TATT CAGAAA	ACTGAATCAA	AAGTACATT	TTCTGGGTT	TCTTAGTCTA	ATAGACTAAG
	GGTCTCTACT	TTGT AAATT	TCTGGGAAAC	AGCATAGAAT	GGGAGAAAAA	ACTGGTCACT	GTAGTCATGC
	AAATCTGCAA	AAAC AACAAA	AAAGCTGGG	TATTGCTGCT	AACTAGCTAT	GTGACCTAA	GCAAGGTATT
40	AACTCTCTC	GAATTTCAGG	TTCTTCATCT	GTTAAATAGC	ATATCTGTA	AATGGGAATT	ATTTCTATAT
	CATAATGCTG	TAGC ITTAAA	AAATAAAATA	AAATGGATGA	GATAATCAGA	ATAAAGAGC	CTGGGATATA
	TAGTTAATAT	ATAGCAGCAT	GTAAAGATCC	TGTTAGAAAT	GCTAATT	CAGTTAACCA	TTTGGAGATG
	ATCCGCCAA	GCTGCTAGTG	TAGAGGCAAC	TGAGAATT	CCTGCTCTC	AGAATATGAA	TAATAACTG
	TCAATGATGT	CTCA AGCCTA	AAAAACCTA	TCCATCTGGA	TGGGTGGGAA	ATTCTAGGC	TAGTATTGAG
45	AAGCCATT	CTTG GGAAT	AGGTCTGG	CTGAGTGAAG	GAAAAGAAC	AGTAAAACCC	ATGGTAAAGC
	AGCAAGGCTC	TCTAGAGGCT	CTGGAGAGGA	TGAATTGAAT	TCTAGAAGAT	GAAGTAGGGA	AGACGCTTTA
	CCTCTTGTG	AAAT GATT	AAAGATTCAA	AGACCTCGG	GAATCTCAA	TTGTATAAAT	GGCACCATAG
	CTGTATGTT	CATG GAAACAC	TACTTCCAG	AGATGCCAG	TGAAAAAAAGA	ATGCCACAGT	CAAATAAGTT
	TGGAAACACT	CCATTATGTG	GCCACCTCT	TGAAGACTCT	AATGCACATT	AGCATGTTAA	ACAGTCTTGA
50	GAAGTCTG	AGAC CAGAAA	TTGCTCACA	TCTGCTAAGC	CGGCAGTTTC	CCAATATACT	TGATTATGGA
	TAGTTTTTC	CTTACAACAC	CATTCTCTGA	TATGCTTCA	ATGACATGAA	ATAAATATAT	ATGCATGAGG
	TTCTTCATTA	GGGC ATACTT	TTTAATAGAA	AATATTGAGA	ATAATCTAA	TATAAATGCA	CAGCATTAC
	CTTTCTGCA	TAAACATAT	ACAGGCATAC	CTTGGAGATA	CTATGGTT	GGTCCCACAA	ATATCTCAA
	AACCACATT	GGTT TTATGA	CCACTGCCAT	AAAACCAGCC	ACATGAATT	TTTGGTTTCC	CAATGTATAT
55	CAAAGTTACA	TTTT TACTAT	ACCATAGTCT	ATTATATATA	CAATAGCATT	ATATCTAAA	AACAACGTAA
	ACACCTTAAT	TTAAGGCTGT	GGCTGGTTG	ATTTCCTACC	CAGACCACTA	AAACTTTCTT	CATATCAGCA
	ATAAGGCTGT	TTCA CTTCT	TACTATT	TGTGATAGCA	CTTTCTCTT	CCTTCAGAA	TTTTCTTT
	CTATTCAAA	TTGTTTGAT	ACAAGAGGAC	TAGATTTAG	CTTATCTCAG	TTAAGGTGT	TTACATTGTT
	AGCTAAAAAT	GCTA ATGATC	ATCTGAGACT	TCAGCAAGTC	ATAATCTTT	GCTGGTGGAA	GGTCTTGCCT
60	CAGTGTGAT	GTCT GCTGAC	TGGGTGGCT	TGGCAATTTC	TTAAAGTAAG	ACAACAATCA	AGTTTGACAT
	ATCAATTGAC	CCTI CCTGTC	ATAAAATGATT	TTTTTTTCT	CTGTAGCCTG	CAATGCTCTT	TGATAGCATT
	TTACCCACAG	TAGA ATTTC	AAAATTGGAG	TCAATCCTT	CAAACACTCTGG	TGCTGTTTTA	TCAACTAAGT

	TTATGGAGTA	TTAGAAATCC	CTTGTGTC	TTCAACAAT	GTCACACCA	TCTTCCCCAG	GAGTATATT
	TACCTCAAGA	AACC ACTTTC	TTTGCTCATC	TATAAGAAC	AGCTCCTCAT	CCACTAAAGT	TTTATCCTGA
	GATTGCAACA	ATTC AGTTAC	ATCTTCAGGC	TCTACTTCTA	ATTCTAGTTC	TCTTGTGTT	TCTATCTCAT
5	TTGTGCTTAC	TTTC CCGCT	GAAGTCTGA	ACCCCTAAA	GTCACTCATG	AGGGTTGGAA	TCAACTTCTT
	ACAAACTCCT	GTTGATGTTG	ATATTTGAC	CTGCTCCC	GATTATGGGG	TATTCTTAAT	GGCATCTAGA
	ATGGTGAACG	TTTCAGAAG	GTTTCAAGT	GGCTTGGCC	GGATCCATCA	GACGAATCCC	TATCTATGGA
	AGCTATAGAT	TTATAAAATG	TATTCTTTT	TTTGTGGGGG	CATAGCGTCT	CACCCGTCA	CCCAACCTGG
	AATGCACTGG	CACAGTCATA	ACTCACTGAA	GACTCAAAC	CCTGGGCTCA	AGTGAATTCTT	CCACCTTGGC
10	CTCCCCAAAC	ACTGGATTAC	AAGCTGAGC	CACTGTGTC	AGCCCCAAAT	GTATATCATA	ACTAATGAGG
	CTTGAAGTC	AAAGTGACTC	CTTGATCCAT	GGGCTACAGA	ATGGACGCTG	GGTACCCAGA	CATGAAAAACA
	ATACTCATCT	CCTCATACAT	CTCCCTCAGA	GCTCTGGGT	GAGCAGGCC	ATTGCAAAT	GAGCAGTAGT
	ATCTTGAAG	AAATTTTTT	TCTGAGCAGT	AGATCTCCAC	AGTGGACTTA	AAATAGTCAG	TAAACTATGC
	TGTAAACAGA	AGTC CTGTCA	TCCAAGCTCT	GTTTTCCAC	TGATAGGGCA	AAAGCAGAGT	AGATTTGGCA
15	TAATTCTCTA	GGGCCCTTAGG	ATTTTGAA	TGGCAAATTG	AGCATTGGCT	TCAACTTTTT	TTTTTTTTT
	TTTTTTGAG	ACAGAGTCTT	GGTCTGTCAC	CCAGGCTGGA	GTGCACTGGT	GCAATCTCGG	CCCACTGCAA
	GCTCTGCCTC	CTAG GTTCAC	ACCATTCTCC	TGCTCTGCC	TCCTGAGTAG	CTGGGACTAC	AGGCACCCGC
	CACCATGCC	GGCTAATT	TTGTATTTA	GTACAGACGG	GGTTTCGCCA	TGTTAGCCAG	GATGGTCTCG
	ATCTCCTGAC	CTCGTGTATCC	ACCCGCTCG	GCCTCCAAA	GTGCTGGGT	TACAGGCGTG	AGCCACAGCG
20	CCCAGCCTGT	CTTC AACTTA	AAAGTCGCCAG	CTGTGTTAGC	CTCTAATAAG	AGAGTCTGCC	TGTCCTTCA
	AGCTTGAAG	CCAGGCACTCA	TTCTCTTCTC	TAGCTATGAA	AATCTTAGAT	AGCATCTTCT	CCCAATAGGA
	AGCCATT	TATG CCTCAA	AAATCTGTCG	TTTGGTGTAG	CCACCTTCAT	CATTGATCTT	ACCTAGATCC
	GCTGGATAAC	TTACCACAGT	GTCTACATCA	TTACTTCTGC	TTCACCTTGC	ACTTTATGT	TATGGGATG
	GCTCTTTC	TCTAACCTCA	TAACACTAAC	TCCACTAGCC	TCACATTCTT	CTTTTACAGC	TTCCCTCGCT
25	CTCTCAGAGT	TCACAGAATT	GAAGAATGTT	GGGCCTTGG	TTACACTTTG	TTTAAGGGGA	ATGCTGTGGC
	TGGTTGATT	TTCTATCCAG	AAACACTAAA	CTTCTTCAT	ATCAGCAATA	AGACTGTTTC	ACTTTCTTAC
	TATTTTTG	GATA GACTT	TTCCCTTCCT	TCAAGAATT	TTCTCTTCTA	TTCAACATT	GACCGTTGA
	TATGAGAGGC	CTAC ATTTA	GCCAATCTCA	GTTTACACCA	TGCCCTTTTC	ACTAAGCTTC	ATCATTTAG
	CTTTTTATT	AAAGTAAGAT	GTGTGACCC	TCCTTCATT	TGAACACTTA	CATGATGATG	CCTGGCTTC
30	AAGCTGAAA	GGAC AGGCAG	ACTCTCTTAT	TAGGGGCTAA	CACAGCTGGC	GACTTTAAG	TTGAAGCCAA
	TGCTCAATT	GCCA ITAGAA	GCCATTGAG	GGTTAATTAA	TTTGCTTAAT	TTAATATTA	TGGTGTCTA
	GGGAATAAGG	AGGC CTGAGT	AGAGGGAGGG	AGATGGGGAA	ACAGCCAGTC	ATCAGAGCAC	ACACAACATT
	TATCAATTAA	GTTTATCACC	TTGAGGGCAC	AGGTATGAT	ACTTCAAACAC	AATTACAATA	ATAAAATAAA
	AAATCATTGA	TCGCAGATCA	CCATAACAGA	TATAATGATA	ATGAAAATT	TGAAGTATTG	TGAGAATTAC
35	CAAAACGTGA	CACACAGACA	CAAAGTGAGC	ACATGTCTT	GGAAAAGTGG	TGCTGATAGA	CTTACTTCAT
	GCAGGGTTGC	CACA AATACT	CAATCTGAA	AAAATTCAAT	TATCTACATA	GTACCAATAA	AAACAAGGTAT
	ACCTGTTAT	ATAA'CAAGA	CCAACAGAAC	CCTAGAGAAA	ATAGCTCACT	CCCTAGCTG	GAGACATTCT
	AACCAACATA	CACTACCTT	TCTTTTGCT	GTGTACAGAA	TTCAAACTCC	TGTCTCAGCA	AAATTGCAA
	GTATCAAATG	TCAT GTCCAT	CTAAACTCTA	AAACTGCAA	TGTTAAAGTCT	TGTAAGGCCA	GAGACCACTG
40	TATATACAAG	TGTGCTATA	AGCATTAGTT	CTTCTCCAAA	GAAAATAGTC	CACTTGGTAG	AAACAAACAA
	AAAGAAAAAA	AAAGAAAGAA	AAAACATT	TTACAAGAAG	ATTCAAGTC	TTACCTACAT	AAGCAAAAT
	ATGAGATGTT	CTCTTATCAT	TTTTCATCT	ATCTTATAAT	CTTGGTGTCT	GACTTAGACA	CTCATTTCC
	TTTTGTACG	TGACCATGTA	AAAGTTCAAG	TCAAGAAAAA	CTTGTTTTGA	CATTGTTTT	GCTGAGTGT
	GGGTCCCTAA	AAGA ATT	GCTTGCCTT	TGAAAAGTTC	AGCATGATAT	TGTGTAATT	TTTCATGGCT
45	AATGATT	AGAACAGTTG	TGATGTGTTT	AGGTGTTTTA	AGAATATGAA	GCATTCACTG	GTTTAAGTTG
	GTTGTTATAA	AATG AAAGAA	TATGAAGGAA	AGCCTTCTTG	TCTTAAACAA	CACTGATTCA	CAAATAAGCA
	GCTTCTCTCA	AAAT GTTGTA	ATTACAAAAA	TTCCAAGGC	AATATAATAA	ACTCCTGTC	GGTGCTATGT
	CTAGAAACTT	AACAGCCCCA	AAGAAAGTCC	TGACAAGGC	AAAATATAT	ATATATATAC	AAATTGTGGA
	AGCAGGGTGT	TGAAAAGAAGA	ATAAAAGACTA	TATAAGGACA	AACTGTTAA	AAGGGAGGGT	ATCCTTGAAA
50	GCTTGACACT	TGACTCTTTT	GACGAGGCTG	AGGGAAAACA	CTCAGTTCA	TAGATTGCTG	GTACGGATGT
	AAAATAGTGA	CATC CCTATA	GAGAGGAATT	TGGCAATATC	TAGCAAAGT	GCTTATGCAT	TTATTCTTG
	ACCTAGTAAT	CCCG CTTCTA	GGATTAGTGG	TGAAGATACA	CCTCAACAA	AAAATATAT	ATACATTAGG
	TTATTAGTTA	TGGTTAATT	TTTAATAGCA	AAATATTAA	AACAACCTAC	ATGAACAAAT	AGGAGACTTA
	CTGAATAAAC	TATGGTATAT	CTGTACAATA	AACTGCAATT	CACTTATGTT	GTAAATTGTT	TCCAAAATC
55	CAGAGCCAAA	GAGI ATTGTT	TATGCTCTCT	TTAGTATAAG	AAAGGGAAA	TAAGATATGT	GTGCATCTGT
	TTATTTTTGT	GAAAATAAGT	ACAGAAAGGA	TAAGTAAGAA	ACTAGTAAA	CTAGTTATCT	CCTAGTGTAA
	GTAGAAATAG	AATGAAAGTG	AATTAGGCTT	CTTGAGTAT	ATGTTTATAT	ATAGTTTGA	CTTTTGAATT
	ATGTTATGTT	TTACATAGTC	AAAAATATAA	ATTAATCAAC	AGAAAATAACA	AAAAAAGAAG	AAATCACAAG
	CTTTAAAATT	TAATACAAAC	AGAAATAATT	GAATCTAAC	GTATATCAA	GTGATAACGT	AAACTCAGAA
60	GAAAAAAACA	TAATCCAACA	TACCAAGTGG	ACACAATATT	CTAACTGTAT	ACATTCACTG	GTTATAGTCT
	AAGGACAAGA	AAAATTGCAA	AAATATCTTG	AACTTTAGCT	TGTAGGATT	TTATTGGTAG	CAACTACTAAT
	GTACTAATT	TGAAAATTAT	GTTCGTGTAT	TATAGAATTG	AGTAAATGAA	TAATATGTT	GATGTTATTG
	GGAACTAAAAA	TTATCATTCT	GGGAGTAGAG	AAATATAAAAT	ATGGACTTGG	CAAATGAAAC	AAAGACCTGC

	AGAGAGATAA	CCATATAAAC	TCATTATTT	AAAAATTATA	AGTGTCTTAG	CTCTGTTACT	GAAAAGGCC
	AGATTCAATC	TTATCTTGAT	AGACAGGAGG	GCACCCCTTT	CTCAGAACAT	GGTTCCAAA	TGCCATTCTC
	CATTAAGGAGG	AACAAGGTCT	TCTTGGAGAA	AAGACTGATT	CTAGGTCTGG	ATTAGGTAAA	GTACAACGTT
	AGTCTGGAAT	TTCT`GCTGA	ATCAGAAGTA	AGAAAGTGCT	CAAAAACATG	GGAACATGTC	ACAAACACAC
5	GTGAGGCAAC	TTGAATCCTC	ACTGGCATA	TTTAGGACAA	TCGAGCATCA	AAAAAAAAAA	AAATGTTGAG
	AATAATGGAT	TCTA`ACACTT	AAAACAAAAA	ATAATCCATA	GCCCACAGAA	GGGGAAGAGA	GGGGGAGCTC
	TTATTTACAG	ATGA`ATATCA	AATAGCAAAG	ACAGAAAGAAA	TGACAGAAATT	AGAGAAACAT	CATTTGCAA
	AACACCACTG	TAATAATCAA	TTCAGGCAAG	TATTATTAAT	GGATGTATTAA	CTATTGCGTA	AAACCAGTTG
	GGGAACAGGA	TATTCATACA	GTCTGAAGGT	GTCACCCCAA	ACATAACTTA	TTACAAGTGG	AAAATGGTGC
10	CTTTACAATG	AAGAAATCTA	GCAGAAACCA	TCTTAATCTA	GTGATCAAAC	TTAGTATCAC	CAATAATGGA
	TCATACTGAG	TCAT`GTGTCT	CCTAATATGA	TGCACCAAGGA	AGGATGCAAC	GTCATGAACG	TTGTATTCTT
	TTGTATTCAA	CAGA`CCACCC	AGGGTAAAGG	CAGCTTCTC	ACTTACTAAT	CAGAATTGTT	GGTTTTAATT
	CATTTGGAT	TTTAAGATT	CTTACTTCT	TGTCAGCTCA	GAATTATT	TAAGATGATT	TTTATCTTT
	ATTCAATACT	TTAGCTTGGA	GAACCATTC	GAGTTCTAA	CTCATTGTAT	TGCCAAAAAT	AGAAAACAGC
15	ATGGTTCTT	TTGA`AAATGT	CTAACTTAA	AGTACTTGT	GTGTGTCACT	CAGATTACAA	TAGCTTTTT
	GCCTAGTAAT	GTAGTATCAT	GTGGCAAGGC	TATAAAAATG	TTTACAATCT	TTTATTTAAT	ATGACTCTT
	AGAGTTTATT	CTAAGGAAAT	AATTGAATAG	TAACAAAACA	CTATTAACAC	AAAGCATAGC	AATTGATT
	GGGCAACCAA	ACACTGGAAA	CAACCTAAAT	GTCATTACA	GGAATCATTT	ATGAAGCAAA	CACTAAAATA
	TTTATTGTGA	AGAT`ATGAG	AACATAGAAAG	ACAGTTATGA	GAGTAATT	GAAAACCTGA	ACACAAAAC
20	TACATATACT	CCAA`TTGAA	CTTATAAAA	ATACGTGCAT	ATAAGGATAA	AACAGTACAA	ACAAAAAAAT
	AGTTGCGTTA	GATTGGTAGA	ATTATGGCTC	CTTTGCTGT	CTTAATT	TCCTTTACA	TTTGATACA
	TTATTTAAT	TTTA`TTTA	AAATTCAAAA	GAATTGCCA	CTCATCTT	CCACTTCAAG	GAAAAAGAA
	ATGTGTTCGA	TTAT`CTGTT	CTTAGTATAG	TTTGGCAAT	TCCTCTACG	GTAAAAAGAG	AATACTATT
	ATAATTTCAG	TATC`ATAAG	ACAATATAAA	ATTAAGAAT	CTAGCCCAGT	AACTGGTACA	TGGAACGTAA
25	TTAATAAAC	ATTATGGACT	TTTTTCTCA	CACCCAAGTA	GGGAGGAATC	AGTGGTCCCC	TAGAGGCCA
	GTGTAGAGGT	GGCAGCACCA	ATCCCTAGGG	GAGAAGATCT	TGGTGTATGAT	AATTCTGAG	CAGACAGTTA
	GCTGAGAATT	CAAGAGCAGA	AAAGTAAGAA	AGAAACAACT	TCTTGCTAAC	ACCTTCCAC	CCACGTTT
	CTGTTCTGTT	GTAC`CTGCT	TACCCCTTC	TGGATGGAGG	CAGAGGAAG	AGAACCAAGT	TTGCTCTAG
	TCATTCACTA	TGTTGTTAA	TCTGCCCTC	ATCTTCTTA	TCAGTCAA	TTAGAATGTA	GACCTGAATT
30	TAATCCCCG	TTCTGTCAGT	TATAATGTGA	CCCTAGACAA	AACACATTCT	CTGAACCTCA	GAGAACATT
	TTCATTGTA	GAATGGGAAG	ATTAATCTAT	ATTCCACTTG	GATGGCAAGT	CTTTATAAA	CTTTATAACC
	TAACATGTG	TGAGTTGCTA	GTATCATTAT	GTTGTTAAAG	TTATTCTGAG	ATATGATAAC	AGAACTGTT
	TGTCTAACTC	CACTAGCATG	GTTCAAGGTT	AGAGAGTGTG	GAATTAAAAG	GCTTTATCCT	CAAATATGAC
	TTAAATCCGA	TTT`CTCAT	CCACTTCT	CCACAAACAA	ATCCTCAGGA	AATGACAAAC	TTTACATGGT
35	TAACATCGA	TTT`TTTAG	TCTTGACAT	CCACATGGTT	AAATCATACA	TTTGGAAACT	GCTTATATT
	GTGTTGCTA	TGTC`AAATT	GAAAAGACTT	ATTGAGGAAT	AGAAGACTAC	ACATTTCAC	GCAAACACTG
	CACGTTTGC	AGAA`TTCCC	CAGGCACCA	TCTCCAGGAA	TTTATTGGCT	ACTAACAAATA	CTAAGATATG
	GATGAATGAG	GAATCAAAA	TGGAGATCTT	GCAAGTTTG	TGAGAATGGG	TGAATGGTCC	AAATGAAGAG
	ATAAGTTGTG	AAATATTAGT	ACAAGTAAAAA	ATTATTTACA	ATGAAAGACA	TTTGTCAAT	AGCTATGAGA
40	ATTTTACCAT	TGACCCAGAA	ATTCCATTC	TTTCTTCAGA	AATACCCACG	TAGGTATACA	TATAAAAAGT
	TATTCATTAC	AGTA`TCGTTT	TTCATAGGAA	AAAGTTTAA	AAATCAGAAAG	CTATCTAAC	TATGGTATAT
	CTAGGTCTA	GAATCAAAAT	GACTIONAAT	GTTAATATAA	GCATATGTT	TTAAATTAAAC	TTGGCTTGGG
	TCTTCAGCAA	AATTGGCTTC	TTAACATTGC	ACTCCAGAGT	TAGACTTAC	CACTCAGTCA	CTTATCATGC
	AGGAGCAGAC	TCCTAATACC	ACATATCATA	GAGCAGAGTA	GGACACAGGT	TCTCTGCAGG	CAGGCAAATC
45	CCAAAGAGAA	GGGAAGAAAG	GGCTGAGACA	CTGCATGGTC	AATTCTTCT	GAACCTGCA	ATGTACGGAG
	GTGGACAGTG	TCCACAAAGA	TTGCTCCCT	GGACCCACCA	TCATAATAAC	ACAACGGTT	TGTTTGT
	TTGTTTTGT	TTT`GACAC	GGAGTTTGC	TCTTGTGTC	CAGGCTGGAG	TGCAATGGTG	TGATCTCGAC
	TCACCACAAAC	CTCCACTTCC	TGGGTTCAAG	TGATTCTCCT	GCCTCAGCCT	CCTGAGTGG	TGGGATTACA
	GGCATGCACC	ACCA`TGCCC	GCTAATT	TATTTTTAGT	AGAGACGAGG	TTTCTCCACG	TTGGCCAGGC
50	TGGTCTCAAA	CTCTAACCT	CAGGTGATCC	ACCCGCTT	GCCTCCAAA	GTGCTCGAT	TACAGGTGTG
	AGCCACCGCG	CCC`GCCAC	AATGGCCTT	TGTTTACATC	TCTAGTGCAG	CACTCATTC	ATGTTCTTC
	AAGAAGAATA	CATA`TTTCAT	CTTTTATT	TATACAGCAA	TTAGCACAGT	GCCTGGCATA	AGGAAAATGA
	TCATTAAGA	CTGG`GTGAA	AACCTAATAA	AGCTACTGAG	GATAGGAAC	GCAGACCAGC	ATGAAAGAGA
	AACTATGAGC	CAGA`TATTGA	CATCATCTG	AAAGGCAGAA	GATTAGTAT	AGGCAAGAAAG	TATGTTTTG
55	GAATATAGAA	AATC`TGGATT	ATGATAAGAA	AAGAACATCA	TTTGTCTTAT	CTTACCTACT	CACTTCTCAG
	TTCCACATGT	TTCT`GAGGCT	GTTTGTCTT	ACTTTCTTT	CTGTTTATC	CACTCTTCT	GTTCTTTAGA
	TTGGATCATT	CCTA`TGAGC	TGACATCAAG	TAACTGACC	TTTATTTG	TCCAAACTGC	TGTTAAATGC
	ATCCAGTGA	TTT`TAACCT	TATATAGTAT	ATCTTCTAGT	CCTAGAATT	CCACATGAGT	TTTTTAAGTT
	TCCATTCTC	TGCT`GAGATC	TCCTATTG	TCATTCTTA	TGACCATATT	TTTCTCTACA	TTATTGAGCA
60	TAATTATAAC	AGC`CTTCTA	AAATTCTTGT	CTGCACATT	TAACACCTGA	ATTATTCTGG	GGTCAGTCTC
	TGTTACATTG	CCTT`ATTACA	AAAACAGTAT	AAGTCACATT	GCCTGTTTC	TTAATATGCA	AAATGATT
	TGATTGAGA	CTAGACATT	TGAATTAAAC	ATTATAGAGA	TCGAGAGAGT	TCGAGAGAGT	ATTGACTTGT

	TTTTTCCATC	AGGCAGGTAA	CTTGACTGGA	CTCAAACCTCC	AAACTCTAGG	TCCTCTGTAA	TGGGCAACTG
	CAGTAATCTT	TGTTTAGTTC	TTAAGACTT	ATTGCCAGG	CACGGGGCT	CATGCCGTCA	ATCCCAGCAC
	TGTGGGAGGC	CAAC GTGGGA	GGATCACCTG	AGGT CAGGAG	TTCGAGACCA	GCCTGGCCCA	CATGGT GAAA
	CCCTGCCTCT	ACTA AAAATA	CAAAAATTAG	CCGGGTGTGG	TGGTGGCGC	CTGTAGTCCC	AGCTACTCAG
5	AAGGCTAAGG	CAGA AGAAC	ACTTGAAACT	GGAAGGCAGA	GGTTGCAGTG	AGCCAGATT	GTGCCACTAT
	ACTCCAGCCT	GGGTGACAAA	AGCGAGACTC	CCTCTAAAAA	AAAAATTAT	TGGCACTGCT	TGGCATCTGC
	TATGAATACA	TGAAG GTTCAT	GGGT CAGCTA	TAGATCTGGG	CACGTTATAC	ACAGAATTG	GGTCTCCCTT
	TCTCTGGATT	TCTCCTTTTC	TGGATTCTT	TTCTCATTTT	CCAGCAGCTG	TGGTTGCCCT	AAACTCGGT
	CTCTGTTCT	TTACGGCAGT	AAGATTTGGG	AACTTTAGG	TTTACCTGC	CTCTCAGACA	AAATAAAAAA
10	TAATTTTCAT	CTTGATGCTA	CTCCTTCTT	CCAGATGTAG	ACACCTCT	AATTCCAGT	TGCTTTTAT
	TGCTCTCCAG	AGCT TAAAGA	TTATCATTGT	TTTCTGTGGG	AGAGTTGGT	TGATAAAAAC	TACTCCCCA
	AAACTGGAAG	CTGGAAAGCTT	GTAATTATGA	ATAGACTTTG	AGTAGTATT	TTCTTGGAA	AAGGATTTA
	ACTACTCCCT	ATG1 ACTTCT	TTATTTCTG	TTTTCTCAT	CCGTAATCTT	TTTATTTCA	TACTTCCTAA
	GTCAGACAAAT	TTTCTACTT	GAAGATTCA	TGACTGCTAT	CAAATGACCC	CCATATTACT	AAATACAATA
15	TCCCCAACTG	CATTATAAA	AAGAAAATT	ACTGTTTATT	AGTAAACAAAT	GTTGTAGAAT	AGTAAAATAT
	TGCTGGGCTT	TGGAGCCAGA	TAATCAAGGT	TAGAATCCCA	GATTCTAAT	TACTAGCTGG	TGTATTAGTC
	CTTTCTCATG	CTGCTAATAA	AGACATACCC	CAGACTGGGA	GACTGGTAA	TTTATGAAGA	AAAGAGGTT
	AATGACTCA	CAGTTCAGCA	TGGCTGGGA	GGCCTTAGGA	AACTTACAGT	CATGGTGGCA	GCAAGGAGAA
	GTTCCAAGCA	AAGA GGGAAA	AGCCCCTTAT	AAAACCAC	GATCTTATGA	GAACTCACTC	ACTATCACGA
20	GAACAGCATG	AGGGTAACTG	CCCTCAGCTT	TAATTACCTT	CCACCGATTC	CCCCCATGA	CACATGGGA
	TTATGAAAGC	TATAATTCAA	GATGAGATT	GGGTGGAGAA	ATAGCCAAAC	CATAATTC	CACCCCTGGC
	CCCTCTCAAA	TCTCATGTCC	TCACATTCA	AAACTCAATC	ATGCCCTCCC	AACTGTCCCC	CAAGGTCTTA
	ACTCATTCCA	GCATTAAGTC	AAAAATCAA	GTTCAAAGTC	TCATCTGAGA	CAAGGCAAGT	CCCTTCTGCC
	TATGAGCCTA	AAAATCAA	AGCATGTTAG	TTACTTCTA	GATACAGTGG	GGGTACAGGC	GTTGGTAAA
25	TACACTGATT	CCAA ATGGGA	GAAATTGCCA	AAACAAAAGA	GTTACAGACC	CCATGCAAGT	CCAAAACCCA
	ATAGGGCAGT	CATI AACATT	AAAGTTCCA	AAATGATCTCC	TTTGA	TGTCTCACAT	CCAGGTCA
	CTGATGCAAG	AGGT'GGGCTT	CCAATGGCT	TGGCAGCTC	TGCCCCCTGTG	GCTTGCAGG	GTATAGCCTG
	CTTCCTGTT	GCTT'ITTCAC	AGGCTGACAT	TGAGTGTCTG	TGGCTTTTCC	ATGAGTATGG	TGCAAGCTGT
	TGGTGGATT	ACCA TTCTGG	GGTCTGGCC	AGGTGAGTG	GCTCATGCC	GTAATCCCAG	CACTTTGGGA
30	GGCTGAGGTG	GGGCATCACA	AGGT CAGGAG	ATCGAGACCA	TCCTGGCTAA	CACGGTAAAAA	CCCAGTCTCT
	GCTTAAAAAA	TACAAAAAAT	TAGCCAGGC	TGGTGGTGGG	TGCCCTGTAGT	CCCAGATACT	TGGGAGGCTG
	AGGCAGGAGA	ATGGCGTGAA	CCCAGGAGGT	GGAGCTTGCA	GCGAGCTGAG	ATTGTGCCAC	TGCACTCCAG
	CCTGGGCGAC	AGAC CAAGAC	TCCATCAAA	AAAAAAACAA	AAAACCATT	CTGGGGCTG	GAGAATGGTA
	GCCCTTACAG	CACCA CAGG	CAGTGCCTCA	GTGGGACTC	TGTGTGGGG	CTCTGACCCC	ACATTTCCCT
35	TCTGCACGGC	CCTAGTAGAG	GTTCTCATG	AGGTTCTAC	CCCTGCAGCA	AACTTCTGCC	TGGACATCCA
	GGCATTTC	TACATCCTG	GAAATCTAAG	CCCGGGAGGT	TCCCAAAC	CAATTCTTGA	CTCCTGTGCA
	CCCACAGGCT	CAATACCACA	TGTAAGCCAC	CAATGCTTG	TCAGGGCTTG	AAACCTCTGA	AGCAATGGCC
	TGAGCTGTAC	GTTGACACCT	TTAGCCTAG	ACATCTAGGA	CACAGGGCAC	CATGACCCGA	AGCTTCATAA
	AGTGGGAGGG	CCTIGGGACT	AGCTGAGGAA	ACCATTTTTC	CATCCTAGGC	CTCCAGGCC	GTGATGGGAA
40	GGGCAGCCAT	GAAGGTGCCT	GACATGCC	GGAGACGTTT	TC	TTGGTA	AACATTACGC
	TCCGTGTGCA	GCACCAACTT	ACTTATGCA	ATTCTGTCA	CTGGTTGAA	TTTCTCCCCA	GAAAACAGGA
	TTTTCTTTT	CTAT'GCATC	ATCATGCTG	AAATTTC	ACTTTTATGC	TATGCTTCC	GTTGAAGACT
	TTGCGGCTTA	GAAATTTCTT	CCCCCAGATA	CCCAAAATT	TCTCTCTCAA	GTTCAAAGTT	CCACAGATAT
	CTAGGGGACA	AAA'GTTGCC	AGTCTCTTG	CATAGCAAGA	GTGACCTT	CTCCAGTTCC	CAACAAGTT
45	CTCATCTCCA	TATGAGACCA	TCTCAGCTG	GACTTAGTTG	TCCATGTTAC	TATCAACATT	TTGGTCAAAG
	CCATTCAACA	AGTCTCTATG	AAGTTCAA	CTTCCCCATG	TTTCTCTGTC	TTCTAATAGC	CCTCCAAATT
	TTTCAACCT	CTGCTGT	CCCAGTTCA	AAGTCAC	TACATTTTG	GGTATCTT	CAGCAGTGGC
	ACTCCCCATG	GTACTAATT	ACTGTATTAG	TCTGTTCTCA	TGCTGCTAAT	AAAGACTTAC	TCGAGACTGG
	GTAATTTATA	AAGAACAGAG	GTTCAACTGG	CTCACAGTC	AGCATGGCTG	GGAGGCCTCA	GGAAACTTAC
50	AAACATGGTG	GCAC CAAAGA	GAAGTICAA	GCAAAGAGGG	AAAAGCCCT	TATAAAACCA	TCAGATCTG
	TGAGAATTCA	CTATCATGAA	AATAGCATGA	GGGTAACTGC	CCCCATGATT	AATTACCTC	CCACAGGGTC
	CCTCCCATG	CAGG TGGGG	TTATGGGAAC	TACAATTCA	GATGAGATT	GGGTGGGGAC	ACAGCCATAC
	CATGCCAGCT	AGAC AGCCTT	AAGAAAGTC	CCTAATCTCC	ACAAATAAA	GGTTCC	TTGTTCAACA
	AAAATAATGA	CACC CTTTT	ATGGGATTTC	TGTGAGGACA	AATGATAACT	AACATAGCCT	TGCATAGTGT
55	CTGGCACAAA	ATACCTACTC	AAAAAATAAT	AGAAAACAACA	TTTAAAAAAT	GTAGACTTTA	TTTTTTAGAG
	TTTTATGTAC	AAAGCAAAAT	TGAGCAGAAT	GTACAGAGAG	TTTCCGTATA	GCAC	CCCCCAAGCA
	CAGATAGCCT	CCCC CAGTAT	CAGCATCCG	CACCAAGAGTG	GTACATT	TATAACTGAT	GAATCTATAT
	TGACGTGTCA	TTTCATCCA	AAATCCATAG	TTTATATTAG	GGATGCC	TGGTGTGTA	CCTTCTATGG
	GTTTGACAA	ATGTATAATG	ACATGTATT	ACCATTACAG	TATCATAAAG	AATAGTTCA	CTGTCCTAAA
60	AATCTTGTAT	CTTCITCCTA	TTCATCACTC	CCTCCCCATT	AATCCCTGAC	AACTACTGCT	AATTTCCTG
	TCTCATTG	TTTG'CTTTT	CCTGAATGTC	ATATAGTTA	AATATACAGT	ATGTAGGATT	TTCAAACCTGG
	TTTATTCAC	TTAGTAATAT	GCATTTGATG	TTCTCCATA	TCTTTCAA	GCTTCATAGT	TCAATATTAA

	TAGAATTGAA	TAATATTCCA	TTGTCTGGAT	GTACTACAGT	TTATGTATTTC	ATTCACCTAT	CAAAGAACAC
	CTTGGTTGCT	TCCAAGTTTC	AACAATCATG	AGTAAGCTG	CTATAAACAT	CTATGTACAT	GTTTTTTGTT
	GAATTGAACA	TTTICAGCTT	TTTAGCTCC	ATTCTTAGGA	GTGCAATTGC	TGGATTGTAT	GATAAGGGTA
5	TGTTTAGTGT	TGTAAGAAAC	TGCCACGCTC	TTCTTAACGT	GATGTACTGT	TTTGCAATTCT	CACCAGCAAT
	GAAAGAGTTC	CTGTGCTCC	ACATACTCAC	CAGCATTGG	TGTCGTCAAT	GTTTGAGCA	ATAGCATTTT
	GATCTAACTT	TTCTTAGGTA	TTCTTTTGA	AGGAATAAT	ATGACAGATA	ATAGAGAAAG	GATATAACGAG
	GACAGTTCTG	TCCITTATTTC	ATAGTCCATC	ATTAATGAA	GGACTCTGTC	CACACTGGT	ATTTTAACT
10	CTGATCCTCC	TCTCCTCATGA	ACTCTGACAA	TCTCTTAACAT	CCCTGTTGCT	GGCACACATG	GTTGTGTATC
	AGGCCCCCTG	TGGCTGTCT	GAAGCATGGC	TTTTTTTTT	TTTTTTTTT	TTTTTTGAG	ACGGAGTCTC
15	GCTCTGTCG	CCAGGCTGGA	GTGAGTGGC	GCGATCTCGG	CTCACTGCAA	GCTCCGCCTC	CCGGGTTCAC
	GCCATTCTCC	TGCCCTCAGCC	TCGGAGTAG	CTGGGACTAC	AGGCGCCCGC	CACACGCGCT	GGCTAATTTC
	TTGTATTTC	AGTAGAGGCG	GGGTTCACT	GTGTTAGCCA	GGATGGTCTC	GATCTCCTGA	CCTTGTGATC
	CGCCCCGCTC	TGCCCTCCCAA	AGTGTGTTGG	TTACAGGCGT	GAGCCACCGC	GCCCCGCCCT	TTTTTTTTT
	TTTTTTTTT	TTTGAGATGG	AGTCTGTCAC	TCTGTACCCC	AGGCTGGTGC	AGTGATGCAA	TCTTGGCTCA
20	CTACAACTC	CATCITTCAG	GTTCAAGTGA	TTCTGCCACC	TCAGCCTCCC	AAGTACCTGG	GATTACAGGT
	GCCCGCCACC	ACAC'CCAGCT	ATTTTTTGT	ATTTTATGTA	GAGACGTAGT	TTCACCATGT	TGGCCAGGCT
	GGTCTCATTC	CTGACCTTGA	GTGATCCACC	TGCTTGGCC	TCCCAAAGTG	CTGGGATTAC	AGGCATGGGT
	CATCACATGT	GGCCTGAAGC	ATGACTGTTG	CTTTAATCAT	ATGAAATACT	GCTCTGTATT	GTTATCTATT
25	TGAAATGCCA	CACCTCCTGA	GCTAAATTGC	AAGCTTTAT	GGAGCACAAA	CCATATTAT	ATATATTAGC
	ATGATACCAT	GACA CATATC	AAAAGCTGTT	ATATATTGTT	ACGTGAATTG	ATTCTTCTC	AGTTAAGAGG
	ACCTCTGTAG	TAGCACTTTC	ATACCGTTAA	TTTTTATTTT	TGTGCCAGC	CCCTACTCTG	TGAAAAATGA
	AATGAATCCT	GTATATCATTT	CCCTCCCAAGG	CCTTTCTCC	TTGTGGACAA	TGTGTGGCTC	AAGAGAAAAT
	TCAGTCAGTA	AATTGTTCA	GTGACAAAC	TCTTTATCAC	CTCTCACTGT	TCTCAAGTGA	GATAGAACAG
30	AACATCCATC	CAGIGCTTA	CAAATTGCT	GGTATATAGT	AGGCACTCAA	TAATGTTTT	TTGAATAAAT
	GCATACATGA	ATCCATTCTC	TATATATAGT	ATGGTAGACA	GATCATTGAT	ACCCAAAGAT	GCCCAAATGC
	TGATCCCCAG	AACTGTGAA	TATGTTACAT	TTCATGTCAA	AAGGGACTTT	GCTAATGTGA	TTAAGGATTTC
	AGACCCCTGG	ATTGTAAGAT	TATCCCGAT	TAACCAAGGGC	CAATCTAAC	ACATGAGACC	TTAAAAAAAGC
	AGAAAACATT	TCCCAGCTGG	GTAGAGAGA	GATGAGACAG	AGTAAAAGG	AAAGAGATTTC	AGGGCATGAA
35	AATGACTCTA	CCCACTGTTG	CTGGCTTGA	AGATAGAGGA	ACTAGGCCAC	AAAACAAGGA	GTATGAGTGG
	CCTTAAGAAA	TAGGAAAAAG	CCCTCATCTG	ACAGCCAGCT	AGAAAGCAGT	CCTCTGACCA	CAAGAAATTG
	GATTCTGCCA	ACCACTCAA	TGAGCAAGGA	AATGGATTCT	CCCCTAGAAC	CTCCAGAAAG	GAACACAGCT
	CTGTAATGCC	TTGAIITTTAG	CCAGGTGAGA	CCTGTTTCAG	ACTTTGACCC	TATGAAATA	TAAGATAATA
	AAGTTTATT	GTATGCTGCT	AAATTGCGG	TAGTTTATTA	CTGAAGCAAT	GGAAAGCCAA	TACAGACAGA
	ATATACAGAG	AGAAAGAGAA	TGAGTTCTT	CCTGATAATT	TGAAATATT	TGGGTCTTC	CTGGACAAGC
40	TTCACAGAGG	ATTCACTGGT	TCCTCTGCAA	ACACAGATGT	CCAGTCTGC	AGCCTCCCTT	TCTTAGGCC
	AGCATATGTC	AGCTGTGTC	ATAGAAAAAT	CAAAGCAGGA	CCCTGAGTAG	TTGAAAGAA	AAGATGGTTG
	GAAATGGGTT	GCACCTCAAG	TGAGGAAACA	AGAGGTAGGA	GACCGGCATC	TCTTCTCAT	ATGTCCCAGG
	CTGACTCTTG	TGAGITGTTT	TCCTCTGGAG	GCTATCGATG	ACAGTCACAG	TAACCTGATG	GAACCTGGAT
	CATGATGAAA	GAACTAAGTG	TCAATGGCTC	CGACTTCCAA	GGACTCTGAT	GTCCACAGC	ACTAGCTAAA
45	CAAAGCCAGT	TGGAAATGAG	CTTAAATGGG	GAATTTCCTG	AATATATTCC	CTATTGTTAG	GAAGCCAGGT
	TGGCTTCCTT	GCCTACAATT	ATGCCAAGCA	GTCACACTAT	AGAGTCCCTA	GGGACATGAT	ATTAAGTGTAT
	TCTTTAACAA	CAAACAACTT	AATAATCATT	TATACTAATA	GCAAAACGGC	CAACGGCTGA	TATTCCACTT
	GAAGTAGAAAT	TGGCTATCCA	ACTGGAAGAG	AAGACAGGAA	GACGTGATCT	CCAGGGAGCC	ACTAAAAGGA
	TTGGCACCTG	CCTCTGGATT	CCCCTTTTC	TTATATTACC	TCTCAGCACT	GGCAGGGCTT	TATTCAGGA
50	TACAGTTCA	CAAGTATTAT	GTCACGTCTC	TGAGAATTAT	GTTGGTAGAT	ATTGCTCCT	CTGGCCAGAA
	AGACCTAGTT	TGGAGTCTGG	AGTCATGAAG	GTGACATACA	TGTAGCTAGT	GACATAAGTG	TAGCTAGTAA
	AAATAGTGAG	TAATGGCCCT	GAAATTCTAT	TGAATGCCCA	AAGTGTGAC	CAGGAACAAG	CATGCTCTAG
	CTTATCTCAC	AAGGAACCTG	ACAATTCTCT	TCAAAAATCC	TAGTAGCTAA	GATTCTTAG	TAACAAAGCC
	ACTAAGGCAC	AATTATGATT	AACTTGACCC	TTAGGTGACT	TTAAGGACT	ATTCTATAAA	ATATTACAAC
55	TAATAGTGG	TCCAAGCCAG	CACACTCTGC	TATATAAGAT	TAATTGACAG	TGTCCACACT	GGTAAAATAA
	GTTGTTTCAT	AAATACATTA	GAATTCTATT	GCACCTCTA	CACAGCCCCA	AGTCCAGAAC	TTTCCCCAGA
	ATAGGTCTAT	GTTCAGCAAT	CTGCTACTCC	ATACAGAGAT	TTGAGTTCAC	TTGGAATTT	AGTGCTGCTT
	ATATGTGACC	AGTIACTCTG	TTTACTTAT	CTATGCCCTA	AACATTACTA	TACTTACTAA	CTCCAAGATG
	CCTGGTCTCA	ACTTGACAAA	AATAACCCAA	GTTGGGAAAT	CCTTATGTGA	ATATGTAGAT	AGTCACAATT
60	GCTGGTTGAT	GATGATCTGT	CTTTCTGT	ATTTGAGAAA	ATGGAGATAA	AATGGACCAA	TCCAATAAT
	GGATTAAACA	TGGGAATAGG	TGAGAGAGAG	AGAGGAATAC	ATGGTGGCTC	TCAGTGTCTG	GCTTAGGCAG
	TAACACCTTT	CGTTATAAAA	GACGGAAAAT	AAAAAAAGAA	TAATTGGTGT	CTAGGGAAA	ATAATGAGCT
	CAAGTTTAA	CACTCTGAGT	TCGGGATGT	GAGACATCCA	GGCGCATTAA	TCCAAGAGGC	AGTTGGAAGC
	AACGTTCCGG	AGCTFAGGAG	AGAGGCATGA	CCAAAAGCTG	GTGGGACTGT	GAAAAGGTAT	GGCCATTCTG
	GAAAACGTGTT	TGGCAGTTTC	TTAGAAAATT	AAACATGTAC	TAACAACCCA	GCAATTGTAC	TCTTGAGCAT
	TTGTCCCAGA	TAAAAGAAAAA	AAAAAAAAAG	CATTTTTTT	ACACAAAAAC	ATATACATGA	AAGTTCATAG
	AAAGTGTATT	CATAAAAAC	TGGAAAAAAC	TGAGATGTCT	TTATTGAGTG	AATGCTTAGG	CAAACGGTGG

	TCTATCCATA	CAATGGAATT	ATGCTTAGCA	ATAAAGAGAA	AAGAACATT	GATACATGCA	ATAACACAGA
	TGAATCTCAA	AGGAATTAAT	GCTGAGTGGG	AAAAAAAAGCA	CATCTCAAA	TGGTATATAC	TGTACTATT
5	TATTTACTTA	ACATTTAAA	AATAGCAAAA	TCATAGAGAT	GGAGAACAGA	TTAATGGGTA	CTGTGTTTG
	GGATGGGGAG	TGAGAAAAGG	GTAAGGTGTA	AATATAAAGG	GGTAGCACA	AAGAGCCTG	TGGTTGAAGG
	ATTCTATGTC	TTGGITGTAG	TCGTGATTG	AGGAATCTAC	ATGTGATAAA	ATTGTATGGG	TCTACATACG
	CATACACACA	AGAGCATATA	AAACTGGTGA	CATGTGAGA	AGCTCCGAC	ATTGTGCCAA	CATCAGTATC
	CTAGTTCAA	TATCAGACTA	CAGTTATACA	AAACATTGTC	ATTGAGGGAA	ACTGGTAAA	GGGAACACAG
	GACATTGTC	ATAIATTTT	GCAATTTCCT	GTGAATCCGT	AATTATTTAA	AAATAACAGA	TATACTACAT
10	ATCAAAAATT	TAATGTCATA	AAGTTGATGA	GTTCACCTAG	TGGATAGCTT	TGTTAATATC	TGCTATAAGA
	CTACTGAAAAA	TGACAGTAT	GCAAGTATAA	GCTCAGAGAA	CTTCCCTCCC	CCTCGTAAA	TGAAATGAGC
	AAAAGAAATG	AAACAGGAAA	GGCAAGCAGT	ACTGAAAACA	GGGAAGGGCT	CTTCCCCATA	TAACTATATC
	TGCGACTICA	ACACCTATTIC	ATCCAGAAAC	ACAGCCTCTT	GCGCTAAGAG	GAAACTTGG	ATAACAATAT
	GTTTCACTC	TCCAAGAGAG	AAAATGGATA	GATTAATT	TAAGAAAAAA	AAAAAAACCT	CACCAATTTC
15	ATGCTGTGGC	TTGCACCTTT	AAATCCCAGCT	ACCTACAAAGG	CTGAGGTGAG	AGGCTTACTT	GAGCCCAGGA
	GTTCAAGGCT	GCAATGAGCT	ATGATTGATT	GTGCTATCGC	ACTCCAACCT	GGAGTACTAA	GCTAAGAGCT
	AAGAACACAG	CTGAAGCGG	AGAAGAAACA	AACAAATCTG	ACCAATAACC	CCCACCTCCCC	TCATTTACT
	GGAGTGAGCT	GAGACTGCTG	GCAAAACATGG	CCTTGTACCT	AGCCTGAAC	GTAGCAAAAG	TCATCAGATA
	TTTTCCACC	AATCACACAGA	CAGAAAGTGGG	GAGAAAACAA	TCGTAGTTCA	TAACTACAAC	AAGCAGATAA
20	ACGAAGGCCA	TGGTGGGGGA	TGGAAGACAT	TGTGATATAT	CAAAGGCAGG	CTCATTTAAA	ACTCAACCCA
	AATTCCAAAC	AAAATATATA	ATTGAATATG	TATTAATGCC	AAAGGAGCTT	GAGTGAGCTT	TAGCACAAC
	CCCGCCCTCC	AGCCCCCACC	CAAAAAAAATC	ACTCTGTTCT	CTCCCCATTC	TTTGATAGGC	ATACTTGCTG
	TTTTCTCACA	GCCAAGGTAC	AGAGGGGACT	TAGAGGAACT	AGAACCTCTAA	TACACTGCTA	GCAGGAATGT
	AAAATGAAGC	ATCTACTTCA	GAAAACCATT	TTATCAGTTT	CTAGAAAGTT	AAACATAGAC	CCACCATGCA
25	GCCCAGCCAC	TCTACTCCTA	AGTATTACCA	CAAGAGAAAT	GAAAACGTGT	CCCCACACAG	TTGTATTTAA
	AGGTGATGGT	TAGCTTGTG	TGTCAACTTG	GCTAGGCTAT	AATACCCAGT	TACTGAATCA	AATAGTAATC
	TAGGTGCATC	TGTGAAGGTA	TTTTGTAGAT	GTGGTTAAC	GCTACAATCT	GTTGACTTCA	AGTAAAGGAG
	ATTGCTCTG	ATAGTATGGG	TGGGCTTCAT	CCAATCAATT	GAAGGCCTTA	AGAGCAAAAA	GTAAGGTTTC
	CCGGAGAGAA	AGAAATTCTG	CCTCAAGACT	GCAGCCTCAA	CTCCTGCCTG	AGTTCCAGT	CAGCCAGCCA
30	GCCTAAAGAT	TTGCTAGGCA	TTATAATCAC	ATCAGCTAAT	TTCTTAAAT	AAACCTCTTT	ATATATATTG
	ATACAATGAA	TGGTATAGC	AGCCTTATT	GTAATAGCCA	CAAACCTGAA	ACAACCTAAA	TGTCCCTCAA
	TAAGTGAATA	CATAAACAAA	TTGTGGTATA	TCCACAATT	TTACGCAGCA	GTAAAAAGGA	ATAAAATGGTT
	GAATAAGGAA	TAACACATA	ACAAGGATGA	ACCTAAAAAC	CGTAAGGCTG	AATGAAAAAA	GTCAGACAAA
	ACTAATACAT	ACTGAATAAT	TCCATTATA	TTGAAGTTCT	AGAAAATGAG	GACTAACCTA	TAGTAACAAA
35	AAGCAGAAAAA	ATTITGCCCA	CTGGTGTAGG	AGGGGGCGCA	GGTATTGTAG	AGTATCTGAG	AAAGGACAAC
	TGGATAAAAG	GGGGCACAAG	AAAACTTTG	AGGGTGTATTG	ATATGTTCA	TATCTTGTGG	CATGGTTCA
	TAGGTGCATA	CATAATGTC	AAACATCAAGT	TATACACTTT	TAATGTTTC	AGTTTACTGT	ATATCTATT
	TACTTCAGTA	GAGAAGGAAGG	AAGAAAGTGG	GCAGGGTGGG	GGAGAGGAAA	GGAAACGAGG	GAGGAAGAGC
	CCTAATAGGA	AGGATTGGG	AGTTTAGATT	TTAAATGAT	AAAGGATGTT	TGACACTCTA	GGCATATGAC
40	GAATATAGGA	TTATGAGTCC	ACAAAAACCA	CCAGGAAGTC	ATGTATGTT	ATACCTTAA	GTGAAGGATC
	AGTGGATTAT	CAACTCCCTA	ATGCTTGCC	TCTCTATGAC	TGGCTGCTGT	CCTCTCATC	CCAATACTCC
	TTCCAAAGCC	CCTGCTAA	ATGTAAGCT	TCTTCCCTCC	TTTCAACACA	TCCCGCATTC	CGTGACAAA
	TAAGTTTCC	TTAAACAGAA	TGTACAGCAT	ATTATTTGTA	CAATTAAAAA	TTTTGGCCA	GGTGTGATGA
	CTCATGCC	TAATCCAGC	AATTGGGAG	GCCGAGATGT	GTGGATTACC	TGAGGTCA	AGTCAGAGAC
45	CAGCCTGGCC	AAACATGGTGA	AACCCCTGTCT	CTACTAAAAA	TACAAAAATT	AGCTGAGTGT	AGTGTGGCAG
	GTACCTGTAA	TCCCAGCTAC	TCAGGAAGCT	GAGGCAGGAG	AATCGCTTGA	ACCTGGGAGG	TGGAGGTTGC
	TGTGAGCAGA	GATCAGACTA	TTGCATTCTA	GGCTAGGAGA	CAGAGTGA	CTCGGTCCCC	AAAAAAAAAAAC
	ACATTTTTT	TTAAAGTTTC	CTCCTTGCT	GTAGGAAAAA	GGCTCTGACT	CCTTAGCCTG	GGCATCAGAG
	CTCTATCTAA	ATGGACTTTA	ACCTGATTT	GTGGCACTAA	TTCCATTGCA	GTACTTGTC	GCTCACTGGC
50	CTGTGCCCT	CTGCCACTAT	TTTTGGAATA	ATGCTCTCTC	TCCATCTTGT	TTACTCAACT	ATATCCAACC
	TCTAAGGCTG	TGCTCTTACA	AAGCCTCCCC	TGGCTACTTC	AGCCCACAGA	GATATTAAC	TGCTCTGCA
	TTCAGGACAT	TCTTCTGACT	CTTTAAATCA	CATTACTTA	TATATGATCT	TGTGATATT	TTTGTGACG
	TGTTTACTTT	AATTCTCTC	CATAACCTAT	TCATTCAACA	AACTCAACAA	TTATTTATT	AATGCCAAGT
	TAGAAAAATA	TTATGATT	TATATAGATT	ATAGATATGT	TTGAAATT	ATTTGGCAAT	CTGCAAGTAG
55	AAAAATAATT	ATAATGTGGT	ATATCTGTA	TAGAAGTATT	AGTGCAGAGA	CCATGGGAA	CATAATCCAG
	CCTGGAAGTT	CAGGAGAGAT	ACGTGGAAGA	AAGGACGTCA	GAGCCTTTT	CCTACAGGCA	TGGAAGAAC
	ATTAAAAAAA	ATTITTTTTT	TTGAGATGGA	GTCTCACTCT	GTCTCCAGC	CTAGACTGTG	GTGGTGCAT
	CTCTGCTCAC	TGCAACCTCT	GTCTCCGGG	TTCAAGTGT	TCTCCTGCCT	CAGCTTCCC	AGTAGCTGGG
	ATTACAGGTA	CCTGCCACAC	ATGGATGATA	AATATGATCA	TATTTTCTTG	TTCTTTCTC	CCTCAGTTGT
	CTTCCCTGAA	GAAAGGAATG	CCTTTTATAG	ATGACAAACT	CCCATTCTCA	AGAACAAAGGA	TTTTTGACCA
60	ATTTAATT	ATCAAGATGTC	TGGCTTGAC	CTAGAAACAC	AGTCACGAAA	CTTGGTGATT	AGAGACCAAT
	TCCCAACAT	GAGCATTCT	TAGGAAACAC	AGTAAAGATC	TGAGAGACCC	AAGAGCAGAA	GGCGAGAGAA
	CCAAAAGCCA	TCACATTGCA	TAGGAAACAC	CTTGTGTTAGC	CTAATCTTT	TATTTTATT	ACTCTATTAG

	TCACTACAAC	TATT TTCTGA	TTGCTATGGT	GATAGATGGT	TTAAAACAAG	CCTTCATTAA	GAATTGTCA
	ACCATGGTCT	CAGTCAAAAAA	CACCAACATT	TTTATTGGTA	TTGACAATT	TGGGAATATC	CAATTCCAAG
	AAGACAAGGA	GACCTCTGAA	CTTTCTAAAT	GAAGACTCCA	ATCTTCTGA	TCTGATGGG	AGCAGCTTGG
5	CAAGATTACC	AACCACCACC	ACAGAGAGTG	GACTCTAAC	TAAGACTTA	AAGATAAGTA	GAAATTATCC
	AGGTAAAGAT	GTGTACAGAG	AAGGAAGTAC	ATCCAGGGGA	AAAGAACAA	ACGTGCAAAA	GTACGGAAT
	GGTAAAAAGT	AATP CTACAT	AGTCAAAGCC	AAGCAGAGTT	CAGAAGGGAT	CTGGTGGTGA	AAAATACGGC
	TAGAGAAAGC	AGCAGGAGATT	GGCTTCTAAA	ACCTATGTAG	TATCTTGGAC	CTTACCCCTAA	ATGTAATGAG
	AAGCTTCTAA	AGAAATCTTTC	ATTTATTCTAT	TCATTGAACAA	AATATTGTA	GGCTTCTGT	GAAGAACATC
10	ATTCTAAGTA	GTAAAGATAC	AGCAGTGAAT	AGGACACATA	AAATCTTGA	TCTCACAGAA	TTGACATTCC
	AGAGAGGGAA	AGGAGACAA	TAATACATA	AACAAATCAT	TTAACAAAGAT	GATTTCAGAC	AATGGTACGT
	ACTGTGAAAA	AAATGAAACA	AGGTAAATGGA	CAGCGAAAAG	GCACTGGAAG	GAAGCCTGCT	TACCTTTGCA
	TGGTTAGAAA	AGATCTCTCT	AAGAAAGAGA	CCACATGTGA	GCTGCGACCT	GAAGGATACC	GAGAAGCTAG
15	GTGTGCAAAG	ATGIGGGGAC	AGAACTTTG	GACTGAATAG	CAAATACAAA	TGCCCTGGG	TGCAAGCTTT
	GCCTGTTCAA	GGACCAAAAAA	GAAGGCCAGT	GTGCCCTGCAG	CATACTAAC	ACAGAGGAAA	ACACTGTTAT
	ATGCTGAGAT	TGGAATTATA	AGTAGAGCCA	GATAATATAG	TCTCTTATAG	GTCATAATAA	GGCAACCAGA
	TTTTATTCCA	AGAGGATTAA	AAAATCACTG	GAGGTTTTC	ACTAGGGTGA	GAGGTGTGAT	TTGTATTGTT
	AAAAGATAAT	TCTGGAGAAT	TAACTATAAT	GAGGTAGGAG	TAAACTAAGT	TAGGGCTAT	TTCAGTGGCT
20	CAGACAAGAG	ATAATGGTAG	CTTAGACTAG	GATAGTAGTC	GTAGAAATAA	ATAAAAGTGG	CACTCTACTT
	TGGGGGTAGA	GTCTATAATA	GGTTTGGTT	ATGGATCATA	TATGAGAGTA	AAAAAAAGAA	AATAAATTAA
	TAATGGTCC	TAGGITTTGTA	CCTGAGCAAC	TGAATAAAATG	GGTGCTGTGA	ATTGAGATAA	AGGAGATTGA
	GAATCACAGG	CTTGTGTTG	CAAATTAAATT	TTGAGAGGCT	TATTAGACAT	CCCAGTGGAG	ATTTCAGGTG
25	AGTGGAGCCC	ATGGAAGGAT	AAGGGACAGG	GTCAAGGTGTG	GTAGGTCAAG	CCTGTGATCC	CAGGACTTTG
	GAAGGCCAAG	GCAGACAGAT	CAGTTGAGCT	CAGGAGTTG	AGACCAGCCT	GGGCAACATG	GGAAAACCTT
	GTCTCTACAA	AATATGCAA	ATATTACCTG	GGCATGGTGG	CATATGACTG	TGGTCCAAGC	CACTTGGGGG
	GCTGAGATGG	GAGGATCACT	TGAGTACAGG	AGGCGGAGGT	TGCACTGAGC	CAAGATCTCG	CCACTGCAA
30	CCAGCTTAGG	TGACAGAGTG	AGAACCTGTC	TCAATAAATA	AATAAGAAC	GTAAGGGAAA	AGGAAATTAA
	TCTGATCATT	GGCAAAATGCA	TAGTATTAA	AGCCAGGGGA	GTAGATGAGA	TACTCAAAGT	AGGTGAAGAT
	AAGGAGGCAA	TGAAGGCCAA	GGACTCTGGT	GTACATTAG	ATGGTTATAA	GAGGAATAGA	AACTGGCAA
	ATAAGTAACA	CTGAGCACCC	AATGAGGTGG	AGAGGAAGAC	CAGGAGATGA	AGCATCATAG	AAGGCAAGAG
35	AAGAAGGGTG	TCAAGAGGC	GAGGCAGTCA	TCAACTTCTG	GGCAGTC	TAATATAAGG	ACAGAAAAGT
	GACCATTGGA	TTTGGAAATA	TGATGAGCAC	TTTGAGTGA	GTGTTGAGAC	AGAAGACAA	TTAGAGTGA
	TTGAGGAGAT	AACCAAGAAAT	GAGAAAATGT	AACTGCAAG	CACAGACAAT	TCTTGAGAGA	CTTTTCTGTG
	AAAGGAAACA	GACACAGAGT	CTTAGCATGT	CTTGTCTTC	TATGGGAAT	GTAATAGTT	TGAGATCAGG
40	GATAGTATT	TATTCTGCTT	TTTGTACCTC	TACATTACCT	AGCATAGAGC	TAGCTAATGT	GCACTTAAGT
	ATGTTCTCAA	TTCTTATCGC	CTGAATGACT	GGATGGGTGA	AAGAATGGAT	GGATGGATGG	ATGGATGGAT
	GGAAGGATGG	ATGGATGGAT	GGAAAGACTTC	TGATTTGCCA	AGAAGAGGAT	ACTGGTAGCA	GAAATAAAA
	CAGCACTGGA	GAAAGAAGAG	TTTAGATTIT	TATTCTTGG	TGTCAGTTAG	ACAGGAAAGT	AAGACATTAG
45	AAGAGTCCCT	AGATAATTAA	TGTAATTGTT	CACTTAGGAT	TTTAAATGT	GATCACTGAT	ATTGGACATG
	TTCCTAGTGA	AGCATTTTG	GTGTTTCACT	GGTTGAAGTT	AATAACTGTA	AAATTATTC	CCGTTCAAGGA
	CAGAAAAACA	GAAAACCTG	AGCTCCTATT	AGAAAGTTCA	AGATTCTCTG	GGGTTCTTAG	GATTTACTGT
	TCCCCAAACT	CTGTCAAGAA	CAAGAAAATG	ACCTGTATAC	TTAACTGGTC	TAGGCAACAG	TGGAAAGACA
50	ATTCTCAGAG	AAGATTTGTT	TTAAGAAGAC	ACTTCCATA	GGAATCAAAC	AATAGCTTTC	AGTGAACAAAC
	ATGGTAAGAC	ACAGGGTGT	AGCTCTTCC	TTCCAACCTC	ATGGCTGTG	TACCTTACCT	TCGACCCCCG
	TGTTCTGAA	ATTGTTAAAT	TCATAAAACTT	ACCAAGGACT	AACCAGCCTC	TGGGAAATTG	CTGTATAACTT
55	AGCAAACCTA	CAATGGACAT	ATTTATAAGC	CATAATGATA	ACTGACTAAT	AGGAAATACC	CTCAACTGAA
	AATGAGAGAT	CATCATTGTC	AAATGAGTC	CCTTGCCCAG	GCAACTACTG	GGGAAAATGT	CATGCAAGCA
	AAATTAATCT	TTGAAATCCT	CCTTTCCAT	TTTTGTGTC	TCCTCTTCC	ATAGGCACCA	GAAATATCAT
	GGTGCCTGGA	TCTCATCTCT	ACAGAAAAAA	AAAGTGATT	GATAAACTGA	TTTATATTGT	GTCCAATGAT
60	GATTGTATT	TCAAAGATAA	CCTAAGGGGA	GAATGCTGTC	TGGCCCAACA	GCAGGCTCTC	GACTTCATT
	CAGACACTGT	GGCCAAATGGC	TGGGAAACAG	GTATGAACAG	TAGGTTCTG	AGTCCCCTGG	AATTATTCCA
	TTTATGTAGC	CACCTCCATG	ACAGGAAGCC	TCCCCTACTCT	TACTTCCCAG	TTTGTTCATT	CATGGCACCA
	GGTTGCAGAT	TAAATTTG	TCAGTGCACCT	TTTATCTAAT	AATGTGTTAC	CTTCTTCTCT	TAAAAAGTAC
	AAGGGACAAA	TGCATGGT	ATACTTTAG	GAGATTGTGG	CTCTCTATT	ACAGTATTAA	TTCAACAAAC
	ATTTATTGAG	CATTATATG	TGCATCATGC	TAGGGACTGG	AACCTAGTAA	GTGTAGCACA	TATTATTCCA
55	TTAATCCTC	ACAACAAACC	CATGAGGTG	TTTTATGAT	CCCATT	CAGAAGAAGA	AACTGATATT
	CAGAACAGT	TAACTAAC	GTTCAAGGTC	ATGCAATTTC	TAAGATACAG	AACCAAGAGT	CAAAGACATG
	ATTTAAACC	AAACCTTTT	CTGCTACTCC	ACATTGCTTC	CCTAGGTGAG	ATCTGAGGCA	TTCCGCAAA
	AGAGAAGGGT	CATAAAGCCA	AGGGAAGACA	AGCTTAGGAA	AAAAAAGGGA	AATGCTCAA	ATAAACAGCT
60	TTCCTATT	CCAGAACCA	CTAGTTAAA	AATATAATGG	GAAAATCCT	ATTCACTTTA	ACAATGTTAA
	AAAAAAAAAA	GATAGAAGAA	ACATAGGGAT	AAACCTAAC	CATTGTTAGG	ATATGTAAG	AAACTAAAAG
	ATGTTAATAA	TGGCCTAAAG	AAAAAAAAAC	TTACATGTAT	GGGGAGATAG	ACCACCTTAC	TGGATTCTAA
	TATTAATAG	TCTAGGTGTT	CCATTCTCA	CCAAATTAAAT	GTATACATT	AATACAATGT	CAAACGAAAT

	ATCTTAGGAA	TTGCTTACAA	ATTGTCAGAT	AATTACAAAG	TTTACCTGGG	AAATATAAGC	ATATATGAAG
5	AGTGAATGGG	ACCC CACCA	TCCCCCAAA	ACAAAAAAGG	TCTGAAAAGG	ACAGAAATCA	AGGAGAGTCT
	TGCCTGCCAG	ATAC AAAATT	CTATTATAAA	GGGTATTGA	TGAAAACAAT	TTAATACTAG	TGTAGCAATA
	GGCAGCAAAG	CAATGAAACA	GCATAAAAAG	ACCAGAAC	TACCTAATT	TGATGAAGAT	TAAAGGTATG
10	ATAAAACATGA	CATA ATTCAA	ATCAGCAGAA	ATTGGCATAG	ATAGGGTTAA	GACAAATAGC	TAATCATTAG
	AGGGGAGGAA	GGA TAGGAGG	GAGGATAAAA	TTAGGTTCC	GCCTTCATCT	TACATTTAAA	TAAATTCCAG
	ATGTATTACA	TTTA AATTTT	TTTAAAAAAA	GAAACACCAA	AATACTGAA	GAAAATATAA	GTTGTTATAT
	AGTCTTTGA	TGGG AATTTT	TTTTTTTTC	AGAGACAGGG	TCTTGCTCTG	TCACCTAGCC	TAGAGTGCAA
15	TGGCATGATC	ATGC CTCACT	GCAGCCTTGA	ACTCCTGGG	TCAAGTGATC	CTCCCAGCTC	AGCCCCCCAG
	GTAGCAGGAA	CTA CAGGCAT	GCGACACCCC	ATCCAACCTA	TTTTTTATT	TTTGAGAGA	CAGGGGTCTT
	GCTTGTTC	CCAG GCTTAT	CTCGAACTTC	TGCCTTCAAG	CACCTCAGG	TCCCCAAAGAG	CTGGGCTGAT
	GGGACATTTT	TTAACATAGT	GCCACATTAC	CATAATGAA	AAGCTTGAA	AATACTAATT	TTTAAAACTA
20	ATATATATCA	GAATTTTTA	TAAACAAAGT	TAAAAAGCAA	ACACAAAAAA	TTTGTAGCAC	TTATGACAAA
	TATATGTATA	TATA TGAATA	CAAAAAGAGC	CTTACAAAAA	CAGTAAGAAA	ACAATGAATA	CTCCCAATGG
25	AGTATTCAAA	ACTAAACTGC	AAAAGCAAT	TCAAAACAAA	AAACATAAAAC	TATGCATATA	TGTATGTGAA
	AAAGTTAAC	CTTA TCAAAG	AAGTAAACTC	TCAAAAGAAAT	AAACATCAA	TAAGGAAATA	GCCTTTCCC
	ACAAATAACC	AAAATCTGTA	AGAATACTGA	GCTGCGAATG	TTTCAGAAA	AAAAAAAAT	CATACACCTA
	GTTCGGCATG	TAAT TAATAT	AGATCAGAAC	ACTTAAAAAA	TATTTATAGG	CCAGGCACGG	TGGCTCATGC
30	CTATAATCCC	AGCACTTTGG	GAGGCCAAGG	CGGGTGGATC	ACCTGAAGTC	AGGAGTTGA	GACCATCCTG
	ACCAACATGG	TGA ACCCTG	TCTCTACTAA	AAATACAAA	ACTAGCCAGG	CATGTTGGCG	TATGCTGGTA
	ATCCCTGGCTA	CTCG GAGGC	TGAGGCAGGA	GAATTGCTTG	AACCCAGGAG	GTGGAGGTTG	CAGTGAGCTG
	ACATTGTGCC	ACTG TACTCC	AGCCTGGCA	ACAAGAGCAA	AACTCTGTCT	CAAAAAATAAA	TAATAAATAAA
35	AAATAAAAATA	TTT TATACT	CTGACCCATC	AATTGTCCA	GCATAATTAG	GCATGTGTAC	AAGGGTTTAC
	ACACAAGAAT	GCCT ATTGCA	ATATTGCTTT	TAATGCTAA	AAAAATTGGG	GAAAATGCTT	AAAAATATA
	GATTAAGACT	GTAC ATTGTG	GTACAGTCAT	ATAATCAATA	GTATACAGCT	ATTATTATT	TTCAGCCACT
	GTCCAAAATA	TAGC CTGGCC	TAACAACATT	CTGTTAGGAT	ACGCAAGCAC	CGTGAGGAGA	TCAGCTATAA
40	AGTATCAGT	TTTC ACACCA	CTGCTCCTT	GCTAATAACC	TTCAATGGCT	TTAAAGAAG	AAAAAAACAA
	AGGCAAAATT	CCTIAGTCAG	CCCTTAAGAC	TCTCTGTAC	TTAGCTAAA	CTACCTTTT	CAACAACACT
	GCCCTAACCA	GGAT GAGTTT	TTTCCCCCCC	TGGAGTACAT	TCAGCCTTTC	CTTATCAAAC	CTTCCCTTAA
45	ATAAGTATCT	TCTCCAGGAC	CACTTCACCT	TCTTCCCCAA	TTAGCATT	TCTATATCTC	CAGGCCTACC
	TCTATAAAAGC	CTGICCTAAC	CACTCAAACC	CTAGCTTTT	CTCTGAACTG	CTAGAAATAT	TTTCTCTCA
	TTGGCCATT	AGGTAAAAG	GTTTTACTG	TTTATTACCT	ACTCAATAAA	AATTTCCTT	TTTGAGACA
	AGGTCTTA	CTGT CGCCTA	GAATGGGGG	AAGTGGTGTG	ATCACAAC	ACTGCAGCTT	CTACCTCCCA
50	GCTCAACAGT	CCTCCCACCT	CAGCCTAGTG	AGTAGCTGTG	ACTACAGGCA	TGTGCCACCA	TACCCCACTA
	CTTTTCATTT	TTTA TTTTT	GTGAGATGGA	ATCTCACTAT	GTTACCCAGG	CTGGTCTGCT	GATCTCAATT
	GATCCTCCCCA	CTGT GGCCCTC	CCAAAATGCT	GGGATTACAG	GCATGAGCCA	CAATATCTGG	CCCCAGTAAG
	CTTTTAAGGC	CATT AACATG	AGGAACAGT	TTCTTACAC	TATTTTATCA	GCTAGGGCTT	TGCAATGGAGT
55	AGGAGTTAG	TAAT AGCGGT	TGATGGGTTA	ATCAATGTGT	GAAAATATT	AGAGCCACCA	AAAACAGATA
	TTATGTCTAT	TCTCATCAAC	AATCAAATT	GAGTAAACAG	CCATTTCTA	ATACAGGAAA	CCACAAACAA
	TTGAATGGTG	ACAT TAAAAA	ATTCCCCCAG	CAGGAGCCAA	CCAATTTTT	CATCCTGATC	CAAGTTAGCA
	AACTGCAAAA	GATA GGAAGC	ACTAATGAGT	GGAAATTGTA	GTAGAAGCAT	TTCTTATGAA	GGCTGTCTG
60	ACTGGATCAC	ATTIT TATTG	CTGTTGGAGG	TGCCAAATGT	GTGTGTTTAT	GCTAATCCTC	CACCTCAGGC
	AACACACAGT	CAAC GATCCT	ACCAAGTGT	ACCGTCAGT	GTCTGTTGGC	AGCTCAAGGC	CCCAGCGITG
	TTCCCTTGCA	CTAG GAAAAA	GACATATTCC	AGGTACAAGT	ACTCCCAC	TGATGCTACA	GAGGAGTTGC
	TGAACCTTGT	GTCA TTAACT	TCTCTTCGTT	AGATCCAAC	CCTGTTAAA	TCCCACATC	TGCCTACTCT
	GGGTCTTCAC	CAAT TACTA	GATCATAGTT	GGAGAAAATC	TACAAAGGCT	TGCTCCCTT	AGATTAAAC
	AGGTCTCCGT	TTAA ATT TAG	AATTGCTAAC	TTCAAGCGGG	CCCTTATGCG	ACAGTATGCC	TGTCACTCAT
	ACTACATTTC	CTCA ATTCCA	TTCATGTGAC	TGCTCCATAC	CCTTCCCTCT	CTCTTCATAC	TACTATTATC
65	TCTCCCCCCC	TCCC TCAATT	TTAACGTGAT	ATCTTGTTC	CTATTTCTC	GAGAAAATAG	AAGCCATCAA
	AAGAGAGTTT	CCAC AAAC	CTACTGCCTT	ATCTAGCCCT	GTACCATATA	CTTGCATT	CCTCTCATTA
	CCATGGATGT	ACTG CCTATC	TGTGCTCTA	TCTAAGGCTA	ACCCCTCCAC	TTCAGTTTG	AATATTATCA
	GCTCTTACCA	ACTCAAGGCC	ATTGCTCTAG	CAATTCTCTC	ATTCTCTCTC	ATTTCCTTCC	ATCAAGTTT
	CCTTTCTTC	AATT ACAGA	GTAGCTCTA	AAGGGAAAAA	AAAGTCTCT	TTTCATGC	TCATCATCAC
	TGGCCATCAG	AGAAAATGCAA	ATCAAAACCA	CAATGAGATA	TCATCTCAC	CCAGTTAGAA	TGGCAATCAT
70	TAAAAAGTCA	GGAA ACAACA	GGTGCTGGAG	AGGATGTGGA	GAAATAGGAA	CACTTTACA	CTGTTGGTGG
	GAATGTAAC	TAGT CAAC	ATTGTGGAG	ACAGTGTGGC	GATTCTCAG	GGATCTAGAA	TTAGAAATAC
	CATTGACCC	AGCC ATCCC	TTACTGGGTA	TATACCCAAA	GGATTATAAA	CAATGCTGCT	ATAAAGACAC
	ATGCACACGT	ATGT ITATTG	TGGCACTACT	CACAAATAGCA	AAGACTTGG	ACCAACCAA	ACGTCCAACAA
	ATGATAGACT	GGAT TAAAGAA	AATGTGGCAC	ATATACACCA	TGGAATACTA	TGCAGCCATA	AAAAATGATG
75	AGTTCATGTC	CTTTGTAGGG	ACATGGAGGA	AGCTGGAAAC	CATCACTCTC	AGCAAACAT	CACAAGGACA
	AAAAACCAAA	CACIGCATGT	TCTCACTCAT	AGGTGGGAAT	TGAACAATGA	GAACACTTGG	ACACAGGAAG
	GGGAACATCA	CCC ACTGGGG	CCTGTTGTGG	GATGAGGGGA	GTGGGGAGGG	ATAGCATTAG	GAGATATACC

	TAATGTTAAA	TGATGAGTTA	ATGGGTGCAG	CACACCAACA	TAGCACATGT	ATACATATGT	AACAAACCTG
	CACGTTGTG	ACATGTACCC	TAAAACCTAA	AGTATAATAA	AAAATATAT	ATATATATAT	AAAACAAC
	AAAATAAAC	TTCI TTTTCT	GCAGGATCAG	TCCATCACCA	CACACACAGG	CTGTGTTTA	TGTTGTTCCC
	CAGCTTAAGA	GATCGTTCTC	CAGATCCCAC	TGCTCCTTCC	AGTTGTCA	TCAGTTCTCC	ACTTCTTTT
5	GCTGATAAAC	TACT'CTAACT	AGTTACATAT	GATTCTGTG	CCCAGGTCCC	CTCCCTCAGT	TGTTTGAAAC
	ATAATCATTT	ATATCATT	TCATTTCAC	TCTAATIGCA	CAACCAAAAA	CTCCCTTTT	TTTAGATGG
	AGTCTCACT	TGTCACCTAG	GCTGGAGTGC	AGTGGCATGA	TCTCGGCTCA	CTCCAACCTC	CGCCTCACGG
	GTTCAAGTGA	TCCC CCTGCC	TTAGCCTCT	GAATAGCTGG	GATTACAC	ATGCACCAC	ACACCTGGCT
	AATTGCTTG	TTTITGTTG	TGTGTGTG	TGTTTTTTT	TTTTTTGGA	CAGAGTCTCA	CTCTGTTGCC
10	CAGGCTAGAC	TGCA GTGGCA	TGATCTCAGC	TCACTGCAAC	CTCCACCTCC	TGGGTCAAG	CGATTCTCCT
	GCCTCAGCCT	CCCC AGTAGC	TGGGACTACA	GGCATGCACC	ACCATGCCAG	GCTAATT	TTGTATTTC
	AGTAGAGACC	AGG' TTCACC	ATGTTGGTCA	GGCTGGTCTT	GAACCTCTGA	CCTCAAATGA	TCTGCGCACC
	TGGACCTCCC	AAAATGCTGG	GATTACAGAC	TTGAGCTACT	GCGCCGGCT	ATTGTGTGTT	TTTAGTAAAG
	ACGGGGTTTC	ACCA TGTTGT	CCAGGCTGGT	CTCAAACCTC	TGACCTCAAG	TGATCGCTC	GCCTCAGGGC
15	CTCAAAGTGC	TGGC ATTACA	GGAGTGGAGCC	ACCATGCCTG	GCCATAAAAC	TGCCCTTGT	TAATATGACT
	GTTGGCCTGC	ACATGTCAA	ATCCAGTGGC	ATTCTATCTA	CTCGGCCAAC	CTACGGCATT	TGACACTGTC
	TGTCTTCTC	TCTG ITCCCTC	TATCTGTTTC	CAGTACTG	GCCCTGGCTT	CTTTTACCT	CTTTTATATG
	CTCTTCCAGT	CTCAAGGCTCC	TTTGGGGATT	TGAAGGTATG	TTGCATTITG	CTATTCAATG	AATAATGACA
	AGTAATGATC	ACTIAAGACA	TTAAGTGGTC	AGTTCCTTA	CTAGGATAAA	AATAATTTC	TTCCCAACAT
20	GGGGCATATT	CCATTTCAG	TCTGACTGTT	CTGTGTAATC	TTTGTATTCC	TTGGCAGCCC	CTTTTATATC
	AGTTCATCTA	CTGTGAGGA	AATTGGACAA	ACATTGAC	TGGTATAACC	AAATACAGTT	GAACCTTTGG
	CTTGACTCTT	AGCT 3AAC	ACCAAAAATA	ATTCTGTAA	GAGACTGAGA	CGTCTACGAG	TAGGTTTTTC
	AGAATTAGTA	AAAC TAAATC	AAGGATACAC	AGGTAGATT	GAATTTCAGA	TAAACAAACAA	ATACTTTTT
	AGTATGTCTA	CTGA AATATT	TGTATCTTAT	CTGGCAATT	TACCTGGTAC	AGAACTAATC	CATTCTCTG
25	AAAGATCTG	ACTCTGTAAT	AAAGTCTT	GTGATGGAAG	GGAGGTATT	CTGTAATTAG	AGTCACTGTC
	TTCCCTCCAG	TTTT TATCC	TGGCCCAGAT	CTGCAATGAA	CACACGACAG	AATCCAGGGG	GGATGAAGAT
	GGGTGCTTG	CAGGAAAAAA	AAATTAAAAA	CATCTGAAA	AGCTTTGTA	CTAAAAGAAT	GTGATCTAAA
	AAAGAAAGCA	GGAGAAC	CTGTCTGCAC	TTTACATCAG	AACAACCTG	CGCTCTAGAA	GCTGTGCCCT
	GTGGGAAGTG	GTGCTGCTTG	GTAAGAGATG	CCAGGACCAG	TGGTACCCAC	TGGGAGCACT	GCCAATACCC
30	AGCAAGGAGC	ATGGGTGCAC	AGTAAGGCAT	TGCACTGTG	TTCA	GGATGATGAA	GGGAACGTC
	ACGGAGAAAA	GGCCAGACTT	CCTTTGTTA	GAATGTGGGA	AATGCTTCT	GAAAATGGT	AGTAAAAAAG
	CATGCTTGG	TGGTCCACTC	CAGGCAAAAC	TGACTAATCG	GGGGTCAGGG	ATACAACCCC	TGCATCATAT
	GTTTGTCTC	GTGGGGCTGA	CATGAGGTT	ACTGTGACCA	CTGTTGTTA	ACCCCATAGT	CTCCTGGAAA
	TACAGCCAGG	TCAAGAGAGC	TCCACATAAA	ACATAATCAA	AAAAATAAAAC	TCAAGTTCC	ACTGATCAGC
35	TTTTCACAAC	TCTT ATCCTT	TCACTAACTT	TGGAGCAAGA	TTTGAGAATT	GGATGGCTAT	TTGAGGGCTA
	TTTCTCGCCT	TTAGTTCAAT	GT	TTCTTATT	GAGAACTATG	TTTTTTATT	ATATTACAC
	TTTAAGTCT	AGGGTACATG	TGCACAACTG	GCAGATTGT	TACACAGGT	TAATGTGCC	ATGTTGGTT
	GCTGCACCC	TCAACTCGTC	ATTTACATTA	GGTATTCTC	CTAATGCTAT	CCCTCCCCCA	GTCCCCCACC
	CCCCGACAGG	CCCTGGTGTG	TGATGTTCCC	CTTCTGTGT	CCAAGTGTTC	TGTTTATGTG	ATAGATTACG
40	TTTATTGATT	TGTGTATGTT	GAACCAGCCT	TGCA	ACAAGAAACA	AACACTTCAC	
	AGATGGATCA	TTATGTGTGA	TAAGTGAAT	CCAAGGATT	ATGCTCAGAG	GTGGGCTTAA	CAGGTAGGAA
	GAGCAGTATT	TTCC TTCAAC	CATGAGTGT	TGCAGGTTT	TCTTTTCTT	TTTGAGATGG	AGTCTCACTC
	TTTTACCCAG	GCTGGCGCGC	AGTGGTGC	TCTGGCTCA	CTGTAACCTC	TGCCACCTGG	GTTCAAGCAA
	TTCTCCTGCC	TCAGCCTCCC	AAGTGGCTGG	GATTACAGGC	ACCTGCCACT	GTCTCCGGCT	AATTGTTGTC
45	TTTTTAGTAG	AGATGGGGTT	TCACCATTT	GGCCAGCCTT	GTCTGAACT	CCTGACCTCA	TGAATCATCC
	TTCTCAGCCT	CCCA AAGTGC	TGGGATTACA	GGCATGAGCC	ACTGCGCCA	GCCCACAGGT	TTTCAAAAGA
	CTAAACTAA	AAAAA	AAAATTCCC	AATGAAATAT	AAAACTAAAG	TGCTAAACTG	TGATAGACTG
	TTTTACAAGA	ATGCCAGTT	TCACAAGTGT	CTATAGAAC	TGTAATT	ATAGGTAAGA	TGAAATT
	ATAATATTG	ATGGCAAATT	TAACACAGTA	TACAACAAAA	ATAAAATTC	AAGCCCCTCA	ACCAACTGAA
50	TGGACTCCTT	CTCTCAGCCA	AAGGAATACC	AAAGTAAACC	TGAAA	TTTGGCCA	GGATTGGGG
	TAGGTGGGG	AAGCCCAACA	TGACTCATT	TTCTCTCCTC	CCTTGGAAAT	TCAGGCACAA	CTGAATGTCA
	GCATTGACAC	TAACACACAG	ATCTTAAGAC	TGACAAGCCA	GACTCTTGT	AGCAGAGAGC	CAGGCCCTGG
	AAGAAATCAA	GTTATTTTAT	CCCACAAAT	ATTCTTTGA	TATATTTC	AATGCCCTG	CAAAGCTGTC
	TCTTGTGGGG	AAAATTGACA	TGCTGTACAG	AATTCCCTTC	TCTTCCAAG	TTTTACTGA	TCCAGGAGAG
55	ATTTAACTAA	GAGGCTAGCA	TGTTTTTTT	TTTTTTTTT	TGAGGC	TCTTGCTCTG	TTGCCAGGC
	TGGAGTCAG	TGGCGTGTATC	TCAGCTCACT	GCAACCTTCG	CCTCCGGGT	TCAAGCGATT	CTCCTGCCTC
	AGCTTCCC	GTAC CTGGGA	TTACAGATCC	ATGCCACTAT	GCCCAGCTAA	TTTTGTATT	TTTTGTAGAG
	ACAGGGTTTC	ACCA TGTTGG	CCAGGCTAGT	ATTGAAC	TGACCTCGT	ATCCGCCAC	CTCGGCCTCC
	CAAAGTGTG	GCATTACAGG	CGTGAGCCAC	CGTGCCAGC	ACAAGACATT	TACCGTCTAT	TCTCTCTGAA
60	GCTACTATCT	AGAC GCTTCA	TCAACATAAT	AAGACCC	GTCTCCACAA	CTCCTTATCT	TATCCTATT
	GTTTCTACTG	ATTC CAGGTC	TTTAGATAAT	AACAACTCTT	TCAACCAATT	GCCAATCAGA	AAGTCTTTGA
	ATCCACCTAT	GACT TAAAAG	CCCCACTCCT	TCAAGTTATC	CCGCCTTCT	GGACTGAACC	AATGTACACC

	TTATATGTGT	TGATGGATAT	CTGCCTGTAA	CTTCCATTCC	CCTAAAATGT	ATAACATCAA	GCTGTAACCC
	AACCACCTTG	GGCAGCATGTT	TTCAGGAACT	CATGAGACTG	TGTTGCAGAC	CTTGGTCACT	CATATTTGGC
	TCACAGTAAA	CTCTTTTAAA	TATTGTATAG	AGTTGGCTT	TTTCATTGCA	CACAGGAAAAA	ATAAAGAATT
	GGAAGGTCTT	TCATCAGTCA	CTGAGCCAGC	TTCATATCTG	ACTGAGGTCA	TACAGTTTAG	TGATTTGTAG
5	CTTGCTACT	TAGAATGCTA	TCCATTATCT	AGAACATCA	GGATCACGTG	GGACCTATTG	GAAATGCAGA
	CTTCCTCT	AGAACCCAGG	ACCTTGGAAAT	ATTCTGGCA	CATAGTAGGT	GCTCAATACA	TATTGAACTC
	CTAGGTGCAA	TTCAATTAA	CATGAATTAA	TGAATTAAACA	CGCTCTCAA	GTTTAGTGCT	TTTCACAGA
	CTAGTCTTC	TGCCCTTAA	GCACTCAGCT	CACCCAGCTT	CCAGTCTCAC	TCCCCTATTA	GTCTGATTAA
	AATCTGCTTA	CATGTGAGTC	TGAGATCAAG	TGTTATCTCT	TCTGAGAAGT	CTTCCCTCAC	TGGCCCCAAG
10	GAATTCTCC	TCTATTTAG	CACTGTCCA	GTTGACTTGT	CATTATTCTA	GTCTTTTCA	TATTAGTTGT
	TTTCATATA	TATGTTATTAA	AGGAAACTAG	TCATTCCCC	TAATAGAACAA	AAATTGCTGG	CCTTTGGGGT
	TGGCAATGGA	GGGGAGGCTC	TTCTTGGAAA	GGGGGAAGAG	TGTTCTCTA	ATATTTCCT	TACGAGATT
	ATGTTGCTCA	TCTTACGCT	TTAGTCCCCC	ATTGCTGCC	TACAGTTGGC	AGAGACCATC	TGTTCTCTCA
	CTGTCAAGGAA	CTGTCTCAAT	TCTTGAAGTT	CAGAGTCAAA	AAAAGAACAA	GTTTCCCTAG	CTCTTGTAC
15	AACTTCAAA	GTGTTACTTC	CATTTGGAAA	TTTACTAAGT	CACCCAGGAGA	TGGTTTATAC	TGAGAAATAT
	CCACTCATAC	TCTTCCCTT	CAACTTTCTT	CCATATACAC	CCTATTACAG	GGATATAGTC	TTACTCTATA
	GCTCAAAAGG	ATGACCCCTAT	CAGAACCTG	CACAGTATGT	AAAACATTCT	CACCAAGGGT	TCACTTGTGT
	ATTCCACCC	TAGAATGGAA	GCTCTACAAA	AGCACAGAAAT	GTATCATTTC	AACTTGTAGAT	TCTATTTCA
	CACCCAGTGC	TTGAACATG	ATTGGAAGTT	AATATTATT	TATCAAGTGA	TGTTTTAAA	ATCATGACTC
20	ACTCAACAAA	GTTATAAGAA	TAAGAATAGT	GTTACAGAAT	TGGTATACAC	AAGCTGACCA	TAATCAACAC
	ACCTATTATC	ATTTTTTG	GACAGGTTCT	CGCTGTCTCA	CCCTGGCTGG	AGTGGAGTGG	CATGACCACG
	GTTCACTGCA	GGTTTGAAC	TCCAGGCTCA	AGCAATCCTC	CCACCTCAGC	CTCCACACATA	GCTGAGCCCA
	CAGGTGTGTG	CCAC'CATGTC	CAGCTAACCT	TTAATTCTT	TGTAGAGACA	GGGTACCCCT	ATGTTGCCCA
	AGCTGGTCTT	GAACCTCTG	GCTAGAGAGA	TCCTCCCTCC	AAGGTCCCCC	AAATGCTGG	GATCTCAGGC
25	AAGAGCCACC	ATGCTGGCC	ATAATCAATA	CACTTTAAG	AATGCTAGAA	TGTTATATCA	GATGCATACT
	TCAGCACTAT	CTCAAGCAAA	CTGGGGTGTG	GGTTATTCTA	CATATAAAGT	TCAGCAGTGT	TGTTCCACAG
	TCCCAAACTC	CAACTGAGGT	CAAATGTAGG	GTGAGCAAG	GTCACTGGGG	CTGTCATCAA	GGGCCTCTCC
	TTGCACTCTT	GCCAACCCCTG	TTTCTTGATT	GTCTCTACCA	CCATGAGTCA	CCAGCAATCT	CCCACAGTC
	CTTGTAA	AGTTCACAAG	TATTGTGTGA	ATTGCAAGGCA	ACCCCTGAC	TCCCTGATTG	CCTGGCTTC
30	TTCCCTGGGC	TCTACCATTT	TTTTTCCCCA	GCACCTTTTC	TGCTGCTCTA	AATTAAATT	CATGCAATT
	CATATGTGTT	TCTCTATCAT	TCTTCATCTC	TTTCCCTCTCC	CTTCATCCA	ATTGGTTTG	TCTGTTGCT
	TGCTTGCTTG	CTTAAATACA	TTTCTCTTT	TCTGAGAAGG	CTTGAGTCCA	AAACTCTAG	TTACCTGTTG
	TTCTGTTCC	CGTTAGTTAA	TCTCCGAACC	TTCATAAATT	AAATCTGACA	AAGTCCCTG	ACTAACAAAG
	GAAATGCACA	AGTCACAGTA	AAAGGGGCAC	ACACAGAACAA	CAAATAGACC	CAGGGTCTTT	TCTGTTCATC
35	ACTCAGCTT	TTATAGGAGA	TCCAGGAGAA	ATGAAGTGG	AAGGGAAGTG	TGTTGAGTTA	CTATACAACA
	CAAGAGTAAA	CTTCTTATA	AGTGGTAATT	TTTTTTACA	GGAATAATTG	AAAATGGAAA	TTACCTCTC
	TACTCATAGT	AAAGTACTCAG	TGCGTTCTTG	ATGGGATGAG	AATGTGTTG	AGCTTAGTGT	TAAGGCAGAA
	TTCTGTTAG	TCTGCCAGTA	TTGGAGAAAAA	ATAAAACACAA	AAGGGACTGA	CATGTAGGAA	GTGGCACCTG
	GGAGGGTCTC	AAATCTTCT	ATTACAAAAA	TGCCCCAGAG	AAATAAAAAG	CTTGTGTACA	TGTTGAGATG
40	GGAGAGTTCT	CTGGCCCCCC	TCGCAGGATG	TGTGACAGTG	GGGTGGCTCT	CTGCTCGGCC	ACCATGAGCT
	CAAACCCCTC	ATAGGAGGGG	GAGCACACAG	GCAGGAAGGT	GCAGGAGCTG	GGCGAGCTCT	TTGGGCTCTG
	GCCCCGTGGT	ACTGTCTAGA	GGTGGGTGCC	TGCAACTCCT	GAAAGCCCAA	GTGGGCATGT	GTTACAGTGC
	ACTCTTCAG	CTTCTGTGTC	TGCAGCTAA	GCCTTAACCA	GCTCAGTTTC	TTCTGGTAC	CCAGGTCTT
	GTCTGGCATC	CAGGAAGAAAT	CAGGTTACAC	ATGGACTTGA	AGGATGAATG	TGGGAGTTTT	ATGGAGTGGT
45	GGAGGGTGGCT	CTCAGTGGGA	TGGATGGGG	GCTGGAAGGG	GGATGGAGTG	GGAAGATGAT	ATTCTCTGG
	AGTTTGGCTG	TCCAGCAGCC	GATCTCTCT	CCAGTCGTCC	CCAGCCTCTC	GACGTTCAGA	TGCTCTCTT
	CTCTCCTCT	CTGCATGCT	GTTCTGCCGT	TCATCTGCC	GTCTCTCTCT	GGAGGCTGG	ATTGGGGGTT
	TATATGGTAC	ACAAATAAGGG	GCATGGCAGG	CCAAAAGGG	ACTTTTTAGG	TGCAAAAAAC	AGGAATGCCT
	CTTCTCACTT	AGGGCTATAG	ATTTTCAGGC	TTGAAGGTGG	GGCCTTTACC	AGCGAACCTG	TATTTCCCTG
50	TCTCTGTGTC	ATATCAATGT	AATCAAATAC	TGGGCTGATC	CAGGATGTTT	CTTAGACCA	ATTATGGGTA
	AAATAATTAA	CATCAGGTT	TTTATATTG	CTTTGTCTA	TTCTTTTAA	GCAATCATGT	AAAATATCTA
	TACGACAGTA	ATACATGATA	GCGAACCTAA	TTAAAATTAC	CAGAAACTTA	AGAATCTCTA	ATGATTTCAA
	CTGTAACAA	GGTIAATTCT	CTTATGTG	AACAATGTTG	GGAGATAAGA	CACAAGAGTT	TCTGAAGTAT
	TTCAGAAACA	CAAAGAGGG	GGTTATATAA	ATAATATT	TTTCCTACTT	TGGGAAAATG	AAAGCTAGTC
55	ACAAAGTTAA	ACGAGTGGTT	ATTTTAATAT	TTAAAATACA	GGCTGGATG	TATTTCCTGT	TAAAGAAAAT
	AAAATGCAGA	ATATTCAAAAA	CGTCTGACCA	CCCTCTAAAG	AAAATGCATC	TCTGAGGTAT	TTTCCTTAG
	AAGTTATTGT	AAAAATCCTG	GAGAAGCTTG	AACACAGCAA	AGCAACACAG	ATGCAGAGTT	TAATCTGTGG
	AAAGCTTAGG	GAACAAAAGC	AAATCATTAA	AAATAGGTCT	TCCTCTGAAG	ATTTTTAAA	CGCAAGAGG
	GTGGAATAGC	AATCATAATA	AAAAAGCTGG	CATAGAGAGT	GGCACAATT	GCTGTGCCAC	TGAGCTGACT
60	GGATGTGTT	TGAATTCTA	GGCATTAGTG	TACCTTCCA	CACGCATTCT	CCCTTTAAA	AAAATGCCA
	CACACTGAAT	ACTTTTCTA	TGCAATTAA	AATAAGCGCA	CCATCTAGTT	TACAGAAATT	CACTAGAAGT
	TATTATCCT	AAAATAGCAG	AGATCTAGAA	GAATTGGAG	CTCTAGGACA	TTTTAGACAC	ACAGAAAGAA

	GAATCTGGAC	AAG'CTTGAC	CAGACATGAC	AGAATAGAAA	TTTCTTTCC	TATTATCTC	TTTGAATAAA
	ATTTTCAGGA	TCTTACAGTG	GACAAGTTG	TTATCTACAC	ATTGTGAAGC	ACATTGATTT	CTCCTCTGTA
	GCCTTAGGAA	GATC TGAGAG	GTGACTGAGC	TGATTGAATG	ATCCGTGACC	GCTCTACTGG	GACCAGTAGT
5	AGAACTTAC	TGGTGGAGAC	CTGCTGGAGG	TTTGGAGAGCA	GACTTTGAAA	ATTACTAGAG	CTACACAGAT
	ACTGTGTGGC	TAACTGGATT	ATGTTTAGAG	GCTTTAGAA	CTATGCTGCT	GCTGCTGCAG	TGTAGCCAGG
	ACGCACAGAG	AAC'CTCAAG	GCTCTTAAT	GGGGCGATAG	GGACAGATT	CAGCAGCCAT	CTGACTTCAG
	TGCTCATTTT	GATG CTTTCC	CTGCAGGGTG	CAGTGTGCAG	TGTGCACTGT	GCAGTGGTGG	GAGGCTCACCA
	CAGGAATACT	TGCT'CTGTGTA	GCCCTAATTT	CCGGTTCAA	CTCTGCATTC	ACCTGACAG	ATTCTTCCCT
10	TGGCCAAAAT	TTAC'TTAGGC	TTCTGGGCTT	TCTCTTATGC	CCACCTGCAG	ACTTTTGGT	AAAATCCAGT
	TTTAGTAAAG	AGCI CTGCTA	AGTCAGTTA	GCAAGAATCC	CCACCTCAA	AGTCACTATC	TCCCCTCCCTG
	GTAGTGTCTG	GCTI GTCTTC	AGCGAGAATT	CTATTAGTT	CTGTTAGATT	AGAACCTCC	TTACCCCTGTA
	TGCTTCTCT	TAGTATTTTT	TCATCCACTG	ACTCCTGAC	CCACCTTGCT	CCTCGGCTAT	AAATTCCCAC
	TTGCCCATAC	TCTGCAGTTA	AGACTATT	CTCCCTCACTA	CTGCAAATC	CCATTGCCAT	GGTCCCTATA
15	CTATCTCAAT	GGTAATGAAT	AAAGTCTGCC	TTACCATGCT	TTAACAAAGTA	ACATTGAACC	ATTTTTTCT
	TTAACAAATCT	GCTGCACAAT	GAGATTACTA	AAACTTTATT	CCACCTTGCC	ATGCTGGATG	TCCTCAATGG
	AATGGCTCTT	GTGAGCACCA	AATCATTGTG	AGAAGGAAAA	CCCACATCTT	ACAGCCCCCT	GTAACGTGAT
	GTATGTTACA	TGTC ATGTAT	GTTACATAGT	TTTTTTTCAT	GTTGATCACT	TTTGCCTCAT	TTTCCTATAT
	CTTATCAGTT	GGAAAGACTGT	GGAAGTTGT	AGTACTAAGC	CACAAGATGA	CTAAGAAGAG	TTGAAAGGGC
20	AAAGTGGGCT	AAA'ACAGAT	TTTGTGAC	TTACCCCACC	ATCCCCCTA	TCATGGGCT	GAATCTGCCT
	GGAGGAAGGA	GCA'CTTTAT	CTTGTACTG	TGAACCACAC	AGTCTAGCAG	CAGCACAGCC	AAGGCACTTG
	GGGTTTCATG	AGACTAAGTA	CATGCAATT	TATTGAAAG	GCTTAAATA	TATACAAC	ACCCCTGAAC
	AACATGAATT	TGA'TTGCA	GGTCAGTTAT	ACGAGATT	TCTTCCACCT	CTGCCACCCCC	TGAGACAGTA
	AGATCAATCA	ATCC TCTTCC	TCCTACTCCT	CAGTCTACTC	AAAGATACT	GAAGTCTACT	TGAAGATGAC
25	AAGCACAAAG	ACA'TTATGA	TGATCCACTT	CCACTTAGTG	AATAGTAAT	ATGTTTCTC	TTCCCTCCTAA
	TTTTTTAAC	CTTCTTCTC	TCTAGCTAA	TTTATTGTTA	AGAATACAAT	CTATAATACA	TATGACATAC
	AAAATATGTC	TTACTTGACT	GTTTATGTTA	TCTGTAAGGC	TTCAGGTCAA	GAGTATGCTA	TTAGTGGTTA
	AGTTTCGAG	GAGI CAAAAG	GTGTATGTTG	ACTTCAACT	GCAGGGGGT	GGGCACCCCC	GCCCCCATGT
	TGTTCAAGGG	TCA'CTTAC	TGCCAAAGGC	AAGCCTTAC	ATCCACTTTT	TCCATCCCAT	CAGTAATATGG
30	AAAAAGATAG	CTA'CAAGTATC	CTTGCCTCAA	ATCTTTTTT	TTGCAGATCA	CAAATTGGCC	ACTCACCTG
	CTCTGTGAGG	GGT'AAATGC	CCCACTTCT	TTAGTAATAT	TTAAGTTAGA	TAATATTAA	GTTATAAAGT
	TGTTCTTGT	AATC GTTAAT	TGTAATT	ACATAGTT	TTTCAAACAG	AAATAGCATT	TTTGTAGAT
	AACCTCCCGT	ATAGATGATG	AAACTCCTT	TAAGGGCTAT	CTGAATT	ATTCCCTGAA	AAGGCAGAAA
	TTGGATAGCT	AGTAGTCATA	AATGACTGT	GGCTTCCCC	AACCATCTG	GCTATATAGA	AGCTGCATCC
35	TTGGACTGCA	GTAG AGGAGT	CTTACAAAGC	ACAGAGCAAC	TTCTCTCTG	GGITGCGCTA	GTTATGATGG
	CAATTAA	TGTGACTTT	TACCCAAAGA	AAATCCTAT	TATCAACAAT	CACAATGCCA	TCATAACCAT
	GGTATAAAA	ATTCAAAATG	TCCCAGCTGA	AGTGGAGGC	AAGACTCAAG	TTCATGGAGT	CAGAGTTCC
	TTGCTATTCC	TCTT' TCAA	ATGACCATT	AGTAAGCACC	TGAAGAAAAT	ACTATGGACG	GCATTGAAAA
	GTGAAGATAG	GTII AATCTT	CTCGAAAATC	TAATTCTCCA	GATGAAACGC	TGACACTTAT	CCACCCCCACA
40	GACCTATAG	CAGA'GTGTC	ACTGGCCATC	ACATTGACA	CAGAGAAGTC	ATAACTCAGT	CAGCACAGAG
	ACATTTCCAT	GAGT TTCTGA	ACCATGGACA	GAACGTCGTC	TGTGGGACAT	GAAAAGTGG	ACTTAGAGGA
	CAGGCACATC	TGAG AAATGG	GCAGTTAAA	GGCAGAACAT	AGCACATATG	TGACTGGGTT	TTAGAAGCAA
	ATTTACAAGA	CGCA CTCTTC	TTCATCCTAA	ATAATCTGCA	ACCAAAGCTT	CCAAAAAAGA	CAATTAGGA
	ATGCAGAGGT	GAGG AGTAGG	GAGGGGAATG	GGATGAGAGA	GAGTGGAGAT	TAATGGTGGG	CAGAGCGAGG
45	TTTGAACCT	AGTGGTTCT	TCAGGTTCTG	AACTGAAATT	TGTATACTGT	AAAGGCACAA	ACACCATT
	TAACAAAAGT	GAGC'AGGACT	TCCTATCTGG	TTCAAGAAAT	AGGTGAATAA	ATAGTACGAA	TTATTAAGAA
	TAATAATTTC	CACTTATACA	TAGGAAACCT	GATAGGAACC	ATGATAAATG	CTTAACCTT	AATCTTCAAG
	GAACCTGCT	AGGC ATATAA	TATTATAAT	CTTGTGTTGC	AGATGGAGAA	ATTGAATT	AACCCAAGTT
	ATCATAACCC	TTAAATGATT	AAATGATACT	GTTACATGAG	AAAGCTGCGT	ATCTGTTTCC	TGGATTGTTA
50	GCCATAATT	GTGICCAAG	TCCCCTTTC	TGCCAGCTAT	CTTGGGTAGG	TGTGTTCCCT	TTGGGCTGTT
	TGATACCCCC	ACA'TTATCT	TTTTTTTTTC	TCTTTTTTG	TTGAGAGAGT	CTTCCCTGT	TGCCTAGGCT
	GGAGGGCAAT	GGCGCGATCT	CGGCTCACTG	CAACCTCCGC	CTCCTGGT	CAAGTGCCTC	TCACGATTCT
	CTTGTCCAG	CCTCTCTAAT	AGCTCGGATT	ACTGGCATGC	ACCACCA	CCACCTAATT	TTGTATT
	AGTAGACAAG	GGG' TTCTCC	ATGTTGGTC	GGGGGGTCTC	AAACTCCTGA	CCTCAGGTGA	TCTGCCTGCC
55	TTGGCCTCCC	AAAGTGTGCG	GATTACAGGT	GTGAGCCACC	ATGCCTGGCC	CCAAATT	CTTAAATGCC
	CCAAATTATC	TAGI TCCCCT	GAATGGGCTT	CTGCTTGT	CCTTCTGCA	CTTGTGGAC	CCTCTCCCTG
	GGAAATGAGA	TTGT'GTCTG	AGCCCCTAGT	TAGAGGCTAT	GTCTCTG	TTCCTGAATG	GGCCTCCTGG
	ATGAGACCTC	ATTA AAAAGTC	TAATTCTCTT	GGAGAATTGA	GAGATACCTA	TTTGTCTCAA	AATCATTGAA
	ACCAATTAT	GTAT TATGAG	CCTCTATCCA	GTGATTGTA	CCTCAATT	CCAATCCAGC	TGTCAAGGCC
60	AATTGTTCT	ACCTTACCTA	GTAGGTAAGT	CTGGAATTGT	AGCTGTGGCA	TTTCAGTAA	TGGTACTCTA
	GGTTAGCAGT	CCCCAACCTT	TTTGGCACCA	GGGACCAAGT	TTGTGGAAGA	CAATT	ATGAAGGGCT
	GGGCAGGGGA	GTGGTTTCAG	GATGAAACTG	TTCCACCTCA	GATCATCAGG	CATTAGATT	TCACAAGGAG
	TGCGCAAGCT	AGAT CCCCTCA	CACATGCACT	TCACAATAGG	GTGTGCACTC	CCATGAGAAT	CTAACACCGC

	TGCTGATCTG	ACAC GAGACA	GAGCTCAGGC	AGTAATACTC	ATTTGCCAAC	CGCTCACCTC	CTGCCGTGCA
	GCTCAGTTC	TAACAGGCCA	CGGACCAGTA	CTGGTCCACG	GCGCAGGCAT	CAGGGACCCC	TGTTGCTAGG
	TATAAGCATC	TGGCTGCTGC	ATGTCTTCTG	TGTAGCTACA	TCTGTATGTG	TATCTGATGA	GATATAAAATT
5	ATTTGATTAT	AAAT TACTTT	CTTCATATTA	GAGTTGTGAA	TGAGTATCAC	ATATAATTAT	ACATAAAACTA
	GGAATATGCT	TTTTAATAAT	GTATATAAGT	AAGTTCCCTT	AACATATGACT	TTCATCTTAG	CGTAGTAAGA
	GGGTGCTAAG	AAAATTTTGT	GATGAAAATA	GGCATTGGTA	GAGTTGAGAC	CACTGGGTGA	TGAAAGAGTG
	TAAAGATTTT	AAAG CCTTCA	GATGCTGGTT	CAAGGTGAGA	AATGTGATTG	GGAGCAAATC	ATTAAACTTC
	TTGAAGTCTT	ATAGGGCAGT	TATGAATACT	TAATGTTAAC	ATATGTAAG	CTCTCTGCC	CTGTATACAG
10	TAAATGCTAG	TTAG CTATTA	TGATCACTAC	TAAAATGGGG	ATGACATAAA	CCTCATAAGG	TTTAAGTAT
	TATGCAAGAT	ACT ATACAAA	GTCCAGTAAA	TATCACATT	AATTGAATCC	ATGATGTCCG	ATTATTTAG
	CTACTTCAA	GAGAGAAAAA	AATGCTGCA	GTTTACTGT	TCTTATAGAG	AGCAAGGCAG	ATCCCAATTC
	CCAATGTGGT	AAAC ITGAAA	TTTTGCATT	TGAATCAACA	AAACACTTTC	TCCTTCTTT	CCTACTATTT
	ACAACTGGT	AAG CTATAC	TCCCCAAAT	CTGGAATTCT	CCTTTCTT	TCTTTTCCCT	CCTACCAAGA
15	CCGCAGGATC	TTTACTTGG	CTATAAGGGG	TAACACCTAA	GTAGTACAAG	TTCTCTGTAT	TACTTTTATA
	CTCTGTCACA	GATI CCCC	GTTCCTCAT	CTCCATGTGA	ATTTAGTTAA	ATTCTCAGCA	TTCTGATCCT
	TACTATACAA	GGTA AAATGAA	TATAAAAACA	AAACGAAACA	AAAACCTTT	CCTATTACAA	TAAGGCCCCA
	ACCTAATATT	TAGT GATATA	TATTAATGTG	AAACAAGGAAC	TAACGAAGAC	TGGGAAGAAA	TTCACAGACT
	TGAGAGAAGA	AATG GCAGGA	TTTCTGGGA	ACAATTTCAT	GTAACTGCAA	AGGTGGTAAA	AGGTCAAATA
20	GAATGAAGAT	GGAGAATACC	GGATTTTCTT	ACAAAATGAT	TTCCCAGGAG	ATCTCATCAA	ATGCACGAGG
	ATACCTTCTC	AGTTT CACCT	AGTGAGTAA	AGACTGGTAA	CATAGCTCAC	TTACAATTG	GATAAAACAAA
	ACTAAACAAA	CAAC ATCAA	ATTCAGAAA	AAATAATAGC	AAAACAGAAA	TCAAACACTC	AAATTTTTGG
	TCCCTCTGTT	TATT CATTT	TGGTACTCA	GTGAATGTTA	ATTAACCAAG	AAACTTAAAAA	GTTATTTCAA
	TTATGAACCT	CTTC AATCCT	TCATCAATT	TTTGAGTAT	TCTGGCTTA	AAAACATCTC	TTTCTTCTAC
25	AAACCTCTGA	AAG AGATGAA	CACCTCCACC	TACACCAAA	TAATGTGCTT	TGCTGGCCAA	AAGTACACGT
	CCATTTTAC	TTAA CAGTCT	AAGGAAAGTC	TGGTCAAAT	TACTATAATA	ATCTGGTTG	AAATGGTTT
	CTGAGGTGAG	AATC AGATCA	TATTTACAA	AAAGTTTTTC	ACTACTTAGT	ACAAGCTTAC	AAAACACTAGA
	CCACTCACC	GAA AAAATC	GGCATTATA	TAGTTGTGTT	ACTTTGGTT	TCCTGCATCT	TTTCACATCT
	GGCTCATTTA	CATCATTTTC	TTCATCTTC	AAAGTGGAGT	TAGCTACTAC	ATTAGGTAAG	GTTACTTCAT
	CAATCACCAT	ACTGTTATAA	TCTTGAAAGT	GAATTTCCTT	GGACCCCTCC	TTGAATGCAG	TTATACCTAG
30	TAAACCTGAT	CCACAACCAA	GATCCAAGAC	TTTTTCCCA	GCAAATTCA	CTTGGCCTT	TGTGAAATAA
	GCCAGGAGGT	CAA GGTACA	TTCCCAGATT	TTAAGCCTC	CCTCATAAAC	ACCTGTAATC	AGATCAGAGT
	GAGAAGAAAA	GCT TTTGAA	ACTATGTTT	CTCCAGGGAA	GTTCTCTTC	AACAAGATGG	TTTCACTAC
	TGATAACTTA	ACAT GCTGGA	AACTGGTAA	TGTTCTATG	ACTTTATTT	CTAACATCTT	CTTAAATCT
	TTAGGCATAG	CATG CTCTTT	GGCAGCTCT	AAAGGGGCT	GTTCATCATG	TGGCTCCAAG	TTCCCTGAAC
35	TGCTGGCTGC	ACTGAGTGG	CTGTCTGTG	CTTGAGAGGG	AGCTGATTT	TCCATTGACT	TATGTTCCA
	CAAGT GATCC	TGAC GCAAGT	CAAATTGTT	TGCAAGACAT	TTTCTGTCCC	TCTCTCTCC	TTTTGACTT
	TCTGAGACTG	ACAC CTCTT	TGAGGAATCC	AGGGTCAAAG	CTCCATCTCT	AATGGGTGTT	AATTCAATT
	CCAGATGGTC	TTCT ATAGTG	AAATTAAAACT	GAAAGGTCA	CCTCTTATTA	AATGCACACA	ATCTTAAAT
	TCAGATTCTT	CAAC ITCTGG	ATAGAATTG	ATGATACACA	CAAATCTGCC	TCAATTATTC	AATTAGTTT
40	GTTGGGCCA	ATT TCTCTT	AGCAGTTAT	ACATGGTAA	AAATATTAG	AGATATTTC	AAATGACTTT
	TTAGACGTCT	TTGG CCTCT	TTCCAAGCAG	CTCTGGAAAG	AAAAAAAAAA	AAAAAAGAAA	GAAAATGATG
	ATTAAAGCAA	AATC GCACAT	TTCACTAAAG	TGTAATATTA	AAACAGCCACC	CCCACCCCTC	CCTGTCCCCAC
	CATACAGCTG	CTTT TCTTA	AAAAGTTGTG	GGGAAGAGAG	AGAGATAAGA	GATTGGACAA	CTCATACACAA
	CCTTAAGGGT	TCCA AAGTGG	GAGAAGAAAA	TCAACTATAA	AAACAAACAG	AAGAACAAACA	GCAACCACCA
45	CCACTACCAC	CTGG ACACAAAC	ATAAAGTCCA	AGATATTCA	ACAGGACAGC	CTAGCTACTT	GCTGTCTTTC
	AGCTGTCTG	ATT TGTCTC	AACCATATT	ACCCCTAAG	CTTCCAGAAT	AACTTCACTT	CTGTCTTTA
	CAGAAGAGGT	GCAC TATTTT	ATTTTGGTAA	GTCAGCGTCC	CTTAAAAAAC	ATGCATAGGT	ATGGCCTGGT
	GTGTGTAAAT	TCAT CCAAGA	CTTCACTCCA	AAACATTAGT	CGAGAACAGC	AGCCCTAAAGT	GTATAGAAGT
	GGGGGTAATT	TGGCAATAAT	TAGTAAAGAC	TAATCGGTG	GCAGAGCAA	CGAAACTAG	GGCACTGCAG
50	TAGTTGGAG	AGACCTGTAG	AAATAAGAAG	CAACTTTATT	GAGAATCTTC	TATCTACTGC	GCTAGACACT
	ATACCATCTG	CCTCAATT	CACAGTTCTG	GCAAGTGGGA	TCTTGTTC	CTTTATACAA	GATTTACAAT
	TTGGGGAGA	GGCC GGTCA	CCAGTCCC	GGCTAGGAAC	GCGCCTCTT	CCTCTCCCAT	CACGCTGCAA
	GGCTTGGAGT	CACT TCCGGC	TGCAAGTCCC	GGAAACAATC	CGACCCAGA	AGTGGGGACT	TCTGGCCCTC
	ACCTCCCCAT	TTGA ATGTAA	TGTTTACAGT	GATCCAGACC	TGGGGATGCT	TGCTTCCC	CYTGTCTGG
55	GATCGCCTT	CTGA AAAAGC	TCACCTCACA	ACGCCCTCTC	CGGACCTAA	TCGCGCACCA	GTGAGTCAG
	TCCTCCAGGG	GCTA GAGAAG	CCCGACTTT	TTTCCGGCCT	TGAGGGACCC	GGGCTCACCA	AGAAACCAGC
	CGCCCTCTC	TCTA GGT	TGGAGCCGGC	GGAGAGCGCG	CAAGGGTGG	CGGGACTGCG	AGTTTCCGGT
	CTGGGCTTG	GC GG GTCTGG	TTTGAAGTC	TCCTGTTGA	CGAAAGTATG	TCTCAGGAAG	GTGCGGTCCC
	AGCTAGCGCG	GTTC CCCTGG	AAGAATTAAG	TAGCTGGCA	GAGGAGCTAT	GCCGCCGGGA	ACTGCCGTCC
60	GTCCTGCC	GACT CTCAT	ATCCCTCCTT	GGTTGTCACT	TCTACCTAGA	GAAGGGTGTG	GGCGGGTCG
	GAACCTTCT	CTTC GTCCC	TTCA GACCA	CCGCCAGGCT	GGGTTATATT	ACCGCGGCCT	GAACCCCCCTC
	TTTCTTTGT	CAGTC AGTGG	GATGAAAAGT	GAGGGACTGG	AGGGGAAGCG	ACAACCCTGG	TAGATTAAG

	TAAGGCTTG	GCCCTGGAAA	GCCTCGCGGA	CGTGTCTGA	CCAAGGTTT	TAGCAGTGG	TGTGGC GTT
	TCTTCATTC	CTTCITTCAG	TTTTCTGT	CTCGTTGCTT	GCAATTAA	GTAATAACTT	TTGCTAGTGG
	ATAATGGGGG	AGGC'AAGGAC	TGAGACCTGC	GGTATGACGA	TAGCTCTGC	TCTTAATAGT	TTGAGGTAAA
	GCGAGATACT	CTGAGCTTTT	GTCTCCCGTA	AAAAGGGTGG	TGAATATGAA	TAAGGGCTT	CTTAGCGTTA
5	TAAGAATTAA	AGGC'CATAGT	TCTGTGGT	GAAATCTTA	AAAGATGTT	AGTAAATAAA	AATGATTTC
	CTCCTCCCC	TCTCAGACCT	CTTTTCTTC	TTTCTTCTT	TTTTTGAC	AAGTCTCAC	TCCTCTCAC
	CAGGCTGGAG	TCTITCTGAA	AGAGTTCTTC	CGCTTGTGT	TGGTTCAA	CTGTTGGATT	TGAGGCGCTT
	AGCGCCTCT	TCGTCCGGGT	GCAGCACATT	CTTGATTGGT	CTCATGCC	TGTGGTTGTA	AATGTGCCTG
	GAATCCTAGC	CTTTCATGGT	AAACCATATG	TATATGTATC	TTTTCACAA	CATTGAGCC	CAGCTTATAA
10	CAATTACACT	CAAAAGAAAA	AAAGTAACCT	TCACTTGAGA	GAATCTCA	ACTGCACAAA	TATTGTGCA
	CTAAAGCCCT	ATGTAATCAC	ATAGAAGTCA	TTCACTAGG	CATTAGCAA	ATCTCAGAAG	GTGCCAAAGC
	CCCCTTTTT	AGTT TTGT	TAGGTACAGA	ACTGCCGTCT	TCAAGGAGT	TCAACTTGAA	AACAAATAGC
	CACCCCTAAA	ACATTCAAA	ACACTTAAAC	TGCGTGCATA	ATGTGTGT	GACATGGTGT	TAGGCTTGG
	GAGAACAGAG	ACAC'GGAACG	TGATTCTCT	TCTTCCCCAC	AAGCTTATG	AGAGACTTCA	TTAAGTTGAA
15	AGTCAACATT	CCCACCTAGC	TTTGCACTTC	AAACGACATA	TTCAAAAAAG	CCCAAAC	CTCTAGTTT
	CTTCATCTGA	GTAAATGGTT	TCACAAACTG	AAACCTTGA	TCCTCTGT	CTCACACACC	CGATCAGTAA
	GTTCATTGTT	TTCTGATTCC	AAACTATGTC	TTGAATCAAT	CCGTTTATCT	CCATCCTCAT	TGCTACCACT
	CTGATTCCA	ACCC TTATCA	CCTCTCACTT	GGAGTATTAA	TAGTTTCTT	GTTTCTACTC	ATAATTCA
	ATTCCAAAAAA	AGTIAAGAGG	GGAAAAAACAT	AGATCTGTC	ATTTCCCTT	TTAAACACT	TTACCTTCAA
20	GGTCCAGGT	GATCTAAGCC	TTGCCCTCT	CTCATACCA	GTAAATTAAAC	TACACTCTGT	TCATGAATAC
	ATTAGGCTCA	CCTACCTCAA	GATCTTTTG	CTCAGCCTGA	TTTGTCTCT	CAGCCTTTG	CATATTTCAT
	GTTTATGTCT	TGGC CCAAAT	GTCACITCT	TAGAGGGGCT	TTTCAGAGC	CTTCATCCTT	AGGCAGTCCC
	CCCAAACGCA	GTCTTACACT	TGTATCACAT	TGGCCTGTT	AGTTTCTAA	AAAGCACATT	ACCATTA
	GAAATGCTCT	TGTT TGCTTT	GTATATTTC	CACTCTACA	CATTATGTTG	CAAAGTTCAT	AAAGGCAGGA
25	TGTTGATTTT	CTTCACAGCG	TTACCTCAG	CACCTAGAAC	AGTGCCTGAC	ACATAGTAAG	CATTCA
	AGGGCTAAA	ATA'ITCATG	TTTTAAAAT	ACTTGGAGT	CTAATTAGAC	AATACTTTT	TTCAGCTAA
	TGGTAGTATT	TTAGCTTCAC	TATTTAAC	AATGAAAAAT	TTGCAATAAA	TCTACAATGC	CATTACCCCC
	CAAATCTTT	TTCA TGT	GCATTTACG	TATTATTTTC	CAGGCCTTAC	CTGCATGTCT	GCATAATCAT
	AACTGACTAA	TTTGAACA	GCTGGTAATT	ATTGAGCTT	TACTGAAATT	TTTCATGAG	GCCAATTCTA
30	CCCTACTGAA	CTCAAATTG	AGTTAATGAT	GACCTCATTT	TGATTGCTG	TGTAAAAAAT	AAGATTTCGG
	AAGAGGAATG	AAT'CTTGT	TTACTGTGGT	AGGACTATGG	TTTTTTTT	TTTGTGTTG	TTGTTTGAG
	ACGGAGTCTC	ACCCGTCA	CCAGGCTGA	GTGCAGTGGT	GCGATCTCAG	CTCACAGCAG	CCAGGTTCAA
	GTGATTCTCC	TTCC TAGCC	TCCCAGTAG	CTGAGATTAC	AGGCACGTG	CACCATGCC	GGCTAATT
	TTGTATCTTT	AGTA GAGATG	GTTCACCAT	GTGCCCCAGG	CTGGTCTCGA	ACTCTGACC	TCGTGATCCG
35	CCTGCCTCAG	CCTC CCAAAG	TGCTGGACT	ACAGGCGTGA	GCCACCGTGC	CCGGCCGGGT	TATTCA
	TCTTATTAAC	ATTC ITTGAT	GATTCTTATG	GTGTTGTTAC	AGTAAAACAT	TTCTAACAA	TATTCTAAC
	ATTATTCTT	ATGG IGTATA	TGAAGAATT	ATTGCGTGT	TTTGTAAAC	TGCTATGTG	AGAAGAATT
	CAGTCAAATA	AAGT TGGTAA	GATAGGTATG	TAAGTAATAT	GAAAAAAGAT	AGAAGGTGAT	GAGTGA
	GGTATAAATT	AAAGTACAATA	GAAATGTTGA	GGAAAGAAAA	ATTCTTGTA	ATAGAAATCG	GAAGTACAA
40	CTGGGCATGG	TGGTGTGCA	CTCTAATCCC	AGCTCCTGA	GAGGCTGGT	TGGGAGGATC	ACTTTAGCCC
	AGGAGCTTGA	GGCIGCAGTG	AGGTGTGATC	ATGTCACC	ACTCCATCCT	GGGTGACAGC	AAGACCGTCT
	CTCTTTTTT	TTTTTTTGA	GACGGAGTCT	CGCCTATGCT	GGAGTGAAT	GGCGCGATCT	TGGCTCACTG
	CAACCTCTGC	CTCC CAGTT	CAAGTGA	TCCGCCTCA	GCCTCCTGAG	CAGCTGGAT	TACAGGTGTG
	CGCCACCATG	CCCAGCTAAT	TATTTGTAT	TTAAGTAGA	GACGGGTTCT	CACCATACTG	GCCAGGCTGG
45	TCTTCAACTC	CTGA CCTCTT	GTTCGCCAT	CTAGGTCTCC	CAAAGTGTG	GGATTACAGG	TGTGAGCCAC
	CCCACCTGGC	CCCG AGCGAG	ACCCCTCTC	TAAAAAAA	TAATAAAATA	AATCATAAAAC	CTGTGGATT
	TTGTAGCATT	GTTC TCA	TGTAAAAAT	ATTTCATGAC	TATGCATA	TTGAAAAGGC	AAGTTTGTC
	CTGGGCAATT	TTCAAAATAT	TTCTTAATG	TGTTTCA	ATACTGTTA	CCTAATAAAAT	CTTAAGTTT
	TAAAAGCAA	ATTA AGCCAG	TAATTGAGT	CCAATTCAA	TCTCTTATGA	GTCATTGCTT	AAATTCAAA
50	AGGGTTTAT	TTTTTTTTA	GGTTGTTCT	GAGTAATGAA	TACCCATATTA	CTATGATACT	AGTATCTTCC
	TTAATTATCC	TACT CATTGT	CTCAACATTC	TGACAGTGG	ATTGAGCATA	TTCGTAAGTA	AAATTGTTT
	AACTGTATGA	TGTACTTGA	TGTTAAGTC	CGAGTCCC	CATACCTCG	TAGATGTGTT	CTTACAGTT
	TGTATTCCCT	TGAA ATGTA	CTGTTCTCA	TGTTACAGCC	TTTATAACCT	TCAGTTACTT	GAAATGAACA
	AATTCAATTCA	AATT CCAGCA	CTTAAAAGTT	TTAAATTACA	TTTGGATAA	ATACCAAAGT	TTTTTGTGA
55	TGATGTATGT	ATAAAACAAAT	TGTAATATT	AAACGTAGT	TGTTACGATT	AGACCTATAT	AAAACATGAT
	ATGCAGTCTA	CTGAATAGCT	ATCAGCCTCT	AACATGTTA	GTGTCATT	GAAAATGCTT	TCTAAATTGC
	CAAAAGCTGA	TTGI CTAGGT	GATAACAAAT	TTACCATTG	GAGGAAGTTG	ACTTCTCAT	TTTCATGTCT
	TCATCAGTCT	TACT TGT	GATTCAATTCT	TCTAGTCAGA	AGAGAGTTA	GACTGCTCAG	TTTACTCATA
	TTTGAGTTA	GCTT ITCTAT	TTAGAGTCA	CTTGGTTG	GAATATTCA	TTATAATTG	AATCTACGTT
60	GTGTAATGGG	ACCT AATT	TTTTCC	GTTTTGTTG	GAGTCTCGTT	TTGTCACCCA	GGTTGGAGTG
	CAGTGGCGTG	ATCTTGC	ACTGCAACCT	CCACCTTCA	GGTCAGGTG	ATTCTCCTGC	CTCAGTCTCC
	CAAGTAGCTG	GGAI TACAGG	CATGCTTCAC	CACGCC	TAATTTTG	ATTTTAGTA	GAGATGGGGT

	TTCACCATGT	TGGCCAGGCT	GGTCTCAAAA	CTCCTGAGCT	CAAGTGATCC	TCCTGCCTT	GCCTCCATAA
	GTGCTGGGAT	TACAGGCGT	AGCCGCTGAG	CCTGGCCCCA	GAGTTTGT	TGTTTGT	TCAAGACAAG
	ATCTCACTCT	ATTGCCAGG	CTGGAGAGCA	GTAGTGCAT	CATAGCTAC	TGCAGCCTGA	ACTCCTGGGT
	TCAAGCTATT	CTCCPGCCTC	CATCTCTAA	AGTGCCTGTA	TTACAGGT	GAGCCATGAT	GCTTGGCCTG
5	TGTTTTGTT	TGTTGT	GGGGGACAGG	GTCTGCTT	GTCACAAAAA	CTGGAGTGT	GTGGTGCAGA
	CATAGCTAGC	TCACTGCGAC	CTCCATCTCC	CACCGCTCAAG	CAATCCTC	ACCTCAGCCT	TCCAAGTAGC
	TGAGACCAGA	GGTGCCTGCT	ACCATGCGTG	GCTAATTTC	TATTTATATA	TTTATTTT	GGTAGACATG
	AGGTCTTGTG	ATGTTCTCCA	GGTGGTCTT	AACTCTGGG	CTCAGACAGT	CCTCCCGCCT	CAGCCACCCA
	AAGTGTGGG	ATTA CAGGCG	TGAGCCACCA	TGCGTGGCAT	AATTTTTT	AAGTAAATT	TTTTTTATC
10	TTGAGTATAG	AAGTGATTCA	TGTTCTTGT	GGAAAATATG	AAACATATAG	AAAAAACAGAA	AAGATTACAA
	AACATCTAAT	CTGAAATGGT	TAAGATTTG	ATGAGAACAG	TCTCATCTCA	TTTCCGTATA	TTCCCTGCCAG
	CCTATCCATC	ATTCTCGTA	CATGTTTATC	TACATTTAAA	TTGGTGT	ATTGGAAA	CTTTTGT
	AACTACATG	TGAATCATT	TCATGTTTA	AAATGTCATT	TTAATGATGG	CAGACCTAT	TCAATAGATG
	TACACACACC	TATTTAAC	GTCCACAAATT	GTTGGATATG	TAGGTGTTT	CCTTCTCTC	TTTTTTTTT
15	TTTTGGCTA	CTACITAATA	GTTCCTCTGT	ATAGAATGTG	GTATTTGAA	AGTGTATCAA	GCTTTAGATT
	GGTAGTATT	TTGCATTAA	TAAGGGCAG	TGGCCTTGT	TGACTGACAT	GACAATATT	TTATAAAATT
	TGTTATTG	TTTACAGAAA	TTTGAAAAT	TATTGTAGAA	ATGTTTAC	CTCATATGAA	CCACCTGACA
	TTGGAACAGA	CTTCTTTTC	ACAAGTGT	CCAAAGGTAT	AATACTATT	CCTGAAAATA	CATGTTATAA
	GGAATCTAGC	CTCA.GTCTTA	GATGATTAT	TATTAATTAT	GGCTCTCTT	TTCTAATATA	TCAAATATAT
20	TCAAAATAAA	AATAAGGAGT	AAGTAGATCT	CATGTGAGAC	TATAATGGT	TTAGTGTGAT	CATTAGGCAG
	TTAAAAACTG	TTACAGGCTG	GGCACGGTGG	CTCATGCC	TAATCCCAGC	TCTCTGAGAG	GCTGAGGTGG
	GCAGATCATC	TGAGGTCAGG	AGTCGAGAC	CACCCATGGT	CAACATGATG	AAACCTCGTC	TCTACTAAA
	GTACAAAAAA	TTAC CTGGAC	ATGGTGGCAG	GTGCCGTGAA	TCCCAGCTAC	TTGGGAGACT	GAGACAGGAG
	AATTGCTTGA	GCCTGGGAGG	CGGAGGTTGC	ATTGAGTC	GATCGTGC	TTGCACTCCA	GCCTGGGCAA
25	TAAGAGCGAT	GCTCGTCTC	AAAAAAAAAA	AAAAAAAAAA	AAGAACTTAT	ATTTTCAGAT	TGTGTGGTT
	CTTTACTAAC	TGAATTAAA	TTATTTGTAG	TCAATTAA	ATGCTCTTGT	ATTTAAAGC	CACTGTACTC
	CAGCCTGGGT	GACAGAGTGA	AACCCTAAT	TCAAAAAAAA	AAAAAAA	AAGAAAAGCT	GGAATATTGG
	CAAATCAAG	TAACTAAGAG	AAAACATTA	ATTACAGAA	TACATTATTA	CATTAGAT	ATATATGGTA
	TATGTTTCT	CTGA AAAGCA	CAAGCATACC	TTTTTGT	AAATGGAGG	GAACAAAGA	TACTTGGT
30	CCAAAATGAA	ACA TATTG	TAATTAATCT	CTTATTGAA	TGGGTTCTA	ACTTTAGCTT	TGAATCGTAA
	TCTTCAAT	TTCTGTACT	CATAGTCACT	TGATGATTCT	CTATCTGAA	TATTCTTAG	AATTGTTCT
	TGACCACAG	AAAAGAGATC	AACTGTTACA	TAGATGAAA	TGGATGTTGA	GTGTTAACAG	GCCTATGGGA
	AACAGTATT	TCTT TAGCTA	CATTGATTG	TTGACTGTG	TGCTATTCTT	ATAATGTTA	GGTCATTAA
	ATTGTTAGAA	AGATCCAAGT	ATTAAGATCT	AGGGTGGCTA	ACTTTTCACA	GACAAAAGC	TTGTTTGTAA
35	GGTCATTAC	TATA CCCTTA	ATTCAGGAAG	GTTAGCTGA	ATTGGTCAA	AAGGAAACTG	GTTAGAAAAT
	AAAGTAGTAG	TGAATAGGCG	ATTCAGTGC	AATTCTTCC	AGAAAATACC	CTTGAAATG	ACTGTATGAA
	TGTGGATCT	TCAAGACAGT	CAAATTATT	GTGCGAAAGT	AATACTTTA	TTTTTGCT	CTCTAAAACA
	TGAACATTG	GTGATTTTT	AAAAAAATTG	ATGCTATTAA	ATAGATTCAA	ACCATAGAAA	TGGAAAATAA
	ATTCTGTT	GGGGCTTTG	GGGGGATTAT	GTTGAAAAAA	TACCTTTCT	CTGTATT	TGCTTAATT
40	GGTACAATTG	TTAAGCTAGA	TGATAGCCTG	TGGATGTTAC	TAGTGC	TCAAATTATC	GTATTGTT
	TTCTCTGTA	AGTITGTCT	TGTCTTCT	AGTATTCT	CTTATTCTG	TTTATTACTT	GATTGTT
	TACAGACTGT	GAAATTATT	GATGACATGA	TGTATGAATT	AACCAGTCA	GCCAGAGGAC	TGTCAAGCCA
	AAATTTGGAA	ATCCAGACCA	CTCTAAGGAA	TATTTACAA	GTAAGTCAA	TGTATTAGAA	AGCAGGAGAG
	AGAGGGAGCT	TAAGAATG	CAAAATT	ATACTGATAC	TGATTAGCTA	TGTATTCTA	TGTAATGGCC
45	TAATGTTGGA	ATTA AATT	TAGAATTAA	GACGTGAATA	TAGAAACATG	AATTCTGAAT	AATAAACTCT
	TATAAGAAGA	GAAGTCATCA	AGCTAGCTG	CCCTACCTGT	ATTTCAAGG	ATATGTGTG	AACACCTGCC
	ATGTGTTT	AAAGTTGTG	TAGTATTCTA	AATGGCTAGA	CAGTTGTTCC	AGTATTGTA	GTTCTGATAG
	ACTAAAGTTC	TGTGAAAAGA	GGAAAGAGACT	GTGTTTGT	CATTGCTG	TTTGTAGC	CCAGCATGCT
	GACTAATACC	TTTCAGTGC	ACAAAAAATA	TATTCTAAGT	GAAATTCTC	TCCTTATTCA	CAGACAATGG
50	TGCAGCTCTT	AGGAGCTCTC	ACAGGATGTG	TTCAGCATAT	CTGTGCCACA	CAGGAATCCA	TCATTTGGA
	AAATATTCA	AGTCTCCCT	CCTCAGTCCT	TCATATAATT	AAAAGCACAT	TTGTCATTG	TAAGGTGAGT
	AAAGGTCTAA	TTAACTTT	AATGGTATAT	AATCAATGTG	CATAGGGCT	GAGTAAAATA	ATGTTTGTAT
	AAGATTTCAC	ATTTPAGTCT	ATATTATTGA	AATAAACTT	TCCATAGAAT	AAAGAACATG	TAAGTAAATA
	ATTGTTGCAA	AAAAGTGGT	TTTAAGGAAG	TCATTTAAAG	TGGCTTTTG	GGGTTTTTA	GTTTTATCTT
55	ATTCCCCTC	TATA AAGAAA	GAAGTTTAA	GAATTGTGT	TGAGACAGAC	ACAGGGATCC	TGAAATAGTT
	ATGTCATGTT	GCAT TGACCA	ATATTCAATT	ACCATTATGA	TTAGATGTCA	GAACCTCCTT	TTATAAAGGA
	AAGTTAATCC	TTAT TAGTC	CATCTCTACA	TGCCAGAGGT	AGCCTTGAGG	CACAAAAGCT	TGCCTAGAAT
	TTATGGTCA	CAGA CAGTT	TAATATTGCT	ATTGTTGGG	CGAATGAAA	TCACTAGTTA	ATTAATACCT
	CTCTTGCTG	ATAGGATGCT	AAAAATGTCA	CGCACCTGGC	CTAATGTTAC	CCTTTTTAG	TTCTGTATT
60	GCAAGATCAT	GGAAGTCAGA	AATAATATT	TATACATGCT	TGCATCTCTT	GAAGCACACT	ATATTTAATG
	GATGTTCACT	AAACAAATGAA	TGAATATGTG	ATTCAAGTAA	TTTATGATCT	CTAATAGTAT	GAATTAAAGT
	AAATTTGGCT	CTTCAGCTTT	GATTGTTTT	TTCTCTCATT	TTTATTTATC	CGTAATCAGA	ATAGTGAATC

	TGTGTATTCT	GGGTGTTTAC	ACCTAGTTTC	AGACCTCTC	CAGGCTCTT	TCAAGGAGGC	CTATTCTCTT
	CAAAAGCACT	TAATGGAAC	GCTGGACATG	GTTGCATGG	ACCCCTTAGT	AGATGACAAT	GATGATATT
	TGAATATGGT	AATAGGTGAG	TGAAGAAAAC	TTCTGCTTA	GTATATGGTG	ACTATAAATC	ATGTATCAAT
5	TAAAATTGTC	TCTAATGATT	CATGTTATT	TCTTACTAAT	TATGCATTAA	AATTGATTAA	AATCTTACCA
	AATAAATT	TAATCTTGA	ATTTGGAATT	TGTAAAATT	ATTTGGGTA	CCTTAACCTA	GATTTGCGTA
	TTTAGTTACT	GTAAITTCTC	CACAATGATT	AACTTATATA	ACTTTATAA	CTCTGAGGTT	GTCCATATT
	AGAGACAATA	ACTITCACAT	TTTTTAACC	ATAACTGATA	TTGAGATGCA	GTTTATATT	CCTTCCAGAA
	TACATATAAA	TACCTGCATA	TGTGTATGTA	AAATATGCTA	TTCTCATATA	CATATTATAA	TGAAATAACT
10	CATTTACAT	GTGATGCACT	TTTACTAGT	TTATTTTAT	TTTATTTAT	TTTTTGAGA	CAGAGTCTCA
	CTGTGTAGCC	CAGGCTGGAG	TGCAGTGGCA	CAACTCTGGC	TCACTGCAAC	CTCGCCCTCCC	GGACTCAAAGC
	GATTCTCTG	CCTCAGCCTC	ATGAGTAGCT	GGGATTATAG	GCGTCCGCCA	CCACACCTGG	CTAATTTTG
	TATTTTACTG	AGAGACAGGG	TTTCACCGTG	TTGCCAGGC	TGGCTTGAA	CTCCTGACCT	CAGGTAATCC
	ACCTGCTCA	GCCTCCAAA	GTGCTGGAT	TACAGGCATG	AGCCACCGTG	CCCAGCCAAT	ACTAGTTAT
15	TTTTAAAGAA	TTGCTGGTCG	TAACACACTT	CATTGATT	ATCACTCATT	AATGGATTAT	GAACAAGAGT
	TTGAAAAAAC	ATATAAAAGC	AAAGTTGCA	TTCAAAACTT	TGGTATAAAG	AGAGTAAGTT	GGTTTTGTGC
	AGTGTATCG	GCAC'CTGTT	CTCTGCAACA	CACCACTCA	AAATCTATT	ATTCACTATT	TATTTTATTCA
	TGATTCTGT	AGTC'GCACT	TTAGGGTGGG	ATGCTCTGAG	ACAACCTTC	CTGATCCACC	TGGGGCACTA
	GCTCACCCAT	GTGACTTCAG	TGACTTCAT	CACACTGGC	TGTTGGCAGA	GGCAGAAGTA	CTTGAGAAAAG
20	CCATGTGCA	CATCCAGCAG	GTTCACCTA	TCTCAGATAC	CTGATGCCAG	TGGTTTCAGG	GTTCATAAGA
	GTAGCAAAAG	TGTGAGCAGG	TCGCTGTGT	CTAGCACTT	TCAAGTTCT	GCTTGCCTTA	ATTTTATTAT
	TGTCCCCCGG	GCCACAGCAG	GTCATAGCGT	TTAGCCCAGA	GTCATTGAG	AAAAGTGTGG	ATTCAACAAAG
	GGCAGTCATT	GTGCCATT	TTATAAATAA	TCTACCACAG	ACTGAGTAA	AGCCTTGCAT	GAATACCATG
	GATATTAAATT	TGAATTCTTC	CTTTTTAGAT	TTCTTTCTC	TAGCAATT	TTTGTCTATT	TTGGATTAGA
25	ATTATATCTG	TAGAATATT	CAGTTATAAT	AGGTACAAAC	TTTTATTCCA	CTGAACATCT	TTAGTTTAT
	TTAGGTCTAC	TGGTAGGTAT	AAACTTCAGA	AGTTAATATT	CAATATTAT	AAAACCCATT	AACAAGTGTG
	ACACTTAAT	AGTITAAATA	ATTCTTTGA	CACAACTGTT	TCCAAGTTGT	GTTACGTATT	TTAATTCAAT
	CAAATGTTGA	AATTGTTAG	TAGATAGTT	TAATTATAGG	AGAAACCTAC	CCCCATGACA	TTTGGATGTC
	TTAAAAGTTC	TGTIATCTT	CTTTGAGTT	ATTCACTT	TATTGGATAT	CTGCTCTGTT	ATTTCCAGTA
30	TGGACCATGC	ATTICATGCC	AATACTTGGA	AGTTTATAAT	TAAGTAAGTT	TGTTTGTAT	TTTTTACTTT
	TTAGAAAATG	TTTICCATAT	TCCCCAATCT	TAATTATTCA	TGATTCTTA	GATTGCATT	AAAACATT
	GTGTGAATT	AATGTTCACT	GACACTGCTG	TCTGATAATC	CAGATATTCT	ACATGTAGCT	CTCAAGCCAA
	ATTGGACTTC	TTAACCCCTGT	GGCCTCTAA	ATTTAAAAAA	ATGTTCTTC	TAGTTAGCTA	GTACTTCAGA
	AATAATGGC	CATCGGCCAG	ACTAGAACCT	AACCACTTT	CTTCTGCTAC	TGTTGTTAA	CCAGCTATCA
35	AGTATCCTAT	TTCTAGGATT	AGATAAATTG	ATAACTATAA	TTAAACTGA	ATATAATCTT	TTCAATTAGGT
	ACTTTTAAGT	TGTTCACACT	TAATTCCATT	TGTACAGTAA	TTTAACCTT	CTGAAACTGA	AGCATTAA
	AGGGTCACCA	GGGATAGTGC	CTGTAGCATT	CATCAGATT	TTAGGGTGA	GAGGAGATGT	GGTTGAGATG
	AAAAATGGT	TAAC AATATC	TACTTTATAC	ACATACATAA	AAACATTAAAG	GTCAGTGTAT	TTTCAGGCT
	TAGGTACTTT	TCTGTACTA	CCAGGACATT	AAAGTGCCT	TCAGTGGTA	AGAGTGTGC	CTGGGAGCTG
40	TATCACATGT	GCTAAATCC	ATTCTTGGAA	TCATTACTC	CTTCTGAGCC	CTTGGGCTAT	TTGGTTAATT
	TCTCTGAACG	TTAGTTGCT	CATCTGAAAA	TGGAAATAAT	AATAGCAACT	TCTTGACAGG	GTATAGTGA
	GAATTGAGTT	CATCACTGTG	AAATGCTTAG	AAATGTGCAT	GACACATAGT	TAATACTCAA	GGAATTAGCC
	ACATCACTAT	CATCATCACT	GATTATCTTC	CACTCTTACC	CTCTTCCAGT	TCATTTCCTG	CCCAGCAGAA
	TGATCTTTA	AAAAGTAAAT	CAGATCATGT	TACTCTATTG	CTTGAAGTCT	ATCCCATTTG	ATTAAGAATA
45	ACAACCTAAT	CCTCTGTGGA	TGCTGCCCTC	TTCACCAAGCC	TGTCTCATGC	TGCTCTCCCT	ACTCTTAGTT
	CCTCAACAT	ACCAAACTCT	CCTGTCCCG	AGTCTTTCG	TGGTTTTTCC	ATCTGCCTAG	GATGCTCTC
	TCTCCTATT	TGTGTACCTT	GCTAACTCCT	GCTTACTGTC	TTTCAGTTCT	CAGCTTAAGA	GTTATATCTT
	CATGATAACA	TTCTTGATA	TCCTTACCT	AAGATTAAGT	TGATTGATA	TCCTTACCC	AAGAATAAGT
	TAGATTAGGT	CTCTCTATTG	TAGCACCTT	GACTCTGTCA	TTTGACAAAT	CACAGCCCTA	ATTAATTAT
50	CTTAAATT	TTTACATTC	TCTCTCATGC	TAGACCACAA	GTTCATGCA	GGTAAGGC	AGATTGTGTC
	CATTGTTTG	ACCCCTTGT	CTCCAGGGCC	TGGTAGAATG	CCTCATACTAT	AGTAAGAATT	CAATTAAATAT
	TTTACACAGA	AAAAAAATT	GCAACTTATT	TAACAAATA	TAACTGCTTC	AGAGGTAAC	TGGGCACATC
	TTAGTTATAT	TATGIGATAT	ATGATGCTT	TTGATTGTT	TTTAAATGTT	TCTACAAGGT	AGATATTGTT
	AGAGGTCTA	AGT'ACTTGA	TGTGTTACTT	GTGGTATTG	TATTCTT	TTTTTATTCA	TTTAGGCAGA
55	GCCTTAAGCA	CCAGTCCATA	ATAAAAAGCC	AGTTGAAACA	CAAAGATATA	ATTACTAGCT	TGTGTGAAGA
	CATTCTTT	TCCTCCATT	CTTGTTCACA	GTTAGCTGAG	CAGATGACAC	AGTCAGATGC	ACAGGTA
	TTGGGCTAA	TAGCATTTA	AACAGCAACT	CTTATTCT	TTGGCAGTTA	GTAATCTCA	TTTGAATGTC
	TGGGTCACT	TATITAAGAG	GATTTAATT	TATTCATT	GGGTGTTTT	TTTGATCTG	TGGGATTAT
	TATATCCAT	AATTACTTT	CACCCAGAGC	ATTGTTATTAG	ATTCTTAAC	GCTGTCATTG	CCTCTGGGGT
60	CTGCTGGCT	CCCTCTTGC	TTGGTAAC	GTTGGTCACA	GCATTCTCT	CAGAATCCTT	TCATTCTTT
	CTGCATGAGA	ACAAAAATT	TTTGTTCAT	ATTGTATAA	GATCTGATAT	AGCTGCAATC	AATCTTGCAT
	TTTTCTTCA	CCAA'CGCATT	GCGACCTTA	GGGATACAAG	TATGTTGTG	CATGTATATG	TATGTATCAG
	TCTTTAAAT	TTGATAGT	CATACATTG	TTTTATT	GAAAAGTTAG	AGTGGTGAAT	TGGTATCCCA

	TTTATGAAAC	ATTATATTCT	AAAAATTGT	AGTACGATTA	TTGGGAATTA	TAACTCATTT	TCCTGTAA
	CTGTTATACA	TAGTACCTTT	TGCTTCAGA	CTAGCCCTCA	ATTTTATTAA	ACTATAGTAG	TCCTAAATTAA
	TAAGATTAAT	AGTA'CTCAGG	ACCTAACAGT	TATATGTCAT	TTGTTTTTTT	TTTTTTGAG	ATGGCGTCTC
5	ACTCTGTAC	CCAAGCTGGA	GTGCAGTGGT	ATGACCTTG	CTCACTGCAG	CCTCTGCCTC	ACGGGTTCAA
	GGGATCGTTC	TGCCCTAGCC	TCCTGAGTAG	CTGGGATTAT	AGGCGCCTGC	CACCACGCC	GGCTAATT
	TTTAGTAGAG	ACCGGGTTTC	GCCATGTTGG	CCAGGCTGGT	CTCGAACCTC	TGACCTCAGG	TGGTCCACCC
	GCCTTGGCCT	CCCAAAAGTGC	TGGGATTACA	GGTGTGAGCC	ACCGCGCCA	GCCTATATGT	AATAATT
	ATGGGACCAT	GAATTGAATA	TTTCTTCCTT	GAATAGCAAT	GACATAGCCC	CTTCTATTGT	ACATCTGCAA
10	GCTGATACAG	GGAA'TTCCTT	TGTACCTCG	CTCTCCCTG	CCAGTCAGCT	ATGGGGGTGA	AAGTGTAGGG
	GTTCATCCAA	GTCTAAAAC	TGGTAGCAAC	TCCTAGGGCA	GGGCTGATCT	GGAAGGACAG	ACCTAGGGG
	AGGGTGGAAC	TTTAAAAGA	AGTTCTGAAG	GTAGTAAAGAA	GGAAATGAGG	AGTAGTGTAA	GGAAGGGCT
	AACTTTTTC	TTCTGCTTC	TCTCTTTAT	CTCACCTGCC	CCTCCCCTTG	TATCCCTTCT	TCCTTTTCC
	CTTTCCTTT	TTGTCTCAC	TTCATTCGTG	CATCCTTCT	GATTCTCTT	ACCTGCTAA	AAGGAGAAAGT
15	TTGTTGGGT	ATCCATATAC	AATGGCAGGA	AGGGTGT	CTTCTTCTT	TTTATCTTAT	AGATTCTAT
	TCTCAACACC	AACCTCTCC	TTTTTCAGTT	TCCTCTTGC	TTCTCTTGAC	ACCACAGAGT	TTGAGCTAG
	TACTTGGAGA	GGAAAATTAA	ACAGAGATAC	TTGGACCAAG	AGTAAGATGA	AGAAAGTCTA	AACAACAGTA
	TAGTCTATAG	TGGCAAGAGA	GAGTATGGGG	GCTGCTTAGC	CAGGGTGGCT	GTACATAAAG	TATATCTTC
	GTTTATATAA	ACTGCTTATA	GATGGAATAC	AGAAAATTAA	AATTCTCTTA	ACTGTCCAAG	AAAATTCTCA
20	TTTTTCAAA	TTTGGGACTG	ATAATGTGA	CCAGTCTGC	TTACTGTCCA	TTGCTGAAA	TGGAGCTTG
	AGGTGGACTG	TATAATTCT	TCAATCTAA	CTCCAAATTC	TGATCAGCGA	CGCCCTCTGC	TGTTCACTAT
	TAATATTAT	TTACCAATCA	AAGTAAAGTA	TTGAAGTTTT	CCTGGCAGTT	TTCACCTTGT	GTTTGTAGTCC
	ATTTAGGCTG	CTATAACAAA	ATCCCTAAA	CTGGGTAAGG	GATTATAAAAT	ATTAGAAATT	TATCTCTCAC
	AGTTCTGGAA	GCTGGGAAGC	CCAATATCAA	GGCACCAAGTA	GATTGGGTGT	CTAACGAGGG	TGTGCCGTCT
25	GCTTCAAAAA	TGGCCCCCTG	TTGCTGCATC	CTCACCTAGT	GCAAGGGGCA	AGACAGCTCC	CTTCAACCTC
	TTTTATAAGG	GCACITATGT	CATTATGAG	GGCAGAGCCC	TCATGACTTA	ATCACTTCCC	CAAAGGCC
	ACCTCTTAAT	AGTA'CACAT	TGGGTGTTAG	GTGCTGGGA	GGACACCAAT	CTTCAAGCCA	TATCATCTCA
	CTTGGAAAAAA	AGTCAAAATA	AAACCAGTAG	ATTTAATTAA	TATTACACTA	TTTATAGAAG	CATGTGATGT
	ATCATTCTT	GTAT'AATTT	CCTGGGGTTG	CCGTAACAAG	TTACCACAAA	CTAGGTGGCT	TAAAACAATA
30	GAATTITATT	CTCTCACATT	TCTAGAGGC	GAAGTTCAC	GTGTGTCAAT	AGGGCCATGT	TCTCTGGAAAG
	GCTTCTAGGG	AGAAATATATT	TCATATCTT	CTCTTAGCTT	CTCGGTGTCA	CTGCAACATCC	TTAGCTTACT
	TTGGCTTCT	GTGTCTTCAC	ATCATCTTT	TATAAGAACAA	CCAGTGATAG	TGATTAAGGG	CATACCTTAC
	TTAATATGA	CCTCATCTTA	ACTAATTATG	TCTTCATAAA	CCCTATTCTC	AAATAAGGCC	ACATTCTGAA
	GTATTGGGAG	TTAGAACTTA	AAGCTTTTG	GGAGGGACAC	AGTTCAACCC	ATAACAACCC	CTAAAATCGA
35	TATTTATCT	CAAT'AAGTC	TTGAAATTGG	TTTCAAAAAG	AGAATATTCT	ATTAGAGTTT	TTAATGTATA
	GTTTTAACAT	ATACCTCTTT	AGCCCCAAAT	TTTTTTTTT	TTTTTTTTT	TTTTTTTTT	TTTTTGAGAC
	GGAGTCTCGC	TCTGICGCC	AGGCCGGA	GCGGACTGCA	GTGGCGCAAT	CTCGGCTCAC	TGCAAGCTCC
	GCTTCCCGGG	TTCA CGCCAT	TCCCCCTGCC	CAGCCTCCCG	AGTAGCTGGG	ACTACAGGCG	CCTGCCACCG
	CGCCCCGCTA	ATTITTTGT	ATTTTGTAGTA	GAGACGGGGT	TTCACCTTGT	TAGCCAGGAT	GGTCTCGATC
40	TCCTGACCTC	ATGA'CCACC	CGCTCGGCC	TCCCCAAAGTG	CTGGGATTAC	AGGCGTGGAC	CACCGCGCCC
	GGCCTGCC	CAATTATTAA	TTTTTTCTAT	AAACAGGGAA	ATTTATTGT	GTGGCCCTTA	GAACAAATT
	AATTCCACT	CTAA'CTCTA	CTTATGTTA	TATAATGCTT	TTAGAAATT	GTATTATTCA	GAAAATAAAC
	ATATACTATT	GTATCTGTG	CCTACACTTA	GATTITATTG	CCTGCTATAT	TTAAATT	TTAGTATT
	AATTGTTTA	TTAAAGAAAG	AATGTGCTG	TAATCTCAGC	ACTTTTGAGA	GGCCAAGGCA	GAAGGATTGC
45	TTGAGCCAG	GAGTTGAGA	CCAGACTGAG	CAACACAGGG	AGACCCCCAT	CTCTACAAA	AATAAAAAAA
	TTCTCCAGGC	CTCA'GGCAC	ATACCTGTAG	TTCTAGTTAC	TTGGGAGACT	GGGGTGGGAG	GATGCATTGA
	GCCCAGGAGA	TTGAGGCTGC	AGTGAGCCAT	GATCAGGCCA	CTGTACTCCA	GCTTGGACAA	CAGAGTGGAGA
	GCTTGTCTAG	ATAGATAGAT	AGATAGATAA	TCTAAATAGA	TAATAGACAG	ATTATCTAAA	TAGATAATAG
	ACAGATTATC	AAAATAGATA	ATAGACAGAT	TATCTAAATA	GATAATAGAC	AGATTATCTA	AATAGATAAT
50	AGACAGATTA	TCTAAATAGA	TAATAGACAG	ATTATCTATC	TAATAGATA	ATAGATTATC	TAATAGATA
	ATAGATAGAT	AGATTAGATA	GATAGATAGA	TAGATAGAGC	TTGGACAACA	GAGTGGAGAGC	CTGTCTAGAT
	AGATAGAAAC	AAACAAAGAA	AGAAAGAAATG	GTGCTCATAT	TTTAAAGCAT	TGAAAAATGG	TCTTCCTTGC
	TTATATTACC	CACA CTTCT	TTGTTGGCAT	TAAGATGCAA	ACTTTGTTT	AAACAGTTGA	GTAAATCAA
	GATGGGACTG	TTAAGTTATT	TGTGTTATT	ACCTGCTTTT	TGAAAATGTA	AAAATAAAAC	TCTAGGTTA
55	ATTAGTAGTA	TGCTATTAG	TAATGAAGTA	AAGCTAGAGG	CTTCGAACAA	ATCTGTGTA	ATTCCTCTT
	GAATGAGAGA	GAAATTTAA	AGTAAGCAAA	CAAATAAGTT	GTGTGTCAACC	ACTCATTCA	TCATTAAACA
	AGTATTTC	GAGTACTTAT	TCTGTGCCAG	GAAATGTTGT	AGGTGCCCTC	AACAACCTAG	AGTCTAGCCT
	GAGACACAAG	TAAC'AGGT	ATTATTATAG	AATGGTATGA	TCTTGGAGG	ACTGGGTATT	GGCTGGCTCA
	TGGGAGTACA	AGATAGGTAC	CCAGTGTG	AGTCAGGAA	GGTTTCTTAT	GGTGTATGA	TGACGTCTAT
60	GCTGATTATA	AGGTCACTGT	AGAATAAACT	TTGTGTTTT	AAATTTCAT	AGCACTGTAT	TAGAGAGTT
	ATCTTCAAAA	TAATCGAAAA	GGCTGAGTGT	GGTGACCCAT	GGCTGTAATC	CCAGCACTTT	GGGAGGCCGA
	GGTGGGAGA	TTGCTTGAGC	TAGGAGTTCG	AGACCAAGGCT	GGCCAACATG	GTGAAACCCCC	GTCTCTACTA
	AAAATACAAA	AATTAGCCAG	GAGTGTAGGT	GCGCACCTGT	AATGCCAGCT	ACTTGGGAGG	CTGAGGCAAGG

	AGGATCACTT	GAACCCAGGA	GGTGGAGGTT	GAAGTAAGCC	GAGGTATGC	CACTGCACTC	CAGCCTGGC
	AACAGAGTGA	GACTCCATCT	CAAAAAAAA	AAAATGATC	AAAGAAAGGT	GAATTTCAT	CTACCCATT
5	TCTGCTGAGG	AAAATGGACT	ATTTTCAAAT	ATTTTAATA	AGGGTCAAAA	TGAGGGATC	GCATTTTC
	AAGTTTTATG	ATTTATTTAA	CTTGTGGAAC	AAAATAAAC	CAGAAACCAC	CACCTCTCAC	GCCAAGCTC
	ACACCTTCAG	CCTCCAACAT	GAAGGTCTCC	GCAGCACTTC	TGTGGCTGCT	GCTCATAGCA	GCTGCCTTC
	GCCCCCAGG	GCTCGCTGGG	CCAGCTCTG	TCCCAACCAC	CTGCTGCTT	AACCTGGCCA	ATAGGAAGAT
	ACCCCTTCAG	CGACTAGAGA	GCTACAGGAG	AATCACCAGT	GGCAAATGTC	CCCAGAAAGC	TGTGATCTC
10	AAGACCAAAC	TGGCAAGGA	TATCTGTGCC	GACCCAAGA	AGAAAGTGGGT	GCAGGATTCC	ATGAAGTATC
	TGGACCAAAA	ATCTCCAAC	CCAAAGCCAT	AAATAATCAC	CATTTTGAA	ACCAAAACAG	AGCCTGAGTG
	TTGCCTAATT	TGTTTTCCT	TCTTACAATG	CATTCTGAGG	TAACCTCAT	ATCAGTCCAA	AGGGCATGGG
	TTTTTATTATA	TATAATATATA	TTTTTTTTT	AAAAAAAAC	GTATTGCATT	TAATTATTTG	AGGCTTAAA
	ACTTATCCTC	CATGAATATC	AGTTATTTT	AAACTGTAAA	GCTTGTGCA	GATTCTTAC	CCCCCTGGAG
15	CCCCAATTG	ATCCCCTGTC	ACGTGTGGG	AATGTTCCCC	CTCTCCCTC	TTCCTCCCTG	GAATCTTGT
	AAGGTCTGG	CAAATGATGAT	CACTATGAAA	ATGTCTTGT	TCTTGTGAAAC	CCAAAGTGTG	ACTCATTAAA
	TGGAAGTAAA	TGTGTTTA	GGAATAC	ATGAAGGTCT	CCGCAGCACT	TCTGTGGCTG	CTGCTCATAG
	CAGCTGCCCT	CAGCCCCCAG	GGGCTCGTG	GGCCAGCTTC	TGTCCTAAC	ACCTGCTGCT	TTAACCTGGC
	CAATAGGAAG	ATACCCCTTC	AGCAGACTAGA	GAGCTACAGG	AGAATCACCA	GTGCAAATG	TCCCCAGAAA
	GCTGTGATCT	TCAA GACCAA	ACTGGCCAAG	GATACTGTG	CCGACCCCCA	GAAGAAGTGG	GTGAGGATT
20	CCATGAAGTA	TCTGGACCAA	AAATCTCCAA	CTCCAAAGCC	ATAA	CCACATATTC	CCCTCCTTT
	ATCCAGATGG	ATTA AAAAAT	GTACCAAGTC	CCTCTACTA	GCTTGCCTCT	CTTCTGTTCT	GCTTGACTTC
	CTAGGATCTG	GAATCTGGTC	AGCAATCAGG	AATCCCTTCA	TCGTGACCCC	CGCATGGGCA	AAGGCTTCCC
	TGGAATCTCC	CACACTGTCT	GCTCCCTATA	AAAGGCAGGC	AGATGGGCA	GAGGAGCAGA	GAGGCTGAGA
	CCAACCCAGA	AACC ACCACC	TCTCACGCCA	AAAGTCACAC	CTTCAGCCTC	CAACATGAAG	GTCTCCGAG
25	CACTTCTGTG	GCTGCTGCTC	ATAGCAGCTG	CCTTCAGCCCC	CCAGGGGCTC	GCTGGGCCAG	GTAAGCCCC
	CAACTCCCTA	CAGGAAAGGT	AAGGTAACCA	CCTCCAGGCT	ACTAGGTCTAG	CAAGAATCTT	TACAGACTCA
	CTGCAAATT	TCCAATTGAA	AAATAGGAA	ACAGGTTTG	TGGGTGGACA	AGAAATGCCT	CAACCGTCAC
	ATCCAGTCAC	TGGAAGAGCC	AGAACTAGAA	AGCTCCCGAG	TCTTTTCCCC	ACATTCAAGA	GGGCCGCTGG
	GTGCATCTT	ACCCAGCTAT	CCTTACAGTG	TTTGGGAATG	GGGAATGGCT	CTGCTTACT	GTGGGCATGG
30	TGGGCATTTT	TGGCAGTGGG	AGAGAAGGAA	AATCTGTGA	TTAGAAGCTC	AGTATGTTAA	TTCGACTCCA
	GGACAGCTTT	CAGAGACAGT	GGCTAAGAGA	AGAACGAGGT	CCCAGGGAT	CTCTTGAGGT	GACTTATTT
	GACACTCTT	GGGAAAGTTA	TCTAGGAGAT	TTGTTCCATA	ACTCATTTTC	CCATACTCTG	GTGACAAATT
	TACTGAGTGT	ATCGGTCCCA	CTGAGCCAGT	GCATAGCATG	GTAACAAACAA	GTTCTAAATT	ATCAATGACT
	TAACAGAATT	AAACAAATT	ACAAAAGTTA	CTTCTCACT	TGTACTAAAT	ATCTATAATG	TATGGGCTCA
35	GGCTTCTGCA	TTTTATACTC	AGGATTCTAG	ACTGATGGAG	AAGTTGCCAT	GTGGGGAAC	ATTGATGGAT
	ACTGTGATAA	AGCAGAAGAA	AGCTCTCAGG	AGTCTGCTAT	AGGCAATGCA	CTGTGGCTCA	AAAATGACAC
	CCATCACTTT	GTCTCTTCT	TTATTGATCA	AAACTAATT	ATGCCCTCAA	CCAAACAAAA	GTGCCAAGA
	AATGCAAGTC	TACCTTGTGT	CTCAAAACAG	AGGATGGAGA	ATATTGGTG	AAAATTACCA	TGACCATCAC
	ATGGCCACGT	AGGICTTTAT	AATGACAGAG	CTAGCATTG	TCACATTGAC	CAAGCTTGT	CCATACACTC
40	TACAGTAATG	ATGAGTCCTC	AGTGACACAG	GGAGGATGCT	GAAGACACAG	GACAGCATCC	TCCAGACACA
	TAAGACTTCA	GAGCAGAGGG	ATTCTCCCTC	CACCTCTCGC	AATTCCITGC	TTTCTCCTAA	CTTCCCTTAC
	AAAGTCATGC	TTGGAAATGT	CTATGTATCA	TCATGTGGCT	CATTTTTTTC	TCTGTTCTATT	TTTTTCCCC
	AAAATTTCAGC	TTCTGTCCCA	ACCACCTGCT	GCTTTAACCT	GGCCAATAGG	AAGATAACCC	TTCAGCGACT
	AGAGAGCTAC	AGGA GAATCA	CCAGTGGCAA	ATGCCCCAG	AAAGCTGTGA	TGTAAGTAAA	TAAAGTTCAC
45	CCTCCCTAG	ACAAA AAAAAT	AATGTCTAGG	GCACAGAGTC	AAGAAGTGTG	GGAGTCATAG	ACTCTGATAG
	TTTGACCTCT	ATGGTCCAAT	TCATTAATT	TCACAAGTGA	GTGTTCACTC	CCAGCTCCCT	GCCTGGGAGA
	TTGCTGTAGT	CATA TCAATT	TCTTCAAGTC	AAGAGCAAAG	ATGGTTTAC	TGGGCTTTA	AGAGCAGCAA
	CTAACCCAAAG	AGTC TCACTC	TTCCCTCTCT	CCGTAGCAAC	CCTTGTCCA	GGGGCAGATG	GTCCTTAAT
	ATTAGGGTC	AAATGGGCAG	AATTTCAAA	AACAATCCTT	CCAATTGCAT	CCTGATTCTC	CCCACAGCTT
50	CAAGACCAAA	CTGC CCAAGG	ATATCTGTGC	CGACCCAAG	AAGAAGTGGG	TGCAGGATTC	CATGAAGTAT
	CTGGACCAAA	AATCTCAAC	TCCAAAGCCA	AAATAATCA	CCATTTTGAA	AACCAAACCA	GAGCCTGAGT
	GTTGCCTAAT	TTGTTTCCC	TTCTTACAAT	GCATTCTGAG	GTAACCTCAT	TATCAGTCCA	AAGGGCATGG
	GTTTTATTAT	ATATATATAT	ATATATTTT	TTTAAAAAAA	AAACGTATTG	CATTAAATT	ATTGAGGCTT
	TAAAACCTAT	CCTCCATGAA	TATCAGTTAT	TTTAAACTG	TAAAGCTTTG	TGCAGATTCT	TTACCCCTG
55	GGAGCCCCAA	TTCCATCCCC	TGTCACGTGT	GGGCAATGTT	CCCCCTCTCC	TCTCTTCTTC	CCTGGAATCT
	TGTAAAGGTC	CTGGCAAAGA	TGATCAGTAT	GAAAATGTCA	TTGTTCTTGT	GAACCCAAAG	TGTGACTCAT
	TAATGGAAG	TAATGTTGTT	TTAGGAATAC	ATAAAGTATG	TGCATATT	ATTATAGTCA	CTAGTTGTA
	TTTTTTGTG	GGAAATCCAC	ACTGAGCTGA	GGGGG	GCCAGGTCGC	TGTTGGTCCA	CGCCGCCCGT
	CGCGCCGCC	GCCCCGCTCAG	CGTCCGCCG	CGCCATGGGA	GGCCGGAGCC	GAGCCGGGGT	CGGGCAGCAG
60	CAGGGACCCC	CCAGAGGCGG	GGCCTGTGGG	ACCGCTATGG	GCGTGGAGAT	CGAGACCATC	TCCCCGGAG
	ACGGAAGGAC	ATTCCCCAAG	AAGGGCCAAA	CGTGTGTGGT	GCACTACACA	GGAATGCTCC	AAAATGGGAA
	GAAGTTTGAT	TCAT CCAGAG	ACAGAAACAA	ACCTTCAAG	TTCAGAATTG	GCAAACAGGA	AGTCATCAA
	GGTTTGAAG	AGGGTGCAGC	CCAGATGAGC	TTGGGGCAGA	GGGCGAAGCT	GACCTGCA	CCTGATGTGG

	CATATGGAGC	CACC GGCCAC	CCCGGTGTCA	TCCCTCCCAA	TGCCACCCCT	ATCTTGACG	TGGAGCTGCT
	CAACTTAGAG	TGAAGGCAGG	AAGGAACCTCA	AGGTGGCTGG	AGATGGCTGC	TGCTCACCCCT	CCTAGCCTGC
	TCTGCCACTG	GGACGGCTCC	TGCTTTGGG	GCTCTGATC	AGTGTGCTAA	CCTCACTGCC	TCATGGCATC
5	ATCCATTCTC	TCTG CCAAG	TTGCTCTGTA	TGTGTTCGTC	AGTGTTCATG	CGAATTCTTG	CTTGAGGAAA
	CTTCGGTTGC	AGAT TGAAGC	ATTCAGGTT	GTGCAATTTC	TGTGATGCAT	GTAGTAGCCT	TTCCGTATGA
	CAGAACACAG	ATCI CTTGTT	CGCACAATCT	ACACTGCCCT	ACCTTCACCT	AAACACACAA	CACAAGGTGC
	TCAGACATGA	AATC TACATG	CGCTACCGTA	CACAGAGGGA	CTTGAGCCAG	TTACCTTGC	TGTCACTTTC
	TCTCTTATAA	ATTC GTTACG	CTGCTCACTT	AAACAAATGTC	CTCTTTGAGA	AAATGAAAAA	TAAAGGCTCT
10	GTGCTTGACA	GA ATT CGGGC	CGCCGCCAGG	TCGCTGTTGG	TCCACGCCGC	CCGTCGCGCC	GCCC GCGCCG
	TCAGCGTCCG	CCGC CGCCAT	GGGAGTGCA	GTGGAAACCA	TCTCCCCAGG	AGACGGGCGC	ACCTTCCCCA
	AGCGCGCCA	GACC TCGGTG	GTGCACTACA	CCGGGATGCT	TGAAGATGGA	AAGAAATTG	ATTCCCTCCCG
	GGACAGAAC	AAG CCTTTA	AGTTTATGCT	AGGCAAGCAG	GAGGTGATCC	GAGGCTGGGA	AGAAGGGGTT
	GCCCAGATGA	GTGT GGGTCA	GAGAGCCAAA	CTGACTATAT	CTCCAGATTA	TGCCTATGGT	GCCACTGGC
15	ACCCAGGCAT	CATCCCCACCA	CATGCCACTC	TCGCTTTCGA	TGTGGAGCTT	CTAAAACCTGG	AATGACAGGA
	ATGGCCTCCT	CCCTTAGCTC	CCTGTTCTG	GATCTGCCAT	GGAGGGATCT	GGTGCCTCCA	GACATGTGCA
	CATGAGTCCA	TATGGAGCTT	TTCCCTGATGT	TCCACTCCAC	TTTGTATAGA	CATCTGCCCT	GACTGAATGT
	GTTCCTGTCAC	TCAG CTTGTC	TTCCGACACC	TCTGTTTCTC	CTTCCCCTT	CTCCTCGTAT	GTGTGTTTAC
	CTAAACTATA	TGCCATAAAC	CTCAAGTTAT	TCATTTTATT	TTGTTTCTAT	TTTGGGGTGA	AGATTCAAGT
20	TCAGTCTTTT	GGAT ATAGGT	TTCCAATTAA	GTACATGGTC	AAGTATTAAAC	AGCACAAGTG	GTAGGTTAAC
	ATTAGAATAG	GAAT TGGTGT	TGGGGGGGGG	GTGGCAAGA	ATATTTTATT	TTAATTTTTT	GGATGAAATT
	TTTATCTATT	ATAT ATAAA	CATTCTTGCT	GCTGCGCTGC	AAAGCCATAG	CAGATTGAG	GCGCTGTTGA
	GGACTGAATT	ACTCTCCAAG	TTGAGAGATG	TCTTGGGTT	AAATTAAAAG	CCCTACCTAA	AACTGAGGTG
	GGGATGGGGA	GAG CTTTGC	CTTCCACCAT	CCCACCCACC	CTCCCCTTAA	ACCCCTGCC	TTTGAAGAGTA
25	GATCATGTTC	ACTG CAATGC	TGGACACTAC	AGGTATCTGT	CCCTGGGCCA	GCAGGGACCT	CTGAAGCCTT
	CTTTGTGGCC	TTTTTTTTT	TTCATCTGT	GGTTTTCTA	ATGGACTTTC	AGGAATTTC	TAATCTCATA
	ACTTCTCAAG	CTCCACCACT	TCCTAAATCT	TAAGAACCTT	AATTGACAGT	TTCAATTGAA	GGTGTGTTT
	GTAGACTTAA	CACCCAGTGA	AAGCCCAGCC	ATCATGACAA	ATCCTGAAT	GTTCCTTAA	GAAAATGATG
	CTGGTCATCG	CAGC TTCAGC	ATCTCCTGTT	TTTGATGCT	TGGCTCCCTC	TGCTGATCTC	AGTTTCTGG
	CTTTCTCTC	CTCAGCCCC	TCTCACCCCT	TTGCTGTCCT	GTGTAGTGAT	TTGGTGAGAA	ATCGTTGCTG
30	CACCCCTCCC	CCAGC ACCAT	TTATGAGTCT	CAAGTTTAT	TATTGCAATA	AAAGTGCTT	ATGCCGAAT TC
	GCCGCCGCCA	TGGGAGTGCA	GGTGGAAACC	ATCTCCCCAG	GAGACGGGCG	CACCTTCCCC	AAGCGCGGCC
	AGACCTCGCT	GGTGC ACTAC	ACCGGGATGC	TTGAAGATGG	AAAGAAATT	GATTCTCCC	GGGACAGAAA
	CAAGCCCTT	AAGT ITATGC	TAGGCAAGCA	GGAGGTGATC	CGAGGCTGGG	AAGAAGGGGT	TGCCCATG
	AGTGTGGGTC	AGAC AGCCAA	ACTGACTATA	TCTCCAGATT	ATGCCCTATGG	TGCCACTGGG	CACCCAGGCA
35	TCATCCCACC	ACATGCCACT	CTCGTCTCG	ATGTGGAGCT	TCTAAAACCTG	GAATGACAGG	AATGGCCTCC
	TCCCTTAGCT	CCCTGTTCTT	GGATCTGCCR	TGGAGGGATC	TGGTGCCTCC	AGACATGTGC	ACATGARTCC
	ATATGGAGCT	TTTCTGTATG	TTCCACTCCA	CTTGTATAG	ACATCTGCC	TGACTGAATG	TGTTCTGTC
	CTCAGCTTGT	CTTCCGACAC	CTCTGTTCC	TCTTCCCCCT	TCTCCTCGTA	TGTGTGTTA	CCTAAACTAT
	ATGCCATAAA	CCTCAAGTTA	TTCA	AAGCTTCTAC	CCTAGTCTGG	TGCTACACTT	ACATTGCTTA
40	TGGTTATTTT	TGTGGCTCT	GTTATAACTA	TTATAGCACC	AGGTCTATGA	CCAGGAGAAT	TAGACTGGCA
	TTAAATCAGA	ATAAAGAGATT	TTGCACCTGC	AATAGACCTT	ATGACACCTA	ACCAACCCCA	TTATTTACAA
	TTAAACAGGA	ACACAGGGAA	TACTTTATCC	AACTCACACA	AGCTGTTTC	CTCCAGATC	CATGTTTTT
	TGCGTTTATT	ATTIT TTAGA	GATGGGGCT	TCACTATGTT	GCCCACACTG	GACTAAAAC	CTGGGCCTCA
	AGTGTATTGTC	CTGCTCAGC	CTCTGAATA	GCTGGGACTA	CAGGGGCATG	CCATCACACC	TAGTCATTT
45	CCTCTATTTA	AAAT ATACAT	GGCTTAAACT	CCAACCTGGGA	ACCCAAAACA	TTCATTTGCT	AAGAGCTGG
	TGTTCTACCA	CCTG AACTAG	GCTGGCCACA	GGAATTATAA	AAGCTGAGAA	ATTCTTAAT	AAATGAAACC
	AGGCAACATC	ATTCAAGGCT	CATATGTA	AAATCCATGCC	TTCTTTCTC	CCAATCTCCA	TTCCCAAAC
	TAGCCACTGG	TTCT 3GCTGA	GGCCTTACGC	ATACCTCCCG	GGGCTTGCAC	ACACCTCTT	CTACAGAAGA
	CACACCTTGG	GCAT ATCTA	CAGAAGACCA	GGCTTCTCTC	TGGTCTTGG	TAGAGGGCTA	CTTTACTGTA
50	ACAGGGCCAG	GGTGGAGAGT	TCTCTCTGA	AGCTCCATCC	CCTCTATAGG	AAATGTGTTG	ACAATATTCA
	GAAGAGTAAG	AGG ATCAAGA	CTTCTTGTG	CTCAAATACC	ACTGTTCTCT	TCTCTACCCCT	GCCCTAACCA
	GGAGCTTGTG	ACCCC AAAC	CTGAGGTGAT	TTATGCTTA	ATCAAGCAA	CTTCCCTCTT	CAGAAAAGAT
	GGCTCATTTT	CCCT CAAAG	TTGCCAGGAG	CTGCCAAGTA	TTCTGCCAAT	TCACCCCTGGA	GCACAATCAA
	CAAATTCAAGC	CAGA ACACAA	CTACAGCTAC	TATTAGAACT	ATTATTATTA	ATAAATTCTC	CTCCAAATCT
55	AGCCCCCTGA	CTTCGGATT	CACGATTCT	CCCTCCCTCC	TAGAAACTTG	ATAAGTTCC	CGCGCTTCCC
	TTTTCTAAG	ACTA CATGTT	TGTCACTTA	TAAAGCAAAG	GGGTGAATAA	ATGAACCAA	TCAATAACTT
	CTGGAATATC	TGCAAACAAAC	AATAATATCA	GCTATGCCAT	CTTTCACAT	TTTAGCCAGT	ATCGAGTTGA
	ATGAACATAG	AAAATATCAA	AACTGAATT	TTCCCTGTAA	ATTCCCCGTT	TTGACGACGC	ACTTGAGGCC
	ACGTAGCCAC	GCCTACTTAA	GACAATTACA	AAAGGCGAAG	AAGACTGACT	CAGGCTTAAG	CTGCCAGCCA
60	GAGAGGGAGT	CAT TCTATTG	GCGTTTGAGT	CAGCAAAGGT	ATTGCTCTCA	CATCTCTGGC	TATTAAGAGTA
	TTTCTGTG	TTGT TTTCT	CTTGGCTGT	TTTCTCTCAC	ATTGCCCTCT	CTAAAGCTAC	AGTCTCTCCT
	TTCTTTCTT	GTCCCTCCCT	GGTTGGTAT	GTGACCTAGA	ATTACAGTC	GATTTCAGAA	AATGATTCTC

	TCATTTGCT	GATAAGGACT	GATTGTTT	ACTGAGGGAC	GGCAGAACTA	GTTTCCTATG	AGGGCATGGG
	TGAATACAAC	TGAGGCTTCT	CATGGGAGGG	AATCTCTACT	ATCCAAAATT	ATTAGGAGAA	AATTGAAAAAT
5	TTCCAACCT	GTCTCTCT	TACCTCTGTG	TAAGGCAAT	ACCTTATTCT	TGTGGTGT	TTGTAACCTC
	TTCAAACCTT	CATTGATTGA	ATGCCCTGTT	TGGCAATACA	TTAGGTTGGG	CACATAAGGA	ATACCAACAT
	AAATAAAACA	TTCTAAAAGA	AGTTTACGAT	CTAATAAAGG	AGACAGGTAC	ATAGCAAAC	AATTCAAAGG
	AGCTAGAAGA	TGGAGAAAAT	GCTGAATGTG	GACTAAGTCA	TTCAACAAAG	TTTCAGGAA	GCACAAAGAG
	GAGGGGCTCC	CCTCACAGAT	ATCTGGATTA	GAGGCTGGCT	GAGCTGATGG	TGGCTGGTGT	TCTCTGTTGC
	AGAAGTCAAG	ATGGCCAAAG	TTCCAGACAT	GTTTGAAGAC	CTGAAGAAC	GTTACAGGTA	AGGAATAAGA
10	TTTATCTCTT	GTGATTAAAT	GAGGGTTCA	AGGCTCACCA	GAATCCAGGT	AGGCATAACA	GTGGCCAGCA
	TGGGGCAGG	CCGGCAGAGG	TTGTAGAGAT	GTGTAAGTGT	CCTGAAGTCA	GAGCAGGTTC	AGAGAAGACC
	CAGAAAAACT	AAGCATTCA	CATGTTAAC	TGAGATTACA	TTGGCAGGGA	GACCGCCATT	TTAGAAAAAT
	TATTTTGAG	GTCTGCTGAG	CCCTACATGA	ATATCAGCAT	CAACTTAGAC	ACAGCCTCTG	TTGAGATCAC
	ATGCCCTGAT	ATAA GAATGG	GTTTTACTGG	TCCATTCTCA	GGAAAACCTG	ATCTCATTCA	GGAACAGGAA
15	ATGGCTCCAC	AGCAAGCTGG	GCATGTGAAC	TCACATATGC	AGGCAAAC	CACTCAGATG	TAGAAGAAAAG
	GTAAAATGAA	ACAAAGATAA	AATTACGGAA	CATATTAAAC	TAACATGATG	TTTCATTAT	CTGTAGTAAA
	TACTAACACA	AACTAGGCTG	TCAAAATT	GCCTGGATAT	TTTACTAAGT	ATAAATTATG	AAATCTGTT
	TAGTGAATAC	ATGAAAGTAA	TGTGAACAT	ATAATCTATT	TGGTTAAAT	AAAAGGAAG	TGCTTCAAA
	CCTTTCTTT	CTCTAAGGA	GCTTAACATT	CTTCCCTGAA	CTTCAATTAA	AGCTCTCAA	TTTGTAGCC
	AAGTCCAATT	TTTA CAGATA	AAGCACAGGT	AAAGCTAAA	GCCTGTCTG	ATGACTACTA	ATTCCAGATT
20	AGTAAGATAT	GAAT TACTCT	ACCTATGTG	ATGTGTAGAA	GTCTTAAT	TTCAAGATG	ACAGTAATGG
	CCATGTGTAT	GTGTGTGACC	CACAACATC	ATGGTCATTA	AAGTACATT	GCCAGAGACC	ACATGAAATA
	ACAACAAATTA	CATTCATCATC	ATCTTATT	GACAGTGAAG	ATGAAGAAGA	CAGTCCCTCC	ATTGATCATC
	TGTCTCTGAA	TCAGGTAAGC	AAATGACTGT	AATTCTCATG	GGACTGCTAT	TCTTACACAG	TGGTTCTTC
	ATCCAAAGAG	AACAGCAATG	ACTTGAATCT	TAATTAAC	TGTTTACCC	TCACTAGAGA	TCCAGAGACC
25	TGTCTTCAT	TATAAGTGA	ACCAGCTGCC	TCTCTAAAC	AATAGTTGAT	GTGCATTGGC	TTCTCCCAGA
	ACAGAGCAGA	ACTTCCCAA	ATCCCTGAGA	ACTGGAGTCT	CCTGGGGCAG	GCTTCATCAG	GATGTTAGTT
	ATGCCATCT	GAGAAAGCCC	CGCAGGCCG	TTCACCAAGG	GTCTGTCTC	TAACGTGATG	TGTTGTGGTT
	GTCTTCTG	ACACCAGCAT	CAGAGGTTAG	AGAAAGTCTC	CAAACATGAA	GCTGAGAGAG	AGGAAGCAAG
	CCAGCTGAAA	GTGAGAAGTC	TACAGCCACT	CATCAATCTG	TGTTATTGTG	TTTGGAGACC	ACAAATAGAC
30	ACTATAAGTA	CTGCCTAGTA	TGTCTTCAGT	ACTGGCTTA	AAAGCTGTC	CCAAAGGAGT	ATTCTAA
	TATTTGAGC	ATTGITAAGC	AGATTTTAA	CCTCTGAGA	GGGAACATA	TGGAAAGCTA	CCACTCACTA
	CAATCATGT	TAACCTATT	AGTTACAACA	TCTCATTTT	GAGCATGCAA	ATAAATGAA	AAGTCTTCT
	AAAAAAATCA	TCTTTTATC	CTGGAAAGGAG	GAAGGAAGGT	GAGACAAAAG	GGAGAGAGGG	AGGAAAGCCT
	AATGAAACAC	CAGITACCTA	AGACCAGAA	GGAGATCCTC	CTCACTACCT	CTGTTGAATA	CAGCACCTAC
35	TGAAAGAACT	TTCACTCCCT	GACCATGAAC	AGCCTCTCAG	CTTCTGTTT	CCTTCCTCAC	AGAAATCCTT
	CTATCATGTA	AGCTATGGCC	CACTCCATGA	AGGCTGCATG	GATCAATCTG	TGTCTCTGAG	TATCTCTGAA
	ACCTCTAAA	CATCCAAGCT	TACCTTCAAG	GAGAGCATGG	TGGTAGTAGC	AACCAACGGG	AAGGTTCTGA
	AGAAGAGACG	GTTCAGTTA	AGCCAATCCA	TCACTGATGA	TGACCTGGAG	GCCATCGCCA	ATGACTCAGA
	GGAAAGGTAA	GGGCAAGCA	CAATAATATC	TTCTTTTAC	AGTTTAAGC	AAGTAGGGAC	AGTACAATT
40	AGGGGAAAAT	TAACCGTGG	GTCAGAAATA	CAAGAAGACA	ACCAAGCATT	AGTCTGGTAA	CTATACAGAG
	GAAAATTAA	TTTATCCTT	CTCCAGGAGG	GAGAAATGAG	CAGTGGCCTG	AATCGAGAAT	ACTTGCTCAC
	AGCCATTATT	TCTTAGCCAT	ATTGTAAGG	TCGTGTGACT	TTTACGCTT	CAGGAGAAAG	CAGTAATAAG
	ACCACTTACG	AGCIATGTT	CTCTCATACT	AACTATGCCT	CCTGGTCAT	GTTACATAAT	CTTTTCGTGA
	TTCAGTTCC	TCTACTGTAA	AATGGAGATA	ATCAGAAATCC	CCCACCTATT	GGATTGTTGT	AAAGATTAAG
45	AGTCTCAGGC	TTTACAGACT	GAGCTAGCTG	GGCCCTCTG	ACTGTTATAA	AGATTAATG	AGTCAACATC
	CCCTAACTTC	TGGAATGAA	TAATGTCTGG	TACAAAGTAA	GCACCCAA	AATGTTAGCT	ATTACTATCA
	TTATTATTAT	TATTATTT	TTTTTTT	AGATGGAGTC	TGGCTCTGTC	ACCCAGGCTG	GAGTGCAGTG
	GCACAATCTC	GGCTCACTGC	AAGCTCTGCC	TCCTGGGTT	ATGCCATTCT	CCTGCTCAG	CCTCCCGAGT
	AAGCTGGAA	TACAGGCACC	CGCCACTGTT	CCCCGCTAAT	TTTTGTATT	TTTAGTAGAG	ACGGAGTTTC
50	ACCGTGGCT	CCATCTCCTC	GTGATCCACC	CACCTTGGCC	TCCCAAAGTG	CCGGGATTAC	AGGCGTGAGC
	CACCGGCC	GGCCTATTAT	TATTATT	ACTACTACTA	CTACCTATAT	GAATACTACC	AGCAATACTA
	ATTTATTA	GAATGGATT	TGTCTAAC	TCACAAGAAT	CCTACCTTCT	CATTTACAT	AAAAGGAAAC
	TAAGCTCATT	GAGATAGGT	AACTGCCAA	TGGCATAACAT	CTGTAAGTGG	GAGAGCCTCA	AATCTAATTC
	AGTTCTACCT	GAGTAAAAAA	ATCATGGTT	CTCCTCCATC	CCTTTACTGT	ACAAGCCTCC	ACATGAAC
55	TAAACCCAAT	ATTCCCTGTT	TTAAGATAAT	ACCTAAGCAA	TAACGCATGT	TCACCTAGAA	GGTTTTAAAAA
	TGTAACAAAA	TATAAGAAAA	AAAAATCAC	TCATATCGTC	AGTGAGAGTT	TACTACTGCC	AGCACTATGG
	TATGTTTCT	AAAATCTT	GCTATACACA	TACCTACATG	TGAACAAATA	TGTCTAACAT	CAAGACCACA
	CTATTTACAA	CTTTATATCC	AGCTTTCTT	ACTTAGCAAT	GTATTGAGGA	CATTTCAGAG	TGCCCCTTT
	TCACCATTAT	AAGCAATGCA	ACAATGAACA	TCTGTATAAA	TAATATTCA	TTTCTCTCAC	CCTTTATTTC
60	CTTAGAATAT	ATTCCCTAGAA	GTAGAATTTC	CCAGAGCCAT	GAGGATTGT	GACGCTATTG	ATATGTGCCA
	CTTGCAC	TCTGTGACAT	ATATAATTAT	TTTAATGCA	TTCATTTT	TCTCAGAGTG	CATTGTTTG
	AAAACATAGA	CGGGAAATAC	TGGTAGCTT	CCTTGTCA	TAGAAACACC	CAAACAATGA	AAAATGAAAAA

	AGTTGCACAA	ATAGTCTCTA	AAAACAATGA	AACTATTGCC	TGAGGAATTG	AAGTTAAAAA	AGAAGCACAT
	AAGCAACAAC	AAGGATAATC	CTAGAAAACC	AGTTCTGCTG	ACTGGGTGAT	TTCACTTCTC	TTTGCTTCCT
	CATCTGGATT	GGAATATTCC	TAATACCCCC	TCCAGAACTA	TTTCCCCTGT	TTGTACTAGA	CTGTGTATAT
5	CATCTGTGTT	TGTA-CATAGA	CATTAATCTG	CACTTGTGAT	CATGGTTTA	GAAATCATCA	AGCCTAGGTC
	ATCACCTTT	AGCTTCTGA	GCAATGTGAA	ATACAACATT	ATGAGGATCA	TCAAATACGA	ATTCATCCTG
	AATGACGCC	TCAATCAAAG	TATAATTCGA	GCCAATGATC	AGTACCTCAC	GGCTGCTGCA	TTACATAATC
	TGGATGAAGC	AGGJACATTA	AAATGGCACC	AGACATTCT	GTCATCCTCC	CCTCCTTCA	TTTACTTATT
	TATTATTTTC	AATCTTCTG	CTTGCAAAA	ACATACCTCT	TCAGAGTTCT	GGGTTGCACA	ATTCTTCCAG
10	AATAGCTTGA	AGCACAGCAC	CCCCATAAAA	ATCCAAGCC	AGGGCAGAAG	GTTCAACTAA	ATCTGGAAGT
	TCCACAAAGAG	AGAA-GTTTCC	TATCTTGTAG	AGTAAAGGGT	TGTGCAAAA	GCTAGCTGAT	GTACTACCTC
	TTTGGTTCTT	TCAGACATTC	TTACCTCAA	TTTTAAAACT	GAGGAAACTG	TCAGACATAT	TAAATGATTT
	ACTCAGATT	ACCCAGAACG	CAATGAAGAA	CAATCACTCT	CCTTTAAA	GTCTGTTGAT	CAAACTCACA
	AGTAACACCA	AACCAGGAAG	ATCTTATTA	TCTCTGATAAA	CATATTGTG	AGGCAAAACC	TCCAATAAGC
	TACAAATATG	GCTTAAAGGA	TGAAGTTAG	TGTCAAAAAA	CTTTATCAC	ACACATCCAA	TTTCATGGC
15	GGACATGTTT	TAGTITCAAC	AGTATACATA	TTTCAAAAGG	TCCAGAGAGG	CAATTGCA	ATAAAACAAGC
	AAGACTTTTT	CTGA ITGGAT	GCACCTCAGC	TAACATGTT	TCAACTCTAC	ATTTACAAAT	TATTTTGTGT
	TCTATTTTC	TACT`AATAT	TATTCTGCA	ATTTCCTCAA	TATTGACATC	GTGTATGTAT	TTGCCATTTT
	TAATATCACT	AGACAATTCA	ATCAGGTGTC	TACGTTGGTC	CCTTGGGTTT	ACTCTAAATA	GCTTGATTGC
	AAATATCTTT	GTATATATTA	TTGTTTTTC	TCCTATCTTG	TAATTCTTT	GAGCACATCC	CAAAGAGGAA
20	TGCCTAGATC	AATGGGCACA	AATAATTGA	CAGCTCTAT	TTAACATTAT	TCTGTAAGTA	AAAACGTGAA
	TACTTTTCAG	TATCACTAGC	AACATATGAG	TGTATCAGCT	TCCTAAACCC	CTCCATGTTA	GGTCATTATG
	AACTTATGAT	CTAA CAAATT	ACAGGGTCTT	ATCCCACTAA	TGAAATTATA	AGAGATTCAA	CACTTATTCA
	GCCCCGAAGG	ATTCAATTCAA	CGTAGAAAAT	TCTAAGAAC	TTAACCAAGT	ATTACCTGC	CTAGTGAGTG
	TGGAAGACAT	TGTGAAGGAC	ACAAAGATGT	ATAGAATTCC	ATTCTGACT	TCCAGGTATT	TACACCATAG
25	GTGGGGACCT	AACTACACAC	ACACACACAC	ACACACACAC	ACACACACAC	ACCATGCACA	CACAATCTAC
	ATCAACACTT	GATTITATAC	AAATACAATG	AAATTACTTT	CTTTTGGGT	CTTCTCTTCA	CCAGTGAAT
	TTGACATGGG	TGCTTATAAG	TCATCAAAGG	ATGATGCTAA	AATTACCGTG	ATTCTAAGAA	TCTCAAAAAC
	TCAATTGTAT	GTGACTGCC	AAGATGAAGA	CCAACCAGTG	CTGCTGAAGG	TCAGTTGTCC	TTTGTCTCCA
	ACTTACCTTC	ATTTACATCT	CATATGTTG	TAAATAAGCC	CAATAGGCAG	ACACCTCTAA	CAAGGTGACA
30	CTGTCCTCTT	TCCTTCTAC	CACAGCCCC	ACCTACCCAC	CCCACCTCCA	TTGATTCAG	AGGCGTGCT
	AGGCAGGATC	TATGAGAAAAA	TATAACAGAG	AGTAAGAGGA	AAATTACCTT	CTTCTTTTT	CCTTTCCCTG
	CCTGACCTTA	TTCA CCTCCC	ATCCCAGAGC	ATCCATTAT	TCCATTGATC	TTTACTGACA	TCTATTATCT
	GACCTACACA	ATACTAGACA	TTAGGACAAT	GTGGCTGCC	TCCAAGAAC	TCAAATAAGC	CAACTGAGAT
	CAGAGAGGAT	TAATCACCTG	CCAATGGCA	CAAAGAACAA	AGCTGGGAGC	CAAGTCCAA	ATGGGGCCT
35	GCTGCTTCCA	GTTC CCTCT	CTCTGCATTG	ATGTCAGCAT	TATCCTCGT	CCCAGTCTG	TCTCCACTAC
	CACTTTCCCC	CTCA AACACA	CACACACACA	ACAGCCTTAG	ATGTTTCTC	CACTGATAAG	TAGGTGACTC
	AATTGTAAG	TATAATATCC	AAGACCTCT	ATTCCAAGT	AGAATTATG	TGCTGCTG	TGCTTTCTA
	CCTGGATCAA	GTGATGTCTA	CAGAGTAGGG	CAGTAGCTTC	ATTCATGAAC	TCATTCAACA	AGCATTATTTC
	ACTGAGAGCC	TTGTTTTTT	CAGGCATAGT	GCCAACAGCA	GTGTGGACAG	TGGTGCATCA	AAGCCTCTAG
40	TCTCATAGAA	CTTAGTCTTC	TGGAGGATAT	GGAAAACAGA	CAACCCAAAC	AACCAACAAA	AGAGCAAGAT
	GCTGAAAAAA	AAAAAAAAT	GAATAGGGTG	CTAAGATAGA	GAAAAGTGGG	AGAGTGCTAT	TTAGACAAAG
	TGGTAAAAAC	AAAG CCCCTT	GTGAGATGAG	AGCTGCCGAC	AGAGGGGGCG	GGTCATGGTT	GTGGGTTTTT
	GGGTAGGACA	TTCA GAGGAG	GGGGCGGGTC	GTGGTTGTGG	GTGTTGGGT	AGGACATTCA	GAGGAGGGGG
	CGGGTCTGG	TTGT TGGTTT	TTGGGTAGGA	CATTAGAGG	AGGGGGCGGG	TCGTTGGTTGT	GGGTTTTTGG
45	GTAGGACATT	CAGAGGAGGG	GGCGGGTCGT	GGTTGTGGGT	TTTGGGACA	TTCAGAGGAG	TCTGAATGCA
	CCCAGGCCTA	CAAC ITCAAG	ATGGTAAAGG	ACAGCTCCAA	GGATCAGAAAG	AAGCATTCTT	GGAACGGGG
	CATTTGAGA	AGGAGGAAAAA	ATATGCAGAG	ACTAGTGTCTT	GCAGAGCTG	CATTGGATT	TCATTTGAGG
	TACAATGAAA	ACCCATTAAT	GGGTTTCACA	CAGTGAATG	GCCTGACCTC	ACTTATATT	CCTAAATAG
	AAAACAGATC	AGAAGGAAGG	CAATAGAGAA	GCAGAAAGTC	CAATGAGGAG	GTTCACAGC	AGTCATGGGG
50	GTGGGGTAAG	AAAAAGAAGT	GGAAAGAAAAC	AGACAGAATT	GGGTTATATT	TTGGAGATAG	AACCAACAGA
	AGGAAGAGGA	GAFA CAACAT	TTACTGAGAA	GGGAAAAAGT	AGGAGAGGAA	TAGGTTGGG	AAATAAATCC
	TGCTGACATT	GGAA ACCCCC	AGGAAGCCTC	AAAAGTATAT	TTACTTGCTT	TAGATTAAA	AGAATAGGAA
	AGAAGCATCT	CAACTTGGAA	TTGAAATCT	ATTTTCCAT	AAAAGTATTG	TTAAATTCTA	CTCATACTCA
	CAAGAAAAGT	ACAT TCTAAA	GAGTATATTG	AAAGAGTTA	CTGATATACT	TAGGAATT	GTGTGTATGT
55	GTGTGTGTGT	ATGT GTGTGT	GTGTGTTAA	CCTTCATTG	TTGACTTAA	TACTGAGATA	AATGTCATCT
	AAATGCTAAA	TTGATTTCCTC	AAAGGTATGA	TTTGTTCACT	TGGAGATCAA	AATGTTAGG	GGGCTTAGAA
	TCACTGTAGT	GCTCAGATT	GATGCAAAAT	GTCTTAGGCC	TATGTTGAAG	GCAGGACAGA	AACAATGTTT
	CCCTCCTACC	TGCC TGGATA	CAGTAAGATA	CTAGTGTAC	TGACAATCTT	CATAACTAAT	TTAGATCTCT
	CTCCAATCAA	CTAA GAAAT	CAACTCTTAT	TAATAGACTG	GGCCACACAT	CTACTAGGCA	TGTAATAAT
60	GCTTGTGAA	TGAA CAAATG	AATGAAGAGC	CTATAGCATC	ATGTTACAGC	CATAGTCTA	AAGTGGTGT
	TCTCATGAAG	GCCA AATGCT	AAGGGATTGA	GCTTCAGTCC	TTTTCTAAC	ATCTTGTCT	CTAACAGAAAT
	TCTCTTCTTT	TCTTCATAGG	AGATGCCTGA	GATACCCAAA	ACCATCACAG	GTAGTGAGAC	CAACCTCCTC

	TTCTTCTGGG	AAAC T CACGG	CACTAAGAAC	TATTCACAT	CAGTTGCCA	TCCAAACTTG	TTTATTGCCA
	CAAAGCAAGA	CTACTGGGTG	TGCTTGGCAG	GGGGGCCACC	CTCTATCACT	GACTTCAGA	TACTGGAAAA
5	CCAGGCCTAG	GTCIGGAGTC	TCACTTGTCT	CACTGTGCA	GTGTTGACAG	TTCATATGTA	CCATGTACAT
	GAAGAACGTA	AATC'CTTAC	TGTTAGTCAT	TTGCTGAGCA	TGTACTGAGC	CTTGTAAATT	TAAATGAATG
	TTTACACTCT	TTGT^AGAGT	GGAACCAACA	CTAACATATA	ATGTTGTTAT	TTAAAGAACAA	CCCTATATT
	TGCATAGTAC	CAATCATT	AATTATTATT	CTTCATAACA	ATTTAGGAG	GACCAGAGCT	ACTGACTATG
	GCTACCAAAA	AGACTCTACC	CATATTACAG	ATGGGCAAAT	TAAGGCATAA	GAAAACAAAG	AAATATGCAC
	AATAGCAGTT	GAAPCAAGAA	GCCACAGACC	TAGGATTCA	TGATTTCAT	TCAACTGTTT	GCCTTCTGCT
10	TTTAAGTTGC	TGATGAACTC	TTAACAAAT	AGCATAAGTT	TCTGGGACCT	CAGTTTATC	ATTTTCAAAA
	TGGAGGGAAAT	AATP CCTAAG	CCTTCCTGCC	GCAACAGTTT	TTTATGCTAA	TCAGGGAGGT	CATTTGGTA
	AAATACCTCT	CGAA GCGGAG	CCTCAAGATG	AAGGCAAAGC	ACGAAATGTT	ATTTTTAAT	TATTATTTAT
	ATATGTATTT	ATAA ATATAT	TTAACATAAT	TATAATATAC	TATATTTATG	GGAAACCCCTT	CATCCTCTGA
	GTGTGACCAG	GCAT CCTCCA	CAATAGCAGA	CAGTGTTC	TGGGATAAGT	AAGTTTGATT	TCATTAATAC
15	AGGGCATTT	GGTCCAAGTT	GTGCTTATCC	CATAGCCAGG	AAACTCTGCA	TTCTAGTACT	TGGGAGACCT
	GTAATCATAT	AATAAATGTA	CATTAATTAC	CTTGAGCCAG	TAATTGGTC	GATCTTGAC	TCTTTGCCA
	TTAAACCTAC	CTGG GCATTC	TTGTTCTATT	CAATTCCACC	TGCAATCAAG	TCCTACAAGC	TAAAATTAGA
	TGAACCTAAC	TTTG ACAACC	ATGAGACCA	TGTTATCAA	ACTTTCTTT	CTGGAATGTA	ATCAATGTTT
	CTTCTAGGTT	CTAA AATTG	TGATCAGACC	ATAATGTTAC	ATTATTATCA	ACAATAGTGA	TTGATAGAGT
	GTTATCAGTC	ATAACTAAAT	AAAGCTTGCA	ACAAAATTCT	CTGACACATA	GTTATTCTATT	GCCTTAATAC
20	TTATTTTACT	GCATGGTAAT	TAGGGACAAA	TGGTAAATGT	TTACATAAAAT	AATTGTATT	AGTGTACTT
	TATAAAATCA	AACC AAGATT	TTATATT	TTCTCTCTT	TGTTAGCTGC	CAGTATGCAT	AAATGGCATT
	AAGAATGATA	ATATTCGGG	GTTCACTTAA	AGCTCATATT	ACACATACAC	AAAACATGTG	TTCCCACATT
	TATACAAACT	CACACATACA	GAGCTACATT	AAAAACAAC	AATAGGCCAG	GCACGGTGGC	TCAGACCTGT
25	AATCCCAGCA	CTTGGGGAGG	ACCAACCTCT	TCGAGGCAC	AGGCACAAAC	GGCTGCTCTG	GGATTCTCTT
	CAGCCAATCT	TCAT T GCTCA	AGTGTCTGAA	GCAGCCATGG	CAGAAGTACC	TGAGCTCGCC	AGTGAATGAA
	TGGCTTATTA	CAGTGGCAAT	GAGGATGACT	TGTTCTTGA	AGCTGATGGC	CCTAAACAGA	TGAAGTGCCT
	CTTCCAGGAC	CTGGACCTCT	GCCCCTGGA	TGGGGCATC	CAGCTACGAA	TCTCCGACCA	CCACTACAGC
	AAGGGCTTCA	GGCAGGCCGC	GTCAGTTGT	GTGGCCATGG	ACAAGCTGAG	GAAGATGCTG	GTTCCCTGCC
30	CACAGACCTT	CCAGGAGAA	GACCTGAGCA	CCTTCTTCC	CTTCATCTT	GAAGAAGAAC	CTATCTTCTT
	CGACACATGG	GATAACGAGG	CTTATGTCA	CGATGCACCT	GTACGATCAC	TGAACTCAC	GCTCCGGGAC
	TCACAGCAAA	AAAC CTTGGT	GATGTCTGGT	CCATATGAAC	TGAAAGCTCT	CCACCTCCAG	GGACAGGATA
	TGGAGCAACA	AGTGGTGTTC	TCCATGTCT	TTGTACAAGG	AGAAGAAAGT	AATGACAAA	TACCTGTGGC
	CTTGGGCCTC	AAGGAAAAGA	ATCTGTACCT	GTCCTGCGTG	TTGAAAGATG	ATAAGCCCAC	TCTACAGCTG
35	GAGAGTGTAG	ATCCCCAAAAA	TTACCCAAAG	AAGAAGATGG	AAAAGCGATT	TGTCTTCAAC	AAGATAGAAA
	TCAATAACAA	GCTGGAATT	GAGTCTGCC	AGTCCCCAA	CTGGTACATC	AGCACCTCTC	AAGCAGAAA
	CATGCCGTC	TTCC GGGAG	GGACCAAAGG	CGGGCAGGAT	ATAACTGACT	TCACCATGCA	ATTTGTGCT
	TCCTAAAGAG	AGCTGTACCC	AGAGAGTCT	GTGCTGAATG	TGGACTCAAT	CCCTAGGGCT	GGCAGAAAGG
	GAACAGAAAG	GTITTTGAGT	ACGGCTATAG	CCTGGACTTT	CCTGTTGTCT	ACACCAATGC	CCAAGTCCT
40	GCCTTAGGGT	AGTGCTAAGA	GGATCTCTG	TCCATCAGCC	AGGACAGTCA	GCTCTCTCCT	TTCAGGGCCA
	ATCCCCAGCC	CTT T GTTGA	GCCAGGCTC	TCTCACCTCT	CCTACTCACT	TAAGGCCGC	CTGACAGAAA
	CCACGGCCAC	ATTGTTCT	AAGAAACCT	CTGTCATTG	CTCCCCACATT	CTGATGAGCA	ACCGCTTCCC
	TATTATTTA	TTTA TTGTT	TGTTGTTT	ATTCAATTGGT	CTAATTATT	CAAAGGGGGC	AAGAAGTAGC
	AGTGTCTGTA	AAAC AGCCTA	GTTTTAATA	GCTATGGAAT	CAATTCAATT	TGGACTGGTG	TGCTCTTCTT
45	AAATCAAGTC	CTT AATTAA	GACTGAAAAT	ATATAAGCTC	AGATTATT	AATGGGAATA	TTTATAAAATG
	AGCAAATATC	ATACIGTTCA	ATGGTTCTGA	AATAAACCTC	TCTGAAG	AGAAAGAAAG	AGAGAGAGAA
	AGAAAAGAAA	GAGC AAGGAA	GGAGGAAGG	AAGAAAGACA	GGCTCTGAGG	AAGGTGGCAG	TTCCCTACAAAC
	GGGAGAACCA	GTGCTTAATT	TGCAAAGTGG	ATCCTGTGGA	GGCANNCAGA	GGAGTCCCCT	AGGCCACCCA
	GACAGGGCTT	TTAGCTATCT	GCAGGCCAGA	CACCAAATT	CAGGAGGGCT	CAGTGTAGG	AATGGATTAT
50	GGCTTATCAA	ATT CACAGGA	AACTAACATG	TTGAACAGCT	TTTAGATTTC	CTGTGGAAA	TATAACTTAC
	TAAAGATGGA	GTTC T GTGA	CTGACTCTG	ATATCAAGAT	ACTGGGAGCC	AAATTAAAAA	TCAGAAGGCT
	GCTTGGAGAG	CAAC T CCATG	AAATGCTCTT	TTTCCCACAG	TAGAACCTAT	TTCCCTCGTG	TCTCAAATAC
	TTGCACAGAG	GTCACTCTCC	TTGGATAATG	CAGAGCAGC	ACGATACCTG	GCACATACTA	ATTGAAATAA
	AATGCTGTCA	AAT T CCATT	CACCCATTCA	AGCAGCAAAC	TCTATCTCAC	CTGAATGTAC	ATGCCAGGCA
	CTGTGCTAGA	CTTG GCTCAA	AAAGATTCA	GTTCCTGG	GATCGTGCCTA	CTGCACTCCA	GCCTGGGCGA
55	GCTATAAGAA	GTGTTACAGG	CTGGACACGG	TGGCTCACGC	CTGTAATCCC	AACATTGGG	AGGCCGAGGC
	GGGCAGATCA	CAAC GTCAGG	AGATCGAGAC	CATCCTGGCT	AACATGGTGA	AACCTGTCT	CTACTAAAAA
	TACAAAAAAT	TAGCCGGGCG	TTGGCGGAG	GTGCTGTAG	TCCCAGCTGC	TGGGGAGGCT	GAGGCAGGAG
	AATGGTGTGA	ACCCGGGAGG	CGGAACCTGC	AGGGGGCCGA	GATCGTGCCTA	CTGCACTCCA	GCCTGGGCGA
	CAGAGTGAGA	CTCT GTCTCA	AAAAAAAAAA	AAAAGTGTAA	TGATGCAGAC	CTGTCAGAAGA	GGCAAAGGAG
60	GGTGTCTCTA	CACT CCAGGC	ACTGTTCAT	ACCTGGACTC	TCATTCAATC	TACAATGGA	GGGCTCCCT
	GGGCAGATCC	CTGGAGCAGG	CACTTGTG	GTGCTCGGT	TAAGAGAAA	CTGATAACTC	TTGGTATTAC
	CAAGAGATAG	AGTC TCAGAT	GGATATTCTT	ACAGAAACAA	TATTCACACT	TTTCAGAGTT	CACCAAAAAAA

	TCATTTAGG	CAGAGCTCAT	CTGGCATTGA	TCTGGTCAT	CCATGAGATT	GGCTAGGGTA	ACAGCACCTG
	GTCCTGCAGG	GTTGTGTGAG	CTTATCTCA	GGGTGCCCC	AACCTCGTCA	GGAGCCTGAA	CCCTGCATAC
	CGTATGTTCT	CTGCCCGCAGC	CAAGAAAGGT	CAATTTCCTC	CTCAGGGCT	CCTGCAATTG	ACAGAGAGCT
	CCCGAGGCAG	AGAAACAGCAC	CCAAGGTAGA	GACCACACC	CTCAATACAG	ACAGGGAGGG	CTATTGGCCC
5	TTCATTGTAC	CCATTTATCC	ATCTGTAAGT	GGGAAGATT	CTAAACTAA	GTACAAAGAA	GTGAATGAAG
	AAAAGTATGT	GCA'GTATAA	ATCTGTGTT	CTTCCACTTT	GTCCCACATA	TACTAAATT	AAACATTCTT
	CTAACGTGGG	AAAAATCCAGT	ATTTTAATGT	GGACATCAAC	TGCACAACGA	TTGTCAGGAA	AACAATGCAT
	ATTGCGATGG	TGATACATT	GCAAATGTG	TCATAGTTG	CTACTCCTTG	CCCTTCCATG	AACCAGAGAA
	TTATCTCAGT	TTATTAGTCC	CCTCCCTAA	GAAGCTTCCA	CCAATACTCT	TTTCCCTTT	CCTTTAACCTT
10	GATTGTGAAA	TCACGTATTAC	AACAGAGAAA	TTTCTCAGCC	TCCTACTCT	GCTTTGAAA	GCTATAAAA
	CAGCGAGGGG	GAAACTGGCA	GATACCAAAAC	CTCTCGAGG	CACAAGGCAC	AACAGGCTGC	TCTGGGATTC
	TCTTCAGGCC	ATCTTCATTG	CTCAAGTATG	ACTTAAATCT	TCCTTACAAC	TAGGTGCTAA	GGGAGTCTCT
	CTGTCTCTCT	GCCI CTTTGT	GTGTATGCAT	ATTCTCTCTC	TCTCTCTCTT	TCTTCTCTG	TCTCTCTCT
	CCTTCCTCTC	TGCTCCTCT	CTCAGCTT	TGCAAAAATG	CCAGGTGTA	TATAATGCTT	ATGACTCGGG
15	AAATATTCTG	GGATGGATA	CTGCTTATCT	AACAGCTGAC	ACCCCTAAAGG	TTAGTGTCAA	AGCCTCTGCT
	CCAGCTCTCC	TAGCCAATAC	ATTGCTAGTT	GGGGTTGGT	TTAGCCTAAT	CTTTCTCTA	GACCCAAAGG
	ACTTCTCTT	CACACATTCA	TTCAATTACT	CAGAGATCAT	TCCTTGCAT	GAUTGCCATG	CACTGGATGC
	TGAGAGAAAT	CACACATGAA	CGTAGCCGTC	ATGGGAAAGT	CACTCATT	CTCCTTTTA	CACAGGTGTC
	TGAAGCAGCC	ATGC CAGAAG	TACCTGAGCT	CGCCAGTGA	ATGATGGCT	ATTACAGGTC	AGTGGAGACG
20	CTGAGACCAG	TAACATGAGC	AGGTCTCTC	TTCAAGAGT	AGAGTGTAT	CTGTGCTTGG	AGACCAAGATT
	TTTCCCTAA	ATTG CCTCTT	TCAGTGGAA	ACAGGGTGC	AAGTAATCT	GATTAAAGA	CTACTTTCCC
	ATTACAAGTC	CCTCCAGCCT	TGGGACCTGG	AGGCTATCCA	GATGTGTTG	TGCAAGGGCT	TCCTGCAGAG
	GCAAATGGGG	AGAA AAGATT	CCAAGCCAC	AATACAAGGA	ATCCCTTGC	AAAGTGTGGC	TTGGAGGGAG
	AGGGAGAGCT	CAGA TTTAG	CTGACTCTG	TGGGCTAGAG	GTTAGGCCTC	AAGATCCAAC	AGGGAGCACC
25	AGGGTGCCTA	CCTCCAGGC	CTAGAACCTG	CCTTCTGGAC	TGTTCTGCGC	ATATCACTGT	GAAACATTGCC
	AGGTGTTCA	GGCAGCTTTG	AGAGGCAGGC	TGTTTGCAGT	TTCTTATGAA	CAGTCAGTC	TTGTACACAG
	GGAAAGGAAA	ATAACCTGT	TTAGAAGACA	TAATTGAGAC	ATGTCCTGT	TTTATTACA	GTGGCAATGA
	GGATGACTTG	TTCTTGTGAG	CTGATGGCC	TAACACAGAT	AAGGTAAGAC	TATGGGTTA	ACTCCCAACC
	CAAGGAAGGG	CTCIAACACA	GGGAAAGCTC	AAAGAAGGG	GTTCTGGCC	ACTTGTATGC	CATGGTATT
30	TGTTTGTAGA	AGACITTAAC	CTCTTCACT	GAGACACAGG	CTGCACCACT	TGCTGACCTG	GCCACTTGGT
	CATCATATCA	CCACAGTCAC	TCACTAACGT	TGGTGGTGGT	GGCCACACTT	GGTGGTACA	GGGGAGGAGT
	AGTGATAATG	TTCCCATTTC	ATAGTAGGAA	GACAACCAAG	TCTTCAACAT	AAATTGATT	ATCCTTTAA
	GAGATGGATT	CAGCCTATGC	CAATCACTT	AGTTAAACTC	TGAAACCAAG	AGATGATCTT	GAGAACTAAC
	ATATGTCTAC	CCCTTTGAG	TAGAATAGIT	TTTGCTACC	TGGGGTGAAG	CTTATAACAA	CAAGACATAG
35	ATGATATAAA	CAAAAGATG	AATTGAGACT	TGAAAGAAA	CCATTCACTT	GCTGTTGAC	CTTGACAAGT
	CATTTACCC	GCTTGGACC	TCATCTGAA	AATAAAGGGC	TGAGCTGGAT	GATCTCTGAG	ATTCCAGCAT
	CCTGCAACCT	CCAGTTCTGA	AATATTTC	GTTGTAGCTA	AGGGCATTTG	GGCAGCAAAT	GGTCATTTT
	CAGACTCATC	CTTACAAAGA	GGCATGTTAT	ATTCTCTGCTG	TCCCTCTGT	TTTATATGAT	GCTCAGTAGC
	CTTCCTAGGT	GCCCCGCCAT	CAGCCTAGCT	AGGTAGTTG	TGCAGGTTGG	AGGCAGCCAC	TTTCTCTGG
40	CTTTATTGTA	TTCCAGTTTG	TGATAGCCTC	CCCTAGCCTC	ATAATCCAGT	CCTCAATCTT	GTAAAGAAC
	TATTCTTTA	GAAGTTTAA	GACTGGCATA	ACTTCTTGGC	TGCAGCTGTG	GGAGGAGCCC	ATTGGCTTGT
	CTGCCTGGCC	TTTG CCCCCC	ATTGCCTCTT	CCAGCAGCTT	GGCTCTGCTC	CAGGCAGGAA	ATTCTCTCCT
	GCTCAACTTT	CTTGTGCA	CTTACAGGTC	TCTTTAACTG	TCTTCAAGC	CTTTGAACCA	TTATCAGCCT
	TAAGGCAACC	TCAGTGAAGC	CTTAATACGG	AGCTCTCTG	AATAAGAGGA	AAGTGGTAAC	ATITCACA
45	AAGTACTCTC	ACAG TATTG	CAGAACGCT	ATGAGACAGT	GTTATGAAA	AGGAAAAAAA	AGAACAGTGT
	AGAAAAAATTG	AATACTTGCT	GAGTGAGCAT	AGGTGAATGG	AAAATGTTAT	GGTCATCTGC	ATGAAAAAGC
	AAATCATAGT	GTGACAGCAT	TAGGGATACA	AAAAGATATA	GAGAAGGTAT	ACATGTATGG	TGTAGGTGGG
	GCATGTACAA	AAAGATGACA	AGTAGAACATG	GGATTATTTC	TAAGGAATAG	CCTGTAAGGT	GTCCAGAAC
	CACATTCTAG	TCTTGTAGTCT	GCCTCTACCT	GCTGTGTGCC	CTTGAGTACA	CCCTTAACCT	CCTTGAGCTT
50	CAGAGAGGG	TAATCTTTT	ATTTTATTT	ATTTTATTT	GTTTTGTTT	GTTTTGTTT	GTTTTATGAG
	ACAGAGTCTC	ACTCTGTTGC	CCAGGCTGGA	GTGCACTGGT	ACAATCTTGG	CTTACTGCAT	CCTCCACCTC
	CTGAGTCAA	GCGATTCTCC	TTCTCAGTC	TCCTGAATAG	CTAGGATTAC	AGGTGCACCC	CACCAACACC
	AGCTAATT	TGTA TTTTA	GTAGAGAAGG	GGTTCGCCA	TGTTGGCCAG	GCTGGTTTG	AAGTCCTGAC
	CTAAATGATT	CATCCACCTC	GGCTTCCAA	AGTGCCTGGGA	TTACAGGCAT	GAGCCACCAC	GCCTGGCCCA
55	GAGAGGGATG	ATCTTGTAGAA	GTCGGGATT	CTTCAAGCC	CTTCCCTCT	CTCTGAGCTT	TCTACTCTCT
	GATGTCAAAG	CATGGTTCT	GGCAGGACCA	CCTCACCAAGG	CTCCCTCCCT	CGCTCTCTCC	GCAGTGCTCC
	TTCCAGGACC	TGGACCTCTG	CCCTCTGGAT	GGCGGCATCC	AGCTACGAAT	CTCCGACCAC	CACTACAGCA
	AGGGCTTCAG	GCAGGCCGCG	TCAGTTGTTG	TGGCCATGG	CAAGCTGAGG	AAGATGCTGG	TTCCCTGCCC
	ACAGACCTTC	CAGGAGAATG	ACCTGAGCAC	CTTCTTCCC	TTCATCTTTG	AAGAAGGTAG	TTAGCCAAGA
60	GCAGGCAGTA	GATCTCCACT	TGTGTCTCT	TGGAAGTCAT	CAAGCCCCAG	CCAACCAAT	TCCCCCAGAG
	CAAAGCCCT	TTAAAGGTAG	AAGGCCAGC	GGGGAGACAA	AACAAAGAAG	GCTGAAACC	AAAGCAATCA
	TCTCTTGTAGT	GGAAACTATT	CTTAAAGAAG	ATCTGATGG	CTACTGACAT	TTGCAACTCC	CTCACTCTT

	CTCAGGGGCC	TTTCACTTAC	ATTGTCACCA	GAGGTTCGTA	ACCTCCCTGT	GGGCTAGTGT	TATGACCATC
	ACCATTTAC	CTAACTAGCT	CTGTTGCTCG	GCCACAGTGA	GCAGTAATAG	ACCTGAAGCT	GGAACCCATG
	TCTAATAGT	TCAC GTCCAG	TGTTCTTAGC	CACCCCCTC	CCAGCTTCAT	CCCTACTGGT	GTTGTCATCA
	GACTTGACC	GTATATGCTC	AGGTGTCCCTC	CAAGAAATCA	AATTTTGCCTA	CCTCGCCTCA	CGAGGCCTGC
5	CCTCTGATT	TTATACCTAA	ACAACATGTG	CTCCACATTT	CAGAACCTAT	CTTCTTCGAC	ACATGGGATA
	ACGAGGCTTA	TGTGCACGAT	GCACCTGTAC	GATCACTGAA	CTGACCGCTC	CGGGACTCAC	AGCAAAAAAAG
	CTTGGTGATG	TCTG GTCCAT	ATGAACATGAA	AGCTCTCCAC	CTCCAGGGAC	AGGATATGGA	GCAACAAGGT
	AAATGAAAC	ATCCGTGTTT	CCCTGCCTGG	CCTCCCTGGCA	GCTTGCTAAT	TCTCCATGTT	TTAAACAAAG
10	TAGAAAGTTA	ATTAAAGGCA	AATGATCAAC	ACAAGTGAAGA	AAAAATATTAA	AAAAGGAATA	TACAAACTT
	GGTCTAGAA	ATGC CACATT	TGATTGCACT	GGCCAGTGC	TTTGTAAACA	GGAGTGTGAC	CCTGAGAAAT
	TAGACGGCTC	AAGC'ACTCCC	AGGACCATGT	CCACCCAAGT	CTCTGGGCA	TAGTGCAGTG	TCAATTCTC
	CACAATATGG	GGTC ATTGTA	TGGACATGGC	CTAATGCGCT	GTGGGTTCTC	TCTTCTGT	GTGAGGCTG
	AAACAAGAGT	GCTGAGCGA	TAATGTGTC	ATCCCCCTCC	CCAGTCTCC	CCCCCTGCC	CAACATCCGT
15	CCCACCCAT	GCCAGGTGGT	TCCTTGTAAG	GAATTTTAC	CGCCCGAGCAG	GAACCTATAT	CTCTCCGCTG
	TAACGGCAA	AAGT'TCAAG	TGCGGTGAAC	CCATCATTAG	CTGTTGAT	CTGCTGGCA	TCGTGCCACA
	GTAGCCAAAG	CCTCTGCACA	GGAGTGTGGG	CAACTAAGGC	TGCTGACTTT	GAAGGACAGC	CTCACTCAGG
	GGGAAGCTAT	TTGCTCTCG	CCAGGCCAAG	AAAATCCTGT	TTCTTGGAA	TCGGGTAGTA	AGAGTGTATCC
	CAGGGCCTCC	AATTGACACT	GCTGTGACTG	AGGAAGATCA	AAATGAGTGT	CTCTCTTGG	AGCCACTTTC
20	CCAGCTCAGC	CTCTCCTCTC	CCAGTTTCTT	CCCATGGGCT	ACTCTCTGTT	CCTGAAACAG	TTCTGGTGCC
	TGATTTCTGG	CAGAAAGTACA	GCTTCACCTC	TTTCTTTCC	TTCCACATG	ATCAAGTTGT	TCCGCTCTG
	TGGATGGGCA	CATIGCCAGC	CAGTGACACA	ATGGCTTCTC	TCCCTCTTC	CTTCAGCATT	AAAAATGTAG
	ACCCCTTTTC	ATTC'CCGTT	CCTACTGCTA	TGAGGCTCTG	AGAAACCCCT	AGGCCCTTGA	GGGAAACCC
	TAATCAACA	AAATGACCT	GCTATTGTC	GTGAGAAGTC	AAGTTATCCT	GTGCTT TAGG	CCAAGGAACC
25	TCACTGTGGG	TTCCCACAGA	GGCTACCAAT	TACATGTATC	CTACTCTCGG	GGCTAGGGGT	TGGGGTGACC
	CTGCATGCTG	TGTC CTAAC	CACAAGACCC	CCTTCTTCT	TCAGTGGTGT	TCTCCATGTC	TTTGTACAA
	GGAGAAGAAA	GTAATGACAA	AATACCTGTG	GCCTTGGGCC	TCAAGGAAAA	GAATCTGTAC	CTGCTCTCG
	TGTTGAAAGA	TGATAAGCCC	ACTCTACAGC	TGGAGGTAAG	TGAATGCTAT	GGAATGAAGC	CCTTCTCAGC
	CTCCTGCTAC	CACT ATTCC	CAGACAATT	ACCTTCTCCC	CGCCCCCATC	CCTAGGAAAA	GCTGGGAACA
30	GGTCTATTG	ACAA GTTTG	CATTAATGTA	AATAAATTAA	ACATAATT	TAACTCGTG	CAACCTTCAA
	TCCTGTCGA	AAAAATTAAA	TCATTTGCC	GATTTTATA	TGTCCTACCA	TAGTACAAC	CCCAACAGAT
	TATATATTGT	TAGGGCTGCT	CTCATTTGAT	AGACACCTG	GGAAATAGAT	GACTAAAGG	GTCCCATTAT
	CACGTCCACT	CCACTCCCCAA	AATCACCACC	ACTATCACCT	CCAGCTTCT	CAGCAAAGC	TTCATTTCCA
	AGTTGATGTC	ATTCTAGGAC	CATAAGGAAA	AATACAATAA	AAAGCCCCCTG	GAAACTAGGT	ACTTCAAGAA
35	GCTCTAGCTT	AATT TCACC	CCCCCAAAAA	AAAAAAATTC	TCACCTACAT	TATGCTCTC	AGCATTGCG
	ACTAAGTTTT	AGAAAGAAG	AAGGGCTCTT	TTAATAATCA	CACAGAAAGT	TGGGGGCCA	GTTACAAC
	AGGAGTCTGG	CTCCGTATCA	TGTGACCTG	TCGTCACTT	CCTTCTGGC	CAACCCAAAG	AACATCTTC
	CCATAGGCAT	CTTGTCCCT	TGCCCCACAA	AAATCTTCT	TTCTTCTTC	CTGCAGAGTG	TAGATCCCAA
	AAATTACCA	AAGAAGAAGA	TGGAAAAGCG	ATTITGTCTC	AACAAGATAG	AAATCAATAA	CAAGCTGGAA
40	TTTGAGTCTG	CCCACTTCCC	CAACTGGTAC	ATCAGCACCT	CTCAAGCAGA	AAACATGCC	GTCTTCTGG
	GAGGGACCAA	AGGGGGCCAG	GATATAACTG	ACTTCACCAT	GCAATTGTG	TCTTCTAAA	GAGAGCTGTA
	CCCAGAGAGT	CCTG TGCTGA	ATGTGGACTC	AATCCCTAGG	GCTGGCAGAA	AGGGAACAGA	AAGGTTTTG
	AGTACGGCTA	TAGC CTGGAC	TTTCCTGTG	TCTACACCAA	TGCCCAACTG	CCTGCCCTAG	GGTAGTGCTA
	AGAGGATCTC	CTGTCCATCA	GCCAGGACAG	TCAGCTCTCT	CCTTTCAGGG	CCAATCCCCA	GCCCTTTGT
45	TGAGCCAGGC	CTCTCTCACC	TCTCCTACTC	ACTTAAAGCC	CGCCTGACAG	AAACCACGGC	CACATTGGT
	TCTAAGAAAC	CCTCTGTCAT	TCGCTCCAC	ATTCTGATGA	GCAACCGCTT	CCCTATT	TTATTATT
	GTGTTTTGT	TTTGATTCA	TGGTCTAATT	TATTCAAAGG	GGGCAAGAAG	TAGCACTGTC	TGTAAAAGAG
	CCTAGTTTT	AAATGCTATG	GAATCAATT	AATTGGACT	GGTGTGCT	CTTTAAATCA	AGTCCTTAA
	TTAAGACTGA	AAATATATAA	GCTCAGATTA	TTAAATGGG	AATATTATA	AATGAGCAA	TATCATACTG
50	TTCAATGTT	CTGAATAAAA	CTTCACTGAA	AAAAAAATAA	AAAGGGTCTC	TCCTGTATC	TGACTGTCTG
	GATTGACACT	GACAGTAAGC	AAACAGGCTG	TGAGAGTTCT	TGGGACTAAG	CCCACCTCTC	ATTGCTGAGT
	GCTGCAAGTA	CCTA GAAATA	TCCTTGGCCA	CCGAAGACTA	TCCTCTCAC	CCATCCCC	TATTCGTTG
	TTCAACAGAA	GGATATTCA	TGCACATCTG	GAACAGGATC	AGCTGAAGCA	CTGCAGGGAG	TCAGGACTGG
	TAGTAACAGC	TACCATGATT	TATCTATCAA	TGCACCAAAC	ATCTGTTGAG	CAAGCGCTAT	GTACTAGGAG
55	CTGGGAGTAC	AGAGATGAGA	ACAGTCACAA	GTCCCTCCTC	AGATAGGAGA	GGCAGCTAGT	TATAAGCAGA
	ACAAGGTAAC	ATGACAAGTA	GAGTAAGATA	GAAGAACGAA	GAGGAGTAGC	CAGGAAGGAG	GGAGGAGAAC
	GACATAAGAA	TCAAGCCTAA	AGGGATAAAC	AGAAGATTT	CACACATGGG	CTGGGCCAAT	TGGGTGTCGG
	TTACGCCTGT	AATCCAGCA	CTTTGGGTGG	CAGGGCAGA	AAGATCGCTT	GAGCCAGGA	GTCAAGAAC
	AGCCTGGCA	ACATAGTGA	ACTCCCACATCT	CTACAAAAAA	TAAATAAATA	AATAAAACAA	TCAGCCAGGC
60	ATGCTGGCAT	GCACCTGTAG	TCCTAGCTAC	TTGGGAAGCT	GACACTGGAG	GATTGCTG	GCCCAGAAGT
	TCAAGACTGC	AGTGAGCTTA	TCCGTTGACC	TGCAGGTGCA	ACAAACCTT	TCGAGGCAA	AGGCAAAAAAA
	GGCTGCTCTG	GGATCTCTT	CAGCCAATCT	TCAATGCTCA	AGTGTCTGAA	GCAGCCATGG	CAGAAGTACC
	TAAGCTGCC	AGTGAAATGA	TGGCTTATT	CAGTGGCAAT	GAGGATGACT	TGTTCTTG	AGCTGATGGC

	CCTAAACAGA	TGAA GTGCTC	CTTCCAGGAC	CTGGACCTCT	GCCCTCTGGA	TGGCGGCATC	CAGCTACGAA
	TCTCCGACCA	CCAC`ACAGC	AAGGGCTTC	GGCAGGCCGC	GTCAGTTGTT	GTGGCCATGG	ACAAGCTGAG
	GAAGATGCTG	GTTC CCTGCC	CACAGACCTT	CCAGGAGAAAT	GACCTGAGCA	CCTTCTTCC	CTTCATCTT
5	GAAGAAGAAC	CTATCTTCTT	CGACACATGG	GATAACGAGG	CTTATGTGCA	CGATGCACCT	GTACGATCAC
	TGAAC TGAC	GCTC CGGGAC	TCACAGCAA	AAAGCTTGGT	GATGTCTGGT	CCATATGAAC	TGAAAGCTC
	CCACCTCCAG	GGACAGGATA	TGGAGCAACA	AGTGGTGTTC	TCCATGTCT	TTGTACAAGG	AGAAGAAAGT
	AATGACAAAAA	TACC TGTGGC	CTTGGGCCCT	AAGGAAAAGA	ATCTGTACCT	GTCCGTGCG	TTGAAAGATG
	ATAAGCCCAC	TCTACAGCTG	GAGAGTGTAG	ATCCCAAAA	TTACCCAAG	AAGAAGATGG	AAAAGCGATT
10	TGTCTTCAAC	AAGA TAGAAA	TCAATAACAA	GCTGGAATT	GAGTCTGCC	AGTCCCCAA	CTGGTACATC
	AGCACCTCTC	AAGC AGAAA	CATGCCGTC	TTCTGGGAG	GGACCAAAGG	CGGCAGGAT	ATAACTGACT
	TCACCATGCA	ATTTGTGTCT	TCCTAAAGAG	AGCTGTACCC	AGAGAGTCT	GTGCTGAATG	TGGACTCAAT
	CCCTAGGGCT	GGCA GAAAGG	GAACAGAAAG	GTTTTGAGT	ACGGCTATAG	CCTGGACTTT	CCTGTTGCT
15	ACACCAATGC	CCA CTGCC	GCCTTAGGGT	AGTGTAAAGA	GGATCTCTG	TCCATCAGCC	AGGACAGTCA
	GCTCTCTCT	TTCAAGGGCA	ATCCCAGCC	TTTGTGAG	CCAGGCCT	CTCACCTCTC	CTACTCACT
	AAAGCCCAC	TGACAGAAAC	CAGGCCACAT	TTTGGTTCTA	AGAAACCTC	CTCTGTCTT	CGCTCCCACA
	TTCTGATGAG	CAAC CGCTTC	CCTATTATT	TATTTATTG	TTTGTGTT	TTGATTCTT	GGTCTAATT
	ATTCAAAGGG	GGCAAGAAGT	AGCAGTGTCT	GTAAAAGAGC	CTAGTTTTA	ATAGCTATGG	AATCAATTCA
	ATTTGGACTG	GTGT GCTCTC	TTAAATCAA	GTCTTTAAT	TAAGACTGAA	AATATATAAG	CTCAGATTAT
	TTAAATGGGA	ATAT TTATAA	ATGAGCAAAT	ATCATACTGT	TCAATGGTC	TCAAATAAAC	TTCACT
20	CTGGCAGGAG	TAGCAGCTGC	CCCTTGGCG	GACTGCTGGA	GCCGCGAACT	AGAGAAACAC	AGACACGCC
	CATAGAGCAA	CGGC GTCTCT	CGGAGCGTGG	AGCCC GCAA	GCTCGAGCTG	AGCTTTCGCT	TGCCGTCCAC
	CACTGCCAAC	ACTG PCGTT	GCTGCCATCG	CAGACCTGCT	GCTGACTTCC	ATCCCTCTG	ATCCGGCAAG
	GGCCTGGAT	TTTG ACAATG	TCAAGATT	CCGTATATCC	CTGTTGTT	GGATACACCA	GTGACGTCCA
	CTTCTAGAAG	ACAAAGTTAT	ATTACTAAA	CAACCAAAGA	TATGAAACTA	TCCATGAAGA	ACAATATTAT
25	CAATACACAG	CAGTCTTTG	TAACCATGCC	CAATGTGATT	GTACCAGATA	TTGAAAAGGA	AATACGAAGG
	ATGGAAAATG	GAGC ATGCAG	CTCCTTCT	GAGGATGATG	ACAGTGCCTC	TACATCTGAA	GAATCAGAGA
	ATGAAAACCC	TCAT GCAAGG	GGTCCCTTA	GTTATAAGTC	ACTCAGAAAG	GGAGGACCAT	CACAGAGGG
	GCAGTACCTG	CCTG GTGCCA	TTGCCATT	TAATGTGAAC	AACAGCGACA	ATAAGGACCA	GGAACCAGAA
	GAAAAAAAGA	AAAAGAAAAAA	AGAAAAGAAG	AGCAAGTCAG	ATGATAAAA	CGAAAATAAA	AACGACCAA
30	AGAAGAAGAT	GGAAAAGCGA	ATGGCCAAAG	TTCCAGACAT	GTITGAAGAC	CTGAAGAACT	GTTACAGTGA
	AAATGAAGAA	GAC GTTCC	CCATTGATCA	TCTGCTCTG	AATCAGAAAT	CCTCTATCA	TGTAAGCTAT
	GGCCCACCTC	ATGAAGGCTG	CATGGATCAA	TCTGTTGTC	TGAGTATCTC	TGAAACCTCT	AAAACATCCA
	AGCTTACCTT	CAAGGAGAGC	ATGGTGGTAG	TAGCAACCAA	CGGGAAAGTT	CTGAAGAAGA	GACGGTTGAG
	TTTAAGCCAA	TCCA TCACTG	ATGATGACCT	GGAGGCCATC	GCCAATGACT	CAGAGGAAGA	AATCATCAAG
35	CCTAGGTCA	CACCTTTAG	CTTCCTGAGC	AATGTGAAAT	ACAACTTAT	GAGGATCATC	AAATACGAAT
	TCATCCTGAA	TGAC CCCCTC	AATCAAAGTA	TAATTGAGC	CAATGATCAG	TACCTCACGG	CTGCTGCATT
	ACATAATCTG	GATGAAGCAG	TGAAATTG	CATGGGTGCT	TATAAGTCAT	CAAAGGATGA	TGCTAAAATT
	ACCGT GATT	TAAGAATCTC	AAAAACTCAA	TTGTATGTGA	CTGCCAAGA	TGAAGACCAA	CCAGTGCTGC
	TGAAGGAGAT	GCCTGAGATA	CCC AAAACCA	TCACAGGTAG	TGAGACCAAC	CTCCTCTTCT	TCTGGAAAC
40	TCACGGCACT	AAGA ACTATT	TCACATCA	TGCCATCCA	AACTGTTA	TTGCCACAAA	GCAAGACTAC
	TGGGTGTGCT	TGGCAGGGGG	GCCACCCCT	ATCACTGACT	TTCAGATACT	GGAAAACCAG	GCGTAGGTCT
	GGAGTCTCAC	TTGTCTCA	TGTGCA	TGACAGTTCA	TATGTACCAT	GTACATGAAG	AAGCTAAATC
	CTTACTGTT	AGTC ATTG	TGAGCATGTA	CTGAGCCTTG	TAATTCTAA	TGAATGTTA	CACTCTTGT
	AAGAGTGGAA	CCAA CACTAA	CATATAATGT	TGTTATTTAA	AGAACACCC	ATATTGCA	TAGTACCAAT
45	CATTTAATT	ATTA TTCTC	ATAACAATT	TAGGAGGACC	AGAGCTACTG	ACTATGGCTA	CCAAAAGAC
	TCTACCCATA	TTACAGATGG	GCAAATTAA	GCATAAGAAA	ACTAAGAAAT	ATGCACAATA	GCAGTTGAAA
	CAAGAAGCCA	CAG ACCTAGG	ATTTCATGAT	TTCATTCAA	CTGTTGCCT	TCTGCTTTA	AGTTGCTGAT
	GAAC TCTAA	TCAAATAGCA	TAAGTTCTG	GGACCTCAGT	TTTATCATTT	TCAAAATGGA	GGGAATAATA
	CCTAAGCCTT	CCTG CCGCAA	CAGTTTTA	TGCTAATCAG	GGAGGT CATT	TTGGTAAAT	ACTTCTGAA
50	GCCGAGCCTC	AAGA TGAGG	CAAAGCACGA	AATGTTATT	TTTAATT	ATTTATATAT	GTATTTATAA
	ATATATTAA	GATAATTATA	ATATACTATA	TTTATGGAA	CCCCTTCATC	CTCTGAGTGT	GACCAGGCAT
	CCTCCACAA	AGCA GACAGT	GTTTCTGG	ATAAGTAAGT	TTGATTTCAT	TAATACAGGG	CATTTGGTC
	CAAGTTGTG	TTATCCATA	GCCAGGAAAC	TCTGCATTCT	AGTACTTGGG	AGACCTGTAA	TCATATAATA
	AATGTACATT	AA TIACTTG	AGCCAGTAAT	TGGTCCGATC	TTGACTCTT	TTGCCATTAA	ACTTACCTGG
55	GCATTCTGT	TTCA TTCAAT	TCCACCTGCA	ATCAAGTCCT	ACAAGCTAA	ATTAGATGAA	CTCAACTTTG
	ACAACCATAG	ACC ACTGTTA	TCAAAACTTT	CTTTCTGGA	ATGTAATCAA	TGTTCTTCT	AGGTTCTAAA
	AATTGTGATC	AGAC CATAAT	GTTACATTAT	TATCAACAA	AGTGATTGAT	AGAGTGTAT	CAGTCATAAC
	TAATAAAAGC	TTGA AGTGA	GGGAGTCATT	TCATTGGCGT	TTGAGTCAGC	AAAGAAGTCA	AGCTGCCAGC
	CAGAGAGGGA	GTC ATTTCAT	TGGCGTTGA	GTCAGCAAAG	AAGTCAAGAT	GGCCAAAGTT	CCAGACATGT
60	TTGAAGACCT	GAAC AACTGT	TACAGTAAA	ATGAAGAAGA	CAGTTCC	ATTGATCATC	TGTCTCTGAA
	TCAGAAATCC	TTCT ATCATG	TAAGCTATGG	CCC ACTCCAT	GAAGGCTGA	TGGATCAATC	TGTGTCTCTG
	AGTATCTCTG	AAAC CTCTAA	AAACATCCAAG	CTTACCTTC	AGGAGAGCAT	GGTGGTAGTA	GCAACCAACG

	GGAAGGTTCT	GAAGAAGAGA	CGGTTGAGTT	TAAGCCAATC	CATCACTGAT	GATGACCTGG	AGGCCATCGC
	CAATGACTCA	GAGGAAGAAA	TCATCAAGCC	TAGGTATCA	CCTTTAGCT	TCCTGAGCAA	TGTGAAATAC
	AACTTATGA	GGATCATCAA	ATACGAATT	ATCTGATG	ACGCCCTAA	TCAAAGTATA	ATTCGAGCCA
5	ATGATCAGTA	CCTACGGCT	GCTGCATTAC	ATAATCTGGA	TGAAGCAGTG	AAATTGACA	TGGGTGCTTA
	TAAGTCATCA	AAGGATGATG	CTAAAATTAC	CGTGATTCTA	AGAATCTAA	AAACTCAATT	GTATGTGACT
	GCCCAAGATG	AAGACCAACC	AGTGTGCTG	AAGGAGATGC	CTGAGATACC	AAAAACCATC	ACAGGTAGTG
	AGACCAACCT	CCTCTTCTTC	TGGGAAACTC	ACGGCACTAA	GAACATTTC	ACATCAGTTG	CCCACCAAA
10	CTTGTATT	GCCACAAAGC	AAGACTACTG	GGTGTGCTTG	GCAGGGGGC	CACCCCTAT	CACTGACTTT
	CAGATACTGG	AAAACCAGGC	GTAGGCTCTGG	AGTCTCACTT	GTCTCACTTG	TGCACTGTTG	ACAGTTCAT
	TGTACCATG	ACATGAAGAA	GCTAAATCCT	TTACTGTTAG	TCATTTGCT	AGCATGTACT	GAGCCTTGT
	ATTCTAAATG	AATCTTTACA	CTCTTTGTA	GAGTGGAAACC	AAACACTAAC	TATAATGTTG	TTATTTAAAG
	AACACCCAT	ATTITGCATA	GTACCAATCA	TTTTAATTAT	TATTCTCAT	AAACAATTAA	GGAGGACCAG
15	AGCTACTGAC	TATGGCTACC	AAAAAGACTC	TACCCATATT	ACAGATGGGC	AAATTAAGGC	ATAAGAAAAC
	TAAGAAATAT	GCACAAATAGC	AGTCGAAACA	AGAACGCCAC	GACCTAGGAT	TTCATGATT	CATTTCAACT
	GTTTGCCTTC	TGCTTTAAG	TTGCTGATGA	ACTCTTAATC	AAATAGCAT	AGTTCTGGG	ACCTCAGTT
	TATCATTTC	AAAATGGAGG	GAATAATACC	TAAGCCTTC	TGCCGCAACA	GTTTTTATG	CTAATCAGGG
	AGGTCACTTT	GGTAAAATAC	TTCTCGAAGC	CGAGCCTAA	GATGAAGGCA	AAGCACGAAA	TGTTATTTT
	TAATTATAT	TTATATATGT	ATTATAAAAT	ATATTAAAGA	TAATTATAAT	ATACATATT	TATGGGAACC
20	CCTTCATCCT	CTGAGTGTGA	CCAGGCATCC	TCCACAAATAG	CAGACAGTGT	TTTCTGGGAT	AAGTAAGTTT
	GATTTCATTA	ATACAGGGCA	TTTGGTCCA	AGTTGTGCTT	ATCCCCATAGC	CAGGAAACTC	TGCATTCTAG
	TACTTGGGAG	ACCTGTAATC	ATATAATAAA	TGTACATTAA	TTACCTTGAG	CCAGTAATTG	GTCCGATCTT
	TGACTCTTT	GCCATTAAAC	TTACCTGGGC	ATTCTGTGTT	CATTCAATTC	CACCTGCAAT	CAAGTCCTAC
	AAGCTAAAAT	TAGATGAACT	CAACTTGAC	AACCATGAGA	CCACTGTTAT	CAAAACTTC	TTTCTGGAA
25	TGTAATCAAT	GTTCTTCTA	GGTTCTAAAA	ATTGTGATCA	GACCATAATG	TTACATTATT	ATCAACAATA
	GTGATTGATA	GAGTGTATC	AGTCATAACT	AAATAAAGCT	TGCAACAAAA	TTCTCTG	GCTCAGGGCA
	CATGCCTCCC	CTCCCGAGGC	CGCGGCCAG	CTGACCCCTG	GGGCTCCCCC	GGCAGCGGAC	AGGGAAAGGGT
	TAAAGGCC	CGGCCTCCCTG	CCCCCTGCC	TGGGAAACCC	CTGGCCCTGT	GGGGACATGA	ACTGTGTTG
	CCGCCCTGGTC	CTGGCTGTG	TGAGCCTGTG	GCCAGATACA	GCTGTCGCC	CTGGGCCACC	ACCTGGCC
	CCTCGAGTT	CCCCAGACCC	TCGGGGCCAG	CTGGACAGCA	CCGTGCTCT	GACCCGCTCT	CTCCTGGCGG
30	ACACGGGCA	GCTCGCTGCA	CAGCTGAGGG	ACAAATTCCC	AGCTGACGGG	GACCACAACC	TGGATTCCCT
	GCCCACCTG	GCCATGAGTG	CGGGGGCACT	GGGAGCTCTA	CAGCTCCAG	GTGTGCTGAC	AAGGCTGCGA
	GCGGACCTAC	TGTCCTACCT	CGGGCACGTG	CAGTGGCTGC	GCCGGGCGAG	TGGCTCTICC	CTGAAGACCC
	TGGAGCCGA	GCTCGGCACC	CTGCAGGCC	GACTGGACCG	GCTGCTGCGC	CGGCTGCGAC	TCCTGATGTC
	CCGCCCTGGCC	CTGCCCGCAGC	CACCCCCCGA	CCCGCCGGCG	CCCCCGCTGG	CGCCCCCCTC	CTCAGCCTGG
35	GGGGGCATCA	GGGCCGCCCA	CGCCATCTG	GGGGGGCTGC	ACCTGACACT	TGACTGGGCC	GTGAGGGGAC
	TGCTGCTGCT	GAAGACTCGG	CTGTGACCCG	GGGGCCAAAG	CCACCAACCGT	CCTTCAAAG	CCAGATCTTA
	TTTATTAT	TATT CAGTA	CTGGGGCGA	AACAGCCAGG	TGATCCCCC	GCCATTATCT	CCCCCTAGTT
	AGAGACAGTC	CTTC'CGTGAG	GCCTGGGGGA	CATCTGTGCC	TTATTTATAC	TTATTTATTT	CAGGAGCAGG
	GGTGGGAGGC	AGG'GGACTC	CTGGGTCCCC	GAGGAGGAGG	GGACTGGGT	CCCCGATTCT	TGGGTCTCCA
40	AGAAGTCTGT	CCAC'AGACTT	CTGCCCTGGC	TCTTCCCCAT	CTAGGCCTGG	GCAGGAACAT	ATATTATTA
	TTTAAGCAAT	TACTTTCTAT	GTGCCCCGG	GGACGGAGGG	GAAAGGGAAG	CCTGGGTTTT	TGTACAAAAA
	TGTGAGAAAC	CTTGTGAGA	CAGAGAACAG	GGAATTAAAT	GTGTATACA	TATCC	CAGCTGCGGC
	ATCCTCTGTC	TCAGAGTCTT	GGTGTCTCTG	TTCTTTCCC	CTCGGGGTCT	CCCTGGGTCT	CCCCAAGTCC
	CTCCCTGCTG	CTTCTCCCG	CTCTCTGATC	TCTGACTCCC	AGAACCTCTC	CCTCTGTCTC	CAGGGCTGCC
45	CCTCTGATCC	TCTTGTCTTC	TCTGGTGTG	CTCTCTGGCT	GCCTCCATCT	CTGTTGATCT	CCGTCTCCCT
	GTCTCTGCT	CAGI CTGTCC	TTCACTCTGT	GTGTGTGTG	GTCTCTCT	CTCTCTCTCC	TTCCCTTCCA
	CTCCCTCTTC	CTCC'GCCCTC	CACCTCTCCA	GGCCCCGTG	TTGTCCTCC	GTCCGGCTT	TCTCTGCC
	TCCGTCTCC	TGCCCTCCCCA	TCTCTCTG	CTAGCTCTGT	CCAGCCGGAC	CCCCACCCAC	AGTCGGGCC
	CAGCCTTGA	GCCTGAGTGT	CTGCTCCGGC	CCGTGGAGGT	GGAGGGAGGG	GACGCCAATG	ACCTCACCAG
50	CCCCCTCCG	ACCA CCCCCC	CCTTCCCTT	TTCAACTTTT	CCAACTTTC	CTTCCGTGCC	CTCCTCCGAG
	CGCGGGCGCG	TGAC CCCTGC	AAGGCAGCG	CTCCGTCTGA	ATGGAAAAGG	CAGGCAGGGA	GGGTGAGTCA
	GGATGTGTC	GGCC'GGCCCT	CCCCCTGCCG	CTGCCCCCG	CCCGCCCGCC	CCAGGCCCC	TATATAACCC
	CCCAGGCCTC	CACACCTCCCT	CACTGCCG	GGCCCTGCTG	CTCAGGGCAC	ATGCCTCCCC	TCCCCAGCCG
	CGGGCCCGAGC	TGAC CCTCGG	GGCTCCCCCG	GCAGCGGACA	GGGAAGGGTT	AAAGGCCCC	GGCTCCCTGC
55	CCCCCTGCCCT	GGGAACCCCC	TGGCCCTGTG	GGGACATGAA	CTGTAAGTTG	GTTCATGGGG	AGGGTGGAGG
	GGACAGGGAG	GCAC'GGAGGA	GAGGGACCCA	CGGCGGGGGT	GGGAGCAGAC	CCCGCTGAGT	CGCACAGAGA
	GGGACCCGGA	GACAGGCAGC	CGGGGAGGAG	AGCAGCTCG	GAGACAGGAG	CGGGCGGAGG	AGATGGGCAG
	AGAGAGACAC	AGAC'AGGAGC	GGATGGAGGC	AGCCAATCAG	AGGCGCCGCA	GGAGGGACGG	GCCAGACAGG
	GCCCGAGAGG	AGCC AGACGC	GAGACCGAGC	AGGGCAGGG	ACGCAGGGAC	TGGTGCCGGG	AGGGAGGTGA
60	CCCCCATCGA	CCCA GGCCCC	AGGGAGCCG	CGGGGACCGG	GAGACTCCCT	GGGATTCCGG	CAGAGAGGCT
	CCGGAGGGAA	ACTGAGGCAG	GGTCCGCGGA	GAGCGGAGCA	AGCCAGGGAG	TAGCGACCCC	AGCCGGGGGG
	AGGAGAGAGA	CTGC GCGCCG	GGGGAAAGCG	GGGAGAGCG	GGCAGATGCG	GCCGACGGAG	CGCGCGGACAG

	ACCGACGGCT	GGCC GGCCC	GGGGGCAGGGC	TGGGGGTGTC	CGAGGCAGCG	GCGGCCGGGG	AGCGCTGATT
	GGCTGGCGGG	TGGC CGGGTG	GGCGGGGCGG	CCGGGGTGGG	CTGCAGGGAG	CGAGCTCCGG	ACCCCCCGCGC
	CCCCGGCGCC	CCCC GCGCCC	CCCGCCGCCA	GCTCTCCCG	TCCCAGCGCC	CGGCCGGGGC	ATGGCTCTGC
5	CCCTCTCCGC	CCAGGTGCGC	TGCGGCCCGG	GCTTCTGCG	CCCACCCGGC	GGGCTCCTGG	GAGGGCGTCT
	AAGGGGTCTC	CCGT'GGGAGA	GGTCCGTGTC	TCCCGGACTC	CGTCCTGGC	TTTGGCTCC	TTCCCCCTGCT
	CCCAGCCAGC	TCGC GCTCCC	GCAGGCCCGG	GAGGGGGCAG	GTTCTGGCT	GTGCCTCCCC	CACCATCCGC
	GCCCCGGGGC	CCAC ATTCCG	GCCTCCGGGG	GCGGACGGGA	GACGCCGGG	CCGCGTCTGC	TCCGACGGGC
	GGGGCAGCCA	GAGC CAGGGA	GGGAGAGGGA	AGCCCGCCTG	GCCCTGCGAC	CTGCCCGCGG	GCGTTCCACC
10	CTGGGACTTA	AGAC'CTCCAG	CTCCATCCTC	CCTAAGGCCG	GGAGTCCAGG	CCCCAGACCC	TCCTCCCCGA
	GACCCAGGAG	TCC'GACCCC	AGGCCCTCTC	CCCTCAGACC	TAGGAGTCCA	GGCCCCCAGC	CTCTCCTCCC
	TCAGACCCAG	GAGG AGTCCA	GACCCAGTT	CCTCCTCCCT	CAGACCCGGG	AGTCCAGCCC	AGGCCCTCCT
	CTCTCAGACC	CGGA GTCCAG	CCTGAGCTCT	CTGCCTTATC	CTGCCCCAG	GTGTTGCCG	CCTGGTCCTG
	GTCGTGCTGA	GCCT GTGGCC	AGATACAGCT	GTGCCCCCTG	GGCCACCA	TGGCCCCCT	CGAGTTCCC
15	CAGACCTCG	GGCC GAGCTG	GACAGCACCG	TGCTCCTGAC	CCGCTCTCTC	CTGGCGGACA	CGCGGCAGCT
	GGCTGCACAG	CTGG TAGGAG	AGACTGGCT	GGGGCCAGCA	CAGGAGTGAG	AGGCAGAGAG	GAACGGAGAG
	GAGTCTCGGG	GCAC CCAC TT	GGAGGGGTT	TGGGCTCTCA	GGTGGCAGAG	TGAGGGAGGG	GAAGAGTTGG
	GGGCCTGGCG	TGGC GGATGG	AGGGAGCCCC	GAGGCTGGGC	AGGGGCCACC	TCACAGCTTT	TTTCCCTGCC
	AGAGGGACAA	ATT'CCAGCT	GACGGGGACC	ACAACCTGGA	TTCCCTGCC	ACCCCTGGCA	TGAGTGCAGG
20	GGCACTGGGA	GCTCTACAGG	TAAGGGCAAG	GGAGTGGCT	GGGGACAAGG	TGGGAGGCAG	GCAGTGAAGG
	GGGCGGGGAG	GATGAGGGGC	ACTGGTCGGG	TGTTCTCTGA	TGTCCCGGCT	CTATCCCCAG	CTCCCAGGTG
	TGCTGACAAG	GCTGCGAGCG	GACCTACTGT	CCTAACCTGCG	GCACGTGCAG	TGGCTGCGCC	GGGCAGGTGG
	CTCTTCCCTG	AAGA CCTTGG	AGCCCAGCT	GGGCACCCCTG	CAGGCCGAC	TGGACCCGGCT	GCTGCGCCGG
	CTGCAGCTCC	TGGTATGTCC	TGGCCCAAG	ACCTGACACC	CCAGACCCCC	ACCCCTGGCC	CCAAAATCCT
	GTGGCCTGAG	TCCT TGAAGC	CTGAGACCCC	AGACCCGAGT	GCAACAGCCC	CGCTCTGAGA	CCCTGACACC
25	CTAACAGCCC	GCTCTGAGAC	CCTGACACCG	TAACAGCCCC	GCTCTGAGAC	CCTGACCCCTA	ACAGTCCTGC
	TCTGAGACCC	TGACCCCTGCA	GTCCCAAGAT	CCTGTGGCCC	TGAGACCCCTG	AGGCCCTAGA	CCCCCAAATC
	CTGCCAGAAA	ACTTCAAATT	CTCACCAAG	ACCCCTGAGAC	TCCATCATCC	ATGACCTCAA	AGTCCCCAGA
	TCCCAGCCCC	TAAGACCCAA	GACCCCATCC	TGAAGCCAA	AGCCTTGAGA	ATTCAAATCC	TCACCTCAAG
	ACTTGGAGAC	CCTGGCCCCA	TGACATTGAA	AACCATGGAC	CTGGCCAGGC	GTGGTGGCTC	ACGCCCTGTA
30	TCCCAGCACT	TTGG GAGGCC	GAGGCAAGTG	GATCACCTGA	GGTCGGGAGT	TCAAGACCAAG	CCAGACCAAC
	ATGGTGAAAC	CCTGTCTCTA	CTAAAAATAC	AAAATTAGCC	AGGCAGGGTG	GTGCATGCCT	GTAATCCCAG
	CTACTTGGGA	GGCT GAGGCA	GGAGAACATCG	TTGAACCTGG	GAGGCGGAGG	TTGCAGTGAG	CCGAGATCGC
	ACCATTACAC	TCCA GCCTGG	GCAACAAAGAG	CAAACACTCC	TCTCTCTCAA	AAAAAAA	AAAAAAA
	AAGAAGGAAA	AGA AACCAT	GGACCTCCAG	ACCCCTGAGAC	CCCAAGCCCC	AGCCCTGAGA	TCCTGACATC
35	TTAAAGATCC	CAGGCCCTAA	GATAACAAGAC	CTTGACCCAA	AGCCAGCCTT	GGGACCCCTG	CTGTACAAAC
	CCAAGACCTC	CAGG ACCTAG	ACCCCGAGCC	CTGAGGCCCT	ATGTCTCACT	CCCAACATCG	AAAACCCCTGA
	CACCTCAGAT	CCTGAGCCTG	CGCCTGTACG	ACTCCAAGAC	CCTCACTTCC	AAAGCCAGGC	CCAAAGCCCT
	GAGACCAGAA	GACT TCAAAC	CCTGGTTCTT	GGGCTTAAC	CCAAAGACCC	TGGATCTCAA	ATTCCAACCT
	CTAGCTCTGA	GACTCCAGCC	CTCACCCATG	AGTTCTGAA	CTTGAACCCA	GAGACCCCAT	CTCTAAGACT
40	TCAGCCTGTA	GATCCAGGGC	CTGACCCCTAG	ACTCGAGCCC	ACAGACCTCA	GATACTGTCT	GTAAAACCCC
	AGCTCTGGT	GGGAGCAGTG	GCTCACTCT	GTAATCCCAA	GGCAGGGGAG	GCCAAGGCAG	AAGGACCTCT
	TGAGGCCATG	AGTITGAGAC	AGCCTGGGCA	GCATAGCAAG	ACTCTGTTTC	TAAATTATTA	TTATTATTAT
	TATTTTTTGG	AGAC AAGAGTC	TCGCGCTCTG	TTGCCCAAGGC	AGCCTCTGAA	TGGTGCCTATT	TCGGCTTGT
	GGAACCTCCG	CCTCTGGGGC	TCAAGCGATT	CTCTGCGCTC	AGCCTCTGAA	GTAGCTGGGA	CTTCAGGTGC
45	ACACTGCCAC	ACCCGGATAAA	TTTTTTTGT	TTTTAGTAGA	CACAGGGTT	CACCGTGTG	CCCAGGCTGG
	TCACAAACTC	CTGA GCTCAG	GCCATCCGCC	CGCCTCGGCC	TCCCAAAGCG	CTGGGATAAC	AGGCGTGACG
	CCGCGCTGG	CTTC TAATT	GTTCTAACAG	CAGCGACAAC	AACAAAAACC	CAGCTCTGAG	ATTCCAGCCC
	CGGCGACTCT	AACAGTCCCA	GGCCCGATCC	CTCACCTAGA	ACCGAGATGC	CAGCCCTGAC	TCCACAGACT
	TCACCCCCAA	CCCCCACACT	CAGCTCTGGA	AGCCCGTCT	GACTCCAGCC	TCCATTTCG	GAACCCCCACA
50	GCCTGAAGAG	CTCCCAGGCC	AAACACTTCA	CCCCACGCGC	CACAGTCCCC	CTGTGAATAT	GCAGCCCCGA
	TTCAGCTGCA	GCTCCACAGC	ACCCCTGCC	TGCACCCCG	CTGCACCCCC	TACCTGTGAC	TCACCTCTCT
	CCTCTCCCCA	CAGA GTTCCC	GCCTGGCCCT	GCCCCAGCCA	CCCCCGGACC	CGCCGGCGCC	CCCGCTGGCG
	CCCCCTCTCT	CAGC CTGGGG	GGGCATCAGG	GCCGCCACAG	CCATCCTGGG	GGGGCTGCAC	CTGACACTTG
	ACTGGGGCGT	GAGGGGACTG	CTGCTGCTGA	AGACTCGGCT	GTGACCCGGG	GCCCAAAGCC	ACCACCGTCC
55	TTCCAAAGCC	AGA I TTTATT	TATTTATTA	TTTCAGTACT	GGGGGCAGAA	CAGCCAGGTG	ATCCCCCGC
	CATTATCTCC	CCCTAGTTAG	AGACAGTCT	TCCTGAGGC	CTGGGGGCA	TCTGTGCCTT	ATTTATACTT
	ATT TTTCA	GGAGCAGGGG	TGGGAGGCAG	GTGGACTCCT	GGGTCCCCGA	GGAGGAGGGG	ACTGGGGTCC
	CGGATTCTTG	GGTC TCCAAG	AAGTCTGTC	ACAGACTTCT	GCCCTGGCTC	TTCCCCATCT	AGGCCTGGGC
	AGGAACATAT	ATT A TTTATT	TAAGCAATT	CTTTTCTATG	TGGGGTGGGG	ACGGAGGGGA	AAGGGAAGGC
60	TGGGTTTTG	TACA AAAATG	TGAGAAACCT	TTGTGAGACA	GAGAACAGGG	AATTAAATGT	GTCATACATA
	TCCACTTGAG	GGCG ATTGT	CTGAGAGCTG	GGGCTGGATG	CTTGGGTAAC	TGGGGCAGGG	CAGGTGGAGG
	GGAGACCTCC	ATTCAAGGTGG	AGGTCCCGAG	TGGGCGGGC	AGCGACTGGG	AGATGGGTGCG	GTCACCCAGA

CAGCTCTGTG GAGGCAGGGT CTGAGCCTTG CCTGGGGCCC CGCACTGCAT AGGGCCGTT GTTTGTTTT
 TGAGATGGAG TCTCGCTCTG TTGCCTAGGC TGGAGTCAG TGAGGCAATC TAAGGTCACT GCAACCTCCA
 CCTCCGGGGT TCAAGCAATT CTCCTGCCCT AGCCTCCGA TTAGCTGGGA TCACAGGTGT GCACCACCAT
 5 GCCCAGCTAA TTATTATTT CTTTTGTATT TTTAGTAGAG ACAGGGTTTC ACCATGTTGG CCAGGCTGGT
 TTCGAACCTC TGACCTCAGG TGATCCTCCT GCCTCGGCC CCCAAAGTGC TGGGATTACA GGTGTGAGCC
 ACCACACCTG ACCCATAGGT CTTCAATAAA TATTAAATGG AAGGTTCCAC AAGTCACCCCT GTGATCAACA
 GTACCGTAT GGGCAAAAGC TGCAAGGTCA AGATGGTTCA TTATGGCTGT GTTCACCATA GCAAACCTGGA
 AACAACTTAG ATATCCAACA GTGAGGGTTA AGCAACATGG TGCACTGTG GATAGAACGC CACCCAGCCG
 10 CCCGGAGCAG GGACTGTCTAT TCAGGGAGGC TAAGGAGAGA GGCTTGCTTG GGATATAGAA AGATATCCTG
 ACATTGGCCA GGGCATGGTGG CTCACGCCG TAATCCTGGC ACTTTGGGAG GACGAAGCGA GTGGATCACT
 GAAGTCCAAG AGTITGAGAC CGGCCTGCGA GACATGGCAA AACCTGTCT CAAAAAAGAA AGAATGATGT
 CCTGACATGA AACAGCAGGC TACAAAACCA CTGCATGCTG TGATCCCAAT TTTGTGTTT TCTTCTATA
 TATGGATTAA AACPAAAATC CTAAAGGGAA ATACGCCAAAT ATGTTGACAA TGACTGTCTC CAGGTCAAAG
 15 GAGAGAGGTG GGAITGTGGG TGACTTTAA TGTGTATGAT TGTCTGTATT TTACAGAATT TCTGCCATGA
 CTGTGTATT TGCAATGACAC ATTTTAAAAA TAATAAACAC TATTTTAGA ATAACAGAAT ATCAGCCTCC
 TCCTCTCAA AAATAAGCCC TCAGGAGGGG ACAAAGTTGA CCGCTGATTG AGCCTGTCAG GGCTGTGCAC-3'
 (SEQ. ID NO:3004)

Human Adenosine A₁ Receptor Nucleic Acid and Antisense Oligonucleotide Fragments

5'-ATGCCGCCCT CCATCTCAGC TTTCCAGGCC GCCTACATCG GCATCGAGGT GCTCATCGCC CTGGTCTCTG
 20 TGCCCGGGAA CGTCCTGGTG ATCTGGGCC TGAAGGTGAA CCAGGCGCTG CGGGATGCC CCTTCTGCTT
 CATCGCTCG CTGGCGGTGG CTGATGTGGC CGTGGGTGCG CTGGTCATCC CCCTCGCCAT CCTCATCAAC
 ATTGGGCCAC AGACCTACTT CCACACCTGC CTCATGGTTG CCTGTCGGGT CCTCATCCTC ACCCAGAGCT
 CCATCCTGGC CCTGCTGGCA ATTGCTGTGG ACCGCTACCT CGGGTCAAG ATCCCTCTCC GGTACAAGAT
 GGTGGTGACC CCCGGAGGG CGGGCGGTGGC CATAGCCGGC TGCTGGATCC TCTCCTTCGT GGTGGGACTG
 25 CCCCTATGT TTGGCTGGAA CAATCTGAGT GCGGTGGAGC GGGCCTGGGC AGCAACCGC AGCATGGGG
 AGCCCGTGAT CAAATGCGAG TTGAGAAGG TCATCAGCAT GGAGTACATG GTCTACTTCA ACTTCTTTGT
 GTGGGTGCTG CCCCCGCTTC TCCTCATGGT CCTCATCTAC CTGGAGGTCT TCTACCTAAT CCGCAAGCAG
 CTCAACAAGA AGGTGTCGGC CTCCTCGGC GACCCGCAGA AGTACTATGG GAAGGAGCTG AAGATGCGCA
 AGTCGCTGGC CCTCATCCTC TTCCCTTTG CCCTCAGCTG GCTGCCCTTG CACATCCTCA ACTGCATCAC
 30 CCTCTCTGC CGCTCCTGCC ACAAGCCAG CATCCTTACCA TACATTGCCA TCTTCCTCAC GCACGGCAAC
 TCGGCCATGA ACCCCATTGT CTATGCCCTC CGCATCCAGA AGTCCCGT CACCTTCCTT AAGATTGGA
 ATGACCATTT CCGCTGCCAG CCTGCACCTC CCATTGACGA GGATCTCCA GAAGAGAGGC CTGATGACTA G
 ATGAGTGTCA GAACTGTGAA GGGTGCCTGT TCTGAATCCC AGAGCCTCTT CTCCCTCTGT GAGGCTGGCA
 GGTGAGGAAG GGTITAACCT CACTGGAGG AATCCCTGGA GCTAGCGGCT GCTGAAGGCG TCGAGGTGTG
 35 GGGGCACTTG GACAGAACAG TCAGGCAGCC GGGAGCTCTG CCAGCTTTGG TGACCTGGG CCGGGCTGGG
 AGCGCTCGGG CGGGAGCCGG AGGACTATGA GCTGCCGCGC GTTGTCCAGA GCCCAGCCA GCCCTACGCG
 CGCGGCCCGG AGCTCTGTTC CCTGGAACCTT TGGGCACTGC CTCTGGGACC CCTGCCGGCC AGCAGGCAGG
 ATGGTGCTTG CCTCGTGGCC CTTGGTGGCC GTCTGCTGAT GTGCCAGCC TGTGCCGCC ATGCCGCCCT
 CCATCTCAGC TTCCAGGCC GCCTACATCG GCATCGAGGT GCTCATCGCC CTGGTCTCTG TGCCCGGGAA
 40 CGTGCTGGTG ATCTGGGCC TGAAGGTGAA CCAGGCGCTG CGGGATGCC CCTCTGCTT CATCGTGTG
 CTGGCGGTGG CTGATGTGGC CGTGGGTGCG CTGGTCATCC CCCTCGCCAT CCTCATCAAC ATTGGGCCAC
 AGACCTACTT CCACACCTGC CTCATGGTTG CCTGTCGGGT CCTCATCCTC ACCCAGAGCT CCATCCTGGC
 CCTGCTGGCA ATTGCTGTGG ACCGCTACCT CCGGGTCAAG ATCCCTCTCC GGTACAAGAT GGTGGTGACC
 45 CCCGGAGGG CGGCCGGTGGC CATAGCCGGC TGCTGGATCC TCTCCTTCGT GGTGGGACTG ACCCCTATGT
 TTGGCTGGAA CAATCTGAGT GCGGTGGAGC GGGCCTGGGC AGCAACCGC AGCATGGGG AGCCCGTGAT
 CAAGTGCAG TTCCAGAAGG TCATCAGCAT GGAGTACATG GTCTACTTCA ACTTCTTTGT GTGGGTGCTG
 50 CCCCCGCTTC TCCTCATGGT CCTCATCTAC CTGGAGGTCT TCTACCTAAT CCGCAAGCAG CTCAACAAGA
 AGGTGTCGGC CTCCCTCGGC GACCCGCAGA AGTACTATGG GAAGGAGCTG AAGATGCCA AGTCGCTGGC
 CCTCATCCTC TTCCCTTTG CCCTCAGCTG GCTGCCCTTG CACATCCTCA ACTGCATCAC CCTCTCTGC
 CCGTCCTGCC ACAAGCCAG CATCCTTACCA TACATTGCCA TCTTCCTCAC GCACGGCAAC TCGGCCATGA
 ACCCCATTGT CTATGCCCTC CGCATCCAGA AGTCCCGT CCTACCTAAT CCGCAAGCAG CTCAACAAGA
 55 CCGCTGCCAG CCTGCACCTC CCATTGACGA GGATCTCCA GAAGAGAGGC CTGATGACTA GACCCCGCCT
 TCCGCTCCA CCAGCCCACA TCCAGTGGGG TCTCAGTCCA GTCCCTCACAT GCCCCTGTGC CCAGGGTCT
 CCCTGAGCCT GCCCCAGCTG GGCTGTTGGC TGGGGCATG GGGGAGGCTC TGAAGAGATA CCCACAGAGT
 GTGGTCCTC CACTAGGAGT TAACTACCT ACACCTCTGG GCCCTGCAGG AGGCTGGGA GGGCAAGGGT
 CCTACGGAGG GACCAGGTGT CTAGAGGCAA CAGTGTCTG AGCCCCCACC TGCCCTGACCA TCCCCTGAGC
 AGTCCAGCAGC TTCAAGGGCTG GGCAGGTCTT GGGGAGGCTG AGACTGCAGA GGAGCCACCT GGGCTGGGAG
 AAGGTGCTTG GGCCTCTGCG GTGAGGCAGG GGAGTCTGCT TGTCTTAGAT GTTGGTGGTG CAGCCCCAGG
 60 ACCAAGCTTA AGGAGAGGAG AGCATCTGCT CTGAGACGGA TGGAAAGGAGA GAGGTTGAGG ATGCACTGGC
 CTGTTCTGTA GGAGAGACTG GCCAGAGGCA GCTAAGGGGC AGGAATCAAG GAGCCTCCGT TCCCACCTCT
 GAGGACTCTG GACCAGGCG CATAACAGGT GCTAGGGTGC CTGCTCTCT TGCCCTGGC CAGCCAGGA

	TTGTACGTGG	GAGAGGCAGA	AAGGGTAGGT	TCAGTAATCA	TTTCTGATGA	TTTGCTGGAG	TGCTGGCTCC
	ACGCCCTGGG	GAGTGAGCTT	GGTGCCTGAG	GTGCTGGCCT	CAAACAGCCA	CGAGGTGGTA	GCTCTGAGCC
5	CTCCTTCTT	CCCTGAGCTT	TCCGGGGAGG	AGCCTGGAGT	GTAATTACCT	GTCATCTGGG	CCACCAGCTC
	CACTGGCCCC	CGT'GCCGGG	CCTGGACTGT	CCTAGGTGAC	CCCATCTCTG	CTGCTTCTGG	GCCTGATGGA
	GAGGAGAACAA	CTA'GACATGC	CAACTCGGG	GCATTCTGCC	TGCCCTGGAA	CGGGGTGGAC	GAGGGAGTGT
	CTGTAAGGAC	TCAGTGTG	CTGTAGGGCGC	CCCTGGGGTG	GGTTTAGCAG	GCTGCAGCAG	GCAGAGGAGG
	AGTACCCCCC	TGAGAGCATG	TGGGGGAAGG	CCTGCTGTC	ATGTGAATCC	CTCAATACCC	CTAGTATCTG
	GCTGGGTTT	CAGGGCTTT	GGAAAGCTCTG	TTGCAGGTGT	CCGGGGGTCT	AGGACTTTAG	GGATCTGGGA
10	TCTGGGAAG	GACCAACCCA	TGCCCTGCCA	AGCCTGGAGC	CCCTGTGTTG	GGGGGCAAGG	TGGGGGAGCC
	TGGAGCCCC	GTGTGGGAGG	GCGAGGCCGG	GGAGCCTGGA	GCCCCCTGTTG	GGGAGGGCGA	GGGGGGGGAT
	CCTGGAGCCC	CTG'GTCGGG	GGCGAGGG	GGGGAGGTGG	CCGTCGGTTG	ACCTCTGAA	CATGAGTGTG
	AACTCCAGGA	CTTGCTTCA	AGCCCTTCCC	TCTGTTGAA	ATTGGGTGTTG	CCCTGGCTCC	CAAGGGAGGC
	CCATGTACT	AATAAAAAC	TGTGAACCT	CGCATTGTTG	TTTAATAAA	AGAATCTGGA	AGATAAATAG
	TCTTGAAGAG	AGACAAAGGA	AGGAAAATT	AAATCCTTAG	ATTCAAGCAG	AAGAATTCCA	TGTGGAAGGT
15	TTGGGTTGTT	GTGTTGTTG	TTTGGTGTG	TTTTTGTGTTT	TTTGTGTTT	TGTTTTTTT	TGAGATGGAG
	TCTCGCTGTG	TTACCGGGAG	CGACAGAGCC	GCACGGCCGA	GTCGAGTCCC	AGCCAGCTAC	CATCCCTCTG
	GAGCTTACCG	GCCGGCCTTG	GCTTCCCCAG	GAATCCCTGG	AGCTAGCGGC	TGCTGAAGGC	GTCGAGGTGT
	GGGGGCACCT	GGACAGAACAA	GTCAGGCAGC	CGGGAGCTCT	GCCAGCTTGTG	GTGACCTTGG	GTGCTTGCCT
	CGTCCCCCTT	GGT'GCCCGTC	TGCTGATGTG	CCCAGCCTGT	GCCCGCCATG	CCGGCCCTCCA	TCTCAGCTTT
20	CCAGGCCGCC	TACATCGGCA	TCGAGGTGCT	CATCGCCCTG	GTCTCTGTC	CGGGGAACGT	GCTGGTGATC
	TGGGCGGTGA	AGG'TGAACCA	GGCGCTCGG	GATGCCACCT	TCTGCTTCAT	CGTGTGCGTG	GCGGTGGCTG
	ATGTGGCGT	GGG'GCCCTG	GTCATCCCCC	TCGCCATCCT	CATCAACATT	GGGGCACAGA	CCTACTTCCA
	CACCTGCCTC	ATG'TTGCCT	GTCCGGTCTC	CATCCTCACC	CAGAGCTCCA	TCCTGGCCCT	GCTGGCAATT
	GCTGTGGACC	GCTA.CCTCCG	GGTCAAGATC	CCTCTCCGGT	ACAAGATGGT	GGTGACCCCC	CGGAGGGCGG
25	CGGTGGCCAT	AGC'GGCTGC	TGGATCCTCT	CCTTCGTGGT	GGGACTGACC	CCTATGTTG	GCTGGAACAA
	TCTGAGTGC	GTG'AGCGGG	CTGGGGCAGC	CAACGGCAGC	ATGGGGGAGC	CCGTGATCAA	GTGCGAGTTC
	GAGAAGGTCA	TCA'GATGGA	GTACATGGTC	TACTTCAACT	TCTTGTGTTG	GGTGTGCCCC	CCGCTTCTCC
	TCATGGCTCT	CATCTACCTG	GAGGTCTTCT	ACCTAATCCG	CAAGCAGCTC	AACAAGAAGG	TGTCGGCCCTC
	CTCCGGCGAC	CCG'AGAAGT	ACTATGGAA	GGAGCTGAAG	ATGCCAAGT	CGCTGGCCCT	CATCCTCTTC
30	CTCTTGCCTC	TCACCTGGCT	GCCTTGAC	ATCTCAACT	GCATCACCT	CTTCTGCCG	TCCTGCCACA
	AGCCCAGCAT	CCT'ACCTAC	ATTGCCATCT	TCCTCACGCA	CGGCAACTCG	GCCATGAACC	CCATTGTCTA
	TGCCTTCCGC	ATCCAGAAGT	TCGCGTCAC	CTTCCTTAAG	ATTGGAATG	ACCATTCCG	CTGCCAGCCT
	GCACCTCCCA	TTG'ACGAGGA	TCTCCCAGAA	GAGAGGCCGT	ATGACTAGAC	CCCGCCTTCC	GCTCCCACCG
	CCCACATCCA	GTGGGGTCTC	AGTCCAGTCC	TCACATGCC	GCTGTCCAG	GGGTCTCCCT	GAGCCTGCC
35	CAGCTGGGCT	GTTCGCTGGG	GGCATGGGG	AGGCTCTGAA	GAGATACCA	CAGAGTGTGG	TCCCTCCACT
	AGGAGTTAAC	TACO'CTACAC	CTCTGGGGCC	TGCAAGGAGC	CTGGGAGGGC	AAGGGTCTA	CGGAGGGACC
	AGGTGTCTAG	AGGCAACAGT	GTI'CTGAGCC	CCCACCTGCC	TGACCATCCC	ATGAGCAGTC	CAGAGCTTC
	GGGCTGGCA	GGT'CTGGGG	AGGCTGAGAC	TGCAAGGAGG	CCACCTGGC	TGGGAGAAGG	TGCTTGGGCT
	TCTGCGGTGA	GGCAGGGGAG	TCTGCTTGTG	TTAGATGTG	GTGGTGCAGC	CCCAGGACCA	AGCTTAAGGA
40	GAGGAGAGCA	TCTGCTCTGA	GACGGATGGA	AGGAGAGAGG	TTGAGGATGC	ACTGGCTGT	TCTGTAGGAG
	AGACTGGCCA	GA G AT GGA GGG CGG CAT GGC GGG	G CGG GTC GCC GG	GGC GGG CBC BGG C GGC GGG			
	CBC	GC GGC CTG G GGB GGG CGG C GBT GGB GGG GG CTG GGC GC GGC CTG GAA AGC TGA GAT GGA GGG					
	CGG	CAT GGC GGG CAC AGG CTG GGC	ATGCCGCCCT	CCATCTCAGC	TTTCCAGGCC	GCCTACATCG	
	GCATCGAGGT	GCT'ATCGCC	CTGGTCTCTG	TGCCCGGGAA	CGTGCTGGTG	ATCTGGCGG	TGAAGGTGAA
45	CCAGGGCCTG	CGGGATGCCA	CCTTCTGCTT	CATCGTCTCG	CTGGCGGTGG	CTGATGTGGC	CGTGGGTGCC
	CTGGTCATCC	CCCTCGCCAT	CCTCATCAAC	ATTGGGCCAC	AGACCTACTT	CCACACCTGC	CTCATGGTTG
	CCTGTCCGGT	CCTCATCCTC	ACCCAGAGCT	CCATCCCTGC	CCTGCTGGCA	ATTGCTGTGG	ACCGCTACCT
	CCGGGTCAAG	ATCC'CTCTCC	GGTACAAGAT	GGTGGTGACC	CCCCGGAGGG	CGGGCGTGGC	CATAGCCGGC
	TGCTGGATCC	TCTCTTCGT	GGTGGGACTG	ACCCCTATGT	TTGGCTGGAA	CAATCTGAGT	GCGGTGGAGC
50	GGGCCTGGC	AGCC'AACGGC	AGCATGGGG	AGCCCCTGAT	CAAGTGCAG	TTCGAGAAGG	TCATCAGCAT
	GGAGTACATG	GTC'ACTTCA	ACTTCTTGT	GTGGGTGCTG	CCCCCGCTTC	TCCICATGGT	CCTCATCTAC
	CTGGAGGTCT	TCTACCTAAT	CCGCAAGCAG	CTCAACAAAGA	AGGTGTCCGC	CTCCTCCGGC	GACCCGCAGA
	AGTACTATGG	GAAGGAGCTG	AAGATGCCA	AGTCGCTGGC	CCTCATCCTC	TTCCCTTTG	CCCTCAGCTG
	GCTGCCTTG	CACATCCTCA	ACTGCATCAC	CCTCTTCTGC	CCGTCCTGCC	ACAAGCCCAG	CATCCTTACC
55	TACATTGCCA	TCTCCTCAC	GCACGGCAAC	TCGCCATGA	ACCCCATG	CTATGCCTTC	CGCATCCAGA
	AGTTCCCGT	CACCTTCCTT	AAGATTGG	ATGACCATT	CCGCTGCCAG	CCTGCACCTC	CCATTGACGA
	GGATCTCCA	GAAGAGAGGC	CTGATGACTA	G ATGAGTGTCA	GAAGTGTGAA	GGGTGCCTGT	TCTGAATCCC
	AGAGCCTCCT	CTCCCTCTGT	GAGGCTGCCA	GGTGAAGGAAG	GGTTAACCT	CACTGGAAGG	AATCCCTGGA
	GCTAGCGGCT	GCTGAAGGCG	TCGAGGTGTG	GGGGCACTTG	GACAGAACAG	TCAGGCAGCC	GGGAGCTCTG
60	CCAGCTTGG	TGACCTTGGG	CCGGGCTGGG	AGCGCTGCCG	CGGGAGCCGG	AGGACTATGA	GCTGCCGCC
	GTTGTCCAGA	GCCAGGCCA	GCCCTACGCC	CGCGGCCCGG	AGCTCTGTTG	CCTGGAACCTT	TGGGACTGTC
	CTCTGGGACC	CCTC CGGGCC	AGCAGGCAAG	ATGGTGTGCTG	CCTCGTGCC	CTTGGTGCC	GTCTGCTGAT

	GTGCCAGCC	TGTCCCCGCC	ATGCCGCCCT	CCATCTCAGC	TTTCCAGGCC	GCCTACATCG	GCATCGAGGT
5	GCTCATCGCC	CTGCTCTCTG	TGCCCGGGAA	CGTCTGGTG	ATCTGGGGCG	TGAAGGTGAA	CCAGGCGCTG
	CGGGATGCCA	CCTCTGCTT	CATCGTGTG	CTGGCGGTGG	CTGATGTGGC	CGTGGGTGCC	CTGGTCATCC
	CCCTCGCCAT	CCTCATCAAC	ATTGGGCCAC	AGACACTACTT	CCACACCTGC	CTCATGGTTG	CCTGTCCGGT
10	CCTCATCTC	ACCCAGAGCT	CCATCCTGGC	CCTGCTGGCA	ATTGCTGTGG	ACCGCTACCT	CCGGGTCAAG
	ATCCCTCTCC	GGTACAAGAT	GGTGGTGACC	CCCCGGAGGG	CGGCGTGGC	CATAGCCGGC	TGCTGGATCC
	TCTCCTCGT	GGTGGGACTG	ACCCCTATGT	TTGGCTGGAA	CAATCTGAGT	GGCGTGGAGC	GGGCCTGGGC
	AGCCAACGGC	AGCATGGGGG	AGCCCCTGAT	CAAGTGCAG	TTCGAGAAGG	TCATCAGCAT	GGAGTACATG
15	GTCTACTTCA	ACTCTTTGT	GTGGGTGTG	CCCCCGCTTC	TCCTCATGGT	CCTCATCTAC	CTGGAGGTCT
	TCTACCTAAT	CCGCAAGCAG	CTCAACAAGA	AGGTGTCGGC	CTCCTCCGGC	GACCCCGAGA	AGTACTATGG
	GAAGGAGCTG	AAGATCGCCA	AGTCGCTGGC	CCTCATCTC	TCCTCTTTG	CCCTCAGCTG	GCTGCCTTTG
	CACATCCTCA	ACTCATCAC	CCTCTCTGC	CCGTCCTGCC	ACAAGCCAG	CATCCTTACC	TACATTGCCA
20	TCTTCCTCAC	GCACGGCAAC	TCGGCCATGA	ACCCCATTGT	CTATGCCTC	CGCATCCAGA	AGTTCGGCGT
	CACCTTCCTT	AAGATTGGA	ATGACCATTT	CCGCTGCCAG	CCTGCACCTC	CCATTGACGA	GGATCTCCC
25	GAAGAGAGGC	CTGATGACTA	GACCCCGCCT	TCGGCTCCCA	CCAGCCACA	TCCAGTGGGG	TCTCAGTCCA
	GTCCTCACAT	GCCC GCTGTC	CCAGGGGTCT	CCCTGAGGCC	GCCCCAGCTG	GGCTGTTGGC	TGGGGGCATG
	GGGGAGGCTC	TGAAGAGATA	CCCACAGAGT	GTGGTCCCTC	CACTAGGAGT	TAACТАCCCT	ACACCTCTGG
	GCCCTGCAGG	AGGCCTGGGA	GGGCAAGGGT	CCTACGGAGG	GACCAGGTGT	CTAGAGGCAA	CAGTGTCTG
30	AGCCCCCACC	TGCC TGACCA	TCCCATGAGC	AGTCCAGCGC	TTCAGGGCTG	GGCAGGTCT	GGGGAGGCTG
	AGACTGCAGA	GGAGGCCACCT	GGGCTGGGAG	AAAGTGTGTTG	GGCTTCTGCG	GTGAGGCAGG	GGAGTCTGCT
	TGTCTTAGAT	GTGGGTGGTG	CAGCCCCAGG	ACCAAGCTTA	AGGAGAGGAG	AGCATCTGCT	CTGAGACGGA
	TGGAAGGAGA	GAGGTGAGG	ATGCACTGGC	CTGTTCTGTA	GGAGAGACTG	GCCAGAGGCA	GCTAAGGGGC
35	AGGAATCAAG	GAGCTCTCGT	TCCCACCTCT	GAGGACTCTG	GACCCCAAGG	CATACCAAGGT	GCTAGGGTGC
	CTGCTCTCCT	TGCC CTGGGC	CAGCCCCAGGA	TTGTACGTGG	GAGAGGCAGA	AAGGGTAGGT	TCAGTAATCA
	TTTCTGATGA	TTGCTGGAG	TGCTGGCTCC	ACGCCCCGGG	GAGTGAGCTT	GGTGCCTGAG	GTGCTGGCCT
	CAAACAGCCA	CGAGGGTGT	GCTCTGAGCC	CTCCTCTTG	CCCTGAGCTT	TCCGGGGAGG	AGCCTGGAGT
40	GTAATTACCT	GTCACTCTGG	CCACCAGCTC	CACTGGCCCC	CGTTGCGGG	CCTGGACTGT	CCTAGGTGAC
	CCCATCTCTG	CTGCTCTCTG	GCCTGATGGA	GAGGAGAACAA	CTAGACATGC	CAACTCGGG	GCATTCTGCC
	TGCTCTGGAA	CGGGGTGGAC	GAGGGAGTGT	CTGTAAGGAC	TCAGTGTGTA	CTGTAGGC	CCCTGGGGTG
45	GGTTTAGCAG	GCTC CAGCAG	GCAGAGGAGG	AGTACCCCCC	TGAGAGCATG	TGGGGAAAGG	CCTTGCTGTC
	ATGTGAATCC	CTCA ATACCC	CTAGTATCTG	GCTGGGTTTT	CAGGGGCTT	GGAAGCTCTG	TTGCAGGTGT
	CCGGGGGTCT	AGGA CTTTAG	GGATCTGGG	TCTGGGAAAG	GACCAACCA	TGCCCTGCCA	AGCCTGGAGC
	CCCTGTGTTG	GGGGGCAAGG	TGGGGGAGCC	TGGAGCCCC	GTGTGGGAGG	GCGAGGCGGG	GGAGCCTGGA
50	GCCCCCTGTG	GGGAGGGCGA	GGCGGGGGAT	CCTGGAGGCC	CTGTGTCGGG	GGGGCAGGGGA	GGGGAGGTGG
	CCGTCGTTG	ACCTCTGAA	CATGAGTGT	AACTCCAGGA	CTTGCTTCA	AGCCCTCCC	TCTGTTGAA
	ATTGGGTGTG	CCCIGGCTCC	CAAGGGAGG	CCATGTACT	AATAAAAAAC	TGTGAACCT	CGCATTGTTG
	TTTTAATAAA	AGAA TCTGGA	AGATAAAATAG	TCTTGAAGAG	AGACAAAGGA	AGGAAAATT	AAATCCTTAG
55	ATTCAAGCAG	AAGATTCCA	TGTGGAAGGT	TTGGGTTGTT	GTGTTGTTG	TTGGGTGTG	TTTTGTTT
	TTTGTTTTT	TGTT TTTT	TGAGATGGAG	TCTCGCTGTG	TTACCGGGAG	CGACAGAGCC	GCACGGCCGA
60	GTCGAGTCCC	AGCCAGCTAC	CATCCCTCTG	GAGCTTACCG	GCCGGCCTTG	GCTTCCCCAG	GAATCCCTGG
	AGCTAGGGC	TGCTGAAGGC	GTCGAGGTGT	GGGGGCACIT	GGACAGAACAA	GTCAGGCAGC	CGGGAGCTCT
	GCCAGCTTTG	GTGACCTTGG	GTGCTTGCCT	CGTCCCCCTT	GGTGCCCCGT	TGCTGATGTG	CCCAGCCTGT
	GCCGCCATG	CCGCCCTCCA	TCTCAGCTTT	CCAGGCCGCC	TACATCGCA	TCGAGGTGCT	CATCGCCCTG
	GTCTCTGTG	CCGGGAACGT	GCTGGTGATC	TGGCGGTGA	AGGTGAACCA	GGCGCTGCCG	GATGCCACCT
65	TCTGCTTCAT	CGTGTGCGTG	GCGGTGGCTG	ATGTGGCCGT	GGGTGCCCTG	GTCATCCCC	TCGCCATCCT
	CATCAACATT	GGGCCACAGA	CCTACTTCCA	CACCTGCC	ATGGTTGCC	GTCCGGTCCT	CATCCCTACC
	CAGAGCTCCA	TCTCTGGCC	GCTGGCAATT	GCTGTGGACC	GCTACCTCCG	GGTCAAGATC	CCTCTCCGGT
	ACAAGATGGT	GGTGACCCCC	CGGAGGGCGG	CGTGGGCCAT	AGCCGGCTGC	TGGATCCTCT	CCTTCGTGGT
	GGGACTGACC	CCTA TGTTTG	GCTGGAACAA	TCTGAGTGC	GTGGAGCCCC	CCTGGGCAGC	CAACGGCAGC
70	ATGGGGGAGC	CCGAGTCAA	GTGCGAGTT	GAGAAGGTCA	TCAGCATGGA	GTACATGGTC	TACTTCAACT
	TCTTGTGTG	GGTC CTGCC	CCGCTTCTCC	TCATGGTCCT	CATCTACCTG	GAGGCTTCT	ACCTAATCCG
	CAAGCAGCTC	AAACAGAAGG	TGTCGGCCTC	CTCCGGCGAC	CCGCAGAACT	ACTATGGGAA	GGAGCTGAAG
	ATCGCCAAGT	CGCCTGGCC	CATCCTCTTC	CTCTTGTCCC	TCAGCTGGCT	GCCTTGCAC	ATCCTCAACT
	GCATCACCC	CTTC TGCCCC	TCCTGCCACA	AGCCCAGCAT	CCTTACCTAC	ATTGCCATCT	TCCTCACGCA
75	CGGCAACTCG	GCCATGAACC	CCATTGTCTA	TGCCTCCGC	ATCCAGAACT	TCCCGTCAC	CTTCCTTAAG
	ATTTGGAAATG	ACCA ATTCCG	CTGCCAGCT	GCACCTCCA	TTGACGAGGA	TCTCCCAGAA	GAGAGGCCTG
	ATGACTAGAC	CCCCTCTTCC	GCTCCCACCG	CCCACATCCA	GTGGGGTCTC	AGTCCAGTCC	TCACATGCC
	GCTGTCCAG	GGGTCTCCCT	GAGCCTGCC	CAGCTGGGT	GTTGGCTGGG	GGCATGGGGG	AGGCTCTGAA
	GAGATACCCA	CAGAGTGTG	TCCCTCCACT	AGGAGTTAAC	TACCTACAC	CTCTGGGCC	TGCAGGAGGC
80	CTGGGAGGGC	AAGGGTCCTA	CGGAGGGACC	AGGTGTCTAG	AGGCAACAGT	GTTCTGAGCC	CCCACCTGCC
	TGACCATCCC	ATGAGCAGTC	CAGAGCTCA	GGGCTGGGCA	GGTCCTGGGG	AGGCTGAGAC	TGCAGAGGAG
	CCACCTGGC	TGGAGAAGG	TGCTTGGGCT	TCTGCGGTGA	GGCAGGGGAG	TCTGCTTGTG	TTAGATGTTG

