Two-Way Deterministic Communication Is Like Sending Plain Text under Quantum Protection

Mladen Pavičić
PQO, Center of Excellence CEMS, Ruđer Bošković Institute, Zagreb

NanoGroup, HU-Berlin, 7.10.16

One-Way Quantum Key Distribution: BB84

CLASSICAL CHANNEL (SIFTING)

One-Way Protocol: BB84; The protocol is probabilistic.

1	1	0	0	1	0	0	1	1	0	1	0	0	1	1	0
2	\boxtimes	\blacksquare		⊞	⊞	\blacksquare	⊞	⊞			Ш		\boxtimes	\boxtimes	Ш
3				\leftrightarrow	\$	\$	\leftrightarrow	\leftrightarrow			\$				_
4	\blacksquare	\boxtimes	\boxtimes	\blacksquare	\blacksquare	\boxtimes	\boxtimes	\blacksquare	\boxtimes	\blacksquare	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\blacksquare
5					\$			\leftrightarrow		\$	\$				\$
6	\blacksquare		\boxtimes		Ш		\boxtimes	\blacksquare		\blacksquare		\boxtimes		\boxtimes	
7			\checkmark		✓			✓				\checkmark		√	\checkmark
8					\$										
9					√									\checkmark	
10			0					1				0			0

Table: An example of the BB84 protocol.

Attack on One-Way Protocol: BB84

CLASSICAL CHANNEL (SIFTING)

Mutual Information: BB84

Two-Way Entangled Photon Protocols—Bell States Deterministic Protocols

Bell states:

$$|\Psi^{\pm}
angle = rac{1}{\sqrt{2}}(|H
angle|V
angle \pm |V
angle|H
angle), \quad |\Phi^{\pm}
angle = rac{1}{\sqrt{2}}(|H
angle|H
angle + |V
angle|V
angle),$$

Two Bell states, $|\Psi^{\pm}\rangle$ —ping-pong protocol.

Kim Boström and Timo Felbinger,

Deterministic Secure Direct Communication Using Entanglement,

Phys. Rev. Lett., 89, 187902 (2002).

On the Security of the Ping-Pong Protocol, *Phys. Lett. A*, **372**, 3953 (2008).

All four Bell States:

Quing-yu Cai and Ban-wen Li, Improving the Capacity of the Boström–Felbinger Protocol, *Phys. Rev. A*, **69**, 054301 (2004).

Bell State Deterministic Direct Communication Protocol

M.Ostermeyer and N.Walenta, On the Implementation of a Deterministic Secure Coding Protocol Using Polarization Entangled Photons,

Opt. Commun., 281, 4540 (2008).

NanoGroup, HU-Berlin, 7.10.16

Attack on a Bell State Protocol

Attack on One Photon Deterministic Two-Way Protocol

- Marco Lucamarini and Stefano Mancini,
- Secure Deterministic Communication without Entanglement,
 - Phys. Rev. Lett., 94, 140501 (2005).
 - A. Cerè, M. Lucamarini, G. Di Giuseppe and P. Tombesi,
- Experimental Test of Two-Way Quantum Key Distribution in the Presence of Controlled Noise.
 - Phys. Rev. Lett., 96, 200501 (2006).
 - R. Kumar, M. Lucamarini, G. Di Giuseppe, R. Natali, G. Mancini and P. Tombesi.
- Two-Way Quantum Key Distribution at Telecommunication Wavelength, *Phys. Rev. A*, **77**, 022304 (2008).

One Photon Deterministic Direct Communication Protocol

I leaves the qubit unchanged; encodes 0;

 $i\mathbf{Y} = \mathbf{ZX}$ (Pauli operators), flips the qubit state; encodes $\mathbf{1}$:

$$i \mathbf{Y} |0\rangle = -|1\rangle,$$

 $i \mathbf{Y} |1\rangle = |0\rangle,$

$$i\mathbf{Y}|+\rangle=|-\rangle$$
,

$$i\mathbf{Y}|-\rangle = -|+\rangle.$$

Attack on One Photon Deterministic Two-Way Protocol

2-Way Deterministic Protocols: Like Sending Plain Text

Is LM05 Secure?

