Cloning Scheme for Generating pCMV-NS35

FIG. 2

H.		CGGTGATGAC	GGTGAAAACC CCACTTTTGG	TCTGACACAT AGACTGTGTA	ICGCGCGTIT CGGTGATGAC GGTGAAAAC TCTGACACAT GCACTCCCG GAGACGGTGA CACGTTGTCT GTAAGCGGAT AGCGCGCAAA GCCACTACTG CCACTITTGG AGACTGTGTA CGTCGAGGGC CTCTGCCAGT GTCGAAGAG CATTCGCCTA	GAGACGGTCA CTCTGCCAGT	CAGCTTGTCT GTCGAACAGA	GTAAGCGGAT CATTCGCCTA
8 - "	GCCGCGAGCA	GACAAGCCCG	TCAGGGCGCG	TCAGCGGGTG	GEGEGEACEA GACAAGCOCG TCAGGEGGGG TCAGGEGGGGG TTGGCGGGGGG TCGGGGCTGG CTTAACTATG CGGGATCAGA GGGCCTTGGT CTGTTGGGGC AGTCCGGGG AGTGGCCCAC AGCGGCGAC AGCGCGGACG GAATTGATAC GCGGTAGTCT	TCGGGGCTGG	CTTAACTATG GAATTGATAC	CGCCATCAGA GCCGTAGTCT
191	GCAGATTGTA	GCAGATTGTA: CTGAGAGTGC CGTCTAACAT GACTCTCACG	ACCATATGAA TGGTATACTT	GCTTTTTGCA	Stul GGAGATIGIA CIGAGAGIGC ACCAIAIGAA GCITITIGCA AAAGCCIAGG CCICGAAAA AGCCICCICA CIACTICIGG CGICTAACAI GACICICAGG IGGIAIACII CGAAAAACGI ITICGGAICC GGAGGITIII ICGGAGGAGI GAIGAAGACC	II CCTCCAAAAA GGAGGTTTTT	AGCCTCCTCA	CTACTTCTGG GATGAAGACC
241	AATAGCTCAG TTATCGAGTC	AGGCCGAGGC TCCGGCTCCG	GGCCTCGGCC	TCTGCATAAA AGACGTATTT	AATAGCTCAG AGGCCAGGC GGCCTCGGC TCTGCATAAA TAAAAAAAT TAGTCAGCCA TGGGGGGGAG AATGGGGGGA TTATCGAGTC TCGGGCTCCG CGGGGCGGG AGAGGTATTT ATTTTTTTA ATCAGTGGT ACCGGGCTC TTACCGGCT	TAGTCAGCCA	TGGGGGGGAG ACCCCGCCTC	AATGGGCGGA TTACCCGCCT
321	ACTGGGCGGG TGACCGGCC	GAGGGAATTA	TTGGCTATTG	GCCATTGCAT	ACTIGGICGIO GAGGGANTIA ITGOCTATIG GCCATIGGAI ACGITICIAIC IATATGATAA IATGIACATI TATATIGGCI TGACCIGGICC CICCCTIAAT AACGGATAAC GGGTAACGTA TGCAACATAG ATATAGTATI ATACATGTAA ATATAACGCA	TATATCATAA	TATGTACATT ATACATGTAA	TATATTGGCT ATATAACCGA
401	CATGTCCAAT GTACAGGTTA	ATGACCGCCA	TGTTGACATT ACAACTGTAA	GATTATTGAC	CATGICCAAT ATGACGGCG TGTIGACATT GATTATIGAC TACITAITAA TACTAATCAA ITAGGGGGTC AITAGTICAT GTACAGGTTA TACTGGCGGT ACAACTGTAA CTAATAACTG ATCAATAATT ATCATTAGTT AATGCCCCAG TAATCAAGTA	TAGTAATCAA	TTACGGGGTC	ATTAGTTCAT
481	AGCCCATATA TCGGGTATAT	TGGAGTTCCG	CGTTACATAA GCAATGTATT	CTTACGGTAA GAATGCCATT	AGCCCATATA TGGAGTICCG CGTIACATAA CTIACGGTAA ATGGCCCGCC TGGCTGACCG CCCAACGAC CCCGCGGTATT TCGGGTATAT ACCTCAAGGC GCAATGTATT GAATGCCAIT TACGGGGGG ACCGACTGGC GGGTTGGTGG GGGGGGGTAA	TGGCTGACCG	CCCAACGACC	CCCGCCCATT
561	GACGTCAATA CTGCAGTTAT	ATGACGTATG	TTCCCATAGT AAGGGTATCA	AACGCCAATA TTGCGGTTAT	GGGACTTTCC	ATTGACGTCA TAACTGCAGT	ATGGGTGGAG TACCCACCTC	TATTTACGGT ATAAATGCCA
641	AAACTGCCCA TTTGACGGGT	CTTGGCAGTA	CATCAAGTGT GTAGTTCACA	ATCATATGCC TAGTATACGG	AAACTGCCCA CITGGCAGTA CATCAAGTGT ATCATATGCC AAGTCCGCCC CCTATTGACG TCAATGACGG TAAATGGCCC TITGACGGGT GAACCGTCAT GTAGTTCACA TAGTATACGG TTCAGGCGGG GGATAACTGC AGTTACTGCC ATTTACCGGG	CCTATTGACG	TCAATGACGG AGTTACTGCC	TAAATGGCCC ATTTACCGGG

FIG. 3-Page 1

DCMV-NS35

721	GCCTGGCATT	GCCTGGCATT ATGCCCAGTA	CATGACCTTA GTACTGGAAT	pCMV-NS35 CGGGACTITC CIACTIGGCA GCCCTGAAAG GATGAACCGT		GTACATCTAC GTATTAGTCA TCGCTATTAC CATGTAGATG CATAATCAGT AGCGATAATG	GTATTAGTCA CATAATCAGT	TCGCTATTAC AGCGATAATG
801	CATGGTGATG	CGGTTTTGGC GCCAAAACCG	GATGGTGATG CEGITITGGC ACTACACCAA TGGCCGTGGA TACCGCGTTTG ACTCACCGGC ATTTCCAAGT CTCCACCACGC GTACCACTAC GCCAAAACCG TCATGTGGTT ACCGCGACGT ATGGCCAAAAC TGAGTGCCCC TAAAGGTTCA GAGGTGGGGG	TGGGCGTGGA	TAGCGGTTTG	ACTCACGGGG TGAGTGCCCC	ATTTCCAAGT CTCCACCCA TAAAGGTTCA GAGGTGGGGT	CTCCACCCA
881	TTGACGTCAA	TGGGAGTTTG ACCCTCAAAC	TTGACCTCAA TGGGAGTTTG TTTTGGGACC AAAATGAAGG GGACTTTGGA AAATGTCGTA ATAACCCGG CCCCTTGACG AACTGGAGTT ACCTTGAAAC AAAACGGTGG TTTTAGTTGC CCTGAAAGGT TTTACAGGAT TATTGGGGCG GGGCAACTGC	AAAATCAACG TTTTAGTTGC	GGACTTTCCA	AAATGTCGTA TTTACAGCAT	ATAACCCCGC TATTGGGGCG	CCCGTTGACG
961	CAAATGGGCG	GTAGGCGTGT	CAANGGEGE STAGSCETCT ACGGIGGGAG GICIANATAA GCAGACTIG ITNAGIGAAC CGICAGAIGE CUTGGAGACG GITNACCGEC CAICGGCACA IGCGACCCIC CAGANAIAIN CGICICGAGC AANICACTIG GCAGICIAGC GGACTICIGC	GTCTATATAA CAGATATATT	GTCTATATAA GCAGAGGTCG TTTACTGAAC GGTCAGATCG CCTGGAGACG CAGATATAT GGTCTCGAGC AAATCACTTG GCAGTCTAGC GGACCTCTGC	TTTAGTGAAC AAATCACTTG	CGTCAGATCG GCAGTCTAGC	CCTGGAGACG
041	CCATCCACGC	TGTTTTGACC ACAAAACTGG	CCATCCACC TCTTTTGACC TCCATAGAAG ACACCGGGAC CGATCCAGCC TCCGCGGCCG GGAACGCTGC ATTGGAACGC GGTAGCTGCG ACAAAACTGG AGGTATCTTC TGTGGCCCTG GCTAGGTCGG AGGCGCGGC CCTTGCCACG TAACCTTGG	ACACCGGGAC TGTGGCCCTG	CGATCCAGCC GCTAGGTCGG	TCCGCGGCCG	GGAACGGTGC CCTTGCCACG	ATTGGAACGC TAACCTTGCG
121	GGATTCCCCG	GGAITCCCCG TGCCAAGAGT GAGGIAAGTA CCTAAGGGGG ACGCITCTCA CTGCATTCAI	GGATICCCCG TGCCAAGAGT GAGGTAAGTA CCGCCTATAG ACTCTATAGG CACACCCTT TGGCTCTTAT GCATGCTATA CCTAAGGGGC ACGCTTCTCA CTGCATTCAT GGCGGGATATC TGAGATATCC GTGTGGGGAA ACGGAGAATA GGTACGATAT	CCCCCTATAG	CCCCCTATAG ACTCTATAGG GCCCGATATC TGAGATATCC	CACACCCTT TGGCTCTTAT GCATGCTATA GTGTGGGAATA	TGGCTCTTAT ACCGAGAATA	GCATGCTATA CGTACGATAT
201	CTGTTTTGG	CTGTTTTGG CTTGGGGGCCT GACAAAAACC GAACCCGGA	CIGITITIGG CITGGGGCCT ATACACCCCC GCICCITAIG CIAIAGGTGA IGGIATAGGT TAGGCIATAG CIGIGGGIA GACAAAAACC GAACCCGGA TAIGIGGGGG GGAGGAATAC GATAICCACI ACCATAIGGA AIGGGATATC CACACCAAT	GCTCCTTATG CGAGGAATAC	CTATAGGTGA GATATCCACT	TGGTATAGCT TAGCCTATAG ACCATATCGA ATCGGATATC	TAGCCTATAG ATCGGATATC	GTGTGGGTTA
281	TTGACCATTA	TTGACCACTC	TTGACCATTA TTGACCACTC CCCTATTGCT GACGATACTT TCCATTACTA ATCCATAACA TGGCTCTTTG CCACAACTAT AACTGCTAAT AACTGGTGAG GGGATAACCA CTGCTATGAA AGGTAATGAT TAGGTATTGT ACCGGGAAAC GGTCTTGATA	GACGATACTT CTGCTATGAA	TCCATTACTA AGGTAATGAT	ATCCATAACA TAGGTATTGT	TGGCTCTTTG	CCACAACTAT GGTGTTGATA
361	CTCTATTGGC	CTCTATTGGC TATATGCCAA GAGATAACCG ATATACGGTT	CTCTATTGGC TATATGCGAA TACTCTGTCC TTCAGAGACT GACACGGACT CTGTATTTTT ACAGGATGGG CTCCATTAT GAGATAACCG ATATACGGTT ATGAGACAGG AAGTCTGTGA CTGTGCCTGA GACATAAAAA TGTCCTACCC CAGGTAAATA	TTCAGAGACT AAGTCTCTGA	GACACGGACT CTGTGCCTGA	CTGTATT: LTT GACATAAAAA	ACAGGATGGG TGTCCTACCC	GTCCATTTAT

FIG. 3-Page 2

1441	PCMV-NS35 TATTAGAAA TICAGATATA GAGAAGGG GTGCGCGGG GCGGAGTTT TTATTAAAGA TAGGGTGGGA ATAAATGTTT AAGTGTATAT GTTGTTGGGG GAGGGGGA GGGCGTGAAA AATAATTGT ATGGCACCCT	TTCACATATA AAGTGTATAT	CAACAACGCC GTTGTTGCGG	PCIMIN GTCCCCCGTG CAGGGGGCAC	PCIM V-NS35 CAACAGGG GTGCCCGTG CCGGAGTIT TTATTAAGA TAGGGTGGGA TCTCCGACAT GTTGTTGGGG CAGGGGGCAC GGGGTCAAA AATAATTTGT ATGGCACCCT AGAGGTGTA	TTATTAAACA AATAATTTGT	TAGCGTGGGA ATCGCACCCT	TCTCCGACAT AGAGGCTGTA
1521	CTCGGGTACG	TGTTCCGGAC ACAAGGCCTG	CTGGGCTAGG TGTTCGGAAC ATGGGCTCTT CTCCGGTAGC GGCGGAGCTT CCACATCCGA GCCCTGGTCC CATCGGTCG GAGCCCATGC ACAAGGCCTG TACCGGAGAA GAGGCCATCG CCGCCTCGAA GGTGTAGGCT CGGGACCAGG GTAGGCAGGT	CTCCGGTAGC GAGGCCATCG	GGGGAGCTT CCGCCTCGAA	CCACATCCGA GGTGTAGGCT	GCCTGGTCC	CATCCGTCCA
1601	GCGGCTCATG	GTCGCTCGGC	GCGGCTCATG GTGGCTCGGC AGCTCCTTGC TCCTAACACT GGAGGCGGG CTTAGGGAGA GCACAATGGC CACGACACC CGCGGGTAC CAGGGAGCG TCGAGGAACG AGGATTGTCA CCTCGGGTCT GAATCGCTGT CGTGTTACGG GTGGTGGTG	TCCTAACAGT AGGATTGTCA	GGAGGCCAGA CCTCCGGTCT	CTTAGGCACA GAATCCGTGT	GCACAATGCC	CACCACCACC GTGGTGGTGG
1681	AGTGTGCCGC TCACACGGCG	ACAAGGCCGT TGTTCCGGCA	AGTGTGCOSC ACAAGGCGT GGGGGTAGGG TATGTGTCTG AAAATGAGGT CGGAGATTGG GCTGGGACT GGAGGCAGAT TCACAGGGG TGTTCCGGCA CGGCGATCCC ATACACAGAC TTTTACTGGA GCCTCTAACC CGAGGGTGGA CCTGCGTCTA	TATGTGTCTG	AAAATGAGCT TTTTACTCGA	CGGAGATTGG GCCTCTAACC	GCTCGCACCT	GGACGCAGAT
1761	GGAAGACTTA CCTTCTGAAT	AGGCAGCGCC TCCGTCGCCG	GGAACACTTA AGGCAGCGCC AGAGGAGAT GCAGGCAGCT CACTTGTTGT ATTCTGATAA GAGTCAGAGG TAACTCCCGT CCTTCTGAAT TCCGTCGCCG TCTTCTTCTA CGTCCGTCGA CTCAACAACA TAAGACTATT CTCAGTCTCC ATTGAGGGGG	GCAGGCAGCT	GAGTTGTTGT CTCAACAACA	ATTCTGATAA TAAGACTATT	GAGTCAGAGG CTCAGTCTCC	TAACTCCGT
1841	TGCGGTGCTG ACGCCACGAC	TTAACGGTGG AATTGCCACC	TEGEGIGCIG TIAACGGIGG AGGGGAGIGI AGICTGAGGA GTACTGGTIG CTGCCGGGG GGCGGCGA CATAATAGCI AGGCCACGAC AATIGCCACC ICCCGICACA TCAGACICGI CATGAGCAAC GAGGGGGGG. GCGGGGGTCT GIATTATCGA	AGTCTGAGCA TCAGACTCGT	GTACTCGTTG	CTGCCGCGCG	CGCCACCAGA	CATAATAGCT GTATTATCGA
+2							EcoRI	M A A
1921	GACAGACTAA CTGTCTGATT	CAGACTGTTC GTCTGACAAG	GACAGACTAA CAGACTGITC CITICCATGG GICTITICIG CAGTCACCGI CGICGACCIA AGAAITCACC AIGGCIGCAI CIGICIGAIT GICIGACAAG GAAAGGIACC CAGAAAAGAC GICAGIGGCA GCAGCIGGAI ICITAAGIGG IACCGACGIA	GTCTTTTCTG CAGAAAAGAC	CAGTCACCGT GTCAGTGGCA	CGTCGACCTA	AGAATTCACC TCTTAAGTGG	ATGGCTGCAT TACCGACGTA
2001	+2 Y A A Q G Y K V L V L N P S V A T L G F G A Y M S K 11 ATGCAGCTCA GGGCTATAAG GTGCTAGTAC TCAACCCCTC TGTTGCTGCA ACACTGGGCT TTGGTGCTTA CATGTGCAAG TAGGTGGAGT CCGATATTC CACGATGTG AGTTGGGGAG ACAACGAGCGT TGTGACCCGA AACCAGGAT GTAGAGGTTC	G Y K GGGCTATAAG CCCGATATTC	V L V I GTGCTAGTAC CACGATCATG	TCAACCCTC AGTTGGGGAG	V A A TGTTGCTGCA ACAACGACGT	T L G F ACACTGGCCT TGTGACCCGA	TTGGTGCTTA	M S K CATGTCCAAG GTACAGGTTC

FIG. 3-Page 3

2. A H G I D P N I R I G V R I I I I G S P I I Y S I Y G	2081 GCTGATGGGA TCGATCCTAA GATGAGGACG GGGGGGGAAA GAATTACCAG TGGGGGCCC ATCACTACT CCACCTACG GAGTAGCCT AGCTAGGATT GTAGTCCTGG CCCCACTCTT GTTAATGGTG ACCTTGGGG TAGTGCATGA GGTGGATGCC
G S	TGGCAGCCCC ACCGTCGGGG
ITI	CAATTACCAC GTTAATGGTG
GVRT	GGGGTGAGAA
IRT	CATCAGGACC
N d O	CCTCATGGGA TCGATCCTAA C
A H G 1	GCTCATGGGA
+2	2081

ACGGATGCCA TGCCTACGGT Ω A D G C S G G A Y D I I I C D B C H S GCGGGGGGG GGGGGGTAT GACATAATAA TTTGGAGGG GTGCGACTC GGGGGGGTATA GACTAATATA AAAACTGCT GAGGTGAGG CAAGTICCTI STTCAAGGAA 2161 Sign.

A R L V V L A T A T GGGAGC CACCGCCACC GCCTCTGACC AACACGAGG GTGGGGGTGG T S I L G I G T V L D Q A E T A G CATCCATCTT GGGGATIGGC ACTGTCCTTG ACCAAGGAG GACTGGGGGGGTAGAA CCGTAACG TGACAGGAAC TGGTTCGTCT CTGACGCCC Д, 2241

P P G S V T V P H P N I E B V A L S T T G E I P F Y G CITCGGGGGT COTCACTOR CONTINUES COTCGGGGGT CONTINUES CAGGGGGGGGT COTTATAGGG CAGGGGTGC CAGGGGTG CTGTAAAATGG 2321

GACGAACTCG CTGCTTGAGC CICATCTICT GICATICAAA GAAGAAGIGC GAGTAGAAGA CAGTAAGITT CITCTTTAA P L E V I K G G R H CCCCTCGAAG TAATCAAGG GGGAAGACAT GGGGAGCTTC ATTAGTTCCC CCCTCTGTA K A I CAAGGCTATC (STICCGAIAG 2401

L D V S V I P T S G CTTGACGTGT CGCTCATCCC GACCAGGGGG GAACTGCACA GGCAGTAGGG CTGGTCGCG 2481

GTGATAGACT GCAATACGTG CACTATCTGA CGTTATGCAC ပ D V V V V A T D A L M T G Y T G D F: D S GRACHEC CONTROL ARACGEGE CTROCACHE ARACGEGE TRACEGEGE TRACEGEGE TRACEGEGE GAGATER GRACHEGEGE ARACGEGEGE GAGATER GAGATER CONTROL OF TRACEGEGE ARACGEGEGE GAGATER GAGATER CONTROL OF TAX TRACEGEGEGE ARACGEGEGE GAGATER GAGATER CONTROL OF TAX TRACEGEGEGE GAGATER GAGATER CONTROL OF TAX TRACEGEGEGE GAGATER CONTROL OF TAX TRACEGUES GAGATER CONTROL OF TAX TRACEGU 2561

DCMV-NS35

CCCCTCCGGC GCTGTCTCCC CGACAGAGGG G တ F V A P G E R TTTGTGGCAC CGGGGGAGGG AAACACGGTG GCCCCCTGGC T G R G K P G I Y R ACTGGCAGGG GGAAGCCAGG CATCTACAGA TGACCGTCCC CCTTCGGTCC GTAGATGTCT × R T Q R R G R GCACTCAACG TCGGGGCAGG CGTGAGTTGC AGCCCCGTCC 2721

ᆸ 2801

StuI Н Ŀ 5 G 凶 3 124 ы ы -Ω 0 ပ > ы ц G Д н z × > A æ ᆸ 24 7

GTCTTTACAG CAGAAATGTC TTGGGAGGGC ATCTTGAATT I TAGAACTTAA A TGCCAGGACC A GCTTCCCGTG C ACACCCCGGG TGTGGGGGCCC GCGTACATGA TAGGCTACGA (ATCCGATGCT (2881

0 × ø > ч ы ы z ы လ 0 × Н 0 S ы Ξ 4 a H G L StuI 7

AGCGTACCAA TCGCATGGTT CTTACCIGGT GAATGGACCA GAGAACCTTC (CTCTTGGAAG GCAGAGTGGG (CCCAGACAAA GGGTCTGTT CACTITCIAT (GIGAAGAIA (ATATAGATGCC ATATCTACGG GCCTCACTCA 1 2961

TTGATTCGCC TCAAGCCCAC AACTAAGCGG AGTTCGGGTG CACCTTCACA / ပ × 3 P P S W D Q M CCCCCATCGT GGCACCAGAT GGGGGTAGCA CCCTGGTCTA A T V C A R A Q A P GCCACCCT GCGTAGGCC TCAAGCCCCT CGGTGGCATCCG AGTTCGGGA 3041

- GTCACCAAAT CAGTGGTTTA T H P V Q N E I T L T H P GTTCAGAATG AAATCACCCT GACGCACCCA CAAGTCTTAC TTTAGTGGGA CTGCGTGGGT ACTGGGGGGT C Ø G P T P L L Y R CCAACACCC TGCTATACAG GGTTGTGGGG ACGATATGTC +2 (LT H G COTCCATGGG C GGAGGTACCC G
- GCCTCCTTTG CCGACGAAAC A A GIGCICGIIG GCGCCGICCI G ч S T W GAGCACCTGG CTCGTGGACC GCCGACCTGG AGGTCGTCAC ы Y I M T C M S ACATCATGAC ATGCATGTCG TGTAGTACTG TACGTACAGC +2 · Y 3201
- TCATACCTGA AGTATGGACT AAGCCGGCAA 1 ¥ GTCATAGIGG GCAGGICGT CTTGTCCGGG G S ы > > æ G > AGGCTGCGTG > ပ ტ A A Y C L S T GCCGCGTATT GCCTGTCAAC 7 3281
- GGGATGATGC CCCTACTACG CAGGGAAGTC STCCCTTCAG M 7 3361
- CCCTGCTGTC GGGACGACAG A Д R Q A E V L CCTCAGGCAG AGGITAICGC CC T A S GACCGCGTCC (CTGGCGCAGG (K A L G L L Q AAGGCCTCG GCCTCCTGCA TTCCGGGAGC CGGAGGACGT ы F K Q GTTCAAGCAG / CAAGTTCGTC 1 L A E Q TCGCCGAGCA (AGGGGCTCGT 3441
- G I Q Y L A G GGGATACAAT ACTTGGCGGG TGAACCGCCC CCCTATGTTA CTTCATCAGT GAAGTAGTCA S Ŀ W A K H W W N TGGGCGAAGC ATATGTGGAA ACCGCTTCG TATACACCTT įъ., Q T N W Q K L E T F CAGACCAACT GGGACCTTC GCTCTGGAAG CCGTTTTGA GTCTGGTTGA 42 3521
- CTAACCACTA GATTGGTGAT T S P CACCAGCCCA GIGGICGGT > ATGCCTTTTA CAGCTGCTGT GTCGACGACA A A H TACCGAAAAT A A S L TGCTTCATTG A ACGAAGTAAC 1 L P G N P A I CTGCCTGGTA ACCCGCCAT TGGGCCGGTA GACGGACCAT CTTGTCAACG SAACAGTTGC လ 42 3601

** CHETTIGGE GENERALIS TALANCOCC CENCOCACOC SOCIONS COCCONOSC CACGOGGES CACGOGGES ACCONOSCANOSCANOSCANOSCANOSCANOSCANOSCAN
CUGUARCURA ALUARCURUS GUOSTAGUUS INACARULIS AUCUCITURA GARATAILLE IAUGARULU CULARACURUS ALUARACURUS ALUARACURUS ALUARACURUS ALUARACURUS ALUARACURUS ALUARACURUS ALUARACURUS ALUARACURUS GENEGOTOGOGO GARGOTOTTO TOGORATORA GATCATARAC GOTOGOGOGO GARGOTOTTO TOGORAGO GATCATACTOC COTOGOACOGO GORGOTOTO COTOGOAGA ACCOTAGATA CATACATACA GATCATACACO COTOGOACOGO GORGOTOGOTO COTOGOAGA ACCOTAGATA CATACATACA CATACATACA CATACATACA CATACATA
+2 P A I L S P G A L V V G V V C A A I L R R H V G P G E 3921 CCGCCATCCT CTCGCCGGA CCCTCCTAG TCGCGCGTGG CCCGGCCGAG GCCCCCTAGG GCCCGCTCG GCGCCCTCG GCCCCCTCG GCCCCCTCG GCCCCCTCG GCCCCCTCC TATGACGCGG CCGTGCAAC GGCCCCCTC
+2 G A V Q W M N R L I A F A S R G N H V S P T H Y V P E 4001 GGGGGAGTGC AGTGGATGA GCGGTGATA GCCTTGGGCG CCCCGGGGGAA CCATGTTTCC CCCAGGGAT ACGTGGCGGA CCCGGTGAGG TCACCTACTT GGCGGAGTAT GGGAGGGGA GGGCCCCTT GCTACAAAGG GGGTGGGTGA TGCAGGGCCT
+2 S D A A A R V T A I L S S L T V T Q L L R R L H Q W ASSIGNMENT GASCISCACIS TRACTICAL SCITCACTISTA CICLOSCORT CACCASTICAL CITCACTICAL GASCISCACIS CACCASTICAL CITCACTISTA CICLOSCORT CACCASTICACT CACC

FIG. 3-Page 7

4161

DCMV-NS35

- G × > G ~ 0 O S Þ 124 BamHI G Д Д 0 д Σ д × ¥ × П 3 \vdash × 14
- GGTATAAGGG CCATATTCCC TGCCAGCGCG CTTTGTGTCC 1 GACCCTAGGG CTGGGATCCC CCACAGCTGC GGTGTCGACG G GGCTAAAAGC TAAGCTCATG MATTCTGGA TTTAAGACCT 4241
- AACGGGACGA TIGCCCIGCI C G A E I T G H V K TCTGGAGCTG AGATCACTGG ACATGTCAAA. ACACCTCGAC TCTAGTGACC TGTACACTTT G D G I M H T R C H GGGGACGGCA TCATGCACAC TCGCTGCCAC CCCTGCCGT AGTACGTGTG AGCGACGGTG GCTCTGGCGA (CCAGACCGCT (4321
- GGGCCCCTGT G P I N A Y T T CCCATTAATG CCTACACCAC GGGTAATTAC GGATGTGGTG T C R N W W S G T F ACCTGCAGGA ACATGTGGAG TGGGACCTTC TGGACGTCCT TGTACACCTC M R I V G P R TGAGGATCGT CGCTCCTAGG ACTCCTAGCA GCCAGGATCC M R I V TGAGGATCGT (7 4401
- GIGGAGATAA GGCAGGIGGG CACCICIAII CCGICCACCC ы TO PLPAPA PNYTF ALWRVSARETY EST TOGGGGATG CTGGGGGGAAGGTTG GGGGTATGG GGGGGATGG AGGGGAATAC TGGGGGAAG GAGGGGGTT GATGTGCAG GGGAAGCT CCAAAGAGG TCTCCTTATG 4481
- TTTTCACAG AAAAAGTGTC K C P C Q V P S P E AAATGCCCGT GCCAGGTCCC ATCGCCCGAA TITACGGCCA CGGICCAGGG IAGCGGCTI D N L TGACAATCTT A ACTGTTAGAA Y V T G M T T T TACGTGACG GTATGACTAC ATGCACTGCC CATACTGATG GGACTTCCAC CCTGAAGGTG H Δ 4561
- CAGAGTAGGA GTCTCATCCT CIGCGGGGG AGGIAICAIT GACGCCCCC TCCATAGTAA M H R F A P P C K P L CATAGETITG GGCCCCCTG CAAGCCCTTG GTATCCAAAC GCGGGGGAC GTTCGGGAAC GGTGCGCCTA CCACGCGGAT R L > E L D G AATTGGACGC (TTAACCTGCC 4641
- TTGACGTCCA TGCTCACTGA AACTGCAGGT ACGAGTGACT CGTGGCCGTG GCACCGGCAC ¥ > Ω CCTTGCGAGC CCGAACCGGA д ပ S Q L GTCGCAATTA CAGCGTTAAT L H E Y P V G SAGGTGCTTA TGGGCCATCC 4721

The state of the s

S S	STGGCCAGC TCCTCGGCTA SACCGGTCG AGGAGCCGAT
VASSS 1	TGTGGCCAGC ACACCGGTCG
P P S	CACCCCCCTC
ARGSPPS	3 GCGAGGGGAT CACCCCCTC TG1 3 CGCTCCCCTA GTGGGGGGAG AC4
R R L	GCGAAGGTTG CGCTTCCAAC
AAGRI	AGGCGGCCGG GCGAAGGTTC TCCGCCGGCC CGCTTCCAAC
ITAE	rócteccat ataacagcag aggegeceg gegaagette gegaggegt caeeeeet tel aggeaggeta tatteteete tecececege estiecaae estececeta gegegegag aox
-+2 P S H I	TCCCTCCCAT AGGGAGGGTA 1
. +2	1801

- L K A T C T A N H D S P D A E L I E A N CATOLAGGEA CITCAGGGGA COGTOGGA TO CAGAGGGA TITGGTACTIG GGGGGATA GAGGGGATA GAGGGGATA GAGGGGATA GAGGGGATA GAGGGGATA GAGGGGATA GAGGGATA GAGGATA GAGGGATA GAGGGATA GAGGGATA GAGGGATA GAGGATA A P S CGCTCCATCT GCGAGGTAGA S Q L S GCCAGCIAIC C CGGTCGAIAG G 4881
- GIGATICIGG ACTCCTICGA CACIAAGACC IGAGGAAGCI ш S 1 I W R G Q E M G G N I T R V E S E N K V GEOTATIOS GEOGROGACA TROCACOGG TTGATCAGG TATAGAGAGT GEOTAGAGT GA 4 4961
- TCGCTTCTG GCGGAGGAGG ACGAGCGGGA GATCTCCGTA CCCGCAGAAA TCCTGCGGAA GTCTCGGAAG TTCTCGGAAG TTCTCGGAAGA TCCTCGGAAGA TCCTCGGAAGA TCCTCGAGGA TTCCCCCAGG 5041
- r , ν , κ , ν , 7 5121
- V H G C P L P P R S P V P P P R R K K R T V V L T E GROTAGEN GEORGETICA CONCOUNTED THE CHARACT GEORGETICA CONCOUNTED THE CHARACT GEORGETICA TO THE CHARACT GEORGETICA TO AGGRAGE TO THE CHARACT AGGRAGE TO AGGRAGE TO THE CHARACT AGGRAGE TO THE CHARACT THE CONTROL THE CHARACT THE CHARA 5201
- S F G S S T S G I T G D AGCTTTGGCA GCTCCTCAAC TTCCGCCATT ACGGGCGACA TCGAAACCCT CGAGGACTTG AAGGCCGTAA TGCCGCTGT S T L S T A L A E L A T R ATCAACCCTA TCTACTGCCT TGGCCGAGCT CGCCACAGA TAGTTGGCAT AGATGACGGA ACCGGCTCGA GCGCTCTA 5281

۵.	38
ы	38
Σ	GTAC
လ	AG
လ	AGG
SDAESYSSMP	SGCTGAGT CCTATTCCTC CATGCCCCCC SCGACTCA GGATAAGGAG GTACGGGGGG
S	ບ ຜ ⊟ •••
ы	ST C
A	CGA
Ω	SE SE
S	AGG
Ω	GAG
ы	000
д	ဗ္ဗဗ္ဗ
ပ	200
T S S E P A P S G C P P D 3	NIACÁGAAC AICCICIGAG CCCGCCCTI CIGGCIGCC CCCGACICC GAGGCIGACI CCIATICCIC GAIGCCCCC RAIGCICITG IAGGAGACIC GGGGGGGGAA GACCGACGG GGGCTGAGG CIGCGACICA GGAIAAGGA GIACGGGGG
S	29
д	CCTT
¥	ဗ္ဗဗ္ဗ
4	88
m	GAG
S	AGA
S	ATCC
H	AC
⊢	ÄĞ
H	ATACGACAAC AT
Z	A Z
+2	361≅
.:	

Δ ш ď z ⋖ м S S \vdash S 3 တ G А S BamHI M G ы +2

AGCTIGGGGA TCCGGATCTT AGCGACGGGT CATGGTCAAC GGTCAGTAGT GAGGCTAACG CGGAGGATGT TCGGACCCCT AGGCCTAGAA TCGCTGCCCA GTACCAGTTG CCAGTCATCA CTCCGGTTGC GCTCCTACA CTGGAGGGG / 5441

CIGCCCATCA GACGGGTAGT V C C S M S Y S W T G A L V T P C A A E E Q K COTOTOCTOC TCANTOTOT ACTICTUGGAC AGGGGACTC GTCACCCCGT GCGCCGGGA AGAACAAAAGGCACACAGAAA GCACACAGAGCA AGTTACAGAA TGAGAACCTG TCCGCGTGAG CAGTGGGGGCA GCGGCCCCT TCTTCTCTTT 5521

N A L S N S L L R H H N L V Y S T T S R S A C Q R Q R ATECACIONAL CALLEGING CLACITICACO CACACTICACO ANGECAGA AGGCAGA TACCIONAL CITGAGCAAC GATGCAGTGC TATGAACCA CATAAGCTG TGGAGTGCT CACGAACGT TITCCTUTIC 5601

D S H Y Q D V L K E V K A A A S K GACAGCCATT ACCAGGAGGT ACTCAAGGAG GTTAAAGCAG GGGGTCAAA CAATITICGIC GCCGCAGIII CTGTCGGTAA TGGTCCTGCA TGAGTTCCTC K V T F D R L Q V L AAAGTCACAT TTGACAGACT GCAAGTTCTG CGTTCAAGAC ۸ ٥ TTTCAGTGTA AACTGTCTGA 5681

N L L S V E E A C S L T P P H S A K S K F G Y AACTTGCTAT CCGTACAGG AGCTTGCAGC CTGACGCCC CACACTCAGC CAAAICCAAG TITGGTIATG TTGAACGATG GACTGCGGGG GTGTCAAGTC GTTTAGGTTC AAACCAAAC V K A AGTGAAGGCT A TCACTTCCGA

1

	٠.
+2 G A K D V R C H A R K A V T H I N S V W K D L L E D N OGCAAAAGA CGTCCTTCT CGAAGACAT CCCCTTCT GGAAGACAT CCCCTTCT GGAAGACAT CCCCTTTCT GGAGGATTCT CGAGGCATTCT CCCCTTTCT GGAGGATTCT CCCCTTTCT CAGGCACAT TCTGGAAGA CCTTCTCTTA	+2 V T P I D T I M A K N E V F C V Q P E K G G R K P A
DCTC	2
GGA	į
GGL	~
CTT	
AGA(×.
A A T.	
ACC	E .
CGTC	0
AG	
NAC	2
JAZ STAC	
V T H I STAAC CCACATC	
T S E	>
SCA1	z
4000 000	×
AAT.	_
AGA TCT	₹
ACCA	Ĺ
# 8 B	
Accepta	-
% 2005 2005 2005 2005	[]
CGT	
d A	"
XAA	
A 0000 0000	>
200	2
84.1	1

AAGCTCCCCT CATCATGGCT AAGAACGAGG TTTTCTGGGT TCAGCCTGAG AAGGGGGGTC GTAAGCCAGG GTAGTACCGA TTCTTGCTCC AAAAGACGCA AGTCGGACTC TTCCCCCCAG CATTCGGTCG E K M A L Y D V V T GAAAAGATGG CTTTGTACGA CGTGGTTACA CTTTCTACC GAAACATGCT GCACCAATGT V F P D L G V R V C GTGTTCCCCG ATCTGGGCGT GCGCGTGTGC CACAAGGGG TAGACCCGCA CGCGCACACG GTAACACCAA TAGACACTAC CATCATGGCT CATTGTGGTT ATCTGTGATG GTAGTACCGA TCGTCTCATC AGCAGAGTAG ~ 5921 6001

S × 3 ď 0 -EcoRI м > æ 0 G S × O G ы S S Ü > ¥ ᆸ +5

GTGGAAGTCC CACCTTCAGG GTTGAATICC TCGTGCAAGC CAACTTAAGG AGCACGTTCG ----TACGGATTCC AATACTCACC AGGACAGCGG ATGCCTAAGG TTATGAGTGG TCCTGTCGCC TGGCCGTGAT GGGAAGCTCC ACCGGCACTA CCCTTCGAGG 5161

TATGTTGGGG GTGGCCATCA AGTCCCTCAC CGAGAGGCTT CACCGGTAGT TCAGGGACTG GCTCTCCGAA ~ V A I Y Q C C D L D P Q A R GCCAATCTAC CAATGTTGTG ACCTCGACCC CCAAGCCCGC CGITCGGGCG GTTACAACAC TGGAGCTGGG CCGTTAGATG 6241

G P L T N S R G E N C G Y R R C R A S G V L T T S C G COCTCTTAC CAATTCAAGG GGGGAACT GCGCTAATG CAGGTGGCG CGCAGGGGG TACTGACAAC TAGCTGTGGT ATCGACACCA CGCTCGCCGC ATGACTGTTG CCCCTCTTGA CGCCGATAGC GTCCACGGCG GTTAAGTTCC CGGGAGAATG 5321

C T M L V C G TGCACCATGC TCGTGTGG ACGTGGTACG AGCACACCC A A C R A A G L Q D GCAGCCTGTC GAGCGCAGG GCTCCAGGAC CGTCGGACAG CTCGGCGTCC CGAGGTCCTG N T L T C Y I K A R AACACCCTCA CTTGCTACAT CAAGGCCCGG TTGTGGGAGT GAACGATGTA GTTCCGGGCC +5 +5 +640<u>1</u>

GAGGCTATGA ¥ V V I C E S A G V Q E D A A S L R A F T GEOGRAPHICAGO GEOG GCTGCTGAAT CGACGACTTA +2 5481

CTCCAACGTG E L I T S C S GAGCTCATA CATCATGCTC CTCGAGTATT GTAGTACGAG G D P P Q P E Y D L GGGGACCCCC CACAACCAGA ATACGACTTG CCCTGGGGG GTGTTGGTCT TATGCTGAAC T R Y S A P P CCAGGTACTC CGCCCCCT GGTCCATGAG GCGGGGGGA +5 6561

CCCTCCCCA GAGCTGCGTG A GICTACTACC TCACCGTGA CCCTACAACC CAGATGATGG AGTGGGCACT GGGATGTTGG Н S V A H D G A G K R TCAGTGGCCC ACGAGGGCG TGGAAAGAGG AGTCAGCGGG TGCTGCCGCG ACCTTTCTCC +2 6641

GCGAGGATGA CGCTCCTACT A N I I M F A P T L W AACATAATCA TGTTTGCCCC CACACTGTGG TTGTATTAGT ACAAACGGGG GTGTGACACC R H T P V N S W L G AGACACACTC CAGTCAATTC CTGGCTAGGC TCTGTGTGAG GTCAGTTAAG GACCGATCCG GGAGACAGCA CCTCTGTCGT 6721

5801

GCATTTTCAC TCCACAGTTA CGTAAAAGTG AGGTGTCAAT တ D L P P I I Q R L H G L S GGATCTACCT CCAATCATTC AAAGACTCCA TGGCCTCAGC CCTAGATGA TTTCTGAGGT ACCGGAGTCG П ᆸ C Y S I E P L TGCTACTCCA TAGAACCACT ACGATGAGGT ATCTTGGTGA 6881

v	2
~	٦
U	2
Z	5
æ	-
- 1	
	_
~	5
7	₹
۲.	J
3	2

	+2 SPGEINRVAA CLRKLGVPPL RAWRHR	6961 CTCTCCAGGT GAAATCAATA GGGTGGCCGC ATGCCTCAGA AAACTTGGGG TACCGCCCTT GCGAGCTTGG AGACACCGGG	SAGAGGICCA CITIAGITAI CCCACCGGCG TACGGAGICI TITGAACCCC AIGGCGGGAA CGCICGAACC ICIGIGGCCC	
	æ	AGA	ŢĊŢ	
	3	IGG	ACC	
	¥	GCI	CGA	
	æ	GCGA	CGCT	
	П	E	¥¥	
	д	ဗ္ဗ	မ္	
	д	ACCG	TGGC	
	>	G	۲ V	
	ც	999	8	١
9	ᆸ	CLL	GAA	
•	×	¥	Ē	1
000	~	AGA	īĊĪ	
2	Н	CIC	GAG	
	ပ	ATGC	TACG	
	¥	ပ္ပ	ဗ္ဗ	١
	¥	ပ္ပ	8	١
	>	3GTG	CAC	
	24	ت	Ö	1
	z	AAT/	TTA	
	Н	AIC	TAG	1
	ы	₹	ij	١
	G	GGT	CCA	
	Д	CCA	GGT	١
	S	CICI	GAGA	
	+5	1969	į,	ú

A A G Q L D L S G W F T A G Y S G GCCGTGGCC ACTGGACTT GTCCGGCTGG TTCACGGCTG GTACAGGCGCGCGCGCGCGACC AGGTGCCGAC CGATGTCGCC L T P I A TCTTGTTTCG AGTTTGAGTG AGGTTATCGC ы R T K L AGAACAAAGC I 7121

CTGGGCAGTA

C G K Y L F N TGTGGCAAGT ACCTCTTCAA ACACCGTTCA TGGAGAAGTT

A A I GGCTGCCATA I CCGACGGTAT A

L L A R G G R CTTCTGGCCA GAGGAGGCAG GAAGACCGGT CTCCTCCGTC

R A R L L A F CCGCGCTAGG CTTCTGGCCA GGCGCGATCC GAAGACCGGT

A R S V

7041

GGCCTCGCA

A 3

A G V GCAGGGGTAG W I W F C L L L L A TGGATCTGGT TTTGCCTACT CCTGCTTGCT ACCTAGACCA AAACGGATGA GGACGAACGA ပ CCGGCCCGC T G D I Y H S V S H A GGGAGACATT TATCACAGCG TGTCTCATGC CCCTCTGTAA ATAGTGTCGC ACAGAGTACG 7201

AAAGGCGCGC TTTCCGCGCG CGTCCCCATC AAAAATCTAG TTTTTAGATC AAAAAAAA TTTTTTTTT TGGGGTAAAC ACTCCGGCCT ACCCCATTTG TGAGGCCGGA R CGATGAAGGT GCTACTTCCA CCTCCCCAAC GGAGGGGTTG C z ы G I Y L GCATCTACCT CGTAGATGGA 7281

BAMHI

MluI

CATCTGTTGT GTAGACAACA AGTIGCCAGC (CAGCCTCGAC TGTGCCTTCT GTCGGAGCTG ACACGGAAGA GCTCGCTGAT C ACGCGTTAGA TGCGCAATCT AGGATCCACT TCCTAGGTGA CAAGATATCA STICIATAGE 7361

GAAATTGCAT CTTTAACGTA ATAAAATGAG TATTTACTC ACTCCCACTG TCCTTTCCTA TGAGGGTGAC AGGAAAGGAT GGAAGGTGCC CCTTGACCCT GGAACTGGGA CCCGTGCCTT TTGCCCCTCC 7441

7521	CGCATTGTCT GCGTAACAGA	GAGTAGGTGT	GACTAGOTGT CATTOTATTC TGGGGGGTGG GGTGGGGCAG CTCATCCACA GTAAGATAAG ACCCCCACC CCACCCGTC	TGGGGGGTGG GGTGG	CCCATTOTO GACTAGGICI CATTOTATIC TGGGGGGTGG GGTGGGGGGG GACAGCAAGG GGGAGGATTG GGAAGACAAT GCGTAACAGA CTCATCCACA GTAAGATAAG ACCCCCGACC CCACCCCGTC CTGTGGTTGC CCCTCCTAAC CCTTTGTTAT	GACAGCAAGG	GGGAGGATTG GGAAGACAAT CCCTCCTAAC CCTTCTGTTA	GGAAGACAAT CCTTCTGTTA
1092		CTGGGGAGCT	CTTCCGCTTC	CTCGCTCACT	AGAGGCATG CTGGGGAGGT CTTCCGCTTC CTGGCTCACT GACTCGCTGC GCTCGGTCGT TCGGCTGCGG CGAGCGGTAT TCGTCGTAC GACCGAGGG GAGGGGAGG GAGGGGAGG GTGGCCATA	GCTCGGTCGT	TCGGCTGCGG	CGAGCGGTAT
7681	CAGCTCACTC	AAAGGCGGTA	ATACGGTTAT TATGCCAATA	CCACAGAATC	CAGCICACIC AAAGGCGGIA ATACGGITAT CCACAGAATC AGGCGATAAC GCAGGAAGA ACAIGTCACC AAAAGGCCAG GTGGAGTGAG TITCCGCCAT IAIGCCAAIA GGTGTTAG ICCCCIATIG GGTCTTIGI TGTACACIGG TITTCGGGTC	GCAGGAAAGA	ACATGTGAGC TGTACACTCG	AAAAGGCCAG TTTTCCGGTC
7761	CAAAAGGCCA GTTTTCCGGT	GGAACCGTAA	AAAGGCCGCG TTTCCGGCGC	TTGCTGGCGT	CAAAGGCCA GGAACCGTAA AAAGGCCGCG TTOCTGGCGT TTTTCCATAG GCTCCGCCCC CCTGACGACG ATGACAAAA GTTTTCCGGT CCTTGGCATT TTTCCGGCGC AACGACGGGA AAAAGGTATC GGAGGCGGGG GGACTGCTCG TAGTGTTTTT	GCTCCGCCCC	CCTGACGAGC ATCACAAAAA GGACTGCTCG TAGTGTTTTT	ATCACAAAAA TAGTGTTTTT
7841	TCGACGCTCA	AGTCAGAGGT TCAGTCTCCA	GGCGAAACCC	GACAGGACTA	TCGACGCTCA ACTCAGAGGT GECGAAACCC GACAGGACTA TAAAGATACC AGGCGTTTCC CCCTGGAAGC TCCCTCGTGG AGCTGCGAGT TCAGTCTCCA CGCTTTGGG CTGTCCTGAT ATTTCTATGG TCCGCAAAGG GGACCTTCG AGGGAGCACG	AGGCGTTTCC TCCGCAAAGG	CCCTGGAAGC TCCCTCGTGC GGGACCTTCG AGGGAGCACG	TCCCTCGTGC AGGGAGCACG
7921	GCTCTCCTGT	TCCGACCCTG	CCGCTTACCG	GATACCTGTC	GCTCTCCTGT TCCGACCCTG CCGCTTACCG GATACCTGTC CGCCTTTCTC CCTTCGGGAA GCGTGGCGCT TTCTCAATGC CGAGAGGACA AGGCTGGGAC GGCGAATGGC CTATGGACAG GGGGAAAGAG GGAAGCCCTT CGCACGCGGA AAGAGTTACG	CCTTCGGGAA	GCGTGGCGCT TTCTCAATGC CGCACCGCGA AAGAGTTACG	TTCTCAATGC AAGAGTTACG
8001	TCACGCTGTA	GGTATCTCAG	GGTAICTCAG TICGGIGIAG GICGTICGCI CCAAGCIGG CCAIAGAGTC AAGCCACAIC CAGCAGGG GGTICGACCC	GTCGTTCGCT		CTGTGTGCAC	CTGTGTGCAC GAACCCCCG TTCAGCCCGA GACACACTC CTTGGGGGC AAGTCGGGCT	TTCAGCCCGA AAGTCGGGCT
8081	CCGCTGCGCC	TTATCCGGTA AATAGGCCAT	ACTATCGTCT TGATAGCAGA	TGAGTCCAAC	CCCCIGCCCC TTATCCGGTA ACTATCGTCT TGAGTCCAAC CCCCTAAGAC ACGACTTATC GCCACTGGGA GCACCCACTG GCCGACGCGG AATAGGCCAT TGATAGCAGA ACTCAGGTTG GGCCATTCTG TGCTGAATAG CGGTGACGGT CGTGGGTGA	ACGACTTATC TGCTGAATAG	GCCACTGGCA CGGTGACCGT	GCAGCCACTG
8161	GTAACAGGAT	TAGCAGAGGG	AGGTATGTAG	GCGGTGCTAC	CTAACAGAI TAGCAAAGG AGGTATGTAG GCGGTGGTAC AGACTTCTTG AAGTGGTGGC CTAACTACGG CTACACTAGA CATTGTGCTA ATGGTGTGG GATGATGT GATG	AAGTGGTGGC TTCACCACCG	CTAACTACGG CTACACTAGA GATTGATGCC GATGTGATCT	CTACACTAGA GATGTGATCT

