## Learning belief networks for classification

- Use a belief network to infer the probability distribution of some class variable
  - specifies the probability the class variable will take on each of its possible values given available evidence
- Example
  - P(Tennis = "yes" | evidence)P(Tennis = "no" | evidence)

# Learning belief networks for classification

#### Versions (simplest to hardest)

- given data & naïve Bayes (fixed structure) of network, learn: probabilities
- 2. given data & structure of the network (we come up with it), learn: probabilities
- 3. given data & node for each attribute and class variable learn: arcs and probabilities
- 4. given data & node for each attribute and class variable learn: hidden nodes, arcs, and probabilities



Jeeves is a valet to Bertie Wooster. On some days, Bertie likes to play tennis and asks Jeeves to lay out his tennis things and book the court. Jeeves would like to be able to predict whether Bertie will play tennis (and so be a better valet). Each morning over the last two weeks, Jeeves has recorded whether Bertie played tennis on that day and various attributes of the weather.

| Day | Outlook  | Temp | Humidity | Wind   | Tennis? |
|-----|----------|------|----------|--------|---------|
| 1   | Sunny    | Hot  | High     | Weak   | No      |
| 2   | Sunny    | Hot  | High     | Strong | No      |
| 3   | Overcast | Hot  | High     | Weak   | Yes     |
| 4   | Rain     | Mild | High     | Weak   | Yes     |
| 5   | Rain     | Cool | Normal   | Weak   | Yes     |
| 6   | Rain     | Cool | Normal   | Strong | No      |
| 7   | Overcast | Cool | Normal   | Strong | Yes     |
| 8   | Sunny    | Mild | High     | Weak   | No      |
| 9   | Sunny    | Cool | Normal   | Weak   | Yes     |
| 10  | Rain     | Mild | Normal   | Weak   | Yes     |
| 11  | Sunny    | Mild | Normal   | Strong | Yes     |
| 12  | Overcast | Mild | High     | Strong | Yes     |
| 13  | Overcast | Hot  | Normal   | Weak   | Yes     |
| 14  | Rain     | Mild | High     | Strong | No      |

Can Jeeves learn to predict Bertie's tennis playing?

#### Consider an accurate network for Jeeves data

Recall ...

$$P(X_1, ..., X_n) = \prod P(X_i | Parents(X_i))$$
 (1)

$$P(X_1, ..., X_n) = \prod P(X_i | X_{i-1}, ..., X_1)$$
 (2)

- Equation 1: formula for network Equation 2: chain rule (always true)
- Equation 1 is a <u>correct</u> representation of a domain only if each node is conditionally independent of its predecessors (in the node ordering), given its parents

## Naïve Bayes classifier



## Jeeves' naïve Bayesian network classifier

Tennis

P( Tennis=Yes ) = 9/14 P( Tennis=No ) = 5/14 P(Outlook=Sunny | Tennis=Yes ) = 2/9
P(Outlook=Sunny | Tennis=No ) = 3/5
P(Outlook=Overcast | Tennis=Yes ) = 4/9
P(Outlook=Overcast | Tennis=No ) = 0
P(Outlook=Rain | Tennis=Yes ) = 3/9
P(Outlook=Rain | Tennis=No ) = 2/5

Outlook

Humid

P(Humid=High | Tennis=Yes) = 3/9
P(Humid=High | Tennis=No) = 4/5
P(Humid=Normal | Tennis=Yes) = 6/9
P(Humid=Normal | Tennis=No) = 1/5

```
P(Wind=Weak | Tennis=Yes) = 6/9
P(Wind=Weak | Tennis=No) = 2/5
P(Wind=Strong | Tennis=Yes) = 3/9
P(Wind=Strong | Tennis=No) = 3/5
```

Wind

## Is this network a good model?

- Consider the conditional independence assumptions implict in the naïve Bayes classifier
- Using Equation (1)
   P(Tennis, Outlook, Humid, Wind)
   = P(Tennis) P(Outlook | Tennis)
   P(Humid | Tennis)
   P(Wind | Tennis)
- Using Equation (2)
   P(Tennis, Outlook, Humid, Wind)
   = P(Tennis) P(Outlook | Tennis)
   P(Humid | Tennis, Outlook)
   P(Wind | Tennis, Outlook, Humid)

## Is this network a good model?

• Are these valid conditional independence assumptions?

```
P(Humid | Tennis) = P(Humid | Tennis, Outlook) ?
P(Wind | Tennis) = P(Wind | Tennis, Outlook, Humid) ?
```

- Using our knowledge of weather? No
- Consider, empirically, one example

```
P(Humid = High | Tennis = Yes) = 3/9

vs.

P(Humid = High | Tennis = Yes, Outlook = Sunny) = 0/2

P(Humid = High | Tennis = Yes, Outlook = Overcast) = 2/4

P(Humid = High | Tennis = Yes, Outlook = Rain) = 1/3
```

