目录

1.	概述	. 2
	1.1 简介	. 2
	1.2 功能	. 2
	1.3 应用	. 2
2	芯片使用说明	2
2.	心月使用说明	. 3
	2.1 硬件参数	
	2.2 芯片管脚说明	. 4
3.	串口通讯协议	. 5
	3.1 通讯格式	5
	3.2 通讯指令	
	3.3 芯片返回的数据	
	3.3.1 芯片上电返回的数据	
	3.3.2 曲目播放完毕返回的数据	
	3.3.3 芯片应答返回的数据	
	3.3.4 芯片错误返回的数据	
	3.3.5 设备插入拔出消息	
	3.4 串口指令详解	
	3.4.1 指定歌曲播放指令	
	3.4.2 指定音量播放指令	
	3.4.3 指定播放设备	
	3.4.4 指定文件播放	
	3.4.5 FLASH 中存储的固定语音信息	
	3.4.6 声卡功能	
	3.5 按键接口	
	3.6 遥控功能	14
4.	参考电路	16
	4.1 串行接口	
	4.2 外接单声道功放	
	4.3 外接耳机电路	
4	4.4 主控电路	17
5,	YX5200-24SS 封装图	18
6,	注意事项	19
7、	免责声明	20
8,	购买和技术支持联系方式	20

1. 概述

1.1 简介

YX5200 是一个提供串口的 MP3 芯片,完美的集成了 MP3、WMV 的硬解码。同时软件支持 TF 卡驱动,支持 FAT16、FAT32 文件系统。通过简单的串口指令即可完成播放指定的音乐,以及如何播放音乐等功能,无需繁琐的底层操作,使用方便,稳定可靠是此款产品的最大特点。另外该芯片也是深度定制的产品,专为 USB 读卡器, USB 声卡、固定语音播放领域开发的低成本解决方案。

1.2 功能

- 1、支持采样率(KHz):8/11.025/12/16/22.05/24/32/44.1/48
- 2、24 位 DAC 输出,动态范围支持 90dB,信噪比支持 85dB
- 3、完全支持 FAT16、FAT32 文件系统,最大支持 32G 的 TF 卡,支持 32G 的 U 盘、64M 字节的 NORFLASH
- 4、多种控制模式, 并口控制模式、串口模式、AD 按键控制模式
- 5、广播语插播功能,可以暂停正在播放的背景音乐
- 6、音频数据按文件夹排序,最多支持100个文件夹,每隔文件夹可以分配1000首歌曲
- 7、30级音量可调, 10级EQ可调

1.3 应用

- 1、 车载导航语音播报
- 2、 公路运输稽查、收费站语音提示;
- 3、 火车站、汽车站安全检查语音提示;
- 4、 电力、通信、金融营业厅语音提示:
- 5、 车辆进、出通道验证语音提示;
- 6、 公安边防检查通道语音提示;
- 7、 多路语音告警或设备操作引导语音;
- 8、 电动观光车安全行驶语音告示:
- 9、 机电设备故障自动报警;
- 10、消防语音报警提示;
- 11、自动广播设备,定时播报

2. 芯片使用说明

芯片选用的是 SOC 方案,集成了一个 16 位的 MCU,以及一个专门针对音频解码的 aDSP,采用硬解码的方式,更加保证了系统的稳定性和音质。小巧的封装尺寸更加满足嵌入其它产品的需求

2.1 硬件参数

名称	参数
	1、支持所有比特率11172-3和 IS013813-3 layer3音频解码
MP3文件格式	2、采样率支持(KHZ):8/11.025/12/16/22.05/24/32/44.1/48
	3、支持Normal、Jazz、Classic、Pop、Rock 等音效
USB 接口	2.0标准
UART 接口	标准串口, TTL 电平, 波特率可设
输入电压	供电在3.2V-5V 最佳为4.2V
额定电流	20ma[不带 U 盘]
尺寸	标准的 SSOP24封装
工作温度	0度 [~] 70度
湿度	5% ~ 95%

