Package 'CoxSubTest'

November 3, 2023

10 VCIIIOCI 3, 2023		
n [aut], Xu Liu [aut], Xingjie Shi [aut]		
94@cuhk.edu.cn>		
Description Maximum likelihood ratio test is proposed for Cox proportional hazard models with a change plane. Different testing methods are provided in this package.		
nood ratio test for Cox proportional hazard model with a me.		
B = 1000, K = 1000, qlb = 0.1, tol = 1e-8, s = 20, saveall = FALSE)		

2 CoxSubTestLRT

Arguments

data	A list, including y (time response), x (predictors), z (predictors), u (grouping variables), status (censoring indicator).
Gamma	A matrix for initial gamma values. If not given then it will be automatically generated based on the data.
В	A constant. Number of bootstrap samples. Default is 1000.
K	A constant. The number of the initial gamma values. Default is 1000.
qlb	A constant. The lower quantile specified for Z%*%gamma.initials. Default is 0.1.
tol	A constant. The precision of the Newton method. Default is 1e-8.
seed	A constant. The number of seeds for generating the initial gamma values. Default is 1.
maxs	A constant. The maximum number of iterations in Newton method. Default is 20.
saveall	A logical value. Whether to save the results corresponding to all the gamma initial values. Default is FALSE.

Value

A list.

- TestR The value of test statistic.
- TestB B values of test statistic obtained from the bootstrap.
- Pval The p-value of the test.
- TestRVEC K values of test statistic based on K initial gamma values if saveall is set as TRUE.
- TestBmat B*K values of test static obtained from the bootstrap based on K initial gamma values if saveall is set as TRUE.
- time Running time.

Examples

```
n = 100
p1 = 2
p2 = 1
p3 = 3
alpha = rep(1, p1)
beta = rep(1, p2)/2
gamma = c(1, seq(-1,1,length.out = p3-1))
rho = 0.3
cenRate = 0.2
set.seed(100)
data = generate_cox_data(n, alpha, beta, gamma, rho, cenRate = cenRate)
fit <- CoxSubTestLRT(data)</pre>
```

CoxSubTestST 3

CoxSubTestST	The score test for Cox proportional hazard model with a change plane in Kang et al.(2017).

Usage

Arguments

data	A list, including y (time response), x (predictors), z (predictors), u (grouping variables), status (censoring indicator).
Gamma	A matrix for initial gamma values. If not given then it will be automatically generated based on the data.
В	A constant. Number of bootstrap samples. Default is 1000.
K	A constant. The number of the initial gamma values. Default is 1000.
qlb	A constant. The lower quantile specified for Z%*%gamma.initials. Default is 0.1.
tol	A constant. The precision of the Newton method. Default is 1e-8.
seed	A constant. The number of seeds for generating the initial gamma values. Default is 1.
saveall	A logical value. Whether to save the results corresponding to all the gamma initial values. Default is FALSE.

Value

A list.

- TestR The value of test statistic.
- TestB B values of test statistic obtained from the bootstrap.
- Pval The p-value of the test.
- TestRVEC K values of test statistic based on K initial gamma values if saveall is set as TRUE.
- TestBmat B*K values of test static obtained from the bootstrap based on K initial gamma values if saveall is set as TRUE.
- time Running time.

References

Kang, S., Lu, W., and Song, R. (2017). Subgroup detection and sample size calculation with proportional hazards regression for survival data. Statistics in medicine, 36(29), 4646-4659.

4 CoxSubTestSUP

Examples

```
n = 100
p1 = 2
p2 = 1
p3 = 3
alpha = rep(1, p1)
beta = rep(1, p2)/2
gamma = c(1, seq(-1,1,length.out = p3-1))
rho = 0.3
cenRate = 0.2
set.seed(100)
data = generate_cox_data(n, alpha, beta, gamma, rho, cenRate = cenRate)
fit <- CoxSubTestST(data)</pre>
```

CoxSubTestSUP

The SUP test for Cox proportional hazard model with a change plane in Deng et al. (2022).

Usage

```
CoxSubTestSUP(data, Gamma, B = 1000, K = 1000, qlb = 0.1, tol = 1e-8, seed = 1)
```

Arguments

data	A list, including y (time response), x (predictors), z (predictors), u (grouping variables), status (censoring indicator).
Gamma	A matrix for initial gamma values. If not given then it will be automatically generated based on the data.
В	A constant. Number of bootstrap samples. Default is 1000.
K	A constant. The number of the initial gamma values. Default is 1000.
qlb	A constant. The lower quantile specified for Z%*%gamma.initials. Default is 0.1.
tol	A constant. The precision of the Newton method. Default is 1e-8.
seed	A constant. The number of seeds for generating the initial gamma values. Default is 1.

Value

A list.

- TestR The value of test statistic.
- TestB B values of test statistic obtained from the bootstrap.
- Pval The p-value of the test.
- time Running time.

References

Deng, Y., Cai, J., and Zeng, D. (2022). Maximum Likelihood Estimation for Cox Proportional Hazards Model with a Change Hyperplane. Statistica Sinica, 32(2), 983.

gam.init 5

Examples

```
n = 100
p1 = 2
p2 = 1
p3 = 3
alpha = rep(1, p1)
beta = rep(1, p2)/2
gamma = c(1, seq(-1,1,length.out = p3-1))
rho = 0.3
cenRate = 0.2
set.seed(100)
data = generate_cox_data(n, alpha, beta, gamma, rho, cenRate = cenRate)
fit <- CoxSubTestSUP(data)</pre>
```

gam.init

Function to select initial gamma values spanning its space

Usage

```
gam.init(n.initials, Z, lb.quantile, ub.quantile, ss=1)
```

Arguments

```
n.initials Number of gamma values.

Z The grouping variables.

1b.quantile The lower quantile specified for Z%*%gamma.initials.

ub.quantile The upper quantile specified for Z%*%gamma.initials.

ss A positive integer with n.initials/ss indicating how many sets of gamma are chosen, default to 1.
```

Value

A matrix. A set of gamma values selected for defining subgroup.

Examples

```
n = 100
p1 = 2
p2 = 1
p3 = 3
alpha = rep(1, p1)
beta = rep(1, p2)/2
gamma = c(1, seq(-1,1,length.out = p3-1))
rho = 0.3
cenRate = 0.2
set.seed(100)
data = generate_cox_data(n, alpha, beta, gamma, rho, cenRate = cenRate)
K = 1000
qlb = 0.1
cols = apply(data$u, 2, var) != 0
Gamma = gam.init(K, data$u[,cols], lb.quantile=qlb, ub.quantile=1-qlb, ss=1)
```

6 generate_cox_data

generate_cox_data	Function for generating data from Cox proportional hazard model
	with a change plane.

Usage

Arguments

n A constant. The sample size.

alpha A vector. The true parameter for baseline covariates.

beta A vector. The true parameter denoting the heterogeneous effect of the subgroup.

gamma A vector. The true parameter for grouping variables.

rho The strength of correlation among covariates.

cenRate A constant. Censoring rate. Default is 0.1.

censortype Censroing type, including "RightCensor" and "RandomCensor".

Value

A list.

- y A length n vector. The survival time.
- x A matrix. The baseline covariates.
- z A matrix. The baseline covariates.
- u A matrix. The grouping variables.
- status A length \boldsymbol{n} vector. Censoring indicator.

Examples

```
n = 100
p1 = 2
p2 = 1
p3 = 3
alpha = rep(1, p1)
beta = rep(1, p2)/2
gamma = c(1, seq(-1,1,length.out = p3-1))
rho = 0.3
cenRate = 0.2
set.seed(100)
data = generate_cox_data(n, alpha, beta, gamma, rho, cenRate = cenRate)
```

Index

```
CoxSubTestLRT, 1
CoxSubTestST, 3
CoxSubTestSUP, 4
gam.init, 5
generate_cox_data, 6
```