TRƯỜNG ĐẠI HỌC GIAO THÔNG VẬN TẢI Khoa Cơ Khí-Bộ môn Kỹ thuật máy

-----&&O&&------

ROBOT CÔNG NGHIỆP

CHƯƠNG 3 ĐỘNG HỌC ROBOT (3.1. Động học thuận)

3.1.1. TỔNG QUAN

- Để mô tả Robot ta đặt lên mỗi khâu của Robot 1 hệ quy chiếu và sử dụng các phép biến đổi thuần nhất để mô tả vị trí tương đối và hướng của các hệ quy chiếu.
- Denavit đã gọi biến đổi thuần nhất mô tả quan hệ giữa khâu i và khâu liền kề trước khâu đó i-1 là 1 ma trận i-1 T
- Như vậy ta có thể mô tả vị trí và hướng của 1 khâu bất kỳ *i* trong hệ quy chiếu gốc:

$${}_{i}^{0}T = {}_{1}^{0}T {}_{2}^{1}T ... {}_{i-1}^{i-2}T {}_{i}^{i-1}T$$

3.1.1. TỔNG QUAN

- Khi nghiên cứu về động học Robot ta thường chú ý đến vị trí và hướng của khâu cuối cùng (bàn tay máy, mỏ kẹp, tay kẹp).
- Xét bàn tay máy của Robot gồm *n* khâu, bàn tay máy được mô tả bởi:
 - Hệ quy chiếu có gốc $^{0}P_{norg} = \begin{bmatrix} p_{x} & p_{y} & p_{z} \end{bmatrix}^{T}$ $^{0}P_{norg}$ đặt ở điểm giữa các ngón tay.
 - Ba vector đơn vị mô tả hướng của bàn tay máy:
 - * Vector tiếp cận đến đối tượng \vec{a}
 - Vector cầm nắm đối tượng o
 - Vector pháp tuyến $\vec{n} = \vec{o} \times \vec{a}$
 - Ma trận biến đổi thuần nhất mô tả bàn tay máy trong hệ tọa độ gốc:

$${}_{n}^{0}T = \begin{bmatrix} n_{x} & o_{x} & a_{x} & p_{x} \\ n_{y} & o_{y} & a_{y} & p_{y} \\ n_{z} & o_{z} & a_{z} & p_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} & {}^{0}R & \vdots & {}^{0}P_{norg} \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \vdots & 1 \end{bmatrix}$$

- DH = Denavit-Hartenberg
- Khâu bất kỳ luôn được đặc trưng bởi hai kích thước:
 - \rightarrow Độ dài pháp tuyến chung: a_i
 - Góc giữa các trục trong mặt phẳng vuông góc với a_i: α_i

Người ta thường gọi:

 a_i là chiều dài

 α_i là góc xoắn của khâu.

- Vị trí tương đối của 2 khâu được xác định bởi:
 - d_i là khoảng cách giữa các pháp tuyến chung đo dọc theo trục khớp i
 - θ_i là góc giữa các pháp tuyến chung trong mặt phẳng vuông góc với trục,

Người ta thường gọi:

 d_i là khoảng cách giữa các khâu.

 θ_i là góc giữa các khâu.

- Nguyên tắc gắn hệ quy chiếu vào mỗi khâu:
 - > **Trục** Z_i của hệ quy chiếu gắn lên khâu thứ i đặt dọc theo trục khớp thứ i.
 - Gốc của hệ quy chiếu gắn lên khâu thứ i đặt tại giao điểm của pháp tuyến chung a_i với trục khớp thứ i, chú ý:
 - Gốc tọa độ đặt tại điểm cắt khi 2 trục cắt nhau,
 - Gốc tọa độ chọn thích hợp khi các trục khớp song song với nhau

- Trục X_i được đặt dọc theo pháp tuyến chung và hướng từ khớp i đến i+1. Trường hợp các trục khớp cắt nhau thì trục X_i chọn theo tích vector $X_i = Z_i \times Z_{i+1}$
- > Trục Y_i còn lại xác định theo quy tắc bàn tay phải.

