Complexité paramétrée (3) Réductions paramétrées et classes de complexité

Christophe PAUL (CNRS - LIRMM)

November 5, 2010

- Réductions paramétriques
 - Rappels et définitions
 - Exemples
- La W-hiérarchie.
 - Circuits logiques
 - WEIGHTED-SAT
- 3 Deux exemples
 - Ensemble indépendant
 - Ensemble dominant.
- L'hypothèse de complexité exponentielle (ETH)

Problème paramétré

Soit Σ un alphabet fini.

1 Une **paramétrisation** de Σ^* est une fonction $\kappa: \Sigma^* \to \mathbb{N}$ calculable en temps polynomial.

Problème paramétré

Soit Σ un alphabet fini.

- **1** Une **paramétrisation** de Σ^* est une fonction $\kappa: \Sigma^* \to \mathbb{N}$ calculable en temps polynomial.
- **2** Un **problème paramétré** (sur Σ) est une paire (Q, κ) tel que $Q \subseteq \Sigma^*$ et κ est une paramétrisation de Σ^* .

si $x \in \Sigma^*$ est une instance de Q, $\kappa(x)$ est son paramètre.

Classe de complexité FPT

Un problème (Q, κ) est **FPT** (**Fixed Parameterized Tractable**) s'il existe un algorithme A qui décide Q et dont la complexité est

$$f(\kappa(x)).n^{O(1)}$$

Définition : Réduction paramétrique

Soient (Q, κ) et (Q', κ') deux problèmes paramétrés sur les alphabets respectifs Σ et Σ' .

Une réduction paramétrique (**FPT**) de (Q, κ) vers (Q', κ') est une fonction: $R: \Sigma^* \to (\Sigma')^*$ telle que

1 Pour tout $x \in \Sigma^*$, nous avons $(x \in Q \Leftrightarrow R(x) \in Q')$

On notera $(Q, \kappa) \leq_{fot} (Q', \kappa')$

Réductions paramétriques

Définition: Réduction paramétrique

Soient (Q, κ) et (Q', κ') deux problèmes paramétrés sur les alphabets respectifs Σ et Σ' .

Une réduction paramétrique (**FPT**) de (Q, κ) vers (Q', κ') est une fonction: $R: \Sigma^* \to (\Sigma')^*$ telle que

- **1** Pour tout $x \in \Sigma^*$, nous avons $(x \in Q \Leftrightarrow R(x) \in Q')$
- **2** R est calculable par un algorithme **FPT**(par rapport à κ) de complexité $f(\kappa(x)).|x|^{O(1)}$

On notera $(Q, \kappa) \leq_{fot} (Q', \kappa')$

Définition : Réduction paramétrique

Soient (Q, κ) et (Q', κ') deux problèmes paramétrés sur les alphabets respectifs Σ et Σ' .

Une réduction paramétrique (**FPT**) de (Q, κ) vers (Q', κ') est une fonction: $R: \Sigma^* \to (\Sigma')^*$ telle que

- **1** Pour tout $x \in \Sigma^*$, nous avons $(x \in Q \Leftrightarrow R(x) \in Q')$
- **2** R est calculable par un algorithme **FPT**(par rapport à κ) de complexité $f(\kappa(x)).|x|^{O(1)}$
- **3** Il existe une fonction calculable $g: \mathbb{N} \to \mathbb{N}$ telle que pour tout $x \in \Sigma^*$, $\kappa'(R(x)) \leq g(\kappa(x))$

On notera
$$(Q, \kappa) \leqslant_{fot} (Q', \kappa')$$

Réduction paramétrée

Si (Q, κ) et (Q', κ') deux problèmes paramétrés tels que:

- Q $(Q, \kappa) \leqslant_{fpt} (Q', \kappa')$
- $Q(Q', \kappa') \in FPT$

 \Rightarrow (Q, κ) est un problème FPT.

Si (Q, κ) et (Q', κ') deux problèmes paramétrés tels que:

- $(Q, \kappa) \leqslant_{fot} (Q', \kappa')$
- $Q(Q',\kappa') \in FPT$ \Rightarrow (Q, κ) est un problème FPT.

Réciproquement

Le problème (COLORATION, k) n'est pas **FPT** à moins que P =NP.

