Lecture 5

Time Series Regression

Reading: Forecasting, Time Series, and Regression (4th edition) by Bowerman, O'Connell, and Koehler: Chapter 6

MATH 4070: Regression and Time-Series Analysis

Whitney Huang Clemson University

Notes			
-			

Agenda

- 1 Time Series Data
- 2 Trend Estimation
- 3 Estimating Seasonality

Notes			

Level of Lake Huron 1875-1972

Annual measurements of the level of Lake Huron in feet. [Source: Brockwell & Davis, 1991]

Regression
MATHEMATICAL AND STATISTICAL SCIENCES
Time Series Data
5.3

Time Series

Notes			

Mauna Loa Monthly Atmospheric CO_2 Concentration

[Source: Keeling & Whorf, Scripps Institution of Oceanography] (r)
data(co2)
par(mar = c(3.8, 4, 0.8, 0.6))
plot(co2, los = 1, xlob = "", ylab = "")
mtext("line (year)", stde = 1, line = 2)
mtext(expression(paste("C0"[2], " (oncentration (ppm)")), side = 2, line = 2.5)

360 (bbm) 350 340 330 330 360 ŝ 1960 1970 1980 1990 Time (year)

Notes

Time Series Data

- A time series is a collection of observations $\{y_t, t \in T\}$ taken sequentially in time (t) with the index set T
 - $\bullet \ T = \{0,1,2,\cdots,T\} \subset \mathbb{Z} \Rightarrow \text{discrete-time time series }$
 - $T = [0, T] \subset \mathbb{R} \Rightarrow$ continuous-time time series
- A discrete-time time series might be intrinsically discrete or might arise from a underlying continuous-time time series via
 - sampling (e.g., instantaneous wind speed)
 - aggregation (e.g., daily accumulated precipitation
 - extrema (e.g., daily maximum temperature)
- We will focus on dealing with discrete-time real-valued $(Y_t \in \mathbb{R})$ time series in this course

Notes

Exploratory Time Series Analysis

- Start with a time series plot, i.e., to plot y_t versus t
- Look at the following:
 - Are there abrupt changes?
 - Are there "outliers"?
 - Is there a need to transform the data?
- Examine the trend, seasonal components, and the "noise" term

ne Series		
gression		

_
_
_

Features of Times Series

- Trends (μ_t)
 - \$\mu_t\$ represents continuous changes, usually in the
 mean, over longer time scales. "The essential idea of
 trend is that it shall be smooth." [Kendall, 1973]
 - The form of the trend is typically unknown and needs to be estimated. Removing the trend yields a detrended series
- Seasonal or Periodic Components (s_t)
 - s_t repeats consistently over time, i.e., $s_t = s_{t+kd}$
 - \bullet The form and period d of the seasonal component must be estimated to deseasonalize the series.
- The "Noise" Process (η_t)
 - η_t represents the component that is neither trend nor seasonality
 - Focus on finding plausible statistical models for this process

Notes

Combining Trend, Seasonality, and Noise Together

There are two commonly used approaches

• Additive model:

• Multiplicative model:

$$Y_t = \mu_t s_t \eta_t, \quad t = 1, \dots, T$$

If all $\{y_t\}$ are positive then we obtain the additive model by taking logarithms:

$$\log Y_t = \log \mu_t + \log s_t + \log \eta_t, \quad t = 1, \cdots, T$$

Data

Notes

The (Additive) Decomposition Model

ullet The additive model for a time series $\{Y_t\}$ is

$$Y_t = \mu_t + s_t + \eta_t,$$

where

- ullet μ_t is the trend component
- ullet s_t is the seasonal component
- η_t is the random (noise) component with $\mathbb{E}(\eta_t)$ = 0
- Standard procedure:
 - (1) Estimate/remove the trend and seasonal components
 - (2) Analyze the remainder, the residuals $\hat{\eta}_t$ = $y_t \hat{\mu}_t \hat{s}_t$
- We will focus on (1) for this week

Tir Re	me Series egression	
0	MATHEMATICAL AND	

Time Series Data
Trend Estimation
Estimating

Notes				

Estimating Trend for Nonseasonal Model

Assuming s_t = 0 (i.e., there is no "seasonal" variation), we have

$$Y_t = \mu_t + \eta_t,$$

with $\mathbb{E}(\eta_t) = 0$

Methods for estimating trends

- Least squares regression
- Smoothing

Time Series Regression

Time Series Data
Trend Estimation
Estimating

F 10

Trend Estimation: Linear Regression

 \bullet The additive nonseasonal time series model for $\{Y_t\}$ is

$$Y_t = \mu_t + \eta_t,$$

where the trend is assumed to be a linear combination of known covariate series $\{x_{it}\}_{i=1}^p$

$$\mu_t = \beta_0 + \sum_{i=1}^p \beta_i x_{it}.$$

- Here we want to **estimate** β = $(\beta_0, \beta_1, \cdots, \beta_p)^T$ from the data $\{y_t, \{x_{it}\}_{i=1}^p\}_{t=1}^T$
- You're likely quite familiar with this formulation already ⇒ Regression Analysis

