

TESTING

CERT #803.01, 803.02, 803.05, 803.06

CADWELL INDUSTRIES, INC. TEST REPORT

FOR THE

ELECTRONEURODIAGNOSTIC MONITORING SYSTEM, EASY WIRELESS EEG

FCC PART 15 SUBPART B SECTIONS 15.107 AND 15.109 CLASS A

TESTING

DATE OF ISSUE: MAY 26, 2009

PREPARED FOR: PREPARED BY:

Cadwell Industries, Inc.

909 N. Kellogg St.

Kennewick, WA 99336

Mary Ellen Clayton

CKC Laboratories, Inc.

5046 Sierra Pines Drive

Mariposa, CA 95338

P.O. No.: 15409 Date of test: March 16, 2009

W.O. No.: 89236

Report No.: FC09-080

This report contains a total of 21 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

Page 1 of 21 Report No.: FC09-080

TABLE OF CONTENTS

Administrative Information	3
Approvals	3
Site File Registration Numbers	3
Summary of Results	
Conditions During Testing	4
Equipment Under Test (EUT) Description	
Equipment Under Test	4
Peripheral Devices	
*	Er
ror! Bookmark not defined.	
Measurement Uncertainties	5
Report of Emissions Measurements	5
Testing Parameters	
Conducted Emissions	
Radiated Emissions	15

Page 2 of 21 Report No.: FC09-080

ADMINISTRATIVE INFORMATION

DATE OF TEST: March 16, 2009 **DATE OF RECEIPT:** March 16, 2009

REPRESENTATIVE: Chris Bolkan

MANUFACTURER: Cadwell Industries, Inc. 909 N. Kellogg St. Kennewick, WA 99336 TEST LOCATION: CKC Laboratories, Inc. 22116 23rd Drive S.E., Suite A Bothell, WA 98021-4413

TEST METHOD: ANSI C63.4 (2003)

PURPOSE OF TEST: To perform testing of the Electroneurodiagnostic Monitoring System, Easy Wireless EEG with the requirements for FCC Part 15 Subpart B Sections 15.107 and 15.109 Class A devices.

APPROVALS

QUALITY ASSURANCE:

Steve of Bel

TEST PERSONNEL:

Steve Behm, Director of Engineering Services

Armando Del Angel, Test Engineer

Donald Jones, Senior EMC Engineer / Lab

Manager

SITE FILE REGISTRATION NUMBERS

Location	Japan	Canada	FCC
Bothell	R-2296, C-2506 & T-1489	3082C-1	318736

Page 3 of 21 Report No.: FC09-080

SUMMARY OF RESULTS

Test	Specification	Results
Conducted Emissions	FCC Part 15 Subpart B Section 15.107 Class A	Pass
Radiated Emissions	FCC Part 15 Subpart B Section 15.109 Class A	Pass

CONDITIONS DURING TESTING

No modifications to the EUT were necessary during testing.

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The customer declares the EUT tested by CKC Laboratories was representative of a production unit.

EQUIPMENT UNDER TEST

Electroneurodiagnostic Monitoring System

Manuf: Cadwell Industries, Inc. Model: Easy Wireless EEG

Serial: ENG001

Electroneurodiagnostic Monitoring System is comprised of the following items:

Easy Net 32Channel Amp

Manuf: Cadwell Industries, Inc.

Model: 32 Channel EEG Easynet amp

Serial: ENG1

Easy Net Microphone

Manuf: Cadwell Industries, Inc.

Model: NA

Serial: NA

Battery 3.3VDC

Manuf: Cadwell Industries, Inc.

Model: AVT-900689 Serial: 349000-200

Easy Wireless Recorder

Manuf: Cadwell Industries, Inc.

Model: Easy Wireless s

Serial: ENG001

Power/Com Module

Manuf: Cadwell Industries, Inc.
Model: Easy III power/com module

Serial: 0709PX51-00-001

Page 4 of 21 Report No.: FC09-080

MEASUREMENT UNCERTAINTIES

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

The reported measurement uncertainties are calculated based on the worst case of all laboratory environments from CKC Laboratories, Inc. test sites. Only those parameters which require estimation of measurement uncertainty are reported. The reported worst case measurement uncertainty is less than the maximum values derived in CISPR 16-4-2. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

REPORT OF EMISSIONS MEASUREMENTS

TESTING PARAMETERS

The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit.

Page 5 of 21 Report No.: FC09-080

	SAMPLE CALCULA	TIONS							
	Meter reading (dBµV)								
+	Antenna Factor	(dB)							
+	Cable Loss	(dB)							
-	Distance Correction	(dB)							
_	Preamplifier Gain	(dB)							
=	Corrected Reading	$(dB\mu V/m)$							

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. The following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used. When conducted emissions testing was performed, a 10 dB external attenuator was used with internal offset correction in the analyzer.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE								
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING					
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz					
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz					
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz					

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the highest readings, this is indicated as a "QP" or an "Ave" on the appropriate rows of the data sheets. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer/receiver readings recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the measuring device called "peak hold," the measuring device had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the quasi-peak detector.