- Trường hợp khớp quay thì θ_i là các biển khớp,
- Trường hợp khớp tịnh tiến thì d_i là biến khớp và $a_i = 0$.
- Bộ thông số a_i , a_i , d_i , và θ_i được gọi là bộ thông số Denavit-Hartenberg (DH) được xác định chi tiết như sau:
 - $\rightarrow a_{i-1}$: khoảng cách từ trục Z_{i-1} đến trục Z_i đo dọc theo trục X_{i-1} ;
 - trục Z_i xác định theo trục X_{i-1} ;

- \rightarrow d_i : khoảng cách từ trục X_{i-1} đến trục X_i đo dọc theo trục Z_i ;
- $> \alpha_{i-1}$: góc giữa trục Z_{i-1} và $> \theta_i$: góc giữa trục X_{i-1} và trục X_i xác định theo trục Z_i ;

 Ví dụ: Xác định bộ thông số DH của Robot Scara có 4 khâu

• Giải:

- Đây là Robot có cấu hình kiểu RRTR, bàn tay có chuyển động xoay quanh trục đứng.
- Đối với tay máy có các trục khớp đều song song với nhau, chọn các gốc của hệ quy chiếu tại tâm của các trục khớp.
- Các hệ quy chiếu gắn lên các khâu. Ta có bảng thông số DH của Robot Scara:

		X_1 X_1	X ₂	d_4 Z_3	
<u></u>	Lı	Z_0	<i>a</i> ₁ → X ₀		X_4 Z_4 X_4
	i	α_{i-1}	a_{i-1}	d_{i}	θ_{i}
	1	0	0	L_1	θ_1
	2	0	a_1	0	θ_2
	3	180^{0}	a_2	d_3	0

()

()

3.1.3. ĐẶC TRƯNG MTBĐTN TRONG RB

- MTBĐTN = Ma Trận Biến Đối Thuần Nhất.
- Khi đã đặt các hệ quy chiếu lên các khâu của của Robot, ta có thể thiết lập mối quan hệ giữa các hệ quy chiếu liên tiếp nhau bởi MTBĐTN như sau:
 - > Quay quanh trục X_{i-1} một góc xoắn α_{i-1}
 - > Tịnh tiến dọc trục X_{i-1} một đoạn a_{i-1}
 - > Quay quanh trục $Z_{\rm i}$ một góc $\theta_{\rm i}$
 - Tịnh tiến dọc trục Z_i một đoạn d_i

3.1.3. ĐẶC TRƯNG MTBĐTN TRONG RB

Ta có thể viết bằng biểu thức toán như sau:

$$_{i}^{i-1}T = Rot(X, \alpha_{i-1}) Trans(a_{i-1}, 0, 0) Rot(Z, \theta_{i}) Trans(0, 0, d_{i})$$

Trong đó:

$$Trans\left(a_{i-1},0,0\right) = \begin{bmatrix} 1 & 0 & 0 & a_{i-1} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}; \ Rot\left(X,\alpha_{i-1}\right) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & c\alpha_{i-1} & -s\alpha_{i-1} & 0 \\ 0 & s\alpha_{i-1} & c\alpha_{i-1} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$Rot(Z, \theta_i) = \begin{bmatrix} c\theta_i & -s\theta_i & 0 & 0 \\ s\theta_i & c\theta_i & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}; Trans(0, 0, d_i) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix};$$

Biến đổi biểu thức trên, ta có:

3.1.3. ĐẶC TRƯNG MTBĐTN TRONG RB

• Tham khảo Code Matlab tính $_{i}^{i-1}T$:

syms alpha theta a d
RotX=[1 0 0 0; 0 cos(alpha) -sin(alpha) 0; 0 sin(alpha) cos(alpha) 0; 0 0 0 1];
RotZ=[cos(theta) -sin(theta) 0 0; sin(theta) cos(theta) 0 0; 0 0 1 0; 0 0 0 1];
TransX=[1 0 0 a; 0 1 0 0; 0 0 1 d; 0 0 0 1];
TransZ=[1 0 0 0; 0 1 0 0; 0 0 1 d; 0 0 0 1];
T= RotX*TransX*RotZ*TransZ;