	Ą.			වි	DCM-NS35			
8241	AGGACAGTAT TCCTGTCATA	TTGGTATCTG AACCATAGAC	AGGACAGTAT TIGGTATOTG CGCTOTGGTG AAGCCAGTTA CCTTCGGAAA AACAGTTGGT AGCTOTGAT CGCGCAACA TCCTGTCATA AACCATAGAC GGGACGACGAC TYCGGTCAAT GGAAGCCTTT TICTCAACCA TGCAGAACTA GGCCGTTTGT	AAGCCAGTTA TTCGGTCAAT	CCTTCGGAAA GGAAGCCTTT	AAGAGTTGGT TTCTCAACCA	AGCTCTTGAT TCGAGAACTA	CCGCCAAACA
8321	AACCACCGCT TTGGTGGCGA	GGTAGCGGTG	AACCACCECT GETACCECTE GITTITITET ITCCAAGCAG CACATTACCE GCAGAAAAAA AGCATCICAA GAAGATCCIT TTGGTGGGGA CCATGGCCAC CAAAAAAACA AACGITCGTC GTCIAATGCG CGTCITITIT ICCIAGAGTI CITCIAGGAA	TTGCAAGCAG AACGTTCGTC	CAGATTACGC GTCTAATGCG	GCAGAAAAAA CGTCTTTTT	AGGATCTCAA TCCTAGAGTT	GAAGATCCT7 CTTCTAGGA/
8401	TGATCTTTTC ACTAGAAAAG	TACGGGGTCT	TGATCITITC TACGGGGTCT GACGCTCAGT GGAACGAAAA CTCACGTTAA GGGATTITGG TCATGAGATT ATCAAAAAGG ACTAGAAAAG ATGCCCCAGA CTGCGAGTCA CCTTGCTTTT GAGTGCAATT CCCTAAAACC AGTACTCTAA TAGTTTTCC	GGAACGAAAA CCTTGCTTTT	CTCACGTTAA GAGTGCAATT	GGGATTITGG CCCTAAAACC	TCATGAGATT AGTACTCTAA	ATCAAAAAG TAGTTTTTC
8481	ATCTTCACCT TAGAAGTGGA	AGATCCTTTT TCTAGGAAAA	ATCTICACCI ACATCCITIT AAATIAAAA IGAACITITA AATCAAICIA AACTATATAI GACIAAACIT GGICTGACAG TAGAAGTGGA ICTAGGAAAA ITTAAITITI ACTICAAAAI TIAGITAGAI TICATATAIA CICATITGAA CGAGACIGIC	TGAAGTTTTA ACTTCAAAAT	AATCAATCTA TTAGTTAGAT	AAGTATATAT TTCATATATA	GAGTAAACTT CTCATTTGAA	GGTCTGACA(CCAGACTGT
8561	TTACCAATGC	TTAATCAGTG	TTACCAATGC TTAATCACTG AGGCACCTAT CTCACCGATC TGTCTATTTC GTTCATCCAT AGTTGCCTGA CTCCCGCTGC AATGGTTACG AATTAGTCAC TCCGTGGATA GAGTCGCTAG ACAGATAAAG CAAGTAGGTA TCAACGGACT GAGGGCCACC	CTCAGCGATC	TGTCTATTTC ACAGATAAAG	GTTCATCCAT	AGTTGCCTGA TCAACGGACT	CTCCCCGTCG GAGGGGCAGC
8641	TGTAGATAAC ACATCTATTG	TACGATACGG	TGTAGATAAC TAGGATAGGG GAGGGCTTAC CATCTGGCCC CACTGCTGCA ATGATACGGC GAGACCCAGG CTCACGGCTA ACATCTATTG ATGCTATGCC CTCCCGAATG GTAGACGGGG GTCACGACGT TACTATGGGG CTCTGGGTGC GAGTGGCCGA	CATCTGGCCC	CAGTGCTGCA GTCACGACGT	ATGATACCGC TACTATGGCG	GAGACCCACG CTCTGGGTGC	CTCACCGGCT
8721	CCAGATTTAT GGTCTAAATA	CAGCAATAAA GTCGTTATTT		GGAAGGGCCG	CCAGCCAGC GEAAGGGCC AGCGCAGAAG TGGTCCTGCA GGTGGGTGGTC ACCAGGAGGT	TGGTCCTGCA	ACTTTATCCG TGAAATAGGC	CCTCCATCCA
8801	GTCTATTAAT	TGTTGCCGGG	CTCTATTAAT TCTTCCCGGG AAGCTAGAGT AACTACTTCG CCAGTTAATA CTTTGCGCAA CGTTGTTGCC ATTGCTAGG CAGATAATTA ACAACGGCCC TTCGATCTCA TTCATCAAGG GGTCAATTAT CAAACGGGTT GGAACAAGG TAACGATGTC	AAGTAGTTCG TTCATCAAGC	CCAGTTAATA GGTCAATTAT	GTTTGCGCAA	CGTTGTTGCC GCAACAACGG	ATTGCTACAG TAACGATGTC
8881	GCATCGTGGT	GTCACGCTCG	GGATOCTGCT GTCACGCTCG TCGTTTGGTA TGGCTTCATT CACCTCCGGT TCCCAACGAI CAAGGCGAGT TACATGATCC CGTACCACCA CAGTGCGAGC AGCAAACCAI ACCGAAGTAA GTCGAGGCCA AGGGTTGCTA GTTCCGCTCA ATGTACTAGG	TGGCTTCATT ACCGAAGTAA	CAGCTCCGGT GTCGAGGCCA	TCCCAACGAT	CAAGGCGAGT GTTCCGCTCA	TACATGATC

FIG. 3-Page 15

				වූ	pCMV-NS35			
1961	CCCATGTTGT GGGTACAACA	GCAAAAAAGC CGTTTTTCG	CCCATGTTGT GCAAAAAGC GGTTAGCTCC TTGGGTCCTC CGATCGTTGT CAGAAGTAAG TTGGCCGCAG TGTTATCACT GGGTACAACA CGTTTTTTCG CCAATGGAGG AAGCCAGGAG GCTAGGAACA GTCTTCATTC AAGCGGCGTC ACAATAGTGA	TTCGGTCCTC	CGATCGTTGT GCTAGCAACA	CAGAAGTAAG GTCTTCATTC	TTGGCCGCAG AACCGGCGTC	TGTTATCACT ACAATAGTGA
1041	CATGGTTATG	GCAGCACTGC	CATGGITATG GCAGCACTGC ATAAITCTCT TACTGTCATG CCATCGGTAA GATGCTTTTC TGTCACTGGT GAGTACTCAA GTACCAATAC CGTCGTGACG TATTAAGAGA ATGACAGTAC GGTAGGCATT CTACGAAAAG ACACTGACCA CTCATGAGTA	TACTGTCATG	CCATCCGTAA	GATGCTTTTC CTACGAAAAG	TGTGACTGGT ACACTGACCA	GAGTACTCAA
121	CCAAGTCATT GGTTCAGTAA	CTGAGAATAG	CCAAGTCAIT CIGAGAATAG TGTAIGGGGC GACCGAGTIG CICITGCCCG GCGTCAATAC GGGATAATAC CGCGCGAGA GGTICAGTAA GACTCTTAIC ACAIACGCCG CIGGCICAAC GAGAACGGGC CGCAGTTATG CCCTATAIG GCGCGGGTGTA	GACCGAGTTG	CTCTTGCCCG	GCGTCAATAC	GGGATAATAC CCCTATTATG	CGCGCCACAT GCGCGGTGTA
9201	AGCAGAACTT TCGTCTTGAA	TAAAAGTGCT ATTTTCACGA	ACCAGAACTT TAAAAGTOCT CATCATTGGA AAACGTTCTT CGGGGGAAA ACTCTCAAGG ATCTTACCGC TGTTGAGATC TCGTCTTGAA ATTTTCACGA GTAGTAACCT TTTGCAAGAA GCCCGGCTTT TGAGAGTTCC TAGAATGGGG ACAACTCTAG	AAACGTTCTT TTTGCAAGAA	CGGGGCGAAA	ACTCTCAAGG TGAGAGTTCC	ATCTTACCGC TAGAATGGCG	TGTTGAGATC
9281	CAGTTCGATG GTCAAGCTAC	TAACCCACTC	CAGITICATG TAACCCACTC GIGCACCCAA CIGATCTICA GCAICTITTA CTITCACCAG CGITICTGGG TGAGCAAAA GTCAAGCTAC ATTGGGTGAG CACGTGGGTT GACTAGAAGT CGTAGAAAAI GAAAGTGGTC GCAAAGACCC ACTGGTTTTT	CTGATCTTCA	CTGATCTTCA GCATCTTTA CTTTCACCAG CGTTTCTGGG TGAGCAAAA GACTAGAAGT CGTAGAAAAT GAAAGTGGTC GCAAAGACCC ACTGGTTTTT	CTTTCACCAG	CGTTTCTGGG GCAAAGACCC	TGAGCAAAA ACTCGTTTTT
9361	CAGGAAGGCA GTCCTTCCGT	AAATGCCGCA TTTACGGCGT	CAGGAAGGCA AAATGCCGCA AAAAAGGGAA TAAGGGGGAC ACGGAAATGT TGAATACTOA TACTCTTCCT TITTCAATAT GTCCTTCCGT TTTACGGCGT TITTTCCCTT ATTCCCGCTG TGCCTTTACA ACTTATCAGT ATGAGAAGGA AAAGGTATA	TAAGGGCGAC	TAAGGGGAC ACGGAATGT TGAATACTCA ATTCCGCTG TGCCTTTACA ACTTATGAGT	TGAATACTCA ACTTATGAGT	TACTCTTCCT ATGAGAAGGA	TTTTCAATAT AAAAGTTATA
9441	TATTGAAGCA	TTTATCAGGG	TATICAACCA TITATCACCG TTATICTCTC ATCACCGCAT ACALATITCA ATCTATITGG AAAAATAAAC AAATAGGGGT ATAACTICGT AAATAGTCCC AATAACAGAG TACTCGCCTA TGTATAAACT TACATAAATC TITITATITG TTTATGCCCCA	ATGAGGGGAT TACTCGCCTA	ACATATTTGA TGTATAAACT	ATGTATTTAG AAAAATAAAC TACATAAATC TTTTTATTTG	AAAAATAAAC TTTTTATTTG	AAATAGGGGT TTTATCCCCA
9521	TCCGCGCACA	TTTCCCCGAA AAAGGGGCTT	TCCGCGCACA TITCCCCGAA AAGTGCCACC TGACGICTAA GAAACCATTA TTATCATGAC ATTAACCTAT AAAAATAGGC AGGCGCGTGT AAAGGGGCTT TTCACGGTGG ACTGCAGAIT CTTTGGTAAT AATAGTACTG TAATTGGATA TTTTTATCG	TGACGTCTAA ACTGCAGATT	GAAACCATTA CTTTGGTAAT	TTATCATGAC AATAGTACTG	ATTAACCTAT TAATTGGATA	AAAAATAGGC TTTTATCCG
1096	GTATCACGAG CATAGTGCTC	GTATCACGAG GCCCTTTCGT C CATAGTGCTC CGGGAAAGCA G	ပ	*				

FIG. 3-Page 16

FIG. 4

±	1- TGGCGCGTIT GGGTGATGAC GGTGAAAACC TGTGACACAT GCAGGTCCCG GAGACGGTCA CACCITGTCT GTAAAGCGGAT AGGGCGCAAA GCCACTACTG CCACTTITGG AGACTGTGTA CGTCGAGGGC CTGTGCCAGT GTCGAACAGA CATTCGGCTA	CGGTGATGAC GCCACTACTG	GGTGAAAACC CCACTTTTGG	TCGCGCGTTT CGGTGATGAC GGTGAAAACC TCTGACACAT GCAGCTCCG GAGACGCTCA CACCTTGTCT GTAAGGGGAT AGCGGGCAAA GCCACTACTG CCACTTTTGG AGACTGTGTA CGTCGAGGGC CTCTGCCGAT GTCGAACAGA CATTCGCCTA	GCAGCTCCCG	GAGACGGTCA CTCTGCCAGT	55	GCTTGTCT CGAACAGA
≅	GCCGGGAGCA	GACAAGCCCG	TCAGGGCGCG	TCAGCGGGTG AGTCGCCCAC	TTGGCGGGTG	TCGGGGCT	88	GCCGGGACGA GACAACCCG TCAGGGGGGG TCAGCGGGGTG TTGGGGGGGTG TCGGGGGTGG CTTAACTATG GGGGTGAGA GGGCCCTGGT CTGTTGGGGC AGTCGGGGGG AGTCGCGCGA AGCGGCGAC AGGCGGACG GAATTGATAC GCCGTAGTGA
191	GCAGATTGTA	CTGAGAGTGC GACTCTCACG	ACCATATGAA TGGTATACTT	GCTTTTGCA CGAAAAACGT	StuI AAAGCCIAGG C TTTCGGAICC G	II CCTCCAAAA GGAGGT1TT	∢⊬	Stul GGAGATYGTA CTGAGAGTGC ACCATATGAA GCTTATTGCA AAAGCCTAGG CCTCCAAAAA AGCCTCCTCA CGTCTAACAT GACTCTCAGG TGGTATACTT CGAAAAACGT TTTGGGATCC GGAGGTTTTT TCGGAGGAGT GATGAAGACC
241	AATAGCTCAG	AGGCCGAGGC	GGCCTCGGCC	TCTGCATAAA AGACGTATTT	TAAAAAAAT ATTTTTTA	TAGTCAGCC, ATCAGTCGG	4:∺	AATACCTOAG AGGCCGAGGC GGCCTGGGC TCTGCATAAA TAAAAAAAT TAGTCAGCCA TGGGGCGGAG ATTGGGGGG TTATCGAGTC TCGGGTCCG CGGAGCGGG AGAGGTATTT ATTTTTTA ATGAGTGGT ACCGGGCTC TTACCGGCGC
321	ACTGGGGGG TGACCGGCC	GAGGGAATTA	TTGGCTATTG	GCCATTGCAT CGGTAACGTA	ACGTTGTATC TGCAACATAG	TATATCATA/ ATATAGTAT	A 54	ACTGGGGGG GAGGGAATTA TTGGCTATTG GCCATTGGAT ACGTTGTATC TATATGATAA TATGTACATT TATATTGGGT TGACGGGGC CTGCCTTAAT AACGGATAAC GGGTAACGTA TGGAACATAG ATATAGTATT ATAGATGTAA ATATAAGGG
401	CATGTCCAAT	ATGACCGCCA TACTGGCGGT	TGTTGACATT ACAACTGTAA	GATTATTGAC CTAATAACTG	TAGTTATTAA ATCAATAATT	TAGTAATCAA ATCATTAGTT	4	CATGICCAAI ATGACGGCG TGITGACATI GAITATTGAC TAGITATTAA TAGTAATCAA TTAGGGGGT ATTAGTTCAT GTACAGGTTA TACIGGGGGT ACAACTGTAA CTAATAACTG ATGAATAATI ATGATTAGTT AATGGCGCAG TAATGAGTAA
481	AGCCCATATA TCGGGTATAT	TGGAGTTCCG ACCTCAAGGC	CGTTACATAA GCAATGTATT	AGCICATATA TGGACTTICG COTTACATAA CTTACGGTAA ATGGICCGC TGGITGACG CCGAAGGAC CCGGCGGTT TGGGTATAT ACTTAAGG GGAATGTAT GAATGGATT TACGGGGGG ACGGAITGG GGGTIGGTGG GGGGGGTAA	ATGGCCCGCC TACCGGGCGG	TGGCTGACCG ACCGACTGGC		CCCAACGACC

FIG. 5-Page 1

GROGICAATA ATGACGTATG TICCCATAGT AAGGCCAATA GGGACTTICC ATIGACGICA ATGGGIGGAG TAITTAGGGT CIGCAGITAT TACIGCATAC AAGGGIAICA TIGGGGITAT CCCIGAAAGG TAAGIGGAT TACCACIC ATAAATGCCA

561

.41	PLIN V TGEINSSS AAACTGCCCA CTTGCCAGTA CATCAAGTGT ATCATATGCC AAGTGCGCCC TTTGACGGGT GAACCGTCAT GTAGTTCACA TACTATAGG TTCAGGCGGG	AAACTGCCCA CTTGGCAGTA TTTGACGGGT GAACCGTCAT	CATCAAGTGT GTAGTTCACA	DUMNY-DEINNSSS CATCAAGTGT ATCATAGGG AGTCGGGG GGATAGTGGG TGAATGAGGG GTAGTTGAG TAGTATAGGG TTGAGGGGG GGATAGTGG AGTTACTGGC		CCTATTGACG TCAATGACGG GGATAACTGC AGTTACTGCC		TAAATGGCCC ATTTACCGGG
.21	GCCTGGCATT	ATGCCCAGTA	GCCTGGCATT ATGCCCAGTA CATGACCTTA CGGGACTTTC CTACTTGGCA GTACATCTAC GTATTAGTCA TCGCTATTAC CGGACCGTAA TACGGGTCAT GTACTGGAAT GCCCTGAAAG GATGAACGGT CATGTAGATG CATAATGGT AGGGATAATG	CGGGACTTTC	CTACTTGGCA	GTACATCTAC	GTATTAGTCA	TCGCTATTAC
000	CATGGTGATG	CGGTTTTGGC	CATGGTGATG CGGTTTTGGC ACTACACCAA TGGGCGTGGA TACCGGTTTG ACTCACGGGG ATTTCCAAGT CTGCACCCAAGTGTACCACTAC GCGGTGGGGT TGGCCAAAACCG TAAAGGTTGG GAGGTGGGGT	TGGGCGTGGA	TAGCGGTTTG	ACTCACGGGG TGAGTGCCCC	ATTTCCAAGT TAAAGGTTCA	CTCCACCCCA
381	TTGACGTCAA	TGGGAGTTTG ACCCTCAAAC	TTGACCTCAA TGGGAGITTG TITTGGGACC AAAATCAAGG GGACTTTGCA AAATGTCGTA ATAACCCGG CCCCTTGACG AACTGCAGTI ACCCTCAAAC AAAACCGTGG TITTAGTTGC CCTGAAAGGT TTTACACCAT TATGGGGGG GGGCAACTGC	AAAATCAACG TTTTAGTTGC	GGACTTTCCA	AAATGTCGTA TTTACAGCAT	ATAACCCGC TATTGGGGCG	CCCGTTGACG
961	CAAATGGGCG GTTTACCCGC	GTAGGCGTGT	CAATIGGGG GTAGGCGTGT ACGGTGGBAG GTCTATATAA GCAGAGCTCG TTTAGTGAAC CGTCAGATGG CCTGGAGAGG GTTTACCGGC CATCGGCACA TGCGACCGTC CAGATATAT CGTCTGGAGC AATCACTTG GCAGTCTAGC GGACCTCTGC	GTCTATATAA	GCAGAGCTCG	GCAGAGCTCG TITAGTGAAC CGTCAGATCG CGTCTCGAGC AAATCACTTG GCAGTCTAGC	CGTCAGATCG GCAGTCTAGC	CCTGGAGACG
041	CCATCCACGC	TGTTTTGACC	CCATCCAGG TGTTTTGACC TCCATAGAG ACACCGGAC CGATCGAGC TCGCCGGCCG GGAAGGTGC ATTGGAAGG GGTAGGTGCG ACAAAACTGG AGGTATCTTC TGTGGCCCTG GCTAGGTCGG AGGCGCGGC CCTTGCCACG TAACCTTGGG	ACACCGGGAC TGTGGCCCTG	CGATCCAGCC	TCCGCGGCCG	GGAACGGTGC	ATTGGAACGC TAACCTTGCG
121	GGATTCCCCG	TGCCAAGAGT ACGGTTCTCA	GGATICCOCG TGCCAAGAGT GACGTAAGTA CCGCCTATAG ACTCTATAGG CACACCCTT TGGCTCTTAT GCATGCTATA CCTAAGGGC ACGGTTCTCA CTGCATTCAT GGCGGATATC TGAGATATCC GTGTGGGGAA ACCGGAAATA CGTACGATAT	CCGCCTATAG	ACTCTATAGG TGAGATATCC	CACACCCCTT TGGCTCTTAT GTGTGGGGAA ACCGAGAATA	TGGCTCTTAT ACCGAGAATA	GCATGCTATA
201	CTGTTTTTGG	CTTGGGGCCT	CIGITITIGG CITGGGGCCI ATACACCCC GCICCITAIG CTAIAGGTGA IGGIAIACCI IAGCCIAIAG CIGIGGCIAA GACAAAAACC GAACCCGGA IAIGIGGGGG CGAGGAAIAC GAIAICCACI ACCAIAICGA AIGGGAIAIC CACACCAAI	GCTCCTTATG CGAGGAATAC	CTATAGGTGA GATATCCACT	TGGTATAGCT ACCATATCGA	TAGCCTATAG ATCGGATATC	GTGTGGGTTA CACACCCAAT
281	TTGACCATTA AACTGGTAAT	TTGACCACTC	TIGACCATIA ITGACCACIC CCCIAITIGCI GACGAIACIT ICCAITACIA AICCAIAAGA IGGCICTITIC CCACAACIAI AACTIGGIAAI AACTIGGIGAG GGGAIAACCA CIGCIAIGAA AGGIAAIGAI IAGGIAITGI ACCGAGAAAC GGIGTIGAIA	GACGATACTT CTGCTATGAA	TCCATTACTA AGGTAATGAT	ATCCATAACA TAGGTATTGT	TGGCTCTTTG ACCGAGAAAC	CCACAACTAT GGTGTTGATA

FIG. 5-Page 2

				DC/M	pCMV-delNS35			
1361	CICTATIGGC TAIATGCCAA TACTCTGTGC TTCAGAGACT GACAGGGACT CTGTATTTT ACAGGATGGG GTCCATTTAT GAGATAÁCG ATATAGGGTT ATGAGAGAGG AAGTCTCTGA CTGTGCCTGA GACATAAAAA TGTCCTACCC CAGGTAAATA	TATATGCCAA ATATACGGTT	-CTCTATTGGC TATATGCCAA TACTCTGTGC TTCAGAGACT GACACGCACT CTGTATTTTT ACAGGATGGG GTCCATTTAT GACATAACGC ATATAGGGTT ATGAGACAGG AAGTCTCTGA CTGTGCCTGA GACATAAAAA TGTCCTACCC CAGGTAAATA	TTCAGAGACT AAGTCTCTGA	GACACGGACT	CTGTATTTTT GACATAAAAA	ACAGGATGGG TGTCCTACCC	GTCCATTTAT
1441	TATTTACAAA ATAAATGTTT	TTCACATATA	TATTTACAAA TICACATAIA CAACAACSC GTCCCCCGTG CCCGCAGTIT TIAITAAACA TAGCGTGGGA ICTCCCAACAT ATAAATGTIT AAGTGTATAT GTTGTTGCGG CAGGGGCAC GGCGTCAAA AATAATTTGT ATGGCACGCT AGAGGTTGTA	GTCCCCGTG	CCCCCAGTTT	TTATTAAACA AATAATTTGT	TAGCGTGGGA ATCGCACCCT	TCTCCGACAT AGAGGCTGTA
1521	CTCGGGTACG	TGTTCCGGAC ACAAGGCCTG	CTCGGGTACG TGTTCCGGAC ATGGGCTCTT CTCCGGTACC GGGGGAGCTT CCACATCCGA GCCCTGGTCC CATCGGTCG GAGCCCATGC ACAAGGCCTG TACCGGAGAA GAGGCCATCG CGGCGTCGAA GGTGTAGGGT GGGGACCAGG GTAGGCAGGT	CTCCGGTAGC	GGGGAGCTT	CCACATCCGA GGTGTAGGCT	GCCCTGGTCC	CATCCGTCCA GTAGGCAGGT
1601	GCGGCTCATG	GTCGCTCGGC	GOGGOTGATG GICGOTGGG AGCICCTIGC ICCIAAGAT GGAGGCGAGA CTIAGGCACA GCACAAFGC CACCACACC CGCCGAGIAC CAGCGAGCCG ICGAGGAAGG AGGAITGTCA CTICGGGTGT GAAICGGTGT CGFGTIAGGG GFGGTGGTGG	TCCTAACAGT	GGAGGCCAGA	CTTAGGCACA GAATCCGTGT	GCACAATGCC	CACCACCACC GTGGTGGTGG
1681	AGTGTGCCGC TCACACGCCG	ACAAGGCCGT TGTTCCGGCA	ASTOTGCCGC ACAAGGCCGT GGCGGTAGGG TATGTGTCTG AAAATGAGGT CGGAGATTGG GCTGGCACCT GGACGCAGAT TCACACGGGG TGTTCCGGGA CGGCGATGCC ATACACAGAC TTTACTGGA GCCTGTAACC GGAGGGTGGA CCTGCGTCTA	TATGTGTCTG	AAAATGAGCT TTTTACTCGA	CGGAGATTGG GCCTCTAACC	GCTCGCACCT	GGACGCAGAT CCTGCGTCTA
1761	GGAAGACTTA	AGGCAGCGGC TCCGTCGCCG	GGAAGACTTA AGGCAGGGGC AGAAGAAQAT GCAGGCAGCT GACTTCTTCT ATTCTGATAA GAGTCACAG TAACTGCGGT CCTTCTGAAT TCCGTCGCCG TCTTCTTCTA CGTCCGTCGA CTCAACACA TAAGACTATT CTCAGTCTCC ATTGAGGGCA	GCAGGCAGCT	GAGTTGTTGT CTCAACAACA	ATTCTGATAA TAAGACTATT	GAGTCAGAGG CTCAGTCTCC	TAACTCCCGT ATTGAGGGCA
1841	TGCGGTGCTG	TTAACGGTGG	TECEGTECTE TTARCEGIGE AGGGAGICI ACTUTGAGGA GTACTOCTIC CTECCECEGE CGCGACCACA CATAATACCI ACGCCACGAC AATTGCCACC TCCCGTCACA TCAGACTCGT CATGAGGAAC GACGGCGGG GCGGGGTGTT GTATTATCGA	AGTCTGAGCA TCAGACTCGT	GTACTCGTTG	CTGCCGCGCG	CGCCACCAGA	CATAATAGCT GTATTATCGA
+5	5					8	EcoRI	M A A

FIG. 5-Page 3

GACACACTAA CACACTCTTC CTTTCCATGG GTCTTTTCTG CACTCACCGT CGTCCACCTA AGAATTCACC ATGGCTGCAT CTCTCTGATT GTCTCACAAG GAAAGGTACC CAGAAAAGAC GTCAGTGGCA GCAGCTGCAT TCTTAAGTGG TACCGACGTA

1921

oCMV-delNS35

- M S K CATGTCCAAG GTACAGGTTC A ACACTGGGCT TTGGTGCTTA CA V L V L N P S V A A GIGCTAGTAC TCAACCCCTC TGTTGCTGCA CACGATCATG AGTTGGGGAG ACAACGACGT G Y K GGGCTATAAG CCCGATATTC Y A A Q ATGCAGCTCA (TACGTCGAGT + +2 Y A 2001
- CCACCTACGG TAGTGCATGA GGTGGATGCC တ ATCACGTACT G V R T I T G S P GGGGTGAGAA CAATTACCAC TGGCAGCCCC GITAAIGGIG ACCGICGGGG CCCCACTCTT GCTCATGGGA TCGATCCTAA CATCAGGACC 2 z Ġ + 2081
- ACGGATGCCA TGCCTACGGT C H S GTGCCACTCC CACGGTGAGG D I I C D E GACATAATAA TITGIGACGA CTGTATTATT AAACACTGCT GGGCGCTTAT CCCGCGAATA ¥ A D G G C S G GCCGACGCG GCTCCGGC CGGCTGCCGC CCACGAGCCC K F L CAAGTICCIT (GTTCAAGGAA +2 2161
- CACCGCCACC GTGGCGGTGG A R L V V L A GCGAGACTGG TTGTGCTCGC ACTGTCCTTG ACCAAGCAGA GACTGCGGGG TGACAGGAAC TGGTTCGTCT CTGACGCCCC G ¥ ¥ 0 _ > G I G CCCGTAACCG CATCCATCT GTAGGTAGAA တ 2241
- CTTTTACGG GAAAAATGCC GCAGAGATCC C S T T GTCCACCACC AGGTIGCTCT GTCCACCACC TCCAACGAGA CAGGTGGTGGTG I GCCCCATCCC AACATCGAGG AC GAGGCCCGA GCCAGTGACA CGGGGTAGGG CCGTCACTGT > > တ CCICCGGGCI G 2321
- GACGAACTCG CTGCTTGAGC GAAGAAGTGC CTTCTTCACG L I F C H S K CTCATCTAAA GAGTAGAAGA CAGTAAGTTT CAAGGCTAIC CCCTCGAAG TAATCAAGGG GGGGACATATCCGAIAG GGGGAGCTIC ATTAGTICC CCCTCTGTA Ħ ~ c G ᆸ д STICCGAIAG ¥ 2401
- GACCAGCGGC CIGGICGCCG G S V I P CCGTCATCCC S CTTGACGTGT GAACTGCACA > Д Y R G CTACCGCGGT (GATGGCGCCA GCCATCAATG CCGTGGCCTA 4 > ¥ z V A L GGTCGCATTG CCAGCGTAAC A A K L CCGCAAAGCT (SGCGTTTCGA 2481

V I D C N T C GTGATAGACT GCAATACGTG CACTATCTGA CGTTATGCAC M T G Y T G D F D S ATGACCGGCT ATACCGGCG CTTCGACTCG TACTGGCCGA TATGGCCGCT GAAGCTGAGC D V V V A T D A L
GATGITGICG TCGTGGGAAC CGATGCCCTC
CTACAACAGC AGCACCCTTG GCTACGGGAG

GCTGTCTCCC CGACAGAGGG ¥ V T Q T V D F S L D P T F T I E T I T L P Q D TETAGGGGA GAAGTGAGT CCCCCAAGAT ACAGTGGGT ACAGTGGAT ACAGTGGGT GGGAACT GGGATGGAAG TGGTAACTCT GTTAGTGGGA GGGGGTTCTA 2641

CCCCTCCGGC G S д F V A P G E R TTTGTGGCAC CGGGGAGCG AAACACCGTG GCCCCTCGC T G R G K P G I Y R ACTGGCAGG GCAAGCCAGG CATCTACAGA TGACCGTCCC CCTTCGGTCC GTAGATGTCT. GCACTCAACG TCGGGCAGG CGTGAGGTGC 2721

2801

StuI Н > c ы 3 ы ы × А 0 O > д Н G д z Σ × ď 24 ы 24

GTCTTTACAG CAGAAATGIC TTGGGAGGGC TGCCAGGACC ATCTTGAATT ACGGTCCTGG TAGAACTTAA GCTTCCCGTG 1 GCGTACATGA ACACCCCGGG CGCATGTACT TGTGGGGCCC TAGGCTACGA (ATCCGATGCT (2881

0 × ⋖ > ы д ٦, z ы c တ 0 2 \vdash 0 S ы ſ±, × ¥ Ω H ы StuI 7

AGCGTACCAA TCGCATGGTT CTTACCTGGT GAATGGACCA GAGAACCTTC GCAGAGTGGG (CCCAGACAAA GGGTCTGTTT CACTITCIAI (ATATAGATGCC C GCCTCACTCA CGGAGTGACT : 2961

- A T V C A R A Q A P P P S W D Q M W K C L I R L K P T GCAACCCTC CCCCAACCT GGGACCAGAT GTGAAGTGT TTGATTCGC TCAAGCCCAC GGGGGGGGA CCTGGTCTA ACTAAGCG AGTTCGGGGA GGGGGTAGCA CCTGGTCTA CACTTGACA AACTAAGCG AGTTCGGGTG 3041
- GTCACCAAAT CAGTGGTTTA L H G P T P L L Y R L G A V Q N E I T L T H P COTOGROPOLOGY AND COLOR AND COCCACCA COCCAGGAGG CONTINUES AND COCCAGGAGG CONTINUES CONTINUES AND CONTINUES AND CONTINUES GGAGGTACCC 3121
- Y I M T C M S A D L B V V T S T W V L V G G V L A A L AAAAAAATAACATGACATGCG GCCGACCTGG AGGTCGTCG GAGCACCTGG GTGCTTGG GCGCGCTCCT GCCTGCTTTG TGTAGTACTG TACGTACAGC CGCGCGGGAC CTCCAGCAGTG CTCGTGGACC CTGTGGACCAAC 3201
- A A Y C L S T G C V V I V G R V V L S G K P A I I P D GEOCOGNATT GECTOTICAEC AGGCGGGGA TGATACTIGA CGGA AGCCGGCAA TGATACTIGA CGGAGATA GGGACAGTTG TCCGACGCAC GAGTATCAC CGTCCCAGCA GAACAGCTC TTCGCCCTT AGTATGACT 3281
- GGGATGATGC CCCTACTACG R E V L Y R E F D E M E E C S Q H L P Y I E Q CAGGRAGTC CTCTACCGAG AGTTCGATGA GATGGAAGAG TGCTCTCAGC ACTTACCGTA CATGGAGGAGAGT GTCATTCGG GAGATGGCTC TCAAGCTACT CTACCTTCTC ACGAGGTGG TGAATGGCAT GTAGCTCGTT 3361
- L A E Q F K Q K A L G L L Q T A S R Q A E V I A P A V TOCOCRACE CITCAAGCAG AAGCOCTCG GCCTCCTGCA GACGCTCC CCTCAGGCAG AGGTTATCG CCTGCTGTC AGGGGAGG CT CTGCGGAGG GGAGTCGT TCCGGGAGC GGAGGACGT CTGCGGGAGG GGAGTCGT CTGCGGAGA +2 L A E 3441
- GGGATACAAT ACTTGGCGGG CCCTATGTTA TGAACCGCCC I. GIOY O T N W O K L E T F W A K H M W N F I S CACACAACT GCCAAAAACT CCACACCTTC TGGGGAACC ATIGTGGA CTTCATGAG TGGGTGAG CCGTTTTGA GCTGTGAAA ACCGGTTTG TATACACCT GAAGTAGTGA S H N M 3521

- CTAACCACTA GATTGGTGAT TGCTTCATTG ATGGCTTTTA CAGCTGCTGT CACCAGCCCA ACGAAGTAAC TACCGAAAAT GTCGACGACA GTGGTCGGCT S Þ A A L P G N P A I A S L CTGCCTGGTA ACCCCGCCAT TGCTTCATTG GACGGACCAT TGGGGCGGTA ACGAAGTAAC +2 L S T 01 CTTGTCAACG C GAACAGTTGC G
- L F N I L G G W V A A Q L A A A A A P T T T V CUTUTIONAL SITUATIONS CONTROCTED CONTROLLED TO CONTROLLED TO CONTROLLED TO CONTRACTION CANDOCANCE ACGESTICAGE GEGEGEGEG CANDECORING ACGESTICAGE CONTROLLAND CANDOCANING ACGESTICAGE CONTROLLAND FOR CANDOCANING ACGESTICATION OF CANDOCANING ACCORATION OF CAN CGGTTTGGGA GGAGAGTTG GCCAAACCCT 0 . +5
- G A G L A G A A I G S V G L G K V L I D I L A G Y G A GOCCTICAGE TRACTICAGE ACCTITACAGE ACCTITACAGE CATATIGGE COGCAACGE TAGAACTE TGGGAAAGT CTLAINAGA ATCATIACGE GGGTAGCG TAAAACTE ACCTITACA GAGTATUT AGAAACTE CATIACGEG 7 3761
- AATCTACTGC TTAGATGACG ᆸ. GUAGALU AFKIN SGEVPSTE DIV GEGCURGGG GGAGCITHG TEGALTGAGAGG GTGAGGTC COTCACAGAG GACCIGCT COCCAACAC CTCCAGAAA ACCTAAGT CTATACTG CATUCAGG GAGGTGCT CTGAACAG 7
- CCCGGGCGAG GGCCCGCTC CTGTCCAGCA ATACTCCCC GCACGTTCC GCACGTCGT TATGACGCGC CCGTCCAACCT CGGGAGCATC AGCCGCACCA GACACGTCGT A L V G V V G CCCTCGTAG TCGGCGTGGT CTCGCCCGGA GAGCGGGCCT G д S P A I L GCCGCTAGGA +5 3921
- CCCACGCACT ACGTGCCGGA GGGTGCGTGA TGCACGGCCT > Þ × G æ A G A V Q W M N R L I GGGCAGTGC AGTGGATGAA CCGGCTGATA CCCCGTCACG TCACCTACTT GGCCGACTAT 7
- R R L H Q W GAGGCGACTG CACCAGTGGA GTGGTCACCT CTCCCCTGAC GAGCGATGCA CTCGCTACGT ¥ Ω S +2 1081

	L S D	GTTGAGCGAC	CAACTCGCTG	
	CEV	TGCGAGGT (ACGCTCCA	
	I M Q M	GGGACTGGA TA	TCCCTGTAG ACCCTGACCT ATACGCTCCA CAACTCGCTG	
	R D I	IAAGCTCGGA GTGTACCACT CCATGCTCCG GTTCCTGGCT AAGGGACATC TC	TCCCTGTAG A	
•	SWL	STICCIGGCI 4	CAAGGACCGA 1	
	+2 I S S E C T T P C S G S W I	CCATGCTCCG	GTGA GGTACGAGGC C	
	CII	GTGTACCACT	CACATGGTGA	
	I S S E		ATTCGAGCCT	
	+5	4161		

G	
×	
×	
ტ	
×	
0	
ပ	
S	
>	
[24	
Д	н
н	He
G	m
Д,	
ы	
0	
д	
Σ	
u	
×	
¥	
×	
ы	
3	
H	
×	
<u> </u>	
+5	**

GGTATAAGGG CCATATTCCC ITTAAGACCT GGCTAAAAGC TAAGGTCATG CCACAGCTGC CTGGGATCCC CTTTGTGTC TGCCAGGGGG AAATTGTGGA CCGATTTTGG ATTGGAGTAC GGTGTGGAGG GACCCTAGGG GAAACACAGG ACGGTGGGG TTTAAGACCT 4241

4321

M RAIL V G P R T C R N M W S G T F P I N A Y T T G P C TRABELED COGNITION OF SCREEGES GEOCOCCTOR TRABELED CONTINUES CONTINUES OF CONTIN 4401

ACCCCCTTC CTGCGCCGAA CTACACGTTC GCGCTATGGA GGGTGTCTGC AGAGGAATAC GTGGAGATAA GGCAGGTGGG TGGGGGGAAG GACGCGCCTT GATGTGCAAG CGCGATACCT CCCACAGACG TCTCCTTATG CACCTCTATT CCGTCCACCC EE S > A L W R H A P N 787

TTTTCACAG AAAAGTGTC D F H Y V T G M T T D N L K C P C Q V P S P E GGACTICCAC ATCGCCCCAACATCTT AAATGCCCCT CCAGGTCC ATCGCCCCAACCTTAAATGCCCCT ACGTCAGG TAGGCCCCAACCTAACATCT AAATGCCCCT ATGGCGCG TAGGCGCAACTTAACGGGCA GCGCTCAAGG TAGGCGCCTAACATCAACT 1954

E L D G V R L H R F A P P C K P L L R E E V S F R V G ANTIGGAGG GGTGCGCCT CATAGGTITG CGCCCCCTG CAGCCCTG CTGCGGGAG SGGTATCAT CAGGTAGGA TITAACCTGCC CCAGCGCGAT GTATCCAAAG CGCGGGGGAG GTCGGGAAG GAGGCCCTGC TCCATAGTA GTCTAATCA 4641

la fina

CTGA	CTA
+2 L'H E Y P V G S Q L P C E P E P D V A V L T S M L T D D I CTCCACCAAT ACCCGTAGG GTCCCAATTA CCTTCGCAGG CCCAACCGGA CGTGGCCGTG TTCACGTCCA TGCTCACTGA GAGGTGCTTA TGGCCATCC CACCGTTAAT GCAACGCTCG GCCTTGCCGC GCCTTGCCCG GCTTGCCCT GCACGCGCAC AACTGCAGGT ACGAGTGCACT	+2 P S H I T A E A G R R L A R G S P P S V A S S A II COCTICICAL ATTACAGGGG AGGGGGGGGGGGGGGGGGGGGGGGGGGG
× A L	S I S
S TCC	SCAGO
ACG TGC	4 0 0 0
TTG	V TGT ACA
GTG	SCTC
A 556	400
V A V L T S M CCTGGCCGTG TTGACGTCG T GCACCGGCAC AACTGCAGGT A	CACC
O St.	STAT
P 2000	မမ္မိုင္ပ
SCT.	SCTC
4 O O	400
GAGO	CAA
Acc	AAG TTC
₽ 22,23	~ 8 8 8
L TTA AAT	ంత్రిక్ర
o, GTT	A 56 55
L'A E Y P V G S Q L P C E P E P D CTCCACCAAT ACCCCTAGG CTCCCAATTA CCTTGCGAC CCCAACCGA CAGGTTAAT GAACGCTCG GCCTTGCCCA GAGGTCTTA TGGCCATC CACCTTAAT GAACGCTCG GCTTGGCCT	AGGC TCCG
AGG G	CAG
CCA	CAGO
4 000 000	TAA
⊁ ∰ ₹	144
E SCE	, 200 200 200 200 200 200 200 200 200 200
GCA(SCTC
ក្ខខ្ម	A CO
+2 4 <i>72</i> 1	+5 4801

L K A T C T A N H D S P D A E L I B A N CARAGGGA CRAAGGGA TCHCAAGGGA TCHCGTCATCH CTGACGTCAT AGAGGCAACGATCH CACTCAGTA TCTCCGTTG AGGGCATA CACTCAGTA TCTCCGGTTG AGGGCATAC AGTCAATA TCTCCGGTTG AGGTTGACTA TCTCCGGTTG AGGGCATAC AGTCCAATA AGGGCAATAC AGTCCAATA AGGTTGAATA AGGGCAATAC AGGGAATAC AGGGCAATAC AGGGCAATAC AGGGCAATAC AGGGCAATAC AGGGCAATAC AGGG S Q L S A P S GCCAGCIATC CGCTCCATCT 7 4881

L L W R Q E M G G N I T R V E S E N K V V I L D S F D CTCCTATGGA GGCGAGGAC TGCACGAGG TTGACTCAGA AAGAAATG GTGATTGTG ACTCTTGGA AGGATACCT CGTCCTCTA CCGCGCGTT TAGTGACGA AATGAGTC TTTGTTTAG CACTAAGAC TGAGAAGGT 7 4961

P L 5041

5121

V H G C P L P P R S P P V P P P R K K R R T V V L T E GOTCATGGT TECCATICG ACCITCAAAG TCCCTCTG TGCTCCGCTCGC TCGGAAAG GCGACGGTG TCCTCACTGA AGGTTCCT ACGAAAGAGTGAT AGGGAAGAAC ACGAAGAGA AGGCTTCTTC GCTCCAAGATGAAT +2 5201

	T G D	ACGGCGGACA	TGCCCGCTGT
	S G I	TICCGGCATI	AAGGCCGTAA
	SST	GCTCCTCAAC	CGAGGAGTTG A
	SFGS	AGCTTTGGCA	TCGAAACCGT
	A T R	CGCCACCAGA A	GCGGTGGTCT
	AEL	TGGCCGAGCT CG	ACCGCCTCGA
	STAL	TCTACTGCCT	AGATGACGGA
	ST	ATCAACCCIA	TAGTIGGGAT
ė	+5	5281	٠,

- CATGCCCCCC Σ GACCCTGACT CCTATTCCTC CTGCGACTCA GGATAAGGAG P D S D A E S CCCCGACTCC GACGCTGAGT GGGCTGAGG CTGCGACTCA N T T T S S E P A P S G C P ATACGACAAC ATCCTCTGAG CCCGCCCTT CTGGCTGCCC TATCCTGTTG TAGGAGACTC GGCGGGGGAA GACCGACGG
- ۵ ш ¥ z ď M S co > Н S 3 S G Ω S Ц Д ы BamHI G M G ы ы 7
- GCCTCCTACA CTGGAGGGG ACCTCGCCA TCCGGATCTT AGCGACGGG CATGGTCAAC GGTCAGTAGT GAGGCCAACG GACCTCCCC TGGACCCT AGGCCTAGAA TGGCTGCCCA GTACCAGTTG CCAGTCATCA CTCGGGTTGC : 5441
- 5521
- 5601
- K V T F D R L Q V L D S H Y Q D V L K E V K A A A S K AAAGTGAGT TTGAGAGAT GGAGTTCTG GACAGCGAT ACCAGGAGT ACTGAGGAG CTTAAAGGA GGGCTGAA TTGAGTGTA AACTGTGTG GCTTCAAGAG CTGCTGGTAA TGGTCGTGA TGAGTTCCTC CATTTGCTC GCOGGAGTT 5681
- TTTGGTTATG AAACCAATAC L T P P H S A K S K CTGACGCCC CACACTCAGC CAAATCCAAGGGACTGCGGGG GTGTGAGTCC GTTTAGGTTC N L L S V E E A C S AACTTGCTAT CCGTAGAGGA AGCTTGCAGC TTGAACGATA GCCATCTCCT TCGAACGTCG V K A AGTGAAGGCT TCACTTCCGA 19/9

- V R C H A R R A V T H I N S V W K D L L E D N CECTCETEC CATECOTECTE CATECOTECTE AGGEGERACATA COCATCAGE TECTGETEC AGGAGGAGA TOTTGETE TECTGETE AGGAGGAGT TECTGGAGA CETTET GAGGAGAT AGGAGGAT TECTGGAAGA CETTETETT. GGGCAAAGA
- V T P I D T T T I M A K N E V F C V Q P E K G G R K P A GARGAGGAG ATROGAGGAG TATACTGGT TRACECTERG AAGGGGGG CHARGCAGG GARGACAA TACTGTAATG GTAGTACGG TATGTTGCT AAAAAAGA AGTGGAATT TTGCGCCGA CATTGGGTG 7 5921
- TCGTCTCATC (AGCAGAGTAG (6001
- ß × 3 A 0 > н E F EcoRI > 24 0 G S × 0 9 > S S G Z 5 A ы 7
- GTGGAAGTCC CACCTTCAGG TCGTGCAAGC (AGCACGTTCG) GITGAAIICC CAACTTAAGG AGGACAGCGG (TCCTGTCGCC) AATACTCACC , TACGGATTCC A GGGAAGCTCC TGGCCGTGAT ACCGCCACTA 6081
- T R C F D S T V T E S D I R T E E ACCOGNOCAT TYPE TACCOGNOCA TYGGACGA GAGGAGGA GAGGAGGA GATAGTGATTC TYGGTTAGG CATGGAGGA AAGAAAACCC CAATGGGGTT CTCGTATGAT TTCTTTTGGG GTTACCCCAA GAGCATACTA Ω × တ 124 G Σ ⊢ × 1919
- 6241
- A S G V L T T S C G GCGAGCGGC TACTGACAC TAGCTGTGGT CGCTCGCCG ATGACTGTTG ATCGACACCA R C R CAGGIGCCGC (GICCACGGCG (G E N C G Y R GGGGAGACT GCGGCTATCG CCCCTCTTGA CGCCGATAGC G P L T N S R GCCTCTTAC CAATTCAAGG CGGGAGAATG GTTAAGTTCC +5 6321