Average

For certain frequencies, average measurements may be made using the spectrum analyzer/receiver. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

Page 6 of 21 Report No.: FC09-080

CONDUCTED EMISSIONS

Test Setup Photos

Page 7 of 21 Report No.: FC09-080

Page 8 of 21 Report No.: FC09-080

Test Data Sheets

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717

Customer: Cadwell Industries

Specification: FCC 15.107(b) Class A - AVE

Work Order #: 89236 Date: 3/16/2009
Test Type: Conducted Emissions Time: 3:33:13 PM

Equipment: Electroneurodiagnostic monitoring Sequence#: 6

system

Manufacturer: Cadwell Tested By: Armando Del Angel

Model: Easy Wireless EEG 110V 60Hz

S/N: ENG001

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4440A	MY46186330	01/31/2008	01/31/2010	AN02872
Cable 30'	11	11/05/2008	11/05/2010	ANP05366
Cable 6'	49	11/10/2008	11/10/2010	ANP05371
Cable 20'	16	11/10/2008	11/10/2010	ANP05360
Attenuator	9912	03/21/2008	03/21/2010	ANP05503
Filter	G7752	07/21/2008	07/21/2010	AN02611
EMCO LISN	9606-1049	06/01/2007	06/01/2009	AN01492

Equipment Under Test (* = EUT):

Equipment Citates Test (201).		
Function	Manufacturer	Model #	S/N
Easy Net 32ch Amp	Cadwell	32 Channel EEG Easynet amp	ENG1
Easy Wireless recorder	Cadwell	Easy Wireless s	ENG001
Electroneurodiagnostic monitoring system*	Cadwell	Easy Wireless EEG	ENG001
Easy Net Microphone	Cadwell	N/A	N/A
Power/Com Module	Cadwell	Easy III power/com module	0709PX51-00-001
Battery 3.3Vdc	Cadwell	AVT-900689	349000-200

Support Devices:

Support Bertees.				
Function	Manufacturer	Model #	S/N	

Test Conditions / Notes:

Temp: $= 23^{\circ}C$

Rel. Humidity = 26%

Atm. Pressure = 101.9kPa

Testing Conducted Emissions per FCC 15.107 Class A

EUT's are located in the Test table.

They are connected in the following order:

Power/Com Module - Easy Wireless recorder (with battery) - Easy net 32ch amp - Easy net microphone

The power is 230/50 VAC

And the Power/Com module is also connected to a support computer in the outside of the chamber.

EUT is in operational mode.

Page 9 of 21 Report No.: FC09-080

Transducer Legend:

T1=CAB-ANP05371	T2=FIL-AN02611-072108
T3=CAB-ANP05366	T4=ATT-ANP5503-032108
T5=CAB-ANP05360	T6=CDN-AN01492-060107 - Line

Measur	ement Data:	Re	eading lis	ted by ma	ırgin.		Test Lead: Line				
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	•		T5	T6					•		
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	18.274M	42.3	+0.2	+0.2	+0.3	+10.1	+0.0	54.4	60.0	-5.6	Line
			+0.3	+1.0							
2	18.184M	42.1	+0.2	+0.2	+0.3	+10.1	+0.0	54.2	60.0	-5.8	Line
			+0.3	+1.0							
3	18.319M	42.1	+0.2	+0.2	+0.3	+10.1	+0.0	54.2	60.0	-5.8	Line
			+0.3	+1.0							
4	18.139M	41.9	+0.2	+0.2	+0.3	+10.1	+0.0	54.0	60.0	-6.0	Line
			+0.3	+1.0							
5	18.229M	41.9	+0.2	+0.2	+0.3	+10.1	+0.0	54.0	60.0	-6.0	Line
			+0.3	+1.0							
6	18.094M	41.8	+0.2	+0.2	+0.3	+10.1	+0.0	53.9	60.0	-6.1	Line
			+0.3	+1.0							
7	18.409M	41.6	+0.2	+0.2	+0.3	+10.1	+0.0	53.7	60.0	-6.3	Line
			+0.3	+1.0							
8	18.454M	41.6	+0.2	+0.2	+0.3	+10.1	+0.0	53.7	60.0	-6.3	Line
			+0.3	+1.0							
9	18.589M	41.7	+0.2	+0.1	+0.3	+10.1	+0.0	53.7	60.0	-6.3	Line
			+0.3	+1.0							
10	18.049M	41.5	+0.2	+0.2	+0.3	+10.1	+0.0	53.6	60.0	-6.4	Line
			+0.3	+1.0							
11	18.364M	41.5	+0.2	+0.2	+0.3	+10.1	+0.0	53.6	60.0	-6.4	Line
			+0.3	+1.0							
12	18.544M	41.6	+0.2	+0.1	+0.3	+10.1	+0.0	53.6	60.0	-6.4	Line
10	10.00434	41.2	+0.3	+1.0	0.2	10.1	0.0	50.0	60.0	6.7	T .
13	18.004M	41.2	+0.2	+0.2	+0.3	+10.1	+0.0	53.3	60.0	-6.7	Line
1.4	10.62434	41.2	+0.3	+1.0	. 0. 2	. 10.1	. 0. 0	52.0	60.0		т.
14	18.634M	41.2	+0.2	+0.1	+0.3	+10.1	+0.0	53.2	60.0	-6.8	Line
1.5	10.40014	41.0	+0.3	+1.0	.0.2	. 10 1	.00	<i>52.</i> 0	60.0	7.0	T in a
15	18.499M	41.0	+0.2 +0.3	+0.1	+0.3	+10.1	+0.0	53.0	60.0	-7.0	Line
16	19.670M	41.0		+1.0	+0.3	. 10. 1	+0.0	53.0	60.0	-7.0	T :
16	18.679M	41.0	+0.2	+0.1	+0.3	+10.1	+0.0	33.0	00.0	-7.0	Line
17	18.725M	41.0	+0.3	+1.0	+0.3	+10.1	+0.0	53.0	60.0	-7.0	Line
1 /	18.723WI	41.0			+0.3	+10.1	+0.0	33.0	00.0	-7.0	Line
10	11 247M	41.0	+0.3	+1.0	10.2	+ 10 O	٠,٥,٥	52.0	60.0	7 1	Lina
18	11.247M	41.9	+0.1 +0.2	+0.1 +0.4	+0.2	+10.0	+0.0	52.9	60.0	-7.1	Line
19	17.959M	40.8	+0.2	+0.4	+0.3	+10.1	+0.0	52.9	60.0	-7.1	Line
19	1 / . 7 J 7 IVI	40.8	+0.2	+0.2	+0.3	+10.1	+0.0	32.9	00.0	-/.1	Lille
20	18.815M	40.6	+0.3	+0.1	+0.3	+10.1	+0.0	52.6	60.0	-7.4	Line
20	10.0131	40.0	+0.2	+1.0	+0.3	+10.1	+ 0.0	32.0	00.0	-/.4	LIIIC
			+0.5	+1.0							