- Thông thường, đối với một khâu thông số a_{i-1} và α_{i-1} đều đã biết, các khớp liên kết giữa các khâu của Robot hoặc là khớp quay hoặc là khớp tịnh tiến nên MTBĐTN là hàm một biến.
 - Nếu là khớp quay thì MTBĐTN là hàm của góc quay θ_i ,
 - Nếu là khớp tịnh tiến thì MTBĐTN là hàm của d_i .

20/08/2011

3.1.4. MTBĐTN MÔ TẢ BÀN TAY MÁY

Khi ta đã biết hết các MTBĐTN của các hệ quy chiếu gắn trên các khâu của Robot thì ta xác định MTBĐTN của bàn tay máy như sau:

$$_{T}^{0}T = _{1}^{0}T_{2}^{1}T..._{n}^{n-1}T_{T}^{n}T$$

Trong đó:

n là số khâu của Robot

T là hệ quy chiếu gắn lên bàn tay máy

0 là hệ quy chiếu gốc của Robot

Trong trường hợp tổng quát, khi xét quan hệ của Robot so với các thiết bị khác. Giả sử đã biết ^R_BT, ^T_GT và ^R_GT

thì $_{T}^{B}T$ xác định như sau:

$${}_{G}^{R}T = {}_{B}^{R}T {}_{T}^{B}T {}_{G}^{T}T \Longrightarrow {}_{T}^{B}T = {}_{B}^{R}T^{-1} {}_{G}^{R}T {}_{G}^{T}T^{-1}$$

1. Chọn hệ quy chiếu cơ sở, gắn các hệ quy chiếu suy rộng lên các khâu:

- Giả định một vị trí ban đầu của Robot
- > Chọn các trục Z_i cùng phương với trục của khớp thứ i
- Chọn trục X_i là trục quay của Z_i thành Z_{i+1} (X_i trùng phương với đường vuông góc chung của Z_i và Z_{i+1} , hướng từ Z_i sang Z_{i+1}) và góc của Z_i với Z_{i+1} là α_i . Nếu Z_i và Z_{i+1} song song hoặc trùng nhau thì có thể căn cứ vào nguyên tắc chung hay chọn X_i theo X_{i+1} hoặc X_{i-1} . Nếu Z_i và Z_{i+1} cắt nhau, chọn X_i vuông góc với mặt phẳng tạo bởi Z_i và Z_{i+1} và đi qua giao điểm của Z_i và Z_{i+1}
- Các hệ quy chiếu phải tuân theo quy tắc bàn tay phải
- Khi gắn hệ quy chiếu lên các khâu, phải tuân theo các phép biến đổi của MTBĐTN

$$_{i}^{i-1}T = Rot(X, \alpha_{i-1}) Trans(a_{i-1}, 0, 0) Rot(Z, \theta_{i}) Trans(0, 0, d_{i})$$

2. Lập bảng thông số DH

i	α_{i-1}	a_{i-1}	d_i	$ heta_i$
1	• • •	• • •	• • •	• • •
2	• • •	• • •	• • •	• • •
3	• • •	• • •	•••	• • •
• • •	• • •	• • •	• • •	• • •

- 3. Dựa vào các thông số DH xác định MTBĐTN của từng khâu $_i^{i-1}T$
- 4. Tính các MTBĐTN $_i^0T$ biểu diễn vị trí và hướng của các khâu so với hệ quy chiếu gốc.

