Variational Inference

Shubham Gupta

Department of Computer Science and Automation Indian Institute of Science, Bangalore

April 29, 2017

Outline

- Motivation
- 2 Introduction
 - Variational Inference
 - ELBO
- 3 Toy Examples
 - Univariate Gaussian
 - Gaussian Mixture Model
- Variational Autoencoder
 - Introduction
 - Alternative Expression for ELBO(q)
 - Results on MNIST
 - Results on CIFAR-10
- Other Topics

Given:

• $X = \{X_1, X_2, ..., X_m\}$: Set of **observed** random variables

Given:

- $X = \{X_1, X_2, ..., X_m\}$: Set of **observed** random variables
- $Y = \{Y_1, Y_2, ..., Y_n\}$: Set of **unobserved** random variables

Given:

- **1** $X = \{X_1, X_2, ..., X_m\}$: Set of **observed** random variables
- $Y = \{Y_1, Y_2, ..., Y_n\}$: Set of **unobserved** random variables

Task: Find P(Z|X) where $Z \subseteq Y$

Given:

- **1** $X = \{X_1, X_2, ..., X_m\}$: Set of **observed** random variables
- $Y = \{Y_1, Y_2, ..., Y_n\}$: Set of **unobserved** random variables

Task: Find P(Z|X) where $Z \subseteq Y$

Bayes Theorem

$$P(Z|X) = \frac{P(X|Z)P(Z)}{P(X)}$$

Motivation

Given:

- **1** $X = \{X_1, X_2, ..., X_m\}$: Set of **observed** random variables
- 2 $Y = \{Y_1, Y_2, ..., Y_n\}$: Set of **unobserved** random variables

Task: Find P(Z|X) where $Z \subseteq Y$

Bayes Theorem

$$P(Z|X) = \frac{P(X|Z)P(Z)}{P(X)}$$

Problem: Can not evaluate $P(X) = \int_{Z} P(X, z) dz$

Given:

- $X = \{X_1, X_2, ..., X_m\}$: Set of **observed** random variables
- $Y = \{Y_1, Y_2, ..., Y_n\}$: Set of **unobserved** random variables

Task: Find P(Z|X) where $Z \subseteq Y$

Bayes Theorem

$$P(Z|X) = \frac{P(X|Z)P(Z)}{P(X)}$$

Problem: Can not evaluate $P(X) = \int_{Z} P(X, z) dz$

Inference is NP-hard!

Variational Inference

Variational Inference

Other Topics

Variational Inference

Variational Inference

Goal: Approximate P(Z|X) by $q_{\theta}(Z)$, $q_{\theta}(Z) \in \mathcal{D}$

Variational Inference

Goal: Approximate P(Z|X) by $q_{\theta}(Z)$, $q_{\theta}(Z) \in \mathcal{D}$

where.

1 \mathcal{D} : A parametric class of distributions, eg. all normal distribution in d dimensions

Variational Inference

Approximate P(Z|X) by $q_{\theta}(Z)$, $q_{\theta}(Z) \in \mathcal{D}$ Goal:

where,

- \bullet \mathcal{D} : A parametric class of distributions, eg. all normal distribution in d dimensions
- $Q = q_{\theta}(Z)$: A member of \mathcal{D} parameterized by θ , eg. $\mathcal{N}(\mu, \sigma^2)$ where μ and σ^2 are parameters

Variational Inference

Goal: Approximate P(Z|X) by $q_{\theta}(Z)$, $q_{\theta}(Z) \in \mathcal{D}$

where.

- \bullet \mathcal{D} : A parametric class of distributions, eg. all normal distribution in d dimensions
- $Q = Q_{\theta}(Z)$: A member of \mathcal{D} parameterized by θ , eg. $\mathcal{N}(\mu, \sigma^2)$ where μ and σ^2 are parameters

Optimization Objective:

$$\min_{\theta} \mathit{KL}(q(Z;\theta) \parallel P(Z|X))$$

ELBO

Evidence Lower Bound Objective (ELBO)

Optimization Objective:

$$\min_{\theta} \mathit{KL}(q(Z;\theta) \parallel P(Z|X))$$

Optimization Objective:

$$\min_{\theta} \mathit{KL}(q(Z;\theta) \parallel P(Z|X))$$

Problem: P(Z|X) is not known

Optimization Objective:

$$\min_{\theta} \mathit{KL}(q(Z;\theta) \parallel P(Z|X))$$

Problem: P(Z|X) is not known

$$J(\theta) = \mathbb{E}_{z \sim q(Z;\theta)} \big[\log q(z;\theta) - \log P(z|X) \big]$$