- $(Q, \kappa) \leqslant_{fot} (Q', \kappa')$
- $Q(Q',\kappa') \in FPT$
 - \Rightarrow (Q, κ) est un problème FPT.

Réciproquement

Le problème (COLORATION, k) n'est pas **FPT** à moins que P =NP.

- \Rightarrow tout problème (Q, κ) tel que (COLORATION, k) $\leqslant_{fot} (Q, \kappa)$, n'est pas FPT
 - par exemple (CLIQUE, k)

Multicolored Clique

- Données : Un graphe G = (V, E) et une coloration propre.
- Paramètre : Le nombre de couleurs k.
- Question : Existe-t'il une clique K transversale aux couleurs ?
 (K intersecte chacune des couleurs)

Multicolored Clique

- Données : Un graphe G = (V, E) et une coloration propre.
- Paramètre : Le nombre de couleurs k.
- Question : Existe-t'il une clique K transversale aux couleurs ?
 (K intersecte chacune des couleurs)

Lemme: (CLIQUE, k) \leq_{fpt} (MULTICOLORED CLIQUE, k')

Lemme : $(CLIQUE, k) \leq_{fpt} (MULTICOLORED CLIQUE, k')$

• G possède une clique de taille k ssi H possède une clique multi-colorée.

Lemme : (CLIQUE, k) \leq_{fpt} (MULTICOLORED CLIQUE, k')

- G possède une clique de taille k ssi H possède une clique multi-colorée.
- Transformation en temps polynomial et les paramètres sont identiques.

- Donn'ees : Une collection $\mathcal C$ de sous-ensembles d'un ensemble fini $\mathcal S$.
- Paramètre : Un entier k.
- Question : Existe-t'il une sous-collection $\mathcal{C}' \subseteq \mathcal{C}$ forme d'au moins k sous-ensembles deux à deux disjoints ?

- *Données* : Une collection $\mathcal C$ de sous-ensembles d'un ensemble fini $\mathcal S$.
- Paramètre : Un entier k.
- Question : Existe-t'il une sous-collection $\mathcal{C}' \subseteq \mathcal{C}$ forme d'au moins k sous-ensembles deux à deux disjoints ?

Montrer que Ensemble Indépendant \leqslant_{fpt} Set Packing

• Soit G = (V, E) instance de (ENSEMBLE INDÉPENDANT, k).

Réductions paramétriques

- Données : Une collection $\mathcal C$ de sous-ensembles d'un ensemble fini $\mathcal S$.
- Paramètre : Un entier k.
- Question : Existe-t'il une sous-collection $\mathcal{C}' \subseteq \mathcal{C}$ forme d'au moins k sous-ensembles deux à deux disjoints ?

Montrer que Ensemble Indépendant ≤_{fpt} Set Packing

• Soit G = (V, E) instance de (Ensemble Indépendant,k). $\forall v \in V : S_v = \{\{v, u\} \mid u \in N(v)\} \cup \{\{v, v\}\}$

- Données : Une collection $\mathcal C$ de sous-ensembles d'un ensemble fini $\mathcal S$.
- Paramètre : Un entier k.
- Question : Existe-t'il une sous-collection $\mathcal{C}' \subseteq \mathcal{C}$ forme d'au moins k sous-ensembles deux à deux disjoints ?

Montrer que Ensemble Indépendant ≤_{fpt} Set Packing

• Soit G = (V, E) instance de (ENSEMBLE INDÉPENDANT,k). $\forall v \in V : S_v = \{\{v, u\} \mid u \in N(v)\} \cup \{\{v, v\}\}$

$$R(G = (V, E)) = (\mathcal{C} = \{S_v \mid v \in V\}, S = \bigcup_{v \in V} S_v)$$

- Données : Une collection $\mathcal C$ de sous-ensembles d'un ensemble fini $\mathcal S$.
- Paramètre : Un entier k.
- Question : Existe-t'il une sous-collection $\mathcal{C}' \subseteq \mathcal{C}$ forme d'au moins k sous-ensembles deux à deux disjoints ?

