Agenda

- I. Constrained supervised learning
 - Constrained learning theory
 - Constrained learning algorithms
 - Resilient constrained learning

Break (10 min)

- II. Constrained reinforcement learning
 - Constrained RL duality
 - Constrained RL algorithms

Q&A and discussions

IMPRS tutorial Sep. 19, 2024

supervised and reinforcement learning under requirements

Agenda

Constrained reinforcement learning

Reinforcement learning

Model-free framework for decision-making in Markovian settings

Reinforcement learning

Model-free framework for decision-making in Markovian settings

$$\mathbb{P}\left(s_{t+1} \mid \left\{s_{u}, a_{u}\right\}_{u \leq t}\right) = \mathbb{P}\left(s_{t+1} \mid s_{t}, a_{t}\right) = p(s_{t+1} \mid s_{t}, a_{t})$$

Environment

- MDP: $\mathcal S$ (state space), $\mathcal A$ (action space), p (transition kernel)

Reinforcement learning

Model-free framework for decision-making in Markovian settings

$$\mathbb{P}\left(s_{t+1}\mid \{s_u, a_u\}_{u\leq t}\right) = \mathbb{P}\left(s_{t+1}\mid s_t, a_t\right) = p(s_{t+1}\mid s_t, a_t)$$
 Agent

Environment

 $\bullet \quad \mathsf{MDP} \colon \mathcal{S} \text{ (state space), } \mathcal{A} \text{ (action space), } p \text{ (transition kernel), } r \colon \mathcal{S} \times \mathcal{A} \to [0, B] \text{ (reward)}$

Reinforcement learning

Model-free framework for decision-making in Markovian settings

$$\mathbb{P}\left(s_{t+1} \mid \left\{s_{u}, a_{u}\right\}_{u \leq t}\right) = \mathbb{P}\left(s_{t+1} \mid s_{t}, a_{t}\right) = p(s_{t+1} \mid s_{t}, a_{t})$$

- $\bullet \ \ \mathsf{MDP} \colon \mathcal{S} \ (\mathsf{state \ space}), \ \mathcal{A} \ (\mathsf{action \ space}), \ p \ (\mathsf{transition \ kernel}), \ r : \mathcal{S} \times \mathcal{A} \to [0, B] \ (\mathsf{reward})$
- $\mathcal{P}(\mathcal{S})$: space of probability measures parameterized by \mathcal{S}
- T (horizon) (possibly $T \to \infty$) and $\gamma < 1$ (discount factor) (possibly $\gamma = 1$)

Reinforcement learning

Model-free framework for decision-making in Markovian settings

$$\mathbb{P}\left(s_{t+1} \mid \left\{s_{u}, a_{u}\right\}_{u \leq t}\right) = \mathbb{P}\left(s_{t+1} \mid s_{t}, a_{t}\right) = \mathbf{p}(s_{t+1} \mid s_{t}, a_{t})$$

$$\underset{\pi \in \mathcal{P}(\mathcal{S})}{\text{maximize}} \ V(\pi) \triangleq \mathbb{E}_{\mathbf{s}, a \sim \pi} \left[\frac{1}{T} \sum_{t=0}^{T} \gamma^t r(\mathbf{s}_t, a_t) \right] \quad \text{(P-RL)}$$

(P-RL) can be solved using policy gradient and/or Q-learning type algorithms

Constrained RL

$$\begin{aligned} & \underset{\pi \in \mathcal{P}(S)}{\text{maximize}} & V_0(\pi) \triangleq \mathbb{E}_{s,a \sim \pi} \left[\frac{1}{T} \sum_{t=0}^{T-1} \gamma^t r_0(s_t, a_t) \right] \\ & \text{subject to} & V_i(\pi) \triangleq \mathbb{E}_{s,a \sim \pi} \left[\frac{1}{T} \sum_{t=0}^{T-1} \gamma^t r_i(s_t, a_t) \right] \geq c_i, \quad i = 1, \dots, m \end{aligned}$$

- MDP: S (state space), A (action space), p (transition kernel), $r_i : S \times A \rightarrow [0, B]$ (reward)
- $\mathcal{P}(\mathcal{S})$: space of probability measures parameterized by \mathcal{S}

Safe navigation

Problem Find a control policy that navigates the environment effectively and safely

$$\underset{\pi \in \mathcal{P}(\mathcal{S})}{\text{maximize}} \ \mathbb{E}_{s,a \sim \pi} \left[\frac{1}{T} \sum_{t=0}^{T-1} \right]$$

Safe navigation

Problem Find a control policy that navigates the environment effectively and safely

$$\underset{\pi \in \mathcal{P}(\mathcal{S})}{\operatorname{maximize}} \ \mathbb{E}_{s, \alpha \sim \pi} \left[\frac{1}{T} \sum_{t=0}^{T-1} \underbrace{- \left\| s - s_{\mathsf{goal}} \right\|^2}_{r_0} \right]$$

