esson Objectives

- 1. Zero and negative exponents
- 2. Product, Quotient, and Power Properties for Exponents

A. **ZERO** and **NEGATIVE** exponents

Zero and negative exponents may be better understood by reviewing place value with base 10:

It turns out that **any** base (except zero) that has a zero power is equal to 1.

Property: $a^{0} = 1$ $(a \neq 0)$

$$a^0 = 1$$

$$(a \neq 0)$$

Negative exponents do **NOT** make negative numbers! They cause a reciprocal.

Property:
$$a^{-n} = \frac{1}{a^n}$$
 $(a \neq 0)$

$$(a \neq 0)$$

and
$$\frac{1}{a^{-n}} = a^n$$

"Take the Stairs" for negative exponents.

Cross the line, change the sign!

Powers of 10				
Power of 10	Standard Form	Fractional Form	Place Value	
104	10,000	10,000 1	ten thousands	
10 ³	1,000	1,000 1	thousands	
10 ²	100	100 1	hundreds	
10 ¹	10	10 1	tens	
10 ⁰	1	1/1	ones	
10 ⁻¹	0.1	1/10	tenths	
10-2	0.01	1 100	hundredths	
10 ⁻³	0.001	1,000	thousandths	
10 ⁻⁴	0.0001	1 10,000	ten thousandths	

• Negative Exponents and Fractions – "take the stairs" (reciprocal)

Property:
$$\frac{a^{-n}}{b^{-m}} = \frac{b^m}{a^n}$$

Property:
$$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$$

Simplifying Exponents Tip #1:

Final answer should have no negative exponents.

B. Product, Quotient, and Power Rules for Exponents

Product Rule: $a^m \cdot a^n = a^{m+n}$

When multiplying powers w/same base, ADD exponents.

Quotient Rule: $\frac{a^m}{a^n} = \frac{a^{m-n}}{a^n}$

When dividing powers w/same base, **SUBTRACT** exponents.

Simplifying Exponents Tip #2:	Final answer should have no <mark>duplicate</mark> variables – you
	should see each variable only <mark>once</mark> .

• Power Rule: $(a^m)^n = a^{m \cdot n}$

When raising a power to a power, **MULTIPLY** exponents.

• Product to Power Rule: $(ab)^n = a^n b^n$

The exponent applies to each factor in the parentheses.

• Quotient to Power Rule: $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$

The exponent applies to each factor in numerator and denominator.

Simplifying Exponents Tip #3:	Final answer should have no parentheses .
Simplifying Exponents Tip #4:	A factor with no visible exponent has an understood (or implied) exponent of 1 . To reduce errors, consider writing in an exponent of 1 in these situations.
Simplifying Exponents Tip #5:	Simplify exponents that have a constant (number) base. "Do it!" For example, don't leave 2 ⁵ – change it to 32.
Other Tips for Success:	Remember to always reduce (simplify) fractions. Use a calculator for any numerical (non-variable) part. Watch out with the negatives!
	To get better with exponents, you must PRACTICE!

• **EXAMPLE:** Evaluate. $(-29)^0$ [R.2.21]

Any base (except zero) raised to the power of 0 equals 1. $(-29)^0 = 1$ Answer

• **EXAMPLE:** Simplify the following expression. 6^{-3} [R.2.27]

There are two common errors with this:

- 1. Multiplying error $6^{-3} = -18$
- (INCORRECT!)

2. Sign error

- $6^{-3} = -6^3 = -216$
- (INCORRECT!)

NOTE: A negative exponent does NOT make a negative number! A negative exponent means reciprocal (flip it!).

6-3	$=\frac{6^{-3}}{1}$	$=\frac{1}{6^3}$	$=\frac{1}{216}$
Write it as a fraction.	Negative exponent means "take the stairs" (reciprocal).	Simplify – " <mark>do it</mark> ."	Answer
	BASE (6) is the SAME; EXPONENT (– 3) changes sign.	$6^3 = 216$	

Note also that any time you are dealing with constants (no variables), you can verify the result using your calculator:

6^(-3) .0046296296 Ans⊧Frac 1/216

• **EXAMPLE:** Use the quotient rule to simplify the expression.

