

УДК 338:001.891.573

© В. К. Булгаков, Г. Л. Шатов, 2007

ИССЛЕДОВАНИЕ МАТЕМАТИЧЕСКОЙ МОДЕЛИ РЕГИОНАЛЬНОЙ МАКРОЭКОНОМИКИ С УЧЕТОМ МИГРАЦИИ РАБОЧЕЙ СИЛЫ И ДЕМОГРАФИЧЕСКОГО ФАКТОРА

Разработана и исследована новая математическая модель макроэкономики региона, учитывающая миграционные и демографические процессы. Решена задача оптимального управления региональным производственным процессом на уровне организаторов производственного процесса. Разработан алгоритм решения задачи оптимального управления. Даны результаты расчетов на ЭВМ оптимального управления и оптимальных траекторий развития макроэкономики на примере Хабаровского края.

The new macroeconomic mathematical model of the region, considering migratory and demographic processes has been developed and investigated. The problem of optimum managing the regional production process on the organizational stage of the production process has been solved. The algorithm of solving the problem of optimum managing has been developed. Computerized calculation results of optimum managing and optimum trajectories of macroeconomic development have been given on the example of the Khabarovsk Krai.

1. Математическая модель макроэкономики региона с учетом миграции рабочей силы и демографического фактора

Пусть K — основной капитал (фонды), N — число работников, участвующих в производственном процессе региона, μ — доля выбывших за год основных производственных фондов, g — средний годовой доход одного работника, Y — валовой региональный продукт (ВРП) в стоимостном исчислении, I — суммарные инвестиции в основной капитал региона за год, W — непроизводственное потребле-

ние за год в регионе.

Рассмотрим математическую модель макроэкономики региона РФ в следующих относительных безразмерных макроэкономических переменных:

$$x(t) = B \frac{\mu K(t)}{g(t)N(t)}, \quad i(t) = \frac{I(t)}{g(t)N(t)}, \quad w(t) = \frac{W(t)}{g(t)N(t)}, \quad y(t) = \frac{Y(t)}{g(t)N(t)}.(1)$$

Здесь x(t) — основная (фазовая) переменная, при g = const переменная x пропорциональна фондовооруженности.

При выводе математической модели макроэкономики региона примем следующие допущения и гипотезы.

1. Производственный процесс региона описывается производственной функцией [1]:

$$y = B(x) \equiv b(1 - e^{-x}) + (1 - b)x(1 - e^{-\frac{1}{x}}).$$
 (2)

2. Изменение основного капитала в единицу времени определяется инвестициями и износом за единицу времени [2]:

$$\frac{dK}{dt} = I - \mu K . (3)$$

3. Изменение численности работников, участвующих в производственном процессе региона в единицу времени, определяется уравнением

$$\frac{1}{N}\frac{dN}{dt} = V . {4}$$

4. Изменение среднегодового дохода одного работника определяется уравнением

$$\frac{1}{g}\frac{dg}{dt} = \tau . ag{5}$$

5. Величины v, τ , определяющие темпы прироста числа занятых в производстве за счет миграционных и демографических процессов, и прироста среднегодового дохода работника, являются функциями ВРП y: v = v(y), $\tau = \tau(y)$.

Из определения безразмерных макроэкономических переменных i(t), w(t), y(t) (1) и формулы (2) следует [3]:

$$i = c_i C_{\infty} B(x), \quad w = c_w C_{\infty} B(x), \quad y = C_{\infty} B(x),$$
 (6)

где нормы накопления c_i и потребления c_w удовлетворяют уравнению:

$$c_i + c_w = q \quad , \tag{7}$$

где q — постоянная $\cong 1$, например, для экономической системы Хаба-

ровского края q = 0.998.

Исходя из уравнения, определяющего переменную x: $x \, g \, N = B \, \mu \, K$ и используя уравнения (3, 4, 5, 6), нетрудно записать

$$\frac{dx}{dt} = \mu B C_{\infty} c_i B(x) - \left(\mu + \nu(y) + \tau(y)\right) x . \tag{8}$$

Линеаризуем функции v(y), $\tau(y)$ относительно начального состояния экономической системы:

$$v = v_1 + v_1'(y - y_1), \quad \tau = \tau_1 + \tau_1'(y - y_1),$$
 (9)

где
$$v_1' = \left(\frac{dv}{dy}\right)_{y_1}, \quad \tau_1' = \left(\frac{d\tau}{dy}\right)_{y_1}.$$

Подставляя уравнения (9) в (8) и введя коэффициенты $a = \mu B c_i C_{\infty}$, $n = \mu + v_1 + \tau_1 - (v_1' + \tau_1') C_{\infty} B(x_1)$, $m = (v_1' + \tau_1') C_{\infty}$, (10)уравнение для переменной x(t) можно записать в форме

$$\frac{dx}{dt} = a B(x) - \left[n + m B(x) \right] x . \tag{11}$$

Начальное условие, определяющее задачу Коши дифференциального уравнения (11), соответствующее начальному состоянию региональной экономической системы, имеет вид

$$x_1 = x(0) = B \frac{\mu K(0)}{g(0) N(0)}, \qquad x_1 \in (0, \infty).$$
 (12)

Система уравнений (11, 12, 10, 6, 2) представляет собой математическую модель макроэкономики региона с учетом миграции рабочей силы и демографического фактора.