2.2 芯片管脚说明

引脚序号	引脚名称	功能描述	备注
1	DACL	音频输出左声道	驱动耳机、功放
2	DACR	音频输出右声道	驱动耳机、功放
3	VDDIO	3.3V 电源输出	给 TF 卡、SPI、24C02供电
4	VDD	5V 电源输入	不可以超过5.2V
5	VSS	电源地	
6	TX	UART 串行数据输出	
7	RX	UART 串行数据输入	
8	NC	无	
9	AUXR	播放指示灯	必需要接三极管
10	GPI0A0	红外遥控接收	
11	GPIOA1	Busy 输出	输出高电平
12	GPIOA2	SPI_CS 片选总线	
13	GPIOA3	SPI_DO 数据总线	
14	GPIOA4	SPI_CLK 数据总线	
15	GPIOA5	ADKEY2外接按键	22K 上拉
16	GPIOA6	ADKEY1外接按键	22K 上拉
17	GPIOB4	SD_CLK 时钟总线	串0欧电阻接到24C02 6脚做记忆
18	GPIOB3	SD_CMD 命令总线	串0欧电阻接到24C02 5脚做记忆
19	GPIOB2	SD_DAT 数据总线	
20	GPIOB1	USB- DM	接 U 盘和电脑的 USB 口
21	GPI0B0	USB+ DP	接 U 盘和电脑的 USB 口
22	NC	烧写口	
23	VCOM	退耦	
24	DACVSS	地	

3. 串口通讯协议

串口作为一种在控制领域常用的通信,我们进行了工业级别的优化,加入的帧的校验、重发、错误处理等措施,大大加强通信的稳定性和可靠性,同时可以在此基础上扩展更加强大的 RS485 进行组网功能,串口的通信波特率可自行设置,默认为 9600

3.1 通讯格式

支持异步串口通讯模式,通过串口接受上位机发送的命令

通讯标准:9600 bps

数据位 :1 校验位 :none 流控制 :none

格式: \$S	VER Len CMD Feedback	paral para2 checksum \$0
\$S	起始位0x7E	每条命令反馈均以\$开头,即0x7E
VER	版本	版本信息
Len	1en 后字节个数	校验和不计算在内
CMD	命令字	表示具体的操作,比如播放/暂停等等
Feedback	命令反馈	是否需要反馈信息,1反馈,0不反馈
para1	参数1	查询的数据高字节(比如歌曲序号)
para2	参数2	查询的数据低字节
checksum	校验和	累加和校验[不计起始位\$]
\$0	结束位	结束位0xEF

举个例子,如果我们指定播放 NORFLASH,就需要发送:7E 10 06 09 00 00 04 FF dd EF 数据长度为 6 ,这 6 个字节分别是[10 06 09 00 00 04] 。不计算起始、结束、和校验。例

3.2 通讯指令

1、直接发送的指令,不需要返回参数

CMD 详解(指令)	对应的功能	参数(16位)
0x01	下一曲	
0x02	上一曲	
0x03	指定曲目(NUM)	0-2999
0x04	音量+	
0x05	音量-	
0x06	指定音量	0-30
0x07	指定 EQ(0/1/2/3/4/5)	Normal/Pop/Rock/Jazz/Classic/Base
0x08	指定播放模式(0/1/2/3)	循环/文件夹循环/单曲循环/随机
0x09	指定设备(0/1/2/3/4)	U/TF/AUX/SLEEP/FLASH
0x0A	进入睡眠 低功耗	
0x0B	正常工作	
0x0C	芯片复位	
0x0D	播放	
0x0E	暂停	
0x0F	指定文件夹播放	1-10(需要自己设定)
0x10	扩音设置	{DH=1: 开扩音} {DL: 设置增益,0-31}
0x11	循环播放	{1: 循环播放} {0: 停止循环播放}

2、查询系统的参数

CMD 命令详解(查		
询)	对应的功能	参数 (16位)
0x3C	STAY	
0x3D	STAY	
0x3E	STAY	
0x3F	发送初始化参数	0 - 0x0F(低四位每位代表一种设备)
0x40	返回错误,请求重发	
0x41	应答	
0x42	查询当前状态	
0x43	查询当前音量	
0x44	查询当前 EQ	
0x45	查询当前播放模式	
0x46	查询当前软件版本	
0x47	查询 TF 卡的总文件数	
0x48	查询 UDISK 的总文件数	
0x49	查询 FLASH 的总文件数	
0x4A	保留	
0x4B	查询TF卡的当前曲目	
0x4C	查询 UDISK 的当前曲目	
0x4D	查询 FLASH 的当前曲目	

3.3 芯片返回的数据

芯片在关键地方均会有数据返回。供用户掌控芯片的工作状态

- 芯片上电初始化成功的数据
- 芯片播放完当前曲目的数据
- 芯片成功接收到指令返回的 ACK(应答)
- 芯片接收一帧数据出错[包括数据没收完整、校验出错两种情况]
- 芯片在繁忙时,有数据过来,芯片会返回忙的指令
- U盘、TF卡插入拔出,均有数据返回