ი	ဗ္ဗ	ပ္ပ
ပ	īgī	ACA
>	GIG	CAC
ы	5	; AG
Σ	ΥÏĞ	FAC
H	ACC.	166
ပ	ŢĞĊ	ACG
Q	3AC	ïG
0	,AG	ŭ
ч	GCTC	TIGIGGGAGT GAAGGAIGIA GTICCGGGCC CGTCGGACAG CICGGCGTCC CGAGGICCIG ACGIGGIACG AGCACACAC
ტ	9	ပ္ပ
¥	200	S
A	AGCC	500
×	S	ပ
U	TGI	ACA
A	200	99
A	GCA	S
æ	999	ပ္ပ
¥	ည္ပ	ğ
×	CAAG	GTIC
Н	CAT	STA
X	TA	3AT(
O	TIG	AAC
۳	٠ ک	5
<u>,</u>	CT.	GAG.
H	ACC	166
Z	AAC	TIG
+2 NTLT CYI KARAACRAAG LQD CTML V G	6401: AACACCCTCA CTIGCTACAI CAAGGCCCGG GCAGCCTGTC GAGCCGCAGG GCTCCAGGAC IGCACCAIGC TCGTGTGTGG	210

E A M	GAGGCTATGA	CTCCGATACT
A F T	AGCCTTCACG	TCGGAAGTGC
SLR	CGAGCCTGAG	GCTCGGACTC
E D A A	GAGGACGCGG	CICCIGCGCC
0 10 5	GGGGTCCÀG	CCCCCAGGTC
+2 D D L V V I C E S A G V O E D A A S L R A F T E A M	6481 CGACGACTIA CTCCTTATCT CTGAAAGCGC GGGGTCCAG GAGGACGCGG CGAGCTGAG AGCCTTCACG GAGGTATGA	GETECTEAAT CAGDATAGA CACTTTGGG COOCCAGGIC CICCIGGGGC GCICGGACIC ICGGAAGIGC CICCGAIACI
ΙΛΛ	GICGLIAICI	CAGCAATAGA
 1 0 0	CGACGACTTA	CCTCCTCAAT
+2	6481	

N N	CTCCAACGTG
S C S	CATCATGCTC
ELII	GAGCICATAA CA
YDL	ATACGACTTG GAGG TATGCTGAAC CTCG
O P E	CACAACCAGA ATAC GTGTTGGTCT TATG
G D P P	GGGGACCCCC CAC
A P P	CCCCCCT
+2 T R Y S	66TCCATGAG GCC
	9

+2 S V A H D G A G K R V Y Y L T R D P T T P L A R A A W W T L T R D P T T P L A R A A W M SEA1 TRACTOCOCO ACGAGGGGG TGGAAGAGG GTCTACTACA GTGGGGGA CCTTACAACC CCCTCGGGA AGGTGGGGG ACGTTGTGC GAGATGATGG AGTGGGGAGT GGGATGTTGG GGGGAGGGGT GTGGAGGGGGA AGTGGGGGAGGTGATGGAGGGGAGGGGGGGG	A R M GCGAGGATGA CGCTCCTACT
P L A F	T L W
CCCTCGCGA	CACACTGTGG
GGGGAGCGCT	GTGTGACACC
P T T	F A P
CCCTACAACC	TGTTTGCCCC
GGGATGTTGG	ACAAACGGGG
T R D	N I I M
TCACCGTGA	AACATAATCA
AGTGGGCACT	TTGTATTAGT
V Y Y L	W L G
GTCTACTACC	CTGGCTAGGC
CAGATGATGG	GACCGATCCG
+2 S V A H D G A G K R V Y Y L T R D P T T P L A R A A W I T AND P T T P L A R A A W INTERCRECE ACACACGCC TGGAAAGAG GTCTACTACTAC TCACCCGTAC CCTACAACC CCCTCCGCA GACCTCCTGC AGTCACCAC ACTCACCGC TCCTCCCCC ACATCATCG AGTCACCAC GCGATGTTGG GGGGGCCCT CTCGACCACAC	+2 E T A R H T P V N S W L G N I I M F A P T L W A R M G N211 GGAAAAGGA AGAAACHGTG GCGAGATGA CCTCTGTG GCGAGATGA CCTCTGTGG GCGAGCATGA CCTCTGTGG GTCACTTAAG GACCGATCCG TTCTATTAGT ACAAACGGGG GTGTGACAC GCGCCCTACT
ACCACGCCC TGCTGCCGCC	R H T] AGACACACTC TCTGTGTGAG
S V A H	E T A
TCAGTCGCCC	GGAGACAGCA
AGTCAGCGGG	CCTCTGTCGT
+2	+2
6641	6721

G A	990000
×	CTAC
I	ΙĀ
M	GCGAGA
ပ	AACG
Q	S C
П	GAG
¥	ည္ပင္သ
0	GEG
ы	SH
П	ĹΫ
0	CCAG
Q	3 5 5
2	AGG
A	AGCC
H	4 H
1	SET
>	SES
လ	10 A
124	AAA
Ē	AAG
H	CCAT
H	AC
×	TGATGAC A
П	GAC
н	AT AT
+2	6801

¥	TTA AAT
S	GTC
H	TCCA
ы	E &
တ	AGT
[X4	ΑŢ
A	GGA
တ	STCC
П	SAG
ß	TGGCCTCAGC (ACCGGAGTCG)
H	TCCA TO AGGT A
П	でつ でが
×	AAGA(TTCT(
0	Q L
Н	CCAATCATTC GGTTAGT
Н	ATC
Д	SGA
д	AACCACT GGATCTACCT C TTGGTGA CCTAGATGGA G
1	CTA
D	GGATCTACCT CCTAGATGGA
П	GA
д	GAACCACT (CTTGGTGA (
123	AG.
H	A T
တ	TCCA
X	TAC
ပ	ACG
+5	6881

œ	GACACCGGG CTGTGGCCC
Ħ	Sign
~	S AGACACCGG
V P P L R A W R H	CTTGGGG TACCGCCCTT GCGAGCTTGG AGA GAACCCC ATGGCGGGAA CGCTCGAACC TCI
¥	SeA
~	TT GCGAGCT
_	
_	Ser
0.	ၓၟၓၟ
-	ACC
>	D G
G	ဗ္ဗဗ္ဗ
ы	GAT
×	TT
æ	GCCTCAGA AAACTTGGGG TACCGCCCTT CGCAGTCT TTTGAACCCC ATGGCGGGAA
ы	GAG
VAA CLRKI	GAAATCAATA GGGTGGCCGC ATGCCTC CTTTAGTTAT CCCACCGCC TACGGAG
¥	ပ္ပပ္
¥	ဒ္ဗဗ္ဗ
Ν	ACG
	888
~	2 H
Z	A E
I	TAC
×	₹E
U	TICTCCAGGI GAAATCAATA GGGIGGCGG AIGCCTCAGA AAACI SAGAGGICCA CITIAGIIAI CCCACCGGCG IAGGGAGICI IITGA
SPG	25
S	
+2	1969

>	AGTA	ICAT
A	엻	S
3	S	GACC
z	¥	STT GA
[24	E	AAG
ы	Š	GAG
>	T ACC	Ħ
~		IGA
b	8	5
ပ	IG IG	ACA
н	ATA	IAT
Ą	ဗ္ဗ	99
A	TICTGGCCA GAGGAGGCAG GGCTGCCATA TGTGGCAA(CCGACGGTAT AC
æ	و	ည
G	7399	rccerc co
9	4GGA	CICCI
24	G	5
A	S	99
П	E.	AAGACCGGT C
ы	ij	GAA
æ	8	S
¥	g	GGA
ĸ	ğ	TCGCA GGCGCGATCC G
>	턵	Ą
Š	Š	S
24	gg	SCC
Ą	ខ	ğ
+5	7041 CCCGGAGCGT C	

ტ	99	ပ္ပ
S	ÄĞ	ğ
×	SCTG GCTACAGO	GATGTCGCC
ტ	9	C
Ą	Ĕ	gĀ
Н	Š	ပ္ည
(z.,	Ę	AAG
3	IGG	ACC
G	ဗ္ဗ	ဗ္ဗ
S	GICC	CCACCTGAA CAGGCCC
ы	CTT G1	¥
Α	g	ដ
П	8516	CGAC
0	,V	
9	SCIGGCC 4	GGCGACCGG
¥	GG	gg
¥	င္ဗ	99
Ą	TAGCG G	ပ္ပ
Н	ATA	ΤĀ
Т	AAAGC TCAAACTCAC TCCAA	TICAGIG AGGITAICGC (
Н	AC	Į,
ы	S	GAG
×	CAAA	GITI
ы	E O	GA
×	AAG	Ę
H	ပ	IGI
24	AGAA	ΤĊŢ
+5	7121 AG	

A G V	GCAGGGGTAG	
LLA	CTGCTTGCT	
1 1 0	TTTGCCTACT CCTGCTTGC AAACGGATGA GGACGAACC	
W I W F	C TGGATCTGGT T G ACCTAGACCA A	
P R	000000000000000000000000000000000000000	
V S H A R	TGTCTCATGC ACAGAGTACG	
Y H S V	TATCACAGCG ATAGTGTCGC	
G D I	GGGAGACATT	
+2	7201	

	AAAGGCGCGC	TITCCGCGCG
	AAAAATCTAG	TTTTAGATC
	AAAAAAAA	TTTTTTTT
	ACTCCGGCCT	TGAGGCCGGA
	TGGGGTAAAC	ACCCCATITG
~	CGATGAAGGT	GCTACTTCCA #
L P N	CCTCCCCAAC	GGAGGGGTTG
GIYL	GCATCTACCT	CGTAGATGGA
+2	7281 G	

BamHI MluI

ACGCGTTAGA GCTCGCTGAT CAGCCTGGAC TGTGCCTTCT ACTTGCCAGC CATCTGTTGT TGCGCAATCT CGAGCGATA GTCGGAGCTG ACACGGAAGA TCAAGGGTCG GTAGACAACA -AGGATCCACT A ----CAAGATATCA 4 GTTCTATAGT 1 7361

TIGCOCCICC CCCGIGCCII CCITGACCCI GGAAGGIGCC ACICCCACIG ICCITICCIA AIAAAAIGAG GAAAITGGAI AACGGGGAG GGGCAGGGAA GGAACIGGGA CCIICCACGG IGAGGGIGAC AGGAAAGGAI TAITITACIC CITIAACGIA 7441

-,				DC.	pCIMIN-delINS33				
521	CGCATTGTCT GCGTAACAGA	GAGTAGGTGT CTCATCCACA	COCATICTC GAGTAGGTGT CATICTATIC IGGGGGGGGG GGTGGGGGG GACAGCAAGG GGGAGGATIG GCGTAACAGA CTCATCCACA GTAAGATAAG ACCCCCACA CAGCGCGFC CIGTGGTTGC CCCTCCTAAC	TGGGGGGTGG ACCCCCCACC	GGTGGGGCAG CCACCCGTC	GACAGCAAGG CTGTCGTTCC		GGAAGACAAT CCTTCTGTTA	
109,	AGCAGGCATG	CTGGGGAGCT	AECAGGCATG CTGGGGAGCT CTTCGGCTTC CTGGCTCACT GACTGGCTGC GCTCGGTGGT TGGGCTGCG CGAGCGCTAT TCGTCCGTAC GACCCTCGA GAAGGCGAAG GAGCGACGAC CTGAGGGACG CGAGCCAGGA AGCCGACGC GCTCGCCATA	CTCGCTCACT	GACTCGCTGC CTGAGCGACG	GCTCGGTCGT CGAGCCAGCA	TCGGCTGCGG	CGAGCGCTAT GCTCGCCATA	
1681	CAGCTCACTC	AAAGGCGGTA TTTCCGCCAT	CAGCTCACTC AAAGGCGGTA ATACGGTTAT CCACACAATC AGGGGATAAC GCAGGAAAGA ACATGTGAGC AAAAGGCCAG GTGGAGTGAG TITCCGCCAT TAIGCCGAIA GGTGTCTTAG TCCCCTATTG CGTCCTTTCT TGTACACTCG TTTTCGGGTC	CCACAGAATC GGTGTCTTAG	AGGGGATAAC TCCCCTATTG	GCAGGAAAGA CGTCCTTTCT	ACATGTGAGC TGTACACTCG	AAAAGGCCAG TTTTCCGGTC	
1971	CAAAAGGCCA GTTTTCCGGT	GGAACCGTAA CCTTGGCATT	CAAAGGCCA GGACCGTAA AAAGGCCGCG TYCCTGGCGT TITTCCATAG GCTCCGCCCC CCTGACGAC ATCACAAAA GTTTTCGGT CCTTGGCATT TTTCCGCCGC AACGACGCA AAAAGGTATC CGAGGCGGGG GGACTGCTCG TAGTGTTTTT	TTGCTGGCGT	TTTTCCATAG AAAAGGTATC	GCTCCGCCCC CCTGACGAGC CGAGGCGGGG GGACTGCTCG	CCTGACGAGC GGACTGCTCG	ATCACAAAAA TAGTGTTTTT	
1841	TCGACGCTCA	AGTCAGAGGT TCAGTCTCCA	TCGACICTICA ASTICAGACIT GECGAAACCC GACAGACTA TAAAGATACC AGGCGTTTCC CCCTGGAAGC TCCCTGGTG AGCTGCGAGT TCAGTCTCCA CGGCTTTGGG CTGTCCTGAT ATTTCTATGG TCCGCAAAGG GGGACCTTCG AGGGAGGAGG	GACAGGACTA	TAAAGATACC ATTICTATGG	AGGCGTITCC CCCTGGAAGC TCCGCAAAGG GGGACCTTCG	CCCTGGAAGC GGGACCTTCG	TCCCTCGTGC AGGGAGCACG	
7921	GCTCTCCTGT	GCTCTCCTGT TCCGACCTG CCGCTTACCC	GETCICCICT TECGACCOTG CCGCTTACCG GATACCTGTC CGCCTTTCTC CCTTCGGGAA GCGTGGCGCT TTCTCAATGC CGAGAGGACA AGGCTGGGAC GGCGAATGGC CTATGGACAG GGGAAAGAG GGAAGCCCTT CGCACGCGCA AAGAGTTACG	GATACCTGTC CGCCTTTCTC CTATGGACAG GCGGAAAGAG	CGCCTTTCTC	CCTTCGGGAA GGAAGCCCTT	GCGTGGCGCT	TTCTCAATGC AAGAGTTACG	
8001	TCACGCTGTA AGTGCGACAT	GGTATCTCAG	TCAGGCTGTA GGTATCTCAG TTCGGTGTAG GTCGTTCGCT CCAAGGTGGG CTGTGTGCAC GAACCCCCCG TTCAGCGG AGTGCGACAT CCATAGAGTC AAGCCACATC CAGCAAGCGA GGTTCGACCC GACACACGTG CTTGGGGGGG AAGTCGGGGT	GTCGTTCGCT	CCAAGCTGGG	CTGTGTGCAC	GAACCCCCC CTTGGGGGGC	TTCAGCCCGA	
8081	CCGCTGCGCC	CCGCTGCGCC TTATCCGGTA GCCGACGCGG AATAGGCCAT		ACTATCGTCT TGAGTCCAAC TGATAGCAGA ACTCAGGTTG	CCGGTAAGAC ACGACTTATC GGCCATTCTG TGCTGAATAG	ACGACTTATC TGCTGAATAG	GCCACTGGCA CGGTGACCGT	GCAGCCACTG	
8161	GTAACAGGAT	TÁGCAGAGGG ATCGTCTCGC	GTAACAGRAT TÁCCACAGGC AGGTATGTAG GCGGTGCTAC AGACTTCTTG AAGTGGTGGC CTAACTAGGG CTACACTAGA CATTGTCCTA ATGGTGTGG TGCATAGATG GGGGAGGATG TCTCAAGAAG TTCACCAGGG GATTGATGCG GATGTGATGT	GCGGTGCTAC	GCGGTCCTAC AGACTICITG AACTGGTGGC CGCCACGAIG ICTCAAGAAC ITCACCACCG	AAGTGGTGGC TTCACCACCG	CTAACTACGG	CTACACTAGA GATGTGATCT	

8241	11 AGGACAGTAT TCCTGTCATA	TTGGTATCTG AACCATAGAC	PCMV-delNS35 AGBGAGTAT TTGGTATGTG GCGTGTGGTG AAGGGAGTTA CGTTGGGAAA AAGAGTTGGT AGGTGTTGAT CGGGGAAGA TGCTGTGATA AAGGATGAG GGAGAGGAG TTGGGTGAAT GGAAGCGTT TTGTGAAGGA TGGAGAAGTA GGGGGTTTGT	pCP AAGCCAGTTA TTCGGTCAAT	pCMV-delNS35 tta ccttcggaaa aat ggaagccttt	5 AAGAGITIGGT TTCTCAACCA	AGCTCTTGAT TCGAGAACTA	CCGGCAAAC
8321		GGTAGCGGTG		TTGCAAGCAG	GITITITICI ITCCAAGCAG CAGATTACGO GCACAAAAAA AGGATCTCAA CAAAAAAACA AACGITCGTC GICIAATGCG CGICITITIT ICCIAGAGTI	GCAGAAAAA	AGGATCTCAA TCCTAGAGTT	GAAGATCCTT
8401	TGATCTTTTC ACTAGAAAAG	TACGGGGTCT ATGCCCCAGA	TGATCITITC TACGGGGTCT GACGGTCAGT GGAACGAAAA CTCACCITAA GGGATTITGC TCATGAGATT ATCAAAAAGG ACTAGAAAAG ATGCCCCAGA CTGCGAGTCA CCTTGCTTIT GAGTGCAATT CCCTAAAAAC AGTACTCTAA TACTTITTCC	GGAACGAAAA	CTCACGTTAA	GGGATTTTGG	TCATGAGATT AGTACTCTAA	ATCAAAAG TAGTTTTTC
8481	ATCTTCACCT TAGAAGTGGA	AGATCCTTTT TCTAGGAAAA	ATCTTCACCT ACATCCTTT AAATTAAAAA TGAAGTTTTA AATCAATCTA AAGTATATAI GAGTAAACTT GGTCTGACAG TAGAAGTGGA TCTAGGAAAA TTTAATTTTT ACTTCAAAAT TTAGTTAGAT TTGATATATA CTCATTTGAA CGAGACTGTG	TGAAGTTTTA ACTTCAAAAT	AATCAATCTA TTAGTTAGAT	AAGTATATAT TTCATATATA	GAGTAAACTT CTCATTTGAA	GGTCTGACA
8561	TTACCAATGC AATGGTTACG	TTAATCAGTG	TTACCAATGO TTAATCAGTG AGGCACCTAT CTCAGGGATC TGTCTATTTC GTTCATCCAT AGTTGGCTGA AATGGTTACG AATTAGTCAC TCCGTGGATA GAGTCGCTAG ACAGATAAAG CAAGTAGGTA TCAAGGACT	CTCAGCGATC	TGTCTATTTC ACAGATAAAG	GTTCATCCAT	GTICALCCAT AGITGCCTCA CTCCCCGTCC CAAGIAGGTA TCAACGGACT GAGGGGCAGC	CTCCCCGTCG
8641	TGTAGATAAC ACATCTATTG	TACGATACGG	TCTAGATAAC TACGATAGGG GAGGGCTTAC CATCTGGCCC CAGTGGTGCA ATGATACGGG GAGACCCAGG CTGACCGGGT ACATCTATTG ATGCTATGGC CTCCCGAATG GTAGACGGGG GTCACGACGT TACTATGGGG CTCTGGGTGC GAGTGGCGG	CATCTGGCCC GTAGACCGGG	CAGTGCTGCA	ATGATACCGC TACTATGGCG	ATGATACCGC GAGACCCACG TACTATGGCG CTCTGGGTGC	CTCACCGCT
8721	CCAGATTTAT GGTCTAAATA	CAGCAATAAA GTCGTTATTT		GGAAGGGCCG	CCAGCCAGCC GGAAGGCCGG AGCCCAGAAG TGGTCCTGCA ACTTTATCC CCTCCATCCA GGTCGGTCGG CCTTCCCGGC TCGCGTCTTC ACCAGAACGT TGAAATAGGC GGAGGTAGGT	TGGTCCTGCA	ACTTTATCCG TGAAATAGGC	CCTCCATCC
8801	GTCTATTAAT CAGATAATTA	TGTTGCCGGG	GICTATTAAT TGTIGGCGGG AAGCIAGAGT AACIACITGG CCAGTIAATA GTTIGGCCAA CGTIGTIGGC AITGCIACAG CAGATAATTA ACAACGGCGC TICGAICTCA TICATCAAGG GGICAATTAI CAAACGCGTI GGAACAACGG	AAGTAGTTCG TTCATCAAGC	AAGTAGTTCG CCAGTTAATA TTCATCAAGC GGTCAATTAT	GTTTGCGCAA	GTTTGCGCAA CGTTGTTGCC CAAACGCGTT GCAACAACGG	ATTGCTACAG
8881	GCATCGTGGT	GTCACGCTCG	GGATGGTGGT GTCAGGGTCG TGGTTTGGTA TGGCTTCALT CAGCTCCGGT TGCCAACGAT CAAGGGGAGT TACATGATGC CGTAGGACCA CAGTGGGAGC AGCAAACCAT ACCGAAGTAA GTGGAGGCCA AGGGTTGCTA GTTCCGGTCA ATGTAGTAGG	TGGCTTCATT ACCGAAGTAA	CAGCTCCGGT GTCGAGGCCA	TCCCAACGAT	CAAGGCGAGT GTTCCGCTCA	TACATGATC

				ට්	pCMV-delNS35			
8961	CCCATGTTGT	GCAAAAAGC GGTTTTTTGG	GGTTAGCTCC CCAATCGAGG	TTCGGTCCTC	8961 CCCATCTICT GCAAAAAAGC GCTTAGCTCC TTGGCTCCTC CGATCCTTGT CAGAAGTAAG TTGGCCGCAG TGTTATCACT GGGTACAACA GTCTTCATTC AACCGCCGTC ACAGTAGTCA	CAGAAGTAAG GTCTTCATTC	TTGGCCGCAG AACCGGCGTC	TGTTATCACT
9041	CATGGTTATG	GCAGCACTGC	ATAATTCTCT TATTAAGAGA	TACTGTCATG	CATGGTTATG GCAGGACTGC ATAATTCTCT TACTGTCATG CCATCGGTAA GATGCTTTTC TGTGACTGGT GAGTACTCAA GTACCAATAC CGTGGTGACG TATTAAGAGA ATGACAGTAC GGTAGGCATT CTACGAAAAG ACACTGACGA CTGATGAGTT	GATGCTTTC CTACGAAAAG	TGTGACTGGT ACACTGACCA	GAGTACTCAA CTCATGAGTT
9121	CCAAGTCATT	CTGAGAATAG	TGTATGCGGC	GACCGAGTTG	CCAAGTCAIT CTGAGAATAG TGTATGCGGC GACCGAGTTG CTCTTGCGCG GCGTCAATAC GGGATAATAC CGCGCGAAT GGTTCAGTAA GACTCTTATC ACATACGCCG CTGGCTCAAC GAGAGGGGC GGCAGTTATG CCCTATTATG GCGCGGGTGTA	GCGTCAATAC	GGGATAATAC CCCTATTATG	CGCGCCACAT
9201	AGCAGAACTT TCGTCTTGAA	TAAAAGTGCT ATTTCACGA	CATCATTGGA GTAGTAACCT	AAACGTTCTT TTTGCAAGAA	ASCAGAACIT IAAAAGIGCI CAICAITGGA AAACGIICII CGGGGGGAAA ACICICAAGG AICITAGGG TGIIGGGI IGIIGGGAG ICGICIIGAA AITITGAGGA GIAGIAACCI ITIGGAAGAA GCGCGGCIII IGAGAGITGC IAGAAIGGGG ACAACICIAG	ACTCTCAAGG TGAGAGTTCC	ATCTTACCGC TAGAATGGCG	TGTTGAGATC ACACTCTAG
9281	CAGTTCGATG	TAACCCACTC	GTGCACCCAA	CTGATCTTCA	CAGITICATG TAACCCACIC GIGCACCCAA CICATCITCA GCAICTITTA CITICACCAG CGITICIGGG IGACCAAAA GICAACCIAC AITGGGIGAG CACGIGGGIT GACIAGAAGI CGIAGAAAAI GAAAGIGGIC GGAAAGACCC ACICGITITI	CTTTCACCAG	CGTTTCTGGG GCAAAGACCC	TGAGCAAAA ACTCGTTTTT
9361	CAGGAAGGCA	AAATGCCGCA TTTACGGCGT	AAAAAGGGAA TTTTTCCCTT	TAAGGGCGAC	CAGGAAGGCA AAATGCGGCA AAAAAGGGA TAAGGGCGAC ACGGAAATGT TGAATACTCA TACTCTTCCT TTTTCAATAT GTCCTTCGGT TTTAGGGGCT TTTTTCCCTT ATTCCGGCTG TGCCTTTACA ACTTATGAGT ATGAGAAGGA AAAGTTATA	TGAATACTCA	TACTCTTCCT ATGAGAAGGA	TTTTCAATAT AAAAGTTATA
9441	TATTGAAGCA	TTTATCAGGG	TTATTGTCTC	ATGAGGGGAT	TAITGAAGCA ITIATCAGGG ITAITGICIC ATGAGGGGAI AGAIAITIGA AIGIAITTAG AAAAATAAAC AAATAGGGGI ATAACITGGI AAATAGTGGC AATAACAGAG TACTGGGCIA TGTATAAAGT TACATAAATC ITITTAITIG ITTAICGGGA	ATGTATTTAG TACATAAATC	AAAAATAAAC TTTTATTTG	AAATAGGGGT TTTATCCCCA
9521	TCCGCGCACA	TCCGCGCACA TTTCCCCGAA AGGCGCGTGT AAAGGGGCTT	AAGTGCCACC	AAGTGCCACC TGACGTCTAA TTCACGGTGG ACTGCAGATT	GAAACCATTA CTTTGGTAAT	TTATCATGAC AATAGTACTG	TTATCATGAC ATTAACCTAT AATAGTACTG TAATTGGATA	AAAAATAGGC TTTTTATCCG
9601	GTATCACGAG CATAGTGCTC	GTATCACGAG GCCCTTTCGT C CATAGTGCTC GGGGAAAGCA G	ပပ					

FIG. 5-Page 16

FIG. 7-Page 1

DCMV-II

CCCTGGCATT ATGCCCAGTA CATGACCTTA CGGGACTTTC CTACATGGCA CATGATACTA CTACATCATA CGGGACTTTAC CGGGACTTTC CTACATGGCA CATGATAGTCA CATGAGGAT CGGGACTTAC CGGGAACTGC CGACATTAC CGGACTTAC CGGGACTTAC CGGGACTTAC CGGGACTTAC CGGGAACTGC CGGCAACTGC CGAAACGGC CATGAGACTG CGGAAACTGC CAAAACTGC CAAAACTGC ACAAACTGC ACAAAACTGC ACAAAACTGCAAAAA TGGCAAAACTACAAAAA TGGCAAAAA TGGCAAAAA TGCCAAAAAA TGCCAAAAAAA TGCCAAAAAA TGCCAAAAAA TGCCAAAAAA TGCCAAAAAA TGCCAAAAAAA TGCCAAAAAACTGCAAAAAA TGCCAAAAAA TGCCAAAAAA CGGCAAAAACCC AAAAAACTGCAAAAAA TGCCAAAAACCCAAAAACCCAAAAAACCCAAAAAA TGCCAAAAAA TGCCAAAAAA TGCCAAAAAA TGCCAAAAAA TGCCAAAAAAA TGCCAAAAAACCCAAAAAACCCAAAAAACCCAAAAAACCCAAAA
PCMAV-II ATGCCCAGTA CATGACCTTA CGGGACTTC CTACTIGGCA GTACATCTC GTATTAGTCA TGGCTATTAGT TAGGGGTCAT GTACTGGAAT GCGCTGAAG GATGAGCGT CATGTAGTG CATATTAGT AGGGTGAT TAGGGAGTTAG TAGCGGTGA TAGGGGTTGA CATGAGGGG ATTTCCAAGT CTCCACCCCA GCCAAAACCG TCATGTGGTT ACCCGCACT ATGCCCAAAC TGAGTGCCC TAAAGCTTCA GAGGTGGGG GCCAAAACCG TCATGAGTAATATAA GCAGAACTTCA AAATGTGGA TATGGGGCG GGCAACTGC GTAGGCGTTTGAC AAATGAAG GACTTTCCA AAATGTGAA ATAACCCCC CCGTTGAC GTAGGCGTTTGAC CACATATATA GCAGAGCTCG TTTAGTGAAC TATGGGGCG GGCCAACTGC GTAGGCGCAACCTC CACATATATA GCAGAGCTCG TTTAGTGAAC CGTCACATCG GGCCAACTGC TGTTTTGACCA TGCCACCCTC CACATATATA GCAGAGCTCG TTTAGTGAAC TATGGGGCG GGCCAACTGC TGCCAAACTGA GACTACTTC TGTGGCCCTG GCTAGGTCG GGCCAACTGC ACAAACTGA GCGTTAGAT GCGCGTATAG CATGGTCGG GGAACGCTCT TGGCATATA TGCCAATCCA TAGACCCC GCGCTATAG GCTCAATAGC TGGCGCGGC CTTGCCACTATA CTTGGGGCCT ATAGACCCC GCAGATATC TGAGATACC ACCACACTATA TTGACCACTC ATGAGCGCG GCTCATAGG GTATAGGTA ACCATATAG TGGCTATAG GTTGGGATA TTGACCACTC ATGAGCAC GCGCTATAG GATAGATAGA TGCTATAGA ACCCCTATAG GTTGGGCTATA ACTGCTTCTCA TGCGGGAATAC GATACCATA ACCATATACA ACCGCTATAG GTTGGGAATA TTGACCACTC ATGAGACAC GATATATAT TCCATATACT ACCATATAG ACCGCTATATA ACTGCTTCTCA ACGGCTATAGA AGGTCATACA ACCATATACA ACCGCTATAG GTTGGGAATA TTGACGACTATAG GGCGAATAC GATACCATA ACCATATACA ACGCTATAGA ACTCCTATAG GTTGTATATATATATATATATATATATATATATA
DCMV-II CATGACCTTA CGGGACTTTC CTACTIGGGA GTACATCTAC GTATTAGTCA TOGCTATACT GTACTGGAAT GCCCTGAAAG GATGAACCGT CATGTAGATG CATAATCAGT AGCGATAATG GTACACGAA TGGGCGTGGA TAGGGCGTTG AGTGACGGGG ATTTCGAAGT CTCCACCCCA TCATGTGGTT ACCCGCACCT ATGGCCCAAC TGATGCGGG ATTTGGAGG CTCACCCCA TCATGTGGTGG TTTTAGTTGC CCTGAAAGGT TTTAGTGGTA ATAACCCGGC GGGCAACTGC AAAACCGTGG TTTTAGTTAA GCAGAGGTG TTTAGTGAAT TATGGGCG GGGCAACTGC ACGTTGAAGA GCAGATATT CGTCTCGAGG TTTAGTGAAC GTCAGATCG CCGCTGGAGC TCCATAGAAG GCAGATATT CGTCTCGAGG TTTAGTGAGC GGAGCGTGG TGCAACTTC TGTGGCCCTG GCAGGTCGG AATCACTTG GCATCTAGC GGACCTTGC AGGTACTTC TGTGGCCCTG GCTAGGTCG AGCCGCGGC CCTTGCCAGG TAACACTTG CCCATTCAT GGCGGATATC TGAGGTGG AGCCGCGGC CCTTGCCAGG TAACACTTGC GAGGTTAGTT GGCGCATAGG AGCCCCCTT TGCCCTTATT GCAGATATA ATAGAGCCCC GCGCGAATAC GAATCACATAACA TGCCTATAG GTGTGGGTTA TATGTGGGGG CGAGCATAC TACATAATAG TACCATAAGG ATGCGATATC GCGATAACTT TACTCTGAC TACCATAAGG TACCATAATAG TATGTGGGGG CGCCAGACTTTTTTT ACGGGATAT GAGGTTTATA TATGTGGGGG CGCCTATAAGAT TACCATAACA TGCGCTATAG GTGTGGGTTATAATAAAAA TGTGCTACCC CAGGTTAATAAATAAAAA TGTGCTACCC CAGGTTAATAAAA TGTGCTAACCC CAGGTTAATAAAA TGTGCTAACG CCGCTAAATAAAA TGTGCTAACCC CAGGTTAAATAAAA TGTGCTAACCC CAGGTTAATAAAA TGTGCTAACCC CAGGTTAATAAAA TGTGCTAACCC CAGGTTAATAAAA TGTGCTAACCC CAGGTTAATAAAA TGTGCTAACCC CAGGTAAATAAAAA TGTGCTAACCC CAGGTAAATAAAA TGTGCTAACCC CAGGTAAATAAAAA TGTGCTAACCC CAGGTAAATAAAAA TGTGCTAACCC CAGGTAAATAAAA TGTGCTAACCC CAGGTAAATAAAA TGTGCTAACCC CAGGTAAATAAAA TGTGCTAACCC CAGGTAAATAAAAA TGTGCTAACCC CAGGTAAATAAAAA TGTGCTAACCC CAGGTAAATAAAA TGTGCTAACCC CAGGTAAATAAAA TGTGCTAACCC CAGGTAAATAAAA TGTGCTAACCC CAGGTAAATAAAA TGTGCTAACCC CAGGTAAATAAAAA TGTGCTAACCC CAGGTAAACCC CTCACACAATAAAAA TGTGCTAACCC CAGGAATAAACCCACCACATAAAAA TGTGCTAACCC CTCACACACTAACCA CAGAAAAAA TGTGCTAACCC CTCACACACTAACCACCACAATAAAAA TGTGCTAACCC CTCACACACTAACCACACAATAAAAA TGTCCTAACCCCC
PCMAV-III CGGGACTTC CTACTIGGCA CTACATCTAC GTATTAGTCA TGGCTATTAC GCCCTGAAG GATGAACCGT CATGTAGATG CATATTAGTCA AGGGTATATG GCCCTGAAG GATGAACCGT CATGTAGATG CATATTCAGT AGGGTATAG ACCCCCACCT ATGGCCAAC TGAGTGCCC TAAAGCTTCA GAGGTGGGC ACCTTAGATG GACTTTCCA AAATGTGGA TATGGGGCG GGCCAACTGC CTCTAATATA GCAGAGCTCG TTTAGTGAAC TATGGGGCG GGCCAACTGC CACATATATT CCTCTCGAGC AAATGACTG GCAGATTAGC CACATATATT CCTCTCGAGC AAATGACTG GCAGATTGC CACATATATT GCTCTCAGGC AAATGACTG GCAGATTGC CACATATATT CCTCTCAGGC AAATGACTG GCAGACTCGC CCGCCTATAG GCAGCCCCCC TTGGCCAC ATTGGAACC TCTGGCCCTATAG GCTAGTGC AGCCCCCCC CTTGCCAC TTGCGATTA GCCCCTATAG CTATAGGTA ACCATATACA ACCCCATAG GTCTGGATAT CGGCGAATAC TGAATAGCT ACCATAACA ACCGAGATAC CACACCAT CACACTATAGA AGCTATACA ACCCATAACA ACCGACAATA CACACTATACA AGGTATTCT ACCCATAGC GTCCACTATA CACACTATACA AGGTATTCT ACCGACAACA TTGAGAGACT GCAATATATA ACGGGATGC CACACTATA AAACTCTCTCA CACACCACA ACCCATAAAAA TGTCCTAACCC CAGGTAAATAAAA TTGAGAGACT CCTATATATA AAACTCTCTCA CACACTAAAAA TGTCCTAACCC CAGGTAAATAAAA TATAGAGACTCTCAA CACATAAAAA TGTCCTAACCC CACACTATAAAAA TGTCCTAACCC CACACTATATAAAAA TGTCCTAACCC CACACTATAAAAA TGTCCTAACCC CACACTATAAAAAA TGTCCTAACCC CACACTATAAAAAA TGTCCTAACCC CACACTATAAAAAA TGTCCTAACCC CACACTATAAAAAA TGTCCTAACCC CACACTATAAAAA TGTCCTAACCC CACACTATAAAAAA TGTCCTAACCC CACACTATAAAAAAA TGTCCTAACCC CACACTATAAAAAA TGTCCTAACCCCCCCCCC
MY-II CTACTIGGGA GTACATCIAG CATATAGTCA TOGCTATAGTC GATGAACCGT CATGTAGATG CATATAGTCA ACCGATAATG GATGAACCGT CATGTAGATG CATAATCAGT ACCGACCCA ATCGCCAAAC TGAGTGCCCC TAAAGGTTCA GAGGTGGGG GGAGAGGT TTACAGCAT ATAGCCCCC CCGCTTGAG GCAGAGGT TTACAGCAT ATAGCCCCC CCGCAACTGC GCAGAGGT TTACAGCAT ATTGGGGGG GGGCAACTGC GCAGAGGT TTACAGCAT TATGGGGGG GGGCAACTGC GCAGAGGT TTACAGCAT TATGGGAGG GGGCAACTGC GCAGAGGTGG GAACGCTGC TAGGCTTAG GCAGCTTGC GCATAGGTG AGGCGCGGG CCTTGCCAG TAGGCTTGC GCATAGGTG TGGCTATAG GTGTGGGTTA TGGATAACTA ACCATAACA ATCGAGATAC GAAGCACTAT AGGTAATGAT TAGGCATATAG GTGTGGGTTA GAACGGACT CTGTATTTT ACGGGATGG GTGCATTAT AGGTAATGAT TAGGCATTAT AGGTAATGATTATAACTGTACGAGGG GTCCATTAT CCATTAGTT ACGGGATGGG GTCCATTAT CCATTAGTATAAATAA TGTCCTAGC GAGGTAAATAA
CATCATCAC GTATTAGTCA TOGCTATTAC CATGAGGGG CATATCAGT ACCGATATO TGACTGCCCC TAAAGCTTCA GAGGTGGGG TGACTCCC TAAAGCTTCA GAGGTGGGGT TTTAGTGAAC CATATGGGGG GGCAACTGC AAATGCTGA TATTGGGGCG GGCAACTGC AAATGCTTG GCACTCTAGC GAGCTCTGC AAATGCTTG GCACTCTAGC GAGCTTGC CAGCGGGC GCTGGCACT TGGGACGCC AGCCCGGC CTTGCCAG TTGGAACG CAGCACCTT TGCTCTTAT GCATGGTATA GCTGGGGAA ACCGAGATA CGTAGGATA TGGTATAGCT TAGCCTATAG GTGTGGGTTA ATCCATAACA ACCGAGATAC CACACTAT TAGGTATTCT ACGGATAC CACACTAT TAGGTATTTT ACAGGATAC GAGCTATATA CTGTATTTT ACAGGATGC GTCCATTATA CACATAAAA TGTCCTACCC CAGGTAAATA
COTATAGTCA TCGCTATTAC CATAATCAGT AGCGATAATG ATTACCAGCC TATACCCCC CCCTTCACC TATACCCCCC CCCTTCACC TATACCCCCC CCCTTCACC CCTCACATCC CCTCGCACCTCC CCTCACATCC CCTCGCACCC CCTCACACCC CCTCCTATA CCACCTTCCC CCTTCCCACC TACCCTATA CCTCTCCC TCCCTATA CCTCTCCC TCCCTATA CCTCTCCT TCCCTATAC CTCTCCCTTA ACCCCATAC TCCCTATAC CTCTCCCTTA ACCCCATAC TCCCTTTCCCCACTAT ACCCCATAC TCCCTCTTTC TCCCTCTTC TCCCTCTTTC TCCCTCTTTC TCCCTCTTTC TCCCTCTTCT
TCGCTATTAC AGCGATATIC CTCCACCCCA GAGCTGGGCT CCCGTTGACG GGCCAACTGC TATCGGAACG GGACCTTGC GACCTTGC TATCGGATA CTCGCATTAT CCTCCGCTTATA CCTCCATTAT GGCTCATATA CGCCATTATA CCCCATTATA CCCCCATTATA CCCCATTATA CCCCATTATA CCCCATTATA CCCCATTATA CCCCATTATA CCCCCATTATA CCCCCCATTATA CCCCCCATTATA CCCCCATTATA CCCCCCATTATA CCCCCCTCCATTATA CCCCCCTCCATTATA CCCCCCTCCATTATA CCCCCCCC

FIG. 7-Page 2

Ħ
ӄ
⅀
ŏ

1521 CTGGGGTAGG TGTTGCGGGA ATGGGCTGTT CTCGGTAGG GGGGGGGTT CCACATCGGA GCCTGGTGC CACGGTGC 1661 GCGGCTGATG CTCGCGGG AGCTCGTTGC TCCTAACAG GGGGGGGTT GAGGCACA GCTCAGGCCACAG 1661 GCGGCTGATG CTCGCGGGAGC TGGAGGAAGG TCCTAACAG TTAGGCACA GCACAATGC CACCACCAC 1661 GCGGGCTGAT CAGGGAGC TGGAGGAAGG TCCTTAACAG AAATGAGCT GAACGTGT GAGGGAAT 1661 AGTCTGCGG ACAAGGCCG TGAGGAAGG TATGTCTGT AAATGAGCT GAACGTGT GAGGGAAT 1661 AGTCTGCGGC ACAAGGCCG TGAGGAAGA TACACACAG TATACTCGA GCTCTAACC GAGGGAGAT 1661 AGTCTGCGGC ACAAGGCCG TGAGGAAGG TATGTCTGT AAATGAGCT GAGGGAGAT 1761 GGAGACTTA AGCAAGGCGG AGAGAAGA GAGGAGAG TATACTCGATA GAGTCAACA TAGAGCTGT 1761 GGAGACTTA AGCAAGGCGG TGTTCTTTTTA GGAGGAGC TATGAGAGG TATGTGAGG TATTATGA 1761 GGAGACTTA AGCAAGGCGG TGTTCTTTTTA GGAGGAGAG TAGAGTTTT CTCATCTCC ATTGAGGCA 1761 GGAGACTTA GGCAGGGG TGTTCTTTTTTA GGAGGAGAG GAGGGGGG GGGTGGTT GATTATGA 1761 GGAGACTTA GGAGGAGG TGTTCTTTTTT GTAGGAGAG GAGGGGGG GGGTGGTT GATTATGA 1761 GAGAGATTA CTCTCATGG GTTTTTTTTTG CAGTGACGGG GGGTGGTT TGTTAAGGT 1761 GAGAGATA CAGAGTAG GAAGGTTGG GAGAGCGGG GGGTGGTT TGTTAAGTT GAGTTTGAA 1761 GAGAGATAA CAGAGTTGC GAAAAGAC GAGAGTGGC GGGTGGAC GAGTTGTT GAGTTTGAA 1761 GAGAGATAA CAGAGTAG GAAAGGTGG TTAGAGCTGC GTGATGAGC GAGTTGAGCTTAAGTT AAATTTAAGT 1761 GAGAGATAA CAGAGTAG GAAAGGTGG TTAGAGGTGG GCGTGGAT TGTTAAGTT GAGTTTAGAAGTTTAAGT 1761 GAGAGATAA CAGAGTAG GAAAGGTGG TTAGAGGTGG GCGTGGAT TGTTAAGTT GAGTTTAGAAGAGAAG	1441	TATTTACAAA ATAAATGTTT	TTCACATATA AAGTGTATAT	CAACAACGCC	pA GTCCCCCGTG CAGGGGGCAC	PCMV-II Tafitagaaa itcagatata caacaaggc gtccccgtg cccgggtti ttattaaaga tagcgtggga tctccgagat Ataaatgtti aagtgtatat gttgttgggg cagggggg gggcgtgaa aataatttgt atgggaggt agaggtgta	TTATTAAACA AATAATTTGT	TAGCG' ATCGC	TGGGA
	1521	40	TGTTCCGGAC	ATGGGCTCTT TACCCGAGAA	CTCCGGTAGC	GGGGGAGCTT	CCACATCCGA	88	CCTGGTCC
	1091	GCGCCTCATG	GTCGCTCGGC	AGCTCCTTGC TCGAGGAACG	TCCTAACAGT	GGAGGCCAGA	CTTAGGCACA	GCAC	AATGCC
	1681	AGTGTGCCGC TCACACGGCG	ACAAGGCCGT TGTTCCGGCA	GGCGGTAGGG	TATGTGTCTG	AAAATGAGCT TTTTACTCGA	CGGAGATTGG	GCTC	GCACCT
	1761	GGAAGACTTA CCTTCTGAAT	AGGCAGCGC	AGAAGAAGAT TCTTCTTCTA	GCAGGCAGCT	GAGTTGTTGT CTCAACAACA	ATTCTGATAA TAAGACTATT	GAGT	AAGGG
	1841	TGCGGTGCTG	TTAACGGTGG AATTGCCACC	AGGGCAGTGT TCCCGTCACA	AGTCTGAGCA TCAGACTCGT	GTACTCGTTG	CTGCCGCGCG	CGCCA	CCAGA
	1921	GACAGACTAA CTGTCTGATT	CAGACTGTTC	CTTTCCATGG	GTCTTTTCTG	CAGTCACCGT	CGTCGACCTA	EcoRI AGAATTCAGA TCTTAAGICT	RI TCAGA AGTCT
	2001	XbaI TCTAGAAAGG AGATCTTTCC	CGCGCCAAGA	Bami TATCAAGGAT ATAGTTCCTA	HI MluI CCACTACGCG GGTGATGCGC	TTAGAGCTCG AATCTCGAGC	CTGATCAGCC	TCGAC	TGTGC CTTCTAGTTG ACACG GAAGATCAAC

FIG. 7-Page 3

CCAGCCATCT GTGGTTGGC CCTCCCCCGT GCCTTCTTG ACCCTGGAGG GTGGCATCC GCTGGGTAGA CAACAACGG GGAGGGGGA CGGAGGAAC TGGGACCTTC CACGGTCAGG TACTCCTTTA ACGTAGCTA ACAGACTCAT CCACAGTAAG ATAGACCCC CCACCCACC GATGGGAAT TGGATAGCAG GCATGCTGG GAGCTCTTC GCTTCCTCGC CCACCCACC GATGGGAGG GCATATGCTC CGTACAGCC TCCACAGTAGG CGAAGGAGG ACTGATCGG GCATATCCTC CGTACAGCC CTCCAAAGG CGCACAGGAGG ACTGATCGG ACCCGTCC CATAGCTC CATCAAAGC CGCATTATCC CATCACAGG ACCCGTCC CATAGATCGA GGCAGGAAC CGCATTATCC CAATAGCTGT CTTAGTCCCC ACCCGTTTC CGCTCTTTTC CGCTCATTTCC GCCATTATTCC GGCGCAACGA CGCCAAAAG CGAGCAAAG GCCAGGAAA GGCCAGGAAC GCCATTATTCC GGCGCACAG GACTATAAGC ACTCGTTTTC CGCTCTTTT CCGCTCTTTC GCCTTTTTTC ACTCGTTTTC CGCTCCTTTT CCGCTCTTTC GCCTTTTTTC ACTCGTTTTC CGCTCCTTTT CCGCTCTTTTC GCCCTTTTTTC CGAGCATCAC CAAAATCGAC CCTCAAGTA GAGCTGCCCT TGCGCCTTTTC CGAGCATCAC AAAATCGAC CCTCAAGTA GAGCTGCCT TGCGCTTATG GACTATAAAG CCCCTTTCTC CATCCCCCT CCTCAAGTA GAGCTCCCCT TGCGCTTTTC CCCCCTTCCAGGGA GACTCCATA GAGCTCACACA ACGCGCCCC CCTCCAAGGG CAACCCCAAAGGC CCCTCAAGGTA CCCAACAGG CCCCCCCCCC	· · · ·					pCMV-II			
	2081	CCAGCCATCT	GTTGTTTGCC CAACAAACGG	CCTCCCCCGT	GCCTTCCTTG CGGAAGGAAC	ACCCTGGAAG TGGGACCTTC	GTGCCACTCC	CACTGTCCTT GTGACAGGAA	TCCTAATAAA
	2161		TGCATCGCAT ACGTAGCGTA	TGTCTGAGTA ACAGACTCAT	GGTGTCATTC	TATTCTGGGG ATAAGACCCC	GGTGGGGTGG	GGCAGGACAG	CAAGGGGGAG GTTCCCCCTC
	2241	GATTGGGAAG	ACAATAGCAG TGTTATCGTC	GCATGCTGGG	GAGCTCTTCC CTCGAGAAGG	GCTTCCTCGC	TCACTGACTC AGTGACTGAG	GCTGCGCTCG	GTCC
	2321	TGCGGCGAGC	GGTATCAGCT CCATAGTCGA	CACTCAAAGG GTGAGTTTCC	CGCTAATACG	GTTATCCACA CAATAGGTGT	GAATCAGGGG CTTAGTCCCC	ATAACGCAGG TATTGCGTCC	AAAGAACATG TTTCTTGTAC
	2401		GCCAGCAAAA CGGTCGTTTT	GGCCAGGAAC CCGGTCCTTG	CGTAAAAAGG GCATTTTTCC	CCCCCTTCCT	GGCGTTTTTC	CATAGGCTCC GTATCCGAGG	GCCCCCTGA
	2481	CGAGCATCAC	AAAAATCGAC TTTTTAGCTG	GCTCAAGTCA CGAGTTCAGT	GAGGTGGCGA CTCCACCGCT	AACCCGACAG TTGGGCTGTC	GACTATAAAG CTGATATTTC	ATACCAGGCG TATGGTCCGC	TTTC
	2561		CGTGCGCTCT	CCTGTTCCGA GAACAAGGCT	CCCTGCCGCT	TACCGGATAC ATGGCCTATG	CTGTCCGCCT	TTCTCCCTTC AAGAGGGAAG	GGGAAGCGTG
	2641		AATGCTCACG TTACGAGTGC	CTGTAGGTAT GACATCCATA	CTCAGTTCGG	TGTAGGTCGT ACATCCAGCA	TCGCTCCAAG AGCGAGGTTC	CTGGGCTGTG	TGCACGAACC ACGTGCTTGG
	2721		CCCGACCGCT	GCGCCTTATC	CGGTAACTAT GCCATTGATA	CGTCTTGAGT GCAGAACTCA	CCAACCCGGT	AAGACACGAC TTCTGTGCTG	TTAT