 Ví dụ: Thiết lập phương trình động học của Robot 3 khâu cấu hình RRP

• Giải:

- a. Gắn hệ quy chiếu lên các khâu:
- * Giả định vị trí ban đầu và chọn các trục Z_i đặt cùng phương với các trục khớp.
- Chọn hệ quy chiếu gắn trên khâu 1
- Chọn hệ quy chiếu gắn trên khâu 2
- Chọn hệ quy chiếu gắn trên khâu 3
- Chọn hệ quy chiếu gắn trên khâu bàn tay máy
- Chọn hệ quy chiếu cố định

Giải:

b. Lập bảng thông số DH

i	α_{i-1}	a_{i-1}	d_i	θ_{i}
1	0	0	L_1	$ heta_1$
2	90^{0}	0	0	$90^0 + \theta_2$
3	90^{0}	0	L_2+d_3	0
4	0	0	L_3	-90 ⁰

> c. Xác định các MTBĐTN của từng khâu

$${}_{1}^{0}T = \begin{bmatrix} c\theta_{1} & -s\theta_{1} & 0 & 0\\ s\theta_{1} & c\theta_{1} & 0 & 0\\ 0 & 0 & 1 & L_{1}\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{1}^{0}T = \begin{bmatrix} c\theta_{1} & -s\theta_{1} & 0 & 0 \\ s\theta_{1} & c\theta_{1} & 0 & 0 \\ 0 & 0 & 1 & L_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{2}^{1}T = \begin{bmatrix} -s\theta_{2} & -c\theta_{2} & 0 & 0 \\ 0 & 0 & -1 & 0 \\ c\theta_{2} & -s\theta_{2} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{3}^{2}T = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & -(L_{2} + d_{3}) \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{4}^{3}T = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & L_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{3}^{2}T = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & -(L_{2} + d_{3}) \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{4}^{3}T = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & L_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• Giải:

> Tính các MTBĐTN của từng khâu so với hệ quy chiếu gốc

$$T_{1} = {}^{0}_{1}T = \begin{bmatrix} c\theta_{1} & -s\theta_{1} & 0 & 0 \\ s\theta_{1} & c\theta_{1} & 0 & 0 \\ 0 & 0 & 1 & L_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad T_{2} = {}^{0}_{2}T = {}^{0}_{1}T \cdot {}^{1}_{2}T = \begin{bmatrix} -c\theta_{1}s\theta_{2} & -c\theta_{1}c\theta_{2} & s\theta_{1} & 0 \\ -s\theta_{1}s\theta_{2} & -s\theta_{1}c\theta_{2} & -c\theta_{1} & 0 \\ c\theta_{2} & -s\theta_{2} & 0 & L_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_{3} = {}_{3}^{0}T = {}_{1}^{0}T \cdot {}_{2}^{1}T \cdot {}_{3}^{2}T = \begin{bmatrix} -c\theta_{1}s\theta_{2} & s\theta_{1} & c\theta_{1}c\theta_{2} & (L_{2}+d_{3})c\theta_{1}c\theta_{2} \\ -s\theta_{1}s\theta_{2} & -c\theta_{1} & s\theta_{1}c\theta_{2} & (L_{2}+d_{3})s\theta_{1}c\theta_{2} \\ c\theta_{2} & 0 & s\theta_{2} & L_{1}+(L_{2}+d_{3})s\theta_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_{4} = {}_{4}^{0}T = {}_{1}^{0}T \cdot {}_{2}^{1}T \cdot {}_{3}^{2}T \cdot {}_{4}^{3}T = \begin{bmatrix} -s\theta_{1} & -c\theta_{1}s\theta_{2} & c\theta_{1}c\theta_{2} & (L_{2}+d_{3}+L_{3})c\theta_{1}c\theta_{2} \\ c\theta_{1} & -s\theta_{1}s\theta_{2} & s\theta_{1}c\theta_{2} & (L_{2}+d_{3}+L_{3})s\theta_{1}c\theta_{2} \\ 0 & c\theta_{2} & s\theta_{2} & L_{1}+(L_{2}+d_{3}+L_{3})s\theta_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• Giải:

Cân bằng các hệ số của ⁰₄T với các hệ số mô tả vị trí và hướng của bàn tay Robot, ta có hệ PTĐH của Robot RRT:

$$\begin{bmatrix} n_x & o_x & a_x & p_x \\ n_y & o_y & a_y & p_y \\ n_z & o_z & a_z & p_z \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -s\theta_1 & -c\theta_1 s\theta_2 & c\theta_1 c\theta_2 & (L_2 + d_3 + L_3)c\theta_1 c\theta_2 \\ c\theta_1 & -s\theta_1 s\theta_2 & s\theta_1 c\theta_2 & (L_2 + d_3 + L_3)s\theta_1 c\theta_2 \\ 0 & c\theta_2 & s\theta_2 & L_1 + (L_2 + d_3 + L_3)s\theta_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Tham khảo Code Matlab thiết lập hệ PTĐH Robot RRT

```
clc; clear all;

syms t1 t2 d3 L1 L2 L3

T01=[cos(t1) -sin(t1) 0 0; sin(t1) cos(t1) 0 0; 0 0 1 L1; 0 0 0 1];

T12=[-sin(t2) -cos(t2) 0 0; 0 0 -1 0; cos(t2) -sin(t2) 0 0; 0 0 0 1];

T23=[1 0 0 0; 0 0 -1 -(L2+d3); 0 1 0 0; 0 0 0 1];

T34=[0 1 0 0; -1 0 0 0; 0 0 1 L3; 0 0 0 1];

T01; T02=T01*T12; T03=T02*T23; T04=T03*T34
```

3.1.6. KÉT LUÂN

- Trong chương này chúng ta đã nghiên cứu việc sử dụng các phép BĐTN để mô tả vị trí và hướng của khâu chấp hành cuối của Robot thông qua viếc xác lập các hệ quy chiếu gắn lên các khâu và các thông số DH.
- Phương pháp này có thể dùng cho bất cứ Robot nào với số khâu (khớp) tùy ý.
- Việc tính toán các MTBĐTN để thiết lập hệ PTĐH của Robot thường tốn nhiều thời gian và dễ nhầm lẫn nên ta có thể ứng dụng máy tính để lập trình tính toán các MTBĐTN và thiết lập hệ PTĐH của Robot.
- Thiết lập hệ PTĐH của Robot là bước rất quan trọng để có thể dựa vào đó lập trình điều khiển Robot. Bài toán này gọi là bài toán động học thuận.

20/08/2011

TRƯỜNG ĐẠI HỌC GIAO THÔNG VẬN TẢI Khoa Cơ Khí-Bộ môn Kỹ thuật máy

-----&&O&&------

ĐIỀU KHIỂN ROBOT

CHƯƠNG 3 ĐỘNG HỌC ROBOT (3.2. Động học ngược)

3.2.1. TỔNG QUAN

- Giải bài toán động học ngược (ĐHN) là giải hệ phương trình động học nhằm xác định các biến trong bộ thông số DH khi biết được vị trí và hướng của khâu chấp hành cuối của Robot.
- Nhiệm vụ của bài toán là xác định tập nghiệm (θ_i,d_i) khi đã biết vị trí và hướng khâu chấp hành cuối của Robot.

$$\begin{bmatrix} n_{x} & o_{x} & a_{x} & p_{x} \\ n_{y} & o_{y} & a_{y} & p_{y} \\ n_{z} & o_{z} & a_{z} & p_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -s\theta_{1} & -c\theta_{1}s\theta_{2} & c\theta_{1}c\theta_{2} & (L_{2}+d_{3}+L_{3})c\theta_{1}c\theta_{2} \\ c\theta_{1} & -s\theta_{1}s\theta_{2} & s\theta_{1}c\theta_{2} & (L_{2}+d_{3}+L_{3})s\theta_{1}c\theta_{2} \\ 0 & c\theta_{2} & s\theta_{2} & L_{1}+(L_{2}+d_{3}+L_{3})s\theta_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

3.2.2. ĐIỀU KIỆN BÀI TOÁN ĐHN

Điều kiện tồn tại nghiệm:

Có ít nhất một tập nghiệm (θ_i,d_i) sao cho Robot có vị trí và hướng của khâu chấp hành cuối cho trước.