3.3.1 芯片上电返回的数据

- (1)、芯片上电,需要一定的时间初始化,这个时间是需要根据 U 盘、TF 卡、flash 等设备的文件多少决定的,一般情况在 1.5~3S 这个时间。如果超过这个时间芯片的初始化数据还没有发送出来,说明芯片初始化出错,请复位芯片的电源,另外检测硬件的连接
- (2)、芯片初始化数据包括在线设备,譬如发送 7E 10 06 3F 00 00 01 xx xx EF
- DL = 0x01 说明上电过程中,只有 U 盘在线。其它的数据请参照下表,各设备之间是或的关系

U 盘 在线	7E 10 06 3F 00 00 01 xx xx EF 各设备之间是或的关系
TF 在线	7E 10 06 3F 00 00 02 xx xx EF
PC 在线	7E 10 06 3F 00 00 04 xx xx EF
FLASH 在线	7E 10 06 3F 00 00 08 xx xx EF
U 盘、TF 在线	7E 10 06 3F 00 00 03 xx xx EF

(3)、MCU 必须等待芯片初始化指令发出之后才能发送相应的控制指令,否则发送的指令芯片将不予处理。同时还会影响芯片的正常初始化。

3.3.2 曲目播放完毕返回的数据

U 盘播放完第1曲	7E 10 06 3C 00 00 01 xx xx EF	U 盘播放第1曲完毕
U 盘播放完第2曲	7E 10 06 3C 00 00 02 xx xx EF	U 盘播放第2曲完毕
TF 卡播放完第1曲	7E 10 06 3D 00 00 01 xx xx EF	TF 卡播放第1曲完毕
TF 卡播放完第2曲	7E 10 06 3D 00 00 02 xx xx EF	TF卡播放第2曲完毕
FLASH 播放完第1曲	7E 10 06 3E 00 00 01 xx xx EF	FLASH 播放第1曲完毕
FLASH 播放完第2曲	7E 10 06 3E 00 00 02 xx xx EF	FLASH 播放第2曲完毕

- 1、争很多的触发型的播放需求,我们芯片更正为播放一曲之后自动进入暂停状态。如果用户需要此类应用。只需要指定曲目播放即可。这样,曲目播放完毕会自动暂停,等待指令
- 2、另外我们专门开辟一个 IO 作为解码和暂停的状态指示。请参见第 6 脚,GPIO1
- (1)、播放状态输出高电平
- (2)、播放暂停状态,输出低电平。芯片睡眠状态。也是低电平
- 3、争对连续播放应用,可以这样实现。假如 U 盘播放第一首歌完毕之后,会返回
- 7E 10 06 3C 00 00 01 xx xx EF
- 3C ---- 表示的是 U 盘命令
- 00 01 ---- 表示播放完毕的曲目。

如果外部的 MCU 收到这条指令。请先等待 100ms。再发送播放指令[7E 10 06 0D 00 00 00 FF DD EF]。因为芯片内部会先初始化下一个曲目的信息。这样的话,就可以做到芯片连续的播放。

4、假如当前播放第一曲,播放完毕之后,曲目指针会自动指向第二首,如果发送"播放下一曲"的指令话,芯片会播放第三首,请用户知晓。另外如果芯片播放完最后一曲

- 之后,播放指针会自动跳转至第一首,暂停。
- 5、指定设备之后,芯片的播放指针会指向设备根目录的第一首曲目,并且进入暂停状态。等侯用户选曲的指令。

3.3.3 芯片应答返回的数据

- (1)、为了加强数据通信之间的稳定性,我们增加了应答处理,ACKB字节就是设置是否需要回复应答。这样做的好处是保证每次通信都有握手信号,收到应答就表示 MCU 发送的数据,芯片已经成功收到,马上处理。
- (2)、对于一般的应用,客户可以自由选择,不加这个应答处理也是可以的。

3.3.4 芯片错误返回的数据

芯片处于忙状态	7E 10 06 40 00 00 00 xx xx EF
一帧数据未接收完毕	7E 10 06 40 00 00 01 xx xx EF
校验出错	7E 10 06 40 00 00 02 xx xx EF

- (1)、为了加强数据通信之间的稳定性,我们增加了数据错误处理机制。芯片收到不符合格式的数据,均会有信息反馈出来
- (2)、在环境比较恶劣的情况下,强烈建议客户处理此命令。如果应用环境一般,可以不用处理。
- (3)、芯片返回忙,基本上是芯片上电初始化的时候才会返回,因芯片需要初始化文件系统