Safe navigation

Problem
Find a control policy that navigates the environment effectively and safely

$$\underset{\pi \in \mathcal{P}(\mathcal{S})}{\text{maximize}} \ \mathbb{E}_{s,a \sim \pi} \left[\frac{1}{T} \sum_{t=0}^{T-1} \underbrace{- \left\| s - s_{\texttt{900M}} \right\|^2}_{r_0} - \sum_{i=1}^{5} \underbrace{w_i \mathbb{I}(s_t \in \mathcal{O}_i)}_{r_i} \right]$$

Safe navigation

Problem

Find a control policy that navigates the environment effectively and safely

$$\underset{\pi \in \mathcal{P}(\mathcal{S})}{\text{maximize}} \ \mathbb{E}_{s,a \sim \pi} \left[\frac{1}{T} \sum_{t=0}^{T-1} - \frac{\|s - s_{\text{goal}}\|^2}{r_0} - \sum_{i=1}^{5} w_i \underbrace{\mathbb{I}(s_t \in \mathcal{O}_i)}_{r_t} \right]$$

Safe navigation

Problem
Find a control policy that navigates the environment effectively and safely

Safe navigation

Problem
Find a control policy that navigates the environment effectively and safely

$$\begin{split} & \underset{\pi \in \mathcal{P}(S)}{\text{maximize}} & & \mathbb{E}_{s,a \sim \pi} \left[\frac{1}{T} \sum_{t=0}^{T-1} r_0(s_t, a_t) \right] \\ & \text{subject to} & & \mathbb{E}_{s,a \sim \pi} \left[\frac{1}{T} \sum_{t=0}^{T-1} \underbrace{\mathbb{I}(s_t \notin \mathcal{O}_i)}_{r_i} \right] \geq 1 - \frac{\delta_i}{T} \end{split}$$

Safe navigation

Problem
Find a control policy that navigates the environment effectively and safely

$$\begin{split} & \underset{\pi \in \mathcal{P}(\mathcal{S})}{\text{maximize}} & & \mathbb{E}_{s,a \sim \pi} \left[\frac{1}{T} \sum_{t=0}^{T-1} r_0(s_t, a_t) \right] \\ & \text{subject to} & & \mathbb{E}_{s,a \sim \pi} \left[\frac{1}{T} \sum_{t=0}^{T-1} \underbrace{\mathbb{I}(s_t \notin \mathcal{O}_t)}_{r_i} \right] \geq 1 - \frac{\delta_t}{T} \end{split}$$

Safety guarantee:

$$\sum_{t=0}^{T-1} \mathbb{P}(\mathcal{E}_t) \ge T - \delta \Longrightarrow \mathbb{P}\left(\bigcap_{t=0}^{T-1} \mathcal{E}_t\right) \ge 1 - \delta$$

Wireless resource allocation

Allocate the least transmit power to m device pairs to achieve a communication rate

Wireless resource allocation

$$\begin{split} & \underset{\pi \in \mathcal{P}(\mathcal{S})}{\text{maximize}} & & \mathbb{E}_{h,p \sim \pi(h)} \left[\frac{1}{T} \sum_{t=0}^{T-1} - \sum_{i=1}^{m} p_{i,t} \right] \\ & \text{s. to} & & \mathbb{E}_{h,p \sim \pi(h)} \left[\frac{1}{T} \sum_{t=0}^{T-1} \mathsf{Rate}_i(p_t, h_t) \right] \geq c_i \end{split}$$

Wireless resource allocation

•

Constrained RL

$$\begin{split} & \underset{\pi \in \mathcal{P}(S)}{\text{maximize}} & V_0(\pi) \triangleq \mathbb{E}_{s,a \sim \pi} \left[\frac{1}{T} \sum_{t=0}^{T-1} \gamma^t r_0(s_t, a_t) \right] \\ & \text{subject to} & V_i(\pi) \triangleq \mathbb{E}_{s,a \sim \pi} \left[\frac{1}{T} \sum_{t=0}^{T-1} \gamma^t r_i(s_t, a_t) \right] \geq c_i, \quad i = 1, \dots, m \end{split}$$

- $\mathsf{MDP} \colon \mathcal{S} \text{ (state space), } \mathcal{A} \text{ (action space), } p \text{ (transition kernel), } r_i \colon \mathcal{S} \times \mathcal{A} \to [0,B] \text{ (reward)}$

$RL \subsetneq CRL$

Proposition

There exist environments in which every task cannot be unambiguously described by a reward

There are tasks that CRL can tackle and RL cannot

$RL \subsetneq CRL$

There exist en

(MDPs) (occupation measure) (induced by a unique π^* that maximizes a reward

· There are tasks that CRL can tackle and RL cannot

$$\underset{\pi \in \mathcal{P}(\mathcal{S})}{\text{maximize}} V(\pi) \quad \subsetneq \quad \begin{array}{l} \underset{\pi \in \mathcal{P}(\mathcal{S})}{\text{maximize}} \quad V_0(\pi) \\ \text{subject to} \quad V_i(\pi) \geq c_i \end{array}$$

