

Fundamentos Computacionais

Fundamentos Computacionais

Aula anterior – revisão

Fórmulas (fórmulas bem formadas – fbf)

Sentença lógica corretamente construída sobre o alfabeto cujos símbolos são conectivos (\neg, \land, \lor) , parênteses, identificadores (p, q, r).

Exemplos de fórmulas:

- $\mathsf{p} \vee (\neg \mathsf{q})$
- $(p \wedge q) \vee \neg q$
- $(p \vee \neg q) \wedge (p \wedge q)$

Ordem de precedência

- 1. Conectivos entre parênteses, dos mais internos para os mais externos
- 2. Negação (¬)
- 3. Conjunção (∧) e Disjunção (∨)
- 4. Condição (→)
- 5. Bicondição (\leftrightarrow)

Condição (se... então)

р	q	p o q
V	V	V
V	F	F
F	V	V
F	F	V

Falsa, quando p é verdadeira e q é falsa.

Verdadeira, caso contrário.

Dica: utilize uma das frases:

Se eu for eleito, então aqui será construída uma ponte.

Se é pelotense, então é gaúcho.

Bicondição (se e somente se)

Reflete uma noção de condição "nos dois sentidos".

Representada por: $p \leftrightarrow q$ ("p se e somente se q")

р	q	p ↔ q
V	V	V
V	F	F
F	V	F
F	F	V

Verdadeira, quando p e q são ambas verdadeiras ou falsas **Falsa**, quando as proposições possuem valores distintos

Dica: utilize a frase:

• Se e somente se chover levarei o guarda-chuva.

Tabelas-Verdade – Fórmulas

Uma tabela-verdade deve explicitar todas as combinações possíveis de valores lógicos

- Cada fórmula atômica pode assumir dois valores lógicos: V ou F
- Tabela-Verdade da Negação: 2 linhas (2¹)
- Tabela-Verdade da Conjunção, Disjunção, Condição: 4 linhas (2²)
- n fórmulas atômicas: 2ⁿ linhas (2ⁿ)

Tabelas-Verdade – Fórmulas

Exemplo: Tabela-Verdade da fórmula: $p \vee (q \wedge r)$

р	q	r	q∧r	p ∨ (q ∧ r)
V	V	٧	٧	V
V	V	F	F	V
V	F	V	F	V
V	F	F	F	V
F	V	V	V	V
F	V	F	F	F
F	F	V	F	F
F	F	F	F	F

Tautologia ou Contradição

Seja w uma fórmula. Então:

- w é dita uma tautologia se w é verdadeira, ou seja, se for verdadeira para todas as combinações possíveis de valores de sentenças variáveis.
- **w** é dita uma *contradição* se **w** é **falsa**, ou seja, se for falsa para todas as combinações possíveis de valores de sentenças variáveis.

Tautologia ou Contradição

Exemplos:

A fórmula p $\vee \neg p$ é uma tautologia.

Vai chover amanhã ou não vai chover amanhã.

A fórmula p $\land \neg p$ é uma contradição.

Hoje é terça-feira e hoje não é terça-feira.

р	¬р	p ∨ ¬ p	p ∧ ¬ p
V	F	V	F
F	V	V	F

Exercícios – Correção / Gabarito

Negação

Negação de Proposição

A **negação** de uma **proposição** em lógica proposicional, pode ser simples ou composta e gera a **tabela verdade inversa** à proposição que está sendo negada.

- Proposição : Hoje é domingo.
- Negação : Hoje não é domingo.
- Proposição : p
- Negação : ~p

Negação da Conjunção

Para **negar** uma **conjunção** deve-se negar as proposições e "inverter" o conectivo de ∧ para ∨

- Proposição : Pedro é alto e magro.
- Negação : Pedro não é alto ou não é magro.
- Proposição : p ∧ q
- Negação : ~p ∨ ~q

Negação da Disjunção

Para **negar** uma **disjunção** deve-se negar as proposições e "inverter" o conectivo de ∨ para ∧

- Proposição: Amanhã vai chover ou fazer frio.
- Negação: Amanhã não vai chover e não vai fazer frio.
- Proposição : p ∨ q
- Negação : ~p ∧ ~q

Negação da Condição / Implicação

Para **negar** uma **condição** deve-se repetir a primeira proposição e negar a segunda unindo elas pelo conectivo ∧.

- Proposição: Se bebo, então fico furioso.
- Negação: Bebo e não fico furioso.
- Proposição: $p \rightarrow q$
- Negação: p ∧ ~q

Negação Composta

Proposição	Negação
p \ q	¬p ∨ ¬q
p∨q	$\neg p \wedge \neg q$
$p \rightarrow q$	p ∧ ¬q

Obs.: As duas primeiras, são conhecidas como as leis de De Morgan, em honra ao matemático inglês do século XIX Augustus De Morgan, primeiro a enunciá-las.

Negação de Quantificadores

Quantificadores	Negação
Todo / Todos	Existe, Algum, alguém (não)
Existe, Alguém	Todo / Todos (não)
Nenhum	Algum

RESUMO

Conjunção ^ E (AND)

р	q	p ^ q
V	٧	V
٧	F	F
F	٧	F
F	F	F

Condicional (implicação) SE, ENTÃO

Negação ~ NÃO (NOT)

p	~p
V	F
F	V

Disjunção v OU (OR)

p	q	p∨q
V	٧	V
٧	F	V
F	٧	V
F	F	F

Bicondicional SE, E SOMENTE SE

<->

p	q	$p \leftrightarrow q$
V	٧	V
V	F	F
F	٧	F
F	F	V

Praticar

1

1) Qual o valor lógico de cada uma das proposições a seguir? Apresente o desenvolvimento.

- a) Se 8 for ímpar, então 6 é ímpar.
- b) Se 8 for par, então 6 é ímpar.
- c) Se 8 for impar, então 6 é par.
- d) Se 8 for impar e 6 for par, então 8<6.

2) Determine o "p" em cada um dos seguintes casos:

$$a) q = F$$

a)
$$q = F$$
 ; $p -> q = F$

b)
$$q = V$$

b)
$$q = V$$
 ; $p < -> q = F$

$$c) q = F$$

c)
$$q = F$$
 ; $q < -> p = V$

3) Determine o "p" e "q" em cada um dos seguintes casos:

a)
$$p \rightarrow q = V$$

b)
$$p \leftarrow q = V$$

c)
$$p \leftarrow y \neq 0$$

d)
$$p \leftarrow q = F$$

$$p v q = F$$

$$p \wedge q = V$$

$$p v q = V$$

$$\sim p v q = V$$

4) Construa as tabelas-verdade das seguintes fórmulas e identifique as que são tautologias ou contradições.

- a) \sim (p v \sim q)
- b) $\sim (p \rightarrow \sim q)$
- c) $p \wedge q \rightarrow p \vee q$
- d) $\sim p \rightarrow (q \rightarrow p)$
- e) $p \rightarrow (q \rightarrow (q \rightarrow p))$
- $f) \sim (p \rightarrow (\sim p \rightarrow q))$