 $\frac{6^{-5}}{7^{-2}}$

[R.2.33]

$\left(\frac{6^{-5}}{7^{-2}}\right)$	$=\frac{7^2}{6^5}$	$=\frac{49}{7776}$
Negative exponent means "take the stairs" (reciprocal).	Simplify – "do it."	(reduce fraction, if necessary.)
Both bases (6) and (7) will take the stairs – they will switch places.	$7^2 = 49$ $6^5 = 7776$	Answer

Note also that any time you are dealing with constants (no variables), you can verify the result using your calculator:

6⁻⁵ 7⁻² .0063014403 Ans⊁Frac ((6^(-5))/((7)^(-2)) .0063014403 Ans⊧Frac 49**/**7776

• **EXAMPLE:** Use the product rule to simplify. $8^0 \cdot 8^7 \cdot 8^9$ [R.2.39]

(Type exponential notation with positive exponents.)

There are two common errors with this:

- 1. Multiplying bases error $8^0 \cdot 8^7 \cdot 8^9 = (8 \cdot 8 \cdot 8)^{0+7+9} = 512^{16}$ (INCORRECT!)
- 2. Multiplying exponents error $8^0 \cdot 8^7 \cdot 8^9 = 8^{(0.7.9)} = 8^0 = 1$ (INCORRECT!)
- Product Rule: $a^m \cdot a^n = a^{m+n}$

When multiplying powers w/same base, ADD exponents.

$$8^0 \cdot 8^7 \cdot 8^9 = 8^{0+7+9} = 8^{16}$$
 Answer

NOTE: because the solution must be in *exponential notation*, using the calculator isn't helpful.

• **EXAMPLE:** Multiply and simplify. $3^5 \cdot 3^{-18}$ [R.2.35]

(Simplify your answer. Type exponential notation with positive exponents.)

$3^5 \cdot 3^{-18}$	$=3^{-13}=\frac{3^{-13}}{1}$	$=\frac{1}{3^{13}}$
• Product Rule:	Can't have negative exponents!	Answer
$a^m \cdot a^n = a^{m+n}$ When multiplying powers	Write as fraction.	solution must be in exponential notation Leave answer with
w/same base, ADD exponents.	"Take the stairs" (reciprocal).	exponent – don't "do it."

• **EXAMPLE:** Use the product rule to simplify. $5x^{-4} \cdot 3x^8 \cdot x^5$ [R.2.37] (Type exponential notation with positive exponents.)

$5x^{-4} \cdot 3x^8 \cdot x^5$	$= (5\cdot 3)\cdot (x^{-4}\cdot x^8\cdot x^5)$	$= 15x^9$
	Simplify.	
Rearrange factors to	• Product Rule:	Answer
multiply constants separately from variables.	$a^m \cdot a^n = a^{m+n}$ When multiplying powers w/same base, ADD exponents.	(No negative exponents.)

• **EXAMPLE:** Use the quotient rule to simplify the expression. [R.2-23]

Use positive exponents to write the answer.

$$\frac{4^{-4}}{4^8}$$

$\frac{4^{-4}}{4^8}$	$=4^{-4-(8)}$	$=4^{-12}=\frac{4^{-12}}{1}$	$=\frac{1}{4^{12}}$
Same base (4).	Simplify.	Can't have negative exponents!	Solution
• Quotient Rule: $\frac{a^m}{a^n} = a^{m-n}$	-4 - (8) = -12	Write as fraction. "Take the stairs" (reciprocal).	Leave answer with exponent –
When dividing powers w/same base, SUBTRACT exponents.			don't "do it."

EASIER WAY? - RESET!

• **EXAMPLE:** Use the quotient rule to simplify the expression.

[R.2-23]

Use positive exponents to write the answer.

Rather than use the quotient rule, focus on the **negative exponent** in the **numerator**:

4^{-4}	$=\frac{1}{4^8\cdot 4^4}$	$=\frac{1}{4^{12}}$
Because of the	• Product Rule:	
negative exponent, "take the stairs"	$a^m \cdot a^n = a^{m+n}$	Answer
(reciprocal).	When multiplying	Leave answer with exponent – don't
Connect existing denominator 48	powers w/same base, ADD exponents.	"do it."
with new piece 4 ⁴		
using		
multiplication.		

- Another way to do Division: "Face-Off!"
- **EXAMPLE:** Simplify the expression. Write the answer with only positive exponents.

All variables are nonzero.

[R.2.69]

$$-\frac{24a^3b^{-2}}{18ab^{-5}}$$

To simplify this expression, work in "zones" – constants (coefficients), variable a, variable b. Then, merge (multiply) all the results together.