Переменная x(t) (фазовая, основная) как решение задачи Коши (11), (12) изменяется во времени, описывая динамику развития экономической системы; остальные макроэкономические переменные модели также являются функциями времени:

$$i = c_i C_\infty B(x(t)), \quad w = c_w C_\infty B(x(t)), \quad y = C_\infty B(x(t)).$$

Исследуем стационарное состояние макроэкономической модели, T.e. $x = x_r = const$, $i = i_r = const$, $w = w_r = const$, $y = y_r = const$.

Теорема 1. Пусть параметры правой части уравнения a, n, m > 0 и имеет место неравенство

$$n < a$$
, (13)

тогда уравнение (11) имеет единственное нетривиальное стационарное решение $x_r > 0$.

Доказательство теоремы приведено в работе авторов [5].

Заметим, что в силу свойств В-функции, неравенство (13) является

необходимым и достаточным условием.

Рассмотрим в качестве примера региональную экономическую систему (Хабаровский край), имеющую параметры [3]: B = 0.857; b = 0.814: C = 10.947: u = 0.07:

$$b = 0.814$$
; $C_{\infty} = 10.947$; $\mu = 0.07$;
 $\nu_1 = -0.0045$; $\tau_1 = 0.05$; $q = 0.998$;
 $\tau'_1 = 0.005$; $\nu'_1 = 0.001$.

Для рассматриваемой региональной экономической системы в табл. 1 представлены результаты расчетов стационарных значений x_r для нормы накопления s = [0.2, 0.8]. Использовался итерационный метод Ньютона. В таблице также приведены значения производственной функции $B_r = B(x_r)$.

Таолица 1	
X_r	B_r
0,2122	0,1947
0,6518	0,4849
1,0560	0,6511
1,4453	0,7564
1,8222	0,8255
2,1894	0,8722
2,5487	0,9042
	0,2122 0,6518 1,0560 1,4453 1,8222 2,1894

Таблица 1

2. Оптимальное управление динамикой региональной экономической системы

2.1. Постановка задачи

Рассмотрим модель макроэкономики региона (11, 12, 10, 6, 2) с переменным во времени потреблением w(t). Примем функцию w(t) в качестве функции управления (управляющего "параметра") в задаче оптимального управления региональной макроэкономикой организаторами производственного процесса. Область допустимых значений функции управления можно представить как замкнутое множество [4]:

$$\overline{W} = \{ w(t) \in C[0, T] : w \in [w_1, w_2] \},$$
 (14)

где T – горизонт планирования, $T < \infty$,

$$w_{1}(t) = \pi_{1} B(x(t)), \quad w_{2}(t) = \pi_{2} B(x(t)),$$

$$\pi_{1} = c_{w1} C_{\infty}, \quad \pi_{2} = c_{w2} C_{\infty}, \quad c_{w1} = r_{w} + r_{v}.$$
(15)

При решении задачи оптимального управления для конечного горизонта планирования в качестве функционала цели возьмем функционал:

$$J(w) = \int_{0}^{T} w^{\alpha}(t) dt, \qquad (16)$$

где $\alpha \in (0,1)$ – эмпирическая постоянная.

Используя зависимость (7), уравнение (11) для фазовой перемен-

ной, определяющей траекторию развития экономической системы, представим в форме

$$\frac{dx}{dt} = a(1-dx) B(x) - \lambda x - p w.$$
 (17)

Здесь
$$x(t) \in C^1[0,T], \qquad a = \mu B \ q \ C_{\infty}, \qquad d = \frac{\tau_1' + \nu_1'}{q \ \mu B}, \qquad p = \mu B,$$

$$\lambda = \mu + \nu_1 + \tau_1 - (\nu'_1 + \tau'_1) C_{\infty} B(x_1).$$

Математическая постановка задачи об оптимальном управлении имеет вид:

$$\max_{w \in \overline{W}} \int_{0}^{T} w^{\alpha}(t) dt
\frac{dx}{dt} = a(1 - dx) B(x) - \lambda x - p w, \quad x(0) = x_{1}, \quad x(T) = x_{2}
B(x) = b(1 - e^{-x}) + (1 - b) x \left(1 - e^{-\frac{1}{x}}\right)$$
(18)

Отметим, что в задаче (18) момент времени T заранее не задан.

Введем функцию Гамильтона исследуемой задачи:

$$H(x, \psi, w) = w^{\alpha} + \psi \left[a \left(1 - dx \right) B(x) - \lambda x - p w \right], \tag{19}$$

гамильтонову систему уравнений

$$\frac{dx}{dt} = a(1-dx)B(x) - \lambda x - pw$$

$$\frac{d\psi}{dt} = a[\gamma + dB(x) - (1-dx)B'(x)]\psi$$
(20)

где $\psi(t)$ – сопряженная к x(t) переменная, $\psi(t) \in C^1[0,T]$, $\gamma = \frac{\lambda}{a}$.

Обозначим через R(x), $R(\psi)$ области возможных значений переменных x(t), $\psi(t)$ системы (20). Пусть R(x), $R(\psi) = R_1^+ = (0, \infty)$.