4.				S.	pCMV-II			
1801	TGGCAGCAGC	CACTGGTAAC GTGACCATTG	TGGCAGCAGC GACTGCTAAC AGGATTACCA GAGCGAGCTA TCTAGGCGGT GCTACAGACT TCTTGAAGTG GTGGCCTAAC ACCGTGGTGG GTGACCATTG TCGTAATGGT CTGGCTGCAT ACATGGGCGA GGATGTGTGA AGAACTTGAC GACGGGATTG	GAGCGAGGTA CTCGCTCCAT	TGTAGGCGGT ACATCCGCCA	GCTACAGAGT	TCTTGAAGTG AGAACTTCAC	GTGGCCTAAC
1881	TACGGCTACA	CTAGAAGGAC GATCTTCCTG	TACGECTACA CTAGAAGGAC AGTATTTGGT ATCTGGGGTC TGCTGAAGGC AGTTACCTTC GGAAAAGAG TTGGTAGCTC ATGCCGATGT GATCTTGCTG TGATAAAGCA TAGAGGGGA AGGACTTGGG TGAATGGAAG CCTTTTTGTC AAGGATGGAG	ATCTGCGCTC TAGACGCGAG	TGCTGAAGCC ACGACTTCGG	AGTTACCTTC TCAATGGAAG	GGAAAAAGAG TTGGTAGCTC CCTTTTTCTC AACCATGGAG	TTGGTAGCTC AACCATCGAG
1961	TTGATCCGCC AACTAGGCCG	AAACAAACCA TTTGTTTGGT	TICATOCOGO AAACAAACA COCCTGGTAG CGGTGGTTT TTTGTTTGCA AGCAGGAGAT TACGCGCACA AAAAAGGAT AACTAGGCGG TTTGTTTGGT GGCGACCATC GCCACCAAAA AAACAAAGGT TGGTGGTGTA ATGGGGGTGT TTTTTTGCTA	CGCTGGTTTT	TTTGTTTGCA AAACAAAGGT	AGCAGCAGAT TCGTCGTCTA	TACGCGCAGA ATGCGCGTCT	AAAAAAGGAT TTTTTCCTA
3041	CTCAAGAAGA GAGTTCTTCT	TCCTTTGATC AGGAAACTAG	CTCAAGAAGA TCCTTTGATC ITTTCTACGG GCTCTCACGC TCAGTGGAAC GAAAACTCAC GAGTTCTTCT AGGAAACTAG AAAAGATGCC CCAGACTGCG AGTCACCTTG CTTTTGAGTG	GGTCTGACGC CCAGACTGCG	TCAGTGGAAC AGTCACCTTG		GTTAAGGGAT TTTGGTCATG CAATTCCCTA AAACCAGTAC	TTTGGTCATG
3121	AGATTATCAA TCTAATAGTT	AAAGGATCTT TTTCCTAGAA	AGAITAICAA AAAGGAICIT CACCIAGAIC CITITAAATI AAAAAIGAAG ITITAAAIGA ATCIAAAGIA IAIAIGAGIA ICIAAIAGII ITICCIAGAA GIGGAICIAG GAAAAIITAA ITITIACIIC AAAAITIAGI IAGAITIGAI AIAIACIGAI	CTTTTAAATT GAAAATTTAA	CTTTTAAATT AAAAATGAAG TTTTAAATGA GAAAATTTAA TTTTTACTTC AAAATTTAGT	TTTTAAATCA AAAATTTAGT	ATCTAAAGTA TAGATTTCAT	TATATGAGTA ATATACTCAT
1201	AACTTGGTCT TTGAACCAGA	GACAGTTACC CTGTCAATGG	GACAGITACC ANICCITAAT CAGIGAGGA CCIAICICAG CGAICIGICI AITICGITGA ICCAIAGITG CIGICAAIGG ITACGAAITA GICACICCGI GGAIAGAGIC GGIAGACAGA IAAAGGAAGI AGGIAICAAC	CAGTGAGGCA GTCACTCCGT	CCTATCTCAG CGATCTGTCT GGATAGAGTC GCTAGACAGA	CGATCTGTCT GCTAGACAGA	ATTTCGTTCA TAAAGCAAGT	TCCATAGTTG AGGTATCAAC
1281	CCTGACTCCC GGACTGAGGG	CGTCGTGTAG GCAGCACATC	CCTGACTOCC CCTOCTGTAG ATAACTACGA TACGGGAGGG CTTACCATCT GGCCCCAGTG CTGCAATGAT ACCGCGAGG GGACTGAGGG GCACCATC TATTGATGCT ATGCCCTCCC GAATGGTAGA CGGGGTCAC GAGGTTACTA TGGCGGTCTG	TACGGGAGGG ATGCCCTCCC	CTTACCATCT GAATGGTAGA	GGCCCAGTG CCGGGGTCAC	CTGCAATGAT GACGTTACTA	ACCGCGAGAC TGGCGCTCTG
1361	CCACGCTCAC	CGCCTCCAGA GCCGAGGTCT	CCACCCTOAC CGGCTCCAGA TITATCACCA ATAAACCACC CACCCGGAG GGCCGAGCGC AGAGCTGCTC CTGCAACTIT GGTGCGAGTG GCCGAGGTCT AAATAGTGGT TATTTGGTGG GTGGGCGTTC CGGGCTGGGG TCTTCACCAG GAGGTTGAAA	ATAAACCAGC TATTTGGTCG	CAGCCGGAAG GTCGGCCTTC	GCCGAGGGC	AGAAGTGGTC TCTTCACCAG	CTGCAACTTT GACGTTGAAA
1441	ATCCGCCTCC	ATCCGCCTCC ATCCACTCTA TAGGCGGAGG TAGGTCAGAT	ATCCCCCTCC ATCCACTCTA TTAATTGTTG CCGGGAAGCT AGAGTAAGTA GTTCGGCGACT TAATAGTTTG CGCAACGTTG TAGGGGGGAGG TAGGTCAGAT ATTAACAAC GGCGCTTCGA TCTCATTCAT CAAGGGGTCA ATTATCAAAC GCGTTGCAAC	CCGGGAAGCT	CCGCGAAGCT AGAGTAAGTA GCCCCTTCGA TCTCATTCAT	GTTCGCCAGT	TAATAGTTTG ATTATCAAAC	CGCAACGITG

FIG. 7-Page 5

351) TIGCCATTICO TACAGGGATG CICGLOCAT GCTCATOGG ACTATOGCC COGCTCCAGG ACCAGGGT TGCTAGTICG 3601 GCACTTACAT GATCCCCCAT GTTCTCCAAA AAAGGGTTA GCTCCTTCCAA GTTACTTCC 3601 GCTCAATTCC 3601 GCTCAATTCA GATCCCCCAT GTTCTCCAAA GAAGGGTTA GTTCTTACACG 3601 GCTCAATTCA GATCCCCCAT GTTCTCCAAA GTAACTTGC 3601 GCTCAATTCA GATCCCCCAT GTTCTCCAAA GAAGGGTTA GAAGAAGC AGAGGCTAG GAAGATCT CATTCAACG 3761 GCTCAATTCA GATCCCCAAT TTTCCCAAT TTTCCCAAT GCAGGATAG GAAGATCA GAAGACAT 3761 GCGCACAAT GATCCCAAA GATCTTCAAA AAAGGGTTA AGAGAATCA GAAGAACAT 3761 GCGCACAAA GATCCCAAA GATCAAAAA GAAGAATAA GCGCGAACA GATCCCAAA GAAGAACAT 3761 GACCACTCA GATACACA GATACATTA GACGATAA GCCCCAACACA GAAGACAAT 3761 GACCACTCA GATACACA GATACATTA GACGATAA GCCCCAACACAAA GCCCAAAAAAAAAA									
CCCACTECTA GATCCCCCAT GTTCTCCAAA AAAGCGCTTA GCTCCTTCGG TCCTCCGATC GTCCACAAAGCGTTA CGCCAATTCAT GATCCCCATC GAGGAAGCCT TTTCCGCCAATTCTCTACTC TCACGCATC CACAGGCTTC CGCCAACTCTTACTC TCACGCAAT TTTCCCCAATTCTCTTACTC TCATCCCATC CGTAACATCC GCCCAACTCTTACTC TCATCCCTTC CGCCCCCCCGCCCCCGGCCCCAATACCCTTCTTACTC TTTCCTTTACTC TCATCCCTCT GCCCCCCCCCGCCCCCGCCCCCCCCCC		TTGCCATTGC	TACAGGCATC ATGTCCGTAG	GTGGTGTCAC	P' GCTCGTCGTT CGAGCAGCAA	CMV-II TGGTATGGCT ACCATACCGA	TCATTCAGCT AGTAAGTCGA	CCGGTTCCCA	ACGATCAAGG TGCTAGTTCC
GCGGGGGGG AGTGCGAGG ACTGCATATA AGAGATGGG CGTAAGGTGG GCGTGAGAT GCGGGAGG ACTGCATATA AGAGATGAC GGTAGGGTAG	3601	CGAGTTACAT	GATCCCCCAT	GTTGTGCAAA	AAAGCGGTTA TTTCGCCAAT	GCTCCTTCGG	TCCTCCGATC	GTTGTCAGAA	GTAAGTTGGC
	3681	CGCAGTGTTA	TCACTCATGG	TTATGGCAGC AATACCGTCG	ACTGCATAAT TGACGTATTA	TCTCTTACTG AGAGAATGAC	TCATGCCATC	CGTAAGATGC GCATTCTACG	TTTTCTGTGA AAAAGACACT
	3761	CTGGTGAGTA	CTCAACCAAG	TCATTCTGAG	AATAGTGTAT TTATCACATA	GCGCCGACCG	AGTTGCTCTT TCAACGAGAA	GCCGGCGTC	AATACGGGAT TTATGCCCTA
	3841	AATACCGCGC TTATGGCGCG	CACATAGCAG GTGTATCGTC	AACTTTAAAA TTGAAATTTT	GTGCTCATCA	TTGGAAAACG AACCTTTTGC	TTCTTCGGGG	CGAAAACTCT GCTTTTGAGA	CAAGGATC: GTTCCTAGA
	3921	ACCGCTGTTG	AGATCCAGTT TCTAGGTCAA	CGATGTAACC	CACTCGTGCA	CCCAACTGAT	CTTCAGCATC	TTTTACTTTC	ACCAGCGTTT TGGTCGCAAA
	4001	CTGGGTGAGC	AAAAACAGGA TTTTGTCCT	AGGCAAAATG TCCGTTTTAC	CCGCAAAAA	GGGAATAAGG	GCGACACGGA	AATGTTGAAT TTACAACTTA	ACTCATAC: TGAGTATG
TAAACAAATA GGGTTCCGC GCACATTCC CCGAAAAGTG CCACCTGACG TCTAAGAAAC CATIATTAC ATTICTTAT CCCCAAGGCG CGTGTAAAGG GGCTTTTCAC GGTGGACTGC AGATTCTTG GTAATAATAG CCTATAAAAA TAGGCGTATC ACGAGGCCCT TTCGTC GGATATTTT ATCGCCATAG TGCTCCGGGA AAGAG	4081	TTCCTTTTTC	AATATTATTG TTATAATAAC	AAGCATTTAT TTCGTAAATA	CAGGGTTATT GTCCCAATAA	GTCTCATGAG	CGGATACATA	TTTGAATGTA AAACTTACAT	TTTAGAAAA AAATCTTTTT
CCIATAAAA TAGGCGTATC ACGAGGCCCT GGATATTIT ATCCGCATAG TGCTCCGGGA	4161	TAAACAAATA ATTTGTTTAT	GGGGTTCCGC	GCACATTTCC	CCGAAAAGTG	CCACCTGACG	TCTAAGAAAC AGATTCTTTG	CATTATTATC GTAATAATAG	ATGACATTAA TACTGTAATT
	4241	CCTATAAAA GGATATTTT	TAGGCGTATC	ACGAGGCCCT TGCTCCGGGA	TTCGTC				

FIG. 7-Page 6

FIG. 8

1	TCGCGCGTTT	CGGTGATGAC	GGTGAAAACC	TCTGACACAT	GCAGCTCCCG
	AGCGCGCAAA	GCCACTACTG	CCACTTTTGG	AGACTGTGTA	CGTCGAGGGC
51	GAGACGGTCA	CAGCTTGTCT	GTAAGCGGAT	GCCGGGAGCA	GACAAGCCCG
	CTCTGCCAGT	GTCGAACAGA	CATTCGCCTA	CGGCCCTCGT	CTGTTCGGGC
101	TCAGGGCGCG	TCAGCGGGTG	TTGGCGGGTG	TCGGGGCTGG	CTTAACTATG
	AGTCCCGCGC	AGTCGCCCAC	AACCGCCCAC	AGCCCCGACC	GAATTGATAC
151	CGGCATCAGA	GCAGATTGTA	CTGAGAGTGC	ACCATATGAA	GCTTTTTGCA
	GCCGTAGTCT	CGTCTAACAT	GACTCTCACG	TGGTATACTT	CGAAAAACGT
	Sti	ıI			
201	AAAGCCTAGG	CCTCCAAAAA	AGCCTCCTCA	CTACTTCTGG	AATAGCTCAG
	TTTCGGATCC	GGAGGTTTTT	TCGGAGGAGT	GATGAAGACC	TTATCGAGTC
251	AGGCCGAGGC	GGCCTCGGCC	TCTGCATAAA	TAAAAAAAAT	TAGTCAGCCA
	TCCGGCTCCG	CCGGAGCCGG	AGACGTATTT	ATTTTTTTA	ATCAGTCGGT
301	TGGGGCGGAG	AATGGGCGGA	ACTGGGCGGG	GAGGGAATTA	TTGGCTATTG
	ACCCCGCCTC	TTACCCGCCT	TGACCCGCCC	CTCCCTTAAT	AACCGATAAC
351	GCCATTGCAT	ACGTTGTATC	TATATCATAA	TATGTACATT	TATATTGGCT
	CGGTAACGTA	TGCAACATAG	ATATAGTATT	ATACATGTAA	ATATAACCGA
401	CATGTCCAAT	ATGACCGCCA	TGTTGACATT	GATTATTGAC	TAGTTATTAA
	GTACAGGTTA	TACTGGCGGT	ACAACTGTAA	CTAATAACTG	ATCAATAATT
451	TAGTAATCAA	TTACGGGGTC	ATTAGTTCAT	AGCCCATATA	TGGAGTTCCG
	ATCATTAGTT	AATGCCCCAG	TAATCAAGTA	TCGGGTATAT	ACCTCAAGGC
501	CGTTACATAA	CTTACGGTAA	ATGGCCCGCC	TGGCTGACCG	CCCAACGACC
	GCAATGTATT	GAATGCCATT	TACCGGGCGG	ACCGACTGGC	GGGTTGCTGG
551	CCCGCCCATT	GACGTCAATA	ATGACGTATG	TTCCCATAGT	AACGCCAATA
	GGGCGGGTAA	CTGCAGTTAT	TACTGCATAC	AAGGGTATCA	TTGCGGTTAT
601	GGGACTTTCC	ATTGACGTCA	ATGGGTGGAG	TATTTACGGT	AAACTGCCCA
	CCCTGAAAGG	TAACTGCAGT	TACCCACCTC	ATAAATGCCA	TTTGACGGGT
651	CTTGGCAGTA	CATCAAGTGT	ATCATATGCC	AAGTCCGCCC	CCTATTGACG
	GAACCGTCAT	GTAGTTCACA	TAGTATACGG	TTCAGGCGGG	GGATAACTGC
701				ATGCCCAGTA TACGGGTCAT	CATGACCTTA GTACTGGAAT
751	CGGGACTTTC	CTACTTGGCA	GTACATCTAC	GTATTAGTCA	TCGCTATTAC
	GCCCTGAAAG	GATGAACCGT	CATGTAGATG	CATAATCAGT	AGCGATAATG
801	CATGGTGATG GTACCACTAC	CGGTTTTGGC	AGTACACCAA TCATGTGGTT	TGGGCGTGGA ACCCGCACCT	TAGCGGTTTG ATCGCCAAAC
851					TGGGAGTTTG ACCCTCAAAC

901	TTTTGGCACC	AAAATCAACG	GGACTTTCCA	AAATGTCGTA	ATAACCCCGC
	AAAACCGTGG	TTTTAGTTGC	CCTGAAAGGT	TTTACAGCAT	TATTGGGGCG
951			GTAGGCGTGT CATCCGCACA		
1001			CGTCAGATCG GCAGTCTAGC		
1051	TGTTTTGACC	TCCATAGAAG	ACACCGGGAC	CGATCCAGCC	TCCGCGGCCG
	ACAAAACTGG	AGGTATCTTC	TGTGGCCCTG	GCTAGGTCGG	AGGCGCCGGC
1101	GGAACGGTGC	ATTGGAACGC	GGATTCCCCG	TGCCAAGAGT	GACGTAAGTA
	CCTTGCCACG	TAACCTTGCG	CCTAAGGGGC	ACGGTTCTCA	CTGCATTCAT
1151	CCGCCTATAG	ACTCTATAGG	CACACCCCTT	TGGCTCTTAT	GCATGCTATA
	GGCGGATATC	TGAGATATCC	GTGTGGGGAA	ACCGAGAATA	CGTACGATAT
1201	CTGTTTTTGG	CTTGGGGCCT	ATACACCCCC	GCTCCTTATG	CTATAGGTGA
	GACAAAAACC	GAACCCCGGA	TATGTGGGGG	CGAGGAATAC	GATATCCACT
1251	TGGTATAGCT	TAGCCTATAG	GTGTGGGTTA	TTGACCATTA	TTGACCACTC
	ACCATATCGA	ATCGGATATC	CACACCCAAT	AACTGGTAAT	AACTGGTGAG
1301	CCCTATTGGT	GACGATACTT	TCCATTACTA	ATCCATAACA	TGGCTCTTTG
	GGGATAACCA	CTGCTATGAA	AGGTAATGAT	TAGGTATTGT	ACCGAGAAAC
1351	CCACAACTAT	CTCTATTGGC	TATATGCCAA	TACTCTGTCC	TTCAGAGACT
	GGTGTTGATA	GAGATAACCG	ATATACGGTT	ATGAGACAGG	AAGTCTCTGA
1401	GACACGGACT	CTGTATTTTT	ACAGGATGGG	GTCCATTTAT	TATTTACAAA
	CTGTGCCTGA	GACATAAAAA	TGTCCTACCC	CAGGTAAATA	ATAAATGTTT
1451	TTCACATATA	CAACAACGCC	GTCCCCCGTG	CCCGCAGTTT	TTATTAAACA
	AAGTGTATAT	GTTGTTGCGG	CAGGGGGCAC	GGGCGTCAAA	AATAATTTGT
1501	TAGCGTGGGA	TCTCCGACAT	CTCGGGTACG	TGTTCCGGAC	ATGGGCTCTT
	ATCGCACCCT	AGAGGCTGTA	GAGCCCATGC	ACAAGGCCTG	TACCCGAGAA
1551	CTCCGGTAGC	GGCGGAGCTT	CCACATCCGA	GCCCTGGTCC	CATCCGTCCA
	GAGGCCATCG	CCGCCTCGAA	GGTGTAGGCT	CGGGACCAGG	GTAGGCAGGT
1601	GCGGCTCATG	GTCGCTCGGC	AGCTCCTTGC	TCCTAACAGT	GGAGGCCAGA
	CGCCGAGTAC	CAGCGAGCCG	TCGAGGAACG	AGGATTGTCA	CCTCCGGTCT
1651	CTTAGGCACA GAATCCGTGT	GCACAATGCC CGTGTTACGG	CACCACCACC	AGTGTGCCGC TCACACGGCG	ACAAGGCCGT TGTTCCGGCA
1701	GGCGGTAGGG CCGCCATCCC	TATGTGTCTG ATACACAGAC	AAAATGAGCT TTTTACTCGA	CGGAGATTGG	GCTCGCACCT CGAGCGTGGA
1751	GGACGCAGAT	GGAAGACTTA	AGGCAGCGGC	AGAAGAAGAT	GCAGGCAGCT
	CCTGCGTCTA	CCTTCTGAAT	TCCGTCGCCG	TCTTCTTCTA	CGTCCGTCGA
1801	GAGTTGTTGT CTCAACAACA	ATTCTGATAA TAAGACTATT	GAGTCAGAGG	TAACTCCCGT	TGCGGTGCTG ACGCCACGAC

		•			
1851	TTAACGGTGG AATTGCCACC	AGGGCAGTGT TCCCGTCACA	AGTCTGAGCA TCAGACTCGT	GTACTCGTTG CATGAGCAAC	CTGCCGCGCG GACGGCGCGC
1901	CGCCACCAGA GCGGTGGTCT	CATAATAGCT GTATTATCGA	GACAGACTAA CTGTCTGATT	CAGACTGTTC GTCTGACAAG	CTTTCCATGG GAAAGGTACC
+2				EcoRI	M A P
1951	GTCTTTTCTG CAGAAAAGAC	CAGTCACCGT GTCAGTGGCA	CGTCGACCTA GCAGCTGGAT	AGAATTCACC TCTTAAGTGG	ATGGCGCCCA TACCGCGGGT
2001	I T A Y TCACGGCGTA AGTGCCGCAT	CGCCCAGCAG	ACAAGGGCC	TCCTAGGGTG	I I T CATAATCACC GTATTAGTGG
+2 2051	AGCCTAACTG	G R D K GCCGGGACAA CGGCCCTGTT	AAACCAAGTG	GAGGGTGAGG	V Q I V TCCAGATTGT AGGTCTAACA
2101	GTCAACTGCT	A Q T GCCCAAACCT CGGGTTTGGA	TCCTGGCAAC	GTGCATCAAT	G V C GGGGTGTGCT CCCCACACGA
2151	W T V Y GGACTGTCTA CCTGACAGAT	CCACGGGGCC	GGAACGAGGA	T I A S CCATCGCGTC GGTAGCGCAG	P K G ACCCAAGGGT TGGGTTCCCA
2201	P V I CCTGTCATCC GGACAGTAGG	AGATGTATAC	CAATGTAGAC	CAAGACCTTG	V G W P TGGGCTGGCC ACCCGACCGG
2251	CGCTTCGCAA	GGTACCCGCT	CATTGACACC	C T C CTGCACTTGC GACGTGAACG	G S S GGCTCCTCGG CCGAGGAGCC
2301	D L Y L ACCTTTACCT TGGAAATGGA	GGTCACGAGG	CACGCCGATG	TCATTCCCGT	R R R GCGCCGGCGG CGCGGCCGCC
2351	GGTGATAGCA	R G S L GGGGCAGCCT CCCCGTCGGA	CCTCTCCCCC	CGGCCCATTI	S Y L K CCTACTTGAA GGATGAACTT
2401	G S S AGGCTCCTCG TCCGAGGAGC	G G P GGGGGTCCGC CCCCCAGGCG	L L C P TGTTGTGCCC ACAACACGGG	A G H CGCGGGGCAC GCGCCCCGTG	A V G GCCGTGGGCA CGGCACCCGT
2451	I F R A TATTTAGGGC ATAAATCCCG	A V C CGCGGTGTGC GCGCCACACG	T R G ACCCGTGGAG TGGGCACCTC	V A K A TGGCTAAGGC ACCGATTCC	V D F GGTGGACTTT CCACCTGAAA
+2 2501	I P V	E N L E	T T M	R S P	V F T D

2	551	N TAAC ATTC	S TCC SAGG	S TCT AGA	P CCI GGI	P ACCI I'GG'	V AGT: TCA	AG TC	TGC ACC	P CCC	Q CAG GTC	S AG TC	CT GAJ	rcc AGG	Q AGG TCC	V TG AC	GC CG	TC/ AG	i ACC rGG	L TCC AGG
2	601	H A ATGO TACO	TCC	CAC	AGC	CA	GCG	GC	AAA	AG	CAC	CA	AGO	STC	CCG	GC	TG	CAT	Y TAT	GCA
2	+2 651	A GCTC CGAC	AGG	GCT	ATA	AAG	GTG	CT	AGT	AC.	rca.	АC	CCC	CTC	TGT	TG	CT	GCI	AAC	ACT
2	701	GGGC CCCC	F TTT SAAA	GGT	GC1	TAC	CAT	GT	CCA GGT	AG	CT	CA	TGO	GA	I TCG AGC	ĀT	CC	TA	I ACA FGT	TCA
2		R T GGAC CCTC	CGG	GGT	GAG	AAG	CAA	ТT	ACC	AC:	rgg	CA	GCC	CC.	ATC	AC	GT	AC7	CC	ACC
2	+2 801	Y TACG ATGC	GCA	AGT	TCC	TTC	GCC	GA	CGG	CGG	GT	GC	TCC	GG	GGG	CG	CT	TAT	GA.	CAT
2		I AATA TTAT	ATT	TGT	GAC	GAC	STG	CC	ACT	CC	ACG	GΑ	TGC	CA	CAT	CC	AT	CTI	rgg	GCA
2		I G TTGG AACC	CAC	IGT	CCI	TG	ACC	ĀΑ	GCA	GAG	GAC	TG	CGC	GGG	GCG	AG	AC'	TGC	TT	GTG
2	+2 951	L CTCG GAGC	CCA	CCG	CCA	CCC	CTC	CC	GGG	CT	CCG	TC	AC1	GT	GCC	CC-	AT	ccc	AA	CAT
3(+2 001	E CGAG GCTC	E GAGG	V STT CAA	A GCT CGA	L CTC	S STCC CAGO	T ST	CCA GGT	T CCC GGC	G GA CCT	E GA CT	GAT CTA	CCC	P CTT GAA	F TT AA	Y TAC ATC	CGC	CA.	K AGG TCC
3	+2 051	A I CTAT GATA	P CCCC GGGC	L CCT GGA	CGA GCT	AGT	/ I	r C AG	K AAG TTC	G GG(G GGG CCC	GA CT	GAC CTC	H ATC	L CTC GAG	I AT AA	CT: GA	F FC1	C GT CA	H CAT GTA
3:	101	S TCAA AGTT	AGA	AGA	AGT	GC6		SA	ACT	CGC		CA		CT	GGT	CG	CA:	гте	GGG	CAT
3:	151	N CAAT GTTA	GCCC	STG	GCC	TAC	TAC	cc	GCG	GTO	TT	GĀ	CGT	GT	CCG	TC	ATO	ccc	GA	CCA
32	*2 201	s G GCGG	D CGA1	V GT	V TGT	CGT	CGI	rG	A GCA	ACC	D GA:	TG	ccc	L	M ATG	T AC	CG	GCI	Y AT	T ACC

2

	pcivi v - NSS4A
3251	G D F D S V I D C N T C V T Q T V GGCGACTTCG ACTCGGTGAT AGACTGCAAT ACGTGTGTCA CCCAGACAGT CCGCTGAAGC TGAGCCACTA TCTGACGTTA TGCACACTG GGGTCTGTCA
3301	D F S L D P T F T I E T I T L P CGATTTCAGC CTTGACCCTA CCTTCACCAT TGAGACAATC ACGCTCCCC GCTAAAGTCG GAACTGGGAT GGAAGTGGTA ACTCTGTTAG TGCGAGGGGG
+2 3351	Q D A V S R T Q R R G R T G R G K AAGATGCTGT CTCCCGCACT CAACGTCGGG GCAGGACTGG CAGGGGGAAG TTCTACGAGA GAGGGCGTGA GTTGCAGCCC CGTCCTGACC GTCCCCCTTC
+2 3401	P G I Y R F V A P G E R P S G M F CCAGGCATCT ACAGATTTGT GGCACCGGGG GAGCGCCCCT CCGGCATGTT GGTCCGTAGA TGTCTAAACA CCGTGGCCCC CTCGCGGGGA GGCCGTACAA
+2 3451	
+2 3501	E L T P A E T T V R L R A Y M N T AGCTCACGCC CGCCGAGACT ACAGTTAGGC TACGAGCGTA CATGAACACC TCGAGTGCGG GCGCTCTGA TGTCAATCCG ATGCTCGCAT GTACTTGTG
+2 3551	P G L P V C Q D H L E F W E G V F CCGGGGCTTC CCGTGTGCCA GGACCATCTT GAATTTTGGG AGGGCGTCTT GGCCCCGAAG GGCACACGGT CCTGGTAGAA CTTAAAACCC TCCCGCAGAA
+2	TGL THID AHF LSQ TKQ StuI
3601	TACAGGCCTC ACTCATATAG ATGCCCACTT TCTATCCCAG ACAAAGCAGA ATGTCCGGAG TGAGTATATC TACGGGTGAA AGATAGGGTC TGTTTCGTCT
+2 3651	S G E N L P Y L V A Y Q A T V C A GTGGGGGAGAA CCTTCCTTAC CTGGTAGCGT ACCAAGCCAC CGTGTGCGCT CACCCCTCTT GGAAGGAATG GACCATCGCA TGGTTCGGTG GCACACGCGA
3701	R A Q A P P P S W D Q M W K C L I AGGGCTCAAG CCCCTCCCC ATCGTGGGAC CAGATGTGGA AGTGTTTGAT TCCCGAGTTC GGGGAGGGGG TAGCACCCTG GTCTACACCT TCACAAACTA
+2 3751	R L K P T L H G P T P L L Y R L TCGCCTCAAG CCCACCCTCC ATGGGCCAAC ACCCCTGCTA TACAGACTGG AGCGGAGTTC GGGTGGGAGG TACCCGGTTG TGGGGACGAT ATGTCTGACC
3801	G A V Q N E I T L T H P V T K Y I GCGCTGTTCA GAATGAAATC ACCCTGACGC ACCCAGTCAC CAAATACATC CGCGACAAGT CTTACTTTAG TGGGACTGCG TGGGTCAGTG GTTTATGTAG
3851	M T C M S A D L E V V T S T W V L ATGACATICA TETCGGCCGC CCTGGAGGT GTCAGAGCA CCTGGGTGCT TACTGTAGGT ACAGCCGGCT GGACCTCCAG CAGTGCTCGT GGACCCACGA

		pc	1AT A _ 14924	A	
3951	GCGTGGTCAT	V G R AGTGGGCAGG TCACCCGTCC	V V L S GTCGTCTTGT CAGCAGAACA	G K P CCGGGAAGCC GGCCCTTCGG	A I I GGCAATCATA CCGTTAGTAT
+2 4001	CCTGACAGGG		CCGAGAGTTC	D E M E GATGAGATGG CTACTCTACC	AAGAGTGCTA
		MluI			
4051	GGATCCACTA CCTAGGTGAT	CGCGTTAGAG GCGCAATCTC	CTCGCTGATC GAGCGACTAG	AGCCTCGACT TCGGAGCTGA	GTGCCTTCTA CACGGAAGAT
4101	GTTGCCAGCC CAACGGTCGG	ATCTGTTGTT TAGACAACAA	TGCCCCTCCC ACGGGGAGGG	CCGTGCCTTC GGCACGGAAG	CTTGACCCTG GAACTGGGAC
4151				TAAAATGAGG ATTTTACTCC	
4201				GGGGGGTGGG CCCCCACCC	
4251	ACAGCAAGGG TGTCGTTCCC	GGAGGATTGG CCTCCTAACC	GAAGACAATA CTTCTGTTAT	GCAGGCATGC CGTCCGTACG	TGGGGAGCTC ACCCCTCGAG
4301	TTCCGCTTCC AAGGCGAAGG	TCGCTCACTG AGCGAGTGAC	ACTCGCTGCG TGAGCGACGC	CTCGGTCGTT GAGCCAGCAA	CGGCTGCGGC GCCGACGCCG
4351				TACGGTTATC ATGCCAATAG	
4401	GGGGATAACG CCCCTATTGC	CAGGAAAGAA GTCCTTTCTT	CATGTGAGCA GTACACTCGT	AAAGGCCAGC TTTCCGGTCG	AAAAGGCCAG TTTTCCGGTC
4451				TTTCCATAGG AAAGGTATCC	
4501				GTCAGAGGTG CAGTCTCCAC	
4551				CCTGGAAGCT GGACCTTCGA	
4601	CTCTCCTGTT GAGAGGACAA	CCGACCCTGC GGCTGGGACG	CGCTTACCGG GCGAATGGCC	ATACCTGTCC TATGGACAGG	GCCTTTCTCC CGGAAAGAGG
4651	CTTCGGGAAG GAAGCCCTTC	CGTGGCGCTT GCACCGCGAA	TCTCAATGCT AGAGTTACGA	CACGCTGTAG GTGCGACATC	GTATCTCAGT CATAGAGTCA
4701	TCGGTGTAGG AGCCACATCC	TCGTTCGCTC AGCAAGCGAG	CAAGCTGGGC GTTCGACCCG	TGTGTGCACG ACACACGTGC	AACCCCCCGT TTGGGGGGCA
4751				CTATCGTCTT GATAGCAGAA	
4801				CAGCCACTGG GTCGGTGACC	

		•			
4851	AGCAGAGCGA	GGTATGTAGG	CGGTGCTACA	GAGTTCTTGA CTCAAGAACT	AGTGGTGGCC
4901				TGGTATCTGC	
	ATTGATGCCG	ATGTGATCTT	CCTGTCATAA	ACCATAGACG	CGAGACGACT
4951				GCTCTTGATC	
	TCGGTCAATG	GAAGCCTTTT	TCTCAACCAT	CGAGAACTAG	GCCGTTTGTT
5001	ACCACCGCTG	GTAGCGGTGG	TTTTTTTGTT	TGCAAGCAGC	AGATTACGCG
	TGGTGGCGAC	CATCGCCACC	AAAAAAACAA	ACGTTCGTCG	TCTAATGCGC
5051	CAGAAAAAA	GGATCTCAAG	AAGATCCTTT	GATCTTTTCT	ACGGGGTCTG
5051				CTAGAAAAGA	
5101	ACCCTCACTC	CARCGARAC	TCACGTTAAG	GGATTTTGGT	CATGAGATTA
5101				CCTAAAACCA	
					CARCETTAR
5151	AGTTTTTCCT	AGAAGTGGAT	CTAGGAAAAT	AATTAAAAAT TTAATTTTTA	CTTCAAAATT
5201	ATCAATCTAA	AGTATATATG	AGTAAACTTG	GTCTGACAGT CAGACTGTCA	TACCAATGCT
5251				GTCTATTTCG	
	ATTAGTCACT	CCGTGGATAG	AGTCGCTAGA	CAGATAAAGC	AAGTAGGTAT
5301				ACGATACGGG	
	CAACGGACTG	AGGGGCAGCA	CATCTATTGA	TGCTATGCCC	TCCCGAATGG
5351	ATCTGGCCCC	AGTGCTGCAA	TGATACCGCG	AGACCCACGC	TCACCGGCTC
	TAGACCGGGG	TCACGACGTT	ACTATGGCGC	TCTGGGTGCG	AGTGGCCGAG
5401	CAGATTTATC	AGCAATAAAC	CAGCCAGCCG	GAAGGGCCGA	GCGCAGAAGT
				CTTCCCGGCT	
5451	GGTCCTGCAA	CTTTATCCGC	CTCCATCCAG	TCTATTAATT	GTTGCCGGGA
3.51				AGATAATTAA	
5501	1 COM1 01 0M1	1 CT1 CTT0CC	C1 Cmm1 1 m1 C	TTTGCGCAAC	CERCERCOCA
2201				AAACGCGTTG	
5551				CGTTTGGTAT GCAAACCATA	
5601	AGCTCCGGTT	CCCAACGATC	AAGGCGAGTT	ACATGATCCC	CCATGTTGTG
	TCGAGGCCAA	GGGTTGCTAG	TTCCGCTCAA	TGTACTAGGG	GGTACAACAC
5651	CAAAAAAGCG	GTTAGCTCCT	TCGGTCCTCC	GATCGTTGTC	AGAAGTAAGT
. 9	GTTTTTTCGC	CAATCGAGGA	AGCCAGGAGG	CTAGCAACAG	TCTTCATTCA
5701	TGGCCGCAGT	GTTATCACTC	ATGGTTATGG	CAGCACTGCA	TAATTCTCTT
	ACCGGCGTCA	CARTAGTGAG	TACCAATACC	GTCGTGACGT	ATTAAGAGAA
5751	ACTGTCATGC	CATCCGTAAG	ATGCTTTTCT	GTGACTGGTG	AGTACTCAAC
	TGACAGTACG	GTAGGCATTC	TACGAAAAGA	CACTGACCAC	TCATGAGTTG

5801		ACCGAGTTGC TGGCTCAACG	
5851		GCAGAACTTT CGTCTTGAAA	
5901		CTCTCAAGGA GAGAGTTCCT	
5951		TGCACCCAAC ACGTGGGTTG	
6001		GAGCAAAAAC CTCGTTTTTG	
6051		CGGAAATGTT GCCTTTACAA	
6101		TTATCAGGGT AATAGTCCCA	
6151		AAAATAAACA TTTTATTTGT	
6201		GACGTCTAAG CTGCAGATTC	
6251		TATCACGAGG ATAGTGCTCC	
_	 	 	

FIG. 9-Page 8

MetAlaAlaTyrAlaAlaGlnGlyTyrLysVaILeuVal
AGCTTACAAAACAAATTCACCATGGCTGCATATGCAGCTCAGGGCTATAAGGTGCTAGTA
TCGAATGTTTTGTTTAAGTGGTACCGACGTATACGTCGAGTCCCGATATTCCACGATCAT

- 1 HIND3, 21 NCOI, 30 NDEI, 58 SCAI,
- LeuAsnProSerValAlaAlaThrLeuGlyPheGlyAlaTyrMetSerLysAlaHisGly
 CTCAACCCCTCTGTTGCTGCAACACTGGGCTTTGGTCCTTACATGTCCAAGTGCCTCATGGC
 GAGTTGGGGAACAACGACGTTGTGACCCGAATGTACACGTTCCGAGTACCC
- IleAspProAsnIleArgThrGlyValArgThrIleThrThrGlySerProIleThrTyr
 122 ATCGATCCTAACATCAGGACCGGGGTGAGAACAATTACCACTGCAGCCCCATCACGTAC
 TAGCTAGGATTGTAGTCCTGGCCCCACTCTTGTTAATGGTGACCGTCCGGGGTAGTGCATG
 - 122 CLAI,
- SerThrTyrGlyLysPheLeuAlaAspGlyGlyCysSerGlyGlyAlaTyrAspIleIle
 TCCACCTACGGCAAGTTCCTTGCCGACGGCGGGTGCTCTGGGGGGGCGCTTATGACATAATA
 AGGTGGATGCCGTTCAAGGAACGGCTGCCGCCCACGAGCCCCCCGAATACTGTATTAT
- IleCysAspGluCysHisSerThrAspAlaThrSerIleLeuGlyIleGlyThrValLeu
 242 ATTTGTGACGAGTGCCACTCCACGGATGCCACATCCATCTTGGGCATTGGCACTGCCCT
 TAAACACTGCTCACGGTGAGGTGCCTACGGTTGAGAACCCCTAACCGTAACCGGAA
- AspGlnAlaGluThrAlaGlyAlaArgLeuValValLeuAlaThrAlaThrProProGly
 GACCAAGCAAGCAAGCAGCGGGGGGGGAACTGGTTGTGCTCGCCACCCCCACCCCTCCGGGC
 CTGGTTCGTCTCTGACGCCCCGCTCTGACCAACAGCAGCGGTGGGGAGGCCCG
 - 309 ALWN1,
- SerValThrValProHisProAsnIleGluGluValAlaLeuSerThrThrGlyGluIle
 TCCGTCACTGTGCCCCATCCCAACATCGAGGAGGTTGCTCTGTCCACCACCGGAGAGATC
 AGGCAGTGACACGGGGTAGGGTTGTAGCTCCTCCAACGAGACAGGTGGTGGCCTCTCTAG

- AlaValAlaTyrTyrArgGlyLeuAspValSerValIleProThrSerGlyAspValVal 542 GCCGTGGCCTACTACCGGGGTCTTGACGTGTCCGTCATCCCGACCAGCGGCGATGTTGTC CGGCACCGGATGATGGCGCCAGAACTGCACAGGCAGTAGGGCTGGTCGCCGCTACAACAG
 - 556 SAC2, 566 DRD1,
- ValValAlathrAspAlaLeuMetThrGlyTyrThrGlyAspPheAspSerValI1eAsp
 602 GTCGTGGCAACCGATGCCCTCATGACCGCCTATACCGCGACTTCGACTCGGTGATAGAC
 CAGCACCGTTGGCTACGGGAGTACTGGCCGATATGGCCGCTGAAGCTCAGCCACTATATG
 - 621 BSPH1,
 - CysAsnThrCysValThrGlnThrValAspPheSerLeuAspProThrPheThrIleGlu

- 662 TGCAATACGTGTGTCACCCAGACAGTCGATTTCAGCCTTGACCCTACCCTTCACCATTGAG
 ACGTTATGCACACAGTGGGTCTGTCAGCTAAAGTCGGAACTGGGATGGAAGTGGTAACTC
- ThrileThrLeuProGlnAspAleValSerArgThrGlnArgArgGlyArgThrGlyArg
 722 ACAATCAGGCTCCCCCAAGATGCTGTCCCCGCACTCAAGGTGGGGAGGACTGGAGCG
 TGTTAGTGCGAGGGGGTTCTACGACAGAGGGGGTGGTGCAGCCCCGTCCTGACCGTCC
- GlyLysProGlyIleTyrArgPheValAlaProGlyGluArgProSerGlyMetPheAsp
 782 GGGAAGCCAGGCATCTACAGATTTGTGCACCGGGGGAGCGCCCCTCCGGCATGTTCGAC
 CCCTTCGGTCGTAGATGTCTAAACACCGTGGCCCCCTCGCGGGAGGCCCTACAAGCTG
 - 822 BGLI, 839 DRD1,
- - 887 SACI.
- GluthrthrValArgLeuArgAlafyrMetAsnthrProGlyLeuProValCysGlnAsp 902 GAGACTACAGTTAGGCTACGAGCGTACATGAACACCCCGGGGCTTCCCGTGTGCCAGGAC CTCTGATGTCAATGCGATGCTCGCATGTACTTGTGGGGCCCCGAAGGGCACACGGTCCTG
 - 937 SMAI XMAI.
- - 991 STUI,
- SerGlnThrLysGlnSerGlyGluAsnLeuProTyrLeuValAlaTyrGlnAlaThrVal
 1022 TCCCAGACAAAGCAGAGTGGGGAGAACCTTCCTTACCTGGTAGCGTACCAGCCACCCGTG
 AGGGTCTGTTTCGTCTCACCCCTCTTGGAAGGAATGGACCATCGCATGGTTCGGTGGCAC
 - 1075 DRA3,
- CysAlaArgAlaGlnAlaProProProSerTrpAspGlnMetTrpLysCysLeuIleArg 1082 TGGGTTAGGGCTCAAGCCCCTCCCCCATCGTGGAACCAGATGTGGAAGTGTTTGATTCGC ACGCGATCCGGATTCGGGGAGGGGTAGCACCCTGGTCTACACCTTCACAACTTAAGCG
- LeulysProThrLeuHisGlyProThrProLeuLeuTyrArgLeuGlyAlaValGlnAsn 1142 CTCAAGCCCTCCATGGGCCAACACCCCTGCTATACAGACTGGGCGCTGTTCAGAAT GAGTTCGGGTGGGAGGTACCCGGTTGTGGGGACGATATGTCTGACCCGGGACGAGTCTTA
 - 1156 NCOI,
- - 1236 BSPH1, 1240 DRD1, 1243 AVA3, 1251 EAG1 XMA3, 1256 DRD1,
- Gluvalvalthrs rthrtrpvall uvalGlyGlyValLeuAlaAlaLeuAlaAlaTyr GAGGTCGTCACCAGCACCTGGGTGCTCGTTGGCGGCGTCCTTGGCCGCGTAT CTCCAGCAGTGCTCGTGGACCACAGAGCAACCGCCGCAGACGACGACAAACCGCGCATA

CysleuserThrGlyCysValValTleValGlyArgValValLeuserClyLysFr Ala TGCCTGTCAACAGGCTGGCTGGTCATAGTGGGCAGGGTCGTCTTGTCCGGGAACCCGGCA ACGGACAGTTGTCCGACCACCAGTATCACCCGTCCCAGCAGAACAGGCCCTTCGGCCGT

1375 NAEI,

IleIleProAspArgGluValLeuTyrArgGluPheAspGluMetGluGluCysSerGln
ATCATACCTGACAGGGAAGTCCTCTACGAGAGTTCGATGAGATGGAAGAGTGCTCTCAG
TAGTATGGACTGTCCCTTCAGGAGATGCTCAAGGCTACTCTACAGGAGTC

1391 DRD1,

- HisLeuProTyrTleGluGlnGlyMetMetLeuAlaGluGlnPheLysGlnLysAlaLeu CACTTACCGTACATCGAGCAGGGATGATGCTCGCCGAGCAGTTCAAGCAGAGGCCCTC GTGAATGGCATGTAGCTCGTTCCCTACTACGAGCGGCTCGTCAAGTTCGTCTTCGGGAG
- GlyLeuLeuGlnThrAlaSerArgGlnAlaGluValIleAlaProAlaValGlnThrAsn
 GGCCTCCTGCAGACCGCCTCCCGTCAGGCAGAGGTTATCGCCCCTGCTGTCCAGACCACC
 CCGGAGGACGTCTGGCGAGGCAGTCCTTCCAATAGCGGGGACGACAGGTTTGGTTG

1508 PSTI, 1513 TTH3I,

TrpGlnLysLeuGluThrPheTrpAlaLysHisMetTrpAsnPheIleSerGlyIleGln
1562 TGGCAAAAACTCGAGACCTTCTGGGCGAAGCATTGTGGAACTTCATCAGTGGGGATACAA
ACCGTTTTTGAGCTCTGGAAGACCCGCTTCGTATACACCTTGAAGTAGTCACCCTATGTT

1571 XHOI, 1592 NDEI,

1649 BSTE2,

ThrAlaAlaValThrSerProLeuThrThrSerGlnThrLeuLeuPheAsnTleLeuGly
1682 ACAGCTGCTGTCACACAGCACATACCAAACCCTCCTCTTCAACATATTGGGG
TGTCGACGACAGTGGTCGGTGATTGGTGATCGGTTTGGGAGGAGAAGTTGTATAACCCC

1683 ALWN1 PVU2,

G19TrpValAlaAlaG1nLeuAlaAlaProG1yAlaAlaThrAlaPheValG1yAlaG1y
GGGTGGGTGGCTGCCCACCCCCCCGCTGCCACTACTGCCTTTGTGGGCGCTGGC
CCCACCCACCGACGGGTCGAGCGGGGGCCACGGCGATGACGGAAACACCCGCGACCG

1800 ESP1.

LeuAlaGlyAlaAlaTleGlySerValGlyLeuGlyLysValLeuIleAspIleLeuAla
TTAGCTGGCGCCGCCATCGGCAGTGTTGGAACTGGGAAGGTCCTCATAAGACATCCTTGCA
AATCGACCGGGGGTAGCCGTCACAACCTGACCCCTTCCAGGAAGTATCTGTAGGAACGT

1808 KAS1 NARI,

GlyTyrGlyAlaGlyValAlaGlyAlaLeuValAlaPheLysIleMetSerGlyGluVal
1862 GGGTATGGCGCGGGGGGGGGGGGGGCTCTTGTGCATTCAAGATCATGACGGCTGAGTG
CCCATACCGCCCCGCACCGCCCTCGAGAACACCGTAAGTTCTAGTACTCGCCACTCCAG