3.3.5 设备插入拔出消息

U盘插入	7E 10 06 3A 00 00 01 xx xx EF
TF 插入	7E 10 06 3A 00 00 02 xx xx EF
PC 插入	7E 10 06 3A 00 00 04 xx xx EF 使用此指令,请联系技术支持
U盘拔出	7E 10 06 3B 00 00 01 xx xx EF
TF 拔出	7E 10 06 3B 00 00 02 xx xx EF
PC 拔出	7E 10 06 3B 00 00 04 xx xx EF 使用此指令,请联系技术支持

- (1)、为了芯片的灵活性,我们特别增加了,设备插入、拔出的指令反馈。方便用户知道芯片的工作状态。
- (2)、设备插入的时候,我们默认播放设备的根目录下面的第一首曲目。作为试听,如果用户不需要此功能的话,可以在接收到设备插入的串口消息之后,等待 100ms。发送播放暂停的指令即可。

3.4 串口指令详解

以下我们对关键的地方进行详细的说明:

- 指定曲目播放[必须要先指定设备之后才能指定曲目]
- 指定播放的音量
- 指定播放的设备
- 指定文件夹播放[要根据使用者来定制此功能]
- FLASH 中存储的固定测试语音

3.4.1 指定歌曲播放指令

我们给出的指令是支持指定曲目播放的,歌曲的选择范围为 0~2999.其实是可以支持更多的,因为涉及到文件系统的原因,支持过多的歌曲,会导致系统操作缓慢,一般的应用也不需要支持这么多的文件。如果客户有非常规的应用,请事前和我们沟通。

- (1)、例如选择第一首歌播放,串口的发送部分 7E 10 06 03 00 00 01 FF E6 EF
- 7E --- 起始命令
- 10 --- 版本信息
- 06 --- 数据长度(不包含校验)
- 03 --- 代表产品编号
- 00 --- 是否需要应答[0x01:需要应答, 0x00:不需要返回应答]
- 00 --- 曲目的高字节[DH]
- 01 --- 曲目的低字节[DL],这里代表的是第一首歌播放
- FF --- 校验的高字节
- E6 --- 校验的低字节
- EF --- 结束命令
- (2)、对于选曲,如果选择第 100 首,首先将 100 转化为 16 进制,默认为双字节,就为 0x0064。
- DH = 0x00 ; DL = 0x64
- (3)、如果选择第 1000 首进行播放,首先将 1000 转化为 16 进制,默认为双字节,就为 0x03E8
- DH = 0x03 ; DL = 0xE8
- (4)、其它的操作依次类推即可,因为在嵌入式领域采用 16 进制是最为方便的一种操作。

3.4.2 指定音量播放指令

- (1)、我们系统上电默认的音量为30级,如果要设置音量的话,直接发送相应的指令即可
- (2)、例如指定音量为 15 级,串口发送的指令:7E 10 06 06 00 00 0F FF D5 EF
- (3)、DH = 0x00; DL = 0x0F, 15 转化为 16 进制为 0x000F。可以参照播放曲目部分的说明

3.4.3 指定播放设备

- (1)、我们的芯片默认是支持4种类型的播放设备,只有设备在线才能指定设备去播放设备是否在线,我们软件会自动检测,无需用户关系。
- (2)、看下表,选择合适的指令发送
- (3)、指定设备之后。芯片会自动进入暂停状态,等待用户指定曲目播放。从指定设备到芯片内部初始化文件信息。大概需要 200ms。请等待 200ms 之后再发送指定曲目的指令。

指定播放设备-U 盘	7E 10 06 09 00 00 01 xx xx EF xx xx: 代表校验
指定播放设备-TF 卡	7E 10 06 09 00 00 02 xx xx EF
指定播放设备-AUX	7E 10 06 09 00 00 03 xx xx EF
指定播放设备-FLASH	7E 10 06 09 00 00 04 xx xx EF
指定播放设备-PC	7E 10 06 09 00 00 05 xx xx EF 指[读卡、声卡]模式
指定播放设备-SLEEP	7E 10 06 09 00 00 05 xx xx EF

3.4.4 指定文件播放

指定文件夹01里面的001.mp3	7E 10 06 0F 00 01 01 xx xx EF
指定文件夹11里面的100.mp3	7E 10 06 0F 00 0B 64 xx xx EF
指定文件夹99里面的255.mp3	7E 10 06 0F 00 63 FF xx xx EF