Решение задачи (18) получим на основе принципа максимума Понтрягина [6–8], согласно которому если $w^*(t)$ – оптимальное управление рассматриваемой задачи (18), а $x^*(t)$, $\psi(t)$ – соответствующие ему траектории системы (20), то функция Гамильтона (19) удовлетворяет равенству

$$H\left(x^{*}(t), \psi(t), w^{*}(t)\right) = \sup_{w \in \overline{W}} H\left(x^{*}(t), \psi(t), w\right). \tag{*}$$

2.2. Теорема об оптимальном управлении

Введем постоянные: $c_i = \frac{\alpha}{p(\pi_i)^{1-\alpha}}$, (i=1,2), $\pi = \left(\frac{\alpha}{p}\right)^{\frac{1}{1-\alpha}}$,

функции: $\psi_1(x) = \frac{c_2}{B^{1-\alpha}(x)}$, $\psi_2(x) = \frac{c_1}{B^{1-\alpha}(x)}$.

Теорема 2. Пусть $w^*(t) \in \overline{W}$ — оптимальное управление задачи (18), $x^*(t)$, $\psi(t)$ — соответствующие ему решения гамильтоновой системы (20). Тогда между оптимальным управлением $w^*(t)$, соответствующими ему оптимальными траекториями фазовой и сопряженной переменных $x^*(t)$, $\psi(t)$ имеет место зависимость

$$w^{*}(t) = \begin{cases} \pi_{2} B(x^{*}(t)) & \text{при} \quad \psi(t) \leq \psi_{1}(x^{*}(t)) \\ \pi \psi^{-\frac{1}{1-\alpha}}(t) & \text{при} \quad \psi_{1}(x^{*}(t)) < \psi(t) < \psi_{2}(x^{*}(t)) \\ \pi_{1} B(x^{*}(t)) & \text{при} \quad \psi(t) \geq \psi_{2}(x^{*}(t)) \end{cases}$$
(21)

Доказательство. Рассмотрим вначале открытое множество $W = \{ w(t) \in C[0,T] \colon w(t) \in (w_1,w_2) \}$ — внутренность \overline{W} . Известно [6], что когда область управления является открытым множеством, рассматриваемая оптимальная задача эквивалентна задаче Лагранжа классического вариационного исчисления. Точка максимума $w^* \in W$ является стационарной точкой функции Гамильтона (19): $\frac{dH}{dw}\Big|_{w^*} = 0$, откуда получаем

$$\psi = p^{-1} \alpha \, w^{*\alpha - 1} \,. \tag{22}$$

В соотношении (22) управление $w^* \in W$, сопряженная переменная $\psi \in \Psi$, где $\Psi = \{ \psi(t) \in C^1[0,T] : \psi(t) \in (\psi_1,\psi_2) \}$,

$$\psi_1(t) = p^{-1}\alpha \ w_2^{\alpha-1} = \frac{c_2}{B^{1-\alpha}(x)} \ , \ \psi_2(t) = p^{-1}\alpha \ w_1^{\alpha-1} = \frac{c_1}{B^{1-\alpha}(x)} \ . \ \text{Заметим, что}$$
 так как $\alpha < 1$, то $\frac{\partial^2 H}{\partial w^2} \bigg|_{x=0} < 0 \ .$

Таким образом, при любых фиксированных $x \in R(x)$, $\psi(t) \in \Psi$ функция $w(t) = \pi \left[\psi(t) \right]^{-\frac{1}{1-\alpha}}$ доставляет максимум функции Гамильтона (19) на множестве $w(t) \in W$.

 $\Psi_1 = \{ \psi(t) \in C^1[0,T] :$ Рассмотрим теперь множество $\psi(t) \in (0, \psi_1]$ }. Пусть $\psi(t)$ произвольная точка множества Ψ_1 , например, $\psi(t) = \psi_1(t) - a_1(t)$, где $a_1(t) \in C^1$, $0 \le a_1(t) < \psi_1(t)$. Функцию Гамильтона (19) в рассматриваемой точке $\psi \in \Psi_1$ можно записать в форме

$$\begin{split} H\left(x,\psi,\,w\right) &= w^{\alpha} - p\;\psi\,w + \psi\left[\;a\;\left(1-d\,x\right)B\left(x\right) - \lambda\,x\;\right] = \\ &= w^{\alpha} - p\;\psi_{1}\;w + p\;a_{1}\;w + \psi\left[\;a\;\left(1-d\,x\right)B\left(x\right) - \lambda\,x\;\right] = \\ &= \omega_{1}\left(w\right) + \varphi_{1}\left(w\right) + \psi\left[\;a\;\left(1-d\,x\right)B\left(x\right) - \lambda\,x\;\right]\;, \end{split}$$
 где $\omega_{1}\left(w\right) = w^{\alpha}\left[\;1 - \alpha\left(\frac{w}{w_{1}}\right)^{1-\alpha}\;\right], \qquad \varphi_{1}\left(w\right) = p\;a_{1}\,w\;. \end{split}$

Анализ функции $\omega_{\rm l}(w)$ (производных $\omega_{\rm lw}$, $\omega_{\rm lww}$) показывает, что $\omega_{\rm I}(w)$ имеет максимум при $w=w_2$. Функция $\varphi_{\rm I}(w)$ имеет максимум в точке $w = w_2$ при $a_1(t) > 0$ или равна нулю, если $a_1(t) = 0$.

Таким образом, при любых фиксированных $x \in R(x)$, $\psi(t) \in \Psi_1$ функция $w_2(t) = \pi_2 B(x(t))$ доставляет максимум функции Гамильтона $H(x, \psi, w)$ на множестве $w(t) \in \overline{W}$.

Аналогично, рассмотрев $H(x, \psi, w)$ в произвольной точке $\psi(t) \in \Psi_2$, где $\Psi_2 = \{ \psi(t) \in C^1[0,T] : \psi(t) \in [\psi_2,\infty) \}$, например, при $\psi(t) = \psi_2(t) + a_2$, где $a_2(t) \in C^1$, $0 \le a_2(t) < \infty$,

$$H(x, \psi, w) = w^{\alpha} - p \psi_{2} w - p a_{2} w + \psi [a (1-dx)B(x) - \lambda x] =$$

$$= \omega_{2}(w) + \varphi_{2}(w) + \psi [a (1-dx)B(x) - \lambda x],$$

где
$$\omega_2(w) = w^{\alpha} \left[1 - \alpha \left(\frac{w}{w_1} \right)^{1-\alpha} \right], \quad \varphi_2(w) = -p \, a_2 \, w, \quad \text{и проведя анализ}$$

функций $\omega_2(w)$, $\varphi_2(w)$, можно убедиться, что при любых фиксированных $x \in R(x)$, $\psi(t) \in \Psi$, функция $w_1(t) = \pi_1 B(x(t))$ доставляет максимум функции Гамильтона $H(x, \psi, w)$ на множестве $w(t) \in \overline{W}$. Поскольку $\Psi \cup \Psi_1 \cup \Psi_2 = \{ \psi(t) \in C^1[0,T] : R(\psi) \in R^1_+ \},$ то рассмотрены области R(x), $R(\psi)$ возможных значений сопряженной переменной $\psi(t)$ и фазовой переменной x(t) и найдено, что максимум функции Гамильтона (19) имеет место при любых фиксированных функциях $x(t) \in R(x), \ \psi(t) \in R(\psi)$ на управлениях:

$$w(t) = \pi_2 B(x(t)), \qquad \text{если} \quad \psi(t) \in \Psi_1$$

$$w(t) = \pi \left[\psi(t) \right]^{-\frac{1}{1-\alpha}}, \quad \text{если} \quad \psi(t) \in \Psi$$

$$w(t) = \pi_1 B(x(t)), \qquad \text{если} \quad \psi(t) \in \Psi_2$$

$$(23)$$

Пусть $w^*(t) \in \overline{W}$ — оптимальное управление задачи (18), а $x^*(t)$, $\psi(t)$ — соответствующие ему решения системы (20). Тогда в соответствии с основным равенством принципа максимума Понтрягина (*) соотношения (23) можно записать в виде (21). Теорема доказана.

Замечание. Непосредственной проверкой можно убедиться, что

функция
$$w(\psi) = \pi \psi^{-\frac{1}{1-\alpha}}$$
 имеет пределы $\lim_{\psi \to \psi_1^+} w(\psi) = w_2^-,$

 $\lim_{\psi \to \psi_2^-} w(\psi) = w_1^-$, т.е. оптимальное управление $w^*(t)$ — непрерывная

функция в точках $\psi_1,\,\psi_2$ и, следовательно, на всем промежутке $(0,\infty)$.

2.3. Решение краевой задачи оптимального управления

Пусть w(t) — оптимальное управление динамикой региональной макроэкономики, определяемое зависимостями (21) теоремы 1, x(t), $\psi(t)$ — соответствующие ему оптимальные траектории фазовой и сопряженной переменных (звездочки у w и x для простоты опустим).

Введем следующие параметры модели: $a = q \, \mu \, B \, C_{\infty}$, $\beta_1 = \frac{c_{_{w2}}}{q}$,

$$eta_2 = rac{c_{wl}}{q}, \;\; \gamma = rac{\lambda}{a}, \;\; \eta = rac{1}{a}, \;\; \sigma = rac{1}{a} \left[\left. rac{lpha}{p^lpha}
ight.
ight]^{rac{1}{1-lpha}}, \;\; c_0 = rac{lpha}{p \left[\; q \, C_\infty \;
ight]^{1-lpha}} \;. \;$$
 Тогда урав-

нения, определяющие оптимальные траектории x(t), $\psi(t)$ задачи (18), можно записать в форме

 $0 \le t \le T$

$$\frac{dx}{dt} = F(x, \psi)$$

$$\frac{d\psi}{dt} = G(x, \psi)$$
(24)

Здесь

$$F(x,\psi) = \begin{cases} a\Big[\Big(1-\beta_1-d\,x\Big)B(x)-\gamma\,x\Big] & \text{при } \psi(t) \leq \psi_1(t) \\ a\Big[\Big(1-d\,x\Big)B(x)-\gamma\,x-\sigma\psi^{-\frac{1}{1-\alpha}}\Big] & \text{при } \psi_1(t) < \psi(t) < \psi_2(t) \\ a\Big[\Big(1-\beta_2-d\,x\Big)B(x)-\gamma\,x\Big] & \text{при } \psi(t) \geq \psi_2(t) \end{cases}$$

$$G(x,\psi) = a\Big[\gamma+d\,B(x)-\Big(1-d\,x\Big)B'(x)\Big]\psi \ .$$

Нам понадобится также следующая эквивалентная системе (24) система уравнений, в которой в качестве независимой переменной взята сопряженная переменная ψ , а в качестве функций фазовая переменная x и время t

$$\frac{dx}{d\psi} = \varphi(x, \psi)$$

$$\frac{dt}{d\psi} = \chi(x, \psi)$$
(25)