GTGGTGCAGC CCCAGGACCA AGCTTAAGGA GAGGAGAGCA TCTGCTCTGA GACGGATGGA AGGAGAGAGG
 TTGAGGATGC ACTGCGCTGT TCTGTAGGAG AGACTGGCA GA -3' (FRAG. NO: ___) (SEQ. NO: 3005) [2423]
 5'-CGCATTGTG TTITAATAAA AGAATCTGGA AGATAAAATAG TCTTGAAAGAG AGACAAAGGA AGGAAAATT
 AAATCCTTAG ATTC'AAGCAG AAGAATTCCA TGTTGGAAAGGT TTGGGTTGTT GTTGGTGTG TTTGGTGTG
 5 TTTTGTGTT TTTGTTTTTG TGAGATGGAG TCTCGCTGTG TTACCGGGAG CGACAGAGCC
 GCACGGCCGA GTCGAGTCCC AGCCAGCTAC CATCCCTCTG GAGCTTACCG GCCGGCCTTG GCTTCCCCAG
 GAATCCCTGG AGCTAGCGC TGCTGAAGGC GTCGAGGTGT GGGGGCACTT GGACAGAACAA GTCAGGCAGC
 CGGGAGCTCT GCCAGCTTTG GTGACCTTGG GTGCTTGCCT CGTCCCCCTT GGTGCCCGTC TGCTGATGTG
 10 CCCAGCCTGT GCCGCCATG CCGCCCTCCA TCTCAGCTTT CCAGGGCGC TACATCGGCA TCGAGGTGCT
 CATGCCCTG GTCTCTGTG CCGGGAACGT GCTGGTGTAC TGGGCGGTGA AGGTGAACCA GGGGCTGCGG
 GATGCCACCT TCTC CTTCAT CGTGTGCGTG CGGGTGGCTG ATGTCGGCGT GGGTGCCTG GTCATCCCCC
 TCGCCATCCT CATCACACATT GGGCCACAGA CCTACTTCCA CACCTGCCTC ATGGTTGCCT GTCCGGTCCT
 15 CATCCTACC CAGAGCTCA TCCTGGCCCT GCTGGCAATT GCTGTGGACC GCTACCTCCG GGTCAAGATC
 CCTCTCCGGT ACAAGATGGT GGTGACCCCC CGGAGGGCGG CGTGGCCAT AGCCGGCTGC TGGATCCTCT
 CCTTCGTGGT GGGACTGACC CCTATGTTG GCTGGAACAA TCTGAGTGC GGTGGAGCGGG CCTGGCAGC
 CAACGGCAGC ATGGGGGAGC CGTGATCAA GTGCGAGTTC GAGAAGGTCA TCAGCATGGA GTACATGGTC
 TACTTCAACT TCTTGTGTG GGTGCTGCC CGGCTTCTCC TCATGGTCTC CATCTACCTG GAGGTCTTCT
 ACCTAATCCG CAAC CAGCTC AACAAAGAAGG TGTCGGCCTC CTCCGGCGAC CGCGAGAAAGT ACTATGGAA
 GGAGCTGAAG ATCGCCAAGT CGCTGGCCCT CATCTCTTC CTCTTGTCC TCAGCTGGCT GCCTTGCAC
 20 ATCCTCAACT GCATCACCC CTTCTGCCG TCCTGCCACA AGCCCAGCAT CTTTACCTAC ATTGCCATCT
 TCCTCACGCA CGGCACACTCG GCCATGAACC CCATTGTCTA TGCTTCCCG ATCCAGAAAGT TCCGCGTCAC
 CTTCTTAAG ATTGGAATG ACCATTTCCG CTGCCAGCCT GCACCTCCCA TTGACGAGGA TCTCCCAGAA
 GAGAGGCTG ATGACTAGAC CCCGCTTCC GCTCCCACCG CCCACATCCA GTGGGGTCTC AGTCCAGTCC
 25 TCACATGCC GCTGTCCCAG GGGTCTCCCT GAGCCTGCC CAGCTGGCT GTTGGCTGGG GGATGGGGG
 AGGCTCTGAA GAGATACCCA CAGAGTGTGG TCCCTCCACT AGGAGTTAAC TACCTACAC CTCTGGGCC
 TGCAGGAGGC CTGCAGGGC AAGGGTCTTA CGGAGGGACC AGGTGTCTAG AGGCAACAGT GTTCTGAGCC
 CCCACCTGCC TGACCATCCC ATGAGCAGTC CAGAGCTCA GGGCTGGCA GGTCTGGGG AGGCTGAGAC
 TGCAGAGGAG CCACCTGGC TGGGAGAAGG TGCTTGGGCT TCTGCGGTGA GGCAAGGGAG TCTGCTTGT
 30 TTAGATGTTG GTGGTGCAGC CCCAGGACCA AGCTTAAGGA GAGGAGAGCA TCTGCTCTGA GACGGATGGA
 AGGAGAGAGG TTGAGGATGC ACTGGCCTGT TCTGTAGGAG AGACTGGCA GA -3' (FRAG. NO: ___) (SEQ. ID NO:
 2434)
 5'- ATGAGTGTCA GAAAGTGTGAA GGGTGCCTGT TCTGAATCCC AGAGCCTCCT CTCCCTCTGT GAGGCTGGCA
 GGTGAGGAAG GGTATAACCT CACTGGAAGG AATCCCTGGA GCTAGCGCT GCTGAAGGCG TCGAGGTGTG
 GGGGCACTTG GACAGAACAG TCAGGCAGCC GGGAGCTCTG CCAGCTTGG TGACCTTGGG CGGGCTGGG
 35 AGCGCTCGGG CGGGAGCCGG AGGACTATGA GCTGCCGCGC GTTGTCCAGA GCCCAGCCA GCCCTACGCG
 CGCGGCCCGG AGCTCTGTTC CCTGGAACCT TGGGCACTGC CTCTGGGACC CCTGCCGGCC AGCAGGCAGG
 ATGGTGTCTG CCTCGTGCCTC CTGGTGTGCC GTCTGCTGAT GTGCCAGCC TGTGCCGCC ATGCCGCCCT
 CCATCTCAGC TTTCAGGCC GCCTACATCG GCATCGAGGT GCTCATGCC CTGGTCTCTG TGCCCGGGAA
 CGTGTGGTG ATCTGGCGG TGAAGGTGAA CCAGGCCTG CGGGATGCCA CCTCTGCTT CATCGTGTG
 40 CTGGCGGTGG CTGATGTGGC CGTGGGTGCC CTGGTCATCC CCCTCGCCAT CCTCATCAAC ATTGGGCCAC
 AGACCTACTT CCACACCTGC CTCATGGTG CCTGTCGGT CCTCATCC CACCAAGAGCT CCATCCTGGC
 CCTGCTGGCA ATTGCTGTGG ACCGCTACCT CCGGGTCAAG ATCCCTCTCC GGTACAAGAT GGTGGTGACC
 CCCCAGGGGG CGGCAGGTGGC CATAGCCGGC TGCTGGATCC TCTCCTCGT GGTGGGACTG ACCCCTATGT
 TTGGCTGGAA CAATCTGAGT GCGGTGGAGC GGGCCTGGGC AGCCAACGGC AGCATGGGG AGCCCGTGAT
 45 CAAGTGCAG TTCCAGAAGG TCATCAGCAT GGAGTACATG GTCTACTTCA ACTTCTTGT GTGGGTGTG
 CCCCCGCTTC TCCTCATGGT CCTCATCTAC CTGGAGGTCT TCTACCTAAT CCGCAAGCAG CTAAACAAGA
 AGGTGTCGGC CTCCCTCCGGC GACCCGCAGA AGTACTATGG GAAGGAGCTG AAGATGCCA AGTCGCTGGC
 CCTCATCTC TTCCCTTTG CCTCAGCTG GTCCTGGT GACATCCCTCA ACTGCATCAC CCTCTCTGC
 CCGCCTGCC ACAAGCCAG CATCCTTAC TACATTGCC TCTTCCCTAC GCACGGCAAC TCGGCCATGA
 50 ACCCCATTGT CTATGCCCTC CGCATCCAGA AGTCCCGCT CACCTTCTT AAGATTGGA ATGACCATT
 CCGCTGCCAG CCTGCACCTC CCATTGACGA GGATCTCCA GAAGAGAGGC CTGATGACTA GACCCCGCCT
 TCCGCTCCA CCAGCCCACA TCCAGTGGG TCTCAGTCCA GTCTCACAT GCCCCTGTGTC CCAGGGGTCT
 CCCTGAGCCT GCCCCAGCTG GGCTGTGGC TGGGGCATG GGGGAGGCTC TGAAGAGATA CCCACAGAGT
 GTGGTCCCTC CACTAGGAGT TAACTACCT ACACCTCTGG GCCCTGCAGG AGGCTGGGA GGCAAGGGT
 55 CCTACGGAGG GACCAAGGTGT CTAGAGGCAA CAGTGTCTG AGCCCCCACC TGCCTGACCA TCCCAGGAGC
 AGTCCAGCGC TTCAGGGCTG GGCAGGTCTT GGGGAGGCTG AGACTGCAGA GGAGCCACCT GGGCTGGGAG
 AAGGTGTTG GGCTCTGCG GTGAGGCAGG GGAGTCTGCT TGTCTTAGAT GTTGGTGGTG CAGCCCCAGG
 ACCAAGCTTA AGGAAGAGGAG AGCATCTGCT CTGAGACGGA TGAAGGAGA GAGGTGAGG ATGCACTGGC
 CTGTTCTGTA GGAGAGACTG GCCAGAGGCA GCTAAGGGGC AGGAATCAAG GAGCCTCCGT TCCCACCTCT
 60 GAGGACTCTG GACCCAGGC CATACCAAGT GCTAGGGTGC CTGCTCTCT TGCCCTGGGC CAGCCCAGGA
 TTGTACGTGG GAGAGGCAGA AAGGGTAGGT TCAGTAATCA TTTCTGATGA TTTGCTGGAG TGCTGGCTCC
 ACGCCCTGGG GAGTAGCTT GGTGCGGTAG GTGCTGGCT CAAACAGCCA CGAGGTGGTA GCTCTGAGCC

CTCCTTCTG CCCTGAGCTT TCCGGGGAGG AGCCTGGAGT GTAATTACCT GTCATCTGG CCACCAAGCTC
 CACTGGCCC CGT'GCCGGG CCTGGACTGT CCTAGGTGAC CCCATCTG CTGCTCTGG GCCTGATGGA
 GAGGAGAACAA CTAGACATGC CAACTCGGGA GCATTCTGCC TGCTGGGAA CGGGGTGGAC GAGGGAGTGT
 5 CTGTAAGGAC TCACTGTTGA CTGTAGGCCG CCCTGGGGTG GGTTTAGCAG GCTGCAGCAG GCAGAGGAGG
 AGTACCCCCC TGAGAGCATG TGGGGGAAGG CCTTGCTGTC ATGTGAATCC CTCATAACCC CTAGTATCTG
 GCTGGTTT CAGC GGCTT GGAAGCTCTG TTGAGGTGT CGGGGGTCT AGGACTTGT GGATCTGGGA
 TCTGGGAAG GACC'AACCCA TGCCCTGCCA AGCCTGGAGC CCTGTGTTG GGGGCAAGG TGGGGAGCC
 TGGAGCCCC GTGTGGGAGG GCGAGGCCGG GGAGCCTGGA GCCCCTGTGT GGGAGGGCGA GGCGGGGGAT
 10 CCTGGAGCCC CTGIGTCGGG GGGCGAGGGA GGGGAGGTGG CGCTGGTTG ACCTCTGAA CATGAGTGT
 AACTCCAGGA CTTCTTCCA AGCCCTTCCC TCTGTGGAA ATTGGGTGTG CCCTGGCTCC CAAGGGAGGC
 CCATGTGACT AATAA AAAAC TGTGAACCC -3' (**FRAG. NO:**)**(SEQ. ID NO: 2433)**
 5'- ATGCCGCCCT CCATCTCAGC TTTCCAGGCC GCCTACATCG GCATCGAGGT GCTCATCGCC CTGGTCTCTG
 TGCCCGGGAA CGT'CTGGTG ATCTGGGCGG TGAAGGTGAA CCAGGCGCTG CGGGATGCCA CCTTCTGCTT
 CATCGTCTCG CTGC CGGTGG CTGATGTGGC CGTGGGTGCC CTGGTCATCC CCCICGCCAT CCTCATCAAC
 15 ATTGGGCCAC AGACCTACTT CCACACCTGC CTCATGGTT CCTGTCCGGT CCTCATCCTC ACCCAGAGCT
 CCATCCTGGC CCTG CTGGCA ATTGCTGTGG ACCGCTACCT CCGGGTCAAG ATCCCTCTCC GGTACAAGAT
 GGTGGTGACC CCC'GGAGGG CGCGGGTGGC CATAGCCGGC TGCTGGATCC TCTCCTTCGT GGTGGGACTG
 ACCCCTATGT TTGGCTGGAA CAATCTGAGT GCGGTGGAGC GGGCCTGGC AGCCAACGGC AGCATGGGG
 20 AGCCCGTGTAT CAACTGGAG TTCGAGAAGG TCATCAGCAT GGAGTACATG GTCTACTTCA ACTTCTTTGT
 GTGGGTGCTG CCC'CGTTC TCCTCATGGT CCTCATCTAC CTGGAGGTCT TCTACCTAAT CCGCAAGCAG
 CTCAACAAAAGA AGG'GTGCGC CTCCTCCGGC GACCCGAGA AGTACTATGG GAAGGAGCTG AAGATGCCA
 AGTCGCTGGC CCTCATCTC TTCCCTTTG CCCTCAGCTG GCTGCCTTIG CACATCCTCA ACTGCATCAC
 CCTCTCTGC CCCTCTGCCA ACAAGCCCAG CATCCTTAC TACATTGCCA TCTCCTCAC GCACGGCAAC
 25 TCGGCCATGA ACCCATTGT CTATGCCCTC CGCATCCAGA AGTCCCGCT CACCTTCCTT AAGATTGGA
 ATGACCATT CCCTG'GCCAG CCTGCACCTC CCATTGACGA GGATCTCCA GAAGAGAGGC CTGATGACTA G-3'
(FRAG. NO:)(SEQ. ID NO: 2432)**
 5'-CGCATTGTTG TTITAATAAA AGAATCTGGA AGATAAAATAG TCTTGAAGAG AGACAAAGGA AGGAAAATTT
 AAATCCTTAG ATTCAAGCAG AAGAATTCCA TGTGAAGGT TTGGGTGTT GTTGTGTTG TTTGGTGTGT
 TTTTGTGTTT TTG'TTTT TGTTTTTGAGATGGAG TCTCGCTGT TTACCGGGAG CGACAGAGCC
 30 GCACGGCCGA GTCCAGTCCC AGCCAGCTAC CATCCCTCTG GAGCTTACCG GCCGGCCTTG GCTTCCCCAG
 GAATCCTTGG AGCTAGCGGC TGCTGAAGGC GTCGAGGTGT GGGGGCACTT GGACAGAACAA GTCAGGCAGC
 CGGGAGCTCT GCCAGCTTG GTGACCTTGG TGCTTGCCT CGTCCCCCTT GGTGCCGTC TGCTGATGTG
 CCCAGCTGT GCCG GCCATG CGGCCCTCCA TCTCAGCTTT CCAGGCCGCC TACATCGGCA TCGAGGTGCT
 CATGCCCTG GTCTGTGCG CGGGAACGT GCTGGTGTAC TGGCGGTGA AGGTGAACCA GGCGCTGGG
 35 GATGCCACCT TCTGCTTCAT CGTGTGCGTG GCGGTGGCTG ATGTGGCCGT GGGTGCCTG GTCATCCCC
 TCGCCATCCT CATCAACATT GGGCCACAGA CCTACTTCCA CACCTGCCTC ATGGTGCCT GTCCGGTCT
 CATCCTCACC CAGAGCTCA TCCCTGCCCT GCTGGCAATT GCTGTGGACC GCTACCTCCG GGTCAAGATC
 CCTCTCCGGT ACAAGATGGT GGTGACCCCC CGGAGGGCGG CGTGGCCAT AGCCGCTGC TGGATCCTCT
 CCTTCGTGGT GGGACTGACC CCTATGTTG GCTGGAACAA TCTGAGTGC GTGGAGCGGG CCTGGCAGC
 40 CAACGGCAGC ATGC GGGAGC CCGTGATCAA GTCGAGTTC GAGAAGGTCA TCAGCATGGA GTACATGGTC
 TACTTCAACT TCTTGTGTG GGTGCTGCC CCGCTTCTCC TCATGGTCCCT CATCTACCTG GAGGTCTTCT
 ACCTAATCCG CAAGCAGCTC AACAGAAGG TGTGGCCCTC CTCCGGCAGC CCGCAGAAGT ACTATGGAA
 GGAGCTGAAG ATCGCCAAGT CGTGGCCCT CATCTCTTC CTCTTGCCTC TCAGCTGGCT GCCTTGCAC
 45 ATCCTCAACT GCATCACCT CTTCTGCCG TCCGCCACA AGCCCAGCAT CCTTACCTAC ATTGCCATCT
 CCTCCCTAACG ATTTGAAATG ACCATTTCG CTGCGAGCT GCACCTCCCA TTGACGAGGA TCTCCAGAA
 GAGAGGCCCTG ATGAGCTAGAC CCCGCCCTCC GCTCCACCG CCCACATCCA GTGGGTCTC AGTCCAGTCC
 TCACATGCCG GCTGCTCCCAG GGGTCTCCCT GAGCTGGCC CAGCTGGCT GTTGGCTGGG GGATGGGG
 50 AGGCTCTGAA GAGATACCCA CAGAGTGTGG TCCCTCCACT AGGAGTTAAC TACCTACAC TCCCGTCA
 TGCAAGGAGG CTGGAGGGC AAGGGTCTTA CGGAGGGACC AGGTGCTAG AGGCAACAGT GTTCTGAGCC
 CCCACCTGCC TGACCATCCC ATGAGCAGTC CAGAGCTCA GGGCTGGCA GGTCTGGGG AGGCTGAGAC
 TGCAGAGGAG CCAC'CTGGGC TGGGAGAAGG TGCTTGGCT TCTGCGGTGA GGCAGGGAG TCTGCTTGT
 TTAGATGTG TGCGCAGC CCCAGGACCA AGCTTAAGGA GAGGAGAGCA TCTGCTCTGA GACGGATGGA
 AGGAGAGAGG TTGAGGATGC ACTGGCTGT TCTGTAGGAG AGACTGGCCA GA -3'
 55 **(FRAG. NO:)**(SEQ. ID NO: 2422)**
 5'-ATGAGTGTCA GAAGTGTGAA GGGTGCCTGT TCTGAATCCC AGAGCCTCT CTCCTCTGT GAGGCTGGCA
 GGTGAGGAAG GGT'TAACCT CACTGGAGG AATCCCTGGA GCTAGCGCT GCTGAAGGCG TCGAGGTGTG
 GGGGCACCTG GACAGAACAG TCAGGCAGCC GGGAGCTCTG CCAGCTTGG TGACCTTGGG CCGGGCTGGG
 AGCGCTGCCG CGGC AGCCGG AGGACTATGA GCTGCCGCG GTTGTCCAGA GCCCAGCCCA GCCCTACCGC
 60 CGCGGCCCGG AGC'CTGTT CCTGGAACCT TGGGCACTGC CTCTGGGACC CCTGCCGGCC AGCAGGCAGG
 ATGGTCTTG CCTCGTGCCTC CTGGTGCCTC GTCTGCTGAT GTGCCAGCC TGTGCCCGCC ATGCCGCCCT****

CCATCTCAGC TTT'CAGGCC GCCTACATCG GCATCGAGGT GCTCATCGCC CTGGTCTCTG TGCCCCGGAA
 CGTGCTGGT ATC'GGGCGG TGAAAGGTGAA CCAGGCGCTG CCGGATGCCA CCTCTGCTT CATCGTGTG
 CTGGCGGTGG CTGATGTGGC CGTGGGTGCC CTGGTCATCC CCCTCGCCAT CCTCATCAAC ATTGGGCCAC
 5 AGACCTACTT CCACACCTGC CTCATGGTT CCGTCCGGT CCTCATCCTC ACCCAGAGCT CCATCCTGGC
 CCTGCTGGCA ATTGCTGTGG ACCGCTACCT CCGGGTCAAG ATCCCTCTC GGTACAAGAT GGTGGTGACC
 CCCCGGAGGG CGG CGGTGGC CATAGCCGGC TGCTGGATCC TCTCTTCTCG GTGGGGACTG ACCCTATGT
 TTGGCTGGAA CAA'CTGAGT GCGGTGGAGC GGGCCTGGGC AGCCAACGGC AGCATGGGG AGCCCGTGAT
 CAAGTGCAGAG TTCGAGAAGG TCATCAGCAT GGAGTACATG GTCTACTTCA ACTTCTTGT GTGGGTGCTG
 10 CCCCGCTTC TCCICATGGT CCTCATCTAC CTGGAGGTCT TCTACCTAAT CCGCAAGCAG CTCAACAAGA
 AGGTGTCGGC CTCC'TCCGGC GACCCGCAGA AGTACTATGG GAAGGAGCTG AAGATGCCA AGTCGCTGGC
 CCTCATCCTC TTCC TCTTTG CCCTCAGCTG GCTGCCTTG CACATCCTCA ACTGCATCAC CCTCTTCTGC
 CCGTCCTGCC ACAAGGCCAG CATCCTTACC TACATTGCCA TCTTCCTCAC GCACGGCAAC TCGGCCATGA
 15 ACCCCATTGT CTATGCCCTC CGCATCCAGA AGTCCCGCT CACCTTCCTT AAGATTGGA ATGACCATT
 CCGCTGCCAG CCTC'CACCTC CCATTGACGA GGATCTCCC GAAGAGAGGC CTGATGACTA GACCCCGCT
 TCCGCTCCA CCACCCCACA TCCAGTGGGG TCTCAGTCCA GTCTCACAT GCCGCTGTC CCAGGGGTCT
 CCCTGAGCCT GCCC CAGCTG GGCTGTTGGC TGGGGCATG GGGGAGGCTC TGAAGAGATA CCCACAGAGT
 GTGGTCCTC CACTAGGAGT TAACTACCT ACACCTCTGG GCCCTCGAGG AGGCCCTGGGA GGGCAAGGGT
 CCTACGAGG GACCAGGTGT CTAGAGGCAA CAGTGTCTG AGCCCCCACC TGCCGTACCA TCCCATGAGC
 20 AGTCCAGCGC TTCAAGGGCTG GGCAGGTCCT GGGGAGGCTG AGACTCGAGA GGAGCCACCT GGGCTGGGAG
 AAGGTGCTT GGC'TCTGCG GTGAGGCAGG GGAGTCTGCT TGTCTTAGAT GTTGGTGGTG CAGCCCCAGG
 ACCAACGTTA AGGAAGAGGAG AGCATCTGCT CTGAGACGGA TGGAAAGGAGA GAGGTTGAGG ATGCACTGGC
 CTGTTCTGTA GGAGAGACTG GCCAGAGGC GCTAAGGGGC AGGAATCAAG GAGGCTCCGT TCCCACCTCT
 GAGGACTCTG GACC'CCAGGC CATACCAAGGT GCTAGGGTGC CTGCTCTCT TGCCCTGGGC CAGCCCAGGA
 25 TTGTACGTGG GAGAGGCAGA AAGGGTAGGT TCAGTAATCA TTTCTGATGA TTTGCTGGAG TGCTGGCTCC
 ACGCCCTGGG GAGT'GAGCTT GGTGCGGTAG GTGCTGGCT CAAACAGCCA CGAGGTGGTA GCTCTGAGCC
 CTCCCTCTG CCCTGAGCTT TCCGGGGAGG AGCTGGAGT GTAATTACCT GTCATCTGGG CCACCAAGCTC
 CACTGGCCCC CGTIGCCGGG CCTGGACTGT CCTAGGTGAC CCCATCTCTG CTGCTCTGG GCCTGATGGA
 GAGGAGAACAA CTAGACATGC CAACTCGGGA GCATTCTGCC TGCCCTGGAA CGGGGTGGAC GAGGGAGTGT
 CTGTAAGGAC TCAC TGTGA CTGTAGGCGC CCCTGGGGTG GGTTCAGCAG GCTGCAGCAG GCAGAGGAGG
 30 AGTACCCCCC TGAC AGCATG TGGGGGAAGG CCTGCTGTC ATGTGAATCC CTCATAACCC CTAGTATCTG
 GCTGGTTTT CAGGGCTTT GGAAGCTCTG TTGCAAGGTGT CGGGGGGTCT AGGACTTTAG GGATCTGGGA
 TCTGGGGAAG GACC'AACCCA TGCCCTGCCA AGCCTGGAGC CCCTGTGTG GGGGCAAGG TGGGGAGGCC
 TGGAGCCCC GTGTGGAGG GCGAGGCGGG GGAGCCTGGA GCCCCCTGTG GGGAGGGCGA GGCGGGGGAT
 CCTGGAGCCC CTGTGTCGGG GGGCGAGGGA GGGGAGGTGG CGTCGGTTG ACCTCTGAA CATGAGTGT
 35 AACTCCAGGA CTTC CTTCCA AGCCCTTCCC TCTGTTGGAA ATTGGGTGTG CCCTGGCTCC CAAGGGAGGC
 CCATGTACT AATAA AAAAC TGTGAACCC -3' (FRAG. NO:) (SEQ. ID NO: 2421)
 5'-ATGCCGCCCT CCATCTCAGC TTTCAGGCC GCCTACATCG GCATCGAGGT GCTCATCGCC CTGGTCTCTG
 TGCCCGGGAA CGTC CTGGTG ATCTGGGCC TGAAAGGTGAA CCAGGCGCTG CCGGATGCCA CCTCTGCTT
 40 CATCGCTCTG CTGGCGGTGG CTGATGTGCC CGTGGGTGCC CTGGTCATCC CCCTCGCCAT CCTCATCAAC
 ATTGGGCCAC AGACCTACTT CCACACCTGC CTCATGGTT CCTGTCCGGT CCTCATCCTC ACCCAGAGCT
 CCATCCTGGC CCTGCTGGCA ATTGCTGTGG ACCGCTACCT CGGGGTCAAG ATCCCTCTCC GGTACAAGAT
 GGTGGTGACC CCCGGAGGG CGGCGGTGGC CATAGCCGGC TGCTGGATCC TCTCTTCTCG GGTGGGACTG
 CCCCTATGT TTGGCTGGAA CAATCTGAGT CGGGTGGAGC GGGCCTGGGC AGCCAACGGC AGCATGGGG
 AGCCCGTGAT CAAC TGCAG TGCGAGAAGG TCATCAGCAT GGAGTACATG GTCTACTTCA ACTTCTTGT
 45 GTGGGTGCTG CCCCCGCTTC TCCTCATGGT CCTCATCTAC TGAGGCTCTG TCTACCTAAT CCGCAAGCAG
 CTCAACAAAGA AGGTGTCGGC CCTCTCGGGC GACCCCGAGA AGTACTATGG GAAGGAGCTG AAGATGCCA
 AGTCGCTGGC CCTCATCCTC TTCCCTTTG CCTCTCAGCTG GCTGCCTTG CACATCCTCA ACTGCATCAC
 CCTCTCTGTC CGCTCTGCC ACAAGCCAG CATCCTTAC TACATTGCCA TCTTCCTCAC GCACGGCAAC
 TCGGCCATGA ACCCCATTGT CTATGCCCTC CGCATCCAGA AGTCCCGCT CACCTTCCTT AAGATTGGA
 50 ATGACCATTT CCGC'GCCAG CCTGCACCTC CCATTGACGA GGATCTCCA GAAGAGAGGC CTGATGACTA G
 (FRAG NO:) (SEQ. ID NO: 2420)
 5'-GAT GGA GGG CGG CAT GGC GGG-3' (FRAG. NO: 1657) (SEQ ID NO:2412)
 5'-G CGG GTC GCC GC-3' (FRAG. NO: 1658) (SEQ ID NO:2413)
 5'-GGC GGG CBC BGG C-3' (FRAG. NO: 1659) (SEQ ID NO:2414)
 55 5'-GGC GGG CBC-3' (FRAG. NO: 1660) (SEQ ID NO:2415)
 5'-GC GGC CTG G-3' (FRAG. NO: 1661) (SEQ ID NO:2416)
 5'-GGB GGG CGG C-3' (FRAG. NO: 1662) (SEQ ID NO:2417)
 5'-GBT GGB GGG-3' (FRAG. NO: 1663) (SEQ ID NO:2418)
 5'-GG CTG GGC-3' (FRAG. NO: 1664) (SEQ ID NO:2419)
 60 5'-GC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG.1) (SEQ. ID NO: 11)
 5'-C GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG.2) (SEQ. ID NO:12)

	5'-GGC CTG GAA AGC' TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 3) (SEQ. ID NO: 13)
	5'-GC CTG GAA AGC' TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 4) (SEQ. ID NO: 14)
	5'-C CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 5) (SEQ. ID NO: 15)
	5'-CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 6) (SEQ. ID NO: 16)
5	5'-TG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 7) (SEQ. ID NO: 17)
	5'-G GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 8) (SEQ. ID NO: 18)
	5'-GAA AGC TGA GAT' GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 9) (SEQ. ID NO: 19)
	5'-AA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 10) (SEQ. ID NO: 20)
10	5'-A AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 11) (SEQ. ID NO: 21)
	5'-AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 12) (SEQ. ID NO: 22)
	5'-GC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 13) (SEQ. ID NO: 23)
	5'-C TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 14) (SEQ. ID NO: 24)
	5'-TGA GAT GGA GGC CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 15) (SEQ. ID NO: 25)
15	5'-GA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 16) (SEQ. ID NO: 26)
	5'-A GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 17) (SEQ. ID NO: 27)
	5'-GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 18) (SEQ. ID NO: 28)
	5'-AT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 19) (SEQ. ID NO: 29)
	5'-T GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 20) (SEQ. ID NO: 30)
	5'-GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 21) (SEQ. ID NO: 31)
20	5'-GA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 22) (SEQ. ID NO: 32)
	5'-A GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 23) (SEQ. ID NO: 33)
	5'-GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 24) (SEQ. ID NO: 34)
	5'-GG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 25) (SEQ. ID NO: 35)
	5'-G CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 26) (SEQ. ID NO: 36)
25	5'-CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 27) (SEQ. ID NO: 37)
	5'-GG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 28) (SEQ. ID NO: 38)
	5'-G CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 29) (SEQ. ID NO: 39)
	5'-CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 30) (SEQ. ID NO: 40)
	5'-AT GGC GGG CAC AGG CTG GGC-3' (FRAG 31) (SEQ. ID NO: 41)
30	5'-T GGC GGG CAC AGG CTG GGC-3' (FRAG 32) (SEQ. ID NO: 42)
	5'-GGC GGG CAC AGC CTG GGC-3' (FRAG 33) (SEQ. ID NO: 43)
	5'-GC GGG CAC AGG CTG GGC-3' (FRAG 34) (SEQ. ID NO: 44)
	5'-C GGG CAC AGG CTG GGC-3' (FRAG 35) (SEQ. ID NO: 45)
	5'-GGG CAC AGG CTG GGC-3' (FRAG 36) (SEQ. ID NO: 46)
35	5'-GG CAC AGG CTG GGC-3' (FRAG 37) (SEQ. ID NO: 47)
	5'-G CAC AGG CTG GGC-3' (FRAG 38) (SEQ. ID NO: 48)
	5'-CAC AGG CTG GGC-3' (FRAG 39) (SEQ. ID NO: 49)
	5'-AC AGG CTG GGC-3' (FRAG 40) (SEQ. ID NO: 50)
	5'-C AGG CTG GGC-3' (FRAG 41) (SEQ. ID NO: 51)
40	5'-AGG CTG GGC-3' (FRAG 42) (SEQ. ID NO: 52)
	5'-GGC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 43) (SEQ. ID NO: 53)
	5'-GGC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 44) (SEQ. ID NO: 54)
	5'-GGC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG G-3' (FRAG 45) (SEQ. ID NO: 55)
	5'-GGC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG -3' (FRAG 46) (SEQ. ID NO: 56)
45	5'-GGC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CT-3' (FRAG 47) (SEQ. ID NO: 57)
	5'-GGC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG C-3' (FRAG 48) (SEQ. ID NO: 58)
	5'-GGC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG -3' (FRAG 49) (SEQ. ID NO: 59)
	5'-GGC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AG-3' (FRAG 50) (SEQ. ID NO: 60)
	5'-GGC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC A-3' (FRAG 51) (SEQ. ID NO: 61)
50	5'-GGC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC-3' (FRAG 52) (SEQ. ID NO: 62)
	5'-GGC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CA-3' (FRAG 53) (SEQ. ID NO: 63)
	5'-GGC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG C-3' (FRAG 54) (SEQ. ID NO: 64)
	5'-GGC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG -3' (FRAG 55) (SEQ. ID NO: 65)
	5'-GGC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GG-3' (FRAG 56) (SEQ. ID NO: 66)
55	5'-GGC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC G-3' (FRAG 57) (SEQ. ID NO: 67)
	5'-GGC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC -3' (FRAG 58) (SEQ. ID NO: 68)
	5'-GGC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GG -3' (FRAG 59) (SEQ. ID NO: 69)
	5'-GGC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT G -3' (FRAG 60) (SEQ. ID NO: 70)
	5'-GGC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT -3' (FRAG 61) (SEQ. ID NO: 71)
60	5'-GGC GGC CTG GAA AGC TGA GAT GGA GGG CGG CA-3' (FRAG 62) (SEQ. ID NO: 72)
	5'-GGC GGC CTG GAA AGC TGA GAT GGA GGG CGG C-3' (FRAG 63) (SEQ. ID NO: 73)
	5'-GGC GGC CTG GAA AGC TGA GAT GGA GGG CGG -3' (FRAG 64) (SEQ. ID NO: 74)

5'-GGC GGC CTG GAA AGC TGA GAT GGA GGG CG -3' (FRAG 65) (SEQ. ID NO: 75)
5'-GGC GGC CTG GAA AGC TGA GAT GGA GGG C -3' (FRAG 66) (SEQ. ID NO: 76)
5'-GGC GGC CTG GAA AGC TGA GAT GGA GGG -3' (FRAG 67) (SEQ. ID NO: 77)
5'-GGC GGC CTG GAA AGC TGA GAT GGA GG -3' (FRAG 68) (SEQ. ID NO: 78)
5 5'-GGC GGC CTG GAA AGC TGA GAT GGA G -3' (FRAG 69) (SEQ. ID NO: 79)
5'-GGC GGC CTG GAA AGC TGA GAT GGA -3' (FRAG 70) (SEQ. ID NO: 80)
5'-GGC GGC CTG GAA AGC TGA GAT GG -3' (FRAG 71) (SEQ. ID NO: 81)
5'-GGC GGC CTG GAA AGC TGA GAT G -3' (FRAG 72) (SEQ. ID NO: 82)
5'-GGC GGC CTG GAA AGC TGA GAT -3' (FRAG 73) (SEQ. ID NO: 83)
10 5'-GGC GGC CTG GAA AGC TGA GA-3' (FRAG 74) (SEQ. ID NO: 84)
5'-GGC GGC CTG GAA AGC TGA G-3' (FRAG 75) (SEQ. ID NO: 85)
5'-GGC GGC CTG GAA AGC TGA-3' (FRAG 76) (SEQ. ID NO: 86)
5'-GGC GGC CTG GAA AGC TG-3' (FRAG 77) (SEQ. ID NO: 87)
5'-GGC GGC CTG GAA AGC T-3' (FRAG 78) (SEQ. ID NO: 88)
15 5'-GGC GGC CTG GAA AGC-3' (FRAG 79) (SEQ. ID NO: 89)
5'-GGC GGC CTG GAA AG-3' (FRAG 80) (SEQ. ID NO: 90)
5'-GGC GGC CTG GAA A-3' (FRAG 81) (SEQ. ID NO: 91)
5'-GGC GGC CTG GAA-A-3' (FRAG 82) (SEQ. ID NO: 92)
5'-GGC GGC CTG GA- \cdot (FRAG 83) (SEQ. ID NO: 93)
20 5'-GGC GGC CTG G-3' (FRAG 84) (SEQ. ID NO: 94)
5'-GC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 85) (SEQ. ID NO: 95)
5'-GC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 86) (SEQ. ID NO: 96)
5'-GC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG G-3' (FRAG 87) (SEQ. ID NO: 97)
25 5'-GC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG -3' (FRAG 88) (SEQ. ID NO: 98)
5'-GC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CT-3' (FRAG 89) (SEQ. ID NO: 99)
5'-GC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG C-3' (FRAG 90) (SEQ. ID NO: 100)
5'-GC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG -3' (FRAG 91) (SEQ. ID NO: 101)
5'-GC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AG-3' (FRAG 92) (SEQ. ID NO: 102)
30 5'-GC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC A-3' (FRAG 93) (SEQ. ID NO: 103)
5'-GC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC-3' (FRAG 94) (SEQ. ID NO: 104)
5'-GC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CA-3' (FRAG 95) (SEQ. ID NO: 105)
5'-GC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG C-3' (FRAG 96) (SEQ. ID NO: 106)
5'-GC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG -3' (FRAG 97) (SEQ. ID NO: 107)
35 5'-GC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GG-3' (FRAG 98) (SEQ. ID NO: 108)
5'-GC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC G-3' (FRAG 99) (SEQ. ID NO: 109)
5'-GC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC -3' (FRAG 100) (SEQ. ID NO: 110)
5'-GC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GG -3' (FRAG 101) (SEQ. ID NO: 111)
5'-GC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT G -3' (FRAG 102) (SEQ. ID NO: 112)
40 5'-GC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT -3' (FRAG 103) (SEQ. ID NO: 113)
5'-GC GGC CTG GAA AGC TGA GAT GGA GGG CGG CA-3' (FRAG 104) (SEQ. ID NO: 114)
5'-GC GGC CTG GAA AGC TGA GAT GGA GGG CGG C-3' (FRAG 105) (SEQ. ID NO: 115)
5'-GC GGC CTG GAA AGC TGA GAT GGA GGG CGG -3' (FRAG 106) (SEQ. ID NO: 116)
5'-GC GGC CTG GAA AGC TGA GAT GGA GGG CG -3' (FRAG 107) (SEQ. ID NO: 117)
45 5'-GC GGC CTG GAA AGC TGA GAT GGA GGG C -3' (FRAG 108) (SEQ. ID NO: 118)
5'-GC GGC CTG GAA AGC TGA GAT GGA GGG -3' (FRAG 109) (SEQ. ID NO: 119)
5'-GC GGC CTG GAA AGC TGA GAT GGA GG -3' (FRAG 110) (SEQ. ID NO: 120)
5'-GC GGC CTG GAA AGC TGA GAT GGA G -3' (FRAG 111) (SEQ. ID NO: 121)
5'-GC GGC CTG GAA AGC TGA GAT GGA -3' (FRAG 112) (SEQ. ID NO: 122)
50 5'-GC GGC CTG GAA AGC TGA GAT GG -3' (FRAG 113) (SEQ. ID NO: 123)
5'-GC GGC CTG GAA AGC TGA GAT G -3' (FRAG 114) (SEQ. ID NO: 124)
5'-GC GGC CTG GAA AGC TGA GAT -3' (FRAG 115) (SEQ. ID NO: 125)
5'-GC GGC CTG GAA AGC TGA GA-3' (FRAG 116) (SEQ. ID NO: 126)
5'-GC GGC CTG GAA AGC TGA G-3' (FRAG 117) (SEQ. ID NO: 127)
55 5'-GC GGC CTG GAA AGC TGA-3' (FRAG 118) (SEQ. ID NO: 128)
5'-GC GGC CTG GAA AGC TG-3' (FRAG 119) (SEQ. ID NO: 129)
5'-GC GGC CTG GAA AGC T-3' (FRAG 120) (SEQ. ID NO: 130)
5'-GC GGC CTG GAA AGC-3' (FRAG 121) (SEQ. ID NO: 131)
5'-GC GGC CTG GAA AG-3' (FRAG 122) (SEQ. ID NO: 132)
60 5'-GC GGC CTG GAA A-3' (FRAG 123) (SEQ. ID NO: 133)
5'-GC GGC CTG GAA-3' (FRAG 124) (SEQ. ID NO: 134)
5'-GC GGC CTG GA-3' (FRAG 125) (SEQ. ID NO: 135)

5'-C GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 126) (SEQ. ID NO: 136)
5'-C GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 127) (SEQ. ID NO: 137)
5 5'-C GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG G-3' (FRAG 128) (SEQ. ID NO: 138)
5'-C GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG -3' (FRAG 129) (SEQ. ID NO: 139)
5'-C GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CT-3' (FRAG 130) (SEQ. ID NO: 140)
5'-C GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG C-3' (FRAG 131) (SEQ. ID NO: 141)
5'-C GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG -3' (FRAG 132) (SEQ. ID NO: 142)
10 10 5'-C GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AG-3' (FRAG 133) (SEQ. ID NO: 143)
5'-C GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC A-3' (FRAG 134) (SEQ. ID NO: 144)
5'-C GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC-3' (FRAG 135) (SEQ. ID NO: 145)
5'-C GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CA-3' (FRAG 136) (SEQ. ID NO: 146)
5'-C GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG C-3' (FRAG 137) (SEQ. ID NO: 147)
15 15 5'-C GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG -3' (FRAG 138) (SEQ. ID NO: 148)
5'-C GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GG-3' (FRAG 139) (SEQ. ID NO: 149)
5'-C GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC G-3' (FRAG 140) (SEQ. ID NO: 150)
5'-C GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC -3' (FRAG 141) (SEQ. ID NO: 151)
5'-C GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GG -3' (FRAG 142) (SEQ. ID NO: 152)
20 20 5'-C GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT G -3' (FRA 143) (SEQ. ID NO: 153)
5'-C GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT -3' (FRAG 144) (SEQ. ID NO: 154)
5'-C GGC CTG GAA AGC TGA GAT GGA GGG CGG CA-3' (FRAG 145) (SEQ. ID NO: 155)
5'-C GGC CTG GAA AGC TGA GAT GGA GGG CGG C-3' (FRAG 146) (SEQ. ID NO: 156)
25 25 5'-C GGC CTG GAA AGC TGA GAT GGA GGG CGG -3' (FRAG 147) (SEQ. ID NO: 157)
5'-C GGC CTG GAA AGC TGA GAT GGA GGG CG -3' (FRAG 148) (SEQ. ID NO: 158)
5'-C GGC CTG GAA AGC TGA GAT GGA GGG C -3' (FRAG 149) (SEQ. ID NO: 159)
5'-C GGC CTG GAA AGC TGA GAT GGA GGG -3' (FRAG 150) (SEQ. ID NO: 160)
5'-C GGC CTG GAA AGC TGA GAT GGA GG -3' (FRAG 151) (SEQ. ID NO: 161)
5'-C GGC CTG GAA AGC TGA GAT GGA G -3' (FRAG 152) (SEQ. ID NO: 162)
30 30 5'-C GGC CTG GAA AGC TGA GAT GGA -3' (FRAG 153) (SEQ. ID NO: 163)
5'-C GGC CTG GAA AGC TGA GAT GG -3' (FRAG 154) (SEQ. ID NO: 164)
5'-C GGC CTG GAA AGC TGA GAT G -3' (FRAG 155) (SEQ. ID NO: 165)
5'-C GGC CTG GAA AGC TGA GAT -3' (FRAG 156) (SEQ. ID NO: 166)
5'-C GGC CTG GAA AGC TGA GA-3' (FRAG 157) (SEQ. ID NO: 167)
35 35 5'-C GGC CTG GAA AGC TGA G-3' (FRAG 158) (SEQ. ID NO: 168)
5'-C GGC CTG GAA AGC TGA-3' (FRAG 159) (SEQ. ID NO: 169)
5'-C GGC CTG GAA AGC TG-3' (FRAG 160) (SEQ. ID NO: 170)
5'-C GGC CTG GAA AGC T-3' (FRAG 161) (SEQ. ID NO: 171)
5'-C GGC CTG GAA AGC-3' (FRAG 162) (SEQ. ID NO: 172)
40 40 5'-C GGC CTG GAA AG-3' (FRAG 163) (SEQ. ID NO: 173)
5'-C GGC CTG GAA A-3' (FRAG 164) (SEQ. ID NO: 174)
5'-C GGC CTG GAA-3' (FRAG 165) (SEQ. ID NO: 175)
5'-GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 166) (SEQ. ID NO: 176)
45 45 5'-GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 167) (SEQ. ID NO: 177)
5'-GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG G-3' (FRAG 168) (SEQ. ID NO: 178)
5'-GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CT-3' (FRAG 169) (SEQ. ID NO: 179)
5'-GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CT-3' (FRAG 170) (SEQ. ID NO: 180)
5'-GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG C-3' (FRAG 171) (SEQ. ID NO: 181)
50 50 5'-GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG -3' (FRAG 172) (SEQ. ID NO: 182)
5'-GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AG-3' (FRAG 173) (SEQ. ID NO: 183)
5'-GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC A-3' (FRAG 174) (SEQ. ID NO: 184)
5'-GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC-3' (FRAG 175) (SEQ. ID NO: 185)
5'-GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CA-3' (FRAG 176) (SEQ. ID NO: 186)
55 55 5'-GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG C-3' (FRAG 177) (SEQ. ID NO: 187)
5'-GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG -3' (FRAG 178) (SEQ. ID NO: 188)
5'-GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GG-3' (FRAG 179) (SEQ. ID NO: 189)
5'-GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC G -3' (FRAG 180) (SEQ. ID NO: 190)
5'-GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC -3' (FRAG 181) (SEQ. ID NO: 191)
60 60 5'-GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GG -3' (FRAG 182) (SEQ. ID NO: 192)
5'-GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT G -3' (FRAG 183) (SEQ. ID NO: 193)
5'-GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT -3' (FRAG 184) (SEQ. ID NO: 194)

5'- GGC CTG GAA AGC TGA GAT GGA GGG CGG CA-3' (FRAG 185) (SEQ. ID NO: 195)
5'- GGC CTG GAA AGC TGA GAT GGA GGG CGG C-3' (FRAG 186) (SEQ. ID NO: 196)
5'- GGC CTG GAA AGC TGA GAT GGA GGG CGG -3' (FRAG 187) (SEQ. ID NO: 197)
5'- GGC CTG GAA AGC TGA GAT GGA GGG CG -3' (FRAG 188) (SEQ. ID NO: 198)
5 5'- GGC CTG GAA AGC TGA GAT GGA GGG C -3' (FRAG 189) (SEQ. ID NO: 199)
5'- GGC CTG GAA AGC TGA GAT GGA GGG -3' (FRAG 190) (SEQ. ID NO: 200)
5'- GGC CTG GAA AGC TGA GAT GGA GG -3' (FRAG 191) (SEQ. ID NO: 201)
5'- GGC CTG GAA AGC TGA GAT GGA G -3' (FRAG 192) (SEQ. ID NO: 202)
5'- GGC CTG GAA AGC TGA GAT GGA -3' (FRAG 193) (SEQ. ID NO: 203)
10 10 5'- GGC CTG GAA AGC TGA GAT GG -3' (FRAG 194) (SEQ. ID NO: 204)
5'- GGC CTG GAA AGC TGA GAT G -3' (FRAG 195) (SEQ. ID NO: 205)
5'- GGC CTG GAA AGC TGA GAT -3' (FRAG 196) (SEQ. ID NO: 206)
5'- GGC CTG GAA AGC TGA GA-3' (FRAG 197) (SEQ. ID NO: 207)
5'- GGC CTG GAA AGC TGA G-3' (FRAG 198) (SEQ. ID NO: 208)
15 15 5'- GGC CTG GAA AGC TGA-3' (FRAG 199) (SEQ. ID NO: 209)
5'- GGC CTG GAA AGC TG-3' (FRAG 200) (SEQ. ID NO: 210)
5'- GGC CTG GAA AGC T-3' (FRAG 201) (SEQ. ID NO: 211)
5'- GGC CTG GAA AGC-3' (FRAG 202) (SEQ. ID NO: 212)
5'- GGC CTG GAA AG-3' (FRAG 203) (SEQ. ID NO: 213)
20 20 5'- GGC CTG GAA A-3' (FRAG 204) (SEQ. ID NO: 214)
5'- GC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 205) (SEQ. ID NO:
215)
5'- GC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 206) (SEQ. ID NO: 216)
5'- GC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG G-3' (FRAG 207) (SEQ. ID NO: 217)
25 25 5'- GC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG -3' (FRAG 208) (SEQ. ID NO: 218)
5'- GC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CT-3' (FRAG 209) (SEQ. ID NO: 219)
5'- GC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG C-3' (FRAG 210) (SEQ. ID NO: 220)
5'- GC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG -3' (FRAG 211) (SEQ. ID NO: 221)
5'- GC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AG-3' (FRAG 212) (SEQ. ID NO: 222)
30 30 5'- GC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC A-3' (FRAG 213) (SEQ. ID NO: 223)
5'- GC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC-3' (FRAG 214) (SEQ. ID NO: 224)
5'- GC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CA-3' (FRAG 215) (SEQ. ID NO: 225)
5'- GC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG C-3' (FRAG 216) (SEQ. ID NO: 226)
5'- GC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG -3' (FRAG 217) (SEQ. ID NO: 227)
35 35 5'- GC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GG-3' (FRAG 218) (SEQ. ID NO: 228)
5'- GC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC G-3' (FRAG 219) (SEQ. ID NO: 229)
5'- GC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC -3' (FRAG 220) (SEQ. ID NO: 230)
5'- GC CTG GAA AGC TGA GAT GGA GGG CGG CAT GG -3' (FRAG 221) (SEQ. ID NO: 231)
5'- GC CTG GAA AGC TGA GAT GGA GGG CGG CAT G -3' (FRAG 222) (SEQ. ID NO: 232)
40 40 5'- GC CTG GAA AGC TGA GAT GGA GGG CGG CAT -3' (FRAG 223) (SEQ. ID NO: 233)
5'- GC CTG GAA AGC TGA GAT GGA GGG CGG CA-3' (FRAG 224) (SEQ. ID NO: 234)
5'- GC CTG GAA AGC TGA GAT GGA GGG CGG C-3' (FRAG 225) (SEQ. ID NO: 235)
5'- GC CTG GAA AGC TGA GAT GGA GGG CGG -3' (FRAG 226) (SEQ. ID NO: 236)
5'- GC CTG GAA AGC TGA GAT GGA GGG CG -3' (FRAG 227) (SEQ. ID NO: 237)
45 45 5'- GC CTG GAA AGC TGA GAT GGA GGG C -3' (FRAG 228) (SEQ. ID NO: 238)
5'- GC CTG GAA AGC TGA GAT GGA GGG -3' (FRAG 229) (SEQ. ID NO: 239)
5'- GC CTG GAA AGC TGA GAT GGA GG -3' (FRAG 230) (SEQ. ID NO: 240)
5'- GC CTG GAA AGC TGA GAT GGA G -3' (FRAG 231) (SEQ. ID NO: 241)
5'- GC CTG GAA AGC TGA GAT GGA -3' (FRAG 232) (SEQ. ID NO: 242)
50 50 5'- GC CTG GAA AGC TGA GAT GG -3' (FRAG 233) (SEQ. ID NO: 243)
5'- GC CTG GAA AGC TGA GAT G -3' (FRAG 234) (SEQ. ID NO: 244)
5'- GC CTG GAA AGC TGA GAT -3' (FRAG 235) (SEQ. ID NO: 245)
5'- GC CTG GAA AGC TGA GA-3' (FRAG 236) (SEQ. ID NO: 246)
5'- GC CTG GAA AGC TGA G-3' (FRAG 237) (SEQ. ID NO: 247)
55 55 5'- GC CTG GAA AGC TA-3' (FRAG 238) (SEQ. ID NO: 248)
5'- GC CTG GAA AGC TG-3' (FRAG 239) (SEQ. ID NO: 249)
5'- GC CTG GAA AGC T-3' (FRAG 240) (SEQ. ID NO: 250)
5'- GC CTG GAA AGC T-1' (FRAG 241) (SEQ. ID NO: 251)
5'- GC CTG GAA AG-3' (FRAG 242) (SEQ. ID NO: 252)
60 60 5'- C CTG GAA AGC TGA GAT GG A GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 243) (SEQ. ID NO: 253)
5'- C CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 244) (SEQ. ID NO: 254)
5'- C CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG G-3' (FRAG 245) (SEQ. ID NO: 255)

5'- C CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG -3' (FRAG 246) (SEQ. ID NO: 256)
5'- C CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CT-3' (FRAG 247) (SEQ. ID NO: 257)
5'- C CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG C-3' (FRAG 248) (SEQ. ID NO: 258)
5'- C CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG -3' (FRAG 249) (SEQ. ID NO: 259)
5 5'- C CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AG-3' (FRAG 250) (SEQ. ID NO: 260)
5'- C CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC A-3' (FRAG 251) (SEQ. ID NO: 261)
5'- C CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC-C-3' (FRAG 252) (SEQ. ID NO: 262)
5'- C CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CA-3' (FRAG 253) (SEQ. ID NO: 263)
5'- C CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG C-3' (FRAG 254) (SEQ. ID NO: 264)
10 5'- C CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG -3' (FRAG 255) (SEQ. ID NO: 265)
5'- C CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GG-3' (FRAG 256) (SEQ. ID NO: 266)
5'- C CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC G-3' (FRAG 257) (SEQ. ID NO: 267)
5'- C CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC -3' (FRAG 258) (SEQ. ID NO: 268)
5'- C CTG GAA AGC TGA GAT GGA GGG CGG CAT GG -3' (FRAG 259) (SEQ. ID NO: 269)
15 5'- C CTG GAA AGC TGA GAT GGA GGG CGG CAT G -3' (FRAG 260) (SEQ. ID NO: 270)
5'- C CTG GAA AGC TGA GAT GGA GGG CGG CAT -3' (FRAG 261) (SEQ. ID NO: 271)
5'- C CTG GAA AGC TGA GAT GGA GGG CGG CA-3' (FRAG 262) (SEQ. ID NO: 272)
5'- C CTG GAA AGC TGA GAT GGA GGG CGG C-3' (FRAG 263) (SEQ. ID NO: 273)
5'- C CTG GAA AGC TGA GAT GGA GGG CGG -3' (FRAG 264) (SEQ. ID NO: 274)
20 5'- C CTG GAA AGC TGA GAT GGA GGG CG -3' (FRAG 265) (SEQ. ID NO: 275)
5'- C CTG GAA AGC TGA GAT GGA GGG C -3' (FRAG 266) (SEQ. ID NO: 276)
5'- C CTG GAA AGC TGA GAT GGA GGG -3' (FRAG 267) (SEQ. ID NO: 277)
5'- C CTG GAA AGC TGA GAT GGA GG -3' (FRAG 268) (SEQ. ID NO: 278)
5'- C CTG GAA AGC TGA GAT GGA G -3' (FRAG 269) (SEQ. ID NO: 279)
25 5'- C CTG GAA AGC TGA GAT GGA -3' (FRAG 270) (SEQ. ID NO: 280)
5'- C CTG GAA AGC TGA GAT GG -3' (FRAG 271) (SEQ. ID NO: 281)
5'- C CTG GAA AGC TGA GAT G -3' (FRAG 272) (SEQ. ID NO: 282)
5'- C CTG GAA AGC TGA GAT -3' (FRAG 273) (SEQ. ID NO: 283)
5'- C CTG GAA AGC TGA GA-3' (FRAG 274) (SEQ. ID NO: 284)
30 5'- C CTG GAA AGC TGA G-3' (FRAG 275) (SEQ. ID NO: 285)
5'- C CTG GAA AGC TGA-3' (FRAG 276) (SEQ. ID NO: 286)
5'- C CTG GAA AGC TG-3' (FRAG 277) (SEQ. ID NO: 287)
5'- C CTG GAA AGC T 3' (FRAG 278) (SEQ. ID NO: 288)
5'- C CTG GAA AGC-3' (FRAG 279) (SEQ. ID NO: 289)
35 5'- CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 280) (SEQ. ID NO: 290)
5'- CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 281) (SEQ. ID NO: 291)
5'- CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG G-3' (FRAG 282) (SEQ. ID NO: 292)
5'- CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG -3' (FRAG 283) (SEQ. ID NO: 293)
5'- CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CT-3' (FRAG 284) (SEQ. ID NO: 294)
40 5'- CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG C-3' (FRAG 285) (SEQ. ID NO: 295)
5'- CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG -3' (FRAG 286) (SEQ. ID NO: 296)
5'- CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AG-3' (FRAG 287) (SEQ. ID NO: 297)
5'- CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC A-3' (FRAG 288) (SEQ. ID NO: 298)
5'- CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC-C-3' (FRAG 289) (SEQ. ID NO: 299)
45 5'- CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CA-3' (FRAG 290) (SEQ. ID NO: 300)
5'- CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG C-3' (FRAG 291) (SEQ. ID NO: 301)
5'- CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG -3' (FRAG 292) (SEQ. ID NO: 302)
5'- CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GG-3' (FRAG 293) (SEQ. ID NO: 303)
5'- CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC G-3' (FRAG 294) (SEQ. ID NO: 304)
50 5'- CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC -3' (FRAG 295) (SEQ. ID NO: 305)
5'- CTG GAA AGC TGA GAT GGA GGG CGG CAT GG -3' (FRAG 296) (SEQ. ID NO: 306)
5'- CTG GAA AGC TGA GAT GGA GGG CGG CAT G -3' (FRAG 297) (SEQ. ID NO: 307)
5'- CTG GAA AGC TGA GAT GGA GGG CGG CAT -3' (FRAG 298) (SEQ. ID NO: 308)
5'- CTG GAA AGC TGA GAT GGA GGG CGG CA-3' (FRAG 299) (SEQ. ID NO: 309)
55 5'- CTG GAA AGC TGA GAT GGA GGG CGG C-3' (FRAG 300) (SEQ. ID NO: 310)
5'- CTG GAA AGC TGA GAT GGA GGG CGG -3' (FRAG 301) (SEQ. ID NO: 311)
5'- CTG GAA AGC TGA GAT GGA GGG CG -3' (FRAG 302) (SEQ. ID NO: 312)
5'- CTG GAA AGC TGA GAT GGA GGG C -3' (FRAG 303) (SEQ. ID NO: 313)
5'- CTG GAA AGC TGA GAT GGA GGG -3' (FRAG 304) (SEQ. ID NO: 314)
60 5'- CTG GAA AGC TGA GAT GGA GG -3' (FRAG 305) (SEQ. ID NO: 315)
5'- CTG GAA AGC TGA GAT GGA G -3' (FRAG 306) (SEQ. ID NO: 316)
5'- CTG GAA AGC TGA GAT GGA -3' (FRAG 307) (SEQ. ID NO: 317)

- 5'- CTG GAA AGC TGA GAT GG -3' (FRAG 308) (SEQ. ID NO: 318)
5'- CTG GAA AGC TGA GAT G -3' (FRAG 309) (SEQ. ID NO: 319)
5'- CTG GAA AGC TGA GAT -3' (FRAG 310) (SEQ. ID NO: 320)
5'- CTG GAA AGC TGA GA-3' (FRAG 311) (SEQ. ID NO: 321)
5 5'- CTG GAA AGC TGA G-3' (FRAG 312) (SEQ. ID NO: 322)
5'- CTG GAA AGC TGA A-3' (FRAG 313) (SEQ. ID NO: 323)
5'- CTG GAA AGC TG 3' (FRAG 314) (SEQ. ID NO: 324)
5'- CTG GAA AGC T-3' (FRAG 315) (SEQ. ID NO: 325)
5'- TG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 316) (SEQ. ID NO: 326)
10 5'- TG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 317) (SEQ. ID NO: 327)
5'- TG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG G-3' (FRAG 318) (SEQ. ID NO: 328)
5'- TG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG -3' (FRAG 319) (SEQ. ID NO: 329)
5'- TG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CT-3' (FRAG 320) (SEQ. ID NO: 330)
5'- TG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG C-3' (FRAG 321) (SEQ. ID NO: 331)
15 5'- TG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG -3' (FRAG 322) (SEQ. ID NO: 332)
5'- TG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AG-3' (FRAG 323) (SEQ. ID NO: 333)
5'- TG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC A-3' (FRAG 324) (SEQ. ID NO: 334)
5'- TG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC-3' (FRAG 325) (SEQ. ID NO: 335)
5'- TG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CA-3' (FRAG 326) (SEQ. ID NO: 336)
20 5'- TG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG C-3' (FRAG 327) (SEQ. ID NO: 337)
5'- TG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG -3' (FRAG 328) (SEQ. ID NO: 338)
5'- TG GAA AGC TGA GAT GGA GGG CGG CAT GGC GG-3' (FRAG 329) (SEQ. ID NO: 339)
5'- TG GAA AGC TGA GAT GGA GGG CGG CAT GGC G-3' (FRAG 330) (SEQ. ID NO: 340)
5'- TG GAA AGC TGA GAT GGA GGG CGG CAT GGC -3' (FRAG 331) (SEQ. ID NO: 341)
25 5'- TG GAA AGC TGA GAT GGA GGG CGG CAT GG -3' (FRAG 332) (SEQ. ID NO: 342)
5'- TG GAA AGC TGA GAT GGA GGG CGG CAT G -3' (FRAG 333) (SEQ. ID NO: 343)
5'- TG GAA AGC TGA GAT GGA GGG CGG CAT -3' (FRAG 334) (SEQ. ID NO: 344)
5'- TG GAA AGC TGA GAT GGA GGG CGG CA-3' (FRAG 335) (SEQ. ID NO: 345)
5'- TG GAA AGC TGA GAT GGA GGG CGG C-3' (FRAG 336) (SEQ. ID NO: 346)
30 5'- TG GAA AGC TGA GAT GGA GGG CGG -3' (FRAG 337) (SEQ. ID NO: 347)
5'- TG GAA AGC TGA GAT GGA GGG CG -3' (FRAG 338) (SEQ. ID NO: 348)
5'- TG GAA AGC TGA GAT GGA GGG C -3' (FRAG 339) (SEQ. ID NO: 349)
5'- TG GAA AGC TGA GAT GGA GGG -3' (FRAG 340) (SEQ. ID NO: 350)
5'- TG GAA AGC TGA GAT GGA GG -3' (FRAG 341) (SEQ. ID NO: 351)
35 5'- TG GAA AGC TGA GAT GGA G -3' (FRAG 342) (SEQ. ID NO: 352)
5'- TG GAA AGC TGA GAT GGA -3' (FRAG 343) (SEQ. ID NO: 353)
5'- TG GAA AGC TGA GAT GG -3' (FRAG 344) (SEQ. ID NO: 354)
5'- TG GAA AGC TGA GAT G -3' (FRAG 345) (SEQ. ID NO: 355)
5'- TG GAA AGC TGA GAT -3' (FRAG 346) (SEQ. ID NO: 356)
40 5'- TG GAA AGC TGA GA-3' (FRAG 347) (SEQ. ID NO: 357)
5'- TG GAA AGC TGA G-3' (FRAG 348) (SEQ. ID NO: 358)
5'- TG GAA AGC TGA 3' (FRAG 349) (SEQ. ID NO: 359)
5'- TG GAA AGC TG-3 (FRAG 350) (SEQ. ID NO: 360)
5'- G GAA AGC TGA C AT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 351) (SEQ. ID NO: 361)
45 5'- G GAA AGC TGA C AT GGA GGG CGG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 352) (SEQ. ID NO: 362)
5'- G GAA AGC TGA C AT GGA GGG CGG CAT GGC GGG CAC AGG CTG G-3' (FRAG 353) (SEQ. ID NO: 363)
5'- G GAA AGC TGA C AT GGA GGG CGG CAT GGC GGG CAC AGG CTG -3' (FRAG 354) (SEQ. ID NO: 364)
5'- G GAA AGC TGA C AT GGA GGG CGG CAT GGC GGG CAC AGG CT-3' (FRAG 355) (SEQ. ID NO: 365)
5'- G GAA AGC TGA C AT GGA GGG CGG CAT GGC GGG CAC AGG C-3' (FRAG 356) (SEQ. ID NO: 366)
50 5'- G GAA AGC TGA C AT GGA GGG CGG CAT GGC GGG CAC AGG -3' (FRAG 357) (SEQ. ID NO: 367)
5'- G GAA AGC TGA C AT GGA GGG CGG CAT GGC GGG CAC AG-3' (FRAG 358) (SEQ. ID NO: 368)
5'- G GAA AGC TGA C AT GGA GGG CGG CAT GGC GGG CAC A-3' (FRAG 359) (SEQ. ID NO: 369)
5'- G GAA AGC TGA C AT GGA GGG CGG CAT GGC GGG CAC-3' (FRAG 360) (SEQ. ID NO: 370)
5'- G GAA AGC TGA C AT GGA GGG CGG CAT GGC GGG CA-3' (FRAG 361) (SEQ. ID NO: 371)
55 5'- G GAA AGC TGA C AT GGA GGG CGG CAT GGC GGG C-3' (FRAG 362) (SEQ. ID NO: 372)
5'- G GAA AGC TGA C AT GGA GGG CGG CAT GGC GGG -3' (FRAG 363) (SEQ. ID NO: 373)
5'- G GAA AGC TGA C AT GGA GGG CGG CAT GGC GG-3' (FRAG 364) (SEQ. ID NO: 374)
5'- G GAA AGC TGA C AT GGA GGG CGG CAT GGC G-3' (FRAG 365) (SEQ. ID NO: 375)
5'- G GAA AGC TGA C AT GGA GGG CGG CAT GGC -3' (FRAG 366) (SEQ. ID NO: 376)
60 5'- G GAA AGC TGA C AT GGA GGG CGG CAT GG -3' (FRAG 367) (SEQ. ID NO: 377)
5'- G GAA AGC TGA C AT GGA GGG CGG CAT G -3' (FRAG 368) (SEQ. ID NO: 378)
5'- G GAA AGC TGA C AT GGA GGG CGG CAT -3' (FRAG 369) (SEQ. ID NO: 379)

5'- G GAA AGC TGA GAT GGA GGG CGG CA-3' (FRAG 370) (SEQ. ID NO: 380)
5'- G GAA AGC TGA GAT GGA GGG CGG C-3' (FRAG 371) (SEQ. ID NO: 381)
5'- G GAA AGC TGA GAT GGA GGG CGG -3' (FRAG 372) (SEQ. ID NO: 382)
5'- G GAA AGC TGA GAT GGA GGG CG -3' (FRAG 373) (SEQ. ID NO: 383)
5 5'- G GAA AGC TGA GAT GGA GGG C -3' (FRAG 374) (SEQ. ID NO: 384)
5'- G GAA AGC TGA GAT GGA GGG -3' (FRAG 375) (SEQ. ID NO: 385)
5'- G GAA AGC TGA GAT GGA GG -3' (FRAG 376) (SEQ. ID NO: 386)
5'- G GAA AGC TGA GAT GGA G G -3' (FRAG 377) (SEQ. ID NO: 387)
5'- G GAA AGC TGA GAT GGA -3' (FRAG 378) (SEQ. ID NO: 388)
10 5'- G GAA AGC TGA GAT GG -3' (FRAG 379) (SEQ. ID NO: 389)
5'- G GAA AGC TGA GAT G -3' (FRAG 380) (SEQ. ID NO: 390)
5'- G GAA AGC TGA GAT -3' (FRAG 381) (SEQ. ID NO: 391)
5'- G GAA AGC TGA G A-3' (FRAG 382) (SEQ. ID NO: 392)
5'- G GAA AGC TGA G I-3' (FRAG 383) (SEQ. ID NO: 393)
15 5'- G GAA AGC TGA -3' (FRAG 384) (SEQ. ID NO: 394)
5'- GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 385) (SEQ. ID NO: 395)
5'- GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 386) (SEQ. ID NO: 396)
5'- GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG G-3' (FRAG 387) (SEQ. ID NO: 397)
5'- GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG -3' (FRAG 388) (SEQ. ID NO: 398)
20 5'- GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CT-3' (FRAG 389) (SEQ. ID NO: 399)
5'- GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG C-3' (FRAG 390) (SEQ. ID NO: 400)
5'- GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG -3' (FRAG 391) (SEQ. ID NO: 401)
5'- GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AG-3' (FRAG 392) (SEQ. ID NO: 402)
5'- GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC A-3' (FRAG 393) (SEQ. ID NO: 403)
25 5'- GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC-3' (FRAG 394) (SEQ. ID NO: 404)
5'- GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CA-3' (FRAG 395) (SEQ. ID NO: 405)
5'- GAA AGC TGA GAT GGA GGG CGG C-3' (FRAG 396) (SEQ. ID NO: 406)
5'- GAA AGC TGA GAT GGA GGG CGG -3' (FRAG 397) (SEQ. ID NO: 407)
5'- GAA AGC TGA GAT GGA GGG CGG CAT GGC GG-3' (FRAG 398) (SEQ. ID NO: 408)
30 5'- GAA AGC TGA GAT GGA GGG CGG CAT GGC G -3' (FRAG 399) (SEQ. ID NO: 409)
5'- GAA AGC TGA GAT GGA GGG CGG CAT GGC -3' (FRAG 400) (SEQ. ID NO: 410)
5'- GAA AGC TGA GAT GGA GGG CGG CAT GG -3' (FRAG 401) (SEQ. ID NO: 411)
5'- GAA AGC TGA GAT GGA GGG CGG CAT G -3' (FRAG 402) (SEQ. ID NO: 412)
5'- GAA AGC TGA GAT GGA GGG CGG CAT -3' (FRAG 403) (SEQ. ID NO: 413)
35 5'- GAA AGC TGA GAT GGA GGG CGG CA-3' (FRAG 404) (SEQ. ID NO: 414)
5'- GAA AGC TGA GAT GGA GGG CGG C-3' (FRAG 405) (SEQ. ID NO: 415)
5'- GAA AGC TGA GAT GGA GGG CGG -3' (FRAG 406) (SEQ. ID NO: 416)
5'- GAA AGC TGA GAT GGA GGG CG -3' (FRAG 407) (SEQ. ID NO: 417)
5'- GAA AGC TGA GAT GGA GGG C -3' (FRAG 408) (SEQ. ID NO: 418)
40 5'- GAA AGC TGA GAT GGA GGG -3' (FRAG 409) (SEQ. ID NO: 419)
5'- GAA AGC TGA GAT GGA GG -3' (FRAG 410) (SEQ. ID NO: 420)
5'- GAA AGC TGA GAT GGA G -3' (FRAG 411) (SEQ. ID NO: 421)
5'- GAA AGC TGA GAT GGA -3' (FRAG 412) (SEQ. ID NO: 422)
5'- GAA AGC TGA GAT GG -3' (FRAG 413) (SEQ. ID NO: 423)
45 5'- GAA AGC TGA GAT G -3' (FRAG 414) (SEQ. ID NO: 424)
5'- GAA AGC TGA GAT -3' (FRAG 415) (SEQ. ID NO: 425)
5'- GAA AGC TGA G A-3' (FRAG 416) (SEQ. ID NO: 426)
5'- GAA AGC TGA G -3' (FRAG 417) (SEQ. ID NO: 427)
5'- AA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 418) (SEQ. ID NO: 428)
50 5'- AA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 419) (SEQ. ID NO: 429)
5'- AA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG G-3' (FRAG 420) (SEQ. ID NO: 430)
5'- AA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG -3' (FRAG 421) (SEQ. ID NO: 431)
5'- AA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CT-3' (FRAG 422) (SEQ. ID NO: 432)
5'- AA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG C-3' (FRAG 423) (SEQ. ID NO: 433)
55 5'- AA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG -3'(FRAG 424) (SEQ. ID NO: 434)
5'- AA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AG-3' (FRAG 425) (SEQ. ID NO: 435)
5'- AA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC A-3' (FRAG 426) (SEQ. ID NO: 436)
5'- AA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC-3' (FRAG 427) (SEQ. ID NO: 437)
5'- AA AGC TGA GAT GGA GGG CGG CAT GGC GGG CA-3' (FRAG 428) (SEQ. ID NO: 438)
60 5'- AA AGC TGA GAT GGA GGG CGG CAT GGC GGG C-3' (FRAG 429) (SEQ. ID NO: 439)
5'- AA AGC TGA GAT GGA GGG CGG CAT GGC GGG -3' (FRAG 430) (SEQ. ID NO: 440)
5'- AA AGC TGA GAT GGA GGG CGG CAT GGC GG-3' (FRAG 431) (SEQ. ID NO: 441)

- 5'- AA AGC TGA GAT' GGA GGG CGG CAT GGC G-3' (FRAG 432) (SEQ. ID NO: 442)
 5'- AA AGC TGA GAT' GGA GGG CGG CAT GGC -3' (FRAG 433) (SEQ. ID NO: 443)
 5'- AA AGC TGA GAT' GGA GGG CGG CAT GG -3' (FRAG 434) (SEQ. ID NO: 444)
 5'- AA AGC TGA GAT' GGA GGG CGG CAT G -3' (FRAG 435) (SEQ. ID NO: 445)
- 5 5'- AA AGC TGA GAT' GGA GGG CGG CAT -3' (FRAG 436) (SEQ. ID NO: 446)
 5'- AA AGC TGA GAT' GGA GGG CGG CA-3' (FRAG 437) (SEQ. ID NO: 447)
 5'- AA AGC TGA GAT' GGA GGG CGG C-3' (FRAG 438) (SEQ. ID NO: 448)
 5'- AA AGC TGA GAT' GGA GGG CGG -3' (FRAG 439) (SEQ. ID NO: 449)
 5'- AA AGC TGA GAT' GGA GGG CG -3' (FRAG 440) (SEQ. ID NO: 450)
- 10 10 5'- AA AGC TGA GAT' GGA GGG C -3' (FRAG 441) (SEQ. ID NO: 451)
 5'- AA AGC TGA GAT' GGA GGG -3' (FRAG 442) (SEQ. ID NO: 452)
 5'- AA AGC TGA GAT' GGA GG -3' (FRAG 443) (SEQ. ID NO: 453)
 5'- AA AGC TGA GAT' GGA G G -3' (FRAG 444) (SEQ. ID NO: 454)
 5'- AA AGC TGA GAT' GGA G -3' (FRAG 445) (SEQ. ID NO: 455)
- 15 15 5'- AA AGC TGA GAT' GG -3' (FRAG 446) (SEQ. ID NO: 456)
 5'- AA AGC TGA GAT' G -3' (FRAG 447) (SEQ. ID NO: 457)
 5'- AA AGC TGA GAT' -3' (FRAG 448) (SEQ. ID NO: 458)
 5'- AA AGC TGA GA-3' (FRAG 449) (SEQ. ID NO: 459)
- 20 20 5'- A AGC TGA GAT' GGA GGG CG G CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 450) (SEQ. ID NO: 460)
 5'- A AGC TGA GAT' GGA GGG CGG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 451) (SEQ. ID NO: 461)
 5'- A AGC TGA GAT' GGA GGG CGG CAT GGC GGG CAC AGG CTG G-3' (FRAG 452) (SEQ. ID NO: 462)
 5'- A AGC TGA GAT' GGA GGG CGG CAT GGC GGG CAC AGG CTG -3' (FRAG 453) (SEQ. ID NO: 463)
 5'- A AGC TGA GAT' GGA GGG CGG CAT GGC GGG CAC AGG CT -3' (FRAG 454) (SEQ. ID NO: 464)
 5'- A AGC TGA GAT' GGA GGG CGG CAT GGC GGG CAC AGG C-3' (FRAG 455) (SEQ. ID NO: 465)
- 25 25 5'- A AGC TGA GAT' GGA GGG CGG CAT GGC GGG CAC AGG -3' (FRAG 456) (SEQ. ID NO: 466)
 5'- A AGC TGA GAT' GGA GGG CGG CAT GGC GGG CAC AG -3' (FRAG 457) (SEQ. ID NO: 467)
 5'- A AGC TGA GAT' GGA GGG CGG CAT GGC GGG CAC A-3' (FRAG 458) (SEQ. ID NO: 468)
 5'- A AGC TGA GAT' GGA GGG CGG CAT GGC GGG CAC-3' (FRAG 459) (SEQ. ID NO: 469)
 5'- A AGC TGA GAT' GGA GGG CGG CAT GGC GGG CA-3' (FRAG 460) (SEQ. ID NO: 470)
- 30 30 5'- A AGC TGA GAT' GGA GGG CGG CAT GGC GGG C -3' (FRAG 461) (SEQ. ID NO: 471)
 5'- A AGC TGA GAT' GGA GGG CGG CAT GGC GGG -3' (FRAG 462) (SEQ. ID NO: 472)
 5'- A AGC TGA GAT' GGA GGG CGG CAT GGC GG-3' (FRAG 463) (SEQ. ID NO: 473)
 5'- A AGC TGA GAT' GGA GGG CGG CAT GGC G -3' (FRAG 464) (SEQ. ID NO: 474)
 5'- A AGC TGA GAT' GGA GGG CGG CAT GGC -3' (FRAG 465) (SEQ. ID NO: 475)
- 35 35 5'- A AGC TGA GAT' GGA GGG CGG CAT GG -3' (FRAG 466) (SEQ. ID NO: 476)
 5'- A AGC TGA GAT' GGA GGG CGG CAT G -3' (FRAG 467) (SEQ. ID NO: 477)
 5'- A AGC TGA GAT' GGA GGG CGG CAT -3' (FRAG 468) (SEQ. ID NO: 478)
 5'- A AGC TGA GAT' GGA GGG CGG CA-3' (FRAG 469) (SEQ. ID NO: 479)
 5'- A AGC TGA GAT' GGA GGG CGG C-3' (FRAG 470) (SEQ. ID NO: 480)
- 40 40 5'- A AGC TGA GAT' GGA GGG CGG -3' (FRAG 471) (SEQ. ID NO: 481)
 5'- A AGC TGA GAT' GGA GGG CG -3' (FRAG 472) (SEQ. ID NO: 482)
 5'- A AGC TGA GAT' GGA GGG C -3' (FRAG 473) (SEQ. ID NO: 483)
 5'- A AGC TGA GAT' GGA GGG -3' (FRAG 474) (SEQ. ID NO: 484)
 5'- A AGC TGA GAT' GGA GG -3' (FRAG 475) (SEQ. ID NO: 485)
- 45 45 5'- A AGC TGA GAT' GGA G -3' (FRAG 476) (SEQ. ID NO: 486)
 5'- A AGC TGA GAT' GGA -3' (FRAG 477) (SEQ. ID NO: 487)
 5'- A AGC TGA GAT' GG -3' (FRAG 478) (SEQ. ID NO: 488)
 5'- A AGC TGA GAT' G -3' (FRAG 479) (SEQ. ID NO: 489)
 5'- A AGC TGA GAT' -3' (FRAG 480) (SEQ. ID NO: 490)
- 50 50 5'- AGC TGA GAT' GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 481) (SEQ. ID NO: 491)
 5'- AGC TGA GAT' GGA GGG CGG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 482) (SEQ. ID NO: 492)
 5'- AGC TGA GAT' GGA GGG CGG CAT GGC GGG CAC AGG CTG G-3' (FRAG 483) (SEQ. ID NO: 493)
 5'- AGC TGA GAT' GGA GGG CGG CAT GGC GGG CAC AGG CTG -3' (FRAG 484) (SEQ. ID NO: 494)
 5'- AGC TGA GAT' GGA GGG CGG CAT GGC GGG CAC AGG CT -3' (FRAG 485) (SEQ. ID NO: 495)
- 55 55 5'- AGC TGA GAT' GGA GGG CGG CAT GGC GGG CAC AGG C-3' (FRAG 486) (SEQ. ID NO: 496)
 5'- AGC TGA GAT' GGA GGG CGG CAT GGC GGG CAC AGG -3' (FRAG 487) (SEQ. ID NO: 497)
 5'- AGC TGA GAT' GGA GGG CGG CAT GGC GGG CAC AGG C-3' (FRAG 488) (SEQ. ID NO: 498)
 5'- AGC TGA GAT' GGA GGG CGG CAT GGC GGG CAC A-3' (FRAG 489) (SEQ. ID NO: 499)
 5'- AGC TGA GAT' GGA GGG CGG CAT GGC GGG CAC AGG CA-3' (FRAG 490) (SEQ. ID NO: 500)
- 60 60 5'- AGC TGA GAT' GGA GGG CGG CAT GGC GGG CA-3' (FRAG 491) (SEQ. ID NO: 501)
 5'- AGC TGA GAT' GGA GGG CGG CAT GGC GGG C -3' (FRAG 492) (SEQ. ID NO: 502)
 5'- AGC TGA GAT' GGA GGG CGG CAT GGC GGG -3' (FRAG 493) (SEQ. ID NO: 503)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) (27) (28) (29) (30) (31) (32) (33) (34) (35) (36) (37) (38) (39) (40) (41) (42) (43) (44) (45) (46) (47) (48) (49) (50) (51) (52) (53) (54) (55) (56) (57) (58) (59) (60)

5'- AGC TGA GAT G₃A GGG CGG CAT GGC GG-3' (FRAG 494) (SEQ. ID NO: 504)
 5'- AGC TGA GAT G₃A GGG CGG CAT GGC G-3' (FRAG 495) (SEQ. ID NO: 505)
 5'- AGC TGA GAT G₃A GGG CGG CAT GGC -3' (FRAG 496) (SEQ. ID NO: 506)
 5'- AGC TGA GAT G₃A GGG CGG CAT GG -3' (FRAG 497) (SEQ. ID NO: 507)
 5 5'- AGC TGA GAT G₃A GGG CGG CAT G -3' (FRAG 498) (SEQ. ID NO: 508)
 5'- AGC TGA GAT G₃A GGG CGG CAT -3' (FRAG 499) (SEQ. ID NO: 509)
 5'- AGC TGA GAT G₃A GGG CGG CA-3' (FRAG 500) (SEQ. ID NO: 510)
 5'- AGC TGA GAT G₃A GGG CGG C-3' (FRAG 501) (SEQ. ID NO: 511)
 5'- AGC TGA GAT G₃A GGG CGG -3' (FRAG 502) (SEQ. ID NO: 512)
 10 10 5'- AGC TGA GAT G₃A GGG CG -3' (FRAG 503) (SEQ. ID NO: 513)
 5'- AGC TGA GAT G₃A GGG C -3' (FRAG 504) (SEQ. ID NO: 514)
 5'- AGC TGA GAT G₃A GGG -3' (FRAG 505) (SEQ. ID NO: 515)
 5'- AGC TGA GAT G₃A GG -3' (FRAG 506) (SEQ. ID NO: 516)
 5'- AGC TGA GAT G₃A G -3' (FRAG 507) (SEQ. ID NO: 517)
 15 15 5'- AGC TGA GAT G₃A -3' (FRAG 508) (SEQ. ID NO: 518)
 5'- AGC TGA GAT G₃G -3' (FRAG 509) (SEQ. ID NO: 519)
 5'- AGC TGA GAT G -3' (FRAG 510) (SEQ. ID NO: 520)
 5'- GC TGA GAT G₃A GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 511) (SEQ. ID NO: 521)
 5'- GC TGA GAT G₃A GGG CGG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 512) (SEQ. ID NO: 522)
 20 20 5'- GC TGA GAT G₃A GGG CGG CAT GGC GGG CAC AGG CTG G-3' (FRAG 513) (SEQ. ID NO: 523)
 5'- GC TGA GAT G₃A GGG CGG CAT GGC GGG CAC AGG CTG -3' (FRAG 514) (SEQ. ID NO: 524)
 5'- GC TGA GAT G₃A GGG CGG CAT GGC GGG CAC AGG CT-3' (FRAG 515) (SEQ. ID NO: 525)
 5'- GC TGA GAT G₃A GGG CGG CAT GGC GGG CAC AGG C-3' (FRAG 516) (SEQ. ID NO: 526)
 5'- GC TGA GAT G₃A GGG CGG CAT GGC GGG CAC AGG -3' (FRAG 517) (SEQ. ID NO: 527)
 25 25 5'- GC TGA GAT G₃A GGG CGG CAT GGC GGG CAC AG-3' (FRAG 518) (SEQ. ID NO: 528)
 5'- GC TGA GAT G₃A GGG CGG CAT GGC GGG CAC A-3' (FRAG 519) (SEQ. ID NO: 529)
 5'- GC TGA GAT G₃A GGG CGG CAT GGC GGG CAC-3' (FRAG 520) (SEQ. ID NO: 530)
 5'- GC TGA GAT G₃A GGG CGG CAT GGC GGG CA-3' (FRAG 521) (SEQ. ID NO: 531)
 5'- GC TGA GAT G₃A GGG CGG CAT GGC GGG C-3' (FRAG 522) (SEQ. ID NO: 532)
 30 30 5'- GC TGA GAT G₃A GGG CGG CAT GGC GGG -3' (FRAG 523) (SEQ. ID NO: 533)
 5'- GC TGA GAT G₃A GGG CGG CAT GGC GG-3' (FRAG 524) (SEQ. ID NO: 534)
 5'- GC TGA GAT G₃A GGG CGG CAT GGC G-3' (FRAG 525) (SEQ. ID NO: 535)
 5'- GC TGA GAT G₃A GGG CGG CAT GGC -3' (FRAG 526) (SEQ. ID NO: 536)
 5'- GC TGA GAT G₃A GGG CGG CAT GG -3' (FRAG 527) (SEQ. ID NO: 537)
 35 35 5'- GC TGA GAT G₃A GGG CGG CAT G -3' (FRAG 528) (SEQ. ID NO: 538)
 5'- GC TGA GAT G₃A GGG CGG CAT -3' (FRAG 529) (SEQ. ID NO: 539)
 5'- GC TGA GAT G₃A GGG CGG CA-3' (FRAG 530) (SEQ. ID NO: 540)
 5'- GC TGA GAT G₃A GGG CGG C-3' (FRAG 531) (SEQ. ID NO: 541)
 5'- GC TGA GAT G₃A GGG CGG -3' (FRAG 532) (SEQ. ID NO: 542)
 40 40 5'- GC TGA GAT G₃A GGG CG -3' (FRAG 533) (SEQ. ID NO: 543)
 5'- GC TGA GAT G₃A GGG C -3' (FRAG 534) (SEQ. ID NO: 544)
 5'- GC TGA GAT G₃A GGG -3' (FRAG 535) (SEQ. ID NO: 545)
 5'- GC TGA GAT G₃A GG -3' (FRAG 536) (SEQ. ID NO: 546)
 5'- GC TGA GAT G₃A G -3' (FRAG 537) (SEQ. ID NO: 547)
 45 45 5'- GC TGA GAT G₃A -3' (FRAG 538) (SEQ. ID NO: 548)
 5'- GC TGA GAT GG -3' (FRAG 539) (SEQ. ID NO: 549)
 5'- C TGA GAT G₃A GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 540) (SEQ. ID NO: 550)
 5'- C TGA GAT G₃A GGG CGG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 541) (SEQ. ID NO: 551)
 50 50 5'- C TGA GAT G₃A GGG CGG CAT GGC GGG CAC AGG CTG G-3' (FRAG 542) (SEQ. ID NO: 552)
 5'- C TGA GAT G₃A GGG CGG CAT GGC GGG CAC AGG CTG -3' (FRAG 543) (SEQ. ID NO: 553)
 5'- C TGA GAT G₃A GGG CGG CAT GGC GGG CAC AGG CT-3' (FRAG 544) (SEQ. ID NO: 554)
 5'- C TGA GAT G₃A GGG CGG CAT GGC GGG CAC AGG C-3' (FRAG 545) (SEQ. ID NO: 555)
 5'- C TGA GAT G₃A GGG CGG CAT GGC GGG CAC AGG -3' (FRAG 546) (SEQ. ID NO: 556)
 5'- C TGA GAT G₃A GGG CGG CAT GGC GGG CAC AG-3' (FRAG 547) (SEQ. ID NO: 557)
 55 55 5'- C TGA GAT G₃A GGG CGG CAT GGC GGG CAC A-3' (FRAG 548) (SEQ. ID NO: 558)
 5'- C TGA GAT G₃A GGG CGG CAT GGC GGG CAC-3' (FRAG 549) (SEQ. ID NO: 559)
 5'- C TGA GAT G₃A GGG CGG CAT GGC GGG CA-3' (FRAG 550) (SEQ. ID NO: 560)
 5'- C TGA GAT G₃A GGG CGG CAT GGC GGG C-3' (FRAG 551) (SEQ. ID NO: 561)
 5'- C TGA GAT G₃A GGG CGG CAT GGC GGG -3' (FRAG 552) (SEQ. ID NO: 562)
 60 60 5'- C TGA GAT G₃A GGG CGG CAT GGC GG-3' (FRAG 553) (SEQ. ID NO: 563)
 5'- C TGA GAT G₃A GGG CGG CAT GGC G-3' (FRAG 554) (SEQ. ID NO: 564)
 5'- C TGA GAT G₃A GGG CGG CAT GGC -3' (FRAG 555) (SEQ. ID NO: 565)

5'- C TGA GAT GGA GGG CGG CAT GG -3' (FRAG 556) (SEQ. ID NO: 566)
 5'- C TGA GAT GGA GGG CGG CAT G -3' (FRAG 557) (SEQ. ID NO: 567)
 5'- C TGA GAT GGA GGG CGG CAT -3' (FRAG 558) (SEQ. ID NO: 568)
 5'- C TGA GAT GGA GGG CGG CA-3' (FRAG 559) (SEQ. ID NO: 569)
 5 5'- C TGA GAT GGA GGG CGG C-3' (FRAG 560) (SEQ. ID NO: 570)
 5'- C TGA GAT GGA GGG CGG -3' (FRAG 561) (SEQ. ID NO: 571)
 5'- C TGA GAT GGA GGG CG -3' (FRAG 562) (SEQ. ID NO: 572)
 5'- C TGA GAT GGA GGG C -3' (FRAG 563) (SEQ. ID NO: 573)
 5'- C TGA GAT GGA GGG -3' (FRAG 564) (SEQ. ID NO: 574)
 10 5'- C TGA GAT GGA GG -3' (FRAG 565) (SEQ. ID NO: 575)
 5'- C TGA GAT GGA G -3' (FRAG 566) (SEQ. ID NO: 576)
 5'- C TGA GAT GGA -3' (FRAG 567) (SEQ. ID NO: 577)
 5'- TGA GAT GGA CGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 568) (SEQ. ID NO: 578)
 5'- TGA GAT GGA CGG CGG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 569) (SEQ. ID NO: 579)
 15 5'- TGA GAT GGA CGG CGG CAT GGC GGG CAC AGG CTG G-3' (FRAG 570) (SEQ. ID NO: 580)
 5'- TGA GAT GGA CGG CGG CAT GGC GGG CAC AGG CTG -3' (FRAG 571) (SEQ. ID NO: 581)
 5'- TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CT-3' (FRAG 572) (SEQ. ID NO: 582)
 5'- TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG C-3' (FRAG 573) (SEQ. ID NO: 583)
 5'- TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG -3' (FRAG 574) (SEQ. ID NO: 584)
 20 5'- TGA GAT GGA GGG CGG CAT GGC GGG CAC AG-3' (FRAG 575) (SEQ. ID NO: 585)
 5'- TGA GAT GGA GGG CGG CAT GGC GGG CAC A-3' (FRAG 576) (SEQ. ID NO: 586)
 5'- TGA GAT GGA GGG CGG CAT GGC GGG CAC-3' (FRAG 577) (SEQ. ID NO: 587)
 5'- TGA GAT GGA GGG CGG CAT GGC GGG CA-3' (FRAG 578) (SEQ. ID NO: 588)
 5'- TGA GAT GGA GGG CGG CAT GGC GGG C-3' (FRAG 579) (SEQ. ID NO: 589)
 25 5'- TGA GAT GGA GGG CGG CAT GGC GGG -3' (FRAG 580) (SEQ. ID NO: 590)
 5'- TGA GAT GGA GGG CGG CAT GGC GG-3' (FRAG 581) (SEQ. ID NO: 591)
 5'- TGA GAT GGA GGG CGG CAT GGC G-3' (FRAG 582) (SEQ. ID NO: 592)
 5'- TGA GAT GGA GGG CGG CAT GGC -3' (FRAG 583) (SEQ. ID NO: 593)
 5'- TGA GAT GGA GGG CGG CAT GG -3' (FRAG 584) (SEQ. ID NO: 594)
 30 5'- TGA GAT GGA GGG CGG CAT G -3' (FRAG 585) (SEQ. ID NO: 595)
 5'- TGA GAT GGA GGG CGG CAT -3' (FRAG 586) (SEQ. ID NO: 596)
 5'- TGA GAT GGA GGG CGG CA-3' (FRAG 587) (SEQ. ID NO: 597)
 5'- TGA GAT GGA GGG CGG C-3' (FRAG 588) (SEQ. ID NO: 598)
 5'- TGA GAT GGA GGG CGG -3' (FRAG 589) (SEQ. ID NO: 599)
 35 5'- TGA GAT GGA GGG CG -3' (FRAG 590) (SEQ. ID NO: 600)
 5'- TGA GAT GGA GGG C -3' (FRAG 591) (SEQ. ID NO: 601)
 5'- TGA GAT GGA GGG -3' (FRAG 592) (SEQ. ID NO: 602)
 5'- TGA GAT GGA GG -3' (FRAG 593) (SEQ. ID NO: 603)
 5'- TGA GAT GGA G -3' (FRAG 594) (SEQ. ID NO: 604)
 40 5'- GA GAT GGA GCG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 595) (SEQ. ID NO: 605)
 5'- GA GAT GGA GCG CGG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 596) (SEQ. ID NO: 606)
 5'- GA GAT GGA GCG CGG CAT GGC GGG CAC AGG CTG G-3' (FRAG 597) (SEQ. ID NO: 607)
 5'- GA GAT GGA GCG CGG CAT GGC GGG CAC AGG CTG -3' (FRAG 598) (SEQ. ID NO: 608)
 5'- GA GAT GGA GCG CGG CAT GGC GGG CAC AGG CT-3' (FRAG 599) (SEQ. ID NO: 609)
 45 5'- GA GAT GGA GCG CGG CAT GGC GGG CAC AGG C-3' (FRAG 600) (SEQ. ID NO: 610)
 5'- GA GAT GGA GCG CGG CAT GGC GGG CAC AGG -3' (FRAG 601) (SEQ. ID NO: 611)
 5'- GA GAT GGA GCG CGG CAT GGC GGG CAC AG-3' (FRAG 602) (SEQ. ID NO: 612)
 5'- GA GAT GGA GCG CGG CAT GGC GGG CAC A-3' (FRAG 603) (SEQ. ID NO: 613)
 5'- GA GAT GGA GCG CGG CAT GGC GGG CAC-3' (FRAG 604) (SEQ. ID NO: 614)
 50 5'- GA GAT GGA GCG CGG CAT GGC GGG CA-3' (FRAG 605) (SEQ. ID NO: 615)
 5'- GA GAT GGA GCG CGG CAT GGC GGG C-3' (FRAG 606) (SEQ. ID NO: 616)
 5'- GA GAT GGA GCG CGG CAT GGC GGG -3' (FRAG 607) (SEQ. ID NO: 617)
 5'- GA GAT GGA GCG CGG CAT GGC GG-3' (FRAG 608) (SEQ. ID NO: 618)
 5'- GA GAT GGA GCG CGG CAT GGC G-3' (FRAG 609) (SEQ. ID NO: 619)
 55 5'- GA GAT GGA GCG CGG CAT GGC -3' (FRAG 610) (SEQ. ID NO: 620)
 5'- GA GAT GGA GCG CGG CAT GG -3' (FRAG 611) (SEQ. ID NO: 621)
 5'- GA GAT GGA GCG CGG CAT G -3' (FRAG 612) (SEQ. ID NO: 622)
 5'- GA GAT GGA GCG CGG CAT -3' (FRAG 613) (SEQ. ID NO: 623)
 5'- GA GAT GGA GCG CGG CA-3' (FRAG 614) (SEQ. ID NO: 624)
 60 5'- GA GAT GGA GCG CGG C-3' (FRAG 615) (SEQ. ID NO: 625)
 5'- GA GAT GGA GCG CGG -3' (FRAG 616) (SEQ. ID NO: 626)
 5'- GA GAT GGA GCG CG -3' (FRAG 617) (SEQ. ID NO: 627)

5'- GA GAT GGA GCG C -3' (FRAG 618) (SEQ. ID NO: 628)
 5'- GA GAT GGA GCG -3' (FRAG 619) (SEQ. ID NO: 629)
 5'- GA GAT GGA GC -3' (FRAG 620) (SEQ. ID NO: 630)
 5'- A GAT GGA GGC CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 621) (SEQ. ID NO: 631)
 5 5'- A GAT GGA GGC CGG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 622) (SEQ. ID NO: 632)
 5'- A GAT GGA GGC CGG CAT GGC GGG CAC AGG CTG G-3' (FRAG 623) (SEQ. ID NO: 633)
 5'- A GAT GGA GGC CGG CAT GGC GGG CAC AGG CTG -3' (FRAG 624) (SEQ. ID NO: 634)
 5'- A GAT GGA GGC CGG CAT GGC GGG CAC AGG CT-3' (FRAG 625) (SEQ. ID NO: 635)
 5'- A GAT GGA GGC CGG CAT GGC GGG CAC AGG C-3' (FRAG 626) (SEQ. ID NO: 636)
 10 5'- A GAT GGA GGC CGG CAT GGC GGG CAC AGG -3' (FRAG 627) (SEQ. ID NO: 637)
 5'- A GAT GGA GGC CGG CAT GGC GGG CAC AG-3' (FRAG 628) (SEQ. ID NO: 638)
 5'- A GAT GGA GGC CGG CAT GGC GGG CAC A-3' (FRAG 629) (SEQ. ID NO: 639)
 5'- A GAT GGA GGC CGG CAT GGC GGG CAC-3' (FRAG 630) (SEQ. ID NO: 640)
 5'- A GAT GGA GGC CGG CAT GGC GGG CA-3' (FRAG 631) (SEQ. ID NO: 641)
 15 5'- A GAT GGA GGC CGG CAT GGC GGG C-3' (FRAG 632) (SEQ. ID NO: 642)
 5'- A GAT GGA GGC CGG CAT GGC GGG -3' (FRAG 633) (SEQ. ID NO: 643)
 5'- A GAT GGA GGC CGG CAT GGC GG-3' (FRAG 634) (SEQ. ID NO: 644)
 5'- A GAT GGA GGC CGG CAT GGC G-3' (FRAG 635) (SEQ. ID NO: 645)
 5'- A GAT GGA GGC CGG CAT GGC -3' (FRAG 636) (SEQ. ID NO: 646)
 20 5'- A GAT GGA GGC CGG CAT GG -3' (FRAG 637) (SEQ. ID NO: 647)
 5'- A GAT GGA GGC CGG CAT G -3' (FRAG 638) (SEQ. ID NO: 648)
 5'- A GAT GGA GGC CGG CAT -3' (FRAG 639) (SEQ. ID NO: 649)
 5'- A GAT GGA GGC CGG CA-3' (FRAG 640) (SEQ. ID NO: 650)
 5'- A GAT GGA GGC CGG C-3' (FRAG 641) (SEQ. ID NO: 651)
 25 5'- A GAT GGA GGC CGG -3' (FRAG 642) (SEQ. ID NO: 652)
 5'- A GAT GGA GGC CG -3' (FRAG 643) (SEQ. ID NO: 653)
 5'- A GAT GGA GGC C -3' (FRAG 644) (SEQ. ID NO: 654)
 5'- A GAT GGA GGC -3' (FRAG 645) (SEQ. ID NO: 655)
 5'- GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 646) (SEQ. ID NO: 656)
 30 5'- GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 647) (SEQ. ID NO: 657)
 5'- GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG G-3' (FRAG 648) (SEQ. ID NO: 658)
 5'- GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG -3' (FRAG 6) (SEQ. ID NO: 659)
 5'- GAT GGA GGG CGG CAT GGC GGG CAC AGG CT-3' (FRAG 650) (SEQ. ID NO: 660)
 5'- GAT GGA GGG CGG CAT GGC GGG CAC AGG C-3' (FRAG 651) (SEQ. ID NO: 661)
 35 5'- GAT GGA GGG CGG CAT GGC GGG CAC AGG -3' (FRAG 652) (SEQ. ID NO: 662)
 5'- GAT GGA GGG CGG CAT GGC GGG CAC AG-3' (FRAG 653) (SEQ. ID NO: 663)
 5'- GAT GGA GGG CGG CAT GGC GGG CAC A-3' (FRAG 654) (SEQ. ID NO: 664)
 5'- GAT GGA GGG CGG CAT GGC GGG CAC-3' (FRAG 655) (SEQ. ID NO: 665)
 5'- GAT GGA GGG CGG CAT GGC GGG CA-3' (FRAG 656) (SEQ. ID NO: 666)
 40 5'- GAT GGA GGG CGG CAT GGC GGG C-3' (FRAG 657) (SEQ. ID NO: 667)
 5'- GAT GGA GGG CGG CAT GGC GGG -3' (FRAG 658) (SEQ. ID NO: 668)
 5'- GAT GGA GGG CGG CAT GGC GG-3' (FRAG 659) (SEQ. ID NO: 669)
 5'- GAT GGA GGG CGG CAT GGC G-3' (FRAG 660) (SEQ. ID NO: 670)
 5'- GAT GGA GGG CGG CAT GGC -3' (FRAG 661) (SEQ. ID NO: 671)
 45 5'- GAT GGA GGG CGG CAT GG -3' (FRAG 662) (SEQ. ID NO: 672)
 5'- GAT GGA GGG CGG CAT G -3' (FRAG 663) (SEQ. ID NO: 673)
 5'- GAT GGA GGG CGG CAT -3' (FRAG 664) (SEQ. ID NO: 674)
 5'- GAT GGA GGG CGG CA-3' (FRAG 665) (SEQ. ID NO: 675)
 5'- GAT GGA GGG CGG C-3' (FRAG 666) (SEQ. ID NO: 676)
 50 5'- GAT GGA GGG CGG -3' (FRAG 667) (SEQ. ID NO: 677)
 5'- GAT GGA GGG CG -3' (FRAG 668) (SEQ. ID NO: 678)
 5'- GAT GGA GGG C -3' (FRAG 669) (SEQ. ID NO: 679)
 5'- AT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 670) (SEQ. ID NO: 680)
 5'- AT GGA GGG CGG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 671) (SEQ. ID NO: 681)
 55 5'- AT GGA GGG CGG CAT GGC GGG CAC AGG CTG G-3' (FRAG 672) (SEQ. ID NO: 682)
 5'- AT GGA GGG CGG CAT GGC GGG CAC AGG CTG -3' (FRAG 673) (SEQ. ID NO: 683)
 5'- AT GGA GGG CGG CAT GGC GGG CAC AGG CT-3' (FRAG 674) (SEQ. ID NO: 684)
 5'- AT GGA GGG CGG CAT GGC GGG CAC AGG C-3' (FRAG 675) (SEQ. ID NO: 685)
 5'- AT GGA GGG CGG CAT GGC GGG CAC AGG -3' (FRAG 676) (SEQ. ID NO: 686)
 60 5'- AT GGA GGG CGG CAT GGC GGG CAC AG-3' (FRAG 677) (SEQ. ID NO: 687)
 5'- AT GGA GGG CGG CAT GGC GGG CAC A-3' (FRAG 678) (SEQ. ID NO: 688)
 5'- AT GGA GGG CGG CAT GGC GGG CAC-3' (FRAG 679) (SEQ. ID NO: 689)

DRAFT - DO NOT DISTRIBUTE

5' AT GGA GGG CGG CAT GGC GGG CA-3' (FRAG 680) (SEQ. ID NO: 690)
 5' AT GGA GGG CGG CAT GGC GGG C-3' (FRAG 681) (SEQ. ID NO: 691)
 5' AT GGA GGG CGG CAT GGC GGG -3' (FRAG 682) (SEQ. ID NO: 692)
 5' AT GGA GGG CGG CAT GGC GG-3' (FRAG 683) (SEQ. ID NO: 693)
 5 5' AT GGA GGG CGG CAT GGC G-3' (FRAG 684) (SEQ. ID NO: 694)
 5' AT GGA GGG CGG CAT GGC -3' (FRAG 685) (SEQ. ID NO: 695)
 5' AT GGA GGG CGG CAT GG -3' (FRAG 686) (SEQ. ID NO: 696)
 5' AT GGA GGG CGG CAT G -3' (FRAG 687) (SEQ. ID NO: 697)
 5' AT GGA GGG CGG CAT -3' (FRAG 688) (SEQ. ID NO: 698)
 10 5' AT GGA GGG CGG CA-3' (FRAG 689) (SEQ. ID NO: 699)
 5' AT GGA GGG CGG C-3' (FRAG 690) (SEQ. ID NO: 700)
 5' AT GGA GGG CGG -3' (FRAG 691) (SEQ. ID NO: 701)
 5' AT GGA GGG CGG -3' (FRAG 692) (SEQ. ID NO: 702)
 5' T GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 693) (SEQ. ID NO: 703)
 15 5' T GGA GGG CGG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 694) (SEQ. ID NO: 704)
 5' T GGA GGG CGG CAT GGC GGG CAC AGG CTG G-3' (FRAG 695) (SEQ. ID NO: 705)
 5' T GGA GGG CGG CAT GGC GGG CAC AGG CTG -3' (FRAG 696) (SEQ. ID NO: 706)
 5' T GGA GGG CGG CAT GGC GGG CAC AGG CT-3' (FRAG 697) (SEQ. ID NO: 707)
 5' T GGA GGG CGG CAT GGC GGG CAC AGG C-3' (FRAG 698) (SEQ. ID NO: 708)
 20 5' T GGA GGG CGG CAT GGC GGG CAC AGG -3' (FRAG 699) (SEQ. ID NO: 709)
 5' T GGA GGG CGG CAT GGC GGG CAC AG -3' (FRAG 700) (SEQ. ID NO: 710)
 5' T GGA GGG CGG CAT GGC GGG CAC A-3' (FRAG 701) (SEQ. ID NO: 711)
 5' T GGA GGG CGG CAT GGC GGG CAC-3' (FRAG 702) (SEQ. ID NO: 712)
 25 5' T GGA GGG CGG CAT GGC GGG CA-3' (FRAG 703) (SEQ. ID NO: 713)
 5' T GGA GGG CGG CAT GGC GGG C-3' (FRAG 704) (SEQ. ID NO: 714)
 5' T GGA GGG CGG CAT GGC GGG -3' (FRAG 705) (SEQ. ID NO: 715)
 5' T GGA GGG CGG CAT GGC GG-3' (FRAG 706) (SEQ. ID NO: 716)
 5' T GGA GGG CGG CAT GGC G-3' (FRAG 707) (SEQ. ID NO: 717)
 5' T GGA GGG CGG CAT GGC -3' (FRAG 708) (SEQ. ID NO: 718)
 30 5' T GGA GGG CGG CAT GG -3' (FRAG 709) (SEQ. ID NO: 719)
 5' T GGA GGG CGG CAT G -3' (FRAG 710) (SEQ. ID NO: 720)
 5' T GGA GGG CGG CAT -3' (FRAG 711) (SEQ. ID NO: 721)
 5' T GGA GGG CGG CA-3' (FRAG 712) (SEQ. ID NO: 722)
 5' T GGA GGG CGG C-3' (FRAG 713) (SEQ. ID NO: 723)
 35 5' T GGA GGG CGG -3' (FRAG 714) (SEQ. ID NO: 724)
 5' GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 715) (SEQ. ID NO: 725)
 5' GGA GGG CGG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 716) (SEQ. ID NO: 726)
 5' GGA GGG CGG CAT GGC GGG CAC AGG CTG G-3' (FRAG 717) (SEQ. ID NO: 727)
 5' GGA GGG CGG CAT GGC GGG CAC AGG CT-3' (FRAG 718) (SEQ. ID NO: 728)
 40 5' GGA GGG CGG CAT GGC GGG CAC AGG CT-3' (FRAG 719) (SEQ. ID NO: 729)
 5' GGA GGG CGG CAT GGC GGG CAC AGG C-3' (FRAG 720) (SEQ. ID NO: 730)
 5' GGA GGG CGG CAT GGC GGG CAC AGG -3' (FRAG 721) (SEQ. ID NO: 731)
 5' GGA GGG CGG CAT GGC GGG CAC AG -3' (FRAG 722) (SEQ. ID NO: 732)
 5' GGA GGG CGG CAT GGC GGG CAC A-3' (FRAG 723) (SEQ. ID NO: 733)
 45 5' GGA GGG CGG CAT GGC GGG CAC-3' (FRAG 724) (SEQ. ID NO: 734)
 5' GGA GGG CGG CAT GGC GGG CA-3' (FRAG 725) (SEQ. ID NO: 735)
 5' GGA GGG CGG CAT GGC GGG C-3' (FRAG 726) (SEQ. ID NO: 736)
 5' GGA GGG CGG CAT GGC GGG -3' (FRAG 727) (SEQ. ID NO: 737)
 5' GGA GGG CGG CAT GGC GG-3' (FRAG 728) (SEQ. ID NO: 738)
 50 5' GGA GGG CGG CAT GGC G-3' (FRAG 729) (SEQ. ID NO: 739)
 5' GGA GGG CGG CAT GGC -3' (FRAG 730) (SEQ. ID NO: 740)
 5' GGA GGG CGG CAT GG -3' (FRAG 731) (SEQ. ID NO: 741)
 5' GGA GGG CGG CAT G -3' (FRAG 732) (SEQ. ID NO: 742)
 5' GGA GGG CGG CAT -3' (FRAG 733) (SEQ. ID NO: 743)
 55 5' GGA GGG CGG CA-3' (FRAG 734) (SEQ. ID NO: 744)
 5' GGA GGG CGG C-3' (FRAG 735) (SEQ. ID NO: 745)
 5' GA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 736) (SEQ. ID NO: 746)
 5' GA GGG CGG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 737) (SEQ. ID NO: 747)
 5' GA GGG CGG CAT GGC GGG CAC AGG CTG G-3' (FRAG 738) (SEQ. ID NO: 748)
 60 5' GA GGG CGG CAT GGC GGG CAC AGG CTG -3' (FRAG 739) (SEQ. ID NO: 749)
 5' GA GGG CGG CAT GGC GGG CAC AGG CT-3' (FRAG 740) (SEQ. ID NO: 750)
 5' GA GGG CGG CAT GGC GGG CAC AGG C-3' (FRAG 741) (SEQ. ID NO: 751)

5' - GA GGG CGG CAT GGC GGG CAC AGG -3' (FRAG 742) (SEQ. ID NO: 752)
 5' - GA GGG CGG CAT GGC GGG CAC AG-3' (FRAG 743) (SEQ. ID NO: 753)
 5' - GA GGG CGG CAT GGC GGG CAC A-3' (FRAG 744) (SEQ. ID NO: 754)
 5' - GA GGG CGG CAT GGC GGG CAC-3' (FRAG 745) (SEQ. ID NO: 755)
 5 5' - GA GGG CGG CAT GGC GGG CA-3' (FRAG 746) (SEQ. ID NO: 756)
 5' - GA GGG CGG CAT GGC GGG C-3' (FRAG 747) (SEQ. ID NO: 757)
 5' - GA GGG CGG CAT GGC GGG -3' (FRAG 748) (SEQ. ID NO: 758)
 5' - GA GGG CGG CAT GGC GG-3' (FRAG 749) (SEQ. ID NO: 759)
 5' - GA GGG CGG CAT GGC G-3' (FRAG 750) (SEQ. ID NO: 760)
 10 5' - GA GGG CGG CAT GGC -3' (FRAG 751) (SEQ. ID NO: 761)
 5' - GA GGG CGG CAT GG -3' (FRAG 752) (SEQ. ID NO: 762)
 5' - GA GGG CGG CAT G -3' (FRAG 753) (SEQ. ID NO: 763)
 5' - GA GGG CGG CAT -3' (FRAG 754) (SEQ. ID NO: 764)
 5' - GA GGG CGG CA-3' (FRAG 755) (SEQ. ID NO: 765)
 15 5' - A GGG CGG CA'' GGC GGG CAC AGG CTG GGC-3' (FRAG 756) (SEQ. ID NO: 766)
 5' - A GGG CGG CA'' GGC GGG CAC AGG CTG GG-3' (FRAG 757) (SEQ. ID NO: 767)
 5' - A GGG CGG CA'' GGC GGG CAC AGG CTG G-3' (FRAG 758) (SEQ. ID NO: 768)
 5' - A GGG CGG CA'' GGC GGG CAC AGG CTG -3' (FRAG 759) (SEQ. ID NO: 769)
 5' - A GGG CGG CA'' GGC GGG CAC AGG CT-3' (FRAG 760) (SEQ. ID NO: 770)
 20 5' - A GGG CGG CA'' GGC GGG CAC AGG C-3' (FRAG 761) (SEQ. ID NO: 771)
 5' - A GGG CGG CA'' GGC GGG CAC AGG -3' (FRAG 762) (SEQ. ID NO: 772)
 5' - A GGG CGG CA'' GGC GGG CAC AG-3' (FRAG 763) (SEQ. ID NO: 773)
 5' - A GGG CGG CA'' GGC GGG CAC A-3' (FRAG 764) (SEQ. ID NO: 774)
 5' - A GGG CGG CA'' GGC GGG CAC-3' (FRAG 765) (SEQ. ID NO: 775)
 25 5' - A GGG CGG CA'' GGC GGG CA-3' (FRAG 766) (SEQ. ID NO: 776)
 5' - A GGG CGG CA'' GGC GGG C-3' (FRAG 767) (SEQ. ID NO: 777)
 5' - A GGG CGG CA'' GGC GGG -3' (FRAG 768) (SEQ. ID NO: 778)
 5' - A GGG CGG CA'' GGC GG-3' (FRAG 769) (SEQ. ID NO: 779)
 5' - A GGG CGG CA'' GGC G-3' (FRAG 770) (SEQ. ID NO: 780)
 30 5' - A GGG CGG CA'' GGC -3' (FRAG 771) (SEQ. ID NO: 781)
 5' - A GGG CGG CA'' GG -3' (FRAG 772) (SEQ. ID NO: 782)
 5' - A GGG CGG CA'' G -3' (FRAG 773) (SEQ. ID NO: 783)
 5' - A GGG CGG CA'' -3' (FRAG 774) (SEQ. ID NO: 784)
 5' - GGG CGG CAT 3GC GGG CAC AGG CTG GGC-3' (FRAG 775) (SEQ. ID NO: 785)
 35 5' - GGG CGG CAT 3GC GGG CAC AGG CTG GG-3' (FRAG 776) (SEQ. ID NO: 786)
 5' - GGG CGG CAT 3GC GGG CAC AGG CTG G-3' (FRAG 777) (SEQ. ID NO: 787)
 5' - GGG CGG CAT 3GC GGG CAC AGG CTG -3' (FRAG 778) (SEQ. ID NO: 788)
 5' - GGG CGG CAT 3GC GGG CAC AGG CT-3' (FRAG 779) (SEQ. ID NO: 789)
 5' - GGG CGG CAT 3GC GGG CAC AGG C-3' (FRAG 780) (SEQ. ID NO: 790)
 40 5' - GGG CGG CAT 3GC GGG CAC AGG -3' (FRAG 781) (SEQ. ID NO: 791)
 5' - GGG CGG CAT 3GC GGG CAC AG-3' (FRAG 782) (SEQ. ID NO: 792)
 5' - GGG CGG CAT 3GC GGG CAC A-3' (FRAG 783) (SEQ. ID NO: 793)
 5' - GGG CGG CAT 3GC GGG CAC-3' (FRAG 784) (SEQ. ID NO: 794)
 5' - GGG CGG CAT 3GC GGG CA-3' (FRAG 785) (SEQ. ID NO: 795)
 45 5' - GGG CGG CAT 3GC GGG C-3' (FRAG 786) (SEQ. ID NO: 796)
 5' - GGG CGG CAT 3GC GGG -3' (FRAG 787) (SEQ. ID NO: 797)
 5' - GGG CGG CAT 3GC GG-3' (FRAG 788) (SEQ. ID NO: 798)
 5' - GGG CGG CAT 3GC G-3' (FRAG 789) (SEQ. ID NO: 799)
 5' - GGG CGG CAT 3GC -3' (FRAG 790) (SEQ. ID NO: 800)
 50 5' - GGG CGG CAT 3G -3' (FRAG 791) (SEQ. ID NO: 801)
 5' - GGG CGG CAT 3 -3' (FRAG 792) (SEQ. ID NO: 802)
 5' - GG CGG CAT G 3C GGG CAC AG G CTG GGC-3' (FRAG 793) (SEQ. ID NO: 803)
 5' - GG CGG CAT G 3C GGG CAC AGG CTG GG-3' (FRAG 794) (SEQ. ID NO: 804)
 5' - GG CGG CAT G 3C GGG CAC AGG CTG G-3' (FRAG 795) (SEQ. ID NO: 805)
 55 5' - GG CGG CAT G 3C GGG CAC AGG CTG -3' (FRAG 796) (SEQ. ID NO: 806)
 5' - GG CGG CAT G 3C GGG CAC AGG CT-3' (FRAG 797) (SEQ. ID NO: 807)
 5' - GG CGG CAT G 3C GGG CAC AGG C-3' (FRAG 798) (SEQ. ID NO: 808)
 5' - GG CGG CAT G 3C GGG CAC AGG -3' (FRAG 799) (SEQ. ID NO: 809)
 5' - GG CGG CAT G 3C GGG CAC AG-3' (FRAG 800) (SEQ. ID NO: 810)
 60 5' - GG CGG CAT G 3C GGG CAC A-3' (FRAG 801) (SEQ. ID NO: 811)
 5' - GG CGG CAT G 3C GGG CAC-3' (FRAG 802) (SEQ. ID NO: 812)
 5' - GG CGG CAT G 3C GGG CA-3' (FRAG 803) (SEQ. ID NO: 813)

© 2014 The Authors
Journal compilation
© 2014 British
Ecological Society,
Journal of Ecology,
102, 121–130

5' - GG CGG CAT GGC GGG C-3' (FRAG 804) (SEQ. ID NO: 814)
 5' - GG CGG CAT GGC GGG -3' (FRAG 805) (SEQ. ID NO: 815)
 5' - GG CGG CAT GGC GG-3' (FRAG 806) (SEQ. ID NO: 816)
 5' - GG CGG CAT GGC G-3' (FRAG 807) (SEQ. ID NO: 817)
 5 5' - GG CGG CAT GGC -3' (FRAG 808) (SEQ. ID NO: 818)
 5' - GG CGG CAT GG -3' (FRAG 809) (SEQ. ID NO: 819)
 5' - G CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 810) (SEQ. ID NO: 820)
 5' - G CGG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 811) (SEQ. ID NO: 821)
 5' - G CGG CAT GGC GGG CAC AGG CTG G-3' (FRAG 812) (SEQ. ID NO: 822)
 10 5' - G CGG CAT GGC GGG CAC AGG CTG -3' (FRAG 813) (SEQ. ID NO: 823)
 5' - G CGG CAT GGC GGG CAC AGG CT-3' (FRAG 814) (SEQ. ID NO: 824)
 5' - G CGG CAT GGC GGG CAC AGG C-3' (FRAG 815) (SEQ. ID NO: 825)
 5' - G CGG CAT GGC GGG CAC AGG -3' (FRAG 816) (SEQ. ID NO: 826)
 5' - G CGG CAT GGC GGG CAC AG-3' (FRAG 817) (SEQ. ID NO: 827)
 15 5' - G CGG CAT GGC GGG CAC A-3' (FRAG 818) (SEQ. ID NO: 828)
 5' - G CGG CAT GGC GGG CAC-3' (FRAG 819) (SEQ. ID NO: 829)
 5' - G CGG CAT GGC GGG CA-3' (FRAG 820) (SEQ. ID NO: 830)
 5' - G CGG CAT GGC GGG C-3' (FRAG 821) (SEQ. ID NO: 831)
 5' - G CGG CAT GGC GGG -3' (FRAG 822) (SEQ. ID NO: 832)
 20 5' - G CGG CAT GGC GG-3' (FRAG 823) (SEQ. ID NO: 833)
 5' - G CGG CAT GGC G-3' (FRAG 824) (SEQ. ID NO: 834)
 5' - G CGG CAT GGC -3' (FRAG 825) (SEQ. ID NO: 835)
 5' - CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 826) (SEQ. ID NO: 836)
 5' - CGG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 827) (SEQ. ID NO: 837)
 25 5' - CGG CAT GGC GGG CAC AGG CTG G-3' (FRAG 828) (SEQ. ID NO: 838)
 5' - CGG CAT GGC GGG CAC AGG CTG -3' (FRAG 829) (SEQ. ID NO: 839)
 5' - CGG CAT GGC GGG CAC AGG CT-3' (FRAG 830) (SEQ. ID NO: 840)
 5' - CGG CAT GGC GGG CAC AGG C-3' (FRAG 831) (SEQ. ID NO: 841)
 5' - CGG CAT GGC GGG CAC AGG -3' (FRAG 832) (SEQ. ID NO: 842)
 30 5' - CGG CAT GGC GGG CAC AG-3' (FRAG 833) (SEQ. ID NO: 843)
 5' - CGG CAT GGC GGG CAC A-3' (FRAG 834) (SEQ. ID NO: 844)
 5' - CGG CAT GGC GGG CAC-3' (FRAG 835) (SEQ. ID NO: 845)
 5' - CGG CAT GGC GGG CA-3' (FRAG 836) (SEQ. ID NO: 846)
 5' - CGG CAT GGC GGG C-3' (FRAG 837) (SEQ. ID NO: 847)
 35 5' - CGG CAT GGC GGG -3' (FRAG 838) (SEQ. ID NO: 848)
 5' - CGG CAT GGC GG-3' (FRAG 839) (SEQ. ID NO: 849)
 5' - CGG CAT GGC G-3' (FRAG 840) (SEQ. ID NO: 850)
 5' - GG CAT GGC GGG CAC AGG C TG GGC-3' (FRAG 841) (SEQ. ID NO: 851)
 5' - GG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 842) (SEQ. ID NO: 852)
 40 5' - GG CAT GGC GGG CAC AGG CTG G-3' (FRAG 843) (SEQ. ID NO: 853)
 5' - GG CAT GGC GGG CAC AGG CTG -3' (FRAG 844) (SEQ. ID NO: 854)
 5' - GG CAT GGC GGG CAC AGG CT-3' (FRAG 845) (SEQ. ID NO: 855)
 5' - GG CAT GGC GGG CAC AGG C-3' (FRAG 846) (SEQ. ID NO: 856)
 5' - GG CAT GGC GGG CAC AGG -3' (FRAG 847) (SEQ. ID NO: 857)
 45 5' - GG CAT GGC GGG CAC AG-3' (FRAG 848) (SEQ. ID NO: 858)
 5' - GG CAT GGC GGG CAC A-3' (FRAG 849) (SEQ. ID NO: 859)
 5' - GG CAT GGC GGG CAC-3' (FRAG 850) (SEQ. ID NO: 860)
 5' - GG CAT GGC GGG CA-3' (FRAG 851) (SEQ. ID NO: 861)
 5' - GG CAT GGC GGG C-3' (FRAG 852) (SEQ. ID NO: 862)
 50 5' - GG CAT GGC GGG -3' (FRAG 853) (SEQ. ID NO: 863)
 5' - GG CAT GGC GG-3' (FRAG 854) (SEQ. ID NO: 864)
 5' - G CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 855) (SEQ. ID NO: 865)
 5' - G CAT GGC GGG CAC AGG CTG GG-3' (FRAG 856) (SEQ. ID NO: 866)
 5' - G CAT GGC GGG CAC AGG CTG G-3' (FRAG 857) (SEQ. ID NO: 867)
 55 5' - G CAT GGC GGG CAC AGG CTG -3' (FRAG 858) (SEQ. ID NO: 868)
 5' - G CAT GGC GGG CAC AGG CT-3' (FRAG 859) (SEQ. ID NO: 869)
 5' - G CAT GGC GGG CAC AGG C-3' (FRAG 860) (SEQ. ID NO: 870)
 5' - G CAT GGC GGG CAC AGG -3' (FRAG 861) (SEQ. ID NO: 871)
 5' - G CAT GGC GGG CAC AG-3' (FRAG 862) (SEQ. ID NO: 872)
 60 5' - G CAT GGC GGG CAC A-3' (FRAG 863) (SEQ. ID NO: 873)
 5' - G CAT GGC GGG CAC-3' (FRAG 864) (SEQ. ID NO: 874)
 5' - G CAT GGC GGG CA-3' (FRAG 865) (SEQ. ID NO: 875)

5'- G CAT GGC GCG C-3' (FRAG 866) (SEQ. ID NO: 876)
5'- G CAT GGC GCG -3' (FRAG 867) (SEQ. ID NO: 877)
5'- CAT GGC GGC CAC AGG CTG GGC-3' (FRAG 868) (SEQ. ID NO: 878)
5'- CAT GGC GGC CAC AGG CTG GG-3' (FRAG 869) (SEQ. ID NO: 879)
5 5'- CAT GGC GGC CAC AGG CTG G-3' (FRAG 870) (SEQ. ID NO: 880)
5'- CAT GGC GGC CAC AGG CTG -3' (FRAG 871) (SEQ. ID NO: 881)
5'- CAT GGC GGC CAC AGG CT-3' (FRAG 872) (SEQ. ID NO: 882)
5'- CAT GGC GGC CAC AGG C-3' (FRAG 873) (SEQ. ID NO: 883)
5'- CAT GGC GGC CAC AGG -3' (FRAG 874) (SEQ. ID NO: 884)
10 5'- CAT GGC GGC CAC AG-3' (FRAG 875) (SEQ. ID NO: 885)
5'- CAT GGC GGC CAC A-3' (FRAG 876) (SEQ. ID NO: 886)
5'- CAT GGC GGC CAC-3' (FRAG 877) (SEQ. ID NO: 887)
5'- CAT GGC GGC CA-3' (FRAG 878) (SEQ. ID NO: 888)
5'- CAT GGC GGC C-3' (FRAG 879) (SEQ. ID NO: 889)
15 5'- AT GGC GGG CAC AGG CTG GGC-3' (FRAG 880) (SEQ. ID NO: 890)
5'- AT GGC GGG CAC AGG CTG GG-3' (FRAG 881) (SEQ. ID NO: 891)
5'- AT GGC GGG CAC AGG CTG G-3' (FRAG 882) (SEQ. ID NO: 892)
5'- AT GGC GGG CAC AGG CTG -3' (FRAG 883) (SEQ. ID NO: 893)
5'- AT GGC GGG CAC AGG CT-3' (FRAG 884) (SEQ. ID NO: 894)
20 5'- AT GGC GGG CAC AGG C-3' (FRAG 885) (SEQ. ID NO: 895)
5'- AT GGC GGG CAC AGG -3' (FRAG 886) (SEQ. ID NO: 896)
5'- AT GGC GGG CAC AG-3' (FRAG 887) (SEQ. ID NO: 897)
5'- AT GGC GGG CAC A-3' (FRAG 888) (SEQ. ID NO: 898)
5'- AT GGC GGG CAC-3' (FRAG 889) (SEQ. ID NO: 899)
25 5'- AT GGC GGG CA-3' (FRAG 890) (SEQ. ID NO: 900)
5'- T GGC GGG CAC AGG CTG GGC-3' (FRAG 891) (SEQ. ID NO: 901)
5'- T GGC GGG CAC AGG CTG GG-3' (FRAG 892) (SEQ. ID NO: 902)
5'- T GGC GGG CAC AGG CTG G-3' (FRAG 893) (SEQ. ID NO: 903)
5'- T GGC GGG CAC AGG CTG -3' (FRAG 894) (SEQ. ID NO: 904)
30 5'- T GGC GGG CAC AGG CT-3' (FRAG 895) (SEQ. ID NO: 905)
5'- T GGC GGG CAC C-3' (FRAG 896) (SEQ. ID NO: 906)
5'- T GGC GGG CAC AGG -3' (FRAG 897) (SEQ. ID NO: 907)
5'- T GGC GGG CAC AG-3' (FRAG 898) (SEQ. ID NO: 908)
5'- T GGC GGG CAC A-3' (FRAG 899) (SEQ. ID NO: 909)
35 5'- T GGC GGG CAC-3' (FRAG 900) (SEQ. ID NO: 910)
5'- GGC GGG CAC AGG CTG GGC-3' (FRAG 901) (SEQ. ID NO: 911)
5'- GGC GGG CAC AGG CTG GG-3' (FRAG 902) (SEQ. ID NO: 912)
5'- GGC GGG CAC AGG CTG G-3' (FRAG 903) (SEQ. ID NO: 913)
5'- GGC GGG CAC AGG CTG -3' (FRAG 904) (SEQ. ID NO: 914)
40 5'- GGC GGG CAC AGG CT-3' (FRAG 905) (SEQ. ID NO: 915)
5'- GGC GGG CAC AGG C-3' (FRAG 906) (SEQ. ID NO: 916)
5'- GGC GGG CAC AGG -3' (FRAG 907) (SEQ. ID NO: 917)
5'- GGC GGG CAC AG-3' (FRAG 908) (SEQ. ID NO: 918)
5'- GGC GGG CAC A-3' (FRAG 909) (SEQ. ID NO: 919)
45 5'- GC GGG CAC AGG CTG GGC-3' (FRAG 910) (SEQ. ID NO: 920)
5'- GC GGG CAC AGG CTG GG-3' (FRAG 911) (SEQ. ID NO: 921)
5'- GC GGG CAC AGG CTG G-3' (FRAG 912) (SEQ. ID NO: 922)
5'- GC GGG CAC AGG CTG -3' (FRAG 913) (SEQ. ID NO: 923)
5'- GC GGG CAC AGG CT-3' (FRAG 914) (SEQ. ID NO: 924)
50 5'- GC GGG CAC AGG C-3' (FRAG 915) (SEQ. ID NO: 925)
5'- GC GGG CAC AGG -3' (FRAG 916) (SEQ. ID NO: 926)
5'- GC GGG CAC AG-3' (FRAG 917) (SEQ. ID NO: 927)
5'- C GGG CAC AGG CTG GGC-3' (FRAG 918) (SEQ. ID NO: 928)
5'- GGG CAC AGG CTG GG-3' (FRAG 919) (SEQ. ID NO: 929)
55 5'- C GGG CAC AGG CTG G-3' (FRAG 920) (SEQ. ID NO: 930)
5'- C GGG CAC AGG CTG -3' (FRAG 921) (SEQ. ID NO: 931)
5'- C GGG CAC AGG CT-3' (FRAG 922) (SEQ. ID NO: 932)
5'- C GGG CAC AGG C-3' (FRAG 923) (SEQ. ID NO: 933)
5'- C GGG CAC AGG -3' (FRAG 924) (SEQ. ID NO: 934)
60 5'- GGG CAC AGG CTC GGC-3' (FRAG 925) (SEQ. ID NO: 935)
5'- GGG CAC AGG CTC GG-3' (FRAG 926) (SEQ. ID NO: 936)
5'- GGG CAC AGG CTC G-3' (FRAG 927) (SEQ. ID NO: 937)

5' - GGG CAC AGG CTG -3' (FRAG 928) (SEQ. ID NO: 938)
 5' - GGG CAC AGG CT -3' (FRAG 929) (SEQ. ID NO: 939)
 5' - GGG CAC AGG C-3' (FRAG 930) (SEQ. ID NO: 940)
 5' - GG CAC AGG CTG GGC-3' (FRAG 931) (SEQ. ID NO: 941)
 5 5' - GG CAC AGG CTG GG-3' (FRAG 932) (SEQ. ID NO: 942)
 5' - GG CAC AGG CTG G-3' (FRAG 933) (SEQ. ID NO: 943)
 5' - GG CAC AGG CTG -3' (FRAG 934) (SEQ. ID NO: 944)
 5' - GG CAC AGG CT-3' (FRAG 935) (SEQ. ID NO: 945)
 5' - G CAC AGG CTG GC C-3' (FRAG 936) (SEQ. ID NO: 946)
 10 5' - G CAC AGG CTG GC -3' (FRAG 937) (SEQ. ID NO: 947)
 5' - G CAC AGG CTG G-3' (FRAG 938) (SEQ. ID NO: 948)
 5' - G CAC AGG CTG -3' (FRAG 939) (SEQ. ID NO: 949)
 5' -CAC AGG CTG GGC 3' (FRAG 940) (SEQ. ID NO: 950)
 5' -CAC AGG CTG GG-3' (FRAG 941) (SEQ. ID NO: 951)
 15 5' -CAC AGG CTG G-3' (FRAG 942) (SEQ. ID NO: 952)
 5' -AC AGG CTG GGC-3' (FRAG 943) (SEQ. ID NO: 953)
 5' -AC AGG CTG GG-3' (FRAG 944) (SEQ. ID NO: 954)
 5' -C AGG CTG GGC-3' (FRAG 945) (SEQ. ID NO: 955)
 5' -TTT TCC TTC CTT TGT CTC TCT TC (FRAG 946) (SEQ. ID NO: 956)
 20 5' -GCT CCC GGC TGC CTG (FRAG 947) (SEQ. ID NO: 957)
 5' -CTC GGC CGT GCG GCT CTG TCG CTC CCG GT (FRAG 948) (SEQ. ID NO: 958)
 5' -CCG CCG CCC TCC 3GG GGG TC (FRAG 949) (SEQ. ID NO: 959)
 5' -TGC TGC CGT TGG CTG CCC (FRAG 950) (SEQ. ID NO: 960)
 5' -CTT CTG CGG GTC 'GCC GG (FRAG 951) (SEQ. ID NO: 961)
 25 5' -TGC TGG GCT TGT 'GGC (FRAG 952) (SEQ. ID NO: 962)
 5' -GGC CTC TCT TCT GGG (FRAG 953) (SEQ. ID NO: 963)
 5' -CCT GGT CCC TCC GT (FRAG 954) (SEQ. ID NO: 964)
 5' -GGT GGC TCC TCT 'GC (FRAG 955) (SEQ. ID NO: 965)
 5' -GCT TGG TCC TGG 3GC TGC (FRAG 956) (SEQ. ID NO: 966)
 30 5' -TGC TCT CCT CTC CTT (FRAG 957) (SEQ. ID NO: 967)

Human Adenosine A2a Receptor Nucleic Acid and Antisense Oligonucleotide Fragments

5' -TGC TTT TCT TTT CTG GGC CTC TGT GGT CTG TTT TCT TCT G GCC CTG CTG GGG CGC TCT CC GCC GCC
 CGC CTG GCT CCC GGB GCC CBT GBT GGG CBT GCC GTG GTT CTT GCC CTC CTT TGG CTG CCG TGC CCG CTC
 CCC GGC CTC CTG GCG GGT GGC CGT TG GGC CCG TGT TCC CCT GGG -GCC TGG GGC TCC CTT CTC TC GCC
 35 CTT CTT GCT GGG CCT C TGC TGC TGC TGG TGC TGT GGC CCC C GTA CAC CGA GGA GCC CAT GAT GGG CAT
 GCC ACA GAC GAC AGG C GTB CBC CGB GGB GCC CBT GBT GGG CBT GCC BCB GBC GBC BGG C-3' (FRAG. NO.
 1665) (SEQ. ID NO:1680)
 5' -CTG GGC CTC-3' (FRAG 1666) (SEQ. ID NO: 1681)
 5' -TGC TTT TCT TTT CTG GGC CTC-3' (FRAG 958) (SEQ. ID NO: 968)
 40 5' -TGT GGT CTG TTT TTT TCT G-3' (FRAG 959) (SEQ. ID NO: 969)
 5' -GCC CTG CTG GGG CGC TCT CC-3' (FRAG 960) (SEQ. ID NO: 970)
 5' -GCC GCC CGC CTG GCT CCC-3' (FRAG 961) (SEQ. ID NO: 971)
 5' -GGB GCC CBT GBT GGG CBT GCC-3' (FRAG 962) (SEQ. ID NO: 972)
 5' -GTG GTT CTT GCC CTC CTT TGG CTG-3' (FRAG 963) (SEQ. ID NO: 973)
 45 5' -CCG TGC CCG CTC CCC GGC-3' (FRAG 964) (SEQ. ID NO: 974)
 5' -CTC CTG GCG GGT 'GGC CGT TG-3' (FRAG 965) (SEQ. ID NO: 975)
 5' -GGC CCG TGT TCC CCT GGG-3' (FRAG 966) (SEQ. ID NO: 976)
 5' -GCC TGG GGC TCC CTT CTC TC-3' (FRAG 967) (SEQ. ID NO: 977)
 5' -GCC CTT CTT GCT GGG CCT C-3' (FRAG 968) (SEQ. ID NO: 978)
 50 5' -TGC TGC TGC TGG 'TGC TGT GGC CCC C-3' (FRAG 969) (SEQ. ID NO: 979)
 5' -GTACACCGAGGGAGCCATGATGGGCATGCCACAGACGACAGGC-3' (FRAG 970) (SEQ. ID NO: 980)
 5' -GTBCBCCGBGGBGGCCCBTGBTGGGCBTGCCBCBGBGBCBGGC-3' (FRAG 971) (SEQ. ID NO: 981)

Human Adenosine A2b Receptor Nucleic Acid & Antisense Oligonucleotide Fragments

55 5' -GGC GCC GTG CCG CGT CTT GGT GGC GGC GG GTT CGC GCC CGC GCG GGG CCC CTC CGG TCC GTT CGC
 CGC CGC GGG CCC CTC CGG TCC CGG GTC GGG GCC CCC CGC GGC C GCC TCG GGG CTG GGG CGC TGG
 TGG CCG GG CCG CGC CTC CGC CTG CCG CTT CTG GCT GGG CCC CGG GCG CCC CCT CCC CTC TTG CTC GGG
 TCC CCG TG ACA GCG CGT CCT GTG TCT CCA GCA GCA TGG CCG GGC CAG CTG GGC CCC BCB GCG CGT CCT
 GTG TCT CCB GCB GCB TGG CCG GGC CBG CTG GGC CCC CCCAGCCCCG AGGCTCAGAA GCGGCAGGGC

	GAGGC CGCGGT	CCGG CGCGCTA	TGGCCATGCC	CGGCGGGTCT	CACCGGGCTG	CCCCTCGCCC	GGCGCGCCTT
	CGGTAGGGG	CGCC'CGGGC	CCAGCTGGCC	CGGCCATGCT	GCTGGAGACA	CAGGACCGCG	TGTACGTGGC
	GCTGGAGCTG	GTCATCGCCG	CGCTTCGGT	GGCGGGCAAC	GTGCTGGTGT	GCGCCGCGGT	GGGCACGGCG
5	AACACTCTGC	AGACGCCAC	CAACTACTTC	CTGGTGTCCC	TGGCTGCCG	CGACGTGGCC	GTGGGGCTCT
	TCGCCATCCC	CTTGCCCATC	ACCATCAGCC	TGGGCTTCTG	CACTGACTTC	TACGGCTGCC	TCTTCCTCGC
	CTGCTTCGTG	CTGGTGCTCA	CGCAGAGCTC	CATCTTCAGC	CTTCTGGCCG	TGGCAGTCGA	CAGATAACCTG
	GCCATCTGTG	TCCC3CTCAG	GTATAAAAGT	TTGGTCACGG	GGACCCGAGC	AAGAGGGGTC	ATTGCTGTCC
	TCTGGGTCTT	TGCCITTGGC	ATCGGATTGA	CTCCATTCCCT	GGGGTGGAAAC	AGTAAAGACA	GTGCCACCAA
10	CAACTGCACA	GAAC'CCTGGG	ATGGAACCAC	GAATGAAAGC	TGCTGCCTTG	TGAAGTGTCT	CTTTGAGAAT
	GTGGTCCCCA	TGACCTACAT	GGTATATTTC	AATTCTTTG	GGTGTGTTCT	GCCCCCACTG	CTTATAATGC
	TGGTGATCTA	CATTAAGATC	TTCCCTGGG	CCTGCAGGCA	GCTTCAGCGC	ACTGAGCTGA	TGGACCACTC
	GAGGACCAACC	CTCCAGCGGG	AGATCCATGC	AGCCAAGTCA	CTGGCCATGA	TTGTGGGGAT	TTTGCCCTG
	TGCTGGTTAC	CTGT3CATGC	TGTTAACCTGT	GTCACTCTT	TCCAGGCCAGC	TCAGGGTAAA	AATAAGCCA
15	AGTGGGCAAT	GAA'ATGGCC	ATTCTTCTGT	CACATGCCA	TTCAGTTGTC	AATCCCATTG	TCTATGCTTA
	CCGGAACCAGA	GAC'CTCCGCT	ACACTTTCA	CAAATTATC	TCCAGGTATC	TTCTCTGCCA	AGCAGATGTC
	AAGAGTGGGA	ATGGTCAGGC	TGGGGTACAG	CCTGCTCTCG	GTGTGGGCCT	ATGATCTAGG	CTCTCGCCCTC
	TTCCAGGAGA	AGATACAAAT	CCACAAGAAA	CAAAGAGGAC	ACGGCTGGTT	TTCATTGTGA	AAGATAGCTA
	CACCTCACAA	GGAAATGGAC	TGCCTCTCTT	GAGCACTTCC	CTGGAGCTAC	CACGTATCTA	GCTAATATGT
20	ATGTGTCAGT	AGTAGCACCA	AGGATTGACA	AATATATTTA	TGATCTATTTC	AGCTGCTTTT	ACTGTGTGGA
	TTATGCCAAC	AGCTITGAATG	GATTCTAAC	GACTCTTTTG	TTTTTAAAG	TCTGCCTTGT	TTATGGTGGA
	AAATTACTGTA	AACTIATTTA	CTGTGAAACA	GTGTGAACTA	TTATAATGCA	AATACTTTTT	AACTTAGAGG
	CAATGGAAAA	ATAA'AAGTTG	ACTGTACTAA	AAATGTATAC	TTGTTGCCAG	GAAGGTGACC	TCAAAAATTA
	AAAGTATAAT	TATTGGCCG	GGCATGGGG	CTCACACCTG	TAATTCCAGC	ACTTGGGAG	GCCAAGGCAG
25	GCGGATCACG	AGG'CAGGAG	TTCAAAACCA	GCCTGTCAA	TATAGTG	GGGCAATTG	TTAGTTATCC
	GCGGCCACCA	AGACGCCGCA	CGGCGCCTGG	ACCGGAGGGG	CCCCGCGCG	GCGCGAACCT	TGGGCTCGGG
	CGAGTGGGTG	GTGCTCCGCC	CAGCCCGAGA	CGGGCGGGCG	CGCGGGCCAA	TGGGTGCCGC	CTCTTGCCG
	CGGGGGGCC	CGACCCGTGG	GTCCC GGCCA	CCAGCGCCCC	AGCCCCGAGG	CTCAGAACGCG	GCAGGCGGAG
	GCGCGGTCCG	GGCCCTATGG	CCATGCCCGG	CGGGTCTCAC	GCGGCTGCC	CTCGCCCGGC	GCGCCTTCGG
30	TAGGGGGCGC	CCGGGGGCCA	GCTGGCCCGG	CCATGCTGCT	GGAGACACAG	GACCGCGCTGT	ACGTGGCGCT
	GGAGCTGGTC	ATCGCCGCGC	TTTCGGTGGC	GGGCAACGTG	CTGGTGTGCG	CCGGGTGGG	CACGGCGAAC
	ACTCTGCAGA	CGCCCCACAA	CTACTTCTG	GTGCTCCCTGG	CTGCGGCCGA	CGTGGCCGTG	GGGCTCTTCG
	CCATCCCCCT	TGCCATCACC	ATCAGCCTGG	GCTCTGCAC	TGACTTCTAC	GGCTGCCTCT	TCCTCGCCCTG
	CTTCGTGCTG	GTGCTCACGC	AGAGCTCCAT	CTTCAGCCTT	CTGGCGTGG	CAGTCGACAG	ATACCTGGCC
35	ATCTGTGTCC	CGCTCAGGTA	TTAAAGTTTG	GTCACGGGGA	CCCGAGCAAG	AGGGTCATT	GCTGTCTCT
	GGGTCCCTGC	CTTGGCATC	GGATTGACTC	CATTCTGGG	GTGGAACAGT	AAAGACAGTG	CCACCAACAA
	CTGCACAGAA	CCCTGGGATG	GAACCACGAA	TGAAAGCTGC	TGCCCTGTGA	AGTGTCTCTT	TGAGAATGTG
	GTCCCCATGA	GCTACATGGT	ATATTTCAT	TTCTTGGGT	GTGTTCTGCC	CCCACTGCTT	ATAATGCTGG
	TGATCTACAT	TAAGATCTTC	CTGGTGGCT	GCAGGCAGCT	TCAGCGCACT	GAGCTGATGG	ACCACTCGAG
40	GACCACCTC	CAGCGGGAGA	TCCATGCAGC	CAAGTCACTG	GCCATGATTG	TGGGGATT	TGCCCTGTGC
	TGGTTACCTG	TGCA'PGCTGT	TAACTGTGTC	ACTCTTTCC	AGCCAGCTCA	GGGAAAAAT	AAGCCAAGT
	GGGCAATGAA	TATC'GCCATT	CTTCTGTCAC	ATGCCAATT	AGTTGTCAAT	CCCATTGTCT	ATGCTTACCG
	GAACCGAGAC	TTCCGCTACA	CTTTTCACAA	AATTATCTCC	AGGTATCTTC	TCTGCCAAGC	AGATGTCAAG
	AGTGGGAATG	GTCA'GGCTGG	GGTACAGCCT	GCTCTCGGTG	TGGGCCTATG	ATCTAGGCTC	TCGCCTCTTC
45	CAGGAGAAGA	TACA AATCCA	CAAGAAACAA	AGAGGACACG	GCTGGTTTC	ATTGTGAAAG	ATAGCTACAC
	CTCACAAGGA	AATC GACTGC	CTCTCTTGAG	CACTCCCTG	GAGCTACCAC	GTATCTAGCT	AATATGTATG
	TGTCAGTAGT	AGGC TCCAAG	GATTGACAAA	TATATTATG	ATCTATTTCAG	CTGCTTTAC	TGTGTGGATT
	ATGCCAACAG	CTTGAATGGA	TTCTAACAGA	CTCTTTGTT	TTTAAAAGTC	TGCCTTGT	ATGGTGGAAA
	ATTACTGAAA	CTATTTACT	GTGAAACAGT	GTGAACATT	ATAATGCAA	TACTTTAA	CTTAGAGGCA
50	ATGGAAAAAT	AAAAGTTGAC	TGTACTAAAA	ATG CCCAGCCCCG	AGGCTCAGAA	GGCGCAGGCG	GAGGCGCGGT
	CGGGGCCCTA	TGGCCATGCC	CGGCGGGTCT	CACCGGGCTG	CCCCTCGCCC	GGCGCGCCTT	CGGTAGGGGG
	CGCCCCGGGGC	CCAGCTGGCC	CGGCCATGCT	GCTGGAGACA	CAGGACCGCG	TGTACGTGGC	GCTGGAGCTG
	GTCATCGCCG	CGCTTCGGT	GGCGGGCAAC	GTGCTGGTGT	GCGCCGCGGT	GGGCACGGCG	AACACTCTGC
	AGACGCCAAC	CAACTACTTC	CTGGTGTCCC	TGGCTGCCG	CGACGTGGCC	GTGGGGCTCT	TCGCCATCCC
55	CTTTGCCATC	ACCA'PGAGCC	TGGGCTTCTG	CACTGACTTC	TACGGCTGCC	TCTTCCTCGC	CTGCTTCGTG
	CTGGTGCTCA	CGCA'GAGCTC	CATCTTCAGC	CTTCTGGCCG	TGGCAGTCGA	CAGATAACCTG	GCCATCTGTG
	TCCCGCTCAG	GTATAAAAGT	TTGGTCACGG	GGACCCGAGC	AAGAGGGGTC	ATTGCTGTCC	TCTGGGTCT
	TGCCTTGGC	ATCGGATTGA	CTCCATTCCCT	GGGGTGGAAAC	AGTAAAGACA	GTGCCACCAA	CAACTGCACA
	GAACCTGGG	ATGGAACCAC	GAATGAAAGC	TGCTGCCTTG	TGAAGTGTCT	CTTGAGAAT	GTGGTCCCCA
	TGAGCTACAT	GGTATATTTC	AATTCTTTG	GGTGTGTTCT	GCCCCCACTG	CTTATAATGC	TGGTGATCTA

CATTAAGATC TTCCCTGGTGG CCTGCAGGCA GCTTCAGCGC ACTGAGCTGA TGGACCACTC GAGGACCACC
 CTCCAGCGGG AGATCCATGC AGCCAAGTCA CTGGCCATGA TTGTGGGGAT TTTTGCCTG TGCTGGTTAC
 CTGTGCATGC TGTTAACGT GTCACTCTT TCCAGGCCAGC TCAGGGTAAA AATAAGCCCA AGTGGGCAAT
 GAATATGGCC ATTCTTCTGT CACATGCCAA TTCAGGTATC AATCCCATTG TCTATGCTTA CGGAACCGA
 5 GACTTCCGCT ACACTTTCA CAAAATTATC TCCAGGTATC TTCTCTGCCA AGCAGATGTC AAGAGTGGGA
 ATGGTCAGGC TGGCGTACAG CCTGCTCTCG GTGTGGGCCT ATGATCTAGG CTCTCGCCTC TTCCAGGAGA
 AGATACAAAT CCACAAGAAA CAAAGAGGAC ACGGCTGGTT TTCATTGTGA AAGATAGCTA CACCTCACAA
 GGAAATGGAC TGCCCTCTCTT GAGCACTTCC CTGGAGCTAC CACGTATCTA GCTAATATGT ATGTGTCAGT
 AGTAGCACCA AGGATTGACA AATATATTTC TGATCTATTG AGCTGTTT ACTGTGTGGA TTATGCCAAC
 10 AGCTTGAATG GATICTAACAGA GACTCTTTG TTTTTAAAAG TCTGCCTTGT TTATGGTGGAA AAATTACTGA
 AACTATTTA CTGTGAAACA GTGTGAACTA TTATAATGCA AATAACTTTT AACTTAGAGG CAATGGAAA
 ATAAAAGTTG ACTGTACTAA AAATGTATAC TTGTGCCAG GAAGGTGACC TCAAAAATTA AAAGTATAAT
 TATTCCGCCG GGCATGGTGG CTCACACCTG TAATTCCAGC ACTTTGGGAG GCCAAGGCAG GCGGATCACG
 15 AGGTCAAGGAG TTCAAAACCA GCCTGTCCAA TATAGTG GGGCAATTG TTAGTTATCC GCCGCCACCA
 AGACGCGGCA CGGGCGCTGG ACCGGAGGGG CCCCCGCGGG GCGCGAACTT TGGGCTCGGG CGAGTGGGTG
 GTGCTCCGCC CAGCCCGAGA CGGGCGGGCG CGCGGGCCAA TGGGTGCCGC CTCTGGCCG CGGGGGGCC
 CGACCCGTGG GTCCCGGCCA CCAGCGCCCC AGCCCCGAGG CTCAGAACCG GCAGGCGGAG GCGCGGTCCG
 GGCCTATGG CCATGCCCG CGGGTCTCAC GCGGCTGCC CTCGCCCGGC GCGCCTCGG TAGGGGGCGC
 20 CCGGGGCCCA GCTGGCCCGG CCATGCTGCT GGAGACACAG GACGCGCTGT ACAGTGGCGCT GGAGCTGGTC
 ATCGCCCGC TTTCGGTGGC GGGCAACGTG CTGGTGTGCG CCGCGGTGGG CACGGCGAAC ACTCTGCAGA
 CGCCCCACCAA CTACTCCCTG GTGTCCCTGG CTGCGGCCGA CGTGGCCGTG GGGCTCTTCG CCATCCCC
 TGCCATCACCC ATCAGCCTGG GCTCTGCAC TGACTTCTAC GGCTGCCCT TCCTCGCCTG CTTCGTGTG
 GTGCTCACGC AGACCTCCAT CTTCAGCCTT CTGGCCGTGG CAGTCGACAG ATACCTGGCC ATCTGTGTCC
 CGCTCAGGTA TAAAAGTTG GTCACGGGA CCCGAGCAAG AGGGGTCAATT GCTGCTCTCT GGGTCCTTGC
 25 CTTTGGCATC GGATTGACTC CATTCTGGG GTGGAACAGT AAAGACAGT CCACCAACAA CTGCACAGAA
 CCCTGGGATG GAACCACGAA TGAAAGCTGC TGCTTGTGA AGTGTCTTT TGAGAATGTG GTCCCCATGA
 GCTACATGGT ATATTTCAAT TTCTTTGGGT GTGTTCTGCC CCCACTGCTT ATAATGCTGG TGATCTACAT
 TAAGATCTTC CTGGTGGCCT GCAGGCAGCT TCAGCGCACT GAGCTGATGG ACCACTCGAG GACCACCC
 CAGCGGGAGA TCCATGCAGC CAAGTCACTG GCCATGATTG TGGGGATTG TGCCCTGTGC TGGTACCTG
 30 TGCATGCTGT TAACITGTGTC ACTCTTTTCC AGCCAGCTCA GGGTAAAAAT AAGCCAAGT GGGCAATGAA
 TATGGCCATT CTTCATGTAC ATGCCAACCC AGTTGTCAAT CCCATTGCT ATGCTTACCG GAACCGAGAC
 TTCCGCTACA CTTT'CACAA AATTATCTCC AGGTATCTTC TCTGCCAACG AGATGTCAG AGTGGGAATG
 GTCAGGGCTGG GGTACAGCCT GCTCTCGGTG TGGGCCATG ATCTAGGCTC TCGCCCTTTC CAGGAGAAGA
 TACAAATCCA CAAGAAACAA AGAGGACACG GCTGGTTTC ATTGTGAAAG ATAGCTACAC CTCACAAGGA
 35 AATGGACTGC CTCTCTTGAG CACTTCCCTG GAGCTACCAC GTATCTAGCT AATATGTATG TGTCACTAGT
 AGGCTCCAAG GATIGACAAA TATATTATG ATCTATTCACTG CTGCTTTTAC TGTGTGGATT ATGCCAACAG
 CTTGAATGGA TTCTAACAGA CTCTTTGTT TTTAAAAGTC TGCCCTGTTT ATGGTGAAA ATTACTGAAA
 CTATTTACT GTGAACATTATA ATAATGCAAA TACTTTTAA CTTAGAGGCA ATGGAAAAT
 AAAAGTTGAC TGTACTAAAA ATG -3' (FRAG. NO: 1670) (SEQ. ID NO:3006)
 40 5'- GGCAATTG TTAGTTATCC GCCGCCACCA AGACGCGGCA CGGCGCCTGG ACCGGAGGGG CCCCCGCGGG
 GCGCGAACTT TGGGCTCGGG CGAGTGGGTG GTGCTCCGCC CAGCCGAGA CGGGCGGGCG CGCGGGCCAA
 TGGGTGCCGC CTCTGGCCG CGGGGGGGCC CGACCGTGG GTCCCGGCCA CCAGCGCCCC AGCCCCGAGG
 CTCAGAACGC GCAGGCGGGAG GCGCGGTCCG GGCCTATGG CCATGCCCGG CGGGCTCAG GCGGCTGCC
 CTCGCCCGC GCGCTTCGG TAGGGGGCGC CGGGGGCCCA GCTGGCCCGG CCATGCTGCT GGAGACACAG
 45 GACGCGCTGT ACGTGGCGCT GGAGCTGGTC ATCGCCCGC TITCGGTGGC GGGCAACGTG CTGGTGTGCG
 CCGCGGTGGG CACCGCGAAC ACTCTGCAGA CGCCCACCAA CTACTTCTG TGTCCTCGG CTGCGGCCA
 CGTGGCCGTG GGGCTCTCG CCATCCCCCT TGCCATCACCC ATCAGCCTGG GCTCTGCAC TGACTTCTAC
 GGCTGCCCTC TCCTCGCCTG CTTCTGCTG TGCTCACGC AGAGCTCCAT CTTCAGCCTT CTGGCCGTGG
 CAGTCGACAG ATACCTGGCC ATCTGTGTC CGCTCAGGTA TAAAAGTTG GTCACGGGA CCCGAGCAAG
 50 AGGGGTCAATT GCTGCTCTCT GGGCTTGTG CTGGTGTGCA TGATCTACAT TAAGATCTTC CTGGTGGCCT
 AAAGACAGTG CCACCAACAA CTGCACAGAA CCCTGGGATG GAACCAAGA TGAAAGCTGC TGCCCTGTGA
 AGTGTCTCTT TGAGATGTG GTCCCCATGA GCTACATGGT ATATTCAT TTCTTTGGGT GTGTTCTGCC
 CCCACTGCTT ATAATGCTGG TGATCTACAT TAAGATCTTC CTGGTGGCCT GCAGGCAGCT TCAGCGCACT
 GAGCTGATGG ACCACTCGAG GACCACCCCT CAGCGGGAGA TCCATGCAGC CAAGTCACTG GCCATGATTG
 55 TGGGGATTG TGCCATGTGTC TGGTTACCTG TGCTGCTGT TAACTGTGTC ACTCTTTCC AGCCAGCTCA
 GGGTAAAAAT AAGCCCAAGT GGGCAATGAA TATGGCCATT CTTCTGTCAC ATGCCAATTG AGTTGTCAAT
 CCCATTGCTCT ATGCTTACCG GAACCGAGAC TTCCGCTACA CTTTCAACAA AATTATCTCC AGGTATCTTC
 TCTGCCAACG AGATGTCAG AGTGGGAATG GTCAGGCTGG GGTACAGCCT GCTCTCGGTG TGGGCCATG
 ATCTAGGCTC TCGCTCTTC CAGGAGAAGA TACAAATCCA CAAGAAACAA AGAGGACACG GCTGGTTTC

ATTGTGAAAG ATACCTACAC CTCACAAGGA AATGGACTGC CTCTCTTGAG CACTCCCTG GAGCTACCAC
 GTATCTAGCT AATATGTATG TGTCAGTAGT AGGCTCCAAG GATTGACAAA TATATTATG ATCTATTCA
 CTGCTTTAC TGTGPGGATT ATGCCAACAG CTTGAATGGA TTCTAACAGA CTCTTTGTT TTAAAAGTC
 TGCCTGTTT ATGGPGGAAA ATTACTGAAA CTATTTACT GTGAAACAGT GTGAACATT ATAATGCAA
 5 TACTTTTAA CTTAGAGGCA ATGGAAAAAT AAAAGTTGAC TGTAATTTAATG-3' (FRAG.NO.:_) (SEQ.ID NO:2436)
 5'-CCCAGCCCCG AGGCTCAGAA CGCGCAGGCG GAGGCGCGGT CGGGCGCTA TGGCCATGCC CGGCGGGTCT
 CACCGCGCTG CCCCTCGCCC GGCGCGCCT CGGTAGGGGG CGCCCGGGC CCAGCTGGCC CGGCCATGCT
 GCTGGAGACA CAGGACGCGC TGTACGTGGC GCTGGAGCTG GTCATGCCG CGCTTCGGT GGCGGGCAAC
 GTGCTGGTGT GCGCCGCGGT GGGCACGGCG AACACTCTGC AGACGCCAC CAAACTACTTC CTGGTGTCCC
 10 TGGCTGCGC CGACGTGGCC GTGGGGCTCT TCGCCATCCC CTTGCCATC ACCATCAGCC TGGGCTTCTG
 CACTGACTTC TACGGCTGCC TCTTCCTCGC CTGCTTCGTG CTGGTGCTCA CGCAGAGCTC CATCTTCAGC
 CTTCTGGCCG TGGCAGTCGA CAGATACTG GCCATCTGTG TCCCCTCAG GTATAAAAGT TTGGTCACGG
 GGACCCGAGC AAGAGGGGTC ATTGCTGTCC TCTGGGTCT TGCTTTGGC ATCGGATTGA CTCCATTCT
 GGGGTGGAAC AGTAAGACA GTGCCACCAA CAACTGCACA GAACCTGGG ATGGAACAC GAATGAAAGC
 15 TGCTGCCCTG TGAAGTGTCT CTTTGAGAAT GTGGTCCCCA TGAGCTACAT GGTATATTTC AATTCTTGT
 GGTGTGTTCT GCCCCCCACTG CTTATAATGC TGGTGTACTA CATTAGATC TTCCTGGTGG CCTGCAGGCA
 GCTTCAGCGC ACTGAGCTGA TGGACCACTC GAGGACCACC CTCCAGCGGG AGATCCATGC AGCCAAGTCA
 CTGGCCATGA TTGIGGGGAT TTTTGCCCTG TGCTGGTTAC CTGTGCATGC TGTTAACTGT GTCACTCTT
 TCCAGCCAGC TCAGGGTAAA AATAAGCCCA AGTGGGCAAT GAATATGCC ATTCTCTGT CACATGCCAA
 20 TTCAGTTGTC AATCCCATTG TCTATGCTTA CGGAAACGA GACTCCGCT ACACCTTCA CAAAATTATC
 TCCAGGTATC TTCTCTGCCA AGCAGATGTC AAGAGTGGG ATGGTCAGGC TGGGTTACAG CCTGCTCTG
 GTGTGGCCT ATGATCTAGG CTCTCGCCCT TTCCAGGAGA AGATACAAT CCACAAGAAA CAAAGAGGAC
 ACGGCTGGTT TTCAATTGTGA AAGATAGCTA CACCTCACAA GGAAATGAC TGCCCTCTT GAGCACTTCC
 CTGGAGCTAC CACC TATCTA GCTAATATGT ATGTCAGT AGTAGCACCA AGGATTGACA AATATATTAA
 25 TGATCTATTG AGCTGCTTTT ACTGTGTGGA TTATGCCAAC AGCTGAATG GATTCTAACAA GACTCTTGT
 TTTTAAAG TCTGCTTGT TTATGGTGA AAATTACTGA AACTATTTC TGTTAAACAA GTGTGAACAA
 TTATAATGCA AATACTTTT AACTTAGAGG CAATGGAAAA ATAAAAGTTG ACTGTACTAA AAATGTATAC
 TTGTTGCCAG GAAGGTGACC TCAAAAATTA AAAGTATAAT TATTGGCCG GGCATGGTGG CTCACACCTG
 TAATTCCAGC ACTTGGGAG GCCAAGGCAG GCGGATCACG AGGTCAAGGAG TTCAAAACCA GCCTGTCAA
 30 TATAGTG -3' (FRAG. NO.:_) (SEQ. ID NO:2435)
 5'-GGGCAATTG TTAGTTATCC GCCGCCACCA AGACCGGGCA CGGCGCCTGG ACCGGAGGGG CCCCAGCGGG
 CGCGCAACTT TGGGCTCGGG CGAGTGGGT GTGCTCCGCC CAGCCCGAGA CGGGCGGGCG CGCGGGCCAA
 TGGGTGCCGC CTCTGGCCG CGGGGGGCCC CGACCCGTGG GTCCCGGCCA CCAGCGCCCC AGCCCCGAGG
 CTCAGAACGC GCAC GCGGAG GCGCGTCCG GGCCTATGG CCATGCCCGG CGGGTCTCAC GCGGCTGCC
 35 CTCGCCCGC GCGCCTTCGG TAGGGGGCGC CGGGGGCCCA GCTGGCCCG CCATGCTGCT GGAGACACAG
 GACGCGCTGT ACCTGGCGCT GGAGCTGGTC ATGCCCGC CGCCACCAA CTACTTCCTG GTGTCCTGG CTGCGGCCA
 CCGCGTGGG CACC GCGAAC ACTCTGCAGA CGCCCACCAA CCATCCCCCT TGCCATCACC ATAGCCTGG GCTTCTGCAC
 CGTGGCCGTG GGGCTCTCG CCATCCCCCT TGCCATCACC ATAGCCTGG GCTTCTGCAC TGACTTCTAC
 GGCTGCCCTC TCCTGCCCTG CTTCGTGCTG GTGTCACGC AGAGCTCCAT CTTCAGCCTT CTGGCCGTGG
 40 CAGTCGACAG ATACCTGGCC ATCTGTGTCC CGCTCAGGTA TAAAAGTTG GTCACGGGGA CCCAGCAAG
 AGGGGTATTG GCTCTCCTCT GGGCTCTTGC CTTGGCATC GGATTGACTC CATTCTGGG GTGGAACAGT
 AAAGACAGTG CCACCAACAA CTGCACAGAA CCCTGGGATG GAACCACGAA TGAAAGCTGC TGCTTGTGA
 AGTGTCTCTT TGAGAATGTG GTCCCCATGA GCTACATGGT ATATTTCAT TTCTTGGGT GTGTTCTGCC
 CCCACTGCTT ATAATGCTGG TGATCTACAT TAAGATCTTC CTGGTGGCCT GCAGGCAGCT TCAGCGCACT
 45 GAGCTGATGG ACCACTCGAG GACCACCCCTC CAGCGGGAGA TCCATGCAGC CAAGTCACTG GCCATGATTG
 TGGGGATTTT TGCCCTGTGC TGGTACCTG TGCTACGTGT TAACTGTGTC ACTCTTTCC AGCCAGCTCA
 GGGTAAAAT AAGCCCAAGT GGGCAATGAA TATGGCCATT CTTCTGTCAC ATGCCAATTG AGTTGTCAAT
 CCCATTGCTC ATGCITACCG GAACCGAGAC TTCCGCTACA CTTTCACAA ATTATCTCC AGGTATCTTC
 TCTGCCAAGC AGATGTCAG AGTGGGAATG GTCAGGCTGG GGTACAGCCT GCTCTCGGTG TGGGCTATG
 50 ATCTAGGCTC TCGCCTCTTC CAGGAGAAGA TACAAATCCA CAAGAAACAA AGAGGACACG GCTGGTTTC
 ATTGTGAAAG ATACCTACAC CTCACAAGGA AATGGACTGC CTCTCTTGAG CACTCCCTG GAGCTACCA
 GTATCTAGCT AATATGTATG TGTCAGTAGT AGGCTCCAAG GATTGACAAA TATATTATG ATCTATTCA
 CTGCTTTAC TGTGPGGATT ATGCCAACAG CTTGAATGGA TTCTAACAGA CTCTTTGTT TTAAAAGTC
 TGCCCTGTTT ATGGPGGAAA ATTACTGAAA CTATTTACT GTGAAACAGT GTGAACATT ATAATGCAA
 55 TACTTTTAA CTTAGAGGCA ATGGAAAAAT AAAAGTTGAC TGTAATTTAATG-3' (FRAG. NO.:_) (SEQ.ID NO:2425)
 5'-CCCAGCCCCG AGGCTCAGAA CGGGCAGGCG GAGGCGCGGT CGGGCGCTA TGGCCATGCC CGGCGGGTCT
 CACCGCGCTG CCCCTCGCCC GGCGCGCCT CGGTAGGGGG CGCCCGGGGC CCAGCTGGCC CGGCCATGCT
 GCTGGAGACA CAGGACGCGC TGTACGTGGC GCTGGAGCTG GTCATGCCG CGCTTCGGT GGCGGGCAAC
 GTGCTGGTGT GCGCCGCGGT GGGCACGGCG AACACTCTGC AGACGCCAC CAAACTACTTC CTGGTGTCCC

	TGGCTGCGGC	CGACGTGGCC	GTGGGGCTCT	TCGCCATCCC	CTTGCATC	ACCATCAGCC	TGGGCTTCTG
	CACTGACTTC	TACGGCTGCC	TCTTCCTCGC	CTGCTTCGTG	CTGGTGCTCA	CGCAGAGCTC	CATCTTCAGC
	CTTCTGGCCG	TGGCAGTCGA	CAGATAACCTG	GCCATCTGTG	TCCCCTTGGC	GTATAAAAGT	TTGGTCACGG
5	GGACCCGAGC	AAGAGGGGTC	ATTGCTGTCC	TCTGGGTCT	TGCCTTTGGC	ATCGGATTGA	CTCCATTCTC
	GGGGTGAAC	AGTA AAGACA	GTGCCACCAA	CAACTGCACA	GAACCCCTGGG	ATGGAACCAC	GAATGAAAGC
	TGCTGCCITG	TGAAGTGTCT	CTTGAGAAT	GTGGTCCCCA	TGAGCTACAT	GGTATATTTG	AATTCTTTG
	GGTGTGTTCT	GCCCCCACTG	CTTATAATGC	TGGTGTATCTA	CATTAAGATC	TTCCTGGTGG	CCTGCAGGCA
	GCTTCAGCGC	ACTGAGCTGA	TGGACCACCTC	GAGGACCACC	CTCCAGCGGG	AGATCCATGC	AGCCAAGTCA
10	CTGGCCATGA	TTGIGGGGAT	TTTGCCCTG	TGCTGGTTAC	CTGTGCATGC	TGTTAACTGT	GTCACTCTT
	TCCAGCCAGC	TCAGGGTAAA	AATAAGCCCA	AGTGGGCAAT	GAATATGCC	ATTCTCTGT	CACATGCCAA
	TTCAGTTGTC	AATCCCATTG	TCTATGCTTA	CCGGAACCGA	GACTTCCGCT	ACACTTTCA	CAAATTATC
	TCCAGGTATC	TTCTCTGCCA	AGCAGATGTC	AAGAGTGGGA	ATGGTCAGGC	TGGGGTACAG	CCTGCTCTCG
	GTGTGGCCT	ATGATCTAGG	CTCTGCCCTC	TTCCAGGAGA	AGATACAAAT	CCACAAGAAA	CAAAGAGGAC
15	ACGGCTGGTT	TTCA TTGTGA	AAGATAGCTA	CACCTCACAA	GGAAATGGAC	TGCCCTCTTT	GAGCACTTCC
	CTGGAGCTAC	CACC TATCTA	GCTAATATGT	ATGTGTCAGT	AGTAGCACCA	AGGATTGACA	AATATATTAA
	TGATCTATT	AGCTGCTTT	ACTGTGTGGA	TTATGCCAAC	AGCTTGAATG	GATTCTAACAA	GACTCTTTG
	TTTTTAAAG	TCTGCCTTGT	TTATGGTGA	AAATTACTGA	AACTATTAA	CTGTGAAACAA	GTGTGAACTA
	TTATAATGCA	AATACTTTT	AACTTAGAGG	CAATGGAAAA	ATAAAAGTTG	ACTGTACTAA	AAATGTATAC
20	TTGTTGCCAG	GAAGGTGACC	TCAAAAATTA	AAAGTATAAT	TATTGGCCG	GGCATGGTGG	CTCACACCTG
	TAATTCCAGC	ACTTGGGAG	GCCAAGGCAG	GCGGATCACG	AGGTCAAGGAG	TTCAAAACCA	GCCTGTCCAA
	TATAGTG (FRAG. NO ____)	(SEQ. ID NO: 2424)					
	5'-GCGCGTCCTG-3'	(FRAG. NO: 1671)	(SEQ. ID NO:1686)				
	5'-GCT GGG CCC CGG 3'	(FRAG. NO: 1672)	(SEQ. ID NO:1687)				
	5'-CGG GTC GGG GCC CCC C-3'	(FRAG. NO: 1673)	(SEQ. ID NO:1688)				
25	5'- CGC GCC CGC G-3'	(FRAG. NO: 1674)	(SEQ. ID NO:1689)				
	5'-GGC GCC GTG CCG CGT CTT GGT GGC GGC GG-3'	(FRAG 972)	(SEQ. ID NO: 982)				
	5'-GTT CGC GCC CGC 3CG GGG CCC CTC CGG TCC-3'	(FRAG 973)	(SEQ. ID NO: 983)				
	5'-GTT CGC GCC CGC 3CG GGG CCC CTC CGG TCC-3'	(FRAG 974)	(SEQ. ID NO: 984)				
	5'-CGG GTC GGG GCC CCC CGC GGC C-3'	(FRAG 975)	(SEQ. ID NO: 985)				
30	5'-GCC TCG GGG CTG GGG CGC TGG TGG CCG GG-3'	(FRAG 976)	(SEQ. ID NO: 986)				
	5'-CCG CGC CTC CGC CTG CCG CTT CTG-3'	(FRAG 977)	(SEQ. ID NO: 987)				
	5'-GCT GGG CCC CGG GCG CCC CCT-3'	(FRAG 978)	(SEQ. ID NO: 988)				
	5'-CCC CTC TTG CTC GGG TCC CCG TG-3'	(FRAG 979)	(SEQ. ID NO: 989)				
	5'-ACAGCGCGTCTGTGTCTCCAGCAGCATGGCGGGCCAGCTGGGCC-3'	(FRAG 980)	(SEQ. ID NO: 990)				
35	5'-BCBGC CGTCTGTGTCTCCBGBGBTGCCGGGCCBGTGGGCC-3'	(FRAG 981)	(SEQ. ID NO: 991)				

Human Adenosine A₃ Receptor Nucleic Acid and Antisense Oligonucleotide Fragments

	5'-ACA GAG CAG TGC TGT TGT TGG GCA TCT TGC CTT CCC AGG G BCB GBG CB TGC TGT TGT TGG GCB TCT						
	TGC CTT CCC BGG GCC CTT TTC TGG TGG GGT GCT GTT GGT GGG CTT TCT TCT GTT CCC BCB GBG CBG						
40	TGC TGT TGT TGG GCB TCT TGC CTT CCC BGG GCC CTT TTC TGG TGG GGT GCT GTT GGT GGG C TTT CTT						
	CTG TTC CC GAATTCCCAG ATGGCAGAG GTGGCTGGC TGGTGCACCT AAGTGTGTCT CCTGCCTTA						
	TTCTCTCTAG TGGGITATTCTTTCATGTGG TATCTTGCT ACAGCATGCT GTGTTGGAC ACAAAACCCCT						
	TTCCCTGGTT TCTCTGACCC AGCTGAGATG GACTGATTCC AAAAGAACCTC ACCTATGTAC TGGGGTAGGG						
	GAGGGAGGGT TTTTTCAGT ATTAACTAA GGTTCAAAGA GTGCTATATA GTGAGAAAGG CTTCTTTTT						
	TTTTTTTTT TTTTTGGA GAGTGTGCC TCCTAGAAAT TTCTCTTGGT AACTCCCTTC TCTGAAGCAC						
45	AGATAAAGAA AACATTACA GTAGAAACAT TTATGAGGGA CACATTGGAG GCCGATGAAG CTTTTCAAGT						
	TCCAGCAGTG CAGGGATGTG GGCAGAACCTG ACATTGGAAA ATACTAGAAAT GATGAAATT CAGTTGGAGA						
	GGACTGCCCCT TTTTAATGTC TGGGGAGTCT GCTCAGGGAG AAATGACAAG TCTGGGGGG ACAAGTATGG						
	GATTGGTAA GACTGGATC AACTTGGAT ACAGGGTGGG GGTGGGAGT GGAATCAATG AATGATGCCA						
	GAGCAGATCA ACTAACAAAGA GGACCCGTAT GAGCCCCAGG CAGAGGGCCTC TCCCTTATGC CCCACTCTGA						
50	AGTGTGTT AGTAAACACC AGAACGCCAT TGTGTTACT GCTGAATTAA ATTGTTGGCT GGTCCAAGTG TTCTCTCTG						
	AGATGCTTAA GGTAAAATG ATAAAGCCCT CAAGCCACTG TGTGGGTTTG GGTCCAAGTG TTCTCTCTG						
	CTGCCTCTCT AACA CGCCTG GTAAAATAA TCCCTTGGG TGGTGCTGAG AAGCACCTGA ACCAAGTGGG						
	TCCCCAAATA ACAATGGCGT GCAAGTGTCT GGTTCCCGAGA AGTTGGTGAC TAGGTAAGCA GCTTCAGGG						
	GAGGGGGCTG ATTCAGACAG AGTCGCTGT TCCCTGGGG ATGGGGCTGA GGCTGGGAA ATGTGGGAG						
55	GAGGATATGC CAT TGATT TGTTGCACAC GTTCTTTCC CTTCTTCTG TATGTCTGGT CATTCTGCTA						
	TTCTGTCGTT CCTCATAG GTTGGACATT GGCGGGCTGC CAGCATAAGT GCCAGTGTGA TTTTGCTAGG						
	TGTGAGCTGA GAAAGAGAGG TGGAGGCTAA GCAGGTGTGA TGCTTCTCAG AGGTGCTGAG TTTTGCCT						
	TCTGAGCAGG GAATCTTGC TTATCCCTT GACCAAGGAT CTTTGCTGCA AAGGCTGGGT ATCGGCTGTG						

	CTCAGCAAAG	CGTCAACTCG	TGCAAGAACT	TAGCAGGAAT	AGTTCTGGCT	AAGGTTAGGA	GGCTGCCACC
	AAAGTCTCTT	TTTGTTCCT	CTGCTTCTCC	CGTTGCCCT	CTTATCATGA	GATCTTTTG	CTAAGCTGGC
	AGAAAGATTG	CATAGTCAGT	GCTTCCAGCT	CTGCTCCAC	CTGATCCTGC	ACTGCTCTCT	GGTCCCTGAA
5	TGAATGAACT	CTGATACCCA	ATCTTGTCTC	GAGCCTTCTC	TATGCCACTC	ATGGCTCCTC	TTCTGCTCTT
	TCCATCTTT	TGCTGAGAGT	TCTGAGCTCT	GTACTTCCTC	TTGGCCCATC	TCACTTCCTG	AAACACCCCT
	GAAGAGGGTT	GCTIATCTTG	ATGGAACCTCA	AAAAGCCAAA	AAGCTGCAGG	CAGAGGCGTT	GAGGACATCT
	GTTTGGGAA	CTAAGGAGCAG	CAGCACTTTC	AGATTCACTGC	CATATAGAGC	TGTCCTACAG	CATTCTGGAA
10	ACTTGAGGAT	GTGCGGTGCA	TAAGGGGCT	GGAAGTGACC	CACCTGTGAT	GAGCCCTTTC	TAAGGAGAAG
	GGTTTCCAAG	AGATCACCCC	ACCAGAAAAG	GGTAGGAATG	AGCAAGTTGG	GAATTTTAGA	CTGTCACTG
	ACATGGACCT	CTGGGAAGAC	GTCTGGCGAG	AGCTAGGCC	ACTGGCCCTA	CAGACGGATC	TTGCTGGCTC
	ACCTGTCCT	GTGGAGGTT	CCCTGGGAAG	GCAAGATGCC	CAACAACAGC	ACTGCTCTGT	CATTGGCCAA
15	TGTTACCTAC	ATCACCATGG	AAATTTCAT	TGGACTCTGC	GCCATAGTGG	GCAACGTGCT	GGTCATCTGC
	GTGGTCAAGC	TGAACCCCCAG	CCTGCAGACC	ACCACCTCTC	ATTCATTTGT	CTCTCTAGCC	CTGGCTGACA
	TTGCTGTTGG	GGTGCTGGTC	ATGCCTTGG	CCATTGTTGT	CAGCCTGGGC	ATCACAATCC	ACTTCTACAG
20	CTGCCCTTTT	ATGACTTGCC	TACTGTTAT	CTTACCCAC	GCCTCCATCA	TGTCCTTGCT	GGCCATCGCT
	GTGGACCGAT	ACTIGCGGGT	CAAGCTTAC	GTCAGGTAGC	CTGCGGCGTG	GGGTGGGCAG	CAATTGAGGC
	AGCTGGAAA	TGACGCTACA	AAGCCAGAGC	CTGCTGAATT	TTATTTTGGA	CTGTACATAT	TTAGATGCTT
	AAGGTAAAAA	TGA^AAAGCC	CTCAAGCCAC	TGTGTGGGTT	GGGTCCAAGT	GTTCTTGCT	GCTGCCTCTC
25	TAACACGCC	GGTAAAATA	ATCCCTTGG	ATGGTGCTGA	GAAGCACCTG	AACCAAGTGG	GTCCCCAAAT
	AACTATGGCG	TGCAAGTGT	TGGTCCCAG	AAAGTGGTGA	CTAGGTAAGC	GAECTAGGGA	GAGGGGCTGA
	TTCCCAGACA	GTGCGCTGTT	CCTGCTGGG	TGGGGCTGAG	GCTTGGGGAA	TGTGGGCAGG	AGGATATGCC
	ATTGATTCT	GTGACACACG	TTCTTTCCC	TTCTTCTGT	ATGTCGGTC	ATTCTGCTAT	TCTGTCGTTC
30	CTCACATAGG	TTGGACATTG	GCCGGCTGCC	AGCATAAGTG	CCAGTGTGAT	TTTGTCTAGGG	TGTGAGCTGA
	GAAAGAGAGG	TGGAGGCTAA	GCAGGGTGT	TGCTTCTCAG	AGGTGCTGAG	TTTTGCCCT	TCTGAGCAGG
	GAATCTTGC	TTATCCCTT	GACCAAGGAT	CTTTGCTCCA	AAGGCTGGGT	ATCGGCTGTG	CTCAGCAAAG
	CGTCAACTCG	TGCAAGAACT	TAGCAGGAAT	AGTCTGGCT	AAGGTTAGGA	GGCTGCCACC	AAAGTCTCTT
35	TTTTGTTCT	CTGCTTCTCC	CGTTGCTCT	CTTATCATGA	GATCTTTTG	CTAACGCTGGC	AGAAAGATG
	CATAATCAGT	GCTICCAGCT	CCGCTCCAC	CTGATCCTGC	ACTGCTCTCT	GGTCCCTGAA	TGAATGAACT
	CTGATACCCA	ATCTGTCTC	GAGCCTTCTC	TATGCCACTC	ATGGCTCCTC	TTCTGCTCTT	TCCATCTTTT
40	TGCTGAGAGT	TACIGAGCTC	TGTACTTCCT	CTTGGCCCAT	CTCACTTCCT	GAAACACCCC	TGAAGAGGGT
	TGCTTATCTT	GATGGAACCTC	AAAAAGCCAA	AAAGCTGCAG	GCAGAGGCGT	TGAGGACATC	TGTTTGGGAA
	ACTAAGAGCA	GCAGCACTT	CAGATTCACT	CCATATAGAG	CTGTCCTACA	GCATTCTGGA	AACTTGAGGA
	TGTGCGGTG	ATAAAGGGGC	TGGAAGTGA	CCACCTGTGA	TGAGCCCTT	CTAAGGAGAA	GGGTTTCCAA
45	GAGATCACCC	CACCAAGAAA	GGGTAGGAAT	GAGCAAGTTG	GGAATTTTAG	ACTGCACTG	CACATGGACC
	TCTGGAAAGA	CGCTCTGGCGA	GAGCTAGGCC	CACTGGCCCT	ACAGACGGAT	CTTGTGGCT	CACCTGTCCC
	TGTGGAGGTT	CCCCGGGAA	GGCAAGATGC	CCAACAACAG	CACTGCTCTG	CGAATTCTGG	GGACATCTGT
	TTGGGAAACT	AAGAGCAGCA	GCACTTTCAG	ATTCACTCCA	TATAGAGCTG	TCCTACAGCA	TTCTGAAAC
50	TTGAGGATGT	GCCTGTGCTA	AAACGGGCTGG	AAAGTGAACCA	CCTGTGATGA	GCCCTTTCTA	AGGAGAAGGG
	TTTCCAAGAG	ATCACCCCCAC	CAGAAAAGGG	TAGGAATGAG	CAAGTTGGGA	ATTTTAGACT	GTCACTGCAC
	ATGGACCTCT	GGGAAGACGT	CTGGCGAGAG	CTAGGCCAC	TGGCCCTACA	GACGGATCTT	GCTGGCTCAC
	CTGCCCCGT	GGAGGTTCCC	CTGGGAAGGC	AAAGATGCCA	ACAACAGCAC	TGCTCTGTCA	TTGGCCAATG
55	TTACCTACAT	CACCATGGAA	ATTTTCATTG	GAECTCTGC	CATAGTGGGC	AACGTGCTGG	TCATCTGCCT
	GGTCAAGCTG	AACCCAGCC	TGCAGACCAC	CACCTCTAT	TTCATTGTCT	CTCTAGCCCT	GGCTGACATT
	GCTGTTGGGG	TGCTGGTCA	GCCTTGGCC	ATTGTTGTCA	GCCTGGGCAT	CACAATCCAC	TTCTACAGCT
	GCCTTTTAT	GACTGCCA	CTGCTTATCT	TTACCCACGC	CTCCATCATG	TCCTGCTGG	CCATCGCTGT
	GGACCGATAC	TTGCGGGTCA	AGCTTACCGT	CAGATACAAG	AGGGTCACCA	CTCACAGAAG	AATATGGCTG
	GCCCTGGGCC	TTTGTGGCT	GGTGTCAITC	CTGGTGGGAT	TGACCCCCAT	GTTTGGCTGG	AACATGAAAC
	TGACCTCAGA	GTACCACAGA	AATGTACCTC	TCCTTTCATG	CCAATTGTT	TCCGTCACTGA	GGATGGACTA
	CATGGTATAC	TTCACTGCTC	TCACCTGGAT	TTTCATCCCC	CTGGTTGTCA	TGTGCGCCAT	CTATCTTGAC
60	ATCTTTTACA	TCATTCGGAA	CAAACCTAGT	CTGAACCTAT	CTAACCTCAA	AGAGACAGGT	GCATTTATG
	GACGGGAGTT	CAAGACGGCT	AAAGTCCTTG	TTCTGGTTCT	TTTCTTGT	GCTCTGTAT	GGCTGCCCTT
	ATCTCTCATC	AACTGCATCA	TCTACTTAA	TGGTGAAGGTA	CCACAGCTTG	TGCTGTACAT	GGGCATCCTG
	CTGCCCCATG	CCAACCTCCAT	GATGAACCC	ATCGTCTATG	CCTATAAAAT	AAAGAAGTTC	AAGGAAACCT
	ACCTTTGAT	CCTCAAGGCC	TGTGTGGCT	GCCATCCCTC	TGATTCTT	GACACAAGCA	TTGAGAAGAA
65	TTCTGAGTAG	TTATCCATCA	GAGATGACTC	TGTCTATTG	ACCTTCAGAT	TCCCCATCAA	CAAACACTTG
	AGGGCCTGTA	TGCCCTGGCC	AAGGGATT	TACATCCTG	ATTACTCCTA	CTGAGGTTGGG	AGCATCTCCA
	GTGCTCCCCA	ATTATATCTC	CCCCACTCCA	CTACTCTCTT	CCTCCACTTC	ATTTTCCCTT	TGTCTTTCTC
	CTCTAATTCA	GTGTTTGGGA	GGCCTGACTT	GGGGACAACG	TATTATTGAT	ATTATTGTCT	GTTTCCCTTC
	TTCCCAATAG	AAGAATAAGT	CATGGAGCCT	GAAGGGTGCC	TAGTTGACTT	ACTGACAAAA	GGCTCTAGTT

GGGCTGAACA TGTCTGTGGT GGTGACTCAT TTCCATGCCA TTGTGGAATT GAGCAGAGAA CCTGCTCTCG
 GAGGATGCCT AGGAGATGTT GGGAACAGAA GAAATAAACT GAGTTAAGG GGGACTTAAA CTGCTGAATT C
 GAATTCCCAG ATGGCAGAG GTGGCTGGC TGGTGACCT AAGTGTGTC CCTGCCTTA TTCTCTCTAG
 5 TGGTTATTC TTTCATGTGG TATCTGCCT ACAGCATGCT GTGTTGGAC ACAAACCCCT TTCCCTGGTT
 TCTCTGACCC AGCTGAGATG GACTGATTCC AAAAGAACTC ACCTATGTAC TGGGGTAGGG GAGGGAGGGT
 TTTTGCAGT ATTAACTAA GGTCAGAAGA GTGCTATATA GTGAGAAAGG CTTCTTTTT TTTTTTTT
 TTTTGGCA GAGTGCTGCC TCCTAGAAAT TTCTCTGGT AACTTCCTC TCTGAAGCAC AGATAAAGAA
 AACAAATTACA GTACAAACAT TTATGAGGGA CACATTGGAG GCCGATGAAG CTTTCAAGT TCCAGCAGTG
 10 CAGGGATGTG GGCAGAACTG ACATTGGAA ATAAGAAT GATGAAATT CAGTGGAGA GGAAGTGCCT
 TTTTAATGTC TGGGAGTCT GCTCAGGGAG AAATGACAAG TCTGGCGGG ACAAGTATGG GATTTGGTAA
 GACTTGGATC AACTTGGGAT ACAGGGTGGG GTGCGGAGT GGAATCAATG AATGATGCCA GAGCAGATCA
 ACTAACAAAGA GGACCCCTGAT GAGCCCCAGG CAGAGCGTC TCCCTTATGC CCCACTCTGA AGTGTGGTT
 AGTAAACACC AGAACGCCAT TGTTGTTACT GCTGAATT TTTTGGCT GTACATATT AGATGCTTAA
 15 GGTAAAAATG ATAAGGCCCT CAAGCCACTG TGTGGGTTTG GGTCCAAGTG TTCTCTCTG CTGCTCTCT
 AACACGCCCT GTTAAATAA TCCCTTGGA TGGTGTGAG AAGCACCTGA ACCAAGTGGG TCCCCAAATA
 ACAATGGCGT GCAAGTGTCT GGTTCCCAGA AGTTGGTGC TAGGTAAGCA GCTTCAGGGA GAGGGGGCTG
 ATTCCAGAC AGTCGCCCTG TCCCTGCCGGG ATGGGGCTGA GGCTGGGGA ATGTGGGCAG GAGGATATGC
 CATTTGATTG TGTGACAC GTTCTTCC CTTCTTCTG TATGTCGGT CATTCTGCTA TTCTGTCGTT
 20 CCTCACATAG GTTGGACATT GGCGGGCTGC CAGCATAAGT GCCAGTGTGA TTTTGTAGG TGTGAGCTGA
 GAAAGAGAGG TGGAGGCTAA GCAGGTGTGA TGCTCTCG AGGTGCTGAG TTTTGCCT TCTGAGCAGG
 GAATCTTGC TTATCCCTT GACCAAGGAT CTTGCTGCA AAGGCTGGT ATCGGCTGTG CTCAGCAAAG
 CGTCAACTCG TGCAAGAACT TAGCAGGAAT AGTTCTGGCT AAGGTTAGGA GGCTGCCACC AAAGTCTCTT
 TTTGTTCTT CTGCCTCTC CGTTGCCCT CTTATCATGA GATCTTTTG CTAAGCTGGC AGAAAGATG
 25 CATAGTCAGT GCTCCAGCT CTGCTCCAC CTGATCCTGC ACTGCTCTC GGTCCCTGAA TGAATGAACT
 CTGATACCCA ATCTGTCTC GAGCCTCTC TATGCCACTC ATGGCTCTC TTCTGCTCTT TCCATCTTT
 TGCTGAGAGT TCTCAGCTCT GTACTCTCTC TTGGCCCATC AAACACCCCT GAAGAGGGTT
 GCTTATCTTG ATGGAACCTCA AAAAGCCAAA AAGCTGCAGG CAGAGCGTT GAGGACATCT GTTGGGGAA
 CTAAGAGCAG CAGCACTTTC AGATTCAAGT CATATAGAGC TGTCCCTACAG CATTCTGAA ACTTGAGGAT
 GTGCGGTGCA TAAAGGGCT GGAAGTGTAC CACCTGTGAT GAGGCCCTTC TAAGGAGAAG GGTTCCAAG
 30 AGATCACCCC ACCAGAAAAG GGTAGGAATG AGCAAGTGG GAATTCTAGA CTGCACTGAC ACATGGACCT
 CTGGGAAGAC GTCTGGCGAG AGCTAGGCC ACTGGCCCTA CAGACGGATC TTGCTGGCTC ACCTGTCCTC
 GTGGAGGTTT CCCTGGGAAG GCAAGATGCC CAACAACAGC ACTGCTCTG CATTGCCAA TGTTACCTAC
 ATCACCATGG AAAATTCTAT TGGACTCTGC GCCATAGTG GCAACGTGCT GGTCACTGCA GTGGTCAAGC
 TGAACCCAG CCTCAGACCC ACCACCTCT ATTCTATTGT CTCTCTAGCC CTGGCTGACA TTGCTGTTGG
 35 GGTGCTGGTC ATGCCTTGG CCATTGTTGT CAGCCTGGC ATCACAACTC ACTTCTACAG CTGCTTTT
 ATGACTTGCC TACIGCTTAT CTTTACCCAC GCCTCCATCA TGTCTTGCT GGCCATCGCT GTGGACCGAT
 ACTGCGGGT CAAGCTTACCC GTCAAGGTAGC CTGGCGCTG GGGTGGCAG CAATTGAGGC AGCTGGAAA
 TGAGGCTACA AAGCAGAGC CTGCTGAATT TTATTTGGA CTGTACATAT TTAGATGCTT AAGGTAAAAA
 TGATAAAGCC CTCAGGCCAC TGTGTGGTT GGGTCCAAGT GTTCTTGCT GCTGCCCTC TAACACGCCT
 40 GGTAAATAA ATCCCTTGG ATGGTGTGA GAAGCACCTG AACCAAGTGG GTCCCCAAAT AACTATGGCG
 TGCAAGTGTG TGTTCCCCAG AAGTTGGTGA CTAGGTAAGC GACTCAGGGGA GAGGGGCTGA TTCCACAGA
 GTCGCTGTT CCTGCTGGG TGGGCTGAG GCTTGGGGAA TGTGGGCAAGG AGGATATGCC ATTGATTCT
 GTTGCACACG TTCCTTCCC TTCTTCTG ATGTCGTGTC ATTCTGCTAT TCTGCTGTC CTCACATAGG
 TTGGACATT GCGGGCTGCC AGCATAAGTG CCAGTGTGAT TTTGCTAGGG TGTGAGCTGA GAAAGAGAGG
 45 TGGAGGCTAA GCAGGTGTGA TGCTCTCAG AGGTGCTGAG TTTTGCCT TCTGAGCAGG GAATCTTGC
 TTATCCCTT GACCAAGGAT CTTGCTCCA AAGGCTGGGT ATCGGCTGTG CTCAGCAAAG CGTCAACTCG
 TGCAAGAACT TAGCAGGAAT AGTTCTGGCT AAGGTTAGGA GGCTGCCACC AAAGTCTCTT TTTGTTCTT
 CTGCTCTCC CGTTGCCCT CTTATCATGA GATCTTTTG CTAAGCTGGC AGAAAGATTG CATAATCAGT
 GCTTCCAGCT CCGCTCCAC CTGATCCTGC ACTGCTCTC GGTCCCTGAA TGAATGAACT CTGATACCCA
 50 ATCTTGCTC GAGCTTCTC TATGCCACTC ATGGCTCTC TTCTGCTCTT TCCATCTTT TGCTGAGAGT
 TACTGAGCTC TGTACTTCTC CTTGCCCCAT CTCACCTCT GAAACACCCCT TGAAGAGGGT TGCTTATCTT
 GATGGAACCTC AAAAGCCAA AAAGCTGCAG GCAGAGGGCT TGAGGACATC TGTTGGGA ACTAAGAGCA
 GCAGCACTT CAGATTCAAGT CCATATAGAG CTGCTCTACA GCATTCTGGA AACTTGAGGA TGTGCGGTG
 ATAAAGGGC TGGAGTGTAC CCACCTGTGA TGAGCCCTT CTAAGGAGAA GGGTTCCAA GAGATCACCC
 55 CACCAGAAAA GGGTAGGAAT GAGCAAGTTG GGAATTCTAG ACTGTCACTG CACATGGACC TCTGGGAAGA
 CGTCTGGCGA GAGCTAGGCC CACTGGCCCT ACAGACGGAT CTTGCTGGCT CACCTGTCCC TGTGGAGGTT
 CCCCTGGAA GGCAGATGC CCAACAAACAG CACTGCTCTG CGAATTCCGG GGACATCTGT TTGGGAACCT
 AAGAGCAGCA GCACTTCTC ATTCACTGCA TATAGAGCTG TCCTACAGCA TTCTGGAAAC TTGAGGATGT
 GCGGTGCATA AACCGGCTGG AAGTGACCA CCTGTGATGA GCCCTTCTA AGGAGAAGGG TTCCAAGAGG

ATCACCCAC CAGAAAAGGG TAGGAATGAG CAAGTTGGGA ATT TTAGACT GTC ACTGCAC ATGGACCTCT
 GGGAAAGACGT CTGCGAGAG CTAGGCCAC TGGCCCTACA GACGGATCTT GCTGGCTCAC CTGCCCCTGT
 GGAGGTTCCC CTGGGAAGGC AAGATGCCA ACAACAGCAC TGCTCTGTCA TTGGCCAATG TTACCTACAT
 5 CACCATGGAA ATTITCATTG GACTCTGCGC CATAGTGGGC AACGTGCTGG TCATCTGCGT GGTCAAGCTG
 AACCCCAGCC TGCA GACCAC CACCTTCTAT TTCAATTGTCT CTCTAGCCCT GGCTGACATT GCTGTTGGGG
 TGCTGGTCAT GCCTTGGCC ATTGTGTCA GCCTGGGCAT CACAATCCAC TTCTACAGCT GCCTTTTAT
 GACTTGCTTA CTGCTTATCT TTACCCACGC CTCCATCATG TCCTTGCTGG CCATCGCTGT GGACCGATAC
 TTGCGGGTCA AGCTTACCGT CAGATAACAAG AGGGTCACCA CTCACAGAAG AATATGGCTG GCCCTGGGCC
 10 TTGCTGGCT GGTGTCATTC CTGGTGGGAT TGACCCCCAT GTTGGCTGG AACATGAAAC TGACCTCAGA
 GTACCACAGA AATGTCACCT TCCTTTCATG CCAATTGTT TCCGTATGA GGATGGACTA CATGGTATAC
 TTCAGCTCC TCACCTGGAT TTTCATCCCC CTGTTGTCAT TGTGCGCCAT CTATTTGAC ATCTTTTACA
 TCATTGGAA CAAACTCAGT CTGAACCTAT CTAACCTCAA AGAGACAGGT GCATTTATG GACGGGAGTT
 CAAGACGGCT AAGTCCTTGT TTCTGGTTCT TTTCTTGTTC GCTCTGTCA GGCTGCCTT ATCTCTCATC
 15 AACTGCATCA TCTACTTTAA TGGTGAGGTA CCACAGCTTG TGCTGTACAT GGGCATCCTG CTGCCCCATG
 CCAACTCCAT GATGAACCCCT ATCGTCTATG CCTATAAAAT AAAGAAGTTC AAGGAAACCT ACCTTTGAT
 CCTCAAAGCC TGTGTTGGTCT GCCATCCCTC TGATTCTTGC GACACAAGCA TTGAGAAGAA TTCTGAGTAG
 TTATCCATCA GAGATGACTC TGTCTCATG ACCTTCAGAT TCCCCATCAA CAAACACTTG AGGGCCTGTA
 TGCCCTGGCC AAGCGATTTT TACATCCTTG ATTACTCCA CTGAGGTGGG AGCATCTCCA GTGCTCCCCA
 20 ATTATATCTC CCCCACTCCA CTACTCTCTT CCTCCACTTC ATTTTCCCTT TGTCTTTCTC CTCTAATTCA
 GTGTTTGGG GGCCTGACTT GGGGACAACG TATTATTGAT ATTATTGTCT GTTTCCTTC TTCCAATAG
 AAGAATAAGT CATCGAGCCT GAAGGGTGCCT TAGTTGACTT ACTGACAAA GGCTCTAGTT GGGCTGAACA
 TGTGTGTTGGT GGTGACTCAT TTCCATGCCA TTGTGAATT GAGCAGAGAA CCTGCTCTCG GAGGATGCTC
 AGGAGATGTT GGGAACAGAA GAAATAAACT GAGTTAAGG GGGACTTAAA CTGCTGAATT C -3' (FRAG.
 NO:1675) (SEQ. ID NO:3007)

25 5'- CGAATTCTGGG GGACATCTGT TTGGGAACT AAGAGCAGCA GCACCTTCAG ATTCACTCCA TATAGAGCTG
 TCCTACAGCA TTCTGGAAAC TTGAGGATGT GCGGTGCATA AACGGGCTGG AAGTGCACCA CCTGTGATGA
 GCCCTTCTA AGGAAGAGG TTTCCAAGAG ATCACCCAC CAGAAAAGGG TAGGAATGAG CAAGTTGGGA
 ATT TTAGACT GTCACTGCAC ATGGACCTCT GGGAAAGACGT CTGGCGAGAG CTAGGCCAC TGCCCTAC
 GACGGATCTT GCTGGCTCAC CTGCTCTGT GGAGGTTCCC CTGGGAAGGC AAGATGCCA ACAACAGCAC
 30 TGCTCTGTCA TTGGCCAATG TTACCTACAT CACCATGGAA ATTTCATG GACTCTGCGC CATAGTGGGC
 AACGTGCTGG TCATCTGCGT GGTCAAGCTG AACCCCAGCC TGCA GACCAC CACCTTCTAT TTCAATTGTCT
 CTCTAGCCCT GGCTGACATT GCTGTTGGG TGCTGGTCAT GCCTTGGCC ATTGTGTCA GCCTGGCAT
 CACAATCCAC TTCTACAGCT GCCTTTTAT GACTTGCTTA CTGCTTATCT TTACCCACGC CTCCATCATG
 TCCTTGTGG CCATCGCTGT GGACCGATAC TTGCGGGTCA AGCTTACCGT CAGATACAAG AGGGTCACCA
 35 CTCACAGAAAG AATATGGCTG GCCCTGGGC TTTGCTGGCT GGTGTCATTC CTGGTGGGAT TGACCCCCAT
 GTTGGCTGG AACATGAAAC TGACCTCAGA GTACCACAGA AATGTCACCT TCCTTCATG CCAATTGTT
 TCCGTATGA GGATGGACTA CATGGTATAC TTCAGCTTCC TCACCTGGAT TTTCATCCCC CTGGTTGTCA
 TGTGCCCAT CTATCTTGAC ATCTTTACA TCATTCGGAA CAAACTCACT TGAACTTAT CTAACCTCAA
 AGAGACAGGT GCA'TTTATG GACGGGAGTT CAAGACGGCT AAGTCCTTGT TTCTGGTTCT TTTCTGTTT
 40 GCTCTGTCA GGCTGCCTT ATCTCTCATC AACTGCATCA TCTACTTTAA TGGTGAGGTA CCACAGCTT
 TGCTGTACAT GGGCATCCTG CTGCTCCATG CCAACTCCAT GATGAACCCCT ATCGTCTATG CCTATAAAAT
 AAAGAAGTTC AAGGAAACCT ACCTTTGAT CCTCAAAGCC TGTGTTGGTCT GCCATCCCTC TGATTCTTIG
 GACACAAGCA TTGA GAAGAA TTCTGAGTAG TTATCCATCA GAGATGACTC TGTCTCATG ACCTTCAGAT
 TCCCCATCAA CAAACACTTG AGGGCCTGTA TGCTGGGCC AAGGGATTT TACATCCTTG ATTACTTCCA
 45 CTGAGGTGGG AGCATCTCCA GTGCTCCCCA ATTATATCTC CCCCCACTCCA CTACTCTCTT CCTCCACTTC
 ATTTTCCCT TGTCTTTCTC CTCTAATTCA GTGTTTGGG GGCCTGACTT GGGGACAACG TATTATTGAT
 ATTATTGTCT GTTTCCTTC TTCCCAATAG AAGAATAAGT CATGGAGCCT GAAGGGTGCC TAGTTGACTT
 ACTGACAAAAA GGCTCTAGTT GGGCTGAACA TGTGTGTGGT GGTGACTCAT TTCCATGCCA TTGTGAATT
 GAGCAGAGAA CCTCTCTCG GAGGATGCC GAGGAGATGTT GGGAACAGAA GAAATAAACT GAGTTAAGG
 50 GGGACTTAAA CTGCTGAATT C -3' (FRAG. NO:_) (SEQ. ID NO:2439)

5'- CTGCTGAATT TTATTTGGG CTGTACATAT TTAGATGCTT AAGGTTAAAAA TGATAAAGCC CTCAAGCCAC
 TGTGTGGGTT GGGTCCAAGT GTTCTTGCT GCTGCCCTC TAACACGCT GGTAAAATA ATCCCTTTGG
 ATGGTGTGA GAAC CACCTG AACCAAGTGG GTCCCCAAAT AACTATGGCG TGCAAGTGTG TGTTCCAG
 AAGTTGGTGA CTAGGTAAGC GACTCAGGG AAGGGGCTGA TTCCCAGACA GTCGCTGGT CCTGCTGGGA
 55 TGGGGCTGAG GCTGGGGAA TGTGGCAGG AGGATATGCC ATTGTGATCT TTGACATAGG TTGGACATTG
 TTCTTCTGT ATGTCTGGTC ATTCTGCTAT TCTGTCGTT CTCACATAGG TTGGACATTG GCCGGCTGCC
 AGCATAAGTG CCAGTGTGAT TTTGCTAGGG TGTGAGCTGA GAAAGAGAGG TGGAGGCTAA GCAGGTGTGA
 TGCTTCTCAG AGGTGCTGAG TTTTGCCCT TCTGAGCAGG GAATCTTGC TTATCCCTT GACCAAGGAT
 CTTTGCTCCA AAGGCTGGGT ATCGGCTGTG CTCAGCAAAG CGTCAACTCG TGCAAGAACT TAGCAGGAAT

AGTTCTGGCT AAGCTTAGGA GGCTGCCACC AAAGTCTCTT TTTTGTTCCT CTGCTTCTCC CGTTTGCCTC
 CTTATCATGA GATCCTTTTG CTAAGCTGGC AGAAAGATTG CATAATCAGT GCTTCCAGCT CCGCTCCCAC
 CTGATCCTGC ACTGTCCTCT GGTCCCTGAA TGAATGAACT CTGATACCCA ATCTTGTCTC GAGCCTTCTC
 5 TATGCCACTC ATGCGTCCTC TTCTGCTCTT TCCATCTTT TGCTGAGAGT TACTGAGCTC TGTACTTCCT
 CTTGGCCCAT CTCACCTCCT GAAACACCCC TGAAGAGGGT TGCTTATCTT GATGGAACCTC AAAAAGCCAA
 AAAGCTGCAG GCACAGGGCGT TGAGGACATC TGTTGGGGA ACTAAGAGCA GCAGCACCTT CAGATTCACT
 CCATATAGAG CTGTCCTACA GCATTCTGGA AACTTGAGGA TGTGCGGTGC ATAAAGGGC TGGAAGTGAC
 CCACCTGTGA TGAGCCCTT CTAAGGAGAA GGGTTTCAA GAGATCACCC CACCAGAAA GGGTAGGAAT
 GAGCAAGTTG GGAATTTTAG ACTGTCACTG CACATGGACC TCTGGGAAGA CGTCTGGCGA GAGCTAGGCC
 10 CACTGGCCCT ACAGACGGAT CTTGCTGGCT CACCTGTCCC TGTGGAGGTT CCCCTGGAA GGCAAGATGC
 CCAACAACAG CACTCTCTG -3' (FRAG. NO.:) (SEQ. ID NO:2438)
 5'- GAATTCCCAG A'GGGCAGAG GTGGCTGGGC TGGTGACCC AAGTGTGTCT CCTGCCTTTA TTCTCTCTAG
 TGGGTTATTCT TTTCATGTGG TATCTTGCCT ACAGCATGCT GTGTTGGAC ACAAAACCCCT TTCCCTGGTT
 TCTCTGACCC AGCTGAGATG GACTGATTCC AAAAGAACTC ACCTATGTAC TGGGGTAGGG GAGGGAGGGT
 15 TTTTGCACTG ATTTAACTAA GGTTCAAAGA GTGCTATATA GTGAGAAAGG CTTCTTTTT TTTTTTTTT
 TTTTTGGCA GAGTGTGCTC TCCTAGAAAT TTCTCTTGGT AACCTCCTTC TCTGAAGCAC AGATAAAGAA
 AACAAATTACA GTACAAACAT TTATGAGGGG CACATTGGAG GCCGATGAAG CTTTCAAGT TCCAGCAGTG
 CAGGGATGTG GGCAGAACTG ACATTGGAAA ATACTAGAAAT GATGGAAATT CAGTGGAGA GGAACGCCCT
 20 TTTTAATGTC TGGGGAGTCT GCTCAGGGAG AAATGACAAG TCTGGCGGGG ACAAGTATGG GATTTGGTAA
 GACTTGGATC AACTTGGGAT ACAGGGTGGG GGTGGGAGT GGAATCAATG AATGATGCCA GAGCAGATCA
 ACTAACAAAGA GGAACCTGAT GAGCCCCAGG CAGAGCGTC TCCCTTATGC CCCACTCTGA AGTGTGTT
 AGTAAACACC AGAACGCCAT TGTGTTACT GCTGAATTTC ATTTGGGCT GTACATATTG AGATGCTTAA
 GGTAAAAATG ATAAGGCCCT CAAGCCACTG TGTGGGTTTG GGTCCAAGTG TTCCCTCTTG CTGCCTCTC
 AACACGCCGT GTTAAATAAA TCCCTTGGA TGGTGTGAG AAGCACCTGA ACCAAGTGGG TCCCCAAATA
 25 ACAATGGCGT GCAAGTGTCT GGTTCCCAGA AGTTGGTAC TAGGTAAGCA GCTTCAGGGG GAGGGGGCTG
 ATTCCCAGAC AGTCGCCTGT TCCCTGGGG ATGGGGCTGA GGCTGGGGG ATGTGGGCAG GAGGATATGC
 CATTTGATTC TGTGACAC GTTCTTCTC CTTCTTCTG TATGTCCTGGT CATTCTGCTA TTCTGTCGTT
 CCTCACATAG GTGGACATT GGCGGGCTGC CAGCATAAGT GCCAGTGTGA TTTTGCTAGG TGTGAGCTGA
 GAAAGAGAGG TGAGGCTAA GCAGGTGTGA TGCTCTCAG AGGTGCTGAG TTTTGGCCT TCTGAGCAGG
 30 GAATCTTGC TTATCCCTT GACCAAGGAT CTTGCTGCA AAGGCTGGG ATCGGCTGTG CTCAGCAAAG
 CGTCAACTCG TGCAAGAACT TAGCAGGAAT AGTCTGGCT AAGGTTAGGA GGCTGCCACC AAAGTCTCTT
 TTTTGTTCCT CTGCCTCTCC CGTTGCCCCC CTTATCATGA GATCTTTTG CTAAGCTGGC AGAAAGATTG
 CATAGTCAGT GCTTCCAGCT CTGCTCCAC CTGATCTGC ACTGTCCTCT GGTCCCTGAA TGAATGAACT
 CTGATACCCA ATCTTGTCTC GAGCCTTCTC TATGCCACTC ATGGCTCTC TTCTGCTCTT TCCATCTTT
 35 TGCTGAGAGT TCTCAGCTCT GTACTTCCCT TTGGCCCATC TCACTTCTG AAACACCCCT GAAGAGGGT
 GCTTATCTTG ATGGAACTCA AAAAGCCAA AAGCTGCAGG CAGAGCGTT GAGGACATCT GTTTGGGAA
 CTAAGAGCAG CAGCACTTTC AGATTCACTG CATATAGAGC TGTCTACAG CATTCTGGAA ACTTGAGGAT
 GTGCGGTGCA TAAAGGGCT GGAAGTGACC CACCTGTGAT GAGCCCTTTC TAAGGAGAAG GGTTTCCAAG
 AGATCACCCT ACCAGAAAAG GGTAGGAATG AGCAAGTTGG GAATTCTAGA CTGTCACTGC ACATGGACCT
 40 CTGGGAAGAC GTCTGGCGAG AGCTAGGCC ACTGGCCCTA CAGACGGATC TTGCTGGCTC ACCTGTCCTC
 GTGGAGGTTC CCCIGGGAAAG GCAAGATGCC CAACAACAGC ACTGCTCTGT CATTGCCAA TTACCTAC
 ATCACCATGG AAAATTTCAT TGGACTCTGC GCCATAGTGG GCAACGTGCT GGTCACTGTC GTGGTCAAGC
 TGAACCCAG CCTGCAGACC ACCACCTCT ATTCTATTGT CTCTCTAGCC CTGGCTGACA TTGCTGTTGG
 GGTGCTGGTC ATGCCTTTGG CCATTGTTGT CAGGCTGGGC ATCACAATCC ACTTCTACAG CTGCTTTT
 45 ATGACTTGCC TACI GCTTAT CTTTACCCAC GCCTCCATCA TGCTCTGCT GGCCATCGCT GTGGACCGAT
 ACTTGCGGGT CAACCTTAC CTCAGGTAGC CTGGGGCGTG GGGTGGGCAG CAATTGAGGC AGCTGGAAA
 TGAGGCTACA AAGCCAGAGC -3' (FRAG. NO.:) (SEQ. ID NO:2437)
 5'-CGAATTCCGGG GGACATCTGT TTGGGAAACT AAGAGCAGCA GCACTTTCAG ATTCACTCCA TATAGAGCTG
 TCCTACAGCA TTCTGGAAAC TTGAGGATGT GCGGGTCATA AACGGGCTGG AAGTGAACCA CCTGTGATGA
 50 GCCCTTCTA AGGAGAAGGG TTTCCAAGAG ATCACCCAC CAGAAAAGGG TAGGAATGAG CAAGTTGGGAA
 ATTTTAGACT GTCACTGCAC ATGGACCTCT GGGAAAGACGT CTGGCGAGAG CTAGGCCAC TGGCCCTACA
 GACGGATCTT GCTGGCTCAC CTGTCCTGT GGAGGTTCCC CTGGGAAGGC AAGATGCCCA ACAACAGCAC
 TGCTGTCAGTCA TTGGCCAATG TTACCTACAT CACCATGGAA ATTTTCATTG GACTCTGCGC CATAGTGGGC
 AACGTGCTGG TCACTGCGT GGTCAAGCTG AACCCCAGCC TGCAAGGAC CACCTCTAT TTCAATTGTC
 55 CTCTAGCCCT GGCGTACATT GCTGTTGGGG TGCTGGTCAT GCCTTGGCC ATTGTTGTCA GCCTGGGCAT
 CACAATCCAC TTCTACAGCT GCCTTTTAT GACTTGCCTA CTGCTTATCT TTACCCACGC CTCCATCATG
 TCCTGCTGG CCATCGCTGT GGACCGATAC TTGCGGGTCA AGCTTACCGT CAGATACAAG AGGGTCACCA
 CTCACAGAAG AATATGGCTG GCCCTGGGC TTTGCTGGCT GGTGTACCTC CTGGTGGGAT TGACCCCCAT
 GTTTGGCTGG AACATGAAAC TGACCTCAGA GTACCACAGA AATGTCACCT TCCTTTCATG CCAATTGTT

	TCCGTATG	GGATGGACTA	CATGGTATAC	TTCAAGCTTC	TCACCTGGAT	TTTCATCCCC	CTGGTTGTCA
	TGTGCCCAT	CTATCTTGAC	ATCTTTACA	TCATTCGGAA	CAAACCTCAGT	CTGAACATTAT	CTAACTCCAA
	AGAGACAGGT	GCA'TTTATG	GACGGGAGTT	CAAGACGGCT	AAGTCCTGT	TTCTGGTTCT	TTTCTTGT
5	GCTCTGTAT	GGCTGCCTT	ATCTCTCATC	AACTGCATCA	TCTACTTTAA	TGGTGAGGTA	CCACAGCTTG
	TGCTGTACAT	GGGCATCCCTG	CTGTCCCAGT	CCAACCTCCAT	GATGAACCCCT	ATCGTCTATG	CCTATAAAAT
	AAAGAACGTT	AAGGAAACCT	ACCTTTGAT	CCTCAAAGCC	TGTGTGGTCT	GCCATCCCTC	TGATTCTTG
	GACACAAGCA	TTGAGAAGAA	TTCTGAGTAG	TTATCCATCA	GAGATGACTC	TGTCTCATTG	ACCTTCAGAT
10	TCCCCATCAA	CAAAACACTG	AGGGCCTGTA	TGCCCTGGCC	AAGGGATT	TACATCCTG	ATTACTTCCA
	CTGAGGTGGG	AGC ATCTCCA	GTGCTCCCCA	ATTATATCTC	CCCCACTCCA	CTACTCTT	CCTCCACTTC
	ATTTTCCTT	TGTCCTTCT	CTCTAATTCA	GTGTTTGGA	GGCCTGACTT	GGGGACAACG	TATTATTGAT
	ATTATTGTCT	GTTC'CCTTC	TTCCCAATAG	AAGAATAAGT	CATGGAGCCT	GAAGGGTGCC	TAGTTGACTT
	ACTGACAAAAA	GGC'CTAGTT	GGGCTGAACA	TGTGTGTGGT	GGTGAECTAT	TTCCATGCCA	TTGTGGAATT
	GAGCAGAGAA	CCTC CTCTCG	GAGGATGCC	AGGAGATGTT	GGGAACAGAA	GAAATAAACT	GAGTTAAGG
	GGGACTTAAA	CTGCTGAATT C	-3' (FRAG. NO.:) (SEQ. ID NO:2427)				
15	5'-TTCCCAG	ATGGGCAGAG	GTGGCTGGC	TGGTGAACCT	AAGTGTGTCT	CCTGCCCTTA	TTCTCTCTAG
	TGGGTTATT	TTTCATGTGG	TATCTTGCC	ACAGCATGCT	GTGTTTGGAC	ACAAACCCCT	TTCCCTGGTT
	TCTCTGACCC	AGCTGAGATG	GAUTGATTCC	AAAAGAACTC	ACCTATGTAC	TGGGGTAGGG	GAGGGAGGGT
	TTTTTGCAGT	ATTAACTAA	GGTCAAAAGA	GTGCTATATA	GTGAGAAAGG	CTTCTTTTTT	TTTTTTTTT
20	TTTTTGGCA	GAGT GCTGCC	TCCTAGAAAT	TTCTCTTGGT	AACTCCCTTC	TCTGAAGCAC	AGATAAAGAA
	AACAATTACA	GTACAAACAT	TTATGAGGG	CACATTGGAG	GCCGATGAAG	CTTTCAGT	TCCAGCAGTG
	CAGGGATGTG	GGCA GAACCTG	ACATTGGAA	ATACTAGAAAT	GATGAAATT	CAGTGGAGA	GGACTGCCCT
	TTTTAATGTC	TGGGGAGTCT	GCTCAGGGAG	AAATGACAAG	TCTGGCGGGG	ACAAGTATGG	GATTGGTAA
	GACTTGGATC	AACTGGGAT	ACAGGGTGGG	GGTCGGGAGT	GGAATCAATG	AATGATGCCA	GAGCAGATCA
25	ACTAACAAAGA	GGACCCCTGAT	GAGCCCAGG	CAGAGCGTC	TCCCTTATGC	CCCACTCTGA	AGTGTGTTGTT
	AGTAAACACC	AGAAACGCCAT	TGTTGTTACT	GCTGAATT	ATTTGGGCT	GTACATATT	AGATGCTTAA
	GGTAAAAATG	ATAAGCCCT	CAAGCCACTG	TGTTGGTTT	GGTCCAAGTG	TTCCCTCTT	CTGCCTCTT
	AACACGCCG	GTAAAATAA	TCCCTTTGGA	TGGTGTGAG	AAGCACCTGA	ACCAAGTGGG	TCCCCAAATA
	ACAATGGCGT	GCAAGTGTCT	GGTCCCAGA	AGTTGGTGC	TAGGTAAGCA	GCTTCAGGG	GAGGGGGCTG
30	ATTCCCAGAC	AGTCGCCCTG	TCCTGCCGGG	ATGGGGCTGA	GGCTTGGGGA	ATGTTGGCAG	GAGGATATGC
	CATTGATT	TGTTGCACAC	GTTCTTTC	CTTCTTCTG	TATGTCGGT	CATTCTGCTA	TTCTGTCGTT
	CCTCACATAG	GTTGGACATT	GGCCGGCTGC	CAGCATAAGT	GCCAGTGTGA	TTTGCTAGG	TGTGAGCTGA
	GAAAGAGAGG	TGGAGGCTAA	GCAGGGTGTGA	TGCTTCTCAG	AGGTGCTGAG	TTTTGCCCT	TCTGAGCAGG
	GAATCTTGC	TTATCCCTT	GACCAAGGAT	CTTGTCTGCA	AAGGCTGGGT	ATCGGCTGTG	CTCAGCAAAG
35	CGTCAACTCG	TGCAAGAACT	TAGCAGGAAT	AGTTCTGGCT	AAGGTTAGGA	GGCTGCCACC	AAAGTCTT
	TTTTGTTCT	CTGCTTCTCC	CGTTGCC	CTTATCATGA	GATCTTTTG	CTAACGCTGG	AGAAAGATTG
	CATAGTCAGT	GCTTCCAGCT	CTGCTCC	CTGATCCTGC	ACTGCTCT	GGTCCCTGAA	TGAATGAACT
	CTGATACCCA	ATCTGTCTC	GAGCTTCTC	TATGCCACTC	ATGGCTCTC	TTCTGCTCTT	TCCATCTTT
	TGCTGAGAGT	TCTGAGCTCT	GTACTTCTC	TTGGCCCATC	TCACCTCTG	AAACACCCCT	GAAGAGGGTT
40	GCTTATCTG	ATGGAACCTA	AAAAGCCAA	AAAGTCAGG	CAGAGGCC	GAGGACATCT	GTGAGGAA
	CTAACAGCAG	CAGCACTTC	AGATTCACTG	CATATAGAGC	TGTCTACAG	CATTCTGGAA	ACTTGAGGAT
	GTGCGGTGCA	TAAGGGGCT	GGAAAGTGA	CACCTGTGAT	GAGCCCTT	TAAGGAGAAG	GGTTTCCAAG
	AGATCACCCC	ACCAAGAAAAG	GGTAGGAATG	AGCAAGTTGG	GAATT	CTGTCACTGC	ACATGGACCT
	CTGGGAAGAC	GTC'GGCGAG	GCTAGGCC	ACTGCCCTA	CAGACGGATC	TTGCTGGCTC	ACCTGTCCCT
45	GTGGAGGTTC	CCTC GGAAG	GCAAGATGCC	CAACAAACAGC	ACTGCTCTG	CATTGGCCAA	TGTTACCTAC
	TCACCATGG	AAATTTCAT	TGGACTCTGC	GCCATAGTGG	GCAACGTG	GGTCATCTGC	GTGGTCAAGC
	TGAACCCAG	CCTGCAGACC	ACCACCTCT	ATTCTATTG	CTCTCTAGCC	TGGCTGACA	TTGCTGTTGG
	GGTGCTGGTC	ATGCCTTGG	CCATTGTTG	CAGCCTGGGC	TCACAATCC	ACTTCTACAG	CTGCCCTTTT
	ATGACTTGC	TACTGCTT	CTTACCCAC	CCTCCATCA	TGTCTTGT	GGCCATCGCT	GTGGACCGAT
	ACTTGGGGT	CAAGCTTAC	GTCAGGTAGC	CTGGCGCGT	GGGTGGGCAG	CAATTGAGGC	AGCTGGGAAA
50	TGAGGCTACA	AGCCAGAGC-3'	(FRAG. NO.:) (SEQ. ID NO:2426)				
	5'-GGCAATTG	TTAGTTATCC	GCGGCCACCA	AGACGCGGCA	CGGCGCTGG	ACCGGAGGGG	CCCCGCGCGG
	CGCGAACTT	TGGGCTCGGG	CGAGTGGGT	GTGCTCCGCC	CAGCCCGAGA	CGGGCGGGCG	CGCGGGCCAA
	TGGGTGCCGC	CTCTTGGCCG	CGGGGGGCC	CGACCCGTGG	GTCCCGGCCA	CCAGCGCCCC	AGCCCCGAGG
55	CTCAGAACG	GCACGCGGAG	GCGCGGTCCG	GGCGCTATGG	CCATGCCCG	CGGGCTCAC	CGGGCTGCC
	CTCGCCCGC	GCGCTTCG	TAGGGGCGC	CCGGGGCCCA	GCTGGCCCG	CCATGCTGCT	GGAGACACAG
	GACGCGCTGT	ACGTGGCGCT	GGAGCTGGTC	ATCGCCGCGC	TTTCGGTGGC	GGGCAACGTG	CTGGTGTGCG
	CCGCGGTGG	CACCGCGAAC	ACTCTGCAGA	CGCCCACCA	CTACTTCTG	GTGTCCTGG	CTGCGGCCGA
	CGTGGCCGTG	GGGCTCTTCG	CCATCCCCT	TGCCATCACC	ATCAGCCTGG	GCTTCTGCAC	TGACTTCTAC
	GGCTGCCCT	TCCTGCCCTG	CTTCGTGCTG	GTGCTCACGC	AGAGCTCCAT	CTTCAGCCTT	CTGGCCGTG

CAGTCGACAG ATACCTGGCC ATCTGTGTCC CGCTCAGGTA TAAAAGTTG GTCACGGGGA CCCGAGCAAG
 AGGGTCATT GCTCTCCTCT GGGTCCTTGC CTTTGGCATC GGATTGACTC CATTCTGGG GTGGAACAGT
 AAAGACAGTG CCAC'CAACAA CTGCACAGAA CCCTGGGATG GAACCACGAA TGAAAGCTGC TGCCCTGTGA
 5 AGTGTCTCTT TGAGAATGTG GTCCCCATGA GCTACATGGT ATATTTCATA TTCTTGGGT GTGTTCTGCC
 CCCACTGCTT ATAAIGCTGG TGATCTACAT TAAGATCTTC CTGGTGGCCT GCAGGCAGCT TCAGCGCACT
 GAGCTGATGG ACCA'CTCGAG GACCACCCCTC CAGCAGGAGA TCCATGCAGC CAAGTCACTG GCCATGATTG
 TGGGGATTT TGCCCTGTGC TGGTTACCTG TGCACTGCTGT TAACTGTGTC ACTCTTTCC AGCCAGCTCA
 GGGTAAAAAT AAGCCAAGT GGGCAATGAA TATGGCCATT CTTCTGTACAT ATGCCAATTC AGTTGTCAAT
 CCCATTGTCT ATGCCTTACCG GAACCGAGAC TTCCGCTACA CTTTCACAA AATTATCTCC AGGTATCTTC
 10 TCTGCCAAGC AGAIGTCAAG AGTGGGAATG GTCAAGGCTGG GGTACAGCCT GCTCTCGGTG TGGGCCTATG
 ATCTAGGCTC TCGCCTCTTC CAGGAGAAGA TACAAATCCA CAAGAAACAA AGAGGACACG GCTGGTTTC
 ATTGTGAAAG ATACCTACAC CTCACAAGGA AATGGACTGC CTCTCTTGAG CACTCCCTG GAGCTACAC
 GTATCTAGCT AATATGTATG TGTCACTAGT AGGCTCCAAG GATTGACAAA TATATTATG ATCTATTCAAG
 CTGCTTTAC TGTGTTGGATT ATGCCAACAG CTTGAATGGA TTCTAACAGA CTCTTTGTT TTTAAAAGTC
 15 TGCCTGTTT ATGGTTGGAAA ATTACTGAAA CTATTTACT GTGAAACAGT GTGAACATT ATAATGCAA
 TACTTTTAA CTTAGAGGCA ATGGAAAAAT AAAAGTTGAC TGTACTAAAATG-3'(FRAG. NO:) (SEQ. ID NO: 2425)

5'-GBG CB TGC-3' (FRAG. NO:1676) (SEQ. ID NO:1691)

5'-TTG TTG GGC-3' (FRAG. NO:1677) (SEQ. ID NO:1692)

5'-TGC CTT CCC BGG 3'-3' (FRAG. NO:1678) (SEQ. ID NO:1693)

20 5'-GTT GTT GGG CAT CTT GCC-3' (FRAG. NO:1679) (SEQ. ID NO:3)

5'-GTG GGC CTA GCT CTC GCC-3' (FRAG. NO:1680) (SEQ. ID NO:5)

5'-ACA GAG CA TGC TGT TGT TGG GCA TCT TGC CTT CCC AGG G-3' (FRAG 982) (SEQ. ID NO: 992)

5'-BCB GBG CB TGC TGT TGT TGG GCB TCT TGC CTT CCC BGG G-3' (FRAG 983) (SEQ. ID NO: 993)

5'-CCC TTT TCT GGT GGG GTG-3' (FRAG 984) (SEQ. ID NO: 994)

25 5'-GTG CTG TTG TTG GGC-3' (FRAG 985) (SEQ. ID NO: 995)

5'-TTT CTT CTG TTC CC-3' (FRAG 986) (SEQ. ID NO: 996)

5'-CCC TTT TCT GGT GGG GTG-3' (FRAG 987) (SEQ. ID NO: 997)

5'-GTG CTG TTG TTG GGC-3' (FRAG 988) (SEQ. ID NO: 998)

5'-TTT CTT CTG TTC CC-3' (FRAG 989) (SEQ. ID NO: 999)

30 Human IgE Receptor β Nucleic Acid and Antisense Oligonucleotide Fragments

5'-TTT CCC CTG GGT CTT CC CTC CTG CTC TTT TTT C ATT TGC TCT CCT ATT ACT TTC TGT GTC CAT TTT
 TTC ATT AAC CGA GCT GT BTT TGC TCT CCT BTT BCT TTC TGT GTC CBT TTT TTC BTT BBC CGB GCT GT-3'
 (FRAG. NO:1681) (SEQ. ID NO:1694)

5'-CCC CTG GG-3' (FRAG. NO:1682) (SEQ. ID NO:1695)

35 5'-GCTCTCCTCTBTT-3' (FRAG. NO:1683) (SEQ. ID NO:1696)

5'-CBTTBCCGBGCTG-3' (FRAG. NO:1684) (SEQ. ID NO:1697)

5'-TTT CCC CTG GGT CTT CC-3' (FRAG 990) (SEQ. ID NO: 1000)

5'-CTC CTG CTC TTT TTT C-3' (FRAG 991) (SEQ. ID NO: 1001)

ATTTGCTCTCCTATTACTTCTGTCCTCCATTTCATTAACCGAGCTGT (FRAG 992) (SEQ. ID NO: 1002)

40 BTTTGCTCTCCTCTBTTBCTTCTGTCCTCCBTTBCCGBGCTGT (FRAG 993) (SEQ. ID NO: 1003)

Human Fc-ε Receptor CD23 Antigen (IgE Receptor)

Nucleic Acid and Antisense Oligonucleotide Fragments

5'-GCC TGT GTC TGT CCT CCT GCT TCG TTC CTC CTG CTT GGT GCC CTT GCC G GTC CTG CTC CTC
 CGG GCT GTG G GTC GTG GCC CTG GCT CCG GCT GGT GGG CTC CCC TGG CCT TCG CTG GCT GGC GGC GTG
 45 C GGG TCT TGC TCT GGG CCT GGC TGT GGC CGT GGT TGG GGG TCT TC GCT GCC TCC GTT TGG GTG GC TCT
 CTG AAT ATT GAC C'CT CCT CCA TGG CGG TCC TGC TTG GAT TCT CCC GA TCT CTG BBT BTT GBC CTT CCT
 CCB TGG CGG TCC TC C TTG GBT TCT CCC GB-3'(FRAG 1685)(SEQ.ID NO:1698)

5'-GT CCT CCT-3' (FRAG 1686) (SEQ. ID NO: 1699)

5'-TGT GTC TGT CCT CC-3' (FRAG 1687) (SEQ. ID NO: 1700)

50 5'-GTG GCC CTG GC-3' (FRAG 1688) (SEQ. ID NO: 1701)

5'-CGT GGT TGG GG-3' (FRAG 1689) (SEQ. ID NO: 1702)

5'-TCT CTG BBT BTT GBC C-3' (FRAG1690) (SEQ. ID NO:1703)

5'-GCC TGT GTC TGT CCT CCT-3' (FRAG 994) (SEQ. ID NO: 1004)

5'-GCT TCG TTC CTC CGT TTC-3' (FRAG 995) (SEQ. ID NO:1005)

55 5'-CTG CTT GGT GCC CTT GCC G-3' (FRAG 996) (SEQ. ID NO: 1006)

5'-GTC CTG CTC CTC CGG GCT GTG G-3' (FRAG 997) (SEQ. ID NO: 1007)

5'-GTC GTG GCC CTG GCT CCG GCT GGT GGG CTC CCC TGG-3' (FRAG 998) (SEQ. ID NO: 1008)

5'-CCT TCG CTG GCT GGC GGC GTG C-3' (FRAG 999) (SEQ. ID NO: 1009)

5'-GGG TCT TGC TCT GGG CCT GGC TGT-3' (FRAG 1000) (SEQ. ID NO: 1010)
 5'-GGC CGT GGT TGG GGG TCT TC-3' (FRAG 1001) (SEQ. ID NO: 1011)
 5'-GCT GCC TCC GTT TGG GTG GC (FRAG 1002) (SEQ. ID NO: 1012)
 5'-TCT CTG AAT ATT GAC CTT CCT CCA TGG CGG TCC TGC TTG GAT TCT CCC GA (FRAG 1003) (SEQ.ID NO:1013)
 5'-TCT CTG BBT BTT GBC CTT CCT CCB TGG CGG TCC TGC TTG GBT TCT CCC GB (FRAG 1004) (SEQ.ID NO:1014)

Human IgE Receptor α Subunit Nucleic Acid and Antisense Oligonucleotide Fragments

5'- GCC TTT CCT GGT TCT CTT GTT TTT GGG GTT TGG CTT ACA GTA GAG TAG GGG ATT CCA TGG CAG
 10 GAG CCA TCT TCT TCA TGG ACT CC TTC AAG GAG ACC TTA GGT TTC TGA GGG ACT GCT AAC ACG CCA TCT
 GGA GC BCB GTB GEG TBG GGG BTT CCB TGG CBG GBG CCB TCT TCB TGG BCT CC TTC BBG GBG BCC
 TTG GGT TTC TGB GCG BCT GCT BBC BCG CCB TCT GGB GC GTT GTT TTT GGG GTT TGG CTT GCC TTT CCT
 GGT TCT CTT BCB GTB GBG TBG GGG BTT CCB TGG CBG GBG CCB TCT TCB TGG BCT CC TTC BBG GBG
 BCC TTG GGT TTC TGB GGG BCT GCT BBC BCG CCB TCT GGB GC-3' (FRAG. NO: 1691) (SEQ. ID NO:1704)
 5'- TGG BCT CC -3' (FRAG. NO: 1692) (SEQ. ID NO:1705)
 5'-CCB TCT GGB-3' (FRAG. NO: 1693) (SEQ. ID NO:1706)
 15 5'-CT GCT BBC BCG-3' (FRAG. NO: 1694) (SEQ. ID NO:1707)
 5'-GTT TTT GGG GTT TG-3' (FRAG. NO: 1695) (SEQ. ID NO:1708)
 5'-GCC TTT CCT GGT TCT CTT GTT TTT GGG GTT TGG CTT-3' (FRAG. NO:1005) (SEQ. ID NO:1015)
 5'-ACAGTAGAGTAGGGATTCCATGGCAGGAGCCATCTCTCATGGACTCC-3'(FRAG.NO:1006)(SEQ.ID NO:1016)
 20 5'-TTC AAG GAG ACC TTA GGT TTC TGA GGG ACT GCT AAC ACG CCA TCT GGA GC-3' (FRAG. NO:1007) (SEQ.
 ID NO:1017)
 5'-BCB GTB GBG TBG GGG BTT CCB TGG CBG GBG CCB TCT TCB TGG BCT CC TTC BBG GBG BCC TTG GGT
 TTC TGB GGG-3' (FRAG. NO:1008) (SEQ. ID NO:1018)
 5'-BCT GCT BBC BCG CCB TCT GGB GC-3' (FRAG. NO:1009) (SEQ. ID NO:1019)
 25 5'-GTT GTT TTT GGG GTT TGG CTT-3' (FRAG. NO:1010) (SEQ. ID NO:1020)
 5'-GCC TTT CCT GGT TCT CTT-3' (FRAG. NO:1011) (SEQ. ID NO:1021)
 5'-BCBGTBGBTBGGGGBTTCCBTGGCBGGBBCBTCTCTCBTGGBCCTCC-3'(FRAG.NO:1012) (SEQ.ID NO:1022)
 5'-TTC BBG GBG BCC TTG GGT TTC TGB GGG BCT GCT BBC BCG CCB TCT GGB GC-3' (FRAG.NO:1013) (SEQ.ID
 NO:1023)

Human IgE Receptor (Fc Epsilon R) Nucleic Acid and Antisense Oligonucleotide Fragments

30 5'-GCC TGT GTC TGT CCT CCT GCT TCG TTC CTC TCG TTC CTG CTT GGT GCC CTT GCC G GTC CTG CTC CTC
 CGG GCT GTG G GTC CTC GCC CTG GCT CCG GCT GGT GGG CTC CCC TGG CCT TCG CTG GCT GGC GGC GTG C
 CCC BGB BCG BGB CCC GGB CCG BCB GGC CGT GGT TGG GGG TCT TC GCT GCC TCC GTT TGG GTG GC GAT
 CTC TGA ATA TTGA CCT TCC ATG GCG GTC CTG CTT GGA GBT CTC TGB BTB TTGB CCT TCC BTG GCG GTC
 CTG CTT GGB-3' (FRAG: 1696) (SEQ. ID NO:1709)
 35 5'-TCG TTC CTC TCG-3' (FRAG: 1697) (SEQ. ID NO:3001)
 5'-BGB BCG BGB C-3' (FRAG: 1698) (SEQ. ID NO:1711)
 5'-TGB BTB TTGB-3' (FRAG: 1699) (SEQ. ID NO:1712)
 5'-GCC TGT GTC TGT CCT CCT-3' (FRAG. NO:1014) (SEQ. ID NO:1024)
 40 5'-GCT TCG TTC CTC CGT TTC-3' (FRAG. NO:1015)(SEQ. ID NO:1025)
 5'-CTG CTT GGT GCC CTT GCC G-3' (FRAG. NO:1016)(SEQ. ID NO:1026)
 5'-GTC CTC CTC CTC CGG GCT GTG G-3' (FRAG. NO:1017)(SEQ. ID NO:1027)
 5'-GTC CTC GCC CTG GCT CCG GCT GGT GGG CTC CCC TGG-3' (FRAG. NO:1018) (SEQ. ID NO:1028)
 45 5'-CCT TCG CTG GCT GGC GGC GTG C-3' (FRAG. NO:1019) (SEQ. ID NO:1029)
 5'-CCC BGB BCG BGB CCC GGB CCG BCB-3' (FRAG. NO:1020) (SEQ. ID NO:1030)
 5'-GGC CGT GGT TGG GGG TCT TC-3' (FRAG. NO:1021) (SEQ. ID NO:1031)
 5'-GCT GCC TCC GTT TGG GTG GC-3' (FRAG. NO:1022) (SEQ. ID NO:1032)
 5'-GBT CTC TGB BTB TGT CCT TCC BTG GCG GTC CTG CTT GGB-3' (FRAG. NO:1023) (SEQ. ID NO:1033)

Human High Affinity IgE Receptor Oligonucleotide Fragments

50 5'-AACAGAAAA CGGTTGGTAG CTCTGGTGAA TCCCCAAAAGA ATGGGGCAGT TGCTAGCCAT GCTCCTGAAT
 ATGTATAAAC AGTACATCAT ATGACTAAGA GTTGTACTTA GGGGTTAGAT TTTATGTGTT TGAACCCCAA
 ATTAGTTATT TAATAGTTGG CACCCCCAAA CAAGTTACTT AACCTCACTA AGGTTCAGTT TTCCCTGTTA
 TAAAATGTAG ATACTGATAG TATGTACTTT ATAGGATTAT TGTGAAAAAT AAATGAAATA TCAGATTTAT
 TTAGGATAAC ACCGGCATA TGTGGGTAT TCAGAATTAG TTGCTGCTGT TTATCTGC TCTCCCTTGC
 ATCCCACCTT TCTAAGTTGT AAACTAAATA GTTGTACACA GATTGACAGA TTAAGAAAGG CTTGTGATTG
 55 55 TGCTAGACCT ATGCCATATGC CTCTGTCTCA CCAGATTCCA GGTGTATATG TGGAGGTGGG ATAGGGAGTG
 GAGTAAGTGG GTAATATTA AATTGCCAG TTGGGCACCA TCCTGAATAT TATCTCTAAA GAAAGAAGCA
 AAACCAGGCA CAGCTGATGG GTTAACCCAG TATGATACAG AAAACATTC CTCTGCTTT TTGGTTTAA
 GCCTATATT GAAGCCTTAG ATCTCTCCAG CACAGTAAGC ACCAGGAGTC CATGAAGAAG ATG GATCTTCATG
 TGGAAATGACT GGTITCATTC AATAGACTTA ATTCAAGCAGT CTGTGGGAA GAGCAAGGTA TGATAGAATG
 60 60 GTTCCTCAAG TGCTCAGAT GTGAAGTGGG TTTAAATATA CTGTCCCTGT CTTCTCAGA GTTTTGGTAA

AGATAAAAATA GGACACTCAT TAAAGGCAA TCTTGCAA TGACAAGCCA CTATAGACAT TAATAGAGTT
 TTCATTCCA GTATATCAT TAATATCAGA TCCTGGAAGA AGGTTGAGCC TTGACCTAGA GCAAAAAAAC
 AGAAGAATTAA GTAAAGGAAT CCTGGAGAAA GCCCCTGCTG TGTATTAAA GGAGAAAGGG AGATCATGTT
 5 GGGAAATTAT AATATTTAAA GTAAACAAAAA GCTAGGAAGT AAAATAAAAT AAATTATATG GCCTAGATCC
 CCATAAGTAA TGGITTAACT TCTGCCTCC TGTGTTCTGA GCCAGATTAG GGCACAGTAG AGAAAGAGGA
 GTCTCTGAAA ATGTTTCAA TTTCGCTGGT CAGACAGCGG ATCATCAGTG AATCAGATGA AAATTGTTGG
 ATTTATGCAC TAACPGATCA GCAGGAAATT AAACAAGAAA AGCGTTGGTA GCTCTGGTGA ATCCAAAAG
 AATTGCGAG TTGCTAGCCA TGCTCCTGAA TATGTATAAA CAGTACATCA TATGACTAAG AGTTGACTT
 10 AGGGGTTAGA TTTIATGTGT TTGAACCCC AATTAGTTAT TTAATAGTTG GCACCCAAA ACAAGTTACT
 TAACCTCACT AAGTTTCACT TTTCTGTTT ATAAAATGTA GATAGTGATA GTATGTAATT TATAGGATTA
 TTGTGAAAAA TAAATGAAAT ATCAGATTAA TTTAGGATAA CACCTGGCAT ATGTTGGTA TTCAGTAATT
 AGTTGCTGCT GTTITATTCT GCTCTCCCT GCATCCCT GCATCTAAGT GTAAACTAAA TAGTTGTACA
 CAGATTGACA GATIAAGAAA GGCTTGTGAT TGTGCTAGAC CTATGCCCT CTCTCACCAAG ATTCCAGGTG
 TATATGTGGA GGTGGGATAG GGAGTGGAGT AAGTGGGTAAT ATATAAATT GCCCCAGTGG GCACCATCCT
 15 GAATATTATC TCTAAAGAAA GAAGCAAAAC CAGGCACAGC TGATGGGTT ACCAGATATG ATACAGAAA
 CATTCCCTC TGCTTTTGG TTTTAAGCCT ATATTGAAAG CCTTAGATCT CTCCAGCACA GTAAGCACC
 GGAGTCATG AAGAGATGG CTCCTGCCAT GGAATCCCT ACTCTACTGT GTGAGCCTT ACTGTTCTC
 GGTAAAGTAGA GATICAATTA CCCCTCCAG GGAGGCCAA ATGAATTGG GGAGCAGCTG GGGTAGGAAC
 CTTTACTGTG GGTGGTACT TTTTCTAGGA CATGTGAAA CTATTGGCA TTTCCCAGGG ACTCTGTAGT
 20 GGAGCCAAGC TAGAAAGCAG AGGCAAGTGG GCTGAGCAAC ACCTAAGGAG GAAGCCAGAC TGAAAGCTT
 GTTCTTGCA TTGCTCTGG CATCTTCCAG AGTGCAAATT CCTCTACCAAG TAAATGAGGG TAGAGGAGAG
 AAAGAAAGCTC TTCTTCCCC TGATTCTCAT TCTGAAAAG ACGGTTGGTC CTTAAAATTG CATGGATGTA
 GATCTTATCC CCACACCCAG ATTCTAGTCC TCTGGAGATA AAGAAGACTG CTGGACACTA ATGTATCCTC
 TCTGGACTTT TGCAGCTCCA GATGGCGTGT TAGCAGGTGA GTCTCTGTT CTGTTCCCT TGGTGTATCA
 25 ACATGCTGGA GCAATGCTTT CCTCTCACTA TTTTCTCGT CCCATCACTT CTGCTTCTA ATGAGCATGA
 ATCTGTTCT TGCCAGACT ACTTCCCTC TCCACCTTG CTTGCTTTTC TGATTCTTGC
 CATTCTCTCA AGTCATTCTC TCCTCTGTT TAGTCATAA CCATGCTGT TGACATATA
 TCTCTCTCT AGACACTTTG GCATGATCTC GCTCAATAAT TACATTATA TTATTATTGC
 TTGAGGATGC TGAATCTAG TGATTTCTG GTGGTTACAT GGCTAAGGAA CTGGATTTCAC
 30 CTTGGATCTA AGTCAGTTC TCTTCTGACT ATATCACCC TTTGTTATCA CCATGTTACT
 TCTCTGTCA AATTGCACT ACATCCCCCT GTTCCAGGAA GCCATTCAAG ACTGACTTTC
 TCACTACTTT CTGGAACCTGA CATATGTTT TCACTCTGTA TATACTTACA ATTAAATAGT
 CAGAGCTTGG AGAAACCTTA TATTCATCC AGTCCAGTAA ATTTATCCAT CCATAATTCA
 CACATAATAA ATAATTAATG TAACAATGGT TGAACATGGC AGACAGTGT TCTACCTCAA
 35 AGTCCTCATT TACAGATACT GAATTGAAAT TAACAGAAGT AGAGTGAGTC AGCTCAAATC
 TTGGTTCTT TGTTTTAAA TCTCCTGCAT ATGTGTCCTG TCTTCTCCC TGTGTTGGG
 GCACCAATAC TAATTTCTCC TCCCCCTAGA AATCAAAACA GGGTCTTATC ACCAACAGAA
 TTGACCACTG ATTCTCAGAA TATTGCTCG TTTGACTTT TAAGCCTAGA CAGTTTCAA
 TCTCTCTACA TGCTTTTCA TATTTTATC TTCTGAAAGT CCCTCAGAAA CCTAAGGTCT
 40 TCCATGGAAT AGAAATTTTA AAGGAGAGAA TGTGACTCTT ACATGTAATG GGAACAATT
 AGTTCCACCA AATGGTCCA CAATGGCAGC CTTTCAGAAG AGACAAATTG AAGTTGAAT
 CCAAATTGAGA AGACAGTGG AATACAAAT GTCAGCACCA ACAAGTTAAT GAGAGTGAAC
 GGAAGTCTTC AGTGGTAAGT TCCAGGGATA TGGAAATACA GATCTCTCAT GTGAGGGATG
 AGATGGAAA AACACAGGTTA TTCCAAGGGT TAGGACACCA GAGTGGGATT CAAGGCCTCT
 45 ACCCTGCAT TGGCTGGCA CAGTGGCTCA CGCCTGTAAT CCCAGCACT TGGGAGGCTG
 ATCACGAGGT CAGCAGATCG AGACCATCCG GCTAACATGG TGAAACCCCA TCTCTGCTAA
 TATATAAAAT TAGCCGGCG TAGTGGTGGG CACCTGTAGT CCCAGGTACT CGGGAGGCTG
 ATGGTGTGAA CCCAGGAGGT GGAGGTTGCA GTGAGCTGAG ATCACGCCAC TGCCCTCCAG
 AGAGCAAGAC TCCCTCTCAA AAAATAAAATA AATAAAATAAA AAAGACCCCT
 50 CCTTCCCTT TGATTAATTG TATGCCCTCT TTCAATATTG TATGTGTCAC AACAGCATGA
 TATTTCTCTC TATCTTTCT GCCTAGATTG AGGTATATAT TATGTGGTCA AAGTTTGCT
 AACATTCAA AGACCTGTGT ATCTGGAATA GGATCAAAAG GTTTGACTTA AAGTTTGCT
 CATATGGCAG GACCTGAATA TTAGGTTGTA CTCTCGTTA TGAAACATAT CTGGGTACAT
 CCTCTGTTGT TACTTAAGAA CACATATTTC ATGCTTGTGTT CATTTTATC ACTCCTACTG
 55 GCATAGCATG CTTAGGCACA TGTGGCTAA TTAGCAAATG TTGAATAAAC AAATTAATGA
 TGACCAATAG GTCTCTTTA TACTCTATAT TTTCTCTTG AGTAAAAAAA AATGTTCAA
 TAAATTCAA ACACAAACTA AAGCAATGTA GAATAGCTTC TTTATTCCCT GGAGTAGGTT
 CCTAAAGGAT TGGCTCTAA TTAATTATGC TTATTATGCT AGCGATATT CTTTCAAAA
 ATGAATGCTT TTTAATTGTT ACAAAGCAT TAACCCTAGA ATGTGATTCT TGTCTTCAC
 60 GTGACAAATA TTCTTGTAGT ACCTACCAAC TCCTAAGTAT TGCTACCAAC TCCTAAATAC
 ATTCAGAATA GAATGTAGAA CTAGACAGGG TCCCTGACTT CTTGGAGCAC AGAGCAGTAT
 CATTAAATAA AGAATTACAT AAGTAATTAA TTTAAATTAT ACATGTTTG AAGAAGTTT

	CTATAATTAA	CACTAGAACT	GGGAAGTTTC	TATAAGGTAA	GAGAGGACAA	AATAGACACT	CTCCTAAGCT
	AAAATTCCA	AGAAGACTG	TTTATTTCC	CCTAACTAAC	TAGAACTAGC	AACAGAAGAT	CTGAAAGGAA
	TTCTGGCTT	CAAC TGTCC	ATGTATGGAC	TCATCAGGG	GGTCGAGAG	GCTTGTGGC	CCCAGACTGA
	CTTTTCAGGA	GGGGAAAGGA	TTTATCAATA	CACAAGACAG	GCTCTAAGCA	TTATTTGTG	CCCTTTAAAA
5	ATCCACTTA	TGACGCCAAA	AGTGAGTTAA	TGATAATTCA	TAGTTTCTGA	CACATGCTCT	ATGCGTGGCT
	CTCTTTCTC	TATTCATTCT	CTCTCTCTC	ATTATTGTT	AAATAAATAA	TGTAATGAAT	GTTCTTCAGA
	CTGGCTGCTC	CTTC AGGCCT	CTGCTGAGGT	GGTGTGAGG	GGCCAGCCCC	TCTTCTCAG	GTGCCATGGT
	TGGAGGAAC	GGGATGTGTA	CAAGGTGATC	TATTATAAGG	ATGGTGAAGC	TCTCAAGTAC	TGGTATGAGA
10	ACCACAACAT	CTCCATTACA	AATGCCACAG	TTGAAGACAG	TGGAACCTAC	TACTGTACGG	GCAAAGTGTG
	GCAGCTGGAC	TATGAGTCTG	AGCCCCCTCAA	CATTACTGTA	ATAAAAGGTG	AGTTGGTAAA	GGAAAGGAAA
	AGCATCCATA	GCACIGGGAAAG	GAAGAGAGAA	CTTCTGAGCC	TGAGCAGTTG	CAGCTGTAG	AAGGGGGGCA
	CCTGTGATAC	ACTGAAAGC	CTACCAGACT	TGCAATGAGG	AGACCTGGGT	GATAGTATAT	ATCTCAATCT
	CTGTTCAAA	GCCITGACTT	GTAAATGGT	GATAGTAATA	CCTGCTTGC	CTATGAAATT	TTTATGAAGA
15	TTAATGTGGT	ATAATTGTG	AAATGACTTT	GTAAACTGTT	AAGCACTACC	CAAGCATAAC	AGATTGTGAT
	TAATATTTC	ATCTCAAAGT	CATCTGTTGC	TCCTGGGGGA	ACACTTATAT	TTATCAAATT	AAAAAAAAGT
	TTCAAAGTTG	AAATC AAGAAA	GGATATAAAG	AGCTTGAGGA	GCCCATTCCA	GCTTAGGAGG	GCTGGGAAAG
	GAAACCAGCA	AGTCAGTAAG	CTGTGTGCCT	GTGTATTGAG	GGAGGAGGG	ATGGACTTGA	TATGGAGAGG
	GTAGGGAGGT	GGACTGCTC	TATGGCCTGT	AAGAAAAACT	GCTCTCTCCA	AACTTTTAT	AAGAGAGGGA
20	GCCTGTGAAG	TATCACTTT	TGAAGGAGAA	AGTTAGACTT	TTCCCTCAC	CACTTGTAC	ATAATAATGT
	TTAAAAAAAGC	ATGAGGTCAA	AATACATAAT	TAAGTCCTAG	CAGTTCTCTG	TTAACTAATT	TGAGACTGAA
	GTGCTATGTA	CTTCCTCTCA	GGCTTCCAGT	ATCTTCATCT	GTAAAACAGA	ATATTGGTC	TAGATTCCAT
	TAGAACATT	TGAACACTTA	AAAAATATAT	TGATGCTCAT	GTCTCATTTC	TTGAGATTCT	GATTIAATG
	GTTCGGGTG	CAGCTGGGT	ATACGTATT	TTCATAGGTC	TTTCACATAA	TGGAATAGGG	TAGCCAATAT
25	TGAGAACATC	TTGCTAGGT	GATCTTTAA	TGATTTCTGG	ATGTAATATT	CTGAGGCTCT	ATAATTGAG
	ACTAACATCACA	AAAATCGGTA	CAGTTTATAA	ACAGACTAAC	AGAACCCCAA	AATAATAGAA	TTGGAAGGCA
	ATTTAACTAG	TGCAATTCT	TCATTTTGCC	TAACAGGCAT	GTAAGAAATG	ATGATTGATT	GAGTAATAGG
	CATTGATGAC	CCCCTGCCTC	ACTTTGTC	CTTCCACCC	CTTAATTATA	TGTGAATTCT	GGTCTTGTCA
	TTTCGAATAA	GGGGTTTATC	TTTCCTATTG	TCTTCCCTC	TGGGCACGGC	ACACTGGCTA	CTGGAGTTAA
30	GAGGAAATGC	TTAGGACTCC	CTGTGGCTCC	AGGGAGCACC	AACAGAGCAA	CTCAACCTAG	TGTTAATCTG
	AGTGTTTCT	CTGTGCTTCT	GGATGCCACA	TCACGCTAA	AATGAAGGAC	AAAGCTTGGT	CTTCTCTTA
	GGGAGGATGA	AACTCTGAAC	CTCATTTTC	AGTCCCAAG	ATGAATTATG	TTTCTCATTG	CATCTGTGTT
	CCACTACAGC	TCCCGCTGAG	AAGTACTGGC	TACAATT	TATCCCATTG	TTGGTGGTGA	TTCTGTTGC
	TGTGGACACA	GGAATATTAA	TCTCAACTCA	GCAGCAGGT	ACATTCTCT	TGAAGATTAA	GAGAACCAAGG
35	AAAGGCTTCA	GACCTCTGAA	CCCACATCT	AAGCCAAACC	CCAAAAACAA	CTGATATAAT	TACTCAAGAA
	ATATTTGCAA	CATTAGTTT	TTTCCAGCAT	CAGCAATTGC	TACTCAATTG	TCAAACACAG	CTTGCAATAT
	ACATAGAAC	GTCCTGCTC	AAGGATTAT	AGAAATGCTT	CATTAACCTG	AGTGAACATG	GTAAAGTGGC
	ATGTAATAGT	AAGCTGCTA	TTAACATGG	TTGAATAAAAT	GAGAGAATGA	ATAGATTCAT	TTATTAGCAT
	TTGTAAAAGA	GATGTTCAAT	TTCAATAAA	TAATATAAA	ACCATGTAAC	AGAATGCTTC	TGAGTATTCA
40	AGGCTTGCTA	GTTGTTTGT	TTGTTTCTA	CTAAAGGAA	GGACCATGAA	GTTCTAGATT	GGAAATGTCC
	TCTCTTGA	ATTGCAAGTG	CGATCTAGGA	ATGAAAAGAC	ATAGGAGGAT	GCCAGTGAGG	TGGATCATT
	TTATGCTCT	TCTTCAGCT	ACTAAATATG	AACTTCAGT	TCTTGGCAGA	ATCAGGGACA	GTCTCAAGAC
	ATAGGACTCT	CAGGATGAAG	TAGAGTCCAG	GATTCTCTG	TGATTGTTT	GCCCCCTCCA	AATTATATAC
	TTGAACCTAT	GTCITGTATC	TTTATACAGC	ACCTGAACCA	AGCATTTGG	AGAAATTCCA	GCTAATAATA
45	ATAACCAAAA	CCTTCGGCTC	TGAAAACAGT	CCAGGACTGA	ATAAGATCTT	GGGCAAAGA	ACTAGACAGT
	TTTGGTTAT	TTTCCCTTTC	ATTTTATGT	TTCATCATAG	TCATTGGAGG	CTCATTCTTC	TTGTCATGGA
	GTAAATGGGA	TTAAAGTTC	TACTAAAGAT	CTCCAGCATC	CTCCACCTGT	CTACCACCGA	GCATGGGCCT
	ATATTTGAAAG	CCTTACATCT	CTCCAGCACA	GTAAGCACCA	GGAGTCCATG	AAGAAGATGG	CTCCTGCCAT
	GGAATCCCCT	ACTCTACTGT	GTGTAGCCTT	ACTGTTCTC	GCTCCAGATG	GCGTGTAGC	AGTCCCTCAG
50	AAACCTAAGG	TCTCTTGTAA	CCCTCCATGG	AATAGAATAT	TTAAAGGAGA	GAATGTACT	CTTACATGTA
	ATGGGAACAA	TTTCTTTGAA	GTCAGTCCA	CCAAATGGTT	CCACAATGGC	AGCCTTCAG	AAGAGACAAA
	TTCAAGTTG	AATATTGTGA	ATGCCAAATT	TGAAGACAGT	GGAGAATACA	AATGTCAGCA	CCAACAAGTT
	AATGAGAGTG	AACTCTGTGA	CCTGGAAGTC	TTCAGTGACT	GGCTGCTCT	TCAGGCCCTCT	GCTGAGGTGG
	TGATGGAGGG	CCAGCCCCCTC	TTCCCTCAGGT	GCCATGGTTG	GAGGAACCTG	GATGTGTACA	AGGTGATCTA
	TTATAAGGAT	GGTGAAGCTC	TCAAGTACTG	GTATGAGAAC	CACAACATCT	CCATTACAAA	TGCCACAGTT
55	GAAGACAGTG	GAACTCTACTA	CTGTACGGGC	AAAGTGTGGC	AGCTGGACTA	TGAGTCTGAG	CCCCTCAACA
	TTACTGTAAT	AAAAGCTCCG	CGTGAGAAAGT	ACTGGCTACA	ATTTTTTATC	CCATTGTTGG	TGGTGATTCT
	GTTCGCTGTG	GACACAGGAT	TATTATCTC	AACTCAGCAG	CAGGTACAT	TTCTCTGAA	GATTAAGAGA
	ACCAGGAAAG	GCTCTGACT	TCTGAACCCA	CATCCTAAGC	CAAACCCCAA	AAACAACATGA	TATAATTACT
	CAAGAAATAT	TTGCAACATT	AGTTTTTTC	CAGCATCAGC	AATTGCTACT	CAATTGTCAA	ACACAGCTTG
60	CAATATACAT	AGAACGCTC	GTGCTCAAGG	ATTATAGAA	ATGCTTCTCATT	AAACTGAGTG	AAACTGGTTA
	AGTGGCATGT	AATAGTAAAGT	GCTCAATTAA	CATTGGTTGA	ATAAAATGAGA	GAATGAATAG	ATTCAATTAT
	TAGCATTG	AAAAGAGATG	TTCAATTCTA	ATAAAATAAA	TATAAAACCA	TGTAACAGAA	TGCTTCTGAG

	TAAAAAAA	AAA/AAAAA	AAAAAAA	TCTCAATATA	ATAATATTCT	TTATTCCTGG	ACAGCTCGGT
5	TAATGAAAAA	ATGC ACACAG	AAAGTAATAG	GAGAGCAAAT	CTTGCCTCTCC	CACAGGAGCC	TTCCAGTGTG
	CCTGCATTG	AAGTCTTGA	AATATCTCCC	CAGGAAGTAT	CTTCAGGAG	ACTATTGAAG	TCGGGCTCAT
	CCCCACCACT	GCATACATGG	CTGACAGTTT	TGAAAAAAAGA	GCAGGAGTT	CTGGGGGTAA	CACAAATTCT
5	GAUTGCTATG	ATAIGCCTT	GTITGGAAC	AGTTGTC	TCTGTACTTG	ATATTTCACA	CATTGAGGGAA
	GACATTTTT	CATCATTTAA	AGCAGGTTAT	CCATTCTGG	GAGCCATATT	TTTTTCTATT	TCTGGAATGT
	TGTCATTAT	ATCTGAAAGG	AGAAATGCAA	CATATCTGGT	GAGAGGAAGC	CTGGGAGCAA	ACACTGCCAG
	CAGCATAGCT	GGGC GAACGG	GAATTACCAT	CCTGATCATC	AACCTGAAGA	AGAGCTTGC	CTATATCCAC
10	ATCCACAGTT	GCCAGAAATT	TTTGAGACC	AAGTGCTT	TGGCTTCC	TTCCACTGAA	ATTGTAGTGA
	TGATGCTGTT	TCTCACATT	CTGGGACTTG	GTAGTGCTG	GTCACTCACA	ATCTGTGGAG	CTGGGAAGA
	ACTCAAAGGA	AAC/AGGTT	CAGAGGATCG	TGTTTATGAA	GAATTAAACA	TATATTCA	TACTTACAGT
	GAGTTGGAAG	ACCCAGGGGA	AATGTCTCCT	CCCATTGATT	TATAAGAATC	ACGTGTCCAG	AACACTCTGA
15	TTCACAGCCA	AGGA TCCAGA	AGGCCAAGGT	CTTGTAAAGG	GGCTACTGGA	AAAATTCTA	TTCTCTCCAC
	AGCCTGCTGG	TTT AAGCTTTCA	AAGGTGCAAT	TGGATAAC	CTGCCATGAG	AAATGGCTGA	ATTGGGACAC
	AAGTGGGGAC	AAT/CCAGAA	GAAGGGCACA	TCTCTTCTT	TTCTGCAGTT	CTTCTCACC	TTCTCAACTC
	CTACTAAAAT	GTCTCATTT	CAGGTTCTGT	AAATCCTGCT	AGTCTCAGGC	AAAATTATGC	TCCAGGAGTC
20	TCAAATTTC	TTATITCATA	TTAGCTTTA	TTTAGTAGAC	TTCTCAATT	TTCTATTCA	CACAAGTAA
	AGCCTGTTGA	TCTTAATCAG	CCAAGAAACT	TATCTGCTG	GCAAATGACT	TATGTATAAA	GAGAATCATC
	AATGTATGA	GGTA ACCCAT	TTCAACTGCC	TATTCAAG	ATGCAGTAAG	AGGAAATCCA	CCAAGTCTCA
25	ATATAATAAT	ATTCTTATT	CCTGGACAGC	TCGGITAATG	AAAAAAATGGA	CACAGAAAGT	AATAGGAGAG
	CAAATCTTC	TCTCCCACAG	GAGCCTTCCA	GGTAGGTACA	AGGTATTATT	TTTTTCTACC	CTCAGTC
	TGTTGGCAGGG	GAAGTCATAG	TCACGGTGT	TAGGAGATGA	AACTTTATTG	ATTIAGGCAT	GGATCCATCT
	AGTTAATT	ATATATTGGG	TATGAGGAAG	CTACTTGTG	TACTTTCCAT	GTGGTTCTCT	CTCCCTGGAG
30	AGGAACATTT	TTACTCAGCT	TGCAAACACTGG	AAATAGATT	TCTCACATTA	GAAGCTCATT	TTCTGGGTAT
	GAGACAGGAG	AGT CATACT	GTGTATGTAG	ATCTCTGGCT	TCTGGGTCTG	ACATGTGCTG	AGGGACACAT
	ATCCTCACA	CATC CTTTA	TAATACCTTG	ATAAAGTAAC	CTGCTTCTG	ATTGGTCTT	ATAATCCATA
	AGCTGTGGGA	TGCTCTCTG	AAGATGAAAAA	TAGTAATAGA	GTCCCAC	GCTATTCAA	GCCATTCTT
35	CATTGTATT	TGTGCACATG	AAGTTGGGGT	TTGTTACTG	CAAATATAT	TCAGATACAT	TTCTATGTIA
	AAAGGATTGT	GAGATGCATA	GGTAAATGTG	TTTATTTC	TTTACTTG	TCAACATAGA	TGAATGAGAA
	AGAAACTTGA	AGT/ACACTG	GATTAAGAAT	AGGAAAATT	GGCATGGATT	TTGCTCCATT	TTGCCCCATC
	TAATCACTTG	GATA GTGTT	AGGTGTTCTT	GGTCAGTTAC	TTGGATGTC	TGAGCTT	TTTCTGGT
40	ATTACAATGA	AGA/TTGAAT	TACAGGATGG	CTTGAAAAAA	CTTCCCTTTC	TGTCTGTCGA	TGTGCTGCA
	GAATGTTGCA	CAGGGAGTTA	CAGAATGTT	TCATGACTG	ATTGCTT	TCATCCCCAC	TCATCCCCAC
	TTTGAAGTCT	TGGAAATATC	TCCCCAGGAA	GTATCTTCAG	GCAGACTATT	GTGAGTGAGC	CTCCTCCAAC
	CACTGCATAC	ATGC CTGACA	GTITTGAAAA	AAGAGCAGGA	GTCCTGGGG	TAACTGGGTC	ACTTGGATT
45	TTTGACTAGA	GTA/ GGGTT	GGTCTAGAAA	AGAATATTG	GTTGCATCAA	GCCAACAGGA	CTTITGGGAA
	ATGAGAGGTG	TTAGGTCTT	AAAAAAACAT	GGTAGATAAA	GAGTTGACAC	TGAAAGGATT	GTGAAGGATT
	GAGCCAGAAG	CAT/TCCTCA	TAAGACTTT	AAATTGCTAG	GACGAGAATG	TGACTACATA	CATAAAGGCG
	CATAACTTA	TCTTFACTTA	GATGAAAGA	ACAATTACTG	ATGTTCAAC	TCTTATAGT	GCTAGGGTAT
50	CATGGAGAAA	AGT ATTGGCC	TTCCATGCAT	TAGGTAGTGC	TTGTATCA	ACGCAGTTTC	TCATGTTGG
	CCTGGAAAAT	CTTA.CGTGTG	GATCATTTCT	CAGGACAGTC	TAGGACACTA	ATGAAATTC	TGTGTTTT
	CTTCTATTAT	TAaaaaATGA	TACAATCTCG	GGAAAATT	TTTGATT	CTGACTT	CTGACTT
	TATAGGTAAAC	ACA/ATTCTG	ACTGCTATGA	TATGCCTT	TTTGGAAACA	CATTCTGGGG	AGCCATATT
55	TATTCACAC	ATTGAGGGAG	ACATTTTTC	ATCATTTAA	GCAGGTTATC	TCTCTTCTC	AGATCTAAC
	GTGAGTATAT	ATC/ATAATT	GTITCTGAA	TAACACTG	CATAGGTTT	TATATGTGAG	CATATATAAC
	AGTGTTTAT	CCCCAGTATT	AAGATGATAT	TTATAATTCT	TAATTATAAA	GGGTTAAAC	TTAGCCCAC
	ATAGATATGC	TCATTAACAA	CAACAAAAGA	TTCTTTTAC	AATTAACGGT	TAAGGGCCAC	TTGACTAATA
60	AGTTTTATCC	CATGAGAAAC	CTGAATCTAA	TACAAGTTA	ATGACTTG	ACTATTCA	AATAAAAGTT
	GTAATTGAAC	CTA/ACTTC	AGAATCCAAC	TCCAGGAACA	TACTTCTAG	CTGGGCATGG	TGGCTCACAC
	TATGATAAAAT	ACAT/ACAAC	TTATCTGTCA	ACTAAAAAAT	ACAACAGAGG	AGGAGTTG	AGGAGTTG
	CCGTAATCCC	AGCA.CTTGG	GAGGCTGAGG	CAGGTGGATC	ACCTGAGGTC	GTGATAGT	GTGAGCTGAG
	ACCAACATGG	TGA/ACCTCA	TCTCTACTAA	ATATAAAA	TTAGCTGAGT	GTGATAGT	ATACCTGAA
	TCCAGCTACT	TAAG AGGCTG	AGGAGGAGG	CTTGTAA	CCTGGAAGG	AGAGGTTG	AGAGGTTG
	ATTGTGCCAT	TGCA CTCCAG	CCTGGCAAT	AAGTGC	TCTGCTCAA	AATAATAA	ATAATAATAG
55	AAAATAAAAGT	TGT/TTCATG	AAAAATGAGG	AAAGAGATTG	CTGGGGT	AAACATTAAG	ATCAATGGG
	ATATGGTGAC	CTTCTATG	CTAGAAACTC	TTT TANG	GAG	GTATCTCTT	TACNCATCG
	TCTATCTGGA	AAA/ TAGGTG	GATGAGTGA	ATAATAAC	TATATACTT	TTAAAGGT	AATTGACATA
	TATAAATTGC	AAG/ATTCA	GATGTCAATT	TGCTAAC	GACACACATA	GACACACATG	AAAACATCAC
	CACATTAATA	CAA/TGTATG	ATCCATCATT	CCAAAAGCTT	CCCTGTGT	CTTGTAACT	CTTCTTCC
60	CCCTCCACTC	CTTC TCCTCT	CGTCCCAAG	AAAACATTG	TCTGCTCCT	GTGAATATAA	ATTAACCTAC
	ATTTTTTAGA	GCT/TATATA	AGTATGTTCT	CTTTACTG	TGTCTCCTT	CGCTGCACAG	TTATTTGAC
	ATTCTTCAG	TTT/TTCTT	ATATCGATAC	TTCAATT	AGAATATATT	TTAATTCTAG	ACTATGTCA

	ATTGACTTTG	TCGTCTGCTA	AATCCTTAGT	GCTCAGATGA	CTTGTTCAAGG	ACTCTCCTTG	AACCTGTACC
	TCTGTTANAT	TGAAACCTGT	CTCTACTGTC	TTTTTATTTC	AAACACAGCT	TATTAGGTGT	CTCTCAACCC
	ATCAAACNCA	CAA'CTGAGT	CTTTAGGAGA	TTGCTTTGAA	TTTGTGCTAT	TGACTTATAT	NTATATNAAA
5	TNTGAAATG	TTGGTAAAAA	ATATCATCAT	GTACNTTTTC	ATAATTACGC	TATNTNCACA	TGATATATGT
	CAGACTCTGG	AAATATGCAT	GCCACAGACA	CGTGTTCCTT	GCCTAAAGGG	GCTGATGGAA	GACNCACATA
	CNAATAGACG	ATTC CAGTAG	AATGAGAGTG	GTGGTCTAAN	CAGTACATGT	CCTGATGTTG	CTCGGACAGT
	TAECTACNCCA	AGAC TACCCC	CTGCATTGTC	AGGGTTAGCA	TCTCCTGGAA	GCCTCATGTA	AATGAAGAAT
	TTCATGCTCC	ATCC AGGACC	TAATGAATAA	GAATCTGCAT	TTAGCAAGA	CCCTCATATG	ATTCATATAC
10	ACTTTTTTT	TTTTTTTTA	GATGGAGTCT	CACTCTGTC	GCCCAGGCTG	GAGTCAATG	GCATGATCTT
	GGCTCACTGC	AACC TCTGCC	TCCCCGGGTT	AAAGTGATTCT	CCTGTCCTAG	CCTCCCTAGT	AGCTGGGACT
	ACAGGGTCACT	GCCACAGTGG	CTGGCTAATT	TTTGTTATTTC	TAGTAGAGAC	AGGGTTTCAC	CATTTGGTC
	AGGCTGGTCT	TGAACTCATG	ACCTCCGGTG	ATTCCCCCGC	CTCGGCTTCC	CAAAGTGTG	GGATTACAGA
	CATGAGCCAC	CACAC CCCGCC	TTATTCTGAT	ACNCATTAA	TTCTGAGAAG	CACTCTATAG	AAAATAAGAA
15	TAAGAAAATA	TTGGGCTCAC	AGGTGACATT	AATAAGTAAC	TTTATCGAGT	ACCCCAAATT	TTACCTATGT
	TTGGAAGATG	GGGTTAAAAG	GACACATTGA	AAACAAAGAAC	TCATTGTGGC	TTTTTTTCC	TCCTTTTGA
	ACAGTTTCT	ATTCTGGAA	TGTTGTCAAT	TATATCTGAA	AGGAGAAAATG	CAACATATCT	GGTGAGTTGC
	CCGTTTCTGT	CTTTGTCCAT	CCTTGGAAAAG	ATAAGAAGAA	CAGAGTTTA	AGAGTCTTAA	GGGAAACACA
	TCTTTGTCTC	CTATATTACT	TGTGAATGTG	GATATATGAT	TTTGTGTTCAA	TCTATTTGT	GTCCTAAGGC
20	TTTTTGCAAC	AGAAAGTGGA	TATATCATT	AAAACATAAA	TTGTACCAT	TAACATACAT	GAAGTTTATG
	TTTACCTTGA	CGTTCTTCTA	AAAAGTGTCC	TACACCGGC	TTGTCTTGT	AGGCATATTG	ACATGATCAA
	ATAAAAATAAT	TAGTTTCAA	TTAAGGAGAA	TATTGAGGA	AAGACCGTAC	GTGTTCATGT	GGTTCTTGAA
	GGCAGTCCAG	TGAGAAAGTA	ATATATGCTT	CATTAACAA	TGCGGACATT	TTCAAGGTTT	CCCTTTTAA
	CCAAAATTG	GAACCAATGT	GGAAATTACT	GGATGCATCC	AGCCCTGAAA	TGAAGATAGG	TTTATTGAAT
25	GTGCCAGCAA	GTGCAAGGCC	AGGTCTGAGT	GTTCITCATT	ATTATCAGGT	GAGAGGAAGC	CTGGGAGCAA
	ACACTGCCAG	CAGC ATAGCT	GGGGGAACGG	GAATTACCAT	CCTGATCATC	AACCTGAAGA	AGAGCTTGGC
	CTATATCCAC	ATCC ACAGTT	GCCAGAAATT	TTTGAGACC	AAAGTCTTA	TGGCTTCCTT	TTCCACTGTA
	TGTATTTTTT	TTTG GTGGG	AAGACTAAGA	TTCTGGGTCC	TAATGTAAGT	AAGAAGCCCT	CTTCTCCTGT
	TCCATGAACA	CCAC'CTTTT	CTGTAACTTC	TATTACACAG	TATAGTGGTT	CTGTAAGTTC	ACACAGCCCA
30	GGGAGATGCT	GGC'GCCAAC	TCCCCCTCAAC	CCAGGCAAAT	TCCTCGGGGT	TAAGTTATC	TAUTGCAAGT
	GACGATCTCT	GGGTTTTCT	GTGCCTGTGT	TTGTGTGTGT	GTGTGTGTGT	GTGTGTGTGT	GTATGTGTC
	CTTTAAAAGG	ACTCGTCAGA	TGGTAGGGAG	ATGAAAACAG	GAGATGCTAT	AAGAAAATAA	ACTTTGGGG
	CGAATACCAA	TGTGACTCTT	TTTGTGTTGC	ATTGTTGCT	GTTCATAGG	AAATGTAGT	GATGATGCTG
	TTTCTCACCA	TTCTGGGACT	TGGTAGTGCT	GTGTCACTCA	CAATCTGTTG	AGCTGGGGAA	GAACCAAAG
35	GAAACAAGGT	AGATAGAAGC	CCGATATAAA	ATCTTGAATG	ACAGGTTAAC	GAATTGGAGC	TTTATTCTT
	AAAATATGGC	CTGGGTTTTC	TGAAACATTT	CTTCCAGAAA	ATAGTTCTC	CAAGTTTAT	TACTTTGGTT
	TACAAATCTC	ACATTTAAAT	CACATTTAT	ACCATAAGTA	GCACACATT	CATAATATTG	CTCTGAATGA
	GGGTTGGGAT	AATAGGACTG	ATATGTTAGA	AATGCCCTAA	AGTGTGTGGA	GCATGAGAGA	TGGATGTACA
	GAAGGCTTGT	GAGGAAACCA	CCCAGGTATC	TGGCCTTGT	TTCTGCCCA	GAACTAGCCG	CCTATTCTG
40	TTTCTGTTT	ATTCCTTTGT	TTCTTGACTT	TTCTTTCCA	ACTTGCTCTA	AAACCTCAGT	TTTCTTCT
	TTCTGATTCA	TGACTACCAA	ATGTTTCAC	TTGCCTCACC	CGTCCATTAC	ACCTTGTATA	AGAACCCACCA
	GACCTTGTG	TCATGTACTT	GCCCCATGTCT	GATGGAAGAA	ACATACTCTC	TCCATCTGTC	CACTTTCTG
	AGGCATTCAA	GTCTAGGCCAC	CTTTTAAAT	CACTCTCCCTC	CAGGCTGGGC	ACGGTGTAC	GCCTGTAATC
	TCAGCACTT	GTGAGGCTGA	GGAGGGCGGA	TCACITGAAG	TCAGGAGTTC	AAAACCAGCC	TGGCCAAATG
45	GCAAAACCAA	ATCTCTTCA	ATTATAACCA	AATCTTAAAC	CAAATCTCTA	CTAAAAAAATA	CAACAAAACA
	AAACAACAAAC	AAACAAAAACAA	GAAAAGGAAA	CATTAGCCCA	GCCTGGTGGC	AGGTACCTGA	GGTCCAGAT
	ACTTGGGAGG	CTGAAGCAGG	AGAATCGCTT	GAGCCCAAGA	GATGGAGGTT	GCAGTGTAGC	GAGATCATGC
	CACTGCACCA	CAGC CAGGGT	GACAGAGCCA	TACTTCCCAG	CACATTGGGA	GGCCAAAGCT	GAAGAATAAT
	TTGAGGTGAG	GATT TGGAGA	CCAGCCTGGC	CAACATGGTG	AAACTCCGTC	TGTACTAAAA	ATATAAAACT
50	TAGTGGGCA	TGGGGGCACA	CACCTGTAAT	TTCAGCTACT	TAGGAGGCTG	AGGCAGGAGA	ATTGCTTGA
	CCCAGGGAGG	GGAAGTTGCA	GTGAGCCAAG	ATCGTGGCCA	CTGCACTCCA	GCCTGGGTGA	CATAGTGAGA
	TTCTGTCCTA	AAAAPAAATAA	AAGAAATT	AAAAATCACT	CTCTCCAAA	GATAGATAAA	TAAGACAGCA
	GATATACTAA	GGAATAAACCT	CACCAACTT	TCATTGACTG	ACATGATTTC	TTTGGCCCA	CTTGGCCAGC
	TAGTCTGGTT	TGGTTTCTG	GAAATGAAAG	AAATAATCAG	AGTTTAATGA	CAGAGAGCGT	GAGACCCAGA
55	AAGACAAAAG	TAGATGAGGT	AAAGTCTT	AGCGAGACTT	CTAGGGATGG	GAAATTGTTG	GTGATTGATA
	TGAAATGATT	TTTCCTTAT	CAGGTTCCAG	AGGATCGTGT	TTATGAGAA	TTAAACATAT	ATTCACTAC
	TTACAGTGAG	TTGGAAGACC	CAGGGAAAT	GTCTCCTCCC	ATTGATTAT	AAGAATCAGC	TGTCCAGAAC
	ACTCTGATT	ACACCCAAGG	ATCCAGAAGG	CCAAGGTTT	GTTAAGGGC	TACTGGAAA	ATTCTATTC
	TCTCCACAGC	CTGCTGGTTT	TACATTAGAT	TTATTCGCCT	GATAAGAATA	TTTTGTTTCT	GCTGCTCTG
60	TCCACCTTAA	TATGCTCCTT	CTATTGTTAG	ATATGATAGA	CTCCTATT	TCTTGTGTTA	TATTATGACC
	ACACACATCT	CTGCTGGAAA	GTCAACATGT	AGTAAGCAAG	ATTTAACTGT	TTGATTATAA	CTGTGCAAAT
	ACAGAAAAAA	AGAAGGCTGG	CTGAAAGTTG	AGTTAAACTT	TGACAGTTG	ATAATATTG	GTTCTTAGGG
	TTTTTTTTT	TTTGTAGCATT	CTTAATAGTT	ACAGTGGGC	ATGATTGTA	CCATCCACCC	ATACCCACAC

	AGTCACAGTC	ACAC'ACACAT	ATGTATTACT	TACACTATAT	ATAACTTCT	ATGCAAATAT	TTTACCACCA
	GTCAAATAA	CATTTTGCC	AAGACATGAA	GTTTTATAAA	GATCTGTATA	ATTGCCTGAA	TCACCAGCAC
5	ATTCACTGAC	ATGA'TATTAT	TTGCAGATTG	ACAAGTAGGA	AGTGGGGAAC	TTTATTAAAG	TTACTCGTTG
	TCTGGGGAGG	TAA' TAGGTT	AAAAACAGGG	AAATTATAAG	TGCAGAGATT	AACATTTCAC	AAATGTTAG
10	TGAAACATT	GTGAAAAAAAG	AAGACTAAAT	TAAGACCTGA	GCTGAAATAA	AGTGA CGTGG	AAATGGAAT
	AATGGTTATA	TCTAA AACAT	GTAGAAAAAG	AGTAAC TGGT	AGATTTGTT	AACAAATTAA	AGAATAAAAGT
	TAGACAAGCA	ACTC' GTTGAC	TAATACATTA	AGCGTTGAG	TCTAAGATGA	AAGGAGAAC	CTGGTTATGT
	TGATAGAATG	ATAA' AAAGGG	TCGGGCGCGG	AGGC TACGC	CTGTAATCCC	AGCCCTTGG	GAGGCCGAGG
15	TGGG CAGATC	ACGA' AGTCAG	TAGTTGAGA	CCAGCCTGGC	CAACATAGT	AAACCCGTC	TCTACTAAA
	ATACAAAAAA	AAA' TTAGCT	GGGTGTGGT	GCAGTCACCT	GTAGTCCCAG	CTACTTGGGA	GGATGAGGCA
	GGAGAATCGC	TTGA' ACCTGG	GAGGCGGAGG	TTGCAGT GAG	CCGAGATCGC	ACCAGTGCAC	TCCAGCCTTG
	GTGACAATGG	GAGA' CTCCAT	CTCAAAAAAA	AAAAAAAAGA	AAAAAAGATA	AAAAGTCAGA	AATCTGAAA
20	GTGGAGGAAG	AGTACA AATA	GACCTAAATT	AAGTCTCATT	TTTGGCTTT	GATTTGGGG	AGACAAAGGG
	AAATGCA GCC	ATAC AGGGCC	TGATGACATC	CAATACATGA	GTTCGGTAA	AGATAAAATT	TGATACACGG
25	TTTGGTGTCA	TTAT'AAGAGA	AATCATTATT	AAATGAAGCA	AGTTAACACT	CTAA GAGAA	TATTTTGAGA
	TAGAAGTGAA	GCTP' AGCTAA	ACTTCACATG	CCTATAATTG	GAGGGAAAAA	CTAAGGATAA	AATCTAGCCT
	AGAAAGATACA	ATA' TTAGTC	ATAAACATGC	ATTGTGAAAC	TGTAGAGAGC	AGGTAGCCCA	AAATAGAGAA
	AGATTAGATA	AAG' GAAAAT	AAAGTATCCAT	CAGAGACAGT	ATCTCTAGG	TTGGCAGA	GAAAAGTCCA
30	CA GTGATAAG	CAAC TCCACC	TAAGGCATGA	ATATGCGGC	GAGAAAACAG	CAATAGTGA	TGAATGCAA
	AGGTGCTGAG	CAA' TTCCAC	ACATGAGTAT	TGTGCA TGA	TAATATGAA	AAACATTG	AAAGACCTTT
	AGAGAAAGAG	AATGGGAGCA	TATGTGCGAA	ATAAGATAGT	TGATTATGAA	TAGAAGGTAG	TGAAGAAAAG
	CAAGCTAAGA	AAA' ATTCTG	TTTATAAAAG	AAGGAAAAGA	TAGTTTATGT	TTT TAGCCTA	AGTATAAGAG
	TCCTACAGAT	GGACTGAAA	AAATCAGTCT	GAGAGTATT	GTCACAATTA	ATGAAATAAT	TACATTTTAT
35	GTATTGAGGA	TGCCAAGATT	AAAAGGTGAC	AGGTAGATGT	TAATTTCCCT	AGATTGTGA	AGTGATCACG
	ACAATCACAC	AAC' AATAAT	TAAGTGA CTT	GGTATGCTTT	ATTTAATTG	AGGCCTGAG	GTTTCCATT
	CTCATTTTC	AAAAATACAA	TTTTGTTCT	CCAAATTG	CAGCAGAATA	AAAACCTAC	CCTTCACTG
	TGTATCATGC	TAAC CTGCAT	CTCTACTCTT	GATCATCTGT	AGGTATTAA	CACATCACTT	CCATGGCATG
	GATGTTACA	TACAGACTCT	TAACCCTGGT	TTACCAGGAC	CTCTAGGAGT	GGATCCAATC	TATATCTTA
40	CAGTTGTATA	GTAT' ATGATA	TCTCTTTAT	TTCACTCAAT	TTATATTITC	ATCATTGACT	ACATATTCT
	TATACACAAAC	ACACAATTTA	TGAATTTTT	CTCAAGATCA	TTCTGAGAGT	TGCCCAACCC	TACCTGCCTT
	TTATAGTACG	CCCACCTCG	GCAGACACAG	AGCACAATGC	TGGGTTCTC	TTCACACTAT	CACTGCCCA
	AATTGCTTT	CTAAATTTCA	ACTTCATGT	CATCTTCTCC	ATGAAGACCA	CTGAATGAAC	ACCTTTTCAT
	CCAGCCTTAA	TTTCITGCTC	CATAACTACT	CTATCCCAGC	ATGCAGTATT	GTATCATTAA	TTATTAGTGT
45	GCTTGTGACC	TCCTTATGTA	TTCTCAATT	CCTGTATTG	TGCAATAAT	TGGATAATG	TAAC TTGATT
	TCTTATCTGT	GTITGTGTTG	GCATGCAAGA	TTTAGGTACT	TATCAAGATA	ATGGGAATT	AAGGCATCAA
	TA AAAATGATG	CCAA' AGACCA	AGAGCAGTTT	CTGAAGT CCT	CCTTTTCATC	AGCTTTTAT	CAAACAGAAC
	ACTCTATAAA	CAACCCATAG	CCAGAAAACA	GGATGTAGGA	ACAATCACCA	GCACACTCTA	AAACAAACCC
	ATAGCCAGAA	AAC' GAATGT	AAGGACAATC	ACCAGCCATC	TTTGTCAAT	AATTGATGGA	ATAGAGTTGA
50	AAGGAAC TGG	AGCATGAGTC	ATATTTGACC	AGTCAGT CCT	CACTCTTATT	TACTTGCTAT	GTAA ACTTGA
	GAAAGCTTT	TTCTCTTGT	GAACCTCAGG	TTTACATCT	GAAAATGAGA	AATTGGAAC	AAAAGATTCC
	TA ACTGGTCT	TTCTGTTCCC	ATATTCTGT	ATTTTCAAT	ATTTAGGATT	TTTGGTAATC	ACAATTACTT
	AGTTTGTGGT	TGAGATAGCA	ACACGAATCA	GAAC TATTG	GTGGACATAT	TTTCAAAGGA	GTAGCTCTCC
55	ACTTTGGGT	AAGA' AGTGT	GCNGGT CGTG	GTGGCTCAGC	CCTGTAATCC	CAGCACTTTA	GGGAGGCCAA
	GGC GGGTGG	TCAC' GAGGT	AGGAGATCGA	GACCATCCTG	GCTAACACGG	TGAAACCCCG	TCTCTACTAA
	AAAATACAAA	AAAT' TAGCCA	GGCGTGGTGG	CGGGCGCCTG	TAGTCCCACG	TACTCGGGAG	GCTGAGGCAG
	GAGAATGGCA	TGAACCAAGGG	AGGCGGAGCT	TGCCGTGAGC	CGAGATAGCG	CCACTGCAGT	CCCTCCTGGG
	CAAAAGAGCA	AGAC' TGC GTC	TCAAAAAAAA	AAAAAAAAGA	GTGTGTGGAG	TAGCAGGACA	
	CCTGCAACAA	TAAT' ATT TTT	CTAAATCCCT	CTGAAAAAATG	CTAATCAAAG	GGTTTTTTTC	CTAAAATTG
60	TCTTAGAAAT	AAAATTCCC	CTTGGGAGA	CCGAGGCTGG	CAGATCACGA	GGTCAGGAGA	TAGAGACCAC
	GGTGAACCC	CGTC TCTACT	AAAATACTA	AAAATTAGCC	GGGGNGTGT	GGTGGGTACA	CCTGTAGTCC
	CAGCTACTTG	GAGG' TGAGG	CTGGAGAATC	ACGTGAAC-3' (FRAG. NO:) (SEQ. ID NO:2505)			
5'	AACAAAGAAA	GC GTTGGTAG	CTCTGGTGA	TCCAAAAGA	ATGTGGCAGT	TGCTAGCCAT	GCTCCTGAAT
	ATGTATAAAC	AGT' CATCAT	ATGACTAAGA	GTTTGACTTA	GGGGTTAGAT	TTTATGTGTT	TGAACCCCAA
	ATTAGTTATT	TAATAGTTGG	CACCCCAAAA	CAAGTTACTT	AACCTCACTA	AGGTCAGTT	TTCCCTGTTA
55	TAAAATGTAG	ATAC' GTATAG	TATGTACTT	ATAGGATTAT	TGTGAAAAT	AAATGAAATA	TCAGATTAT
	TTAGGATAAC	ACCT' GGCATA	TGTTTGGTAT	TCAGAATTAG	TTGCTGCTGT	TTTATTCTGC	TCTCCCTTGC
	ATCCCAC TTT	TCTA' AGTTGT	AAACTAAATA	GTTGTACACA	GATTGACAGA	TTAAGAAAGG	CTTGTGATTG
	TGCTAGACCT	ATGCC TATGC	CTCTGTCTCA	CCAGATTCCA	GGTGTATATG	TGGAGGTGGG	ATAGGGAGTG
	GAGTAAGTGG	GTA' ATATTA	AATTGCCAG	TTGGGCACCA	TCCTGAATAT	TATCTCTAAA	GAAAGAAGCA
60	AAACCAGGCA	CAG' GTGATGG	GTTAAC CAGA	TATGATACAG	AAAACATTTC	CTTCTGCTTT	TTGGTTTAA

GCCTATATTG AAAGCCTAG ATCTCTCCAG CACAGTAAGC ACCAGGAGTC CATGAAGAAG ATG-3' (FRAG.
NO.:)(SEQ. ID NO:250)

5'-GATCTTCATG TGGAATGACT GGTTTCATT AATAGACTTA ATTCAAGCAGT CTGTGGGAA GAGCAAGGTA
TGATAGAATG GTTCTCAAG TGCTTCAGAT GTGAAGTGGG TTTAAATATA CTGTCCTGT CTTCTTCAGA
5 GTTTGGTAA AGATAAAATA GGACACTCAT TTAAAAGCAA TCTTGTCAA TGACAAGCCA CTATAGACAT
TAATAGAGTT TTCATTTCAGA GTATTATCAT TAATATCAGA TCCCTGGAAGA AGGTGAGCC TTGACCTAGA
GCAAAAAAAC AGAAGAATTG GTAAAGGAAT CCTGGAGAAA GCCCCTGCTG TGTATTTAAA GGAGAAAGGG
AGATCATGTT GGGAAATTAT AATATTAAGA GTAAACAAAAA GCTAGGAAGT AAAATAAAAT AAATTATATG
10 GCCTAGATCC CCAT'AAGTAA TGGTTAACT TCTGCCTTCC TGTGTTCTGA GCCAGATTAG GGCACAGTAG
AGAAAGAGGA GTCTCTGAAA ATGTTICCAA TTTCGCTGGT CAGACAGCGG ATCATCAGTG AATCAGATGA
AAATTTGTGG ATTATGAC CAACTGATCA GCAGGAATT AAACAAGAAA AGCGTTGGTA GCTCTGGTA
ATCCCCAAAG AAT'TGGCAG TTGCTAGCCA TGCTCCTGAA TATGTATAAA CAGTACATCA TATGACTAAG
AGTTTGACTT AGGGGTTAGA TTTATGTGT TTGAACCCCA AATTAGTTAT TTAATAGTTG GCACCCAAA
15 ACAAGTTACT TAACTCTACT AAGATTCACT TTTCTGTGTT ATAAAATGTA GATAGTGATA GTATGTACTT
TATAGGATTA TTG1GAAAAA TAAATGAAAT ATCAGATTAA TTTAGGATAA CACCTGGCAT ATGTTGGTA
TTCAGTAATT AGT'GCTGCT GTTTTATTCT GCTCTCCCT GCATCCCACT TTTCTAAGTT GTAAACTAAA
TAGTTGTACA CAGATTGACA GATTAAGAAA GGCTTGTGAT TGTGCTAGAC CTATGCCTCT CTCTCACCA
ATTCCAGGTG TATATGTGGA GGTGGGATAG GGAGTGGAGT AAGTGGGAA ATATTAAATT GCCCAGTTGG
20 GCACCATCCT GAATATTATC TCTAAAGAAA GAAGCAAAAC CAGGCACAGC TGATGGGTA ACCAGATATG
ATACAGAAAA CATITCCCTC TGCTTTTGG TTTAACGCT ATATTGAAAG CCTTAGATCT CTCCAGCAC
GTAAGCACCA GGA'GTCCATG AAGAAGATGG CTCCCTGCCAT GGAATCCCT ACTCTACTGT GTGTAGCCTT
ACTGTTCTC GGTAAGTAGA GATTCAATTAA CCCCTCCAG GGAGGCCAA ATGAATTGG GGAGCAGCTG
GGGTAGGAAC CTT'ACTGTG GGTGGTACT TTTCTAGGA CATGTGCAA CTATTGGCA TTTCCCAGGG
ACTCTGTAGT GGACCCAAGC TAGAAAGCAG AGGAAGTGG GCTGAGCAAC ACCTAAGGAG GAAGCCAGAC
25 TGAAAGCTTG GTTCCTTGCA TTTGCTCTGG CATCTTCCAG AGTGCAATT TCCTACCAAG GTAATGAGGG
TAGAGGAGAG AAAAGAGCTC TTTCTTCCC TGATTCTCAT TCCCTGAAAG ACGGTTGGTC CTTAAAATTC
CATGGATGTA GATCTTATCC CCACACCCAG ATTCTAGTCC TCTGGAGATA AAGAAGACTG CTGGACACTA
ATGTATCCTC TCTC GACTTT TGCAGCTCA GATGGCGTGT TAGCAGGTGA GTCCTCTGTT CTTGTTCCCT
TGGTGTATCA ACA'GTCTGG GCATTGTTT CCTCTCACTA TTTTCTTCGT CCCATCACTT CTGCTTCTA
30 ATGAGCATGA ATCTGTTCCCT TGGCCAGACT ACTTCCCTC TCCACCTGC CTTGCTTTTC TTTTTTCCC
TGATTCTTG CAT'CTCTCA AGTCATTCTC TCCTCTGTT TAGTCATAA CCATGCTGT TGACATATA
CATGTCTCAT TCTC TCTCCT AGACACTTTG GCATGATCTC GCTCAATAAT TACATTATTA TTATTATTGC
CATTTTATAA TTGAGGATGC TGAAACTCAG TGATTTCTG GTGGTTACAT GGCTAAGGAA CTGGATTCA
ACGTAAGTTC CTTGGATCTA AGTCCAGTTC TCTCTGACT ATATCACCT TTTGTTATCA CCATGTATCT
35 ACTTCTTGG TCTCTGTTCA AATTTCGACT ACATCCCTT GTTCCAGGAA GCCATTCAAG ACTGACTTTC
TTAGTGCCTC TCACTACTTT CTGGAACTGA CATACTTTTG TCACTCTGTA TATACTTACA ATAAATAGT
CATAAATATT CAGAGCTTGG AGAAACCTTA TATTCATCC AGTCCAGTAA ATTTATCCAT CCATAATTCA
CTCATTCTT CACATAATAA ATATTTAATG TAACAATGGT TGAACATGGC AGACAGTGT TCTACCTCAA
AAGAGATTGC AGTCCTCATT TACAGATACT GAATTGAAAT TAACAGAAAG AGAGTGAGTC AGCTCAAATC
40 ACATAGTGA TTGTTTTCTT TGTTTTAAA TCTCTGCAT ATGTGTCTG TCTTCTCCC TGTGTTGGC
GTTCCCTGGG GCAC'CAATAC TAATTCTCC TTCCCTAGA AATCAAACAA GGGTCTTATC ACCAACAGAA
TAAGGACAGG TTGACCACTG ATTGTCAAGA TATTGCTCG TTTGACTTT TAAGCCTAGA CAGTTTCAA
TGACTTTTT TCTCTTACA TGTCTTTCA TATTTTATC TTCTGAAAGT CCCTCAGAAA CCTAAGGTCT
CCTTGAACCC TCCATGGAAT AGAATATTAA AAGGAGAGAA TGTGACTCTT ACATGTAATG GGAACAATT
45 CTTTGAAGTC AGTICCCACCA AATGGTTCCA CAATGGCAGC CTTTCAGAAAG AGACAAATTC AAGTTGAAT
ATTGTGAATG CCAATTGAA AGACAGTGGA GAATACAAAT GTCAGCACCA ACAAGTTAAT GAGAGTGAAC
CTGTGTACCT GGAAGTCTTC AGTGGTAAGT TCCAGGGATA TGGAAATACA GATCTCTCAT GTGAGGGATG
GCTCATCTGA AGATGGGAAA AAACAGGTTA TTCCAAGGGT TAGGACACCA GAGTGGGATT CAAGGCCTCT
CATTTTTAAG ACCCTGCTAC TGGCTGGCA CAGTGGCTCA CGCCTGTAAT CCCAGCACTT TGGGAGGCTG
50 AGGCAGGTGG ATCAAGGAGT CAGGAGATCG AGACCATCCG GCTAACATGG TGAAACCCCA TCTCTGCTAA
AAAATATATA TATA'AAAAT TAGCCGGCG TAGTGGTGGG CACCTGTAGT CCCAGGTACT CGGGAGGCTG
AGGCAGGAGA ATGTTGTGAA CCCAGGAGGT GGAGGTTGCA GTGAGCTGAG ATCACGCCAC TGCCCTCCAG
CCTGGGCTAC AGACCAAGAC TCCGTCTCAA AAAATAAAATA AATAAATAAA AAAGACCCCT GCATCTCTT
TCTTCTACCC CCTI'CCCTT TGATTACTTG TATGCCTTCT TTCAATATTC TAGTCATCTC TCAATATTAT
55 TCCTCCACCC TATTTCTC TATCTTTCT GCCTAGATT AGGTATATAT TATGTTGTC AACAGCATGA
CATATATGTG AACATTTCAA AGAGCTGTGT ATCTGGAATA GGATCAAAG GTTGACTTA AAGTTTGCT
CTGCATAATC CATA'GGCAG GACCTGAATA TTAGGTTGTA CTCTCGTTA TGAAACATAT CTGGGTACAT
TTCCCTATGT CCTCTGTTGT TACTTAAGAA CACATATTTC ATGTTGTTT CATTTTATC ACTCCTACTG
CCAACAAATA GCA'AGCATG CTTAGGCACA TGTGGCTAA TAGCAAATG TTGAATAAAC AAATTAATGA
60 TTTTGAATAG TGACCAATAG GTCTCTTTA TACTCTATAT TTTTCTCTG AGTAAAAAA AATGTTCAA