- (1)、指定文件夹播放是我们制定的扩展功能,默认文件夹的命名方式为"01","11"这样的方式因为我们的芯片不支持汉字名称的文件夹名称识别,为了系统的稳定性和歌曲切换的速度每个文件夹下默认最大支持 255 首歌,最多支持 99 个文件夹的分类,如果客户有特殊要求,需要按照英文名称来分类,我们也是可以实现的,但是名称只能是"GUSHI"、"ERGE"等英文名称组成。
- (2)、例如指定"01"文件夹的 100.MP3 文件,串口发送的指令为:7E 10 06 0F 00 01 64 xx xx EF DH:代表的是文件夹的名字,默认支持 99 个文件,即 01 -- 99 的命名
- DL:代表的是曲目,默认最多 255 首歌,即 $0x01 \sim 0xFF$
- 曲目的设置请参考上面的曲目设置规则。
- (3)、为了芯片的标准性,必须同时指定文件夹和文件名,来锁定一个文件。单独指定文件夹或者单独指定文件名也是可以的,但是这样文件的管理会变差。
- (4)、下面截两个图说明文件夹和文件名的指定[分左右两个图]

3.4.5 FLASH 中存储的固定语音信息

曲目号	曲目名	曲目号	曲目名
1	0. mp3	2	1.mp3
3	2. mp3	4	3. mp3
5	4. mp3	6	5. mp3
7	6. mp3	8	7. mp3
9	8. mp3	10	9. mp3
11	10哒哒女声.mp3	12	11Mp3铃声.mp3
13	12外滩十八号.mp3	14	13回家. wav
15	14不得不爱.wav	16	

备注:里面包含了 MP3、WAV 格式的音频文件.均是未经任何压缩的音频文件

3.4.6 声卡功能

芯片的 USB 口跟电脑连接,就可以通过 YX5200 芯片播放电脑的声音,但电脑的输出要设置一下 右击电脑右下角的小喇叭,如 1 图,再左击"播放设备"弹出对话框,如 2 图,右击'扬声器 CD002' 后右击"设置为默认设备"这里 YX5200 就有声音输出了。

3.5 按键接口

芯片我们采用的是 AD 按键的方式,取代了传统了矩阵键盘的接法,这样做的好处是充分利用了 MCU 越来越强大的 AD 功能。设计简约而不简单,我们芯片默认配置 2 个 AD 口,20 个按键的阻值分配,如果使用在强电磁干扰或者强感性、容性负载的场合,请参考我们的"注意事项"。

(1)、参考原理图

(2)、20个按键的功能分配表

按键	短按	长按	备注
K1	播放模式		切换打断/不可打断
K2	播放设备切换		U/TF/SPI/睡眠
К3	工作模式		全部循环
K4	播放/暂停		
К5	上一曲	音量+	
К6	下一曲	音量-	
K7	4	循环播放4	长按就是一直循环到掉电或按别的按键
К8	3	循环播放3	长按就是一直循环到掉电或按别的按键
К9	2	循环播放2	长按就是一直循环到掉电或按别的按键
K10	1	循环播放1	长按就是一直循环到掉电或按别的按键
K11	5	循环播放5	长按就是一直循环到掉电或按别的按键
K12	6	循环播放6	长按就是一直循环到掉电或按别的按键
K13	7	循环播放7	长按就是一直循环到掉电或按别的按键
K14	8	循环播放8	长按就是一直循环到掉电或按别的按键
K15	9	循环播放9	长按就是一直循环到掉电或按别的按键
K16	10	循环播放10	长按就是一直循环到掉电或按别的按键
K17	11	循环播放11	长按就是一直循环到掉电或按别的按键
K18	12	循环播放12	长按就是一直循环到掉电或按别的按键
K19	13	循环播放13	长按就是一直循环到掉电或按别的按键
K20	14	循环播放14	长按就是一直循环到掉电或按别的按键

3.6 遥控功能

按键	短按	备注
СН-	工作模式	打断/不打断
СН	播放设备切换	U/TF/SPI/睡眠
CH+	播放模式	全部循环
PREV	上一曲	长按快速音量-
NEXT	下一曲	长按快速音量+
PLAY/PAUSE	播放/暂停	
VOL-	音量一	
VOL+	音量+	
EQ	EQ 切换	Normal/Pop/Rock/Jazz/Classic/Base
0	0	
100+	睡眠	
200+	确定键	
1	1	
2	2	
3	3	
4	4	
5	5	
6	6	
7	7	
8	8	
9	9	