Здесь

$$\varphi(x,\psi) = \begin{cases} \frac{\left(1 - \beta_1 - dx\right)B(x) - \gamma x}{\gamma + dB(x) - \left(1 - dx\right)B'(x)} & \frac{1}{\psi} & \psi \leq \psi_1(x) \\ \frac{\left(1 - dx\right)B(x) - \gamma x - \sigma \psi^{-\frac{1}{1 - \alpha}}}{\gamma + dB(x) - \left(1 - dx\right)B'(x)} & \frac{1}{\psi} & \psi_1(x) < \psi < \psi_2(x) , \\ \frac{\left(1 - \beta_2 - dx\right)B(x) - \gamma x}{\gamma + dB(x) - \left(1 - dx\right)B'(x)} & \frac{1}{\psi} & \psi \geq \psi_2(x) \end{cases}$$

$$\chi(x, \psi) = \frac{\eta}{\gamma + dB(x) - \left(1 - dx\right)B'(x)} & \frac{1}{\psi} .$$

Проведем предварительный анализ интегральных кривых (оптимальных траекторий $x(\psi)$) системы (25) и установим основные свойства их (леммы 1, 2, теорема 3), а затем докажем основную теорему 4, дающую алгоритм расчета оптимального управления w(t) и соответствующих ему оптимальных траекторий x(t), $\psi(t)$, интеграла благосостояния J, времени достижения конечного состояния T.

Рассмотрим на положительном ортанте $R_{+}(\psi, x)$ сопряженной и фазовой переменной замкнутую область $\Omega(\psi\,,x)=\{\psi_{\min}\leq\psi\leq\psi_{\max}\,,$ $x_{\min} \le x \le x_{\max} \}$, где отрезок [x_{\min} , x_{\max}] содержит в себе все возможные реальные состояния x_1 , x_2 региональных экономических систем, а $\psi_{\min} = \psi(x_{\max})$, $\psi_{\max} = \psi(x_{\min})$ — соответствующие значения сопряженной переменной. Область Ω (рис. 1) назовем областью реальных состояний и реальных процессов региональных экономических систем при конечном горизонте планирования ($T < \infty$).

Заметим, что отрезок $[\psi_{\min}, \psi_{\max}]$ содержит все граничные значения ψ , необходимые для решения краевой задачи оптимального управления.

Рассмотрим в области Ω кривые:

$$\psi_1(x) = \frac{c_2}{B^{1-\alpha}(x)}, \qquad \psi_2(x) = \frac{c_1}{B^{1-\alpha}(x)}.$$
 (26)

Так как В-функция имеет асимптоту $B(x) \xrightarrow[x \to \infty]{} 1$, то $\psi_1(x)$, $\psi_2(x)$ имеют асимптоты $\psi_1(x) \xrightarrow[x \to \infty]{} c_2$, $\psi_2(x) \xrightarrow[x \to \infty]{} c_1$. Для экономической системы с исходными данными, приведенными ранее $c_1 = 8.6268$, $c_2 = 5.7617$ кривые $\psi_1(x)$, $\psi_2(x)$ делят область Ω на три подобласти. Эти подобласти будем обозначать символами Ψ_1 , Ψ , Ψ_2 . В подобласти Ψ есть особая точка (ψ_s, x_s) , координаты которой определяются алгебраическими уравнениями:

$$x_s$$
: $\gamma + d B(x) - (1 - d x) B'(x) = 0$,

$$\psi_s = \frac{c_0}{\left[\left(1 - d x_s \right) B(x_s) - \gamma x_s \right]^{1 - \alpha}} .$$

Для рассматриваемого примера экономической системы $x_s = 1.3002$, $\psi_{s} = 7.3192$.

Введем в подобласти Ψ кривую $\psi_0(x)$, на которой производная $\frac{dx}{dw} = 0$ (точка (ψ_s, x_s) пока не рассматривается). Кривая $\psi_0(x)$ определяется уравнением

$$\psi_0(x) = \frac{c_0}{\left[\left(1 - dx \right) B(x) - \gamma x \right]^{1 - \alpha}} . \tag{27}$$

Из второго уравнения системы (24) видно, что на кривой $\psi_0(x)$ $\frac{dx}{dt}\Big|_{\psi_0} = 0$, поэтому $\psi_0(x)$ – есть линия стационарных состояний экономической системы. Линия $\psi_0(x)$ сыграет ключевую роль в построении алгоритма решения задачи (18). На рис. 1 нанесена линия $\psi_0(x)$ для рассматриваемой в качестве примера экономической системы Хабаровского края.

Введем окружность с центром в точке (ψ_s, x_s) с малым радиусом h, обозначив ее O_{sh} (в наших расчетах $h = 10^{-4}$). Для простоты изложения будем считать, что точка A имеет такую координату ψ_{\max} , что интегральная кривая первого уравнения системы (25), исходящая из точки A (кривая a_1), касается снизу окружности O_{sh} ; а точка B имеет такую координату ψ_{\min} , что интегральная кривая, исходящая из точки B (кривая b_1), касается O_{sh} сверху.

В силу важности знания поведения интегральных кривых в области Ω для построения алгоритма решения задачи оптимального управления (18) на рис. 1 показаны интегральные кривые $\{a_{i_1}\}$, исходящие из промежутка $A'A = \{\psi_0(x_{\min}) < \psi \le \psi_{\max}, x = x_{\min}\}$, и кривые $\{b_{i_2}\}$, исходящие из промежутка $BB' = \{ \psi_{\min} \le \psi \le \psi_0(x_{\max}), \ x = x_{\max} \}$, посчитанные на ЭВМ для рассматриваемого примера экономической системы решением системы (24), эквивалентной системе (25) для начальных данных x_1 , ψ_1 из A'A, BB', методом Рунге-Кутта четвертого порядка точности (серия расчетов).