Constants (coefficients).	Variable a.	Variable <i>b</i> .	Merge.
$-\frac{24}{18} = -\frac{4}{3}$	$\frac{a^3}{a^1}$	$ \left(\begin{array}{c} 1. \\ \left(\begin{array}{c} b^{-2} \\ b^{-5} \end{array} \right) \right ^{2.} = \frac{b^5}{b^2} $	Merge together the results from constants (coefficients) and variables.
	"Face-off!"	"Face-off!"	constants
Simplify the fraction of coefficients, if possible.	 Do both have positive exponents? YES	 Do both have positive exponents? NO "take the stairs" 	(coefficients): $=$ $-\frac{4}{3}$ Variable a : $=$ a^2 Variable b : $=$ b^3
	2. Who has more, top or bottom? TOP	(reciprocal) 2. Who has more, top or bottom? TOP	Merged $= -\frac{4}{3}a^2b^3$
	 3. By how much? 2 4. Simplifies to a² 	 3. By how much? 3 4. Simplifies to b³ 	or
	on TOP. $\frac{a^3}{a^1} = \frac{a^2}{1} = a^2$	on TOP. $\frac{b^5}{h^2} = \frac{b^3}{1} = b^3$	$=\frac{-\frac{4a^2b^3}{3}}{3}$ Answer

• **EXAMPLE:** Use the rules of exponents to simplify the expression. [R.2.77]

$$\left(\frac{3x^6}{5y^{-3}}\right)^2$$

(Type exponential notation with positive exponents.)

$\left(\frac{3x^6}{5y^{-3}}\right)^2$	$= \left(\frac{3x^6}{5y^{-3}}\right)^2$	$= \left(\frac{3^1 x^6 y^3}{5^1}\right)^2$	$=\frac{(3^1)^2(x^6)^2(y^3)^2}{(5^1)^2}$	$=\frac{9x^{12}y^6}{25}$
Try to simplify		 Coefficients 	The POSITIVE	Answer
INSIDE	 y⁻³ needs 	always have	exponent, 2, applies	
parentheses	fixing	exponent of	to ALL factors.	Carefully
first.	because of	understood <mark>1</mark> .	• Power Rule:	merge together
3	the negative	_	$(a^m)^n = a^{m \cdot n}$	all the separate
• Fraction $\frac{5}{5}$	exponent,	 Quotient to 		calculations.
is already	"take the	Power Rule	When raising a	
simplified.	stairs"	$(a)^n$ a^n	power to a power,	Be careful who
	(reciprocal).	$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$	MULTIPLY	goes in the
• x^6 is fine		\D' D	exponents.	numerator
already		The exponent		(TOP) and who
has		(<mark>2</mark>) applies to	Now simplify:	goes in the
positive		numerator and	$(3^1)^2 = 3^2 = 9$	denominator
exponent		denominator.	$(x^6)^2 = x^{12}$	(BOTTOM).
			$(y^3)^2 = y^6$	
			$(5^1)^2 = 5^2 = 25$	

• **EXAMPLE:** Simplify and write with positive exponents.

$$(5x^{-3}y^3)^{-3}$$

$(5x^{-3}y^3)^{-3}$ $= (5^1x^{-3}y^3)^{-3}$	$= (5^{1})^{-3}(x^{-3})^{-3}(y^{3})^{-3}$ $= (5)^{-3}x^{9}y^{-9}$	$= \underbrace{(5)^{-3}x^{9}(y^{-9})}_{1}$	$=\frac{x^9}{5^3y^9}$
 Coefficients always have exponent of understood 1. Product to Power Rule: (ab)ⁿ = aⁿbⁿ The exponent (-3) applies to each factor in the parentheses. 	 Power Rule: (a^m)ⁿ = a^{m·n} When raising a power to a power, MULTIPLY exponents. Now, write as fraction. 	$(5)^{-3}$ and y^{-9} need fixing because of the negative exponent, "take the stairs" (reciprocal).	Finally, just need to simplify $5^3 = 125$ in denominator. $= \frac{x^9}{125y^9}$ Answer

Sources Used:

- 1. MyLab Math for *College Algebra with Modeling and Visualization*, 6th Edition, Rockswold, Pearson Education Inc.
- 2. Powers of 10 chart, https://www.eduplace.com/math/mw/background/6/01/te 6 01 overview.html