	CCTCCATATG	TAAATTCAA	ACACAAACTA	AAGCAATGTA	GAATAGCTTC	TTTATTCCCT	GGAGTAGGTT
	CTAGAGAAGT	CCTAAGGAT	TGGTCCTAAA	TTAATTATGC	TTATTATGCT	AGCGATATT	CCTTCAAAA
5	TTCTCCTTA	ATGAATGCTT	TTTAATTTT	ACAAAAGCAT	TAACCATAGA	ATGTGATTCT	TGTCTTCAC
	TGACTCATTA	GTGACAATA	TTTGTGAGT	ACCTACCAAC	TCCTAAGTAT	TGCTACCAAC	TCCTAAATAC
	TGTGTTGGC	ATTCAGAATA	GAATGTAGAA	CTAGACAGGG	TCCCCTGACTT	CTTGGAGCAC	AGAGCAGTAT
	GGGAAGAGGA	CATTAATAA	AGAATTACAT	AAGTAATTAA	TTTAAATTAT	ACATGTTTG	AAGAAGTTT
	TTTTGACAA	CTATAATTAA	CACTAGAACT	GGGAAGTTTC	TATAAGGTA	GAGAGGACAA	AATAGACACT
10	CTCCTAAGCT	AAAATTCCA	AGAAAGACTG	TTTATTTC	CCTAACTAAC	TAGAACTAGC	AACAGAAGAT
	CTGAAAGGAA	TTCGGCTTT	CAAGTGTCC	ATGTATGGAC	TCATCAGGGA	GGTCCGAGAG	GCTTGTGGC
	CCCAGACTGA	CTTTCAGGA	GGGGAAAGGA	TTTATCAATA	CACAAGACAG	GCTCTAAGCA	TTATTTGTG
	CCCTTAA	ATCCACTTTA	TGAGCCAAA	AGTGAAGTTA	TGATAATTCA	AGTGTCTGA	CACATGCTCT
	ATGCGTGGCT	CTCCTTCTC	TATTCACTCT	CTCTCTCTTC	ATTATTGTT	AAATAAATAA	TGTAATGAAT
15	GTTCTCAGA	CTGGCTGCTC	CTTCAGGCC	CTGCTGAGGT	GGTGTGAGG	GGCCAGCCCC	TCTTCCTCAG
	GTGCCATGGT	TGGAGGAAC	GGGATGTGTA	CAAGGTGATC	TATTATAAGG	ATGGTGAAGC	TCTCAAGTAC
	TGGTATGAGA	ACCAACAAT	CTCCATTACA	AATGCCACAG	TTGAAGACAG	TGGAACCTAC	TACTGTACGG
	GCAAAGTGTG	GCA/GCTGGAC	TATGAGTCTG	AGCCCCTCAA	CATTACTGTA	ATAAAAGGTG	AGTTGGTAAA
	GGAAAGGAA	AGCATCCATA	GCAGGGGAAG	GAAGAGAGAA	CTTCTGAGCC	TGAGCAGTTG	CAGCTTGTAG
	AAGGGGGCA	CCTGTGATAC	ACTGGAAAGC	CTACCAGACT	TGCAATGAGG	AGACCTGGGT	GATAGTATAT
20	ATCTCAATCT	CTGTTCAA	GCCTTGACTT	GTAAATGGT	GATAGTAATA	CCTGCTTGCA	CTATGAAATT
	TTTATGAAGA	TTAATGTGGT	AATATTGTTG	AAATGACTTT	GTAAACTGTT	AAGCACTACC	CAAGCATAAC
	AGATTGTGAT	TACATTTTG	ATCTCAAAGT	CATCTGTTGC	TCCTGGGGGA	ACACTTATAT	TTATCAAATT
	GAAAAAAAGT	TTCAAGGTTG	AATGAAGAAA	GGATATAAAAG	AGCTTGAGGA	GCCCATTCCA	GCTTAGGAGG
	GCTGGGAAAG	GAAACCAGCA	AGTCAGTAAG	CTGTTGCTC	GTGTATTGAG	GGAGGAGGG	ATGGACTTGA
25	TATGGAGAGG	GTAGGGAGGT	GGACTGCTC	TATGGCTGT	AAGAAAAACT	GCTCTCTCCA	AACTCTTAT
	AAGAGAGGGA	GCCGTGGAAG	TATTCACTTT	TGAAGGAGAA	AGTTAGACTT	TTCTTCACA	CACTTGTAC
	ATAATAATGT	TTAAAAAGC	ATGAGGTCAA	AATACATAAT	TAAGTCCTAG	CAGTTCTCTG	TTAACTAATT
	TGAGACTGAA	GTGCTATGTA	CTTGTCTCTA	GGCTTCCAGT	ATCTTCATCT	GTAAAACAGA	ATATTGGTC
	TAGATCCAT	TAGATCATT	TGATAACTTA	AAAAATATAT	TGATGCTCAT	GTCTCATTTC	TTGAGATTCT
30	GATTTAATTG	GTIIGGGGTG	CAGCCTGGGT	ATACGTATTT	TTCATAGGTC	TTTCACATAA	TGGAATAGGG
	TAGCCAATAT	TGAGAATCAC	TTGTCTAGGT	GATCTTAA	TGATTTCTGG	ATGTAATATT	CTGAGGCTCT
	ATAATTGAG	ACTAATCACA	AAAATCGGT	CAGTTATAA	ACAGACTAAC	AGAACCCACAA	AATAATAGAA
	TTGGAAGGCA	ATTAACTAG	TGCAATTCT	TCATTTGCC	TAACAGGCAT	GTAAGAAATG	ATGATTGATT
	GAGTAATAGG	CATTGATGAC	CCCTGTCTC	ACTTGTCCC	CTTTCACCC	CTTAATTATA	TGTGAATTCT
35	GGTCTGTCA	TTTCGAATAA	GGGGTTATC	TTTCTTATTG	TCTTCCCC	TGGGCACGGC	ACACTGGCTA
	CTGGAGTTAA	GAGGAATATGC	TTAGGACTCC	CTGTTGCTCC	AGGGAGCACC	AACAGAGCAA	CTCAACCTAG
	TGTTAACCTG	AGTCCTTCT	CTGTGTTCT	GGATGCCACA	TCACGCTAAA	AATGAAGGAC	AAAGCTTGGT
	CTTCTCTTA	GGGGGGATGA	AACTCTGAAC	CTCATTTC	AGTTCCAAG	ATGAATTATG	TTTCTCATG
	CATCTGTGTT	CCACTACAGC	TCCCGTGTGAG	AAGTACTGGC	TACAATTTT	TATCCATTG	TTGGTGGTGA
40	TTCTGTTGC	TGTGGACACA	GGATTATTA	TCTCAACTCA	GCAGCAGTC	ACATTCTCT	TGAAGATTAA
	GAGAACCCAGG	AAAAGGCTCA	GAACCTGAA	CCCACATCCT	AAGCCAAACC	CCAAAAACAA	CTGATATAAT
	TACTCAAGAA	ATAATTGCAA	CATTAGTTT	TTTCAGCAT	CAGCAATTGC	TACTCAATTG	TCAAACACAG
	CTTGCAATAT	ACATAGAAAC	GTCTGTGCTC	AAGGATTAT	AGAAATGTT	CATTAACACTG	AGTGAAACTG
	GTAAAGTGGC	ATGTAATAGT	AAGTGTCAA	TTAACATTGG	TTGAATAAT	GAGAGAATGA	ATAGATTAT
45	TTATTAGCAT	TTGTAAGAGA	GATGTTCAAT	TTCAATAAAA	TAATATAAA	ACCATGTAAC	AGAATGCTTC
	TGAGTATTCA	AGGCTTGCTA	TTTGTGTTGT	TTGTTTCTA	CTAAAGGCAA	GGACCATGAA	GTTCTAGATT
	GGAAATGTCC	TCTCTTGTACT	ATTGCAAGTG	CGATCTAGGA	ATGAAAAGAC	ATAGGAGGAT	GCCAGTGAGG
	TGGATCATT	TTAIGCTTCT	TCTTCAGCTT	ACTAAATATG	AACTTCAGT	TCTTGGCAGA	ATCAGGGACA
	GTCTCAAGAC	ATAGGACTCT	CAGGATGAAG	TAGAGTCCAG	GATTCTCTG	TGATTGTTTT	GCCCCCTCCA
50	AATTATATC	TTGAACCTAT	GTCTTGATC	TTTATACAGC	ACCTGAACCA	AGCATTTGG	AGAAATTCCA
	GCTAATAATA	ATAACCAAAA	CCTTCGGCTC	TGAAAACAGT	CCAGGACTGA	ATAAGATCTT	GGGCAAAAGA
	ACTAGACAGT	TTTGGTTTAT	TTTCCCTTC	ATTTTATGTC	TTCATCATAG	TCATTGGAGG	CTCATTCTTC
	TTGTATGGA	GTAAATGGGA	TTAAAGTTCT-3' (FRAG. NO:) (SEQ. ID NO:2501)				
55	5'-TACTAAGAGT	CTCCAGCATE	CTCCACCTGT	CTACCAACCGA	GCATGGGCCT	ATATTGAAAG	CCTTAGATCT
	CTCCAGCACA	GTAAGCACCA	GGAGTCCATG	AAGAAGATGG	CTCCCTGCAT	GGAATCCCT	ACTCTACTGT
	GTGTAGCCTT	ACTCTTCTC	GCTCCAGATG	GCCTGTTAGC	AGTCCCTCAG	AAACCTAAGG	TCTCCTTGAA
	CCCTCCATGG	AATAGAATAT	TTAAAGGAGA	GAATGTGACT	CTTACATGTA	ATGGGAACAA	TTTCTTTGAA
	GTCAGTCTCA	CCAAATGGTT	CCACAATGGC	AGCCTTCAG	AAGAGACAAA	TTCAAGTTG	AATATTGTA
	ATGCCAAATT	TGAAGACAGT	GGAGAATACA	AATGTCAGCA	CCAACAAGTT	AATGAGACTG	AACCTGTGTA
	CCTGGAAGTC	TTCAGTGA	GGCTGCTCT	TCAGGCTCT	GCTGAGGTGG	TGATGGAGGG	CCAGCCCCCTC
60	TTCCTCAGGT	GCCATGGTTG	GAGGAACCTGG	GATGTTGACA	AGGTGATCTA	TTATAAGGAT	GGTGAAGCTC

DRAFT - NOT FOR DISTRIBUTION

TCAAGTACTG GTAA'GAGAAC CACAACATCT CCATTACAAA TGCCACAGTT GAAGACAGTG GAACCTACTA
 CTGTACGGGC AAA'GTGTGGC AGCTGGACTA TGAGTCTGAG CCCCTCAACA TTACTGTAAT AAAAGCTCG
 CGTGAGAAGT ACT'GGCTACA ATTTTTATC CCATTGTTGG TGGTGATTCT GTTIGCTGTG GACACAGGAT
 5 TATTTATCTC AACI'CAGCAG CAGGTACAT TTCTCTGAA GATTAAGAGA ACCAGGAAAG GCTTCAGACT
 TCTGAACCCA CATCCTAACG CAAACCCAA AAACAATGAA TATAATTACT CAAGAAATAT TTGCAACATT
 AGTTTTTTC CAGC'ATCAGC AATTGCTACT CAATTGTCAA ACACAGCTTG CAATATACAT AGAAACGCT
 GTGCTCAAGG ATT'ATAGAA ATGCTTCATT AAACGTAGTG AAACCTGGTTA AGTGGCATGT AATAGTAAGT
 GCTCAATTAA CAT'GGTTGA ATAAATGAGA GAATGAATAG ATTCAATTAT TAGCATTGTT AAAAGAGATG
 10 TTCATTCA ATAAAAATAA TATAAAACCA TGTAACAGAA TGCTTCTGAG TAAAAAAA AAAA
 10 AAAAAAAA-3' (FRAG. NO.:) (SEQ. ID NO:2502)
 5'-TCTCAATATA ATAATATTCT TTATTCTCG ACAGCTCGGT TAATGAAAAA ATGGACACAG AAAGTAATAG
 GAGAGCAAAT CTTGCTCTCC CACAGGAGCC TTCCAGTGTG CCTGCATTTG AAGTCTTGGA AATATCTCCC
 CAGGAAGTAT CTTCAGGCAG ACTATTGAG TCGGCCTCAT CCCCCACCACT GCATACATGG CTGACAGTTT
 15 TGAAAAAAAGA GCAAGGAGTTC CTGGGGGTAA CACAAATCTC GACTGCTATG ATATGCCCTT GTTTTGGAAC
 AGTTGCTGC TCTC'ACTTG ATATTTCACA CATTGAGGGA GACATTTTT CATCATTAA AGCAGGTTAT
 CCATTCTGGG GAGCCATATT TTTTCTATT TCTGGAATGT TGTCAATTAT ATCTGAAAGG AGAAATGCAA
 CATATCTGGT GAGA'GGAAGC CTGGGAGCAA ACACTGCCAG CAGCATAGCT GGGGAAACGG GAATTACCAT
 CCTGATCATC AAC'C'TGAAGA AGAGCTTGC STATATCCAC ATCCACAGTT GCCAGAAATT TTTTGAGACC
 20 AAGTCTTAA TGGCTTCCTT TTCCACTGAA ATTGAGTGA TGATGCTGTT TCTCACATT CTGGGACTTG
 GTAGTGTGTT GTCA'CTCACAA ATCTGTGAG CTGGGGAAAGA ACTCAAAGGA ACAAAGGTTTC CAGAGGATCG
 TGTATGAA GAAT'AAACAA TATATTCAAGC TACTTACAGT GAGTTGGAAG ACCCAGGGGA AATGTCCT
 CCCATTGATT TATAAGAACAT ACGTGTCCAG AACACTCTGA TTACAGCAGA AGGATCCAGA AGGCCAAGGT
 CTTGTTAAGG GGCTA'CTGGA AAAATTCTA TTCTCTCCAC AGCCTGCTGG TTTT-3' (FRAG.NO.:) (SEQ.ID NO:2503)
 25 5'-AAGCTTTCA AA'GGTGAAT TGGATAACTT CTGGCATGAG AAATGGCTGA ATTGGGACAC AAGTGGGAC
 AATTCCAGAA GAA'GGGCACA TCTCTTCTT TTCTGCAGTT CTTTCTCACC TTCTCAACTC CTACTAAAAT
 GTCTCATTTC CAGC'CTCTGT AAATCCTGCT AGTCTCAGGC AAAATTATGC TCCAGGAGTC TCAAATTTC
 TTATTCATA TTAC TCTTTA TTTAGTAGAC TTCTCAATT TTCTATTTCAT CACAAGTAAA AGCCTGTTGA
 TCTTAATCAG CCA'A'GAAACT TATCTGCTG GCAAATGACT TATGTATAAA GAGAATCATC AATGTCATGA
 30 GGTAAACCCAT TTCA'ACTGCC TATTCAAGAGC ATGAGTAAAG AGGAATATCA CCAAGTCTCA ATATAATAAT
 ATTCTTATT CTTG'GACAGC TCGGTTAATG AAAAATGGA CACAGAAAGT AATAGGAGAG CAAATCTTC
 TCTCCCACAG GAGC'CTTCCA GGTAGGTACA AGGTATTATT TTTTCTTAC CTCAGTCACT TGTGGCAGGG
 GAAGTCATAG TCA'CGGTGCT TAGGAGATGA AACTTATTG ATTTAGGCAT GGATCCATCT AGTTTAATTAA
 ATATATTGGG TATGAGGAAG CTACTGCTG TACTTCCAT GTGGTTCTCT CTCCTGGAG AGGAACATT
 TTACTCAGCT TGCA'AACTGG AAATAGATT TCTCACATTA GAAGCTCATT TTCTGGTAT GAGACAGGAG
 35 AGTTCATACT GTG'ATGTAG ATCTCTGGCT TCTGGGTCTG ACATGTGCTG AGGGACACAT ATCCTTCACA
 CATGCTTTA TAA' TACTTG ATAAAGTAAC CTGCTTCTTG ATTGGTCTTT ATAATCCATA AGCTGTGGGA
 TGCTTCTCTG AAG' TGAAAAT TAGTAATAGA GTCCCCTCTA GCTATTCAAA GCCATTCTT CATTGTATTC
 TGTGCACATG AAG' TGGGGT TTGTTACTGA CAAAATATAT TCAGATACAT TTCTATGTTA AAAGGATTGT
 GAGATGCATA GGTAAATGTG TTTATTCTA GTTTTACTTG TCAACATAGA TGAATGAGAA AGAACTTGAA
 40 AGTAACACTG GAT' AAGAAT AGGAAAATTG GGCATGGATT TTGCTCCATT TTGCCCCATC TAATCACTTG
 GATAGTGTTC AGG' GTTCTT GGTCACTTAC TTGGATGCTC TGAGCTTAG TTTCTTGGTG ATTACAATGA
 AGATTTGAAT TAC'GGATGG CTTGAAAAA ATAAACAAAA CTCCCCTTTC TGTCTGTCGA GAATGTTGCA
 CAGGGAGTTA CAGA'ATGTT TCATGACTGA ATTGCTTTA AATTTCACAG TGTGCTGCA TTTGAAGTCT
 45 TGGAAATATC TCCC' CAGGAA GTATCTCAG GCAGACTATT GAAGTCGCC TCATCCCCAC CACTGCATAC
 ATGGCTGACA GTTITGAAAAA AAGAGCAGGA GTTCTGGGG GTGAGTGAGC CTCTCCAAAC TTTGACTAGA
 GTAAGGGTTG GGTCTAGAAA AGAATATTGA GTTGCATCAA CTGTTTCCC ACTTGGATTC ATGAGAGGTG
 TTAGGTCTT TAAAAAAACAT GGTAGATAAA GAGTTGACAC TAACTGGTC CTTTGGGAA GAGCCAGAAG
 CATTCTCTCA TAAAGACTTT AAATTGCTAG GACCGAGAATG GCCAACAGGA GTGAAGGATT CATAACTTA
 TCTTACTTA GATG TAAAGA ACAATTACTG ATGTTCAACAA TGACTACATA CATAAAAGGCG CATGGAGAAA
 50 AGTATTGGCC TTCC'ATGCA TAGGTAGTGC TTGTATCAAT TCTTATAGTG GCTAGGGTAT CCTGGAAAAT
 CTTACGTGTG GATC'ATTTCT CAGGACAGTC TAGGACACTA ACGCAGTTTC TCATGTTTGG CTTCTTATT
 TAAAAAAATGA TAC'ATCTCG GGAAAATTG TTGATTTC ATGAAATTCA TGTGTTTTC TATAGGTAAAC
 ACAAAATTCTG ACTGCTATGA TATGCTTTC TTTTGGAAACA GTTGTCTGCT CTGACTTGA TATTCACAC
 ATTGAGGGAG ACA' TTTTTC ATCATTTAA GCAGGTTATC CATTCTGGGG AGCCATATTT GTGAGTATAT
 55 ATCTATAATT GTTIC'TGAAA TAACACTGAA CATAGGTTT TCTCTTCTC AGATCTAAC AGTTGTTTAT
 TCCCAGTATT AAGA' TGATAT TTATAATTCT TAATTATAAA TATATGTGAG CATATATAAC ATAGATATGC
 TCATTAACAA CAAC'AAAAGA TTCTTTTAC AATTAACGGT GGGTTAAACA TTTAGCCCAC AGTTTATCC
 CATGAGAAAC CTGA'ATCTAA TACAAGTTAA ATGACTTGCC TAAGGGCCAC TTGACTAATA GTAATTGAAC
 CTAAACTTC AGA' TCCAAC TCCAGGAACA TACTTCTAGC ACTATTCACT AATAAAAGTTA TATGATAAAT
 60 ACATACAAC T TATCTGTCA ACTAAAATA ACAACAGAGG CTGGGATGG TGGCTCACAC CCGTAATCCC
 AGCACTTGG GAGC' CTGAGG CAGGTGGATC ACCTGAGGTC AGGAGTTGA GACCAGCCTG ACCAACATGG
 TGAAACCTCA TCTC'ACTAA ATATAAAAAA TTAGCTGAGT GTGATAGTGC ATACCTGAA

	TAAGAGGCTG	AGG CAGGAGG	CTT GTTGAA	CCT GGAAGGC	AGAGGTTGCA	GTGAGCTGAG	ATT GTGCCAT
	TGCACTCCAG	CCT CGGCAAT	AAAGTCCGAAC	TCT GTCTCAA	AATAATAATA	ATAATAATAG	AAAATAAAGT
5	TGTCTTCATG	AAAAT ATGAGG	AAAGAGATTG	CTGGGGTGAG	AAACATTAAG	ATCAATGGC	ATATGGTAC
	CTTCTATGCC	CTAGAAACTC	TTT TANGGT	TTT CTCCCTG	GTATCTCTT	TACNCATCGT	TCTATCTGGA
	AAAATAGGTG	GATGAGTGAG	ATAATAACGG	TATATACTTT	TTAAAGGTCT	AATTGACATA	TATAAATTGC
	AAGTATTTC	GATGTCATT	TGCTAACCTT	GACACACATA	GACACACATG	AAAACATCAC	CACATTAATA
	CAATGTATGT	ATCCATCAT	CCAAAAGCTT	CCCTGTGTAT	CTTGTAACT	CTTCTTCCT	CCCTCCACTC
10	CTTGTCCCTC	CGTICCCAAG	AAAACATTGA	TCTGCTTCCT	GTGAATATAA	ATTAACCTAC	ATTTTTAGA
	GCTTTATATA	AGTATGTTCT	CTTTACTGTT	TGTCCTCCCT	CGCTGCACAG	TTATTTGAG	ATTCTTCAG
	TTTTTTCTT	ATATCGATAC	TTCATTACA	AGAATATATT	TTAATTCTAG	ACTATGTCAC	ATTGACTTTG
	TCGTCTGCTA	AATCCTTAGT	GCTCAGATGA	CTTGTTCAGG	ACTCTCCTG	AACCTGTACC	TCTGTTANAT
15	TGAAACTTGT	CTCTACTGTC	TTTTTATTTC	AAACACAGCT	TATTAGGTGT	CTCTCAACCC	ATCAAACNCA
	CAATCTGAGT	CTT TAGGAGA	TTGCTTGTAA	TTTGTGCTAT	TGACTTATAT	NTATATNAAA	TNTGAAATG
	TTTGGTAAAAA	ATA'CATCAT	GTACANTTTC	ATAATTACGC	TATNTNCACA	TGATATATGT	CAGACTCTGG
20	AAATATGCAT	GCCACAGACA	CGT GTTTCTT	GCCTAAAGGG	GCTGATGGAA	GACNCACATA	CNAATAGACG
	ATTGCAGTAG	AATGAGAGTG	GTGGTCTAAN	CAGTACATGT	CCTGATGTTG	CTCGGACAGT	TACTACNCA
	AGAGTACCCC	CTGCATTGTC	AGGGTTAGCA	TCTCCTGGAA	GCCTCATGTA	AATGAAGAAT	TTCATGCTCC
	ATCCAGGACC	TAATGAATAA	GAATCTGCAT	TTAGCAAGA	CCCTCATATG	ATTCA TATAC	ACTTTTTT
25	TTTTTTTA	GATGGAGTCT	CACTCTTGT	GCC CAGGCTG	GAGTGCATG	GCATGATCTT	GGCTCACTGC
	AACCTCTGCC	TCCC'GGGTTTC	AAAGTATTCT	CCTGCTCTAG	CCTCCCTAGT	AGCTGGGACT	ACAGGTGCAT
	GCCACAGTGG	CTGCGCTAATT	TTTGTATTTC	TAGTAGAGAC	AGGGTTTCAC	CATT TTGGTC	AGGCTGGTCT
	TGAACTCATG	ACCTCCGGTG	ATTCCCCCGC	CTCGGCTTCC	CAAAGTGTG	GGATTACAGA	CATGAGCCAC
	CACACCCGCC	TTA TCGTAT	ACNCATTAA	TTCTGAGAAG	CACTCTATAG	AAAATAAGAA	TAAGAAAATA
30	TTGGGCTCAC	AGG'GACATT	AATAAGTAAC	TTTATCGAGT	ACCCCAATT	TTACCTATGT	TTGGAAGATG
	GGGTTAAAAG	GACACATTGA	AAACAAGAAC	TCATTGTGGC	TTTTTTTCC	TCCTTTTGAA	ACAGTTTCT
	ATTCTGGAA	TGTIGTCAT	TATATCTGAA	AGGAGAAATG	CAACATATCT	GGTGAGTTG	CCGTTCTGT
	CTTTGTCAT	CCTT AAAAG	ATAAGAAGAA	CAGAGTTTA	AGAGTCTAA	GGGAAACACA	TCTTTGTC
35	CTATATTACT	TGTC AATGTG	GATATATGAT	TTTGTTCAA	TCTATTTGT	GTCTTAAGGC	TTTTTGCAAC
	AGAAGTTGGA	TATATCATT	GAAACATAAA	TTGTACCAATT	TAACATACAT	GAAGTTTATG	TTTACCTTGA
	CGTTCTCTA	AAAATGTGCC	TACACCGCA	TTGTCTTGT	AGGCATATT	ACATGATCAA	ATAAAATAAT
	TAGTTTCAA	TTAAGGAGAA	TATTGAGGA	AAGACCGTAC	GTGTTCATGT	GGTCTCTGAA	GGCAGTCCAG
	TGAGAAAGTA	ATA'ATGCTT	CATTAACAA	TGCGGACATT	TTCAAGGTTT	CCCTTTTAA	CCAAAATTG
40	GAAGCAATGT	GGAATTTACT	GGATGCATCC	AGCCCTGAAA	TGAAGATAGG	TTTATTGAAT	GTGCCAGCAA
	GTGCAGGCC	AGG'CTGAGT	GTCTTCTATT	ATTATCAGGT	GAGAGGAAGC	CTGGGAGCAA	ACACTGCCAG
	CAGCATAGCT	GGGGGAACGG	GAATTACCAT	CCTGATCATC	ACACCTGAAGA	AGAGCTTGGC	CTATATCCAC
45	ATCCACAGTT	GCCAGAAATT	TTTGAGACC	AAAGTCTTA	TGGCTTCTT	TTCCACTGT	TGTATTTT
	TTTGTGTGGG	AAGACTAAGA	TTCTGGGTCC	TAATGTAAGT	AAGAAGCCT	CTTCTCTGT	TCCATGAACA
	CCATCCTTTT	CTGTAACCTC	TATTACACAG	TATAGTGGTT	CTGTAAGTTC	ACACAGCCCA	GGGAGATGCT
	GGCTGCCAC	TCCC'CTCAAC	CCAGGCAAAT	TCCTCGGGGT	TAAAGTTATC	TACTGCAAGT	GACGATCTCT
50	GGGTTTTCT	GTGCGCTGT	TTGTGTGT	GTGTGTGT	GTGTGTGT	GTATGTGTCA	CTTTAAAAGG
	ACTGGTCAGA	TGGTAGGGAG	ATGAAAACAG	GAGATGCTAT	AAGAAAATAA	ACTTTGGGG	CGAATACCAA
	TGTGACTCTT	TTGTTTGTC	ATTTGTGTC	GTTCAATAGG	AAATTGTAAT	GATGATGCTG	TTTCTCACCA
	TTCTGGGACT	TGGTAGTGT	GTGTCACTCA	CAATCTGTGG	AGCTGGGAA	GAACTCAAAG	GAAACAAGGT
55	AGATAGAAGC	CCGATATAAA	ATCTTGAATG	ACAGGTTAAC	GAATTGGAGC	TTTATTCTT	AAAATATGGC
	CTGGGTTTT	TGAFAACATT	CTTCCAGAAA	ATAGTTCTC	CAAGTTTAT	TACTTTGGTT	TACAAATCTC
	ACATTTAAAT	CACATTTTAT	ACCATAAGTA	GCACACATT	CATAATATT	CTCTGAATGA	GGGTTGGGAT
	AATAGGACTG	ATATGTTAGA	AATGCCTAA	AGTGTGTGGA	GCATGAGAGA	TGGATGTACA	GAAGGCTTGT
	GAGGAAACCA	CCCAGGTATC	TGGCTTGT	TTCTGCCCA	GAACTAGCCG	CCTATTCTG	TTCTGT
60	ATTCTTTGT	TTCTTGACTT	TTCTTTCCA	ACTTGCTCTA	AAACCTCACT	TTTCTTTCT	TTCTGATTCA
	TGACTACCAA	ATG'TTTCAC	TTGCCTCACC	CGTCCATTAC	ACCTTGATA	AGAACCA	GACCTTGTC
	TCATGTA	GCCC ATGTC	GATGGAAGAA	ACATACTCTC	TCCATCTGT	CACTTTCTG	AGGCATTCAA
	GTCTAGCCAC	CTT TAAAAT	CACTCTCCTC	CAGGCTGGC	ACGGTGTAC	GCCTGTAATC	TCAGCACTT
	GTGAGGCTGA	GGAGGGCGGA	TCACCTGAAG	TCAGGAGTTC	AAAACCAAGCC	TGGCCAATG	GCAAAACCAA
	ATCTTCTCA	ATTA FAACCA	AATCTTAAAC	CAAATCTCA	CTAAAAAATA	CAACAAAACA	AAACAACAAAC
55	AACAAAAACA	GAAAGGAAA	CATTAGCCCA	GC GTGGTGGC	AGGTACCTGA	GGTCCAGAT	ACTTGGGAGG
	CTGAAGCAGG	AGAATCGCTT	GAGCCCAAGA	GATGGAGGTT	GCAGTGAGCC	GAGATCATGC	CACTGCACCA
	CAGCCAGGGT	GACAGAGCCA	TACTTCCAG	CACATTGGGA	GGCCAAAGCT	GAAGAATAAT	TTGAGGTGAG
	GATTGAGGA	CCAGCCTGGC	CAACATGGT	AAACTCCGTC	TGTACTAAA	ATATAAAACT	TAGTGGGCA
	TGGGGCACA	CACCTGTAAAT	TTCAGCTACT	TAGGAGGCTG	AGGCAGGAGA	ATTGCTGAA	CCCGGGAGGC
60	GGAAAGTTGCA	GTGAGCCAAG	ATCGTGGCCA	CTGCACTCCA	GCCTGGGTGA	CATAGTGAGA	TTCTGTCTCA
	AAAAAAATAA	AAGAAATTAA	AAAAATCACT	CTCTTCCAAA	GATAGATAAA	TAAGACAGCA	GATATAACTAA
	GGAATAACCT	CACCAACTTG	TCATTGACTG	ACATGATTTC	TTTGGCCCA	CTTGGCCAGC	TAGTCTGGT

TGGTTTCTG GAAATGAAAG AAATAATCAG AGTTAACGAG CAGAGAGCGT GAGACCCAGA AAGACAAAAG
 TAGATGAGGT AAG'CTCTTG AGCGAGACTT CTAGGGATGG GAAATTGAGT GTGATTGATA TGAAATGATT
 TTTCCCTAT CAGC TTCCAG AGGATCGTGT TTATGAAGAA TTAAACATAT ATTCACTAC TTACAGTGAG
 TTGGAAGACC CAGGGAAAT GTCTCCCTCC ATTGATTAT AAGAATCACG TGTCCAGAAC ACTCTGATTC
 5 ACAGCCAAGG ATCCAGAAGG CCAAGGTTT GTTAAGGGGC TACTGGAAA ATTCTTATTC TCTCCACAGC
 CTGCTGGTT TACATTAGAT TTATTCCCT GATAAGAATA TTTTGTCT GCTGCTTCTG TCCACCTTAA
 TATGCTCCTT CTATTGTAG ATATGATAGA CTCCTATTT TCTTGTCTA TATTATGACC ACACACATCT
 CTGCTGAAA GTCACATGT AGTAAGCAAG ATTAACTGT TTGATTATAA CTGTCAAAT ACAGAAAAAA
 AGAAGGCTGG CTGAAAGTTG AGTAAACTT TGACAGTTG ATAATATTC GTTCTAGGG TTTTTTTT
 10 TTTAGCATT CTTAATAGTT ACAGTTGGC ATGATTGTA CCATCCACCC ATACCCACAC AGTCACAGTC
 ACACACACAT ATG'ATTACT TACACTAT ATAACCTCT ATGCAAATAT TTACCAACCA GTCAATAATA
 CATTTTGCC AAGA.CATGAA GTTTATAAA GATCTGTATA ATTGCTGAA TCACAGCAC ATTCACTGAC
 ATGATATTAT TTGCGAGATT ACAAGTAGGA AGTGGGGAAC TTTTATTAAG TTACTCGTTG TCTGGGGAGG
 15 TAAATAGGTT AAAACACAGGG AAATTATAAG TGCAAGAGATT AACATTTCAC AAATGTTAG TGAAACATTT
 GTGAAAAAAAG AAGACTAAAT TAAGACCTGA GCTGAAATAA AGTGACGTTG AAATGGAAT AATGGTTATA
 TCTAAACAT GTGAAAAAAAG AGTAACCTGT AGATTTGTT AACAAATTAA AGAATAAAAGT TAGACAAGCA
 ACTGGTTGAC TAATACATTA AGCGTTGAG TCTAAGATGA AAGGAGAACA CTGTTATGT TGATAGAATG
 ATAAAAAGGG TCGGGCGCGG AGGTCACGC CTGTAATCCC AGCCCTTGG GAGGCCAGG TGGCAGATC
 20 ACGAAGTCAG TAG'TTGAGA CCAGCCTGGC CAACATAGTG AAACCCCGTC TCTACTAAA ATACAAAAAA
 TTGAACCTGG GGG'GTGGTG GCAGTCACCT GTAGTCCCAG CTACTTGGGA GGATGAGGCA GGAGAATCGC
 GAGACTCCAT CTCAAAAAAA AAAAAGGATA AAGTCTCATT TTTGGCTT ACCAGTCAC TCCAGCCTTG GTGACAATGG
 AGTACAATAA GACCTAAATT AAAAGGATA AAGTCTCATT TTTGGCTT AAAAGTCAGA AATCTGAAAA GTGGAGGAAG
 ATAGAGGGCC TGA'GACATC CAATACATGA GTTCTGGTAA AGATAAAATT TGATACACGG AAATGCAGCC
 25 TTATAAGAGA AATCATTATT AAATGAAGCA AGTTAACACT CTAAGGATAA ATCTAGCCT AGAAGATACA
 GCTAAGCTAA ACT'CACATG CCTATAATTG GAGGGAAAAA CTAAGGATAA ATCTAGCCT AGAAGATACA
 ATAATTAGTC ATAAACATGC ATTGTGAAAC TGTAGAGAGC AGGTAGCCCA AAATAGAGAA AGATTAGATA
 AAGAGAAAAT AAG'ATCCAT CAGAGACAGT ATCTCTAGGC TTGGGCAAGA GAAAAGTCCA CAGTGATAAG
 CAACTCCACC TAAC GCATGA ATATGCGCA GAGAAAACAG CAATAGTGA TGAATGCAA AGGTGCTGAG
 30 CAAATTCCAC ACAT'GAGTAT TGTGCATGAG TAAATGAATA AAACATTG AAAGACCTTT AGAGAAAGAG
 AATGGGAGCA TAT'GTGCAA ATAAGATAGT TGATTATGAA TAGAAGGTAG TGAAGAAAAG CAAGCTAAGA
 AAAAATTCTG TTT'AAAAG AAGGAAAAGA TAGTTATGT TTTAGCCTA AGTATAAGAG TCCTACAGAT
 GGACTGAAA AAA'TCAGTCT GAGAGTATA GTCACAAATT ATGAAATAAT TACATTTAT GTATTGAGGA
 TGCCAAGATT AAAAGGTGAC AGGTAGATGT TAATTCCCT AGATTGTAA AGTGTACCG ACAATCACAC
 35 AACAAATAAT TAA'GTGACTT GGTATGTTT ATTAATTGT AGGGCCTGAG GTTTCCATT CTCATTTC
 TAAAATACAA TTT'GTTCT CCAAATTGA CAGCAGAATA AAAACCTAC CTTTCACTG TGTATCATGC
 TAAGCTGCAT CTCT'ACTCTT GATCATCTGT AGGTATTAAT CACACTCTT CCATGGCATG GATGTTACA
 TACAGACTCT TAAC'CTGGT TTACCAAGAC GGATCCAATC TATATCTTA CAGTTGTATA
 GTATATGATA TCTCTTTTAT TTCACTCAAT TTATATTTT ATCATTGACT ACATATTCT TATACACAAC
 40 ACACAATTAA TGAATTTTT CTCAAGATCA TTCTGAGAGT TGCCCCACCC TACCTGCCTT TTATAGTACG
 CCCACCTCAG GCAGACACAG AGCACAATGC TGGGTTCTC TTCACACTAT CACTGCCCA AATIGCTTT
 CTAATTTCAT ACT'CAATGT CATCTCTCC ATGAAGACCA CTGAATGAAC ACCTTTCAT CCAGCCTTAA
 ITTCTTGCTC CATAACTACT CTATCCCAGC ATGCAGTATT GTATCATTAA TTATTAGTGT GCTTGTGACC
 TCCTTATGTA TTCTCAATT CCTGTATTG TGCAATAAT TGAATAATG TAACTGATT TCTTATCTGT
 45 GTTTGTGTTG GCATGCAAGA TTAGGTACT TATCAAGATA ATGGGAAATT AAGGCATCAA TAAAATGATG
 CCAAAGACCA AGA'GAGTTT CTGAAGCTCT CCTTTCATC AGCTCTTAT CAAACAGAAC ACTCTATAAA
 CAACCCATAG CCACAAAACA GGATGTAGGA ACAATCACCA GCACACTCTA TAAACAACCC ATAGCCAGAA
 AACAGAATGT AAGGACAATC ACCAGCCATC TTTTGTCAAT AATTGATGGA ATAGAGTTGA AAGGAACCTGG
 AGCATGAGTC ATA'TTGACC AGTCAGTCCT CACTCTTATT TACTTGCTAT GTAAACTTGA GAAAGCTTT
 50 TTCTCTTGT GAACCTCAGG TTTTACATCT GAAAATGAGA AATTGGAAAC AAAAGATTCC TAACTGGTCT
 TTCTGTTCCC ATATCTGT ATTTTCAAT ATTTAGGATT TTTGGAATC ACAATTACTT AGTTTGTGGT
 TGAGATAGCA ACACGAATCA GAACTATTG GTGGACATAT TTTCAAAGGA GTAGCTCTCC ACTTTGGGTA
 AAGAAGTGT GCGNGTCGTG GTGGCTCACG CCTGTAATCC CAGCACTTA GGGAGGCCAA GGCGGGTGGA
 TCACGAGGTC AGGAGATCGA GACCATCTG GCTAACACGG TGAAACCCCG TCTCTACTAA AAAATACAAA
 55 AAATTAGCCA GCC'GTGGTGG CGGGCGCTG TAGCCCACG TACTCGGGAG GCTGAGGCAG GAGAATGGCA
 TGAACCAGGG AGGCGGAGCT TGCCGTGAGC CGAGATAGCG CCACTGCAGT CCCTCTGGG CAAAAGAGCA
 AGACTGCGTC TCAAAAAAA AAAAAGGAA AAGGAAAGAA GTGTGTGGAG TAGCAGGACA CCTGCAACAA
 TAATTTTTT CTAATCCCT CTGAAAATG CTAATCAAAG GGTTTTTTC CTAAAATTG TCTTAGAAT
 AAAATTCCC CTTGGGAGA CCGAGGCTGG CAGATCACGA GGTCAAGGAGA TAGAGACCAC GGTGAAACCC
 60 CGTCTCTACT AAAAATACTA AAAATTAGCC GGGNGTGGT GGTGGGTACA CCTGTAGTCC CAGCTACTTG
 GAGGCTGAGG CTGG'GAATC ACGTGAAC-3' (FRAG. NO:_)(SEQ. ID NO:2504)

Human Histidine Decarboxylase Nucleic Acid and Antisense Oligonucleotide Fragments

5'-TCT CCC TTG GGC TCT GGC TCC TTC TC TCT CTC TCC CTC TCT CGC CTC CGC CCT GGC TGC TGG GGT GGT GGT GC TTT TGT TCT TCC TTG CTG CC GCC CCG CTG CTT GTC T TC CTC G CTC TGT CCC TCT CTC TCT GTB CTC CTC BGG CTC CBT CTC CCT TGG GC-3' (FRAG. NO:1700) (SEQ. ID NO:1711)

5 5'-GGC TCT GGC (FRAG. NO:1701) (SEQ. ID NO: 1712)

5'-CCC TTG G (FRAG. NO:1702) (SEQ. ID NO: 1713)

5'- TT TGT TCT TCC (FRAG. NO:1703) (SEQ. ID NO: 1714)

5'- TCT CCC TTG GGC TCT GGC TCC TTC TC-3' (FRAG. NO:1024) (SEQ. ID NO: 1034)

5'- TCT CTC TCC CTC TCT CTC TGT -3' (FRAG. NO:1025) (SEQ. ID NO:1035)

10 5'- CGC CTC CGC CCTI GGC TGC TGG GGT GGT GC-3' (FRAG. NO:1026) (SEQ. ID NO:1036)

5'- TTT TGT TCT TCC TTG CTG CC-3' (FRAG. NO:1027) (SEQ. ID NO:1037)

5'- GCC CCG CTG CTI GTC T TC CTC G-3' (FRAG. NO:1028) (SEQ. ID NO:1038)

5'-CTC TGT CCC TCT CTC TCT GTB CTC CTC BGG CTC CBT CTC CCT TGG GC (FRAG.NO:1029)(SEQ.ID NO:1039)

Human Beta Tryptase Nucleic Acid and Antisense Oligonucleotide Fragments

15 5'-CTT GCT CCT GGG GGC CTC CTG GTC CCT CCG GGT GTT CCC GGC GGG CCT GGC CTG GGG CBG GGG CCG CGT BGG CGC GGC TCG CCB GGB CGG GCB GCG CCB GCB GCB GBT TCB GCB TCC TGG-3' (FRAG. NO:1704) (SEQ. ID NO: 1715)

5'- GCT CCT GGG GGC CT-3' (FRAG. NO:1705) (SEQ. ID NO: 1716)

5'-CGT BGG CGC-3' (FRAG. NO:1706) (SEQ. ID NO: 1717)

20 5'-T GGC CTG GGG-3' (FRAG. NO:1707) (SEQ. ID NO: 1718)

5'-CTT GCT CCT GGG GGC CTC CTG-3' (FRAG. NO:1030) (SEQ. ID NO:1040)

5'-GTC CCT CCG GGT GTT CCC GGC-3' (FRAG. NO:1031) (SEQ. ID NO:1041)

5'-GGG CCT GGC CTG GGG CBG GGG CCG CGT BGG CGC GGC TCG CCB GGB CGG GCB GCG CCB GCB GCB GCB GBT TCB GCB TCC TC G-3' (FRAG. NO:1032) (SEQ. ID NO:1042)

Human Tryptase-I Nucleic Acid and Antisense Oligonucleotide Fragments

25 5'-CTT GCT CCT GGG GGC CTC CTG GTC CCT CTG GCT G TT CCC GGC CCT GGB CTG GGG CBG GGG CCG CGT BGG CGC GGC TCG CCB GGB CGG GCB GCG CCB GCB GCB GGC TCB GCB TCC TGG CCB CGG BBT TCC-3' (FRAG. NO: 1708) (SEQ. ID NO:1719)

5'-CT CCT GGG GGC CTC CTG-3' (FRAG. NO:1709) (SEQ. ID NO:1720)

30 5'-B TCC TGG CCB CGG BBT TCC -3' (FRAG. NO:1710) (SEQ. ID NO:1721)

5'-GTC CCT C-3' (FRAG. NO:1711) (SEQ. ID NO:1722)

5'-CTT GCT CCT GGG GGC CTC CTG-3' (FRAG. NO:1033) (SEQ. ID NO:1043)

5'-GTC CCT CTG GCT G TT CCC GGC-3' (FRAG. NO:1034) (SEQ. ID NO:1044)

35 5'-CCT GGB CTG GGG CBG GGG CCG CGT BGG CGC GGC TCG CCB GGB CGG GCB GCG CCB GCB GCB GGC TCB GCB TCC TGG CCB CGG BBT TCC -3' (FRAG. NO:1035) (SEQ. ID NO:1045)

Human Prostaglandin D Synthase Nucleic Acid and Antisense Oligonucleotide Fragments

5'-GGT GTG CGG GGC CTG GTG CC CCT GGG CCT CGG GTG CTG CCT GT GCG CTG CCT TCT CCT GG GTC CTC GCC GGG GCC C TT GCT GCC CTG GCT GT GCC CTG GGG GTC TGG GTT CGG CTG T CCC CBG CBG GBC CBG TCC CBT CCB CEG CGT GTG BTG BGT BGC CBT TCT CCT GCB GCC GBG-3' (FRAG.NO:1712)(SEQ.ID NO:1723)

40 5'-T TCT CCT GCB GCC GBG -3' (FRAG. NO:1713) (SEQ. ID NO:1724)

5'-CTT GCT GCC CTG GCT GT-3' (FRAG. NO:1714) (SEQ. ID NO:1725)

5'- TCT TCT CCT GG-3' (FRAG. NO:1715) (SEQ. ID NO:1726)

5'-GGT GTG CGG GGC CTG GTG CC-3' (FRAG. NO:1036) (SEQ. ID NO:1046)

5'-CCT GGG CCT CGG GTG CTG CCT GT-3' (FRAG. NO:1037) (SEQ. ID NO:1047)

45 5'-GCG CTG CCT TCT TCT CCT GG-3' (FRAG. NO:1038) (SEQ. ID NO:1048)

5'-GTC CTC GCC GGG GCC CTT GCT GCC CTG GCT GT-3' (FRAG. NO:1039) (SEQ. ID NO:1049)

5'-GCC CTG GGG GTC TGG GTT CGG CTG T-3' (FRAG. NO:1040) (SEQ. ID NO:1050)

5'-CCC CBG CBG CBC TCC CBT CCB CBG CGT GTG BTG BGT BGC CBT TCT CCT GCB GCC GBG -3' (FRAG. NO:1041) (SEQ. ID NO:1051)

Human Cyclooxygenase-2 Nucleic Acid and Antisense Oligonucleotide Fragments

50 5'-GGG CGC GGG CGB GCB TCG C TTT GGG CTT TTC TCC TTT GGT T TGB GCG CCB GGB CGG CGC BCB GCB GCB GGG CGC GGG CGB GCB TCG CGG CGG GCB GGG-3' (FRAG. NO: 1716) (SEQ. ID NO:1729)

5'-G GCB GGG -3' (FRAG. NO: 1717) (SEQ. ID NO: 1730)

5'-TCC TTT GGT T-3' (FRAG. NO:1718) (SEQ. ID NO:1731)

55 5'- GGG CGC GGG CGB GCB TCG C-3' (FRAG. NO:1042) (SEQ. ID NO:1052)

5'- TTT GGG CTT TTC TCC TTT GGT T-3' (FRAG. NO:1043) (SEQ. ID NO:1053)

5'-TGB GCG CCB GGB CCG CGC BCB GCB GGG CGC GGG CGB GCB TCG CGG CGG GCB GGG -3' (FRAG. NO:1044) (SEQ. ID NO:1054)

Human Eosinophil Cationic Protein Nucleic Acid and Antisense Oligonucleotide Fragments

5'-CCT CCT TCC TGG TCT GTC TGC CBG BCB BBT TTG GGB BGT GBB CBG TTT TGG BBC CBT GTT TCC CBG TCT CTG BGC TGT GGC-3' (FRAG. NO: 1719) (SEQ. ID NO: 1732)
 5'-TTC TCC TTT GGT T-3' (FRAG. NO:1720) (SEQ. ID NO: 1733)
 5 5'-T TTC TCC TTT GGT T-3' (FRAG. NO:1721) (SEQ. ID NO:1734)
 5'- GGG CGC GGG CGB GCB TCG C-3' (FRAG. NO:1042) (SEQ. ID NO:1052)
 5'- TTT GGG CTT TTC TCC TTT GGT T-3' (FRAG. NO:1043) (SEQ. ID NO:1053)
 5'-TGB GCG CCB GGB CCG CGC BCB GCB GGG CGC GGG CGB GCB TCG CBG CGG CGG GCB GGG -3'
 (FRAG. NO:1044) (SEQ. ID NO:1054)

Human Eosinophil Derived Neurotoxin Nucleic Acid and Antisense Oligonucleotide Fragments

5'-GCC CTG CTG CTC TTT CTG CT TCC CTT GGT GGG TTG GGC C GCT GGT TGT TCT GGG GTT C TTG CTG CCC CTT CTG TCC C TGT ITG CTG GTG TCT GCG C 5'- CCC CBB CBG BBG BBG CBG BCB BBT TTG GGB BGT GBB CBG TTT TGG BBC CBT GIT TCC TGT-3' (FRAG. NO: 1722) (SEQ. ID NO: 1735)
 5'-TTC CTG T-3' (FRAG. NO:1723) (SEQ. ID NO: 1736)
 15 5'-CTC TTT CTG CT-3' (FRAG. NO: 1724) (SEQ. ID NO:1737)
 5'-CCC CTT CTG TCC C-3' (FRAG. NO:1725) (SEQ. ID NO: 1738)
 5'- GCC CTG CTG CTC TTT CTG CT-3' (FRAG. NO:1047) (SEQ. ID NO:1055)
 5'- TCC CTT GGT GGG TTG GGC C-3' (FRAG. NO:1048) (SEQ. ID NO:1056)
 5'- GCT GGT TGT TCT GGG GTT C-3' (FRAG. NO:1049) (SEQ. ID NO:1058)
 20 5'- TTG CTG CCC CTT CTG TCC C-3' (FRAG. NO:1050) (SEQ. ID NO:1057)
 5'- TGT TTG CTG GTG TCT GCG C -3' (FRAG. NO:1051) (SEQ. ID NO:1059)
 5'- CCC CBB CBG BBG BBG CBG BCB BBT TTG GGB BGT GBB CBG TTT TGG BBC CBT GTT TCC TGT-3' (FRAG. NO:1052) (SEQ. ID NO:1060)

Human Eosinophil Peroxidase Nucleic Acid and Antisense Oligonucleotide Fragments

25 5'-GCG CTC GGC CTG GTC CCG G GGG TCT CCT CTT GTT GC TTG CGC CTC CTG CTG GGG GT CC CTC TGT TCT TGT TTT GGG GGC GGG CCC GGC CGT TGT CTT G GTT TGG GGG TTT CCG TTG GGG TTC TCC TGG CCC GGG CCT TGC CC GGC CGT GGT CCC GGC TTC GTTCCT GTC TCC GTC TCG GCT CTT CTG GGG CCT TGC GCT GTC TTT GGT G 5'-GCB CCG TCC BGT GBT GGT GCG GTB CTT GTC GCT GCB GCG CTC GGC CTG GTC CCG GBG BGC CACCGCTCCCT GTCAGCCAAC AAATATCCAT TGAGCGACAC CTGTGTCCTCA GGTGCTGCTC TGGGCCCTGG
 30 GAGAAGTGCA TCAGTGGGCT TGGTAGTAGA GGGTAGGGAT GGAGTGAAGG GTAGGCAGGA AGAACATGTC
 CAGGCTGGTA GGAGGGTGGGG TGGGGGGTTT CAGTCTCAA ACTCCCCATGA AAACCCAGAGA GAAGTTTCAG
 AACTCCACCC AAGAGGCTGG GTTTCTAGGG CCCAGAGCTG CCCTCCCCCA CCCTAGAATG GGCTATAAAA
 GTCCCTTCCC AGCTACGTCC AGAGAAGAGC TGGAGGAAGT GAGAGGTCGG CTGGGGGTCC TCAAAGTGAG
 AGGGGAGCAG AGGATCCCTCC CGTGCAGGCT GTGGATGTCA CTCACCTCCC AGCTGGTGAAG GCCTCGTGC
 35 35 AGAGATGCAT CTGCTCCCAAG CCCTGGCAGG GGTCTCTGGCC ACACTCGTCC TCGCCCAGCC CTGTGAGGGC
 ACTGACCCAG GTAATAGTCC CCTAGACAGG CAAGGAGGAG GGAGGGAAA TGGAAAGGGGA AGCACATTGGG
 TCTTGGAGGG GGTCTTGTGG CTTGCTGAAC CCTGAGTCCC CATCTCTTGT AACAGCCTCC CCTGGGGCAG
 TGGAGACCTC GGTCTCTGCAG GACTGCATAG CAGAGGCCAA GTTGCTGGT GATGCTGCCT ACAATTGGAC
 CCAGAAAGAGG TGGAACTTGGG TCTGGGGGCT GCATGGGCCT GGGAGGATCA GT TAATACCTTG TGGGGTCAGG
 40 40 GAGCCCATGT CCCGTGCTGA TGTTATTTC CCACCAGGT CGGGCTGTCT CCAACCCAGAT TGTGCGCTTC
 CCCAATGAGA GACGACCTC CGACCGTGGC CGAGCCCTCA TGTTCATGCA GTGGGGCCAG TTCATTGACC
 ATGACCTGGA CTCTCCCCCG GAGTCCCCGG CCAGAGTGGC CTTCACTGCA GGCCTTGACT GTGAGAGGAC
 CTGCGCCCCAG CTGCCCCCT GCTTCTCCAT CAAGGTACCT ACCCTCAGCC AATCTCCCAT GCCCTTGTGT
 GGCCTCCCCC AAACGCAAGG TGCTGGGGT GGGGATCTGG AAGACTGGAG CACCATCCTT AAGGAGCTGC
 45 45 CTGTGGAGCT AGGGTATGAG ACAGAGACAC AAG CACTGTCTCC TCTTCCATCT CAGATCCAC CCAATGACCC
 CCGCATCAAG AACAGCGTG ACTGCATCCC TTTCTTCCGC TCGGCACCC CATGCCCTCA AAACAAGAAC
 AGAGTCCGCA ACCAGATCAA CGCGCTCACC TCCTTTGTGG ACGCCAGCAT GGTGATGGC AGTGAGGGTCT
 CCCTCTCGCT GCGCCTCCGC AACCGGACCA ACTACCTGGG GCTGCTGGCC ATCAACCCAGC GCTTCAAGA
 CAACGGCCGG GCGCTGCTGC CCTTCGACAA CCTGCACGAT GACCCCTGTC TCCTCACCAA CGCTCGGG
 50 50 CGCATCCCCCT GCTCTCTGGC AGGTCAAGACA GGGAGGAAGG TGGTGTCTTC CCAGGAAACA GCCATCCCC
 GGGTCCCAAC TGGGAAGCAA TGGTGGGATG TGGTGAAGGT ACATGGTTTG GGACCTCAGT ATTAGGCACA
 CCATAAGCAT GGATCTGTGC AC TGAAGAGATG GAGGTCCAGT GAGGGCCAGG AGTTGGGCC ACCCCGTCTC
 TCCCATCCCC AGCCCTGGGT CTACCTGGT AGAAAGACAT TTCTCTGGGA AAGGCTGCAG TAAATCTGAG
 CTTGGGGTTT TCAAGGTGAC ACCCGATCAA CGGAAACCCC CAAACTGGCA GCCATGCACA CCCCTTTAT
 55 55 GCGAGAGCAC AACCGGCTGG CCACCGAGCT GAGACGCCTG AATCCCCGGT GGAATGGAGA CAAACTGTAC
 AATGAGGCTC GGAAAGATCAT GGGGGCCATG GTCCAGGTA GGAGCTCTGC ATCCCAGCAT CCCCC CTTGTATCT
 CCACCCACCA ATAGTAAATT AATGTTGTCA CATTGACGT GATGACAATA AAGAATATGT CTGAGCCACC
 CTTGAAAAG GCAAGGGTAT GGGTGAAGTAG CCTCTGGGAA ATGTTCTCTCC TGTCTTCCCT TCCAGATCAT
 CACCTACCGA GACCTTCTGC CCCTGGTTCT GGGCAAGGCC CGGGCCAGGA GAACCCCTGGG GCACTACAGG
 60 60 GGGTACTGCT CCAATGTGGA CCCACGGGTG GCCAATGTCT TCACCCCTGGC CTTCCGCTTT GGCCACACAA

TGCTCCAGCC CTTCATGTTT CGCTTGGACA GTCAGTACCG GGCCTCCGA CCCAACTCGC ATGTCCCACT
 TAGCTCTGCC TTCTTGCCA GCTGGCGAT CGTGTATGAA GGTGACCAGG TTTCCAGGG GGCAAATGGG
 5 GGTGAGGGTG GGGAGCATGC CCTCCCCTAG GTGG TCCAGCTGCT TCATGTCTCT CCAGAACTCT GTTCCCTGAC
 AAACGTACT AACATACCCG ACTGGCTTGT CCAGCTCTGG GCTAGCTTGG CATCATGTGA TAACCCAAGT
 AGCTTCCCAG AGGCTGGTCC AATCTGTGCT GCTCACATT CCTGCCACCA GGGGGCATCG ACCCCATCCT
 10 CGGGGGCCTC ATGGCCACCC CTGCCAAGCT GAACCGTCAG GATGCCATGT TAGTGGATGA GCTCCGGGAC
 CGGCTGTTTC GGCAAGTGAG GAGGATTGGG CTGGACCTGG CAGCTCTAA CATGCAACGA AGCCGGGACC
 ACGGCCTTCC AGGAGGGGG GCTGTCCACC TCTTCTCCCA GCTTGTCTCG GGCCAGGCTG CTCAAGGGGT
 TCTGGGAAGA CCCGTGGTACC CGACTGCCCTG GTAGGTTCTG GTGGCAGAAA CGAGGTGTTT TCACCAAAAG
 15 ACAGCGCAAG GCCCTGAGCA GAATTTCCTT GTCTCGAATT ATATGTGACA ATACCGTAT CACCACGGTT
 TCAAGGGACA TCTCAGAGC CAACATCTAC CCTCGGGGCT TTGTGAAC TG CAGCGTATC CCCAGGTTGA
 ACCTATCAGC CTGGCGAGGG ACATGAGGCT TCTGAGGTA AGGGGAGGCC ACCTCCAGCA CCCTGGGCTG
 GTTAAGCCTC ACACTCTTCC CTGGATGGAT GGCTGAGTCC TCTTAGGTC TCAAGCAGAG AAAACAGAAC
 TTGTCACTAG GTACTCTTC CAAGTGGCTT CCAAAATGTGC TAGTTCTGG GCTGACAGTC AATTCCAGGC
 20 CCTAGGACTT TGGGGGGAAA TAGGAGCAT CCAACTA GAATTCCGTG GCCAGGACCC CTGCCAGGGC
 ACTGACCCAG CCTCCCTG GGCAGTGGAG ACCTCGGTCC TGCGAGACTG CATAGCAGAG GCCAAGTTGC
 TGGTGGATGC TGCCATACAAT TGGACCCAGA AGAGCATCAA GCAGCGGCTT CGCACGCGTT CAGCCAGCCC
 CATGGACCTC CTGTCTTACT TCAAAACAAACC GGTAGCAGCC ACCAGGACAG TTGTCGGGC CGCAGATTAT
 ATGCATGTGG CTTGGGGCT GCTTGAAGAG AAGTTACAAAC CCCAGCGTC CGGACCCCTTC ATTGTCACTG
 25 ATGTGCTAAC AGAACACACAG CTGCGGTGC TGTCCCAAGGC CAGTGGCTG GCTCTGGG ACCAGGCGGA
 GCGCTGCAGC GACAAGTACC GCAACATCAC TGGACGGTGC ACAACAAGA GGAGACCCCTT GCTAGGGGCC
 TCCAACCAGG CTCGGCTCG CTGGCTGCC GCGAGATATG AGGATGGGCT GTGCTCCCCC TTGGCTGGA
 CCCCCAGCAG GAGCGCAAT GGCTTCCCTC TCCCCTTGTG CCGGGCTGTC TCCAACCAGA TTGTGCGCTT
 CCCCAATGAG AGAACGTACCT CCGACCGTGG CCGAGCCCTC ATGTTATGC AGTGGGGCCA GTTCATTGAC
 30 CATGACCTGG ACTCTCTCCC GGAGTCCCCG GCCAGAGTGG CTTCACTGC AGGGCTTGCAG TGTGAGAGGA
 CCTGCGCCCA GTCGCCCTCC TGCTTCCCA TCAAGATCCC ACCCAATGAC CCCCCCATCA AGAACCAAGCG
 TGAUTGCATC CCTCTTCTCC GCTCGGCACC CTCATGCC CAAAACAAGA ACAGAGTCG CAACCAAGATC
 AACCGCCTCA CCTCTTTGTG GGACGCCAGC ATGGTGTATG GCAAGTGGT CTCCTCTCG CTGCGGCTCC
 GCAACCGGAC CAACTACCTG GGGCTGCTGG CCATCAACCA GCGTTCAA GACAACGGCC GGGCCCTGCT
 35 30 GCCCTTCGAC AACATGACG ATGACCCCTG TCTCTCACC AACCCTCG CGCGCATCCC CTGCTTCCTG
 GCAGGTGACA CCCGATCAAC GGAAACCCCC AACTGGCAG CCATGCACAC CCTCTTATG CGAGAGCACA
 ACCGGCTGGC CACCGAGCTG AGACGCCAGA ATCCCCGGTG GAATGGAGAC AAACATGTACA ATGAGGCTCG
 GAAGATCATG GGGGCCATGG TCCAGATCAT CACCTACCGA GACTTCTGC CCCTGGTTCT GGGCAAGGCC
 CGGGCCAGGA GAACTCTGGG GCACTACAGG GGGTACTGCT CCAATGGAA CCCACGGGTG GCCAATGTCT
 40 35 TCACCCCTGGC CTTCGGCTTT GGCCACACAA TGCTCCAGCC TTTCATGTTG CGCTTGGACA GTCAGTACCG
 GGCCTCCGCA CCCACTCGC ATGCCCCACT TAGCTCTGCC TTCTTGCCTA GCTGGCGGAT CGTGTATGAA
 GGGGGCATCG ACCCCATCCT CGGGGGCCTC ATGCCACCC CTGCCAACCT GAACCGTCAG GATGCCATGT
 TAGTGGATGA GTCGGGGAC CCGCTGTTG GGCAAGTGGAG GAGGATTGGG CTGGACCTGG CAGCTCTCAA
 CATGCAACGA AGCCGGGACC ACGGCCCTCC AGGGTACAAT GCTTGGAGGC GCTTCTGTGG GCTCTCCAG
 45 40 CCCCGGAATT TGGCACAGCT TAGCGGGGTG CTGAAAAAAC AGGACTTGGC AAGGAAGTTC CTGAATTGTT
 ATGGAACACC TGACAACATT GACATCTGGA TTGGGGCCAT CGCTGAGGCT CTTTGCCGG GGGCTCGAGT
 GGGGCTCTT CTGCTTGTC TGTTCGAGAA CCAGTTCAGA AGAGCCGAGA CGGAGACAGG TTCTGGTGGC
 AGAACGAGGT GTTTCACCA AAGACAGCGC AAGGCCCTGA GCAGAATTTC CTTGCTCTGA ATTATATGTG
 50 45 ACAATACCGG TATCACACG GTTCAAGGG ACATCTTCAG AGCCAACATC TACCCCTCGGG GCTTGTGAA
 CTGCAGCCGT ATCC'CCAGGT TGAACCTATC AGCCTGGCGA GGGACATGAG GCTTCTGCAG GAGTCTATCC
 CAAGTCTCCA ACTITGGAG ACAAGGGGAA GGGGAGGAGC ATGAGGCTGC CTTGCTCTCCC TGGAGCAAGT
 GCAGGCTCGT GACCGCTCTG CTGGCTACAG CTCAGAGCTG GGTCCCCAG CCAGGAGTGA AGGCTGGGG
 CTCCTATCAG CAATGGACCT TCCGCTTGG GAGCCTCTTA GGTATTAGGC TATGAATCAG CGCCACGTGC
 AAAGGCTTGG GAGCAAGCC ATGTGGTCTT GCACCCCAGG CAAGAAAAGT CAGCTGGAGG GTTACAGCA
 55 50 CTTTCTACTG TTTCCAGCC CTCCCTCCCC TCCCTCACCA TGACTAAGAG ACCACTCGGT CCTAGCCTCC
 AGACACCCCA CAAACTCCT CTGAGCCTGA GGCCAGGCG CATGCTCTGC TTCTACCAAT AAAGCACTGC
 CGGAATTC-3' (FRAG. NO: 1726) (SEQ. ID NO: 3008)
 5'-CACCGCTCCT GTCAAGCCAAC AAATATCCAT TGAGCGACAC CTGTGTCCCA GGTGCTGCTC TGGGCCCTGG
 GAGAAGTGCA TCAGTGGGCT TGGTAGTGA GGGTAGGGAT GGAGTGAAGG GTAGGCAGGA AGAATGTCCC
 CAGGCTGGTA GGAGGGTGGG TGGGGGTTT CAGTCTCAA ACTCCCCATGA AAACCAAGAGA GAAGTTTCAG
 60 55 AACTCCACCC AAGAGGCTGG GTTCTAGGG CCCAGAGCTG CCCTCCCCCA CCCTAGAATG GGCTATAAAA
 GTCCCTTCCC AGCTACGTCC AGAGAAGAGC TGGAGGAAGT GAGAGGTCGG CTGGGGGTCC TCAAAGTGAG
 AGGGGAGCAG AGGATCCTCC CGTGCAGGCT GTGGATGTCA CTCACCTCCC AGCTGGTGAAG GCTCGCTGC
 AGAGATGCAT CTGCTCCAG CCCTGGCAGG GGTCTGGCC ACACTCGCC TCGCCAGGCC CTGTGAGGGC
 ACTGACCCAG GTATAGTCC CCTAGACAGG CAAGGAGGAG GGAGGGAAA TGGAAAGGGGA AGCACTTGGG
 TCTTGGAGGG GGTCTTGTGG CTTGCTGAAC CCTGAGTCCC CATCTCTTG AACAGCCTCC CCTGGGGCAG
 TGGAGACCTC GGTCTGCGA GACTGCATAG CAGAGGCCAA GTTGTCTGGT GATGCTGCCT ACAATTGGAC

CCAGAAGAGG TGGACTTGGG TCTGGGGCT GCATGGGCCT GGGAGGATCA GT-3' (FRAG. NO:_) (SEQ. ID NO:2483)
 5'-TAATACCTTG TGGGGTCAGG GAGCCATGT CCCGTGCTGA TGTTATTCTC CCACCAGGTC CGGGCTGTCT
 CCAACCAGAT TGTGCGCTTC CCCAATGAGA GACTGACCTC CGACCGTGGC CGAGCCCTCA TGTTCATGCA
 5 GTGGGGCCAG TTCATTGACC ATGACCTGGA CTTCTCCCCG GAGTCCCCGG CCAGAGTGGC CTTCACTGCA
 GGCCTTGAAT GTGAGGAGC CTGCGCCAG CTGCCCTCCCT GCTTCCCCT CAAGGTACCT ACCCTCAGGC
 AATCTCCAT GCCCTTGTGT GGCCCTCCCC AAAGGCAAGG TGCTGGGGGT GGGGATCTGG AAGACTGGAG
 CACCATCCTT AAGGAGCTGC CTGTGGAGCT AGGGTATGAG ACAGAGACAC AAG-3' (FRAG. NO:_) (SEQ. ID NO:2484)

10 5'-CACTGTCTCC TCCTCCATCT CAGATCCCAC CCAATGACCC CCGCATCAAG AACCAAGCGTG ACTGCATCCC
 TTTCTCCGC TCGGCACCC CATGCCCTAA AAACAAGAAC AGAGTCGCA ACCAGATCAA CGCGCTCAC
 TCCCTTGAG ACGCCAGCAT GGTGTATGGC AGTGGAGTCT CCTCTCGCT GCGGCTCCGC AACCAGGACCA
 ACTACCTGGG GCTGCTGGCC ATCAACCAGC GCTTCAAGA CAACGGCCGG GCCCTGCTGC CCTTCGACAA
 15 CCTGACGAT GACCCCTGTG TCCTCACCAA CGCTCGGGCG CGCATCCCC CCTCTCTGGC AGGTCAAGACA
 GGGAGGAAGG TGGTGTCTTC CCAGGAAACA GCCATCCCTG GGGTCCAAC TGGGAAGCAA TGGTGGGATG
 TGGTGAAGGT ACATGGTTTG GGACCTCAGT ATTAGGCACA CCATAAGCAT GGATCTGTGC AC-3'
 (FRAG. NO:_) (SEQ. ID NO:2485)

5'-TGAAGAGATG GAGGTCCAGT GAGGGCCAGG AGTTGGCCC ACCCGTCTC TCCATCCCC AGCCCTGGGT
 20 CTACCCCTGGT AGAAAGACAT TTCTCTGGG AAGGCTGCAG TAAATCTGAG CTTGGGGTTT TCAAGGTGAC
 ACCCGATCAA CGGAACCCC CAAACTGGCA GCCATGCACA CCCTCTTAT GCGAGAGCAC AACCAGGCTGG
 CCACCGAGCT GAGACGCCGT AATCCCCGGT GGAATGGAGA CAAACTGTAC AATGAGGCTC GGAAGATCAT
 GGGGGCCATG GTCCAGGTAA GGAGCTCTGC ATCCCAGCAT CCCCC-3' (FRAG. NO:_) (SEQ. ID NO:2486)

25 5'-CTTGTATCT CCACCCACCA ATAGTAAATT AATGGTGTCA CATTGACGT GATGACAATA AAGAATATGT
 CTGAGCCACC CTTGAAAAG GCAAGGGTAT GGGTGAGTAG CCTCTGGGG AATGGTCTCC TGTCTCCCT
 TCCAGATCAT CACCTACCGA GACTTTCTGC CCCTGGTTCT GGGCAAGGCC CGGGCCAGGA GAACCCCTGGG
 GCACTACAGG GGGTACTGCT CCAATGTGGA CCCACGGGTG GCCAATGTCT TCACCCCTGGC CTTCCGCTTT
 30 GCCCACACAA TGCACAGCC CTTCATGTTG CGCTTGGACA GTCAGTACCG GGCCTCCGCA CCCAACTCGC
 ATGTCCCACT TAGCTCTGCC TTCTTGGCA GCTGGCGGAT CGTGTATGAA GGTGACCAAGG TTTTCCAGGG
 GCAAATGGG GGTGGGGT GGGAGCATGC CCTCCCCTAG GTGG-3' (FRAG. NO:_) (SEQ. ID NO:2487)

35 5'-TCCAGCTGCT TCATGTCTCT CCAGAACTCT GTTCCCTGAC AAACGTTACT AACATACCCG ACTGGCTTGT
 CCAGCTCTGG GCTAGCTTGG CATCATGTGA TAACCCAAGT AGCTTCCAG AGGCTGGTCC AATCTGTGCT
 GCTCACATT CCTCCACCA GGGGGCATCG ACCCCATCCT CGGGGCCCTC ATGGCCACCC CTGCCAAGCT
 GAACCGTCAG GATGCCATGT TAGTGGATGA GCTCCGGGAC CGGTGTTTC GGCAAGTGAG GAGGATTGGG
 40 CTGGACCTGG CAGCTCTCAA CATGCAACGA AGCCGGGACC ACGGCCTTCC AGGTGAGGGG GCTGTCCACC
 TCTTCTCCA GCTTCTCG GGCCAGGCTG CTCAAGGGGT TCTGGGAAGA CCCTGGTACC-3' (FRAG. NO:_) (SEQ. ID NO:2488)

5'-CGACTGCCGTG TAGGTTCTG GTGGCAGAAA CGAGGTGTT TCACCAAAAG ACAGCGCAAG GCCCTGAGCA
 45 GAATTTCTT GTCTCGAATT ATATGTGACA ATACCGGTAT CACCACGGTT TCAAGGGACA TCTTCAGAGC
 CAACATCTAC CCTCGGGCT TTGTGAACTG CAGCGTATC CCCAGGTTGA ACCTATCAGC CTGGCGAGGG
 ACATGAGGCT TCTGCAAGGTA AGGGGAGGCC ACCTCCAGCA CCCTGGGCTG GTTAAGCCTC ACATCCTTC
 50 CTGGATGGAT GGCAGAGTCC TCTTAGGTCT CTAAGCAGAG AAAACAGAAC TTGTCACTAG GTACTCTTC
 CAAGTGGCTT CCCAATGTGC TAGTTCTGG GCTGACAGTC AATTCCAGGC CCTAGGACTT TGGGGGAAA
 TTAGGAGCAT CCAACTA-3' (FRAG. NO:_) (SEQ. ID NO:2489)

5'-GAATTCCTG GCCAGGACCC CTGCCAGGGC ACTGACCCAG CCTCCCTGG GGCAGTGGAG ACCTCGGTCC
 45 TCGAGACTG CATAGCAGAG GCCAAGTTGC TGGTGGATGC TGCTACAAT TGGACCCAGA AGAGCATCAA
 GCAGCGGCTT CGCAGCGGTT CAGCCAGCCC CATGGACCTC CTGCTCTACT TCAAACAAACC GGTAGCAGCC
 ACCAGGACAG TTGTCGGGC CGCAGATTAT ATGCATGTGG CTTTGGGCT GCTTGAAGAG AAGTTACAAC
 CCCAGCGGTC CGGACCCCTTC ATTGTCACTG ATGTGCTAAC AGAACCCACAG CTGCGCTGC TGTCCCAGGC
 50 CAGTGGCTGT GCTCTCCGG ACCAGGCCGA GCGCTGCAGC GACAAGTACC GCACCATCAC TGGACGGTGC
 AACAAACAAGA GGAAGACCTT GCTAGGGCC TCCAACCAGG CTCTGGCTCG CTGGCTGCC GCCGAGTATG
 AGGATGGGCT GTCAGCTCCC TTGGCTGGA CCCCCAGCAG GAGGCGCAAT GGCTTCTTC TCCCTCTTGT
 CCGGGCTGTC TCCAACCAGA TTGTGCGCTT CCCAATGAG AGACTGACCT CCGACCGTGG CCGAGCCCTC
 ATGTTCATGC AGTCAGGGCCA GTTCATTGAC CATGACCTGG ACTTCTCCCC GGAGTCCCCG GCCAGAGTGG
 CCTTCACTGC AGGGCTTGAC TGTGAGAGGA CCTGCGCCCA GCTGCCCTCC TGCTTCCA TCAAGATCCC
 55 ACCCAATGAC CCCCGCATCA AGAACCGAGCG TGACTGCATC CCTTCTTCC GCTCGCACC CTCATGCC
 CAAAACAAGA ACAAGTCCG CAACCAAGATC AACCGCTCA CCTCCTTGT GGACGCCAGC ATGGTGTATG
 GCAGTGAGGT CTCCTCTCG CTGCGGCTCC GCAACCGGAC CAAACTACCTG GGGCTGCTGG CCATCAACCA
 GCGCTTCAA GACAACGGCC GGGCCCTGCT GCCCTCGAC AACCTGCACG ATGACCCCTG TCTCCTCACC
 AACCGCTCGG CGCGCATCCC CTGCTTCTG GCAGGTGACA ACCGGCTGGC CACCGAGCTG AGACGCCCTGA
 60 CCATGCACAC CCTCTTTATG CGAGAGCACA ACCGGCTGGC CACCGAGCTG AGACGCCCTGA ATCCCCGGTG
 GAATGGAGAC AAACTGTACA ATGAGGCTCG GAAGATCATG GGGCCATGG TCCAGATCAT CACCTACCGA
 GACTTTCTGC CCCIGGTTCT GGGCAAGGCC CGGGCCAGGA GAACCTGGG GCACTACAGG GGGTACTGCT

CCAATGTGGA CCCACGGGTG GCCAATGTCT TCACCCCTGGC CTTCCGCTT GGCCACACAA TGCTCCAGCC
 CTTCATGTTG CGCTTGGACA GTCAGTACCG GGCTCTCGCA CCCAACACTCG ATGTCCCACCT TAGCTCTGCC
 TTCTTGCCA GCTGGCGGAT CGTGTATGAA GGGGGCATCG ACCCCATCCT CGGGGGCCTC ATGGCCACCC
 CTGCCAAGCT GAACCGTCAG GATGCCATGT TAGTGGATGA GCTCCGGGAC CGGCTGTTTC GGCAAGTGAG
 5 GAGGATTGGG CTGGACCTGG CAGCTCTCAA CATGCAACGA AGCCGGGACC ACGGCCTTCC AGGGTACAAT
 GCTTGGAGGC GCT'CTGTGG GCTCTCCCG CCCCGGAATT TGGCACAGCT TAGCCGGGTG CTGAAAAACC
 AGGACTTGGC AAGGAAGTTC CTGAATTGT ATGAAACACC TGACAACATT GACATCTGGA TTGGGGCCAT
 CGCTGAGCCT CTTITGCCGG GGGCTCGAGT GGGGCCTCTT CTGGCTTGTG TGTCGAGAA CCAGTTCAGA
 10 AGAGCCGAGA CGGAGACAGG TTCTGGTGGC AGAACGAGGT GTTTTCACCA AAGACAGCGC AAGGGCCCTGA
 GCAGAATTTC CTTCCTCTCGA ATTATATGTG ACAATACCGG TATCACCACG GTTCAAGGG ACATCTTCAG
 AGCCAACATC TACCCCTCGGG GCTTTGTGAA CTGCAGCCGT ATCCCCAGGT TGAACCTATC AGCCTGGCGA
 GGGACATGAG GCT'CTGCAG GAGTCTATCC CAAGTCTCCA ACTTTTGGAG ACAAGGGGAA GGGGAGGACC
 ATGAGGCTGC CTTCCTCTCC TGGAGCAAGT GCAGGCTCGT GACGCTTCTG CTGGCTACAG CTCAGAGCTG
 15 GGTTCCCCAG CCAAGAGTGA AGGCTGGGG CTCCATCAG CAATGGACCT TCCGCCTTGG GAGCCTCTTA
 GGTATTAGGC TATC AATCAG CGCCACGTGC AAAGGCTTGG GAGCCAAGCC ATGTTGGTCTT GCACCCCCAGG
 CAAGAAAAGT CAGCTGGAGG GTTTACAGCA CTTTCTACTG TTTCCAGCC CTCCCTCCCC TCCCTCACCA
 TGACTAAGAG ACCACTCGGT CCTAGCCTCC AGACACCCCCA CAATACTCCT CTGAGCCTGA GGCCAGGCAG
 CATGCTCTGC TTCTACCAAT AAAGCACTGC CGGAATTCT-3' (FRAG. NO: __) (SEQ. ID no: 2490)
 5'-TC GGC CTG GTC C'CG G-3' (FRAG. NO: 1727) (SEQ. ID NO:1740)
 20 5'-TGG GGG TTT CCC TTG-3' (FRAG. NO: 1728) (SEQ. ID NO: 1741)
 5'-TG GTC CCG GBG F GC -3' (FRAG. NO: 1729) (SEQ. ID NO: 1742)
 5'-GCG CTC CGC CTG GTC CCG G-3' (FRAG. NO:1053) (SEQ. ID NO:1061)
 5'-GGG TCT CCT CTT TTT GTT GC-3' (FRAG. NO:1054) (SEQ. ID NO:1062)
 5'- TTG CGC CTC CTG GGG GT CC-3' (FRAG. NO:1055) (SEQ. ID NO:1063)
 25 5'-CTC TGT TCT TGT 'TTT GGG GGC-3' (FRAG. NO:1056) (SEQ. ID NO:1064)
 5'-GGG CCC GGC CGT TGT CTT G-3' (FRAG. NO:1057) (SEQ. ID NO:1065)
 5'-GTT TGG GGG TTT CCG TTG-3' (FRAG. NO:1058) (SEQ. ID NO:1066)
 5'-GGG TTC TCC TGG CCC GGG CCT TGC CC-3' (FRAG. NO:1059)(SEQ. ID NO:1067)
 5'-GGC CGT GGT CCC GGC TTC GTT GC-3' (FRAG. NO:1060) (SEQ. ID NO:1068)
 30 5'-CCT GTC TCC GTC PCG GCT CTT CTG-3' (FRAG. NO:1061) (SEQ. ID NO:1069)
 5'-GGG CCT TGC GCT GTC TTT GGT G-3' (FRAG. NO:1062) (SEQ. ID NO:1070)
 5'-GCB CCG TCC BGT GBT GGT GCG GTB CTT GTC GCT GCB GCG CTC GGC CTG GTC CCG GBG BGC -3' (FRAG.
 NO:1063) (SEQ. ID NO:1071)

Human Intercellular Adhesion Molecule-1 (ICAM-1)

Nucleic Acid and Antisense Oligonucleotide Fragments
 35 5'-GCG CGG GCC GGG GGC TGC TGG G GGT TGG CCC GGG GTG CCC C GCC GCT GGG TGC CCT CGT CCT CTG
 CGG TC GTG TCT CCT GGC TCT GGT TCC CC GCT GGC CCC GTT GTC CTC TGG GGT GGC CTT C GCT CCC GGG
 TCT GGT TCT TGT GT TGG GGG TCC CTT TTT GGG CCT GTT GT GGC GTG GCT TGT GTG TTC GGT TTC TGC CCT
 GTC CTC CGG CGT CCC CGG BGC CTC CCC GGG GCB GGB TGB CTT TTG BGG GGG BCB CBG BTG TCT GGG CBT
 40 TGC CBG GTC CTG GGB BCB GBG CCC CGB GCB GGB CCB GGB GTG CGG GCB GCG CCG CGG GCC GGG GGC TGC TGG
 GBG CCB TBG CGB GGC TGB G-3' (FRAG. NO: 1730) (SEQ. ID NO: 1743)
 5'-GGG GGC TGC TGG G-3' (FRAG. NO: 1731) (SEQ. ID NO:1744)
 5'-T GTC CTC CGG CCT CCC-3' (FRAG. NO:1732) (SEQ. ID NO:1745)
 5'-G CCB TBG CGB GC C TGB G-3' (FRAG. NO: 1733) (SEQ. ID NO: 1746)
 45 5'-CTC TGG GGT GGC CTT C-3' (FRAG. NO:1734) (SEQ. ID NO:1747)
 5'-GCG CGG GCC GGG GGC TGC TGG G-3' (FRAG. NO:1064) (SEQ. ID NO:1072)
 5'-GGT TGG CCC GGG GTG CCC C-3' (FRAG. NO:1065) (SEQ. ID NO:1073)
 5'-GCC GCT GGG TGC CCT CGT CCT CTG CGG TC-3' (FRAG. NO:1066) (SEQ. ID NO:1074)
 5'-GTG TCT CCT GGC TCT GGT TCC CC-3' (FRAG. NO:1067) (SEQ. ID NO:1075)
 50 5'-GCT GCG CCC GTT GTC CTC TGG GGT GGC CTT C-3' (FRAG. NO:1068) (SEQ. ID NO:1076)
 5'-GCT CCC GGG TCT GGT TCT TGT GT-3' (FRAG. NO:1069) (SEQ. ID NO:1077)
 5'-TGG GGG TCC CTT TTT GGG CCT GTT GT-3' (FRAG. NO:1070) (SEQ. ID NO:1078)
 5'-GGC GTG GCT TGT GTG TTC GGT TTC-3' (FRAG. NO:1071) (SEQ. ID NO:1079)
 5'-TGC CCT GTC CTC CGG CGT CCC-3' (FRAG. NO:1072) (SEQ. ID NO:1080)
 55 5'- CGG BGC CTC CCC GGG GCB GGB TGB CTT TTG BGG GGG BCB CBG BTG TCT GGG CBT TGC CBG GTC CTG
 GGB BCB GBG CCC CGB GCB GGB CCB GGB GTG CGG GCB GCG CCG GCC GGG GGC TGC TGG GBG CCB TBG CGB
 GGC TGB G-3' (FRAG. NO:1073) (SEQ. ID NO:1081)

Human Vascular Cell Adhesion Molecule 1 (VCAM-1)

Nucleic Acid and Oligonucleotide Fragments
 60 5'-CCT CTT TTC TGT TTT TCC C CTC TGC CTT TGT TTG GGT TCG CTT CCT TTC TGC TTC TTC C C CTG TGT CTC

PCT/US2019/034700

CTG TCT CCG CTT TIT TCT TC GTC TTT GTT TTC TCT TCC TTG CTG BGC BBG BTB TCT BGB TTC TGG GGT
GGT CTC GBT TTT BBG GCT TGB GBB GCT GCB BBC BTT BTC CBB BGT BTB TTT GBG GCT CCB BGG BTC BCG
BCC BTC TTC CCB GC C BTT TTG BGT TGC TGT CGT-3' (FRAG.NO:1735) (SEQ.ID NO:1748)

5' -C TGT CGT-3' (FRAG. NO:1736) (SEQ. ID NO:1749)

5 5'-TGC TTC TTC C-3' (FRAG. NO:1737) (SEQ. ID NO:1750)

HSVCAM1AS1: 5'-CCT CTT TTC TGT TTT TCC C-3' (FRAG. NO:1074) (SEQ. ID NO:1082)

HSVCAM1AS2: 5'-CTC TGC CTT TGT TTG GGT TCG-3' (FRAG. NO:1075) (SEQ. ID NO:1083)

HSVCAM1AS3: 5'-CTT CCT TTC TGC TTC C-3' (FRAG. NO:1076) (SEQ. ID NO:1084)

HSVCAM1AS4: 5'-CTG TGT CTC CTG TCT CCG CTT TTT TCT TC-3' (FRAG. NO:1077) (SEQ. ID NO:1085)

10 HSVCAM1AS5: 5'-GTC TTT GTT TTC TCT TCC TTG-3' (FRAG. NO:1078) (SEQ. ID NO:1086)

CTG BGC BBG BTB TCT BGB TTC TGG GGT GGT CTC GBT TTT BBBB GCT TGB GBB GCT GCB BBC BTT BTC CBB
BGT BTB TTT GBG GCT CCB BGG BTC BCG BCC BTC TTC CCB GGC BTT TTG BGT TGC TGT CGT(FRAG.
NO:1079)(SEQ. ID NO:1087)

Human Endothelial Leukocyte Adhesion Molecule(ELAM-1)

Nucleic Acid and Antisense Oligonucleotide Fragments

15 5'-BBG TGB GBG CTG BGB GBB BCT GTG BBG CBB TCB TGB CTT CBB GBG TTC TTT TCB CCC GTT CTT GGC TTC
TTC TGT C CGT TGG CTT CTC GTC CC TGT GGG CTT CTC GTC CC CCC TTC GGG GGC TGG TGG GGC
CGT CCT TGC CTG CTG G GTT CTT GGC TTC TTC TGT CCG T TGG CTT CTC GTC CC TGT GGG CTT CTC
GTT GTC CC CCC TTC GGG GGC TGG TGG GGC CGT CCT TGC CTG CTG G CCTGAGACAG AGGCAGCAGT

20 GATAACCACCA TGAGAGATCC TGTGTTGAA CAACTGCTTC CCAAAACCGGA AAGTATTCA AGCCTAAACC
TTTGGGTGAA AAGAACTCTT GAAGTCATGA TTGCTTCACA GTTTCTCTCA GCTCTCACTT TGGTGCTTCT
CATTAAGAG AGTGGAGCCT GGTCTTACAA CACCTCCACG GAAGCTATGA CTTATGATGA GGCCAGTGCT
TATTGTCAGC AAACGTACAC ACACCTGGTT GCAATTCAA ACAAAAGAAGA GATTGAGTAC CTAAACTCCA
TATTGAGCTA TTCACCAAGT TATTACTGGA TTGGAATCAG AAAAGTCAAC AATGTGTGGG TCTGGTAGG

25 AACCCAGAAA CCTCTGACAG AAGAACCCAA GAACTGGGCT CCAGGTGAAC CCAACAATAG GCAAAAGAT
GAGGACTGCG TGGAGATCTA CATCAAGAGA GAAAAAGATG TGGGCATGTG GAATGATGAG AGGTGCAGCA
AGAAGAAGCT TGCCTATGC TACACAGCTG CCTGTACCAA TACATCCTGC AGTGGCCACG GTGAATGTGT
AGAGACCAC TAAATTACA CTTGCAAGTG TGACCCCTGGC TTCAGTGGAC TCAAGTGTGA GCAAATTGTG
AACTGTACAG CCCTGGAATC CCCTGAGCAT GGAAGCCTGG TTTGCAGTCA CCCACTGGGA AACCTCAGCT

30 ACAATTCTTC CTGCTCTATC AGCTGTGATA GGGGTTACCT GCCAAGCAGC ATGGAGACCA TGCAGTGTAT
GTCCTCTGGA GAAATGGAGTG CTCCATTCTC AGCCTGCAAT GTGGTTGAGT GTGATGCTGT GACAAATCCA
GCCAATGGGT TCGTGGAAATG TTTCCAAAAC CCTGGAAGCT TCCCATGGAA CACAACCTGT ACATTGACT
GTGAAGAAGG ATTGAACTA ATGGGAGCCC AGAGCCTTCAGA GTGTACCTCA TCTGGGAATT GGGACAACGA

35 GAAGCCAACG TGTAAAGCTG TGACATGCG AGGCCGTCCGC CAGCCTCAGA ATGGCTCTGT GAGGTGCAGC
CATTCCCCCTG CTGCAGAGTT CACCTTCAA TCATCCTGCA ACTTCACCTG TGAGGAAGGC TTCATGTTGC
AGGGACCAGC CCAGGTTGAA TGCACCACTC AAGGGCAGTG GACACAGCAA ATCCCAGTT GTGAAGCTTT
CCAGTGCACA GCC'TGTCCA ACCCCGAGCG AGGCTACATG AATTGTCTTC CTAGTGTCTC TGGCAGTTTC
CGTTATGGGT CCACCTGTGA GTTCTCTGT GAGCAGGGTT TTGTGTTGAA GGGATCCAAA AGGCTCCAAT

40 GTGGCCCCAC AGGGGAGTGG GACAACAGAGA AGCCCACATG TGAAGCTGTG AGATGCGATG CTGTCCACCA
GCCCCCGAAG GGT TGGTGA GGTGTGCTCA TTCCCCTATT GGAGAATTCA CCTACAAGTC CTCTTGTGCC
TTCAGCTGTG AGGAGGGATT TGAATTATAT GGATCAACTC AACTTGAGTG CACATCTCAG GGACAATGGA
CAGAAGAGGT TCCCTCCTGC CAAGTGGTAA AATGTTCAAG CCTGGCAGTT CCAGGAAAGA TCAACATGAG
CTGCAGTGGG GAGCCCGTGT TTGGCACTGT GTGCAAGTTC GCCTGTCCTG AAGGATGGAC GCTCAATGGC

45 TCTGCAGCTC GGACATGTGG AGCCACAGGA CACTGGTCTG GCCTGCTACC TACCTGTGAA GCTCCCACGT
AGTCCAACAT TCCCTTGGTA GCTGGACTTT CTGCTGCTGG ACTCTCCCTC CTGACATTAG CACCATTCT
CCTCTGGCTT CGGAATATGCT TACGGAAAGC AAAGAAATTG GTTCTGCCA GCAGCTGCCA AAGCCTTGAA
TCAGACGGAA GCTACCAAAA GCCTTCTTAC ATCCCTTAAG TTCAAAAGAA TCAGAAACAG GTGCATCTGG
GGAACTAGAG GGA'TACACTG AAGTTAACAG AGACAGATAA CTCTCCTCG GTCTCTGGCC CTTCTTGCT
ACTATGCCAG ATGCCTTTAT GGCTGAAACC GCAACACCCA TCACCACTTC AATAGATCAA AGTCCAGCAG

50 GCAAGGACGG CCTCAACTG AAAAGACTCA GTGTTCCCTT TCCTACTCTC AGGATCAAGA AAGTGTGTC
TAATGAAGGG AAAGGATATT TTCTTCCAAG CAAAGGTGAA GAGACCAAGA CTCTGAAATC TCAGAAATTCC
TTTTCTAACT CTCCCTTGCT CGCTGTAAAA TCTTGGCACA GAAACACAAT ATTGTGTTGGC TTTCTTCTT
TTGCCCTCA CAGIGTTCG ACAGCTGATT ACACAGTTGC TGTCTAAAGA ATGAAATAATA ATTATCCAGA
GTTTAGAGGA AAAAATGAC TAAAAATATT ATAACCTAAA AAAATGACAG ATGTTGAATG CCCACAGGCA

55 AATGCATGGA GGG'TGTTAA TGGTGCAAT CCTACTGAAT GCTCTGTCG AGGGTTACTA TGCACAATT
AATCACTTC ATCCCTATGG GATTCACTGC TTCTTAAAGA GTTCTTAAGG ATTGTGATAT TTTACTTGC
ATTGAATATA TTAAATCTT CCATACTCT TCATTCATA CAAGTGTGGT AGGGACTTAA AAAACTTGT
AATGCTGTCA ACTATGATAT GGTAAAAGTT ACTTATTCTA GATTACCCCC TCATGTGTTA TTAACAAATT
ATGTTACATC TGTITAAAT TTATTCAAA AAGGGAAACT ATTGTCCCT AGCAAGGCAT GATGTTAAC
60 AGAATAAAGT TCTGAGTGGT TTTACTACAG TTGTTTTTG AAAACATGGT AGAATTGGAG AGTAAAAACT
GAATGGAAGG TTTGTATATT GTCAGATATT TTTTCAGAAA TATGTGGTTT CCACGATGAA AAACCTCCAT

	GAGGCCAAC	GTTTGAACT	AATAAAAGCA	TAATGCAA	CACACAAAGG	TATAATTAA	TGAATGCTT
	TGTTGGAAA	GAA'ACAGAA	AGATGGATGT	GCTTGCATT	CCTACAAAGA	TGTTGTCAG	ATGTGATATG
5	TAAACATAAT	TCTIGTATAT	TATGGAAGAT	TTAAATTCA	CAATAGAAAC	TCACCATGTA	AAAGAGTCAT
	CTGGTAGATT	TTTAACGAAT	GAAGATGTCT	AATAGTTATT	CCCTATTGT	TTTCTCTGT	ATGTTAGGGT
	GCTCTGGAAG	AGAGGAATGC	CTGTGTGAGC	AAGCATTAT	GTTCATTAT	AAGCAGATT	AACAATTCCA
	AAGGAATCTC	CACTTTCAG	TTGATCACTG	GCAATGAAAA	ATTCTCAGTC	AGTAATTGCC	AAAGCTGCTC
	TAGCCTTGAG	GAG'GTGAGA	ATCAAAACTC	TCCTACACTT	CCATTAACCT	AGCATGTGTT	GAAAAAAA
	GTTTCAGAGA	AGTIC'TGGCT	GAACACTGGC	AACGACAAG	CCAACAGTC	AAACAGAGAT	GTGATAAGGA
10	TCAGAACAGC	AGAGGTTCTT	TTAAAGGGGC	AGAAAAACTC	TGGGAATAA	GAGAGAACAA	CTACTGTGAT
	CAGGCTATGT	ATGGAATACA	GTGTTATTT	CTTGAATT	GTTCAGTGT	TGTAATATT	TATGTAAC
	GCATTAGAAA	TTAGCTGTG	GAAATACCG	TGTGGTTGT	GTTCAGTT	TATTGAGAAT	TTTAAATTAT
	AACTAAAAT	ATTTATAAT	TTTAAAGTA	TATTTTATT	TAAGCTTATG	TCAGACCTAT	TTGACATAAC
	ACTATAAAGG	TTGACAATAA	ATGTGCTTAT	GTTC GATCAAAT	TTTACCTATT	ATGCATTGTA	TATATAAATA
	AGTATATAAA	TGCAACACAA	GACACAGCAA	TGATGGTGA	CAGTCTCAT	ACAATATAT	GGATGAATCT
15	CATAAAATGC	TGAGTTAAAG	AAATCAGACC	AAAGAACATA	TACTGAAAGA	TTCTCTCAT	ATACAAAGTT
	CAAAAATAGG	TGGACCAATT	CATGGTGGT	TTAGAAATCA	GAAGAGAGGC	TACCTTGTG	GGGAGGGGAC
	AGTTTAATGC	CCAC AAGCGG	TAATAAAGGA	ATCCCTCTGGG	GAGTGGTAAT	GATCTGGATG	CTGGCTACAG
	GATGTGTTGG	TTGTAAAAT	GCATTTTTT	ATATCTAGCT	TTTCCATGT	GTATATTATA	CTTCAAAGAA
	GTTCAAGTAA	TAATTCTCA	TGTCACTGTA	GAGTAGCTA	GTTCAGCCC	GCAACCTCT	GGCTTAATCT
20	TGTTTACCT	TAAGCCATCA	GTCATTACA	AGTAGGAAAA	TTCACAGGG	AAGTTAGAGT	ATAAAATCCA
	GAATGAAGGT	TTACTGGGT	AGAGTCTCTC	CATTTCAA	AGCCCGTTA	TTTCTTGATT	CCAGTTCTTA
	AGAAGTCTCA	GCA' TGTGTC	TTTTCATGT	ATCTTACAAG	AAGACAGCAT	GTGCTCTAA	CACCTGATAC
	ATTGTATCTA	CCAC CACTTG	GTAAACAGAA	AAGAACCCAA	TTTTCTTGT	AGGAGAAATT	TGGTGCCTAT
	TTCCTACCAG	GCAC CAATAA	GTGGGACCAA	TAGGTGGGAT	TAAGATACA	GTAGAAAGTA	TTTAAAAC
25	GCCAGGGGGC	AATAGTCTGA	AAATAAGTAA	ATTGGTGTCA	TAGAATGGAA	GTTCACAGGCT	TCTTCTTTT
	TTCCCACAAG	ATC' GCTCCT	TGAGCCCTA	GAGACTTTT	TGTCTGTAC	TGTTTCTTCA	TTCTCATCT
	GCAGAGCCAG	CCCT'GAGAAG	TGCA GACCAA	AGCCAGGGAA	GGCTCTGAA	AGATGTACAA	ATGGAAGTC
	CCTTAATAAC	CTCTGACTGC	TGCGCATAAT	ACATTCTACT	CAAAGAGGG	GTAAACAAAT	GGAACAGAA
	ACAGAGGCCA	GAAATAATGC	TGAACACTGA	CAACCATCTG	ATCTTGCAC	AAATCCACAA	AAACAAGCAA
30	TGGAGAAAGG	ACTCCTATT	CCATAATGGT	GCTGGGATAA	CTGCTAGCT	ATATACAGAA	GATTGAACCT
	GGGCCCTTC	CTTACATCAT	ATACAAAAAA	TAACTCAAGA	TGGAGTAAAG	ACTTAAATCT	AAAACCAAAC
	ACTATAAAA	CCCT'GGAAGA	TAGCCTGGG	AATACCATT	TGGACATAGG	ACCTGGCAAA	GACTTCATGA
	CAAGACACCA	AAAGCAATAG	CAACAAAAC	CAAATTGACT	AATGAAACTA	ATGAAACTCT	TTAGTTGTAC
	AACAGATAGT	TTATCTGTAC	AACAAAATAA	ACTATCAACA	GAGTAAACAA	CCTACAGAAAT	GGAAAATT
35	TTGCAAACT	ATGCATCTGA	CAAAGGCTA	ATATCCAGAA	TCTATAAGGA	ATTTAAACAA	ATTTACAAGC
	AAAAAAATGA	CCTCATTAAA	AAAGTGGGCAA	AGGACATGAA	CAGATGCTT	TCAAAATAAG	ACATTCACAC
	ATCCAACAAAC	CATA TGAAA	GATGTTAAC	ATCACTAATC	ATTAGAGGAA	TACAAATCAA	AAGCATAATA
	AGATACCATC	TAATACCAGT	AGGAATGACT	ACTATTAAAA	AGTCAGACAA	TAACAGATGC	TGGTGAAGGT
	TGTGGAGAAA	AGGGAATGTT	TATGCACTGC	TAGTGGGAT	GTAAACTAGT	TCAGCCATTG	TGGAAGAGAG
40	TGTGGTGATT	CCTCAAGAA	TGTAAAACCG	AACTGCCTT	CAATCCAGCA	ATCCCATTAT	TGGATATACA
	CCAAAAGGAA	TAG'AAATTGT	TTTACCGTA	AGGCGCATGC	ATGCATATGT	TCATTACAGC	ACTATTTACG
	ATAGCAAAGA	CATGGAATCG	TCTAAATGCC	CATCAGTGGT	AGACTAGCTA	AAAAAAA	AATGTGGTAC
	ATATACATCA	CAGA'ATAGTA	TGCAGCCATA	AAAATGAACA	AGATCATCAT	GTCCTTGCA	GCAACATGGA
	TGTAGTTGGA	GGCC'ATTATC	CTAAGCAAAT	TAATGCAGGA	ACAGAAAGCC	AAATACCACA	TGTTCTCATT
45	TATAAGTGAC	AGCT'AAATAT	TGAGTACACA	TGGACACAAA	GAAGGGAAAC	ATAGACATGG	GACCTACTTG
	AGAATAGAGG	GTGGGAGGGAG	GGTGAGGATC	AAAAAGTACC	CATAGGACAC	TGTGCTTATT	ACCTGGGTGA
	TGAAATAATT	TGCAACACAA	ACCCCTGTGA	CACACAATT	ACCTATATAG	AAAACCTGTG	CATGTACCCC
	TGAACCTAAA	AGT'AAATGGT	GGGGGGGTGG	GGTTAAGCTA	CTTGTGTTA	TAATCTGAG	CATTCTATT
	AAAATAAAAT	ATT'ACCTCA	TTAGAGTAAT	TAACATTAT	TAAGCAAAGA	GCCAAGTACC	TTACACACAT
50	GATGTTTAAT	CTCA CAATGA	TCTTAATCT	CATAACAACC	GTCCATTGTA	TGTACATATG	TGGAAATTGA
	GCCTTGAGA	GAT'AAATGC	ATGGGGCATG	CCATTGACT	AGAAACTGG	AGCATCAGGA	TTTAAACTCA
	GTTCTGAATG	GTTTGTAGG	CTTGTGTTT	TCCACATTAT	AGCATGGCCT	GCCATGAAGA	ACAGGTCTT
	TCTGGTGT	GTCTGTGTT	GTTCAGTGA	AGCAAATATT	TATTTAAATA	TTCAAGATAT	GCTGTTAAAT
	TTTTACTCAA	AAA'TTGAGT	ACAGTATGGA	TCTTCTGAAG	CCAAATAACT	CTTATTCAAT	GCTTAGTTGA
55	GAAATTAT	GGAGTAGTTC	TCAATTTTA	TGTAGTTCA	CTGCAAAGGT	AAGTCTTATG	GAAAGATTCA
	CTGTAATT	TTTCCTCAT	TTGGACATCA	GCTTTTCTT	TTCCTCAGAC	CCGCTGAAAG	ATAATTTTA
	AAATAAAAAC	CTTGTGTTTA	TATCAAGTGG	GGACATT	TCCAAATGAA	AACCGTGTAT	TCATTCTTATA
	TGATAAAAATC	AATGTTATTA	TTTTAAAAT	TTGATTAA	AAATCATTAA	AAATAAATT	TCAGATATT
	CCTGAAATT	TACCATCCAG	AGATAATAGT	GCTTAAAGAT	TTGATATATA	GACACACACA	CATATATACA
60	TATATATCAT	CCTTAACATTC	TTTGATAAA	TGTATATAA	GTTCATTA	AAAACCTAGGA	GATTAATGCC
	CTTTGAATGA	AAA'AAATAC	AATGTGTATG	CTTTAACATC	TTGCCTTAC	TTTATAACAT	TTATCACAGC
	AGTCATGAGA	TAA'GATTTA	CATGGTCATT	GTAGTAAGC	TAATAGCTAA	GTGCATGAAC	TCTGGAGCTA

	GCCTCCCTGG	ATTITAATCC	CAGATCTGTC	ACTGACCAGC	TGAGCAATAC	TAGGTAATT	GCTCTTGTTC
	CTTAGTTCT	TCATCTGTAA	AATAGAGATA	AAAATAATAT	CCACCTCAT	GGATTGGTGT	GAGCATTAAA
	TGAGCATACG	TATCTAGGCC	ACTTAACAAC	AATGCCCTCA	CATACTGAAC	ACAAATATAC	GAGCTGTTGT
	CTTATTGGC	TCATGTTTT	CCTACCACCA	AGCCGCATGC	ATGCAAGGAC	CATGTTGGTT	TTGTTCCACA
5	TTGCATCCC	AACCTGGTAT	ACAGTGTGCA	TTCAATAGTT	GTTGACTATT	ATTACTAGTG	GCATTTAAC
	AATATCTGTT	AAA1GAGTGA	AGAAATACCC	ATTACTGCA	AGTGTGCTA	ATATTGATGG	CATAATGGGG
	GAAACTCAA	CTCTGGAGTC	AAACAGGTT	TAAAACCTTA	TTCCCTCATC	CTCAGTTATT	GACGTTTTT
	TTTGGCAGG	TGTCGTGTG	GGACAACCTA	TTGAACCTTT	CTGAATTTC	AGCTCGCAT	ATATAAAATA
	GAGATAGTGA	TTCAATTCTG	CAATGTATGG	ATTTGAGACA	ATTGTGTAAG	TTTATCAATA	AATAGTAGCT
10	ATTTTGAT	AAGTATTACA	TATAATATCC	AGGGCACTGC	TTTGCAATA	CCAAAAGGGG	CACCAATTCTAT
	GCAGAATACA	ACA'AAATGG	TGTCCCTGG	GCAGTGCAGT	ATAGGAACCC	TGAGGGGACC	TACAGTATAC
	TTTATAGITC	ATACATTACA	AATTATCCT	TTATCAGAGT	CTCTCAAGGT	TGGATGTATT	TGAGGTCCAT
	AAGAGCAATT	TAGGATTAAAC	AGTAGCTGCA	GAAACCATCT	GCAGTGTAT	TCTCATTTA	AATCCGCAGGG
	AAAGAAAGACA	GCTATAAACT	TGGGACCTGG	GTTAAGCAT	TTTAAATGCC	AAGTCACCA	TTTCTAAAAA
15	CACAACAAAT	ACCC'AGTGAG	AGAGGGAGAA	GGGAAGTAAA	TGCCTCTGAA	TAAGCAAGTT	AATGTCAGTA
	GTTGTACTGT	ATGCATATTG	ATGAACAATA	GAGGAACCAA	TGTCCAATCA	GATGAGCAGG	ATATTGGCA
	ATAACAAGTT	GCCCTTGAGG	AAAATGATT	TTCTTGGCAA	GTTCTTATC	AGCATTACAA	AGCTAAAAGC
	TACGCTTATC	ATCACTTATA	CTAGCATACC	CTGTTGTGCA	AATGCTGTCT	GTGTTGCA	CTGCTATTGT
	TGATGCTTGG	TGCA-TGAATC	AGGACTCCAG	CCCACAAAGT	TTCCCAGAAC	TTTCTTATGG	CCATCATCTT
20	TAAGTGTCTG	GTGAACAGTC	ATAGTTGGT	ACACAAAAGG	GTCAACCTGG	GGGATGGCTA	GGGTTTGACT
	CAGTCGTTAC	ATTCAATAG	AGCAGGAAGG	GGAAATGGTG	GCTGTGTAACC	TCAGGGAATT	TTGCCAGTTG
	GTCCACCCCC	CTCTCTCTCT	CCTGCTCTGA	GGAAAGTGGCA	CAGCCTAGAA	CAGCACCCACA	GGTGAGAGAA
	ATGCAAACCC	TAACCAGAGA	AGCAGACTCT	TTGCCAGTAG	TAATAGTTCA	GGACCAACCAC	CAGCTTTAT
	TAAAATTTT	AATAACACTC	AAAGTATTGGC	AGAAAGAAAT	AATCTTGGGT	TAACATATAAC	TAGAATATTG
25	ACTCTCCTC	TGTGAAAGAA	TCAGCCAATC	ACATTTGTTT	ACATCAGTTC	CCCTGAAGAA	AAAAATACAA
	CTGATGTTGC	AGCAAGACAA	ATTAAAGCTA	GATGTAATAA	ACTTCCTTA	GCCTGAATG	CTAGGCTAAT
	TACATATTGG	AACTATTTT	TCAGGGAAAGA	ATTGTGTAAGG	GTTTCAGGG	AGAATTCTGA	AGAAAATATA
	GAGCTGAAAT	GATCTTGAG	CTCACTGAAA	CTGCAGGGTT	TAGATCCACA	CTGATACTCG	TTCTATTATC
	ACTGTAATGA	AGGCTGATGG	AATAAGTAAA	AATGTTTGT	ATTAGTATGT	TTTACACTT	ATTGCAAGG
30	CATAAAATAGG	TTAGGTTTTG	ATCTTAATT	AATTCTAAC	TGTATTGTC	ACAAGCTGTG	AGCAGTTTC
	AGGAGTTAGG	TATCTGGCCA	TGACTGATT	TTCAGGAGTT	AATCATCTGG	TAGAAGGGTC	ATACACAATA
	GGAAGATGTG	TGTGACAGGT	TGTGATCATT	ACTATAATCA	CACAGAGAGC	TGTAGAATT	TAGGCTGGCA
	GGGTGGCTCA	CGCTGTAAAT	CCCAGCACT	TGGGAGGCCA	AGGCAGGCCG	ATCAAGAGGT	CAGGAGATGG
	AGACCACCT	GGCTAACACG	GTGAAACCCC	GTCTGTACTA	AAAATACAAA	AAAAAAA	AGCCAGGGT
35	GGTGGTGGGC	GCCIGTAGTC	CCAGCTACTT	GGGGAGCTGA	GGCAGGAGAA	TGGCGTGAAC	CCGGGAGGTG
	GAGCTTGAG	TGACCCGAGA	TCGCATCACT	GCAATCCAAC	CTGGGCGACA	GAGGGAGACT	CAGTCTCAA
	AAAAAAAAAA	AAAAAAAGTC	ATGTTAGATC	CAGAGGGGTA	GCAACTGGG	CTGGGCTGTC	AGTCAACTCA
	GTCAACTCAG	TCAACTCTGC	TCCCCCACAG	GAGATGCCAG	TGATGCATT	TCATGGCCAA	CATTGTCAGT
	CAGCATCATT	GAATTACTCC	TGATTATAGA	GACACAGCTG	CAAACGATT	CCCATTAAAT	ATGATGTTTC
40	TTGCAATGTT	TGGAGGTAC	TCCTTTTAG	TAAGGGAAAT	CCCCTCTTCT	GGCTGCTGA	AAGTTTTTC
	TTTCCATT	AAAAATCGTG	AATTCTTT	TGCAATATTG	AGGTGGTTAT	ATGGTTCTC	TTCTCTAA
	TGTTAATATG	GTGATTTAAT	GGTTAGAAAT	TTCTTAATGT	AAATTCCACT	CATATTGCAG	AAATAAAACCT
	AAACTGAGCA	TGAAGCTATA	TTTTTATTT	GCTTCTATAT	TTGGTTGCTA	TACAGTATTA	TGTTTAAGAT
	TTGTTACAT	ATATTGTA	ATGGGATTGG	ACTATTTTC	CTTCTTGGCCG	ATTTTTATCT	GGTTTTAAA
45	TTAAGGATAT	TTTAGACTTA	TGAAATATT	GGCAAACAA	CCTTGGCAAG	TAATTTTTTG	GGGAATTGTT
	TTGGCTATT	TTGAGTATTA	CCCAATATAT	TTTAATTAAG	TTATTCTTAA	TGTTTCTTA	ATTAACAAAAA
	TTACCTACTC	TAGAGATATT	CTTATGTAC	TCCAGATTT	GTCTATTAT	ACCACTTTTC	TTTTTCCCTC
	GATGAGTGTG	ATAAGATGTT	ATCTATT	TTATCTTCTT	TGATCTTCTC	TTATCCTT	TTTCTATTAA
	CTTCTGAAGT	TTATTATTTT	CTTTTTCCA	CTTCCTTATG	GTTTATTCTT	TCAATTTC	TCTAACTTC
50	TAAGTGGGT	GTAAATT	TAGCTTGCTT	TGCTTTTTA	GGATAAGCAT	AAAAACTACA	AATTTCCCTT
	GTTATTCTT	TGCTGCCACCC	CAAATTGTT	ATATTCTAT	TGTCTAATT	CTATTCAATT	AGAATACCTT
	AAAGTTCTT	TTGGTTTTT	AAAAACTAAC	TTTTAAATT	GACAAATAAA	AATTGTGTAT	ATTATTGTTG
	CACAGCATAT	GGCTTGAAA	TATATGTACA	TTGTTGAATG	GCTAAATT	GCTTATTAAAT	GTATGCATTA
	TCTCACACAT	TTATCATT	TTGTGGTGAG	AGCTATGTGA	CTTTGAACT	TATGAGTTAT	TTAAATATT
55	TTAAATTATT	AAGCATATTG	GGATTAAAG	TAATTACCT	TTTATTATT	AACTTATAAC	AAGTAGAACAA
	GTAACTCTG	ATGATCTC	ATCATTGAAA	TTTATTGACA	TTTGCTTCAT	AGTCTATTAT	ATGGTCTACT
	TTGTTCATG	TTACATCTGT	AGTGAATTG	GCTAATAGTT	GAGTAAAGTA	CACATATGTC	TATGAAATCA
	AGTGTAAATCC	AGAGAAAAAG	AGAAATTAC	TGAATATATT	GTTCTAGGTG	CTATTATATG	TTGTCATGTT
	TAATCCTCAC	CACAATTGTA	TGAGGCAGCC	ATAATTAAATT	CCACTTACA	CATGAGGAGC	CTGAGGGTTA
60	AAAAAAAGC	TAGCTCTACT	ATTGTAAAG	AATGAAGCAA	AGATACAAAT	GAAGGCCAC	ATATCCTATA
	ACTAGATATT	TAACCATTT	AATTCAAGCT	TTAAAACCTGC	TAAATAAAAT	GTGCTCAAT	TTCTATATTG
	ACAGACATAC	CTTCCTAATG	AGCTGGGTT	CGAATTAGA	AACTTTGAT	GCTTCAGAGT	CCACACTGAA

	ATGTGGAGGC	ACA'TAGTGAG	TTGGTCCCCA	GCCTTCAGTC	CACCCACCTT	CTCTTACTA	AATCACCTT	
	CACATACATG	TATC AACACC	CCAGCCTCCA	AGTCAAACCC	CTAAACAAAA	TGGGACACCC	TTGTGCATAC	
	ACAGAGACAC	AGC/CATCCT	CAGGAAAACC	TGGAAAAGTC	CATACAAGTT	CTGGAAGCAA	GCTTGGGACG	
5	GTTTCAGTAG	TGTC-GTCTAT	AAGGGAGGCC	TCAGAAGACA	GGTTTCTTA	ATTCTGTGAA	CTTCTCCCAC	
	AGTAGAAAGG	GTGCTGGAGG	AGGGTCAGAG	TGAGGACTTC	TAAAGCATGG	GTCCTGAGTA	GGGGCCACTC	
	TTGCCCAAGT	CTAAGAAGGG	TACTAGAATA	GCACACTACT	ACTAGATAC	AGAACCCAGA	TACAAGCACA	
	GGTCTTCGTA	AATT'AATAAT	AATAATAACT	ATTACCATTA	TTATACCGAGT	AGCTGTCTT	TATTTAGTGC	
10	TTATTATTG	CCACTCACTG	TTCTAAATT	TTTACATGTA	TTATACAACT	GCCATATAAC	TGCCATATGA	
	GGGATGTACC	CTCA.TTGTCA	CCATTTTACC	GATGAGAAAA	CTGGCATAAA	ACGTTAAAGT	AACTTGTCCA	
	10	AGTTACAGAG	CTTGTGAGAG	CCACAATGTT	GCTCAATTG	CTCTCAAAC	TCAAAGGGAT	GGGAAGGACA
	CCTAAGTCAT	AGAGTCTTTA	AGAATCAGAG	CTAGAAGGAA	TCTTAGATGT	TATCTAGTC	GCCTCTCCC	
	ATTACAGTCC	AAG/GAAGAT	GGCCCTGAGT	TACTTGTAGC	TATTTTGC	TGTGAATTGC	AAGTGAATAT	
	ACATTCTACT	GAAC ATAAAAA	GATATTTAAA	GATATCGCTG	GATATAGGAA	CAGTGGTTT	AAATCTCTAG	
15	GCTTTAACTT	TTCTCAGAAC	AAGAAATCCT	TTTGGTTTT	AATCTATATG	CACATCTGTA	TTTTCTCAA	
	TTATCGGGTA	GTA/AATATA	ACTTTCTTC	TGTAATATT	TTAACCTTA	ATGAGTGTTC	CTCATAATAG	
	AAAAGTTGG	AAA/CATTGC	TATGGGTATA	TACTTCTAA	AGGGATAGTA	ATTCTCTAG	AATATTCTT	
	TAATGCTCCA	GAAGTAATT	GCACAAATTG	GCAAGTCTGT	GCATCATCAA	CTATACATT	TGCCCTGTTA	
	CTCCAAATCC	ACATGAAACT	GATTATACAG	TCAAAGGCGA	GCCCAGTGG	GAGGCATT	TGGAGACTTC	
20	CTGGTACATT	GAGA.CAGGGT	CGGCCAGTCT	CGGTTAGGGT	CTTGGTCAA	ACTGCATTTC	TGAAACTAAA	
	CTCAGATTGC	TTTCTTTAA	GGGGTCAGAA	CTGATTCAA	TCTACATT	AAAAGCCTT	AGATGTGGGG	
	CTTTTCTAT	TCCCAGTCTC	CGCTATTGGT	CTTGTGAAT	CCACAGGCA	TTTGGCCACA	TCCTTGACTC	
	TCTCTTATAT	TAAGAATTAA	ACAGCTAAGT	TCATGCAGAG	GAAATATAAC	AAAGGAGGA	CTTTCCTACA	
	AGATCTTGA	AAA/TGGAAC	ATTGCAAA	GTCATATT	GCCAGAACTG	TTGTTTATA	TTTCCCTTTC	
25	TGAATACTTT	GTACACCTC	CTCCCAGCCA	ACCCCCCCCC	TCCCTGACCC	CAACTAGTCA	GAGACCAAAG	
	CCTTCACAAT	GGTITACACT	TGAACCTTC	TGGCCCCACC	CTCATCATCA	CGCCTGAATA	ATTACATTCA	
	CTGACTGGTC	TCCCCTGCTT	CCGTTTATCT	CCACTCCTAA	ACCCCTGAC	ACCTTAATCT	TCCCAGAATA	
	CCATTGTGAT	CCTCTTCCAC	TCTTGCTAA	GTTCAGGAG	AAACTAGAGT	ACAAACTTA	TAAGCTTAG	
	AGTTGAAAGC	CAC CTTATCT	CTTTTTCATC	CCCAGGTCTC	TGCAAGGCA	GTATAACCTG	TCCAACATCT	
30	CTAACTTCAA	TACCTTTGTC	TTAGATACTA	GACTCTCCTC	CTGGTTCTA	ATTAACCTG	ATCTAGGATC	
	TAATTTTGCC	TCTGAATTCT	GTGCCCCTT	GCCAAGTGT	CTCTCCTCC	TCTGAGCCGC	AGCATCTCTG	
	AGCTTGACCA	CTT/AGCATAG	CCATAGCACA	CACAGCTTA	GCTTGAGTT	CAGGGTGT	ACCTTCCCTC	
	CCCTTCCAGA	TGCIIGGATCC	CCAGGGATAG	GAACCTGCCC	CTTATGTGTC	CATAGCCCC	GGTAGTATGT	
	CTTGCAGTCG	TACATTTC	GCAAATGTT	AATTGGTTAA	TTGAAGACAA	CTGTCCTATG	CCTTAAGCCT	
35	CTCTTTTGTC	TAACCATGCC	TGTGCCCC	GTCATTGAA	AACTATTTG	ATCTATTT	TTCCCTGACAT	
	AGGGGTCAGT	TCCCAGGATG	CTGAAATCAA	GAGACATAGC	TTATTCTCTC	AAAATTGCTT	TCAAGAGTGA	
	TTTGTGTTG	AATTGAGAAC	TGGCTGCTA	CTTTGGACT	ACCCACTTC	GCAAGAGTGT	TTGAAACCAA	
	ATCTATTCTA	AGTA/ATTTTT	TATTCCCTT	TCTCTATGGC	ATTAGACACA	CAGCTCTTT	AAACTACCTT	
	TCGTTATCTA	TTAAACAGAC	ATTCACTAAC	TCTATAGACA	CTGTCAGCT	ATATGAACTT	AGACAAACTA	
40	ATATCTCTGA	GCTICAGTT	CTTAAATTT	AAAATGAGGA	CAATACCATC	TATGCCGGG	GATTAATATGC	
	TATGAGGAAT	GTA/ACCAGA	TGTCAGGTAC	CATCTCTCTA	AAATCCAGAT	AAAATGAATT	AAAAATACTG	
	GCCGAAACC	CTCTCTAAGA	GTTCTAAAAA	TTCTCAGAGA	GCTTAATT	CATGCTCACC	ATAGCACCGA	
	TTTTCTTCTA	AATATTTTG	TTCTACAAA	ATATTTTGTC	CCAATTTGC	CTTTATGGC	TATTTCTTCA	
	TATCCACTTT	CCCAAACCTAA	AGAAGCAGCC	CCTTCACCTT	AAACTCCCTC	TCACAAAGCAA	CCTAAATACA	
45	GGTCTGGGTT	TGTATTCTA	GTGGGATGTT	ACAGAGGTTA	GTGTGATGCA	GAGGAGGAGT	CATGCTGTT	
	AAATCCATAC	TAGT'CCCCAG	AGGCCAGGCT	GCTTCTGCCA	CCCCTACCC	TCCCAGCACA	GAGCTCTTCA	
	GCTTCACCA	TTTCCTAGTTC	TTCTCTCT	ACTTCATTA	CCTTCTCT	TTTTTTTT	CTTCTCATGT	
	GTCACGGGA	GCAGAGAAAA	TTAACCTCTC	TAAGTTTCT	TAACACAGAG	TGCCTTAATT	ACATATTACT	
	ATTGTTTGAG	TTCCIGCCAA	CACTACGCT	GTAGGGTCAC	ACCTGCTATA	TTAGAGGCTT	ATCAAAAAAA	
50	GATAGCTTTC	TCCTAAAAAG	GGATTGGA	GCCTACTAAG	ATAACTGGAT	GCCAAGATAA	GTTAACCTA	
	ACAAACTTAA	TTATTATTAT	TATTATT	ATTAGAGATA	GGTACTTATT	CTGTCACCC	GACTGCAGTG	
	CAGGGATGCA	ATA/ATAGCTC	ACTGCAGCCT	CAAAGCTTG	AGTTCATGCA	ATCCTCTGC	TTCAGCTCCC	
	TGAGTAGCTA	GGACTACAGG	CATATGCTAC	TCTGCCAGC	TACTTTAAA	AAAATAATT	GGGATGGGGT	
	CTTGTGTTAT	TGCCAGGCT	CGTCTAAAC	TTCTGGTTTC	AAGCAATCT	CCTGCC	ACCTCCCTAA	
55	TTGTGAGGT	TACAGGCATG	AGCCACAGCA	CTCAACCAAG	ATTTAAAAAC	TTTAAAAGA	AATCACATTA	
	CTTACTGTIA	TCATCATTAT	GGTTACTACC	AGTGTAAAAA	CAATTGGTAT	TGAAAACACC	ACTACCAGAT	
	CAAGCTCAA	ACCAAGATGT	CAAGTAAATA	TTATTGTCAG	ACCTCTGAGC	CCAAGCCTGC	AGGTATACAC	
	CCAGATGGCC	TGA/GCAAGT	GAAGAATCAC	AAAAGAACTG	AAAATGGCG	GTTCTGCC	TAACTGATGA	
	CATTCCACCA	TTGIGATTG	TTCCTGCC	ACCTGACTG	AGGGATTAAC	CTTGTGAAAT	TCCTCCCT	
60	GGCTCAGAAG	CTCC'CCGACT	GAGTACCTTG	TGACCCCCAC	CCCTGCCAC	AAGTAAAAAA	CCCCCTTTGA	
	CTGTAATT	CCACTACCCA	CCCAAATCT	ATAAAACAGC	CTCACCC	TCTCCCTTCG	CTGACTCTCT	
	TTTCAGACTC	AACTTGCTG	CACCTAGGT	ATTCAAAGC	TTTATTGCTC	ACACAAAGCC	TGTTTGGTGG	
	TCTCTTCACA	CAGACCATGT	GACATTGGT	GCCGTAAC	AGATCGGGGA	ACCTCCCTG	GGAGATCAGT	

	CCCCCTGTCAT	CCTCCTCTTT	GCTCCATGAG	AAAGATCCAC	CTATGACCTC	TGGTCCCTCAG	ACCAACCAGC
	CCAAGGAACA	TCTCACCAAT	TTAAATTGG	GTAAGTGGCC	TCTTTTTACT	CTCTTCTCCA	GCCTCTCTCA
	CTATCCCTCA	ACA'CTTTCT	CCTTTCAATC	TTGCACCAC	GCTTCAATCT	CTCCCTTCCC	TTAATTTCAG
	TTCCCTTCTT	TTTCGGTAG	AGACAGAGGA	AACGTGTTCT	ATCTGTGAAC	CCAAAACCTCC	AGCACTGGTC
5	ATGGACTTGG	AAAAGACAGTC	TTCCCTTGAT	GTTTAATCAC	TGCAGGGATG	CCTGCGTGT	TATTCAACCA
	CATTTCAAGAG	CTGTCTGATC	ACTGCAGGG	CGCCTGCCCTG	GATCCITCAC	CTTAGTGGCA	AGTACCACTT
	TGCCCCTGGTG	GCAAGCACCA	CCTCTCCTGG	GGGCAAGCA	CCACCTCTCC	TGGGGGCAA	GTACCCCCCA
	ACCCCTTCTC	TCCATGTCTC	CACCCCTCTC	TCTCTGGGCT	TGCCCTCTTC	ACTATGGGCC	ACCTTCCACC
	CTCCATTCTC	CCCTTTCTC	CCTTAGCGTG	TGTTCTCAAG	AACTTAAAAC	CTCTCAACT	CACGTCTGAC
10	CTAAAACCTA	AATGCCTTAC	TTTCTCTGC	AATAACCGCTT	GACCCCAATA	CAAACCAAC	AATGGTCCA
	AATAGCCTGA	AAA'DGGCACT	TTCAATTCT	CCATCCCACA	AGATCTAAAT	AATTCTTGTC	GTAAAATGGA
	CAAATGGTCT	GAGGTGCGCTG	ACATCTGGC	ATTCTTTAC	ACGTCGGTCC	CTCCCTAGTC	TCTGTTCCCA
	ATGCAACTCA	TCCC AAATCC	TCCCTCTTC	CCTCCTGCC	GTCCCCCTAG	TCCCAACCCC	AAGTGTGCGCT
	GAGTCTTCC	ATCTTCTT	TTCTACTGAC	CCATCTGACC	TCTCCCCCT	TCCCCAGACT	GCTCTCTTC
15	AGGTCGCTCC	CCGCCAGGCT	GAATCAGGCT	CCAATTCTTC	CTCAGCGTCC	GCTCCCTCCAC	CCTATAATCC
	TTCTATCACC	TCCCCTCCTC	ACACCTGGTC	CAGCTTACAG	TTTCATTCTG	TGACTAGCCC	TCCCCCACCT
	GCCCAACAAT	TTCTCTTAA	AGAGGTGGCT	GGAGCTAAAG	GCATAGTCAA	GGTTAATGCT	CCTTTTCTT
	TATCCAACCT	CTCCCATCTC	AGTTAGTATT	TAGGCTTTTT	TTCATCAAAT	ATGAATACCT	AGCCCCACTCC
	ATGGCTCATT	TGGCAGCAAC	TCCTAGACAT	TTTACAGCT	TGGACCCAGA	GGGGCCAGAA	GGTCATCTTA
20	TTCTCAATAT	GCATTTTATT	ACCCAATCCA	CTCCCAACAT	TAGAAAAAGC	TCCAAAAGTT	AGACTCCGGC
	CCTCAAACCC	CACACAGGA	CTTAATTAAC	CTTGCTTCA	AAGCGTACAA	TAATAGAGTA	GAGGCAGCCA
	AGTAGCAACCA	TAT'TCTGAG	TTGCAATTCC	TTGCTCCAC	TGTGAGAGAA	ACCCCGCCA	CATCTCCAGT
	ACACAAGAAC	TTCAAATG	CTAAGCCACA	GTGGTCAAGC	ATTCTCTACAG	GACCTCCCTCC	ATCAGGATCT
	TGCTTCAAGT	GCCAGAAATC	TGGCCACTGG	GCCAAGGAAT	GCCCTCAGCC	TGGGATTCT	CCTAAGCCAT
25	GTTCCATCTG	TGTGGGACCC	CACTGGAAT	CGGACTGTCC	AACTTGCCC	GCACCCACTC	CCAGAGCCCC
	TGGAACTCTG	GCCCAAGGCT	CTCTGACTGA	CTCCTTCCC	GATCTTCTG	GCTTAGTGGC	TGAAGACTGA
	TGCTGCTGA	TGCGCTCAGA	AGCCTCTGG	ACCATCACAG	ATGCTTTGG	TAACTCTTAC	AGTGGAGGGT
	AAGTCCGTCC	CCTCTTAAAT	CAATGCAGAG	GCTACCCACT	CCACATTACC	TTCTCTCAA	GGTCCTGT
	CCCTTGTCTT	CATAAATGTT	GTGGGTATTG	ATGCCAGGC	TTCTAAACCC	CTTAAAACTC	CCCAACTCTG
30	GTGCCGATTT	AAACAAACATT	CTTTTATACA	CTTCTTTTA	GTATCCCCA	CCTGCCAGT	TCCCTTATT
	GGCTGAGACA	TTT'AACCAA	ATTATTGCT	TCCCTGACTA	TTCTGGACT	ACAGCCACAT	CTCATTGCTG
	CCCTTCTTCC	CAACCCAAA	GTGGCAACTC	CTTGCCACT	TCCTCTCAT	TCCCCCTACC	TTAACCCACA
	GGTATGGGAC	ACC'CTACTC	CCTCCCTGGC	AACAAATCAC	ACCCCTATTA	CTATCCCATT	AAAACCTAAT
	CACCCCTTACC	TGGCTCAACG	CCAGTATCCC	ATCCCACAAAC	AGGCTTAAAG	GGGATTAAG	CCTGTTATCA
35	CTTGCCTGTT	ACAA'CATGTC	CTTTTAAAGC	CTGTAAACTC	TCCTTACAAT	TCCCCCATTT	TACCTGTCCA
	AAAACCTGGAC	ATGCCTTACA	GGTTAGTTCA	GGATCTGTGC	CTTATCAACC	AAATIGTCTT	GCCTATCCAC
	GCCATGGTGC	CAAACCCATA	TACTCTCTA	TCCTCAATAC	CTCCCTCCAA	AACCCCTCCA	TAACCCATT
	TCTGTTCTGG	ATCTCAAAAC	ATGCTTTCTT	TACTATTCTAT	TTGCACCCCT	CATCCCAGCC	TCTCTTCACT
	TTCACTTGG	CTGACCCCTGA	CACCCATCAG	CCTCAGCAAC	TTACCTGGGC	TGTACTGCCG	CAAGGCTTCA
40	TGGACAGCCC	CCA'TACCTC	AGTCAACCCA	AATTCTTCT	TCATCCATTA	CCTATCCAGG	CATAGTTCTT
	CATGAAAACA	CACGTGCTCT	CCCTGCTGAT	CATGTCAGC	TAATCTCCCC	AACCCCAGGA	CTGGCAAATT
	GACTTTACTC	ACATGCCCA	AATCAGGACA	CTAAAGTACC	TCTTGGTCTG	GGTAGACACT	TTCACTGGAT
	AGGTAGATGC	CTTICCCACA	GGGCCTAAGA	AGGCCACCGT	GGTCATTCT	TCCCCCTGT	CAGACATAAT
	TCCTTGGTTT	GGCCCTTCCA	CCTCTATACA	GTCTGATAAT	GGACAAGCCT	TTACTAGTCA	AAGCACGCAA
45	GCAGTTCTC	AGGCCTTGG	TATTCACTGA	AACCTTCTA	CCCCCTACCG	TCCTCAATCC	TTAGGAAAGG
	TAGAACTGAT	TAATGGTCTT	TTAAAAACAC	ACCTCACCAA	GCTCAGCCTC	CAACTAAAAA	AGGACTGGAC
	AGTACTTTA	CCACCTGCCA	TTCTCAGAAT	TCGGGCTGT	CCTCGAAATG	CTACAAGGTA	CAGCCCATT
	AAGATTCTGT	ATGCACGCTC	CTTTTCTTAA	GGCCCCAGTC	TCATCTCAGA	CACCAGCCCA	ACTTGAACTG
	TGCCCCAAA	ACT'GTCTAC	CCTACAACT	TCTGTCTAGT	CATACTCTTA	TTCACCATTC	TCAACTACTT
50	GTAAAATGCC	TGCCCTTTT	TACAGTGTG	ATTTATACTT	TTCCCTCCAA	CCATCATAAC	TGATATCTCC
	TGGTTTACC	TCAAACCGCC	ACCCCTAAGT	CTCTCTTAA	GTGGATAGAA	GATCTTCAGT	GACAAGGTAC
	ACTCCAATAC	TTTCACCTA	ATAAAGCCCT	ATTCTTACT	TTTATATTCA	CTCTTATTCT	TGTTCCCATT
	CTTATGCCAC	TCTCTACCTC	TCCCCAGCTA	TCTCCACCAC	ACTATCAATC	TCACTCACTC	TCTCCTAGCC
	ATTCTAATC	CTTCCTTAAAC	AAACAATTGC	TGGCTTACA	ATTCTCTTT	CCTCCAAAAT	CACCGAGTCC
55	TCAATTACT	CACTGCTAA	AAAGGGGACT	CTGCATATT	TTAAATGAAG	AGTGTGTTT	TTACCTAAAT
	CAATCTGGCC	TGGTATATGA	CAACATAAAA	AAAACCTCAAG	GATAGAGCCA	AAAACCTTGC	CAACCAAGCA
	AGTAATTATG	CTGAACCCCC	TTGGGCAC	TAATTAGATG	TCCTGGGTT	TCCCGATTCT	TAATCCTTAA
	ATACCTGTTT	TTCTCTTCT	CTTATGCAGA	CCTTGTGTCT	TCCATTAGT	TTCTCAATT	ATACAAAACC
	GTATCCAGGC	CATCACCAC	CATTCTATAC	GACAAATGTT	TTAAGGGAGG	AGACCACCCC	TCATATTGTC
60	TTATGCCAA	TTTC'GCCTC	CAAAGAAAAGA	AGTAAAATG	AAAAGGCAGA	AATGAAATCC	ACAGGCAGAC
	AGCCTGATGC	CACACCCCTGG	GCCTGGTGT	TAAGATCAAC	CCCTGACCTA	ATCAGTTATG	TTATCTATAG
	ATTACAGACA	TTGIAATGGAA	AAGCACTGTG	AAAATCCCTG	TCTTGTCTG	TTCCCTCTAAT	TACCAAGTACA

	CGCAGCCCCT	AGTCATGTAC	CCCCCTGCTTG	CTCCCCCTGC	TTGCTCAATC	AGTCATGACC	CTCTCACGCA
	GACCCCTTA	GAG'TGTAAAG	CCCTTAAGAG	GAAAAGGAAT	TGTTCACTCG	GAGAGCTCGG	TTTTGAGAC
5	ATGAGTCTT	CCAATGCTCC	CAGCTGAATA	AAGCCCTTCC	TTCTTAACT	CAGTGTCTGA	GGGGTTTGT
	CTGTGCTTG	TCCIGCTACA	GTTCATCTA	ACAACCCCAT	AATATCACCC	CTTACCAAA	AATCTTCCCT
	CAGCTTAATC	TCTCCCACTC	TAGGTTCTCA	CGCCACCCCT	AATCCTGCTC	GAAGCAGCCC	TGAGAAACAT
	CGCCCGTTAT	CTCICCACAC	CACCCCCAAA	AATTTCACT	GCCCCAACAC	TTTACCACTA	TTTCGTTTTA
	TTTTCTTAT	TAATATAAGA	AGATAGAAAT	GTCAGGCCCT	TGAGCCCAAG	CCTGCACGTA	TACATCCACA
10	TGGCCTGAAG	CAAGTGAAGA	ATCACAAAG	AAGTAAAAT	GGCTGGTTC	TGCCCTAACT	GATGATATTC
	CACCATTTGT	ATTGTTCCT	GCGCCACCTT	GACTGAGGG	TTAACCTTGT	GAAATTCCCT	CCCCTGGCTC
15	AGAAGCTCCC	CCATGAGCA	CCTTGTGACC	CCCACCCCTA	CCCACAAGTG	AAAAACCCCC	TTTGACTGTA
	ATTTTCCACT	ACCCACCCAA	ATCCATATAA	ACAGCCCCAC	CCCACCTCCC	TTTGTGACT	CTATTTTGG
	ACTCAGCCC	CCTGACCCAC	GGTATTCAA	AAGCTTCATT	GCTCACACAA	AGCCTGTTG	GTGGTCTCTT
	CACACCGACA	CGCGTGATAA	TTATTATATT	ACTTTAACT	AAAACCTTT	CAGAGTCTCG	CAGGGAAGGC
	TGTATATATC	TCATAAAATG	TTGGGGCCCA	CTGGATCAGA	CAAGGCCAC	AAGGCCAAAG	GGAAGTAAAG
20	ATCTCATTAT	TTCTCCTAAT	AATTTCCTG	TCCTTGTCA	TAAATGGTGG	GTAGGCTGTT	ATGGTGATGG
	CAGATTTC	TTCCATAAAAA	TGTCCATAAT	AGGACATTG	AACAGAAGGG	AAAAATCAA	TTGCTGAAGT
	TGAAAGAGGG	CAA'GCAAAG	AACTTGGAG	AAAGAACTGT	ACAGAGAAGT	CAACTGGCAG	ATGGGAGGAA
	GTAAAGGGGG	AAAATATAG	ATGTCTAAAG	AATACATT	TTCATTTCC	ACAGTCAAT	TTGGACAAGA
25	AGCCTCTTC	TTGTTCTTT	CTATTCTCAT	TAAATCATTA	GAGCTCAAGC	AATCCTCTG	CCTCAGCTTC
	CCGACTAGCT	AGGACTACAG	GTATGTGCTA	CTATGCCAG	CTAATTTTT	AAAAATTAGA	TTTAATTG
	GTGAACATT	TCTGTAGGAA	ACTACAAATA	TACAGCCAG	GCACATTGAT	CTTGGGTGAA	CAAATCAGAA
	GGAATGAATA	ATTCTGTGTT	CCTGGGACTC	TGACAATTTC	ATGAACTTGG	TACTCTGAGT	AAAGCATAGG
	AGGAGTTATT	TCATAAAATG	TGGAGCACAA	TCATGTGACA	AAGATAATGG	GATCCCCATT	TCATAAATAA
30	ATCTGAAGTT	CAGAGAGT	AACAACTGGC	CAGGGTCACA	TCACGGAGAC	AGAGGCAGGG	TTCCCACTGA
	TGCCTCTGAC	TCCCCTGCTCC	AGGCCCTTC	TCCTCCCGCA	AGCAGAAGTG	CAGGGGCAG	AGCTGACCC
	GTGAGTGAA	AATCTGAGGG	CTGAGTCTC	ATTGGAACAC	AAGTGAAGA	CTTCTGGCT	TCTAATCTCA
	GGATAAGGAC	TCAGAGCTCC	ATCTGTTCCA	GCCTTAGGAT	AAGAACAGA	ATCTTACACC	ATGAAAGCAT
	GAAAGGTAAG	ATT'GAGTGA	GGAAAAAA	AAAAAAAGTC	TGTGTTTCAG	ATTAGTTCA	CAAAGCAGTT
35	TCATACTTAA	GGTACCATCA	CAATAACCT	GTGGGGTAAG	CAAGGCAAT	TTCATCTTG	TTTATGGC
	ATAGGAAGTA	AGTCTCAGGG	AGGTTAACAC	CAAGGTTTCT	GGAGAATTIT	ATATTATGAA	TCTTGATTIA
	TGGGATTACT	ATTATGTAAT	TCCTAAGATC	ATATAGGAAT	CCTAGAGCTT	GAATATAGAA	CTTTATTTT
	AAATCTATAT	ACA'CATATAAT	TACAAGGAGT	AGTGTCCATT	TGGGTTCCCT	GGCCCTGATG	TGTTAGTGG
	ATAAACATT	TTGICAGGGT	TGCCATGTGT	GTCTGTGAC	GTGTCACTG	TACACCTCCA	GGGGATGTAC
40	CCTAAACCAC	ATGATATGT	TTTGCACATC	CAAGATTAC	AGTGTACTAT	AGGGAGAACAT	TTTGCAACA
	GCTTTGCTA	TAATACAGAA	TCTGAGATGT	CTTGAGAAA	GGAAAGTGT	ATCATTACCA	AAAAATTATT
	CTCATAATGT	GTGCAAAATT	GTATGAAATC	TATATTGGCC	ATGGGACAAG	GAGGTATTTC	CAGCTAGCTT
	CTGAAAGGGC	TCTATTCTCT	CATAAGAATT	CAGCTGTTGA	CATTAGGTGA	TATCTGCCA	GGTCATCAGA
	TGCCATAGAG	AAA/GAGGGT	TGCTGAAACT	TATATCAGCA	GTGCACTGTA	TGCTCTTCT	GATTATTG
45	AACATTCTATT	TATTGAGTGT	CAAGTAATGC	ACTAGATACT	CCAGGGATCT	GACACAAACT	CTGCCCTGAA
	GGAGCATGTA	ATCTCACTGG	GGAGAAAACA	AAACATATGA	TAATTTCAAA	ATAACAAACT	AGGCAAAC
	GTAAACACTT	AAAAGCAGG	CTTTATTCAA	ATGAAAATT	GCATGTTACA	GGGTAACTT	TCAGTAAGAA
	GCCAGGAAGA	GGAGCTCATC	ATGGGTGAGA	TTAGTAAAGG	ACTAGTTATA	AAAGAAGTGG	TGGGGTTGAG
	GGAGGCCTGA	GATGAAATT	AAAGAATATG	TAGAATCTAG	GTAAGTGGAT	AAAAGGCTG	GGGGCAGGGGG
50	AAAGGAGAGC	ATTCTATTGT	GAATCAAGGA	ATTCTCCAC	CTGTTTAAAC	TCTTCCATAT	GACATCAAAG
	AGATGTCACT	TGCACTAGC	ATTCAGTGA	TGTTTCTTA	CTAATAATAT	CGTGATAAAA	GAAACATTGA
	CTATAAGAAA	TAGGAATGGG	TCTCATAAA	GGAAACAGCA	AAACCCCCAA	ACTAAAAAAC	AGCGCAGGCT
	ATTCTCTCT	TCTCCTCTT	TGCTGGCAC	TCATGAGATG	CTAGGTGTTG	AAGTCAGCCA	ACTGAAAAG
	AGAGGTGGCT	GAAGAAGGTG	GGGAGGCTGA	AGCCAGTTA	ATAGGATGGT	CCAATTACA	GACGGCGAGG
55	CTACAGTGCA	AATAGGACTC	TTTCAACTTG	AGCAGGACCC	CATTACTTCA	CTGGAGTTAG	AAAGAAAGGA
	GAGCGTAGAC	TTTTGTAACT	TTCTATAAGA	GTGTACCTCC	ACAGTATACA	GAAGACGACG	TGAAATTG
	TCTGCAAGAA	AACTGAGTCC	ATATTCAAT	ATGTATCAA	TTTGCACITC	ATTAGAAGT	GTCTGTCATC
	AAAGTACAGCA	CTGATATTGAA	ACTGAAAACA	AGAGTCAAGA	AAGAGCAAAG	TCAGCCATCT	TTATATTCCA
	CATGAATCCT	TTCCCTTTAT	GGTCTTATT	GTTTCTCCTC	AGAAAAGACA	AAAAGCTGAG	CTGTATAAAC
	ACCTGTGGC	TGGCIGGGTGA	GGGATAAAATG	AGGGCGAAA	TGGAAGCTGA	AGGAACGTGTT	GGTCAGGTAG
60	AAATCTCCC	AGATGCACTG	AAGGAAACAC	ACTTCATGTT	TGACGTAGGA	GGTGCCACCA	CACAAAACGT
	TTCATGGAAG	GAT' TAAAGG	ATCTCATGAT	TTTGTGTTATT	CCAAGAATT	TCTTTCACCA	AGGGCGATT
	AATATGGGTC	ATTCATACTG	AAAGAAAAAC	AAAAGATAAT	AAGAGTTAA	AAATTGCAA	ACTTGGAGTG
	TTAGTAGTAA	AGGTAAATAT	TCATTAGAGA	TGAGAAGAGG	AGCAAGGAAA	TGCTTCTAGC	TGGAAATCTC
	AGACAAGAGG	CCA'GGCTTTA	GGAACCTCTG	AAGATGAACA	AATGTAAGCA	AACCCCTAGTA	GCAGCACTTC
65	TCAGATTTC	ATGIGCTTAC	CACTCAGAGA	TGGTGTAAA	ATGCAGACTC	TGATTCACTA	GGTCTGAGTG
	GAGCCTGAGA	TTC'GCACCC	CTAACAAAGCT	CTTGTAGTGT	GCTTATGCCA	CTGGCGCACA	GACCCCACTT
	GGAGAAATT	TTG'GGTGCA	TACGGTCTTT	GTCTCCAGAT	CTAATGAGTC	TGAAGGACAG	TGTAGATTGA

	TTTTTTAAAT	TTA1GTTTAT	TTTAATTAA	TTTAATTAA	TTTATTATT	TATTATT	TGAGATGGAG
	TCTCACTCTG	TTGCCCGAGTC	CGGAGTGAG	TGGCACGGAG	GCAGCTCATG	CAACCACGGC	CTCCCTGGGT
	CAAGCGATTC	TTCCGCCCTCA	ACTTCCTGAG	TAGCTGGGA	TACAGGCACG	TGCCAGCACA	CCCAGCTAAT
5	TTTTGTATT	TTAGTAGAGA	TGGGGTTCA	CCACATTGGC	CAAGCTAATG	TCAAACCTCT	GACCTCATGA
	TCCACCTGCC	ACGGCCTCCG	AAAGTGCAGG	GATTACAGGC	GTGAGCCACC	GAGCCAGCT	GTAGATTGAT
	TTTGAGCACT	GGAAAGTCAA	GAATTAGAA	GGCATGCTTA	AATGAAAAGT	GAAATTGGAG	AAAATTAAA
	CTCATGAAAT	AGTGTGGTT	ATAAAACTCGT	GATAAATTAT	ATCCTGGGAT	ATAATTAAAT	GAGATGGTAA
10	CACATTAGT	TTAFAAGAAAT	AAGTGACACT	TTTTTGTGT	GACACAAC	TCTTATTCTT	GGAAAGGACA
	AGGAGAGAAT	GAAATATGGT	ATGCTTCAC	AGCACCTTC	AAAGGGAGAA	CCAGATTCTG	AGGAGCTGGT
	CTCATGATGA	ACTCTCAGGG	TAAACCACAG	TTCAGCAGCT	GCAAAATGTG	TTGCCAAAAT	AGAGACAAAA
	AAATGTTTCT	GAAACAAAAA	TTTCACATAT	GCCCTCTCT	GAGGTTGGCA	TCATATCTTC	CTGTGTATCT
	TGGGTGAGC	TTCTIATCTG	CCAGAATT	GACAGTAGAA	ACCAATGAG	GTGATAAAC	GAGTCATT
15	GCAGAAGAGT	CAAATAAAC	CAGCAAGAAA	TGAAACCACA	AATGCCAAC	GAGTCATTCA	TTCACCATTC
	AAAAGCTAAT	AGAAATGAAC	ACAAACTAC	ATGAAAATTC	ACCCAAGAAC	TTAAAAAAA	AAAAAAAGGC
	TCATGGTGT	TAGTGTGATA	GTATTCA	TACCTTGAC	TTGTTCTAA	AACACACCAT	ACTTCTACCC
	CACCCCTCCT	CAGTGCCGTC	ACACAATGGT	TTCAAGTGTGA	AAAAAAAAC	CACGTTACTG	GAAAAGGAGG
	GTGCCTGGG	CTTCACACTC	TAAGCTGGTA	GTCAAGGGTC	TTGAGTTCTA	AAAGCATAAC	CGTTAAGAGC
20	ATGATTCTG	GATCAAATG	AGTATGGATC	TCAGCATTGC	CATTATTGT	GACCTCAGGC	TATTTATT
	CTCTGTGCCT	GTTCCTTTAT	CAGTAATGAA	GATGTTCATA	GACCCCTTC	CCACAGACTT	AAAGGCATAT
	TTCATGATTT	AAGACATGTA	AACCAATTCA	AACAGTATAC	AACATGGAAT	TAATATTGTA	TAAGGTTA
	TGATTATTGT	AACTAACTCT	GTCACTTGCT	CAAGGCCTAT	AGAAAACCTA	CTTAATTAGT	TCAACTACAA
	AAAGAGTTG	AATGTGATAT	CCACCAAGAT	CATATT CAGA	CCTAGAAC	TGTGATTCTT	ATGAATTAAAT
	ACAGCCTTGG	TCAATAAAATG	AGAGCTGGC	AAATAATTCT	TCTTGTCTAG	GCCTTCTAG	ACCATCTGGT
25	GAAGCATTCA	AGACTTATGT	TATTGGGGCC	AGCCTCCCT	TCCAAC	ACTCCACAAAC	TCCTCAATAA
	GCCATGGGCT	CAAGAAAGTT	CTGCTCAGT	GCCCCCTGAAA	AATGCTTC	ACTGTCACT	ACCATACAC
	TGCTTACACA	ATTCCCTCC	TACAGACTGC	CTTCCCTTCC	TGCTTCTC	CATATACCA	AATCCTATCT
	ATTCTTCATA	AGCAACCTTC	TTTATAACAT	TTCTTATAAC	CACCAAGCA	AATGACCTT	TCCTCTTAA
	ATATAGCAC	CATTGGCCAT	TACCATGCTC	TGCTTGTAT	TTTCTGATT	TTTTCTTTC	TATATTCTG
30	TCTTAACCTC	CCACCTAGGT	AATAATTTC	CTGAAATCAG	GGACCAGGCT	GACTCCTCTT	GCTGTCTCAA
	GAAAGCTTAG	CAGTTTCAA	CACAAAATG	TTCAATAAAC	AACTATTAA	TGACTGATTA	AAAAAAATCA
	GTGAACCATT	AAAATTAATA	TAGCAATTG	CTTAGCATGG	TAATTAGCT	TTTGTCTAATA	TCCTTCCAGC
	CAGTCTCTCC	TCCTGTGCC	CAAGGACATC	TTAAAAAAA	AAAATCTAGT	TGATCTGCTT	CCATCTAGTG
	GCAATTAAA	CAGGTGGGTT	CGGTAGCCAG	AAAACAGCTC	TGGGTAGATT	GTGCCAGAAA	ATACTTTCAC
35	TCAGTAGGTG	CGAGTTTGA	AGAAATCTTC	ACATCTGTGG	TTTCTCTGCC	ACAGACATAG	GGAGACCAGC
	CCAGAGAAAG	AAGCTTTCC	TCACTAGACT	CCATTGAC	TAGTAAAGAG	AAGACAGAGT	AATTAAAAG
	AATAAAAAGA	ACCTCCACTG	ATCGTACATC	CTCATCCAGT	TACCCCTGCC	CCACTTCTCC	TTCACAGCCA
	AACATTITAA	AAGAGATGAC	TGCTTGTCT	GTCTCTACTT	TCTCATCCTC	AGTAATGTC	AATGCTTGGC
	CGTCTGACCT	CTGCTTGTAT	GTCTGCACTG	CAAATAGTCT	CCCCACTGAC	ACCCCTGTG	CATCCAGGGG
40	ATACTTACTG	GTTCCTTGG	CAATGTTGA	AACCGTCCC	CTTTCTTGT	TTCTTGGCA	TTCATTACCC
	CACACTCTT	CTCCCTCTCC	TTCTCCCTGC	CTGGCAACAT	CTTTCTATT	CTCTTCCCT	TAGGTGACTT
	ATTAGATAAT	GATGTTCTC	TGGCTCCAT	ACTCTCTCCC	AGGTCTCTT	CCATTCTTAA	AGCACTCACA
	CCCTCCCTGG	ATGATAGTAC	CCACTCCTGA	GATGGCAGTT	ACCTCTGAA	ATGTGAGGG	CCCAAATCCA
	CTTCTCTGC	CATAGCCTCT	GTGCTTGG	TAGGTCCAAT	GAGCCACAGT	GAATGATGT	CATACACCA
45	AAGCTCAGTA	CAAIACTGAA	CCCAGTATCT	TTACCTCCAA	AACCTCTCAT	TCTTTATGT	TCCCTCTCA
	GAAGTAAACA	GGAATACCAT	CCGCCAGTTT	CCAGGTGAGA	AAGATGATAA	TTTGATTCTT	CTTACTACTA
	TTTAGCCAAT	TAACAGACAC	ATTCAATTAA	TATCACCTCC	TCTTATTTC	TGAACCCATT	CTTACTACTA
	GTTCCCTAGA	CAGGCGCCAT	CGGTTTAAT	CTAATAACTG	CAAATGCC	CAAACAAAGT	CTCTTGAAT
	CCAGGCTCAC	CTGCTCTCC	CACTTGCCAT	ACTGCTCTGC	AGGGTGACCT	TATAAGATGC	CAGAGGTAAG
50	GCTACTCACT	GTAAIAACCC	CTTTAGTGT	ATCCAAAAG	ACCTCAAGAT	AAAGCCATA	TCACATGGCT
	TATACATTAG	TTTATGATCT	GGCTTCTGGT	GCCTCATT	TCCCCACTT	TTCTTGTCA	TTCTAAGCAA
	TGGCCCATAC	TAACGTTGTG	ATTGGTAGGA	TGGTGTGCCA	AACCAGCATC	CAATCCCTTC	AGAAATCATC
	TCACCTCATT	TCTAGCATTT	TAAGAGAAGC	TCAGTTGTCC	AGCTGGGTAC	TGAATATGTC	ACCAAAGTCC
	TCCTTTCATA	GTAAATTGTTA	CTTAAACTCT	CCTTCTAA	ATTCCAGAGC	AAGTCACTAA	ACCCTAGATA
	CTGAGAAATA	TTTCTCCATC	TTCATTTCTG	CCAGGTGGGC	CATCAACTT	CACATGTC	CATCTCCTCC
55	CACTGTGCTA	TTTCCTCCAGT	AGAAGAAATT	TGAGCTCAA	GACCAAAC	AAAATACTT	GCCTCTTGG
	GGAAAGCTGTA	GGTAGAATT	ATGCTCC	TCTTCCCAC	ATTCTGAAG	GACAATGCCT	GTTAGAGCAA
	TTGAATGCAA	ATAGTCATT	GAATAAGCAT	TTATTCA	CTCAATAAGT	GCTTGTCAA	TTGAATATT
	CTTAAATAAT	ATATTTAAGA	ACAAGAAGAA	CACACCACAA	TGTTTTAAC	CCTCAGAAA	AATTCTGAGG
	TAATCAGAAA	AACTCTCCCTT	TACATAAAACT	GCCCTTTCT	AATAGGGATT	ACTTGTTCGT	TCATTCAATT
60	ATTCAGCTCC	ACTAGCACCA	AAAAGCACAG	CTCTGAAAGG	AAGCTAGTAG	ATTATCACC	TTATCTGGTC
	ATTGGATGA	GGACCCCAGG	TAATAAAACT	ACTATGGGT	TAATGTGTCT	AGCTAGAGCA	GGAAGTAAC
	TAAGGAAGTA	GAGAATGAAT	CAGCAGATGT	GGAAAACCTC	CGCCACTAAT	AAAACCTTACC	TTCTTGTGA

	TTTCTTGCCT	GAAAATAGAA	AATAGAGAAA	AGGCATTAGC	AAAAATTAGA	CAATTAAAG	TTTTCAAGT
	AAGGGAGAAG	GAAGACTCCC	ACTCTCAAAA	CTGCTTTTG	AAGTATATTA	GGTATTGTT	AGGTGGACCC
5	TATCTGTGTC	AAACGAGATT	TGAGGAACATG	GCTTAATAAA	CAGTGGTAGA	CACTAATACA	GAACAGACAT
	GTTGATGCAG	ATGCCTCTG	AGGTTCCATT	CCATTCTCCG	TGCTACTCAA	GAAGACAGAA	TTGCTAAATT
	GCCTGGTGGC	AAGACCCAAT	ATGTCCATT	AAGTGTATAT	CCCTTCCCAA	TCTGCCATCT	CATCCTACCT
	GCAGATTCTT	CCCCITGAGGG	ACAGCTGCTA	ATACTGTAAA	ACTATGTGCC	ATTACAGCTC	ACAGCATCAT
	CTCTATGAGA	ATCCACAAGA	GAATTTCACT	TTGGTCTTGT	TGGTAGGAAT	TGTGAGCCT	CATCTGAGTA
10	ACTAATGTGT	TTTATCTTA	CAAACACAAG	GAATATCACA	TGGTTCTCT	TTGACTGGCT	GTAAGGAAAC
	TCAGAGCTAG	ATCGAGACC	CTCTCTTAC	AAGTATATAA	AACTTTGTGA	CATACATTTT	TGTGCCATAA
	CTTCACACCTT	GGT'CCAAT	GATTTTGTA	CCCTAAGTTT	AAATTGGCT	TTCTTTTTT	TTTTTTGTA
	CTCAATAAAA	CATC'AAGCTC	ATTTATTATT	GCGAAGAGCG	AAACAACAAA	GCTTCCACAG	CGTGGAAAGGG
	GACCCGAGTG	GGTTGCCAA	ATTGGCTTCT	TTTCTTACT	TTTAATTAA	TTTAATTG	CTATACTGAA
15	CACATTTGT	ACTGTTCTCA	CATTCTTTT	AAAAAAAGCA	GAATATAAA	AAGTAGATAA	CTTAAAAAAA
	ACTCTTGTAG	CAGA'AAGAAT	CATTGGGAG	GCAATATAT	TCAGTGGCTG	TAAAGTGGCA	TTCTAGAAC
	ATCCTACCCA	GGTGAAAGCC	CTATTTGCC	ACCTGTAGTG	TAGTGTGTAT	TTGAACAGCT	ACTTTCTTT
	CTAAACTACA	ATT'CTTCAT	CTGTTAAAGA	GGCATATAAA	TTGTATCATC	CTCATTGGGT	TGATAAAAATA
	AAATATTTC	AAG'ATTAG	TTCAGGTCT	AGCACGTAGA	CAGTGTGCA	TTACTGTTTT	AATCCTTAA
20	AGTATTAAG	ACT'ACTATT	GAAATCTTT	CTTCAAAAT	TCAGCCTGCT	GATGACCAAG	TGCACTTGAG
	CAGGGGAAT	CAAATCTGAA	TTAATTCAG	ATTCTGGTTA	GCTTCACATA	AATTTTTT	TTAGGGATGA
	TGAACCTAAC	AGCAATAGAT	GAGTAAGAAT	CTGTTCTAC	TGAGAGAGTT	TCATTTGAA	AAAAAAGGAA
	CTAAGGGGGC	ATG'GTTCAG	TTTCATGCC	TGGTCTAAC	CTGTTGTTG	GTTCTGGTGG	GAAATTCTTC
	CAACCGAGGA	AAA'AACCACT	TCACAAATCT	GAAGACCACT	GATTTTAGAA	GATGATCTG	GACTGGAGTC
25	TAATCTCTGA	CTC1GGGTCC	TGCTGATATG	GTATTTTGA	GATTGGCCT	AAAACATCAT	TGCCCTGGTT
	TCCTTATTAA	CCAAACAGGG	CCAATGGTAG	TGACTAATCA	CTGTTCTTA	ATGCCTGGTG	CACAAAATGT
	GTCTAGATGA	GCCCATGCAC	AAGGACACAT	GTTCTGGAA	AAGTGTAGA	GTCAGAAAGAT	AAAAGAAAGG
	AGGGAAAGTC	TCCATACTAA	GACTACTAGG	GCAGGGGACA	TACCATGTC	TAATAGTTA	TCATCTGAGG
	ACAGAAGAAT	AGG'GTGAAG	GCTCTAGTCA	CTTCATTGGC	CTCTCTCT	CTCTCTCT	CCTGTGCCCT
30	TTTCTAACT	ATTAGAACCC	AAAAAGCCTA	TAATTCTCT	ACACACACAT	AGAGATTAT	GTGTATATAT
	ATACATATAC	ACAC'ACACAT	AGACACACAC	ACACACCTAA	ATTAGCTG	GGAATGTAGC	GACTTTTAC
	TTTTATCCTT	GTAAATGCCA	TTAACTATAT	TTTGTCTTAG	GGACCAACCT	ACAACAAAAA	CATTATTTCT
	ACCATTGCCT	CCATAGGAAA	AATACTCTC	ATGTTTAAA	TTTATAATG	AAGACTTTT	TCTTTGGAAA
	GCAGAAATCAT	TTG'AAAGTTG	GTGAAAATGG	AAGATGTGTT	GCTGTATGG	CTTACTGCAG	CCTTGACCTC
35	TTTGAGACA	GGGCCTCACT	CTGTTGTGGA	GTGAGTGGT	CTGGGACTAC	ATGTGCATGC	TACCATGCCT
	CTGGGTCAA	GTGATCCCTC	CACCTCAGTC	TCCTGGGTAG	TGTTGCCAG	GCTGGCTTG	AACTCGTGGG
	GACTAATTTT	TTG'ATTTTT	GTAGAGATGT	GGTTCGCCA	ATTAGAGGTG	ACAGCCAAGG	TGCCCTGGCCC
	CTCAAGTAAT	CCTCTGCTC	CAGCCTCAA	AAGTGTGGG	AGCTTCTAC	CAAGCCAGTG	ATCTTTGGG
	ACAGATGAAG	ACTATTTAAT	GTATCTTAA	AGATACCTA	CTGCCCCITA	TCTGTTCCT	GTITGCCCA
40	GCTCTGTTT	TCTTGTGTTG	CATAACTGTA	ACTAGCCTAA	TCTTGTACAG	AAATGACTCC	AAGGTAAAAA
	CACTGATTCC	CACAGCAGTT	TTCAAGTTAT	CGGTTTGAGA	GGACCAACCT	ACAACAAAAA	ACCCCTCACT
	ATTTAAAAC	AACCCCTCTA	ATTTTTTAC	CCTTGTCTAT	AAACAGCCT	TAGCCAGCTA	GAATTGGAA
	ACATGCAAAT	GAG'TTGATT	CTATTCTTT	GATTCTACAA	ACACTTATTA	AAAGATTAA	ATAGCCACCT
	ATAAATAGCT	TCCATATTAA	GGTGAATTAC	AGCCCCAAAG	TCCTTAAAT	TATTAGACA	TCGCCCAAGG
45	TATCCCAGGG	GGCAGTGTGT	AATAACCCAC	CCTGTTCTCT	ATCCGTCACT	TCTGCCATCA	GTGGTTGGAG
	TAGGAAGAAA	GACAGGACAA	CCGGGGTCAA	GATTGAAGT	CTCAATGGAA	AGAATAATCA	GTAAATGGAC
	AAAACGTCA	TTCCTCTTTT	GCCTTAATGC	AGTACTTGTAT	ACTTATACTT	AGTACTGTAT	AGTACTTAGT
	ACTGTATAAT	ACTATAAGAT	AGTGAGATT	AATCAGCACA	GAATTCTAA	TAGCAAGGGC	AGAGACATT
50	AGATAAGATCA	GAG'GGCACG	CAATTAGGGA	CTGATAAATA	ATATTTTGT	AATTGCCAGT	GTAAATGGAC
	AGGGGCAAC	CTT'ACATAC	CATATTCACT	GAACAGAATA	CGTACTAAT	AATTGATGG	AAGGAAAATT
	AAAATGACAA	TCACTGAGC	CCACAGAAAG	GCAACACAGA	GCAGTTGGTT	AGCAATTGTT	TCGAGATCAT
	CCCTGAACCT	GAAACAGGTA	TATCTTTTT	TTTTTTTTT	TTGAGACAGA	GTCTCACTCT	GTCACCAGGC
	TGGAGTCAA	TGG'GCGGTC	TCAGCTACT	GCAACCTCCG	CCTCCCGGGT	TCAAGTGATT	CTTCTGTCTC
55	AGCCTCCGA	GTAGCTGGGA	TTACAGGTGC	CCGCCACCAC	GCCTGGCTAA	TTTTGTATT	TTTAGTAGAG
	ACAGGGTTTC	ACCATGTGTT	CCAGGCTGGT	CTTGAACCTGC	TGAGCTCATG	ATCCGCCCGC	CTCGGCCCTCC
	CAAAGTGCTG	GGAT'TACAGG	CATGAGCCAC	CACACCTGGC	CAAACAGGT	ATATCTAAA	AGCTGCCCAA
	TGTCCATGAA	TGT'ACAGCC	TTGAATGGTT	CTTCCAGGTG	AGTTGGCCA	AATGTGGCAC	CATACACCCA
	AGGCCTGCTG	CAGGTAGTGT	GGTTGCTCAC	ACTTTAAAGC	TGAGACACAC	TCATGCCCTA	AGGTAAGGG
60	AGTGATAATC	TGGGCAAGCAG	ATGTTAACTT	CTCAAGGCA	TCCTCCTCT	CTTTCCCTCT	CCAGTGACGG
	ATGGTTGGAA	AGCAATATATG	GTGCATTGG	TTAGAGCTGT	GGCCTTGGTG	AATAGATACT	TGGGAGAATA
	CATGGGAATT	TCTCCAGGG	TTAATGCAAT	GCCCATGTGT	TGGGAACCAAG	GTGACTCTTG	AAGAGGTCA
	GTATTGGGA	GCAGTGCCTT	GAAACCTTAG	TGGACATTAG	ACCCACTTCC	TAGTGGAAATT	GTAGCATGTA

	AATCCAAGGC	ATGTAAGGCTC	TTAGAGGACA	GAGATAGTGT	GTCATTTTT	CAGAATTAAAT	TAAGAGCAGG
	CCAGGCGTGG	TGGCTCACAC	CTGTAATCCA	AGCCCTTGG	GAGGCCAAGG	CAGGCAGATC	ACGAGGTCA
	GAGATCGAGA	CCACTCTGGC	TAACACAGTG	AAACCCCCTG	TCTACTAAA	ATACAAAAAA	TTAGCTGGC
5	ATGGTGGCAC	GCTCTGTAG	TCCCAGCTAC	TTGGGAGGCT	GAGGTGGGAG	AATAGCTTGA	ACCCAGAAGG
	CGGAGGTTGC	AGTGAAGCTGA	AATTGCAACCA	CTGCACTCTA	GCCTGGTGC	AGAGTGGAGC	TCTGTCTCAA
	AAAAAAAAAA	GTAATAAAGA	ATTACATAAG	AGCAAAGAAC	CATTAGAATA	TCTCACTTAG	TTGTTATCAG
	CCTAGCAAGC	TGCCCTGAAG	GTAATAGACA	TTTTAAAAG	TTTATCAGAT	GAAAAGCGAA	AATCAGCCAA
	CCTGTTTAA	TGAAGGTGTG	TCCTGGGCTG	ATTACATGT	CTCCAGGGAC	TGATGGCTCT	AGAATGTAAA
10	GCTTGGCATC	CTGCTTGTGT	TGAATCTATC	ACATTTAATT	TCTCTGGGT	TTCTTTTTT	TTCTTTTTC
	ACTTTAAAGT	TGTCTTCTT	TCATGTGAAG	TTAAACTCAC	ATACCTTTT	TTAATCTCCT	TGCCAGCCAA
	ATGATAAAATG	CCAACTCCAGA	GAATGCAGTA	ACCATGACTG	CCACTGGAAT	GAAGAGGGGG	TTATAATCAC
	CCTCCTTAAT	CATTGAGAAA	CTTTGTCCA	ATTCTGAAAG	AGAAATCAGT	AAGGCACATA	GCATGAGACC
	ACCAGCATT	TTTCCTTAGT	CTATCTCATG	ATATTTGACT	TTTTCTCTC	TTACATCTCC	CAGTAGTAGC
15	CCATTGATG	CCATTTGACA	GATGAGGAAA	CTGGCATGGG	AAGGCCCTG	ATGAGTCTAC	AGCATAGGCA
	AAGACTGGAC	CAGCTTGCT	AGTCTAATGC	CTACAGAAC	TCAATGCCA	GATTGTTGGT	TCATAGAGTT
	CCTGAAAATG	CACCTAAAAA	TGTTGGAAG	AATGGTCATC	GTTGTATT	GCTCCATGGA	CTTGTTCAT
	GACTGGAACT	CTGAACAC	GAGAAGAGCT	AAAAGCCTAA	TACAACCTCA	GGAAAAATAAA	AAGCCAATGA
	TCTGAACCTGG	ATAATTCACC	AGTCAAAAGGA	AATCATTAAAT	GCTTTACTT	TAAAGCAGTT	GTGCAAAAT
20	AAGCACTTGA	TTTTTACATG	CCAAGGACCT	GCACAAATT	CTTTCCAATG	CAGTAGTTAC	CACTTCCCTC
	TACTTCCTTC	ACGAATAAGT	AAAAGGCAT	GTTAGAGAT	ACTCTTGAA	GTGAAACTA	AGTTCATTTG
	GGAGCCTCTA	TTTCAAAATA	CTGGTATAAA	AAAAAAATCTG	TCTCCTGATA	CTAACATTG	AAGGAATCTA
	CTTTTTTACA	TATTGGCAGA	GGGTCTGATT	CTATCCTTAG	TTCTTCCCAT	TACTTGTATG	ACCTTTTCA
	AGGTGATTTG	ATCCCCACAC	CCAAATATAT	GATTGAGAGA	AGGCTCAAGT	TCCCAGGAGC	TCCAGACAGA
25	AGGTACCTGT	TGGCTTGATG	AAGATGAGGA	GGAAATGAAC	ACTAGCTAGG	CCTTAAAGGG	AAATGTCTCT
	GATAGGCCA	ATAACACAGTC	CTCTGCTAAA	GGCCCTCCCTG	CCTCTCTCTG	CTCATCCACT	CTACTCCCTG
	GCCCTGGGCA	CGCAGCACAC	AGAGATCAGC	ATTCTGACA	GCTTCTGTAG	ATCCTACCAT	TTAAAGACTT
	TTGTCACTCA	TGCAAGATAGT	CTCAGGAGCA	GACACAGGT	GCTATTCTT	CACATGCTAG	CTTAACATGC
	ATTTGCTTTA	GCACCTATTG	CCAGGCACTG	TGTCAGGTGG	AGGGTATACA	AAGATGAACA	AGACATGATT
	CTTCTCATAT	ACACATAGAT	TTTGGAGGCA	TTAGCTTAGT	GATGATTTCAG	GAGTATCCAT	TATTTGGGAA
30	AGTAGGTGGT	CATTAGTGC	CTTTTACAGG	CATTCTAATG	GGCTAACAGA	GATGTTAGAT	TGTAGTGGAA
	TAGAAGAATG	GGTAAAAGT	AAATCAGTGA	GTTAGATTT	TAGGAGTTA	GATGCAAGA	GGTGAGAAC
	AAAAAAAGGAA	ATGATTGTCA	TTAAAGGAGG	AGGAAAGACC	AGCCAAAGAT	TTTACAGTGA	TTAAGCATA
	CAAATTATT	TCTAGGCCAC	ATATTCTAG	CAAACAAACA	TGTAATGTT	TATGTATGTC	TTTCCTCATA
	TCTGCTCATC	CATCAGCTCC	ATCGTTAAGA	TTTCAGTTT	CCAGGACAAA	CTTACTCACT	TTGACATATT
35	GGACTAGGAT	TTGACCAAGAT	TCCAGATGAT	TCACAAATGG	TTTTCTCTT	CCCAATTAAAC	TCAGTCCCTT
	CTGAGCAGAT	GAAGGTACAT	GCAGAGGTA	AGCTGAAGCT	GGCCAGGGGA	TGGCTACAGT	TCATGATCCC
	CAAATCTGGT	GCTGATAGAG	GCTCACACTG	AATCACTTCA	ATGAAAAAGA	AAAAAAATAAA	AAAGACAAAA
	CAGTATTCTC	GAGTAGAGAC	CCTCCCTGTA	GCAAAGGATT	TTTAGCCAAA	GCTGCCGTGAC	TACATTACTT
	GTGATATTGC	TTCCAGGCTT	TATTTCTG	AGAATGATGG	TGGGTGGTGA	ATGAGAGATG	AAGGCAAGGA
40	AGCATTGAAA	GCTGTGGGGA	GAGGAGTAGC	TACTCCAGGC	TGCTGCCCTA	GCTAAGGTGA	CCCTCCCCCTT
	CTGCTGGAAG	TACCATGCCA	TATGGCTCT	GCATCAAGGG	CTCTTATGGG	ATATTCTCAG	AGAATCTCTG
	CCGTTTCATC	TGTTCTGATA	TCTACCAAG	CATTTGAAA	AACATCCCAA	TTCACTGAAG	CAAGTCCAAC
	TTCCGTAAT	TCCAGTAGGT	GGGTTGACAG	TTTTATAATT	TCAATAAGGG	ATTITGATAG	CACTTCTAAG
	AATTAACAT	CTTAACACTAA	TGCATCAGGA	GCATACTTGT	AGAAAAGTTA	ACCAAAACTT	CGTAAGTCA
45	GATGACATTG	GTITCTCCC	ATATGGAGAT	AAGGTTGGCA	GTTAAAAATG	AAAAAAATAAA	AAAAACCTAC
	CTTATTCTAA	ACTIGAAAAG	ATCAAGAGAT	TGTGTTTTG	TTTTTCAGTT	GTTATTCTCC	TAAAAGTTA
	TGCACTGAGGA	AAAGTAAAAG	TGATTTTAAG	AATAAGCCAA	ATAAAACAAAC	CAAGAAAGAC	CTCCACTACC
	CTGGGAAGGA	AACGGTTGG	TATTAAGTAG	GACACCACAT	AAAACAGGTG	TTATTGAGAG	GAGAAGAAC
	AAAATGTAAC	TGAGGTTCAA	CAAGACATTA	TTTATGCAAT	GGCAATGAGA	AAAATAAAA	ACACAGTATA
50	ACCATGCTGT	ATTGCTATAA	GTCATGTTAC	ACACTGGGAG	ATGGCTTCAG	GGGTATTGTT	TTTTTACTTT
	TTGTTGGGA	GGTITTCAA	AAAAATTAG	TTAGAATAAG	TCCTTGTAGA	AACATCACAG	TAGGTTAAC
	AAAGTTAGGT	TAATTTAGGC	TCCTAAGTTT	GACTTCTCAG	CAAACCTCTA	CTGAATGTT	TGACTGTAAG
	CCCAGGATTG	CATGACAAAA	CCTCTAGTCT	GAAGTTACTC	ACCTTGACAG	GTTGGTTCTG	GAGATGACCA
	GTTTCAAAT	GGTCACAGG	TGGTTCTC	AATCCCAGTT	AAGTTGTT	CTTCAGAGCA	GCTGAAGGCA
55	CACTGTGAGC	TGAAGCTGAA	GTTTCCAAA	GGGTGAGTAC	AGTCCATGGT	ACCCAGCTCT	GGGGCCTCCA
	AAGGCTCACA	CTGAATCACT	TCAATAGGA	AAGAAACAGT	ATGGGGAAAGA	GTTAAGAGGA	ACTGACGCC
	GGATTTGAAT	CCTAGGCCCTG	CCACTTGATA	ACCATGTGCC	TTTAAACAAAG	GTTACTGAA	CCCTCCAAC
	TCAGTTCTT	CATCTATATA	AGAGGAATAA	TGAAATTGTG	TTATCTTAT	CAAATTGATA	TGGAAACTAA
	ATGTAATTCA	ATTAGCATAA	GTCAAGGACC	TTAGAACAA	GCCTGACTCA	TCAGAAATT	TAAGTAAAC
60	TTAGCTAGTC	TTCATTATT	TATCTTCAGC	ATTATCTGTA	GTGAGAATCC	TTAAAGCCAA	ATAGGTGTA
	CTGGGAATGA	CCAGCTTAGT	CGGGAAATAA	CTATCACATC	AGAGGCCCTG	AGTCTACTAG	AGTATTGGGA
	GCAAGATGTT	CAGAGAAAGA	GTGGGTCCTC	ATAATAAGCC	TTCTTGC	GGAGAGAATA	TTAAAGTCTA

	GGAAGCATT	TGACCTCAAT	TCTGTCTTCT	ATTCTAGCTC	AGTTCCAGAA	TTTTAACTCT	TTTGATTTG
	ACAACCCCTCT	CCAGAAACTG	TATCTATTC	CCTGTTCTGA	TTGGTGGTAC	AATAGGTAAA	TTTAAGACTT
	GGAAATCAA	GTTTCACAT	TTTAGACCT	GCCATGCCAT	TTAGTAAACA	GTACAACCTT	CATGCTTAT
5	TCCTCATCTG	TCAAATTAA	GCCATTATTG	CTACCTGCT	CTAGAGACTT	CAAGGAAGAA	TGGACTCAAG
	GAATCAGAAG	AATTTGTA	TTTGGAACT	ATATGAGATG	AGATTAGGGA	GAAACATGGG	AACTAAGAGA
	AAATGTTATC	TTTTTCATT	GATTTAAGA	GTATCTTAA	TATATCAAGC	ATTACTCTGG	GGCTTGAAGA
	GCTTAGATT	CACCCTGTAG	GACAAAATGG	TAGTAGAAA	TTAATGGGTG	GATTGTATG	TATGTGTGAT
	GTGTTTAAT	TGCCTTAAAT	TGATCAGTCT	CCCTGTTAGA	TGAATAATGT	ATTGAGGGG	AGCTAATTAA
10	AAATTGTGGA	ACTCATCTAA	TAAACTATTG	CAAGAATCTA	GAAGAAAGAT	AATGACGGCA	ATGGTAGTAG
	AGTTGACAAG	TGGAGACAA	ATTAGAAAAA	CACTAAGTTG	TTAAAATGG	TAGAATGTTA	CCCTGCATAA
	ATGTTGGGGG	AGTAAAGAGA	GTCTCATACC	AGGGTGCCCA	TGTAATGGT	GATTCCACAT	ACTGAGATAA
	GAAATACGAA	GAGAAAAGCT	GACTGGGAAC	AATTGGTTT	ATAGTCTTT	AAACATCCCA	AAGGACATCC
	TTAGCATATT	TGAC TTCAGA	GCTGGAGATA	GGCTTATCAG	TCCAAGATC	ACATAGATT	GTGAGTCGC
15	AAAAGTCAGT	AAGTTGACC	AAAGGATACA	TGTAGATTAG	AGTCAGAAGA	GCAATATACA	AAAGACAAA
	GCTGAGAAAT	TATAGTAGTT	TATGGTCTG	GATAAGTCT	CATGAAGGAT	CTCAGGAGAA	ATGATCACAG
	GTAGAAAGAA	TGAGAAAAGA	GTGATATGAG	AGAAACCAAG	ACAAAGAAAA	GTAAAATGTT	AAAAATGAGT
	GAAATAGGCA	TACCAATAAT	TAAGGATGAG	TAAGATAGGC	ATACCAATAA	CATAAGGGTT	AAAAAAATAGA
	GTTCAAAAT	GGGGTGAGGG	TAAGGTATA	GGAGGAGTC	ATGGCCCAGG	GATCAAGTGA	AATGAGTTAG
20	ATCTATAGAT	CTA'TTCAGT	TGGTTGACAT	TTAACATGTT	TTTGGTTTA	ATTCTTATT	GTTCACAAAC
	ATTGTTTTT	AAAAAAATTA	AATTGTCCA	TTCAATTCTAG	GTCACAAGC	AAGTGCCTCA	TATATACAGG
	CATTTGTGG	ATCCCAAAGA	TGCAATGATA	AATAGGACAC	TTACTGATCT	CAAGAAGTTT	TCAGTACCG
	AGGAGACGGA	CAAGTGAACA	GATGACTCA	ACATAAGTGG	GAGAAATGAG	GAAGAAATAT	GTGGAGCTAT
	CAGAACTAAG	AAAATCTCCT	AGAAGAAACT	GTCTTGAAC	AATGTCTAA	AGATGACATG	TTTTTGGCC
25	ATGTGCAAAA	TGAGAGAGAA	GGCCACCAGC	AAAGTCAGT	TGCTACAGAG	CACATGTGTT	AAGTGTGGAG
	AACTGCAAGA	AGGAAAGGAA	CTACTAGAAG	GAAAAAGCAA	GATACTTCT	GGGTAACTCA	GCCTCCTAAT
	GATAAAATGGC	ATAGTTCTT	CCAGACCTTA	GAGTTCTAAT	TAATCTAAC	AGCTCATTAG	ATCGTGAGCT
	TCTTGAGAGC	GGGAATCTAC	CATGCTAATT	CCTTATGGTA	ACCCCTGACAG	CTTTTATCCC	AAACACTGTGC
	TTCTTGTTG	ACTCAAAAG	ACTTGTGAG	AAAGTGAATCG	AAACCTCATG	CTGACTTATG	AAATCTTAC
30	GGAAAGGTA	CAAATTGTG	AAAGCAGAGC	TTTCTGATCA	AAACTTCCC	TTTCTCAGAG	TGGCTAGTAT
	CATTTGTT	CAACCAGCTT	CATGATAAGC	TATAATGATT	CCTGTGACTT	TACCTAAGAA	GAAGCAAAGA
	AAGGAAAGAG	ACTTACCAA	CTGACACTGG	GGCCCATAGT	ACCCCCACATC	ACAGTTGCAG	GTGTAATTAT
	TGATGATT	TACACATTCT	CCATGGCCAC	TGCAATGACCA	GGGCTGGCAA	GAAGCTTAA	GGAGGTCAAGA
	AAAAAAATAT	TTTAATGTGA	TTACATTAA	GTACTCAAAG	TCATTTCTT	AGACATAGAT	ACCTTTGTT
35	CTGAGATGAT	TTAAATAATC	AGGAAAGGTT	TATTGTAAA	TTCATAGCAT	AAAAATCATA	TGCTAAAATT
	TTTACGTATA	AAAATACATA	AGCATATAGT	CATAGGCATT	TATTTGCTT	TGGAATGAA	TTACCAATAC
	TAATATTCTG	TAACACTTAT	AGGAAACTTA	GTGGCATACC	TTGAAACTCT	TGAAATTACT	TGTTTTAAT
	GAGTGAGAAG	GTTAAATGAT	GACCTGACCT	CAATCATTTC	TGCAATGCAAT	TATTCTTGG	CAATCCCTT
	CTTTATAGAA	ATCA AAGATT	AAAAGTCCA	AATTGCTAA	AACGGTAGAG	TCCAATTAT	AAGAGACCAA
40	ATTAACATATG	GTTCATTATT	AAAACATCAC	TTGGAAAATG	CTGGCTGTT	TGGAATTGTA	GAAGATTIA
	CAGAAATATT	CATA CACCAA	AGATAGTGC	ATTTTTATAT	AAAATTATAT	AAGGTTAGAC	CAAGAAGGAA
	GCACGCAGCA	CCAATCTC	TACTTCACAA	TGTAAAAC	GAGGTGATGT	GAGCCTAAGT	TTCCAACCTGG
	CCCCAGCTGT	CAGCTTCTCC	TCCCCCTGCC	TATTATCAA	GGCACTGATT	GTCTAGCTCT	TCCCTCTGTAC
	TTCCCTACGTA	GATCTATCAT	TTTGATGTA	CTTGATTTAG	GGGTATAGCT	TTTGTGCACA	GGGACAAATC
45	TTACACACCA	AAAATCTTAA	GGAGTGACAC	GATGCAAGAT	TATATAGAGG	GCTAGATGTA	TTTTAGAATG
	AACCAGAAGC	TGTCTCTCATC	CCCCCACCTT	TCCATGGGGT	AAATCTGAGT	ATTCTCTTAA	CCGTGGCCCT
	TCCTGAGTCT	GAGGCAGCAT	AGCCGTCITG	TCACTCCCTA	CCTGTGTAAC	AGAGGGCTGC	CTTTAGTTG
	TGGCAGGCCT	CATCGTTC	TTTGCCTGCA	TCTTGTTC	TCTTGATATA	GATCTCCACG	CAGTCCTCCT
	TGTTCTTCTT	GTGTTGGGGC	TCACCATCTC	CCCAGTTCTC	TGCTTCTTCA	GTAAGAGATT	TGTTGGTTCC
50	CACCCACGTC	CATATTCC	CTATCTCCG	GATTCTATC	CAGTAGTAAG	AACGACTGAA	AGGCAGAGTC
	TTCTCCAGAT	ACTCAATTTC	CGCCTGTT	TGTATGGCAA	CTAAATCTGT	GTAATTGTCT	CGGCAGAAC
	TTCTAGCCCT	TTGCCAGTT	ATGGGTTTT	CAGAATAATG	GTAAGTCCAG	CAGTCGGTTC	CATGATGTGC
	CAGGAAATCT	GCAAGACATC	AGTGTGACCT	ATGCAGACTT	ACATAATGTT	ACAGCTAAA	AGAACCTAGC
	ACTACTCCAG	GCTCAGCTAG	ACACTTAGAG	ATGAGGAAAC	AGAGCCTAAG	AGTGTATGTG	ACCATCTCAG
55	GATCACAGAA	TAGTTGTTG	CAGATTGAA	GTAGAACCTA	GACCTTCTGG	CTTGAATATA	AGATGTTTT
	ATCTAAGGTT	CTA TTGAAA	CAAATTAGT	GGTTTCTAG	GTTTATTTC	TTATTAATT	TTTCTCAA
	ATTATTCAG	GTTAAATTAA	ACCAACATAT	TTTAGACATT	CATATTCTT	TTTCTTGT	GCTGTTAATG
	ATTTACAAT	AATTACCGTG	TAATATCATA	TAACATACAA	ATTTACGTAT	ACTTTTAAT	CCTGGAATCA
	TTTCTGAAAG	GCCACACAT	ATGTACCTAT	GGGAGAAGCA	TAATAAGGAC	AGGAAGAAC	GTGACATACT
60	TTTAAGTAAC	CTCCTTACA	TAAGGAAACAT	TTTATTTAC	CATAGGAAGA	ACTGCTCTG	GAAAAGCCCA
	ATATACCACT	CAACTCTTAT	ATATCTAAT	GTATAATT	TAAAAAGAAC	AATTACAA	GCCAAATGGT
	ATAGGATTAT	GAAATTCTATT	AGATCATGTT	CTATACACAA	AGAGACTCAA	CTGATGATGT	TTAATAAACAA
	TATGGACCCA	TCAAATATGA	GGGCTTGA	GATATCTAAT	TAACACACATA	ATTACACAAAT	GACTTCATAA

	TAATATATGG	CATICTAACG	ATGGTATGAT	CTACATGAAT	CACTATTAA	TACAGTAAAG	AAACAGATAT
	AATTGATGGT	AAAGAGCATC	ATAAAAATAAA	CATTTGAAC	AGAGTTTGA	ATGAGCATTG	CACTAGAATG
	CAAGTTCTAA	GAGGGAAAAA	ACTGTGTTGT	CCACTGCTGT	ATCCTTAGTG	CCTAGCATAA	ATTTCACACA
5	TTGTAGGGAC	TCACAAAATA	CCTGTTGTAT	GAAAAGAGCA	CTAAGTTTC	ATGTGACACA	GTGCAGACAT
	GGCATAAGGA	ATG'GTGAAAC	GGGAGAGTTA	GCATGTTGCG	TTGGCTAGAG	CTGAAAATCC	AGGCTAGGGA
	GAAAGAAGAC	ATTAGTTTAC	TTAGGAAATG	AAAAACCAAG	TTCAAAGCTA	TTGCTGGAGA	GTCTCAAGA
	ATCAGATATA	AAA'TTGTCA	CAACAATGGG	AGAAGGACCA	AAAATGATA	AACCCCCGTC	CCTTAATAAG
	CTCGTATTGT	AATTGTAGAA	ATGACATTA	TGTACACTGA	ACTATGAATA	AAAATAGAA	AATGAGGTGC
10	TAATATTTG	GTAC'AGATTG	TAAGTACCTT	AACAGAGATT	TCTTAATTAA	CATTATTCC	TTATAATTGA
	GGGATTTTGT	GGGGTTTATTG	GGATTGAAAC	TCTACAGCAT	GGGCTATTAT	AGGTTAAAAAA	TAGTGTTCAG
	GAGTTCTGG	GGAA'GAACTA	AAGGTAAGAA	GAAAAGAGAT	GTTTACAGAA	GGGATAGAAT	TAACAGCTCT
	GTGAAATAAT	TTTC CTTAG	ACTATGTATA	ACTAGTGGAT	ATTTAAGAAA	AATGAATATA	AGTAAAATAG
	ACTTAGCGAT	ATATAAAATAT	CATAACATAC	CACAAACAGAG	CATTGTCCAC	CCCCACAAC	TGAAGATGTT
15	CCATAAGTCC	CTCIGGGTGC	TCTGACATT	CCATGGAAT	ATCTGCAAAT	GAAATACAAA	ATTATATTAA
	GATGTATACT	CTTA AACAC	ACATTATAG	CCTTGAGGT	GGTGTACAA	ACTTCTTAA	TAATCAGAAT
	AAAACACATA	TGTCTACTAA	CCCTGTCTGA	GGTAACAGGT	TTCTCAGACA	TAGATGAAA	ATTACTTCAA
	ATTTACATCA	GAA'GTGATGC	ACAGTTTGT	TTTGTCTAT	TTTATTTTA	CGCTTCTAGTC	TCAAGTTGCT
	AATCGGTACT	GCCCTGAATT	TTTCTATGG	TTTGGTAATT	TTTATACCTG	CTTTCTGCT	GAGCTATTAG
20	ATAAAACATAT	TTAATATTTA	CTATGTATAT	TTTTAAAGT	ATTGTTGCTG	CTTAATTAAC	TATTGATGCT
	TATATTTAAT	GTTA TAGCCT	CACTCTTGT	CATAATGGGT	CAATGCCCTA	AATACCTAA	AAAAAAAAAAA
	ATTAGATAGC	CAGAACCCAG	GAAAGAAAAG	TATTCTTTT	TTTAAATAAA	AGAAATACCT	TTTGAGCAA
	CTGAAATGAC	AAAGTCACAA	ATTCCTGCA	CACCTAAAAA	TATACTTAAT	GTAATGACG	AGTTAATGGG
	TGCAAGCACAC	CAACATGGCA	CATGTATACA	TGTGTGACAA	ACCTGTATGT	TGTGCACATG	TACCCCTAGAA
25	CTTAAAGTAT	AATTTTAAAAA	AAATTCTATC	TTCCAAGCA	TATCACTTCT	CAGGTAGACA	CAGTGTATT
	TGAAAAGAT	CTGATTCAA	TAGTATTCT	TCAAGAGTCT	CCCCAGAGAC	AAAGTCAGA	AGAGGAAATC
	AGCATATCTG	AGA'GAAAAGA	TTTCAGGATC	ACTTTTTTG	AGGGTCTGAG	AAAATGTTA	GTTTCTATAT
	TATTTAAAAC	CAGAATTGAA	ATGGGGTGAT	TCCTATCCTT	GCCACCTGCC	TCTACAACCC	CAAGAGTTTC
	TATCTGAGCA	TCTAACGTC	TTTTAGGCTG	AAAGGCTCAC	CATGGCTTTG	CTTGGTCCCT	CTCTAGTTCT
30	CTCTGAGCCC	ATTC AGCCTC	TTGACTTAGC	ACAAGGGTCT	CAGGTCTTG	CCCAAAGGG	GTGTGCTGTG
	CTGCAGGTAG	ACTGCACTGA	ATGTCACAC	AAAGCCTTGC	TTTCTTTCAT	TTCTCTAAC	CAGTCTCAC
	TCCTCCCT	CCCT'CCCTT	TCCTCCCTT	TCCTCCTGCA	CTTCTCTTC	CTCTTCCCC	ACCCCTTCC
	TAGACTGGCC	TCTATGCT	CCCACTGAGA	CAAAAATGAA	CTGCTGATCA	GAAAGTAATG	TGACTAGATT
	CTCTCTTCC	TCCTCCCTT	CTATCCTCC	TTCCATTCTC	CTATGCATCT	TTCTTACCC	TCCTCCCT
35	TCACCTATTG	TTG' TGCTGT	TCTTCTTCT	CTTCTTTTC	CTCCTGCTCC	TCTCTCTTA	CTTGTCTTGT
	TTCTTGTTT	TGTITGGTTC	TTGTTCTCT	CTTCCTCCCT	CTCTCTCC	TCCTCCCT	TCTTTCCAC
	CACCCCTCCC	TATCTTTTC	ATAAAATGCTA	AACTAACTCT	TGGCTACCTG	TGGTAAATGG	CCCTTGGAAA
	TTGCAAATAC	TACAATCAA	AACTGCAATT	CAGACATATT	TATGATGTTT	GCAAAACCTTC	AGTAGAGCTA
	AGCAGTGGAC	TTGACTCGTT	TCGGTTCCCT	CACCTCCGTC	TTTCCCTGCT	CACCCACCTAG	TGGACGTCT
40	TGTTAGTGGC	ACT'CCTGAA	GTAAACCCCT	GAAGAGAGCC	CATGCTCTCT	AGCTTTTCAC	CGTGTAGGTT
	TGGGAGCCTA	CAA GTACCTT	TAATATTCTT	GGACTATAAA	ATGAGATGGT	TTTATAAGAC	TGCATGTGAA
	ATTAGGACCC	ATATGATGAA	GGACAATAAA	AAGGAAGACC	CACTGATGTG	AGTCATGAG	TCAAATGCAA
	ATCAGATTG	CATTTTATTG	AAAATAATAA	TAACAACAAAC	AAAAACTCTG	AAGCTCAGCG	CCCCATATT
	ATTATATTGT	TTAATCTTTA	TAACAGCTCT	CTGCTATAGA	TATGATTATT	ATCCCCATTC	TAAAGAGTCT
45	CAAAGAGGTT	AAGAACAAA	TTCAAAAAC	AGCGAAAGAC	AAGAAATAAC	TAAGATCAGA	GCAGAACCAT
	AGGAGGTAGA	GACACGAAA	AGCCTTCAA	AAATCAATAA	ATCCAGGAGC	TGCATTGTTGA	AAAGATTAAAC
	AAAATAGATG	GACCACTAGC	TAGACTAATA	AGAAAAGAAGA	ATCAATAGAC	ACAATAAAA	ATGGTAAAGG
	GGATATTACC	ACTGATCCC	TAGAAATACA	AACTACCATC	AGAGATTACT	ATAAACATCT	TTACACAAAT
	AAACTAGAAA	ATC'AGAAGA	AATGGATAAA	TTCCTGGACA	CATACACCT	CCCAAGACTA	AACCAGGAAG
50	AAGTCAAATC	CCTGAATAGA	CTAATAACAA	GTCTGAAAT	TAAGGCAGCA	ATTAATAGCC	TACCAACTAA
	AAAAAGCCC	GGAC'CCAGATG	GATTACAGC	CAAATTCTAC	CAGAGGTACA	AAGAGGTGCT	GGTACCATTC
	CTTCTGAAAC	TATICCAGAG	AATAGAAAAA	GAGGAACCTC	TCCCTCACTC	ATTTATGAG	GCCAGCATCA
	TCCTGATACT	AAAA.CCTGGC	AGAGACACAA	CAAAAAAAGA	AAATTTCAGG	CCAATATCCC	TGATGAACAT
	CATTGCGAAA	ATACTCAATA	AAATACGGCA	AACTGAATCC	AGCAGCACAT	CAAAAAGCTT	ATCAACCACA
55	ATCAAGTTGG	CTTC'ATCCCT	GGATGCAAG	GCTGGTTCAA	CATACACAAA	TCAATAAACAA	GAATCCATTA
	CGTAAACAGA	ACCAATCACA	AAAACCACGT	GATTATCTCA	ATAGATGCAG	AAAAGGCCTT	GGATAAAAATT
	CAACACCCCT	TCAT'GCTAAA	AACTCTCAAT	AAACTAGGTA	TTGATGGAAC	GTATCTAAA	ATAATAAGAG
	CTATTATGA	CAAF CCCACA	GCCAATAGCA	TAATGAAATGG	GCAAAAACCTG	AAAGCGTTCC	CTTTAAAAC
	TGGCACAAGA	CAAGTATGCC	TCTCTCACCA	CTCCTGTTCA	ACATAGTATT	GGAAGTTCTG	GCCAGGGCAA
60	TCAGGCAAGA	GAAAGAAAATA	AAAGTGTATT	AAATAGAAGA	GAGGAAGTC	AATTGTGTCT	GTTTGCAGAT
	GACATGATTG	TATTTTATG	AAATCCCATT	GTCTCAGCCC	AAAATCTCT	TAAACTGATC	AGCAACTTCA
	GCAAAGTCTC	AGG'TACAAA	ATCAATGTGA	AAAATCACA	AGAATTCTTA	TACAGCAATA	ATAGACAAAC
	AGAGAGCCAA	ATCATGAGTG	AACTCCCATT	CACGATTGCT	ACAAAGAGAA	AAAATACCT	AGGAATCCAA

	CTTACAAGGA	ATGIGAAGGA	CCTATTCAAG	GAGAACTACA	AACCACTGCT	CAAGGAAATA	AGAGAGGACA
	CAAATGAATG	GAAAACATT	CCATGCTCAT	GGGTAGGAAG	AATCAATATC	ATGAAAATGA	CCATACTGCC
	CAAGGTAATT	TATA GATTCA	GTGCTATCCC	CATCAAGCTA	CTACTGACTT	TTTCACAGA	ATTAGAAAAA
5	AACTACTTA	AATTICATAT	GGAACCAAAA	AAGAGCTTGT	ATAGCCAAGA	CAATCCTAAG	CAAAAAGAAC
	AAAGCTGGAG	GCA'CATGCT	ACCTGACTTC	AAACTATATA	ACAAGGCTAT	AGTAACCAAA	ACAGCATGGT
	GCTGGTACAA	AAA'AGATAT	ATGGACCAAC	GGAACAGAAC	AGAGGCATCA	GAAATAACAC	CAACATCTA
	CAACCATCTG	ATCTTGACA	AAGCTGACAA	AAAGAACGAA	TTGGGAAAGG	ATTCCCCATT	TAATAAATGA
	TGTTGGAAA	ACTCGCTAGC	CATATGCAGA	AAACTGAAAC	TGGATCCCTT	CCTTACACCT	TATATAAAA
10	TTAACTCAAG	ATGC ATTAAA	GACTTAATG	GAAGACCTAA	AACCATAAAA	ATTCTAGGAG	AAAACCTAGG
	CAATACCATT	CAGGACGTAG	GTATGGGCAA	AGACTTCATG	ACTAAAACAC	CAAAAGCAAC	AGCAACAAAA
	GCCAAAATTG	ACAAATGGGA	TCTAATTAAA	CTAAAGAGCT	TCTGCACAGT	AGAAAAAAA	AAACTATCAT
	CAAAGTGAAC	AGGAAACCTA	CAGAATGGGA	GAAAATTTTT	GCAATCTATT	CACCTGACAA	AGGGCTAATA
	TCCAAAATCT	ACAAGAAAAT	TAAACAAATT	TACAAGAAAA	AACAAACAAAC	ACCATCAAAA	AGTGAGTGA
15	GGATATGAAC	AGA'GCTTCT	CAAAGAAGA	AGTTTATGCA	GTCAACAAAC	ATATGAAAAA	AAGCTCATCA
	TCACTGGTCA	TTAGAGAAAT	GCAAATCAAA	ACCAACATGA	GATGCCATCT	CATGCCAGTT	AGAATGGCGA
	TTATTAAAAA	GTCAGGAAAC	AACAGATGCT	GGAGAGGATG	TGGAGAAATA	AGAATGCTTT	TTACAGTGT
	GGTGGAAAGTG	TAAATTAGTT	CAATCATGTT	GGAAAGACAAT	GTGGCGATT	CTCAAGGATC	TATAACTAGA
	AAAACCATT	GACC'CAGCAA	TCCCCATTAC	GGGTATATAC	CCAAAGGATT	ATAAAATCATT	CTACGATAAA
20	GACACATGCA	CACTATGTT	TATTGAGGCA	CTATTCAAA	CAGCAAAGAG	TTGGAACCAA	CCCAAATGCC
	CACCAATGAT	AAAC'GGATA	AAGATGATGT	GGCACATATA	CATCATGGAA	TACTATACAG	CCATAAAAAA
	GGATGAGTTC	ATGICCTTG	CAGGGACATG	GATGAAGCTG	GAAACCGTCA	TTCTCAGCAA	ACTAACACTG
	GAACAGAAAA	CCA'ACATTA	CCCATTCTCA	CTCATAAGTG	GGAGTTGAAC	AATGAGAACAA	CATGGACACA
	GGGAGGGGAA	CATCACACAC	TGGGGCATGT	CAGGGGATGT	GGGGCTAGGG	GAGGAACAGC	ATTAGGAGAA
25	ATACCTAATG	TAGATGACAG	GTTGATGAAT	GCAGCAAACC	ACCATGGCAC	ATGTATACCT	ATGTAACAAA
	CCTGCACGTT	CTGCTCATGT	ATCCCAGAAA	TTAAAGATA	ATTTAAAAAA	AGTTAAAAAA	AAGAAAGTTG
	CCTTAGTCAC	ATAACTAGTA	AGAGACATGG	TTGGGAATT	GAACAGAGGC	CAATCAGTTC	CAAATCCATG
	CTCTTGATCA	TTAA GCTGAA	CTTATGGCAG	GAACCTGGAA	GACATGGTAA	AATGGGGAAA	AACGTGGAGC
	CAGGGAGACT	TGTGAAAGTG	CCAGTGTCTC	CACTATACCC	TGAAAAGAAT	ATCTAGACTT	ACTTTTTCT
30	AAAGTCCTCTC	CTCTAATTCT	CTCAATCTCT	CTCTCTCTT	CTCTAAGAGA	TGGGAATGCT	GCTCTGTAC
	TCAGGCTAGA	GTGCA'GTGGT	GCGATCATAG	CTCATTGAC	TCAAGGAATC	CTAGGGTCTA	GTGCCCTTC
	TCCCTCAGCC	TCCCATGTAG	CTAAGACTAC	AGGCACATGC	CCCAACCCCTC	GACTAATT	TTTATT
	ATTTTGATG	AGAC AGGATC	TCACTATGTT	GCTCAGGCTG	TAATTCTGTC	TTGAAGCTTG	TCCAATCAGG
	CTTTAGGCCA	CACCAATTCC	CTGAGACTGC	TCTCACCAAG	GTCCTACACT	TCACTAACAC	AAACAGCCTA
35	TTCTCCATCC	TCATCTTACT	TCACCAGGGA	GCTCCTGGTT	TTCTCTTAC	TTCACTGGCT	ATTCTCTCTG
	TATCATGTGT	TGATITCTCCC	TCATCTCCCC	AACCTCCAAA	CCCTTGGAGT	ACTCCAGAGA	TCACCGCTT
	GCTCTCTGT	GTCTAACCTC	ACTAACTTGG	TGGTCCAATT	CACACTCTTG	ACTTTGAATA	CCATTAAAT
	GCGAACGAAT	TCTAATTCTC	GTACAACCG	AACCATTCTC	CTGTAGCCAA	ATGCCCTACTC	AAACATCTCA
	TCCCCAAACA	AATITAGTTG	TTCAATAAGC	CTCTCATATT	TTACATATCC	CAAACATGAAC	TTCTGAATT
40	CTCCCTCCAAT	CTGTAGGGCT	CTTCCCACAG	CCTTCCATC	TCAGTGGATT	ATAACTCCAT	CCTTCCAGTT
	ACTCAGACCA	AAA'CTTTGG	AGTTAACCTGA	GACACCTCTC	TTTTTTTCA	CAAGTCATAT	CCAATGTGTC
	AACAAATTIT	GGTAGTGGAA	ATATTGCGGG	ATTTTTAAG	AAATCAGAGA	GACCGATGGG	GTTCAGGAGG
	ATATTATTA	TTTAGGTGCA	CTGGCCAAGT	CAGATTAACA	TCCAAAGGAC	TGAGCCCTGA	ACAAAGAGTT
	AAGTTACCTT	TTAAGCATTT	TGTGGGGTGG	GAGAGAGGGG	TATCTGTGCA	GGGGAAGCA	TACTACAGAA
45	GTGAGAAATA	AAGACAGTTA	TTCAATTAAAT	TGAGACATGC	ATTACATCAT	TTCTTACTTT	TCAAGAAGAA
	ACATGTTTG	CGACTTGAGT	TTATCTGTCT	AGTACCTTGT	CAGCTGACA	GCTAGAGAAA	CAGGGTCTC
	ACAATGCCCTG	GGAA'AGGAGG	AGAGGTAAGT	CTCACTAGCC	ACAGAAAAAC	AGGCAGTTAA	TTTTAAAGG
	GCTCCAGCTC	TTTC TCTTTC	TCAGGGGGAG	TTGGGTTTG	TTACATACAA	CTGAGTTCC	GCTTACACAT
	TATTTAATT	CTTTAATTTC	CTGTTCCAAA	AGAAGCCAGA	TACAAAAGGT	TACATGTTGT	CTGATTCCAT
	TTATATGAAA	CATATAGAAAG	AGGTAAATCC	ATAGAGACAG	AAAGTAGATT	AGAGGTTCCC	AGGGGCTGAG
50	GAAGAAATGG	GGACTTAAC	CTTATAGGGT	ACAGAGTTT	CTTCTGATAA	AAATATTITG	GAACATAGATA
	GACATTTGT	TAGGCCATT	TTGCATTGTT	ATAAAAGAATT	ACCTGAGACT	TGGTAATT	TAAAGAAAAG
	ATGTTAATT	GGCTTACACT	TCTGCAAGCT	TTACAGGAAG	CATGGTGGCG	ATATCTGTC	AGCTTCTGGT
	AAGGCCTCAG	GAACCTTACA	ATCATGGCAG	AAGGTGAAAG	GGGAGCAGGC	ATATCACATA	GCAAAAGCAG
	GAGCAAGAGA	GGGATGTGGG	GAGGTGACAG	TCACTTTAA	ACAGCCAGAT	CTTGTGAGAA	CTCATTCACT
55	ATCATGAAGA	CAGT'ACCAAG	AGGATGGTAC	TAATCATTC	ATGAGAAACC	CCACCCCTCAT	GATCAAATCA
	CCTCCACCA	GGCC CCACCT	CCAACACTGG	GGATTACAAT	TTGACATGAG	ATTTGAGTGA	GAACACGGAT
	CCAAACCATA	TCAGAGATGG	TGGTTATACA	ATCGGATAAA	CGTCACTGGA	TTGTACACTT	TAAGATGGTT
	GTTTATGTT	GTGT'GAACCT	CACCTCAATA	AAAAAAAATA	TTTAATGTAC	ATTCAAGCCAA	AAGAAGATT
	GGAATAGGAA	AGG'CATGGA	GATATATTAA	CAGCCATTG	ATGGGTGGTA	AGGAAAAGAG	TGGTTATTAG
60	ACTGTTTGT	GGCCCTCAA	AGGTAGAACT	AGATCGAGTT	GGTGAGCATT	ATAAAACCAT	CACAAAACCC
	TGGAGAGAGG	ACCC'AGTGC	GAAGAACCGT	TTGCCTGCCA	TGAGACATGA	GGGAAGTACC	AGTGAATGCC
	ATTGAAAGCA	GCAT'CCCTGG	GTCCAAGGG	TGGTCAAAGG	ACCACTACCC	AACCCCTCCC	TAGCCTACCG

	CTCCATTACA	GATC ACCGCA	AGATTATT	GCTCATTGCT	GCCAACCAAG	GCTGCACTCA	CTGCAGTTGC
	TATCAGTTA	TCATGGTAA	AAGGAATGTG	CAGTAGAGAA	CTAACTAACT	GCCCCACCTAC	CTCCACAATC
	CTATCAGGAC	AAA CACCAT	GGCTCACATT	TCCTTACATT	TGGCATGAA	GCCCCCTTTA	CTGTCTGTCA
5	TCTATCTCCT	ACACAGTTCA	CCTAAACTGT	TCTCTCCTGA	CCCAACCTTG	ATTTTCATCC	CAAATGCTTC
	CTTGCCATCT	CTGC GATTCC	TGTCTTCACC	ATCACCAAAC	TCCCCTCAAT	CTTCCAGTTT	CCTGTTCAA
	CTTTCTCCT	ACCTCCTTGC	TTTGTCAATT	GCCCCACTGC	CTCCCTAGGA	CATCACTTCC	CCTGCAGATC
	TCTCAAGATG	ACAATATTTA	TTCTCCACAC	AGCACATACT	TCAGGGTTGG	AAGGCAGGGG	CAATCTTCTC
10	CTTTATAATG	AGTC CCTCTT	ATATATGTTT	ATTCACTGTC	CCTCTTGTAA	AACACACACA	CACACACACA
	CAAAGAAGAA	ATAAAAATAC	TCTGCTTCTT	TGAAGCTTGT	GACACTGAGA	TAACACATCT	CACTGTCCTC
	ATTGTAGTGA	CCTCTCAACT	CCTCATGCAA	GATTGGCTTT	GGCACCTAGT	TCCTGATCTT	CCTTTCCCTG
	TAAGCACTTC	TCATAGTCTT	ACGGGACTTC	ACCATCCATG	GCACAACCAA	TACCACAGCC	CAGATCCTCA
	GCTCTCCAAT	GACATTTTCC	TCCACTAGAC	TTGAGCTACC	TCCTTCCCTA	GGCACAGCCT	CAACCTCGAC
15	AACACCTAAG	ACTGTACCGT	CTCTAAAGTC	ACATGTTCAA	ACACCTCACT	CTTTAACCCAC	TGTCTCCTAT
	TCTTGCAAGT	GTAITGCTCA	AGTATCTCAT	TGCAATGCTT	TTTACTCTCA	CCTCATTGAA	CCTCCAGGCC
	ATTAACACATT	TCC TATTTC	TAACCATCAG	GTTTCTCTT	ACTTGTGTTG	TTGTTTATTT	GTTTCTTTT
	TTTTTTTTT	TTTGAGACAG	GGTCTCACTC	TGTTGCCAG	GCTGGAGTGC	AGTGGTATGA	TCTCGGCTCA
	CTGCAGCCTC	CATC CCCCTG	GTTCAAGTGA	TTCTCATGTC	TCAGCCTCCC	GAGTAGCTGG	GACTACAGGT
	GCATGCCACT	ACGUCTGGCT	AAGATTGTTG	ATTTTATTA	GAGAAGGGGT	TTTGCATGT	TGGCCAAGCT
20	GGTCTCGAAC	TCCIAACCTC	AGGTGATCCA	CCTGCCCTAG	CCTCCCAAAG	TGCTGAGATT	ATAGGCATGA
	GCCACTATGC	CCCACCTGGT	TTCTCCTTAT	TTATTTCAG	TCTATGCTGC	ACTATAAAAA	CTGCCTTGAC
	AAAAATTATA	ATAGTGAGAA	AATTATGACA	GTGAAAGAGA	TCTGAATAA	TCAACCCCCA	TCTTGCCTT
	ACCTTCCAGA	CTGC'CCTTAA	TAATTCTGA	GCTTGGGCCA	AGCTATCTT	GGCAGAAATT	TAGTTTATAG
	TTTAAATGAT	AATAGCCCTT	CTCCAAAACT	AAACTGCCTT	TGTAAAACTA	ATAAAAGACC	ACCAATGAAA
25	GGTAGGAGG	ATGAGAGGAG	CCTGAATTCT	GCTAAGGTGT	AGATGTAAC	AATTACCAAC	TGTTATTCCG
	GAGGTACCAA	GAT' TGCAAC	ATCGCCAATT	ACTCCTGCAG	ATAACAGCAC	TATCATAGAA	TCTGATTGGC
	CTTTTGAGAT	GTCITTCAG	ATTCTTACAT	TTCAACTGGT	GGCTCTACCT	GGACCCATCA	ACAAGTCCG
	TGGCTCCACC	CAGAAGCGAGA	CTTAAACATGC	ACAAGGACCA	TTTCCACAC	CGCTATGATT	GCATCCCAAC
	CAATCAGCAG	CAA'CATTCC	TCTGCCCTGCC	AAATTATCCT	TGAAAAATCT	TAGCCTTAGA	ATTGGGGGG
30	AGGCTGATTT	CAG'AATAAC	AAAACCCCGG	TCTCCCATTT	GGCTGGCTCT	GCATGAATT	AATTCTTCT
	CTATTGAGT	TCCCACCTTG	ATAAAATCACC	TTTATCTGGG	CAGCAAACAA	AAGGAACCCA	TTGGACAGTT
	ACACTGTTGG	CAGATATATC	TTGCTTCCAA	AATTTGGATT	TTGTTTAATG	AATTATTTCT	GTTTCTTGA
	TATTTACAAC	TGTC AATGTT	GTGTCTGAAT	TCTCTTATT	TCTTGTGAA	AAGAACTATA	TTGCTACAGC
	CAGTACATAC	AGAT'GGATAG	CTAATTACTC	AAACACGGGG	GATGTGACCA	TCACCGCACT	GTGCAAATGA
35	ATGTTACCCA	TTGICCACCTT	TTCCCAAACCT	ACATAGTGT	ATATGGTATA	TGACCCAATC	AACGGTGGCA
	AAGCTCCAGA	AATACCACAT	AGACATCAGG	GACACTTTAA	ACTAATCAGC	CTATAGTCCT	TTTCAGTAA
	TTTCCAAACCC	TGGITGTGCA	TCCAAATCAC	TTGGTAACAT	AAAAAAAACA	AAAAAAATATA	CACGCAACAT
	TCGCTCCCAA	TCCIACTGAA	TCAGAATATT	TTGGGTTGGT	TCAGGAACAT	TCAGGAGTTT	TTCAGGGTCC
	AAGGTTTATA	TAATTTGAGG	TCTCTTCTTG	AGAAAAGGAA	CGTAAAAGCG	TCTTGTCTTT	ATAGATCTTA
40	CAAAGATGTA	TTACCATGTA	AACACATTCC	TAGGACCCAG	GCCCTTGAA	TTAAAGGTT	TATCTAAGTA
	ATGGGCCCTG	AAGCTTAATT	TTCAATTATCT	TCAGGGCAAA	TTACCTGTGG	GTTAGGGTTT	AGGAATATAT
	CTCTCTGTGT	ATGT' GTGTGC	ACATTAGCAT	GTACGCTTGT	GTGGATTTTT	TTTTTTTTT	TTTTTTTTTC
	TGAGACAGAG	TCTCGCTCTG	TCGCCAGGCT	GGAGTGCAGT	GGCGTGTACT	CTGCTCACTG	CAAACCTCCG
45	CTCCCAGGCT	CAAGCGATT	TTCTGCCCTCA	GCCTCTTGAG	TAGCTGGGAC	TATAGGCACG	CACCACTATG
	CCCAGCTAAT	TTTGTATTT	TTAGTAGAGT	TGGGGTTTCG	CCATGTTGC	CAGGATGGTC	TTGATCTCTT
	GACCTCGTGA	TCCA.CCCGCC	TCCACCTCCC	AAAGTGTCTGG	GATTACAGGC	GTGAGTCACC	ATGCCCAAGCA
50	CTTGTGTGGA	TGT TTAAGC	TCCCAGGTGA	GTGAATACAA	AACTAGATCT	TTCCCTCTG	TAGCATCTGT
	ACTGTTACT	CTA' GCATCT	CAATTTTTT	TCTTTAGTA	TCTTTCCTTT	TTCTCTCTTA	TTACTTCCTC
	TTGTGCTATT	TTT AATTCATT	CTTTTTAAA	AAATTTTTTC	CCTTTTATT	CTATTGACCT	TTAGCCCTCA
	CAATGATTCC	TACA AGCCCC	ATTTCTGTAA	ATGGGGATTG	AAATAATTGC	TGGACTTTTG	AGAGATAGAT
55	ATATTAAATT	GCAAACTGGC	AGTAGTGGGG	GCAGTTGATA	CATAACTAGG	TTTAAAGTC	TAGCCTCTG
	AGACCAACTCA	TTCCATTGTT	AAAAAGTGT	TCTACTTCTT	ATTATGAGCC	AAAATATGCA	TTCATTCAAC
	CATGCATTGA	TTT AATTCATT	CAATAAATAT	TTGTTGGATG	TCCACTCTGT	ATCAGGAATG	TGCTAGGTTTC
	TGGGAATACA	GCAATGAACA	AGGTAATT	TCCCTACCC	TAAGGAACCT	AGAGTTAGT	GGGGAAGACCA
	GACATTAAAC	AAACAAATTGT	GCAAGTAATA	ATCTATAATT	ATTATTACAA	ATTAAGGAA	GGAAGAGACCA
60	TATGGATTAT	GAGCGCATTA	AAGAGGAGAC	CTAGTGTAA	TAGCCAGTTC	TCGTGAAGGG	ACATGTATTA
	GTTGGAGTTTC	TCCAGAGAAA	CAGAACCAAT	GGTGTGTGTG	TGTGTGTGTG	CGTGTGTGCG	TGTGTGTGTT
	GGGGTGTGGGG	GGTGTGGTAT	TTTTTATAGA	AATTGTCTCA	CACAATTATG	GAAGCTGAGA	AGTCCCAGTG
	CCTGCTGTCT	ACGAGCTGAG	AACCAGGAAA	GCCAGTGGAA	TACTTCAAAG	TCCAAAGGCC	CTGGAACCAA
	GAGTGCCAGT	GTTCGAAGGC	AGGAGAAGAT	GGGTGTCCC	GCTTAAAAG	ACAGTGAATT	CACTCTTTT
	GCTCTACATA	GGGCCCTCAAT	GGGTTGGATC	ATGCCACCC	ACATTGGTGA	AGGAATCCT	CTTAGTCTAC
	CAATTAAATA	CTAATCTCTT	TGGAAATACT	CTCACAGACA	CACTGAGAAA	TAATGTTTA	TCAGGGTGAT
	AGAAATCTTC	TGGAGTTAAA	CAATGGTGT	AGCTGTACAA	TCACATACAT	TTTAAAGGG	TGCGTTTAT

	GGAAAGTGAG	TTT1ATCTAA	ATAAAAATTC	TAAGAAAAGAG	ACTTAACACA	GAGATAAACAA	TAAGCACATT
	TATTGTCAAC	CTT1ATAGTG	TTATGTCAAA	TAGGTCTGAC	ATAAGCTTAA	ATAAATATAT	ACTTTAAAAAA
	TTATAAAAATA	TTTTAAGTTA	TAATTTAAAAA	TTCTCAATAA	AACTCAAACA	CAAACCACAC	TGGTATTTC
	CACAGCTAAT	TTCT1AATGCA	GTTTACATAA	ATATTACAA	CACTTAAACA	ATTCAAAGA	AAATAACACT
5	GTATTCCATA	CATA.GCCTGA	TCACAGTAGT	TGTTCTCTCT	TATTCCCAG	AGTTTTCTG	CCCCCTTAAA
	AGAACCTCTG	CTG' TCTGAT	CCTTATCACA	TCTCTGTTTT	GACTGTTGC	TTTGTGTTG	CCAGTGTCA
	GCCAGAACTT	CTC1GAAACT	TTTTTTCA	CACATGCTAA	TTAATGGAA	GTGAGGAGA	GTTTGATTC
	TCACACTCCT	CAAC GCTAGA	GCAGCTTGG	CAATTACTGA	CTGAGAATT	TTCATTGCCA	GTGATCAACT
10	GAAAACGTGA	GAT' CCTTTG	GAATTGTTAA	ATCTGTTAT	AAATAAACAT	AAATGCTTGC	TCACACAGGC
	ATTCCTCT	TCCA'GAGCAC	CCTAACATAC	AGAAGAAAAC	AAATAGGAA	TAACATTAG	ACATCTTCA
	TCGTTAAAAA	TCTA.CCAGAT	GACTCTTTA	CATGGTGAGT	TTCTATTG	AATTAAAAT	CTTCCATAAT
	ATACAAGAAT	TATGTTTACA	TATCATATCT	GACAAACATC	TTTGTAGGAA	TGCAAAGCAC	ATCCATCTT
	CTGTATTCTT	TTCCAACAAA	GACATTCTA	AAATTATACC	TTTGTGTTG	TGCATTATG	CTTTTATTAG
15	TTCAAAACGT	TTGC CCTCAT	GGAAAGTTTT	CATCGTGGAA	ACCACATATT	TCTGAAAAAA	TATCTGACAA
	TATACAAACC	TTCC'ATTCA	TTTTTACTCT	CCAATCTAC	CATGTTTC	AAAAACAACT	GTAGAAAAAA
	CACTCAGAAC	TTTATTCTGG	TTAACATCAT	GCCTTGCTAG	GGGACAATAG	TTTCCCTTTT	TGAAATAAAT
	TTAAAACAGA	TGT' ACATAA	TTTGTAAATA	AAACATGAGG	GGGTAATCTA	GAATAAGTAA	CTTTTACCAT
	ATCATAGTTG	ACAC'CATTTA	CAAGTTTTT	AAGTCCCTAC	CACACTTGT	TTGAATGAAG	AAGTATGGAA
20	GATTATAATA	TATICAATGC	AAGTAAAAAT	ATCACAATCC	TTAAGAACTC	TTAAGAAGC	ACTGAATCCC
	ATAGGGATGA	AAG' TGTAA	ATTGTGCATA	GTAACCCCTG	CACAGAGCAT	TCAGTAGGAT	TTGCACCATT
	AAACAACCTC	CATGCATTTG	CCTGTGGCA	TTCAACATCT	GTCATTTTT	TAAGTTATAA	TATTTTATG
	CATTTTTTC	CTCT'AAACTC	TGGATAATT	TTATTCATTC	TTATGACAGC	AACTGTGTA	TCAGCTGTCG
	AAACACTGTG	AAGGGCAAAA	GAAAGAAAAGC	CACAAAATAT	TGTGTTCTG	TGCCAAGATT	TTACAGCGAG
25	CAAGGGAGAG	TTAGAAAAGG	AATTCTGAGA	TTTCAGAGTC	TTGGTCTCTT	CACCTTGCT	TGGAAGAAA
	TATCCTTCC	CTTC ATTAGC	CAACACTTTC	TTGATCCTGA	GAGTAGGAAA	GGGAACACTG	AGTCTTTC
	GTTGAAGGCC	GTC' TTGCGCT	GCTGGACTT	GATCTATTGA	AGTGGTGTG	GGTGTGCGG	TTTCAGCCAT
	AAAGGCATCT	GGC' ATAGTAG	GCAAGAAGG	CCAGAGACCC	GAGGAGAGTT	ATCTGTCTCT	GTTAACCTCA
	GTGTATCCCT	CTACTTCCCC	AGATGCACCT	GTTTCTGTAA	ATATAAACAT	GCATGTCTAC	AGAACACTTA
30	ATATTCTGCA	TACIGATCAT	GACAACAAAA	TGTACCTTCT	AACACAGACA	CTCTCACTAG	GATAGACCAT
	GTAGGAACAT	CGA'ATTCTAT	TCAGTTAGGA	CAGTGTATGAT	GTCTACATAT	TATACCTCTG	TCAAAACCTA
	CAGAATATAC	AACACAGCAC	AGAGTGAATT	CTAATGTAGC	CTGTGGACAT	TAATGAATAA	TAATGTATCA
	ATATTGCC	ATCAGTTGTA	ACACTAATAT	AAGATGTTAA	TAACAGGGGG	AATTGAAGGG	GTGGTGGGGA
	GATATGTTGG	AACT' CTTTGT	GCTTCTGCT	CAATTCTCT	GTAAACTTAA	AACCGCACAC	ACAAAAAAAG
35	TTATTTTAAT	TTTT'AAAAAA	GTATTCAAG	GGACTTGACC	TTTCCAATT	CTCTCAAGC	AGGTCGGAGT
	AGTTAAAGAC	ACA'ATTTTA	GAACCAGACT	GCCAGAGTTT	GAATCCTGGC	TACACCACTT	ACTAGCTT
	AGATTTCAGA	CAA' TTACTT	AACTTCTCTG	TCTCATTTTC	TTCATCTGTG	TGATAAGAAA	TAAAGTAACA
	GGCCAGGCC	AGTGGCTCAC	GCCTGTAATC	CCAGCACTTT	GAGAGGCCA	GGCGGGTGG	TCAGGAGTTC
	AAGATCAGCC	TGGC' CAACAT	GACGAAAAAA	TACAAAATCT	CTACTAAAAA	TACAAAATTT	AGCTGGGTGT
40	GGTGGCAGGC	ACCT' GTAAATC	CCAGCTACTC	AGGAGGCTGA	GGCAGGAGAA	TTGCTTGAAC	GCAGGAGGTG
	GAGGTGTCAG	TGAGCCAAGA	TCATGCCACT	GCACCTCAGT	CTAGGCAACA	GAATGAGACT	CCATCTCAA
	ATTAAAAAAA	AAA' AAGTAA	AAAGAAAAGA	TAAGAAAATAT	AGTACAGGCC	CCTATCTCAG	AGTTCTTAGC
	TTAGAAAAAT	TCCCAGAATA	TAATAAGTGC	AATGTAAGGG	TCAGCTATCT	TCATTATTAT	TATCTATCAT
	AAATGAAATT	ACACAATAAA	GCTAGATCCG	TTTCTTCCC	CTCCTTCTAC	AAAAAATAAA	GCAACTTCC
45	AGAACAAATAC	CCAGGTGATG	ATTCTCCCC	TGCTCCCTCC	CTAAGATATT	GGCAAGTTG	GAGGGTTCAA
	GGAGAAACAG	AGCATGTAGA	GAAGATACCT	CTCTCATAAC	CATTGTGAT	TTACAAGTCT	TACCTGATTC
	TTTTGAACCTT	AAAC'GATGTA	AGAAGGCTT	TGGTAGCTTC	CATCTGATTC	AAGGCTTGG	CAGCTGCTGT
	GGAATACATG	AGA'ACACTAG	GTAAAGCACT	GTCTTCCAAC	ATGAAGAGAG	AAAATATGT	GGAATGTTCA
	ATGGCATGCT	TTG1ATAAGA	ATGCAACTTA	CCTGGCAGGA	ACAAATTCT	TTGCTGCAA	AGAAAAGACA
50	AACAACCATT	AAT' CAGACT	AAATGACTTT	TAAGGATATA	TTAAATCCAG	ATACAATATG	ACTTAATTCA
	TCAAGTGTG	CAAACCTGAT	GCTTCAGGGC	CTCTGTAAATA	ATCAGAGCAC	AAGCATGGCT	CTGTGGCATC
	TAGGGTAAAA	TGC' AAAGTGC	ACAGCCATCC	AAAGGGCATA	GCAGCTTCT	AATGCCAGCA	AATAGCTACG
	GGGTCACTT	GCC' CAATTCA	GCTCCCAATT	TTTCATGAGA	AGTCAAAGT	CTTAATTAA	ATGTGAGATT
	TCCTATTCTG	TAACAGTCAG	AACTTAACCTC	AAAATGTTT	TAAGTACTCT	TAAACATGTA	AGCCAAACAA
	ACCATGAGTG	TAG' CAGATG	TGCTTCCATA	TTCCTTATGA	GAGACTCTCA	AATTAAAGCC	TGTACTCCAA
55	ATAAATCTCC	TTAGGAAGAA	TTTATCCAT	TTTCCTTAGA	GTGCTCATCA	TGGCAGTTCC	ATTGCACAA
	TCCGGGAGGC	ATCAATATAAT	TCAACATGAA	TAGCACCCCC	TGGAGTTGTA	CAATATTAGG	CACGACTAAC
	ATTTTTATT	CCTGAAACAC	TTCCCACACT	GAGTTGACT	ACTAACTCTT	TTCTTAATAC	TTCTGCTTAA
	TTATACTGCA	TTTATCCAG	ATTCTAATT	TTGTTAAAT	CAGTAAGCAA	GACCAGTACT	TATCAATGAG
	AAAGAAATGT	ATT' ITCAAAA	ACATTTTGAA	AGTACATTCA	TAAACTCCT	CACCTTCCG	TAAGCATTT
60	CGAAGCCAGA	GGAGAAATGG	TGCTAATGTC	AGGAGGGAGA	GTCCAGCAGC	AGAAAGTCCA	GCTACCAAGG
	GAATGTTGGA	CTCA GTGGGA	GCTAAGGAAG	TAAGAGACGA	AGAAAGGTCA	TGAGGAAGAA	TTGATGTTAA
	AGTCTCTCCG	TCC' GTCCCT	TTGGCCTTTT	TTCTGTACAT	TCATTACTAG	GAGCAGAAGA	GCTATCTAGT

	TTAATACAAG	AAGCAGAGAT	GTGGCATTAC	AGGCCTTGAA	GATCTGCTCC	AAGCCACCTT	TGAAGCTATT
	TCCACCATTG	GCACGCAGAA	CTCTAACITG	CCAAGCTCGT	TCACAATACC	ACACCACACC	TTGGTTAATA
	AACACTGCAC	TTGCTTGCTC	TCTTGCTCTC	ACTCCCTCTT	GTTCCTCATT	TCCCCTTCT	CCTCTCCTCT
5	CTCTGTCTCC	TTTTCAGT	TGTCAGAATT	CTACCCCTTC	CATCAACATG	CAACTTCTGT	TTTTCTCTA
	TCCCCATACA	ACTAATATT	CACAACTTGT	CAACCTGGGC	GAACCTCTG	GTTGGATAT	AATGAATAGT
	TGATTACTGT	AACAAGATAG	CTCCCCCTTT	TCCTTTTAA	TCACCAAGACA	ACCACCATCA	ATCAATGCAT
	CACCTTCACA	GGTAGGTAGC	AGGCCAGACC	AGTGTCTGT	GGCTCCACAT	GTCCGAGCTG	CAGAGCCATT
	GAGCGTCCAT	CCTTCAGGAC	AGGCGAACCT	GCACACAGTG	CCAAACACGG	GCTCCCACCT	GCAGCTCATG
10	TTGATCTTC	CCGGAACGTG	CAGGCTTGAA	CATTTCACCA	CTGCAAATGT	TAGGTACACA	GGCAGAGTTT
	CAGAAAAATC	TACIGGAAA	CTTCCAAAAC	TTGCTTAAAAA	GTCAACATG	AATGAAAGT	GTAAGCGCTA
	CTTAGTTTC	AGCAAGTAGG	AAATTAGGAC	CAAACCCCTT	TGGGGCAATC	TAGGTTCAGA	AACTTTATGA
	AGTATTGAC	CTGTACCTA	AAAAAGCTG	CACTCAATT	TACCTTGGCA	GGAAGGAACC	TCTTCTGTCC
	ATTGTCCCTG	AGAIGTGCAC	TCAAGTTGAG	TTGATCCATG	TAATTCAAAT	CCCTCCTCAC	AGCTGAAGGC
15	ACAAGAGGAC	TTGTAGGTGA	ATTCTCAAAT	AGGGGAATGA	GCACACCTCA	CCAAACCCCTT	CGGGGGCTGG
	TGGACAGCAT	CGCATCTCAC	AGCTGGAACA	CACCGAGAGAG	CACTTTAGAA	GTTTGTTCG	ATCTCCAGCA
	ATACGTTCC	CAACGTAACC	AAAGTCCCA	GCTCTCAAT	AGTTCTTTT	ATCTTAAAT	AAAATAAAA
	CAAAGACTGT	ACCTTCACAT	GTGGGCTCT	CGTTGTCCA	CTCCCTGTG	GGGCCACATT	GGAGCCTTT
	GGATCCCTC	AAACACAAAAC	CCTGCTCACA	GGAGAACTCA	CAGCTGGACC	CATAACGGAA	ACTGCCAGAA
20	GCACTAGGAA	GACAATTCAT	GTAGCCTCGC	TCGGGGTTGG	ACAAGGCTGT	GCACGGAAA	GCTGAGACAT
	CAAAATGATG	GTCAGAAAAT	ATTGCACTGG	AACTAGAGAG	TACTTGGCGT	TTGTTGAGTG	AACCCAGTTC
	ATTCAAGCAA	CACITGGAGA	ACTGAAGATT	CTTATAATT	CCCTGGACAA	ATGGGAAGAT	GGCTGTGTTT
	TCTTGTGATT	TCAGCCCCCT	CACTGATCAT	GGCACTAATT	AAAAGACTAA	TTAACAGAA	CATTAGTTCC
	TGAGCACTGT	TCTTCTAACAA	CACAAAATAA	ATTATGGTCC	AAGGAAAGAT	TTCACCGAGT	CTGAGGACAA
25	CATATGGTC	ATGGATGTTT	ATAGATGGTG	CCAAAAAGAA	AGAAAAGAAA	GCACCCCTAT	AAAATTGTC
	TGTTTGCAG	TTTGGTTTTT	GTGTTATGTT	TTGCTACTGG	AAATCATTCT	GTGCTGGCTT	TGGCTAGGAC
	AAGGCCAGTG	CCTGATAGTA	AAAATGCTT	GTTTCAATA	TCCCTGCTCT	CACTTAAAG	TGAATTAAAA
	TTTACTGCTT	ATATATGCAT	CAAACTATC	TCTGTAGCTG	ACACCATGCT	TGAAACAGTC	TCATCACTGC
	TAATTATGAG	CCATTTCAGA	AGACAGGTGT	GATGAGAGTT	TTACATTCAA	ATCATGTTCT	CATTATTCTG
30	CTTTCGGAAT	TTTCAATAT	GATTCTTTA	GATTAAGAAT	TCTGTCTATT	CCATGCTAAT	GTCTACAAAG
	TTTTATCAGC	ACATCACAGT	AAAAAAAGAA	CAGCAAAGAA	TTCATTCTTA	ACACATATGA	TCCTTCCCT
	GGCCAAACAT	TAGTTCTTTT	AAATGAATCT	CAAAGATACG	AGGGTTGCTC	ATCAAATCTG	ATTCTATAG
	TTAAAGTGGG	TATGGTTTTT	TTTTTCACT	GTCCAAGTTT	GAAGATGGTT	GTTCTTAAG	AAAGTATAAA
	TCGAAGGATC	TCAAGCTTAC	CTTCACAAAC	TGGGATTTCG	TGTGTCCACT	GCCCTTGAGT	GGTGCATTCA
35	ACCTGGCTG	GTCCCTGCAA	CATGAAGCCT	TCCTCACAGG	TGAAGTTGCA	GGATGATTG	AAGGTGAACT
	CTCCAGCAGG	GGAAATGGCTG	CACCTCACAG	AGCCATTCTG	AGGCTGGCGG	ACGGCCCTGC	ATGTCACAGC
	TGTAACAAAT	ATACGCTATTG	ATATTAGCAC	GGCCTAGAAAT	TAGCTTGCCC	ATTCAGTA	TGGGTTGAGA
	GAAAGAATGT	TCACAGTAAG	TCTCCATGTG	GAACAACCT	ACCTTTACAC	GTTGGCTTCT	CGTTGTCCCA
	ATTCCCAGAT	GAGCTACACT	GAAGGCTCTG	GGCTCCCATT	AGTTCAAATC	CTTCTTCACA	GTCAAATGTA
40	CAGGTTGTGT	TCCATGGGAA	GCTTCCAGGG	TTTGGAAAC	ATTCCACGAA	CCCATTGGCT	GGATTITGTC
	CAGCATCACA	CTCAACCACT	GAGGATTITA	AAGAGCACCA	TGAATTTTAC	AGAAGAATGA	TCTTTTCACT
	TCCTATTGAG	CTGGGTGCTT	AACAGAGTGA	GGAAGCTGCC	TTCAAAAGGT	AGATCCAAA	GTCCTATGTC
	AATTCTTAGG	GACATGCA	GCCAGAATAA	AAAGCTTTAT	TCTTTTTCAT	GGATATTCTA	TCTTTTCTGA
	TTTCCACTTT	GCCTATGCTG	AGTGGTCTCT	AATCTATGTT	ATCATTTACG	TGAGGTTAAA	ATTTAAAAAA
45	AATAGATTCC	AGATTAGGAG	TTATGACTAG	TACTGACATA	CGTAGGCTAT	TCATTTATTT	TAGCCCATCA
	GAGCCTGAAG	AAC'GATTTT	TCTTTTTTG	GCCTCTGGTT	CAGAAAGATA	AAATTAAGAG	AGAAAAAAGAG
	ATACTAAGAC	TGCTGACTA	TCATGGTCTT	AAGTTAGTCC	CATGGCTTGG	AAAAGTTAAA	CAGGGAAACAA
	AGATGAGAAA	TCCATTGAGA	TTCTAGAGC	TTTATTGTTT	TATGGCTCC	CTTACAAATC	ACCAGAGCCT
	CAGAAACACC	CATTCAGAC	ATAGAATAAA	AAAACCTCTC	TCAACCCAAG	CAGGTACTGG	GTTGGCAATA
50	TACATTGGCT	GAGAGAACAA	ATTGTATTAA	AAACAAAAAC	AAAAAAAGAA	CTTCCCTGA	AGTTTTGAAA
	ATGTAAGTTG	AATCAAAAAAA	CAGAAGCAAT	GAGGGATGAG	TTACAGAACG	TTCTGTGCAT	TCTCAGAGGG
	ATTTACCAATT	GCAGGCTGGA	ATAGGAGCAC	TCCATTCTCC	AGAGGACATA	CACTGCATGG	TCTCCATGCT
	GCTTGGCAGG	TAACCCCTAT	CACAGCTGAT	AGAGCAGGAA	GAATTGTA	TGAAGTTCC	CAGTGGGTGA
	CTGCAAACCA	GGCITCCATG	CTCAGGGAT	TCCAGGGCTG	TACAGTTCAC	AACTGAAAAA	GAAACCCAAA
55	TCAGTTCTGC	TCATCTCTCA	CCTTTAACAG	ATAAGAACAC	TGGAAACTAG	AACTACAGTT	TGGTTTTTT
	TTTTTTAGT	TTAAAATTT	ATAAAATTC	TAATGGAATT	TGTAAAATTG	ACTGTAATT	TACCCCTTTT
	CTTTTATTCA	AGAAAATGCT	GATCCATAAC	AAACAACAA	AAAAGCAGT	GATGACAACC	ATAAAAAAAGA
	AATATTGAGT	GATATGGGAA	GAGTAGTGT	ATTGTGTTTA	CCTCAAACAT	GTTCAAATT	TATGAACAAA
	CACAGCAAAC	TTAGGTACCA	CAACAAATT	CTTGTACTT	TTCTCACAAC	TGCTAAAAT	ACTACAGTAA
60	GCTTCCAACC	AGGAATGAGA	CCATTCAAA	AGCTATATT	CAAATTAAAG	TACTAGAATA	CATTACAAT
	TTTAAAACCC	TAATGCTGCA	CTGTCTACTA	TAGTAGCCAC	TATCTGTG	GCTACTCAA	TTTAAACTTG
	AATTCTGTGA	AATCAATAA	CATTAAAAT	TCAGTCCCTC	AGTGTACCA	GCCACATTTC	AAGTACTCAA
	TAACCACATG	TGGCTCATAG	GTACACACTG	GAAAACACAG	CTATGGAACA	TTTCATTAT	CACAAAAGCT

	CTACTGCACA	ACGCTGTGCT	AAGGAATCTT	GGAGAGAAGC	TCATCTAACT	CTCTTAATGT	ACAAATTAG
	GAACGTGAGAC	CTCAATTTCAT	TCAAGTGACT	TGCTCCATGC	TACACGGCTA	GTCATTACAG	AGCCAGAGGC
	CAGAGCATGA	ACCAAGATAC	CCTGGACTCT	GTAACTCACT	CATTCTACT	GCAACGTCTT	GTTACCACCT
5	AGATGAGGTG	AGTACATGTT	CCTCGCAGGG	ACACAGAATT	ACAGTTTATT	GAATGTGTCC	TGTGTGCCAG
	GCACCATGTA	ACCATGAGCC	TATGAAGTTC	ACACTATTAT	TATCCTCAT	TTACAAATGAG	AAAACGTACA
	TAGAGAGTTA	AACTATCTG	TCAAGGTGCC	AAAATAAATA	ACTGGTGAAT	CTAGGACTCA	AACCCAGCAG
	GGTCTGACTT	CATAGTCTCA	GCTCACGATC	ACCATATGAC	ACCACCTGCA	CCAGGGAAGG	GAAGGCATGC
10	AGACCTGACT	CTATGTCAG	CTAGGACGTG	AGATGGTGT	ACCATCTCAA	GTGAAGAAAG	AGGCAAGAAC
	CAGACTTACT	TTGCTCACAC	TTGAGTCCAC	TGAAGCCAGG	GTCACACTTG	CAAGTGTAAAT	TATTGATGGT
	CTCTACACAT	TCACCGTGGC	CACTGCAGGA	TGTATTGGTA	CAGGCAGCTA	CGGAAATAC	AAAGCATGAT
	GAGGAGGACT	ATTACTGTGC	TTATACTGAG	TGCCCTTGAT	TTTAGAATCA	ACAGTGTGCA	ACAGAGACAT
15	CAGCAGTCCT	ACAGAGTGCC	ATAGACTTA	ACTGAAGTGT	TTTACAAGT	TCCAATCTG	AGTTTCAGGC
	CCACCTATCC	TAACACCTGA	TGCTAATGTA	TAGCTGTGGC	TGGCACCTAC	CGTAGAAAAT	TTACTCTTC
	ACAAACTCTG	AAGACAGTTC	CCCTTACCCACA	AATAAACAAAG	TAATTAATTA	ATGATTGTG	TGTGTGCATT
20	TTTATATGTA	AAAGACTACA	TATTTGCCTA	CACTATTAT	ATATATTTA	TATATATACA	TACACACATA
	TATGTGTGTA	TATCTGTGTA	TGTATATATA	AAAATGTAT	ATAAAATGCTG	TAGGCTATAT	ATATATACAC
	ACACACATAT	ATGCTGTGT	GTATATATGT	GTGTGTGTGT	ATATATATAC	ATATCCACAT	ATTCTTGCCC
	ACATTCACAC	AAAACAGCAA	AAGAGAGAAA	CTTACAGT	AAACAGAAAT	CTTTTGGAAC	ATAAAATGAC
25	CACAATAGAG	AGCAGTTTT	GCATGCTGT	AATTGCCAA	GATGCCACAC	CACTGAAACT	ACCTCCCCACT
	GCTGCCCAA	ACTCCTTAC	TGTGTAGCAT	AGGGCAAGCT	TCTTCTTGC	GCACCTCTCA	TCATTCCACA
	TGCCCCACATC	TTTCTCTCTC	TTGATGTAGA	TCTCCACGCA	GTCCTCATCT	TTTGCCTAT	TGTTGGGTTC
	ACCTGGAGCC	CAGCTCTTGG	CTTCTCTGT	CAGAGGTTTC	TGGGTTCTA	CCCAGACCCA	CACATTGTTG
	ACTTTCTGA	TTCCAATCCA	GTAATAACTT	GGTGAATAGC	TCAATATGGA	TTTACGGTAC	TCAATCTCTT
30	CTTTGTTTG	AATTGCAACC	AGGTGTGTGT	ACCTTGCTG	ACAATAAGCA	CTGGCCTCAT	CATAAGTCAT
	AGCTTCCGTG	GAGCTGTGTT	AAGACCAGGC	TCCACTCTCT	TTAATGAGAA	GCACTAGTGG	GAGAAAAAGA
	AAAGAAATGG	TAGAGTTTG	TACTGTGTG	GTAACTCT	GACAACGTG	CTTTTATTG	TCTTATTTT
	GGCAATGTT	GTGACATGGC	CCAGACTTT	CTCATCTTT	CAAAAGTAAG	AAGTACGTAT	GAAGAAACAG
35	CGACTTATTG	TTTATCTCTT	TTGTGACTGC	CACCCACTAG	GTACCTATC	CACACTCACT	CACAACATTA
	TAGTATAACCC	ATTITGTAGT	AGAATAATAA	TCAGAATAAC	TAAGCTTAT	TGAGCACTTA	GTATGCACCA
	AGAAGCACTG	TATGAGGTAC	TTTCCATGAA	CCATGCTATT	GAATCTCAC	AATGCATCTG	GGAAATAGGT
	CATTATGATC	CACACTTAC	ACTTAAGGAA	AGGGAGACAC	CAAGAGGTA	AGTAAATGAC	CCCAAGCCCA
	GGGAAGAAC	CATGCAGGT	AGAGGTCAAG	GATGCTGCCA	GATATCTGT	GCAGGACAGC	CCCAGACAAG
40	CAAGGATATT	TCACCTCTGAA	ATATCTATAG	TGCGAGAATG	AGAAATCTG	GTCTAATGGC	ACTGACTTAC
	CCAAAGTGAG	AGCAGAGAGA	AACTGTGAAG	CAATCATGAC	TTCAAGAGTT	CTTTTCACCC	AAAGGTTAG
	GCTTGAATA	CTTCTCTGGG	GAGATAAAAC	ACAAAATGAA	TTAAAGAAGG	AAATCGTGGG	TAGCTAGTTA
45	CATTATTCTA	CCATGATGTT	TAAGGCAGCA	TCCTAAGATT	TTGGGCAAAG	GACACTAGTG	CAATAATCTT
	TATTCAGAG	TTTAATCAAA	AAAATAAAC	AATTITAAGA	CTTTCATTAT	TTAGGTCAA	GAGAAAAGAC
	AGGTTTATG	TACAATACAA	TAAGAGCTTG	TACAGATGTG	TTTTTATTAA	GAAGGCCTTT	TGCAATATCTG
	TGTTTCATGG	CCCCAGGCTG	CCCTTATAAA	GCGTTCTGCA	CTTACCGTT	TGGGAAGCAG	TTGTTCAAAC
50	ACAGGATCTC	TCAGCTGGGT	ATCACTGCTG	CCTCTGTCTC	AGGTCAGTAT	AGGAGTTTG	ATGTGAAGTC
	AGCCAAGAAC	AGCTGAACAC	TACTTCGGCT	GAGGCCCTTT	TATAGGAGGG	ATTGCTTCCT	GTGAATAATA
	GGAGGATATT	GTCCACATCC	AGTAAAGAGG	AAATCCCCAA	TGGCATCCAA	AAACTTTCCC	GGGAATATCC
	ACGATGCTTA	AAAATACAAT	GATGTCAGAA	ACTCTGTCTC	TTGAAGCTAC	TTCACCTTIG	TCCATGCCCTT
55	TATATCGTAT	ATGCAATT	ATTAATATGA	CAAAAATGCA	TGATTTTAA	TTATAATAAC	ATAAAAGTCTA
	TGTCTTAAA	AAGCTGTAAA	ACTTGTCTG	TTAGTAGTGT	CTCTCATGTA	GTTGTGGTAG	TAATTAGAAT
	TTCAGAAACA	GAAGGAAACC	AAGAATAGGT	TTGTCATCCA	TAGTCTACTA	CCTTCAATT	CTCATTCTATA
	GCTGTGGATA	ACCAATCACT	ACTCATTTT	TCTCTTTTT	TCACCTGCCA	ATTCAACATA	TTAACATGC
60	ACTGTCTCAC	AGACGAATGA	CTCACAAGGT	AGATATTAAT	CTTCAGATTT	TGCACGGCAG	TTATGCCTAA
	ATTAAAATAT	TATCTAAAAA	TAATATCTAA	CACTCAAATG	GTTAAAATAA	TGCCTTATT	AAAAAAAAGA
	AAAATGGAA	ATAGATATT	ACATCTGGG	AAGTTTCTG	GTTTGTTCAG	TGAAAAAAAT	AAAAGGAGG
	CCAGGCACAG	TGGCTCACGC	CTGTAATCCC	ACCACTTTGG	GAGGCCGAGG	CAGGGGGATC	ACCTGAGGCC
	GGGAGTTCAA	GACCAGCCTG	ACCAACATGG	AGAAACGCCA	TCTCTACTAA	AAATACAAA	TTAGCTGGGC
	ATGGTGGCAG	ATGCTGTAA	TCCCAGCTAC	TCGGGAGGCT	GAGGCAGGAG	AATCGCTTGA	ACCCGGGAAG
	TGGAGGTTGC	AGTCAAGCAA	GATCACGCCA	GTGCACTCCA	GCCTGGAAA	CGAGTGAAC	TCTGTCTTAA
55	AAAAAA	AAAATAAAGAA	AAGAAAAGAA	AAAAAAATAAA	ACGGAAAAT	ATATATATAT	ATTTAATTGG
	TCAAAATTTT	GTTAAAATT	TTGAAATGT	TAATGTGAA	AGAATAAAAA	TTCTCCACA	ATGTTAACAG
	TGACTAATC	TGGATGGCAG	GATTGGGAT	AATTTTATA	TCCTTCATTA	TTATTTTCAG	GATTTAAAG
	TTTTTTCAA	TTTCTCTTTT	TTTCACCTT	ATAGTAACAA	GAATACAGTT	TAAAGAAACT	TGTCTCTAGG
	CCAGGCATGA	TGGCTCATGC	CTGTAATCCC	AGCACTTTGG	GAGGCTGAGG	TGGGTGGATC	ACCTGAGGTC
60	AGGAGTTCCA	GACCAGCGTG	GCCAATATGG	TGAAACCCCTG	TCTCTACTAA	AAATACAAA	ATTAGCCGGG
	GTGTAGTGGC	GCACTGCCTG	AATCCCAGCT	ACTGGGGAGC	CTGATGCAAG	AGAATCGCTT	GAACCCAGGA
	GGCAGAGGTT	GCAGTGAAGCT	GAAATCACAC	CATTGCACTC	CAGCCTGGGC	GACAGAGCAA	GACTCCATCT

	CAAAAAAAA	GAA ^t AAAAGA	AAAAGAAAAG	AAAAGAAAATT	TGTTTCAA	TGCAACAGAA	GGAGATGTAT
	GTGGTATCCT	ATA ^t TCTGC	TCTTCATT	GACATTCTT	CTGGGTGATT	GTATACATT	CCCATCTCTG
	CATCTTACCC	TATCTAAATG	ATGGTAACAG	TAATGGGG	TCATTTAAT	TCATTTAAT	TGTAGGTTT
5	CAGAGCTCAA	GTC ^t AGCTAA	TATTCTATAT	CTACAGCCTT	TCAAAATAGG	AGGTCTATCT	AAAAATGTAC
	TGTCA	CCTGAACGAG	TAGTGGTAAA	AGCCTCGTT	TTCTCTTAC	TTGTTAGCAC	TGGTCTTCT
	GTGTTCATAA	AGATGTCAAG	ACCCAAAAAA	AAAACAAGAA	AAGAGAAGAA	AAATCCAAA	AAAGACAAC
	GATTAGAAA	AAA ^t AACTTA	ATTAACGAAT	TTAATTCAAC	CCCTATCAA	AAGCATAGAA	TTTATTCCCT
	CCACCTTACC	ACT ^t TCTTAC	ATGATCCAGA	TACTGACATT	ATTCCAATT	TTTATCCCAC	TTTACTTAGC
10	TCAATGTGGT	TGT ^t GCTTC	ATAAATTCA	AAGAGTAATC	ACTCATATAG	TGTTTATT	GATTTTAGGG
	CAGAATGTCA	AGT ^t GGGTTA	ATACATTATC	TGTATGTATT	TTATTTTAA	TAAAGTATGA	ATACATAATC
	TGCTATT	AAAAAGCATG	TGCAAATGTA	TAGAGTAGCC	AAATCTTAA	AAACAATT	TCTTCGATAT
	CAATAAAGTA	CCT ^t ATAATT	ATATTGCTAA	TAGAAATTAG	TCGTAAACAT	CCCTAGATAA	CTAACTTTAT
	TATTGCGAAT	TTTICATAAC	TAAGTTATA	GT ^t TATCTCT	TCCCCTTT	AAAATTAGTT	CAAAGATATC
15	TA	AAAATAGC	CCC ^t GTGGTG	ATGAAGTT	ACATATATAT	GTCCTGGACC	CCCAATTATA
	ATCTCTAAC	TTTATTGAGT	GCTTACTATG	TGCCAGGCCA	TATTCTGAGC	ATTTGTATG	TTCACCTATT
	GATTATTCAA	TCCGTACAAAC	AGCCTATGAA	ATAGGTACTC	CTATTATCC	CATTTCAG	ATGAGGAAT
	TGAGAACTG	GGG ^t TTTTAT	CTCATTCAA	AGCACAGAGC	TAAGGGTTGA	AACCAGGAG	TTGATATCCA
	GAGCCCAC	CCT ^t ACCTGC	TACTCCAAAC	CATGATTCT	TTTGTGTTA	TGCCCCGAGA	TTCTTGTTC
20	TACCCAA	TCC ^t GTACTC	TTCTTGCCT	CTTCTCCTG	AGACATCCTT	GACCACATCACA	GCTCTCCACT
	GAGATAACTG	TGTCCTGGGT	TCTGAGACAT	GGGGGCTGGA	AGGGACCCCC	GGGACAGTGA	GCAGTAGGGA
	GAGGATGCAG	TGAC ^t AACAGA	CCCTGGATCC	CCGGTGCATA	GGCAGGGAGA	AAGTGGACAA	AGGAAAAAAC
	AAGCAAGGCA	GGT ^t GAGCCA	TGCTTAGGTA	AAAGTGTATCC	CTAAGCCACA	GTCCCCAGAA	GTTCCCTGATT
	CAAAAGCAA	TTT ^t CTCTAA	GGTCAAAGGG	CAAACGTATT	ATTCTAAATT	CTAAACTGAT	TATTTCTAAA
	TTGAGAAAGC	TTCAGGGAGA	GATCCCATA	TTCGAAGGGAT	AAGAGAAATG	AGGAGTGGAA	GAGATAGGTG
25	AGTAACAGTA	ACT ^t AAATGT	AGACTATATA	TAATATATAA	TATATGTAGA	GTATATATAT	ATAATTACAA
	TATATTAT	ATG ^t GAATA	TATATATTAT	TTATATATAT	TTATATATT	TATATATATA	GATATTITTA
	TATTTATAT	ATAAATATAG	ATATTTTAT	ATTITATATA	TAATATAGA	TATTTTATA	TATATTATAT
	ATAAAATATAT	GTAA ^t AAATCT	GTGAAAGAAG	AAATAGATCT	TGAGACCTCA	AATTCACTAT	GCCAAAGGGAA
	AAGTTAAGCT	TGG ^t AAATGA	GTCATGCAA	AACTGCCTTC	CTTTGTT	CAAATACCTG	TAATTCACA
30	TGCTTACT	ATCTTATATA	AAATGTAGAT	GTACTGAGCA	TGAGATCCAT	GCATAATT	CCTCTAGTCC
	CTTCTTTTA	CATG ^t AAAGT	GTAGACTC	TGAGTGTAC	AGAGCCTG	CACATGTAA	ACACTTGCT
	CATTGCCAAC	CCA ^t CTTCG	TTTATTCT	TCCCCCTCTG	CTTGCTCTT	CCCCTCTAA	GATGGAAGTT
	CCCAAAACTC	TCT ^t TGGAAA	AAGCGCAGGT	CACAGATCT	ACAGTGTATT	GTGTTCTT	TACCTGGGAC
	AAAATAAACC	TCT ^t ATCTGT	TGAGATATGC	TTCA	TTTGGTTA	CAATATGTAC	ATGTATGTAT
35	ATAATTATA	TGT ^t TATAAT	ATATGTACTT	GT ^t TTAACCA	GAGGTATGTT	ATTCAAAATC	CATTCTACCT
	TACAATTACC	TGCA ^t TCTCC	CACAGTATT	TCTGTGTC	TGCCCCCGAG	GTTGTCACTG	CAAATCAGGT
	ACATGGATAC	TGG ^t AGCTGA	TGGGCTCCCC	TCTGGCTACC	TGGGCTGCTG	AAGGGGCCAT	AGACAGACCC
	AGCTTCCCTC	TCGT ^t GAGAG	GCCCTGGGCC	AGCGCTGCGT	GGGAGTGGGA	TTACAACCAG	ACTATAGCTT
	CTTCACCTGC	TTT ^t CC	CAGGATITCA	TAAGAGGCA	TTGCTTGT	TTTGAGGTG	GGGGCAAATC
40	AGGGGAGTT	GAAGAGGAAA	TTGGGTAAGA	TTGAATAGT	TGGGCATGTT	GAATATTATG	AATATCATCT
	CCCTCTTCAA	ATAATCCAA	ATATACCCCC	AAGAAACAGG	CTGATTAGAG	GTGCTTCAAG	GCTCCACTGA
	ATCTCCAAAG	CTCTGAAGAT	GTAGCTAGCT	GTTACCGGAT	TGCCGGTTT	CAAGCCTCGC	CTCACATGGA
	CCCTCTTGGC	AGT ^t CTCGC	ATGGGGAAAG	CATCCGCTAC	ATAGATGGGA	ATGAAAAGAG	GAAAGAAGAC
	GGTGCAACT	CAGG ^t CACACC	CCGGTGTCTG	CCACCACTG	TATTTAATCT	CTGAGGTGTC	ACCCCTCCTG
45	GCTTATTGT	CTCT ^t CC	AACTCTTG	TCCTCTCTC	CACACCCTT	AATCAGGCAT	CAAAGACTTT
	AACCAGTTT	GCT ^t TGTGCC	CAGGCCACT	CATTCTCACT	TTTATGGCAA	AGGGAGTGGG	AGACAGAGAG
	ATAGCCAGAA	AGA ^t GAGATT	GGGGACCCCC	AGACAAATGT	TAGAATT	ACCAAGGCCA	CCCTGTGGAC
	AGGAGATTAT	TGG ^t TTTAGT	GGAAAGCAGC	ACTGGCCACA	ACCACACGTG	GCAAAAGCAT	CTATCGAGGA
	GTGAAGTTAT	ATTIGGTGAA	TGTGACGGGG	AAGCAGGGGC	AGTGGTGTCC	TCCTGCCTTC	CTGAGGCACT
50	CTGTTCC	ACCTCTGC	AGGCTT	TACCCCTGAG	TGCTTAGTT	TGAAAGCCTT	AGTTCCCTCT
	CTCCCATAAA	AAAGCTCTAC	TCTGCTAAC	TCTAAGTTAC	CTTTCAGAG	TCTTAGGTAG	AGGGAGGAAA
	TCCAAT	GATTCCACCC	TATCTGCAA	ATACAAACAT	GGTATTCTT	GCATTCCTAA	AATTGTGAAA
	GAAAATGTGT	ATCACCAACAG	TAGAGAATGG	CATT	TTGATCAA	CCTAAATATA	TTTGATGAAA
	ATGTGTCTGG	TTCTAAGTTT	ATTTCCCAGA	AAGCCATGTT	TACTCACTG	GAATTATAG	ACATCTTATA
55	ATATCTGAGT	CGAC ^t AGGAG	CTCCGGC	TACCTCACT	TTTCTCCCA	CACCCAGGGG	GAAGTGTAGG
	GTTCTCAGAC	TTT ^t AGAATAA	AGAGGAATCA	CCTGGACAC	TCACCTAAA	TGCACATCTT	CAGGTCTCAT
	ACTCAGAGG	TCT ^t ACTCAA	CAGGTCTGG	TGGCGCCAA	GAATTGGC	TTAAATGAG	TATCTCAGAT
	GATTCTAATA	CAG ^t ATGTGT	AAGATGACCA	GATCCTATCA	CACTTAGATG	TATTGGCCTA	GGGCCACCTA
	ACTTGGAGAA	AATGTTAGTA	AGACCCGTG	GTTGGTGCTC	AGCTATAGGT	ACCAGAATT	TGATCAAAT
60	TTACTATCAT	TGTGACACTT	CTCTCGGAA	CTGGAAGGCC	AGAACCCCAC	TTGTAAGT	CTGGGAAAAT
	ACAAGGAAA	TTT ^t GGGTGA	GTAGCATTT	GAATTCTTAC	ACATGGAAAG	TAATGTATA	AGAATTCTTA
	CCAAT	AAA ^t AGCAAGA	GAGAATAGCT	GCTAAAGAAT	TAACACAAAT	ATGTATATAT	TAGTTATTCT

	CTTTCTCCT	CTGAATCCAG	AGGACTTTGT	AATTCCACTA	ATTCTTCTG	AGCTCCAGG	ATGATCTGAG
	ACTTGAATT	TTCATGTGCT	TTTGCTTCC	TATTGGCAG	CATCTTATCT	TGAAGTTCC	GCTTTCTGCT
	TGGGGACCTA	AAAATCAACT	AATGGGAATT	TCTTCAAAAT	GAGCAAACCT	TGGTGAATT	CCAAAGCGGA
	AGAAACAAGT	GAGGATCGGG	CTGGTTAATT	AAGAGAACCT	TTCTGAATG	TAGCCAGACT	GTTTGCCGAC
5	TGTGTTAAC	ATGAGGGAAG	AAATACCCCT	GGAGTTAGA	AGAGCCCCCT	GTTGTTTTTC	CTTGGCCATT
	TGTGCTGCTT	GTTTGTAAAG	TCAGAAAATT	CCTGAAGGAC	TATTATTAGC	TTTGTCTCA	CGTCAGAAAA
	CTTCTGCTCT	GGCCACTTTT	AAACATATAA	CTTGGATTTT	ACTGTATTAG	AAAATGTAAC	AATTACAGAC
	AGCACTAAAA	GGACACCAAA	GGGCAAAGAA	AATGGGTAAC	TTTTTTTCT	TCCCCAAATC	AAAATAGGT
	GATTTGGAG	AAGTAGGAGA	AAAACCTGGA	TTTCTAGAT	CTCTTAGAG	CTCAACAACT	GATATAGTTA
10	ATTATGTAAG	TCTTGTAT	TTGAAAATGA	TTGGATTAAC	CGGATAACAA	TGAATATT	AATACAGTGA
	TTTGGCCAGG	AGCA GTGGCT	CATGCCGTGTA	ATCCCAGCAT	TTGGGGAGGC	TGAGGCGGGT	GGATCACCTA
	AGGCCGGAG	TTCC'AGACCA	GCCTGGCCAA	CATGGTAAA	CCCCATCTCT	ACTAAAAATA	CAAATTAGC
	CAGGCGTGGT	GGTC CAAGAC	TGTAATCCCA	GCAACTCGGG	AGGCTGAGGC	AGGAGAATTG	CTTGAACCCG
	GGAGGCAGAG	GTTGAGTGA	GCCAAGATCA	CGCATTGCA	CTCCAGCCTG	GGCAACAAGA	GCGAAATCCC
15	ATCTCAATAA	ATAAATAAAAT	AAATACAGTG	ATTAACACA	AGAGATTCT	ATTCACACT	AATGAGCTT
	GTCACTGGGG	CAAGCTTCTT	TGCCTCATTA	AGTCTCAGAT	TTCCCGAGAG	CTTATTATT	TATACCAAGA
	GTGCTTACT	ACCGCTCTG	CTAGCTGTGA	CATAATATGA	CAAAGGTAT	AAATATGGGA	AAAGGCACTA
	ATTATATCA	AAGC'GTCTT	CGTTTTCT	TGCTGTGAAG	TTTTAGCTA	ATAATTCTATA	AGAATATACC
	ATATTAGAG	TGTITACTAT	GCATGGGCCT	GGCACTTCAC	ATACATTGCT	TCTTACAAAT	TTTACAAAGT
20	GAAAGGTAGA	TATT'AATCTC	ATTTTATGGA	GGACAAGATA	GAGATCTGGA	GAGGTTACAT	AACTTGCCAG
	TGTTTTTCA	GTTAATAAT	GGTAGGGTGG	AGATTCAATC	TGTGTTACTC	AAAAGTCCGT	GTCTTTTTA
	TTGGCTCAT	GCCTACTCAG	ATTTAAATCT	CAGCAGGGAA	GTAAACCTTA	GTTTTTACAT	GAGAAAATGT
	TACAGCAGCC	TTCI CGGCTT	CCTTACCCC	CATCCCAGTT	TCACGAGCTT	AGTGCCTTAG	ATCGGGTTCC
	TTTAGAAGCA	GACC TCGAAA	TAAGGATGTG	GGTGCAGTC	ATTATTGAA	AAGATGATCC	CAAGAAAGCC
25	TAGTAGGAGA	GTGAGGAAGT	GAGATGGGGA	AAGGAAGAAA	CTCCACAAGA	AGTGTGTTAA	TAAGCAGGTT
	ACCGCTGTGG	GCACCCATGG	GGCTCAGCTG	CACTAACAAA	CTCTGTCTAG	TACAGAAAAC	CTCAGGGTCT
	CCCCAAGGAG	GGGCAAGAAG	TCTGCCTAGG	GTATATATCC	GCCAACTCAG	TCACTGGCTG	AGAGCTGATC
	CTGGGAGGGC	ATGGTTAATT	CCTCTGCACT	TTCAAGTGGA	TTCTGTGGT	CAGAAAAAGC	CCTCTACAAT
	GAATTCCAGA	TGCTGTATT	TAATCTGAC	ATGATCTGAA	TGCTGTGTG	GGACAGGGTG	GGCGTTATTA
30	GTTTCTGTC	ATTA CTGTAA	CAGATTACTA	CAAACCTGAT	GGCTGAAAC	AACACATATT	TATTATGTCA
	TAGTTGTGT	GGGICAGAAG	TACAGGTTAG	CTCAACTAGT	TTCTCTGTC	TAGGTTTCAC	ATTGCCATA
	TCAAGGTGTC	ATCCAGTTGG	GCTCTTCTT	GGAGGCTTGG	GGATGAATCC	ACTTCAAGC	TCATTCAAGAT
	TGTTGGCAGA	ATCCAGTTCC	TTGTGGTTGC	AGGACCAAGG	TCCCCTGTC	TTGCTGGCT	GTTGGCCAGG
	AGTCATTCTT	AGCITCTAGA	GAATACCTGT	ACTCTCTGAC	TCGTGTCTCC	ACTTCACCTT	TCAAACCAAGC
35	AGCGGCTAGT	CGAGTCCCTC	TCTTCAAATG	TCTCCAAC	TGCCCTCACC	TCATTCTCC	TCTGTGTACC
	ATGTCTGCC	CTACTGCTTG	TAAGGGCTCA	TGGGATTACA	TTGGATTAT	TCAATCCAGG	ATAATCTCCA
	TATTTTAAGG	CTAC CTGACT	AGTGATCTTA	ATTCCATCTA	CAAAGTCCT	TCCAATAGTA	CTGTATTAGT
	CCATTTCAT	GCTA CTGATA	AAGACATACC	CAAGACTGGG	CAATTCAAA	AAGAAAGAGG	TITAATTAGA
	TTTACAGTT	CACATGGCTG	GGGAAGCCTC	ACAATCATGG	CAGAAGTC	GGAAGAGCAA	GTCATGTCTT
40	ACATAGATGG	CAGCAGGCAA	AGAGAGAGAG	CTTGTGCAGG	GAACCTCT	TTTAAAACC	ATCAGATCTC
	ATAATACTTA	TTCACTATCA	CAAGAACAGC	ATGGGAAAGT	CTTGGCCCCA	TGATTCAATT	ACTCCCACCA
	GGTCCCTCCC	ACAAACATGCA	GGAAATTCAAG	ATGAGATTG	TGTGGGGACA	CAGCCAAACC	ATATCAAGTA
	CCTAGATTCA	TGTTGTGATT	AACAACCAGG	GAGCAGAAAT	CTTCAGGAGT	GGGGGGCATC	TTTAAATTC
	TGCCCACCAA	GGCIGGGCGC	GGTGGCTCAC	ACCTGTAATC	CCAGCACTT	GGGAGGCCAA	GGTGGGTGGA
45	TCATGAGGTC	AAGAGATCGA	GACCACCTG	GCCATGGTGA	AACCCATT	CTACTAAAAA	TACAAAAATT
	AGCCAGGTAT	GGTC GTGGGC	ACCTGTAGTC	CCAGCTACTC	AGGAGGCTGA	GGTAGGAGAA	TCACTTGAAC
	CCAGGAAGCG	GAGGTTGCAG	TGAGCCAAGA	TTGCGCCGCT	GCACCTCAGC	CTGGGAGACA	GAGCAAGACT
	GTCTAAAAAA	AAAAGAATT	TGCCCATCAT	AGTAGGCTGT	CCTACAGAGA	CATAACCCAG	GAATTAGGTG
	AATGGCTAAC	CTAATTAGC	ACTGTGATGT	GTTTCTGAC	TTGGTCCTTA	TAGCTCCTCT	GCTTAGATGT
50	GGAACTAATC	CATCAATGCA	AGGGTTTGT	TAGAGTTTA	AGTGGGAGTT	AAATATCCAA	AGTACAGGAG
	ATATTATGGG	TGCCCTCATCC	ATGCCCCCTT	GGCATTATC	TTTCTTGGAT	AACCCAACTC	TATTAGTTT
	TATATCTCAC	TTGTTCTTAT	ACTCTGTGAA	CTGATGTCCC	ATAAAATAGAC	ATTCATTTT	GCCAGTCTTC
	TTGAACAATA	ATTA.CGATTA	TTAATCTAGC	AGTTATCATT	AATTGGCCAC	TTCACATTAG	ACACAGCACT
	TAGGACTTAA	GAAACCAGAT	TCATTTGATC	ATCATAATAT	GGTCAGGAAT	TAAGTATTGC	TATCCAATT
55	TTACAAAGAA	GGCACTGAGG	GTTAGAGTT	AAATAACTTG	CTTAAGATGT	CATAGCCTGT	AAGTGACAAA
	ACTAGGACTC	AAAACAGGT	CCATCTGACT	CCAAAGTCTA	TGTTCTTGGC	TACCAACTG	CCTCTCCTAC
	AAGTGACCTG	TGGTTTACT	ACTATATTC	CACTCTACTA	ACTTTACCAT	CTCCCATGAG	TCTGTCTAGA
	GGAGGGCACA	CACAGCACAG	AAAACACATG	AATGCAAAT	AAGGAAGGGC	CTACTTACTA	CACAGAGCCA
	TTCTAATACC	TGA1 GTTG	TCTAATCCAG	TTTACTATT	AATTAGTTGC	TGGTGCCTAA	GTTTTTACTG
60	AGAAATGGGG	ATAATTG	AAGTCATAAT	GATGCCTTCT	TCTCATAGGG	TATTTTATT	GTTGTTGTAT
	CTCCAGGCC	CAAC'ACAGCC	TGGCTTTAG	AAATGATCA	AAAATACCTG	TTGAATGAAT	AAATGGAGTC
	ACCTGAAACA	TGTTAAACAT	TTGTTCATGT	GTCTTAATCG	TGGATTTCAG	GATAGTAAGC	ATCCTAAAAG

	GAAAGCATGC	ACA ^A TGTTCT	TGCTACATTA	ATTTCACACA	ATATAAAAAA	AGAAAAGCAT	CTGAAAAAAG
	CTGCCAGCCG	CTG ^T GTCCTC	TAATATCAAA	CTGAGCACAG	ATATGGAGAA	GCTAAGGGAG	AGGGATGATG
	GGCCATGCCT	CTAA ^A CCTCAT	CATGGCAAAA	GTCC ^T GGGGG	TCAGACCGA	GGAGAGCAGG	AAGTGTCTT
5	TGAGGGATAC	ATT ^T CCACAG	TGGAAATAAT	GAGACTTAAA	TAAATATTAT	ATACACAGTT	CAACTGTTT
	TATGTGTAAA	GGTAGTAGGT	TTTCACAGTA	AGGAAGCACT	TCTTTTTT	TTTGTGAG	ACAGAGTC
	GCTCTGTCTC	CCAC CCTGGA	GTACAGTGGT	GCTATCTCGG	CTCACTGCAA	TCTCTGCC	CTGGATTCAA
	GTGATTCCTC	TGCC TCAGCC	TCCCAGTAG	CTGGGACAAC	AGGTGTGTC	CATTACACCT	GGCTAATT
	TGTATTTTA	GCAC AGATGC	GGTTTCACCA	TGTTGGCCAG	GCTGATCTCG	AACTCCTGAC	CTCAGGTGTT
10	CTGCCGCCT	CTGC CTCCCCA	ATGTGCTGGG	ATTACAGGCA	TGAGCCACTG	CACTCACCAA	GCAC ^T TCTAC
	TGATAGCATT	TAC ^A AACCC	TCTT ^A GAATA	TTTAAAATT	CTAAGAGAAAG	AGTAATTGA	GCCTTCCCAA
	CTAATACTAG	GAGC ^T TATAAA	CCTTCATACC	AAA ^A CTGGAC	AATGCTTGCA	CAAAAGAAGG	AAGCCAATGA
	GGCCACCTAG	AAGGAAGACT	GGGCATTGGG	CCCAGTGAGT	CCTGGAACC	TCATCTGTG	CAGCCACCCC
	GGCATGCCCT	GTATGAGTGG	ATGAGGGTGA	CTTG ^T CCACA	GACAATAGCC	ATCTAGCTG	GATAAAGGAG
15	TCAAGGTAGT	CA ^G UTGCATC	TCTTTACACT	GT ^T TGCAAAT	GTTACACAGG	TTGAAAAGCT	AAGGTTATG
	TAAAGCAAGC	ATCA ^A AAGATG	ATGAAATGAT	CAACCTGACA	ATGAGTACTA	TGCTGCATTG	TCCAGAAAGG
	AACTGTGAA	GAT TTGGG	TGAATTCAA	AACAGAAATT	CCTCACTCTC	TGGATGTTGG	CTTACTTGGC
	CTTTGATGTT	CAGAGGTGGT	GCCTTTGTGT	TGTTGAACAA	TGTTGATT	GGAGAGAAAA	CAGAGTTGAA
	AAACCCACAA	GTC ^A TTCCCT	GGGGAGTATT	ACCGGAATAC	AGAGGATAAT	TTCAGCAAGC	CAGCAAGGCC
20	TCATCTCTGC	TTCT ^A ATAGA	TAGGAAGAAA	GGAGAGAGGG	AACAATACTT	TTTAAAGAAG	CTCAGCTTA
	TCGCCTTATC	TCATAGAAAG	ATGCCTCCAG	TCTGCTGGC	TAAAGGTAAT	TGGCATGGG	AAGCTTTAT
	CTGTGATTCT	AAC ^A AGTGG	ATGTTCCCT	TCATTAAGAG	AGCCTTGCT	GGCTTGGG	AATGAAACAC
	TTTCTCCGAT	ATGA ^T GGGG	TGTAACCCCT	GCTACAAAT	ACTCAGAAGA	AATAAGGCC	TTGTGGAGCA
	GTCAGGAATG	AGTC ^A CTTGC	CTCCCTGGAA	TATT ^A CAGAA	ACTGAATCAA	AAGTACATT	TTCTGGGTTT
25	TCTTAGTCTA	ATAGACTAAG	GGTCTCTACT	TTGTTAAAT	TCTGGAAAC	AGCATAGAAAT	GGGAGAAAAA
	ACTGGTCACT	GTAC ^A T ^A TGC	AAATCTGCAA	AAACAAACAA	AAAGTCTGGG	TATTGCTGCT	AACTAGCTAT
	GTGACCTTAA	GCA ^A GGTATT	AACTCTCT	GAATTTCAGG	TTCTTCATCT	GTAAATAGC	ATATCTGAA
	AATGGGAATT	ATT ^T CTCATAT	CATAATGCTG	TAGCTTTAA	AAATAAAAAT	AAATGGATGA	GATAATCAGA
	ATAAAGAGC	CTGG ^T ATATA	TAGTTAATAT	ATAGCAGCAT	GTAAAGATCC	TGTTAGAAAT	GCTAATT
30	CAGTTAACCA	TTTG GAGATG	ATCCGCCAA	GCTGCTAGTG	TAGAGGCAAC	TGAGAATT	CCTGCTCTTC
	AGAATATGAA	TAAT ^A AACTG	TCAATGATGT	CTCAAGCCTA	AAAAAACTA	TCCATCTGG	TGGGTGGGAA
	ATTTCCTAGG	TAGATTGAG	AAGCCCATT	CTTGGGAAAT	AGGTCTTGA	CTGAGTGAAG	AAAAAGAAC
	AGTAAAACCC	ATGC ^T AAAGC	AGCAAGGCTC	TCTAGAGGCT	CTGGAGAGGA	TGAATTGAAT	TCTAGAAGAT
	GAAGTAGGGA	AGAC ^A GCTT	CCTTCTTGT	AAATGGATT	AAAGATTCAA	AGACCTTCGG	GAATCTCAA
	TTGTATAAAT	GGC ^A CCATAG	CTGTATGTT	CATGGAACAC	TACTTCCCAG	AGATGCCAG	TGAAAAAAGA
35	ATGCCACAGT	CAA ^A TAAGT	TGGAAACACT	CCATTATGTG	GCCACCTCT	TGAAGACTCT	AATGCACATT
	AGCATGTTAA	ACA ^A TCTG	GAAGTCTGC	AGAGCAGAAA	TTGCTTACA	TCTGCTAACG	CGGCAGTTTC
	CCAATATACT	TGAT ^T TATG	TAGTTTTTC	CTTACAACAC	CATTCTG	TATGCTTCA	ATGACATGAA
	ATAAAATATAT	ATGC ^A TGAGG	TTCTTCATTA	GGGCATACTT	TTAATAGAA	AATATTGAGA	ATAATCTAA
	TATAAAATGCA	CAGC ^A TTTAC	CTTTCTGCA	TAAACTATAT	ACAGGCATAC	CTTGGAGATA	CTATGGTTT
40	GGTTCCACAA	ATA ^A CTCAA	AACCACATTC	GGTTTATGA	CCACTGCCAT	AAAACCAGCC	ACATGAATT
	TTTGGTTTCC	CAATGTATAT	CAAAGTACA	TTTTACTAT	ACCATAGTCT	ATTATATATA	CAATAGCATT
	ATATCTAAA	AAAC ^A ACGTA	ACACCTTAAT	TTAAGGCTGT	GGCTGGTTG	ATTITCTACC	CAGACCACTA
	AAACTTTCTT	CAT ^A TCAGCA	ATAAGGCTGT	TTCACTTTCT	TACTATTTT	TGTGATAGCA	CTTTCTT
	CCTCAAGAA	TTT ^T CTCTT	CTATT ^A CAA	TTTGTGAT	ACAAGAGGAC	TAGATTTAG	CTTATCTCAG
45	TTTAAGGTGT	TTACATTGTT	AGCTAAAAT	GCTAATGATC	ATCTGAGACT	TCAGCAAGTC	ATAATCTTT
	GCTGGTGGAA	GGTCTTGCG	CAGTGTGAT	GTCTGCTGAC	TGGGTGGCT	TGGCAATTTC	TTAAAGTAAG
	ACAACAATCA	AGT ^T TGACAT	ATCAATTGAC	CCTCCTGTC	ATAAAATGATT	TTTTTTTCT	CTGTAGCCTG
	CAATGCTCTT	TGATAGCATT	TTACCCACAG	TAGAATT	AAAATTGGAG	TCAATCC	CAAACCTGG
	TGCTGTTTTA	TCAACTAAGT	TTATGGAGTA	TTAGAAATCC	CTTGTGTC	TTTCAACAA	GTTCACACCA
50	TCTTCCCCAG	GAGI ^A TATTC	TACCTCAAGA	AACCACITTC	TTTGCTCATC	TATAAGAAGC	AGCTCCTCAT
	CCACTAAAGT	TTT ^A TCCTG	GATTGCAACA	ATTCA ^A TTAC	ATCTTCAGGC	TCTACTTCTA	ATTCTAGTTC
	TCTTGCTGTT	TCTA ^A CTCAT	TTGTGCTTAC	TTTCTCCGCT	GAAGTCTTG	ACCCCTTAA	GTCACTCATG
	AGGGTTGGAA	TCA ^A CTTCTT	ACAAACCTCT	GTTGATGTTG	ATATTTGAC	CTGCTCC	GATT ^A TGG
	TATTCTTAAT	GGC ^A CTAGA	ATGGTGAACG	TTTCAGAAAG	GT ^T TTGAGCT	GGCTTGGCC	GGATCCATCA
55	GACGAATCCC	TAT ^T TATG	AGCTATAGAT	TTATAAAATG	TATTCTTTT	TTTGTGGGGG	CATAGCGTCT
	CACCCGTCA	CCCAACCTGG	AATGCAGTGG	CACAGTCATA	ACTCACTGAA	GACTCAAAC	CCTGGGCTCA
	AGT ^A TTCTT	CCACCTTGGC	CTCCC ^A AAAC	ACTGGATTAC	AAGCTTGAGC	CACTGTGTC	AGCCCAAAT
	GTATATCATA	ACTAATGAGG	CTTGAAGTC	AAAGTGA	CTTGA ^A CCAT	GGGCTACAGA	ATGGACGCTG
	GGTTACCAAGA	CATC AAAACA	ATACTCATCT	CCTCATACAT	CTCCTTCAGA	GCTCCTGGGT	GAGCAGGCC
60	ATTGTCAAAT	GAGC ^A GTAGT	ATCTTGAAAG	AAATTTTTT	TCTGAGCAGT	AGATCTCCAC	AGTGGACTTA
	AAATAGTCAG	TAA ^A CTATGC	TGTAAACAGA	AGTGTGTC	TCCAAGCTCT	TTTTTCCAC	TGATAGGGCA
	AAAGCAGAGT	AGA ^A TTGGCA	TAATTCTCTA	GGGCTTAGG	ATTTTGAGA	TGGCAAATTG	AGCATTGGCT

	TCAACTTTT	TTT TTTTTT	TTTTTTGAG	ACAGAGTCTT	GGTCTGTAC	CCAGGCTGGA	GTGCAGTGTT
	GCAATCTCGG	CCC ACTGCAA	GCTCTGCCCTC	CTAGGTTCAC	ACCATTCTCC	TGCCCTTGCC	TCCTGAGTAG
	CTGGGACTAC	AGGCACCCGC	CACCATGCC	GGCTAATT	TTGTATTTA	GTACAGACGG	GGTTTCGCCA
5	TGTTAGCCAG	GATCGTCTCG	ATCTCCTGAC	CTCGTGTAC	ACCCGCCCTG	GCCTCCCCAA	GTGCTGGGAT
	TACAGGCGTG	AGCCACAGCG	CCCAGCCTGT	CTTCAACTTA	AAGTCGCCAG	CTGTGTTAGC	CTCTAATAAG
	AGAGTCTGCC	TGTCTTTCA	AGCTTTGAG	CCAGGCATCA	TTCTCTTC	TAGCTATGAA	AATCTTAGAT
	AGCATCTCT	CCCPATAGGA	AGCCATT	TATGCCCTAA	AAATCTGCG	TTTGGGTGAG	CCACCTTCAT
	CATTGATCTT	ACCIAGATCC	GCTGGATAAC	TTACCACAGT	GTCTACATCA	TTACTTCTGC	TTCACCTTGC
10	ACTTTATGT	TATGGGGATG	GCTCCTTCC	TCTAACCTCA	TAAACTAAC	TCCACTAGCC	TCACATTCTT
	CTTTTACAGC	TTCCCTCGCC	CTCTCAGAGT	TCACAGAATT	GAAGAATGTT	GGGGCTTGGG	TTACACTTG
	GTTTAAGGGA	ATGCTGTGGC	TGGTTGATT	TTCTATCCAG	AAACACTAAA	CTTCTTCAT	ATCAGCAATA
	AGACTGTTTC	ACTCTCTTAC	TATTTTTGT	GATAGCACTT	TTCCCTTCTC	TCAAGAATT	TTCCCTTCTA
	TTCACAATT	GACC GTTGA	TATGAGAGGC	CTAGATT	GCCAATCTCA	GTTTACACCA	TGCCCCTTTC
15	ACTAACGTT	ATCACTTTAG	CTTTTATT	AAAGTAAGAT	GTGTGACCC	TCCCTTCATT	TGAACACTTA
	CATGATGATG	CCTCGCTCA	AAGCTGAAA	GGACAGGCAG	ACTCTTAT	TAGGGGCTAA	CACAGCTGGC
	GACTTTAAG	TTGAAGCCAA	TGCTCAATT	GCCATTAGAA	GCCATTGAG	GGTTAATTAA	TTTGCCTAAT
	TTTAATATT	TGGTGTCTCA	GGGAATAAGG	AGGCCTGAGT	AGAGGGAGGG	AGATGGGGAA	ACAGCCAGTC
	ATCAGAGCAC	ACACAACATT	TATCAATTAA	GTTTATCACC	TTGAGGGCAC	AGGTCTGAT	ACTTCAAAC
20	AATTACAATA	ATAAAATAAA	AAATCATTGA	TCGCAGATCA	CCATAACAGA	TATAATGATA	ATGAAAAAATT
	TGAAGTATTG	TGACAAATTAC	CAAACAGTG	CACACAGACA	CAAAGTGAGC	ACATGTCATT	GGAAAAGTGG
	TGCTGATAGA	CTTA CTTCAT	GCAGGGTTGC	CACAAATACT	CAATCTGAA	AAAATTCAAT	TATCTACATA
	GTACCATAAA	AACAGGGTAT	ACCTGTTAT	ATAATCAAGA	CCAACAGAAC	CCTAGAGAAA	ATAGCTCACT
	CCCTAGCTG	GAGACATTCT	AACCAACATA	CACTTACCTT	TCTTTTGCT	GTGTACAGAA	TTCAAATCCC
25	TGTCTCAGCA	AAATTGCAAA	GTATCAAATG	TCATGTCCAT	CTAAACTCA	AAACTGCAAA	TGTTAAGTCT
	TGTAAGCCA	GAGACCAACTG	TATATACAAG	TGTTGCTATA	AGCATTAGTT	CTTCTCCAAA	GAAAATAGTC
	CACTTGGTAG	AAACAAACAA	AAAGAAAAAA	AAAGAAAGAA	AAAACATTT	TTACAAGAAG	ATTCAAGTCTC
	TTACCTACAT	AAGCAAAAAT	ATGAGATGTT	CTCTTATCAT	TTTCCATCT	ATCTTATAAT	CTTGGTGCT
	GACTTAGACA	CTCACTTCC	TTTTTGTA	TGACCATGTA	AAAGTTCAAG	TCAAGAAAAA	CTTGTGTTGA
30	CATTGTTT	GCTGAGTGT	GGGTCCCTAA	AAGAAATTG	GCTTIGCTT	TGAAAGTTC	AGCATGATAT
	TGTGTGAATT	TTTCATGGCT	AATGATT	AGAACAGTTG	TGATGTGTT	AGGTGTTTA	AGAATATGAA
	GCATTCACTG	GTTIAAGTTG	GTTGTTATAA	AATGAAAGAA	TATGAAGGAA	AGCCTCTTG	TCTTAGAACA
	CACTGATTCA	CAA TAAGCA	GCTTCTCTCA	AAATGTTGTA	ATTACAAAAA	TTCAAGGCA	AATATAATAA
	ACTCCTTGT	GGTGTATGT	CTAGAAACTT	AACAGCCCCA	AAGAAAGTCC	TGACAGGCA	AAAAATATAT
35	ATATATATAC	AAATGTGGA	AGCAGGGTGT	TGAAAGAAGA	ATAAAAGACTA	TATAAGGACA	AACTGTTAA
	AAGGGAGGGT	ATCCTTGA	GCTTGACACT	TGACTCTT	GACGAGGCTG	AGGGAAAACA	CTCAGTTCA
	TAGATTGCTG	GTACGGATGT	AAAATAGTG	CATCCCTATA	GAGAGGAATT	TGGCAATATC	TAGCAAAAGT
	GCTTATGCAT	TTATTCTTG	ACCTAGTAAT	CCCGCTCTA	GGATTAGTGG	TGAAGATACA	CCTCAACAA
	AAAAATATAT	ATACATTAGG	TTATTAGTTA	TGGTTAATT	TTAATAGCA	AAATATTAA	AACAACCTAC
40	ATGAACAAAT	AGGAGACTTA	CTGAATAAAC	TATGGTATAT	CTGTACAATA	AAGTCAATT	CACTTATGTT
	GTTAATTG	TCCAAAATC	CAGAGCCAA	GAGTATTG	TATGCTCT	TTAGTATAAG	AAAGGGAAA
	TAAGATATGT	GTGCATCTGT	TTATTTTG	GAAAATAAGT	ACAGAAAGGA	TAAGTAAAGA	ACTAGTAAA
	CTAGTTATCT	CCTAGTGT	GTAGAAATAG	AATGAAAGTG	AATTAGGCTT	CTTGTAGTAT	ATGTTTATAT
	ATAGTTTG	CTT TGAATT	ATGTTATG	TTACATAGTC	AAAAATATAA	ATTAATCAAC	AGAAATAACA
45	AAAAAAGAAG	AAATCACAA	CTTTAAAATT	TAATACAAAC	AGAAATAATT	GAATCTAAC	GTATATCAA
	GTGATAACGT	AAACCTCAGAA	GAAAAAAACA	TAATCCAACA	TACCACTGGA	ACACAATATT	CTAACTGTAT
	ACATTCACTG	GTTA TAGTCT	AAGGACAAGA	AAAATTGCAA	AAATATCTG	AACCTTAGCT	TGTAGGATT
	TTATTGGTAG	CAAT ACTAAT	GTACTAA	TGAAATTAA	GTTCGTGTAT	TATAGAATTG	AGTAAATGAA
	TAAATATGTT	GATCTTATTG	GGAAC	TTATCATTCT	GGGAGTAGAG	AAATATAAA	ATGGACTTGG
50	CAAATGAAAC	AAA GACCTGC	AGAGAGATAA	CCATATAAAC	TCATTATT	AAAATTATA	AGTGTCTAG
	CTCTGTTACT	GAAGAGGCCT	AGATTCAATC	TTATCTGAT	AGACAGGAGG	GCACCCCTT	CTCAGAACAT
	GGTTTCCAAA	TGCCATTCTC	CATTAAGG	AACAAGGTCT	TCTTGGAGAA	AAGACTGATT	CTAGGTCTGG
	ATTAGGTTAA	GTAC AACGTT	AGTCTGGAT	TTCTGCTGA	ATCAGAAGTA	AGAAAGTGCT	CAAAACATG
	GGAACATGTC	ACAA ACACAC	GTGAGGCAAC	TTGAATCCTC	ACTGGCCATA	TTAGGACAA	TCGAGCATCA
55	AAAAAAAAAA	AAA TGTGAG	AATAATGGAT	TCTAACACTT	AAAACAAAAA	ATAATCCATA	GCCCACAGAA
	GGGGAAGAGA	GGGGAGGCTC	TTATTTACAG	ATGAATATCA	AATAGCAAAG	ACAGAAGAAA	TGACAGAATT
	AGAGAAACAT	CAT TTGCAA	AAACCAACTG	TAATAATCAA	TTCAGGCAAG	TATTATTAAT	GGATGTATTA
	CTATTGCGTA	AAAC CAGTTG	GGGAACAGGA	TATTCATACA	GTCTGAAGGT	GTCACCCCTAA	ACATAACTTA
	TTACAAGTGG	AAA ATGGTGC	CTT TACAATG	AAGAAATCTA	GCAGAAACCA	TCTTAATCTA	GTGATCAAAC
60	TTAGTATCAC	CAAA TATGGA	TCATACTGAG	TCATGTGTCT	CCTAATATGA	TGCACCAGGA	AGGATGCAAC
	GTCATGAACG	TTGATTCTT	TTGTATTCAA	CAGACCACCC	AGGGTAAAGG	CAGCTTCTC	ACTTACTAAT
	CAGAATTGTT	GGTTTAATT	CATTGAG	TTTAAGATT	CTTACTTCT	TGTCACTCA	GAAATTATT
	TAAGATGATT	TTTATCTTT	ATTCAATACT	TTAGCTTGA	GAACCATTCA	GAGTTCTAA	CTCATTGTT

	TGCCAAAAAT	AGA^AACAGC	ATGGTTCTT	TTGAAAATGT	CTAACTTAA	AGTTACTTGT	GTGTGTCACT
	CAGATTACA	TAGCTTTTT	GCCTAGTAAT	GTAGTATCAT	GTGGCAAGGC	TATAAAATG	TTTACAACCT
	TTTATTTAAT	ATGACTCTG	AGAGTTTATT	CTAAGGAAAT	AATTGAATAG	TAACAAAACA	CTATTAACAC
	AAAGCATAGC	AAT^TGATT	GGGCAACCAA	ACACTGGAAA	CAACCTAAAT	GTC CATTACA	GGAATCATTT
5	ATGAAGCAA	CACT^AAAATA	TTTATTGTGA	AGATTATGAG	AACATAGAAG	ACAGTTATGA	GAGTAAATT
	GAAAACCTGA	ACACAAAAC	TACATATAC	CCAATTGTAA	CTTATAAAA	ATACGTGCAT	ATAAGGATAA
	AACAGTACAA	ACA^AAAAAT	AGTTGCGTTA	GATTGGTAGA	ATTATGGCTC	CTTTGCTGT	CTTAATT
	TCCTTTACA	TTT^GATACA	TTATTTAAT	TTAATTTTA	AAATTCAAA	GAATTGCCA	CTCATCTTG
10	CCACTTCAAG	GAA^AAAAGAA	ATGTGTTCGA	TTATTCTGTT	CTTAGTATAG	TTTGGCAAT	TTCCCTCACGT
	GTAAAAAGAG	AAT^ACTATT	ATAATTTCAG	TATCTATAAG	ACAATATAAA	ATTAAGAAAT	CTAGCCCCAGT
	AACTGGTACA	TGG^ACGTA	TTAATAAAC	ATTATGGACT	TTTTTCTCA	CACCCAAGTA	GGGAGGAATC
	AGTGGTCCC	TAGAGGGCCA	GTGTAGAGGT	GGCAGCACCA	ATCCCTAGGG	GAGAAGATCT	TGGTGATGAT
	AATTCTGAG	CAG^CAGTT	GCTGAGAATT	CAAGAGCAGA	AAAGTAAGAA	AGAAACAAC	TCTTGCTAAC
15	ACCTTCCAC	CCAC GTTTCC	CTGTTCTG	GTACTCTGCT	TACCCTTCA	TGGATGGAGG	CAGAGGAAG
	AGAACCAAGT	TTG^CTCTTAG	TCATTCACTA	TGTTGTTAA	TCTGCCTCC	ATCTTCTTA	TCAGTTCAA
	TTAGAATGTA	GACCTGAATT	TAATCCCCG	TTCTGTCAGT	TATAATGTGA	CCCTAGACAA	AACACATTCT
	CTGAACCTCA	GAG^ACATT	TTCATTGTA	GAATGGGAAG	ATTAATCTAT	ATTCCACTTG	GATGGCAAGT
	CTTTATAAA	CTTATAACC	TAACACATGTG	TGAGTTGCTA	GTATCATTAT	GTTGGTAAAG	TTATTCTGAG
20	ATATGATAAC	AGA^ACTGTT	TGTCTAAC	CACTAGCATG	GTTCAGGTTT	AGAGAGTGTG	GAATTAAAAG
	GCTTATCCT	CAA^ATATGAC	TTAAATCCGA	TTTTCTCAT	CCACTTTCTC	CCACAAACAA	ATCCTCAGGA
	AATGACAAAC	TTA^CATGGT	TAACACATCG	TTTTGTTAG	CTTTGACAT	CCACATGGTT	AAATCATACA
	TTGAAAAC	GCT^ATATT	GTGTTGCTA	TGTCTAAATT	GAAAAGACTT	ATTGAGGAAT	AGAAGACTAC
	ACATTTTCA	GCA^AACATG	CACGTTTGC	AGAATTCCC	CAGG CACCAG	TCTCCAGGA	TTTATTGGCT
25	ACTAACAA	CTA^GATATG	GATGAATGAG	GAATCAAAA	TGGAGATCTT	GCAAGTTTG	TGAGAATGGG
	TGAATGGTCC	AAA^GAAGAG	ATAAGTTGT	AAATATTAGT	ACAAGTAAA	ATTATTAC	ATGAAAGACA
	TTTGTCAAT	AGC^ATGAGA	ATTTACAT	TGACCCAGAA	ATTCCATTTC	TTTCTTCAGA	AATACCCACG
	TAGGTATACA	TAT^AAAAGT	TATTCAATTAC	AGTATCGTT	TTCATAGGAA	AAAGTTTAA	AAATCAGAAG
	CTATCTAAC	TATGGTATAT	CTAGGTCTA	GAATCAAAT	GACTAAAAAT	GTTAATATAA	GCATATGTT
30	TTAAATTAAAC	TTG^CTTGGG	TCTTCAGCA	AATTGGCTTC	TTAACATTGC	ACTCCAGAGT	TAGACTTACC
	CACTCAGTCA	CTTATCATGC	AGGAGCAGAC	TCCTAATACC	ACATATCATA	GAGCAGAGTA	GGACACAGGT
	TCTCTGCAGG	CAGC CAAATC	CCAAAGAGAA	GGGAGGAAAG	GGCTGAGACA	CTGCATGGTC	AATTCTCT
	GAACTCTGCA	ATG^ACGGAG	GTGGACAGT	TCCACAAAGA	TTGCTCCCT	GGACCCACCA	TCATAATAAC
	ACAACGGCTT	TGT^TTGTT	TTGTTTTGT	TTTTGACAC	GGAGTTTGC	TCTTGTGTC	CAGGCTGGAG
35	TGCAATGGT	TGA^CTCGAC	TCACCACAC	CTCCACTTCC	TGGGTTCAAG	TGATTCTCCT	GCCTCAGCCT
	CCTGAGTGG	TGG^ATTACA	GGCATGCACC	ACCATGCCCA	GCTAATTTCG	TATTTTGT	AGAGACGAGG
	TTTCTCCACG	TTGCCAGGC	TGGTCTCAA	CTCTTAACCT	CAGGTGATCC	ACCCGCTTG	GCCTCCAAA
	GTGCTGCGAT	TAC^GGTGTG	AGCCACCGCG	CCCAGCCAC	AATGGCCTT	TGTTTACATC	TCTAGTGCAG
	CACTCATTTC	ATG^TCTTT	AAGAAGAATA	CATATTCTAT	CTTTTATT	TATACAGCAA	TTAGCACAGT
40	GCCTGGCATA	AGG^AAATGA	TCATTAAAG	CTGGGTGAAA	ACCTAATAA	AGCTACTGAG	GATAGGAAC
	AGGCAAGAAG	TATGCTTTG	GAATATAGAA	AATCTGGATT	CATCATCCTG	AAAGGCAGAA	GATTTAGTAT
	CTTACCTACT	CACT^CTCTAG	TTCCACATGT	TTCTGAGGCT	ATGATAAGAA	AAGAATCATA	TTTGTCTTAT
	CACTCTTCT	GTTCITTAGA	TTGGATCATT	CCTATTGAGC	GTTTGTCTT	ACTTTCTTT	CTGTTTTATC
45	TCCAAACTGC	TGT^AAATGC	ATCCAGTGA	TTTTTAACCT	TGACATCAAG	TAACTGACC	TTTATTGTTG
	CCACATGAGT	TTT^TAAGTT	TCCATTCTC	TGCTGAGATC	TATATAGTAT	ATCTTTAGT	CCTAGAATT
	TTTCTCTACA	TTATGAGCA	TAATTATAAC	AGCTCTCTA	TCCTATTGT	TCATTCATTA	TGACCATATT
	ATTATTCTGG	GGTC^AGTCTC	TGTTACATTG	CCTTATTACA	AAATTCTTGT	CTGCACATT	TAACACCTGA
50	TTAATATGCA	AAAT^GATTTT	TGATTGCGAGA	CTAGACATT	AAAACAGTAT	AAGTCACATT	GCCTTGTTC
	TCGAGAGAGT	ATTG^ACTTGT	TTTTTCCATC	AGGCAGGTAA	TGAATTAAAC	ATTATAGAGA	TTCTGGATTC
	TCCTCTGTA	TGG^CAAATG	CAGTAATCTT	TGTTTAGTTC	CTTGACTGGA	CTCAAACCTCC	AAACTCTAGG
	CATGCCGCA	ATCC CAGCAC	TGTGGGAGGC	CAAGGTGGGA	TTTAAGACTT	ATTGCCAGG	CACGGGGGCT
	GCCTGGCCA	CATC GTGAAA	CCCTGCCCT	ACTAAAAATA	GGGTCAGCTA	AGGTCAAGG	TTCGAGACCA
	CTGTAGTCCC	AGCTACTCAG	AAGGCTAAGG	CAGAAGAATC	GGATCACCTG	AGGTCAAGG	TGGTGGGCGC
	AGCCGAGATT	GTGC^CACTAT	ACTCCAGCT	GGGTGACAAA	CAAAATTAG	CCGGGTGTGG	GGTTGCAGTG
55	TGGCACTGCT	TGG^ATCTGC	TATGAATACA	TGAAGTTCAT	AAGATTTGGG	AACTTTAGG	AAAAATTAT
	ACAGAATTG	GGT^CTCCCTT	TCTCTGGATT	TCTCTTTTC	CTCCTTTCTT	CCAGATGTAG	CACCTCTCT
	TGGTTGCCCT	AAAC^CTGGTC	CTCTGTTCT	TTACGGCAGT	TTATCATTGT	TTTCTGTGGG	AGAGTTGGTC
	CTCTCAGACA	AAA^AAAAAA	TAATTTCAT	CTTGATGCTA	GTAATTATGA	ATAGACTTTG	AGTAGTATTC
60	AATTTCAGT	TGC^TTTTAT	TGCTCTCCAG	AGTCTAAAGA	TTATTTCTG	TTTTCTCAT	CCGTAATCTT
	TGATAAAAAC	TAC^CCCCCA	AAACTGGAAAG	CTGGAAGCTT	GAAGATTTCAG	TGACTGCTAT	CAAATGACCC
	TTCTTGGAA	AAGGATTTTA	ACTACTCCCT	ATGTACTTCT			
	TTTATTTC	TACT^CCCTAA	GTCAGACAAAT	TTTCCTACTT			