1884 SACI, 1905 BSPH1,

ProSeTfhrGluAspleuVulAsnLeuLeuProAlaIleLeuSerProGlyAlaLeuVul
1922 CCCTCCACGGAGGACTGCTAATCTACTGCCCGCATCCTCTCGCCCGGAGCCCTCGTA
GGGAGGTGCCTCCTGGACCAGTTAGATGACGGGCCGTAGGAGAGCGGGCCTCGGAGCAT

1934 TTH3I,

ValGlyValValCysAlaAlaTleLeuArgArgHisValGlyProglyGluGlyAlaVal
1982 GTCGGCTGGTCTGTGCAGCAATACTGCCCGGGCAGCTGGGCCCGGCGAGGGGGCACTG
CAGCCGCACCAGACAGCTGTTATGAGGGGCCGTCAACCGGCCCGTCCCCCGTCAC

2010 NAEI, 2023 SMAI XMAI,

GlnTrpMetAsnArgLeuIleAlaPheAlaSerArgGlyAsnHisValSerProThrHis
CAGTGGATGAACGGCTGATAGCCTTCGCCTCCCGGGGGAACCATGTTTCCCCCACGCAC
GTCACCTACTTGGCCGACTATCGGAAGGGGCCCCCTTGGTACAAAGGGGGTGCGTG

2073 SMAI XMAI, 2099 DRA3,

TyrValProGluserAspAlaAlaAlaYvalThrAlaIleLeuserSerLeuThrVal
TACGTGCCGGAGAGCGATGCGAGGTGCCCGGTCATGCCATACTCAGCAGCCTCACTGTA
ATGCACGGCCTCTCGCTACCTCGACGGGCGCAGTGACGGTATGAGTCCTCGGAGTGACAT

2121 PVU2,

ThrGinLeuLeuArgArgLeuHisGlnTrpIleSerSerGluCysThrThrProCysSer
2162 ACCCAGCTCCTGAGGCGACTGCACCAGTGGATAAGCTCGGAGTGTACCACTCCATGCTCC
TGGGTCGAGGACTCCGCTGACGTGGTCACCTATTCGAGCCTCAATGGTGAGGTACGAGG

2165 ALWN1, 2170 MST2,

G1ySerTrpLeuArgAspIleTrpAspTrpIleCysG1uValLeuSerAspPheLysThr 2222 GGTTCCTGGCTAAGGGACATCTGGGACTGGATATGCGAGGTGTTGAGCGACTTTAAGACC CCAAGGACCGATTCCCTGTAGACCCTGACTATACGCTCCACAACTCGCTGAAATTCTGG

2226 ECON1,

2291 ESP1, 2306 PVU2, 2316 BAMHI,

- G1yTyrLysG1yValTrpArgG1yAspG1yIleMetHisThrArgCysHisCysG1yAla GGGTATAAGGGGGTCTGGCGAGGGGACGGCATCATGCACACTCGCTGCCACTGTGGAGCT CCCATATTCCCCCAGACCGCTCCCCTGCGTAGTACGTGTGAGCGACGGTGAACACCTCGA
- GlullethrGlyHisValLysAsnGlyThrMetArgIleValGlyProArgThrCysArg
 GAGATCACTGGACATGTCAAAAACGGGACGATGAGGATCGTCGGTCCTAGGACCTGCAGG
 CTCTAGTGACCTGTACAGTTTTTGCCCTGCTACTCCTAGCACCAGGATCCTGGACGTCC
 - 2431 BSAB1, 2447 AVR2, 2454 SSE83871, 2455 PSTI,
- AsnMetTpSerGlyThrPhePr IleAsnAlaTyrThrThrGlyProCysThrProLeu AACATGTGGAGTGGGACCTCCCATTAATGCTACACCACGGGCCCTTGTACCCCCTT TTGTACACCTCACCCTGGAAGGGTAATTACGGATGTGGCCCGGGGACATGGGGGAA

2486 ASE1, 2503 APAI,

ProAlsProAsnTyrThrPheAlaLeuTrpArgValSerAlsGluGluTyrValGluTle
2522 CCTGCGCCGAACTACACGTTCGCGCTATGGAGGTGTCTGCAGAGGAATACGTGGAGATA
GGACGCGCTTGATGTGCAAGGCGATACCTCCCACAGACGTCTCCTTATTCACCTCTTAT

2559 PSTI,

ArgGlnValGlyAspPheHisTyrValThrGlyMetThrThrAspAsnLeuLysCysPro AGGCAGGTGGGGACTTCCACTACGTGACGGGTATGACTACTGACAATCTTAAATGCCCG TCCGTCCACCCCTGAAGGTGATGCACTGCCCATACTGATGACTGTTAGAATTTAAGGGC

2600 DRA3,

- CysGlnValProSerProGluPhePheThrGluLeuAspGlyValArgLeuHisArgPhe
 TGCCAGGTCCCATCGCCCGAATTTTCACAGAATTGGACGGGTGCGCCTACATAGGTTT
 ACGGTCCAGGGTAGCGGGCTTAAAAAGGTGTCTTAACCTGCCCACGCGGATGTATCCAAA
- AlaProProCysLysProLeuLeuArgGluGluValSerPheArgVaiGlyLeuHisGlu
 2702 GCGCCCCCTGCAAGCCCTTGCTGCGGGAGGAGTATCATTCAGAGTAGGACTCCACGA
 CGCGGGGGGACGTTCGGGAACGACGCCTCCTCCATAGTAAGTCTCATCCTGAGGTGCTT
- TyrFrovalGlySerGinLeuProCysGluProGluProAspValAlaValLeuThrSer 2762 TACCGGTAGGGTGCCAATTACCTTGCGGACCCGGACCGGGCGTGGCCGTGTGACGTCC ATGGGCCATCCCAGCGTTAATGGAACGCTCGGGCTTGGCCTGCACCGGCACAACTGCAGG

2763 HGIE2, 2815 AAT2,

2856 EAG1 XMA3,

SerProProSerValAlaSerSerSerAlaSerGlnLeuSerAlaProSerLeuLysAla
2882 TCACCCCCCTCTGTGGCCAGCTCCTCGGCTAGCCAGCTATCCGCTCCATCTCTCAAGGCA
AGTGGGGGGAGACACCGGTCGAGGAGCCGATCGGTTGGTAGGCAGGTAGAGAAGTTCCGT

2895 BALI, 2909 NHEI,

ThrCysThrAlaAsnHisAspSerProAspAlaGluLeuIleGluAlaAsnLeuLeuTrg
2942 ACTTGCACCGCTAACCATGACTCCCCTGATGCTCATAGACTCATAGAGGCCAACCTCTATGG
TGAACGTGGCGATTGGTACTGAGGGGACTACGACTATCTCGAGTATCTCCGGTTGGAGGATACC

2972 ESP1, 2975 SACI,

- Argolnolumétolyolyasınlı ethrar gvaloluserolusanlıysvalvallleleu
 3002 Aggolagagatagagogolaacatcaccaggottagatcagaalacaaagtgotgattcto
 TCCGTCCTCTACCGGCGTTGTAGTGGTCCCAACTCAGTCTTTTGTTCACCACTAACAC
 - AspSerPheAspProL uValAlaGluGluAspGluArgGluIleSerValProAlaGlu
 3062 GACTCCTTCGATCCGCTTGTGGGGAGGAGGAGGAGGACTGGATCTCCGTAACCGCAGAA
 CTGAGGAAGCTAGGCGACACACCCTCTCTCCTCGCCCTCTAGAGGCATGGGGTTTT

3102 BGL2,

3122	IleLeuArgLysSerArgArgPheAlaGlnAlaLeuPr ValTzpAlaArgPr AspTyr ATCCTGCGGAAGTCTCGGAGATTCGCCCAGGCCCTGCCCGTTTGGGCGCGGCCGGACTAT TAGGACGCCTTCAGAGCCTCTAAGCGGGTCCGGGACGGGCAAACCCGGCCGG
	3149 ALWN1, 3170 EAG1 XMA3,
3182	AsnProProLeuValGluThrTrpLysLysProAspTyrGluProProValValHisGly AACCCCCGCTAGTGGAGACGTGGAAAAAGCCCGACTACGAACCACCTGTGGTCCATGGC TTGGGGGGGGATCACCTCTGCACCTTTTTCGGGGTGATGCTTGGTGGACACCACGTACCG
	3223 HGIE2, 3235 NCOI,
3242	CysProLeuProProProLysSerProProValProProProArgLysLysArgThrVal TGCCCGCTTCCACCTCCAAAGTCCCCTCCTGTGCCTCCGCCTCGGAAGAAGCGGACGGTG ACGGGCGAAGGTGGAGGTTTCAGGGGAGGACACGGAGCCGTCTTCTCGCCTGCCAC

3338 SACI, 3352 HIND3,

 $\label{thm:leu} ValleuThrGluSerThrLeuSerThrAlaLeuAlaGluLeuAlaThrArgSerPheGly\\ \texttt{GTCCTCACTGAATCAACCCTATCTACTGCCTTGGCCGAGCTCGCCACCAGAAGCTTTGGC}$

CAGGAGTGACTTAGTTGGGATAGATGACGGAACCGGCTCGAGCGGTGTCTTCGAAACCG

SerGlyCysProProAspSerAspAlaGluSerTyrSerSerMetProProLeuGluGly
TCTGGCTGCCCCCCGACTCCGACGCTGAGATCCTATTCCTCCATGCCCCCCCTGGAGGGG
AGACCGACGGGGGGCTGAGGCTGCGACTCAGGATAAGGAGGTACGGGGGGGACCTCCCC

3443 EAM11051,

3302

GluProGlyAspProAspLeuSerAspGlySerTrpSerThrValSerSerGluAlaAsn
3482 GAGCTGGGATCCGGATCTTAGCGACGGTCATGGTCAACGTCAACGTCAGTGAGCCAAC
CTCGGACCCTAGGCTAGATCGCTGCCAGTACCAGTTGCCAGTCATCACTCCGGTTG

3490 BAMHI, 3491 BSAB1, 3493 BSPE1,

AlaGluAspValValCysCysSerMetSerTyrSerTrpThrGlyAlaLeuValThrPro GCGGAGGATGTCGTGTGGTGATAGTCTTTACTCTTGACAGGCGCACTCGTCACCCCG CGCTCCTACAGCACACGAGTTACAGAATGAGAACCTGTCCGCGTGAGCAGTGGGGC

3595 DRA3,

CysAlaAlaGluGluGlnLysLeuProIleAsnAlaLeuSerAsnSerLeuLeuArgHis
TGCGCCGCGGAAGAACAGAAACTGCCCATCAATGCACTAAGCAACTCGTTGCTACGTCAC
ACGCGCGCCTTCTTGTCTTTGACGGGTAGTTACGTGATTCGTTGAGCAACGATGCAGTG

3606 SAC2, 3617 ALWN1, 3661 PFLM1,

HisasnLeuvalTyrSerThrThrSerArgSerAlaCysGlnArgGlnLysLysValThr
CACAATTTGGTGTATTCCACCACCTCACGCAGTGCTTGCCAAAGGCAGAGAAGTCAG
GTGTTAAACCACATAAGGTGGAGTGCGTCACCAACGGTTTCCGTCTTCTTCAGTGT

3687 DRA3,

PheAspArgL uGlnValLeuAspSerHisTyrGlnAspValLeuLysGluValLysAla

3722	TTTGACAGACTGCAAGTTCTGGACAGCCATTACCAGGACGTACTCAAGGAGGTTAAAGCAAACTGTCTGACGTTCAAGACCTGTCGGTAATGGTCCTGCATGAGTTCCTCCAATTTCG1
3782	AlaalaSerLysValLysAlaAsnLeuLeuSerValGluGluAlaCysSerLeuThrPrc GCGGCGTCAAAAGTGAAGGCTAACTTGCTATCCGTAGAGGAAGCTTGCAGCCTGACGCCC CGCCGCAGTTTTCACTTCCGATTGAACGATAGGCATCTCCTTCGAACGTCGGACTGCGGG
	3822 HIND3,
3842	ProHisSerAlaLysSerLysPheGlyTyrGlyAlaLysAspValArgCysHisAlaArg CCACACTCAGCCAAATCCAAGTTTGGTTATGGGCCAAAAGACGTCCGTTGCCATGCCAGA GGTGTGAGTCGGTTTAGGTTCAAACCAATACCCCGTTTTCTGCAGGCAACGGTACGGTCT
	3881 AAT2, 3896 BGLI,
3902	LysAlaValThrHislleAsnSerValTrpLysAspLeuLeuGluAspAsnValThrPro AAGGCCGTAACCCACATCAACTCCGTGTGGAAAGACCTTCTGGAAGACAATGTAACACCA TTCCGGCATTGGGTGTAGTTGAGGCACACCTTTCTGGAAGACCTTCTGTTACATTGTGGT
3962	IleAspThrThrIleMetAlaLysAsnGluValPheCysValGlnProGluLysGlyGly ATAGACACTACCATCATGGCTAAGAAGGAGGTTTTCTGCGTTCAGCCTGAGAAGGGGGGT TATCTGTGATGGTAGTACCGATTCTTGCTCCAAAAGACGCAAGTCGGACTCTTCCCCCCA
4022	ArgLysProAlaArgLeuIleValPheProAspLeuGlyValArgValCysGluLysMet CGTAAGCCAGCTCGTCTCATCGTGTTCCCCGATCTGGGCGTGCGCGTGTGCGAAAAGATG GCATTCGGTCGAGCAGAGTAGCACAAGGGGCTAGACCCGCACGCGCACACGCTTTTCTAC
4082	AlaLeuTyrAspValValThrLysLeuProLeuAlaValMetGlySerSerTyrGlyPhe GCTTTGTACGACGTGGTTACAAAGCTCCCCTTGGCCGTGATGGGAAGCTCCTACGGATTC CGAAACATGCTGCACCAATGTTTCGAGGGGAACCGGCACTACCCTTCGAGGATGCCTAAG
4142	GlnTyrSerProGlyGlnArgValGluPheLeuValGlnAlaTrpLysSerLysLysThr CAATACTCACCAGGACAGCGGGTTGAATTCCTCGTGCAAGCGTGGAAGTCCAAGAAAACC GTTATGAGTGGTCCTGTCGCCCAACTTAAGGAGCACGTTCGCACCTTCAGGTTCTTTTGG
	4166 ECORI,
4202	PrometGlyPheSerTyrAspThrArgCysPheAspSerThrValThrGluSerAspIle CCAATGGGGTTCTCGTATGATACCCGCTGCTTTGACTCCACAGTCACTGAGAGCGACATC GGTTACCCCAAGAGCATACTATGGGCGACGAAACTGAGGTGCAGTGACTCCGCTGTAG
	4235 DRD1, 4242 ALWN1,
4262	ArgThrGluGluAlaIleTyrGlnCysCysAspLeuAspProGlnAlaArgValAlaIle CGTACGGAGGAAGCCAATCTACCAATGTTGTGACCTCGACCCCAAGCCCGCGTGGCCATC

LysSerLeuThrGluArgLeuTyrValGlyGlyProLeuThrAsnSerArgGlyGluAsn
4322 AAGTCCCTCACCGAGAGGCTTTATGTTGGGGGCCCCTCTTACCAATTCAAGGGGGGAGAAC
TTCAGGGAGTGGCTCTCCGAAATACAACCCCCGGGAGAATGGTTAAGTTCCCCCCTCTTG

GCATGCCTCCGTTAGATGGTTACAACACTGGAGCTGGGGGTTCGGGCGCACCGGTAG

4351 APAI,

4307 BGLI, 4314 BALI,

CysGlyTyrArgArgCysArgAlaSerGlyValLeuThrThrSerCysGlyAsnThrLeu 4382 TGCGGCTATCGCAGGTGCCGCGCGAGCGGCGTACTGACAACTAGCTGTGGTAACACCCTC

ACGCCGATAGCGTCCACGG		

ThrCysTyrIleLysAlaArgAlaAlaCysArgAlaAlaGlyLeuGlnAspCysThrMet 4442 ACTGCTACATCAAGCCCGGGGCGCCTGCTGGGCCCCGGGGGCTCCAGGACTGCACCATG TGAACGATGTAGTTCCGGGCCCGTCGGACAGCTCCGGGTCCCGAGGTCCTGACGGTAC

4458 SMAI XMAI,

LeuValCysGlyAspAspLeuValValIleCysGluSerAlaGlyValGlnGluAspAla
4502 CTCGTGTGTGGCGACGACTTAGTCGTTATCTGTGAAAGCGCGGGGGTCCAGGAGGACGCG
GAGCACACACCGCTGCTGAATCAGCAATAGACACTTTCGCGCCCCCAGGTCCTCCTGCGC

4514 DRD1, 4517 TTH3I,

- AlaSerLeuArgAlaPheThrGluAlaMetThrArgTyrSerAlaProProGlyAspPro
 GCGAGCCTGAGAGCCTTCACGGAGCTATGACCAGGTACTCCGCCCCCCCTGGGGACCCC
 CGCTCGGACTCTCGGAAGTGCCTCCGATACTGGTCCATGAGGCGGGGGGACCCCCTGGG
- ProGlnProGluTyrAspLeuGluLeuIleThrSerCysSerSerAsnValSerValAla
 4622 CCACAACCAGAATACGACTTGGAGCTCATAACATCATGCTCCTCCAACGTGTCAGTCGCC
 GGTGTTGGTCTTATGCTGAACCTCGAGTATTGTAGTACCAGGAGTTGCACAGTCAGCGG

4643 SACI,

HisaspolyaladlylysargvaltyrtyrLeuthrArgaspProThrThrProLeuAla CACGACGGCGCTGGAAAGAGGGTCTACTACTACCTCACCGTGACCCTACAACCCCCCTCGCG GTGCTGCCGCGACCTTTCTCCCAGATGATGGAGTGGGCACTGGGATGTTGGGGGAGCGC

4737 NRUI,

- ArgAlaAlaTrpGluThrAlaArgHisThrProValAsnSerTrpLeuGlyAsnIleIle
 4742 AGAGCTGCGTGGGAGACACAACAACACTCCAGTCAATTCCTGGCTAGGCAACATAATCC
 TCTCGACGCACCCTCTGTGTTTTTGTGTGAGGTCAGTTAAGGACCGATCCGTTGTATTAG
- MetPheAlaProThrLeuTrpAlaArgMetIleLeuMetThrHisPhePheSerValLeu
 4802 ATGTTTGCCCCCACGTGTGGGGGAGATGATACTGATGACCCATTTCTTTAGCGTCCTT
 TACAAACGGGGGTGTGACACCCGCTCCTACTATGACTACTGGGTAAAGAATCGCAGGAA

4812 PFLM1, 4813 DRA3,

IlealargaspolnLeuGluGlnAlaLeuAspCysGluIleTyrGlyAlaCysTyrSer ATAGCCAGGGACCAGCTTGAACAGGCCCTCGATTGCGAGATCTACGGGGCCTGCTACTCC TATCGGTCCCTGGTCGAACTTGTCCGGGAGCTAACGCTCTAGATGCCCCGGACGATGAGG

4899 BGL2,

IleGluProLeuAspLeuProProIleIleGlnArgLeuHisGlyLeuSerAlaPheSer
4922 ATAGAACACTGGATCTACCTCCAATCATTCAAAGACTCCATGGCCTCAGCGCATTTTCA
TATCTTGGTGACCTTAGTGGAGGTTAGTAAGTTTCTGAGGTACCGGATTCGCGTAAAAGT

4960 NCOI.

LeuHisSerTyrSerProGlyGluTleAsnArgValAlaAlaCysLeuArgLysLeuGly
1982 CTCCACGACTACTCTCAGGTGAAAACTTAGG
GAGGTGTCAATGAGAGGCTCCACTTTAGTTATCCCACCGCGCTACGGACTCTTTAGACCC

5021 SPHI. 5041 KPNI.

	ValProProLeuArgAlaTrpArgHisArgAlaArgSerValArgAlaA	rgLeuLeuAla
5042	GTACCGCCCTTGCGAGCTTGGAGACACCGGGCCCCGGAGCGTCCGCGCTA	GGCTTCTGGC
	CATGGCGGGAACGCTCGAACCTCTGTGGCCCGGGCCTCGCAGGCGCGAT	CCGAAGACCG

5070 APAI, 5097 BALI,

ArgGlyGlyArgAlaAla1leCysGlyLysTyrLeuPheAsnTrpAlaValArgThrLys
5102 AGAGGAGGCAGCCATATGTGGCAAGTACCTCTTCAACTGGGCAGTAAGAACAAAG
TCTCCTCCGTCCGACGGTATACACCGTTCATGGAGAAGTTGACCCGTCATTCTTGTTTC

5119 NDEI.

LeuLysLeuThrProIleAlaAlaAlaGlyGlnLeuAspLeuSerGlyTrpPheThrAla
5162 CTGAAACTGACTCGATAGGGCGGTGGCCAGCTGGACTTGTCGGGTGGTTCACGGCT
GAGTTTGAGTGAGGTTATCGCCGGCGACCGGCCGACCTGAACAGGCCGACCAAGTGCCGA

5180 NOTI, 5181 EAG1 XMA3, 5188 BALI, 5192 PVU2,

GlyTyrSerGlyGlyAspIleTyrHisSerValSerHisAlaArgFroArgTrpIleTrp
5222 GGCTACAGCGGGGGAGACATTTATCACAGCGTGTCTCATGCCCGGCCCCGTGGATCTG
CCGATGTCGCCCCTCTGTAAATAGTGTCGCACAGAGTACGGGCGGCGACCTAGACC

5246 DRA3.

PheCysLeuLeuLeuLeuAlaAlaGlyValGlyIleTyrLeuLeuProAsnArgOP 5282 TTTTGCCTACTCCTGCTTGCTGCAGGGGTAGGCATCTACCTCCTCCCCAACCGATGAAGG AAAACGGATGAGGACGACGTCCCCATCCGTAGATGGAGGAGGGTTTGCCTACTTCC

5301 PSTI, 5331 HGIE2,

5378 XBAI, 5390 SALI,

FIG. 11-Page 9

FIG. 12

1 HIND3, 24 NDEI, 52 SCAI,

ProSerValAlaAlaThrLeuGlyPheGlyAlaTyrMetSerLysAlaHisGlyIleAsp
CCCTCTGTTGCTGCAACACTGGGCTTTGGTGCTTACATGTCCAAGGCTCATGGGATCAG
GGGAGAAACGACGTTGTGACCCGAAACCACGAATGTACAGGTTCCGAGTACCCTAGCTA

116 CLAI.

- ProAsnileArgThrGlyValArgThrIleThrThrGlySerProIleThrTyrSerThr
 122 CCTAACATCAGGACCGGGGTGAGAACAATTACCACTGCAGCCCCATCACGTACTCCACC
 GGATTGTAGTCTGGCCCACTCTTGTTAATGGTGACCGTGGGGGTAGTGCATGAGGTGG
- TyrGlyLysheLeuAlaAspGlyGlyCysSerGlyGlyAlaTyrAspIleIleIleCys
 182 TACGGCAAGTTCCTTGCCGACGGCGGTGCTCGGGGGGGCGCTATAGACATAATAATTTAAACA
 ATGCCGTTCAAGGAACGGCTGCCGCCCACGAGCCCCCCGGATACTGTATTATTAAACA
- AspGluCysHisSerThrAspAlaThrSerTleLeuGlyTleGlyThrValLeuAspGln
 242 GACGAGTCCCACCGGATGCCACATCCATCTTGGCCATTGCACTTGTCCTTGACCAT CTGCTCACGGTGAGGTGCCTACGGTGTAGGTAGAACCGGTAACCGTGACAGGAACTGGTT

303 ALWN1,

- ThrvalProHisProAsnIleGluGluValAlaLeuSerThrThrGlyGluTleProPhe
 ACTGTGCCCCATCCCAACATCGAGGAGGTTGCTCTGTCCACCACCACCGAGAGACCCTTTT
 TGACACGGGGTTAGGGTTGTAGCTCCTCCAACGAGACAGGTGGTGGCCTCTCTAGGAAAA
- TyrGlyLysAlaIleProLeuGlwValIleLysGlyGlyArgHisLeuIlePheCysHis
 TAGGGGAAGGCTATCCCCCTCGAAGTAATCAAGGGGGGGAGACATCTCATCTTCTGTCAT
 ATGCCGTTCCGATAGGGGAGCTTCATTAGTTCCCCCCTCTGTAGAGTAGAAGACAGTA
- SerlyslyslyscysAspGluLeuAlaAlatysLeuValAlaLeuGlyIleAsnAlaVal
 TCAAAGAAGAAGACGCACCGAACTCGCCCCAAAGCTGGTCGCATTGGCATCAATGCCGTG
 AGTTTCTTCTTCACGCTGCTTGAGGGGGTTTCGACCAGCGTAACCCGTACTTACGGCAC
- AlatyrtyrArgGlyLeuAspValSerValTleProThrSerGlyAspValValValVal
 642 GCCTACTACCGCGGGTCTTGACGTGTCCGTCACCCGGGGGATGTTGTCGTCGTG
 CGGATGATGCGCCCAGAACTGCACAGGCAGTAGTGGTCGCCGCTACAACAGCAGCAC

550 SAC2, 560 DRD1,

AlaThraspAlaLeuMetThrGlyTyrThrGlyAspPheAspSerValIleAspCysAsn GCAACCGATGCCCTCATGACCGGCTATACCGGCGACTTCGACTCGGTGATAGACTGCAAT CGTTGGCTACGGGAGTACTGGCCGATATGGCCGCTGAAGCTGAGCCACTATCTGACGTTA

615 BSPH1,

ThrCysValThrGlnThrValAspPheSerLeuAspProThrPheThrIleGluThrIle

- 662 ACGTGTGTCACCCAGACAGTCGATTTCAGCCTTGACCCTTCACCATTGAGACAATC
 TGCACACAGTGGGTCTGTCAGCTAAAGTCGGAACTGGGAAGTGGAAGTGGTAACTCTGTTAG
- ThrLeuProGlnAspAlaValSerArgThrGlnArgArgGlyArgThrGlyArgGlyLys
 ACGCTCCCCCAGATGCTGTCTCCCGCACTCAACGTCGGGCAGGACTGGCAGGGGGAG
 TGCGAGGGGGTTCTACGACAGAGGGCGTGAGTTGCAGCCCCGTCCTGACCGTCCCTTC
- ProGlyILeTyrArgPheValAlaProGlyGluArgProSerGlyMetPheAspSerSer 782 CCAGGCATCTACAGATTTGTGGCACCGGGGGAGCCCCCTCCGGCATGTTCGACTCGTC GGTCCGTAGATGTCTAAACACCGTGGCCCCCTCGCGGGAGGCCCGTACAAGCTGAGCAGG
 - 816 BGLI, 833 DRD1,
- - 881 SACI.
- ThrValArgLeuArgAlaTymMetAsnThrProGlyLeuProValCysGlnAspHisLeu
 902 ACAGTTAGGCTACGAGCGTACATGAACACCCCGGGGCTTCCCGTGTGCCAGGACCATCTT
 TGTCAATCCGATGCTCGCATGTACTTCTGGGGCCCCGAAGGGCACACGTCCTGGTAGAA
 - 931 SMAI XMAI,
- GluPheTrpGluGlyValPheThrGlyLeuThrHisIleAspAlaHisPheLeuSerGln
 962 GAATTTTGGGAGGGCGTCTTTACAGGCCTCATATAGATGCCCACTTTCTATCCCAC
 CTTAAAACCCTCCCGCAGAAATGTCCGGAGTGAGTATATCTACGGGTGAAAGATAGGGTC
 - 985 STUI,
- - 1069 DRA3.
- ArgAlaGlnAlaProProProSerTrpAspGlnMetTrpLysCysLeuIleArgLeuLys
 1082 AGGGCTCAAGCCCCTCCCCCATCGTGGGACCAGATGTGGAAGTGTTTGATTCGCCTCAAG
 TCCGAGTTGGGGAGGGGTAGCACCTTGCTTACACCTTCACAAACTAAGCGGAGTTC
- - 1150 NCOI.
- - 1230 BSPH1, 1234 DRD1, 1237 AVA3, 1245 EAG1 XMA3, 1250 DRD1,
- ValThrSerThrTrpValLeuValGlyGlyValLeuAlaAlaLeuAlaAlaTyrCysLeu
 1262 GTCACGAGCACCTGGGTGCTCGTTGGCGGCGTCCTTGGCTGCTTTGGCCGCGTATTGCCTG
 CAGTGCTCGTGGACCCACGAGCAACCGCCGCAGGACCGACGAAACCGGCCGATAACGGAC

1322	SerThrGlyCysValValIleValGlyArgValValLeuSerGlyLysProAlaIleIle TCAACAGGCTGCGTGGTCATAGTGGGCAGGGTCGTCTTGTCCGGCAAGCCGGCAATCATA AGTTGTCCGACGCACCAGTATCACCCGTCCCAGCAGAACAGGCCCTTCGGCCGTTAGTAT
	1369 NAEI,

ProAspArgGluValLeuTyrArgGluPheAspGluMetGluGluCysSerGlnHisLeu CCTGACAGGGAAGTCCTCTACCGAGAGTTCGATGAAAGAGTGCTCTCAGCACTTA GGACTGTCCCTTCAGGAGATGGCTCTCAAGCTACTCTCTCACGAGAGTCGTGAAT

1385 DRD1,

ProfyrfleGluGlnGlyMetMetLeuAlaGluGlnPheLysGlnLysAlaLeuGlyLeu
1442 CCGTACATCGAGCAAGGATGATGCTCGCCGAGCAGTTCAAGCAGAAGGCCCTCGGCCTC
GGCATGTAGCTCGTTCCCTACTACGAGCGGCTCGTCAAGTTCGTCTTCCGGAGCCGGAG

LeuGlnThrAlaSerArgGlnAlaGluValIleAlaProAlaValGlnThrAsnTrpGln
CTGCAGACCGCGTCCGGCAGAGGGTTATCGCCCCTGCTGCAGACCAACTGGCAA
GACGTCTGGCGCAGGGCAGTCCGTCTCCAATAGCGGGGACGACAGGTCTGGTTGACCGTT

1502 PSTI, 1507 TTH3I,

LysLeugluthrPheTrpAlaLysHisMetTrpAsnPheIleSerglyIleglnTyrLeu
AAACTCGAGACCTTCTGGGCGAAGCATATGTGGAACTTCATCAGTGGGATACAATACTTG
TTTCAGCTCTGGAAGACCCGCTTCGTATACACCTTGAAGTAGTCACCCTATGTTATGAAC

1565 XHOI, 1586 NDEI,

AlaGlyLeuSerThrLeuProGlyAsnProAlaIleAlaSerLeuMetAlaPheThrAla
1622 GCGGGCTTGTCAACGCTGGCTAACCCCGCCATTGCTTCATTGATGGCTTTTACAGCT
CGCCCGAACAGTTGCGACGGACCATTGGGGCGGTAACGAAGTAACTACCGAAAATGTCGA

1643 BSTE2, 1677 ALWN1 PVU2,

AlaValThrserProLeuThrThrserGinThrLeuLeuPheAsnIleLeuGlyGlyTrp GCTGTCACCAGCCCACTAACCACTAGCCAAACCCTCCTCTTCAACATATTGGGGGGGTGG CGACAGTGGTCGGGTGATTGGTGATCGGTTTGGGAGGAGAAGTTGTATAACCCCCCCACC

1794 ESP1,

GIJALAALAIIeGIJSerValGIJLeuGIJLJSVAILeUILEASPIIELEUALAGIJTJV GGCGCCGCCATCGGCAGTGTTGGACTGGGAAGGTCCTCATAGACATCCTTGCAGGGTAT CCGCGGCGGTAGCCCTCACAACCTGACCCCTTCCAGGAGTATCTGTAGGAACGTCCATA

1802 KAS1 NARI,

GlyAlaGlyValAlaGlyAlaLeuValAlaPheLysIleMetSerGlyGluValProSer 1862 GGGCGGGGGGGGGGGCTCTTTGTGGCATTCAAGATCATGAGCGGTGAGGTCCCCTCC CCGCGCCCCCCCCCCGAGAACACCGTAAGTTCTAGTACTCGCCACTCCAGGGGAGG

1878 SACI, 1899 BSPH1,

- ThrGluAspLeuValAsnLeuLeuProAlaIleLeuSerProGlyAlaLeuValValGly
 1922 ACGGAGGACCTGGTCAATCTACTGCCCGCCATCCTCTCGCCCGGAGCCCTCGTAGTCGGC
 TGCCTCCTGGACCAGTTAGATGACGGCCGTAGGAGAGCGGCCTCGGGAGCATCAGCCG
 - 1928 TTH31.
- ValValCysAlaAla1ele.euArgArgHisValGlyProGlyGluGlyAlaValGlnTrp 1982 GGGTCTGTGCAGCAATACTGCGCCGGCACGTGCGCCCGGGCGAGGGGGCAGTGCAGTGG CACCAGACACGTCGTTATGACGCGGCCGTGCAACCGGGCCCGCTCCCCCGTCACGTCACC
 - 2004 NAEI, 2017 SMAI XMAI,
- MetasnargLeuIlealaPhealaSerargGlyAsnHisValSerProThrHisTyrVal
 2042 ATGAACCGGCTGATAGCCTTCGCCTCCCGGGGGAACCATGTTTCCCCCACGCACTACGTG
 TACTTGGCCGACTATCGGAAGCGGAGGCCCCCTTGGTACAAAGGGGGTGCTGATGCAC
 - 2067 SMAI XMAI, 2093 DRA3,
- ProGluSerAspAlaAlaAlaAlaTetalaTleLeuSerSerLeuThrValThrGin 2102 CCGGAGAGCGATGCAGCTGCCCGCGTCACTGCCATACTCAGCAGCCTCACTGTAACCCAG GGCCTCTCGCTACCTCGACGGGCGCAGTGACGGTATGAGTCGTCGGAGTGACATTGGGTC
 - 2115 PVU2, 2159 ALWN1,
- LeuLeuArgArgLeuHisGlnTrpIleSerSerGluCysThrThrProCysSerGlySer
 2162 CTCCTGAGGCGACTGCACCAGTGGATAAGCTCGGAGTGCACCACTCCATGCTCCGGTTCC
 GAGGACTCCGCTGACGTGGTCACCTATTCGAGCCTCACATGGTGAGGTACGAGGCCAAGG
 - 2164 MST2, 2220 ECON1,
- TrpLeuArgAspIleTrpAspTrpIleCysGluValLeuSerAspPheLysThrTrpLeu
 2222 TGGCTAAGGGACATCTGGGACTGGATATGCGAGGTGTTGAGCGCACTTTAAGACCTGGCTA
 ACCGATTCCTGTAGACCCTGACCTATACGCTCCACAACTCGCTGAAATTCTGGCCGACAA
- - 2285 ESP1, 2300 PVU2, 2310 BAMHI,
- LysGlyValTrpArgGlyAspGlyIleMetHisThrArgCysHisCysGlyAlaGluIle
 2342 AAGGGGTCTGGCGGAGGGGAGGCATCATGCACACTCGCTGCCACTGTGGAGCTGAGATC
 TTCCCCCAGACCGCTCCCCTGCCGTAGTACGTGTGAGCGACGGTGACACCTCGACTTAG
- ThrGlyHisValLysAsnGlyThrMetArgIleValGlyProArgThrCysArgAsnMet
 4C1GGACATGTCAAAAACGGGACGATGAGGATCGTCGGTCCTAGGACCTGCAGGAACATG
 TGACCTGTACAGTTTTTGCCCTGCTACTCCTAGCAGCCAGGATCCTGGACGTCCTTGTAC
 - 2425 BSAB1, 2441 AVR2, 2448 SSE83871, 2449 PSTI,
- TrpSerGlyThrPheProIleAsnAlaTyrThrThrGlyProCysThrProL uProAla
 2462 TGGAGTGGACCTTCCCCATTAATGCCTACACCACGGGCCCCTTACCCCCCTTCCTGCG
 ACCTCACCCTGGAAGGGGTAATTACGATTTGGTGCCCGGGGACATGGGGGGAAGGACGC
 - 2480 ASE1, 2497 APAI,
 - ProAsnTyrThrPheAlaLeuTrpArgValSerAlaGluGluTyrValGluIleArgGln

2522	CCGAACTACACGTTCGCGCTATGGAGGGTTCTGCAGAGGAATACGTGGAGATAAGGCAG GGCTTGATGTGCAAGCGCGATACCTCCCACAGACGTCTCCTTATGCACCTCTATTCCGTC
	2553 PSTI,
2582	ValGlyAspPheHisTyrValThrGlyMetThrThrAspAsnLeuLysCysProCysGln GTGGGGGACTTCCACTACGTGACGGGTATGACTACTGACAATCTTAAATGCCCGTGCCAG CACCCCCTGAAGGTGATGCACTGCCCATACTGATGACTGTTAGAATTTACGGGCACGGTC
	2594 DRA3,
2642	ValProSerProGluPhePheThrGluLeuAspGlyValArgLeuHisArgPheAlaPro GTCCCATCGCCCGAATTTTTCACAGAATTGGACGGGGTGCGCCTACATAGGTTTGCGCCC CAGGGTAGCGGGCTTAAAAAGTGTCTTAACCTGCCCCACGCGGATGTATCCAAACGCGGG
2702	ProCysLysProLeuLeuArgGluGluValSerPheArgValGlyLeuHisGluTyrPro CCCTGCAAGCCCTTGCTGCGGGAGGAGGTATCATTCAGAGTAGGACTCCACGAATACCCG GGGACGTTCGGGAACGACGCCCTCCTCCATAGTAAGTCTCATCCTGAGGTGCTTATGGGC
	2757 HGIE2,
2762	ValGlySerGlnLeuProCysGluProGluProAspValAlaValLeuThrSerMetLeu GTAGGGTCGCAATTACCTTGCGAGCCCGAACCGGACGTGGCCGGTTTGACGTCCATGCTC CATCCCAGCGTTAATGGAACGCTCGGGCTTGGCCTGCACCGGCACAACTGCAGGTACGAG
	2809 AAT2,
2822	ThrAspProSerHisIleThrAlaGluAlaAlaGlyArgArgLeuAlaArgGlySerPro ACTGATCCCTCCCATATAACAGCAGAGGCCGGCCGGGCGAAGGTTGGCGAGGGGATCACCC TGACTAGGGAGGGTATATTGTCGTCTCCGCCGGCCCGCTTCCAACCGCTCCCCTAGTGGG
	2850 EAG1 XMA3,
2882	ProSerValAlaSerSerSerAlaSerGlnLeuSerAlaProSerLeuLysAlaThrCys CCCTCTGTGGCCAGCTCCTCGGCTAGCCAGCTATCCGCTCCATCTCTCAAGGCAACTTGC GGGAGACACCGGTCGAGGAGCCCATCGGTCGATAGGCGAGGTAGAGAGTTCCGTTGAACG
	2889 BALI, 2903 NHEI,
2942	ThrAlaAsnHisAspSerProAspAlaGluLeuIleGluAlaAsnLeuLeuTrpArgGln ACCGCTAACCATGACTCCCTGATGCTGAGCTCATAGAGGCCAACCTCCTATGGAGGCAG TGGCGATTGGTACTGAGGGGACTACGACTCGAGTATCTCCGGTTGGAGGATACCTCCGTC
	2966 ESP1, 2969 SACI,
3002	GluMetGlyGlyAsnIleThrArgValGluSerGluAsnLysValValIleLeuAspSer

PheAspProLeuValAlaGluGluAspGluArgGluIleSerValProAlaGluIleLeu
3062 TTCGATCCGCTTGTGCGGGAGGAGGAGGAGGAGGAGATCTCCGTACCCGCAGAAATCCTG
AAGCTAGGCGAACACCGCCTCCTCCTGCTCGCCCCTCTAGAGGCATGGGCGTCTTTAGGAC

CTCTACCCGCCGTTGTAGTGGTCCCAACTCAGTCTTTTGTTTCACCACTAAGACCTGAGG

3096 BGL2,

ArglysSerArgArgPheAlaGlnAlaLeuProValTrpAlaArgProAspTyrAsnPro 3122 CGGAAGTCTCGGAGATTCGCCCAGGCCCTGCCCGTTTGGGCGCGGCCGGACTATAACCCC

GCCTTCAGAGCCTCTA		

3143 ALWN1, 3164 EAG1 XMA3,

ProLeuValGluThrTrpLysLysProAspTyrGluProProValValHisGlyCysPro CCGCTAGTGGAGACGTGGAAAAAGCCCGACTACGAACCACCTGTGGTCCATGGCTGCCG GGCGATCACCTCTGCACCTTTTTCGGGCTGATGCTTGGTGGACACCAGGTACCGACGGGC

3217 HGIE2, 3229 NCOI,

LeuProProProLysSerProProValProProArgLysLysArgThrValValLeu
3242 CTTCCACCTCCAAAGTCCCCTCCTGTGCCTCGGCTCGGAAGAAGCGGACGGTGGTCCTC
GAAGGTGGAGGTTTCAGGGGAGGACACGGAGCGTGACCTTCTTCGCCTGCCACCAGGAG

ThrGluSerThrLeuSerThrAlaLeuAlaGluLeuAlaThrArgSerPheGlySerSer
3302 ACTGAATCAACCCTATCTACTGCCTTGGCCGGCTCGCACCAGAAGCTTTGGCAACCTC
TGACTTAGTTGGGATAGATGACGGAACCGGCTCGAGCGGTCTTTGGAAACCGTCGAGG

3332 SACI, 3346 HIND3,

CysProProAspSerAspAlaGluSerTyrSerSerMetProProLeuGluGlyGluFP 3422 TGCCCCCCGACTCCGACGCTGAGTCCTATTCCTCCATGCCCCCCCTGGAGGGGAGCCT ACGGGGGGCTGAGGCTCCGACTCAGGATAAGGAGTACGGGGGAACCTCCCCCTCGGA

3437 EAM11051,

GlyAspProAspLeuSerAspGlySerTrpSerThrValSerSerGluAlaAsnAlaGlu 3482 GGGATCCGGATCTTACGACGGGTCATGGTCAACGGTCAGTAGTGAGGCCAACGCGGAG CCCCTAGGCCTAGAATCGCTGCCCAGTACCAGTTCGCTAGTCATCACTCCGGTT

3484 BAMHI, 3485 BSAB1, 3487 BSPE1,

3589 DRA3, 3600 SAC2,

AlaGluGlnLysLeuProTleAsnAlaLeuSerAsnSerLeuLeuArgHisHisAsn
GCGGAAGAACAGAACTGCCCATCAATGCACTAAGCAACTGCTGCTACCACAACT
CGCCTTCTTGTCTTTGACGGGTAGTTACCTGATTCGTTGAGCAACAGTGCAGTGTGTTA

3611 ALWN1, 3655 PFLM1,

LeuValTyrSerThrThrSerArgSerAlaCysGlnArgGlnLysLysValThrPheAsp TTGGTGTATTCCACCTCACGCAGTGCTTGCCAAAGGCAGAAGAAAGTCACATTTGAC AACCACATAAGGTGGTGGAGTCGTCACGAACGGTTTCCGTCTTCTTTCAGTGTAAACTG

3681 DRA3,

ArgLeuGlnValLeuAspS rHisTyrGlnAspValLeuLysGluValLysAlaAlaAla
3722 AGACTGCAAGTTCTGACAGCCATTACCAGGACGTACTCAAGGAGGTTAAAGCAGCGGCC
TCTGACGTCAAGACCTGTCGGTAATGGTCTGCATGAGTTCCTCCAATTTCGTCGCGCC

SerLysValLysAlaAsnLeuLeuSerValGluGluAlaCysSerLeuThrProProHis
TCAAAAGTGAAGCTAACTTGCTATCCGTAGAGGAAGCTTGCAGCCTGACGCCCCACAC
AGTTTTCACTTCCGATTGAACGATAGGCATCTCCTTCGAACGTCGGACTGCGGGGGTGTG

3816 HIND3,

SerhlalysserLysPheGlyTyrGlyAlaLysAspValArgCysHisAlaArgLysAla
TCAGCCAAATCCAAGTTTGGTTATGGGGCAAAAGACGTCCGTTGCCATGCCAGAAAGGCC
AGTCGGTTTAGGTTCAAACCAATACCCGTTTTCTGCAGGCAACGGTACGGTCTTTCGT

3875 AAT2, 3890 BGLI,

- ValThrHisIleAsnSerValTrpLysAspLeuLeuGluAspAsnValThrProIleAsp GTAACCCACATCAACTCCGTGTGGAAGACCTTCTGGAAGACAATGTAACACCAATAGAC CATTGGGTGAGTTGAGGCACACCTTTCTGGAAGACCTTCTGTTACATTGTGGTATTCTG
- ThrThrIleMetAlaLysAsnGluValPheCysValGlnProGluLysGlyGlyArgLys
 3962 ACTACCATCATGGCTAAGAACGAGGTTTTCTGCGTCAGCCTGAGAAGGGGGGGTGTGAAG
 TGATGGTAGTACCGATCTTGGTCCAAAAGACGCAAGTCGGACTCTTCCCCCCAGCATTC
- ProAlangLeuIlevalPheProAspLeuGlyValArgValCysGluLysMetAlaLeu 4022 CCAGCTCGTCTCATCGTGTTCCCCGATCTGGGCGTGCGCGGTGTGCGAAAAGATGGCTTTG GGTCGAGCAGAGTAGCACAAGGGGCTAGACCCGCACGCGCACACGCTTTTCTACCGAAAC
- TyraspvalvaiThrLysLeuProLeuAlaValMetGlySerSerTyrGlyPheGlnTyr
 4082 TACGACGTGGTTACAAAGCTCCCCTTGGCCGTGATGGGAAGCTCCTACGGATTCCAATAC
 ATGCTGCACCCAATGTTTCGAGGGGAACCGGCACTACCCTTCGAGGATGCTTAAGGTTATG
- SerProGlyGlnArgValGluPheLeuValGlnAlaTrpLysSerLysLysThrProMet
 TCACCAGGACAGCGGGTTGAATTCCTCGTGCAAGCGTGGAAGTCCAAGAAAACCCCAATG
 AGTGGTCCTGTCGCCCAACTTAAGGAGCACGTTCGCACCTTCAGGTTCTTTTGGGGTTAC

4160 ECORI,

GlyPheSerTyrAspThrArgCysPheAspSerThrValThrGluSerAspIleArgThr 4202 GGGTTCTGGTATGATACCCGCTGCTTTGACTCCACAGTCACTGAGAGCGACATCGTAG CCCAAGAGCATACTATGGGCGACGAAACTGAGGTGTCAGTGACTCTCGCTGTAGGCATGC

4229 DRD1, 4236 ALWN1,

GluGluAlaIleTyrGlnCysCysAspLeuAspProGlnAlaArgValAlaIleLysSer GAGGAGGCAATCTACCAATGTTGTGACCTCGACCCCCAAGCCCGCGGGCCATCAAGTCC CTCCTCCGTTAGATGGTTACAACACTGGAGCTGGGGTTCGGGCGCACCGGTAGTTACTAAG

4301 BGLI, 4308 BALI,

LeuThrGluArgLeuTyrValGlyGlyProLeuThrAsnSerArgGlyGluAsnCysGly
i322 CTCACCGAGAGGCTTTATGTTGGGGGCCCTTCTTACCAATTCAAGGGGGAGAACTGCGGC
GAGTGGCTCTCCGGAATACAACCCCCGGGAGAATGGTTAAGTTCCCCCCTCTTTTACGCCG

74345 APAI.

TyrArgArgCysArgAlaSerGlyValLeuThrThrSerCysGlyAsnThrLeuThrCys 1382 TATCGCAGGTGCCGCGGAGGGGCTACTGACAACTAGCTGTGGTAAACACCCTCACTTG ATAGCGTCCAGGGGGCTCGCCGCATGACTGTTGATCGACACCATTGTGGGAGTGAACG Tyrilelysalaargalaalacysargalaalacyteucinaspcysthymelleuval
4442 Tacatcaaggcccgcgcacctttcgagccgcagggctcaaggactgcaaccatgctcctgtag
Atttracttccaggcccgtcgaacagctcgcaccagctcccaaggtctctaaccagatacaag

4452 SMAI XMAI.

CysGlyAspAspLeuValValTleCysGluSerAlaGlyValGlnGluAspAlaAlaSe 4502 TGTGGCGACGACTTAGTCTGTAATCGCGGGGGTCCAGGGGGCCGCGGACG ACACCGCTGCTGAATCAGCAATAGACACTTTCGCGCCCCCAGGTCCTCCTGCGCCCGCTCG

4508 DRD1, 4511 TTH3I,

LeuArgAlaPheThrGluAlaMetThrArgTyrSerAlaProProGlyAspProProGlo
CTGAGAGCCTTCACGGAGGCTATGACCAGGTACTCCGCCCCCCCTGGGGACCCCCCACAA
GACTCTCGGAGTGCCTCCGATACTGGTCCATGAGGCGGGGGGACCCCTGGGGGTTT

ProGluTyrAspLeuGluLeuIleThrSerCysSerSerAsnValSerValAlaHisAsp
CCAGAATACGACTTGGAGCTCATAACATCATGCTCCTCCAACGTGTCAGTCGCCCACGAC
GGTCTTATGCTGAACCTCGAGTATTGTAGTACGAGGAGGTTGCACAGTCAGCGGGTGCTG

4637 SACI,

4731 NRUI,

AlaTrpGluThrAlaArgHisThrProValAsnSerTrpLeuGlyAsnIleIleMetPhe
GCGTGGGAGACAGCAGAGACACTCCAGTCAATTCCTGGCTAGGCAACATAATCATGTTT
CGCACCCTCTGTCGTTCTGTGTGAGGTCAGTTAAGGACCGATCCGTTGTATTAGTACAAA

4806 PFLM1, 4807 DRA3,

ArgAspGinLeuGluGlnAlaLeuAspCysGluIleTyrGlyAlaCysTyrSerIleGlu
4862 AGGGACCAGCTTGAACAGGCCCTCGATTGCGAGATCTACGGGGCCTGCTACTCCATAGAA
TCCCTGGTCGAACTTGTCCGGGAGCTAACGCTCTAGATGCCCCGGACGATGAGGTATCTT

4893 BGL2.

ProLeuAspLeuProProIleIleGlnArgLeuHisGlyLeuSerAlaPheSerLeuHis CCACTGGATCTACCTCCAATCATTCAAAGACTCCATGGCCTCAGCGCATTTTCACTCCAC GGTGACCTAGATGGAGGTTAGTAAGTTTCTGAGGTACCGGAGTCGCCTAAAAGTGAGGTG

4954 NCOI,

SerTyrserProGlyGluIleAsnArgValAlaAlaCysLeuArgLysLeuGlyValPro
AGTTACTCTCCAGGTGAAATCAATAGGGTGCCCGCATGCCTCAGAAAACTTGGGGTACCG
TCAATGAGAGGTCCACTTAGTTATCCCACCGCGTACGGATCTTTTGAACCCATGGC

5015 SPHI, 5035 KPNI,

ProLeuArqAlaTrpArqHisArqAlaArqSerValArqAlaArqLeuLeuAlaArqGly

5042 CCCTTGCGAGCTTGGAGACACCGGGCCCGGAGCGTCCGCGCTAGGCTTCTGGCCAGAGGA GGGAACGCTCGAACCTCTGTGGCCCGGGCCTCGCAGGCGCGATCCGAAGACCGGTCTCCT

5064 APAI, 5091 BALI,

GlyArgAlaAlaTleCysGlyLysTyrLeuPheAsnTrpAlaValArgThrLysLeuLys
5102 GGCAGGGCTGCCATATGTGGCAAGTACCTCTTCAACTGGGCAGTAAGAACAAAGCTCAAA
CCGTCCCGACGGTATACACCGTTCATGGAGAAGTTGACCCGTCATTCTTGTTTTCGAGTTT

5113 NDEI,

5174 NOTI, 5175 EAG1 XMA3, 5182 BALI, 5186 PVU2,

SerGlyGLyAspIleTyrHisSerValSerHisAlaArgProArgTrplleTrpPheCys
AGCGGGGGAGACATTTATCACAGCGTGTCTCATGCCCGGCCCCGTGGATCTGGTTTTGC
TCGCCCCCTCTGTAAATAGTGTCGCACAGAGTACGGCCCGGGGGACCTAGACCAAAACG

5240 DRA3,

LeuleuleuAlaAlaGlyValGlyTleTyrLeuleuProAsnArgOP 5282 CTACTCCTGCTGCAGGGGTAGGCATCTACCTCCCCCAACGAGAATAGTCGAC GATGAGGACGAACGACGTCCCCATCCGTAGATGAGGAGGGGTTGGCTACTTATCAGCTG

5295 PSTI, 5336 SALI,

FIG. 14-Page 9

FIG. 15

		Me	tAlaAlaTyrA	laAlaGlnGlyTyrLysValLeuValLeuAsr
2	AGCTTACA.	AAACAAAAT	GGCTGCATATG	CAGCTCAGGGCTATAAGGTGCTAGTACTCAAC
	TCGAATGT	TTTGTTTTA	CCGACGTATAC	GTCGAGTCCCGATATTCCACGATCATGAGTTG
	^		^	^
	1 HIND3.	24 NDEI.	52 SCAI.	

