Задача 39. Даден е граф G с 2n+1 върхове, където $n\geq 2$. Всеки връх от G е от степен равна на поне n. Да се докаже, че G е свързан.

Доказателство:

Допускаме, че G не е свързан граф и нека $u \neq v$ са два различни върха от различни компоненти на свързаност. Тоест между u и v не съществува път, както и никой връх u_i $(i=\overline{1,m})$ не е свързан с никой връх v_i $(j=\overline{1,s})$.

От условието следва, че във всяка компонента на свързаност ще има поне n+1 броя върхове. Нека броят на компонентите на G е равен на k. Следователно, $k(n+1) \leq 2n+1$, но $k \geq 2$ (от допускането) и следователно $2(n+1) \leq k(n+1) = 2n+1$. Следователно $2 \leq 1$, което е противоречие с допускането, че G не е свързан граф. Следователно G е свързан граф.

github.com/andy489