	CCATATTACT	AAATACAATA	TCCCCAACTG	CATTTATAAA	AAGAAAATTT	ACTGTTTATT	AGTAACAAAT
	GTTGTAGAAT	AGT/AAATAT	TGCTGGGCTT	TGGAGCCAGA	TAATCAAGGT	TAGAATCCCA	GATTCTAACT
	TACTAGCTGG	TGTATTAGTC	CTTTCTCATG	CTGCTAATAA	AGACATACCC	CAGACTGGGA	GACTGGGTAA
5	TTTATGAAGA	AAAGAGGTTT	AATTGACTCA	CAGTCAGCA	TGGCTGGGA	GGCCTTAGGA	AACTTACAGT
	CATGGTGGCA	GCAAGGAGAA	GTTCCAAGCA	AAGAGGGAAA	AGCCCCTAT	AAAACCATCT	GATCTTATGA
	GAACCTCACTC	ACTATCACGA	GAACAGCATG	AGGTTAACGT	CCCTCACGTT	TAATTACCTT	CCACCAAGTTC
	CCCCCATGA	CACATGGGA	TTATGAAAGC	TATAATTCAA	GATGAGATT	GGGTGGAGAA	ATAGCCAAAC
10	CATATAATT	CACCCCTGGC	CCCTCTCAA	TCTCATGTCC	TCACATTCA	AAACTCAATC	ATGCCCTCCC
	AACTGTCCCC	CAAGGTCTTA	ACTCATTCGA	GCATTAAGTC	AAAATCCAA	GTTCAAAGTC	TCATCTGAGA
	CAAGGCAAGT	CCC/TCTGCC	TATGAGCTTA	AAAATCAAA	AGCATGTTAG	TTACTTCCTA	GATACAGTGG
	GGGTACAGGC	GTTGGTAAA	TACACTGATT	CCAAATGGGA	GAAATTGCAA	AAACAAAAGA	GTTACAGACC
	CCATGCAAGT	CCAAACCCA	ATAGGGCAGT	CATTAACATT	AAAGTTCCAA	AATGATCTCC	TTTGACTTCA
15	TGTCTCACAT	CCACGTCACA	CTGATGCAAG	AGGTGGGCTT	CCAATGGCT	TGGCGAGCTC	TGCCCTGTG
	GCTTGAGG	GTAAGCCTG	CTTCTGTTT	GCTTTTCAC	AGGCTGACAT	TGAGTGTCTG	TGGCTTTCC
	ATGAGTATGG	TGCAAGCTGT	TGGTGGATT	ACCATTCTGG	GGTCTGGGCC	AGGTGCAGTG	GCTCATGCCT
	GTAATCCCAG	CACITGGGA	GGCTGAGGTG	GGGGATCACA	AGGTCAAGGAG	ATCGAGACCA	TCCTGGCTAA
	CACGGTAAAAA	CCCAGTCTCT	GCTTAAAAAA	TACAAAAAAAT	TAGCCAGGCG	TGGTGGTGGG	TGCCCTGTAGT
20	CCCAGATACT	TGGCAGGCTG	AGGCAGGAGA	ATGGCGTGA	CCCAGGAGGT	GGAGCTTGCA	GCGAGCTGAG
	ATTGTGCCAC	TGCACTCCAG	CCTGGGCGAC	AGAGCAAGAC	TCCATCAAA	AAAAAAACAA	AAAAACCAATT
	CTGGGGTCTG	GAGAATGGTA	GCCCTTACAG	CACCAACCAGG	CAGTCCCCA	GTGGGGACTC	TGTGTGGGGG
	CTCTGACCCC	ACATTTCCCT	TCTGCACGGC	CCTAGTAGAG	GTTCTCATG	AGGGTTCTAC	CCCTGCAGCA
25	AACTCTGCC	TGGCATCCA	GGCATTTCGA	TACATCCTCG	GAAATCTAA	CCGGGGAGGT	TCCCAAACCT
	CAATTCTGA	CTCC TGTGCA	CCCACAGGCT	CAATACCACA	TGTAAGCCAC	CAATGCTTGG	TCAGGGCTTG
	AACCCTCTGA	AGCAATGGCC	TGAGCTGTAC	GTTGACACCT	TTTACCTAG	ACATCTAGGA	CACAGGGCAC
30	CATGACCGA	AGCTTCATAA	AGTGGGAGGG	CCTTGGGACT	AGCTGAGGAA	ACCATTTC	CATCCTAGGC
	CTCCAGGCCT	GTGA TGGGAA	GGGCAGCCAT	GAAGGTGCCT	GACATGCCCT	GGAGACGTTT	TCCCCATTGT
	CTTGGTAACT	AAACATTCAGC	TCCGTGTGCA	GCACCAACTT	ACTTATGCAA	ATTCTGTCA	CTGGTTTGA
	TTTCTCCCCA	GAA/ACAGGA	TTTTCTTTT	CTATTGATC	ATCATGCTC	AAATTTCAA	ACTTTTATGC
35	TATGTTCCCT	GTGAAGACT	TTGCGGCTTA	GAATTTCTT	CCCCAGATA	CCCAAAATT	TCTCTCTCAA
	GTTCAAAGTT	CCACAGATAT	CTAGGGGACA	AAATGTTGCC	AGTCTTTG	CATAGCAAGA	GTGACCTTA
	CTCCAGTTCC	CAAC'AAGTTT	CTCATCTCCA	TATGAGACCA	TCTCAGCTT	GACTAGTTG	TCCATGTTAC
	TATCACATT	TTGC TCAAAG	CCATTCAACA	AGTCTCTATG	AAAGTTCAA	CTTCCCCATG	TTTCCTGTG
40	TTCTAATAGC	CCTC'CAAATT	TTTCAACCT	CTGTCGTGA	CCCAGTTCA	AAGTCACTTC	TACATTITG
	GGTATCTTA	CAGC'AGTGGC	ACTCCCCATG	GTACTAATT	ACTGTATTAG	TCTGTTCTCA	TGCTGCTAAT
	AAAGACTTAC	TCGAAGACTGG	GTAATTATA	AAGAACAGAG	GTTCAACTGG	CTCACAGTC	AGCATGGCTG
	GGAGGCCTCA	GGAA/ACTTAC	AAACATGGT	GCAGCAAAGA	GAAGTTCCAA	GCAAAGAGGG	AAAAGCCCC
45	TATAAAACCA	TCAGATCTTG	TGAGAATTCA	CTATCATGAA	AATAGCATGA	GGTAACACTGC	CCCCATGATT
	AATTTACCTC	CCACAGGGTC	CCTCCCATGA	CAGGTGGGGA	TTATGGGAAC	TACAATTCAA	GATGAGATT
	GGGTGGGGAC	ACAGCCATAC	CATGCCAGCT	AGAGAGCCTT	AAGAAAGTC	CCTAATCTCC	ACAAATAAAA
50	GGTTTCCAT	TTGT TCAACA	AAAATAATGA	CACCCCTTTT	ATGGGATTTC	TGTGAGGACA	AATGATAACT
	AACATAGCCT	TGCA TAGTGT	CTGGCACAAA	ATAGCTACTC	AAAAAATAAT	AGAAACAAACA	TTTAAAAAAAT
	GTAGACTTTA	TTTTTITAGAG	TTTATGTAC	AAAGCAAAAT	TGAGCAGAAT	GTACAGAGAG	TTTCCGTATA
	GCACCTCTA	CCCC CAAGCA	CAGATAGCCT	CCCCCAGTAT	CAGCATCCCG	CACCAGAGTG	GTACATTAT
55	TATAACTGAT	GAATCTATAT	TGACGTGTCA	TTTCATCCA	AAATCCATAG	TTTATATTAG	GGATGCCTCT
	TGGTGTGTA	CCTTCTATGG	GTTTTGACAA	ATGTATAATG	ACATGTATT	ACCATTACAG	TATCATAAAG
	AATAGTTTCA	CTGT'CCTAAA	AATCTTTGAT	CTTCTTCCTA	TTCATCACTC	CCTCCCCATT	AATCCCTGAC
	AACTACTGCT	AATTTCCCTG	TCTCCATTGT	TTTGTCTTTT	CCTGAATGTC	ATATAGTTA	AATATACAGT
60	ATGTAGGATT	TTCAAACTGG	TTTATTTCAC	TTAGTAATAT	GCATTTGATG	TTCTTCCATA	TCTTTTCAA
	GCTTCATAGT	TCAATTATTA	TAGAATTGAA	TAATATTCCA	TTGTCTGGAT	GTACTACAGT	TTATGTATTC
	ATTCCACCTAT	CAAAGAACAC	CTTGGTTGCT	TCCAAGTTTC	AACAATCATG	AGTAAAGCTG	CTATAAACAT
	CTATGTACAT	GTTC TTTTGT	GAATTGAACA	TTTCAGCTT	TTTAGCTCC	ATTCTTAGGA	GTGCAATTGC
	TGGATTGTAT	GATAAGGGTA	TGTTTAGTGT	TGTAAGAAAC	TGCCACGCTC	TTCCTAACTG	GATGTACTGT
	TTTGCATTCT	CACCAAGCAAT	GAAGAGGTTC	CTGGTGTCTC	ACATACTCAC	CAGCATTG	TGCGTCAAT
	GTTTTGAGCA	ATAGCATTTT	GATCTAACCT	TTCTTAGGTA	TTCTTTTG	AGGAAAATAAT	ATGACAGATA
55	ATAGAGAAAG	GATATACGAG	GACAGTTCTG	TCCTTTATT	ATAGTCCATC	ATTTAATGAA	GGACTCTGTC
	CACACTGGT	ATTTTAACT	CTGATCCTCC	TCTCCCATGA	ACTCTGACAA	TCTCCTAAAT	CCCTGTTGCT
	GGCACACATG	GTTGTGTATC	AGGCCCCCTG	TGGTCTGTCT	GAAGCATGGC	TTTTTTTT	TTTTTTTT
	TTTTTTGAG	ACGGAGTCTC	GCTCTGTGCG	CCAGGCTGGA	GTGCACTGGC	GCGATCTCGG	CTCACTGCAA
	GCTCCGCCTC	CCGC GTTCAC	GCCATTCTCC	TGCTCAGGCC	TCCCAGTAG	CTGGGACTAC	AGGCGCCCCG
60	CACCAGCCT	GGCT'AATTTT	TTGTATT	AGTAGAGGCG	GGGTTTCACT	GTGTTAGCCA	GGATGGTCTC
	GATCTCTGA	CCTTGTGATC	CGCCCGCCTC	TGCTCCTCAA	AGTGCTGGGA	TTACAGGCGT	GAGCCACCGC
	GCCCCGGCTT	TTT TTTTTT	TTTGAGATGG	TTTTTTT	AGTCTGTCA	TCTGTCACCC	AGGCTGGTGC

	AGTGATGCAA	TCTGGGCTCA	CTACAACCTC	CATCTTCAG	GTTCAAGTGA	TTCTGCCACC	TCAGCCTCCC
	AAGTACCTGG	GATACAGGT	GCCC GCCACC	ACACCCAGCT	ATTTTTTGT	ATTTTTAGTA	GAGACGTAGT
	TTCACCATGT	TGGC CAGGCT	GGTCTCATTC	CTGACCTTGA	GTGATCCACC	TGCCTTGGCC	TCCCAAAGTG
	CTGGGATTAC	AGGCATGGGT	CATCACATGT	GGCCTGAAGC	ATGACTGTTG	CTTTAATCAT	ATGAAATACT
5	GCTCTGTATT	GTATCTATT	TGAAATGCCA	CACCTCCTGA	GCTAAATTGC	AAGCTTTAT	GGAGCACAAA
	CCATATTAT	ATATATTAGC	ATGATACCAT	GACACATATC	AAAAGCTGT	ATATATTGTT	ACGTGAATTG
	ATTCTTCTC	AGTTAAGAGG	ACCTCTGTAG	TAGCACTTC	ATACCGTTAA	TTTTCATTT	TGTGCCAGC
	CCCTACTCTG	TGA AAAATGA	AATGAATCCT	GTTATCATT	CCCTCCCAGG	CCTTTCTCC	TTGTGGACAA
	TGTGTGGCTC	AAG/GAAAAT	TCAGTCAGTA	AATTGTTCA	GTGCACAAAC	TCTTATCAC	CTCTCACTGT
10	TCTCAAGTGA	GAT/GAACAG	AACATCCATC	CACTGTCTTA	CAAATTGTT	GGTATATAGT	AGGCACTCAA
	TAAATGTTT	TTGAATAAT	GCATACATGA	ATCCATTCC	TATATATAGT	ATGGTAGACA	GATCATTGAT
	ACCCAAGAT	GCCC AAATGC	TGATCCCCAG	AACTTGTGAA	TATGTTACAT	TTCATGTCAA	AAGGGACTTT
	GCTAATGTGA	TTAAGGATT	AGACCCTTGG	ATTGTAAGAT	TATCCCGAT	TAACCAAGGGC	CAATCTAACT
	ACATGAGACC	TTAA AAAAGC	AGAAAAACATT	TCCCAAGCTGG	GTAGAGAGA	GATGAGACAG	AGTAAAAAGG
15	AAAGAGATT	AGGGCATGAA	AATGACTCTA	CCCACCTGTTG	CTGGCTTGA	AGATAGAGGA	ACTAGGCCAC
	AAAACAAGGA	GTAAGGTGG	CCTTAAGAAA	TAGAAAAAG	CCCTCATCTG	ACAGCCAGCT	AGAAAGCAGT
	CCTCTGACCA	CAACAAATTG	GATTCTGCCA	ACCACTCAA	TGAGCAAGGA	AATGGATTCT	CCCCTAGAAC
	CTCCAGAAAG	GAAACACAGCT	CTGTAATGCC	TTGATTTAG	CCAGGTGAGA	CCTGTTTCAG	ACTTTGACCC
	TATGAAATA	TAAGATAATA	AAGTTTATT	GTATGCTGCT	AAATTGCGG	TAGTTTATTA	CTGAAGCAAT
20	GGAAAGCCAA	TACAGACAGA	ATATACAGAG	AGAAAAGAGAA	TGAGTTCTT	CCTGATAATT	TGTAAATATT
	TGGGTCTTCA	CTGC ACAAGC	TTACAGAGG	ATTCACTGGT	TCCCTAGCAA	ACCAGCATGT	CCAGTCCTGC
	AGCCTCCCTT	TCTTAAGGCC	AGCATATGTC	AGCTGTGTGC	ATAGAAAAT	CAAAGCAGGA	CCCTGAGTAG
	TTGGAAAGAA	AAGATGGTTG	GAAATGGGTT	GCACCTCAAG	TGAGGAAACA	AGAGGTAGGA	GACCGGCATC
	TCTTCTCAT	ATGCTCCAGG	CTGACTCTTG	TGAGTTGTTT	TCCCTTGGAG	GCTATCGATG	ACAGTCACAG
25	TAACCTGATG	GAACCTGGAT	CATGATGAAA	GAAGTAAGT	TCAATGGCTC	CGACTTCAA	GGACTCTGAT
	GTCCCACAGC	ACTAGCTAAA	CAAAGCCAGT	TGAAATGAG	CTTAAATGGG	GAATTTCCTG	AATATATTCC
	CTATTGTTAG	GAACCCAGGT	TGGCTTCTT	GCCTACAATT	ATGCCAAGCA	GTCACACTAT	AGAGTCCCTA
	GGGACATGAT	ATTAAGTGTAT	TCTTTAACA	CAAACAACTT	AATAATCATT	TATACTAATA	GCAAAACGGC
	CAACGGCTGA	TATICCACCT	GAAGTAGAA	TGGCTATCCA	ACTGGAAGAG	AAGACAGGAA	GACGTGATCT
30	CCAGGGAGCC	ACTAAAAGGA	TTGGCACCTG	CCTCTGGATT	CCCCTTTCC	TTATATTACC	TCTCAGCACT
	GGCAGGCCCT	TATITCAGGA	TACAGTTCA	CAAGTATTAT	GTCACGTC	TGAGAATTAT	GTTGGTAGAT
	ATTGCTCCT	CTGGCCAGAA	AGACCTAGTT	TGGAGTCTGG	AGTCATGAAG	GTGACATACA	TGTAGCTAGT
	GACATAAGTG	TAGCTAGTAA	AAATAGTGTAG	TAATGGCCCT	GAATTCTAT	TGAATGCCA	AAGTGTGAC
	CAGGAACAAG	CATGCTCTAG	CTTATCTCAC	AAGGAACITG	ACAATTCT	TCAAAATCC	TAGTAGCTAA
35	GATTTCTTAG	TAACAAAGCC	ACTAAGGCAC	AATTATGATT	AACTTGACCC	TTAGGTGACT	TTAAGGACT
	ATTCTATAAA	ATATTACAAC	TAATAGTGG	TCCAAGCCAG	CACACTCTGC	TATATAAGAT	TAATTGACAG
	TGTCCACACT	GGTAAATAAA	GTTGTTTCAT	AAATACATTA	GAATTCTAT	GCACCTTCTA	CACAGCCCCA
	AGTCCAGAAC	TTTCCCAGA	ATAGGTCTAT	GTTTGCAT	CTGCTACTCC	ATACAGAGAT	TTGAGTTCAC
	TTGGCAATT	AGTCCTGCTT	ATATGTGACC	AGTTAGTCTG	TTTTACTTAT	CTATGCCCTA	AACATTACTA
40	TACTTACTAA	CTCCAAGATG	CCTGGTCTCA	ACTTGACAAA	AATAACCCAA	GTTGGGAAAT	CCTTATGTGA
	ATATGTAGAT	AGTCACAATT	GCTGGTTGAT	GATGATCTGT	CTTTTCTGT	ATTTGAGAAA	ATGGAGATAA
	AATGGACCAA	TCCAAATAAT	GGATTAAACA	TGGGAATAGG	TGAGAGAGAG	AGAGGAATAC	ATGGTGGCTC
	TCAGTGTCTG	GCTTAGGCAG	TAACACTTT	CGTTAATAAA	GACGGAAAAT	AAAAAAGGAA	TAATTGGTGT
	CTAGGGAAA	ATAATGAGCT	CAAGTTTAA	CACTCTGAGT	TCCCAGATGT	GAGACATCCA	GGCGCATTAA
45	TCCAAGAGGC	AGTIGGAAGC	AACGTTCCGG	AGCTTAGGAG	AGAGGCATGA	CCAAAAGCTG	GTGGGACTGT
	GAAAAGGTAT	GGCCATTCTG	GAAAAGTGT	TGGCAGTTTC	TTAGAAAATT	AAACATGTAC	TAACAACCCA
	GCAATTGTAC	TCTGAGCAT	TTGTCCCAGA	TAAATGAAAA	AAAAAAAAG	CATTTTTTT	ACACAAAAAC
	ATATACATGA	AAGTCATAG	AAGTGTATT	CATAAAAAAC	TGGAAAAAAC	TGAGATGTCT	TTATTGAGTG
	AATGCTTAGG	CAAA CGGTGG	TCTATCCATA	CAATGGAATT	ATGCTTAGCA	ATAAAAGAGAA	AAGAACTATT
50	GATACATGCA	ATAACACAGA	TGAATCTAA	AGGAATTAAT	GCTGAGTGGG	AAAAAAAGCA	CATCTCAAAA
	TGGTATATAC	TGTACTATT	TATTTACTTA	ACATTTAAA	AATAGCAAA	TCATAGAGAT	GGAGAACAGA
	TTAATGGGTA	CTGTGTTTG	GGATGGGGAG	TGAGAAAAGG	GTAAGGTGTA	AATATAAAGG	GGTAGCACAA
	AAGAGCCTTG	TGGTGAAGG	ATTCTATGTC	TTGGTTGTAG	TCGTGATTGC	AGGAATCTAC	ATGTGATAAA
	ATTGTATGGG	TCTACATACG	CATACACACA	AGAGCATATA	AAACTGGTGA	CATGTGAAGA	AGCTCCGCAC
55	ATTGTGCCAA	CATCAGTATC	CTAGTTCAA	TATCAGACTA	CAGTTATACA	AAACATTGTC	ATTGAGGGAA
	ACTGGTAAA	GGGACACAG	GACATTGGC	ATATATTTT	GCAATTCTCT	GTGAATCCGT	AATTATTAA
	AAATAACAGA	TATACTACAT	ATCAAAATT	TAATGTCATA	AAGTTGATGA	GTTTACCTAG	TGGATAGCTT
	TGTTAATATC	TGCTATAAGA	CTACTGAAAA	TGACAGTTAT	GCAAGTATAA	GCTCAGAGAA	CTTTCCTCCC
	CCTTCGAA	TGAAATGAGC	AAAAGAAATG	AAACAGGAAA	GGCAAGCAGT	ACTGAAAACA	GGGAAGGGCT
60	CTTCCCATA	TAAC TATATC	TGCGACTTCA	ACAGCTATT	ATCCAGAAAC	ACAGCTCTT	GCGCTAAGAG
	GAAACTTTGG	ATAACAAAT	GTTTCACTC	TCCAAGAGAG	AAAATGGATA	GATTAATT	TAAGAAAAAA
	AAAAAAACCT	CACCAATTTC	ATGCTGTGGC	TTGCACCTTT	AATCCCAGCT	ACCTACAAAGG	CTGAGGTGAG

	AGGCTTACTT	GAGC'CCAGGA	GTTCAAGGCT	GCAATGAGCT	ATGATTGATT	GTGCTATCGC	ACTCCAACCT
	GGAGTACTAA	GCTPAGAGCT	AAGAACACAG	CTGAGAGCGG	AGAAGAAACA	AACAAATCTG	ACCAATAACC
	CCCACCCCC	TCATTTACT	GGAGTGAGCT	GAGACTGCTG	GCAAACATGG	CCTTGACCT	AGCCTGAACT
5	GTAGAAAAG	TCAT'CAGATA	TTTTTCCACC	AATCAACAGA	CAGAAGTGGG	GAGAAAACAA	TCGTAGTTCA
	TAACTACAAC	AAGC'AGATAA	ACGAAGGCCA	TGGTGGAGGG	TGGAAGACAT	TGTGATATAT	CAAAGGCAGG
	CTCATTTAAA	ACTCAACCCA	AATTCCAAC	AAAATATATA	ATTGAATATG	TATTAATGCC	AAAGGAGCTT
	GAGTGAGCTT	TAGC'ACAAAC	CCCAGCCCTCC	AGCCCCCACC	CAAAAAAAATC	ACTCTGTTCT	CTCCCCATTC
	TTTGATAGGC	ATACTTGCTG	TTTCTCACA	GCCAAGGTAC	AGAGGGGACT	TAGAGGAACT	AGAAACTCTAA
10	TACACTGCTA	GCACGAATGT	AAAATGAAGC	ATCTACTTCA	GAAAACCATT	TTATCAGTTT	CTAGAAAGTT
	AAACATAGAC	CCAC'CATGCA	GCCCAGGCCA	TCTACTCCTA	AGTATTAC	CAAGAGAAAT	GAAAACGTGT
	CCCCACACAG	TTGJ'ATTAA	AGGTGATGGT	TAGCCTTGTG	TGTCAACTG	GCTAGGCTAT	AATACCCAGT
	TAUTGAATCA	AATAGTAATC	TAGGTGCATC	TGTGAAGGTA	TTTGTAGAT	GTGGTTAACAA	GCTACAATCT
	GTGACTTCA	AGTA'AGGAG	ATTGCTCTG	ATAGTATGGG	TGGGCTTCAT	CCAATCAATT	GAAGGCCTTA
15	AGAGCAAAAA	GTA'AGGTTTC	CCGGAGAGAA	AGAAATTCTG	CCTCAAGACT	GCAGCCTCAA	CTCCCTGCCG
	AGTTTCCAGT	CAGC'CAGCCA	GCCTAAAGAT	TTGCTAGGCA	TTATAATCAC	ATCAGCTAAT	TTCTTAAAT
	AAACCTTTT	ATATATATTG	ATACAATGAA	TGGTTATAGC	AGCCTTATTT	GTAATAGCCA	CAAACCTGGAA
	ACAACCTAAA	TGTC'CTTCAA	TAAGTGAATA	CATAAACAAA	TTGTGGTATA	TCCACAATT	TTACGCAGCA
	GTAAAAAGGA	ATA'ATGGTT	GAATAAGGAA	TAACACACATA	ACAAGGATGA	ACCTAAAAC	CGTAAGGCTG
20	AATGGAAAAA	GTCAGACAAA	ACTAATACAT	ACTGAATAAT	TCCATTATA	TTGAAGTTCT	AGAAAATGAG
	GACTAACCTA	TAGIAACAAA	AAGCAGAAAA	ATTTTGCCCA	CTGGTGATGG	AGGGGGCGCA	GGTATTGTAG
	AGTATCTGAG	AAAGGACAAC	TGGATAAAAG	GGGGCACAAG	AAAACTTTG	AGGGTATTG	ATATGTTCAT
	TATCTGTGG	CATCGTTCA	TAGGTGCATA	CATATGTCAA	AACATCAAGT	TATACACTTT	AAAATGTTTC
	AGTTTACTGT	ATATCTATTA	TACTTCAGTA	GAGAGGAAGG	AAGAAAGTGG	GCAGGGTGGG	GGAGAGGAAA
25	GGAAACGAGG	GAGGAAAGGC	CCTAATAGGA	AGGATTTGG	AGTTTAGATT	TTAAAATGAT	AAAGGATGTT
	TGACACTCTA	GGCATATGAC	GAATATAGGA	TTATGAGTCC	ACAAAAACCA	CCAGGAAGTC	ATGTATGTT
	ATACTTTAA	GTGAAGGATC	AGTGGATTAT	CAACTCCCTA	ATGCTTGC	TCTCTATGAC	TGGCTGCTGT
	CCTTCTCATC	CCAA'TACTCC	TTCCAAAGCC	CCTTGCTTAA	ATGTAAGCCT	TCTTCCCTCC	TTCAACACA
	TCCTGCATT	CGTGACAAAA	TAAGTTTCC	TTAAACAGAA	TGTACAGCAT	ATTATTGTA	CAATTAAAAA
30	TTTTGGCCA	GGTGTGATGA	CTCATGCCTG	TAATCCCAGC	AATTGGGAG	GCCGAGATGT	GTGGATTACC
	TGAGGTCA	AGT'CGAGAC	CAGCCTGGCC	AAACATGGTA	AACCCGTCT	CTACTAAAAA	TACAAAAATT
	AGCTGAGTGT	AGTC'GGCAG	GTACCTGTAA	TCCCAGCTAC	TCAGGAAGCT	GAGGCAGGAG	AATCGCTTGA
	ACCTGGGAGG	TGGAGGTGTC	TGTGAGCAGA	GATCAGACTA	TTGCATTCTA	GGCTAGGAGA	CAGAGTGAGA
	CTCGGCCCC	AAA'AAAAAC	ACATTTTTT	TTAATGTTTC	CTCCTGCCT	GTAGGAAAAA	GGCTCTGACT
35	CCTTAGCCTG	GGC'ATCAGAG	CTCTATCTAA	ATGGACTTTA	ACCTGATT	GTGGCACTAA	TTCCATTGCA
	GTACTTGTCC	GCT'ACTGGC	CTGTGCCCT	CTGCCACTAT	TTTTGGAATA	ATGCTCTC	TCCATCTTGT
	TTACTCAACT	ATATCCAACC	TCTAAGGCTG	TGCTCCTACA	AAGCCTCCCC	TGGCTACTTC	AGCCCACAGA
	GATATTTAAC	TGCT'CTGCAG	TTCAAGGACAT	TCTCTGACT	CTTTAAATCA	CATTACTTA	TATATGATCT
	TGTGATATT	TTTGTGACG	TGTTTACTTT	AATTTCCTTC	CATAACCTAT	TCATTCAACA	AACTCAACAA
40	TTATTTATTA	AATGCCAAGT	TAGAAAAATA	TTATTGATT	TATATAGATT	ATAGATATGT	TTGAAATT
	ATTGGCAAT	CTGCAAGTAG	AAAAATAATT	ATAATGTGGT	ATATCTGTG	TAGAAGTATT	AGTGCAGAGA
	CCATGGGAA	CATA'ATCCAG	CCTGGAAGTT	CAGGAGAGAT	ACGTGGAAGA	AAGGACGTCA	GAGCCTTTT
	CCTACAGGCA	TGGAGAAC	ATTAAAAAAA	ATTTTTTTT	TTGAGATGG	GTCTCACTCT	GTCTCCAGC
	CTAGACTGTG	GTGGTGCGAT	CTCTGCTCAC	TGCAACCTCT	GTCTCCGGG	TTCAAGTGT	TCTCCTGCCT
45	CAGCTCCCCA	AGTAGCTGGG	ATTACAGGTA	CCTGCCACAC	ATGGATGATA	AATATGATCA	TATTTTCTG
	TTCTTTCCCT	CCTCAGTTGT	CTTCCCTGAA	GAAAGGAATG	CCTTTATAG	ATGACAAACT	CCCATTCTCA
	AGAACAAAGGA	TTT'TGACCA	ATTTAATTAA	ATCAGATGTC	TGGCTTGAC	CTAGAAACAC	AGTCACGAAA
	CTTGGTGATT	AGAC ACCAAT	TCCCAAACAT	GAGCATTTCT	TAGGAAACAC	AGTAAAGATC	TGAGAGACCC
	AAGAGCAGAA	GGGCGAGAAA	CCAAAAGCCA	TCAGTTGCA	TAGGAAACAC	CTTGTGTTAGC	CTAATCTTT
50	TATTTTATT	ACTCTATTAG	TCACTACAC	TATTTCTGA	TTGCTATGGT	GATAGATGGT	TTAAAACAAG
	CCTTCATTA	GAAT'TGTCA	ACCATGGCT	CAGTCAAAAA	CACCAACATT	TTTATTGGTA	TTGACAATTA
	TGGGAATATC	CAA'TCCAAG	AAGACAAGGA	GACCTCTGAA	CTTTCTAAAT	GAAGACTCCA	ATCTTCTGA
	TCTGATGGG	AGCA'GCTTGG	CAAGATTACC	AACCACCACC	ACAGAGAGTG	GACTCTAACG	TAAGACTTAA
	AAGATAAGTA	GAA'ATTATCC	AGGTAAAGAT	GTGTACAGAG	AAGGAAGTAC	ATCCAGGGGA	AAAGAACAAAT
55	ACGTGCAAAA	GTACGGAAAT	GGTAAAAGT	AATACTACAT	AGTCAAAGCC	AAGCAGAGTT	CAGAAGGGAT
	CTGGTGGTGA	AAA'TACGGC	TAGAGAAAGC	AGCAAGGATT	GGCTTCTAAA	ACCTATGTAG	TATCTTGGAC
	CTTACCTAA	ATG'ATAGAG	AAGCTCTAA	AGAATCTTC	ATTATTTCAT	TCATTGAACA	AAATTTTGA
	GGCTTTCTGT	GAAC AACATC	ATTCTAAGTA	GTAAAGATAC	AGCAGTGAAT	AGGACACATA	AAATCCTAGA
	TCTCACAGAA	TTGA CATTCC	AGAGAGGGAA	AGGTAGACAA	TAATACATA	AACAAATCAT	TTAACAAAGAT
60	GATTTCAGAC	AATC GTACGT	ACTGTAAAAA	AAATGAAACA	AGGTAATGGA	CAGCGAAAAG	GCACTGGAAG
	GAAGCCTGCT	TACCTTTGCA	TGGTTAGAAA	AGATCTCTCT	AAGAAAGAGA	CCACATGTGA	GCTGCGACCT
	GAAGGATACC	GAGAAGCTAG	GTGTGCAAAG	ATGTGGGGAC	AGAACTTTG	GACTGAATAG	CAAATACAAA
	TGCCCTGGG	TGCA'AGCTTT	GCCTGTTCAA	GGACCAAAAAA	GAAGGCCAGT	GTGCTGCAG	CATACTAAGC

	ACAGAGGAAA	ACA ^C TGTTAT	ATGCTGAGAT	TGGAATTATA	AGTAGAGCCA	GATAATATAG	TCTCTTATAG
	GTCATAATAA	GGC ^A ACCAGA	TTTATTCCA	AGAGGATTAA	AAAATCACTG	GAGGTTTGC	ACTAGGGTGA
	GAGGTGTGAT	TTG ^T ATTTT	AAAAGATAAT	TCTGGAGAAT	TAACATAAT	GAGGTAGGAG	TAAACTAAGT
5	TAGGGGCTAT	TTCAGTGGCT	CAGACAAGAG	ATAATGGTAG	CTTAGACTAG	GATAGTAGTC	GTAGAAATAA
	ATAAAAGTGG	CAC ^C TCACTT	TGGGGTAGA	GTCTATAATA	GGTTGGTT	ATGGATCATA	TATGAGAGTA
	AAAAAAAGAA	AAT ^A AAATTAA	TAATGGTCC	TAGGTTTGTA	CCTGAGCAAC	TGAATAATG	GGTGCTGTGA
	ATTGAGATAA	AGG ^A GATTGA	GAATCACAGG	CTTGTGTTG	CAAATTAAT	TTGAGAGGCT	TATTAGACAT
	CCCAGTGGAG	ATTICAGGTG	AGTGGAGCCC	ATTGAAAGGT	AAGGGACAGG	GTCAGGTGTG	GTAGGTCAGG
10	CCTGTGATCC	CAGGACTTTG	GAAGGCCAAG	GCAGACAGAT	CAGTTGAGCT	CAGGAGTTG	AGACCAGCCT
	GGGCAACATG	GGA ^A ACCCT	GTCTCTACAA	AATATGCAA	ATATTACCG	GGCATGGTGG	CATATGACTG
	TGGTCCAAGC	CACTGGGGG	GCTGAGATGG	GAGGATCACT	TGAGTACAGG	AGGCGGAGGT	TGCACTGAGC
	CAAGATCTCG	CCACTGCAA	CCAGCTTAGG	TGACAGAGTG	AGAACCTGTC	TCAATAATA	AATAAGAAC
	GTAAGGGAAA	AGG ^A AAATTAA	TCTGATCATT	GGCAAATGCA	TAGTATTAA	AGCCAGGGGA	GTAGATGAGA
15	TACTCAAAGT	AGG ^T GAAGAT	AAGGAGGCAA	TGAAGGCCTA	GGACTCTGGT	GTACATTAG	ATGGTTATAA
	GAGGAATAGA	AACTGGCAA	ATAAGTAACA	CTGAGCACCC	AATGAGGTGG	AGAGGAAAGC	CAGGAGATGA
	AGCATCATAG	AAGC ^A CAAGAG	AAGAAGGGTG	TCAAAAGAGGC	GAGGCAGTC	TCAACTCTG	GGCAGTCAA
	TAATATAAGG	ACAGAAAAGT	GACCATTGGA	TTTGGAAATA	TGATGAGCAC	TTTGTGAGGA	GTGTTGAGAC
	AGAAGACCAA	TTACAGTGA	TTGAGGAGAT	AACGAGAAAT	GAGAAAATGT	AACCTGCAAG	CACAGACAAAT
20	TCTTGAGAGA	CTT ^T CTGTG	AAAGGAAACA	GACACAGAGT	CTTAGCATGT	CTTGTCTTC	TATGGGAAT
	GTAAATAGTT	TGAGATCAGG	GATAGTATT	TATTCTGCTT	TTTGTACCTC	TACATTACCT	AGCATAGAGC
	TAGCTAATGT	GCAC ^T TAAGT	ATGTTCTAA	TTCTTATCGC	CTGAATGACT	GGATGGGTGA	AAGAATGGAT
	GGATGGATGG	ATGG ^A TGGAT	GGAAGGATGG	ATGGATGGAT	GGAAGACTTC	TGATTGCCA	AGAAGAGGAT
	ACTGGTAGCA	GAA ^A AAAAAA	CAGCACTGGA	GAAAGAAGAG	TTTAGATT	TATTCTTGG	TGTCAGTTAG
25	ACAGGAAAGT	AAG ^C ACATTAG	AAGAGTCCTT	AGATAATTAA	TGTAATTGTT	CACTTAGGAT	TTTAAATGT
	GATCACTGAT	ATTC ^C GACATG	TTCCTAGTGA	AGCATTTTG	GTGTTCACT	GGTTGAAGTT	AATAACTGTA
	AAATTATTT	CCG ^T TCAGGA	CAGAAAACA	GAAAACCTGA	AGCTCCTATT	AGAAAGTTCA	AGATTCTCTG
	GGGTTCTTAG	GAT ^T TACTGT	TCCCCAAACT	CTGTCAGAA	CAAGAAAATG	ACCTGTATAC	TTAACTGGTC
	TAGGCAACAG	TGG ^A AAGACA	ATTCTCAGAG	AAGATTGTT	TTAAGAAAGAC	ACTTCCATA	GGAATCAAAC
30	AATAGCTTTC	AGTC ACTAAC	ATGGTAAGAC	ACAGGGTGT	AGCTCTTCC	TTCCAACCTC	ATGGCTGTG
	TACCTTACCT	TTCGACCCCC	TGTTCTGAA	ATTGTTAAAT	TCATAAAACTT	ACCAAGGACT	AACCAGCCTC
	TGGGGAAATTG	CTGT ^T ATCTT	AGCAAACCTA	CAATGGACAT	ATTTATAAGC	CATAATGATA	ACTGACTAAT
	AGGAAATACC	CTCA ^A CTGAA	AATGAGAGAT	CATCATTGTC	AAATGAGTC	CCTTGCAG	GCAACTACTG
	GGGAAAATGT	CATGCAAGCA	AAATTATCT	TTGAAATCCT	CCTTTCAT	TTTTGTGTC	TCCTTTC
	ATAGGCACCA	GAA ^A TATCAT	GGTGCCTGGA	TCTCATCTCT	ACAGAAAAAA	AAAGTGATT	GATAAACTGA
35	TTTATATTGT	GTCCA ^A ATGT	GATTGTTATT	TCAAAGATAA	CCTAAGGGGA	GAATGCTGTC	TGGCCCAACA
	GCAGGCTCTC	GAC ^T TCATT	CAGACACTGT	GGCCAATGGC	TGGGAAACAG	GTATGACAG	TAGGTTCTG
	AGTCCCCCTGG	AAT ^T ATTCCA	TTTATGTAGC	CACCTCCATG	ACAGGAAGCC	TCCCTACTCT	TACTTCCCAG
	TTTGTTCATT	CATGGCACC	GGTTGCAGAT	AAAATTGTC	TCAGTGACCT	TTTATCTAAT	AATGTGTTAC
	CTTCTCTCT	TAAGAAAGTAC	AAGGGACAAA	TGCTCATGGT	ATACTTTAG	GAGATTGTGG	CTCTCTATTA
40	ACAGTATTTA	TTCAACAAAC	ATTTATTGAG	CATTATATG	TGCATCATGC	TAGGGACTGG	AACCTAGTAA
	GTGTAGCACA	TATT ^T ATTCA	TTTAATCCTC	ACAACAAACC	CATGAGGTG	TTTTTATGAT	CCCAATT
	CAGAAGAAGA	AACTGATATT	CAGAACCACT	TAACTAAC	GTCAAGGTC	ATGCAATTTC	TAAGATACAG
	AACCAAGGT	CAA ^A GACATG	ATTTAAACC	AAAGCTTTT	CTGCTACTCC	ACATTGCTTC	CCTAGGTGAG
	ATCTGAGGCA	TTCCCGGAAA	AGAGAAGGGT	CATAAAAGCCA	AGGGAAGACA	AGCTTAGGAA	AAAAAAGGGA
45	AATGCTTAA	ATAA ^C ACAGCT	TTCCATTAA	CCAGAAACCA	CTAGTTAAA	AATATAATGG	AAAAAATCCT
	ATTCATTAA	ACAATGTTAA	AAAAAAA	GATAGAAGAA	ACATAGGGAT	AAACTTAACA	CATTGTTAGG
	ATATGTAAG	AAAC ^T AAAAG	ATGTTAA	TGGCCTAAAG	AAAAAAAAC	TTACATGTAT	GGGGAGATAG
	ACCATCTTAC	TGG ^A TTCTAA	TATTTAATAG	TCTAGGTGTT	CCATTCTCA	CCAAATTAAT	GTATACATT
	AATACAATGT	CAA ^C CGAAAT	ATCTTAGGAA	TTGCTTACAA	ATTGTCAGAT	AATTACAAAG	TTTACCTGGG
50	AAATATAAGC	ATATATGAA	AGTGAATGG	ACCCCACAC	TCCCCC	ACAAAAAAGG	TCTGAAAGG
	ACAGAAATCA	AGG ^A GAGTCT	TGCCTGCCAG	ATACAAAATT	CTATTATAAA	GGTGTATTGA	TGAAAACAAT
	TTAATACTAG	TGTAGCAATA	GGCAGCAAAG	CAATGAAACA	GCATAAAAAG	ACCAGAACTA	TACCTAATTA
	TGATGAAGAT	TTA ^F GGTATG	ATAAACATGA	CATAATTCAA	ATCAGCAGAA	ATTGGCATAG	ATAGGGTTAA
	GACAAATAGC	TAAT ^C ATTAG	AGGGGAGGAA	GGAAAGGAGG	GAGGATAAAA	TTAGGTTCC	GCCTTCATCT
55	TACATTAAA	TAAT ^C CCAG	ATGTATTACA	TTTAAATT	TTTAA	GAAACCACAA	AATAACTGAA
	GAAAATATAA	GTT ^T TTATAT	AGTCTTTG	TGGGAATT	TTTTTTT	AGAGACAGGG	TCTTGCTCTG
	TCACCTAGCC	TAGA ^T GTCAA	TGGCATGATC	ATGGCTCACT	GCAGCCTGA	ACTCCTGGC	TCAAGTGTAC
	CTCCCAGCTC	AGCC ^C CCCCAG	GTAGCAGGAA	CTACAGGCAT	GCGACACCC	ATCCAAC	TTTTTATTT
	TTTGTAGAGA	CAGGGGTCTT	GCTTGTTC	CCAGGTTAT	CTCGA	TGCCTCAAG	CACCTCAGCC
60	TCCCAAGAG	CTGGGCTGAT	GGGACATT	TTAACATAGT	GCCACATTAC	CATAAAATGAA	AAGCTTGAA
	AATACTAATT	TTTAAACTA	ATATATATCA	GAAATT	TAAACAAAGT	AAAAAAGCAA	ACACAAAAAA
	TTTGTAGCAC	TTATGACAA	TATATGTATA	TATATGAA	CAAAAGAGC	CTTACAA	CAGTAAGAAA

	ACAATGAATA	CTCCCAATGG	AGTATTCAA	ACTAAA	ACTGC	TAAAAGCAAT	TCAAACAAA	AAACATAAAC
	TATGCATATA	TGTATGTGAA	AAAGTTAAC	CTTATCAA	AG	AAGTAAACTC	TCAAAGAAAT	AAACATCAA
	TAAGGAAATA	GCCITTCCC	ACAAATAACC	AAAATCTGTA	AGAATACTG	GCTGCGAATG	TTTCAGAAAA	
5	AAAAAAAAT	CATA.CACCTA	GTCGGCATG	TAATTAA	AGATCAGAAC	ACTTAAAAAA	TATTATAGG	
	CCAGGCACGG	TGGCTCATGC	CTATAATCCC	AGCAC	TTGG	GAGGCCAAGG	CGGGTGGATC	ACCTGAAGTC
	AGGAGTTG	GACCATCCTG	ACCAACATGG	TGAAACCC	TGAGGCAGGA	AAATACAAA	ACTAGCCAGG	
	CATGTTGGCG	TATGCTGGTA	ATCCTGGCTA	CTCGGGAGGC	TGAGGCAGGA	GAATTGCTTG	AACCCAGGAG	
	GTGGAGGTTG	CAGTGA	ACATTGTGCC	ACTGTACTCC	AGCCTGGCA	ACAAGAGCAA	AACTCTGTCT	
10	CAAAAATAA	TAATAAATAA	AAATAAAA	TTTATATACT	CTGACCCATC	AATTGTCCA	GCATAATTAG	
	GCATGTGAC	AAGCGTTAC	ACACAAGAAT	GCCTATTGCA	ATATTGCTT	TAATGCTAA	AAAATTGGG	
	GAAAATGCTT	TAAAATATA	GATTAAGACT	GTACATTGTG	GTACAGTCAT	ATAATCAATA	GTATACAGCT	
	ATTATTATT	TTCA	GTCCAAAAT	TAGCCTGGCC	TAACAA	CTGTTAGGAT	ACGCAAGCAC	
	CGTAGGAGA	TCA	AGTATCA	TTTCACACCA	CTGCTCTT	GCTAATAACC	TTCAATGGCT	
15	TTAAAGAAG	TA	AGGCAAA	AGGCAAAATT	CCCTTAAGAC	TCTCTGTTAC	TTAGCTCAA	
	CTACCC	CAAC	GGCCTAACCA	GGATGAGTT	TTTGGCCCCC	TGGAGTACAT	TCAGCCTTC	
	CTTATCAAC	CTTC	ATAAGTATCT	TCTCCAGGAC	CACTTC	TCTTCCCCAA	TTAGCATT	
	TCTATATCTC	CAGGCCTACC	TCTATAAAGC	CTGCTCTAAC	CACTCAA	CTAGCTTTT	CTCTGA	
	CTAGAAATAT	TTTCTCTCA	TTGGCCATT	AGGTA	GT	TTTATTACCT	ACTCAATAAA	
20	AATTTCTT	TTT	AGACA	AGGCTTACT	CTGTCGCTA	GAATGGGGG	AAGTGGTGTG	ATCACA
	ACTGCAGCTT	CTAC	GCTCAACAGT	CCTCCCACCT	CAGCCTAGT	AGTAGCTGTG	ACTACAGGCA	
	TGTGCCACCA	TAC	CTTTCATTT	TTTATTTTT	TGAGATGGA	ATCTCA	GTTACCCAGG	
	CTGGCTGCT	GATC	GATCCTCAATT	GATCCTCCC	CCAAATGCT	GGGATTACAG	GCATGAGCCA	
	CAATATCTG	CCCC	CTTTAAGGC	CATTAACATG	AGGAACAGT	TTCTTACAC	TATTTTATCA	
25	GCTAGGGCTT	TGCA	TGGAGT	AGGAGTTAG	TAATGCGGT	TGATGGGTTA	ATCAATGTG	GAAAATATT
	AGAGCCACCA	AAA	CAGATA	TTATGTCTAT	TCTCATCAAC	AATCAA	ACAG	CCATTTCTA
	ATACAGGAAA	CCAC	'AAAACA	TTGAATGGT	ACATTTAA	ATTCCCCCAG	CAGGAGCCAA	CCAATTTT
	CATCTGATC	CAAG	ITAGCA	AACTGCAAA	GATAGGAAGC	ACTAATGAGT	GGAAATTG	GTAGAAGCAT
	TTCITATGAA	GGC	GTCTTG	ACTGGATCAC	ATTTTATTG	CTGTTGGAGG	TGCAA	GTGTGTTAT
30	GCTAATCCTC	CACCI	CAGGC	AAACACAGT	CAAGGATCCT	ACCAAGT	ACCGTCAAGT	GTCTGTTG
	AGCTCAAGGC	CCC	CGCTTG	TTCCCTGCA	CTAGGGAAAA	GACATATTCC	AGGTACAAGT	ACTCCCAC
	TGATGCTACA	GAGC	AGTTG	TGAAC	GTCTTAATC	TCTCTCGT	AGATCCCAC	CCTGTTAA
	TCCCAC	TG	CT	GGTCTTCAC	CAATTACTA	GATCATAGT	GGAGAAATC	TACAAAGCCT
	TGCTCCCC	AGAT	ITAAAC	AGGTCTCCG	TTAAATTAG	AATTGCTA	TTCAAGCGG	CCCTTATGCG
35	ACAGTATGCC	TG	TAGCTCAT	ACTACATT	CTCAATTCCA	TTCA	TGCTCC	CCTCCCTCT
	CTCTTCATAC	TAC	TATTATC	TCTTCCCCC	TCCTCATTT	TTA	TGAC	CTATTCTCT
	GAGAAAATAG	AA	GCCATCAA	AAGAGAGTT	CCACAA	CTACTG	ATCTAG	GTACCATATA
	CTT	GCATTT	CCTCTCATTA	CCATGGATGT	ACTGCC	TGTGCTCTA	TCTAAGG	ACCCCTCCAC
	TTCAGTTT	AAT	ATTATCA	GCTCTTACCA	ACTCAAGGCC	ATTGCTCTA	CAATTCTCTC	ATTCTCTCTC
40	ATTTCTT	ATCA	AGTTT	CCTTTCTC	AATTAA	GTAGCTCTA	AAGGAAAAA	AAAGTCTCT
	TTT	CAATG	TCAT	TCAG	AGAA	ATCAA	CAATGAGATA	TCATCTACA
	CCAGTTAGAA	TGG	CAATCAT	AAAAAGTC	GGAA	AT	GGTGTGGAG	GAAATAGGAA
	CACTTTACA	CTG	GGTGG	GACTGTAAC	TTG	GGCA	AGGTGTGG	GATTCTCAG
	GGATCTAGAA	TTA	AAATAC	CATTGACCC	AGCC	TTACTGGG	TATAC	GGATTATAAA
	CAATGCTGCT	ATAA	AGACAC	ATGCACACGT	ATG	GGCA	CACA	AAGACTTGA
45	ACCAACCAA	ACG	CCAACA	ATGATAGACT	GGATTA	AATG	AGCTGGAAAC	CATCACTCTC
	TGCAGCCATA	AAA	ATGATG	AGTCATGTC	CTTGTAGGG	GGGAGG	AGCTGGAAAC	
	AGCAAAC	CAC	AGGACA	AAAAC	CACTGCATGT	TCTCA	AGGTGGGAAT	TGAACAATGA
	GAACACTTGG	ACAC	AGGAAG	GGGAA	CCC	CCTGTTG	GATGAGGG	GTGGGAGGG
	ATAGCATTAG	GAGA	TATACC	TAATGTTAA	TGATGAGTTA	ATGGG	CACACCA	TAGCACATGT
50	ATACATATGT	AAC	AAAC	CACGTTG	ACATG	TGAG	TAA	AAAAATATAT
	ATATATAT	AAA	AAACTA	AAA	ATCC	GGGAG	AGTATA	CACACACAGG
	CTGTGTTTA	TGTT	TTCCC	CAGCTTAAGA	GATG	GTG	TC	AGTTGT
	TCAGTTCTCC	ACT	TTTTT	GCTGATAAA	TACT	TTT	CT	CCCAGGTCCC
	CTCCCTCAGT	TGTT	TTGAAC	ATAAT	ATAC	TTT	CA	CAACCAAAA
55	CTCC	TTTT	AGATGG	AGTCT	TGTC	GGAG	GTG	TCTCGGCTCA
	CTCC	AAAC	CTC	CACTC	AC	TC	GCATG	GATTACAC
	ATGCACC	CG	CTCAC	GTTCA	CC	AG	GAATAG	TTTTTTGGA
	ATGCACC	AC	CTG	AGTGA	CC	GTG	TG	CTCCAC
	CAGAGTCTCA	CTC	GTG	AGAC	TGCA	GTAT	TC	CTCCAC
60	TGGGTCAAG	CGA	ITCTC	GCCTCAGC	CCC	GGACT	GGC	ACCATGCCAG
	GCTAATT	TTG	TTT	AGAGACC	GA	TG	ATG	GAAC
	CCTCA	AAAT	GA	TTTC	GG	TTG	GG	ACTC
	ATTTGTGTT	TTA	GTAAAG	ACGGG	CC	AGC	GGCT	GCGCCGGG

	TGATCCGCTC	GCCTCAGGCC	CTCAAAGTGC	TGGGATTACA	GGAGTGAGCC	ACCATGCCTG	GCCATAAAAC
	TGCCCTTTGT	TAATATGACT	GTTGGCCTGC	ACATGTCAA	ATCCAGTGGC	ATTCATCTTA	CTCGGCCAAC
5	CTACGGCATT	TGACACTGTC	TGTCTTCCT	TCTGTTCTC	TATCTGTTTC	CAGTATACTG	GCCTGGCTTT
	CTTTTACCT	CTTTATATG	CTCTTCCAGT	CTCAGGCTCC	TTTGGGGATT	TGAAGGTATG	TTGCATTTG
10	CTATTCAATG	AATAATGACA	AGTAATGATC	ACTAAGACA	TTAAGTGGTC	AGTTCTTTA	CTAGGATAAA
	AATAATTTC	TTCCCAACAT	GGGGCATATT	CCATTTCAG	TCTGACTGTT	CTGTGTAATC	TTTGTATTCC
	TTGGCAGCCC	CTTTPATATC	AGTTCATCTA	CTGTGAGGA	AATTGGACAA	ACATTGAC	TGGTATAACC
	AAATACAGTT	GAACTTTGG	CTTGAACCTT	AGCTGAACTC	ACCAAAAATA	ATTTCTGAA	GAGACTGAGA
15	CGTCTACGAG	TAGGTTTTC	AGAATTAGTA	AACATAAATC	AAGGATACAC	AGGTAGATT	GAATTTCAGA
	10AACAACAA	ATATTTTTT	AGTATGCTA	CTGAAATATT	TGTATCTTAT	CTGGCAATT	TACCTGGTAC
	AGAACTAATC	CATICTCTTG	AAAGATCTTG	ACTCTGTAAT	AAGTTCTTG	GTGATGGAAG	GGAGGTATTT
	CTGTAATTAG	AGTCACTGTC	TTCCCTCCAG	TTTTTATCC	TGGCCCAGAT	CTGCAATGAA	CACACGACAG
20	AATCCAGGGG	GGATGAAGAT	GGGTGCTTG	CAGGAAAAAA	AAATTAAGAA	CATCTGAAAAA	AGCTTTGTA
	CTAAAAGAAT	GTGATCTAAA	AAAGAAAGCA	GGGAAACTT	CTGTCTGCAC	TTTACATCAG	AACAACCTTG
25	GCGTCTAGAA	GCTGTGCCCT	GTGGGAAGTG	GTGGGCTTG	GTAAGAGATG	CCAGGACCA	TGGTACCCAC
	TGGGAGCACT	GCCAATACCC	AGCAAGGAGC	ATGGGTGCAC	AGTAAGGCA	TGCACTGTGA	TTCAGCATAA
	AATAACAATA	AGGCAACGTC	ACGGAGAAAA	GGCCAGACTT	CCTTGTGTTA	GAATGTGGGA	AATGTCTTCT
	GAAAAATGGT	AGTA AAAAAG	CATGCTTGA	TGGTCACTC	CAGGCAAAAC	TGACTAATCG	GGGGTCAGGG
30	ATACAACCCC	TGCACTATAT	GTGGTTTCT	GTGGGCTGA	CATGAGGTT	ACTGTGACCA	CTGTGGTTA
	ACCCCATAGT	CTCTGGAAA	TACAGCCAGG	TCAAGAGAGC	TCCACATAAA	ACATAATCAA	AAAAATAAAC
	TCAAGTTTCC	ACTGATCAGC	TTTCACAAC	TCTTATCCTT	TCACTAACT	TGGAGCAAGA	TTTGAGAATT
	GGATGGCTAT	TTGAGGGCTA	TTTCTGCGCT	TTAGTTCAAT	GTGGTTCT	TTCTTTATTA	GAGAACTATG
35	GTTTTTATT	ATAT TACAC	TTAAGTTCT	AGGGTACATG	TGCACAACGT	GCAGATTGT	TACACAGGT
	TAAATGTGCC	ATGITGGTTT	GCTGCACCCA	TCAACTCGTC	ATTACATTA	GGTATTCTC	CTAATGCTAT
40	CCCTCCCCA	GTCCCCCAC	CCCCGACAGG	CCCTGGTGTG	TGATGTTCCC	CTTCCGTGT	CCAAGTGTTC
	TGTTTATGTG	ATAGATTACG	TTTATTGATT	TGTGTATGTT	GAACCAGCCT	TGCATCACAG	TCACTGCTT
	ACAAGAAACA	AACCTTCAC	AGATGGATCA	TTATGTGTGA	TAAGTGAAT	CCAAGGATT	ATGCTCAGAG
	GTGGGCTAA	CAGCTAGGAA	GAGCAGTATT	TTCCCTCAAC	CATGAGTGT	TGCAGGTTT	TCTTTCTT
45	TTTGAGATGG	AGTCTCACTC	TTTACCCAG	GCTGGCGC	AGTGGTGC	TCTGGCTCA	CTGTAACCTC
	TGCCACCTGG	GTCAAGCAA	TTCTCTG	TCAGCCTCCC	AAGTGGCTGG	GATTACAGGC	ACCTGCCACT
	GTCTCCGGCT	AATTITGTC	TTTTAGTAG	AGATGGGGTT	TCACCATCTT	GGCCAGCCTT	GTCTGAAC
	CCTGACCTCA	TGAATCATCC	TTCTCAGCCT	CCCAAAGTGC	TGGGATTACA	GGCATGAGCC	ACTGCGCCA
50	GCCCCACAGGT	TTTCAAAGA	CTAAACTTAA	AAAAAAAATA	AAAATTCCC	AATGAAATAT	AAAACAAAG
	TGCTAAACTG	TGATAGACTG	TTTACAAGA	ATGCCAGTT	TCACAAGTGT	CTATAGAAC	TGTAATTAG
55	ATAGGTAAGA	TGAATTITG	ATAATATTG	ATGCCAAATT	TAACAGGTA	TACAACAAA	ATAAAATTCT
	AAGCCCTCA	ACCAACTGAA	TGGACTCCTT	CTCTCAGCCA	AAGGAATACC	AAAGTAAACC	TGAAAACATA
	GTTTGGCCA	GGATGGGGGG	TAGGTGGGGG	AAGCCCAACA	TGACTCATTA	TTCTCTCTC	CCTTTGGAAT
	TCAGGCACAA	CTGAATGTCA	GCATTGACAC	TAAAACACAG	ATCTTAAGAC	TGACAAGGCC	GACTCTTGT
60	AGCAGAGAGC	CAGGCCCTGG	AAGAAATCAA	GTTATTITAT	CCCAAAAAAT	ATTCTTTGA	TATATTTC
	AATGGCCCTG	CAAAGCTGTC	TCTTGTGGGG	AAAATTGACA	TGCTGTACAG	AATTCTCTTC	TCTTTCCAAG
	TTTTACTGA	TCCAAGGAG	ATTTAACTAA	GAGGCTAGCA	TGTTTTTTT	TTTTTTTTT	TGAGGCGGAG
	TCTTGCTCTG	TTGCCAGGC	TGGAGTGCAG	TGGCGTGATC	TCAGCTCACT	GCAACCTTCG	CCTCCGGGT
65	TCAAGCGATT	CTCCIGCCTC	AGCTTCCGA	GTAGCTGGGA	TTACAGATCC	ATGCCACTAT	GCCAGCTAA
	TTTTGTATT	TTTCTAGAG	ACAGGGTTTC	ACCATGTTGG	CCAGGCTAGT	ATTGAACCTCC	TGACCTCGTG
70	ATCCGCCAC	CTCGGCCCTC	CAAAGTGTG	GCATTACAGG	CGTGAGCCAC	CYTGGCCAGC	ACAAGACATT
	TACCGTCTAT	TCTCTCTGAA	GCTACTATCT	AGAGGCTTCA	TCAACATAAT	AAGACCTTG	GTCTCCACAA
	CTCCTATCT	TATCTTATTA	GTTCCTACTG	ATTCCAGGTC	TTTAGATAAT	AACAACCTT	TCAACCAATT
	GCCAATCAGA	AAGCTTGTGA	ATCCACCTAT	GACTTAAAG	CCCCACTCCT	TCAAGTTATC	CCGCCCTTCT
	GGACTGAACC	AATGTACACC	TTATATGTGT	TGATGGATAT	CTGCTGTAA	CTTCATTCTC	CCTAAAATGT
75	ATAACATCAA	GCTCTAACCC	AACCACCTTG	GGCACATGTT	TTCAGGAAC	CATGAGACTG	TGTTGCAGAC
	CTTGGTCACT	CATAATTGGC	TCACAGTAA	CTTCTTTAA	TATTGTATAG	AGTTGGCTT	TTTCATTGA
	CACAGGAAA	ATAAGAATT	GGAAAGGTCTT	TCATCAGTC	CTGAGCCAGC	TTCATATCTG	ACTGAGGTCA
	TACAGTCAG	TGATTTGTAG	CTTGTCTACT	TAGATTGCTA	TCCATTATCT	AGAAGCATCA	GGATCACGTG
	GGACCTATTG	GAATGTCAGA	CTTTCCTCCT	AGAACCCAGG	ACCTTGGAA	ATTCTTGCA	CATAGTAGGT
80	GCTCAATACA	TATTGAAC	CTAGGTGCAA	TTCATTAATT	CATGAATTAA	TGAATTAACA	CGCTCTAAA
	GTTTAGTGT	TTTTCACAGA	CTAGTCTTTC	TGCTCTTAA	GCACCTCAGCT	CACCAAGCCTT	CCAGTCTCAC
	TCCCTTATA	GTCTGATTAA	AATCTGCTTA	CATGTGAGTC	TGAGATCAAG	TGTTATCTCT	TCTGAGAAGT
	CTTCCCTCAC	TGGCCCAAAG	GAATTCTCC	TCTTATTITAG	CACTGTCCC	GTTGACTTGT	CATTATTCTA
	GTCTTTTCA	TATTAGTTGT	TTTCATATA	TATGTTATT	AGGAAACTAG	TCATTCC	TAATAGAAC
	AAATTGCTGG	CCTTGGGGGT	TGGCAATGGA	GGGGAGGCTC	TTCTTGAAA	GGGGGAAGAG	TGTTCTCCTA
	ATATTTTCT	TACCGAGATT	ATGTTGCTCA	TCTTGTACCT	TTAGTCCCCC	ATTGCCTGCC	TACAGTTGGC
	AGAGACCAC	TGTTCTCTCA	CTGTCAGGAA	CTGTCATCAAT	TCTTGAGTT	CAGAGTC	AAAGAAGCAA

	GTTTCTTAG	CTCTTGATC	AACTTCAAA	GTTTACTTC	CATTGAAA	TTTACTAAGT	CACCAAGAGA
	TGGTTTATAC	TGACAATAT	CCACTCATAC	TCTTCCTCTT	CAACTTCTT	CCATATAACAC	CCTATTACAG
	GGATATAGTC	TTACTCTATA	GCTCAAAGG	ATGACCCTAT	CAGAAACCTG	CACAGTATGT	AAAACATTCT
	CACCAAGAGGT	TCAC'TTGTGT	ATTTCACCCC	TAGAACATGGAA	GCTCTACAAA	AGCACAGAAAT	GTATCATTCT
5	AACTTTAGAT	TCTATTTCA	CACCCAGTGC	TTGACACATG	ATTGAAAGTT	AATATTATT	TATCAAGTGA
	TTGTTTTAAA	ATCA'GACTC	ACTCAACAAA	GTTAAAGAA	TAAGAAATGT	GTTACAGAAAT	TGGTATACAC
	AAGCTGACCA	TAATCAACAC	ACCTATTATC	ATTTTTTGC	GACAGGTCT	CGCTGTCTCA	CCCTGGCTGG
	AGTGGAGTGG	CATGACCACG	GTTCACTGCA	GGTTTGAAC	TCCAGGCTCA	AGCAATCCTC	CCACCTCAGC
10	CTCCCCACATA	GCTGAGGCCA	CAGGTGTGTG	CCACCATGTC	CAGCTAACTT	TTAATTCTT	TGTAGAGACA
	GGGTACCCCT	ATGTTGCCCA	AGCTGGTCTT	GAACCTCTTG	GCTAGAGAGA	TCCTCCCTCC	AAGGTCCCCC
	AAAATGCTGG	GATC'TCAGGC	AAGAGCCACC	ATGCCTGGCC	ATAATCAATA	CACTTTAAG	AATGCTAGAA
	TGTTATATCA	GATGCACTAT	TCAGCACTAT	CTCAAGCAAA	CTGGGGTGTG	GGTTATTCTA	CATATAAAGT
	TCAGCAGTGT	TGTT'CCACAG	TCCCACACTC	CAACTGAGGT	CAAAATGTAGG	GTGCAGCAAG	GTCACTGGGG
15	CTGTCATCAA	GGGCCTCTCC	TTGCACTCTT	GCCAACCCCTG	TTCTTGTGATT	GTCTCTACCA	CCATGAGTCA
	CCAGCAATCT	CCCA'CACTCA	CTTGTAAA	AGTTCACAAG	TATTGTTGTGA	ATTGCAGGCA	ACCCCTTGAC
	TCCCTGATTG	CCTC'GTCTTC	TTCCCTGGGC	TCTACCATTT	TTTTCCCCCA	GCACTCTTTC	TGCTGCTCTA
	AATTTTAATT	CATC'CAATTC	CATATGTGTT	TCTCTATCAT	TCTTCATCTC	TTTCTCTCC	CTTCCATCCA
	ATTTTGTTG	TCTG'ITTGCT	TGCTTGCTT	CTTTAATACA	TTTCTCTTT	TCTGAGAAGG	CTTGAGTCCA
20	AAACTCTCAG	TTAC'CTGTTG	TTCTGTTCC	CGTTAGTTAA	TCTCCGAAC	TTCATAAATT	AAATCTGACA
	AAGTCCCCGT	ACTAACAAAG	GAAATGCACA	AGTCACAGTA	AAAGGGCAC	ACACAGAAC	CAAATAGACC
	CAGGGTCTTT	TCTG'ITCATC	ACTCAGCTTT	TTATAGGAGA	TCCAGGAGAA	ATGAAGTGG	AAGGGAAAGTG
	TGTTGAGTTA	CTATACAACA	CAAGAGTAA	CTTCTTATA	AGTGGTAATT	TTTTTTTACA	GGAATAATTG
	AAAATGAAA	TTAACCTCTC	TACTCATAGT	AAAGTACTCAG	TGCGTTCTTG	ATGGGATGAG	AATGTGTTG
25	AGCTTATGT	TAAGGCAGAA	TTCTGTTAG	TCTGCCAGTA	TTGGAGAAAA	ATAAAACACA	AAGGGACTGA
	CATGTAGGAA	GTGGCACCTG	GGAGGGTCTC	AATTCTTCTT	ATTACAAAAAA	TGCCCCAGAG	AAATAAAAAG
	CTTGTGTACA	TGTTGAGATG	GGAGAGTTCT	CTGGCCCCCC	TCGCAGGATG	TGTGACAGTG	GGGTGGCTCT
	CTGCTGCGCC	ACCA'GAGCT	CAAACCCCTC	ATAGGAGGGG	GAGCACACAG	GCAGGAAGGT	GCAGGAGCTG
	GGCGAGCTCT	TTGC'GCTCTG	GCCCCGTGGT	ACTGTCTAGA	GGTGGGTGCC	TGCAACTCCT	GAAAGCCCCA
30	GTGGGCATGT	GTTC'CACTG	ACTCTTCAG	CTTTGCTGTC	TGCACTTAA	GCGTTAACCA	GCTCAGTTTC
	TTCTTGGTAC	CCAGGTCTTT	GTCTGGCATC	CAGGAAGAAAT	CAGGTTACAC	ATGGACTTGA	AGGATGAATG
	TGGGAGTTT	ATGGAGTGGT	GGAGGTGGCT	CTCAGTGGGA	TGGATGGGGA	GCTGGAAGGG	GGATGGAGTG
	GGAAGATGAT	ATTCTCTCTG	AGTTTGGCTG	TCCAGCAGCC	GATCTCTCT	CCAGCCTCTC	CCAGCCTCTC
	GACGTTCAGA	TGC'CCTCTT	CTCTCCTCT	CTGCCATGCT	GTCTGCGCT	TCATCTGCCT	GTCTCTCTCT
35	GGAGCCTGGA	ATT1GGGGTT	TATATGGTAC	ACAATAAGGG	GCATGGCAGG	CCAAAAGGGA	ACTTTTTAGG
	TGCAAAAAAAC	AGGAATGCCT	CTTCTCACT	AGGGCTATAG	ATTTTCAGGC	TTGAAGGTGG	GGCCTTTACC
	AGCGAACCTG	TAT1TCCCTG	TCTCCTGTGC	ATATCAATGT	AATCAAATAC	TGGGCTGATC	CAGGATGTT
	CTTTAGACCA	ATTATGGGTA	AAATAATTTA	CATTCAAGGT	TTTATATTG	CTTTGTCTAT	TTCTTTTAA
	GCAATCATGT	AAAATATCTA	TACGACAGTA	ATAGATGATA	GCGAACCTAA	TTAAAATTAC	CAGAAACTTA
40	AGAATCTCTA	ATGATTTCAA	CTGTAACAA	GGTTATTCT	CTTTATGTG	AACAATGTTG	GGAGATAAGA
	CACAAGAGTT	TCTC'AAAGTAT	TTCAAGAAAC	CAAAGAGGG	GGTTATATAA	ATAATATT	TTTCTTACTT
	TGGGAAAATG	AAAGCTAGTC	ACAAAGTTAA	ACGAGTGGTT	ATTTTAATAT	TTAAAATACA	GGCTTGGATG
	TATTTCTCTG	TAAGAAAAT	AAAATGCAGA	ATATTCAAA	CGTCTGACCA	CCCTCTAAG	AAAATGCATC
	TCTGAGGTAT	TTTCTCTAG	AAGTTATTGT	AAAAATCTG	GAGAAGCTTG	AACACAGCAA	AGCAAACAGG
45	ATGCAGAGTT	TAATCTGTGG	AAAGCTTAGG	GAAGAAAAGC	AAATCATTAA	AAATAGGTCT	TCCTCTGAAG
	ATTTTTAAAA	CGCAAAAGAGG	GTGGAATAGC	AATGATAATA	AAAAGCTGG	CATAGAGAGT	GGCACAATT
	GCTGTGCCAC	TGAGCTGACT	GGATGTGTT	TGAATTCTA	GGCATTAGTG	TACCTTCCA	CACGCATTCT
	CCCTTAAAAA	AAAATGCCCA	CACACTGAAT	ACTTTTTCA	TGCAATTAA	AATAAGCGCA	CCATCTAGTT
	TACAGAAATT	CACTAGAAGT	TATTATCTCT	AAAATAGCAG	AGATCTAGAA	GAATTGGAG	CTCTAGGACA
50	TTTTAGACAC	ACACAAAGAA	GAATCTGGAC	AAGTCTTGAC	CAGACATGAC	AGAATAGAAA	TTTCTTTCC
	TATTTATCTC	TTTGAATAAA	ATTTTCAGGA	TCTTACAGTG	GACAAGTTG	TTATCTACAC	ATTGTGAAGC
	ACATTGATT	CTCC'CTGT	GCCTTAGGAA	GATCTGAGAG	GTGACTGAGC	TGATTGAATG	ATCCGTGACCC
	GCTCTACTGG	GACCAGTAGT	AGAACTTAC	TGGTGGAGAC	CTGCTGGAGG	TTTGAGAGCA	GACTTTGAAA
	ATTACTAGAG	CTAC'ACAGAT	ACTGTGTGGC	TAACTGGATT	ATGTTTAGAG	GCTTTAGAA	CTATGCTGCT
	GCTGCTGCA	TGTAGGCCAGG	ACGCACAGAG	AACATCTAAG	GCTCTTGAAT	GGGGCGATAG	GGACAGATT
55	CAGCAGCCAT	CTGACTTCAG	TGCTCATTT	GATGCTTCC	CTGCAGGGTG	CAGTGTGCAG	TGTGCAGTGT
	GCAGTGGTGG	GAG'GCTCACA	CAGGAACTACT	TGCTTCTGTA	GCCCTAATT	CCGGTTCAAA	CTCTGCATTC
	ACCTTGACAG	ATTCTTTCTT	TGGCCAAAAT	TTAGTTAGGC	TTCTGGGCTT	TCTCTTATGC	CCACCTGCAG
	ACTTTTGGT	AAAATCCAGT	TTTAGTAAAG	AGCTCTGCTA	AGTCAGTTA	GCAAGAATCC	CCACCTCAA
60	AGTCACTATC	TCCC'CTCTG	GTAGTGTCTG	GCTTGTCTC	AGCGAGAATT	CTATTAGGTT	CTGTTAGATT
	AGAATCCTCC	TTAC'CCCTGA	TGCTTCTCT	TAGTATT	TCATCCACTG	ACTCCTGAC	CCACCTTGCT
	CCTCGGTAT	AAAATCCAC	TTGCCCATAC	TCTGCAAGTA	AGACTATT	CTCCCCACTA	CTGCAAATC
	CCATTGCCAT	GGTC'CCTATA	CTATCTCAAT	GGTAATGAAT	AAAGTCTGCC	TTACCATGCT	TTAACAAAGTA

	ACATTGAACC	ATTTTTTCT	TTAACAACTC	GCTGCACAAT	GAGATTACTA	AAACTTTATT	CCATTTGCC
	ATGCTGGATG	TCCTCAATGG	AATGGCTCTT	GTGAGCACCA	AATCATTGTG	AGAAGGAAAA	CCCCTCTT
	ACAGCCCCCT	GTAACTGAT	GTATGTTACA	TGTGATGTAT	GTTACATAGT	TTTTTTCAT	GTTGATCACT
5	TTTTGCCCAT	TTTCCTATAT	CTTATCAGTT	GGAAGACTGT	GGAAGTTTGT	AGTACTAAGC	CACAAGATGA
	CTAAGAAGAG	TTGAAGGGC	AAGTGGGCT	AAAAACAGAT	TTTGTGAC	TTACCCACC	ATTCCCCCTA
	TCATGGGCT	GAATCTGCC	GGAGGAAGGA	GCATCTTAT	CTTGTA	TGAACACAC	AGTCTAGCAG
	CAGCACAGCC	AAGGCACTTG	GGGTTCATG	AGACTAAGTA	CATGCAATT	TATTGAAAG	GCTTAAAATA
	TATACAATG	ACCCCTGAAC	AACATGAATT	TGAATTGCAT	GGTCAGTTAT	ACGCAGATT	TCTTCCACCT
10	CTGCCACCCC	TGAGACAGTA	AGATCAATCA	ATCCCTTCC	TCCTACTCCT	CAGTCTACTC	AAAGATACTT
	GAAGTCTACT	TGAAAGATGAC	AAGCACAAAG	ACATTATGA	TGATCCACT	CCACCTAGTG	AATAGTAAAT
	ATGTTTCTC	TTCCCTCTAA	TTTTTAACA	CTTCTTCTC	TCTAGCTTAA	TTTATTGTTA	AGAATACAAT
	CTATAATACA	TATGACATAC	AAAATATGTC	TTAGTTGACT	GTTTATGTTA	TCTGTAAGGC	TTCAGGTCAA
	GAGTATGCTA	TTAGTGGTTA	AGTTTCGAG	GAGTCAAAAG	GTGTTATGTTG	ACTTCAACT	GCAGGGGGT
15	GGGCACCCCT	GCCCCATGT	TGTTCAAGGG	TCAACTTTAC	TGCCCAAGGC	AAGCCTTAC	ATCCACTTT
	TCCATCCCAT	CAGTAAATGG	AAAAAGATAG	CTACAGTATC	CCTCGCTCAA	ATCTTTTTT	TTGCAGATCA
	CAAATTGGCC	ACTCACCTTG	CTCTGTGAGG	GGTAAATGC	CCCACCTTCT	TTAGAATAT	TTAAGTTAGA
	TAATATTAA	GTATAAAAGT	TGTTCTTGT	AATCGTTAAT	TGTAATTTTT	ACATAGTTTC	TTTCAAACAG
	AAATAGCATT	TTTGTAGAT	AACCTCCGT	ATAGATGATG	AAACTCTT	TAAGGGCTAT	CTGAATTAA
20	ATTCTTGA	AAGGCAGAAA	TTGGGATAGCT	AGTAGTCATA	AATGTA	GGCTCCCCC	AACCATCTGG
	GCTATATAGA	AGCTGCATCC	TTGGGACTGCA	GTAGAGGAGT	CTTACAAAGC	ACAGAGCAAC	TTCTCTCCTG
	GGTTGCGCTA	GTATGATGG	CAATTAA	TGTGACTTT	TACCCAAAGA	AAATCCTTAT	TATCAACAAT
	CACAAATGCCA	TCATAACCAT	GGTATAAAA	ATTCAAATG	TCCCAGCTGA	AGTGGAGGCA	AAGACTCAAG
	TTCATGGAGT	CAGAGTTCC	TTGCTATTCC	TCTTTTCAA	ATGACCA	AGTAAGCACC	TGAAGAAAAT
25	ACTATGGACG	GCATGAAAAA	GTGAAGATAG	GTTTAATCTT	CTCGAAAATC	TAATTCTCCA	GATGAAACGC
	TGACACTTAT	CCACCCACAA	GACCCCTATAG	CAGATGTGTC	ACTGGCCATC	ACATTGACA	CAGAGAAGTC
	ATAACTCAGT	CAGCACAGAG	ACATTCTCAT	GAGTTCTGTA	ACCATGGACA	GAACGTCGTC	TGTGGGACAT
	GAAAATGGA	ACTTAGAGGA	CAGGCACATC	TGAGAAATGG	GCAGTTAAA	GGCAGAACAT	AGCACATATG
	TGACTGGGTT	TTAGAAGCAA	ATTTACAAGA	CGCACTCTTC	TTCATCCTAA	ATAATCTGCA	ACCAAAGCTT
30	CCAAAAAAGA	CAAITTAGGA	ATGCAGAGGT	GAGGAGTAGG	GAGGGGAATG	GGATGAGAGA	GAGTGGAGAT
	TAATGGTGGG	CAGAGCGAGG	TTAGAACCTT	AGTGGTTTCTC	TCAGGTTCTG	AACTGAAATT	TGTATACTGT
	AAAGGCACAA	ACACCATTTT	TAACAAAAGT	GAGCAGGACT	TCCTATCTGG	TTCAAGAAAT	AGGTGAATAA
	ATAGTACGAA	TTATTA	TAATAATTTC	CACTTATACA	TAGGAAACTT	GATAGGAACC	ATGATAAAATG
	CTTAACICTT	AACTCTCAAG	GAACCTGCT	AGGGATATAA	TATTATAAAT	CTTGTGTTGC	AGATGGAGAA
35	ATTGAATTTT	AAACCAGTT	ATCATAACCC	TTAAATGATT	AAATGATACT	GTACATGAG	AAAGCTCGT
	ATCTGTTTCC	TGGAATTGTA	GCCATAATT	GTGCTCAAG	TCCCTTTGTC	TGCCAGCTAT	CTTGGTAGG
	TGTGTTCCCT	TTGGGCTGTT	TGATACCCCC	ACATTATCT	TTTTTTTTC	TCTTTTTTG	TTGAGAGAGT
	CTTTCCTCTG	TGCCAGGCT	GGAGGGCAAT	GGCGCGATCT	CGGCTCACTG	CAACCTCCGC	CTCCTGGGTT
	CAAGTGCCTC	TCACGATTCT	CTTGTCCCAG	CCTCTCTAAT	AGCTCGGATT	ACTGGCATGC	ACCACCAACGC
	CCACCTAATT	TTGTATTTT	AGTAGACAAAG	GGGTTCTCC	ATGTTGGTCA	GGGGGGTCTC	AAACTCCTGA
40	CCTCAGGTGA	TCTGCTGCC	TTGGCCTCCC	AAAGTGCCTG	GATTACAGGT	GTGAGGCCACC	ATGCCCTGGCC
	CCAAATTAT	CTTAAATGCC	CCAAATTATC	TAGTTCCAT	GACTGGGCTT	CTGCTTTGAT	CCTTCTGCA
	CTTGCTGGAC	CCTCCTCCCTG	GGAAATGAGA	TTGTCCTG	AGCCCCTAGT	TAGAGGCTAT	GTCTCTGCTG
	TTCCCTGAATG	GGCCCTCTGG	ATGAGACCTC	ATAAAAGTC	TAATTCTCTT	GGAGAATTGA	GAGATACCTA
	TTTGCTCTAA	AATCATGAA	ACCAATTAA	GTATTATGAG	CCTCTATCCA	GTGATTGTA	CCTCAATTCC
45	CCAATCCAGC	TGTCAGGCC	AATTGTTCT	ACCTTACCTA	GTAGGTAAGT	CTGAAATTGT	AGCTGTGGCA
	TTTCAGTAA	TGGTACTCTA	GGTTAGCAGT	CCCCAACCTT	TTTGGCACCA	GGGACCAGTT	TTGTGGAAGA
	CAATTTC	ATGAAGGGCT	GGGCAGGGGA	GTGTTTCAG	GATGAAACTG	TTCCACCTCA	GATCATCAGG
	CATTAGATT	TCACAGGAG	TGCGCAAGCT	AGATCCCTCA	CACATGCAGT	TCACAATAGG	GTGTGCACTC
	CCATGAGAAT	CTAACACCGC	TGCTGATCTG	ACAGGAGACA	GAGCTCAGGC	AGTAATACTC	ATTTCCTAC
50	CGCTCACCTC	CTGCCTGCA	GCTCAGTTCC	TAACAGGCCA	CGGACCAGTA	CTGGTCCACG	GCGCAGGCAT
	CAGGGACCCC	TGTGCTAGG	TATAAGCATC	TGGCTGCTGC	ATGTCTCTG	TGTAGCTACA	TCTGTATGTG
	TATCTGATGA	GATAAAATT	ATTTGATTAT	AAATTACTTT	CTTCATATTA	GAGTTGTGAA	TGAGTATCAC
	ATATAATTAT	ACATAAACTA	GGAAATATGCT	TTTAATAAT	GTATATAAATG	AAGTTTCTT	AACTATGACT
	TTCATCTTAG	CGTAGTAAGA	GGGTGCTAAG	AAATATTGT	GATGAAAATA	GGCATTGGTA	GAGTTGAGAC
55	CACTGGTGA	TGAAAGAGTG	TAAAGATT	AAAGCCTCA	GATGCTGGTT	CAAGGTGAGA	AATGTGATTG
	GGAGCAAATC	AATTAACTTC	TTGAAGTCTT	ATAGGGCAGT	TATGAATACT	TAATGTTAAC	ATATGAAAG
	CTCTTCTGCC	CTGTATACAG	TAATGCTAG	TTAGCTATT	TGATCACTAC	AAAATGGGG	ATGACATAAA
	CCTCATAAGG	TTTAAAGTAT	TATGCAAGAT	ACTATACAA	GTCCAGTAA	TATCACATT	AATTGAATCC
	ATGATGTCCG	ATTATTTAG	CTACTTCAA	GAGAGAAAAA	AATGCTGTCA	GTTTTACTGT	TCTTATAGAG
60	AGCAAGGCAG	ATCCCAATT	CCAATGTGGT	AACGTAAAAA	TTTTGCA	TGAATCAACA	AAACACTTTC
	TCCTTTCTT	CCTACTATTT	AAACAATGGT	AAAGTATAC	TCCCCAAAT	CTGGAATTCT	CCTTTCTTAT
	TCTTTCTCT	CCTACCAAGA	CCGCAAGGATC	TTTACTTGG	CTATAAGGGG	TAAACCTCAA	GTAGTACAAG

	TTCTCTGTAT	TACTTTTATA	CTCTGTACA	GATTCCCTT	GTTTCTCAT	CTCCATGTGA	ATTTAGTTAA
	ATTCTCAGCA	TTCTGATCCT	TACTATACAA	GGTAATGAA	TATAAAAACA	AAACGAAACA	AAAACCTCTT
	CCTATTTACA	TAAGCCCCA	ACCTAATATT	TAGTGATATA	TATTAATGTG	AACAAGGAAC	TAACGAAGAC
	TGGGAAGAAA	TTCA CAGACT	TGAGAGAAGA	AATGGCAGGA	TTTCCTGGGA	ACAATTTCAT	GTAACGTCAA
5	AGGTGGTAAA	AGGTCAAATA	GAATGAAGAT	GGAGAATACC	GGATTTCTT	ACAAAATGAT	TTCCCAGGAG
	ATCTCATCAA	ATGCACGAGG	ATACCTCTC	AGTTCACCT	AGTGAGTAA	AGACTGGTAA	CATAGCTCAC
	TTACAATTIG	GATAAACAAA	ACTAAACAAA	CAACATCAA	ATTTCAGAAA	AAATAATAGC	AAAACAGAAA
	TCAAACACTC	AAAATTTGG	TCCTTCTGT	TATTTCATTT	TGGGACTC	GTGAATGTTA	ATTAACCAGG
10	AAACTTAAAA	GTATTTCAA	TTATGAACCT	CTTCATCCT	TCATCAATTA	TTTGAGTAT	TCTGGTCTTA
	AAAACATCTC	TTTCITCTAC	AAACTCTGA	AAGAGATGAA	CACCTCCACC	TACACAAAAA	TAATGTGCTT
	TGCTGGCCAA	AAGIACACGT	CCATTTCAC	TTAACAGTCT	AAGGAAAGTC	TGGTCAAAT	TACTATAATA
	ATCTGGGTTG	TAATGGTTT	CTGAGGTGAG	AATGAGATCA	TATTTTACAA	AAAGTTTTTC	ACTACTTAGT
	ACAAGCTTAC	AAAATCTAGA	CCACTCACC	GAAAAAAATC	GGCATTATA	TAGTTGTGTT	ACTTTGGTT
15	TCCTGCATCT	TTTCATCATCT	GGCTCATT	CATCATTTTC	TTCATCTTC	AAAGTGGAGT	TAGCTACTAC
	ATTAGGTAAG	GTTCCTTCAT	CAATCACCAT	ACTGTTATAA	TCTTGAAGT	GAATTCTTT	GGACCCCTCCC
	TTGAATGCAG	TTATACCTAG	TAAACCTGAT	CCACAAACAA	GATCCAAGAC	TTTTTCCCA	GCAAATTICA
	CTTGGCCTT	TGTGAATAAA	GCCAGGAGGT	CAAAGGTACA	TTCCCAGATT	TTAACGCCTC	CCTCATAAAC
	ACCTGTAATC	AGATCAGAGT	GAGAAGAAAA	GCTTTTGAA	ACTATGTTT	CTCCAGGGAA	GTTCTCTTC
20	AACAAGATGG	TTTCACTAC	TGATAACTA	ACATGCTGGA	AACCTGGTA	TGTTTCTATG	ACTTTATTTC
	CTAACATCTT	CTTAAATCT	TTAGGCATAG	CATGCTCTT	GGCAGCTCTC	AAGGAGGGCT	GTTTTCCATG
	TGGCTCCAAG	TTCCITGAAC	TGCTGGCTGC	ACTGAGTGG	CTGCTGTGTT	CTTGAGAGGG	AGCTGCATT
	TCCATTGACT	TATGTTCCCCA	CAAGTGATCC	TGAGGCAAGT	CAAATTGTC	TGCGAGAACAT	TTTCTGTCCC
	TCTCTCTCC	TTTTGACTT	TCTGAGACTG	ACAGCTCTT	TGAGGAATCC	AGGGTCAAAG	CTCCATCTCT
25	AATGGGTGTT	AATTCATTTC	CCAGATGGTC	TTCTATAGTG	AAATTAAACT	GAAAGGTCAT	CCTCTTATT
	AATGCACACA	ATCITTAAT	TCAGATTCTT	CAACTCTGG	ATAGAATTG	ATGATACACA	CAAATCTGCC
	TCAATTATTC	AATTAGTTT	GTGGGCCA	ATTTCCTTT	AGCAGCTTAT	ACATGGTAAC	AAATATTAG
	AGATATTCC	AAATGACTTT	TTAGACGTC	TTGGTCCTCT	TTCCAAGCAG	CTCTGGAAAG	AAAAAAAAGA
	AAAAAAAGAAA	GAAATGATG	ATTAAAGCAA	AATGGCACAT	TTCACTAAAG	TGTAATATT	AACAGGCCACC
30	CCCACCCCTC	CCTGTCCCCAC	CATACAGCTG	CTTTTCTTA	AAAAGTGTG	GGGAAGAGAG	AGAGATAAGA
	GATTGGAC	CTCATACACA	CCTTAAGGGT	TCCAAAGTGG	GAGAAGAAA	TCAACTATAA	AAACAAACAG
	AAGAACACA	GCAACACCA	CCACTACCAC	CTGGACAAAC	ATAAAAGTCA	AGATATTCA	ACAGGACAGC
	CTAGCTACTT	GCTGTCTTC	AGCTGTCTG	ATTITGTGTC	AACCATATT	ACCCCTAAG	CTTCCAGAAT
	AACTTCACCT	CTGTCTTTA	CAGAAGAGGT	GCAGTATT	ATTTGGTAA	GTCAGCGTCC	CTTTAAAAC
35	ATGCATAGGT	ATGGCTGGT	GTGTGTAAT	TCATCCAAGA	CTTCACTCA	AACATTAGT	CGAGAACAGC
	AGCCCCTAAGT	GTATAGAAGT	GGGGGTATT	TGGCAATAAT	TAGTAAAGAC	TAATCGGTG	GCAGAGCAA
	CGCAAACCTAG	GGCACTGCG	TAGTTGGAG	AGACCTGTAG	AAATAAGAAG	CAACTTTATT	GAGAATCTTC
	TATCTACTGC	GCTAGACACT	ATACCATCTG	CCTCAATT	CACAGTTCTG	GCAAGTGGGA	TCTTGTCTCC
	CTTATACAA	GATTACAAT	TTGGGGGAGA	GGCGGGTCAC	CCAGTCCCCG	GGCTAGGAAC	GCGCCTCTT
40	CCTCTCCCAT	CACCGTCAA	GGCTTGGAGT	CACTCCGGC	TGCAGGTCCC	GGAACAAATC	CGACCCAGA
	AGTGGGACT	TCTGGCCCTC	ACCTCCCCAT	TTGAATGTAA	TGTTTACAGT	GATCCAGACC	TGGGGATGCT
	TGCTTCCCGA	CGTGICCTGG	GATCGCGCTT	CTGAAAAAGC	TCACCTCACA	ACGCCCTCTC	CGGACCTAAA
	TCGCGCACCA	GTGAGTCGAG	TCCTCCAGGG	GCTAGAGAAG	CCCGACTTTC	TTTCCGGCCT	TGAGGGACCC
	GGGCTCACCA	AGAACCCAGC	CGCCCTCCTC	TCTATGGTT	TGGAGCCGGC	GGAGAGCGCG	CAAGGGTTGG
45	CGGGACTGCG	AGTITCCGGT	CTGGGCTT	GCAGGCTCTG	TTTGAAGCTC	TCCTGTTTGA	CGAAAGTATG
	TCTCAGGAAG	GTGGGGTCCC	AGCTAGCGCG	GTTCCCTGG	AAGAATTAAAG	TAGCTGGCCA	GAGGAGCTAT
	GGCGCCGGGA	ACTGCCGTCC	GTCCCTCCCC	GACTCCTCAT	ATCCCTCTT	GGTTGTCACT	TCTACCTAGA
	GAAGGGTGTG	GGCGGGTCGC	GAACCTTCT	CTTCTGTCCC	TTCAGACCCA	CCGCCAGGCT	GGGTTATATT
	ACCGCGCCCT	GAACCCCCCTC	TTTCTTTGT	CAGTAGTGG	GATGAAAAGT	GAGGACTGG	AGGGGAAGCG
50	ACAACCGTGG	TAGATTAAAG	TAAGGCTTG	GCCCTGGAA	GCCTCGCGGA	CGTGTCTGA	CCCAAGGTIT
	TAGCAGTGG	TGTGGCGTT	TCTCCATTC	CTTCTTTCAG	TTTTTCTGTA	CTCGTTGCTT	GCAATTAAAGT
	GTAAATACTT	TTGCTAGTGG	ATAATGGGG	AGGCAAGGAC	TGAGACCTGC	GGTATGACGA	TAGCTCTGGC
	TCTTAATAGT	TTGAAGTAA	GCGAGATACT	CTGAGCTTT	GTCTCCCGTA	AAAAGGGTGG	TGAATATGAA
	TAAGGGCTTT	CTTA CGCTTA	TAAGAATTAA	AGGGCATAGT	TCTGTGGTGT	GAAATCTTTA	AAAGATGTT
55	AGTAAATAAA	AATGATTTC	CTCCCTCCCC	TCTCAGACCT	CTTTTCTTC	TTTCTTCTT	TTTTTTGAC
	AAGTTCTCAC	TCCTCTCAC	CAGGCTGGAG	TCTTCTGAA	AGAGTTCTC	CGCTTGTGT	TGGCTTCAA
	CTGTTGGATT	TGAGGCCTT	AGCGCCTCT	TCGTCGGGGT	GCAGCACATT	CTTGATTGGT	CTCATGCCTT
	TGTGGTTGTA	AATGTGCTG	GAATCCTAGC	CTTTCATGGT	AAACCATATG	TATATGTATC	TTTTTCACAA
	CATTGAGCC	CAGCITTATA	CAATTACACT	CAAAGAAAAA	AAAGTAACCT	TCACCTGAGA	GAATCTCAAT
	ACTGCACAAA	TATTGTGCA	CTAAAGCCCT	ATGTAATCAC	ATAGAAGTCA	TTCACCTAGG	CATTAGCAAA
60	ATCTCAGAAG	GTGCAAAGC	CCCCCTTTT	AGTTTTGTG	TAGGTACAGA	ACTGCCGTCT	TCAAGGAGTT
	TCAACTTGAA	AAACAAATAGC	CACCCCTCAA	ACATTCAAA	ACACTTAAAC	TGCGTGCATA	ATGTGTGTA
	GACATGGTGT	TAGGCTTTGG	GAGAACAGAG	ACACGGAAACG	TGATTCCTCT	TCTTCCCCAC	AAGCTTATAG

	AGAGACTTCA	TTAAGTTGAA	AGTCACATT	CCCACCTAGC	TTTGCACITC	AAACGACATA	TCACAAAAAG
	CCCAAACCTTC	CTCTAGTTT	CTTCATCTGA	GTAATGGTT	TCACAAAATG	AAACCTGAA	TCCTCTCTGT
	CTCACACACC	CGATCAGTAA	GTTCTATGTT	TTCTGATTCC	AAACTATGTC	TTGAATCAAT	CCGTTTATCT
	CCATCCTCAT	TGCTACCACT	CTGATTCCA	ACCCTTATCA	CCTCTCACTT	GGAGTATTAA	TAGTTTCCCT
5	GTTTCTACTC	ATAAATCATT	ATTCACAAA	AGTTAACAGG	GGAAAAACAT	AGATCTCGTC	ATTTCCCTTT
	TTAAACCACT	TTACCTTCAA	GGTTCCAGGT	GATCTAACCC	TTGCCCTCT	CTCATACCTA	TTAATTAAAC
	TACACTCTGT	TCATGAATAC	ATTAGGCTCA	CCTACCTCAA	GATCTTTTG	CTCAGCCTGA	TTGTTCTCT
	CAGCCTTTG	CATATTCAT	GTTTATGTCT	TGGCCCAAAT	GTCACCTCTC	TAGAGGGGCT	TTTCAGAGC
10	CTTCAATCTT	AGGCAGTCC	CCCAAACGCA	GTCTTACACT	TGTATCACAT	TGGCCTGTT	AGTTTCTAA
	AAAGCACATT	ACCATTAAAA	GAAATGCTCT	TGTTTGCCTT	GTATATTTTC	CACTCTACAA	CATTATGTTG
	CAAAGTTCAT	AAACGCAGGA	TGTTGATTT	CTTCACAGCG	TTACCCCTAG	CACCTAGAAC	AGTGCCCTGAC
	ACATAGTAAG	CATICATTAA	AGGGCTAAAA	ATATTTCATG	TTTAAAAAT	ACTTGGGAGT	CTAATTAGAC
	AATACTTTT	TTCACTTTAA	TGGTAGTATT	TTAGCTTCAC	TATTTAACAA	AATGAAAAT	TTGCAATAAA
15	TCTACAATGC	CATIACCCCC	CAAATCTTT	TTCATGTTT	GCATTTACAG	TATTATTTTC	CAGGCCTTAC
	CTGCGATGCT	GCATAATCAT	AACTGACTAA	TTTGGAAACA	GCTGGTAATT	ATTGAGCTT	TACTGAAATT
	TTTTCATGAG	GCCAATTCTA	CCCTACTGAA	CTCAAATTG	AGTTAATGAT	GACCTCATTT	TGATTGCTGC
	TGTAAAAAAAT	AAGATTTCGG	AAGAGGAATG	AATTCTTGT	TTACTGTGGT	AGGACTATGG	TTTTTTTTT
	GTGGTTTGT	TTGT TTGAG	ACGGAGTCTC	ACCCGTAC	CCAGGCTGGA	GTGCACTGGT	GCGATCTCAG
20	CTCACAGCAG	CCACGTCAA	GTGATTCTCC	TTCCCTAGCC	TCCCAGTAG	CTGAGATTAC	AGGCACGTGC
	CACCATGCCC	GGCTAATTTT	TTGTATCTT	AGTAGAGATG	TTTCACCAT	GTTGCCAGG	CTGGTCTCGA
	ACTCCTGACC	TCGTGATCCG	CCTGCCTAG	CCTCCCAAAG	TGCTGGGACT	ACAGGCCTGA	GCCACCGTGC
	CCGGCCGGGT	TATTCATTTT	TCTTATTAAC	ATTCTTGTAT	GATTCTTATG	GTGTTGTTAC	AGTAAAACAT
	TTCTAACAAAT	TATTCATAAC	ATTATTCTT	ATGGTGTATA	TGAAGAATT	ATTGTCGTGT	ATTGTAAGC
25	TGCTATGTGC	AGAAGAAATT	CAGTCAAATA	AAAGTGGTAA	GATAGGTATG	TAAGTAATAT	AAAAAAAGAT
	AGAAGGTGAT	GAGTGACTTA	GGTATAAATT	AAAGTACAATA	GAAATGTTGA	GGAAAGAAAA	ATTCTTGTAA
	ATAGAAATCG	GAAGTACAAA	CTGGGCATGG	TGGTGTGCAT	CTCTAACATCC	AGCTCCTGA	GAGGCTGGTA
	TGGGAGGATC	ACTITAGCCC	AGGAGCTGA	GGCTGCAGTG	AGGTGTGATC	ATGTCACCGC	ACTCCATCT
	GGGTGACAGC	AAGACCGTCT	CTCTTTTTT	TTTTTTTGA	GACGGAGTCT	CGCCTATGCT	GGAGTGCAAT
30	GGCGCGATCT	TGGCCTCACTG	CAACCTCTGC	CTCCCAGTT	CAAGTGATTC	TCCTGCCTCA	GCCTCCTGAG
	CAGCTGGGAT	TACAGGTGTG	CGCCACCATG	CCCAGCTAAT	TATTTGTAT	TTAAGTAGA	GACGGGTTCT
	CACCATACTG	GCCAGGCTGG	TCTTCACACT	CTGACCTCTT	GTTCGCCCCAT	CTAGGTCTCC	CAAAGTGCTG
	GGATTACAGG	TGTCAGCCAC	CCCACCTGGC	CCCGAGCGAG	ACCCCTCTCTC	TAAAAAAAT	AAATAAAATA
	AATCATAAAC	CTGAGGATT	TTGTAGCATT	GTTTCTCATC	TGTCAAAAT	ATTTCATGAC	TATGCATAGT
35	TTGAAAAGGC	AAGTTGTCC	CTGGGCAATT	TTCAAAATAT	TTCTTAAATG	TGTTTCAACA	ATACTGTTA
	CCTAATAAAAT	CTTAAGTTT	TTAAAGCAAA	ATTAAGCCAG	TAATTGAGT	CCAATTCCAA	TCTCTTATGA
	GTCATTGCTT	AAAATTCAAA	AGGGTTTTAT	TTTTTTTTA	GGTTTGTCT	GAGTAATGAA	TACCCATTAA
	CTATGATACT	AGTATCTTCC	TTAATTATCC	TACTCATTTG	CTCAACATTC	TGACAGTTGG	ATTGAGCATA
	TCGTAAGTA	AAATGTGTTT	AACTGTATGA	TGTACTTGT	TGTTAAGGTC	CGAGTCCCCA	CATACCTCGG
40	TAGATGTGTT	CTTACAGTTT	TGTATTCCCT	TGAAATGTAA	CTGTTCTCTA	TGTTACAGCC	TTTATAACCT
	TCAGTTACTT	GAAATGAACA	AATTCAATCA	AATTCCAGCA	CTTAAAAGTT	TTAAATTACA	TTTTGGATAAA
	ATACCAAAGT	GTTITGTTGA	TGATGTATGT	ATAAACAAAT	TGTTAAATT	AAACGTTAGT	TGTTACGATT
	AGACCTATAT	AAAATCATGAT	ATGCAGTCTA	CTGAATAGCT	ATCAGCCTCT	AACATGTTA	GTGTCATTAA
	GAAAATGCTT	TCTAAATTGC	CAAAAGCTGA	TTGTCAGGTT	GATAACAAAT	TTACCATTTG	GAGGAAGTTG
45	ACTTTCTCAT	TTTCATGTCT	TCATCAGTCT	TACTTGATGA	GATTCTTCT	TCTAGTCAGA	AGAGAGTTA
	GACTGCTCAG	TTTACTCATA	TTTGAGTTA	GCTTTCTAT	TTAGAGTTCA	CTTGGTTGTG	GAATATTCAAT
	TTATAATTG	AAATCTACGTT	GTGTAATGGG	ACCTAATT	TTTTTCCTT	GTGTTGTTG	GAGTCCTCGTT
	TTGTCACCCA	GGTIGGAGTG	CAGTGGCGTG	ATCTTGCTC	ACTGCAACCT	CCACCTCCA	GGTCAGGTG
	ATTCTCTGC	CTCAGTCTCC	CAAGTAGCTG	GGATTACAGG	CATGCTTCAC	CACCCCTGGC	TAATTITGT
50	ATTTTTAGTA	GAGATGGGGT	TTCACCATGT	TGGCCAGGCT	GGTCTCAAA	CTCCTGAGCT	CAAGTGATCC
	TCCTGCCCTG	GCCTCCATAA	GTGCTGGGAT	TACAGGCGTG	AGCCGCTGAG	CCTGGCCCCA	GAGTTGTTT
	TGTTTTGTTT	TCAAAGACAAG	ATCTCACTCT	ATTGCCAGG	CTGGAGAGCA	GTAGTGCAGT	CATAGCTCAC
	TGCAGCCTGA	ACTCTGGGG	TCAAGCTATT	CTCTGCCTC	CATCTTCTAA	AGTGCCTGTA	TTACAGGTCT
	GAGCCATGAT	GCTGGCCTG	TGTTTTGTTT	TGTTGTTT	GGGGGACAGG	GTCTGCTTT	GTCACCAAAA
55	CTGGAGTGT	GTGCTGCGAA	CATAGCTAGC	TCACTGCAGC	CTCCATCTCC	CACGCTCAAG	CAATCCTCTC
	ACCTCAGCCT	TCCAAGTAGC	TGAGACCGCA	GGTGCCTGCT	ACCATGCGTG	GCTAATTTC	TATTTATATA
	TTTATTTTTT	GGTAAACATG	AGGTCTTGT	ATGTTCCCA	GGTGGCTTT	AACTCCTGGG	CTCAGACAGT
	CCTCCGCCT	CAGCACCCA	AAGTGTGGG	ATTACAGGCG	TGAGCCACCA	TGCGTGGCAT	AATTTTTT
	AAGTAAATT	TTTTTTTATC	TTGAGTATAG	AAGTGAATTCA	TGTTCATTTG	GGAAAATATG	AAACATATAG
60	AAAAACAGAA	AAGATTACAA	AACATCTAAAT	CTGAAATGGT	TAAGATTTC	ATGAGAACAG	TCTCATCTCA
	TTTCCGTATA	TTCC TGCCAG	CCTATCCATC	ATTCTTCGTA	CATGTTTATC	TACATTTAA	TTGGTGTAT
	ATTGGAAA	CTTITGTTT	AACTACATTG	TGAACATT	TCATGTTTA	AAATGTCATT	TTAATGATGG
	CAGATCCAT	TCAATAGATG	TACACACACC	TATTTAACTG	GTCCACAAATT	GTGGATATG	TAGGTCGTTT

	CCTTTCTCTC	TTTT TTTTT	TTTTGGCTA	CTACTTAATA	GTTTCTCTGT	ATAGAACATG	GTATTTGAA
	AGTGTATCAA	GCTT TAGATT	GGTAGTATT	TTGCATTAA	TAAAGGGCAG	TGGCCTTGT	TGACTGACAT
	GACAATATT	TTATAAAAATT	TGTTATTG	TTTACAGAAA	TTTGAAAAT	TATTGTAGAA	ATGTTTTAC
5	CTCATATGAA	CCACCTGACA	TTGGAACAGA	CTTCTTTTC	ACAAGTGTAA	CCAAAGGTAT	AATACTATTA
	CCTGAAAATA	CATC TTATAA	GGAACTCTAGC	CTCAGTCTTA	GATGATTAT	TATTAATTAT	GGCTCTTT
	TTCTAATATA	TCAA ATATAT	TCAAAATAAA	AATAAGGAGT	AAGTAGATCT	CATGTGAGAC	TATAATGGTG
	TTAGTGTGAT	CATT AGGCAG	TTAAAAACTG	TTACAGGCTG	GGCACGGTGG	CTCATGCCGT	TAATCCCAGC
	TCTCTGAGAG	GCTGAGGTGG	GCAGATCATC	TGAGGTCAAG	AGTTCGAGAC	CACCCATGGT	CAACATGATG
10	AAACCTCGTC	TCTA CTAAAA	GTACAAAAAA	TTAGCTGGAC	ATGGTGGCAG	GTGCCGTAA	TCCCAGCTAC
	TTGGGAGACT	GAGACAGGAG	AATTGCTGA	GCCTGGGAGG	CGGAGGTTGC	ATTGAGTCAA	GATCGTGCAC
	TTGCACTCCA	GCCTGGGCAA	TAAGAGCGAT	GCTCCGTCTC	AAAAAAAAAAA	AAAAAAAAAAA	AAGAACTTAT
	ATTTTCAGAT	TGTGTGGTTC	CTTTACTAAC	TGAATTAAA	TTATTTGTAG	TCAATTITAA	ATGCTCTTGT
	ATTTTAAAGC	CACT GTACTC	CAGCCTGGGT	GACAGAGTGA	AACCCTTAAT	TCAAAAAAAA	AAAAAAAAAA
15	AAGAAAAGCT	GGA TATTGG	CAAATCAAG	TAACTAAGAG	AAAACATTA	ATTCACAGAA	TACATTATTA
	CATTTTAGAT	ATATATGGTA	TATGTTTCT	CTGAAAAGCA	CAAGCATAAC	TTTTTGT	TAATGGAGG
	GAACTAAGA	TAC TTTGGT	CCAAAATGAA	ACATTATTG	TAATTAATCT	CTTATTGAAA	TGGGTTCTA
	ACTTTAGCTT	TGAATCGTA	TCTTCAAT	TTCTGTACT	CATAGTCACT	TGATGATTCT	CTATCTGAAA
	TATTTCTTAG	AATT GTTCT	TGACCACCA	AAAAGATT	AACTGTTACA	TAGATGAAA	TGGATGTTGA
20	GTGTTAACAG	GCCTATGGGA	AACAGTATT	TCTTAGCTA	CATTGTATTG	TGACTGTGT	TGCTATTCTT
	ATAATGTTA	GGTCATTAA	ATTGTTAGAA	AGATCCAAGT	ATTAAGATCT	AGGGTGGCTA	ACTTTTCACA
	GACAAAAAGC	TTGTTTGAA	GGTCATTAC	TATACCCCTA	ATTCAAGGAA	GTTAGCTTGA	ATTGGGTCAA
	AAGGAAACTG	GTTP GAAAAT	AAAGTGAAGTAG	TGAATAGGCG	ATTCAGTGCA	AATTCTTCC	AGAAAATACC
	CTTGTAAATG	ACTG TATGAA	TGTGGATTCT	TCAAGACAGT	CAAATTATT	GTGCGAAAGT	AATACTTTA
25	TTTTTGAT	CTCT AAAACA	TGAACATTG	GTGATTTTT	AAAAAAATTG	ATGCTATTAA	ATAGATTCAA
	ACCATAGAAA	TGG AAATAA	ATTCTGTTT	GGGGCTTTTG	GGGGGATTAT	GTTGAAAAAA	TACCTTTCT
	CTGTATTITG	TGCTTAATTA	GGTACAATTG	TAAAGCTAGA	TGATAGCTG	TGGATGTTAC	TAGTGCAAAA
	TCAAATTATC	GTAT GTGTT	TTCTCTGAA	AGTTTGTCT	TGTCTTTCT	AGTGAATTCT	CTTATTCTG
	TTTATTACTT	GATT GTTTT	TACAGACTG	GAAATTATTC	GATGACATGA	TGTATGAATT	AACCAGTCAA
30	GCCAGAGGAC	TGTC AAGCCA	AAATTGAA	ATCCAGACCA	CTCTAAGGAA	TATTTACAA	GTAAGTCAAA
	TGTATTAGAA	AGCA GGGAGAG	AGAGGGAGCT	TAAGAACATG	CAAATTTTT	ATACTGATAC	TGATTAGCTA
	TGTATTCTTA	TGTAATGGCC	TAATGTTGA	ATTAATTAA	TAGAATTAA	GACGTGAATA	TAGAAACATG
	AATTCTGAAT	AATAAACTCT	TATAAGAAGA	GAAGTCATCA	AGCTAGCTGA	CCCTACCTGT	ATTTCAGG
	ATATGTGTTG	AAC CCTGCC	ATGTGTTTG	AAAGTTGTGT	TAGTATTCTA	AATGGCTAGA	CAGTTGTTCC
35	AGTATTGTA	GTCTGTAG	ACTAAAGTC	TGTAAAAGA	GGAAGAGACT	GTGTTTGT	CATTGCTGTA
	TTTGTAGCAC	CCAC CATGCT	GACTAATACC	TTTCAGTGC	ACAAAAAATA	TATTCTAACT	GAAATTCT
	TCCTTATCA	CAGACAATGG	TGCAGCTTT	AGGAGCTCTC	ACAGGATGTG	TTCAGCATAT	CTGTGCCACA
	CAGGAATCCA	TCA TTTGGA	AAATATTCA	AGTCTCCCC	CCTCAGTCCT	TCATATAATT	AAAAGCACAT
	TTGTGCTTG	TAAGGTGAGT	AAAGGTCTAA	TTATACTTTG	AATGGTATAT	AATCAATGTG	CATAGGGCT
40	GAGTAAAATA	ATG TTGTT	AAGATTTCAC	ATTTTGTCT	ATATTATTGA	AATAAACTTT	TCCATAGAAT
	AAAGAACATG	TAAGTAAATA	ATTGTTGCAA	AAAAAGTGGT	TTTAAGGAAG	TCATAAAAG	TGGCTTTTG
	GGGTTTTTA	GTTTTATCTT	ATTTCCTCTC	TATAAGAAA	GAAGTTTAA	GAATTGTGT	TGAGACAGAC
	ACAGGGATCC	TGA ATAGIT	ATGTCATGTT	GCATTGACCA	ATATTCAATT	ACCATTATGA	TTAGATGTCA
	GAACITCCCTT	TTATAAAGGA	AAGTTAACCC	TTATTTAGTC	CATCTCTACA	TGCCAGAGGT	AGCCTTGAGG
45	CACAAAAGCT	TGCCCTAGAAT	TTATGGGTCA	CAGACAGTT	TAATATTGCT	ATTGTTGGGG	CBAATGAAA
	TCACTAGTTA	ATTAATACCT	CTCTTTGCTG	ATAGGATGCT	AAAATGTCA	CGCACCTGGC	CTAATGTTAC
	CCTTTTTAG	TTCT TATTT	GCAAGATCAT	GGAAGTCAGA	AATAATATT	TATACATGCT	TGATCTCTT
	GAAGCACACT	ATA TTAATG	GATGTTCACT	AAACAATGAA	TGAATATGTG	ATTCAAGTAA	TTTATGATCT
	CTAATAGTAT	GAA TAAAGT	AAATTGGCT	CTTGAGCTTT	GATTGTTTT	TTCTCTCATT	TTTATTTATC
50	CGTAATCAGA	ATAGTGAATC	TGTGATTCT	GGGTGTTAC	ACCTAGTTTC	AGACCTTCTC	CAGGCTCTT
	TCAAGGAGGC	CTA TCTCTT	CAAAGCAGT	TAATGGAAC	GCTGGACATG	GTTGCATGG	ACCCTTGT
	AGATGACAAT	GATGATATT	TGAATATGGT	AATAGGTGAG	TGAAGAAAAC	TTCTGCTTA	GTATATGGTG
	ACTATAATC	ATG ATCAAT	AAAATTGTC	TCTAATGATT	CATGTTATT	TCTTACTAAT	TATGCATTAA
	AATTGATTTA	AACTTTACCA	AATAAATT	TAATCTTGAA	ATTTGGAATT	TGTAAAATT	ATTTGGGTA
55	CCTTAACCTA	GAT TGCCTA	TTTAGTTACT	GTAATTCTC	CACAATGATT	AACTTATATA	ACTTTATAAT
	CTCTGAGGTT	GTCC ATATT	AGAGACAATA	ACTTCACAT	TTTTTAACC	ATAACTGATA	TTGAGATGCA
	GTTTATATT	CCTTCCAGAA	TACATATAAA	TACGTGCATA	TGTGTATGTA	AATATGTCTA	TTCTCATATA
	CATATTATAA	TGA ATAAT	CATTTCACAT	GTGATGCACT	TTATACTAGT	TTATTTTTAT	TTTATTTAT
	TTTTTGAGA	CAGA GTCTCA	CTGTGTAGCC	CAGGCTGGAG	TGCAGTGGCA	CAATCTCGGC	TCACTGCAAC
60	CTCGCCTCCC	GGACTCAAGC	GATTCTCTG	CCTCAGCCTC	ATGAGTAGCT	GGGATTATAG	GCGTCCGCCA
	CCACACCTGG	CTA TTTTTG	TATTTTTAGT	AGAGACAGGG	TTTCACCGTG	TTGGCCAGGC	TGGTCTTGAA
	CTCCTGACCT	CAG CTAATCC	ACCTGCCTCA	GCCTCCAAA	GTGCTGGGAT	TACAGGCATG	AGCCACCCTG
	CCCAGCCAAT	ACTAGTTTAT	TTTAAAGAA	TTGCTGGTCG	TAACACACTT	CATTGATT	ATCACTCATT

	AATGGATTAT	GAACAAAGAGT	TTGAAAAAAC	ATATAAAGGC	AAAGTTGCA	TTCAAAACTT	TGGTATAAAG
	AGAGTAAGTT	GGTTTGTGC	AGTGTATCG	GCACCTGTT	CTCTGCAACA	CACCAACCTCA	AAATCTATT
	ATTCACTATT	TATT'ATTCA	TGATTCTGTG	AGTCTGCAGT	TTAGGGTGGG	ATGTCCTGAG	ACAACATTCT
5	CTGATCCACC	TGGG'CACTA	GCTCACCCAT	GTGACTTCAG	TGACTTCATT	CACATCTGGC	TGTTGGCAGA
	GGCAGAAGTA	CTTGAGAAAAG	CCATGTGCAT	CATCCAGCAG	GTTCACCCCA	TCTCAGATAC	CTGATGCCAG
	TGGTTTCAGG	GTTT'CTAAGA	GTAGCAAAG	TGTGAGCAGG	TCGCTGTG	CTAGCACTT	TCAAGTTCT
	GCTTGCCCTA	ATTT'ATTAT	TGCCCCCGG	GCCACAGCAG	GTCAAGCGT	TTAGGCCAGA	GTCATTGAG
	AAAAGTGTGG	ATTCACAAAG	GGCAGTCATT	GTGGCCATT	TTATAAATAA	TCTACCACAG	ACTGAGTAAA
10	AGCCTTGCAT	GAATACCATG	GATATTAA	TGAATTCTTC	CTTTTTAGAT	TTTCTTCCT	TAGCAATTIG
	TTTGTCTC	TTGGATTAGA	ATTATATCTG	TAGAATATTT	CAGTTATAAT	AGGGTACAAC	TTTATTCCA
	CTGAACATCT	TTAGTTTTAT	TTAGGTCTC	TGGTAGGTAT	AAACTTCAGA	AGTTAATATT	CAATATTAT
	AAAAAACATT	AACAGTGTG	ACACTTAAAT	AGTTAAATA	ATTCTTTGA	CACAACGTGTT	TCCAAGTTG
	GTTACGTATT	TTAA'ITCAAT	CAAATGTTGA	AATTGTTCA	TAGATAGTT	TAATTATAGG	AGAAACTCAC
15	CCCCATGACA	TTGGATGTC	TTAAAAGTC	TGTATCTT	CTTTCAGTT	ATTCAATTCTT	TATTGGATAT
	CTGCTCTGTT	ATTCCAGTA	TGGACCATGC	ATTTCATGCC	AATACTTGA	AGTTTATAAT	TAAGTAAGTT
	TGTTTGTAT	TTTT'ACTTT	TTAGAAAATG	TTTTCATAT	TCCCCAATCT	TAATTATTCA	TGATTCTTTA
	GATTGCATT	AAAACATTTT	TGTTGAATT	AATGTTCACT	GACACTGCTG	TCTGATAATC	CAGATATTCT
	ACATGTAGCT	CTCAAGCCAA	ATTGGACTTC	TTTACCCCTGT	GGCCTCTAAA	ATTAAAAAAA	ATGTTCTTCC
20	TAGTTAGCTA	GTACITCAGA	AATAATGGGC	CATGGGCCAG	ACTAGAACCT	AACCACTTT	CTTCTGCTAC
	TGTTGTTAA	CCAGCTATCA	AGTATCCTAT	TTCTAGGATT	AGATAAATTG	ATAACTATAA	TTAAAACGTGA
	ATATAATCTT	TTCAITAGGT	ACTTTTAAGT	TGTTCACACT	TAATTCCATT	TGTACAGTAA	TTTAACTTT
	CTGAAACTGA	AGCACTTTAA	AGGGTCACCA	GGGATAGTGC	CTGTAGCAT	CATCAGATT	TTAGGGTGA
	GAGGAGATGT	GGTIGAGATG	TAAAAATGGT	TAAGAATATC	TACTTATAC	ACATACATAA	AACATTAAG
25	GTCAGTGTAT	TTTCAGGTCT	TAGGTACTTT	TCTTGTACTA	CCAGGACATT	AAGTTGCCAT	TCAGTGGTTA
	AGAGTGTG	CTGGGAGCTG	TATCACATGT	GCTTAAATCC	ATTCTTAAA	TCATTACTC	CTTCTGAGCC
	CTTGGGCAT	TTGGITAATT	TCTCTGAACG	TTAGTTGCT	CATCTGAAA	TGAAATAAT	AATAGCAACT
	TCTTGACAGG	GTТАГАТГА	GAATTGAGTT	CATCACTGTG	AAATGCTTAG	AAATGTGCAT	GACACATAGT
	TAATACTCAA	GGAAATTAGCC	ACATCACTAT	CATCATCACT	GATTATCTTC	CACTCTTACC	CTCTTCCAGT
30	TCATTTCTG	CCCAGCAGAA	TGATCTTTA	AAAAGTAAAT	CAGATCATGT	TACTCTATTG	CTTGAAGTCT
	ATCCCATTG	ATTAAGAATA	ACAACCTAAT	CCTCTGTGGA	TGCTGCCCTC	TTTACCAAGCC	TGTCTCATGC
	TGCTCTCCCT	ACTCITAGTT	CCTCAACAT	ACCAAACCTCT	CCTGTCCCAG	AGTCTTTG	TGGTTTTTCC
	ATCTGCCTAG	GATCCTTCTC	TCTCCTATT	TGTGTACCTT	GCTAACTCCT	GCTTACTGTC	TTTCAGTTCT
	CAGCTTAAGA	GTTATATCTT	CATGATAACA	TTCTTGTATA	TCCTTACCT	AAGATTAAGT	TAGATTGATA
35	TCCTTACCT	AAGAATAAGT	TAGATTAGGT	CTCTCTATTG	TAGCACCTA	GACTCTGTCA	TTTGACAAAT
	CACAGCCCTA	ATTAATTATT	CTTAAAATTA	TTAACATTTC	TCTCTCATGC	TAGACCACAA	GTTTCATGCA
	GGTAAGGC	AGA'TGTGTC	CATTGTTT	ACCCCTTGT	CTCCAGGGCC	TGGTAGAATG	CCTCATAACAT
	AGTAAGAATT	CAAITAATAT	TTTACACAGA	AAAAAAATTA	GCAACTTATT	TAACAAATA	TAACTGCTC
	AGAGGTAAC	TGGGCACATC	TTAGTTATAT	TATGTGATAT	ATGATGCTTT	TTGATTGTTT	TTTAAATGT
40	TCTACAAGGT	AGATATTGTT	AGAGGTCTA	AGTTACTTGA	TGTGTTACTT	GTGGTGATTG	TATTCTTT
	TTTTTATTCA	TTTACGGCAGA	GCCTTAAGCA	CCAGTCCATA	ATAAAAGCC	AGTTGAAACA	CAAAGATATA
	ATTACTAGCT	TGTTGAGAAGA	CATTCTTTC	TCCTCCATT	CTTGTTACA	GTTAGCTGAG	CAGATGACAC
	AGTCAGATGC	ACACGTAAAAA	TTTGGGCTAA	TAGCATTTA	AACAGCAACT	CTTATTCTT	TTGGCAGTTA
	GTAAATCTCA	TTGAATGTC	TGGGTCACT	TATTTAAGAG	GATTTTAATT	TATTTCATT	GGGTGTTTT
45	TTTGATCTG	TGGGATTATT	TATATCCCAT	AATTACTTTT	CACCCAGAGC	ATTGTATTAG	ATTCTTAAC
	GCTGTCATTG	CCTCTGGGT	CTGCTGGCT	CCCTCTTGC	TTGGTAACTG	GTTGGTCACA	GCATTCTCT
	CAGAACCTT	TCATCTTTT	CTGCATGAGA	ACAAAAATT	TTTTGTTCAT	ATTGTATAAA	GATCTGATAT
	AGCTGCAATC	AATCTTGCA	TTTTCTTCA	CCAACGCATT	GCGACCTTA	GGGATACAAG	TATGTTTG
	CATGTATATG	TATCTATCG	TCTTTAAAT	TTGATATAGT	CATACATTG	TTTTATT	GAAAAGTTAG
50	AGTGTGAAT	TGGIATCCCCA	TTTATGAAAC	ATTATATTCT	AAAATTTGT	AGTACGATTA	TTGGGAATT
	TAACTCATT	TCCTGTAACA	CTGTTATACA	TAGTACCTT	TGCTTCAGA	CTAGCCCTCA	ATTTATT
	ACTATAGTAG	TCCIAAATTA	TAAGATTAAT	AGTACTCAGG	ACCTAACAGT	TATATGTCAT	TTGTTTTT
	TTTTTTGAG	ATGGCGTCTC	ACTCTGTCAC	CCAAGCTGGA	GTGCACTGGT	ATGACCTTGG	CTCACTGCA
	CCTCTGCC	ACGGGTTCAA	GGGATCGTC	TGCCCTAGCC	TCCTGAGTAG	CTGGGATTAT	AGGCGCCTGC
	CACCACGCC	GGCTAATTTT	TTTAGTAGAG	ACGGGGTTTC	GCCATGTTGG	CCAGGCTGGT	CTCGAACTCC
55	TGACCTCAGG	TGGICCACCC	GCCTTGGCCT	CCCAAAGTC	TGGGATTACA	GGTGTGAGCC	ACCGCGCCCA
	GCCTATATGT	AATAATT	ATGGGACCAT	GAATTGAATA	TTTCTTCCTT	GAATAGCAAT	GACATAGCCC
	CTTCTATTGT	ACATCTGCAA	GCTGATACAG	GGAAATTCTT	TGTACCTGCG	CTCTCCCTG	CCAGTCAGCT
	ATGGGGTGA	AAG'GTAGGG	GTTCATCCAA	GTCTTAAAC	TGGTAGCAAC	TCCTAGGGCA	GGGCTGATCT
	GGAAGGACAG	ACCCCTAGGGG	AGGGTGGAAC	TTTAAAAGA	AGTTCTGAAG	GTAGTAAGAA	GGAAATGAGG
60	AGTAGTGT	GGAAGGGGCT	AACTTTTT	TTCTTGCTTC	TCTTCTTAT	CTCACCTGCC	CCTCCCCCTG
	TATCCCTCT	TCCITTTC	CTTCTTCTT	TTGTCCTCAC	TTCAATTG	CATCCTTCT	GATTCTCTT
	ACCTTGCTAA	AAGGAGAAGT	TTGTTGGGT	ATCCTATATC	AATGGCAGGA	AGGGTGT	CTTCTTAC

	TITATCCTAT	AGATTCCATAT	TCTCAACACC	AACCTCCTCC	TTTTTCAGTT	TCTCTCTTGC	TTCTCTTGAC
5	ACCACAGAGT	TTGCAGCTAG	TACTTGGAGA	GGAAAATTAA	ACAGAGATAC	TTGGACCAAG	AGTAAGATGA
	AGAAAGTCTA	AACAACAGTA	TAGTCTATAG	TGGCAAGAGA	GAGTATGGGG	GCTGCTTAGC	CAGGGTGGCT
	GTACATAAAG	TATACTCTCA	GTTTATATAA	ACTGCTTATA	GATGGAATAC	AGAAAATTAA	AATTCTCTTA
10	ACTGTCCAAG	AAAATTCTCA	TTTTTCAAA	TTTGGGACTG	ATAAAATGTGA	CCAGTTCTGC	TTACTGTCCA
	TTGCCCTGAAA	TGGAGCTTG	AGGTGGACTG	TATAATTCT	TCAATCTTAA	CTCCAAATTC	TGATCAGCGA
	CGCCCTCTGC	TGTTCACTAT	TAATATTAT	TTACCAATCA	AAGTAAAGTA	TTGAAGTTT	CCTGGCAGTT
	TTCACCTTGT	GTIT'AGTCC	ATTAGGCTG	CTATAACAAA	ATCCCCTAAA	CTGGGTAAGG	GATTATAAAT
15	ATTAGAAATT	TATCCTCTAC	AGTTCTGGAA	GCTGGGAAGC	CCAATATCAA	GGCACCAAGTA	GATTGGTGT
	CTAACGAGGG	TGTC CCGTCT	GCTCAAAAAA	TGGCCCCTTG	TTGCTGCATC	CTCACTTAGT	GCAAGGGGCA
	AGACAGCTCC	CTTC AACCTC	TTTATAAAGG	GCACCTATGT	CATTATGAG	GGCAGAGCCC	TCATGACTTA
	ATCACTTCCC	CAAAGGCCCC	ACCTCTTAAT	AGTATCACAT	TGGGTGTTAG	GTGTCTGGGA	GGACACCAAT
20	CTTCAAGCCA	TATCATCTCA	CTTGGAAAAA	AGTCAAATA	AAACCAAGTAG	ATTTAATTAA	TATTACACTA
	TTTATAGAAG	CATCTGATGT	ATCATTCCTT	GTATTAAATT	CCTGGGGTTG	CCGTAACAAG	TTACCACAAA
	CTAGGTGGCT	AAAACAATA	GAATTTTATT	CTCTCACATT	TCTAGAGGCA	GAAGTTCACA	GTGTGTCATA
	AGGGCCATGT	TCTCTGGAAG	GCTTAGGGG	AGAATATATT	TCATATCTTT	CTCTTAGCTT	CTCGGTGTCA
25	CTGGCAATCC	TTACCTTACT	TTGGCTTTCT	GTGTCTTAC	ATCATCTTT	TATAAGAACAA	CCAGTGATAG
	TGATTAAGGG	CATACCTTAC	TTTAATATGA	CCTCATCTTA	ACTAATTATG	TCTTCATAAA	CCCTATTTC
	AAATAAGGCC	ACAATCTGAA	GTATTGGGAG	TTAGAACTTA	AAGCCTTTG	GGAGGGACAC	AGTCAACCC
	ATAACAAACCC	CTAAATATCGA	TATTTATTCT	CAATTAAGTC	TTGAAATTGG	TTTCAAAAG	AGAATATTCT
30	ATTAGAGTTT	TTAAATGTATA	GTTTAACAT	ATAGTTCTTT	AGCCCCAAAT	TTTTTTTTTT	TTTTTTTTTT
	TTTTTTTTTT	TTTTGAGAC	GGAGTCTCGC	TCTGTCGCC	AGGCCGGACT	GCGGACTGCA	GTGGCGCAAT
	CTCGGCTCAC	TGCAAGCTCC	GCTCCCGGG	TTCACGCCAT	TCCCCTGCCT	CAGCCTCCCG	AGTAGCTGGG
	ACTACAGGCG	CCTGCCACCG	CGCCCGGCTA	ATTTTTTGT	ATTTTTAGTA	GAGACGGGGT	TTCACCTTGT
35	TAGCCAGGAT	GGTCTGATC	TCCTGACCTC	ATGATCCACC	CGCCTCGGCC	TCCCAAAGTG	CTGGGATTAC
	AGGCGTGAGC	CACCGCGCCC	GGCCTGCC	CAATTATTA	TTTTTCTAT	AAACAGGGAA	ATTATTTGTA
	GTGCCCTTA	GAACTAATT	AATTCCACT	CTAATTCTA	CTTATGTTA	TATAATGCTT	TTAGAAATT
	GTATTATTCA	GAATAAAC	ATATACTATT	GTATCTGTT	CCTACACTTA	GATTTTATTG	CCTGCTATAT
40	TTAAATTTTA	TTAGTATT	AATTGTTTA	TTAAAGAAAG	AATGTCCTG	TAATCTCAGC	ACTTTGAGA
	GGCCAAGGCA	GAAGGATTGC	TTGAGCCAG	GAGTTGAGA	CCAGACTGAG	CAACACAGGG	AGACCCCCAT
	CTCTACAAA	AATAAAAAA	TTCTCCAGGC	CTCATGGCAC	ATACCTGTAG	TTCTAGTTAC	TTGGGAGACT
	GGGGTGGGAG	GATGCATGA	GCCCAAGGAGA	TTGAGGCTGC	AGTGAGCCAT	GATCAGGCCA	CTGTACTCCA
45	GCTTGGACAA	CAGAGTGA	GCTTGTCTAG	ATAGATAGAT	AGATAGATAA	TCTAAATAGA	TAATAGACAG
	ATTATCTAA	TAGATAATAG	ACAGATTATC	TAAGATAGATA	ATAGACAGAT	TATCTAAATA	ATTATCTATC
	AGATTATCTA	AATAAGATA	AGACAGAGTA	TCTAAATAGA	TAATAGACAG	ATTATCTATC	TAATAGACAG
	ATAGATTATC	AAATAGATA	ATAGATAGAT	AGATTAGATA	GATAGATAGA	TAATAGACAG	TTGGACAACAA
50	GAGTGAGAGC	CTGCTCTAGAT	AGATAGAAAC	AAAGAAAAGAA	AGAAAAGAATG	GTGCTCATAT	TTAAAGCAT
	TGAAAAATGG	TCTCCTTGC	TTATATTACC	CACACCTCT	TTGTGGCAT	TAAGATGCAA	ACTTTGTTT
	AAACAGTTGA	GTAATACAA	GATGGGACTG	TTAAGTTATT	TGTGTTATT	ACCTGTTTT	TGAAAATGTAA
55	AAAATAAAAC	TCTAGGTTA	ATTAGTAGTA	TGCTATTCTAG	TAATGAAGTA	AAGCTAGAGG	CTTCGAACAA
	ATCTTGTGTA	ATTTCTCTT	GAATGAGAGA	GAAAATTAA	AGTAAGCAAA	CAAATAAGTT	GTGTGTCACC
	ACTCATTCAG	TCAITTAACA	AGTATTCTCA	GAGTACTTAT	TCTGTGCCAG	GAAATGTTGT	AGGTGCCCTC
	AACAACTTAG	AGTCTAGCCT	GAGACACAAG	TAAGTAGGTA	ATTATTATAG	AATGGTATGA	TCTTGGGAGG
60	ACTGGGTATT	GGCIGGCTCA	TGGGAGTACA	AGATAGGTAC	CCAGTGTATGA	AGTCAGGAAA	GGTTCTTAT
	GGTGTATGTA	TGACGTCTAT	GCTGATTATA	AGGTCACTGT	AGAATAAAACT	TTGTGTTTT	AAATTGCA
	AGCACTGTAT	TAGAGAGTTC	ATCTTCAAA	TAATCGAAA	GGCTGAGTGT	GGTGACCCAT	GGCTGTAATC
	CCAGCACTTT	GGGGGGCCGA	GGTGGGAGA	TTGCTTGAGC	TAGGAGTTCG	AGACCAGGCT	GGCCAACATC
	GTGAAACCCC	GTCCTCTACTA	AAAATACAAA	AATTAGCCAG	GAGTGTATGGT	GCGCACCTGT	AATGCCAGCT
	ACTTGGGAGG	CTGAGGCAGG	AGGATCACTT	GAACCCAGGA	GGTGGAGGTT	GAAGTAAGCC	GAGGTCATGC
	CAACTGCACTC	CAGCTGGGC	AACAGAGTGA	GACTCCATCT	CAAAAAAA	AAAATGATC	AAAGAAAGGT
	GAATTTCAT	CTAC CCTATT	TCTGCTGAGG	AAAATGGACT	TTCAAATACA	ATTTTTAATA	AGGGTCAAA
	TGAGGGATC	GCCCATGAGG	AAACCCCTTG	CCTCAGGGCA	TCCCTTGGC	TGGCACTGGT	TGGATGTGTA
	ATCAGTGATA	ATCTTGAGAG	ATACAGCACA	AATCTAAGCA	ATCATGTGGA	TGATTTCACC	ACTTTCTGTC
	GCACAGAGCT	CAGCTTCCCTG	GT TACCACTC	ATCAACCCAC	TAATTGGTC	CTACCCAGCA	ATGGCTCAAT
55	GCACAACAT	TGCCCCACAGC	AGACTAAAAT	TACTTCAGCT	TTCAAATACA	TTAACACTGT	GATATCTTGT
	ACTATTTCA	TCGTGGGAAT	GGTGGGGAAT	GCAACTCTGC	TCAGGATCAT	TTACCAAGAAC	AAATGTATGA
	GGAAATGGCCC	CAAAGCGCTG	ATAGCCAGTC	TTGCCCTTGG	AGACCTTATC	TATGTGGTCA	TTGATCTCCC
	TATCAATGTA	TTTAAGCTGC	TGGCTGGGCG	CTGGCCTTTT	GATCACAAATG	ACTTTGGCGT	ATTTCCTTGG
	AAGCTGTTCC	CCTTTTGCA	GAAGTCTCG	GTGGGGATCA	CCGTCCCTCAA	CCTCTGCGCT	CTTAGTGTGTC
60	ACAGGTACAG	AGCAGTTGCC	TCTTGGAGTC	GTGTTCAAGGG	AATTGGGATT	CCTTTGGTAA	CTGCCATTGAA
	AATTGCCCTCC	ATCTGGATCC	TGTCCTTAT	CCTGGCCATT	CCTGAAGCGA	TTGGCTTCGT	CATGGTACCC
	TTTGAATATA	GGGGTGGACA	GCATAAAACC	TGTATGCTCA	ATGCCACATC	AAAATTCATG	GAGTTCTAC

AAGATGTAAA GGACTGGTGG CTCTTCGGGT TCTATTCTG TATGCCCTG GTGTGCACTG CGATCTTCTA
 CACCCCATG ACTGGTGAGA TGTTGAACAG AAGGAATGGC AGCTTGAGAA TTGCCTCAG TGAACATCTT
 AAGCAGCGTC GAG^AAGTGGC AAAAACAGTT TTCTGCTTGG TTGTAATTTC TGCTCTTGC TGGTCCCTC
 5 TTCATTTAAG CCGTATATTG AAGAAAACGT TGTATAACGA GATGGACAAG AACCGATGTG AATTACTTAG
 TTTCTTACTG CTCA^TGGATT ACATCGGTAT TAACCTGGCA ACCATGAATT CATGTATAAA CCCCATAGCT
 CTGTATTTG TGAGCAAGAA ATTTAAAAAT TGTTTCCAGT CATGCCCTG CTGCTGCTGT TACCAAGTCCA
 AAAGTCTGAT GACCTCGGTC CCCATGAACG GAACAAGCAT CCAGTGGAAAG AACCAAGATC AAAACAACCA
 CAACACAGAC CGGAGCAGCC ATAAGGACAG CATGAACCTGA CCACCCCTAG AAGCACTCCT-3' (FRAG. NO: 1738)
 (SEQ. ID NO: 3009)

10 5'-GCCACCATGG AAACCCCTTG CCTCAGGGCA TCCTTTGGC TGGCACTGGT TGGATGTGTA ATCAAGTGATA
 ATCCTGAGAG ATACAGCACA AATCTAAGCA ATCATGTGGA TGATTCACC ACTTTCTGTG GCACAGAGCT
 CAGCTTCCTG GTTACCACTC ATCAACCCAC TAATTGGTC CTACCCAGCA ATGGCTCAAT GCACAACATAT
 TGCCCACAGC AGAC^TAAAAT TACTTCAGCT TTCAAATACA TTAACACTGT GATATCTGT ACTATTTCA
 TCGTGGGAAT GGTGGGGAAAT GCAACTCTGC TCAGGATCAT TTACCCAGAAC AAATGTATGA GGAATGGCCC
 15 CAACCGCCTG ATAC^CCAGTC TTGCCCCCTGG AGACCTTATC TATGTGGTCA TTGATCTCCC TATCAATGTA
 TTTAAGCTGC TGGCTGGCG CTGGCCTTT GATCACAATG ATCTTGGCGT ATTCTTTGC AAGCTGTTCC
 CCTTTTGCA GAAG^TCCTCG GTGGGGATCA CCGTCCCAA CCTCTGCCTG CTTAGTGTG ACAGGTACAG
 AGCAGTTGCC TCCTGGAGTC GTGTTCAAGGG AATTGGGATT CCTTTGGTAA CTGCCATTGA AATTGCCTCC
 ATCTGGATCC TGTCTTTAT CCTGGCCATT CCTGAAGCGA TTGGCTTCGT CATGGTACCC TTTGAATATA
 20 GGGGTGGACA GCAT^AAAAACC TGTATGCTCA ATGCCACATC AAAATTCTAG GAGTTCTACC AAGATGTA
 GGACTGGTGG CTCTCGGGT TCTATTCTG TATGCCCTG GTGTGCACTG CGATCTTCTA CACCCCTCATG
 ACTGGTGAGA TGT^TAAACAG AAGGAATGGC AGCTTGAGAA TTGCTCTTGC TGCTCTTGC TGGTCCCTC
 GAGAAGTGGC AAAAACAGTT TTCTGCTTGG TTGTAATTTC TGCTCTTGC TTCATTTAAG
 CCGTATATTG AAGAAAACGT TGTATAACGA GATGGACAAG AACCGATGTG AATTACTTAG TTTCTTACTG
 25 CTCATGGATT ACATCGGTAT TAACTTGGCA ACCATGAATT CATGTATAAA CCCCATAGCT CTGTATTTG
 TGAGCAAGAA ATTIAAAAAT TGTTTCCAGT CATGCCCTG CTGCTGCTGT TACCAAGTCCA AAAGTCTGAT
 GACCTCGGTC CCCA^TGAACG GAACAAGCAT CCAGTGGAAAG AACCAAGATC AAAACAACCA CAACACAGAC
 CGGAGCAGCC ATAAGGACAG CATGAACCTGA CCACCCCTAG AAGCACTCCT-3'(FRAG.NO:) (SEQ. ID NO: 2481)

30 5'-GATCAAATT TTIACCTATT ATGCATTGA TATATAAATA AGTATATAAA TGCACACACA GACACAGCAA
 TGATGGTGA CAGCTTCAT ACAATTATAT GGATGAATCT CATAAAATGC TGAGTTAAAG AAATCAGACC
 AAAGAACATA TACTGAAAGA TTCTCTCAT ATACAAAGTT CAAAATAGG TGGACCAATT CATGGTGGTG
 TTAGAAATCA GAAGAGAGGC TACCTTTGTG GGGAGGGGAC AGTTTAATGC CCAGAACGGG TAAATAAGGA
 ATCCTCTGGG GAGTGGTAAT GATCTGGATG CTGGCTACAG GATGTGTTGG TTGTAAAAAT GCATTTTT
 ATATCTAGCT TTTTCCATGT GTATATTATA CTTCAAAGAA GTTCAGTTAA TAATTCTCA TGTCACTGTA
 35 GAGTAGCTCA GTTAGCCCCA GCAAGCCTCT GGCTTAATCT GTTTTACT TGCCATCA GTCATTTACA
 AGTAGGGAAA TTCA CAGGGA AAGTTAGAGT ATAAAATCCA GAATGAAGGT TTACTGGTA AGAGTCTCTC
 CATTTCCTAA AGCC CGTTA TTTCTTGATT CCAGCTCTTA AGAAGTCTCA GCATGTTGTC TTTTCATGT
 ATCTTACAG AAGA CAGCAT GTGCTCTAA CACCTGATAC ATTGTATCTA CCAGCACTTG GTAAACAGAA
 AAGAACCCAA TTTTCTTGT AGGAGAAATT TGGTGCCTAT TTCTTACCAAG GCACCAATAA GTGGGACCAA
 40 TAGGTGGGAT TAAAGATACA GTAGAAAGTA TTTAAAACCTT GCCAGGGGGC AATAGTCTGA AAATAAGTAA
 ATTGGTGCTA TAGAATGGAA GTTACAGGCT TCTTTCTTTT TTCCCACAAG ATCTGCTCCT TGAGCCCCCTA
 GAGACTTTTC TGTCTGTTAC TGTCTCTCA TTCCCATCT GCAGAGCCAG CCCTGAGAAG TGCAAGACCAA
 AGCCAGGGAA GGCT^TCGCAA AGATGTACAA ATGGAAGTCA CCTTAATAAC CTCTGACTGC TGCGCATAAT
 ACATTCACT CAAAGAGGG GTTAAACAAAT GGAACAGAAAT ACAGAGGCCA GAAATAATGC TGAACACTGA
 45 CAACCATCTG ATCTTGACA AAATCCCAA AAACAGCAA TGGGAGAAAG ACTCCTTATT CCATAATGGT
 GCTGGGATAA CTGCTAGCT ATATACAGAA GATTGAACCT GGGCCCCCTTC CTTACATCAT ATACAAAAAA
 TAATCAAGA TGGAGTAAAG ACTTAAATCT AAAACCAAAC ACTATAAAA CCCTGGAAGA TAGCTGGGA
 AATACCATTC TGGACATAGG ACCTGGCAA GACTCATGA CAAGACACCA AAAGCAATAG CAACAAAAAC
 CAAATTGACT AATGAAACTA ATGAAACTCT TTAGTTGTAC AACAGATAGT TTATCTGTAC ACAAAAATAA
 50 ACTATCAACA GAGTAAACAA CCTACAGAAAT GGAAAAATT TTGCAAACAT ATGCACTGAA CAAAGGTCTA
 ATATCCAGAA TCTA^TAAAGGA ATTTAAACAA ATTACAAAGC AAAAAAATGA CCTCATTAAA AAGTGGGCAA
 AGGACATGAA CAGATGCTTT TCAAATAAG ACATTACAC ATCCAACAAAC CATATGAAAA GATGTTAAC
 ATCACTAATC ATTAGAGGAA TACAAATCAA AAGCATAATA AGATACCATC TAATACCAAGT AGGAATGACT
 ACTATTAAA AGTCAGACAA TAACAGATGC TGGTGAAGGT TGTGGAGAAA AGGGAAATGTT TATGCACTGC
 55 TAGTGGGAAAT GTAAACTAGT TCAGCCATTG TGGAAGAGAG TGTGGTGAATT CCTCAAAGAA TGTAAAACCG
 AACTGCTTT CAATCCAGCA ATCCCATTA TGGATATACA CCAAAGGAA TAGAAATTGT TTACCGTAA
 AGGCGCATGC ATGCATATGT TCATTACAGC ACTATTACG ATAGCAAAGA CATGGAATCG TCTAAATGCC
 CATCAGTGGT AGACTAGCTA AAAAAAAAAT AATGTGGTAC ATATACATCA CAGAATAGTA TGCAAGCCATA
 AAAATGAACA AGATCATCAT GTCTTITGCA GCAACATGGA TGTAGTTGGA GGCCATTATC CTAAGCAAAT
 60 TAATGCAGGA ACAC AAAGCC AAATACCACA TGTCTCATT TATAAGTGAAG AGCTAAATAT TGAGTACACA
 TGGACACAAA GAAGGGAAACA ATAGACATGG GACCTACTTG AGAATAGAGG GTGGGAGGAG GGTGAGGATC
 AAAAGTACC CATAGGACAC TGTGCTTATT ACCTGGTGA TGAAATAATT TGCACACCAA ACCCCTGTGA
 CACACAATT ACCTATATAG AAAACCTGTG CATGACCCCG TGAACCTAAA AGTTAATGGT GGGGGGGTGG
 GGTTAAGCTA CTTT GTGGTA TAAATCTGAG CATTCTATT AAAATAAAAT ATTTACCTCA TTAGAGTAAT
 65 TAACATTAT TAAGCAAAGA GCCAAGTACC TTACACACAT GATGTTAAT CTCACAATGA TCTTTAATCT

	CATAACAACC	GTCCATTGTA	TGTACATATG	TGGAAATTGA	GCCTTGGAGA	GATTAATGC	ATGGGGCATG
	CCATTGACT	AGAAAATGGA	AGCATCAGGA	TTTAAACTCA	GTTCTGAATG	TTTTGTAGG	CTTTGTTTT
	TCCACATTAT	AGCATGGCT	GCCATGAAGA	ACAGGTCTT	TCTGGTGT	GTCTGTTG	GTTAAAGTG
5	AGCAAATATT	TATTAATAA	TTCAAGATAT	GCTGTTAAAT	TTTACTCAA	AAATTGAGT	ACAGTATGGA
	TCTTCTGAAG	CCAAAATACT	CTTATTCAAT	GCTTAGTTGA	GAAATTAT	GGAGTAGTTC	TCAATTITA
	TGTAGTTCCA	CTGCAAAGGT	AAGTCTTATG	GAAAGATTCA	CTGTAATT	TTTCCTCAT	TTGGACATCA
	GCTTTCTT	TTCTCAGAC	CCGCTGAAAG	ATAATTTTA	AAATAAAAC	CTTGT	TATCAAGTGG
	GGACATTTT	TCCAAATGAA	AACCGTGTAT	TCATTTATA	TGATAAAATC	AATGTTATT	TTTTAAAT
10	TTTGATTAA	AAATCATTAA	AAATAAATT	TCAGATATT	CCTGAAATC	TACCATCCAG	AGATAATAGT
	GCTTAAAGAT	TTGATATATA	GACACACACA	CATATATACA	TATATATCAT	CCTAAACTTC	TTTGTATAAA
	TGTATATAAA	GTTTITAATA	AAAACAGGA	GATTATGCC	CTTGTGATG	AAATAAATAC	AATGTGTATG
	CTTTAACATC	TTGCCTTAC	TTTAAACAT	TTATCACAGC	AGTCATGAGA	TAATGATT	CATGGTCATT
	GTTAGTAAGC	TAATAGCTAA	GTGATGAAAC	TCTGGAGCTA	GCCTCCCTGG	ATTAAATCC	CAGATCTGTC
15	ACTGACCAGC	TGACCAATAC	TAGGTAATT	GCTCTTGTTC	CTTAGTTCT	TCATCTGAA	ATAGAGATA
	AAAATAATAT	CCACCTCATA	GGATTGGTGT	GAGCATTAAA	TGAGCATACG	TATGTAGGCC	ACTTAACAAC
	AATGCCTCA	CATACTGAAC	ACAAATATAC	GAGCTGTTGT	CTTATTGGC	TCATGTTT	CCTACCACTA
	AGCCGATG	ATGCAAGGAC	CATGTTGGTT	TTGTCACACA	TTGCA	AAACCTGGT	ACAGTGTGCA
	TTCAATAGTT	GTTGACTATT	ATTACTAGT	GCATTAACA	AATATCTGTT	AAATGAGTGA	AGAAATACCC
	ATTTACTGCA	AGTGIGTCTA	ATATGATGG	CATAATGGGG	GAAACTCAA	CTCTGGAGTC	AAACAGGTT
20	TTAAACCTTA	TTCCCTCATC	CTCAGTATT	GACGTTTTT	TTTGGCAGG	TGTGTGTTG	GGACAACCTA
	TTGAACTTTT	CTGAATTTC	AGCTTCGAT	ATATAAAATA	GAGATAGTG	TTCATTCTG	CAATGTATGG
	ATTTGAGACA	ATTGTTGAAG	TTTATCAAT	AAATGTTAGCT	ATTTGTAT	AAGTATTACA	TATAATATCC
	AGGCCACTGC	TTTGCTAAC	CCAAAAGGGG	CACCATCAT	GCAGAAATCA	ACATAAAATGG	TGTCCCTGGA
	GCAGTGCAGT	ATACGAACCC	TGAGGGGACC	TACAGTATAC	TTTATAGTT	ATAGATTACA	AATTATCCT
25	TTATCAGAGT	CTCTCAAGGT	TGGATGTTATT	TGAGGTCCAT	AAGAGCAATT	TAGGATTAAC	AGTAGCTGCA
	GAAACCATCT	GCAGTGTAT	TCTCATTTA	AATCCGCGGG	AAAGAAGACA	GCTATAAATC	TGGGACCTGG
	GTTTAAGCAT	TTTAATGCC	AAGTCACCA	TTTCTAAAAA	CACAACAAAT	ACCCAGTGA	AGAGGGAGAA
	GGGAAGTAAA	TGCCCTGAA	TAAGCAAGTT	AATGTCAGTA	GTTGTACTGT	ATGCATATTG	ATGAACAATA
	GAGGAACCAA	TGTCATATCA	GATGAGCAGG	ATATTTGGCA	ATAACAAGTT	GCCTTGGAGG	AAAAATGATT
30	TTCTTGGCAA	GTTCATTATC	AGCATTACAA	AGCTAAAAGC	TACGTTTAC	ATCACTTATA	CTAGCATACC
	CTGTTGTGCA	AATGCTGTCT	GTGTTTGAT	CTGCTATTGT	TGATGCTG	TGCTGAATC	AGGACTCCAG
	CCCACAAAGT	TTCCCGAAC	TTTCTTATGG	CCATCATCTT	TAAGTGTCTG	GTGAACAGTC	ATAGTTGGT
	ACACAAAGG	GTCAACCTGG	GGGATGGCTA	GGGGTTGACT	CAGTCGTTAC	ATTCATATAG	AGCAGGAAGG
	GGAAATGGTG	GCCGTAAACC	TCAGGGAATT	TTGCCAGTTG	GTCCACCCCA	CTCTCTCT	CCTGCTCTGA
35	GGAAGTGGCA	CAGCCTAGAA	CAGCACACAA	GGTGAGAGAA	ATGCAAACCC	TAACCAGAGA	AGCAGACTCT
	TTGCCAGTAG	TAATAGTTCA	GGACCACAC	CAGCTTTAT	TAAAATT	AATAACACTC	AAGTATTGGC
	AGAAAGAAAT	AATCTGGGT	TAACTATAAC	TAGAATATTG	ACTCTTCTC	TGTGAAGAA	TCAGCCAATC
	ACATTGTTT	ACATCAGTC	CCCTGAAGAA	GAAAATACA	CTGATGTTGC	AGCAAGACAA	ATTIAAGCTA
	GATGTAATAA	ACTICCTTA	GCCTGTAATG	CTAGGCTAAT	TACATATTG	AACTATT	TCAGGGAAGA
40	ATTGTTGAGG	GTTCAGGG	AGAATTCTGA	AGAAAATATA	GAGCTGAAAT	GATCTTGAG	CTCACTGAAA
	CTGAGGGT	TAGATCCACA	CTGATACCG	TTCTATTATC	ACTGTAATG	AGGCTGATGG	AATAAGTAA
	AATGTTTGT	ATTAGTATG	TTTACACT	ATTGCAAGG	CATAATAGG	TTAGGTTTG	ATCTTAATT
	AATTCTAAC	TGTAATTGTC	ACAAGCTGTG	AGCAGTTTTC	AGGAGTTAG	TATCTGGCCA	TGACTGATT
	TTCAGGAGTT	AATCATCTGG	TAGAAGGGTC	ATACACAATA	GGAGATGTG	TGTGACAGGT	TGTGATCATT
45	ACTATAATCA	CACAGAGAGC	TGAGAATT	TAGGCTGGCA	GGGTGGCTCA	CGCCTGTAAT	CCCAGCACTT
	TGGGAGGCCA	AGGCAGGCGG	ATCAAGAGGT	CAGGAGATGG	AGACCATCCT	GGCTAACACG	GTGAAACCCCC
	GTCTGTACTA	AAAAATACAA	AAAAAA	AGCCAGGCGT	GGTGGTGGGC	GCCTGAGTC	CCAGCTACTT
	GGGAGGCTGA	GGCAAGGAGA	TGGCGTGAAC	CCGGGAGGTG	GAGCTTGAG	TGAGCCGAGA	TCGCATCACT
	GCAATCCAAC	CTGGCGAC	GAGGGAGACT	CAGTCCTAAA	AAAAAA	AAAAAAAGTC	ATGTTAGATC
50	CAGAGGGT	GCACTGGGG	CTGGGCTGTC	AGTCAACTCA	GTCAACTCAG	TCAACTCTGC	TCCCCCACAG
	GAGATGGCAG	TGATGCTT	TCATGGCCA	CATTGTCAGT	CAGCATCATT	GAATTAATCC	TGATTATAGA
	GACACAGCTG	CAAACGATT	CCCCTTAAAT	ATGATGTTTC	TTGCAATGTT	TGGAAGGTAC	TCCTTTTTAG
	TAAGGAAAT	CCCCCTCTCT	GGCTTGTGA	AAAGTTTTTC	TTTCCATT	AAAATCGTG	AATTCTTTT
	TGCAATTATG	AGGIGGTAT	ATGGTTCTC	TTCTCTAATC	TGTTAATATG	GTGATTAAAT	GGTTAGAAAT
55	TTTCTAATGT	AAATTCAC	CATATTGCA	AAATAAACCT	AAACTGAGCA	TGAGGCTATA	TTTTTATT
	GCTTCTATAT	TTGGITGCTA	TACAGTATTA	TGTTAAGAT	TTGTTACAT	ATATTGTGA	ATGGGATTGG
	ACTATTTTC	CTTCITGCCG	ATTTTATCT	GGTTTTAAA	TAAAGGATAT	TTTAGACTTA	TGAAATATT
	GGCAAACAAT	CCTTGGCAAG	TAATTTTTG	GGGAATTGT	TTTGGCTATT	TTGAGTATT	CCCAATATAT
	TTAATTAAAG	TTATCTTAA	TGTTTTCTT	ATTTAAAAAA	TTACCTACTC	TAGAGATATT	CTTTATGTAC
60	TCCAGATTT	GTCTTAT	ACCACTTTC	TTTTCCTC	GATGAGTGT	ATAGATGTIC	ATCTATT
	TTATCTTCTT	TGATCTTCTC	TTATTCCTG	TTTCTATTAA	CTTCTGAAGT	TTTATT	CTTTTTTCCA
	CTTCTTCTG	GTTATTCTT	TCAATTTC	TCTAACTCT	TAAGTTGGGT	GTTTAATT	TAGCTTGCTT
	TGCTTTTTA	GGATAAGCAT	TAAAACATACA	AATTTCCTT	GTATTCTT	TGCTGCACCC	CAAATTGTTG
	ATATTCTAT	TGTCATATT	CTATTCAATT	AGAAACTTT	AAAGTTCTT	TTTGGTTTT	AAAAACTAAC
65	TTTTAAATT	GACAATAAA	AATTGTGTAT	ATTATTGTG	CACAGCATAT	GGCTTGGAAA	TATATGTACA
	TTGTGGAATG	GCTAAATT	GCTTATTAA	GTATGCATTA	TCTCACATAC	TTATCATT	TTGTGGTGAG
	AGCTATGTGA	CTTITGAAC	TATGAGTTAT	TTAAATATT	TTAAATTATT	AAGCATATTG	GGATTTTAAG
	TAATTTACCT	TTTTATTATT	AACTTATAAC	AAGTAGAAACA	GTAACTCTGT	ATGATTCTAC	ATCATTGAA

	TITATTGACA	TTTCTTCAT	AGTCTATTAT	ATGGCTACT	TTTGTTCATG	TTACATCTGT	AGTAGAATTG
	GCTAATAGTT	GAGTAAAGTA	CACATATGTC	TATGAAATCA	AGTGTAAATCC	AGAGAAAAAG	AGAAATTAC
	TGAATATATT	GTTCCTAGGTG	CTATTATATG	TTGTCATGTT	TAATCCTCAC	CACAATTGTA	TGAGGCAGCC
5	ATAATTAATT	CCACCTTACA	CATGAGGAGC	CTGAGGGTTA	AAAAAAAAGC	TAGCTCTACT	ATTGTAAAG
	AATGAAGCAA	AGAT'ACAAT	GAAGGCCAC	ATATCCTATA	ACTAGATATT	TAAGCATTTT	AATTCAAGCT
	TTAAAACCTGC	TAATAAAAAT	GTGCTCCAAT	TTCTATATTG	ACAGACATAC	CTTCTTAATG	AGCTGGGTT
	CGAATTAGA	AATCTTTGAT	GCTTCAGAGT	CCACACTGAA	ATGTGGAGGC	ACATAGTGAG	TTGGTCCCCA
10	GCCTTCAGTC	CACCCACCTT	CTCTTACTA	AATCACCTT	CACATACATG	TATGAACACC	CCAGCCTCCA
	AGTCCAAACC	CTAAACAAAA	TGGGACACCC	TTGTCATAC	ACAGAGAAC	AGCCCATCCT	CAGGAAAACC
	TGGAAAAGTC	CATAACAAGTT	CTGGAAGCAA	GCTGGGACG	GTTCAGTAG	TGTGGTCTAT	AAGGGAGGCC
	TCAGAAAGACA	GGTITTCCTTA	ATTCTGTGA	CTTCTCCCAC	AGTAGAAAGG	GTGCTGGAGG	AGGGTCAGAG
	TGAGGACTTC	TAAGACATGG	GTCCTGAGTA	GGGGCACTC	TTGCCCAGT	CTAAGAAGGG	TACTAGAATA
	GCACACTACT	ACTAGATACT	AGAACCCAGA	TACAAGCACA	GGTCTTCTGA	AATTAATAAT	AATAATAACT
15	ATTACCATTA	TTATACCACT	AGCTGTCTT	TATTTAGTC	TTATTATTG	CCAGTCACTG	TTCTAAATTC
	TTTACATGTA	TTATACAAC	GCCATATAAC	TGCCATATGA	GGGATGTACC	CTCATGTCA	CCATTTTAC
	GATGAGAAAA	CTGCICATAAA	ACGTTAAGT	AACTGTCCA	AGTTACAGAG	CTTAGTGAAG	CCACAATGTT
	GCTCAATTG	CTCTCAAAC	TCAAAGGGAT	GGGAAGGACA	CCTAAGTCAT	AGAGTCTTTA	AGAATCAGAG
	CTAGAAGGAA	TCTIAGATGT	TATCTAGTC	GCCTCTCCC	ATTACAGTCC	AAGAGAAGAT	GGCCCTGAGT
20	TACTTGTAGC	TATTITGCA	TGTGAATTGC	AAGTAATAT	ACATCTACT	GAAGATAAAA	GATATTAAA
	GATATCGCTG	GATA TAGGAA	CAGTGGTTT	AAATCTCTAG	GCTTTAACCT	TTCTCAGAAC	AAGAAATCCT
	TTTGGTTTT	AATCTATATG	CACATCTGTA	TTTTCTCAA	TTATCAGGTT	GTAAAATATA	ACTTTCTTC
	TGTAATATT	TTTAACCTTA	ATGAGTGTTC	CTCATAATAT	AAAAGTTGG	AAACCATTCG	TATGGGTATA
	TACTTCTAA	AGGGATAGTA	ATTCTCTAG	AAATATTCTT	TAATGCTCCA	GAAGTAATT	GCACAATTGT
25	GCAAGTCTGT	GCAICATCAA	CTATACATTC	TGCCGTGTTA	CTCCAAATCC	ACATGAAACT	GATTATACAG
	TCAAAAGCGA	GCCCAGTGGA	GAGGCATTT	TGGAGACTTC	CTGGTACATT	GAGACAGGGT	CGGCCAGTCT
	GCGTTAGGGT	CTTGGTCAAA	ACTGCATTC	TGAAACTAAA	CTCAGATTGC	TTTCTTTAA	GGGGTCAGAA
	CTGATTCAAA	TCTACATTTC	AAAAGCCTT	AGATGTGGGG	CTTTCCAT	TCCCAGTCTC	CGCTATTGGT
	CTTGTGAAT	CCACAGGCAA	TTTGGCCACA	TCCTTGACTC	TCTCTTATAT	TAAGAATTAA	ACAGCTAAGT
30	TCATGCAGAG	GAAT TATAAC	AAAGGAGGGA	CTTCTCTACA	AGATCTTGA	AAAATGGAAC	ATTTCGATAA
	GTCATATTTC	GCCCAAGACTG	TTGTTTATA	TTTCTCTTC	TGAATACTT	GTTACACCTC	CTCCCAGCCA
	ACCCCCCCCC	TCCCIGACCC	CAACTAGTC	GAGACCAAG	CCTTCACAA	GGTTACACT	TGAACCTTCC
	TGGCCCCACC	CTCATCATCA	CGCCTGAATA	ATTACATTCA	CTGACTGTC	TCCCCGCTT	CCGTTTATCT
	CCACTCTAA	ACCCCTGAC	ACCTTAATCT	TCCCGAGATA	CCATTGTGAT	CCTGTCAC	TCTTGCTCAA
35	GTTTCCAG	AAAC TAGAGT	ACAAACTTA	TAAGCTTTAG	AGTTGAAAGC	CACTCTATCT	CTTTTCATC
	CCCAGGTCTC	TGCCAAGGCA	GTATAACCTG	TCCAACATCT	CTAACTCAA	TACCTTTGTC	TTAGATACTA
	GACTCTCTC	CTGGTTCTA	ATTAAACCTG	ATCTAGGATC	TAATTTGCC	TCTGAATTCT	GTTGCCCTT
	GCCAAGTGAT	CTCTCCCTCC	TCTGAGCCGC	AGCATCTCTG	AGCTTGACAA	CTTAGCATAG	CCATAGCACA
	CACGCCCTA	GCTIGCAGTT	CAGGGTGT	ACCTCCCTC	CCCTTCCAGA	TGCTGGATCC	CCAGGGATAG
40	GAACCTGCC	CTTATGTGTC	CATAGCCCT	GGTAGTATGT	CTTGCAGTCG	TACATTTCA	GCAAATGTT
	AATTGGTTAA	TTGAAGACAA	CTGTCCTCATG	CCTTAAGCCT	CTCTTTTGC	TAAGATTTCT	TGTGTCCTT
	GTCATTGAAC	AACTATTTG	ATCTATTTC	TTCCGTACAT	AGGGGTCAGT	TCCGAGGATG	CTGAAATCAA
	GAGACATAGC	TTATCTCTC	AAAATTGCTT	TCAAAGTGT	TTTGTGATG	AATTGAGAAC	TGGCTGCCTA
	CTTTGGACT	ACCCACTTC	GCAAGAGTGT	TTGAAACCAA	ATCTATTCTA	AGTAATTTTT	TATTCCCTT
45	TCTCTATGGC	ATTAGACACA	CAGCTCTTT	AAACTACCTT	TCGTTATCTA	TTAAACAGAC	ATTCACTAAC
	TCTATAGACA	CTGICTAGCT	ATATGAACCT	AGACAAACTA	ATATCTCTGA	GCTTCAGTTT	CTTAAAATT
	AAAATGAGGA	CAAT ACCATC	TATGGCCGGG	GATTAATGC	TATGAGGAAT	GTAAACCCAGA	TGTCAGGTAC
	CATCTCTCA	AAATCCAGAT	AAAATGAATT	AAAAAAACTG	GCCGCAAACC	CTCTCTAAAGA	GTTCTCAAAA
	TTCTCAGAGA	GCTIAATTTC	CATGCTCACC	ATAGCACCAG	TTTCTCTCTA	AATATTTGT	TTCTACCAAA
50	ATATTITGTC	CCAATTTCG	CTTTTATGGC	TATTCTCTCA	TATCCACTT	CCCAAACCTAA	AGAAGCAGCC
	CCTTCACCTT	AAACTCCCTC	TTCAAAGCAA	CCTAAATACA	GGTCTGGTT	TGTATTCTA	GTGGGATGTT
	ACAGAGGTTA	GTGIGATGCA	GAGGGAGGT	CATGCTGTTA	AAATCCATAC	TAGTCCCCAG	AGGCCAGGCT
	GCTTCGCCA	CCCC TACCCC	TCCCGCCACA	GAGCTCTTC	GCTTCTCACAA	TTTCTAGTTC	TTCTCTCT
	ACTTCATTA	CCTCTCTCT	TTTTTTTTT	CTTCTCATGT	GCTCACGGGA	GCAGAGAAAA	TTAACTCCCTC
55	TAAGTTTCT	TAACACAGAG	TGCCTTAATT	ACATATTACT	ATTGTTGAG	TTCTGCCAA	CACTACGCT
	GTAGGGTCAC	ACCI GCTATA	TTAGAGGCTT	ATCAAAAAAA	GATAGCTTTC	TCCTAAAAAG	GGATTGGAT
	GCCTACTAAG	ATAACTGGAT	GCCAAGATAA	GTAAACCTA	ACAAACTTTA	TTATTATTAT	TATTATTATT
	ATTAGAGATA	GGTACTTATT	CTGTCACCA	GACTGCAGTG	CAGGGATGCA	ATAATAGCTC	ACTGCAGCT
	CAAAGTCTG	AGTICATGCA	ATCCTCTGC	TTCACTCCC	TGAGTAGCTA	GGACTACAGG	CATATGCTAC
60	TCTGCCAGC	TACTTTAAA	AAAATAATTA	GGGATGGGGT	CTTGTGATG	TGCCAGGGCT	CGTCTCAAAC
	TTCTGGTTTC	AAGCAATCCT	CCTGCCTTT	ACCTCCCTAA	TTGTTGGAGT	TACAGGCATG	AGCCACAGCA
	CTCAACCAAG	ATTIAAAAAC	TTTTAAAAGA	AATCACATA	CTTACTGTTA	TCATCATTAT	GGTTACTACC
	AGTGTAAAAA	CAAITGGTAT	TGAAAACACC	ACTACAGAT	CAAGCTCAA	ACCAAGATGT	CAAGTAAATA
	TTATTGTCAG	ACCTCTGAGC	CCAAGCTGC	AGGTATACAC	CCAGATGGCC	TGAAGCAAGT	GAAGAATCAC
65	AAAAGAACTG	AAAATGGCCG	GTTCTGCGCT	TAACTGATGA	CATTCCACCA	TTGTGATTTG	TTCTGCC
	ACCTGACTG	AGGGATTAAC	CTTGTGAAAT	TCCTCCCT	GGCTCAGAAG	CTCCCCGACT	GAGTACCTTG
	TGACCCAC	CCCTGCCAC	AAGTAAAAAA	CCCCCTTTGA	CTGTAATT	CCACTACCCA	CCCAAATCCT
	ATAAAACAGC	CTCACCCCTA	TCTCCCTCG	CTGACTCTCT	TTTCAGACTC	AACCTGCCTG	CACCTAGGTG
	ATTCAAAAGC	TTTGTGCTC	ACACAAAGCC	TGTTGGTGG	TCTCTTCACA	CAGACCATGT	GACATTGTTG

	GCCGTAACTC	AGATCGGGGA	ACCTCCCTTG	GGAGATCAGT	CCCCTGTAT	CCTGCTCTT	GCTCCATGAG
	AAAGATCCAC	CTATGACCTC	TGGTCCTCAG	ACCAACCAGC	CCAAGGAACA	TCTCACCAAT	TTTAAATTGG
	GTAAGTGGCC	TCTTITTACT	CTCTTCTCCA	GCCTCTCTCA	CTATCCCTCA	ACATCTTTCT	CCTTCAATC
	TTGGCACCAC	GCTICAATCT	CTCCCTTCCC	TTAATTTAG	TTCTCTTCTT	TTTCTGGTAG	AGACAGAGGA
5	AACGTGTTCT	ATCTGTGAAC	CCAAAACCTC	AGCACTGGTC	ATGGACTTGG	AAAGACAGTC	TTCCCTTGAT
	GTTTAATCAC	TGCAGGGATG	CCTGCCTGAT	TATTCAACCA	CATTTCAGAG	CTGTCGATC	ACTGCAGGGA
	CGCCCTGCCG	GATCCTTCAC	CTTAGTGCA	AGTACCACTT	TGCCTGGGTG	GCAAGCACCA	CCTCTCTGG
	GGGGCAAGCA	CCAATCTCTC	TGGGGGCAAA	GTACCCCCCA	ACCCCTCTC	TCCATGTC	CACCCCTCTC
10	TCTCTGGCT	TGCTCTCTTC	ACTATGGCC	ACCTTCCACC	CTCCATTCTC	CCCTTTCTC	CCTTAGCCTG
	TGTTCTCAAG	AACTTAAAAC	CTCTTCAACT	CACGCTGAC	CTAAAACCTA	AATGCCCTAC	TTTCTCTGC
	AATACCCTT	GACCCCAATA	CAAACCTAAC	AATGGTTCA	AATAGCTGA	AAACGGCACT	TTCAATTCT
	CCATTCTTC	AGATCTAAAT	AATTCTTGT	GTAAAATGGA	CAAATGGTCT	GAGGTGCTG	ACATCTGGC
15	ATTCCTTAC	ACGTGGTCC	CTCCCTAGTC	TCTGTTCCA	ATGCAACTCA	TCCCAAATCC	TCCCTCTTC
	CCTCTGCCCT	GTCCCCCTAG	TCCCAACCCC	AAGTGTGCT	GAGTCTTCC	AATCTTCCIT	TTCTACTGAC
	CCATCTGACC	TCTCCCTCT	TCCCCAGACT	GCTCCTCTC	AGGTCGCTCC	CCGCCAGGCT	GAATCAGGCT
	CCAATTCTTC	CTCAGCGTCC	GCTCCTCCAC	CCTATAATCC	TTCTATCACC	TCCCCTCTC	ACACCTGGTC
20	CAGCTTACAG	TTTCATTCTG	TGACTAGCCC	TCCCCCACCT	GCCCAACAAT	TTCCTCTTAA	AGAGGTGGCT
	GGAGCTAAAG	GCAAGTCAAA	GGTTAATGCT	CCTTTTCTT	TATCCAACCT	CTCCCATCTC	AGTTAGTATT
	TAGGCTTTT	TTCACTAAAT	ATGAATACCT	AGGCCACTCC	ATGGCTCATT	TGGCAGCAAC	TCCTAGACAT
	TTTACAGCCT	TGGGACCCAGA	GGGGCCAGAA	GGTCATCTTA	TTCTCAATAT	GCATTTATT	ACCCAATCCA
25	CTCCCAACAT	TAGAAAAAGC	TCCAAAAGTT	AGACTCCGGC	CCTCAAAACCC	CACACAGGA	CTTAATTAAAC
	CTTGCCTTCA	AAGCGTACAA	TAATAGAGTA	GAGGCAGCCA	AGTAGCAACA	TATTCTGAG	TTGCAATTCC
	TTGCCTCCAC	TGTGAGAGAA	ACCCCAGCCA	CATCTCCAGT	ACACAAGAAC	TTCAAAATGC	CTAAGCCACA
	GTGGTCAAGC	ATTCCTACAG	GACCTCTCC	ATCAGGATCT	TGCTTCAGT	GCCAGAAATC	TGGCCACTGG
30	GCCAAGGAAT	GCCCTCAGCC	TGGGATTCTC	CCTAAGCCAT	GTTCCATCTG	TGTGGGACCC	CACTGGAAAT
	CGGACTGTCC	AACTTGCCCA	GCACCCACTC	CCAGAGCCCC	TGGAACTCTG	GCCCAAGGCT	CTCTGACTGA
	CTCCTTCCCA	GATCCTCTTG	GCTTAGTGGC	TGAAGACTGA	TGCTGCCTGA	TCGCCTCAGA	AGCCTCTGG
	ACCATCACAG	ATGCTTTGG	TAACCTTAC	AGTGGAGGGT	AAGTCGTCC	CCTCTTAAT	CAATGCAGAG
35	GCTACCAACT	CCACATTACC	TTCTCTTCAA	GGTCTCTGTT	CCCTCTGTCT	CATAATGTT	GTGGGTATTG
	ATGGCCAGGC	TTCTAAACCC	CTTAAAACTC	CCAAACTCTG	GTGCGCATTT	AAACAAACATT	CTTTTATAACA
	CTTCTTTTA	GTТА'CCCCA	CCTGCCAGT	TCCCTTATTA	GGCTGAGACA	TTTAACCAA	ATTATTGCT
	TCCCTGACTA	TTCCIGGACT	ACAGCCACAT	CTCATGCTG	CCCTCTTCC	CAACCCAAA	GTGGCAACTC
40	CTTTCGCACT	TCCTCTCATA	TCCCCCTAAC	TTAACCCACA	GGTATGGGAC	ACCTCTACTC	CCTCCCTGGC
	AACAAATCAC	ACCCCTCATTA	CTATCCCAT	AAAACCTAAT	CACCCCTAAC	TGGGTCAACG	CCAGTATCCC
	ATCCCACAAAC	AGGCTTTAAA	GGGATTAAAG	CCTGTTATCA	CTTGCTCTT	ACAACATGTC	CTTTTAAAGC
	CTGTAAACTC	TCCTTACAAT	TCCCCCATTT	TACCTGTCCA	AAAACTGGAC	ATGCCTTACA	GGTTAGTTCA
45	GGATCTGTG	CTTATCAACC	AAATTGTCTT	GCCTATCCAC	GCCATGGTGC	CAAACCCATA	TACTCTCTTA
	TCCTCAATAC	CTCCCTCCAA	AACCCCTCCA	TAACCCCTTAT	TCTGTTCTG	ATCTCAAAAC	ATGCTTTCTT
	TACTATTCT	TTGCACTCC	CATCCCAGCC	TCTCTTCACT	TTCACTTGG	CTGACCCCTGA	CACCCATCAG
	CCTCAGCAAC	TTACCTGGGC	TGTACTGGCG	CAAGGCTTCA	TGGACAGCCC	CCATTACCTC	AGTCAACCCA
50	AATTCTCT	TCATCTTATA	CCTATCCAGG	CATAGTTCTT	CATGAAAACA	CACGTGCTCT	CCCTGCTGAT
	CATGTCAGC	TAATCTCCCC	AAACCCAGGA	CTGCAAATT	GACTTACTC	ACATGCCCA	AATCAGGACA
	CTAAAGTACC	TCTTGGCTG	GGTAGACACT	TTCACTGGAT	AGGTAGATGC	CTTCCCACAA	GGGCCTAAGA
	AGGCCACCGT	GGTCATTTCT	TCCCTCTGT	CAGACATAAT	TCCTGGTTT	GGCCTTCCCA	CCTCTATAACA
55	GTCTGATAAT	GGAC AAGCCT	TTACTAGTC	AAGCACGCAA	GCAGTTCTC	AGGCTCTGG	TATTCTAGTA
	AACCTTCATA	CCCCTTACCG	TCCTCAATCC	TTAGGAAAGG	TAGAACTGAT	TAATGGTCTT	TTAAAACAC
	ACCTCACCAA	GCTCAGCCTC	CAACTTAAA	AGGACTGGAC	AGTACTTTA	CCACTTGGCA	TTCTCAGAAT
	TCGGGCCCTG	CCTCGAAATG	CTACAAGGT	CAGCCCATTT	AAGATTCTGT	ATGGACGCTC	CTTTTATAA
60	GGCCCCAGTC	TCATTCCAGA	CACCAAGCCA	ACTTGAAC	TGCCCTTAAA	ACTTGTCTC	CCTACAATCT
	TCTGTCTAGT	CATACTCTA	TTCACCATTC	TCAACTACT	GTAAATGCC	TGCCCCTTT	TACAGTGTG
	ATTTATACTT	TTCTCTCCAA	CCATCATAAC	TGATATCTCC	TGGTTTAC	TCAAACCGCC	ACCCCTTAAGT
	CTCTCTTAA	GTGGATAGAA	GATCTTCACT	GACAAGGTAC	ACTCCAATAC	TTTCAACCTA	ATAAAGCCCT
65	ATTCTTTACT	TTTATATTCA	CTCTTATTCT	TGTTCCCATT	CTTATGCCAC	TCTCTACCTC	TCCCCAGCTA
	TCTCCACCAC	ACTATCAATC	TCACTCACTC	TCTCTAGCC	ATTCTAACTC	CTTCTTTAAC	AAACAATTGC
	TGGCTTACA	ATTCTCTTT	CCTCCAAAAT	CACCGAGTCC	TCAATTACT	CACTGCTAAA	AAAGGGGACT
	CTGCATATT	TTAAATGAAG	AGTGTGTTT	TTACCTAAAT	CAATCTGGCC	TGGTATATGA	CAACATAAAA
	AAAACCTCAAG	GATA.GAGCCA	AAAACCTGC	CAACCAAGCA	AGTAATTATG	CTGAACCCCC	TTGGGCACTC
	TAATTAGAT	TCTIIGGGTTC	TCCCAGATCT	TAATCCCTTA	ATACCTGTTT	TTCTCTTCT	CTTATGCAGA
	CCTTGTGTC	TCCAATTAGT	TTCTCAATT	ATACAAAACC	GTATCCAGGC	CATCACCAAT	CATTCTATAC
70	GACAATGTT	TTAAGGGAGG	AGACCAACCC	TCATATTGTC	TTATGCCCA	TTCTGCTTC	CAAAGAAAAGA
	AGTAAAAATG	AAAAGGCAGA	AATGAAATCC	ACAGGCGAC	AGCCTGATGC	CACACCTGG	GCCTGGTGGT
	TAAGATCAC	CCCI GACCTA	ATCAGTTATG	TTATCTATAG	ATTACAGACA	TTGATGGAA	AAGCACTGTG
	AAAATCCCTG	TCTI GTTCTG	TTCCCTCTAA	TACCACTACA	CGCAGCCCC	AGTCATGTAC	CCCCTGCTTG
	CTCCCCCTGC	TTGCTCAATC	AGTCATGACC	CTCTCACGCA	GACCCCTTA	GAGTTGTAAG	CCCTTAAGAG
75	GAAAAGGAAT	TGT'CACTCG	GAGAGCTCG	TTTTTGAGAC	ATGAGTCTG	CCAATGCTCC	CAGCTGAATA
	AAGCCCTTCC	TTCTTTAACT	CAGTGTCTGA	GGGGTTTTGT	CTGTGTCTG	TCCTGCTACA	GTTTCATCTA
	ACAACCCCAT	AATATCACCC	CTTACCAACAA	AATCTCCCTT	CAGCTTAATC	TCTCCCACCTC	TAGGTTCTCA
	CGCCACCCCT	AATCTGCTC	GAAGCAGCCC	TGAGAAACAT	CGCCCGTTAT	CTCTCCACAC	CACCCCCAAA

	AATTTTCACT	GCCCCAACAC	TTTACCACTA	TTTCGTTTA	TTTTTCTTAT	TAATATAAGA	AGATAGAAAT
	GTCAGGCCCTC	TGAGCCCAAG	CCTGCACGTA	TACATCCACA	TGGCCTGAAG	CAAGTGAAGA	ATCACAAAAG
5	AAGTAAAAAT	GGC ^t GGTTCC	TGCCCTAATC	GATGATATTG	CACCAATTGTG	ATTGTTCTCT	GCGCCACCTT
	GACTGAGGGG	TTA _t CCTTGT	GAAATTCCCT	CCCCTGGCTC	AGAAGCTCCC	CCACTGAGCA	CCTTGTGACC
	CCCACCCCTA	CCCAACAAGTG	AAAAACCCCC	TTTGAATGTA	ATTTTCCACT	ACCCACCCAA	ATCCTATAAA
	ACAGCCCCAC	CCC _t CTCTCCC	TTTGCTGACT	CTATTTTGGG	ACTCAGCCCA	CCTGCACCCA	GGTGATTCAA
10	AAGCTTCATT	GCTCACACAA	AGCCTGTTG	GTGGTCTCTT	CACACCGACA	CGCGTATAA	TTATTATATT
	ACTTTTAACT	AAAACCCCTT	CAGAGTCTCG	CAGGGAAGGC	TGTATATATC	TCATAAAATG	TTGGGGCCCA
	CTGGATCAGA	CAACGCCACA	AAGGCCAAAG	GGAAAGTAAAG	ATCTCATTAT	TTCTCTTAAT	AATTTCCTG
	TCCCTTGTCA	TAATGGTGG	GTAGGCTGTT	ATGGTGTG	CAGATTTCT	TTCCATAAAA	TGTCCATAAT
	AGGACATTG	AACAGAAGGG	AAAATCAA	TTGCTGAAGT	TGAAAGAGGG	CAATGCAAAG	AACTTGGAG
	AAAGAACTGT	ACAC AGAAGT	CAACTGGCAG	ATGGGAGGAA	GTTAAAGGGG	AAAATATAG	ATGTCTAAAG
15	AATACATTTA	TTCA TTTTCC	ACAGTCAAT	TTGACAAGA	AGCCTCTTC	TTGCTCTTT	CTATTCTCAT
	TAAATCATT	GAGCTCAAGC	AATCCTCTG	CCTCAGCTTC	CCGACTAGT	AGGACTACAG	GTATGTGCTA
	CTATGCCAG	CTA _t TTTTT	AAAATTAGA	TTTAAATTG	GTGAACTATT	TCTGTAGGAA	ACTACAATAA
	TACAGCCCAG	GCACATTGAT	CTTGGGTGAA	CAAATCAGAA	GGAATGAATA	ATTCTGTGTT	CCTGGGACTC
	TGACAATTTC	ATGAACCTGG	TAECTCTGAGT	AAAGCATAGG	AGGAGTTATT	TCATAAAATG	TGGAGCACAA
	TCATGTGACA	AAG TAATGG	GATCCCCATT	TCATAAATAA	ATCTGAAGTT	CAGAGAGAGT	AACAACGGC
20	CAGGGTCACA	TCACGGAGAC	AGAGGCAGGG	TTCCCACTGA	TGCCTCTGAC	TCCCTGTCCC	AGGCCCTTCC
	TCCTCCCGCA	AGCAGAAGTG	CAGGGGGCAG	AGCTGACCC	GTGCAGTGAA	AATCTGAGGG	CTGAGTTCT
	ATTGGAACAC	AAG ^t GAAAGA	CTTCTGGCT	TCTAACTCTA	GGATAAGGAC	TCAGAGCTCC	ATCTGTTCCA
	GCCTTAGGAT	AAGAACCGAGA	ATCTTACACC	ATGAAAGCAT	GAAAGGTAAG	ATTGAGTGA	GGAAAAAAA
	AAAAAAAGTC	TGTCTTTCAG	ATTCACTTCA	CAAAGCAGTT	TCATACTAA	GGTACCATCA	CAATAACCT
	GTGGGTAGAAG	CAAGGCAAAT	TTCAATTCTG	TTTATGGGC	ATAGGAAGT	AGTCTCAGGG	AGGTTAAGAC
25	CAAGGTTCT	GGACAATTTT	ATATTATGAA	TCTTGATTTA	TGGGATTACT	ATTATGTAAT	TCCTAAGATC
	ATATAGGAAT	CTTA GAGCTT	GAATATAGAA	CTTATTTTT	AAATCTATAT	ACATCATAAT	TACAAGGAGT
	AGTGTCCATT	TGGC TTCCCT	GGCCCTGATG	TGTTAGTGG	ATAAACATT	TTGTCAGGGT	TGCCATGTGT
	GTCTGTGAC	GTGTGACTG	TACACCTCCA	GGGGATGTAC	CCTAAACAC	ATGAATGTGA	TTGACACATC
	CAAGATTAC	AGTC TACTAT	AGGGAGAAC	TTTGCAACA	GCTTTGCTA	TAATACAGAA	TCTGAGATGT
30	CTTGTAGAAA	GAA ^t AGTGT	ATCATTACCA	AAAAATTATT	CTCATAATGT	GTGCAAATT	GTATGAAATC
	TATATTGGCC	ATGGGAGAACG	GAGGTATTC	CAGCTAGCTT	CTGAAAGGGC	TCTATTCTCT	CATAAGAATT
	CAGCTGTGA	CATAGGTGA	TATCTGCCA	GGTCATCAGA	TGCCATAGAG	AAAGAGGGTT	TGCTGAAACT
	TATATCAGCA	GTGC ACTGTA	TGCTCTTCT	GATTATTTG	AAACATTCA	TATTGAGTGT	CAAGTAATGC
	ACTAGATACT	CCAGGGATCT	GACACAACT	CTGCCCTGAA	GGAGCATGTA	ATCTCACTGG	GGAGAAAACA
35	AAACATATGA	TAATTCAAA	ATAACAAACT	AGGCAAAC	GTTAACACTT	AAAAAGCAGG	CTTATTCAA
	ATGCAAAATT	GCATGTTACA	GGGTAACTT	TCAGTAAGAA	GCCAGGAAGA	GGAGCTCATC	ATGGGTTGGA
	TTAGTAAAGG	ACTAGTTATA	AAAGAAGTGG	TGGGTTGAG	GGAGGCCTGA	GATGAAATT	AAAGAATATG
	TAGAATCTAG	GTAAGTGGAT	AAAAGGTCTG	GGGGCAGGGG	AAAGGAGAGC	ATTTCATTGT	GAATCAAGGA
	ATTTCCTCAC	CTGT ITAAC	TCTTCCATAT	GACATCAAAG	AGATGTCACT	TGCACTAGC	ATTTCACTGA
40	TGTTTTCTTA	CTAA ^t AAAT	CGTGATAAAA	GAAACATTGA	CTATAAGAAA	TAGGAATGGG	TCTCATAAAA
	GGAAACACAGA	AAA _t CCCCAA	ACTAAAAAAC	AGCGCAGGCT	ATTCTCTCT	TCTCTCTTT	TGCTTGGCAC
	TCATGAGATG	CTAG GTGTTG	AAGTCAGGA	ACTGAAAAAG	AGAGGTTGGG	GAAGAAGGTG	GGGAGGCTGA
	AGCCAGTTAA	ATAC GATGGT	CCAATTCA	GACGGCGAGG	CTACAGTGC	AATAGGACTC	TTTCAACTTG
	AGCAGGACCC	CATI ACTTCA	CTGGAGTTAG	AAAGAAAGGA	GAGCGTAGAC	TTTITGAACT	TTCTATAAGA
45	GTGTACCTCC	ACAGTATACA	GAAGACGACG	TGAAATTG	TCTGCAAGAA	AACTGAGTCC	ATATTACAT
	ATGTATCAAA	TTGCACTTC	ATTAGAAGT	GTCTGTATC	AAGTACAGCA	CTGAATTGAA	ACTGAAAACA
	AGAGTCAGA	AAG ^t GCAGAAG	TCAGCCATCT	TTATATTCCA	CATGAATCCT	TTCCCTTTAT	GGTCTTATT
	GTTCCTCTTC	AGAA _t AGACA	AAAAGCTGAG	CTGTATAAAC	ACCTGTGGC	TGGGGTTGA	GGGATAAAATG
	AGGGGCGAAA	TGG ^t AGCTGA	AGGAACGTT	GGTCAGGTAG	AAATCTCCC	AGATGCACTG	AAGGAAACAC
50	ACTTCATGTT	TGAC _t TAGGA	GGTCCACCA	CACAAAACGT	TTCATGGAA	GATTAAAGG	ATCTCATGAT
	TTTTAGTATT	CCAA _t AAATT	TCTTTCACCA	AGGGCGATT	AATATGGGT	ATTCACTACTG	AAAGAAAAAC
	AAAAGATAAT	AAG ^t GTTAA	AAATTGCAA	ACTTGGAGT	TTAGTAGTAA	AGGTAATAT	TCATTAGAGA
	TGAGAAGAGG	AGCA AGGAAA	TGCTTTCA	TGAAAATCTC	AGACAAGAGG	CCAGGCTTA	GGAACCTCTG
	AAGATGAACA	AATGTAAGCA	AACCTAGTA	GCAGCACTTC	TCAGATTTC	ATGTGCTTAC	CACTCAGAGA
55	TGGTGTAA	ATGCAGACTC	TGATTCA	GGTCTGAGTG	GAGCCTGAGA	TTCTGCACCC	CTAACAAAGCT
	CTTTAGTGT	GCTTATGCCA	CTGGCGCACA	GACCCCACTT	GGAGAAATT	TTGTTGTGCA	TACGGTCTTT
	GTCTCCAGAT	CTAA TGAGTC	TGAAGGACAG	TGTAGATTGA	TTTTTTAAAT	TTATGTTTAT	TTAATTAA
	TTAATTAA	TTA _t TTTATT	TATTTATT	TGAGATGGAG	TCTCACTCTG	TTGCCAGTC	CGGAGTGCAG
	TGGCACGGAG	GCAGCTCATG	CAACCACGGC	CTCCTGGGTT	CAAGCGATTC	TTCCGCCTCA	ACTTCCTGAG
60	TAGCTGGGAA	TACAGGACG	TGCCAGCACA	CCCAGCAAT	TTTTGTATT	TTAGTAGAGA	TGGGGTTTCA
	CCACATTGGC	CAAC CTAATC	TCAAACTCT	GACCTCATGA	TCCACCTGCC	ACGGCCTCCG	AAAGTGCCTG
	GATTACAGGC	GTGAGGCCACC	GAGCCCAGCT	GTAGATTGAT	TTTGAGCACT	GGAAAGTCAA	GGAATTAGAA
	GGCATGCTTA	AATGGAAGAT	GAAATTGGAG	AAAATTAAA	CTCATGAAAT	AGTGGTGGTT	ATAAACTCGT
	GATAAAATTAT	ATCTGGGAT	ATAATTAA	GAGATGGTA	CACATTAGT	TTAAAGAAAT	AAGTGACACT
65	TTTTTGTGT	GACA CAACTG	TCTTATTCTT	GGAAAGGACA	AGGAGAGAAT	GAAATATGGT	ATGTCTTCAC
	AGCACCTTC	AAAGGGAGAA	CCAGATTCTG	AGGAGCTGGT	CTCATGATGA	ACTGTCAGGG	TAAACCACAG
	TTCAGCAGCT	GCAAATGTGC	TTGCCAAAT	AGAGACAAA	AAATGTTCT	GAAAACAAAA	TTTCACATAT
	CCCCCTCTCT	GAGC TTGGCA	TCATATCTC	CTGTGTATCT	TGGGTGTAGC	TTCTATCCTG	CCAGAATTAA

	GACAGTAGAA	ACCA AATGAG	GTGATAAAC	GAGTCATT	GCAGAAGAGT	CAAATAACC	CAGCAAGAAA
	TGAAACCACA	AATGCCAAC	GAGTCATTCA	TTCACCATC	AAAAGCTAAT	AGAAATGAAC	ACAAACTACT
	ATGAAAATTC	ACCC AAGAAC	TTAAAAAAA	AAAAAAAGGC	TCATGGTGT	TAGTGTGATA	GTATTCAATT
5	TACCTTGAC	TTGTCTAA	AACACACC	ACTCTACCC	CACCCCTCCT	CAGTGCCGTC	ACACAATGGT
	TTCAGTGTGA	AAAAAAAAC	CACGTTACTG	GAAAAGGAGG	GTGCCTGGGA	CTTGCCACTC	TAAGCTGGTA
	GTCAAGGGTC	TTGAGTCTA	AAAGCATACG	CGTTAAGAGC	ATGATTCTG	GATCCAATG	AGTATGGATC
	TCAGCATTGC	CATITATTGT	GACCTCAGGC	TATTTTATT	CTCTGTGCC	GTTTCTTAT	CAGTAATGAA
	GATGTTCAT	GACCCTTCTC	CCACAGACT	AAAGGCATAT	TTCATGATT	AAGACATGTA	AACCATTAT
10	AACAGTATAC	AACATGGAAT	TAATATTGA	TAAGGTTTA	TGATTATTGT	AACTAACTCT	GTCACATTGCT
	CAAGGCCTAT	AGAA AACTTA	CTTAAATTAGT	TCAACTACAA	AAAGAGTTG	AATGTGATAT	CCACCAAGAT
	CATATT CAGA	CCTAGAAC	TGTGATTCTT	ATGAATTAAAT	ACAGCCTTG	TCAATAATG	AGAGCTGGGC
	AAATAATTCT	TCTTIGCTAG	GCCTTCTAG	ACCACCTGGT	GAAGCATTCA	AGACTTATGT	TATTGGGGCC
	AGCCTTCCTT	TCCA ACTTCA	ACTCCACAA	TCCTCAATAA	GCCATGGGCT	CAAGAAAGTT	CTGCTCAGTG
15	GCCCCGAAA	AATGCTTCA	TAGTCTCACT	ACCATACCC	TGCTTACACA	ATTCTCTCC	TACAGACTGC
	CTTCCCTTCC	TGCTTTCTC	CATATACCA	AATCCTATCT	ATTCTTCATA	AGCAACCTTC	TTTATAACAT
	TTTCTATAAC	CACCAAGCCA	AATGACCTT	TCCTCTTAA	ATATAGCAC	CATTGGCCAT	TACCATGCTC
	TGCCTGTAT	TTTCTGATT	TTTTCTTTC	TATATTCTG	TCTTAACCTCC	CCAGCTAGGT	AATAATTTC
	CTGAAATCAG	GGAC CAGGCT	GAETCCTCTT	GCTGCTCAA	GAAAGCTTAG	CAGTTCCAA	CACAAAATG
20	TTCAATAAAC	AACT ATTAAT	TGACTGATTA	TAAGGAAATCA	GTGAACCAT	AAACTAATA	TAGCAATTG
	CTTAGCATGG	TAATTAGCTT	TTTGTAAATA	TTCTTCCAGC	CAGTCTCIC	TCCTGTGCCT	CAAGGACATC
	TTAAAAAAA	AAAATCTAGT	TGATCTGCTT	CCATCTAGT	GCAATTAAA	CAGGGTTTC	CGGTAGCCAG
	AAAACAGCTC	TGGCTAGATT	GTGCGAGAAA	ATACTTTCAC	TCAGTAGGTG	CGAGTTGAA	AGAAATCTTC
	ACATCTGTGG	GTTTCTGCC	ACAGACATAG	GGAGACCAGC	CCAGAGAAAAG	AAGCCTTCC	TCACTAGACT
	CCATTGAC	TAGTAAAGAG	AAGACAGAGT	AATTAAGAAG	AATAAAAAGA	ACCTTCACTG	ATCGTACATC
25	CTCATCCAGT	TACCCCTGCC	CCACTTCTCC	TTCACAGCCA	AACATTAA	AAGAGATGAC	TGCTTGTCT
	GTCTCTACTT	TCTCATCCTC	AGTAATGCTC	AATGCTTGC	CGTCTGACCT	CTGCTTGAT	GTCTGCAC
	CAAATAGTCT	CCCC ACTGAC	ACCCCTGTTG	CATCCAGGGG	ATACTTACTG	GTTCTCTGG	CAATGTTGA
	AACCGTCCC	CTTICTTTGT	TTCCCTGGCA	TTCAATTACCC	CACACTCTT	CTCCTCTTCC	TTCTCCCTGC
	CTGGCAACAT	CTTITCATTT	CTCTTTCCT	TAGGTGACTT	ATTAGATAAT	GATGTTCTC	TGGCTCCCAT
30	ACTCTCTCCC	AGGICCTCTT	CCATTCTAA	AGCACTCACA	CCCTCCCTGG	ATGATAGTAC	CCACTCCTGA
	GATGGCAGTT	ACCI CCGTAA	ATGTGAGGGA	CCCCAATCCA	CTTCTCTGC	CATAGCCTCT	GTGCTTTGGA
	TAGGTCCAAT	GAGC CACAGT	GAATGATGTG	CATACACCCA	AAGCTCAGTA	CAAAACTGAA	CCCCATGATCT
	TTACCTTCAA	AAAC TCTCAT	TCTTTTATGT	TCCTCTCTCA	GAAGTAAACA	GGACTACCAT	CCGCCAGTT
	CCAGGTGAGA	AAGATGATAA	TTTGTATTCTT	CTCTCTACT	TTTAGCCAAT	TAACAGACAC	CGGTTTAAT
35	TATCACCTCC	TCTTATTTC	TGAACCCATT	CTTACTACTA	GTTCCCTAGA	CAGGCGCCAT	CACTTGCCAT
	CTAATAACTG	CAAATGCCTC	CAAACAAAGT	CTCTTGAAT	CCAGGCTCAC	CTGCTCTCCA	CTTTAGTGT
	ACTGCTCTGC	AGGC TGACCT	TATAAGATGC	CAGAGGTAAG	GCTACTCACT	GTTAAACCC	GGCTTCTGGT
	ATCCCCAAAG	ACCT CAAGAT	AAAGCCATA	TCACATGGCT	TATACATTAG	TTTATGATCT	ATTGGTAGGA
	GCCTCATTT	TCCCCACTTT	TTCCCTTGC	TTCTAAGCAA	TGGCCCATAC	TAAGTTGTG	TAAAGGAAGC
40	TGGTTGCCA	AACC AGC ATC	CAATCCCTC	AGAAATCATC	TCACITCATT	TCTAGCATT	CTTAAACTCT
	TCAGTTGTC	AGCTGGGTAC	TGAATATGTC	ACCAAAGTCC	TCCTTCTATA	GTTTATTTA	TTICATTCTG
	CCCTCTAAA	ATTC CAGAGC	AAGTCACTAA	ACCTAGATA	CTGAGAAAAT	TTTCTCCATC	AGAAGAAATT
	CCAGGTGGC	CATCAACTTT	CACATGCTG	CATCTCTCC	CACTGTGCTA	TTTCTCCAGT	ATGCTCCCTA
	TGAGCTTCAA	GACCAAACTG	AAAATAACTT	GCCTCCTTGG	GGAGCTGTA	GGTAGAATT	GAATAAGCAT
45	TCTTCCAC	ATTITCTGAAG	GACAATGCC	GTTAGAGCAA	TTGAATGCAA	ATAGTCATT	CTTAAACTCT
	TTATTCAATT	CTCA ATAAGT	GCTTGTCAA	TTGAATATT	CTTAAATAAT	ATATTTAAGA	ACAAGAAGAA
	CACACCACAA	TGTITTTAAC	CCTCAGAAAA	AATTCTGAGG	TAATCAGAAA	AATCTCCCTT	TACATAAACT
	GCCCTTTCT	AATAAGGGATT	ACTTGTTCGT	TCATCATT	ATTCA GCTC	ACTAGCACCA	AAAAGCACAG
	CTCTGAAAGG	AAGCTAGTAG	ATTATTCACC	TTATCTGGTC	ATTGGATGA	GGACCCCAGG	TAAATAAAACT
50	ACTATGGGT	TAATGTGCT	AGCTAGAGCA	GGAGTAACT	TAAGGAAGTA	GAGAATGAAT	CAGCAGATGT
	GGAAACTCCT	CGCC ACTAAT	AAAATCTTCA	TTCTCTTGA	TTTCTTGCT	GAAAATAGAA	AA TAGAGAAA
	AGGCATTAGC	AAAATTTAGA	CAATTAAAG	TTTTCAAGT	AAGGGAGAAAG	GAAGACTCCC	ACTCTAAAGA
	CTGCTTTG	AAGTATATT	GGTATTGTT	AGGTTGGACCC	TATCTGTGTC	AAAGGAGATT	TGAGGAACTG
	GCTTAATAAA	CAGTGGTAGA	CACTAATACA	GAACAGACAT	GTGATGCG	ATGCCCTCTG	AGGTTCCATT
55	CCATTCTCCG	TGCTA CTCAA	GAAGACAGAA	25441 TTGCTAAATT	GCCTGGTGGC	AAGACCAAT	ATGTCCATTC
	AAAGTGTAT	CCCT CCCC	TCTGCCATCT	CATCCTACCT	GCAGATTCTT	CCCTTGAGGG	ACAGCTGCTA
	ATACTGAAA	ACTA TGTGCC	ATTACAGCTC	ACAGCATCAT	CTCTATGAGA	ATCCACAAGA	GAATTCACT
	TTGGCTCTGT	TGGTAGGAAT	TGTGCAGCCT	CATCTGAGTA	ACTAATGTGT	TTTTATCTTA	CAAACACAAG
	GAATATCACA	TGGTCTCCT	TTGACTGGCT	GTAAGGAAAC	TCAGAGCTAG	ATCTGAGACC	CTCTCCTTAC
60	AAGTATATAA	AAC TTGTGA	CATACATT	TGTGCCATAA	CTTCAACCTT	GGTTCCAAAT	GATTTTTGTA
	CCCTAAGTT	AAA TTGGCT	TTCTTTTTT	TTTTTTGTA	CTCAATAAAA	CATCAAGCTC	ATTTATTATT
	GCGAAGAGCG	AAA CAACAAA	GCTTCCACAG	CGTGGAGGG	GACCCGAGTG	GGTTGCCAA	ATTGGCTCT
	TTTCTTACT	TTT ATTAA	TTTAATT	CTATACTGAA	CACATTGTT	ACTGTTCTCA	CATTCTTTT
	GAAAAAAGCA	GAA ATAAAT	AAGTAGATAA	CTTAAAAAAA	ACTCTTGAG	CAGAAAGAAT	CATTGGGAG
65	GCAATATATT	TCAC TGGCTG	TAAGTGGCA	TTCTAGAATC	ATCCTACCA	GGTGAAGGCC	CTATTTGCC
	ACCTGTAGTG	TAGT GTGTAT	TTGAACAGCT	ACTTTCTTT	CTAAACTACA	ATTCTTCAT	CTGTTAAAGA
	GGCATAATAA	TTGT ATCATC	CTCATTGGGT	TGATAAAAATA	AAATATTTC	AAGTATTAG	TTCAGGTCT
	AGCACGTAGA	CAGT GTTGCA	TTACTGTTT	AATCCTTTAA	AGTATTAAAG	ACTACTATT	GAAATCTTT

	CTTCTAAAAT	TCAGCCTGCT	GATGACCAAG	TGCACTTGAG	CAGGGGAAAT	CAAATCTGAA	TTAATTTCAG
	ATTCTGGTTA	GCTTCACATA	AATATTTT	TTAGGGATGA	TGAACCTAAC	AGCAATAGAT	GAGTAAGAAT
5	CTGTTCTAC	TGAGAGAGTT	TCATTTGAA	GAAAAAGGAA	CTAAGGGGGC	ATGTGTTTAG	TTTCATGCC
	TGGTCTAACCC	CTGTGTGTTG	GTTCTGGTGG	GAAATTCTTC	CAACCGAGGA	AAAAACCACT	TCACAAATCT
	GAAGACCAGT	GATTTAGAA	GATGTATCTG	GACTGGAGTC	TAATCTCTGA	CTCTGGTCC	TGCTGATATG
	GTATTTTGA	GATTGGCCT	AAAACATCAT	TGCCCTGGTT	TCCTTATTAA	CCAAACAGGG	CCAATGGTAG
10	TGACTAATCA	AAAATGATA	ATGCCTGGTG	CACAAAATGT	GTCTAGATGA	GCCCAGTCAC	AAGGACACAT
	GTITCTGGAA	CTGTCCCTTA	TTCCCTTCTC	AAAAGAAAGG	AGGGAAAGTC	TCCACTAA	GACTACTAGG
	GCAGGGGACA	AAAGT'GCTAGA	GTCAGAAGAT	TCATCTGAGG	ACAGAAGAA	AGGGGTGAAG	GCTCTAGTCA
15	CTTCATTGGC	TACCATGCTC	TAATAGTTA	CCTGCGCCT	TTTCTCTA	TTAGAAACCC	AAAAGCCTA
	TAATTCCTCT	CTCTCTCTCT	GTGTATATAT	ATACATACAT	ACACACACAT	AGACACACAC	
	ACACACCTAA	ACACACACAT	AGAGATTAT	GACTTTTAC	TTTATCTT	GTAATGCCA	TTAACTATAT
	TTTGTCTTAG	ATTAGCCTG	GGAATGTAGC	CATTATTCT	ACCATTGCT	CCATAGGAA	AATACTCTTC
20	ATGTTTAA	GGACCAACCT	ACAACAAAAA	TCTTGGAAA	GCAGAATCAT	TTGTAAGTTG	GTGAAAATGG
	AAGATGTTGT	TTTATAAATG	AAGACTTTT	TTTTTTTTT	TTTGAGACA	GGGCCTCACT	CTGTTGTGGA
	GTGCACTGGT	GCTCTCATGG	CTTACTGCAG	CCTTGACCTC	CTGGGTTCAA	GTGATCCTCC	CACCTCAGTC
	TCCTGGGTAG	CTGC GACTAC	ATGTGCATGC	TACCATGCCT	GACTAATT	TTGTATT	GTAGAGATGT
	GGTTTCGCCA	TGTTCCCCAG	GCTGGTCTTG	AACTCTGFFF	CTCAAGTAAT	CCTCTGCCT	CAGCCTCCAA
25	AAAGTGTGGG	ATTAAGGTTG	ACAGCCAAGG	TGCGCTGGCC	ACAGATAGA	ACTATTAAT	GTTATCTTAA
	AGATACCTA	AGCTTCCTAC	CAAGCCAGT	ATCTTTTGGG	GCTTCTGTT	TCTTGTGTTG	CATAACTGTA
	ACTAGCTAA	CTGCGGTTA	TCTGTTCTC	GTTTCCCCA	CACTGATTCC	CACAGCAGTT	TTCAAGTTAT
	CGGTTGAGA	TCTTGTACAG	AAATGACTCC	AAGGAAAAAA	ATTTAAAAC	AACCCCTCTA	ATTTTTTAC
	CCCTGCTTAT	AAAACAGCCT	TAGCCAGCTA	ACCCCTCACT	ACATGCAAT	GAGTTGATT	CTATTCTTT
30	GATTCTACAA	ACACTTATTA	AAAGATTAA	GAATTGCGAA	ATAAAATAGCT	TCCTTATTAA	GGTGAETTAC
	AGCCCCAAAG	TCCTTAAAT	TATTTAGACA	ATAGCCACCT	TATCCCAGGG	GGCAGTGTGT	AATAACCCAC
	CCTGTTCTCT	ATCCGTCACT	TCTGCCATCA	TCGCCAAGG	TAGGAAGAAA	GACAGGACAA	CCGGGGTCAA
	GATTGAAGT	CTCAATGGAA	AGAATAATCA	GTGGTGGAG	AAAAGTGTCA	TTCTCTTTT	GCCTTAATGC
	AGTACTTGTAT	ACTTAACTT	AGTACTGTAT	AGTACTTAGT	ACTGTATAAT	ACTATAAGAT	AGTGAGATTC
35	AATCAGCACCA	GAATTCTAA	AGAGACATT	TAACTGCTCA	TAACTGCTCA	GTGCTCTCAG	GTATACATA
	GCTAATGAAG	TTCTGCTATA	TCAACAACTCC	CCACCCCCCT	CACACACTT	GTCTTCTGG	ATTGGTTAGA
	AAAATTACCT	AGGCCCAACT	ATTCTCAAAT	TAAATGAAA	GATAAGATCA	GAGTGGCACG	CAATTAGGGA
	CTGATAAATA	ATATTTTGT	AATTGCCAGT	GTAAATGGAC	AGGGGGCAAC	CTTACATAC	CATATTCACT
	GAACAGAATA	CGTACTAACT	AATTGATGG	AAGGAAAATT	AAAATGACAA	TCAACTGAGC	CCACAGAAAG
40	GCAACACAGA	GCAGTTGGTT	AGCAATTGTT	TCGAGATCAT	CCCTGAACCT	GAAACAGGTA	TATCTTTT
	TTTTTTTTT	TTGAGACAGA	GTCTCACTCT	GTCACCAGGC	TGGAGTGC	TGGTGGGTC	TCAGCTCACT
	GCAACCTCCG	CCTCCGGGT	TCAAGTGATT	CTTCTGTCTC	AGCCTCCCGA	GTAGCTGGGA	TTACAGGTGC
	CCGCCACCAC	GCCIIGCTAA	TTTTTGATT	TTTAGTAGAG	ACAGGGTTTC	ACCATGTTGG	CCAGGCTGGT
	CTTGAACCTGC	TGAGCTCATG	ATCCGCCCGC	CTCGCCCTCC	CAAAGTGTG	GGATTACAGG	CATGAGCCAC
45	CACACCTGGC	CAAFAACAGGT	ATATCTTAA	AGCTGCCAA	TGTCCATGAA	TGTTACAGCC	TTGAATGGTT
	CTTCAAGGTG	AGTTGGCCA	AATGTGGCAC	CATACACCCA	AGGCTGCTG	CAGGCTAGTG	GGTTGCTCAC
	CTCAAGGCG	TCCICCTCT	TCATGCCCTA	AGGTAAGGG	AGTGAATAATC	TGGGCAGCAG	ATGTTAACCT
	TTAGAGCTGT	GGCCTGGTG	TTAGAGATACT	TGGGAGAATA	ATGGTTGGAA	AGCATATATAG	GTGCATTGG
	GCCCATGTGT	TGGGAACCAAG	GTGACTCTTG	AAGAGGTCAG	CATGGGAATT	TCTCCCAGGG	TTAATGCAAT
50	TGGACATTAG	ACCCACTTCC	TAGTGGAAATT	GTAGCATTGA	GTATTGGGA	GCAGTGCCTT	GAAACCTTAG
	GAGATACTGT	GTCA TTTTTT	CAGAATTAA	TAAGAGCAGG	AATCCAAGGC	ATGTAGGCTC	TTAGAGGACA
	AGCCCTTGG	GAGGCCAAGG	CAGGCAGATC	ACGAGGTCAG	CCAGCGTGG	TGGCTCACAC	CTGTAATCCA
	AAACCCCGTG	TCTACTAAA	ATACAAAAAA	TTAGCTGGGC	GAGATCGAGA	TAACACAGTG	
	TTGGGAGGT	GAGCTGGGAG	AATAGCTGA	ACCCAGAAGG	CCACTCTGGC	TCCCAGCTAC	
55	CTGCACTCTA	GCCTGGTAC	AGAGTGGGC	TCTGCTCAA	GGAGGGTTGC	AGTGAAGCTGA	AATTGCAACCA
	AGCAAAAGAC	CAT'AGAATA	TCTCACTTAG	TTGTTATCAG	ATGTTGAGTC	ATTACATAAG	
	TTTTAAAG	TTAATCAGAT	GAAAAGCGAA	AATCAGCCAA	CCTAGCAACG	TGCTTGAAG	GTAATAGACA
	ATTTACATGT	CTCCAGGGAC	TGATGGCTCT	AGAATGTAAA	CCTGTTTAA	TGAAGGTGTG	TCCTGGGCTG
	ACATTTAATT	TCCIGGGGT	TTCTTTTTT	TTCTTTTTC	GCTTGGCATC	CTGCTTGTGT	TGAATCTATC
60	TTAAACTCAC	ATACCTTTT	TTAATCTCT	TGCCAGCCAA	ATCTTAAAGT	TGTGTTCTTT	TCATGTGAAG
	ACCATGACTG	CCACTGGAAAT	GAAGAGGGGG	TTATAATCAC	ATGATAAAATG	CCAACCCAGA	GAATGCAGTA
	ATTCTGAAAG	AGAATATCGT	AAGGCACATA	GCATGAGACC	CCTCCTTAAT	CATTGAGAAA	CTTTTGTCCA
	ATATTGACT	TTTCTCCTCC	TTACATCTCC	CAGTAGTAGC	ACCAGCATTA	TTTCCTTAGT	CTATCTCATG
	CTGGCATGGG	AAGGCCCTG	ATGAGTCTAC	AGCATAGGCA	CCATTGATG	CCATTGACA	GATGAGGAAA
65	CTACAGAACATC	TCAATGCCCA	GATTGGTGGT	TCATAGAGTT	AAGACTGGAC	CAGCCTTGCT	AGTCTAATGC
	AATGGTCATC	GTTGTATTAA	GCTCCATGGA	CTTGGTCAAT	CCTGAAAATG	CACCTAAAAAA	TGTTGGCAAG
	AAAAGCTAA	TACAACTTCA	GGAAAAATAA	AAGCCAATGA	GACTGGAAC	CTGAACACAA	GAGAAGAGCT
	AATCATTAAAT	GCTTTACTT	TAAGAGCAGT	GTGAAAAAAT	TCTGAACCTGG	ATAATTCAAC	AGTCAAAGGA
	GCACAAATT	CTTCCAATG	CAGTAGTTAC	CACTCCCTC	AAGCACTTGA	TTTTACATG	CCAAGGACT
	GTTTAGAGAT	ACTCTTGTAA	GTGTAAACAA	AGTCATTG	TACTTCCTC	ACGAATAAGT	AAAAGGGCAT
	AAAAAAATCTG	TCTCTGATA	CTAACATTG	AAGGAATCTA	AGGTGATTG	GGAGCCTCTA	CTGGTATAAA
	CTATCCTAG	TTCTTCCCCT	TACTTGTATG	AACCTTTICA	AGGTGATTG	TTTGAAAATA	GGGTCTGATT
	GATTGAGAGA	AGGCTCAAGT	TCCCAGGAGC	TCCAGACAGA	AGGTACCTGT	TGGCTTGTATG	CCAAATATAT

	GGAAATGAAC	ACTAGCTAGG	CCTTAAAGGG	AAATGTCTCT	GATAGGCCA	ATACACAGTC	CTCTGCTAAA
	GGCCTCCCTG	CCTCTCTCTG	CTCATCCACT	CTACTCCCTG	GCCCTGGCA	CGCAGCACAC	AGAGATCAGC
5	ATTCTGACA	GCTCTGTAG	ATCCTACCAT	TTAAAGACTT	TTGTATCCA	TGCAGATAGT	CTCAGGAGCA
	GACACAGGTA	GCTATTCTTT	CACATGCTAG	CITAACATGC	ATTGCTTTA	GCACCTATTG	CCAGGCACTG
	TGTCAGGTGG	AGGC TATACA	AAGATGAACA	AGACATGATT	CTTCTCATAT	ACAGATAGAT	TTTGGAGGCA
	TTAGCTTAGT	GATGATTTCAG	GAGTATCCAT	TATTGGGGA	AGTAGGTGGT	CATTAGTGAC	CTTTTACAGG
10	CATTCAATG	GGCTAACAGA	GATGTTAGAT	TGTAGTGGAA	TAGAAGAATG	GGTAAAAAGT	AAATCAGTGA
	GTTCAGATT	TAGG AGTTAA	GATGGCAAGA	GGTGAGAAC	AAAAAAGGAA	ATGATTGTCA	TTAAAGGAGG
	AGGAAAGACC	AGCCAAAGAT	TTTACAGTGA	GTAAAGCATA	CAAATTATT	TCTAGGCCAC	ATATTCTTAG
15	CAAACAAACA	TGTAAATGTT	TATGATGTC	TTTCCCTATA	TCTGCTCATC	CATCAGCTCC	ATCGTTAAGA
	TTTCAGTTT	CCAGAACACA	CTTACTCATC	TTGACATATT	GGACTAGGAT	TTGACAGAT	TCCAGATGAT
	TCACAAATGG	TTTCTTCTT	CCCAATTAAAC	TCAGTCTCTT	CTGAGCAGAT	GAAGGTACAT	GCAGAGGTA
	AGCTGAAGCT	GGCC AGGGGA	TGGCTACAGT	TCATGATCCC	CAAATCTGGT	GCTGATAGAG	GCTCACACTG
20	AATCACTTCA	ATGAAAAGA	AAAAAAAAGA	AAAGACAAAAA	CAGTATTCT	GAGTAGAGAC	CCTCCCTTGA
	GCAAAGGATT	TTTG GCCAAA	GTCGCTGAC	TACATTACTT	GTGATATTGC	TTCCAGGCTT	TATTTCTTG
	AGAATGATGG	TGGG TGGTGA	ATGAGAGATG	AAGGCAAGGA	AGCATTGAAA	GCTGTGGGGA	GAGGAGTAGC
	TACTCCAGGC	TGCTGCCCTA	GCTAAGGTGA	CCCTCCCCCT	CTGCTGGAAG	TACCATGCCA	TATGGCCTCT
	GCATCAAGGG	CTCTTATGGG	ATATTCTCA	AGAATCTCTG	CCGTTTCATC	TGTTCTGATA	TCTACCCAAG
25	CATTTGAAA	AACATCCCAA	TTCACTGAAG	CAAGTCCAAC	TTCCGTAAAT	TCCAGTAGGT	GGGTTGACAG
	TTTTATAATT	TCAATAAGGG	ATTITGATAG	CACTCTAAAG	AATTAAACTA	CTTAAACTAA	TGCACTAGGA
	GCACACTGTG	AGAAAGTTA	ACCAAAACTT	CGTAAGTTCA	GATGACATTG	GTTTCTCCC	ATATGGAGAT
	AAGGTTGCA	GTAAAATGAT	AAAAAAAGA	AAAACCTAC	CTTATTCAA	ACTTAAAAG	ATCAAGAGAT
	TGTGTTTGTG	TTTT CAGTT	GTATTCTCC	TAAAAGTTA	TGCGATGAGGA	AAAGTAAAAG	TGATTTTAAG
30	AATAAGCCAA	ATAAACAAAC	CAAGAAAGAC	CTCCACTACC	CTGGGAAGGA	AACTGGTTGG	TATTAAGTAG
	GACACCACAT	AAA CAGGTG	TTATTGAGAG	GAGAAGAAC	AAAATGTAAC	TGAGGTTCAA	CAAGACATTA
	TTTATGCAAT	GGCAATGAGA	AAAATAAAA	ACACAGTATA	ACCATGCTGT	ATTGCTATAA	GTCATGTTAC
	ACACTGGGAG	ATGGCTTCAG	GGGTATTGG	TTTTTACTTT	TTGTTGGGA	GGTTTTCAA	AAAATTTAG
	TTAGAATAAG	TCCTTGAGA	AACATCACAG	TAGGTTAAAC	AAAGTTAGGT	AAATTAGGC	TCCTAAGTT
35	GACTCTCTAG	CAAATTTCTA	CTGAATGTC	TGACTGTAAG	CCCAGGATTG	CATGACAAAAA	CCTCTAGTCT
	GAAGTTACTC	ACCTTGACAG	GTGGGTTCTG	GAGATGACCA	GTTTCCAAAT	GGTCACAGG	TGGTTCTTC
	AATCCAGTT	AAGTTGTTTC	CTTCAGAGCA	GCTGAAGGCA	CACTGTGAGC	TGAAGCTGAA	GTTTCCAAA
	GGGTGAGTAC	AGTCATGGT	ACCCAGCTCT	GGGGCCTCCA	AAGGCTCAC	CTGAATCACT	TCAATAGGGA
	AAGAAACAGT	ATGGGAGAAGA	GTTAAGAGGA	ACTGACGCC	GGATTGAAAT	CCTAGCCCTG	CCACTTGATA
40	ACCATGTGCC	TTTAAACAAG	GTTACTTGAA	CCCTCCAAC	TCAGTTCTT	CATCTATATA	AGAGGAATAA
	TGAATTGTC	TTATCTTTAT	CAAATTGATA	TGGAAACTAA	ATGTAATTCA	ATTAGCATAA	GTCAAGGACC
	TTAGAACAA	GCTGACTCA	TCAGAAATT	TAAGTAAACA	TTAGCTAGTC	TTCATATTAT	TATCTTCAGC
	ATTATCTGTA	GTGAGAATCC	TTAAAGCCAA	ATAGGTGAA	CTGGGAATGA	CCAGCTTAGT	CGGGAAATAA
	CTATCACATC	AGAG CCCCTG	AGTCTACTAG	AGTATTGGGA	GCAAGATGTT	CAGAGAAAGA	GTGGGTCTCC
45	ATAATAAGCC	TTCTTGCAA	GGAGAGAATA	TAAAAGTCTA	GGAAGCATT	TGACCTCAAT	TCTGTCTCT
	ATTCTAGCTC	AGTICCAAGA	TTTTAATCT	TTTGTATTG	ACAACCTCT	CCAGAAACTG	TATCTTATTTC
	CCTGTTGTA	TTGGTGGTAC	AATAGTTAA	TTTAAGACTT	GGAAATCAA	GTTTCACAT	TTTAGACCT
	GCCATGGCAT	TTAC TAAACAC	GTACAACTT	CATGTTCTTAT	TCCTCATCTG	TCAAATTAA	GCCATTATTG
	CTACCTTGCT	CTAGAGACTT	CAAGGAAGAA	TGGAACTCAAG	GAATCAGAAG	AATTTTGTA	TTTGGAAACT
50	ATATGAGATG	AGATTAGGG	GAAACATGGG	AACTAAGAGA	AAATGTTATC	TTTTTCATT	GATTAAAGA
	GTATCTATTA	TATATCAAGC	ATTACTCTGG	GGCTGAAGA	GCTTAGATT	CACCTGTAG	GACAAAATGG
	TAGGTAGAAA	TTA TGGGTG	GATTGTATG	TATGTGTGAT	GTGTTTAAT	TGCTTTAAT	TGATCAGTCT
	CCCTGTAGTA	TGAATTAATG	ATTTGAGGG	AGCTAATTAA	AAATTGTGA	ACTCATCTAA	TAAACTATTG
	CAAGAACATCA	GAAC AAAGAT	AATGACGGCA	ATGGTAGTAG	AGTTGACAAG	TGGAAGACAA	ATTAGAAAAAA
	CACTAAGTTG	TAAT AATTGG	TAGAATGTTA	CCCTGCATAA	ATGTTGGGG	AGTAAAGAGA	GTCTCATACC
55	AGGGTGCCCA	TGTAATGGT	GATTCCACAT	ACTGAGATAA	GAAATACGAA	GAGAAAAGCT	GACTGGGAAC
	AATTGGTTT	ATAGCTTTT	AAACATCCA	AAGGACATCC	TATAGCATTT	TGAGTTCTGAG	GCTGGAGATA
	GGCTTATCG	TCCAAAGATC	ACATAGATT	GTGAGTCCGC	AAAAGTCAGT	AAGTTGACC	AAAGGATACA
	TGTAGATTAG	AGTCAGAAGA	GCAATATACA	AAAGACAAAAA	GCTGAGAAAT	TATAGTAGTT	TATGGTCTG
	GATAAGTGCT	CATGAAGGAT	CTCAGGAGAA	ATGATCACAG	GTAGAAAGAA	TGAGAAAAGA	GTGATATGAG
60	AGAAAACCAAG	ACAAGAAAAA	GTAAAATGTT	AAAAATGAGT	GAAATAGGC	TACCAATAAT	TAAAAATGAG
	TAAGGATAGC	ATACCAATAA	CATAAGGGTT	AAAAAATAGA	GTTCAAAAT	GGGGTGAGGG	TAAAGTATTA
	GGAAGGAGTC	ATGGCCCAAG	GATCAAGTGA	AATGAGTTAG	ATCTATAGAT	CTATTCTAGT	TGGTTGACAT
	TTAAATGTTA	TTTGTGTTTA	ATTCTTTATT	TTTACAAAC	ATTGCTTTT	AAAAAAATTA	AATTGTCCAA
	TTCAATTCTAG	GCTCACAAAGC	AAGTGCCTCA	TATATACAGG	CATTGTTG	ATCCCAAAGA	TGCAATGATA
65	AATAGGACAC	TTAC TGATCT	CAAGAAGTT	TCAGTACCAAG	AGGAGACGGA	CAAGTGAACA	GATGACTTCA
	ACATAAGTGG	GAG/ AATGAG	GAAGAAATAT	GTGGAGCTAT	CAGAACTAAG	AAAGCTTCCT	AGAAGAAACT
	GTCTTGAAC	AATGTCTAA	AGATGACATG	TTTTTGGCC	ATGTGCAAA	TGAGAGAGAA	GGCCACCAAGC
	AAAGTCAGTG	TGCTACAGAG	CACATGTTGTT	AAGTGTGGAG	AACTGCAAGA	AGGAAAGGAA	CTACTAGAAG
	GAAAAAGCAA	GAT ACTTTCT	GGGTAACCTCA	GCCTCCTAAT	GATAATGGC	ATAGTTCTT	CCAGACCTTA
	GAGTTCTAAT	TAAT CTAACA	AGCTCATTAG	ATCGTGAGCT	TCTTGAGAGC	GGGAATCTAC	CATGCTAATT
	CCTTATGGTA	ACCC TGACAG	CTTTTATCCC	AAACACTGTGC	TTCTTGTTG	ACTCAAAAAG	ACTTGTTGAG
	AAAGTGAGTCG	AAA TTCTCATG	CTGACTTATG	AAATCTTAC	GGAAAGGTAA	CAATATTGTG	AAAGCAGAGC
	TTTCTGATCA	AAAC TCCCCTA	TTTCTCAGAG	TGGTAGTAT	CATTGTTGTC	CAACCAGCTT	CATGATAAGC

	TATAATGATT	CCTG T GACTT	TACCTAAGAA	GAAGCAAAGA	AAGGAAAGAG	ACTTACCAAA	CTGACACTGG
	GGCCCATAGT	ACCC'CACATC	ACAGTTGCAG	GTGTAATTAT	TGATGATTTC	TACACATTCT	CCATGGCCAC
	TGCATGACCA	GGGC'TGGCAA	GAAGCTTAA	GGAGGTCAAGA	AAAAAAAATAT	TTAAATGTGA	TTACATTTA
5	GTACTCAAAG	TCAITTCCTT	AGACATAGAT	AACCTTTGT	CTGAGATGAT	TTAACATAATC	AGGAAAGGTT
	TATTGTAAGA	TTCA TAGCAT	AAAATCATA	TGCTAAAATT	TTTACGTATA	AAATACACTA	AGCATATAAGT
	CATAGGCATT	TATI TGCTTT	TGGAATGAAA	TTACCAATAC	TAATATTCTG	TAACACTTAT	AGGAAACTTA
	GTGGCATACC	TTGA AACTCT	TGAAATTACT	TGTTTTAAT	GAGTGAGAAG	GTTAAATGAT	GACCTGACCT
10	CAATCATTC	TGCA TGCAT	TATTTCTTGG	CAATCCCTT	CTTTATAGAA	ATCAAAGATT	AAAAAGTCCA
	AATTGCTAA	AACC GTAGAG	TCCAATTAT	AAGAGACAA	ATTAACTATG	GTTCATATT	AAAACATCAC
	TTGAAAATG	CTGC CTGTTT	TGGAATTGTA	GAAGATTTA	CAGAAATATT	CATACACCAA	AGATAGTGC
	ATTTTATAT	AAAATATAT	AAGGTAGAG	CAAGAAGGAA	GCACGCGCA	CCACACTCTC	TACTTCACAA
	TGTAAAATC	GAGGTGATGT	GAGCCTAAGT	TTCCAACTGG	CCCCAGCTGT	CAGCTCTCC	TCCCCTGCT
	TATTATCAA	GGC CTGATT	GTCTAGCTCT	TCCTCTGTAC	TTCCCTACGTA	GATCTATCAT	TTTGATGTA
15	CTTGATTAG	GGGTATAGCT	TTTGTGACA	GGGACAATC	TTACACACCA	AAAATTCTTA	GGAGTGACAC
	GATGCAAGAT	TATA TAGAGG	GCTAGATGTA	TTTTAGAATG	AACCAGAACG	TGTTCTCATC	CCCCCACCTT
	TCCATGGGGT	AAA'CTGAGT	ATTCTCTAA	CCGTGGCCCT	TCCTGAGTCT	GAGGCAGCAT	AGCCGTCTTG
	TCACCCCTA	CCTG GTAAAC	AGAGGGCTGC	CTTAGTTTG	TGGCAGGCGT	CATCGTCCA	TTTGCCTGCA
	TCTTGTTC	TCTT GATATA	GATCTCACG	CAGTCCTCT	TGTTCTCTT	GTTGTTGGGC	TCACCATCTC
20	CCCAGTCTC	TGCT CTTCA	GTAAGAGATT	TGTTGGTTCC	CAACCCACGTC	CATATTCTC	CTATCTTCG
	GATTCTATC	CA GTAGTAA	AACGACTGAA	AGGCAGAGTC	TTCTCCAGAT	ACTCAATTTC	CGCCTTGTT
	TGTATGGCAA	CTAA ATCTGT	GTAATTGTC	CGGCAGAAC	TTCTAGCCCT	TTGCCAGTT	ATGGGTTTT
	CAGAATAATG	GTA GTCCAG	CAGTCGGTTC	CATGATGTGC	CAGGAAATCT	CAAGACACAT	AGTGTGACCT
	ATGCAGACTT	ACAT AATGTT	ACAGCTAAA	AGAACCTAGC	ACTACTCCAG	GCTGAGCTAG	ACACTTAGAG
	ATGAGGAAAC	AGAGCCTAAG	AGTGTATGT	ACCATCTCAG	GATCACAGAA	TAGTTGTTG	CAGATTGAA
25	GTAGAACCTA	GACCTCTGG	CTTGAATATA	AGATGCTTT	ATCTAAGGTT	CTATTGAAA	CAAATTAGT
	GGTTTCTAG	GTTI ATTTC	TTATTAATT	TTTCTCAA	ATTATTCAG	GTGAAATT	ACCAACATAT
	TTTAGACATT	CATA TTTCT	TTTCTTGT	GCTGTTAATG	ATTTACAAC	AATTACCGTG	TAATATCATA
	TAACTATACA	ATTI ACGTAT	ACTTTTAAT	CCTGGAATCA	TTTCTTGAAG	GCCAACACAT	ATGTACCTAT
	GGGAGAAGCA	TAA AAGGAC	AGGAAGAAC	GTGACATACT	TTTAAGTAAC	CTCTTTACA	AAAAAACAT
30	TTTATTTAC	CATA GGAAGA	ACTGCTCTG	GAAAAGCCCA	ATATACCACT	CAACTCTTAT	ATATCTAACT
	GTATAATT	TA AAAAGAAC	AATTACAAA	GCCAAATGGT	ATAGGATTAT	GAAATTCTATT	AGATCATGTT
	CTATACACAA	AGAGACTCAA	CTGATGATGT	TTAATAAACA	TATGGACCCA	TCAAATATGA	GGGCTTTGAA
	GATATCTAAT	TA AA CACATA	ATTACACAA	GACTTCATAA	TAATATATGG	CATTCTAACG	ATGGTATGAT
	CTACATGAAT	CA CTTTTAA	TACAGTAAG	AAACAGATAT	AATTGATGGT	AAAGAGCATC	ATAAAATAAA
35	CATTTGAAC	AGAC TTTGA	ATGAGCATT	CACTAGAATG	CAAGTTCTAA	GAGGGAAAAA	ACTGTTGTT
	CCACTGCTGT	ATCCTTAGTG	CCTAGCATAA	ATTCACACA	TTGTTAGGGAC	TCAGAAAATA	CCTGTTGTAT
	GAAAAGAGCA	CTA AGTTCT	ATGTGACACA	GTGAGACAT	GGCATAAGGA	ATGTGTGAAC	GGGAGAGTTA
	GCATGTTGC	TG GCTAGAG	CTGAAAATCC	AGGCTAGGGA	GAAAGAAGAC	ATTAGTTAC	TTAGGAAATG
	AAAAACCAAG	TTC AAGCTA	TTGCTGGAGA	GTCTTCAAGA	ATCAGATATA	AAATTGTC	CAACAATGGG
40	AGAAGGACCA	AAA AATGATA	AACCCCGTC	CCTTAATAG	CTCGTATTGT	AATTGAGAA	ATGACATTAA
	TGTACACTGA	ACTA TGAATA	AAAAATAGAA	AATGAGGTGC	TAATATTG	GTACAGATTG	TAAGTACCTT
	AACAGAGATT	TCT AATTAA	CATTATTCT	TTATAATTGA	GGGATTTTG	GGGGATTATTG	GGGATTGAAAC
	TCTACAGCAT	GGG TATTAT	AGGTAAAAAA	TAGTGTTCAG	GAGTTCTGG	GGAAGAAACTA	AAGGTAAGAA
	GAAAAGAGAT	GTT ACAGAA	GGGATAGAAT	TAACAGCTCT	GTGAAATAAT	TTTCCCTAG	ACTATGTATA
45	ACTAGTGGAT	ATTIAAGAAA	AATGAATATA	AGTAAAATAG	ACTTAGCGAT	ATATAAATAT	CATAACATAC
	CACAACAGAG	CAT GTCCAC	CCCCACAAC	TGAAGATGTT	CCATAAGTCC	CTCTGGGTGC	TCTGACATT
	CCATGGAAAT	ATC'GCAAAT	GAAATACAA	ATTATATTTA	GATGTATACT	CTTAAACCAC	ACATTATAG
	CCTTTGAGGT	GGTC CTTACA	ACTTTCTAA	TAATCAGAAT	AAAACACATA	TGTCTACTAA	CCCTGCTGTA
	GGTAACAGGT	TTCT CAGACA	TAGATGAAA	ATTACTTCAA	ATTTCACATCA	GAACGTGATGC	ACAGTTTTGT
50	TTTGTCTAT	TTTA TTTTA	CGCTTATGTC	TCAAGTTGCT	AATCGGTACT	GCCCTGAATT	TTTTCTATGG
	TTTGGTAATT	TTTA TACCTG	CTTTCTGCT	GAGCTATTAG	ATAAAACAT	TTAATATT	CTATGTATAT
	TTTTAAAGT	ATTI TTGCTG	CTTAATTAAC	TATTGATGCT	TATTTTAAT	GTTTACGCT	CACTCTTGAT
	CATAATGGGT	CAAT GCCTCA	AATACCTAA	AAAAAAA	ATTAGATAGC	CAGACACCAG	GAAAGAAAAG
	TATTCTTTT	TTTA ATAAAAA	AGAAATACCT	TTTGAGCAA	CTGAAATGAC	AAAGTCACAA	ATTCCTGCA
55	CACCTAAAAA	TATA CTTAAT	GTAAATGACG	AGTTAATGGG	TGAGCACAC	CAACATGGCA	CATGTATACA
	TGTGTGACAA	ACCT GTATGT	TGTGCACATG	TACCTAGAA	CTTAAAGTAT	AATTAAA	AAATTCTATC
	TTCCAAAGCA	TATC ACTTCT	CAGGTAGACA	CAGTGTCTT	TGCAAAAGAT	CTGATTTC	TAGTATTCT
	TCAAGAGTCT	CCCCAGAGAC	AAAGTCAAGA	AGAGGAATC	AGCATATCTG	AGAAGAAAGA	TTTCAGGATC
	ACTTTTTTG	AGGTCTGAG	AAAATGTTA	GTTTCTATAT	TATTTAAAC	CAGAATTGAA	ATGGGGTGAT
60	TCCATCTCTT	GCC A CCTGCC	TCTACAAACC	CAAGAGTTTC	TATCTGAGCA	TCTAACAGTC	TTTTAGGCTG
	AAAGGCTCAC	CAT GGCTTTG	CTTGGTCCTT	CTCTAGTTCT	TCTGCAGCCC	ATTGAGCCTC	TTGACTTAGC
	ACAAGGGTCT	CAGG T CTTTG	CCCCAAGGGA	GTGTGCTGTG	CTGCAGGTAG	ACTGCACTGA	ATGTCAACAG
	AAAGCCTTGC	TTT CTTTCAT	TTCTCTAAC	CAGTCTCACA	TCCTCCTCT	CCTCCCTTT	TCCCTCCCC
	TCCTCCTGCA	CTTC TCTTTC	CTCTTCCCC	ACCCCTTCC	TAGACTGGCC	TCTATTGCCT	CCCACTGAGA
65	CAAAAATGAA	CTG CTGATCA	GAAAGTAATG	TGACTAGATT	CTCTCTTCC	TCCTCCCTTT	CTATCCTTCC
	TTCCATTCTC	CTAT'GCACT	TTCCCTACCC	TCCTCCCTCT	TCACTCATG	TTGTTGCTGT	TCTTCTTCC
	CTTCTTTTC	CTCC TGCTCC	TCTTCTCTA	CTTGTCTTG	TTCTGTTTT	TGTTGGTTC	TTGTTCTCCT
	CTTCCTCC	CTCI CTCTCC	TCCTCCTCT	TCTTTCCAC	CACCCCTCCCC	TATCTTTTTC	ATAAAATGCTA

	AACTAACTCT	TGGCTACCTG	TGGTAAATGG	CCCTGGAAA	TTGCAAATAC	TACAAATCAA	AACTGCATT
	CAGACATATT	TATCAGTTT	GCAAAACTTC	AGTAGAGCTA	AGCAGTGAC	TTGACTCGTT	TCGGTTCCCT
	CACCTCCGTC	TTTCCCTGCT	CACCACCTAG	TGGACGTCT	TGTTAGTGGC	ACTTCCTGAA	GTTAACCCCT
	GAAGAGAGCC	CATGCTCTCT	AGCTTTTCAC	CGTGTAGGTT	TGGGAGCCTA	CAAGTACCTT	TAATATTCTT
5	GGACTATAAA	ATGAGATGGT	TTTATAAGAC	TGCATGTGAA	ATTAGGACCC	ATATGATGAA	GGACAATAAA
	AAGGAAGACC	CACTGATGTG	AGTCAATGAG	TCAAATGCAA	ATCAGATTG	CATTTTAGG	AAAATAATAA
	TAACAACAAC	AAA\ACTCTG	AAGCTCAGCG	CCCCATATT	ATTATATTGT	TTAATCTTTA	TAACAGCTCT
	CTGCTATAGA	TATGATTATT	ATCCCCATTC	TAAAGAGTCT	CAAAGAGGTT	AAGAAACAAA	TTCAAAAAC
10	AGCGAAAGAC	AAGAAATAAC	TAAGATCAGA	GCAGAACCAT	AGGAGGTTAGA	GACACGAAA	AGCCTTCAAA
	AAATCAATAA	ATCCAGGAGC	TGCATTTGA	AAAGATTAAC	AAAATAGATG	GACCACTAGC	TAGACTAATA
	AGAAAGAAGA	ATC\ATAGAC	ACAATAAAA	ATGTTAAAGG	GGATATTACC	ACTGATCCC	TAGAAATACA
	AACTACCATC	AGACATTAC	ATAAACATAC	TTACACAAAT	AAACTAGAAA	ATCTAGAAGA	AATGGATAAA
	TTCCCTGGACA	CATACACCC	CCCAAGACTA	AACCAGGAAG	AAGTCAATC	CCTGAATAGA	CTAATAACAA
15	GTTCTGAAAT	TAAGGCAGCA	ATTAATAGCC	TACCAACTAA	AAAAGGCCA	GGACCGATG	GATTACAGC
	CAAATTCTAC	CAGAGGTACA	AAGAGGTGCT	GGTACCATTC	CTTCTGAAAC	TATTCCAGAG	AATAGAAAAA
	GAGGAACCTC	TCCCCTCACTC	ATTTTATGAG	GCCAGCATCA	TCCTGATACT	AAAACCTGGC	AGAGACACAA
	CAAAAAAAAGA	AAA\TTTCAGG	CCAATATCCC	TGATGAACAT	CATTGCGAAA	ATACTCAATA	AAATACGGCA
	AACTGAATCC	AGCAGCACAT	CAAAAAGCTT	ATCAACCACA	ATCAAGTTGG	CTTCATCCCT	GGAATGCAAG
20	GCTGGTCAA	CATACACAA	TCAATAAAC	GAATCCATTA	CGTAAACAGA	ACCAATCACA	AAAACCACGT
	GATTATCTCA	ATAGATGCAG	AAAAGGCTT	GGTAAATT	CAACACCCCT	TCATGCTAAA	AACTCTCAAT
	AAACTAGGTA	TTGATGGAAC	GTATCTAAA	ATAATAAGAG	CTATTATGTA	CAAACCCACA	GCCAATAGCA
	TACTGAATGG	GCA\AAATCTG	AAAGCGTCC	CTTTAAAAC	TGGCACAAGA	CAAGTATGCC	TCTCTCACCA
	CTCCGTITCA	ACAT\GTATT	GGAAGTCTG	GCCAGGGCAA	TCAGGCAAGA	GAAAAGATA	AAGTGTATT
	AAATAGAAGA	GAGGAAGTCA	AATTGTTCT	GTTTGAGAT	GACATGATTG	TATATTAGA	AAATCCCATT
25	GTCTCAGCCC	AAA\TCTCT	TAACATGATC	AGCAACTTCA	GCAAAGTCTC	AGGTTACAAA	ATCAATGTGA
	AAAAATCACA	AGA\ATTCCTA	TACAGCAATA	ATAGACAAAC	AGAGAGCCAA	ATCATGAGTG	AACTCCCATT
	CACGATTGCT	ACAAAGAGAA	AAAATACCT	AGGAATCCAA	CTTACAAGGA	ATGTGAAGGA	CCTATTCAAG
	GAGAAGTACA	AACC'ACTGCT	CAAGGAAATA	AGAGAGGACA	CAAATGAATG	GAAAACATT	CCATGCTCAT
	GGGTAGGAAG	AATCAATATC	ATGAAAATGA	CCATACTGCC	CAAGGTAAATT	TATAGATTCA	GTGCTATCCC
30	CATCAAGCTA	CTACTGACTT	TTTTCACAGA	ATTAGAAAAA	AACTACTTA	AATTTCATAT	GGAACCAAAA
	AAGAGCTGT	ATAGCCAAGA	CAATCCTAAG	CAAAAAGAAC	AAAGCTGGAG	GCATCATGCT	ACCTGACTTC
	AAACTATACT	ACAAGGCTAT	AGTAACCAAA	ACAGCATGGT	GCTGGTACAA	AAACAGATAT	ATGGACCAAC
	GGAACAGAAC	AGAGGCATCA	GAAATAAAC	CACACATCTA	CAACCATCTA	ATCTTGTACA	AAGCTGACAA
	AAAGAAGCAA	TTGG\GAAAGG	ATTCCCCATT	TAATAATGA	TGTTGGGAAA	ACTGGCTAGC	CATATGCAGA
35	AAACTGAAAC	TGGATCCCTT	CCTTACACCT	TATATAAAA	TTAACTCAAG	ATGGATTAAA	GACTTAAATG
	GAAGACCTAA	AACC'ATAAAA	ATTCTAGGAG	AAAACCTAGG	CAATACCATT	CAGGACGTAG	GTATGGCAA
	AGACTTCATG	ACTAAACAC	CAAAGCAAC	AGCAACAAAA	GCCAAAATTG	ACAAATGGGA	TCTAATTAAA
	CTAAAGAGCT	TCTGACAGT	AGAAAAAAA	AAACTATCAT	CAAAGTGAAC	AGGAAACCTA	CAGAATGGGA
	GAAAATTTTT	GCAATCTATT	CACCTGACAA	AGGGCTATAA	TCCAAAATCT	ACAAGAAACT	TAAACAAATT
40	TACAAGAAAA	AAC\AAACAC	ACCATCAAA	AGTGAAGTGA	GGATATGAAAC	AGATGCTTCT	CAAAGAAGA
	AGTTTATGCA	GTCAACAAAC	ATATGAAAAA	AAGCTCATCA	TCACTGGTCA	TTAGAGAAAT	GCAAATCAA
	ACCAACATGA	GATCCTACT	CATGCGAGT	AGAATGGCGA	TTATTAAAAA	GTCAGGAAAC	AACAGATGCT
	GGAGGAGATG	TGG\GAAATA	AGAATGTTT	TTACAGTGT	GGTGGAAAGT	TAAATTAGTT	CAATCATTGT
	GGAAGACAAT	GTGGCGATT	CTCAAGGATC	TATAACTAGA	AAAACCATTT	GACCCAGCAA	TCCCATTACT
45	GGGTATATAC	CCAAAGGATT	ATAAAATCAT	CTACGATAAA	GACACATGCA	CACTATGTT	TATTGAGGCA
	CTATTACAAA	CAGCAAAGAG	TTGGAACAA	CCCAAATGCC	CACCAATGAT	AAACTGGATA	AAGATGATGT
	GGCACATATA	CATCATGGAA	TACTATACAG	CCATAAAAAA	GGATGAGTT	ATGTCCTTTG	CAGGGACATG
	GATGAAGCTG	GAA\CCGTCA	TTCTCAGCAA	ACTAACACTG	GAACAGAAAA	CCAAACATTA	CCCATTCTCA
	CTCATAAGT	GGAGTTGAAC	AATGAGAAC	CATGGACACA	GGGAGGGGAA	CATCACACAC	TGGGGCATGT
50	CAGGGGATGT	GGGGCTAGGG	GAGGAACAGC	ATTAGGAGAA	ATACCTAATG	ATAGTGACAG	GTTGATGAAT
	GCAGCAAACC	ACCA\TGGCAC	ATGTATACCT	ATGTAACAAA	CCTGCACGTT	CTGCTCATGT	ATCCCAGAAA
	TTAAAGTATA	ATT\AAAAAA	AGTTAAAAAA	AAGAAAGTTG	CTTCTAGTCAC	ATAACTAGTA	AGAGACATGG
	TTGGGAATT	GAACAGAGGC	CAATCAGTC	CAAATCCATG	CTCTTGATCA	TTAAAGCTGAA	CTTATGGCAG
	GAACCTGGAA	GACATGGTAA	AATGGGGAAA	AACGTGGAGC	CAGGGAGACT	TGTGAAAGTG	CCAGTGTCTC
55	CACTATACCC	TGA\AGAAAGT	ATCTAGACTT	ACTTTTTCT	AAAGTCCTCT	CTCTAATTCT	CTCAATCTCT
	CTCTCTCTT	CTCT\AGAGA	TGGGAATGCT	GCTCTGTAC	TCAGGCTAGA	GTGCACTGGT	GCGATCATAG
	CTCATTGCAC	TCAAGGAATC	CTAGGGTCTA	GTGCCCTTC	TCCCTCAGCC	TCCCAGTGTAG	CTAAGACTAC
	AGGCACATGC	CCC\ACCCCTC	GAFTAATT	TTTATTTTTT	ATTTTTGTAG	AGACAGGATC	TCACTATGTT
	GCTCAGGCTG	TAATCTGTC	TTGAAGCTG	TCCAATCAGG	CTTTCAGCCA	CACCAATTCC	CTGAGACTGC
60	TCTCACCAG	GTCTCAGACT	TCACTAACAC	AAACAGCCTA	TTCTCCATCC	TCATCTTACT	TCACCCAGGA
	GCTCTGGTT	TTCCCTCTAC	TTCACTGGCT	ATTCTCTG	TATCATGTGT	TGATTCTCCC	TCATCTCCCC
	AACCTCCAAA	CCCTTGAGAT	ACTCCAGAGA	TCACCGCTTT	GCTCTCTGT	GTCTAACCTC	ACTAACTTGG
	TGGTCAATT	CACACTCTG	ACTTTGAATA	CCATTAAAT	GCAGAACGAAT	TCTAAATTCT	GTACAACCAAG
	AACCATTCTC	CTGTAGCCAA	ATGCCTACTC	AACATCTCCA	TCCCCAAACA	AATTAGTTG	TTCAATAAGC
65	CTCTCATATT	TTAC\ATATCC	CAAACGTAAAC	TTCTGAATT	CTCCTCCAAT	CTGTAGGGCT	CTTCCCACAG
	CCTTCCATC	TCAG\GGGATT	ATAACTCCAT	CCTTCCAGTT	ACTCAGACCA	AAACTTTGG	AGTTAACTGA
	GACACCTCTC	TTTTTTTCA	CAAGTCATAT	CCAATGTGTC	AACAAATT	GGTAGTGGAA	ATATTGCAGG
	ATTTTTAAG	AAATCAGAGA	GACCGATGGG	GTTAGGAGG	ATATTATTAA	TTTAGGTGCA	CTGGCCAAGT

	CAGATTAAACA	TCCAAAGGAC	TGAGCCCTGA	ACAAAGAGTT	AAGTTACCTT	TTAAGCATT	TGTGGGGTGG
5	GAGAGAGGGG	TATCTGTGCA	GGGGGAAGCA	TACTACAGAA	GTGAGAAATA	AAGACAGTTA	TCATAATTAAAT
	TGAGACATGC	ATTACATCAT	TTCTTACTTT	TCAAGAAGAA	ACATGTTTG	CGACTTGAGT	TTATCTGTCT
	AGTGACCTTG	CAGCTGCACA	GCTAGAGAAA	CAGGGTCTTC	ACAATGCCCTG	GGAAAGGAGG	AGAGGTAAGT
	CTCACTAGCC	ACAGAAAAAC	AGGCAGTTAA	TTTTAAAGG	GCTCCAGCTC	TTTCTCTTTC	TCAGGGGAG
	TTGGGTTTTC	TTACATCAA	CTGAGTTCC	GCTTACACAT	TATTTAATT	CTTTTAATTTC	CTGTTCCAAA
	AGAAGCCAGA	TACAAAAGGT	TACATGTTGT	CTGATTCCAT	TTATATGAAA	CATATAGAAG	AGGTAATCC
10	ATAGAGACAG	AAAATGAGTT	AGAGGTTCCC	AGGGGCTGAG	GAAGAAATGG	GGACTAATCG	CTTATAGGGT
	ACAGAGTTT	CTTCTGATAA	AAATATTITG	GAACATAGATA	GACATTITG	TAGGCCATT	TTGCAATTGTT
	ATAAAAGAATT	ACCAGAGACT	TGGTAATT	TAAAGAAAAG	ATGTTTAATT	GGCTTACACT	TCTGCAAGCT
	TTACAGGAAG	CATGGTCCG	ATATCTGCTC	AGCTTCTGGT	AAGGCCCTAG	GAAGCTTACA	ATCATGGCAG
	AAGGTGAAAG	GGGAGCAGGC	ATATCACATA	GCAAAAGCAG	GAGCAAGAGA	GGGGATGTGGG	GAGGTGACAG
	TCACCTTAA	ACACCCAGAT	CTTGTGAGAA	CTCATTCACT	ATCATGAAGA	CACTACCAAG	AGGATGGTAC
15	TAATATCATT	ATGAGAAACC	CCACCCCTCAT	GATCAAATCA	CCTCCCACCA	GGCCCCACCT	CCAACACTGG
	GGATTACAAT	TTGACATGAG	ATTGAGTGA	GAACACGGAT	CCAAACCATA	TCAGAGATGG	TGTTTATACA
	ATCGCATAAA	CGTCACTGGA	TTGTACACTT	TAAGATGTT	GTTTATGTT	GTGTGAACCT	CACCTCAATA
	AAAAAAAATA	TTTATGTC	ATTCAAGCCAA	AAGAAGATTT	GGAATAGGAA	AGGTATGGA	GATATATTAA
	CAAGCATT	ATGCGTGTAA	AGGAAAAGAG	TGGITATTAG	ACTGTTTGT	GGCCCTCAA	AGGTTAGAACT
20	AGATCGAGTT	GGTCAGCATT	ATAAAAACCAT	CACAAACCC	TGGAGAGAGG	ACCCAGTGT	GAAGAACCGT
	TTGCTGCCA	TTGAGACATGA	GGGAAGTACC	AGTGAATGCC	ATTGAAAGCA	GCATCCCTGG	GTCCAAGGGG
	TGGTCAAAGG	ACCACATACC	AACCTTCCC	TAGCCTACGC	CTCCATTACA	GATGACCGCA	AGATTATT
	GCTCATGCT	GCCAACCAAG	GCTGCACTCA	CTGCAGTTGC	TATCAGTTA	TCATGGTTA	AAGGAATGTC
	CACTAGAGAA	CTAACTAACT	GCCCACCTAC	CTCCACAAATC	CTATCAGGAC	AAATCACC	GGCTCACATT
	TCCTTACATT	TTGCATGTA	GCCCCCTTTA	CTGCTGTCA	TCTATCTCCT	CCTAAACTGT	TGTCTTCACC
25	TCTCTCTGA	CCCACCTTG	ATTTCATCC	CAAATGCTC	CTTGCATCT	CTGGGATTCC	TTTGTCAATT
	ATCACCAAAAC	TCCCCCTCAAT	CTTCCAGTTT	CCTGTTCAA	CTTTCTCCT	ACCTCCTTGC	TTCTCCACAC
	GCCCCACTGC	CTCCCTAGGA	CATCACTTCC	CCTGCAAGTC	TCTCAAGATG	ACAATATT	ATATATGTTT
	AGCACATACT	TCAAGGTTGG	AAGGCAGGGG	CAATCTTCTC	CTTATAATG	AGTGCCTCTT	TCTGCTTCTT
	ATTCACTGTC	CCTCTTGTAA	AAACACACAA	CACACACACA	CAAAGAAGAA	ATAAAATAAC	CCTCTCAACT
30	TGAAGCTGT	GACAATGAGA	TAACACATCT	CACTGTCCTC	CTTCTCTCCT	CCTCTCAACT	TTCTCATGCAA
	GATGGCTTT	GGCACTTAGT	TCCTGATCTT	CCTTCCCTG	ATTGAGTGA	ACGGGACTTC	ACGGGACTTC
	ACCATCCATG	GCACAAACAA	TACACAGCC	CAGATCCTCA	TAAGGACTTC	TCCACTAGAC	TCCACTAAAGTC
	TTGAGCTACC	TCCTTCCCTA	GGCACAGCT	CAACCTCGAC	GCTCTCCAAT	ACTGTCACCT	AGTATCTCAT
	ACATGTTCAA	ACACCTTCACT	CTTAAACCAC	TGTCTCTAT	TCTTGAAGT	GTATTGCTCA	TCCTTATTTC
35	TGCAATGCTT	TTTACTTCTA	CCTCATTGAA	CCTCCAGGCC	ATTAAACATT	TCCTTATTTC	TAACCATCAG
	GTTCTCCTT	ACTIGTTGT	TTGTTTATT	GTTTCTTTT	TTTTTTTTT	TTTGGAGACAG	GGTCTCACTC
	TGTTGCCCAG	GCTCAGTGC	AGTGGTATGA	TCTCGGCTCA	CTGCAGCCTC	CATCTCCCTG	GTTCAAGTGA
	TTCTCATGTC	TCAGCCTCCC	GAGTAGCTGG	GACTACAGGT	GCATGCCACT	ACGCCCTGGCT	AAGATTTGT
	ATTTTTATTA	GAGAAGGGGT	TTTCCCATGT	TGGCCAAGCT	GGTCTCGAAC	TCCTAACCTC	AGGTGATCCA
40	CCTGCTCAG	CCTCCAAAG	TGCTGAGATT	ATAGGCTGA	GCCACTATGC	CCCACCTGTT	TTCTCCTTAT
	TTATTCAAG	TCTAATGTC	ACTAAAAAA	CTGCCCTGAC	AAAATTATA	ATAGTGAGAA	AATTATGACA
	GTGAAAGAGA	TCTGAAATAA	TCAACCCCCA	TCTTGCCTT	ACCTTCCAGA	CTGCCCTTAA	TAATTCTGTA
	GCTGGGCCA	AGCAATCTT	GGCAGAAATT	TAGTTTATAG	TTAAATGAT	AAATAGCCCT	CTCCAAACAT
	AAACTGCCTT	TGTAAAACTA	ATAAAAGACC	ACCAATGAAA	GGTTAGGAGG	ATGAGAGGAG	CCTGAATTCT
45	GCTAAGGTGT	AGAATGAAAC	AATTACCAAC	TGTTATTCCG	GAGGTACAA	GATTGCAAC	ATCGCCAATT
	ACTCCTGCAG	ATAACAGCAC	TATCATAGAA	TCTGATTGGC	CTTTGAGAT	GTCTTTTCAG	ATTCTTACAT
	TTCAACTGGT	GGCTCTACCT	GGACCCATCA	ACAAGTCTG	TGGCTCCACC	CAGAAGCAGA	CTTAACATGC
	ACAAGGACCA	TTTICCACAC	CGCTATGATT	GCATCCCAAC	CAATCAGCAG	CAACCATTCC	TCTGCCTGCC
	AAATIATCCT	TGAAAAATCT	TAGCCTTAGA	ATTTTGGGG	AGGCTGATT	CAGTAATAAC	AAAACCCCGG
50	TCTCCATT	GGCTGGCTC	GCATGAATT	AATTCTTCT	CTATTGCACT	TCCCACATTG	ATAAAATCACC
	TTTATCTGGG	CAGCAAACAA	AAGGAACCCA	TTGGACAGTT	ACATGTTGG	CAGTATATAC	TTGCTTCAA
	AATGGATT	TTGTATTAATG	AATTATTCT	GTTTCTTGA	TATTACAC	TGTGAATGTT	GTGTCGAAT
	TCTCTTATT	TCTCTTGTAA	AAGAACATATA	TTGCTACAGC	CAGTACATAC	AGATGGATAG	CTAATTACTC
	AACACGGGGG	GATGTGACCA	TCACCGCACT	GTGCAAATGA	ATGTTACCA	TTGTCACCT	TTCCCAAACAT
55	ACATAGTGT	ATATGGTATA	TGACCCAAATC	AACGGTGGCA	AAGCTCCAGA	AATACCACAT	AGACATCAGG
	GACACTTAA	ACTAATCAGC	CTATAGCCT	TTTCAGTAA	TTTCCAAACC	TGGTTGTGCA	TCCAAATCAC
	TTGGTAACAT	AAAAAAACA	AAAAAAATATA	CACGCAACAT	TCGCTCCAA	TCCTACTGAA	TCAGAAATT
	TTGGGTTGGT	TCAGGAACAT	TCAGGAGTTT	TTCAAGGTC	AAGGTTTATA	TAATTGAGG	TCTCTCTT
	AGAAAAGGAA	CGTAAAGCG	TCTTGTGTTT	ATAGATCTTA	CAAAGATGTA	TTACCATGTA	AACACATTCC
60	TAGGACCCAG	GCCC TTGTA	TTTAAAGGTT	TATCTAAGTA	ATGGGCCCTG	AAGCTTAAAT	TTCATATTATC
	TCAGGGCAA	TTACCTGTG	GTTAGGGTTT	AGGAATATAT	CTCTCTGTG	ATGTGTGTC	ACATTAGCAT
	GTACGCTTGT	GGTC ATT	TTTTTTTTT	TTTTTTTT	TGAGACAGAG	TCTCGCTCTG	TCGCGCAGGCT
	GGAGTGCAGT	GGCTGTATCT	CTGCTCACTG	CAAATCCGC	CTCCCAGGCT	TCAGCGATTC	TTCTGCCTCA
	GCCTCTTGAG	TAGCTGGAC	TATAAGCAGC	CACCACTATG	CCAGCTAAT	TTTTGTATT	TTAGTAGAGT
65	TGGGGTTTCG	CCATTTGTC	CAGGATGGTC	TTGATCTTT	GACCTCGTGA	TCCACCCGCC	TCCACCTCCC
	AAAGTGCCTG	GATTACAGGC	GTGAGTCACC	ATGCCAGCA	CTTGTGTTGGA	TGTTTAAGC	TCCCAGGTGA
	GTGAATACAA	AACTAGATCT	TTCCCTTCTG	TAGCATCTGT	ACTGTTTACT	CTATGCATCT	CAATATT
	TCTTTAGTA	TCTTCTCTT	TTCTCTTTA	TTACTTCCTC	TTGTGCTATT	TTTACACCTC	CTTTTTTAA

	AAATTTTTC	CCTTTTATT	CTATTGACCT	TTAGCCCTCA	CAATGATTCC	TACAAGCCCC	ATTTCTGTAA
	ATGGGGATTG	AAA'TATTGC	TGGACTTTG	AGAGATAGAT	ATATTAAATT	GCAAACCTGGC	AGTAGTGGGG
	GCAGTTGATA	CATAACTAGG	TTTAAAGTC	TAGCCTCTG	AGACCACTCA	TTCCATTGTC	GAAAAGTGAT
5	TCTACTTCTT	ATTATGAGCC	AAAATATGCA	TTCATTCACC	CATGCATTGA	TTTATTCTATT	CAATAAATAT
	TTGTTGGATG	TCCACTCTGT	ATCAGGAATG	TGCTAGGTTC	TGGGAATACA	GCAATGAACA	AGGTAATTTC
	TCCCTACCCC	TAAC GAACCT	AGAGTTAGT	GGGAAGACAA	GACATTAAC	AAACAATTGT	GCAAGTAATA
	ATCTATAATT	ATTATTACA	ATTAAAGAA	GGAAGAGACA	TATGGATTAT	GAGGGCATT	AAGAGGAGAC
	CTAGTGTAA	TAGCCAGTTC	TCGTGAAGGG	ACATGTATT	GTGGAGTT	TCCAGAGAAA	CAGAACCAAT
10	GGTGTGTGTG	TGTGTGTGTG	CGTGTGTGCG	TGTGTGTGTT	GGGGTGTGGG	GGTGTGTGTT	TTTTTATAGA
	AATTGTCAC	CACATTATG	GAAGCTGAGA	AGTCCCATTG	CTCTGTCT	ACGAGCTGAG	AACCAGGAAA
	GCCAGTGGAA	TAC' TCAAAAG	TCCAAAGGCC	CTGGAACCAA	GAGTCCAGT	GTGGAAAGGC	AGGAGAAGAT
	GGGTGTCCCA	GCTTAAAAG	ACAGTGAATT	CACTCTTTT	GCTCTACATA	GGGCTCAAT	GGGTTGGATC
	ATGGCCACCC	ACA' TGGTGA	AGGCAATCT	CTTAGTCTAC	CAATTAAATA	CTAATCTCTT	TGGAATACAT
15	CTCACAGACA	CAC' GAGAAA	TAATGTTTA	TCAGGGTGT	AGAAATCTTC	TGGAGTTAA	CAATGGTGT
	AGCTGTACAA	TCACATACAT	TTTAAAGGG	TGCGTTTTAT	GGAAAGTGAG	TTTATCTAA	ATAAAATTTC
	TAAGAAAGAG	ACTTAAACACA	GAGATAAAC	TAAGCACATT	TATTGTCAAC	CTTTATAGTG	TTATGTCAA
	TAGGTCTGAC	ATAAAGCTTAA	ATAAAATAT	ACTTTAAAAA	TTATAAAATA	TTTAAGTTA	TAATTAAAAA
	TTCTCAATAA	AACT' CAAACA	CAAACACAC	TGGTATTTC	CACAGCTAAT	TTCTAATGCA	GTITACATAA
20	ATATTACAA	CAC' TAAACA	ATTCAAAAGA	AAATAACACT	GTATTCCATA	CATAGCCTGA	TCACAGTAGT
	TGTCCTCT	TATTCCCCAG	AGTTTTCTG	CCCCTTAAA	AGAACCTCTG	CTGTCCTGAT	CCTTATCACA
	TCTCTGTTT	GACI GTTGGC	TTTGTGTTG	CCAGTGTCA	GCCAGAACTT	CTCTGAAACT	TTTTTTTCAA
	CACATGCTAA	GTAAATGGAA	GTGTAGGAGA	GTTTGATTTC	TCACACTCTC	CAAGGCTAGA	GCAGCTTGG
	CAATTACTGA	CTGA' GAATT	TTCAATTGCA	GTGATCAACT	GAAAACCTGG	GATTCTTTG	GAATTGTTAA
25	ATCTGCTTAT	AAATAAACAT	AAATGCTGC	TCACACAGGC	ATTCTCTCT	TCCAGAGCAC	CCTAACATAC
	AGAAGAAAAC	AAAATAGGGAA	TAACTATTAG	ACATCTTCAT	TCGTTAAAAA	TCTACCAAGAT	GACTCTTTA
	CATGGTGAGT	TTCTATTGTG	AATTAAAAT	CTTCCATAAT	ATACAAGAAT	TATGTTTACA	TATCATATCT
	GACAAACATC	TTTGTAGGAA	TGCAAAGCAC	ATCCATCTT	CTGTATTCTT	TTCCAACAAA	GACATTCTATA
	AAATTATACC	TTTC' GTGTT	TGCATTATG	CTTTTATTAG	TCAAAACGT	TTGGCCTCAT	GGAAGTTTT
30	CATCGTGGAA	ACCACATATT	TCTGAAAAAA	TACTGTGACAA	TATACAAACC	TTCCATTCTAG	TTTTTACTCT
	CCAATTCTAC	CATC' TTTC	AAAAACAAC	GTGTAaaaaaa	CACTCAGAAC	TTTATTCTGG	TTAACATCAT
	GCCTTGTAG	GGG' CAATAG	TTTCCCTTT	TGAAATAAAAT	TTAAACACAGA	TGTAACATAA	TTTGTAAATA
	AACAATGAGG	GGG' FAATCTA	GAATAAGTAA	CTTTTACCAT	ATCATAGTTG	ACAGCATT	CAAGTTTTT
	AAGTCCCTAC	CAC' CTGTG	TTGAATGAAG	AAGTATGGAA	GATTATAATA	TATTCATGC	AAGTAAAAAT
35	ATCACAAATCC	TTAAGAACTC	TTTAAAGAACG	ACTGAATCCC	ATAGGGATGA	AAGTATTAA	ATTGTGCATA
	GTAACCCCTCG	CACAGAGCAT	TCAGTAGGAT	TTGCACCATT	AACAACCTC	CATGCATTG	CCTGTGGGCA
	TTCAACATCT	GTCATTTTT	TAAGTTATAA	TATTTTTAGT	CATTTTTTC	CTCTAAACTC	TGGATAATTA
	TTATTCTATT	TTATGACAGC	AACTGTGAA	TCAGCTGTCG	AAACACTGTG	AAGGGCAAAA	GAAAGAAAGC
	CACAAAATAT	TGTC' TTTCTG	TGCCAAGATT	TTACAGCGAG	CAAGGGAGAG	TTAGAAAAGG	AATTCTGAGA
40	TTTCAGAGTC	TTGCTCTCTT	CACCTTTGCT	TGGAAGAAAAA	TATCCTTCC	CTTCATTAGC	CAACACTTTC
	TTGATCTGTA	GAGT' AGGAAA	GGGAACACTG	AGTCTTTCA	GTTGAAGGCC	GTCCTTGCC	GCTGGACTTT
	GATCTATTGA	AGTC GTGATG	GGTGTGCGG	TTTCAGCCAT	AAAGGCATCT	GGCATAGTAG	GCAAGAAGGG
	CCAGAGACCC	GAG' AGAGGT	ATCTGTCCT	GTTAACTCTA	GTGTATCCCT	CTAGTCCCC	AGATGCACCT
	GTTTCGTAA	ATATAAACAT	GCATGTCATC	AGAACACTTA	ATATTGTCGA	TACTGATCAT	GACAACAAA
45	TGTACCTCT	AAACACAGACA	CTCTCACTAG	GATAGACCAT	GTAGGAACAT	CGAATCTAT	TCAGTTAGGA
	CAGTGTGAT	GTCI ACATAT	TATACCTCTG	TCAAAACCTA	CAGAATATAC	AACACAGCAC	AGAGTGAATT
	CTAATGTAGC	CTGIGGACAT	TAATGAATAA	TAATGTATCA	ATATTGGCC	ATCAGTTGTA	ACACTAATAT
	AAGATGTTAA	TAAC' AGGGGG	AATTGAAGGG	GTGGTGGGGA	GATATGTTGG	AACTCTTTGT	GCTTTCTGCT
	CAATTCTCT	GTAAACTTAA	AACCGCACAC	ACAAAAAAAG	TTATTTAAT	TTTTAAAAAA	GTATTCAAGAG
50	GGACTTGACC	TTTCCAATT	CTCTCAAACG	AGGTGGAGT	AGTTAGAAC	ACAAATTAA	GAACCAGACT
	GCCAGAGTTT	GAA' CCTGGC	TACACCATT	ACTAGTTTG	AGATTTCAGA	CAATTACTT	AACTTCTCTG
	TCTCATTTTC	TTCA' TCTGT	TGATAAGAAA	TAAGTAACA	GGCCAGGGCC	AGTGGCTCAC	GCCTGTAATC
	CCAGCACTT	GAGAGGCAA	GGCGGGTGG	TCAGGAGTTC	AAGATCAGCC	TGGCCAACAT	GACGAAAAAA
	TACAAAATCT	CTACTAAAAA	TACAAAATT	AGCTGGGTGT	GGTGGCAGGC	ACCTGTAATC	CCAGCTACTC
	AGGAGGCTGA	GGCAGGAGAA	TTGCTGAAC	GCAGGAGGTG	GAGGTTGCG	TGAGCCAAGA	TCATGCCACT
55	GCACCTCCAGT	CTAGGCAACA	GAATGAGACT	CCATCTCAA	ATTAAAAAAA	AAAAAAAGTAA	AAAGAAAAGA
	TAAGAAATAT	AGTACCAAGCC	CCTATCTAG	AGTCCCTAGC	TTAGAAAAAT	TCCCAGAAATA	TAATAAGTGC
	AATGTAAGGG	TCAGCTATCT	TCATTATTAT	TATCTATCAT	AAATGAAATT	ACACAATAAA	GCTAGATCCG
	TTCTCTTCT	CTCC' TCTAC	AAAAAATAAA	GCAACTTTCC	AGAACAAATAC	CCAGGTGATG	ATTTCCTCCC
	TGCTCCCTCC	CTAAGATATT	GGCAAGTTG	GAGGGTCAA	GGAGAAACAG	AGCATGTAGA	GAAGATAACCT
60	CTCTCATAAC	CATITGTGAT	TTACAAGTCT	TACCTGATTC	TTTGAACCT	AAAGGATGTA	AGAAGGCTTT
	TGGTAGCTTC	CATCTGATTC	AAGGCTTGG	CAGCTGCTGT	GGAAATACATG	AGAACACTAG	GTAAAGCAGT
	GTCTCCAAC	ATGAAGAGAG	AAAAATATGT	GGATGTTCA	ATGGCATGCT	TTGTATAAGA	ATGCAACTTA
	CCTGGCAGGA	ACA' ATTCT	TTGCTGCAA	AGAAAAGACA	AACAACCTT	AATTGAGACT	AAATGACTTT
	TAAGGATATA	TTAAATCCAG	ATACAATATG	ACTTAATTCA	TCAAGTGTG	CAAACCTCGAT	GCTTCAGGGC
65	CTCTGTAATA	ATCAGAGCAC	AAGCATGGCT	CTGTGGCATC	TAGGGTAAA	TGCAAGTGC	ACAGCCATCC
	AAAGGGCATA	GCA' GCTTCC	AATGCCAGCA	AATAGCTACG	GGGTCACTT	GCCCAATTCA	GCTCCCAATT
	TTTCATGAGA	AGTC' CAAAGT	CTTAATTAA	ATGTGAGATT	TCCTATTG	AAACGTCAG	AACTTAAC
	AAAAATGTTT	TAAC TACTCT	TAAACATGTA	AGCCAAACAA	ACCATGAGTG	TAGTCAGATG	TGCTTCCATA

	TTCCCTTATGA	GAGACTCTCA	AATTAAAGCC	TGTACTCCAA	ATAAAATCTCC	TTAGGAAGAA	TTTTATCCAT
	TTTCCTTAGA	GTGCTCATCA	TGGCAGTCC	ATTGCACAAT	TCCGGGAGGC	ATCATATAAT	TCAACATGAA
	TAGCACCCCC	TGGAGTTGTA	CAATATTAGG	CAGGACTAAC	ATTTTATT	CCTGAAACAC	TTCCCACACT
	GAGTTGACT	ACTAACTCTT	TTCTTAATAC	TTCTGCTTAA	TTATACTGCA	TTTTATCCAG	ATTCTAATTA
5	TTGTTTAAAT	CAGTAAGCAA	GACCATGACT	TATCAATGAG	AAAGAAATGT	ATTTTCAAAA	ACATTTTGA
	AGTACATTCA	TAAACTTCCCT	CACCTTCCG	TAAGCATTTC	CGAAGCCAGA	GGAGAAATGG	TGCTAATGTC
	AGGAGGGAGA	GTCCAGCAGC	AGAAAAGTCCA	GCTACCAAGG	GAATGTTGA	CTCAGTGGGA	GCTAAGGAAG
	TAAGAGACGA	AGAAAGGTCA	TGAGGAAGAA	TTGATGTTAA	AGTCTCTCCG	TCCTGTCCT	TTGGCCTTT
10	TTCTGTACAT	TCATTACTAG	GAGCAGAAGA	GCTATCTAGT	TTAATACAAG	AAGCAGAGAT	GTGGCATTAC
	AGGCCCTTGA	GATCTGCTCC	AAGCCACCTT	TGAAGCTATT	TCCACCATG	GCAGGCAGAA	CTCTAACTTG
	CCAAGCTCGT	TCACAAATACC	ACACACACC	TTGTTAATA	AAACACTGCAC	TTGCTGCTC	TCTGCTCTC
	ACTCCCTCTT	GTITTCATT	TCCCCTTCT	CCTCTCTCT	CTCTGTCTCC	TTTTCCAGT	TGTCAGAATT
	CTACCCCTTC	CATCAACATG	CAACTCTGT	TTTTCTCTA	TCCCCATACA	ACTTAATATT	CACAACATTGT
15	CAACCTGGGC	GAACTTCTG	GTGGATAT	AATGAATAGT	TGATTACTGT	AACAAGATAG	CTCCCCCTT
	TTCTTTTAA	TCACCAAGACA	ACCACCATCA	ATCAATGCAT	CACCTTCACA	GGTAGGTAGC	AGGCCAGACC
	AGTGTCTGT	GGCTCCACAT	GTCCGAGCTG	CAGAGCCATT	GAGCGTCCAT	CCTTCAGGAC	AGGCGAACTT
	GCACACAGT	CCAACACACGG	GCTCCCCACT	GCAGCTCATG	TTGATCTTC	CCGGAACACTGC	CAGGCTTGAA
	CATTTTACCA	CTGCAATGT	TAGGTACACA	GGCAGAGTTT	CAGAAAAAATC	TACTGGAAAAA	CTTCCAAACAC
20	TTGCTTAAA	GTCAACATG	AATGTAAGT	GTAAGCGCTA	CTTAGTTTC	AGCATGTAGG	AAATTAGGAC
	CAAACCCCTT	TGGGCAATC	TAGGTTTCA	AACTTTATGA	AGTATTTGAC	CTGTAACCTA	AAAAAGCTG
	CACTCAATT	TACCTTGGCA	GGAAAGGAAAC	TCTCTGTCC	ATTGTCCTG	AGATGTGCAC	TCAAGTTGAG
	TTGATCCATG	TAATCAAT	CCCTCCTCAC	AGCTGAAGGC	ACAAGAGGAC	TTGAGGTGA	ATTCTCCAAT
	AGGGGAATGA	GCAACACCTA	CCAAACCCCTT	CGGGGGCTGG	TGGACAGCAT	CGCATCTCAC	AGCTGGAACA
25	CACGAGAGAG	CACITTAGAA	GTGGTTTGC	ATCTCCAGCA	ATACGTTCC	CAAGGTAACC	AAGTCCCCAA
	GCTCTTCAAT	AGTICTTTT	ATCTTAAAT	AAAATAAAA	CAAAGACTGT	ACCTTCACAT	GTGGGCTTCT
	CGTTGTCCTA	CTCCCTGTG	GGGCCACATT	GGAGCCTTT	GGATCCCTTC	AACACAAAAC	CCTGCTCACA
	GGAGAACTCA	CAGCTGGACC	CATAACGGAA	ACTGCCAGAA	GCACTAGGAA	GACAATTCAT	GTAGCCTCGC
	TCGGGTTGG	ACAAGGCTGT	GCACTGGAAA	GCTGAGACAT	CAAATGATG	GTCAGAAAAT	ATTGCAGTGG
30	AACTAGAGAG	TAC TGGCGT	TTGTTGAGT	AACCCAGTTC	ATTCAAGCAA	CACTGGGAGA	ACTGAAGATT
	CTTCTATAATT	CCCTGGACAA	ATGGGAAGAT	GGCTGTGTT	TCTTGAATT	TCAGCCCCCT	CACTGATCAT
	GGCACTAATT	AAAAGACTAA	TTAACGAA	CATTAGTCC	TGAGCACTGT	TCTCTAAACA	CACAAAATAA
	ATTATGGTCC	AAGGAAAGAT	TTCACGCGT	CTGAGGACAA	CATATGGTC	ATGGATGTTT	ATAGATGGTG
	CCAAAAAGAA	AGAAAAGAAA	GCACCCCTAT	AAAATTGTC	TGTTTGAC	TTGGGTTTT	GTGTTATGTT
35	TTGCTACTGG	AAATCATTCT	GTGCTGGCTT	TGGCTAGGAC	AAGGCCAGTG	CCTGATAGTA	AAAAGCTGTT
	GTTTTCAATA	TCCITGCTCT	CACTTTAAAG	TGAATTAAAA	TTTACTGCTT	ATATATGCAT	CAATACTATC
	TCTGTAGCTG	ACACCATGCT	TGAAACAGTC	TCATCACTGC	TAATTATGAG	CCATTTCAGA	AGACAGGTGT
	GATGAGAGTT	TTAACATTCAA	ATCATGTTCT	CATTATTCTG	CTTTCGAAT	TTCTAATAT	GATTCTTTA
	GATTAAGAAT	TCTCTCTTATT	CCATGCTAAT	GTCTACAAAG	TTTATCAGC	ACATCACAGT	AAAAAAAAAA
40	CAGCAAAGAA	TTCAATTCTTA	ACACATATGA	TCCTTCCCT	GGCCAAACAT	TAGTTCTTT	AAATGAATCT
	CAAAGATACG	AGGTTGCTC	ATCAAATCTG	ATTCATATAG	TTAAAGTGGG	TATTGGTTTT	TTTTTCACT
	GTCCAAGTTT	GAAGATGTTT	GTTCTTAAAG	AAAGTATAAA	TCGAAGGATC	TCAACGTTAC	CTTCACAAAC
	TGGGATTTC	TGTCCTCC	GCCCCTGAGT	GGTGCATTCA	ACCTGGCTG	GTCCCCTGCAA	CATGAAGCCT
	TCCTCACAGG	TGAAGTGTCA	GGATGATTG	AAAGGTGAACT	CTCCAGCAGG	GGAATGGCTG	CACCTCACAG
45	AGCCATTCTG	AGGCTGGCGG	ACGGCCCTGC	ATGTCACAGC	TGTAACAAAT	ATACGCATTG	ATATTAGCAC
	GGCCTAGAAT	TAGCTTGGCCC	ATTTCAGTA	TGGGTTGAGA	GAAAGAATGT	TCACAGTAAG	TCTCCATGTG
	GAACAACTCT	ACCTTACAC	GTTGGCTTCT	CGTTGTCCA	ATTCCCAGAT	GAGGTACACT	GAAGGCTCTG
	GGCTCCCAATT	AGTICAAATC	CTTCTTCACA	GTCAAATGTA	CAGGTTGTGT	TCCATGGGAA	GCTTCCAGGG
	TTTGGAAAC	ATTCACGAA	CCCATTGGCT	GGATTGTTGCA	CAGCATCACA	CTCAACCACT	GAGGATTITA
50	AAGAGCACCA	TGAATTTTAC	AGAAGAATGA	TCTTTTCACT	TCCTATTGAG	CTGGGTGCCT	AACAGAGTGA
	GGAAAGCTGC	TTCAAAAGGT	AGATCCCCAA	GTCTATGTC	AATTCTTAG	GACATGCACA	GCCGAATAAA
	AAGCTTTTAT	TCTTTTCAT	GGATATTCTA	TCTTTCTGA	TTTCCACTT	GCCTATGCTG	AGTGGTCTCT
	AATCTATGTT	ATCATTTACG	TGAGGTTAAA	ATTTAAAAAA	AATAGATTCC	AGATTAGGAG	TTATGACTAG
	TACTGACATA	CGTAGGCTAT	TCATTTATT	TAGCCCCATCA	GAGCCTGAAG	AACTGATTTT	TCTTTTTTTG
55	GCCTCTGGTT	CAGAAAGATA	AAATTAAAGAG	AGAAAAAAGAG	ATACTAAAGAC	TGCTTGACTA	TCATGGTCTT
	AAGTTAGTCC	CATGGCTTGG	AAAAGTTAAA	CAGGGAAACA	AGATGAGAAA	TCCATTGAGA	TTTCTAGAGC
	TTTATTGTTT	TATGCTCTCC	CTTACAAATC	ACCAGAGCCT	CAGAAACACC	CATTCAAGC	ATAGAATAAA
	AAAACCTCTC	TCAACCAAG	CAGGTACTGG	GTTGGCAATA	TACATTGGCT	GAGAGAACAA	ATTGTATTAA
	AAACAAAAAA	AAAAGAAAAAA	CTTCTCTGTA	AGTTTGTAAA	ATGTAAGTTG	AATCAAAAAAA	CAGAAGCAAT
60	GAGGGATGAG	TTACAGAACG	TTCTGTGCT	TCTCAGAGGG	ATTTACATT	GCAGGCTGGA	ATAGGAGCAC
	TCCATTCTCC	AGAGGACATA	CACTGCATGG	TCTCCATGCT	GCTTGGCAGG	TAACCCCTAT	CACAGCTGAT
	AGAGCAGGAA	GAAATGTTAGC	TGAAGTTCC	CAGTGGGTGA	CTGCAAACCA	GGCTTCCATG	CTCAGGGGAT
	TCCAGGGCTG	TACAGTTCAC	AACTGAAAAA	GAAACCCAAA	TCAGTTCTGC	TCATCTCTCA	CCTTTAACAG
	ATAAGAACAC	TGAAACTAG	AACTACAGT	TGGTTTTTT	TTTTTTAGT	TTAAAATT	ATAAAATTTC
65	TAATGGAATT	TGTAAGATT	ACTGTAATT	TACCCCTTTT	CTTTTATTCA	AGAAAATGCT	GATCCATAAC
	AACAACAAAC	AAAAGAGCAGT	GATGACAACC	ATAAAAAAGA	AATATTGAGT	GATATGGGGA	GAGTAGTGT
	ATTGTGTTA	CCTCAAAACT	GTTCAAATT	TATGAACAA	CACAGCAAAC	TTAGGTACCA	CAACAAATT
	CTTGTACTT	TTCTCACAAAC	TGCTAAAAAT	ACTACAGTAA	GCTTCCAACC	AGGATGAGAA	CCATTCACAA
	AGCTATATT	CAAATTTAAG	TACTAGAATA	CATTACAAAT	TTTAAAACCC	TAATGCTGCA	CTGTCTACTA

	TAGTAGGCCAC	TATCTGTGTC	GCTACTCAAA	TTTAAACTTG	AATTCTGTA	AATCAAATAA	CATTAAAAT
	TCAGTTCTC	AGTCCTACCA	GCCACATTC	AAAGTACTAA	TAACCACATG	TGGCTCATAG	GTACACACTG
	GAAAACACAG	CTATGGAACA	TTTCCATTAT	CACAAAAGCT	CTACTGCACA	ACGCTGTGCT	AAGGAATCTT
	GGAGAGAACG	TCACTAACT	CTCTTAATGT	ACAAATTAG	GAACTGAGAC	CTCATTTCAT	TCAAGTGACT
5	TGCTCCATGC	TACACGGCTA	GTCATTACAG	AGCCAGAGGC	CAGAGCATGA	ACCAAGATAC	CCTGGACTCT
	GTAACTCACT	CATTTCTACT	GCAACGTCTT	GTTACCACCT	AGATGAGGTG	AGTACATGTT	CCTCGCAGGG
	ACACAGAATT	ACAGTTTATT	GAATGTGTC	TGTGTGCCAG	GCACCATGTA	ACCATGAGCC	TATGAAGTTC
	ACACTATTAT	TATCTCATT	TTACAATGAG	AAAACTGACA	TAGAGAGTTA	AACTATCTTG	TCAAGGTGCC
	AAAATAATAA	ACTGGTGAAT	CTAGGACTCA	AACCAGCGAG	GGTCTGACTT	CATAGTCTCA	GCTCACGATC
10	ACCATATGAC	ACCACTCTGCA	CCAGGGAAAGG	GAAGGCATGC	AGACCTGACT	CTAATGCCAG	CTAGGACGTG
	AGATGGTGT	ACCACTCTAA	GTGAAGAAAG	AGGCAAGAAC	CAGACTTACT	TTGCTCACAC	TTGAGTCCAC
	TGAAGCCAGG	GTCACACTTG	CAAGTGTAA	TATTGATGGT	CTCTACACAT	TCACCGTGGC	CACTGCAGGA
	TGTATTGGTA	CAGGCAGCTA	CGGAAAATAC	AAAGCATGAT	GAGGAGGACT	ATTACTGTGC	TTATACTGAG
	TGCCTTGTAT	TTAGAATCA	ACAGTGTGCA	ACAGAGACAT	CAGCAGTCTT	ACAGAGTGC	ATAGACTTTA
15	ACTGAAGTGT	TTTACAAAGT	TCCAAATCTG	AGTTTCAGGC	CCACCTATCC	AAACCTTGA	TGCTAATGTA
	TAGCTGTGGC	TGGCACCTAC	CGTAGAAAAT	TTACTTCTTC	ACAAACTCTG	AAGACAGITC	CCCTACCACA
	AATAAACAAAG	TAATTTAAAT	ATGTATTGTG	TGTGTGCATT	TTTATATGTA	AAAAGACTACA	TATTTGCCATA
	CAGTATTAT	ATATATTITA	TATATATACA	TACACACATA	TATGTGTGTA	TATGTGTGTA	TGTATATATA
	AAAAATGTAT	ATAATATGCTG	TAGGCTATAT	ATATATACAC	ACACACATAT	ATGTGTGTGT	GTATATATGT
20	GTGTGTGTGT	ATATATATAC	ATATCCACAT	ATTCITGCC	ACATTACAC	AAAACAGCAA	AAGAGAGAAA
	CTTTAGCACT	TAACACAGAAT	CTTTTGGAAAC	ATAAAATGAC	CACAATAGAG	AGCAGTTTTT	GCATGCTGTA
	AATTGCAA	GATGCCACAC	CACTGAAACT	ACCTCCCAC	GCTGCCGCAA	ACTCCCTACC	TGTGTAGCAT
	AGGGCAAGCT	TCTCTTGTGCT	GCACCTCTCA	TCATCCACAC	TCGCCCCATC	TTTTTCTCTC	TTGATGTAGA
	TCTCCACGCA	GTCTCTCATCT	TTTGCCTAT	TGTGGGTT	ACCTGGAGCC	CAGTTCTTGG	CTTCTCTGT
25	CAGAGGTTTC	TGGGTTCTTA	CCCAGACCCA	CACATTGTTG	ACTTTCTGA	TTCCAACTCA	GTAATAACTT
	GGTGAATAGC	TCAATATGGA	GTTTAGGTAC	TCAATCTCTT	CTTGTGTTTG	AATTGCAACC	AGGTGTGTGT
	ACCTTTGCTG	ACAAATAGCA	CTGGCCTCAT	CATAAGTCAT	AGCTTCCGTG	GAGGTGTTGT	AAGACCAGGC
	TCCACTCTCT	TTAAAGGAA	GCACAGTGG	GAGAAAAGAGA	AAAGAAATGG	TAGAGTTTGG	TACTGTTGTG
	GTITAACCT	GACAATGTG	CTTTTATTG	TCTTATTTT	GGCAATGTTT	GTGACATGGC	CCAGACTTTT
30	CTCATCTTT	CAAAAGTAAG	AAAGTACGTAT	GAAGAAACAG	CGACTTATTG	TTTATCTCTT	TTGTGACTGC
	CACCCACTAG	GTACCTTATC	CACACTCACT	CACAAACATTA	TAGTATACCC	ATTITGTTAGT	AGAATAATAA
	TCAGAATAAC	TAAGCTTTAT	TGAGCACTTA	GTATGCACCA	AGAACGACTG	TATGAGGTAC	TTTCCATGAA
	CCATGCTATT	GAATCCTCAC	AATGCATCTG	GGAAATAGGT	CATTATGATC	CACACTTAC	ACTTAAGGAA
	AGGGAGACAC	CAAGAGGTA	AGTAATGAC	CCCAAGCCCCA	GGGAAGAACAA	CATTGCAAGGT	AGAGGTCAAG
35	GATGCTGCCA	GATACTCTGT	GCAGGACAGC	CCCAGACAAG	CAAGGATATT	TCAGTCTGAA	ATATCTATAG
	TGCGAGAATG	AGAAATCTTG	GTCTAATGGC	ACTGACTTAC	CCAAAGTGTAG	AGCTGAGAGA	AACTGTGAAG
	CAATCATGAC	TTCAAGAGTT	CTTTTCACCC	AAAGGTTTAG	GCTTGAATAA	CTTCTCTGGG	GAGATAAAAC
	ACAAAATGAA	TTAAAGAAGG	AAATCGTGGG	TAGCTAGTTA	CATTATTCTA	CCATGATGTT	TAAGGCAGCA
	TCCTAAGATT	TTGGGCAAAAG	GACACTAGTG	CAATAATCTT	TATTCAGAG	TTAATCAAA	TAAATAAACAA
40	AATTITTAAGA	CTTICATTAT	TTAGGTCAA	GAGAAAAGAC	AGGTTTTAGC	TACAATACAA	TAAGAGCTTG
	TACAGATGTG	GTTTTTATTA	GAAGGCC	TGCATATCTG	TGTTTCATGG	CCCAGGGCTG	CCCTTATAAA
	CGCTCTGCA	CTTACCGTTT	TGGGAGCAG	TTGTCACAC	ACAGGATCTC	TCAGGTGGGT	ATCACTGCTG
	CCTCTGTCTC	AGGICAGTAT	AGGAGTTTG	ATGTGAAGTC	AGCCAAGAAC	AGCTGAACAC	TACTTCGGCT
	GAGGCCCTT	TATAGGAGGG	ATTGCTTCT	GTGAATAATA	GGAGGATATT	GTCCACATCC	AGTAAAGAGG
45	AAATCCCCAA	TGGCATCCAA	AAACTTCCC	GGGAATATCC	ACGATGCTTA	AAATTACAAT	GATGTCAGAA
	ACTCTGTCTC	TTGAAGCTAC	TTCACCTTG	TCCATGCC	TATATCGTAT	ATGCAATT	ATTAATATGA
	CAAAAATGCA	TGAATTTAA	TTATAATAAC	ATAAAGTCTA	TGTCTTTAA	AAGTGTAAA	ACTTGCTTG
	TTAGTAGTGT	CTCTCATGTA	GTTGTGGTAG	TAATTAGAAT	TTCAGAAACA	GAAGGAAACC	AAGAATAGGT
	TTGTCATCCA	TAGCTCTACTA	CCTTCAATT	CTCATTCATA	GCTGTGGATA	ACCAACTACT	ACTCATT
50	TCTCCCTTT	TCACCTGCCA	ATTCAACATA	TTAACATGTC	ACTGTCTCAC	AGAGGAATGA	CTCACAAGGT
	AGATATTAAAT	CTTCAGATT	TGCAAGGGCAG	TTATGCC	ATTAAAATAT	TATCTAAA	TAATATCTAA
	CACTAAATG	GTAAATAA	TGCTTATT	TAAAAAAAGA	AAAATGGAA	ATAGATATT	ACATCTGGGA
	AAGTTTCATG	GTTTGTTCAG	TGAAAAAAAT	AAAAGGGAGG	CCAGGCACAG	TGGCTCACGC	CTGTAATCCC
	ACCACTTGG	GAGCCCGAGG	CAGGCAGTC	ACCTGAGGCC	GGGAGTTCAA	GACCAGCTG	ACCAACATGG
55	AGAAACGCCA	TCTCTACTAA	AAATACAAAA	TTAGCTGGG	ATGGTGGCG	ATGCC	TCCCAGCTAC
	TCGGGAGGCT	GAGGCCAGGAG	AATCGTGA	ACCCGGGAAG	TGGAGGTTGC	AGTGAGCCAA	GATCACGCCA
	GTGCACTCCA	GCCTGGGAAA	CGAGTGAAC	TCTGCTTAA	AAAAA	AAAAAAGAA	AAGAAAAGAA
	AAAAAAATAA	ACGAAAAC	ATATATATAT	ATTAAATTGG	TCAAATTTT	GTTAAAATT	TTTGAATATGT
	TAATGTGCAA	AGAAATAAAAA	TTCTTCCACA	ATGTTAACAG	TGACTAACTC	TGGATGGCAG	GATTTGGGAT
60	AATTITTAATA	TCCCTCATTA	TTATTTTCAG	GATTAAAG	TTTTTTC	TTTCCCTTT	TTTCACCTT
	ATAGTAACAA	GAAACAGTT	TAAAGAAACT	TGTCTCTAGG	CCAGGCATGA	TGGCTCATGC	CTGTAATCCC
	AGCACTTTGG	GAGGCTGAGG	TGGGTGGATC	ACCTGAGGTC	AGGAGTTCC	GACCAGCGT	GCCAATATGG
	TGAAACCTG	TCTCTACTAA	AAATACAAA	ATTAGCCGG	GTGTAGTGGC	GCATGCC	AATCCCAGCT
	ACTGGGGAGC	CTGATGCAAG	AGAATCGCT	GAACCCAGGA	GGCAGAGGTT	GCAGTGAGCT	GAAATCACAC
65	CATTGCACTC	CAGGCTGGGC	GACAGAGCAA	GACTCCATCT	CAAA	AAAAAAGAA	AAAAGAAAAG
	AAAAGAAATT	TGTCTCAA	TGCAACAGAA	GGAGATGTAT	GTGGTATCCT	ATATTCC	TCTTCATT
	GACATTCTT	CTGGGTGATT	GTATACATTC	CCCATCTCG	CATCTTACCC	TATCTAAATG	ATGGTAACAG
	TAAATGGGGA	TCAATTTAAT	TTCCCATATTC	TGTAGGTTT	CAGAGCTCAA	GTCAAGCTAA	TATTCTATAT

	CTACAGCCTT	TCA ^A ATAGG	AGGTCTATCT	AAAAATGTAC	TGTCAGCAGA	CCTGAACGAG	TAGTGGTAAA
	AGCCTCGTTT	TTC ^C CTTAC	TTGTTAGCAC	TGGCTTTCT	GTGTTCATAA	AGATGTCAAG	ACCCAAAAAA
	AAAACAAGAA	AAG ^G GAAGAA	AAATTCCAAA	AAAGACAACT	GATTAGAAAA	AAATAACTTA	ATTAACGAAT
5	TTAATTCAAC	CCCT ^A TCAAA	AAGCATAGAA	TTTATTCCCT	CCACCTTAC	ACTCTCTTAC	ATGATCCAGA
	TACTGACATT	ATTC ^C AAATTC	TTTATCCCAC	TTTACTTAGC	TCAATGTGGT	TGTTGCTTCA	ATAAATTCAAG
	AAGAGTAATC	ACTCATATAG	TGTTTATTAA	GATTTAGGG	CAGAATGTCA	AGTTGGGTTA	ATACATTATC
	TGTATGTATT	TTATTTTTAA	TAAGATGTA	ATACATAATC	TGCTATTTTT	AAAAGCATG	GTCAAATGTA
	TAGAGTAGCC	AAA ^T CTTAAA	AAACAATTAA	TCTTCGATAT	CAATAAGTA	CCTAATAATT	ATATTGCTAA
10	TAGAAATTAG	TCG ^T AAACAT	CCCTAGATAA	CTAACATTAT	TATTGCAAT	TTTCATAAC	TAAGTTTATA
	GTTTATCTCT	TCCCCTTTTT	AAAATTAGT	CAAAGATATC	TAAAATAGC	CCCAGTGGTG	ATGAAGTTTC
	TATTTTACTT	ACATATATAT	GTCCTGGACC	CCCAATTATA	ATCTCTAAC	TTTATTGAGT	GCTTACTATG
	TGCCAGGCCA	TAT ^C TGAGC	ATTGGTATG	TTCACCTATT	GATTATTCAAC	TCCGTACAAC	AGCCTATGAA
	ATAGGTACTC	CTA ^T TATCCC	CATTTACAG	ATGAGGAAAT	TGAGAACATG	GGGATTTTAT	CTCATTCAA
15	AGCACAGAGC	TAAGGGTTGA	AACCAGGCAG	TTGATATCCA	GAGCCCAC	CCTTACCTGC	TACTCCAAAC
	CATGATTCT	TTTC TTGTTA	TGCCCCGAGA	TTCTTGTTC	TACCCAAGTT	TCCTGTACTC	TTCTGCCCT
	CTTCTTCTG	AGAC ^C ATCCTT	GACCATCACA	GCTCTCCACT	GAGATAACTG	TGTCCTGGGT	TCTGAGACAT
	GGGGGCTGGA	AGGGACCCCCA	GGGACAGTGA	GCAGTAGGG	GAGGATGCAG	TGAGAACAGA	CCCTGGATCC
	CCGGTGCATA	GGCA ^G GGGAGA	AAGTGGACAA	AGGAAAAAAAC	AAGCAAGGC	GGTGGAGCCA	TGCCTAGGTA
20	AAGTTGATCC	CTA ^A GCCACA	GTCCCCAGAA	GTTCCTGATT	CAAAGCAAA	TTTCTCTAA	GGTCAAAGGG
	CAAACGTATT	ATTCTAAATT	CTAAACTGAT	TATTCTAA	TTGAGAAAGC	TTCAGGGAGA	GATCCAATA
	TTCGAAGGAT	AAG ^G AAATG	AGGAGTGGAA	GAGATAGGT	AGTAACAGTA	ACTAAATGT	AGACTATATA
	TAATATATAA	TAT ^A TGTAGA	GTATATATAT	ATAATTACAA	TATATTATAT	ATGTGGAATA	TATATATTAT
	TTATATATAT	TTATATATT	TATATATATA	GATATTTTA	TATTTTATAT	ATAAATATAG	ATATTTTAT
25	ATTTTATATA	TA ^A A ^T TATAGA	TATTTTATA	TATATTATAT	ATAAAATATAT	GTAAAATACT	GTGAAAGAAG
	AATAGAATCT	TGAGACCTCA	AATTCACTAT	GCCAAAGGG	AAGTTAAC	TGGGAAATGA	GTCATGCAA
	AACTGCCTTC	CTTITGTTCC	CAAATACCTG	TAATTCACA	TGCTTACTT	ATCTTATATA	AAATGTAGAT
	GTACTGAGCA	TGA ^G ATCCAT	GCATAATTTC	CCTCTAGTCC	CTTCTTTTA	CATGAAAGT	GTAGACTCAC
	TGAGTGTAC	AGA ^G CCTTGC	CACAATGTAA	ACACTGTCT	CATTGCCAAC	CCATCTTTCG	TTTATTTCT
30	TCCCCCTCTG	CTTGTCTCTT	CCCCCTCTAA	GATGGAAGTT	CCCAAAC	TCTTGGAAA	AAGCGCAGGT
	CACAGATCCT	ACAGTGTATT	GTGTTTCTT	TACCTGGGAC	AAAATAAAAC	TCTAATCTGT	TGAGATATGC
	TTCAGTTACT	TTTGGTTTA	CAATATGTAC	ATGATGTAT	ATAATTATA	TGTATATAAT	ATATGTACTT
	GTTTTAACCA	GAGGTATGTT	ATTCAAAATC	CATTCATCCT	TACAATTACC	TGCATTCTCC	CACAGTATT
	TCTGTGTCCC	TGCC ^C CCCAG	GTTGTCACTG	CAAAATCAGGT	ACATGGATAC	TGGGAGCTGA	TGGGCTCCCC
35	TCTGGCTACC	TGGC CTGCTG	AAGGGGCCAT	AGACAGACCC	AGCTTCTC	TCGGGAGAG	GCCCTGGGCC
	AGCGCTCGT	GGGAGTGGGA	TTACAACCAG	ACTATAGCTT	CTTCACCTGC	TTTTCTTAT	CAGGATTCA
	TAAGAGGCAA	TTGCTTGT	TTTGAGGGTG	GGGGCAAAATC	AGGGGGAGTT	GAAGAGGAAA	TTGGGTAAGA
	TTTGAATAGT	TGGG ^C CATGTT	GAATATTATG	AATATCATCT	CCCTCTTCAA	ATAATCCAAA	ATATAACCCCC
	AAGAAACAGG	CTGATTAGAG	GTGCTTCAAG	GCTCCACTGA	ATCTCCCAAG	CTCTGAAGAT	GTAGCTAGCT
40	GTACCGGAT	TGCC ^G GGTTT	CAAGCCTCG	CTCACATGGA	CCCTCTTGGC	AGTTCTCAG	ATGGGGGAAG
	CATCCGTAC	ATAGATGGGA	ATGAAAAGAG	GAAAGAAGAC	GGTCAAACT	CAGGCACACC	CCGGTGTCTG
	CCACCACTG	TAT ^A TATCT	CTGAGGTGTC	ACCTCTCTG	GCTTTATTGT	CTCTTCTGG	AAGTCTCTG
	TCCTCTCTC	CAC ^C CCCTT	AATCAGGCAT	CAAAGACTT	AACCAGTTT	GCTGTGTGCC	CAGGCCACT
	CATTCTCACT	TTTA ^T GGCAA	AGGGAGTGGG	AGACAGAGAG	ATAGCCAGAA	AGAAGAGATT	GGGGACCCCCA
45	AGACAAATGT	TA ^A A ^T TTTA	ACCAAGGCCA	CCCTGTGGAC	AGGAGATTAT	TGGGTTAGT	GGAAAGCAGC
	ACTGGCCACA	ACCA ^C ACCGT	GCAAAAGCAT	CTATCGAGGA	GTGAAGTTAT	ATTGGTGAA	TGTGACCGGG
	AAGCAGGGC	AGT ^G GTGTC	TCCTGCCCTC	CTGAGGCACT	CTGTTCCCTT	ACCTCTGC	AGGCTTATT
	TACCCCTGAG	TGC ^T TAGTT	TGAAAGCCTT	AGTCCCTCT	CTCCCATAAA	AAAGCTCTAC	TCTGCTAAC
	TCTAAGTTAC	CTT ^T GCAGAG	TCTTAGGTAG	AGGGAGGAAA	TCCCAATAAA	GATTCCACCC	TATCTGCAA
	ATACAAACAT	GGTATTCTT	GCATTCCAA	AATTGTGAAA	GAAAATGTG	ATCACACAG	TAGAGAATGG
50	CATTTTTGT	TTGATCAAAA	CCTAAATATA	TTTGATGAAA	ATGTTGTG	TTCTAAGTTT	ATTTCCCAGA
	AAGCCATGTT	TAC ^C CTACTG	GAATTATAG	ACATCTTATA	ATATCTGAGT	CGAGTAGGAG	CTCCGGGCTC
	TACCTCACT	TTT ^T CTCCCA	CACCCAGGG	GAAGTGTAGG	GTTCTCAGAC	TTTAAATAAA	AGAGGAATCA
	CCTGGACAAAC	TCA ^C CTAAA	TGCACATCTT	CAGGTCTCAT	ACTCAGAGG	TCTGACTCAA	CAGGTCTGG
	TGGCGCCCAA	GAA ^T TTGGC	TTTAAATGAG	TATCTCAGAT	GATTCTAATA	CAGAATGTGT	AAGATGACCA
55	GATCCTATCA	CACT ^A AGATG	TATTGGCCTA	GGGCCACCTA	ACTTGGAGAA	AATGTTAGTA	AGACCCCGTG
	GTTGGTCTC	AGC ^T ATAGGT	ACCAGAAATT	TGATCAAAAT	TTACTATCAT	TGTGACACTT	CTCTTCGGAA
	CTGGAAGGCC	AGA ^A CCCCAC	TTGTAAAGTG	CTGGGAAAT	ACAAGGAAAA	TTTAAAGGTGA	GTAGCATT
	GAATTCTTAC	ACATGGAAAG	TAATATGATA	AGAATTCTTA	CCAATAAAAA	AAAAGCAAGA	GAGAATAGCT
	GCTAAAGAAT	TAACACAAAT	ATGTATATAT	TAGTTATTCT	CTTTCTCCT	CTGATTCCAG	AGGACTTTGT
60	AATTCCACTA	ATTCTTCTTG	AGCTTCCAGG	ATGATCTGAG	ACTTGAATT	TTCATGTGCT	TTTGTCTTCC
	TATTGGCAG	CAT ^C TTATCT	TGAAGTTCC	GCTTTCTGCT	TGGGGACCTA	AAAACAAACT	AATGGGAATT
	TCTTCAAAAT	GAGC ^A AAACTC	TGGTGAATT	CCAAAGCGGA	AGAAACAAAGT	GAGGATCGGG	CTGGTTAATT
	AAGAGAACTT	TTCC ^T GAATG	AGGCCAGACT	GTTTGCCTGAC	TGTTGTTAAC	ATGAGGGAAG	AAATACCCCT
	GGATTTTAGA	AGA ^G CCCCCTT	GTTTGTITC	CTTGGCCATT	TGTGCTGCTT	GTTTGTAAAG	TCAGAAATT
65	CCTGAAGGAC	TATTATTAGC	TTTGTCTCA	CGTCAGAAAA	CTTCTGCTCT	GGCCACTTTT	AAACATATAA
	CTTGGATT	ACT ^T FATTAG	AAAATGTAAC	AATTACAGAC	AGCACTAAA	GGACACAAA	GGGCAAAGAA
	AATGGGTAAC	TTT ^T TTTCT	TCCCCAAATC	TAAAATAGGT	GATTTTGGAG	AAGTAGGAGA	AAAACCTGGA
	TTTCTAGAT	CTCT ^T AGAG	CTCAACAACT	GATATAGTTA	ATTATGTAAG	TCTTTGATAT	TTGGAAATGA