Montrer que Ensemble Indépendant ≤_{fpt} Set Packing

- Soit G = (V, E) instance de (ENSEMBLE INDÉPENDANT,k). $\forall v \in V : S_v = \{\{v, u\} \mid u \in N(v)\} \cup \{\{v, v\}\}\}$ $R(G = (V, E)) = (C = \{S_v \mid v \in V\}, S = \bigcup S_v)$
- $G \in (\text{Ens. Indép.}, k) \Leftrightarrow R(G) \in (\text{Set Packing}, k)$

- Données : Une collection $\mathcal C$ de sous-ensembles d'un ensemble fini $\mathcal S$.
- Paramètre : Un entier k.
- Question : Existe-t'il une sous-collection $\mathcal{C}' \subseteq \mathcal{C}$ forme d'au moins k sous-ensembles deux à deux disjoints ?

Montrer que Ensemble Indépendant ≤_{fpt} Set Packing

• Soit G = (V, E) instance de (ENSEMBLE INDÉPENDANT,k). $\forall v \in V : S_v = \{\{v, u\} \mid u \in N(v)\} \cup \{\{v, v\}\}\}$

$$R(G = (V, E)) = (C = \{S_v \mid v \in V\}, S = \bigcup_{v \in V} S_v)$$

- $G \in (\text{Ens. Ind\'ep.}, k) \Leftrightarrow R(G) \in (\text{Set Packing}, k)$
- La réduction se fait en temps **FPT** (polynomiale en fait) et le nouveau paramètre est le même que l'ancien.

Exercices 1

- **1** Montrer que la relation \leq_{fpt} est réflexive et transitive.
- ② Montrer que (MULTICOLORED CLIQUE, k') \leq_{fpt} (CLIQUE, k)
- Ourquoi la réduction classique de Ensemble Indépendant vers Vertex Cover ne permet pas de montrer que Ensemble Indépendant est FPT?

Exercices 1

- **1** Montrer que la relation \leq_{fpt} est réflexive et transitive.
- **2** Montrer que (MULTICOLORED CLIQUE, k') \leq_{fpt} (CLIQUE, k)
- O Pourquoi la réduction classique de Ensemble INDÉPENDANT vers VERTEX COVER ne permet pas de montrer que Ensemble Indépendant est FPT?

Notations

$$(Q,\kappa)\sim_{\mathit{fpt}}(Q',\kappa')$$
 si

$$(Q, \kappa) \leqslant_{fpt} (Q', \kappa') \text{ et } (Q', \kappa') \leqslant_{fpt} (Q, \kappa)$$

Questions

• Les problèmes paramétrés difficiles sont-ils tous équivalents ?

Questions

- 1 Les problèmes paramétrés difficiles sont-ils tous équivalents ?
- Sous quelles hypothèses peut-on affirmer qu'un problème paramétré est difficile ?

- Les problèmes paramétrés difficiles sont-ils tous équivalents ?
- 2 Sous quelles hypothèses peut-on affirmer qu'un problème paramétré est difficile ?
- Quels sont les problèmes difficiles de bases (tels que SAT pour la complexité classique) ?

- Réductions paramétriques
 - Rappels et définitions
 - Exemples
- 2 La W-hiérarchie.
 - Circuits logiques
 - WEIGHTED-SAT
- 3 Deux exemples
 - Ensemble indépendant
 - Ensemble dominant
- 4 L'hypothèse de complexité exponentielle (ETH)

Circuits logiques

Un circuit C de n variables est un DAG tel que:

- les sommets de degré entrant 0 (input gate) étiquetés par un littéral (x_i ou $\bar{x_i}$, $i \in [n]$)
- un sommet de degré sortant 0 (output gate)
- les autres sommets sont étiquetés par des OU ou ET

Circuits logiques

Un circuit C de n variables est un DAG tel que:

- les sommets de degré entrant 0 (input gate) étiquetés par un littéral (x_i ou $\bar{x_i}$, $i \in [n]$)
- un sommet de degré sortant 0 (output gate)
- les autres sommets sont étiquetés par des OU ou ET

La **taille** de C est le nombre de sommets, et la **profondeur** est la longueur du plus long chemin entre une entrée et la sortie.