ProServalAlaAlaThrLeuGlyPheGlyAlaTyrMetSerLysAlaHisGlyIleAsp CCCTCTGTTGCTGCAACACTGGGCTTTGGTGCTTACATGTCCAAGGCTCATGGGATCGA GGGAGACAACGACGTTGTGACCCGAAACCACGAATGTACAGGTTCCGAGTACCCTAGCTA

116 CLAI,

- ProAsnIleArgThrGlyValArgThrIleThrThrGlySerProIleThrTyrSerThr 122 CCTAACATCAGGACCGGGGTGAGAACAATTACCACTGGCAGCCCCATCACGTACTCCACC GGATTGTAGTCCTGGCCCACTCTTGTTAATGGTGACCGTGGGGTAGTGCATGAGGTGG
- TyrGlyLysPheLeuAlaAspGlyGlyCysSerGlyGlyAlaTyrAspIleIleIleCys
 182 TACGCCAAGTTCCTTGCCGACGGCGGTGCTTGGGGGGGCCTTATGAATAATTGTTATAATAATTGCGTTCAGGGTGCGTCCACGAGCCCCCCGCGAATACTGTATTAATAAACA
- AspGluCysHisSerThrAspAlaThrSerIleLeuGlyIleGlyThrValLeuAspGln
 GACGAGTGCCACTCCACGGATGCCACATCCATCTTGGGCATTGGCACTGTCCTTGACCAA
 CTGCTCACGGTGAGGTGCTACGGTGTAGGAACCGCTAACCGTAACCGTAACAGGAACTGGTT
- AlaGluThrAlaGlyAlaArgLeuValValLeuAlaThrAlaThrProProGlySerVal
 GCAGAGACTGCGGGGGGGGAGACTGGTTGTGCTCGCCACCGCCACCCCTCCGGGCTCCGTC
 CGTCTCTGACGCCCCCGCTCTGACCAACACGAGCGGTGGCGGTGGGGAGGCCCGAGGCAG

303 ALWN1,

- ThrValProHisProAsnIleGluGluValAlaLeuSerThrThrGlyGluIleProPhe
 ACTGTGCCCCATCCCAACATCGAGGAGGTTGCTTCTTCCACCACCGGAGAGATCCCTTTT
 TGACACGGGGTAGGGTTGTAGCTCCTACCAACGAGACAGGTGGCCTCTCTAGGGAAAA
- TyrGlyLysAlaIleProLeuGluValIleLysGlyGlyArgHisLeuIlePheCysHis
 TACGGCAAGGCTATCCCCCTCGAAGTAATCAAGGGGGGAACATCTCATCTCTGTCAT
 ATGCCGTTCCGATAGGGGAGCTTCATTAGTTCCCCCCCTCTTAGAGTAGAGAAGACACTA

FIG. 17-Page 1

- SerlyslyslysCysAspGluLeuAlaAlaLysLeuValAlaLeuGlyIleAsnAlaVal 482 TCAAAGAAGAGTGCGAGAACTGGCGCCAAAGGTGGTGGTGATTGGGGATCAATGCCGTA AGTTTCTTCTTCAGGGGGTTTGAGGGGGTTTCGACCAGCGTAATTACGGCAC
- AlaTyrTyrArgGlyLeuAspValSerValIleProThrSerGlyAspValValValVal 542 GCCTACTACCGCGTCTTGACGTGTCCGTCATCCCGACCAGCGGCGATGTTGTCGTCGTG CGGATGATGCGCCCAGAACTGCACAGGCAGTAGGGCTGGTCGCCGCTACAACAGCAGCAC

550 SAC2, 560 DRD1,

AlaThrAspAlaLeuMetThrGlyTyrThrGlyAspPheAspSerValIleAspCysAsn GCAACCGATGCCCTCATGACCGGCTATTACCCGGCACTTCGACTCGGTGATAGACTGCAAT CGTTGGCTACGGGAGTACTGGCCGATATGGCCGCTGAAGCTGAGCCACTATCTGACGTTA

615 BSPH1,

- ThrCysValThrGlnThrValAspPheSerLeuAspProThrPheThrIleGluThrIle
 ACGTGTGTACCCAGACAGTGGATTCAGCCTTGACCTTCACCATTGAGACAATC
 TGCACACAGTGGGTCTGTAGCTAAAGTCGGAACTGGGATTGGAAGTGGTAACTTGTTAG
- ThrLeuProGlnAspAlaValSerArgThrGlnArgArgGlyArgThrGlyArgGlyLys
 722 AGGCTCCCCAAGATGCTGTCTCCGCACTCAACGTCGGGGAGGACTGCAGGGGGAAG
 TGCGAGGGGTTCTACGACAGAGGGCGTGACTTGCAGCCCCCTCCTGACCGTCCCCCTTC
- ProGlyIleTyrArgPheValAlaProGlyGluArgProSerGlyMetPheAspSerSer
 782 CCAGGCATCTACAGATTGTGGCACCGGGGAGGCCCCTCCGGCATGTTCGACTCGTCC
 GGTCCGTAGATGTCTAAACACCGTGGCCCCCTCGCGGGAGGCCGTACAAGCTGAGCAGG

816 BGLI, 833 DRD1,

881 SACI.

ThrvalArgLeuArgAlaTyrMetAsnThrProGlyLeuProValCysGlnAspHisLeu 902 ACAGTTAGGCTACGAGCGTACATGAACACCCCGGGGCTTCCCGTGTGCCAGGACCATCTT TGTCAATCCGATGCTCGCATGTACTTGTGGGGCCCCGAAGGGCACACGGTCCTGGTAGAA

931 SMAI XMAI.

GluPheTrpGluGlyValPheThrGlyLeuThrHisTleAspAlaHisPheLeuSerGln
662 GARTTTGGGAGGGCGTCTTTACAGGCCTCACTCATATAGATGCCCACTTTCTATCCCAG
CTTAAAACCCTCCCGCAGAAATGTCCGGAGTGAGTATATCTACGGGTGAAAGGTTAGGTC

985 STUI.

1069 DRA3.

ArgAlaGlnAlaProProProSerTrpAspGlnMetTrpLysCysLeuIleArgLeuLys
1082 AGGGCTCAAGCCCCTCCCCCATCGTGGGACCAGATGTGGAAGTGTTTGATTCGCCTCAAG

TCCCC3 CTTCCCCC	れたたたたですれたとれたとく	マクス・マンス・マンス・マンス・マンス・マンス・マンス・マンス・マンス・マンス・マン	a_{T}	ACCGGAGTTC

- ProThrLeuHisGlyProThrProLeuLeuTyrArgLeuGlyAlaValGlnAsnGluIle
 CCCACCCTCCATGGGCCAACACCCCTGCTATACAGACTGGGCGCTGTTCAGAATGAAATC
 GGGTGGGGGACGTACCCCGGTTGTGGGGACGACAAGTCTTACTTTAG
 - 1150 NCOI,
- - 1230 BSPH1, 1234 DRD1, 1237 AVA3, 1245 EAG1 XMA3, 1250 DRD1,
- ValThrSerThrTrpValLeuValGlyGlyValLeuAlaAlaLeuAlaAlaTyrCysLeu GTCACGAGCACCTEGGGGCGTCTGGGGGGTCCTGGTCTTTGGCGGGGATTGCCTG CAGTGCTGGTGGACCACGAGCAACCGCGCGAGGAACCGGGCGATAACGGAC
- SerThrGlyCysValVallleValGlyArgValValLeuSerGlyLysProAlallelle
 1322 TCAACAGGCTGCGTGGTCATAGTGGGCAGGGTCGTCTTGTCCGGGAAGCCGGCAATCATA
 AGTTGTCCGACGCACCAGTATCACCCGTCCCAGCAGAACAGGCCCTTCGGCCGTTAGTAT
 - 1369 NAEI,
- ProAspArgGluValLeuTyrArgGluPheAspGluMetGluGluCysSerGlnHisLeu 1382 CCTGACAGGGAAGTCCTCTACCGAGAGTTCGATGAGAAGAGTGCTCTCAGCACTTA GGACTGTCCCTTCAGGAGATGCTTCAAGCTACTCTCTCACGAGAGTCGTGAAT 1385 DRD1,
- ProTyrileGluGlnGlyMetMetLeuAlaGluGlnPheLysGlnLysAlaLeuGlyLeu
 1442 CCGTACATCGACCAAGGGATGATGCTCGCCGAGCAGATCAAGCCCATAGGCCCTCGGCCTC
 GCATGTAGCTCGTTCCTACTACAGCGGCTCTCAAGTTCGTCTTCCCGGAGCCGAG
- LeuGlnThrAlaSerArgGlnAlaGluValIleAlaFroAlaValGlnThrAsnTrpGln
 1502 CTGCAGACCGCGTCCCGTCAGCCAGAGGTTATCGCCCCTGCTGTCCAGACCAACTGGCAA
 GACCTCTGGCGCAGGGCAGTCCGTCTCCAATAGCGGGACGACAGGTCTGGTTGACCGTT
 - 1502 PSTI, 1507 TTH3I,
- LysLeugluThrPheTrpAlaLysHisMetTrpAsnPheIleSerglyIleGlnTyrLeu 1562 AAACTCGAGACCTTCTGGGCGAAGCATATGTGGAACTTCATCAGTGGGATACAATACTTG TTTGAGCTCTGGAAGACCCGCTTCGTATACACCTTGAAGTAGTCACCCTATGTTATGAAC
 - 1565 XHOI, 1586 NDEI,
- AlaGIyLeuSerThrLeuProGIyAsnProAlaIleAlaSerLeuMetAlaPheThrAla
 1622 GCGGGCTTGTCAACGCTGCTTGTAACCCCGCCATTGCTTCATTGATGGCTTTTACAGCT
 CGCCCGAACAGTTGCGACGACCATTGGGGCGGTAACGAAGTAACTACCGAAAATGTCGA
 - 1643 BSTE2, 1677 ALWN1 PVU2,
- AlavalThrserProLeuThrThrSerGinThrLeuLeuPheAsnIleLeuGlyGlyTrp GCTGTACCAGCCCACTAACCATAGCCAAACCCTCCTCTTCAACATATTGGGGGGGTGG CGACAGTGGTCGGTTGATTGGTGATTGGTTTGGGAGGAGAAGTTGTATAACCCCCCACC

ValAlaAlaGinLeuAlaAlaProGlyAlaAlaThrAlaPheValGlyAlaGlyLeuAla
1742 GTGGCTGCCCAGCTCGCCGCCCCCGGTGCCGTACTGCCTTTGTGGGCGCTGGCTTAGCT
CACCGACGGTCGAGCGGCGGGGCCACGGCGATGACGGAAACACCCCGCGACCGAATCGA
1794 ESPl.

GlyAlaAlaIleGlySerValGlyLeuGlyLysValLeuTleAspTleLeuAlaGlyTyr 1802 GGCCCCCTCGGCAGTGTTGGACTGGGGAAGGTCCTCATAGACATCCTTGCAGGGTAT CCGCGGCGGTAGCCGTCACAACCTGACCCCTTCCAGGAGTATCTGTAGGAACGTCCCATA

1802 KAS1 NARI,

GlyAlaGlyValAlaGlyAlaLeuValAlaPheLysIleMetSerGlyGluValProSer 1862 GGCCCGGCGTGGCGGAGCTCTTGTGCATTCAAGATCATGACCGGTGAGGTCCCCTCC CCGCGCCCGCACCGCCTCGAGAACACCGTAAGTTCTAGTACTCGCCACTCCAGGGAGG

1878 SACI, 1899 BSPH1,

ThrGluAspLeuValAsnLeuLeuProAlaIleLeuSerProGlyAlaLeuValValGly
1922 ACGGAGGACCTGGTCAATCTACTGCCGCCATCCTCTGCCCGCAGGCCCTCGTAGTCGGCC
TGCCTCCTGGACCAGTTAGATCACGGGCGGTAGGAGAGCGGCCTCGGGACCATCAGCCG

1928 TTH3I,

ValValCysAlaAlaIleLeuArgArgHisValGlyProGlyGluGlyAlaValGlnTrp 1982 GTGGTCTGTGCGCGATACTGGGCCGGCACGTTGGCCCGGGCGAGGGGGCAGTGCAGTGG CACCAGACACGTCGTTATGACGCGGCCGTCAACCGGCCCGCTCCCCCGTCACGTCAACC

2004 NAEI, 2017 SMAI XMAI,

MetAsnArgLeuIleAlaPheAlaSerArgGlyAsnHisValSerProThrHisTyrVal
2042 ATGAACGGCTGATAGCCTTGCCCCCCGGGGGAACCATGTTTCCCCCACGCACTACGTG
TACTTGGCCGACTATCGGAAGCGGACGCCCCCTTGGTACAAAGGGGTGCGTGATGCAC

2067 SMAI XMAI, 2093 DRA3,

ProGluserAspAlaAlaAlaArgValThrAlaIleLeuSerSerLeuThrValThrGln 2102 CCGGAGAGCGATGCAGCTGCCCGCGTCACTGCAATACTCAGCAGCCTCACTGTAAACCCAG GGCCTCTCGCTACGTCGACGGGCGCAGTGACGGTATGAGTCGTCGGAGTGACATTGGGTC

2115 PVU2, 2159 ALWN1,

LeuLeuArgArgLeuHisGlnTpfleSerSerGluCysThrThrProCysSerGlySer
2162 CTCCTGAGGCGACTGCACCAGTGGATAAGCTCGGAGTGTACCACTCCATGCTCCGGTTCC
GAGGACTCCGCTGACGTGGTCACCTATTCGAGCCTCACATGGTGAGGTACCAGGGCAAGG

2164 MST2, 2220 ECON1,

TrpLeuArgAspIleTrpAspTrpIleCysGluValLeuSerAspPheLysThrTrpLeu
2222 TGGCTAAGGGACATCTGGGACTGGATATGCGAGGTGTTGAGCGACTTTAAGACCTGGCTA
ACCGATTCCCTGTAGACCCTGACCTATACGCTCCACAACTCGCTGAAATTCTGGACCGAT

2285 ESP1, 2300 PVU2, 2310 BAMHI,

- LysGlyValTrpArgGlyAspGlyIleMetHisThrArgCysHisCysGlyAlsGluIle
 2342 AAGGGGTCTGGCGAGGGACGGCATCATGCACACTCGCTGCCACTGTGGAGCTGAGATC
 TTCCCCCAGACCGCTCCCCTGCGTAGTACGTGTGAGCGACGGTGACACCTCGACTTAG
- ThrGlyHisValLysAsnGlyThrMetArgIleValGlyProArgThrCysArgAsnMet
 2402 ACTGGACATGTCAAAAACGGGACGAGGAGCTGGTCCTAGGACCTGCAGGAACATG
 TGACCTGTACAGTTTTTGCCCTGCTACTCCTAGCAGCCAGGATCCTGGACGTCCTTGTAC

2425 BSAB1, 2441 AVR2, 2448 SSE83871, 2449 PSTI,

TrpSerGlyThrPheProlleAsnAlaTyrThrThrGlyProCysThrProLeuProAla
2462 TGGAGTGGGACCTTCCCCATTAATGCCTACACCACGGGCCCCTGTACCCCCCTTCCTGCG
ACCTCACCCTGGAAGGGGTAATTACGGATGTGGTGCCCGGGGACATGGGGGGAAGGACGC

2480 ASE1, 2497 APAI,

ProAsnTyrThrPheAlaLeuTrpArgValSerAlaGluGluTyrValGluIleArgGln CCGAACTACACGTTCGCGCTATGGAGGGTGTCTGCAGAGGAATAACGGAGAATAAGGCAG GGCTTGATGTGCAAGCGGATACCTCCCACAGACGTCTCCTTATGCACCTCTATTCCGTC

2553 PSTI,

ValGlyAspPheHisTyrValThrGlyMetThrThrAspAsnLeuLysCysProCysGln
GTGGGGGACTTCCACTACGTGACGGGTATGACTACTGACAATCTTAAATGCCCGTGCCAG
CACCCCCTGAAGGTATGACTGACTGATGACTGTTAGAATTTACGGGCACGGTC

2594 DRA3,

- ValProSerProGluphePheThrGluLeuAspGlyValArgLeuHisArgPheAlaPro GTCCCATCGCCCGAATTTTTCAAGAATTGGACGGGGTGCGCCTACATAGGTTTGGCCCC CAGGGTACGGGCTTAAAAAGTGTCTTAACCTCCCCACGCGGATGTATCCAAACGCGGG
- ProCysLysProLeuLeuArgGluGluValSerPheArgValGlyLeuHisGluTyrPro CCCTGCAAGCCCTTGCTGCGGGAGGAGGTATCATTCAGAGTAGGACTCCACGAATACCCG GGGACGTTCGGGAACGACGCCCTCCTCCATAGTAAGTCTCATCCTGAGGTGCTTATGGGC

2757 HGIE2,

ValGlySerGlnLeuProCysGluProGluProAspValAlaValLeuThrSerMetLeu 2762 GTAGGGTCGCAATTACCTTGCGAGCCCGAACCGGACGTGGCCGTGTTGACGTCCATGCTC CATCCCAGCGTTAATGGAACGCTCGGGCTTGGCCTGCACCGGCACAACTGCAGGTACGAG

2809 AAT2,

ThrAspProSerHisIleThrAlaGluAlaAlaGlyArgArgLeuAlaArgGlySerPro
ACTGATCCCTCCCATATAACAGCAGAGGCGGCGGGCGAGGGTTGGCGAGGGTTGCCATCACCC
TGACTAGGGAGGGTATATTGTCGTCTCCGCCGCCCCCGTTCCAACCGCTCCCCTAGTGGG

.2850 EAG1 XMA3,

ProSerValAlaSerSerSerAlaSerGlnLeuSerAlaProS rLeuLysAlaThrCys
2882 CCCTCTGTGGCCAGCTCCTCGGCTAGCCACCTATCGCTCCATCTCTCAAGCCAACTTGC
GGGAGACACCGGTCGAGGAGCCGATCGGTCGATAGGCGAGGTAGAGAGTTCCGTTGAACG

2889 BALI, 2903 NHEI,

2942	TGGCGATTGGTACTGAGGGGACTACGAGGTCATACAGGCCAACCTCCTATGGAGGCAG
	2966 ESP1, 2969 SACI,
3002	GluMetGlyGlyAsnIleThrArgValGluSerGluAsnLysValValIleLeuAspSer GAGATGGGCGGCAACATCACCAGGGTTGAGTCAGAAAACAAAGTGGTGATTCTGGACTCC CTCTACCCGCCGTTGTAGTGGTCCCAACTCAGTCTTTTGTTTCACCACTAAGACCTGAGG
3062	PheAspProLeuValAlaGluGluAspGluArgGluIleSerValProAlaGluIleLeu TTCGATCCGCTTGTGGCGGAGGAGGACGAGGAGATCTCCGTACCCGCAGAAATCCTG AAGCTAGGCGAACACCGCCTCCTCCTGCTCGCCCTCTAGAGGCATGGGCGTCTTTAGGAC
	3096 BGL2,
3122	ArgLysSerArgArgPheAlaGlnAlaLeuProValTrpAlaArgProAspTyrAsnProCGGAAGTCTCGGAGATTCGCCCAGGCCCTGCCCGTTTGGGCGCGGCCGGACTATAACCCCGCCTTCAGAGCCTCTAAGCGGGTCCGGGACGGCAAACCCGGCCGG
	3143 ALWN1, 3164 EAG1 XMA3,
3182	ProLeuValGluThrTrpLysLysProAspTyrGluProProValValHisGlyCysPro CCGCTAGTGGAGACGTGGAAAAAGCCCGACTACGAACCACCTGTGGTCCATGGCTGCCCG GGCGATCACCTCTGCACCTTTTTCGGGCTGATGCTTGGTGGACACCAGGTACCGACGGGC
	3217 HGIE2, 3229 NCOI,
3242	LeuProProProLysSerProProValProProProArgLysLysArgThrValValLeu CTTCCACCTCCAAAGTCCCCTCCTGTGCCTCCGCCTCGGAAGAAGCGGACGGTGGTCCTC GAAGGTGGAGGTTTCAGGGGAGGACACGGAGGCGGAGCCTTCTTCGCCTGCCACCACGAG
3302	ThrGluSerThrLeuSerThrAlaLeuAlaGluLeuAlaThrArgSerPheGlySerSer ACTGAATCAACCCTATCTACTGCCTTGGCCGAGCTCGCCACAGAAGCTTTGGCAGCTCC TGACTTAGTTGGGATAGATGACGGAACCGGCTCGAGCGGTGGTCTTCGAAACCGTCGAGG
	3332 SACI, 3346 HIND3,
3362	SerThrSerGly11eThrGlyAspAsnThrThrThrSerSerGluProAlaProSerGly TCAACTTCCGGCATTACGGGCGACAATACGACAACATCCTCTGAGCCCGCCC
3422	CysProProAspSerAspAlaGluSerTyrSerSerMetProProLeuGluGlyGluPro TGCCCCCCGACTCCGACGCTGAGTCCTATTCCTCCATGCCCCCCTGGAGGGGGAGCT ACGGGGGGCTTAGGCTTGGGATTAGGATTAGGAGGGGGGGG

ThrAlaAsnHisAspSerProAspAlaGluLeuIleGluAlaAsnLeuLeuTrpArgGln

ASPValValCysCysSerMetSerTyrSerTrpThrGlyAlaLeuValThrProCysAla
GATGTGGTGTGTGTCTCAATGTCTTACTCTTGGCAGGGCGCACTCGTCACCCCGTGGGCC
CTACAGCACAGGACGAGTTACAGAATGAGAACCTGTCCGGGTGAGCAGTGGGGCACGGG

3484 BAMHI, 3485 BSAB1, 3487 BSPE1,

3437 EAM11051,

GlyAspProAspLeuSerAspGlySerTrpSerThrValSerSerGluAlaAsnAlaGlu
3482 GGGATCCGGATCTTAGCGACGGTCATGGTCAACGTCAGTAGTGAGGCCAACGGGAG
CCCCTAGGCCTAGAATCGCTGCCCAGTACCAGTTGCCAGTATACACTCCGGTTGCGCCTC

3589 DRA3, 3600 SAC2,

- - 3611 ALWN1, 3655 PFLM1,
- LeuValTyrSerThrThrSerArgSerAlaCysGlnArgGlnLysLysValThrPheAsp
 TTGGTGTATTCCACCACCTCACGCAGTGCTTGCCAAAGGCAGAAGAAAGTCACATTTGAC
 AACCACATAAGGTGGTGGAGTGCGTCACGAACGGTTTCCGTCTTCTTTCAGTGTAAACTG
 - 3681 DRA3.
- ArgLeuGlnValLeuAspSerHisTyrGlnAspValLeuLysGluValLysAlaAlaAla
 3722 AGACTGCAAGTTCTGGACAGCCATTACCAGGACGTACTCAAGGAGGTTAAAGCAGCGGCG
 TCTGACGTTCAAGACCTGTCGGTAATGGTCTGCATGAGTTCCTCCAATTTCGTCGCCGC
- SerLysValLysAlaAsnLeuLeuSerValGluGluAlaCysSerLeuThrProProHis
 TCAAAAAGTGAAGGCTAACTTGCTATCCGTAGAGGAAGCTTGCAGCCCGCACAC
 AGTTTCACTTCCGATTGAACGATAGGCATCTCCTTCGAACGTCGGACTGCGGGGGTGTG
 - 3816 HIND3.
- SerAlalysserLyspheGlyTyrGlyAlalysAspValArgCysHisAlargLysAla TCAGCCAAATCCAAGTTTGGTTATGGGGCAAAAGACGTCGGTTGCCATGCCAGAAAGGC AGTCGGTTTAGGTTCAAACCAATACCCCGTTTTCTGCAGGCAACGGTACGGTCTTTCCGG
 - 3875 AAT2, 3890 BGLI,
- ValThrHisIleAsnSerValTrpLysAspLeuLeuGluAspAsnValThrProIleAsp
 3902 GTAACCCCACTCAACACCACTCGGAAAGACCTTCTGGAAAGACAATGTAACACCAATAACC
 CATTGGGTGAGTTGAGGCACCTTTCTGGAAGACCTTCTGTTACATTGTGGTTATCTG
- ThrThrIeMetAlaLysAsnGluValPheCysValGlnProGluLysGlyGlyArgLys
 3962 ACTACCATCATGGCTAAGAACGAGGTTTTCTTCGTTCAGCCTGAGAAGGGGGGTGTGAAG
 TGATGGTAGTACCGATTCTTGCTCCAAAAGACGCAAGTCGGACTCTTCCCCCCAGCATTC
- ProAlaArgLeuIleValPheProAspLeuGlyValArgValCysGluLysMetAlaLeu 4022 CCACCTGGTCTATTGGTGTTCCCGATCTGGGGGTGGGGGTGGGGAAAGGATGGCTTTG GGTCGAGCAGAGTAGCACAAGGGGTAGACCCGCACGCGCAAAGGTTTTCTACCGAAAC
- TyrAspValValThrLysLeuProLeuAlaValMetGlySerSerTyrGlyPheGlnTyr 4082 TACGACGTGGTTACAAAGCTCCCCTTGGCCGTGATGGGAAGCTCCTACGGATTCCAATAC ATGCTGCACCAATGTTTCGAGGGGAACCGGCACTACCCTTCGAGGATGCCTAAGGTTATG
 - SerProGlyGlnArgValGluPheLeuValGlnAlaTrpLysSerLysLysThrProMet TCACCAGGACAGCGGGTTGAATTCCTCGTGCAAGCGTGGAAGTCCAAGAAAACCCCAATG AGTGGTCCTGTCGCCCAACTTAAGGAGCACGTTCGCACCTTCAGGTTCTTTTGGGGTTAC
 - 4160 ECORI,
- GlyPheSerTyrAspThrArgCysPheAspSerThrValThrGluSerAspIleArgThr
 4202 GGGTTCTCGTATGATACCCGCTGCTTTGACTCCACAGTCACTGAGAGCGACATCCGTACG
 CCCAAGAGCATACTATGGGCGACGAAACTGAGGTGTCACTGACTCTCGCTGTAGGCATGC

4229 DRD1, 4236 ALWN1,

GluGluAlaTleTyrGlnCysCysAspLeuAspProGlnAlaArgValAlaIleLysSer 4262 GAGGAGCAATCTACCAATGTTGTGACCTCGACCCCCAAGCCCGCGGGCCATCAAGTCC CTCCTCCGTTAGATGGTTACAACACTGGAGCTGGGGGTTCGGGCGCACCGGTAGTTCAGG

4301 BGLI, 4308 BALI,

LeuThrGluArgLeuTyrValGlyGlyProLeuThrAsnSerArgGlyGluAsnCysGly
4322 CTCACCGAGAGGCTTTATGTTGGGGGCCCTCTTACCAATTCAAGGGGGGAGAATCGGGGC
GAGTGGCTCTCCGAAATACAACCCCCGGGAGAATGGTTAAGTTCCCCCCTCTTGACGCCG

4345 APAI.

- TyrArgArqCysArgAlaSerGlyValLeuThrThrSerCysGlyAsnThrLeuThrCys
 4382 TATCGCAGGTGCCGCGGGGGGGCTACTGACCACTGGTTAACACCCTCACTTG
 ATAGCGTCCACGGGGGGGGTCGCCGCATGACTGTTGATCGACACCATTGTGGGAGTGAACG
- TyrileLysAlaArgAlaAlaCysArgAlaAlaClyLeuGlnAspCysThrMetLeuVal
 4442 TACATCAAGGCCCGGGCAGCCTGCGACAGGCTGCAGGACTGGACACAGGCTCGTG
 ATGTAGTTCCGGGCCCGTCGGACAGCTCGGCGTCCGAGGTCCTGAGCTGGTACGAGCAC

4452 SMAI XMAI.

CysGlyAspAspLeuValValTleCysGluSerAlaGlyValGlnGluAspAlaAlaSer 4502 TGTGGCGACGACTTAGTCGTTATCTGTGAAAGCGCGGGGGTCCAGGAGGACGCCGGCGAGC ACACCGCTGCTGAATCAGCAATAGACACTTTCGCGCCCCCAGGTCCTCCTCCTCGCGCCCTCG

4508 DRD1, 4511 TTH3I,

- LeuArgAlaPheThrGluAlaMetThrArgTyrSerAlaProProGlyAspProProGl 4562 CTGAGAGCCTTCACGGAGGCTATGACCAGGTACTCCGCCCCCCCTGGGGACCCCCACAA GACTCTCGGAAGTGCCTCCGATACTGGTCCATGAGGCGGGGGGACCCCTGGGGGTTTT
- ProGluTyrAspLeuGluLeuIleThrSerCysSerSerAsnValSerValAlaHisAsp CCAGAATACGACTTGGAGCTCATAACATCATGCTCCTCCAACGTGTCAGTCGCCCACGAC GGTCTTATGCTGAACCTCGAGTATTGTAGTACGAGGAGGTTGCACAGTCAGCGGTGCTG

4637 SACI.

4731 NRUI,

- AlatrpGluthrAlaArgHisThrProValAsnSerTrpLeuGlyAsnIleIleMetPhe
 GCGTGGGAGACAGCACACCCCAGTCAATTCCTGGCTAGGCAACAATAATCATGTTT
 CGCACCCTCTGTCGTTCTGTGAGGTCAGTTAAGGACCGATCCGTTGTATTAGTACAAA
- AlaProThrLeuTrpAlaArgMet11 LeuMetThrHisPhePh SerValLeuI1 Ala 4802 GCCCCACACTGTGGGCGAGGATGATACTGATGACCCATTTCTTTAGCGTCCTTATAGCC CGGGGGTGTGACACCCGCTCCTACTATGACTACTGGGTAAAGAAATCGCAGGAATATCGG

4806 PFLM1, 4807 DRA3,

ArgAspGlnLeuGluGlnAlaLeuAspCysGluIl TyrGlyAlaCysTyrSerIleGlu

- 4862 AGGGACCAGCTTGAACAGGCCCTCGATTGCGAGATCTACGGGGCCTGCTACTCCATAGAA
 TCCCTGGTCGAACTTGTCCGGGAGCTAACGCTCTAGATGCCCCGGACGATGAGGTATCTT
 4893 BGL2,
- ProLeuAspLeuProProIleIleGlnArgLeuHisGlyLeuSerAlaPheSerLeuHis
 CCACTGGATCTACCTCCAATCATCAAAGACTCCATCGAGCCCTCAGCGCATTTTCACTCCAC
 GGTGACCTAGATGGAGGTTAGTAAGTTTCTGAGGTACCGGAGTCGCGTAAAAGTGAGGTG
 4954 NCOI.
- SerTyrSerProGlyGlulleAsnArgValAlaAlaCysLeuArgLysLeuGlyValPro
 AGTTACTCTCCAGGTGAAATCAATAGGGTGGCCGCATGCCTCAGAAAACTTGGGGTACCG
 TCAATGAGAGGTCCACTTTAGTTATCCCACCGGCGTACGGAGTCTTTTGAACCCCATGGC

5015 SPHI, 5035 KPNI,

ProLeuArgAlaTrpArgHisArgAlaArgSerValArgAlaArgLeuLeuAlaArgGly
CCCTTGCGAGCTTGCAGACCCCGGCCCCGGAGCGTCCGCGCTAGGCTTCGGCCAGAGGA
GGGAACGCTCGAACCTCTGTGGCCCGGGCCTCCCAGGCGCGTCCCAAGACCGGTCTCCT

5064 APAI, 5091 BALI,

GlyArgAlaAlaIleCysGlyLysTyrLeuPheAsnTrpAlaValArgThrLysLeuLys 5102 GGCAGGGCTGCCATATGTGGCAAGTACCATCTTCAACTGGGCAGTAAGAACAAGACCAACCCGTCCATGGAGAAGATGAACCCGTCATTCTTGTTTCGAGTTT CCGTCCCGACGGTATACACCGTTCATGGAGAAGTTGACCCGTCATTCTTGTTTCGAGTTT

5113 NDEI.

5174 NOTI, 5175 EAG1 XMA3, 5182 BALI, 5186 PVU2,

SerGlyGlyAspIleTyrHisSerValSerHisAlaArgProArgTrpIleTrpPheCys
5222 AGCGGGGGAGACATTTATCACAGCGTGTCTCATGCCCGGCCCCCGTGGATCTGGTTTTGC
TCGCCCCCTCTGTAAATAGTGTCGCACAGAGTACGGGCCGGGCGACCTAGACCAAAACG

5240 DRA3,

LeuleuleuAlaAlaGlyValGlyIleTyrLeuleuFroAsnArgMetSerThrAsn 5282 CTACTCCTGCTTGGAGGGGTAGGCATCTACCTCCCCAAACCGAATGAGCACGAAT GATGAGGACGAACGACGTCCCATCCGTAGATGAGGAGGGGTTGGCTTACTCGTGCTTA

5295 PSTI,

ProLysProGlnArgLysThrLysArgAsnThrAsnArgArgProGlnAspValLysPhe
5342 CCTAAACCTCAAAGAAGAACGAACGTAACACCAACCGGCGGCCGCGAGGACGTCAAGTTC
GGATTTGGAGTTTCTTGTTTGCATTGGTTTGCCCGCCGGCGTCCTGCAGTTCAAG

5380 NOTI, 5381 EAG1 XMA3, 5390 AAT2, 5401 SMAI XMAI,

ProGlyGlyGlyGln1leValGlyGlyValTyrLeuLeuProArgArgGlyProArgLeu
5402 CCGGGTGGGGTCAGATGGTTGGTGGAGTTTACTTGTTGCCGCCAGGGCCCTAGATTG
GGCCCACCGCCAGTCTAGCAACCACCTCAAATGAACAACGGCGGTCCCCGGGATCTAAC

		PΑ	

5462	GlyValargalathrargLysthrSerGluArgSerGlnProArgGlyArgArgGlnPro GGTGTGCGCGCACCAGAAAGCTTCCGACCGCTCGCAACCTCCAGCGTAGCGTCAGCCT CCACACGCGCGCTGCTTTTCTCAAGGCTCGCAGCGTTGGAGCTCCATCTGCAGTCGCA

5467 BSSH2, 5478 XMNI, 5502 XHOI, 5511 AAT2,

11eProLysAlaArgArgProGluGlyArgThrTrpAlaGlnProGlyTyrProTrpPro 5522 ATCCCAAGGCTCGTCGGCCCGAGGGCAGGACCTGGGCTCAGCCCGGGTACCCTTGGCCC TAGGGGTTCCGAGCAGCCGGGCTCCCGTCCTGGACCCGAGTCGGGCCCATGGGAACCGG

5548 ALWN1, 5558 ESP1, 5564 SMAI XMAI, 5568 KPNI,

- LeuTyrGlyAsnGluGlyCysGlyTrpAlaGlyTrpLeuLeuSerProArgGlySerArg
 5582 CTCTATAGCAATGAGGGCTGCGGGTGGGGGGGATGGCTCCTGTCTCCCCGTGGCTCTCGG
 GAGATACCGTTACTCCGACGCCACCCCCCTACCGAGGACAAGAGGGGCACCCGAGACC

5650 APAI, 5698 SALI,

5702 AC

FIG. 17-Page 10

Meralahlatyralahlaginglytyrlysvalleuvalleunal AGCTTACANAACANAATGCGTCCATATACAGCTCAGGGCTATAAGGTGCTAGTACTACAAC TCGAATGTTTTGTTTTACCGACGTATACGTCCAGTCCCGATATTCCACGATCATGAGTTG

1 HIND3, 24 NDEI, 52 SCAI.

ProSerValAlaAlaThrLeuGlyPheGlyAlaTyrMetSerLysAlaHisGlyTleAsp
CCCTCTGTTGCTGCAACACTGGGCTTTGGTGCTACAAGGCTCATGGGATCAGG
GGGAGACAACGACGTTGTGACCCGAAACCACGATTACAGGTTACAGGTTCCGAGTACCTAGCTA

116 CLAI,

- ProAsnIleArgThrGlyValArgThrIleThrThrGlySerProIleThrTyrSerThr
 122 CCTAACATCAGGACCGGGGTGAGAACAATTACCACTGGCAGCCCCATCACGTACTCCACC
 GGATTGTAGTCCTGGCCCACTCTTGTTAATGGTGACCGTGGGGTAGTGCATGAGGTGG
- TyrGlyLysPheLeuAlaAspGlyGlyCysSerGlyGlyAlaTyrAspIleIleIleCys
 182 TACGGCAAGTTCCTTGCCGACGGGGGTGCTCTGGGGGGGCGCTTATGACATAATAATTGT
 ATGCCGTTCAAGGAACGCCTCCGCCACGAGCCCCCCGGGAATACTGTATTAATAAACA
- ASPGIUCYSHISSerThrAspAlaThrSerIleLeuGlyIleGlyThrValLeuAspGln 242 GACGAGTGCCACTCCACGGATGCCACATCCATCTTGGGCATTGCCACTGCCTTGACCAA CTGCTCACGGTGAGGTGCTTACGGTGTAGGTAGAACCCGTAACCGTCACAGGAACTGGTT

303 ALWN1.

- ThrValProHisProAsnIleGluGluValAlaLeuSerThrThrGlyGluIleProPhe
 ACTGTGCCCCATCCCAACATGGAGGAGGTTGCTCGTCCACCACCACCAGGAGAATCCCTTTT
 TGACACGGGTAGGGTTGTAGCTCCTCCAACGAGACAGGTGGTGGCCTTCTTAGGAAAA
- TyrGlyLysAlaIleProLeuGluValIleLysGlyGlyArgHisLeuIlePheCysHis
 TACGGCAAGGCTATCCCCCTCGAAGTAATCAAGGGGGGGAGACATCTCATCTTCTTCAT
 ATGCCGTTCCGATAGGGGAGCTTCATTAGTTCCCCCCTTTGTAGAGTAGAAGAGAACAGTA
- SerlyslyslysCysAspGluLeuAlaAlaLysLeuValAlaLeuGlyIleAsnAlaVal
 482 TCAAAGAAGAAGTCGCAGCAAAGCTGGTCGCATTGGGCATCAATGCCGT
 AGTTTCTTCTTCACGCTGCTTGAGGGGGGTTTCGACCAGCGTAACCCGTAGTTACGGCAC
- AlatyrtyrargGlyLeuAspValSerVall1LeProThrSerGlyAspValValValValVal 542 GCCTACTACCGCGGTCTTGACGTGTCCGTCATCCCGACCAGCGGCGATGTTGTCGTCGTG CGGATGATGGCGCCAGAACTGCACAGCAGTAGGGCTGGTCGCCGCTACAACAGCAGCAC

550 SAC2, 560 DRD1,

615 BSPH1,

- ThrLeuProGlaRspAlaValSerArgThrGlaRspArgGlyArgGThrGlyArg
 722 ACGCTCCCCAAGATGCTGTCTCCCCGCACTCAACGTCGGGGCAGGACTGCCAGGGGAAG
 TCCGAGGGGGTTCTACGACAGAGGGCGTGAGTTGCAGCCCCCTCCTCACCGTCCTCACCGTCCTCACCGTCCTCACCGTCCTCACCGTCCTCACCGTCCT
- ProGlylleTyrArgPheValAlaProGlyGluArgProSerGlyMetPheAspSerSer
 782 CCAGGCATCTACAGATTTGTGGCACCGGGGGAGGCCCCCTCCGGCATGTTCGACTCGTCC
 GGTCCGTAGATGTCTAAACACCGTGGCCCCCTCGGGGGAGGCCGTACAAGCTGAGCAGG

816 BGLI, 833 DRD1,

ValleuCysGluCysTyrAspAlaGlyCysAlaTzpTyrGluLeuThrProAlaGluThr
842 GTCCTTGTGAGTGCTATGAGGGGGGGGTGTGCTTGGTATGAGCTCACGCCCGCGAGACT
CAGGAGACACTCACGATACTGCGTCCGACAGGAGCATTCTGAGTGCGGGGGGTCTTGA

881 SACI,

ThrValArgLeuArgAlaTyrMetAsnThrProGlyLeuProValCysGlnAspHisLeu 902 ACAGTTAGGGTACGAGGGTACATGAGACACCCCGGGGGTTCCCGTGTGCCAGGACCATCTT TGTCAATCCGATGCTGCGATGTACTTGTGGGGCCCCGAAGGGCACACGGTCCTGGTAGAA

931 SMAI XMAI,

GluPheTrpGluGlyValPheThrGlyLeuThrHisTleAspAlaHisPheLeuSerGln
962 GAATTITGGGAGGGCGTCTTTACAGGCCTCACTCATATAGATGCCCACTTTCTATCCCAG
CTTAAAACCTCCCGCAGAAATGTCCGGAGTAGATATCTACGGTGAAAAATAGGGTC

985 STUI.

ThrLysGlnSerGlyGluAsnLeuProTyrLeuValAlaTyrGlnAlaThrValCysAla
1022 ACAAAGCAGAGTGGGGAGAACCTTCCTTACCTGTAGCGTACCAAGCACCGTGTGGGGT
TGTTTCGTTCACCCCCTTTGGAAGGAATGGACCATCGCATGGTTCGGTGCACCACGGA

1069 DRA3,

- ArgAlaGlnAlaProProProSerTrpAspGlnMetTrpLysCysLeulleArgLeuLys
 1082 AGGGCTCAAGCCCCTCCCCATCGTGGCACGAGTGTGGAAGTGTTTGATTCGCCTCAAG
 TCCCGATTCGGGGAGGGGTAGCACCCTGGTCTACACCTTCACAAACTAAGCGGAGTTC
- ProThrLeuHisGlyProThrProLeuLeuTyrArgLeuGlyAlaValGlnAsnGluIle
 1142 CCACCCTCCATGGGCCAACACCCTGCTATACAGACTGGGCGCTGTTAGAATGAAATC
 GGGTGGGAGGTACCCGGTTGTGGGGAACGATATGTCTGACCCGCGACAAGTCTTACTTTAG

1150 NCOI,

1230 BSPH1, 1234 DRD1, 1237 AVA3, 1245 EAG1 XMA3, 1250 DRD1,

ValThrSerThrTrpValLeuValGlyGlyValLeuAlaAlaLeuAlaAlaTyrCysLeu
1262 GTCACGAGCACCTGGGTGCTCGTTGGCGGCGCTCCTGGCTGCTTTGCCTG

CAGTGCTCGTGGACCCACGA	

SerThrGlyCysValValIleValGlyArgValValLeuSerGlyLysProAlaIleIleIle
1322 TCAACAGGCTGCGTGGTCATAGTGGGCAGGGTCGTCTTGTCCGGGAAGCAGACATATA
AGTTGTCCGAGCACCAGTATCACCCGTCCAGCAGAACAGGCCCTTCGGCCGTTAGTAT

1369 NAEI.

1385 DRD1,

ProAspArgGluValLeuTyrArgGluPheAspGluMetGluGluCysSerGlnHisLeu CCTGACAGGGAAGTCCTCTACCGAGAGTTCGATGAGATGGAAGAGTGCTCTCAGCACTTA GGACTGTCCCTTCAGGAGATGGCTCTCAAGCTACTCTACCTTCTCACGAGAGTCGTGAAT

ProTyrileGluGlnGlyMetMetLeuAlaGluGlnPheLysGlnLysAlaLeuGlyLeu 1442 CCGTACATCGAGCAAGGGATGATGCTCGCCGAGCAGTTCAAGCAGAAGGCCCTCGGCCTC GGCATGTAGCTCGTTCCCTACTACGAGCGCTCGTCAAGTTCGTCTTCCCGGAGCCGGAG

LeuGlnThrAlaSerArgGlnAlaGluValIleAlaProAlaValGlnThrAsnTrpGln
1502 CTGCAGACCGCGTCCGGTCAGGCAGAGGTTATCGCCCCTGCTGCCAGACCAACTGGCAA
GACGTCTGGCGCAGGGCAGTCCGTCTCCAATAGCGGGACGACAGGTCTGGTTGACCGTT