Page 10 of 21 Report No.: FC09-080

21	18.770M	40.3	+0.2	+0.1	+0.3	+10.1	+0.0	52.3	60.0	-7.7	Line
			+0.3	+1.0							
22	11.067M	41.1	+0.1	+0.1	+0.2	+10.0	+0.0	52.1	60.0	-7.9	Line
			+0.2	+0.4							
23	17.869M	39.9	+0.2	+0.2	+0.3	+10.1	+0.0	51.9	60.0	-8.1	Line
			+0.3	+0.9							
24	17.914M	39.8	+0.2	+0.2	+0.3	+10.1	+0.0	51.8	60.0	-8.2	Line
			+0.3	+0.9							
25	17.779M	39.6	+0.2	+0.2	+0.3	+10.1	+0.0	51.6	60.0	-8.4	Line
			+0.3	+0.9							
26	18.860M	39.4	+0.2	+0.1	+0.3	+10.1	+0.0	51.4	60.0	-8.6	Line
			+0.3	+1.0							
27	17.734M	39.3	+0.2	+0.2	+0.3	+10.1	+0.0	51.3	60.0	-8.7	Line
			+0.3	+0.9							
28	17.824M	39.1	+0.2	+0.2	+0.3	+10.1	+0.0	51.1	60.0	-8.9	Line
			+0.3	+0.9							
29	18.905M	39.0	+0.2	+0.1	+0.3	+10.1	+0.0	51.0	60.0	-9.0	Line
			+0.3	+1.0							
30	17.643M	38.8	+0.2	+0.2	+0.3	+10.1	+0.0	50.8	60.0	-9.2	Line
			+0.3	+0.9							

CKC Laboratories Date: 3/16/2009 Time: 3:33:13 PM Cadwell Industries WO#: 89236 FCC 15.107(b) Class A - AVE Test Lead: Line 110V 60Hz Sequence#: 6 Polarity: Line Notes:

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717

Customer: Cadwell Industries

Specification: FCC 15.107(b) Class A - AVE

Easy Wireless EEG

Work Order #: **89236** Date: 3/16/2009 Test Type: **Conducted Emissions** Time: 3:26:34 PM

Equipment: Electroneurodiagnostic monitoring Sequence#: 5

system

Manufacturer: Cadwell Tested By: Armando Del Angel

110V 60Hz

S/N: ENG001

Test Equipment:

Model:

I ost Equipment.					
Function	S/N	Calibration Date	Cal Due Date	Asset #	
Agilent E4440A	MY46186330	01/31/2008	01/31/2010	AN02872	
Cable 30'	11	11/05/2008	11/05/2010	ANP05366	
Cable 6'	49	11/10/2008	11/10/2010	ANP05371	
Cable 20'	16	11/10/2008	11/10/2010	ANP05360	
Attenuator	9912	03/21/2008	03/21/2010	ANP05503	
Filter	G7752	07/21/2008	07/21/2010	AN02611	
EMCO LISN	9606-1049	06/01/2007	06/01/2009	AN01492	

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Easy Net 32ch Amp	Cadwell	32 Channel EEG Easynet amp	ENG1
Easy Wireless recorder	Cadwell	Easy Wireless s	ENG001
Electroneurodiagnostic	Cadwell	Easy Wireless EEG	ENG001
monitoring system*			
Easy Net Microphone	Cadwell	N/A	N/A
Power/Com Module	Cadwell	Easy III power/com module	0709PX51-00-001
Battery 3.3Vdc	Cadwell	AVT-900689	349000-200

Support Devices:

Function	Manufacturer	Model #	S/N
1 direction	1,1411414614161	1110401 11	5/11

Test Conditions / Notes:

Temp: $= 23^{\circ}C$

Rel. Humidity = 26%

Atm. Pressure = 101.9kPa

Testing Conducted Emissions per FCC 15.107 Class A

EUT's are located in the Test table.

They are connected in the following order:

Power/Com Module - Easy Wireless recorder (with battery) - Easy net 32ch amp - Easy net microphone

The power is 230/50 VAC

And the Power/Com module is also connected to a support computer in the outside of the chamber.

EUT is in operational mode.

Page 12 of 21 Report No.: FC09-080

Transducer Legend:

T1=CAB-ANP05371	T2=FIL-AN02611-072108
T3=CAB-ANP05366	T4=ATT-ANP5503-032108
T5=CAB-ANP05360	T6=CDN-AN01492-060107 - Neutral

Measur	ement Data:	Re	eading lis	ted by ma	argin.			Test Lea	d: Neutral		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	18.265M	41.6	+0.2	+0.2	+0.3	+10.1	+0.0	53.8	60.0	-6.2	Neutr
			+0.3	+1.1							
2	18.184M	41.5	+0.2	+0.2	+0.3	+10.1	+0.0	53.7	60.0	-6.3	Neutr
			+0.3	+1.1							
3	18.040M	41.3	+0.2	+0.2	+0.3	+10.1	+0.0	53.5	60.0	-6.5	Neutr
			+0.3	+1.1							
4	18.085M	41.2	+0.2	+0.2	+0.3	+10.1	+0.0	53.4	60.0	-6.6	Neutr
			+0.3	+1.1							
5	18.310M	41.0	+0.2	+0.2	+0.3	+10.1	+0.0	53.2	60.0	-6.8	Neutr
			+0.3	+1.1							
6	18.220M	40.9	+0.2	+0.2	+0.3	+10.1	+0.0	53.1	60.0	-6.9	Neutr
			+0.3	+1.1							
7	18.355M	40.7	+0.2	+0.2	+0.3	+10.1	+0.0	52.9	60.0	-7.1	Neutr
			+0.3	+1.1							
8	18.499M	40.8	+0.2	+0.1	+0.3	+10.1	+0.0	52.9	60.0	-7.1	Neutr
			+0.3	+1.1							
9	18.535M	40.8	+0.2	+0.1	+0.3	+10.1	+0.0	52.9	60.0	-7.1	Neutr
			+0.3	+1.1							
10	17.995M	40.6	+0.2	+0.2	+0.3	+10.1	+0.0	52.8	60.0	-7.2	Neutr
			+0.3	+1.1							
11	17.950M	40.5	+0.2	+0.2	+0.3	+10.1	+0.0	52.7	60.0	-7.3	Neutr
			+0.3	+1.1							
12	18.130M	40.5	+0.2	+0.2	+0.3	+10.1	+0.0	52.7	60.0	-7.3	Neutr
			+0.3	+1.1							
13	18.580M	40.5	+0.2	+0.1	+0.3	+10.1	+0.0	52.6	60.0	-7.4	Neutr
		10.5	+0.3	+1.1							
14	18.625M	40.2	+0.2	+0.1	+0.3	+10.1	+0.0	52.3	60.0	-7.7	Neutr
1.7	10 4453 5	40.0	+0.3	+1.1	0.2	10.1	0.0	50.0	60.0	7.0	NT .
15	18.445M	40.0	+0.2	+0.2	+0.3	+10.1	+0.0	52.2	60.0	-7.8	Neutr
1.6	10.4003.4	20.0	+0.3	+1.1	. 0. 2	. 10.1	. 0. 0	<i>5</i> 0.1	60.0	7.0	NT /
16	18.400M	39.9	+0.2	+0.2	+0.3	+10.1	+0.0	52.1	60.0	-7.9	Neutr
17	18.670M	39.7	+0.3	+1.1	+0.3	+10.1	100	51.8	60.0	-8.2	Monte
1 /	18.070M	39.7	+0.2	+0.1	+0.3	+10.1	+0.0	31.8	60.0	-8.2	Neutr
10	10 716N/	20.7	+0.3	+1.1	10.2	+10.1	100	51.0	60.0	0.2	Monte
18	18.716M	39.7	+0.2 +0.3	+0.1	+0.3	+10.1	+0.0	51.8	60.0	-8.2	Neutr
10	17 725N4	20.4		+1.1	10.2	+10.1	100	51.6	60.0	0.1	Monte
19	17.725M	39.4	+0.2	+0.2	+0.3	+10.1	+0.0	51.6	60.0	-8.4	Neutr
20	17.770M	39.3	+0.3	+1.1	10.2	+10.1	+0.0	51.5	60.0	-8.5	Neutr
20	1 / . / / UIVI	39.3			+0.3	+10.1	+0.0	51.5	00.0	-8.3	INCULI
			+0.3	+1.1							

Page 13 of 21 Report No.: FC09-080

21	18.770M	39.4	+0.2	+0.1	+0.3	+10.1	+0.0	51.5	60.0	-8.5	Neutr
			+0.3	+1.1							
22	17.860M	38.8	+0.2	+0.2	+0.3	+10.1	+0.0	51.0	60.0	-9.0	Neutr
			+0.3	+1.1							
23	17.905M	38.8	+0.2	+0.2	+0.3	+10.1	+0.0	51.0	60.0	-9.0	Neutr
			+0.3	+1.1							
24	19.085M	38.8	+0.2	+0.1	+0.3	+10.1	+0.0	51.0	60.0	-9.0	Neutr
			+0.3	+1.2							
25	17.679M	38.7	+0.2	+0.2	+0.3	+10.1	+0.0	50.9	60.0	-9.1	Neutr
			+0.3	+1.1							
26	17.634M	38.5	+0.2	+0.2	+0.3	+10.1	+0.0	50.7	60.0	-9.3	Neutr
			+0.3	+1.1							
27	18.806M	38.6	+0.2	+0.1	+0.3	+10.1	+0.0	50.7	60.0	-9.3	Neutr
			+0.3	+1.1							
28	18.851M	38.6	+0.2	+0.1	+0.3	+10.1	+0.0	50.7	60.0	-9.3	Neutr
			+0.3	+1.1							
29	18.950M	38.6	+0.2	+0.1	+0.3	+10.1	+0.0	50.7	60.0	-9.3	Neutr
			+0.3	+1.1							
30	17.815M	38.3	+0.2	+0.2	+0.3	+10.1	+0.0	50.5	60.0	-9.5	Neutr
			+0.3	+1.1							

CKC Laboratories Date: 3/16/2009 Time: 3:26:34 PM Cadwell Industries WO#: 89236 FCC 15.107(b) Class A - AVE Test Lead: Neutral 110V 60Hz Sequence#: 5 Polarity: Neutral Notes:

Page 14 of 21 Report No.: FC09-080

RADIATED EMISSIONS

Test Setup Photos

Page 15 of 21 Report No.: FC09-080

Test Data Sheets

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717

Customer: Cadwell Industries
Specification: 15.109 CLASS A

Work Order #: 89236 Date: 3/16/2009
Test Type: Radiated Scan Time: 14:25:27
Equipment: Electroneurodiagnostic monitoring Sequence#: 1

system

Manufacturer: Cadwell Tested By: Armando Del Angel

Model: Easy Wireless EEG

S/N: ENG001

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 8447D Preamp	2944A08601	07/08/2008	07/08/2010	AN01517
Agilent E4440A	MY46186330	01/31/2008	01/31/2010	AN02872
Cable 6'	51	12/30/2008	12/30/2010	ANP05361
Antenna	2453	12/22/2008	12/22/2010	AN01994
Cable 30'	11	11/05/2008	11/05/2010	ANP05366
Cable 6'	49	11/10/2008	11/10/2010	ANP05371
Cable 20'	16	11/10/2008	11/10/2010	ANP05360

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Easy Net 32ch Amp	Cadwell	32 Channel EEG Easynet amp	ENG1
Easy Wireless recorder	Cadwell	Easy Wireless s	ENG001
Electroneurodiagnostic monitoring system*	Cadwell	Easy Wireless EEG	ENG001
Easy Net Microphone	Cadwell	N/A	N/A
Power/Com Module	Cadwell	Easy III power/com module	0709PX51-00-001
Battery 3.3Vdc	Cadwell	AVT-900689	349000-200

Support Devices:

Function	Manufacturer	Model #	S/N	
1 uncuon	Manufacturer	Ινίους: π	5/19	

Test Conditions / Notes:

Temp: $= 23^{\circ}C$

Rel. Humidity = 26% Atm. Pressure = 101.9kPa

Testing Radiated Emissions per FCC 15.109 A

EUT's are located in the Test table.

They are connected in the following order:

Power/Com Module - Easy Wireless recorder (with battery) - Easy net 32ch amp - Easy net microphone

The power is 230/50 VAC

And the Power/Com module is also connected to a support computer in the outside of the chamber.

EUT is in operational mode.