Monitoring task

Find a policy that maximizes the time in R_0 while monitoring R_1 and R_2 at least 1/3 of the time each

Monitoring task

Problem Find a policy that maximizes the time in R_0 while monitoring R_1 and R_2 at least 1/3 of the time each

Monitoring task

Problem Find a policy that maximizes the time in R_0 while monitoring R_1 and R_2 at least 1/3 of the time each

Monitoring task

Find a policy that maximizes the time in R_0 while monitoring R_1 and R_2 at least 1/3 of the time each

 $r(R_0) > r(R_1), r(R_2)$ π^{\dagger} s.t. $\mathbb{P}\left[s \in R_{0}\right] = 1/2$

ana, Paternain, Chamon, Ribeiro, IEEE TAC'24]

Monitoring task

Find a policy that maximizes the time in R_0 while monitoring R_1 and R_2 at least 1/3 of the time each

- $r(R_1) > r(R_0), r(R_2)$ π^{\dagger} s.t. $\mathbb{P}\left[s \in R_{1}\right] = 1$
- $r(R_2) > r(R_0), r(R_1)$ π^{\dagger} s.t. $\mathbb{P}\left[s \in R_2\right] = 1$

Monitoring task

Find a policy that maximizes the time in R_0 while monitoring R_1 and R_2 at least 1/3 of the time each

- $r(R_0) = r(R_1) = r(R_2)$ all $\pi \in \mathcal{P}(\mathcal{S})$ are optimal

Monitoring task

Find a policy that maximizes the time in R_0 while monitoring R_1 and R_2 at least 1/3 of the time each

$RL \subsetneq CRL$

Proposition

which every task cannot be unambique There exist er (MDPs) (occupation measure) (induced by a unique π^* that maximizes a reward)

· There are tasks that CRL can tackle and RL cannot

 $\underset{\pi \in \mathcal{P}(\mathcal{S})}{\text{maximize}} \quad V_0(\pi)$

subject to $V_i(\pi) \ge c_i$

⇒ Regularized RL cannot solve all CRL problems

$RL \subsetneq CRL$

Proposition There exist e

which every task cannot be unambigue (MDPs) (occupation measure) (induced by a unique π^* that maximizes a reward)

· There are tasks that CRL can tackle and RL cannot

 $\underset{\pi \in \mathcal{P}(\mathcal{S})}{\text{maximize}} \quad V_0(\pi)$

subject to $V_i(\pi) \ge c_i$

⇒ Regularized RL cannot solve all CRL problems

· How can we tackle CRL problems?

CRL methods

- - Manual, time-consuming, domain-dependent
 - 3 Trade-offs, training plateaux
- - Requires set of safe actions or safe policies
 - Intractable projections
- Linearization and convex surrogates
 - No approximation guarantee
 - Approximate problem may be infeasible

CRL methods

subject to
$$\mathbb{E}_{s,a \sim \pi} \left[\frac{1}{T} \sum_{t=0}^{T-1} \gamma^t r_i(s_t, a_t) \right] \ge c_i \cdot \mathbb{E}_{\mathbb{E}}$$

- Domain independent

Agenda

CMDP duality

CMDP duality

- Domain independent

 No hyperparameters tuning

CMDP duality

If there exists $\pi^{\dagger} \in \mathcal{P}(\mathcal{S})$ such that $V_i(\pi^{\dagger}) > c_i$ for all $i = 1, \dots, m$, then $D^{\star} = P^{\star}$ (strong duality).

There is some sort of hidden convexity in CRL \Rightarrow Occupation measurements of the convexity of the convexity

Occupation measure

$$\rho_{\pi}(s, a) = \frac{1 - \gamma}{1 - \gamma^{T}} \sum_{t=0}^{T-1} \gamma^{t} \mathbb{P}_{s, a \sim \pi} \left(s_{t} = s, a_{t} = a \right) \longleftrightarrow \pi(a|s) = \frac{\rho_{\pi}(s, a)}{\int_{A} \rho_{\pi}(s, a) da}$$

$$\mathbb{E}_{s,a \sim \pi} \left[\sum_{t=0}^{T-1} \gamma^t r_i(s_t, a_t) \right] = V_i(\pi) \propto V(\rho_{\pi}) = \mathbb{E}_{(s,a) \sim \rho_{\pi}} \left[r_i(s, a) \right]$$

$$= \int_{S \vee A} r_i(s, a) \rho_{\pi}(s, a) ds ds$$

 \Rightarrow The value functions $V_i(
ho_\pi)$ are linear with respect to the occupation measure ho_i

A non-proof of strong duality

· CRL is non-convex in policy space, but linear in occupation measure space

A non-proof of strong duality

- · CRL is non-convex in policy space, but linear in occupation measure space
- CRL in occupation measure space has no duality gap (LP)

$$P_{\rho}^{\star} = D_{\rho}^{\star} = \min_{\lambda \geq 0} \max_{\rho \in \mathcal{R}} V_0(\rho) + \lambda (V_1(\rho) - c)$$