	TTGGATTAAC	CGGAATAACAA	TGAATATTAA	AATACAGTGA	TTTGGCCAGG	AGCAGTGGCT	CATGCCGTAA
	ATCCCAGCAT	TTGGGGAGGC	TGAGGCGGGT	GGATCACCTA	AGGCCGGAG	TTCCAGACCA	GCCTGGCCAA
	CATGGTAAA	CCCCATCTCT	ACTAAAATA	CAAATTAGC	CAGGCGTGGT	GGTGAAGAC	TGTAATCCA
	GCAACTCGGG	AGGCTGAGGC	AGGAGAATTG	CTGAACCCG	GGAGGCAGAG	GTTGCAGTGA	GCCAAGATCA
5	CGCCATTGCA	CTCCAGCCTG	GGCAACAAGA	GCGAAATTCC	ATCTCAATAA	ATAAATAAAT	AAATACAGTG
	ATTAAACACA	AGAGATTCTC	ATTCACACT	AATGAGCTCT	GTCAGTGGG	CAAGCTTCTT	TGCCTCATTA
	AGTCTCAGAT	TTCC'CGAGAG	CTTATTATT	TATACCAAGA	GTGCTTACT	ACCGCTCTG	CTAGCTGTGA
	CATAATATGA	CAAAGGTTAT	AAATATGGG	AAAGGCACTA	ATTATATCA	AAGCGTTCTT	CGTTTTCTCT
10	TGCTGTGAAG	TTTITAGCTA	ATAATTCTA	AGAATATACC	ATATTTAGAG	TGTTTACTAT	GCATGGGCT
	GGCACTTCAC	ATACATTGCT	TCTTACAAAT	TTTACAAAGT	GAAAGGTAGA	TATTAATCTC	ATTTATGGA
	GGCAAGAGATA	GAGATCTGGG	GAGGTTACAT	AACTTGCCAG	TGTTTTCTCA	GTTAATAAAT	GGTAGGGTGG
	AGATTCAATC	TGTGTTACTC	TAAAGTCGT	GTCTTTTTA	TTGGCTCCAT	GCCTACTCAG	ATTTAAATCT
	CAGCAGGGAA	GTAACACCTTA	GTTTTACAT	GAGAAAATGT	TACAGCAGCC	TTCTCGGCTT	CCTTACCCC
15	CATCCCAGTT	TCACGAGCTT	AGTGCCTAG	ATCGGGTTCC	TTTAGAAGCA	GACCTCGAAA	TAAGGATGTG
	GGTGCCAGTC	ATTIATTGAA	AAGATGATCC	CAAGAAAGCC	TAGTAGGAGA	GTGAGGAAGT	GAGATGGGGA
	AAGGAAGAAA	CTCCACAAGA	AGTGTGTTAA	TAAGCAGGTT	ACCGCTGTGG	GCAGCCATGG	GGCTCAGCTG
	CACTAACAAA	CTCTGTCTAG	TACAGAAAAC	CTCAGGGTCT	CCCCAAGGAG	GGGCAAGAAG	TCTGCCTAGG
	GTATATATCC	GCCACTCTAG	TCACTGGCTG	AGAGCTGATC	CTGGGAGGGC	ATGGTTAATT	CCTCTGCACT
20	TTCAAGTGGG	TTCTGTGTTG	CAGAAAAGC	CCTCTACAAAT	GAATTCCAGA	TGTTTGTATT	TAATATGAC
	ATGATCTGAA	TGCTGTGTTG	GGACAGGGT	GGGGTTTATT	GTGTTCTGTC	ATTACTGTA	CAGATTACTA
	CAAACCTGAT	GGC'GCAAAC	AACACATATT	TATTATGTC	TAGTTTGTGT	GGGTCAGAAG	TACAGGTTAG
	CTCAACTAGT	TTCTCTGCTC	TAGGTTTAC	ATTGCCAATA	TCAAGGTTGC	ATCCAGTTGG	GCTCTTCTTG
	GGAGGCTTGG	GGATGAATCC	ACTTTCAAGC	TCATTCAGAT	TGTTGGCAGA	ATCCAGTTCC	TTGTGGTTGC
25	AGGACCAAGG	TCCCTGTGTC	CTTGTGTTG	GTGGGCCAGG	AGTCATTCTT	AGCTTCTAGA	GACTACCTGT
	ACTCTCTGAC	TCGIGTCTCC	ACTTCACCTT	TCAAACCCAGC	AGCGGCTAGT	CGAGTCCCTC	TCTTCAAATG
	TCTCCAAC	TGCCCTTCACC	TCATTTCTCC	TCTGTGTA	ATGTCTGCCT	CTACTGCTTG	TAAGGGCTCA
	TGGGATTACA	TTGGATTATT	TCAAATCCAGG	ATAATCTCCA	TATTTTAAGG	CTAGCTGACT	AGTGATCTTA
	ATTCCATCTA	CAAAGTCCCT	TCCAATAGTA	CTGTATTAGT	CCATTTTCAT	GCTACTGATA	AAGACATACC
30	CAAGACTGGG	CAA'TCACAA	AAGAAAGAGG	TTTAAATTAGA	TTTACAGTT	CACATGGCTG	GGGAAGCCTC
	ACAATCATGG	CAGAAGTCAA	GGAAAGACAA	GTCAATGCTT	ACATAGATGG	CAGCAGGCAA	AGAGAGAGAG
	CTTGTGCAAG	GAATCTCTCT	TTTTAAACC	ATCAGATCTC	ATAATACTTA	TTCACTATCA	CAAGAACAGC
	ATGGGAAAGT	CTTGCCCCCA	TGATTCAATT	ACTCCCTACCA	GGTCCCTCCC	ACAACATGCA	GGAAATTCAAG
	ATGAGATTG	TGTCGGGACA	CAGCCAAACC	ATATCAAGTA	CCTAGATTCA	TGTTTGTATT	AACAACCAGG
35	GAGCAGAAAT	CTTCAGGAGT	GGGGGGCATC	TTTAAATTTC	TGCCCCACAA	GGCTGGGCGC	GGTGGCTCAC
	ACCTGTAATC	CCACCACTTT	GGGAGGCCA	GGGGGGTGG	TCATGAGGTC	AAGAGATCGA	GACCACCTG
	GCCATGGTGA	AACCCCATTT	CTACTAAAAA	TACAAAATT	AGCCAGGTAT	GGTGGTGGGC	ACCTGTAGTC
	CCAGCTACTC	AGGA'GGCTGA	GGTAGGAGAA	TCACCTGAAC	CCAGGAAGCG	GAGGTTGCAG	TGAGCCAAGA
	TTGCGCCGCT	GCACCTCCAGC	CTGGGAGACA	GAGCAAGACT	GTCTCAAAA	AAAAGAATT	TGCCCACAT
40	AGTAGGCTGT	CCTACAGAGA	CATAACCCAG	GAATTAGGTG	AATGGCTAAC	CTAAATTAGC	ACTGTGATGT
	GTTTCTGAC	TTGCTCCTTA	AGTCTCCT	GCTTAGATGT	GGAACATACT	CATGAATGCA	AGGGTTGTC
	TAGAGTTTA	AGTCGGAGTT	AAATATCAA	AGTACAGGAG	ATATTATGGG	TGCTCATCC	ATGTCCTCTT
	GGCATTATT	TTTC'TTGGAT	AACCCAACTC	TATTAGTTT	TATATCTCAC	TGTTCTTAT	ACTCTGTGAA
	CTGATGTCCC	ATAATAGAC	ATTCATTT	GGCACTCTTC	TTGAACAAATA	ATTACGATTA	TTAATCTAGC
45	AGTTATCATT	AAATIGGCCAC	TTCACATTAG	ACACAGCACT	TAGGACTTAA	GAATACCATG	TCATTTGATC
	ATCATAATAT	GGTCAGGAAT	TAAGTATTGC	TATCCAAATT	TTACAAAGAA	GGCACTGAGG	GTTAGAGTTT
	AAATAACCTG	CTTAAGATGT	CATAGCCTGT	AAGTGACAA	ACTAGGACTC	AAATACAGGT	CCATCTGACT
	CCAAAGTCTA	TGTCTTGGC	TACCACACTG	CCTCTCCTAC	AAGTGACCTG	TGGTTTACT	ACTATATTCA
	CACTCTACTA	ACTITACCAT	CTCCCATGAG	TCTGTCTAGA	GGAGGGCACA	CACAGCACAG	AAAACACATG
50	AATGCAAAT	AAGGAAGGGC	CTACTCTA	CACAGAGCCA	TTCTAATACC	TGATGTTGC	TCTAATCCAG
	TTTTACTATT	AATTAGTTC	TGGTGCCCAA	GTTTTACTG	AGAAATGGGG	ATAATTGGG	AAGTCATAAT
	GATGCCTCT	TCTCATAGGG	TATTITATT	GTGTTGTGAT	CTCCAGGCC	CAACACAGCC	TGGCTTTAG
	TAATATGTC	AAAATACCTG	TTGAATGAAT	AAATGGGAGTC	ACCTGAAACA	TGTTAACAT	TTGTCATGT
	GTCCTAATCG	TGGATTTCAG	GATAGTAAGC	ATCTAAAAG	GAAAGCATGC	ACACTGTTCT	TGCTACATTA
55	ATTCTCACA	ATATAAAAAA	AGAAAAGCAT	CTGAAAAAAAG	CTGCCAGCCG	CTGTGTCTCC	TAATATCAA
	CTGAGCACAG	ATATGGAGAA	GCTAAGGGAG	AGGGATGATG	GGCCATGCC	CTAACCTCAT	CATGGCAAAA
	GTCCTGGGG	TCAGACCGA	GGAGAGCAGG	AAGTGTCTT	TGAGGGATAC	ATTCACAG	TGGAAATAAT
	GAGACTAAA	TAATATTAT	ATACACAGT	CAACTGTTTT	TATGTGTA	GGTAGTAGGT	TTTCACAGTA
	AGGAAGACACT	TCTTTTTT	TTTGTGTTGAG	ACAGAGTCTC	GCTCTGCTC	CCAGCCTGGA	GTACAGTGGT
60	GCTATCTGG	CTCACTGCAA	TCTCTGCTC	CTGATTCAA	GTGATTCTCC	TGCTCATCC	TCCCAGTAG
	CTGGGACAAAC	AGGTTGTTG	CATTACACCT	GGCTAATT	TGTATTTTA	GCAGAGATGC	GGTTTCACCA
	TGTTGGCAG	GCTGATCTG	AACTCTGAC	CTCAGGTGTT	CTGCCGCC	CTGCCCTCCCA	ATGTGCTGGG
	ATTACAGGCA	TGAGCCACTG	CACTCACAA	GCACCTCTAC	TGATAGCATT	TACAAACCC	TCTTAGAATA
	TTTAAAAATT	CTAAAGAAG	AGTAAATTGA	GCCTTCCAA	CTAATACTAG	GAGGTTATAA	CCTTCATACC
65	AAAACCTGGAC	AATGTTGCA	CAAAGAAGG	AAGCCAATGA	GGCCACCTAG	AAGGAAGACT	GGGCATTGGG
	CCCAGTGGAGT	CCTGAAACC	TCATCTGTC	CAGCCACCC	GGCATGGCCT	GTATGAGTGG	ATGAGGGTGA
	CTTGTCCACA	GACAATAGCC	ATCTAGCTGT	GATAAAGGAG	TCAAGGTAGT	CAGCTGCATC	TCTTCACCT
	GTTTGCCTAAT	GTACACAGG	TTGAAAAGCT	AAGTTTATG	TAAGCAAC	ATCAAAGATG	ATGAAATGAT
	CAACCTGACA	ATGAGTACTA	TGCTGCATTG	TCCAGAAAGG	AACTGTGAA	GATTGGG	TGAATTTCAA

	AACAGAATT	CCTCACTCTC	TGGATGTTGG	CTTACTTGGC	CTTGATGTT	CAGAGGTGGT	GCCTTTGTT
	TGTTAACAA	TGTIGATTT	GGAGAGAAAA	CAGAGTTGAA	AAACCCACAA	GTCATTCCCT	GGGGAGTATT
	ACCGGAATAC	AGAAGGATAAT	TTCAGCAAGC	CAGCAAGGCC	TCATCTCTG	TTCTAATAGA	TAGGAAGAAA
	GGAAGAGAGG	AACAATACTT	TTTTAAGAAG	CTCAGCTTA	TCGCCTTATC	TCATAGAAAG	ATGCCTCCAG
5	TCTGTCTGGC	TAAAGGTAAAT	TGGCATGGGA	AAGTCTTTAT	CTGTGATTCT	AACAAGTGGA	ATGTTTCCCT
	TCATTAAGAG	AGCCTTGTCT	GGCTTGGGG	AATGAAACAC	TTTCTCCGAT	ATGAGTGGGC	TGTAACCCCT
	GCTACTAAAT	ACTCAGAAGA	AATAAGGCAG	TTGTGGAGCA	GTCAGGAATG	AGTCACCTGC	CTCCCTGGAA
	TATTCAAGAA	ACTGAATCAA	AAAGTACATT	TTCTGGGTTT	TCTTAGCTCA	ATAGACTAAG	GGTCTCTACT
	TTGTTAAATT	TCTGGGAAAC	AGCATAGAAT	GGGAGAGAAA	ACTGGTCACT	GTAGTCATGC	AAATCTGCAA
10	AACAAACAAA	AAAGTCTGGG	TATTGCTGCT	AACTAGCTAT	GTGACCTAA	GCAAGGTATT	AACTCTCT
	GAATTTCAGG	TTCITCATCT	GTAAATAGC	ATATCTGTA	AATGGGAAT	ATTTCTAT	CATAATGCTG
	TAGCTTAAA	AAATAAAAAA	AAATGGATGA	GATAATCAGA	ATTAAGAGAC	CTGGGATATA	TAGTTAATAT
	ATAGCAGCAT	GTAAGAGATCC	TGTTAGAAAT	GCTAATTTTA	CAGTTAACCA	TTTGGGAGATG	ATCCGCCAAA
	GCTGCTAGTG	TAGAGGCAAC	TGAGAATTG	CCTGTCCTTC	AGAATATGAA	TAATAAACTG	TCAATGATGT
15	CTCAAGCCTA	GAAAACCTA	TCCATCTGG	TGGGTGGGAA	ATTTCTAGGC	AGTATTGAG	AAGCCCATT
	CTTGGGAAAT	AGGTCCTGGA	CTGAGTGAAG	GAAAAGAAAC	AGTAAAACCC	ATGGTAAAGC	AGCAAGGCTC
	TCTAGAGGCT	CTGGAGAGGA	TGAATTGAAT	TCTAGAAGAT	GAAGTAGGGA	AGACGCTTAA	CCTTCTTG
	AAATGGATT	AAAGATTCAA	AGACCTTCGG	GAATCTCCAA	TTGTATAAAT	GGCACCATAG	CTGTATGTC
	CATGGAACAC	TACITCCCCG	AGATGCCAG	TGAAAAAAGA	ATGCCACAGT	CAAATAAGTT	TGGAAACACT
20	CCATTATGTG	GCCACCTCT	TGAAGACTCT	AATGACATT	AGCATGTTAA	ACAGCTTGA	GAAGTCTTGC
	AGAGCAGAAA	TTGCTTCACA	TCTGCTAACG	CGGCAGTTTC	CCAATATACT	TGATTATGGA	TAGTTTTTC
	CTTACAACAC	CATCTCTCT	TATGCTTCA	ATGACATGAA	ATAAAATAT	ATGCTATGAGG	TTCTTCATTA
	GGGCATACTT	TTTATAGAA	AATATTGAGA	ATAATCTAAA	TATAATGCA	CAGCATTAC	CTTTTCTGCA
	TAAACTATAT	ACAGGCATAC	CTTGGAGATA	CTATGGGTTT	GGITCCACAA	ATATCTCCAA	AACCACATTC
25	GGTTTTATGA	CCACTGCCAT	AAAACAGCC	ACATGAATT	TTTGGTTTCC	CAATGTATAT	CAAAGTTACA
	TTTTTACTAT	ACCATAGTCT	ATTATATATA	CAATAGCATT	ATATCTAAA	AACAACGTA	ACACCTTAAT
	TTAAGGCTGT	GGC'GGTTT	ATTTTCTACC	CAGACCACTA	AAACTTTCTT	CATATCAGCA	ATAAGGCTGT
	TTCACTTCT	TACIATTTTT	TGTGATAGCA	CTTTCCCTT	CCTTCAAGAA	TTTTTCTTT	CTATTCAACAA
	TTTGTITGAT	ACAAAGGAC	TAGATTITAG	CITATCTCAG	TTAAGGTGT	TTACATTGTT	AGCTAAAAT
30	GCTAATGATC	ATCTGAGACT	TCAGCAAGTC	ATAATCTTT	GCTGGTGGAA	GGTCTTGCCT	CAGTGTGAT
	GTCTGCTGAC	TGGCTGGCTT	TGGCAATTTC	TTAAAGTAAG	ACAACATCA	ATGTTGACAT	ATCAATTGAC
	CCTTCCTGTC	ATAATGATT	TTTTTTTCT	CTGTAGCCTG	CAATGCTCTT	TGATAGCATT	TTACCCACAG
	TAGAATTTC	AAAATGGAG	TCAATCCTT	CAAACCTGG	TGCTGTTT	TCAACTAAGT	TTATGGAGTA
	TTAGAAATCC	CTTCCTGTCA	TTCAACAAAT	GTTCACACCA	TCTTCCCCAG	GAGTATATT	TACCTCAAGA
35	AACCACCTTC	TTTCCTCATC	TATAAGAACG	AGCTCCTCAT	CCACTAAAGT	TTTATCCTGA	GATTGCAACA
	ATTCAAGTAC	ATC'TCAGGC	TCTACTCTA	ATTCTAGTTC	TCTTGCTGTT	TCTATCTCAT	TTGTGCTTAC
	TTTCTCCGCT	GAACCTCTGA	ACCCCTTAA	GTCACTCATG	AGGGTTGGAA	TCAACTTCTT	ACAAACTCCT
	GTTGATGTTG	ATAATTGAC	CTGCTCCCAT	GATTATGGG	TATTCTTAAT	GGCATCTAGA	ATGGTGAACG
	TTTCAGAAG	GTTCAGTT	GGCTTTGGCC	GGATCCATCA	GACGAATCCC	TATCTATGGA	AGCTATAGAT
40	TTATAAAATG	TATITCTTTT	TTTGTGGGG	CATAGCGTCT	CACCTGTCA	CCCACCTGG	AATGCAGTGG
	CACAGTCATA	ACTCACTGAA	GACTCAAAC	CCTGGGCTCA	AGTATTCTT	CCACCTGGC	CTCCCCAAAC
	ACTGGATTAC	AAGCTTGGAC	CACTGTGCT	AGCCAAAAT	GTATATCATA	ACTATAGG	CTTGAAAGTC
	AAAGTGAATC	CTTGATCCAT	GGGCTACAGA	ATGGACGCTG	GGTTACCAAGA	CATGAAAACA	ATACTCATCT
	CCTCATAACAT	CTCCCTTCAGA	GCTCCTGGGT	GAGCAGGCC	ATTGTCAAAT	GAGCAGTAGT	ATCTTGAAG
45	AAATTTTTTT	TCTGAGCAGT	AGATCTCCAC	AGTGGACTTA	AAATAGTCAG	TAAACTATGC	TGTAAACAGA
	AGTGCTGTCA	TCCAGCTCT	GTTCCTTCCAC	TGATAGGGCA	AAAGCAGAGT	AGATTGGCA	TAATTCTCTA
	GGGCCTT	ATTITGGAA	TGGCAAATTG	AGCATTGGCT	TCAACTTTT	TTTTTTTTT	TTTTTTGAG
	ACAGAGCTT	GGTCGTGTCAC	CCAGGCTGGA	GTGCACTGGT	GCAATCTCGG	CCCAACTGCAA	GCTCTGCCTC
	CTAGGTTCAC	ACCATTCTCC	TGCTCTGTC	TCCTGAGTAG	CTGGGACTAC	AGGCACCCGC	CACCATGCC
50	GGCTAATT	TTGIAATT	GTACAGACGG	GGTTTCGCA	TGTTAGCCAG	GATGGTCTCG	ATCTCCTGAC
	CTCGTATCC	ACCCGCCCTG	GGCTCCCCAA	GTGCTGGGAT	TACAGCGTG	AGCCACAGCG	CCCAGCTGT
	CTTCAACTT	AAG'CGCCAG	CTGTGTTAGC	CTCTAATAAG	AGAGTCTGCC	TGTCCTTCA	AGCTTTGAAG
	CCAGGCATCA	TTCCTTCTC	TAGCTATGAA	AATCTTAGAT	AGCATCTCT	CCCAATAGGA	AGCCATT
	TATGCCCTAA	AAA'CTGTGCG	TTTGGTGTAG	CCACCTTCAT	CATTGATCTT	ACCTAGATCC	GCTGGATAAC
55	TTACCACAGT	GTC'ACATCA	TTACTCTG	TTCACCTTGC	ACTTTTATGT	TATGGGGATG	GCTCCTTCC
	TCTAACCTCA	TAAACTAAC	TCCACTAGCC	TCACATTCTT	CTTTTACAGC	TTCCCGCCT	CTCTCAGAGT
	TCACAGAATT	GAAGAATGTT	GGGCCTTGG	TTACACTTTG	GTAAAGGGA	ATGCTGTGGC	TGGTTTGATT
	TTCTATCCAG	AAACACTAAA	CTTCTTCAT	ATCAGCAATA	AGACTGTTTC	ACTTCTTAC	TATTTTTTGT
	GATAGCACTT	TTCCCTTCCT	TCAAGAATT	TTCCCTTCTA	TTCAACATT	GACCGTTGA	TATGAGAGGC
60	CTAGATT	GCCATATCTCA	GTTCACACCA	TGCCCTTTC	ACTAAGCTTC	ATCATTTAG	CTTTTATTT
	AAAGTAAGAT	GTG'GACCC	TCCCTTCATT	TGAACACTTA	CATGATGATG	CCTGGCTTC	AAGCTTGAAG
	GGACAGGCA	ACTCTCTTAT	TAGGGGCTAA	CACAGCTGGC	GACTTTAAG	TTGAAGCCAA	TGCTCAATT
	GCCATTAGAA	GCCATTGTA	GGTTAATTAA	TTTGCTTA	TTAATATTA	TGGTGTCTCA	GGGAATAAGG
	AGGCCTGAGT	AGAGGGAGGG	AGATGGGAA	ACAGCCAGTC	ATCAGAGCAC	ACACAACATT	TATCAATTAA
65	GTTTATCACC	TTGAGGGCAC	AGGTCACTGAT	ACTTCAAAC	AATTACAATA	ATAAAATAAA	AAATCATTGA
	TCGCAGATCA	CCATAACAGA	TATAATGATA	ATGAAAATT	TGAAGTATTG	TGAGAATTAC	CAAACGTGA
	CACACAGACA	CAAAGTGA	ACATGTCATT	GGAAAAGTGG	TGCTGATAGA	CTTACTTCAT	GCAGGGTTGC
	CACAAATACT	CAA'CTGTAA	AAAATTCAAT	TATCTACATA	GTACCAATAA	AACAAGGTAT	ACCTGTTTAT

	ATAATCAAGA	CCAACAGAAC	CCTAGAGAAA	ATAGCTACT	CCCTAGCTG	GAGACATTCT	AACCAACATA
	CACTTACCTT	TCTTTTGCT	GTGTACAGAA	TTCAAATCCC	TGTCTCAGCA	AAATTGCAAA	GTATCAAATG
5	TCATGTCCAT	CTAACTACTCA	AAACTGCAAA	TGTTAAGTCT	TGTAAGCCC	GAGACCACTG	TATATACAAG
	TGTTGCTATA	AGCATTAGTT	CTTCTCCAAA	GAAAATAGTC	CACTTGGTAG	AAACAAACAA	AAAGAAAAAA
	AAAGAAAGAA	AAAACATTTT	TTACAAGAAG	ATTCAGTCTC	TTACCTACAT	AAGCAAAAT	ATGAGATGTT
10	CTCTTATCAT	TTTCCATCT	ATCTTATAAT	CTTGGTGTCT	GACTTAGACA	CTCATTTC	TTTTGTACG
	TGACCATGTA	AAA GTTCAAG	TCAAGAAAAA	CTTGTGTTGA	CATTGTTTT	GCTGAGTGAT	GGGTCCCTAA
	AAGAAATTG	GCTTGCTTT	TGAAAAGTTC	AGCATGATAT	TGTGTGAATT	TTTCATGGCT	AATGATTTT
	AGAACAGTTG	TGA GTGTTT	AGGTGTTTA	AGAATATGAA	GCATTCACTG	GTTAAGTTG	GTTGTTATAA
15	AATGAAAGAA	TATGAAAGGAA	AGCCTCTTG	TCTTAGAACAA	CACTGATCA	CAAATAAGCA	GCTTCTCTCA
	AAATGTTGTA	ATT AAAAAAA	TTCCAAGGCA	AATAATAAA	ACTCCTTGT	GGTGTATGT	CTAGAAACCTT
	AACAGCCCCA	AAG AAAGTCC	TGACAAGGCA	AAAAATAATAT	ATATATATAC	AAATTGTTGA	AGCAGGGTGT
	TGAAAGAAGA	ATA AAGACTA	TATAAGGACA	AACIGTTAA	AAGGGAGGGT	ATCCTGAAA	GCTTGACACT
20	TGACTCTTT	GACCAGGCTG	AGGGAAAACA	CTCAGTTCA	TAGATTGCTG	GTACGGATGT	AAAATAGTGA
	CATCCCTATA	GAGAGGAATT	TGGCAATATC	TAGCAAAAGT	GCTTATGCAT	TTATTCTTGT	ACCTAGTAAT
	CCCGCTTCTA	GGATTAGTGG	TGAAGATACA	CCTCAACAAAT	AAAATATAT	ATACATTAGG	TTATTAGTTA
	TGGTTAATT	TTTAATAGCA	AAATATTAA	AACAACCTAC	ATGAACAAAT	AGGAGACTTA	CTGAATAAAC
	TATGGTATAT	CTGTACAATA	AAAGTGCATT	CACTTATGTT	GTTAATTGTTG	TCCAAAATC	CAGAGCCAAA
25	GAGTATTGTT	TATCCTCTCT	TTAGTATAAG	AAAGGGGAAA	TAAGATATGT	GTGCATCTGT	TTATTTTGT
	GAAAATAAGT	ACA GAAAGGA	TAAGTAAGAA	ACTAGTAAAAA	CTAGTATCT	CCTAGTGTAA	GTAGAAATAG
	AATGAAAGTG	AAT TAGGCTT	CTTGTGAGTAT	ATGTTTATAT	ATAGTTTGTG	CTTGTGATT	ATGTTTATGT
	TTACATAGTC	AAA AATATAA	ATTAATCAAC	AGAAATAACA	AAAAAAGAAG	AAATCACAAG	CTTTAAAATT
	TAATACAAAC	AGA ATAATT	GAATCTAAC	GTATATAAA	GTGATAACGT	AAACTCAGAA	GAAAAAAACAA
30	TAATCCAACA	TACCAAGTGG	ACACAATATT	CTAACTGTAT	ACATTCACTG	GTTATAGTCT	AAGGACAAGA
	AAAATTGCAA	AAA TATCTTG	AACTTTAGCT	TGTAGGATT	TTATTGGTAG	CAATACTAAT	GTACTAATC
	TGAAATTAAAT	GTTC GTGTT	TATAGAATTG	AGTAAATGAA	AAAATATGTT	GATGTTATTG	GGAACACTAA
	TTATCATTCT	GGGAGTAGAG	AAATATAAT	ATGGACTTGG	CAAATGAAAC	AAAGACCTGC	AGAGAGATAA
	CCATATAAAC	TCA TATTTT	AAAATTATA	AGTGTCTAG	CTCTGTTACT	GAAAAGGCCT	AGATTCAATC
35	TTATCTTGTAT	AGAC AGGAGG	GCACCCCTT	CTCAGAACAT	GGTTTCCAAA	TGCCATTCTC	CATTAAAAGG
	AACAAGGTCT	TCTTGGAGAA	AAGACTGATT	CTAGGTCTGG	ATTAGGTTAA	GTACAACGTT	AGTCTGGAAT
	TTCTTGTGTA	ATCAGAAGTA	AGAAAAGTCT	CAAAACATG	GGAACATGTC	ACAAACACAC	GTGAGGCAAC
	TTGAATCCTC	ACTGGCCATA	TTAGGACAA	TCGAGCATCA	AAAAAAAAGAAG	AAATGTTGAG	AATAATGGAT
	TCTAACACTT	AAA AAAAAAA	ATAATCCATA	GCCCACAGAA	GGGGAGAGA	GGGGAGGCTC	TTATTTACAG
40	ATGAATATCA	AATA GCAAAG	ACAGAAGAAA	TGACAGAATT	AGAGAAACAT	CATTGCAA	AACACCACTG
	TAATAATCAA	TTCA GGCAAG	TATTATTAAT	GGATGTATTA	CTATTGCGTA	AAACCAGTTG	GGGAACAGGA
	TATTCA TACA	GTCIGAAGGT	GTCACCCCAA	ACATAACTTA	TTACAAGTGG	AAAATGGTGC	CTTTACAATG
	AAGAAATCTA	GCAGAAACCA	TCTTAATCTA	GTGATCAAAC	TTAGTATCAC	CAATAATGGG	TCATACTGAG
	TCATGTGCT	CCTA ATATGA	TGCACCAGGA	AGGATGCAAC	GTCATGAACG	TTGTATTCTT	TTGTATTCAA
	CAGACCACCC	AGG GTAAAGG	CAGCTTCTC	ACTACTAAT	CAGAATTGTT	GGTTTTAATT	CATTTGGAT
45	TTTAAGATT	CTTA CTTTCT	TGTCAGCTCA	GAATTATT	TAAGATGATT	TTTATCTTTT	ATTCAATACT
	TTAGCTTGA	GAACCTATCA	GAGTTCTAA	CTCATGTTAT	TGCGAAAAT	AGAAAACAGC	ATGGTTTCTT
	TTGAAAATGT	CTA CTTTAA	AGTTACTTGT	GTGTGTCACT	TTGCGAAAAT	GCCTAGTAAT	GCCTAGTAAT
	GTAGTATCAT	GTGGCAAGGC	TATAAAAATG	TTTACAATCT	TTTATTAAT	AGACTCTTG	AGAGTTTATT
	CTAAGGAAAT	AAT TGAATAG	TAACAAAACA	CTATTAACAC	AAAGCATAGC	AATTGATT	GGGCAACCAA
50	ACACTGAAA	CAACCTAAAT	GTCCATTACA	GGAAATCATT	ATGAAGCAA	CACTAAAATA	TTTATTGTGA
	AGATTATGAG	AAC ATAGAAG	ACAGTTATGA	GAGTAAATT	GAAAACCTGA	ACACAAAAC	TACATATACT
	CCAATTGTA	CTTATAAAAA	ATACGTGAT	ATAAGGATAA	AAACGTACAA	ACAAAAAAAT	AGTTGCGTTA
	GATTGGTAGA	ATT ATGGCTC	CTTTGCTGT	CTTAATTTTT	TCCCTTACA	TTTGATACA	TTATTITAAT
	TTTAAATTAA	AAAT TCAAA	GAATTGCGCA	CTCCTCTTGT	CCACTTCAAG	GAAAAAAAGAA	ATGTGTTCGA
55	TTATTCTGTT	CTTA TATAG	TTTGGCAAT	TTCCCTCACGT	GTAAAAAGAG	AATACTTAA	ATAATTTCAG
	TATCTATAAG	ACA TATAAA	ATTAAAGAAT	CTAGCCCCAGT	AACTGGTACA	TGGAACGTTAA	TTAATAAAATC
	ATTATGACT	TTT TCTCA	CACCCAAGTA	GGGAGGAATC	AGTGGTCCCC	TAGAGGCCCA	GTGTAGAGGT
	GGCAGCACCA	ATCCCTAGGG	GAGAAGATCT	TGGTGTGAT	AATTCTGAG	CAGACAGTTA	GCTGAGAAATT
	CAAGAGCAGA	AAA GTAAAGAA	AGAAACAACT	TCTGCTAAC	ACCTTCCAC	CCACGTTTCC	CTGTTCTGTT
60	GTACTCTGCT	TACCCCTTCA	TGGATGGAGG	CAGAGGAAAG	AGAACCAAGT	TTGCTCTTAG	TCATTCACTA
	TGTGTTAA	TCTGCCCTCC	ATCTTCTTA	TCAGTCAAA	TTAGAATGTA	GACCTGAATT	TAATCCCCG
	TTCTGTCAGT	TATAATGTGA	CCCTAGACAA	AAACACATTCT	CTGAACCTCA	GAGAACATT	TTCATTGTA
	GAATGGGAAG	ATT AATCTAT	ATTCCATTG	GATGGCAAGT	CTTTTATAAA	CTTTATAACC	TAAACATGTG
	TGAGTTGCTA	GTATCATTAT	GTGGTAAAG	TTATTCTGAG	ATATGATAAC	AGAACCTGTT	TGTCTAACTC
	CACTAGCATG	GTTCAAGGTTT	AGAGAGTGTG	GAATTAAAAG	GCTTTATCCT	CAAATATGAC	TTAAATCCGA
	TTTTTCTCAT	CCAC ITTCTC	CCACAAACAA	ATCCTCAGGA	AATGACAAAC	TTTACATGGT	TAAACATCAG
	TTTGTGTTAG	TCTT GACAT	CCACATGGTT	AAATCATACA	TTTGAAAAT	GCTTATTTT	GTGTTGTCTA
	TGTCTAAATT	GAAG AGACTT	ATTGAGGAAT	AGAAGACTAC	ACATTCTTCA	GCAAAACACTG	CACGTTTGC
	AGAATTTC	CAGC CACCA	TCTCCAGGA	TTTATTGGCT	ACTAACATA	CTAAGATATG	GATGAATGAG
65	GAAATCAAAA	TGG AGATCTT	GCAAGTTTG	TGAGAATGGG	TGAATGGTCC	AAATGAAGAG	ATAAGTTGTG
	AAATATTAGT	ACA GTAAAAA	ATT ATT TACA	ATGAAAGACA	TTTTGTCAAT	AGCTATGAGA	ATTTTACCAT
	TGACCCAGAA	ATT CATTTC	TTTCTTCAGA	AATACCCACG	TAGGTATACA	TATAAAAAGT	TATTCTTAC
	AGTATCGTT	TTCA TAGGAA	AAAGTTTAA	AAATCAGAAC	CTATCTAAC	TATGGTATAT	CTAGGTCTATA

	GAAATCAAAT	GACTAAAAAT	GTTAATATAA	GCATATGTTT	TTAAATTAAAC	TTGGCTTGGG	TCTTCAGCAA
	AATTGGCTTC	TTAACATTGC	ACTCCAGAGT	TAGACTTACC	CACTCAGTC	CTTATCATGC	AGGAGCAGAC
	TCCTTAATACC	ACATATCATA	GAGCAGAGTA	GGACACAGGT	TCTCTGCAGG	CAGGCAAATC	CCAAAGAGAA
	GGGAGGAAAG	GGCTGAGACA	CTGCATGGTC	AATTCTTCT	GAACCTGCA	ATGTACGGAG	GTGGACAGTG
5	TCCACAAAGA	TTGCTCCCCCT	GGACCACCA	TCATAATAAC	ACAACGGCTT	TGTTTGT	TTGTTTTGT
	TTTTTGACAC	GGAGTTTGTC	TCTTGTGTC	CAGGCTGGAG	TGCAATGGTG	TGATCTCGAC	TCACCACAAAC
	CTCCACTTCC	TGGCTTCAAG	TGATTCTCCT	GCCTCAGCCT	CCTGAGTGG	TGGGATTACA	GGCATGCACC
	ACCATGCCCT	GCTAATTITG	TATTTTTAGT	AGACAGCAGG	TTTCTCACG	TTGGCCAGGC	TGGTCTCAA
10	CTCTTAACCT	CAGCTGATCC	ACCCGTCTG	GCCTCCAAA	GTGCTGCAGT	TACAGGTGTG	AGCCACCGCG
	CCCAGCCCCAC	AATGGCCTTT	TGTTTACATC	TCTAGTGCAG	CACTCATTC	ATGTCTTTTC	AAGAAGAATA
	CATATTTCAT	CTTTTATTT	TATACAGCAA	TTAGCACAGT	GCCTGGCAT	AGGAAAATGA	TCATTTAAAG
	CTGGGTGAAA	AACCTAATAA	AGCTACTGAG	GATAGGAACT	GCAGACCAGC	ATGGAAGAGA	AACTATGAGC
	CAGATATTGA	CATCATCCTG	AAAGGCAGAA	GATTTAGTAT	AGGCAAGAAG	TATGCTTTTG	GAATATAGAA
15	AATCTGGATT	ATGATAAGAA	AAGAATCATA	TTTGTCTTAT	CTTACCTACT	CACTCTCAG	TTCCACATGT
	TTCTGAGGCT	GTTCCTT	ACTTTCTTT	CTGTTTATAC	CACTCTTCT	GTTCTT TAGA	TTGGATCATT
	CCTATTGAGC	TGACATCAAG	TTAACGTGACC	TTTATTTTG	TCCAAACTGC	TGTTAAATGC	ATCCAGTGAA
	TTTTTAACCT	TATATAGTAT	ATCTTTTAGT	CCTAGAATT	CCACATGAGT	TTTTTAAGTT	TCCATTCTC
	TGCTGAGATC	TCCATTGTT	TCATTCAATT	TGACCATATT	TTTCTCTACA	TTATTGAGCA	TAATTATAAC
20	AGCTCTCTCA	AAAATCTGT	CTGCACATTC	TAACACCTGA	ATTATTCTGG	GGTCAGTCTC	TGTTACATG
	CCTTATTACA	AAAACAGTAT	AAAGTCACATT	GCCTGTITC	TTAATATGCA	AAATGATTTT	TGATTGCAGA
	CTAGACATT	TGAATTAAAC	ATTATAGAGA	TTCTGGATT	TCGAGAGAGT	ATTGACTTGT	TTTTTCCATC
	AGGCAGGTTA	CTTGA CTTGGA	CTCAAACCTC	AAACCTCTAGG	TCCTCTGTAA	TGGGCAACTG	CAGTAATCTT
	TGTTTAGTTC	TTTAAGACTT	ATTGGCCAGG	CACGGGGGCT	CATGCCGTGA	ATCCCAGCAC	TGTGGGAGGC
25	CAAGGTGGGA	GGATCACCTG	AGGTCAAGGAG	TTCGAGACCA	GCCTGGCCA	CATGGTAAA	CCCTGCCTCT
	ACTAAAAATA	CAAATATTAG	CGGGGTGTGG	TGGTGGGCGC	CTGTAGTCCC	AGCTACTCAG	AAGGCTAAGG
	CAGAAGAAC	ACTGAACCT	GGAAAGGAGA	GGTGCAGTG	AGCCGAGATT	GTGCCACTAT	ACTCCAGCCT
	GGGTGACAAA	AGCGAGACTC	CCTCTCAAAA	AAAAATTAT	TGGCACTGCT	TGGCATCTGC	TATGAATACA
	TGAAGTTCAT	GGGTCAGCTA	TAGATCTGG	CACGTTATAC	ACAGAATTG	GGTCTCCCTT	TCTCTGGATT
30	TCTCTTTTC	TGGATTTCCTT	TTCTCATTTT	CCAGCAGCTG	TGGTTGCCCT	AAACTCGGT	CTCTGTTCT
	TTACGGCACT	AAGATTGGG	AACTTTAGG	TTTACCTGC	CTCTCAGACA	AAATAAAAAA	TAATTTCAT
	CTTGATGCTA	CTCTTTCTT	CCAGATGTAG	ACACCTCTC	AATTCCAGT	TGCTTTTAT	TGCTCTCCAG
	AGTCTAAGA	TATATCTGT	TTTCTGTGG	AGAGTTGGTC	TGATAAAAAC	TACTCCCCA	AAACTGGGAAG
	CTGGAAGCTT	GTAATTATGA	ATAGACTTTG	AGTAGTATT	TTCTTGGAA	AAGGATTITA	ACTACTCCCT
35	ATGTACTTCT	TTATTCCTG	TTTTCTCAT	CCGTAATCTT	TTTATTTCA	TACTTCTAA	GTCAGACAAT
	TTTCTCTACTT	GAAGATTCA	TGACTGCTAT	CAAATGACCC	CCATATTACT	AAATACAATA	TCCCCAACTG
	CATTATAAA	AAGAAATTTT	ACTGTTTATT	AGTAAACAAT	GTTGAGAAT	AGTAAAATAT	TGCTGGGCTT
	TGGAGCCAGA	TAATCAAGGT	TAGAATCCC	GATTCTAATC	TACTAGCTGG	TGTATTAGTC	CTTCTCATG
	CTGCTAATAA	AGACATACCC	CAGACTGGG	GACTGGTAA	TTTATGAAGA	AAAGAGGTTT	AATTGACTCA
40	CAGTCAGCA	TGGCTGGGGA	GGCCTTAGGA	AACTTACAGT	CATGGTGGCA	GCAAGGAGAA	GTTCCAAGCA
	AAGAGGAAA	AGCCCTTAT	AAAACACTC	GATCTTATGA	GAACATCCTC	ACTATCACGA	GAACAGCATG
	AGGGTAATG	CCCTCACGTT	TAATTACCT	CCACCGATTC	CCCCCATGA	CACATGGGGA	TTATGAAAGC
	TATAATTCAA	GATCAGATT	GGGTGGAGAA	ATAGCCAAC	CATAATTAC	CACCCCTGGC	CCCTCTCAA
	TCTCATGTCC	TCACATTTC	AAACTCAATC	ATGCCCTCCC	AACTGTCCC	CAAGGTCTTA	ACTCATTCCA
45	GCATTAAGTC	AAAATATCAA	GTTCAAAGTC	TCATCTGAGA	CAAGGCAAGT	CCCTCTGCC	TATGAGCTTA
	TAATAATCAA	AGCATTGTTAG	TTACTCTTA	GATACAGTGG	GGGTACAGGC	GTTGGGTA	TACACTGATT
	CCAAATGGGA	GAAATTGCCA	AAACAAAAGA	GTTACAGACC	CCATGCAAGT	CCAAAACCCA	ATAGGGCACT
	CATTAAACATT	AAACATTCCA	AATGATCTCC	TTTACTCTCA	TGTCTCACAT	CCAGGTCA	CTGATGCAAG
	AGGTGGGCTT	CCATGGGCT	TGGGCAGCTC	TGCCCTGTG	GCTTTGCGAG	GTATAGCTG	CTTCCTGTT
50	GCTTTTTCAC	AGGCTGACAT	TGAGTGTCTG	TGGCTTTTCC	ATGAGTATGG	TGCAAGCTGT	TGGTGGATT
	ACCATTCTGG	GGTC TGGGCC	AGGTGCACTG	GCTCATGCC	GTAATCCCAG	CACTTGGGA	GGCTGAGGTG
	GGGGATCACA	AGGTCAGGAG	ATCGAGACCA	TCCTGGCTAA	CACGGTAAA	CCCAGCTCT	GCTTAAAAAA
	TACAAAAAAAT	TAGCCAGGCG	TGGTGGTGGG	TGCCCTGTAGT	CCCAGATACT	TGGGAGGCTG	AGGCAGGAGA
	ATGGCGTGAA	CCCAAGGAGGT	GGAGCTTGCA	GCGAGCTGAG	ATTGTGCCAC	TGCACTCCAG	CCTGGGCGAC
	AGAGCAAGAC	TCCATCAAAA	AAAAAAACAA	AAAAACATT	CTGGGGTCTG	GAGAATGGTA	GCCCTTACAG
55	CACCACCAAG	CAGTCGCCCA	GTGGGGACTC	TGTGTGGGG	CTCTGACCC	ACATTCCCT	TCTGCACGGC
	CCTAGTAGAG	GTTC TCCATG	AGGGTTCTAC	CCCTGCAGCA	AACTCTGCC	TGGACATCCA	GGCATTTCCA
	TACATCTCTG	GAATCTCAAG	CCGCGGAGGT	TCCCAAACCT	CAATTCTGA	CTCCTGTGCA	CCCACAGGCT
	CAATACACCA	TGTAAGGCCAC	CAATGCTGG	TCAGGGCTTG	AACCCCTGTA	AGCAATGGCC	TGAGCTGTAC
	GTTGACACCT	TTTACGCC	ACATCTAGGA	CACAGGCAC	CATGACCCGA	AGCTTCATAA	AGTGGGAGGG
60	CCTTGGGACT	AGCTGAGGAA	ACCATTCTT	CATCTAGGC	CTCCAGGCC	GTGATGGAA	GGGCAGCCAT
	GAAGGTGCCT	GACATGCCCT	GGAGACGTTT	TCCCCATTGT	CTTGGTAACT	AACATTCA	TCCGTGTGCA
	GCACCAACTT	ACTATGCAA	ATTTCTGTCA	CTGGTTTGAA	TTTCTCCCCA	GAAAACAGGA	TTTTCTTTT
	CTATTGATC	ATCATGCTGC	AAATTCTCAA	ACTTTATGC	TATGCTTCT	GTTGAAGACT	TTGCGGCTTA
	GAAATTCTT	CCCCCAGATA	CCCAAAATTA	TCTCTCTCAA	GTTCAAAGTT	CCACAGATAT	CTAGGGGACA
65	AAATGTTGCC	AGTC TCTTG	CATAGCAAGA	GTGACCTTA	CTCCAGTTCC	CAACAAGTTT	CTCATCTCCA
	TATGAGACCA	TCTCAGCTTG	GACTTAGTTG	TCCATGTTAC	TATCAACATT	TTGGTCAAAG	CCATTCAACA
	AGTCTCTATG	AAAGTTCAA	CTTCCCCATG	TTTCTGTG	TTCTAATAGC	CCTCCAAATT	TTTCCAACCT
	CTGTCTGTTA	CCCAAGTCTA	AAGTCACTTC	TACATT	GGTATCTTA	CAGCAGTGGC	ACTCCCCATG

	GTACTAATT	ACTCTATTAG	TCTGTTCTCA	TGCTGCTAA	AAAGACTTAC	TCGAGACTGG	GTAATTATA
	AAGAACAGAG	GTTCAACTGG	CTCACAGTC	AGCATGGCTG	GGAGGCCTCA	GGAAACTTAC	AAACATGGTG
	GCAGCAAAGA	GAAGTTCCAA	GCAAAGAGGG	AAAAGCCCT	TATAAAACCA	TCAGATCTTG	TGAGAATTCA
5	CTATCATGAA	AATAGCATGA	GGGTAACTGC	CCCCATGATT	AATTACCTC	CCACAGGGTC	CCTCCCAGTA
	CAGGTGGGG	TTATGGGAAC	TACAATTCAA	GATGAGATT	GGGTGGGGAC	ACAGCCATAC	CATGCCAGCT
	AGAGAGCCTT	AAGAAAGTCA	CTTAATCTCC	ACAAATAAAA	GGTTTCCTAT	TTGTTCAACA	AAAATAATGA
	CACCCCTTT	ATGGGATTTC	TGTGAGGACA	AATGATAACT	AACATAGCCT	TGCATAGTGT	CTGGCACAAA
	ATAGCTACTC	AAAATAAT	AGAAACACA	TTTAAAAAAT	GTAGACTT	TTTTTAGAG	TTTATGTAC
10	AAAGCAAAAT	TGAGCAGAAT	GTACAGAGAG	TTTCGTATA	GCACCTCCA	CCCCAAGCA	CAGATAGCCT
	CCCCCAGTAT	CAGCATCCG	CACCAAGTGT	GTACATTCT	TATAACTGAT	GAATCTATAT	TGACGTGTCA
	TTTTCATCCA	AAAATCCAT	TTTATATTAG	GGATGCCTCT	TGGTGTGTA	CCTCTATGG	GTTTGACAA
	ATGTATAATG	ACAAATGATT	ACCATTACAG	TATCATAAAG	AATAGTTCA	CTGCTCTAAA	AATCTTGAT
	CTTCTTCCTA	TTCATCACTC	CCTCCCTCATT	AATCCCTGAC	AACTACTGCT	AATTTCCTG	TCTCCATTG
15	TITGTCTTT	CCTGAATGTC	ATATAGTTA	AATATAACAGT	ATGTAGGATT	TTCAAACACTGG	TTTATTCAC
	TTAGTAATAT	GCAATTGATG	TTCTTCCATA	TCTTTCAAA	GCTTCATAGT	TCAATATTTA	TAGAATTGAA
	TAATATTCCA	TTGICGCGAT	GTACTACAGT	TTATGTATT	ATTCACCTAT	CAAAGAACAC	CTTGGTTGCT
	TCCAAGTTTC	AAACATCATG	AGTAAAGCTG	CTATAAACAT	CTATGTACAT	GTTCCTTGT	GAATTGAACA
	TTTCAGCTT	TTTAGCTCC	ATTCCTAGGA	GTGCAATTGC	TGGATTGTAT	GATAAGGGTA	TGTTTAGTGT
20	TGTAAGAAC	TGCCACGCTC	TTCCCTAATG	GATGTACTGT	TTTGCATTCT	CACCAAGCAAT	GAAAGAGTC
	CTGTTGCTCC	ACATACTCAC	CAGCATTG	TGTCGTCAAT	GTGTTGAGCA	ATAGCATTIT	GATCTAACIT
	TTCCCTAGGTA	TTCTTTTGA	AGGAATAAT	ATGACAGATA	ATAGAGAAAG	GATACAGAG	GACAGTTCTG
	TCCTTTATT	ATAGTCCATC	ATTTAATGAA	GGACTCTGTC	CACACTTGGT	ATTTTAAC	CTGATCCTCC
	TCTCCCATGA	ACTCTGACAA	TCTCCTAAAT	CCCTGTTGCT	GGCACACATG	TGGTGTATC	AGGCCCCCTG
25	TGGTCTGTCT	GAAGCATGGC	TTT	TTTTTTTT	TTTTTTGAG	ACGGAGTCTC	GCTCTGTGCG
	CCAGGCTGGA	GTGCACTGGC	GCGATCTCGG	CTCACTGCAA	GCTCCGCCTC	CCGGGTTAC	GCCATTCTCC
	TGCCTCAGCC	TCCCAGTAG	CTGGGACTAC	AGGCGCCCGC	CACACGCCT	GGCTAATT	TTGTATTTT
	AGTAGAGGCG	GGGTTCACT	GTGTTAGCCA	GGATGGTCTC	GATCTCTGA	CCTTGTGATC	CGCCCGCCTC
	TGCCTCCAA	AGTCTGGGA	TTACAGGCGT	GAGCCACCGC	GCCCACCTT	TTTTTTTT	TTTTTTTTT
30	TITGAGATGG	AGTCGTAC	TCTGTACCC	AGGCTGGTGC	AGTGATGCAA	TCTTGGCTCA	CTACAACCTC
	CATCTTCAG	GTTCAGTGA	TTCTGCCACC	TCAGCCTCCC	AAGTACCTGG	GATTACAGGT	GCCCGCCACC
	ACACCCAGCT	ATTTTTGT	ATTTTATGAA	GAGACGTAGT	TTCCACATGT	TGGCCAGGCT	GGTCTCATTC
	CTGACCTTGA	GTGATCCACC	TGCCTTGCC	TCCCAAAGTG	CTGGGATTAC	AGGCATGGGT	CATCACATGT
	GGCCTGAAGC	ATGACTGTTG	CTTTAATCAT	ATGAAATACT	GCTCTGTATT	GTTATCTATT	TGAAATGCA
35	CACCTCTGA	GCTAAATTGC	AAGCTTTAT	GGAGCACAAA	CCATATTAT	ATATATTAGC	ATGATACCAT
	GACACATATC	AAAAGCTGTT	ATATATTGTT	ACGTGAATTG	ATTCTTCTC	AGTTAAGAGG	ACCTCTGTAG
	TAGCACTTTC	ATAC'CGTTAA	TTTTTCAATT	TGTGCCAGC	CCCTACTCTG	TGAAAATGAA	AATGAATCCT
	GTTATCATTT	CCCTCCCAGG	CCTTTCTCC	TTGTGGACAA	TGTGTGGCTC	AAGAGAAAAT	TCAGTCAGTA
	AATTITGTC	GTGACAAAC	TCTTTATCAC	CTCTCACTGT	TCTCAAGTGA	GATAGAACAG	AACATCCATC
40	CAGTGTCTTA	CAAATTGTC	GGTATAGT	AGGCACTCAA	TAATGTTT	TTGAATAAAT	GCATACATGA
	ATCCTATTCC	TATAATAGT	ATGGTAGACA	GATCATTGAT	ACCCAAAGAT	GCCCAAATGC	TGATCCCCAG
	AACTTGTGAA	TATCTTACAT	TTCATGTCAA	AAGGGACTTT	GCTAATGTA	TTAAGGATTC	AGACCTTGG
	ATTGTAAGAT	TATCCGGG	TAACCAGGGC	CAATCTAAC	ACATGAGAC	TTAAAAGAC	AGAAAACATT
	TCCCAGCTGG	GTAGAGAGA	GATGAGACAG	AGTAAAAGG	AAAGAGATT	AGGGCATGAA	AATGACTCTA
45	CCCACTGTTG	CTGGCTTGA	AGATAGAGGA	ACTAGGCCAC	AAAACAAGGA	GTATGAGTGG	CCTTAAGAAA
	TAGGAAAAAG	CCC'CATCTG	ACAGCCAGCT	AGAAAAGCAGT	CCTCTGACCA	CAAGAAATTG	GATTCTGCCA
	ACCACTAA	TGAGCAAGGA	AATGGATTCT	CCCCTAGAAC	CTCCAGAAAG	GAACACAGCT	CTGTAATGCC
	TTGATTTAG	CCACGTGAGA	CCTGTTTCAG	ACTTTGACC	TATGGAATAA	TAAGATAATA	AAGTTTATT
	GTATGCTGCT	AAAATTGCGG	TAGTTTATTA	CTGAAGCAAT	GGAAAGCCAA	TACAGACAGA	ATATACAGAG
50	AGAAGAGAGA	TGAATTCTT	CCTGATAATT	TGTAATATT	TGGGTCTTC	CTGGACAAGC	TTTCACAGAGG
	ATTCACTGGT	TCCCAGCAA	ACCAGCATGT	CCAGCCTGC	AGCCTCCCTT	TCTTAGGCC	AGCATATGTC
	AGCTGTGTC	ATACAAAAAT	CAAAGCAGGA	CCCTGAGTAG	TTGGAAAGAA	AAGATGGTTG	GAAATGGGT
	GCACCTCAAG	TGAGGAAACA	AGAGGTAGGA	GACCGGCATC	TCTTCTCAT	ATGTCCTCAGG	CTGACTCTG
	TGAGTTGTTT	TCCCAGGGAG	GCTATCGATG	ACAGTCACAG	TAACCTGATG	GAACCTGGAT	CATGATGAAA
55	GAAGTAAGTG	TCAATTGGCTC	CGACTTCAA	GGACTCTGAT	GTCCCACAGC	ACTAGCTAAA	CAAAGCCAGT
	TGGAAATGAG	CTTAATGGG	GAATTCTCTG	AATATATTCC	CTATTGTTAG	GAAGCCAGGT	TGGCTTCTT
	GCCTACAAATT	ATGCAAGCA	GTCACACTAT	AGAGTCCCTA	GGGACATGAT	ATTAAGTGTAT	TCTTTAACAA
	CAAACAACTT	AAATATCATT	TATACTAATA	GCAAACAGGC	CAACGGCTGA	TATTCCACTT	GAAGTGAAT
	TGGCTATCCA	ACTGGAGAG	AAGACAGGAA	GACGTGATCT	CCAGGGAGCC	ACTAAAAGGA	TTGGCACCTG
60	CCTCTGGATT	CCCCTTTCC	TTATATTACC	TCTCAGCACT	GGCAGGCCCT	TATTTCAGGA	TACAGTTCTA
	CAAGTATTAT	GTCACTGCTC	TGAGAATTAT	GTTGGTAGAT	ATTGCTCT	CTGGCCAGAA	AGACCTAGTT
	TGGAGTCTGG	AGTCATGAG	GTGACATACA	TGTAGCTAGT	GACATAAGTG	TAGCTAGTAA	AAATAGTGAAG
	TAATGGCCCT	GAAATTCTAT	TGAATGCCA	AACTGCTGAC	CAGGAACAG	CATGCTCTAG	CTTATCTCAC
	AAGGAACCTG	ACAATTCTCT	TCAAAATCC	TAGTAGCTAA	GATTCTCTAG	TAACAAAGCC	ACTAAGGCAC
65	AATTATGATT	AACTTGACCC	TTAGGTGACT	TTTAAGGACT	ATTCTATAAA	ATATTACAAC	TAATAGTGGAA
	TCCAAGCCAG	CACACTCTGC	TATATAAGAT	TAATTGACAG	TGTCCACACT	GGTAAAATAA	GTTGTTCTAT
	AAATACATTA	GAA'TCATT	GCACCTCTA	CACAGCCCCA	AGTCACAGAAC	TTTCCCCAGA	ATAGGTCTAT
	GTTTTGCAT	CTGCTACTCC	ATACAGAGAT	TTGAGTTCAC	TTGGCAATT	AGTGTGCTT	ATATGTGACC
	AGTTAGTCTG	TTTIACTTAT	CTATGCCTTA	AACATTACTA	TACTTACTAA	CTCCAAGATG	CCTGGTCTCA

	ACTTGACAAA	AATACCCAA	GTTGGGAAAT	CCTTATGTGA	ATATGTAGAT	AGTCACAATT	GCTGGTTGAT
	GATGATCTGT	CTTITCCTGT	ATTTGAGAAA	ATGGAGATAA	AATGGACCAA	TCCAATAAT	GGATTAACAA
5	TGGGAATAGG	TGAGAGAGAG	AGAGGAATAC	ATGGTGGCTC	TCAGTGTCTG	GCTTAGGCAG	TAACACTTT
	CGTTAATAAA	GACCGAAAAT	AAAAAAGGAA	TAATTGGTGT	CTAGGGAAA	ATAATGAGCT	CAAGTTTAA
	CACTCTGAGT	TCCC GGATGT	GAGACATCCA	GGCGCATTTA	TCCAAGAGGC	AGTGGAAAGC	AACGTTCCGG
	AGCTTAGGAG	AGAGGCATGA	CCAAAAGCTG	GTGGGACTGT	AAAAGGTAT	GGCCATTCTG	AAAAACTGTT
	TGGCAGTTTC	TTAC AAAATT	AAACATGTAC	TAACAACCC	GCAATTGTAC	TCTTGAGCAT	TTGTCCCAGA
10	TAAATGAAAAA	AAAAAAAAG	CATTTTTT	ACACAAAAC	ATATACATGA	AAGTTCATAG	AAGTGTATT
	CATAAAAAC	TGAAAAAAAC	TGAGATGTCT	TTATTGAGTG	AATGCTTAGG	CAAACGGTGG	TCTATCCATA
	CAATGGAATT	ATGCTTAGCA	ATAAAGAGAA	AAGAACATT	GATACATGCA	ATAACACAGA	TGAATCTCAA
	AGGAATTAAAT	GCTGAGTGGG	AAAAAAAGCA	CATCTCAAAA	TGGTATATAC	TGTACTATT	TATTIACTTA
	ACATTTAAA	AATA GCAAAA	TCATAGAGAT	GGAGAACAGA	TTAATGGTA	CTGTGTTTG	GGATGGGAG
15	TGAGAAAAGG	GTAAGGTGTA	AAATAAAGG	GGTAGCACAA	AAGAGCCTTG	TGGTTGAAGG	ATTCTATGTC
	TTGGTTGAG	TCGIGATTGC	AGGAATCTAC	ATGTGATAAA	ATTGTATGGG	TCTACATACG	CATACACACA
	AGAGCATATA	AAA CTGGTGA	CATGTGAAGA	AGCTCCGCAC	ATTGTGCCA	CATCAGTATC	CTAGTTCAA
	TATCAGACTA	CAGITATACA	AAACATTGTC	ATTGAGGGAA	ACTGGGTA	GGGAACACAG	GACATTGTC
	ATATATTTTT	GCAATTTCCT	GTGAATCCGT	AATTATTAA	AAATAACAGA	TATACTACAT	ATCAAAAATT
	TAATGTCATA	AAGTGATGA	GTTTACCTAG	TGGATAGCTT	TGTTAATATC	TGCTATAAGA	CTACTGAAA
20	TGACAGTTAT	GCAAGTATAA	GCTCAGAGAA	CTTCCCTCCC	CCTTCGTA	TGAAATGAGC	AAAAGAAATG
	AAACAGGAAA	GGCAAGCAGT	ACTGAAAACA	GGGAAGGGCT	CTTCCCCATA	TAACATATAC	TGCGACTTC
	ACAGCTATTTC	ATCCAGAAC	ACAGCCTCTT	GGCCTAAGAG	GAAACTTGG	ATAACAAATAT	GTTTCTACTC
	TCCAAGGAG	AAAATGGATA	GATTAATT	TAAGAAAAAA	AAAAAAACCT	CACCAATTTC	ATGCTGTGGC
	TTGCACCTTT	AAATCCCGCT	ACCTACAAGG	CTGAGGTGAG	AGGCTACTT	GAGCCAGGA	GTTCAAGGCT
25	GCAATGAGCT	ATGATTGATT	GTGCTATCGC	ACTCCAACCT	GGAGTACTAA	GCTAAGAGCT	AAGAACACAG
	CTGAGAGCGG	AGAAGAAACA	AAACAAATCTG	ACCAATAACC	CCCACCTCCC	TCATTTACT	GGAGTGAGCT
	GAGACTGCTG	GCAAAACATGG	CCTTGCACCT	AGCCTGAAC	GTAGCAAAAG	TCATCAGATA	TTTTCCACC
	AATCAACAGA	CAGAGTGGG	GAGAAAACAA	TCGTAGTTCA	TAACTACAAC	AAGCAGATAA	ACGAAGGCCA
	TGGTGAGGGA	TGGAGACAT	TGTGATATAT	CAAAGGCAGG	CTCATTAA	ACTCAACCCA	AATTCCAAAC
30	AAAATATATA	ATTGAAATATG	TATTAATGCC	AAAGGAGCTT	GAGTGAGCTT	TAGCACAAAC	CCCGCCCTCC
	AGCCCCCACC	CAA AAAATC	ACTCTGTTCT	CTCCCCATTC	TTTGATAGGC	ATACTTGCTG	TTTTCTACA
	GCCAAGGTAC	AGAGGGGACT	TAGAGGAAC	AGAACTCTAA	TACACTGCTA	GCAGGAATGT	AAAATGAAGC
	ATCTACTTC	GAAAACATT	TTATCAGTTT	CTAGAAAGTT	AAACATGAC	CCACCATGCA	GCCCAGCCAC
	TCTACTCTCA	AGTATTTACA	CAAGGAAAT	GAAAACGTGT	CCCCACACAG	TTGTATTAA	AGGTGATGGT
35	TAGCCTTGTG	TGTC AACTTG	GCTAGGCTAT	AAATCCCAGT	TACTGAAT	AATAGTAATC	TAGGTGCATC
	TGTGAAGGTA	TTTGTAGAT	GTGGTTAAC	GCTACAATCT	GTGACTTCA	AGTAAGGAG	ATTGCTCTG
	ATAGTATGGG	TGGCTTCAT	CCAATCAATT	GAAGGCCTTA	AGAGCAAAA	GTAAGGTTTC	CCGGAGAGAA
	AGAAATTCTG	CCTCAAGACT	GCAGCCTAA	CTCCTGCCTG	AGTTCCAGT	CAGCCAGCCA	GCCTAAAGAT
	TTGCTAGGCA	TTAT AATCAC	ATCAGCTAAT	TTCTTAAAT	AAACCTCTT	ATATATATTG	ATACAATGAA
40	TGGTTATAGC	AGCCTTATTT	GTAATAGCA	CAAACCTGAA	ACAACCTAAA	TGTCTTCAA	TAAGTGAATA
	CATAAACAAA	TTGTGGTATA	TCCACAAATT	TTACGCAGCA	GTAAAAGGA	ATAAATGGTT	GAATAAGGAA
	TAACACACATA	ACAAGGATGA	ACCTTAAAC	CGTAAGGCTG	AATGGAAGAA	GTCAGACAAA	ACTAATACAT
	ACTGAATAAT	TCCP TTATA	TTGAAGTTCT	AGAAAATGAG	GACTAACCTA	TAGTAACAAA	AAGCAGAAAA
	ATTTCGCCCA	CTGGTGATGG	AGGGGCGCA	GGTATTGTA	AGTATCTGAG	AAAGGACAAC	TGGATAAAAG
45	GGGGCACAAG	AAAACTTTTG	AGGGTGAATTG	ATATGTTCAT	TATCTTG	CATGGTTCA	TAGGTGCATA
	CATATGTCAA	AACATCAAGT	TATACACTTT	AAAATGTC	AGTTTACTGT	ATATCTATT	TACTTCAGTA
	GAGAGGAAGG	AAGAACGTGG	GCAGGGTGGG	GGAGAGGAA	GGAAACGAGG	GAGGAAAGGC	CCTAATAGGA
	AGGAGTTTGG	AGTITAGATT	TTAAAATGAT	AAAGGATGTT	TGACACTCTA	GGCATATGAC	GAATATAGGA
	TTATGAGTCC	ACAA AAACCA	CCAGGAAGTC	ATGTATGTT	ATACTTTAA	GTGAAGGATC	AGTGGATTAT
50	CAACTCCCTA	ATGCTTTGCC	TCTCTATGAC	TGGCTGCTGT	CCTTCTCATC	CCAATACTCC	TTCCAAAGCC
	CCTTGCTTAA	ATGIAAGCT	TCTTCCCTCC	TTCAACACA	TCTCGCATTC	CGTACAAAAA	TAAGTTTCC
	TTAACACGAA	TGTACAGCAT	ATTATTGTA	CAATTTAAA	TTTTGGCCA	GGTGTGATGA	CTCATGCCCTG
	TAATCCACG	AAATGGGAG	GCGCAGATGT	GTGGATTACC	TGAGGTCA	AGTCAGAGAC	CAGCCTGGCC
	AACATGGTGA	AACTCTGTCT	CTACTAAAAA	TACAAAATT	AGCTAGTGT	AGTGTGGCAG	GTACCTGTAA
55	TCCCAGCTAC	TCAGGAAGCT	GAGGCAGGAG	AATCGTTGA	ACCTGGGAGG	TGGAGGTTGC	TGTGAGCAGA
	GATCAGACTA	TTGC ATTCTA	GGCTAGGAGA	CAGAGTGAGA	CTCGGTCCCC	AAAAAAAAC	ACATTITTT
	TTAATGTTTC	CTCC ITGCCT	GTAGGAAAAA	GGCTCTGACT	CCTTAGCTG	GGCATCAGAG	CTCTATCTAA
	ATGGACTTTA	ACCTGATTTT	GTGGCACTAA	TTCCATTGCA	GTACTTGTC	GCTCACTGGC	CTGTGCCTCT
	CTGCCACTAT	TTT TGGATA	ATGTCTCTC	TCCATCTGT	TTACTCAACT	ATATCCAACC	TCTAAGGCTG
	TGCTCCTACA	AAGCCTCCCC	TGGCTACTTC	AGCCCACAGA	GATATTAAAC	TGCTCTGCAG	TTCAGGACAT
60	TCTCTGACT	CTTAAATCA	CATTACTTA	TATATGATCT	TGTGATATT	TTTGTGACG	TGTTTACTTT
	AATTTCCTTC	CATAACCTAT	TCATTCAACA	AACTCAACAA	TTATTTTATA	AATGCCAAGT	TAGAAAAATA
	TTATTGATT	TATAFAGATT	ATAGATATGT	TTGAAATT	ATTTGGCAAT	CTGCAAGTAG	AAAAATAATT
	ATAATGTGGT	ATATCTGTGA	TAGAAGTATT	AGTCAGAGA	CCATGGGAA	CATAATCCAG	CCTGGAAGTT
	CAGGAGAGAT	ACGTGGAAGA	AAGGACGTCA	GAGCCTTTT	CCTACAGGCA	TGGAAGAAC	ATTAAGGAA
65	ATTTTTTTT	TTGAAGATGGA	GTCTCACTCT	GTCTCCCAGC	CTAGACTGTG	GTGGTGCAT	CTCTGCTCAC
	TGCAACCTCT	GTCT CCCGGG	TTCAAGTGT	TCTCTGCCT	CAGCTCCCA	AGTAGCTGGG	ATTACAGGTA
	CCTGCCACAC	ATGGATGATA	AATATGATCA	TATTTCTTG	TTCTTTCTCT	CCTCAGTTGT	CTTCCCTGAA
	GAAAGGAATG	CCTT TATAG	ATGACAAACT	CCCATTCTCA	AGAACAAAGGA	TTTTGACCA	ATTTAATTAA

	ATCAGATGTC	TGGCTTGAC	CTAGAAACAC	AGTCACGAAA	CTTGGTGATT	AGAGACCAAT	TCCCAAACAT
	GAGCATTCT	TAGGAAACAC	AGTAAAGATC	TGAGAGACCC	AAGAGCAGAA	GGGGAGAAAA	CCAAAAGCCA
5	TCAGTTGCA	TAGGAAACAC	CTTGTGATGC	CTAATCTTT	TATTTTATT	ACTCTATTAG	TCACTACAAC
	TATTTTCTGA	TTGCTATGGT	GATAGATGGT	TTAAAACAAG	CCTTCATTAA	GAATGTCAC	ACCATGGTCT
	CAGTCAAAA	CACCAACATT	TTTATTGGA	TTGACAATT	TGGGAATATC	CAATTCCAAG	AAGACAAGGA
	GACCTCTGAA	CTTICCTAAAT	GAAGACTCCA	ATCTCCTGA	TCTGATGGGA	AGCAGCTTGG	CAAGATTACC
	AACCACCACC	ACAGAGAGTG	GAECTCTAAC	TAAGACTTAA	AAGATAAGTA	GAAATTATCC	AGGTAAGAT
	GTGTACAGAG	AAGGAAGTAC	ATCCAGGGGA	AAAGAACAAAT	ACGTGAAAAA	GTACGGAAAT	GGTAAAAGT
10	AATACTACAT	AGTCAAGGC	AAGCAGAGTT	CAGAACGGAT	CTGGTGGTGA	AAAATACGGC	TAGAGAAAGC
	AGCAAGGATT	GGCTCTAAA	ACCTATGAG	TATCTTGGAC	CTTACCCCAA	ATGTAATGAG	AAGCTTCTAA
	AGAATCTTC	ATTIATTCT	TCATTGAACA	AATATTGTA	GGCTTCTGT	GAAGAACATC	ATTCTAAGTA
	GTAAAGATAC	AGCAGTGAAT	AGGACACATA	AAATCCTAGA	TCTCACAGAA	TTGACATTCC	AGAGAGGGAA
	AGGTAGACAA	TAAATACATA	AACAAATCAT	TTAACAAAGAT	GATTCAGAC	AATGGTACGT	ACTGTGAAA
15	AAATGAAACA	AGGAAATGGA	CAGCGAAAAG	GCACCTGGAG	GAAGCCTGCT	TACCTTGC	TGGTTAGAAA
	AGATCTCT	AAGAAAGAGA	CCACATGTGA	GCTCGCACCT	GAAGGATACC	GAGAACGCTAG	GTGTGCAAAG
	ATGTGGGAC	AGAACTTTG	GACTGAATAG	CAAATACAAA	TGCCCTTGGG	TGCAAGCTTT	GCCTGTTCAA
	GGACCAAAA	GAAGGCCAGT	GTGCCGTGAG	CATACTAACG	ACAGAGGAAA	ACACTGTTAT	ATGCTGAGAT
	TGGAATTATA	AGTAGAGCCA	GATAATATAG	TCTCTTATAG	GTCATAATAA	GGCAACCAGA	TTTATTCCA
20	AGAGGATTTA	AAAATCACTG	GAGGTTTGC	ACTAGGGTGA	GAGGTGTTGAT	TTGTTATTTT	AAAAGATAAT
	TCTGGAGAAT	TAAC TATAAT	GAGGTAGGAG	TAAACTAAGT	TAGGGGCTAT	TTCAGTGGCT	CAGACAAGAG
	ATAATGTTAG	CTTAGACTAG	GATAGTGTGC	GTAGAAATAA	ATAAAGTGG	CACTCTACTT	TGGGGTAGA
	GTCTATAATA	GGTTTGGTT	ATGGATCAT	TATGAGAGTA	AAAAAAAGAA	AATAAATTAA	TAATGGTTCC
	TAGGTTTGT	CCTGAGCAAC	TGAATAAATG	GGTGTGTTG	ATTGAGATAA	AGGAGATTGA	GAATCACAGG
25	CTTGTGTTG	CAAATAATT	TTGAGAGGCT	TATTAGACAT	CCCAGTGGAG	ATTCAGGTG	AGTGGAGCCC
	ATTGAAAGGT	AAGCGACAGG	GTCAGGTGTG	GTAGGTGAGG	CCTGTGATCC	CAGGACTTTG	GAAGGCCAAG
	GCAGACAGAT	CAGCTGAGCT	CAGGAGTTG	AGACCAGCCT	GGGCAACATG	GGAAAACCCCT	GTCTCTACAA
	AATATGAAA	ATATTACCTG	GGCATGGTGG	CATATGACTG	TGGTCCAAGC	CACTGGGGG	GCTGAGATGG
	GAGGATCACT	TGAC TACAGG	AGCGGGAGGT	TGCACTGAGC	CAAGATCTCG	CCACTGCAAA	CCAGCTTAGG
	TGACAGAGT	AGAACTCTGTC	TCAATAAATA	ATAAAGAAC	GTAAGGGAAA	AGGAAATTAA	TCTGATCATT
30	GGCAAATGCA	TAGIATTTAA	AGCCAGGGGA	GTAGATGAGA	TACTCAAAGT	AGGTGAAGAT	AAGGAGGCAA
	TGAAGGCCA	GGACTCTGGT	GTACATTGAG	ATGGTTATAA	GAGGAATAGA	AACTGGCAA	ATAAGTAACA
	CTGAGCACC	AATGAGGTGG	AGAGGAAAGC	CAGGAGATGA	AGCATCATAG	AAGGCAAGAG	AAGAAGGGTG
	TCAAAGAGG	GAGGCAGTC	TCAACTCTG	GGCAGTCAAA	TAATATAAGG	ACAGAAAAGT	GACCATTGGA
35	TTTGGAAATA	TGATGAGCAC	TTTGTGAGGA	GTGTTGAGAC	AGAAGACCAA	TTAGAGTAGA	TTGAGGAGAT
	AACGAGAAAT	GAGAAATATGT	AACCTGCAAG	CACAGACAAAT	TCTTGAGAGA	CTTTCTGTG	AAAGGAAACA
	GACACAGAGT	CTTAGCATGT	CTTGTCTTC	TATGGGAAAT	GTAAATAGTT	TGAGATCAGG	GATAGTATT
	TATTCTGCTT	TTTGATACCTC	TACATTACCT	AGCATAGAGC	TAGCTAATGT	GCACCTAAAGT	ATGTTCTCAA
	TTCTTATCGC	CTGAATGACT	GGATGGTGA	AAGAATGGAT	GGATGGATGG	ATGGATGGAT	GGAAGGATGG
40	ATGGATGGAT	GGAAAGCTTC	TGATTTGCCA	AGAAGAGGAT	ACTGGTAGCA	GAAATAAAA	CAGCACTGGA
	GAAAGAAGAG	TTTAGATTTT	TATTCTTGG	TGTCACTGAG	ACAGGAAAGT	AAGACATTAG	AAGAGTCCTT
	AGATAATTAA	TGTAATTGTT	CACTTAGGAT	TTTTAAATGT	GATCACTGAT	ATTGGACATG	TTCTCTAGTA
	AGCATTTTTA	GTGTTCTACT	GGTTGAAGGT	AATAACTGTA	AAATTATTTC	CCGTCAGGA	CAGAAAAACAA
	GAAAATTGTA	AGCCTCTATT	AGAAAGTCA	AGATTCTCTG	GGGTTCTTAG	GATTACTGT	TCCCAAAC
45	CTGTCAGAA	CAACAAAATG	ACCTGTATAC	TTAACCTGGTC	TAGGCAACAG	TGGAAAGACA	ATTCTCAGAG
	AAGATTGTT	TTAAAGAAC	ACTTTCCATA	GGAATCAAAC	AATAGCTTTC	AGTGAACAAAC	ATGGTAAGAC
	ACAGGGTGT	AGCTCTTCC	TTCCAACCTC	ATGGCTGTTG	TACCTTACCT	TCGACCCCCG	TGTTCTGAA
	ATTGTTAAAT	TCATAAACTT	ACCAAGGACT	AACCAGCCTC	TGGGAAATTG	CTGTACTATT	AGCAAACCTA
	CAATGGACAT	ATTATAAGC	CATAATGATA	ACTGACTAAT	AGGAAATACC	CTCAACTGAA	AATGAGAGAT
50	CATCATTG	AAATGAGTTC	CCTTGCCTAG	GCAACTACTG	GGGAAAATGT	CATGCAAGCA	AAATTAACT
	TTGAAATCCT	CCTITCCAT	TTTGTGTC	TTCCTTTCC	ATAGGCACCA	GAATATCAT	GGTGCCTGGA
	TCTCATCT	ACAGAAAAAA	AAAGTGAATT	GATAAAACTGA	TTTATATTGT	GTCCAAATGT	GATTGTATT
	TCAAAGATAA	CCTAAGGGGA	GAATGCTGTC	TGGCCCAACA	GCAGGCTCTC	GACTCATTT	CAGACACTGT
	GGCCAATGGC	TGGGAAACAG	GTATGAACAG	TAGGTTCTG	AGTCCCTGG	AATTATTCCA	TTTATGTAGC
55	CACCTCCATG	ACACGAAGCC	TCCCTACTCT	TACTTCCAG	TTTGTTCATT	CATGGCACCA	GGTTGCAGAT
	TAAGATTGTC	TCAGTGACCT	TTTATCTAA	AATGTGTTAC	CTTCTCTCT	AAAAAGTAC	AAGGGACAAA
	TGCTCATGGT	ATACTTTTAG	GAGATTGTTGG	CTCTCTATT	ACAGTATTAA	TTCAACAAAC	ATTTATTGAG
	CATTATATG	TGCACTCATGC	TAGGGACTGG	AACCTAGTAA	GTGTAGCACA	TATTATTCA	TTAATCCTC
	ACAACAAACC	CATGAGGTG	GTTTTATGAT	CCCAATT	CAGAAGAAGA	AACTGATATT	CAGAACCAAGT
60	TAACTAACG	GTTCAAGGTC	ATGCAATTTC	TAAGATACAG	AACCAAGAGT	CAAAGACATG	ATTTTAAACC
	AAAGCTTTT	CTGCTACTCC	ACATTGCTC	CCTAGGTGAG	ATCTGAGGCA	TTCCCGAAA	AGAGAAGGGT
	CATAAAGCCA	AGGCGAACACA	AGCTTAGGAA	AAAAAAGGGA	AATGTCCTAA	ATAAACAGCT	TTCCCTATTAA
	CCAGAAACCA	CTACTTTAA	AAATATAATGG	AAAAAAATCCT	ATTCACTTAA	ACAATGTTAA	AAAAAAAAAA
	GATAGAAGAA	ACATAGGGAT	AAACTTAACA	CATTGTTAGG	ATATGTAAG	AAACTAAAAG	ATGTTAATAA
	TGGCTAAAG	AAAAAAAAC	TTACATGTT	GGGGAGATAG	ACCATCTAC	TGGATTCTAA	TATTAAATAG
65	TCTAGGTGTT	CCATTTCTCA	CCAAATTAAAT	GTATACATT	AATACAATGT	CAAACGAAAT	ATCTTAGGAA
	TTGCTTACAA	ATTGTCAGAT	AATTACAAAG	TTTACCTGGG	AAATATAAGC	ATATATGAAG	AGTGAATGGG
	ACCCCAACAC	TCCCCAAA	ACAAAAAAGG	TCTGAAAAGG	ACAGAAATCA	AGGAGAGTCT	TGCCTGCCAG
	ATACAAAATT	CTATTATAAA	GGTGTATTGA	TGAAACAAAT	TTAATACTAG	TGTAGCAATA	GGCAGCAAAG

	CAATGAAAC	GCA'AAAAAG	ACCAGAACTA	TACCTAATT	TGATGAAGAT	TTAAGGTATG	ATAAACATGA
	CATAATTCAA	ATCAGCAGAA	ATTGGCATAG	ATAGGGTTAA	GACAATATAG	TAATCATTAG	AGGGGAGGAA
5	GGAAAGGAGG	GAGGATAAAA	TTAGGTTCC	GCCTTCATCT	TACATTAAAA	TAATTCAG	ATGTATTACA
	TTTAAATT	TTTAAAAA	GAAACCACAA	AATACTTGAA	GAAAATATAA	GTGTTATAT	AGTCTTTGA
	TGGGAATT	TTTITTTTC	AGAGACAGGG	TCTTGTCTG	TCACCTAGCC	TAGAGTGC	TGGCATGATC
	ATGGCTACT	GCACCCCTGA	ACTCCTGGG	TCAAGTGATC	CTCCCAGCTC	AGCCCCCAG	GTAGCAGGAA
10	CTACAGGCAT	GCGCACCCCC	ATCCAAC	TTTTTATT	TTTGTAGAGA	CAGGGTCTT	GCTTGTTC
	CCAGGCTTAT	CTCCAACTTC	TGCCCTCAAG	CACCTCAGCC	TCCCAAAGAG	CTGGGCTGAT	GGGACATT
	TTAACATAGT	GCCACATTAC	CATAAATGAA	AAGCTTGTAA	AATACTAATT	TTTAAACTA	ATATATATCA
15	GAAATT	TAAACAAAGT	TAAAAAGCAA	ACACAAAAAA	TTTGTAGAC	TTATGACAAA	TATATGTATA
	TATATGAA	CAAFAAGAGC	CTTACAAAA	CAGTAAGAAA	ACAATGATA	CTCCCATGG	AGTATTCAA
	ACTAAACTGC	TAFAAGCAAT	TCAAAACAAA	AAACATAAAC	TATGCATATA	TGTATGTGAA	AAAGTTAAC
20	CTTATCAAAG	AAGTAACCTC	TCAAAGAAAT	AAACATCAA	TAAGGAATA	GCCTTTCCC	ACAAATAACC
	AAAATCTGTA	AGAATACTG	GCTGCGAATG	TTTCAGAAAA	AAAAAAAT	CATACACCA	GTTCGGCATG
25	TAATTAATAT	AGATCAGAAC	ACTTAAAAA	TATTTATAGG	CCAGGCACGG	TGGCTCATGC	CTATAATCCC
	AGCACTTTGG	GAGGCCAAGG	CGGGTGGATC	ACCTGAAGTC	AGGAGTTGA	GACCACCTG	ACCAACATGG
	TGAAACCTG	TCTCTACTAA	AAATACAAAA	ACTAGCCAGG	CATGTTGGCG	TATGCTGGTA	ATCCTGGCTA
30	CTCGGGAGGC	TGAGGCAGGA	GAATTGCTT	AACCCAGGAG	GTGGAGGTG	CAGTGAGCTG	ACATTGTGCC
	ACTGTACTCC	AGCCTGGGCA	ACAAGGACAA	AACTCTGTCT	CAAAAATAA	TAATAAATAA	AAATAAAATA
35	TITATATACT	CTGACCCATC	AATTITGICA	GCATAATTAG	GCATGTGTC	AAGGTTTAC	ACACAAGAAT
	GCCTATTGCA	ATATGCTTT	TAATGCTAA	AAAAATTGGG	GAAAATGCTT	TAAAAATATA	GATTAAGACT
	GTACATTGTG	GTACAGTCAT	ATAATCAATA	GTATACAGCT	ATTATTATT	TTCAGCCACT	GTCCAAAATA
40	TAGCTGGCC	TAACAACATT	CTGTTAGGAT	ACGCAAGCAC	CTGAGGAGA	TCAGCTATAA	AGTATCAGTG
	TTTCACACCA	CTGCTCC	GCTAATAACC	TTCAATGGCT	TTTAAAGAAG	TAAAAAACAA	AGGCAAAATT
45	CCTTAGTCAG	CCCITAAGAC	TCTCTGTAC	TTAGCTCAA	CTACCC	CAACACACT	GCCCTAACCA
	GGATGAGTTT	TTTCCCCCCCC	TGGAGTACAT	TCAGCCTTC	CTTATCAAAC	CTTCCTTAA	ATAAGTATCT
	TCTCCAGGAC	CAC'TCAC	TCTTCCCCAA	TTTAGCATTT	TCTATATCTC	CAGGCC	TCTATAAAAGC
50	CTGTCCTAAC	CACTCAAACC	CTAGCTTTT	CTCTGAAC	CTAGAAATAT	TTTCTCTCA	TTGGCCATT
	AGGTAAAAAG	GTTTTACTG	TTTATTACCT	ACTCAATAAA	AATTTC	TTTGAGACA	AGGTCTTA
55	CTGTCGCTA	GAATGGGGGG	AAAGTGGTGTG	ATCACAAC	ACTGCAAC	CTACCTCCC	GCTCAACAGT
	CCTCCACCT	CAGCCTAGTG	AGTAGCTGTG	ACTACAGGCA	TGTGCCACCA	TACCCACTA	CTTTTCATTT
	TTTATT	GTGAATGGA	ATCTCACTAT	GTTACCCAGG	CTGGCTGCT	GATCTCAATT	GATCCTCCCA
60	CTGTGGCCTC	CCAAATATGCT	GGGATTACAG	GCATGAGCCA	CAATATCTG	CCCCAGTAAG	CTTTAAGGC
	CATTAACATG	AGGAACAGTG	TTCTTACAC	TATTTATCA	GCTAGGGCTT	TGCTGGAGT	AGGAGTTAG
65	TAAATGCGGT	TGATGGGTTA	ATCAATGTG	GAAAATATT	AGAGCCACCA	AAAACAGATA	TTATGTCTAT
	TCTCATCAAC	AATCAAAATT	GAGTAAACAG	CCATTTC	ATACAGGAA	CCACAAACAA	TTGAATGGTG
	ACATTA	ATTCCCCCAG	CAGGAGCCAA	CCAATT	CATCCTGATC	CAAGTTAGCA	AACTGCAAAA
70	GATAGGAAGC	ACTAATGAGT	GGAAAATTGA	GTAGAAGCAT	TTCTTATGAA	GGCTGCTTG	ACTGGATCAC
	ATTTTTATTG	CTGTGGAGG	TGCCAAATGT	GTGTGTTAT	GCTAAC	CACCTCAGG	AACACACAGT
	CAAGGATCCT	ACCAAGTGT	ACCGTCAAGT	GTCTGTTGC	AGCTCAAGGC	CCCAGCGTTG	TTCCCTTGCA
75	CTAGGGAAAA	GACATATTCC	AGGTACAAGT	ACTCCC	TGATGCTACA	GAGGAGTTGC	TGAACTTGT
	GTCTTAAATC	TCTCTTCGTT	AGATCCCAC	ACTCT	TCCCAC	TGCTACTCT	GGGTCTTCAC
	CAATTAACTA	GATCATAGTT	CCTGTTAAA	AGGAGAAATC	TGCTCC	AGATTAAAC	AGGTCTCCGT
80	TTAAATTAG	AATIGCTAAC	TTCAAGCGGG	CCCTTATGCG	ACAGTATGCC	TGTCAGTCAT	ACTACATTTC
	CTCAATTCCA	TTCAATGTGAC	TGCTCC	CCTCCCTCT	CTCTTC	TACTATTATC	TCTTCCCCCC
	TCCCTCATTT	TTAATGTATG	ATCTTGTTC	CTATTCTCT	GAGAAAATAG	AAGCCATCAA	AAGAGAGTTT
85	CCACAACTC	CTACTGCTT	ATCTAGCC	GTACCATATA	CTTTGC	CCTCTCATTA	CCATGGATGT
	ACTGCCTATC	TGTCCTTCTA	TCTAAGGCTA	ACCTTCCAC	TTCA	AATATTATCA	GCTCTTACCA
	ACTCAAGGCC	ATTGCTCTAG	CAATTCTCTC	ATTCTCTCTC	TTTTCA	ATCAAGTTTT	CCTTTCTTC
90	AATTAAAGA	GTAGCTCTA	AAGGGAAAAA	AAAGTCTCT	TCATGC	TCATCATCAC	TGGCCATCAG
	AGAAATGCAA	ATCAAAACCA	CAATGAGATA	TCATCTACA	CCAGT	TGGCAATCAT	TAAAAAGTC
	GGAAACAAAC	GGTGTGGAG	AGGATGTGGA	GAAATAGGAA	TTAC	CTGTTGGTGG	GACTGTAAC
95	TAGTCAACC	ATTCTGGAAAG	ACAGTGTGGC	GATTCTCTAG	GGATCTAGAA	TTAGAAATAC	CATTGACCC
	AGCCATCCC	TTACTGGGTA	TATACCAAA	GGATTATAAA	CAATGCTGCT	ATAAAAGACAC	ATGCACACGT
	ATGTTTATTG	TGGCACTACT	CACAATAGCA	AAAGACTTGA	ACCAACCCAA	ACGTCCAACAA	ATGATAGACT
100	GGATTAAGAA	AATGTGGCAC	ATATACACCA	TGGAATACTA	TGCA	AAAATGATG	AGTTCATGTC
	CTTTGTAGGG	ACATGGAGGA	AGCTGGAAAC	CATCACTCTC	AGCAAACTAT	CACAAGGACA	AAAACACAA
	CACTGCATGT	TCTCACTCAT	AGGTGGGAAT	TGAACAATGA	GAACACTTGG	ACACAGGAAG	GGGAACATCA
105	CCCACTGGGG	CCTCTTGTGG	GATGAGGGGA	GTGGGGAGGG	ATAGCATTAG	GAGATATACC	TAATGTTAAA
	TGATGAGTTA	ATGCGTGCAG	CACACCAACA	TAGCACATGT	ATACATATGT	AACAAACCTG	CACGTGTC
	ACATGTACCC	TAATACCTAA	AGTATAATAA	AAAAATATAT	ATATATAT	AAAACAAC	AAAATAAAC
110	TTCTTTCTC	GCAGGATCATG	TCCATCACCA	CACACACAGG	CTGTGTTTA	TGTTGTTCCC	CAGCTTAAGA
	GATGTTCTC	CAGATCCCAC	TGCTCC	AGTTGTACC	TCAGTTCTCC	ACTT	GCTGATAAAC
	TACTCTAACT	AGTACATAT	GATTCTGTC	CCCAGGTCCC	CTCCCTCAGT	TGTTTGAAC	ATAATCATTT
115	ATATCAATTA	TCATTTTCAC	TCTAATTGCA	CAACCAAAA	CTCCCTT	TTTAGATGG	AGTCTCACTC
	TGTCACTTAG	GCTCAGTG	AGTGGCATGA	TCTCGGCTCA	CTCCACCTC	CGCCTCACGG	GTTCAAGTGA
	TCCCCCTGCC	TTAGCCTCT	GAATAGCTGG	GATTATACAC	ATGCACCA	ACACCTGGCT	AATTGCTT
120	TTTTGTGTTG	TGTGTGTTG	TGTTTTTTT	TTTTTTGGA	CAGAGTCTCA	CTCTGTTGCC	CAGGCTAGAC

	TGCAGTGGCA	TGA'CTCAGC	TCACTGCAAC	CTCCACCTCC	TGGGTTCAAG	CGATTCTCT	GCCTCAGCCT
	CCCGAGTAGC	TGGGACTACA	GGCATGCA	ACCATGCCAG	GCTAATT	TTGTATTTTC	AGTAGAGACC
	AGGTTTACCC	ATG'TGGTCA	GGCTGGTCTT	GAACCTCTGA	CCTCAAATGA	TCTGGCACC	TGGACCTCCC
	AAAGTGCTGG	GAT'ACAGAC	TTGAGCTACT	GCGCCGGGCT	ATTTTGTTG	TTTAGTAAAG	ACGGGGTTTC
5	ACCATGTTGT	CCAC GCTGGT	CTCAAAC	TGACCTCAAG	TGATCCGTC	GCCTCAGGCC	CTCAAAGTGC
	TGGGATTACA	GGAGTGAGCC	ACCATGCCG	GCCATAAAAC	TGCCCTTGT	TAATATGACT	GTTGGCCTGC
	ACATTGCAA	ATCCAGTGGC	ATTCACTTA	CTCGGCCAAC	CTACGGCATT	TGACACTGTC	TGTCTTCCT
	TCTGTTCTC	TATCTGTTTC	CAGTATACTG	GCCTGGCTTT	CTTTTACCT	CTTTTATATG	CTCTTCCAGT
	CTCAGGCTCC	TTTGGGGATT	TGAAGGTATG	TTGCATTITG	CTATTCAATG	AATAATGACA	AGTAATGATC
10	ACTTAAGACA	TTAAGTGGTC	AGTCC	CTAGGATAAA	AATAATTTC	TTCCAACAT	GGGGCATATT
	CCATTTCAG	TCTCAGTGT	CTGTGTAATC	TTTGATTTC	TTGGCAGCCC	CTTTTATATC	AGTTCATCTA
	CTGTGCGAGA	AAT'GGACAA	ACATTCGAC	TGGTATAACC	AAATCACGTT	GAACCTTTGG	CTTGA
	AGCTGAAC	ACCAAAAATA	ATTCTGTAA	GAGACTGAGA	CGTCTACGAG	TAGGTTTTC	AGAATTAGTA
	AACATAAAATC	AAGGATAACAC	AGGTAGATIT	GAATTTCAGA	TAACAAACAA	ATAC	AGTATGTCTA
15	CTGAAATATT	TGTATCTTAT	CTGGCAATTC	TACCTGGTAC	AGAACTAATC	CATICTCTIG	AAAGATCTG
	ACTCTGTAAT	AAG'TCTTTG	GTGATGGAA	GGAGGTATT	CTGTAATTAG	AGTCACTGTC	TTCCCTCCAG
	TTTTTATCC	TGGGCCAGAT	CTGCAATGAA	CACACGACAG	AATCCAGGGG	GGATGAAGAT	GGGTGCTTTG
	CAGGAAAAAA	AAA'AAAAAA	CATCTGAAA	AGCTTTGT	CTAAAAGAAT	GTGATCTAAA	AAAGAAAGCA
	GGAGAACCTT	CTG'TCTGCAC	TTTACATCG	AACAAACCTT	GCGTCTAGAA	GCTGTGCCCT	GTGGGAAGTG
20	GTGGTCTTGT	GTAAGAGATG	CCAGGACAG	TGGTACCCAC	TGGGAGCACT	GCCAATACCC	AGCAAGGAGC
	ATGGGTCAC	AGTAAGGCAT	TGCACTGTG	TTCA	AATAACAA	AGGGAACGTC	ACGGAGAAAAA
	GGCCAGACTT	CCTITGTTA	GAATGTGGA	AATGCTT	GAAAAATGGT	AGTAAAAAAAG	CATGCTTGA
	TGGTCACTC	CAGC'AAAAC	TGACTAATCG	GGGGTCAGGG	ATACAAACCC	TGCA	GTTGTTTCT
	GTG	CATCAGGTC	ACTGTGACCA	CTGTGGTTA	ACCCCATAGT	CTCCTGGAAA	TACAGCCAGG
25	TCAAGAGAGC	TCCACATAAA	ACATAATCAA	AAAAATAAAAC	TCAAGTTCC	ACTGATCAGC	TTTCACAAAC
	TCTTATCCTT	TCACTAAC	TGGAGCAAGA	TTTGAGAATT	GGATGGCTAT	TTGAGGGCTA	TTTCTGC
	TTAGTCAAT	GTTITGTTCT	TTCTT	GAGAACTATG	TTTTTTATT	ATATTACAC	TTAAGTCT
	AGGGTACATG	TGCAACACGT	GCAGATTG	TACACAGGA	TAATGTGCC	ATGTTGGTT	GCTGCACCCA
	TCAACTCGTC	ATTACATTA	GGTATTCTC	CTAATGCTAT	CCCTCCCCCA	GTCCCCCACC	CCCCGACAGG
30	CCCTGGTGTG	TGA'TGTC	CTTCTGTG	CCAAGTGT	TGTTTATGTG	ATAGATTACG	TTTATTGATT
	TGTGTATGTT	GAAC CAGCT	TGCA	TCAC	ACAAGAAACA	AAACATTCAC	AGATGGATCA
	TTATGTGTA	TAAGTGA	CCAAGGATT	ATGTCAGAG	GTGGGCTTAA	CAGGTTAGGAA	GAGCAGTATT
	TTCCCTAAC	CATC AGTGT	TGCA	TCTTCTT	TTTGAGATGG	AGTCTACTC	TTTACCCAG
	GCTGGCGC	AGTGTGCGA	TCTTGGCTCA	CTGTAACCTC	TGCCACCTGG	GTTCAGCAA	TTCTCCTGCC
35	TCAGCCTCCC	AAG'GGCTGG	GATTACAGG	ACCTGCCACT	GTCTCCGGCT	AATTTTGTC	TTTTAGTAG
	AGATGGGTT	TCACCATCTT	GGCCAGCCTT	GTCTGAACT	CCTGACCTCA	TGAATCATCC	TTCTCAGCCT
	CCCAAAAGTGC	TGGGATTACA	GGCATGAGC	ACTGCGCCCA	GCCCACAGGT	TTTCAAAGA	CTAAACTAA
	AAAAAA	AAAATTTCCC	AATGAAATAT	AAA	TGCTAAACTG	TGATAGACTG	TTTACAAGA
	ATGCCAGTTT	TCACAAAGTGT	CTATAGAAC	TGTAATT	ATAGGTAAGA	TGAAATT	ATAATATTG
40	ATGGCAATT	TAAACAGGTA	TACAACAAA	ATAAAATCT	AAGCCCCTCA	ACCAACTGAA	TGGACTCCTT
	CTCTCAGCCA	AAGC AATACC	AAAGTAAACC	TGAAA	GTTTGGCCA	GGATTGGGGG	TAGGTGGGG
	AAGCCCAACA	TGA'CTCATTA	TTCTCTC	CCTTGGAT	TCAGGCACAA	CTGAATGTCA	GCATTGACAC
	TAAAACACAG	ATCITAAGAC	TGACAAGCC	GACTTTGT	AGCAGAGAGC	CAGGCCCTGG	AAGAAATCAA
	GTTATT	CCCAAAAAAT	ATTCTTGA	TATATT	AATGGCCCTG	CAAAGCTGTC	TCTTGTGGGG
45	AAAATTGACA	TGCTGTACAG	AATTCTTC	TCTTCCAAG	TTTTACTG	TCCAGGAGAG	ATTTAACTAA
	GAGGCTAGCA	TGT'TTTTT	TTTTTTTT	TGAGGCGGAG	TCTTGCTCTG	TTGCCAGGC	TGGAGTGCAG
	TGGCGTATC	TCACCTCA	GCAACCTCG	CCTCCGGGT	TCAAGCGATT	CTCCTGC	AGCTTCCCAGA
	GTAGCTGG	TTACAGATCC	ATGCCACTAT	GCCCAGCTAA	TTTTGTATT	TTTGTTAGAG	ACAGGGTTTC
	ACCATGTTGG	CCACGTAGT	ATTGA	TGACCTCGT	ATCCGCCAC	CTCGGCCTCC	CAAAGTGTG
50	GCATTACAGG	CGT'GAGCAC	CGTGCCAGC	ACAAGACATT	TACCGTCTAT	TCTCTCTGAA	GCTACTATCT
	AGAGGCTCA	TCA'CATATA	AAGACCTTG	GTCTCCACAA	CTCCCTATCT	TATCTTATT	GTTCACACTG
	ATTCCAGGTC	TTAGATAAT	AACAACTCTT	TCAACCA	GCCAATCAGA	AAGTCTTGA	ATCCACCTAT
	GACTAAAAG	CCCCACTCCT	TCAAGTTATC	CCGCC	GGACTGAACC	AATGACACC	TTATATGTG
	TGATGGATAT	CTGCTGTAA	CTTCCATT	CCTAAAATGT	ATAACATCAA	GCTGAACCC	AACCACCTTG
55	GGCACATGTT	TTCAAGGAAC	CATGAGACTG	TGTGCA	CTTGGTCACT	CATATTGGC	TCACAGTAAA
	CTTCTTAA	TATTGTATAG	AGTTGGCTT	TTTCATTGA	CACAGGAAA	ATAAAGAATT	GGAAGGTCTT
	TCATCAGTCA	CTG'GCCAGC	TTCATATCTG	ACTGAGGTCA	TACAGTT	TGATTGTTAG	CTTTGCTACT
	TAGATTGCTA	TCCATTATCT	AGAACGATCA	GGATCACGT	GGACCTATTG	GAAATGCAGA	CTTCCCTCCT
	AGAACCCAGG	ACC'TGGAAT	ATTCTTGCA	CATAGTAGGT	GCTCAATACA	TATTGAACTC	CTAGGTGCAA
60	TTCATTAATT	CATGAATTAA	TGAATTAA	CGCTCTCAA	GTTAGTGT	TTTTCACAGA	CTAGTCTTC
	TGCCTCTAA	GCATCAGCT	CACCA	CCAGTCTC	TCCCCTATTA	GTCTGATTAA	AATCTGCTTA
	CATGTGAGTC	TGAGATCAAG	TGTTATCTC	TCTGAGAAGT	CTTCCCTC	TGGCCCAAAG	GAATTCTCC
	TCTATT	CACI GTCCC	GTTGACTTGT	CATTATTCTA	GTCTTTTCA	TATTGTTGT	TTTCATATA
	TATGTTATT	AGGA AACTAG	TCATT	TAATAGAAC	AAATGCTGG	CCTTGGGGT	TGGCAATGGA
65	GGGGAGGCTC	TTCTGAAAAA	GGGGGAAGAG	TGTTCTCTA	ATATT	TACGAGATTT	ATGTTGCTCA
	TCTTAGCCT	TTAGTCCCCC	ATTGCCTGCC	TACAGTGGC	AGAGACCATC	TGTTCTCTCA	CTGTCAGGAA
	CTGTCTCAAT	TCTGAAAGTT	CAGATCAA	AAAGAAGCAA	GT	CTCTTGTAC	AACTTTCAA
	GT	TTTACTTC	CATTGAAAAA	TTTACTAAGT	GGTTTATAC	TGAGAAATAT	CCACTCATAC

	TCTTCCTCTT	CAACTTTCTT	CCATATACAC	CCTATTACAG	GGATATAGTC	TTACTCTATA	GCTCAAAAGG
	ATGACCCTAT	CAGAACCTG	CACAGTATGT	AAAACATTCT	CACCATGGGT	TCACCTTGTT	ATTTCACCCC
	TAGAATGGAA	GCTCTACAAA	AGCACAGAAT	GTATCATTTC	AACTTTAGAT	TCTATTTC	CACCCAGTGC
5	TTGACACATG	ATTGAGTT	AATATTATT	TATCAAGTGA	TTGTTTAAA	ATCATGACTC	ACTCAACAAA
	GTTATAAGAA	TAAGAATAGT	GTTACAGAAT	TGGTATACAC	AAGCTGACCA	TAATCAACAC	ACCTATTATC
	ATTTTTTGC	GACAGGTTCT	CGCTGTCTCA	CCCTGGCTGG	AGTGGAGTGG	CATGACCACG	GTTCACTGCA
	GGTTTGAACT	TCCAGGCTCA	AGCAATCCTC	CCACCTCAGC	CTCCCACATA	GCTGAGCCC	CAGGTGTGTG
10	CCACCATGTC	CAGCTAACCT	TTAATTCTT	TGTAGAGACA	GGGTACCCCT	ATGTTGCCA	AGCTGGTCTT
	GAACTCCCTG	GCTAGAGAGA	TCCTCCCTCC	AAGGTCCCCC	AAAATGCTGG	GATCTCAGGC	AAGAGCCACC
	ATGCCCTGGC	ATAATCAATA	CACTTTAAG	AATGCTAGAA	TGTTATATCA	GATGCATACT	TCAGCACTAT
	CTCAAGCAAA	CTGGGGTGTG	GGTTATTCTA	CATATAAAGT	TCAGCAGTGT	TGTTCCACAG	TCCCAAACTC
	CAACTGAGGT	CAAATGTAGG	GTGAGCAAG	GTCACTGGGG	CTGTCTACAA	GGGCTCTCC	TTGCACTCTT
15	GCCAACCCCTG	TTTCTTGTATT	GTCTCTACCA	CCATGAGTCA	CCAGCAATCT	CCCACAGTCA	CTTGTAA
	AGTTCACAAAG	TATGTTGTGA	ATTGCAAGGCA	ACCCCTTGAC	TCCCTGATTG	CCTGGTCTTC	TTCCCTGGGC
	TCTACCATTT	TTTCTCCCCA	GCACCTTTTC	TGCTGCTCTA	AATTAAATT	CATGCAATT	CATATGTGTT
	TCTCTATCAT	TCTCATCTC	TTTCCCTCTC	CTTCCATCCA	ATTTTGTTG	TCTGTTGCT	TGCTTGCTG
	CTTTAATACA	TTTCTCTTT	TCTGAGAAGG	CTTGTAGTCCA	AAACTCTCAG	TTACCTGTTG	TTCTGTTCC
20	CGTTAGTTAA	TCTCCGAACC	TTCATAAATT	AAATCTGACA	AAGTCCCCCTG	ACTAACAAAG	GAAATGCACA
	AGTCACAGTA	AAAGGGGCAC	ACACAGAAC	CAAATAGACC	CAGGGTCTTT	TCTGTTCATC	ACTCAGCTT
	TTTATAGGAGA	TCCAGGAGAA	ATGAGGTGGA	AAGGGAAGTG	TGTTGAGTTA	CTATACAA	CAAGAGTAAA
	CTTTCTTATA	AGTGGTAATT	TTTTTTTACA	GGAAATAATTG	AAAATGGAAA	TTACCTCTC	TACTCATAGT
	AAGTACTCAG	TGGCTTCTTG	ATGGGATGAG	AATGTTGTTG	ACGTTTGTG	TAAGGCAGAA	TTCTGTTTAG
25	TCTGCCAGTA	TTGGAGAAAAA	ATAAAACACA	AAGGGACTGA	CATGTAGGAA	GTGGCACCTG	GGAGGGTCTC
	AATTCTTCT	ATTAACAAAAA	TGCCCCAGAG	AAATAAAAAG	CTTGTGTA	TGTTGAGATG	GGAGAGTTCT
	CTGGCCCCCC	TCGCAGGATG	TGTGACAGTG	GGGTGGCTCT	CTGCTGCC	ACCATGAGCT	CAAACCCCTC
	ATAGGAGGGG	GAGCACACAG	GCAGGAAGGT	GCAGGAGCTG	GGCGAGCTCT	TTGGGCTCTG	GCCCCGTGGT
	ACTGTCTAGA	GGTGGGTGCC	TGCAACTCT	GAAAGCCAA	GTGGGCATGT	GTTACAGTGC	ACTCTTCAG
30	CTTIGCTGTC	TGCACTTAA	GCCTTAACCA	GCTCAGTTTC	TTCTGGTAC	CCAGGTCTT	GTCTGGCATC
	CAGGAAGAAT	CAGGTTACAC	ATGGACTTGA	AGGATGAATG	TGGGAGTTT	ATGGAGTGGT	GGAGGTGGCT
	CTCAGTGGGA	TGGATGGGGA	GCTGGAAGGG	GGATGGAGTG	GGAAAGATGAT	ATTCTCTTGG	AGTTTGGCTG
	TCCAGCAGCC	GATCTCTCT	CCAGTCGTC	CCAGCCTCTC	GACGTTCAGA	TGCTCCTCTT	CTCTCCTTCT
	CTGCGATCT	GTTCGCGGT	TCATCTGCT	GTCTCTCTC	GGAGCTTGA	ATTGGGGTT	TATATGGTAC
35	ACAATAAGGG	GCA'GGCAGG	CCAAAAGGGA	ACTTTTGTAGG	TGCAAAAAC	AGGAATGCCT	CTTCTCACCT
	AGGGCTATAG	ATTITCAGGC	TTGAAGGTGG	GGCCTTACCC	AGCAGAACCTG	TATTCCCTG	TCTCCTGTG
	ATATCAATGT	AATCAAATAC	TGGGCTGATC	CAGGATGTTT	CTTGTGACCA	ATTATGGGTA	AAATAATT
	CATTCAAGGTT	TTTATATTG	CTTTGTCT	TTCTTTTAA	GCAATCATGT	AAAATATCTA	TACGACAGTA
	ATAGATGATA	GCGAACCTAA	TTAAAATTAC	CAGAAACTTA	AGAATCTCA	ATGATTCAA	CTGTAACCTAA
40	GGTTATTCTT	CTTATGTG	AACAATGTTG	GGAGATAAGA	CACAAGAGTT	TCTGAAGTAT	TTCAAGAACAA
	CAAAGAGGGA	GGTTATATAA	ATAATATT	TTTCTTACTT	TGGGAAATG	AAAGCTAGTC	ACAAAGTTAA
	ACGAGTGGTT	ATTITAATAT	TTTAAATACA	GGCTGGATG	TATTCCTGT	TAAGAAAAT	AAAATGCAGA
	ATATTCAAAA	CGTCAGACCA	CCCTCTAA	AAAATGCATC	TCTGAGGTAT	TTTCTCTTGT	AAAGTATTGT
	AAAATACCTG	GAGAGCTTG	AACACAGCA	AGCAACACAGG	ATGCAGAGTT	TAATCTGTGG	AAAGCTTAGG
45	GAAGAAAAGC	AAAATCAAA	AAATAGGTCT	TCCTCTGAAG	ATTTTAAAGG	CGCAAGAGG	GTGAATAGC
	AATGATAATA	AAAAGCTGG	CATAGAGAGT	GGCACAAATT	GCTGTGCCAC	TGAGCTGACT	GGATGTGTT
	TGAATTCTA	GGCATTAGTG	TACCTTCTCA	CACCGATTCT	CCCTTAA	AAAATGCCA	CACACTGAAT
	ACTTTTCTA	TGCAATTAA	AATAAGCGCA	CCATCTAGTT	TACAGAAATT	CACTAGAAGT	TATTTATCCT
50	AAAATAGCAG	AGATCTAGAA	GAATTITGAG	CTCTAGGACA	TTTAAAGACAC	ACAGAAAGAA	GAATCTGGAC
	AAAGTCTTGAC	CAGACATGAC	AGAATAGAAA	TTTCTTTTCC	TATTTATCTC	TTTGAATAAA	ATTTCAGGA
	TCTTACAGTG	GACAGTTTG	TTATCTACAC	ATTGTAAGC	ACATTGATT	CTCCTCTGTA	GCCTTAGGAA
	GATCTGAGAG	GTGACTGAGC	TGATTGAATG	ATCCGTGACC	GCTCTACTGG	GACCACTGAGT	AGAAACTTAC
55	TGGTGGAGAC	CTGCTGGAGG	TTTGAGAGCA	GACTTTGAAA	ATTACTAGAG	CTACACAGAT	ACTGTGTTGGC
	TAATCTGATT	ATGTTAGAG	GCTTTAGAA	CTATGCTGCT	GCTGCTGCCAG	TGTAGCCAGG	ACGCACAGAG
	AACATCTAAG	GCTCTTGAAT	GGGGCGATAG	GGACAGATTT	CAGCAGCCAT	CTGACTTCAG	TGCTCATT
	GATGTTTCC	CTGCAAGGGTG	CAGTGTGAG	TGTGAGTGT	GCAGTGGTGG	GAGGCTCACA	CAGGAATACT
60	TGCTTCTGTA	GCCCCAATT	CCGGTTCAAA	CTCTGCATT	ACCTTGACAG	ATTCTTCCCT	TGGCCAAAAT
	TTAGTTAGGC	TTCTGGGCTT	TCTCTTATGC	CCACCTGCAG	ACTTTTGGT	AAAATCCAGT	TTTAGTAAAG
	AGCTCTGCTA	AGTCAGTTA	GCAAGAATCC	CCACCTCAA	AGTCAGTATC	TCCCTCCCTG	GTAGTGTCTG
	GCTTGTCTTC	AGCGAGAATT	CTATTAGTT	CTTTAGATT	AGAATCTCC	TTACCCCTGA	TGCTTCTCT
65	TAGTATTCTT	TCATCCACTG	ACTCTTGTAC	CCACCTTGCT	CCTCGGCTAT	AAATCCCAC	TTGCCATAC
	TCTGCAGTTA	AGACATT	CTCCCCACTA	CTGCAAAATC	CCATTGCCAT	GGTCCCTATA	CTATCTCAAT
	GGTAATGAAT	AAAGTCTGCC	TTACCATGCT	TTAACAAAGTA	ACATTGAACC	ATTTTTTCT	TTAACATCT
	GCTGCACAAAT	GAGATTACTA	AAACATTATT	CCATTGTCCT	ATGCTGGATG	TCCTCAATGG	AATGGCTCTT
	GTGAGCACCA	AATATTGTG	AGAAGGAAA	CCCACATCTT	ACAGCCCCCT	GTAACGTGAT	GTATGTTACA
	TGTGATGTAT	GTTCATAGT	TTTTTTTCAT	GTGATCACT	TTTGTCCCCT	TTTCTTATAT	CTTATCAGTT
70	GGAAGACTGT	GGAAAGTTGT	AGTACTAACG	CACAAGATGA	CTAAGAAGAG	TTGAAAGGGC	AAGTGGGGCT
	AAAAACAGAT	TTTC TTGAC	TTACCCCAAC	ATTCCCCCTA	TCATGGGCT	GAATCTGCCT	GGAGGAAGGA
	GCATCTTAT	CTTTGTACTG	TGAACCACAC	AGTCTAGCAG	CAGCACAGCC	AAGGCACCTTG	GGGTTTCATG
	AGACTAAGTA	CATC CAATT	TATTGAAAG	GCTTAAAATA	TATACAACGT	ACCCTTGAAAC	AACATGAATT

	TGAATTGCAT	GGTCAGTTAT	ACGCAGAGTTT	TCTTCCACCT	CTGCCACCCC	TGAGACAGTA	AGATCAATCA
	ATCCTCTTCC	TCCTACTCCT	CAGTCTACTC	AAAGATACTT	GAAGTCTACT	TGAAGATGAC	AAGCACAAAG
	ACATTATGA	TGA'CCACTT	CCACTTAGTG	AATAGTAAAT	ATGTTTCTC	TTCCCTCTAA	TTTTTAACA
	CTTTCTTCTC	TCTA GCTTAA	TTTATTGTTA	AGAATACAAT	CTATAATACA	TATGACATAC	AAAATATGTC
5	TTAGTTGACT	GTTIATGTTA	TCTGTAAGGC	TTCAGGTCAA	GAGTATGCTA	TTAGTGGTTA	AGTTTCGAG
	GAGTCAAAAG	GTG'ATGTTGG	ACTTTCAACT	GCAGGGGGGT	GGGCACCCCT	GCCCCCATGT	TGTTCAAGGG
	TCAACTTAC	TGCC AAAGGC	AAGCCTTAC	ATCCACTTTT	TCCATCCCCT	CAGTAAATGG	AAAAAGATAG
	CTACAGTATC	CCTCGTCAA	ATCTTTTTT	TTGCAGATCA	CAAATTGGCC	ACTCACCTG	CTCTGTGAGG
10	GGTAAAATGC	CCCACCTTCT	TTAGTAATAT	TTAAGT TAGA	TAATATTAA	GT TATAAAGT	TGTTCTTGT
	AATCGTTAAT	TGTA ATTTTT	ACATAGTTT	TTTCAAACAG	AAATAGCATT	TTTGTAGAT	AACCTCCCGT
	ATAGATGATG	AAA'CTCTTT	TAAGGGCTAT	CTGAATTITA	ATTCCCTGAA	AAGGCAGAAA	TTGGATAGCT
	AGTAGTCATA	AATG TACTGT	GGCTTCCCCC	AACC ATCTGG	GCTATATAGA	AGCTGCATCC	TTGGACTGCA
	GTAGAGGAGT	CTTCAAAGC	ACAGAGCAAC	TTCTCTCCG	GGTTGCGCTA	GTTATGATGG	CAATT TAAA
15	TGTGTACTTT	TACCCAAGA	AAATCCTTAT	TATCAACAAT	CACAATGCCA	TCATAACCAT	GGTATAAAA
	ATTCAAAATG	TCCCAGCTGA	AGTGGAGGCA	AAGACTCAAG	TTCATGGAGT	CAGAGTTCC	TTGCTATTC
	TCTTTTCAA	ATGA CCATT	AGTAAGCACC	TGAAGAAAAT	ACTATGGACG	GCATTGAAA	GTGAAGATAG
	GTTTAATCTT	CTCGAAAATC	TAATTCTCCA	GATGAAACGC	TGACACTTAT	CCACCCACA	GACCCTATAG
	CAGATGTGTC	ACTC GCCATC	ACATTGACA	CAGAGAAGTC	ATAACTCAGT	CAGCACAGAG	ACATTCCAT
20	GAGTTTCTGA	ACCATGGACA	GAACGTGTC	TGTGGGACAT	GAAA ACTGGA	ACTTAGAGGA	CAGGCACATC
	TGAGAAATGG	GCA'TTTAA	GGCAGAACAT	AGCACATATG	TGACTGGGTT	TTAGAAGCAA	ATTTACAAGA
	CGCACTCTC	TTCA ICCTAA	ATAATCTGCA	ACCAAAGCTT	CCAAAAAAAGA	CAATTAGGA	ATGCAGAGGT
	GAGGAGTAGG	GAGGGGAATG	GGATGAGAGA	GAGTGGAGAT	TAATGGTGGG	CAGAGCGAGG	TTTAGAACTT
	AGTGGTTCT	TCAGGTTCTG	AACTGAAATT	TGTATACTGT	AAAGGCACAA	ACACCATTTT	TAACAAAAGT
25	GAGCAGGACT	TCC'ATCTGG	TTCAGAAAAT	AGGTGAAATAA	ATAGTACGAA	TTATTA AAAA	TAATAATTTC
	CACTTATACA	TAGC AAACCT	GATAGGAACC	ATGATAAATG	CTTAACTCTT	AATCTICAAG	GAAC TCTGCT
	AGGGATATAA	TATT'ATAAAT	CTTGTGTTGC	AGATGGAGAA	ATTGAATT	AACCCAAGTT	ATCATAACCC
	TTAAATGATT	AAAT'GATACT	GTTACATGAG	AAAGCTGCGT	ATCTGTTCC	TGGATTGTA	GCCATAATT
	GTGTCTCAAG	TCCC'TTTGC	TGCCAGCTAT	CTTGGGTAGG	TGTGTTCCCT	TTGGGCTGTT	TGATACCCCC
30	ACATTATCT	TTT'TTTTTC	TCCTTTTTG	TTGAGAGAGT	CTTCCCTG	TGCCTAGGCT	GGAGGGCAAT
	GGCGCGATCT	CGG'CTCACTG	CAACCTCCGC	CTCCTGGGTT	CAAGTGC	TCACGATCT	CTTGTCCCCAG
	CCTCTCTAAT	AGCTCGGATT	ACTGGCATGC	ACCAACACGC	CCACCTAATT	TTGTATT	AGTAGACAAG
	GGGTTTCTCC	ATG' TGGTCA	GGGTGGTCTC	AAACCTCTGA	CCTCAGGTGA	TCTGCTGCC	TTGGCCTCCC
	AAAGTGTG	GAT' ACAGGT	GTGAGCCACC	ATGCCCTGGCC	CCAAATT	CTTAAATGCC	CCAAATTATC
35	TAGTCCCAT	GAC1GGGCTT	CTGCTTGAT	CCTTCTGCA	CTTGCTGGAC	CCTCTCCCTG	GGAAATGAGA
	TTGTGTCCTG	AGCC CCTAGT	TAGAGGCTAT	GTCTCTGCTG	TTCTGTAATG	GGCCTCCCTG	ATGAGACCTC
	ATAAAAGTC	TAAT TCTCTT	GGAGAATTGA	GAGATACCTA	TTTGTCTCAA	AATCATTGAA	ACCAATTAA
	GTATTATGAG	CCTC TATCCA	GTGATTGTA	CCTCAATTCC	CCAATCCAGC	TGTCAAGGCC	AATTGTTCT
	ACCTTACCTA	GTAC GTAAAGT	CTGGAATTGT	AGCTGTGGCA	TTTCAGTAA	TGGTACTCTA	GGTTAGCAGT
40	CCCCAACCTT	TTTG' CACCA	GGGACCAAGTT	TTGIGGAAGA	CAATT TTCC	ATGAAGGGCT	GGGCAGGGGA
	GTGGTTTCAG	GATG AAAC	TTCCACCTCA	GATCATCAGG	CATTAGATC	TCACAAGGAG	TGCGCAAGCT
	AGATCCCTCA	CAC' TGCA	TCACAATAGG	GTGTGCACTC	CCATGAGAA	CTAACACCGC	TGCTGATCTG
	ACAGGAGACA	GAG' CTCA	AGTAATACTC	ATTGCTCTAC	CGCTCACCTC	CTGCGTGC	GCTCAGTCCC
	TAACAGGCCA	CGG' ACCAGT	CTGGTCCACG	GCGCAGGCAT	CAGGGACCC	TGTTGCTAGG	TATAAGCATE
	TGGCTGCTG	ATG' CTTCTG	TGTAGCTACA	TCTGTATGTG	TATCTGATGA	GATATAAATT	ATTGATTAT
45	AAATTACTTT	CTTC ATATTA	GAGTTGTAA	TGAGTATCAC	ATATAATTAT	ACATAAACTA	GGAATATGCT
	TTTAATAAT	GTATATAAGT	AAGTTCTT	AACTATGACT	TTCATCTT	CGTAGTAAGA	GGGTGCTAAG
	AAATATTGT	GATGAAAATA	GGCATTGGTA	GAGTTGAGAC	CACTGGGTA	TGAAAGAGTG	TAAAGATT
	AAAGCCTTCA	GATC CTGGTT	CAAGGTGAGA	AATGTGATTG	GGAGCAAATC	AATTAACCTC	TTGAAGTCTT
50	ATAGGGCAGT	TATC AATACT	TAATGTTAAC	ATATGAAAG	CTCTTCTGCC	CTGTATACAG	TAAATGCTAG
	TTAGCTATA	TGAT CACTAC	TAATGTTGGG	ATGACATAAA	CCTCATAAGG	TTTAAGTAT	TATGCAAGAT
	ACTATACAA	GTCC AGTAAA	TATCACATT	AATTGAATCC	ATGATGTCG	ATTATT	CTACTTCCAA
	GAGAGAAAAA	AATG TGTCA	GTTTTACTGT	TCTTATAGAG	AGCAAGGAG	ATCCAATTC	CCAATGTGGT
	AAACGTGAAA	TTT' TGCATT	TGAATCAACA	AAACACTTTC	TCCTTTCTT	CCTACTATT	AACAACGTG
55	AAGTCTATAC	TCCC CCAAAT	CTGGAATTCT	CCTTCTTAT	TCTTTTCTC	CCTACCAAGA	CCGCAGGATC
	TTTTACTTGG	CTAT AAGGGG	TAACCTCAA	GTAGTACAAG	TTCTCTGTAT	TACTTTATA	CTCTGTACA
	GATTCCTT	GT TCTCAT	CTCCATGTGA	ATTAGTTAA	ATTCTCAGCA	TTCTGATCCT	TACTATACAA
	GGTAAATGAA	TATA AAAACA	AAACGAAACA	AAAACCTTT	CCTATT	TAAGGCCCCA	ACCTAATATT
	TAGTGTATA	TATT ATGTG	ACAAGGAAC	TAACGAAGAC	TGGGAAGAAA	TTCACAGACT	TGAGAGAAGA
	AATGGCAGGA	TTTCTGGGA	ACAATTTCAT	GTAACGTCAA	AGGTGGTAAA	AGGTCAAATA	GAATGAAGAT
60	GGAGAATACC	GGA' TTTC	ACAAAATGAT	TTCCCAAGGAG	ATCTCATCAA	ATGCACGAGG	ATACCTTCTC
	AGTTTCACCT	AGTG AGTAAA	AGACTGGTAA	CATAGCTCAC	TTACAATTG	GATAAACAAA	ACTAAACAAA
	CAACATCAA	ATTICAGAAA	AAATAATAGC	AAAACAGAAA	TCAAACACTC	AAATT	TCCTTCTGTT
	TATTCTATT	TGG' TACTCA	GTGAATGTTA	ATTAACCGAG	AAACTTAAA	GTTATT	TTATGAACCT
	CTTCAATCCT	TCATCAATT	TTTGAGTAT	TCTGGTCTTA	AAAACATCTC	TTTCTTCTAC	AAACTTCTGA
65	AAGAGATGAA	CACCTCCACC	TACACAAAAA	TAATGTGCTT	TGCTGGCCAA	AAGTACACGT	CCATT
	TTAACAGTCT	AAGGAAAGTC	TGGTGCAAA	TACTATAATA	ATCTGGGTT	AAATGGTTT	CTGAGGTGAG
	AATGAGATCA	TATITACAA	AAAGTTTTTC	ACTACTTAGT	ACAAGCTTAC	AAAACTCAGA	CCACTCACCA
	GAAAAAAATC	GGC' ATTTATA	TAGTGTGTT	ACTTTGGTT	TCCTGCATCT	TTTCACATCT	GGCTCATT

	CATCATTTC	TTCATCTTCC	AAAGTGGAGT	TAGCTACTAC	ATTAGGTAAG	GTTACTTCAT	CAATCACCAT
	ACTGTATAA	TCTIGAAAGT	GAATTCTTT	GGACCCCTCC	TTGAATGCAG	TTATACCTAG	TAAACCTGAT
	CCACAACCA	GATCCAAGAC	TTTTTCCC	GCAAATTTC	CTTGGCCCT	TGTGAAATAA	GCCAGGAGGT
	CAAAGGTACA	TTCCAGATT	TTAAGCTCT	CCTCATAAAC	ACCTGTAATC	AGATCAGAGT	GAGAAGAAA
5	GCTTTTGAA	ACTATGTTT	CTCCAGGGAA	GTTCTCTTC	AACAAGATGG	TTTCACTAC	TGATAACTA
	ACATGCTGGA	AACCTGGTAA	TGTTTCTATG	ACTTTATTT	CTAACATCTT	CTTAAATCT	TTAGGCATAG
	CATGCTTT	GGCA GCTCTC	AAGGAGGGCT	GTTCATG	TGGCTCAAG	TCCTTGAAC	TGCTGGCTGC
	ACTGAGTGG	CTG' CTGTGT	CTTGAGAGGG	AGCTGCATT	TCCATTGACT	TATGTTCCC	CAAGTGATCC
	TGAGGCAAGT	CAAATTGTT	TGCAAGAACAT	TTTCITGTC	TCTCTTCTCC	TTTITGACTT	TCTGAGACTG
10	ACAGCTCTT	TGAC GAATCC	AGGGTCAAG	CTCCATCTC	AATGGGTGTT	AATTCACTTT	CCAGATGGTC
	TTCTATAGT	AAAATAAACT	GAAAGGTCA	CCTCTTATT	AATGCACACA	ATCTTAAAT	TCAGATTCTT
	CAACTCTGG	ATAGAATTTG	ATGATACACA	CAAATCTGCC	TCAATTATTC	AATTAGTTT	GTTGGGCCA
	ATTTCTTT	AGCAGCTTAT	ACATGGTAAC	AAATTTAG	AGATATTTC	AAATGACTTT	TTAGACGTCT
	TTGGTCTCT	TTCCAAGCG	CTCTGAAAG	AAAAAAA	AAAAAGAAA	GAAAATGATG	ATTAAAGCAA
15	AATGGCACAT	TTCACTAAAG	TGTAATATTA	AACAGCCACC	CCCACCCCTC	CCTGCCCCAC	CATACAGCTG
	CTTTTCTTA	AAAA GTTGTG	GGGAAGAGAG	AGAGATAAGA	GATTGGACA	CTCATACACA	CCTTAAGGGT
	TCCAAAGTGG	GAGA AGAAA	TCAACTATAA	AAACAAACAG	AAGAACAAACA	GCAACCACCA	CCACTACCAC
	CTGGACAAAC	ATAAGTCCA	AGATATTCA	ACAGGACAGC	CTAGCTACTT	GCTGTCTTC	AGCTGTCTG
	ATTITGTCTC	AACC ATATT	ACCCCTAAG	CTTCCAGAA	AACTTCACTT	CTGCTTTTA	CAGAAGAGGT
20	GCAGTATTTT	ATTITGGTAA	GTCAAGGTCC	CTTAAAC	ATGCATAGGT	ATGGCCTGGT	GTGTGTAAT
	TCATCCAAGA	CTTC ACTTCA	AAACTTTAGT	CGAGAACAGC	AGCCCTAAGT	GTATAGAAGT	GGGGGTAATT
	TGGCAATAAT	TAGIAAGAC	TAATTCTGGT	GCAGAGCAA	CGCAAACTAG	GGCACTGCAG	TAGTTTGGAG
	AGACCTGTA	AAA`AAGAAG	CAACTTATT	GAGAACTTC	TATCTACTC	GCTAGACACT	ATACCATCTG
	CCTCAATT	CACAGTCTG	GCAAGTGGG	TCTTGTTC	CTTATACAA	GATTACAAT	TTGGGGAGA
25	GGCGGGTCAC	CCAGTCCCGC	GGCTAGGAAC	GCGCCTCTT	CCTCTCCAT	CACGTCGAA	GGCTTGGAGT
	CACTTCCGGC	TGCAAGTCCC	GGAACAAATC	CGACCCAGA	AGTGGGACT	TCTGGCCCTC	ACCTCCCCAT
	TTGAATGTA	TGTITACAGT	GATCCAGACC	TGGGGATGCT	TGCTTCCGA	CGTGTCTGG	GATCGCGCTT
	CTGAAAAAGC	TCACTCTACA	ACGCCTCTC	CGGACCTAA	TCGCGCACCA	GTGAGTCGAG	TCCTCCAGGG
	GCTAGAGAAG	CCCGACTTTC	TTTCCGGCT	TGAGGGACCC	GGGCTCACCA	AGAAACCAAGC	CGCCCTCCCTC
30	TCTATGGTT	TGGAGCCGGC	GGAGAGCGCG	CAAGGGTTGG	CGGGACTGCG	AGTTCCGGT	CTGGGCTTTG
	GCGGGTCTGG	TTTGAAGCTC	TCCTGTTGA	CGAAAGTATG	TCTCAGGAAG	GTGCGGTCCC	AGCTAGCGCG
	GTTCCCTGG	AAGP ATTAAG	TAGCTGGCA	GAGGAGCTAT	GCCGCCGGGA	ACTGCCGTCC	GTCCTGCC
	GACTCCTCAT	ATCTCTTCTT	GGTTGTCACT	TCTACCTAGA	GAAGGGTGTG	GGCAGGTCGC	GAACCTTCT
	CTTCTGTCCC	TTCA GACCCA	CCGCCAGGCT	GGGTTATATT	ACCGCGGCT	GAACCCCCCTC	TTTCTTTG
35	CAGTGAGTGG	GATC AAAAGT	GAGGGACTGG	AGGGGAAGCG	ACAACCGTGG	TAGATTAAG	TAAGGCTTTG
	GCCCTGGAAA	GCC' CGCGGA	CGTGTCTGA	CCCAAGGTTT	TAGCAGTGG	TGTGGCGTTT	TCTTCCATTC
	CTTCTTCAG	TTTTCTGTGA	CTCGTTGCTT	GCAATTAAAGT	GTAAATACTT	TTGCTAGTGG	ATAATGGGG
	AGGCAAGGAC	TGAGACCTGC	GGTATGACGA	TAGCTCTGGC	TCTTAATAGT	TTGAGGTAAA	GCGAGATACT
	CTGAGCTTT	GTCT CCGTA	AAAAGGGTGG	TGAATATGAA	TAAGGGCTTT	CTTAGCGTTA	TAAGAATTAA
40	AGGGCATAGT	TCTCTGGTGT	GAAATCTTA	AAAGATGTT	AGTAAATAAA	AATGATTTTC	CTCCTTCCCC
	TCTCAGACCT	CTTITCTTC	TTCTTTCTT	TTTTTTGAC	AAGTTCTCAC	TCCTCTCACC	CAGGCTGGAG
	TCTTCTGAA	AGATCTTC	CGCTTGTGT	TGGCTTCAA	CTGTTGGATT	TGAGGGCTTT	AGCGCCCTCT
	TCGTCGGGT	GCACACATT	CTTGATTGGT	CTCATGCCIT	TGTGGTTGTA	AATGTGCTG	GAATCCTAGC
	CTTCATGGT	AAACCATATG	TATATGTATC	TTTTTACAA	CATTGAGCC	CAGCTTATA	CAATTACACT
45	CAAAAGAAA	AAA`TAACCT	TCACTTGAGA	GAATCTCAAT	ACTGCACAAA	TATTGTGCAG	CTAAAGCCT
	ATGTAATCAC	ATAC AAGTCA	TTCACCTAGG	CATTAGCAA	ATCTCAGAAAG	GTGCCAAAGC	CCCCTTTTT
	AGTTTTGTG	TAGG TACAGA	ACTGCCGTCT	TCAAGGAGTT	TCAACTTGAA	AACAAATAGC	CACCCCTAAA
	ACATTCAAAA	ACACTTAAAC	TGCGTGCATA	ATGTGTGTGA	GACATGGTGT	TAGGCTTGG	GAGAACAGAG
	ACACGGAACG	TGA' TCCCT	TCTTCCCCAC	AAAGCTTATAG	AGAGACTTCA	TTAAGTTGAA	AGTCAACATT
50	CCCACCTAGC	TTTGCACTTC	AAACGACATA	TTCAAAAG	CCCACCTTC	CTCTAGTTT	CTTCATCTGA
	GTAAATGGTT	TCACAAATG	AAACCTTGA	TCCTCTCTG	CTCACACACC	CGATCAGTAA	GTTCTATTGT
	TTCTGATTC	AAAC TATGTC	TTGAATCAA	CCGGTTATCT	CCATCTCAT	TGCTACACT	CTGATTCCAA
	ACCCCTATCA	CCTCTCACTT	GGAGTATTA	TAGTTCC	GTTTCTACTC	ATAATTCTT	ATTCCAAAAA
	AGTTAAGAGG	GGA AAAACAT	AGATCTCGTC	ATTTCCTT	TTAAACCACT	TTACCTCAA	GGTCCAGGT
55	GATCTAAGCC	TTGC' CTTCT	CTCATAACCA	GTTAATTAAAC	TACACTCTGT	TCATGAATAC	ATTAGGCTCA
	CCTACCTAA	GATCTTTTG	CTCAGCCTGA	TTTGTCTCT	CAGCCTTTG	CATATTTCAT	GTTTATGTCT
	TGGCCCAAAT	GTCACTTCT	TAGAGGGCT	TTTCAGAGC	CTTCAATCTT	AGGCAGTTC	CCAAACGCA
	GTCTTACACT	TGTATCACAT	TGGCCTGTC	AGTTTCTAA	AAAGCACATT	ACCATTAAA	GAAATGCTCT
	TGTTGCTTT	GTATTTTTC	CACTTCTACA	CATTATGTTG	CAAAGTTCAT	AAAGGCAGGA	TGTTGATT
60	CTTCACAGCG	TTACCCCTCAG	CACCTAGAAC	AGTGCCTGAC	ACATAGTAAG	CATTCACTAA	AGGGCTAAAAA
	ATATTCATG	TTT`AAAAT	ACTTGGGAGT	CTAATTAGAC	AATACTTTT	TTCAGCTTAA	TGGTAGTATT
	TTAGCTTCAC	TATTITAACA	AATGAAAAT	TTGCAATAAA	TCTACATGC	CATTACCCCC	CAAATCTTT
	TTCATGTTT	GCAT ITTACG	TATTATTT	CAGGCCCTAC	CTGCATGTC	GCATAATCAT	AACTGACTAA
	TTTGGAAACA	GCTC GTAATT	ATTGAGCTT	TACTGAAATT	TTTCATGAG	GCCAATTCTA	CCCTACTGAA
65	CTCAAATTG	AGTTAATGAT	GACCTCATTT	TGATTGCTGC	TGTAAAAAT	AAGATTTCGG	AAGAGGAATG
	AATTCTGT	TTACTGTGGT	AGGACTATGG	GTTTTTTT	GTTTGTGTT	TTGTTTGAG	ACGGAGTCTC
	ACCCGTAC	CCAGGCTGGA	GTGCAGTGGT	GCGATCTCAG	CTCACAGCAG	CCAGGTTCAA	GTGATTCTCC
	TCCTCAGCC	TCCCGAGTAG	CTGAGATTAC	AGGCACGTGC	CACCATGCC	GGCTAATT	TTGTATCTT

	AGTAGAGATG	GTT' CACCAT	GTTGGCCAGG	CTGGTCTGA	ACTCCTGACC	TCGTGATCCG	CCTGCCTCAG
	CCTCCCAAAG	TGCT' GGGACT	ACAGGCCGTGA	GCCACCGTGC	CCGGCCGGGT	TATTCACTTT	TCTTATTAAAC
	ATTCTTGAT	GATI' CTTATG	GTGTTGTTAC	AGTAaaaACAT	TTCTAACAAAT	TATTCTAACAA	ATTATTCTTG
	ATGGGTGATA	TGA'A GAATT	ATTGTCGTGT	ATTGTAAGC	TGCTATGTGC	AGAAGAATT	CAGTCAAATA
5	AAGTTGGTAA	GATA GGATG	TAAGTAATAT	AAAAAAAGAT	AGAAGGTGAT	GAGTGA	GGTATAAAATT
	AAGTACAATA	GAA ATGTTGA	GGAAAAGAAAA	ATTCTTGTA	ATAGAAATCG	GAAGTACAAA	CTGGGCATGG
	TGGTGTCAT	CTCTAATCCC	AGCTCCTTGA	GAGGCTGGTA	TGGGAGGATC	ACTTTAGCCC	AGGAGCTTGA
	GGCTGCACTG	AGG' GTGATC	ATGTCACCGC	ACTCCATCCT	GGGTGACAGC	AAGACCGTCT	CTCTTTTTT
10	TTTTTTTGA	GACGGAGTCT	CGCCTATGCT	GGAGTGAAT	GGCGCGATCT	TGGCTCACTG	CAACCTCTGC
	CTCCCAGTT	CAAC TGATT	TCCTGCCTCA	GCCTCTGAG	CAGCTGGAT	TACAGTGTG	CGCCACCATG
	CCCAGCTAAT	TATI TTGAT	TTTAAGTAGA	GACGGGTTCT	CACCATCTG	GCCAGGCTGG	TCTTCAACTC
	CTGACCTCT	GTTCGCCCAT	CTAGGTCTCC	CAAAGTGTG	GGATTACAGG	TGTGAGCCAC	CCCACATTGGC
15	CCCGAGCGAG	ACCTCTCTC	TAAAAAAA	TAATAAATA	AATCAAAAC	CTGTGATT	TTGTAGCATT
	GTTTCTCATC	TGTCAAAAAT	ATTCATGAC	TATGCATAGT	TTGAAAAGGC	AAGTTGTCC	CTGGGCAATT
	TTCAAAATAT	TTCTTTAATG	TGTTTTCA	ATACTGTTA	CCTAATAAAAT	CTTAAGTTT	TAAAAGCAA
	ATTAAGCCAG	TAA' TTGAGT	CCAATTCCAA	TCTCTTATGA	GTCATTGCTT	AAATTCAAA	AGGGTTTAT
20	TTTTTTTTA	GGTT' GTTCT	GAGTAATGAA	TACCCATTAA	CTATGATACT	AGTATCTTCC	TTAATTATCC
	TACTCATTGT	CTCA ACATTC	TGACAGTTGG	ATTGAGCATA	TTCGTAAGTA	AAATTGTTT	AACTGTATGA
	TGTACTTGA	TGT' AAGGTC	CGAGTCCCCA	CATACCTCGG	AGATGTGTT	CTTACAGTTT	TGTATTCCCT
	TGAAATGAA	CTG' TCTCTA	TGTTACAGCC	TTTATAACCT	TCAGTTACTT	GAAATGAACA	AATTICATTCA
25	AATTCCAGCA	CTTA AAAGTT	TTAAATTACA	TTTGGATAA	ATACCAAAGT	GTGTTGTG	TGATGTATGT
	ATAAAACAAAT	TGT' AATATT	AAACGTTAGT	TGTTACGATT	AGACCTATAT	AAACATGAT	ATGCAGTCTA
	CTGAATAGCT	ATCA GCCTCT	AACATGTTA	GTGTCATT	AAAATGCTT	TCTAAATTGC	CAAAGCTGA
	TTGTCTAGGT	GATA ACAAAAT	TTACCAATTG	GAGGAAGTTG	ACTTTCTCAT	TTTCATGTCT	TCATCAGTCT
30	TACTTGATGA	GATI' CATTCT	TCTAGTCAGA	AGAGAGTTA	GACTGCTCAG	TTTACTCATA	TTTGAGTTA
	GCTTTCTAT	TTAGAGTTCA	CTTGGTTGTG	GAATATTCA	TTATAATTG	AATCTACGTT	GTGTAATGGG
	ACCTAATT	TTTTCCTTT	GTTTTGTG	GAGTCTCGTT	TTGTCACCCA	GGTTGGAGTG	CAGTGGCGTG
	ATCTTTGCTC	ACTGCAACCT	CCACCTTCA	GGTCAGGTG	ATTCTCCTGC	CTCAGTCTCC	CAAGTAGCTG
35	GGATTACAGG	CATGCTCAC	CACGCCCTGGC	TAATTTTGT	ATTTTGT	GAGATGGG	TTCACCATGT
	TGGCCAGGCT	GGT' CTCAAA	CTCCTGAGCT	CAAGTGTAC	TCTGCCTTG	GCCTCCATAA	GTGCTGGGAT
	TACAGGCGT	AGC CGCTGAG	CTTGGCCCCA	GAGTTGTTT	TGTTTGT	TCAAGACAAG	ATCTCACTC
	ATTGCCAGG	CTGGAGAGCA	GTAGTGTGAT	CATAGCTCAC	TGCGCCTGA	ACTCCTGGG	TCAAGCTATT
40	CTCCTGCC	CATCTCTAA	AGTGTGTGA	TTACAGGTCT	GAGCCATGAT	GCTTGGCCTG	TGTTTTGTT
	TGTTTGT	GGGGGACAGG	GTCTTGCTT	GTCACCAAAA	CTGGAGTGT	GTGGTGC	CATAGCTAGC
	TCACTGCAGC	CTCC ATCTCC	CACGCTCAAG	CAATCCTCTC	ACCTCAGCCT	TCCAAGTAGC	TGAGACCGCA
45	GGTGCCTGCT	ACC ATGCGTG	GCTAATTTC	TATTATATA	TTTATTTT	GGTAGACATG	AGGTCTTGT
	ATGTTTCCA	GGTC GTCTT	AACTCCTGGG	CTCAGACAGT	CCTCCCGCCT	CAGCCACCCA	AAGTGTG
	ATTACAGGCG	TGAGCCACCA	TGCGTGCAT	AATTTTTT	AAGTAAATT	TTTTTTATC	TTGAGTATAG
	AAAGTGATCA	TGT' CATTGT	GGAAAATATG	AAACATATAG	TTTATTTT	AAACACAGAA	AACATCTAAT
50	CTGAAATGGT	TAAGATTTG	ATGAGAACAG	TCTCATCTCA	TTCTCGTATA	TTCTGCCAG	CCTATCCATC
	ATTCTTCGTA	CATC TTTATC	TACATTTAA	TTGGTGTAT	ATTGGAAA	CTTTTGT	AACTACATG
	TGAACATT	TCATGTTT	AAATGTCTT	TTAATGATGG	CAGATCTT	TCAATAGATG	TACACACACC
	TATTAACTG	GTCC ACAATT	GTGGATATG	TTAGTCGTTT	CCTTCTCTC	TTTTTTTTT	TTTTTGGCTA
55	CTACTTAATA	GTTC TCTCTG	ATAGAATGTG	GTATTTGAA	AGTGTATCAA	GCTTGTAGATT	GGTAGTATTC
	TTGCATTAA	TAAG GGGCAG	TGGCTTGT	TGACTGACAT	GACAATATT	TTATAAAATT	TGTTATTG
	TTTACAGAAA	TTTIGAAAAT	TATTGTAGAA	ATGTTTTAC	CTCATATGAA	CCACCTGACA	TTGGAACAGA
	CTTCTTTC	ACAA GTGTTA	CCAAAGGTAT	AATACTATT	CCTGAAAATA	CATGTTATAA	GGAATCTAGC
60	CTCACTTCA	GATC ATTAT	TATTAATTAT	GGCTCTCTT	TTCTAAATATA	TCAAATATAT	TCAAAATAAA
	AATAAGGAT	AAG' AGATCT	CATGTGAGAC	TATAATGGTG	TTAGTGTGAT	CATTAGGCAG	TTAAAAACTG
	TTACAGGCTG	GGCA CGGGTG	CTCATGCCTG	TAATCCCAGC	TCTCTGAGAG	GCTGAGGTGG	GCAGATCATC
	TGAGGTCTG	AGT' CGAGAC	CACCATGGT	CAACATGATG	AAACCTCGTC	TCTACTAAA	GTACAAAAAA
65	TTAGCTGGAC	ATGC TGGCAG	GTGCCTGAA	TCCCAGCTAC	TTGGGAGACT	GAGACAGGAG	AATTGCTTG
	GCCTGGGAGG	CGG AGGTG	ATTGAGTCAA	GATCGTGCCA	TTGCACTCCA	GCCTGGGCAA	TAAGAGCGAT
	GCTCCGCTC	AAA AAAA	AAAAAAA	AAAAGACTT	ATTTTCAGAT	TGTGTGGTTC	CTTTACTAAC
	TGAATTAA	TTATTGTAG	TCAATTAA	ATGCTTGT	ATTTAAAGC	CACTGTACTC	CAGCCTGGGT
	GACAGAGTGA	AAAC CTTAAT	TCAAAAAAA	AAAAAAA	AAGAAAAGCT	GGAATATTGG	CAAATCAAG
	TAACTAAGAG	AAA ACATTAA	ATTCACAGAA	TACATTATA	CATTTTAGAT	ATATATGGTA	TATGTTTCT
	CTGAAAAGCA	CAAGCATAACC	TTTTTGT	TAATGGGAGG	GAACAAAGA	TACTTTGTG	CCAAAATGAA
	ACATTATTG	TAATTAATCT	CTTATTGAAA	TGGTTCTA	ACTTTAGCTT	TGAATCGTAA	TCTTCAAAT
60	TTCTTGACT	CATAGTCACT	TGATGATCT	CTATGAA	TATTCTTAG	AATTGTTCT	TGACCAACAG
	AAAAAGATT	AACT GTTACA	TAGATAAAA	TGGATGTTGA	GTGTTAACAG	GCCTATGGGA	AACAGTATT
	TCTTAGCTA	CATIGTATTG	TTGACTGTGT	TGCTATTCTT	AAATGTTA	GGTCATT	ATTGTTAGAA
	AGATCCAAGT	ATTA AGATCT	AGGGTGGCTA	ACTTTCA	GACAAAAGC	TTGTTGTAA	GGTCATT
65	TATAACCTTA	ATTC AGGAAG	GTTAGCTTGA	ATTGGGTCAA	AAGGAAACTG	GTTAGAAAAT	AAAGTGA
	TGAATAGGCG	ATTC AGTGCA	AATT CCTCC	AGAAAATACC	CTTGAAATG	ACTGTATGAA	TGTGGATTCT
	TCAAGACAGT	CAA ATTTATT	GTGCGAAAGT	AATACTTTA	TTTTTGCT	CTCTAAACAA	TGAACATTG
	GTGATTTTT	AAAAAATTG	ATGCTTAA	ATAGATTCAA	ACCATAGAAA	TGGAAAATAA	ATTCTGTT
	GGGGTTTTG	GGGGGATTAT	GTGTA	AAAAA	CTGTATT	TGCTTAATT	GGTACAATG

	TTAAGCTAGA	TGA ^A AGCCTG	TGGATGTTAC	TAGTGCAAA	TCAAATTATC	GTATTGTTT	TTCTCTGAA
	AGTTTTGTCT	TGTCTTTCT	AGTGAATTCT	CTTATTCTG	TTTATTACTT	GATTGTTT	TACAGACTGT
	GAAATTATTTC	GATC ACATGA	TGTATGAATT	AACCAGTCAA	GCCAGAGGAC	TGTCAAGCCA	AAATTGGAA
	ATCCAGACCA	CTCTAAGGAA	TATTTACAA	GTAAGTCAAA	TGTATTAGAA	AGCAGGAGAG	AGAGGGAGCT
5	TAAAGAATGT	CAA ^A ATTTT	ATACTGATAC	TGATTAGCTA	TGTATTCTTA	TGTAATGGCC	TAATGTTGGA
	ATTTAAATTAA	TAGA ATTAAA	GACGTGAATA	TAGAAACATG	AATTCTGAAT	AATAAACTCT	TATAAGAAGA
	GAAGTCATCA	AGC ^A AGCTGA	CCCTACCTGT	ATTTCAGG	ATATGTGTTG	AACACCTGCC	ATGTGTTTG
	AAGTTTGTGT	TAGTATTCTA	AATGGCTAGA	CAGTTGTTCC	AGTATTGTA	GTTCTGATAG	ACTAAAGTTC
10	TGTGAAAAGA	GGA ^A GAGACT	GTGTTTGTG	CATTGCTGT	TTTGTAGCAC	CCAGCATGCT	GACTAATACC
	TTTTCACTGC	ACA ^A AAAATA	TATTCTAAGT	GAAATTCTCT	TCCCTATTCA	CAGACAATGG	TGCAGCTCTT
	AGGAGCTCTC	ACA ^G ATGTG	TTCACTGAT	CTGTGCCACA	CAGGAATCCA	TCATTGTTGA	AAATATTCTAG
	AGTCTCCCCT	CCTCAGTCT	TCATATAATT	AAAAGCACAT	TTGTGATG	TAAGGTGAGT	AAAGGTCTAA
15	TTATACTTGT	AATGGTATAT	AATCAATGT	CATAGGGCT	GAGTAAAATA	ATGTTGTAT	AAGATTGTTAC
	ATTTAGTCT	ATATTATTGA	AATAAACTT	TCCATAGAAT	AAAGAACATG	TAAGTAAATA	ATTGTTGCAA
	AAAAAGTGGT	TTTAAGGAAG	TCATTAAAAG	TGGCTTTTG	GGGTTTTTA	GTTTATCTT	ATTCCCCCTC
	TATAAAGAAA	GAA ^G TTTAA	GAATTGTTG	TGAGACAGAC	ACAGGGATCC	TGAAATAGTT	ATGTATGTT
	GCATTGACCA	ATA ^A TCAATT	ACCATTATGA	TTAGATGTCA	GAACCTCCCT	TTATAAAGGA	AAGTTAATCC
20	TTATTTAGTC	CATC ^C CTACA	TGCCAGAGGT	AGCCTTGAGG	CACAAAAGCT	TGCCTAGAAT	TTATGGGTCA
	CAGACAGTT	TAATATTGCT	ATTGTGTTGG	CGAATGAAAA	TCACAGTTA	ATTAATACCT	CTCTTGTCTG
	ATAGGATGCT	AAA ^A ATGTCA	CGCACCTGGC	CTAATGTTAC	CCTTTTTAG	TTCIGTATT	GCAAGATCAT
	GGAAGTCAGA	AAT ^A ATTATT	TATACATGCT	TGCATCTCTT	GAAGCACACT	ATATTAAATG	GATGTTCACT
	AAACAATGAA	TGA ^A ATGTG	ATTCACTAAA	TTTATGATCT	CTAATAGTAT	GAATAAAAGT	AAATTGGCT
25	CTTGAGCTT	GAT ^T GTGTT	TTCTCTTCT	TTTATTTATC	CGTAATCAGA	ATAGTGAATC	TGTGATTCT
	GGGTGTTTAC	ACCTAGTT	AGACCTCTC	CAGGCTCTT	TCAAGGAGGC	CTATCTCTT	CAAAGCAGT
	TAATGGAACT	GCTGAGCATG	GTTGATG	ACCCCTTAGT	AGATGACAAT	GATGATATT	TGAATATGGT
	AATAGGTGAG	TGA ^A AAAAC	TTTCTGCTTA	GTATATGGTG	ACTATAAAC	ATGTATCAAT	AAAATTGTC
	TCTAAATGATT	CATC ^T TTATT	TCTTACTAAT	TATGCATTAA	AATTGATT	AATCTTACCA	AATAAATT
30	TAATCTTGAA	ATTIGGAATT	TGTAAAATT	ATTTTGGTA	CCTTAACCTA	GATTGCGTA	TTAGTTACT
	GTAATTCTC	CAC ^A ATGATT	AACTTATATA	ACTTTATAAT	CTCTGAGGTT	GTCCATATT	AGAGACAATA
	ACTTICACAT	TTT ^T TAACC	ATAACTGATA	TTGAGATGCA	GTTTATATT	CCTTCCAGAA	TACATATAAA
	TACGTGATA	TGTC ^T ATGTA	AATATGCTA	TTCTCATATA	CATATTAA	TGAAAATAACT	CATTTCACAT
	GTGATGCACT	TTA ^A ACTAGT	TTATTTTAT	TTTATTTAT	TTTTTGGAGA	CAGAGTCTCA	CTGTGTAGCC
35	CAGGCTGGAG	TGC ^A GTGGCA	CAATCTCGC	TCACGTGAAAC	CTCGCCTCC	GGAACCAAGC	GATTCTCTG
	CCTCAGCCTC	ATGAGTAGCT	GGGATTATAG	GCGTCCGCCA	CCACACCTGG	CTAATTGTTG	TATTTTGT
	AGAGACAGGG	TTTCACCCTG	TTGGCCAGGC	TGGTCTTGAA	CTCCTGACCT	CAGGTAATCC	ACCTGCCTCA
	GCCTCCAAA	GTG ^C GTGGAT	TACAGGCATG	AGCCACCGTG	CCCAGCCAAT	ACTAGTTAT	TTTAAAGAA
	TTGCTGGTCG	TAAC ACAC	CATTGATT	ATCACTCATT	AATGGATT	GAACAAGAGT	TTGAAAACA
	ATATAAAGGC	AAAGTTGCA	TTCAAAACTT	TGGTATAAAAG	AGAGTAAGTT	GGTTTGTG	AGTGTATCAG
40	GCACCTGTTG	CTC ^C IGCAACA	CACCACCTCA	AAACTTATT	ATTCACTATT	TATTATTCA	TGATTCTGTG
	AGTCTGCACT	TTAC GGTGG	ATGTCCTGAG	ACAACCTTCT	CTGATCCACC	TGGGGCACTA	GCTCACCCAT
	GTGACTTCAG	TGA ^A TTCTATT	CACATCTGC	TGTTGGCAGA	GGCAGAAGTA	CTTGAGAAAG	CCATGTGCA
	CATCAGCAG	GTTC ^A CCCTA	TCTCAGATAC	CTGATGCCAG	TGGTTTCAGG	GTTCTAAGA	GTAGCAAAG
	TGTGAGCAGG	TCG ^C GTGTTG	CTAGCACTT	TCAAGTTCT	GCTTCCTTA	ATTTTATTAT	TGTCCCCGG
45	GCCACAGCAG	GTC ^A TAGCGT	TTAGCCCAGA	GTCATTGAG	AAAAGTGTGG	ATTCAAAAG	GGCAGTCATT
	GTGGCCATT	TTATAAATAA	TCTACCACAG	ACTGAGTAA	AGCCTTGCAT	GAATACCATG	GATATTAATT
	TGAATTCTTC	CTT ^T TTAGAT	TTTCTTCTC	TAGCAATTG	TTTGTCAATT	TTGGATTAGA	ATTATATCTG
	TAGAATATT	CAG ^A TATAAT	AGGGTACAAC	TTTATTCCA	CTGAACATCT	TTAGTTTAT	TTAGGTACATC
	TGGTAGGTAT	AAAC ^T TCAGA	AGTTAATT	CAATATTAT	AAAACCAT	AACAAGTGTG	ACACTTAAAT
50	AGTTTAAATA	ATT ^A TTTGA	CACAACGT	TCCAAGTTG	GTACGTATT	TTAATTCAAT	CAAATGTTGA
	AATTGTTAG	TAGA ^A TTTT	TAATTATAGG	AGAAACTCAC	CCCCATGACA	TTTGGATGTC	TTAAAAGTTC
	TGTTATCTT	CTT ^T 3CAGTT	ATTCACTT	TATTGGATAT	CTGCTCTGTT	ATTTCAGTA	TGGACCATGC
	ATTTCATGCC	AAT ^A CTTGG	AGTTAATT	TAAGTAAGTT	TGTTGTTAT	TTTTACTTT	TTAGAAAATG
	TTTTCCATAT	TCCC ^A ATCT	TAATTATTCA	TGATTCTTA	GATTGCAATT	AAAACATT	GTGTGAATT
55	AATGTTACT	GAC ^A CTGCTG	TCTGATAATC	CAGATATTCT	ACATGTAGCT	CTCAAGCCAA	ATTGGACTTC
	TTTACCTGT	GGCC TCTAA	ATTAAAAAAA	ATGTTCTTC	TAGTTAGCTA	GTACTTCAGA	AATAATGGGC
	CATGGCCAG	ACT ^A GAAC	AACCACTTT	CTTCTGCTAC	TGTTGTTAA	CCAGCTATCA	AGTATCCTAT
	TTCTAGGATT	AGA ^A AAATIG	ATAACTATAA	TTAAAACGT	ATATAATCTT	TTCATTAGGT	ACTTTAAAGT
	TGTTCACACT	TAATTCCATT	TGTACAGTA	TTTAACTTT	CTGAAACTGA	AGCATT	AGGGTCACCA
60	GGGATAGTGC	CTG ^T AGCATT	CATCAGATT	TTAGGGGTGA	GAGGAGATGT	GGTTGAGATG	AAAAAATGTT
	TAAGAATATC	TAC ^T TTATAC	ACATACATAA	AACATTAAAG	GTCAGTGTAT	TTTCAGGTCT	TAGGTACTTT
	TCTGTACTA	CCAGGACATT	AAGTTGCCAT	TCAGTGGTTA	AGAGTGTG	CTGGGAGCTG	TATCACATGT
	GCTAAATCC	ATT ^T TTGAA	TCATTTACTC	CTTCTGAGCC	CTTGGCTAT	TTGGTTAATT	TCTCTGAACG
	TTAGTTGCT	CATC ^C IGAAA	TGGAAATAAT	AATAGCAACT	TCTTGACAGG	GTTATAGTGA	GAATTGAGTT
	CATCACTGTG	AAATGCTTAG	AAATGTGCAT	GACACATAGT	TAATACTCAA	GGAATTAGCC	ACATCACTAT
65	CATCATCACT	GATTATCTTC	CACTCTTACC	CTCTTCCAGT	TCATTTCTG	CCCAGCAGAA	TGATCTTTA
	AAAAGTAAAT	CAG ^A TCATGT	TACTCTATTG	CTTGAAGTCT	ATCCCATTTG	ATTAAGAATA	ACAACCTAAT
	CCTCTGTGGA	TGC ^C IGCCCTC	TTCACCAAGCC	TGTCCTCATGC	TGCTCTCCCT	ACTCTTAGTT	CCTCAAACAT
	ACCAAACCTCT	CCTG ^T CCCGAG	AGTCTTTCG	TGGTTTTCC	ATCTGCCTAG	GATGCTTCTC	TCTCCTATT

	TGTGTACCTT	GCTAACTCCT	GCTTACTGTC	TTTCAGTTCT	CAGCTTAAGA	GTTATATCTT	CATGATAACA
	TTCTTTGATA	TCCTTACCCCT	AAGATTAAGT	TAGATTGATA	TCCTTACCCCT	AAGAATAAGT	TAGATTAGGT
	CTCTCTATTG	TAGCACCTTA	GAECTCTGTCA	TTTGACAAAT	CACAGCCCTA	ATTAATTATT	CTTAAAATTA
5	TTAACACATT	TCTCTCATGC	TAGACCACAA	GTTCATGCA	GGTAAGGGCGG	AGATTGTGTC	CATTGTTTG
	ACCCCTTGT	CTCCAGGGCC	TGGTAGAATG	CCTCATACAT	AGTAAGAATT	CAATTAATAT	TTTACACAGA
	GAAAAAATTA	GCAACTTATT	TAACACAAATA	TAACTGCTTC	AGAGGTAAAC	TGGGCACATC	TTAGTTATAT
	TATGTGATAT	ATGAATGCTTT	TTGATTGTTT	TTTTAAATGT	TCTACAAGGT	AGATATTGTT	AGAGGTCCTA
	AGTTACTTGA	TGTGTTACTT	GTGGTAGATTG	TATTCTTTTC	TTTTTATTCA	TTTACGGCAGA	GCCTTAAGCA
10	CCAGTCCATA	ATAAAAGGCC	AGTTGAAACA	CAAAGATATA	ATTACTAGCT	TGTGTGAAGA	CATTCTTTTC
	TCCTTCATT	CTTGTTTACA	GTAGCTGAG	CAGATGACAC	AGTCAGATGC	ACAGGTAAAAA	TTTGGGCTAA
	TAGCATTTA	AAACGCAACT	CTTATTTCCT	TTGCAGTTA	GTAAATCTCA	TTTGAAATGTC	TGGGTCACTC
	TATTTAAAGAG	GATTTAAATT	TATTCTATT	GGGTGTTTTT	TTTTGATCTG	TGGGATTATT	TATATCCCCT
	AATTACTTT	CACCCAGAGC	ATTGTATTAG	ATTCCTAACT	GCTGTCTTGC	CCTCTGGGGT	CTGCCTGGGT
15	CCCTCTTGC	TTGGTAACTG	GTTGGTCACA	GCATTCTCT	CAGAACCTT	TCATCTTTT	CTGCATGAGA
	ACAAAAATTC	TTTGTTCAT	ATTGTATAA	GATCTGATAT	AGCTGCAATC	AATCTTGCA	TTTTCTTCA
	CCAACGCATT	GCGACCTTTA	GGGATACAAG	TATGTTGTG	CATGTATATG	TATGTATCAG	TCTTTAAAT
	TTGATATAGT	CATACTTTG	TTTTTATT	GAAAAGTTAG	AGTGTGAAT	TGGTATCCC	TTTATGAAAC
	ATTATATTCT	AAAAATTGT	AGTACGATTA	TTGGGAATTA	TAACTCATTT	TCCTGTAACA	CTGTTATACA
20	TAGTACCTT	TGCTTTCAGA	CTAGCCCTCA	ATTTTATT	ACTATAGTAG	TCCTAAATT	TAAGGATTAAT
	AGTACTCAGG	ACC'AACAGT	TATAATGTCAT	TTGTTTTT	TTTTTTGAG	ATGCGCTTC	ACTCTGTAC
	CCAAGCTGGA	GTGCACTGGT	ATGACCTTGG	CTCACTGCAG	CCTCTGCTC	ACGGGTTCAA	GGGATCGTC
	TGCTTACGCC	TCCTGAGTAG	CTGGGATTAT	AGGCCTCTGC	CACCAAGCCT	GGCTAATT	TTTATGAGAG
	ACGGGGTTTC	GCACTGTGG	CCAGGCTGGT	CTCGAACCTC	TGACCTCAGG	TGGTCCACCC	GCCTTGGCCT
25	CCCAAAGTGC	TGGGATTACA	GGTGTGAGCC	ACCGCGCCCC	GCCTATATGT	AATAATT	ATGGGACCAT
	GAATTGAATA	TTTCTCCTT	GAATAGCAAT	GACATAGCCC	CTTCTATTGT	ACATCTGCAA	GCTGATACAG
	GGAATTCCCTT	TGTACCTGCG	CTCTTCCCTG	CCAGTCAGCT	ATGGGGTGA	AAGTGTAGGG	GTTCATCCAA
	GTCCTAAACAC	TGGTAGCAAC	TCCTAGGGCA	GGGCTGATCT	GGAAGGACAG	ACCCCTAGGGG	AGGGTGGAAAC
	TTTAAAAAAGA	AGTICCTGAAG	GTAGTAAGAA	GGAAATGAGG	AGTAGTGT	GGAAGGGGCT	AACTTTTTC
30	TTCTTGCCTC	TCTCTTTAT	CTCACCTGCC	CCTCCCCCTG	TATCCCTTCT	TCCTTTTCTC	CTTCCCTTT
	TTGTCCTC	TTCATCTGT	CATCTTCT	GATCCTCTT	ACCTTGTCAA	AAGGAGAACT	TTGTTGGGT
	ATCCTATATC	AATCGCAGGA	AGGTTGTTT	CTTCTTAC	TTTATCCTAT	AGATTCATAT	TCTCAACACC
	AACTCCTCC	TTTTCAGTT	TCCTCTTGC	TTCTCTTGCAC	ACCACAGAGT	TTGCACTGAG	TACTTGGAGA
	GGAAAATTAA	ACAGAGATAC	TTGGACCAAG	AGTAAGATGA	AGAAAAGTCA	AAACAAGCTA	TAGTCTATAG
35	TGGCAAGAGA	GAGTATGGG	GCTGCTTAGC	CAGGGTGGCT	GTACATAAAG	TATATCTCA	TTTATATATAA
	ACTGTTATA	GATCGAAATC	AGAAAATT	AATTCTCTTA	ACTGTCAAAG	AAAATTCTCA	TTTTTCAAA
	TTTGGGACTG	ATAATGTA	CCAGTTCTGC	TTACTGTCCA	TTGCCCTGAAA	TGGAGCTTTG	AGGTGGACTG
	TATAATTCT	TCAATCTAA	CTCCAAATT	TGATCAGCGA	CGCCCTCTGC	TGTTCACTAT	TAATATTAT
	TTACCAATCA	AAGTAAAGTA	TTGAAGTTT	CCTGGCAGTT	TTCACTTTGT	GTTTAGTCC	ATTAGGCTG
40	CTATAACAAA	ATCCCTTAA	CTGGGTAAGG	GATTATAAT	ATTAGAAATT	TATCTCTCAC	AGTTCTGGAA
	GCTGGGAAGC	CCAATATCAA	GGCACCGATA	GATTGGTGT	CTAACAGGGG	TGTGCCGTCT	GCTTCAAA
	TGGCCCCCTG	TTGCTGCATC	CTCACTTAGT	GCAAGGGCA	AGACAGCTCC	CTTCAACCTC	TTTTATAAGG
	GCACTTATGT	CATCATGAG	GGCACAGGCC	TCATGACTTA	ATCACTTCCC	CAAAGCCCC	ACCTCTTAAT
	AGTATCACAT	TGGCTGTTAG	GTGTCTGGGA	GGACACCAAT	CTTCAGGCCA	TATCATCTCA	CTTGGAAAAAA
45	AGTCAAAATA	AAAACAGTAG	ATTTAATTAA	TATTACACTA	TTTATAGAAG	CATGTGATGT	ATCATCCCT
	GTATTAAATT	CCTGGGGTTG	CCGTAACAAG	TTACCACAA	CTAGGTGGCT	AAAACAATA	GAATTATT
	CTCTCACATT	TCTAAGGGCA	GAAGTTACA	GTGTGTCAT	AGGGCCATGT	TCTCTGGAAG	GCTTTAGGGG
	AGAATATATT	TCAATCTTT	CTCTTAGCTT	CTCGGTGTCA	CTGGCAATCC	TTAGCTTACT	TTGGCTTCT
	GTGTCTTAC	ATCATCTTT	TATAAGAAC	CCAGTGTAG	TGATTAAGGG	CATACCTTAC	TTAATATGA
50	CCTCATCTTA	ACTAATTATG	TCTCTAA	CCCTATTCTC	AAATAAGGCC	ACATTCTGAA	GTATTGGGAG
	TTAGAACTTA	AAGCTTTTG	GGAGGGACAC	AGTCAACCC	ATAACAACCC	CTAAATCTGA	TATTATTTCT
	CAATTAAAGTC	TTGAATTGG	TTTCAAAAG	AGAATATTCT	ATTAGAGTTT	TTAATGTATA	TTTTAACAT
	ATAGTTCTTT	AGCCCTTAA	TTTTTTT	TTTTTTTTT	TTTTTTTTT	TTTTGAGAC	GGAGTCTCGC
	TCTGTCCGCC	AGGCCTGACT	GCGGACTGCA	GTGGCGCAAT	CTCGGCTCAC	TGCAAGCTCC	GCTTCCCGGG
55	TTCACGCCAT	TCCCCCTGCC	CAGCCTCCCG	AGTAGCTGGG	ACTACAGGCC	CCTGCCACCG	CGCCCGGCTA
	ATTTTTTGT	ATTTCTAGTA	GAGACGGGGT	TTCACCTTGT	TAGCCAGGAT	GGTCTCGATC	TCCTGACCTC
	ATGATCCACC	CGCCCTGGCC	TCCCAAAGTG	CTGGGATTAC	AGGCGTGAGC	CACCGCGCCC	GGCCTGCC
	CAAITATTTA	GTTITCTAT	AAACAGGGAA	ATTATTGT	GTGGCCCTTA	GAACAAATT	AATTCTCACT
	CTAATTCTTA	CTTATGTTTA	TATAATGCTT	TTAGAAATT	GTATTATTCA	GAAAATAAAC	ATATACTATT
60	GTATCTGTG	CCTACACTTA	GATTTTATTG	CCTGCTATAT	TTAAATT	TTAGTATT	AATTGTTTA
	TTAAAGAAAG	AATCTGCGCTG	TAATCTCAGC	ACTTTGAGA	GGCCAAGGCA	GAAGGATTGC	TTGAGCCCCAG
	GAGTTTGGAGA	CCACACTGAG	CAACACAGGG	AGACCCCCAT	CTCTACAAA	AATAAAAAAA	TTCTCCAGGC
	CTCATGCGAC	ATACCTGTAG	TTCTAGTTAC	TTGGGAGACT	GGGGTGGGGAG	GATGCATTGA	GCCCAGGAGA
	TTGAGGCTGC	AGTCAGCCAT	GATCAGGCCA	CTGTA	GCTTGGACAA	CAGAGTGAGA	GCTTGTCTAG
	ATAGATAGAT	AGATAGATA	TCTAAATAGA	TAATAGACAG	ATTATCTAA	TAGATAATAG	ACAGATTATC
65	TAATAGATA	ATACACAGAT	TATCTAAATA	GATAATAGAC	AGATTATCTA	AATAGATAAT	AGACAGATTA
	TCTAAATAGA	TAATAGACAG	ATTATCTATC	TAATAGATA	ATAGATTATC	TAATAGATA	ATAGATAGAT
	AGATTAGATA	GATGATAGA	TAGATAGAGC	TTGGACAACA	GAGTGGAGAC	CTGTCAGAT	AGATAGAAAC
	AAAGAAGAA	AGAAAGAAATG	GTGCTCATAT	TTTAAAGCAT	TGAAAAATGG	TCTTCCTTGC	TTATATTACC

	CACACCTTCT	TTGTGGCAT	TAAGATGCAA	ACTTGTGTTT	AAACAGTGA	GTAATCAA	GATGGGACTG
5	TTAAGTTATT	TGTGTTATT	ACCTGCTTT	TGAAAATGTA	AAAATAAAC	TCTAGGTTA	ATTAGTAGTA
	TGCTATTAG	TAATGAAGTA	AAGCTAGAGG	CTTCGAACAA	ATCTTGTTA	ATTTCCTCTT	GAATGAGAGA
	GAAAATTAA	AGTAAGCAA	CAAATAAGTT	GTGTGTCACC	ACTCATTCA	TCATTTAAC	AGTATTCCA
10	GAGTACTTAT	TCTGTGCCAG	GAAATGTTGT	AGGTGCCCTC	AACAACCTAG	AGTCTAGCCT	GAGACACAAG
	TAAGTAGGTA	ATTATTATAG	AATGGTATGA	TCTTGGAGG	ACTGGGTATT	GGCTGGCTCA	TGGGAGTACA
	AGATAGGTAC	CCAGTGATGA	AGTCAGGAAA	GGTTCTTAT	GGTGATATGA	TGACGTCTAT	GCTGATTATA
	AGGTCACTGT	AGAATAAACT	TTGTGCTTT	AAATTTCAT	AGCACTGTAT	TAGAGAGTT	ATCTTCAAAA
15	TAATCGAAAA	GGCTGAGTGT	GGTGACCCAT	GGCTGTAATC	CCAGCACTTT	GGGAGGCCGA	GGTGGGCAGA
	TTGCTTGAGC	TAGGAGTCG	AGACCAGCT	GGCCAACATG	GTGAAACCCC	GTCTCTACTA	AAAATACAAA
	AATTAGCCAG	GAG'GATGGT	GCGCACCTGT	AATGCCAGCT	ACTTGGGAGG	CTGAGGCCAGG	AGGATCATT
	GAACCCAGGA	GGTGAGGTT	GAAGTAAGCC	GAGGTCTATGC	CACTGCAC	CAGCCTGGGC	AACAGAGTGA
20	GAECTCATCT	CAAAAAAAAA	AAAATGATC	AAAGAAAGGT	GAATTTTCAT	TCACCCATT	TCTGCTGAGG
	AAAATGGACT	ATTICAAT	ATTTTAATA	AGGGTCAAAA	TGAGGGATC-3'	(FRAG.NO:) (SEQ.ID NO:2480)	(FRAG.NO:) (SEQ.ID NO:2480)
25	5'-CCTGAGACAG	AG3CAGCAGT	GATACCCACC	TGAGAGATCC	TGTGTTGAA	CAACTGCTTC	CCAAAACGGA
	AAGTATTTC	AGCCTAAACC	TTGGGTGAA	AAGAACTCTT	GAAGTCATGA	TTGCTTCACA	GTTTCTCTCA
	GCTCTCACTT	TGGTGCTCT	CATTAAGAG	AGTGGAGCCT	GGTCTTACAA	CACCTCCACG	GAAGCTATGA
	CTTATGATGA	GGCCAGTGC	TATTGTCAGC	AAAGGTACAC	ACACCTGGTT	GCAATTCAA	ACAAAGAAGA
30	GATTGAGTAC	CTAAACTCCA	TATTGAGCTA	TTCACCAAGT	TATTACTGGA	TTGGAATCAG	AAAAGTCAAC
	AATGTGTGGG	TCTGGTAGG	AACCCAGAAA	CCTCTGACAG	AAGAAGCCAA	GAACCTGGCT	CCAGGTGAAC
	CCAACAATAG	GCAAAAGAT	GAGGACTGCG	TGGAGATCTA	CATCAAGAGA	GAAAAAGATG	TGGGCATGTG
	GAATGATGAG	AGG'GCAGCA	AGAAGAAGCT	TGCCCTATGC	TACACAGCTG	CCTGTACCAA	TACATCCTGC
35	AGTGGCCACG	GTGAATGTT	AGAGACCATC	AATAATTACA	CTTGCAAGTG	TGACCCCTGGC	TTCAGTGGAC
	TCAAGTGTGA	GCAATTGTG	AACTGTACAG	CCCTGGAATC	CCCTGAGCAT	GGAAGCCTGG	TTTGCAGTCA
40	CCCACGGGA	AACTTCAGCT	ACAATTCTC	CTGCTCTATC	AGCTGTGATA	GGGGTTACCT	GCCAAGCAGC
	ATGGAGACCA	TGCAATGTT	GTCCTCTGG	GAATGGAGTG	CTCCTATTCC	AGCCTGCAAT	GTGGTTGAGT
	GTGATGCTGT	GACAATATCC	GCCAATGGGT	TCGTGGAATG	TTTCCAAAAC	CCTGGAAGCT	TCCCATGGAA
45	CACAACCTGT	ACATTGACT	GTGAAGAAGG	ATTGAACTA	ATGGGAGCCC	AGAGCCTTCA	GTGTACCTCA
	TCTGGGAATT	GGGACAACGA	GAAGCCAACG	TGTAAGCTG	TGACATGCG	GGCCGTCGGC	CAGCCTCAGA
	ATGGCTCTGT	GAGCTGCAGC	CATTCCCCG	CTGGAGAGTT	CACCTTCAA	TCATCTGCA	ACTTACCTG
	TGAGGAAGGC	TTCAATGTTG	AGGGACCAGC	CCAGGTTGAA	TGCAACCAC	AAGGGCAGTG	GACACGAA
50	ATCCCAGTT	GTGAAGCTTT	CCAGTGACACA	GCCTGTCCA	ACCCCGAGCG	AGGCTACATG	AATTGTCTTC
	CTAGTGTCTC	TGGCAGTTTC	CGTTATGGG	CCAGCTGTGA	GTTCTCTGT	GAGCAGGGTT	TTGTGTTGAA
	GGGATCCAAA	AGGCTCCAAT	GTGGCCCCAC	AGGGGAGTGG	GACAACGAGA	AGCCCACATG	TGAAGCTGTG
55	AGATGCGATG	CTGTCCACCA	GCCCCCGAAG	GGTTTGGTGA	GGTGTGCTCA	TTCCCTTATT	GGAGAATTCA
	CCTACAAGTC	CTCTTGTGCC	TTCACTGTG	AGGAGGGATT	TGAATTATAT	GGATCAACTC	AACTTGAGTG
	CACATCTCAG	GGACAAATGGA	CAGAAGAGGT	TCCTTCCTGC	CAAGTGGAA	AATGTTCAAG	CCTGGCAGTT
	CCGGGAAAGA	TCAACATGAG	CTGCAGTGGG	GAGCCCGTGT	TTGGCACTGT	GTGCAAGTT	GCCTGTCCTG
60	AAGGATGGAC	GCTCAATGGC	TCTGCAGCTC	GGACATGTGG	AGCCACAGGA	CACTGGCTG	GCCTGCTACC
	TACCTGTGAA	GCTCCACTG	AGTCCAACAT	TCCCTTGGTA	GCTGGACTTT	CTGCTGCTGG	ACTCTCCCTC
	CTGACATTAG	CACCAATTCT	CCTCTGGCTT	CGGAAATGCT	TACGGAAAGC	AAAGAAATT	GTTCTGCTCCA
	GCAGCTGCCA	AAGCTTGTAA	TCAGACGAA	GCTACCAAA	GCCTTCTTAC	ATCCTTTAAG	TTCAAAAGAA
	TCAGAAACAG	GTGCAATCTGG	GGAACTAGAG	GGATACACTG	AAGTTAACAG	AGACAGATAA	CTCTCCTCGG
65	GTCTCTGGCC	CTTCITGCC	ACTATGCCAG	ATGCCATTAT	GGCTGAAACC	GCAACACCCA	TCACCACTTC
	AATAGATCAA	AGTCAGCAG	GCAAGGACGG	CCTTCAACTG	AAAAGACTCA	GTGTTCCCTT	TCCTACTCTC
	AGGATCAAGA	AAAGTGTGTC	TAATGAAGGG	AAAGGATATT	TTCTTCCAAG	CAAAGGTGAA	GAGACCAAGA
	CTCTGAAATC	TCAAAATTCC	TTTTCTAACT	CTCCCTTGCT	CGCTGTAAA	TCTTGGCACA	GAAACACAAT
70	ATTITGIGGC	TTTCITCTT	TTGCCCTTCA	CAGTGTTCG	ACAGCTGATT	ACACAGTTG	TGTCATAAGA
	ATGAATAATA	ATTATCCAGA	TTTTAGAGGA	AAAAAATGAC	TAAAAATATT	ATAACTTAA	AAAATGACAG
75	ATGTTGAATG	CCCACAGGCA	AATGCATGGA	GGGTTGTTAA	TGGTGC	CCTACTGAAT	GCTCTGTGCG
	AGGGTTACTA	TGCAAAATT	AATCACTTC	ATCCCTATGG	GATTCACTG	TTCTTAAAGA	GTTCTTAAGG
	ATTGTGATAT	TTTACTTGC	ATTGAATATA	TTATAATCTT	CCATACTCT	TCATTCAATA	CAAGTGTGGT
	AGGGACTTAA	AAAATTTGTA	AATGCTGTCA	ACTATGATAT	GGTAAAAGTT	ACTTATTCTA	GATTACCCCT
80	TCATTGTTA	TTAACAAATT	ATGTTACATC	TGTTTAAAT	TTATTTCAA	AAGGGAAACT	ATTGTCCCC
	AGCAAGGCAT	GATGTTAAC	AGAATAAAGT	TCTGAGTGT	TTTACTACAG	TTGTTTTTG	AAAACATGGT
	AGAATTGGAG	AGTAAAAC	GAATGGAAGG	TTTGTTATATT	GTCAAGATATT	TTTTCAGAAA	TATGTGGITT
	CCACGATGAA	AAACTTCCAT	GAGGCCAAC	GTTTGAACT	AATAAAAGCA	TAAATGCAA	CACACAAAGG
	TATAATTAA	TGAAIGTCTT	TGTTGGAAAA	GAATACAGAA	AGATGGATGT	GCTTGCATT	CCTACAAAGA
	TGTTGTCAG	ATGTGATAG	TAAACATAAT	TCTTGTATAT	TATGGAAGAT	TTTAAATTCA	CAATAGAAC
85	TCACCATGTA	AAACAGTCAT	CTGGTAGATT	TTAACGAAT	GAAGATGTCT	AATAGTTATT	CCCTATTGTT
	TTTCTCTGT	ATGTAGGGT	GCTCTGGAA	AGAGGAATGC	CTGTGTGAGC	AAGCATTTAT	GTTTATTAT
	AAGCAGATT	AAACATTCA	AAGGAATCTC	CAGTTTCAG	TTGATCACTG	GCAATGAAA	ATTCTCAGTC
90	AGTAATTGCC	AAACCTGCTC	TAGCCTTGAG	GAGTGTGAGA	ATCAAAACTC	TCCTACACTT	CCATTAACCT

AGCATGTGTT GAAAAAAAAGTTTCAGAGA AGTTCTGGCT GAACACTGGC AACGACAAAG CCAACAGTCA
 AAACAGAGAT GTGA TAAGGA TCAGAACAGC AGAGGTTCTT TTAAAGGGC AGAAAAACTC TGGGAAATAA
 GAGAGAACAA CTA CTGTGAT CAGGCTATGT ATGGAATACA GTGTTATTT CTTTGAAATT GTTTAAGTGT
 5 TGTAATATT TATG TAAACT GCATTAGAAA TTAGCTGTGT GAAATACCAG TGTGGTTGT GTTTGAGTT
 TATTGAGAAT TTAAATTAT AACTAAAAT ATTATATAAT TTTTAAAGTA TATATTATT TAAGCTTATG
 TCAGACCTAT TTGACATAAC ACTATAAAGG TTGACAATAA ATGTGCTTAT GTT-3' (FRAG.NO.:) (SEQ.ID NO:2479)

5'-CCT TGC CTG CTG C-3' (FRAG. NO: 1739) (SEQ. ID NO: 1752)

5'-GTT GTC CC-3' (FRAG. NO: 1740) (SEQ. ID NO:1753)

5'-GTT CTT GGC TTC 'TC TGT C-3' (FRAG. NO:1080) (SEQ. ID NO:1088)

10 5'-GGC TGG TGG-3' (FRAG. NO:1083) (SEQ. ID NO:1092)

5'-CGT TGG CTT CTC 'GTT GTC CC-3' (FRAG. NO:1081) (SEQ. ID NO:1089)

5'-TGT GGG CTT CTC 'GTT GTC CC-3' (FRAG. NO:1082) (SEQ. ID NO:1090)

5'-CCC TTC GGG GGC TGG TGG-3' (FRAG. NO:1083) (SEQ. ID NO:1091)

5'-GGC CGT CCT TGC CTG CTG G-3' (FRAG. NO:1084) (SEQ. ID NO:1093)

15 Human P Selectin Fragments

5'-TTT TCT CTT TCG CTT TCT TTT CGT CTC CTG TTC CTC CTT TT TTG CTG TTT TTT CTC CTT CTT CTC TCC
 TTT CTT TTC-3' (FRAG. NO: 1741) (SEQ. ID NO: 1754)

5'-TCC TTT CTT TTC-3' (FRAG. NO: 1742) (SEQ. ID NO: 1755)]

5'-CTC CTT TT-3' (FRAG. NO:1743) (SEQ. ID NO:1756)

20 5'-TTT TCT CTT TCG CTT TCT TTT CGT CTC CTG TTC CTC CTT TT-3'(FRAG.NO:1085)(SEQ. ID NO:1094)

5'-TTG CTG TTT TTT CTC CTT CTC TCC TTT CTT TTC-3' (FRAG. NO:1086) (SEQ. ID NO:1095)

Human Endothelial Monocyte Activating Factor

Nucleic Acid & Antisense Oligonucleotide Fragments

5'-TTT TCT CTT TCG CTT TCT TTT CGT CTC CTG TTC CTC CTT TT TTG CTG TTT TTT CTC CTT CTC TCC
 25 TTT CTT TTC-3' (FRAG. NO: 1744) (SEQ. ID NO: 1757)

5'-CC TTT CTT TTC (FRAG. NO: 1745) (SEQ. ID NO: 1758)

5'-CTG TTC CTC CTT 'T-3' (FRAG. NO:1746) (SEQ. ID NO:1759)

5'-TTT TCT CTT TCG CTT TCT TTT CGT CTC CTG TTC CTC CTT TT-3'(FRAG.NO:1087)(SEQ. ID NO:1096)

5'-TTG CTG TTT TTT CTC CTT CTC TCC TTT CTT TTC-3' (FRAG. NO:1088) (SEQ. ID NO:1097)

30 Human IL3* Nucle c Acid and Antisense Oligonucleotide Fragments

5'-CTC TGT CTT GTT CTG GTC CTT CGT GGG GCT CTG TGT CGC GTG G GTG CGG CCG TGG CC GGC GGB CCB
 GGB GTT GGB GCB GGB GCB CGG GCB GGC TCB TGT TTG GBT CGG CBG GBG GCB CTC (FRAG. NO:
 1747) (SEQ. ID NO: 1750)]

5'-G GBG GCB CTC-3' (FRAG. NO: 1748) (SEQ. ID NO: 1761)

35 5'-GT GGG GCT CTG-3 (FRAG. NO:1749) (SEQ. ID NO:1762)

HUMIL3AAS1: 5'-CTC 'GT CTT GTT CTG GTC CTT CGT GGG GCT CTG-3' (FRAG.NO:1089)(SEQ.ID NO:1098)

HUMIL3AAS2: 5'-TGT CGC GTG G GTG CGG CGG TGG CC-3' (FRAG. NO:1090) (SEQ. ID NO:1099)

GGC GGB CCB GGB G' T GGB GCB GGB GCB CGG GCB GGC GGC TCB TGT TTG GBT CGG CBG GBG GCB CTC
 (FRAG. NO:1091) (SEQ. ID NO:1100)

40 Human IL3 Receptor Nucleic Acid and Antisense Oligonucleotide Fragments

5'-TCT GGG GTG TCC TGG CCT TCG TGG TTC CTC CTT CGT TTG CCG TCC GCG GGG GCC CCC GGG CCT
 GGC TGC GCT CCT GGC CCG CCT CTT TCC CGG GCT CTT GCG CTG GGG GGT GCT CC CGT GTG TTT GCG CCC
 45 TC CTC CTG GTC GCG CTT GTC GTT TTG GGG CGC GCT TTG CCC GCC TCC CGG CGC CTG GCC CGG CC TTC
 CTG GGC TGC GTG CGC GTT CTG TTC CTC CTG GCT CTG GGG TGT CCT GGC CTT CGT GGT TCC TCT TCC
 TTC GTT TGC CGT CGG CGG GGG CCC CGG GGC CT GGC TGC GCT CCT GCC CGG CCT CTT TCC CGG GCT CTT
 GCG CTG GGG GGT GCT CCC GTG TGT TTG CGC CCT CCT GGT CGC GCT TGT CGT TTT GG GGC CGG CTT

TGC CCG CCT CCC GGC GCC TGG CCC GGC CTT CCT GGG CTG CGT GCG CGT TCT GTT CTT CCT GGC GCA
 GGA GAC AGG GCA C GG CGA TCA GGA GCA GCG TGA GCC AAA GGA GGA CCA TCG GGA ACG CAG CTC CGG
 AAC GCA GGA CAG AGG TGC C GC BGG BGB CBG GGC BGG GCG BTC BGG BGC BGC GTG BGC CBB BGG BGG

50 BCC BTC GGG BBC GCB GCT CGG GBB CGC BGG BCB GBG GTG CC-3' (FRAG. NO: 1750) (SEQ. ID NO: 1763)

GBG GTG CC-3' (FRAG. NO: 1751) (SEQ. ID NO: 1764)

5'- GCC CCG C-3' (FRAG. NO:1752) (SEQ. ID NO:1765)

5'-TCTGGGGTGTCTG (FRAG. NO:1092) (SEQ. ID NO:1101)

5'-GCCTTCGTGGTTCC (FRAG. NO:1093) (SEQ. ID NO:1102)

55 5'-TCTTCCTTCGTTGC (FRAG. NO:1094) (SEQ. ID NO:1103)

5'-CGTCCCGGGGGGGCCCCGGGCCT (FRAG. NO:1095) (SEQ. ID NO:1105)

5'-GGC TGC GCT CCT GCC CCG C (FRAG. NO:1096) (SEQ. ID NO:1104)

5'-CTCTTCCCCGGCⁱ CTT (FRAG. NO:1097) (SEQ. ID NO:1106)
5'-GCGCTGGGGGTG CTCC (FRAG. NO:1098) (SEQ. ID NO:1107)
5'-CGTGTGTTTGC^jCCCTCTGGTCGC (FRAG. NO:1099) (SEQ. ID NO:1108)
5'-GTTGTGCTTTGC (FRAG. NO:1100) (SEQ. ID NO:1109)
5 5'-GGCCGGCTTGCCC^kGCCTCCC (FRAG. NO:1101) (SEQ. ID NO:1110)
5'-GGCGCCTGGCCCG^lGCC (FRAG. NO:1102) (SEQ. ID NO:1111)
5'-TTCCTGGGCTGCG^mGC (FRAG. NO:1103) (SEQ. ID NO:1112)
5'-GTTCTGTTCTTCTT CCTGGC (FRAG. NO:1104) (SEQ. ID NO:1113)
10 5'-GCB GGB GBC BGG GCB GGG CGB TCB GGB GCB GCG TGB GCC BBB GGB GGB CCB TCG GGB BCG CBG CTC CGG BBC GCB GGB 5' CBG BGG TGC C (FRAG. NO:1105) (SEQ. ID NO:1114)

Human IL-4 Nucleic Acid and Antisense Oligonucleotide Fragments

5'-CTC TGG TTG GCT TCC TTC GCC GGC BCB TGC TBG CBG GBB GBB CBG BGG GGG BBG CBG TTG GGB GGT
GBG BCC CBT TBB TBG GTG TCG B-3' (FRAG. NO: 1753) (SEQ. ID NO: 1766)
5'-GCC GGC BCB-3' (FRAG. NO: 1754) (SEQ. ID NO: 1767)
5'-T TCC TTC-3' (FRAG. NO:1755) (SEQ. ID NO:1768)
5'-CTC TGG TTG GCT TCC TTC-3' (FRAG. NO:1106) (SEQ. ID NO:1115)
5'-GCCGGCCTGCTE GCBGGBBGBBCBGBGGGGGBGCBGTTGGGBGGTBGBCCCCTTBGBTGGTGTCGB-3' (FRAG.
NO:1107) (SEQ. ID NO:1116)

Human IL4 Receptor Nucleic Acid and Antisense Oligonucleotide Fragment

20	5'-TCT GCC CTG TCC GCC GGC TCT TCG GTG GCT CGG CCC CGC TCC TTG TCT TGC CGC GGG TTG GTT CCT GGG CCT GGT TCT TGC GGG CGT TTC GGT CTG CTG GCT GGT CTG GGC CCG CGG TGC GGC GGG TGG CTT GCT GTT CTG CCT GGG CTC TCC CCT CTC CTC CTT TTC TCC CTT CCT CTG TCT TGC CTC CTT CCT CTG GGT CCT CTT GGC CTG GGC GCT CTT CCC CTC GGG CGG CTG CGG GCG CTC GTG CTG CCT GGT CCG CTC CCT GGG GGT GCT CCT TCC CTT TCC CCG CTC GTG GGG TTT GCG GGG CTG GGC TGC CCT GGG GGG TCT GGG CCT TTT GGG
25	GTC GGC TGG CTG CTC GGG GCC TGG GCT TCC CTG TGC CCC TTT CCT CTG CTG GGT CCC CCT CCC GTT CCA AGC TGC ACC GCA CAG ACC GGC GCT ACA GGA CAG AGC CAG GCA AGC ACC CAT GGG GAT CCA GGC CCA GCT GTT CCB BGC TGC BCC GCB CBG BCC GGC GCT BCB GGB CBG BGC CBG GCB BCC CBT GGG GBT CCB GGC CCB GCT G -3'(FRAG. NO: 1756)(SEQ ID NO:1769)
30	5'-TCTGCGC-3' (FRA G. NO: 1757) (SEQ ID NO: 1770)
30	5'-CCT GCT CCT GGG G (FRAG. NO:1758) (SEQ. ID NO:1771)
	5'-TCTGCGCGCCCCCTC CTCC (FRAG. NO:1108) (SEQ. ID NO:1117)
	5'-CGCCCCGGCTCTCT (FRAG. NO:1109) (SEQ. ID NO:1118)
	5'-CGTGTGGGCTTCGG (FRAG. NO:1110) (SEQ. ID NO:1119)
35	5'-CCCCCGCGCCCTCCG) TGTCTC (FRAG. NO:1111) (SEQ. ID NO:1120)
	5'-TGCTCGCTGGGCT1G (FRAG. NO:1112) (SEQ. ID NO:1121)
	5'-GGTTTCCCTGGGGCCCTGGGTTTC (FRAG. NO:1113) (SEQ. ID NO:1122)
	5'-TCTGCCGGGTCGT1TTC (FRAG. NO:1114) (SEQ. ID NO:1123)
	5'-GGGTGCTGGCTGC (FRAG. NO:1115) (SEQ. ID NO:1124)
40	5'-CTTGGTGCTGGGGCTCC (FRAG. NO:1116) (SEQ. ID NO:1125)
	5'-GGCGGCTGCGGGC)GGGTTGGG (FRAG. NO:1117) (SEQ. ID NO:1126)
	5'-CTTGGCTGGTTCCTGGCCTCGGG (FRAG. NO:1118) (SEQ. ID NO:1127)
	5'-CCTCCTCCTCCCTCCCTGCTCCCTTTCTCTCT (FRAG. NO:1119) (SEQ. ID NO:1128)
	5'-TCCCTGCTGCTCTC (FRAG. NO:1120) (SEQ. ID NO:1129)
	5'-TGCCCTCCCTTCCCCTCTGG (FRAG. NO:1121) (SEQ. ID NO:1130)
45	5'-GGTGCCTCCCTGGC)CCCTGC (FRAG. NO:1122) (SEQ. ID NO:1131)
	5'-GGCTGCTCCCTGGC CC (FRAG. NO:1123) (SEQ. ID NO:1132)
	5'-CTCTGGGTGGGGC)GGC (FRAG. NO:1124) (SEQ. ID NO:1133)
	5'-GGGGCGTCTGTGTC (FRAG. NO:1125) (SEQ. ID NO:1134)
	5'-CTGGCCTGGGTGCC (FRAG. NO:1126) (SEQ. ID NO:1135)
50	5'-GCCTCTCCTGGGGC)GGTGGCTCCCTGTCC (FRAG. NO:1127) (SEQ. ID NO:1136)
	5'-CCTTTCCCCCGGCTCC (FRAG. NO:1128) (SEQ. ID NO:1137)
	5'-GTGGGGGCTTGGC (FRAG. NO:1129) (SEQ. ID NO:1138)
	5'-GGG GGT CTG TGG CCT GCT CCT GGG G (FRAG. NO:1130) (SEQ. ID NO:1139)
	5'-AGGGGTCTGGGGCCCTC (FRAG. NO:1131) (SEQ. ID NO:1140)
55	5'-TTTGGGGGCTGCTGC CTTG (FRAG. NO:1132) (SEQ. ID NO:1141)
	5'-GCCTGGCTGCCCTCC (FRAG. NO:1133) (SEQ. ID NO:1142)
	5'-GGGGCCTGCCGTGGGGC (FRAG. NO:1134) (SEQ. ID NO:1143)
	5'-TGCCTCTGTTGCTCCCTT (FRAG. NO:1135) (SEQ. ID NO:1144)
	5'-TGCCTGCTGCTGG (FRAG. NO:1136) (SEQ. ID NO:1145)
60	5'-GGTTCCCGCCCTCCCT (FRAG. NO:1137) (SEQ. ID NO:1146)

5'-GTT CCC AGA GCT TGC CAC CTG CAG CAG GAC CAG GCA GCT CAC AGG GAA CAG GAG CCC AGA GCA AAG
CCA CCC CAT TGG GAG ATG CCA AGG CAC CAG GCT G (FRAG. NO:1138) (SEQ. ID NO:1147)
5'-GTT CCC BGB GCT TGC CBC CTG CBG GBC GCB GCT CBC BGG GBB CBG GBG CCC BGB GCB BBG
CCB CCC CBT TGG GEG BTG CCB BGG CBC CBG GCT G-3' (FRAG. NO:1139) (SEQ. ID NO:1148)

5 Human IL5* Nucleic Acid and Antisense Oligonucleotide Fragments

5'-TCCCTGTTTC CCCCGTTTCG TTCTGCGTT GCCTTGGCG TTTTTGTT GTTTCTCTC TCCGTCTTC
TTCTCCCCCT GTGGGB3TTT CTGTGGGGBT GGCBTBCBCG TBGGCBGCTC CBBGBCGCTBG CBBBCTCBBB
TGCBGBGCB TCCTCTGGC TCTGBBBGCG TGGGAATTTC TGTGGGGBTG GCATACACGT AGGCAGCTCC
AAGAGCTAGC AAAC CAAAT GCAGAAGCATC CTCATGGCTC TGAAAACG-3' (FRAG. NO: 1759) (SEQ. ID NO:
10 1772)
5'-GCC CCG GG-3' (FRAG. NO: 1760) (SEQ. ID NO: 1773)
5'-G GGT TTC T-3' (FRAG. NO: 1761) (SEQ. ID NO: 1774)
5'-GTG GGG BTG GC-3' (FRAG. NO: 1762) (SEQ. ID NO:1775)
5'-CCB BGB GCT BGC-3' (FRAG. NO: 1763) (SEQ. ID NO: 1776)
15 5'-TCC CTG TTT CCC CCC TTT-3' (FRAG. NO:1140) (SEQ. ID NO:1149)
5'-CGT TCT GCG TTT GCC TTT GGC-3' (FRAG. NO:1141)(SEQ. ID NO:1150)
5'-GTT TTT TGT TTG TTT TCT-3' (FRAG. NO:1142)(SEQ. ID NO:1151)
5'-CTC TCC GTC TTT CTT CTC C-3' (FRAG. NO:1143) (SEQ. ID NO:1152)
20 5'-CCT CCT GCC TGT GTC CCT GCT CCC C-3' (FRAG. NO:1144) (SEQ. ID NO:1153)
5'-GAG GGT TTC TGG CTT CCT CTC T-3' (FRAG. NO:1145) (SEQ. ID NO:1154)
5'-TGT CTC TCT GTC CTT TTG TT-3' (FRAG. NO:1146) (SEQ. ID NO:1155)
5'-TGT TGT GCG GCC TGG TGC CCT GCC CCG GG-3' (FRAG. NO:1147) (SEQ. ID NO:1156)
25 5'-GTG GGA ATT TCT GTG GGG BTG GCA TAC ACG TAG GCA GCT CCA AGA GCT AGC AAA CTC AAA TGC AGA
AGC ATC CTC ATG GCT CTG AAA CG-3' (FRAG. NO: 1764) (SEQ. ID NO: 1777)
5'-GTG GGB BTT TCT GTG GGG BTG GCB TBC BCG TBG GCB GCT CCB BGB GCT BGC BBB CTC BBB TGC BGB BGC
BTC CTC BTG GCT CTG BBB CG-3' (FRAG. NO:1148) (SEQ. ID NO:1157)

Human IL-5 Receptor Nucleic Acid and Antisense Oligonucleotide Fragments

5'-CTCAGTGGCC CCCAAAGGA TGAGTAATACT ATGCGCCACG ATGATCATAT CCTTTTACT ATGAGGCCGT
30 GTCTGTCGTG TCTITCCTTT GCTCTTGGT TGCTTTGCT GTGCCCTGCC TCTCTGCCCG TGTCTGTCGT
GTCTTCCTT TGCCTTGGT GTGTCTTGC TGTGCCCTGC CTCTCTGCC CGTGTCTGTC GTGTCTTCC
TTTGCTCTTG GTGTGCTTT GCTGTGCCCT GCCTCTCTGC-3' (FRAG. NO: 1765) (SEQ. ID NO: 1778)
5'-CCG TGT C-3' (FRAG. NO: 1766) (SEQ. ID NO: 1779)
5'-GCCCTGCC-3' (FRAG. NO: 1767) (SEQ. ID NO: 1780)
5'-CCG TGT CTG TCG TGT CT-3' (FRAG. NO:1149) (SEQ. ID NO:1158)
35 5'-TCCCTTGCCTCTG-3' (FRAG. NO:1150) (SEQ. ID NO:1159)
5'-GTGTGTCTTGCTCT-3' (FRAG. NO:1151) (SEQ. ID NO:1160)
5'-GCCCTGCCCTCTC C-3' (FRAG. NO:1152) (SEQ. ID NO:1161)
5'-CT CBGTGGCCCCC BBBBGGBTG BGTBBTBCBT GCGCCBCGBT GBTCBTBTCC TTTTBCTBT GBGG (FRAG. NO:
1768) (SEQ. ID NO: 1781)

40 Human IL-6 Receptor Fragments

5'-GGGGGTGGCT TCTGCCGCG TCTCTGGGCC GTCCCGTCCC TCGGCCCCGC GCCGCGCTCG GCTCCTCTCC
CTCTGGCCCG GCTCGGGCG GGGCGGGCG GTGGGCGGGC GGCGCTGCC TGCGCGCGC GCTGGCCCCCT
GCTGGCCGTC GGCCTGCGC TGCTGGCTGC CCTGCTGGC GCGCCGGGGC CTGTCGCCCT CTGCGGGCGC
45 TGTCTCTGG CTTGCTTCC GGCTCTTCTG CTGGGGTGGG GCTGGGCGGC CGGGCGGTG CTGGGGCTCC
TCGGGGGGGG GGG CTCTTCC GGGCTGCTC CCTCGGGGGC GGGGGTTCT GGCCTGGGG GTCTTGCCTG
GCCTCCGGGC TCC GCTTGT CTGCTTCC TTCTCTGGTC GGTGTTGGCT CGGGGCTCCG TGGGTCCCTG
GCGCCGGTT GTG TTTGTC TTTTCCCCCTG GCGCTCCCTGT GCCCCTCTCC TCTCTTCCCT CTGCTTCTCG
CTCTCTTTC TGGA GCGCTC CCTGCTGCTC TTGGTTTGG GCTTTTTTC TCTCTCTCC TTTTCGTGCG
50 TGGGCCTCCG CACGCTCTT GCCACCTCT GCGCAGGGCA GCGCCTTGG GGCCAGCGCC GCTCCCGCG
CGGCCAGCAG GGCAGCCAGC AGCGCGCAGC CGACGGCCAG CATGCTTCC CTCGGCTAC CACTCCATGG
TCCCAGAG GCG GACAGGC GCBGCGCTC TTGCCBCCTC CTGCGCBGG CBGCGCTTGG GGGCCBGC
CGCTCCCGC GCGGCGCBGCB GGGCGGCCBG CBGCGCGCB CGBCGCCB GCBTGTCTCC TCCCTGGCTB
CCBCTCCBTG GTCCCGCBGB GGCGBGCBGG C-3' (FRAG. NO: 1769) (SEQ. ID NO: 1782)
5'-CCCGCGC-3' (FRAG. NO:1184) (SEQ. ID NO:1193)
55 5'-GGCCBGBGBGG-3' (FRAG. NO:1186) (SEQ. ID NO:1195)
5'-GCBGCBGCBGCG-3' (FRAG. NO: 1770) (SEQ. ID NO: 1783)
5'-C GCBGCGCBGCG-3' (FRAG. NO: 1771) (SEQ. ID NO: 1784)
5'-GGGGGTGGCTCTCCTGCC3' (FRAG. NO:1153) (SEQ. ID NO:1162)
5'-GCGTCTCTGGGCCGTCCC-3' (FRAG. NO:1154) (SEQ. ID NO:1163)

5'-GTCCTCGGCCCCCGCCGCGCTCGGCTCTCTCCC-3' (FRAG. NO:1155) (SEQ. ID NO:1164)
 5'-TCTGGCCCGGCTC-3' (FRAG. NO:1156) (SEQ. ID NO:1165)
 5'-GGGGCGGGCGGGCGGGTGGGC-3' (FRAG. NO:1157) (SEQ. ID NO:1166)
 5'-GGCGCTGCCCTGCC-3' (FRAG. NO:1158) (SEQ. ID NO:1167)
 5 5'-GCGCGCTGGCCC-3' (FRAG. NO:1159) (SEQ. ID NO:1168)
 5'-TGCTGGCCGTCGGCTGCGCGTCTGGCTGCCCT-3' (FRAG. NO:1160) (SEQ. ID NO:1169)
 5'-GCTGGCCGCGGGG-3' (FRAG. NO:1161) (SEQ. ID NO:1170)
 5'-GCCTGTCCGCTCTGCGGG-3' (FRAG. NO:1162) (SEQ. ID NO:1171)
 5'-CGCTGTCTCCTGGC-3' (FRAG. NO:1163) (SEQ. ID NO:1172)
 10 5'-TTGTCTTCCGGCTCT-3' (FRAG. NO:1164) (SEQ. ID NO:1173)
 5'-TCTGCTGGGTGGG-3' (FRAG. NO:1165) (SEQ. ID NO:1174)
 5'-GCTGGGCAGCGCG-3' (FRAG. NO:1166) (SEQ. ID NO:1175)
 5'-GCTGGGGCTCCTCGGGGG-3' (FRAG. NO:1167) (SEQ. ID NO:1176)
 5'-GGGGGCTCTCCGG-3' (FRAG. NO:1168) (SEQ. ID NO:1177)
 15 5'-GCTGTCTCCCTCCGG-3' (FRAG. NO:1169) (SEQ. ID NO:1178)
 5'-GCGGGGGTTCTGGGCC-3' (FRAG. NO:1170) (SEQ. ID NO:1179)
 5'-GTGGGGGTCTTGCCT-3' (FRAG. NO:1171) (SEQ. ID NO:1180)
 5'-TGGCCCTCCGGGCTCC-3' (FRAG. NO:1172) (SEQ. ID NO:1181)
 5'-TGCTTGTCTGCCTCCCTTC-3' (FRAG. NO:1173) (SEQ. ID NO:1182)
 20 5'-TCTGGTCGGTTGTC GCTCG-3' (FRAG. NO:1174) (SEQ. ID NO:1183)
 5'-GGGCTCCGTGGGTCCCTGGC-3' (FRAG. NO:1175) (SEQ. ID NO:1184)
 5'-GCCGTTTGTGTTTGTC-3' (FRAG. NO:1176) (SEQ. ID NO:1185)
 5'-TTTCCTCCCTGGCGT-3' (FRAG. NO:1177) (SEQ. ID NO:1186)
 5'-CCCTGTGCCCTCTCCTCTCCTCTGCTTCTC-3' (FRAG. NO:1178) (SEQ. ID NO:1187)
 25 5'-GCTCTCTTTGTGGG-3' (FRAG. NO:1179) (SEQ. ID NO:1188)
 5'-GCCCTCCCTGCTGCT-3' (FRAG. NO:1180) (SEQ. ID NO:1189)
 5'-CTTGGTTTGGGCT-3' (FRAG. NO:1181) (SEQ. ID NO:1190)
 5'-TTTTTCTCTCCTCTTTTC-3' (FRAG. NO:1182) (SEQ. ID NO:1191)
 5'-GTGCGTGGGCCTCC-3' (FRAG. NO:1183) (SEQ. ID NO:1192)
 30 5'-GCACGCCCTCT TGCCACCTCC TGCGCAGGGC AGCGCCTTGG GGCCAGCGCC GCTCCCGGCG CGGCCAGCAG
 GGCAGCCAGC AGCGCGCAGC CGACGGCCAG CATGCTTCC CCTCGGCTAC CACTCCATGG TCCCGCAGAG
 GCGGACAGGC-3' (FRAG. NO:1185) (SEQ. ID NO:1194)
 5'-GCBGCGCTCT TGCCBCCCTCC TGCGCBGGC BGCGCCTTGG GGCCBGCGCC GCTCCCGGCG CGGCCBGCBG
 GGCGBCCBG CBGCGCGCBG CCGBCGGCCB GCBTGCTTCC TCCTCGGCTB CCBCTCCBTG GTCCCGCGBGB
 35 5'-GGCGBCBGG C-3' (FRAG. NO:1187) (SEQ. ID NO:1196)

Human IL-6 Nucleic Acid and Antisense Oligonucleotide Fragments

5'-GGGGTGGCT TCTGCCGCG TCTCTGGGCC GTCCCGTCCC TCGGCCCCGC GCGCGCTCG GCTCCTCTCC
 CTCTGGCCCG GCTCGGGCG GGGCGGGCG GTGGCGGGC GCGCCTGCC TGCGCGCGC GCTGGCCCT
 GCTGGCCGTC GGCGTGCAGC TGCTGGCTGC CCTGCTGGCC GCGCCGGGC CTGTCGCGCT CTGCGGGCGC
 40 5'-TGTCTCTGG CTTGCTTCC GGCTCTCTG CTGGGGTGGG GCTGGCGGC CGGCCGGGTG CTGGGGCTCC
 TCGGGGGGGG GGGCTCTTCC GGGCTGTCTC CCTCCGGGC GGGGGTTCT GGCCGTGGGG GTCTTGCCTG
 GCCTCCGGGC TCCGTCTGT CTTGCCTTCC TTCTCTGGTC GGTGTGGCT CGGGGCTCCG TGGGTCCCTG
 GCGCCCGTT GTGTTTGTC TTTTCCCCTG GCGTCCCTGT GCCCCTCTCC TCTCCTCCCT CTGCTTCTCG
 CTCTCCTTGT TGGGCCCTC CCTGCTGCTC TTGGTTTGG GCTTTTTTC TCTTCCCTCCT TTTTCGTGCG
 45 5'-GGGGCCTCC GCACGCCCTCT TGCCACCTCC TGCGCAGGGC AGCGCCTTGG GGCCAGCGCC GCTCCCGGCG
 CGGCCAGCAG GGCAGCCAGC AGCGCGCAGC CGACGGCCAG CATGCTTCC CCTCGGCTAC CACTCCATGG
 TCCCGCAGAG GCGGACAGGC GCBGCGCTC TTGCCBCCTC CTGCGCBGG CBGCGCCTTG GGGCCBGCGC
 CGCTCCCGC GCGGCCBGBG GGGCBGCCBG CBGCGCGCBG CCGBCGGCCB GCBTGCTTCC TCCTCGGCTB
 CCBCTCCBTG GTCCCGBGB GGCGBCBGG C-3' (FRAG. NO:1772) (SEQ. ID NO:1785)
 50 5'-GGGGCBGG-3' (FRAG. NO:1773) (SEQ. ID NO:1786)
 5'-GBBGGCBG CBGGC 3' (FRAG. NO:1774) (SEQ. ID NO:1787)
 5'-CCBGGBGBG CCCC-3' (FRAG. NO:1775) (SEQ. ID NO:1788)
 5'-BGGG BGBBGGCBG-3' (FRAG. NO:1776) (SEQ. ID NO:1789)
 5'-GCT TCT CTT TCG 'TC CCG GTG GGC TCG-3' (FRAG. NO:1188) (SEQ. ID NO:1197)
 55 5'-GTG GCT GTC TGT GTG GGG CGG CT-3' (FRAG. NO:1189) (SEQ. ID NO:1198)
 5'-GTG CCT CTT TGC TGC TTT C-3' (FRAG. NO:1190) (SEQ. ID NO:1199)
 5'-GAT TCT TTG CCT TTT TCT GC-3' (FRAG. NO:1191) (SEQ. ID NO:1200)
 5'-CTCCTGGGG TBCTGGGCB GGGBBGGCBG CBGGCBCBC CBGGBGBGC CCCBGGGBGB BGGCBBCCTGG BCCGBGGCG
 CTTGTGGBGB BGGBGTCTBT BGCTGGGCTC CTGGBGGGB GBTBGBGC-3' (FRAG. NO:1777) (SEQ. ID NO:1790)

60 Human Monocyte-derived Neutrophil Chemotactic Factor

Nucleic Acid and Antisense Oligonucleotide Fragments

5'-GGGGTGGBBB GGTTTGGGBT BTGTCCTTBT GCBCTGBCBT CTBBGTTCTT TBGCBCTCCT TGGCBBBBCT
GCBCCCTCBC BCBGBGCTGC BGBBBCTBGG BBGGCTGCCB BGBGBGCCBC GGCCBGCTTG GBBGTCBTGT
TTBCBCBCBG TGBGBTGGTT CCTTCCGGGC TTGTGTGCTC TGCTGTCTCT TGGTCCCTC CGGTGGTTTC
5 TTCCCTGGCTC TTGTCCTTTC TCTTGG CCCT TGGC-3' (FRAG. NO:1778) (SEQ. ID NO: 1791)
5'-GGBGT BTG-3' (FRAG. NO:1779) (SEQ. ID NO: 1792)
5'-GCBCTGBCBT CT-3' (FRAG. NO:1780) (SEQ. ID NO:1793)
5'-CCG GTG G-3' (FRAG. NO:1781) (SEQ. ID NO: 1794)
5'-GG CCC TTG GC-3' (FRAG. NO:1782) (SEQ. ID NO: 1795)
10 5'-GCT TGT GTG CTC TGC TGT CTC T-3' (FRAG. NO:1192) (SEQ. ID NO:1201)
5'-TGG TTC CTT CCG GTG GTT TCT TCC TGG CTC TTG TCC T-3' (FRAG. NO:1193) (SEQ. ID NO:1202)
5'-TTC TCT TGG CCC TG GC-3' (FRAG. NO:1194) (SEQ. ID NO:1203)
5'-GGGGTGGBBB GGTTTGGGBT BTGTCCTTBT GCBCTGBCBT CTBBGTTCTT TBGCBCTCCT TGGCBBBBCT
GCBCCCTCBC BCBGBGCTC-3' (FRAG. NO:1783) (SEQ. ID NO: 1796)

Human Neutrophil Elastase (Medullasin) Nucleic Acid and Antisense Oligonucleotide Fragments

15 5'-GGGCTCCCGC CGCGBGBGGT TBTGGGCTCC CBGGBCCBCC CGCBBCCGCGC GGBCGTTBC BTTCGCCBCG
CBGTGCCCGG CCGFCBTGBC GBBGTTGGGC GCBBTCBGGG TGGCGCCGCB GBBGTTGGCCT CCGCGCBGCT
GCBGGGBCBC CBTGBBGGGC CBCGCGTGGG GCCGCGCTCG CCGGCCCCCCC BCBBTCTCCG BGGCCBGGCG
GGTGCCCGCC BGBCBGCBGGG CCGGCBGGBC BCBGGCGBGG BGBCBCGCGB GTCGGCGGCC GBGGGTCBTG
20 GTGGGGCTGG GGC CCGGGG TCTCTGCCCG TCCGTGCTGG TGGGGCTGGG GCTCCGGGG TCTCTGCCCG
TCCGTGCCGC GTGGGGCCGC GCTCGCCGGC CCCCCCCTGC CGGGTGGGCT CCCGCCGCGC GCCGGCCTGC
CGGCCCTCG TGGGTCCTGC TGGCCGGGTC CGGGTCCCGG GGGTGGGGCG CGBGTGGCG GCCBGGGTC-3'
(FRAG. NO:1784) (SEQ. ID NO: 1797)
5'-GG TGG GGC-3' (FRAG. NO:1785) (SEQ. ID NO: 1798)
25 5'-G GGG CCG -3' (FRAG. NO:1786) (SEQ. ID NO:1799)
5'- GGC CGG GTC CGG G-3' (FRAG. NO:1787) (SEQ. ID NO: 1800)
5'-TGG TGG GGC TGG GGC TCC GGG GTC TCT GCC CCT CCG TGC-3' (FRAG.NO:1195)(SEQ.ID NO:1204)
5'-CGC GTG GGG CCG CGC TCG CCG GCC CCC C-3' (FRAG. NO:1196) (SEQ. ID NO:1205)
5'-CCT GCC GGG TGG GCT CCC GCC GCG-3' (FRAG. NO:1197) (SEQ. ID NO:1206)
30 5'-CGC CGG CCT GCC GGG CCC TC-3' (FRAG. NO:1198) (SEQ. ID NO:1207)
5'-GTG GGT CCT GCT 3GC CGG GTC CGG GTC CCG GGG GTG GGG-3'(FRAG.NO:1199)(SEQ.ID NO:1208)
5'-CGC GBG TCG GCG GCC GBG GGT C-3' (FRAG. NO:1200) (SEQ. ID NO:1209)
5'-GGGCTCCCGC CGCGBGBGGT TBTGGGCTCC CBGGBCCBCC CGCBBCCGCGC GGBCGTTBC BTTCGCCBCG
CBGTGCCCGG CCGFCBTGBC GBBGTTGGGC GCBBTCBGGG TGGCGCCGCB GBBGTTGGCCT CCGCGCBGCT
35 GCBGGGBCBC CBTGBBGGGC CBCGCGTGGG GCCGCGCTCG CCGGCCCCCCC BCBBTCTCCG BGGCCBGGCG
GGTGCCCGCC BGBCBGCBGGG CCGGCBGGBC BCBGGCGBGG BGBCBCGCGB GTCGGCGGCC GBGGGTCBTG
GTGGGGCTGG GGCTCCGGGG TCTCTGCCCG TCCGTGCTG-3' (FRAG. NO:1788) (SEQ. ID NO: 1801)

Human Neutrophil Oxidase Factor Nucleic Acid and Antisense Oligonucleotide Fragments

40 5'-CGGGGBTGGG GGTCTGGBC GGCCTGBBG GCBTCCBGGG CTCCCTTCB GTCCCTCTTG TCCGCTGCCB
GCBCCCCCTTC BTTCGBGBGG CTGBTGGCCT CCBCBGGGB CBTGBTBGG TBGBBBCTBG GBGGCCGGCC
TCCBCBGGG BCBTGGTCTT TCTTGTCCGC TGCTCTCTG GGGTTTCGG TCTGGGTGGG CTTTCCTCCT
GGGGCTGCTG CTGGGCTCTT CTTTTGTT CTGGCCTGGT GCTCTCTCG GCCCTTCCC TTGGGTGTCT
TGTGTTTG TG GCCTCCBCCB GGGBCBTG-3' (FRAG. NO:1789) (SEQ. ID NO: 1802)
5'-CGGGGBTGGG GG-3' (FRAG.NO:1790) (SEQ. ID NO: 1803)
45 5'-GCCBGCBCCCC-3' (FRAG.NO:1791) (SEQ. ID NO: 1804)
5'-C CBC CBG-3' (FRAG.NO:1792) (SEQ. ID NO: 1805)
5'-GGC CTC CBC CBG GGB CBT G-3' (FRAG. NO:1201) (SEQ. ID NO:1210)
5'-GTC CTT CTT GTC CGC TGC C -3' (FRAG. NO:1202) (SEQ. ID NO:1211)
5'-TCT CTG GGG TTT TCG GTC TGG GTG G-3 (FRAG. NO:1203) (SEQ. ID NO:1212)
50 5'-GCT TTC CTC CTG GGG CTG CTG CTG-3' (FRAG. NO:1204) (SEQ. ID NO:1213)
5'-GGC TCT TCT TTT GT TTC TGG CCT GGT G-3' (FRAG. NO:1205) (SEQ. ID NO:1214)
5'-CTC TCT CGT GCC CTT TCC-3' (FRAG. NO:1206) (SEQ. ID NO:1215)
5'-CTT GGG TGT CTT GTT TTT GT-3' (FRAG. NO:1207) (SEQ. ID NO:1216)
5'-GGC CTC CBC CBG 3GB CBT G-3' (FRAG. NO:1208) (SEQ. ID NO:1217)
55 5'-CGGGGBTGGG GGTCTGGBC GGCCTGBBG GCBTCCBGGG CTCCCTTCB GTCCCTCTTG TCCGCTGCCB
GCBCCCCCTTC BTTCGBGBGG CTGBTGGCCT CCBCBGGGB CBTGBTBGG TBGBBBCTBG GBGGCC-3' (FRAG.
NO:1793) (SEQ. ID NC: 1806)

Human Cathepsin G Nucleic Acid and Antisense Oligonucleotide Fragments

5'-CCCTCCBCBT CTGCTCTGBC CTGCTGGBC CTGGBTCTGB BGBTBCGCCB TGTBGGGGCG GGBGTGGGGC

CTGCTCTCCC GGCC'TCCGBT GBTCTCCCT GCCTCBGCC CBGTGGGTBG GBGBBBGGCC BGCBGBGCB
 GGBGTGGCTG CBTCTTCCT GGTGGGGCCT GCTCTCCCG CCTCCGTGTG TTGCTGGGTG TTTTCCCGTC
 TCTGGTCTGC CTTCGGGGT CGT-3' (FRAG. NO:1794) (SEQ. ID NO: 1807)
 5'-GGBGBTBCGCC-3' (FRAG. NO:1795) (SEQ. ID NO: 1808)

5 5'-CBGCCCCBG-3' (FRAG. NO:1796) (SEQ. ID NO: 1809)
 5'-TCC CGT CTC TGG-3' (FRAG. NO:1797) (SEQ. ID NO: 1810)
 5'-GTG GGG CCT GCT CTC CCG GCC TCC G-3' (FRAG. NO:1209) (SEQ. ID NO:1218)
 5'-TGT GTT GCT GG GTG TTT TCC CGT CTC TGG-3' (FRAG. NO:1210) (SEQ. ID NO:1219)
 5'-TCT GCC TTC GGG GGT CGT-3' (FRAG. NO:1211) (SEQ. ID NO:1220)

10 5'-CCCTCCBCBT CTGCTCTGBC CTGCTGGBC CTGGBTCTGB BGBTBCGCCB TGTBGGGGCG GGBGTGGGCG
 CTGCTCTCCC GGCC'TCCGBT GBTCTCCCT GCCTCBGCC CBGTGGGTBG GBGBBBGGCC BGCBGBGCB
 GGBGTGGCTG-3' (FRAG. NO:1798) (SEQ. ID NO: 1811)

Human Defensin 1 Nucleic Acid and Antisense Oligonucleotide Fragments

15 5'-CCGGGGCTGC BGCBBCCTCB TCBGCTCTTG CCTGGGBTGG CTCBGCCCTGG GCCTGCBGGG CCBCCBGBGB
 BBTGGCBGCB BGGGBTGGCGB GGGTCCTCBT GGCTGGGGTC BCBGBTCCCT TBGCTBGGCB GGGTGBCCBG
 BGBGGGC GGG TCC TCB TGG CTG GGG GCC TGG GCC TGC BGG GCC GCT CTT GCC TGG BGT GGC TC GCC CBG
 BGT CTT CCC TGG T GCTCAGCCTC CAAAGGAGCC AGCCTCTCCC CAGTTCTGA AATCTGAGT GTTGCCTGCC
 AGTCGCCATG AGA\ACTTCT ACCTTCTGCT GTTACTCTC TGCTTACTTT TGTCTGAGAT GGCCTCAGGT
 GGTAACTTT TCACAGGCCT TGGCACACAGA TCTGATCATT ACAATTGCGT CAGCAGTGGA GGGCAATGTC
 20 TCTATTCCTGC CTGCCCGATC TTACACAAA TTCAAGGCAC CTGTTACAGA GGGAAAGGCCA AGTGCTGCAA
 GTGAGCTGGG AGTGACCAGA AGAAATGACG CAGAAAGTGA ATGAACTTT TATAAGCATT CTTTAATAA
 AGGAAAATTG CTTTGAAGT AT CTGCAGTGGT AAAAAGATTG TATATCTGCT GTTGTATGAA TGCAAGCACCC
 ACTAGCCACA TAGIGCTCGT GAGCACTTGC AATGCGGCTA GGGTGATTTC AATTAACCTA AAAGAGAAC
 GCCACAGGGG GCA\GTGGCT GCCATATTGG ATGGTGCTGC TTTGAGAACAA ATATGAGAGA AATGAAGCCT
 25 25 CTATTTACCT TGGTGGCGG AACACATTGA AGGGACTCTG TATTGATACC AGGCTTCAA CTTTGGGAAG
 TGTACTGGCC AACTTAAACA CATCCACAGG AGAAATGAGA GGGTTGGGAA GGGACCAGAA ACCAGGCATT
 GAGGACAATG AGA\GAGTTT TTCAAAAGTG GAATTACTGC AAAAAGTGGA AAAATAGCCT TTGGATGGAA
 GTTACTGATG AGAC AATTTC CATCGGTGTG AAAGCCATCT TTCCAACAGA GATCTGCAAC ATGAGAATGT
 ACTGTCTCCT AGGC TAGCGA TGGCCTCTTG TATTAGTCG CTCAGGCTAC CAGATTATTC GTTAAACTG
 30 CCCATAAAACA GACCAGGCAG TTAAACAAAC AGAAAATTAT TTCTCTCGAG TCCTGGAGGC AGGAAGTCTG
 CGATCAAGGT GGA\GCAGGG TTGGCTTCTT CTCAGGTGTC TGTCTTGGC TGGTAGATGA CCGCCGCC
 CCTGGGTCTC CACATGGTCT TTCCCTGTG TGTCTGTG CCAATCTCTT CTTATAAGGA TGCAAGTCTT
 ATGGATCAGA GCACACCCCCA ATGACCGTGT TAAACTTGA TCACCTCTT AAAGTTCTC TCTCCAAATA
 CAATCACCTC CTGAGGCACT GTTAGGGCTT CGACACAGGA ATTCTTTCC TAGGGGATTC AGTCAGTCC
 35 AAAACGCCTA CCAC TGGAGA CTTGCAACAT GGCGGCCTGC TGGTCCCTCG CCAGGAATAT CACAGGC
 TGTTCCCTGT TGCA\TGGAAAT AGAAGGCTAT TCCAGAGTAC TGTCTCTATT TATCAGATCT GGGATACTGG
 GAGAAGGGCA AAA\AAAGTC CAAGTAGAAA AAAAAACTAT GAAAGTTTA GAGAGTAACC ATAATTTCAG
 CCCGATGTGA AACCATCCTA GATTCAGCT GAAATAGTGA TGTGGGAAGT GAGGGGCCG GGATTCAAGG
 CAGAGGAAC AGC\TAACTG AAGGCATGGA AGGAGGGAAAG TGTAGGCTGT GTTGAAGAG TGGCAGCTGC
 40 TTCCACATTT CTAA AACACA GGATGTGATT TTGGGGTGTG TTGAGACAAG GCAGAAAAC TGTGGGAAA
 AATAACTTGA ATTCCCTGCA CATTAAAAT CTCTCAGCAG AAGAAAACCC CACTCAGAAC CCCACTGTT
 ATTCCTTGGC TTGTATTGG SCACAGCTGG CATAGCCCCA GACTGAGTAA GCTCTTCAGA CACCTCATTT
 CATGAGTAGC CCCAAGATC AATCATGGC CAATTCTTG GAAGAGAAGA CTCTCCGGTG TTTGCAGTT
 ATTTGTTCTG CTTT\GCGAG ATGTTCTAA ATCGTTGCAG CTACAAGCCA TGAGTCTGAA GTGTTGTGT
 45 TCCCTCTTA CAGGTGGTAA CTTTCTCACA GGCCTTGGCC ACAGATCTGA TCATTACAAT TGCCTCAGCA
 GTGGAGGGCA ATG\CTCTAT TCTGCTCTGC CGATCTTAC CAAAATTCAA GGCACCTGTT ACAGAGGGAA
 GGCCAAGTGC TGCAAGTGTG CTGAGAGTGA CCAGAAGAAA TGACGAGAA GTAAATGAA CTTTTTATAA
 GCATTCTTT AATAAAGGA AATTGTTTT GAAGTATACC TCCCTTGGC CAAAATGAAT CTTGTGTCTC
 AATTGGAAGA GGT\AAGAAG TAGGGGGTTA GGGTGCATGG GTTGGAACGT GAGACAGGTC GAACCACAAA
 50 GCCTGCCCTGG AAA\GGGGAG TGACGTCTA GGCTTCAGTG ATGTCACCTC CACTTGTGTT GATCCACAAA
 CCAACAGGTG ACTC\ATTTG GTCAGCTAG CCTCCAAAGG AGCCAGCCTC TCCCCAGTT TCAGAAC
 GAGTGTGCC TGCCAGTCGC CATGAGAACT TCCTACCTC TGCTGTTAC TCTCTGCTTA CTTTTGTCTG
 AGATGGGCTC AGG\GGTAAAC TTTCTCACAG GCCTTGGCCA CAGATCTGAT CATTACAATT GCGTCAGCAG
 TGGAGGGCAA TGTCTCTATT CTGCTGCC GATCTTAC AAAATTCAAG GCACCTGTTA CAGAGGGAAAG
 55 GCCAAGTGC GCAAGTGAGC TGGGAGTGAC CAGAAGAAAT GACGAGAAC TGAAATGAAC TT -3'
 (FRAG.NO:1799) (SEQ. ID NO: 3010)
 5'-GTCAGCTAG CC\CCAAAGG AGCCAGCCTC TCCCCAGTT TCAGAAC CCTCTGTT ACAGAGGGAA
 CATGAGAACT TCC\ACCTTC TGCTGTTAC TCTCTGCTTA CTTTTGTCTG AGATGGCCTC AGGTGGTAAC
 TTTCTCACAG GCCTTGGCCA CAGATCTGAT CATTACAATT GCGTCAGCAG TGGAGGGCAA TGTCTCTATT
 60 CTGCTGCCCTGG GATC\TTAC AAAATTCAAG GCACCTGTTA CAGAGGGAAAG GCCAAGTGC GCAAGTGAGC
 TGGGAGTGAC CAGA\GAAAT GACGAGAAC TGAAATGAAC TT-3' (FRAG.NO:_) (SEQ. ID NO: 2475)

5'-CTGCA GTGGT AAAAAGATT C TATATCTGCT GTTTGATGAA TGCAGCACCC ACTAGCCACA TAGTGCTCGT
 GAGCACTTGC AATC CGGCTA GGGTGATTC AATTAACCTA AAAGAGAACAA GCCACAGGGAA GCATGTGGCT
 GCCATATTGG ATGCTGCTGC TTTGAGAACAA AAATGAGAGA AATGAAGCCT CTATTTACCT TGTTGGCGG
 AACACATTGA AGGGACTCTG TATTGATACC AGGCTCAA A CTTTGGGAAG TGTACTGGCC AACTTAAACA
 5 CATCCACAGG AGAA TGAAGA GGTTTGGGAA GGGACCAAGA ACCAGGCATT GAGGACAATG AGAAGAGTT
 TTCAAAAGTG GAA TACTGC AAAAGTGGAA AAAATAGCCT TTGGATGAA GTTACTGATG AGACAATTTC
 CATCGGTGTG AAAGCCATCT TTCCAACAGA GATCTGCAAC ATGAGAACATG ACTGCTCCT AGGGTAGCGA
 TGGCCTTGT TATTAGTCCG CTCAGGCTAC CAGATTATC GTTTAAACTG CCCATAAACAA GACCAGGCAG
 TTTAAACAAAC AGAA ATTATAT TTCCCTCGAG TCCTGGAGGC AGGAAGTCTG CGATCAAGGT GGAAGCAGGG
 10 TTGGCTCTT CTCAGGTGTC TGTCTTGGC TGGTAGATGA CCGCCGCTC CCTGGGTCTC CACATGGTCT
 TTCCCTGTG TGTGCTGTC CCAATCTT CTTATAAGGA TGCAAGTCTT ATGGATCAGA GCACACCCCA
 ATGACCGTGT TAACTTGAA TCACCTCTT AAAGTTTCTC TCTCCAAAATA CAATCACCTC CTGAGGCAC
 GTTAGGGCTT CGAC'ACAGGA ATTCTTTCC TAGGGGATTG AGTCAGTCC AAAACGCCTA CCAGTGGAGA
 15 CTTGCAACAT GGCGGCCTGC TGGTCCCCTCG CCAGGAATAT CACAGGCAC TGTTCCCTGT TGCAATGGAAAT
 AGAAGGCTAT TCCAGAGTAC TGTCTCTATT TATCAGATCT GGGATACTGG GAGAAGGGCA AAATAAAGTC
 CAAGTAGAAA AAAA AACTAT GAAAGTTTA GAGAGTAACC ATAATTTCAG CCCGATGTGA AACGATCCTA
 GATTCAGCT GAAATAGTGA TGTGGGAAGT GAGGGGGCCG GGATTCAAGG CAGAGGGAAC AGCGTAAC
 AAGGCATGGA AGGAGGGAAAG TGTAGGCTGT GTTGAAGAG TGGCAGCTGC TTCCACATT CTAAAACACA
 GGATGTGATT TTGC GGTGTG TTGAGACAAAG GCAGAAAAGT TGTTGGAAA ATAATCTGA ATTCCCTGCA
 20 CATTAAAAT CTCTCAGCAG AAGAAAAACCC CACTCAGAAC CCCACTGTT ATTCCCTGGC TTGTATTTGG
 SCACAGCTGG CATA GCCCCA GACTGAGTAA GCTCTTCAGA CACCTCATTT CATGAGTAGC CCCAAAGATC
 AATCATGGGC CAA TTCTTG GAAGAGAAAGA CTCTCCGGTG TTTTGAGTT ATTGTTCTG CTTTCGCGAG
 ATGTTCTCAA ATCC TTGCAAG CTCAGGCA TGAGTCTGAA GTGTTGTGT TCCCTCCTTA CAGGTGGTAA
 CTTTCTCACA GGCC TGGGCC ACAGATCTGA TCATTACAAT TGCGTCAGCA GTGGAGGGCA ATGTCCTAT
 25 TCTGCCTGCC CGATCTTAC CAAAATTCAA GGCACTGTT ACAGAGGGAA GGCAAGTGC TGCAAGTGA
 CTGAGAGTGA CCAGAAGAAA TGACGCAGAA GTGAAATGAA CTTTTTATAA GCATTCCTT AATAAAGGAA
 AATTGCTTT GAAGTATACC TCCTTGGGC CAAAATGAAT CTTGTGTCTC AATTGGAAGA GGTAAAGAAG
 TAGGGGGTTA GGGTGCATGG GTTGGAACGT GAGACAGGT GAACACACAA GCCTGCCTGG AAAAGGGGG
 TGACGTCTTA GGCTCAGTG ATGTCACCTC CACTTTGTT GATCCACAAA CCAACAGGTG ACTGATTTG-3'
 30 (FRAG.NO:____) (SEQ. ID NO: 2474)
 5'-GCTCAGCCTC CA AAGGAGCC AGCCTCTCCC CAGTTCCGTAA AATCCTGAGT GTTGCTGCC AGTCGCCATG
 AGAACTTCCCT ACC TCTGCT GTTTACTCTC TGCTTACTTT TGTCTGAGAT GGCCTCAGGT GGTAACITTC
 TCACAGGCCT TGGC'CACAGA TCTGATCATT ACAATTGCGT CAGCAGTGGA GGGCAATGTC TCTATTCTGC
 CTGCCGATC TTACCAAAA TTCAAGGCAC CTGTACAGA GGGAAGGCCA AGTGTGCAA GTGAGCTGGG
 35 AGTGACCAAGA AGA AATGACG CAGAAGTGAA ATGAACTTTT TATAAGCATT CTTTAATAA AGGAAAATTG
 CTTTGAAAGT AT-3' (FRAG.NO:____) (SEQ. ID NO: 2472)
 5'-CCGGGGC-3' (FRAG.NO:1800) (SEQ. ID NO: 1813)
 5'-GG GCCTGCBGGG CC-3' (FRAG.NO:1801) (SEQ. ID NO: 1814)
 5'-GGCGBCB BGG-3' (FRAG.NO:1802) (SEQ. ID NO: 1815)
 40 5'-GGG TCC TCB TGG CTG GGG-3' (FRAG. NO:1212) (SEQ. ID NO:1221)
 5'-GCC TGG GCC TGC BGG GCC-3' (FRAG. NO:1213) (SEQ. ID NO:1222)
 5'-GCT CTT GCC TGG 3GT GGC TC-3' (FRAG. NO:1214) (SEQ. ID NO:1223)
 5'-GCC CBG BGT CTT CCC TGG T-3' (FRAG. NO:1215) (SEQ. ID NO:1224)
 45 5'-CCGGGGCTGC BGCBBCCTCB TCBGCTCTG CCTGGBGTGG CTCBGCTGG GCCTGCBGGG CCBCCBGBG
 BBTGGCBGB BGGTGGCGB GGGTCTCTB GGCTGGGTC BCBGBTCTC TBGCTBGGCB GGGTGBCCBG
 BGBGGC-3' (FRAG.NO:1803) (SEQ. ID NO: 1816)

Human Defensin 2 Nucleic Acid and Antisense Oligonucleotide Fragments

5'-ATCCTTAAG TCAATGGACT TTGCATCACT CACACCATCT TTTGTTACTT TGGACTTCCC CAGCTATGTT
 CAATAATTAC TGTCTTCCC TTGGGCCCA TTGTAATGGC TACAGCCTCG ACAAAAAGTC TACACTTGA
 50 AGCATTAAAG CTCCGACATC AGCACAAAT TTTACATCTT TACCATCACT TCAAGTGGAG TGAGGAGCCA
 GTAGCCTGGA CACTGGTCTC ATCTGGTGA AGACTGTGGG TAATGGAAGC ATTCTGTGG GGTGCTGGCA
 GGACATGTGC ATGCCGAGGC AGGTCACTAG CAGCAAGTGA GAGCTGCCTC TTACTTTCTA AAGGTGACAT
 AGCAAATATA CAA AAAAAAA TAAATAAATT ATTAATTAG GTAGAGCACA TAAAGGCTTT ATTTCATATT
 CCATTTCTCT GTATGTTTC TTCACCAAGGA AGAAATAGTT TTAGTGTCAAG GAATGAATGA GTCTGCCCT
 55 CAATTCCAGC CTGCTCAACA CACAAGGAAA CAAAGCCCTG ACAATCAGAG TGACTCCCTG GTGACTAAGC
 TCCCAGTCCT GGAT'GCATAT TTGTTTAGCA GTTCTGACAG CATTGACCC AGCCCTCTCT CTGCATATCC
 CATCAGAACCC TTC TTTTTT TTTTTTTCTT TGAGACTGAG TCTTGCTCTG TCGGAAGCGA CTCCGTGCC
 TCAGCCTCCC AAAATACCTGG AATTATAGGC GTAAGCCATC ATGCCTGGCT AATTGTTGTA TTTTCATGG
 AGATGGGGTT TTGC'CATGTT GGTCAAATTG GTCTCACACT CCTGACCTCA TGTGATCCAC CTGCTCAGC
 60 CTCCCAAACCT GCTC GGATGA CAGGTGAAG CCACCATGCT AGGCTCAGAA ATTCCTTTT ATAAAATGTT
 CATTAAGGAT CTTC GCTGCA CAATATCGTT ACCAGCTCC TTTAAATCCA CTTCTGGCCT GCCAGGAATC

	AGGTTCTTCA	GAACCTGACA	TTTTAAATGA	AGAGGTCAGG	CAGTCATGA	GGAAAGCCTC	ATTGTCCCCA
	TGTCTCTGTC	ACTGCTGCAC	CCCTGAGACA	TCACAGACAT	GGACACTGGG	GCCTGCTTGT	TTCTCAAAC
	GCCCTTAGAT	CGAAGAGGG	AGGAACCAGG	ATGAATGCCA	CTCATTTCC	CAAGAAAGGC	CCTCTCCTGA
5	GTGCCCGGGA	TGGGGCTCTG	TCCATTGCC	GGGCCGCCA	ATTGCTACTC	TGGGTTACGG	AGGAAGGACA
	GGGTCTGAG	AGACACCAGA	GACCTCACAC	AGCCCTGAAA	ACATGGGGCT	CCTTCATAAG	TGTTTCCCCT
	CACCAACAGG	GAGACCACGT	GGAGGCCCTG	CAGCCCCACT	CGGTGCTTCT	CCACCAAATC	CCAAGGGCAG
	TGACGCTGAC	GTCIGTGGAA	AGCAGAGAAA	GCCCTGGCTC	CCAAAGCCT	GAAGTCCCTG	TGGAGCTGAC
	ATTCCCTGAG	TGACGGTGTG	AATGGAAGGA	ACTCAAGTGC	GGGTGGTAGG	CCACCTCCTG	GCCCAGGCCT
10	GGGTGAACTC	TGACGGGACA	CATGTAGTCA	CAATCCCCTC	CTCCCATTCT	CCTTCCTCAGA	GGAAGGAAGT
	GGGCATCCAT	CTGCCTCATC	TCTCTCCCGT	GGGGAAAGATG	GGGAGTTCA	GGGGAACTTT	CACATAAAATT
	TCACCAGCTC	AGA1CTCCTG	TGAGGATGGG	GCCCACCATG	CTCCCGTGC	TGCCAGAGGC	CCTGAGCCCC
	TCCCAGGGTC	CCTGGGTTTG	AGCCAGCCCT	GTATCATCCC	CAGGAGCTGA	ATGTCAGAGC	AATGGATAGA
15	ATTAGATGGA	AAGAGCTCTC	AATTGACCT	GAGACTGTCC	CCAGATACTC	AGGAAAAAAC	GGACGTCGCA
	CAGAGTGGGC	ACGAGGTGAG	TGGCAGGTTA	TAGGCCTGTA	GGTTGAGTTT	GTTCTCACGT	GAGACAGACC
	CAGCCCCCTA	CTCCATTCA	ACACTGGGTT	TTAAATGGTG	CAAGATAGGA	GCAATTTCCT	GGTCCCAAGA
	GCAGGAGGAA	GGGATTTTCT	GGGGTTTCC	GAGTCAGAT	TTGCATAAGA	TCTCTGAGT	GTGCATTGTT
	CTTGAGGAC	CATI CTCTGA	CTCACCAAGGT	AAGTGGCTGA	ATTCTAACCT	CTGTAATGAG	CATTGCACCC
	AATACCAAGTT	CTGA ACTCTA	CCTGGTGACC	AGGACCAGG	ACCTTATAA	GGTGGAAAGC	TTGATGTCTC
20	CCCCAGACTC	AGCCTCTGGT	GAAGCTCCA	GCCATCAGCC	ATGAGGGTCT	TGTATCTCCT	CTTCTCGTTC
	CTCTTCATAT	TCCTGATGCC	TCTTCCAGGT	GAGATGGGCC	AGGGAAATAG	GAGGGTTGGC	CAAATGGAAG
	AATGGCGTAG	AAGITCTCTG	TCTCCTCTCA	TTCCCCCTCA	CCTATCTC	CCTCATCCCT	CTCTCTCCTT
	CCTCTCTCTG	TGTCTCCCT	CCATCCTTT	CTCTGCTTC	TCTCTCTCT	TCCTCTCTC	TCTTTTCTT
	GTCTTTCTT	TTCCCTCTCTC	CCTAGAGCAT	GTCTTCTTT	CTTCTCTTT	CCTTCTCTCT	ACCCACACTT
	TTAGACTGAA	TGCCCTATTT	AATTGAACAA	AGCATTGCTT	CCTTCAATAG	AAAAGGAGTT	TGAGAACCCA
25	ATGGACACCT	CACTCGTTCT	TCTAAGCCAA	TATGAAGGAG	CCCAGTAGCT	TGTAATATAC	ATCTCTCAC
	TGCTTCCAT	GCTACAACGT	CTGAGACTAT	GGTTGAAACC	TGTTAGGTG	CTTTTAAAT	AAAAGGCAGA
	AATTGGATT	TTATCTAAAG	AAAGTAGTAT	AGAATGTCA	TTTCTAAATT	TTTATATTAA	AAGGGTAGAT
	ACTGCAACCT	AGAGAAATTCC	AGATAATCTT	AAGGCCAGC	CTATACTGTG	AGAAACTACTG	CAGCAAGACA
	CTCTGCCTCC	AGGA CTTTTC	TGATCAGAGG	CCCTGAGAAC	AGTCCCTGCC	ACTAGGCCAC	TGCAGGTTCA
30	CAGGACAGGG	TACAGCCCCAT	TGAAACCTAC	TTTAAACCT	GGATGCCAA	CCTTCATTTC	CTCCTTGATA
	TTATGAAAAT	AAAATAAAAAA	CCATGAAAGG	ATAAAAGAGG	GAGAGTGGAA	GGGAAGGATG	GAGAAAGGGA
	AAAAGAAAAT	TTGAGAGTAA	ATCCTAAAAC	AATTAATCTA	ATAGATATCA	TCTTGTGAA	TCCTCATTT
	ACCAATCTTA	TTATGAGTC	CTGGGTTTG	TGAGAACAT	GGGGTTCTGA	GAGGCACCAG	AGACCTCATG
	TTTTCCAAA	CCTAGAACAG	TATAATGAAG	GAAGGCCGGG	AGGCAGGGAG	GCAGGGAGGC	AGGGAGGCAG
35	GGAGGCGGGC	AGG1GGGGAG	GGAGGGACGG	AAGGAGGGAG	GGAGGGAGGG	AGGGAGGGAG	GGAGGGATAA
	AAAAAGAAGA	ATGAGGTTGA	AACCAGGACT	TAGATATTAG	AAACAAGCCA	TTACAAAATT	TATTCTATG
	GTAAATTGTG	GTITTCAACT	GTAAGTTACT	TGGTGTAAAT	TTCTTATTAA	ACAATTTCAG	TAAGTTGCAT
	CTTTTATACC	CATCTCAGGT	CAAATACTTA	ACAGACTAAA	TGATTGAAA	AAGCAAAAGT	TTACTGGCTT
	GTGTGTGTTA	AAA1GGAGGT	ATGGTGGCTT	TGATATTATC	TTCTTGTGTT	GGAGCTGAAT	TCACAAGAGA
40	TCGTTGCTGA	GCTCTTACCA	GACCCACCT	GGAGGCCCA	GTCACTCAGG	AGAGATCAGG	GTCTTTCACA
	ATCAGGTCT	ACAA AAATAA	ACATCCCCCC	AACCACAGCA	GTGCCAGTTT	CCATGTCAGA	AACTTAGATC
	CAAATGACTG	ACTCGCGTCT	CATTATCATG	ATGGAAAAGC	CCAGGCTTGA	GAAAAGGCC	CGCTGCGGAT
	TTACTCAAGG	CGA ACTGAC	ACAGGGTTG	TGTTTTCCA	ACATGAGTTT	TGAGTTCTTA	CACGCTGTT
	GCTCTTTTG	TGTGTTTTT	CCCTGTTAGG	TGTTTTGGT	GGTATAGGCG	ATCCTGTTAC	CTGCCTTAAG
45	AGTGGAGCCA	TATGTCATCC	AGTCTTTGC	CCTAGAAAGGT	ATAAAACAAAT	TGGCACCTGT	GGTCTCCCTG
	GAACAAAATG	CTGCAAAAG	CCATGAGGAG	GCCAAGAACG	TGCTGTGGCT	GATGCGGATT	CAGAAAGGGC
	TCCCTCATCA	GAGACGTGCG	ACATGTAAAC	CAAATTAAAC	TATGGTGTCC	AAAGATAACGC	AATCTTATC
	CTAGTAATTG	TGGTCATTGG	GTGATGTTGG	TTGGGCAGG	CCATCTCTAA	TATCCTGAA	ACACCTTTT
	CTGCTCTCCA	GGAA GGGGTC	AGGGCTGCCA	CAGGGGGCT	TGGAGTGTCT	TCCAGGGTCA	CAGGCATCTG
50	TATTCTTGG	ATTCCTTGAC	CTTCCCCATT	TATTCCCGC	ATTTCTAA	AACGTGTGCT	TTGCTCCTCC
	TGCATCCTCC	CCTT3CATGC	CCTCACCTAC	CCCACATCTT	CCCTAAAAAA	AGCAAGCCCA	ACTCAAAGAC
	CAGTTCCCTC	ATGGAATCAT	AGTGGATCTG	CCAAGGGAGG	GGATGCCAG	TCCTCTGTT	TTCACAAGAC
	TCCCTCTTC	TGGCTAAGGT	TTCTTATGCA	ATTAT GAATTACAT	TTCTCACCTT	TTGATGTATT	AAGAAAGTAT
	GGAGAAATAT	ATCCTCTATC	AAATTTCAT	GCCTTCAATA	ATTTCTAATT	CATCAGTCAG	TGTTTTCCTA
55	TCCTTACTG	TGATGATGCC	CTTCTTCCA	AACTTTTCA	TTGCATCAGA	GATGATGTTA	CCAATTCTT
	TGTCTCCATT	TGCAGAAATT	GTAGCAACCT	GTGCAATTTC	TTCAAGGTTT	GTCACAGGTT	TAGACTGCTT
	TTTAAGTTCA	GCAATTACAG	CATCAACAGC	TAACATCACA	CCTCTTCTGA	TTTCAACTGG	ATTAGCACCT
	TTGCTAACCT	TCTGGAGGC	TTATTTGAA	ATAGAGCATA	CCAGTACAGC	AGCAGTGTATA	GTGCCATCCC
	CCAGTCTCTC	CATITGTGTT	ATTGGCAACA	TCTGGACAA	GTTCAGCTCC	AATGCTTTTA	TATTTATCCT
60	TTAAGTCAAT	TGACTTTGCA	TCAGTCACAC	CATCTTTGT	TACTTTGGGA	CTTCCCCAGC	TATGTTCAAT
	AATTACTGTT	CTTCCCTTTG	GCCCCATTGT	AATGGCTACA	GCATCGACAA	AAAGTCTACA	CTTTGAAGCA
	TTAAGGCTCA	GACATCAGCA	CCAAATTAA	CATCTTACCC	ATCACTTCAA	GTGAGGTGAG	GAGCCAGTAG

CCTGGACACT GGTCTCATCT GGTGAAAGAC TGTGGGTAAT GGAAGCATT CTGTGGGTG GTGGCAGGAC
 ATGTGATGG TGACGCAGGT CATCAGCAGC AAGTGAGAGC TGCCCTTAC TTTCTAAAGG TGACATAGCA
 AGTATAAAA AAAAATAAA ATATTAATT AGGCAGAGCA CATAAAGGCT TTATTCATA TTCCATTCT
 5 CTGTATGCTT TCTTCACCAG GAAGAAATAG TTTAGTGTG AGGAATGAAT GAGTCTGCC CTCAATTCCA
 GCCTGCTCAG CACA CAAGGA AACAAAGCCC TGACAATCAG AGTACTCCC TGGTACTAA GCTCCAGTCC
 TGGATGCATA TTTC TTAGC AGTCTGACA GCATCTGACC CAGCCCTCTC TTGCGATACC CCACCAGAAC
 CTCCTTTTT TTTT TTTC TTTGAGACTG AGTCTTGTG TGCGGAAGC GATTCCTGTG CCTCAGCCTC
 CCAAATACCT GGAATTATAG GCGTAAGCCA TCATGCCGG CTAATTTTG TATTTTCAT GGAGATGGGG
 TTTGCCATG TTGGTCAAAT TGGTCTCAC CTCCTGACCT CATGTGATCC ACCTGCCCTCA GCCTCCCAA
 10 10 GTGCTGGGAT GACGGGTGTA AGCCACCATG CTAGGCTCAG AAATTCCTT TTATAAAAAT GTCATTAAGG
 ATCTGGCTG CACATATCG TTACCACTG CCTTAAATC CACCTCTGGC CTGCCAGGAA TCAGGGTTCT
 TCAGAACCTG ACATTTAAA TGAAGAGGTC AGGCAGGTCA TGAGGAAAGC CTCAATTCTC CCATGTCTC
 GTCACTGCTG CACC CCTGAG ACATCACAGA CATGGACACT GGGGCCTGCT TGTTCCTCAA ACTGCCCTA
 GATCGAAAGA GGGAGGAACC AGGATGAATG CCACTCATTT TCCAAGAAA GCCCTCTCC TGAGTGCCCG
 15 15 GGATGGGCT CTGTCATTG CCTGGGCCG CCAATTGCTA CTCTGGTTA CGGAAGAAGG ACAGGGCTCT
 GAGAGACACC AGAGACCTCA CACAGCCCTG AAAACATGGG GCTCCTTCAT AAGTGTTC
 AGGGAGACCA CGTGGAGGCC TTGCAGCCCT ACTCGGTGCT TCTCCACCA ATCCAAGGG CAGTGACGCT
 GACGTCTGTG GAAAGCAGAG AAAGCCCTGG CTCCCAAAGC CCTGAAGTCC TGTGGAGCTG ACATTCCCTG
 AGTGACGGTG TGAATGGAAG GAACTCAAGT GCGGGTGGTA GCCACCTCC TGCCCCAGGC CTGGGTGAAC
 20 20 TCTGAGGGGA CACATGTAGT CACAATCCCA TCCTCCCATT CTCTTCTCA GAGGAAGGAA GTGGGCATCC
 ATCTGCTCA TCTCTCTCCC GTGGGAAGA TGGGGAGTT CAGGGAAACT TTCACATAAA TTTCACCAGC
 TCAGATCTCC TGTGAGGATG GGGCCACCA TGCTCCCGT GCTGCCAGAG GCCCTGAGCC CCTCCAGGGT
 CCCTGGGTTT GAGC CAGCCC TGTATCATCC CCAGGAGCTG AATGTCGAA CAATGGATAG AATTAGATGG
 AAAGAGCTCT CAAATTGGCC TGAGACTGTC CCCAGATACT CAGGAAAAAC AGGACGTCGC ACAGAGTGGG
 25 25 CAGCAGGTGA GTGGCAGGTT ATAGGTCCTG AGTTTGAAGT TGTTCACAG TGAGACAGAC CCAGCCCC
 ACTCCATTCA CACACTGGGT TTAAATGGT GCAAGATAGG AGGAATTTC TGTTCCCAAG AGCAGGAGGA
 AGGGATTTC TGCGGTTCC TGAGTCCAGA TTTCATAAG ATCTCCTGAG TGTGCATTGT TCTTGAGGA
 CCATTCTCTG ACTCACCAGG TAAGTGGCTG AATTCTAAC TCTGTAATGA GCATTGCA
 TCTGAACCTCT ACCTGGTGC CAGGGACCA GACCTTATAA AGGTGGAAGG CTTGATGTCC TCCCCAGACT
 30 30 CAGCTCTGG TGAAGCTCCC AGCCATCAGC CATGAGGGTC TTGTATCTCC TCTCTCGTT CCTCTTCATA
 TTCCGTATGC CTCTTCAGG TGAGATGGC CAGGAAATA GGAGGGTGG CCAAATGAA GAATGGCGTA
 GAAGTTCTCT GTCTCCTCTC ATTCCCTCC ACCTATCTCT CCCTCATCCC TCTCTCTCT
 GTGTGTCCCC TCCATCCCTT TCTCCTGCTT CTCTCTCTC TTCCCTCTCT CTCTTTTTT CTGTCTTCT
 TTTCTCTCTC TCCCTAGAGC ATGTCCTCTC TTCTTCTCT TICCTTTCTT CTACCCACAC TTTAGACTG
 35 35 AGTAGACTGA ATGCCCTATT TAATTGAACC AAGCATTGCT TCTTCAATA GAAAAGGAGT TTGAGAACCC
 AATGGACAAC TCACTCGTTC TTCTAAGCCA ATATGAAGGA GCCCAGTAGT TTGAAATAT CATCTCTCA
 CTGCTTCCA TGCTACAAC GCTGAGACTA TGTTGAAAC CTGTTAGGTG ACTTTTAAA TAAAAGGCAG
 AAATTITGAT TTATCTAAA GAAAGTAGTA TAGAATGTCA TTTCTAAAT TTTTATATT AAAGAGTAGA
 TACTGCAACC TAGAGAATTG CAGATAATCT TAAGGCCAG CCTATACTGT GAGAACTACT GCAGCAGACA
 40 40 CTCTGCCCTC AGGA CTTTC TGATCAGAGG CCCTGAGAAC AGTCCCTGCC ACTAGGCCAC TGAGGTTCA
 CAGGACAGGG ACAAGCCATT GAAACCAACT TTAAACCTG GATGCCAAC CTTCATTTTC TCCTTGATAT
 TATGAAAATA AAATAAAAAC CATGAAAGGA TAAAAGAGGG AGAGTGGAA GGAAGGATGG AGAAAGGGAA
 AAAGAAAATT TGAGAGTAAA TCCTAAAACA ATTAATCTAA TAGATATCAT CTTGTGAAAT CCTCATTTC
 CCAATCTTAT TTATGAGTCC TGGGTTTTGT GAGAACATG GGGTTCTGAG AGGCACCAAG GACCTCATAT
 45 45 TTTCCAAAAC CTAGAACAGT ATAATGAAGG AAGGAGGGAA GGAGGGAGGG AGGGAGGGAA GGAGGGAGG
 AGGGAGGGAG GGAGGGAAAC AAAAGAAGA ATGAGGTTGA ACCAGGACT TAGATATTAG AAACAAGCCA
 TTACAAAATT TATITCTATG GTTAATTGTG GTTTCAACT GTAAGTTACT TGGTGTAAAT TTCTTATTAA
 ACAATTTCAG TAACTTGCTA CTTTTTATC CCATCTCAGA TCAAATACTT AACAGACTAA ATGATTTGAA
 AAAGCAAAG TTTACTGGCT TGTGTGTGTT AAAATGGAGG TATGGTGGCT TTGATATTAT CTTCTTGTTG
 50 50 TGGAGCTGAA TTCA CAAGAG ATCGTTGCTG AGCTCCTGCC AGACCCACC TGGAGGCCCT AGTCACTCAG
 GAGAGATCAG GGTCTTTCAC AATCAGGTTC TACAAAATA AACATCCCC AAACCACAGC AGTGCCAGTT
 TCCATGTCAG AAACTTAGAT CCAAATGACT GACTCGCGTC TCATTATCAT GATGGAAAAG CCCAGGCTTG
 AGAAAGAAGC CCGCTGCGGA TTTACTCAAG GCGATACTGA CACAGGGTT GTGTTTTCC AACATGAGTT
 TTGAGTTCTT ACACGCTGTT TGCTCTTTT GTGTGTTTT TCCCTGTTAG GTGTTTTGG TGGTATAGGC
 55 55 GATCCTGTT CCTGCCTTAA GAGTGGAGCC ATATGTCATC CAGTCTTTG CCCTAGAAGG TATAAACAAA
 TTGGCACCTG TGGTCTCCCT GGAACAAAAT GCTGCAAAAA GCCATGAGGA GGCAAGAAG CTGCTGTGGC
 TGATGCGGAT TCAC AAAGGG CTCCCTCATC AGAGACGTGC GACATGAAA CCAAATTAAA CTATGGTGTG
 CAAAGATACG CAACTCTTAT CCTAGTAATT GTGGTCATTG GGTGATGTTG GTTGGCAG GCCATCTCTA
 ATATCCTGA AACACCTTT TCTGCTCTCC AGGAAGGGGT CAGGGCTGCC ACAGCAGGGC TTGGAGTGC-3'
 60 60 (FRAG. NO: ____) (SEQ. ID NO:3011)
 5'-GAATTACAT TTCTCACCTT TTGATGTATT AAGAAAGTAT GGAGAAATAT ATCCTCTATC AAATTTCTAT
 GCCTCAATA ATTCTAATT CATCAGTCAG TGTTTTCCA TCCTTACTG TGATGATGCC CTTCTTCTCA

	AACTTTTCA	TTGCATCAGA	GATGATGTTA	CCAATTCTT	TGTCTCCATT	TGCAGAAATT	GTAGCAACCT
	GTGCAATTTC	TTCAAGTTTG	GTCACAGGT	TAGACTGCTT	TTTAAGTCA	GCAATTACAG	CATCAACAGC
	TAACATACA	CCTCTTGTGA	TTTCCACTGG	ATTAGCACCT	TTGCTAACCT	TCTGGAAGGC	TTATTTGGAA
5	ATAGAGCATA	CCAGTACAGC	AGCAGTGATA	GTGCCATCCC	CCAGTCTCTC	CATTGTGTT	ATTGGCAACA
	TCTGGACAA	GTTIAGCTCC	AATGCTTTA	TATTTATCCT	TTAAGTCAAT	TGACTTTGCA	TCAGTCACAC
	CATCTTGTG	TACTITGGGA	CTTCCCCAGC	TATGTTCAAT	AATTACTGTT	CTTCCCTTG	GCCCCATTGT
	AATGGCTACA	GCATCGACAA	AAAAGTCTACA	CTTTGAAGCA	TTAAGGCTCA	GACATCAGCA	CCAAATTITA
	CATCTTACC	ATCACTTCAA	GTGAGGTGAG	GAGCCAGTAG	CCTGGACACT	GGTCTCATCT	GGTGAAGAGAC
10	TGTGGTAAT	GGAAAGCATT	CTGTGGGGTG	GTGCGAGGAC	ATGTGCATGG	TGAGGCAGGT	CATCAGCAGC
	AAGTGAGAGC	TGCCCTCTTAC	TTTCTAAAGG	TGACATAGCA	AGTATACAAA	AAAAAATAAA	ATATTAATT
	AGGCAGAGCA	CATAAAGGCT	TTATTTCTATA	TTCCATTCT	CTGTATGCTT	TCTTACCAAG	GAAGAAATAG
	TTTTAGTGT	AGGAATGAAT	GAGTCTGCC	CTCAATTCCA	GCCTGCTCAG	CACACAAGGA	AACAAAGCCC
	TGACAATCAG	AGTCACTCCC	TGGTACTAA	GCTCCAGTCC	TGGATGCATA	TTTGTGTTAGC	AGTTCTGACA
15	GCATCTGACC	CAGCCTCTC	TTTGATACCC	CCACCAAGAAC	CTTCTTTTT	TTTTTTTTTC	TTTGAGACTG
	AGTCTTGCTC	TGTCGAAGC	GATTCCCGTG	CCTCAGCCTC	CCAAATACCT	GGAATTATAG	GCGTAAGCCA
	TCATGCTTGG	CTAATTTTG	TATTTTCTAT	GGAGATGGGG	TTTGCCATG	TTGGTCAAAT	TGGTCTCAC
	CTCCGTACCT	CATGTGATCC	ACCTGCCTCA	GCCTCCAAA	GTGCTGGGAT	GACAGGTGTA	AGCCACCATG
	CTAGGCTCAG	AAAATTCCTT	TTATAAAAAT	GTCAATTAAAGG	ATCTGGCTG	CACAATATCG	TTACCAGCTT
20	CCTTTAAATC	CACCTCTGGC	CTGCCAGGAA	TCAGGGTTCT	TCAGAACCTG	ACATTTAAA	TGAAGAGGTC
	AGGCAGGTCA	TGAGGAAAGC	CTCATTGTCC	CCATGTCTCT	GTCACTGCTG	CACCCCTGAG	ACATCACAGA
	CATGGACACT	GGGCCTGT	TGTTTCTCAA	ACTGCCCTTA	GATGAAAGA	GGGAGGAACC	AGGATGAATG
	CCACTCATTT	TCCCAGAAA	GGCCCTCTCC	TGAGTGGCCG	GGATGGGCT	CTGTCCTATTG	CCTGGGCGCG
	CCAATTGCTA	CTCTGGGTTA	CGGAAGAAGG	ACAGGGTCTT	GAGAGACACC	AGAGACCTCA	CACAGCCCTG
25	AAAACATGGG	GTCCTTCTAT	AAAGTGTTC	CATCACCAAC	AGGGAGACCA	CGTGGAGGCC	TTGCAGCCCT
	ACTCGGTGCT	TCTCCACCAA	ATCCCAAGGG	CAGTACGCT	GACGTCTGTG	GAAAGCAGAG	AAAGCCCTGG
	CTCCCAAAGC	CCTGAAGTCC	TGTGGAGCTG	ACATCCCTG	AGTGACGGTG	TGAATGGAAG	GAACCTAAGT
	GCGGGTGGTA	GGCCACCTCC	TGGCCCAGGC	CTGGGTGAAC	TCTGAGGGGA	CACATGTAGT	CACAATCCCA
	TCCCTCCATT	CTCCCTCTCA	GAGGAAGGAA	GTGGGATCC	ATCTGCCTCA	TCTCTCTCCC	GTGGGAAAGA
	TGGGGAGTTT	CAGCGGAACCT	TTCACATAAA	TTTACCCAGC	TCAGATCTCC	TGTGAGGATG	GGGCCACCA
30	TGCTCCCCGT	GTCGCCAGAG	GCCCTGAGCC	CCTCCAGGGT	CCCTGGGTTT	GAGCCAGCCC	TGTATCATCC
	CCAGGAGCTG	AAATCTCGAA	CAATGGATAG	AATTAGATGG	AAAGAGCTCT	CAATTGGCC	TGAGACTGTC
	CCCAGATACT	CAGGAAAAAC	AGGACGTCGC	ACAGAGTGGG	CAGCAGGTGA	GTGGCAGGTT	ATAGGTCTCG
	AGTTTGAGTT	TGTTCTCACG	TGAGACAGAC	CCAGCCCCTC	ACTCCATTCA	CACACTGGGT	TTTAAATGGT
	GCAAGATAGG	AGGAATTTTC	TGGTCCCAAG	AGCAGGAGGA	AGGGATTTTC	TGGGGTTTCC	TGAGTCCAGA
35	TTTGATCAAAG	ATCTCTTGAG	TGTGCATTGT	TCTTGAGGA	CCATTCTCTG	ACTCACCAGG	TAAGTGGCTG
	AATTCTAAC	TCTGTAATGA	GCATTGCACC	CAATACCACT	TCTGAACCT	ACCTGGTGAC	CAGGGACCAAG
	GACCTTATA	AGGTGGAAGG	CTTGATGTCC	TCCCCAGACT	CAGCTCCTGG	TGAAGCTCCC	AGCCATCAGC
	CATGAGGGTC	TTGTATCTCC	TCTTCTCGTT	CCTCTTCATA	TTCCCTGATGC	CTCTTCCAGG	TGAGATGGC
	CAGGGAAATA	GGAGGGTTGG	CCAAATGGAA	GAATGGCGTA	GAAGTTCTCT	GTCTCCCTC	ATTCCCCCTCC
40	ACCTATCTCT	CCCTCATCCC	TCTCTCTCCT	TCCTCTCTCT	GTGTGTCCCC	TCCATCCTTT	TCTCTGCTT
	CTCTCTCTTC	TTCCCTCTCT	CTCTTTTTT	CTGTCCTTCT	TTTCCCTCTC	TCCCTAGAGC	ATGTCTTCT
	TTCTTTCTCT	TTCCCTCTCT	CTACCCACAC	TTTACACTG	AGTAGACTGA	ATGCCCTATT	TAATTGAACC
	AAGCATTGCT	TCCTICAATA	AAAAGGAGT	TTGAGAACCC	AATGGACAAAC	TCACTCGTTC	TTCTAAGCCA
	ATATGAAGGA	GCCCAAGTAGT	TTGTAATAT	CATCTCTTC	CTGCTTTCCA	TGCTACAACT	GCTGAGACTA
45	TGGTTGAAAC	CTGTAGGTG	ACTTTTTAA	TAAAAGGCAG	AAATTGAT	TTTATCTAAA	GAAGTAGTA
	TAGAAATGTCA	TTTCTAAAT	TTTATATT	AAAGAGTAGA	TACTGCAACC	TAGAGAATT	CAGATAACT
	TAAGGCCAG	CCTATACTGT	GAGAACTACT	GCAGCAGACA	CTCTGCCCC	AGGACTTTTC	TGATCAGAGG
	CCCTGAGAAC	AGTCCTGCC	ACTAGGCCAC	TGCAAGTCA	CAGGACAGGG	ACAGCCATT	GAAACCAACT
	TTTAAACCTG	GATGCCAAC	CTTCATTTTC	TCCTGATAT	TATGAAAATA	AAATAAAAAC	CATGAAAGGA
50	TTAAAGAGGG	AGACGTGAAG	GGAGGATGG	AGAAAGGGAA	AAAGAAAATT	TGAGAGTAA	TCCTAAAACA
	ATTAATCTAA	TAGATATCAT	CTTGTAAAT	CCTCATTTA	CCAATCTTAT	TTATGAGTCC	TGGGTTTGT
	GAGAACAAATG	GGGTCTGAG	AGGCACCAGA	GACCTCATAT	TTTCCAAAAC	CTAGAACAGT	ATAATGAAGG
	AAGGAGGGAA	GGACGGAGGG	AGGGAGGGAA	GGAGGGAGG	AGGGAGGGAG	GGAGGGAAAC	AAAAAGAAGA
	ATGAGGTGAA	AACCAAGGACT	TAGATATTAG	AAACAAGCCA	TTACAAAATT	TATTCTATG	TTAATTGTG
55	GTTTCAACT	GTAAGTTACT	TGGTGTAAAT	TTCCATTAA	ACAATTTCAG	TAAGTTGCAT	CTTTTTATC
	CCATCTCAGA	TCAAATACTT	AACAGACTAA	ATGATTGAA	AAAGCAAAAG	TTTACTGGCT	TGTGTGTGTT
	AAAATGGAGG	TATGGTGGCT	TTGATATTAT	CTTCTTGTGG	TGGAGCTGAA	TTCACAAGAG	ATCGTTGCTG
	AGCTCCTGCC	AGACCCCACC	TGGAGGCC	AGTCACTCAG	GAGAGATCAG	GGTCTTTCAC	AATCAGGTTC
	TACAAAAATA	AAACATCCCC	AAACCACAGC	AGTGCAGTT	TCCATGTCAG	AAACTTAGAT	CCAAATGACT
60	GACTCGCGTC	TCATATCAT	GATGGAAAAG	CCCAGGCTTG	AGAAAGAAC	CCGCTGCGGA	TTTACTCAAG
	GCGATACTGA	CACAGGGTTT	GTGTTTTCC	AACTAGAGTT	TTGAGTTCTT	ACACGCTGTT	TGCTTTTTT
	GTGTGTTTT	TCCCTGTTAG	GTGTTTTGG	TGGTATAGGC	GATCCTGTAA	CCTGCCTTAA	GAGTGGAGCC

ATATGTCATC CAGICTTTG CCCTAGAAGG TATAAACAA TTGGCACCTG TGGTCTCCCT GGAACAAAAT
 GCTGCAAAA GCCATGAGGA GGCCAAGAAG CTGCTGTGGC TGATGCGAT TCAGAAAGGG CTCCCTCATC
 AGAGACGTGC GACATGTAAA CCAAATTAAA CTATGGTGTG CAAAGATACG CAATCTTAT CCTAGTAATT
 5 GTGGTCATTG GGTATGTTG GTTGGGGCAG GCCATCTCTA ATATCCTTGA AACACCTTT TCTGCTCTCC
 AGGAAGGGGT CAGGGCTGCC ACAGCGGGC TTGGAGTGC-3' (FRAG. NO: ____) (SEQ. ID NO:2476)
 5'-ATCCTTAAG TCAATGGACT TTGCATCAGT CACACCACATCT TTGTTACTT TGGACTTCCC CAGCTATGTT
 CAATAATTAC TGTCTTCCC TTGGGCCCA TTGTAATGGC TACAGCCTCG ACAAAAAGTC TACACTTGA
 AGCATTAAAGG CTCCGACATC AGCACCAAAAT TTACATCTT TACCATCAGT TCAAGTGAGG TGAGGAGCCA
 10 GTAGCCTGGA CACTGGTCTC ATCTGGTGA AGACTGTGGG TAATGGAAGC ATTCTGTGG GGTGCTGGCA
 GGACATGTGC ATGGCGAGGC AGGTCTCAG CAGCAAGTGA GAGCTGCCTC TTACTTCTA AAGGTGACAT
 AGCAAATATA CAAAAAAAAA TAAATAAATT ATTAATTAG TAGAGGCACA TAAAGGCTTT ATTCATATT
 CCATTCTCT GTATGTTTC TTCACCAAGGA AGAAATAGT TAGAGTCAG GAATGAATGA GTCTGCCCT
 CAATTCCAGC CTGCTCAACA CACAAGGGAA CAAAGCCCTG ACAATCAGAG TGACTCCCTG GTGACTAAGC
 15 TCCCAGTCCT GGATGCAATAT TTGTTTAGCA GTTCTGACAG CATTGACCC AGCCCTCTC CTGCATATCC
 CATCAGAACCC TTCCTTTTT TGAGACTGAG TCTTGTCTG TCGGAAGCGA CTCCGTGCC
 TCAGCCTCCC AAATACCTGG AATTATAGGC GTAAGCCATC ATGCCTGGCT AATTGTTGTA TTTTCATGG
 AGATGGGGTT TTGCGATGTT GGTCAAATTG GTCTCACACT CCTGACCTCA TGTGATCCAC CTGCTCAGC
 20 CTCCTAAACT GCTGGGATGA CAGGTGTAAG CCACCATGCT AGGCTCAGAA ATTCTTCTT ATAAAATGT
 CATTAAAGGAT CTTCGTCGA CAATATCGTT ACCAGCTTC TTTAAATCCA CTTCTGGCCT GCCAGGAATC
 AGGTTCTCA GAACCTGACA TTGCTCTGTC ACTGCTGCAC CCCTGAGACA TCACAGACAT GGACACTGGG GCCTGTTGT TTCTCAAAC
 GCCCTTAGAT CGAAAGAGGG AGGAACCAGG ATGAAATGCCA CTCATTTCC CAAGAAAGGC CCTCTCCTGA
 GTGCCGGGA TGGCGCTCTG TCCATTGCC GGGCGGCCA ATTGCTACTC TGGGTTACGG AGGAAGGACA
 25 GGGTCTGAG AGACACCAGA GACCTCACAC AGCCCTGAAA ACATGGGGCT CCTTCATAAG TGTTCCTCAT
 CACCAACAGG GAGACCACGT GGAGGCCCTG CAGCCCCACT CGGTGCTCT CCACCAAATC CCAAGGGCAG
 TGACGCTGAC GTCTGTGGAA AGCAGAGAAA GCCCTGGCTC CAAAGGCCCT GAAGTCCCTG TGGAGCTGAC
 ATTCCTGAG TGACGGTGTG AATGGAAGGA ACTCAAGTGC GGGTGGTAGG CCACCTCTG GCCCAGGCC
 GGGTGAACTC TGACGGGACA CATGTAGTCA CAATCCCATC CTCCCATTCT CCTCTCAGA GGAAGGAAGT
 30 GGGCATCCAT CTGCTCATC TCTCTCCCGT GGGGAAGATG GGGAGTTCA GGGGAACCTT CACATAAATT
 TCACCAAGCTC AGATCTCTG TGAGGATGGG GCCACCATG CTCCTGGTGC TGCCAGAGGC CCTGAGCCCC
 TCCCAGGGTC CCTGGTTTG AGCCAGCCCT GTATCATCCC CAGGAGCTGA ATGTCAGAGC AATGGATAGA
 ATTAGATGGA AAGGCTCTC AATTGACCT GAGACTGTCC CCAGATACTC AGGAAAAACA GGACGTCGCA
 CAGAGTGGGC AGCAGGTGAG TGGCAGGTTA TAGGTCTGA GTTTGAGTT GTTCTCACGT GAGACAGACC
 35 CAGCCCCCTCA CTCCATTCAAC ACTGGGTT TAAATGGTG CAAGATAGGA GCAATTTCCT GGTCCAAGA
 GCAGGAGGAA GGGATTTCT GGGGTTCTC GAGTCCAGAT TTGATAAGA TCTCTGAGT GTGCATTGTT
 CTTTGAGGAC CATCTCTGA CTCACCAAGGT AAGTGGCTGA ATTCTAACCT CTGTAATGAG CATTGCACCC
 AATACCAGTT CTGAACCTCA CCTGGTGACC AGGGACCAGG ACCTTTATAA GGTGGAAGGC TTGATGTCT
 CCCAGACTC AGCTCCTGGT GAAGCTCCCA GCCATCAGCC ATGAGGGTCT TGATATCTCTT CTTCTCGTTC
 CTCTTCATAT TCCTGATGCC TCTTCCAGGT GAGATGGGCC AGGGAAATAG GAGGGTTGGC CAAATGGAAG
 40 AATGGCGTAG AAGITCTCTG TCTCTCTCA TTCCCCTCA CCTATCTCTC CCTCATCCCT CTCTCTCCCT
 CCTCTCTCTG TGTCCTCCCT CCATCCTTT CTCCTGCTTC TCTCTCTCTC TCTTTTTCT
 GTCTTTCTT TTCCCTCTCTC CCTAGAGCAT GTCTTCTTT CTTTCTCTT CTTTCTCTCT
 TTAGACTGAA TGCCCTATTT AATTGAAACAA AGCATTGCTT CCTTCAATAG AAAAGGAGTT TGAGAACCCA
 ATGGACACCT CACICGTTCT TCTAAGCCAA TATGAAGGAG CCCAGTAGCT TGAAATATAC ATCTCTCAC
 45 TGCTTTCCAT GCTAACACTG CTGAGACTAT GGTTGAAACC TGTTAGGTGA CTTTTAAAT AAAAGGCAGA
 AATTTGATT TTATCTAAAG AAAGTAGTAT AGAATGTCAT TTTCTAAATT TTTATATTT AAGGGTAGAT
 ACTGCAACCT AGAC AATTCC AGATAATCTT AAGGCCAGC CTAACTGTG AGAAACTACTG CAGCAAGACA
 CTCTGCCCTC AGGACTTTTC TGATCAGAGG CCCTGAGAAC AGTCCCTGCC ACTAGGCCAC TGCAAGGTTCA
 CAGGACAGGG TACAGCCCAT TGAAACCTAC TTTAAACCT GGATGCCAA CCTTCATTT CTCCCTGATA
 50 TTATGAAAAT AAAATAAAA CCATGAAAGG ATAAAAGAGG GAGAGTGGAA GGGAGGATG GAGAAAGGGA
 AAAAGAAAAT TTGAGGTTAA ATCCTAAAC AATTAATCTA ATAGATATCA TCTTGTGAA TCCTCATTT
 ACCAATCTA TTTATGAGTC CTGGGTTTG TGAGAACAA GGGGTTCTGA GAGGCCACAG AGACCTCATG
 TTTCCAAAAT CCTAAGAACAG TATAATGAAG GAAGGGGGGG AGGCAGGGAG GCAGGGAGGC AGGGAGGCCAG
 GGAGGGGGC AGGIGGGGAG GGAGGGACGG AAGGAGGGAG GGAGGGAGGG AGGGAGGGAG GGAGGGATAA
 55 AAAAGAAAGA ATGAGGTTGA AACAGGACT TAGATATTAG AAACAAGCCA TTACAAAATT TATTCTATG
 GTTAATTGTG GTTCTCACT GTAAGTTACT TGGTGTAAAT TTCTTATTA ACAATTTCAG TAAGTTGCAT
 CTTTTATCC CATCTCAGGT CAAATACTTA ACAGACTAAA TGATTGAAA AAGCAAAAGT TTACTGGCTT
 GTGTGTGTTA AAATGGAGGT ATGGTGGCTT TGATATTATC TTCTTGTGGT GGAGCTGAAT TCACAAGAGA
 TCGTTGCTGA GCTCCTACCA GACCCACCT GGAGGCCCA GTCACTCAGG AGAGATCAGG GTCTTCA
 60 ATCAGGTTCT ACAAAATAA ACATCCCCC ACCACACAGCA GTGCCAGTT CCATGTCAGA AACTTAGATC
 CAAATGACTG ACTCGCGTCT CATTATCATG ATGGAAAAGC CCAGGCTTG GAAAGAAGCC CGCTCGGGAT
 TTACTCAAGG CGATACTGAC ACAGGGTTG TGTTTTCCA ACATGAGTT TGAGTTCTTA CACGCTGTTT

	GCTCTTTTG	TGTGTTTTT	CCCTGTTAG	TGTTTTGGT	GGTATAGGC	ATCCTGTTAC	CTGCCTTAAG
	AGTGGAGCCA	TATGTCATCC	AGTCTTTGC	CCTAGAAAGG	ATAAACAAAT	TGGCACCTGT	GGTCTCCCTG
	GAACAAAATG	CTGCAAAAAG	CCATGAGGAG	GCCAAGAAGC	TGCTGTGGCT	GATGCGGATT	CAGAAAGGGC
5	TCCCTCATCA	GAGACGTGCG	ACATGTAAC	CAAATTAAC	TATGGTGTCC	AAAGATAACG	AATCTTTATC
	CTAGTAATTG	TGGTCATTGG	GTGATGTGG	TTTGGCAGG	CCATCTCAA	TATCCTGAA	ACACCTTTT
	CTGCTCTCCA	GGAAAGGGTC	AGGGCTGCCA	CAGCGGGGCT	TGGAGTGCCT	TCCAGGGTCA	CAGGCATCTG
	TATTCTTGG	ATTCCTTGAC	CTTCCCCATT	TATTCCCAGG	ATTTCTCAA	AACGTGTGCT	TTGCTCCTCC
	TGCATCCTCC	CCTTGCATGC	CCTCACCTAC	CCCACATCTT	CCCTAAAAAA	AGCAAGCCCA	ACTCAAAGAC
10	CAGTTCCCTC	ATGGAATCAT	AGTGGATCTG	CCAAGGGAGG	GGATGCCAG	TCCTCTGTT	TTACAAGAC
	TCCCTCTTC	TGGCTAAGGT	TTCTTATGCA	ATTATGAATTCCC	TAAGCCCTGT	TACAGGGGCT	GCACCCCAAGA
	TACAACCTGA	CCTGTGTC	AGGCGGGCA	CTCAACCC	AGATATTGAA	TGGGCCCCAT	GGCACCAATG
	CTTAAACACC	AGCA'GCCCTC	ACAACCACAG	ATCGTGT	AAGGATGAGG	AGGTAGTTCT	CTGGATGCAC
	AGGCTTCAT	CCAAATGGGC	TCATGACGCC	GCAGCACACA	CCCAGTCTGC	AGCCTGAAGA	GTTGGAGCAT
15	TGCATTCA	GAAA'GCATCC	AGACATGATC	ATGGGCTCAG	GGATACAC	GTTCTCGAT	GTGTACCAAGT
	GAAGGATGGA	AACTCCTATG	CCTCCCAGAA	AGCACCAC	AAGCTTTGC	TGAATGCTTC	TCTGAAGGCC
	CACAAGGCTG	AGAGGCTGTG	CAACACCAGC	AGTAAAGTGA	ATGCCAGAC	TCCCACCTCC	TTTCTGGG
	GGCCATCTGG	AAAGGCCACT	CCCACCC	TGGCTAATGC	CTCAGACCAG	TTCTGGGCC	AGATGATCCT
	AGACAATTGT	TTAAAGCTAA	ACTGTTCAT	GGCCAAGCAA	ACAGGTGATA	GTACCTCTGG	GGAACCACAT
20	GCCGCGTGT	CATCCAGATC	TCAGGAGAAC	CCAAAGATGT	CTGTTCCAC	TAGCAACAGA	AGCCCAGGT
	GACACTCAGTC	TCAC'CTGGGT	GTTCTCCAA	ATCCCAGCTC	AGCCAATGG	CTTCATTAG	TTTTATGGT
	TAGACCCCAG	GTCC'CTGGG	CACTGTTA	GAAACACATT	CCAAATCCTC	CTCTGTGTGC	AGGTGGCATT
	CCTATCCCAA	TCTCITTGCA	GGCGTATAC	TGTGATACGC	AGCCAGGTG	TCCCAGAGGC	CTTAAATATT
	CCCTTGGTGC	AGGTAGTTCA	GCTTAGCCAC	AGCCAATGCA	TCACAGGGTC	AACTGTGTTA	GGAGCCATTG
25	AGAATCCATA	GTTC GTTGT	GCCTGGGCT	GGCCAGGGCT	GACCAAGGTA	GATGAGAGGT	TCCTCTGTG
	AGTTCTACTT	TAACCTCAC	TTCCCACCA	ATTCTCAAC	TGTCCTTGC	ACCACAA	TTAATGGAC
	CCAACAGAAA	GTA'CCCCGG	AAATTAGGAC	ACCTCATCCC	AAAAGACCTT	TAAATAGGGG	AAGTCCACTT
	GTGCACGGCT	GTC'CTTGT	ATAGAAGACC	TGGGACAGAG	GACTGCTGTC	TGCCCTCTCT	GGTCACCC
	CCTAGCTAGA	GGAA'CTGTA	GTACTACAA	ACTAAAC	TACACTGAGT	TTTCATCATT	GAAGCTATGC
30	CTCCAATCTG	ACCTCTGACT	GTGGGCGC	CCCAGAGGG	CCCAGGGGT	GAATCCCTGC	TAGGAACGTC
	TGTCCGAC	TCTGGTACT	GCTGGGACG	ATGCTTCA	GCTAACTTAA	TAGAGAAACT	CAAGCAGTT
	CCTTCTAAAT	ACACATGTCA	CATGCTCTGG	TTGACATGTC	CAGTAAGAAG	ACTATCACAG	GTCTTGGAA
	CATTCTTGT	AGACAAACCT	ATTAGGTCC	TTGGTCTGTT	TTCAATCAG	GTTGTTGAT	TTTGCTATT
	GAGTTGTTGG	AAAT'CCTTAT	GTATTCA	ATTGCCCCT	TCTGCCATGT	AGGTTTGCA	AATATTTCT
35	CTCATTCT	GGGTATATCTT	TTCACTCGGT	TGATTGTTTC	CTTGCTGTG	CAGATGCTT	AGCGTTAAAT
	GAAGCCACAC	TTG'CTATT	TCCCTTTAT	TGCCGTGCC	TTTGGTGTCA	TAGCCAAGAA	ATCATTACCT
	ACATCAATGT	CAA'AGCTT	ATCCTCTAT	ACACTTCTAG	TAGTTATGG	TTTCAGTTGT	TACATTAGG
	TTTCAATT	ATTCTGAGTT	GATGTTCTA	CATGGTGTGA	GATAAGGATT	TAAATACATA	CATATATAAA
	ATCATGAGGT	AGCTACACT	ATAAAATAC	AATTGTTAAT	TGTTACTCAA	GTCTAAGTAG	AGGTGAAAT
40	AATAAACTTT	CTTITTTTA	CTTAAACCCAC	TCTGTGTCAC	TGAGCTGATT	TCACCTT	CCTGATAAAA
	TCATTGCTC	CTCC'ACCTG	ATTCCCTACAG	GAGACTACTC	ACCCCTAAAC	CTCAAAACC	TCTTCATGAG
	GATGGTAAGT	CACCTGAATC	CTGAAGTGA	TTACTCGCTA	TTCCATTG	ACTCATATAG	GACACCAGAA
	TCTAGACCTC	CAGAGAACAG	CAGGACCCAT	CTTCAGAAAA	TAAGAAGCAT	TTGTCCTCTG	AGCCTGTTGA
	ATCAAAGTGC	AAAT'CTATT	CTTTTGGA	TGTTAAAAG	TGAATCATAA	TATTAGCA	GGTGAACCCA
45	CGAGTAACAT	AGCAGGGTCT	TTCTTGTCT	TATTAGCTCC	AACCTAGCAC	AGACATTTAA	GGTACAGATG
	TATACTAGCA	TGAAACTGGG	AGAACAGGAG	CATTGAGCA	ACCTTGAGAC	CAATGGGC	CTCTTATAAA
	ATGCACACCT	CCTCTACTG	AGATTGAGGA	AGGTTCTTG	TCTCCGAGCC	TTCTCCCAGT	AGAGCTATAA
	ATCCAGGCTG	GTC'CTCCCT	CCCCACACAG	CTGCTCTGC	TCTCCCTCT	CCAGGTGACC	CCAGCCATGA
	GGACCCCTGC	CATCCTTGCT	GCCATTCTCC	TGGTGGCCCT	GCAGGCCAG	GCTGAGCCAC	TCCAGGCAAG
	AGCTGATGAG	GTTC CTGCA	CCCCGGAGCA	GATTGAGCG	GACATCCCAG	AAGTGGTTGT	TTCCCTTGCA
50	TGGGACGAAA	GCTIGGCTCC	AAAGCATCC	GGTGAGAGAG	GCAGGCATG	AGAGCTGCTA	AGTCTAGAGG
	GAAGGACGGG	AGA'GAGGTT	CAGAGTTGGG	TCTCAGCAGT	CTATGTC	GAGGTGGCTT	CACTTAA
	CTCTGGCAT	TGATTCTC	ATCTAGAAAT	TGAACAGAGA	GCCAATAAA	CCTGAGAAAC	TTTATTTCTC
	CAAAGACTTG	ATTCCAAGAA	ACATCTGTGA	AATTCACTAA	GTTTAAGATA	TGAAGAGACA	GACTAGTTAT
	TTCTGGATCT	AAACAAGTAG	ACTTAGTGT	AAAGAGAAC	TTTACTCTA	TCTACAGAAG	AGCTTTAA
55	AACTGCAGCC	AAGCCTGAGG	GTAAGTCAG	GTGTGTGTG	GATGGGGCAG	GAATGCAAA	ATGAGAGCAA
	AGGAGAATGA	GTC'CAAATT	CTGTGTGACA	AGCACTGCTC	TGCGTGT	TTCCTATCGA	CTGAGGTTG
	TCGTGCTACC	GGCIGCAATG	CAGCCAGCAT	CACCTGTCAG	CTAGCATGT	ACTTCCCAGA	GATTCTTTT
	CTTACCCACT	GCTAACTCCA	TACTCAATT	CTCATGCTCT	CCCTGTCCC	GGCTCAAGGA	AAAACATGGA
	CTGCTATTG	AGAATACCA	CGTGCATTG	AGGAGAAC	CGCTATGGAA	CCTGCATCTA	CCAGGGAAGA
60	CTCTGGCAT	TCTGCTGCTG	AGCTTGCGA	AAAAGAAAAA	TGAGCTCAA	ATTGCTTTG	AGAGCTACAG
	CCAATTGCTA	TTACTCCTGT	ACCTTCTGCT	CAATTCC	TCCTCATCTC	AAATAAATGC	CTTGTACAA
	GATTCTGTG	TTTC CACCTC	TTAATGTGT	GATATGTGTC	TGTGTCAAGA	CACTTGGGAT	ACACGTACCA

AAACGCAAAA TCAA_nTTTTT GAACAATATA-3' (FRAG. NO:____) (SEQ. ID NO:3012)