Рассмотрим области Ω_1 , $\Omega_2 \subset \Omega$, разделенные горизонтальной полосой Π шириной 2h ; границы полосы касаются круга O_{sh} (рис. 1).

Лемма 1. Интегральные кривые системы (25), исходящие из промежутков A'A, BB', образуют два семейства $\{a_{i_1}\}$, $\{b_{i_2}\}$; $\{a_{i_1}\}$ расположенных в Ω_1 , $\{b_{i_2}\}$ — в Ω_2 . Ни одна кривая семейств, $\{a_{i_1}\}$, $\{b_{i_2}\}$ не пересекает полосу Π . Здесь $i_1 = \overline{1, n_1}$, $i_2 = \overline{1, n_2}$, n_1 , n_2 — любые целые числа.

Справедливость леммы вытекает из рис. 1.

Обозначим через Ω_1^+ часть области Ω_1 , ограниченную интегральной кривой a_1 (проходящей через точку A), кривой $\psi_0(x)$ и отрезком A'A, а через Ω_2^- — часть области Ω_2 , ограниченную интегральной кривой b_1 (проходящей через точку B), кривой $\psi_0(x)$ и отрезком BB' (рис. 2).

Puc. 2

Обозначим часть кривой $\psi_0(x)$, лежащей в области Ω_1^+ , через $\psi_{_0}^{^+}(x)$, а в области $\,\Omega_{_2}^{^-}\,$ – через $\,\psi_{_0}^{^-}(x)\,$. Обозначим интегральные кривые $\{a_{i_1}\}$, лежащие в $\Omega_{_1}^{^+}$ – через $\{a_{i_1}^{^+}\}$, а интегральные кривые $\{b_{i_2}\}$, лежащие в Ω_{2}^{-} через $\{b_{i_{2}}^{-}\}$.

Лемма 2. Интегральные кривые $\{a_{i_1}^+\} \subset \Omega_1^+$ не пересекаются между собой, интегральные кривые $\{b_{i_2}\}\subset\Omega_2^-$ также не пересекаются между собой. Каждой точке ξ_{i_1} промежутка A'A кривые $\{a_{i_1}^+\}$ ставят в соответствие только одну точку кривой $\psi_{_0}^{^+}(x)$. Каждой точке $\xi_{i_2}^{}$ промежутка BB' кривые $\{b_{i_2}\}$ ставят в соответствие только одну точку кривой $\psi_0^-(x)$.

Доказательство леммы 2 приведено в работе авторов [5].

Пусть x_1 , x_2 – точки начального и конечного состояния экономической системы. Возможны два случая. А: $x_{\min} < x_1 < x_2 < x_s$ (рис. 2, a). В этом случае, согласно леммам 1, 2, через сечения x_1 , x_2 плоскости (x, ψ) проходят интегральные кривые (экстремали) $\{a_i\} \in \Omega_1^+, i = 1, n_1$ ($\mathit{n}_{\scriptscriptstyle 1}$ – любое целое число). Экстремаль $\mathit{a}_{\scriptscriptstyle 1}$ касается круга $\mathit{O}_{\scriptscriptstyle \mathit{sh}}$, а экстремаль a_n в сечении x_2 имеет общую точку с кривой $\psi_0(x)$. Очевидно, что все экстремали семейства $\{a_i\}$, проходящие через сечение x_1 и x_2 , находятся между экстремалями a_1 и a_{n_1} .

В случае В: $x_s < x_2 < x_1 < x_{\text{max}}$ (рис. 2, б) через сечения x_1 и x_2 плоскости (x, ψ) проходят интегральные кривые (экстремали) $\{b_i\}\in\Omega_2^-,\ i=1,n_2\ (n_2-$ любое целое число). Экстремаль b_1 касается круга $O_{s\,h}$, а экстремаль b_{n_2} в сечении x_2 имеет общую точку с кривой $\psi_0(x)$.Отметим также, что все экстремали, проходящие через сечение $x_{\!\scriptscriptstyle 1}$ и $x_{\!\scriptscriptstyle 2}$, находятся между экстремалями $b_{\!\scriptscriptstyle 1}$, $b_{\scriptscriptstyle n_2}$. Значения $x_{\!\scriptscriptstyle 1}$, $x_{\!\scriptscriptstyle 2}$ случая А и случая В разные.

Пусть J_1^1 , ..., $J_{n_1}^1$ — значения интеграла благосостояния на

экстремалях a_1, \ldots, a_{n_1} , а $T_1^1, \ldots, T_{n_1}^1$ – времена перехода из состояния x_1 в состояние x_2 по экстремалям a_1, \ldots, a_{n_1} . Обозначим через $J_1^2, \ldots, J_{n_2}^2$ и $T_1^2, \ldots, T_{n_2}^2$ – интегралы благосостояния, времена перехода на экстремалях b_1, \ldots, b_{n_2} .

Теорема 3. Рассмотрим экономический процесс, описываемый системой уравнений (25).

Рассмотрим x_1 , $x_2 \in \Omega_1^+$ — начальное и конечное состояния экономической системы, $x_{\min} < x_1 < x_2 < x_s$ (случай A).