Réductions paramétriques

• Un Π_t -circuit est un circuit de profondeur t dont la porte de sortie est un ET

Réductions paramétriques

- Un Π_t -circuit est un circuit de profondeur t dont la porte de sortie est un ET
- Un circuit est monotone (anti-monotone) s'il ne contient que des litéraux positifs (négatifs)

Réductions paramétriques

- Un Π_t -circuit est un circuit de profondeur t dont la porte de sortie est un ET
- Un circuit est monotone (anti-monotone) s'il ne contient que des litéraux positifs (négatifs)
- Une affectation τ satisfait C si le résultat est VRAI

- Un Π_t -circuit est un circuit de profondeur t dont la porte de sortie est un ET
- Un circuit est **monotone** (anti-monotone) s'il ne contient que des litéraux positifs (négatifs)
- Une affectation τ satisfait C si le résultat est VRAI
- Le **poids** d'une affectation τ est le nombre de variables à VRAI.

Réductions paramétriques

Etant donné un circuit $C \in \Pi_t$, existe-t'il une affectation τ de poids k satisfaisant le circuit C?

On note (WCS[t], k)

WEIGHTED-SAT sur les Π_t -circuits

Etant donné un circuit $C \in \Pi_t$, existe-t'il une affectation τ de poids k satisfaisant le circuit C?

On note (WCS[t], k)

Le problème WEIGHTED-CNF-SAT

Etant donné une formule booléenne CNF (ou 3-CNF) Φ, existe-t'il une affectation de poids k satisfaisant Φ ?

On note (WCNF-SAT, k) et (WCNF-3SAT, k)

Etant donné un circuit $C \in \Pi_t$, existe-t'il une affectation τ de poids k satisfaisant le circuit C?

On note (WCS[t], k)

Le problème WEIGHTED-CNF-SAT

Etant donné une formule booléenne CNF (ou 3-CNF) Φ , existe-t'il une affectation de poids k satisfaisant Φ ?

On note (WCNF-SAT, k) et (WCNF-3SAT, k)

Hypothèse 1

Aucun des problèmes (WCNF-3SAT, k) et (WCS[t], k), pour t > 1 n'est FPT

La W-hiérarchie

• La classe W[1] contient l'ensemble des problèmes paramétrés (Q, κ) tels que $(Q, \kappa) <_{fot} (WCNF-3SAT, k)$

La W-hiérarchie

Réductions paramétriques

- La classe W[1] contient l'ensemble des problèmes paramétrés (Q, κ) tels que $(Q, \kappa) <_{fot} (WCNF-3SAT, k)$
- Pour tout t > 1, la classe W[t] contient l'ensemble des problèmes paramétrés (Q, κ) tels que $(Q, \kappa) <_{fpt} (\text{WCS}[t], k)$

• La classe W[1] contient l'ensemble des problèmes paramétrés (Q, κ) tels que $(Q, \kappa) <_{fot} (WCNF-3SAT, k)$

- Pour tout t > 1, la classe W[t] contient l'ensemble des problèmes paramétrés (Q, κ) tels que $(Q, \kappa) <_{fpt} (\text{WCS}[t], k)$
- La classe W[P] contient l'ensemble des problèmes paramétrés (Q, κ) tels que $(Q, \kappa) <_{fot} (WCS, k)$

Réductions paramétriques

La W-hiérarchie

- La classe W[1] contient l'ensemble des problèmes paramétrés (Q, κ) tels que $(Q, \kappa) <_{fot} (WCNF-3SAT, k)$
- Pour tout t > 1, la classe W[t] contient l'ensemble des problèmes paramétrés (Q, κ) tels que $(Q, \kappa) <_{fpt} (\text{WCS}[t], k)$
- La classe W[P] contient l'ensemble des problèmes paramétrés (Q, κ) tels que $(Q, \kappa) <_{fot} (WCS, k)$

Observation

$$FPT \subseteq W[1] \subseteq W[2] \subseteq \cdots \subseteq W[t] \subseteq \cdots \subseteq W[P]$$

Un problème (Q, κ) est C-difficile, si pour tout problème $(Q', \kappa') \in \mathcal{C}$, on a $(Q, \kappa') <_{fpt} (Q, \kappa)$ Un problème (Q, κ) est \mathcal{C} -complet s'il appartient à \mathcal{C} et est C-difficile.

Un problème (Q, κ) est C-difficile, si pour tout problème $(Q', \kappa') \in \mathcal{C}$, on a $(Q, \kappa') <_{fpt} (Q, \kappa)$ Un problème (Q, κ) est C-complet s'il appartient à C et est C-difficile.