Human Defensin 3 Nucleic Acid and Antisense Oligonucleotide Fragments

5'-CGCTGCBBTC TGCTCCGGGG CTGCBGCBBC CTCBCTCBGCTC TTGCCTGGBGTG GCTCBGCCTGG GCCTGCBGGG
 CCBCCBGGBGB BTGCBGCBBG GBTGGCBBGG TCCTCBTGGC TGGGGTCBCCCT GGBGGBGGGB GBGCBGGGG
 5 TCCTCBTGGC TGGGGTCCT CCTCTCCGTC CT CCTACCTTG C TATAGAACAG ACCTGGACAGA GGACTGCTGT
 CTGCCCTCTC TGGTCACCCT GCCTAGCTAG AGGATCTGTG ACCCCCAGCCA TGAGGACCC CGCCATCCTT
 GCTGCCATTG TCCTGGTGGC CCTGCAGGCC CAGGCTGAGC CACTCCAGGC AAGAGCTGAT GAGGTTGCTG
 CAGCCCCGGA GCAGATTGCA GCGGACATCC CAGAAGTGGT TGTTCCTTGC CATGGGACG AAAGCTTGGC
 10 TCCAAAGCAT CCAGGCTCAA GGAAAAACAT GGACTGCTAT TGCAAGATAC CAGCGTGCAT TGCAAGGAGAA
 CGTCGCTATG GAACCTGCAT CTACCAGGGA AGACTCTGGG CATTCTGCTG CTGAGCTTGC AGAAAAAAGAA
 AAATGAGCTC AAAA' TTGCT TTGAGAGCTA CAGGGATTG CTATTACTCC TGTACCTTCT GCTCAATTTC CTTT-3'
 (FRAG. NO:1804) (SEQ. ID NO:3013)
 5'-CCTACCTTG C TATAGAACAG ACCTGGACAGA GGACTGCTGT CTGCCCTCTC TGGTCACCCT GCCTAGCTAG
 AGGATCTGTG ACCCCAGCCA TGAGGACCC CGCCATCCTT GCTGCCATTG TCCTGGTGGC CCTGCAGGCC
 15 CAGGCTGAGC CACIICAGGC AAGAGCTGAT GAGGTTGCTG CAGCCCCGG GAAGATTGCA GCGGACATCC
 CAGAAGTGGT TGTTCCTTGC CATGGGACG AAAGCTTGGC TCCAAAGCAT CCAGGCTCAA GGAAAAAACAT
 GGACTGCTAT TGCAAGATAC CAGCGTGCAT TGCAAGGAGAA CGTCGCTATG GAACCTGCTAT CGTACCAAGGG
 AGACTCTGGG CATICTGCTG CTGAGCTTGC AGAAAAAAGAA AAATGAGCTC AAAATTGCT TTGAGAGCTA
 CAGGGATTG CTATI ACTCC TGTACCTTCT GCTCAATTTC CTTT-3' (FRAG. NO:____) (SEQ. ID NO:2478)
 20 5'-GAATTCCCTG TAAGCCCTGT TACAGGGGCT GCACCCAGA TACAACCTGA CCTGTGTCCA AGGCAGGGCAA
 CTCAACCCCTT AGATATTGAA TGGGTCCCAT GGCACCAATG CTTAAACACC AGCAGCCCTC ACAACCACAG
 ATCGTGTTTT AAGGATGAGG AGGTAGTCT CTGGATGCAC AGGCTTCAAT CCAAATGGGC TCATGACGCC
 GCAGCACACA CCCAGCTGTC AGCCTGAAGA GTTGGAGCAT TGCAATTCA GAAAGCATCC AGACATGATC
 ATGGGCTCAG GGATACACCT GTTCTCCGAT GTGTACCACT GAAGGATGGA AACTCTATG CCTCCAGGAA
 25 AGCACCACTC AACGTTTG C TGAATGCTTC TCTGAAGGCC CACAAGCTG AGAGGCTGTG CAACACCAGC
 AGTAAAGTGA ATGCCAGAC TCCCACCTCC TTTCTGGGT GGCCATCTGG AAAGGCCACT CCCACCTGTA
 TGGCTAATGC CTCA GACAG TCTCTGGGCC AGATGATCCT AGACAATTG TTAAGCTTAA ACTGTTCATT
 GGCAAGCAA ACAGGTGATA GTACCTCTGG GGAACCAT GCGCGTGTG CATCAGATC TCAGGAGAAC
 CCAAAAATGT CTGTTCCACA TAGCAACAGA AGCCCAGGT GCACTCAGTC TCACCTGGGT GTTCTCAAAC
 30 ATCCCAGCTC AGCCAAATGG CTTTCATTAG TTTTATGGT TAGACCCAG GTCCTCGGGA CACTGTTA
 GAAACACATT CCAAATCCTC CTCTGTGTG AGGTGGCATT CCTATCCAA TCTCTTGCA GGGCGTATAC
 TGTGATACGC AGCCAGGTG TCCCAGAGGC CTTAAATATT CCCTCTGGC AGGTAGTTCA GCTTAGCCAC
 AGCCAATGCA TCACAGGGT AACTGTGTTA GGAGCCATTG AGAATCCATA GTTGGTTGCT GCCTGGCCT
 GGCAAGGGCT GACCAAGGTA GATGAGAGGT TCCTCTGTGG AGTTCTACTT TAACCTCACC TTCCCACCAA
 35 ATTTCTAAC TGTCTTGCC ACCACAATTG TTTAATGGAC CCAACAGAAA GTAACCCCGG AAATTAGGAC
 ACCTCATCCC AAAA' GACCTT TAAATAGGGG AAGTCCACTT GTGCACGGCT GCTCTTGCT ATAGAAGACC
 TGGGACAGAG GACCTGTC TGCCCTCTCT GGTACCCCTG CCTAGCTAGA GGATCTGTAA GTACTACAAA
 ACTTAAACTT TACACTGAGT TTTCATCATT GAAGCTATGC CTCAATCTG ACCTCTGACT GTGGGTGACT
 CCCAGAGGGTA CCCAGGGGT GAATCCCTGC TAGGAACGTC TGTCCGGACC GCTGGGGACG
 40 ATGGCTTCCA GCTRACTAA TAGAGAAACT CAAGCAGTT CCTTCTAAAT ACACATGTCA CATGCTCTGG
 TTGACATGTC CAGTAAGAAG ACTATCACAG GTCTTTGGAA CATTCTTTG AGAGAAACCT ATTAGGTCC
 TTGGTCTGTT TTCAATCAG GTTGTGTTG TTTTGTCTT GAGTTGTTGG AATTCTTAT GTATTCAAGAT
 ATTTGCCCT TCTCCATGTT AGGTTTGCA AATATTCTT CTCAATTCTT GGGTTATCTT TTCACTCGGT
 TGATTGTTTC CTTGCTGTG CAGATGCTT AGCGTTAAC TGAAGCCACAC TTGCTATT TCCCTTTAT
 45 TGCCTGTGCC TTTGGTGTCA TAGCCAAGAA ATCATTACCT ACATCAATGT CAAAGCTTT ATCCTTCTAT
 ACACTCTAG TAGTTATGG TTTCAGTTGT TACATTAGG TTTTCAATTG ATTCTGAGTT GATGTTCTTA
 CATGGTGTGA GATAAAGATT TAAATACATA CATATATAAA ATCATGAGGT AGTGTACACT ATAAATATAC
 AATTGTTAAT TGTIACTCAA GTCTAAGTAG AGGTGGAAAT AATAAACCTT CTTTTTTTA CTTAAACAC
 TCTGTGTAC TGACCTGATT TCACCTTAG CCTGATAAAA TCATTGTCCT CTCCACCCCTG ATTCCCTACAG
 50 GAGACTACTC ACCCCATAAC CTCAAAACCT TCTTCATGAG GATGGTAAGT CACCTGAATC CTGAAGTGA
 TTACTCGCTA TTCCATTGGA ACTCATATAG GACACCAGAA TCTAGACCTC CAGAGAACAG CAGGACCCAT
 CTTCAGAAAA TAAAGAAGCAT TTGTTCCCTG AGCCTGTTGA ATCAAAGTC AATTCTTATT CTTTTGGAA
 TGTTAAAAG TGAATCATAA TATTTAACAGA GGTGAACCCA CGAGTAACAT AGCAGGGTCT TTCTTGTCT
 TATTAGCTCC AACCTAGCAC AGACATTAAA GGTACAGAT TATACTAGCA TGAAACTGGG AGAACAGGAG
 55 CATTGAGCA ACCITGAGAC CAATGGGCCCT CTCTTATAAA ATGCACACCT CCTCTCACTG AGATTGAGGA
 AGGTTCTTG TCTCCGAGCC TTCTCCAGT AGAGCTATAA ATCCAGGTG GCTCCTCCCT CCCCACACAG
 CTGCTCTGC TCTCCCTCT CCAGGTGACC CCAGCCATGA GGACCTCGC CATCCTTGCT GCCATTCTCC
 TGTTGGCCCT GCACGCCAG GCTGAGCCAC TCCAGGCAAG AGCTGATGAG GTTGTGTCAG CCCCAGGAGCA
 GATTGAGCGC GACATCCCCAG AAGTGGTGT TTCCCTTGCA TGGGACGAA GCTTGGCTCC AAAGCATCCA
 60 GGTGAGAGAG GCAGGCATGC AGAGCTGCTA AGTCTAGAGG GAAGGACGGG AGAGAGGTTG CAGAGTTGGG

TCTCAGCA GT CTAIGTCACT GAGGTGGCTT CACTTAGAAT CTCTGGGCAT TGATTTCTC ATCTAGAAAT
 TGAACAGAGA GCCAAATAAA CCTGAGAAC TTTATTTCTC CAAAGACTG ATTCCAAGAA ACATCTGTGA
 AATTCACTAA GTTIAAGATA TGAAGAGACA GACTAGTTAT TTCTGGATCT AAACAAGTAG ACTTAGTTGT
 AAAGAGAACAA TTTACTCTA TCTACAGAAC AGCTTTAAA AACTGCAGCC AAGCCTGAGG GTAAGTTCAG
 5 GTGTGTGTG GATGGGGCAG GAATGAAAAA ATGAGAGCAA AGGAGAAATGA GTCTCAAATT CTGTGTGACA
 AGCACTGCTC TGCC TGTTA TTCCATCGA CTGAGGTTGT TCGTGTACCG GGCTGCAATG CAGCCAGCAT
 CACCTGTCA GCTACATGTG ACTTCCCCGA GATTCTTTT CTTACCCACT GCTAACTCCA TACTCAATT
 CTCATGCTCT CCCTGTCCCCA GGCTCAAGGA AAAACATGGA CTGCTATTGC AGAATACCAG CGTGCATTGC
 10 AGGAGAACGT CGCTATGGAA CCTGCATCTA CCAGGGAAAGA CTCTGGGCAT TCTGCTGCTG AGCTTGAGA
 AAAAGAAAAA TGAIGCTCAAA ATTGCTTG AGAGCTACAG GGAATTGCTA TTACTCCTGT ACCTTCTGCT
 CAATTCCCTT TCCTCATCTC AAATAAATGC CTTGTTACAA GATTCTGTG TTTCCACCTC TTTAATGTGT
 GATATGTGTC TGTGCAAGA CACTTGGGAT ACACGTACCA AAACGCAAAA TCAAATTAA GAACAATATA-3'
 (FRAG. NO:____) (SEQ. ID NO:2477)
 15 5'-GGCBGCBGG-3' (FRAG. NO:1805) (SEQ. ID NO:1818)
 5'-GG CTG GGG-3' (FRAG. NO:1806) (SEQ. ID NO:1819)
 5'-GGGGTCBCC-3' (FRAG. NO:1807) (SEQ. ID NO:1820)
 5'-GGG TCC TCB TGG CTG GGG TC-3' (FRAG. NO:1216) (SEQ. ID NO:1225)
 5'-CCT CTC TCC CGT CCT-3' (FRAG. NO:1217) (SEQ. ID NO:1226)
 20 5'-CGTGCBCBTC TGCTCCGGGG CTGCBGCBBC CTCBCTBGCTC TTGCTGGBGTG GCTCBGCTGG GCCTGCBGGG
 CCBCCBGGBGB BTGGCBGCBG GBTGGCBGGG TCCTCBTGGC TGGGTCBCCT GGBGGBGGGB GBGCBGG-3'
 (FRAG. NO:1808) (SEQ. ID NO:1821)

Human Macrophage Inflammatory Protein-1-alpha/RANTES Receptor Nucleic Acid and Antisense Oligonucleotide Fragments

25 5'-GTCTTTGTTT CTCGGCTCGT GCCCCBCTCCC GGCTCTCTC TGGTCCGTC CTCTGTGGTG TTTGCCCTG
 CTTCTTTTG CCTGTGAGG GGGCAGCACT TGGGCCCCAA AGGCCCTCTC GTTCACCTTC TGACGGAGTT
 GCATCCCCATA GTCAAACACT GTGGTCGTGT CATAGCCTC TGTGGTGTG GGAGTTCCA TCCCAGCTTC
 TCTCTGGTTC CAACGGAGB GGGGGCBGB GTGGGGCCCC BBBGGCCCTC TCGTTCBCCCT TCTGGCBGG
 BTTGCBTCC CCBTBGTCBB BCTCTGTGGT CGTGTCTBGG TCCTCTGTGG TGTTGGBGT TTCCBTCCCC
 GCTTCTCTCT GTTCCCBGG GB-3' (FRAG. NO:1809) (SEQ. ID NO:1822)
 30 5'-GGGCC CC-3' (FRAG. NO:1810) (SEQ. ID NO:1823)
 5'-GGGGGCBGC-3' (FRAG. NO:1811) (SEQ. ID NO:1824)
 5'-CCCGGCTTC-3' (FRAG. NO:1812) (SEQ. ID NO:1825)
 5'-GTC TTT GTT TCT GGG CTC GTG CC-3' (FRAG. NO:1218) (SEQ. ID NO:1227)
 5'-CCB TCC CGG CTT CTC TCT GGT TCC-3' (FRAG. NO:1219) (SEQ. ID NO:1228)
 35 5'-GTC CTCTGT GGT GTT TGG-3' (FRAG. NO:1220) (SEQ. ID NO:1229)
 5'-CCC TGC TTC CTT TG CCT GTT-3' (FRAG. NO:1221) (SEQ. ID NO:1230)
 5'-GAGGGGGCAG CAGTTGGGCC CCAAAGGCC TCTCGTTCAC CTTCTGGCAC GGAGTTGCAT CCCCATAGTC
 AAACTCTGTG GTCGT-3' (FRAG. NO:1222) (SEQ. ID NO:1231)
 5'-GTCATAGTCCTCTC TTGTTGGAGTTCCATCCGGCTCTCTGGTCCAAGGGA-3' (FRAG. NO:1223) (SEQ. ID
 40 NO:1232)
 5'-GBGGGGCBG CB GTGGGCC CCBGGGCC TCTCGTTCBC CTTCTGGCBC GGBGTTGCBT CCCCBTBGTC
 BBBCTCTGTG GTCGT-3' (FRAG. NO:1224) (SEQ. ID NO:1233)
 5'-TCBTBGTCCCTCTGTGTTGGAGTTCCBTCCCGCTCTCTGGTCCBGG-3' (FRAG. NO:1225) (SEQ. ID
 NO:1234)

RANTES Antisense Oligonucleotide Fragments

45 5'-GGGCBGGGG CB GTGGGCC GCBBTGTBGG CBBGCBGB GGGTGTGGTG TCCGBGGBBT BTGGGGBGGC
 BGBTGCBGB GCGCGBGBGG CBGTBGCCTB GBGBTGBCB GCGBGGCGTG CGCGGBGBGC CTTCBTGGTB
 CCTGTGGBGB GGCIGTCGGB GGGGGTGTGG TGTCCGCTTG GCGGTTCTTT CGGGTGTTC TTCTCTGGGT
 TGGCCTGCTG CTGCTCGTGGT CGCTCCGCTC CGGGGTTCTG CTCGCTCTGT CGCCCTTCC TTCCCTGTG
 50 TGTTCTCTCC TTCTCTGTG-3' (FRAG. NO: 1813) (SEQ. ID NO: 1826)
 5'-GGGTTGGC-3' (FRAG. NO: 1814) (SEQ. ID NO: 1827)
 5'-CGGGG CBG-3' (FRAG. NO: 1815) (SEQ. ID NO: 1828)
 5'-CCCGGGTTCG-3' (FRAG. NO: 1816) (SEQ. ID NO: 1829)
 5'-GGGTGTGGTG-3' (FRAG. NO: 1817) (SEQ. ID NO: 1830)
 55 5'-GGGCBGGGG CB GTGGGCC GCBBTGTBGG CBBGCBGB GGGTGTGGTG TCCGBGGBBT BTGGGGBGGC
 BGBTGCBGB GCGC-3' (FRAG. NO:1226) (SEQ. ID NO:1235)
 5'-BGBGGGCBGTB GCBBTGBGG TBGBGCBGB GCGTGCCGCG GBGBCTTCB TGGTBCTGT GGBGBGGCTG
 TCGGBGG-3' (FRAG. NO:1227) (SEQ. ID NO:1236)
 5'-GGGTGTGGTGTCCTGTTGGCGGTCTTCGGGTGTTCTCTGGGTTGGCCTGCTGCTCGTGGTC-3' (FRAG.
 60 NO:1228) (SEQ. ID NO:1237)

5'-GCTCCGCTCCGGCTTCGTCTCGCTCTGCGCCCTTCCCTTGCGTTCCCTCCCTGCCTCT-3' (FRAG. NO:1229) (SEQ. ID NC:1238)

5'-GGGTGTGGTGTCCG-3' (FRAG. NO:1230) (SEQ. ID NO:1239)

5'-CTTGGCGGTTCTTCGGGTG-3' (FRAG. NO:1231) (SEQ. ID NO:1240)

5'-TTTCTCTCTGGGTGGC-3' (FRAG. NO:1232) (SEQ. ID NO:1241)

5'-CTGCTGCTCGTCGTCGG-3' (FRAG. NO:1233) (SEQ. ID NO:1242)

5'-GCTCCGCTCCGGCTTC-3' (FRAG. NO:1234) (SEQ. ID NO:1243)

5'-GTCTCGCTCTGTGCC-3' (FRAG. NO:1235) (SEQ. ID NO:1244)

5'-CTTCCTTCCTTGTGCTC-3' (FRAG. NO:1236) (SEQ. ID NO:1245)

10 5'-GTGTTCTCCCTTCCTTGCGCTCT-3' (FRAG. NO:1237) (SEQ. ID NO:1246)

5'-GGGCBGGGG CBGTGGCGG GCBBTGTBGG CBBBGCBGB GGGTGTGGT TCCGBGBBT BTGGGGBGGC BGBTGCBGBB GCGBGBGGG CBGBTGCBBT GBGBTGBCB GCGBGGCGT CCGCGBGBBC CTTCBTGGTB CCTGTGGBGB GGCTGTCGGB GG-3' (FRAG. NO:1818) (SEQ. ID NO:1831)

Human Muscarinic Acetylcholine Receptor HM1* Nucleic Acid and Antisense Oligonucleotide Fragments

15 5'-GCTGCCCGGC GGGGTGTGCG CTTGGCGCTC CCGTGCTCGG TTCTCTGTCT CCCGGTCCCC CTTGCCTGGC GTCTCGGGCC TTCGTCTCT TCCTCTTCTT CCTTCGCTC CGTGGGGGCT GCTTGGTGGG GCCCTGTGCCT CGGGGTCCCCG GGGCCTCTGG CCCTTGCCGT TCATGGTGGC TAGGTGGGGC GTTCBTGGT GCTBGGTGGG GC-3'(FRAG. NO:1819)(SEQ. ID NO: 1832)

5'-GGTGGGGC-3' (FRAG. NO:1820) (SEQ. ID NO: 1833)

20 5'-GCCCGCGGGG-3' FRAG. NO:1821) (SEQ. ID NO: 1834)

5'-CGG GGC TTC TGG CCC-3' (FRAG. NO:1822) (SEQ. ID NO: 1835)

5'-GTT CBT GGT GGC TBG GTG GGG C-3' (FRAG. NO:1238) (SEQ. ID NO:1247)

5'-GCT GCC CGG CGG GGT GTG CGC TTG GC-3' (FRAG. NO:1239) (SEQ. ID NO:1248)

5'-GCT CCC GTG CTC 3GT TCT CTG TCT CCC GGT-3' (FRAG. NO:1240) (SEQ. ID NO:1249)

25 5'-CCC CCT TTG CCT GGC GTC TCG G-3' (FRAG. NO:1241) (SEQ. ID NO:1250)

5'-GCC TTC GTC CTC TTC CTC CTT CC-3' (FRAG. NO:1242) (SEQ. ID NO:1251)

5'-GCT CCG TGG GGG CTG CTT GGT GGG GGC CTG TGC CTC GGG GTC C-3' (FRAG. NO:1243) (SEQ. ID NO:1252)

5'-CGG GGC TTC TGG CCC TTG CC-3' (FRAG. NO:1244) (SEQ. ID NO:1253)

5'-GTT CAT GGT GGC TAG GTG GGG C-3' (FRAG. NO: 1245) (SEQ. ID NO:1254)

30 **Human Muscarinic Acetylcholine Receptor HM3* Nucleic Acid and Antisense Oligonucleotide Fragments**

5'-GGG GTG GGT BGG CCG TGT CTG GGGGTT GGC CBT GTT GGT TGC CTCT TGG TGG TGC GCC GGG CGCG TCT TGG CTT TCT TCT CCT TCG GGC CCT CGG GGT GCT TGT GGGCT CCT CCC GGG CGG CCT CCC CGG GCG GGG GCT TCT TGGCG CTG GCG GGG GGG CCT CCTGCT CTG TGG CTG GGC GTT CCT TGG TGT TCT GGG TGGTGG CGG GCG TGG TGG CCT CTG TGCCCC CCC GCG GCT GCB GGG GTTG CCT GTC TGC TTC GTCCTT TGC GCT CCC GGG CGG CGG CGGG GTG GGT AGG CCG TGT CTG GGGGTT GGC CAT GTT GGT TGC CGGG CCC GCG GCT GCA GGG G-3' (FRAG. NO:1823) (SEQ. ID NO:1836)

5'-CCC GGG CGG-3' (FRAG. NO:1824) (SEQ. ID NO:1837)

5'-G GCG GGG GGG CC-3' (FRAG. NO:1825) (SEQ. ID NO:1838)

5'-CCC GGG CCG CC-3' (FRAG. NO: 1826) (SEQ. ID NO: 1839)

40 5'-GG CCG TGT-3' (FRAG. NO:1827) (SEQ. ID NO:1840)

5'-GGG GTG GGT BGG CCG TGT CTG GGG-3' (FRAG. NO:1246) (SEQ. ID NO:1255)

5'-GTT GGC CBT GTT GGT TGC C-3' (FRAG. NO:1247) (SEQ. ID NO:1256)

5'-TCT TGG TGG TGC 3CC GGG C-3' (FRAG. NO:1248) (SEQ. ID NO:1257)

5'-GCG TCT TGG CCT TCT CCT TCG GGC CCT CGG GCC GGT GCT TGT GG-3'(FRAG.NO:1249)(SEQ.ID NO:1258)

45 5'-GCT CCT CCC GGG CGG CCT CCC CGG GCG GGG GCT TCT TG-3' (FRAG. NO:1250) (SEQ.ID NO:1259)

5'-GCG CTG GCG GGG GGG CCT CCT CC-3' (FRAG. NO:1251) (SEQ. ID NO:1260)

5'-GCT CTG TGG CTG GGC GTT CCT TGG TGT TCT GGG TGG C-3' (FRAG. NO:1252) (SEQ. ID NO:1261)

5'-TGG CGG GCG TGG TGG CCT CTG TGG TGG-3' (FRAG. NO:1253) (SEQ. ID NO:1262)

50 5'-GGG CCC GCG GCT GCB GGG G-3' (FRAG. NO:1254) (SEQ. ID NO:1263)

5'-TTG CCT GTC TGC TTC GTC-3' (FRAG. NO:1255) (SEQ. ID NO:1264)

5'-CTT TGC GCT CCC GGG CCG CC-3' (FRAG. NO:1256) (SEQ. ID NO:1265)

5'-GGG GTG GGT AGC CCG TGT CTG GGG-3' (FRAG. NO:1257) (SEQ. ID NO:1266)

5'-GTT GGC CAT GTT GGT TGC C-3' (FRAG. NO:1258) (SEQ. ID NO:1267)

55 5'-GGG CCC GCG GCT GCA GGG G-3' (FRAG. NO:1259) (SEQ. ID NO:1268)

Human Fibronectin* Antisense Oligonucleotide Fragments

5'-CGG TTT CCT TTG CGG TC TTG GCC CGG GCT CGG GGT G CCC GCC CGC CCG CGG GCC GC CCC GCC GGG CTG TCC CGG CCC CGC CCC GGC CGG CGG GG CGG CCC TCC CGC CCC TCT GG GCC GGC GCG GGC GTC GG CGG CCT GCG CCT GGG GTT CCC TCT CCT CCC CCT GTG C GCC TGC CTC TTCTGC GTC

CGC TGC CTT CTC CC CTC TCC TCG GCC GTT GCC TGT GC TGT CCG TCC TGT CGG CCT TCC GTG GTG C TGT
 TGT CTC TTC TGC CCT C GGT GTG CTG GTG CTG GTG GTG CCT CTG CCC GTG CTC GCCCTG CCT GGG CTG
 GCC TCT TCG GGT G'TG GCT TTG GGG CTC TCT TGG TTG CCC TTT CTT CTC GTG GTG CCT CTC CCT GGC
 TTG GTC GT TGT CTG GGG TGG TGC TCC TCT CCC TGC TGG CCG TTT GT CCT GTT TTC TGT CTT
 5 CCT CT TTC CTC CTC TTT CTC CGT TTG GCT TGC TGC TTG CGG GGC TGT CTC C CTT GCC CCT GTG GGC TTT
 CCC TGG TCC GGT C TT CTC CTT GGG GGT C GCC CTT CTT GGT GGG CTGGCT CGT CTG TCT TTT TCC TTC C
 TGG GGG TGG CGG TTG TGG GCG GTG TGG TCC GCC T TGC CTC TGC TGG TCT TTC-3' (FRAG. NO:1828) (SEQ.
 ID NO: 1841)
 5'-GGCCCCGGC-3' (FRAG. NO:1829) (SEQ. ID NO: 1842)
 10 5'-GCCGGCGCGGGCG 3' (FRAG. NO:1830) (SEQ. ID NO:1843)
 5'-GCCTGGGCTGGCC-3' (FRAG. NO:1831) (SEQ. ID NO: 1844)
 5'-GGGGG TGGCCG-3' (FRAG. NO:1832) (SEQ. ID NO: 1845)
 5'-GG GGG TGG CCG TTG TGG GCG G-3' (FRAG. NO:1833) (SEQ. ID NO: 1846)
 5'-CGG TTT CCT TTG CGG TC-3' (FRAG. NO:1260)(SEQ. ID NO:1269)
 15 5'-TTG GCC CGG GCT CCG GGT G-3' (FRAG. NO:1261)(SEQ. ID NO:1270)
 5'-CCC GCC CGC CCG CCG GCC GC-3' (FRAG. NO:1262)(SEQ. ID NO:1271)
 5'-CCC GCC GGG CTG TCC CCG CCC CGC CCC-3' (FRAG. NO:1263)(SEQ. ID NO:1272)
 5'-GGC CCG GGG CGC GGG GG-3' (FRAG. NO:1264)(SEQ. ID NO:1273)
 5'-CGG CCC TCC CGC CCC TCT GG-3' (FRAG. NO:1265)(SEQ. ID NO:1274)
 20 5'-GCC GGC GCG GGC GTC GG-3' (FRAG. NO:1266)(SEQ. ID NO:1275)
 5'-CCG CTC GCG CCT GGG GTT CCC TCT CCT CCC CCT GTG C-3' (FRAG. NO:1267)(SEQ. ID NO:1276)
 5'-GCC TGC CTC TTG CTC TTC-3' (FRAG. NO:1268)(SEQ. ID NO:1277)
 5'-TGC GTC CGC TGC CTT CTC CC-3' (FRAG. NO:1269)(SEQ. ID NO:1278)
 5'-CTC TCC TCG GCC CTT GCC TGT GC-3' (FRAG. NO:1270)(SEQ. ID NO:1279)
 25 5'-TGT CCG TCC TGT CGC CCT TCC GTG GTG C-3' (FRAG. NO:1271)(SEQ. ID NO:1280)
 5'-TGT TGT CTC TTC GC CCT C-3' (FRAG. NO:1272)(SEQ. ID NO:1281)
 5'-GGT GTG CTG GTG CTG GTG GTG-3' (FRAG. NO:1273)(SEQ. ID NO:1282)
 5'-CCT CTG CCC GTG CTC GCC-3' (FRAG. NO:1274)(SEQ. ID NO:1283)
 5'-CTG CCT GGG CTG GCC TCT TCG GGT-3' (FRAG. NO:1275)(SEQ. ID NO:1284)
 30 5'-GTG GCT TTG GGG CTC TCT TGG TTG CCC TTT-3' (FRAG. NO:1276)(SEQ. ID NO:1285)
 5'-CTT CTC GTG GTG CCT CTC CCT GGC TTG GTC GT-3' (FRAG. NO:1277)(SEQ. ID NO:1286)
 5'- TGT CTG GGG TGG TGC TCC TCT CCC-3' (FRAG. NO:1278)(SEQ. ID NO:1287)
 5'-TTT CCC TGC TGG CCG TTT GT-3' (FRAG. NO:1279)(SEQ. ID NO:1288)
 5'-CCT GTT TTC TGT CTT CCT CT-3' (FRAG. NO:1280)(SEQ. ID NO:1289)
 35 5'-TTC CTC CTG TTT CTC CGT-3' (FRAG. NO:1281)(SEQ. ID NO:1290)
 5'-TTG GCT TGC TGC TTG CGG GGC TGT CTC C-3' (FRAG. NO:1282)(SEQ. ID NO:1291)
 5'-CTT GCC CCT GTG GGC TTT CCC-3' (FRAG. NO:1283)(SEQ. ID NO:1292)
 5'-TGG TCC GGT CTT CTC CTT GGG GGT C-3' (FRAG. NO:1284)(SEQ. ID NO:1293)
 5'-GCC CTT CTT GGT GGG CTG-3' (FRAG. NO:1285)(SEQ. ID NO:1294)
 40 5'-GCT CGT CTG TCT TTT TCC TTC C-3' (FRAG. NO:1286)(SEQ. ID NO:1295)
 5'-TGG GGG TGG CGG TTG TGG GCG GTG TGG TCC GCC T-3' (FRAG. NO:1287)(SEQ. ID NO:1296)
 5'-TGC CTC TGC TGG TCT TTC-3' (FRAG. NO:1288)(SEQ. ID NO:1297)

Human Interleukin-1 (IL-1) Nucleic Acid and antisense Oligonucleotide Fragments

45 5'-AAGCTCTAC CC AGTCTGG TGCTACACTT ACATTGCTTA CATCCAAGTG TGGTTATTTC TGTGGCTCCT
 GTTATAACTA TTATAGCACC AGGTCTATGA CCAGGAGAA TAGACTGGCA TAAATCAGA ATAAGAGATT
 TTGCACCTGC AATAGACCTT ATGACACCTA ACCAACCCCA TTATTTACAA TTAAACAGGA ACAGAGGGAA
 TACTTTATCC AACTCACACA AGCTGTTTC CTCCCAGATC CATGCTTTT TGCGTTTATT ATTTTTAGA
 GATGGGGCT TCACATATGTT GCCCCACACTG GACTAAAAGT CTGGGCCTCA AGTGATTGTC CTGCCTCAGC
 CTCCTGAATA GCTGGGACTA CAGGGCATG CCATCACACC TAGTTCATTT CCTCTATTTA AAATATACAT
 50 GGCTTAAACT CCAA CTGGGA ACCCAAAACA TTCATTGCT AAGAGTCTGG TGTCTACCA CCTGAACTAG
 GCTGCCACA GGA ATTATAA AAGCTGAGAA ATTCTTTAAT AATAGTAACC AGGCAACATC ATTGAAGGCT
 CATATGTAAA AAC TCATGCC TTCTTTCTC CCAATCTCCA TTCCCAAAC TAGCCACTGG TTCTGGCTGA
 GCCCTTACGC ATAC CTCCCG GGGCTTGAC ACACCTTCTT CTACAGAAGA CACACCTTGG GCATATCCTA
 CAGAAGACCA GGC TCTCTC TGGCTCTGG TAGAGGGCTA CTTTACTGTA ACAGGGCCAG GGTGGAGAGT
 55 TCTCTCTGA AGCT CCATCC CCTCTATAGG AAATGTGTTG ACAATATTCA GAAGAGTAAG AGGATCAAGA
 CTTCTTGTG CTCA AATACC ACTGTTCTCT TCTCTACCCCT GCCCTAACCA GGAGCTTGTC ACCCCAAACT
 CTGAGGTGAT TTATGCCCTA ATCAAGCAA CTTCCCTCTT CAGAAAAGAT GGCTCATTTT CCCTCAAAG
 TTGCCAGGAG CTGCCAAAGTA TTCTGCCAAT TCACCCCTGGA GCACAATCAA CAAATTCAAG CAGAACACAA
 CTACAGCTAC TATTAGAACT ATTATTATTA ATAAATTCCCT CTCCAAATCT AGCCCTTGA CTTCGGATTT
 60 CACGATTCT C CCCCCTCTCC TAGAAACTTG ATAAGTTTCC CGCGCTTCCC TTTTCTAAG ACTACATGTT
 TGTCTCTTA TAAA GCAAAG GGGTGAATAA ATGAACCAAA TCAATAACTT CTGGAATATC TGCAAACAA

	AATAATATCA	GCTATGCCAT	CTTTCACTAT	TTTAGCCAGT	ATCGAGTTGA	ATGAACATAG	AAAAATACAA
	AACTGAATTG	TTCCCTGTAA	ATTCCCCGTT	TTGACGACGC	ACTTGTAGCC	ACGTAGCCAC	GCCTACTTAA
	GACAATTACA	AAACGCGAAG	AAGACTGACT	CAGGCTTAAG	CTGCCAGGCC	GAGAGGGAGT	CATTTCATTG
5	GCGTTTGA	CAGCAAAGGT	ATTGTCCTCA	CATCTCTGGC	TATTAAGTA	TTTCTGTGTT	TTGTTTTCT
	CTTTGGCTGT	TTTCCTCTCAC	ATTGCCTCT	CTAAAGCTAC	AGTCTCTCT	TCATTTGCT	GTCCCCTCC
	GGTTTGGTAT	GTGACCTAGA	ATTACAGTC	GATTTCAGAA	AATGATTCTC	TCAACACTCT	GATAAGGACT
	GATCTGTTT	ACTGAGGGAC	GGCAGAACTA	GTTTCCTATG	AGGGCATGGG	TGAATACAAAC	TGAGGCTTCT
	CATGGGAGGG	AATCTCTACT	ATCCA AAAATT	ATTAGGAGAA	AATTGAAAAT	TTCCAACACTCT	GTCTCTCTCT
10	TACCTCTGTG	TAAC GCAAAT	ACCTTATTCT	TGTGGTGT	TTGTAACCTC	TCACAACTTT	CATTGATTGA
	ATGCCGTGTC	TGGCAATACA	TTAGGTTGGG	CACATAAGGA	ATACCAACAT	AAATAAAACA	TTCTAAAAGA
	AGTTTACGAT	CTAA TAAAGG	AGACAGGTAC	ATAGCAAAC	AATTCAAAGG	AGCTAGAAGA	TGGAGAAAAT
	GCTGAATGTG	GACTAAGTCA	TTCAACAAAG	TTTCAGGAA	GCACAAAGAG	GAGGGGCTCC	CCTCACAGAT
	ATCTGGATTA	GAGC CTGGCT	GAGCTGATGG	TGGCTGGTGT	TCTCTGTGTC	AGAAGTCAAG	ATGGCCAAG
15	TTCCAGACAT	GTTGAAGAC	CTGAAGAAC	GTACAGGTA	AGGAATAAGA	TTTATCTCTT	GTGATTAAAT
	GAGGGTTTCA	AGGC TCACCA	GAATCCAGCT	AGGCATAACA	GTGGCCAGGC	TGGGGCAGG	CCGGCAGAGG
	TTGTAAGAGAT	GTGTAAGTAGT	CCTGAAGTC	GAGCAGGTT	AGAGAAAGACC	CAGAAAAAACT	AAGCATTCA
	CATGTTAACAC	TGAC ATTACA	TTGGCAGGGA	GACCGCCATT	TTAGAAAAAT	TATTTTGAG	GTCTGCTGAG
	CCCTACATGA	ATATCAGCAT	CAACTTAGAC	ACAGCCTCTG	TTGAGATCAC	ATGCCCTGAT	ATAAGAATGG
20	GTTTACTGG	TCCA TTCTCA	GGAAAACCTG	ATCTCATTCA	GGAACAGGAA	ATGGCTCCAC	AGCAAGCTGG
	GCATGTGAAAC	TCACATATGC	AGGCAAATCT	CACTCAGATG	TAGAAGAAAG	GTAATGAAC	ACAAAGATAA
	AATTACGGAA	CATATTTAACAC	TAACATGATG	TTTCATTAT	CTGTAGTAAA	TACTAACACA	AACTAGGCTG
	TCAAAATTTC	GCCTGGATAT	TTTACTAAGT	ATAAAATTATG	AAATCTGTT	TAGTGAATAC	ATGAAAGTAA
	TGTGTAACAT	ATAA TCTATT	TGGTTAAAAT	AAAAAGGAAG	TGCTTCAAAA	CCTTCTTTT	CTCTAAAGGA
25	GCTTAACATT	CTTCCCTGAA	CTTCAATTAA	AGCTCTCAA	TTTGTAGCC	AAGTCAATT	TTTACAGATA
	AAGCACAGGT	AAAGCTCAA	GCCTGTCTG	ATGACTACTA	ATTCCAGATT	AGTAAGATAT	GAATTACTCT
	ACCTATGTG	ATGTGTAGAA	GTCCTTAAT	TTCAAAGATG	ACAGTAATGG	CCATGTGTAT	GTGTGTGACC
	CACAACATC	ATGC TCATTA	AAAGTACATTG	GCCAGAGACC	ACATGAAATA	ACAAACAATT	CATTCTCATC
	ATCTTATTTC	GACAGTGA	ATGAAGAAGA	CAGTTCCTCC	ATTGATCATC	TGTCTCTGAA	TCAGGTAAGC
30	AAATGACTGT	AAATCTCATG	GGACTGCTAT	TCTTACACAG	TGGTTCTTC	ATCCAAAGAG	AACAGCAATG
	ACTTGAATCT	TAAT TACTTT	TGTTTACCC	TCACTAGAGA	TCCAGAGACC	TGTCTTCTAT	TATAAGTGA
	ACCAGCTGCC	TCTCTAAACT	AATAGTTGAT	GTGCATTGGC	TTCTCCCAGA	ACAGAGCAGA	ACTATCCCAA
	ATCCCCTGAGA	ACTC GAGTCT	CCTGGGGCAG	GCTTCATCAG	GATGTTAGTT	ATGCCATCCT	GAGAAAGCCC
	CGCAGGCCGC	TTCA CCAGGT	GTCTGTCCTC	TAACGTGATG	TGTTGTGTT	GTCTCTCTG	ACACCAGCAT
35	CAGAGGTAG	AGAA AGTCTC	CAAACATGAA	GCTGAGAGAG	AGGAAGCAAG	CCAGCTGAAA	GTGAGAAGTC
	TACAGCCACT	CATCAATCTG	TGTTATTG	TTGGAGACC	ACAAATAGAC	ACTATAAGTA	CTGCCTAGTA
	TGTCTTCAGT	ACTGGCTTTA	AAAGCTGTC	CCAAAGGAGT	ATTCTAAAAT	TATTTGAGC	ATTGTTAACG
	AGATTTTTAA	CCTCTGTAGA	GGGAACATAAT	TGGAAGGCTA	CCACTCACTA	CAATCATTTG	TAACCTATTT
	AGTTACAAAC	TCTCATTTT	GAGCATGCAA	ATAAAATGAAA	AAGTCTCCT	AAAAAAATCA	TCTTTTATAC
40	CTGGAAGGAG	GAAGGAAGGT	GAGACAAAAG	GGAGAGAGGG	AGGAAGCCT	AATGAAACAC	CAGTTACCTA
	AGACCAAGAAT	GGAGATCCTC	CTCACTACCT	CTGTTGAATA	CAGCACCTAC	TGAAAGAACT	TTCATTCCCT
	GACCATGAAC	AGCCTCTCAG	CTTCTGTTT	CCTTCCTCAG	AGAAATCCTT	CTATCATGTA	AGCTATGGCC
	CACTCCATGA	AGGCTGCATG	GATCAATCTG	TGTCTCTGAG	TATCTCTGAA	ACCTCTAAA	CATCCAAGCT
	TACCTCAAG	GAGAGCATGG	TGGTAGTAGC	AACCAACGGG	AAGGTTCTGA	AGAAGAGACG	GTTGAGTTA
45	AGCCAATCCA	TCACTGATGA	TGACCTGGAG	GCCATCGCCA	ATGACTCAGA	GGAAGGTAAG	GGGTCAAGCA
	CAATAATATC	TTTCITTTAC	AGTTTAAGC	AAAGTAGGGAC	AGTAGAATT	AGGGAAAAT	TAAACGTGGA
	GTCAGAATAA	CAAGAAGACA	ACCAAGCATT	AGTCTGGTA	CTATACAGAG	GAAAATTAAT	TTTATCCCT
	CTCCAGGAGG	GAGAAATGAG	CAGTGGCCTG	AATCGAGAAT	ACTTGCTCAC	AGCATTATT	TCTTAGCCAT
	ATTGTAAGG	TGGTGTGACT	TTTAGCCTT	CAGGAGAAAG	CAGTAATAAG	ACCACTACG	AGCTATGTT
50	CTCTCATCT	AACTATGCCT	CCTGGTCAT	GTTACATAAT	CTTTTCGTA	TTCAGTTCC	TCTACTGTAA
	AATGGAGATA	ATCA GAATCC	CCCACCTATT	GGATTGTTGT	AAAGATTAAG	AGTCTCAGGC	TTTACAGACT
	GAGCTAGCTG	GGCCCTCTCTG	ACTGTTATAA	AGATTAATG	AGTCAACATC	CCCTAACCTTC	TGGACTAGAA
	TAATGTCCTG	TACA AAGTAA	GCACCCAATA	AATGTTAGCT	ATTACTATCA	TTATTATTAT	TATTTTATTT
	TTTTTTTTG	AGATGGAGTC	TGGCTCTGTC	ACCCAGGCTG	GAGTGCAGTG	GCACAATCTC	GGCTCACTGC
55	AAGCTCTGCC	TCCIGGGTTC	ATGCCATTCT	CCTGCCCTAG	CCTCCCGAGT	AAGCTGGGAA	TACAGGCACC
	CGCCACTGTT	CCCCGCTAAAT	TTTTTGATT	TTTAGTAGAG	ACGGAGTTTC	ACCGTGGTCT	CCATCTCCTC
	GTGATCCACC	CACCTTGGCC	TCCCAAAGTG	CCGGGATTAC	AGGCGTGAGC	CACCGCGCCC	GGCCTATTAT
	TATTATTATT	ACTACTACTA	CTACCTATAT	GAATACTACC	AGCAATACTA	ATTTATTAAT	GACTGGATTA
	TGTCTAAACC	TCACAAGAAT	CCTACCTCT	CATTTCACAT	AAAAGGAAAC	TAAGCTCATT	GAGATAGGTA
60	AACTGCCAA	TGGC ATACAT	CTGTAAGTGG	GAGAGCCTCA	AATCTAATT	AGTTCTACCT	GAGTAAAAAA
	ATCATGGTTT	CTCC TCCATC	CCTTTACTGT	ACAAGCCTCC	ACATGAACTA	TAACCCCAAT	ATTCTGTTT
	TTAAGATAAT	ACCTAAGCAA	TAACGCACTG	TCACCTAGAA	GGTTTAAAAT	TGTAACAAA	TATAAGAAA
	AAAAATCAC	TCATATCGTC	AGTGAGAGTT	TACTACTGCC	AGCACTATGG	TATGTTCCCT	AAAATCTT

	GCTATACACA	TACCTACATG	TGAACAAATA	TGTCTAACAT	CAAGACCACA	CTATTTACAA	CTTATATCC
	AGCTTTCTT	ACTTAGCAAT	GTATTGAGGA	CATTCTAGAG	TGCCCGTTT	TCACCATAT	AAGCAATGCA
	ACAATGAACA	TCTGTATAAA	TAATATTCA	TTCTCTCAC	CCTTTATTTC	CTTAGAATAT	ATTCCTAGAA
	GTAGAATTTC	CCAGAGCCAT	GAGGATTGT	GACGCTATTG	ATATGTGCCA	CTTGCACTC	TCTGTGACAT
5	ATATAATTAT	TTTAATGCA	TTCATTTT	TCTCAGAGTG	CATTGTTT	AAAACATAGA	CGGGAAATAC
	TGGTAGTCTT	CCTTGTCACT	TAGAAACACC	CAAACAAATGA	AAAATGAAAA	AGTTGCACAA	ATAGTCTCTA
	AAAACAATGA	AACTATTGCC	TGAGGAATTG	AAAGTTAAAA	AGAACGCACAT	AAGCAACAAAC	AAGGATAATC
	CTAGAAAACC	AGTCTGCTG	ACTGGGTGAT	TTCACTTCTC	TTTGCTTCT	CATCTGGATT	GGAATATTCC
10	TAATACCCCC	TCCAAGACTA	TTTCCCCTGT	TTGTACTAGA	CTGTGTATAT	CATCTGTGTT	TGTACATAGA
	CATTAATCTG	CACITGTGAT	CATGGTTTA	GAATCATCA	AGCCTAGGTC	ATCACCTTT	AGCTTCTGAA
	GCAATGTGAA	ATACAACTTT	ATGAGGATCA	TCAAATACGA	ATTACATCTG	AATGACGCC	TCAATCAAAG
	TATAATTGCA	GCCATGATC	AGTACCTCAC	GGCTGCTGCA	TTACATAATC	TGGATGAAGC	AGGTACATTA
	AAATGGCACC	AGACATTCTC	GTCATCCTCC	CCTCTTTC	TTTACTTATT	TATTATTTC	AATCTTCTG
15	CTTGCAAAAA	ACATACCTCT	TCAGAGTTCT	GGGTTGCACA	ATTCTTCCAG	AATAGCTTGA	AGCACAGCAC
	CCCCATAAAA	ATCCCAAGCC	AGGGCAGAAG	GTTCAACTAA	ATCTGGAAGT	TCCACAAGAG	AGAAGTTCC
	TATCTTGAG	AGTAAAGGGT	TGTGCACAAA	GCTAGCTGAT	GTACTACCTC	TTTGGTTCTT	TCAGACATTC
	TTACCCCTAA	TTTAAAAC	GAGGAAACTG	TCAGACATAT	AAATGATT	ACTCAGATTT	ACCCAGAAC
	CAATGAAGAA	CAA'CACTCT	CCTTAAAAAA	GTCTGTGAT	CAAACTCACA	AGTAACACCA	AACCAGGAAG
20	ATCTTTATA	TCTCTGATAA	CATATTGTG	AGGCAAAACC	TCCAATAAGC	TACAAATATG	GCTTAAAGGA
	TGAAGTTAG	TGTCAAAAAA	CTTTTATCAC	ACACATCCAA	TTTTCATGGC	GGACATGTTT	TAGTTTCAAC
	AGTATACATA	TTTICAAAGG	TCCAGAGAGG	CAATTGCA	ATAAACAAGC	AAGACTTTT	CTGATTGGAT
	GCACTTCAGC	TAACATGCTT	TCAACTCTAC	ATTACAAAT	TATTTGTG	TCTATTTC	TACTTAATAT
	TATTCTGCA	ATTITCCCAA	TATTGACATC	GTGTATGTAT	TTGCCATT	TAATATCACT	AGACAATTCA
25	ATCAGGTTGC	TACCTTGGTC	CCTTGGGTT	ACTCTAAATA	GCTTGATTG	AAATATCTT	GTATATATTA
	TTGTTTTTC	TCCTATCTG	TAATTCTT	GAGCACATCC	CAAAGAGGAA	TGCCTAGATC	AATGGGCACA
	AATAATTG	CAGCTCTTAT	TAACATTAT	TCTGTAAGTA	AAAACTGAAC	TACTTTTCAG	TATCACTAGC
	AAACATATGAG	TGTATCAGCT	TCCTAAACCC	CTCCATGTTA	GGTCATTAG	AACTTATGAT	CTAACAAATT
	ACAGGGTCTT	ATCCCACTAA	TGAAATTATA	AGAGATTCAA	CACTTATTCA	GCCCCGAAGG	ATTCAATTCAA
30	CGTAGAAAAT	TCTAGAACA	TTAACCAAGT	ATTACCTGC	CTAGTGAGTG	TGGAAGACAT	TGTGAAGGAC
	ACAAAGATGT	ATAGAATTCC	ATTCCTGACT	TCCAGGTATT	TACACCATAG	GTGGGGACCT	AACTACACAC
	ACACACACAC	ACACACACAC	ACACACACAC	ACCATGCACA	CACAATCTAC	ATCAACACTT	GATTTTATAC
	AAATACAATG	AATTTACTTT	CTTTTGGTT	CTTCTCTICA	CCAGTGAAT	TTGACATGGG	TGCTTATAAG
	TCATCAAAGG	ATGATGCTAA	AATTACCGTG	ATTCTAAGAA	TCTAAAAC	TCAATTGTAT	GTGACTGCC
	AAGATGAAGA	CCAACCAGTG	CTGCTGAAGG	TCAGTGTGTC	TTTGTCCTCA	ACTTACCTTC	ATTTACATCT
35	CATATGTTG	TAATAAGCC	CAATAGGCAG	ACACCTCTAA	CAAGGTGACA	CTGCTCTT	TCCTTCTAC
	CACAGCCCCC	ACCTACCCAC	CCCACCTCCA	TTGATTCCAG	AGGCGTGCCT	AGGCAGGATC	TATGAGAAA
	TATAACAGAG	AGTAAGAGGA	AAATTACCTT	CTTCTTTTT	CCTTCTCTG	CCTGACCTTA	TTCACCTCCC
	ATCCCAGAGC	ATCCATTAT	TCCATTGATC	TTTACTGACA	TCTATTATCT	GACCTACACA	ATACTAGACA
	TTAGGACAAT	GTGCCCTGCC	TCCAAGAAC	TCAAATAAGC	CAACTGAGAT	CAGAGAGGAT	TAATCACCTG
40	CCAATGGGCA	CAAAGCAACA	AGCTGGGAGC	CAAGTCCCAA	AATGGGGCCT	GCTGCTTCCA	GTTCCCCCTCT
	CTCTGCATTG	ATGTCAGCAT	TATCCTTCGT	CCCAGTCTG	TCTCCACTAC	CACTTCCCC	CTAAACACAA
	CACACACACA	ACAGCCTTAG	ATGTTTCTC	CACTGATAAG	TAGGTGACTC	AATTGTAAAG	TATATAATCC
	AAGACCTCT	ATTCCTAAGT	AGAATTATG	TGCCTGCCTG	TGCTTTCTA	CCTGGATCAA	GTGATGTCTA
	CAGAGTAGGG	CAGTAGCTTC	ATTATGAAAC	TCATTCAACA	AGCATTATTC	ACTGAGAGCC	TTGTATTTC
45	CAGGCATAGT	GCCACAGCA	GTGTGGACAG	TGGTGCATCA	AAGCCTCTAG	TCTCATAGAA	CTTAGTCTTC
	TGGAGGATAT	GGAAAACAGA	CAACCCAAAC	AACCAACAAA	AGAGCAAGAT	GCTGAAAAAA	AAAAAAAAT
	GAATAGGGTG	CTAAAGATAGA	AAAAAGTGGG	AGAGTGTAT	TTAGACAAAG	TGGTAAAAAC	AAAGCCCCCTT
	GTGAGATGAG	AGCTGCCGAC	AGAGGGGGCG	GGTCATGGTT	GTGGGTTTT	GGGTAGGACA	TTCAGAGGAG
	GGGGCGGGTC	GTGGTTGTGG	GTTTTGGGT	AGGACATTCA	GAGGAGGGGG	CGGTCGTGG	TTGTGGGTTT
50	TTGGGTAGGA	CATTCAGAGG	AGGGGGCGGG	TCGTGGTTGT	GGGTTTTGG	GTAGGACATT	CAGAGGAGGG
	GGCGGGTCGT	GGTGTGGGGT	TTTGGGACA	TTCAGAGGAG	TCTGAATGCA	CCCAGGCCTA	CAACTTCAAG
	ATGGTAAAGG	ACAGCTCAA	GGATCAGAAG	AAGCATTCTT	GGAACCTGGGG	CATTGAGA	AGGAGGAAAA
	ATATGCAGAG	ACTATGTCCT	GCAGAGCTTG	CATTGGATT	TCATTGAGG	TACAATGAAA	ACCCATTAAT
	GGGTTTCACA	CAGTGAATG	GCCTGACCTC	ACTTATATT	CCTAAAATAG	AAAACAGATC	AGAAGGAAGG
55	CAATAGAGAA	GCAGAAAGTC	CAATGAGGAG	GTTTCACAGC	AGTCATGGGG	GTGGGGTAAG	GAAAAGAAGT
	GGAAAGAAAC	AGACAGAAATT	GGGTTATATT	TTGGAGATAG	AACCAACAGA	AGGAAGAGGA	GAAACAAACAT
	TTACTGAGAA	GGGAAAAGT	AGGAGAGGAA	TAGGTTGGG	AAATAAATCC	TGCTGACATT	GGAAACCCCA
	AGGAAGCCTC	AAAAGTATAT	TTACTTGCTT	TAGATTTAAA	AGAATAGGAA	AGAACATCT	CAACTTGGAA
	TTTGAATCT	ATTITCCAT	AAAAGTATTG	TTAAATTCTA	CTCATACTCA	CAAGAAAAGT	ACATTCTAAA
60	GAGTATATTG	AAAGAGTTTA	CTGATATACT	TAGGAATTTT	GTGTGTATGT	GTGTGTGT	ATGTGTGTGT
	GTGTGTTAA	CCTCAATTG	TTGACTTAA	TACTGAGATA	AATGTCATCT	AAATGCTAAA	TTGATTTC
	AAAGGTATGA	TTTGTTCACT	TGGAGATCAA	AATGTTTAGG	GGGCTTAGAA	TCACTGTAGT	GCTCAGATT

	GATGCAAAAT	GTCCTAGGCC	TATGTTGAAG	GCAGGGACAGA	AACAATGTTT	CCCTCCTACC	TGCCTGGATA
	CAGTAAGATA	CTAGTGTCAC	TGACAATCTT	CATAACTAAT	TTAGATCTCT	CTCCAATCAA	CTAAGGAAT
	CAACTCTTAT	TAATAGACTG	GGCCACACAT	CTACTAGGCA	TGTAATAAAT	GCTTGTGAA	TGAACAAATG
5	AATGAAGAGC	CTA'AGCATC	ATGTTACAGC	CATAGTCCTA	AAGTGGTGT	TCTCATGAAG	GCCAAATGCT
	AAGGGATTGA	GCT'CAGTCC	TTTTCTAAC	ATCTTGTCT	CTAACAGAAAT	TCTCTTCTTT	TCTTCATAGG
	AGATGCTGA	GATA.CCCAAA	ACCACATCACAG	GTAGTGAGAC	CAACCTCCTC	TTCTTCTGGG	AAACTCACGG
	CACTAAGAAC	TATTCACAT	CAGTTGCCA	TCCAAACTTG	TTTATTGCCA	CAAAGCAAGA	CTACTGGGTG
	TGCTTGGCAG	GGGGGCCACC	CTCTATCACT	GACTTTCAGA	TACTGGAAAA	CCAGCGTAG	GTCTGGAGTC
10	TCACTTGTCT	CACTTGTGCA	GTGTTGACAG	TTCATATGTA	CCATGTACAT	GAAGAAGCTA	AATCCTTAC
	TGTTAGTCAT	TTGCTGAGCA	TGTACTGAGC	CTTGTAAATT	TAAATGAATG	TTTACACTCT	TTGTAAGAGT
	GGAACCAACA	CTAACATATA	ATGTTGTAT	TTAAAGAACAA	CCCTATATT	TGCATAGTAC	CAATCATT
	AATTATTATT	CTTCATAACA	ATTTTAGGAG	GACCAGAGCT	ACTGACTATG	GCTACCAAAA	AGACTCTACC
	CATATTACAG	ATGGGCAAAAT	TAAGGCATAA	GAAAACAAAG	AAATATGCAC	AATAGCAGTT	GAAACAAGAA
15	GCCACAGACC	TAGGATTTC	TGATTTCATT	TCAACTGTTT	GCCTTCTGCT	TTAAGTTGTC	TGATGAAC
	TTAACCAAAT	AGCA.TAAAGT	TCTGGGACCT	CAGTTTATC	ATTTCAAAA	TGGAGGGAAT	AATACCTAAG
	CCTTCCTGCC	GCAACAGTTT	TTTATGCTAA	TCAGGGAGGT	CATTTGGT	AAATACTTCT	CGAAGCCGAG
	CCTCAAGATG	AAGGCAAAGC	ACGAAATGTT	ATTTTTAA	TATTATTTAT	ATATGTATT	ATAAAATATAT
	TTAAGATAAT	TATAATATAC	TATATTATAG	GGAAACCCCT	CATCCTCTGA	GTGTGACCAG	GCATCCTCCA
20	CAATAGCAGA	CAG'TGTTTC	TGGGATAAGT	AAAGTTGATT	TCATTAATAC	AGGCATTTT	GGTCCAAGTT
	GTGCTTATCC	CATAGCCAGG	AAACTCTGCA	TTCTAGTACT	TGGGAGACCT	GTAATCATAT	AATAATGTA
	CATTAATTAC	CTTGAGCCAG	TAATTGGTCC	GATCTTGC	TCTTTGCCA	TTAAACTTAC	CTGGGCATTC
	TTGTTTCATT	CAATPCCACC	TGCAATCAAG	TCCTACAAAGC	TAAAATTAGA	TGAACCTAAC	TTTGACAACC
	ATGAGACCAC	TGTTATCAA	ACTTTCTTT	CTGGAATGTA	ATCAATGTT	CTTCTAGGTT	CTAAAATATG
25	TGATCAGACC	ATAATGTTAC	ATTATTATCA	ACAATAGTGA	TTGATAGAGT	GTTATCAGTC	ATAACTAAAT
	AAAGCTTGCA	ACA.AAATTCT	CTGACACATA	GTTATTCTT	GCCTTAATCA	TTATTTACT	GCATGGTAAT
	TAGGGACAAA	TGG'AAATGT	TTACATAAT	AATTGTTATT	AGTGTACTT	TATAAAATCA	AACCAAGATT
	TTATATTTT	TTCTCTCTT	TGTTAGCTG	CAGTATGCA	AAATGGCATT	AAGAATGATA	ATATTTCGGG
	GTTCACTAA	AGCICATATT	ACACATACAC	AAAACATGTG	TTCCCATCTT	TATACAAACT	CACACATACA
30	GAGCTACATT	AAAAACAAACT	ATAGGCCAG	GCACGGTGGC	TCAGACCTGT	AATCCCAGCA	CTTGGGAGG
	ACCAACCTCT	TCGAGGCACA	AGGCACAAACA	GGCTGCTCTG	GGATTCTT	CAGCCAATCT	TCATTGCTCA
	AGTGTCTGAA	GCAACCATGG	CAGAAGTACC	TGAGCTGCC	AGTGAATGA	TGGCTTATTA	CAGTGGCAAT
	GAGGATGACT	TGT'CTTGTG	AGCTGATGGC	CCTAAACAGA	TGAAGTGTCT	CTTCCAGGAC	CTGGACCTCT
	GCCCTCTGGA	TGGCGGCATC	CAGCTACGAA	TCTCCGACCA	CCACTACAGC	AAGGGCTTCA	GGCAGGCCGC
35	GTCAGTTGTT	GTGGCCATGG	ACAAGCTGAG	GAAGATGCTG	GTTCCCTGCC	CACAGACCTT	CCAGGAGAAT
	GACCTGAGCA	CCTTCTT	CTTCATCTT	GAAGAGAAC	CTATCTT	CGACACATGG	GATAACGAGG
	CTTATGTGCA	CGATGCACCT	GTACGATCAC	TGAACCTGCAC	GCTCCGGGAC	TCACAGCAA	AAAGCTTGGT
	GATGTCCTGGT	CCATATGAAC	TGAAAGCTCT	CCACCTCCAG	GGACAGGATA	TGGAGCAACA	AGTGGTGTTC
	TCCATGTCTT	TTGTACAAGG	AGAAGAAAGT	AATGACAAAAA	TACCTGTGGC	CTTGGGCTC	AAGGAAAAGA
40	ATCTGTACCT	GTCTCGCTG	TTGAAAGATG	ATAAGCCCAC	TCTACAGCTG	GAGAGTGTAG	ATCCCAAAA
	TTACCCAAAG	AAGAAGATGG	AAAAGCGATT	TGTCTTCAAC	AAGATAGAAA	TCAATAACAA	GCTGGAATT
	GAGTCTGCC	AGT1CCCCAA	CTGGTACATC	AGCACCTCTC	AAGCAGAAAA	CATGCCGTC	TCCTCTGGGAG
	GGACCAAAGG	CGGCCAGGAT	ATAACTGACT	TCACCATGCA	ATTITGTGCT	TCCTAAAGAG	AGCTGTACCC
	AGAGAGTCCT	GTGCTGAATG	TGGACTCAAT	CCCTAGGGCT	GGCAGAAAGG	GAACAGAAAG	GTTTTGAGT
45	ACGGCTATAG	CCTGAGCTTT	CCTGTTGCT	ACACCAATGC	CCAAC TGCT	GCCTTAGGGT	AGTGCTAAGA
	GGATCTCTG	TCCATCAGCC	AGGACAGTC	GCTCTCTCT	TTCAAGGCCA	ATCCCCAGCC	CTTTGTTGA
	GCCAGGCCCTC	TCTCACCTCT	CCTACTCACT	TAAGGCCGC	CTGACAGAAA	CCACGGCCAC	ATTGGTTCT
	AAGAAACCCCT	CTG'CATTCG	CTCCCCACATT	CTGATGAGCA	ACCGCTTCCC	TATTATTTA	TTTATTTGTT
	TGTTTGTGTT	ATTCATTGGT	CTAATTCTT	CAAAGGGGGC	AAGAAGTAGC	AGTGTCTGTA	AAAGAGCTA
50	GTTTTTAATA	GCTATGGAAT	CAATTCAATT	TGGACTGGTG	TGCTCTCTT	AAATCAAGTC	CTTTAATTAA
	GACTGAAAAT	ATA'AGCTC	AGATTATT	AATGGGAATA	TTTATAATG	AGCAAATATC	ATACTGTTCA
	ATGGTTCTGA	AATAAACTTC	TCTGAAG	AGAAAGAAC	AGAGAGAGAA	AGAAAAGAAA	GAGGAAGGAA
	GGAAGGAAGG	AAGAAAGACA	GGCTCTGAGG	AAGGTGGCAG	TTCCCTACAC	GGGAGAACCA	GTGGTTAATT
	TGAAAGTGG	ATCCGTGGA	GGCANNAGA	GGAGTCCCCT	AGGCCACCA	GACAGGGCTT	TTAGCTATCT
	GCAGGCCAGA	CACCAAAATT	CAGGAGGGCT	CAGTGTAGG	AATGGATTAT	GGCTTATCAA	ATTACACAGGA
55	AACTAACATG	TTGAACAGCT	TTTAGATTTC	CTGTGGAAAA	TATAACTTAC	TAAAGATGGA	GTTCTTGTA
	CTGACTCCTG	ATATCAAGAT	ACTGGGAGCC	AAATTAAAAA	TCAGAAGGCT	GCTTGGAGAG	CAAGTCCATG
	AAATGCTCTT	TTTCCCACAG	TAGAACCTAT	TTCCCTCGTG	TCTCAAATAC	TTGCACAGAG	GCTCACTCCC
	TTGGATAATG	CAGAGCGAGC	ACGATACCTG	GCACATACTA	ATTTGAATAA	AATGCTGTCA	AATTCCCATT
	CACCCATTCA	AGCA.GCAAAC	TCTATCTCAC	CTGAATGTAC	ATGCCAGGCA	CTGTGCTAGA	CTTGGCTCAA
60	AAAGATTCA	GTTCTCTGGA	GGAACCAGGA	GGGCAAGGTT	TCAACTCAGT	GCTATAAGAA	GTGTTACAGG
	CTGGACACGG	TGGCTCACGC	CTGTAATCCC	AACATTGGG	AGGCCGAGGC	GGGCAGATCA	CAAGGTCAGG
	AGATCGAGAC	CATCCTGGCT	AACATGGTGA	AACCCCTGTCT	CTACTAAAAA	TACAAAAAAAT	TAGCCGGGCG

	TTGGCGGCAG	GTGCCCTGAG	TCCCAGCTGC	TGGGGAGGCT	GAGGCAGGAG	AATGGTGTGA	ACCCGGGAGG
	CGGAACCTTG	AGGCIGGCCGA	GATCGTGCCA	CTGCACTCCA	GCCTGGGCGA	CAGAGTGAGA	CTCTGTCTCA
	AAAAAAAAAAA	AAAAGTGTAA	TGATGCAGAC	CTGTCAAAGA	GGCAAAGGAG	GGTGTTCCTA	CACTCCAGGC
5	ACTGTTCAT	ACCTGGACTC	TCATTCACTC	TACAAATGGA	GGGCTCCCC	GGGCAGATCC	CTGGAGCAGG
	CACTTTGCTG	GTGTCTCGGT	TAAAGAGAAA	CTGATAACTC	TTGGTATTAC	CAAGAGATAG	AGTCTCAGAT
	GGATATTCTT	ACACAAACAA	TATTCCTACT	TTTCAGAGTT	CACCAAAAAA	TCATTTAGG	CAGAGCTCAT
	CTGGCATTGA	TCTGGTTCAT	CCATGAGATT	GGCTAGGGTA	ACAGCACCTG	GTCTGCAGG	GTTGTGTGAG
	CTTATCTCCA	GGGIGCCCC	AACTCCGTCA	GGAGCCTGAA	CCCTGCATAC	CGTATGTTCT	CTGCCCCAGC
10	CAAGAAAGGT	CAA'TTTCTC	CTCAGAGGCT	CCTGCAATTG	ACAGAGAGCT	CCCGAGGCAG	AGAACAGCAC
	CCAAGGTAGA	GACCCACACC	CTCAATACAG	ACAGGGAGGG	CTATTGGCCC	TTCATGTAC	CCATTTATCC
	ATCTGTAAGT	GGGGAGAGATTC	CTAAACTAA	GTACAAGGAA	GTGAATGAAG	AAAAGTATGT	GCATGTATAA
	ATCTGTTGT	CTTCCACTTT	GTCCCACATA	TACTAAATT	AAACATTCTT	CTAACGTGGG	AAAATCCAGT
	ATTTAATGT	GGACATCAAC	TGCAACACGA	TTGTCAGGAA	AAACATGCAT	ATTGATGATGG	TGATACATTT
15	GCAAAATGTG	TCA'AGTTTG	CTACTCCTG	CCCTTCCATG	AACCAGAGAA	TTATCTCAGT	TTATTAGTCC
	CCTCCCCATAA	GAAGCTTCCA	CCAATACTCT	TTTCCCTTT	CCTTTAACTT	GATTGTGAAA	TCAGGTATTC
	AACAGAGAAA	TTTCAGGCC	TCCTACTTAA	GCTTTTGAAA	GCTATAAAA	CAGCGAGGGAA	GAAACTGGCA
	GATACCAAAC	CTCTCGAGG	CACAAGGCAC	AACAGGCTGC	TCTGGGATTC	TCTTCAGCCA	ATCTTCATG
	CTCAAGTATG	ACTTTAATCT	TCCTTACAAAC	TAGGTGCTAA	GGGAGTCTCT	CTGTCTCTCT	GCCTCTTGT
20	GTGTATGCAT	ATTCTCTCTC	TCTCTCTCTT	TCTTTCTCTG	TCTCTCTCT	CCTTCTCTC	TGCCCTCTCT
	CTCAGCTTTT	TGCA AAAATG	CCAGGTGTAA	TATAATGCTT	ATGACTCGGG	AAATATTCTG	GGAATGGATA
	CTGCTTATCT	AAACAGCTGAC	ACCCTAAAGG	TTAGTGTCAA	AGCCTCTGCT	CCAGCTCTCC	TAGCCAATAC
	ATTGCTAGTT	GGGGTTTGGT	TTAGCAAATG	CTTTCTCTA	GACCCAAAGG	ACTTCTCTT	CACACATTCA
	TTCATTTACT	CAGAGATCAT	TTCTTTGCAAT	GACTGCCATG	CACTGGATGC	TGAGAGAAAT	CACACATGAA
25	CGTAGCCGTC	ATGCGGAAGT	CACTCATTTC	CTCCTTTTA	CACAGGTGTC	TGAAGCAGCC	ATGGCAGAAG
	TACCTGAGCT	CGCCAGTGAA	ATGATGGCTT	ATTACAGGTC	AGTGGAGACG	CTGAGACCAG	TAACATGAGC
	AGGTCTCTC	TTTCAGAGT	AGAGTGTAT	CTGTGCTTGG	AGACCAAGATT	TTTCCCTAA	ATTGCCTCTT
	TCAGTGGCAA	ACAGGGTGC	AAGTAATCT	GATTAAAGA	CTACTTTCCC	ATTACAAGTC	CCTCCAGCCT
	TGGGACCTGG	AGGCATATCCA	GATGTGTTGT	TGCAAGGGCT	TCCTGCAGAG	GCAAATGGGG	AGAAAAGATT
30	CCAAGCCCAC	AATA.CAAGGA	ATCCCTTGC	AAAGTGTGGC	TTGGAGGGAG	AGGGAGAGCT	CAGATTTAG
	CTGACTCTGC	TGGGCTAGAG	GTTAGGCTC	AAAGATCCAAC	AGGGAGCACC	AGGGGCCA	CCTGCCAGGC
	CTAGAATCTG	CCTCTGGAC	TGTTCTGCGC	ATATCACTGT	GAAACTGCC	AGGTGTTCA	GGCAGCTTTG
	AGAGGCAGGC	TGT'TGCACT	TTCTTATGAA	CAGTCAGTC	TTGTACACAG	GGAAGGAAAA	ATAAACCTGT
	TTAGAAGACA	TAA'TGAGAC	ATGTCCTGT	TTTATTACAA	GTGGCAATGA	GGATGACTTG	TTCTTGAAG
35	CTGATGCC	TAACAGATG	AAGGTAAGAC	TATGGGTTTA	ACTCCCCAAC	CAAGGAAGGG	CTCTAACACA
	GGGAAAGCTC	AAAGAAGGGAA	GTTCTGGGCC	ACTTGTATGC	CATGGTATTT	TGTTTAGAA	AGACTTTAAC
	CTCTTCCAGT	GAGA CACAGG	CTGCACCACT	TGCTGACCTG	GCCACTTGGT	CATCATATCA	CCACAGTCAC
	TCACTAACGT	TGGTGGTGGT	GGCCACACTT	GGTGGTGACA	GGGGAGGAGT	AGTATAATG	TTCCCATITC
	ATAGTAGGAA	GACAAACCAAG	TCTTCACAT	AAATTGATT	ATCCTTTAA	GAGATGGATT	CAGCCTATGC
	CAATCACTG	AGTIAAAACTC	TGAAACCAAG	AGATGATCTT	GAGAACTAAC	ATATGTCTAC	CCCTTTGAG
40	TAGAATAGTT	TTTCTTAC	TGGGGTGAAG	CTTATAACAA	CAAGACATAG	ATGATATAAA	CAAAAAGATG
	AATTGAGACT	TGAAGAAAAA	CCATTCACTT	GCTGTTTGAC	CTTGACAAGT	CATTTCACCC	GCTTTGGACC
	TCATCTGAAA	AATAAAGGGC	TGAGCTGGAT	GATCTCTGAG	ATTCCAGCAT	CCTGCAACCT	CCAGTTCTGA
	AATATTTCA	GTTGAGCTA	AGGGCATTG	GGCAGCAAAT	GGTCATTTTT	CAGACTCATC	CTTACAAAGA
	GCCATGTTAT	ATTCTGCTG	TCCCCTCTGT	TTTATATGAT	GCTCAGTAGC	CTTCCTAGGT	GCCCAGCCAT
45	CAGCCTAGCT	AGG'CAGTTG	TGCAGGTGG	AGGCAGCCAC	TTTCTCTGG	CTTATTTTA	TTCCAGTTG
	TGATAGCCTC	CCCTAGCCTC	ATAATCCAGT	CCTCAATCTT	GTAAAAAAACA	TATTCTTTA	GAAGTTTAA
	GAETGGCATA	ACTCTTGGC	TGCAGCTGTG	GGAGGGAGCCC	ATTGGCTGTG	CTGCCCTGGCC	TTTGCCCCCC
	ATTGCCTCTT	CCAC CAGCTT	GGCTCTGCTC	CAGGCAGGAA	ATTCTCTCTC	GCTCAACTTT	CTTTTGTGCA
	CTTACAGGTC	TCTTAACTG	TCTTCAAGC	CTTGAACCA	TTATCAGCCT	TAAGGCAACC	TCAGTGAAGC
50	CTTAATACGG	AGCITCTCTG	AATAAGAGGA	AAGTGGTAAC	ATTTCACAAA	AAGTACTCTC	ACAGGATTG
	CAGAATGCCT	ATGAGACAGT	GTTATGAAA	AGGAAAAAAA	AGAACAGTGT	AGAAAAATTG	AATAACTGCT
	GAGTGAGCAT	AGG'GAATGG	AAAATGTTAT	GGTCATCTGC	ATGAAAAAAGC	AAATCATAGT	GTGACAGCAT
	TAGGGATACA	AAAAGATATA	GAGAAGGTAT	ACATGTATGG	TGTAGGTGGG	GCATGTACAA	AAAGATGACA
	AGTAAATCG	GGATTATTTC	TAAAGAATAG	CCTGTAAGGT	GTCCAGAACG	CACATTCTAG	TCTTGAGTCT
55	GCCTCTACCT	GCTC TGTGCC	CTTGAGTACA	CCCTTAACCT	CCTTGAGCTT	CAGAGAGGGA	TAATTTTT
	ATTTATTTT	ATTI TATTTT	GTTTTGTTTT	GTTTTGTTTT	GTTTTATGAG	ACAGAGTCTC	ACTCTGTTGC
	CCAGGCTGGA	GTGCAGTGGT	ACAATCTGG	CTTACTGCAT	CCTCCACCTC	CTGAGTTCAA	GCGATTCTCC
	TTCCCTAGTC	TCCTGAATAG	CTAGGATTAC	AGGTGCACCC	CACCACACCC	AGCTAATT	TGTATTTTTA
	GTAGAGAAGG	GGT'TCGCCA	TGTTGGCCAG	GCTGGTTTG	AAGTCCTGAC	CTAAATGATT	CATCCACCTC
60	GGCTTCCAA	AGTC CTGGGA	TTACAGGCAT	GAGCCACCAC	GCCTGGCCCA	GAGAGGGATG	ATCTTTAGAA
	GCTCGGGATT	CTTCAAGCC	CTTCTCTCT	CTCTGAGCTT	TCTACTCTCT	GATGTCAAAG	CATGGTTCTC
	GGCAGGACCA	CCTCACCAAGG	CTCCCTCCCT	CGCTCTCTCC	GCAGTGCTCC	TTCCAGGACC	TGGACCTCTG

	CCCTCTGGAT	GGCGGCATCC	AGCTACGAAT	CTCCGACCAC	CACTACAGCA	AGGGCTTCAG	GCAGGCCGCG
	TCAGTTTGTG	TGGCCATGGA	CAAGCTGAGG	AAGATGCTGG	TTCCCTGCC	ACAGACCTTC	CAGGAGAAATG
	ACCTGAGCAC	CTTCTTTCCC	TTCATCTTG	AAGAAGGTAG	TTAGCCAAGA	GCAGGCAGTA	GATCTCCACT
5	TGTGTCTCT	TGGAAGTCAT	CAAGCCCCAG	CCAACATCAAT	TCCCCCAGAG	CCAAAGCCCT	TTAAAGGTAG
	AAGGCCAACG	GGGGAGACAA	AACAAAGAAG	GCTGGAAACC	AAAGCAATCA	TCTCTTAGT	GGAAACTATT
	CTTAAAGAAG	ATCTTGATGG	CTACTGACAT	TTGCAACTCC	CTCACTCTT	CTCAGGGGCC	TTTCACTTAC
	ATTGTCACCA	GAGGTTCGTA	ACCTCCCTGT	GGGCTAGTGT	TATGACCATC	ACCATTTCAC	CTAAGTAGCT
	CTGTTGCTCG	GCCACAGTGA	GCAGTAATAG	ACCTGAAGCT	GGAACCCATG	TCTAATAGTG	TCAGGTCCAG
10	TGTTCTTAGC	CACCCCACTC	CCAGCTTCAT	CCCTACTGGT	GTTGTCATCA	GACTTTGACC	GTATATGCTC
	AGGTGTCTC	CAAGAAATCA	AATTTCGCCA	CCTCGCCTCA	CGAGGCCTGC	CCTCTGATT	TTATAACCTAA
	ACAACATGTG	CTCCACATT	CAGAACCTAT	CTTCTTCGAC	ACATGGGATA	ACGAGGCTTA	TGTGCACGAT
	GCACCTGTAC	GATCAGTGA	CTGCACGCTC	CGGGACTCAC	AGCAAAAAAG	CTTGGTGTATG	TCTGGTCCAT
	ATGAACGTAA	AGCTCTTACAC	CTCCAGGGAC	AGGATATGGA	GCAACAAAGGT	AAATGGAAAC	ATCCTGGTTT
15	CCCTGCTGG	CCTCTGGCA	GCTTGCTAAT	TCTCCATGTT	TTAAACAAAG	TAGAAAGTTA	ATTTAAGGCA
	AATGATCAAC	ACAAAGTGA	AAAAATATTA	AAAAGGAATA	TACAAACTT	GGTCCTAGAA	ATGGCACATT
	TGATTGCACT	GGCCAGTGA	TTTGTAAACA	GGAGTGTGAC	CCTGAGAAAT	TAGACGGCTC	AAGCACTCCC
	AGGACCATGT	CCACCCAAGT	CTCTTGGCA	TAGTGCAGTG	TCAATTCTTC	CAACATATGG	GGTCATTGAA
	TGGACATGGC	CTA/CTGCC	GTGGGTTCTC	TCTTCTGTGTT	GTTGAGGCTG	AAACAAGAGT	GCTGGAGCGA
20	TAATGTGTCC	ATCCCCTCC	CCAGTCTTC	CCCCCTGCC	CAACATCCGT	CCCACCCAAT	GCCAGGTGGT
	TCCTTGTAGG	GAATTTTAC	CGCCCAGCAG	GAACTTATAT	CTCTCCGCTG	TAACGGCAA	AAGTTTCAAG
	TGCGGTGAAC	CCATCATTAG	CTGTGGTGT	CTGCCTGGCA	TCGTGCCACA	GTAGCCAAAG	CCTCTGCACA
	GGAGTGTGGG	CAACTAAGGC	TGCTGACTTT	GAAGGACAGC	CTCACTCAGG	GGGAAGCTAT	TTGCTCTCAG
	CCAGGCCAAG	AAAATCCTGT	TTCTTGAA	TCGGGTAGTA	AGAGTGTATCC	CAAGGCTCTC	AATTGACACT
25	GCTGTGACTG	AGGAAGATCA	AAATGAGTGT	CTCTCTTGG	AGCCACTTTC	CCAGCTCAGC	CTCTCCTCTC
	CCAGTTCTT	CCCATGGGCT	ACTCTCTGTT	CCTGAAACAG	TTCTGGTGC	TGATTCTGG	CAGAAGTACA
	GCTTCACCTC	TTTCTTTCC	TTCCACATTG	ATCAAGTGT	TCCGCTCTG	TGGATGGC	CATTGCCAGC
	CAGTGACACA	ATGCTTCC	TCCTTCTTC	CTTCAGCATT	TAACATGTAG	ACCCCTTTTC	ATTCTCCGTT
	CCTACTGCTA	TGAGGCTCTG	AGAAACCCCTC	AGGCCTTGA	GGGGAAACCC	TAATCAACA	AAATGACCT
30	GCTATTGTCT	GTGAGAAGTC	AAGTTATCCT	GTGTCTTAGG	CCAAGGAACC	TCACTGTGGG	TTCCCACAGA
	GGCTACCAAT	TACATGTATC	CTACTCTCGG	GGCTAGGGGT	TGGGGTGA	CTGCATGCTG	TGTCCCTAAC
	CACAAGACCC	CCTCTTCT	TCAGTGGTGT	TCTCCATGTC	CTTTGTACAA	GGAGAAGAAA	GTAATGACAA
	AATACCTGTG	GCCTTGGGCC	TCAAGGAAA	GAATCTGTAC	CTGTCCTCG	TGTTGAAAGA	TGATAAGCCC
	ACTCTACAGC	TGGAGGTAA	TGAATGCTAT	GGATGAAGC	CCTTCTCAGC	CTCTGCTAC	CACTTATTCC
35	CAGACAATT	ACCTCTCCC	CGCCCCCATC	CCTAGGAAAA	GCTGGAAACA	GGTCTATTG	ACAAGTTTG
	CATTAATGTA	AATAAATT	ACATAATT	TAACTCGCG	CAACCTCAA	TCCTGCTGCA	GAAAATTAAA
	TCATTTGCC	GATGTTATA	TGTCTACCA	TAGTTACAAC	CCCAACAGAT	TATATATTGT	TAGGGCTGCT
	CTCATTGAT	AGACACCTTG	GGAAATAGAT	GACTTAAAGG	GTCCCATTAT	CACGTCCACT	CCACTCCCCAA
	AATCACCACC	ACTATCACCT	CCAGCTTCT	CAGAAAAGC	TTCATTTCCA	AGTTGATGTC	ATTCTAGGAC
40	CATAAGGAAA	AATAACAATAA	AAAGCCCCCTG	GAAACTAGGT	ACTTCAAGAA	GCTCTAGCTT	AATTTCACC
	CCCCAAAAAA	AAAAAAATT	TCACCTACAT	TATGCTCTC	AGCATTGGC	ACTAAGTTT	AGAAAAGAAG
	AAGGGCTCTT	TTAATAATCA	CACAGAAAGT	TGGGGGCCCA	GTTACAAC	AGGAGTCTGG	CTCCTGATCA
	TGTGACCTGC	TCGTCACTT	CCTTCTGGC	CAACCCAAAG	AAACATTTTC	CCATAGGCAT	CTTGTCTCCT
	TGCCCCACAA	AAA'TCTTCT	TTCTCTTCG	CTGCAGAGTG	TAGATCCCAA	AAATTACCC	AAGAAGAAGA
45	TGGAAAAGCG	ATTGTCTT	AACAAGATAG	AAATCAATAA	CAAGCTGAA	TTTGAGTCTG	CCCAGTTCCC
	CAACTGGTAC	ATCA/GCACCT	CTCAAGCAGA	AAACATGCC	GTCTTCTGG	GAGGGACCAA	AGGCGGCCAG
	GATATAACTG	ACTCTACCAT	GCAATTGTTG	TCTTCTAA	GAGAGCTGA	CCCAGAGAGT	CCTGTGCTGA
	ATGTGGACTC	AATCCTAGG	GCTGGCAGAA	AGGAACAGA	AAGGTTTTTG	AGTACGGCTA	TAGCCTGGAC
	TTTCTGTG	TCTAACCAA	TGCCCAACTG	CCTGCCCTAG	GGTAGTGTCA	AGAGGATCTC	CTGTCCATCA
50	GCCAGGACAG	TCA/GCTCTCT	CCTTTCAGGG	CCAATCCCCA	GCCCTTTGT	TGAGCCAGGC	CTCTCTCACC
	TCTCTACTC	ACTTAAAGCC	CGCCTGACAG	AAACCACGGC	CACATTGGT	TCTAAGAAAC	CCTCTGTCT
	TCGCTCCCAC	ATTCTGATGA	GCAACCGCTT	CCCTATTAT	TTATTTATT	TTTGTTTTGT	TTTGATTCTAT
	TGGTCTAATT	TATTCAGG	GGGCAAGAAG	TAGCAGTGT	TGTAAAAGAG	CCTAGTTTT	AATAGCTATG
	GAATCAATT	AATTTGGACT	GGTGTGCTCT	CTTTAAATCA	AGTCCTTAA	TTAAAGACTGA	AAATATATAA
55	GCTCAGATTA	TTTAATATGGG	AATATTATA	AATGAGCAA	TATCATACTG	TTCAATGGTT	CTGAAATAAA
	CTTCACTGAA	GAAGAAAAAA	AAAGGGCTC	TCCTGATCAT	TGACTGTC	GATTGACACT	GACAGTAAGC
	AAACAGGCTG	TGAGAGTTCT	TGGGACTAAG	CCCACCTCTC	ATTGCTGAGT	GCTGCAAGTA	CCTAGAAATA
	TCCTTGGCCA	CCGAAGACTA	TCCTCTCAC	CCATCCCCCT	TATTCGTTG	TTCAACAGAA	GGATATTCA
	TGCACATCTG	GAACAGGATC	AGCTGAAGCA	CTGCAGGGAG	TCAGGACTGG	TAGTAACAGC	TACCATGATT
60	TATCTATCAA	TGCACAAAC	ATCTGTTGAG	CAAGCGCTAT	GTACTAGGAG	CTGGGAGTAC	AGAGATGAGA
	ACAGTCACAA	GTCCCTCCTC	AGATAGGAGA	GGCAGCTAGT	TATAAGCAGA	ACAAGGTAAC	ATGACAAGTA
	GAGTAAGATA	GAAGAACGAA	GAGGAGTAGC	CAGGAAGGAG	GGAGGAGAAC	GACATAAGAA	TCAAGCCTAA
	AGGGATAAAAC	AGAAGATTTC	CACACATGGG	CTGGGCAAT	TGGGTGTC	TTACGCTGT	AATCCCAGCA

	CTTTGGGTGG	CAGGGGCAGA	AAGATCGCT	GAGCCCAGGA	GTTCAAGACC	AGCCTGGCA	ACATAGTGAG
	ACTCCCATCT	CTAC ^{AAAAAA}	TAAATAATA	AATAAAACAA	TCAGCCAGG	ATGCTGGCAT	GCACCTGTAG
	TCCTAGTAC	TTGGGAAGCT	GACACTGGAG	GATTGCTGA	GCCCAGAA	TCAAGACTGC	AGTGAGCTTA
5	TCCGTTGACC	TGCGAGTCGA	CACAAACCTT	TCGAGGCAAA	AGGCAAAAAA	GGCTGCTCTG	GGATTCTCTT
	CAGCCAATCT	TCATGCTCA	AGTGTCTGA	GCAGCCATGG	CAGAAGTACC	TAAGCTGCC	AGTGAAATGA
	TGGCTTATTA	CAGTGGCAAT	GAGGATGACT	TGTTCTTGA	AGCTGATGCC	CCTAACAGA	TGAAGTGCTC
	CTTCCAGGAC	CTGGACCTCT	GCCCTCTGGA	TGGCGCATC	CAGCTACGAA	TCTCCGACCA	CCACTACAGC
10	AAGGGCTTCA	GGCA.GGCCGC	GTCAGTTGTT	GTGCCATGG	ACAAGCTGAG	GAAGATGCTG	GTTCCCTGCC
	CACAGACCTT	CCAC-GAGAAT	GACCTGAGCA	CCTCTTTCC	CTTCATCTT	GAAGAAGAAC	CTATCTCTT
	CGACACATGG	GATAACGAGG	CTTATGTGCA	CGATGCCACCT	GTACGATCAC	TGAAC TGAC	GCTCCGGGAC
	TCACAGCAA	AAAGCTTGGT	GATGTCTGGT	CCATATGAAC	TGAAAGCTCT	CCACCTCCAG	GGACAGGATA
	TGGAGCAACA	AGTGTGTTC	TCCATGTCCT	TTGTACAAGG	AGAAGAAAAGT	AATGACAAAAA	TACCTGTGGC
15	CTTGGGCTC	AAGC AAAAGA	ATCTGTACCT	GTCTGCGTG	TTGAAAGATG	ATAAGCCCAC	TCTACAGCTG
	GAGAGTGTAG	ATCC CAAAAA	TTACCCAAAG	AAGAAGATGG	AAAAGCGATT	TGTCTCAAC	AAGATAGAAA
	TCAATAACAA	GCTC GAATT	GAGTCTGCC	AGTCCCCAA	CTGGTACATC	AGCACCTCTC	AAGCAGAAA
	CATGCCGTC	TTCC TGGGAG	GGACCAAAGG	CGGCCAGGAT	ATAACTGACT	TCACCATGCA	ATTGTGTCT
	TCCTAAAGAG	AGC1GTACCC	AGAGAGTCT	GTGCTGAATG	TGGACTCAAT	CCCTAGGGCT	GGCAGAAAAGG
20	GAACAGAAAG	GTT TTGAGT	ACGGCTATAG	CCTGGACTTT	CCTGTTGCT	ACACCAATGC	CCAACTGCTC
	GCCTTAGGGT	AGTC CTAAGA	GGATCTCTG	TCCATCAGCC	AGGACAGTCA	GCTCTCTCCT	TCAGGGCCA
	ATCCCAGCCC	TTTT GTT GAG	CCAGGCCTCT	CTCACCTCTC	CTACTCACT	AAAGCCGCC	TGACAGAAAC
	CAGGCCACAT	TTTC GTT CTA	AGAAACCCCTC	CTCTGTCATT	CGCTCCACAA	TTCTGATGAG	CAACCGCTC
25	CCTATTATT	TATT TATT TG	TTGTTTGT	TTGATTCTT	GGTCTAATT	ATTCAAAGGG	GGCAAGAAGT
	AGCAGTGTCT	GTAA AAGAGC	CTAGTTTTA	ATAGCTATGG	AATCAATTCA	ATTGGACTG	GTGTGCTCTC
	TTTAAATCAA	GTCTTTAAT	TAAGACTGAA	AATATATAAG	CTCAGATTAT	TTAAATGGGA	ATATTTATAA
30	ATGAGCAAAT	ATCA TACTGT	TCAATGGTT	TCAAATAAAC	TTCACT	CTGGCAGGAG	TAGCAGCTGC
	CCCTTGGCGC	GACTGCTGG	GCGCGA	AGAGAAACAC	AGACACGCC	CATAGAGCAA	CGGCCTCTC
	CGGAGCGTGG	AGCCCGCAA	GCTCGAGCT	AGCTTCGCT	TGCCGTCCAC	CACTGCCCAC	ACTGTCGTT
	GCTGCCATCG	CAGA CCTGCT	GCTGACTTCC	ATCCCTCTGG	ATCCGGCAAG	GGCCTGCGAT	TTTGACAATG
35	TCAAGATT	CCG1ATATCC	CTGTTGTT	GGATACACCA	GTGACGTCCA	CTTCTAGAAG	ACAAAGTTAT
	ATTACTTAA	CAACCAAAGA	TATGAAACTA	TCCATGAGA	ACAATATTAT	CAATACACAG	CAGTCTTTG
	TAACCATGCC	CAATGTGATT	GTACCA	GGATA	AATACGAAGG	ATGGAAAATG	GAGCATGCAG
	CTCCCTTCT	GAGG ATGATG	ACAGTCC	TACATCTGAA	GAATCAGAGA	ATGAAAACCC	TCATGCAAGG
40	GGTTCCCTTA	GTTA TAAGTC	ACTCAGAAAG	GGAGGACCAT	CACAGAGGG	GCAGTACCTG	CCTGGTGCCA
	TTGCCATT	TAATGTGAAC	AACAGCGACA	ATAAGGACCA	GGAACCGAGA	GAAAAAAAGA	AAAAGAAAAAA
45	AGAAAAGAAG	AGCAAGTCAG	ATGATAAAA	CGAAAATAAA	ACGACCCAA	AGAAGAAGAT	GGAAAAGCGA
	ATGGCCAAAG	TTCCAGACAT	GTITGAAGAC	CTGAAGAACT	GTTACAGTGA	AAATGAAGAA	GACAGTTCT
	CCATTGATCA	TCTGTCTCTG	AATCAGAAAT	CCTCTTATCA	TGTAAGCTAT	GGCCCACTCC	ATGAAGGCTG
	CATGGATCAA	TCTGTGTCTC	TGAGTATCTC	TGAAACCTCT	AAAACATCCA	AGCTTACCTT	CAAGGAGAGC
50	ATGGTGGTAG	TAGC AACCAA	CGGGAGGTT	CTGAAGAAGA	GACGGTTGAG	TTAAGCCAA	TCCATCACTG
	ATGATGACCT	GGAC GCCATC	GCCAATGACT	CAGAGGAAGA	AATCATCAAG	CCTAGGTCAG	CACCTTTAG
	CTTCCTGAGC	AATGTGAAAT	ACAACCTTAT	GAGGATCATC	AAATACGAAT	TCATCCTGAA	TGACGCCCTC
	AATCAAAGTA	TAATTCGAGC	CAATGATCAG	TACCTCACGG	CTGCTGCTT	ACATAATCTG	GATGAAGCAG
55	TGAAAATTG	CATGGGTGCT	TATAAGTCAT	CAAAGGATGA	TGCTAAAATT	ACCGTGATTC	TAAGAATCTC
	AAAAACTCAA	TTGTATGTGA	CTGCCAAGA	TGAAGACCAA	CCAGTGCTGC	TGAAGGAGAT	GCCTGAGATA
	CCCCAAACCA	TCAC AGGTAG	TGAGACCAAC	CTCCTCTTCT	TCTGGGAAAC	TCACGGCACT	AAGAACTATT
	TCACATCAGT	TGCCCATCCA	AACTTGT	TTGCCACAAA	GCAAGACTAC	TGGGTGTGCT	TGGCAGGGGG
60	GCCACCTCT	ATCACTGACT	TTCAGATACT	GGAAAACCAG	GCGTAGGTCT	GGAGTCTCAC	TTGTCTCACT
	TGTGAGTGT	TGAC AGTTCA	TATGTACCAT	GTACATGAAG	AAGCTAAATC	CTTIACTGTT	AGTCATTG
	TGAGCATGTA	CTGA GCCTTG	TAATTCTAAA	TGAATGTTA	CACTTTGT	AAGAGTGGAA	CCAACACTAA
	CATATAATGT	TGTI ATT TAA	AGAACACCT	ATATTTCGA	TAGTACCAAT	CATTAAATT	ATTATTCTTC
	ATAACAATT	TAGGAGGACC	AGAGCTACTG	ACTATGGCTA	CCAAAAAGAC	TCTACCCATA	TTACAGATGG
	GCAAATTAA	GCATAAGAAA	ACTAAGAAAT	ATGCACAATA	GCAGTTGAAA	CAAGAAGCCA	CAGACCTAGG
	ATTCATGAT	TTCA TTCAA	CTGTTGCT	TCTGCTTTA	AGTTGCTGAT	GAACTCTTAA	TCAAATAGCA
	TAAGTTCTG	GGAC CTCAGT	TTTATCATT	TCAAAATGG	GGGAATAATA	CCTAACGCTT	CCTGCCGCAA
55	CAGTTTTA	TGCT ^A ATCAG	GGAGGTCA	TTGGTAAAAT	ACTTCTCGAA	GCCGAGCCTC	AAGATGAAGG
	CAAAGCACGA	AATGTTATT	TTAATTATT	ATTATATAT	GTATTAT	ATATATTAA	GATAATTATA
	ATATACTATA	TTTA TGGGAA	CCCCTTCATC	CTCTGAGTGT	GACCAGGCAT	CCTCCACAAT	AGCAGACAGT
	GTTTCTGGG	ATAAGTAAGT	TTGATTCAT	TAATACAGGG	CATTGGTC	CAAGTTGTGC	TTATCCCATA
	GCCAGGAAC	TCTC CATTCT	AGTACTTGGG	AGACCTGTAA	TCATATAATA	AATGTACATT	AATTACCTTG
60	AGCCAGTAAT	TGG CCGATC	TTTGACTCT	TTGCCATTAA	ACTTACCTGG	GCATTCTGT	TTCATTCAAT
	TCCACCTGCA	ATCAAGTCCT	ACAAGCTAA	ATTAGATGAA	CTCAACTTTG	ACAACCATAG	ACCAACTGTTA
	TCAAAACTTT	CTTTCTGGA	ATGTAATCAA	TGTTCTCT	AGGTTCTAAA	AATTGTGATC	AGACCATAAT

	GTTACATTAT TATCAACAAT AGTGATTGAT AGAGTGTAT CAGTCATAAC TAAATAAAGC TTGCAAGTGA	GGGAGTCATT TCAT'GGCGT TTGAGTCAGC AAAGAAGTCAGC AGCTGCCAGC CAGAGAGGGA GTCATTTCAT
5	TACAGTAAA ATG`AGAAGA AAGTCAGAT GGCCAAAGTT CCAGACATGT TTGAAGACCT GAAGAACTGT	TGGCGTTGA GTCAGCAAAG AACATCTCAT TGTCTCTGAA TCAGAAATCC TTCTATCATG
10	TAAGCTATGG CCCACTCCAT GAAGGCTGCA TGGATCAATC TGTGTCTG AGTATCTCTG AAACCTCTAA	AACATCCAAG CTTACCTTCA AGGAGAGCAT GGTGGTAGTA GCAACCAACG GGAAGGTTCT GAAGAAGAGA
15	CGGTTGAGTT TAAC CCAATC CATCACTGAT GATGACCTGG AGGCCATCGC CAATGACTCA GAGGAAGAAA	TCATCAAGCC TAGGTCTCATCA CTTTTAGCT TCCTGAGCAA TGTGAAATAC AACTTTATGA GGATCATCAA
20	ATACGAATTG ATCC TGAATG ACGCCCTCAA TCAAAGTATA ATTGAGGCC ATGATCAGTA CCTCACGGCT	GCTGCATTAC ATAATCTGGA TGAAGCAGTG AAATTGACA TGGGCTTA TAAGTCATCA AAGGATGATG
25	CTAAAATTAC CGTC ATTCTA AGAACATCTAA AAACATCAATT GTATGTGACT GCCCAAGATG AAGACCAACC	AGTGCTGCTG AAGGAGATGC CTGAGATACC CAAACCCATC ACAGGTAGTG AGACCAACCT CCTCTTCTTC
30	AAGGAAACTC ACGGCACTAA GAACTATTC ACATCAGTTG CCCATCCAAA CTGTTTATT GCCACAAAGC	GTAGGCTCTGG AGTCTCACTT GTCTCACTTG TGCACTGTTG ACAGTCATA TGTACCATGT ACATGAAGAA
35	AAAAAGACTC TACCCATATT ACAGATGGGC AAATTAAGGC ATAAGAAAAC TAAGAAATAT GCACAATAGC	GCTAAATCCT TTACTGTTAG TCATTTGCTG AGCATGACT GAGCCTGTA ATTCTAAATG AATGTTTACA
40	TTGCTGATGA ACTCTTAATC AAATAGCATA AGTTTCTGGG ACCTCAGTTT TATCATTTC AAAATGGAGG	GAATAATACC TAAGCCTTCC TGCCGCAACA GTTTTTATG CTAATCAGGG AGGTCACTT GGTAAAATAC
45	ATTTATAAAAT ATAATTAAGA TAATTATAAT ATACTATATT TATGGGAACC CCTTCATCCT CTGAGTGTGA	CCAGGCATCC TCCACAATAG CAGACAGTGT TTCTGGGAT AAGTAAGTTT GATTICATTA ATACAGGGCA
50	GGTTCTAAAA ATTGTGATCA GACCATAATG TTACATTATT ATCAACAATA GTGATTGATA GAGTGTATAC	AGTCATAACT AAATAAGCT TGCAACAAAA TTCTCTG-3' (FRAG. NO:_(SEQ. ID NO:2517)
55	5'-AAGCTTCTAC CCTAGTCTGG TGCTACACTT ACATTGCTTA CATCCAAGTG TGGTATTTC TGTGGCTCCT	GTTATAACTA TTATAGCACC AGGTCTATGA CCAGGAGAAT TAGACTGCA TTAAATCAGA ATAAGAGATT
60	TTGCACCTGC AATGACCTT ATGACACCTA ACCAACCCCCA TTATTTCACAA TTAAACAGGA ACAGAGGGAA	TACTTTATCC AACTCACACA AGCTGTTTC CTCCCAGATC CATGCTTTTG TGCGTTTATT ATTTTTAGA
	GATGGGGGCT TCACTATGTT GCCCACACTG GACTAAAAGT CTGGGCTCAGC AAGTCTACAGC	GATGGGGCT TCACTATGTT GCCCACACTG GACTAAAAGT CTGGGCTCAGC AAGTCTACAGC
	CTCCTGAATA GCTGGGACTA CAGGGGATG CCATCACACC TAGTCATTT CCTCTATTTA AAATATACAT	GGCTTAAACT CCAACTGGGA ACCCAAAACA TTCATTGCT AAGAGTCTGG TGTTCTACCA CCTGAACTAG
	GCTGGCCACA GGAATTATAA AAGCTGAGAA ATTCTTAAT AATAGTAACC AGGCAACATC ATTGAAGGCT	GATGGGGCT TCACTATGTT GCCCACACTG GACTAAAAGT CTGGGCTCAGC AAGTCTACAGC
	CATATGTAAA ATTCATGCC TTCCCTTCTC CCAATCTCCA TTCCAAACT TAGCCACTGG TTCTGGCTGA	TACTTTATCC AACTCACACA AGCTGTTTC CTCCCAGATC CATGCTTTTG TGCGTTTATT ATTTTTAGA
	GGCCTTACGC ATACCTCCCG GGGCTTGAC ACACCTTCTT CTACAGAACAA CACACCTTGG GCATATCCTA	GATGGGGCT TCACTATGTT GCCCACACTG GACTAAAAGT CTGGGCTCAGC AAGTCTACAGC
	CAGAAGACCA GGCCTCTCTC TGGCTCTGG TAGAGGGCTA CTTTACTGTA ACAGGGCCAG GGTGGAGAGT	GGCTTAAACT CCAACTGGGA ACCCAAAACA TTCATTGCT AAGAGTCTGG TGTTCTACCA CCTGAACTAG
	TCTCTCTGA AGCTCCATCC CCTCTATAGG AAATGTGTTG ACAATATTCA GAAGAGTAAG AGGATCAAGA	GCTGGCCACA GGAATTATAA AAGCTGAGAA ATTCTTAAT AATAGTAACC AGGCAACATC ATTGAAGGCT
	CTTCTTGTG CTCAAATACC ACTGTTCTCT TCTCTACCC TAGAAACTTG ATAAGTTCC CTACAGAACAA CACACCTTGG	CATATGTAAA ATTCATGCC TTCCCTTCTC CCAATCTCCA TTCCAAACT TAGCCACTGG TTCTGGCTGA
	CTGAGGTGAT TTATGCCCTA ATCAAGCAAA CTTCCCTCTT CTCCTACCT CTCCTACCT CTCCTACCT	GGCCTTACGC ATACCTCCCG GGGCTTGAC ACACCTTCTT CTACAGAACAA CACACCTTGG GCATATCCTA
	TTGCCAGGAG CTGCCAAGTA TTCTGCCAAAT TCACCAATCAA CAAATTCAAG CTCCTACCT CTCCTACCT	CAGAAGACCA GGCCTCTCTC TGGCTCTGG TAGAGGGCTA CTTTACTGTA ACAGGGCCAG GGTGGAGAGT
	CTACAGCTAC TAT`AGAACT ATTATTATA ATAAATTCTC TAGAAACTTG ATAAGTTCC CTACAGAACAA CACACCTTGG	TCTCTCTGA AGCTCCATCC CCTCTATAGG AAATGTGTTG ACAATATTCA GAAGAGTAAG AGGATCAAGA
	CACGATTCTC CCCCTCTCC TAGAAACTTG ATAAGTTCC CTACAGAACAA CACACCTTGG GCATATCCTA	CTTCTTGTG CTCAAATACC ACTGTTCTCT TCTCTACCC TAGAAACTTG ATAAGTTCC CTACAGAACAA CACACCTTGG
	TGTCATCTTA TAAAGCAAAG GGGTGAATAA ATGAACCAAA TCAATAACTT CTGGAATATC TGCAAAACAC	GGCTTAAACT CCAACTGGGA ACCCAAAACA TTCATTGCT AAGAGTCTGG TGTTCTACCA CCTGAACTAG
	AATAATATCA GCTATGCCAT CTTTCACTAT TTTAGCCAGT ATCGAGTGA ATGAACATAG AAAAATACAA	GGCTTAAACT CCAACTGGGA ACCCAAAACA TTCATTGCT AAGAGTCTGG TGTTCTACCA CCTGAACTAG
	AACTGAATTG TTCCCTGTAA ATTCCCCGTT TTGACGACGC ACTTGTAGCC ACGTAGCCAC GCCTACTTAA	AATAATATCA GCTATGCCAT CTTTCACTAT TTTAGCCAGT ATCGAGTGA ATGAACATAG AAAAATACAA
	GACAATTACA AAAGGCGAAG AAGACTGACT CAGGCTTAAG CTGCCAGCCA GAGAGGGAGT CATTTCATTG	AACTGAATTG TTCCCTGTAA ATTCCCCGTT TTGACGACGC ACTTGTAGCC ACGTAGCCAC GCCTACTTAA
	GCGTTTGAGT CAGCAAAGGT ATTGTCTCTA CATCTCTGGC TATTAAAGTA TTTCTGTGTT GTCCTCCCT	GACAATTACA AAAGGCGAAG AAGACTGACT CAGGCTTAAG CTGCCAGCCA GAGAGGGAGT CATTTCATTG
	CTTTGGCTGT TTTCTCTCAC ATTGCCCTCT CTAAGACTAC AGTCTCTCTT TTCTTTCTT GTCCTCCCT	GCGTTTGAGT CAGCAAAGGT ATTGTCTCTA CATCTCTGGC TATTAAAGTA TTTCTGTGTT GTCCTCCCT
	GGTTTGCTAT GTGACCTAGA ATTACAGTC GATTTCAGAA AATGATTCTC TCATTTGCT GATAAGGACT	CTTTGGCTGT TTTCTCTCAC ATTGCCCTCT CTAAGACTAC AGTCTCTCTT TTCTTTCTT GTCCTCCCT
	GATTCGTTT ACTGAGGGAC GGCAGAACTA GTTCCCTATG AGGGCATGGG TGAATACAAC TGAGGCTTCT	GGTTTGCTAT GTGACCTAGA ATTACAGTC GATTTCAGAA AATGATTCTC TCATTTGCT GATAAGGACT
	CATGGGAGGG AATCTCTACT ATCCAAAATT ATTAGGAGAA AATTGAAAAT TTCCAACCTCT GTCTCTCT	GATTCGTTT ACTGAGGGAC GGCAGAACTA GTTCCCTATG AGGGCATGGG TGAATACAAC TGAGGCTTCT
	TACCTCTGTG TAAGGCAAAT ACCTTATTCT TGTGGTGTGTT TTGTAACCTC TTCAAACCTTT CATTGATTGA	CATGGGAGGG AATCTCTACT ATCCAAAATT ATTAGGAGAA AATTGAAAAT TTCCAACCTCT GTCTCTCT
	ATGCCTGTT TCAGCAATACA TTAGGTTGGG CACATAAGGA ATACCAACAT AAATAAAACA TTCTAAAGA	TACCTCTGTG TAAGGCAAAT ACCTTATTCT TGTGGTGTGTT TTGTAACCTC TTCAAACCTTT CATTGATTGA
	AGTTTACGAT CTAATAAAGG AGACAGGTAC ATAGCAAACAT AATTCAAAGG AGCTAGAAGA TGGAGAAAAT	ATGCCTGTT TCAGCAATACA TTAGGTTGGG CACATAAGGA ATACCAACAT AAATAAAACA TTCTAAAGA
	GCTGAATGTG GAC`AAGTCAGA TTCAACAAAG TTTTCAGGAA GCACAAAGAG GAGGGGCTCC CCTCACAGAT	AGTTTACGAT CTAATAAAGG AGACAGGTAC ATAGCAAACAT AATTCAAAGG AGCTAGAAGA TGGAGAAAAT
	ATCTGGATTA GAGGCTGGCT GAGCTGATGG TGGCTGGTGT AGAAGTCAGA ATGGCCAAG	GCTGAATGTG GAC`AAGTCAGA TTCAACAAAG TTTTCAGGAA GCACAAAGAG GAGGGGCTCC CCTCACAGAT

	TTCCAGACAT	GTTTGAAGAC	CTGAAGAACT	GTTACAGGTA	AGGAATAAGA	TTTATCTCTT	GTGATTTAAT
	GAGGGTTCA	AGGCCTCACCA	GAATCCAGCT	AGGCATAACA	GTGGCCAGCA	TGGGGCAGG	CCGGCAGAGG
5	TTGTAGAGAT	GTGTACTAGT	CCTGAAGTC	GAGCAGGTT	AGAGAAGACC	CAGAAAAACT	AAGCATTCA
	CATGTTAAC	TGACATTACA	TTGGCAGGGA	GACCAGCATT	TTAGAAAAAT	TATTTTGAG	GTCTGCTGAG
	CCCTACATGA	ATATCAGCAT	CAACTTAGAC	ACAGCCTCTG	TTGAGATCAC	ATGCCCTGAT	ATAAGAATGG
	GTTTTACTGG	TCCATTCTCA	GGAAAACCTG	ATCTCATTCA	GGAAACAGGAA	ATGGCCTCAC	AGCAAGCTGG
	GCATGTGAAC	TCACATATGC	AGGCAAATCT	CACTCAGATG	TAGAAGAAAG	GTAATATGAAC	ACAAAGATAA
10	AATTACGGAA	CATATTAAAC	TAACATGATG	TTTCCTTATT	CTGTAGTAA	TACTAACACA	AACTAGGCTG
	TCAAAATT	GCCTGGATAT	TTTACTAAGT	ATAAATTATG	AAATCTGTT	TAGTGAATAC	ATGAAAGTAA
	TGTGTAACAT	ATAATCTATT	TGGTTAAAAT	AAAAGGAAG	TGCTTCAAAA	CCTTCTTTT	CTCTAAAGGA
	GCTTAACATT	CTTCCTGAA	CTTCAATTAA	AGCTCTCAA	TTTGTAGCC	AAGTCCAATT	TTTACAGATA
15	AAGCACAGGT	AAAAGCTCAA	GCCTGCTTG	ATGACTACTA	ATTCCAGATT	AGTAAGATAT	GAATTACTCT
	ACCTATGTG	ATGIGTAGAA	GTCCTTAAAT	TTCAAAAGATG	ACAGTAATGG	CCATGTGTAT	GTGTGTGACC
	CACAACATAC	ATGCTCATTA	AAAGTACATTG	GCCAGAGACC	ACATGAATAA	ACAAACATTA	CATTCTCATC
	ATCTTATTTT	GACAGTGA	ATGAAGAAGA	CAGTCCCTCC	ATTGATCATC	TGTCTCTGAA	TCAGGTAAGC
	AAATGACTGT	AATTCCTCATG	GGACTGCTAT	TCTTACACAG	TGGTTCTTC	ATCCAAAGAG	AACAGCAATG
20	ACTTGAATCT	TAATTAAC	TGTTTACCC	TCACTAGAGA	TCCAGAGACC	TGTCTTCAT	TATAAGTGA
	ACCAGCTGCC	TCTCTAAACT	AATAGTTGAT	GTGCATTGGC	TTCTCCCAGA	ACAGAGCAGA	ACTATCCCAA
	ATCCCTGAGA	ACTCGAGTCT	CCTGGGGCAG	GCTTCATCAG	GATGTTAGTT	ATGCCATCCT	GAGAAAGCCC
25	CGCAGGCCGC	TTCACCAAGGT	GTCTGCTCC	TAACGTGATG	TGTTGTGTT	GTCTCTCTG	ACACCAGCAT
	CAGAGGTTAG	AGAAGAGTCTC	CAAACATGAA	GCTGAGAGAG	AGGAAGCAAG	CCAGCTGAAA	GTGAGAAGTC
	TACAGCCACT	CATCAATCTG	TGTTATTGTT	TTTGGAGACC	ACAAATAGAC	ACTATAAGTA	CTGCCTAGTA
	TGTCTTCAGT	ACTGGCTTTA	AAAGCTGTC	CCAAAGGAGT	ATTCTAAAT	TATTTGAGC	ATTGTTAACG
30	AGATTTTAA	CCTCTTGAGA	GGGAACAAAT	TGGAAAGCTA	CCACTCACTA	CAATCATTTG	TAACCTATTT
	AGTTACACAA	TCTCTTTTT	GAGCATGCA	ATAAATGAAA	AAAGTCTCCT	AAAAAAATCA	TCTTTTATC
	CTGGAAGGAG	GAAGGAAGGT	GAGACAAAG	GGAGAGAGGG	AGGGAAGCCT	ATGAAACAC	CAGTTACCTA
	AGACCAGAA	GGAGATCCTC	CTCACTACCT	CTGTTGAATA	CAGCACCTAC	TGAAAGAACT	TTCATCCCT
35	GACCATGAA	AGCCTCTCAG	CTTCTGTTT	CCTTCCTCAG	AGAAATCCTT	CTATCATGTA	AGCTATGGCC
	CACTCCATGA	AGGCTGCTG	GATCAACTG	TGTCCTCTGAG	TATCTCTGAA	ACCTCTAAA	CATCCAAGCT
	TACCTTCAG	GAGAGCATGG	TGGTAGTAGC	AACCAACGGG	AGGTTCTGA	AGAAGAGACG	GTTGAGTTA
40	AGCCAATCCA	TCACTGATGA	TGACCTGGAG	GCCATCGCCA	ATGACTCAGA	GGAAGGTAAG	GGGTCAAGCA
	CAATAATATC	TTTCCTTTAC	AGTTTAAGC	AAGTAGGGAC	AGTAGAATT	AGGGAAAAT	TAAACGTGGA
	GTCAGAATAA	CAAGAAGACA	ACCAAGCATT	AGTCTGGTA	CTATACAGAG	AAAAATTAAAT	TTTATCCTT
	CTCCAGGAGG	GAGAAATGAG	CAGTGGCTG	AATCGAGAAT	ACTTGCTCAC	AGCCATTATT	TCTTAGCCAT
45	ATTGTAAGG	TCCGTGTACT	TTTAGCTTT	CAGGAGAAAG	CAGTAATAAG	ACCACTTACG	AGCTATGTC
	CTCTCATACT	AACTATGCCT	CCTTGGTCAT	GTTACATAAT	CTTTTCGTGA	TTCAGTTCTC	TCTACTGTAA
	AATGGAGATA	ATCAGAATCC	CCCACTCATT	GGATTGTTGT	AAAGATTAAG	AGTCTCAGGC	TTTACAGACT
	GAGCTAGCTG	GGCCCTCTG	ACTGTTATAA	AGATTAATG	AGTCACACATC	CCCTAACCTTC	TGGACTAGAA
50	TAATGTCCTGG	TACAAAGTAA	GCACCCAAATA	AATGTTAGCT	ATTACTATCA	TTATTATTAT	TATTTTATTT
	TTTTTTTTG	AGATGGAGTC	TGGCTCTGTC	ACCCAGGCTG	GAGTGCAGTG	GCACAATCTC	GGCTCACTGC
	AAGCTCTGCC	TCCCTGGGTT	ATGCCATTCT	CCTGCCCTAG	CCTCCCGAGT	AAGCTGGGAA	TACAGGCACC
	CGCCACTGTT	CCCCGCTAAAT	TTTTGTATT	TTTAGTAGAG	ACGGAGTTTC	ACCGGGTCT	CCATCTCC
55	GTGATCCACC	CACCTTGGCC	TCCCCAAAGTG	CCGGGATTAC	AGGCGTGAGC	CACCGCGCCC	GGCCTATTAT
	TATTATTTT	ACTACTACTA	CTACCTATAT	GAATACTACC	AGCAACTA	ATTTATTAAT	GACTGGATTA
	TGTCTAAC	TCACAAAGAAT	CCTACCTTCT	CATTTACAT	AAAAGGAAAC	TAAGCTCATT	GAGATAGGTA
	AACTGCCAA	TGGCATAACAT	CTGTAAGTGG	GAGAGCCTCA	AATCTAATTTC	AGTTCTACCT	GAGTAAAAAA
60	ATCATGTTT	CTCCCTCATC	CCTTTACTGT	ACAAGCCTCC	ACATGAACTA	AAACCCAAAT	ATTCTGTTT
	TTAAGATAAT	ACCI AAGCAA	TAACGCTATG	TCACCTAGAA	GGTTTAAAAA	TGTAACAAAA	TATAAGAAAA
	TAAAAATCAC	TCAATCGTC	AGTGAGAGTT	TACTACTGCC	AGCACTATGG	TATGTTTCTC	TAAAATCTT
	GCTATACACA	TACCTACATG	TGAACAAATA	TGTCTAACAT	CAAGACCACA	CTATTACAA	CTTTATATCC
	AGCTTTCTT	ACTTAGCAAT	GTATTGAGGA	CATTCTAGAG	TGCCCCTTT	TCACCAATTAT	AAGCAATGCA
	ACAATGAACA	TCTGTATAAA	TAATATTCA	TTTCTCTCAG	CCTTTATTTC	CTTAGAATAT	ATTCCCTAGAA
	GTAGAATTTC	CCAGAGGCCAT	GAGGATTGTT	GACGCTATTG	ATATGTGCCA	CTTGCACTC	TCTGTGACAT
	ATATAATTAT	TTTAATGCA	TTCATTTTT	TCTCAGAGTG	CATTCTGTTT	AAAACATAGA	CGGGAAATAC
55	TGGTAGCTT	CCTGTCAGT	AGAAACACC	CAAACAAATGA	AAAATGAAAAA	AGTGCACAA	ATAGTCTCTA
	AAAACAATGA	AACTATTGCC	TGAGGAATTG	AAGTTAAAAA	AGAAGCACAT	AAGCAACAAAC	AAGGATAATC
	CTAGAAAACC	AGTTCTGCTG	ACTGGGTGAT	TTCACTCTC	TTTGCTTCT	CATCTGGATT	GGAATATTCC
	TAATACCC	TCCAGAACTA	TTTCCCTGT	TTGTACTAGA	CTGTGTATAT	CATCTGTGTT	TGTACATAGA
	CATTAATCTG	CACTGTGAT	CATGGTTTA	GAAATCATCA	AGCCTAGGTC	ATCACCTTT	AGCTTCCTGA
60	GCAATGTGAA	ATACAACTTT	ATGAGGATCA	TCAAATACGA	ATTCATCTG	AATGACGCC	TCAATCAAAG
	TATAATTGCA	GCCATGTATC	AGTACCTCAC	GGCTGCTGCA	TTACATAATC	TGGATGAAGC	AGGTACATTA
	AAATGGCACC	AGACATTCTC	GTCATCCTCC	CCTCTTCA	TTTACTTATT	TATTTATTTC	AATCTTCTG

	CTTGCAAAAA	ACA'ACCTCT	TCAGAGTTCT	GGGTGCACA	ATTCTTCCAG	AATAGCTTGA	AGCACAGCAC
	CCCCATAAAA	ATCC'CAAGCC	AGGGCAGAAG	GTTCAACTAA	ATCTGGAAGT	TCCACAAGAG	AGAACGTTCC
5	TATCTTGTAG	AGTA'AAGGGT	TGTGCACAAA	GCTAGCTGAT	GTACTACCTC	TTGGTTCTT	TCAGACATTC
	TTACCCCAA	TTT'TAAACT	GAGGAAACTG	TCAGACATAT	TAATGATT	ACTCAGATT	ACCCAGAAAGC
	CAATGAAGAA	CAA'CACTCT	CCTTAAAAAA	GTCTGTTGAT	CAAACATCACA	AGTAACACCA	AACCAGGAAG
	ATCTTATA	TCTCTGATAA	CATATTGTC	AGGCAAACC	TCCAATAAGC	TACAAATATG	GCTTAAAGGA
	TGAAGTTAG	TGT'CAAAAAA	CTTTATCAC	ACACATCCAA	TTTCATGGC	GGACATGTTT	TAGTTCAAC
	AGTATACATA	TTTCAAAGG	TCCAGAGGAG	CAATTGCA	ATAAACAAAGC	AAGACTTTTT	CTGATTGGAT
10	GCACCTCAGC	TAACATGCTT	TCAACTCTAC	ATTACAAAT	TATTTGTTG	TCTTTTTTC	TACTTAATAT
	TATTCTGCA	ATTTCACCAA	TATTGACATC	GTGTATGAT	TTGCCATT	TAATATCACT	AGACAATTCA
	ATCAGGTTGC	TACGTTGGTC	CCTGGGTTT	ACTCTAAATA	GCTTGATTG	AAATATCTT	GTATATATTA
	TTGTTTTTC	TCCTATCTTG	TAATTCTT	GAGCACATCC	CAAAGAGGAA	TGCCTAGATC	AATGGGCACA
	AATAATTG	CAGCTCTTAT	TAACATTAT	TCTGTAAGTA	AAAACTGAAC	TACTTTTAG	TATCACTAGC
15	AACATATGAG	TGT'TCAGCT	TCCTAAACCC	CTCCATGTTA	GGTCATTAG	AACTTATGAT	CTAACAAATT
	ACAGGGTCTT	ATCCCACTAA	TGAAATTATA	AGAGATTCAA	CACTTATTCA	GCCCCGAAGG	ATTCATTCAA
	CGTAGAAAAT	TCTPAGAACAA	TTAACCAAGT	ATTACCTGC	CTAGTGAGT	TGGAAGACAT	TGTGAAGGAC
	ACAAAGATGT	ATAGAATTCC	ATTCCTGACT	TCCAGGTATT	TACACCATAG	GTGGGGACCT	AACTACACAC
	ACACACACAC	ACACACACAC	ACACACACAC	ACCATGCACA	CACAATCTAC	ATCAACACTT	GATTTATAC
20	AAATACAATG	AAT'TACTTT	CTTTTGTTG	CTTCTTCA	CCAGTGAAT	TTGACATGGG	TGCTTATAAG
	TCATCAAAGG	ATGATGCTAA	AATTACCGTG	ATTCTAAGAA	TCTCAAAAC	TCAATTGTT	GTGACTGCC
	AAGATGAAGA	CCAACCAGTG	CTGCTGAAGG	TCAGTTGTC	TTTGTCTCA	ACTTACCTTC	ATTTACATCT
	CATATGTTG	TAATTAAGCC	CAATAGGCAG	ACACCTCTAA	CAAGGTGACA	CTGCTCTT	TCCTTCCTAC
	CACAGCCCC	ACCIACCCAC	CCCACCTCCA	TTGATTCCAG	AGGCCTGCCT	AGGCAGGATC	TATGAGAAA
25	TATAACAGAG	AGTAAGAGGA	AAATTACCTT	CTTCTTTT	CCTTCCCCTG	CCTGACCTTA	TTCACCTCCC
	ATCCCAGAGC	ATCCATTAT	TCCATTGATC	TTTACTGACA	TCTTATTATCT	GACCTACACA	ATACTAGACA
	TTAGGACAAT	GTGCCTGCC	TCCAAGAAC	TCAAATAAGC	CAACTGAGAT	CAGAGGAGAT	TAATCACCTG
	CCAATGGGCA	CAA'GCAACA	AGCTGGAGC	CAAGTCCAA	AATGGGGCCT	GCTGCTTCCA	GTTCCTCTT
	CTCTGCATTG	ATGICAGCAT	TATCCTCGT	CCCAGTCCTG	TCTCCACTAC	CACTTCCCC	CTAAACACAA
	CACACACACA	ACAGCCTTAG	ATGTTTCTC	CACTGATAAG	TAGGTGACTC	AATTGTAAG	TATATAATCC
30	AAGACCTTCT	ATTCCAAGT	AGAATTATG	TGCTGCCTG	TGCTTTCTA	CCTGGATCAA	GTGATGTCTA
	CAGAGTAGGG	CAG'AGCTTC	ATTATGAAC	TCATTCAACA	AGCATTATTC	ACTGAGAGCC	TTGTATTTT
	CAGGCATAGT	GCCACACAGCA	GTGTGGACAG	TGGTGCATCA	AAGCCTCTAG	TCTCATAGAA	CTTAGTCTC
	TGGAGGATAT	GGAAAACAGA	CAACCCAAAC	AACCAACAAA	AGAGCAAGAT	GCTGAAAAAA	AAAAAAAAT
	GAATAGGGTG	CTA'GATAGA	GGAAAGTGGG	AGAGTGTAT	TTAGACAAAG	TGGTAAAAAC	AAAGCCCC
35	GTGAGATGAG	AGC'GCCGAC	AGAGGGGGCG	GGTCATGGTT	GTGGGTTTT	GGGTAGGACA	TTCAGAGGAG
	GGGGCGGGTC	GTGGTTGTGG	GTTTTGTTG	AGGACATTCA	GAGGAGGGGG	CGGGTCGTGG	TTGTGGGTTT
	TTGGGTAGGA	CATI'CAGAGG	AGGGGGCGGG	TCGTGGTTGT	GGGTTTTGG	GTAGGACATT	CAGAGGAGGG
	GGCGGGTCGT	GGT'GTGGGT	TTTGGGACA	TTCAGAGGAG	TCTGAATGCA	CCCAGGCCTA	CAACTTCAAG
	ATGGTAAAGG	ACAC'CTCAA	GGATCAGAAG	AAGCATTCTT	GGAACGGGG	CATTGAGA	AGGAGGAAAA
40	ATATGCAGAG	ACT'ATGCTT	GCAGAGCTT	CATTGGATT	TCATTTGAGG	TACAATGAAA	ACCCATTAAT
	GGGTTTCACA	CAG'GCAATG	GCCTGACCTC	ACTTATATT	CCTAAATAG	AAAACAGATC	AGAAGGAAGG
	CAATAGAGAA	GCAGAAAGTC	CAATGAGGAG	GTTCACAGC	AGTCATGGGG	GTGGGTTAAG	GAAAAGAAGT
	GGAAAGAAC	AGACAGAAATT	GGGTTATATT	TTGGAGATAG	AACCAACAGA	AGGAAGAGGA	GAAACAACAT
	TTACTGAGAA	GGGA'AAAAGT	AGGAGAGGAA	TAGGTTGGG	AAATAAATCC	TGCTGACATT	GGAAACCCCA
45	AGGAAGCCTC	AAA'GTATAT	TTACTTGCTT	TAGATTTAAA	AGAATAGGAA	AGAACATCT	CAACTTGGAA
	TTTGAATCT	ATTITCCAT	AAAAGTATTG	TTAAATTCTA	CTCATACTCA	CAAGAAAAGT	ACATTCTAAA
	GAGTATATTG	AAAGAGTTTA	CTGATATACT	TAGGAATT	GTGTGTATGT	GTGTGTGTGT	ATGTGTGTGT
	GTGTGTTAA	CCTICAATTG	TTGACTTAA	TACTGAGATA	AATGTCATCT	AAATGCTAAA	TTGATTCTCC
	AAAGGTATGA	TTTC'TTCACT	TGGAGATCAA	AATGTTTAGG	GGGCTTAGAA	TCACTGTAGT	GCTCAGATT
50	GATGAAAAT	GTCTTAGGCC	TATGTTGAAG	GCAGGACAGA	AACAATGTT	CCCTCTTAC	TGCCTGGATA
	CAGTAAGATA	CTAG'GTCA	TGACAATCTT	CATAACTAAT	TTAGATCTCT	CTCCAATCAA	CTAAGGAAT
	CAACTCTTAT	TAATAGACTG	GGCCACACAT	CTACTAGGC	TGTAATAAAT	GCTGCTGAA	TGAACAAATG
	AATGAAGAGC	CTAT'AGCATC	ATGTTACAGC	CATAGTCCTA	AAGTGGTGT	TCTCATGAAG	GCCAAATGCT
	AAGGGATTGA	GCT'CACTGC	TTTTCTAAC	ATCTGTTCT	CTAACAGAAT	TCTCTTCTT	TCTTCATAGG
55	AGATGCCTGA	GATA'CCCAA	ACCATCACAG	GTAGTGGAGAC	CAACCTCTC	TTCTCTGGG	AAACTCACGG
	CACTAAGAAC	TATITCACAT	CAGTTGCCCA	TCCAAACTTG	TTTATTGCCA	CAAAGCAAGA	CTACTGGGTG
	TGCTTGGCAG	GGGGGCCACC	CTCTATCACT	GACTTCAGA	TACTGGAAAA	CCAGGCGTAG	GTCTGGAGTC
	TCACCTGCT	CACT'GTGCA	GTGTTGACAG	TTCATATGTA	CCATGTACAT	GAAGAAGCTA	AATCCTTAC
	TGTTAGTCAT	TTGCTGAGCA	TGTACTGAGC	CTTGTAAATT	TAAATGAATG	TTTACACTCT	TTGTAAGAGT
60	GGAACCAACA	CTA'ACATATA	ATGTTGTAT	TTAAAGAACAA	CCCTATATT	TGCATAGTAC	CAATCATT
	AATTATTATT	CTTC'ATAACA	ATTTAGGAG	GACCAGAGCT	ACTGACTATG	GCTACCAAAA	AGACTCTACC
	CATATTACAG	ATGGGCAAAT	TAAGGCATAA	GGAAACTAAG	AAATATGCAC	AATAGCAGTT	GAAACAAGAA

5' GCCACAGACC TAGGATTCA TGATTTCATT TCAACTGTT GCCTTCTGCT TTTAAGTTGC TGATGAAC
 TTAATCAAAT AGCATAAGTT TCTGGGACCT CAGTTTATC ATTTTCAAAA TGGAGGAAT AATAAC
 CCTTCCTGCC GCAACAGTT TTTATGCTAA TCAGGGAGGT CATTGGTA AAATACTTCT CGAAC
 CCTCAAGATG AAGGCAAAGC ACGAAATGTT ATTNTTAAT TATTATTTAT ATATGTATT GCATC
 5 TTAAGATAAT TATAATATAC TATATTATG GGAACCCCTT CATCCTCTGA GTGTGAC
 CAATAGCAGA CAG`GTTTC TGGGATAAGT AAGTTGATT TCATTAATAC AGGGCATTIT GGTC
 GTGCTTATCC CATAGCCAG AAACCTGCA TTCTAGTACT TGGGAGACCT GTAATCATAT
 CATTAAATTAC CTTGAGCCAG TAATTGGTCC GATCTTGAC TCTTTGCCA TAAAC
 10 TTGTTTCATT CAATGCCACC TGCAATCAAG TCCTACAAGC TAAAATTAGA TGAAC
 ATGAGACCAC TGT`ATCAAAC ACTTTCTTT CTGGAATGTA ATCAATGTT CTTCTAGGTT
 TGATCAGACC ATAATGTTAC ATTATTATCA ACAATAGTGA TTGATAGAGT GTTATCAGTC
 AAAGCTGCA ACAAAATTCT CTGACACATA GTTATTCATT GCCTTAATCA TTATTTACT
 TAGGGACAAA TGG`AAATGT TTACATAAT AATTGTATT AGTGTACTT TATAAAATCA
 15 TTATTTTT TTCTCTCTT TGTTAGCTGC CAGTAGTCAT AAATGGCATT AAGAATGATA
 GTTCACTAA AGCICATATT ACACATACAC AAAACATGTG TTCCCATCTT TATACAAACT
 GAGCTACATT AAAAACAAT AATAGGCCAG GCACGGTGGC TCAGACCTGT AATCCCAGCA
 (FRAG. NO:_) (SEQ. ID NO:2510)

5'-ACCAACCTCT TCGAGGCACA AGGCACAACA GGCTGCTCTG GGATTCTCTT CAGCCAATCT
 AGTGTCTGAA GCACCCATGG CAGAAGTACC TGAGCTGCC AGTGAATGA TGGCTTATTA
 20 GAGGATGACT TGTCTTTGA AGCTGATGGC CCTAAACAGA TGAAGTCTC CTTCCAGGAC
 GCCCTCTGGA TGGCGGCATC CAGCTACGAA TCTCCGACCA CCACTACAGC AAGGGCTCA
 GTCAGTTGTT GTGGCCATGG ACAAGCTGAG GAAGATGCTG GTTCCCTGCC CACAGAC
 GACCTGAGCA CCTCTTTCC CTTCATCTT GAAGAAGAAC CTATCTCTT CGACACATGG
 25 CTTATGTGCA CGATGACACT GTACGATCAC TGAAGTCAC GCTCCGGGAC TCACAGCAA
 GATGTCTGGT CCATATGAAC TGAAAGCTCT CCACCTCCAG GGACAGGATA TGGAGCAACA
 TCCATGTCTT TTGTACAAGG AGAAGAAAGT AATGACAAAAA TACCTGTGGC CTTGGGCTC
 ATCTGTACCT GTCTGCGTG TTGAAAGATG ATAAGCCCCAC TCTACAGCTG GAGAGTGTAG
 TTACCCAAAG AAGAAGATGG AAAAGCGATT TGTCTTCAC AAGATAGAAA TCAATAACAA
 30 GAGTCTGCC AGTICCCCAA CTGGTACATC AGCACCTCTC AAGCAGAAA CATGCCGTC
 GGACAAAGG CGGCCAGGAT ATAAGTGACT TCACCATGCA ATTGTGTCT TCCTAAAGAG
 AGAGAGCT GTGCTGAATG TGGACTCAAT CCCTAGGGCT GGCAGAAAG GAACAGAAAG
 ACGGCTATAG CCTGGACTTT CCTGTTGCT ACACCAATGC CCAACTGCTC
 GGATCTCTG TCCATCAGCC AGGACAGTCA GCTCTCTCT
 35 GCCAGGCCCTC TCTCACCTCT CCTACTCACT TAAAGCCCCC TTCAGGGCCA ATCCCAGGCC
 AAGAAACCCCT CTG`TATTGCG CTCACACATT CTGATGAGCA ACCGCTTCCC
 TGGTGTGTTT ATTCAATTGGT CTAATTATT CAAAGGGGGC AAGAAGTAGC AGTGTCTGTA
 GTTTTAATA GCTATGGAAT CAATTCAATT TGGACTGGTG TGCTCTCTT
 GACTGAAAAT ATA`AAGCTC AGATTATTA AATGGGATAA TTATTAATG AGCAAATATC
 40 ATGGTTCTGA AATAACTTC TCTGAAG-3' (FRAG. NO:_) (SEQ. ID NO:2511)

5'-AGAAAGAAAG AGAGAGAGAA AGAAAAGAAA GAGGAAGGAA GGAAGGAAGG AAGAAAGACA
 AAGGTGGCAG TTCTACAAAC GGGAGAACCA GTGTTAATT TGAAAGTGG ATCCTGTGA
 GGAGTCCCCT AGGCACCCA GACAGGGCTT TTAGCTATCT
 CAGTGTAGG AATGGATTAT GGCTTATCAA ATTACAGGA AACTAACATG TTGAACAGCT
 45 CTGTGGAAAATA TATACTTAC TAAAGATGGA GTTCTGTGA CTGACTCTG ATATCAAGAT
 AAATTAAAAA TCAGAAGGCT GCTGGAGAG CAAGTCCATG AAATGCTCTT
 TTCCCTCGTG TCTCAATAC TTGCACAGAG GCTCACTCCC TTGGATAATG
 GCACATACTA ATTGAATAA AATGCTGCA AATTCCCATT CACCCATTCA
 CTGAATGTAC ATGCCAGGCA CTGTGCTAGA CTGGCTCAA
 GGGCAAGGTT TCAACTCAGT GCTATAAGAA GTGTTACAGG
 50 AACATTGGG AGGCCGAGGC GGGCAGATCA CAAGGTCAAGG AGATCGAGAC
 AACCTGTCT CTACTAAAAA TACAAAAAAT TAGCCGGCG TTGGCGGCAG
 TGGGGAGGCT GAGGCAGGAG AATGGTGTGA ACCCGGGAGG CGGAAC
 CTGCACTCCA GCCTGGCGA CAGAGTGAGA CTCTGTCTCA
 CTGTCAAAGA GGCAGAGGAG GGTGTTCTA CACTCCAGGC
 55 TACAAATGGA GGGCTCCCT GGGCAGATCC CTGGAGCAGG CACTTGTG
 CTGATAACTC TTGCTATTAC CAAGAGATAG AGTCTCAGAT GGATATTCTT
 TTTCAGAGTT CACCAAAAAA TCATTTAGG CAGAGCTCAT CTGGCATTGA
 GGCTAGGGTA ACAGCACCTG GTCTTGCAAGG GTTGTGTGAG
 GGAGCCTGAA CCC`GCATAC CGTATGTTCT CTGCCCCAGC
 60 CCTGCAATTG ACACAGAGCT CCCGAGGAG AGAACAGCAC CCAAGGTAGA
 ACAGGGAGGG CTA`TGGCCC TTCATTGTCAC CCATTATTC
 GTACAAAGAA GTG`ATGAAG AAAAGTATGT GCATGTATAA
 ATCTGTGTGTT CTTCCACTTT
 GTCCCACATA

	TAATAAATT	AAACATTCTT	CTAACGTGGG	AAAATCCAGT	ATTTTAATGT	GGACATCAAC	TGCACAACGA
	TTGTCAGGAA	AACATATGCAT	ATTTCATGG	TGATACATT	GCAAAATGTG	TCATAGTTG	CTACTCCTG
5	CCCTTCCATG	AACCAGAGAA	TTATCTCAGT	TTATTAGTCC	CCTCCCCCAA	GAAGCTTCCA	CCAATACTCT
	TTTCCCCCTT	CCTTAACTT	GATTGTGAAA	TCAGGTATT	AACAGAGAAA	TTTCTCAGCC	TCCTACTTCT
	GCTTTGAAA	GCTATAAAAA	CAGCGAGGG	GAAATGGCA	GATAACAAAC	CTCTCGAGG	CACAAGGCAC
	AACAGGCTGC	TCTGGGATT	TCTTCAGCCA	ATCTTCATTG	CTCAAGTATG	ACTTTAATCT	TCCTTACAAC
	TAGGTGCTAA	GGGAGTCTCT	CTGTCCTCT	GCCTCTTGT	GTGTTAGCAT	ATTCTCTCTC	TCTCTCTCTT
	TCTTTCTCTG	TCTCFCCTCT	CCTTCCTCT	TGCCTCCCT	CTCAGCTTT	TGCAAAAATG	CCAGGTGTA
10	TATAATGCTT	ATGACTCGGG	AAATATTCTG	GGAATGGATA	CTGCTTATCT	AACAGCTGAC	ACCCCTAAAGG
	TTAGTGTCAA	AGCCCTCTGCT	CCAGCTCTCC	TAGCCAATAC	ATTGCTAGT	GGGGTTGGT	TTAGCAAATG
	CTTTTCTCTA	GACCCAAAGG	ACTTCTCTT	CACACATTCA	TCATTTTACT	CAGAGATCAT	TTCTTTGCAT
	GAUTGCCATG	CACIGGATGC	TGAGAGAAAT	CACACATGAA	CGTAGCCGTC	ATGGGGAAAGT	CACTCATT
	CTCCTTTTA	CACAGGTGTC	TGAAGCAGCC	ATGGCAGAAG	TACCTGAGCT	CGCCAGTGAA	ATGATGGCTT
15	ATTACAGGTC	AGTCGAGACG	CTGAGACAG	TAACATGAGC	AGGTCTCTC	TTCAAGAGT	AGAGTGTAT
	CTGTGCTTGG	AGACAGGATT	TTTCCCCCAA	ATTGCCTCTT	TCAGTGGCAA	ACAGGGTGCC	AAGTAAATCT
	GATTTAAAGA	CTACTTTCCC	ATTACAAGTC	CCTCCAGCCT	TGGGACCTGG	AGGCTATCCA	GATGTGTTG
	TGCAAGGGCT	TCCTGCAGAG	GCAAAATGGG	AGAAAAGATT	CCAAGCCAC	AATACAAGGA	ATCCCTTGC
	AAAGTGTGGC	TTGCAGGGAG	AGGGAGAGCT	CAGATTTAG	CTGACTCTG	TGGGGTAGAG	GTTAGGCCTC
	AAGATCCAAC	AGGGAGCAC	AGGGTGCCA	CCTGCCAGGC	CTAGAATCTG	CCTCTGGAC	TGTTCTCGC
20	ATATCACTGT	GAATCTGCC	AGGTGTTCA	GGCAGCTTG	AGAGGCAGGC	TGTTGCACT	TTCTTATGAA
	CAGTCAGTC	TTGTACACAG	GGAAGGAAA	ATAAACCTGT	TTAGAAGACA	TAATTGAGAC	ATGTCCCTGT
	TTTATTACA	GTGGAATGA	GGATGACTT	TTCTTGAAG	CTGATGGCCC	TAAACAGATG	AAGGTAAGAC
	TATGGGTTA	ACTCCCAACC	CAAGGAAGGG	CTCTAACACA	GGGAAAGCTC	AAAGAAGGG	GTTCTGGGC
	ACTTTGATGC	CATGGTATT	TGTTTAGAA	AGACTTTAAC	CTCTTCCAGT	GAGACACAGG	CTGCACCACT
25	TGCTGACCTG	GCCACTTGGT	CATCATATCA	CCACAGTCAC	TCACTAACGT	TGGGGTGGT	GGCCACACTT
	GGTGGTGA	GGGGAGGAGT	AGTGATAATG	TTCCCATTTC	ATAGTAGGAA	GACAACCAAG	TCTTCAACAT
	AAATTGATT	ATCCCTTTAA	GAGATGGATT	CAGCCTATGC	CAATCACTG	AGTTAAACTC	TGAAACCAAG
	AGATGATCTT	GAGACTAAC	ATATGTCTAC	CCCTTTGAG	TAGAATAGT	TTTGCTACC	TGGGGTGAAG
	CTTATAACAA	CAACACATAG	ATGATATAAA	CAAAAAGATG	AATTGAGACT	TGAAAGAAAA	CCATTCACTT
30	GCTGTTGAC	CTTGACAAGT	CATTTACCC	GCTTGGACC	TCATCTGAAA	AATAAAGGGC	TGAGCTGGAT
	GATCTCTGAG	ATTC CAGCAT	CCTGCAACCT	CCAGTTCTGA	AATATTTCA	GTTGAGCTA	AGGGCATTG
	GGCAGCAAAT	GGTCATTTT	CAGACTCATC	CTTACAAAGA	GCCATGTTAT	ATTCTCTG	TCCCTCTGT
	TTTATATGAT	GCTCAGTAGC	CTTCCTAGGT	GCCCAGCCAT	CAGCCTAGCT	AGGTAGTTG	TGCAGGTTGG
	AGGCAGCCAC	TTTCCTCTGG	CTTTATTAA	TTCCAGTTG	TGATAGCTC	CCCTAGCCTC	ATAATCCAGT
35	CCTCAATCTT	GTAAAAAAACA	TATTTCTTTA	GAAGTTTAA	GACTGGCATA	ACTCTTGGC	TGCAGCTGTG
	GGAGGAGGCC	ATTGGCTTGT	CTGCCTGGCC	TTTGGCCCCC	ATTGCCTCTT	CCAGCAGCTT	GGCTCTGCTC
	CAGGCAGGAA	ATTCTCTCTC	GCTCAACTT	CTTTGTGCA	CTTACAGGTC	TCTTTAACTG	TCTTCAAGC
	CTTTGAACCA	TTATCAGCCT	TAAGGCAACC	TCAGTGAAGC	CTTAATACGG	AGCTCTCTG	AATAAGAGGA
	AAGTGGTAAC	ATTICACAAA	AAGTACTCTC	ACAGGATTG	CAGAATGCCT	ATGAGACAGT	GTTATGAAA
40	AGGAAAAAAA	AGAACAGTGT	AGAAAAATTG	AATACTTGCT	GAGTGGACAT	AGGTGAATGG	AAAATGTTAT
	GGTCATCTGC	ATGAAAAAAAGC	AAATCATAGT	GTGACAGCAT	TAGGGATACA	AAAAGATATA	GAGAAGGTAT
	ACATGTATGG	TGTAGGTGGG	GCATGTACAA	AAAGATGACA	AGTACAATCG	GGATTATTC	TAAAGAATAG
	CCTGTAAGGT	GTCCAGAACG	CACATTCTAG	TCTTGAGTCT	GCCTCTACCT	GCTGTGTGCC	CTTGAGTACA
	CCCTTAACCT	CCTIGAGCTT	CAGAGAGGG	TAATCTTTT	ATTTTATTT	ATTTTATTT	GTTTGTGTTT
45	GTTTTGTGTT	GTTTATGAG	ACAGAGTCTC	ACTCTGTTG	CCAGGCTGGA	GTGCACTGGT	ACAATCTGG
	CTTACTGCTAT	CCTCCACCTC	CTGAGTTCA	GCGATTCTCC	TTCTCTAGTC	TCCTGAATAG	CTAGGATTAC
	AGGTGCACCC	CACCACACCC	AGCTAATT	TGTATTTTA	GTAGAGAAGG	GGTTTCGCA	TGTTGGCCAG
	GCTGGTTTG	AAGICCTGAC	CTAAATGATT	CATCCACCTC	GGCTCCCAA	AGTGCCTGGGA	TTACAGGCAT
	GAGCCACCAC	GCCIGGGCCA	GAGAGGGATG	ATCTTAGAA	GCTCGGGATT	CTTCAAGCC	CTTCCCTCCT
50	CTCTGAGCTT	TCTACTCTCT	GATGTCAAAG	CATGGTCCCT	GGCAGGACCA	CCTCACCAAG	CTCCCTCCCT
	CGCTCTCTCC	GCAGTGTCTC	TTCCAGGACC	TGGACCTCTG	CCCTCTGGAT	GGCGGCATCC	AGCTACGAAT
	CTCCGACCAC	CACTACAGCA	AGGGCTTCAG	GCAGGCCGCG	TCAGTTGTTG	TGGCCATGGA	CAAGCTGAGG
	AAGATGCTGG	TTCCCTGCC	ACAGACCTTC	CAGGAGAATG	ACCTGAGCAC	CTTCTTCCC	TTCATCTTGT
	AAGAAGGTAG	TTAGCCAAGA	GCAGGCAGTA	GATCTCCACT	TGTGCTCT	TGGAAGTCAT	CAAGCCCCAG
55	CCAACCAAT	TCCCACAGAG	CCAAAGCCCT	TAAAGGTAG	AAGGCCAGC	GGGGAGACAA	AACAAAGAAG
	GCTGGAAACC	AAAGCAATCA	TCTCTTAGT	GGAAACTATT	CTTAAAGAAG	ATCTGATGG	CTACTGACAT
	TTGCAACTCC	CTCACTCTT	CTCAGGGGCC	TTTCACTTAC	ATTGTCACCA	GAGGTTCGTA	ACCTCCCTGT
	GGGCTAGTGT	TATCACCATC	ACCATTTCAC	CTAAGTAGCT	CTGTTGCTCG	GCCACAGTGA	GCAGTAATAG
	ACCTGAAGCT	GGAACCCATG	TCTAATAGT	TCAGGTCCAG	TGTTCTTAGC	CACCCCACTC	CCAGCTTCAT
60	CCCTACTGGT	GTTGTCATCA	GACTTTGACC	GTATATGTC	AGGTGTCCTC	CAAGAAATCA	AATTGTCCTA
	CCTCGCTCA	CGACGCCGTC	CCTTCTGATT	TTATACCTAA	ACAACATGTG	CTCCACATT	CAGAACCTAT
	CTTCTTCGAC	ACATGGGATA	ACGAGGCTTA	TGTGCACTGAT	GCACCTGTAC	GATCACTGAA	CTGCACGCTC

	CGGGACTCAC	AGC _n AAAAAG	CTTGGTGATG	TCTGGTCCAT	ATGAACGTAA	AGCTCTCCAC	CTCCAGGGAC
	AGGATATGGA	GCA _n CAAGGT	AAATGGAAAC	ATCCCTGGTT	CCCTGCCTGG	CCTCCGGCA	GCTTGCTAAT
5	TCTCCATGTT	TTAA _n CAAAG	TAGAAAGTTA	ATTAAAGGC	AATGATCAAC	ACAAGTGAAGA	AAAAATATTAA
	AAAAGGAATA	TAC _n AACTTT	GGTCCTAGAA	ATGGCACATT	TGATTGCACT	GGCCAGTGCA	TTTGTAAACA
	GGAGTGTGAC	CCT _n AGAATA	TAGACGGCTC	AAGCACTCCC	AGGACCATGT	CCACCCAAGT	CTCTTGGGCA
	TAGTGCACTG	TCA _n TTCTC	CACAATATGG	GGTCATTTGA	TGGACATGGC	CTAACATGCC	GTGGGTTCTC
	TCTTCCTGTT	GTTGAGGCTG	AAACAAGAGT	GCTGGAGCGA	TAATGTGTCC	ATCCCCCTCC	CCAGTCTTCC
10	CCCCTTGCCC	CAAC ATCCGT	CCCACCCAAT	GCCAGGTGGT	TCCTGTAGG	GAAATTTAC	CGCCCAGCAG
	GAAC TTATAT	CTCT CCGCTG	TAACGGGCAA	AAGTTCAAG	TGCGGTGAAC	CCATCATTAG	CTGTGGTGAT
	15	CTGCCTGGCA	TCGTGCCACA	GTAGCCAAAG	CCTCTGCACA	GGAGTGTGGG	CAACTAAGGC
	GAAGGACAGC	CTCACTCAGG	GGGAAGCTAT	TTGCTCTAG	CCAGGCCAAG	AAAATCCTGT	TTCTTGGAA
	TCGGGTAGTA	AGAGTGATCC	CAGGGCCTCC	AATTGACACT	GCTGTGACTG	AGGAAGATCA	AAATGAGTGT
	CTCTCTTGG	AGCC _n ACTTTC	CCAGCTCAGC	CTCTCCTCTC	CCAGTTCTT	CCCATGGGCT	ACTCTCTGTT
	CCTGAAACAG	TTC _n GGTGCC	TGATTTCTGG	CAGAACTACA	GCTTCACCTC	TTTCCTTTCC	TTCCACATG
20	ATCAAGTTGT	TCCCCTCTG	TGGATGGGCA	CATTGCCAGC	CAGTGACACA	ATGGCTTCCT	TCCTTCTTC
	CTTCAGCATT	TAATATGTA	ACCCCTTTTC	ATTCTCCGTT	CCTACTGCTA	TGAGGCTCTG	AGAAACCCCTC
	AGGCCTTGA	GGGGAAACCC	TAATCAACA	AAATGACCC	GCTATTGCT	GTGAGAAGTC	AAGTTATCCT
	GTGTCTTAGG	CCA _n AGAACCC	TCACTGTGGG	TTCCCACAGA	GGCTACCAAT	TACATGTATC	CTACTCTCGG
	GGCTAGGGGT	TGGGGGTGACC	CTGCGATGCTG	TGTCCTTAAC	CACAAGACCC	CCTTCTTTCT	TCAGTGGTGT
25	TCTCCATGTC	CTTTGTACAA	GGAGAAGAAA	GTAATGACAA	AATACCTGTG	GCCTTGGGCC	TCAAGGAAA
	GAATCTGTAC	CTG _n CCTGCG	TGTTGAAAGA	TGATAAGCCC	ACTCTACAGC	TGGAGGTAAG	TGAATGCTAT
	GGAATGAAGC	CCT _n CTCAGC	CTCCTGCTAC	CACTTATTCC	CAGACAATT	ACCTTCTCCC	CGCCCCCATC
	CCTAGGAAAA	GCTGGGAACA	GGTCTATTG	ACAAGTTTG	CATTAATGTA	AATAAATTAA	ACATAATTTT
	TAACTGCGTG	CAACCTTCAA	TCCTGCTCA	GAAAATTAAA	TCATTTGCC	GATGTTATTA	TGTCCCTACCA
30	TAGTTACAAC	CCCAACAGAT	TATATATTGT	TAGGGCTGCT	CTCATTGAT	AGACACCTG	GGAAATAGAT
	GACTTAAAGG	GTC _n CATTAT	CACGTCCACT	CCACTCCCAA	AATCACCACC	ACTATCACCT	CCAGCTTCT
	CAGCAAAAGC	TTC _n TTTCCA	AGTTGATGTC	ATTCTAGGAC	CATAAGGAAA	AATACAATAA	AAAGCCCCCTG
	GAAACTAGGT	ACT _n CAAGAA	GCTCTAGCTT	AATTTCACC	CCCCCAAAAA	AAAAAAATTC	TCACCTACAT
	TATGCTCTC	AGCATTGTC	ACTAAGTTT	AGAAAAGAAG	AAGGGCTTT	TTAATAATCA	CACAGAAAGT
35	TGGGGGCCCA	GTT _n CAACTC	AGGAGTCTGG	CTCTGTATCA	TGTGACCTG	TCGTCACTT	CCTTCTGGC
	CAACCCAAAG	AACATCTTC	CCATAGGCAT	CTTGTCCCT	TGCCCAACAA	AAATTCTTCT	TTCTCTTCG
	CTGCAGAGTG	TAGATCCCAA	AAATTACCA	AAGAAGAAGA	TGGAAAAGCG	ATTGTCTTC	AACAAGATAG
	AAATCAATAA	CAAGCTGGAA	TTTGAGTCTG	CCCAGTCC	CAACTGGTAC	ATCAGCACCT	CTCAAGCAGA
	AAACATGCC	GTC _n CTCTGG	GAGGGACCAA	AGGCGGCCAG	GATATAACTG	ACTTCACCAT	GCAATTG
40	TCTTCCTAAA	GAGAGCTGTA	CCCAGAGAGT	CCTGTGCTGA	ATGTGGACTC	AATCCCTAGG	GCTGGCAGAA
	AGGGAAACAGA	AAGGTTTTG	AGTACGGCTA	TAGCCTGGAC	TTTCCTGTTG	TCTACACCAA	TGCCCAACTG
	CCTGCCTTAG	GGT _n GTGCTA	AGAGGATCTC	CTGCCATCA	GCCAGGACAG	TCAGCTCT	CCTTCAGGG
	CCAATCCCCA	GCC _n TTTGTG	TGAGCCAGGC	CTCTCTCACC	TCTCCTACTC	ACTTAAAGCC	CGCCTGACAG
	AAACCACGGC	CACATTGTT	TCTAAGAAAC	CCTCTGTCA	TCGCTCCAC	ATTCTGATGA	GCAACCGCTT
45	CCCTATTAT	TTATTTATT	GTGTTGTTG	TTTGATTCA	TGGTCTAATT	TATTCAAAGG	GGGCAAGAAG
	TAGCAGTGTG	TGTA _n AAAGAG	CCTAGTTTT	AATAGCTATG	GAATCAATT	AATTGGACT	GGTGTGCTCT
	CTTTAAATCA	AGTC _n TTTAA	TTAAGACTGA	AAATATATAA	GTCAGATTA	TTAAATGGG	AATATTATA
	AATGAGCAA	TATCATACTG	TTCAATGGTT	CTGAAATAAA	CTTCACTGAA	GAAAAAAAAA	AAAGGGTCTC
	TCCTGATCAT	TGAC _n GTCTG	GATTGACACT	GACAGTAAGC	AAACAGGCTG	TGAGAGTTCT	TGGGACTAAG
50	CCCACCTCTC	ATTGCTGAGT	GCTGCAAGTA	CCTAGAAATA	TCCTTGGCCA	CCGAAGACTA	TCCTCCTCAC
	CCATCCCC	TATT _n CGTTG	TTCAACAGAA	GGATATTCA	TGCACATCTG	GAACAGGATC	AGCTGAAGCA
	CTGCAGGGAG	TCAGGACTGG	TAGAACAGC	TACCATGATT	TATCTATCAA	TGCACCAAAC	ATCTGTTGAG
	CAAGCGCTAT	GTACTAGGAG	CTGGGAGTAC	AGAGATGAGA	ACAGTCACAA	GTCCTCCTC	AGATAGGAGA
	GGCAGCTAGT	TATAAGCAGA	ACAAGGTAAC	ATGACAAGTA	GAGTAAGATA	GAAGAACGAA	GAGGAGTAGC
55	CAGGAAGGAG	GGAGGAGAAC	GACATAAGAA	TCAAGCCTAA	AGGGATAAAC	AGAAGATTTC	CACACATGGG
	CTGGGCCAAT	TGG _n GTGCGG	TTACGCCTGT	AATCCCAGCA	CTTGGGTTGG	CAGGGGCAGA	AAGATCGCTT
	GAGCCCAGGA	GTTC _n AAGACC	AGCCTGGCA	ACATAGTGA	ACTCCCAC	CTACAAAAAA	TAAATAAATA
	AATAAAACAA	TCAGGCCAGGC	ATGCTGGCAT	GCACCTGTAG	TCCTAGCTAC	TTGGGAAGCT	GACACTGGAG
	GATTGCTTGA	GCCC AGAAGT	TCAAGACTGC	AGTGAGCTT	TCCGTTGACC	TGCAGGTGCA	C-3' (FRAG.
60	NO:_(SEQ. ID NO:251)						
	5'-ACAAACCTT	TCGAGGCAAA	AGGCAAAAAA	GGCTGCTCTG	GGATTCTCTT	CAGCCAATCT	TCAATGCTCA
	AGTGTCTGAA	GCAGCCATGG	CAGAACTAC	TAAGCTGCC	AGTGAATGA	TGGCTTATTA	CAGTGGCAAT
	GAGGATGACT	TGT _n CTTGA	AGCTGATGGC	CCTAAACAGA	TGAAGTGCTC	CTTCCAGGAC	CTGGACCTCT
	GCCCTCTGGA	TGG _n GGCATC	CAGCTACAA	TCTCCGACCA	CCACTACAGC	AAGGGCTCA	GGCAGGCCGC
	GTCAGTTGTT	GTGCCATGG	ACAAGCTGAG	GAAGATGCTG	GTTCCCTGCC	CACAGACCTT	CCAGGAGAAT
	GACCTGAGCA	CCT _n CTTCC	CTTCATCTT	GAAGAAGAAC	CTATCTTCTT	CGACACATGG	GATAACGAGG
	CTTATGTGCA	CGATGACACT	GTACGATCAC	TGAACGTGAC	GCTCCGGGAC	TCACAGCAA	AAAGCTTGGT

GATGTCCTGGT CCATATGAAC TGAAAGCTCT CCACCTCCAG GGACAGGATA TGGAGCAACA AGTGGGTGTC
 TCCATGTCCT TTGT^ACAAGG AGAAGAAAGT AATGACAAAAA TACCTGTGGC CTTGGGCCTC AAGGAAAAGA
 ATCTGTACCT GTCC TCGCTG TTGAAAGATG ATAAGCCAC TCTACAGCTG GAGAGTGTAG ATCCCAAAA
 TTACCCAAG AAG^AAGATGG AAAAGCGATT TGTCTTCAAC AAGATAGAAA TCAATAACAA GCTGGAATT
 5 GAGTCTGCCG AGT^TCCCCAA CTGGTACATC AGCACCTCTC AAGCAGAAA CATGCCGTC TTCCTGGGAG
 GGACCAAAGG CGG^CCAGGAT ATAACGTACT TCACCATGCA ATTGTGTCT TCCTAAAGAG AGCTGTACCC
 AGAGAGCTCT GTGCTGAATG TGGACTCAAT CCCTAGGGCT GGCAGAAAGG GAACAGAAAG GTTTTGAGT
 ACGGCTATAG CCTGGACTTT CCTGTTGTCT ACACCAATGC CCAACTGCT GCCTTAGGGT AGTGCTAAGA
 10 GGATCTCCTG TCCATCAGCC AGGACAGTCA GCTCTCTCTC TTCAGGGCCA ATCCCAGCCC TTTGTTGAG
 CCAGGCCTCT CTCACCTCTC CTACTCACT AAAGCCGCC TGACAGAAC CAGGCCACAT TTGGTTCTA
 AGAAACCTC CTC^TGTCATT CGCTCCCACA TTCTGATGAG CAACCGCTTC CCTATTATT TATTATTGAGT
 TTTGTTGTT TTGATTCATT GGTCTAATT ATTCAAAGGG GGCAAGAAAGT AGCAGTGTCT GTAAAAGAGC
 CTAGTTTTA ATAC CTATGG AATCAATTCA ATTGGACTG GTGTGCTCTC TTTAAATCAA GTCCTTAAT
 TAAGACTGAA AAT^ATATAAG CTCAGATTAT TAAATGGGA ATATTATCAA ATGAGCAAAT ATCATACTGT
 15 TCAATGGTTC TCAAA^TAAAC TTCACT-3' (FRAG. NO:) (SEQ. ID NO:2513)
 5'-CTGGCAGGAG TA^CAGCTGC CCCTGGCGC GACTGCTGGA GCGCGAACT AGAGAAACAC AGACACGCC
 CATAGAGCAA CGG^CGTCTCT CGGAGCGTGG AGCCGCCAA GCTCGAGCTG AGCTTCGCT TGCGTCCAC
 CACTGCCAC ACT^TTCGTTT GCTGCCATCG CAGACCTGCT GCTGACTTCC ATCCCTCTGG ATCCGGCAAG
 20 GGCCTGCGAT TTTC ACAATG TCAAGATTAA CCGTATATCC CTGTTGTT GGATACACCA GTGACGTCCA
 CTTCTAGAAG ACA^AAGTTAT ATTACTTAA CAACCAAAGA TATGAAACTA TCCATGAAGA ACAATTATT
 CAATACACAG CAG^TCTTTG TAACCATGCC CAATGTGATT GTACCAAGATA TTGAAAAGGA AATACGAAGG
 ATGGAAAATG GAGCAGTCAG CTCCCTTCT GAGGATGATG ACAGTGCCTC TACATCTGAA GAATCAGAGA
 ATGAAAACCC TCATGCAAGG GGTTCTTTA GTTATAAGTC ACTCAGAAAG GGAGGACCAT CACAGAGGGA
 GCAGTACCTG CCTG TGCCA TTGCCATTAA TAATGTGAAAC AACAGCGACA ATAAGGACCA GGAACCAGAA
 25 GAAAAAAAGA AAA^AAAAAA AGAAAAGAAG AGCAAGTCAG ATGATAAAAAA CGAAAATAAA AACGACCCAA
 AGAAGAAGAT GGAA^AAGCGA-3' (FRAG. NO:) (SEQ. ID NO:2514)
 5'-ATGGCCAAAG TT^CCAGACAT GTTGAAAGAC CTGAAGAACT GTTACAGTGA AAATGAAGAA GACAGTTCT
 CCATTGATCA TCTCTCTCTG AATCAGAAAT CCTCTATCA TGTAAGCTAT GGCCCACTCC ATGAAGGCTG
 CATGGATCAA TCTCTGTCTC TGAGTATCTC TGAAACCTCT AAAACATCCA AGCTTACCTT CAAGGAGAGC
 30 ATGGTGGTAG TAGC^AACCAA CGGGAAAGGTT CTGAAGAAGA GACGGTTGAG TTTAAGCCAA TCCATCACTG
 ATGATGACCT GGACGCCATC GCCAATGACT CAGAGGAAGA AATCATCAAG CCTAGGTCAG CACCTTTAG
 CTTCTGAGC AATCTGAAAT ACAACTTTAT GAGGATCATC AAATACGAAT TCATCTGAA TGACGCCCTC
 AATCAAAGTA TAA^TTCGAGC CAATGATCAG TACCTCACGG CTGCTGCATT ACATAATCTG GATGAAGCAG
 TGAAATTGAA CATC GGTGCT TATAAGTCAT CAAAGGATGA TGCTAAAATT ACCGTGATTC TAAGAATCTC
 35 AAAAACTCAA TTG^TATGTGA CTGCCAAGA TGAAGACCAA CCAGTGC^TGC TGAAGGAGAT GCCTGAGATA
 CCCAAAACCA TCACAGGTAG TGAGACCAAC CTCCCTTTCT TCTGGGAAAC TCACGGCACT AAGAACTATT
 TCACATCAGT TGCCCATCCA AACTGTTTA TTGCCACAAA GCAAGACTAC TGGGTGTGCT TGGCAGGGGG
 GCCACCCCTCT ATCACTGACT TTCAGATACT GGAAAACCG GCGTAGGTCT GGAGTCTCAC TTGTCTCACT
 TGTGCAGTGT TGACAGTTCA TATGTACCAT GTACATGAAG AAGCTAAATC CTTACTGTT AGTCATTG
 40 TGAGCATGTA CTGA^AGCCTG TAATTCTAAA TGAATGTTA CACTCTTGT AAGAGTGGAA CCAACACTAA
 CATATAATGT TGT^TATTTAA AGAACACCC ATATTITGCA TAGTACCAAT CATTAAATT ATTATTCTTC
 ATAACAATTG TAGGAGGACC AGAGCTACTG ACTATGGCTA CCAAAAAGAC TCTACCCATA TTACAGATGG
 GCAAATTAAAG GCATAAGAAA ACTAAGAAAAT ATGCACAATA GCAGTTGAAA CAAGAAGCCA CAGACCTAGG
 ATTTCATGAT TTCATTTCAA CTGTTGCT TCTGCTTTA AGTTGCTGAT GAACTCTAA TCAAATAGCA
 45 TAAGTTCTG GGACCTCAGT TTTATCATT TCAAAATGGA GGGATAATAA CCTAAGCCTT CCTGCCGCAA
 CAGTTTTTA TGCT^AATCAG GGAGGTCTT TTGGTAAAAT ACTTCTCGAA GCCGAGCCTC AAGATGAAGG
 CAAAGCACGA AATGTTATT TTTAATTATT ATTATATAT GTATTATAA ATATATTAA GATAATTATA
 ATATACTATA TTTA^TGGGAA CCCCTTCATC CTCTGAGTGT GACCAGGCAT CCTCCACAAT AGCAGACAGT
 GTTTCTGGG ATAAGTAAGT TTGATTTCAT TAATACAGGG CATTGTC^TGC CAAGTTGTC TTATCCCTA
 50 GCCAGGAAAC TCTGCATTCT AGTACTTGGG AGACCTGTAA TCATATAATA AATGTACATT AATTACCTTG
 AGCCAGTAAT TGG^CCCGATC TTTGACTCTT TTGCCATTAA ACTTACCTGG GCATTCTGT TTCAATTCAAT
 TCCACCTGCA ATCAAGTCCT ACAAGCTAA ATTAGATGAA CTCAACTTGA ACAACCATAG ACCACTGTAA
 TCAAAACTTT CTTT^TCTGGA ATGTAATCAA TGTTCCTCT AGGTTCTAAA AATTGTGATC AGACCATAAT
 GTTACATTAT TATC^AACAAT AGT^TGATTGAT AGAGTGTAT CAGTCATAAC TAAATAAGC TTGCAAGTGA
 55 GGGAGTCATT TCATIGGCGT TTGAGTCAGC AAAGAAGTCA AG-3' (FRAG. NO:) (SEQ. ID NO:2515)
 5'-AGCTGCCAGC CAGAGAGGGG GTCATTTCAT TGGCGTTGA GTCAGCAAAG AAGTCAAGAT GGCAAAGTT

CCAGACATGT TTGAAGACCT GAAGAACTGT TACAGTGAAA ATGAAGAAGA CAGTTCTCC ATTGATCATC
 TGTCTCTGAA TCAGAAATCC TTCTATCATG TAAGCTATGG CCCACTCCAT GAAGGCTGCA TGGATCAATC
 TGTGTCTCTG AGTATCTCTG AAACCTCTAA AACATCCAAG CTTACCTTCAGGAGAGCAT GGTGGTAGTA
 GCAACCAACG GGAAGGTTCT GAAGAAGAGA CGGTTGAGTT TAAGCCAATC CATCACTGAT GATGACCTGG
 5 AGGCCATCGC CAATGACTCA GAGGAAGAAA TCATCAAGCC TAGGTCATCA CCTTTAGCT TCCTGAGCAA
 TGTGAAATAC AACATTATGAA GGATCATCAA ATACGAATT ACCTGAAATG ACGCCCTCAA TCAAAGTATA
 ATTCGAGCCA ATGATCAGTA CCTCACGGCT GCTGCATTAC ATAATCTGGA TGAAGCAGTG AAATTGACA
 TGGGTGCTTA TAACTCATCA AAGGATGATG CTAAAATTAC CGTGATTCTA AGAATCTCAA AACTCAATT
 GTATGTACT GCCCAAGATG AAGACCAACC AGTGTGCTG AAGGAGATGC CTGAGATACC CAAAACCATC
 10 ACAGGTAGTG AGACCAACCT CCTCTTCTTC TGGGAAACTC ACGGCCTAA GAACTATTT ACATCAGTTG
 CCCATCCAAA CTCTTITATT GCCACAAAGC AAGACTACTG GGTGTGCTG GCAGGGGGC CACCCCTAT
 CACTGACTTT CAGTACTGG AAAACCAAGGC GTAGGTCTGG AGTCTCACTT GTCTCACTTG TGCACTGTTG
 ACAGTTCATCA TGTAACCATGT ACATGAAGAA GCTAAATCTT TTACTGTTAG TCATTGCTG AGCATGTACT
 GAGCCTTGTA ATTCTAAATG AATGTTTACA CTCTTGTAA GAGTGGAAAC AACACTAACAA TATAATGTTG
 15 TTATTTAAAG AACACCCATAT ATTTTGCATA GTACCAATCA TTTTAATTAT TATTCTTCAT AACAAATTAA
 GGAGGACCAG AGC'ACTGAC TATGGCTACC AAAAAGACTC TACCCATATT ACAGATGGGC AAATTAAGGC
 ATAAGAAAAC TAAGAAATAT GCACAATAGC AGTCGAAACA AGAACGCCACA GACCTAGGAT TTCATGATTT
 CATTCAACT GTTIGCCTTC TGCTTTAAG TTGCTGATGA ACTCTTAATC AAATAGCATA AGTTCTGGG
 ACCTCAGTT TATCATTTC AAAATGGAGG GAATAATACC TAAGCCTTCC TGCCGCAACA GTTTTTATG
 20 CTAATCAGGG AGGT'CATTTT GGTAAAATAC TTCTCGAAGC CGAGCCTCAA GATGAAGGCA AAGCACGAAA
 TGTATTTTT TAATFATTAT TTATATATGT ATTATAAAT ATATTTAAGA TAATTATAAT ATACTATATT
 TATGGGAACC CCTICATCCT CTGAGTGTGA CCAGGCATCC TCCACAATAG CAGACAGTGT TTTCTGGGAT
 AAGTAAGTTT GATTCATTA ATACAGGGCA TTTGGTCCA AGTTGTGCT ATCCCATAGC CAGGAAACTC
 TGCAATTCTAG TACTGGGAG ACCTGTAATC ATATAATAAA TGTACATTA TTACCTTGAG CCAGTAATTG
 25 GTCCGATCTT TGACTCTTT GCCATTAAAC TTACCTGGGC ATTCTTGTCTT CATTCAATT CACCTGCAAT
 CAAGTCTTAC AAGCTAAAAT TAGATGAAC CAACTTGAC AACCATGAGA CCACTGTTAT CAAAACTTTC
 TTTTCTGGAA TGTAATCAAT GTTCTCTA GGTTCTAAAA ATTGTGATCA GACCATAATG TTACATTATT
 ATCAACAAATA GTGA'TGATA GAGTGTACT AGTCATAACT AAATAAGCT TGCAACAAAA TTCTCTG-3' (FRAG.
 NO:) (SEQ. ID NO:2515)

30 Human Interleukin-1 Receptor (IL-1 R) Nucleic Acids and Anti-sense Oligonucleotide Fragments

5'-GCCACGTGCT GCTGGGTCTC AGTCCTCCAC TTCCCGTGTCT CTCTGGAAGT TGTCAAGGAGC AATGTTGCGC
 TTGTACGTGT TGGTAATGGG AGTTTCTGCC TTCACCCCTTC AGCCTGCGGC ACACACAGGG GCTGCCAGAA
 GCTGCCGGTT TCGTGGGAGG CATTACAAGC GGGAGTTCAAG GCTGGAAAGGG GAGCCTGTAG CCCTGAGGTG
 35 CCCCCAGGTG CCCIACTGGT TGTGGGCCCT TGTCAAGCCCC CGCATCAACCC TGACATGGCA TAAAATGAC
 TCTGCTAGGA CGGICCCAGG AGAAGAAAGAG ACACGGATGT GGGCCCAAGGA CGGTGCTCTG TGGCTTCTGC
 CAGCCTGCA GGAGGACTCT GGCACCTACG TCTGCACTAC TAGAAATGCT TCTTACTGTG ACAAATGTC
 CATTGAGCTC AGAGTTTTG AGAATACAGA TGCTTCTCTG CCGTTCATCT CATACCCGCA AATTAAACC
 TTGTCAACCT CTGGGGTATT AGTATGCCCT GACCTGAGTG AATTCAACCCG TGACAAAAGT GACGTGAAGA
 TTCAATGGTA CAAAGATTCT CTTCTTTGG ATAAAGACAA TGAGAAATT TGAGAAATT CTAAGTGTGA GGGGGACCAC
 40 TCACTTACTC GTACACGATG TGGCCCTGGAG AGATGCTGGC TATTACCGCT GTGCTGTGAC ATTTGCCAT
 GAAGGCCAGC AATAAACAT CACTAGGAGT ATTGAGCTAC GCATCAAGAA AAAAAAAAGAA GAGACCATTC
 CTGTGATCAT TTCCCCCTC AAGACCATAT CAGCTTCTCT GGGGTCAAGA CTGACAATCC CGTGTAAAGGT
 GTTCTGGGA ACCCGCACAC CCTTAACCCAC CATGCTGTGG TGGACGGCCA ATGACACCCCA CATAGAGAGC
 GCCTACCCGG GAGGCCGCGT GACCGAGGGG CCACGCCAGG AATATTCAAG AAATAATGAG AACTACATTG
 45 AAGTGCCTT GATTTTGTAT CCTGTCACAA GAGAGGATT GCACATGGAT TTTAAATGTG TTGTCCATAA
 TACCCCTGAGT TTTCAGACAC TACGCACCCAC AGTCAAGGAA GCCTCTTCA CGTCTCTTG GGGCATTGTG
 CTGGCCCCAC TTTCACTGGC CTTCTTGGTT TTGGGGGGAA TATGGATGCA CAGACGGTGCA AAACACAGAA
 CTGGAAAAGC AGA'TGGTCTG ACTGTGCTAT GGCCTCATCA TCAAGACTTT CAATCCTATC CCAAGTGAAA
 TAAATGGAAT GAAATTAATC AAACACAAAA AAAAAAAA AAAAAAAA GCGGGAGCCG ACTCGGAGCG
 50 CGCGGGCGGG CCGCGAGGAG CCGAGCCGC CGGGCGCGGC GTGGGGGGCG CCGCTGCCCG GCGCGCCAG
 GGAGCGGCAG GAA'TGTGACA ATCGCGCGCC CGCACCGTAG CACTCCTCGC TCGGCTCTA GGGCTCTCGC
 CCTCTGAGCT GAGCGGGTT CCGCCCCGGC TGGGATCCCA TCACCCCTCA CGGCCGTCCG TCCAGGTAGA
 CGCACCTCT GAAACATGGT ACTCCCTCT GAGAAGCTGG ACCCCCTGGT AAAAGACAAG GCCTTCTCCA
 AGAAGAATAT GAAAGTGTGTA CTCAGACTTA TTTGTTTCAT AGCTCTACTG ATTCTCTCTC TGGAGGCTGA
 55 TAAATGCAAG GAAAGTGAAG AAAAAATAAT TTTAGTGTCA TCTGCAAATG AAATTGATGT TCGTCCCTGT

	CCTCTTAACC	CAAATGAACA	CAAAGGCACT	ATAACTTGGT	ATAAAAGATGA	CAGCAAGACA	CCTGTATCTA
	CAGAACAAAGC	CTCC'AGGATT	CATCAACACA	AAGAGAAAATC	TTGGTTTGTG	CCTGCTAAGG	TGGAGGATTC
5	AGGACATTAC	TATIGCGTGG	TAAGAAAATTC	ATCTTACTGC	CTCAGAATT	AAATAAGTGC	AAAATTGTTG
	GAGAATGAGC	CTAACTTATG	TTATAATGCA	CAAGCCATAT	TTAACAGAA	ACTACCCGTT	GCAGGAGACG
	GAGGACTTGT	GTGC CTTAT	ATGGAGTTT	TTAAAAAATGA	AAATAATGAG	TTACCTAAAT	TACAGTGGTA
	TAAGGATTGC	AAAACCTCAC	TTCTTGACAA	TATACACTTT	AGTGGAGTC	AAGATAGGCT	CATCGTGTG
	AATGTGGCTG	AAAAAGCATAG	AGGGAACTAT	ACTTGTATG	CATCCTACAC	ATACTTGGGC	AAGCAATATC
	CTATTACCCG	GGTAATAGAA	TTTATTACTC	TAGAGGAAAA	CAAACCCCA	AGGCCTGTGA	TTGTGAGCCC
10	AGCTAATGAG	ACAA.TGGAAG	TAGACTTGGG	ATCCAGATA	CAATTGATCT	GTAAATGTCAC	CGGCCAGTTG
	AGTGCACATTG	CTTACTGGAA	GTGGAATGGG	TCAGTAATG	ATGAAGATGA	CCCAGTGCTA	GGGAAAGACT
	ATTACAGTGT	GGAA AATCCT	GCAAAACAAA	GAAGGAGTAC	CCTCATCACA	GTGCTTAATA	TATCGGAAT
	TGAAAGTAGA	TTTIAAAAC	ATCCATTTC	CTGTTTGCG	AAGAATACAC	ATGGTATAGA	TGCAGCATAT
	ATCCAGTAA	TATATCCAGT	CACTAATTTC	CAGAACACAA	TGATTGGTAT	ATGTGTACG	TTGACAGTCA
15	TAATTGTGT	TTCTGTTTTC	ATCTATAAAA	TCTTCAGAT	TGACATTGTG	CTTTGGTACA	GGGATTCTG
	CTATGATTT	CTCCCATAA	AAGCTTCAGA	TGGAAAGACC	TATGACGCA	ATATACTGTA	TCCAAGACT
	GTTGGGAAG	GGTCTACCTC	TGACTGTGAT	ATTTTGTGT	TTAAAGTCTT	GCCTGAGGTC	TTGGAAAAC
	AGTGTGGATA	TAAC CTGTC	ATTTATGGAA	GGGTGACTA	CGTTGGGGAA	GACATTGTTG	AGGTCTTAA
	TGAAAACGTA	AAG/AAGCA	GAAGACTGAT	TATCATTITA	GTCAAGAGAA	CATCAGGCTT	CAGCTGGCTG
20	GGTGGTTCAT	CTGAAGAGCA	AATAGCCATG	TATAATGCTC	TTGTTTCAGGA	TGGAATTAAA	GTTGCTCTG
	TTGAGCTGGA	GAAP ATCAA	GACTATGAGA	AAATGCCAGA	ATCGATTAAT	TTCATTAAGC	AGAAACATGG
	GGCTATCCGC	TGGTCAGGGG	ACTTTACACA	GGGACCACAG	TCTGCAAAGA	CAAGTTCTG	GAAGAATGTC
	AGGTACCCACA	TGCC AGTCCA	GCGACGGTC	CCTCATCTA	AACACCAAGT	ACTGTCACCA	GCCACTAAGG
	AGAAAATGCA	AAG/GAGGCT	CACGTGCCTC	TCGGGTAGCA	TGGAGAAAGT	GCCAAGAGTT	CTTTAGGTGC
25	CTCCGTCTT	ATGG CGTTGC	AGGCCAGGTT	ATGCCCTCATG	CTGACTTGCA	GAGTCATGG	AATGTAACTA
	TATCATCCTT	TATCCCTGAG	GTCACCAGGA	ATCAGG-3'	(FRAG NO:) (SEQ. ID NO:2520)		
	5'-GCCACGTGCT	GCTGGGTCTC	AGTCCTCCAC	TTCCCGTGTG	CTCTGGAAGT	TGTCAAGGAC	AATGTTGCGC
	TTGTACGTGT	TGGTAATGGG	AGTTTCTGCC	TTCACCCCTTC	AGCCTGCGC	ACACACAGGG	GCTGCCAGAA
	GCTGCCGTT	TCGT GGGAGG	CATTACAAGC	GGGAGTTCA	GCTGGAAGGG	GAGCCTGTAG	CCCTGAGGTG
	CCCCCAGGTG	CCCI ACTGGT	TGTGGGCTC	TGTCAAGCCC	CGCATCAACC	TGACATGGCA	AAAAATGAC
30	TCTGCTAGGA	CGG TCCCAGG	AGAAGAAAG	ACACGGATGT	GGGCCAGGA	CGGTGCTCTG	TGGCTTCTG
	CAGCCTTGCA	GGAG/GACTCT	GGCACCTACG	TCTGCACTAC	TAGAAATGCT	TCTTACTGTG	ACAAAATGTC
	CATTGAGCTC	AGAC TTTTG	AGAATACAGA	TGCTTCTCTG	CCGTTCATCT	CATACCCGCA	AATTAAACC
	TTGTCAACCT	CTGGGGTATT	AGTATGCCCT	GACCTGAGTG	AATTACCCG	TGACAAAACT	GACGTGAAGA
	TTCAATGGTA	CAAC GATTCT	CTTCTTTGG	ATAAAGACAA	TGAGAAATT	CTAAGTGTGA	GGGGGACAC
35	TCACTTACTC	GTACACGATG	TGGCCCTGGA	AGATGCTGGC	TATTACCGCT	GTGCTCTGAC	ATTGCCCCAT
	GAAGGCCAGC	AATA CAACAT	CACTAGGAGT	ATTGAGCTAC	GCATCAAGAA	AAAAAAAGAA	GAGACCATTC
	CTGTGATCAT	TTCCCCTCTC	AAGACCATAT	CAGCTCTCT	GGGGTCAAGA	CTGACAATCC	CGTGTAAAGGT
	GTTCCTGGGA	ACCGGCACAC	CCTTAACCAC	CATGCTGTGG	TGGACGGCCA	ATGACACCCA	CATAGAGAGC
	GCCTACCCGG	GAGC CCGCGT	GACCGAGGGG	CCACGCCAGG	AATATTCA	AAATAATGAG	AACTACATG
40	AAGTGCCATT	GATTTTGAT	CCTGTACAA	GAGAGGATT	GCACATGGAT	TTAAATGTTG	TTGTCCTAA
	TACCCCTGAGT	TTTCAGACAC	TACGCACCAC	AGTCAGGAA	GCCTCTCCA	CGTTCTCTG	GGGCATTGTG
	CTGGCCCCAC	TTTC ACTGGC	CTTCTTGTT	TTGGGGGAA	TATGGATGCA	CAGACGGTGC	AAACACAGAA
	CTGGAAAAGC	AGA/GGTCTG	ACTGTGCTAT	GGCCTCATCA	TCAAGACTTT	CAATCCTATC	CCAAGTGAAA
	TAAATGGAAT	GAAT/AATT	AAACACAAAA	AAAAAAAAAA	AAAAAAAAA-3'	(FRAG. NO:) (SEQ. ID NO:2518)	
45	5'-GCCGGAGCCG	AC'CGGAGCG	CGCGGGCGCG	CCGGGAGGAG	CCGAGCGCGC	CGGGCGCGC	GTGGGGCGC
	CGGCTGCC	CGCG GCCCC	GGAGCGGCAG	GAATGTGACA	ATCGCGCGCC	CGCACCGTAG	CACTCCTCGC
	TCGGCTCTA	GGGC TCTCG	CCTCTGAGCT	GAGCCGGGTT	CCGCCCCGGC	TGGGATCCCA	TCACCCCTCCA
	CGGCGTCCG	TCCA GGTAGA	CGCACCCCT	GAAGATGGTG	ACTCCCTCCT	GAGAAGCTGG	ACCCCTTGGT
	AAAAGACAAG	GCC TCTCCA	AGAAGAATAT	GAAAGTGT	CTCAGACTTA	TTTGTTCAT	AGCTCTACTG
50	ATTTCTTCTC	TGGA/GGCTGA	TAATGCAAG	GAACGTGAAG	AAAAAATAAT	TTTATGTGTC	TCTGCAAATG
	AAATTGATGT	TCG TCCCTGT	CCTCTTAACC	CAAATGAACA	CAAAGGCACT	ATAACTTGGT	ATAAAGATGA
	CAGCAAGACA	CCTGTATCTA	CAGAACAAAGC	CTCCAGGATT	CATCAACACA	AAGAGAAACT	TTGGTTTGTG
	CCTGCTAAGG	TGGAGGATT	AGGACATTAC	TATTGCGTGG	TAAGAAATTC	ATCTTACTGC	CTCAGAATTA
	AAATAAGTGC	AAA/TTTGTG	GAGAATGAGC	CTAACTTATG	TTATAATGCA	CAAGCCATAT	TTAAGCAGAA
55	ACTACCCGTT	GCAC GAGACG	GAGGACTTGT	GTGCCCTTAT	ATGGAGTTT	TTAAAAATGA	AAATAATGAG
	TTACCTAAAT	TACAGTGGTA	TAAGGATTGC	AAACCTCTAC	TTCTTGACAA	TATACACTTT	AGTGGAGTC
	AAGATAGGCT	CATC GTGATG	AATGTGGCTG	AAAAGCATAG	AGGGAACTAT	ACTTGTATG	CATCCTACAC
	ATACTTGGC	AAGC AAATATC	CTATTACCCG	GGTAATAGAA	TTTATTACTC	TAGAGGAAAA	CAAACCCACA
	AGGCCTGTGA	TTGIGAGCCC	AGCTAATGAG	ACAATGGAAG	TAGACTTGGG	ATCCAGATA	CAATTGATCT
60	GTAATGTAC	CGGC CAGTTG	AGTGACATTG	CTTACTGGAA	GTGGAATGGG	TCAGTAATTG	ATGAAGATGA
	CCCAGTGCTA	GGGC AAGACT	ATTACAGTGT	GGAAAATCCT	GCAAAACAAA	GAAGGAGTAC	CCTCATCACA
	GTGCTTAATA	TATCGGAAAT	TGAAAGTAGA	TTTATAAAC	ATCCATTAC	CTGTTTGCC	AAGAATACAC

ATGGTATAGA TGCAGCATAT ATCCAGTTAA TATATCCAGT CACTAATTTC CAGAAGCACA TGATTGGTAT
 ATGTGTCACG TTGACAGTC TAATTGTGT TTCTGTTTC ATCTATAAAA TCTTCAGAT TGACATTGTG
 CTGGTACA GGGATTCTCG CTATGATTT CTCCAATAA AAGCTTCAGA TGAAAGACC TATGACGCAT
 ATATACTGTA TCCAAAGACT GTTGGGAAG GGTCTACCTC TGACTGTGAT ATTTTGTTGTT AAAGTCTT
 5 GCCTGAGGTC TTGCAAAAAAC AGTGTGGATA TAAGCTGTT ATTTATGGAA GGGATGACTA CGTTGGGAA
 GACATTGTTG AGGTCAATTAA TGAAAACGTA AAGAAAAGCA GAAGACTGAT TATCATTAA GTCAGAGAAA
 CATCAGGCTT CAGCTGGCTG GGTGGTTCAT CTGAAGAGCA AATAGCCATG TATAATGCTC TTGTTCAGGA
 TGGAAATTAAA GTTCCTCTGC TTGAGCTGGA GAAAATCCAA GACTATGAGA AAATGCCAGA ATCGATTAAA
 10 TTCATTAAGC AGAPACATGG GGCTATCCGC TGGTCAGGG ACTTTACACA GGGACACAG TCTGCAAAGA
 CAAGGTTCTG GAAGAATGTC AGGTACCCAA TGCCAGTCCA GCGACGGTCA CCTTCATCTA AACACCAAGTT
 ACTGTACCCA GCCCTAAAG AGAAAATGCA AAGAGAGGCT CACGTGCCCTC TCAGGTAGCA TGGAGAAGTT
 GCCAAGAGTT CTTTAGGTGC CTCCGTCTT ATGGCGTTGC AGGCCAGGTT ATGCCCTCATG CTGACTTGCA
 GAGTTCATGG AATGAACTA TATCATCCTT TATCCCTGAG GTCACCAGGA ATCAGG-3' (FRAG. NO:_) (SEQ. ID
 NO:2519)

Human Interleukin-8* Fragments Antisense Oligonucleotide Fragments

15 5'-GBTGTTGTT BCCBBGCBT CBBGBTBGC TTTGCTBTCT BBGGBCTBCB TTTBGBCTB GGBBBBCGCT
 GTBGGTCBGBB BGBIGTGCTT BCCTTCBCB BGBGCTGCBG BBBTCBGGBBGG CTGCCBGBGBG CBCGCGCCBGC
 TTGGBGTCBT GTTTCBCBC BGTGBGGTGC TCCGGTGGCT TTTGCTTGT GTGCTCTGCT GTCTCTG TTC
 CTTCCGGTGG TTTCTCCTG GCTCTTGTCC TTCTCTTGG CCCTGGCCC-3' (FRAG. NO:1834) (SEQ. ID NO:1847)
 20 5'-G CTC CGG-3' (FRAG. NO:1835) (SEQ. ID NO:1848)
 5'-CBBGBTBGC-3' (FRAG. NO:1836) (SEQ. ID NO:1849)
 5'-CBCBC BGTGBGGTGC-3' (FRAG. NO:1837) (SEQ. ID NO:1850)
 5'-BCCBBGCBT CBBCBBTBGC-3' (FRAG. NO:1838) (SEQ. ID NO:1851)
 25 5'-GCCBBGBGBG CCBGGCCBGC-3' (FRAG. NO:1839) (SEQ. ID NO:1852)
 5'-GTG CTC CGG TGG CTT TTT-3' (FRAG. NO:1289) (SEQ. ID NO:1298)
 5'-GCT TGT GTG CTC TGC TGT CTC TG-3' (FRAG. NO:1290) (SEQ. ID NO:1299)
 5'-TTC CTT CCG GTG GTT TCT TCC TGG CTC TTG TCC T-3' (FRAG. NO:1291) (SEQ. ID NO:1300)
 30 5'-TTC TCT TGG CCC TTG GCC C-3' (FRAG. NO:1292) (SEQ. ID NO:1301)
 5'-GBTGTTGTT BCCBBGCBT CBBGBTBGC TTTGCTBTCT BBGGBCTBCB TTTBGBCTB GGBBBBCGCT
 GTBGGTCBGBB BGBIGTGCTT BCCTTCBCB BGBGCTGCBG BBBTCBGGBBGG CTGCCBGBGBG CBCGCGCCBGC
 TTGGBGTCBT GTTTCBCBC BGTGBGGTGC TCCGGTGGCT TTTGCTTGT-3' (FRAG. NO:1840) (SEQ. ID NO:1853)

Human IL-8 Receptor Alpha Antisense Oligonucleotide Fragments

35 5'-ACAGGGCTG TAATCTTCATC TGCAGGTGGC ATGCCAGTGA AATTTAGATC ATCAAAATCC CACATCTGTG
 GATCTGTAAT ATTIGACATG TCCTCTTCAG TTTCAGCAAT GGTTTGATCT AACTGAAGCA CGGGCCAGGB
 CBGGGCTGT BBTCTTCBTC TGCBGGTGGC BTGCCBGTGB BTTTTBGBTB BTCBBBBTCC CBCBTCTGTG
 GBTCTGTBBT BTTTGBCBTG TCCTCTTCBG TTTCBGCBB TGGTTTGBTCT BBTCTGBGC BCCGGCCBGG
 TGGCTCGGTG CTTCTGCCCC TTGTTGTTGCG GCGCTCGGTT GGTGTGGCCC CTGTTGTCCT TCCTTTCCCC
 CTCTTCTCT TTGTTGGGG TTCTTGTGG CGGGCTGCTT GTCTCGTTCC-3' (FRAG. NO:1841) (SEQ. ID NO:1854)
 40 5'-CBGGGGC-3' (FRAG. NO:1842) (SEQ. ID NO:1855)
 5'-GCBGGTGGC-3' (FRAG. NO:1843) (SEQ. ID NO:1856)
 5'-GCGCGCTC-3' (FRAG. NO:1844) (SEQ. ID NO:1857)
 5'-TGGCTCGGTGCTTCTGCCCC (FRAG. NO:1293) (SEQ. ID NO:1302)
 5'-TGGCTCGGTGCTC (FRAG. NO:1294) (SEQ. ID NO:1303)
 45 5'-GGTTGGTGTGGCCCTG (FRAG. NO:1295) (SEQ. ID NO:1304)
 5'-GGGTGCTTCGTTTC (FRAG. NO:1296) (SEQ. ID NO:1305)
 5'-CCCTCTTCTCTTCTTCTC (FRAG. NO:1297) (SEQ. ID NO:1306)
 5'-GGGGGTTCTTGTGGC (FRAG. NO:1298) (SEQ. ID NO:1307)
 5'-GGGCTGCTTGTCTCGTCC (FRAG. NO:1299) (SEQ. ID NO:1308)
 50 5'-ACAGGGGCTG TAATCTTCATC TGCAGGTGGC ATGCCAGTGA AATTTAGATC ATCAAAATCC CACATCTGTG
 GATCTGTAAT ATTIGACATG TCCTCTTCAG TTTCAGCAAT GGTTTGATCT AACTGAAGCA CGGGCCAGG-3'
 (FRAG. NO:1845) (SEQ. ID NO:1858)
 5'-B CBGGGGCTGT BBTCTTCBTC TGCBGGTGGC BTGCCBGTGB BTTTTBGBTB BTCBBBBTCC CBCBTCTGTG
 GBTCTGTBBT BTTTGBCBTG TCCTCTTCBG TTTCBGCBB TGGTTTGBTCT BBTCTGBGC BCCGGCCBGG-3' (FRAG.
 NO:1846) (SEQ. ID NO:1859)

Interleukin-11 (IL-11) Nucleic Acid and Antisense Oligonucleotide Fragments

55 5'-GCTCAGGGCA CAIGCCTCCC CTCCCCAGGC CGCGGCCAG CTGACCCCTCG GGGCTCCCCC GGCAGCGGAC
 AGGGAAGGGT TAAAGGCCCTG CGGCTCCCTG CCCCTGCCCT TGGGAAACCC CTGGCCCTGT GGGGACATGA
 ACTGTGTTG CCGCCTGGTC CTGGTCGTGC TGAGCCTGTG GCCAGATACA GCTGTCGCCCT GGGGCCACC

	ACCTGGCCCC	CCTCGAGTTT	CCCCAGACCC	TGGGGCCGAG	CTGGACAGCA	CCGTGCTCCT	GACCCGCTCT
	CTCCCTGGCGG	ACACGCGGCA	GCTGGCTGCA	CAGCTGAGGG	ACAAATTCCC	AGCTGACGGG	GACCACAACC
	TGGATTCCCT	GCCCCACCCTG	GCCATGAGTG	CGGGGGCACT	GGGAGCTCTA	CAGCTCCCAG	GTGTGCTGAC
5	AAGGCTCGA	GCGGACCTAC	TGTCTACCT	GC GG CAC GTG	CAGTGGCTGC	GCCGGGCAGG	TGGCTCTTCC
	CTGAAGACCC	TGGAGGCCGA	GCTGGGCACC	CTGCAGGCC	GACTGGACCG	GCTGCTGC	CGGCTGCAGC
	TCCTGATGTC	CCGCTGGCC	CTGCCCAGC	CACCCCGGA	CCCGCCGGCG	CCCCCGCTGG	CGCCCCCCTC
	CTCAGCCTGG	GGGC GCATCA	GGGCCGCCA	CGCCATCCTG	GGGGGGCTGC	ACCTGACACT	TGACTGGGCC
10	GTGAGGGGAC	TGCT'GCTGCT	GAAGACTCGG	CTGTGACCCG	GGGCCCAAAG	CCACCAACGT	CCTTCCAAAG
	CCAGATCTTA	TTTATTATT	TATTCAGTA	CTGGGGCGA	AACAGCCAGG	TGATCCCCC	GCCATTATCT
	CCCCCTAGTT	AGACACAGTC	CTTCCGTGAG	GCCTGGGGGA	CATCTGTGCC	TTATTTATAC	TTATTTATTT
	CAGGAGCAGG	GGTGGGAGGC	AGGTGGACTC	CTGGGTCCCC	GAGGAGGAGG	GGACTGGGGT	CCCGGATTCT
	TGGGCTCCA	AGAA.GTCTGT	CCACAGACTT	CTGCCCTGGC	TCTTCCCCAT	CTAGGCCTGG	GCAGGAACAT
15	ATATTATTTA	TTTAAGCAAT	TACTTTCAT	GTTGGGGTGG	GGACGGAGGG	GAAAGGGAAG	CCTGGGTTT
	TGTACAAAAA	TGTGAGAAC	CTTTGTGAGA	CAGAGAACAG	GGAATTAAAT	GTGTATACA	TATCC
	CAGCTGCAGC	ATCCCTCTGTC	TCAGAGTCTT	GGTGTCTCTG	TTCTTCCC	CTCGGGGTCT	CCCTGGGTCT
	CCCCAAGTCC	CTCCCTGCTGT	CTTCCCTCCG	CTCTCTGATC	TCTGACTCCC	AGAACCTCTC	CCTCTGTCTC
	CAGGGCTGCC	CCTCTGATCC	TCTTGTCTC	TCTGGTGTGT	CTCTCTGGCT	GCCTCCATCT	CTGTGGATCT
20	CCGTCTCCCT	GTCTCTGTCT	CAGTCTGTCC	TTCACTCTGT	GTGTGTGTGT	GTCTCTCTCT	CTCTCTCTCC
	TTCCCTTCCA	CTCCCTCTTC	CTCCGTCTC	CACCTCTCCA	GGCCCTGTG	TTGTCCTCC	GTCCGGCCTT
	TCTCTGCCTT	TCCGTCCTCC	TGCCTCCCCA	TCTCTCTCTG	CTAGTCCTGT	CCAGCCGGAC	CCCCACCCAC
	AGTCGGGCC	CAGC GCTTGA	GCCTGAGTGT	CTGCTCCGGC	CCGTGGAGGT	GGAGGGAGGG	GACGCCAATG
	ACCTCACCCAG	CCCCCTCTCCG	ACCACCCCCC	CCTTCCCCCT	TTCAACTTTT	CCAACCTTTTC	CTTCCGTGCC
25	CTCCTCCGAG	CGCGCGGGCG	TGAGCCCTGC	AAGGCAGCCG	CTCCGTCTGA	ATGGAAAAGG	CAGGCAGGGA
	GGGTGAGTCA	GGATGTGTCA	GGCCGGCCCT	CCCCTGCCGC	CTGCCCCCG	CCCGCCCGCC	CCAGGCCCCC
	TATATAAACCC	CCCAGGGCAGTC	CACACTCCCT	CACTGCCGCG	GGCCCTGTG	CTCAGGGCAC	ATGCCCTCCCC
	TCCCCAGCCG	CGGGCCCAGC	TGACCTCTGG	GGCTCCCCCG	GCAGCGGACA	GGGAAGGGTT	AAAGGCCCCC
	GGCTCCCTGC	CCCCTGCCT	GGGAAACCCC	TGGCCCTGTG	GGGACATGAA	CTGTAAGTTG	GTTCATGGGG
30	AGGGTGGAGG	GGACAGGGAG	GCAGGGAGGA	GAGGGACCCA	CGCGGGGGT	GGGAGCAGAC	CCCGCTGAGT
	CGCACAGAGA	GGGA CCCGGA	GACAGGCAGC	CGGGGAGGAG	AGCAGCTTG	GAGACAGGAG	GCGCGGAGG
	AGATGGCAG	AGACAGACAC	AGACAGGAGC	GGATGGAGGC	AGCCAATCAG	AGGCAGCGA	GGAGGGACGG
	GCCAGACAGG	CCCCGAGAGG	AGCGAGACGC	GAGACCGAGC	AGGGCAGGG	ACGCAGGGAC	TGGTGCCGGG
	AGGGAGGTGA	CCCCCATCGA	CCCAGGCC	AGGGAGCCCG	CGGGGACCG	GAGACTCCCT	GGGATTCCGG
35	CAGAGAGGCT	CCGCAGGGAA	ACTGAGGCAG	GGTCCGCGGA	GAGCGGAGCA	AGCCAGGGAG	TAGCGACCCC
	AGCCGGGGGG	AGGA.GAGAGA	CTGGGCGCCG	GGGAAAGCG	GGGAGAGCCG	GGCAGATGCG	GCCGACGGAG
	GCGCGGACAG	ACCCACGGCT	GGCGGCCCG	GGGGCGGGC	TGGGGGTGTG	CGAGGC	GCGGCCGGGG
	AGCGCTGATT	GGCTGGCGGG	TGGCGGGGTG	GGCGGGCGG	CGGGGGTGG	CTGCGGGGAG	CGAGCTCCGG
	ACCCCCCGC	CCCCGGCGCC	CCCCGCGCCC	CCCGCCGCCA	GCTCTCCC	TCCCGCGCC	CGGCCGGGGCC
40	ATGGCTCTGC	CCCTCTCCGC	CCAGGTGCGC	TGCGGCCCGG	GCTTCTGCG	CCCACCCGGC	GGGCTCTGG
	GAGGGCGTCT	AAGGGGTCTC	CCGTGGGAGA	GGTCCGTGTC	TCCCGGACTC	CGTCTGGG	TTTGGCTCC
	TTCCCCCTGCT	CCCA GCCAGC	TGGGGCTCCC	GGGGCCCGGG	GAGGGGGCAG	GTTCTGGCCT	GTGCCTCCCC
	CACCATCCGC	GCCCCGGGGC	CCAGATTCCG	GGTCCGGGG	GGGACGGGA	GACGCCCGGG	CCGCGTCTGC
	TCCGACGGGC	GGGC CAGCCA	GAGCCAGGG	GGGAGAGGG	AGCCCGCC	GCCCTGCCAC	CTGCCCGCGG
45	GCGTCCACC	CTGGGACTTA	AGACCTCCAG	CTCCATCC	CCTAAGGCCG	GGAGTCAGG	CCCCAGACCC
	TCCTCCCCGA	GACCAGGAG	TCCAGACCC	AGGCCTTCCT	CCCTCAGACC	TAGGAGTCCA	GGCCCCCAGC
	CTCTCCTCCC	TCAGACCCAG	GAGGAGTCCA	GACCCAGTT	CCTCCTCCC	CAGACCCGGG	AGTCCAGCCC
	AGGCCCTCC	CTCTCAGACC	CGGAGTCCAG	CCTGAGCTCT	CTGCTTATC	CTGCCCCCAG	GTGTTTGCGG
50	CCTGGTCTG	GTCGTGCTGA	GCCTGTGCC	AGATACAGCT	GTCGCCCC	GGCCACCA	TGGCCCCCCT
	CGAGTTCCC	CAGACCCCTG	GGCCGAGCTG	GACAGCACCG	TGCTCTGAC	CCGCTCTCTC	CTGGCGGACCA
	CGCGGCAGCT	GGCTGCACAG	CTGGTAGGAG	AGACTGGGCT	GGGGCCAGCA	CAGGAGTGAG	AGGCAGAGAG
	GAACGGAGAG	GAG'CTGCGG	GCAGCCACTT	GGAGGGTTC	TGGGCTCTCA	GGTGGCAGAG	TGAGGGAGGG
	GAAGAGITGG	GGGCCTGGCG	TGGGGATGG	AGGGAGCCCC	GAGGCTGGG	AGGGGCCACC	TCACAGCTT
	TTTCCCTGCC	AGAGGGACAA	ATTCCCAGCT	GACGGGGACC	ACAACCTGGA	TTCCCTGCC	ACCCTGGCCA

TGAGTCGAGG GGCACTGGGA GCTCTACAGG TAAGGGCAAG GGAGTGGGCT GGGGACAAGG TGGGAGGCAG
 GCAGTGAAGG GGGUGGGGAG GATGAGGGGC ACTGGTCGGG TGTTCTCTGA TGTCCCGGCT CTATCCCCAG
 CTCCCAGGTG TGCTGACAAG GCTGCGAGCG GACCTACTGT CCTACCTGCG GCACGTGCAG TGGCTGCGCC
 5 GGGCAGGTGG CTCITCCCTG AAGACCCTGG AGCCCGAGCT GGGCACCCCTG CAGGCCGAC TGGACCGGCT
 GCTGCGCCGG CTGCAGCTCC TGGTATGTCC TGGGCCAAG ACCTGACACC CCAGACCCCC ACCCCTGGCC
 CAAAATCCT GTGCCCTGAG TCCTTGAAGC CTGAGACCCC AGACCCGAGT GCAACAGCCC CGCTCTGAGA
 CCCTGACACC CTAACAGCCC GCTCTGAGAC CCTGACACCG TAACAGCCC GCTCTGAGAC CCTGACCCCTA
 10 ACAGTCTCTGC TCTGAGACCC TGACCTGCA GTCCAAGAT CCTGTGGCCC TGAGACCCCTG AGGCCCTAGA
 CCCCCAAATC CTGCCCCAGAA ACTTCAAATT CTCACCCAAG ACCCTGAGAC TCCATCATCC ATGACCTCAA
 15 AGTCCCCAGA TCCCAAGCCC TAAGACCCAA GACCCCATCC TGAAGCCAA AGCCTTGAGA ATTCAAATCC
 TCACCTCAAG ACTTGGAGAC CCTGGCCCA TGACATTGAA AACCATGGAC CTGGCCAGGC GTGGTGGCTC
 ACGCTGTAA TCCCAGCACT TTGGGAGGCC GAGGCAAGTG GATCACCTGA GGTGGGAGT TCAAGACCAAG
 CCAGACCAAC ATGCTGAAAC CCTGTCTCTA CTAAAAATAC AAAATTAGCC AGGCGTGGTG GTGCATGCCT
 GTAATCCCAG CTACTTGGGA GGCTGAGGCA GGAGAACATGC TTGAACCTGG GAGGCGGAGG TTGCAGTGAG
 20 CCGAGATCGC ACCATTACAC TCCAGCCTGG GCAACAAAGAG CAAAACCTCC TCTCTCTCAA AAAAAAAA
 AAAAAAAA AAGAAGGAAA AGAAAACCCT GGACCTCCAG ACCCTGAGAC CCCAGGCCAG AGCCCTGAGA
 TCCTGACATC TTAAAGATCC CAGGCCCTAA GATACAAGAC CTTGACCCAA AGCCAGCCTT GGGACCCCTGG
 CTGTACAAAC CCAAGACCTC CAGGACCTAG ACCCCGAGCC CTGAGGCCCT ATGTCCTACT CCCAACATCG
 AAAACCTGA CACCTCAGAT CCTGAGCCTG CGCTGTACG ACTCCAAGAC CCTCACTTCC AAAGCCAGGC
 25 CCAAAGCCCT GAGACAGAGAA GACTTCAAAC CCTGGTTCTT GGGCCTAACT CCAAAGACCC TGGATCTCAA
 ATTCCAACCTT CTAGCTCTGA GACTCCAGCC CTCACCCATG AGTTCTGAA CTTGAACCCCA GAGACCCCAT
 CTCTAAGACT TCACCCCTGA GATCCAGGGC CTGACCCCTAG ACTCGAGGCC ACAGACCTCA GATACTGTCT
 GTAAAACCCC AGCTCTGGTG GGGAGCAGTG GCTACTCTT GTAACTCCAA GGCAGGGAG GCCAAGGCAG
 AAGGACCTCT TGAGGCCATG AGTTGAGAC AGCCTGGCA GCATAGCAAG ACTCTGTTTC TTAATTATTA
 30 TTATTATTAT TATTTTTGG AGACAGAGTC TCGCGCTCTG TTGCCCAGGC TAGAGTCAA TGGTGCCATT
 TCGGCTTGCT GGAA.CCTCCG CCTCCTGGGC TCAAGCGATT CTCTGCTCTC AGCCTCCTGA GTAGCTGGGA
 CTTCAGGTGC ACAC'TGCCAC ACCCGGATAA TTTTTTGTG TTTTAGTAGA CACAGGGTTT CACCGTGTG
 CCCAGGTGG TCAC'AAACTC CTGAGCTCAG GCCATCCGCC CGCCTCGGCC TCCCAAAGCG CTGGGATAAC
 AGGCCTGACG CCGUGCCTGG CTTCTTAATT GTTCTAACAG CAGCGACAAAC AACAAAAACC CAGCTCTGAG
 35 ATTCCAGCCC CGGGGACTCT AACAGTCCA GGCCGATCC CTCACCTAGA ACCGAGATGC CAGCCCTGAC
 TCCACAGACT TCAC'CCCCAA CCCCCACACT CAGCTCTGGA AGCCCGTCT CACTCCAGCC TCCATTTCG
 GAACCCACA GCCTGAAGAG CTCCCGGCC AAACACTTCA CCCCACGCGC CACAGTCCCC CTGTGAATAT
 GCAGCCCCGA TTCAGCTGCA GCTCCACAGC ACCCTGCCCG TGCACTTCC CGCACCCCC TACCTGTGAC
 TCACCTCTCT CCTCTCCCCA CAGATGTCCC GCCTGGCCCT GCCCCAGCCA CCCCCGGACC CGCCGGCGCC
 40 CCCGCTGGCG CCCCCCTCT CAGCCTGGGG GGGCATCAGG GCGCCACAG CCATCTGGG GGGGCTGCAC
 CTGACACTTG ACTGGGCCGT GAGGGGACTG CTGCTGCTGA AGACTCGGCT GTGACCCGGG GCCCAAAGCC
 ACCACCGTCC TTCCAAGGCC AGATCTTATT TATTATTTA TTTCACTACT GGGGGCGAAA CAGCCAGGTG
 ATCCCCCCGC CATIATCTCC CCCTAGTTAG AGACAGTCCT TCCGTGAGGC CTGGGGGGCA TCTGTGCCCT
 ATTTATACTT ATTTATTTCA GGAGCAGGGG TGGGAGGAG TGGAACCTCT GGGTCCCCGA GGAGGAGGGG
 45 ACTGGGGTCC CGGATTCTTG GGTCTCCAAG AAGTCTGTCC ACAGACTTCT GCCCTGGCTC TTCCCCATCT
 AGGCCTGGC AGGAACATAT ATTATTTATT TAAGCAATT CTTTCATGT TGGGGTGGGG ACGGAGGGGA
 AAGGGAAGCC TGGGTTTTG TACAAAAATG TGAGAACCT TTGTGAGACA GAGAACAGGG AATTAAATGT
 GTCATACATA TCCACTTGAG GGCAGTTGT CTGAGAGCTG GGGCTGGATG CTTGGTAAC TGGGGCAGGG
 CAGGTGGAGG GGAGACCTCC ATTCAAGGTGG AGGTCCCGAG TGGGCGGGC AGCACTGGG AGATGGGTG
 50 GTCACCCAGA CAGCTCTGTG GAGGCAGGGT CTGAGCCTTG CCTGGGGCCC CGCACTGCAT AGGGCCGTT
 GTTGTGTTTG TGAGATGGAG TCTCGCTCTG TTGCGCTAGGC TGGAGTGCAG TGAGGAATC TAAGGTCACT
 GCAACCTCCA CCTCCGGGT TCAAGCAATT CTCCCTGCC CAGCTCCGA TTAGCTGGGA TCACAGGTGT
 GCACCAACCAT GCCCAGCTAA TTATTTATT CTTTGTATT TTTAGTAGAG ACAGGGTTTC ACCATGTTGG
 CCAGGTGGGT TTCCAACCTC TGACCTCAGG TGATCCTCTC GCCTCGGCCCT CCCAAAGTGC TGGGATTACA
 GGTGTGAGCC ACCACACCTG ACCCATAGGT CTTCAATAAA TATTTAATGG AAGGTTCCAC AAGTCACCCCT
 GTGATCAACA GTACCCGTAT GGGACAAAGC TGCAAGGTCA AGATGGTTCA TTATGGCTGT GTTCACCATA
 GCAAACCTGGA AACATCTAG ATATCCAACA GTGAGGGTTA AGCAACATGG TGCATCTGTG GATAGAACGC

CACCCAGCCG CCCC GAGCAG GGACTGTCAT TCAGGGAGGC TAAGGAGAGA GGCTTGCTTG GGATATAGAA
 AGATATCCTG ACATTGGCCA GGCATGGTGG CTACAGCCTG TAATCCTGGC ACTTTGGGAG GACGAAGCGA
 GTGGATCACT GAAATCCAAG AGTTTGAGAC CGGCCTGCAG GACATGGAA AACCTGTCT CAAAAAAGAA
 AGAATGATGT CCTGACATGA AACAGCAGGC TACAAAACC AACAGCAGGC TACAAAACC AACCTGTCT CAAAAAAGAA
 5 TCTTTCTATA TATG GATTAA AACAAAATC CTAAAGGGAA ATACGCCAA ATGTTGACAA TGACTGTCTC
 CAGGTCAAAG GAGAGAGGTG GGATTGTGGG TGACTTTAA TGACTGTATT TTACAGAAATT
 TCTGCCATGA CTGIGTATTT TGCACTGACAC ATTTAAAAAA TAATAAACAC TATTGAGA ATAACAGAAT
 ATCAGCCTCC TCCTCTCCAA AAATAAGCCC TCAGGAGGGG ACAAAAGTTGA CCGCTGATTG AGCCTGTCAG
 GGCTGTGCAC-3' (FRAG. NO:) (SEQ. ID NO:2523)
 10 5'-GCTCAGGGCA CAI GCCTCCCC CTCCCCAGGC CGCGGCCAG CTGACCCCTCG GGGCTCCCC GGCAGCGGAC
 AGGGAAGGGT TAAAGGCCCG CGGCTCCCTG CCCCTGCCC TGGGAAACCC CTGGCCCTGT GGGGACATGA
 ACTGTGTTG CCGCCTGGTC CTGGTCGTGC TGAGCCTGTG GCCAGATACA GCTGCGCCCG CTGGGCCACC
 ACCTGGCCCG CCTCGAGTT CCCAGACCC TCAGGAGGG CTGGACAGCA CCGTGCCTCT GACCCGCTCT
 15 CTCCTGGCGG ACACGCGCA GCTGGCTGCA CAGCTGAGGG ACAAAATTCC AGCTGACGGG GACCACAAAC
 TGGATTCCT GCCCCACCTG GCCATGAGTG CGGGGGCACT GGGAGCTTA CAGCTCCAG GTGTGCTGAC
 AAGGCTGCGA GCGGACCTAC TGTCTACCT GCGGCACGTG CAGTGGCTGC GCGGGCAGG TGGCTCTCC
 CTGAAGACCC TGGAGGCCGA GCTGGGCACC CTGCAGGGCC GACTGGACCG GCTGCTGCGC CGGCTGCAGC
 20 TCCTGATGTC CCGCCTGGCC CTGCCCCAGC CACCCCGGA CCCGCCGGCG CCCCCGCTGG CGCCCCCTC
 CTCAGCCTGG GGGCGCATCA GGGCCGCCA CGCCATCCTG GGGGGCTGC ACCTGACACT TGACTGGCC
 GTGAGGGGAC TGCTGCTGCT GAAGACTCGG CTGTGACCCG GGGCCCAAAG CCACCAACCGT CCTTCAAAG
 CCAGATCTTA TTTATTTATT TATTTCACTA CTGGGGCGA AACAGCCAGG TGATCCCCC GCCATTATCT
 25 CCCCCTAGTT AGAGACAGTC CTTCCGTGAG GCCTGGGGGA CATCTGTGCC TTATTTATAC TTATTTATTT
 CAGGAGCAGG GGTGGGGAGGC AGGTGGACTC CTGGGTCCCC GAGGAGGAGG GGACTGGGGT CCCGGATTCT
 TGGGTCTCCA AGAAGTCTGT CCACAGACTT CTGCCCTGGC TCTTCCCCAT CTAGGCCTGG GCAGGAACAT
 ATATTATTTA TTTAAGCAAT TACTTTCAT GTTGGGGTGG GGACGGAGGG GAAAGGGAAG CCTGGGTTT
 TGTACAAAAA TGTAAGAAC CTTTGTGAGA CAGAGAACAG GGAATTAAAT GTGTACATACA TATCC-3' (FRAG.
 NO:) (SEQ. ID NO:2521)
 30 5'-CAGCTGCGGC A'CCTCTGTC TCAGAGTCTT GGTGTCTCTG TTCCCTTCCC CTGGGGTCT CCCTGGGTCT
 CCCCAAGTCC CTCCTGCTGT CTTCCTCCC CTCTCTGATC TCTGACTCCC AGAACCTCTC CCTCTGTCTC
 CAGGGCTGCC CCTCTGATCC TCTTGTCTC TCTGGTGTGT CTCTCTGCT GCCTCCATCT CTGTGGATCT
 CCGTCTCCCT GTCCTGCTCT CAGTCTGTC TTCACTCTGT GTGTGTGTGT GTCTCTCTCT CTCTCTCTCC
 TTCCCTTCCA CTCCCTCTTC CTCCCTGCCCT CACCTCTCCA GGCCCCCTGTC TTGTCCCTCC GTCCGGCCCTT
 TCTCTGCCCT TCCGTCCTCC TGCCCTCCCA TCTCTCTCTG CTAGTCCTGT CCAGCCGGAC CCCCACCCAC
 35 AGTCGGGCC CAGCGCTGCA GCCTGAGTGT CTGCTCCGGC CCGTGGAGGT GGAGGGAGGG GACGCCATG
 ACCTCACCAAG CCCCTCTCCG ACCACCCCCC CTTTCCCCCT TTCAACTTTT CCAACTTTTC CTTCCGTGCC
 CTCCCTCCGAG CGCCGCGGCC TGAGCCCTGC AAGGCAGCCG CTCCGTCTGA ATGGAAAAGG CAGGCAGGG
 GGGTGAGTCA GGAATGTGTC GGCCGGCCCT CCCCTGCCGC CTGCCCCCG CCCGCCGCC CCAGGCCCC
 TATATAACCC CCCAGGCCTC CACACTCCCT CACTGCCGC GGCCCTGCT CTCAGGGCAC ATGCCCTCCCC
 40 TCCCCAGCCG CGGCCCCCAGC TGACCCCTGG GGCTCCCCCG GCAGCGGACA GGGAAAGGGTT AAAGGCCCC
 GGCTCCCTGC CCCCTGCCCT GGGGAACCCC TGGCCCTGTG GGGACATGAA CTGTAAGTTG GTTCATGGGG
 AGGGTGGAGG GGACAGGGAG GCAGGGAGGA GAGGGACCA CGCGGGGGT GGGAGCAGAC CCCGCTGAGT
 CGCACAGAGA GGGACCCCGA GACAGGCAGC CGGGGAGGAG AGCAGCTTG GAGACAGGGAG CGGGCGGAGG
 AGATGGGCAG AGAGAGACAC AGACAGGAGC GGATGGAGGC AGCCAATCAG AGGCACCGCA GGAGGGACGG
 45 GCCAGACAGG GCCCGAGAGG AGCGAGACGC GAGACCGAGC AGGGCAGGG ACAGCAGGGAC TGGTGCCGG
 AGGGAGGTGA CCCCCATCGA CCCAGCCCC AGGGAGCCCG CGGGGACCG GAGACTCCCT GGGATTCCGG
 CAGAGAGGCT CCGGAGGGAA ACTGAGGCAG GGTCCGCGGA GAGCGAGCA AGCCAGGGAG TAGCGACCCC
 AGCCGGGGGG AGGAAGAGAGA CTGGGCCCG GGGAAAGCG GGGAGAGCCG GGCAGATGCG GCCGACGGAG
 GCGCGGACAG ACCGACGGCT GGCGGGCCCG GGGGGCGGGC TGGGGTGTG CGAGGCGCGG CGGGCCGGGG
 50 AGCGCTGATT GGCIGGCAGG TGGCCGGGTG GGCGGGCGG CCGGGGGTGG CTGGGGGGAG CGAGCTCCGG
 ACCCCCCCGC CCCCCGGGCC CCCCGGCC CCCGCCGCCA GCTCTCCCGC TCCCCGGGCC CGGGCCGGGG
 ATGGCTCTGC CCCCTCCCG CCAGGTGCGC TGCGGCCCGG GCTTCTGCG CCCACCCGGC GGGCTCTGG
 GAGGGCGTCT AAGGGGTCTC CCGTGGGAGA GGTCCGTGTC TCCCCGACTC CGTCTCTGGC TTTTGGCTCC
 TCCCCCTGCT CCCAGCCAGC TCGGGCTCCC GCGGCCCGGG GAGGGGGCAG GTTCTGGCCT GTGCCCTCCCC
 CACCATCCGC GCCCGGGGGC CCAGATTCCG GCGTCCGGGG GCGGACGGGA GACGCCCGGG CGCGCTCTGC
 55 TCCGACGGGC GGGGAGGCCA GAGCCAGGG AGGAGAGGG AGCCCGCCTG GCCCTGCGAC CTGCCCGCGG
 GCGTTCCACC CTGGAGCTTA AGACCTCCAG CTCCATCCTC CCTAAGGGCG GGAGTCCAGG CCCCAGACCC
 TCCTCCCCGA GACCCAGGAG TCCAGACCC AGGCCCTCCCT CCTCCTCCCT CAGACCCGGG AGTCCAGCCC
 CTCTCCTCCC TCAGACCCAG GAGGAGTCCA GACCCAGTT CTGCTTATC CTGCCCCCAG GTGTTGCCG
 AGGCCCTCCT CTCCTAGACC CGGAGTCCAG CCTGAGCTCT GTCGCTTATC GTGCCCCCAG
 60 CCTGGTCTG GTCTGCTGAGA GCCTGTGCC AGATACAGCT GTCGCCCCCTG GGCCACCAACC TGGCCCCCCT

CGAGTTTCCC CAGACCCCTCG GGCCGAGCTG GACAGCACCG TGCTCCTGAC CCGCTCTCTC CTGGCGGACA
 CGCGGCAGCT GGCCTGCACAG CTGGTAGGAG AGACTGGGCT GGGGCCAGCA CAGGAGTGAG AGGCAGAGAG
 GAACGGAGAG GAGCTCTCGGG GCAGCCACTT GGAGGGGTTG TGGGCTCTCA GGTGGCAGAG TGAGGGAGGG
 5 GAAGAGTTGG GGGCTCTGGCG TGGGGGATGG AGGGAGCCCC GAGGCTGGC AGGGGCCACC TCACAGCTT
 TTTCCCTGCC AGAGGGACAA ATTCCCAGCT GACGGGGACC ACAACCTGGA TTCCCTGCC ACCCTGGCCA
 TGAGTCAGG GGCCTCTGGGA GCTCTACAGG TAAGGGCAAG GGAGTGGGCT GGGGACAAGG TGGGAGGCAG
 GCAGTGAAGG GGGCGGGGAG GATGAGGGC ACTGGTCGGG TGTTCTCTGA TGTCCTGGCT CTATCCCCAG
 CTCCCAGGTG TGCTGACAAG GCTGCGAGCG GACCTACTGT CCTACCTGCG GCACGTGCAG TGGCTGCGCC
 10 GGGCAGGTGG CTCCTCTCG AAGACCCCTGG AGCCCAGCT GGGCACCCCTG CAGGGCCAC TGGACCGGCT
 GCTGCCCGG CTGCAGCTCC TGGTATGTCC TGGGCCCCAAG ACCTGACACC CCAGACCCCC ACCCTGGGCC
 CAAAATCCT GTGCCTTGAG TCCTTGAAGC CTGAGACCCCC AGACCCGAGT GCAACAGCCCC CGCTCTGAGA
 CCCTGACACC CTAACTAGCCC GCTCTGAGAC CCTGACACCG TAACAGCCCC GCTCTGAGAC CCTGACCCCTA
 ACAGTCTTCG TCTGAGACCCC TGACCCCTGCA GTCCAAGAT CCTGTGGCC TGAGACCCCTG AGGCCCTAGA
 15 CCCCAAATC CTGCAGCAA ACTTCAAATT CTACACCAAG ACCCTGAGAC TCCATCATCC ATGACCTCAA
 AGTCCCCAGA TCCCAGCCCC TAAGACCCAA GACCCCATCC TGAAGCCCCA AGCCTGAGA ATTCAAATCC
 TCACCTCAAG ACTTGGAGAC CCTGGCCCCA TGACATTGAA AACCATGGAC CTGGCCAGGC GTGGTGGCTC
 ACGCCTGAA TCCCAGCACT TTGGGAGGC GAGGCAAGTG GATCACCTGA GGTGGGAGT TCAAGACCAG
 CCAGACCAAC ATGCTGAAAC CCTGTCTCTA CTAAAAATAC AAAATTAGCC AGGCGTGGTG GTGCATGCT
 20 GTAATCCCAG CTACTTGGGA GGCTGAGGCA GGAGAACATCG TTGAACCTGG GAGGCGGAGG TTGCAGTGAG
 CCGAGATCGC ACCCTTACAC TCCAGCCTGG GCAACAAAGAG CAAAACCTCC TCTCTCTCAA AAAAAAAAGA
 AAAAAAAAGA AAGAGGAAA AGAAAACCAT GGACCTCCAG ACCCTGAGAC CCCAGGCCCC AGCCCTGAGA
 TCCTGACATC TTAAAGATCC CAGGCCCTAA GATACAAGAC CTTGACCCAA AGCCAGCCTT GGGACCCCTGG
 CTGTACAAAC CCAAGACCTC CAGGACCTAG ACCCCGAGCC CTGAGGCCCT ATGCTCACT CCCAACATCG
 25 AAAACCTGA CACCTCAGAT CCTGAGCCTG CGCCTGTACG ACTCCAAGAC CCTCACTTCC AAAGCCAGGC
 CCAAAGCCCT GAGACCCAGAA GACTTCAAAC CCTGGTTCTT GGGCCTAACT CCAAAGACCC TGGATCTCAA
 ATTCCAACCTT CTAGCTCTGA GACTCCAGCC CTCACCCATG AGTTCTGAA CTTGAACCCA GAGACCCAT
 CTCTAAGACT TCAGCTTGAG GATCCAGGGC CTGACCCCTAG ACTCGAGCCC ACAGACCTCA GATACTGCT
 GTAAAACCCC AGCTCTGGTG GGGAGCAGTG GCTCACTCTT GTAATCCCCA GGCAGGGGAG GCCAAGGCAG
 AAGGACCTCT TGACGCCATG AGTTTGAGAC AGCTCTGGCA GCATAGCAAG ACTCTGTTTC TTAATTATTA
 30 TTATTATTAT TATTCTTGG AGACAGAGTC TCGCGCTCTG TTGCCCTAGGC TAGAGTGCAA TGGTGCCATT
 TCGGCTTGCT GGAACTCTCG CCTCCTGGGC TCAAGCGATT CTCTGCTCTC AGCCTCCTGA GTAGCTGGGA
 CTTCAGGTGC ACACCTGCCAC ACCCGGATAA TTTTTTGTA TTTTAGTAGA CACAGGGTTT CACCGTGTG
 CCCAGGTGG TCACAAACTC CTGAGCTCAG GCCATCCGCC CGCCTCGGCC TCCCCAAAGCG CTGGGATAAC
 AGGCGTGTACG CCGCGCCCTGG CTTCTTAATT GTTCTAACAG CAGCGACAAC AACAAAAACC CAGCTCTGAG
 35 ATTCCAGCCCC CGGGGACTCT AACAGTCTCC GGGCCGATCC CTCACCTAGA ACCGAGATGC CAGCCCTGAC
 TCCACAGACT TCACCCCCAA CCCCCACACT CAGCTCTGGA AGCCCGTCT CACTCCAGGC TCCATTTCG
 GAACCCCCAA GCCTGAAGAG CTCCCCGGCCT AAACACTTCA CCCCACCGCG CACAGTCCCC CTGTGAATAT
 GCAGCCCCGA TTCAGCTGCA GCTCCACAGC ACCCCCTGCC TGCACCCCCG CTGACCCCCC TACCTGTGAC
 40 TCACCTCTCT CCTCTCCCCA CAGATGTCCC GCCTGGCCCT GCCCCAGCCA CCCCCGGGACC CGCCGGCGCC
 CCCGCTGGCG CCCCCCTCTCAGCCTGGGG GGGCATCAGG GCGGCCACAG CCATCTGGGG GGGGCTGCAC
 CTGACACTTG ACTGGGGCGT GAGGGGACTG CTGCTGCTGA AGACTCGGCT GTGACCCGGG GCCCAAAGGC
 ACCACCGTCC TTCAAAGCC AGATCTTATT TATTCTTTA TTTCACT GGGGGCGAAA CAGCCAGGTG
 ATCCCCCGC CATIATCTCC CCCTAGTTAG AGACAGTCTT TCCGTAGGC CTGGGGGGCA TCTGTGCCCT
 ATTTATACTT ATTTATTTCA GGAGCAGGGG TGGGAGGCAG GTGGACTCTT GGGTCCCCGA GGAGGAGGGG
 45 ACTGGGGTCC CGGATTCTTG GGTCTCCAAAG AAGTCTGTCC ACAGACTTCT GCCCTGGCTC TTCCCCATCT
 AGGCCTGGGC AGGAGACATAT ATTATTATT TAAGCAATT CTTTCATGT TGGGGTGGGG ACGGAGGGGA
 AAGGGAAGCC TGGGTTTTTG TACAAAAATG TGAGAACACT TTGTGAGACA GAGAACAGGG AATTAAATGT
 GTCATACATA TCCACTTGAG GGCAGTTGT CTGAGAGCTG GGGCTGGATG CTTGGGTAAC TGGGGCAGGG
 CAGGTGGAGG GGAGACCTCC ATTCAAGGTGG AGGTCCCGAG TGGGCGGGGC AGCAGCTGGG AGATGGTCG
 50 GTCACCCAGA CAGCTCTGTG GAGGCAGGGT CTGAGCCTTG CCTGGGGGCC CGCACTGCAT AGGGCCGTTT
 GTTGTGTTTG TGAGATGGAG TCTCGCTCTG TTGCTCTAGGC TGGAGTGCAG TGAGGCAATC TAAGGTCACT
 GCAACCTCCA CCTCCGGGT TCAAGCAATT CTCTGCTCTC AGCCTCCGA TTAGCTGGGA TCACAGGTGT
 GCACCACCAT GCCCAGCTAA TTATTATT TCTTTGTATT TTAGTAGAG ACAGGGTTTC ACCATGTTGG
 CCAGGCTGGT TTCAAACCTC TGACCTCAGG TGATCCTCTT GCCTCGGCC CCAAAAGTGC TGGGATTACA
 55 GGTGTGAGCC ACCACACCTG ACCCATAGGT CTTCAATAAA TATTTAATGG AAGGTTCCAC AAGTCACCC
 GTGATCAACA GTACCCGTAT GGGACAAAGC TGCAAGGTCA AGATGGTCA TTATGGCTGT GTTCACCCATA
 GCAAACCTGGA AACATATCTAG ATATCCAACA GTGAGGGTTA AGCAACATGG TGCATCTGTG GATAGAACGC
 CACCCAGCCG CCCCCAGCAG GGACTGTCTA TCAGGGAGGC TAAGGAGAGA GGCTGCTTG GGATATAGAA
 AGATATCCTG ACATGGCCA GGCATGGTGG CTCACGCCCTG TAATCCTGGC ACTTGGGAG GACGAAGCGA
 60 GTGGATCAACT GAACTCCAAG AGTTTGAGAC CGGCCTGCGA GACATGGCAA AACCTGTCT CAAAAAAAGAA
 AGAATGATGT CCTCATGATG AACAGCAGGC TACAAAACCA CTGCATGCTG TGATCCAAT TTTGTGTTT
 TCTTCTATA TATGGATTAA AACAAAAATC CTAAAGGGAA ATACGCCAA ATGTTGACAA TGACTGTCTC

CAGGTCAAAG GAGAGAGGTG GGATTGTGGG TGACTTTAA TGTGTATGAT TGTCTGTATT TTACAGAATT
 TCTGCCATGA CTGIGTATT TGCAACAC ATTTAAAAAA TAATAAACAC TATTTTAGA ATAACAGAAT
 ATCAGCCTCC TCCTCTCAA AAATAAGCCC TCAGGAGGGG ACAAAAGTTGA CCGCTGATTG AGCCTGTCAG
 GGCTGTGCAC-3' (FRAG. NO:_) (SEQ. ID NO:2522)

5 Human GM-CSF Nucleic Acid and Antisense Oligonucleotide Fragments

5'-CTTGBGCBGG BBGCTCTGGG GCBGGGBGCT GGCBBGGCCC BGGGGGTGG CTTCTGBCB TGTCCBGBGT
 GCBCTGTGCC BCBGCBGCBG CTGCBGGGCC BTCBGCTTCB TGGGGCTCTG GGTGGCBGGT CCBGCCBTGG
 GTCTGGGTGG GGCCTGGGCTG CBGGCTCCGG GCGGTCCBGCCBTGGGTCTG GGGGCTGGG CTGCBGGCTC
 CGGGCGGGCG GGTGCGGGCT GCGTGCTGGG GGCTGCCCG CAGGCCCTGC GGTCCBGCCTB TGGGTCTGGG
 10 GGCTGGGCTG CBGGCTCCGG GCGGGCGGGT GCGGGCTGCG TGCTGGGGC TGCCCGCAG GCCCTGC-3' (FRAG.
 NO:1847) (SEQ. ID NC: 1860)
 5'-GBGCBGG BBG-3' (FRAG. NO:1848) (SEQ. ID NO: 1861)
 5'-GCCBCBGCBCBGC-3' (FRAG. NO:1849) (SEQ. ID NO: 1862)
 5'-GGG TGC GGG C-3' (FRAG. NO:1850) (SEQ. ID NO: 1863)
 15 5'-GGT CCB GCC BTG GGT CTG GG-3' (FRAG. NO:1300)(SEQ. ID NO:1309)
 5'-GGC TGG GCT GCB GGC TCC GG-3' (FRAG. NO:1301)(SEQ. ID NO:1310)
 5'-GCG GGC GGG TGC GGG CTG CGT GCT GGG-3' (FRAG. NO:1302)(SEQ. ID NO:1311)
 5'-GGC TGC CCC GCA GGC CCT GC-3' (FRAG. NO:1303)(SEQ. ID NO:1312)
 20 5'-CTTGBGCBGG BBGCTCTGGG GCBGGGBGCT GGCBBGGCCC BGGGGGTGG CTTCTGBCB TGTCCBGBGT
 GCBCTGTGCC BCBGCBGCBG CTGCBGGGCC BTCBGCTTCB TGGGGCTCTG GGTGGCBGGT CCBGCCBTGG
 GTCTGGGTGG GGCTGGCTG CBGGCTCCGG GC-3' (FRAG. NO:1851) (SEQ. ID NO: 1864)

Human Tumor Necrosis Factor α Antisense Oligonucleotide Fragments

5'-GCBCCGCCTG GBGCCCTGGG GCCCCCTGT CTTCTGGGG BGCGCCTCCT CGGCCBGCTC CBCGTCCCCG
 BTCBTGCCTT CBGTCCTCBT GGTGCTCTTT CCBGGGBGB GBGGGGCTGG TCCTCTGCTG TCCTGCTGG
 25 TGCTCBTGGT GTCTTTCCG CCCTGGGCC CCCCTGTCTT CTTGGGCTCT CTTCCCTCTG GGGGCCGCTCT
 CTCTCCCTCT CTTGCGTCTC TCTCTTCTC TCTCTCTCTT CCCCTTCCC GCTCTTCTG TCTCGGTGTC
 TGGTTTCTC TCTCGCTGG CTGCCTGTCT GGCCTGCGCT CTTGGCCTGT GCTGTTCTC CTCCGGTTCC
 TGTCTCTCT GTCTCTGCC CCCTCTGGG TCTCCCTCTG GGTGGTGGTC TTGTTGCTTG GGCTGGGCTC
 CGTGTCTCCB GTGCTCBTGG TGTCCGCTGB GGGBGCCTCT GCTGGCGCTG GTCTCTGCTGTC CTTGCTGGTG
 30 CTCBTGGTGT CCTITCCGCC CTGGGGCCCC CCTGTCTCT TGGGGCTCT TCCCTCTGGG GGCCGTCTC
 TCTCCCTCTC TTGCGTCTCT CTCTTTCTCT CTCTCTCTC CCCTTTCCC CTCTTCTG TCTCGGTGTC
 GGGTTTCTCT CTCCGCTGGC TGCCGTCTG GCCTGCGCTC TTGGCCTGTG CTGTTCTCC TCCGGTTCT
 GTCCCTCTG TCTGTCGCC CCTCTGGGT CTCCCTCTGG CGTGGTGGTC TTGTTGCTTG GGCTGGGCTC
 CGTGTCTCCB GTGCTCBTGG TGTCCGCTGB GGGBGCCTCT GCTGGC-3' (FRAG.NO:1852)(SEQ.ID NO:1865)
 35 5'-GGGGCCCCC-3' (FRAG. NO:1853) (SEQ. ID NO:1866)
 5'-GGG GGC CG TCT-3' (FRAG. NO:1854) (SEQ. ID NO:1867)
 5'-CCBGGGGBGB GBG 3GGCTGG-3' (FRAG. NO:1855) (SEQ. ID NO:1868)
 5'-GCBCCGCCTG GBGCCCTGGG GCCCCCTGT CTTCTGGGG BGCGCCTCCT CGGCCBGCTC CBCGTCCCCG
 BTCBTGCCTT CBGTCCTCBT GGTGCTCTTT CCBGGGGBGB GBGGG-3' (FRAG. NO:1304) (SEQ. ID NO:1313)
 40 5'-GCT GGT CCT CTG TCT TTG CTG GTG CTC BTG GTG TCC TTT CC GCC CTG GGG CCC CCC TGT CTT CTT
 GGG G CCT CTT CCC TCT GGG GGC CG TCT CTC TCC CTC TCT GTC TCT C TCT TTC TCT CTC TCT CTT CCC
 C TTT CCC GCT CTT TCT GTC TC GGT GTC TGG TTT TCT CTC TCC GCT GGC TGC CTG TCT GGC CTG CGC TCT T
 GGC CTG TGC TGT TCC TCC GGT TCC TGT CCT CTC TGT CTG TC GCC CCC TCT GGG GTC TCC CTC TGG C
 GTG GTG GTC TTG TTG CTT GGG CTG GGC TCC GTG TCT C CBG TGC TCB TGG TGT CC-3' (FRAG. NO:1305)
 45 (SEQ. ID NO:1314)
 5'-GCT GBG GGB GCG TCT GCT GGC GCT GGT CCT CTG CTG TCC TTG CTG GTG CTC BTG GTG TCC TTT CC GCC
 CTG GGG CCC CCC TGT CTT CTT GGG G CCT CTT CCC TCT GGG GGC CG TCT CTC TCC CTC TCT GTC TCT
 C TCT TTC TCT CTC TCT CTT CCC C TTT CCC GCT CTT TCT GTC TC GGT GTC TGG TTT TCT CTC TCC GCT GGC
 TGC CTG TCT GGC CTG CGC TCT T GGC CTG TGC TGT TCC TCC GGT TCC TGT CCT CTC TGT CTG TC GCC
 50 CCC TCT GGG GTC TCC CTC TGG C GTG GTG GTC TTG TTG CTT GGG CTG GGC TCC GTG TCT C CBG TGC TCB
 TGG TGT CC GCT GBC GGB GCG TCT GCT GGC-3'(FRAG.NO:1306)(SEQ.ID NO:1315)
 5'-GCT GGT CCT CTG CTG TCC TTG CTG-3' (FRAG. NO:1655) (SEQ. ID NO:1664)
 5'-GTG CTC BTG GTG TCC TTT CC-3' (FRAG. NO:1656)(SEQ. ID NO:1665)
 5'-GCC CTG GGG CCC CCC TGT CTT CTT GGG G-3' (FRAG. NO:1657)(SEQ. ID NO:1666)
 55 5'-CCT CTT CCC TCT GGG GGC CG-3' (FRAG. NO:1658)(SEQ. ID NO:1667)
 5'-TCT CTC TCC CTC "CT TGC GTC TCT C-3' (FRAG. NO:1659)(SEQ. ID NO:1668)
 5'-TCT TTC TCT CTC TCT CTT CCC C-3' (FRAG. NO:1660)(SEQ. ID NO:1669)
 5'-TTT CCC GCT CTT "CT GTC TC-3' (FRAG. NO:1661)(SEQ. ID NO:1670)
 5'-GGT GTC TGG TTT TCT CTC TCC-3' (FRAG. NO:1662)(SEQ. ID NO:1671)

5'-GCT GGC TGC CTG TCT GGC CTG CGC TCT T-3' (FRAG. NO:1663)(SEQ. ID NO:1672)
 5'-GGC CTG TGC TGT TCC TCC-3' (FRAG. NO:1664)(SEQ. ID NO:1673)
 5'-TCC GGT TCC TGT CCT CTC TGT CTG TC-3' (FRAG. NO:1665)(SEQ. ID NO:1674)
 5'-GCC CCC TCT GGG GTC TCC CTC TGG C-3' (FRAG. NO:1666)(SEQ. ID NO:1675)
 5 5'-GTG GTG GTC TTG TTG CTT-3' (FRAG. NO:1667)(SEQ. ID NO:1676)
 5'-GGG CTG GGC TCC GTG TCT C-3' (FRAG. NO:1668)(SEQ. ID NO:1677)
 5'-CBG TGC TCB TGG TGT CC-3' (FRAG. NO:1669)(SEQ. ID NO:1678)
 5'-GCT GBG GGB GCG TCT GCT GGC-3' (FRAG. NO:1670)(SEQ. ID NO:1679)

Human Leukotriene C4 Synthase Nucleic Acids and Antisense Oligonucleotide Fragments

10 5'-CTCGGTBDBC GCC;CTCGBBC TCGGGTGGC CGGTGGTGBG CGGC GGCGC BCB CGCGGBBGGC CCTGCGCGCC
 GBGBTBCCCTG CBGGGBBGB TBGGCTGCB GCBGBCTCC CBGGBGGGTG BCBGCBGCC GTBGBGCTBC
 CTCGTCCCTC BTGGTBCCGT CGGTGTGGTG GCBGGGCTG TGTGTGBBGG CGBGCTGGC CCCGTCTGCT
 GCTCCTCGTG CGCGCTCGTC CTTCA TGG TA CCGTCGGTGT GGTGGCCTCG GGTGGGCCGG TGTTGGGCG
 CGCGCGCTCG CGTCGCTCCG GCTCTTCTT CCCGGCTCCGT CGGCCCGGGG GCCTTGGTCT CCCTCGTCC
 15 TCBTGGTBCC G-3' (FRAG. NO:1856) (SEQ ID NO: 1869)
 5'-GCB GCBGGBC-3' (FRAG. NO:1857) (SEQ ID NO: 1870)
 5'-CCCGGCTCCG-3' (FRAG. NO:1858) (SEQ ID NO: 1871)
 5'-CGGCCCGGGG GCC-3' (FRAG. NO:1859) (SEQ ID NO:1872)
 5'-CB CGCGG-3' (FRAG. NO:1860) (SEQ ID NO: 1873)
 20 5'-GCC CCG TCT GCT GCT CCT CGT GCC G-3' (FRAG. NO:1307)(SEQ. ID NO:1316)
 5'-CCT CGT CCT TCA TGG TAC CGT CGG TGT GGT GGC-3' (FRAG. NO:1308)(SEQ. ID NO:1317)
 5'-CTC GGG TGG GCC GGT GGT G-3' (FRAG. NO:1309)(SEQ. ID NO:1318)
 5'-GGG CGC GCG CGC TCG CGT-3' (FRAG. NO:1310)(SEQ. ID NO:1319)
 5'-GGC TCC GGC TCT TCT TTC CCG GCT CCG TCG GCC CGG GGG CCT TGG TCT C-3'(FRAG.NO:1311)(SEQ.ID NO:1320)
 25 5'-CCT CGT CCT TCB TGG TBC CG-3' (FRAG. NO:1312)(SEQ. ID NO:1321)
 5'-CTCGGTBDBC GCC;CTCGBBC TCGGGTGGC CGGTGGTGBG CGGC GGCGC BCB CGCGGBBGGC CCTGCGCGCC
 GBGBTBCCCTG CBGGGBBGB TBGGCTGCB GCBGBCTCC CBGGBGGGTG BCBGCBGCC GTBGBGCTBC
 CTCGTCCCTC BTGGTBCCGT CGGTGTGGTG GCBGGGCTG TGTGTGBBGG CGBGCTGG-3' (FRAG.NO:1861)
 (SEQ ID NO:1874)

Human Endothelin-1 Nucleic Acids and Antisense Oligonucleotide Fragments

30 5'-BCCGGCGGBG CGGCCBGGGT GGBCTGGBG TGGTTTCTC CCCGCCGTT TCBCCCBCCG CGCTGBGCTC
 BGCGCCTBBG BCTGCTGTT CTGGBGCTCC TTGGCBBGCC BCBBBCBGB GBGBGBBBBT CBTGBGCBBC
 TBBTCCCTTC TGBB BBBB BBG GGBTCBBBB CCTCCCGTTC CCCGTTCGCC TGGCGCGC TGCGGGITCC
 TCGTGGGTTT CTCC CCGCCG TTCTCCGGTC TGTGCTTT GTGGGCTTCT TGTCTTTTG GCTGTTCTTT
 35 TCCCTGCTTGG CGTCTTTTCC TTTCTTTGTG CTGGTTGTG GGTCCGCTGG TCCTTTGCC CGCGTTCTC
 TGCTGCCGT TCGCCTGGCG CGCGCTGCGG GTTCCCTCGT GGTTTCTCCC CGCGTTCTC CGGTCTGTTG
 CCTTTGTGGG CTTCTTGCTC TTTTGGCTGT TCTTTCCCTG CTTGGCGTCT TTTCCTTCT TTGTGCTCGG
 TTGTGGGTCC GCTGC TCCCT TGCCCTGTGT GTTTCTGCTG-3' (FRAG. NO:1862) (SEQ. ID NO:1875)
 5'-CCGGCGGBG CGCGCBGGGT GGBC-3' (FRAG. NO:1863) (SEQ. ID NO:1876)

40 40 5'-CCGCCBGGG-3' (FRAG. NO:1864) (SEQ. ID NO:1877)
 5'-GGCGCGCGC-3' (FRAG. NO:1865) (SEQ. ID NO:1878)
 5'-GTGGGTCCGC-3' (FRAG. NO:1866) (SEQ. ID NO:1879)
 5'-CCCGTTCGCCTGGCGC-3' (FRAG. NO:1313)(SEQ. ID NO:1322)
 5'-GCGCTGCGGGTTCTC-3' (FRAG. NO:1314)(SEQ. ID NO:1323)

45 45 5'-GTGGGTTCTCCCCGCCGTTCTC-3' (FRAG. NO:1315)(SEQ. ID NO:1324)
 5'-CGGTCTGTTGCCCTGTGGGG-3' (FRAG. NO:1316)(SEQ. ID NO:1325)
 5'-CTTCTTGTCTTTTGGCT-3' (FRAG. NO:1317)(SEQ. ID NO:1326)
 5'-GTTCTTTCTGCTGGC-3' (FRAG. NO:1318)(SEQ. ID NO:1327)
 5'-GTCTTTCTTTCTT-3' (FRAG. NO:1319)(SEQ. ID NO:1328)

50 50 5'-TGTGCTCGGTTGTGGTC-3' (FRAG. NO:1320)(SEQ. ID NO:1329)
 5'-CGCTGGCTTTGCC-3' (FRAG. NO:1321)(SEQ. ID NO:1330)
 5'-CTGTGTGTTCTGCTG-3' (FRAG. NO:1322)(SEQ. ID NO:1331)
 5'-CCCGTTCGCCTGGCGC-3' (FRAG. NO:1323)(SEQ. ID NO:1332)
 5'-GCGCTGCGGGTTCTC-3' (FRAG. NO:1324)(SEQ. ID NO:1333)

55 55 5'-GTGGGTTCTCCCCGCCGTTCTC-3' (FRAG. NO:1325)(SEQ. ID NO:1334)
 5'-CGGTCTGTTGCCCTGTGGGG-3' (FRAG. NO:1326)(SEQ. ID NO:1335)
 5'-CTTCTTGTCTTTTGGCT-3' (FRAG. NO:1327)(SEQ. ID NO:1336)
 5'-GTTCTTTCTGCTGGC-3' (FRAG. NO:1328)(SEQ. ID NO:1337)
 5'-GTCTTTCTTTCTT-3' (FRAG. NO:1329)(SEQ. ID NO:1338)

60 60 5'-TGTGCTCGGTTGTGGTC-3' (FRAG. NO:1330)(SEQ. ID NO:1339)

5'-CGCTGGTCCTTGC C-3' (FRAG. NO:1331)(SEQ. ID NO:1340)
 5'-CTGTGTGTTCTGCTG-3' (FRAG. NO:1332)(SEQ. ID NO:1341)

Endothelin Receptor ET-B Nucleic Acids and Antisense Oligonucleotide Fragments

5'-GCCCTGTCGG GCGGGAAAGCC TCTCTCCTCT CCCCAGATC CGCGACAGGC CGCAGGCAAG AACCAAGCGCA
 5 ACCAGGGCGC GTCCGCACAG ACTTGGAGGC GGCTGCATGC TGCTACCTGC TCCAGAAGCG TCCGGTGGCC
 10 GCCGCGCC CTGTCGGCG GGBBGCCTCT CTCCTCTCCC CBGBTCCGCG BCBGGCCGCB GGCBGBBCC
 BGCGCBCCB GGGCGCGTCC GCBBCBGBCTT GGBGGCGGCT GCBTGCCTGCT BCCTGCTCGGGCG GGBBGCCCTCCG
 GTGGCCGCCG CGCGCTCCGGT GGCCGCCGCG CCTCTCTCCCT CTCCCCGTGG CCCTGTCGGG CGGGTCCCTGC
 CGTCCTGTCT CCTTTCTT TGCTGTCTTG TCTTCCCGTC TCTGCTTT-3' (FRAG. NO: 1867) (SEQ. ID NO: 1880)
 10 5'-CGGGCG GGBBGC-3' (FRAG. NO: 1868) (SEQ. ID NO: 1881)
 5'-CGGGCGGG-3' (FRAG. NO: 1869) (SEQ. ID NO: 1882)
 5'-CCGCBGBC-3' (FRAG. NO: 1870) (SEQ. ID NO: 1883)
 5'-GCGTCCGGTGGCCGCC-3' (FRAG. NO:1333)(SEQ. ID NO:1342)
 5'-GCCTCTCTCCTCTCCCC-3' (FRAG. NO:1334)(SEQ. ID NO:1343)
 15 5'-GTGGCCCTGTCGGCGGG-3' (FRAG. NO:1335)(SEQ. ID NO:1344)
 5'-TCCTGCCGTCTGCTCCTT-3' (FRAG. NO:1336)(SEQ. ID NO:1345)
 5'-TCTTTGCTGTCTTGT-3' (FRAG. NO:1337)(SEQ. ID NO:1346)
 5'-CTTCCCGTCTCTGCTT-3' (FRAG. NO:1338)(SEQ. ID NO:1347)
 5'-GCCCTGTCGG GCGGGAAAGCC TCTCTCCTCT CCCCAGATC CGCGACAGGC CGCAGGCAAG AACCAAGCGCA
 20 ACCAGGGCGC GTCCGCACAG ACTTGGAGGC GGCTGCATGC TGCTACCTGC TCCAGAAGCG TCCGGTGGCC
 GCCGC-3' (FRAG. NO: 1871) (SEQ. ID NO: 1884)
 5'-GCCCTGTCGG GCGGGBBGCC TCTCTCCTCT CCCCBGBTCC GCGBCBGGCC GCBGGCBBGB BCCBGCGB
 BCCBGGCGC GTCCCBCBG BCTTGGBGGC GGCTGCBTGC TGCTBCCTGC TCCBGBBGCG TCCGGTGGCC GCCGC-
 3' (FRAG. NO: 1872) (SEQ. ID NO: 1885)
 25 **Endothelin ETA Receptor Nucleic Acids and Antisense Oligonucleotide Fragments**
 5'-GTCTGTCCTC CCCGTCTCCT CCCACTGCTT CTCCCGGGGG CTTCCCGGC TTGGGGTGGC CGGTGTCCCG
 GGCTCCGGCG CGGGGGCGGC TTGGCTGCG GGTGGGTGGC GCGGGCTGCC GGGTCCGCC GGCCTGCCGG
 CCCTTGTGCT GCTTTTGCT TGTTCCGTT TGGCTGCTCC GGTCTGTGTT GTGTTGTT TGTTCTTCT
 TGGGTGTGGG CCTGCGGTT TTGGCTGTGG GCCCTTTGGG GCCTTGGCTT CTGGCTCGTC TGCTCCCG
 30 GTCTCCTCCC ACTCTTCT CCCGGGGGCT TCCCCGGCTT CGGGTGGCCG GTGTCCCGGG CTCCGGCGCG
 GCGGCGGCTT CGGGTGCAGGG TGGGTGGCGC GGGCTGCCGG GTCCGCGCG CGCTTGGGCC CTTGTGCTGC
 TTTTGCTTG TTCCGTTCTG GCTGCTCCGG TCTGTGTTGT GGTTGTTTG TTTCTTCTTG GGTGTGGGCC
 TTGCGGTTTG GGC`GTGGGC CCTTITGGGC CTTGGCTTCT GGCTCCAT CCACATGATT GCTTAGATTT
 GTGCTGTATC TCTCAGGATT ATCACTGATT ACACATCAA CCAGTGCCAG CCAAAGGAT GCCCTGAGGC
 35 AAAGGGTTTC CATTTGAGG CAAATTGAG GACBTCCBC BTGBTGCTT BGBTGTTGTC TGTTCTCTC
 BGGBTTBCB CTGETTBCBC BTCCBBCBG TGCCBGCCBB BBGGBTGCC TGBGGCBBBG GGTTCBCB
 TTGBGGCBBB TTGGBGG-3' (FRAG. NO:1873) (SEQ. ID NO: 1886)
 5'-GBGGCBBGGG-3' (FRAG. NO:1874) (SEQ. ID NO: 1887)
 5'-GCCBGCCB BBGG 3'-3' (FRAG. NO:1875) (SEQ. ID NO: 1888)
 40 5'-CGCCTGGGCC C-3' (FRAG. NO:1876) (SEQ. ID NO: 1889)
 5'-GTCTGTCCTCCCCCTCTCCTCCC-3' (FRAG. NO:1339)(SEQ. ID NO:1348)
 5'-ACTGCTTCTCCCGCGG-3' (FRAG. NO:1340)(SEQ. ID NO:1349)
 5'-GCTTCCCCGGCTTC-3' (FRAG. NO:1341)(SEQ. ID NO:1350)
 5'-GGGTGGCCGGTGTCCGGGCTCCGGCGCGGCC-3' (FRAG. NO:1342)(SEQ. ID NO:1351)
 45 5'-GGCTTCGGCTGC-3' (FRAG. NO:1343)(SEQ. ID NO:1352)
 5'-GGGTGGGTGGCGCGG-3' (FRAG. NO:1344)(SEQ. ID NO:1353)
 5'-GCTGCCGGGTCCCGCGGCCCTGGGCC-3' (FRAG. NO:1345)(SEQ. ID NO:1354)
 5'-CTTGTGCTGCTTT-3' (FRAG. NO:1346)(SEQ. ID NO:1355)
 5'-TGCTTGTCTCCGTT-3' (FRAG. NO:1347)(SEQ. ID NO:1356)
 50 5'-TGGCTGCTCCGGTCTGTGTTGTTGTTTG-3' (FRAG. NO:1348)(SEQ. ID NO:1357)
 5'-TTTCTTCTTGGGTGTTG-3' (FRAG. NO:1349)(SEQ. ID NO:1358)
 5'-CCTTGCGGTTTGCG-3' (FRAG. NO:1350)(SEQ. ID NO:1359)
 5'-CTGTGGGCCCTTC-3' (FRAG. NO:1351)(SEQ. ID NO:1360)
 5'-GGGCCTGGCTTCGGCTC-3' (FRAG. NO:1352)(SEQ. ID NO:1361)
 55 5'-CATCCACATG ATGCTTAGA TTTGTGCTGT ATCTCTCAGG ATTATCACTG ATTACACATC CAACCAGTGC
 CAGCCAAAAG GATC CCCTGA GGCAAAGGGT TTCCCATCTTG AGGCAAATTG GAGGA-3' (FRAG.NO:1353)
 (SEQ.ID NO:1362)
 5'-CBTCCBCBTG BTGCTTBGB TTTGTGCTGT BTCTCTCBGG BTTBTCBCTG BTTBCBCBTC CBBCCBGTGC
 CBGCCBBBG GBTGCCCTGB GGCBGGGGT TTCCBTCTTG BGGCBBTTT GBGGB-3' (FRAG. NO:1354)(SEQ. ID NO:1363)

Endothelin Receptor A Nucleic Acid and Antisense Oligonucleotide Fragments

5	GCCACCATGG	AAACCCTTG	CCTCAGGGCA	TCCTTTGGC	TGGCACTGGT	TGGATGTGTA	ATCAGTGATA
	ATCCTGAGAG	ATACAGCACA	AATCTAACGA	ATCATGTGGA	TGATTTCAC	ACTTTCTGTG	GCACAGAGCT
	CAGCTTCCTG	GTTCACACTC	ATCAACCCAC	TAATTGGTC	CTACCCAGCA	ATGGCTCAAT	GCACAACATAT
5	TGCCACAGC	AGACTAAAAT	TACTTCAGCT	TTCAAATACA	TTAACACTGT	GATATCTTGT	ACTATTTICA
	TCGTGGGAAT	GGTCGGGAAT	GCAACTCTGC	TCAGGATCAT	TTACCAAGAAC	AAATGTATGA	GGAATGGCCC
	CAACCGCCTG	ATAGCCAGTC	TTGCCCTGG	AGACCTTATC	TATGTGGTCA	TTGATCTCCC	TATCAATGTA
10	TGGCTGGCG	CTGGCCTTTT	GATCACAAATG	ACTTTGGCGT	ATTCTTTGC	AAGCTGTTCC	CCTTTTGCA
	GAAGTCCTCG	GTGGGGATCA	CCGCTCTAA	CCTCTGCGCT	CTTAGTGTG	ACAGGTACAG	AGCAGTTGCC
10	TCCTGGAGTC	GTGTTCAGGG	AATTGGGATT	CCTTGGTAA	CTGCCATTGA	AATTGCCCTC	ATCTGGATCC
	TGTCCTTAT	CCTGGCCATT	CCTGAAGCGA	TTGGCTTCGT	CATGGTACCC	TTTGAATATA	GGGGTGGACA
	GCATAAAAAC	TGTATGCTCA	ATGCCACATC	AAAATTATCG	GAGTTCTACC	AAGATGTAAA	GGACTGGTGG
15	CTCTTCGGGT	TCTATTCTG	TATGCCCTTG	GTGTCACTG	CGATCTTCTA	CACCCCTCATG	ACTGGTGAGA
	TGTTGAACAG	AAGGAATGGC	AGCTTGAGAA	TTGCCCTCAG	TGAACATCTT	AAGCAGCGTC	GAGAAGTGGC
15	AAAAACAGTT	TTCGCTTGG	TTGTAATTTC	TGCTCTTGC	TGGTCCCTC	TTCATTTAAG	CCGTATATTG
	AAGAAAATG	TGTATAACGA	GATGGACAAG	AACCGATGTG	AATTACTTAG	TTTCTTACTG	CTCATGGATT
	ACATCGGTAT	TAACCTGGCA	ACCATGAATT	CATGTATAAA	CCCCATAGCT	CTGTATTTG	TGAGCAAGAA
20	ATTTAAAAAT	TGTITCCAGT	CATGCCCTCT	CTGCTGCTGT	TACCACTCCA	AAAGTCTGAT	GACCTCGGTC
	CCCATGAACG	GAACAAGCAT	CCAGTGGAAAG	AACCACGATC	AAAACAACCA	CAACACAGAC	CGGAGCAGCC
20	ATAAGGACAG	CATGAACCTGA	CCACCCCTAG	AAGCACTCCT	GAATTGGGGA	AAAAGTGAAG	GTGTAAAAGC
	AGCACAAGTG	CAAAGAGAGA	TATTTCTCA	AATTGCGCTC	AAGATGGAAA	CCCTTGCCT	CAGGGCATCC
	TTTGGCTGG	CACTGGTTGG	ATGTGTAATC	AGTGATAATC	CTGAGAGATA	CAGCACAAAT	CTAAGCAATC
	ATGTGGATGA	TTTCACCACT	TTTCGTGGCA	CAGAGCTCAG	CTTCCCTGGTT	ACCACTCATC	AACCCACTAA
25	TTTGGTCCCTA	CCCAGCAATG	GCTCAATGCA	CAACTATTGC	CCACAGCAGA	CTAAAATTAC	TTCAAGCTTTC
	AAATACATTA	ACACTGTGAT	ATCTTGACT	ATTTTATCG	TGGGAATGGT	GGGGATGCA	ACTCTGCTCA
	GGATCATTTA	CCACAAACAA	TGTATGAGGA	ATGGCCCCAA	CGCGCTGATA	GCCAGTCTTG	CCCTTGGAGA
	CCTTATCTAT	GTGCTCATTC	ATCTCCCTAT	CAATGTATTT	AAGCTGCTGG	CTGGCGCTG	GCCTTTGAT
	CACAATGACT	TTGGCGTATT	TCTTGCAG	CTGTTCCCT	TTTGCGAGAA	GTCCCTGGTG	GGGATCACCG
30	TCCTCAACCT	CTGCGCTCTT	AGTGTGACA	GGTACAGAGC	AGTTGCCCTC	TGGAGTCGTG	TTCAAGGGAT
	TGGGATTCCT	TTGCTAACTG	CCATTGAAAT	TGCTCTCATC	TGGATCTGTG	CCTTATTCCT	GGCCATTCT
	GAAGCGATTG	GCTTCGTAT	GGTACCCCTT	GAATATAGGG	GTGAACAGCA	TAAAACCTGT	ATGCTCAATG
	CCACATCAA	ATTCTATGGAG	TTCTACCAAG	ATGTAAAGGA	CTGGTGGCTC	TTGGGTTCT	ATTCTGTAT
	GCCCTGGTG	TGCACTGCGA	TCTTCTACAC	CCTCATGACT	TGTGAGATGT	TGAACAGAAAG	GAATGGCAGC
35	TTGAGAATTG	CCCTCAGTGA	ACATCTTAA	CAGCGTCGAG	AAGTGGCAAA	AACAGTTTC	TGCTTGGTTG
	TAATTTTGC	TCTTGTCTGG	TTCCCTCTTC	ATTTAAGCCG	TATATTGAAG	AAAACTGTGT	ATAACGAGAT
	GGACAAGAAC	CGATGTGAAT	TACTTAGTT	CTTACTGTC	ATGGATTACA	TCGGTATTAA	CTTGGCAACC
	ATGAATTATC	GTATAAACCC	CATAGCTCG	TATTTGTA	GCAAGAAATT	AAAAAATTGT	TTCCAGTCAT
	GCCTCTGCTG	CTGCTGTTAC	CAGTCCAAA	GTCTGATGAC	CTCGGTCCTC	ATGAACGGAA	CAAGCATCCA
40	GTGGAAGAAC	CACGATCAA	ACAACCAAA	CACAGACCGG	AGCAGCCATA	AGGACAGCAT	GAACTGACCA
	CCCTTAGAAG	CACCTCTCGG	TACTCCCATA	ATCCTCTCGG	AGAAAAAAAT	CACAAGGCAA	CTGTGAGTCC
	GGGAATCTCT	TCTCTGATCC	TTCTTCCTA	ATTCACTCCC	ACACCCAAAGA	AGAAATGCTT	TCCAAAACCG
	CAAGGTAGA	CTGGTTTATC	CACCCACAAAC	ATCTACGAAT	CGTACTCTT	TAATTGATCT	AATTACATA
	TTCTCGCTGT	TGTAATCAGC	ACTAAAAAAAT	GGTGGGAGCT	GGGGGAGAAT	GAAGACTGTT	AAATGAAACC
45	AGAAGGATAT	TTTACTACTT	TGCATAAAAA	TAGAGCTTTC	AAGTACATGG	CTAGCTTTA	TGGCAGTTCT
	GGTGAATGTT	CAATGGGAAC	TGGTCACCAT	GAAACTTTAG	AGATTAACGA	CAAGATTTC	TACTTTTTT
	AAAGTATTTC	TTTGTCCTTC	AGCCAAACAC	AATATGGGT	CAAGTCACCT	TTATTGAAA	TGTCATTGG
	TGCCAGTATC	CCGAATTTC	GAATTGGGAA	AAAAGTGAAG	GTGAAAAGC	AGCACAAGTG	CAATAAGAGA
	TATTCCTCA	AATTGCTTC	AAGATGGAAA	CCCTTGGCT	CAGGGCATCC	TTTGGCTGG	CACTGGTTGG
50	ATGTGAATC	AGTCATAATC	CTGAGAGATA	CAGCACAAAT	CTAACGCAATC	ATGTGGATGA	TTTCACCACT
	TTTCGGCA	CAGTCCTCAG	CTTCTGGTT	ACCACTCATC	AACCCACTAA	TTTGGCTCTA	CCCAGCAATG
	GCTCAATGCA	CAACTATTGC	CCACAGCAGA	CTAAAATTAC	TTCAGCTTC	AAATACATTA	ACACTGTGAT
	ATCTTGACT	ATTTTCATCG	TGGGAATGGT	GGGGAAATGCA	ACTCTGCTCA	GGATCATTAA	CCAGAACAAA
	TGTATGAGGA	ATGGCCCAA	CGCGCTGATA	GCCAGTCTTG	CCCTTGGAGA	CCTTATCTAT	GTGGTCATTG
55	ATCTCCCTAT	CAAATGTATT	AAGCTGCTG	CTGGCGCTG	GCCTTTGAT	CACATGACT	TTGGCGTATT
	TCTTGCAG	CTGTCCTCCT	TTTTCAGAA	GTCTCGGTG	GGGATCACC	TCCTCAACCT	CTCGCTCTT
	AGTGTGACA	GGTACAGAGC	AGTTGCCCTC	TGGAGTCGTG	TTCAGGGAAT	TGGGATTCC	TTGGTAACG
	CCATTGAAAT	TGTCTCCATC	TGGATCTGT	CCTTATCTC	GGCCATTCT	GAAGCGATTG	GCTTCGTAT
	GGTACCCCTT	GAATATAGGG	GTGAACAGCA	TAAAACCTGT	ATGCTCAATG	CCACATCAA	ATTCATGGAG
60	TTCTACCAAG	ATGTAAAGGA	CTGGTGGCTC	TTGGGTTCT	ATTCTGTAT	GCCCTTGGTG	TGCACTGCGA
	TCTTCTACAC	CCTCATGACT	TGTGAGATGT	TGAACAGAAAG	GAATGGCAGC	TTGAGAATTG	CCCTCAGTGA
	ACATCTTAAAG	CAGCGTCGAG	AAAGTGGCAAA	AACAGTTTC	TGCTTGGTT	TAATTTCG	TCTTTGCTGG

TTCCCTCTTC ATTTAAGCCG TATATTGAAG AAAACTGTGT ATAACGAGAT GGACAAGAAC CGATGTGAAT
 TACTTAGTTT CTTAATGCTC ATGGATTACA TCGGTATTAA CTTGGCAACC ATGAATTCAT GTATAAACCC
 CATAGCTCTG TATTTGTGA GCAAGAAAATT TAAAATTGT TTCCAGTCAT GCCTCTGCTG CTGCTGTTAC
 CAGTCCAAAAA GTCIGATGAC CTCGGTCCCC ATGAACGGAA CAAGCATCCA GTGGAAGAAC CACGATCAA
 5 ACAACCACAA CACAGACCGG AGCAGCCATA AGGACAGCAT GAACTGACCA CCCTAGAAG CACTCCTCGG
 TACTCCCATA ATCCCTCTCGG AGAAAAAAAT CACAAGGCAA CTGTGAGTCC GGGAAATCTCT TCTCTGATCC
 TTCTTCTTA ATTCACTCCC ACACCCAAGA AGAAATGCTT TCCAAAACCG CAAGGGTAGA CTGGTTTATC
 CACCCACAAC ATCTACGAAT CGTACTTCTT TAATTGATCT AATTACATA TTCTCGTGTT TGTATTCA
 ACTAAAAAAAT GGTCGGAGCT GGGGGAGAAT GAAGACTGTT AAATGAAACC AGAAGGATAT TTACTACTT
 10 TGCAATGAAAA TAGAGCTITC AAGTACATGG CTAGCTTTA TGGCAGTTCT GGTGAATGTT CAATGGGAAC
 TGGTCACCAT GAAACTTITAG AGATTAACGA CAAGATTTTC TACTTTTTT AAGTGAATT TTTGTCTTC
 AGCCAACAC AATA'GGGCT CAAGTCACTT TTATTTGAAA TGTCAATTGG TGCCAGTATC CCGAATTTC-3' (FRAG.
 NO: __) (SEQ ID NO: 3014)
 5'-GAATTGGGA AAAAGTGAAG GTGTAAAAGC AGCACAAGTG CAATAAGAGA TATTTCTCA AATTGCTC
 15 AAGATGAAA CCCTTGCCT CAGGGCATCC TTTGGCTGG CACTGGTTGG ATGTGAATC AGTGATAATC
 CTGAGAGATA CAGCACAAAT CTAAGCAATC ATGTGGATGA TTTCACCACT TTCTGGGCA CAGAGCTCAG
 CTTCTGGTT ACCACTCATC AACCCACTAA TTGGTCTTA CCCAGCAATG GCTCAATGCA CAACTATTGC
 CCACAGCAGA CTAATTAC TTCAGCTTC AAATACATTA ACACGTGAT ATCTTGACT ATTTCATCG
 20 TGGGAATGGT GGGGAATGCA ACTCTGCTCA GGATCATTAA CCAGAACAAA TGTATGAGGA ATGGCCCCAA
 CGCGCTGATA GCCAGTCTTG CCCTTGGAGA CCTTATCTAT GTGGTCATTG ATCTCCCTAT CAATGTATTT
 AAGCTGCTGG CTGGGCGCTG GCCTTTGAT CACAATGACT TTGGCGTATT TCTTGCAAG CTGCGCTCTT
 TTTTGAGAAA GTCTCGGTG GGGATCACC CGTCAACCT TTGGTAACTG AGTGGTACCA GGTACAGAGC
 AGTTGCCCTC TGGATCTGT CTTTATCCT GGCCATTCTT GAAGCGATTG GCTTCGTAC GGTACCCCTT
 25 GTGAACAGCA TAAACCTGT ATGCTCAATG CCACATCAA ATTCACTGGAG TTCTACCAAG ATGTAAGGA
 CTGGTGCTC TTCCGGTCT ATTTCTGTAT GCCCCTGGTG TGCACTGGCA TCTTCTACAC CCTCATGACT
 TGTGAGATGT TGAAAGAGA GAATGGCAGC TTGAGAATTG CCCTCAGTGA ACATCTTAAG CAGCGTCGAG
 AAGTGGCAA AACAGTTTC TGCTTGGTT TAATTTTGC TCTTGCTGG TTCCCTCTTC ATTAAAGCCG
 TATATTGAAG AAACTGTGT ATAACGAGAT GGACAAGAAC CGATGTGAAT TACTTAGTTT CTTACTGCTC
 30 ATGGATTACA TCGCTATTAA CTTGGCAACC ATGAATTCAT GTATAAACCC CATAGCTCTG TATTTGTGA
 GCAAGAAAATT TAAATTGT TTCCAGTCAT GCCTCTGCTG CTGCTGTTAC CAGTCCAAAA ACAACCACAA
 CTCGGTCCCC ATGAACGGAA CAAGCATCCA GTGGAAGAAC CACGATCAA ACAAGACCGG ATCCTCTCGG
 AGCAGCCATA AGGACAGCAT GAACTGACCA CCCTAGAAG GCTTCGTAC TCTTGCAAG GAAACTTAG
 AGAAAAAAAT CACAGGCAA CTGTGAGTCC GGGAAATCTCT TTCTTCCTT ATTCACTCCC
 35 ACACCCAAAGA AGAAATGCTT TCCAAAACCG CAAGGGTAGA CTGGTTTATC CACCCACAAC ATCTACGAAT
 CGTACTTCTT TAATTGATCT AATTACATA TTCTCGTGTT TGATTCAGC ACTAAAAAAAT GGTGGGAGCT
 GGGGGAGAAT GAAAGACTGTT AAATGAAACC AGAAGGATAT TTACTACTT TGCAATGAAA TGTACAGAGC
 AAGTACATGG CTAGCTTTA TGGCAGTTCT GGTGAATGTT CAATGGGAAC TGGTCACCAT GAAACTTTAG
 AGATTAACGA CAAAGATTTTC TACTTTTTT AAGTGAATT TTTGTCTTC AGCCAACAC AATATGGGCT
 40 CAAGTCACTT TTATTTGAAA TGTCAATTGG TGCCAGTATC CCGAATTTC-3' (FRAG. NO: __) (SEQ ID NO: 2482)
 5'-GAATTGGGA AAAAGTGAAG GTGTAAAAGC AGCACAAGTG CAATAAGAGA TATTTCTCA AATTGCTC
 AAGATGAAA CCCTTGCCT CAGGGCATCC TTTGGCTGG CACTGGTTGG ATGTGAATC AGTGATAATC
 CTGAGAGATA CAGCACAAAT CTAAGCAATC ATGTGGATGA TTTCACCACT TTCTGGGCA CAGAGCTCAG
 CTTCTGGTT ACCACTCATC AACCCACTAA TTGGTCTTA CCCAGCAATG GCTCAATGCA CAACTATTGC
 45 CCACAGCAGA CTAATTAC TTCAGCTTC AAATACATTA ACACGTGAT ATCTTGACT ATTTCATCG
 TGGGAATGGT GGGGAATGCA ACTCTGCTCA GGATCATTAA CCAGAACAAA TGTATGAGGA ATGGCCCCAA
 CGCGCTGATA GCCAGTCTTG CCCTTGGAGA CCTTATCTAT GTGGTCATTG ATCTCCCTAT CAATGTATTT
 AAGCTGCTGG CTGGGCGCTG GCCTTTGAT CACAATGACT TTGGCGTATT TCTTGCAAG CTGTTCCCT
 TTTTGAGAAA GTCTCGGTG GGGATCACC CGTCAACCT TTGGTAACTG AGTGGTACCA GGTACAGAGC
 50 AGTTGCCCTC TGGAGTCGTG TTCAGGGAAAT TGGGATTCTT GGTCAGTAC GGTACCCCTT GAATATAGGG
 TGGATCTGT CTTTATCCT GGCCATTCTT GAAGCGATTG ATTCACTGGAG TTCTACCAAG ATGTAAGGA
 GTGAACAGCA TAAACCTGT ATGCTCAATG CCACATCAA TGCACTGGCA TCTTCTACAC CCTCATGACT
 CTGGTGCTC TTCCGGTCT ATTTCTGTAT GCCCCTGGTG CCCTCAGTGA ACATCTTAAG CAGCGTCGAG
 TGTGAGATGT TGAAAGAGA GAATGGCAGC TTGAGAATTG TCTCTGCTGG TTCCCTCTTC ATTAAAGCCG
 55 AAGTGGCAA AACAGTTTC TGCTTGGTT TAATTTTGC CGATGTGAAT TACTTAGTTT CTTACTGCTC
 TATATTGAAG AAAACTGTGT ATAACGAGAT GGACAAGAAC GTATAAACCC CATAGCTCTG TATTTGTGA
 ATGGATTACA TCGCTATTAA CTTGGCAACC ATGAATTCAT CTGCTGTTAC CAGTCCAAAA GTCTGATGAC
 GCAAGAAAATT TAAATTGT TTCCAGTCAT GCCTCTGCTG CACGATCAA ACAACCACAA CACAGACCGG
 CTCGGTCCCC ATGAACGGAA CAAGCATCCA GTGGAAGAAC CACTCCTCGG TACTCCATA ATCCTCTCGG
 60 AGCAGCCATA AGGACAGCAT GAACTGACCA CCCTAGAAG TCTCTGATCC TTCTTCCTT ATTCACTCCC
 AGAAAAAAAT CACAGGCAA CTGTGAGTCC GGGAAATCTCT CACCCACAAC ATCTACGAAT
 ACACCCAAAGA AGAAATGCTT TCCAAAACCG CAAGGGTAGA CACCCACAAC ATCTACGAAT

CGTACTTCCTT TAATTGATCT AATTACATA TTCTCGTGT TGTATTCAAGC ACTAAAAAAAT GGTGGGAGCT
 GGGGGAGAAT GAA³GACTGTT AAATGAAACC AGAAGGATAT TTACTACTT TGATGAAAAA TAGAGCTTC
 AAGTACATGG CTAGCTTTA TGGCAGTTCT GGTGAATGTT CAATGGGAAC TGGTCACCAT GAAACTTAG
 AGATTAACGA CAA³GATTTTC TACTTTTTT AAGTGATTIT TTTGTCCTTC AGCCAAACAC AATATGGGCT
 5 CAAGTCACCT TTATTGAAA TGTCAATTGG TGCCAGTATC CCGAATT-3' (FRAG. NO: __) (SEQ ID NO: 2470)
 5'-GCCACCATGG AAACCCCTTG CCTCAGGGCA TCCTTTGGC TGGCACTGGT TGGATGTGTA ATCAGTGATA
 ATCCTGAGAG ATACAGCACA AATCTAACCA ATCATGTGGA TGATTTCAC ACTTTCTG GCACAGAGCT
 CAGCTTCTG GTTACCACTC ATCAACCCAC TAATTGGTC CTACCCAGCA ATGGCTCAAT GCACAACTAT
 10 TGCCCCACAGC AGA³TAAAAT TACTTCAGCT TTCAAATACA TTAACACTGT GATATCTTGT ACTATTTCA
 TCGTGGGAAT GGT³GGGAAT GCAACTCTGC TCAGGATCAT TTACCAAGAAC AAATGTATGA GGAATGGCCC
 CAACCGCCTG ATAGCCAGTC TTGCCCCTGG AGACCTTATC TATGTTGTC TTGATCTCCC TATCAATGTA
 TGGCTGGCG CTGGCCTTT GATCACAATG ACTTTGGCGT ATTTCTTGC AAGCTGTTCC CCTTTTGCA
 GAAGTCCCTG GTGGGGATCA CCGTCCTCAA CCTCTGCGCT CTTAGTGTG ACAGGTACAG AGCAGTTGCC
 15 TCCTGGAGTC GTGT³CAGGG AATTGGGATT CCTTTGGTAA CTGCCATTGA AATTGGCTTCC ATCTGGATCC
 TGTCTTTAT CCTGGCCATT CCTGAAGCGA TTGGCTTCGT CATGGTACCC TTTGAATATA GGGGTGGACA
 GCATAAAACC TGT³TGCTCA ATGCCACATC AAAATTCTATG GAGTTCTACC AAGATGTAAA GGACTGGTGG
 CTCTTCGGGT TCTATTCTG TATGCCCTG GTGTGACTG CGATCTCTA CACCCCTCATG ACTGGTGAGA
 20 TGTTGAACAG AAGGAATGGC AGCTTGAGAA TTGCCCTCAG TGAACATCTT AAGCAGCGTC GAGAAGTGGC
 AAAAACAGTT TTC³GCTTGG TTGTAATT TTGCTCTTGC TGGTCCCTC TTCACTTAAG CCGTATATTG
 AAGAAAATG TGT³TAACGA GATGGACAAG AACCGATGTG AATTACTTAG TTTCTTACTG CTCATGGATT
 ACATCGGTAT TAACTGGCA ACCATGAATT CATGTATAAA CCCATAGCT CTGTATTITG TGAGCAAGAA
 ATTAAAAAT TGT³TCCAGT CATGCCCTG CTGCTGCTGT TACCACTCA AAAGCTGAT GACCTCGGT
 CCCATGAACG GAAC³AAGCAT CCAGTGGAAAG AACACAGATC AAAACAACCA CAACACAGAC CGGAGCAGCC
 ATAAGGACAG CATGAACTGA CCACCCCTAG AAGCACTCCT-3' (FRAG. NO: __) (SEQ ID NO: 2469)

Substance P Antisense Nucleic Acids and Oligonucleotide Antisense Oligonucleotide Fragments

25 5'-CTGCTGBGGC TTGGGTCTCC GGGCGBTCT CTGCBGBBGB TGCTCBBBG GCTCCGGCBG TTCCCTCTG
 BTCTGGTCGCT GTC³GTBCCBG TCGGBCBGT BBTTCBGBTC BTCTBTTGGCT CCTBTTTCTT CTGCBBBCBG
 CTGBGTGGBG BCBHBBBBB BGBCTGCCB GGCCBCGBGG BTTTTCBTGT TGGBTTTGC GBCGGBCBGT
 CCCCGGGGT GCTGAGTTTC TCTGGTTCTT CCGBGCGCCTC GTGGTCGCTC CGCGTTTCTC TGGTTCTCC
 30 GGTCCCGCGG GGTGCTGTCT GGTCGCTGTC GTGGCTTGGG TCTCCGGCG GTTTCCCTCC TTTTCCGC-3' (FRAG.
 NO:1877) (SEQ ID NO: 1890)
 5'-CTCC GGGCGB-3' (FRAG. NO:1878) (SEQ ID NO: 1891)
 5'-GGCCBCGBGG-3' (FRAG. NO:1879) (SEQ ID NO: 1892)
 5'-GGGTCTCCGGCG 3' (FRAG. NO:1880) (SEQ ID NO: 1893)
 35 5'-GGG TCTCCGGCG G-3' (FRAG. NO:1881) (SEQ ID NO:1894)
 5'-CGTGGTCGCTCCG-3' (FRAG. NO:1355)(SEQ. ID NO:1364)
 5'-GTTTCTCTGGTTCC TCCG-3' (FRAG. NO:1356)(SEQ. ID NO:1365)
 5'-GTCGGCGGGGTGCTG-3' (FRAG. NO:1357)(SEQ. ID NO:1366)
 5'-TCTGGTCGCTGTCC-3' (FRAG. NO:1358)(SEQ. ID NO:1367)
 40 5'-GGCTTGGGTCTCCGGCG-3' (FRAG. NO:1359)(SEQ. ID NO:1368)
 5'-GTTTCTCTCCCTTCCG-3' (FRAG. NO:1360)(SEQ. ID NO:1369)
 5'-CTGCTGBGGC TTGGGTCTCC GGGCGBTCT CTGCBGBBGB TGCTCBBBG GCTCCGGCBG TTCCCTCTG
 BTCTGGTCGCT GTC³GTBCCBG TCGGBCBGT BBTTCBGBTC BTCTBTTGGCT CCTBTTTCTT CTGCBBBCBG
 CTGBGTGGBG BCBHBBBBB BGBCTGCCB GGCCBCGBGG BTTTTCBTGT TGGBTTTGC GBCGGBCBGT
 45 CCCCGGGGT GCTGAGTTTC TCTGGTTCTT CCGBGCGC-3' (FRAG. NO:1882) (SEQ ID NO: 1895)

Substance P Receptor Nucleic Acids and Antisense Oligonucleotide Fragments

5'-GGGCTBBGBT GB³CCBCBTC BCTBCCBCGT TGCCCBCC BGBGGTCBC BCBBTGBCCG TGTBGGCBGC
 TGCCCBGGG BCB³TTGCC BGGCTGGTG CBCGBCBCTG TTGGGTTCCG BGGTGTBGT GGBGBTGTTT
 50 GGGGBGBGGT CTG³GTCCBC CGGGBGBCG TTBTCCBTG CGBBGCTBGG CGGTBBBGCC CTBCTBTCTG
 TBCBCBCCC CCC³CTGCBG CBGBGTCTG TCGTGGCGCC TGGGGCTCBG GGTCCGGGC TAAGATGATC
 CACATCACTA CCAC³GTTGCC CACACAGAG GTCACCAAA TGACCGTGT GGCAGCTGCC CAAAGGACAA
 TTTGCCAGGC TGG³TGCACG AACTGATGG GTTCCGAGGT GTTAGTGGAG ATGTTGGGG AGAGGTCTGA
 GTCCACCGGG AGGACGTTAT CCATTTCGAA GCTAGGCGGT AAAGCCCTAC TATCTGTACA CAACCCCCCT
 CTGCAGCAGA GTCCCTGTCGT GGCGCCTGGG GCTCAGGGTC CGTCCTGTCG TGGCGCCTGG GGCTCTTCTT
 55 TTGTGGGCTC TTTCGTGGCT GTGGCTGTGG TCTCTGTGGT TGCTGCCCTG GGTCTGGGGG TGTGGCCTTG
 GGGCCGTCTT CTGGCTCCTC CTCGTGGGCC CCC-3' (FRAG. NO:1883) (SEQ. ID NO:1896)
 5'-GGGBGBBCG-3' (FRAG. NO:1884) (SEQ. ID NO:1897)
 5'-GGGTC CG-3' (FRAG. NO:1885) (SEQ. ID NO:1898)
 5'-GGGCC CCC-3' (FRAG. NO:1886) (SEQ. ID NO:1899)
 60 5'-GTCCTGTCGTGGCGCCTGGGCC-3' (FRAG. NO:1361)(SEQ. ID NO:1370)

5'-TTCTTTGTGGGCT-3' (FRAG. NO:1362)(SEQ. ID NO:1371)
 5'-CTTGGTGGCTGTCGCTG-3' (FRAG. NO:1363)(SEQ. ID NO:1372)
 5'-TGGTCTCTGTTG-3' (FRAG. NO:1364)(SEQ. ID NO:1373)
 5'-CTGCCCTGGGTCTG-3' (FRAG. NO:1365)(SEQ. ID NO:1374)

5 5'-GGGTGTGGCCTTGGGCCCTCCTGGCTCCTCGTGGCCCC (FRAG.NO:1366)(SEQ.ID NO:1375)
 5'-GGGCTAAGAT GAATCCACATC ACTACCACGT TGCCCACAC AGAGGTCAAC ACAATGACCG TGTAGGCAGC
 TGCCCAAAGG ACAATTGCC AGGCTGGTT CACGAACCTGA TTGGGTTCCG AGGTGTTAGT GGAGATGTT
 GGGGAGAGGT CTGAATGCC ACAGGAGGACG TTATCCATTTC GAAGCTAGGC GGTAAAGCCC TACTATCTGTA
 CACAACCCCC CTCTCAGCA GAGTCCTGTC GTGGCGCCTG GGGCTCAGGGTCC-3'(FRAG.NO:1367)(SEQ.ID NO:1376)
 10 5'-GGGCTBBGBT GBATCCBCBT BCTBCCBCGT TGCCCBCBC BGBGGTCBC BCBBTGBCCG TGTBGGCBGC
 TGCCCBGGG BCBBTTGCC BGGCTGGTT CBGCBCTGB TTGGGTTCCG BGGTGTBGT GGBGBTGTT
 GGGGBGBGGTC TGTGTCCBCC GGGBGBGCCT GTGGCGCCTG GGGCTCBGGG TCC-3' (FRAG. NO:1368) (SEQ. ID NO:1377)

Chymase Antisense Nucleic Acids and Oligonucleotides Antisense Oligonucleotide Fragments

15 5'-GGBGCTGBTB CTGCBGATT CBGBGGGBB BBCCCTGBTB CTCBCCBGC TCBGCTCTGG BGCBCCBGBG
 BBBGBGCBGC BGGCGGBGBG GBBGBGCBG CBCTTCCCB GBGBGGCTGC CTGBGCBBBT GCTGGTTTC
 CTTTCCBGTC TTGCGTTTB TBBCTCCCB BBGGCBGBG BGGGGCBBGG CGTTTCTTC TCTCGCTGGT
 TTTCCCTTCC TGGCAGTGGG TGGGGGGGGG GGTGGGGTGG CTTCCCTGTT CCTGGGGGTG TCCTCTTGCT
 CTGGGCTTTT CTCCCTCTT CCTCCCTGTC TGTTTCTG GGGCTCTCCT CTGTCCTGT GTCCTTGCCC
 20 TGGCCCTCTT CCCTCTCTG TCTCCCTGTC CTGTGTTCCG CCCGCTCTCC
 CTCTCCTGAC CTCCCTTTCC TCCGCTGGG GGGGCCCTGC CTGTCCTG CTCCCTGGCT TGGGGTTCT
 TCTGTGTGTC TTCITCCTCT GTGGCTGGC TTCTCCTTC TTGTCCTTC CTGGGTGCC CTTCTCTT
 TCTGGGGTCC TTGGTGCTTG GGCTGGG TCCCAGTTAA TACATAATCA ATATGCAATT TATTAATACA
 25 TCTCTCCATG TCCAATCCCC CTGTATCTTG CCATTCTTGA CCTGCATTTC CATCCTCCTT ACCTTCCCTA
 GAGGCCAACT CATTTCTTT GAAAAACCTG GCATTCTCCA GAAAAAAAAG TGAGGGCTG GGAGCTGTCC
 GTTGTCTGAA TTGCTCCCT CTGCCCTGTC TTCCAAATGT GGTGGAAAG AAGCACTATT GAAAATCCC
 TAAACGCCACC CCTCGCAGGGT TGGCTCTACC CTGTAGCCAT GGACACATGC TGTGATACC ACCTGCCTCA
 TGAGTCTCAC ATAATTGCC CTTTCACACT ATCTACCCCA TCAGCCTTAC CAAACCCATA CCTGCATCCT
 GGGCAGCATC TGCCCTTCAA GAGACTAAGG AATCTCCTTG CAACCAAGAA TGACTAGACC AATGAGACAC
 30 CCTTTAAGGC CCCAGCACAA TATAGAAATC CCACAATATG GTAATCCCAG TAAGGAGCTA TCAAGCCATT
 GCAGGACCAT CTAGAAATACA ACTAGAGTAT AGTCCTTTC AATCCAGGAA CTATACTCTA ACAGCTTGGC
 TCACAGAAC CAGAAAGTGA GATGATGAGG ATCAGGGCTG AGCTGTGAG CACCAGCTCC ACCACTGACA
 CCAACCACAG ATTAAACAAG CATTTGTGG ACCCCCTGGGA TGGAAAGAAT AGTTGTTGCC TTATCAACT
 CCCCCACAGC CCACACAGAA AAGATAAAAT CATCATGGCT ACAGTGTAC AGAAGATGAT GACCCAAGGA
 35 GTAGGCCCTGC CTGAGTGAAT GCTGAGAGTG ATAATGGGAG CAGTAGCATC TCAGAGACTA CAGCAGAAC
 CATCCACATA AAGAGCTTTG CCCAAACTTA TGATAAAGGG CACCCTCAGA GACTCTCCCT ACTTTAATAT
 TAGCCCATTG CAGAAATGGT GAGTGGAAAG AGAAATCTTA GGAAGAACCC CTTAAAAAAG CAAATGCTT
 TTTAGGTTG TGCTGAAGAG CCTGGAAAAG AAATAAGGAC ACACACGCTG AGAAATCTTC CTCCTGCC
 AACACTGGGA TAACTCCAA GGATCTCTCC ATATCTCATT CTCCTGGATA CACTGTCCAC TCAGAAATAT
 40 TGTGCAGAGT GCACTAATTG AAAAGTGAGC TATTGTGTTA GGAGTGAAGG CAAGAGTATC GTAAAATAAA
 TCAAATTGAA AATGAAATTCT CTTAAATTGC TTTATAGATG TAGAAACAGG CAGGACTTAT TGCGAGGGCA
 AAACCTAAA TTCAAGAAAA ACTTGGTCAT TCAGAAACTA AGTGCCTGAGC AGTGCCTGAG AGGATGTACT
 AACACAGAGT GAGCTCCAGC CTGCTTCAGG AAAATCTGCC TCCCTGACCC ACAGGAGTTC TTTAGAAGAG
 CACTGCACTA CTGCTCAGTA TGAGCCCCATG CCATCAGCTG ACTCGAGGGT TAAAACAAGT TGCAAGAAA
 45 ACTGGTCAAC AAAAGTTCT AGGGTGTGTT ATACCTGCCA TAAACAGCCT GGCAGCACAT GAATGAATAG
 TGCTCAATCA AGAAAGACAC AGTCATTACT CAGAGAATAA CATAACAGAT GTTAATCTGT AATGTGTTA
 AAAAAAGATG TTACATGCAA AGCATGAAAT AACCAAATTC AAAAATTATA GCCAATGAGG ATATATCTAT
 GGAGAATTAA GAGGAAGTAT AAGATTATT CTTTCATCAA ACACAAAGGA ATAAAACCAA CGTTTATTAA
 CAATTATCCA TCAAGTGGTG ATATGGCAGC ACAAGTAAAG ATTCTGAAAA AAATCCTTGT ACTGTATCAT
 50 GAACCAATCA TGTGGCATTT CACATTGAGC ATCATATTAA ATTCTGAAAA AAATCCTTGT ACTGTATCAT
 TCTTCATATT TTATGGATGC AGTAACCTAAG GCTGAGAACT TAAATTTT TCCTAAGTTC AGACACATAG
 CTAAGTGGCA GAACCAAGAT TCAAACCTAC CCCATCTAAC TGCGAGGCAA ACTGCATGCC TTAAATGTCA
 AAGTGAATAC TAGCACAGTT AATACAATGT TTGAAACTC AGAGAAGGAA TGATCCCTCT GCATTATAAGT
 TACTAAGGAA TCACTGCCAT TATTAAATG CCAGTGCTTC TACATCAGGC CCAAATTTTC TGTCCCTACTA
 55 ACTGTGAATC AAGACTTGTAT TCAACCTCTA CTTGAGTATC TGCGCAATG AGAAATCACT TACCTCCACT
 AACCACACAT TTAATTGTTA ACAACAGATT GTTAGTAAGT CCTTTCTTAT ACATACTCAA CAGCTGCTTC
 CCAAGATGCT GTACGATTAT GTCTAGAGTC AACTAGGCCA GAAGCAATGT CCAAATACA CCATAACACT
 GTGCAGCAAA GGTCTACTA CCACTTGTGTT GGCCCAAACA TTCTAGGAG CACTGGATAT CTGAATCATC
 AATTATTTCC ACAACACTG ACCCCCTCTAC CAGTCACCC CACTAGAAGA ATTAATTCCA CATGATAATA
 60 GCTCCCTCAT GTTACTCCCT TCTAAGTCAA ATTGTACACC CCTTTATCTG ATTAACAGAG TCTAAGTCAC
 ATGACCTAAA TGCAAGAGAA CTGGGAATGG ACGTTTGTGG ATTCTACCT AGTAAGGCAA AGTTATCATT

	GGGAATTCCT	CTAATACAGG	AAGGGTGTTC	CAGAGACATT	AAGGAGCCAT	ATAAATGGAA	AATGTCCACT
	ACAATCCATC	ACTIGGTGC	CCCACATCAA	CATTCATTCT	TTTGCCACAC	TTAAAGTTTC	CAAGAACAAA
	AATTATCCA	CTGPAACATAA	TCTTTACTAT	CTTTTATATA	AAGGAAAATT	AGACTTGACT	CAGCAGAACT
	GAAATAACCC	AGC'CTAACAA	GTTACTGCTT	TTAACATTCAA	GTACTGTGTC	TCTAGGTGAT	ACCTGCTCCA
5	ACAATAGTT	GGTCACATT	TCATTTGAT	ATTCTCTAGT	CTCCCAACTT	GATAACTGTA	CCCTAAACCA
	TAAAGTTCAC	TACCAACATG	CTATATATAA	AATAACAAA	GGGGGAAGAA	GAAAGAGAAA	AAGGAAATCT
	CTTAAAATAC	ACAC GTATAC	ATATGACAAA	GCAAGAAGG	AAATGTGAGC	AGATAGTGCA	GTCCTCGTT
	CTGAAATTGG	TCCC CTGACT	GGGGCTATAC	CTATTCCATT	TCCTCACCT	CAGCAGGCA	GGTGGAGCAA
	AAACTTAAGT	CTTC GTGGAT	CTGAATCTG	ATGCTGTGGA	GCTGTCTAC	TAGCCCCAGA	CTACCTGCCT
10	CTCAATTCT	AATTATATCA	GTGAAAGCAA	ACAGCTTGA	TTTGTITAAG	CCTCTGATTT	TTTGGTCTAA
	CTGATGTAAG	ACCACAAGGA	CAAGAGTCT	CCAGCTCCGG	ATTCTCTCT	GTTCTGTTAA	TGGTAAAATG
	CCCGAGAGAA	GAG' TGCCAA	CTTGGCAAA	TAACAAATAC	AGGATTCCAG	TTAAATTCAA	ATTTAGATAA
	ACAACAATT	TTAGTATTA	GTGTGTCCCA	TTCAATATT	GGACATACTT	AACTAAAAAA	TGATTTGTG
	TTCATCTGAA	ATACAAATT	AACTGGGCAT	TCTGAATATT	CTCTGGCA	CCCCGAGAGA	GTGAAGAAAG
15	TGGTACAAGG	ACACTTAAGA	AGACCAGATT	TGAAAAGACA	TTACGGATGT	GTTAAATGT	CTTATTCTAG
	AGAGAGTTAG	AGCT' TAGGT	AGAACTTGGG	AAATTAAGTT	AAAAGCAGAC	ACAGAGACCT	GGCCAATATA
	TACTAAGGAG	TGGATCACTC	TGGTCACAAG	CCCAACCTGA	GACCAAGGGC	ATAGTGAGAT	GATTTGGGAA
	AGGCACTTAT	ACACTACTCA	TCCCCGTCTT	TGAACAAAT	GCCTTATAAA	TCTCCAAGAG	AAATGACAGT
	CCACCATGTG	GAC' GCTTT	TGTAAGTCCA	GGGAAAATAA	AAGCTATGT	CTTGAACACC	ACTTCTGATA
20	TTATAAGGTG	TGTC ATCTTT	GTCATGTTAA	TGGGCTGAG	TATCAATTCT	ACAATTGTA	AGTGACAGTA
	ATGGTGTGTC	CCCA GGTGT	TGTGAAAGC	TTGATTCTTA	ATGCAACAGT	AGGAAACCCC	AGCCTCTCTG
	GAGCAAACAC	CCT' CTACAT	CTTACTTCC	CCTGCACATT	GGCAGGACTC	TATTCCTCTA	TTTCTCTCTA
	GTGCTAGAGC	AGA AGGGAC	CTTGATTGA	TATCAGGAAA	ATCTATTCT	GAACCATAAG	CTATGATAGC
	TGATTAAAAA	AAT' GACTAT	CATGACATGA	TAATGATCAT	AATGGTAATA	CATATTGATA	GGGTTGCCGT
25	GAAAGTAATA	ATA ATCTAA	GAGTTGTGAC	AATATATGAT	ACGCCTAGAC	TCTCAGAAAA	TGCTAATTCC
	AATCCAATT	GCTTTTGCA	TAAAGTCTG	TCCTAGGGTC	TGTTCTTT	CCACATCTAC	CCTCCTTGA
	TCTCTCTTCT	GTCTTTCA	TGTGGTTCAG	AGGAGGAGAG	AGATCCAGGT	CAATGTTTT	CAAATTACAA
	GGAATTATCA	TTTAAATGGG	GAAGAACGTC	AAAGTTTGAC	GTGTAGTGG	ATTGGAGTGG	AGTGGAGTGG
	AATGGAAACT	AACAGGAAGA	CACTGCACAT	GGTTAAGATA	AAGATTGTTT	CCTGAAACCT	TTAATTGTG
30	CTTACATACT	CAC CATACA	TATGTGCATG	CACTGGACT	CTGCAATATG	CATTCTGAC	TATGGAACAT
	AGCCATAAAA	GTC TTGCA	TGAACGTTCA	GTGGGCTTT	CACAAGCTG	CCTAATTGGG	AAAGAAAAC
	ATGGTCCTC	CATT CCTGC	CCCCAACTCC	AGAAAAGTC	CCATAGTTGA	GGGTACATCT	GAGAAGCCAG
	CACTGGGAG	TTCA GGGCTC	AAGTCCCTT	CTAGAAAAC	ACTGGGTGAT	TCTAGGGAA	CTTCCGATCA
	GAAACAGCCA	ATT' AGAGTG	AGAGAAGAAA	ACGTGACCAT	GCAGTTCTG	TGGTACCAAG	CCTTGCCTCT
35	CTCTTGCTT	CTGG GAGTTA	TTAAACCCAA	GACTGGAAAG	AAAAACCAGC	ATTGCTCAG	GCAGCCTCTC
	TGGGAAGATG	CTG CTTCTC	CTCTCCCCCT	GCTGCTCTT	CTCTTGTGCT	CCAGAGCTGA	AGCTGGTGAG
	TATCAGGGTT	CTTC CCTCTG	AAATCTGAG	TATCAGCTCC	TGAAACAAAG	ATGTTAGTC	TGAAATAGCT
	GACTCTAAA	CAGG GTTCCA	AGATCTCT	TCAAGAGTCC	CACAGAGGAA	ATTCCACTT	GGGATGTGTG
	CCACCCACC	CCC CCCCA	CCC ACTGCCA	TTCTCTACAG	CCTAGGACAC	CCCCAGGAAC	AAGGAATTTC
40	ACCTCAATTG	TAG AAAAGCC	CAGAGCAAGT	GGAAGGAAAA	GGGGTATCCC	CAGGAAAACA	GACATGTCT
	CTTAATCTTC	TGAC CATCG	GGCTACCCAT	TACTTTGTGA	CTTCTCACT	CTGTGACCAT	GCTCAAGAGC
	TATGGAGAAA	TCTA AAACAG	GAACCTGGAC	AGTGGGTCTT	ACACAGAGAC	AGAGGAGAGT	GGGCCAGGGC
	AAGGTGGGAG	TGGGAGAAAGT	CTGAGATGAA	AAACATCAGAA	TGGAGCAGAG	GCAAGAATGA	GATTCACCT
	GGGAGGTTAT	GGG TGGGAA	AGATACGAA	TACAGGAGAC	AGGAGAGGGA	AGATGGGCAG	AACACAGGGT
45	GAGAATGAGA	TTCCAGGGAA	GCCTAGCTA	GCTTAAACCC	AATTGTCCA	TTCATTGGAG	AGAGTATCTA
	TGGCCGTGTT	CAA CCTTGG	GGT GCTCTGT	TCCAGGGGAG	ATCATCGGG	GCACAGAAATG	CAAGCCACAT
	TCCTGCCCT	ACAT' GGCCTA	CCTGGAAATT	GTAACCTCCA	ACGGTCCCTC	AAAATTGT	GGTGGTTTC
	TTATAAGACG	GAAC TTTGTG	CTGACGGCTG	CTCATTTGTG	AGGAAGGTGA	GACAACAGGG	TCTATTTATC
	TCCAAATGGG	AGAT' GAACAA	CCAGAGTAGC	ATCCAGGAAT	ACACCTGCAC	TGGGGACTGA	AGAGGGGTC
50	CTGGGTCTT	TCA A CTTCA	GGAGAGGGAA	GACTTTGGG	TGAAAGACTT	TAGTCTGTGT	TTGAATAGTT
	CCTTGAGCCT	CAGI CACTGA	GCTAAGCTCC	CTTCGGAGGA	AAAGGAGGTC	CTGCGAAG	GTCCTCTTG
	TTGCAGTAGC	ACCC CTCACC	CCTACCCAA	TCAAGACACA	CGGCTCACTT	TTCAGGGCCC	CACCCAGTCT
	CAGGGCCACT	TCTC' CTATGG	CCTTTCAAG	AAACACTGGCT	CTAGTTCTCA	GGGTCTGAA	CCCATCATT
	TATGGGAGCA	GAG AACAGGT	CTACATAAGA	CCCCCACTTT	CCC GTTTAA	CTGATATCTC	CTGCTTCAGG
55	GGCTGGCCCT	CATC CAGGGT	TCCCTGAATT	AGGAAGTGTG	AACCCGTCC	CCTGAGTCCT	CCCTGGCCCTG
	TTCAGTCCC	AGCA ATTCAA	GGGGTCGTAG	AAATTGTGTC	TGTTCTG	GAAAGCTTT	TCATGAGTTA
	AGCCTGAGCC	CTCA AATGCC	ACAAGTGGCC	CATGAAAAGG	GAGATGGTA	GAGTCCGGCN	ACCCAGTGAC
	AGAGTTTAGT	CCTC' TTTCT	CAGAATGAGC	TCACCTCAGA	AGAAACCCCA	AGCCATCACT	GTCGCTCTCT
	TTTCTCTCCT	TCTC CTCAC	AGCAGGTCTA	TAACAGTCAC	CCTTGGAGCC	CATAACATAA	CAGAGGAAGA
60	AGACACATGG	CAG AGCTTG	AGGTTATAAA	GCAATTCCGT	CATCCAAAAT	ATAACACTTC	TACTCTTCAC
	CACGATATCA	TGT ACTAAA	GGTGACAAAC	CCTCTCTTCT	CCCTTTCCAC	TTCCCATTCT	CCTAAGCTTC
	TCCTCAGGT	CCTC ATTGCC	CTGAATT	CTTAGGACTT	GGCTATAACA	TGAAGCTACT	CACCCGTGTC