A non-proof of strong duality

- CRL is non-convex in policy space, but linear in occupation measure space

$$P_{\rho}^{\star} = D_{\rho}^{\star} = \min_{\lambda \geq 0} \max_{\rho \in \mathcal{R}} V_0(\rho) + \lambda (V_1(\rho) - c)$$

A non-proof of strong duality

 Epigraph of CRL in occupation measure is convex $C_{\rho} = \left\{ \left[V_0(\rho); V_1(\rho) \right] \text{ for some } \rho \in \mathcal{R} \right\}$

A non-proof of strong duality

- $C_{\rho} = \left\{ \left[V_0(\rho); V_1(\rho) \right] \text{ for some } \rho \in \mathcal{R} \right\}$

A non-proof of strong duality

Epigraphs are "convex" in different ways

Epigraphs are "convex" in different ways

Epigraphs are "convex" in different ways

Strong duality in practice

Strong duality in practice

- But in practice, policies are parameterized (π_{θ})

Duality gap of parametrized CRL

$$\min_{\theta \in \Theta} \max_{s \in \mathcal{S}} \int_{A} \left| \pi(a|s) - \pi_{\theta}(a|s) \right| da \leq \nu, \text{ for all } \pi \in \mathcal{P}(\mathcal{S}).$$

Then.

$$|P^{\star} - D_{\theta}^{\star}| = \Delta \le \frac{1 + ||\lambda_{\nu}^{\star}||_{1}}{1 - \gamma} B\nu$$

Duality gap of parametrized CRL

Theorem Let π_{θ} be ν -universal, i.e.,

$$\min_{\theta \in \Theta} \ \max_{s \in \mathcal{S}} \ \int_{\mathcal{A}} \Big| \pi(a|s) - \pi_{\theta}(a|s) \Big| da \leq \nu, \ \text{for all } \pi \in \mathcal{P}(\mathcal{S}).$$

Then.

$$|P^* - D_\theta^*| = \Delta \le \frac{1 + ||\lambda_\nu^*||_1}{1 - \gamma} B\nu$$

Sources of error

parametrization richness (ν)

Duality gap of parametrized CRL

 $\begin{array}{l} \text{Theorem} \\ \text{Let } \pi_{\theta} \text{ be } \nu\text{-universal, i.e.,} \end{array}$

$$\min_{\theta \in \Theta} \ \max_{s \in \mathcal{S}} \ \int_{\mathcal{A}} \big| \pi(a|s) - \pi_{\theta}(a|s) \big| da \leq \nu, \ \text{for all } \pi \in \mathcal{P}(\mathcal{S}).$$

$$|P^* - D_{\theta}^*| = \Delta \le \frac{1 + ||\lambda_{\nu}^*||_1}{1 - \gamma} B\nu$$

Sources of error

parametrization richness (ν)

Duality gap of parametrized CRL

Theorem Let π_{θ} be ν -universal, i.e.,

$$\min_{\theta \in \Theta} \ \max_{s \in \mathcal{S}} \ \int_{A} \big| \pi(a|s) - \pi_{\theta}(a|s) \big| da \leq \nu, \ \text{for all } \pi \in \mathcal{P}(\mathcal{S}).$$

Then.

$$\left|P^{\star} - D_{\theta}^{\star}\right| = \Delta \le \frac{1 + \left\|\boldsymbol{\lambda}_{\nu}^{\star}\right\|_{1}}{1 - \gamma} B\nu$$

Sources of error

parametrization richness (ν)

requirements difficulty (λ_{ν}^{\star})

horizon (γ)

Agenda

CRL algorithms

Primal-dual algorithm

$$D_{\theta}^{\star} = \min_{\lambda \succeq 0} \max_{\theta \in \Theta} \mathbb{E}_{s,a \sim \pi_{\theta}} \left[\frac{1}{T} \sum_{t=0}^{T-1} \gamma^{t} r_{0}(s_{t}, a_{t}) \right] + \lambda \left(\mathbb{E}_{s,a \sim \pi_{\theta}} \left[\frac{1}{T} \sum_{t=0}^{T-1} \gamma^{t} r_{1}(s_{t}, a_{t}) \right] - c_{1} \right)$$

Primal-dual algorithm

$$D_{\theta}^{\star} = \min_{\lambda \geq 0} \max_{\theta \in \Theta} \mathbb{E}_{s,a \sim \pi_{\theta}} \left[\frac{1}{T} \sum_{t=0}^{T-1} \gamma^{t} r_{0}(s_{t}, a_{t}) \right] + \lambda \left(\mathbb{E}_{s,a \sim \pi_{\theta}} \left[\frac{1}{T} \sum_{t=0}^{T-1} \gamma^{t} r_{1}(s_{t}, a_{t}) \right] - c_{1} \right)$$