Lemme

- (WCNF-3SAT, k) est W[1]-complet
- (WCS[t], k) est W[t]-complet

Un problème (Q, κ) est C-difficile, si pour tout problème $(Q', \kappa') \in \mathcal{C}$, on a $(Q, \kappa') <_{fpt} (Q, \kappa)$ Un problème (Q, κ) est \mathcal{C} -complet s'il appartient à \mathcal{C} et est C-difficile.

Lemme

Réductions paramétriques

- (WCNF-3SAT, k) est W[1]-complet
- (WCS[t], k) est W[t]-complet

Exercices 2

- Montrer que s'il existe un problème W[t]-difficile qui soit FPT, alors FPT= W[t]
- Montrer que d'après l'hypothèse 1, $\forall t \geq 1$, $\mathsf{FPT} \neq W[t]$

Exercice 3

Montrer que pour tout $t \ge 1$, un problème (Q, κ) est W[t]-difficile s'il existe un problème W[t]-difficile (Q', κ') tel que $(Q, \kappa') <_{fpt} (Q, \kappa).$

Exercice 3

Montrer que pour tout $t \ge 1$, un problème (Q, κ) est W[t]-difficile s'il existe un problème W[t]-difficile (Q', κ') tel que $(Q, \kappa') <_{fpt} (Q, \kappa).$

Lemme

Le problème WEIGHTED-ANTIMONOTONE CNF-2SAT (noté (WCNF-2SAT⁻, k)) est complet pour W[1]. Le problème MONOTONE-WCS[2] (noté (WCS[2] $^+$, k)) est complet pour W[2].

Réductions paramétriques

- Réductions paramétriques
 - Rappels et définitions
 - Exemples
- La W-hiérarchie.
 - Circuits logiques
 - WEIGHTED-SAT
- 3 Deux exemples
 - Ensemble indépendant
 - Ensemble dominant.
- 4 L'hypothèse de complexité exponentielle (ETH)

Le problème (ENSEMBLE INDÉPENDANT, k) est W[1]-complet.

Le problème (ENSEMBLE INDÉPENDANT, k) est W[1]-complet.

Preuve

• W[1]-difficulté: Réduction depuis (WCNF-2SAT $^-, k'$).

Le problème (ENSEMBLE INDÉPENDANT, k) est W[1]-complet.

Preuve

- W[1]-difficulté: Réduction depuis (WCNF-2SAT⁻, k'). Soit (Φ, k) une instance de (WCNF-2SAT⁻, k).
 - variable $x_i \leftrightarrow \text{sommet } x_i \in V$
 - clause $(\bar{x_i} \vee \bar{x_j}) \Leftrightarrow x_i x_j \in E$
 - k' = k

Théo<u>rème</u>

Le problème (ENSEMBLE INDÉPENDANT, k) est W[1]-complet.

Preuve

- W[1]-difficulté : Réduction depuis (WCNF-2SAT⁻, k'). Soit (Φ, k) une instance de (WCNF-2SAT⁻, k).
 - variable $x_i \leftrightarrow \text{sommet } x_i \in V$
 - clause $(\bar{x_i} \vee \bar{x_j}) \Leftrightarrow x_i x_j \in E$
 - k' = k

Il existe une affectation positive de poids k' ssi il existe un ensemble indépendant de taille k.

Le problème (ENSEMBLE INDÉPENDANT, k) est W[1]-complet.

Preuve

- W[1]-difficulté : Réduction depuis (WCNF-2SAT $^-, k'$).
- W[1]-complétude : On montre que (ENSEMBLE INDÉPENDANT, k) $<_{fpt}$ (WCNF-2SAT $^-$, k')

Le problème (ENSEMBLE INDÉPENDANT, k) est W[1]-complet.

Preuve

- W[1]-difficulté : Réduction depuis (WCNF-2SAT $^-, k'$).
- W[1]-complétude : On montre que (ENSEMBLE INDÉPENDANT, k) $<_{fpt}$ (WCNF-2SAT $^-$, k') \rightarrow Même construction.

Le problème (ENSEMBLE INDÉPENDANT, k) est W[1]-complet.

Preuve

- W[1]-difficulté : Réduction depuis (WCNF-2SAT $^-, k'$).
- W[1]-complétude : On montre que (ENSEMBLE INDÉPENDANT, k) $<_{fpt}$ (WCNF-2SAT $^-$, k')

Corollaire

Le problème (CLIQUE, k) est W[1]-complet.

