MATH 2421 Fall 2021

Probability

Written By: Ljm

Chapter 1 Combinatorial Analysis

1 Principle of Counting

Theorem. (basic principle of counting) two experiments: one has m outcomes, the other has n outcomes, then together there are mn outcomes of the two experiments.

Proof. prove by enumerating all (i, j) pairs of possible outcomes.

Theorem. (generalized BPOC) r experiments: each has $n_1, n_2 \cdots n_r$ outcomes, in total $n_1 \cdot n_2 \cdots n_r$ outcomes.

Example: How many different 7-place license plates are possible, if first 3 are letters, final 4 are numbers, don't allow repetition?

Solution: $26 \times 25 \times 24 \times 10 \times 9 \times 8 \times 7 = 78,624,000$

2 Permutation

Theorem. Permutation: different ordered arrangements. n distinct objects, total number of different arrangement is n!, with the convention 0! = 1.

Theorem. n objects, of which n_1 are alike, n_2 are alike, \cdots , n_r are alike, there are

$$\frac{n!}{n_1!n_2!\cdots n_r!}$$

different permutations.

Example: Ways to rearrange "Mississippi"?

Solution: $\frac{11!}{1!4!4!2!} = 34,650.$

Theorem. For n people sitting in a circle: there are

$$\frac{n!}{n} = (n-1)!$$

different arrangements.

Example: How many different ways can n different pearls string in a necklace?

Solution: $\frac{(n-1)!}{2}$, since the necklace can be flipped.(mirrored)

3 Combinations

Theorem. *n* distinct objects, choose *r* to form a group:

$$_{n}C_{r} = \binom{n}{r} = \frac{n!}{r!(n-r)!}$$

Some properties:

$$\binom{n}{r} = \binom{n}{n-r}, \ \binom{n}{0} = \binom{n}{n} = 1$$

And by convention, when $n \ge 0$ and r < 0 or r > n, $\binom{n}{r} = 0$.

Example: From a party of 3 from 20 people?

Solution: $\binom{20}{3} = 1140$

Example: What if A and B can't be chosen together?

Solution: (1) minus the situation that they are both chosen: $\binom{20}{3} - \binom{18}{1}\binom{2}{2} = 1122$, or (2) neither of them are chosen plus one of them chosen: $\binom{18}{3} + \binom{18}{2}\binom{2}{1} = 1122$.

Example: m antennas are defective and n-m are functional. The system works if no two defectives are consecutive. How many different linear orderings?

Solution: Consider inserting m defective ones into the space of n-m functional ones. n-m antennas provide n-m+1 spaces, so we just choose m of them: $\binom{n-m+1}{m}$.

Theorem. For $1 \le r \le n$,

$$\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r}$$

.

Proof. (Algebra proof)

$$RHS = \frac{(n-1)!}{(r-1)!(n-r)!} + \frac{(n-1)!}{r!(n-r-1)!} = \frac{(n-1)!r}{(r-1)!(n-r)!r} + \frac{(n-1)!(n-r)}{r!(n-r-1)!(n-r)} = \frac{(n-1)! \cdot [r + (n-r)]}{r!(n-r)!} = LHS$$

(Combinatorial proof)

LHS: number of choosing r balls from n balls. $\binom{n}{r}$

RHS: consider whether to choose the 1st ball:

- choose 1st ball, then choose r-1 from remaining n-1 balls
- don't choose 1st ball, then choose r from remaining n-1 balls

combine the two situations, $\binom{n-1}{r-1} + \binom{n-1}{r}$.

Theorem. (Binomial Theorem) n be nonnegative integer, then

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

Proof. (Combinatorial Proof) for x^ky^{n-k} , it means there are k brackets contribute x, while remaining n-k brackets contribute y.

Example: How many subsets does a set of size n have?

Solution: There are $\binom{n}{k}$ subsets of size k, so add them together:

$$\sum_{k=0}^{n} \binom{n}{k} = (1+1)^n = 2^n.$$

Example: Proof: $\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0.$

Solution: Let x = -1, y = 1, the problem $= [(-1) + 1]^n = 0$.

4 Multinomial Coefficients

Example: n distinct items is to be divided into r distinct groups of size n_1, n_2, \dots, n_r , where $\sum n_i = n$. How many different divisions are possible?

Solution: First choose n_1 from n items, then n_2 from remaining $n - n_1$ items, etc., we will get:

$$\binom{n}{n_1} \cdot \binom{n - n_1}{n_2} \cdots \binom{n - n_1 - \dots - n_{r-1}}{n_r}$$

$$= \frac{n!}{n_1!(n - n_1)!} \cdot \frac{(n - n_1)!}{n_2!(n - n_1 - n_2)!} \cdots \frac{(n - n_1 - \dots - n_{r-1})!}{n_r!(n - n_1 - \dots - n_r)!}$$

$$= \frac{n!}{n_1!n_2! \cdots n_r!}$$

Notation: If $n_1 + n_2 + \cdots + n_r = n$, we define $\binom{n}{n_1, n_2, \cdots, n_r}$ by

$$\binom{n}{n_1, n_2, \cdots, n_r} = \frac{n!}{n_1! n_2! \cdots n_r!}$$

Example: 10 children are to be divided into A team and B team, of 5 each. Team A will play in one league and B in another. How many different divisions?

Solution: $\frac{10!}{5!5!} = 252$

Example: 10 children are to be divided into two teams of 5 each. How many different divisions?

Solution: Note that this example is different from the previous one, since now the two teams are not distinguishable, no A or B team. So the order of the two teams is irrelevant.

$$\frac{10!}{5!5!} \cdot \frac{1}{2!} = 126$$

Theorem. (Multinomial Theorem)

$$(x_1 + x_2 + \dots + x_r)^n = \sum_{\substack{(n_1, \dots, n_r): n_1 + \dots + n_r = n}} \binom{n}{n_1, n_2, \dots, n_r} x_1^{n_1} x_2^{n_2} \cdots x_r^{n_r}$$

Proof. Basically the same idea as Binomial Theorem, there are n brackets in total, and we can choose n_1, \dots, n_r of them to be x_1, \dots, x_r .

Example: Distinct positive integer vectors (x_1, x_2, \dots, x_r) satisfies $\sum x_i = n$?

Solution: Consider n balls, since positive required, we insert r-1 boards in between them(not both sides), then there will be n-1 spaces. The answer is $\binom{n-1}{r-1}$.

Example: Distinct non-negative integer vectors (x_1, x_2, \dots, x_r) satisfies $\sum x_i = n$?

Solution: Method 1: Let $y_i = x_i + 1$, then

$$x_1 + x_2 + \dots + x_r = n$$

can be changed into:

$$(y_1-1)+(y_2-1)+\cdots+(y_r-1)=n$$

that is,

$$y_1 + y_2 + \dots + y_r = n + r$$

which is $\binom{n+r-1}{r-1}$.

Method 2: We mix n balls with r-1 boards, among those n+r-1 items, we choose r-1 items to be boards. After boards are chosen, they will automatically divide balls into r parts. This also gives $\binom{n+r-1}{r-1}$.

Example: 20 balls to put into 4 boxes. All balls must be put into boxes, but boxes can be empty. How many

different divisions?

Solution: n = 20, r = 4, answer is $\binom{20+4-1}{4-1} = \binom{23}{3}$.

Example: 20 balls to put into 4 boxes. You can choose not put some balls into boxes, and boxes can be empty.

How many different divisions?

Solution: Consider the balls that not put into boxes as another box. n=20, r=5, answer is $\binom{20+5-1}{5-1}=\binom{24}{4}$.

This is the end of lecture note. Last modified: Sep 6.