	CTCCCTGATC	ACCTCCAAT	GTCCAGAGCC	CATTTCGAGG	ACTGACAGTC	CTTCATTCCC	TTCACAGTTG
	AAGGAGAAAG	CCAGCCTGAC	CCTGGCTGTG	GGGACACTCC	CCTTCCCAC	ACAATTCAAC	TTTGTCCCCAC
5	CTGGGAGAAT	GTGCCGGGTG	GCTGGCTGGG	GAAGAACAGG	TGTGTTGAAG	CCGGGCTCAG	ACACTCTGCA
	AGAGGTGAAG	CTGAGACTCA	TGGATCCCCA	GGCCTGCAGC	CACTTCAGAG	ACTTGACCA	CAATCTTCAG
10	CTGTGTGTTG	GCAATTCCCAG	GAAGACAAAAA	TCTGCATTTA	AGGTGATCCT	CCAATAGGT	TTCCCTCTCCA
	AAACTCACTG	TTCAAGGGACC	TGAATGCTCT	TAGAAGGAGA	TGGGGTCAGC	AGGTGTCAG	TCAGGTGACA
	GGGTGAGCAT	CACAGGAATT	GCTGTCCTCC	CGTGGTCCAA	GACAGCCTCT	GACCATCCAT	TCCAGTCTAC
	TGCACTGGGG	GCA1GGGGTG	ACTGTGGAGA	ATGTGGATGA	CGGTCCCAAG	AAAGGAAGAA	GGGGCATCAG
15	AACTAGATGT	ATAA GTGAGG	AGCTCACCT	CCTGGGTCTG	ACTTTAGGTC	TCACTGTGAC	TCCAAGCTGG
	CTGGCAGACA	GGAGTGGAGG	ACTTCCCGG	CTCACCTCT	TCTCTCTC	CTCCCCCTAC	AGGGAGACTC
	TGGGGGCCCT	CTTCTGTGTG	CTGGGGTGGC	CCAGGGCATC	GTATCCTATG	GACGGTCGGA	TGCAAAGCCC
	CCTGCTGTCT	TCACCCGAAT	CTCCCATTAC	CGGCCCTGGA	TCAACCAGAT	CCTGCAGGCA	AATTAATCCT
20	GGATCCTGAG	CCAC CCTGAA	GGGAAGCTGG	AACTGGACCT	TAGCAGCAA	GTGTGTGCAA	CTCATTCTGG
	TTCTACCCCT	GGTT CCTCTA	GCCACAAACC	TAAGCCTCA	AGAGGTCTCC	TACAGGTAAC	AGAAACTTCA
25	ATAAACTTCA	GTGAAGACAC	AGCTTCTAGT	CGTGAGTGTG	TGTCCCTCTC	TGCTGCTCTC	TTCTCCTGCA
	CATGTGACCT	GATTC CCAGC	CCAAGCACCAGG	ATCATGGGGG	GCACAGAACATC	CAAGCCACAT	TCCC GCCCCCT
	ACATGGCCTA	CCTCGAAATT	GTAACCTTCA	ACGGTCCCTC	AAAATTGTTGT	GGTGGTTCC	TTATAAGACG
	GAACCTTGTG	CTGACGGCTG	CTCATTGTGC	AGGAAGGTCT	ATAACAGTCA	CCCTTGGAGC	CCATAACATA
	ACAGAGGAAG	AAGACACATG	GCAGAACCTT	GAGGTTATAA	AGCAATTCCG	TCATCCAAA	TATAACACTT
30	CTACTCTTCA	CCACGATATC	ATGTTACTAA	AGTTGAAGGA	GAAAGCCAGC	CTGACCCCTGG	CTGTGGGAC
	ACTCCCCCTC	CCATCACAAT	TCAACTTTGT	CCCACCTGGG	AGAATGTGCC	GGGTGGCTGG	CTGGGAAGA
	ACAGGTGTG	TGAAGCCGGG	CTCAGACACT	CTGCAAGAGG	TGAAGCTGAG	ACTCATGGAT	CCCCAGGCT
	GCAGCCACTT	CAGAGACTTT	GACCACAATC	TTCAAGTGTG	TGTGGGCAAT	CCCAGGAAGA	CAAATCTGC
35	ATTTAAGGGA	GACTCTGGGG	GCCCTCTCT	GTGTGCTGGG	GTGGCCAGG	GCATCGTATC	CTATGGACGG
	TCGGATGCAA	AGCCTCCCTG	TGTCTCAC	CGAATCTCCC	ATTACCGGCC	CTGGATCAAC	CAGATCCTGC
	AGGCAAATTA	A-3' (FRAG. NO:1887) (SEQ. ID NO:3015)					
	5'-ATCATCGGGG	GCACAGAACATC	CAAGCCACAT	TCCCGCCCCCT	ACATGGCCTA	CCTGGAAATT	GTAACCTCCA
	ACGGTCCCTC	AAAATTGTTGT	GGTGGTTCC	TTATAAGACG	GAACCTTGTG	CTGACGGCTG	CTCATTGTGC
40	AGGAAGGTCT	ATAA CAGTCA	CCCTTGGAGC	CCATAACATA	ACAGAGGAAG	AAGACACATG	GCAGAAAGCTT
	GAGGTATAA	AGCAATTCCG	TCATCCAAA	TATAACACTT	CTACTCTTCA	CCACGATATC	ATGTTACTAA
	AGTTGAAGGA	GAAAGCCAGC	CTGACCCCTGG	CTGTGGGAGC	ACTCCCCCTC	CCATCACAAT	TCAACTTTGT
	CCCACCTGGG	AGAA TGTGCC	GGGTGGCTGG	CTGGGGAGA	ACAGGTGTG	TGAAGCCGGG	CTCAGACACT
45	CTGCAAGAGG	TGAAGCTGAG	ACTCATGGAT	CCCCAGGCC	GCAGCCACTT	CAGAGACTTT	GACCACAATC
	TTCAGCTGTG	TGTGGGCAAT	CCCAGGAAGA	CAAATCTGC	ATTTAAGGGA	GACTCTGGG	GCCCTCTTCT
50	GTGTGCTGGG	GTGGCCCGAGG	GCATCGTATC	CTATGGACGG	TCGGATGCAA	AGCCCCCTGC	TGTCTTCACC
	CGAATCTCCC	ATTACCGGCC	CTGGATCAAC	CAGATCCTGC	AGGCAAATTA	A-3'(FRAG.NO:)(SEQ.ID NO:2468)	
	5'-TCCCAGTTAA	TA CATAATCA	ATATGCAATT	TATTAATACA	TCTCTCCATG	TCCACTCCCC	CTGTATCTG
	CCATTCTTGA	CCTC CATTTC	CATCCTCCCT	ACCTCCCTA	GAGGCCAACT	CATTITCTTT	GAAAAACCTG
55	GCATTTCCA	GAAA AAAAAG	TGAAGGGCTG	GGAGCTGTCC	GTTGCTCTGA	TTTGTCTCCCT	CTGCCCTTGC
	TTCCAATATG	GGTIGGAAAG	AAGCACTATT	AAAAAAATCCC	TAAACGCACC	CCTGCAGGGT	TGGCTCTACC
	CTGTAGCCAT	GGACACATGC	TGTTGATACC	ACCTGCCTCA	TGAGTCTCAC	ATAATTGCCC	CTTTCACACT
	ATCTACCCCA	TCAC CTTAC	AAAACCATA	CCTGCATCCT	GGGCAGCATC	TGCCCTCAA	GAGACTAAGG
	AATCTCTTG	CAAC CAAGAA	TGACTAGACC	AATGAGACAC	CCTTTAAGGC	CCCAGCACAA	TATAGAAATC
60	CCACAATATG	GTAATCCCGAG	TAAGGAGCTA	TCAAGCCATT	GCAGGACCAT	CTAGAATACA	ACTAGAGTAT
	AGTTCTTTC	AATCCAGGAA	CTATACTCTA	ACAGCTTGGC	TCACAGGAAC	CAGAAGTGAA	GATGATGAGG
	ATCAGGGCTG	AGCCTGTGAG	CACCACTGCC	ACCACTGACA	CCAACCACAG	ATTAACACAAG	CATCTTGTTG
	ACCCCTGGG	TGGAAAGAAT	AGTTGTTGCC	TTATCAACCT	CCCCCACAGC	CCACACAGAA	AAGATAAAAT
	CATCATGGCT	ACACTGTTAC	AGAAGATGAT	GACCAAGGA	GTAGGCCTGC	CTGAGTGAAT	GCTGAGAGTG
	ATAATGGGAG	CAGAGCATC	TCAGAGACTA	CAGCAGAAAC	CATCCACATA	AAGAGTTTG	CCCAAACCTA
65	TGATAAAGGG	CACCCCTCAGA	GAECTCCCT	ACTTTAATAT	TAGCCCATTG	CAGAAATGGT	GAGTGGAAAG
	AGAAAATCTTA	GGAAGAACCC	CTTAAAAAAG	CAAAATGCTT	TTTAGGTTTG	TGCTGAAGAG	CCTGGAAAAG
	AAATAAGGAC	ACA CACGCTG	AGAAATCTTC	CTCCTGCC	AAACACTGGGA	TAATCTCAA	GGATCTCTCC
	ATATCTCATT	CTCC TGGATA	CACTGTCCAC	TCAGAAATAT	TGTGCAGAGT	GCAGTAATT	AAAAGTGAGC
	TATTGTGTTA	GGACTGAAGG	CAAGAGTATC	GTAAAATAAA	TCAAATTGTA	AATGAATTCT	CTTAAATTGC
70	TTTATAGATG	TTTAATGTAA	GCCAGCAGCT	ATTAACACGAT	AAACCTTAA	TTCGAGAAAA	ACTTGGTCAT
	TCAGAAACTA	TAGAACAGG	CAGGACTTAT	TGCGAGGGCA	AACACAGAGT	GAGCTCCAGC	CTGCTTCAGG
	AAAATCTGCC	AGTGCCTGATG	AGGATGTA	CTGTCCTGCTC	CACTGCACTA	CTGCTCAGTA	TGAGCCCCATG
	CCATCAGCTG	TCCCTGACCC	ACAGGAGTT	TTTAAAGAG	ACTGGTCAAC	AAAAGTTCT	AGGGTGTGTTT
	ATACCTGCCA	ACTC GAGGGT	AAAACAAGT	TGCA TAGAAA	TGCTCAATCA	AGAAAGACAC	AGTCATTACT
	CAGAGAATAA	TAAACAGCCT	GGCAGCACAT	GAATGAATAG	AAAAAAGATG	TTACATGCAA	AGCATGAAAT
	AACCAAATT	CATACAGAT	GTTAATCTGT	AATGTGTTTA	GGAGAATT	GAGGAAGTAT	AAGATTATT
75	CTTCATCAA	AAAATTATA	GCCAATGAGG	ATATATCTAT	CAATTATCCA	TCAAGTGGTG	ATATGGCAGC

	ACAAGGTAAA	ACACAAAGGA	ATAAAACCAA	CGTTTATTAA	GAACCAATCA	TGTGGCATTT	CACATTGAGC
	ATCATATTTA	ATTCTGAAAA	AAATCCTTGT	ACTGTATCAT	TCTTCATATT	TTATGGATGC	AGTAACATAAG
	GCTGAGAACT	TTAAATTTT	TCCTAAGTTC	AGACACATAG	CTAAGTGGCA	GAACCAAGAT	TCAAACCTCAC
5	CCCATCTAAC	TGCAGAGCAA	ACTGCATGCC	TTAAATGTCA	AAGTGAATAC	TAGCACAGTT	AATACAATGT
	TTGGAAACTC	AGAGAAGGAA	TGATCCCTCT	GCATTATAGT	TACTAAGGAA	TCATTGCCAT	TATTTAAATG
	CCAGTGCTTC	TACPTCAGGC	CCAAATTTC	TGTCTACTA	ACTGTGAATC	AAGACCTGAT	TCAACCTCTA
	CTTGAGTATC	TGCCGCAATG	AGAAAATCACT	TACCTCCACT	AACCACACAT	TTATTTATA	ACAACAGATT
	GTTAGTAAGT	CCTITCTTAT	ACATACTCAA	CAGCTGCTTC	CCAAGATGCT	GTAGGATTAT	GTCTAGAGTC
10	AAACTAGCCA	GAAGCAATGT	CCAAATACAA	CCATAACACT	GTGCAGCAA	GGTCTACTA	CCACTTGTTC
	GGCCAAACAA	TTCTAGGCAG	CACTGGATAT	CTGAATCATC	AATTATTC	ACAAACACTG	ACCCCTCTAC
	CAGTCACCCCT	CACTAGAAGA	ATTAATTCCA	CATGATAATA	GCTCCCTCAT	GTТАCTCCCT	TCTAAGTCAA
	ATTGTACACC	CCTTATCTG	ATTAACAGAG	TCTAAGTCAC	ATGACCTAA	TGCAAGAGAA	CTGGGAATGG
	ACGTTTGTTG	ATTCTACCTT	AGTAAGGCAA	AGTTATCATT	GGGAATTCC	CTAATACAGG	AAGGGTGTTC
15	CAGAGACATT	AAGGAGCCAT	ATAAAATGAA	AATGTCACACT	ACAATCCATC	ACTTGGTGC	CCCACATCAA
	CATTCTTCT	TTTGCCACAC	TTAAAGTTTC	CAAGAACAAA	AATTATCCA	CTGAACATAA	TCTTACTAT
	CTTTTATATA	AAGGAAAATT	AGACTTGACT	CAGCAGAACT	GAAATAACCC	AGCTCTAACAA	GTТАCTGCTT
	TTAACTTCAA	GTACTGTGTC	TCTAGGTGAT	ACCTGCTCCA	ACAATAGTT	GGTCACATTT	TCAATTGTAT
	ATTCTCTAGT	CTCCCAACTT	GATAACTGTA	CCCTAAACCA	AAAGTTTCAC	TACCAACATG	CTATATATAA
20	AAATAACAAA	GGGGGAAGAA	GAAGAGAAA	AAGGAAATCT	CTTAAAATAC	ACAGGTATAC	ATATGACAAA
	GCAAGAAGG	AAA'TGTGAGC	AGATAGTGC	GTCTCGTTT	CTGAAATTGG	TCCCCGTACT	GGGGCTATAC
	CTATTCATT	TCCTCACCCCT	CAGCCAGGCA	GGTGGAGCAA	AAACTTAAGT	CTTGGTGGAT	CTGAATCTTG
	ATGCTGTGGA	GCTCTCTTAC	TAGCCCCAGA	CTACCTGCCT	CTCAATTCT	AATTATATCA	GTGAAAGCAA
	ACAGCTTGA	TTTGTITAAG	CCTCTGATTT	TTTGGTCTAA	CTGATGTAAG	ACCACAAGGA	CAAGAGTTCT
25	CCAGCTCCGG	ATTCTCTTCT	GTTCGTAA	TGGTGAATG	CCCGAGAGAA	GAGTTGCCAA	CTTTGGCAA
	TAaaaaaatAC	AGGATTCCAG	TTAAATTCAA	ATTAGATAA	ACAACAATT	TTTAGTATTA	GTGTGTCCC
	TTCAATATT	GGACATACTT	AACTAAAAAA	TGATTGTTG	TTCATCTGAA	ATACAAATT	AACTGGGCAT
	TCTGAATATT	CTCTGGCAAC	CCCCGAGAGA	GTGAAGAAAG	TGGTACAAG	ACACTTAAGA	AGACCAGATT
	TGAAAAGACA	TTACGGATGT	GTTTAAATGT	CTTATTCTAG	AGAGAGTTAG	AGCTGTAGGT	AGAACTTGGG
30	AAATTAAGTT	AAA'GCAGAC	ACAGAGACCT	GGCCAATATA	TACTAAGGAG	TGGATCACTC	TGGTCACAAG
	CCCAACCTGA	GACC'AAGGGC	ATAGTGGAGAT	GATTGGGAA	AGGCACATT	ACACTACTCA	TCCCCGTCTT
	TGAACCTAAAT	GCCITATAAA	TCTCCAAGAG	AAATGACAGT	CCACCATGTG	GACTGTTTC	TGTAAGTCCA
	GGGAAAATAA	AAGCTATGTG	CTTGAAACCC	ACTCTGATA	TTATAAGGTG	TGTGATCTTT	GTCAATGTTAA
	TGGGTCTGAG	TATCAATTCT	ACAATTGTAA	AGTACAGTA	ATGGTGTGTC	CCCAGGTTGT	TGTGGAAAGC
35	TTGATTCTTA	ATGCAACAGT	AGGAAACCCC	AGCCTCTCTG	GAGCAAACAC	CCTTCTACAT	CTTACTTCC
	CCTGCACATT	GGC'GGACTC	TATTCTCTA	TTTCTCTA	GTGCTAGAGC	AGAAAGGGAC	CTTGATTGAA
	TATCAGGAAA	ATC'ATTCT	GAACCATAAG	CTATGATAGC	TGATTTAAA	AATTGACTAT	CATGACATGA
	TAATGATCAT	AATCTGAATA	CATATTGATA	GGGTTGCCGT	GAAAGTAATA	ATATATCTAA	GAGTTGTGAC
	AATATATGAT	ACGGCTAGAC	TCTCAGAAAA	TGCTAATTCC	AATCCAATT	GCTCTTGCA	TAAAGTTCTG
40	TCCTAGGGTC	TGTCTTTTC	CCACATCTAC	CCTCCTTGG	TCTCTCTT	GTCTTTTCA	TGTGGTTCA
	AGGAGGAGAG	AGA'TCCAGGT	CAATGTTTT	CAAATTACAA	GGAAATTATCA	TTTAAATGGG	GAAGAAGCTC
	AAGTTTGAC	GTGTAGTGG	ATTGGAGTGG	AGTGGAGTGG	AATGGAAACT	AACAGGAAGA	CACTGCACAT
	GGTTAAGATA	AAGATTGTTT	CCTGAAACCT	TTAATTGTTG	CTTACATACT	CACACATACA	TATGTGCTATG
	CACTGGGACT	CTGCAATATG	CATTCTGAC	TATGGAACAT	AGCCATAAAA	GTCTTGCAC	TGAACGTTCA
45	GTGGGCTTT	CACAAGCTGC	CCTAATTGGG	AAAGAAAAAC	ATGGTCCCTC	CATTCCCTGC	CCCCAACTCC
	AGAAAAGTC	CCA'AGTTGA	GGGTACATCT	GAGAAGCCAG	CACTTGGGAG	TTCAGGGCTC	AAGTTCTTT
	CTAGAAAAAC	ACTCGGTGAT	TCTAGGGAA	CTTCCGATCA	GAAACAGCCA	ATTCAAGAGT	AGAGAAGAAA
	ACGTGACCAT	GCAGTTCCCTG	TGGTTACCG	CCTTCCCCCT	CTCTTGCCTT	CTGGGAGTTA	TAAAACCCAA
	GACTGGAAAG	GAAACCAGC	ATTGCTCAG	GCAGCCTCTC	TGGGAAGATG	CTGCTTCTTC	CTCTCCCCCT
50	GCTGCTTTT	CTCTIGTGCT	CCAGAGCTGA	AGCTGGTGAN	TATCAGGGTT	CTTCCCTCTG	AAATCTGCAG
	TATCAGCTCC	TGAAACAAAG	ATGTTAGTC	TGAAATAGCT	GACTCTAAA	CAGGGTTCCA	AGATCTCTT
	TCAAGAGTCC	CACAGAGGA	ATTCACCTT	GGGATGTGTG	CCACCCCA	CCCACCCCCA	CCCACTGCCA
	TTCTCTACAG	CCTA3GACAC	CCCCAGGAAC	AAGGAATTTC	ACCTCAATTG	TAGAAAAGCC	CAGAGCAAGT
	GGAAGGAAAA	GGG3TATCCC	CAGGAAAACA	GACATGTCTT	CTTAATCTTC	TGAGCATCAG	GGCTACCCAT
	TACTTTGTGA	CTTCTCACT	CTGTGACCAT	GCTCAAGAGC	TATGGAGAAA	TCTAAAACAG	GAACCTGGAC
55	AGTGGGTCC	ACACAGAGAC	AGAGGAGAGT	GGGCCAGGGC	AAGGTGGAG	TGGGAGAAGT	CTGAGATGAA
	AACATCAGAA	TGGCAGAG	GCAAGAATGA	GATTTCACCT	GGGAGGTTAT	GGGTGGGGAA	AGATACGAAA
	TACAGGAGAC	AGGAAGGGGA	AGATGGCGG	AACACAGGGT	GAGAATGAGA	TTCCAGGGAA	GCCTAGCTCA
	GCTTTAACCC	AATITGTCCA	TTCATTGGAG	AGAGTATCTA	TGGCCGTGTT	CAAACCTCTGG	GGTGCTCTGT
60	TCCAGGGAG	ATCATCGGGG	GCACAGAATG	CAAGCCACAT	TCCC GCCCT	ACATGGCTA	CCTGGAAATT
	GTAACCTCCA	ACGCTCCCTC	AAAATTGTTGT	GGTGGTTTCC	TTATAAGACG	GAACCTTGTG	CTGACGGCTG
	CTCATTGTGC	AGGAAGGTGA	GACAACAGGG	TCTATTATC	TCCAAATGGG	AGATGAACAA	CCAGAGTAGC
	ATCCAGGAAT	ACAC'CTGCAC	TGGGGACTGA	AGAGGGGGTC	CTGGGTCTG	TCAACTTCA	GGAGAGGGAA

GACTTTGGC TGAAGAGACTT TAGTCTGTGT TTGAATAGTT CCTTGAGCCT CAGTCACTGA GCTAAGCTCC
 CTCGGAGGA AAAGGAGGTC CTGTCGAAG GTCCCTCTTG TTGCAGTAGC ACCCTCACCC CCTACCCAAC
 TCAAGACACA CGGCTCACTT TTCAGGGCCC CACCCAGTCT CAGGGCCACT TCCTCTATGG CCTTTCAAG
 5 AACACTGGCT CTACTTCTCA GGGTCCTGAA CCCATCATTT TATGGGAGCA GAGAACAGGT CTACATAAGA
 CCCCCACTTT CCCCTTTAA CTGATATCTC CTGCTTCAGG GGCTGGCCCT CATGCAGGGT TCCCTGAATT
 AGGAAGTGTG AACCTGTCC CCTGAGTCTC CCCTGGCCTG TTCACTCCCC AGCAATTCCA GGGGTCTGTAG
 AAATTGTGTC TGTTCTCTGA GAAAGCTCT TCATGAGTTA AGCCTGAGGCC CTCAAATGCC ACAAGTGGCC
 CATGAAAAGG GAGATGGGTA GAGTCGGCN ACCCAGTGCAG AGAGTTTAGT CCTCTTTCT CAGAATGAGC
 10 TCACCTCAGA AGAAGACCCA AGCCATCACT GTGCCCTCTT TTCCCTTCCT TCTCCTCAC AGCAGGTCTA
 TAACAGTCAC CCTGGAGCC CATAACATAA CAGAGGAAGA AGACACATGG CAGAACGCTTG AGGTTATAAA
 GCAATTCCGT CATC CAAAAT ATAACACTTC TACTCTTCAC CACGATATCA TGTTACTAAA GGTGACAACA
 CCTCTCTCT CCCTCTCCAC TTCCCATTCT CCTAAGCTTC TCCTCTCAGG CCTCATTGCC CTGAATTTT
 CTTAGGACTT GGCGATAAAC CTTAGGACTT GGCGATAAAC CTTAGGACTT CCTCCTGTC ACCTCCAAGT GTCCAGAGCC
 15 CATTCTGAGG ACTC ACAGTC CTTCATTCCTC TTCACTGGT AAGGAGAAAG CCAGCCTGAC CCTGGCTGTG
 GGGACACTCC CCTCTCCATC ACAATTCAAC TTGTCCTCAC CTGGGAGAAAT GTGCCGGGTG GCTGGCTGGG
 GAAGAACAGG TGTGTTGAAG CCGGGCTCAG ACACCTGCA AGAGGTGAAG CTGAGACTCA TGGATCCCCA
 GGCCTGCAGC CACTCAGAG ACTTTGACCA CAATCTTCAG CTGTTGTGAG GCAATCCCAG GAAGACAAA
 TCTGCATTTA AGGIGATCCT CCAACTAGGT TTCTCTCCA AAACACTACT TTCAGGGACC TGAATGCTCT
 20 TAGAAGGAGA TGGGGTCAGC AGGTTGTCAG TCAGGTGACA GGGTGAGCAT CACAGGAATT GCTGTCCTCC
 CGTGGTCAA GACAGCCTCT GACCATCCAT TCCAGTCTAC TGCACTGGG GCATGGGTG ACTGTGGAGA
 ATGTGGATGA CGGTCCAAAG AAAGGAAGAA GGGGCATCAG AACTAGATGT ATAAGTGAGG AGCTCCACCT
 CCTGGGTCTG ACTTCTAGGTC TCACTGTGAC TCCAAGCTGG CTGGCAGACAGA GGAGTGGAGG ACTTCCCAGG
 CTCACCTCTC TCTCTCTCCTC CTCCCCCTAC AGGGAGACTC TGGGGGCCCT CTTCTGTGAG CTGGGGTGGC
 25 CCAGGGCATC GTATCCTATG GACGGTCGGA TGCAAAGCCC CCTGCTGTCT TCACCCGAAT CTCCCATTAAC
 CGGCCCTGGA TCAACAGAT CCTGCAGGCA ATTAAATCT GGATCTGAG CCAGCCTGAA GGGAGCTGG
 AACTGGACCT TAGCAGCAAA GTGTGTCGAA CTCAATTCTGG TTCTACCTT GGTTCCCTCA GCCACAACCC
 TAAGCCTCCA AGAGGTCTCC TACAGGTAAC AGAACTTTCA ATAAACTTCA GTGAAGACAC AGCTTCTAGT
 CGTAGTGTG TGTCCTCTC TGCTGCTCTC TTCTCCTGCA CATGTGACCT GATTCCCAGC CCAAGCACCA AGGA-3'
 (FRAG. NO:) (SEQ. ID NO:2467)
 30 5'-GGBGCBGBG-3' (FRAG. NO:1888) (SEQ. ID NO:1901)
 5'-GBBGBGCG-3' (FRAG. NO:1889) (SEQ. ID NO:1902)
 5'-GGGGCBBGG CG-3' (FRAG. NO:1890) (SEQ. ID NO:1903)
 5'-CGTTTCTTCTCTC-3' (FRAG. NO:1369)(SEQ. ID NO:1378)
 5'-GCTGGTTTCTTCTC-3' (FRAG. NO:1370)(SEQ. ID NO:1379)
 35 5'-TGGCAGTGGGTGGGGTGGGGTGGC-3' (FRAG. NO:1371)(SEQ. ID NO:1380)
 5'-TTCCTGTTCTGGGGTGTCTC-3' (FRAG. NO:1372)(SEQ. ID NO:1381)
 5'-CTTGCCTGGGCTTTCT-3' (FRAG. NO:1373)(SEQ. ID NO:1382)
 5'-CCCCTTTCTTC-3' (FRAG. NO:1374)(SEQ. ID NO:1383) [
 5'-TGTCTGTTCTGGGG-3' (FRAG. NO:1375)(SEQ. ID NO:1384)
 40 5'-CTCTCCTCTGTCTGTGT-3' (FRAG. NO:1376)(SEQ. ID NO:1385)
 5'-CCTGCCCTGGCCC-3' (FRAG. NO:1377)(SEQ. ID NO:1386)
 5'-TCTTCCCTCTCTGTCTCTGT-3' (FRAG. NO:1378)(SEQ. ID NO:1387)
 5'-CCCTGTGTTCCGCC-3' (FRAG. NO:1379)(SEQ. ID NO:1388)
 5'-GTCTTCCCTCTCTG-3' (FRAG. NO:1380)(SEQ. ID NO:1389)
 45 5'-ACCTCCTTTCTCCCG-3' (FRAG. NO:1381)(SEQ. ID NO:1390)
 5'-CTGGGTGGGGCCCTG-3' (FRAG. NO:1382)(SEQ. ID NO:1391)
 5'-CCTGTTCTCTGCTCCC-3' (FRAG. NO:1383)(SEQ. ID NO:1392)
 5'-TGGCTGGGGTTCTCTG-3' (FRAG. NO:1384)(SEQ. ID NO:1393)
 5'-TGTGTCCTCTTCTCTGTT-3' (FRAG. NO:1385)(SEQ. ID NO:1394)
 50 5'-GGCTGGCTTCTCCCTTC-3' (FRAG. NO:1386)(SEQ. ID NO:1395)
 5'-TTTGTCTTCTGGG-3' (FRAG. NO:1387)(SEQ. ID NO:1396) [1397]
 5'-TGCCCCCTCTTCTCTTCTGGG-3' (FRAG. NO:1388)(SEQ. ID NO:1397)
 5'-TCCTTGGTGCTTGC GCTGGG-3' (FRAG. NO:1389)(SEQ. ID NO:1398)
 5'-GGBGCTGBTB CTGCBGATT CBGBGGBBG BBCCCTGBTB CTCBCCBGCT TCBGCTCTGG BGBCBGBG
 55 BBBGBGCBGC BGGCGBGBG GBBGBGCBG CBTCTCCCB GBGBGGCTGC CTGBGCBBT GCTGGTTTC
 CTTCCBGTC TTGGGTTTB TBBCCTCCBG BBGGCBBGBG BGGGCBGBG BGGGCBGBG-3' (FRAG.NO:1891) (SEQ.ID NO:1904)

Endothelial Nitric Oxide Synthase Nucleic Acids and Antisense Oligonucleotide Fragments

5'-GCGCTTGGG GTGCBGGGCC CBTCCTGCTG CGCCTGGCG CTGCTGTGCG TCCGCTGCT GGGGGGCCGG
 GGTGGCTGGG CCCCTGCTTGC CGCACGACCC CGGGCCGACC CGAGGCTCGG GGGGCTGTGT TCTGGCGCTG
 60 GTGGGCTTGG GCCCTCTCTGG GGGCTGGGTT TCCCTGCTGCG CCTGGGCCT GGCCTCTTGG GGTGCGGGGC
 CGGGGGCCCG GGGGCCGCT GTTCTGGGCG CTGGGGGTGCG CTGCTGCTGC CGGTTGCCCG GGTTGGTGGC

GCCGTCTGC TGCCGGTCGT TGGCTGGTC CCCCCGCCG TTTCTGGGG TCCCGTGGG GTGCTCCGGT
 TCCTCGTGC GCTGCTGCC TGTCTTCCG GCCGTGGCG CGTGGTGGC CGCCCCCCCCT GGCTTCTGC
 TCGGGGTCTG GCTCTTGCC GGTGCCCTG GCGCGGTCT TCTTCTGGT GGCTCTGGGC CGGGCCGGTC
 5 TCGGGCGTCT CGTC-TTCGCT CTTGTGCTGT TCCGGCCGCT CCTTCTCTT CGCGCCGCCGC CGCTCCCCGC
 CCGCTCGTCG CCCIGGCCG GCCTCCTCC GGCGCTGTC CGGGCGGCG GCCTGGCGC TCCGTTTGGG
 GCTGCCCTG CGCG TTCCGG CCCTCGGCC CTGGCGCTCT TTCCGCTGT GCTGGTGGCC CTCGTGGGCC
 CCTCTGGCC TCCGGTGTCC TGTGGTCCCC CGGCTGGTGG CGGGGCCGGT TGGGCGGGCG TGGGCGCCGG
 10 CGGGTCTCTCC GGGCTGCCCT TCTCCGCCGG GGGTCCCAGC CTCCCTGCTGT CCTCTGGGCT CTTCTGCCTC
 TCTCTGGGT GGGTGTGGG TGCCGGGGTC TCCGGGCTTG CCCCGCGTGT CTGGGCGTTC TGCGGTCTG
 GGGTTGTCTG TGGC CCCGCT CGTGTGCC CTCGTCGCC GTCGGCGGCC TCCTGCCCTC CTGGGTGC
 GGCGGGCTGG TCC'GGCGTT TTGCTCCTC CTGGGCGTCT TGGGGTGC BG GGCCCBTCT GCTGCGCCTG
 GGCCTGCTG TGCC TCCGTC TGCTGGGGG CGGGGGTGGC TGGGGCCTG TTGCGCACG ACCCCGGGCC
 15 GACCCGAGGC TCGGGGGGCT GTGTTCTGGC GCTGGTGGGC TTGGGCCCTT CTGGGGGCTG GGTTCTGC
 TGCGCTGGG CGCTGGCGTC TTGGGGTGC GGCGGGGGGG CGCGGGGGC CGCTGTTCTG GGGCCTGGGG
 GTGCGCTGTGG CTGC CGGTTG CCCCCGGTGG TGGCGCCGTC CTGCTGCCG TGCTGGCTG GGTCCCCCG
 CCCGTTCTC GGGC TCCGCG TGGGGTGC TC CGGTTCTCG TGCGCTGCT GCCTGTCTT TCCGGCGTG
 20 GCGCGTGGT GGT'CGCCCC CCCTGGCCTT CTGCTGGGG TCTGGCTGGT TGCGGTGCC CTTGGCGCG
 GTCTCTTCC TGGT'GCTCT GGGCCCGGCC GTGCTCGGGC GTCTCGTGT CGCTCTTG TGTTCCGGC
 CGCTCTTCC TCTT CGGCC CCGCCGCTC CGGCCGCTC GTCGCCCTGG CCCGGCCTCC TCCTGGCGC
 25 TGTCTGGGC GGCC GCCTTG GCGCTCCGTT TGGGGCTGCC TCTGGCGCTT CGGCCCTCG GCCTGGCGC
 TCTCTCCGC CTGT GCTGGT GGCCCTCGT GGCCCCCTCT GGCCTCGGT GTCCTGTGGT CCCCCGGCTG
 GTGGCCGGGC CGGTGGGCG GGCCTGGGGC CGGGCGGGTC CTCCGGGCTG CCCTCTCCG CGGGGGGTCC
 CGCGCTCTG CTGTCCTCG GGCTCTCTG CCTCTCTCCT GGGTGGGTGC TGGGTGCCGG GGTCTCCGGG
 CTTGCCCCGC GCTCTGGGC GTTCTGGGT CTTGGGGTTG TCTGTGGGCC CGCTCGTGTG GCCCTCCGTC
 GCCCGTCGCC GGCCI CGTCC CCTCCTGGGT GCGCGGGGG CTGGCTCTGG CGTTTGCTC CTTCTGG-3' (FRAG.
 NO:1892) (SEQ. ID NO 1905)
 5'-GCAGGGGCGC-3' (FRAG. NO:1893) (SEQ. ID NO: 1906)
 5'-CGGGGGGC-3' (FRAG. NO:1894) (SEQ. ID NO: 1907)
 5'-GCGCGGGGGC-3' (FRAG. NO:1895) (SEQ. ID NO: 1908)
 30 5'-CTGTGCGTCCGTCGCTGG (FRAG. NO:1390)(SEQ. ID NO:1399)
 GGGGCGGGGGTGGCTGGGCCCTGCTTGC (FRAG. NO:1391)(SEQ. ID NO:1400)
 ACGACCCCGGGGCCACCGAG (FRAG. NO:1392)(SEQ. ID NO:1401)
 GCTCGGGGGGCTGTG ITCTGGCGCTGGTGGG (FRAG. NO:1393)(SEQ. ID NO:1402)
 CTTGGGGCCCTCTGGGGCTGGGTT (FRAG. NO:1394)(SEQ. ID NO:1403)
 35 TCCCTGCTGCGCCTGGCGCTG (FRAG. NO:1395)(SEQ. ID NO:1404)
 GCGCTTGGGGTGC (FRAG. NO:1396)(SEQ. ID NO:1405)
 GGGGCGGGGGGCC GGGG (FRAG. NO:1397)(SEQ. ID NO:1406)
 GCCGCTTCTCGTGGG CCTGGG (FRAG. NO:1398)(SEQ. ID NO:1407)
 GGTGCCTGTGGCTGCC (FRAG. NO:1399)(SEQ. ID NO:1408)
 40 GGTGCCCCGGTTGGTGGC (FRAG. NO:1400)(SEQ. ID NO:1409)
 GCCGCTCTGCTGCCGT (FRAG. NO:1401)(SEQ. ID NO:1410)
 CGTTGGCTGGTCCCCCGC (FRAG. NO:1402)(SEQ. ID NO:1411)
 CCGTTCTGGGGTCC (FRAG. NO:1403)(SEQ. ID NO:1412)
 GCGTGGGGTGCCTCC (FRAG. NO:1404)(SEQ. ID NO:1413)
 45 GGTTCCTCGTGCCTG (FRAG. NO:1405)(SEQ. ID NO:1414)
 CTGCTGCCCTGTCTTIC (FRAG. NO:1406)(SEQ. ID NO:1415)
 GGCCTGGCGGGCGTGGTCC (FRAG. NO:1407)(SEQ. ID NO:1416)
 GCCCCCCTGGCCTCTGCTC (FRAG. NO:1408)(SEQ. ID NO:1417)
 GGGGTCTGGCTGGT (FRAG. NO:1409)(SEQ. ID NO:1418)
 50 TGCCTGGTGCCTTGGCG (FRAG. NO:1410)(SEQ. ID NO:1419)
 GGTCTTCTCTGGT (FRAG. NO:1411)(SEQ. ID NO:1420)
 GCTCTGGGCCCGGCCG (FRAG. NO:1412)(SEQ. ID NO:1421)
 GCGTCTCGTGTTCG (FRAG. NO:1413)(SEQ. ID NO:1422)
 CTCTTGCTGTCTTCCC (FRAG. NO:1414)(SEQ. ID NO:1423)
 55 CTCCCTCTCTCCGCC (FRAG. NO:1415)(SEQ. ID NO:1424)
 GCCGCTCCCCGCC (FRAG. NO:1416)(SEQ. ID NO:1425)
 GCTCGTCGCCCTGGGCC (FRAG. NO:1417)(SEQ. ID NO:1426)
 GGCCTCCCTGGGCCGC (FRAG. NO:1418)(SEQ. ID NO:1427)
 TGTCTGGGGCGGCCG CCTTGGC (FRAG. NO:1419)(SEQ. ID NO:1428)
 60 GCTCCGTTGGGGCTG (FRAG. NO:1420)(SEQ. ID NO:1429)
 CCTCTGGCGCTTCC (FRAG. NO:1421)(SEQ. ID NO:1430)
 GGCCTCGGCCCTGG CGCTC (FRAG. NO:1422)(SEQ. ID NO:1431)

TCTTCCGCCCTGTGC (FRAG. NO:1423)(SEQ. ID NO:1432)
 TGGTGGCCCTCGTGG (FRAG. NO:1424)(SEQ. ID NO:1433)
 GCCCCTCCTGGCCTCCGGTGTCC (FRAG. NO:1425)(SEQ. ID NO:1434)
 TGTGGTCCCCCGGCTGGT (FRAG. NO:1426)(SEQ. ID NO:1435)
 5 GGCGGGGCCGGTTGGGCAGGGC (FRAG. NO:1427)(SEQ. ID NO:1436)
 GTGGGCGCCGGCGGGTCCTCC (FRAG. NO:1428)(SEQ. ID NO:1437)
 GGGCTGCCCTCTCC (FRAG. NO:1429)(SEQ. ID NO:1438)
 GCCGGGGGTCCCAGC (FRAG. NO:1430)(SEQ. ID NO:1439)
 GCTCTGCTGTTCTCTGGGCTCTGCC (FRAG. NO:1431)(SEQ. ID NO:1440)
 10 TCTCTCTGGGTGGGCTGGG (FRAG. NO:1432)(SEQ. ID NO:1441)
 GGGTCTCCGGGCTTG (FRAG. NO:1433)(SEQ. ID NO:1442)
 CCCCGCGCTGCTGGCGTCTGCC (FRAG. NO:1434)(SEQ. ID NO:1443)
 GGTCTTGGGTGTGTC (FRAG. NO:1435)(SEQ. ID NO:1444)
 TGTGGCCCCGCTCG (FRAG. NO:1436)(SEQ. ID NO:1445)
 15 TGTGCCCTCCGTCGCC (FRAG. NO:1437)(SEQ. ID NO:1446)
 CGTCGCCGGCCTCGTCC (FRAG. NO:1438)(SEQ. ID NO:1447)
 CCTCTGGGTGCGC (FRAG. NO:1439)(SEQ. ID NO:1448)
 GGCGGGCTGGTCCT (FRAG. NO:1440)(SEQ. ID NO:1449)
 GGCCTTTGCTCCTCTGG (FRAG. NO:1441)(SEQ. ID NO:1450)
 20 5'-GCGTCTGGGTGCBGGGCCBCTCTGCGCTGGCGCTG-3' (FRAG. NO:1896) (SEQ. ID NO: 1909)

Inducible Nitric Oxide Synthase Nucleic Acids and Antisense Oligonucleotide Fragments

5'-CTGCCCGCBGT TT TGBTCCCT CBCBTGCCGT GGGGBGGBCB BTGGCTGCCCT CCCCCGGGTT TCTGCTGCTT
 GCTGCTTCTT TCCCGTCTCC CTTCTTCCC GTCTCCTTT TGCCCTCTTG GGTTCTCTGTT GTTTCTGGCC
 25 TGCTTGGTGG CGCGCTTGTGC GTTCTCTCTC TCTTCTCTG GGTCTCCGCT TCTCGTCTG CCTTTTCTG
 TCTCTGTCGC GCCCTTCCTC CTCCGGCGTC CTCTGCCCT GTGCTGTTTG CCTCGGGTGG TGCGGGTCCC
 GGTGCTCCC CCGGGGGCCG GCTGGTTGCC TGGGCCTGTC TGGTGGGTG TGGGGCCGCT GGGTTGGGG
 TGTGGTGGGC TCTCTGTGTC CCTGTGGGGC TGTGGTGTGTC TCTGTGGGCG TGTGCTGGGT CTTGGGGCTT
 CCTCCCTGTG GCTGGGTGCG GCCTCCCCGC CCCCTCTG GGCGGGTGGC CTGGCTCTT GTGGCGCTT
 CTGGCTCTG CCCGTCCCTT CTTCGCTCG TGGCTGCTGG GCTGC CATATGTATG GGAATACTGT ATTTCAAGGA
 30 TTATAAGGAA TGAATTATA GGCCGGCAT TGTGGCTAAC CTTGTAATC CTAGCACTTT GAGAGGCTGA
 AGTGGGCAGA TCACCTGAGC TTCAGAGTTC GAGACCAGCA TGGACAACAT GGTGAAACCC AGTCTCTACC
 AAAAACACAA AAAATTAGC TGGGTGTGGT GGTGCATGCC TGTAGTCCA GCTACTCAGG AGGCTGAGGT
 GGGAGGATCG CTTGAGCCTG GGAGGCAGAA GTTGAATGA GCAGAGATCG TGCCACTCCG CTCCAGTCTT
 GGTGACAGAA TGAGACTCCA TCTCAAAAT AAATAAATAA ATAAATAAA TAAATGAAAT GAAATTATAA
 35 GAAATTACCA CTTTTCATG TAAGAAGTGA TCATTTCCAT TATAAGGAA GGAATTAAAT CCTACCTGCC
 ATTCCACCAA AGCCTACCTA GTGCTAAAGG ATGAGGTGTT AGTAAGACCA ACATCTCAGA GGCCTCTCTG
 TGCCAATAGC CTTCTTCCTT TTCCCTTCA AAAACCTCAA GTGACTAGTT CAGAGGCCCTG TCTGGAATAA
 TGGCATCATC TAAATATCACT GGCCCTCTGG AACCTGGCA TTTTCCAGTG TGTCCATAC TGTCAATATT
 40 CCCCCAGCTT CCTGGACTCC TGTACAAGC TGGAAAAGTG AGAGGATGGA CAGGGATTAA CCAGAGAGCT
 CCCTGCTGAG GAAAATATCT CCCAGATGCT GAAAGTGAGG CCATGTGGCT TGGCCAATAA AAACCTGGCT
 CCGTGGTGGC TCTCTTTAG CAGCCACCC GCTGATGAAC TGCCACCTTG GACTTGGGAC CAGAAAGAGG
 TGGGTGGGT GAACAGGGCAC CACACAGAGT GATGTAACAG CAAGATCAGG TCACCCACAG GCCCTGGCAG
 TCACAGTCAT AAAATTAGCTA ACTGTACACA AGCTGGGGAC ACTCCCTTG GAAACCAAAA AAAAAAAA
 45 AAAAAAGAGA CCTTATGCA AAAACAACTC TCTGGATGGC ATGGGGTGAG TATAAATACT TCTTGGCTGC
 CAGTGTGTTT ATAACTTTGT AGCGAGTCGA AAACTGAGGC TCCGGCCGA GAGAACTCAG CCTCATTCT
 GCTTTAAAAT CTCICGGCCA CTTTGATGA GGGGACTGGG CAGTTCTAGA CAGTCCCGAA GTTCTCAAGG
 CACAGGTCTC TTCCGGTTT GACTGTCCTT ACCCCCCGGGA GGCAGTGCAG CCAGCTGCAA GGTGAGTTGC
 50 CATATGTATG GGAATTACTGT ATTCAGGCA TTATAAGGAA TGAAATTATA GGCGGGCAT TGTGGCTAAC
 CCTTGTAATC CTACCACTT GAGAGGCTGA AGTGGGACAGA TCACTTGAGC TTCAGAGTTTC GAGACCAGCA
 TGGACAACAT GGTGAAACCC AGTCTCTACC AAAAACACAA AAATATTAGC TGGGTGTGGT GGTGCATGCC
 TGTAGTCCA GCTCTCAGG AGGCTGAGGT GGGAGGATCG CTTGAGCTG GGAGGCAGAA GTTGAATGA
 GCAGAGATCG TGCCACTCCG CTCCAGTCTT GGTGACAGAA TGAGACTCCA TCTCAAAAT AAATAAATAA
 ATAAATAAA TAAATGAAAT GAAATTATAA GAAATTACCA CTTTTCTATG TAAGAAGTGA TCATTCCAT
 TATAAGGGAA GGAATTAAAT CCTACCTGCC ATTCCACCAA AGCTTACCA GTGCTAAAGG ATGAGGTGTT
 55 AGTAAGACCA ACACTCTCAGA GGCCTCTCTG TGCCAATAGC CTTCTCTCCT TTCCCTCCA AAAACCTCAA
 GTGACTAGTT CAGAGGCCCTG TCTGAAATAA TGGCATCATC TAATATCACT GGCCTCTGG AACCTGGCA
 TTTCCAGTG TGTCCATAC TGTCAATATT CCCCCAGCTT CCTGGACTCC TGTACAAGC TGGAAAAGTG
 AGAGGATGGA CAGGGATTAA CCAGAGAGCT CCCTGCTGAG GAAAAAAATCT CCCAGATGCT GAAAGTGAGG
 CCATGTGGCT TGGCCAAATA AAACCTGGCT CCGTGGTGCC TCTGTCTTAG CAGCCACCT GCTGATGAAC
 60 TGCCACCTTG GACTTGGGAC CAGAAAGAGG TGGTTGGGT GAAGAGGCAC CACACAGAT GATGTAACAG
 CAAGATCAGG TCACTCCACAG GGCCTGGCAG TCACAGTCAT AAATTAGCTA ACTGTACACA AGCTGGGAC

ACTCCCTTG GAAACCAAAA AAAAAAAA AAAAAAGAGA CCTTTATGCA AAAACAACTC TCTGGATGGC
 ATGGGGTGTAG TATAAATACT TCTTGGCTGC CAGTGTGTC ATAACTTGT AGCGAGTCGA AAACGTAGGC
 TCCGGCCGCA GAGAACTCAG CCTCATTCCT GCTTTAAAT CTCTCGGCCA CCTTGATGA GGGGACTGGG
 CAGTTCTAGA CAGICCCGAA GTTCTCAAGG CACAGGTCTC TTCTGGTT GACTGTCCTT ACCCCGGGA
 5 GGCAGTGCAG CCAGCTGCAA GGTGAGTGC C-3' (FRAG. NO.:) (SEQ. ID NO: 3016)
 5'-CTGCTTAAA ATCTCTCGC CACCTTTGAT GAGGGACTG GGCAGTTCTA GACAGTCCCC AAGTTCTCAA
 GGCACAGGTC TCTICCTGGT TTGACTGTCC TTACCCGGG GAGGCAGTGC AGCCAGCTGC AAGCCCCACA
 GTGAAGAACAA TCTCAGCTCA AATCCAGATA AGTACATAA GTGACCTGCT TTGTAAGGCC ATAGAGATGG
 CCTGTCTTGT GAAATTCTG TTCAAGACAA AATTCCACCA GTATGCAATG AATGGGGAAA AAGACATCAA
 10 CAACAATGTG GAGAACGCC CCTGTGCCAC CTCCAGTCCA GTGACACAGG ATGACCTTCA GTATCACAA
 CTCAGCAAGC AGCA GAATGA GTCCCCGGAG CCCCTCGTGG AGACGGAAA GAAGTCTCCA GAATCTCTGG
 TCAAGCTGGA TGCAACCCCA TTGTCCTCCC CACGGCATGT GAGGATCAA AACTGGGGCA GC GGATGAC
 TTTCAAGAC ACAC TTCACC ATAAGGCCA AGGGATTAA ACTTGCAAGG CCAAATCTT CCTGGGGTCC
 ATTATGACTC CCAAAAGTTT GACCAGAGGA CCCAGGGACA AGCCTACCC TCCAGATGAG CTTCTACCTC
 15 AAGCTATCGA ATTIGTCAAC CAATATTACG GCTCTTCAA AGAGGCAAAA ATAGAGGAAC ATCTGGCCAG
 GGTGGAAGCG GTAA.CAAAGG AGATAGAAAC AACAGGAAC TACCAACTGA CGGGAGATGA GCTCATCTC
 GCCACCAAGC AGGCCTGGCG CAATGCCCA CGCTGCATTG GGAGGATCCA GTGGTCCAAC CTGCAGGCT
 TCGATGCCCG CAGCTGTTC ACTGCCCCGG AAATGTTGA ACACATCTGC AGACACGTGC GTTACTCCAC
 CAACAATGGC AACATCAGGT CGGCCATCAC CGTGTCCCC TGCCAGATGG CAGCATCAGA GGGGACCCCTG
 20 GTGTGGAATG CTCAGCTCAT CCGCTATGCT GGCTACCAGA GAAGCCCAAG TACGGCCGCT TCAGTGTGGT
 CCAACGTGGA ATTCACTCAG CTGTGCATCG ACCTGGGCTG TCGAAATCC CACCTGACCT TGTGCTTGAG
 CCCCTGGTC CTGCAGGCCA ATGGCCGTGA CCCTGAGCTC TGGAGCTAA GTGGTACGCC CTGCCTGCAG
 GTGGCCATGG AACATCCCAA ATACGAGTGG TTTCGGGAAC AGGGTCCCC TTCAATGGCT GGTACATGGG
 TGGCCAACAT GCTCTTGAG GTGGCGGCC TGGAGTTCCC 25 CACAGAGATC GGAATCCGGG ACTTCTGTGA CGTCCAGCG
 ATGGGCTGG AAAAGCACAA GCTGGCTCG CTCTGGAAAG TACAACATCC TGGAGGAAGT GGGCAGGAGA
 TGATCCATAG TTTTCAAGAG CAGAATGTGA CCATCATGGA ACCAGGCTGT CGTTGAGATC AACATTGCTG
 GTACATGCA GAAATAAACC GGTCCCGTGG GGGCTGCCG CGACACTGGA TTTGGCTGGT CCTTCATGAA
 TCTGGGAGCA TCAACCCCGT GTTTCACCA GAGATGCTGA ACTACGTCT GTCCCCTTTC TACTACTATC
 30 AGGTAGAGGC CTGGAAAACC CATGTCTGG AGGAGCAGAA GCGGAGACCC AAGAGAAGAG AGATTCCATT
 GAAAGCTTG GTCAAGCTG TGCTCTTGC CTGTATGCTG ATGCGCAAGA CAATGGCGTC CCGAGTCAGA
 GTCACCATCC TCTTGCGAC AGAGACAGGA AAATCAGAGG CGCTGGCTG GGACCTGGGG GCCTTATTCA
 GCTGTGCCCT CAACCCCAAG GTTGTGCGCA TGGATAAGTA CAGGCTGAGC TGCCGGAGG AGGAACGGCT
 GCTGTGGTG GTGACCGTA CGTTGGAA TGGAGACTGC CCTGGCAATG GAGAGAAACT GAAGAAATCG
 35 CTCTTCATGC TGAAAAGACT CAACAACAA TTCAGGTACG CTGTGTTGG CCTGGCTCC AGCATGTACC
 CTCGGTTCTG CGCCTTGTG CATGACATTG ATCAGAAGCT GTCCACCTG GGGGCCCTC AGCTCACCC
 GATGGGAGAA GGGGATGAGC TCAGTGGCA GGAGGACGCC TTCCGAGCT GGGCCGTGCA AACCTCAAG
 GCAGCCTGTG AGACGTTGTA TGTCCGAGGC AAACAGCACA TTCAGATCCC CAAGCTCTAC ACCTCCAATG
 TGACCTGGGA CCCCCACCA TACAGGCTCG TGCAAGACTC ACAGCCTTG GACCTCAGCA AAGCCCTCAG
 40 CAGCATGCAT GCCAAGAACG TGTTCACCAT GAGGCTAAA TCTCGGCAGA ATCTACAAAG TCCGACATCC
 AGCCGTGCCA CCATCCTGGT GGAACTCTCC TGTGAGGATG GCCAAGGCCT GAAACTACCTG CCGGGGGAGC
 ACCTTGGGGT TTGCCAGGC AACCAAGCCG CCCTGGTCCA AGGCATCCG GAGCAGTGG TGGATGGCCC
 CACACCCAC CAGACAGTGC GCCTGGAGGA CCTGGATGAG AGTGGCAGCT ACTGGGTCAAG TGACAAGAGG
 CTGCCCCCT GCTCACTCAG CCAGGCCCTC ACCTACTCCC CGGACATCAC CACACCCCA ACCCAGCTGC
 45 TGCTCCAAA GCTCGCCAG GTGGCCACAG AAGAGCCTGA GAGACAGAGG CTGGAGGCC TGTGCCAGCC
 CTCAGAGTAC AGCAAGTGG AGTTCACCA CAGCCCCACA TTCTGGAGG TGCTAGAGGA GTTCCCGTCC
 CTGCGGGTGT CTGCTGGCTT CCTGCTTCC CAGCTCCCA TTCTGAAGCC CAGGTTCTAC TCCATCAGCT
 CCTCCGGGA TCACACGCC ACGGAGATCC ACCTGACTGT GGCGTGGTC ACCTACCACA CGGAGATGG
 CCAGGGTCCC CTGCACCAC GTGTCTGCAG CACATGGCTC AACAGCCTGA AGCCCAAGA CCCAGTGCC
 50 TGCTTTGTGC GGAATGCCAG CGCCTTCCAC CTCCCCGAGG ATCCCTCCA TCCTGCATC CTCATCGGGC
 CTGGCACAGG CATCGTGCC TTCCGAGTT TCTGGCAGCA ACAGGCTCCAT GACTCCCAGC ACAAGGGAGT
 GCGGGGAGGC CGCATGACCT TGGTGTGG GTGCCGCCGC CCAGATGAGG ACCACATCTA CCAGGAGGAG
 ATGCTGGAGA TGGCCAGAA GGGGGTGTG CATCGGGTGC ACACAGCCTA TTCCCGCTG CCTGGCAAGC
 CCAAGGTCTA TGTICAGGAC ATCCCTGCCAG AGCAGCTGCC CAGCAGGTTG CTCCGTGTGC TCCACAAGGA
 55 GCCAGGCCAC CTCATGTTT GCGGGGATGT GCGCATGGCC CGGGACGTGG CCCACACCT GAAGCAGCTG
 GTGGCTGCA AGCTGAAATT GAATGAGGAG CAGGTCGAGG ACTATTCTT TCAGCTCAAG AGCCAGAAC
 GCTATCACGA AGATATCTTC GGTGCTGTAT TTCTTACGA GGCAGAAAG GACAGGGTGG CGGTGCAGCC
 CAGCAGCCTG GAGATGTCA CGCTCTGAGG GCCTACAGGA GGGGTTAAAG CTGCCGGCAC AGAAACTTAAG
 GATGGAGCCA GCTCTGCATT ATCTGAGGTC ACAGGGCTG GGGAGATGGA GGAAAGTGTAT ATCCCCCAGC
 60 CTCAAGTCTT ATTICCTCAA CGTTGCTCCC CATCAAGCCC TTTACTGAC CTCCTAACAA GTAGCACCCT
 GGATTGATCG GAGCTCTCTC TCTCAAACGT GGGCCTCCCT GGTCCCTGG AGACAAAATC TTAAATGCCA
 GGCCTGGCGA GTGGGTGAAA GATGGAACCTT GCTGCTGTAGT GCACCACTTC AAGTGACCAC CAGGAGGTGC

	TATCGCACCA	CTGIGTATT	AACTGCCTTG	TGTACAGTTA	TITATGCCTC	TGTATTTAAA	AAACTAACAC
	CCAGTCTGTT	CCCCATGGCC	ACTTGGGTCT	TCCCTGTATG	ATTCCCTGAT	GGAGATATTIT	ACATGAATG
5	CATTTTACTT	TAATC	GAATTCCCAC	TCTGCTGCCT	GCTCCAGCAG	ACGGACGCAC	AGTAACATGG
	GAGCGTGGCC	CAGCAGCTG	GGCCACCCCTG	CGGCCCTGGGG	CTGGGGCTGG	GCCTTGGGCT	GTGCGGCAAG
	CAGGGCCCAG	CCAC'CCCAGC	CCCTGAGCCC	AGCCGGGCC	CAGCATCCCT	ACTCCCACCA	GCGCCAGAAC
	ACAGCCCCC	GAGC TCCCCG	CTAACCCAGC	CCCCAGAGGG	GCCCAAGTTC	CCTCGTGTGA	AGAACTGGGA
	GGTGGGGAGC	ATCA.CCTATG	ACACCCCTCAG	CGCCCAAGGG	CAGCAGGATG	GGCCCTGCAC	CCCAAGACGC
	TGCCTGGGCT	CCCTGGTATT	TCCACGGAAA	CTACAGGGCC	GGCCCTCC	CGGCCCTCCG	GCCCCTGAGC
10	AGCTGCTGAG	TCAC GCCCG	GACTTCATCA	ACCAGTACTA	CAGCTCCATT	AAGAGGAGCG	GCTCCCAGGC
	CCACGAACAG	CGGC TTCAAG	AGGTGGAAGC	CGAGGTGGCA	GCCACAGGCA	CCTACAGCT	TAGGGAGAGC
	GAGCTGGTGT	TCGGGGCTAA	GCAGGGCTGG	CGCAACGCTC	CCCGCTGCGT	GGGCCGGATC	CAGTGGGGA
	AGCTGCAGGT	GTTCGATGCC	CGGGACTGCA	GGTCTGCACA	GGAAATGTT	ACCTACATCT	GCAACCACAT
	CAAGTATGCC	ACCA ACCGGG	GCAACCTTCG	CTCGGCCATC	ACAGTGTCC	CGCAGCGCTG	CCCTGGCCGA
15	GGAGACTTCC	GAAT CTGGAA	CAGCCAGCTG	GTGGCCTACG	GGGGCTACCG	GCAGCAGGAC	GGCTCTGTGC
	GGGGGGACCC	AGCC AACGTG	GAGATCACCG	AGCTCTGCAT	TCAGCACGGC	TGGACCCCAG	GAAACGGTCG
	CTTCGACGTG	CTGCCCCCTGC	TGCTGAGGC	CCCAGATGAG	CCCCCAGAAC	TCTTCTTCT	GCCCCCCGAG
	CTGGTCTTGC	AGGT GCCCCCT	GGAGCACCCC	ACGCTGGAGT	GGTTTGCAGC	CCTGGGCTTG	CGCTGGTACG
	CCCTCCCGC	AGTG TCCAAC	ATGCTGCTGG	AAATTGGGGG	CCTGGAGTT	CCCGCAGCCC	CCTTCAGTGG
20	CTGGTACATG	AGCA CTGAGA	TCGGCACGAG	GAACCTGTGT	GACCCCTCACC	GCTACAACAT	CCTGGAGGAT
	GTGGCTGTCT	GCATGGACCT	GGATAACCCGG	ACACCTCGT	CCCTGTGGAA	AGACAAGGCA	GCAGTGGAAA
	TCAACGTGGC	CGTG CTGCA	AGTTACCAGC	TAGCCAAAGT	CACCATCGT	GACCACCAACG	CCGCCACCGC
	CTCTTTCATG	AAGC ACCTGG	AGAATGAGCA	GAAGGCCAGG	GGGGGCTGCC	CTGCAGACTG	GGCCTGGATC
	GTGCCCCCCTA	TCTCGGGCAG	CCTCACTCT	GTTTTCCATC	AGGAGATGGT	CAACTATTTC	CTGTCCCCGG
25	CCTTCGGCTA	CCAG CCAGAC	CCCTGGAAGG	GGAGTGCCTG	CAAGGGCACC	GGCATCACCA	GGAAGAAGAC
	CTTTAAAGAA	GTGC CCAACG	CCGTGAAGAT	CTCCGCCTCG	CTCATGGGCA	CGGTGATGGC	GAAGCGAGTG
	AAGGCACAA	TCCGTATGG	CTCCGAGACC	GGCCGGGCC	AGAGCTACGC	ACAGCAGCTG	GGGAGACTCT
	TCCGGAGGC	TTTGTATCCC	CGGGTCTGT	GTATGGATGA	GTATGACGTG	GTGTCCTCG	AACACGAGAC
	GCTGGTCTG	GTGGAACCCA	GCACATTGG	GAATGGGGAT	CCCCCGGAGA	ATGGAGAGAG	CTTTCAGCT
30	GCCCTGATGG	AGAT GTCCGG	CCCCTACAAAC	AGCTCCCCTC	GGCCGGAACA	GCACAAAGAT	TATAAGATCC
	GCTTCAACAG	CATCTCTGC	TCAGACCCAC	TGGTGTCTC	TTGGCGCGG	AAGAGGAAGG	AGTCCAGTAA
	CACAGACAGT	GCAGGGCCC	TGGGCACCC	CAGTTCTGT	GTGTCGGG	TCGGCTCCG	GGCATACCCC
	CACTTCTGCG	CCTTGTCTG	TGCCGTGGAC	ACACGGCTGG	AGGAACCTGG	CGGGGAGCGG	CTGCTGCAGC
	TGGGCCAGGG	CGAC'GAGCTG	TGCGGCCAGG	AGGAGGCCCT	CCGAGGCTGG	GCCCAGGCTG	CCTTCCAGGC
35	CGCCTGTGAG	ACCI TCTGTG	TGGGAGAGGA	TGCCAAGGCC	GCCGCCCGAG	ACATCTTCAG	CCCCAAACGG
	AGCTGGAAGC	GCCAGAGGTA	CCGGCTGAGC	GCCCAAGGCCG	AGGGCCTGCA	TTGCTGCCA	GGTCTGATCC
	ACGTGCACAG	GCGGAAAGATG	TTCCAGGCTA	CAATCCGCTC	AGTGGAAAAC	CTGCAAAGCA	GCAAGTCCAC
	GAGGCCACC	ATCTGGTGC	GCCTGGACAC	CGGAGGCCAG	GAGGGGCTGC	AGTACCAAGCC	GGGGGACCCAC
	ATAGGTGTCT	GCCCCCCCCA	CCGGCCCCGG	CTTGTGGAGG	CGCTGCTGAG	CCGCGTGGAG	GACCCGCCGG
40	CGCCCACTGA	GCCCCGTGGCA	GTAGAGCAGC	TGGAGAAGGG	CAGCCCTGGT	GGCCCTCCCC	CCGGCTGGGT
	GCGGGACCCC	CGGCTGCC	CGTGCACGCT	GCGCCAGGGC	CTCACCTCT	TCCTGGACAT	CACCTCCCCA
	CCCAGCCCTC	AGCTCTTGCG	GCTGCTCAGC	ACCTGGCAG	AAGAGCCAG	GGAACAGCAG	GAGCTGGAGG
	CCCTCAGGCCA	GGATCCCCGA	CGCTACGAGG	AGTGGAAAGTG	GTTCGCTG	CCCACGCTGC	TGGAGGTGCT
	GGAGCAGTTC	CCGT'CGGGTGG	CGCTGCC	CCCACTGCTC	CTCACCCAGC	TGCCCTCTG	CCAGCCCCGG
45	TACTACTCAG	TCAC CTCGGC	ACCCAGCACC	CACCCAGGAG	AGATCCACCT	CACTGTAGCT	GTGCTGGCAT
	ACAGGACTCA	GGA'GGGCTG	GGCCCCCTGC	ACTATGGAGT	CTGCTCCACG	TGGCTAAGCC	AGCTCAAGCC
	CGGAGACCC	GTGCTCCTGCT	TCATCCGGGG	GGCTCCCTCC	TTCCGGCTGC	CACCCGATCC	CAGCTTGCCC
	TGCATCTTGG	TGGCTCCAGG	CACTGGCATT	GCCCCCTTCC	GGGGATTCTG	GCAGGAGCGG	CTGCATGACA
	TTGAGAGCAA	AGGCTCTGCAG	CCCACTCCC	TGACTTTGGT	GTTCGCTG	CGATGCTCCC	AACTTGACCA
50	TCTCTACCGC	GACC AGGTGC	AGAACGCCCA	GCAGCGCGGG	GTGTTGGCC	GAGTCCTCAC	CGCCTCTCC
	CGGGAACCTG	ACAAACCCAA	GACCTACGTG	CAGGACATCC	TGAGGACGGA	GCTGGCTGCG	GAGGTGCACC
	CGCTGCTGTG	CCTCGAGCG	GGCCACATGT	TTGCTGCC	CGATGTTACC	ATGGCAACCA	ACGTCCTGCA
	GACCGTGCAG	CGCA'CTCTGG	CGACGGAGGG	CGACATGGAG	CTGGACGAGG	CCGGCGACGT	CATCGCGCTG
	CTGCGGGATC	AGCA ACGCTA	CCACGAAGAC	ATTTCGGGC	TCACGCTGCG	CACCCAGGAG	GTGACAAGCC
55	GCATACGCAC	CCAGAGCTT	TCCTTGCA	AGCGTCAGT	CGGGGGCGCA	GTGCCCTGGG	CGTTCGACCC
	TCCCGGCTCA	GACACCAACA	GCCCCTGAGA	GCCGCCTGGC	TTTCCCTTCC	AGTTCCGGGA	GAGCGGCTGC
	CCGACTCAGG	TCCGCCCCGAC	CAGGATCAGC	CCCGCTCCTC	CCCTCTTGTAG	GTGGTGCCTT	CTCACATCTG
	TCCAGAGGCT	GCAAGGATT	AGCATTATT	CTCCAGGAAG	GAGCAAACG	CCTCTTTTCC	CTCTCTAGGC
	CTGTTGCTC	GGGCTGGGT	CCGCCTTAAT	CTGGAAGGCC	CCTCCCAGCA	GGGGTACCCC	AGGGCCTACT
60	GCCACCCGCT	TCCGTGTTCT	TAGTCCGAAT	GTTAGATTCC	TCTTGCTCT	CTCAGGAGTA	TCTTACCTGT
	AAAGTCTAAT	CTCTAAATCA	AGTATTATT	ATTGAAGATT	TACCATAGG	GACTGTGCCA	GATGTTAGGA
	GAACTACTAA	AGTGCTTACCC	CCAGCTC-3'	(FRAG. NO:1897) (SEQ. ID NO: 3017)			
	5'-CATATGTATG	GG AATACTGT	ATTCAGGCA	TTATAAGGAA	TGAAATTATA	GGCCGGGCAT	TGTGGCTAAC

	CCTTGTAATC	CTAGCACTT	GAGAGGCTGA	AGTGGGCAGA	TCACTTGAGC	TTCAGAGTTC	GAGACCAGCA
	TGGACAAACAT	GGTC AAACCC	AGTCTCTACC	AAAAACACAA	AAATATTAGC	TGGGTGTGGT	GGTCATGCC
	TGTAGTCCA	GCTACTCAGG	AGGCTGAGGT	GGGAGGATCG	CTTGAGCCTG	GGAGGCAGAA	GTTGCAATGA
5	GCAGAGATCG	TGCC ACTCCG	CTCCAGTCTT	GGTGACAGAA	TGAGACTCCA	TCTCAAAAAT	AAATAAATAA
	ATAAATAAAA	TAAATGAAAT	GAAATTATAA	GAAATTACCA	CTTTTTCATG	TAAGAAGTGA	TCATTTCCAT
	TATAAGGGAA	GGAATTAAAT	CCTACCTGCC	ATTCACCAA	AGCTTACCTA	GTGCTAAAGG	ATGAGGTGTT
	AGTAAGACCA	ACA'CTCAGA	GGCCTCTCTG	TGCCAATAGC	CTTCCTTCCT	TTCCCTTCCA	AAAACCTCAA
	GTGACTAGTT	CAGAGGCCTG	TCTGGAATAA	TGGCATCATC	TAATATCATC	GGCCTCTGG	AACCTGGCA
10	TTTCCAGTG	TGTTCCATAC	TGTCAATT	CCCCCAGCTT	CCTGGACTCC	TGTACAAGC	TGGAAAAGTG
	AGAGGATGGA	CAGGGATTAA	CCAGAGAGCT	CCCTGCTGAG	GAAAAAAATCT	CCCAGATGCT	GAAAGTGAGG
	CCATGTGGCT	TGGCCAAATA	AAACCTGGCT	CCGTGGTGC	TCTGTCTTAG	CAGCCACCC	GCTGATGAAC
	TGCCACCTTG	GACTGGGAC	CAGAAAGAGG	TGGGTTGGGT	GAAGAGGCAC	CACACAGAGT	GATGTAACAG
	CAAGATCAGG	TCACCCACAG	GCCCTGGCAG	TCACAGTCAT	AAATTAGCTA	ACTGTACACA	AGCTGGGAC
15	ACTCCCTTG	GAAA CCAAAA	AAAAAAAAAA	AAAAAAAGAGA	CCTTATGCA	AAAACAAC	TCTGGATGGC
	ATGGGTGAG	TATAAATACT	TCTTGGCTGC	CAGTGTGTC	ATAACTTGT	AGCGAGTCGA	AAACTGAGGC
	TCCGGCCGCA	GAGACTCAG	CCTCATTCCT	GCTTAAAT	CTCTGGCCA	CCTTGTGTA	GGGGACTGGG
	CAGTTCTAGA	CAGICCCGAA	GTTCTCAAGG	CACAGGTCTC	TTCTGGTTT	GACTGTCTT	ACCCCGGGGA
	GGCAGTGCAG	CCAGCTGCAA	GGTGAGTTGC C-3'	(FRAG. NO:) (SEQ. ID NO: 2506)			
20	5'-CTGCTTAA	ATCTCTCGGC	CACCTTGAT	GAGGGACTG	GGCAGTTCTA	GACAGTCCC	AAGTTCTCAA
	GGCACAGGTC	TCTCCTGGT	TTGACTGTCC	TTACCCGGG	GAGGCAGTGC	AGCCAGCTG	AAGCCCCACA
	GTGAAGAAC	TCTC AGCTCA	AATCCAGATA	AGTACATAA	GTGACCTGCT	TTGTAAGGCC	ATAGAGATGG
	CCTGTCTTG	GAAATTCTG	TTCAAGACCA	AATCCACCA	GTATGCAATG	AATGGGAAA	AAGACATCAA
	CAACAATGTG	GAGAAGCCC	CCTGTGCCAC	CTCCAGTCCA	GTGACACAGG	ATGACCTTCA	GTATCACAAAC
25	CTCAGCAAGC	AGCA GAATGA	GTCCCCGCG	CCCCCTGTGG	AGACGGGAAA	GAAGTCTCCA	GAATCTCTGG
	TCAAGCTGGA	TGCA ACCCCA	TTGTCTCTCC	CACGGCATGT	GAGGATCAA	AACTGGGCA	GCGGGATGAC
	TTTCAAGAC	ACACTTCACC	ATAAGGCCA	AGGGATTAA	ACTTGCAGGT	CCAAATCTT	CCTGGGTTCC
	ATTATGACTC	CCAAAAGTTT	GACCAGAGGA	CCCAGGGACA	AGCCTACCC	TCCAGATGAG	CTTCTACCTC
	AAGCTATCGA	ATTITGTCAC	CAATATTACG	GCTCTTCAA	AGAGGCAAA	ATAGAGGAAC	ATCTGGCCAG
30	GGTGGAAAGCG	GTA.CAAAGG	AGATAGAAC	AACAGGAACC	TACCAACTGA	CGGGAGATGA	GCTCATCTTC
	GCCACCAAGC	AGGCCTGGCG	CAATGCCCA	CGCTGCATTG	GGAGGATCCA	GTGGTCAAC	CTGCAGGTCT
	TCGATGCCCG	CAGCTGTTCC	ACTGCCCGGG	AAATGTTGA	ACACATCTG	AGACACGTG	GTTACTCCAC
	CAACAATGGC	AAACATCAGG	CGGCCATCAC	CGTGTCCCC	CAGCGGAGTG	ATGCAAGCA	CGACTTCCGG
	GTGTGGATG	CTCAGCTCAT	CCGCTATGCT	GGCTACCGA	TGCCAGATGG	CAGCATCAGA	GGGGACCCCTG
35	CCAACGTGGA	ATTCACTCAG	CTGTGCATCG	ACCTGGGCTG	GAAGCCCAAG	TACGGCCGCT	TCGATGTGGT
	CCCCCTGGTC	CTGCAGGCCA	ATGGCCGTGA	CCCTGAGCTC	TTCGAAATCC	CACCTGACCT	TGTGCTTGAG
	GTGGCCATGG	AAACATCCCAA	ATACGAGTGG	TTTCGGGAAC	TGGAGCTAA	GTGGTACGCC	CTGCTCGCAG
	TGGCCAACAT	GCTCCTTGAG	GTGGCGGGC	TGGAGTTCCC	AGGGTGC	TTCAATGGCT	GGTACATGGG
	CACAGAGATC	GGAGTCCGGG	ACTTCTGTGA	CGTCCAGCGC	TACAACATCC	TGGAGGAAGT	GGGCAGGAGA
40	ATGGGCCTGG	AAACCGACAA	GCTGGCCTCG	CTCTGGAAAG	ACCAGGCTGT	CGTTGAGATC	AACATTGCTG
	TGATCCATAG	TTTCAGAAG	CAGAATGTGA	CCATCATGGA	CCACCACTCG	GCTGCAGAAT	CCTTCATGAA
	GTACATGCAG	AATGAATACC	GGTCCCGTGG	GGGCTGCCCG	GCAGACTGGA	TTTGGCTGGT	CCCTCCCCATG
	TCTGGGAGCA	TCACCCCCGT	GTTCACCAG	GAGATGCTGA	ACTACGTCCT	GTCCCCTTTC	TACTACTATC
	AGGTAGAGGC	CTGGAAAACC	CATGTCTGGC	AGGACGAGAA	GCGGAGACCC	AAGAGAAGAG	AGATTCCATT
45	GAAAGTCTTG	GTCA AAGCTG	TGCTCTTGC	CTGTATGCTG	ATGCGCAAGA	CAATGGCGTC	CCGAGTCAGA
	GTCACCATCC	TCTTIGCGAC	AGAGACAGGA	AAATCAGAGG	CGCTGGCTG	GGACCTGGGG	GCCTTATTCA
	GCTGTGCCCT	CAACCCCAAG	GTGTCCTGCA	TGGATAAGTA	CAGGCTGAGC	TGCCTGGAGG	AGGAACGGCT
	GCTGTGGTG	GTGACCAAGT	CGTTTGGCAA	TGGAGACTGC	CCTGGCAATG	GAGAGAAACT	GAAGAAATCG
	CTCTTCATGC	TGAAAGAGCT	CAACAACAA	TTCAGGTACG	CTGTGTTGG	CCTCGGCTCC	AGCATGTACC
50	CTCGGTTCTG	CGCC TTGCT	CATGACATTG	ATCAGAAGCT	GTCCCACCTG	GGGGCCTCTC	AGCTCACCCC
	GATGGGAGAA	GGGGATGAGC	TCAGTGGGCA	GGAGGACGCC	TTCCGCAGCT	GGGGCGTGCA	AACCTTCAAG
	GCAGCCTGTG	AGACGTTGA	TGTCCGAGGC	AAACAGCACA	TTCAGATCCC	CAAGCTCTAC	ACCTCCAATG
	TGACCTGGGA	CCCCCACCCAC	TACAGGCTCG	TGCAGGACTC	ACAGCCTTG	GACCTCAGCA	AAGCCCTCAG
	CAGCATGCAT	GCCAGAGAACG	TGTTCACCAT	GAGGCTAAA	TCTCGGCAGA	ATCTACAAAG	TCCGACATCC
55	AGCCGTGCCA	CCATCCTGGT	GGAACTCTCC	TGTGAGGATG	GCCAAGGCT	GAACCTACCTG	CCGGGGGAGC
	ACCTTGGGTT	TTGCCAGGGC	AACCAGCCGG	CCCTGGTCCA	AGGCATCTG	GAGGGAGTGG	TGGATGGCCC
	CACACCCAC	CAGAAGTGC	GCCTGGAGGA	CCTGGATGAG	AGTGGCAGCT	ACTGGGTCA	TGACAAGAGG
	CTGCCCCCT	GCTCACTCAG	CCAGGCCCTC	ACCTACTCCC	CGGACATCAC	CACACCCCA	ACCCAGCTGC
	TGCTCCAAA	GCTC GCCCAG	GTGGCCACAG	AAGAGCCTGA	GAGACAGAGG	CTGGAGGCC	TGTGCCAGCC
60	CTCAGAGTAC	AGCAAGTGG	AGTTCACCAA	CAGCCCCACA	TTCTGGAGG	TGCTAGAGGA	GTTCCCCTGCC
	CTGCGGGTGT	CTGCTGGCTT	CCTGCTTCC	CAGCTCCCCA	TTCTGAAGCC	CAGGTTCTAC	TCCATCAGCT
	CCTCCGGGGA	TCACACGCC	ACGGAGATCC	ACCTGACTGT	GGCCGTGGTC	ACCTACCA	CCGGAGATGG
	CCAGGGTCCC	CTGCACCACG	GTGTCTGCC	CACATGGCTC	AACAGCCTGA	AGCCCCAAGA	CCCAGTGCC

	TGCTTGTGC	GGAATGCCAG	CGCCCTCCAC	CTCCCCGAGG	ATCCCTCCCA	TCCTTGATC	CTCATCGGGC
	CTGGCACAGG	CATGTGCCC	TTCCGCGAGT	TCTGGCAGCA	ACGGCTCCAT	GACTCCCAGC	ACAAGGGAGT
	GCGGGGAGGC	CGCATGACCT	TGGTGTGTTG	GTGCCGCCG	CCAGATGAGG	ACCACATCTA	CCAGGAGGAG
	ATGCTGGAGA	TGGGCCAGAA	GGGGGTGCTG	CATGCGGTGC	ACACAGCCTA	TTCCCGCTG	CCTGGCAAGG
5	CCAAGGTCTA	TGTICAGGAC	ATCTCGCGC	AGCAGCTGGC	CAGCGAGGTG	CTCCGTGTC	TCCACAAGG
	GCCAGGCCAC	CTCTATGTT	GCGGGGATGT	GCGCATGCC	CGGGACGTGG	CCCACACCTT	GAAGCAGCTG
	GTGGCTGCA	AGCTGAAATT	GAATGAGGAG	CAGGTCGAGG	ACTATTCTT	TCAGCTCAAG	AGCCAGAACG
	GCTATCACGA	AGATATCTC	GGTGCTGTAT	TTCCCTACGA	GGCGAAGAAG	GACAGGGTGG	CGGTGCAAGCC
	'CAGCAGCCTG	GAGATGTCAG	CGCTCTGAGG	GCCTACAGGA	GGGGTTAAAG	CTGCCGGCAC	AGAACTTAAG
10	GATGGAGCCA	GCTCTGCATT	ATCTGAGGTC	ACAGGGCTG	GGGAGATGGA	GGAAAGTGT	ATCCCCCAGC
	CTCAAGTCTT	ATTICCTCAA	CGTGCTCCC	CATCAAGCCC	TTTACTTGAC	CTCCTAACAA	GTAGCACCC
	GGATTGATCG	GAGCTCTCTC	TCTCAAACGT	GGGCCTCCCT	GGTCCCTTGG	AGACAAAATC	TTAAATGCCA
	GGCCTGGCGA	GTGGGTGAAA	GATGGAACCT	GCTGCTGAGT	GCACCACTTC	AAGTGACCCAC	CAGGAGGGTGC
	TATCGCACCA	CTGTGTATTT	AACTGCTCTG	TGTACAGTTA	TTTATGCTC	TGTATTTAAA	AAACTAACAC
15	CCAGTCTGTT	CCCCATGGCC	ACTTGGGTCT	TCCCTGTATG	ATTCCCTGAT	GGAGATATT	ACATGAATTG
	CATTTTACTT	TAATC 3' (FRAG. NO:) (SEQ. ID NO:2507)					
	5'-GAATTCCCAC	TCTGCTGCCT	GCTCCAGCAG	ACGGACGCAC	AGTAACATGG	GCAACTGAA	GAGCGTGGCC
	CAGGAGCCTG	GGCCACCCCTG	CGGCCTGGGG	CTGGGGCTGG	GCCTGGGCT	GTGCGGCAAG	CAGGGCCAG
	CCACCCCCGGC	CCCTGAGCCC	AGCCGGGCC	CAGCATCCCT	ACTCCCACCA	GCGCCAGAAC	ACAGCCCCCC
20	GAGCTCCCCG	CTAACCCAGC	CCCCAGAGGG	GCCAAGTTC	CCTCGTGTGA	AGAACTGGGA	GGTGGGGAGC
	ATCACCTATG	ACACCCCTAG	CGCCCAGGCG	CAGCAGGATG	GGCCCTGAC	CCAAGAGAC	TGCTGGGCT
	CCCTGGTATT	TCCA CGGAAA	CTACAGGGCC	GGCCCTCCCT	CGGCCCTCCCG	GCCCCCTGAGC	AGCTGCTGAG
	TCAGGCCCGG	GACITCATCA	ACCAGTACTA	CAGCTCCATT	AAGAGGAGCG	GCTCCCAGGC	CCACGAACAG
	CGGCTTCAAG	AGGTGGAAGC	CGAGGTGGCA	GCCACAGC	CCTACCAAGCT	TAGGGAGAGC	GAGCTGGTGT
25	TCGGGGCTAA	GCACGCCTGG	CGCAACGCTC	CCCGCTGCGT	GGGCCGGATC	CAGTGGGGA	AGCTGAGGT
	GTTCGATGCC	CGGGACTGCA	GGTCTGCACA	GGAAATGTT	ACCTACATCT	GCAACCACAT	CAAGTATGCC
	ACCAACCGGG	GCAACCTTCG	CTCGGCCATC	ACAGTGTCC	CGCAGCGCTG	CCCTGGCCGA	GGAGACTTCC
	GAATCTGGAA	CAGCCAGCTG	GTGCGCTACG	CGGGCTACCG	GCAGCAGGAC	GGCTCTGTG	GGGGGGACCC
	AGCCAACGTG	GAGATCACCG	AGCTCTGCAT	TCAGCACGGC	TGGACCCAG	GAAACGGTC	CTTCGACGTTG
30	CTGCCCCCTGC	TGCTGCAGGC	CCCAGATGAG	CCCCCAGAAC	TCTTCCTCT	GCCCCCCCAG	CTGGTCCITG
	AGGTGCCCCCT	GGAGCACCCC	ACGCTGGAGT	GGTTTGCGAC	CCTGGGCTG	CGCTGGTACG	CCCTCCCGGC
	AGTGTCCAAC	ATGCTGCTGG	AAATTGGGGG	CCTGGAGTT	CCCAGCAGCCC	CCTTCAGTGG	CTGGTACATG
	AGCACTGAGA	TCGGCACGAG	GAACCTGTGT	GACCCCTCACC	GCTACAACAT	CCTGGAGGAT	GTGGTGTCT
	GCATGGACCT	GGATACCCGG	ACCACCTCGT	CCCTGTGGAA	AGACAAGGCA	GCAGTGGAAA	TCAACGTGGC
35	CGTGTGCAAC	AGTTACCAAGC	TAGCCAAAGT	CACCATCGT	GACCACCA	CCGCCACGGC	CTCTTCATG
	AAGCACCTGG	AGAATGAGCA	GAAGGCCAGG	GGGGGCTGCC	CTGCAGACTG	GGCCTGGATC	GTGCCCCC
	TCTGGGCAG	CCTCACTCT	GTTTTCCATC	AGGAGATGGT	CAACTATTTC	CTGTCCCCGG	CCTTCGCTA
	CCAGCCAGAC	CCCTGGAAGG	GGAGTGCCTG	CAAGGGCACC	GGCATCACCA	GGAAGAAGAC	CTTTAAAGAA
	GTGGCCAACG	CCGTGAAGAT	CTCCGCTCG	CTCATGGGCA	CGGTGATGGC	GAAGCGAGT	AAGGGACAA
40	TCCTGTATGG	CTCCGAGACC	GGCCGGGCC	AGAGCTACGC	ACAGCAGCTG	GGGAGACTCT	TCCGGAAGGG
	TTTGATCCC	CGGGTCTGT	GTATGGATGA	GTATGACGTG	GTGTCCTCG	AAACAGAGAC	GCTGGTCTG
	GTGGTAACCA	GCACATTGG	GAATGGGGAT	CCCCCGGAGA	ATGGAGAGAG	CTTTCGAGCT	GCCCTGTATGG
	AGATGTCGG	CCCCATACAAC	AGCTCCCTC	GGCCGGAACAA	GCACAAGAGT	TATAAGATCC	GCTTCACAG
	CATCTCTGCA	TCAGACCCAC	TGGTGTCTC	TTGGCGGCC	AAGAGGAAGG	AGTCCAGTAA	CACAGACAGT
45	GCAGGGGCC	TGGCACCC	CAGGTTCTGT	GTGTTCGGGC	TCGGCTCCCG	GGCATACCC	CACTTCCTG
	CCTTGTCTG	TGCCCTGGAC	ACACGGCTG	AGGAACCTGG	CGGGGAGCGG	CTGCTGAGC	TGGGCCAGGG
	CGACGAGCTG	TGCG3CCAGG	AGGAGGCC	CCGAGGCTG	GCCCAGGCTG	CCTTCAGG	CGCTGTGAG
	ACCTTCTGTG	TGGGAAGGA	TGCCAAGGCC	GCCGCCAG	ACATCTTCAG	CCCCAAACGG	AGCTGGAAGC
	GCCAGAGGTA	CCGGCTGAGC	GCCCAGGCC	AGGGCCTGCA	GTTGCTGCCA	GGTCTGATCC	ACGTGACAG
50	GCGGAAGATG	TTCCAGGCTA	CAATCCGTC	AGTGGAAAAC	CTGCAAAGCA	GCAAGTCCAC	GAGGGCCACC
	ATCCCTGGTC	GCCTGGACAC	CGGAGGCCAG	GAGGGGCTG	AGTACCAGCC	GGGGGACCA	ATAGGTGTCT
	GCCCCCCAA	CCGGCCCGGC	CTTGTGGAGG	CGCTGCTGAG	CCGCGTGGAG	GACCCGCC	CGCCCCACTGA
	GCCCGTGGCA	GTAGAGCAGC	TGGAGAAGGG	CAGCCCTGGT	GGCCCTCCCC	CCGGCTGGGT	GCAGGACCCCC
	CGGCTGCCCC	CGTGACCGCT	GCGCCAGGCT	CTCACCTTCT	TCCTGGACAT	CACCTCCCCA	CCCAGCCCTC
55	AGCTCTTGC	GCTGCTCAGC	ACCTTGGCAG	AAGAGCCCAG	GGAACAGCAG	GAGCTGGAGG	CCCTCAGCCA
	GGATCCCCGA	CGCTACGAGG	AGTGGAAAGTG	GTTCCGCTGC	CCCACGCTG	TGGAGGTGCT	GGAGCAGTT
	CCGTCGGTGG	CGCTGCTGC	CCCACTGCTC	CTCACCCAGC	TGCCTCTGCT	CCAGCCCCGG	TACTACTCAG
	TCAGCTCGGC	ACCCAGCACC	CACCCAGGAG	AGATCCACCT	CACTGTAGCT	GTGCTGGCAT	ACAGGACTCA
	GGATGGGCTG	GGCCCTCTGC	ACTATGGAGT	CTGCTCCACG	TGGCTAAGCC	AGCTCAAGCC	CGGAGACCC
60	GTGCCCTGCT	TCATCCGGGG	GGCTCCCTCC	TTCCGGCTGC	CACCCGATCC	CAGCTTGCCC	TGCATCCTGG
	TGGGTCCAGG	CACTGGCATT	GGCCCTTCC	GGGGATTCTG	GCAGGAGCGG	CTGCTATGACA	TTGAGAGCAA
	AGGGCTGCG	CCCACTCCCA	TGACTTTGGT	GTTCGGCTGC	CGATGCTCCC	AACTTGACCA	TCTCTACCGC

GACGAGGTGC AG_nACGCCA GCAGCGCGG GTGTTGGCC GAGTCCTCAC CGCCTTCTCC CGGGAACCTG
 ACAACCCAA GACCTACGTG CAGGACATCC TGAGGACGGA GCTGGCTGCG GAGGTGCACC GCGTGTGCTG
 CCTCGAGCGG GGC'CACATGT TTGTCTGCG CGATGTTACCG ATGGCAACCA ACGTCCTGCA GACCGTGCAG
 CGCATCCTGG CGACGGAGGG CGACATGGAG CTGGACGAGG CCGGCAGCGT CATCGGCCTG CTGCAGGATC
 5 AGCAACGCTA CCACGAAGAC ATTTTCCGGC TCACGCTGCG CACCCAGGAG GTGACAAGCC GCATACGCAC
 CCAGAGCTT TCCITGCAGG AGCGTCAGTT GCGGGCGCA GTGCCCTGGG CGTTCGACCC TCCCGGCTCA
 GACACCAACA GCC'CCTGAGA GCCGCCTGGC TTTCCTTCC AGTCCGGGA GAGCGGCTGC CCGACTCAGG
 TCCGCCGAC CAGGATCAGC CCCGCTCTC CCCCCTTGAG GTGGTGCCTT CTCACATCTG TCCAGAGGCT
 GCAAGGATTG AGC'ATTATTG CTCCAGGAAG GAGCAAACAG CCTCTTTTCC CTCTCTAGGC CTGTTGCCTC
 10 10 GGGCTGGGT CGGCCTTAAT CTGGAAGGCC CCTCCCAGCA GCGGTACCCC AGGGCTACT GCCACCCGCT
 TCCTGTTCT TAG'TCCGAAT GTTAGATTCC TCTTGCCTCT CTCAGGAGTA TCTTACCTGT AAAGTCTAAT
 CTCTAAATCA AGTATTTATT ATTGAAGATT TACCATAGG GACTGTGCCA GATGTTAGGA GAACTACTAA
 AGTGCCTACC CCAGCTC-3' (FRAG. NO:_) (SEQ. ID NO:2508)
 5'-CCCCGGGG-3' (FRAG. NO:1898) (SEQ. ID NO: 1911)
 15 5'-GGGGCCGCTGGG-3' (FRAG. NO:1899) (SEQ. ID NO:1912)
 5'-GGGGGTGTGG-3' (FRAG. NO:1900) (SEQ. ID NO: 1913)
 5'-CTGCCTCCCCGGGG-3' (FRAG. NO:1442)(SEQ. ID NO:1451)
 5'-TTCTGCTGCTGCTG-3' (FRAG. NO:1443)(SEQ. ID NO:1452)
 20 5'-CTTCTTCCCGTC'CC-3' (FRAG. NO:1444)(SEQ. ID NO:1453)
 5'-TTTTGCTCTTC-3' (FRAG. NO:1446)(SEQ. ID NO:1455)
 5'-GGTTCCTGTTGTTCT-3' (FRAG. NO:1447)(SEQ. ID NO:1456)
 5'-GGCCTGCTGGTGGCG-3' (FRAG. NO:1448)(SEQ. ID NO:1457)
 5'-GCTTGTGCGTTCC-3' (FRAG. NO:1449)(SEQ. ID NO:1458)
 25 5'-TCTCTCTCTCTCTGCTCGCTCGC-3' (FRAG. NO:1450)(SEQ. ID NO:1459)
 5'-TTTCTCTGCTCTCTCGC-3' (FRAG. NO:1451)(SEQ. ID NO:1460)
 5'-GCCGTTCTCCTCC-3' (FRAG. NO:1452)(SEQ. ID NO:1461)
 5'-GGCGTCCTCCTGCC-3' (FRAG. NO:1453)(SEQ. ID NO:1462)
 5'-TGTGCTGTTGCTCGG-3' (FRAG. NO:1454)(SEQ. ID NO:1463)
 30 30 5'-GTGGTGCAGGGTCCC-3' (FRAG. NO:1455)(SEQ. ID NO:1464)
 5'-GGTGCCTCCCCGGC-3' (FRAG. NO:1456)(SEQ. ID NO:1465)
 5'-GGGCCGGCTGGTTCGCTGGG-3' (FRAG. NO:1457)(SEQ. ID NO:1466)
 5'-CTGCTCTGGTGGGGTGTGGGG-3' (FRAG. NO:1458)(SEQ. ID NO:1467)
 5'-GCTGGGTTGGGGTGTGGT-3' (FRAG. NO:1459)(SEQ. ID NO:1468)
 35 35 5'-GGCTCTCTGTGCC-3' (FRAG. NO:1460)(SEQ. ID NO:1469)
 5'-TGTGGGGCTGTTGTTG-3' (FRAG. NO:1461)(SEQ. ID NO:1470)
 5'-TCTCTGTGGCGTGTG-3' (FRAG. NO:1462)(SEQ. ID NO:1471)
 5'-CTGGGTCTGGGGCTTC-3' (FRAG. NO:1463)(SEQ. ID NO:1472)
 5'-CTCCCTGTGCTGG-3' (FRAG. NO:1464)(SEQ. ID NO:1473)
 40 40 5'-TGCGCCCTCCCG-3' (FRAG. NO:1465)(SEQ. ID NO:1474)
 5'-CCCCCTCTGGGCC-3' (FRAG. NO:1466)(SEQ. ID NO:1475)
 5'-GGTGCCTGGCTCTTGTGG-3' (FRAG. NO:1467)(SEQ. ID NO:1476)
 5'-GCGCTTCTGGCTCTG-3' (FRAG. NO:1468)(SEQ. ID NO:1477)
 5'-CCCTGTCCTCTTCGCTCGT-3' (FRAG. NO:1469)(SEQ. ID NO:1478)
 45 45 5'-GGCTGCTGGCTG-3' (FRAG. NO:1470)(SEQ. ID NO:1479)
 5'-CTGCCCBGTTTGBTCCTCBCBTGCCGTGGGBGGBCBTGG-3'(FRAG. NO:1901) (SEQ. ID NO: 1914)

NF-κB Nucleic Acids and Antisense Oligonucleotide Fragments

5'-CGGCCCTTCT CACTGGAGGC ACCGGGCAGT CCTCCATGGG AGGGTTGGGC TTGGCCGGGG CTGCCCGGTG
 CCTCCTTGTG GCTGGTCCCT CGTTGCTCTT GGGCCCCGC TCCCGCTGCT CGGCCTCCGT GTTCTTGGC
 50 50 CTCTTGTCTCC GCC'TGCTGTC TTGTCCCGTC CCCTCCTCGC TTGCGTTTCC CTCTCCTTG TCTTCCAGGC
 CTTCTCCGC TTCCGCTGCT GGGGCCCGC CGGGGGGGGC GCTCGGCTCC GCGGCTTCCCT CCCCAGGCTGG
 GGGGTCTGG TCTC'GGGGC CTGCGGCTCG CGGGCTCGGG GCTCGTGC CGCGCGCGGG CGTCCGCGGT
 GGGTGGCGCT GTCC'CGCCGT GGTGTGTC CGTTCTCGTC CTGCGCCGTC CTGGTCTGCC CGTGGGGTCC
 TGGGCGTGGT GGGGGCGTC TGGTGCCTCG TCTGCCCGT GGGGCTTCGG GCTCGGGGCT GTTCGTCCCC
 55 55 CCTGCCGCTC TGTCGCCCTCC GGGGCTCCTC GTTTTCGCTG CTTCGGGTGT CTTCTCGGC GTGTGGCCCC
 GGGTCCCGGC CCTGCTGGC TGGGCGGGGT CGCTGCCCTG GGCTTCTGGC CCGTCTGGTT GTCTGTCGGT
 GCTTGTCTCG GGT'TCTGGC CTCTGTGCTG GGCCTCTC TGCCCTCTG TCCGCCCTCC TGGTGGCTCG
 GCTGGGGGTG CCCG'GCGGG GGTGGGTGTG GGGTGTTC GGGGCTCTCC CCTTCCC-3' (FRAG. NO:1902) (SEQ.
 ID NO:1915)
 60 60 5'-GGGCGGGGTCGC-3' (FRAG. NO:1903) (SEQ. ID NO:1916)
 5'-GCGCCGTCC-3' (FRAG. NO:1904) (SEQ. ID NO:1917)

5'-GGGCGTGGTGG-3' (FRAG. NO:1905) (SEQ. ID NO:1918)
 5'-GTTGGGCTTGGCCGGGG-3' (FRAG. NO:1471)(SEQ. ID NO:1480)
 5'-CTGCCCGGTGCCTCC-3' (FRAG. NO:1472)(SEQ. ID NO:1481)
 5'-TCTGGCTGGTCCCTCGT-3' (FRAG. NO:1473)(SEQ. ID NO:1482)
 5'-TGTCTTGGGCC-3' (FRAG. NO:1474)(SEQ. ID NO:1483)
 5'-GCTCCCGCTGCTC^GGCCTCCGT-3' (FRAG. NO:1475)(SEQ. ID NO:1484)
 5'-GTTCTTGGCCTCTGCTCC-3' (FRAG. NO:1476)(SEQ. ID NO:1485)
 5'-GCCTGCTGTCTTG^TCC-3' (FRAG. NO:1477)(SEQ. ID NO:1486)
 5'-CGTCCCCTCCTCG^CTTGCGTTTC-3' (FRAG. NO:1478)(SEQ. ID NO:1487)
 10 5'-CCTCTTCCTTGTCTCCA-3' (FRAG. NO:1479)(SEQ. ID NO:1488)
 5'-GGCCTTCCTCCGC^TTCCGCTGC-3' (FRAG. NO:1480)(SEQ. ID NO:1489)
 5'-TGGGGCCCGGCCGG-3' (FRAG. NO:1481)(SEQ. ID NO:1490)
 5'-GGGGGCGCTCGG^GTCCGCGCTTCCTCCCCGG-3' (FRAG. NO:1482)(SEQ. ID NO:1491)
 5'-CTGGGGGGTCTTGG-3' (FRAG. NO:1483)(SEQ. ID NO:1492)
 15 5'-TCTCCGGGGCCTG^CGGCTCGC-3' (FRAG. NO:1484)(SEQ. ID NO:1493)
 5'-GGGCTCGGGGCTG^TGTGCGCC-3' (FRAG. NO:1485)(SEQ. ID NO:1494)
 5'-GCGCGCGGCGTCC^GCGGTG-3' (FRAG. NO:1486)(SEQ. ID NO:1495)
 5'-GGTGGCGCTGTCCC^GCC-3' (FRAG. NO:1487)(SEQ. ID NO:1496)
 20 5'-GTGGTGTGTCTCC^TTTCTCGCTCGGCCGTC-3' (FRAG. NO:1488)(SEQ. ID NO:1497)
 5'-CTGGTCTGCCGTGG-3' (FRAG. NO:1489)(SEQ. ID NO:1498)
 5'-GGTCTGGGCGTGGTGC-3' (FRAG. NO:1490)(SEQ. ID NO:1499)
 5'-GGGGCGTCTGGTGC-3' (FRAG. NO:1491)(SEQ. ID NO:1500)
 5'-CTCGTCTGCCCG^TG-3' (FRAG. NO:1492)(SEQ. ID NO:1501)
 25 5'-GGGCTTCGGGCTC^GG-3' (FRAG. NO:1493)(SEQ. ID NO:1502)
 5'-GGCTGTTCGTCCC^CCCTGCCGCTCTGTGCCCTCC-3' (FRAG. NO:1494)(SEQ. ID NO:1503)
 5'-GGGGCTCCTCGTT^TTC-3' (FRAG. NO:1495)(SEQ. ID NO:1504)
 5'-GCTGCTCGGGT^GTCTTCCTC-3' (FRAG. NO:1496)(SEQ. ID NO:1505)
 5'-GGCGTGTGGCCCC^GG-3' (FRAG. NO:1497)(SEQ. ID NO:1506)
 30 5'-GTC^CGGCCGCCCC^GT^GGGGCTGGGCGGGGTC-3' (FRAG. NO:1498)(SEQ. ID NO:1507)
 5'-GCTGCCCTGGGCT^TCTGGCCGTCT-3' (FRAG. NO:1499)(SEQ. ID NO:1508)
 5'-GGTTGTCTGTCGG^T-3' (FRAG. NO:1500)(SEQ. ID NO:1509)
 5'-GCTTGCTCTGGGT^TTCTGG-3' (FRAG. NO:1501)(SEQ. ID NO:1510)
 5'-CCTCTGTGCTGGGC-3' (FRAG. NO:1502)(SEQ. ID NO:1511)
 35 5'-GCTTCTCTGCCCTC^TGCTCC-3' (FRAG. NO:1503)(SEQ. ID NO:1512)
 5'-GCCCTCTGGTG^CTC-3' (FRAG. NO:1504)(SEQ. ID NO:1513)
 5'-GGCTGGGGGTGCC^CGTGCG-3' (FRAG. NO:1505)(SEQ. ID NO:1514)
 5'-GGGGTGGGTGTGG^GGTGTT-3' (FRAG. NO:1506)(SEQ. ID NO:1515)
 5'-TTCGGGGTCCTCCC^TTTCCC-3' (FRAG. NO:1507)(SEQ. ID NO:1516)
 5'-CGGCCCTCTCACT^TGGAGGCACCGGGCAGTCCTCCATGGAGG-3' (FRAG.NO:1906)(SEQ.ID NO:1919)

Human Major Basic Protein Nucleic Acids and Antisense Oligonucleotide Fragments

40 5'-GTT TCA TCT TGG CTT TAT CCTCT CCC CTT GTT CCT CCC CTCT CCT GCT CTG GRG TCT CCT C TTC CCT
 CCC TCC CCT GCC G^TG TTG TCT GTG GGT GTC^T GTT TCG CTC TTG TTG CCC TGG GCC CTT CCC TGC TGG GGG
 GGA GTT TCA TCT TGG CTT TCB TCT TGG CTT TBT CCTCT CCC CTT GTT CCT CCC CTCT CCT GCT CTG GRG
 TCT CCT C TTC CCT CCC TCC CCT GCC GTG TTG TCT GTG GGT GTC^T GTT TCG CTC TTG TTG CCC TGG GCC CTT
 CCC TGC TGG GGG G^BB GTT TCB TCT TGG-3' (FRAG. ID:1907) (SEQ. ID NO:1920)
 5'-GGG GGA GTT-3' (FRAG. ID:1908) (SEQ. ID NO:1921)
 5'-G CCC TGG GCC C-3' (FRAG. ID:1909) (SEQ. ID NO:1922)
 5'-GTT TCA TCT TGG CTT TAT CC-3' (FRAG. NO:1508) (SEQ. ID NO:1517)
 5'-TCT CCC CTT GTT CCT CCC C-3' (FRAG. NO:1509)(SEQ. ID NO:1518)
 50 5'-TCT CCT GCT CTG GRG TCT CCT C-3' (FRAG. NO:1510)(SEQ. ID NO:1519)
 5'-TTC CCT CCC TCC CCT GCC-3' (FRAG. NO:1511)(SEQ. ID NO:1520)
 5'-GTG TTG TCT GTG GGT GTC C-3' (FRAG. NO:1512)(SEQ. ID NO:1521)
 5'-GTT TCG CTC TTG TTG CCC^TCC-3' (FRAG. NO:1513)(SEQ. ID NO:1522)
 5'-TGG GCC CTT CCC TGC TGG-3' (FRAG. NO:1514)(SEQ. ID NO:1523)
 55 5'-GGG GGA GTT TCA TCT TGG-3' (FRAG. NO:1515)(SEQ. ID NO:1524)
 5'-GTT TCA TCT TGG CTT TAT CCTCT CCC CTT GTT CCT CCC CTCT CCT GCT CTG GRG TCT CCT C TTC CCT
 CCC TCC CCT GCC G^TG TTG TCT GTG GGT GTC^T GTT TCG CTC TTG TTG CCC TGG GCC CTT CCC TGC TGG GGG
 GGA GTT TCA TCT TCG-3' (FRAG. ID:1910) (SEQ. ID NO:1923)
 60 5'-GTT TCB TCT TGG CTT TBT CCTCT CCC CTT GTT CCT CCC CTCT CCT GCT CTG GRG TCT CCT C TTC CCT CCC
 TCC CCT GCC GTG T^TG TCT GTG GGT GTC^T GTT TCG CTC TTG TTG CCC TGG GCC CTT CCC TGC TGG GGG G^BB
 GTT TCB TCT TGG-3' (FRAG. ID:1911) (SEQ. ID NO:1924)

Human Eosinophil Major Basic Protein Nucleic Acids and Antisense Oligonucleotide Fragments

5'-GGG GGB GTT TCB TCT TGG CTT T-3' (FRAG. NO:1516)(SEQ. ID NO:1525)
 5'-GGG GGB GTT TCB TCT TGG CTT-3' (FRAG. NO:1517)(SEQ. ID NO: 1526)
 5'-GGG GGB GTT TCB TCT TGG CT-3' (FRAG. NO:1518)(SEQ. ID NO:1527)
 5 5'-GGG GGB GTT TCB TCT TGG C-3' (FRAG. NO:1519)(SEQ. ID NO: 1528)
 5'-GGG GGB GTT TCB TCT TGG-3' (FRAG. NO:1520)(SEQ. ID NO: 1529)
 5'-GGG GGB GTT TCB TCT TG-3' (FRAG. NO:1521)(SEQ. ID NO: 1530)
 5'-GGG GGB GTT TCB TCT T-3' (FRAG. NO:1522)(SEQ. ID NO: 1531)
 5'-GGG GGB GTT TCB TCT-3' (FRAG. NO:1523)(SEQ. ID NO: 1532)
 10 5'-GGG GGB GTT TCB TC-3' (FRAG. NO:1524)(SEQ. ID NO: 1533)
 5'-GGG GGB GTT TCB T-3' (FRAG. NO:1525)(SEQ. ID NO: 1534)
 5'-GGG GGB GTT TCB-3' (FRAG. NO:1526)(SEQ. ID NO: 1535)
 5'-GG GGB GTT TCB TCT TGG CTT T-3' (FRAG. NO:1527)(SEQ. ID NO: 1536)
 5'-GG GGB GTT TCB TCT TGG CTT-3' (FRAG. NO:1528)(SEQ. ID NO: 1537)
 15 5'-GG GGB GTT TCB TCT TGG CT-3' (FRAG. NO:1529)(SEQ. ID NO: 1538)
 5'-GG GGB GTT TCB TCT TGG C-3' (FRAG. NO:1530)(SEQ. ID NO: 1539)
 5'-GG GGB GTT TCB TCT TGG-3' (FRAG. NO:1531)(SEQ. ID NO: 1540)
 5'-GG GGB GTT TCB TCT TG-3' (FRAG. NO:1532)(SEQ. ID NO: 1541)
 5'-GG GGB GTT TCB TCT T-3' (FRAG. NO:1533)(SEQ. ID NO: 1542)
 20 5'-GG GGB GTT TCB TCT C-3' (FRAG. NO:1534)(SEQ. ID NO: 1543)
 5'-GG GGB GTT TCB TCT-3' (FRAG. NO:1535)(SEQ. ID NO: 1544)
 5'-GG GGB GTT TCB T-3' (FRAG. NO:1536)(SEQ. ID NO: 1545)
 5'-G GGB GTT TCB TCT TGG CTT T-3' (FRAG. NO:1537)(SEQ. ID NO: 1546)
 5'-G GGB GTT TCB TCT TGG CTT-3' (FRAG. NO:1538)(SEQ. ID NO: 1547)
 25 5'-G GGB GTT TCB TCT TGG CT-3' (FRAG. NO:1539)(SEQ. ID NO: 1548)
 5'-G GGB GTT TCB TCT TGG C-3' (FRAG. NO:1540)(SEQ. ID NO: 1549)
 5'-G GGB GTT TCB TCT TGG-3' (FRAG. NO:1541)(SEQ. ID NO: 1550)
 5'-G GGB GTT TCB TCT TG-3' (FRAG. NO:1542)(SEQ. ID NO: 1551)
 5'-G GGB GTT TCB TCT T-3' (FRAG. NO:1543)(SEQ. ID NO: 1552)
 30 5'-G GGB GTT TCB TCT C-3' (FRAG. NO:1544)(SEQ. ID NO: 1553)
 5'-G GGB GTT TCB TCT-3' (FRAG. NO:1545)(SEQ. ID NO: 1554)
 5'-GGB GTT TCB TCT TGG CTT T-3' (FRAG. NO:1546)(SEQ. ID NO: 1555)
 5'-GGB GTT TCB TCT TGG CTT-3' (FRAG. NO:1547)(SEQ. ID NO: 1556)
 5'-GGB GTT TCB TCT TGG CT-3' (FRAG. NO:1548)(SEQ. ID NO: 1557)
 35 5'-GGB GTT TCB TCT TGG C-3' (FRAG. NO:1549)(SEQ. ID NO: 1558)
 5'-GGB GTT TCB TCT TGG-3' (FRAG. NO:1550)(SEQ. ID NO: 1559)
 5'-GGB GTT TCB TCT TG-3' (FRAG. NO:1551)(SEQ. ID NO: 1560)
 5'-GGB GTT TCB TCT T-3' (FRAG. NO:1552)(SEQ. ID NO: 1561)
 5'-GGB GTT TCB TCT-3' (FRAG. NO:1553)(SEQ. ID NO: 1562)
 40 5'-GB GTT TCB TCT TGG CTT T-3' (FRAG. NO:1554)(SEQ. ID NO: 1563)
 5'-GB GTT TCB TCT TGG CTT-3' (FRAG. NO:1555)(SEQ. ID NO: 1564)
 5'-GB GTT TCB TCT TGG CT-3' (FRAG. NO:1556)(SEQ. ID NO: 1565)
 5'-GB GTT TCB TCT TGG C-3' (FRAG. NO:1557)(SEQ. ID NO: 1566)
 45 5'-GB GTT TCB TCT TGG-3' (FRAG. NO:1558)(SEQ. ID NO: 1567)
 5'-GB GTT TCB TCT TG-3' (FRAG. NO:1559)(SEQ. ID NO: 1568)
 5'-GB GTT TCB TCT T-3' (FRAG. NO:1560)(SEQ. ID NO: 1569)
 5'-B GTT TCB TCT TGG CTT T-3' (FRAG. NO:1561)(SEQ. ID NO: 1570)
 5'-B GTT TCB TCT TGG CTT-3' (FRAG. NO:1562)(SEQ. ID NO: 1571)
 50 5'-B GTT TCB TCT TGG CTT-3' (FRAG. NO:1563)(SEQ. ID NO: 1572)
 5'-B GTT TCB TCT TGG CT-3' (FRAG. NO:1564)(SEQ. ID NO: 1573)
 5'-B GTT TCB TCT TGG C-3' (FRAG. NO:1565)(SEQ. ID NO: 1574)
 5'-B GTT TCB TCT TGG-3' (FRAG. NO:1565)(SEQ. ID NO: 1575)
 5'-B GTT TCB TCT TG-3' (FRAG. NO:1567)(SEQ. ID NO: 1576)
 5'-GTT TCB TCT TGG CTT T-3' (FRAG. NO:1568)(SEQ. ID NO: 1577)
 55 5'-GTT TCB TCT TGG CTT-3' (FRAG. NO:1569)(SEQ. ID NO: 1578)
 5'-GTT TCB TCT TGG CT-3' (FRAG. NO:1570)(SEQ. ID NO: 1579)
 5'-GTT TCB TCT TGG C-3' (FRAG. NO:1571)(SEQ. ID NO: 1580)
 5'-GTT TCB TCT TGG-3' (FRAG. NO:1572)(SEQ. ID NO: 1581)
 60 5'-TT TCB TCT TGG CTT T-3' (FRAG. NO:1573)(SEQ. ID NO: 1582)
 5'-TT TCB TCT TGG CTT-3' (FRAG. NO:1574)(SEQ. ID NO: 1583)
 5'-TT TCB TCT TGG CT-3' (FRAG. NO:1575)(SEQ. ID NO: 1584)

5'-TT TCB TCT TGG C-3' (FRAG. NO:1576)(SEQ. ID NO: 1585)
5'-T TCB TCT TGG C' T T-3' (FRAG. NO:1577)(SEQ. ID NO: 1586)
5'-T TCB TCT TGG C' T-3' (FRAG. NO:1578)(SEQ. ID NO: 1587)
5'-T TCB TCT TGG C'-3' (FRAG. NO:1579)(SEQ. ID NO: 1588)
5 5'-TCB TCT TGG CTT T-3' (FRAG. NO:1580)(SEQ. ID NO: 1589)
5'-TCB TCT TGG CTT-3' (FRAG. NO:1581)(SEQ. ID NO: 1590)
5'-GGG GGB GTT TCB TCT TGG CTT T-3' (FRAG. NO:1582)(SEQ. ID NO:1591)
5'-GG GGB GTT TCB TCT TGG CTT T-3' (FRAG. NO:1583)(SEQ. ID NO: 1592)
5'-G GGB GTT TCB TCT TGG CTT T-3' (FRAG. NO:1584)(SEQ. ID NO: 1593)
10 5'-GGG GTT TCB TCT TGG CTT T-3' (FRAG. NO:1585)(SEQ. ID NO: 1594)
5'-GB GTT TCB TCT TGG CTT T-3' (FRAG. NO:1586)(SEQ. ID NO: 1595)
5'-B GTT TCB TCT TC G CTT T-3' (FRAG. NO:1587)(SEQ. ID NO: 1596)
5'-GTT TCB TCT TGG CTT T-3' (FRAG. NO:1588)(SEQ. ID NO: 1597)
5'-TT TCB TCT TGG CTT T-3' (FRAG. NO:1589)(SEQ. ID NO: 1598)
15 5'-T TCB TCT TGG C' T T-3' (FRAG. NO:1590)(SEQ. ID NO: 1599)
5'-TCB TCT TGG CTT T-3' (FRAG. NO:1591)(SEQ. ID NO: 1600)
5'-CB TCT TGG CTT T-3' (FRAG. NO:1592)(SEQ. ID NO: 1601)
5'-GGG GGB GTT TCE TCT TGG CTT-3' (FRAG. NO:1593)(SEQ. ID NO: 1602)
5'-GG GGB GTT TCB TCT TGG CTT-3' (FRAG. NO:1594)(SEQ. ID NO: 1603)
20 5'-G GGB GTT TCB TCT TGG CTT-3' (FRAG. NO:1595)(SEQ. ID NO: 1604)
5'-GGB GTT TCB TCT TGG CTT-3' (FRAG. NO:1596)(SEQ. ID NO: 1605)
5'-GB GTT TCB TCT TGG CTT-3' (FRAG. NO:1597)(SEQ. ID NO: 1606)
5'-B GTT TCB TCT TGG CTT-3' (FRAG. NO:1598)(SEQ. ID NO: 1607)
5'-GTT TCB TCT TGG CTT-3' (FRAG. NO:1599)(SEQ. ID NO: 1608)
25 5'-TT TCB TCT TGG CTT-3' (FRAG. NO:1600)(SEQ. ID NO: 1609)
5'-T TCB TCT TGG C' T-3' (FRAG. NO:1601)(SEQ. ID NO: 1610)
5'-TCB TCT TGG CTT 3' (FRAG. NO:1602)(SEQ. ID NO: 1611)
5'-GGG GGB GTT TCB TCT TGG CT-3' (FRAG. NO:1603)(SEQ. ID NO: 1612)
5'-GG GGB GTT TCB TCT TGG CT-3' (FRAG. NO:1604)(SEQ. ID NO: 1613)
30 5'-G GGB GTT TCB TCT TGG CT-3' (FRAG. NO:1605)(SEQ. ID NO: 1614)
5'-GGB GTT TCB TCT TGG CT-3' (FRAG. NO:1606)(SEQ. ID NO: 1615)
5'-GB GTT TCB TCT TGG CT-3' (FRAG. NO:1607)(SEQ. ID NO: 1616)
5'-B GTT TCB TCT TGG CT-3' (FRAG. NO:1608)(SEQ. ID NO: 1617)
5'-GTT TCB TCT TGG CT-3' (FRAG. NO:1609)(SEQ. ID NO: 1618)
35 5'-TT TCB TCT TGG CT-3' (FRAG. NO:1610)(SEQ. ID NO: 1619)
5'-T TCB TCT TGG CT-3' (FRAG. NO:1611)(SEQ. ID NO: 1620)
5'-GGG GGB GTT TCB TCT TGG C-3' (FRAG. NO:1612)(SEQ. ID NO: 1621)
5'-GG GGB GTT TCB TCT TGG C-3' (FRAG. NO:1613)(SEQ. ID NO: 1622)
40 5'-G GGB GTT TCB TCT TGG C-3' (FRAG. NO:1614)(SEQ. ID NO: 1623)
5'-GGB GTT TCB TCT TGG C-3' (FRAG. NO:1615)(SEQ. ID NO: 1624)
5'-GB GTT TCB TCT TGG C-3' (FRAG. NO:1616)(SEQ. ID NO: 1625)
5'-B GTT TCB TCT TG 3 C-3' (FRAG. NO:1617)(SEQ. ID NO: 1626)
5'-GTT TCB TCT TGG C-3' (FRAG. NO:1618)(SEQ. ID NO: 1627)
45 5'-TT TCB TCT TGG C-3' (FRAG. NO:1619)(SEQ. ID NO: 1628)
5'-GGG GGB GTT TCB TCT TGG-3' (FRAG. NO:1620)(SEQ. ID NO: 1629)
5'-GG GGB GTT TCB TCT TGG-3' (FRAG. NO:1621)(SEQ. ID NO: 1630)
5'-G GGB GTT TCB TCT TGG-3' (FRAG. NO:1622)(SEQ. ID NO: 1631)
5'-GGB GTT TCB TCT TGG-3' (FRAG. NO:1623)(SEQ. ID NO: 1632)
50 5'-GB GTT TCB TCT TGG-3' (FRAG. NO:1624)(SEQ. ID NO: 1633)
5'-B GTT TCB TCT TG 3 C-3' (FRAG. NO:1625)(SEQ. ID NO: 1634)
5'-GTT TCB TCT TGG-3' (FRAG. NO:1626)(SEQ. ID NO: 1635)
5'-GGG GGB GTT TCB TCT TG-3' (FRAG. NO:1627)(SEQ. ID NO: 1636)
5'-GG GGB GTT TCB TCT TG-3' (FRAG. NO:1628)(SEQ. ID NO: 1637)
5'-G GGB GTT TCB TCT TG-3' (FRAG. NO:1629)(SEQ. ID NO: 1638)
55 5'-GGB GTT TCB TCT TG-3' (FRAG. NO:1630)(SEQ. ID NO: 1639)
5'-GB GTT TCB TCT TG-3' (FRAG. NO:1631)(SEQ. ID NO: 1640)
5'-B GTT TCB TCT TG-3' (FRAG. NO:1632)(SEQ. ID NO: 1641)
5'-GGG GGB GTT TCB TCT T-3' (FRAG. NO:1633)(SEQ. ID NO: 1642)
5'-GG GGB GTT TCB TCT T-3' (FRAG. NO:1634)(SEQ. ID NO: 1643)
60 5'-G GGB GTT TCB TCT T-3' (FRAG. NO:1635)(SEQ. ID NO: 1644)
5'-G GGB GTT TCB TCT T-3' (FRAG. NO:1636)(SEQ. ID NO: 1645)
5'-GGB GTT TCB TCT T-3' (FRAG. NO:1637)(SEQ. ID NO: 1646)

5'-GB GTT TCB TCT T-3' (FRAG. NO:1638)(SEQ. ID NO: 1647)
 5'-GGG GGB GTT TCE TCT-3' (FRAG. NO:1639)(SEQ. ID NO: 1648)
 5'-GG GGB GTT TCB ``CT-3' (FRAG. NO:1640)(SEQ. ID NO: 1649)
 5'-G GGB GTT TCB TCT-3' (FRAG. NO:1641)(SEQ. ID NO: 1650)
 5'-GGB GTT TCB TCT 3' (FRAG. NO:1642)(SEQ. ID NO: 1651)
 5'-GGG GGB GTT TCE TC-3' (FRAG. NO:1643)(SEQ. ID NO: 1652)
 5'-GG GGB GTT TCB T'C-3' (FRAG. NO:1644)(SEQ. ID NO: 1653)
 5'-G GGB GTT TCB TC-3' (FRAG. NO:1645)(SEQ. ID NO: 1654)
 5'-GGG GGB GTT TCB T-3' (FRAG. NO:1646)(SEQ. ID NO: 1655)
 10 5'-GG GGB GTT TCB T'-3' (FRAG. NO:1647)(SEQ. ID NO: 1656)
 5'-GGG GGB GTT TCB-3' (FRAG. NO:1648)(SEQ. ID NO: 1657)
 5'-TCT CCC CTT GTT CCT CCC C-3' (FRAG. NO:1649)(SEQ. ID NO: 1658)
 5'-TCT CCT GCT CTG GTG TCT CCT C-3' (FRAG. NO:1650)(SEQ. ID NO: 1659)
 15 5'-TTC CCT CCC TCC CCT GCC-3' (FRAG. NO:1651)(SEQ. ID NO:1660)
 5'-GTG TTG TCT GTG GGT GTC C-3' (FRAG. NO:1652)(SEQ. ID NO: 1661)
 5'-GTT TCG CTC TTG CCC-3' -3' (FRAG. NO:1653)(SEQ. ID NO: 1661)
 5'-TGG GCC CTT CCC TGC TGG-3' (FRAG. NO:1654)(SEQ. ID NO: 1663)
 5'-GGG GGB G-3' (FRAG. NO:1912)(SEQ. ID NO:1925)
 5'-GTG GGT GTC C-3' (FRAG. NO:1913) (SEQ. ID NO: 1926)

BP-1 Nucleic Acids and Antisense Oligonucleotide Fragments

20 5'-CCGTGTTGTC BGTGGTGCTG CCCGTTGBG GTBTGGCGCT CCBCCBTTTC CCTTTCTCC TTGTTTCCG
 TTTCTCTGC CGTCTGTGGT T-3' (FRAG. NO:1914) (SEQ. ID NO: 1927)
 5'-CCCGTTGBGGTB1GGC-3'(FRAG. NO:1915) (SEQ. ID NO: 1928)
 5'-GCTCCBCCBTTCCCTTTCTCC-3'(FRAG. NO:1916) (SEQ. ID NO: 1929)
 25 5'-TTGTTTCCGTTTC ``CTTG-3'(FRAG. NO:1917) (SEQ. ID NO: 1930)
 5'-CCGTCTGTGGTT-3'(FRAG. NO:1918) (SEQ. ID NO: 1931)
 5'-CCCGTTGAGGTA1GGC-3'(FRAG. NO:1919) (SEQ. ID NO: 1932)
 5'-GCTCCBCCAATTCC CTTTCTCC-3'(FRAG. NO:1920) (SEQ. ID NO: 1933)

C/EBP Nucleic Acids and Antisense Oligonucleotide Antisense Oligonucleotide Fragments

30 5'-GGGCCBGCCCCGCGCCTTTCTBGC CCC GGCC-3' (FRAG. NO:1921) (SEQ. ID NO: 1934)
 5'-GGGCCBGCCCCGCGCCTTTCTBGC CCC GGC-3' (FRAG. NO:1922) (SEQ. ID NO: 1935)
 5'-GGGCCBGCCCCGCCGCTTTCTBGC CCCGG-3' (FRAG. NO:1923) (SEQ. ID NO: 1936)
 5'-GGGCCBGCCCCGCGCCTTTCTBGC CCCCG-3' (FRAG. NO:1924) (SEQ. ID NO: 1937)
 5'-GGGCCBGCCCCGCGCCTTTCTBGC CCC-3' (FRAG. NO:1925) (SEQ. ID NO: 1938)
 35 5'-GGGCCBGCCCCGCGCCTTTCTBGC CCC-3' (FRAG. NO:1926) (SEQ. ID NO: 1939)
 5'-GGGCCBGCCCCGCGCCTTTCTBGC CCC-3' (FRAG. NO:1927) (SEQ. ID NO: 1940)
 5'-GGGCCBGCCCCGCGCCTTTCTBGC CCC-3' (FRAG. NO:1928) (SEQ. ID NO: 1941)
 5'-GGGCCBGCCCCGCGCCTTTCTBGC CCC-3' (FRAG. NO:1929) (SEQ. ID NO: 1942)
 5'-GGGCCBGCCCCGCGCCTTTCTBGC CCC-3' (FRAG. NO:1930) (SEQ. ID NO: 1943)
 40 5'-GGGCCBGCCCCGCGCCTTTCTBGC CCC-3' (FRAG. NO:1931) (SEQ. ID NO:1942) 1944)
 5'-GGGCCBGCCCCGCGCCTTTCTBGC CCC-3' (FRAG. NO:1932) (SEQ. ID NO: 1945)
 5'-GGGCCBGCCCCGCGCCTTTCTBGC CCC-3' (FRAG. NO:1933) (SEQ. ID NO: 1946)
 5'-GGGCCBGCCCCGCGCCTTTCTBGC CCC-3' (FRAG. NO:1934) (SEQ. ID NO: 1947) [1945]
 5'-GGGCCBGCCCCGCGCCTTTCTBGC CCC-3' (FRAG. NO:1935) (SEQ. ID NO: 1948)
 45 5'-GGGCCBGCCCCGCGCCTTTCTBGC CCC-3' (FRAG. NO:1936) (SEQ. ID NO: 1949)
 5'-GGGCCBGCCCCGCGCCTTTCTBGC CCC-3' (FRAG. NO:1937) (SEQ. ID NO: 1950)
 5'-GGGCCBGCCCCGCGCCTTTCTBGC CCC-3' (FRAG. NO:1938) (SEQ. ID NO: 1951)
 5'-GGGCCBGCCCCGCGCCTTTCTBGC CCC-3' (FRAG. NO:1939) (SEQ. ID NO: 1952)
 5'-GGGCCBGCCCCGCGCCTTTCTBGC CCC-3' (FRAG. NO:1940) (SEQ. ID NO: 1953)
 50 5'-GGGCCBGCCCCGCGCCTTTCTBGC CCC-3' (FRAG. NO:1941) (SEQ. ID NO: 1954)
 5'-GGGCCBGCCCCGCGCCTTTCTBGC CCC-3' (FRAG. NO:1942) (SEQ. ID NO: 1955)
 5'-GGGCCBGCCCCGCGCCTTTCTBGC CCC-3' (FRAG. NO:1943) (SEQ. ID NO: 1956)
 5'-GGGCCBGCCCCGCGCCTTTCTBGC CCC-3' (FRAG. NO:1944) (SEQ. ID NO: 1957)
 5'-GGGCCBGCCCCGCGCCTTTCTBGC CCC-3' (FRAG. NO:1945) (SEQ. ID NO: 1958)
 55 5'-GCCCBGCCCCGCCGCCTTTCTBGC CCCGGC-3' (FRAG. NO:1946) (SEQ. ID NO: 1959)
 5'-CCCBGCCCCGCCGCCTTTCTBGC CCCGGC-3' (FRAG. NO:1947) (SEQ. ID NO: 1960)
 5'-CCBGCCCCGCCGCCTTTCTBGC CCCGGC-3' (FRAG. NO:1948) (SEQ. ID NO: 1961)
 5'-CBGCCCCGCCGCCTTTCTBGC CCCGGC-3' (FRAG. NO:1948) (SEQ. ID NO: 1962)
 5'-BGCCCCGCCGCCTTTCTBGC CCCGGC-3' (FRAG. NO:1950) (SEQ. ID NO: 1963)
 60 5'-GCCCGCCGCCCTTCTBGC CCCGGC-3' (FRAG. NO:1951) (SEQ. ID NO: 1964)

5'-CCCCGCCGCCCTTCTBGGCCCGGC-3' (FRAG. NO:1952) (SEQ. ID NO: 1965)
 5'-CCCGCCGCCCTTTCTBGGCCCGGC-3' (FRAG. NO:1953) (SEQ. ID NO: 1966)
 5'-CCGCCGCCCTTTCTBGGCCCGGC-3' (FRAG. NO:1954) (SEQ. ID NO: 1967)
 5'-CGGCCGCCCTTTCTBGGCCCGGC-3' (FRAG. NO:1955) (SEQ. ID NO: 1968)

5 5'-GCCGCCCTTTCTBGGCCCGGC-3' (FRAG. NO:1956) (SEQ. ID NO: 1969)
 5'-CCGCCCTTTCTBGGCCCGGC-3' (FRAG. NO:1957) (SEQ. ID NO: 1970)
 5'-CGCCCTTTCTBGGCCCGGC-3' (FRAG. NO:1958) (SEQ. ID NO: 1971)
 5'-GCCTTTCTBGGCCCGGC-3' (FRAG. NO:1959) (SEQ. ID NO: 1972)
 5'-CCTTTCTBGGCCCGGC-3' (FRAG. NO:1960) (SEQ. ID NO: 1973)

10 10 5'-CTTTCTBGGCCCGGC-3' (FRAG. NO:1961) (SEQ. ID NO: 1974)
 5'-TTTCTBGGCCCGGC-3' (FRAG. NO:1962) (SEQ. ID NO: 1975)
 5'-TTTCTBGGCCCGGC-3' (FRAG. NO:1963) (SEQ. ID NO: 1976)
 5'-TTCTBGGCCCGGC-3' (FRAG. NO:1964) (SEQ. ID NO: 1977)
 5'-TCTBGGCCCGGC-3' (FRAG. NO:1965) (SEQ. ID NO: 1978)

15 15 5'-CTBGGCCCGGC-3' (FRAG. NO:1966) (SEQ. ID NO: 1979)
 5'-GCGBGGCTTCBCCTCGCTGGGCC-3' (FRAG. NO:1967) (SEQ. ID NO: 1980)
 5'-GCGBGGCTTCBCCTCGCTGGGCC-3' (FRAG. NO:1968) (SEQ. ID NO: 1981)
 5'-GCGBGGCTTCBCCTCGCTGGGCC-3' (FRAG. NO:1969) (SEQ. ID NO: 1982)
 5'-GCGBGGCTTCBCCTCGCTGGGCC-3' (FRAG. NO:1970) (SEQ. ID NO: 1983)

20 20 5'-GCGBGGCTTCBCCTCGCTGG-3' (FRAG. NO:1971) (SEQ. ID NO:1984)
 5'-GCGBGGCTTCBCCTCGCTG-3' (FRAG. NO:1972) (SEQ. ID NO:1985)
 5'-GCGBGGCTTCBCCTCGCT-3' (FRAG. NO:1973) (SEQ. ID NO:1986)
 5'-GCGBGGCTTCBCCTCGC-3' (FRAG. NO:1974) (SEQ. ID NO:1987)
 5'-GCGBGGCTTCBCCTCG-3' (FRAG. NO:1975) (SEQ. ID NO:1988)

25 25 5'-GCGBGGCTTCBCCTC-3' (FRAG. NO:1976) (SEQ. ID NO:1989)
 5'-GCGBGGCTTCBCCT-3' (FRAG. NO:1977) (SEQ. ID NO:1990)
 5'-GCGBGGCTTCBC-3' (FRAG. NO:1978) (SEQ. ID NO:1991)
 5'-GCGBGGCTTCBC-3' (FRAG. NO:1979) (SEQ. ID NO:1992)
 5'-GCGBGGCTTCBC-3' (FRAG. NO:1980) (SEQ. ID NO:1993)

30 30 5'-GCGBGGCTGTGTC-3' (FRAG. NO:1981) (SEQ. ID NO:1994)
 5'-GCGBGGCTGTG-3' (FRAG. NO:1982) (SEQ. ID NO:1995)
 5'-CGBGGCTTCBCCTCGCTGGGCC-3' (FRAG. NO:1983) (SEQ. ID NO:1996)
 5'-GBGGCTTCBCCTCGCTGGGCC-3' (FRAG. NO:1984) (SEQ. ID NO:1997)
 5'-BGGCTTCBCCTCGCTGGGCC-3' (FRAG. NO:1985) (SEQ. ID NO:1998)

35 35 5'-GGCTTCBCCTCGCTGGGCC-3' (FRAG. NO:1986) (SEQ. ID NO:1999)
 5'-GCTTCBCCTCGCTGGGCC-3' (FRAG. NO:1987) (SEQ. ID NO:2000)
 5'-CTGTCBCCTCGCTGGGCC-3' (FRAG. NO:1988) (SEQ. ID NO:2001)
 5'-TGTBCBCCTCGCTGCC-3' (FRAG. NO:1989) (SEQ. ID NO:2002)
 5'-GTCBCBCCTCGCTGCC-3' (FRAG. NO:1990) (SEQ. ID NO:2003)

40 40 5'-TCBCCTCGCTGGGCC-3' (FRAG. NO:1991) (SEQ. ID NO:2004)
 5'-CBCCTCGCTGGGCC-3' (FRAG. NO:1992) (SEQ. ID NO:2005)
 5'-BCCTCGCTGGGCC-3' (FRAG. NO:1993) (SEQ. ID NO:2006)
 5'-CCTCGCTGGGCC-3' (FRAG. NO:1994) (SEQ. ID NO:2007)
 5'-CTCGCTGGGCC-3' (FRAG. NO:1995) (SEQ. ID NO:2008)

45 45 5'-TCGCTGGGCC-3' (FRAG. NO:1996) (SEQ. ID NO:2009)
 5'-CGCTGGGCC-3' (FRAG. NO:1997) (SEQ. ID NO:2010)
 5'-GCGCGGCCGTCBTGCGCGCTCGGGCCGGG-3' (FRAG. NO:1998) (SEQ. ID NO:2011)
 5'-GCGCGGCCGTCBTGCGCGCTCGGGCCGG-3' (FRAG. NO:1999) (SEQ. ID NO:2012)

50 50 5'-GCGCGGCCGTCBTGCGCGCTCGGGCCGG-3' (FRAG. NO:2000) (SEQ. ID NO:2013)
 5'-GCGCGGCCGTCBTGCGCGCTCGGGCCGG-3' (FRAG. NO:2001) (SEQ. ID NO:2014)
 5'-GCGCGGCCGTCBTGCGCGCTCGGGCC-3' (FRAG. NO:2002) (SEQ. ID NO:2015)
 5'-GCGCGGCCGTCBTGCGCGCTCGGG-3' (FRAG. NO:2003) (SEQ. ID NO:2016)
 5'-GCGCGGCCGTCBTGCGCGCTCGGG-3' (FRAG. NO:2004) (SEQ. ID NO:2017)
 5'-GCGCGGCCGTCBTGCGCGCTCGGG-3' (FRAG. NO:2005) (SEQ. ID NO:2018)

55 55 5'-GCGCGGCCGTCBTGCGCGCTCG-3' (FRAG. NO:2006) (SEQ. ID NO:2019)
 5'-GCGCGGCCGTCBTGCGCGCTCG-3' (FRAG. NO:2007) (SEQ. ID NO:2020)
 5'-GCGCGGCCGTCBTGCGCGCTCG-3' (FRAG. NO:2008) (SEQ. ID NO:2021)
 5'-GCGCGGCCGTCBTGCGCGCTCG-3' (FRAG. NO:2009) (SEQ. ID NO:2022)
 5'-GCGCGGCCGTCBTGCGCGCTCG-3' (FRAG. NO:2010) (SEQ. ID NO:2023)

60 60 5'-GCGCGGCCGTCBTGCGCGCTCG-3' (FRAG. NO:2011) (SEQ. ID NO:2024)
 5'-GCGCGGCCGTCBTGCGCGCTCG-3' (FRAG. NO:2012) (SEQ. ID NO:2025)
 5'-GCGCGGCCGTCBTGCGCGCTCG-3' (FRAG. NO:2013) (SEQ. ID NO:2026)

5'-GCGCGGCCGTCTGG-3' (FRAG. NO:2014) (SEQ. ID NO:2027)
 5'-GCGCGGCCGTCTGG-3' (FRAG. NO:2015) (SEQ. ID NO:2028)
 5'-GCGCGGCCGTCTGG-3' (FRAG. NO:2016) (SEQ. ID NO:2029)
 5'-GCGCGGCCGTCTGG-3' (FRAG. NO:2017) (SEQ. ID NO:2030)
 5'-GCGCGGCCGTCTGG-3' (FRAG. NO:2018) (SEQ. ID NO:2031)
 5'-GCGCGGCCGT-3' (FRAG. NO:2019) (SEQ. ID NO:2032)
 5'-CGCGGCCGTCTBTGCGCGCCGGCCGGC-3' (FRAG. NO:2020) (SEQ. ID NO:2033)
 5'-GCGGCCGTCTBTGGCGCGCCGGCCGGC-3' (FRAG. NO:2021) (SEQ. ID NO:2034)
 5'-CGGCCGTCTBTGGCGCGCCGGCCGGC-3' (FRAG. NO:2022) (SEQ. ID NO:2035)
 10 5'-GGCGCTCTBTGGCGCGCCGGCCGGC-3' (FRAG. NO:2023) (SEQ. ID NO:2036)
 5'-GCCGTCTBTGGCGCGCCGGCCGGC-3' (FRAG. NO:2024) (SEQ. ID NO:2037)
 5'-CCGTCBTGGCGGCCTCGGGCCGGC-3' (FRAG. NO:2025) (SEQ. ID NO:2038)
 5'-CGTCBTGGCGGCCTCGGGCCGGC-3' (FRAG. NO:2026) (SEQ. ID NO:2039)
 5'-GTCBTGGCGGCCTCGGGCCGGC-3' (FRAG. NO:2027) (SEQ. ID NO:2040)
 15 5'-TCBTGGCGGCCTCGGGCCGGC-3' (FRAG. NO:2028) (SEQ. ID NO:2041)
 5'-CBTGGCGGCCTCGGGCCGGC-3' (FRAG. NO:2029) (SEQ. ID NO:2042)
 5'-BTGGCGGCCTCGGGCCGGC-3' (FRAG. NO:2030) (SEQ. ID NO:2043)
 5'-TGGCGGCCTCGGGCCGGC-3' (FRAG. NO:2031) (SEQ. ID NO:2044)
 20 5'-GGCGCGCTCGGGCCGGC-3' (FRAG. NO:2032) (SEQ. ID NO:2045)
 5'-GCGCGCTCGGGCCGGC-3' (FRAG. NO:2033) (SEQ. ID NO:2046)
 5'-CGGCGCTCGGGCCGGC-3' (FRAG. NO:2034) (SEQ. ID NO:2047)
 5'-GGCGCTCGGGCCGGC-3' (FRAG. NO:2035) (SEQ. ID NO:2048)
 5'-GCGTCGGGCCGGC-3' (FRAG. NO:2036) (SEQ. ID NO:2049)
 25 5'-CGTCGGGCCGGC-3' (FRAG. NO:2037) (SEQ. ID NO:2050)
 5'-GTCGGGCCGGC-3' (FRAG. NO:2038) (SEQ. ID NO:2051)
 5'-TCGGGCCGGC-3' (FRAG. NO:2039) (SEQ. ID NO:2052)
 5'-CGGGCCGGC-3' (FRAG. NO:2040) (SEQ. ID NO:2053)
 5'-CCGCBGGCCBGGCGCGCCGGCCGGC-3' (FRAG. NO:2041) (SEQ. ID NO:2054)
 30 5'-CCGCBGGCCBGGCGCGCCGGCCGGC-3' (FRAG. NO:2042) (SEQ. ID NO:2055)
 5'-CCGCBGGCCBGGCGCGCCGGCCGGC-3' (FRAG. NO:2043) (SEQ. ID NO:2056)
 5'-CCGCBGGCCBGGCGCGCCGGCCGGC-3' (FRAG. NO:2044) (SEQ. ID NO:2057)
 5'-CCGCBGGCCBGGCGCGCCGGCCGGC-3' (FRAG. NO:2045) (SEQ. ID NO:2058)
 5'-CCGCBGGCCBGGCGCGCCGGCCGGC-3' (FRAG. NO:2046) (SEQ. ID NO:2059)
 35 5'-CCGCBGGCCBGGCGCGCCGGCCGGC-3' (FRAG. NO:2047) (SEQ. ID NO:2060)
 5'-CCGCBGGCCBGGCGCGCCGGC-3' (FRAG. NO:2048) (SEQ. ID NO:2061)
 5'-CCGCBGGCCBGGCGCGCCGGC-3' (FRAG. NO:2049) (SEQ. ID NO:2062)
 5'-CCGCBGGCCBGGCGCGCCGGC-3' (FRAG. NO:2050) (SEQ. ID NO:2063)
 5'-CCGCBGGCCBGGCGCGCCGGC-3' (FRAG. NO:2051) (SEQ. ID NO:2064)
 40 5'-CCGCBGGCCBGGCGCGCCGGC-3' (FRAG. NO:2052) (SEQ. ID NO:2065)
 5'-CCGCBGGCCBGGCGCGCCGGC-3' (FRAG. NO:2053) (SEQ. ID NO:2066)
 5'-CCGCBGGCCBGGCGCGCCGGC-3' (FRAG. NO:2054) (SEQ. ID NO:2067)
 5'-CCGCBGGCCBGGCGCGCCGGC-3' (FRAG. NO:2055) (SEQ. ID NO:2068)
 5'-CCGCBGGCCBGGCGCG-3' (FRAG. NO:2056) (SEQ. ID NO:2069)
 45 5'-CCGCBGGCCBGGCGCG-3' (FRAG. NO:2057) (SEQ. ID NO:2070)
 5'-CCGCBGGCCBGGCGCG-3' (FRAG. NO:2058) (SEQ. ID NO:2071)
 5'-CCGCBGGCCBGGCGCG-3' (FRAG. NO:2059) (SEQ. ID NO:2072)
 5'-CCGCBGGCCBGGCGCG-3' (FRAG. NO:2060) (SEQ. ID NO:2073)
 5'-CCGCBGGCCBGGCGCG-3' (FRAG. NO:2061) (SEQ. ID NO:2074)
 50 5'-CCGCBGGCCBGGCGCG-3' (FRAG. NO:2062) (SEQ. ID NO:2075)
 5'-CCGCBGGCCB-3' (FRAG. NO:2063) (SEQ. ID NO:2076)
 5'-CCGCBGGCCB-3' (FRAG. NO:2064) (SEQ. ID NO:2077)
 5'-CGCBGGCCBGGCGCGCCGGCCGGCCGGC-3' (FRAG. NO:2065) (SEQ. ID NO:2078)
 5'-GCBGGCCBGGCGCGCCGGCCGGCCGGC-3' (FRAG. NO:2066) (SEQ. ID NO:2079)
 55 5'-CBGGCCBGGCGCGCCGGCCGGCCGGC-3' (FRAG. NO:2067) (SEQ. ID NO:2080)
 5'-BGGCCBGGCGCGCCGGCCGGCCGGC-3' (FRAG. NO:2068) (SEQ. ID NO:2081)
 5'-GCCCBGGCGCGCCGGCCGGCCGGC-3' (FRAG. NO:2069) (SEQ. ID NO:2082)
 5'-GCCBGCCGCGCCGGCCGGCCGGC-3' (FRAG. NO:2070) (SEQ. ID NO:2083)
 5'-CCBGGCGCGCCGGCCGGCCGGC-3' (FRAG. NO:2071) (SEQ. ID NO:2084)
 60 5'-CBGGCGCGCCGGCCGGCCGGC-3' (FRAG. NO:2072) (SEQ. ID NO:2085)
 5'-BGGGCGCGCCGGCCGGCCGGC-3' (FRAG. NO:2073) (SEQ. ID NO:2086)
 5'-GGGCGCGCCGGCCGGC-3' (FRAG. NO:2074) (SEQ. ID NO:2087)
 5'-GGCGCGCCGGCCGGC-3' (FRAG. NO:2075) (SEQ. ID NO:2088)

5'-CCCGCGGCCGGCTTGCCGCCGGGG-3' (FRAG. NO:2138) (SEQ. ID NO:2151)
 5'-CCGCGGCCGGCTTGCCGCCGGGG-3' (FRAG. NO:2139) (SEQ. ID NO:2152)
 5'-CGCGGCCGGCTTGCCGCCGGGG-3' (FRAG. NO:2140) (SEQ. ID NO:2153)
 5'-GCAGGCCGGCTTGCCGCCGGGG-3' (FRAG. NO:2141) (SEQ. ID NO:2154)
 5'-CGGCCGGCTTGCCGCCGGGG-3' (FRAG. NO:2142) (SEQ. ID NO:2155)
 5'-GGCCCGGCCGGCTTGCCGCCGGGG-3' (FRAG. NO:2143) (SEQ. ID NO:2156)
 5'-GCCCGGCCGGCTTGCCGCCGGGG-3' (FRAG. NO:2144) (SEQ. ID NO:2157)
 5'-CCCGGCCGGCTTGCCGCCGGGG-3' (FRAG. NO:2145) (SEQ. ID NO:2158)
 5'-CCGGCTTGCCGCCGGGG-3' (FRAG. NO:2146) (SEQ. ID NO:2159)
 10 5'-CGGCTTGCCGCCGGGG-3' (FRAG. NO:2147) (SEQ. ID NO:2160)
 5'-GGCTTGCCGCCGGGG-3' (FRAG. NO:2148) (SEQ. ID NO:2161)
 5'-GCTTGCCGCCGGGG-3' (FRAG. NO:2149) (SEQ. ID NO:2162)
 5'-CTTGGCCGCCGGGG-3' (FRAG. NO:2150) (SEQ. ID NO:2163)
 5'-TTGGCCGCCGGGG-3' (FRAG. NO:2151) (SEQ. ID NO:2164)
 15 5'-TGGCCGCCGGGG-3' (FRAG. NO:2152) (SEQ. ID NO:2165)
 5'-GCCGCCGCCGGGG-3' (FRAG. NO:2153) (SEQ. ID NO:2166)
 5'-CCGCCGCCGGGG-3' (FRAG. NO:2154) (SEQ. ID NO:2167)
 5'-CCGCCGCCGGGG-3' (FRAG. NO:2155) (SEQ. ID NO:2168)
 5'-CGCCGCCGGGG-3' (FRAG. NO:2156) (SEQ. ID NO:2169)
 20 5'-GCCGCCGCCGGGG-3' (FRAG. NO:2157) (SEQ. ID NO:2170)
 5'-GGCGGGGGCGGCCGGCTGGCTCGCCTBGGGGCCC-3' (FRAG. NO:2158) (SEQ. ID NO:2171)
 5'-GGCGGGGGCGGCCGGCTGGCTCGCCTBGGGGCCC-3' (FRAG. NO:2159) (SEQ. ID NO:2172)
 5'-GGCGGGGGCGGCCGGCTGGCTCGCCTBGGGCC-3' (FRAG. NO:2160) (SEQ. ID NO:2173)
 5'-GGCGGGGGCGGCCGGCTGGCTCGCCTBGGGC-3' (FRAG. NO:2161) (SEQ. ID NO:2174)
 25 5'-GGCGGGGGCGGCCGGCTGGCTCGCCTBGG-3' (FRAG. NO:2162) (SEQ. ID NO:2175)
 5'-GGCGGGGGCGGCCGGCTGGCTCGCCTBGG-3' (FRAG. NO:2163) (SEQ. ID NO:2176)
 5'-GGCGGGGGCGGCCGGCTGGCTCGCTBG-3' (FRAG. NO:2164) (SEQ. ID NO:2177)
 5'-GGCGGGGGCGGCCGGCTGGCTCGCTB-3' (FRAG. NO:2165) (SEQ. ID NO:2178)
 5'-GGCGGGGGCGGCCGGCTGGCTCGCT-3' (FRAG. NO:2166) (SEQ. ID NO:2179)
 30 5'-GGCGGGGGCGGCCGGCTGGCTCGCC-3' (FRAG. NO:2167) (SEQ. ID NO:2180)
 5'-GGCGGGGGCGGCCGGCTGGCTCGC-3' (FRAG. NO:2168) (SEQ. ID NO:2181)
 5'-GGCGGGGGCGGCCGGCTGGCTCGC-3' (FRAG. NO:2169) (SEQ. ID NO:2182)
 5'-GGCGGGGGCGGCCGGCTGGCTCGC-3' (FRAG. NO:2170) (SEQ. ID NO:2183)
 5'-GGCGGGGGCGGCCGGCTGGCT-3' (FRAG. NO:2171) (SEQ. ID NO:2184)
 35 5'-GGCGGGGGCGGCCGGCTGGC-3' (FRAG. NO:2172) (SEQ. ID NO:2185)
 5'-GGCGGGGGCGGCCGGCTGG-3' (FRAG. NO:2173) (SEQ. ID NO:2186)
 5'-GGCGGGGGCGGCCGGCTG-3' (FRAG. NO:2174) (SEQ. ID NO:2187)
 5'-GGCGGGGGCGGCC-3' (FRAG. NO:2175) (SEQ. ID NO:2188)
 5'-GGCGGGGGCGGCC-3' (FRAG. NO:2176) (SEQ. ID NO:2189)
 40 5'-GGCGGGGGCGGCC-3' (FRAG. NO:2177) (SEQ. ID NO:2190)
 5'-GGCGGGGGCGGCC-3' (FRAG. NO:2178) (SEQ. ID NO:2191)
 5'-GGCGGGGGCGGCC-3' (FRAG. NO:2179) (SEQ. ID NO:2192)
 5'-GGCGGGGGCGGCC-3' (FRAG. NO:2180) (SEQ. ID NO:2193)
 5'-GGCGGGGGCGGCC-3' (FRAG. NO:2181) (SEQ. ID NO:2194)
 45 5'-GGCGGGGGCGGC-3' (FRAG. NO:2182) (SEQ. ID NO:2195)
 5'-GGCGGGGGCGG-3' (FRAG. NO:2183) (SEQ. ID NO:2196)
 5'-GGGGGGCGGCCGGCTGGCTCGCCTBGGGGCCC-3' (FRAG. NO:2184) (SEQ. ID NO:2197)
 5'-GGGGGGCGGCCGGCTGGCTCGCCTBGGGGCCC-3' (FRAG. NO:2185) (SEQ. ID NO:2198)
 5'-GGGGGGCGGCCGGCTGGCTCGCCTBGGGGCCC-3' (FRAG. NO:2186) (SEQ. ID NO:2199)
 50 5'-GGGGGGCGGCCGGCTGGCTCGCCTBGGGGCCC-3' (FRAG. NO:2187) (SEQ. ID NO:2200)
 5'-GGGGGGCGGCCGGCTGGCTCGCCTBGGGGCCC-3' (FRAG. NO:2188) (SEQ. ID NO:2201)
 5'-GGCGGGCGGCCCTGGCTCGCCTBGGGGCCC-3' (FRAG. NO:2189) (SEQ. ID NO:2202)
 5'-GGCGGGCGGCCCTGGCTCGCCTBGGGGCCC-3' (FRAG. NO:2190) (SEQ. ID NO:2203)
 5'-GGCGGGCGGCCCTGGCTCGCCTBGGGGCCC-3' (FRAG. NO:2191) (SEQ. ID NO:2204)
 55 5'-GGCGGGCGGCCCTGGCTCGCCTBGGGGCCC-3' (FRAG. NO:2192) (SEQ. ID NO:2205)
 5'-GGCGGGCGGCCCTGGCTCGCCTBGGGGCCC-3' (FRAG. NO:2193) (SEQ. ID NO:2206)
 5'-GGCGGGCGGCCCTGGCTCGCCTBGGGGCCC-3' (FRAG. NO:2194) (SEQ. ID NO:2207)
 5'-GGCGGGCGGCCCTGGCTCGCCTBGGGGCCC-3' (FRAG. NO:2195) (SEQ. ID NO:2208)
 60 5'-GGCGGGCGGCCCTGGCTCGCCTBGGGGCCC-3' (FRAG. NO:2196) (SEQ. ID NO:2209)
 5'-GGCGGGCGGCCCTGGCTCGCCTBGGGGCCC-3' (FRAG. NO:2197) (SEQ. ID NO:2210)
 5'-GGCGGGCGGCCCTGGCTCGCCTBGGGGCCC-3' (FRAG. NO:2198) (SEQ. ID NO:2211)
 5'-GGCGGGCGGCCCTGGCTCGCCTBGGGGCCC-3' (FRAG. NO:2199) (SEQ. ID NO:2212)

5'-CTGGCTCGCCTBGGGCC-3' (FRAG. NO:2200) (SEQ. ID NO:2213)
 5'-TGGCTCGCCTBGGGCC-3' (FRAG. NO:2201) (SEQ. ID NO:2214)
 5'-GGCTCGCCTBGGGCC-3' (FRAG. NO:2202) (SEQ. ID NO:2215)
 5'-GCTCGCCTBGGGCC-3' (FRAG. NO:2203) (SEQ. ID NO:2216)
 5 5'-CTCGCCTBGGGCC-3' (FRAG. NO:2204) (SEQ. ID NO:2217)
 5'-TCGCTBGGGCC-3' (FRAG. NO:2205) (SEQ. ID NO:2218)
 5'-CGCCTBGGGCC-3' (FRAG. NO:2206) (SEQ. ID NO:2219)
 5'-GCCTBGGGCC-3' (FRAG. NO:2207) (SEQ. ID NO:2220)
 5'-CCTBGGGCC-3' (FRAG. NO:2208) (SEQ. ID NO:2221)
 10 10 5'-CTBGGGCC-3' (FRAG. NO:2209) (SEQ. ID NO:2222)
 5'-GGGTGGGCBGGCGCC-3' (FRAG. NO:2210) (SEQ. ID NO:2223)
 5'-GGTCGGCGBBGBGCTCGTCGTGGC-3' (FRAG. NO:2211) (SEQ. ID NO:2224)
 5'-GGTCGGCGBBGBGCTCGTCGTGG-3' (FRAG. NO:2212) (SEQ. ID NO:2225)
 5'-GGTCGGCGBBGBGCTCGTCGTG-3' (FRAG. NO:2213) (SEQ. ID NO:2226)
 15 15 5'-GGTCGGCGBBGBGCTCGTCGT-3' (FRAG. NO:2214) (SEQ. ID NO:2227)
 5'-GGTCGGCGBBGBGCTCGTCG-3' (FRAG. NO:2215) (SEQ. ID NO:2228)
 5'-GGTCGGCGBBGBGCTCGTC-3' (FRAG. NO:2216) (SEQ. ID NO:2229)
 5'-GGTCGGCGBBGBGCTCGT-3' (FRAG. NO:2217) (SEQ. ID NO:2230)
 5'-GGTCGGCGBBGBGCTCG-3' (FRAG. NO:2218) (SEQ. ID NO:2231)
 20 20 5'-GGTCGGCGBBGBGCTC-3' (FRAG. NO:2219) (SEQ. ID NO:2232)
 5'-GGTCGGCGBBGBGCT-3' (FRAG. NO:2220) (SEQ. ID NO:2233)
 5'-GGTCGGCGBBGBGCT-3' (FRAG. NO:2221) (SEQ. ID NO:2234)
 5'-GGTCGGCGBBGBGCT-3' (FRAG. NO:2222) (SEQ. ID NO:2235)
 5'-GGTCGGCGBBGBGCT-3' (FRAG. NO:2223) (SEQ. ID NO:2236)
 25 25 5'-GGTCGGCGBBGBGCT-3' (FRAG. NO:2224) (SEQ. ID NO:2237)
 5'-GTCGGCGBBGBGCTCGTCGTGGC-3' (FRAG. NO:2225) (SEQ. ID NO:2238)
 5'-TCGGCGBBGBGCTCGTCGTGGC-3' (FRAG. NO:2226) (SEQ. ID NO:2239)
 5'-CGGCGBBGBGCTCGTCGTGGC-3' (FRAG. NO:2227) (SEQ. ID NO:2240)
 5'-GGCGBBGBGCTCGTCGTGGC-3' (FRAG. NO:2228) (SEQ. ID NO:2241)
 30 30 5'-GCGBBGBGCTCGTCGTGGC-3' (FRAG. NO:2229) (SEQ. ID NO:2242)
 5'-CGBBGBGCTCGTCGTGGC-3' (FRAG. NO:2230) (SEQ. ID NO:2243)
 5'-GBBGBGCTCGTCGTGGC-3' (FRAG. NO:2231) (SEQ. ID NO:2244)
 5'-BBGBGCTCGTCGTGGC-3' (FRAG. NO:2232) (SEQ. ID NO:2245)
 5'-BGBGCTCGTCGTGGC-3' (FRAG. NO:2233) (SEQ. ID NO:2246)
 35 35 5'-GBGCTCGTCGTGGC-3' (FRAG. NO:2234) (SEQ. ID NO:2247)
 5'-BGCTCGTCGTGGC-3' (FRAG. NO:2235) (SEQ. ID NO:2248)
 5'-GCTCGTCGTGGC-3' (FRAG. NO:2236) (SEQ. ID NO:2249)
 5'-CTCGTCGTGGC-3' (FRAG. NO:2237) (SEQ. ID NO:2250)
 5'-TCGTCGTGGC-3' (FRAG. NO:2238) (SEQ. ID NO:2251)
 40 40 5'-GGGGCCCCCGGCCGCCGCC-3' (FRAG. NO:2239) (SEQ. ID NO:2252)
 5'-GGGGCCCCCGGCCGCCGCC-3' (FRAG. NO:2240) (SEQ. ID NO:2253)
 5'-GGGGCCCCCGGCCGCCGCC-3' (FRAG. NO:2241) (SEQ. ID NO:2254)
 5'-GGGGCCCCCGGCCGCCGCC-3' (FRAG. NO:2242) (SEQ. ID NO:2255)
 5'-GGGGCCCCCGGCCGCC-3' (FRAG. NO:2243) (SEQ. ID NO:2256)
 45 45 5'-GGGGCCCCCGGCCGCC-3' (FRAG. NO:2244) (SEQ. ID NO:2257)
 5'-GGGGCCCCCGGCCGCC-3' (FRAG. NO:2245) (SEQ. ID NO:2258)
 5'-GGGGCCCCCGGCC-3' (FRAG. NO:2246) (SEQ. ID NO:2259)
 5'-GGGGCCCCCGGCC-3' (FRAG. NO:2247) (SEQ. ID NO:2260)
 5'-GGGGCCCCCGGCCGCC-3' (FRAG. NO:2248) (SEQ. ID NO:2261)
 50 50 5'-GGCCCCCGGCCGCCGCC-3' (FRAG. NO:2249) (SEQ. ID NO:2262)
 5'-GCCCGCGCCGCCGCCGCC-3' (FRAG. NO:2250) (SEQ. ID NO:2263)
 5'-CCCCCGCGCCGCCGCC-3' (FRAG. NO:2251) (SEQ. ID NO:2264)
 5'-CCCGCGCCGCCGCC-3' (FRAG. NO:2252) (SEQ. ID NO:2265)
 5'-CCCGCGCCGCCGCC-3' (FRAG. NO:2253) (SEQ. ID NO:2266)
 55 55 5'-CGCGCCGCCGCC-3' (FRAG. NO:2254) (SEQ. ID NO:2267)
 5'-GCGCCGCCGCC-3' (FRAG. NO:2255) (SEQ. ID NO:2268)
 5'-CGCCGCCGCC-3' (FRAG. NO:2256) (SEQ. ID NO:2269)
 5'-GCCGCCGCC-3' (FRAG. NO:2257) (SEQ. ID NO:2270)
 5'-GGGGCGCGGGGGCGCCGGG-3' (FRAG. NO:2258) (SEQ. ID NO:2271)
 60 60 5'-GGCGGGGBGC GGCGCCGGG-3' (FRAG. NO:2259) (SEQ. ID NO:2272)
 5'-GGCGCGTCGCCGTGCCGCCGCCGCC-3' (FRAG. NO:2260) (SEQ. ID NO:2273)
 5'-GCGCGGGCBBCBGCGBGCCGGCGCG-3' (FRAG. NO:2261) (SEQ. ID NO:2274)

5' GCGCAGGGCCGCTGGCTGGGC-3' (FRAG. NO:2262) (SEQ. ID NO:2275)
5' GGGCGGGGTGGCTGCCCTGCGGGCC-3' (FRAG. NO:2263) (SEQ. ID NO:2276)
5' GGGCTGCTGCGCG CGGGCTCCGGCGA-3' (FRAG. NO:2264) (SEQ. ID NO:2277)
5' CTCGGGGGGGGGG CGGGCGCGGGG-3' (FRAG. NO:2265) (SEQ. ID NO:2278)
5 5' GGGCTGCCGCGGT CGGGCCCCCTTGCAGGG-3' (FRAG. NO:2266) (SEQ. ID NO:2279)
5' GCGCTCGCGCCGCTGGG-3' (FRAG. NO:2267) (SEQ. ID NO:2280)
5' GCGCCGCTTGGCC TGTGCGGC-3' (FRAG. NO:2268) (SEQ. ID NO:2281)
5' GCTGCTCCBCGCGCTGG-3' (FRAG. NO:2269) (SEQ. ID NO:2282)
5' GCCGGBGGCCGGC BGGTCCCGCG-3' (FRAG. NO:2270) (SEQ. ID NO:2283)
10 5' CCCGGCGGCCGGC 3GBBBGGCGGGCTGGGC-3' (FRAG. NO:2271) (SEQ. ID NO:2284)
5' GTCTCTCCCGCCCCGGCGCG-3' (FRAG. NO:2272) (SEQ. ID NO:2285)
5' GGGCGTCCGCTCCGGCCGTGGG-3' (FRAG. NO:2273) (SEQ. ID NO:2286)
5' GCGGGCACCGCGGC 3GCTCTGGCGTCGGC-3' (FRAG. NO:2274) (SEQ. ID NO:2287)

Bradykinin Receptor Nucleic Acids and Antisense Oligonucleotide Fragments

15	5'-GGTGCBCITG	BGCBTGTCGG	CGCGGTCCCG	TTBBGBGTGG	GCCCCGCCAGC	CCAGCCACTC	CACTGGGGC
	CGGGTGGCCA	GCACGAACAG	CACCCAGAGG	AAAGGGGGCG	GCCCCAGAAGG	GCAGCCCGCA	GGCCAGGATC
	AGGTCTGCTG	CGGC CGGAGA	TAATGGCATT	CACCACGCGG	CGGCCCGAGCG	CACGCCGCGC	ATCCGGCCCG
	GGTTCTGACC	TGCAGCCCCC	GTCTCCTTGG	CATTCTGGG	CCCCAGTCAC	TCCTCTCCCT	GCCCCCCCCTG
20	CTGGGGCAGG	GACGGGGTG	BCBTGBGB	TGCGGCGCG	GTCCCGTTBB	GBGTGGGCC	GCCAGCCCAG
	CCACTCCACT	TGGGGCGGGG	TGGCCAGCAC	GAACAGCAC	CAGAGGAAGG	GGGGCGGCC	AGAAGGGCAG
	CCCGCAGGCC	AGGAATCGGT	CTGCTGCGGC	CGGAGATAAT	GGCATTCA	ACGCGGCGGC	CCAGCGCACG
	CCCGCGATCC	GGCCC CGGGTT	CTGACCTGCA	GCCCCCGTCT	CCTTGGCATT	CCTGGGCC	AGTCACTCCT
	CTCCCTGCC	CCCTTGCTGG	GGCAGGGACG	GCCGTGTTGT	CBGTTGTC	GCCC GTTGB	GGTBGGC
25	TCCBCCBTT	CCCTTTTCTC	CTTGT TTTCC	GTTTCTCTTG	CCGTCTGTGG	TT	CAGATTACA
	CTGGGGCAGGG	AGCA GACAGT	GAGCAAACGC	CAGCAGGGCT	GCTGTGAATT	TGTGTAAGGA	TTGAGGGACA
	GTITGTTTTC	AGCA IGGGCC	CAGGAATGCC	AAGGAGACAT	CTATGCACGA	CCTTGGGAAA	TGAGTTGATG
	TCTCCGGTAA	AAACCCGGAG	ACTAATTCCCT	GCCCTGCCCA	ATTTCGAGG	GAGCATGGCT	GTGAGGATGG
	GGTGAACTCA	CGCA CAGCCA	AGGACTCCAA	AATCACAAACA	GCATTACTGT	TCTTATTITGC	TGCCACACCT
30	GAGCCAGCCT	GCTCCTTCCC	AGGAGTGGAG	GAGGCCCTGGG	GGGAGGGAGA	GGAGT GACTG	AGCTCCCTC
	CCGTGTGTTC	TCCGICCCCTG	CCCCAGCAAG	ACAACCTTAGA	TCTCAGGAG	AACTGCCATC	CAGCTTGGT
	GCAATGGCTG	AGTC CACAAG	TGAGTTGTTG	CCCTGGGTTT	CTTAA TCTA	TTCA GCTAGA	ACTTTGAAGG
	ACAATTCTT	GCATTAATAA	AGGTTAAGCC	CTGAGGGGTC	CCTGATAACA	ACCTGGAGAC	CAGGATTTTA
	TGGCTCCCT	CACTGATGGA	CAAGGAGGT	TGTGCCAAAG	AAGAATCCAA	TAAGCACATA	TTGAGCACTT
	GCTGTATATG	CA GTATTGAG	CACTGTAGGC	AAGACCCAAAG	AAAGAGAAGG	AGCCATCTCC	ATCTGAAGG
35	AACTCAAAGA	CTCAAGTGGG	AACGACTGGG	CACTGCCACC	ACCAGAAAGC	TGTCGACCA	GACGGTCGAG
	CAGGGTGCTG	TGGGTGATAT	GGACAGCAGA	AGGGGGAGAC	CAAGGTTCCA	GCTCAACCAA	TAACTATTG
	ACAACCACCT	GTCCCTGCT	CAGTTCCCTT	TTATGTAACA	TGAAGTCGTT	GTGAGGGITA	AAGGAGTAA
	CAGGTATAAA	GTACTTAGAA	AAGCAAAGGG	TGCTACGTAC	ATGTGAGGCA	TCATTACGCA	GACGTAACTG
	GGATATGTTT	ACTATGAGGA	AAAGACACTG	AGGTCTAGAA	ATAGCTCCGT	GGAGCAGAAT	CAGTATTGGG
40	AGCCGGTGGC	GGTC TGAAGC	ACCA GTGTC	GGCACACAGT	AGGTGCTCAT	TGGCTCCCT	CCACCTGTCA
	TTCCCACCAC	CCTG AGGGCC	CAACCGCCAC	ACACACAGGA	GCATTGGAG	AGAAGGCCAT	GTCTCAAAG
	TCTGATTGTT	GATG AGGCAG	AGGAAGATAT	TTCTAATCGG	TCTTGGCCAG	AGGATCACAG	TGCTGAGACC
	CCCCACCACC	AGCCGGTACC	TGGGAAGGGG	GAGAGTGCAG	GCCTGCTCAG	GGACTGTTCC	TGTCTCAGCA
	ACCAAGGGAT	TGTICCTGTC	AATCAATGGT	TTATTGGAAAG	GTGGCCCAGT	ATGAGCCCTA	GAAGAGTGTG
45	AAAAGGAATG	GCAATGGTGT	TCACCATCGG	CAGTGCCAGG	GCAGCACTCA	TTCACTTGTAT	AAATGAATAT
	TTATTAGCTG	GTGGAGAGC	TAGAACCTGG	AGAGCTAGAA	CCTGGAGAAC	TAGAACCTGG	AGGGCTAGAA
	CCTGGAGAGG	CTAGAACCAA	GAAGGGCTAG	AACCTGGAGG	GGCTAGAAC	TAGAGAACGCT	AAAACCTGAG
	CTAGAACGCTG	GAGGACTAGA	ACCTGGAGGG	CTGGAATCTG	AAGGGCTAGA	ACCTGGAGGG	CTGGAATCTG
	GAGAGCTAGA	ACCTGGAGGG	CTAGAACCTG	GAGGGCTAGA	ACCTAGAAGG	GCTAGAACCT	GGAGGGCTGG
50	AATCTGGAGA	GCTAGAACCT	GGAGGGCTAG	AACCTGGAGG	GCTAGAACCT	AGAAGGGCTA	GAACCTGGAG
	GGCTAGAACCC	TGGCAGGTTA	GAACCTAGAA	GGGCTAGAAC	CTGGAGAGCC	AGAACCTGGA	GGGCTAGAAC
	CTGGAGGGC	TAGAACCTGT	AGAGCTAGAA	CATGGAGAGC	TAGAACCCGG	CAGGCTAGAA	CCTGGCAAGC
	TAGAACCTGG	AGGGATGAA	CCTGGAGGGC	TAGAACCTGG	AGAATGAGAA	AAATTACAT	GGCAAAGAGC
	CCATAAATCC	TGACCAATCC	AACTCTGAAT	TTTAAAGCAA	AAGCGTAAA	AAAAAGATTC	CCTCCCTAAC
55	CCCAACCCAC	TCTTTTTCC	CACCA CCCAC	TCTCCCTGCG	CTCAGTAAGT	ATCTGGAGGA	AGAAAACAGG
	TGAAAAGAAGA	AGTAAAAC	ATTAGTATT	AGTATTAGAA	TGAAGTCAA	CTGTGCCACA	CATGGTGAAT
	AAAAAAAAAA	AAAAGAGGC	TGTGTTTGT	CACACAGGGC	AGTCATTCA	CACCA GAGCA	CGTGTATGGT
	TGAGACTCTC	TTAGGAGCAG	AGCTCTGCCG	CAATGGCCAT	GTGGGGATCC	ACACCTGGTC	TGAGGGGCA
	CTGAGTCTGC	GGGAGAAGAG	CGGCCCTATG	CATGGGTGAG	ATGCCCTGAT	AAAGAACATC	TGTCTGTG
60	AAGACTCAAT	GAGCTGTTAT	GTTGTAACCA	GGAAGCATT	CACATCCAA	CGAGAAAATC	ATGTAACAT
	GTGTCTTTTC	TGTAGAGCAT	AATAAATGGA	TGAGGTTTT	GCAAAAAAAA	AAAAAAA	AAATGATAGA

	CCGTCAATAA	TTTC TTAAAT	GCTTTTAAA	ATGAATGCTT	TAAGCCGGGT	GCAGTGCCCTC	ACATCTGTA
	TCCCAGCACT	TTGGAGCCGA	GCGGGTGGAT	TGTGTGAGGT	CAGGAGTTCG	AGACCAACCT	GGCCAACATG
	GCAAAACCTC	ACTCTCTACC	AAAAATACAA	AAATTAGCCA	GGCATGGTGG	CAGGCACCTG	TGATCCCAGC
5	TACTCAGGAG	GCTC AGACAG	GAGAACATCGCT	TGAACCCGGG	AGGCAAGGTT	GCAGTGAGCC	AAGATTACGC
	CATTGTACTC	CAGCCTGGGT	GACAGAGAGA	GACTCCGTCT	AAAAAAAAAA	AAAAAAAAAA	AAAAAAATTAC
	GCTTCAAAACA	CATGATCTCT	CACCACTGTT	GAATTTCCTT	TCTATGAGCC	CAGGAGGGCC	TCTCAGAGAG
	GAAAGCTCCT	AGGCTTCCCT	TTCCCTCTGC	AAACTCCCTG	CCTTGAAGGT	TCAGAAGGAC	TGTGCGTGCT
	CGTTGCATCC	TTTGCAGGTG	TCCAAACCT	GATCCCAGCT	GTGCTTAGGG	GTTCTGCAA	ACCTTTCCA
10	GGTGTAAATT	ACCTCCACT	TCATTTCTG	TTTACCAACT	CAGCTTTTG	TTTAGTGTG	TTTGAATTCC
	CTGAACTGAC	CGTIGTCTGA	TCTCCACCTC	CCAAGTAAT	TAGGGGAAGT	GGGCTCTGG	AAACCCAGGT
	GCCGGGTGTT	GCACAGTGGC	TGAAAGCTGG	GATGTGGCAG	ATCCGTGGCT	ACATTATGC	ACACACACAC
	ACCCACATAC	CCACACATGC	ACACACACAC	ACACACCCGC	ACTCACACAC	TTGGACATGC	ATAGACCACA
	GCTTCCACA	CCCTCCCTAG	ACAGGGGTCA	CTTGGTATCC	TGGAGAGAGT	GTGAAGTCCT	GGAATGGAAA
15	GAGGGGGGAT	TAAGCCCCAC	CTCTAGCCAT	GGGACTGAGA	CAAGTCACCA	CCAACCCATC	TGCCCTTGT
	TTACCTCTC	TGTGAGGCAA	GCACAGAGCC	CATGCCTGCC	CCCCCTGGATG	GGAGTGTATGT	GAAACTTGAA
	GGGCGGTCA	AGCAAGGGTC	GGGAATGGAA	GGCCCTTGGG	AAAAAAGGCC	CTTCAACTA	GGGGCACAGA
	GGAGGCCCTG	GGCTGAGAAC	TTGACAGCAC	CTTGTAAATTG	GTAAGCCAAG	CCCGAAGGG	CTGAAATAC
	TCAGATGTG	CTGICCTCTC	TATTAGTTTC	AAAGTCCCTC	AAGACCTGT	CTCCATCACA	GTGCTCCAGT
20	CCAGACCCCT	CCTCTGAGCT	CCAGACCCCTG	CTGGACCCAA	CCAGCCCTAT	GGGGTCGAT	CCCCACCTGC
	CTGGAATTCT	CCAAAGAAC	TCCCCTTAA	CAGTCCAGC	CTTTAACAGT	TCCAGTCTAA	ACACATGACC
	TTTCTCTCT	AAATCAGCCC	CCCATCTG	CCTTTCAGG	AGATGGAAGC	CATGACACCT	GCCTCGCCCC
	TGTCCTACC	CCATCCATGT	CCAATCAAGC	ACTAGGCATG	TCAGGTTTAC	CCTCTAAACT	CCTCTGGAAAT
	CCAGTCTCTC	AGTC TCCATC	ATCCCAGGT	GAAGCTAATG	GGCTAACTGG	TCCTTGCTTC	CACTCTACCC
25	CCACTGCA	CTGACTTCC	TGAGCAGCAG	CCAGGGCCTA	ATCGATATTC	ACACCAAGCG	CCAACCTGAC
	TGAGATATCC	TCTIGCACCA	TCATCCCTCC	ACCCCTTTA	GTTCTGCTCA	CCCTCAGTGT	TCTCATCAAT
	AATCCACTCC	CCTC ACAGGC	CGTTTGGGA	CCCCATGTT	TATGCTCTCA	CAGGACCTT	TGCTTGATT
	TTCACTGTAC	TTAGGTCA	TTGCAGTTAT	TAAGTACTG	AGCAATGTCT	GGCTCTCCA	GTAGACTGTC
	AGCTCTAGC	CATIGTATAC	CTAGCACCGC	TGTGTGGGAG	CACGTGACAA	ACGTCAGTGT	AGTCAGGGAC
30	TCAGCAGTCT	CCATTTCTCC	GCCCTGCTGG	AGAATGCGTG	TATTGGCAA	TCCCCAGCCC	CTGTGCCATC
	TAACCATCTT	TTCTCTCTG	TTCAGCCAG	GTGTGGCTC	ACTCACATCC	CACTCTGAGT	CCAAATGTT
	TCTCCCTGGA	AGATATCAAT	GTTCCTGTCT	GTTCGTGAGG	ACTCCGTGCC	CACCACGGCC	TCTTCAGGT
	GAGTCAAAGG	GATCCTCAG	TTCACTAGTT	AGGGGAGGTG	GGCAGACACC	CTGGAGAACT	CCCTGAAAG
	CTCAACTCTC	ATGCCCGGGA	CAACAGTTGA	AGGAACCATG	GTGATGTTAA	GCCCCAAAGAC	AAAACCTCTC
35	AGGTGTCCAA	GTCCCTGTTG	GAATCTGGG	AGCAGAGGGA	ATGTTCTGTG	GTCTAGAGGA	AGAGGGGCTC
	AGGGAGGAGA	AGG3CACATT	CTCTGGTTGTT	ATATGTTCT	ATCTATCCCA	GATGAACCTG	GAAGTGAAGG
	GAAGAGAGTT	AAACATTTAAA	GTAAATACCC	AGTGGATCAG	ACAGCAATGT	GCCAGATTGC	CTTGGAAACA
	AAATATCTCC	AAACACATGGC	TGACATTGG	TGGGAGATCA	GAACACCTA	AAGAGAGAAT	TTAAGGGGAG
	GGGGAGGAGG	ACCAGAGCCA	GAGTAGAACG	AGAGGATAGG	GAGATCTGTT	CTTGGGACA	GCATTGCAA
40	GAAACAAGGC	TGAGGGTCC	ACTCCACCT	CTCCACCCCTG	CTGCAGGTGC	TGCCTATGAT	GAAGATGAGC
	AGATGGCCAT	CTCA GCTGGG	GCCACAGTGC	ACTGGACCTA	TAGTTCCAA	TTCCGACTC	AGCAGGCATC
	TTTCTGTGTA	TCCGATGGCT	TCTCAGAGCC	AGGGATGGGC	CAGGATCCAT	CCCCCTGGCT	ACTGTCTTGC
	TGAGAAATT	ATAAGCAGCA	TCTGGTGCTA	TACTTTGGTC	TCTAGTGTAGT	TAGCTCATGA	AAGATGATAG
	ACTCTCCAAG	CCACGGGTAT	GCAGGAAATG	GGTTTCTGT	AGCTACAGAA	ATGGGGTTGA	GGGTTGGACC
45	AAGGGACTAC	CCACGGGAAG	TCTTACCTTC	AGAGGACTCT	GGAAAGGAGG	CTGCAAGTTT	TCATGGTCA
	AGAATTCTAGA	GCCCCAGTAGA	GACAGTTAT	CTCTGTTCCA	AGATGCTGG	GGCCTTGGTT	GGAAGATTCA
	AAGGCTAGGA	AACCAGGAGC	CACCAAAAGC	GTAACTGGGG	CCAGAGGATC	CACTTCAAG	GTGGCAAGTT
	GGTTCCCCCC	ATGTGGCTGC	TTGAGTATCC	TCACATGGCG	GTCACATCC	TTCCAAGTAA	GCAATGCAA
	AGGCCAAGAA	AGATGCTGCA	AAGATGTTAT	GACCTAGCT	CAGAAATCAC	ACACCATCCC	TGCCACCATT
50	AGTAAGAAGT	CCACGCCACG	TCCAGGAGAA	GAGGAAGCAG	ATTCCCTCTT	TTGAAATGAA	GAATATCAAG
	TAATTGGGG	GGCATATGAA	AGCCACACAA	CACCAAGGG	ATCTTTTTAG	AGCATACTTC	TTATACCATC
	ACTGTAGTT	CTTAAGACTC	AGGGGCAAAAG	CCTCACTTCC	TTAGCACCCA	GTGAAGACCA	CGCTTACTCC
	CTCACTCAAC	CTCTGCTAC	TTCCCACCTC	TCCTGTCCAA	CATCTAGTGT	CACTTCCAG	AACATACCAA
	CAGCTCCCC	AGTCTGTGC	CTCTGCTCAG	GCTGTTCCCC	CTGCCTGGTC	CACTGTCCCT	CCTTCTTGTG
55	CGGTCAAAT	GCTCTTATC	CTTCAAGACC	CAGCTCTAGA	GTCACCTCCA	ACCCCTTACC	CACCAGCCCC
	CTCTCCAAGT	CTGTGTCCCA	CAACCCCCCT	GCTCCCTCCA	GGGCACCCCT	CACCCCTCTGG	GCCACAGTTG
	TCAGGAGTCA	GGCAGGGCAG	GGGCCGGGTG	GTGTCTTCTT	TGTGTTCTTG	CACTCAGGGC	AGAGCTCAGC
	ACAGAGCAGA	CGC'CAAAAA	ACATTTAAAG	GATAGAAGCA	TTGATTTGTG	GGTCCCCCAG	TCTGGCTCCA
	GGATGCCAGC	CAGCTGTCTC	TAGAAGCAA	CGGACTTTTC	CTGGAAATC	CCAGAGGTGA	TGATCAGTAA
60	TCTCTCCCGT	GACTCGTAGT	TCAGCTCTC	CTCCATGAGC	CTGACTATCA	GTGGACCTTC	CAGAAAGAGC
	CCCTTTTCT	TCTC'CACCC	ACAGCACAGG	GCACTGGGAA	AATGCCAAT	GAGTCCTGCC	TCTGGGTTGT
	GCTTGGACT	TTTCAGTGTG	TCTCGCATCC	ACTCTCAAC	TTGAATGTTG	CAACAGCCAT	GAAAAAAGAA
	ATGCAAAGCG	ATTCAAGGATG	AGAGCAATAC	CCTACTCCAA	AGAAGGCAAC	ATAGAAGCTC	AGAGAGATCA

	AGCAATTGTC	CCAAAGACCAC	ACAGCTAGGA	GTGGAACTCA	TGGCTGTCCA	AGCCCCATGC	CTCTGCTGAA
	GGTAGAGATG	AAT'ACAGCA	ACAAGTCTAG	AAAGGTGCC	GCCCTATGGT	CTGTGAGTCT	TGCCCTAAGAA
	TGAAAGAGGA	GCCAGTGGGT	TAAAGATGAG	GTCACCAACA	ACGGTGGTGT	TGGAGTTAC	CACTGATAAT
	AAGGGTCAA	AATGTAATT	ACTAATGTT	ATTGAGCCTA	GTGAGTGC	TGGGGCATTT	TGCACATTGT
5	CTCTGATCCC	TATGACAACC	CTGAGAGGTA	GTGGTTTAA	CTGCCATGT	ACAGGTGAGG	TCATTGTGGT
	TCAAGGACGT	TAAC'TAACCT	CCCCCAGCGTG	ACACGGCTTA	TAAGTAAGGC	AGCCAGGATG	TGAACCCAGT
	AGGACTATCT	GGC'GCAAAG	TCCCCACCCC	CCTCGCCATC	TGTATCCTCC	AATCACTTCA	GTGCTTTGCT
	GCATAGAAGG	TAACGGAAAT	CACGATGCCA	CAGACTGTCC	AGGAAGACAG	AAACTAGGCA	GATGGGCTGG
10	CCATGGTCTC	CAAGCCAGAC	TGGAATCTCC	AGGTCTGGAA	TGATATCATT	TTTCTCTTT	AATAAATTAA
	CTCACCCACC	ACACGGCTT	GAGAGGCTCA	AAGTTGACCA	ACTCCCTTG	GAGGGCCCCG	GTTGATAAGG
	AAGGAACGTG	AATCCTCCC	TCACGGAAGC	TTCAAGGAGG	TCAAGGGTCC	AACACTTGAG	ATTGTTAGTG
	CTGTTGGTGG	ATACTGGCCA	AGGAAATATC	CCAGTGGAGC	CTCGAGATGA	AGAACATGAG	GCCCCCGTT
	AGAACCAAGG	ATCAAGGGGG	GCTCTGTAA	ACCCAGGGGA	GTCAGGTGCA	CTGGAGCGCG	GGCATGCAGA
15	AAACAGCCTG	AGCTCCACCT	CGGCTCTCC	TTGTCCTGGC	TGGTTGTCT	TAACCCCTGT	CTCCCTCTGG
	ACCAGTTTT	GTCTTCCCCT	TGTGACCGCT	GAGGGGTAAC	AGCCTTTTC	CACTTCTTT	CAGCGCCGAC
	ATGCTCAATG	TCACCTTGCA	AGGGCCCAC	CTTAACGGGA	CCTTTGCCCA	GAGCAAATGC	CCCCAAGTGG
	AGTGGCTGGG	CTGGCTCAAC	ACCATCCAGC	CCCCCTTCCT	CTGGGTGCTG	TTCGTGCTGG	CCACCCCTAGA
	GAACATCTT	GTCTCAGCG	TCTTCTGCC	GCACAAAGAGC	AGCTGCACGG	TGGCAGAGAT	CTACCTGGGG
20	AACCTGGCCG	CAGCAGACCT	GATCCTGGCC	TGCGGGCTGC	CCTTCTGGC	CATCACCATC	TCCAACAAC
	TCGACTGGCT	CTTGGGGAG	ACGCTCTGCC	GCGTGGTGA	TGCCATTATC	TCCATGAACC	TGTACAGCAG
	CATCTGTTTC	CTGATGCTGG	TGAGCATCGA	CCGCTACCTG	GCCCTGGTGA	AAACCATGTC	CATGGGCGGG
	ATGCGGGCG	TGCGCTGGC	CAAGCTCTAC	AGCTTGGTGA	TCTGGGGGTG	TACCGTGCTC	CTGAGCTCAC
	CCATGCTGGT	GTTCGGGACC	ATGAAGGAGT	ACAGCGATGA	GGGCCACAAAC	GTCACCGCTT	GTGTCATCAG
25	CTACCCATCC	CTCATCTGGG	AAAGTGTTCAC	CAACATGCTC	CTGAATGTG	TGGGCTTCT	GCTGCCCCCTG
	AGTGTATCA	CCTTCTGCAC	GATGCAGATC	ATGCAGGTGC	TGCGGAACAA	CGAGATGCAG	AAGTTCAAGG
	AGATCCAGAC	GGAGAGGAGG	GCCACGGTGC	TAGTCTGGT	TGTGCTGCTG	CTATTATCA	TCTGCTGGCT
	GCCCTTCCAG	ATCAGCACCT	TCCTGGATAC	GCTGCATCG	CTCGGCATCC	TCTCCAGCTG	CCAGGACGAG
	CGCATCATCG	ATGIAATCAC	ACAGATGCC	TCCTTCATGG	CCTACAGCAA	CAGCTGCC	AACCCACTGG
30	TGTACGTGAT	CGTGGGCAAG	CGCTTCCGA	AGAAGTCTTG	GGAGGTGTAC	CAGGGAGTGT	GCCAGAAAGG
	GGGCTGAGG	TCACAAACCA	TTCAGATGGA	GAACCTCATG	GGCACACTGC	GGACCTCCAT	CTCCGTGAA
	CGCCAGATT	ACAAACTGCA	GGACTGGCA	GGGAGCAGAC	AGTGAGCAA	CGCCAGCAGG	GCTGCTGTGA
	ATTTGTGTA	GGATTGAGGG	ACAGTTGCTT	TTCAAGCATGG	GCCCAGGAAT	GCCAAGGAGA	CATCTATGCA
	CGACCTTGGG	AAATGAGTTG	ATGTCTCCG	AAAACACCG	GAGACTAATT	CCTGCC	CCAATTGTC
35	AGGGAGCATG	GCTCTGAGGA	TGGGTTGAAC	TCACGCACAG	CCAAGGACTC	CAAATCACA	ACAGCATTAC
	TGTTCTTATT	TGCTGCCACA	CCTGAGCCAG	CCTGCTCCTT	CCCAGGAGTG	GAGGAGGC	GGGGCGAGGG
	AGAGGAGTGA	CTGAGCTTCC	CTCCCCTGTG	TTCTCCGTCC	CTGCCCCAGC	AAGACAAC	AGATCTCCAG
	GAGAACTGCC	ATCCAGCTT	GGTGAATGG	CTGAGTGCAC	AAGTGAGTTG	TTGCCCTGGG	TTTCTTAAT
	CTATTCACTG	AGAACTTTGA	AGGACAATT	CTTGCA	TAAAGGTTAA	GCCCTGAGGG	GTCCCTGATA
40	ACAACCTGGA	GACCAGGATT	TTATGGCTCC	CCTCACTGAT	GGACAAGGGAG	GTCTGTGCCA	AAGAAGAAC
	CAATAAGCAC	ATATTGAGCA	CTTGCTGTAT	ATGCAGTATT	GAGCACTGTA	GGCAAGAGGG	AAGAAAGAGA
	AGGAGCCATC	TCCATCTTGA	AGGAACCTAA	AGACTCAAGT	GGGAACGACT	GGGCACTGCC	ACCACCAAGAA
	AGCTGTTCGA	TGAGACGGTC	GAGCAGGGTG	CTGTTGGTGA	TATGGACAGC	AGAAGGGGG	GCCAGGTTCC
	AGCTCACCAA	TACATTGCA	CACCACTGT	CCTGCC	GCCCTCAAA	GATGAGCTGT	TCCCGCCGCC
45	ACTCCAGCTC	TGGCTCTGG	GCTCCGAGGA	GGGGTGGGGGA	CGGTGGTGAC	GGTGGGGACA	TCAGGCTGCC
	CCCGCAGTACC	AGGCAGCGAC	TGAAGTGCC	ATGCCGCTTG	CTCCGGAGAA	GGTGGGTGCC	GGGCAGGGGC
	TGCTCCAGCC	GCCTCACCTC	TGCTGGGAGG	ACAAACTGTC	CCAGCACAGA	GGGAGGGAGG	GAGGGCAGGC
	AGCAGGGAGA	AGTTCCCTG	GGTCGTGGG	GAGTT	GAGCTCTCA	ATATTCTAGT	GATGAGGCTC
	CATAGGGGAT	AAAGCACAGA	CACACCTTT	CAGAGGGCTT	GTGGACTCTG	GGCAGCCTGT	CCATAGACCT
50	CTGTCCCCAA	CTGGCAAGTC	AGGAAACTCC	AGATTAAGGA	GCCCCAATGT	GGTTGAACAG	CCAGGTGCAC
	AGATGAGTCA	ACCAACACAGC	CAGGCCAGGG	AGGGCCTCA	CTCAAGAGCC	TACAGCCAGT	TCACAGCAA
	GCCAGGGCTA	GGCGCAGGCC	ACCCATAAAC	TGATCTGAGA	CTCTGTTCC	CTGCTCCAT	GATGATGGGA
	TCAGGCTGTA	TTGCTGGTT	GTAGGCTTGT	TATGAATCAA	GTCACAGGG	AGAGGAGCTG	ATGGGCTGGG
	GGGACGTCC	CTGGCCCTCC	TGTCTCTCC	CCAGATCCAC	TGGGGCCACT	CTTATCTGTT	CTCTTCTGAA
	GGAAGGGTTT	TAACGCTTCA	AAAAAAAATG	TTTGAAAGT	CCCTGCC	TCCAGCTCCT	ACCGTCTCAG
55	CCCTGGGAGT	GTAAAGTGT	GCAGATAGTT	AGTAAGTCTT	TGAGCAAAC	TGAGAAAGCC	AGCCTGAGCC
	TTGACATGGG	AGAAACCTCC	GCCATACATC	TCCGAAGAAA	CGGCCGCGTG	TCTCAGGG	GCGCAAACAC
	CCGTACCCAG	GAACAGGAC	AGCTTCTGCC	ACTGTCGCC	TTGGGAGCCG	TACGTGGCAT	GACAAAGAAA
	TCCCAGGACT	CCGCCTGCC	ACCTGGCCAC	CCTGTGTTA	CACCTTCCGC	GTAAACGCC	ACTGTTTACA
	TCCAAAATC	AGACACAAAAA	TAACCACCTC	AAGAAGATAA	ATAATGATAA	GAAATAATG	TTACCGAGG
60	CAAATTATT	CACATGGGGC	TTCCCAGGCC	ACTTGTGGT	CAGCCGGGAG	GGACGTTTT	GCCGTCCCAC
	GACTCCAACG	GGCAAGCCGGG	CCTACGCAA	CATGGAAATC	TTCCAAGAGC	CTCCCTGGCC	CCCAGGGCTC
	AGAGGGTGGC	AGACCGGAGA	GCAGAGGTGG	CCGAGCCTT	CCCGGCCCCA	CAGCCAGCCT	GGCTCCAGCT

GGGCAGGAGT GCAGAGCTA GCTGGAGGCG AGGGGAAAGT GCCCAGGAGG CTGATGACAT CACTACCCAG
 CCCTCAAAG ATGA'GCTGTT CCCGCCGCCA CTCCAGCTCT GGCTTCTGGG CTCCGAGGAG GGGTGGGAC
 GGTGGTACG GTGC'GGACAT CAGGCTGCC CGCAGTACCA GGGAGCGACT GAAGTGCCTA TGCCGCTTC
 TCCGGAGAAG GTGGGTGCCG GGCAGGGCT GCTCCAGCCG CCTCACCTCT GCTGGGAGGA CAAACTGTCC
 5 CAGCACAGAG GGAGGGAGGG AGGGCAGGCA GCAGGGAGAA GTTCCCCTGT GGTGGTGGGG AGTTGGGAAA
 AGTTCCCTC CTTCCGGAGG GAGG CAGATTACA AACTGCAGGA CTGGGCAGGG AGCAGACAGT GAGCAAACGC
 CAGCAGGGCT GCTGTGAATT TGTGTAAGGA TTGAGGGACA GTTGCTTTC AGCATGGGCC CAGGAATGCC
 AAGGAGACAT CTATGCACGA CCTTGGGAAA TGAGTTGATG TCTCCGGTA AACACCGGAG ACTAATTCT
 GCCCTGCCA ATTTCAGG GAGCATGGCT GTGAGGATGG GGTGAACCTA CGCACAGCCA AGGACTCCAA
 10 AATCACAAACA GCA'TACTGT TCTTATTTC TGCCACACCT GAGCCAGGCT GCTCCCTCCC AGGAGTGGAG
 GAGGCCTGGG GGGAGGGAGA GGAGTGACTG AGCTTCCCTC CCGTGTGTT TCCGCTCCCTG CCCCAGCAAG
 ACAACTTAGA TCTCAGGAG AACTGCCATC CAGCTTGGT GCAATGGCT AGTGCACAAG TGAGTTGTTG
 CCCTGGGTTT CTTTAATCTA TTCAGCTAGA ACTTGAAGG ACAATTCTCT GCATTAATAA AGGTTAACGCC
 CTGAGGGTTC CCTCATAAAC ACCTGGAGAC CAGGATTTA TGGCTCCCC CACTGATGGA CAAGGAGGTC
 15 TGTGCCAAAG AAGAATCCAA TAAGCACATA TTGAGCACTT GCTGTATAG CAGTATTGAG CACTGTAGGC
 AAGACCCAAG AAAAGAGAAGG AGCCATCTCC ATCTGAAGG AACTCAAAGA CTCAAGTGGG AACGACTGGG
 CACTGCCACC ACCAGAAAGC TGTTGCACGA GACGGTCGAG CAGGGTGTG TGGGTGATAT GGACAGCAGA
 AGGGGAGAC CAAAGTTCCA GCTCAACCAA TAACATTGCA ACAACCCACT GTCCCTGCCT CAGTTCCCTT
 TTATGTAACA TGAAGTCGTT GTGAGGGTTA AAGGCAGTAA CAGGTATAAA GTACTTAGAA AAGCAAAGGG
 20 TGCTACGTAC ATGTGAGGCA TCATTACCGA GACGTAACCT GGATATGTT ACTATAAGGA AAAGACACTG
 AGGTCTAGAA ATACCTCCGT GGAGCAGAAT CAGTATTGGG AGCCGGTGGC GGTGTGAAGC ACCAGTGTCT
 GGCACACAGT AGG'GCTCAT TGGCTCCCT CCACCTGTCA TTCCACACAC CCTGAGGCC CAACCGCCAC
 ACACACAGGA GCA'TTGGAG AGAAGGCCAT GTCTCAAAG TCTGATTGTT GATGAGGCAAG AGGAAGATAT
 TTCTAATCGG TCTTGCCTAG AGGATCACAG TGCTGAGAC CCCCACCAAC AGCCGGTACCG TGGGAAGGGGG
 25 GAGAGTCAG GCT'GCTCAG GGACTGTTCC TGCTCAGCA ACCAAGGGAT TGTTCTGTC AATCAATGGT
 TTATTGGAAG GTGGCCCAGT ATGAGCCTA GAAGAGTGTG AAAAGGAATG GCAATGGTGT TCACCATCGG
 CAGTGCAGG GCAGCACTCA TTCACTTGAT AAATGAATAT TTATTAGCTG GTTGGAGAGC TAGAACCTGG
 AGAGCTAGAA CCTGGAGAAC TAGAACCTGG AGGCTAGAA CCTGGAGGAGG CTAGAACCTG GAGGACTAGA
 AACCTGGAGG GGCTAGAACCT TAGAGAACCT AAAACCTGAG GAGAGCTAGA ACCTGGAGGG CTAGAACCTG
 30 CTGGAATCTG AAGGGCTAGA ACCTGGAGGG CTGGAATCTG GAGAGCTAGA AAAAGGAATG GCAATGGTGT
 GAGGGCTAGA ACCTAGAACGG GCTAGAACCT GGAGGGCTGG AATCTGGAGA GCTAGAACCT GGAGGGCTAG
 AACCTGGAGG GCTAGAACCT AGAAGGCCA GAACCTGGAG GGCTAGAAC CCCTAGAACCT GAGAGCTAGAA
 GGGCTAGAAC CTGGAGAGCC AGAACCTGGA GGGCTAGAAC CTGGAAGGGC TAGAACCTGT AGAGCTAGAA
 CATGGAGAGC TAGAACCCGG CAGGCTAGAA CCTGGCAAGC TAGAACCTGG AGGGAATGAA CCTGGAGGGC
 35 TAGAACCTGG AGA'GTGAGAA AAATTACAT GGCAAAGAGC CCATAAAATCC TGACCAATCC AACTCTGAAT
 TTTAAAGCAA AAGCGTGAAGG AAAAGATTG CCTCCTTACCG CCAACCCAC TCTTTTTCC CACCACCCAC
 TCTCCTCTGC CTCAGTAAGT ATCTGGAGGA AGAAAACAGG TGAAAGAAGA AGTAAAAACCC ATTATGATT
 AGTATTAGAA TGAAGTCAAA CTGTGCCACA CATGGTGAAT GAAAAAAA AAAAAGAGGC TGTGTTTGT
 CACACAGGGC AGTC'ATTCAG CACCAGAGCA CGTGATGGTC TGAGACTCTC TTAGGAGCAG AGCTCTGCCG
 40 CAATGGCCAT GTGGGGATCC ACACCTGGTC TGAGGGGCAA CTGAGTCTGC GGGAGAAGAG CGGCCCTATG
 CATGGTAG ATGCCCTGAT AAAGAACATC TGCTCTGTGA AAGACTCAAT GAGCTGTTAT GTTGAAACA
 GGAAGCATT CACATCCAAA CGAGAAAATC ATGAAACAT GTGTCTTTC TGTAGAGCAT AATAATGGA
 TGAGGTTTT GCAAAAAAAA AAAAAAAA AAATGATAGA CCGTCAATAA TTTGTTAAAT GCTTTTAAA
 ATGAATGCTT TAAGCCGGGT GCAGTGCCTC ACATCTGTAA TCCCAGCACT TTGGAGCCGA CGGGGTGGAT
 45 TGTGTGAGGT CAGGAGTTGC AGACCAACCT GGCCAAACATG GCAAAACCTC ACTCTCTACC AAAAATACAA
 AAATTAGCCA GGCATGGTGG CAGGCACCTG TGATCCCAGC TACTCAGGAG GCTGAGACAG GAGAACCGCT
 TGAACCCGGG AGGCAGGGTT GCAGTGCAGC AAGATTACGC CATTGACTC CAGCCTGGGT GACAGAGAGA
 GACTCCGTCT CAAAAAAA AAAAAAAA AAAAAATTAC GCTTCAAACA CATGATCTCT CACCACTGT
 GAATTTCTT TCTA'GAGCC CAGGAGGGCC TCTCAGAGAG GAAAGCTCT AGGTCTTCCT TCCCCTCTGC
 50 AAACCTCCCTG CCTTGAAGGT TCAGAAGGAC TGTGCGTGCT CGTTGCATCC TTTGCAAGTG TCCAAACCT
 GATCCCAGCT GTGCTTAGGG GTTCCCTGCAA ACCTTTTCCA GGTGTTAATT ACCTCCCACT TCATTTCTG
 TTTACCAACT CAGCTTTTG TTTAGTGTG TTTGAATTCC CTGAACCTGAC CGTTGTCTGA TCTCCACCTC
 CCAACTGAAT TAGGGAGCT GGGCTTCTGG AAACCCAGGT GCCGGGTGTT GCAGAGTGGC TGAAAGCTGG
 GATGTGGCAG ATCCGTGGCT ACATTCTGC ACACACACAC ACCCACATAC CCACACATGC ACACACACAC
 55 ACACACCCGC ACTCACACAC TTGGACATGC ATAGACCACA GCTTCCACA CCCTCCCTAG ACAGGGGTCA
 CTTGGTATCC TGGAGAGAGT GTGAAGTCCT GGAATGGAAA GAGGGGGGAT TAAGCCCCAC CTCTAGCCAT
 GGGACTGAGA CAACTCACCA CCAACCCATC TGCCCTTGT TTACCTCCTC TGTGAGGCAA GCACAGAGCC
 CATGCCCTGCC CCCCTGGATG GGAGTGTG GAAACCTGAA GGGCGGTCAAG CAAGGGGTCA GGAATGGAA
 GGCCCTTGGG AAAAAAGGCC CTTTCAACTA GGGGCACAGA GGAGGCCCTG GGCTGAGAAC TTGACAGCAC
 60 CTTGTAATTG GTAA'GCCAAG CCCGAAGGG CTGAAATAC TCAGATGTGT CTGCTCCCT TATTAGGTTC
 AAAGCTCCTC AAGACCCCTG CTCCATCACA GTGCTCCAGT CCAGACCCCT CCTCTGAGCT CCAGACCCCTG
 CTGGACCCAA CCACCCCTAT GGGGTGCGCAT CCCACCTGC CTGGAATTCT CCAAAGAACCT CCCCCCTTAA

	CAGTTCCAGC	CTTIAACAGT	TCCAGTCTAA	ACACATGACC	TTTCTCTCT	AAATCAGCCC	CCCATCTCTG
	CCTTGGCAGG	AGAT'GGAAGC	CATGACACCT	GCCTCGCCCC	TGTCTCACC	CCATCCATGT	CCAATCAAGC
	ACTAGGCATG	TCAAGTGTAC	CCTCTAAACT	CCTCTGGAAT	CCAGTCTCTC	AGTCTCCATC	ATCCCAGGTC
5	GAAGCTAATG	GGC'AACTGG	TCCTTGCTTC	CACTCTACCC	CCACTGCGAGT	CCTGACTTCC	TGAGCAGCAG
	CCAGGGCCTA	ATCGATATTG	ACACCAAGCG	CCAACCTGAC	TGAGATATCC	TCCTGCACCA	TCATCCCTCC
	ACCCCTGTTA	GTTCGTCTCA	CCCTCAGTGT	TCTCATCAAT	AATCCACTCC	CCTCACAGGC	GCGTTTGGGA
	CCCCATGTTG	TATCCTCTCA	CAGGACCTT	TGCTTGATTT	TTCACTGTAC	TTAGGTAGT	TTGCAGTTAT
	TAAGTGACTG	AGCAATGTCT	GGCTTCTCCA	GTAGACTGTC	AGCTCTAGC	CATTGTATAC	CTAGCACCGC
10	TGTGTGGGAG	CACCTGTACAA	ACGTCAGT	AGTCAGGGAC	TCAGCAGTCT	CCATTCTCC	GCCCTGCTGG
	AGAATGCGT	TATITGGCAA	TCCCCAGCCC	CTGTGCCATC	TAACCATCTT	TTCTCTCTG	TTCAAGCCCAG
	GTGTGGCCTC	ACTCACATCC	CACTCTGAGT	CCAAATGTT	TCTCCCTGGA	AGATATCAAT	GTTTCTGTCT
	GTTCGTGAGG	ACTCGTGC	CACCACGGCC	TCTTCAGGT	GAGTCAAAGG	GATTCTCAG	TTCACTAGTT
	AGGGGAGGTG	GGCAGACACC	CTGGAGAACT	CCCTGGAAAG	CTCAACTCTC	ATGCCCGGA	CAACAGTTGA
15	AGGAACCATG	GTGATGTAA	GCCCAAAGAC	AAAACCTCTC	AGGTGTCCA	GTCCCTGTTG	GAATCTTGGG
	AGCAGAGGGA	ATG'TCTGTG	GTCTAGAGGA	AGAGGGGCTC	AGGGAGGAGA	AGGCACATT	CCTGGTTGTT
	ATATGTTCT	ATCTATCCCA	GATGAACCTG	GAAGTGAAGG	GAAGAGAGTT	AAACATTAAC	GTAAATACCC
	AGTGGATCAG	ACAGCAATGT	GCCAGATTGC	CTTGGAAACA	AAATATCTCC	AACACATGGC	TGACATTGG
	TGGGAGATCA	GAACACCCCA	AAGAGAGAA	TTAAGGGGAG	GGGGAGGAGG	ACCTGAGCCA	GAGTAGAACG
20	AGAGGATAGG	GAGATCTGTT	CTTGGGGACA	GCATTGCAA	GAAACAAGGC	TGAGGGGTCC	ACTCCAACCT
	CTCCACCCCTG	CTGCAGGTGC	TGCCTATGAT	GAAGATGAGC	AGATGGCCAT	CTCAGCTGGG	GCCACAGTGC
	ACTGGACCTA	TAGTTTCAA	TTCCGCACTC	AGCAGGCATC	TTTCTGATGA	TCCGATGGCT	TCTCAGAGCC
	AGGGATGGGC	CAGGATCCAT	CCCCCTGGCT	ACTGTCTTGC	TGAGAAATT	ATAAGCAGCA	TCTGGTGCTA
	TACTTTGGTC	TCTAATGTAGT	TAGCTCATGA	AAGATGATAG	ACTCTCCAAG	CCAGGGTAT	GCAGGAAATG
25	GGTTTCTGT	AGCTACAGAA	ATGGGGTTGA	GGGGTGGACC	AAGGGACTAC	CCAGGGGAAG	TCTTACCTTC
	AGAGGACTCT	GGAAAGGAGG	CTGCAAGTTT	TCATGGGTCA	AGAATTCA	GCCCAGTAGA	GACAGCTTAT
	CTCTGTTCA	AGATATCTGG	GGCCTTGGT	GGAAAGATTCA	AGGCTAGGA	AACCAGGAGC	CACCAAAAGC
	GTAACGGGG	CCAGAGGATC	CACTTCAAG	GTGGCAAGTT	GGTTCCCCCC	ATGTGGCTGC	TTGAGTATCC
	TCACATGGCG	GCTCACATCC	TTCCAAGTAA	GCAATGCAA	AGGCCAAGAA	AGATGCTGCA	AAGATGTTAT
30	GACCTAGCCT	CAGAAATCAC	ACACCATCCC	TGCCACCATT	AGTAAGAAGT	CCAGCCCCAG	TCCAGGAGAA
	GAGGAAGCAG	ATTCTCCCTT	TTGAAATGAA	GAATATCAAG	TAATTGGGG	GGCATATGAA	AGCCACCA
	CAACCACAGG	ATC'TTTATG	AGCATACTTC	TTATACCATC	ACTGTAGTTC	CTTAAGACTC	AGGGGCAAAG
	CCTCACTTCC	TTAGCACCCA	GTGAAGACCA	CGCTTACTCC	CTCACTAAC	CTCTGCTAC	TTCCCACCTC
	TCCTGTCCAA	CATCTAGTGT	CACTTCCAG	AAACATACAA	CAGCTCCCC	AGTTCTGTGC	CTCTGCTCAG
35	GCTGTTCCCC	CTGCCCTGGTC	CACTTGCTCT	CCTTCTGTTC	CGGTCAAAT	GCTTCTTATC	CTTCAAGACC
	CAGCTCTAGA	GTCAACCTCCA	ACCCCTTACC	CACCAAGCCCC	CTCTCCAAGT	CTGTGTCCCA	CAACCCCCCT
	GCTCCCTCCA	GGGCACCCCTC	CACCCCTCTGG	GCCACAGTTG	TCAGGAGTCA	GGCAGGGCAG	GGGCCGGGTG
	GTGTCTTCTT	TGTGATCTTG	CACTCAGGGC	AGAGCTCAGC	ACAGAGCAGA	CGCTAAAAAA	ACATTAAAG
	GATAGAAGCA	TTGATTTGTG	GGTCCCCCAG	TCTGGCTCCA	GGATGCCAGC	CAGCTGCTCC	TAGAAGCAA
40	CGGACTTTTC	CTGGGAAATC	CCAGAGGTGA	TGATCAGTAA	TCTCTCCCGT	GACTCGTAGT	TCAGCTCTC
	CTCCATGAGC	CTGATATCA	GTGGACCTTC	CAGAAAGAGC	CCCTTTCCCT	TCTCTCACCC	ACAGCACAGG
	GCACGGGAA	AATGCCAAT	GAGTCCTGCC	TCTGGGTTGT	GCTTGGACT	TTTCAGTGTG	TCTCGCATCC
	ACTCTTCAAC	TTGAATGTG	CAACAGCCAT	GAAAAAAAGAA	ATGCAAAGCG	ATTCAAGGATG	AGAGCAATAC
	CCTACTCCAA	AGAAGGCAAC	ATAGAACGTC	AGAGAGATCA	AGCAATTTCG	CCAAGACCAC	ACAGCTAGGA
45	GTGGAACCTA	TGGCTGTCCA	AGCCCCATGC	CTCTGCTGAA	GGTAGAGATG	AATTACAGCA	ACAAGTCTAG
	AAAGGTGCCT	GCCCTATGGT	CTGTGAGTCT	TGCCCTAAGAA	TGAAAGAGGA	GCCAGTGGGT	TAAAGATGAG
	GTCACCAACA	ACCGCTGGGT	TGGAGTTAC	CACTGATAAT	AAGGGTCAA	AATGAAATT	ACTAATGTT
	ATTGAGCCTA	GTGCAATGCG	TGGGGCATTT	TGCACATTGT	CTCTGATCCC	TATGACAACC	CTGAGAGGTA
	GTGGTTTAA	CTGCCATGTT	ACAGGTGAGG	TCATTGTGGT	TCAAGGACGT	TAAGTAACCT	CCCCAGCGTG
50	ACACGGCTTA	TAACTAAGGC	AGCCAGGATG	TGAACCCAGT	AGGACTATCT	GGCTGCAAAG	TCCCCACCCC
	CCTCGCCATC	TGTAACCTCC	AATCACTTC	GTGCTTGTCT	GCATAGAAGG	TAACGGAAAT	CACGATGCCA
	CAGACTGTCC	AGGAAGACAG	AAACTAGGCA	GATGGGCTGG	CCATGGTCTC	CAAGCCAGAC	TGGAATCTCC
	AGGTCTGGAA	TGAATATCATT	TTTCTCTTT	AATAAAATTAA	CTCACCCACC	ACACGGCTTT	GAGAGGCTCA
	AAGTTGACCA	ACTCCCTTGG	GAGGGCCCCG	GTTGATAAGG	AAGGAACCGT	AATCCTCCCA	TCACGGAAGC
55	TTCAAGGAGG	TCAAGGGTCC	AAACACTTGAG	ATTGTTAGTG	CTGTTGGTGG	ATACTGGCCA	AGGAAATATC
	CCAGTGGAGC	CTCGAGATGA	AGAACATGAG	GCCCCCGTTT	AGAACCAAGG	ATCAGAGGGG	GCTCTGTAAG
	ACCCAGGGGA	GTCAAGGTGCA	CTGGAGCGCG	GGCATGCAGA	AAACAGCCTG	AGCTCCACCT	CGGCTTCTCC
	TTGTCTGGC	TGGITGTCT	TAACCCCTGT	CTCCCTCTGG	ACCAGTTTT	GTCCTTCCCT	TGTGACCCT
	GAGGGGTAAC	AGCCTCTTTC	CACTTTCTTT	CAGGCCGAC	ATGCTCAATG	TCACCTTGCA	AGGGCCCACT
60	CTTAACGGGA	CCTTGGCCA	GAGCAAATGC	CCCCAAGTGG	AGTGGCTGGG	CTGGCTCAAC	ACCATCCAGC
	CCCCCTTCCCT	CTGGGTGCTG	TTCGTGCTGG	CCACCCCTAGA	GAACATCTT	GTCCTCAGCG	TCTTCTGCCT
	GCACAAGAGC	AGCT'GCACGG	TGGCAGAGAT	CTACCTGGGG	AACTGGCCG	CAGCAGACCT	GATCCTGGCC
	TGCGGGCTGC	CCTICTGGGC	CATCACCACAT	TCCAACAACT	TCGACTGGCT	CTTGGGGAG	ACGCTCTGCG

	GCGTGGTGAA	TGCCATTATC	TCCATGAACC	TGTACAGCAG	CATCTGTTTC	CTGATGCTGG	TGAGCATCGA	
	CCGCTACCTG	GCCCTGGTGA	AAACCATGTC	CATGGGCCGG	ATGCGCGCG	TGCCGCTGGC	CAAGCTCTAC	
5	AGCTTGGTGA	TCTC GGGGTG	TACGCTGCTC	CTGAGCTCAC	CCATGCTGGT	GTTCCGGACC	ATGAAGGAGT	
	ACAGCGATGA	GGGCACAAAC	GTCACCGCTT	GTGTCATCAG	CTACCCATCC	CTCATCTGGG	AAGTGTTCAC	
10	CAACATGCTC	CTGAATGTCG	TGGGCTTCTC	GCTGCCCTG	AGTGTATCA	CCTCTGCAC	GATGCAGATC	
	ATGCAGGTGC	TGCGGAACAA	CGAGATGCAG	AAGTCAAGG	AGATCCAGAC	GGAGAGGAGG	GCCACGGTGC	
	TAGTCCTGGT	TGTCCTGCTG	CTATTATCA	TCTGCTGGCT	GCCCTTCAG	ATCAGCACCT	TCCTGGATAC	
	GCTGCATCGC	CTCCGCATCC	TCTCCAGCTG	CCAGGACGAG	CGCATCATCG	ATGTAATCAC	ACAGATCGCC	
15	TCCCTCATGG	CCTACAGCAA	CAGCTGCCCTC	AACCCACTGG	TGTACGTAT	CGTGGGCAAG	CGCTCCGAA	
	AGAAGTCTTG	GGACGTGTAC	CAGGGAGTGT	GCCAGAAAGG	GGGTCAGG	TCAGAACCCA	TTCAGATGGA	
	GAACCTCCATG	GGCAACTGTC	GGACCTCCAT	CTCCGTGGAA	CGCCGAGATTC	ACAAACTGCA	GGACTGGGCA	
	GGGAGCAGAC	AGTGAGCAA	CGCCAGCAGG	GCTGCTGTGA	ATTGTTGAA	GGATTGAGGG	ACAGTTGCTT	
20	TTCAGCATGG	GCCCGAGGAAT	GCCAAGGAGA	CATCTATGCA	CGACCTTGGG	AAATGAGTTG	ATGTCTCCGG	
	TAAAACACCG	GAGACTAATT	CCTGCCCTGC	CCAATTTCAG	AGGGAGCATG	GCTGTGAGGA	TGGGGTGAAC	
25	TCACGCACAG	CCAAAGGACTC	CAAATACACA	ACAGCATTAC	TGTTCTTATT	TGCTGCCACA	CCTGAGCCAG	
	CCTGCTCTT	CCCAAGGAGT	GAGGAGGCT	GGGGGAGGGG	AGAGGAGTGA	CTGAGCTTCC	CTCCCCTGTG	
	TTCTCCGTC	CTGCCCGCAGC	AAGACAACCT	AGATCTCCAG	GAGAACTGCC	ATCCAGCTT	GGTGCAATGG	
	CTGAGTGCAC	AAGAGGTTG	TTGCCCTGGG	TTCTTTAAT	CTATTACAGT	AGAACATTGA	AGGACAATT	
30	CTTGATTAA	TAAGGTTAA	GCCCTGAGGG	GTCCCTGATA	ACAACCTGG	GACCAAGGATT	TTATGGCTCC	
	CCTCACTGAT	GGACAAGGAG	GTCTGTGCCA	AAGAAGAAC	CAATAAGCAC	ATATTGAGCA	CTTGCTGTAT	
	ATGCAGTATT	GAGCACTGTA	GGCAAGAGGG	AAGAAAGAGA	AGGAGCCATC	TCCATCTTGA	AGGAACCTCAA	
	AGACTCAAGT	GGGAACGACT	GGGCACTGCC	ACCAACAGAA	AGCTTGTGA	TGAGACGGTC	GAGCAGGGTG	
35	CTGTGGTGA	TATGGACAGC	AGAAGGGGA	GCCAGGTTCC	AGCTCACCAA	TACTATTGCA	CACCACCTGT	
	CCTGCCTC	CTGCAGAAAA	CAGCCTGAGC	TCCACCTCGG	CTTCTCTTGT	CCCTGGCTGG	TTGTCTTAA	
	CCCCCTGTC	CTCTGGGACC	AGTTTTGTC	CTTCCCTTGT	GACCCCTGAGG	GGTAACAGCC	TCTTTTCCAC	
	TTTCTTCAG	CGCCGACATG	CTCAATGTCA	CCTTGAAGG	GCCCCACTCTT	AACGGGACCT	TTGCCAGAG	
40	CAAATGCC	CAACGTGGAGT	GGCTGGGCTG	GCTCAACACC	ATCCAGCCCC	CCTTCTCTG	GGTGCTGTTC	
	GTGCTGGCCA	CCCTAGAGAA	CATCTTGTG	CTCAGCGTCT	TCTGCCTGCA	CAAGAGCAGC	TGCACGGTGG	
	CAGAGATCTA	CCTCGGGAAC	CTGGCCGAG	CAGACCTGTAT	CCTGGCTG	GGGCTGCCCT	TCTGGGCCAT	
45	CACCATCTCC	AACAACTTCG	ACTGGCTT	TGGGGAGACG	CTCTGCCGCG	TGGTGAATGC	CATTATCTCC	
	ATGAACCTGT	ACAC CAGCAT	CTGTTCTG	ATGCTGGTGA	GCATCGACCG	CTACCTGGCC	CTGGTAAAAA	
	CCATGTCAT	GGGCCGGATG	CGCGCGTGC	GCTGGGCCAA	GCTCTACAGC	TTGGTGTATCT	GGGGGTGTAC	
	GCTGCTCTG	AGCTCACCA	TGCTGGTGT	CCGGACCATG	AAGGAGTACA	GCGATGAGGG	CCACAACGTC	
50	ACCGCTTGTG	TCATCAGCTA	CCCATCCCTC	ATCTGGGAAG	TGTTACCAA	CATGCTCTG	AATGTCGTGG	
	GCTTCCGCT	GCCCTGAGT	GTCACTACCT	TCTGCACGAT	GCAGATCATG	CAGGTGCTGC	GGAACAACGA	
	GATGAGAAG	TTCAAGGAGA	TCCAGACGGA	GAGGAGGGCC	ACGGTGTAG	TCCCTGGTGT	GCTGCTGCTA	
	TTCATCATCT	GCTGGCTGCC	CTTCCAGATC	AGCACCTTCC	TGGATACGCT	GCATCGCTC	GGCATCCTCT	
55	CCAGCTGCCA	GGACGAGCGC	ATCATCGATG	TAATCACACA	GATCGCTCC	TTATGGCCT	ACAGCAACAG	
	CTGCCCAAC	CCACTGGGT	ACGTGATCGT	GGGCAAGCGC	TTCCGAAAGA	AGTCTGGGA	GGTGTACCAAG	
	40	GGAGTGTGCC	AGAAAGGGGG	CTGCAGGTCA	GAACCCATT	AGATGGAGAA	CTCCATGGGC	ACACTGCGGA
	CCTCCATCTC	CGTGAACGC	CAGATTACA	AACTGCAGGA	CTGGGCAGGG	AGCAGACAGT	GAGCAAACGC	
	CAGCAGGGCT	GCTCTGAATT	TGTGTAAGGA	TTGAGGGACA	GTTGCTTTTC	AGCATTGGGCC	CAGGAATGCC	
	AAGGAGACAT	CTATGACGA	CCTTGGGAAA	TGAGTTGATG	TCTCCGGTAA	AACACCGGAG	ACTAATTCT	
60	GNCCTGCCA	ATTTCAGG	GAGCATGGCT	GTGAGGGATGG	GGTGAACCTCA	CGCACAGCCA	AGGACTCCAA	
	AATCACAA	GCATTACTGT	TCTTATTTC	TGCCACACCT	GAGCCAGCCT	GCTCCTTCCC	AGGAGTGGAG	
	GAGGCCTGG	GGCAAGGGAGA	GGAGTGA	AGCTTCCCTC	CCGTGTGTC	TCCGTCCTG	CCCCAGCAAG	
	ACAACCTAGA	TCTCCAGGAG	AACTGCCATC	CAGCTTGGT	GCAATGGCTG	AGTGCACAAG	TGAGTTGTTG	
	CCCTGGGTTT	CTTAAATCTA	TTCAGCTAGA	ACTTGAAGG	ACAATTCTT	GCATTAATAA	AGGTTAAGCC	
	CTGAGGGGTC	CCTGATAACA	ACCTGGAGAC	CAGGATTTA	TGGCTCCCCT	CACTGATGGA	CAAGGGAGGT	
55	CTGTGCCAA	GAAC AATCC	ATAAGCACAT	ATTGAGCACT	TGCTGTATAT	GCAGTATTGA	GCACGTAGG	
	CAAGAGGGAA	GAAAGAGAAG	GAGCCATCTC	CATCTTGAAG	GAACCTCAAAG	ACTCAAGTGG	GAACGACTGG	
	CACTGCCACC	ACCAAGAAAGC	TGTTGACGA	GACGGTCGAG	CAGGGTGTG	TGGGTGATAT	GGACAGCAGA	
	AGGGGGAGAC	CAAGGTTCCA	GCTCAACCAA	TAACATTGCA	ACAACCACCT	GTCCTGCCT	CAGTCCCTC	
60	TTCTGTAA	ACAGGTTCCA	TGAGGGGTTA	AAGGCAGTAA	CAGGTATAAA	GTACTTAGAA	AAGCAAAGGG	
	TGCTACGTAC	ATGTGAGGCA	TCATTACGCA	GACGTTACTG	GGATATGTTT	ACTATAAGGA	AAAGACACTG	
	AGGTCTAGA	TGATCCTATC	ACAACCTGAG	AGTAGTTTT	ACTCCATT	CAGGTGAGGT	CATTGTGGTT	
	CAAGGACGTT	AAGTAACTTC	CCCAGCTAC	ACGGCTTATA	AGTAAGGCAG	CCAGGATGTG	AACCCAGTAG	
	GAATCTG	CTGCAAAGTC	CCCACCCCTC	CTGCCATCT	GTATCCTCA	ATCATCTTCA	GTGCTTTGCT	
	GATAGAAGGT	ACGGAAATAC	GATGCCACAG	ACTGTCAGG	AAGACAGAAA	CTAGGCAGAT	GGGCTGGCCA	
65	TGGTCTCCA	GCCAGACTGG	AATCTCCAGG	TCTGGAATGA	TATCATT	CTCTTTAAT	AAATTAAC	
	ACCCACCAC	CGGCTTGTG	AGGCTAAAG	GTGACCAACT	CCCTTGGGAG	GGCCCCGGTT	GATAAGGAAG	
	GAATGTGAAT	CCTCCCATCA	CGGAAGCTTC	AAGGAGGTCA	AGGGTCCAAC	ACTTGTGAGATT	GTTAGTGTCT	

	TTGGTGGATA	CTGCAGAATA	TCCAGTGGAG	CCTCAGATGA	AGAACATGAG	GCCCCGTTTA	GATCCAAGGA
	TCAGAGGGGG	CTCT'GTAAGA	CCCAGGGAG	TCAGGTGCAC	TGGAGCGCG	GCTGCAGAAA	ACAGCCTGAG
	CTCCACCTCG	GCT'CTCCTT	GCCCTGGCTG	TTGTCCTTA	ACCCCTGTCT	CCTTCTGGAC	CAGTTTTGT
	CCTTCCCTTG	TGACCTGAGG	GGTAACAGCC	TCTTTCCAC	TTTCTTCAG	CGCCGACATG	CTCAATGTCA
5	CCTTCAAGG	GCCC'ACTTT	AACGGGACCT	TTGCCAGAG	CAAATGCCC	CAAGTGGAGT	GGCTGGGCTG
	GCTCAACACC	ATCCAGCCCC	CCTTCCTCTG	GGTGTGTT	GTGCTGGCA	CCCTAGAGAA	CATCTTGTTC
	CTCAGCGTCT	TCTGCCTGCA	CAAGAGCAGC	TGCACGGTGG	CAGAGATCTA	CCTGGGAAAC	CTGGCCGCA
	CAGACCTGAT	CCTGCCCTGC	GGGCTGCCCT	TCTGGGCCAT	CACCATCTCC	AACAACCTCG	ACTGGCTCTT
10	TGGGGAGACG	CTC'GCCGCG	TGGTGAATGC	CATTATCTCC	ATGAACCTGT	ACAGCAGCAT	CTGTTTCTG
	ATGCTGGTGA	GCA'CGACCG	CTACCTGGCC	CTGGTAAAAA	CCATGTCCAT	GGGCCGGATG	CGGGCGTGC
	GCTGGGCCAA	GCTCTACAGC	TTGGTGTACT	GGGGGTGTAC	GCTGCTCTG	AGCTCACCCA	TGCTGGTGT
	CCGGACCATG	AAGGAGTACA	GCGATGAGGG	CCACAACGTC	ACCGCTTG	TCATCAGCTA	CCCACCCCTC
	ATCTGGGAAG	TGT'CACCAA	CATGCTCTG	AATGTCGTGG	GCTTCCTGCT	GCCCCTGAGT	GTCAATCACCT
15	CTGACCGAT	GCACATCATG	CAGGTGCTGC	GGAAACACGA	GATGCAGAAG	TTCAAGGAGA	TCCAGACGGA
	GAGGAGGGCC	ACG'GTGCTAG	TCCTGGTGT	GCTGCTGCTA	TTCATCATCT	GCTGGCTGCC	CTTCCAGATC
	AGCACCTTCC	TGGATACGCT	GCATGCCCTC	GGCATCCTCT	CCAGCTGCCA	GGAGCAGCGC	ATCATCGATG
	TAATCACACA	GATGCCCTCC	TTCATGGCCT	ACAGCAACAG	CTGCCTCAAC	CCACTGGTGT	ACGTGATCGT
	GGGCAAGCGC	TTCCGAAAGA	AGTCTTGGGA	GGTGTACCAAG	GGAGTGTGCC	AGAAAGGGGG	CTGCAGGTCA
20	GAACCCATTG	AGAT'GGAGAA	CTCCATGGGC	ACACTGCGGA	CCTCCATCTC	CCTGGAACACG	CAGATTCA
	AACTGCAGGA	CTGGCGCAGGG	AGCAGACAGT	GAGCAAACGC	CAGCAGGGCT	GCTGTGAATT	TGTGTAAGGA
	TTGAGGGACA	GTTCCTTTTC	AGCATGGCC	CAGGAATGCC	AAGGAGACAT	CTATGCACGA	CCTTGGGAAA
	TGAGTGTGTA	TGTCCTCCGGT	AAAACACCGG	AGACTAATT	CTGCCCTGCTC	CAATTTCGA	GGGAGCATGG
	CTGTGAGGAT	GGGGTGAAC	CACGCACAGC	CAAGGACTCC	AAAATCACAA	CAGCATTACT	GTTCTTATTT
25	GCTGCCACAC	CTGAGCCAGC	CTGCTCTTC	CCAGGAGTGG	AGGAGGCTG	GGGGAGGGAG	AGGAGTGACT
	GAGCTTCCCT	CCCCCTGTGTT	CTCCGTCCCT	GCCCCAGCAA	GACAACTTAG	ATCTCCAGGA	GAAC TGCCAT
	CCACGTTTGG	TGCAATGGCT	GAGTGCACAA	GTGAGTTGTT	GCCCTGGTT	TCTTTAATCT	ATCAGCTAGA
	ACTTGAAGG	ACAATTCTT	GCATTAATAA	AGGTTAAGCC	CTGAGGGCTC	CCTTGATAAC	AACCTGGAGA
	CCAGGATTTT	ATGGCTCCCC	TCACTGATGG	ACAAGGAGGT	CTGTGCCAAA	GAAGAATCAA	TAAGCACATA
	TGAGCACTTC	TGTATATCAG	TATTGAGCAC	TGTAGGCA	ATGTTCTCTC	CCTGGAAGAT	ATCAATGTTT
30	CTGTCTGTTT	GTGAGGACTC	CGTGCCACC	ACGCCCTT	TCAGCGCCGA	CATGCTCAAT	GTCACCTTGC
	AAGGGCCAC	TCTIAACGGG	ACCTTGGCC	AGAGCAAATG	CCCCAAGTG	GAGTGGCTGG	GCTGGCTCAA
	CACCATCCAG	CCCCCCTTCC	TCTGGGTGCT	GTTCGTGCTG	GCCACCTAG	AGAACATCTT	TGTCCCTCAGC
	GTCTTCTGCC	TGCAAAAGAG	CAGCTGCACG	GTGGCAGAGA	TCTACCTGGG	GAACCTGGCC	GCAGCAGACC
	TGATCCTGGC	CTGGGGCTG	CCCTTCTGGG	CCATCACCAT	CTCCAACAAAC	TTCGACTGGC	TCTTGGGGA
35	GACGCTCTGC	CGCCGTGGTA	ATGCCATTAT	CTCCATGAAC	CTGTACAGCA	GCATCTGTT	CCTGATGCTG
	GTGAGCATCG	ACCCCTACCT	GGCCCTGGT	AAAACCATGT	CCATGGGCCG	GATGCGCGGC	GTGCGCTGG
	CCAAGCTCTA	CAGCTGGT	ATCTGGGGT	GTACGCTGCT	CCTGAGCTCA	CCCATGCTGG	TGTTCCGGAC
	CATGAAGGAG	TACAGCGATG	AGGGCCACAA	CGTCACCGCT	TGTGTATCA	GCTACCCATC	CCTCATCTGG
	GAAGTGTCA	CCAATCATGCT	CCTGAATGTC	GTGGGCTCC	TGCTGCCCT	GAGTGTATC	ACCTTCTGCA
40	CGATGCAGAT	CATGCAGGTG	CTGCGGAACA	ACGAGATGCA	GAAGTTCAAG	GAGATCCAGA	CGGAGAGGAG
	GGCCACGGTG	CTAGTCTCTG	TTGTGCTGCT	GCTATTCTAC	ATCTGCTGGC	TGCCCTTCCA	GATCAGCACC
	TTCCTGGATA	CGCTGCATCG	CCTCGGCATC	CTCTCCAGCT	GCCAGGACGA	GCGCATCATC	GATGTAATCA
	CACAGATCGC	CTCTTTCATG	GCCTACAGCA	ACAGCTGCC	CAACCCACTG	GTGTACGTGA	TGTTGGGCAA
	GCGCTTCCGA	AAGAAGTCTT	GGGAGGTGA	CCAGGGAGTG	TGCCAGAAAG	GGGGCTGCA	GTCAGAACCC
45	ATTCAAGATGG	AGAACTCCAT	GGGCACACTG	CGGACCTCCA	TCTCCGTGGA	ACGCCAGATT	CACAAACTGC
	AGGACTGGC	AGGGAGCAGA	CAGTGAGCAA	ACGCCAGCAG	GGCTGCTGTG	AATTGTTGTA	AGGATTTGAGG
	GACAGTTGCT	TATGTTCTCTC	CCTGGAAGAT	ATCAATGTTT	CTGTCTGTT	GTGAGGACTC	CGTCCCCACC
	ACGGCCTCTT	TCAGCGCCGA	CATGCTCAAT	GTCACTTGC	AAGGGCCAC	TCTTAACGGG	ACCTTGTCCC
	AGAGCAAATG	CCCCCAAGTG	GAGTGGCTGG	GCTGGCTCAA	CACCATCCAG	CCCCCTTCC	TCTGGGTGCT
50	GTTCGTGCTG	GCCACCTAG	AGAACATTT	TGTCTCTAGC	GTCTTCTGCC	TGCACAAGAG	CAGCTGCACG
	GTGGCAGAGA	TCTA.CCTGGG	GAACCTGGCC	GCAGCAGACC	TGATCTGGC	CTGGGGCTG	CCCTTCTGGG
	CCATCACCAT	CTCCAACAAAC	TTCGACTGGC	TCTTGGGGTA	GACGCTCTGC	CGCGTGGTGA	ATGCCATTAT
	CTCCATGAAC	CTGTACAGCA	GCATCTGTT	CCTGATGCTG	GTGAGCATCG	ACCGCTACCT	GGCCCTGGTG
	AAAACCATGT	CCATGGGCCG	GATGCGCGGC	GTGCGCTGGG	CCAAGCTCTA	CAGCTGGTG	ATCTGGGGGT
55	GTACGCTGCT	CCTGAGCTCA	CCCATGCTGG	TGTTCCGGAC	CATGAAGGAG	TACAGCGATG	AGGGCCACAA
	CGTCACCGCT	TGTGTATCA	GCTACCATC	CCTCATCTGG	GAAGTGTCA	CCAACATGCT	CCTGAATGTC
	GTGGGCTTCC	TGCTGCCCT	GAGTGTATCA	ACCTCTGCA	CGATGCAGAT	CATGCGAGGTG	CTGCGGAACA
	ACGAGATGCA	GAAGTTCAAG	GAGATCCAGA	CGGAGAGGGAG	GGCCACGGTG	CTAGTCTGG	TTGTGCTGCT
	GCTATTCTAC	ATCTGCTGGC	TGCCCTTCCA	GATCAGCACC	TTCCCTGGATA	CGCTGCATCG	CCTCGGCATC
60	CTCTCCAGCT	GCCAGGACGA	GCGCATCATC	GATGTAATCA	CACAGATCGC	CTCCTTCATG	GCCTACAGCA
	ACAGCTGCCT	CAACCCACTG	GTGTACGTGA	TCGTGGGCAA	GCGCTTCCGA	AAGAAGTCTT	GGGAGGTGTA
	CCAGGGAGTG	TGCCAGAAAG	GGGGCTGCG	GTCAGAACCC	ATTCAAGATGG	AGAACTCCAT	GGGCACACTG

CGGACCTCCA TCTCCGTGGA ACGCCAGATT CACAAACTGC AGGACTGGC AGGGAGCAGA CAGTGAGCAA
 ACGCCAGCAG GGCIGCTGTG AATTGTGTA AGGATTGAGG GACAGTTGCT T GCCCCTCAAA GATGAGCTGT
 TCCCAGCGCC ACTCCAGCTC TGGCTTCTGG GCTCCGAGGA GGGGTGGGGA CGGTGGGGAC ATCAGGCTGC
 CCCGAGTAC CAGCGAGCGA CTGAAGTGCC CATGCCGCTT GCTCCGGAGA AGGTGGGTGC CGGGCAGGGG
 5 CTGCTCCAGC CGCCCTCACCT CTGCTGGGAG GACAAACTGT CCCAGCACAG AGGGAGGGAG GGAGGGCAGG
 CAGCGGGAG AAGTTCCCT GTGGTCGTGG GGAGTT GCCCCTCAAA GATGAGCTGT TCCCAGCGCC
 ACTCCAGCTC TGGCTTCTGG GCTCCGAGGA GGGGTGGGGA CGGTGGTGAC GGTGGGGACA TCAGGCTGCC
 CCGCAGTACC AGGCAGCGAC TGAAAGTGCCT ATGCCGCTTG CTCCGGAGAA GGTGGGTGCC GGGCAGGGG
 TGCTCCAGCC GCCTCACCTC TGCTGGGAGG ACAAAACTGTC CCAGCACAGA GGGAGGGAGG GAGGGCAGGC
 10 AGCAGGGAGA AGTTTCCCTG TGGTCGTGGG GAGTT GAGCTCTCA ATATTTAGT GAAAGCTATA GATGAGGCCTC
 CATAGGGGAT AAAGCACAGA CACACCTTT CAGAGGGCTT GTGGACTCTG GGCAGCCTGT CCATAGACCT
 CTGCCCCAA CTGGCAAGTC AGGAAACTCC AGATTAAGGA GCCCCAATGT GGTGAACAG CCAGGTGCAC
 AGATGAGTCA ACCAACACAGC CAGGCCAGGG AGGGCCTCA CTCAAGAGCC TACAGCCAGT TCACAGCCAA
 GCCAGGGCTA GCGCAGGCC ACCCATAAAC TGATCTGAGA CTCTGTTCC TGTCTCCAT GATGATGGGA
 15 TCAGGCTTGA TTGCTGGTT GTAGGCTTGT TATGAATCAA GTCACAGGGAGA AGAGGAGCTG ATGGGCTGGG
 GGGACGTCCCT CTGGCCCTCC TGTCTCTCC CCAGATCCAC TGGGCCACT CTTATCTGTT CTCTTCTGAA
 GGAAGGGTTT TAAAGCTTCA AAAAAGGATG TTTGAAAGT CCCTGCCCT TCCAGCTCCCT ACCGTCTCAG
 CCCTGGAGT GTAAAGTGCT GCAGATAGTT AGTAAGTCTT TGAGCAAAAC TGAGAAAGCC AGCCTGAGCC
 20 TTGACATGGG AGAAACCTCC GCCATACATC TCCGAAGAAA CGGCCGCGTG TCTCAGGGAG GCGCAAACAC
 CCGTACCCAG GAAACAGGAC AGCTTCTGCC ACTGTCGCC TTGGGAGCCG TACGTGGCAT GACAAAGAAA
 TCCCAGGACT CGCGCTGCC ACCTGGCCAC CCTCTGTTA CACCTTCCGC GTAAACGCC ACTGTTACA
 TCCAAAACTC AGACACAAAA TAACCACCTC AAGAAGATAA ATAATGATAA GAAATAATG TTACGCGAGG
 CAAATTATT CACATGGGGC TTCCCAGGCC ACTTTGTGGT CAGCCGGAG GGACGTTTT GCCGTCCCAC
 GACTCCAACG GGCAGCCGG CCTACGCAA CATGGAAATC TTCAAGAGC CTCCCTGGCC CCCAGGGCTC
 25 AGAGGGTGGC AGAGCGGAGA GCGAAGGTGG CGCAGCCTT CCCGGCCCCA CAGCCAGCCT GGCTCCAGCT
 GGGCAGGAGT GCGAGCTCA GCTGGAGGGCG AGGGGGAAAGT GCCCAGGAGG CTGATGACAT CACTACCCAG
 CCCTCAAAG ATGAGCTGTT CCCGCCGCCA CTCCAGCTCT GGCTTCTGGG CTCCGAGGAG GGGTGGGAC
 GGTGGTACG GTGCAGGACAT CAGGCTGCC CGCAGTACCA GGGAGCGACT GAAGTGCCCA TGCCGCTTG
 TCCGGAGAAG GTGCAGTGCCT GGCAGGGCT GCTCCAGGCC CCTCACCTCT GCTGGGAGGA CAAACTGTC
 30 CAGCACAGAG GGACGGAGGG AGGGCAAGCA GCGGGGGAGAA GTTTCCTGT GGTCTGGGG AGTTGGAAA
 AGTTCCCTC CTTCGGAGG GAGG CAGATTACA AACTGCAGGA CTGGGCAGGG AGCAGACAGT GAGCAAACGC
 CAGCAGGGCT GCTCTGAATT TGTGAAGGA TTGAGGGACA GTTGCCTTTC AGCATGGGCC CAGGAATGCC
 AAGGAGACAT CTATGCACGA CCTTGGGAA TGAGTTGATG TCTCCGGTAA AACACCGGAG ACTAATTCT
 GCCCTGCCCA ATTTCGAGG GAGCATGGCT GTGAGGGATGG GGTGAACCTCA CGCACAGCCA AGGACTCCAA
 35 AATCACAAACA GCAATTACTGT TCTTATTTC TGCCACACCT GAGCCAGCCT GCTCCCTCCC AGGAGTGGAG
 GAGGCCTGGG GGGAGGGAGA GGAGTGACTG AGCTTCCCTC CCGTGTGTT TCCGCTCCCTG CCCCAGCAAG
 ACAACTTAGA TCTCCAGGAG AACTGCCATC CAGCTTGGT GCAATGGCTG AGTGCACAAG TGAGTTGTT
 CCCTGGGTTT CTTTAATCTA TTCAGCTAGA ACTTGAGG ACAATTCTT GCATTAATAA AGGTTAAGGC
 CTGAGGGGTC CCTGATAACA ACCTGGAGAC CAGGATTITA TGGCTCCCT CACTGATGGA CAAGGAGGTC
 40 TGTGCCAAAG AAGAAATCAA TAAGCACATA TTGAGCACTT GCTGTATATG CAGTATTGAG CACTGTAGGC
 AAGACCAAG AAACAGAAGG AGCCATCTCC ATCTGAAGG AACTCAAAGA CTCAAGTGGG AACGACTGGG
 CACTGCCACC ACCAGAAAGC TGTTCGACGA GACGGTCGAG CAGGGTGTG TGGGTGATAT GGACAGCAGA
 AGGGGGAGAC CAAAGGTTCCA GCTCAACCAA TAACATTGC ACAACCACCT GTCCCTGCCT CAGTCCCTT
 TTATGTAACA TGAAAGTCGTT GTGAGGGTTA AAGGCAGTAA CAGGTATAAA GTACTTAGAA AAGCAAAGGG
 45 TGCTACGTAC ATGTGAGGCA TCATTACGCA GACGTAACGT GGATATGTT ACTATAAGGA AAAGACACTG
 AGGTCTAGAA ATACCTCCGT GGAGCAGAAT CAGTATTGGG AGCCGGTGGC GGTGTGAAGC ACCAGTGTCT
 GGCACACAGT AGGAGCTCAT TGGCTCCCT CCACCTGTCA TTCCCACAC CCTGAGGGCC CAACCGCCAC
 ACACACAGGA GCAATTGGAG AGAAGGCCAT GTCTCAAAG TCTGATTGTT GATGAGGCAG AGGAAGATAT
 TTCTAATCGG TCTTGGCCAG AGGATCACAG TGCTGAGACC CCCCACCAAC AGCCGGTACC TGGGAAGGGG
 50 GAGAGTCAG GCTGCTCAG GGACTGTTCC TGTCTCAGCA ACCAAGGGAT TGTTCTGTC AATCAATGGT
 TTATTGGAAG GTGGCCAGT ATGAGCCCTA GAAGAGTGTG AAAAGGAATG GCAATGGTGT TCACCATCGG
 CAGTGCCAGG GCACCACTCA TTCACTTGAT AAATGAATAT TTATTAGCTG GTTGGAGAGC TAGAACCTGG
 AGAGCTAGAA CCTGGAGAAC TAGAACCTGG AGGGCTAGAA CCTGGAGAGG CTAGAACCAA GAAGGGCTAG
 AACCTGGAGG GGCTAGAAC TAGAGAACCT GAGAGAACCT GAGGACTAGA ACCTGGAGGG
 55 CTGGAATCTG AAGGGCTAGA ACCTGGAGGG CTGGAATCTG GAGAGCTAGA ACCTGGAGGG CTAGAACCTG
 GAGGGCTAGA ACCTAGAACCT GCTAGAACCT GGAGGGCTGG AATCTGGAGA GCTAGAACCT GGAGGGCTAG
 AACCTGGAGG GCTAGAACCT AGAAGGGCTA GAAACCTGGAG GGCTAGAACCT TGGCAGGTTA GAAACCTAGAA
 GGGCTAGAAC CTGGAGAGCC AGAACCTGGA GGGCTAGAAC CTGGAAGGGC TAGAACCTGT AGAGCTAGAA
 CATGGAGAGC TAGAACCCGG CAGGCTAGAA CCTGGCAAGC TAGAACCTGG AGGGAATGAA CCTGGAGGGC
 60 TAGAACCTGG AGAATGAGAA AAATTACAT GGCAAAGAGC CCATAAAATCC TGACCAATCC AACTCTGAAT
 TTAAAGCAA AAGCTGAAAG AAAAGATT CCTCCTTACC CCCAACCCAC TCTTTTTCC CACCACCCAC
 TCTCCTCTGC CTCAGTAAGT ATCTGGAGGA AGAAAACAGG TGAAAGAAGA AGTAAAAAACCC ATTTAGTATT

	AGTATTAGAA	TGA ^A GTCAA	CTGTGCCACA	CATGGTGAAT	GAAAAAAA	AAAAAGAGGC	TGTGTTTGT
	CACACAGGGC	AGTCATTCA	CACCAGAGCA	CGTGATGGTC	TGAGACTCTC	TTAGGAGCAG	AGCTCTGCCG
	CAATGGCCAT	GTGC GGATCC	ACACCTGGTC	TGAGGGGCA	CTGAGTCTGC	GGGAGAAGAG	CGGCCCTATG
5	CATGGTAG	ATGC'CCTGAT	AAAGAACATC	TGTCCTGTGA	AAGACTCAAT	GAGCTGTTAT	GTGTAACAA
	GGAAGCATT	CACATCCAAA	CGAGAAAATC	ATGTAAACAT	GTGTCTTTC	TGTAGAGCAT	AATAATGGA
	TGAGGTTTT	GCA ^A AAAAAA	AAAAAAA	AAATGATAGA	CCGTCATAA	TTTGTAAAT	GCTTTTAA
	ATGAATGCTT	TAAC CCGGGT	GCAGTGCCTC	ACATCTGTAA	TCCCAGCAG	TTGGAGCCGA	GCGGGTGGAT
	TGTGTGAGGT	CAGC AGTTCG	AGACCAACCT	GGCCAACATG	GCAAAACCTC	ACTCTTAC	AAAATACAA
10	AAATTAGCCA	GGCA TGGTGG	CAGGCACCTG	TGATCCCAGC	TACTCAGGAG	GCTGAGACAG	GAGAATCGCT
	TGAACCCGGG	AGGC'AAGGTT	GCAGTGAGCC	AAGATTACGC	CATTGTACTC	CAGCCTGGGT	GACAGAGAGA
	GACTCCGTCT	CAAA ^A AAAAAA	AAAAAAA	AAAAAATAC	GCTTCAAACA	CATGATCTCT	CACCACTGTT
	GAATTTCTT	TCTA'GAGCC	CAGGAGGGCC	TCTCAGAGAG	GAAAGCTCT	AGGTCTTCCT	TTCCCTCTGC
	AAACTCCCTG	CCTIGAAGGT	TCAGAAGGAC	TGTGCGTGC	CGTTGCATCC	TTTGCAGT	TCCAAACCCCT
15	GATCCCAGCT	GTGC TTAGGG	GTTCTGCAA	ACCTTTCCA	GGTGTAAATT	ACCTCCCAC	TCATTTCTG
	TTTACCAACT	CAGC'TTTTG	TTTAGTGTG	TTGAATTCC	CTGAACTGAC	CGTTGCTGA	TCTCCACCTC
	CCAAC TGAAAT	TAGC GGAGCT	GGGCTCTGG	AAACCCAGGT	GCCGGGTGTT	GCAGAGTGGC	TGAAAGCTGG
	GATGTGGCAG	ATCC GTGGCT	ACATT CATGC	ACACACACAC	ACCCACATAC	CCACACATGC	ACACACACAC
	ACACACCCGC	ACTC ACACAC	TTGGACATGC	ATAGACCACA	GCTTCCACA	CCCTCTCTAG	ACAGGGGTCA
20	CTTGGTATCC	TGGAGAGAGT	GTGAAGTCCT	GGAATGGAAA	GAGGGGGAT	TAAGCCCCAC	CTCTAGCCAT
	GGGACTGAGA	CAAGTCACCA	CCAACCCATC	TGCGCCTTGT	TTACCTCTC	TGTGAGGCAA	GCACAGAGCC
	CATGCCTGCC	CCCC TGGATG	GGAGTGTATG	GAAACTTGAA	GGCGGGTCAG	AGCAAGGGTC	GGGAATGGAA
	GGCCCTTGGG	AAA AAGGCC	CTTTCAACTA	GGGGCACAGA	GGAGGCCCTG	GGCTGAGAAC	TTGACAGCAC
	CTTGTAAATTG	GTAAGCCAAG	CCCGAAGGGA	CTGAAATAC	TCAGATGTGT	CTGCTCCCT	TATTAGGTTC
25	AAAGTCCCTC	AAGA.CCTGT	CTCCATCACA	GTGCTCCAGT	CCAGACCCCT	CCTCTGAGCT	CCAGACCCCTG
	CTGGACCCAA	CCACCCCTAT	GGGGTGCAT	CCCCACCTGC	CTGGAATTCT	CCAAAGAAC	TCCCCTTAA
	CAGTCCAGC	CTTAAACAGT	TCCAGTCTAA	ACACATGACC	TTTCTCTCT	AAATCAGCCC	CCCATCTCTG
	CCTTTCAGG	AGATGGAAGC	CATGACACCT	GCCTCGCCCC	TGTCTCACC	CCATCCATGT	CCAATCAAGC
	ACTAGGCATG	TCAC GTTTAC	CCTCTAAACT	CCTCTGGAAT	CCAGTCTCTC	AGTCTCCATC	ATCCCAGGTC
30	GAAGCTAATG	GGC'TAACTGG	TCCTTGCTC	CACTCTACCC	CCACTGCACT	CCTGACTTCC	TGAGCAGCAG
	CCAGGGCTA	ATCC ATATTG	ACACCAAGCG	CCAACCTGAC	TGAGATATCC	TCCTGCACCA	TCATCCCTCC
	ACCCGTTTA	GTTC TGTCTA	CCCTCAGTGT	TCTCATCAAT	AATCCACTCC	CCTCACAGGC	GCGTTTGGGA
	CCCCATGTT	TATG CTCTCA	CAGGACCTTT	TGCTTGTATT	TTCACTGTAC	TTAGGTCACT	TTGCAGTTAT
	TAAGTGAUTG	AGCA ATGTCT	GGCTTCTCCA	GTAGACTGTC	AGCTCTAGC	CATTGTATAC	CTAGCACCGC
35	TGTGTGGGAG	CACCTGACAA	ACGTCCAGTG	AGTCAGGGAC	TCAGCAGTCT	CCATTCTCTC	GCCCTGCTGG
	AGAATGCGTG	TATITGGCAA	TCCCCAGCCC	CTGTGCCATC	TAACCATCTT	TTCTCTCTG	TCAGCCCCAG
	GTGTGGCCTC	ACTCACATCC	CACTCTGAGT	CCAAATGTT	TCTCCCTGGA	AGATATCAAT	GTTTCTGCT
	GTTCGTGAGG	ACTC CGTGCC	CACCACGGCC	TCTTCAGGT	GAGTCAAAGG	GATTCTCAG	TTCACTAGTT
	AGGGGAGGTG	GGCA GACACC	CTGGAGAACT	CCCTGGAAAG	CTCAACTCTC	ATGCCCGGA	CAACAGTTGA
40	AGGAACCATG	GTGA TGTAA	GCCCCAAAGAC	AAAACCTCTC	AGGTGTCTAA	GTCCCTGTTG	GAATCTTGGG
	AGCAGAGGGA	ATG TCTGTG	GTCTAGAGGA	AGAGGGGCTC	AGGGAGGAGA	AGGCACATT	CCTGGTTGTT
	ATATGTTCT	ATCT ATCCCA	GATGAACCTG	GAAGTGAAGG	GAAGAGAGTT	AAACATTAAA	GTAAAATACCC
	AGTGGATCAG	ACAC CAATGT	GCCAGATTC	CTTGGAAACA	AAATATCTCC	AACACATGGC	TGACATTTGG
	TGGGAGATCA	GAAC ACCCTA	AAGAGAGAA	TTAAGGGGAG	GGGGAGGAGG	ACCTGAGCCA	GAGTAGAACG
45	AGAGGATAGG	GAG A TCTGTT	CTTGGGGACA	GCATTGCAA	GAAACAAGGC	TGAGGGTCC	ACTCCAACCT
	CTCCACCCCTG	CTGC AGGTGC	TGCCATATGAT	GAAGATGAGC	AGATGGCCAT	CTCAGCTGGG	GCCACAGTGC
	ACTGGACCTA	TAG ITTCCAA	TTCCGCACTC	AGCAGGCATC	TTTCTGATGA	TCCGATGGCT	TCTCAGAGCC
	AGGGATGGC	CAGGATCCAT	CCCCCTGGCT	ACTGTCTTG	TGAGAAATT	ATAAGCAGCA	TCTGGTGCTA
	TACTTGGTC	TCTAGTGAGT	TAGCTCATGA	AAGATGATAG	ACTCTCCAAG	CCAGGGTAT	GCAGGAAATG
50	GGTTTCTGT	AGCT ACAGAA	ATGGGTTGA	GGGTGGACC	AAGGGACTAC	CCAGGGGAAG	TCTTACCTTC
	AGAGGACTCT	GGAA AGGAGG	CTGCAAGTT	TCATGGGTCA	AGAATTCAAGA	GCCCAGTAGA	GACAGCTTAT
	CTCTGTTCCA	AGAT GTCTGG	GGCCTTGGTT	GGAAGATTCA	AAGGCTAGGA	AACCAGGAGC	CACCAAAAGC
	GTAACTGGGG	CCAC AGGATC	CACTTCAAG	GTGCAAGTT	GGTCCCCCCC	ATGTGGCTGC	TTGAGTATCC
	TCACATGGCG	GCTCACATCC	TTCAAGTAA	GCAATGCAA	AGGCCAAGAA	AGATGCTGCA	AAGATGTTAT
55	GACCTAGCCT	CAGAAATCAC	ACACCATCCC	TGCCACCAT	AGTAAGAAGT	CCAGCCCACG	TCCAGGAGAA
	GAGGAAGCAG	ATT CTCCTT	TTGAAATGAA	GAATATCAAG	TAATTCGGGG	GGCATATGAA	AGCCACCA
	CACCACAGGG	ATC TTTTAG	AGCATACTTC	TTATACCATC	ACTGTAGTTC	CTTAAGACTC	AGGGGCAAAG
	CCTCACTTCC	TTAG CACCA	GTGAAGACCA	CGCTTACTCC	CTCACTCAAC	CTCTGCTAC	TTCCACCTC
	TCCTGTCCAA	CATCTAGTGT	CACTTCCAG	AAACATACAA	CAGCTCCCC	AGTTCTGTGC	CTCTGCTCAG
60	GCTGTTCCC	CTGCCTGGTC	CACTTGTCT	CCTTCTGTG	CGGTCAAAT	GCTTCTTATC	CTTCAAGACC
	CAGCTCTAGA	GTCACCTCCA	ACCCCTTACC	CACCAAGCCCC	CTCTCCAAGT	CTGTGCCCCA	CAACCCCCCT
	GCTCCCTCCA	GGGCACCCCTC	CACCCCTTGG	GCCACAGTTG	TCAGGAGTCA	GGCAGGGCAG	GGGCCGGGTG
	GTGCTCTT	TGTG TCTTG	CACTCAGGGC	AGAGCTCAGC	ACAGAGCAGA	CGCTAAAAAA	ACATTAAAG

	GATAGAAGCA	TTGATTGTG	GGTCCCCAG	TCTGGCTCA	GGATGCCAGC	CAGCTGCTCC	TAGAAGAAA
	CGGACTTTTC	CTGGAAATC	CCAGAGGTGA	TGATCAGTAA	TCTCTCCCGT	GACTCGTAGT	TCAGCTCTC
	CTCCATGAGC	CTGAATATCA	GTGGACCTTC	CAGAAAGAGC	CCCTTTCCCT	TCTCTCACCC	ACAGCACAGG
	GCACTGGAA	AATGCCAAT	GAGTCCTGCC	TCTGGGTTGT	GCTTTGGACT	TTTCAGTGTG	TCTCGCATCC
5	ACTCTTCAAC	TTGAATGTTG	CAACAGCCAT	GAAAAAAAGAA	ATGCAAAGCG	ATTCAAGGATG	AGAGCAATAC
	CCTACTCCAA	AGAAAGCAAC	ATAGAACGTC	AGAGAGATCA	AGCAATTGTC	CCAAGACCAC	ACAGCTAGGA
	GTGGAACCTA	TGGCTGTCCA	AGCCCCATGC	CTCTGCTGAA	GGTAGAGATG	AATTACAGCA	ACAAGTCTAG
	AAAGGTGCCT	GCCCATATGGT	CTGTGAGTCT	TGCCTAAGAA	TGAAAGAGGA	GCCAGTGGGT	TAAGATGAG
10	GTCACCAACA	ACGGTGGGTG	TGGAGTTAC	CACTGATAAT	AAGGGTCAA	AATGTAATT	ACTAATGTTT
	ATTGAGCCTA	GTGCAAGTGC	TGGGGCATT	TGACACATTGT	CTCTGATCCC	TATGACAACC	CTGAGAGGTA
	GTGGTTTAA	CTGCATGTT	ACAGGTGAGG	TCATTGTGGT	TCAAGGACGT	TAAGTAACCT	CCCCAGCGTG
	ACACGGCTTA	TAACTAAGGC	AGCCAGGATG	TGAACCCAGT	AGGACTATCT	GGCTGCAAAG	TCCCCACCCC
15	CCTCGCCATC	TGTATCCTCC	AATCACTTCA	GTGCTTGCT	GCATAGAAGG	TAACGGAAAT	CACGATGCCA
	CAGACTGTCC	AGGAAGACAG	AAACATAGGC	GATGGGCTGG	CCATGGTCTC	CAAGCCAGAC	TGGAATCTCC
	AGGTCTGGAA	TGAATCATT	TTTCTTTT	AATAAAATTAA	CTCACCCACC	ACACGGCTTT	GAGAGGCTCA
	AAGTTGACCA	ACTCTCTGG	GAGGGCCCCG	GTTGATAAGG	AAGGAACGTG	AATCCTCCCA	TCACGGAAGC
	TTCAAGGAGG	TCAAGGGTCC	AAACATTGAG	ATTGTTAGTG	CTGTTGGTGG	ATACTGGCCA	AGGAAATATC
	CCAGTGGAGC	CTCCAGATGA	AGAACATGAG	GCCCCCGTTT	AGAACCAAAG	ATCAGAGGGG	GCTCTGTAAG
20	ACCCAGGGGA	GTCAGGTGCA	CTGGAGCGCG	GGCATGCAGA	AAACAGCCTG	AGCTCCACCT	CGGCTCTCC
	TTGTCCTGGC	TGGTGTCT	TAACCCCTGT	CTCCTTCTGG	ACCAGTTTT	GTCTTCCCT	TGTGACCGCT
	GAGGGGTAAC	AGCCTCTTC	CACTTTCTT	CAGCGCCGAC	ATGCTCAATG	TCACCTTGCA	AGGGCCCCACT
	CTTAACGGGA	CCTITGCCCA	GAGCAAATGC	CCCCAAGTGG	AGTGGCTGGG	CTGGCTCAAC	ACCATCCAGC
	CCCCCTCCCT	CTGGGTGCTG	TTCGTGTGG	CCACCCCTAGA	GAACATCTTT	GTCTCAGCG	TCTTCTGCCT
25	GCACAAGAGC	AGCAGCACGG	TGGCAGAGAT	CTACCTGGGG	AACCTGGCCG	CAGCAGACCT	GATCCTGGCC
	TGCGGGCTGC	CCTICTGGC	CATCACCATC	TCCAACAAC	TCGACTGGCT	CTTGGGGAG	ACGCTCTGCC
	GCGTGGTGA	TGCCATTATC	TCCATGAACC	TGACAGCAG	CATCTGTTTC	CTGATGCTGG	TGAGCATCGA
	CCGCTACCTG	GCCCTGGTGA	AAACCATGTC	CATGGGCCGG	ATGCGCGCG	TGCGCTGGC	CAAGCTCTAC
	AGCTTGGTGA	TCTGGGGGTG	TACGCTGCTC	CTGAGCTCAC	CCATGCTGGT	GTTCCGGACC	ATGAAGGAGT
	ACAGCGATGA	GGGCCCCAAC	GTCACCGCTT	GTGTACATCAG	CTACCCATCC	CTCATCTGGG	AAGTGTTCAC
30	CAACATGCTC	CTGAATGTCG	TGGGCTTCT	GCTGCCCTG	AGTGTACATCA	CCTCTGCAC	GATGCAGATC
	ATGCAGGTGC	TGCGGAACAA	CGAGATGCG	AAGTTCAAGG	AGATCCAGAC	GGAGAGGAGG	GCCACGGTGC
	TAGTCCTGGT	TGTCCTGCTG	CTATTCACTA	TCTGCTGGCT	GCCCTTCCAG	ATCAGCACCT	TCCTGGATAC
	GCTGCATCGC	CTCGGCATCC	TCTCCAGCTG	CCAGGACGAG	CGCATCATCG	ATGTAATCAC	ACAGATGCC
	TCCTTCATGG	CCTACAGCAA	CAGCTGCCTC	AACCCACTGG	TGTACGTGAT	CGTGGCAAG	CGCTTCCGAA
35	AGAAGTCTTG	GGACGTGTAC	CAGGGAGTGT	GCCAGAAAGG	GGGCTGCAGG	TCAGAACCCA	TTCAGATGGA
	GAACCTCCATG	GGCACACTGC	GGACCTCCAT	CTCCGTGGAA	CGCCAGATTC	ACAAACTGCA	GGACTGGGCA
	GGGAGCAGAC	AGTGAGCAA	CGCCAGCAGG	GCTGCTGTGA	ATTTGTGTAA	GGATTGAGGG	ACAGTTGCTT
	TTCAGCATGG	GCCCAGGAAT	GCCAAGGAGA	CATCTATGCA	CGACCTGGG	AAATGAGTTG	ATGTCTCCGG
	AAAAACACCG	GAGACTAATT	CCTGCCCTGC	CCAATTTCGC	AGGGAGCATG	GCTGTGAGGA	TGGGGTGAAC
40	TCACGCACAG	CCAAGGACTC	CAAATCACA	ACAGCATTAC	TGTTCTTATT	TGCTGCCACA	CCTGAGCCAG
	CCTGTCCTT	CCCAAGGAGT	GAGGAGGCCT	GGGGGCAGGG	AGAGGAGTGA	CTGAGCTTCC	CTCCCGTGTG
	TTCTCCGTCC	CTGCCTCAGC	AAGACAACCT	AGATCTCCAG	GAGAACTGCC	ATCCAGCTTT	GGTGCAATGG
	CTGAGTGCAC	AAAGAGTTG	TTGCCCTGGG	TTCTTTAAT	CTATTCACTG	AGAACCTTG	AGGACAATT
	CTTGCATTA	TAAAGGTTAA	GCCCTGAGGG	GTCCCTGATA	ACAACCTGGA	GACCAGGATT	TTATGGCTCC
45	CCTCACTGAT	GGACAAGGAG	GTCTGTGCCA	AAGAAGAAC	CAATAAGCAC	ATATTGAGCA	CTTGCTGTAT
	ATGCAGTATT	GAGCACTGTA	GGCAAGAGGG	AAGAAAGAGA	AGGAGCCATC	TCCATCTTGA	AGGAACCTCAA
	AGACTCAAGT	GGGAAAGACT	GGGCACTGCC	ACCACCAAGA	AGCTGTTGA	TGAGACGGTC	GAGCAGGGTG
	CTGTGGGTGA	TATGGACAGC	AGAAGGGGGA	GCCAGGTTCC	AGCTCACCAA	TACTATTGCA	CACCACCTGT
	CCTGCCTC	TGATCCATAC	ACAACCTGAG	AGTAGTTTT	ACTCCATTAA	CAGGTGAGGT	CATTGTGGTT
50	CAAGGACGTT	AAGTAACCTC	CCCAGCTCAC	ACGGCTTATA	AGTAAGGCAG	CCAGGATGTG	AACCCAGTAG
	GACTATCTGG	CTGCAGAAC	CCCACCTCC	CTGCCCATCT	GTATCCTCA	ATCATCTTCA	GTGCTTGCT
	GATAGAAGGT	ACGGAAATAC	GATGCCACAG	ACTGTCCAGG	AAGACAGAAA	CTAGGCAGAT	GGGCTGGCCA
	TGGTCTCAA	GCCAGACTGG	AATCTCCAGG	TCTGGAATGA	TATCATTTT	CTCTTTAAT	AAATTAAC
	ACCCACCA	CGGCTTGTGAG	AGGCTCAAAG	GTGACCAACT	CCCTTGGGAG	GGCCCCGGTT	GATAAGGAAG
55	GAATGTGAAT	CCTCCCATCA	CGGAAGCTTC	AAGGAGGTCA	AGGGTCAAAC	ACTTGAGATT	GTTAGTGCTG
	TTGGTGGATA	CTGCAGAATA	TCCAGTGGAG	CCTCAGATGA	AGAACATGAG	GCCCCGTTA	GATCCAAGGA
	TCAGAGGGGG	CTCTGTAAGA	CCCAGGGGAG	TCAGGTGCAC	TGGAGCGCGG	GCTGCAGAAA	ACAGCCTGAG
	CTCCACCTCG	GCTCTCCCTT	GCCCTGGCTG	GTTGTCCTTA	ACCCCTGTCT	CCTCTGGAC	CAGTTTTGT
	CCTCCCTTG	TGACCTGAGG	GGTAACAGCC	TCTTTCCAC	TTTCTTTCA	CGCCGACATG	CTCAATGTCA
60	CCTTGCAAGG	GCCCACCTT	AACGGGACCT	TTGCCAGAG	CAAATGCC	CAAGTGGAGT	GGCTGGGCTG
	GCTCAACACC	ATCCAGCCCC	CCTTCCTCTG	GGTGTGTT	GTGCTGGCCA	CCCTAGAGAA	CATCTTTGTC
	CTCAGCGTCT	TCTGCTGCA	CAAGAGCAGC	TGCACTGG	CAGAGATCTA	CCTGGGGAAC	CTGGCCGCG

	CAGACCTGAT	CCTC GCCTGC	GGGCTGCCCT	TCTGGCCAT	CACCATCTCC	AACAACCTCG	ACTGGCTCTT
	TGGGGAGACG	CTC'GCCGCG	TGGTGAATGC	CATTATCTCC	ATGAACCTGT	ACAGCAGCAT	CTGTTTCTG
5	ATGCTGGTGA	GCA1 CGACCG	CTACCTGGCC	CTGGTAAAAA	CCATGTCCAT	GGGCCGGATG	CGCGGCGTGC
	GCTGGGCCAA	GCT'CATACGC	TTGGTGTACT	GGGGGTGTAC	GCTGCTCTG	AGCTCACCCA	TGCTGGTGT
	CCGGACCATG	AAGGAGTACA	GCGATGAGGG	CCACAACGTC	ACCGCTTG	TCATCAGCTA	CCCACCCCTC
	ATCTGGGAAG	TGT'CACCAA	CATGCTCTG	AATGCTGTGG	GCTTCCTGCT	GCCCCCTGAGT	GTCATCACCT
	TCTGCACGAT	GCAGATCATG	CAGGTGCTG	GGAAACAACGA	GATGCAGAAG	TTCAAGGAGA	TCCAGACGGA
10	GAGGAGGGCC	ACG'GTGCTAG	TCTGGTTGT	GCTGCTGCTA	TTCATCATCT	GCTGGCTGCC	CTTCCAGATC
	AGCACCTTCC	TGGATACGCT	GCATGCCCT	GGCATCCTCT	CCAGCTGCCA	GGACGAGCGC	ATCATCGATG
	TAATCACACA	GATC GCCTCC	TTCATGGCC	ACAGCAACAG	CTGCTCAAC	CCACTGGTGT	ACGTGATCGT
	GGGCAAGCGC	TTCCGAAAGA	AGTCTGGGA	GGTGTACCG	GGAGTGTGCC	AGAAAGGGGG	CTGCAGGTCA
15	GAACCCATTG	AGATGGAGAA	CTCCATGGGC	ACACTGCGGA	CCTCCATCTC	CGTGGAACGC	CAGATTACA
	AACTGCAGGA	CTGC GCAGGG	AGCAGACAGT	GAGCAAACGC	CAGCAGGGCT	GCTGTGAATT	TGTGTAAGGA
	TTGAGGGACA	GTG CTTTTC	AGCATGGCC	CAGGAATGCC	AAGGAGACAT	CTATGCACGA	CCTTGGGAAA
20	TGAGTGTGTA	TGTC TCCGGT	AAAACACCGG	AGACTAATT	CTGCCCTGCC	CAATTTCGA	GGGAGCATGG
	CTGTGAGGAT	GGGC'TGAACT	CACGCACAGC	CAAGGACTCC	AAAATCACAA	CAGCATTACT	GTTCTTATTT
	GCTGCCACAC	CTGAGGCCAGC	CTGCTCTTC	CCAGGAGTGG	AGGAGGCCTG	GGGGAGGGAG	AGGAGTGA
	GAGCTTCCCT	CCCGTGTGTT	CTCCGTCCCT	GCCCCAGCAA	GACAACCTAG	ATCTCAGGA	GAACATGCCAT
25	CCACGTTGG	TGCAATGGCT	GAGTGCACAA	GTGAGTTGTT	GCCCTGGGTT	TCTTAATCT	ATCAGCTAGA
	ACTTTGAAGG	ACA A TTTCIT	GCATTAATAA	AGGTTAACG	CTGAGGGGTC	CCTTGATAAC	AACCTGGAGA
	CCAGGATTTT	ATGGCTCCCC	TCACTGATGG	ACAAGGAGGT	CTGTGCCAA	GAAGAATCAA	TAAGCACATA
	TGAGCACTTC	TGT' TATCAG	TATTGAGCAC	TGTAGGCA	ATGTTCTCTC	CCTGGAAGAT	ATCAATGTT
	CTGTCTGTT	GTGA GGA	CGTCCCACC	ACGGCCTTT	TCAGCGCCGA	CATGCTCAAT	GTCACCTTGC
30	AAGGGCCCAC	TCTTAACGGG	ACCTTTGCC	AGAGCAAATG	CCCCAAGTG	GAGTGGCTGG	GCTGGCTCAA
	CACCATCCAG	CCCC CCTTCC	TCTGGGTCT	GTTCGTGCT	GCCACCTAG	GAACACATCTT	TGTCCCTCAGC
	GTCTTCTGCC	TGCA CAAGAG	CAGCTCACG	GTGGCAGAGA	TCTACCTGGG	GAACCTGGCC	GCAGCAGACC
	TGATCCTGGC	CTGCGGGCTG	CCCTTCTGGG	CCATCACCAT	CTCCAACAAAC	TTCGACTGGC	TCTTGGGGA
35	GACGCTCTG	CGCGTGTGTA	ATGCCATTAT	CTCCATGAAC	CTGTACAGCA	GCATCTGTTT	CCTGATGCTG
	GTGAGCATCG	ACCG CTACCT	GGCCCTGGT	AAAACCATGT	CCATGGGCCG	GATGCGCGGC	GTGCGCTGGG
	CCAAGCTCTA	CAGCTGGTG	ATCTGGGGT	GTACGCTGCT	CCTGAGCTCA	CCCATGCTGG	TGTTCCGGAC
	CATGAAGGAG	TACAGCGATG	AGGGCCACAA	CGTCACCGCT	TGTGTATCA	GCTACCCATC	CCTCATCTGG
40	GAAGTGTCA	CCAA CATGCT	CCTGAATGT	GTGGGCTCC	TGCTGCCCT	GAGTGTATCA	ACCTTCTGCA
	CGATGCAGAT	CATG CAGGTG	CTGCGGAACA	ACGAGATGCA	GAAGTTCAG	GAGATCCAGA	CGGAGAGGAG
	GGCCACGGTG	CTAC TCCCTG	TTGTGCTGCT	GCTATTCTC	ATCTGCTGCC	TGCCCTTCCA	GATCAGCAC
45	TTCCCTGGATA	CGCT GCATCG	CCTCGGCATC	CTCTCCAGCT	GCCAGGACGA	GCGCATCATC	GATGTAATCA
	CACAGATCGC	CTCC ITCATG	GCCTACAGCA	ACAGCTGCC	CAACCCACTG	GTGTACGTGA	TCGTGGCAA
	GCGCTTCCGA	AAGA AGTCTT	GGGAGGTGTA	CCAGGGAGTG	TGCCAGAAAG	GGGGCTGCA	GTCAGAACCC
	ATTCA GATGG	AGAA CTCCAT	GGGCACACTG	CGGACCTCCA	TCTCCGTGGA	ACGCCAGATT	CACAAACTGC
50	AGGACTGGC	AGGC AGCAGA	CAGTGAGCAA	ACGCCAGCAG	GGCTGCTGTG	AATTGTTGTA	AGGATTGAGG
	GACAGTTGCT	T AT GTTCTCTC	CCTGGAAAGAT	ATCAATGTTT	CTGTCTGTT	GTGAGGACTC	CGTGCCCACC
	ACGGCCTCTT	TCAG CGCCGA	CATGCTCAAT	GTCACCTTGC	AAGGGCCAC	TCTTAACGGG	ACCTTCTGCC
	AGAGCAAATG	CCCC CAAGTG	GAGTGGCTGG	GCTGGCTCAA	CACCATCCAG	CCCCCTTCTCC	TCTGGGTGCT
55	GTTCGTGCTG	GCC ACCCTAG	AGAACATCTT	TGTCCCTCAGC	GTCTTCTGCC	TGCACAAGAG	CAGCTGCACG
	GTGGCAGAGA	TCTACCTGGG	GAACCTGGCC	GCAGCAGACC	TGATCCTGGC	CTGCGGGCTG	CCCTTCTGGG
	CCATCACCAT	CTCC ACAAC	TTCGACTGGC	TCTTGGGGAA	GACGCTCTGC	CGCGTGGTGA	ATGCCATTAT
	CTCCATGAAC	CTGT ACAGCA	GCATCTGTTT	CCTGATGCTG	GTGAGCATCG	ACCGCTACCT	GGCCCTGGTG
60	AAAACCATGT	CCAT GGGCCG	GATGCGCGGC	GTGCGCTGGG	CCAAGCTCTA	CAGCTGGTG	ATCTGGGGGT
	GTACGCTGCT	CCTG AGCTCA	CCCATGCTGG	TGTTCCGGAC	CATGAAGGAG	TACAGCGATG	AGGGCCACAA
	CGTCACCGCT	TGTG TCATCA	GCTACCCATC	CCTCATCTGG	GAAGTGTCA	CCAACATGCT	CCTGAATGTC
	GTGGGCTTCC	TGCT GCCCC	GAGTGTATCA	ACCTCTGCA	CGATGCAGAT	CATGCAGGTG	CTGCGGAACA
	ACGAGATGCA	GAAC TTCAAG	GAGATCCAGA	CGGAGAGGGAG	GGCCACGGTG	CTAGTCCCTGG	TTGTGCTGCT
	GCTATTCTATC	ATCT GCTGGC	TGCCCTTCCA	GATCAGCACC	TTCCTGGATA	CGCTGCATCG	CCTCGGCATC
	CTCTCCAGCT	GCCA GAGCGA	GCGCATCATC	GATGTAATCA	CACAGATCGC	CTCCTTCATG	GCCTACAGCA
	ACAGCTGCC	CAACCCACTG	GTGTACGTGA	TCGTGGGCAA	GCGCTTCCGA	AAGAAGTCTT	GGGAGGTGTA
65	CCAGGGAGTG	TGCCAGAAAG	GGGGCTGCCAG	GTCAGAACCC	ATTCA GATGG	AGAAACTCCAT	GGGCACACTG
	CGGACCTCCA	TCTCGTGG	ACGCCAGATT	CACAAACTGC	AGGACTGGC	AGGGAGCAGA	CAGTGAGCAA
	ACGCCAGCAG	GGCT GCTGTG	AATTGTTGTA	AGGATTGAGG	GACAGTTGCT	T GCCCTTCAA	GATGAGCTGT
	TCCCGCCGCC	ACTCCAGCTC	TGGCTCTGG	GCTCCGAGGA	GGGGTGGGGAA	CGGTGGGGAC	ATCAGGCTGC
	CCCGCAGTAC	CAGG GAGCGA	CTGAAGTGCC	CATGCCGCTT	GCTCCGGAGA	AGGTGGGTGC	CGGGCAGGGG
70	CTGCTCCAGC	CGCC CACCT	CTGCTGGGAG	GACAAACTGT	CCCAGCACAG	AGGGAGGGAG	GGAGGGCAGG
	CAGCGGGAG	AAGTTCCCT	GTGGTGTGTT	GGAGTT	GCCCTTCAA	GATGAGCTGT	TCCCAGCCGCC
	ACTCCAGCTC	TGGC TCTGG	GCTCCGAGGA	GGGGTGGGGAA	CGGTGGTGAC	GGTGGGGAC	TCAGGCTGCC

CCGCAGTACC AGGGAGCGAC TGAAGTGCCC ATGCCGCTTG CTCCGGAGAA GGTGGGTGCC GGGCAGGGC
 TGCTCCAGCC GCCTCACCTC TGCTGGGAGG ACAAACTGTC CCAGCACAGA GGGAGGGAGG GAGGGCAGGC
 AGCGGGGAGA AGTTCCCTG TGGTCGTGGG GAGTT GAGCTCTCA ATATTTAGT GAAAGCTATA GATGAGGCTC
 5 CATAGGGGAT AAAGCACAGA CACACCTTT CAGAGGGCTT GTGGACTCTG GGCAGCCTGT CCATAGACCT
 CTGTCCCCAA CTGGCAAGTC AGGAAACTCC AGATTAAGGA GCCAATGT GGTGAACAG CCAGGTGCAC
 AGATGAGTCA ACCAACACAGC CAGGCCAGGG AGGGCCTTC CTCAGAGCC TACAGCCAGT TCACAGGCAA
 GCCAGGGCTA CGCCAGGCC ACCCATAAAC TGATCTGAGA CTCTGTTCC CTGCTCCAT GATGATGGGA
 TCAGGCTTGA TTGCTGGTT GTAGGCTTGT TATGAATCAA GTCACAGGGAGA AGAGGAGCTG ATGGGCTGGG
 10 GGGACGTCCT CTGGCCCTCC TGTCTCTTCC CCAGATCCAC TGGGCCACT CTTATCTGTT CTCTTCTGAA
 GGAAGGGTTT TAAAGCTTCA AAAAAAAATG TTTGAAAGT CCCCTGCCCT TCCAGCTCTT ACCGTCTCAG
 CCCTGGGAGT GTAAAGTGT GCAGATAGTT AGTAAGTCTT TGAGCAAAAC TGAGAAAGCC AGCCTGAGCC
 TTGACATGGG AGAAACCTCC GCCATACATC TCCGAAGAAA CGGGCGCGT TCTCAGGGGA GCGCAAACAC
 CCGTACCCAG GAAACAGGAC AGCTTCTGCC ACTGTCGCC TTGGGAGCC TACGTGGCAT GACAAAGAAA
 15 TCCCAGGACT CGGCCTGCC ACCTGGCCAC CCTCTGTTA CACCTCCGC GTAAACGCC ACTGTTTACA
 TCCAAAACCTC AGACACAAAA TAACCACCTC AAGAAGATAA ATAATGATAA GAAATAAATG TTACGCGAGG
 CAAATTATT CACATGGGGC TTCCCAGGCC ACTTGTGGT CAGCCGGAG GGACGTTTTT GCGGTCCCAC
 GACTCCAACG GGCAAGCGGG CCTACGCAA CATGGAATAC TTCCAAGAGC CTCCTGGCC CCCAGGGCTC
 AGAGGGTGGC AGAGCGGAGA GCGAAGGTGG CCCAGCCTT CCCAGGCCCA CAGCCAGCCT GGCTCCAGCT
 20 GGGCAGGAGT GCACAGCTCA GCTGGAGGCG AGGGGAAAGT GCCCAGGAGG CTGATGACAT CACTACCCAG
 CCCTCAAAG ATGAGCTGTT CCCGCCGCCA CTCCAGCTCT GGCTCTGGG CTCCAGGAGG GGGTGGGAC
 GGTGGTACG GTGCGGACAT CAGGCTGCC CGCAGTACCA GGGAGCGACT GAAGTGCCA TGCGCTTGC
 TCCGGAGAAG GTGCGTGCAG GGCAGGGCT GCTCAGGCC CTCACCTCT GCTGGGAGGA CAAACTGTCC
 CAGCACAGAG GGAACGGAGGG AGGGCAGGCA GCAGGGAGAA GTTCCCTGT GGTGTGGGG AGTTGGGAAA
 AGTTCCCTTC CTTCCGGAGG GAGG -3' (FRAG. NO:2275) (SEQ. ID NO:3018)
 25 5'- GAGCTCTTCA ATATTTAGT GAAAGCTATA GATGAGGCTC CATAGGGGAT AAAGCACAGA CACACCTTT
 CAGAGGGCTT GTGC ACTCTG GGCAGCCTGT CCATAGACCT CTGCCCCAA CTGGCAAGTC AGGAAACTCC
 AGATTAAGGA GCCCAATGT GGTTGAACAG CCAGGTGCAC AGATGAGTCA ACCACACAGC CAGGCCAGGG
 AGGGCCTTCA CTCAAGAGCC TACAGCCAGT TCACAGCCAA GCCAGGGCTA GCGCCAGGCC ACCCATAAAC
 TGATCTGAGA CTCTGTTTCC CTGTCTCCAT GATGATGGGA TCAGGTTGA TTGCTGGTTT GTAGGCTTGT
 30 TATGAATCAA GTCA CAGGGA AGAGGAAGCTG ATGGGCTGGG GGGACGTCCT CTGGCCCTCC TGTCTCTTCC
 CCAGATCCAC TGGC CCCACT CTTATCTGTT CTCTCTGAA GGAAGGGTTT TAAGGCTTCA AAAAAAAATG
 TTTGAAAGT CCCTGCCCT TCCAGCTCT ACCGCTCTAG CCCTGGGAGT GTAAAGTGT GCAGATAGTT
 AGTAAGTCTT TGAGCAAACAC TGAGAAAGCC AGCTTGAGCC TTGACATGGG AGAAACCTCC GCCATACATC
 TCCGAAGAAA CGGCCGCGT TCTCAGGGGA GCGCAAACAC CCGTACCCAG GAAACAGGAC AGCTTCTGCC
 35 ACTGTCGCC TTGGGAGCC TACGTGGCAT GACAAAGAAA TCCAGGACT CCGCCCTGCC ACCTGGCAC
 CCTCTGTTA CACCCTCCGC GTAAACGCC ACTGTTACA TCCAAAACCTC AGACACAAAAA TAACCACCTC
 AAGAAGATAA ATAATGATAA GAAATAAATG TTACGCGAGG CAAATTATT CACATGGGGC TTCCAGGGCC
 ACTTTGTGGT CAGCCGGGAG GGACGTTTTT GCCGCTCCAC GACTCCAACG GGCAGCCGGG CCTACGCAA
 CATGGAAATC TTCAAGAGC CTCCCTGCC CCCAGGGCTC AGAGGGTGGC AGAGCGGAGA GCGAAGGTGG
 40 CCGCAGCCTT CCGGCCCCA CAGCCAGCCT GGCTCCAGCT GGGCAGGAGT GCAGAGCTCA GCTGGAGGG
 AGGGGAAGT GCCCAGGAGG CTGATGACAT CACTACCCAG CCCTCAAAG ATGAGCTGTT CCCGCCCA
 CTCCAGCTCT GGCTCTGGG CTCCAGGGAG GGGTGGGGAC GGTGGTACG GTGGGGACAT CAGGCTGCC
 CGCAGTACCA GGGAGCGACT GAAGTGCCA TGCCGCTTGC TCCGGAGAAG GTGGGGCCG GGCAGGGGCT
 GCTCCAGCCG CCTCACCTCT GCTGGGAGGA CAAACTGTCC CAGCACAGAG GGAGGGAGGG AGGGCAGGCC
 45 GCGGGAGAA GTTCCCTGT GGTGTGGGG AGTTGGGAAA AGTTCCCTC CTTCCGGAGG GAGG-3'
 (FRAG.NO:2275) (SEQ.ID NO:2461)
 5'- GCCCTTCAAA GATGAGCTGT TCCCGCCGCC ACTCCAGCTC TGGCTCTGG GCTCCGAGGA GGGGTGGGG
 CGGTGGTGAC GGTGGGGACA TCAGGCTGCC CGCAGTAC AGGGAGCGAC TGAAGTGCC ATGCCGTTG
 50 CTCCGGAGAA GGTCGGTGC GGGCAGGGGC TGCTCCAGCC GCCTCACCTC TGCTGGGAGG ACAAACTGTC
 CCAGCACAGA GGGAGGGAG GAGGGCAGGC AGCGGGGAGA AGTTCCCTG TGGTCGTGGG GAGTT -3' (FRAG.
 NO:2275) (SEQ. ID NC:2460)
 5'- GCCCTTCAAA GATGAGCTGT TCCCGCCGCC ACTCCAGCTC TGGCTCTGG GCTCCGAGGA GGGGTGGGG
 CGGTGGGAC ATCAGGCTGC CGCAGTAC CAGGGAGCGA CTGAAGTGCC CATGCCGTT GCTCCGGAGA
 AGGTGGGTGC CGGCAGGGG CTGCTCCAGC CGCTCACCT CTGCTGGGAG GACAAACTGT CCCAGCACAG
 55 AGGGAGGGAG GGAGGCAGG CAGCGGGGAG AAGTTCCCT GTGGTCGTGG GGAGTT -3' (FRAG.NO:2275)(SEQ. ID
 NO:2459)
 5'- ATGTTCTCTC CCTGGAAGAT ATCAATGTTT CTGCTCTGTC GTGAGGAAC TCGGCCACC ACGGCCTCTT
 TCAGGCCGA CATGCTCAAT GTCACCTTG C AAGGGCCAC TCTTAACGGG ACCTTGCCC AGAGCAAATG
 CCCCCAAGTG GAGIGGCTGG GCTGGCTAA CACCATCCAG CCCCCCTTCC TCTGGGTGCT GTTCGTGCTG
 60 GCCACCTAG AGAAATCTT TGTCTCTAGC GTCTCTGCC TGCACAAGAG CAGCTGCACG GTGGCAGAGA
 TCTACCTGGG GAACCTGGCC GCAGCAGACC TGATCTGCC CTGCGGGCTG CCCTCTGGG CCATCACCAT
 CTCCAACAAAC TTGCACTGCC TCTTGGGA GACGCTCTGC CGCGTGGTGA ATGCCATTAT CTCCATGAAC

	CTGTACAGCA	GCA ^t CTGTTT	CCTGATGCTG	GTGAGCATCG	ACCGCTACCT	GGCCCTGGTG	AAAACCATGT
	CCATGGCCG	GAT ^t CGCGGC	GTGCGCTGGG	CCAAGCTCTA	CAGCTTGGTG	ATCTGGGGGT	GTACGCTGCT
5	CCTGAGCTCA	CCC ^t TGCTGG	TGTTCCGGAC	CATGAAGGAG	TACAGCGATG	AGGGCCACAA	CGTCACCGCT
	TGTGTATCA	GCT ^t CCCATC	CCTCATCTGG	GAAGTGTTC	CCAACATGCT	CCTGAATGTC	GTGGGCTTCC
10	TGCTGCCCT	GAG ^t GTCACT	ACCTTCTGCA	CGATGCAGAT	CATGCAGGTG	CTGCGGAACA	ACGAGATGCA
	GAAGTTCAG	GAG ^t ATCCAGA	CGGAGAGGAG	GGCCACGGTG	CTAGCTCTGG	TTGTGCTGCT	GCTATTCATC
	ATCTGCTGGC	TGCC ^t CTTCCA	GATCAGCACC	TTCTCGATA	CGCTGCATCG	CCTCGGCATC	CTCTCCAGCT
	GCCAGGACGA	GCG ^t CATCATC	GATGTAATCA	CACAGATCGC	CTCCTTCATG	GCCTACAGCA	ACAGCTGCT
15	CAACCCACTG	GTG ^t ACGTGA	TCGTGGGCA	GCCTTCCGA	AAGAACGTCT	GGGAGGTGTA	CCAGGGAGTG
20	TGCCAGAAAG	GGGGCTGCAG	GTCAGAACCC	ATTCAAGATGG	AGAACCTCCAT	GGGCACACTG	CGGACCTCCA
	TCTCCGTGGA	ACGCCAGATT	CACAAACTGC	AGGACTGGGC	AGGGAGCAGA	CAGTGAGCAA	ACGCCAGCGAG
	GGCTGCTGTG	AATT ^t GTGTA	AGGATTGAGG	GACAGTTGCT T -3'	(FRAG. NO:2275)	(SEQ. ID NO:2458)	
25	5'- ATGTTCTCTC	CCTGGAAGAT	ATCAATGTTT	CTGCTCTGTT	GTGAGGACTC	CGTCCCACC	ACGGCCTCTT
	TCAGGCCGA	CAT ^t CTCAAT	GTCACCTTGC	AAAGGCCAAC	TCTTAACCGG	ACCTTGCCCC	AGAGCAAATG
30	CCCCCAAGTG	GAG ^t GGCTGG	GCTGGCTCAA	CACCATCCAG	CCCCCCTTCC	TCTGGGTGCT	GTTCGTGCTG
	GCCACCTAG	AGAA ^t CATCTT	TGTCCTCAGC	GTCTCTGCC	TGACAAGAG	CAGCTGCACG	GTGGCAGAGA
	TCTACCTGGG	GAAC ^t CTGGCC	GCAGCAGACC	TGATCCTGGC	CTGCGGGCTG	CCCTCTGGG	CCATCACCAT
	CTCCAACAAAC	TTCC ACTGGC	TCTTGGGGA	GACGCTCTGC	CGCGTGTGA	ATGCCATTAT	CTCCATGAAC
35	CTGTACAGCA	GCA ^t CTGTTT	CCTGATGCTG	GTGAGCATCG	ACCGCTACCT	GGCCCTGGTG	AAAACCATGT
40	CCATGGCCG	GAT ^t CGCGGC	GTGCGCTGGG	CCAAGCTCTA	CAGCTTGGTG	ATCTGGGGGT	GTACGCTGCT
	CCTGAGCTCA	CCC ^t ATGCTGG	TGTTCCGGAC	CATGAAGGAG	TACAGCGATG	AGGGCCACAA	CGTCACCGCT
	TGTGTATCA	GCT ^t CCCATC	CCTCATCTGG	GAAGTGTTC	CCAACATGCT	CCTGAATGTC	GTGGGCTTCC
45	GAAGTTCAG	GAG ^t ATCCAGA	CGGAGAGGAG	GGCCACGGTG	CATGCAAGCA	GGGAGGTGTA	CCAGGGAGTG
50	ATCTGCTGGC	TGCC ^t CTTCCA	GATCAGCACC	TTCTCGATA	GTGAGGACTC	CGTCCCCTG	CTCTCCAGCT
	GCCAGGACGA	GCG ^t CATCATC	GATGTAATCA	CACAGATCGC	CTCCTTCATG	GCCTACAGCA	ACAGCTGCT
	CAACCCACTG	GTG ^t ACGTGA	TCGTGGGCA	GCCTTCCGA	AAGAACGTCT	GGGAGGTGTA	CCAGGGAGTG
	TGCCAGAAAG	GGGGCTGCAG	GTCAGAACCC	ATTCAAGATGG	AGAACCTCCAT	GGGCACACTG	CGGACCTCCA
55	TCTCCGTGGA	ACGCCAGATT	CACAAACTGC	AGGACTGGGC	AGGGAGCAGA	CAGTGAGCAA	ACGCCAGCGAG
60	30 GGCTGCTGTG	AATT ^t GTGTA	AGGATTGAGG	GACAGTTGCT T -3'	(FRAG. NO:2275)	(SEQ. ID NO:2457)	
5'- TGATCCTATC	AC ^t AACCTGAG	AGTAGTTTT	ACTCCATTAA	CAGGTGAGGT	CATTGTGGTT	CAAGGACGTT	
	AAGTAACCTC	CCCAGCTCAC	ACGGCTTATA	AGTAAGGCAG	CCAGGATGTG	AACCCAGTAG	GACTATCTGG
	CTGCAAAGTC	CCC ^t ACCTCC	CTCGCCATCT	GTATCCTCCA	ATCATCTTC	GTGCTTGCT	GATAGAAGGT
	ACGGAAATAC	GAT ^t CCACAG	ACTGTCCAGG	AAAGACAGAAA	CTAGGCAAGAT	GGGCTGGCCA	TGGTCTCCA
35	GCCAGACTGG	AAATCTCCAGG	TCTGGAATGA	TATCATTTTT	CTTTTTAAT	AAATAACTC	ACCCACCA
	CGGCTTGGAG	AGG ^t CTCAAAG	GTGACCAACT	CCCTTGGGAG	GGCCCCGGTT	GATAAGGAAG	GAATGTGAAT
	CCTCCCATCA	CGGA AGCTTC	AAGGAGGTCA	AGGGTCCAAC	ACTTGAGATT	GTTAGTGTG	TTGGTGGATA
	CTGCAGAATA	TCCAGTGGAG	CCTCAGATGA	AGAACATGAG	GCCCCGTTA	GATCCAAGGA	TCAGAGGGG
40	CTCTGTAAAGA	CCCAGGGGAG	TCAGGTGCA	TGGAGCGCGG	GCTGCAGAAA	ACAGCTGAG	CTCCACCTCG
	GCTTCTCCTT	GCC ^t TGGCTG	GTTGCTCTTA	ACCCCTGTCT	CCTTCTGGAC	CAGTTTTGT	CCTTCCCTTG
	TGACCTGAGG	GGT ^t ACAGCC	TCTTTCCAC	TTCTTTCAG	CGCCGACATG	CTCAATGTCA	CCTTGCAAGG
	GCCCACCTT	AAACGGGACCT	TTGCCAGAG	CAAATGCC	CAAGTGGAGT	GGCTGGGCTG	GCTCAACACC
45	ATCCAGCCCC	CCT ^t CCCTCG	GGTGCTGTT	GTGCTGGCCA	CCCTAGAGAA	CATCTTGTC	CTCAGCGCT
	TCTGCCTGCA	CAAGAGCAGC	TGCACGGTGG	CAGAGATCTA	CCTGGGGAAAC	CTGGCCGCAG	CAGACCTGAT
	GCTCTACAGC	TTGGTGTACT	GGGGGTGTAC	GCTGCTCTG	AGCTCACCCA	TGCTGGTGT	CCGGACCATG
	AAGGAGTACA	GCG ^t TGAGGG	CCACAACTGC	ACCGCTTGTG	TCATCAGCTA	CCCACCCCTC	ATCTGGGAAG
50	TGTTCACCAA	CAT ^t CTCCCTG	AATGTCGTGG	GCTTCTGCT	GCCCCCTGAGT	GTCATCACCT	TCTGCACGAT
	GCAGATCATG	CAG ^t GTGCTGC	GGAAACAACGA	GATGCAGAAG	TTCAAGGAGA	TCCAGACGGA	GAGGAGGGCC
	ACGGTGTAG	TCC ^t GGTTGT	GCTGCTGCTA	TTCATCATCT	GCTGGCTGCC	CTTCCAGATC	AGCACCTTCC
	TGGATACGCT	GCATCGCCTC	GGCATCCTCT	CCAGCTGCCA	GGACGAGCGC	ATCATCGATG	TAATCACACA
	GATGCCCTCC	TTCA ^t GGCCT	ACAGCAACAG	CTGCTCAAC	CCACTGGTGT	ACGTGATCGT	GGGCAAGCGC
55	TTCCGAAAGA	AGTC TTGGGA	GGTGTACCA	GGAGTGTGCC	AGAAAGGGGG	CTGCAGGTCA	GAACCCATTC
	AGATGGAGAA	CTCC ^t ATGGGC	ACACTGCGGA	CCTCCATCTC	CGTGGAACGC	CAGATTCA	AACTGCAGGA
	CTGGGCAGGG	AGCA ^t GACAGT	GAGCAAACGC	CAGCAGGGCT	GCTGTGAATT	TGTGTAAGGA	TTGAGGGACA
	GTTGCTTTTC	AGCA ^t GGGCC	CAGGAATGCC	AAGGAGACAT	CTATGCACGA	CCTTGGGAAA	TGAGTGTGTA
60	TGTCTCCGGT	AAAACACCAGG	AGACTAATTC	CTGCCCTGCC	CAATTTCGA	GGGAGCATGG	CTGTGAGGAT
	GGGGTGAACCT	CACC CACAGC	CAAGGACTCC	AAAATCACAA	CAGCATTACT	GTTCTTATTT	GCTGCCACAC
	CTGAGCCAGC	CTG ^t CCCTTC	CCAGGAGTGG	AGGAGGCC	GGGGAGGGAG	AGGAGTGA	GAGCTTCCCT
	CCCGTGTGTT	CTCC ^t GTCCCT	GCCCCAGCAA	GACAACCTAG	ATCTCCAGGA	GAACCTGCCAT	CCACGTTTGG