Page 16 of 21 Report No.: FC09-080

Transducer Legend:
T1=AMP-AN01517-070808 T2=ANT AN01994 25-1000MHz

T3=CAB-ANP05360 T4=CAB-ANP05361 T5=CAB-ANP05366 T6=CAB-ANP05371

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Те	est Distance	e: 3 Meters	l .	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	dBµV/m	dBμV/m	dB	Ant
1	31.967M	45.1	-29.2	+19.8	+0.3	+0.1	-10.0	26.6	39.1	-12.5	Vert
	QP		+0.3	+0.2			180				117
٨	31.967M	52.6	-29.2	+19.8	+0.3	+0.1	-10.0	34.1	39.1	-5.0	Vert
			+0.3	+0.2			180				117
3	67.800M	57.8	-29.2	+6.0	+0.5	+0.1	-10.0	25.9	39.1	-13.2	Vert
			+0.5	+0.2			360				130
4	67.001M	57.9	-29.2	+5.9	+0.4	+0.1	-10.0	25.6	39.1	-13.5	Vert
			+0.4	+0.1			360				130
5	68.665M	56.6	-29.2	+6.2	+0.5	+0.1	-10.0	24.9	39.1	-14.2	Vert
			+0.5	+0.2			360				130
6	39.982M	47.7	-29.1	+15.1	+0.4	+0.1	-10.0	24.7	39.1	-14.4	Vert
			+0.4	+0.1			360				130
7	66.136M	56.3	-29.2	+5.7	+0.4	+0.1	-10.0	23.8	39.1	-15.3	Vert
			+0.4	+0.1			360				130
8	199.852M	55.2	-28.8	+9.1	+0.9	+0.2	-10.0	27.9	43.5	-15.6	Vert
			+1.0	+0.3			360				130
9	215.948M	53.4	-28.7	+10.3	+0.9	+0.2	-10.0	27.4	43.5	-16.1	Vert
			+1.0	+0.3			360				130
10	123.936M	52.7	-29.0	+11.7	+0.7	+0.2	-10.0	27.3	43.5	-16.2	Vert
			+0.7	+0.3			360				130
11	211.864M	53.3	-28.7	+10.0	+0.9	+0.2	-10.0	27.0	43.5	-16.5	Vert
			+1.0	+0.3			360				130
12	69.530M	54.1	-29.2	+6.3	+0.5	+0.1	-10.0	22.5	39.1	-16.6	Vert
			+0.5	+0.2			360				130
13	203.936M	53.9	-28.8	+9.4	+0.9	+0.2	-10.0	26.9	43.5	-16.6	Vert
			+1.0	+0.3			360				130
14	116.008M	52.7	-29.0	+11.4	+0.6	+0.2	-10.0	26.8	43.5	-16.7	Vert
			+0.6	+0.3			360				130
15	208.020M	53.3	-28.7	+9.7	+0.9	+0.2	-10.0	26.7	43.5	-16.8	Vert
			+1.0	+0.3			360				130
16	64.472M	54.9	-29.2	+5.4	+0.4	+0.1	-10.0	22.1	39.1	-17.0	Vert
			+0.4	+0.1			360				130
17	83.971M	51.8	-29.1	+8.0	+0.5	+0.1	-10.0	22.0	39.1	-17.1	Vert
			+0.5	+0.2			360				130
18	131.984M	51.5	-29.0	+11.7	+0.7	+0.2	-10.0	26.1	43.5	-17.4	Vert
			+0.7	+0.3			360				130
19	235.888M	53.2	-28.6	+11.8	+1.0	+0.2	-10.0	29.0	46.4	-17.4	Vert
			+1.0	+0.4			360	2			130
20	35.989M	41.2	-29.1	+18.1	+0.4	+0.1	-10.0	21.2	39.1	-17.9	Vert
			+0.4	+0.1			360				130

Page 17 of 21 Report No.: FC09-080

21 70.329M	52.5	-29.2	+6.4	+0.5	+0.1	-10.0	21.0	39.1	-18.1	Vert
		+0.5	+0.2			360				130
22 71.926M	52.3	-29.2	+6.6	+0.5	+0.1	-10.0	21.0	39.1	-18.1	Vert
		+0.5	+0.2			360				130
23 215.588M	51.1	-28.7	+10.3	+0.9	+0.2	-10.0	25.1	43.5	-18.4	Vert
		+1.0	+0.3			360				130
24 227.960M	52.9	-28.6	+11.2	+0.9	+0.2	-10.0	27.9	46.4	-18.5	Vert
QP		+1.0	+0.3			90				199
^ 227.960M	61.6	-28.6	+11.2	+0.9	+0.2	-10.0	36.6	46.4	-9.8	Vert
		+1.0	+0.3			90				199
26 183.876M	49.8	-28.8	+9.0	+0.8	+0.2	-10.0	22.1	43.5	-21.4	Vert
QP		+0.9	+0.2			99				200
^ 183.876M	57.8	-28.8	+9.0	+0.8	+0.2	-10.0	30.1	43.5	-13.4	Vert
		+0.9	+0.2			360				130
28 220.393M	48.3	-28.6	+10.7	+0.9	+0.2	-10.0	22.8	46.4	-23.6	Vert
QP		+1.0	+0.3			90				199
^ 220.393M	56.6	-28.6	+10.7	+0.9	+0.2	-10.0	31.1	46.4	-15.3	Vert
		+1.0	+0.3			360				130
30 184.237M	47.0	-28.8	+9.0	+0.8	+0.2	-10.0	19.3	43.5	-24.2	Vert
QP		+0.9	+0.2			180				99
^ 184.237M	58.0	-28.8	+9.0	+0.8	+0.2	-10.0	30.3	43.5	-13.2	Vert
		+0.9	+0.2			360				130
32 168.141M	43.4	-28.8	+9.9	+0.8	+0.2	-10.0	16.6	43.5	-26.9	Vert
QP		+0.9	+0.2			99				99
^ 168.141M	56.7	-28.8	+9.9	+0.8	+0.2	-10.0	29.9	43.5	-13.6	Vert
		+0.9	+0.2			360				130
34 191.944M	41.2	-28.8	+9.1	+0.9	+0.2	-10.0	13.9	43.5	-29.6	Vert
QP		+1.0	+0.3			180				99
35 176.088M	38.8	-28.8	+9.2	+0.8	+0.2	-10.0	11.3	43.5	-32.2	Vert
QP		+0.9	+0.2			180				99
^ 176.088M	56.5	-28.8	+9.2	+0.8	+0.2	-10.0	29.0	43.5	-14.5	Vert
		+0.9	+0.2			360				130

Page 18 of 21 Report No.: FC09-080

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717

Customer: Cadwell Industries
Specification: 15.109 CLASS A

Work Order #: 89236 Date: 3/16/2009
Test Type: Radiated Scan Time: 14:44:11
Equipment: Electroneurodiagnostic monitoring Sequence#: 2

system

Manufacturer: Cadwell

Model: Easy Wireless EEG

S/N: ENG001

Test Equipment:

resi Byuipmeni.					
Function	S/N	Calibration Date	Cal Due Date	Asset #	
HP 8447D Preamp	2944A08601	07/08/2008	07/08/2010	AN01517	
Agilent E4440A	MY46186330	01/31/2008	01/31/2010	AN02872	
Cable 6'	51	12/30/2008	12/30/2010	ANP05361	
Antenna	2453	12/22/2008	12/22/2010	AN01994	
Cable 30'	11	11/05/2008	11/05/2010	ANP05366	
Cable 6'	49	11/10/2008	11/10/2010	ANP05371	
Cable 20'	16	11/10/2008	11/10/2010	ANP05360	

Tested By: Armando Del Angel

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N		
Easy Net 32ch Amp	Cadwell	32 Channel EEG Easynet amp	ENG1		
Easy Wireless recorder	Cadwell	Easy Wireless s	ENG001		
Electroneurodiagnostic Cadwell		Easy Wireless EEG	ENG001		
monitoring system*					
Easy Net Microphone	Cadwell	N/A	N/A		
Power/Com Module	Cadwell	Easy III power/com module	0709PX51-00-001		
Battery 3.3Vdc	Cadwell	AVT-900689	349000-200		

Support Devices:

Function	Manufacturer	Model #	S/N

Test Conditions / Notes:

Temp: $= 23^{\circ}C$

Rel. Humidity = 26% Atm. Pressure = 101.9kPa

Testing Radiated Emissions per EN60601-1-2 2007 Class A

EUT's are located in the Test table.

They are connected in the following order:

Power/Com Module - Easy Wireless recorder (with battery) - Easy net 32ch amp - Easy net microphone

The power is 230/50 VAC

And the Power/Com module is also connected to a support computer in the outside of the chamber.

EUT is in operational mode.