Le problème (ENSEMBLE DOMINANT, k) est W[2]-complet.

Le problème (ENSEMBLE DOMINANT, k) est W[2]-complet.

Preuve

• W[2]-difficulté : Réduction depuis (WCS[2]⁺, k').

La W-hiérarchie. Deux exemples Ensemble indépendant Ensemble dominant

Théorème

Réductions paramétriques

Le problème (ENSEMBLE DOMINANT, k) est W[2]-complet.

Preuve

• W[2]-difficulté : Réduction depuis (WCS[2]⁺, k'). Soit C un Π_2 -circuit monotone.

Clique

Réductions paramétriques

Le problème (ENSEMBLE DOMINANT, k) est W[2]-complet.

Preuve

• W[2]-difficulté : Réduction depuis (WCS[2]⁺, k'). Soit C un Π_2 -circuit monotone.

C admet une affectation positive de poids k ssi G_c admet un ensemble dominant de taille k

Le problème (ENSEMBLE DOMINANT, k) est W[2]-complet.

Preuve

- W[2]-difficulté: Réduction depuis (WCS[2]+, k').
- W[2]-complétude : On montre que (ENSEMBLE DOMINANT, k) $<_{fpt}$ (WCS[2] $^+$, k')

Le problème (ENSEMBLE DOMINANT, k) est W[2]-complet.

Preuve

- W[2]-difficulté : Réduction depuis $(WCS[2]^+, k')$.
- W[2]-complétude : On montre que (ENSEMBLE DOMINANT, k) $<_{fpt}$ (WCS[2] $^+$, k') Soit un graphe G, on construit un circuit C_G Π_2 -monotone.

Réductions paramétriques

Le problème (ENSEMBLE DOMINANT, k) est W[2]-complet.

Preuve

- W[2]-difficulté : Réduction depuis $(WCS[2]^+, k')$.
- W[2]-complétude : On montre que (ENSEMBLE DOMINANT, k) $<_{fpt}$ (WCS[2] $^+$, k') Soit un graphe G, on construit un circuit C_G Π_2 -monotone.

 C_G admet une affectation positive de poids k ssi G admet un ensemble dominant de taille k

- Réductions paramétriques
 - Rappels et définitions
 - Exemples
- 2 La W-hiérarchie.
 - Circuits logiques
 - WEIGHTED-SAT
- 3 Deux exemples
 - Ensemble indépendant
 - Ensemble dominant
- 4 L'hypothèse de complexité exponentielle (ETH)

Un problème Q est **sous-exponentiel** s'il admet un algorithme de complexité $2^{o(n)}$ (par exemple $2^{\sqrt{n}}$).

Un problème Q est sous-exponentiel s'il admet un algorithme de complexité $2^{o(n)}$ (par exemple $2^{\sqrt{n}}$).

Classe SNP

La classe SNP contient tous les problèmes exprimables par une formule existentielle du second-ordre dont la partie du premier ordre est universelle.

La classe **SNP-contrainte** contient tous les problèmes . . . (on s'en fout ;-)

Un problème Q est sous-exponentiel s'il admet un algorithme de complexité $2^{o(n)}$ (par exemple $2^{\sqrt{n}}$).

Classe SNP

La classe SNP contient tous les problèmes exprimables par une formule existentielle du second-ordre dont la partie du premier ordre est universelle.

La classe **SNP-contrainte** contient tous les problèmes . . . (on s'en fout ;-)

Théorème

 $FPT \neq W[1]$ sauf si tous les problèmes SNP-contraints admettent un algorithme sous-exponentiel.

Un problème Q est **sous-exponentiel** s'il admet un algorithme de complexité $2^{o(n)}$ (par exemple $2^{\sqrt{n}}$).

Classe SNP

La classe SNP contient tous les problèmes exprimables par une formule existentielle du second-ordre dont la partie du premier ordre est universelle.

La classe **SNP-contrainte** contient tous les problèmes ... (on s'en fout ;-)

Théorème

 $\mathsf{FPT} \neq W[1]$ sauf si tous les problèmes SNP-contraints admettent un algorithme sous-exponentiel.

VERTEX-COVER; 3-COLORATION,... appartienment à SNP-contraint (ils sont complets pour cette classe!).

Certains problèmes SNP-contraints n'admettent pas d'algorithme sous-exponentiel.