Time Series Regression

Time Series Data

Trend Estimation

Estimating

Notes

Notes

Some Examples of Covariate Series $\{x_{it}\}$

• Simple linear regression model:

$$\mu_t = \beta_0 + \beta_1 x_t,$$

for example, the temperature trend at time t could be a constant (β_0) plus a multiple (β_1) of the carbon dioxide level at time t (x_t)

Polynomial regression model:

$$\mu_t = \beta_0 + \sum_{i=1}^p \beta_i t^i$$

Change point model:

$$\mu_t = \left\{ \begin{array}{ll} \beta_0 & \text{if } t \leq t^*; \\ \beta_0 + \beta_1 & \text{if } t \geq t^*. \end{array} \right.$$

Time Series Data
Trend Estimation
Estimating
Seasonality

Notes				

Parameter Estimation: Ordinary Least Squares

- Like in the linear regression setting, we can estimate the parameters via ordinary least squares (OLS)
- Specifically, we minimize the following objective function:

$$\ell_{ols} = \sum_{t=1}^{T} (y_t - \beta_0 - \sum_{k=1}^{p} x_{kt} \beta_k)^2.$$

• The estimates $\beta = (\beta_0, \beta_1, \cdots, \beta_p)^T$ minimizing the above objective function are called the OLS estimates of $\beta \Rightarrow$ they are easiest to express in matrix form

Time Series	
Regression	

Time Series Data
Trend Estimation
Estimating

5.13

Notes

 -		

The Model and Parameter Estimates in Matrix Form

Matrix representation:

$$Y = X\beta + \eta$$
,

where
$$m{Y} = \begin{bmatrix} Y_1 \\ \vdots \\ Y_T \end{bmatrix}$$
, $m{X} = \begin{bmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1p} \\ 1 & x_{21} & x_{22} & \cdots & x_{2p} \\ 1 & \vdots & \cdots & \cdots & \vdots \\ 1 & x_{T1} & x_{T2} & \cdots & x_{Tp} \end{bmatrix}$, and

$$oldsymbol{\eta} = egin{bmatrix} \eta_1 \ dots \ \eta_T \end{bmatrix}$$

• Assuming ${\pmb X}^T{\pmb X}$ is **invertible**, the OLS estimate of ${\pmb \beta}$ can be shown to be

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{Y},$$

and the 1m function in R calculates OLS estimates

Time Series Regression

Time Series Data
Trend Estimation
Estimating
Seasonality

Notes

Lake Huron Example Revisited

Let's **assume** there is a linear trend in time \Rightarrow we need to estimate the **intercept** β_0 and **slope** β_1

Time Series Regression

Time Series Data
Trend Estimation
Estimating
Seasonality

Notes

5.15

The R Output

Notes

Plot the (Estimated) Trend $\hat{\mu}_t$ = $\hat{\beta}_0$ + $\hat{\beta}_1 t$

 $\hat{\beta}_1 = -0.0242 \; (\text{ft/yr}) \Rightarrow \text{there seems to be a decreasing trend}$

Notes

_			
_			
_			
-			
-			
-			

Plot the Residuals $\{\hat{\eta}_t = y_t - \hat{\beta}_0 - \hat{\beta}_1 t\}$

 $\{\hat{\eta}_t\}$ seems to exhibit some temporal dependence structure, should we worry about the results we have (recall OLS makes an i.i.d. assumption)?

NOICS			

Exploring the Dependence Structure of "Noise" $\{\eta_t\}$

 $\{\eta_t\}$ exhibit a temporal dependence structure, meaning that the nearby (in time) values tend to be more alike than those that are far part. To observe this, let's create a few time lag plots

Notes

Further Exploration of the Temporal Dependence Structure

Let's plot the correlation as a function of the time lag

We will learn how to use this information to suggest an appropriate model

N	otac	

Smoothing or Local Averaging

In some cases, we may relax the trend assumption using a 'non-parametric' approach.

We divide the time series into small blocks (each with 10 years of data) and average each block.

Doing this gives a very rough estimate of the trend. Can we do better?