Maximize the primal (≡ vanilla RL)

$$\begin{aligned} \boldsymbol{\theta}^{\dagger} \in \underset{\boldsymbol{\theta} \in \Theta}{\operatorname{argmax}} \ \mathbb{E}_{s, a \sim \pi_{\boldsymbol{\theta}}} \left[\frac{1}{T} \sum_{t=0}^{T-1} \gamma^{t} r_{\lambda_{k}}(s_{t}, a_{t}) \right] \\ r_{\lambda_{k}}(s, a) = r_{0}(s, a) + \lambda_{k} r_{1}(s, a) \end{aligned}$$

Primal-dual algorithm

$$D_{\theta}^{+} = \min_{\lambda \succeq 0} \max_{\theta \in \Theta} \mathbb{E}_{s,a \sim \pi_{\theta}} \left[\frac{1}{T} \sum_{t=0}^{T-1} \gamma^{t} r_{0}(s_{t}, a_{t}) \right] + \lambda \left(\mathbb{E}_{s,a \sim \pi_{\theta}} \left[\frac{1}{T} \sum_{t=0}^{T-1} \gamma^{t} r_{1}(s_{t}, a_{t}) \right] - c_{1} \right)$$

Maximize the primal (≡ vanilla RL)

$$\boldsymbol{\theta}^{\dagger} \in \underset{\boldsymbol{\theta} \in \Theta}{\operatorname{argmax}} \ \mathbb{E}_{s, a \sim \pi_{\boldsymbol{\theta}}} \left[\frac{1}{T} \sum_{t=0}^{T-1} \gamma^{t} r_{\lambda_{k}}(s_{t}, a_{t}) \right]$$

 $r_{\lambda_k}(s,a) = r_0(s,a) + \lambda_k r_1(s,a)$

Update the dual (≡ policy evaluation)

$$\lambda_{k+1} = \left[\lambda_k - \eta \left(\mathbb{E}_{s,a \sim \pi_{\boldsymbol{\theta}^{\dagger}}} \left[\frac{1}{T} \sum_{t=0}^{T-1} \gamma^t r_1(s_t,a_t)\right] - c_1\right)\right]_+$$

In practice...

$$D_{\theta}^{\star} = \min_{\lambda \succeq 0} \ \max_{\theta \in \Theta} \ \mathbb{E}_{s,a \sim \pi_{\theta}} \left[\frac{1}{T} \sum_{t=0}^{T-1} \gamma^{t} r_{0}(s_{t}, a_{t}) \right] + \lambda \left(\mathbb{E}_{s,a \sim \pi_{\theta}} \left[\frac{1}{T} \sum_{t=0}^{T-1} \gamma^{t} r_{1}(s_{t}, a_{t}) \right] - c_{1} \right)$$

• Maximize the primal (\equiv vanilla RL): $\{s_t, a_t\} \sim \pi_{\theta_k}$

$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k + \eta \left[\frac{1}{T} \sum_{t=0}^{T-1} \gamma^t r_{\lambda_k}(s_t, a_t) \right] \nabla_{\boldsymbol{\theta}} \log \left(\pi_{\boldsymbol{\theta}}(a_0 | s_0) \right)$$

• Update the dual (\equiv policy evaluation): $\{s_t, a_t\} \sim \pi_{\theta_k}$

$$\lambda_{k+1} = \left[\lambda_k - \eta \left(\frac{1}{T} \sum_{t=0}^{T-1} \gamma^t r_1(s_t, a_t) - c_1\right)\right]_+$$

Dual CRL

Theorem

Suppose θ^{\dagger} is a ρ -approximate solution of the regularized RL problem:

$$\boldsymbol{\theta}^{\dagger} \approx \underset{\boldsymbol{\theta} \in \Theta}{\operatorname{argmax}} \ \mathbb{E}_{s,a \sim \pi_{\boldsymbol{\theta}}} \left[\frac{1}{T} \sum_{t=0}^{T-1} \gamma^t r_{\lambda}(s_t, a_t) \right].$$

Then, after $K = \left\lceil \frac{\|\lambda^*\|^2}{2\eta \nu} \right\rceil + 1$ dual iterations with step size $\eta \leq \frac{1-\gamma}{mB}$,

the iterates $oldsymbol{eta}_K,oldsymbol{\lambda}_Kig)$ are such that

$$\left|P^{\star} - L\left(\boldsymbol{\theta}_{K}, \boldsymbol{\lambda}_{K}\right)\right| \leq \frac{1 + \left\|\boldsymbol{\lambda}_{\nu}^{\star}\right\|_{1}}{1 - \gamma} B\nu + \frac{\rho}{\rho}$$

[Paternain, Chamon, Calvo-Fullana, and Ribeiro, NeurlPS'19; Calvo-Fullana, Paternain, Chamon, and Ribeiro, IEEE TAC'24]

Dual CRL

Theorem

$$\left|P^{\star} - L\left(\theta_{K}, \lambda_{K}\right)\right| \leq \frac{1 + \|\lambda_{\nu}^{\star}\|_{1}}{1 - \alpha} B\nu + \rho$$

Theorem

The state-action sequence $\left\{s_t,a_t\sim\pi^\dagger(\lambda_k)
ight\}$ generated by dual CRL is (
ho=
u=0)

almost surely feasible:
$$\lim_{T\to\infty}\frac{1}{T}\sum_{t=0}^{T-1}r_i(s_t,a_t)\geq c_i \ \text{ a.s.,} \quad \text{for all } i\in \mathbb{R}$$

ii) near-optimal:
$$\lim_{T\to\infty}\mathbb{E}\left[\frac{1}{T}\sum_{t=0}^{T-1}r_0(s_t,a_t)\right]\geq P^\star-\frac{\eta B}{2}$$

i.e., is a solution of the CRL problem (in fact, it is stronger: constraints are satisfied a.s.