Рассмотрим также x_1 , $x_2 \in \Omega_2^-$ — начальное и конечное состояния системы, $x_s < x_2 < x_1 < x_{\max}$ (случай В). Тогд: время перехода из состояния x_1 в состояние x_2 , x_1 , $x_2 \in \Omega_1^+$, по экстремалям a_1 , ..., a_{n_1} и соответствующие значения интеграла благосостояния, а также время перехода из состояния x_1 в состояние x_2 , x_1 , $x_2 \in \Omega_2^-$, по экстремалям b_1 , ..., b_{n_2} и соответствующие значения интеграла благосостояния удовлетворяют неравенствам

$$T_{n_s}^{\delta} > \dots > T_2^{\delta} > T_1^{\delta} ,$$
 (28)

$$J_{n_s}^{\delta} > \dots > J_2^{\delta} > J_1^{\delta}$$
, (29)

где $\delta = 1$ (для случая A), $\delta = 2$ (для случая B).

Доказательство теоремы 3 приведено в работе авторов [5].

В результате анализа различных подходов к решению краевой задачи оптимального управления оказалось, что задача довольно просто решается, рассматривая процесс от состояния (ψ^2, x_2) к состоянию (ψ^1, x_1) , т.е. за «начальный момент» времени взять горизонт планирования, точку (ψ^2, x_2) , а конечный – точку (ψ^1, x_1) . Переменную времени этого процесса обозначим через θ . Состояние системы (ψ^2, x_2) соответствует $\theta = 0$, а физически истинное начальное состояние (ψ^1, x_1) становится прошлым, соответствующим времени $\theta = -T$. Поскольку $\theta = t - T$, то задача для θ имеет вид:

$$\frac{d\theta}{d\psi} = \frac{\eta}{\gamma + d B(x) - (1 - d x) B'(x)} \frac{1}{\psi}, \qquad \theta(\psi^2) = 0.$$

Теорема 4. Рассмотрим экономический процесс, описываемый системой уравнений (25). Пусть x_1 , x_2 — точки начального и конечно-

го состояния системы; $x_1, x_2 \in \Omega$. Тогда решение задачи оптимального управления определяется задачей Коши:

A) при
$$x_{\min} \le x_1 < x_2 < x_s$$
,

$$\frac{dx^*}{d\psi} = \begin{cases}
\frac{(1-\beta_2 - dx^*)B(x^*) - \gamma x^*}{\gamma + dB(x^*) - (1 - dx^*)B'(x^*)} \frac{1}{\psi} & \psi \ge \psi_2(x^*) \\
\frac{(1-dx^*)B(x^*) - \gamma x^* - \sigma^{-\frac{1}{1-\alpha}}}{\gamma + dB(x^*) - (1 - dx^*)B'(x^*)} \frac{1}{\psi} & \psi_0(x_2) \le \psi < \psi_2(x^*) \\
\frac{d\theta}{d\psi} = \frac{\eta}{\gamma + dB(x^*) - (1 - dx^*)B'(x^*)} \frac{1}{\psi}
\end{cases} (30)$$

с начальными условиями

$$\psi^{2} = \psi_{0}(x_{2}) = \frac{c_{0}}{\left[\left(1 - d x_{2}\right)B(x_{2}) - \gamma x_{2}\right]^{1 - \alpha}}, \quad x^{*}(\psi^{2}) = x_{2}, \quad \theta(\psi_{2}) = 0. \quad (31)$$

B) при $x_s < x_2 < x_1 < x_{\text{max}}$ — задачей Коши:

$$\frac{dx^{*}}{d\psi} = \begin{cases}
\frac{(1-\beta_{1}-dx^{*})B(x^{*})-\gamma x^{*}}{\gamma+dB(x^{*})-(1-dx^{*})B'(x^{*})} \frac{1}{\psi} & \psi \leq \psi_{1}(x^{*}) \\
\frac{(1-dx^{*})B(x^{*})-\gamma x^{*}-\sigma^{-\frac{1}{1-\alpha}}}{\gamma+dB(x^{*})-(1-dx^{*})B'(x^{*})} \frac{1}{\psi} & \psi_{0}(x_{2}) \geq \psi > \psi_{1}(x^{*}) \\
\frac{d\theta}{d\psi} = \frac{\eta}{\gamma+dB(x^{*})-(1-dx^{*})B'(x^{*})} \frac{1}{\psi}
\end{cases} (32)$$

с начальными условиями (31).

Доказательство теоремы приведено в работе авторов [5].

Замечание 1. Численное решение задач Коши (30), (31) и (32), (31) на ЭВМ проводится методом Рунге-Кутта четвертого порядка точности. На каждом шаге процедуры Рунге-Кутта считается также оптимальное управление w^* и слагаемое интеграла благосостояния. В момент завершения решения задачи Коши формируется строка времени $\{t_n\} = T + \{\theta_{N-n}\}\ (n = 0, N), (0 \le \{t_n\} \le T).$

Замечание 2. Численное решение задачи Коши (30), (31) проводится с шагом интегрирования $\Delta \psi > 0$, а задачи (32), (31) – с шагом $\Delta \psi < 0$.

3. Расчет оптимального управления динамикой региональной

макроэкономики, учитывающей миграцию рабочей силы и демографический фактор

Рассмотрим результаты расчетов на ЭВМ оптимального управления и соответствующих ему оптимальных траекторий динамики региональной макроэкономики (на примере Хабаровского края) для случая А: $x_{\min} < x_1 < x_2 < x_s$.