Moving Average Smoother

A moving average smoother estimates the trend at time t by averaging the current observation and the q nearest observations from either side. That is

$$\hat{\mu}_t = \frac{1}{2q+1} \sum_{j=-q}^{q} y_{t-j}$$

q is the "smoothing" parameter, which controls the smoothness of the estimated trend $\hat{\mu}_t$

Time Series Regression

MATHEMATICAL AND STATISTICAL SCIENCE

Time Series Data

Trend Estimation

Notes

Exponential Smoothing

• Let $\alpha \in [0,1]$ be some fixed constant, defined

$$\hat{\mu}_t = \left\{ \begin{array}{ll} Y_1 & \text{if } t=1; \\ \alpha Y_t + \big(1-\alpha\big)\hat{\mu}_{t-1} & t=2, \cdots T. \end{array} \right.$$

• For $t = 2, \dots, T$, we can rewrite $\hat{\mu}_t$ as

$$\sum_{j=0}^{t-2} \alpha (1-\alpha)^{j} Y_{t-j} + (1-\alpha)^{t-1} Y_{1}.$$

 \Rightarrow it is a one-sided moving average filter with exponentially decreasing weights. One can alter α to control the amounts of smoothing (see next slide for an example)

Time Series Regression

Time Series Data

Trend Estimation

Estimating
Seasonality

...

Notes

 α is the Smoothing Parameter for Exponential Smoothing

The smaller the α , the smoother the resulting trend

e Series gression

Time Series Data
Trend Estimation
Estimating
Seasonality

Seasonal Component Estimation

Let's consider a situation where a time series consists of only a seasonal component (assuming the trend has been estimated/removed). In this scenario,

$$Y_t = s_t + \eta_t$$

with $\{s_t\}$ having period d (i.e., s_{t+jd} = s_t for all integers j and t), $\sum_{t=1}^d s_t$ = 0 and $\mathbb{E}(\eta_t)$ = 0

Two methods to estimate $\{s_t\}$

- Harmonic regression
- Seasonal mean model

Notes

Notes

Harmonic Regression

• A harmonic regression model has the form

$$s_t = \sum_{j=1}^k A_j \cos(2\pi f_j + \phi_j).$$

For each $j = 1, \dots, k$:

- $A_i > 0$ is the amplitude of the j-th cosine wave
- ullet f_j controls the the frequency of the j-th cosine wave (how often waves repeats)
- $\phi_j \in [-\pi,\pi]$ is the phase of the j-th wave (where it starts)
- The above can be expressed as

$$\sum_{j=1}^{k} \left(\beta_{1j} \cos(2\pi f_j) + \beta_{2j} \sin(2\pi f_j)\right),\,$$

where $\beta_{1j} = A_j \cos(\phi_j)$ and $\beta_{2j} = A_j \sin(\phi_j) \Rightarrow \text{if}$ $\{f_i\}_{i=1}^k$ are known, we can use regression techniques to estimate the parameters $\{\beta_{1j}, \beta_{2j}\}_{j=1}^k$

Monthly Average Temperature in Dubuque, IA [Cryer &

Let's assume that there is no trend in this time series. In this context, our goal is to estimate s_t , the seasonal component.

Use a Harmonic Regression to Model Annual Cycles

Model: $s_t = \beta_0 + \beta_1 \cos(2\pi t) + \beta_2 \sin(2\pi t)$

⇒ annual cycles can be modeled by a linear combination of \cos and \sin with 1-year period.

In $\ensuremath{\mathtt{R}},$ we can easily create these harmonics using the harmonic function in the TSA package

harmonics <- harmonic(tempdub, 1)

R Code & Output

```{r} harReg <- lm(tempdub ~ harmonics)</pre> summary(harReg)

lm(formula = tempdub ~ harmonics)

Residuals:

1Q Median Min 3Q -11.1580 -2.2756 -0.1457 2.3754 11.2671

Coefficients:

Estimate Std. Error t value Pr(>|t|)
46.2660 0.3088 149.816 < 2e-16 \*\*\*
-26.7079 0.4367 -61.154 < 2e-16 \*\*\* (Intercept) harmonicscos(2\*pi\*t) -26.7079 harmonicssin(2\*pi\*t) -2.1697 0.4367 -4.968 1.93e-06 \*\*\*

Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' '1



### Notes

Notes

### **The Harmonic Regression Model Fit**



| MATHEMATICAL AND STATISTICAL SCIENCES |
|---------------------------------------|
|                                       |
|                                       |
| Estimating<br>Seasonality             |
|                                       |

| Notes |  |  |  |
|-------|--|--|--|
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |

### **Seasonal Means Model**

- Harmonics regression assumes the seasonal pattern has a regular shape, i.e., the height of the peaks is the same as the depth of the troughs
- ullet A less restrictive approach is to model  $\{s_t\}$  as

$$s_t = \left\{ \begin{array}{ll} \beta_1 & \text{for } t = 1, 1+d, 1+2d, \cdots & ; \\ \beta_2 & \text{for } t = 2, 2+d, 2+2d, \cdots & ; \\ \vdots & \vdots & & ; \\ \beta_d & \text{for } t = d, 2d, 3d, \cdots & . \end{array} \right. .$$

• This is the seasonal means model, the parameters  $(\beta_1,\beta_2,\cdots,\beta_d)^T$  can be estimated under the linear model framework (think about ANOVA)