Optimization Objective:

$$\min_{\theta} \mathit{KL}(q(Z;\theta) \parallel P(Z|X))$$

Problem: P(Z|X) is not known

$$J(\theta) = \mathbb{E}_{z \sim q(Z;\theta)} \big[\log q(z;\theta) - \log P(z|X) \big]$$

= $\mathbb{E}_{z \sim q(Z;\theta)} \big[\log q(z;\theta) - \log P(z,X) + \log P(X) \big]$

Optimization Objective:

$$\min_{\theta} \mathit{KL}(q(Z;\theta) \parallel P(Z|X))$$

Problem: P(Z|X) is not known

$$J(\theta) = \mathbb{E}_{z \sim q(Z;\theta)} \big[\log q(z;\theta) - \log P(z|X) \big]$$

$$= \mathbb{E}_{z \sim q(Z;\theta)} \big[\log q(z;\theta) - \log P(z,X) + \log P(X) \big]$$

$$\Rightarrow \log P(X) = \mathbb{E}_{z \sim q(Z;\theta)} \big[\log P(z,X) - \log q(z;\theta) \big]$$

$$+ KL(q(Z;\theta) \parallel P(Z|X))$$

Optimization Objective:

$$\min_{\theta} \mathit{KL}(q(Z;\theta) \parallel P(Z|X))$$

Problem: P(Z|X) is not known

$$J(\theta) = \mathbb{E}_{z \sim q(Z;\theta)} \big[\log q(z;\theta) - \log P(z|X) \big]$$

$$= \mathbb{E}_{z \sim q(Z;\theta)} \big[\log q(z;\theta) - \log P(z,X) + \log P(X) \big]$$

$$\Rightarrow \log P(X) = \mathbb{E}_{z \sim q(Z;\theta)} \big[\log P(z,X) - \log q(z;\theta) \big]$$

$$+ KL(q(Z;\theta) \parallel P(Z|X))$$

$$\geq \mathbb{E}_{z \sim q(Z;\theta)} \big[\log P(z,X) - \log q(z;\theta) \big]$$

Optimization Objective:

$$\min_{a} KL(q(Z;\theta) \parallel P(Z|X))$$

Problem: P(Z|X) is not known

$$J(\theta) = \mathbb{E}_{z \sim q(Z;\theta)} \big[\log q(z;\theta) - \log P(z|X) \big]$$

$$= \mathbb{E}_{z \sim q(Z;\theta)} \big[\log q(z;\theta) - \log P(z,X) + \log P(X) \big]$$

$$\Rightarrow \log P(X) = \mathbb{E}_{z \sim q(Z;\theta)} \big[\log P(z,X) - \log q(z;\theta) \big]$$

$$+ KL(q(Z;\theta) \parallel P(Z|X))$$

$$\geq \mathbb{E}_{z \sim q(Z;\theta)} \big[\log P(z,X) - \log q(z;\theta) \big]$$

$$= ELBO(q)$$

$$\log P(X) \ge \mathbb{E}_{z \sim q(Z;\theta)} [\log P(z,X) - \log q(z;\theta)] = ELBO(q)$$

$$\log P(X) \ge \mathbb{E}_{z \sim q(Z;\theta)} [\log P(z,X) - \log q(z;\theta)] = ELBO(q)$$

• Maximizing ELBO(q) \equiv Minimizing $KL(q(Z;\theta) \parallel P(Z|X))$

$$\log P(X) \ge \mathbb{E}_{z \sim q(Z;\theta)} [\log P(z,X) - \log q(z;\theta)] = ELBO(q)$$

- Maximizing ELBO(q) \equiv Minimizing $KL(q(Z;\theta) \parallel P(Z|X))$
- ② Usually it is easy to calculate P(z, X)

$$\log P(X) \ge \mathbb{E}_{z \sim q(Z;\theta)} [\log P(z,X) - \log q(z;\theta)] = ELBO(q)$$

- Maximizing ELBO(q) \equiv Minimizing $KL(q(Z;\theta) \parallel P(Z|X))$
- ② Usually it is easy to calculate P(z, X)
- Open Problem: Calculating expectation might be hard

$$\log P(X) \ge \mathbb{E}_{z \sim q(Z;\theta)} [\log P(z,X) - \log q(z;\theta)] = ELBO(q)$$

- Maximizing ELBO(q) \equiv Minimizing $KL(q(Z;\theta) \parallel P(Z|X))$
- ② Usually it is easy to calculate P(z, X)
- **3 Problem:** Calculating expectation might be hard