Assumption appears not to hold empirically (but: would need more data and would decide this using a statistical test)



Jeeves would like to evaluate the classifier he has come up with for predicting whether Bertie will play tennis. Each morning over the next two weeks, Jeeves records the following data.

| Day | Outlook  | Temp | Humidity | Wind   | Tennis? |
|-----|----------|------|----------|--------|---------|
| 1   | Sunny    | Mild | High     | Strong | No      |
| 2   | Rain     | Hot  | Normal   | Strong | No      |
| 3   | Rain     | Cool | High     | Strong | No      |
| 4   | Overcast | Hot  | High     | Strong | Yes     |
| 5   | Overcast | Cool | Normal   | Weak   | Yes     |
| 6   | Rain     | Hot  | High     | Weak   | Yes     |
| 7   | Overcast | Mild | Normal   | Weak   | Yes     |
| 8   | Overcast | Cool | High     | Weak   | Yes     |
| 9   | Rain     | Cool | High     | Weak   | Yes     |
| 10  | Rain     | Mild | Normal   | Strong | No      |
| 11  | Overcast | Mild | High     | Weak   | Yes     |
| 12  | Sunny    | Mild | Normal   | Weak   | Yes     |
| 13  | Sunny    | Cool | High     | Strong | No      |
| 14  | Sunny    | Cool | High     | Weak   | No      |

How well does Jeeves predict Bertie's tennis playing?

### Example

#### • Suppose:

```
Outlook = Sunny, Humidity = High, Wind = Strong Tennis?
```

```
P(Tennis = Yes) P(Outlook = Sunny | Tennis = Yes)
P(Humidity = High | Tennis = Yes)
P(Wind = Strong | Tennis = Yes)
= (9/14)(2/9)(3/9)(3/9) = 0.01587

P(Tennis = No) P(Outlook = Sunny | Tennis = No)
P(Humidity = High | Tennis = No)
P(Wind = Strong | Tennis = No)
= (5/14)(3/5)(4/5)(3/5) = 0.1029
```



Jeeves would like to evaluate the classifier he has come up with for predicting whether Bertie will play tennis. Each morning over the next two weeks, Jeeves records the following data.

| Day | Outlook  | Humidity | Wind   | Tennis? | Prediction |
|-----|----------|----------|--------|---------|------------|
| 1   | Sunny    | High     | Strong | No      | No         |
| 2   | Rain     | Normal   | Strong | No      | Yes        |
| 3   | Rain     | High     | Strong | No      | No         |
| 4   | Overcast | High     | Strong | Yes     | Yes        |
| 5   | Overcast | Normal   | Weak   | Yes     | Yes        |
| 6   | Rain     | High     | Weak   | Yes     | Yes        |
| 7   | Overcast | Normal   | Weak   | Yes     | Yes        |
| 8   | Overcast | High     | Weak   | Yes     | Yes        |
| 9   | Rain     | High     | Weak   | Yes     | Yes        |
| 10  | Rain     | Normal   | Strong | No      | Yes        |
| 11  | Overcast | High     | Weak   | Yes     | Yes        |
| 12  | Sunny    | Normal   | Weak   | Yes     | Yes        |
| 13  | Sunny    | High     | Strong | No      | No         |
| 14  | Sunny    | High     | Weak   | No      | No         |

How well does Jeeves predict Bertie's tennis playing?

## Handling missing values

#### • Suppose:

Outlook = ?, Humidity = High, Wind = Strong

#### Tennis?

#### Just omit the attribute Outlook in calculation

```
P(Tennis = Yes) P(Humidity = High | Tennis = Yes)

P(Wind = Strong | Tennis = Yes)

= (9/14)(3/9)(3/9) = 0.071

P(Tennis = No) P(Humidity = High | Tennis = No)

P(Wind = Strong | Tennis = No)

= (5/14)(4/5)(3/5) = 0.171
```

## Learning probabilities

• We estimated, for example,

P(Outlook = Sunny | Tennis = Yes) = 
$$\frac{n_a}{n}$$
 =  $\frac{2}{9}$   
where  $n = 9$  is number of instances for which Tennis=Yes  $n_a = 2$  is number of instances for which Outlook=Sunny using just the instances where Tennis=Yes

• This will be a poor estimate when  $n_a$  is small or zero

### Common solutions

• *m*-estimate of probability

$$\frac{n_a + mp}{n + m}$$

p = prior estimate of probability m = "equivalent sample size weighting"

• E.g., for P(Outlook = Overcast | Tennis = No) Assume p = 1/3 (equally likely to be Overcast, Sunny, Rain)