SOME NOTATIONS AND CONVENTIONS

	,
N ·	set of natural integers : {0, 1, 2,}
N*	set of strictly positive integers : {1, 2,}
Z	group of rational integers.
2*	set of non zero rational integers.
^δ ij	Kronecker symbol.
I R	field of real numbers.
ĪŔ	extended real line : $\{-\infty\} \cup \mathbb{R} \cup \{+\infty\}$,
	together with its usual total order.
C	field of complex numbers.
Q	field of quaternionic numbers.
K	one of the fields R, C, Q.
K*	set of non zero elements in K.
	* * * *
E _{IK}	Banach space over K.
$\mathtt{Lin}(\mathtt{E}_{\!$	space of all (not necessarily bounded) linear maps from
	$\mathbf{E}_{\mathbf{K}}$ into itself; it is an associative algebra over \mathbf{R} if
	K is R or Q and over C if $K = C$.
L(EK)	Banach algebra of all bounded linear maps from FK into
	itself, i.e. of all operators on $\mathbb{E}_{\mathbb{K}}$.
C(EK)	Banach algebra of all compact operators on Egg.
Co(EK)	associative algebra of finite rank operators on Ek.
	* * * *
$\mathcal{H}_{_{ extbf{K}}}$	Hilbert space over K, denoted by $m{\mathcal{R}}$ when there is no
	risk of confusion; the scalar product in 🔏 is denoted
	by < >.
$C_{\mathbf{p}}(\mathbf{K}_{\mathbf{K}})$	with $p \in \overline{\mathbb{R}}$, $1 \le p \le \infty$, is one of Schatten's norm ideals
	of compact operators on Ag.
c _∞ (% _K)	means the same as $C(\cancel{R}_{K})$.
	-

Lie groups are denoted by capital letters as G, SO(k), Sp($\mathcal{R}_{\mathfrak{o}}$; C).

Lie algebras are denoted by underlined small letters as $\underline{\mathbf{g}}$, $\underline{\mathbf{so}}(\mathtt{k})$, $\underline{\mathbf{sp}}(\mathcal{R}_{\mathbf{0}};\,\mathtt{C})$.

The connected component of the origin of a group as $O(\mathcal{H}_{\mathbb{R}}; C_2)$ is denoted by $O^+(\mathcal{H}_{\mathbb{R}}; C_2)$.

Classical Lie groups and Lie algebras of finite dimensions are denoted as in Helgason [84], chap. IX §4.

Derivations are usually denoted by Δ , automorphisms by ϕ . A Cartan subalgebra of a Lie algebra \underline{g} is usually denoted by

 \underline{h} , and R is the set of non-zero roots of \underline{g} with respect to \underline{h} .

[187.525] refers to the item no 187.525 in the bibliography.

Indicates the end or the omission of a proof.