Assignment 8

Digital Communication System-I

May 2023

Please answer the following questions:

Q 1: Which of the following statement is correct?

~ -	 	

- (a) The Viterbi decoder proceeds through the trellis level by level in search of the path with the best metric.
- (b) The Viterbi algorithm usually terminated because it helps in the performance of the Viterbi decoder.
- (c) At each level, the decoder compares the metric of all partial paths entering each state.
- (d) All of the above.

Q 2: Consider a binary CPM scheme with a modulation index h = 2/3 and a partial response pulse with L = 4. The total number of states are

- (a) 8
- (b) 12
- (c) 24
- (d) 48

Q 3: In Viterbi's algorithm, the selected paths are known as

- (a) Carriers
- (b) Defenders
- (c) Destroyers
- (d) Survivors

Q 4: For BSC, the maximum likelihood decoder decodes the received sequence \mathbf{r} into code sequence \mathbf{v} that minimizes the Hamming distance $d(\mathbf{r}, v)$

- (a) True
- (b) False

Q 5: The complexity of Viterbi decoder grows linearly with the increase in memory of the system.

- (a) True
- (b) False

Q 6: Which of the following options is correct.

Statement 1: For the Viterbi decoding algorithm applied to CPM signals, we discard the paths with shorter Euclidean distance.

Statement 2: Viterbi algorithm is a sequential trellis search algorithm that performs MAP sequence detection

- (a) Statement 1:True; Statement 2:True.
- (b) Statement 1:False; Statement 2:False.

- (c) Statement 1:False; Statement 2:True.
- (d) Statement 1:True; Statement 2:False.

Q 7: For which value of L the distance bound $(d_B^2(h))$ is higher for a partial response CPM signal with raised cosine pulse?

- (a) 2
- (b) 3
- (c) 4
- (d) 6

Q 8: With $K_{\delta_{\min}}$ as the number of paths having the minimum Euclidean distance 2 between any two signals, the error rate performances for CPM for $\frac{E_b}{N_0} = 5$ dB can be approximated by

- (a) $1.8786 \times 10^{-4} K_{\delta_{\min}}$
- (b) $2.8 \times 10^{-2} K_{\delta_{\min}}$
- (c) $1.8 \times 10^{-3} K_{\delta_{\min}}$
- (d) $6 \times 10^{-3} K_{\delta_{\min}}$

Q 9: The expression for the upper bound d_B^2 as a function of the modulation index h for full response CPM with rectangular pulses is given by

- (a) $d_B^2(h) = \min_{1 \le k \le M-1} \left\{ (2 \log_2 M) \left(1 \frac{\sin 2k\pi h}{2k\pi h} \right) \right\}$
- (b) $d_B^2(h) = \min_{1 \le k \le M-1} \left\{ (4 \log_2 M) \left(1 \frac{\sin 2k\pi h}{2k\pi h} \right) \right\}$
- (c) $d_B^2(h) = \min_{1 \leq k \leq M-1} \left\{ \left(2 \log_2 M\right) \left(1 \frac{\sin 2k\pi h}{k\pi h}\right) \right\}$
- (d) $d_B^2(h) = \min_{1 \le k \le M-1} \left\{ \left(4 \log_2 M\right) \left(1 \frac{\sin 4k\pi h}{4k\pi h}\right) \right\}$

Q 10: Find the upper bound $(d_B^2(h))$ for CPFSK with M=2 for $h=\frac{2}{3}$.

- (a) 2.1134
- (b) 2.3118
- (c) 2
- (d) 2.6124