1502 PSTI, 1507 TTH3I,

LysLeuGluthrPheTrpAlaLysHisMetTrpAsnPheTleSerGlyIleGlnTyrLeu
AAACTCGAGACCTTCTGGGCGAAGCATATGTTGGACTTCATCAGTGGGGATACAATACTTG
TTTGAGCTCTGGAAGACCCGCTTCCTATACACCTTGAAGTAGTCACCCTATTTATAAAC

1565 XHOI, 1586 NDEI,

AlaGlyLeuSerThrLeuProGlyAsnProAlaIleAlaSerLeuMetAlaPheThrAla
1622 GCGGGCTTGTCAACGCTGCCTGGTAACCCCGCCATTGCTTCATTGATGGCTTTTACAGCT
CGCCCGAACAGTTGCGACGGACCATTGGGGCGGTAACGAAGTAACTACCGAAAAATGTCGA

1643 BSTE2, 1677 ALWN1 PVU2,

ValalaalaGinLeuAlaAlaProGlyAlaAlaThrAlaPheValGlyAlaGlyLeuAla
1742 GTGGCTGCCCAGCGCCCCCGGTGCCGCTACTGCCTTTGTGGGCGCTGGCTTAGCT
CACCGACGGGTCGAGCGGGGGCCACGGCGATGACGGAAACACCCCGCGACCGAATCGA
^

1794 ESP1,

G19A1aA1aI1eG19SerValG19LeuG19L9sVa1Leu11eAspI1eLeuAlaG19T9v GGCGCCCATCGGCAGTGTTGGACTGGGAAGGTCCTCATAGACATCCTTGCAGGTAT CGCGGCGGTAGCCGTCACAACCTCACCACTTCCAGGAGTATCTGTAGGAACGTCCATA

- 1802 KAS1 NARI,

GlyAlaGlyValAlaGlyAlaLeuValAlaPheLysIleMetSerGlyGluValProSer
862 GGCCGGGCGGGGGGGGCTCTTGTGCATTCAAGATCATGAGCGGTGAGGTCCCCTCC
CCGCGCCCGCACCGCCTCGAGAACACCGTAAGTTCTAGTACTGCCCACTCCAGGGAGG

1878 SACI, 1899 BSPH1,

ThrGluAspLeuVellasnLeuLeuProAleIleLeuSerProGlyAlaLeuValValGly
ACGGAGGACCTGGTCAATCTACTGCCCGCATCCTCTCGCCCGGAGCCCTCGTAGTCGGC
TGCCTCCTGGACCAGTTAGATCACGGCGGTAGGACAGCGGCCCTCGGACCATCAGCCG

1928 TTH3I,

2004 NAEL, 2017 SMAI XMAI.

MetasnargleuilealaPhealaSerargGlyAsnHisValSerProThrHisTyrVal 2042 ATGAACCGGCTGATAGCCTTCCGCCTCCCGGGGGAACCATGTTTCCCCCACGCACTACGTG TACTTGGCCGACTATCGGAAGCGGAGGCCCCCTTGGTACAAAGGGGGTCGTGATGCAC

2067 SMAI XMAI, 2093 DRA3,

ProGluSerAspAlaAlaAlaArgValThrAlaIleLeuSerSerLeuThrValThrGln
2102 CCGGAGAGCGATGCAGCTGCCCGCGTCACTGCCATACTCAGCAGCCTCACTGTAACCCAG
GGCCTCTCGCTACCTCACGGGCGCAGTGACGGTATGAGTCGTCGGAGTGACATTGGGTC

2115 PVU2, 2159 ALWN1,

LeuLeuArgArgLeuHisGlnTrp1leSerSerGluCysThrThrProCysSerGlySer
2162 CTCCTGAGGCGACTGCACCAGTGGATAAGCTCGGAGTGTACCACTCCATGCTCCGGTTCC
GAGGACTCCGCTGACGTGGTCACCTATTCGAGCCTCACATGGTGAGGTACGAGGCCAAGG

2164 MST2, 2220 ECON1,

- TrpLeuArgAspIleTrpAspTrpIleCysGluValLeuSerAspPheLysThrTrpLeu
 2222 TGGCTAAGGGACATCTGGGACTGGATATGCGAGGTGTTGAGCGACTTTAAGACCTGGCTA
 ACCGATTCCTGTAGACCCTGACCTATACGCTCACAACTCGCTGAAAATTCTGGACCGAT

2285 ESP1, 2300 PVU2, 2310 BAMHI,

- LysGlyValTrpArgGlyAspGlÿIleMetHisThrArgCysHisCysGlyAlaGluIle
 2342 AAGGGGTCTGGCGAGGGGACGCATCATGCACACTCGCTGCCACTGTGGACCTGAGATC
 TTCCCCCAGACCGCTCCCCTGCCGTAGTACGTGTGAGCACCGTGACACTCTAG
- ThrGlyHisValLysAsnGlyThrMetArgIleValGlyProArgThrCysArgAsnMet

 2402 ACTGGACATGTCAAAAACGGGACGATGAGGATCGTCGGTCCTAGGACCTGCAGGAACATG
 TGACCTGTACAGTTTTTGCCCTGCTACTCCTAGCAGCACGATCCTGGACGTCTTTAC

2425 BSAB1, 2441 AVR2, 2448 SSE83871, 2449 PSTI,

TrpSerGlyThrPheProIleAsnAlaTyrThrThrGlyProCysThrProLeuProAla
1GGAGTGGGACCTTCCCCATTAATGCCTACACCACGGGCCCCTGTACCCCCCTTCCTGCG
ACCTCACCCTGGAAGGGCTAATTACGGATGTGCCCGGGGACATGGGGGGAAGGACGC

2480 ASE1, 2497 APAI,

2522	ProAsnTyrThrPheAlaLeuTrpArgValSerAlaGluGluTyrValGluIleArgGln CCGAACTACACGTTCGCGCTATGGAGGGTGTCTGCACAGGAATACGTGGAGATAAGGCAG GGCTTGATGTGCAAGCGCGATACCTCCCACAGACGTCTCCTTATGCACCTCTATTCCGTC
	2553 PSTI,
2582	ValGlyAspPheHisTyrValThrGlyMetThrThrAspAsnLeuLysCysProCysGln GTGGGGGACTTCCACTACGTGACGGGTATGACTACTGACAATCTTAAATGCCCGTGCCAG CACCCCCTGAAGGTGATGCACTGCCCATACTGATGACTGTTAGAATTTACGGGCACGGTC
	2594 DRA3,
2642	ValProSerProGluPhePheThrGluLeuAspGlyValArgLeuHisArgPheAlaPro GTCCCATCGCCCGAATTTTTCACAGAATTGGACGGGGTGCGCCTACATAGGTTTGCGCCC CAGGGTAGCGGGCTTAAAAAGTGTCTTAACCTGCCCCACGCGGATGTATCCAAACGCGGG
2702	ProCysLysProLeuLeuArgGluGluValSerPheArgValGlyLeuHisGluTyrPro CCCTGCAAGCCCTTGCTGCGGGAGGAGGTATCATTCAGAGTAGGACTCCACGAATACCCG GGGACGTTCGGGAACGACGCCCTCCTCCATAGTAAGTCTCATCCTGAGGTGCTTATGGGC
	2757 HGIE2,
2762	ValGlySerGlnLeuProCysGluProGluProAspValAlaValLeuThrSerMetLeu GTAGGGTCGCAATTACCTTGCGAGCCCGAACCGGACGTGGCCGGTTTGACGTCCATGCTC CATCCCAGCGTTAATGGAACGCTCGGGCTTGGCCTGCACCGGCACAACTGCAGGTACGAG
	2809 AAT2,
2822	ThrAspProSerHisIleThrAlaGluAlaAlaGlyArgArgLeuAlaArgGlySerProACTGATCCCTCCCATATAACAGCAGAGGGCGCCGGCCGGAGGGTGGCGAGGGGATCACCCTGACTAGGGAGGG
	2850 EAG1 XMA3,
2882	ProSerValAlaSerSerSerAlaSerGlnLeuSerAlaProSerLeuLysAlaThrCys CCCTCTGTGGCCAGCTCCGGCTAGCCAGCTATCCGCTCCATCTCTCAAGCCAACTTGC GGGAGACACCGGTCGAGGAGCCGATCGGTCGATAGGCGAGGTAGAGAGTTCCGTTGAACG
	2889 BALI, 2903 NHEI,
2942	ThralaAsnHisAspSerProAspAlaGluLeuIleGluAlaAsnLeuLeuTrpArgGln ACCGCTAACCATGACTCCCTGATGCTGAGCTCATAGAGGCCAACCTCCTATGGAGGCAG TGGCGATTGGTACTGAGGGGACTACGACTCCGAGTATCTCCGGTTGGAGGATACCTCCGTC

GluMetGlyGlyAsnIleThrArgValGluSerGluAsnLysValValIleLeuAspSer GAGATGGGCGGCAACATCACCAGGGTTGAGTCAGAAAACAAAGTGGTGATTCTGGACTCC CTCTACCCGCCGTTGTAGTGGTCCCAACTCAGTCTTTTGTTTCACCACTAAGACCTGAGG

PheAspProLeuValAlaGluGluAspGluArgGluIleS rValProAlaGluIleLeu TTCGATCCGCTTGTGGCGGAGGAGGACGAGGGGAGATCTCCGTACCCGCAGAAATCCTG AAGCTAGGCGAACACCGCTCCTCCTGCTCGCCCTCTAGAGGCATGGGCGTCTTTAGGAC

3096 BGL2,

3002

2966 ESP1, 2969 SACI,

 ${\tt ArgLysSerArgArgPheAlaGlnAlaLeuProValTrpAlaArgProAspTyrAsnPro}$

- 3122 CGGAAGTCTCGGAGATTCGCCCAGGCCCTGCCCGTTTGGGCGCGGGCCGGACTATAACCCC GCCTTCAGAGCCTCTAAGCGGGTCCGGGACGGCAAACCCGCGCCGGCCTGATATTGGGG
 - 3143 ALWN1, 3164 EAG1 XMA3,
- ProLeuValGluThrTrpLysLysProAspTyrGluProProValValHisGlyCysPro CCGCTAGTGGAGACGTGGAAAAGCCCGACTACGAACCACCTGTGGTCCATGGCTGCCCG GGCGATCACCTTGTGACCTTTTTCGGGCTGATGCTTGGTGGACACCAGGTACCGACGGGC
 - 3217 HGIE2, 3229 NCOI,
- LeuProProProLysSerProProValProProArgLysLysArgThrValValLeu CTTCCAAAGTCCCCTCCTCTGCCTCCGCTCGGAAGAAGCGGACGGTGGTCCTC GAAGGTGGAGGTTCAGGGAGGAGACACGAGCGAGCCTTCTTCGCCTGCACCAGGAG
- ThrGluSerThrLeuSerThrAlaLeuAlaGluLeuAlaThrArgSerPheGlySerSer
 3302 ACTGAATCAACCCTATCTACTGCCGGGCTGGCCGACCAGAAGCTTTGGCAGCTCC
 TGACTTAGTTGGGATAGATGACGGAACCGGCTGGACGGTGTCTTCGAAACCGTCAGG
 - 3332 SACI, 3346 HIND3,
- CysProProAspSerAspAlaGluSerTyrSerSerMetProProLeugluGlyGluPro 3422 TGCCCCCGACTCGAGGCTGAGTCCTATTCCTCCATGCCCCCCCTGGAGGGGGAGCCT ACGGGGGGCTGAGGCTGCGACTCAGGATAAGGAGGTACGGGGGGACCTCCCCTCGGA
 - 3437 EAM11051.
- - 3484 BAMHI, 3485 BSAB1, 3487 BSPE1,
- ASPValValCysCysSerMetSerTyrSerTrpThrGlyAlaLeuValThrProCysAla
 3542 GATGTGGTGGTGCTCAATGTCTTACTCTTGGACAGGCGCACTCGTCACCCCGTGGGCC
 CTACAGCACACGACAGATTACAGAATGAGAACCTGTCCGGGTGAGCAGTGGGGCACGCGG
 - 3589 DRA3, 3600 SAC2,
- AlaGluGlnLysLeuProlleAsnAlaLeuSerAsnSerLeuLeuArgHisHisAsn GCGGAAGAACAGAACTGCCCATCAATGCACTAAGCAACTCGTTGCTACGTCACCACAAT CGCCTTCTTGTCTTTGACGGGTAGTTACGTGATTCGTTGAGCAACGATGCAGTGGTGTTA
 - 3611 ALWN1, 3655 PFLM1,
- LeuvaltyrserthrthrserArgserAlaCysGlnArgGlnLysLysValThrPheAsp
 TTGGTGTATTCCACCACCTCACGCAGTGCTTGCCAAAGGCAGAAGAAAGTCACATTTGAC
 ACCACATAAAGGTGGTGGAGTGCGTCACGAACGGTTTCCGTCTTCTTTCAGTGTAAACTG
 - 3681 DRA3,
- ArgleuGlnvall uAspS rHistyrGlnAspValleuLysGluValLysAlaAlaAla
 3722 AGACTGCAAGTTCTGGACAGCCATTACCAGGACGTACTCAAGGAGGTTAAAGCAGCGGCG

TCTGACGTTCAAGACCTGTCGGTAATGGTCCTGCATGAGTTCCTCCAATTTCGTCGCCGC

SerlysVallysAlaAsnLeuLeuSerValGluGluAlaCySSerLeuThrProProHis
TCAAAAGTGAAGGCTAACTTGCTATCCGTAGAGGAAGCTTGCAGCCCGACCACAC
AGTTTCACTTCCGATTGAACGATAGGCATCTCCTTCGAACGTCGGACTGCGGGGTTG

3816 HIND3.

SeralalysserlysPheGlyTyrGlyAlalysAspValArgCysHisAlaArgLysAla
TCACCCAATCCAAGTTTGGTTATGGGGCAAAAAGACGTTCGCTTGCAGAAAGGCC
AGTCGGTTAAGCTTAACCAATACCCCTTTTCTGCAGGCAACGGTACGGTTACGCTTTCCTGC

3875 AAT2, 3890 BGLI,

- ValThrHisileAsnSerValTrpLysAspLeuLeuGluAspAsnValThrProIleAsp 3902 GTAACCCACATCAACTCCGTGTGGAAGACCTTCTGGAAGACAATGTAACACCAATAGAC CATTGGGTGTAGTTGAGGCACACCTTTCTGGAAGACCTTCTGTTACATTGTGGTTATCTG
- ThrThrIleMetAlaLysAsnGluValPhecysValGlnProGluLysGlyGlyArgLys
 3962 ACTACCATCATGGCTAGAACGAGGTTTTCTGCGTTCAGCCTGAGAAGGGGGTCGTAAA
 TGATGGTAGTACCGATCTTGCTCCAAAAGACGCAGCTCTGCACCCAGCATTC
- ProAlaArgLeuIleValPheProAspLeuGlyValArgValCysGluLysMetAlaLeu
 4022 CCAGCTCGTCTCGTGTCCCCGATCTGGGCGTGGCGGAAAAGATGGCTTTG
 GGTCGAGCAGATAGCACAAGGGGTTAGACCCGCACAGGCTTTTCTACCGAAAC
- TyrAspValValThrLysLeuProLeuAlaValMetGlySerSerTyrGlyPheGlnTyr
 4082 TACGACGTGGTTACAAAGCTCCCTTGGCGTGATGGGAAGCTCCTACGGGATTCCAATAC
 ATGCTGCACCAATGTTCGAGGGGAACCGGCACTACCCTTCGAGGATGCCTAAGGTTATG
- SerproGlyGlnArgvalGluPheLeuValGlnAlaTrplysSerLysLysThrProMet
 TCACCAGGACAGCGGGTTGAATTCCTCGTGCAGCTGGAAGTCCAAGAAACCCAATG
 AGTGGTCCTGTCGCCCAACTTAAGGAGCACGTTCGCACCTTCAGGTTCTTTTTGGGGTTAC

4160 ECORI,

GlyPheSerTyrAspThrArgCysPheAspSerThrValThrGluSerAspIleArgThr 4202 GGTTCTCGTATGATACCGCTGCTTTGACTCCACAGTCACTGAGAGCGACATCCGTACG CCCAAGAGCATACTATGGCGACGAAACTGAGGTGTCAGTGACTCTCGCTGTAAGGCATGC

4229 DRD1, 4236 ALWN1,

GluGluAlaIleTyrGlnCysCysAspLeuAspProGlnAlaArgValAlaIleLysSer
GAGGAGGCATCTACCAATGTTGTGACCTCGACCCCCAAGCCCGCGTGGCCATCAAGTCC
CTCTCCGTTAGATGGTTACAACACTGGACTTGGGGTTCGGGGCACCGCTAGTACATCAGG

4301 BGLI, 4308 BALI,

LeuThrGluArgLeuTyrValGlyGlyProLeuThrAsnSerArgGlyGluAsnCysGly
CTCACCGAGAGGCTTTATGTTGGGGCCCTCTTACCAATTCAAGGGGGAGAATCGGGC
GAGTGGCTCTCCGAAATACAACCCCCGGGAGAATGGTTAAGTTCCCCCCTCTTGACGCCG

4345 APAI,

TyrArgArgCysArgAlaSerGlyValL uThrThrS rCysGlyAsnThrLeuThrCys
4382 TATCGCAGGTGCCGCGCAGGGGGTACTGACAACTAGCTGTGGTAACACCCTCACTTGC
ATAGGGTCCACGGCGGGTCGCCGCATGACTGTTGATCGACACCATTGTGGAGATGAACG

TyrileLysAlaArgAlaAlaCysArgAlaAlaGlyLeuGlnAspCysThrMetLeu 4442 TACATCAAGGCCCGGGCAGCCTGTCGAGCCGAGGGCTCCAGGACTGCACCATGCTC ATGTAGTTCCGGGCCCGTCGGACAGCTCGGCGTCCCGAGGTCCTGACGTGGTACGAG 4452 SMAI XMAI,
4452 SMAI XMAI,
CysGlyAspAspLeuValValIleCysGluSerAlaGlyValGlnGluAspAlaAla 1502 TGTGGCGACGACTTAGTCGTTATCTGTGAAAGCGCGGGGGTCCAGGAGGACGCGGGG ACACCGCTGCTGAATCAGCAATAGACACTTTCGCGCCCCCAGGTCCTCCTGCGCCCC
4508 DRD1, 4511 TTH3I,

- ProGluTyrAspLeuGluLeuIleThrSerCysSerSerAsnValSerValAlaHisAsp
 4622 CCAGAATACGACTTGGAGCTCATAACATCATGCTCCTCCAACGTGTCAGTCGCCCACGAC
 GGTCTTATGCTGAACCTCGAGTATTGTAGTACGAGGAGGTTGCACAGTCAGCGGGTGCTG

4637 SACI.

- GlyAlaGlyLysArgValTyrTyrLeuThrArgAspProThrThrProLeuAlaArgAla
 GGCGCTGGAAAGAGGGTCTACTACCTCACCCGTGACCCTACAACCCCCCTGGCGAGAGCT
 CCGCGACCTTTCTCCCAGATGATGGAGTGGGCACTGGGATGTTGGGGGGAACGCTCTCGA
 - 4731 NRUI,
- AlaTrpGluthrAlaArgHisThrProValAsnSerTrpLeuGlyAsnIleIleMetPhe
 GCGTGGGABACAGCAAGACACTCCAGTCAATTCCTGGCTAGGCAACATAATCATGTTT
 CGCACCCTCTGTCGTTCTGTGAGGTCAGTTAAGGACCGATCCGTTGTATTAGTACAAA
- AlaProThrLeuTrpAlaArgMetIleLeuMetThrHisPhePheSerValLeuIleAla
 4802 GCCCCCACACTGTGGGCGAGGATGATACTGATGACCCATTTCTTTAGCGTCCTTATAGCC
 CGGGGGTGTGACACCCGCTCCTACTATGACTACTGGGTAAAGAAATCGCAGGAATATCGG
 - 4806 PFLM1, 4807 DRA3,
- ArgaspoinLeugluginalaLeuAspcysGluTleTyrcIyAlaCysTyrserIleGlu
 4862 AGGGACCAGCTTGAACAGGCCCTCGATTGCGAGATCTACGGGCCTGCTACTACATAGAA
 TCCCTGGTCGAACTTGTCCGGGAGCTAACGCTCTAGATGCCCCGGACGATGAGGTATCTT
 - 4893 BGL2,
- ProLeuAspLeuProProIleIleGlnArgLeuHisGlyLeuSerAlaPheSerLeuHis CCACTGGATCTACCTCCAATCATCAAAGACTCCATCGCCTCAGCGCATTTTCACTCCAC GGTGACCTAGATGGAGGTTAGTAAGTTTCTGAGGTACCGGAGTCGCGTAAAAGTGAGGTG

4954 NCOI.

SerTyrSerProGlyGluTleAsnArgValAlaAlaCysLeuArgLysLeuGlyValPro
4982 AGTTACTCCAGGTGAAATCAATAGGTGGCCGCATGCCTCAGAAAACTTGGGTACCG
100 TCAATGAGAGGTCCACTTTAGTTATCCCACCGGCGTACGGAGTCTTTTGAAACCCCATGGC

5015 SPHI, 5035 KPNI,

ProLeuArgAlaTrpArgHisArgAlaArgSerValArgAlaArgLeuLeuAlaArgGly
CCCTTGGGAGCTTGGGACAGGGGCCCGGAGCGTCCGCGCTAGGCTTCTGGCCAGAGGA
GGGAACGCTCGAACCTCTGTGGCCCGGGCCTCGCAGGCGGGTCCGAAGACCGTCTCCT

5064 APAI, 5091 BALI,

GlyArgAlaAlaIlaCysGlyLysTyrLeuPheAsnTrpAlaValArgThrLysLeuLys 5102 GGCAGGGCTGCCATATGTGGCAGTACCTCTTCAACTGGCAGTAACAACAAAGCTCAAA CCGTCCCGACGGTATACACCGTTCATGGAGAAGTTGACCCGTCATTCTTGTTTCGAGTTT

5113 NDEI,

5174 NOTI, 5175 EAG1 XMA3, 5182 BALI, 5186 PVU2,

SerGlyGlyAspIleTyrHisSerValSerHisAlaArgProArgTrpIleTrpPheCys
AGCGGGGGAGACATTTATCACAGCGTGTCTCATGCCCGGCCCGGTGGATCTGGTTTTGC
TCGCCCCCTGTAAATAGTGTCGCACAGAGTACGGGCCGGGGGGACCTAGACCAAAACG

5240 DRA3,

5295 PSTI.

ProlysproglnArglysThrLysArgAsnThrAsnArgArgProglnAspValLysPhe
5342 CCTAAACCTCAAAGAAGACACAACGTAACACCAACCGGCGGCCGCAGGACGTCAAGTTC
GGATTTGGAGTTCTTCTTGGTTTGCATTGTGGTTGGCCGCCGGCGTCCTCCAGTTCAAG

5380 NOTI, 5381 EAG1 XMA3, 5390 AAT2, 5401 SMAI XMAI,

ProGlyGlyGlyGlnIleValGlyGlyValTyrLeuLeuProArgArgGlyProArgLeu
CCGGGTGGCGGTCAGATCGTTGGTGGAGTTTACTTGTTGCCGCGCAGGGGCCCTAGATTG
GGCCCACCGCCAGTCTAGCAACCACCTCAAATGAACAACGGCGGTCCCCGGGATCTAAC

5449 APAI,

GlyValArgAlaThrArgLysThrSerGluArgSerGlnProArgGlyArgArgGlnPro
5462 GGTGTGCCGCGACGAGAAAGACTTCCGAGCGGTCGCAACCTCGAGGTAGACGTCAGCCT
CCACACGCGCGCTGCTCTTTCTGAAGGCTCGCCAGCGTTGGAGCTCCATCTGCAGTCGGA

5467 BSSH2, 5478 XMNI, 5502 XHOI, 5511 AAT2,

TleProLysAlaArgArgFroGluGlyArgThrTrpAlaGlnProGlyTyrProTrpPro
ATCCCAAGGCTCGTCGGCCCGAGGGCAGGACCTGGGCTCAGCCCGGGTACCCTTGGCCC
TAGGGGTTCCAGCAGCCGGGCTCCCGTCCTGGACCCGAGTCGGGCCCATGGGAACCGG

5548 ALWN1, 5558 ESP1, 5564 SMAI XMAI, 5568 KPNI,

LeuTyrGlyAsnGluGlyCysGlyTrpAlaGlyTrpLeuLeuSerProArgGlySerArg
5582 CTCTATGGCAATGAGGGCTGCGGGTGGCGGATGGCTCCTGTCTCCCCCGTGCCTCCGG
GAGATACCGTTACTCCCGACGCCCACCCCCTACCGAGGACAGAGGGGCACCCAGAGCC

ProSerTrpGlyProThrAspProArgArgArgAergAsnLeuGlyLysVallleAsp
CCTAGCTGGGGCCCCACAGACCCCCGGGGTAGGTCGCGCAATTTGGGTAAGGTCATCCAT
GGATCGACCCCGGGGTGTCTGGGGGCCGCATCCAGCGCGTTAAACCCATTCCAGTAGCTA

ThrLeuThrCysGlyPheAlaAspLeuMetGlyTyrTleProLeuValGlyAlaProLeu
ACCTTACGTCGGCTTCGCCGACCTCATGGGGTACATACCGCTCGTCGGCGCCCCTCTT
TGGGAATGACCGCCGAAGCGGCTGCAGTACCCCATGTATGGCGAGCAGCCGGGGAGAA

5724 HGIE2, 5750 KAS1 NARI, 5756 ECON1,

GlyGlyAlaAlaArgAlaLeuAlaHisGlyValArgValLeuGluAspGlyValAsnTyr
GGAGGCGCTGCCAGGGCCCTGGCGCATGGCGTCTGGAAGACGGCGTGAACTAT
CCTCCGCGACGGTCCCGGGACCGCGTACCGCAGGGCCCAAGACCTTCTGCCGCACTTGATA

5772 BSTXI, 5775 APAI,

5650 APAI, 5696 CLAI,

AlaThrGlyAsnLeuProGlyCysSerOC AM
5822 GCAACAGGGAACCTTCCTGGTTGCTCTTAATAGTCGAC
CGTTGTCCCTTGGAAGGACCAACGAGAATTATCAGCTG

5854 SALI,

FIG. 18-Page 10

FIG. 19

1 HIND3, 24 NDEI, 52 SCAI,

ProSerValAlaAlaThrLeuGlyPheGlyAlaTymetSerLysAlaHisGlyTleAsp 62 CCCTCTGTTGCTGCAACACTGGGCTTTGGTGCTTACATGTCCAAGGCTCATGGGATCGA GGGAGACAACGACGTTGTGACCCGAAACCACGAATGTACAGGTTCCGAGTACCCTAGCTA

116 CLAI.

- ProAsnIleArgThrGlyValArgThrIleThrThrGlySerProIleThrTyrSerThr
 122 CCTAACATCAGGACCGGGTGAGAACAATTACCACTGGCAGCCCCATCACGTACTCCACC
 GGATTGTAGTCCTGGCCCCACTCTTGTTAATGGTGACCGTGGGGTAGTGCATCAGGTGG
- TyrclyLysPheLeuAlaAspClyClyCysSerClyClyAlaTyrAspIleIleIleCys
 182 TACGGCARGTTCCTTGCCGACGGCGGTGCTCGGGGGGCCCTTATGACATAATAATTTGT
 ATGCCGTTCAAGGAACGGCTGCCGCCACAGGCCCCCGCGAATACTGTATTATTAAACA
- AspGluCysHisSerThrAspAlaThrSerIleLeuGlyIleGlyThrValLeuAspGln 242 GACCAGTGCCACTCCAGGATGCCACACTCCATCTTGGCACTGTCCTTGACCAA CTGCTCACGGTGAGGTGCCTACGGTGTAGGTAGAACCCGTAACCGTGACAGGAACTGGTT
- AlaGluThrAlaGlyAlaArgLeuValValLeuAlaThrAlaThrProFroGlySerVal
 302 GCAGAGACTGCGGGGGGGAGACTGGTTGTGCTCGCCACCGCCACCCCTCGGGCTCCGT
 CGTCTCTGACGCCCCCGCTCTGACCAACACGAGCGGTGGCGGTGGGAGGCCCGAGGCAG

303 ALWN1,

- ThrValProHisProAsnIleGluGluValAlaLeuSerThrThrGlyGluIleProPhe
 362 ACTGCCCCCATCCAACATCGAGGAGGTTGCTCGTCCACCACCACCGGAGAGACCCTTTT
 TGACACGGGGTAGGGTTGTAGCTCCTCCAACGAGACAGGTGGTGGCCTCTCTAGGAAAA

- SerLysLysCysAspGluLeuAlaAlaLysLeuValAlaLeuGly1leAsnAlaVal
 482 TCAAAGAAGTGCGACGAACTGCCGCGAAAGCTGGTGGCATTGGGCATTAACCGGTG
 AGTTTCTTCTTCAGCTGCTTGAGCGGGGTTTCGACCAGCGTAACCCGTAGTTACGGCAC
- AlatyrtyrargGlyLeuAspValSerValIleProThrSerGlyAspValValValValS42 GCCTACTACCGCGCTCTTGACGTCTCCGTACTACCGCGCGGTGATGTTGTCGTCGTG CGGATGATGGCGCCAGAACTGCACAGCAGTAGGGCTGGTCGCCGCTACAACAGCAGCAC

550 SAC2, 560 DRD1,

AlaThrAspAlaLeuMetThrGlyTyThrGlyAspPheAspSerValIleAspCysAsn
GCAACCGATGCCCTCATGACCGGCTATTACCGGCGACTTCGACTCGGTGATAGACTGCAAT
CGTTGGCTACGGGAGTACTGGCCCGATATGGCCGCTGAAGCTGAGCCACTATCTGACGTTA

615 BSPH1,

- ThrCysValThrGlnThrValAspPheSerLeuAspProThrPheThrIleGluThrIle
 662 ACGTGTGACCAGACAGTCGATTCAGCCTTGACCATCACCTTCACCATTGAGACAATC
 TGCACACAGTGGGTCTGTCAGCTAAAGTCGGAACTGGGATGGAACTGGTAACTCTGTTAG
- ThrLeuProGlnAspAlaValSerArgThrGlnArgArgGlyArgThrGlyArgGlyLys
 ACGCTCCCCCAAGATGCTGTCTCCCGCACTCAACGTCGGGCAGGACTGGCAAGGGGGAG
 TGCGAGGGGGTTCTACGACAGAGGGCGTGAGTTGCAGCCCCGTCCTGACCTCCCCTTC
- ProGlyIleTyrArgPheValAlaProGlyGlUArgProSerGlyMetPheAspSerSer
 782 CCAGGCATCTACAGATTTGTGGCACCGGGGGAGGCCCCCTCCGGCATGTTCGACTCGTCC
 GGTCCGTAGATGTCTAAACACCGTGGCCCCCTCGCGGGGAGGCCGTACAAGCTGAGCAGG

816 BGLI, 833 DRD1,

881 SACI,

ThrValArgLeuArgAlaTyrMetAsnThrProGlyLeuProValCysGlnAspHisLeu
902 ACAGTTAGGGTACAGGGGTACATGAACACCCCGGGGGCTTCCCGTGTGCCAGGACCATCTT
TGTCAATCCGATGCTCGCATGTACTTCTGGGGCCCCGAAGGGCACACGTCCTGGTACAA

931 SMAI XMAI,

GluPheTipGluGlyValPheThrGlyLeuThrHisIleAspAlaHisPheLeuSerGln 962 GAATTTTGGGAGGCGTCTTTACAGGCCTCACTCATATAGATGCCCACTTTCTATCCCAG CTTAAAACCCTCCCGCAGAAATGTCCGGAGTGAGTATATCTACGGGTGAAAGATAGGGTC

985 STUI,

1069 DRA3,

ArgalaGlnAlaProProProSerTrpAspGlnMetTrpLysCysLeuIleArgLeuLys
1082 AGGGCTCAAGCCCCTCCCCCATCGTGGGACCAGATGTGGAAGTGTTTGATTCGCCTCAAG

MACCON CRITCOCCC & CCCCC	でれてこれなってでなっていることでしている。	CACAAACTAACCCCACTTC

- ProThrLeuHisGlyProThrProLeuLeuTyrArgLeuGlyAlaValGlnAsnGluIle CCCACCCTCCATGGGCCAACACCCCTGCTATACAGACTGGGCGCTGTTCAGAATGAAATC GGGTGGGGACGTACCCGGTTGTGGGGACGATATGTCTGACCCGCGACAAGTCTTACTTTAG
 - 1150 NCOI,
- - 1230 BSPH1, 1234 DRD1, 1237 AVA3, 1245 EAG1 XMA3, 1250 DRD1,
- ValThrSerThrTrpValLeuValGlyGlyValLeuAlaAlaLeuAlaAlaTyrCySLeu 1262 GTCACGAGCACCTGGGGGTGCTGCTTGGCGGGGTGCTTGTGGCGGGTATTGCCTG CAGTGCTGTGGACCCACGAGCAACCGCCGCAGGACGACGACGACGCGCATAACGGAC
- SerThrGlyCysValValIleValGlyArgValValLeuSerGlyLysProAlaIleIle
 1322 TCAACAGGCTGCGTGGTCATAGTGGGCAGGGTCGTCTTGTCCGGGAAGCCGGCAATCATA
 AGTTGTCCGACGCACCAGTATCACCCGTCCCAGCAGAACAGGCCCTTCGGCCGTTAGTAT
 1369 NAEI.
- ProAspArgGluValLeuTyrArgGluPheAspGluMetGluGluCysSezGlnHisLeu CCTGACAGGGAAGTCCTCTACCGAGAGTTCGATGAGAGTGGAGAGGTGCTCTAGGACTTA GGACTGTCCCTTCAGGAGATGGCTCCTAAGCTACCTTCTCACGAGAGTCGTGAAT
- ProTyrileGluGlnGlyMetMetLeuAlaGluGlnPheLysGlnLysAlaLeuGlyLeu
 1442 CCGTACATCGAGCAAGGGATGATGCTCGCCGAGCAGTTCAAGCAGAAGGCCCTCGGCCTC
 GGCATGTAGCTCGTTCCCTACTACCAGCGGCTCGTCAAGTTCGTCTTCCCGGAGCCGGAG
- LeuGlnThrAlaSerArgGlnAlaGluValIleAlaProAlaValGlnThrAsnTrpGln
 CTGCAGACCGCGTCCGGTCAGGCAGAGGTTATCGCCCCTGCTGCCAGACCAACTGGCAA
 GACGTCTGGCGCAGGGCAGTCCGTCTCCAATAGCGGGACGACAGGTCTGGTTGACCGTT
 - 1502 PSTI, 1507 TTH3I,
- LysLeugluThrPheTrpAlaLysHisMetTrpAsnPheIleSerglyIleGlnTyrLeu 1562 AAACTCGAGACCTTCTGGGCGAAGCATATGTGGAACTTCATCAGTGGGATACAATACTTG TTTGAGCTCTGGAAGACCCGCTTCGTATACACCTTGAAGTAGTCACCCTATGTTATGAAC
 - 1565 XHOI, 1586 NDEI,
- AlaGlyLeuSerThrLeuProGlyAsnProAlaIleAlaSerLeuMetAlaPheThrAla
 GCGGGCTTGTCAACGCTGCTTGGTAACCCCGCCATTGCTTCATTGATGGCTTTTACAGCT
 CGCCCGAACAGTTGCGACGGACCATTGGGGCGGTAACGAAGTAACTACCGAAATGTCGA
 - 1643 BSTE2, 1677 ALWN1 PVU2,
- AlaValThrSerProLeuThrThrS rGlnThrLeuL uPheAsnIleLeuGlyGlyTrp GCTGTCACCAGCCCACTAGCCAAACCCTCCTCTTCAACATATTGGGGGGGTGG CGACAGTGGTGGGTTGGTTGATGGTTTTGGGAGGAGAAGTTGTATAACCCCCCACC

1794 ESP1,

GlyAlaAlaIleGlySerValGlyLeuGlyLysValLeuTleAspIleLeuAlaGlyTyr
1802 GGCGCGCGATGGGCATGGGCATGGGGAAGGTCCTCATAGACATCCTTCAGGGTAT
CCGCGGGGGTAGCCGTCACAACCTGACCCCTTCCAGGAGTATCTGTAGGAACGTCCCATA

1802 KAS1 NARI,

GlyAlaGlyValAlaGlyAlaLeuValAlaPheLysIleMetSerGlyGluValProSer GGCGCGGGCGGGGGGGCTCTTGTGCATTCAAGATCATGACCGGTGAGGTCCCCTCC CCGCGCCCCACCCCCTCGAGAACACCGTAAGTTCTAGTACTCGCCACTCCAGGGGAGG

1878 SACI, 1899 BSPH1,

ThrGluAspLeuValAsnLeuLeuProAlaIleLeuSerProGlyAlaLeuValValGly
ACGGAGGACCTGGTCAATCTACTGCCCCCATCCTCTCGCCCCGGAGCCCTCGTAGTCGGC
TGCCTCCTGGACCAGTTAGATGACGGCGGTAGGAGAGCGGCCTCGGGACCATCAGCCG

1928 TTH3I.

2004 NAEI, 2017 SMAI XMAI,

MetAsnArgLeuIleAlaPheAlaSerArgGlyAsnHisValSerProThrHisTyrVal
2042 ATGAACCGGCTGATAGCCTTCGCCTCCCGGGGAACCATGTTTCCCCCACGCACTACGTG
TACTTGGCCGACTATCGGAAGCGGAGGCCCCCTTGGTACAAAGGGGGTGGTGATGCAC

2067 SMAI XMAI, 2093 DRA3,

ProGluSerAspAlaAlaAlaArgValThrAlaIleLeuSerSerLeuThrValThrGln CCGGAGAGCGATGCAGCTGCCCGCGTCACTGCCATACTCAGCAGCCTCACTGTAACCCAG GGCCTCTCGCTACCTCACGGGCGCAGTGACGGTATGAGTCGTCGGAGTGACATTGGGTC

2115 PVU2, 2159 ALWN1,

LeuLeuArgArgLeuHisGlnTrpIleSerSerGluCysThrThrProCysSerGlySer
2162 CTCCTGAGGCGACTGCACCAGTGGATAAGCTCGAGTGTACCACTCCATGCTCCGGTTCC
GAGGACTCCGCTGAGGTGGTCACCTATTCGAGCCTCACATGGTGAGGTACGAGGCAAGG

2164 MST2, 2220 ECON1.

TrpLeuArgAspIleTrpAspTrpIleCysGluValLeuSerAspPheLysThrTrpLeu
2222: TGGCTAAGGGACATCTGGGACTGGATATGCGAGGTGTTGGACCACTTTAAGACCTGGCTA
ACCGATTCCTGTAGACCCTGACCTATACGCTCCACAACTCGTGAAATTCTGGACCGAT

2285 ESP1, 2300 PVU2, 2310 BAMHI,

- LysGlyValTrpArgGlyAspGlyIl MetHisThrArgCysHisCysGlyAlaGluIle AAGGGGGTCTGGCGAGGGGACGGCATCATGCACACTCGCTGCCACTGTGGAGCTGAGATC 2342 TTCCCCCAGACCGCTCCCCTGCCGTAGTACGTGTGAGCGACGGTGACACCTCGACTCTAG ThrGlyHisValLysAsnGlyThrMetArgIleValGlyProArgThrCysArgAsnMet ACTGGACATGTCAAAAACGGGACGATGAGGATCGTCGGTCCTAGGACCTGCAGGAACATG 2402 TGACCTGTACAGTTTTTGCCCTGCTACTCCTAGCAGCCAGGATCCTGGACGTCCTTGTAC 2425 BSAB1, 2441 AVR2, 2448 SSE83871, 2449 PSTI, ${\tt TrpSerGlyThrPheProIleAsnAlaTyrThrThrGlyProCysThrProLeuProAla}$ TGGAGTGGGACCTTCCCCATTAATGCCTACACCACGGGCCCCTGTACCCCCCTTCCTGCG ACCTCACCCTGGAAGGGGTAATTACGGATGTGGTGCCCGGGGACATGGGGGGAAGGACGC 2480 ASE1, 2497 APAI, ProAsnTyrThrPheAlaLeuTrpArgValSerAlaGluGluTyrValGluIleArgGln 2522 CCGAACTACACGTTCGCGCTATGGAGGGTGTCTGCAGAGGAATACGTGGAGATAAGGCAG GGCTTGATGTGCAAGCGCGATACCTCCCACAGACGTCTCCTTATGCACCTCTATTCCGTC 2553 PSTI, ValGlyAspPheHisTyrValThrGlyMetThrThrAspAsnLeuLysCysProCysGln GTGGGGGACTTCCACTACGTGACGGGTATGACTACTGACAATCTTAAATGCCCGTGCCAG 2582 CACCCCTGAAGGTGATGCACTGCCCATACTGATGACTGTTAGAATTTACGGGCACGGTC 2594 DRA3, ValProSerProGluPhePheThrGluLeuAspGlyValArgLeuHisArgPheAlaPro 2642 GTCCCATCGCCCGAATTTTTCACAGAATTGGACGGGGTGCGCCTACATAGGTTTGCGCCC CAGGGTAGCGGGCTTAAAAAGTGTCTTAACCTGCCCCACGCGGATGTATCCAAACGCGGG ProCvsLvsProLeuLeuArqGluGluValSerPheArqValGlyLeuHisGluTyrPro CCCTGCAAGCCCTTGCTGCGGGAGGAGGTATCATTCAGAGTAGGACTCCACGAATACCCG 2702 GGGACGTTCGGGAACGACGCCCTCCTCCATAGTAAGTCTCATCCTGAGGTGCTTATGGGC 2757 HGIE2,
- ValGlySerGlnLeuProCysGluProGluProAspValAlaValLeuThrSerMetLeu
 2762 GTAGGGTCGCAATTACCTTGCGAGCCCGAACCGGACGTGGCCGTGTTGACGTCCATGCTC
 CATCCCAGCGTTAATGGAACGCTCGGGCTTGGCCTGCACCGGCACAACTGCAGGTACGAG

2809 AAT2,

ThraspProSerHisIleThrAlaGluAlaAlaGlyArgArgLeuAlaArgGlySerPro
ACTGATCCCTCCCATATAACAGCAGAGGCGGCCGGCGGAGGTTGGCGAGGGGATCACCCC
TGACTAGGGAGGGTATATTGTCGTCTCCGCCGGCCCCCTTCCAACCGCTCCCCTAGTGGG

~2850 EAG1 XMA3,

ProSerValAlaSerSerSerAlaSerGlnLeuSerAlaFroSerLeuLysAlaThrCys 2882 CCCTCTGTGGCCAGCTCTCGGCTAGCCAGCTATCCGCTCCATCTCTCAAGGCAACTTGC GGGAGACACCGGTCGAGGAGCCGATCGGTCGATAGGCGAGGTAGAGAGTTCCGTTGAACG

2889 BALI, 2903 NHEI,

- Thralasnikisaspserproaspalaciuleuileciualeasnieuleutrpargcin ACCGCTAACCATGACTCCCCTGATCCTCAGGCTCATAGAGGCCAACCCTCTATGGAGGCAG TGGCGATTGGTACTGAGGGACTACGACTACTCCGGTTGGAGGATACCTCCGTC
 - 2966 ESP1, 2969 SACI,
- GlumetGlyGlyAsnIleThrArgValGluSerGluAsnLysValValIleLeuAspSer
 GAGATGGGCGGCAACACCACGGGTTGAGTCAGAAAACAAAGTGGTGATTCTGGACTCC
 CTCTACCCGCCGTTGTAGTGCTCCCAACTCAGTCTTTTGTTCACCACTAAGACCTGAGC
 CTCTACCGCGTTGTAGTGGTCCCAACTCAGTCTTTTGTTCACCACTAAGACCTGAGG
- PheAspProLeuValAlaGluGluAspGluArgGluIleserValProAlaGluIleLeu
 TTCGATCCGCTTGTGCGCGAGGAGGACGAGCAGGACATCTCCGTACCCGCAGCAGAATCCTG
 AAGCTAGGCGAACACCGCCTCTCCTGCTCGCCCTCTAGAGGCATGGCCTCTTTAGAAC
 - 3096 BGL2.
- ArglysSerArgArgPheAlaGlnAlaLeuProValTrpAlaArgProAspTyrAsnPro CGGAAGTCTCGGAGATTCGCCCAGGCCCTGCCCGTTTGGGCGCGGCGCGACTATAACCCC GCCTTCAGAGCCTCTAAGCGGGTCCGGGACGGCAAACCCGGCCCGACTATATTGGGG
 - 3143 ALWN1, 3164 EAG1 XMA3,
- ProLeuValGluThrTrpLysLysProAspTyrGluProProValValHisGlyCysPro CCGCTAGTGGAGACGTGGAAAAAGCCCGACTACGAACCACCTGTGGTCCATGGCTGCCG GGCGATCACCTCTGCACCTTTTTCGGGCTGATGCTTGTGGACACCAGGTACCGACGGGC
 - 3217 HGIE2, 3229 NCOI,
- LeuProProLysSerProProValProProArgLysLysArgThrValValLeu
 CTTCCACCTCCAAAGTCCCCTCCTGTGCCTCGGAAGAAGAAGGGGACGTGGTCCTC
 GAAGGTGGAGGTTTCAGGGAGGAGACAGGAGGGGAGCCTTCTTCGCCTGCCACCAGCAG
- ThrGluSerThrLeuSerThrAlaLeuAlaGluLeuAlaThrArgSerPheGlySerSer
 3302 ACTGAATCAACCCTATCTGCCTTGGCCGCAGCTCGCACCAGAAGCTTTGGCAGCTCC
 TGACTTAGTTGGGATAGATGACGGAACCGGCTCGAGCGGTGTCTTCGAAACCTCCTCGAGG
 - 3332 SACI, 3346 HIND3.
- SerThrSerGlyIleThrGlyAspAsnThrThrThrSerSerGluProAleProSerGly
 TCAACTTCCGCCATTACGGCCGCACATACGACCACCCCTCTGGC
 AGTTGAAGGCCGTAATGCCCGCTGTTATGCTGTTGTAGGAGACTCGGGCCGGGAAGACCC
- CysProProAspSerAspAlaGluSerTyrSerSerMetProProLeuGluGlyGluPro
 3422 TGCCCCCCGACTCCGACGCTGAGTCCTATTCCTCCATGCCCCCCCTGGAGGGGAGCCT
 ACGGGGGGGTGAGGCTGCGACTCAGGATAAGGAGGTACGGGGGGACCTCCCCCTCGGA
 - 3437 EAM11051.
- GlyAspProAspLeuSerAspGlySerTrpSerThrValSerSerGluAlaAsnAlaGlu
 GGGGATCCTGGATCTTAGCGACGGTCATGGTCAACGGTCAGTAGTGAGGCCAACGGGAG
 CCCCTAGGCTTAGAATCGCTGCCCAGTCATGCCAGTCATCACTCCGGTTGGCCTC
 - 3484 BAMHI, 3485 BSAB1, 3487 BSPE1,
- AspValValCysCysSerMetSerTyrS rTrpThrGlyAlaLeuValThrProCysAla

 3542 GATGTCGTGTCTCAATGTCTTACTCTTGGACAGGCGCACTCGTCACCCCGTGGGCC
 CTACAGCACACGACGAGTTACAGAATGAGAACCTGTCCGCGTGAGCAGTGGGGCACGCGG

3589 DRA3, 3600 SAC2,

AlaGluGlnLysLeuProIleAsnAlaLeuSerAsnSerLeuLeuArgHisHisAsn
GCGGAAGAACAGAACTGCCCATCAATGCACTAAGCAACTCGTTGCTACCTCACCACAAT
CGCCTTCTTGTCTTTTGACGGGTAGTTACGTGATTCGTTGAGCAACGATGCAGTGGTGTTA

3611 ALWN1, 3655 PFLM1,

LeuValTyrSerThrThrSerArgSerAlaCysGlnArgGlnLysLysValThrPheAsp
3662 TIGGTGTATTCCACCACCTCACGCAGTGCTTGCCAAAGGCAGAAGAAAGTCAAATTTGAC
AACCACATAAGGTGGTGGAGTGCGTCACGAACGGTTTCCGTCTTCTTCAGTGTAAACTG