[Paternain, Chamon, Calvo-Fullana, and Ribeiro, NeurlPS'19; Calvo-Fullana, Paternain, Chamon, and Ribeiro, IEEE TAC'2

Safe navigation

Problem

Find a control policy that navigates the environment effectively and safely

Paternain, Calvo-Fullana, Chamon, Ribeiro, IEEE TAC'23

Safe navigation

Problem

Find a control policy that navigates the environment effectively and safely

[Paternain, Calvo-Fullana, Chamon, Ribeiro, IEEE TAC'23]

Safe navigation

28

Wireless resource allocation

Problem

Allocate the least transmit power to \boldsymbol{m} device pairs to achieve a communication rate

The dual variables oscillate ⇒ the policy switch ⇒ constraint slacks to oscillate (feasible on average)

Monitoring task

Problem

Find a policy that maximizes the time in R_0 while monitoring R_1 and R_2 at least 1/3 of the time each

 $\bullet \ \ \, \text{The dual variables oscillate} \Rightarrow \text{the policy switch} \Rightarrow \text{constraint slacks to oscillate} \, \, (\text{feasible } \textit{on average})$

[Calvo-Fullana, Paternain, Chamon, and Ribeiro, IEEE TAC'24

What dual CRL cannot do

Theorem

$$P^* - L\left(\boldsymbol{\theta}_K, \lambda_T\right) \le \frac{1 + \|\boldsymbol{\lambda}_{\nu}^*\|_1}{1 - \gamma} B\nu + \boldsymbol{\rho}$$

Theorem

The state-action sequence $\left\{s_t,a_t\sim\pi^\dagger(\lambda_k)\right\}$ generated by dual CRL is (
ho=
u=0)

(i) almost surely feasible:
$$\lim_{T\to\infty}\frac{1}{T}\sum_{t=0}^{T-1}r_i(s_t,a_t)\geq c_i \ \text{ a.s.,}\quad \text{for all } i\in \mathbb{R}$$

) near-optimal:
$$\lim_{T\to\infty}\mathbb{E}\left[\frac{1}{T}\sum_{t=a}^{T-1}r_0(s_t,a_t)\right]\geq P^\star-\frac{\eta E}{2}$$

i.e., is a solution of the CRL problem

 \Rightarrow Cannot effectively obtain an optimal policy π^{\star} from the sequence of Lagrangian maximizers $\pi^{\dagger}(\lambda_k)$

(Potorpaia Champa Calva Fullana and Pihaira Neuri PC'40: Calva Fullana Paternaia Champa and Pihaira IEEE TAC'2

Primal recovery

- · General issue with duality
 - $\qquad \qquad \bullet \quad \text{(Primal-)dual methods: } \frac{1}{K} \sum_{k=0}^{K-1} f(\boldsymbol{\theta}_k) \to f(\boldsymbol{\theta}^\star), \text{but } \frac{f(\boldsymbol{\theta}_k)}{\neq} \frac{}{f(\boldsymbol{\theta}^\star)}$
- Convex optimization ⇒ dual averaging

$$\bullet \quad f\left(\frac{1}{K}\sum_{k=0}^{K-1}\theta_k\right) \leq \frac{1}{K}\sum_{k=0}^{K-1}f(\theta_k) \text{ for all } K \text{ (convexity)} \Rightarrow \frac{1}{K}\sum_{k=1}^{K}\theta_k \to \theta^\star$$

- $\qquad \qquad \textbf{8} \ \, \text{Non-convex optimization} \Rightarrow \text{randomization} \\$
 - $\bullet \quad \theta^{\dagger} \sim \mathsf{Uniform}(\theta_k) \Rightarrow \mathbb{E}\left[f(\theta^{\dagger})\right] = \frac{1}{K} \sum_{k=1}^{K} f(\theta_k) \rightarrow f(\theta^{\star})$

(requires memorizing the whole training sequence)

What we CANNOT do

 $oldsymbol{\otimes}$ We do not know how to find an optimal policy π^{\star} in the policy space

$$\begin{split} \pi^{\star} \in \underset{s \in \mathcal{P}(\mathcal{S})}{\operatorname{argmax}} & & \lim_{T \to \infty} \mathbb{E}_{s, a \sim \pi} \left[\frac{1}{T} \sum_{t=0}^{T-1} r_0(s_t, a_t) \right] \\ & \text{subject to} & & \lim_{T \to \infty} \mathbb{E}_{s, a \sim \pi} \left[\frac{1}{T} \sum_{t=0}^{T-1} r_1(s_t, a_t) \right] \geq c_1 \end{split}$$