遥控器数字键有指定的功能,比如按 1 对应第一段 按 2 对应第二段 按存储器的物理位置决定 遥控器数字键有组合的功能,比如按 2 再按 1,就播放 21 段

4、参考电路

争对芯片的应用, 我们提供了详细的设计参考, 让您可以更快的上手体验到该芯片的强大功能

- 串行通信接口,波特率默认9600,可以根据客户的要求修改
- 外部 AD 按键的接口电路,按键的功能可以按照客户需求订制
- ▶ 外部单声道功放参考电路

4.1 串行接口

芯片的串口为 3.3V 的 TTL 电平,所以默认的接口的电平为 3.3V。如果系统是 5V。那么建议在串口的对接接口串联一个 1K 的电阻。这样足以满足一般的要求,如果应用于强电磁干扰的场合,请参考"注意事项"的说明。芯片在 5V 和 3.3V 的系统中均正常的测试过,一切正常。均在采用的是直连的方式,并没有串 1K 的电阻。

4.2 外接单声道功放

这里功放我们采用的是8002,具体参数请参考IC的datasheet。应用于一般场合足以,如果追求更高的音质,请客户自行寻找合适的功放。

4.3 外接耳机电路

这里R4 和R5 为限幅电阻,防止外部音源幅度过大(Vp-p 最大值为3.0V),影响系统的稳定性,C1和C2 为隔直电容,防止外部音源的直流电平影响到芯片内部的偏置;R2 和R3 预留电阻给大功放设计用

4.4 主控电路

MP3 主控芯片外围简单可以不需要电阻电容照样可以工作

5、YX5200-24SS 封装图

24L SSOP封装图

	INCHES			MILLIMETERS			注:
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α			0.084			2.13	
A1	0.002	0.006	0.010	0.05	0.13	0.25	
A2	0.064	0.068	0.074	1.62	1.73	1.88	
b	0.009		0.015	0.22		0.38	2,3
D	0.311	0.323	0.335	7.90	8.20	8.50	1
Е	0.291	0.307	0.323	7.40	7.80	8.20	
E1	0.197	0.209	0.220	5.00	5.30	5.60	1
е	0.022	0.026	0.030	0.55	0.65	0.75	
L	0.025	0.03	0.041	0.63	0.75	1.03	
œ	0°	4°	8°	0°	4°	8°	

JEDEC #: MO-150

控制尺寸为毫米.

注: 3. "D"和"E1"是参考数据,不包括塑模毛边或突起,但不包括模具不匹配,并测量在分模线上,模具毛边或突起不得超过0.20毫米,每边.

- 4.尺寸"b"不包括丹巴尔症/入侵.应允许丹巴尔症 在"B"尺寸超过0.13 mm总在最大的物质条件.丹巴尔入侵不得减少尺寸"b"至少大于0.07毫米的物质条件.
- 5.这些尺寸适用于0.10和0.25毫米的导线头间的导线的扁平部分.

6、注意事项

IO 输入特性							
符号	参数	最小	典型	最大	单位	测试条件	
$V_{\rm IL}$	Low-Level Input Voltage	-0.3	_	0.3*VDD	V	VDD=3.3V	
V_{IH}	High-Level Input Voltage	0. 7VD D	I	VDD+0.3	V	VDD=3.3V	
10 输出特性							
符号	参数	最小	典型	最大	单位	测试条件	
V_{OL}	Low-Level Output Voltage	_	1	0.33	V	VDD=3.3V	
V _{OH}	High-Level Output Voltage	2. 7	_	_	V	VDD=3.3V	

- 1、芯片对外的接口均是 3.3V 的 TTL 电平, 所以在硬件电路的设计中, 请注意电平的转换问题。 另外在强干扰的环境中, 请注意电磁兼容的一些保护措施, GPIO 采用光耦隔离, 增加 TVS 等等
- 2、ADKEY的按键取值均按照一般的使用环境,如果在强感性或者容性负载的环境下,请注意芯片的供电,建议采用单独的隔离供电,另外再配上磁珠和电感对电源的滤波,一定要尽可能的保证输入电源的稳定和干净。如果实在无法保证,请联系我们,减少按键的数量,重新定义更宽的电压分配。
- 3、串口通信,在一般的使用环境下,注意好电平转换即可。如果强干扰环境,或者长距离的 RS485 应用,那么请注意信号的隔离,严格按照工业的标准设计通信电路。可以联系我们,我们提供设计参考