3681 DRA3,

SerLysValLysAlaAsnLeuLeuSerValGluGluAlaCysSerLeuThrProProHis
TCAAAAGTGAAGGCTAACTTGCTATCCGTAGAGGAAGCTTGCAGCCTGACGCCCCCACAC
AGTTTTCACTTCCGATTGAACGATAGGCATCTCCTTCGAACGTCGGACTGCGGGGGTTG

3816 HIND3,

SerAlaLysSerLysPheGlyTyrGlyAlaLysAspValArgCysHisAlaArgLysAla
3842 TCAGCCAATCCAAGTTTGGTTATGGGGCAAAGACGTCCGTTGCCAGAAAGGCC
AGTCGGTTAGGTTCAAACCAATACCCGTTTTCTGCAGGCAACGGTACGGTTCTGCTTTCCGG

3875 AAT2, 3890 BGLI,

- ValThrHisIleAsnSerValTrpLysAspLeuLeuGluAspAsnValThrProIleAsp GTAACCCACATCAACTCCGTGGAAAGACCTTCTGGAAGACAATGTAACACCAATAGAC CATTGGGTGTAGTTGAGGCACACCTTTCTGGAAGACCTTCTGTTACATTGTGGTTATCTG
- ThrThrILeMetAlaLysAsnGluValPheCysValGlnProGluLysGlyGlyArgLys
 3962 ACTACCATCATGGCTAAGAACGAGGTTTTCTGCGTTCAGCCTGAGAAGGGGGGTGGTAAG
 TGATGGTAGTACCGATTCTTGCTCCAAAAGAGCGCAAGTCGGACTCTTCCCCCCAGCATTC
- ProAlaArgLeuIlevalPheProAspLeuGlyValArgValCysGluLysMetAlaLeu
 4022 CCAGCTCGTCTCATCGTGTTCCCCGATCTGGGCGTGTGCGGAAAAGATGGCTTTG
 GGTCGAGCAGAGTAGCACAAGGGGCTTAGACCCGCACGCGCAACGCTTTTCTACCGAAAC
- TyrAspValValThrLysLeuProLeuAlaValMetGlySerSerTyrGlyPheGlnTyr 4082 TACGACGTGGTTACAAAGCTCCCCTTGGGCGTGATGGGAAGGTCCTAATAC ATGCTGCACCAATGTTTGGAGGGGAACCCCTTCGAGGATGCCTAAGGTTATG
- SerProGlyGlnArgvalGluPheLeuValGlnAlaTrpLySSerLysLysThrProMet
 1142 TCACCAGGACAGGGGTGGAATTCCTCGTGGAAGGGTGGAAGTCCAAGAAAACCCCAATG
 AGTGGTCCTGTCGCCCAACTTAAGGAGCACGTTCGCACCTTCAGGTTCTTTTTAGGGTTAC

GlyPheSerTyrAspThrArgCysPheAspSerThrValThrGluSerAspIleArgThr
4202 GGGTTCTGGTATGATACCGGCTGCTTTGACTCCACAGTCACTGAGGCGACTAGCATCG
CCCAAGAGCATACTATCATGGGCGACGAAACTGAGGTGTCACTGACTCTCGCTGTAGGCATGC

4229 DRD1, 4236 ALWN1,

GluGluAlaIleTyrGlnCysCysAspLeuAspProGlnAlaArgValAlaIleLysSer
GAGGAGGCARTCTACCAATGTTGTGACCTCGACCCCCAACCCCGTGGCCATCAAGTCC
CTCCTCCGTTAGATGGTTAAACACTGGAGCTTGGGGGTTGGGGGGCACCGGTAGTTCAGG

4301 BGLI, 4308 BALI,

LeuThrGluArgLeuTyrValGlyGlyProLeuThrAsnSerArgGlyGluAsnCysGly
4322 CTCACCGAGAGGCTTTATGTTGGGGCCCTCTTACCAATTCAAGGGGGAGAATCGGGC
GAGTGGCTCTCCGAAATACAACCCCCGGGAGAATGGTTAAGTTCCCCCCTCTTGACGCCG

4345 APAI,

- TYRATGARGCYSARGAlaSerGIVValLeuThrThrSerCysGIVASAThrLeuThrCys 4382 TATCGCAGGTGCCGCGGGGGGGTACTGACAACTAGCTGTGGTAACACCCTCACTTGC ATAGCGTCCACGGCGCGCTCGCCGCATGACTGTTGATCGACACCATTGTGGGAGTGAACG
- Tyrilelysalaargalaalacysargalaalaclyteuclinaspcysthrmetteuval
 4442 TACATCAAGGCCCGGCGCCTGCGACAGCCGCAGGGCTCCAGGACTGCACCATGCTCGTG
 ATGTAGTTCCGGGCCCGTCGGACAGCTCGGCGTCCCGAGGTCCTGACGTGCACCAGCAC

4452 SMAI XMAI.

CysGlyAspAspLeuValValTleCysGluSerAlaGlyValGlnGluAspAlaAlaSer 4502 TGTGGCGACGACTTAGTCGTTATCTGTGAAAGCGCGGGGGTCCAGGAGGACGACGCGAGA ACACCGCTGCTGAATCAGCAATAGACACTTTCGCGCCCCCAGGTCCTCCTGCGCCGCTCG

4508 DRD1, 4511 TTH3I,

- LeuArgAlaPheThrGluAlaMetThrArgTyrSerAlaProProGlyAspProProGl CTGAGAGCCTTCACGAGGCTATGACCAGGTATCTCCGCCCCCCTGGGGACCCCCCACAA GACTCTGGGAGTGCCTCCGATACTGGTCCATGAGGCGGGGGGACCCCTGGGGGTTT
- ProGluTyrAspLeuGluLeuIleThrSerCysSerSerAsnValSerValAlaHisAsp CCAGAATACGACTTGGAGCTCATAACATCATGCTCCTCCAACGTGTCAGTCGCCCACGAC GGTCTTATGCTGAACCTCGAGTATTGTAGTACAGGAGGTTGCACAGTCAGCGGTGCTG

4637 SACI.

GlyAlaGlyLysArgValTyrTyrLeuThrArgAspProThrThrProLeuAlaArgAla 4682 GGCGCTGGAAGAGGGTCTACTACCTCACCGTGACCCTACAACCCCCCTCGCGAGAGCT CCGCGACCTTTCTCCCAGATGATGGAGTGGGCACTGGGATGTTGGGGGGACCGTCTCGA

4731 NRUI,

- AlaTIPGLUTHIALARGHISTHIPPOVALASHSETTIPLEUGLYASHILEILEMETPHE
 4742 GCGTGGGAGACAGCAACACTCCAGTCAATTCCTGGCTAGGCAACATAATCATGTTT
 CGGACCCTCTGTCGTTCTGTGTGAGGTCAGTTAAGGACCGATCCGTTGTATTAGTACAAA
- ALAPTOTHTLEUTTPALANTGMETILELEUMETTHTHISPHEPHESETVALLEUTIEALA
 4802 GCCCCACACTGTGGGCGAGGATGATACTGATGACCATTTCTTTAGCGTCCTTATAGACC
 CGGGGGTTGGACACCCGCTCCTACTATGACTACTGGGTAAAGAATCGCAGGAATATCGG

4806 PFLM1, 4807 DRA3,

 ${\tt ArgAspGlnLeuGluGlnAlaLeuAspCysGluIleTyrGlyAlaCysTyrSerIleGlu}$

4862 AGGGACCAGCTTGAACAGGCCCTCGATTGCGAGATCTACGGGGCCTGCTACTCCATAGAA TCCCTGGTCGAACTTGTCCGGGAGCTAACGCTCTAGATGCCCCGGACGATGAGGTATCTT

4893 BGL2.

ProLeuAspLeuProProIleIleGlnArgLeuHisGlyLeuSerAlaPheSerLeuHis CCACTGGATCTACCTCCAATCATTCAAAGACTCCATGGCCTCAGCGCATTTTCACTCCAC GGTGACCTAGATGGAGGTTAGTAAGTTTCTGAGGTACCGGAGTCGCCTAAAAGTGAGGTG

4954 NCOI,

SerTyrSerProGlyGluIleAsnArgValAlaAlaCysLeuArgLysLeuGlyValPro
4982 AGTTACTCTCAGGGTGAAATCAATAGGGTGGCGCATGCCTCAGAAAACTTGGGGTACCG
TCAATGAGAGGTCCACTTTAGTTATCCACCGACGGCGTACGGAGTCTTTTGAACCCATGGC

5015 SPHI, 5035 KPNI,

ProLeuArgAlaTrpArgHisArgAlaArgSerValArgAlaArgLeuLeuAlaArgGly
CCCTTGCGAGCTTGGAGACACCGGGCCCGGAGCGTCCGCGCTAGGCTTCGGCCAGAGGA
GGGAACGCTCGAACACCTCTGTGGCCCGGGCCTCGCAGGCCGCGATCCGAAGACCGGCTTCCT

5064 APAI, 5091 BALI,

GIYARGALAALAILeCYSGIYLYSTYRLeuPheASHTTPALAVALARGTHRLYSLeuLYS 5102 GGCAGGGCTGCCATATGTGGCAGAGTACCTCTTCAACTGGGCAGTAAGAACAAAAGCTCAAA CCGTCCCGACGGTATACACCGTTCATGGAGAAGTTGACCCGTCATTCTTGTTTTGAGTTT

5113 NDEI.

5174 NOTI, 5175 EAG1 XMA3, 5182 BALI, 5186 PVU2,

SerGlyGLyAspIleTyrHisSerValSerHisAlaArgProArgTrplleTrpPheCys
5222 AGCGGGGAGACATTTATCACAGCGTGTCTCATGCCCGGCCCCGTGGATCTGGTTTTGC
TCGCCCCCTTGTAAATAGTGTCGCACAGAGTACGGCCGGGGGGACCTAGACCAAAACG

5240 DRA3,

LeuleuleuleuAlaAlaGlyValGlyIleTyrleuleuProAsnArgMetSerThrAsn
5282 CTACTCCTGCTTGCTGCAGGGGTAGGCATCTACCTCCTCCCCACCGAATGAGCACGAAT
GATGAGGACGACGACGTCCCCATCCGTAGATGAGGAGGGGTTGGCTTACTCGTGTTA

5295 PSTI.

ProlysProGlnArgLysThrLysArgAsnThrAsnArgArgProGlnAspValLysPhe CCTAAACCTCAAAGAAGACCAAACGTAACACCAACCGGCGGCCGCAGGACGTCAAGTTC GGATTTGGAGTTTCTTGTTTGCATTGTGGTTGGCCGCCGGCGTCCTGCAGTTCAAG

5380 NOTI, 5381 EAG1 XMA3, 5390 AAT2, 5401 SMAI XMAI,

ProGlyGlyGlyGln1leValGlyGlyValTyrLeuLeuProArgArgGlyProArgLeu CCGGGTGGCGGTCAGATCGTTGGTGGAGTTTACTTGTTGCCGCCAGGGCCCTAGATTG GGCCCACGCCAGTCTAGCAACCACCTCAAATGAACAACGGCGGTCCCCGGGATCTAAC 5449 APAI.

- GlyValArgAlaThrArgLysThrSerGluArgSerGlnProArgGlyArgArgGlnPro
 GGTGTGCGCGCGAGAAAGACTTCCGAGCGTCGCAACCTCGAGGTAGACGTCAGCCT
 CCACACGCGCTCTTTTCTGAAGGCTCGCCAGCGTTGGAGCTCCATCTGCAGTCGGA
 - 5467 BSSH2, 5478 XMNI, 5502 XHOI, 5511 AAT2,
- IleProLysAlaArgArgProGluGlyArgThrTrpAlaGlnProGlyTyrProTrpPro
 5522 ATCCCAAGGCTCGGCCCGAGGGCAGGACCCTTGGCCC
 TAGGGGTTCGAGCAGCCGGGCTCCGTCCTGGACCCGAGTCGGGCCCATGGGACCGGGACCGGG
 - 5548 ALWN1, 5558 ESP1, 5564 SMAI XMAI, 5568 KPNI,
- LeuTyrGlyAsnGluGlyCysGlyTrpAlaGlyTrpLeuLeuSerProArgGlySerArg
 5582 CTCTATGGCAATGAGGGCTGCGGGTGGCGGGATGGCTCCTGTCTCCCCGTGGCTCTCGG
 GAGATACCGTTACTCCGACGCCCACCGCCTACCGAGACAAGAGGGCCACCGAGACC
- ProSerTrpGlyProThrAspProArgArgArgSerArgAsnLeuGlyLysValIleAsp CCTAGCTGGGCCCCACAGACCCCCGGCGTAGGTCGCGCAATTTGGGTAAGGTCATCGAT GGATCGACCCCGGGGTTCTGGGGGCCGCATCCAGCGCGTTAAACCCATTCCAGTAGTA
 - 5650 APAI, 5696 CLAI,
- ThrLeuThrCysGlyPheAlaAspLeuMetGlyTyrTleProLeuValOC AM
 5702 ACCCTTACGTGCGGCTTCGCCGACCTCATTGGGGTACATACCGCTCGTCTAATAGTCGAC
 TGGGAATGCACGCCGAAGCGGCTGGAGTACCCCATGTATGGCGAGCAGATTATCAGCTG

5724 HGIE2, 5755 SALI,

FIG. 21-Page 10

		MetAlaAlaTyrAlaAla	GlnGlyTyrLysVa:	lLeuValLeuAsı
2	AGCTTACAAAA	CAAAATGGCTGCATATGCAGCT	CAGGGCTATAAGGT	GCTAGTACTCAAC
	TCGAATGTTTT	GTTTTACCGACGTATACGTCGA	GTCCCGATATTCCAC	CGATCATGAGTTC
	•	^		^

1 HIND3, 24 NDEI, 52 SCAI,

ProservalAlahlaThrLeuGlyPheGlyAlaTyMetSerLysAlaHisGlyTleAsp CCTCTGTTGCTGCAACACTGGGCTTTGGTGCTTACATGTCCAAGGCTCATGGGATCGAT GGGAGACAACGACGTTGTGACCCGAAACCACGAATGTACAGGTTCCGAGTACCCTAGCTA

116 CLAI,

- ProAsnIleArgThrGlyValArgThrIleThrThrGlySerProIleThrTyrSerThr
 122 CCTAACATCAGGACCGGGGTGAGAACAATTACCACTGCCAGCCCCATCACGTACTCCCC
 GGATTGTAGTCCTGGCCCACTCTTGTTAATGGTGACCGTCGGGGTAGTGCATGAGGTGG
- TyrGlyLysPheLeuAlaAspGlyGlyCysSerGlyGlyAlaTyrAspIleIleIleCys
 182 TACGGCAGTTCCTTGCCGACGGCGGGTGCTCGGGGGGGCGCTTATGACATAATATTTGT
 ATGCCGTTCAAGGAACGGCTGCCGCCCACAGCCCCCCGGCAATACTGTATTATTAAACA
- AspGluCysHisSerThrAspAlaThrSerIleLeuGlyIleGlyThrValLeuAspGln
 242 GACGAGTGCCACTCCACGGATGCCACATCCTAGGCATTGGGCATTGTCCTTGACCAC
 CTGCTCACGGTGAGGTGCCTACGGTGTAGGTAGAACCGGTAACCGTGACAGGAACTGGTT
- AlaGluThrAlaGlyAlaArgLeuValValLeuAlaThrAlaThrProProGlySerVal
 GCAGAGACTGCGGGGGCGGGTTGTGTCTCGCCACCGCCACCCCTCCGGGCTCCGTC
 CGTCTCTGACGCCCCCCTCTGACCAACACGAGCGGTGGCGGTGGGAGGCCCGAGGCAG
 - 303 ALWN1,
- ThrValProHisProAsnIleGluGluValAlaLeuSerThrThrGlyGluIleProPhe
 AcTGTGCCCCATCCCAACATCGAGGAGGTTGCTCTGTCCACCACCACCGGAGAACCCTTTT
 TGACACGGGGTTAGGGTTGTAGCTCCTCCAACGAGACAGGTGGTGGCCTCTCTAGGAAAA
- TyrclyLysAlaIleProLeuGluValIleLysclyGlyArgHisLeuIlePheCysHis
 TACGCCAAGGCTATCCCCCTCGAAGTAATCAAGGGGGGGAGACATCTCATCTTCTTCAT
 ATGCCGTTCCGATAGGGGGACCTTCATTAGTTCCCCCCCTCTGTAGAGTAGAACAGTA

- SerLysLysLysCysAspGluLeuAlaAlaLysLeuValAlaLeuGlyIleAsnAlaVal
 482 TCAAAGAAGAAGTCGCAGAACTCGCCCAAAGCTGGTCGATTGGGCATCAATCCGGT
 AGTTTCTTCTTCACGCTGCTTGAGCGGCGTTTCGACCAGCGTAGTTACGGCAC
- AlatyrtyrargGlyLeuAspValSerValIleProThrSerGlyAspValValValVal 542 GCCTACTACCGGGGTGTTGACGTGTCCGTCATCCCGACCAGCGGCGATGTTGTCGTCGTC GGATGATGGGGCCAGAACTGCACAGGCAGTAGGGCTGGTCGCCGCTACAACAGCAGCAC

550 SAC2, 560 DRD1,

AlaThrAspAlaLeuMetThrGlyTyrThrGlyAspPheAspSerValIleAspCysAsn 602 GCAACCGATGCCCTCATGACCGGCTATTACCGGCGACTTCGACTCGGTGATAGACTGCAT CGTTGGCTACGGGAGTACTGGCCGATATGGCCGCTGAAGCTGAGCCACTATCTGACGTTA

615 BSPH1.

- ThrCysValThrGlnThrValAspPheSerLeuAspProThrPheThrIleGluThrIle
 662 ACGTGTGTCACCAGACAGTCGATTCAGCCTTGACCTTCACCATTCAGCATTGAGACAATTC
 TGCACACAGTGGGTCTGTCAGCTAAAGTCGGAACTGGGATGGAACTGGTAACTCTGTTAG
- ThrLeuProGlnAspAlaValSerArgThrGlnArgArgGlyArgThrGlyArgGlyLys
 722 ACGCTCCCCAAGATGCTGTCTCCCGCACTCAACGTCGGGGCAGGACTGCAAGGGGAAG
 TGCAGGGGGTTCTACGACAGAGGGCGTGAGTTGCAGCCCGTCCTGACCGTCCCCCTTC
- ProGlyILeTyrArgPheValAlaProGlyGluArgProSerGlyMetPheAspSerSer
 782 CCAGGCATCTACAGATTGTGGCACCGGGGGAGGCCCCTCCGGCATGTTCGACTCGTC
 GGTCCGTAGATGTCTAAACACCGTGGCCCCCTCGCGGGAGGCCGTACAAGCTGAGCAGG

816 BGLI, 833 DRD1,

ValleucysGluCysTyrAspAlaGlyCysAlaTtpTyrGluLeuThrProAlaGluThr
842 GTCCTCTGTGAGTGCTATGACGCAGGCTGTGCTTGGTATGAGCTCACGCCCGCGAAGCACTCACGATCACGATCACGATCACGATCATGACTCAGGTCCGACACGACCATACTCGAGTGCGGGGGGTCTGA

881 SACI,

ThrValargLeuArgAlaTyrMetAsnThrProGlyLeuProValCysGlnAspHisLeu
902 ACAGTTAGGCTACGAGGGTACATGAACACCCCGGGGCTTCCCGTGTGCCAGGACCATCTT
TGTCAATCCGATGCTCGCAATGTTCTTGGGGCCCCGAAGGGCACACGGTCCTGGTAGAA

931 SMAI XMAI.

GluPheTrpGluGlyValPheThrGlyLeuThrHisIleAspAlaHisPheLeuSerGln
662 GAATTITGGGAGGGCGTCTTTACAGGCCTCACTCATATAGATGCCCACTTTCTATCCAG
CTTAAAACCCTCCCGCAGAAATGTCCGGAGTGAGTATATCTACGGGTGAAAGATAGGGTC

985 STUI.

ThrlysGlnSerGlyGluAsnLeuProTyrLeuValAlaTyrGlnAlaThrValCysAla
ACARAGCAGAGTGGGGAGAACCTTCCTTACCTGGTAGCGTACCAAGCCACCGTGTGCGCT
TGTTTCGTCTCACCCCTCTTGGAAGGAATGGACCATCGCATGGTTCGGTGCACCACGCGA

1069 DRA3.

ArgAlaGlnAlaProProProSerTrpAspGlnMetTrpLysCysLeuIleArgLeuLys
1082 AGGGCTCAAGCCCCTCCCCCATCGTGGGACCAGATGTGGAAGTGTTTGATTCGCCTCAAG

ccc																

- ProThrLeuHisGlyProThrProL uLeuTyrArgLeuGlyAlaValGlnAsnGluIl
 CCCACCCTCCATGGGCCAACACCCCTGCTATACAGACTGGGCGCTGTTCAGAATGAAATC
 GGGTGGGGACGTACCCGGTTGTGGGGACGATATGTCTGACCCGCGACAAGTCTTACTTTAG
 - 1150 NCOI,
- - 1230 BSPH1, 1234 DRD1, 1237 AVA3, 1245 EAG1 XMA3, 1250 DRD1,
- ValThrSerThrTrpValLeuValGlyGlyValLeuAlaAlaLeuAlaAlaTyrCySLeu GTCACGAGCACCTGGGTGCTCGTTGGCGGCGTCCTTGGCTGTTTTGGCCGCGTATTGCCTG CAGTGCTGGTGGACCCACGAGCAACCGCCGCAGGACGAGCAAACCGGCGCATAACGGAC
- SerThrGlyCysValVallleValGlyArgValValLeuSerGlyLysProAlallelle
 1322 TCAACAGGCTGCGTGGTCATAGTGGGCAGGGTCGTCTTGTCCGGGAAGCCGGCAATCATA
 AGTTGTCCGACGCACCAGTATCACCCGTCCCAGCAGAACAGGCCCTTCGGCCGTTAGTAT
 - 1369 NAEI,
- ProAspArgGluValLeuTyrArgGluPheAspGluMetGluGluCysSerGlnHisLeu CCTGACAGGGAAGTCCTCTACCGAGAGTTCGATGAGATGAAAGAGTGCTCTAGCACTTA GGACTGTCCCTTCAGGAGATGGCTCTCAAGCTACTCTACCTTCTCACGAGAGTCGTGAAT 1385 DRD1.
- ProtyrileGluGlnGlyMetMetLeuAlaGluGlnPheLysGlnLysAlaLeuGlyLeu 1442 CCGTACATCGAGCAGGATGATGCTCGCCGAGCAGTTCAAGCAGAAGGCCCTCGGCCTC GGCATGTAGCTCGTTCCCTACTACCAGCGGCTGCTCAAGTTCGTCTTCCCGGAGCCGGAG
- LeuGlnThrAlaSerArgGlnAlaGluValIleAlaProAlaValGlnThrAsnTrpGln
 1502 CTGCAGACCGCTCCCGTCAGGCAGAGGTTATCGCCCCTGCTGCCAGACCAACTGGCAA
 GACGTCTGGCGCAGGGCAGTCCGTCTCCAATAGCGGGGACGACAGGTCTGGTTGACCGTT
 - 1502 PSTI, 1507 TTH3I,
- LysLeuGluthrPhetrpAlaLysHisMetTrpAsnPhetleSerGly1leGlnTyrLeu
 AAACTCGAGACCTTCTGGGCGAAGCATATGTGGAACTTCATCAGTGGGGATACAATACTTG
 TTTGAGCTCTGGAAGACCCGCTTCGTATACACCTTGAAGTAGTCACCCTATTTAGAC
 - 1565 XHOI, 1586 NDEI,
- AlaGlyLeuSerThrLeuProGlyAsnProAlaIleAlaSerLeuMetAlaPheThrAla
 1622 GCGGGCTTGTCAACGCTGGTAACCCCGCCATTGCTTCATTGATGGCTTTTACAGCT
 CGCCCGAACACTTGCGACGGACCATTGGGGCGGTAACGAAGTAACTACCGAAAATGTCGA
 - 1643 BSTE2, 1677 ALWN1 PVU2,
- AlaValThrSerProLeuThrThrSerGlnThrLeuLeuPh AsnIleLeuGlyGlyTrp GCTGTCACCAGCCCACTAACCCAAACCCTCCTCTTCAACATATTGGGGGGGTGG GGACAGTGGTGGTTGGTGATTGGTTTGGGAGGAGGAGTTGTATAACCCCCCCACC

ValAlaAlaGlnLeuAlaAlaFroGlyAlaAlaThrAlaFheValGlyAlaGlyLeuAla GTGGCTGCCCAGCTCGCCCCCCGGTGCCGCTACTGCTTTGTGGGCGCTGGCTTAGCT CACCGAGCGGTCGAGCGGGGGCCACGGCGATGACGGAAACACCCGCAACCGAATCGA

1794 ESP1,

GlyAlaAlaIleGlySerValGlyLeuGlyLysValLeuTleAspIleLeuAlaGlyTyr
1802 GGCGCGCCATTGGCATGGTGGATGGGAAGGTCTCTATAGACATCCTTGCAGGGTAT
CCGCGGGGGTAGCCGTCACAACCTGACCCCTTCCAGGAGTATCTGTAGGAACGTCCCATA

1802 KAS1 NARI,

GlyAlaGlyValAlaGlyAlaLeuValAlaPheLysIleMetSerGlyGluValProSer 1862 GGCCGGGCGTGGCGGAGCTCTTGTGCATTCAAGATCATGAGCGGTGAGGTCCCCTCC CCGCGCCCGACCGCCTCGAGAACACCGTAAGTTCTAGTACTCGCCACTCCAGGGAGG

1878 SACI, 1899 BSPH1,

ThrGluAspLeuValAsnLeuLeuProAlaIleLeuSerProGlyAlaLeuValValGly
1922 ACGGAGACCTGGTCAATCTACTGCCCGCCATCCTCTCGCCCGCAGCCCTCGTAGTCGGC
TGCCTCCTGGACCAGTTAGATGACGGCGGTAGGAGAGCGGCCTCGGGACCATCAGCCG

1928 TTH3I,

2004 NAEI, 2017 SMAI XMAI,

MetAsnArgLeuIleAlaPheAlaSerArgGlyAsnHisValSerProThrHisTyrVal
2042 ATGAACCGGCTGATAGCCTTCGCCTCCCGGGGGAACCATGTTTCCCCCACGCACTACGTG
TACTTGGCCGACTATCGGAAGCGGAGGCCCCCTTGGTACAAAGGGGGTCGCTGATCACA

2067 SMAI XMAI, 2093 DRA3,

ProGluSerAspAlaAlaAlaArgValThrAlaIleLeuSerSerLeuThrValThrGln
2102 CCGGAGAGCGATGCAGCTGCCCGCGTCACTGCCATACTCAGCAGCCCTCACTGTAACCCAG
GGCCTCTCGCTACGTCGACGGCGCAGTGACGGTATGAGTCGTCGGAGTGACATTGGGTC

2115 PVU2, 2159 ALWN1,

LeuLeuArgArgLeuHisGlnTrpIleSerSerGluCysThrThrProCysSerGlySer 2162 CTCCTGAGGCGACTGCACCAGTGGATAAGCTGGAGTGTACCACTCCATGCTCCGGTTCC GAGGACTCCGCTGACGTGGTCACCTATTCGAGCCTCACATGGTGAGGTACGAGGCAAGG

2164 MST2, 2220 ECON1,

- TrpLeuArgAspIleTrpAspTrpIleCysGluValLeuSerAspPheLysThrTrpLeu
 2222 TGGCTAAGGGACATCTGGGACTGGATATGCGAGGTGTTGAGCGACTTTAAGACTGGACCGAT
 ACCGATTCCTGTAGACCCTGACCTATACGCTCCACAACTCGCTGAAATTCGGACCGAT

2285 ESP1, 2300 PVU2, 2310 BAMHI,

	LysGlyValTrpArgGlyAspGlyIleMetHisThrArgCysHisCysGlyAlaGluIle
2342	AAGGGGTCTGGCGAGGGGACGGCATCATGCACACTCGCTGCCACTGTGGAGCTGAGATC
	TTCCCCCAGACCGCTCCCCTGCCGTAGTACGTGTGAGCGACGGTGACACCTCGACTCTAG

ThrGlyHisValLysAsnGlyThrMetArgIleValGlyProArgThrCysArgAsnMet
ACTGGACATGTCAAAAACGGGACGATGAGGATCGTCGGTCCTAGGACCTGCAGGAACATG
TGACCTGTACAGTTTTTGCCCTGCTACTCCTAGCAGCCAGGATCCTGGACGTCCTTGTAC

2425 BSAB1, 2441 AVR2, 2448 SSE83871, 2449 PSTI,

TrpSerGlyThrPheProIleAsnAlaTyrThrThrGlyProCysThrProLeuProAla
2462 TGGAGTGGGACCTTCCCCATTAATGCCTACACCACGGGCCCCTGTACCCCCTTCCTGGC
ACCTCACCCTGGAAGGGGTAATTACGGATGTGGTGCCCGGGGACATGGGGGGAAGGACGC

2480 ASE1, 2497 APAI,

ProAsnTyrThrPheAlaLeuTrpArgValSerAlaGluGluTyrValGluIleArgGln CCGAACTACACGTTCGCGCTATGGAGGGTGTCTGCACAGGAATACGTGGACATAAGGCAG GGCTTGATGTGCAAGCGGATACCTCCCACAGACGTCTCCTTATGCACCTCTATTCCGTC

2553 PSTI.

ValGlyAspPheHisTyrValThrGlyMetThrThrAspAsnLeuLysCysProCysGln
2582 GTGGGGACTTCCACTACGTGACGGGTATGACTACTGACATCTTAAATGCCCGTGCCAG
CACCCCCTGAAGGTGATGCACTGCCCATACTGATGACTGTTAGAATTTACGGGCACGGTC

2594 DRA3,

- ValProSerProGluPhePheThrGluLeuAspGlyValArgLeuHisArgPheAlaPro GTCCCATCGCCCGAATTTTTCACAGAATTGGACGGGGTGCGCCTACATAGGTTGGCCCC CAGGGTACGGGCTTAAAAGTGTCTTAACCTGCCCACGCGGATGTATCCAAACGCGGG
- ProCysLysProLeuLeuArgGluGluValSerPheArgValGlyLeuHisGluTyrPro 2702 CCCTGCAAGCCCTTGCTGCGGGAGGAGGTATCATTCAGAGTAGGACTCCACGAATACCCG GGGACGTTCGGGAACGACGCCCTCCTCCATAGTAAGTCTCATCCTGAGGTGCTTATGGGC

2757 HGIE2.

ValGlySerGlnLeuProCysGluProGluProAspValAlaValLeuThrSerMetLeu GTAGGGTGGAATTACCTTGCGAGCCCGAACCGGACGTGGCCGTGTTGACGTCCATGCTC CATCCCAGCGTTAATGGAACGCTGGGCTTGGCCTGCACCGCGCACAACTGCAGGTACGAG

2809 AAT2.

ThrAspProSerHisIleThrAlaGluAlaAlaGlyArgArgLeuAlaArgGlySerPro
aCTGATCCCTCCCATATAACAGCAGAGGCGGCCGGCCGGCGGAGGTTGGCGAGGGGATCACCC
TGACTAGGGAGGGTATATTGTCGTCTCCGCCGGCCGCTTCCAACCGCTCCCTAGTGGG

2850 EAG1 XMA3,

ProSerValAlaSerSerSerAlaSerGinL userAlaProSerLeuLysAlaThrCys
2882 CCCTCTGTGGCCAGCTCCTCGGCTAGCCAGCTATCCGCTCCATCTCTCAAGGCAACCTGC
GGGAGACACCGGTCGAGGAGCCGATTGGATCGTTCGATAGGCGAGGTAGAGAGTTCCGTTGAACG

2889 BALI, 2903 NHEI,

2966 ESP1, 2969 SACI,

- GluMetGlyGlyAsmIleThrArgValGluSerGluAsmLysValValIleLeuAspSer
 3002 GAGATGGGCGCAACCACCAGGGTTGAGTCAGAAAACAAAGTGGTGATTCTGGACTCC
 CTCTACCGCGGTTGTAGTGGTCCCAACTCAGTCTTTTGTTTCACCACTAAGACCTGAGG
- PheAspProLeuValAlaGluGluAspGluArgGluIleSerValProAlaGluIleLeu
 TTCGATCCGCTTGTGCGCGAGGAGGACGAGCGGGAGATCTCCGTACCCGCAGAAATCTCTG
 AAGCTAGGCGAACACCGCTCCTCTGCTCGCCCTCTAGAGGCATGGCCTTTTAGGAC

3096 BGL2,

ArglysserArgArgPheAlaGlnAlaLeuProValTrpAlaArgProAspTyrAsnPro
3122 CGGAAGTCTCGGAGATTCGCCCAGGCCCTGCCCGTTTGGGCGCGGCCGACTATAACCCC
GCCTTCAGAGCCTCTAAGCGGGTCCGGGACGGCAAACCCGCCGCCTGCATATTGGGG

3143 ALWN1, 3164 EAG1 XMA3,

ProLeuValGluThrTrpLysLysProAspTyrGluProProValValHisGlyCysPro CCGCTAGTGGAGACGTGGAAAAAGCCCGACTACGAACCACCTGTGGTCCATGGCTGCCCG GGCGATCACCTCTGCACCTTTTTCGGGCTGATGCTTGGTGGACACCAGGTACCGACGGGC

3217 HGIE2, 3229 NCOI,

- LeuProProProLysSerProProValProProProArgLysLysArgThrValValLeu
 3242 CTTCCACCTCCAAAGTCCCCTCCTGTGCCTCCGCCTCGGAAGAAGCGGACGGTGGTCCTC
 GAAGGTGGAGGTTTCAGGGAGGAGACAGCAGAGCGGAGCCTTCTTCGCCTGCCACCAGCAG
- ThrGluSerThrLeuSerThrAlaLeuAlaGluLeuAlaThrArgSerPheGlySerSer
 3302 ACTGAATCAACCCTATCTACCTTGGCCGGCTCGCACCAGAAGCTTTGGCAGCTCC
 TGACTTAGTTGGGATGATGACGGAACCGGCTCGAGCGGTGTCTTCGAAACCTCCAGG

3332 SACI, 3346 HIND3,

- CysProProAspSerAspAlaGluSerTyrSerSerMetProProLeuGluGlyGluPro
 3422 TGCCCCCGACTCGAGCTGAGTCCTATTCCTCCATGCCCCCCCTGGAGGGGGAGCCTCCCCTCGGA
 ACGGGGGGGTGAGGCTGCGACTCAGGATAAGGAGTACGGGGGGACCTCCCCTCGGA

3437 EAM11051,

GlýAspProAspLeuSerAspGlySerTrpSerThrValSerSerGluAlaAsnAlaGlu
GGGGATCCGGATCTTAGCGACGGTCATGGTCAACGGTCATGAGGGCCAACGGGAG
CCCCTAGGCCTAGGATCCCCAGTACCAGTTCCCAGTCATCACTCCGGTTGCCCTC

3484 BAMHI, 3485 BSAB1, 3487 BSPE1,

AspValValCysCysSerMetSerTyrSerTpThrGlyAlaLeuValThrProCysAla

3542 GATGTCGTGTGCTGCTCAATGTCTTACTCTTGGACAGGGCGCACTCGTCACCCCGTGGGC
CTACAGCARCAGCAGGAGTACAGAATGAGAACCTGTCCGGTGAGCAGTGGGGACGGG

3589 DRA3, 3600 SAC2,

AlaGluGlnLysLeuProIleAsnAlaLeuSerAsnSerLeuLeuArgHisHisAsn
GCGGAAGAACAGAACTGCCCATCAATGCACTAAGCAACTCGTTGCTACGTCACCACAAT
CGCCTTCTTGTCTTTGACGGGTAGTTACGTGATTCGTTGAGCAACAATGCAATGCAGTGTTA

3611 ALWN1, 3655 PFLM1,

LeuValTyrSerThrThrSerArgSerAlaCysGlnArgGlnLysLysValThrPheAsp
TTGGTGTATTCCACCACCTCACGCAGTGCTTGCCAAAGGCAGAAGAAAGTCACATTTGAC
AACCACATAAGGTGGTGGAGTGCGTCACGAACGGTTTCCGTCTTCTTTCAGTGTAAACTG
3681 DRA3.

ArgLeuGlnValLeuAspSerHisTyrGlnAspValLeuLysGluValLysAlaAlaAla
3722 AGACTGCAAGTTCTGGACAGCCATTACCAGGACGTACTCAAGGAGGTTAAAAGCAGGCGCC
CTCAAGTTCAAGACCTGTCTGGTAATGGTCTGCATGAGTTCCTCCAATTTGTGCGCGC

SerLysVallysAlaAsnLeuLeuSerValGluGluAlaCysSerLeuThrProProHis
TCAAAAGTGAAGGCTAACTTGCTATCCGTAGAGGAAGCTTGCAGCCTGACGCCCCACAC
AGTTTTCACTTCCGATTGAACGATAGGCATCTCCTTCGAACGTCGGACTGCGGGGGTTG

3816 HIND3,

3875 AAT2, 3890 BGLI,

- ValThrHisileAsnSerValTrpLysAspLeuLeuGluAspAsnValThrProIleAsp 3902 GTAACCCACATCAACTCCGTGGGAAGACCTTCTGGAAGACAATGTAACACCAATAGAC CATTGGGTGTAGTTGAGGCACACCTTTCTGGAAGACCTTCTGTTACATTGTGGTTATCTG
- ThrThrileMetAlaLysAsnGluValPheCysValGlnProGluLysGJyGlyArgLys
 3962 ACTACCATCATGCTAAGAACGAGGTTTTCTGCGTTCAGCCTGAGAAGGGGGGTGTAGA
 TGATGGTAGCCATCTTGCTCCAAAAGACGCAAGTCGGACTCTTCCCCCCAGCATTC
- ProAlaArgLeuIleValPheProAspLeuGlyValArgValCysGluLysMetAlaLeu
 4022 CCAGCTCGTCTCATCGTGTTCCCCGATCTGGGCGTGTGCGGAAAAGATGGCTTTG
 GGTCGAGCAGAGTAGCACAAGGGGCTAGACCCCCACGCGCACACGCTTTTCTACCGAAAC
- TyrAspValValThrLysLeuProLeuAlaValMetGlySerSerTyrGlyPheGlnTyr 4082 TACGACGTGGTTACAAAGCTCCCCTTGGCCGTGATGGGAAGCTCCTAAGGATTCCAATAC ATGCTGCACCAATGTTTCGAGGGGAACCCCTACCCTTCGAGGATGCCTAAGGTTATG
- SerProGlyGlnArgValGluPheLeuValGlnAlaTrpLysSerLysLysThrProMet
 1142 TCACCAGGACAGCGGGGTTGAATTCCTCGTGCAAGCGTGGAAGTCCAAGAAAACCCCAATG
 AGTGGTCCTGTGGCCCAACTTAAGGAGCACGTTGGCACCTTCAGGTTCTTTTGGGGTTAC

4160 ECORI.

 4229 DRD1, 4236 ALWN1,

GluGluAlaIleTyrGlnCysCysAspLeuAspProGlnAlaArgValAlaIleLysSer GAGGAGCARTCTACCATGTTGTGACCTCGACCCCCAAGCCCGCGGGCCATCAAGTCC CTCCTCCGTTAGATGGTTACAACACTGGAGCTGGGGTTCGGGCGCACCGGTAGTTACAACACTGGAGCTTGGGGGTTCGGGCGCACCGGTAGTTACTACAG

4301 BGLI, 4308 BALI,

LeuThrGluArgLeuTyrValGlyGlyProLeuThrAsnSerArgGlyGluAsnCysGly
4322 CTCACCGAGAGGCTTTATGTTGGGGGCCCTCTTACCAATTCAAGGGGGAGAACTGCGGC
GAGTGGCTCTCCGAAATACAACCCCCGGGAGAATGGTTAAGTTCCCCCCTCTTTGACGCCG

4345 APAI.

- TyrArgArgCysArgAlaSerGlyValLeuThrThrSerCysGlyAsnThrLeuThrCys 4382 TATCGCAGGTGCCGGGGGGGGGTAGTGACAACTAGCTGTGGTAACACCCTCACTTGC ATAGCGTCCACGGCGCGTCGCCGCATGACTGTTGATCGACACCATTGTGGGAGTGAACG

4452 SMAI XMAI,

CysGlyAspAspLeuValValIleCysGluSerAlaGlyValGlnGluAspAlaAlaSer
4502 TGTGGCGACGACTTAGTCGTTATCTGTGAAAGCGCGGGGGTCCAGGAGGACGCGGCGAGC
ACACCGCTGCTGAATCAGCAATAGACACTTTCGCGCCCCCAGGTCCTCCTGCGCCGCTCG

4508 DRD1, 4511 TTH31,

- LeuArgAlaPheThrGluAlaMetThrArgTyrSerAlaProProGLyAspProProGl 4562 CTGAGGCCTTCACGGAGCCTATGACCAGGTACTCCGCCCCCCCTGGGGACCCCCAAA GACTCTCGGAAGTGCCTCCGATACTGGTCCATGAGGCGGGGGGACCCCTGGGGGGTTT
- ProGluTyrAspLeuGluLeuIleThrSerCysSerSerAsnValSerValAllaHisAsp CCAGAATACGACTTGGAGCTCATAACATCATGCTCCTCCAACGTGTCAGTCGCCCACGAC GGTCTTATGCTGAACCTCGAGTATTGTAGTACGAGGAGGTTGCACAGTCAGCGGTGCTG

4637 SACI,

4731 NRUI.

- AlaTIPGLUTHIALARGHISTHIPTOVALASHSETTIPLEUGLYASHILEILEMEEPHE
 GCGTGGGAGACAGCACACTCCAGTCAATTCCTGGCTAGGCAACATAATCATGTTT
 CGCACCCTCTGTCGTTCTGTGTGAGGTCAGTTAAGGACCGATCCGTTGTATTAGTACAAA
- AlaFroThrLeuTrpAlaArgMet11 LeuMetThrHisFheFheSerValLeuIleAla
 GCCCCCACACTGTGGGCGAGGATGATACTGATGACCATTTCTTTAGCGTCCTTATAGCC
 CGGGGGTGTGACACCCGCTCCTACTATGACTACTGGGTAAAGAATTCGCAGGAATATCG

4806 PFLM1. 4807 DRA3.

ArgAspGlnLeuGluGlnAlaL uAspCysGluIleTyrGlyAlaCysTyrSerIleGlu

4862 AGGGACCAGCTTGAACAGGCCCTCGATTGCGAGATCTACGGGGCCTGCTACTCCATAGAA TCCCTGGTCGAACTTGTCCGGGAGCTAACGCTCTAGATGCCCCGGACGATGAGGTATCTT

4893 BGL2,

ProleuhapleuproprolleileGlnArgleuHisGlyLeuSerAlaPheSerLeuHis CCACTGGATCTACCTCCAATCATCAAAGACTCCATGGCCTCAGCGCATTTTCACTCCAC GGTGACCTGGATGAGGGGGTTAGTAAGTTTCTGAGGTACCGGAGTCGCGTAAAAGTGAGGTG

4954 NCOI,

SerTyrSerProGlyGluIleAsnArgValAlaAlaCysLeuArgLysLeuGlyValPro
4982 AGTTACTCTCAAGGTGAAATCAATAGGGTGGCCGCATGCCTCAGAAAACTTGGGGTACCG
TCAATGAGAGGTCCACTTTAGTTATCCCACCGCGTACGGAGTCTTTTGAACCCCATGGC

5015 SPHI, 5035 KPNI,

ProLeuhrghlatrphrghishrghlahrgservalhrghlahrgleuLeuhlahrgfly
CCCTTGCGAGCTTGGAGACACCGGGCCCGGAGCGTCGCGCATAGGCTTCTGGCCAGAGGA
GGGAACGCTCGAACCTCTGTGGCCCGGGCCTCCCAGGCGCGTCCGAAGACCGGTCTCCT

5064 APAI, 5091 BALI,

GlyArgAlaAlaIleCysGlyLysTyrLeuPheAsnTrpAlaValArgThrLysLeuLys 5102 GGCAGGGCTGCCATATGTGGCAGGTACCTCTTCAACTGGGCAGTAAGAACAAAGCTCAAA CCGTCCCGACGGTATACACCGTTCATGGAGAAGTTGACCCGTCATTCTTGTTTTGAGTTT

5113 NDEI.

5174 NOTI, 5175 EAG1 XMA3, 5182 BALI, 5186 PVU2,

SerGlyGlyAspIleTyrHisSerValSerHisAlaArgProArgTrpIleTrpPheCys
5222 AGCGGGGAGACATTATCACAGCGTGTCTCATGCCCGGCCCCGTGGATCTGGTTTTGC
TCGCCCCCTGTAAATAGTGTCGCACAGAGTACGGGCCGGGCGACCTAGAACG

5240 DRA3,

LeuLeuLeuLalalaGlyValGlyIleTyrLeuLeuProAsnArgMetSerThrAsn
5282 CTACTCTGCTTGCTGGAGGGGTAGGCATCTACCTCCTCCCCACCGAATGAGCACGAAT
GATGAGGACGAACGACGTCCCCATCCGTAGATGAGGAGGAGGGTTGGCTTACTCGTGTTA

5295 PSTI,

ProLysProGlnArgLysThrLysArgAsnThrAsnArgArgProGlnAspValLysPhe
CCTAAACCTCAAAGAAGAACAACCTAACCCAACCGGCGGCCGCGAGGACGTCAAGTTC
GGATTIGGAGTTCTTCTTGGTTTGCATTGTGGTTGCCGCCGCCGCGTCCTCAGTCAAC

5380 NOTI, 5381 EAG1 XMA3, 5390 AAT2, 5401 SMAI XMAI,

ProGlyGlyGlyGlnIleValGlyGlyValTyrLeuLeuProArgArgGlyProArgLeu
CCGGGGGGGGTGAATCGTTGGGAGTTTACTTGTTGCCGGCAGGGGCCCTAATTGATG
GGCCCACCGCCAGTGTAGCAACCACCTCAAATGAACAACGGCGGTCCCCGGATCTAAC

5449 APAI.

GlyValArgAlaThrArgLysThrSerGluArgSerGlnProArgGlyArgArgGlnPro
GGTGTGCGCGGAGGAGAAGACTTCCGAGGGTGGCAACCTCGAGGTAGACGTCAGCCCCACCACCACCGCGCTTGGAGCTCAGCTCGATCGGA

5467 BSSH2, 5478 XMNI, 5502 XHOI, 5511 AAT2,

IleProLysAlaArgArgProGluGlyArgThrTrpAlaGlnProGlyTyrProTrpPro
5522 ATCCCCAAGGCTCGTCGGCCCGAGGGCAGGACCTGGGCCC
TAGGGGTTCCGAGCAGCCGGGCTCCCGTCCTGGACCCGAGTCGGGCCCATGGGAACCGGG

5548 ALWN1, 5558 ESP1, 5564 SMAI XMAI, 5568 KPNI,

LeuTyrGlyAsnGluGlyCysGlyTrpAlaGlyTrpLeuLeuSerProArgGlySerArg
5582 CTCTATGCCAATGGGGTGGGGGTGGGCGGGATGGCTCCTGTCTCCCCGTGGCTCTCGG
GAGATACCGTTACTCCCGACGCCCACCGCCTACCGAGGACAGAGGGGCACCCGAGACC

ProSerTrpGlyProThrAspProArgArgArgSerArgAsnLeuGlyLysVallleAsp CCTAGCTGGGGCCCCACAGACCCCCGGCGTAGGTCGCGCAATTTGGGTAAGGTCATCCAT GGATCGACCCCGGGGTGTCTGGGGGCCGCATCCAGCGCGTTAAACCCATTCCAGTAGCTA

5650 APAI, 5696 CLAI,

ThrLeuThrCysGlyPheAlaAspLeuMetGlyTyrIleProLeuValGlyAlaProLeu
ACCCTTACGTCCGGCTTCGCCGACCTCATGGGGTACATACCGCTCGTCGGCGCCCCTCTT
TGGGAATGCACGCCGAACCGGCTGGAGTACCCCATGTATGGCGAGCAGCCGCGGGGAGAA

5724 HGIE2, 5750 KAS1 NARI, 5756 ECON1,

GlyGlyAlaAlaArgAlaOC AM

5762 GGAGGCGCTGCCAGGGCCTAATAGTCGAC
CCTCCGCGACGGTCCCGGATTATCAGCTG

5785 SALI,

FIG. 22-Page 10

BEST AVAILABLE COPY

FIG. 23