[Calvo-Fullana, Paternain, Chamon, Ribeiro, IEEE TAC'23]

What we CAN do

igotimes Find Lagrangian maximizing policies $\pi^\dagger(\lambda_k)\Rightarrow$ unconstrained RL problem with reward $r_{\lambda_k}(s,a)$

$$\pi^{\dagger}(\lambda_k) \in \operatorname*{argmax}_{\pi \in \mathcal{P}(\mathcal{S})} \ \lim_{T \to \infty} \mathbb{E}_{s,a \sim \pi} \left[\frac{1}{T} \sum_{t=0}^{T-1} r_{\lambda_k}(s_t, a_t) \right]$$

Calvo-Fullana, Paternain, Chamon, Ribeiro, IEEE TAC'23

What we CAN do

- Find Lagrangian maximizing policies $\pi^{\dagger}(\lambda_{r}) \Rightarrow \text{unconstrained RL problem with reward } r_{r} \neq 0$
- \bigcirc Update λ_k to generate a sequence of $\pi^{\dagger}(\lambda_k)$ that are "samples" from π^{\star}

$$\lambda_{k+1} = \left[\lambda_k - \eta \left(\mathbb{E}_{s, a \sim \pi^{\dagger}(\lambda_k)} \left[\frac{1}{T} \sum_{t=0}^{T-1} r_1(s_t, a_t) \right] - c_1 \right) \right]$$

[Calvo-Fullana, Paternain, Chamon, Ribeiro, IEEE TAC'23

State-augmented CRL

- $\red{ \begin{tabular}{l} \hline \bullet Find Lagrangian maximizing policies $\pi^\dagger(\lambda_k)$ \Rightarrow unconstrained RL problem with reward $r_{\lambda_k}(s,a)$ } \\ \hline { \begin{tabular}{l} \hline \bullet } \hline \bullet in Lagrangian maximizing policies $\pi^\dagger(\lambda_k)$ \Rightarrow unconstrained RL problem with reward $r_{\lambda_k}(s,a)$ } \\ \hline { \begin{tabular}{l} \hline \bullet } \hline \bullet in Lagrangian maximizing policies $\pi^\dagger(\lambda_k)$ \Rightarrow unconstrained RL problem with reward $r_{\lambda_k}(s,a)$ } \\ \hline { \begin{tabular}{l} \hline \bullet in Lagrangian maximizing policies $\pi^\dagger(\lambda_k)$ \Rightarrow unconstrained RL problem with reward $r_{\lambda_k}(s,a)$ } \\ \hline { \begin{tabular}{l} \hline \bullet in Lagrangian maximizing policies $\pi^\dagger(\lambda_k)$ \Rightarrow unconstrained RL problem with reward $r_{\lambda_k}(s,a)$ } \\ \hline { \begin{tabular}{l} \hline \bullet in Lagrangian maximizing policies $\pi^\dagger(\lambda_k)$ \Rightarrow unconstrained RL problem with reward $r_{\lambda_k}(s,a)$ } \\ \hline { \begin{tabular}{l} \hline \bullet in Lagrangian maximizing policies $\pi^\dagger(\lambda_k)$ \Rightarrow unconstrained RL problem with reward $r_{\lambda_k}(s,a)$ } \\ \hline { \begin{tabular}{l} \hline \bullet in Lagrangian maximizing policies $\pi^\dagger(\lambda_k)$ \Rightarrow unconstrained RL problem with reward $r_{\lambda_k}(s,a)$ } \\ \hline { \begin{tabular}{l} \hline \bullet in Lagrangian maximizing policies $\pi^\dagger(\lambda_k)$ \Rightarrow unconstrained RL problem with reward $r_{\lambda_k}(s,a)$ } \\ \hline { \begin{tabular}{l} \hline \bullet in Lagrangian maximizing policies $\pi^\dagger(\lambda_k)$ \Rightarrow unconstrained RL problem with reward $r_{\lambda_k}(s,a)$ } \\ \hline { \begin{tabular}{l} \hline \bullet in Lagrangian maximizing policies $\pi^\dagger(\lambda_k)$ \Rightarrow unconstrained RL problem with reward $r_{\lambda_k}(s,a)$ } \\ \hline { \begin{tabular}{l} \hline \bullet in Lagrangian maximizing policies $\pi^\dagger(\lambda_k)$ \Rightarrow unconstrained RL problem with reward $r_{\lambda_k}(s,a)$ } \\ \hline { \begin{tabular}{l} \hline \bullet in Lagrangian maximizing policies $\pi^\dagger(\lambda_k)$ \Rightarrow unconstrained RL problem with reward $r_{\lambda_k}(s,a)$ } \\ \hline { \begin{tabular}{l} \hline \bullet in Lagrangian maximizing policies $\pi^\dagger(\lambda_k)$ \Rightarrow unconstrained RL problem with reward $r_{\lambda_k}(s,a)$ } \\ \hline { \begin{tabular}{l} \hline \bullet in Lagrangian maximizing policies $\pi^\dagger(\lambda_k)$ \Rightarrow unconstrained RL problem with reward $r_{\lambda_k}(s,a)$ } \\ \hline { \begin{tab$
- lackloss Update λ_k to generate a sequence of $\pi^\dagger(\lambda_k)$ that are "samples" from π^\star
 - \Rightarrow equivalent to an MDP with (augmented) states $\bar{s}=(s,\lambda)$