TGCAATGGCT GAG¹GCACAA GTGAGTTGTT GCCCTGGGTT TCTTAACTCT ATCAGCTAGA ACTTTGAAGG
 ACAATTCTT GCATTAATAA AGGTTAACCC CTGAGGGTC CCTTGATAAC AACCTGGAGA CCAGGATTTC
 ATGGCTCCCC TCACGTGATGG ACAAGGAGGT CTGTGCCAA GAAGAATCAA TAAGCACATA TGAGCACTTC
 TGTATATCAG TATTGAGCAC TGTAGGCA -3' (FRAG. NO:2275) (SEQ. ID NO:2456)
 5 5'- CTGCAGAAAA CAGCCTGAGC TCCACCTCGG CTTCTCCTTG CCCTGGCTGG TTGTCCTTAA CCCCTGTCTC
 CTTCTGGACC AGT¹TTTGTGTC CTTCCCTTGT GACCCCTGAGG GGTAACAGCC TCTTTCCAC TTTCTTCAG
 CGCCGACATG CTCATGTCA CTTGCAAGG GCCCACTCTT AACGGGACCT TTGCCCAGAG CAAATGCC
 CAAGTGGAGT GGC¹GGGCTG GCTCAACACC ATCCAGCCCC CTTCTCCTG GGTGCTGTTG GTGCTGGCCA
 CCCTAGAGAA CAT¹TTTGTGTC CTCAGCGTCT TCTGCCGCA CAAGAGCAGC TGACGGTGG CAGAGATCTA
 10 CCTGGGAAC CTGGCCGAG CAGACCTGAT CCTGGCCTGC GGGCTGCCCT TCTGGCCAT CACCATCTCC
 AACAACTTCG ACT¹GCTCTT TGGGGAGACG CTCTGCCGCG TGGTGAATGC CATTATCTCC ATGAACCTGT
 ACAGCAGCAT CTG¹TTCTG ATGCTGGTGA GCATCGACCG CTACCTGGCC CTGGTGAAA CCATGTCCAT
 GGGCCGGATG CGC¹CGCGTGC GCTGGCCAA GCTCTACAGC TTGGTGATCT GGGGGTGTAC GCTGCTCCTG
 AGCTCACCCA TGCTGGTGT CGGACCATG AAGGAGTACA GCGATGAGGG CCACAAACGTC ACCGCTTGTG
 15 TCATCAGCTA CCC¹TCCCTC ATCTGGGAAG TGTTCACCAA CATGCTCTG AATTCGTG GCTTCCTGCT
 GCCCTGAGT GTCATCACCT TCTGCACGAT GCAGATCATG CAGGTGCTGC GGAACAACGA GATGCAAG
 TTCAAGGAGA TCCAGACGGA GAGGAGGGCC ACGGTGCTAG TCCTGGTGTG GCTGCTGCTA TTCACTCATCT
 GCTGGCTGCC CTTCAGATC AGCACCTCC TGGATACGCT GCATGCCCT GGCATCCTCT CCAGCTGCCA
 20 GGACGAGCGC ATCATCGATG TAATCACACA GATGCCCTCC TTCATGGCCT ACAGCAACAG CTGCCTCAAC
 CCACTGGTGT ACGT¹GATCGT GGGCAAGCGC TTCCGAAAGA AGTCTTGGGA GGTGTACCAAG GGAGTGTGCC
 AGAAAGGGGG CTG¹CAGGTCA GAACCCATT AGATGGAGAA CTCCATGGGC ACACTGCGGA CCTCCATCTC
 CGTGAACGC CAG¹TTCACA AACTGCAGGA CTGGGAGGG AGCAGACAGT GAGCAAACGC CAGCAGGGCT
 GCTGTGAATT TGTGAAGGA TTGAGGGACA TTGCTTTTC AGCATGGGCC CAGGAATGCC AAGGAGACAT
 25 CTATGCACGA CCTTGGAAA TGAGTTGATG TCTCCGGTAA AACACCGGAG ACTAATTCC CGCACAGCCA AGGACTCCAA
 ATTTTGCAAGG GAGCATGGCT GTGAGGATGG GGTGAACTCA GCTCCTTCCC AGGAGTGGAG GAGGCCTGG
 GCATTACTGT TCTTATTGCA TGCCACACCT GAGCCAGCCT TCCGTCCTG CCCCAGCAAG ACAACTTAGA
 GGCAGGGAGA GG¹GTGACTG AGCTTCCCTC CCGTGTGTT AGTGCACAAAG TGAGTTGTT CCCTGGGTT
 TCTCCAGGAG AAC¹GCCATC CAGCTTGGT GCAATGGCTG AGTGCACAAAG TGAGTTGTT CCCTGGGTT
 CTTTAATCTA TTCA¹GCTAGA ACTTTGAAGG ACAATTCTT GCATTAATAA AGGTTAAGCC CTGAGGGTGC
 30 CCTGATAACA ACCTGGAGAC CAGGATTAA TGCTCCCCCT CACTGATGGA CAAGGGAGGT CTGTGCCAAA
 GAAGAATCCA ATAAGCACAT ATTGAGCACT TGCTGTATAT GCAGTATTGA GCACTGTAGG CAAGAGGGAA
 GAAAGAGAAG GAG¹CATCTC CATCTTGAAG GAACTCAAAG ACTCAAGTGG GAACGACTGG CACTGCCACC
 ACCAGAAAGC TGTTCGACGA GACGGTCGAG CAGGGTGCTG TGGGTGATAT GGACAGCAGA AGGGGGAGAC
 CAAGGTTCCA GCTCAACCAA TAACATTGCA ACAACCACCT GTCCCTGCC CAGTCCCTC TTCTGTAACA
 35 TGAAGTCGTT GTGAGGGTTA AAGGCAGTAA CAGGTATAAA GTACTTAGAA AAGCAAAGGG TGCTACGTAC
 ATGTGAGGCA TCATTACGCA GACGTAACCTG GGATATGTT ACTATAAGGA AAAGACACTG AGGTCTAGA -3'
 (FRAG. NO:2275) (SEQ. ID NO:2455)
 5'- AAATGATAGA CGGTCAATAA TTGTTAAAT GCTTTTAAA ATGAATGCTT TAAGCCGGGT GCAGTGCCTC
 ACATCTGTAAC TCCCAGCACT TTGGAGCCGA GCGGGTGGAT TGTGTGAGGT CAGGAGTTCG AGACCAACCT
 40 GGCCAACATG GCA¹AACCTC ACTCTCTACC AAAAATACAA AAATTAGCCA GGCATGGTGG CAGGCACCTG
 TGATCCCAGC TACT¹CAGGAG GCTGAGACAG GAGAATCGCT TGAACCCGGG AGGCAAGGTT GCAGTGAGGC
 AAGATTACGC CATT¹TACTC CAGCCTGGGT GACAGAGAGA GACTCCGTCT CAAAAAAA AAAAAAAA
 AAAAAATTAC GCT¹CAAACA CATGATCTCT CACCACTGTT GAATTTCCTT TCTATGAGCC CAGGAGGGCC
 TCTCAGAGAG GAAAGCTCCT AGGTCTTCCCT TTCCCTCTGC AAACCTCCCG CTTGAAGGTT TCAGAAGGAC
 45 TGTGCGTGC CGTT¹CATCC TTTGCAAGTG TCCAAACCCCT GATCCCAGCT GTGCTTAGGG GTTCCTGCAA
 ACCTTTCCA GGTGTTAATT ACCTCCCACT TCATTTCTG TTTACCAACT CAGCTTTTG TTTTACTGTG
 TTTGAATTCC CTGA¹ACTGAC CGTTGCTGA TCTCCACCTC CCAACTGAAT TAGGGGAGCT GGGCTTCTGG
 AAACCCAGGT GCCC¹GGTGTG TGAGAGTGGC TGAAAGCTGG GATGTGGCAG ATCCGTGGCT ACATTATGAC
 50 ACACACACAC ACCC¹ACATAC CCACACATGC ACACACACAC ACACACCCGC ACTCACACAC TTGGACATGC
 ATAGACCACA GCT¹TCCACA CCCTTCCCTAG ACAGGGGTCA CTTGGTATCC TGGAGAGAGT GTGAAGTCCT
 GGAATGGAAA GAGGGGGGAT TAAGCCCCAC CTCTAGCCAT GGGACTGAGA CAAGTCACCA CCAACCCATC
 TGCGCCTGT TTAC¹CTCTC TGTGAGGCA GCACAGAGCC CATGCCGCC CCCCTGGATG GGAGTGTATGT
 GAAACTTGAA GGGC¹GGTCAG AGCAAGGGTC GGGAAATGGAA GGGCCCTGGG AAAAAAGGCC CTTTCAACTA
 GGGGCACAGA GGAAGGCCCTG GGCTGAGAAC TTGACAGCAC CTTGTAATTG GTAAGCCAAG CCCGAAGGG
 55 CTGGAATAC TCAC ATGTGTT CTGTCTCCCT TATTAGGTT AAAGTCCCTC AAGACCCCTGT CTCCATCACA
 GTGCTCCAGT CCAGACCCCT CCTCTGAGCT CCAGACCCCTG CTGGACCCAA CCAGCCCTAT GGGGTGCGAT
 CCCCACCTGC CTGGAATTCT CCAAAGAAC TCCCTTTAA CAGTTCCAGC CTTAACAGT TCCAGTCTAA
 ACACATGACC TTTC¹CCCTCT AAATCAGCCC CCCATCTCTG CCTTTCAGG AGATGGAAGC CATGACACCT
 GCCTCGCCCC TGTCCTCACC CCATCCATGT CCAATCAAGC ACTAGGCATG TCAGGTTAC CCTCTAAACT
 60 CCTCTGGAAT CCAGTCTCTC AGTCTCCATC ATCCCAGGTC GAAGCTAATG GGCTAAGTGG TCCTTGCTTC
 CACTCTACCC CCACTGCACT CCTGACTTCC TGAGCAGCAG CCAGGGCTA ATCGATATTG ACACCAAGCG
 CCAACCTGAC TGAC ATATCC TCCTGCACCA TCATCCCTCC ACCCTGTTA GTTCTGCTCA CCCTCAGTGT

	TCTCATCAAT	AATC CACTCC	CCTCACAGGC	GCGTTGGGA	CCCCATGTT	TATGCTCTCA	CAGGACCTT
	TGCTTGATT	TTCACTGTAC	TTAGGTCACT	TTGCAGTTAT	TAAGTGACTG	AGCAATGTCT	GGCTTCTCCA
	GTAGACTGTC	AGCTCCTAGC	CATTGTATAC	CTAGCACCGC	TGTGTGGGAG	CACGTGACAA	ACGTCCAGTG
5	AGTCAGGGAC	TCAGCAGTCT	CCATTCTCC	GCCCTGCTGG	AGAATGCGTG	TATTGGCAA	TCCCCAGCCC
	CTGTGCCATC	TAACCATCTT	TTCTTCTCTG	TTCAAGCCCAG	GTGTGGCTC	ACTCACATCC	CACTCTGAGT
	CCAAATGTT	TCTC CCTGGA	AGATATCAAT	GTTTCTGTCT	GTTCGTGAGG	ACTCCGTGCC	CACCAAGGGC
	TCTTCAGGT	GAGTCAAAGG	GATTCTCTAG	TTCACTAGTT	AGGGGAGGTG	GGCAGACACC	CTGGAGAACT
	CCCTGAAAG	CTCA ACTCTC	ATGCCCGGA	CAACAGTTGA	AGGAACCATG	GTGATGTTAA	GCCCAAAGAC
10	AAAACCTCTC	AGGTGTCAA	GTCCCTGTTG	GAATCTGGG	AGCAGAGGGA	ATGTTCTGTG	GTCTAGAGGA
	AGAGGGCTC	AGGGAGGAGA	AGGGCACATT	CCTGGTTGTT	ATATTTCT	ATCTATCCCA	GATGAACITG
	GAAGTGAGG	GAAAGAGAGT	AAACATTTAA	GTAAATACCC	AGTGGATCAG	ACAGCAATGT	GCCAGATTGC
	CTTGGAAACA	AAAATATCTC	AACACATGGC	TGACATTGTC	TGGGAGATCA	GAACACCCTA	AAGAGAGAAT
	TTAAGGGGAG	GGGGAGGAGG	ACCTGAGCCA	GAGTAGAAGC	AGAGGATAGG	GAGATCTGTT	CTTGGGGACA
15	GCATTGCAA	GAA/CAAGGC	TGAGGGTCC	ACTCCACACT	CTCCACCTG	CTGCAGGTGC	TGCCCTATGAT
	GAAGATGAGC	AGA/TGGCCAT	CTCAGCTGGG	GCCACAGTGC	ACTGGACCTA	TAGTTCCAA	TTCCGCACTC
	AGCAGGCATC	TTTC TGATGA	TCCGATGGCT	TCTCAGAGCC	AGGGATGGGC	CAGGATCCAT	CCCCTTGGCT
	ACTGTCTTGC	TGAC AAATT	ATAAGCAGCA	TCTGGTGCTA	TACTTTGGTC	TCTAGTGAGT	TAGCTCATGA
	AAGATGATAG	ACTCTCCAAG	CCAGGGGTAT	GCAGGAAATG	GGTTTCTGT	AGCTACAGAA	ATGGGGTTGA
20	GGGTTGGACC	AAGGAGACTAC	CCAGGGGAAG	TCTTACCTTC	AGAGGACTCT	GGAAAGGAGG	CTGCAAGTTT
	TCATGGTCA	AGAA TTCAGA	GCCCAGTAGA	GACAGCTTAT	CTCTGTTCA	AGATGCTGG	GGCCTTGGTT
	GGAAGATTCA	AAGGCTAGGA	AACCAGGAGC	CACCAAAAGC	GTAACTGGGG	CCAGAGGATC	CACTTTCAAG
	GTGGCAAGTT	GGTCCCCCCC	ATGTGGCTGC	TTGAGTATCC	TCACATGGCG	GCTCACATCC	TTCCAAGTAA
	GCAATGAAA	AGGCCAAGAA	AGATGCTGCA	AAGATGTTAT	GACCTAGCCT	CAGAAATCAC	ACACCATCCC
25	TGCCACCAT	AGTAAGAAGT	CCAGCCCACG	TCCAGGAGAA	GAGGAAGCAG	ATTCCCTCCTT	TTGAAATGAA
	GAATATCAAG	TAATCGGGG	GGCATATGAA	AGCCACCACA	CACCAACAGG	ATCTTTAG	AGCATACTTC
	TTATACCATC	ACTGTAGTTC	CTTAAGACTC	AGGGGCAAAG	CCTCACTTCC	TTAGCACCCA	GTGAAGACCA
	CGCTTACTCC	CTCACTCAAC	CTCTTGCTAC	TTCCCACCTC	TCCTGTCCAA	CATCTAGTGT	CACTTTCCAG
	AACATACCAA	CAGTTTCCCC	AGTTCTGTGC	CTCTGCTCAG	GCTGTTCCCC	CTGCCCTGGTC	CACTTGTCT
30	CCTTCTTGT	CGGTCAAAT	GCTTCTTATC	CTTCAAGACC	CAGCTCTAGA	GTCACCTCCA	ACCCCTTACC
	CACCAAGCCC	CTCTCCAAGT	CTGTGTCCCA	CAACCCCCCT	GCTCCCTCCA	GGGCACCCCTC	CACCCCTCTGG
	GCCACAGTTG	TCAC GAGTC	GGCAGGGCAG	GGGCCGGGTG	GTGTCTTCTT	TGTGTTCTG	CACTCAGGGC
	AGAGCTCAGC	ACACAGCAGA	CGCTAAAAAA	ACATTAAAG	GATAGAAGCA	TTGATTGTG	GGTCCCCCAG
	TCTGGCTCCA	GGATGCCAGC	CAGCTGCTCC	TAGAAGCAAA	CGGACTTTTC	CTGGAAATC	CCAGAGGTGA
35	TGATCAGTAA	TCTCTCCCGT	GAECTCGTAGT	TCAGCTCTTC	CTCCATGAGC	CTGACTATCA	GTGGACCTTC
	CAGAAAGAGC	CCCCTTTCT	TCTCTCACCC	ACAGCACAGG	GCACTGGGA	AATGCCAAT	GAGTCCTGCC
	TCTGGGTGT	GCTT TGGACT	TTTCAGTGTG	TCTCGCATCC	ACTCTTCAAC	TTGAATGTTG	CAACAGCCAT
	GAAAAAAAGAA	ATGCAAAGCG	ATTCAGGATG	AGAGCAATAC	CCTACTCCAA	AGAAGGCAAC	ATAGAAGCTC
	AGAGAGATCA	AGCAATTTCG	CCAAGACCAC	ACAGCTAGGA	GTGGAACATCA	TGGCTGTCCA	AGCCCCATGC
40	CTCTGCTGAA	GGTAGAGATG	AATTACAGCA	ACAAGTCTAG	AAAGGTGCT	GCCCTATGGT	CTGTGAGTCT
	TGCCTAAGAA	TGAA AGAGGA	GCCAGTGGGT	TAAGATGAG	GTCACCAACA	ACGGTGGTGT	TGGAGTTTAC
	CACTGATAAT	AAGC GTGCAA	AATGTAATT	ACTAATGTTT	ATTGAGCTTA	GTGCACTGCG	TGGGGCATT
	TGCACATTGT	CTCT GATCCC	TATGACAACC	CTGAGAGGTA	GTGGTTTAA	CTGCCATGTT	ACAGGTGAGG
	TCATTGTGGT	TCAA GAGCT	TAAGTAACCT	CCCCAGCGTG	ACACGGCTTA	TAAGTAAGGC	AGCCAGGATG
45	TGAACCCAGT	AGGACTATCT	GGCTGCAAAG	TCCCCACCC	CCTCGCCATC	TGTATCCTCC	AATCACTTCA
	GTGCTTGTCT	GCATAGAAGG	TAACGGAAAT	CACGATGCCA	CAGACTGTCC	AGGAAGACAG	AAACTAGGCA
	GATGGGTG	CCATGGTCTC	CAAGCCAGAC	TGGAATCTCC	AGGTCTGGAA	TGATATCATT	TTTCTCTTT
	AATAAAATTAA	CTCACCCACC	ACACGGCTTT	GAGAGGCTCA	AAGTTGACCA	ACTCCCTTGG	GAGGGCCCCG
	GTTGATAAGG	AAGC AACGTG	AATCCTCCCA	TCACGGAAGC	TTCAAGGGAG	TCAAGGGTCC	AACACTTGAG
50	ATTGTTAGTG	CTGT TGGTGG	ATACTGGCA	AGGAAATATC	CCAGTGGAGC	CTCGAGATGA	AGAACATGAG
	GCCCCGTTT	AGAACCAAGG	ATCAGAGGGG	GCTCTGTAAG	ACCCAGGGGA	GTCAGGTGCA	CTGGAGCGCG
	GGCATGCAGA	AAACAGCCTG	AGCTCCACCT	CGGCTCTCC	TTGTCTGGC	TGGTGTCTCT	TAACCCCTGT
	CTCCCTCTGG	ACCAGTTTT	GTCCTTCCCT	TGTGACCGCT	GAGGGGTAAC	AGCCTTTTC	CACTTCTTT
	CAGGCCGAC	ATGCTCAATG	TCACCTTGCA	AGGGCCACT	CTTAACGGGA	CCTTGCCCA	GAGCAAATGC
55	CCCCAAGTGG	AGTC GCTGGG	CTGGCTCAAC	ACCATCCAGC	CCCCCTTCC	CTGGGTGCTG	TTCGTGTCTGG
	CCACCCCTAGA	GAACATCTTT	GTCCTCAGCG	TCTTCTGCC	GCACAAGAGC	AGCTGCACGG	TGGCAGAGAT
	CTACCTGGGG	AACC TGGCCG	CAGCAGACCT	GATCCTGGCC	TGCGGGCTGC	CCTTCTGGGC	CATCACCATC
	TCCAACAACT	TCGACTGGCT	CTTGGGGAG	ACGCTCTGCC	GCGTGGTGAA	TGCCATTATC	TCCATGAACC
	TGTACAGCAG	CATCTGTTTC	CTGATGCTGG	TGAGCATCGA	CCGCTACCTG	GCCCTGGTGA	AAACCATGTC
60	CATGGGCCGG	ATGC GCGGCG	TGCGCTGGGC	CAAGCTCTAC	AGCTTGGTGA	TCTGGGGGTG	TACGCTGCTC
	CTGAGCTCAC	CCAT GCTGGT	GTTCCGGACC	ATGAAGGAGT	ACAGCGATGA	GGGCCACAAC	GTCACCGCTT
	GTGT CATCAG	CTACCCATCC	CTCATCTGGG	AAGTGTTCAC	CAACATGCTC	CTGAATGTCG	TGGGCTTCCCT
	GCTCCCCCTG	AGTGT CATCA	CCTTCTGCAC	GATGCAGATC	ATGCAGGTGC	TGCGGAACAA	CGAGATGCG

DRAFT - NOT FOR CITATION

AAGTTCAAGG AGA'CCAGAC GGAGAGGAGG GCCACGGTGC TAGTCCTGGT TGTGCTGCTG CTATTCATCA
 TCTGCTGGCT GCCCTTCCAG ATCAGCACCT TCCTGGATAC GCTGCATCG CTCGGCATCC TCTCCAGCTG
 CCAGGACGAG CGC ATCATCG ATGTAATCAC ACAGATCGCC TCCTTCATGG CCTACAGCAA CAGCTGCCCTC
 AACCCACTGG TGTA CGTGAT CGTGGGCAAG CGCTTCCGAA AGAAGTCTTG GGAGGTGTAC CAGGGAGTGT
 5 GCCAGAAAGG GGG'CTGCAGG TCAGAACCCA TTCAAGATGGA GAACTCATG GGCACACTGC GGACCTCCAT
 CTCCTGGAA CGCCAGATTCA ACAAACTGCA GGACTGGGCA GGGAGCAGAC AGTGAGCAAA CGCCAGCAGG
 GCTGCTGTGA ATTGTGTAA GGATTGAGGG ACAGTTGCTT TTCAGCATGG GCCCAGGAAT GCCAAGGAGA
 CATCTATGCA CGAC CTTGGG AAATGAGTTG ATGTCCTCCG TAAAACACCG GAGACTAATT CCTGCCCTGC
 10 CCAATTTCG AGGGAGCATG GCTGTGAGGA TGGGGTGAAC TCACGCACAG CCAAGGACTC CAAAATCACA
 ACAGCATTAC TGTICTTATT TGCTGCCACA CCTGAGCCAG CCTGCTCCCT CCCAGGAGTG GAGGAGGCCT
 GGGGGCAGGG AGA'GGAGTGA CTGAGCTTCC CTCCCGTGTG TTCTCCGTCC CTGCCCCAGC AAGACAACCT
 AGATCTCCAG GAGA ACTGCC ATCCAGCTT GGTGCAATGG CTGAGTCAC AAGTGAAGTTG TTGCCCTGGG
 15 TTTCTTAAAT CTATTCAAGCT AGAACTTTGA AGGACAATT CTTGCATTAA TAAAGGTTAA GCCCTGAGGG
 GTCCCCTGATA ACA CCTGGA GACCAGGATT TTATGGCTT CCTCACTGAT GGACAAAGGAG GTCTGTGCCA
 20 AAGAAGAATC CAAT'AAGCAC ATATTGAGCA CTTGCTGTAT ATGCACTT GAGCACTGTA GGCAAGAGGG
 AAGAAAGAGA AGGAGCCATC TCCATCTGAG AGGAACCTAA AGACTCAAGT GGGAACGACT GGGCACTGCC
 ACCACCAGAA AGCT GTTCGA TGAGACGGTC GAGCAGGGTG CTGTTGGGTG TATGGACAGC AGAAGGGGGA
 GCCAGGTTCC AGCT ACCAA TACTATTGCA CACCACTGT CCTGCCCTC -3' (FRAG. NO:2275) (SEQ. ID NO:2454)
 5'- CAGATTCAAA CTGCAAGGA CTGGGAGGG AGCAGACAGT GAGCAAAACGC CAGCAGGGCT GCTGTGAATT
 25 TGTGTAAGGA TTGAGGGACA GTTGTCTTTC AGCATGGGCC CAGGAATGCC AAGGAGACAT CTATGCACCA
 CCTTGGAAA TGAC'TTGATG TCTCCGGTAA AACACCGGAG ACTAATTCT GCCCTGCCCA ATTTTGCAAGG
 GAGCATGGCT GTGAGGATGG GGTGAACCTA CGCACAGCCA AGGACTCCAA AATCACAAACA GCATTACTGT
 TCTTATTTCG TGCCACACCT GAGCCAGCCT GCTCCTTCCC AGGAGTGGAG GAGGCTGGG GGGAGGGAGA
 30 GGAGTGACTG AGC' TCCCTC CCGTGTGTT CTCGTCCTG CCCCAGCAAG ACAACCTTAGA TCTCCAGGAG
 AACTGCCATC CAGCTTTGGT GCAATGGCTG AGTGCACAAG TGAGTTGTTG CCCTGGGTTT CTTTAATCTA
 TTCAGCTAGA ACTTIGAAGG ACAATTCTT GCATTAATAA AGGTTAAGGC CTGAGGGGTC CCTGATAACA
 ACCTGGAGAC CAGGATTTTA TGGCTCCCT CACTGATGGG CAAGGAGGTC TGTGCCAAAG AAGAATCCAA
 TAAGCACATA TTGAGCACTT GCTGTATATG CAGTATTGAG CACTGTAGGC AAGACCCAAG AAAGAGAAGG
 AGCCATCTCC ATCT'GAAGG AACTCAAAGA CTCAAGTGGG AACGACTGGG CACTGCCACC ACCAGAAAGC
 35 TGTTCGACGA GACGGTCGAG CAGGGTGTG TGGGTGATAT GGACAGCAGA AGGGGGAGAC CAAGGTTCCA
 GCTCAACCAA TAACTATTGC ACAACCACT GTCCCTGCC CAGTTCCTT TTATGTAACA TGAAGTCGTT
 GTGAGGGTTA AAGC CAGTAA CAGGTATAAA GTACTTAGAA AAGCAAAGGG TGCTACGTAC ATGTGAGGGCA
 TCATTACGCA GACGTAAC TGATGGTAA ACTATAAGGA AAAGACACTG AGGCTAGAA ATAGCTCCGT
 GGAGCAGAAT CAGI'ATTGGG AGCCGGTGGC GGTGTGAAGC ACCAGTGTCT GGCACACAGT AGGTGCTCAT
 40 TGGCTCCCTT CCAC'CTGTCA TTCCCACAC CCTGAGGCC CAAACGCCAC ACACACAGGA GCATTGGAG
 AGAAGGCCAT GTCITCAAAG TCTGATTGT GATGAGGCAG AGGAAGATAT TTCTAATCGG TCTTGCCTCAG
 AGGATCACAG TGTGAGACC CCCACCCACC AGCCGGTACCT TGGGAAGGGG GAGAGTGCAG GCCTGCTCAG
 GGACTGTTCC TGTCCTCAGCA ACCAAGGGAT TGTTCCTGTC AATCAATGGT TTATTGGAAG GTGGCCCAAGT
 ATGAGCCCTA GAAGAGTGTG AAAAGGAATG GCAATGGTGT TCACCATCGG CAGTGCAGG GCAGCACTCA
 45 TTCACTTGAT AAATGAATAT TTATTAGCTG GTTGGAGAGC TAGAACCTGG AGAGCTAGAA CCTGGAGAAC
 TAGAACCTGG AGGGCTAGAA CCTGGAGAGG CTAGAACCAA GAAGGGCTAG AACCTGGAGG GGCTAGAAC
 TAGAGAAGCT AAAACCTGAG CTAGAACCTG GAGGACTAGA ACCTGGAGGG CTAGAACCTG GAGGGCTAGA
 ACCTGGAGGG CTGGAATCTG GAGAGCTAGA ACCTGGAGGG CTAGAACCTG GAGGGCTAGA ACCTAGAAGG
 GCTAGAACCT GGAGGGCTGG AATCTGGAGA GCTAGAACCT GGAGGGCTAG AACCTGGAGG GCTAGAACCT
 50 AGAAGGGCTA GAAAC'CTGGAG GGCTAGAAC TGGCAGGTAA GAACCTAGAA GGGCTAGAAC CTGGAGAGCC
 AGAACCTGGA GGGCTAGAAC CTGGAAGGGC TAGAACCTGT AGAGCTAGAA CATGGAGAGC TAGAACCCGG
 CAGGCTAGAA CCTGGCAAGC TAGAACCTGG AGGGATGAA CCTGGAGGGC TAGAACCTGG AGAATGAGAA
 AAATTACAT GGCAAAGAGC CCATAAAATCC TGACCAATCC AACTCTGAAT TTAAAGCAA AAGCTGTAAA
 AAAAAGATTG CCTC'CTTACC CCCAACCCAC TCTTTTTC CACCACCCAC TCTCCTCTGC CTCAGTAAGT
 55 ATCTGGAGGA AGAA AACAGG TGAAAGAAGA AGTAAAAACC ATTTAGTATT AGTATTAGAA TGAAGTCAAA
 CTGTGCCACA CATG'GTGAAT GAAAAAAA AAAAGAGGC TGTGTTTGT CACACAGGGC AGTCATTCA
 CACCAAGAGCA CGTC ATGGTC TGAGACTCTC TTAGGAGCAG AGCTCTGCC CAATGGCCAT GTGGGGATCC
 ACACCTGGTC TGAGGGGCAA CTGAGTCTGC GGGAGAAGAG CGGCCCTATG CATGGTGTAG ATGCCCTGAT
 AAAGAACATC TGTCCTGTGA AAGACTCAAT GAGCTGTTAT GTTGTAAACA GGAAGCATT CACATCCAA
 CGAGAAAATC ATGIAAACAT GTGTCTTTTC TGTAGAGCAT AATAAATGGA TGAGGTTTTT GCAAAAAAAA
 AAAAAAAAAA -3' (FRAG. NO:2275) (SEQ. ID NO:2453)
 5'- GAGCTCTTCA ATATTTAGT GAAAGCTATA GATGAGGCTC CATAGGGAT AAAGCACAGA CACACCTTT
 CAGAGGGCTT GTGGACTCTG GGCAGCCTGT CCATAGACCT CTGCCCCAA CTGGCAAGTC AGGAAACTCC
 AGATTAAGGA GCCCCAATGT GGTTGAACAG CCAGGTGCAC AGATGAGTCA ACCACACAGC CAGGCCAGGG
 60 AGGGCCTTCA CTCAAGAGCC TACAGCCAGT TCACAGCCAA GCCAGGGCTA GCGCCAGGCC ACCCATAAAC
 TGATCTGAGA CTCTGTTCC CTGTCCTCAT GATGATGGG TCAGGCTTGA TTGCTGGTTT GTAGGCTTGT
 TATGAATCAA GTCACAGGGA AGAGGAGCTG ATGGGCTGGG GGGACGTCCT CTGGCCCTCC TGTCTCTTCC

CCAGATCCAC TGGGCCACT CTTATCTGTT CTCTTCTGAA GGAAGGGTT TAAGGCTCA AAAAAAAATG
 TTTGAAAGT CCCGCCCT TCCAGCTCT ACCGTCTAG CCCTGGGAGT GTAAAGTGCT GCAGATAAGT
 AGTAAGTCTT TGAC CAAAAC TGAGAAAGCC AGCCTGAGCC TTGACATGG AGAACACCTCC GCCATACATC
 TCCGAAGAAA CGGCCCGCGT TCTCAGGGGA GCGAAACAC CGTACCCAG GAAACAGGAC AGCTTCTGCC
 5 ACTGTGCCCG TTGGGAGCCG TACGTGGCAT GACAAAGAAA TCCAGGACT CGCCTGCC ACCTGGCCAC
 CCTCTGTTA CACCTCCGC GTAAACGCCG ACTGTTACA TCCAAAACACT AGACACAAAAA TAACCACCTC
 AAGAAGATAA ATAATGATAA GAAATAAATG TTACGCGAGG CAAATTATT CACATGGGGC TTCCCAGGGC
 ACTTTGTGGT CAGCCGGGAG GGACGTTTT GCGCTCCAC GACTCCAACG GGCAGCCGGG CCTACGAAA
 CATGAAATC TTCCAAGAGC CTCCCTGGCC CCCAGGGCTC AGAGGGTGGC AGAGCGGAGA GCGAAGGTGG
 10 CCGCAGCCTT CCCCCCCCCA CAGCCAGCCT GGCTCAGCT GGGCAGGAGT GCAGAGCTCA GCTGGAGGCC
 AGGGGAAGT GCCCAGGAGG CTGATGACAT CACTACCCAG CCCTTCAAAG ATGAGCTGTT CCCGCCGCCA
 CTCCAGCTCT GGCTCTGGG CTCCGAGGAG GGGTGGGGAC GGTGGTGACG GTGGGGACAT CAGGCTGCC
 CGCAGTACCA GGGAGCGACT GAAGTCCCCA TGCCGTTGC TCCGGAGAAAG GTGGGTGCCG GGCAGGGGCT
 GCTCCAGCCG CCTCACCTCT GCTGGGAGGA CAAACTGTCC CAGCACAGAG GGAGGGAGGG AGGGCAGGCA
 15 GCGGGGAGAA GTTCCCTGT GGTCGTGGG AGTTGGAAA AGTCCCTTC CTTCCGGAGG GAGG-3' (FRAG..NO:2275) (SEQ.ID NO:2452)
 5'- GCCCTTCAAA GATGAGCTGT TCCCGCCGCC ACTCCAGCTC TGGCTCTGG GCTCCGAGGA GGGGTGGGG
 CGGTGGTAC GGTGGGACA TCAGGCTGCC CCCGAGTACC AGGGAGCGAC TGAAGTGCC ATGCCGCTTG
 20 CTCCGGAGAA GGTGGGTGCC GGGCAGGGGC TGCTCCAGCC GCCTCACCTC TGCTGGGAGG ACAAACTGTC
 CCAGCACAGA GGGAGGGAGG GAGGGCAGGC AGCGGGGAGA AGTTCCCTG TGTCGTGGG GAGTT -3'
 (FRAG.NO:2275) (SEQ.ID NO:2451)
 5'- GCCCTTCAAA GATGAGCTGT TCCCGCCGCC ACTCCAGCTC TGGCTCTGG GCTCCGAGGA GGGGTGGGG
 CGGTGGGGAC ATCAGGCTGC CCCGAGTAC CAGGGAGCGA CTGAAGTGCC CATGCCCTT GCTCCGGAGA
 25 AGGTGGGTGC CGGGCAGGGG CTGCTCCAGC CGCTCACCT CTGCTGGGAG GACAAACTGT CCCAGCACAG
 AGGGAGGGAG GGAGGGCAGG CAGCGGGGAG AAGTTCCCT GTGGTCGTGG GGAGTT-3' (FRAG.NO:2275) (SEQ.
 ID NO:2450)
 5'- ATGTTCTCTC CCTGGAAGAT ATCAATGTT CTGTCCTGTC GTGAGGACTC CGTCCCAC ACGGCCTCTT
 TCAGCGCCGA CATCCTCAAT GTCACCTGC AAGGGCCAC TCTTAACGGG ACCTTGCCT AGAGCAAATG
 30 CCCCCAAGTG GAGTGGCTGG GCTGGCTCAA CACCATCCAG CCCCCCTTCC TCTGGGTGCT GTTCGTGCTG
 GCCACCTAG AGAACATCTT TGTCCTCAGC GTCTCTGCC TGACACAAGAG CAGCTGCACG GTGGCAGAGA
 TCTACCTGGG GAAACCTGGCC GCAGCAGACC TGATCCTGGC CTGCGGGCTG CCCTCTGGG CCATCACCCT
 CTCCAACAAC TTCCACTGGC TCTTGGGG AAGCCTGTC GCGCTGGTGA ATGCCATTAT CTCCATGAAC
 35 CTGTACAGCA GCATCTGTT CCTGATGCTG GTGAGCATCG ACCGCTACCT GGCCCTGGTG AAAACCATGT
 CCATGGGCCG GATCAGCGCCG GTGCGCTGGG CCAAGCTCTA CAGCTTGGTG ATCTGGGGGT GTACGCTGCT
 CCTGAGCTCA CCCATGCTGG TGTTCCGGAC CATGAAGGAG TACAGCGATG AGGGCCACAA CGTCACCGCT
 TGTGTCATCA GCTACCATC CCTCATCTGG GAAGTGTCA CCAACATGCT CCTGAATGTC GTGGGCTTCC
 TGCTGCCCT GAGTGTACATC ACCTCTGCA CGATGCAGAT CATGCAGGTG CTGCGGAACA ACGAGATGCA
 40 GAAGTTCAAG GAGATCCAGA CGGAGAGGAG GGGCACGGTG CTAGTCCTGG TTGTGCTGCT GCTATTATC
 ATCTGCTGGC TGCCCTTCCA GATCAGCACC TTCTGGATA CGTGCATCG CCTCGGCATC CTCTCCAGCT
 GCCAGGACGA GCGCATCATC GATGTAATCA CACAGATCGC CTCCCTCATG GCCTACAGCA ACAGCTGCT
 CAACCCACTG GTGTACGTGA TCGTGGGAA GCGCTCCGA AAGAAGTCTT GGGAGGTGTA CCAGGGAGTG
 TGCCAGAAAG GGGGCTGCAG GTCAGAACCC ATTCAAGATGG AGAAACTCCAT GGGCACACTG CGGACCTCCA
 TCTCCGTGGA ACGCCAGATT CACAAACTGC AGGACTGGGC AGGGAGCAGA CAGTGAGCAA ACGCCAGCAG
 GGCTGCTGTG AATTGTGTA AGGATTGAGG GACAGTTGCT T -3' (FRAG. NO:2275) (SEQ. ID NO:2449)
 45 5'- ATGTTCTCTC CCTGGAAGAT ATCAATGTT CTGTCCTGTT GTGAGGACTC CGTCCCAC ACGGCCTCTT
 TCAGCGCCGA CATCCTCAAT GTCACCTGC AAGGGCCAC TCTTAACGGG ACCTTGCCT AGAGCAAATG
 CCCCCAAGTG GAGTGGCTGG GCTGGCTCAA CACCATCCAG CCCCCCTTCC TCTGGGTGCT GTTCGTGCTG
 GCCACCTAG AGAACATCTT TGTCCTCAGC GTCTCTGCC TGACACAAGAG CAGCTGCACG GTGGCAGAGA
 50 TCTACCTGGG GAAACCTGGCC GCAGCAGACC TGATCCTGGC CTGCGGGCTG CCCTCTGGG CCATCACCCT
 CTCCAACAAC TTCCACTGGC TCTTGGGG AAGCCTGTC GCGCTGGTGA ATGCCATTAT CTCCATGAAC
 CTGTACAGCA GCATCTGTT CCTGATGCTG GTGAGCATCG ACCGCTACCT GGCCCTGGTG AAAACCATGT
 CCATGGGCCG GATCAGCGCCG GTGCGCTGGG CCAAGCTCTA CAGCTTGGTG ATCTGGGGGT GTACGCTGCT
 CCTGAGCTCA CCCATGCTGG TGTTCCGGAC CATGAAGGAG TACAGCGATG AGGGCCACAA CGTCACCGCT
 TGTGTCATCA GCTACCATC CCTCATCTGG GAAGTGTCA CCAACATGCT CCTGAATGTC GTGGGCTTCC
 55 TGCTGCCCT GAGTGTACATC ACCTCTGCA CGATGCAGAT CATGCAGGTG CTGCGGAACA ACGAGATGCA
 GAAGTTCAAG GAGATCCAGA CGGAGAGGAG GGGCACGGTG CTAGTCCTGG TTGTGCTGCT GCTATTATC
 ATCTGCTGGC TGCCCTTCCA GATCAGCACC TTCTGGATA CGTGCATCG CCTCGGCATC CTCTCCAGCT
 GCCAGGACGA GCGCATCATC GATGTAATCA CACAGATCGC CTCCCTCATG GCCTACAGCA ACAGCTGCT
 CAACCCACTG GTGTACGTGA TCGTGGGAA GCGCTCCGA AAGAAGTCTT GGGAGGTGTA CCAGGGAGTG
 60 TGCCAGAAAG GGGGCTGCAG GTCAGAACCC ATTCAAGATGG AGAAACTCCAT GGGCACACTG CGGACCTCCA
 TCTCCGTGGA ACGCCAGATT CACAAACTGC AGGACTGGGC AGGGAGCAGA CAGTGAGCAA ACGCCAGCAG
 GGCTGCTGTG AATTGTGTA AGGATTGAGG GACAGTTGCT T -3' (FRAG. NO:2275) (SEQ. ID NO:2448)

5'- TGATCCTATC ACAACCTGAG AGTAGTTTT ACTCCATTAA CAGGTGAGGT CATTGTGGTT CAAGGACGTT
 AAGTAACCTTC CCCAGCTCAC ACGGCTTATA AGTAAGGCAG CCAGGATGTG AACCCAGTAG GACTATCTGG
 CTGCAAAGTC CCCACCCCTCC CTCGCCATCT GTATCCTCCA ATCATCTTCA GTGCTTGCT GATAGAAGGT
 5 ACGGAATAC GATCACCACAG ACTGTCCAGG AAGACAGAAA CTAGGCAGAT GGGCTGGCCA TGGCTCCAA
 GCCAGACTGG AATCTCCAGG TCTGGAATGA TATCATTTT CTCTTTAAAT AAATTAACTC ACCCACCACA
 CGGCTTGAG AGGC TCAAAAG GTGACCAACT CCCTTGGGAG GGGCCCGGT GATAAGGAAG GAATGTGAAT
 CCTCCCATCA CGGAAGCTTC AAGGAGGTCA AGGGTCCAAC ACTTGAGATT GTTAGTGTG TTGGTGGATA
 CTGCAGAATA TCCAGTGGAG CCTCAGATGA AGAACATGAG GCCCCGTTA GATCCAAGGA TCAGAGGGGG
 CTCTGTAAAGA CCCAGGGGAG TCAGGTGCAC TGGAGCGCG GCTGCAGAAA ACAGCCTGAG CTCCACCTCG
 10 GCTTCTCTT GCCCCTGGCTG GTTGTCTTA ACCCCTGTCT CTTCTGGAC CAGTTTGT CTTCCCTTG
 TGACCTGAGG GGTACAGGCC TCTTTTCCAC TTCTTTCAG CGCCGACATG CTCAATGTCA CTTGCAAGG
 GCCCACTCTT AACGGGACCT TTGCCCCAGAG CAAATGCCCG CAAGTGGAGT GGCTGGGCTG GCTCAACACC
 ATCCAGCCCC CTCCTCTCTG GGTGCTGTT GTGCTGGCCA CCCTAGAGAA CATCTTGTC CTCAGCGTCT
 TCTGCTGCA CAAGAGCAGC TGCACGGTGG CAGAGATCTA CCTGGGGAAAC CTGGCCGAG CAGACCTGAT
 15 CCTGGCTCTG GGGCTGCCCT TCTGGCCAT CACCATCTCC AACAACTTCG ACTGGCTCTT TGGGGAGACG
 CTCTGCCGCG TGGTGAATGC CATTATCTCC ATGAACCTGT ACAGCAGCAT CTGTTTCTG ATGCTGGTGA
 GCATCGACCG CTACCTGGCC CTGGTAAAAA CCATGTCCAT GGGCCGGATG CGCCGGTGC GCTGGGCCAA
 GCTCTACAGC TTGGTGTACT GGGGGTGTAC GCTGCTCCTG AGCTCACCCA TGCTGGTGT CCGGACCATG
 AAGGAGTACA GCGATGAGGG CCACAAACGTC ACCGCTTGTG TCATCAGCTA CCCATCCCTC ATCTGGGAAG
 20 TGTTCACCAA CATCCTCTG AATGTCGTGG GCTTCTGT GCCCCCTGAGT GTCATCACCT TCTGCACGAT
 GCAGATCATG CAGGTGCTGC GGAACAAACGA GATGCAGAG TTCAAGGAGA TCCAGACGGAA GAGGAGGGCC
 ACGGTGCTAG TCCIGGTGT GCTGCTGCTA TTCAATCATCT GCTGGCTGCC CTTCCAGATC AGCACCTTCC
 TGGATACGCT GCATCGCCTC GGCATCCTCT CCAGCTGCCA GGACGAGCGC ATCATCGATG TAATCACACA
 GATGCCCTCC TTCACTGGCCT ACAGCAACAG CTGCCCTAAC CCACTGGTGT ACGTGATCGT GGGCAAGCGC
 25 TTCCGAAAGA AGTCTTGGGA GGTGTACCG GAGGTGTGCC AGAAAGGGGG CTGCAGGTCA GAACCCATTC
 AGATGGAGAA CTCCATGGGC ACACGCGGA CCTCCATCTC CGTGGAAACGC CAGATTACA AACTGCAGGA
 CTGGGCAGGG AGCA GACAGT GAGAAACACG CAGCAGGGCT GCTGTGAATT TGTGTAAGGA TTGAGGGACA
 GTTGTCTTTC AGCACTGGCC CAGGAATGCC AAGGAGACAT CTATGCACGA CCTTGGGAAA TGAGTGTGTA
 TGTCTCCGGT AAAACACCGG AGACTAATTC CTGCCCTGCC CAATTTCGA GGGAGCATGG CTGTGAGGAT
 30 GGGGTAACT CACCACACG CAAGGACTCC AAAATCACAA CAGCATTACT GTTCTTATT GCTGCCACAC
 CTGAGCCAGC CTGCTCTTC CCAGGAGTGG AGGAGGCCCT GGGGAGGGAG AGGAGTGACT GAGCTTCCCT
 CCCGTGTGTT CTCCGTCCCT GCCCCAGCAA GACAACCTAG ATCTCCAGGA GAACTGCCAT CCACGTTTGG
 TGCAATGGCT GAGTGCACAA GTGAGTTGTT GCCCTGGGTT TCTTAAATCT ATCAGCTAGA ACTTTGAAGG
 ACAATTCTT GCATTAATAA AGGTTAACCC CTGAGGGGTC CCTTGATAAC AACCTGGAGA CCAGGATTT
 35 ATGGCTCCCC TCACIGATGG ACAAGGAGGT CTGTCACAA GAAGAATCAA TAAGCACATA TGAGCACTTC
 TGTATATCAG TATTGAGCAC TGTAGGCA -3' (FRAG. NO:2275) (SEQ. ID NO:2447)
 5'- CTGAGAAAAA CAGCCTGAGC TCCACCTCGG CTTCCTCTG CCCTGGCTGG TTGCTCTTAA CCCCTGTCTC
 CTTCTGGACC AGTITTTGTC CTTCCCTTGT GACCCCTGAGG GGTAAACAGCC TCTTTTCCAC TTTCTTTCAG
 CGCCGACATG CTCAATGTCA CCTTGCAAGG GCCCACTCTT AACGGGACCT TTGCCCAGAG CAAATGCCCC
 40 CAAGTGGAGT GGCCTGGGCTG GCTCAACACC ATCCAGCCCC CCTTCCTCTG GGTGCTGTTG GTGCTGGCCA
 CCCTAGAGAA CATCTTGTG CTCAGCGTCT TCTGCCCTGCA CAAGAGCAGC TGACGGTGG CAGAGATCTA
 CCTGGGGAAC CTGC CCGCAG CAGACCTGAT CCTGGCCCTG GGGCTGCCCT TCTGGGCCAT CACCATCTCC
 AACAACTTCG ACTGGCTCTT TGGGGAGACG CTCTGCCCG TGTTGAATGC CATTATCTCC ATGAACCTGT
 ACAGCAGCAT CTGTTTCTG ATGCTGGTGA GCATCGACCG CTACCTGGCC CTGGTGAAA CCATGTCCAT
 45 GGGCCGGATG CGCC GCGTGC GCTGGGCAA GCTCTACAGC TTGGTGATCT GGGGGTGTAC GCTGCTCTG
 AGCTCACCCA TGCTGGTGT CGGGACCATG AAGGAGTACA GCGATGAGGG CCACAACGTC ACCGTTGTG
 TCATCAGCTA CCCATCCCTC ATCTGGGAAG TGTTCACCAA CATGCTCTG AATGTCGTGG GCTTCCTGCT
 GCCCTGAGT GTCACTACCT TCTGCACGAT GCAGATCATG CAGGTGCTGC GGAACAACGA GATGAGAAG
 TTCAAGGAGA TCCAGACGGA GAGGAGGGCC ACGGTGCTAG TCCTGGTGT GCTGCTGTA TTCATCATCT
 50 GCTGGCTGCC CTTCAGATC AGCACCTCC TGGATACGCT GCATGCCCTC GGCATCCCTC CCAGCTGCCA
 GGACGAGCGC ATCATCGAT TAATCACACA GATGCCCTCC TTCATGGCCT ACAGCAACAG CTGCCCTAAC
 CCACTGGTGT ACGTGTACGT GGGCAAGCGC TTCCGAAAGA AGTCTTGGGA GGTGACCGAG GGAGTGTGCC
 AGAAAGGGGG CTGCAGGTCA GAACCCATTG AGATGGAGAA CTCCATGGGC ACACTGCGGA CCTCCATCTC
 CGTGGAAACGC CAGATTACA AACTGCAGGA CTGGGCAGGG AGCAGACAGT GAGCAAACGC CAGCAGGGCT
 55 GCTGTGAATT TGTGTAAGGA TTGAGGGACA GTTGCTTTTC AGCATGGGCC CAGGAATGCC AAGGAGACAT
 CTATGCACGA CCTTGGAAA TGAGTTGATG TCTCCGGTAA AACACCGGAG ACTAATTCC GNCCTGCCA
 ATTTTGCAAGG GAGCAGTGGCT GTGAGGATGG GGTGAACCTCA CGCACAGCCA AGGACTCCAA AATCACACA
 GCATTACTGT TCTTATTGTC TGCCACACCT GAGCCAGCCT GCTCTTCCC AGGAGTGGAG GAGGCCTGGG
 GGCAGGGAGA GGAGTGTACT AGCTTCCCTC CCGTGTGTT TCCGTCCCTG CCCCAGCAAG ACAACTTGA
 60 TCTCCAGGAG AACIGCCATC CAGCTTTGGT GCAATGGCTG AGTGCACAAG TGAGTGTG TGAGTGTG
 CTTTAATCTA TTCACTGCTAGA ACTTTGAAGG ACAATTCTT GCATTAATAA AGGTTAAGCC CTGAGGGGTC
 CCTGATAACA ACCTGGAGAC CAGGATTAA TGGCTCCCTC CACTGATGGA CAAGGGAGGT CTGTGCCAA

GAAGAATCCA ATAAGCACAT ATTGAGCACT TGCTGTATAT GCAGTATTGA GCACTGTAGG CAAGAGGGAA
 GAAAGAGAAG GAGCCATCTC CATCTTGAAAG GAACTCAAAG ACTCAAGTGG GAACGACTGG CACTGCCACC
 ACCAGAAAGC TGTICGACGA GACGGTCGAG CAGGGTGCTG TGGGTGATAT GGACAGCAGA AGGGGGAGAC
 5 CAAGGTTCCA GCTAACCAA TAACTATTGC ACAACCACCT GTCCCTGCCT CAGTCCCTC TTCTGTAACA
 TGAAGTCGTT GTGAGGGTTA AAGGCAGTAA CAGGTATAAA GTACTTAGAA AAGCAAAGGG TGCTACGTAC
 ATGTGAGGCA TCATACGCA GACGTAACTG GGATATGTTT ACTATAAGGA AAAGACACTG AGGTCTAGA -3'
 (FRAG. NO:2275) (SEQ. ID NO:2446)
 5' AAATGATAGA CGGTCAATAA TTGTTAAAT GCTTTTAAA ATGAATGCTT TAAGCCGGGT GCAGTGCCTC
 ACATCTGAA TCCCAGCACT TTGGAGCCGA GCGGGTGGAT TGTGTGAGGT CAGGAGTTCG AGACCAACCT
 10 GGCAACATG GCAAAACCTC ACTCTCTACC AAAAATACAA AAATTAGCCA GGCATGGTGG CAGGCACCTG
 TGATCCCAGC TACTCAGGAG GCTGAGACAG GAGAATCGCT TGAACCCGGG AGGCAAGGTT GCAGTGAGCC
 AAGATTACGC CATTGTACTC CAGCCTGGGT GACAGAGAGA GACTCCGCTC CAAAAAAA AAAAAAAA
 AAAAAATTAC GCTAACCAA CATGATCTCT CACCACTGTT GAATTTCTT TCTATGAGCC CAGGAGGGCC
 15 TCTCAGAGAG GAAAGCTCCT AGGTCTTCTT TTCCCTCTGC AAACCTCCCG CCTTGAAGGT TCAGAAGGAC
 TGTGCGTGC CGTTGCATCC TTTGCAAGTG TCCAAACCCCT GATCCCAGCT GTGCTTAGGG GTTCCCTGCAA
 ACCTTTCCA GGTC TTAATT ACCTCCCCT TCACTTCTG TTTACCAACT CAGCTTTTG TTTTAGTGTG
 TTTGAATTCC CTGAACTGAC CGTTGCTGA TCTCCACCTC CCAACTGAAT TAGGGGAGCT GGGCTCTGG
 20 AAACCCAGGT GCCCGGTGTT GCAGAGTGGC TGAAAGCTGG GATGGGGCAG ATCCCTGGCT ACATTGATGC
 ACACACACAC ACCAACATAC CCACACATGC ACACACACAC ACACACCCGC ACTCACACAC TTGGACATGC
 ATAGACCACA GCTITCCACA CCCTTCCTAG ACAGGGGTCA CTTGGTATCC TGGAGAGAGT GTGAAGTCCT
 GGAATGAAA GAGGGGGGAT TAAGCCCCAC CTCTAGCCAT GGGACTGAGA CAAGTCACCA CCAACCCATC
 TGCCTCTGT TTACCTCCTC TGTGAGGCAA GCACAGAGCC CATGCTGCG CCCCTGGATG GGAGTGATGT
 25 GAAACTTGAAG GGGGGTCAG AGCAAGGGTC GGGAAATGGAA TTGACAGCAC CTTGTAATTG GTAAGCCAAG CCCGAAGGG
 GGGGCACAGA GGAGGCCCTG GGCTGAGAAC AAAGTCCCTC AAGACCCCTGT CTCCATCAC
 CTGAAATAC TCAGATGTGT CTGTCCTCCT TATTAGGTTT AAAGTCCCTC AAGACCCCTGT GGGGTGCGAT
 GTGCTCCAGT CCAGACCCCT CCTCTGAGCT CCAGACCCCTG CTGGACCCAA CCAGCCCTAT
 CCCACCTGC CTGAAATTCT CCAAAGAAC TCCCCTTAA CAGTCCAGC CTTAACAGT TCCAGTCTAA
 ACACATGACC TTTCCTCTC AAATCAGCCC CCCATCTCG CTTTGCAGG AGATGGAAGC CATGACACCT
 30 GCCTCGCCCC TGTCCTCACCC CCATCCATGT CCAATCAAGC ACTAGGCGATG TCAGGTTAC CCTCTAAACT
 CCTCTGGAAT CCAC TCTCTC AGTCTCCATC ATCCCAAGTC GAAAGCTAATG GGCTAACTGG TCCTTGCTTC
 CACTCTACCC CCAC TGCAGT CCTGACTTCC TGAGCAGCAG CCAGGGCTTA ATCGATATTG ACACCAAGCG
 CCAACCTGAC TGAGATATCC TCCTGCACCA TCATCCCTCC ACCCTGTTA GTTCTGCTCA CCCTCAGTGT
 TCTCATCAAT AACCAACTCC CCTCACAGGC GCGTTGGGA CCCCCTGTT TATGCTCTCA CAGGACCTT
 TGCTTGAATT TTCACTGTAC TTAGGTCACT TTGCAAGTTT AAAGTGAATG AGCAATGTCT GGCTTCTCCA
 35 GTAGACTGTC AGCCTCTAGC CATTGTATAC CTAGCACCGC TGTGTGGAG CACGTGACAA ACGTCCAGTG
 AGTCAGGGAC TCAAGCAGTCT CCATTCTCC GCCCTGCTGG AGAATGCGT TATTGGCAA TCCCCAGCCC
 CTGTGCCATC TAACCATCTT TTCTCTCTG TTCAGCCCAG GTGTGGCCTC ACTCACATCC CACTCTGAGT
 CCAAATGTTT TCTCCCTGGA AGATATCAAT GTTCTGTCT GTTCGTGAGG ACTCCGTGCC CACCACGGCC
 TCTTCAGGT GAGTCAAAGG GATTCCCTAG TTCACTAGTT AGGGGAGGTG GGCAGACACC CTGGAGAACT
 40 CCCTGGAAAG CTCAACTCTC ATGCCCGGA CAACAGTGA AGGAACCATG GTGATGTTAA GCCCAAAGAC
 AAAACCTCTC AGGIGTCCAA GTCCCTGTT GAATCTGGG AGCAGAGGGA ATGTTCTGTG GTCTAGAGGA
 AGAGGGCTC AGGGAGGAGA AGGGCACATT CCTGGTTGTT ATATGTTCT ATCTATCCCA GATGAACTTG
 GAAGTGAAGG GAAGAGAGT AAACATTAAGA GTAAATACCC AGTGGATCAG ACAGCAATGT GCCAGATTGC
 CTTGGAAACA AAATATCTCC AACACATGGC TGACATTGG TGGGAGATCA GAACACCCCTA AAGAGAGAAT
 45 TTAAGGGAG GGGCAGGAGG ACCTGAGCCA GAGTAGAAGC AGAGGATAAG GAGATCTGTT CTTGGGGACA
 GCATTGCAA GAAACAGGC TGAGGGTCC ACTCCACCT CTCCACCCCTG CTGCAAGGTGC TGCCTATGAT
 GAAGATGAGC AGAAGGCCAT CTCAGCTGGG GCCACAGTGC AGGGATGGGC CAGGATCCAT CCCCCCTGGCT
 AGCAGGCCATC TTCTGTATGA TCCGATGGCT TCTCAGAGCC TACCTTGGTC TCTAGTGAAT TAGCTCATGA
 ACTGTCTTGC TGAGAAATTG ATAAGCAGCA TCTGGTGCTA GGTTTCTGT AGCTACAGAA ATGGGTTGA
 50 AAGATGATAG ACTCTCAAG CCAGGGGTAT GCAGGAAATG AGAGGACTCT GGAAAGGAGG CTGCAAGTTT
 GGGTTGGACC AAGCAGTAC CCAGGGGAAG TCTTACCTTC CTCTGTTCCA AGATGCTGG GGCCTTGGTT
 TCATGGTCA AGAATTCTAGA GCCCCAGTAGA GACAGCTTAT GTAACTGGGG CCAGAGGATC CACTTTCAAG
 GGAAGATTCA AAGCCTAGGA AACCAAGGAGC CACCAAAAGC TCACATGGCG GCTCACATCC TTCCAAGTAA
 GTGGCAAGTT GGTICCCCCC ATGTGGCTGC TTGAGTATCC GACCTAGCCT CAGAAATCAC ACACCATCCC
 55 GCAATGCAAAG AGGCAAGAA AGATGCTGCA AAGATGTTAT GAGGAAGCAG ATTCTCCCTT TTGAAATGAA
 TGCCACCATC AGTAAGAAGT CCAGCCCACG TCCAGGAGAA CACCAAGGG ATCTTTTAG AGCATACTTC
 GAATATCAAG TAATCGGGG GGCATATGAA AGCCACCACA CCTCACTTCC TTAGCACCCA GTGAAGACCA
 TTATACCATC ACTGAGTTC CTTAAGACTC AGGGGCAAAG TCCGTCCAA CATCTAGTGT CACTTTCCAG
 CGCTTACTCC CTCACCTCAAC CTCTTGCTAC TTCCACCTC TCCGTCCAA CATCTAGTGT CACTTTCCAG
 60 AACATACCAA CAGCTTCCCC AGTCTGTGC CTCTGCTCAG GCTGTTCCCC CTCACCTCCA GTCACCTCCA
 CCTTCTTGTGTC CGGTCAAAT GCTTCTTAT CTTCAAGAGC CAGCTCTAGA GTCACCTCCA ACCCCTTACC
 CACCAAGCCCCC CTCTCCAAGT CTGTGTCCCA CAACCCCCCT GCTCCCTCCA GGGCACCCCTC CACCCCTCTGG

	GCCACAGTTG	TCAGGAGTCA	GGCAGGGCAG	GGGCCGGGTG	GTGTCTTCTT	TGTGTTCTTG	CACTCAGGGC
	AGAGCTCAGC	ACACAGCAGA	CGCTAAAAAA	ACATTTAAAG	GATAGAACGA	TTGATTGTG	GGTCCCCCAG
5	TCTGGCTCCA	GGATGCCAGC	CAGCTGCTCC	TAGAACGAAA	CGGACTTTTC	CTGGAAATC	CCAGAGGTGA
	TGATCAGTAA	TCTCTCCCGT	GACTCGTAGT	TCAGCTCTTC	CTCCATGAGC	CTGACTATCA	GTGGACCTTC
	CAGAAAGAGC	CCCCTTTCTT	TCTCTCACCC	ACAGCACAGG	GCACGGGAA	AATGCCAAT	GAGTCCTGCC
	TCTGGGTGT	GCTTGGACT	TTTCAGTGTG	TCTCGCATCC	ACTCTTCAAA	TTGAATGTTG	CAACAGCCAT
	GAAAAAAGAA	ATGC'AAAGCG	ATTCAAGGATG	AGAGCAATAC	CCTACTCAA	AGAAGGCAAC	ATAGAAGCTC
	AGAGAGATCA	AGCAATTGTC	CCAAGACCAC	ACAGCTAGGA	GTGGAACCTA	TGGCTGTCCA	AGCCCCATGC
10	CTCTGCTGAA	GGTAGAGATG	AATTACAGCA	ACAAGTCTAG	AAAGGTGCCT	GCCCTATGGT	CTGTGAGTCT
	TGCCTAAGAA	TGAAAGAGGA	GCCAGTGGGT	TAAGATGAG	GTCACCAACA	ACGGTGGTGT	TGGAGTTAC
	CACTGATAAT	AAGC GTGCAA	AATGAAATT	ACTAATGTTT	ATTGAGCCTA	GTGCACTGCG	TGGGGCATT
	TGCACATTGT	CTCTGATCCC	TATGACAACC	CTGAGAGGTA	GTGGTTTAA	CTGCCATGTT	ACAGGTGAGG
	TCATTGTGGT	TCAA GGACGT	TAAGTAACCT	CCCCAGCGTG	ACACGGCTTA	TAAGTAAGGC	AGCCAGGATG
15	TGAACCCAGT	AGGACTATCT	GGCTGCAAAAG	TCCCCACCCCC	CCTCGCCATC	TGTATCCTCC	AATCACTTCA
	GTGCTTGTGCT	GCATAGAAGG	TAACGGAAAT	CACGATGCCA	CAGACTGTCC	AGGAAGACAG	AAACTAGGCA
	GATGGGCTGG	CCAT'GGTCTC	CAAGCCAGAC	TGGAATCTCC	AGGTCTGGAA	TGATATCATT	TTTCTCTTT
	AATAAAATTAA	CTCACCCACC	ACACGGCTT	GAGAGGCTCA	AAGTTGACCA	ACTCCCTTGG	GAGGGCCCCG
	GTIGATAAGG	AAGC AACGTG	AATCCTCCCA	TCACCGAACG	TTCAAGGAGG	TCAAGGGTCC	AACACTTGAG
20	ATTGTTAGTG	CTGT'GGTGG	ATACTGGCCA	AGGAAATATC	CCAGTGGAGC	CTCGAGATGA	AGAACATGAG
	GCCCCCGTTT	AGAACCAAGG	ATCAGAGGGG	GCTCTGTAA	ACCCAGGGGA	GTCAGGTGCA	CTGGAGCGCG
	GGCATGCAGA	AAA'AGCCTG	AGCTCCACCT	CGGCTCTCC	TTGTCCTGGC	TGGTTGTCCT	TAACCCCTGT
	CTCCTCTGG	ACCAAGTTTT	GTCTTCCCT	TGTGACCGCT	GAGGGGTAAC	AGCCTTTTC	CACTTCTT
	CAGCGCCGAC	ATGCTCAATG	TCACCTTGCA	AGGGCCCAC	CTTAACGGGA	CCTTGGCCA	GAGCAAATGC
25	CCCCAAGTGG	AGTC GCTGGG	CTGGCTCAAC	ACCATCCAGC	CCCCCTTCC	CTGGGTGCTG	TTCGTGCTGG
	CCACCCCTAGA	GAACATCTT	GTCTCTAGCG	TCTTCTGCCT	GCACAAGAGC	AGCTCACCG	TGGCAGAGAT
	CTACCTGGGG	AACTTGGCCG	CAGCAGACCT	GATCCTGGCC	TGCGGGCTGC	CCTCTGGGC	CATCACCATC
	TCCAACAAC	TCGACTGGCT	CTTGGGGAG	ACGCTCTGCC	CGTGGTGAA	TGCCATTATC	TCCATGAACC
	TGTACAGCAG	CATCTGTTTC	CTGATGCTGG	TGAGCATCGA	CCGCTACCTG	GCCCTGGTGA	AAACCATGTC
30	CATGGGCCGG	ATGCGCGGCG	TGCGCTGGG	CAAGCTCTAC	AGCTGGTGA	TCTGGGGTG	TACGCTGCTC
	CTGAGCTCAC	CCAT'GCTGGT	TTTCCGGACC	ATGAAGGAGT	ACAGCGATGA	GGGCCACAAC	GTCACCGCTT
	GTGTCATCAG	CTACCCATCC	CTCATCTGGG	AAAGTGTAC	CAACATGTC	CTGAATGTCG	TGGGCTTCTT
	GTCGCCCTG	AGTGTATCA	CCTTCTGCAC	GATCAGATC	ATGCAGGTGC	TGCGGAACAA	CGAGATGCG
	AAGTTCAAGG	AGATCCAGAC	GGAGAGGAGG	GCCACGGTGC	TAGTCCTGGT	TGTGCTGCTG	CTATTCATCA
35	TCTGCTGGCT	GCCCTTCCAG	ATCAGCACCT	TCCTGGATAC	GCTGCATCGC	CTCGGCATCC	TCTCCAGCTG
	CCAGGACGAG	CGCATCATCG	ATGTAATCAC	ACAGATGCC	TCCITCATGG	CCTACAGCAA	CAGCTGCCTC
	AAACCACTGG	TGTACGTGAT	CGTGGGCAAG	CGCTCCGAA	AGAAGTCTG	GGAGGGTGTAC	CAGGGAGTGT
	GCCAGAAAGG	GGGCTGCAGG	TCAGAACCCA	TTCAAGATGGA	GAACCTCATG	GGCACACTGC	GGACCTCCAT
	CTCCGTGGAA	CGCCAGATT	ACAAACTGCA	GGACTGGCA	GGGAGCAGAC	AGTGAGCAA	CGCCAGCAGG
40	GCTGCTGTGA	ATTGTTGTA	GGATTGAGGG	ACAGTTGCTT	TTCAGCATGG	GCCCAGGAAT	GCCAAGGAGA
	CATCTATGCA	CGACCTTGGG	AAATGAGTTG	ATGCTCCGG	TAAAACACCG	GAGACTAATT	CCTGCCCTGC
	CCAATTTCG	AGGGAGCATG	GCTGTGAGGA	TGGGGTGAAC	TCACGCACAG	CCAAGGACTC	CAAATCACA
	ACAGCATTAC	TGTTCTTATT	TGCTGCCACA	CCTGAGCCAG	CCTGCTCC	CCCAGGAGTG	GAGGAGGCCT
	GGGGGCAGGG	AGAGGAGTGA	CTGAGCTTCC	CTCCCGTGTG	TTCTCCGTCC	CTGCCCCAGC	AAGACAACCT
45	AGATCTCCAG	GAGA'ACTGCC	ATCCAGCTT	GGTCAATGG	CTGAGTGCAC	AAGTGAAGTTG	TTGCCCTGGG
	TTTCTTAAAT	CTAT'CAGCT	AGAACTTGA	AGGACAATT	CTTGCATTA	TAAAGGTTAA	GCCCTGAGGG
	GTCCCTGATA	ACAACCTGGA	GACCAGGATT	TTATGGCTCC	CCTCACTGAT	GGACAAGGGAG	GTCTGTGCCA
	AAGAAGAATC	CAATAAGCAC	ATATTGAGCA	CTTGTGTAT	ATGCAGTATT	GAGCACTGTA	GGCAAGAGGG
	AAGAAAGAGA	AGGAGCCATC	TCCATCTGA	AGGAACCTAA	AGACTCAAGT	GGGAACGACT	GGGCACTGCC
50	ACCACCAAGAA	AGC1GTTCGA	TGAGACGGTC	GAGCAGGGTG	CTGTGGTGA	TATGGACAGC	AGAAGGGGGA
	GCCAGGTTC	AGCTACCAA	TACTATTGCA	CACCACCTGT	CCTGCCTC-3'	(FRAG.NO:2275)	(SEQ. D NO:2445)
	5'-CAGATTCA	AACTGCAGGA	CTGGCAGGG	AGCAGACAGT	GAGCAAACGC	CAGCAGGGCT	GCTGTGAATT
	TGTGTAAGGA	TTGAGGGACA	GTTGCTTTTC	AGCATGGGCC	CAGGAATGCC	AAGGAGACAT	CTATGCACGA
	CCTTGGGAAA	TGAC TTGATG	TCTCCGGTA	AACACCGGAG	ACTAATTCC	GCCCTGCCA	ATTTCAGG
	GAGCATGGCT	G TGAGGATGG	GGTGAAC	CGCACAGCCA	AGGACTCCAA	AATCACAAACA	GCATTACTGT
55	TCTTATTG	TGCCACACCT	GAGCCAGCT	GCTCCTTCCC	AGGAGTGGAG	GAGGCTGGG	GGGAGGGAGA
	GGAGTGA	AGCTCCCTC	CCGTGTGTT	TCCGTCCTG	CCCCAGCAAG	ACAACCTAGA	TCTCCAGGAG
	AACTGCCATC	CAGCTTGGT	GCAATGGCTG	AGTCACAAG	TGAGTTGTTG	CCCTGGGTTT	CTTTAATCTA
	TTCAGCTAGA	ACTTGAAGG	ACAATTCTT	GCATTAATAA	AGGTTAAGCC	CTGAGGGGTC	CCTGATAACA
	ACCTGGAGAC	CAGC ATTTA	TGGCTCCCT	CACTGATGGA	CAAGGAGGTC	TGTGCCAAAG	AAGAATCAA
60	TAAGCACATA	TTGAGCACTT	GCTGTATATG	CAGTATTGAG	CACTGTAGGC	AAGACCAAG	AAAGAGAAGG
	AGCCATCTCC	ATCT'GAAGG	AACTCAAAGA	CTCAAGTGGG	AACGACTGGG	CACTGCCACC	ACCAGAAAGC
	TGTTCGACGA	GACGGTCGAG	CAGGGTGTG	TGGGTGATAT	GGACAGCAGA	AGGGGGAGAC	CAAGGTTCCA

GCTCAACCAA TAACTATTGC ACAACCACCT GTCCCTGCCT CAGTCCCCT TTATGTAACA TGAAGTCGTT
 GTGAGGGTTA AAGGCAGTAA CAGGTATAAA GTACTTAGAA AAGCAAAGGG TGCTACGTAC ATGTGAGGCA
 TCATTACGCA GACGTAACTG GGATATGTT ACTATAAGGA AAAGACACTG AGGTCTAGAA ATAGCTCCGT
 5 GGAGCAGAAT CAGTATTGGG AGCCGGTGGC GGGTGAAGC ACCAGTGTCT GGCACACAGT AGGTGCTCAT
 TGGCTCCCTT CCACCTGTCA TTCCCACAC CCTGAGGCC CAACCGCCAC ACACACAGGA GCATTTGGAG
 AGAAGGCCAT GTCTCAAAAG TCTGATTGT GATGAGGCAG AGGAAGATAT TTCTAATCGG TCTTGCCCCAG
 AGGATCACAG TGCTGAGACC CCCACCAAC AGCCGGTACC TGGGAAGGGG GAGAGTGCAG GCCTGCTCAG
 GGACTGTTCC TGTCAGCA ACCAAGGGAT TGTCTGTG AATCAATGGT TTATTGGAAG GTGGCCCAGT
 10 ATGAGCCCTA GAAGAGTGT AAAAGGAATG GCAATGGTGT TCACCATCGG CAGTGCCAGG GCAGCACTCA
 TTCACTTGTAT AAATGAATAT TTATTAGCTG GTTGAGAGC TAGAACCTGG AGAGCTAGAA CCTGGAGAAC
 TAGAACCTGG AGGGCTAGAA CCTGGAGAGG CTAGAACCAA GAAGGGCTAG AACCTGGAGG GGCTAGAAC
 TAGAGAACGCT AAAACCTGAG CTAGAACCTG GAGGAAGT GAGAGCTAGA ACCTGGAGGG CTGGAATCTG
 15 ACCTGGAGGG CTGGAATCTG GAGAGCTAGA ACCTGGAGGG CTAGAACCTG GAGGGCTAGA ACCTAGAAC
 GCTAGAACCT GGAGGGCTGG AATCTGGAGA GCTAACACCT GGAGGGCTAG AACCTGGAGG GCTAGAACCT
 AGAAGGGCTA GAACTGGAG GGCCTAGAAC TGGCAGGTTA GAACCTAGAA GGGCTAGAAC CTGGAGAGCC
 AGAACCTGGA GGGCTAGAAC CTGGAGGGC TAGAACCTGT AGAGCTAGAA CATGGAGAGC TAGAACCCGG
 CAGGCTAGAA CCTGGCAAGC TAGAACCTGG AGGAATGAA CCTGGAGGGC TAGAACCTGG AGAACATGAGAA
 AAATTTACAT GGCAAAAGAGC CCATAAATCC TGACCAATCC AACTCTGAAT TTAAAGCAA AAGCGTGA
 20 AAAAAGATTG CCTCTTACCC CCCAACCCAC TCTTTTTC CACCACCCAC TCTCTCTGC CTCAGTAAGT
 ATCTGGAGGA AGAAAACAGG TGAAAAGAGA AGTAAAAAAC ATTATAGTATT AGTATTAGAA TGAAGTC
 CTGTGCCACA CATGGTGAAT GAAAAAAA AAAAGAGGC TGTGTTTGT CACACAGGC AGTCATTAG
 CACCAAGAGCA CGTCATGGTC TGAGACTCTC TTAGGAGCAG AGCTCTGCCG CAATGGCCAT GTGGGGATCC
 ACACCTGGTC TGAGGGGCAA CTGAGTCTGC GGGAGAAAGAG CGGCCATAG CATGGTGTAG ATGCCCTGAT
 25 AAAGAACATC TGTCCTGTGA AAGACTCAAT GAGCTGTAT GTGTAAACAA GGAAGCATTT CACATCC
 CGAGAAAATC ATGIAAACAT GTGTCTTTT TGTAGAGCAT AATAATGGA TGAGGTTTTT GCAAAAAAAA
 AAAAAAAA-3' (FRAG. NO:2275) (SEQ. ID NO:2444)
 5'- GAGCTCTTCA ATATTTAGT GAAAGCTATA GATGAGGCTC CATAGGGGAT AAAGCACAGA CACACCTTT
 CAGAGGGCTT GTGC ACTCTG GGCAGCCTGT CCATAGACCT CTGTCCTCAA CTGCAAGTC AGGAAACTCC
 30 AGATTAAGGA GCCCAATGT GGTTGAACAG CCAGGTGAC AGATGAGTC ACCACACAGC CAGGCCAGGG
 AGGGCTTCA CTCAAGAGCC TACAGCCAGT TCACAGCAA GCCAGGGCTA GCGCAGGCC ACCCATAAAC
 TGATCTGAGA CTCITTTCC CTGTCCTCAT GATGATGGGA TCAGGCTGA TTGCTGGTT GTAGGCTTGT
 TATGAATCAA GTCACAGGGAG AGAGGAGCTG ATGGGCTGGG GGGACGCTCT CTGCCCTCC TGTCTCTTCC
 CCAGATCCAC TGGCCCCACT CTTATCTGTT CTCTCTGAA GGAAGGGTT TAAGGCTTCA AAAAAAAATG
 35 TTTGAAAGT CCCTGCCCT TCCAGCTCT ACCGTCAG CCCTGGGAGT GTAAAGTGCT GCAGATAGTT
 AGTAAGTCTT TGAGCAAAAC TGAGAAAGCC AGCCTGAGCC TTGACATGGG AGAACACCTCC GCCATACATC
 TCCGAAGAAA CGGCCGCGGTG TCTCAGGGGA GCGCAAACAC CCGTACCCAG GAAACAGGAC AGCTTCTGCC
 ACTGTGCCCT TTGGAGCCG TACGTGGCAT GACAAAGAAA TCCCAGGACT CCGCCTGCC ACCTGGCAC
 CCTCTGTITA CACCIITCCGC GTAAACGCC ACTGTTACA TCCAAAATC AGACACAAAA TAACCACCTC
 40 AAGAAGATAA ATAATGATAA GAAATAAATG TTACCGGAGG CAAATTATT CACATGGGGC TCCCCAGGGC
 ACTTTGTGGT CAGCCGGGAG GGACGTTTT GCGCTCCAC GACTCCAACG GGCAGCCGGG CCTACGCAA
 CATGGAAATC TTCCAGAGC CTCCCTGGCC CCCAGGGCTC AGAGGGTGGC AGAGCGGAGA GCGAAGGTGG
 CCGCAGCCTT CCCCAGCC CAGCCAGCT GGCTCCAGCT GGGCAGGAGT GCAGAGCTCA GCTGGAGGCC
 AGGGGAAGT GCCCAGGAGG CTGATGACAT CACTACCCAG CCCCCTAAAG ATGAGCTGTT CCCGCC
 45 CTCCAGCTCT GGCTCTGGG CTCCAGGGAG GGGTGGGGAC GGTGGTGACG GTGGGGACAT CAGGCTGCC
 CGCAGTACCA GGGAGCAGT GAAGTGCCA TGCCGCTTG TCCGGAGAAG GTGGGTGCCG GGCAGGGGCT
 GCTCCAGCCG CCTCACCTCT GCTGGGAGGA CAAACTGTCC CAGCACAGAG GGAGGGAGGG AGGGCAGGCA
 GCGGGGAGAA GTTCCCTGT GGTCTGGGG AGTTGGGAAA AGTCCCTTC CTTCCGGAGG GAGG-3'
 (FRAG.NO:2275) (SEQ. ID NO:2443)
 5'- GCCCTTCAAA GATGAGCTGT TCCCAGGCC ACTCCAGCTC TGGCTCTGG GCTCCGAGGA GGGGTGGGG
 50 CGGTGGTGAC GGTGGGGACA TCAGGCTGCC CCCAGGTAC AGGGAGCGAC TGAAGTGCC ATGCCGTTG
 CTCCGGAGAA GGTCGGTGC GGGCAGGGGC TGCTCCAGCC GCCTCACCTC TGCTGGGAGG ACAAAACTGTC
 CCAGCACAGA GGGAGGGAGG GAGGGCAGGC AGCAGGGAGA AGTTCCCTG TGTCGTGGG GAGTT -3' (FRAG.
 NO:2275) (SEQ. ID NC:2442)
 5'- AAATGATAGA CCGTCAATAA TTTGTTAAAT GCTTTTAAAT ATGAATGCTT TAAGCCGGGT GCAGTGCCTC
 55 ACATCTGAA TCCCAGCACT TTGGAGCCG GCGGGTGGAT TGTGTGAGGT CAGGAGTCG AGACCAACCT
 GGCCAACATG GCAAAACCTC ACTCTCTACC AAAAATACAA AAATTAGCCA GGCATGGTGG CAGGCACCTG
 TGATCCAGC TACTCAGGAG GCTGAGACAG GAGAATCGCT TGAACCCGGG AGGCAAGGTT GCAGTGAGCC
 AAGATTACGC CATTGTACTC CAGCCTGGT GACAGAGAGA GACTCCGCT CAAAAAA
 AAAAAATTAC GCTTCAAACA CATGATCTCT CACCACTGTT GAATTTCCTT TCTATGAGCC CAGGAGGCC
 60 TCTCAGAGAG GAAAGCTCCT AGGTCTTCTT TTCCCTCTGC AAACCTCCCTG CCTTGAGGT TCAGAAGGAC
 TGTGCTGCT CGTGCATCC TTTGCAAGTG TCCAAACCCCT GATCCCAGCT GTGCTTAGGG GTTCCTGCAA
 ACCTTTCCA GGTC TTAATT ACCTCCACT TCATTTCTG TTTACCAACT CAGCTTTTG TTTAGTGTG

	TTTGAATTCC	CTGAACTGAC	CGTTGTCTGA	TCTCCACCTC	CCAACTGAAT	TAGGGGAGCT	GGGCTTCTGG
	AAACCCAGGT	GCCC GGTTGTT	GCAGAGTGGC	TGAAAGCTGG	GATGTGGCAG	ATCCGTGGCT	ACATTCATGC
	ACACACACAC	ACCC ACATAC	CCACACATGC	ACACACACAC	ACACACCCGC	ACTCACACAC	TTGGACATGC
5	ATAGACCACA	GCT TCCACA	CCCTTCCTAG	ACAGGGGTCA	CTTGGTATCC	TGGAGAGAGT	GTGAAGTCCT
	GGAATGAAA	GAGGGGGGAT	TAAGCCCCAC	CTCTAGCCAT	GGGACTGAGA	CAAGTCACCA	CCAACCCATC
	TGCGCTTGT	TTAC CTCTC	TGTGAGGCAA	GCACAGAGCC	CATGCCGTC	CCCCCTGGATG	GGAGTGATGT
	GAAACTTGA	GGGG'GGTCAG	AGCAAGGGGT	GGGAATGGAA	GGCCCTTGGG	AAAAAAAGGCC	CTTTCAACTA
	GGGGCACAGA	GGAGGCCCTG	GGCTGAGAAC	TTGACAGCAC	CTTGTAAATTG	GTAAGCCAAG	CCCGAAGGGGA
10	CTGGAAATAC	TCAGATGTGT	CTGTCTCCCT	TATTAGGTT	AAAGTCCCTC	AAGACCTGT	CTCCATCACAA
	GTGCTCCAGT	CCAG ACCCCC	CCTCTGAGCT	CCAGACCCCTG	CTGGACCCAA	CCAGCCCTAT	GGGGTCGCAT
	CCCCACCTGC	CTGC AATTCT	CCAAAGAACCC	TCCCCTTTAA	CAGTCCAGC	CTTTAACAGT	TCCAGTCTAA
	ACACATGACC	TTTC TCCTCT	AAATCAGCCC	CCCATCTCTG	CCTTTCAGG	AGATGGAAGC	CATGACACCT
	GCCTCGCCCC	TGTCCTCACCC	CCATCCATGT	CCAATCAAGC	ACTAGGCATG	TCAGGTTTAC	CCTCTAAACT
15	CCTCTGGAAT	CCAC TCTCTC	AGTCTCCATC	ATCCCAAGTC	GAAGCTAATG	GGCTAACTGG	TCCTTGCTTC
	CACTCTACCC	CCACTGCAGT	CCTGACTTCC	TGAGCAGCAG	CCAGGGCTTA	ATCGATATTG	ACACCAAGCG
	CCAACCTGAC	TGAGATATCC	TCTGACCCA	TCATCCCTCC	ACCCGTTTA	GTTCTGCTCA	CCCTCAGTGT
	TCTCATCAAT	AATCCACTCC	CCTCACAGGC	GCGTTTGGGA	CCCCATGTTT	TATGCTCTCA	CAGGACCTTT
	TGCTTGTATT	TTCA CTGTAC	TTAGGTCACT	TTGCAAGTTAT	TAAGTGACTG	AGCAATGTCT	GGCTTCTCCA
20	GTAGACTGTC	AGC CCTAGC	CATTGTATAC	CTAGCACCGC	TGTGTTGGAG	CACGTGACAA	ACGTCCAGTG
	AGTCAGGGAC	TCAGCAGTCT	CCATTCTCC	GCCCTGCTGG	AGAATGCGTG	TATTGGCAA	TCCCCAGCCC
	CTGTGCCATC	TAAC CATCTT	TTCTTCTCTG	TTCACGCCCAG	GTGTGGCCTC	ACTCACATCC	CACTCTGAGT
	CCAAATGTTTC	TCTCCCTGGA	AGATATCAAT	GTTTCTGTCT	GTTCGTGAGG	ACTCCGTGCC	CACCAAGGGCC
	TCTTCAGGTT	GAGT CAAAGG	GATTCTCTAG	TTCACTAGTT	AGGGGAGGTG	GGCAGACACC	CTGGAGAACT
25	CCCTGGAAAG	CTCA ACTCTC	ATGCCCGGA	CAACAGTTGA	AGGAACCATG	GTGATGTTAA	GCCCAAAGAC
	AAAACCTCTC	AGGI GTCAA	GTCCCTGTTG	GAATCTGGG	AGCAGAGGGA	ATGTTCTGTG	GTCTAGAGGA
	AGAGGGCTC	AGGGAGGAGA	AGGGCACATT	CCTGGTTGTT	ATATGTTCT	ATCTATCCCA	GATGAACCTG
	GAAGTGAGG	GAAGAGAGTT	AAACATTTAA	GTAAATACCC	AGTGGATCAG	ACAGCAATGT	GCCAGATTGC
	CTTGGAAACA	AAAT ATCTCC	AAACACATGGC	TGACATTGG	TGGGAGATCA	GAACACCCCTA	AAGAGAGAAT
30	TTAAGGGGAG	GGGC AGGAGG	ACCTGAGCCA	GAGTAGAACG	AGAGGATAGG	GAGATCTGTT	CTTGGGGACA
	GCATTGCAA	GAAC CAAGGC	TGAGGGGTCC	ACTCCACCTC	CTCCACCTG	CTGCAGGTGC	TGCCTATGAT
	GAAGATGAGC	AGA'GGCCAT	CTCAGCTGGG	GCCACAGTGC	ACTGGACCTA	TAGTTCCAA	TTCCGCACTC
	AGCAGGCATC	TTCTGTATGA	TCCGATGGCT	TCTCAGAGCC	AGGGATGGC	CAGGATCCAT	CCCCTTGGCT
	ACTGTCTTGC	TGAGAAATT	ATAAGCAGCA	TCTGGTGCTA	TACTTGGTC	TCTAGTGTAGT	TAGCTCATGA
35	AAGATGATAG	ACTCTCAAG	CCAGGGGTAT	GCAGGAAATG	GGTTTCTGT	AGCTACAGAA	ATGGGGITGA
	GGGTTGGACC	AAGC GACTAC	CCAGGGGAAG	TCTTACCTTC	AGAGGACTCT	GGAAAGGAGG	CTGCAAGTT
	TCATGGTCA	AGA' TTCAGA	GCCCAGTAGA	GACAGCTTAT	CTCTGTTCCA	AGATGTTCTG	GGCCTTGGTT
	GGAAGATTCA	AAGC CTAGGA	AACCAGGAGC	CACCAAAAGC	GTAACTGGGG	CCAGAGGATC	CACTTTCAAG
	GTGGCAAGTT	GGTICCCCCC	ATGTGGCTGC	TTGAGTATCC	TCACATGGCG	GCTCACATCC	TTCCAAGTAA
40	GCAATGAAA	AGGC CAAGAA	AGATGCTGCA	AAGATGTTAT	GACCTAGCCT	CAGAAATCAC	ACACCATCCC
	TGCCACATT	AGTA AGAAGT	CCAGCCCCACG	TCCAGGAGAA	GAGGAAGCAG	ATTCCCTCCTT	TTGAAATGAA
	GAATATCAAG	TAATTGGGG	GGCATATGAA	AGCCACCACA	CACCACAGGG	ATCTTTTAG	AGCATAACTTC
	TTATACCATC	ACTG TAGTTC	CTTAAGACTC	AGGGGCAAAG	CCTCACTTCC	TTAGCACCCA	GTGAAGACCA
	CGCTTACTCC	CTCACTCAAC	CTCTTGCTAC	TTCCCACCTC	TCCGTCCAA	CATCTAGTGT	CACTTTCCAG
45	AACATACCAA	CAGCTTCCCC	AGTTCTGTGC	CTCTGCTCAG	GCTGTTCCCC	CTGCTGGTC	CACTTGTCC
	CCTTCTTGT	CGGT CAAAAT	GCTTCTTATC	CTTCAAGACCC	CAGCTCTAGA	GTCACCTCCA	ACCCCTTACC
	CACCAAGCCC	CTCTCCAAGT	CTGTGTCCCA	CAACCCCCCT	GCTCCCTCCA	GGGCACCCCTC	CACCCCTCTGG
	GCCACAGTTG	TCAGGAGTC	GGCAGGGCAG	GGGCCGGGTG	GTGTCTCTT	TGTGTTCTG	CACTCAGGGC
	AGAGCTCAGC	ACAC AGCAGA	CGCTAAAAAA	ACATTTAAAG	GATAGAAGCA	TTGATTTGTG	GGTCCCCCAG
50	TCTGGCTCCA	GGATGCCAGC	CAGCTGCTCC	TAGAAGCAA	CGGACTTTTC	CTGGGAAATC	CCAGAGGTGA
	TGATCAGTAA	TCTC TCCCCT	GACTCGTAGT	TCAGCTCTTC	CTCCATGAGC	CTGACTATCA	GTGGACCTTC
	CAGAAAGAGC	CCC TTTTCT	TCTCTCACCC	ACAGCACAGG	GCACTGGGAA	AATGCCAAT	GAGTCCTGCC
	TCTGGGTGT	GCTT TGGACT	TTTCAGTGTG	TCTCGCATCC	ACTCTTCAC	TTGAATGTTG	CAACAGCCAT
	GAAAAAAAGAA	ATGC AAAGCG	ATTCAGGATG	AGAGCAATAC	CCTACTCCAA	AGAAGGCAAC	ATAGAAGCTC
	AGAGAGATCA	AGCA ATTTC	CCAAGACAC	ACAGCTAGGA	GTGGAACATC	TGGCTGTCCA	AGCCCCATGC
55	CTCTGCTGAA	GGTAGAGATG	AATTACAGCA	ACAAGTCTAG	AAAGGTGCCT	GCCCTATGGT	CTGTGAGTCT
	TGCCTAAGAA	TGAAAGAGGA	GCCAGTGGGT	TAAAGATGAG	GTCACCAACA	ACGGTGGGTG	TGGAGTTTAC
	CACTGATAAT	AAGC GTGCAA	AATGTAATT	ACTAATGTTT	ATTGAGCTA	GTGCACTGCG	TGGGGCATTT
	TGCACATTGT	CTCT GATCCC	TATGACAACC	CTGAGAGGTA	GTGGTTTAA	CTGCCATGTT	ACAGGTGAGG
	TCATTGTGGT	TCAA GGACGT	TAAGTAACTT	CCCCAGCGTG	ACACGGCTTA	TAAGTAAGGC	AGCCAGGATG
60	TGAACCCAGT	AGGA CTATCT	GGCTGCAAAG	TCCCCACCC	CCTCGCCATC	TGTATCCTCC	AATCACTTC
	GTGCTTGT	GCAT AGAAGG	TAACGGAAAT	CACGATGCCA	CAGACTGTCC	AGGAAGACAG	AAACTAGGCA
	GATGGGTG	CCAT'GGTCTC	CAAGCCAGAC	TGGAATCTCC	AGGTCTGGAA	TGATATCATT	TTTCTCTTTT

	AATAAAATTAA	CTCA CCCACC	ACACGGCTTT	GAGAGGCTCA	AAGTTGACCA	ACTCCCTTGG	GAGGGCCCCG
	GTTGATAAGG	AAGGAAACGTG	AATCCTCCCA	TCACCGAACG	TTCAAGGGAGG	TCAAGGGTCC	AACACTTGAG
5	ATTGTTAGT	CTGT TGGTGG	ATACTGGCCA	AGGAAATATC	CCAGTGGAGC	CTCGAGATGA	AGAACATGAG
	GCCCCCGTTT	AGAACCAAGG	ATCAGAGGGG	GCTCTGTAAG	ACCCAGGGGA	GTCAGGTGCA	CTGGAGCGCG
10	GGCATGCAGA	AAA CAGCCTG	AGCTCCACCT	CGGCTTCTCC	TTGTCTGGC	TGGTTGTCCT	TAACCCCTGT
	CTCCTCTGG	ACCA GTTTT	GTCTTCTCCCT	TGTGACCGCT	GAGGGTAAC	AGCCTCTTTC	CACTTTCTT
	CAGCGCCGAC	ATGCTCAATG	TCACCTTGCA	AGGCCCACT	CTTAACGGGA	CCTTGCCCA	GAGCAAATGC
	CCCCAAGTGG	AGTG GCTGGG	CTGGCTCAAC	ACCATCCAGC	CCCCCTTCTC	CTGGGTGCTG	TTCGTGCTGG
15	CCACCCCTAGA	GAAC ATCTTT	GTCTCTCAGCG	TCTTCTGCCT	GCACAAGAGC	AGCTGCACGG	TGGCAGAGAT
	CTACCTGGGG	AACT TGGCCG	CAGCAGACCT	GATCCTGGCC	TGCGGGCTGC	CCTCTGGGC	CATCACCATC
	TCCAACAAC	TCGA CTGGCT	CTTTGGGGAG	ACGCTCTGCC	GCCTGGTGA	TGCCATTATC	TCCATGAACC
	TGTACAGCAG	CATC TGTTTC	CTGATGCTGG	TGACCATCGA	CCGCTACCTG	GCCCTGGTGA	AAACCATGTC
	CATGGGCCGG	ATGC CGGGCG	TGCGCTGGGC	CAAGCTCTAC	AGCTGGTGA	TCTGGGGGTG	TACGCTGCTC
20	CTGAGCTCAC	CCATGCTGGT	GTTCGGGACC	ATGAAGGAGT	ACAGCGATG	GGGGCACAAAC	GTCACCGCTT
	GTGTATCAG	CTAC CCATCC	CTCATCTGGG	AAAGTGTTCAC	CAACATGCTC	CTGAATGTCG	TGGGCTTCCT
	GCTGCCCTG	AGTG TCATCA	CCTCTGAC	GATGCAGATC	ATGCAGGTGC	TGCGAAACAA	CGAGATGCAG
	AAGTTCAAGG	AGA TCCAGAC	GGAGAGGAGG	GCCACGGTGC	TAGTCCTGGT	TGTGCTGCTG	CTATTCAATCA
	TCTGCTGGCT	GCCCTTCCAG	ATCAGCACCT	TCCCTGATAC	GTCGCATCG	CTCGGCATCC	TCTCCAGCTG
25	CCAGGACGAG	CGCA TCATCG	ATGTAATCAC	ACAGATGCC	TCCCTCATGG	CCTACAGCAA	CAGCTGCCTC
	AACCCACTGG	TGTA CGTGT	CGTGGGCAAG	CGCTTCCGAA	AGAAGTCTTG	GGAGGGTGTAC	CAGGGAGGTG
	GCCAGAAAGG	GGG CTGCAGG	TCAGAACCA	TTCAAGATGGA	GAACCTCATG	GGCACACTGC	GGACCTCCAT
	CTCCGTGGAA	CGCCAGATT	ACAAACTGCA	GGACTGGGCA	GGGAGCAGAC	AGT GAGCAA	CGCCAGCAGG
	GCTGCTGTGA	ATT TGTGTA	GGATTGAGGG	ACAGTTGCTT	TTCAAGTGTG	GCCCAGGAAT	GCCAAGGAGA
30	CATCTATGCA	CGAC CTTGGG	AAATGAGTTG	ATGTCTCCGG	TAACACACCG	GAGACTAATT	CCTGCCCTGC
	CCAATTTGCA	AGGGAGCATG	GCTGTGAGGA	TGGGGTGAAC	TCACGCACAG	CCAAGGACTC	CAAATCACA
	ACAGCATTAC	TGTICTTATT	TGCTGCCACA	CCTGAGCCAG	CCTGCTCTT	CCCAGGAGTG	GAGGAGGCT
	GGGGGCAGGG	AGA GAGGTGA	CTGAGCTTCC	CTCCCCTGTG	TTCTCCGTCC	CTGCCCTCAGC	AAGACAACCT
	AGATCTCCAG	GAG ACTGCC	ATCCAGCTT	GGTCAATGG	CTGAGTCAC	AAGT GAGTTG	TTGCCCTGGG
	TTTCTTTAAT	CTATT CAGCT	AGAACTTTGA	AGGACAATT	CTTGCACTAA	TAAGGTTAA	GCCCTGAGGG
35	GTCCCCTGATA	ACAA CCTGGA	GACCAGGATT	TTATGGCTCC	CCTCACTGAT	GGACAAGGAG	GTCTGTGCGA
	AAGAAGAATC	CAA T AAGCAC	ATATTGAGCA	TTGCTGTAT	ATGCAGTATT	GAGCACTGTA	GGCAAGAGGG
	AAGAAAGAGA	AGG AGCCATC	TCCATCTGA	AGGAACCTAA	AGACTCAAGT	GGGAACGACT	GGGCACTGCC
	ACCACCAAGAA	AGC T GTTCGA	TGAGACGGTC	GAGCAGGGTG	CTGTTGGTGA	TATGGACAGC	AGAAGGGGGA
	GCCAGGTTC	AGCT ACCAA	TACTATTGCA	CACCACTGT	3'- (FRAQ. NO:) (SEQ. ID NO 2441)		
40	5'-CAGATTCA	AACTGCGAGGA	CTGGGCAGGG	AGCAGACAGT	GAGCAAACGC	CAGCAGGGCT	GCTGTGAATT
	TGTGTAAGGA	TTGAGGGACA	GTGCTTTTC	AGCATGGGCC	CAGGAATGCC	AAGGAGACAT	CTATGCACGA
	CCTTGGGAAA	TGAC TGTGATG	TCTCCGGTAA	AAACACGGAG	ACTAATTCT	GCCCTGCCCA	ATT TTGCA GG
	GAGCATGGCT	GTGAGGATGG	GGTGAACCTA	CGCACAGCCA	AGGACTCCA	AATCACAA	GCATTACTGT
	TCTTATTGCA	TGCC ACACCT	GAGCCAGGCT	GCTCTTCCC	AGGAGTGGAG	GAGGCTGGG	GGGAGGGAGA
45	GGAGTGACTG	AGC TCCCTC	CCGTGTGTT	TCCGCTCTG	CCCCAGCAAG	ACAACCTAGA	TCTCCAGGAG
	AACTGCCATC	CAG CTTGGT	GCAATGGCTG	AGT GACAAG	TGAGTTGTT	CCCTGGGTTT	CTTTAATCTA
	TTCAGCTAGA	ACT TGAAGG	ACAATTCTT	GCATTAATAA	AGGTTAAGCC	CTGAGGGGTC	CCTGATAACA
	ACCTGGAGAC	CAGG ATT	TGGCTCCCC	CACTGATGGA	CAAGGAGGTC	TGTGCCAAAG	AAGAATCCAA
	TAAGCACATA	TTGAGCACTT	GCTGTATATG	CAGTATTGAG	CACTGTAGGC	AAGACCCAAG	AAAGAGAAGG
50	AGCCATCTCC	ATCT TGAAGG	AACTCAAAGA	CTCAAGTGGG	AACGACTGGG	CACTGCCACC	ACCAGAAAGC
	TGTTCGACGA	GAC GTCGAG	CAGGGTGTG	TGGGTGATAT	GGACAGCAGA	AGGGGGAGAC	CAAGGTTCCA
	GCTCAACCAA	TAAC TATTGCA	ACAACCACCT	GTCCCTGCC	CAGTTCCCT	TTATGTAACA	TGAAGTCGTT
	GTGAGGGTTA	AAAG CAGTAA	CAGGTATAAA	GTACTTAGAA	AAGCAAAGGG	TGCTACGTAC	ATGTGAGGCA
	TCATTACGCA	GACC TAAC	GGATATGTT	ACTATAAGGA	AAAGACACTG	AGGTCTAGAA	ATAGCTCCGT
55	GGAGCAGAAT	CAG ATTGGG	AGCCGGTGGC	GGTGTGAAGC	ACCAGTGTCT	GGCACACAGT	AGGTGCTCAT
	TGGCTCCCTT	CCACCTGTCA	TTCCCACAC	CCTGAGGCC	CAACGCCAC	ACACACAGGA	GCATTGGAG
	AGAAGGCCAT	GTC TCAAAG	TCTGATTGT	GATGAGGCAG	AGGAAGATAT	TTCTAATCGG	TCTTGCCCA
	AGGATCACAG	TGCT GAGACC	CCCCACCACC	AGCCGGTACC	TGGGAAGGGG	GAGAGTGCAG	GCCTGCTCAG
	GGACTGTTCC	TGTC T CAGCA	ACCAAGGGAT	TGTTCTGTG	AATCAATGGT	TTATTGGAAG	GTGGCCCAGT
60	ATGAGCCCTA	GAAC AGTGTG	AAAAGGAATG	GCAATGGTGT	TCACCATCGG	CAGTGCAGG	GCAGCACTCA
	TTCACTTGAT	AAATGAATAT	TTATTAGCTG	GTTGGAGAGC	TAGAACCTGG	AGAGCTAGAA	CCTGGAGAAC
	TAGAACCTGG	AGGC CTAGAA	CCTGGAGAGG	CTAGAACCAA	GAAGGGCTAG	AACCTGGGAG	GGCTAGAAC
	TAGAGAAGCT	AAAA CCTGAG	CTAGAACCTG	GAGGACTAGA	ACCTGGAGGG	CTGGAATCTG	AAGGGCTAGA
	ACCTGGAGGG	CTGC AATCTG	GAGAGCTAGA	ACCTGGAGGG	CTAGAACCTG	GAGGGCTAGA	ACCTAGAAC
	GCTAGAACCT	GGAC GGCTGG	AATCTGGAGA	GCTAGAACCT	GGAGGGCTAG	AACCTGGGAG	GCTAGAAC
	AGAAGGGCTA	GAAC CTTGGAG	GGCTAGAAC	TGGCAGGTAA	GAACCTAGAA	GGGCTAGAAC	CTGGAGAGCC
	AGAACCTGGA	GGG CTAGAAC	CTGGAAGGGC	TAGAACCTGT	AGAGCTAGAA	CATGGAGAGC	TAGAACCCGG

CAGGCTAGAA CCTGGCAAGC TAGAACCTGG AGGAATGAA CCTGGAGGGC TAGAACCTGG AGAATGAGAA
 AAATTACAT GGCAAAGAGC CCATAAATCC TGACCAATCC AACTCTGAAT TTTAAAGCAA AAGCGTGAAA
 AAAAAGATTG CTCCTTACC CCCAACCCAC TCTTTTTCC CACCACCCAC TCTCCTCTGC CTCAGTAAGT
 ATCTGGAGGA AGAACACAGG TGAAAAGAAGA AGTAAAAAACC ATTTAGTATT AGTATTAGAA TGAAGTCAA
 5 CTGTGCCACA CATGGTGAAT GAAAAAAA AAAAAGAGGC TGTGTTTGT CACACAGGGC AGTCATTCA
 CACAGAGCA CGTC ATGGTC TGAGACTCTC TTAGGAGCAG AGCTCTGCCG CAATGGCCAT GTGGGGATCC
 ACACCTGGTC TGAGGGGCAA CTGAGTCTGC GGGGAGAG CGGCCCTATG CATGGTAG ATGCCCTGAT
 AAAGAACATC TGCTCTGTGA AAGACTCAAT GAGCTGTTAT GTTGAAACA GGAAGCATT CACATCCAAA
 CGAGAAAATC ATGTAAACAT GTGTCTTTG TGAGAGCAT AATAAATGGA TGAGGTTTT GCAAAAAAAA
 10 AAAAAAAA -3' (FRAG. NO:) (SEQ. ID NO 2431)
 5'-GGTBCBTTGBGCB TGTGGCGC-3' (FRAG. NO:2276) (SEQ. ID NO:2289)
 5'-GGTCCCGTTBBGBG TGCCCC-3' (FRAG. NO:2277) (SEQ. ID NO:2290)
 5'-GCCAGCCCAGCCA CTCCACTTGGGGGC-3' (FRAG. NO:2278) (SEQ. ID NO:2291)
 5'-GGGTGGCCAGCAC GAACAGCACCCAGAGGAAGGGGGGC-3' (FRAG. NO:2279) (SEQ. ID NO:2292)
 15 5'-GGCCCAGAAGGGC AGCCCCGAGGCCAGGGATCAGGTCTGCTGCC-3'(FRAG.NO:2280)(SEQ.ID NO:2293)
 5'-GGAGATAATGGCA TCACCA CGCGGC-3' (FRAG. NO:2281) (SEQ. ID NO:2294)
 5'-GGCCCAGCGCAGC CGCGCATCCGGCCC-3' (FRAG. NO:2282) (SEQ. ID NO:2295)
 5'-GGGTTCTGACCTGC AGCCCC-3' (FRAG. NO:2283) (SEQ. ID NO:2296)
 5'-GTCTCCTGGCATT CCTGGGCC-3' (FRAG. NO:2284) (SEQ. ID NO:2297)
 20 5'-CAGTCACTCCTCTC CCTGCCCC-3' (FRAG. NO:2285) (SEQ. ID NO:2298)
 5'-CTTGCTGGGCAGGGACGG-3' (FRAG. NO:2286) (SEQ. ID NO:2299)
 5'-GGTBCBTTGBGCE TGTGGCGC-3' (FRAG. NO:2287) (SEQ. ID NO:2300)
 5'-GGTCCCGTTBBGBC TGCCCC-3' (FRAG. NO:2288) (SEQ. ID NO:2301)
 5'-GCCAGCCCAGCCA CTCCACTTGGGGGC-3' (FRAG. NO:2289) (SEQ. ID NO:2302)
 25 5'-GGGTGGCCAGCAC GAACAGCACCCAGAGGAAGGGGGGC-3' (FRAG. NO:2290) (SEQ. ID NO:2303)
 5'-GGCCCAGAAGGGC AGCCCCGAGGCCAGGGATCAGGTCTGCTGCC-3'(FRAG.NO:2291)(SEQ.ID NO:2304)
 5'-GGAGATAATGGCA TCACCA CGCGGC-3' (FRAG. NO:2292) (SEQ. ID NO:2305)
 5'-GGCCCAGCGCAGC CGCGCATCCGGCCC-3' (FRAG. NO:2293) (SEQ. ID NO:2306)
 5'-GGGTTCTGACCTGC AGCCCC-3' (FRAG. NO:2294) (SEQ. ID NO:2307)
 30 5'-GTCTCCTGGCATT CCTGGGCC-3' (FRAG. NO:2295) (SEQ. ID NO:2308)
 5'-CAGTCACTCCTCTCCCTGCC-3' (FRAG. NO:2296) (SEQ. ID NO:2309)
 5'-CTTGCTGGGCAGGGACGG-3' (FRAG. NO:2297) (SEQ. ID NO:2310)
 5'-CCGTGTTGTCBGTGGTGCTG-3' (FRAG. NO:2298) (SEQ. ID NO:2311)
 5'-CCCGTTTBGGTBGGC-3' (FRAG. NO:2299) (SEQ. ID NO:2312)
 35 5'-GCTCCBBCBTTCCTCTCC-3' (FRAG. NO:2300) (SEQ. ID NO:2313)
 5'-TTGTTTCCGTTTC CTTG-3' (FRAG. NO:2301) (SEQ. ID NO:2314)
 5'-CCGTCTGTGGTT-3' (FRAG. NO:2302) (SEQ. ID NO:2315)

B2 Adrenergic Receptor Kinase Nucleic Acids and Antisense Oligonucleotide Fragments

5'- GCCCGCGCC CCAAGATGGC GGACCTGGAG GCGGTGCTGG CCGACGTGAG CTACCTGATG GCCATGGAGA
 40 AGAGCAAGGC CACGCCGGCC GCGCGCGCA GCAAGAAGAT ACTGCTGCC GAGCCCAGCA TCCGCAGTGT
 CATGCAGAAG TACC TGGAGG ACCGGGGCGA GGTGACCTTT GAGAAGATCT TTTCCCAGAA GCTGGGGTAC
 CTGCTCTTCC GAGACTTCTG CCTGAACAC CTGGAGGAGG CCAGGCCCTT GGTGGAATTG TATGAGGAGA
 TCAAGAAGTA CGAC AAGCTG GAGACGGAGG AGGAGCGTGT GGCCCGCAGC CGGGAGATCT TCGACTCAT
 CATCATGAAG GAGCTGCTGG CCTGCTCGCA TCCCTCTCG AAGAGTGCCA CTGAGCATGT CCAAGGCCAC
 45 CTGGGAAAGA AGCAGGTGCC TCCGGATCTC TTCCAGCCAT ACATCGAAGA GATTGTC GACATCGAAGAAC
 GGGACGTGTT CCAC AAATTG ATTGAGAGCG ATAAGTTCAC ACGGTTTGC CAGTGGAGA ATGTGGAGCT
 CAACATCCAC CTGACCATGA ATGACTTCAG CGTCATCGC ATCATTGGC GCGGGGGCTT TGGCGAGGTC
 TATGGGTGCC GGAAGGCTGA CACAGGAAG ATGTACGCCA TGAAGTGCCT GGACAAAAAG CGCATCAAGA
 TGAAGCAGGG GGAGACCTG GCCCTGAACG AGCGCATCAT GCTCTCGCTC GTCAGCACTG GGGACTGCC
 50 ATTCAATTGTC TGCAITGTCAT AC CGGTCCA CACGCCAGAC AAGCTCAGCT TCATCCTGGA CCTCATGAAC
 GGTGGGACC TGCACTACCA CCTCTCCAG CACGGGGTCT TCTCAGAGGC TGACATGCGC TTCTATGCGG
 CCGAGATCAT CCTGGCCTG GAGCACATGC ACAACCGCTT CGTGGTCTAC CGGGACCTGA AGCCAGCAA
 CATCCTCTG GACGAGCATG GCCACGTGCG GATCTGGAC CTGGGCTTG CCTGTGACTT CTCCAAGAAG
 AAGCCCCATG CCAC CGTGGG CACCCACGGG TACATGGCTC CGGAGGTCT GCAGAAGGGC GTGGCCTACG
 55 ACAGCAGTGC CGACTGGTTC TCTCTGGGT GCATGCTCTT CAAGTTGCTG CGGGGGCACA GCCCCCTCCG
 GCAGCACAAG ACCA AAGACA AGCATGAGAT CGACCGCATG ACGCTGACGA TGGCCGTGGA GCTGCCGAC
 TCCTTCTCCC CTGA ACTACG CTCCCTGCTG GAGGGGTTGC TGCAGAGGGA TGTCAACC GGAGTTGGCT
 GCCTGGCCG AGGGGCTCAG GAGGTGAAAG AGAGCCCTT TTTCCGCTCC CTGGACTGGC AGATGGTCTT
 CTTGCAGAAG TACC CTCCCC CGCTGATCCC CCCACGAGGG GAGGTGAACG CGGGCAGCG CTTCGACATT
 60 GGCTCCTTCG ATGAGGAGGA CACAAAAGGA ATCAAGTTAC TGGACAGTGA TCAGGAGCTC TACCGCAACT

TCCCCCTCAC CATCTCGGAG CGGTGGCAGC AGGAGGTGGC AGAGACTGTC TTGACACCA TCAACGCTGA
 GACAGACCGG CTGGAGGCTC GCAAGAAAGC CAAGAACAG CAGCTGGGCC ATGAGGAAGA CTACGCCCTG
 GGCAAGGACT GCA'CATGCA TGGCTACATG TCCAAGATGG GCAACCCCTT CCTGACCCAG TGGCAGCGGC
 GGTACTTCTA CCTGTTCCCC AACCGCCTCG AGTGGCGGGG CGAGGGCGAG GCCCGCAGA GCCTGCTGAC
 5 CATGGAGGAG ATCCAGTCGG TGGAGGAGAC GCAGATCAAG GAGCGAAGT GCCTGCTCCT CAAGATCCGC
 GGTGGGAAAC AGT'CATTTC GCAGTGCAG AGCACCCTG AGCTGGTGCA GTGGAAGAAG GAGCTGCGCG
 ACGCCTACCG CGAC GCCCAG CAGCTGGTC AGCGGGTGCC CAAGATGAAG ACAAGCCGC GCTCGCCCGT
 GGTGGAGCTG AGCAAGGTGC CGCTGGTCA CGCAGGGCAGT GCCAACGGCC TCTGACCCGC CCACCCGCCT
 CCAGGAAGCT ACCIGGAGGA GGTGAGTCTT AGCGGATGAG TAGGAGTTGT CCACGGAGGA AGGTACACAG
 10 AAGGGCTTCC AGGC CCAGGA AACAGCAGAG GCACAGAAGT GAGAATGGGT GGGTGAGTTG GTGGGAAAC
 TCCAGGTGCA GAGGATGGTA GCGAAACAAA CTGGAGCATT AAGGTCCAAG TCCTCCAAGA TCTTGACTTG
 CAGATTAAGG AGT'TGTTCA CCTAATCTGC TTTGGGCAGA GTGTTGGTGAG TCCTAGAGAC CCCCTCTAGGT
 CTCTCCTCTC AGTA GCCCCA GAAGGCCTGG AGAGCTGCTT CTGGGTGCCA AGCAGGGCAGT GACTCCATCA
 GATCTAGATT TGGGAAAAGC ATCCCTGGTC AGGGCCTGCA TCAGGGCAGT GGCTGGCCAT GAGGACCCCTG
 15 AGAAGTAGAC AGA'TCACGG AGATTCTCAG GAGGCCAGAC AGGAGACTAT GGTGACAAAT TAGATTAGAG
 AAGGGGAGAG AATGAAGGAG CAGTTGGGGT AAAAGAAAAC TGAGGCTGAC ATGGGTATAT GGGTGGCGAG
 TGACTCACCA CCCA CTGAGA GGAGAACCTC ACAAGCTCTG ACATGCTCTG GTTCCAGGTT CTGTTGGGGC
 TGATCCAAGA TGGIAGCCTA GAGGTGCACA GAGATGGGG CTTTGCTTTG CAAAAGGATG CTGGCTGCTG
 GCCCACAGCA TGGI'AATGAG ATTTGAGCTT TATGTGCCA GGGCTGGAG GAGGGTCCTG TCACTTTGAA
 20 AGCAAAGAGA GGC'CTAGAG AGGGGCATGT TGAGATAGGA ATGCTGCCCT GAGACACCTG GCTTTCCCCA
 CTCTGGGTGG CTCTCAGCAG GGTGGGTTTC CCCTGCCAGG CAGCACTGAA CCTCTGTGCG CTTCCGGCTG
 GGAGAGTTT TACCGTAACT ACATGTGAA CCATCTGAA GGAACATCTG GATGGGATGG GGTACAGGGA
 AGGGAGCTGC CAAAGAGTGC GGCCAGGGAC CTGGGTCTAT GAGCTGGTT GGGGGTGGGG TTGGGTGCAG
 GGTACTTGTAT CCTGAGTGGG CCTTCTGCGG CCAGGATTGG TTCTAGAGTA GGAGGGTGG GATCGGGGAT
 25 GGGGGAAGCC TGT'ACTGCG CTGCAGTTGT CAGGTCCCAG GTTCTGGTG ACCTACTAAG GATTCTGGGT
 CCAGTGTGGG TCCC'AGGTTA GACGTCTTAG TCCTGAGTCC GTGTCACAG TTCTGGGTGT TGAGTCTAGG
 ACAGTGTATCT GGAC'ITGACA GTCCAATCTA GGTCTGAGTC CTGACCCCAA GTCTAGAGTT CAGGGTCATG
 GTAGTAGCCT AGGC TCAGAA TCAAGGTGG GGTCACTAAC CAGGATGGGA TCGAGGTCTAT GGTCCAAAAT
 CTGGATCTGG GGAC'CTGTTG GGGGTCTGAG GTGAGTGTG CAGTCAGGGT ATGGCGTTGG AGACCCAGGG
 30 CTGTGATCTG AGGI'CATGGT TAGAGTCTCA GGTGGTGGGC CAAGGTTGA GTCTGGGTC CTGTTGGAG
 TCTGGTGTCA GGTCTGGAAC TGCGTCCAAG GTCAGGGAGT CCGGGGTTAT AGCCAGGGTC TGAGATGAAA
 GTCCCAGATG GTG'TCAGAG GTCTGAATCT GTGTCCTTGGT GAGCGTCCAG GTTCCCTGTG ATCACGTTG
 GTGTCAGGGC TGCC GCCCCA CTGGGGAGCC TGGGATCCAG AGATGTGACC CGAGGTGTG GTCAAGAGAAT
 GGGTCTCGGG TCGI'CTTCGT GCGGGTCCC TGTCGTGTT CAGGCCCGGG TCTCCGTCCA GCATCGAGGG
 35 CCGAGGTAC GGGC'AGGGC TGAGCCCCG GTCGCAGGTC TGGTCTGGGG TCAGATTCCG CGCGGCCCTCC
 AGGGGGCGCC GTCC'CCGCCC GGCTCGGCC CTCGCGGGCT CGCTGGCGTT GTGCCCGGCA GGCAGGGCCG
 GAGGCGCGGG CGG'CCTCGGG GGCGCGGGCC GGGCGCGGGC GCGAGCCGGC GCCATGGGGC GGCAGGGCCT GTGAGCGGGC
 GGAGCGGAGC GCGA'AGCGCG GGGCCGGGCC CGGAGCCGGC CGAGCAGGGC CAGGCCGGAG CGTCGGCCTC CGAGCCGGG
 GCGAGCGGAG CCGC'GGGCGC CGAGCAGGGC AGCAGGGC CAGGCCGGAG CGTCGGCCTC CGAGCCGGG
 40 CCGGGCCGGG CCGAGCGCCG AGCGAGCAGG AGCGGCCGGCG CGGGCGCGG CGGGGGAGG AGGCAGCGCC
 GCCGCCAAGA TGGC'GGACCT GGAGGCGGTG CTGGCCGACG TGAGCTACCT GATGCCCATG GAGAAGAGCA
 AGGCCACGCC GGCC GCGCGC GCCAGCAAGA AGATACTGCT GCCCGAGCCC AGGTGAGGAG AAGCT-3' (FRAG.
 NO:_) (SEQ. ID NO:24:0)
 5'-CCAGGAAGCT ACCTGGAGGA GGTGAGTCTT AGCGGATGAG TAGGAGTTGT CCACGGAGGA AGGTACACAG
 45 AAGGGCTTCC AGGC CCAGGA AACAGCAGAG GCACAGAAGT GAGAATGGGT GGGTGAGTTG GTGGGAAAC
 TCCAGGTGCA GAGGATGGTA GCGAAACAAA CTGGAGCATT AAGGTCCAAG TCCTCCAAGA TCTTGACTTG
 CAGATTAAGG AGT'TGTTCA CCTAATCTGC TTTGGGCAGA GTGTTGGTGAG TCCTAGAGAC CCCCTCTAGGT
 CTCTCCTCTC AGTA GCCCCA GAAGGCCTGG AGAGCTGCTT CTGGGTGCCA AGCAGGGCAGT GACTCCATCA
 GATCTAGATT TGGGAAAAGC ATCCCTGGTC AGGGCCTGCA TCAGGGCAGT GGCTGGCCAT GAGGACCCCTG
 50 AGAAGTAGAC AGA'TCACGG AGATTCTCAG GAGGCCAGAC AGGAGACTAT GGTGACAAAT TAGATTAGAG
 AAGGGGAGAG AATGAAGGAG CAGTTGGGGT AAAAGAAAAC TGAGGCTGAC ATGGGTATAT GGGTGGCGAG
 TGACTCACCA CCCA CTGAGA GGAGAACCTC ACAAGCTCTG ACATGCTCTG GTTCCAGGTT CTGTTGGGGC
 TGATCCAAGA TGGIAGCCTA GAGGTGCACA GAGATGGGG CTTTGCTTTG CAAAAGGATG CTGGCTGCTG
 GCCCACAGCA TGGI'AATGAG ATTTGAGCTT TATGTGCCA GGGCTGGAG GAGGGTCCTG TCACTTTGAA
 55 AGCAAAGAGA GGC'CTAGAG AGGGGCATGT TGAGATAGGA ATGCTGCCCT GAGACACCTG GCTTTCCCCA
 CTCTGGGTGG CTCTCAGCAG GGTGGGTTTC CCCTGCCAGG CAGCACTGAA CCTCTGTGCG CTTCCGGCTG
 GGAGAGTTT TACCGTAACT ACATGTGAA CCATCTGAA GGAACATCTG GATGGGATGG GGTACAGGGA
 AGGGAGCTGC CAAAGAGTGC GGCCAGGGAC CTGGGTCTAT GAGCTGGTT GGGGGTGGGG TTGGGTGCAG
 GGTACTTGTAT CCTGAGTGGG CCTTCTGCGG CCAGGATTGG TTCTAGAGTA GGAGGGTGG GATCGGGGAT
 60 GGGGGAAGCC TGT'ACTGCG CTGCAGTTGT CAGGTCCCAG GTTCTGGTG ACCTACTAAG GATTCTGGGT

CCAGTGTGGG TCCC'AGGTTA GACGTCCTAG TCCTGAGTCC GTGTCCACAG TTCTGGGTGT TGAGTCTAGG
 ACAGTGATCT GGAGTTGACA GTCCAATCTA GGCTCTGAGTC CTGACCCCCA GTCTAGAGTT CAGGGTCATG
 GTAGTAGCCT AGGCCTCAGAA TCAAGGTTGG GGTCAAGTAAC CAGGATGGGA TCGAGGTCAT GGTCCAAAT
 5 CTGGATCTGG GGACCTGTTG GGGGTCTGAG GTGAGTGTG CAGTCTGGGT ATGGCGTTGG AGACCCAGGG
 CTGTGATCTG AGG1CATGGT TAGAGTCTCA GGTGGTGGGC CAAGGTTGA GTCTGGGTG CTTGTTGGAG
 TCTGGTGTCA GGTCTGGAC TCGTCCAAG GTCAGGGAGT CCGGGGTTAT AGCCAGGGTC TGAGATGAAA
 GTCCCAGATG GTG1TCAGAG GTCTGAATCT GTGCTTGGT GAGCGTCCAG GTTCCCTGTG ATCACGTTG
 GTGTCAGGGC TGCC GCCCAG CTGGGGAGGC TGGGATCCAG AGATGTGACC CGAGGTTGTG GTCAGAGAAT
 10 GGGTCTCGGG TCG1CTTCGT GCCGGGTTCC TGTCTGTTG CAGGGCCGGG TCTCCGTCCA GCATCGAGGG
 CCGAGGTACAC GGGC'AGGGTC TGAGCCCCG GTCGCAGGTC TGGTTGGGG TCAGATTCCG CGCGGCCCTCC
 AGGGGGCGCC GTCGCCGCC GGCCTGGGCC CTCCGCGGCT CGCTGGCGT GTGCGCGCA GGCGGGCGCG
 GAGGCGCGGG CGGCCTCCGGG GGCAGCGGCC GGGCGCGGCC GGCAGCGGCC CCCGACTGC AGTCCCAGGG
 GGAGCGGAGC GCG1AGCGCG GGGCCGGGCC CGGAGCGGCC GGCATGGGC GGCGCCGCCT GTGAGCGGG
 15 GCGAGCGGAG CCGC'GGGCGC CGAGCAGGGC CAGGGGGAG CGTCGGCGCC CGAGGCCAG CGAGCCGCG
 CCGGGCCGGG CGCGAGCGCG AGCGAGCAGG AGCGGCGCG GCGGGCGCG CGGGGGAGG AGGCAGCGCC
 GCCGCAAGA TGGC'GGACCT GGAGGGCGGT CTGGCCGACG TGAGCTACCT GATGGCCATG GAGAAGAGCA
 AGGCCACGCC GGCCGCGCGC GCCAGCAAGA AGATACTGCT GCCCGAGGCC AGGTGAGGAG AAGCT-3' (FRAG.
 NO:_) (SEQ. ID NO:24'9)
 5'-GCCGCCGCCG CCAAGATGGC GGACCTGGAG GCGGTGCTGG CCGACGTGAG CTACCTGATG GCCATGGAGA
 20 AGAGCAAGGC CACGCCGGCC GCGCGGCCA GCAAGAAGAT ACTGCTGCC GAGCCCAGCA TCCGCAGTGT
 CATGCAGAAG TACCTGGAGG ACCGGGGCGA GGTGACCTT GAGAAGATCT TTTCCCAGAA GCTGGGGTAC
 CTGCTCTCC GAGACTTCTG CCTGAACCAC CTGGAGGAGG CCAGGCCCTT GGTGGAATT TATGAGGAGA
 TCAAGAAGTA CGAG1AAGCTG GAGACGGAGG AGGAGCGTGT GGCCCGCAGC CGGGAGATCT TCGACTCATA
 25 CATCATGAAG GAGCTGCTGG CCTGCTCGCA TCCCCTCTCG AAGAGTGCCA CTGAGCATGT CCAAGGCCAC
 CTGGGGAAAGA AGCAGGTGCC TCCGGATCTC TTCCAGCCAT ACATCGAAGA GATTGTCAA AACCTCCGAG
 GGGACGTGTT CCAC AAATTG ATTGAGAGCG ATAAGTTCAC ACGGTTTIGC CAGTGGAAAGA ATGTGGAGCT
 CAACATCCAC CTGA CCATGA ATGACTTCAG CGTGCACTCG ATCATTGGC GCGGGGGCTT TGGCGAGGTC
 TATGGGTGCC GGAAAGCTGA CACAGGCAAG ATGTACGCCA TGAAAGTGCCT GGACAAAAG CGCATCAAGA
 TGAAGCAGGG GGAGACCCCTG GCCCTGAACG AGGCATCAT GCTCTCGCT GTCAGCACTG GGGACTGCC
 30 ATTCAATTGTC TGCA1GTCTAT ACGCGTTCAC CACGCCAGAC AAGCTCAGCT TCATCCTGGAA CCTCATGAAC
 GGTGGGGACC TGCACCTACCA CCTCTCCAG CACGGGGTCT CGTGGCTAC CGGGACCTGA AGCCAGCCAA
 CCGAGATCAT CCTGGGCCCTG GAGCACATGC ACAACCGCTT CTGGGCCCTT CCTGTGACTT CTCCAAGAAG
 CATCCTCTG GACCGAGCATG GCCACGTGCG GATCTCGGAC CGGAGGTCTT GCAGAAGGGC GTGGCCTACG
 AAGCCCCATG CCAC CGTGGG CACCCACGGG TACATGGCTC 35 ACAGCAGTGC CGAC1TGGITC TCTCTGGGT GCATGCTCTT CAAGTTGCTG CGGGGGCACA GCCCCCTCCG
 GCAGCACAAAG ACCAAAGACA AGCATGAGAT CGACCGCATG ACGCTGACGA TGGCCGTGGA GCTGCCGAC
 TCCCTCTCCC CTGA ACTACG CTCCCTGCTG GAGGGGGTGC TGCAAGAGGA TGTCAACCGG AGATTGGGCT
 GCCTGGCCG AGGGGCTCAG GAGGTGAAAG AGAGCCCCCTT TTTCGCTCC CTGGACTGGC AGATGGTCTT
 CTTGCAGAAG TACCCCTCCCC CGCTGATCCC CCCACGAGGG GAGGTGAACG CGGCCGACGC CTTCGACATT
 40 GGCTCCTTCG ATGAGGAGGA CACAAAAGGA ATCAAGTTAC TGGACAGTGA TCAGGAGCTC TACCGCAACT
 TCCCCCTCAC CATC1CGGGAG CGGTGGCAGC AGGAGGTGGC AGAGACTGTC TTCGACACCA TCAACGCTGA
 GACAGACCGG CTGCAAGGCTC GCAAGAAAGC CAAGAACAAAG CAGCTGGGCC ATGAGGAAGA CTACGCCCTG
 GGCAAGGACT GCAT1CATGCA TGGCTACATG TCCAAGATGG GCAACCCCTT CCTGACCCAG TGGCAGCGGC
 GGTACTTCTA CCTG1TCCCC ACCGCCTCG AGTGGCGGGG CGAGGGCGAG GCCCCCGAGA GCCTGCTGAC
 45 CATGGAGGAG ATCC1AGTCGG TGGAGGAGAC GCAGATCAAG GAGCGCAAGT GCCTGCTCCT CAAGATCCGC
 GGTGGGAAAC AGT1CATTT GCAGTGGCAT AGCCACCTG AGCTGGTGCA GTGGAAGAAG GAGCTGCGCG
 ACGCCTACCG CGAC GCCCAG CAGCTGGTC AGCGGGTGC CAAGATGAAG AACAAAGCCGC GCTCGCCCGT
 GGTGGAGCTG AGCAAGGTGC CGCTGGTCCA GCGCGGCAGT GCCAACGGCC TCTGACCCGC CCACCCGCCT-3'
 (FRAG. NO:_) (SEQ. ID NO:2428)

50 CCR-2 CC Chemokine Receptor Nucleic Acids and Antisense Oligonucleotide Fragments

5'-CTTTGTGAAG AAGGAATTGG CAACACTGAA ACCTCCAGAA CAAAGGCTGT CACTAAGGTC CCGCTGCCTT
 GATGGATTAT ACAC1TTGACC TCAGTGTGAC AACAGTGACC GACTACTACT ACCCTGATAT CTTCTCAAGC
 CCCTGTGATG CGGA ACTTAT TCAGACAAAT GGCAAGTTGC TCCTTGCTGT CTTTATTGCA CTCCTGTTG
 TATTCACTCT TCTG1GGAAAC AGCCTGGTCA TCCTGGTCTT TGTGGTCTG AAGAAGCTGA GGAGCATCAC
 55 AGATGTATAC CTC1TGAACC TGGCCCTGTC TGACCTGCTT TTTGTCTTCT CCTTCCCTT TCAGACCTAC
 TATCTGCTGG ACCAGTGGGT GTTTGGACT GTAATGTGCA AAGTGGTGT TGGCTTTAT TACATTGGCT
 TCTACAGCAG CATC1TTTTCA ATCACCTCA TGAGTGTGGA CAGGTACCTG GCTGTGTCCT ATGCCGTGTA
 TGCCCTAAAG GTGAGGACGA TCAGGATGGG CACAACGCTG TGCCGGCAG TATGGCTAAC CGCCATTATG
 GCTACCATCC CAT1GCTAGT GTTTTACCAA GTGGCCTCTG AAGATGGTGT TCTACAGTGT TATTCACTT
 60 ACAATCAACA GAC1TTGAAAG TGGAAAGATCT TCACCAACTT CAAAATGAAC ATTGAGGCT TGTTGATCCC
 ATTACCACTC TTTA1GTTCT GCTACATTAA AATCTGCAC CAGCTGAAGA GGTGTCAAAA CCACAACAAG

ACCAAGGCCA TCAGGGTTGGT GCTCATTGTG GTCATTGCAT CTTTACTTTT CTGGGTCCCA TTCAACGTGG
 TTCTTTCT CACT CCTTG CACAGTATGC ACATCTGGGA TGGATGTAGC ATAAGCCAAC AGCTGACTTA
 TGCCACCAT GTCA CAGAAA TCATTTCTT TACTCACTGC TGTGTGAACC CTGTTATCTA TGCTTTGTT
 5 GGGGAGAAAGT TCA AAGAACAC CCTCTCAGAA ATATTCAGA AAAGTTGCAG CCAAATCTTC AACTACCTAG
 GAAGACAAAT GCCT AGGGAG AGCTGTGAAA AGTCATCATC CTGCCAGCAG CACTCCTCCC GTTCCTCCAG
 CGTAGACTAC ATTGTGAG GATCAATGAA GACTAAATAT AAAAACATT TTCTGAATG GCATGCTAGT
 AGCAGTGTGAGC AAAAGGTGTT GTGTGAAAGG TTTCAAAAAA AAGTTCAGCA TGAAGGATGC CGTGTGTGTT
 GTTGCAACA CTTGGAACAC AATGACTGGA GACATAGTT TGCACTGCTG GCACAACATC AAGCCTGTGA
 10 TTGTGTTAT TGATGATGTT GAACAAGTGG TGGCTTGAG GGATTCTGTA TGCCAAGTGG AAAAAAAAGA
 TGTCTCCCGA ATTGACAGG TTATCA-3' (FRAG. NO.:_) (SEQ. ID NO:2462)

CCR-4 CC Chemokine Receptor Nucleic Acids and Antisense Oligonucleotide Fragments

5'-TTTCATCTCT CCCGGCTTAT TTGCTGGTTT CTCCGAATGC GGGCCTTGT TGTTCACGC TGGATCCCCA
 ACGCTAGAA CAGT'CGGTGG CACCGAGTTC GTCTTCTAT AAATATCGGA CTAATGCAT CTCTGTGATG
 15 GTAATACCCA CACC GTGTT TGAGAATGAA TGAGTGTATT TGTCAGTT AAAGCAACTAT CCTAGTGTATC TGTTACAAA
 AGTACTGGTC GCTAAATTAC TCTTATAATA AAGCATACTT TTAGGATAAT AAAGCACTAT TCGCGAATTG
 GTTACCGCTA TTATGAAATT ACTGAGCAAT ACATATCTAC ATCTGATCAG TCTCCAGAAT TATGCCAAT
 CCTACCTCT TCTG AAGTA TCTCCTAATT ATCTGCACCT GACCCCTAGTG ATGCTGTGAA TGTGCAAGTA
 TAGCTACATC CTCCGAAGGA AGGATCTTA CTCTTTTAC CTCCCTGAATG GGCTGCGTCT GCTGAAAGCG
 20 CGGGGGAATG GGC GGTTGGT AGCTTGGCCC TACTTCCAGC ATTGCCGCT ACTGGTTGGG TTACTCCAGC
 AAGTCACTCC CCTTCCCTGG GCCTCAGTGT CTCTACTGTA GCATTCAG GCATTCAGT CCATCCACTT
 TAGCAAGGAT GGACCGGCCA CAGAGAGACG CGTCCCTAGC CCGCGCTTCC GGACTCACTA CAGGCGCATC
 CCGCTTCCCT CAAACTTAGG AAATGCCCT TGCTTGTCA GGGAGGTCTT GTCCGGCTCC CCTCCCTCCT
 GCAAACAGCA GGG CCCCTG GGCTTCCCAA GCGCGCACC TCTCCGCC GCCCCCTGCGC CCTCCCTCCT
 CGCGTCTGCC CCTCTCCCCC ACCCCGCCTT CTCCCTCCCC GCCCCAGCGG CGCATGCGCC GCGCTCGGAG
 25 CGTGTTTTA TAAA AGTCCG GCGCGGCCA GAAACTTCAG TTTGTTGGCT GCGGCAGCAG GTAGCAAAGT
 GACGCCGAGG GCC TGAAGTGC TCCAGTAGCC ACCGCATCTG GAGAACAGC GGT TACCATG GAGGGGATCA
 GTGTAAGTCC AGTITCAACC TGCTTGTCA TAAATGTACA AACGTTGAA CTTAGAGCGC AGCCCCTCTC
 CGAGCAGGGCA GAACCGGCCA GGACATTGGA GGTACCCGTA CTCCAAAGAA GGGTACCCGA AAGGAGTTT
 CTTGACCATG CCTATATAGT GCGGGTGGGT GGGGGGGGAG CAGGATTGGA ATCTTTTCT CTGTGAGTCG
 30 AGGAGAAACG ACTGAAAGA GCGTTCCAGT GGCTGCATGT GTCTCCCCCT TGAGTCCCGC CGCGCGCGGC
 GGCTTGACG CTGTTGCAA ACGTAAGAAC ATTCTGTGCA CAAGTGCAGA GAAGGCGTGC GCGCTGCC
 GGGACTCAGA CCAC CGGTCT CTTCTTGGG GAAGCGGGGA TGTCTTGGAG CGAGTTACAT TGTCTGAATT
 TAGAGGCGGA GGGCGGGCGT CCGGGCTGTA CTTCCCAGGA GGAGATTGCG CCCGCTTAA CTTCGGGTT
 AAGCGCTGG TGACTGTTCT TGACACTGGG TCGTGTTTG TTAAACTCTG TGCAGGCCAC GGAGCTGTGC
 35 CAGTCTCCA GCACAGTAGG CAGAGGGCGG GAGAGGCGGG TGGACCCACC GCGCCGATCC TCTGAGGGGA
 TCGAGTGGTG GCAC CAGCTA GGAGTTGATC CGCCCGCGCG CTTTGGGTTT GAGGGGGAAA CCTTCCCGCC
 GTCCGAAGCG CGCC TCTTCC CCACGGCCGC GAGTGGGTCC TGCAAGTTCGA GAGTTGGGG TCGTGCAGAG
 GTCAGCGGAG TGGTTTGACC TCCCTTTGA CACCGCGCAG CTGCCAGCCC TGAGATTGC GCTCCGGGA
 TAGGAGCGGG TACC GGGTGA GGGCGGGGG CGGTTAACAC CGCACCTGGG CTGCCAGGTC GCCGCCCGA
 40 AGACTGGCAG GTGCAAGTGG GGAAACCGTT TGGCTCTCTC CGAGTCCAGT TGTGATGTTT AACCGTCGGT
 GGTTTCCAGA AACCTTTGA AACCCCTTTG CTAGGGAGTT TTTGGTTTCC TGAGCGGCG CGCAATTCAA
 AGACGCTCGC GGCC GAGCCG CCCAGTCGCT CCCAGCACC CTGTTGGACA GAGCCTGGCG TGTGCCCCAG
 CGGAGCCCT GCAC CGCTGC TTGCGGGCGG TTGGCGTGGG TGTAGTGGGC AGCCCGGGCG GCCCGGGGCT
 GGACGACCCG GCCC CCCCGCG TGCCCACCGC CTGGAGGCTT CCAGCTGCC ACCTCCGGCC GGGTTAACTG
 45 GATCAGTGGC GGGG TAATGG GAAGCCACCC GGGAGAGTGA GGAAATGAAA CTTGGGGCGA GGACCACGGG
 TGCAGACCCC GTTACCTCT CCACCCAGGA AAATGCCCG CTCCTAACG TCCCAAACGC GCCAAGTGT
 AAACACGAGG ATGCAAGAG ACCCACACAC CGGAGGAGCG CCGCGTTGGG GGAGGGAGTG CCGTTTGTTC
 ATTTCTGAC ACTCCGCC AATATACCC AAGCACCGAA GGGCCTTCGT TTTAAGACCG CATTCTCTT
 ACCCACTACA AGTIGCTGA AGCCCAGAA GTTTGTATT TAGGCAGGCG TGGAAAATT AAGTTTTGC
 50 GCTT TAGGAG AATGAGTCTT TGCAACGCC CC GCGCCCTCCC CCGGTATCC TCCCTCTCC CCTCTCCCT
 CCCTGGCGA AAA CTTCTT ACAAAAGTT AATCACTGCC CCTCCTAGCA GCACCCACCC CACCCCCCAC
 GCCGCTGGG AGTGGCCTCT TTGTGTGTAT TTTTTTTTC CTCCTAACGA AGGTTTTTT TCTTCCCTCT
 AGTGGCGGG GCAGAGGAGT TAGCCAAGAT GTGACTTTGA AACCCCTCAGC GTCTCAGTGC CCTTTGTTC
 TAAACAAAGA ATTGTAAAT TGGTTCTACC AAAGAAGGAT ATAATGAAGT CACTATGGGA AAAGATGGG
 55 AGGAGAGTT TAGGATTCTA CATTAATTCT CTTGTGCCCT TAGCCCACCA CTTCAGAATT TCCTGAAGAA
 AGCAAGCCTG AAT GGT TTT TTAAATTGCT TAAAAATTT TTTTTAACG GGTAAATGCT TGCTGAATTG
 GAAGTGAATG TCCATTCCCT TGCCCTTTT GCAGATATAC ACTTCAGATA ACTACACCGA GGAAATGGC
 TCAGGGACT ATGACTCCAT GAAGGAACCC TGTTCCGT AAGAAAATGC TAATTCAAT AAAATCTCC
 TGCCCACCAT CTACTCCATC ATCTCTTAA CTGGCATTGT GGGCAATGGA TTGGTCATCC TGGTCATGGG
 60 TTACCAAGAAG AAAC TGTGAGAA GCATGACCGA CAAGTACAGG CTGCACCTGT CAGTGGCCGA CCTCCTCTT
 GTCATCACGC TTCCCTCTG GGCAGTTGAT GCCGTGGCAA ACTGGTACTT TGGGAACCTC CTATGCAAGG

CAGTCCATGT CATC TACACA GTCAACCTCT ACAGCAGTGT CCTCATCTG GCCTTCATCA GTCTGGACCG
 CTACCTGGCC ATCGTCCACG CCACCAACAG TCAGAGGCCA AGGAAGCTGT TGGCTGAAAA GGTGGTCTAT
 GTTGGCGTCT GGATCCCTGC CCTCCTGCTG ACTATTCCCG ACTTCATCTT TGCCAACGTC AGTGAGGCAG
 5 ATGACAGATA TATCTGTGAC CGCTTCTACC CCAATGACTT GTGGGTGGTT GTGTTCCAGT TTCAAGCACAT
 CATGGTTGGC CTTAACCTGC CTGGTATTGT CATCCTGTCC TGCTATTGCA TTATCATCTC CAAGCTGTCA
 CACTCCAAGG GCCAACAGAA GCGCAAGGCC CTCAGAGCCA CAGTCATCTT CATCCTGGCT TTCTTCGCT
 GTTGGCTGCC TTACTACATT GGGATCAGCA TCGACTCCTT CATCCTCCTG GAAATCATCA AGCAAGGGTG
 TGAGTTGAG AACACTGTGC ACAAGTGGAT TTCCATCACC GAGGCCCTAG CTTTCTTCCA CTGTTGTCTG
 10 AACCCCATCC TCTATGCTT CCTTGGAGCC AAATTAAA CCTCTGCCA GCACGCACTC ACCTCTGTGA
 GCAGAGGGTC CAGCCTCAAG ATCCCTCTCA AAGGAAAGCG AGGTGGACAT TCATCTGTTT CCACTGAGTC
 TGAGTCTCA AGTITTCACT CCAGCTAAC AAGATGTAAG AGACTTTTT TTATACGATA AATAACTTTT
 TTTTAAGTTA CACATTTTC AGATATAAAA GACTGACCAA TATTGTACAG TTTTATTGCA TTGTTGATT
 TTTGTTCTGT GTTCTTTAG TTTTGTGAA GTTTAATTGA CTTATTATA TAAATTTTTT TTGTTTCATA
 TTGATGTGTG TCTAGGCAGG ACCTGTGGCC AAGTTCTTAG TTGCTGTATG TCTCGTGGTA GGACTGTAGA
 15 AAAGGGAACG GAAACATTCCA GAGCGTGTAG TGAATCACGT AAAGCTAGAA ATGATCCCCA GCTGTTATG
 CATAGATAAT CTCICCTTC CCGTGGAAACG TTTTCCCTGT TCTTAAGACG TGATTTGCT GTAGAAGATG
 GCACTTATAA CCAFAAGCCA AAGTGGTATA GAAATGCTGG TTTTCAGT TTCAGGAGTG GGTTGATTTC
 AGCACCTACA GTG'ACAGTC TTGTTAAAG TTGTTAAAG AAGTACATGT TAAACCTACT TAGTGTATG
 20 TTCTGATTTC TGTTGACATT CTTTGGCTA GTAGAAGACA AAAGTAATAC ATTATGGTA TGCAAAAGCAC
 TATCCTAGGT ATTICATTGT AATATTTCAC TTACCCCTTA TCACAACTCT GATAGATTCT GCTTCTGT
 CTAATTACAT TTATAGAAAG AGGAAACCGG GGCACAGAAA GCCTAAGTAA CTTGGTTAAA GGCATGTAGT
 AAGTATCAAAG TCCIGTATT TAAACCGGT AACATGACTT AACGAATCTG AAGCCTTCAC CACTTTAAAT
 TCAAATGGAA GTTIAGAAAT GGCCAGCCAG CACCTATTG TATGAAAGGT CATCTTCAG AGGATAAGACA
 TGTATAAAGA AGAAAGGTA TGCAGTCGTG TTTGGATTT ACTCCACCAT C-3' (FRAG. NO.:) (SEQ. ID NO: 2463)

25 CD-34 Nucleic Acids and Antisense Oligonucleotide Fragments

5'-AGGATGATGG TGATGGGGAA CTAATGGGG AAATATGGAA GGTCACAGGA AAAGTTAAC CAAGTTAGCA
 AAAGTTAAC ATAACACAAA AAGGTCTTGC AGGAAAAAAA AAAGAAAAGA AAAGAAAAGAA AAAGTCTCCA
 AGAATGGTTT GGACAGCAA AATGAATACT TATAGTCACG TATACCTGCT CACTCCTGAC GCTTCACTCA
 CACACAGCAC AGGATCTGGT GAGGCTATCA TAAATGTGC CACATTGTGG TTAAGTTTA CCTGATTAAC
 30 GAAATGCTCA CACITCTAA CTGAGGTCT TACAGTAGAT TCCCTTGCA AGATTGTTAC TGGCTTACAA
 CTTAAAAATA AAGC AAAATC ACAAGGAAAG AAAAGTGGGG AAAAAATCGG AGGAAACTTG CCCCTGCC
 GGCCACCGGC AAGCCTGCCA CAAAGGGTT AAAAGTAAAG TGGAAGTGGA GCTTGAAGAA GTGGGATGG
 GCCTCTCCAG GAAAGCTGAA CGAGGCATCT GGAGCCCAGA CAAACCTCCA CCTTTTTGG CCTCGACGGC
 GGCACCCAG CTCCTCTCT AACGCCCTCC GCCTTGGGA CCAACAGGG GAGCTCAAGT TAGTAGCAGC
 35 CAAGGAGAGG CGCIGCCTTG CCAAGACTAA AAAGGGAGGG GAGAAGAGAG GAAAAAAGCA AGAATCCCC
 ACCCCTCTCC CGGGCGGAGG GGGCGGGAGG AGCGCGTCT GGCCAAGCCG AGTAGTGTCT TCCACTCGGT
 GCGTCTCTCT AGGAAGCGCG CGGGAAGGAT GCTGGTCCGC AGGGGCGCGC GCGCAGGGCC CAGGATGCC
 CGGGGCTGGA CCGCGCTTTG CTTGCTGAGT TTGCTGC CCTTTTTGG CCTCGACGGC GGCAACCCAG
 CCTCCCTCT AACGCCCTCC GCCTTGGGA CCAACCAGGG GAGCTCAAGT TAGTAGCAGC CAAGGAGAGG
 40 CGCTGCCCTTG CCAA GACTAA AAAGGGAGGG GAGAAGAGAG GAAAAAAGCA AGAATCCCC ACCCCTCTCC
 CGGGCGGAGG GGGCGGGAGG AGCGCGTCT GGCCAAGCCG AGTAGTGTCT TCCACTCGGT GCGTCTCTCT
 AGGAGCCCGC CGGGIAAGGAT GCTGGTCCGC AGGGGCGCGC GCGAGGGCCC AGGATGCCGC GGGGCTGGAC
 CGCGCTTGC TTGCTGAGTT TGCTGCCCT TGTTTTCATG AGTCTTGAC AACAACGGTAC TGCTACCCCA
 GAGTTACCTA CCCAGGGAAAC ATTTCAAT GTTTCATCAA ATGTATCTA CCAAGAAACT ACAACACCTA
 45 GTACCCCTGG AAGTACCAAGC CTGCACCCCTG TGTCTCAACA TGGCAATGAG GCCACAACAA ACATCACAGA
 AACGACAGTC AAAATCACAT CTACCTCTGT GATAACCTCA GTTATGGAA ACACAAACTC TTCTGTCCAG
 TCACAGACCT CTGTAATCAG CACAGTGTTC ACCACCCAG CCAACGTTTC AACTCCAGAG ACAACCTTGA
 AGCCTAGCCT GTCA CCTGGA AATGTTTCAG ACCTTCAC AAGGCAAGAA TCAAATGTT ACAGCATCAGA
 50 TAAACCTAT ACATCATCTT CTCCTATCTT AAGTGCACATC AAGGCAAGAA TCAAATGTT ACAGCATCAGA
 GAAGTGAAT TGACTCAGGG CATCTGCTG GAGCAAAATA AGACCTCAG CTGTCAGGAG TGTGATGCTG
 ACAGGGGAGA GGGCTGCC CGAGTGTGT GTGGGGAGGA GCAGGCTGAT TTGCTACTGC TGGCTTGGC
 ATGCTCCCTG CTCCCTGCCA AGTCTGAGGT GAGGCCAGTG TGACCTGAA AAAGCTGGGG ATCCTAGATT
 GAAATTCTCA GCAAACTCCA ACTTATGAA AAGCACCAAT AGACCTCAG CTGTCAGGAG TGTGACTCGG
 55 TCACTGAGCA AGAATGTCAGA AGGCCACAGA GCTATCCCA ATGAATGCC GCAGGCTGGAG CCCACAGGA
 AGCCCTGCTG GCTGTCTTGG GCATCACTGG CTATTCTG GAGGCCAGGG CTATAGCTCA GGACCTGGGA
 GAAAGGCTGG GCGAAGACCC TTATTACACG GAAAACGGTG GGCTCAGAAA AACGGGACCG GCCAGGCCAC
 CCTCCCTGA GGCTCAGGG AAGGCCAGTG TGAACCGAGG GAGGCCAGGG CTGACCTGAA AAAGCTGGGG
 CTCCAGAACG GCCATTCAAG CAAGACAACA CGTGGTGGCT GATACCGAAT TGTGACTCGG CTAGGTGGGG
 CAAGGCTGGG CAGTGTCCGA GAGAGCACCC CTCTCTGCAT CTGACCACTG GCTACCCCCA TGCTGGAGGT
 60 GACATCTCTT ACGCCCAACC CTTCCCCACT GCACACACCT CAGAGGCTGT TCTTGGGGCC CTACACCTTG
 AGGAGGGGGC AGGTAAACTC CTGCTCTTA CACATTGGC TCCCTGGAGC CAGACTCTGG TCTTCTTGG
 GTAAACCTGT GACGGGGGAA AGCCAAGGTC TGGAGAAGCT CCCAGGAACA ATCGATGGCC TTGCAGCACT
 CACACAGGAC CCCCTTCCCC TACCTCTGCCGC AATACAGGAA CCCCCAGGGG AAAGATGAGC
 TTTCTAGGC TACAAATTTC TCCCAGGAAG CTTTGATT TACCGTTTCT TCCCTGTATT TTCTTCTCT

ACTTTGAGGA AACCAAAGTA ACCTTTGCA CCTGCTCTCT TGTAAATGATA TAGCCAGAAA AACGTGTTGC
 CTTGAACCAC TTCCCTCATC TCTCCTCCA GACACTGTGG ACTTGGTCAC CAGCTCCTCC CTTGTTCTCT
 AAGTTCCACT GAGUTCCATG TGCCCCCTCT ACCATTGCA GAGTCCTGCA CAGTTTCTG GCTGGAGCCT
 AGAACAGGCC TCCCAAGTTT TAGGACAAC AGCTCAGTTC TAGTCTCTCT GGGGCCACAC AGAAACTCTT
 5 TTTGGGCTCC TTTTCTCCC TCTGGATCAA AGTAGGCAGG ACCATGGGAC CAGGCTTGG AGCTGAGCCT
 CTCACCTGTA CTCTCCGAA AAATCCTTT CCTGAGGC TGGATCTAG CCTTATCCTC TGATCTCCAT
 GGCTTCCCTCC TCCCCTCCTGC CGACTCCTGG GTTGANCTGT TGCCCTAGTC CCCAACAGA TGCTTTCTG
 TCTCTGCCTC CCTCACCCCTG AGCCCCCTCC TTGCTCTGCA CCCCCATATG GTCATAGCCC AGATCAGCTC
 10 CTAACCCCTA TCAC'CAGCTG CCTCTTCTGT GGGTGACCCA GTGCTTGTGTT TGCTGTGAT TTCTTTCCAG
 AGGGGTTGAG CAGGGATCCT GGTTCAATG ACGGTTGGAA ATAGAAATT CCAGAGAAGA GAGTATTGGG
 TAGATATTTC TTCTGAAATAC AAAGTGATGT GTTTAAATAC TGCAATTAAA GTGATACTGA AACAC-3' (FRAG.No:_)
 (SEQ. ID NO:2466)
 5'-AGGATGATGG TGATGGGGAA CAAATGGGG AAATATGAA GGTACAGGA AAAGTTAAC CAAGTTAGCA
 AAAAGTTAAC ATAACACAAA AAGGTCTTC AGGAAAAAAA AAAGAAAAGA AAAGAAAAGA AAAGTCTCCA
 15 AGAATGGTT GGACAGCAA AATGAATACT TATAGTCACG TATACTGCT CACTCTGAC GCTTCACTCA
 CACACAGCAC AGGATCTGGT GAGGCTATCA CAAATGTGC CACATTGTTG TTAAGTTTA CCTGATTAAC
 GAAATGCTCA CACTCTAAA CTGAGGTCCT TACAGTAGAT TCCCTTGCAG AGATGTTAC TGGCTTACAA
 CTTAAAAATA AAGC AAAATC ACAAGGAAAG AAAAGTGGGG AAAAATCGG AGGAAACTTG CCCCTGCCCT
 GCCCACCGGC AAGUCGCCA CAAAGGGTT AAAAGTTAAC TGGAGTGGG GCTTGAAGAA GTGGGATGGG
 20 GCCTCTCCAG GAAAGCTGAA CGAGGCATCT GGAGCCGAA CAAACCTCA CCTTTTGGG CCTCGACGGC
 GGCAACCCAG CCTCCCTCCT AACGCCCTCC GCCTTGGG CCAACCAGGG GAGCTCAAGT TAGTAGCAGC
 CAAGGAGAGG CGCTGCCCTG CCAAGACTAA AAAGGGAGGG GAGAAGAGAG GAAAAAAGCA AGAATCCCCC
 ACCCTCTCC CGGGCGGAGG GGGCGGGAAAG AGCGCTCCT GGCCAAGCCG AGTAGTGTCT TCCACTCGGT
 GCGTCTCTC AGGAGCCGCG CGGGAAAGGAT GCTGGTCCGC AGGGGCGCG GCGCAGGGCC CAGGATGCCG
 25 CGGGGCTGGA CGCGCTTTG CTTGCTGAGT TTGCTGC-3' (FRAG. NO:_) (SEQ. ID NO:2464)
 5'-CCTTTTTGG CCI CGACGGC GGCAACCCAG CCTCCCTCCT AACGCCCTCC GCCTTGGG CCAACCAGGG
 GAGCTCAAGT TAGAGCAGC CAAGGAGAGG CGCTGCTTG CCAAGACTAA AAAGGGAGGG GAGAAGAGAG
 GAAAAAAGCA AGAATCCCCC ACCCCTCTCC CGGGCGGAGG GGGCGGGAAAG AGCGCTCCT GGCCAAGCCG
 30 AGTAGTGTCT TCCACTCGGT GCGTCTCTCT AGGAGCCGCG CGGGAAAGGAT GCTGGTCCGC AGGGGCGCG
 GCGAGGGCCC AGGATGCCG CGGGCTGGAC CGCGCTTGC TTGCTGAGTT TGCTGCCCTC TGGGTTCATG
 AGTCTTGACA ACAACGGTAC TGCTACCCCA GAGTTACCTA CCCAGGGAAAC ATTTCAAAT GTTCTACAA
 ATGTATCCTA CCAAGAAACT ACAACACCTA GTACCCCTGG AAGTACCAAGC CTGACCCCTG TGTCTCAACA
 TGGCAATGAG GCCCAACAA ACATCACAGA AACGACAGTC AAATTACAT CTACCTCTGT GATAACCTCA
 GTTTATGGAA ACAC'AAACTC TTCTGTCCAG TCACAGACCT CTGTAATCAG CACAGTGTTC ACCACCCAG
 35 CCAACGTTTC AACICCAGAG ACAACCTGA AGCCTAGCCT GTCACCTGGA AATGTTAG CACCTTCAAC
 CACTAGCACT AGCCTTGCAA CATCTCCAC TAAACCTAT ACATCATCTT CTCCTATCCT AAGTGACATC
 AAGGCAGAAA TCAATGTTG AGGCATCAGA GAAGTGAAT TGACTCAGGG CATCTGCCG GAGCAAATA
 AGACCTCCAG CTGTGCGGAG TTTAAGAAGG ACAGGGGAGA GGGCCTGGCC CGAGTGCTGT GTGGGAGGA
 GCAGGCTGAT GCTATGCTG GGGCCAGGT ATGCTCCCTG CTCCTGCCG AGTCTGAGGT GAGGCCTCAG
 40 TGTCTACTGC TGGCTTGCG CAACAGAAC GAAATTCCA GCAAACCTCA ACTTATGAA AAGCACCAAT
 CTGACCTGAA AAACCTGGGG ATCCTAGATT TCACTGAGCA AGATGTTGCA AGCCACAGA GCTATTCCCA
 AAAGACCTG ATTCACTGG TCACCTCGG AGCCCTGCTG GCTGCTTGG GCATCACTGG CTATTCCTG
 ATGAATCGCC GCACCTGGAG CCCCACAGGA GAAAGGCTGG GCGAAGACCC TTATTACACG GAAAACGGTG
 GAGGCCAGGG CTATAGCTCA GGACCTGGGA CCTCCCTGGA GGCTCAGGG AAGGCCAGTG TGAACCGAGG
 45 GGCTCAGAAA AACGGGACCG GCCAGGCCAC CTCCAGAAC GGCCATTCAAG CAAGACAACA CGTGGTGGCT
 GATAACGAAT TGTCACTCGG CTAGGTGGGG CAAGGCTGGG CAGTGTCCGA GAGAGCACCC CTCTCTGCAT
 CTGACCACTG GCTACCCCA TGCTGGAGGT GACATCTCTT ACGCCAACCT CTTCCCCACT GCACACACT
 CAGAGGCTGT TCTTGGGCC CTACACCTTG AGGAGGGGGC AGGTAACACT CTGCTCTTTA CACATTGGC
 TCCCTGGAGC CAGACTCTGG TCTTCTTGG GTAAACGTGT GACGGGGAA AGCCAAGGTC TGGAGAAGCT
 50 CCCAGGAACA ATCGATGCC TTGAGCACT CACACAGGAC CCCCTCCCC TACCCCTCC TCTCTGCCG
 AATACAGGAA CCC'CAGGGG AAAGATGAGC TTTCTAGGC TACAATTTC TCCCAGGAAG CTTTGATT
 TACCGTTCT TCCCCTGTATT TTCTTCTCT ACTTGAGGA AACCAAAGTA ACCTTTGCA CCTGCTCTCT
 TGTAATGATA TAGCAGAAA AACGTGTTGC CTTGAACCAC TTCCCTCATC TCTCTCCAA GACACTGTGG
 ACTTGGTCAC CAGCTCCCTC TTGTTCTCT AAGTCCACT GAGCTCCAT TGCCCCCTCT ACCATTGCA
 55 GAGCTCTGCA CAGTTTCTG GCTGGAGCCT AGAACAGGCC TCCCAAGTT TAGGACAAAC AGCTCAGTC
 TAGTCTCTCT GGGGCCACAC AGAAAACCTTT TTGGCTCC CTCTTCCGAA AAATCCTCTT CCTCTGAGGC
 ACCATGGGAC CAGGTCTTGG AGCTGAGCCT CTCACCTGTA TCCCTCTGC CGACTCCTGG GTTGAGCTGT
 TGGATCTTAG CCTATCCTC TGATCTCCAT GGCTTCTCC CCTCACCTG AGCCCCCTCC TTGCTCTGCA
 TGCCTCAGTC CCCAACAGA TGCTTTCTG TCTCTGCCCTC CCTCACCTG AGCCCCCTCC TTGCTCTGCA
 60 CCCCATATG GTCATAGCCC AGATCAGCT CTAACCCCTA TCACCACTG CCTCTCTGT GGGTCAATG
 GGTCTTGTGTT TGCTGTTGAT TTCTTCCAG AGGGGTTGAG CAGGGATCCT GGTTCATG ACGGTTGGAA
 ATAGAAATT CCACAGAAGA GAGTATTGG TAGATATT TTCTGAATAC AAAGTGATGT GTTTAAATAC

TGCAATTAAA GTGAT'ACTGA AACAC-3' (FRAG. No:_) (SEQ. ID NO:2465)

Eotaxin Antisense Nucleic Acids and Oligonucleotide Fragments

5'	GCATTTTTTC	AACTTTTATG	ATTTATTAA	CTTGTGGAAC	AAAAATAAAC	CAGAAACCAC	CACCTCTCAC
5	GCCAAAGCTC	ACACCTTCAG	CCTCCAACAT	GAAGGTCTCC	GCAGCACTTC	TGTGGCTGCT	GCTCATAGCA
	GCTGCCTTCA	GCCCCCAGGG	GCTCGCTGGG	CCAGCTTCTG	TCCCAACCAC	CTGCTGCTT	AACCTGGCCA
	ATAGGAAGAT	ACCCCTTCAG	CGACTAGAGA	GCTACAGGAG	AATCACCAGT	GGCAAATGTC	CCCAGAAAGC
	TGTGATCTC	AAGACAAAC	TGGCCAAGGA	TATCTGTGCC	GACCCCAAGA	AGAAGTGGGT	GCAGGATTCC
10	ATGAAGTATC	TGGACCAAAA	ATCTCCAAC	CCAAAGCCAT	AAATAATCAC	CATTITGAA	ACCAAACCAAG
	AGCCTGAGTG	TTGCTTAATT	TGTTTCCCT	TCTTACAATG	CATTCTGAGG	TAACCTCATT	ATCAGTCCAA
	AGGGCATGGG	TTT'ATTATA	TATATATATA	TTTTTTTTT	AAAAAAAAC	GTATTGCATT	TAATTATATG
	AGGCTTAA	ACTTATCCTC	CATGAATATC	AGTTATTTT	AAACTGTAAC	GCTTGTGCA	GATTCTTAC
	CCCCTGGAG	CCCCAATTCG	ATCCCCGTG	ACGTGTGGGC	AATGTTCCCC	CTCTCCCTC	TCCTCCCTG
15	GAATCTGT	AAAGCTCTGG	CAAAGATGAT	CAGTATGAA	ATGTCATTGT	TCTTGTGAAC	CCAAAGTGTG
	ACTCATAAA	TGGAGTAAA	TGTTGTTTA	GGAATAC	ATGAAGGTCT	CCGCAGCACT	TCTGTGGCTG
	CTGCTCATAG	CAGCTGCCTT	CAGCCCCCAG	GGGCTCGCTG	GGCCAGCTTC	TGTCCCAACC	ACCTGCTGCT
	TTAACCTGGC	CAATAGGAAG	ATACCCCTTC	AGCGACTAGA	GAGCTACAGG	AGAATCACCA	GTGGCAAATG
	TCCCCAGAAA	GCTCTGATCT	TCAAGACAA	ACTGGCCAG	GATATCTGTG	CCGACCCCAA	GAAGAAGTGG
	GTGCAGGATT	CCATGAAGTA	TCTGACCAAA	AAATCTCCA	CTCCAAAGCC	ATAA	CCACATATTCCCTT
20	CCAAGGCAAG	ATCCAGATGG	ATTAAAAAT	GTACCAAGTC	CCTCTTA	GCTTGCCTCT	CTTCTGTTCT
	GCTTGACTTC	CTAGGATCTG	GAATCTGGTC	AGCAATCAGG	AATCCCTTC	TCGTGACCCC	CGCATGGGCA
	AAGGCTCCC	TGGGATCTCC	CACACTGTCT	GCTCCCTATA	AAAGGCGAGC	AGATGGGCCA	GAGGAGCAGA
	GAGGCTGAGA	CCAACCCAGA	AACCACCA	TCTCACGCCA	AAGCTCACAC	CTTCAGCCTC	CAACATGAAG
	GTCTCCGAG	CACITCTGTG	GCTGCTGCTC	ATAGCAGCTG	CCTTCAGCCC	CCAGGGGCTC	GCTGGGCCAG
25	GTAAGCCCCC	CAACTCTTA	CAGGAAAGGT	AAGTAACCA	CCTCCAGCT	ACTAGGTCA	CAAGAATCTT
	TACAGACTCA	CTGCAATTTC	TCCATTGAA	AAATAGGGAA	ACAGGTTTG	TGGGGGACAA	AGAAATGCT
	CAACCGTCAC	ATCCAGTCAC	TGGAAGAGGC	AGAACTAGAA	AGCTCCCGAG	TCTTTCCCC	ACATTCAAGA
	GGGCCGCTGG	GTGCATCTT	ACCCAGCTAT	CCTTACAGTG	TTTGGGAATG	GGGAATGGCT	CTGTCTTACT
	GTGGGCATGG	TGGGCACTTT	TGGCAGTGGG	AGAGAAGGAA	AATCTGTTGA	TTAGAAGCTC	AGTATGTTAA
30	TTCGACTCCA	GGACAGCTT	CAGAGACAGT	GGCTAAGAGA	AGAACGAGGT	CCCAGGGAT	CTCTTGAGGT
	GACTTATTTT	GACA CTCTTT	GGGAAAGTTA	TCTAGGAGAT	TTGTTCCATA	ACTCATTTTC	CCATACTCTG
	GTGACAAATT	TACIGAGTGT	ATCGGTCCCA	CTGAGCCAGT	GCATAGCATG	GTAACAAACAA	GTTCTAAATT
	ATCAATGACT	TAACAGAATT	AACTAAATTA	ACAAAAGTTA	CTTTCTCACT	TGTACTAAAT	ATCTATAATG
	TATGGGCTCA	GGCITCTGCA	TTTATACTC	AGGATTCTAG	ACTGATGGAG	AAGTTGCCAT	GTGGGGAAAC
35	ATTGATGGAT	ACTGTGATAA	AGCAGAAGAA	AGCTCTCAGG	AGTCTTGAT	AGGCAATGCA	CTGTGGCTCA
	AAAATGACAC	CCA'CACTTT	GTCTCCTTCT	TTATTGATCA	AAACTAATTAA	ATGCCTCCAA	CCAAACAAAA
	GTGGCCAAGA	ATATGCAAGTC	TACCTTGTTG	CTCAAAACAG	AGGATGGAGA	ATATTGGTG	AAAATTACCA
	TGACCATCAC	ATGC-CCACGT	AGGTCTTTAT	AATGACAGAG	CTAGCATTG	TCACATTGAC	CAAGCTTTGT
	CCATACACTC	TACAGTAATG	ATGAGTCCCT	AGTGCACAGG	GGAGGATGCT	GAAGACACAG	GACAGCATCC
40	TCCAGACACA	TAAGACTTCA	GAGCAGAGGG	ATTCTCCCTC	CACCTCTCGC	AATTCTTG	TTTCTCCTAA
	CTTCTTTAC	AAAC TCATGC	TTGGAAATGT	CTATGTATCA	TCATGTGGCT	CATTITTTTC	TCTGTTCTT
	TTTTTCCCC	AAAAITCAGC	TTCTGTCCCA	ACCACCTGCT	GCTTAACT	GGCCAATAGG	AAGATACCCC
	TTCAGCGACT	AGAGAGCTAC	AGGAGAAATCA	CCAGTGGCAA	ATGCCCCAG	AAAGCTGTGA	TGTAAGTAAA
	TAAAGTTCAC	CCTCCCTAG	ACAAAAAAAT	AATGCTTAGG	GCACAGAGTC	AAGAACTGTG	GGAGTCATAG
45	ACTCTGATAG	TTTGACCTCT	ATGGTCCAAAT	TCATTAATTT	TCACAAGTGA	GTGTTCACTC	CCAGCTCCCT
	GCCTGGGAGA	TTGCTGTAGT	CATATCAATT	TCTTCAAGTC	AAGAGCAAAG	ATGGTTTAC	TGGGCCTTTA
	AGAGCAGCAA	CTAACCCAAAG	AGTCTCATCC	TTCTCCTCT	CCGTAGCAAC	CCTTGTCCA	GGGGCAGATG
	GTCCTTAAAT	ATTAGGGTC	AAATGGGCAG	AATTTCAAA	ACAATCCTT	CCAATTGCA	CCTGATTCTC
	CCCACAGCTT	CAAGACAAA	CTGGCCAAGG	ATATCTGTGC	CGACCCCAAG	AAGAAGTGGG	TGCAGGATTG
50	CATGAAGTAT	CTGCAACAA	AATCTCCAAC	TCCAAAGCCA	TAATAATCA	CCATTTCGA	AACCAAACCA
	GAGCCTGAGT	GTTCCTTAAT	TTGTTTCCC	TTCTTACAAT	GCATTCTGAG	GTAACCTCAT	TATCAGTCCA
	AAGGGCATGG	GT'TTATTAT	ATATATATAT	ATATATTTTT	TTTAAAAAA	AAACGTATTG	CATTAAATT
	ATTGAGGCTT	TAACACTTAT	CCTCCATGAA	TATCAGTTAT	TTTAAACTG	AAAGCTTTG	TGCAGATTCT
	TTACCCCTG	GGACCCCCAA	TTCGATCCCC	TGTCACGTGT	GGGCAATGTT	CCCCCTCTCC	TCTCTCCTC
55	CCTGGAATCT	TGTAAAGGTC	CTGGCAAAGA	TGATCAGTAT	GAAAATGTCA	TTGTTCTGT	GAACCCAAAG
	TGTGACTCAT	TAATGGAAG	TAATGTTGTT	TTAGGAATAC	ATAAAGTATG	TGCATATT	ATTATAGTCA
	CTAGTTGTA	TTTTTTGTTG	GGAAATCCAC	ACTGAGCTGA	GGGG-3'	(FRAG. NO:_)	(SEQ. ID
	NO: 2494)						
	5'-GCATTTTTTC	AACTTTTATG	ATTTATTAA	CTTGTGGAAC	AAAAATAAAC	CAGAAACCAC	CACCTCTCAC
60	GCCAAAGCTC	ACACCTTCAG	CCTCCAACAT	GAAGGTCTCC	GCAGCACTTC	TGTGGCTGCT	GCTCATAGCA
	GCTGCCTTCA	GCCCCCAGGG	GCTCGCTGGG	CCAGCTTCTG	TCCCAACCAC	CTGCTGCTT	AACCTGGCCA

ATAGGAAGAT ACCCTTCAG CGACTAGAGA GCTACAGGAG AATCACCAGT GGCAAATGTC CCCAGAAAGC
 TGTGATCTTC AAGACCAAAAC TGGCCAAGGA TATCTGTGCC GACCCCAAGA AGAACGGGT GCAGGATTCC
 ATGAAGTATC TGGACCAAAA ATCTCCAATC CCAAAGCCAT AAATAATCAC CATTCTGAA ACCAAACCCAG
 5 AGCCTGAGTG TTGCTTAATT TGTTTCCCT TCTTACAATG CATTCTGAGG TAACCTCATT ATCAGTCCAA
 AGGGCATGGG TTTATTATA TATATATATA TTTTTTTTTT AAAAAAAAC GTATTGCATT TAATTATATG
 AGGCTTAAA ACTATCCTC CATGAATATC AGTTATTTT AAACGTAAA GCTTGTGCA GATTCTTAC
 CCCCTGGGAG CCCCAATTG ATCCCCGT ACGTGTGGGC AATGTTCCCC CTCTCCTCTC TTCCCTCCCTG
 GAATCTGTGTA AAGGTCTCTGG CAAAGATGAT CAGTAGAAA ATGTCTTGT TCTTGTGAAC CCAAAGTGTG
 ACTCATTAAGGATGAAATGAA TGTGTGTTA GGAATAC-3' (FRAG.NO:_) (SEQ. ID NO:2491)
 10 5'-ATGAAGGTCT CCCTCAGCACT TCTGTGCTG CTGCTCATAG CAGCTGCCCT CAGCCCCAG GGGCTCGCTG
 GGCCAGCTTC TGTC CCAACC ACCTGCTGCT TTAACCTGGC CAATAGGAAG ATACCCCTTC AGCGACTAGA
 GAGCTACAGG AGAATCACCA GTGGCAAATG TCCCCAGAAA GCTGTGATCT TCAAGACCAA ACTGGCCAAG
 GATATCTGTG CCGACCCCAA GAAGAAGTGG GTGCAGGATT CCATGAAGTA TCTGGACCAA AAATCTCCAA
 CTCCAAAGCC ATAA-3' (FRAG. NO:_) (SEQ. ID NO:2492)
 15 5'-CCACATATTCCCTCTCT CCAAGGGCAAG ATCCAGATGG ATTAAAAAAAT GTACCAAGTC CCTCCTACTA
 GCTTGCCCTCT CTTCTGTTCT GCTTGACTTC CTAGGATCTG GAATCTGGTC AGCAATCAGG AATCCCTTCA
 TCGTACCCCC CGCACTGGGCA AAGGCTTCCC TGGAAATCTCC CACACTGTCT GCTCCCTATA AAAGGCAGGC
 AGATGGGCCA GAGGAGCAGA GAGGCTGAGA CCAACCCAGA AACCAACCC CTCACGCCA AAGCTCACAC
 20 CTCAGCCTC CAACATGAAG GTCTCCCGAG CACTTCTGTG GCTGCTGCTC ATAGCAGCTG CCTTCAGGCC
 CCAGGGCTC GCTCGGCCAG GTAAGCCCC CAACCTCTTA CAGGAAAGGT AAGGTAACCA CCTCCAGGCT
 ACTAGGTCAAG CAAAGATCTT TACAGACTCA CTGCAAATT TCCATTGAA AAATAGGGAA ACAGGTTTG
 TGGGTGACA AGAATGCCT CAACCGTCAC ATCCAGTCAC TGGAAAGAGC AGAACAGAGA AGCTCCCGAG
 TCTTTCCCC ACATTCAGA GGGCCGCTGG GTGCATCCTT ACCCAGCTAT CCTTACAGTG TTTGGGAATG
 25 GGGATGGCT CTGCTTAACT GTGGGCATGG TGGGCATTT TGGCAGTGG AGAGAAGGAA AATCTGTTGA
 TTAGAAGCTC AGTATGTTAA TTCGACTCCA GGACAGCTTT CAGAGACAGT GGCTAAGAGA AGAACGAGGT
 CCCAGGGGAT CTCCTGAGGT GACTTATTT GACACTCTT GGGAAAGTTA TCTAGGAGAT TTGTTCCATA
 ACTCATTTTC CCATACTCTG GTGACAAATT TACTGAGTGT ATCGGTCCCA CTGAGCCAGT GCATAGCATG
 30 GTAACAAACAA GTTCTAAATT ATCAATGACT TAACAGAATT AACTAAATTAA ACAAAAGTTA CTTTCTCACT
 TGTACTAAAT ATCTATAATG TATGGGCTCA GGCTTCTGCAG AGCAGAAGAA AGCTCTCAGG ACTGATGGAG
 AAGTGGCCAT GTGGGGGAAC ATTGATGGAT ACTGTGATAA GGGAAAGTTA TCTAGGAGAT TTGTTCCATA
 AGGCAATGCA CTGCTGCTCA AAAATGACAC CCATCACTT TACCTTGTTGT CTCAAACAG AGGATGGAGA
 ATGCCCTCAA CAAACAAAAA GTGGCCAAGA AATGCAAGTC AAGTCTTAT AATGACAGAG CTAGCATTG
 ATATTGGTG AAAATTACCA TGACCATCAC ATGGCCACGT 35 CCATACACTC TACAGTAATG ATGAGTCTC AGTGCACAGG GGAGGATGCT
 TCACATTGAC CAACCTTGT GAGCAGACAG TCCAGACACA TAAGACTTCA GAGCAGAGGG ATTCTCCCTC CACCTCTCGC
 GAAGACACAG GACAGCATCC AATTCTTGC TTCTCTCTAA CTCCTTTAC AAAGTCATGC TTGAAATGT CTATGTGGCT
 CATTTTTTC TCTGTCATT TTTTTCCCCC AAAATTCTAGC TTCTGTCCCA ACCACCTGCT GCTTTAACCT
 GGCAATAGG AAGATACCCC TTCAGCGACT AGAGAGCTAC AGGAGAATCA CCAGTGGCAA ATGTCCCCAG
 40 AAAGCTGTGA TGTAAAGTAAA TAAAGTTCAC CCTCCCCTAG AAAAAAAAT AATGTCTAGG GCACAGAGTC
 AAGAACTGTG GGAGTCATAG ACTCTGATAG TTGACCTCT ATGGTCCAAT TCATTAATTTC TCACAAGTGA
 GTGTTCACTC CCAGCTCCCT GCCTGGGAGA TTGCTGTAGT CATATCAATT TCTTCAGTC AAGAGCAAAG
 ATGGTTTAC TGGGCCTTA AGAGCAGCAA CTAACCCAAG AGTCTCATCC TTCCCTCTCT CCGTAGCAAC
 CCTTTGTCCA GGGGCAGATG GTCTTAAAT ATTTAGGGTC AAATGGGCAG AATTTCAAA AACAAATCCTT
 45 CCAATTGCTAT CCTGATTCTC CCCACAGCTT CAAGACAAA CTGGCAAGG ATATCTGTGC CGACCCCAAG
 AAGAAGTGGG TGCAGGATT CATGAAGTAT CTGGACCAAA AATCTCCAAC TCCAAAGCCA TAAATAATCA
 CCATTTTGA ACCAAACCA GAGCCTGAGT GTTGTAAATT TTGTTTCCC TTCTTACAAT GCATTCTGAG
 GTAACCTCAT TATCAGTCCA AAGGGCATGG GTTTTATTAT ATATATATAT ATATATTTT TTTTAAACTG
 AAACGTATTG CATITAATT TATGAGGCTT TAAACATTAT CCTCCATGAA TATCAGTTAT TTTTAAACTG
 TAAAGCTTTG TGCAGATTCT TTACCCCCCTG GGAGCCCCAA TTCGATCCCC TGTACGTGT GGGCAATGTT
 50 CCCCTCTCC TCTCTCTC CCTGGAATCT TGTAAAGGTC CTGGCAAAGA TGATCAGTAT GAAAATGTCA
 TTGTTCTGT GAACCAAAG TGTGACTCAT TAAATGGAAG TAATGTTGTT TAGGAATAC ATAAAGTATG
 TGCAATTATT ATTATAGTCA CTAGTTGAA TTTTTTGTG GGAAATCCAC ACTGAGCTGA GGGGG-3' (FRAG.NO:_)
 (SEQ. ID NO:2493)

FK-506 Binding Protein Nucleic Acids and Oligonucleotide Fragments

55 5'- GCCAGGTGCG TGTTGGTCCA CGCCGCCCGT CGGCCGCCCGCC GCCCGCTCAG CGTCCGCCGC CGCCATGGGA
 GGCCGGAGCC GAGCGGGGT CGGGCAGCAG CAGGGACCCC CCAGAGGGCGG GGCCTGTGGG ACCGCTATGG
 GCGTGGAGAT CGACACCAC TCCCCCGAG ACGGAAGGAC ATTCCCCAAG AAGGGCCAAA CGTGTGTGGT
 GCACTACACA GGAATGCTCC AAAATGGGAA GAAGTTTGAT TCATCCAGAG ACAGAAACAA ACCTTTCAAG
 TTCAGAATTG GCAAACAGGA AGTCATCAAAG GTTGTGAAG AGGGTGCAGC CCAGATGAGC TTGGGGCAGA
 60 GGGCGAAGCT GACCTGCACT CCTGATGTGG CATATGGAGC CACGGGCCAC CCCGGTGTCA TCCCTCCCAA
 TGCCACCCCTC ATCTTGACG TGGAGCTGCT CAACTTAGAG TGAAGGCAGG AAGGAACCTCA AGGTGGCTG

AGATGGCTGC TGCCTCACCCCT CCTAGCCTGC TCTGCCACTG GGACGGCTCC TGCTTTGGG GCTCTTGATC
 AGTGTGCTAA CCTCACTGCC TCATGGCATC ATCCATTCTC TCTGCCAAG TTGCTCTGTA TGTGTTCGTC
 AGTGTTCATG CGAAATTCTTG CTTGAGGAAA CTTCGGTTGC AGATTGAAGC ATTTCAGGTT GTGCATTITG
 5 TGTGATGCAT GTACTAGCCT TTCCCTGATGA CAGAACACAG ATCTCTTGT CGCACAAATCT ACAC TGCCCT
 ACCTTCACTT AAACACACACA CACAAGGTGC TCAGACATGA AATGTACATG GCGTACCGTA CACAGAGGGA
 CTTGAGGCCAG TTACCTTGC TGTCACTTC TCTCTTATAA ATTCTGTTAG CTGCTCACTT AAACAATGTC
 CTCTTGAGA AAATGAAAAA TAAAGGCTCT GTGCTTGACA GAATTGGGC CGCCGCCAGG TCGCTGTTGG
 10 TCCACGCCGC CGCIGCGGCC GCCCCCCCAG TCAGCGTCC CGGCCGCCAT GGGAGTGCAG GTGAAACCCA
 TCTCCCCAGG AGACGGGCGC ACCTTCCCCA AGCGCGGCCA GACCTGCGTG GTGCACTACA CGGGGATGCT
 TGAAGATGGA AAGAAATTG ATTCCTCCCG GGACAGAAAC AAGCCCTTA AGTTTATGCT AGGCAAGCAG
 GAGGTGATCC GAGCCTGGGA AGAAGGGTT GCCAGATGA GTGTGGGTCA GAGAGCCAA CTGACTATAT
 CTCCAGATTA TGCCATGGT GCCACTGGC ACCCAGGCAT CATCCCACCA CATGCCACTC TCGTCTTGA
 15 TGTGGAGCTT CTAAACTGG AATGACAGGA ATGGCCTCT CCCTTAGCTC CCTGTTCTTG GATCTGCCAT
 GGAGGGATCT GGTGCGCTCA GACATGTCA CATGAGTCCA TATGGAGCTT TTCTGTATGT TCCACTCCAC
 TTTGTATAGA CATCTGCCCT GACTGAATGT GTTCTGTAC TCAGCTTGC TTCCGACACC TCTGTTCTC
 CTTCCCCCTT CTCCPCGTAT GTGTGTTAC CTAAACTATA TGCCATAAAC CTCAAGTTAT TCATTTTATT
 TTGTTTCTAT TTGGGGTGA AGATTCACTT TCAGTCTTT GGATATAGGT TTCAAATTAA GTACATGGTC
 AAGTATTAAAC AGCACAAGTG GTAGGTTAAC ATTAAAGATAG GAATTGGGT TGGGGGGGGG GTTGCAAGA
 20 ATATTTATT TTAATTTTTT GGATGAAATT TTATCTATT ATATATTAAA CATTCTTGCT GCTGCGCTGC
 AAAGCCATAG CAGATTGAG GCGCTGTTA GGACTGAATT ACTCTCAAG TTGAGAGATG TCTTGGGTT
 AAATTAAGG CGCTACCTAA AACTGAGGTG GGGATGGGA GAGCCTTGC CTCCACCACTT CCCACCCACC
 CTCCCCCTAA ACCCTCTGCC TTTGAAAGTA GATCATGTT ACTGCAATGC TGGACACTAC AGGTATCTGT
 CCCTGGGCCA GCAGGGACCT CTGAAGCCTT CTTGTGGCC TTTTTTTT TTCACTCTGT GGTTTTCTA
 25 ATGGACTTTC AGGAATTG TAATCTCATA ACTTTCCAAG CACCCAGTGA AAGCCCAGCC ATCATGACAA
 AATTGACAGT TTCAATTGAA GGTGCTGTT GTAGACTTAA CAGCTTCAAGG ATCTCTGT TTTTGTATGCT
 ATCCCTGAAT GTTCTCTAA GAAAATGATG CTGGTCATCG CTCAGCCCCCT TCTCAACCTCT TTGCTGTCT
 TGGCTCCCTC TGCIGATCTC AGTTTCTGG CTTTCTCTCC CCAGCACCAT TTATGAGTCT CAAGTTTAT
 GTGTAGTGTAT TTGCTGAGAA ATCGTTGCTG CACCCCTTCCC TATTGCAATA AAAGGCTTT ATGCCGAAT TC
 30 GAGACGGGCG CACCTTCCCC AAGCGCGGCC AGACCTGCGT GGTGCACTAC ACCGGGATGC TTGAAGATGG
 AAAGAAAATTG GATTCCTCCC GGGACAGAAA CAAGCCCTT AAGTTTATGC TAGGCAAGCA GGAGGTGATC
 CGAGGCTGGG AAGAAAGGGT TGCCCAGATG AGTGTGGTC AGAGAGCCAA ACTGACTATA TCTCCAGATT
 ATGCCTATGG TGCCACTGGG CACCCAGGCA TCATCCCACC ACATGCCACT CTCGCTTCTG ATGTGGAGCT
 35 TCTAAAATG GAAAGACAGG AATGGCCTCC TCCCTTAGCT CCGTGTCTT GGATCTGCCR TGGAGGGATC
 TGGTGCCTCC AGACATGTGC ACATGARTCC ATATGGAGCT TTCTGTATG TTCACTCCA CTTTGTATAG
 ACATCTGCCCT TGACTGAATG TGTTCTGTCA CTCAGCTTG CTTCCGACAC CTCTGTTCC TCTTCCCCCT
 TCTCTCGTA TGTGTGTTA CCTAAACTAT ATGCCATAAA CCTCAAGTTA TTCA-3' (FRAG.NO:_) (SEQ. ID
 NO:2499)
 5'- GCCAGGTCGC TG'TGGTCCA CGCCGCCCGT CGGCCGCCGC GCGCGCTCAG CGTCCGCCGC CGCCATGGGA-3'
 (FRAG. No:_) (SEQ. ID NO: 2495)
 5'-GGCCGGAGCC GA'GCCGGGGT CGGGCAGCAG CAGGGACCCC CCAGAGGCAGG GGCGCTGTGGG CCGCTATGG
 GCGTGGAGAT CGACACCAC TCCCCCGAG ACGGAAGGAC ATTCCCCAAG AAGGGCCAA CGTGTGTGGT
 GCACTACACA GGAATGCTCC AAAATGGAA GAAGTTTGTAT TCATCCAGAG ACAGAAACAA ACCTTTCAAG
 45 TTCAGAATTG GCAAACAGGA AGTCATCAAA GGTTTGAAG AGGGTGCAGC CCAGATGAGC TTGGGGCAGA
 GGGCGAAGCT GACCTGCACT CCTGATGTGG CATATGGAGC CACGGGCCAC CCCGGTGTCA TCCCTCCCAA
 TGCCACCCCT ATCTTGACG TGGAGCTGCT CAACTTAGAG TGAAGGCAGG AAGGAACCTCA AGGTGGCTGG
 AGATGGCTGC TGCICACCC CCTAGCCTGC TCTGCCACTG GGACGGCTCC TGCTTTGGG GCTCTTGATC
 AGTGTGCTAA CCTCACTGCC TCATGGCATC ATCCATTCTC TCTGCCCAAG TTGCTCTGTA TGTGTTCGTC
 50 AGTGTTCATG CGAAATTCTTG CTTGAGGAAA CTTCGGTTGC AGATTGAAGC ATTTCAGGTT GTGCAATTG
 TGTGATGCAT GTAGTAGCCT TTCCCTGATGA CAGAACACAG ATCTCTGT CGCACAAATCT ACAC TGCCCT
 ACCTTCACTT AAACACACACA CACAAGGTGC TCAGACATGA AATGTACATG GCGTACCGTA CACAGAGGGA
 CTTGAGGCCAG TTACCTTGC TGTCACTTT CTCCTTATAA ATTCTGTTAG CTGCTCACTT AAACAATGTC
 CTCTTGAGA AAATGAAAAA TAAAGGCTCT GTGCTGACA-3' (FRAG. NO:_) (SEQ. ID NO:2496)
 5'-GAATTCCGGGC CGCCGCCAGG TCGCTGTTGG TCCACGCCGC CCGTCGCCGC GCGCCGCCGC TCAGCGTCCG
 55 CCGCCGCCAT GGGAGTGCAG GTGGAAACCA TCTCCCCAGG AGACGGGCCG ACCTTCCCCA AGCGCGGCCA
 GACCTGCGTG GTGCACTACA CGGGGATGCT TGAAGATGGA AAGAAATTG ATTCCCTCCCG GGACAGAAAC
 AAGCCCTTA AGTTTATGCT AGGCAAGCAG GAGGTGATCC GAGGCTGGGA AGAAGGGTT GCCCAGATGA
 GTGTGGGTCA GAGAGCCAAA CTGACTATAT CTCCAGATTA TGCCCTATGGT GCCACTGGGC ACCCAGGCAT
 CATCCACCA CATGCCACTC TCGTCTCGA TGTGGAGCTT CTCCTACTGG AATGACAGGA ATGGCCTCCT
 60 CCCTTAGCTC CCTGTTCTTG GATCTGCCAT GGAGGGATCT GGTGCCTCCA GACATGTGCA CATGAGTCCA
 TATGGAGCTT TTCCCTGATGT TCCACTCCAC TTTGTATAGA CATCTGCCCT GACTGAATGT GTTCTGTAC
 TCAGCTTGC TTCCGACACC TCTGTTTCTC CTTCCCCCTT CTCCTCGTAT GTGTGTTTAC CTCCTACTATA

TGCCATAAAC CTCAGTTAT TCATTTTATT TTGTTTCAT TTTGGGTGA AGATTCAGTT TCAGTCTTT
 GGATATAAGGT TTCCAATTAA GTACATGGTC AAGTATTAAC AGCACAAGTG GTAGGTTAAC ATTAGAATAG
 GAATTGGTGT TGGGGGGGG GTTTCAAGA ATATTTTATT TTAATTTTT GGATGAAATT TTTATCTATT
 5 ATATATAAA CATCTTGCT GCTGCCTGC AAAGCCATAG CAGATTGAG GCGCTGTTGA GGACTGAATT
 ACTCTCCAAG TTGAGAGATG TCTTGGGTT AAATTAAG CCCTACCTAA AACTGAGGTG GGGATGGGA
 GAGCCTTGTC CTCCACCATT CCCACCCACC CTCCCCCTAA ACCCTCTGCC TTTGAAAGTA GATCATGTC
 ACTGCAATGC TGGA CACTAC AGGTATCTGT CCCTGGCCA GCAGGGACCT CTGAAGCCTT CTTTGTGGCC
 TTTTTTTTT TTCA CCTGT GGTTTTCTA ATGGACTTTC AGGAATTITG TAATCTCATA ACTTTCCAAG
 10 CTCCACCACT TCCTAAATCT TAAGAACTT AATTGACAGT TTCAATTGAA GGTGCTGTT GTAGACTTAA
 CACCCAGTGA AAGCCAGCC ATCATGACAA ATCCTGAAAT GTTCTCTTAA GAAAATGATG CTGGTCATCG
 CAGCTTCAGC ATC'CCTGTT TTTTGATGCT TGGCTCCCTC TGCTGATCTC AGTTCCCTGG CTTTCCTCC
 15 CTCAGCCCCCT TCTCACCCCT TTGCTGTCCT GTGTAGTGT TTGGTGAGAA ATCGTTGCTG CACCCCTCC
 CCAGCACCCT TTATGAGTCT CAAGTTTAT TATTGCAATA AAAGTGCTT ATGCCCGAAT TC-3' (FRAG.NO:_)
 (SEQ. ID NO:2497)

5' GCCGCCGCCA TGGGAGTGCA GGTGGAAACC ATCTCCCCAG GAGACGGGCG CACCTCCCC AAGCGCGGCC
 AGACCTCGGT GGTC CACTAC ACCGGGATGC TTGAAGATGG AAAGAAATTG GATTCTCCC GGGACAGAAA
 CAAGCCCTT AAGTITATGC TAGGCAAGCA GGAGGTGATC CGAGGCTGGG AAGAAGGGT TGCCAGATG
 AGTGTGGGT AGAGAGCAA ACTGACTATA TCTCCAGATT ATGCCCTATGG TGCCACTGGG CACCCAGGCA
 20 TCATCCCACC ACATGCCACT CTCGTCTCG ATGTGGAGCT TCTAAAATG GAATGACAGG AATGGCCTCC
 TCCCTTAGCT CCCTTTCTT GGATCTGCCR TGGAGGGATC TGGTGCCTCC AGACATGTGC ACATGARTCC
 ATATGGAGCT TTCTCTGATG TTCCACTCCA CTTTGTATAG ACATCTGCC TGACTGAATG TGTTCTGTCA
 CTCAGCTTG CTTCCGACAC CTCTGTTCC TCTTCCCCCT TCTCCTCGTA TGTGTGTTA CCTAAACTAT
 ATGCCATAAA CCTCAAGTTA TTCA-3' (FRAG. NO:_)(SEQ. ID NO:2498)

wherein B is adenine, or, more preferably, replaces adenine and is an "equivam\llent" or a "universal" base, and adenine A_{2a} receptor agonist or only minimally antagonist, an adenine A_{2b} receptor antagonist, an adenine A₃ receptor antagonist, or an adenine A₁ receptor antagonist. Similarly, adenine (A) may always be replaced by an "alternative", "equivalent" and/or "universal" base having a smal. fraction, preferably less than 0.3 of the activity of adenine at the adenine receptor(s), as described above.

25 In one preferred embodiment, the links between neighboring mononucleotides are phosphodiester links. In another preferred, at least one mononucleotide phosphodiester residue of the anti-sense oligonucleotide(s) is substituted by a methylphosphonate, phosphotriester, phosphorothioate, phosphorodithioate, boranophosphate, formacetal, thioformacetal, thioether, carbonate, carbamate, sulfate, sulfonate, sulfamate, sulfonamide, sulfone, sulfite, sulfoxide, sulfide, hydroxylamine, 2'-O-methyl, 30 methylene(methyimino), methyleneoxy (methylimino), phosphoramidate residues, and combinations thereof. The oligos having one or more phosphodiester residues substituted by one or more of the other residues are general y longer lasting, given that these residues are more resistant to hydrolysis than the phosphodiester residue. In some cases up to about 10%, about 30%, about 50%, about 75%, and even all phosphodiester residues may be substituted (100%). Typically, the multiple target anti-sense 35 oligonucleotide (oligo) of the invention comprises at least about 7 mononucleotides, in some instances up to 60 and more mononucleotides, preferably about 10 to about 36, and more preferably about 12 to about 21 mononucleotides. However, other lengths are also suitable depending on the length of the target macromolecule. Examples of the MTA oligos of the invention are provided in Table 3 below, which 40 includes ninety-four sequences (SEQ ID NOS.: 2316 through 2410).

45 **Table 3: MTA Oligos, Location Targeted & Target**

MTA Oligo	SEQ. ID No.	Location	Compound Targeted	Target
HUMNFKBP65A AS				
CCC GGC CCC GCC TCG TGC C	3019	5'=1	EPI 2192	
CGT CCB TGC CGC GGG CCC	3020	5'=28 (AUG)	EPI 2193	
GCC CGG CTG CTT GGG CTG CTC TGC CGG G	3021	5'=65	EPI 2194	
TCT GTG CTC CTC TCG CCT GGG	3022	5'=137	EPI 2195	
TGG TGG GGT GGG TCT TGG TGG	3023	5'=159	EPI 2196	
CTG TCC CTG GTC CTG TG	3024	5'=196	EPI 2197	

	GGT CCC GCT TCT TC	3025	5'=362	EPI 2198
	GGG GTT GTT GTT GGT CTG G	3026	5'=401	EPI 2199
	TGT CCT CTT TCT GC	3026	5'=656	EPI 2200
	GCC TCG GGC CTC CC	3027	5'=697	EPI 2201
5	GGC TGG GGT CTG CGT	3028	5'=769	EPI 2202
	GGC CGG GGG TCG GTG GGT CCG CTG	3029	5'=953	EPI 2203
	GGG CTG GGG TGC TGG CTT GGG G	3030	5'=1022	EPI 2204
	GGG GCT GGG GCC TGG GCC	3031	5'=1208	EPI 2205
	GCC TGG GTG GCC TTG GGG GC	3032	5'=1272	EPI 2206
10	GCT GGG TCT GTG CTG TTG CC	3033	5'=1362	EPI 2207
	GTT GTG TGG GGG GCC	3034	5'= 1451	EPI 2208
	GCT GGG TCG GGG GGC CTC TGG GCT GTC	3035	5'=1511	EPI 2209
	GCC CCG GGG CCC CC	3036	5'=1550	EPI 2210
	TGG CTC CCC CCT CC	3037	5'=1772	EPI 2211
15	GCT CCC CCC TTT CC	3038	5'=1863	EPI 2212
	CGG ACG AAG ACA GAG A	3039	5'=1979	EPI 2213
	GGC TTT GTG GGC TC	3040	5'=2011	EPI 2214
	GCC TGC TCT CCC CC	3041	5'=2312	EPI 2215
	CCC GGC CCC GCC BCG BBC C	3042	intron	EPI 2192-01A HSU50136C4Synth
20	CCC GGC CCC GCC BCG	3043	intron	EPI 2192-01B
	CCC GGC CCC GCC BCG BBC C	3044	5'untr	EPI 2192-02A HUMLIPOX5LO
	CCC GGC CCC GCC BCG	3045	5'untr	EPI 2192-02B
	CCC GBC CCC GCC TCB BG	3046	trans	EPI 2192-03A HSNFKBS Subunit
	CCC GBC CCC GCC TC	3047	trans	EPI 2192-03B
25	CCG GCC CCG CCT C	3048	5'untr	EPI 2192-04 TGF β R1
	CCC GBB CCC GCB TBG TGC C	3049	5'trans	EPI 2192-05A HSU581981l enhan
	CCC GCB TBG TGC C	3050	5'untr	EPI 2192-05B
	CCC GGB CCC BCC BBG TGC C	3051	3'trans	EPI 2192-06 HSVECAD
	CBG BBC CCG CCT CGT GCC	3052	intron	EPI 2192-07A NFKB2
30	C CCG CCT CGT GCC	3053	intron	EPI 2192-07B NFKB2
	CCG GCB CCG CCT CBT GCC	3054	5'trans	EPI 2192-08 Carboxypep
	CCG GCC CCG CCB CBT GCC	3055	3'trans	EPI 2192-09 HumADRA2Ca2AdrKid
	CCC GBC CCC GBC TCG	3056	5'untrs	EPI 2192-10 HUMFK506B
	CCC GGC CBC GBC TCG	3057	5'untrs	EPI 2192-11 HSNBARKS1 β AdrKin
35	CCC GGC CCB GCC TBG	3058	5'UTR	EPI 2192-12 HSNFXN1 (NFKB1)
	CCC GGC BCB GBC TCG TBC C	3059	3'UTR	EPI 2192-13 HSILF(transcrp. Factor ILF)
	CCC GGC CCC GCC BCG	3060		EPI-2192-14 NFKB/C4Syn/5-LO/ TGF β rec1 MTA
40	CCC GGC CCC GCC BCG	3061		EPI-2192-15NFKB/C4Syn/5-LO/MTA
	TCC BTG CCG CGG GC	3062	3' trans	EPI-2193-01 METONcogene
	TCC BTG CCB CGG GCC	3063	3' trans	EPI-2193-02 HSFGFR2 (IG)
	TCC BTG CCB CGG GCC	3064	mid cod	EPI-2193-03 5-LO
	TCC BTG CCB CBG GCC	3065	mid cod	EPI-2193-04 HUMTK14
45	GTC CBT GBC GCG G	3066	3'trans	EPI-2193-05 HUMTNFR
	TC CBT GBC GCG GG	3067	AUG	Probl.HUMPTCH cardiacK+channel
	TCT GBG CTC CTC TBB CCT GGG	3068	intr	EPI-2195-01 humCSPAcytotox. Ser.Protease
50	CTG TGC BCC TBB CBC CTG GG	3069	intr	EPI-2195-02 HSINOSX08induc.NOS
	TGT GBT CCB CTB GBC TGG G	3070		EPI-2195-03 HUMACHRM2musc.m2 acetylch.rec.
	TCT GTB CTC BBC TCB CCT G	3071		EPI-2195-04 s86371s1 Neurokinin3Recept
55	TGC TCC TCB CBB CTG GG inflam.factor	3072		EPI-2195-05 HUMMIP1 Amacro

Table 3: MTA Oligos, Location Targeted & Target (Cont'd)

MTA Oligo	SEQ. ID No.	Location	Compound Targeted	Target
CTC CTC TBG CCT GG	3073		EPI-2195-06	HSNBARKS4 β-Adr Rec Kinase
GTG CTC CBB TCB BCT GGG	3074		EPI-2195-07	HSTNFR2SO6TNF R2
GTG CBC CBB TCB CCT GGG	3075		EPI-2195-08	humfkbp fk506 binding prot.
TCT GTG CBC CTC TBG BCT	3076	exon	EPI-2195-09	HSNBARKS1β-Adr. Recept.Kinase
CTG TBB TCC TBB CBC CTG G	3077	intron	EPI-2195-10	HUMIL8
TGT GCT BBT CBC BCB TGG G	3078		EPI-2195-11	HSU50157 PDE4
GTG CBC CBC TCB CCT G	3079	intron/exon	EPI-2195-12	IL-2 R
CTG TGC BCC TCT C	3080	3'UTR	EPI-2203-05	IL-6 R HSIL6R
CBG TGC BCC BCT CBC CTG	3081	intr/ex	EPI-2203-06A	HSIL2rG6
G TGC BCC BCT CBC CTG	3082	intr/ex	EPI-2203-06B	HSIL2rG6
CBC CTC TCB CCT GGG	3083	coding	EPI-2203-07A	HUMIL71
C CTC TCB CCT GCG	3084	coding	EPI-2203-07B	IL-7 HUMIL71
GCT CCB CTC GCC T	3085	coding	EPI-2203-08	IL-6 R HSI6REC
TGC TCC TCB CGC C	3086	intron PDGF A	EPI-2303-09	Chain HUMPDGFAF
GTT GTT GBT CTG G	3087	3'utr	EPI-2199-01	GATA-4Transcrip. Factor for IL-5
GGT TGB BBT TGG TCT TGG	3088	Coding	EPI-2199-02	TNFα HUMTNFA
GGT TGT TGB TGB TCT G	3089	Far 5'UTR	EPI-2199-03	HSSUBP1G(Sub Pr)
GGG TTG BBG TTG BTC TGG	3090	Coding	EPI-2199-04	NeutrophilAdh. R HUMNARIA
GGG TTG BBG TTG BTC TGG	3091	HSHM2	EPI-2199-05	m2 Muscarinic R
TTG TTG TBG BTC TGG	3092	HUML1CAM	EPI-2199-06	L1 LeukAadhProt
GGG TBG BBG BGT CCG CTG	3093	coding	EPI-2203-01	HUMGATA2A
GGG TCB GBG GBT CBG CTG	3094	S71424S2	EPI-2203-02	IGE eps
GGG TBG GTG GGT C	3095	coding	EPI-2203-03	HSGCSFR2
GGG TCG GBG GGT CBG C	3096	HUMITGF	EPI-2203-04	TGFβ3
GGG TGG GCT T	3097	HUMNK65PRO	EPI-2206-01	NFKB/NK & TCell Activating Prot
GGG TGG GCT TGG G	3098	HUMPEREEB	EPI 2206-02	NFKB/Prostagl. EP3 Rec
CCTGGGTGGGBBTGGG	3099		EPI 2206-03	HSNF2B/GCSF NFKB/GranuLocCSF/ Transcr.FactorNF2B
CCTGGGBTGGGCBTGGG	3100		EPI-2206-04	HUMLAP/NFKB Leuk.Adhes.Prot
GCCTGBTGBTCTTGGG	3101		EPI2206-05	NFKB/Endothel N2 S63833
CCCAVGVCCVCCCAGGC	3102		EPI 2206-06	NFKBAS13/B Lymph SerThrProt.Kinase
AGCCCACCCAGGC	3103		EPI2206-07	NFKBAS13/GCSF1 HSGCSFR1Rec
BCCTGGGTGGGCTB	3104		EPI2206-08	NFKBAS13/GCSF1/ NK7TCELLACT.Prot
GGTGGGCTTGGG	3105		EPI 2206-09	NFKBAS13/ HSTGFB1 TGFB
CCBBGGTGGGCTTGGG	3106		EPI 2206-10	NFKBAS13/ HSTGFB1 TGFB1
CTGGGTGGGBBTGGG	3107		EPI 2206-11	NFKBAS13/ HSGCSFR1 GCSFR1
CCBGGGTGGGCTTGG	3108		EPI 2206-12	NFKBAS13/HUMCD30A LymphActAntigCoding
GGGTGGGCTTGG	3109		EPI-2206-12B	NFKBAS13/HUMCD30A
CCTGBTGBTGGCCTGG	3110		EPI 2206-13	NFKBAS13/HUMCAM1V Vasc.Endoth.Cell Adh.Molec

B: Universal Base

The MTA oligos of Table 3 are suitable for use with two or more of the targets listed in Table 4 below.

Table 4: Targets for the MTA Oligos of Table 3

Compound	Target
EPI 2010	Adenosine A1 receptor
EPI 2045	Adenosine A3 receptor
EPI 2873, EPI 2193	NF _K B
EPI 1873	Interleukin-1
EPI 1857	Interleukin -5
EPI 2945	Interleukin -4
EPI 2977	Interleukin -8
EPI 2031	5-Lipoxygenase
EPI 1898	Leukotriene C-4 Synthase
EPI 1856	Eotaxin
EPI 1131	ICAM
EPI 1085	VCAM
EPI 2085	TNF α
EPI 1908	PAF
EPI 1925	IL-4 receptor
EPI 2643	β 2 adrenergic receptor kinase
EPI 2934	Tryptase
EPI 2033	Major Basic Protein
EPI 2795	Eosinophil Peroxidase

Nf_KB: nuclear factor kB

ICAM: intracellular adhesion molecule

VCAM: vascular cell adhesion molecule

TNF: tumor necrosis factor

PAF: platelet activating factor

5

The mRNA sequence of the targeted protein may be derived from the nucleotide sequence of the gene expressing the protein, whether for existing targets or those to be found in the future. Sequences for many target genes of different systems are presently known. See, GenBank data base, NIH, the entire sequences of which are incorporated here by reference. The sequences of those genes, whose sequences are not yet available, may be obtained by isolating the target segments applying technology known in the art. Once the sequence of the gene, its RNA and/or the protein are known, anti-sense oligonucleotides are produced as described above and utilized to validate the target by in vivo administration and testing for a reduction of the production of the targeted protein in accordance with standard techniques, and of specific functions. As already described above, the anti-sense oligonucleotides may be of any suitable length, e.g., from about 7 to about 60 nucleotides in length, depending on the particular target being bound and the mode of delivery thereof. The anti-sense oligonucleotide preferably is directed to an mRNA region containing a junction between intron and exon or to regions vicinal to the junction. Where the anti-sense oligonucleotide is directed to an intron/exon junction, it may either entirely overlie the junction or may be sufficiently close to the junction to inhibit splicing out of the intervening exon during processing of precursor mRNA to mature mRNA, e.g., with the 3' or 5' terminus of the anti-sense oligonucleotide being positioned within about, for example, 10, 5, 3, or 2 nucleotide of the intron/exon junction. Also preferred are anti-sense oligonucleotides which overlap the initiation codon and, more generally, those that target the coding region of the target mRNA. When practicing the present invention, the anti-sense oligonucleotides administered may be related in origin to the species to which it is administered. When treating humans, human anti-sense may be used if desired. Anti-sense oligos to endogenous sequences from other species,

however, are also encompassed.

Pharmaceutical compositions comprising an anti-sense oligonucleotide as given above effective to reduce expression of an A₁ or A₃ adenosine receptor by passing through a cell membrane and binding specifically with mRNA encoding an A₁ or A₃ adenosine receptor in the cell so as to prevent its translation are another aspect of the present invention. Such compositions are provided in a suitable pharmaceutically acceptable carrier, e.g., sterile pyrogen-free saline solution. The anti-sense oligonucleotides may be formulated with a hydrophobic carrier capable of passing through a cell membrane, e.g., in a liposome, with the liposomes carried in a pharmaceutically acceptable aqueous carrier. The oligonucleotides may also be coupled to a substance which inactivates mRNA, such as a ribozyme. Such oligonucleotides may be administered to a subject to inhibit the activation of a target, such as the adenosine receptors, which subject is in need of such treatment for any of the reasons discussed herein. Furthermore, the pharmaceutical formulation may also contain chimeric molecules comprising anti-sense oligonucleotides attached to molecules which are known to be internalized by cells. These oligonucleotide conjugates utilize cellular uptake pathways to increase cellular concentrations of oligonucleotides. Examples of macromolecules used in this manner include transferrin, asialoglycoprotein (bound to oligonucleotides via polylysine) and streptavidin. In the pharmaceutical formulation, the anti-sense compound may be contained within a lipid particle or vesicle, such as a liposome or microcrystal. The particles may be of any suitable structure, such as unilamellar or plurilamellar, so long as the anti-sense oligonucleotide is contained therein. Positively charged lipids such as N-[1-(2, 3-dioleyloxy) propyl]-N, N, N-trimethylammoniummethylsulfate, or "DOTAP," are particularly preferred for such particles and vesicles. The preparation of such lipid particles is well known. See, e.g., U.S. Patent Nos. 4,880,635 to Janoff et al.; 4,906,477 to Kurono et al.; 4,911,928 to Wallach; 4,917,951 to Wallach; 4,920,016 to Allen et al.; 4,921,757 to Wheatley et al.; etc.

Subjects may be administered the active composition by any means which transports the anti-sense nucleotide composition to the lung. The anti-sense compounds are particularly disclosed herein may be administered to the lungs of a patient by any suitable means, but are preferably administered by generating an aerosol comprised of respirable particles, the respirable particles comprised of the anti-sense compound, which particles the subject inhales. The respirable particles may be liquid or solid. The particles may optionally contain other therapeutic ingredients. Particles comprised of anti-sense compound for practicing the present invention should include particles of respirable size: that is, particles of a size sufficiently small to pass through the mouth and larynx upon inhalation and into the bronchi and alveoli of the lungs. In general particles ranging from about .5 to about 10 microns in size are respirable. Particles of non-respirable size which are included in the aerosol tend to deposit in the throat and be swallowed, and the quantity of non-respirable particles in the aerosol is preferably minimized. For nasal administration, a particle size in the range of 10-500 nm is preferred to ensure retention in the nasal cavity. Thus, particles of about 4, about 10, about 25, about 50 to about 75, about 100, about 250, about 500, and other specific ranges therewithin, are preferred. Others, however, are also contemplated within the confines of this invention.

Liquid pharmaceutical compositions of active compound for producing an aerosol can be prepared by combining the anti-sense compound with a suitable vehicle, such as sterile pyrogen free water. Other therapeutic compounds may optionally be included. Solid particulate compositions containing respirable dry particles of micronized anti-sense compound may be prepared by grinding dry anti-sense compound with a mortar and pestle, and then passing the micronized composition through a 400 mesh screen to break up or separate out large agglomerates. A solid particulate composition comprised of the anti-sense compound may optionally contain a dispersant which serves to facilitate the formation of an aerosol. A suitable dispersant is lactose, which may be blended with the anti-sense compound in any suitable ratio (e.g., a 1 to 1 ratio by weight). Again, other therapeutic compounds may also be included.

The dosage of the anti-sense compound administered will depend upon the disease being treated, the condition of the subject, the particular formulation, the route of administration, the timing of administration to a subject, etc. In general, intracellular concentrations of the oligonucleotide of from about

0.01, about 0.05, about 0.1, about 0.2, about 1 to about 5 μM , about 50 μM , about 100 μM or more, and more particularly about 0.2 to about 0.5 μM , are desired. For administration to a subject such as a human, a dosage of from about 0.01, about 0.1 or about 1 mg/Kg up to about 50, about 100, or about 150 mg/Kg and even higher doses are typically employed depending on the route of administration as is known in the art.

5 Depending on the solubility of the particular formulation of active compound administered, the daily dose may be divided among one or several unit dose administrations. Administration of the anti-sense compounds may be carried out therapeutically (i.e., as a rescue treatment) or prophylactically. Aerosols of liquid particles comprising the anti-sense compound may be produced by any suitable means, such as with a nebulizer. See, e.g., U.S. Patent No. 4,501,729. Nebulizers are commercially available devices which
10 transform solutions or suspensions of the active ingredient into a therapeutic aerosol mist either by means of acceleration of a compressed gas, typically air or oxygen, through a narrow venturi orifice or by means of ultrasonic agitation. Suitable formulations for use in nebulizers consist of the active ingredient in a liquid carrier, the active ingredient comprising up to 40% w/w of the formulation, but preferably less than 20% w/w. The carrier is typically water or a dilute aqueous alcoholic solution, preferably made isotonic
15 with body fluids by the addition of, for example, sodium chloride. Optional additives include preservatives if the formulation is not prepared sterile, for example, methyl hydroxybenzoate, antioxidants, flavoring agents, volatile oils, buffering agents and surfactants.

In one preferred embodiment, the pharmaceutical composition comprises nucleic acid(s) which comprise the anti-sense oligo(s) described above and one or more surfactants. Suitable surfactants or surfactant components for enhancing the uptake of the anti-sense oligonucleotides of the invention include synthetic and natural as well as full and truncated forms of surfactant protein A, surfactant protein B, surfactant protein C, surfactant protein D and surfactant Protein E, di-saturated phosphatidylcholine (other than dipalmitoyl), dipalmitoylphosphatidylcholine, phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol, phosphatidylethanolamine, phosphatidylserine; phosphatidic acid, ubiquinones, lysophosphatidylethanolamine, lysophosphatidylcholine, palmitoyl-lysophosphatidylcholine, dehydroepiandrosterone, dolichols, sulfatidic acid, glycerol-3-phosphate, dihydroxyacetone phosphate, glycerol, glycero-3-phosphocholine, dihydroxyacetone, palmitate, cytidine diphosphate (CDP) diacylglycerol, CDP choline, choline phosphate; as well as natural and artificial lamellar bodies which are the natural carrier vehicles for the components of surfactant, omega-3 fatty acids, polyenic acid, polyenoic acid, lecithin, palmitinic acid, non-ionic block copolymers of ethylene or propylene oxides, polyoxypropylene, monomeric and polymeric, polyoxyethylene, monomeric and polymeric, poly(vinyl amine) with dextran and/or alkanoyl side chains, Brij 35, Triton X-100 and synthetic surfactants ALEC, Exosurf, Survan and Atovaquone, among others. These surfactants may be used either as a single, or as part of a multiple component, surfactant in a formulation, or as covalently bound additions to the 5' and/or
35 3' ends of the anti-sense oligo(s). Aerosols of solid particles comprising the active compound may likewise be produced with any solid particulate medicament aerosol generator. Aerosol generators for administering solid particulate medicaments to a subject produce particles which are respirable, as explained above, and generate a volume of aerosol containing a predetermined metered dose of a medicament at a rate suitable for human administration. One illustrative type of solid particulate aerosol generator is an insufflator. Suitable formulations for administration by insufflation include finely comminuted powders which may be delivered by means of an insufflator or taken into the nasal cavity in the manner of a snuff. In the insufflator, the powder (e.g., a metered dose thereof effective to carry out the treatments described herein) is contained in capsules or cartridges, typically made of gelatin or plastic, which are either pierced or opened in situ and the powder delivered by air drawn through the device upon
40 inhalation or by means of a manually-operated pump. The powder employed in the insufflator consists either solely of the active ingredient or of a powder blend comprising the active ingredient, a suitable powder diluent, such as lactose, and an optional surfactant. The active ingredient typically comprises from 0.1 to 100 w/w of the formulation. A second type of illustrative aerosol generator comprises a metered dose inhaler. Metered dose inhalers are pressurized aerosol dispensers, typically containing a suspension or

solution formulation of the active ingredient in a liquefied propellant. During use these devices discharge the formulation through a valve adapted to deliver a metered volume, typically from 10 to 150 ml, to produce a fine particle spray containing the active ingredient. Suitable propellants include certain chlorofluorocarbon compounds, for example, dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane and mixtures thereof. The formulation may additionally contain one or more co-solvents, for example, ethanol, surfactants, such as oleic acid or sorbitan trioleate, antioxidants and suitable flavoring agents. The aerosol, whether formed from solid or liquid particles, may be produced by the aerosol generator for example at a rate of from about 10, about 30, about 70 to about 100, about 150, about 150 liters per minute, more preferably from about 30 to 150 liters per minute, and most preferably about 60 liters per minute. Aerosols containing greater amounts of medicament, however, may be administered more rapidly as is known in the art.

The relevant disclosures of all scientific publications and patent references cited in this patent are specifically intended to be incorporated herein by reference, particularly in reference to preparatory methods and technologies which are enabling of the invention. The following examples are provided to illustrate the present invention, and should not be construed as limiting thereon.

EXAMPLES

In the following examples, :M means micromolar, ml means milliliters, :m means micrometers, mm means millimeters, cm means centimeters, EC means degrees Celsius, :g means micrograms, mg means milligrams, g means grams, kg means kilograms, M means molar, and h or hr. means hours.

20 **Example 1: Design and Synthesis of Anti-sense Oligonucleotides**

The design of anti-sense oligonucleotides against the A₁ and A₃ adenosine receptors may require the solution of the complex secondary structure of the target A₁ receptor mRNA and the target A₃ receptor mRNA. After generating this structure, anti-sense nucleotide are designed which target regions of mRNA which might be construed to confer functional activity or stability to the mRNA and which optimally may overlap the initiation codon. Other target sites are readily usable. As a demonstration of specificity of the anti-sense effect, other oligonucleotides not totally complementary to the target mRNA, but containing identical nucleotide compositions on a w/w basis, are included as controls in anti-sense experiments.

The mRNA secondary structure of the adenosine A₁ receptor was analyzed and used as described above, to design a phosphorothioate anti-sense oligonucleotide. The anti-sense oligonucleotide which was synthesized was designated HAdA₁AS and had the following sequence: 5' -GAT GGA GGG CGG CAT GGC GGG-3' (**SEQ ID NO:1**). As a control, a mismatched phosphorothioate anti-sense nucleotide designated HAdA1MM1 was synthesized with the following sequence: 5' -GTA GCA GGC GGG GAT GGG GGC-3' (**SEQ ID NO:2**). Each oligonucleotide had identical base content and general sequence structure. Homology searches in GENBANK (release 85.0) and EMBL (release 40.0) indicated that the anti-sense oligonucleotide was specific for the human and rabbit adenosine A₁ receptor genes, and that the mismatched control was not a candidate for hybridization with any known gene sequence.

The secondary structure of the adenosine A₃ receptor mRNA was similarly analyzed and used as described above to design two phosphorothioate anti-sense oligonucleotides. The first anti-sense oligonucleotide (HAdA3AS1) synthesized had the following sequence: 5' -GTT GTT GGG CAT CTT GCC-3' (**SEQ ID NO:3**). As a control, a mismatched phosphorothioate anti-sense oligonucleotide (HAdA3MM1) was synthesized, having the following sequence: 5' -GTA CTT GCG GAT CTA GGC-3' (**SEQ ID NO:4**). A second phosphorothioate anti-sense oligonucleotide (HAdA3AS2) was also designed and synthesized, having the following sequence: 5' -GTG GGC CTA GCT CTC GCC-3' (**SEQ ID NO:5**). Its control oligonucleotide (HAdA3MM2) had the sequence: 5' -GTC GGG GTA CCT GTC GGC-3' (**SEQ ID NO:6**). Phosphorothioate oligonucleotides were synthesized on an Applied Biosystems Model 396 Oligonucleotide Synthesizer, and purified using NENSORB chromatography (DuPont, MD).

Example 2: In Vivo Testing of Adenosine A₁

Receptor Anti-sense Oligos

The anti-sense oligonucleotide against the human A₁ receptor (**SEQ ID NO:1**) described above, was tested for efficacy in an in vitro model utilizing lung adenocarcinoma cells HTB-54. HTB-54 lung adenocarcinoma cells were demonstrated to express the A₁ adenosine receptor using standard northern blotting procedures and receptor probes designed and synthesized in the laboratory.

HTB-54 human lung adenocarcinoma cells (106/100 mm tissue culture dish) were exposed to 5.0 μM HAdAlAS or HAdAlMM1 for 24 hours, with a fresh change of media and oligonucleotides after 12 hours of incubation. Following 24 hour exposure to the oligonucleotides, cells were harvested and their RNA extracted by standard procedures. A 21-mer probe corresponding to the region of mRNA targeted by the anti-sense (and therefore having the same sequence as the anti-sense, but not phosphorothioated) was synthesized and used to probe northern blots of RNA prepared from HAdAlAS-treated, HAdAlMM1-treated and non-treated HTB-54 cells. These blots showed clearly that HAdAlAS but not HAdAlMM1 effectively reduced human adenosine receptor mRNA by >50%. This result showed that HAdAlAS is a good candidate for a anti-asthma drug since it depletes intracellular mRNA for the adenosine A₁ receptor, which is involved in asthma.

Example 3: In Vivo Efficacy of Adenosine A₁ Receptor Anti-sense Oligos

A fortuitous homology between the rabbit and human DNA sequences within the adenosine A₁ gene overlapping the initiation codon permitted the use of the phosphorothioate anti-sense oligonucleotides initially designed for use against the human adenosine A₁ receptor in a rabbit model. Neonatal New Zealand white Pasteurella-free rabbits were immunized intraperitoneally within 24 hours of birth with 312 antigen units/ml house dustmite (*D. farinae*) extract (Berkeley Biologicals, Berkeley, CA), mixed with 10% kaolin. Immunizations were repeated weekly for the first month and then biweekly for the next 2 months. At 3-4 months of age, eight sensitized rabbits were anesthetized and relaxed with a mixture of ketamine hydrochloride (44 mg/kg) and acepromazine maleate (0.4 mg/kg) administered intramuscularly. The rabbits were then laid supine in a comfortable position on a small molded, padded animal board and intubated with a 4.0-mm intratracheal tube (Mallinkrodt, Inc., Glens Falls, NY). A polyethylene catheter of external diameter 2.4 mm with an attached latex balloon was passed into the esophagus and maintained at the same distance (approximately 16 cm) from the mouth throughout the experiments. The intratracheal tube was attached to a heated Fleisch pneumotachograph (size 00; DOM Medical, Richmond, VA), and flow was measured using a Validyne differential pressure transducer (Model DP-45161927; Validyne Engineering Corp., Northridge, CA) driven by a Gould carrier amplifier (Model 11-4113; Gould Electronic, Cleveland, OH). The esophageal balloon was attached to one side of the differential pressure transducer, and the outflow of the intratracheal tube was connected to the opposite side of the pressure transducer to allow recording of transpulmonary pressure. Flow was integrated to give a continuous tidal volume, and measurements of total lung resistance (RL) and dynamic compliance (Cdyn) were calculated at isovolumetric and flow zero points, respectively, using an automated respiratory analyzer (Model 6; Buxco, Sharon, CT). Animals were randomized and on Day 1 pretreatment values for PC50 were obtained for aerosolized adenosine. Anti-sense (HAdAlAS) or mismatched control (HAdAlMM) oligonucleotides were dissolved in sterile physiological saline at a concentration of 5000 :g (5 mg) per 1.0 ml. Animals were subsequently administered the aerosolized anti-sense or mismatch oligonucleotide via the intratracheal tube (approximately 5000 :g in a volume of 1.0 ml), twice daily for two days. Aerosols of either saline, adenosine, or anti-sense or mismatch oligonucleotides were generated by an ultrasonic nebulizer (DeVilbiss, Somerse , PA), producing aerosol droplets 80% of which were smaller than 5 :m in diameter. In the first arm of the experiment, four randomly selected allergic rabbits were administered anti-sense oligonucleotide and four the mismatched control oligonucleotide. On the morning of the third day, PC50 values (the concentration of aerosolized adenosine in mg/ml required to reduce the dynamic compliance of the bronchial airway 50% from the baseline value) were obtained and compared to PC50 values obtained for these animals prior to exposure to oligonucleotide. Following a 1 week interval, animals were crossed

over, with those previously administered mismatch control oligonucleotide now administered anti-sense oligonucleotide, and those previously treated with anti-sense oligonucleotide now administered mismatch control oligonucleotide. Treatment methods and measurements were identical to those employed in the first arm of the experiment. It should be noted that in six of the eight animals treated with anti-sense oligonucleotide, adenosine-mediated bronchoconstriction could not be obtained up to the limit of solubility of adenosine, 20 mg/ml. For the purpose of calculation, PC50 values for these animals were set at 20 mg/ml. The values given therefore represent a minimum figure for anti-sense effectiveness. Actual effectiveness was higher. The results of this experiment are illustrated in Table 5 below.

Table 5: Effect of Adenosine A₁ Receptor Anti-sense Oligo
up on PC50 Values in Asthmatic Rabbits

Mismatch Control		A ₁ Receptor Anti-sense Oligo	
Pre Oligonucleotide	Post Oligonucleotide	Pre Oligonucleotide	Post Oligonucleotide
3.56 ± 1.02	5.16 ± 1.03	2.36 ± 0.68	>19.5 ± 0.34**

The results are presented as the mean (n=8) ± SEM.

The significance was determined by repeated-measures analysis of variance (ANOVA), and Tukey's protected test.

**Significantly different from all other groups, p<0.01

In both arms of the experiment, animals receiving the anti-sense oligonucleotide showed an order of magnitude increase in the dose of aerosolized adenosine required to reduce dynamic compliance of the lung by 50%. No effect of the mismatched control oligonucleotide upon PC50 values was observed. No toxicity was observed in any animal receiving either anti-sense or control inhaled oligonucleotide. These results show clearly that the lung has exceptional potential as a target for anti-sense oligonucleotide-based therapeutic intervention in lung disease. They further show, in a model system which closely resembles human asthma, that downregulation of the adenosine A₁ receptor largely eliminates adenosine-mediated bronchoconstriction in asthmatic airways. Bronchial hyperresponsiveness in the allergic rabbit model of human asthma is an excellent endpoint for anti-sense intervention since the tissues involved in this response lie near to the point of contact with aerosolized oligonucleotides, and the model closely simulates an important human disease.

Example 4: Specificity of A₁-adenosine Receptor Anti-sense Oligonucleotide

At the conclusion of the cross-over experiment of Example 3 above, airway smooth muscle from all rabbits was quantitatively analyzed for adenosine A₁ receptor number. As a control for the specificity of the anti-sense oligonucleotide, adenosine A₂ receptors, which should not have been affected, were also quantified. Airway smooth muscle tissue was dissected from each rabbit and a membrane fraction prepared according to the method of Kleinstein et al. (Kleinstein, J. and Glossmann, H., Naunyn-Schmiedeberg's Arch. Pharmacol. 305: 191-200 (1978)), the relevant portion of which is hereby incorporated in its entirety by reference, with slight modifications. Crude plasma membrane preparations were stored at 70°C until the time of assay. Protein content was determined by the method of Bradford (M. Bradford, Anal. Biochem. 72, 240-254 (1976), the relevant portion of which is hereby incorporated in its entirety by reference). Frozen plasma membranes were thawed at room temperature and were incubated with 0.2 U/ml adenosine deaminase for 30 minutes at 37°C to remove endogenous adenosine. The binding of [³H] DPCPX (A₁ receptor-specific) or [³H] CGS-21680 (A₁ receptor-specific) was measured as previously described by Ali et al. (Ali, S. et al., J. Pharmacol. Exp. Ther. 268, Am. J. Physiol 266, L271-277 (1994), the relevant portion of which is hereby incorporated in its entirety by reference). The animals treated with adenosine A₁ anti-sense oligonucleotide in the cross-over experiment had a nearly 75% decrease in A₁ receptor number compared to controls, as assayed by specific binding of the A₁-specific antagonist DPCPX. There was no change in adenosine A₂ receptor number, as assayed by specific binding of the A₂ receptor-specific agonist 2-[p-(2-carboxyethyl)-phenethylamino]-5'-(N-ethylcarboxamido) adenosine (CGS-21630). This is illustrated in Table 6 below.

Table 6: Specificity of Action of Adenosine A₁
Receptor Oligonucleotide Anti-sense

Mismatch Control Oligonucleotide	A ₁ Anti-sense Oligonucleotide
-------------------------------------	--

A₁-Specific Binding	1105 ± 48**	293 ± 18
A₂-Specific Binding	302 ± 22	442 ± 171

The results are presented as the mean (n = 8) ± SEM.

The significance was determined by repeated-measures analysis of variance (ANOVA), and Tukey's protected test

**Significantly different from mismatch control, p<0.01.

5 The above results illustrate the effectiveness of anti-sense oligonucleotides in treating airway disease. Since the anti-sense oligos described above, eliminate the receptor systems responsible for adenosine-mediated bronchoconstriction, it may be less imperative to eliminate adenosine from them. However, it would be preferable to eliminate adenosine from even these oligonucleotides to reduce the dose needed to attain a similar effect. Described above are other anti-sense oligonucleotides targeting 10 mRNA of proteins involved in inflammation. Adenosine has been eliminated from their nucleotide content to prevent its liberation during degradation.

Example 5: Anti-sense Oligos directed to other Target Nucleic Acids

This work was conducted to demonstrate that the present invention is broadly applicable to anti-sense oligonucleotides ("oligos") specific to nucleic acid targets broadly. The following experimental 15 studies were conducted to show that the method of the invention is broadly suitable for use with anti-sense oligos designed as taught by this application and targeted to any and all adenosine receptor mRNAs. For this purpose, various anti-sense oligos were prepared to adenosine receptor mRNAs exemplified by the adenosine A₁, A_{2b} and A₃ receptor mRNAs. Anti-sense Oligo I was disclosed above (SEQ. ID NO:1). Five additional anti-sense phosphorothioate oligos were designed and synthesized as indicated above.

20 1- Oligo II (SEQ. ID NO: 7) also targeted to the adenosine A₁ receptor, but to a different region than Oligo I.

2- Oligo V (SEQ. ID NO: 10) targeted to the adenosine A_{2b} receptor.

3- Oligos III (SEQ. ID NO: 8) and IV (SEQ. ID NO: 9) targeted to different regions of the adenosine A₃ receptor.

4- Oligo I-PD (SEQ. ID NO: 1681)(a phosphodiester oligo of the same sequence as Oligo I).

25 These anti-sense oligos were designed for therapy on a selected species as described above and are generally specific for that species, unless the segment of the target mRNA of other species happens to contain a similar sequences. All anti-sense oligos were prepared as described below, and tested in vivo in a rabbit model for bronchoconstriction, inflammation and allergy, which have breathing difficulties and impeded lung airways, as is the case in ailments such as asthma, as described in the above-identified application.

30 **Example 6: Design & Sequences of other Anti-sense Oligos**

Six oligos and their effects in a rabbit model were studied and the results of these studies are reported and discussed below. Five of these oligos were selected for this study to complement the data on Oligo I (SEQ ID NO: 1) provided in Examples 1 to 4 above. This oligo is anti-sense to one region of the adenosine A₁ receptor mRNA. The oligos tested are identified as anti-sense Oligos I (SEQ ID NO: 1) and II (SEQ. ID No: 7) targeted to a different region of the adenosine A₁ receptor mRNA, Oligo V (SEQ. ID No:8) targeted to the adenosine A_{2b} receptor mRNA, and anti-sense Oligos III and IV (SEQ. ID NOS: 9 and 10) targeted to two different regions of the adenosine A₃ receptor mRNA. The sixth oligo (Oligo I-PD) is a phosphodiester version of Oligo I (SEQ. ID NO:1). The design and synthesis of these anti-sense oligos was performed in accordance with Example 1 above.

40 **(I) Anti-sense Oligo I**

The anti-sense oligonucleotide I referred to in Examples 1 to 4 above is targeted to the human A₁ adenosine receptor rRNA (EPI 2010). Anti-sense oligo I is 21 nucleotide long, overlaps the initiation codon, and has the following sequence: 5'-GAT GGA GGG CGG CAT GGC GGG-3' (SEQ.ID NO:1). The oligo I was previously shown to abrogate the adenosine-induced bronchoconstriction in allergic rabbits, and to reduce allergen-induced airway obstruction and bronchial hyperresponsiveness (BHR), as discussed above and shown by Nyce, J. W. & Metzger, W. J., Nature, 385:721 (1977), the relevant portions of which reference are incorporated in their entireties herein by reference.

45 **(II) Anti-sense Oligo II**

A phosphorothioate anti-sense oligo (**SEQ. ID NO:7**) was designed in accordance with the invention to target the rabbit adenosine A₁ receptor mRNA region +936 to +956 relative to the initiation codon (start site). The anti-sense oligo II is 21 nucleotide long, and has the following sequence: **5'-CTC GTC GCC GTC GCC GGC GGG-3' (SEQ. ID NO:7)**.

5 **(III) Anti-sense Oligo III**

A phosphorothioate anti-sense oligo other than that provided in Example 1 above (**SEQ. ID NO:8**) was designed in accordance with the invention to target the anti-sense A₃ receptor mRNA region +3 to + 22 relative to the initiation codon start site. The anti-sense oligo III is 20 nucleotide long, and has the following sequence: **5'-GGG TGG TGC TAT TGT CGG GC-3' (SEQ. ID NO:8)**.

10 **(IV) Anti-sense Oligo IV**

Yet another phosphorothioate anti-sense oligo (**SEQ. ID NO:9**) was designed in accordance with the invention to target the adenosine A₃ receptor mRNA region + 386 to + 401 relative to the initiation codon (start site). The anti-sense oligo IV is 15 nucleotide long, and has the following sequence: **5'-GGC CCA GGG CCA GCC-3' (SEQ. ID NO:9)**

15 **(V) Anti-sense Oligo V**

A phosphorothioate anti-sense oligo (**SEQ. ID NO:10**) was designed in accordance with the invention to target the adenosine A_{2b} receptor mRNA region -21 to -1 relative to the initiation codon (start site). The anti-sense oligonucleotide V is 21 nucleotide long, and has the following sequence: **5'-GGC CGG GCC AGC CGG GCC CGG-3' (SEQ. ID NO:10)**.

20 **(VI) A₁ Mismatch Oligos**

Two different mismatched oligonucleotides having the following sequences were used as controls for anti-sense oligo I (**SEQ. ID NO: 1**) described in Example 5 above: A₁ MM2:**5'-GTA GGT GGC GGG CAA GGC GGG-3' (SEQ. ID NO:2421)**, and A₁ MM3:**5'-GAT GGA GGC GGG CAT GGC GGG-3' (SEQ. ID NO:2422)**. Anti-sense oligo I and the two mismatch anti-sense oligos had identical base content and general sequence structure. Homology searches in GENBANK (release 85.0) and EMBL (release 40.0) indicated that the anti-sense oligo I was specific, not only for the human, but also for the rabbit, adenosine A₁ receptor genes, and that the mismatched controls were not candidates for hybridization with any known human or animal gene sequence.

25 **(VII) Anti-sense Oligo A₁-PD (Oligo VI)**

30 A phosphodiester anti-sense oligo (**Oligo VI; SEQ. ID NO:2420**) having the same nucleotide sequence as Oligo I was designed as disclosed in the above-identified application. Anti-sense oligo I-PD is 21 nucleotide long, overlaps the initiation codon, and has the following sequence: **5'- GAT GGA GGG CGG CAT GGC GGG-3' (SEQ. ID NO:2420)**.

35 **III) Controls**

Each rabbit was administered 5.0 ml aerosolized sterile saline following the same schedule as for the anti-sense oligos in (II), (III), and (IV) above.

Example 7: Synthesis of Anti-sense Oligos

Phosphorothioate anti-sense oligos having the sequences described in (a) above, were synthesized on an Applied Biosystems Model 396 Oligonucleotide Synthesizer, and purified using NENSORB chromatography (Di Pont, DE). TETD (tetraethylthiuram disulfide) was used as the sulfurizing agent during the synthesis. Anti-sense oligonucleotide II (**SEQ. ID NO:7**), anti-sense oligonucleotide III (**SEQ. ID NO: 8**) and anti-sense oligonucleotide IV (**SEQ. ID NO: 9**) were each synthesized and purified in this manner.

Example 8: Preparation of Allergic Rabbits

45 Neonatal New Zealand white Pasteurella-free rabbits were immunized intraperitoneally within 24 hours of birth with 0.5 ml of 312 antigen units/ml house dust mite (*D. farinae*) extract (Berkeley Biologicals, Berkeley, CA) mixed with 10% kaolin as previously described (Metzger, W. J., in Late Phase Allergic Reactions, Dorsch, W., Ed., CRC Handbook, pp. 347-362, CRC Press, Boca Raton (1990); Ali,

S., Metzger, W. J. and Mustafa, S. J., Am. J. Resp. Crit. Care Med. 149: 908 (1994)), the relevant portions of which are incorporated in their entireties here by reference. Immunizations were repeated weekly for the first month and then biweekly until the age of 4 months. These rabbits preferentially produce allergen-specific IgE antibody, typically respond to aeroallergen challenge with both an early and late-phase 5 asthmatic response, and show bronchial hyper responsiveness (BHR). Monthly intraperitoneal administration of allergen (312 units dust mite allergen, as above) continues to stimulate and maintain allergen-specific IgE antibody and BHR. At 4 months of age, sensitized rabbits were prepared for aerosol administration as described by Ali et al. (Ali, S., Metzger, W. J. and Mustafa, S. J., Am. J. Resp. Crit. Care Med. 149 (1994)), the relevant section being incorporated in its entirety here by reference.

10 **DOSE-RESPONSE STUDIES**

Example 9: Experimental Setup

Aerosols of either adenosine (0-20 mg/ml), or anti-sense or one of two mismatch oligonucleotides (5 mg/ml) were separately prepared with an ultrasonic nebulizer (Model 646, DeVilbiss, Somerset, PA), which produced aerosol droplets, 80% of which were smaller than 5:μm in diameter. Equal volumes of the 15 aerosols were administered directly to the lungs via an intratracheal tube. The animals were randomized, and administered aerosolized adenosine. Day 1 pre-treatment values for sensitivity to adenosine were calculated as the dose of adenosine causing a 50% loss of compliance (PC₅₀ Adenosine). The animals were then administered either the aerosolized anti-sense or one of the mismatch anti-sense oligos via the intratracheal tube (5 mg/1.0 ml), for 2 minutes, twice daily for 2 days (total dose, 20 mg). Post-treatment 20 PC₅₀ values were recorded (post-treatment challenge) on the morning of the third day. The results of these studies are provided in Example 21 below.

Example 10: Crossover Experiments

For some experiments utilizing anti-sense oligo I (**SEQ ID NO: 1**) and a corresponding mismatch control oligonucleotide A₁MM2, following a 2 week interval, the animals were crossed over, with those 25 previously administered the mismatch control A₁MM2, now receiving the anti-sense oligo I, and those previously treated with the anti-sense oligo I, now receiving the mismatch control A₁MM2 oligo. The number of animals per group was as follows. For mismatch A₁MM2 (Control 1), n=7, since one animal was lost in the second control arm of the experiment due to technical difficulties, for mismatch A₁MM3 n=4 (Control 2) and for A₁AS anti-sense oligo I, n=8. The A₁MM3 oligo-treated animals were analyzed 30 separately and were not part of the cross-over experiment. The treatment methods and measurements employed following the cross-over were identical to those employed in the first arm of the experiment. In 6 of the 8 animals treated with the anti-sense oligo I (**SEQ. ID NO: 1**), no PC₅₀ value could be obtained for adenosine doses of up to 20 mg/ml, which is the limit of solubility of adenosine. Accordingly, the PC₅₀ values for these animals were assumed to be 20 mg/ml for calculation purposes. The values given, 35 therefore, represent a minimum figure for the effectiveness of the anti-sense oligonucleotides of the invention. Other groups of allergic rabbits (n=4 for each group) were administered 0.5 or 0.05 mg doses of the anti-sense oligo (**SEQ ID NO: 1**), or the A₁MM2 oligo in the manner and according to the schedule described above (the total doses being 2.0 or 0.2 mg). The results of these studies are provided in Example 22 below.

40 **Example 11: Anti-sense Oligo Formulation**

Each one of anti-sense oligos were separately solubilized in an aqueous solution and administered as described for anti-sense oligo I (**SEQ. ID No:1**) in (e) above, in four 5 mg aliquots (20 mg total dose) by means of a nebulizer via endotracheal tube, as described above. The results obtained for anti-sense oligo I and its mismatch controls confirmed that the mismatch controls are equivalent to saline, as described in 45 Example 19 below and in Table 1 of Nyce & Metzger, Nature 385: 721-725 (1997). Because of this finding, saline was used as a control for pulmonary function studies employing anti-sense oligos II, III and IV (**SEQ. IS NOS; 7, 8 and 9**).

Example 12: Specificity of Oligo I for Adenosine A₁ Receptor (Receptor Binding Studies)

Tissue from airway smooth muscle was dissected to primary, secondary and tertiary bronchi from rabbits which had been administered 20 mg oligo I (**SEQ ID NO: 1**) in 4 divided doses over a period of 48 hours as described above. A membrane fraction was prepared according to the method of Ali et al. (Ali, S., et al., Am. J. Resp. Crit. Care Med. 149: 908 (1994), the relevant section relating to the preparation of the membrane fraction is incorporated in its entirety hereby by reference). The protein content was determined by the method of Bradford and plasma membranes were incubated with 0.2 U/ml adenosine deaminase for 30 minutes at 37EC to remove endogenous adenosine. See, Bradford, M. M. Anal. Biochem. 72, 240-254 (1976), the relevant portion of which is hereby incorporated in its entirety by reference. The binding of [³H]DPCPX, [³H]NPC17731, or [³H]CGS-21680 was measured as described by Jarvis et al. See, Jarvis, M.F., et al., Pharmacol. Exptl. Ther. 251, 888-893 (1989), the relevant portion of which is fully incorporated herein by reference. The results of this study are shown in Table 8 and discussed in Example 20 below.

**Example 13: Pulmonary Function Measurements
(Compliance C_{DYN} and Resistance)**

At 4 months of age, the immunized animals were anesthetized and relaxed with 1.5 ml of a mixture of ketamine HCl (35 mg/kg) and acepromazine maleate (1.5 mg/kg) administered intramuscularly. After induction of anesthesia, allergic rabbits were comfortably positioned supine on a soft molded animal board. Salve was applied to the eyes to prevent drying, and they were closed. The animals were then intubated with a 4.0 mm intermediate high-low cuffed Murphy 1 endotracheal tube (Mallinckrodt, Glen Falls, NY), as previously described by Zavala and Rhodes. See, Zavala and Rhodes, Proc. Soc. Exp. Biol. Med. 144: 509-512 (1973), the relevant portion of which is incorporated herein by reference in its entirety. A polyethylene catheter of OD 2.4 mm (Becton Dickinson, Clay Adams, Parsippany NJ) with an attached thin-walled latex balloon was passed into the esophagus and maintained at the same distance (approximately 16 cm) from the mouth throughout the experiment. The endotracheal tube was attached to a heated Fleisch pneumotach (size 00; DEM Medical, Richmond, VA), and the flow (v) measured using a Validyne differential pressure transducer (Model DP-45-16-1927, Validyne Engineering, Northridge, CA), driven by a Gould carrier amplifier (Model 11-4113, Gould Electronics, Cleveland, OH). An esophageal balloon was attached to one side of the Validyne differential pressure transducer, and the other side was attached to the outflow of the endotracheal tube to obtain transpulmonary pressure (P_{tp}). The flow was integrated to yield a continuous tidal volume, and the measurements of total lung resistance (R_t) and dynamic compliance (C_{dyn}) were made at isovolumetric and zero flow points. The flow, volume and pressure were recorded on an eight channel Gould 2000 W high-frequency recorder and C_{dyn} was calculated using the total volume and the difference in P_{tp} at zero flow, and R_t was calculated as the ratio of P_{tp} and V at midtidal lung volumes. These calculations were made automatically with the Buxco automated pulmonary mechanics respiratory analyzer (Model 6, Buxco Electronics, Sharon, CT), as previously described by Giles et al. See, Giles et al., Arch. Int. Pharmacodyn. Ther. 194: 213-232 (1971), the relevant portion of which describing these calculations is incorporated in toto hereby by reference. The results obtained upon administration of oligo II on allergic rabbits are shown and discussed in Example 26 below.

Example 14: Measurement of Bronchial Hyperresponsiveness (BHR)

Each allergic rabbit was administered histamine by aerosol to determine their baseline hyperresponsiveness. Aerosols of either saline or histamine were generated using a DeVilbiss nebulizer (DeVilbiss, Somerset, PA) for 30 seconds and then for 2 minutes at each dose employed. The ultrasonic nebulizer produced aerosol droplets of which 80% were <5 micron in diameter. The histamine aerosol was administered in increasing concentrations (0.156 to 80 mg/ml) and measurements of pulmonary function were made after each dose. The B4R was then determined by calculating the concentration of histamine (mg/ml) required to reduce the C_{dyn} 50% from baseline (PC₅₀ Histamine).

Example 15: Cardiovascular Effect of Anti-sense Oligo I

The measurement of cardiac output and other cardiovascular parameters using CardiomaxJ utilizes the principal of thermal dilution in which the change in temperature of the blood exiting the heart after a venous injection of a known volume of cool saline is monitored. A single rapid injection of cool
5 saline was made into the right atrium via cannulation of the right jugular vein, and the corresponding changes in temperature of the mixed injectate and blood in the aortic arch were recorded via cannulation of the carotid artery by a temperature-sensing miniprobe. Twelve hours after the allergic rabbits had been treated with aerosols of oligo I (EPI 2010; SEQ. ID NO: 1) as described in (d) above, the animals were anesthetized with 0.5 ml/kg of 80% Ketamine and 20% Xylazine. This time point coincides with previous
10 data showing efficacy for SEQ. ID NO: 1, as is clearly shown by Nyce & Metzger, (1997), supra, the pertinent disclosure being incorporated in its entirety here by reference. A thermocouple was then inserted into the left carotid artery of each rabbit, and was then advanced 6.5 cm and secured with a silk ligature. The right jugular vein was then cannulated and a length of polyethylene tubing was inserted and secured.
15 A thermodilution curve was then established on a CardiomaxJ II (Columbus Instruments, Ohio) by injecting sterile saline at 20EC to determine the correctness of positioning of the thermocouple probe. After establishing the correctness of the position of the thermocouple, the femoral artery and vein were isolated. The femoral vein was used as a portal for drug injections, and the femoral artery for blood pressure and heart rate measurements. Once constant baseline cardiovascular parameters were established, CardiomaxJ measurements of blood pressure, heart rate, cardiac output, total peripheral resistance, and
20 cardiac contractility were made.

Example 16: Duration of Action of Oligo I (SEQ. ID NO: 1)

Eight allergic rabbits received initially increasing log doses of adenosine by means of a nebulizer via an intra-tracheal tube as described in (f) above, beginning with 0.156 mg/ml until compliance was reduced by 50% (PC_{50} Adenosine) to establish a baseline. Six of the rabbits then received four 5 mg aerosolized
25 doses of (SEQ. ID NO: 1) as described above. Two rabbits received equivalent amounts of saline vehicle as controls. Beginning 18 hours after the last treatment, the PC_{50} Adenosine values were tested again. After this point, the measurements were continued for all animals each day, for up to 10 days. The results of this study are discussed in Example 25 below.

Example 17: Reduction of Adenosine A_{2b} Receptor**Number by Anti-sense Oligo V**

Sprague Dawley rats were administered 2.0 mg respirable anti-sense oligo V (SEQ ID NO:10) three times over two days using an inhalation chamber as described above. Twelve hours after the last administration, lung parenchymal tissue was dissected and assayed for adenosine A_{2b} receptor binding using [311]-NECA as described by Nyce & Metzger (1997), supra. Controls were conducted by administration of equal volumes of saline. The results are significant at p<0.05 using Student's paired t test, and are discussed in Example 28 below.

Example 18: Comparison of Oligo I & Corresponding Phosphodiester Oligo VI (SEQ. ID NO:1681)

Oligo I (SEQ ID NO:1) countered the effects of adenosine and eliminated sensitivity to it for
40 adenosine amounts up to 20 mg adenosine/5.0 ml (the limit of solubility of adenosine). Oligo VI (SEQ ID NO:1681), the phosphodiester version of the oligonucleotide sequence, was completely ineffective when tested in the same manner. Both compounds have identical sequence, differing only in the presence of phosphorothioate residues in Oligo I (SEQ ID NO:1), and were delivered as an aerosol as described above and in Nyce & Metzger (1997), supra. Significantly different at p<0.001, Student's paired t test. The results
45 are discussed in Example 29 below.

RESULTS OBTAINED FOR ANTI-SENSE OLIGO I (SEQ. ID NO: 1)

Example 19: Results of Prior Work

The nucleotide sequence and other data for anti-sense oligo I (SEQ. ID NO: 1), which is specific for the adenosine A₁ receptor, were provided above. The experimental data showing the effectiveness of oligo I in down regulating the receptor number and activity were also provided above. Further information on the characteristics and activities of anti-sense oligo I is provided in Nyce, J. W. and Metzger, W. J., Nature 385:721 (1997), the relevant parts of which relating to the following results are incorporated in their entireties herein by reference. The Nyce & Metzger (1997) publication provided data showing that the anti-sense oligo I (SEQ. ID NO: 1):

- (1) The anti-sense oligo I reduces the number of adenosine A₁ receptors in the bronchial smooth muscle of allergic rabbits in a dose-dependent manner as may be seen in Table 5 below.
- (2) Anti-sense Oligo I attenuates adenosine-induced bronchoconstriction and allergen-induced bronchoconstriction.
- (3) The Oligo I attenuates bronchial hyperresponsiveness as measured by PC₅₀ histamine, a standard measurement to assess bronchial hyperresponsiveness. This result clearly demonstrates anti-inflammatory activity of the anti-sense oligo I as is shown in Table 5 above.
- (4) As expected, because it was designed to target it, the anti-sense oligo I is totally specific for the adenosine A₁ receptor, and has no effect at all at any dose on either the very closely related adenosine A₂ receptor or the related bradykinin B₂ receptor. This is seen in Table 5 below.
- (5) In contradistinction to the above effects of the Oligo I, the mismatch control molecules MM2 and MM3 (SEQ. ID NO:1682 and SEQ. ID NO:1683) which have identical base composition and molecular weight but differed from the anti-sense oligo I (SEQ ID NO: 1) by 6 and 2 mismatches, respectively. These mismatches, which are the minimum possible while still retaining identical base composition, produced absolutely no effect upon any of the targeted receptors (A₁, A₂ or B₂).

These results, along with a complete lack of prior art on the use of anti-sense oligonucleotides, such as oligo I, targeted to the adenosine A₁ receptor, are unexpected results. The showings presented in this patent clearly enable and demonstrate the effectiveness, for their intended use, of the claimed agents and method for treating a disease or condition associated with lung airway, such as bronchoconstriction, inflammation, allergy(ies), and the like.

Example 20: Oligo I Significantly Reduces Response to Adenosine Challenge

The receptor binding experiment is described in Example 12 above, and the results shown in Table 5 below which shows the binding characteristics of the adenosine A₁-selective ligand [³H]DPCPX and the bradykinin E₂-selective ligand [³H]NPC 17731 in membranes isolated from airway smooth muscle of A₁ adenosine receptor and B₂ bradykinin receptor anti-sense- and mismatch-treated allergic rabbits.

Table 5: Binding Characteristics of Three Anti-Sense Oligos

Treatment ¹	A ₁ receptor		B ₂ receptor	
	Kd	B _{max}	Kd	B _{max}
Adenosine A₁	Receptor			
20 mg	0.36±0.029 nM	19±1.52 fmoles*	0.39±0.031 nM	14.8±0.99fmoles
2 mg	0.38±0.030 nM	32±2.56 fmoles*	0.41±0.028 nM	15.5±1.08
0.2 mg	0.37±0.030 nM	49±3.43 fmoles	0.34±0.024 nM	15.0±1.06
A₁MM1 (Control)				
20 mg	0.34±0.027 nM	52.0±3.64 fmoles	0.35±0.024 nM	14.0±1.0 fmoles
2 mg	0.37±0.033 nM	51.8±3.88 fmoles	0.38±0.028 nM	14.6±1.02
B₂A (Bradykinin Receptor)				
20 mg	0.36±0.028 nM	45.0±3.15 fmoles	0.38±0.027 nM	8.7±0.62

2 mg	0.39±0.035 nM	44.3±2.90 fmoles	0.34±0.024 nM	11.9±0.76
0.2 mg	0.40±0.028 nM	47.0±3.76 fmoles	0.35±0.028 nM	15.1±1.05 fmoles
B₂MM				
20 mg	0.39±0.031 nM	42.0±2.94 fmoles	0.41±0.029 nM	14.0±0.98 fmoles
2 mg	0.41±0.035 nM	40.0±3.20 fmoles	0.37±0.030 nM	14.8±0.99 fmoles
0.2 mg	0.37±0.029 nM	43.0±3.14 fmoles	0.36±0.025 nM	15.1±1.35 fmoles
Saline Control	0.37±0.041	46.0±5.21	0.39±0.047 nM	14.2±1.35 fmoles

¹ Refers to total oligo administered in four equivalently divided doses over a 48 hour period. Treatments and analyses were performed as described in methods. Significance was determined by repeated-measures analysis of variance (ANOVA), and Tukey's protected t test. n = 4-6 for all groups.

⁵ * Significantly different from mismatch control- and saline-treated groups, p<0.001;

**Significantly different from mismatch control- and saline-treated groups, p<0.05.

Example 21: Dose-response Effect of Oligo I

Anti-sense oligo I (SEQ ID NO:1) was found to reduce the effect of adenosine administration to the animal in a dose-dependent manner over the dose range tested as shown in Table 6 below.

Table 6: Dose-Response Effect to Anti-sense Oligo I

Total Dose (mg)	PC ₅₀ Adenosine (mg Adenosine)
Anti-sense Oligo I	
0.2	8.32±7.2
2.0	14.0±7.2
20	19.5±0.34
A₁MM2 oligo (control)	
0.2	2.51±0.46
2.0	3.13±0.71
20	3.25±0.34

20 The above results were studied with the Student's paired t test and found to be statistically different, p=0.05

The oligo I (SEQ. ID NO:1), an anti-adenosine A₁ receptor oligo, acts specifically on the adenosine A₁ receptor, but not on the adenosine A₂ receptors. These results stem from the treatment of rabbits with anti-sense oligo I (SEQ. ID NO:1) or mismatch control oligo (SEQ. ID NO:1682; A₁MM2) as described in Example 9 above and in Nyce & Metzger (1997), supra (four doses of 5 mg spaced 8 to 12 hours apart via nebulizer via endotracheal tube), bronchial smooth muscle tissue excised and the number of adenosine A₁ and adenosine A₂ receptors determined as reported in Nyce & Metzger (1997), supra.

Example 22: Specificity of Oligo I (SEQ. ID NO:1) for Target Gene Product

30 Oligo I (SEQ. ID No:1) is specific for the adenosine A₁ receptor whereas its mismatch controls had no activity. Figure 1 depicts the results obtained from the cross-over experiment described in Example 10 above and in Nyce & Metzger (1997), supra. The two mismatch controls (SEQ. ID NO:1682 and SEQ. ID NO:1683) evidenced no effect on the PC₅₀ Adenosine value. On the contrary, the administration of anti-sense oligo I (SEQ. ID NO:1) showed a seven-fold increase in the PC₅₀ Adenosine value. The results clearly indicate that the anti-sense oligo I (SEQ. ID NO: 1) reduces the response (attenuates the sensitivity) to exogenously administered adenosine when compared with a saline control. The results provided in Table 6 above clearly establish that the effect of the anti-sense oligo I is dose dependent (see, column 3 of Table 5). The Oligo I was also shown to be totally specific for the adenosine A₁ receptor, (see, top 3 rows of Table), inducing no activity at either the closely related adenosine A₂ receptor or the bradykinin B₂ receptor (see, lines 8-10 of Table 6 above). In addition, the results shown in Table 6 establish that the anti-sense oligo I (SEQ. ID NO:1) decreases sensitivity to adenosine in a dose dependent manner, and that it does this in an

anti-sense oligo-dependent manner since neither of two mismatch control oligonucleotides (A₁MM2; SEQ. ID NO:1682 and A MM3; SEQ. ID NO:1683) show any effect on PC_{50 Adenosine} values or on attenuating the number of adenosine A₁ receptors.

Example 23: Effect on Aeroallergen-induced Bronchoconstriction & Inflammation

The Oligo I (SEQ. ID NO:1) was shown to significantly reduce the histamine-induced effect in the rabbit model when compared to the mismatch oligos. The effect of the anti-sense Oligo I (SEQ. ID No:1) and the mismatch oligos (A₁MM2, SEQ. ID NO:1682 and A₁MM3, SEQ. ID NO:1682) on allergen-induced airway obstruction and bronchial hyperresponsiveness was assessed in allergic rabbits. The effect of the anti-sense oligo I (SEQ. ID NO:1) on allergen-induced airway obstruction was assessed. As calculated from the area under the plotted curve, the anti-sense oligo I significantly inhibited allergen-induced airway obstruction when compared with the mismatched control (55%, p<0.05; repeated measures ANOVA, and Tukey's t test). A complete lack of effect was induced by the mismatch oligo A₁MM2 (Control) on allergen induced airway obstruction. The effect of the anti-sense oligo I (SEQ. ID NO:1) on allergen-induced BHR was determined as above. As calculated from the PC_{50 Histamine} value, the anti-sense oligo I (SEQ. ID NO:1) significantly inhibited allergen-induced BHR in allergic rabbits when compared to the mismatched control (61%, p<0.05; repeated measures ANOVA, Tukey's t test). A complete lack of effect of the A₁MM mismatch control on allergen-induced BHR was observed. The results indicated that anti-sense oligo I (SEQ. ID NO:1) is effective to protect against aeroallergen-induced bronchoconstriction (house dust mite). In addition, the anti-sense oligo I (SEQ. ID NO:1) was also found to be a potent inhibitor of dust mite-induced bronchial hyper responsiveness, as shown by its effects upon histamine sensitivity which indicates anti-inflammatory activity for anti-sense oligo I (SEQ. ID NO:1).

Example 24: Anti-sense Oligo I is Free of Deleterious Side Effects

The Oligo I (SEQ. ID NO:1) was shown to be free of side effects that might be toxic to the recipient. No changes in arterial blood pressure, cardiac output, stroke volume, heart rate, total peripheral resistance or heart contractility (dPdT) were observed following administration of 2.0 or 20 mg oligo I (SEQ. ID NO:1). The addition, the results of the measurement of cardiac output (CO), stroke volume (SV), mean arterial pressure (MAP), heart rate (HR), total peripheral resistance (TPR), and contractility (dPdT) with a CardiomaxJ apparatus (Columbus Instruments, Ohio) were assessed. These results evidenced that oligo I (SEQ. ID NO:1) has no detrimental effect upon critical cardiovascular parameters. More particularly, this oligo does not cause hypotension. This finding is of particular importance because other phosphorothioate anti-sense oligonucleotides have been shown in the past to induce hypotension in some model systems. Furthermore, the adenosine A₁ receptor plays an important role in sinoatrial conduction within the heart. Attenuation of the adenosine A₁ receptor by anti-sense oligo I (SEQ. ID NO:1) might be expected to result, therefore, in deleterious extrapulmonary activity in response to the downregulation of the receptor. This is not the case. The anti-sense oligo I (SEQ. ID NO:1) does not produce any deleterious intrapulmonary effects and renders the administration of the low doses of the present anti-sense oligo free of unexpected, undesirable side effects. This demonstrates that when oligo I (SEQ. ID NO:1) is administered directly to the lung, it does not reach the heart in significant quantities to cause deleterious effects. This is in contrast to traditional adenosine receptor antagonists like theophylline which do escape the lung and can cause deleterious, even life-threatening effects outside the lung.

Example 25: Long Lasting Effect of Oligo I

The Oligo I (SEQ. ID NO:1) evidenced a long lasting effect as evidenced by the PC₅₀ and Resistance values obtained upon its administration prior to adenosine challenge. The duration of the effect was measured for with respect to the PC₅₀ of adenosine anti-sense oligo I when administered in four equal doses of 5 mg each by means of a nebulizer via an endotracheal tube, as described above. The effect of the agent is significant over days 1 to 8 after administration. When the effect of the anti-sense oligo I (SEQ. ID

5 NO:1) had disappeared, the animals were administered saline aerosols (controls), and the PC₅₀ Adenosine values for all animals were measured again. Saline-treated animals showed base line PC₅₀ adenosine values (n=6). The duration of the effect (with respect to Resistance) was measured for six allergic rabbits which were administered 20 mg of anti-sense oligo I (**SEQ. ID NO: 1**) as described above, upon airway resistance measured as also described above. The mean calculated duration of effect was 8.3 days for both PC₅₀ adenosine (p<0.05) and resistance (p<0.05). These results show that anti-sense oligo I (**SEQ. ID NO:1**) has an extremely long duration of action, which is completely unexpected.

Example 26: Anti-sense Oligo II

10 Anti-sense oligo II, targeted to a different region of the adenosine A₁ receptor mRNA, was found to be highly active against the adenosine A₁-mediated effects. The experiment measured the effect of the administration of anti-sense oligo II (**SEQ. ID NO:7**) upon compliance and resistance values when 20 mg anti-sense oligo II or saline (control) were administered to two groups of allergic rabbits as described above. Compliance and resistance values were measured following an administration of adenosine or saline as described above in Example 13. The effect of the anti-sense oligo of the invention was different 15 from the control in a statistically significant manner, p<0.05 using paired t-test, compliance; p<0.01 for resistance. The results showed that anti-sense oligo II (**SEQ. ID NO:7**), which targets the adenosine A₁ receptor, effectively maintains compliance and reduces resistance upon adenosine challenge.

Example 27: Antisense Oligos III and IV

20 Oligos III (**SEQ. ID NO:8**) and IV (**SEQ. ID NO:9**) were shown to be in fact specifically targeted to the adenosine A₃ receptor by their effect on reducing inflammation and the number of inflammatory cells present upon separate administration of 20 mg of the anti-sense oligos III (**SEQ. ID NO:8**) and IV (**SEQ. ID NO:9**) to allergic rabbits as described above. The number of inflammatory cells was determined in their bronchial lavage fluid 3 hours later by counting at least 100 viable cells per lavage. The effect of 25 anti-sense oligos III (**SEQ. ID NO:8**) and IV (**SEQ. ID NO:9**) upon granulocytes, and upon total cells in bronchial lavage were assessed following exposure to dust mite allergen. The results showed that the anti-sense oligo IV (**SEQ. ID NO:9**) and anti-sense oligo III (**SEQ. ID NO:8**) are very potent anti-inflammatory agents in the asthmatic lung following exposure to dust mite allergen. As is known in the art, granulocytes, especially eosinophils, are the primary inflammatory cells of asthma, and the administration of anti-sense oligos III (**SEQ. ID NO:8**) and IV (**SEQ. ID NO:9**) reduced their numbers by 30 40% and 66%, respectively. Furthermore, anti-sense oligos IV (**SEQ. ID NO:9**) and III (**SEQ. ID NO:8**) also reduced the total number of cells in the bronchial lavage fluid by 40% and 80%, respectively. This is also an important indicator of anti-inflammatory activity by the present anti-adenosine A₃ agents of the invention. Inflammation is known to underlie bronchial hyperresponsiveness and allergen-induced 35 bronchoconstriction in asthma. Both anti-sense oligonucleotides III (**SEQ. ID NO:8**) and IV (**SEQ. ID NO:9**), which are targeted to the adenosine A₃ receptor, are representative of an important new class of anti-inflammatory agents which may be designed to specifically target the lung receptors of each species.

Example 28: Anti-sense Oligo V

40 The anti-sense oligo V (**SEQ. ID NO:10**), targeted to the adenosine A_{2b} adenosine receptor mRNA was shown to be highly effective at countering adenosine A_{2b}-mediated effects and at reducing the number of adenosine A_{2b} receptors present to less than half.

Example 29: Unexpected Superiority of Substituted over Phosphodiester-residue Oligo I-DS (SEQ. ID NO:1681)

45 Oligos I (**SEQ. ID NO:1**) and I-DS (**SEQ. ID NO:1681**) were separately administered to allergic rabbits as described above, and the rabbits were then challenged with adenosine. The phosphodiester oligo I-DS (**SEQ. ID NO:1681**) was statistically significantly less effective in countering the effect of adenosine whereas oligo I (**SEQ. ID NO:1**) showed high effectiveness, evidencing a PC₅₀ Adenosine of 20 mg.

Example 30: Anti-sense Oligo VI

For the present work, I designed an additional anti-sense phosphorothioate oligo targeted to the adenosine A₁ receptor (Oligo VI). This anti-sense oligo was designed for therapy on a selected species as described in the above patent application and is generally specific for that species, unless the segment of the adenosine receptor mRNA of other species elected happens to have a similar sequence. The anti-sense oligos were prepared as described below, and tested in vivo in a rabbit model for bronchoconstriction, inflammation and lung allergy, which have breathing difficulties and impeded lung airways, as is the case in ailments such as asthma, as described in the above-identified application. One additional oligo and its effect in a rabbit model was studied and the results of the study are reported and discussed below. The present oligo (anti-sense oligo VI) was selected for this study to complement the data on SEQ ID NO: 1 (Oligo I), which is anti-sense to the adenosine A₁ receptor mRNA provided in the above-identified patent application. This additional oligo is identified as anti-sense Oligo VI, and is targeted to a different region of the adenosine A₁ receptor mRNA than Oligo I. The design and synthesis of this anti-sense oligo was performed in accordance with the teaching, particularly Example 1, of the above-identified patent application. The anti-sense Oligo VI is a phosphorothioate designed to target the coding region of the rabbit adenosine A₁ receptor mRNA region +964 to +984 relative to the initiation codon (start site). The Oligo VI was prepared as described in the above-indicated application, and is 20 nucleotides long. The Oligo VI is directed to the adenosine A₁ receptor gene, and has the following sequence: 5'-CGC CGG CGG GTG CGG GCC GG-3' (SEQ. ID NO: _). The phosphorothioate anti-sense Oligo VI having the sequence described in (5) above, was synthesized on an Applied Biosystems Model 396 Oligonucleotide Synthesizer, and purified using NENSORB chromatography (DuPont, DE). TETD (tetraethylthiuram disulfide) was used as the sulfurizing agent during the synthesis.

Example 31: Preparation of Allergic Rabbits

Neonatal New Zealand white Pasturella-free rabbits were immunized intraperitoneally within 24 hours of birth with 0.5 ml of 312 antigen units/ml house dust mite (*D. farinae*) extract (Berkeley Biologicals, Berkeley, CA) mixed with 10% kaolin as previously described (Metzger, W. J., in Late Phase Allergic Reactions, Dorsch, W., Ed., CRC Handbook, pp 347-362, CRC Press, Boca Raton, 1990; Ali, S. Et al., Am. J. Resp. Crit. Care Med. 149: 908 (1994)). The immunizations were repeated weekly for the first month and then bi-weekly until the animals were 4 months old. These rabbits preferentially produce allergen-specific IgE antibody, typically respond to aeroallergen challenge with both an early and late-phase asthmatic response, and show bronchial hyper responsiveness (BHR). Monthly intraperitoneal administration of alergen (312 units dust mite allergen, as above) continues to stimulate and maintain allergen-specific IgE antibody and BHR. At 4 months of age, sensitized rabbits were prepared for aerosol administration as described by Ali et al. (1994), supra.

Example 32: Adenosine Aerosol Preparation

An adenosine aerosol (20 mg/ml) was prepared with an ultrasonic nebulizer (Model 646, DeVilbiss, Somerville, PA), which produced aerosol droplets, 80% of which were smaller than 5:μm in diameter. Equal volumes of the aerosols were administered directly to the lungs via an intratracheal tube to all three rabbits. The animals were then administered the aerosolized adenosine and Day 1 pre-treatment values for sensitivity to adenosine were calculated as the dose of adenosine causing a 50% loss of compliance (PC₅₀ Adenosine). The animals were then administered the aerosolized anti-sense via the intratracheal tube (5 mg/1.0 ml), for 2 minutes, twice daily for 2 days (total dose, 20 mg). Post-treatment PC₅₀ values were recorded (post-treatment challenge) on the morning of the third day. The results of these studies are provided in (9) below.

Example 33: Anti-sense Oligo Formulation

Each one of the anti-sense oligos were separately solubilized in an aqueous solution and administered as described for anti-sense oligo I in (e) above, in four 5 mg aliquots (20 mg total dose) by means of a nebulizer via endotracheal tube, as described above.

Example 34: Oligo VI Reduces Response to Adenosine Challenge as well or Better than Oligo I

Oligo VI was tested in three allergic rabbits of the characteristics and readied as described in (7) above and in the above-indicated patent application. Oligo VI targets a section of the coding region of the A₁ receptor which is different from Oligo I. Both these target sequences were selected randomly from many possible coding region target sequences. The three rabbits were treated identically as previously indicated for Oligo I. Briefly, 5 mg of Oligo VI were nebulized to the rabbits twice per day at 8 hour intervals, for two days. Thereafter, PC₅₀ adenosine studies were performed on the morning of the third day and compared to pre-treatment PC₅₀ values. This protocol is described in more detail in Nyce and Metzger (Nyce & Metzger, Nature 385: 721-725 (1997)). The results obtained for the three rabbits are shown in Table 7 below.

Table 7: PC₅₀ Adenosine before & after Aerosolized Adenosine Treatment

Treatment Time	PC ₅₀ Adenosine (mg)
Pre-treatment	3.0 ±2.1
Post-treatment	>20.0*

* maximum achievable dose due to adenosine insolubility in saline

All three animals treated with Oligo VI completely eliminated sensitivity to adenosine up to the measurable level of the agent shown in Table 7 above. That is, the administration of the Oligo VI abrogated the adenosine-induced bronchoconstriction in the three allergic rabbits. The actual efficacy of Oligo VI is, therefore, greater than could be measured in the experimental system used. By comparing with the previously submitted results for the Oligo I, it may be seen that the Oligo VI was found to be as effective, or more, than Oligo I.

Example 34: Conclusions

The work described and results discussed in the examples clearly indicates that all anti-sense oligonucleotides designed in accordance with the teachings of the above-identified application were found to be highly effective at countering or reducing effects mediated by the receptors they are targeted to. That is, each and all of the two anti-sense oligos targeting an adenosine A₁ receptor mRNA, 1 anti-sense oligo targeting an adenosine A_{2b} receptor mRNA, and the 2 anti-sense oligos targeting an A₃ receptor mRNA were shown capable of countering the effect of exogenously administered adenosine which is mediated by the specific receptor they are targeted to. The activity of the anti-sense oligos of this invention, moreover, is specific to the target and substitutively fails to inhibit another target. In addition, the results presented also show that the administration of the present agents results in extremely low or non-existent deleterious side effects or toxicity. This represents 100% success in providing agents that are highly effective and specific in the treatment of bronchoconstriction and/or inflammation. This invention is broadly applicable in the same manner to all gene(s) and corresponding mRNAs encoding proteins involved in or associated with airway diseases. A comparison of the phosphodiester and a version of the same oligonucleotide wherein the phosphodiester bonds are substituted with phosphorothioate bonds evidenced an unexpected superiority for the phosphorothioate oligonucleotide over the phosphodiester anti-sense oligo.

Example 35: In Vivo Response to Adenosine Challenge with & without Oligo I Pretreatment

Two hyper responsive monkeys (ascaris sensitive) were challenged with inhaled adenosine, with and without pre-treatment with anti-sense oligo I (**SEQ.ID NO: 1**). The PC₄₀ adenosine was calculated from the data collected as being equivalent to that amount of adenosine in mg that causes a 40% decrease in dynamic compliance in hyper-responsive airways. The Oligo I (**SEQ. ID NO:1**; EPI 2010) was subsequently administered at 10 mg/day for 2 days by inhalation. On the third day, the PC adenosine was again measured. The PC₄₀ adenosine value prior to treatment with Oligo I was compared side-by-side with

to the PC₄₀ adenosine taken after administration of Oligo I (Figure not shown). The results of the experiment conducted with two animals showed that any sensitivity to adenosine was completely eliminated by the administration of the oligo of this invention in one animal, and substantially reduced in the second.

5 **Example 36: Extension of the experimental Results**

The method of the present invention is also practiced with anti-sense oligonucleotides targeted to many genes, mRNAs and their corresponding proteins as described above, in essentially the same manner as given above, for the treatment of various conditions in the lungs. Examples of these are Human A2a adenosine receptor, Human A2b adenosine receptor, Human IgE receptor β , Human Fc-epsilon receptor CD23 antigen (IgE receptor), Human IgE receptor, α subunit, Human IgE receptor, Fc epsilon R, Human histidine decarboxylase, Human beta tryptase, Human tryptase-I, Human prostaglandin D synthase, Human cyclooxygenase-2, Human eosinophil cationic protein, Human eosinophil derived neurotoxin, Human eosinophil peroxidase, Human intercellular adhesion molecule-1 (CAM-1), Human vascular cell adhesion molecule 1 (VCAM-1), Human endothelial leukocyte adhesion molecule (ELAM-1), Human P Selectin, Human endothelial monocyte activating factor, Human IL3, Human IL4, Human IL5, Human IL6, Human monocyte-derived neutrophil chemotactic factor, Human neutrophil elastase (medullasin), Human neutrophil oxidase factor, Human cathepsin G, Human defensin 1, Human defensin 3, Human macrophage inflammatory protein-1-alpha, Human muscarinic acetylcholine receptor HM1, Human muscarinic acetylcholine receptor HM3, Human fibronectin, Human interleukin 8, Human GM-CSF, Human tumor necrosis factor α , Human leukotriene C4 synthase, Human major basic protein, and many more.

The foregoing examples are illustrative of the present invention, and are not to be construed as limiting thereof. The invention is defined by the following claims, with equivalents of the claims to be included therein.

**WHAT IS CLAIMED AS NOVEL & UNOBlOUS
IN UNITED STATES LETTERS PATENT IS:**

1. A pharmaceutical composition, comprising
an oligonucleotide(s) (oligo(s)) which is (are) effective for alleviating bronchoconstriction and/or
5 lung inflammation, allergy(ies), or surfactant depletion or hyposecretion, when administered to a mammal,
the oligo containing about 0 to about 15% adenosine (A) and being anti-sense to a target selected from the
group consisting of the initiation codon, the coding region, the 5'-end and the 3'-end genomic flanking
regions, the 5' and 3' intron-exon junctions, and regions within 2 to 10 nucleotides of the junctions of a
10 gene encoding a target polypeptide associated with lung airway dysfunction or anti-sense to the
polypeptide mRNA; combinations of the oligos; and mixtures of the oligos; and
a pharmaceutically or veterinarianly acceptable carrier or diluent.
2. The composition of claim 1, wherein the oligo is A-free.
3. The composition of claim 1, wherein the target is selected from the group consisting of
the initiation codon, the coding region, the 5'-end and the 3'-end genomic flanking regions, the 5' and 3'
15 intron-exon junctions, and regions within 2 to 10 nucleotides of the junctions of an oncogene(s) and a
gene(s) encoding a target polypeptide(s) associated with lung airway dysfunction or anti-sense to the
oncogene mRNA and the polypeptide mRNA; combinations of the oligos; and mixtures of the oligos; the
20 polypeptides being selected from the group consisting of peptide factors and transmitters, antibodies,
cytokines and chemokines, enzymes, binding proteins, adhesion molecules, their receptors, and malignancy
associated proteins.
4. The composition of claim 3, wherein the target is selected from the group consisting of
the initiation codon, the coding region, the 5'-end and the 3'-end genomic flanking regions, the 5' and 3'
25 intron-exon junctions, and regions within 2 to 10 nucleotides of the junctions of an oncogene(s) and a
gene(s) encoding a target polypeptide(s) associated with lung airway dysfunction or anti-sense to the
oncogene mRNA and the polypeptide mRNA; combinations of the oligos; and mixtures of the oligos;
wherein the polypeptides are selected from the group consisting of transcription factors, stimulating and
activating peptide factors, cytokines, cytokine receptors, chemokines, chemokine receptors, adenosine
30 receptors, bradykinin receptors, endogenously produced specific and non-specific enzymes,
immunoglobulins and antibodies, antibody receptors, central nervous system (CNS) and peripheral nervous
and non-nervous system receptors, CNS and peripheral nervous and non-nervous system peptide
transmitters, adhesion molecules, defensins, growth factors, vasoactive peptides and receptors, binding
proteins, and malignancy associated proteins.
5. The agent of claim 4, wherein the encoded polypeptide(s) is(are) selected from the group
consisting of adenosine receptors A1, A2a, A2b and A3, bradykinin receptors B1 and B2, Nf6B
35 Transcription Factor, Interleukin-8 Receptor (IL-8 R), Interleukin 5 Receptor (IL-5 R), Interleukin 4
Receptor (IL-4 R), Interleukin 3 Receptor (IL-3 R), Interleukin-1 β (IL-1 β), Interleukin 1 β Receptor (IL-
1 β R), Eotaxin, Tryptase, Major Basic Protein, β 2-adrenergic Receptor Kinase, Endothelin Receptor A,
Endothelin Receptor B, Preproendothelin, Bradykinin B2 Receptor, IgE High Affinity Receptor,
Interleukin 1 (IL-1), Interleukin 1 Receptor (IL-1 R), Interleukin 9 (IL-9), Interleukin-9 Receptor (IL-9 R),
40 Interleukin 11 (IL-11), Interleukin-11 Receptor (IL-11 R), Inducible Nitric Oxide Synthase, Cyclo-
oxygenase-1 (COX 1), Cyclo-oxygenase-2 (COX-2), Intracellular Adhesion Molecule 1 (ICAM-1)
Vascular Cellular Adhesion Molecule (VCAM), Rantes, Endothelial Leukocyte Adhesion Molecule
(ELAM-1), Monocyte Activating Factor, Neutrophil Chemotactic Factor, Neutrophil Elastase, Defensin 1,
45 2 and 3, Muscarinic Acetylcholine Receptors, Platelet Activating Factor, Tumor Necrosis Factor α , 5-
lipoxygenase, Phosphodiesterase IV, Substance P, Substance P Receptor, Histamine Receptor, Chymase,
CCR-1 CC Chemokine Receptor, CCR-2 CC Chemokine Receptor, CCR-3 CC Chemokine Receptor,
CCR-4 CC Chemokine Receptor, CCR-5 CC Chemokine Receptor, Prostanoid Receptors, GATA-3
Transcription Factor, Neutrophil Adherence Receptor, MAP Kinase, Interleukin-9 (IL-9), NFAT
Transcription Factor, STAT 4, MIP-1 α , MCP-2, MCP-3, MCP-4, Cyclophilins, Phospholipase A2, Basic

Fibroblast Growth Factor, Metalloproteinase, CSBP/p38 MAP Kinase, Tryptose Receptor, PDG2, Interleukin-3 (IL-3), Interleukin-1 β (IL-1 β), Cyclosporin A-Binding Protein, FK5-Binding Protein, α 4 β 1 Selectin, Fibronectin, α 4 β 7 Selectin, Mad CAM-1, LFA-1 (CD11a/CD18), PECAM-1, LFA-1 Selectin, C3bi, PSGL-1, E-selectin, P-Selectin, CD-34, L-Selectin, p150,95, Mac-1 (CD11b/CD18), Fucosyl transferase, VLA-4, CD-18/CD11a, CD11b/CD18, ICAM2 and ICAM3, C5a, CCR3 (Eotaxin Receptor), CCR1, CCR2, CCR4, CCR5, LTB-4, AP-1 Transcription Factor, Protein kinase C, Cysteinyl Leukotriene Receptor, Tachykinin Receptors (tach R), I6B Kinase 1 & 2, STAT 6, c-mas and NF-Interleukin-6 (NF-IL-6).

6. The composition of claim 1, wherein one or more As is(are) substituted by a universal base selected from the group consisting of heteroaromatic bases which bind to a thymidine base but have antagonist activity and less than about 0.3 of the adenosine base agonist or antagonist activity at the adenosine A₁, A_{2a}, A_{2b} and A₃ receptors.

7. The composition of claim 6, wherein the heteroaromatic bases are selected from the group consisting of pyrimidines and purines, which may be substituted by O, halo, NH₂, SH, SO, SO₂, SO₃, COOH and branched and fused primary and secondary amino, alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, alkoxy, alkenoxy, acyl, cycloacyl, arylacyl, alkynoxy, cycloalkoxy, aroyl, arylthio, arylsulfoxyl, halocycloalkyl, alkylcycloalkyl, alkenylcycloalkyl, alkynylcycloalkyl, haloaryl, alkylaryl, alkenylaryl, alkynylaryl, arylalkyl, arylalkenyl, arylalkynyl, arylcycloalkyl, which may be further substituted by O, halo, NH₂, primary, secondary and tertiary amine, SH, SO, SO₂, SO₃, cycloalkyl, heterocycloalkyl and heteroaryl.

8. The composition of claim 7, wherein the pyrimidines and purines are substituted at a position selected from the group consisting of positions 1, 2, 3, 4, 7, and 8, and the pyrimidines and purines are selected from the group consisting of theophylline, caffeine, dyphylline, etophylline, acephylline, piperazine, bamifylline, enprofylline and xantine having the chemical formula

30 wherein R¹ and R² are independently H, alkyl, alkenyl or alkynyl and R³ is H, aryl, dicycloalkyl, dicycloalkenyl, dicycloalkynyl, cycloalkyl, cycloalkenyl, cycloalkynyl, O-cycloalkyl, O-cycloalkenyl, O-cycloalkynyl, NH₂-alkylamino-ketoxyalkyloxy-aryl and mono and dialkylaminoalkyl-N-alkylamino-SO₂ aryl.

9. The composition of claim 8, wherein the universal base is selected from the group consisting of 3-nitropyrrole-2'-deoxynucleoside, 5-nitro-indole, 2-deoxyribosyl-(5-nitroindole), 2-deoxyribofuranosyl-(5-nitroindole), 2'-deoxyinosine, 2'-deoxynebularine, 6H, 8H-3,4-dihydropyrimido [4,5-c] oxazine-7-one or 2-amino-6-methoxyaminopurine.

10. The composition of claim 1, where one or more methylated cytocine(s) (^mC) is(are) substituted for a C in one or more CpG dinucleotide(s), if present in the oligo(s).

11. The composition of claim 1, wherein one or more mononucleotide(s) of the oligo(s) is(are) linked or modified by one or more methylphosphonate, 5'-N-carbamate, phosphotriester, phosphorothioate, phosphorodithioate, boranophosphate, formacetal, thioformacetal, thioether, carbonate, carbamate, sulfate, sulfonate, sulfamate, sulfonamide, sulfone, sulfite, sulfoxide, sulfide, hydroxylamine, methylene(methyimino) (MMI), methoxymethyl (MOM), methoxyethyl (MOE), methyleneoxy (methylimino) (MOMII), 2'-O-methyl, phosphoramidate, C-5 substituted residues, or combinations thereof.

12. The composition of claim 11, wherein the mononucleotide residues are linked by phosphorothioate residues.

13. The composition of claim 1, wherein the anti-sense oligo comprises about 7 to about 60 mononucleotides.

14. The composition of claim 1, wherein the anti-sense oligo comprises fragments 1, 3, 5, 7 and 8 to 2313 (SEQ. ID NOS: 1 through 2419).
15. The composition of claim 1, wherein the anti-sense oligo is operatively linked to, or complexed with, an agent selected from the group consisting of cell internalized or up-taken agents and cell targeting agents.
16. The composition of claim 15, wherein the cell internalized or up-taken agent is selected from the group consisting of transferrin, asialoglycoprotein and streptavidin.
17. The composition of claim 1, wherein the oligo is operatively linked to a vector that is a prokaryotic or eukaryotic vector.
18. The composition of claim 1, wherein the oligo(s) is(are) hybridized to a ribonucleic acid.
19. A cell, carrying the oligo of claim 1.
20. The composition of claim 1, wherein the carrier or diluent is selected from the group consisting of gaseous, liquid, and solid carriers or diluents.
21. The composition of claim 20, further comprising an agent selected from the group consisting of other therapeutic agents, surfactants, flavoring and coloring agents, fillers, volatile oils, buffering agents, dispersants, RNA inactivating agents, anti-oxidants, flavoring agents, propellants and preservatives.
22. The composition of claim 21, comprising one or more oligo(s), a surfactant, and a carrier or diluent for the oligo and the surfactant.
23. The composition of claim 21, wherein the agent is an RNA inactivating agent which comprises an enzyme, optionally an ribozyme.
24. The composition of claim 1, wherein the anti-sense oligo is present in an amount of about 0.01 to about 99.99 w/w of the composition.
25. The composition of claim 1, which is a systemic or topical formulation.
26. The formulation of claim 25, selected from the group consisting of oral, intrabuccal, intrapulmonary, rectal, intrauterine, intratunor, intracranial, nasal, intramuscular, subcutaneous, intravascular, intrathecal, inhalable, transdermal, intradermal, intracavitary, implantable, iontophoretic, ocular, vaginal, intraarticular, otical, intravenous, intramuscular, intraglandular, intraorgan, intralymphatic, implantable, slow release and enteric coating formulations.
27. The formulation of claim 26, which is an oral formulation, wherein the carrier is selected from the group consisting of solid and liquid carriers.
28. The oral formulation of claim 27, which is selected from the group consisting of a powder, dragees, tablets, capsules, sprays, aerosols, solutions, suspensions and emulsions, optionally oil-in-water and water-in-oil emulsions.
29. The formulation of claim 25, which is a topical formulation, wherein the carrier is selected from the group consisting of creams, gels, ointments, sprays, aerosols, patches, solutions, suspensions and emulsions.
30. The formulation of claim 26, which is an injectable formulation, wherein the carrier is selected from the group consisting of aqueous and alcoholic solutions and suspensions, oily solutions and suspensions and oil-in-water and water-in-oil emulsions.
31. The formulation of claim 26, which is a rectal formulation, optionally a suppository.
32. The formulation of claim 26, which is a transdermal formulation, wherein the carrier is selected from the group consisting of aqueous and alcoholic solutions, oily solutions and suspensions and oil-in-water and water-in-oil emulsions.
33. The transdermal formulation of claim 32, which is an iontophoretic transdermal formulation, wherein the carrier is selected from the group consisting of aqueous and alcoholic solutions, oily solutions and suspensions and oil-in-water and water-in-oil emulsions, and wherein the formulation further comprises a transdermal transport promoting agent.
34. The formulation of claim 26, which is provided in an implant, a capsule or a cartridge.

35. The composition of claim 20, wherein the carrier is selected from the group consisting of aqueous and alcoholic solutions and suspensions, oily solutions and suspensions and oil-in-water and water-in-oil emulsions.

36. The formulation of claim 20, wherein the carrier comprises a hydrophobic carrier.

5 37. The formulation of claim 36, wherein the carrier comprises lipid vesicles, optionally liposomes, or particles, optionally microcrystals.

38. The formulation of claim 37, wherein the carrier comprises liposomes, and the liposomes comprise the anti-sense oligo.

10 39. The formulation of claim 26, which is a respirable or inhalable formulation, optionally an aerosol.

40. The composition of claim 1, in single or multiple unit form.

41. The composition of claim 1, in bulk.

42. A kit, comprising
a delivery device;

15 in a separate container(s), the oligo(s) of claim 1; and
instructions for adding a carrier and for use of the kit.

43. The kit of claim 42, wherein the formulation is a respirable formulation and the delivery device comprises a nebulizer which delivers single metered doses of the formulation.

20 44. The kit of claim 43, wherein the nebulizer comprises an insufflator and the composition is provided in a piercable or openable capsule or cartridge.

45. The kit of claim 44, wherein the delivery device comprises a pressurized inhaler and the composition comprises a suspension, solution or dry formulation of the oligo.

25 46. The kit of claim 45, further comprising, in a separate container, an agent selected from the group consisting of other therapeutic agents, surfactants, anti-oxidants, flavoring agents, fillers, volatile oils, dispersants, antioxidants, propellants, preservatives, buffering agents, RNA inactivating agents, cell-internalized or up-taken agents and coloring agents.

47. The kit of claim 46, comprising, in separate containers, one or more oligos, one or more surfactants, and a carrier or diluent, and optionally other therapeutic agents.

48. The kit of claim 42, wherein the device is a transdermal delivery device, and the kit further comprises a transdermal delivery agent, a transdermal carrier or diluent, and instructions for preparing a transdermal delivery formulation.

49. The kit of claim 42, wherein the device is an iontophoretic delivery device, and the kit further comprises iontophoretic agents and instructions for preparing an iontophoretic formulation.

50. An in vivo method of delivering an anti-sense oligonucleotide(s) (oligo(s)) to one or 35 more target polynucleotide(s), comprising administering into the respiratory system of a subject one or more oligo(s) that are anti-sense to the polynucleotide(s), in an amount effective to reach and hybridize to the target polynucleotide(s), and reduce the production or availability, or to increase the degradation, of the target mRNA, or to reduce the amount of the target polypeptide present in the lungs.

51. An in vivo method of delivering an anti-sense oligonucleotide (oligo) to a target 40 polynucleotide associated with bronchoconstriction and/or lung inflammation, allergy(ies) and/or surfactant hypoproduction, comprising administering to a subject the composition of claim 1, that comprises an amount of the oligo(s) effective to reach and hybridize to the target polynucleotide(s), and reduce or inhibit the polynucleotide(s)' transcription and/or expression and, thereby, alleviating bronchoconstriction and/or lung inflammation, allergy(ies) and/or surfactant hypoproduction.

52. The method of claim 51, wherein the administered composition comprises an amount of 45 the oligo(s) and is administered under conditions effective for alleviating bronchoconstriction and/or lung inflammation, allergy(ies) and/or surfactant depletion or hyposecretion, when administered to a mammal.

53. The method of claim 51, wherein the composition is administered into the subject's respiratory system.

54. The method of claim 53, wherein the composition is administered directly into the subject's lung (s).

55. The method of claim 51, wherein the administered composition comprises an amount of the oligo(s) and is administered under conditions effective to reduce the production or availability, or to increase the degradation, of the target mRNA or to reduce the amount of the target polypeptide present in the lungs.

56. The method of claim 51, wherein the agent is administered as a respirable aerosol.

57. The method of claim 51, wherein the pulmonary obstruction, and/or bronchoconstriction and/or lung inflammation, allergy(ies) and/or surfactant hypoproduction are associated with a disease or condition selected from the group consisting of pulmonary vasoconstriction, inflammation, allergies, asthma, impeded respiration, respiratory distress syndrome (RDS), pain, cystic fibrosis (CF), allergic rhinitis (AR), pulmonary hypertension, emphysema, chronic obstructive pulmonary disease (COPD), pulmonary transplantation rejection, pulmonary infections, bronchitis, and cancer.

58. The method of claim 57, wherein the disease or condition is associated with an allergy(ies), and the oligo is anti-sense to a target selected from the group consisting of the initiation codon, the coding region, the 5'-end and the 3'-end genomic flanking regions, the 5' and 3' intron-exon junctions, and regions within 2 to 10 nucleotides of the junctions of a gene(s) encoding an immunoglobulin(s) and antibody(ies) and immunoglobulin and antibody receptors or are anti-sense to the immunoglobulin(s) and antibody(ies) and immunoglobulin and antibody receptors mRNA; combinations of the oligo(s); and mixtures of the oligos.

59. The method of claim 57, wherein the disease or condition is associated with a malignancy or cancer, and the oligo is anti-sense to a target selected from the group consisting of the initiation codon, the coding region, the 5'-end and the 3'-end genomic flanking regions, the 5' and 3' intron-exon junctions, and regions within 2 to 10 nucleotides of the junctions of an oncogene(s) and/or encodes a malignancy associated protein, or is(are) anti-sense to the oncogene or malignancy associated protein mRNA; combinations of the oligo(s); and mixtures of the oligos and the oligo(s) is(are) administered in an amount effective to reduce either the level of the protein mRNA or of the malignancy associated protein, or to reduce the growth of or provide beneficial characteristics to malignant cells.

60. The method of claim 51, wherein the composition is administered transdermally or systemically.

61. The method of claim 60, wherein the composition is administered orally, intracavarily, intranasally, intraanally, intravaginally, intrauterally, intraarticularly, transdermally, intrabucally, intravenously, subcutaneously, intramuscularly, intravascularly, intratumorously, intraglandularly, intraocularly, intracranial, into an organ, intravascularly, intrathecally, intralymphatically, intraotically, by implantation, by inhalation, intradermally, intrapulmonarily, intraotically, by slow release, by sustained release and by a pump.

62. The method of claim 51, wherein the subject is a non-human mammal.

63. The method of claim 51, wherein the mammal is a human.

64. The method of claim 51, wherein the oligo is administered in amount of about 0.005 to about 150 mg/kg body weight.

65. The method of claim 51, wherein the oligo is obtained by

(a) selecting fragments of a target nucleic acid having at least 4 contiguous nucleic acids selected from the group consisting of G and C;

45 (b) obtaining a first oligonucleotide 4 to 60 nucleotides long which comprises the selected fragment and has a C and G nucleic acid content of up to and including about 15%; and

(c) obtaining a second oligonucleotide 4 to 60 nucleotides long comprising a sequence which is anti-sense to the selected fragment, the second oligonucleotide having an A base content of up to and including about 15%.

65. The method of claim 64, wherein the oligo is A-free.

66. The method of claim 51, wherein the target is selected from the group consisting of the initiation codon, the coding region, the 5'-end and the 3'-end genomic flanking regions, the 5' and 3' intron-exon junctions, and regions within 2 to 10 nucleotides of the junctions of an oncogene or a gene encoding a target polypeptide associated with lung airway dysfunction or anti-sense to the polypeptide or oncogene mRNA; combinations of the oligo(s); and mixtures of the oligos; wherein the polypeptide is selected from the group consisting of transcription factors, stimulating and activating factors, interleukins, interleukin receptors, chemokines, chemokine receptors, endogenously produced specific and non-specific enzymes, immunoglobulins, antibody receptors, central nervous system (CNS) and peripheral nervous and non-nervous system receptors, CNS and peripheral nervous and non-nervous system peptide transmitters, adhesion molecules defensines, growth factors, vasoactive peptides, peptide receptors and binding proteins, and malignancy associated proteins.

67. The method of claim 51, wherein one or more As in the oligo(s) is(are) substituted by a universal base selected from the group consisting of heteroaromatic bases which bind to a thymidine base but have less than about 0.3 of the adenosine base agonist or antagonist activity at an adenosine A₁, A_{2a}, A_{2b} and A₃ receptors.

68. The method of claim 67, wherein the heteroaromatic bases are selected from the group consisting of pyrimidines and purines, which may be substituted by O, halo, NH₂, SH, SO, SO₂, SO₃, COOH and branched and fused primary and secondary amino, alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, alkoxy, alkenoxy, acyl, cycloacyl, arylacyl, alkynoxy, cycloalkoxy, aroyl, arylthio, arylsulfonyl, halocycloalkyl, alkylcycloalkyl, alkenylcycloalkyl, alkynylcycloalkyl, haloaryl, alkylaryl, alkenylaryl, alkynylaryl, arylalkyl, arylalkenyl, arylalkynyl, arylcycloalkyl, which may be further substituted by O, halo, NH₂, primary, secondary and tertiary amine, SH, SO, SO₂, SO₃, cycloalkyl, heterocycloalkyl and heteroaryl.

69. The method of claim 67, wherein the pyrimidines and purines are substituted at positions 1, 2, 3, 4, 7 and 8 and the pyrimidines and purines are selected from the group consisting of theophylline, caffeine, dyphylline, etophylline, acephylline piperazine, bamifylline, enprofylline and xantine having the chemical formula

30

35 wherein R¹ and R² are independently H, alkyl, alkenyl or alkynyl and R³ is H, aryl, dicycloalkyl, dicycloalkenyl, dicycloalkynyl, cycloalkyl, cycloalkenyl, cycloalkynyl, O-cycloalkyl, O-cycloalkenyl, O-cycloalkynyl, NH₂-alkylamino-ketoxyalkyloxy-aryl and mono and dialkylaminoalkyl-N-alkylamino-SO₂ aryl.

70. The method of claim 69, wherein the universal base is selected from the group consisting of 3-nitropyrole-2'-deoxynucleoside, 5-nitro-indole, 2-deoxyribosyl-(5-nitroindole), 2-deoxyribofuranosyl-(5-nitroindole), 2'-deoxyinosine, 2'-deoxynebularine, 6H, 8H-3,4-dihydropyrimido[4,5-c]oxazine-7-one or 2-amino-6-methoxyaminopurine.

71. The method of claim 51, further comprising substituting a methylated cytocine (³C) for a C in one or more CpG dinucleotide(s), if present in the oligo(s).

72. The method of claim 51, further comprising substituting by, or modifying one or more nucleotide residue(s) of the oligo(s) with, methylphosphonate, phosphotriester, phosphorothioate, phosphorodithioate, organophosphate, formacetal, thioformacetal, thioether, carbonate, carbamate, sulfate, sulfonate, sulfamate, sulfonamide, sulfone, sulfite, sulfoxide, sulfide, hydroxylamine, methylene(methyimino) (MMI), methoxymethyl (MOM), methoxyethyl (MOE), methyleneoxy

(methylimino) (MOMI), methoxy methyl (MOM), 2'-O-methyl, phosphoramidate, C-5 substituted residues, or combinations thereof.

73. The method of claim 51, further comprising operatively linking to, or complexing the oligo(s) with, an agent selected from the group consisting of cell internalized and up-taken agent(s) and cell targeting agents.

74. The method of claim 73, wherein the cell internalized or up taken agent is selected from the group consisting of transferrin, asialoglycoprotein, and streptavidin.

75. The method of claim 73, wherein the cell targeting agent is a vector, optionally a prokaryotic or eukaryotic vector.

76. A method of treating a disease or condition associated with a target selected associated with a disease or condition afflicting lung airways, comprising conducting the method of claim 56.

77. The method of claim 76, wherein the amount of oligo(s) administered is (are) effective to reduce the production or availability, or to increase the degradation, of the mRNA, or to reduce the amount of the polypeptide present in the lungs.

78. The method of claim 77, wherein the amount of oligo(s) administered is (are) effective to reduce the production or availability, or to increase the degradation, of the mRNA, or to increase the amount of the surfactant present in the subject's lungs.

79. The composition of claim 4, wherein the oligo(s) is(are) anti-sense to the initiation codon, the coding region, the 5'-end and the 3'-end genomic flanking regions, the 5' and 3' intron-exon junctions, and regions within 2 to 10 nucleotides of the junctions of a gene(s) encoding an adenosine A1, A2a, A2b and/or A3 receptor, or anti-sense to the adenosine A1, A2a, A2b and/or A3 receptor mRNA.

80. The composition of claim 79, wherein all nucleotide linking residues are phosphorothioates.

81. The composition of claim 1, wherein the oligo is a DNA.

82. The composition of claim 1, wherein the oligo is an RNA.

83. The composition of claim 1, wherein the oligo comprises about 7 to up to about 60 mononucleotides.

84. The composition of claim 79, wherein the oligo(s) is selected from the group consisting of fragment(s) SEQ ID NOS: 1, 3, 5, 7, 8, and/or 11 through 2419, optionally wherein at least one mononucleotide residue is substituted or modified by methylphosphonate, phosphotriester, phosphorothioate, phosphorodithioate, boranophosphate, formacetal, thioformacetal, thioether, carbonate, carbamate, sulfate, sulfonate, sulfamate, sulfonamide, sulfone, sulfite, sulfoxide, sulfide, hydroxylamine, methylene(methylimino), (MMI), methoxymethyl (MOM), methoxyethyl (MOE), methyleneoxy (methylimino) (MOMA), methoxy methyl (MOM), 2'-O-methyl, phosphoramidate residues and/or combinations thereof.

85. The method of claim 51, wherein the oligo is administered topically to the airway, respiratory or pulmonary epithelium of the subject.

86. The composition of claim 1, wherein the oligo has a particle size of about 5-10 μm or in the range of 10-500 μm .

87. The composition of claim 1, further comprising a propellant.

88. The method of claim 50, wherein the oligo has a particle size of about 5-10 μm or in the range of 10-500 μm .

89. The method of claim 50, further comprising adding to the oligo a propellant.

90. The method of claim 51, wherein the oligo has a particle size of about 5-10 μm or in the range of 10-500 μm .

91. The method of claim 51, further comprising adding to the oligo a propellant.

**LOW ADENOSE ANTI-SENSE OLIGONUCLEOTIDE, COMPOSITIONS, KIT
& METHOD FOR TREATMENT OF AIRWAY DISORDERS ASSOCIATED
WITH BRONCHOCONSTRICKTION, LUNG INFLAMMATION,
ALLERGY(IES) & SURFACTANT DEPLETION**

5

ABSTRACT OF THE INVENTION

An in vivo method of selectively delivering a nucleic acid to a target gene or mRNA, comprises the topical administration, e. g. to the respiratory system, of a subject of a therapeutic amount of an oligonucleotide (oligo) that is anti-sense to the initiation codon region, the coding region, the 5' or 3' intron-exon junction; or regions within 2 to 10 nucleotides of the junctions of the gene, or antisense to a mRNA complementary to the gene in an amount effective to reach the target polynucleotide and reducing or inhibiting express on. In addition a method of treating an adenosine mediated effect, comprises topically administering to a subject an anti-sense oligo in an amount effective to treat the respiratory, pulmonary, or airway disease. In order to minimize triggering adenosine receptors by their metabolism, the administered oligos have a low content of or are essentially free of adenosine. A pharmaceutical composition and formulations comprise the oligo anti-sense to an adenosine receptor, genes and mRNAs encoding them, genomic and mRNA flanking regions, intron and exon borders and all regulatory and functionally related segments of the genes and mRNAs encoding the polypeptides, their salts and mixtures. Various formulations contain a requisite carrier, and optionally other additives and biologically active agents. The low adenosine or adenosine free (des-A) agent for practicing the method of the invention may be prepared by selecting a target gene(s), genomic flanking region(s), RNA(s) and/or polypeptide(s) associated with a disease(s) or condition(s) afflicting lung airways, obtaining the sequence of the mRNA(s) corresponding to the target gene(s) and/or genomic flanking region(s), and/or RNAs encoding the target polypeptide(s), selecting at least one segment of the mRNA which may be up to 60% free of thymidine (T) and synthesizing one or more anti-sense oligonucleotide(s) to the mRNA segments which are free of adenosine (A) by substituting a universal base for A when present in the oligonucleotide. The agent may be prepared by selection of target nucleic acid sequences with GC running stretches, which have low T content, and by optionally replacing A in the anti-sense oligonucleotides with a "Universal or alternative base". The agent, composition and formulations are used for prophylactic, preventive and therapeutic treatment of ailments associated with impaired respiration, lung allergy(ies) and/or inflammation and depletion lung surfactant or surfactant hypoproduction, such as pulmonary vasoconstriction, inflammation, allergies, allergic rhinitis, asthma, impeded respiration, lung pain, cystic fibrosis, bronchoconstriction. The present treatment is suitable for administration in combination with other treatments, e.g. before, during and after other treatments, including radiation, chemotherapy, antibody therapy and surgery, among others. Alternatively, the present agent is effectively administered prophylactically or therapeutically by itself for conditions without known therapies or as a substitute for therapies exhibiting undesirable side effects. The treatment of this invention may be administered directly into the respiratory system of a subject so that the agent has direct access to the lungs, or by other effective routes of administration, e. g. topically, transdermally, by implantation, etc., in an amount effective to reduce or inhibit the symptoms of the ailment.