Mean-Field Assumption: $q(Z;\theta) = \prod_{i=1}^{n} q_i(Z_i;\theta)$

$$\log P(X) \ge \mathbb{E}_{z \sim q(Z;\theta)} [\log P(z,X) - \log q(z;\theta)] = ELBO(q)$$

- Maximizing ELBO(q) \equiv Minimizing $KL(q(Z;\theta) \parallel P(Z|X))$
- ② Usually it is easy to calculate P(z, X)
- **3 Problem:** Calculating expectation might be hard

Mean-Field Assumption:
$$q(Z; \theta) = \prod_{i=1}^{n} q_i(Z_i; \theta)$$

Optimization Objective:

Introduction

$$\max_{\theta} ELBO(q)$$

Univariate Gaussian

1 Need to estimate mean μ and variance σ^2

- **1** Need to estimate mean μ and variance σ^2
- $\mathbf{Q} \quad q_1(\mu) = \mathcal{N}(\mu|m, s^2) \text{ and } q_2(\sigma^2) = \mathcal{G}(\sigma^2|\alpha, \beta)$

- **1** Need to estimate mean μ and variance σ^2
- $q_1(\mu) = \mathcal{N}(\mu|m, s^2)$ and $q_2(\sigma^2) = \mathcal{G}(\sigma^2|\alpha, \beta)$
- $P(\mu) = \mathcal{N}(\mu|m_p, \sigma_p^2)$ and $P(\sigma^2) = \mathcal{G}(\sigma^2|\alpha_p, \beta_p)$

- **1** Need to estimate mean μ and variance σ^2
- $q_1(\mu) = \mathcal{N}(\mu|m, s^2)$ and $q_2(\sigma^2) = \mathcal{G}(\sigma^2|\alpha, \beta)$
- $P(\mu) = \mathcal{N}(\mu|m_p, \sigma_p^2)$ and $P(\sigma^2) = \mathcal{G}(\sigma^2|\alpha_p, \beta_p)$
- **9** $P(X = x | \mu, \sigma^2) = \mathcal{N}(x | \mu, \sigma^2)$

- **1** Need to estimate mean μ and variance σ^2
- $q_1(\mu) = \mathcal{N}(\mu|m, s^2)$ and $q_2(\sigma^2) = \mathcal{G}(\sigma^2|\alpha, \beta)$
- $P(\mu) = \mathcal{N}(\mu|m_p, \sigma_p^2)$ and $P(\sigma^2) = \mathcal{G}(\sigma^2|\alpha_p, \beta_p)$
- $P(X = x | \mu, \sigma^2) = \mathcal{N}(x | \mu, \sigma^2)$
- **5** m, s^2, α and β are variational parameters

- **1** Need to estimate mean μ and variance σ^2
- $q_1(\mu) = \mathcal{N}(\mu|m, s^2)$ and $q_2(\sigma^2) = \mathcal{G}(\sigma^2|\alpha, \beta)$
- $P(\mu) = \mathcal{N}(\mu|m_p, \sigma_p^2)$ and $P(\sigma^2) = \mathcal{G}(\sigma^2|\alpha_p, \beta_p)$
- **9** $P(X = x | \mu, \sigma^2) = \mathcal{N}(x | \mu, \sigma^2)$
- \mathfrak{g} m, \mathfrak{s}^2 , α and β are variational parameters
- m_p , s_p^2 , α_p and β_p are hyper-parameters

Other Topics

Univariate Gaussian (Cont.)

Figure 1: True (red) vs Approximated (blue) Distribution

Univariate Gaussian (Cont.)

Figure 2: ELBO(q) vs Iterations

Gaussian Mixture Model

Gaussian Mixture Model

Same setup as the case of univariate Gaussian except:

Same setup as the case of univariate Gaussian except:

Log-Normal distribution is used as prior for variance

Same setup as the case of univariate Gaussian except:

- Log-Normal distribution is used as prior for variance
- Expectation is not computed analytically

Same setup as the case of univariate Gaussian except:

- Log-Normal distribution is used as prior for variance
- 2 Expectation is not computed analytically

Figure 3: True (red) vs Approximated (blue) Distribution

Gaussian Mixture Model (Cont.)