Исходные данные вариантов x_1 , x_2 , рассчитанные значения сопряженной переменной ψ^1 , ψ^2 , интеграла благосостояния J, времени перехода из состояния x_1 в состояние x_2 приведены в табл. 2.

Таблица 2 ψ^1 ψ^2 J Вариант x_1 x_2 T0,3 1,1505 17,369 6,529 37,44 17,73 2 0.3 1,0 17,168 6,5478 10,71 6,81 3 0,3 0,8 16,441 6,6463 5,98 4,12 0,3 14,750 6,8798 3,45 2,63 0,6

На рис. 3 показаны оптимальные траектории как функции времени $x^*(t)$ между начальным x_1 и конечным x_2 состояниями экономической системы, полученные решением задачи (30), (31). Номера кривых соответствуют номерам вариантов табл. 2.

Puc. 3

Как следует из табл. 2 и кривых рис. 3, конечное состояние достигается за времена $T_1=17.73$, $T_2=6.81$, $T_3=4.12$, $T_4=2.63$.

На рис. 4 показаны оптимальные управления $w^*(t)$ для вариантов табл. 2, соответственно кривыми 1-4.

Из анализа оптимальных траекторий фазовой переменной $x^*(t)$ (рис. 3), оптимальных управлений $w^*(t)$ (рис. 4) следует, что рассматриваемые оптимальные кривые имеют два характерных участка.

- Участок I, соответствующий оптимальному потреблению, находящемуся на предельно низком уровне, когда $\psi(t) \ge \psi_2(x)$, определяемом фазовой переменной $x^*(t)$ по формуле $w^*(t) = \pi_1 \, B(\, x^*(t))$ (см. зависимости 28), рис. 4. В плоскости ψ , x участок I оптимальных траекторий $x^*(\psi)$ находится в области Ψ_2 .
- Участок II оптимальных траекторий $x^*(t)$, оптимальных управлений $w^*(t)$. Второй участок характерен тем, что в плоскости ψ , x он находится в области Ψ ($\psi_0(x) \leq \psi(t) < \psi_2(x)$), при этом оптимальное потребление $w^*(t)$ резко увеличивается во времени (см. рис. 4), его величина определяется сопряженной переменной $\psi(t)$ $w^*(t) = \pi \psi^{-\frac{1}{1-\alpha}}(t)$. Из анализа кривых $w^*(t)$ рис. 4 наглядно видно, что

основной вклад в значение интеграла благосостояния на оптимальных траекториях происходит на втором участке.

Из анализа кривой 1 рис. 3 следует, что фазовая переменная x проходит основной путь (99 % пути) из состояния $x_1 = 0.3$ в состояние $x_2 = 1.1505$ за время $t_1 \approx 10$ лет; оставшийся 1% пути — за время $t_2 \approx 7.73$ года. Это наглядно показывает, что достижение конечного состояния x_2 , близкого к точке x_s , неэффективно. Стратегия макро-экономического прогнозирования должна строиться как череда "крат-косрочных" прогнозов ($T \sim 10$) с постоянным уточнением параметров производственного процесса. При макроэкономическом прогнозировании актуальной является проблема моделирования новых научных достижений, на их основе — новых эффективных технологий (повышение качества основного и живого капитала, участвующих в обобщенном производственном процессе).

В результате проведенных исследований можно сделать следующие выводы:

- 1. Разработана новая математическая модель производственнотехнологического уровня региональной макроэкономики, учитывающая миграцию рабочей силы и демографический фактор.
- 2. Найдено оптимальное управление экономикой организаторами производственного процесса.
- 3. Разработан новый эффективный алгоритм решения краевой задачи оптимального управления. Численные исследования показали высокую надежность и эффективность разработанного алгоритма.

Библиографический список

- 1. *Булгаков В. К., Булгаков О. В.* Моделирование динамики обобщающих показателей развития региональных экономических систем России // Экономика и мат. методы. 2006. \mathbb{N} 1.
 - 2. Колемаев В. А. Математическая экономика. М., 2002.
- 3. *Булгаков В. К., Стригунов В. В.* Модель и исследование макроэкономики региона на основе производственной В-функции // Вестник Тихоокеан. гос. ун-та. 2005. № 1.
- 4. *Булгаков В. К.*, *Стригунов В. В.* Исследование одной математической модели макроэкономики региона РФ, решение задачи оптимального управления. Хабаровск, 2006.
- 5. *Булгаков В. К.*, *Шатов Г. Л.* Математическая модель региональной макроэкономики, учитывающая зависимость темпов прироста числа занятых в производстве и среднегодового дохода работника от ВРП; решение задачи оптимального управления. Хабаровск, 2007.

ИССЛЕДОВАНИЕ МАТЕМАТИЧЕСКОЙ МОДЕЛИ РЕГИОНАЛЬНОЙ МАКРОЭКОНОМИКИ С УЧЕТОМ МИГРАЦИИ РАБОЧЕЙ СИЛЫ И ДЕМОГРАФИЧЕСКОГО ФАКТОРА

- 6. Понтрягин Л. С., Болтянский В. Г., Гамкрелидзе Р. В. К теории оптимальных процессов. 1959. № 1.
- 7. Понтрягин Л. С. и др. Математическая теория оптимальных процессов. М., 1976.
 - 8. Понтрягин Л. С. Избранные научные труды. М., 1988.