Certains problèmes SNP-contraints n'admettent pas d'algorithme sous-exponentiel.

Théorème

Si le problème ENSEMBLE INDÉPENDANT peut être résolu en temps $n^{o(k)}$, alors le problème VERTEX COVER peut-être résolu en temps $O(2^{o(k)}n^{O(1)})$.

Certains problèmes SNP-contraints n'admettent pas d'algorithme sous-exponentiel.

Théorème

Si le problème ENSEMBLE INDÉPENDANT peut être résolu en temps $n^{o(k)}$, alors le problème VERTEX COVER peut-être résolu en temps $O(2^{o(k)}n^{O(1)})$.

⇒ VERTEX COVER admet un algorithme sous-exponentiel, et donc ETH est fausse (car VERTEX COVER est SNP-complet).

Certains problèmes SNP-contraints n'admettent pas d'algorithme sous-exponentiel.

Théorème

Si le problème ENSEMBLE INDÉPENDANT peut être résolu en temps $n^{o(k)}$, alors le problème VERTEX COVER peut-être résolu en temps $O(2^{o(k)}n^{O(1)})$.

Théorème

Sauf si ETH est fausse, le problème ENSEMBLE INDÉPENDANT ne peut pas être résolu en temps $f(k).n^{o(k)}$ avec f une fonction récursive.

Définition: réduction paramétrée linéaire

Une réduction paramétrée est linéaire si elle réduit une instance $(x, \kappa(x))$ d'un problème (Q, κ) en une instance $(x', \kappa'(x'))$ d'un problème (Q', κ') avec

- $\kappa'(x') = O(\kappa(x))$ et
- $|x'| = |x|^{O(1)}$

Définition: réduction paramétrée linéaire

Une réduction paramétrée est linéaire si elle réduit une instance $(x, \kappa(x))$ d'un problème (Q, κ) en une instance $(x', \kappa'(x'))$ d'un problème (Q', κ') avec

- $\kappa'(x') = O(\kappa(x))$ et
- $|x'| = |x|^{O(1)}$

Lemme

Soit (Q, κ) un problème linéairement réductible en (Q', κ') . Si (Q', κ') admet un algorithme de complexité $f(k)n^{o(k)}$, alors (Q, κ) admet un algorithme $g(k)n^{o(k)}$.

Définition: réduction paramétrée linéaire

Une réduction paramétrée est linéaire si elle réduit une instance $(x, \kappa(x))$ d'un problème (Q, κ) en une instance $(x', \kappa'(x'))$ d'un problème (Q', κ') avec

- $\kappa'(x') = O(\kappa(x))$ et
- $|x'| = |x|^{O(1)}$

Lemme

Soit (Q, κ) un problème linéairement réductible en (Q', κ') . Si (Q', κ') admet un algorithme de complexité $f(k)n^{o(k)}$, alors (Q, κ) admet un algorithme $g(k)n^{o(k)}$.

Corollaire

Sauf si ETH est fausse, aucun problème $W_I[1]$ -difficile ne peut être résolu en temps $f(k)n^{o(k)}$.

(WCNF-2SAT⁻ $\in W_I[1]$ -difficile)

Le problème VERTEX COVER peut être résolu en temps $O(2^{o(k)}n^{O(1)})$ ssi l'ETH est fausse.

Preuve

Le problème VERTEX COVER peut être résolu en temps $O(2^{o(k)}n^{O(1)})$ ssi l'ETH est fausse.

Preuve

Le problème VERTEX COVER peut être résolu en temps $O(2^{o(k)}n^{O(1)})$ ssi l'ETH est fausse.

Preuve

- ⇒ puisque VERTEX COVER est complet pour SNP-contraint, alors tous les problèmes de cette classe admettraient un tel algorithme. Donc ETH serait fausse.
- ← Si ETH est fausse, alors VERTEX COVER admet un algorithme de complexité $O(2^{o(n)})$. En kernalisant, une instance de VERTEX COVER, on obtiendrait donc un algorithme de complexité $O(2^{o(k)}n^{O(1)})$

Pour tout entier $t \geqslant 1$, si W[t] = FPT implique W[t+1] = FPT, alors

- soit la complexité du problème WCS[t+1] est $n^{\Omega(k)}$;
- soit WCS[t+1] est FPT.