Page 19 of 21 Report No.: FC09-080

Transducer Legend:
T1=AMP-AN01517-070808 T2=ANT AN01994 25-1000MHz

T3=CAB-ANP05360 T4=CAB-ANP05361 T5=CAB-ANP05366 T6=CAB-ANP05371

Measu	rement Data:				Test Distance: 3 Meters						
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	dBμV/m	dBμV/m	dB	Ant
1	159.972M	62.5	-28.9	+10.7	+0.8	+0.2	-10.0	36.4	43.5	-7.1	Horiz
			+0.9	+0.2			360				130
2	208.621M	62.8	-28.7	+9.8	+0.9	+0.2	-10.0	36.3	43.5	-7.2	Horiz
			+1.0	+0.3			360				130
3	214.507M	62.3	-28.7	+10.2	+0.9	+0.2	-10.0	36.2	43.5	-7.3	Horiz
			+1.0	+0.3			360				130
4	147.960M	60.3	-28.9	+11.4	+0.7	+0.2	-10.0	34.8	43.5	-8.7	Horiz
			+0.8	+0.3			360				130
5	220.001M	63.2	-28.6	+10.6	+0.9	+0.2	-10.0	37.6	46.4	-8.8	Horiz
	QP		+1.0	+0.3			118				127
^	220.001M	71.3	-28.6	+10.6	+0.9	+0.2	-10.0	45.7	46.4	-0.7	Horiz
			+1.0	+0.3			118				127
7	192.044M	62.0	-28.8	+9.1	+0.9	+0.2	-10.0	34.7	43.5	-8.8	Horiz
			+1.0	+0.3			360				130
8	168.020M	61.4	-28.8	+9.9	+0.8	+0.2	-10.0	34.6	43.5	-8.9	Horiz
			+0.9	+0.2			360				130
9	156.008M	60.4	-28.9	+10.9	+0.8	+0.2	-10.0	34.4	43.5	-9.1	Horiz
- 10			+0.8	+0.2			360				130
10	213.666M	60.1	-28.7	+10.2	+0.9	+0.2	-10.0	34.0	43.5	-9.5	Horiz
			+1.0	+0.3			360	***		0.5	130
11	228.080M	61.8	-28.6	+11.2	+0.9	+0.2	-10.0	36.8	46.4	-9.6	Horiz
			+1.0	+0.3			360				130
12	212.465M	59.8	-28.7	+10.1	+0.9	+0.2	-10.0	33.6	43.5	-9.9	Horiz
12	101 00 17 5	60.1	+1.0	+0.3	0.0	0.0	360	22.0	10.7	10.5	130
13	191.804M	60.1	-28.8	+9.1	+0.9	+0.2	-10.0	32.8	43.5	-10.7	Horiz
1.4	106.00014	(0.1	+1.0	+0.3	. 0. 0	. 0. 2	360	22.0	10.5	10.7	130
14	196.008M	60.1	-28.8	+9.1	+0.9	+0.2	-10.0	32.8	43.5	-10.7	Horiz
1.7	202.01614	50.0	+1.0	+0.3	. 0. 0	. 0. 2	360	22.0	10.5	10.7	130
15	203.816M	59.8	-28.8	+9.4	+0.9	+0.2	-10.0	32.8	43.5	-10.7	Horiz 130
16	207.54014	50.2	+1.0	+0.3	.00	.0.2	360	22.7	12.5	10.0	
16	207.540M	59.3	-28.7	+9.7	+0.9	+0.2	-10.0 360	32.7	43.5	-10.8	Horiz
17	210.903M	500	+1.0	+0.3	١٨٨	10.2	-10.0	22.5	12.5	11.0	130
17	210.903M	58.8	-28.7	+10.0 +0.3	+0.9	+0.2	-10.0 360	32.5	43.5	-11.0	Horiz 130
10	100 001 1 1	59.0	+1.0		10.6	ı () 1	-10.0	22.1	12.5	11 /	
18	108.081M	58.9	-29.1 +0.6	+10.8 +0.2	+0.6	+0.1	-10.0 360	32.1	43.5	-11.4	Horiz 130
10	227 49014	59.7			+0.9	10.2	-10.0	34.7	46.4	-11.7	
19	227.480M	39.1	-28.6 +1.0	+11.2 +0.3	+0.9	+0.2	360	34.7	40.4	-11./	Horiz 130
20	216.789M	60.5	+1.0 -28.7	+10.4	+0.9	+0.2	-10.0	34.6	46.4	-11.8	Horiz
20	210./09IVI	00.5	-28.7 +1.0	+10.4	+0.9	+0.∠	360	54.0	40.4	-11.0	130
			+1.0	+0.3			300				130

Page 20 of 21 Report No.: FC09-080

21	131.984M	57.0	-29.0	+11.7	+0.7	+0.2	-10.0	31.6	43.5	-11.9	Horiz
			+0.7	+0.3			360				130
22	211.984M	57.8	-28.7	+10.0	+0.9	+0.2	-10.0	31.5	43.5	-12.0	Horiz
			+1.0	+0.3			360				130
23	168.261M	58.2	-28.8	+9.9	+0.8	+0.2	-10.0	31.4	43.5	-12.1	Horiz
			+0.9	+0.2			360				130
24	216.309M	60.1	-28.7	+10.4	+0.9	+0.2	-10.0	34.2	46.4	-12.2	Horiz
			+1.0	+0.3			360				130
25	222.915M	58.4	-28.6	+10.9	+0.9	+0.2	-10.0	33.1	46.4	-13.3	Horiz
			+1.0	+0.3			360				130
26	224.116M	57.7	-28.6	+10.9	+0.9	+0.2	-10.0	32.4	46.4	-14.0	Horiz
			+1.0	+0.3			360				130
27	221.113M	57.1	-28.6	+10.7	+0.9	+0.2	-10.0	31.6	46.4	-14.8	Horiz
			+1.0	+0.3			360				130
28	213.306M	52.3	-28.7	+10.1	+0.9	+0.2	-10.0	26.1	43.5	-17.4	Horiz
	QP		+1.0	+0.3			118				127
٨	213.306M	63.6	-28.7	+10.1	+0.9	+0.2	-10.0	37.4	43.5	-6.1	Horiz
			+1.0	+0.3			360				130

Page 21 of 21 Report No.: FC09-080