State-augmented CRL

- igotimes Find Lagrangian maximizing policies $\pi^\dagger(\lambda_k) \Rightarrow$ unconstrained RL problem with reward $r_{\lambda_k}(s,a)$
- lacktriangle Update λ_k to generate a sequence of $\pi^\dagger(\lambda_k)$ that are "samples" from π^\star
 - \Rightarrow equivalent to an MDP with (augmented) states $\tilde{s}=(s,\lambda)$ and (augmented) transition kernel that includes the dual variables updates

State-augmented CRL in practice

State-augmented CRL in practice

State-augmented CRL in practice

• During training: Learn a family of policies $\pi^\dagger_{\theta}(s,\lambda)$ that maximizes the Lagrangian for all (fixed) λ

State-augmented CRL in practice

• During training: Learn a family of policies $\pi_{\theta}^{\dagger}(s,\lambda)$ that maximizes the Lagrangian for all (fixed) λ

$$\pi_{\theta}^{\dagger}(\lambda) \in \operatorname*{argmax}_{\theta \in \Theta} \ \mathbb{E}_{\lambda \sim \mathfrak{m}} \left[\lim_{T \to \infty} \mathbb{E}_{s, a \sim \pi} \left[\frac{1}{T} \sum_{t=0}^{T-1} r_{\lambda}(s_{t}, a_{t}) \right] \right]$$

Monitoring task

Fullana, Paternain, Chamon, Ribeiro, IEEE TAC'23]

State-augmented CRL in practice

$$\lambda_{k+1} = \left[\lambda_k - \frac{\eta}{T_0} \sum_{t=1:T_0}^{(k+1)T_0 - 1} \left(r_1(s_t, a_t) - c_1 \right) \right]$$

Monitoring task

Solving CRL

- A-CRL solves (P-CRL) by generating state-action sequences $\{(s_t, a_t)\}$ that are (i) almost surely feasible and (ii) $O(\eta)$ -optimal [Calvo-Fullana, Paternain, Chamon, Ribeiro, IEEE

Solving CRL

- A-CRL solves (P-CRL) by generating state-action sequences $\{(s_t, a_t)\}$ that are (i) almost surely feasible and (ii) $O(\eta)$ -optimal <code>[Calvo-Fullana, Paternain, Chamon, Ribeiro, IEEE</code>
- But A-CRL does not find a feasible and $\mathcal{O}(\eta)$ -optimal policy π^{\star}
 - ⇒ It finds a policy π¹_θ on an augmented MDP (s, λ) that generates the same trajectories as dual CRL on the original MDP (s)

Monitoring task

Wireless resource allocation

Summary

- Constrained RL is the a tool for decision making under requirement
- · Constrained RL is hard...
- ...but possible. How?

Summary

Constrained RL is the a tool for decision making under requirements CRL is a natural way of specifying complex behaviors that cannot be handled by unconstrained RL \Rightarrow (P-RL) \subsetneq (P-CRL)

- Constrained RL is hard...
- · ...but possible. How?

Summary

Constrained RL is the a tool for decision making under requirements CRL is a natural way of specifying complex behaviors that cannot be handled by unconstrained RL \Rightarrow (P-RL) \subsetneq (P-CRL)

Constrained RL is hard...

CRL is strongly dual (despite non-convexity), but that is not always enough to obtain feasible solutions

· ...but possible. How?

Summary

Constrained RL is the a tool for decision making under requirements CRL is a natural way of specifying complex behaviors that cannot be handled by unconstrained RL \Rightarrow (P-RL) \subsetneq (P-CRL) e.g., safety [Paternain et al., IEEE TAC23], Wireless resource allocation [Eisen et al., IEEE TSP19; Chowdhury et al., Asilomari.

CRL is strongly dual (despite non-convexity), but that is not always enough to obtain feasible solutions ⇒ primal-dual methods

...but possible. How?

When combined with a *systematic state augmentation* technique, we can use policies that solve (P-RL) to solve (P-CRL)

Agenda

- I. Constrained supervised learning
 - Constrained learning theory
 - Constrained learning algorithms
 - Resilient constrained learning

Break (10 min)

- II. Constrained reinforcement learning
 - Constrained RL duality
 - Constrained RL algorithms

Q&A and discussions