Figure 4: ELBO(q) vs Iterations

Introduction

Introduction

Introduction

Goal: Generate images "similar" to images in the dataset

1 Z: Low dimensional, latent representation

- 2: Low dimensional, latent representation
- $P_{\theta}(X|Z)$: Model for data likelihood (Bernoulli)

- 2: Low dimensional, latent representation
- $P_{\theta}(X|Z)$: Model for data likelihood (Bernoulli)
- **3** $q_{\phi}(Z)$: Approximation of P(Z|X) (Gaussian)

- 2: Low dimensional, latent representation
- $P_{\theta}(X|Z)$: Model for data likelihood (Bernoulli)
- **3** $q_{\phi}(Z)$: Approximation of P(Z|X) (Gaussian)
- \bullet P(Z): Prior on Z (Gaussian)

- 2: Low dimensional, latent representation
- $P_{\theta}(X|Z)$: Model for data likelihood (Bernoulli)
- P(Z): Prior on Z (Gaussian)
- **1** θ and ϕ : Neural networks

Generate images "similar" to images in the dataset

- 1 Z: Low dimensional, latent representation
- $P_{\theta}(X|Z)$: Model for data likelihood (Bernoulli)
- **3** $q_{\phi}(Z)$: Approximation of P(Z|X) (Gaussian)
- P(Z): Prior on Z (Gaussian)
- \bullet and ϕ : Neural networks

Optimize ϕ and θ using variational inference Core Idea:

Alternative Expression for ELBO(q)

$$ELBO(q) = \mathbb{E}_{z \sim q} [\log P(z, X) - \log q(z; \theta)]$$

Alternative Expression for ELBO(q)

$$\begin{aligned} \textit{ELBO}(q) &= \mathbb{E}_{z \sim q} \big[\log P(z, X) - \log q(z; \theta) \big] \\ &= \mathbb{E}_{z \sim q} \big[\log P(X|z) + \log P(z) - \log q(z; \theta) \big] \end{aligned}$$

Motivation

Alternative Expression for ELBO(q)

$$\begin{aligned} \textit{ELBO}(q) &= \mathbb{E}_{z \sim q} \big[\log P(z, X) - \log q(z; \theta) \big] \\ &= \mathbb{E}_{z \sim q} \big[\log P(X|z) + \log P(z) - \log q(z; \theta) \big] \\ &= \mathbb{E}_{z \sim q} \big[\log P(X|z) \big] - \textit{KL}[q(Z; \theta) || P(Z) \big] \end{aligned}$$

Motivation

Alternative Expression for ELBO(q)

Introduction

$$\begin{aligned} \textit{ELBO}(q) &= \mathbb{E}_{z \sim q} \big[\log P(z, X) - \log q(z; \theta) \big] \\ &= \mathbb{E}_{z \sim q} \big[\log P(X|z) + \log P(z) - \log q(z; \theta) \big] \\ &= \mathbb{E}_{z \sim q} \big[\log P(X|z) \big] - \textit{KL}[q(Z; \theta)||P(Z)] \end{aligned}$$

This highlights the usual trade-off between prior and observations

Results on MNIST

Results on MNIST

Figure 5: Generated Images

Results on CIFAR-10

Figure 6: Generated Images

Comparison with maximum likelihood estimation for univariate Gaussian

- Comparison with maximum likelihood estimation for univariate Gaussian
- 2 Comparison with Expectation Maximization algorithm for Gaussian Mixture Model

- Comparison with maximum likelihood estimation for univariate Gaussian
- Comparison with Expectation Maximization algorithm for Gaussian Mixture Model
- Case study: Latent Dirichlet Allocation (LDA)

- Comparison with maximum likelihood estimation for univariate Gaussian
- Comparison with Expectation Maximization algorithm for Gaussian Mixture Model
- Oase study: Latent Dirichlet Allocation (LDA)
- Omparison with MCMC methods

- Comparison with maximum likelihood estimation for univariate Gaussian
- Comparison with Expectation Maximization algorithm for Gaussian Mixture Model
- Oase study: Latent Dirichlet Allocation (LDA)
- Omparison with MCMC methods
- A survey of open research problems

- Comparison with maximum likelihood estimation for univariate Gaussian
- 2 Comparison with Expectation Maximization algorithm for Gaussian Mixture Model
- Case study: Latent Dirichlet Allocation (LDA)
- Omparison with MCMC methods
- A survey of open research problems

Tutorials and other resources are available at:

https://github.com/sh-gupta/VariationalInference

References

- D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, *Variational Inference: A Review for Statisticians*, ArXiv e-prints (2016).
- David M. Blei, Andrew Y. Ng, and Michael I. Jordan, *Latent dirichlet allocation*, J. Mach. Learn. Res. **3** (2003), 993–1022.
- D. P Kingma and M. Welling, *Auto-Encoding Variational Bayes*, ArXiv e-prints (2013).

Thank You!