```
Notes
```

### **R** Output

```
Call:
lm(formula = tempdub \sim month - 1)
Residuals:
 Min
 1Q Median
 30
-8.2750 -2.2479 0.1125 1.8896 9.8250
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
 <2e-16 ***
 0.987
 16.83
monthJanuary
 16.608
monthFebruary
 20.650
 0.987
 20.92
 <2e-16 ***
monthMarch
 32.475
 0.987
 <2e-16 ***
 <2e-16 ***
monthApril
 46.525
 0.987
 47.14
 <2e-16 ***
monthMay
 58.092
 0.987
 58.86
 <2e-16 ***
 67.500
71.717
 0.987
monthJune
 68.39
 0.987
 <2e-16 ***
monthJuly
 72.66
monthAugust
 69.333
 0.987
 70.25
 <2e-16 ***
monthSeptember
 61.025
 0.987
 61.83
 <2e-16 ***
monthOctober
 50.975
 0.987
 51.65
 <2e-16 ***
{\tt monthNovember}
 36.650
 0.987
 37.13
 <2e-16 ***
monthDecember
 23.642
 0.987
 23.95
```



### Notes

### The Seasonal Means Model Fit



| Time Series<br>Regression             |  |  |  |  |  |
|---------------------------------------|--|--|--|--|--|
| MATHEMATICAL AND STATISTICAL SCIENCES |  |  |  |  |  |
|                                       |  |  |  |  |  |
|                                       |  |  |  |  |  |
| Estimating<br>Seasonality             |  |  |  |  |  |
|                                       |  |  |  |  |  |
|                                       |  |  |  |  |  |
|                                       |  |  |  |  |  |
|                                       |  |  |  |  |  |
|                                       |  |  |  |  |  |
|                                       |  |  |  |  |  |

| Notes |  |  |  |
|-------|--|--|--|
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |

### **Estimating the Trend and Seasonal variation Together**



Let's perform a regression analysis to model both  $\mu_t$  (assuming a linear time trend) and  $s_t$  (using  $\cos$  and  $\sin$ )  $\cdots$   $\{r\}$ 

time <- as.numeric(time(co2))
harmonics <- harmonic(co2, 1)

lm\_trendSeason <- lm(co2 ~ time + harmonics)
summary(lm\_trendSeason)</pre>



### Notes

### The Regression Fit



Time Series



Notes

# Seasonal and Trend decomposition using Loess [Cleveland, et. al., 1990]



Time Series Regression





| - |  |  |  |
|---|--|--|--|
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
| - |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
| - |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
| - |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |

### Summary

These slides cover:

- Main features of a time series: trend, seasonality, and "noise"
- Estimating trends using multiple linear regression and "nonparametric" smoothing
- Estimating seasonality using harmonic regression and the seasonal mean model

### Notes

### **R Functions to Know**

- Visualizing time series data: plot (for ts objects), ts.plot, tsplot (astsa package)
- Fitting time series regression: lm, harmonic (TSA package) for creating harmonic predictors, filter for smoothing
- Seasonal and trend decomposition: st1

| Time Series<br>Regression             |  |  |  |  |
|---------------------------------------|--|--|--|--|
| MATHEMATICAL AND STATISTICAL SCIENCES |  |  |  |  |
|                                       |  |  |  |  |
|                                       |  |  |  |  |
| Estimating<br>Seasonality             |  |  |  |  |
|                                       |  |  |  |  |
|                                       |  |  |  |  |

| Notes |  |  |  |  |
|-------|--|--|--|--|
|       |  |  |  |  |
|       |  |  |  |  |
|       |  |  |  |  |
|       |  |  |  |  |
|       |  |  |  |  |
|       |  |  |  |  |

| Notes |  |  |
|-------|--|--|
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |