Recurrence Equations

Recurrence Relation

- A recurrence relation is an equation which is defined in terms of itself
- Many natural functions expressed as recurrences

-
$$a_n = a_{n-1} + 1$$
, $a_1 = 1 \rightarrow a_n = n$ (polynomial)
- $A_n = 2* a_{n-1} + 1$, $a_1 = 1 \rightarrow a_n = 2^{n-1}$ (exponential)

• E.g nth Fibonacci number

```
int fib(int n){
  if (n <= 1) return n;
  return fib(n-1) + fib(n-2);
}</pre>
```

Amrita School of Engineering Amrita Vishwa Vidyapeetham

Recurrences

- Characterize the running times of divide and conquer algorithms
 - Equation or inequality T(n) that describes a function in terms of its value on smaller inputs
 - Recurrence Equation for Merge Sort

$$t(n) = \begin{cases} b \text{ if } n = 1 \\ t(n/2) + t(n/2) + cn \text{ otherwise} \end{cases}$$

$$t(n) = \begin{cases} b \text{ if } n = 1 \\ 2t(n/2) + cn \text{ otherwise} \end{cases}$$

- Recurrence for nth Fibonacci

•
$$T(n) = T(n-1) + T(n-2) + c$$

Recurrence Relation

- Recurrence procedure must have a base case
 - Must be small enough
- Can have different forms
 - A recursive algorithm might divide subproblems into unequal sizes, such as a 2/3-to-1/3 split
 - If combine step takes linear time

•
$$T(n) = T(2n/3) / + T(n/3) + \Theta(n)$$

 Can also have subproblems containing only one element fewer than the original problem

$$T(n) = \begin{cases} 3 \text{ if } n = 1 \\ T(n-1) + 7 \text{ otherwise} \end{cases}$$

Solving Recurrences

- Methods for solving recurrences (to obtain asymptotic bounds on the solution)
 - Substitution method
 - guess a bound and then use mathematical induction to prove our guess correct
 - Recursion-tree method
 - convert the recurrence into a tree whose nodes represent the costs incurred at various levels of the recursion
 - Master method
 - Solves equations of the form T(n)=aT(n/b)+f(n)
 - where a >= 1, b > 1, and f(n) is a function representing the cost of merge

Substitution Method

- Guess the form of the solution
 - Heuristics can be used to guess the solution
 - If recurrence similar to one already seen, guess a similar solution
 - Smaller constants do not affect the solution
 - Prove loose upper and lower bounds on the recurrence and reduce the range of uncertainty
- Use mathematical induction to find constants and show that the solution is correct

Issues

- Might not be clear what the general pattern might look like
 - Guessing solution is not straightforward
 - Must consider the boundary conditions
- Must justify general form using induction

Example

- Example T(n) = 2T(n/2) + n
 - Guess $T(n) = O(n \log n)$
 - Prove that $T(n) \le cn \log n$ for some constant c>0
 - $T(\square n/2 \square) \leq c(n/2 \square) \log(n/2 \square)$
 - $T(n) \le 2(c(\ln/2 \square \log(\ln/2 \square)) + n$

$$\leq \operatorname{cnlog}(n/2) + n$$

$$= cnlog n - cnlog 2 + n$$

$$= cnlogn - cn + n$$

$$\leq = cn \log n$$

Substitution Method

Recurrence Equation for Merge Sort

$$t(n) = \begin{cases} b & if n = 1 \\ t(n/2) + t(n/2) + cn & otherwise \end{cases}$$

$$t(n) = \begin{cases} b & if \ n=1 \\ 2t(n/2) + cn & otherwise \end{cases}$$

- Recursively apply e.g $t = 2(2t(n/2^2)+(cn/2))+cn$
 - $t(n) = 2^{i}t(n/2^{i}) + cn..+cn$
 - This stops when i = log n or $n = 2^i$
 - Hence t(n) = nt(1) + cnlogn = nb + cnlogn

Changing variables

- Example $T(n) = 2T(\exists n^{1/2} \Box) + \log n$
 - Rename $m = log n or n = 2^m$
 - $-T(2^{\mathrm{m}})=2T(\square 2^{n/2}\square)+m$
 - Let $S(m) = T(2^{m})$, and equation becomes
 - S(m) = 2S(m/2) + m, whose solution is $O(m \log m)$
 - Changing back from S(m) to T(n)
 - $T(n) = T(2^m) = S(m) = O(m \log m) = O(\log n \log \log n)$

Sample Problems

- Show that the solution of T(n) = T(n-1) + n is $O(n^2)$.
- Show that the solution of T(n) = T(n/2) + 1 is $O(\log n)$.
- Solve the recurrence $T(n) = T(\sqrt{n}) + \log n$ by making a change of variables. Your solution should be asymptotically tight.

Recursion Tree Method

- Recursion Tree
 - each node represents the cost of a single subproblem somewhere in the set of recursive function invocations
 - Per-level cost computed by summing the node costs within each level
 - Total cost calculated by summing per-level costs over the height of the tree
- Results in a good guess which can be verified by substitution method

Recursion Tree Construction

• $T(n) = 3T(n/4) + cn^2$

Src: CLR:Introduction to Algorithms: 4.4

CSE211: Design and Analysis of Algorithms

Amrita School of Engineering Amrita Vishwa Vidyapeetham

Recursion Tree construction

CSE211: Design and Analysis of Algorithms

Amrita School of Engineering Amrita Vishwa Vidyapeetham

Recursion Tree Example2

• T(n) = T(n/3) + T(2n/3) + cn

Total Time: $O(n \log n)$

Sample Problems

- Use the recursion tree to determine a good upper bound on the recurrence $T(n) = 3T(\ln/2 \square) + n$. Use substitution method to verify your answer.
- Use the recursion tree to determine a good upper bound on the recurrence T(n) = 2T(n-1)+1. Use substitution method to verify your answer.
- Show that the solution to $T(n) = (2T(\ln / 2 \square) + 17) + n$ is O(nlgn).

Master Method

Used for recurrence equation of the form

$$t(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$$

- where $d \ge 1$ is integer constant, $a \ge 0$, $c \ge 0$, $b \ge 1$ real constants
- f(n) is positive for $n \ge d$
- subproblems of size n/b, merge time $O(n^d)$ or O(f(n))
- This form arises in divide-conquer algorithms
 - Divides problem into a subproblems of size at most n/b each
 - Solves each recursively and merges the solutions

The Master theorem

- If there is a small constant ε > 0, s.t, f(n) is O(n^{logba-ε}), then T(n) is Θ(n^{logba})
 - f(n) polynomially smaller than special function nlogba
- If there is a constant $k > \pm 0$, s.t, f(n) is $O(n^{\log_{ba}} \log^k n)$, then T(n) is $\Theta(n^{\log_{ba}} \log^{k+1} n)$
 - f(n) is asymptotically close to the special function
- If there are small constants $\varepsilon > 0$, and $\delta < 1$, s.t, f(n) is $\Omega(n^{\log_b a + \varepsilon})$, and af(n/b) <= $\delta f(n)$, for n>= d then T(n) is $\Theta(f(n))$
 - f(n) polynomially larger than special function

Master Theorem

- Compare function $n^{\log_b a}$ and f(n), to find out which of them are larger
 - Case 1: $n^{\log_b a}$ is larger hence $T(n) = \Theta(n^{\log_b a})$
 - Case 3: f(n) is larger, hence $T(n) = \Theta(f(n))$
 - Case 2: the two functions are the same size, we multiply by a logarithmic factor, and the solution is $T(n) = \Theta(n^{\log_b a} \log n) = \Theta(f(n) \log n)$

Master Method: Case 1

- If there is a small constant $\varepsilon > 0$ s.t, f(n) is $O(n^{\log_b a \varepsilon})$, then $T(n) = \Theta(n^{\log_b a})$
- Example
 - T(n) = 4T(n/2) + n
 - $n^{\log_b a} = n^{\log_2 4} = n^2$
 - $f(n) = O(n^{2-J})$ for $\epsilon = 1$
 - $T(n) = \Theta(n^2)$ by Master Method

Master Method: Case 2

- If there is a small constant $k \ge 0$, s.t, f(n) is $\Theta(n^{\log_b a} \log^k n)$, then $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$
- Example
 - $T(n) = 2T(n/2) + n\log n$
 - $n^{\log_b a} = n^{\log_2 2} = n$, hence k = 1 for $f(n) = \Theta(n \log n)$
 - Falls in case 2
 - $T(n) = \Theta(n \log^2 n)$ by Master Method

Master Method: Case 3

- If there is a small constant $\varepsilon>0$ and $\int<1$, s.t, f(n) is $\Omega(n^{\log_b a+J})$, and $af(n/b) <= \delta f(n)$ for $n>=\delta$, then $T(n)=\Theta(f(n))$
- Example
 - T(n) = T(n/3) + n
 - $n^{\log_b a} = n^{\log_3 1} = n^0 = 1$, hence case 3
 - f(n) is $\Omega(n^{0+\epsilon})$, for $\epsilon=1$, and af(n/b)=n/3=(1/3)f(n)
 - T(n)= $\Theta(n)$ by Master Method

Problems

Characterize the following recurrence equations using the master method (assuming T(n) = c for n < d, for constants c > 0 and d > 1

$$- T(n) = 2T(n/2) + \log n$$

$$- T(n) = 8T(n/2) + n^2$$

$$- T(n) = 2T(n/4) + n$$

$$- T(n) = 2T(n/4) + n^2$$

$$- T(n) = 2T(n/4) + n^{1/2}$$

Problem

- Which of the following algorithms is best and why?
 - Algorithm A solves problems by dividing them into 5 subproblems of half the size, recursively solving each subproblem, and then combining solutions in linear time
 - Algorithm B solves problems of size n by recursively solving subproblems of size n-1 and then combining solutions in constant time
 - Algorithm C solves problems of size n by dividing them into 9 subproblems of size n/3, recursively solving each subproblem, and then combining solutions in O(n²) time