Introduction

This dataset contains details of various nations and their flags. With this data we are trying ## to predict the religion of a country from the shapes and the colours in its flag.

Flags Data Analysis - Part I

Import Dataset

```
In [2]:
path="C:\\Users\\user\\Assignment 2"

In [3]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

In [4]:
flags = pd.read_csv(path+"/flags headers.csv")
```

Data Cleaning and Exploration

In [5]:

T11	[2].												
pr	<pre>print(flags.head(5))</pre>												
		со	untry		landmass	zone	e area	popu	lation	language	re	eligion	b
ar 0 0	•	han	istan		5	1	L 648		16	10		2	
1		Al	bania		3	1	L 29		3	6		6	
0 2		Al	geria		4	1	L 2388		20	8		2	
2	Americ	an-	Samoa		6	3	3 0		0	1		1	
0 4 3		An	idorra		3	1	L 0		0	6		0	
\	stripe	S	coloui	rs			sal	tires	quarte	rs sunsta	ırs	cresce	nt
ò		3		5				0		0	1		0
1		0		3				0		0	1		0
2		0		3				0		0	1		1
3		0		5	• • •			0		0	0		0
4		0		3	• • •			0		0	0		0
	traing	le	icon	i	animate t	ext	toplef	tcolou	r botr	ightcolor			
0	J	0	1		0	0	•	blac		green			
1		0	0		1	0		re	d	red			
2		0	0		0	0		gree		white			
3		1	1		1	0		blu		red			
4		0	0		0	0		blu	e	red			

[5 rows x 30 columns]

In [6]:

flags.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 194 entries, 0 to 193
Data columns (total 30 columns):
country
                  194 non-null object
landmass
                  194 non-null int64
zone
                  194 non-null int64
                  194 non-null int64
area
population
                  194 non-null int64
language
                  194 non-null int64
                  194 non-null int64
religion
bars
                  194 non-null int64
                  194 non-null int64
stripes
colours
                  194 non-null int64
red
                  194 non-null int64
                  194 non-null int64
green
blue
                  194 non-null int64
gold
                  194 non-null int64
white
                  194 non-null int64
                  194 non-null int64
black
                  194 non-null int64
orange
dominantcolour
                  194 non-null object
circles
                  194 non-null int64
                  194 non-null int64
crosses
                  194 non-null int64
saltires
quarters
                  194 non-null int64
sunstars
                  194 non-null int64
crescent
                  194 non-null int64
                  194 non-null int64
traingle
icon
                  194 non-null int64
                  194 non-null int64
animate
text
                  194 non-null int64
topleftcolour
                  194 non-null object
botrightcolor
                  194 non-null object
dtypes: int64(26), object(4)
```

In [7]:

memory usage: 45.5+ KB

```
flags['religion'] = flags['religion'].astype(object)
```

In [8]:

```
flags.columns
```

Out[8]:

In [9]:

```
flags=flags.rename(columns = {'traingle':'triangle'})
```

In [10]:

```
flags.columns
```

Out[10]:

In [11]:

```
flags.head(5)
```

Out[11]:

	country	landmass	zone	area	population	language	religion	bars	stripes	colours
0	Afghanistan	5	1	648	16	10	2	0	3	5
1	Albania	3	1	29	3	6	6	0	0	3
2	Algeria	4	1	2388	20	8	2	2	0	3
3	American- Samoa	6	3	0	0	1	1	0	0	5
4	Andorra	3	1	0	0	6	0	3	0	3

5 rows × 30 columns

To check how many null values in each column

In [12]:

```
flags.isnull().sum()
Out[12]:
country
                   0
landmass
                   0
zone
                   0
                   0
area
population
                   0
                   0
language
religion
                   0
bars
                   0
stripes
                   0
colours
                   0
red
                   0
green
                   0
blue
                   0
gold
                   0
white
                   0
black
                   0
orange
                   0
dominantcolour
                   0
                   0
circles
                   0
crosses
saltires
                   0
                   0
quarters
sunstars
                   0
crescent
                   0
triangle
                   0
                   0
icon
animate
                   0
text
                   0
topleftcolour
                   0
botrightcolor
                   0
dtype: int64
In [13]:
#flags = flags[numeric_cols].copy()
flags= flags.drop(columns=['country', 'landmass', 'zone', 'area', 'population', 'language'
], axis=1)
```

```
In [14]:
```

```
flags.head(2)
```

Out[14]:

	religion	bars	stripes	colours	red	green	blue	gold	white	black	 saltires	quarte
0	2	0	3	5	1	1	0	1	1	1	 0	
1	6	0	0	3	1	0	0	1	0	1	 0	

2 rows × 24 columns

In [15]:

```
flags['religion'].value_counts()
```

Out[15]:

- 1 60
- 0 40
- 2 36
- 5 27
- 6 15
- 3 8
- 7 4

4 4

Name: religion, dtype: int64

In [16]:

```
flags['bars'].value_counts()
```

Out[16]:

- 0 159
- 3 21
- 2
- 1 6
- 5 1

Name: bars, dtype: int64

```
In [17]:
flags['stripes'].value_counts()
Out[17]:
0
      110
3
       44
2
       16
5
       12
1
        4
        2
        1
14
13
        1
11
        1
        1
6
        1
Name: stripes, dtype: int64
In [18]:
flags['colours'].value_counts()
Out[18]:
3
     75
4
     44
2
     42
5
     15
6
      9
7
      7
8
      1
1
Name: colours, dtype: int64
In [19]:
flags['red'].value_counts()
Out[19]:
     153
      41
Name: red, dtype: int64
In [20]:
flags['green'].value_counts()
Out[20]:
     103
      91
Name: green, dtype: int64
```

```
In [21]:
flags['blue'].value_counts()
Out[21]:
1
     99
     95
Name: blue, dtype: int64
In [22]:
flags['gold'].value_counts()
Out[22]:
     103
0
      91
Name: gold, dtype: int64
In [23]:
flags['white'].value_counts()
Out[23]:
1
     146
      48
Name: white, dtype: int64
In [24]:
flags['black'].value_counts()
Out[24]:
     142
1
      52
Name: black, dtype: int64
In [25]:
flags['orange'].value_counts()
Out[25]:
0
     168
1
      26
Name: orange, dtype: int64
```

```
In [26]:
flags['dominantcolour'].value_counts()
Out[26]:
red
          71
blue
          40
green
          31
white
          22
gold
          19
black
           5
orange
           4
           2
brown
Name: dominantcolour, dtype: int64
In [27]:
flags['circles'].value_counts()
Out[27]:
     165
0
1
      27
4
       1
2
Name: circles, dtype: int64
In [28]:
flags['crosses'].value_counts()
Out[28]:
0
     167
1
      25
2
Name: crosses, dtype: int64
In [29]:
flags['saltires'].value_counts()
Out[29]:
0
     176
1
      18
Name: saltires, dtype: int64
In [30]:
flags['quarters'].value_counts()
Out[30]:
0
     168
1
      25
Name: quarters, dtype: int64
```

```
In [31]:
flags['sunstars'].value_counts()
Out[31]:
      114
0
1
       50
5
        7
2
        6
4
        5
        2
7
6
        2
3
        2
50
        1
22
        1
        1
15
14
        1
10
        1
        1
Name: sunstars, dtype: int64
In [32]:
flags['crescent'].value_counts()
Out[32]:
0
     183
1
      11
Name: crescent, dtype: int64
In [33]:
flags['triangle'].value_counts()
Out[33]:
0
     167
      27
Name: triangle, dtype: int64
In [34]:
flags['icon'].value_counts()
Out[34]:
0
     145
      49
Name: icon, dtype: int64
In [35]:
flags['animate'].value_counts()
Out[35]:
     155
      39
Name: animate, dtype: int64
```

```
In [36]:
flags['text'].value_counts()
Out[36]:
     178
1
      16
Name: text, dtype: int64
In [37]:
flags['topleftcolour'].value_counts()
Out[37]:
red
          56
blue
          43
          41
white
green
          32
black
          12
           6
gold
orange
           4
Name: topleftcolour, dtype: int64
In [38]:
flags['botrightcolor'].value_counts()
Out[38]:
red
          69
blue
          47
green
          40
white
          17
black
           9
           9
gold
           2
brown
orange
           1
Name: botrightcolor, dtype: int64
```

Data Visualization

In [57]:

Out[57]:

```
0
              Muslim
1
             Marxist
2
              Muslim
3
     Other Christian
            Catholic
4
5
              Ethnic
6
     Other Christian
7
     Other Christian
8
            Catholic
9
            Catholic
Name: religion1, dtype: category
Categories (8, object): [Catholic, Other Christian, Muslim, Buddhist, Hind
u, Ethnic, Marxist, Others]
```

In [58]:

```
flags['religion1'].value_counts().plot(kind='bar')
plt.title('Distribution of countries based on religion')
plt.xlabel('religion')
plt.ylabel('country count')
plt.show()
```


In [59]:

```
flags['bars'].value_counts().plot(kind='bar')
plt.title('Count of countries with different number of vertical bars')
plt.xlabel('No. of bars')
plt.ylabel('country count')
plt.show()
```


In [60]:

```
flags['stripes'].value_counts().plot(kind='bar')
plt.title('Distribution of countries based on number horizotal stripes')
plt.xlabel('No. of horizontal stripes')
plt.ylabel('country count')
plt.show()
```


In [81]:

```
flags['colours'].value_counts().plot(kind='bar')
plt.title('Distribution of countries based on number colours')
plt.xlabel('No. of colours')
plt.ylabel('country count')
plt.show()
```

Distribution of countries based on number colours 70 60 50 40 20 10 -

No. of colours

2

In [61]:

0

```
flags['red'].value_counts().plot(kind='bar')
plt.title('Distribution of countries based on presence or absence of red color')
plt.xlabel('Red color (present/absent)')
plt.ylabel('country count')
plt.show()
```


In [62]:

```
flags['green'].value_counts().plot(kind='bar')
plt.title('Distribution of countries based on presence or absence of green color')
plt.xlabel('green color (present/absent)')
plt.ylabel('country count')
plt.show()
```

Distribution of countries based on presence or absence of green color

In [63]:

```
flags['blue'].value_counts().plot(kind='bar')
plt.title('Distribution of countries based on presence or absence of blue color')
plt.xlabel('blue color (present/absent)')
plt.ylabel('country count')
plt.show()
```

Distribution of countries based on presence or absence of blue color

In [64]:

```
flags['gold'].value_counts().plot(kind='bar')
plt.title('Distribution of countries based on presence or absence of golden color')
plt.xlabel('golden color (present/absent)')
plt.ylabel('country count')
plt.show()
```

Distribution of countries based on presence or absence of golden color

In [65]:

```
flags['white'].value_counts().plot(kind='bar')
plt.title('Distribution of countries based on presence or absence of white color')
plt.xlabel('white color (present/absent)')
plt.ylabel('country count')
plt.show()
```

Distribution of countries based on presence or absence of white color

In [66]:

```
flags['black'].value_counts().plot(kind='bar')
plt.title('Distribution of countries based on presence or absence of black color')
plt.xlabel('black color (present/absent)')
plt.ylabel('country count')
plt.show()
```

Distribution of countries based on presence or absence of black color

In [67]:

```
flags['orange'].value_counts().plot(kind='bar')
plt.title('Distribution of countries based on presence or absence of orange/brown colo
r')
plt.xlabel('orange color (present/absent)')
plt.ylabel('country count')
plt.show()
```

Distribution of countries based on presence or absence of orange/brown color

In [68]:

```
flags['dominantcolour'].value_counts().plot(kind='bar')
plt.title('Distribution of countries based on dominant color')
plt.xlabel('dominant color')
plt.ylabel('country count')
plt.show()
```


In [69]:

```
flags['circles'].value_counts().plot(kind='bar')
plt.title('Distribution of countries based on number of circles')
plt.xlabel('No. of circles')
plt.ylabel('country count')
plt.show()
```


In [70]:

```
flags['crosses'].value_counts().plot(kind='bar')
plt.title('Distribution of countries based on number of upright crosses')
plt.xlabel('No. of upright crosses')
plt.ylabel('country count')
plt.show()
```

Distribution of countries based on number of upright crosses

In [71]:

```
flags['saltires'].value_counts().plot(kind='bar')
plt.title('Distribution of countries based on number of diagonal crosses')
plt.xlabel('No. of diagonal crosses')
plt.ylabel('country count')
plt.show()
```

Distribution of countries based on number of diagonal crosses

In [72]:

```
flags['quarters'].value_counts().plot(kind='bar')
plt.title('Distribution of countries based on number \n of quartered sections')
plt.xlabel('No. of quartered sections')
plt.ylabel('country count')
plt.show()
```

Distribution of countries based on number of quartered sections 160 - 140 - 120 - 100 - 1

In [73]:

```
flags['sunstars'].value_counts().plot(kind='bar')
plt.title('Distribution of countries based on number of \n sun/star symbols')
plt.xlabel('No. of sunstars')
plt.ylabel('country count')
plt.show()
```


In [74]:

```
flags['crescent'].value_counts().plot(kind='bar')
plt.title('Distribution of countries based on presence or absence \n of crescent moon s
ymbol')
plt.xlabel('Crescent moon symbol (present/absent)')
plt.ylabel('country count')
plt.show()
```

Distribution of countries based on presence or absence of crescent moon symbol

In [75]:

```
flags['triangle'].value_counts().plot(kind='bar')
plt.title('Distribution of countries based on presence or absence of triangle')
plt.xlabel('Triangle (present/absent)')
plt.ylabel('country count')
plt.show()
```

Distribution of countries based on presence or absence of triangle

In [76]:

```
flags['icon'].value_counts().plot(kind='bar')
plt.title('Distribution of countries based on presence or absence \n of inanimate objec
t symbol')
plt.xlabel('Inanimate object symbol (present/absent)')
plt.ylabel('country count')
plt.show()
```

Distribution of countries based on presence or absence of inanimate object symbol

In [77]:

```
flags['text'].value_counts().plot(kind='bar')
plt.title('Distribution of countries based on \n presence or absence of text on flag')
plt.xlabel('Text (present/absent)')
plt.ylabel('country count')
plt.show()
```


In [78]:

```
flags['topleftcolour'].value_counts().plot(kind='bar')
plt.title('Distribution of countries \n based on top-left color ')
plt.xlabel('top-left color')
plt.ylabel('country count')
plt.show()
```


In [79]:

```
flags['botrightcolor'].value_counts().plot(kind='bar')
plt.title('Distribution of countries based on bottom right color')
plt.xlabel('bottom right color')
plt.ylabel('country count')
plt.show()
```


Bivariate Relationships

In [80]:

```
print (flags.groupby(['religion1','bars']).size().unstack(fill_value=0))
plt.figure(figsize=(50,20))
#fig.set_size_inches(11.7, 8.27)
pd.crosstab(flags['religion1'], flags['bars']).plot.bar()
plt.title('Relationship between religion and \n no. of vertical bars in flag')
plt.xlabel('religion')
plt.ylabel('count')
plt.show()
```

bars	0	1	2	3	5
religion1					
Catholic	27	1	3	9	0
Other Christian	55	1	1	2	1
Muslim	29	2	1	4	0
Buddhist	7	0	1	0	0
Hindu	4	0	0	0	0
Ethnic	20	2	1	4	0
Marxist	13	0	0	2	0
Others	4	0	0	0	0

<matplotlib.figure.Figure at 0xdb83b00>

In [63]:

```
print (flags.groupby(['religion1','stripes']).size().unstack(fill_value=0))
plt.figure(figsize=(50,20))
#fig.set_size_inches(11.7, 8.27)
pd.crosstab(flags['religion1'], flags['stripes']).plot.bar()
plt.title('Relationship between religion and \n no. of stripes in flag')
plt.xlabel('religion')
plt.ylabel('count')
plt.show()
```

stripes	0	1	2	3	4	5	6	7	9	11	13	14
religion1												
Catholic	17	0	5	15	0	2	0	0	1	0	0	0
Other Christian	44	4	2	6	0	2	0	0	1	0	1	0
Muslim	20	0	3	12	0	0	0	0	0	0	0	1
Buddhist	6	0	1	0	0	1	0	0	0	0	0	0
Hindu	2	0	0	1	1	0	0	0	0	0	0	0
Ethnic	12	0	3	5	0	4	1	1	0	1	0	0
Marxist	7	0	1	5	0	2	0	0	0	0	0	0
Others	2	0	1	0	0	1	0	0	0	0	0	0

<matplotlib.figure.Figure at 0xe7da0b8>

In [64]:

```
print (flags.groupby(['religion1','colours']).size().unstack(fill_value=0))
plt.figure(figsize=(50,20))
#fig.set_size_inches(11.7, 8.27)
pd.crosstab(flags['religion1'], flags['colours']).plot.bar()
plt.title('Relationship between religion and \n no. of colours in flag')
plt.xlabel('religion')
plt.ylabel('count')
plt.show()
```

colours	1	2	3	4	5	6	7	8
religion1								
Catholic	0	11	19	5	3	1	1	0
Other Christian	0	9	25	8	5	7	5	1
Muslim	1	13	8	13	1	0	0	0
Buddhist	0	2	3	2	0	1	0	0
Hindu	0	0	1	2	1	0	0	0
Ethnic	0	1	11	11	4	0	0	0
Marxist	0	4	8	1	1	0	1	0
Others	0	2	0	2	0	0	0	0

<matplotlib.figure.Figure at 0xe2df470>

In [65]:

```
print (flags.groupby(['religion1','red']).size().unstack(fill_value=0))
plt.figure(figsize=(50,20))
#fig.set_size_inches(11.7, 8.27)
pd.crosstab(flags['religion1'], flags['red']).plot.bar()
plt.title('Relationship between religion and presence or \n absence of red colour in flag')
plt.xlabel('religion')
plt.ylabel('count')
plt.show()
```

red	0	1
religion1		
Catholic	10	30
Other Christian	14	46
Muslim	9	27
Buddhist	1	7
Hindu	2	2
Ethnic	4	23
Marxist	0	15
Others	1	3

<matplotlib.figure.Figure at 0xdd61ba8>

In [66]:

```
print (flags.groupby(['religion1','green']).size().unstack(fill_value=0))
plt.figure(figsize=(50,20))
#fig.set_size_inches(11.7, 8.27)
pd.crosstab(flags['religion1'], flags['green']).plot.bar()
plt.title('Relationship of religion with presence \n or absence of green colour in flage')
plt.xlabel('religion')
plt.ylabel('count')
plt.show()
```

0	1
30	10
35	25
10	26
6	2
1	3
6	21
12	3
3	1
	35 10 6 1 6

<matplotlib.figure.Figure at 0xd0c2550>

In [67]:

```
print (flags.groupby(['religion1','blue']).size().unstack(fill_value=0))
plt.figure(figsize=(50,20))
#fig.set_size_inches(11.7, 8.27)
pd.crosstab(flags['religion1'], flags['blue']).plot.bar()
plt.title('Relationship of religion with \n presence or absence of blue colour in flag'
)
plt.xlabel('religion')
plt.ylabel('count')
plt.show()
```

0	1
14	26
18	42
32	4
4	4
1	3
17	10
7	8
2	2
	18 32 4 1 17 7

<matplotlib.figure.Figure at 0xcc0ad30>

In [68]:

```
print (flags.groupby(['religion1','gold']).size().unstack(fill_value=0))
plt.figure(figsize=(50,20))
#fig.set_size_inches(11.7, 8.27)
pd.crosstab(flags['religion1'], flags['gold']).plot.bar()
plt.title('Relationship of religion with \n presence or absence of golden colour in fla
g')
plt.xlabel('religion')
plt.ylabel('count')
plt.show()
```

0	1
22	18
25	35
28	8
5	3
2	2
12	15
6	9
3	1
	25 28 5 2 12 6

<matplotlib.figure.Figure at 0xcd06e48>

In [69]:

```
print (flags.groupby(['religion1','white']).size().unstack(fill_value=0))
plt.figure(figsize=(50,20))
#fig.set_size_inches(11.7, 8.27)
pd.crosstab(flags['religion1'], flags['white']).plot.bar()
plt.title('Relationship of religion with \n presence or absence of white colour in flag')
plt.xlabel('religion')
plt.ylabel('count')
plt.show()
```

white	0	1
religion1		
Catholic	10	30
Other Christian	9	51
Muslim	7	29
Buddhist	2	6
Hindu	1	3
Ethnic	13	14
Marxist	6	9
Others	0	4

<matplotlib.figure.Figure at 0xed923c8>

In [70]:

```
print (flags.groupby(['religion1','black']).size().unstack(fill_value=0))
plt.figure(figsize=(50,20))
#fig.set_size_inches(11.7, 8.27)
pd.crosstab(flags['religion1'], flags['black']).plot.bar()
plt.title('Relationship of religion with \n presence or absence of black colour in fla
g')
plt.xlabel('religion')
plt.ylabel('count')
plt.show()
```

0	1
31	9
46	14
25	11
7	1
3	1
14	13
13	2
3	1
	46 25 7 3 14 13

<matplotlib.figure.Figure at 0xec4c358>

In [71]:

```
print (flags.groupby(['religion1','orange']).size().unstack(fill_value=0))
plt.figure(figsize=(50,20))
#fig.set_size_inches(11.7, 8.27)
pd.crosstab(flags['religion1'], flags['orange']).plot.bar()
plt.title('Relationship of religion with \n presence or absence of orange colour in fla
g')
plt.xlabel('religion')
plt.ylabel('count')
plt.show()
```

orange	0	1
religion1		
Catholic	36	4
Other Christian	49	11
Muslim	33	3
Buddhist	5	3
Hindu	2	2
Ethnic	25	2
Marxist	14	1
Others	4	0

<matplotlib.figure.Figure at 0xec60d30>

In [72]:

```
print (flags.groupby(['religion1','circles']).size().unstack(fill_value=0))
plt.figure(figsize=(50,20))
#fig.set_size_inches(11.7, 8.27)
pd.crosstab(flags['religion1'], flags['circles']).plot.bar()
plt.title('Relationship between religion and \n no. of circles in flag')
plt.xlabel('religion')
plt.ylabel('count')
plt.show()
```

circles	0	1	2	4
religion1				
Catholic	36	4	0	0
Other Christian	51	9	0	0
Muslim	33	3	0	0
Buddhist	5	2	0	1
Hindu	3	1	0	0
Ethnic	23	4	0	0
Marxist	12	2	1	0
Others	2	2	0	0

<matplotlib.figure.Figure at 0xea33c50>

In [73]:

```
print (flags.groupby(['religion1','crosses']).size().unstack(fill_value=0))
plt.figure(figsize=(50,20))
#fig.set_size_inches(11.7, 8.27)
pd.crosstab(flags['religion1'], flags['crosses']).plot.bar()
plt.title('Relationship between religion with \n no. of crosses in flag')
plt.xlabel('religion')
plt.ylabel('count')
plt.show()
```

0	1	2
38	2	0
36	22	2
36	0	0
7	1	0
4	0	0
27	0	0
15	0	0
4	0	0
	36 36 7 4 27 15	38 2 36 22 36 0 7 1 4 0 27 0 15 0

<matplotlib.figure.Figure at 0xdcd81d0>

In [74]:

```
print (flags.groupby(['religion1','saltires']).size().unstack(fill_value=0))
plt.figure(figsize=(50,20))
#fig.set_size_inches(11.7, 8.27)
pd.crosstab(flags['religion1'], flags['saltires']).plot.bar()
plt.title('Relationship between religion with \n no. of saltires in flag')
plt.xlabel('religion')
plt.ylabel('count')
plt.show()
```

saltires	0	1
religion1		
Catholic	40	0
Other Christian	44	16
Muslim	36	0
Buddhist	7	1
Hindu	4	0
Ethnic	26	1
Marxist	15	0
Others	4	0

<matplotlib.figure.Figure at 0xe1b3320>

In [75]:

```
print (flags.groupby(['religion1','quarters']).size().unstack(fill_value=0))
plt.figure(figsize=(50,20))
#fig.set_size_inches(11.7, 8.27)
pd.crosstab(flags['religion1'], flags['quarters']).plot.bar()
plt.title('Relationship between religion with \n no. of quarters in flag')
plt.xlabel('religion')
plt.ylabel('count')
plt.show()
```

0	1	4
37	2	1
43	17	0
35	1	0
5	3	0
4	0	0
26	1	0
15	0	0
3	1	0
	43 35 5 4 26 15	37 2 43 17 35 1 5 3 4 0 26 1 15 0

<matplotlib.figure.Figure at 0xe587898>

In [76]:

```
print (flags.groupby(['religion1','sunstars']).size().unstack(fill_value=0))
plt.figure(figsize=(50,20))
#fig.set_size_inches(11.7, 8.27)
pd.crosstab(flags['religion1'], flags['sunstars']).plot.bar(stacked=True)
plt.title('Relationship between religion with \n no. of sunstars in flag')
plt.xlabel('religion')
plt.ylabel('count')
plt.show()
```

sunstars	0	1	2	3	4	5	6	7	9	10	14	15	22	50
religion1														
Catholic	27	7	2	0	1	1	0	1	0	0	0	0	1	0
Other Christian	40	6	1	0	3	3	2	1	1	1	0	1	0	1
Muslim	19	14	1	1	1	0	0	0	0	0	0	0	0	0
Buddhist	5	1	0	0	0	1	0	0	0	0	1	0	0	0
Hindu	3	0	1	0	0	0	0	0	0	0	0	0	0	0
Ethnic	14	11	0	1	0	1	0	0	0	0	0	0	0	0
Marxist	5	8	1	0	0	1	0	0	0	0	0	0	0	0
Others	1	3	0	0	0	0	0	0	0	0	0	0	0	0

<matplotlib.figure.Figure at 0xdbed400>

In [77]:

```
print (flags.groupby(['religion1','crescent']).size().unstack(fill_value=0))
plt.figure(figsize=(50,20))
#fig.set_size_inches(11.7, 8.27)
pd.crosstab(flags['religion1'], flags['crescent']).plot.bar()
plt.title('Relationship of religion with \n presence or absence of crescents in flag')
plt.xlabel('religion')
plt.ylabel('count')
plt.show()
```

0	1
40	0
60	0
28	8
7	1
3	1
27	0
14	1
4	0
	60 28 7 3 27

<matplotlib.figure.Figure at 0xe2f2320>

In [78]:

```
print (flags.groupby(['religion1','triangle']).size().unstack(fill_value=0))
plt.figure(figsize=(50,20))
#fig.set_size_inches(11.7, 8.27)
pd.crosstab(flags['religion1'], flags['triangle']).plot.bar()
plt.title('Relationship of religion with \n presence or absence of triangles in flag')
plt.xlabel('religion')
plt.ylabel('count')
plt.show()
```

triangle	0	1
religion1		
Catholic	37	3
Other Christian	50	10
Muslim	31	5
Buddhist	8	0
Hindu	3	1
Ethnic	22	5
Marxist	12	3
Others	4	0

<matplotlib.figure.Figure at 0xe563ef0>

In [79]:

```
print (flags.groupby(['religion1','icon']).size().unstack(fill_value=0))
plt.figure(figsize=(50,20))
#fig.set_size_inches(11.7, 8.27)
pd.crosstab(flags['religion1'], flags['icon']).plot.bar()
plt.title('Relationship of religion with \n presence or absence of icons in flag')
plt.xlabel('religion')
plt.ylabel('count')
plt.show()
```

icon	0	1
religion1		
Catholic	33	7
Other Christian	41	19
Muslim	31	5
Buddhist	4	4
Hindu	3	1
Ethnic	20	7
Marxist	10	5
Others	3	1

<matplotlib.figure.Figure at 0xe2f2780>

In [80]:

```
print (flags.groupby(['religion1','animate']).size().unstack(fill_value=0))
plt.figure(figsize=(50,20))
#fig.set_size_inches(11.7, 8.27)
pd.crosstab(flags['religion1'], flags['animate']).plot.bar()
plt.title('Relationship of religion with \n presence or absence of animate objects in f
lag')
plt.xlabel('religion')
plt.ylabel('count')
plt.show()
```

animate	0	1
religion1		
Catholic	36	4
Other Christian	41	19
Muslim	33	3
Buddhist	4	4
Hindu	4	0
Ethnic	21	6
Marxist	12	3
Others	4	0

<matplotlib.figure.Figure at 0x98dd048>

In [81]:

```
print (flags.groupby(['religion1','text']).size().unstack(fill_value=0))
plt.figure(figsize=(50,20))
#fig.set_size_inches(11.7, 8.27)
pd.crosstab(flags['religion1'], flags['text']).plot.bar()
plt.title('Relationship of religion with \n presence or absence of text in flag')
plt.xlabel('religion')
plt.ylabel('count')
plt.show()
```

text	0	1
religion1		
Catholic	38	2
Other Christian	53	7
Muslim	32	4
Buddhist	7	1
Hindu	4	0
Ethnic	26	1
Marxist	14	1
Others	4	0

<matplotlib.figure.Figure at 0xdeef6a0>

In [82]:

```
print (flags.groupby(['religion1','topleftcolour']).size().unstack(fill_value=0))
plt.figure(figsize=(50,20))
#fig.set_size_inches(11.7, 8.27)
pd.crosstab(flags['religion1'], flags['topleftcolour']).plot.bar()
plt.title('Relationship of religion with \n top left colour in flag')
plt.xlabel('religion')
plt.ylabel('count')
plt.show()
```

topleftcolour religion1	black	blue	gold	green	orange	red	white
Catholic	2	14	4	6	0	10	4
Other Christian	3	15	1	5	1	10	25
Muslim	2	2	0	11	1	15	5
Buddhist	0	2	1	0	1	3	1
Hindu	1	1	0	0	1	1	0
Ethnic	3	4	0	10	0	9	1
Marxist	1	4	0	0	0	7	3
Others	0	1	0	0	0	1	2

<matplotlib.figure.Figure at 0xebd98d0>

In [83]:

```
print (flags.groupby(['religion1','botrightcolor']).size().unstack(fill_value=0))
plt.figure(figsize=(50,20))
#fig.set_size_inches(11.7, 8.27)
pd.crosstab(flags['religion1'], flags['botrightcolor']).plot.bar()
plt.title('Relationship of religion with \n bottom right colour in flag')
plt.xlabel('religion')
plt.ylabel('count')
plt.show()
```

botrightcolor religion1	black	blue	brown	gold	green	orange	red	white
Catholic	0	11	0	0	4	1	20	4
Other Christian	0	25	0	4	7	0	18	6
Muslim	7	1	1	1	13	0	10	3
Buddhist	0	1	0	1	0	0	5	1
Hindu	0	1	0	0	3	0	0	0
Ethnic	2	5	1	2	11	0	5	1
Marxist	0	2	0	1	1	0	11	0
Others	0	1	0	0	1	0	0	2

<matplotlib.figure.Figure at 0xcc1c908>

In [84]:

```
print (flags.groupby(['religion1','dominantcolour']).size().unstack(fill_value=0))
plt.figure(figsize=(50,20))
#fig.set_size_inches(11.7, 8.27)
pd.crosstab(flags['religion1'], flags['dominantcolour']).plot.bar()
plt.title('Relationship of religion with \n dominant colour in flag')
plt.xlabel('religion')
plt.ylabel('count')
plt.show()
```

dominantcolour religion1	black	blue	brown	gold	green	orange	red	white
Catholic	1	9	0	6	3	0	15	6
Other Christian	1	24	0	3	6	1	16	9
Muslim	2	2	1	3	12	1	15	0
Buddhist	0	1	0	1	0	1	4	1
Hindu	0	0	1	0	1	1	1	0
Ethnic	1	2	0	5	8	0	10	1
Marxist	0	2	0	1	0	0	10	2
Others	0	0	0	0	1	0	0	3

<matplotlib.figure.Figure at 0xdc62780>

In [85]:

```
from pandas.plotting import scatter_matrix
pd.plotting.scatter_matrix

scatter_matrix(flags,alpha=0.2,figsize=(32,32),diagonal='hist')
plt.show()
```


In [86]:

In [87]:

```
flags.replace(cleanup_nums, inplace=True)
flags.head(2)
```

Out[87]:

	religion	bars	stripes	colours	red	green	blue	gold	white	black	•••	quarters	sunst
0	2	0	3	5	1	1	0	1	1	1		0	
1	6	0	0	3	1	0	0	1	0	1		0	

2 rows × 25 columns

In [88]:

```
flags = pd.concat([flags, pd.get_dummies(flags['topleftcolour'], prefix = 'topleft')],
axis=1)
del flags['topleftcolour']
```

In [89]:

```
flags = pd.concat([flags, pd.get_dummies(flags['botrightcolor'], prefix = 'botright')],
axis=1)
del flags['botrightcolor']
```

In [90]:

```
flags = pd.concat([flags, pd.get_dummies(flags['dominantcolour'], prefix = 'dom')], axi
s=1)
del flags['dominantcolour']
```

In [91]:

```
flags.head(2)
```

Out[91]:

	religion	bars	stripes	colours	red	green	blue	gold	white	black	 botright_7	botr
0	2	0	3	5	1	1	0	1	1	1	 0	
1	6	0	0	3	1	0	0	1	0	1	 0	

2 rows × 45 columns

```
In [92]:
```

flags['religion'].astype('category')

Out[92]:

```
192 5
193 5
Name: religion, Length: 194, dtype: category
Categories (8, int64): [0, 1, 2, 3, 4, 5, 6, 7]
```

In [93]:

```
flags.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 194 entries, 0 to 193
Data columns (total 45 columns):
religion
              194 non-null object
              194 non-null int64
bars
stripes
              194 non-null int64
colours
              194 non-null int64
red
              194 non-null int64
green
              194 non-null int64
              194 non-null int64
blue
gold
              194 non-null int64
              194 non-null int64
white
black
              194 non-null int64
              194 non-null int64
orange
              194 non-null int64
circles
              194 non-null int64
crosses
saltires
              194 non-null int64
quarters
              194 non-null int64
sunstars
              194 non-null int64
crescent
              194 non-null int64
              194 non-null int64
triangle
icon
              194 non-null int64
animate
              194 non-null int64
text
              194 non-null int64
religion1
              194 non-null category
topleft 1
              194 non-null uint8
              194 non-null uint8
topleft_2
topleft_3
              194 non-null uint8
              194 non-null uint8
topleft_4
topleft_5
              194 non-null uint8
topleft 6
              194 non-null uint8
topleft 7
              194 non-null uint8
              194 non-null uint8
botright 1
botright 2
              194 non-null uint8
              194 non-null uint8
botright_3
              194 non-null uint8
botright 4
botright 5
              194 non-null uint8
              194 non-null uint8
botright 6
              194 non-null uint8
botright_7
botright 8
              194 non-null uint8
dom_1
              194 non-null uint8
dom 2
              194 non-null uint8
dom 3
              194 non-null uint8
dom 4
              194 non-null uint8
dom 5
              194 non-null uint8
dom 6
              194 non-null uint8
dom_7
              194 non-null uint8
dom 8
              194 non-null uint8
dtypes: category(1), int64(20), object(1), uint8(23)
memory usage: 36.8+ KB
```

```
In [94]:
```

```
import csv
flags.to_csv(path_or_buf=path+"/part1.csv", sep=';')
```