• Điều kiện duy nhất của tập nghiệm:

- > Phân biệt rõ 2 loại nghiệm để xác định tập nghiệm duy nhất:
 - Nghiệm toán: Các nghiệm này thỏa mãn hệ PTĐH
 - * Nghiệm vật lý: Là các tập con của nghiệm toán, phụ thuộc vào các giới hạn vật lý của góc quay, kích thước,...

Phương pháp giải:

- Phương pháp giải tích: Tìm ra các công thức hay phương trình giải tích biểu thị mối quan hệ của không gian biến trục và các thông số khác của bộ thông số DH.
- Phương pháp số: Tìm ra các giá trị của tập nghiệm bằng kết quả của một quá trình lặp.

20/08/2011

3.2.3. HÀM ARCTAN2(X,Y)

- Để xác định các góc khi giải bài toán ngược của Robot ta phải dùng hàm $\arctan 2(x,y)$ (hàm arctan hai biến).
- Hàm arctan2 nhằm mục đích xác định được góc thực, duy nhất khi xét dấu của hàm hai biến y và x.
- Hàm số arctan2 về giá trị góc trong khoảng $-\pi \le 0 \le \pi$.

VD: $\arctan 2(-1,-1) = -135^{\circ}$ trong khi $\arctan 2(1,1) = 45^{\circ}$

- Hàm này xác định ngay cả khi x = 0 hoặc y = 0 và cho kết quả đúng.
- Hàm này có sẵn trong thư viện của một số ngôn ngữ như Matlab, C⁺⁺,
 Maple,...

VD: Trong Matlab: c = atan2(1,1); ----> c = 0.7854 (rad) c = atan2(-1,-1); ----> c = -2.3562 (rad)

3.2.4. ĐHN ROBOT RRT

PTĐH của Robot RRT:

$$\begin{bmatrix} n_{x} & o_{x} & a_{x} & p_{x} \\ n_{y} & o_{y} & a_{y} & p_{y} \\ n_{z} & o_{z} & a_{z} & p_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -s\theta_{1} & -c\theta_{1}s\theta_{2} & c\theta_{1}c\theta_{2} & (L_{2}+d_{3}+L_{3})c\theta_{1}c\theta_{2} \\ c\theta_{1} & -s\theta_{1}s\theta_{2} & s\theta_{1}c\theta_{2} & (L_{2}+d_{3}+L_{3})s\theta_{1}c\theta_{2} \\ 0 & c\theta_{2} & s\theta_{2} & L_{1}+(L_{2}+d_{3}+L_{3})s\theta_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Trong đó:

- * Các thông số p_x , p_y , p_z đều đã biết.
- * Mục đích: xác định các thông số của các biến khớp θ_1 , θ_2 và d_3 .

Giải

Cân bằng các phần tử ở cột 4 ta có:

$$\begin{cases} p_x = (L_2 + d_3 + L_3)c\theta_1 c\theta_2 & (1) \\ p_y = (L_2 + d_3 + L_3)s\theta_1 c\theta_2 & (2) \\ p_z - L_1 = (L_2 + d_3 + L_3)s\theta_2 & (3) \end{cases}$$

3.2.4. ĐHN ROBOT RRT

• Giải

Tổng bình phương các phương trình (1), (2) và (3) ta có

$$(L_2 + d_3 + L_3)^2 = p_x^2 + p_y^2 + (p_z - L_1)^2$$

$$\to d_{3a}, d_{3b} = \pm \sqrt{p_x^2 + p_y^2 + (p_z - L_1)^2} - L_2 - L_3$$

* Xác định θ_2 từ (3) ta thu được 2 nghiệm sau:

$$\theta_{2a} = \arcsin(\frac{p_z - L_1}{(L_2 + d_3 + L_3)})$$

$$\theta_{2b} = \pi - \theta_{2a}$$

* Thay từng giá trị của θ_2 để xác định θ_1 :

$$\theta_{1a}, \theta_{1b} = \arctan 2 \left(\frac{p_y}{(L_2 + d_3 + L_3)c\theta_2}, \frac{p_x}{(L_2 + d_3 + L_3)c\theta_2} \right)$$