BB84: security of the protocol and critical disturbance (D, QBER) via secret fraction

$$r = \lim_{N \to \infty} \frac{I}{n} = I_{AB} - I_{AE}$$

I—length of the final key; *n*—length of the raw key

H. Lu, C.-H. F. Fung, X. Ma and Q.-y. Cai,

Unconditional Security Proof of a Deterministic Quantum Key Distribution with a Two-Way Quantum Channel,

Phys. Rev. A, 84, 042344 (2011).

Quantum protection of plain text sending: Control Mode. Does it work?

Proof of Unconditional Security Does not Work

"Eve's most general attack in the Bob-Alice channel:

$$\begin{array}{lcl} U_{BE}|0\rangle_B|E\rangle & = & c_{00}|0\rangle_B|E_{00}\rangle + c_{01}|1\rangle_B|E_{01}\rangle, \dots \\ U_{BE}|+\rangle_B|E\rangle & = & c_{++}|+\rangle_B|E_{++}\rangle + c_{+-}|-\rangle_B|E_{+-}\rangle, \dots \end{array}$$

"After verifying $c_{++}^2-c_{01}^2\geq 1/2$, Alice and Bob get the [secret fraction] against collective attacks,

$$r=1-h(\xi),$$

where $\xi=c_{++}^2-c_{01}^2$ and $h(\xi)=-\xi\log_2\xi-(1-\xi)\log_2(1-\xi)$ is the binary Shannon entropy."

However, with our attack, we have $c_{++}=1$ and $c_{01}=0$. This yields: $\xi=1$ and r=1. There is no critical disturbance: $I_{AE} \leq I_{AB}$.

List of Two-Way Deterministic Protocol Properties

	BB84	pp	LM05
type	probabilistic	deterministic	deterministic
mode(s)	message (MM)	message (MM) + control (CM)	message (MM) + control (CM)
security	QBER of MM	QBER of CM	QBER of CM
secure	for QBER $< 11\%$	no/unknown	no/unknown
disturbance	$0 \leq D \leq 0.5$ in MM	D = 0 in MM, $0 \le D \le 0.5$ in CM	D = 0 in MM, $0 \le D \le 0.5$ in CM
critical disturbance	D = 0.11	indeterminable — dependent on inherent QBER of the system	indeterminable — dependent on inherent QBER of the system
mutual information	$I_{AB} = 1 + D \log_2 D$ $+(1 - D) \log_2 (1 - D),$ $I_{AE} = -D \log_2 D$ $-(1 - D) \log_2 (1 - D)$	$I_{AB} = 1,$ $0 \le I_{AE} \le 1$	$I_{AB} = 1,$ $0 \le I_{AE} \le 1$
photon distance	L	4 <i>L</i>	2L
trans- mittance	au	\mathcal{T}^4	\mathcal{T}^2

A Two-Way Probabilistic Protocol is However Possible

M. Pavičić, O. Benson, A. W. Schell, and J. Wolters, Mixed basis quantum key distribution with linear optics, [Submitted, Sep. 2016].

Two Bell states $|\chi^{1,2}\rangle = |\Psi^{\mp}\rangle +$ two computational basis states $|\chi^{3}\rangle = |H\rangle_{1}|H\rangle_{2}, \ |\chi^{4}\rangle = |V\rangle_{1}|V\rangle_{2}$

Mixed Basis Two-Way Protocol

Attack on the Mixed Basis Two-Way Protocol

After sifting: $I_{AEs} = 0.875$, $I_{ABs} = 0.774$.

After after error correction: $I_{AEc} = 1.54$, $I_{ABs} = 1.93$.

◆□▶ ◆□▶ ◆■▶ ◆■▶ ◆■ めの○

Thank You for Your Attention

