Nome completo _______ Número

COMPUTAÇÃO GRÁFICA E INTERFACES

LEI/FCT/UNL — Ano Lectivo 2008/09 EXAME da ÉPOCA NORMAL — 09.01.12

Atenção: Responda no próprio enunciado, que entregará. Em caso de engano, e se o espaço para a resposta já não for suficiente, poderá usar o verso das folhas desde que feitas as devidas referências.

Não desagrafe as folhas! A prova de exame, com duração de 2H, é sem consulta.

1. (2,5 valores)

É dado o polígono P=[A,B,C,D,E,F,G,H,I], como se mostra na figura:

Admita que se pretende aplicar o algoritmo de FILL AREA (*even-odd*) ao polígono P. Se precisar de referir linhas de varrimento nalgumas das respostas, faça-o indirectamente através dos vértices (p.ex.: y_A poderá ser a designação da linha de varrimento que passa no ponto A). A convenção quanto à orientação dos eixos cartesianos é a que se usou nas aulas.

- a) Na figura dada, pinte as regiões que ficariam preenchidas após a aplicação do algoritmo a P.
- b) De acordo com o algoritmo, com quantas entradas não vazias ficará a Tabela de Arestas neste caso?
 Indique o conteúdo de cada uma dessas entradas não vazias:

c) Escreva, na forma de <u>listas de arestas</u> e pela ordem de tratamento, todas as configurações não vazias que a **Tabela das Arestas Activas** irá apresentando ao longo da execução do algoritmo:

2. (3 valores)

Nas duas figuras seguintes, cada quadrícula pretende representar um pixel controlado por 1 só bit.

Nome_

- a) Pinte, na figura do lado <u>esquerdo</u>, ²as³ quadrículas que resultariam da aplicação do algoritmo do Ponto Médio ao segmento de recta cujas extremidades são os pontos (4,2) e (11,9).
- b) Descreva o problema que, relacionado com a rasterização efectuada na alínea a), não pode ser minorado por um aumento da resolução da imagem:

c)	Pinte, na figura do lado <u>direito</u> , as quadrículas que se veriam como resultado de se ter <u>triplicado</u> a espessura da linha obtida na alínea a), utilizando-se um <u>aparo</u> quadrado e em modo XOR. Que cor para a caneta virtual utilizou na resposta a esta questão?Porquê?

3. (3 valores)

Numa determinada aplicação gráfica 2D pretende-se visualizar, sem distorção nem inversão da imagem, o conteúdo de uma janela num visor centrado horizontalmente e que ocupará a maior área possível da metade superior de um ecrã. Na metade inferior desse ecrã deverá simular-se um efeito de espelho (*Flip* vertical) da imagem superior. Para isso, a implementação da aplicação será feita em dois visores contíguos e de igual dimensão. A janela, em WC, será definida por $x_1 \le x \le x_2$ e $y_1 \le y \le y_2$. Em DC, a largura do ecrã será expressa por w e a altura por h.

Sempre que for solicitada uma transformação de enquadramento, especifique-a por uma matriz M (para usar na forma P'=M.P) deduzida e apresentada em termos da mais simples e natural composição de transformações geométricas elementares (S, R, ou T) em 2D, com a apropriada indicação de todos os parâmetros.

a) Qual é a condição, expressa matematicamente, para que os dois visores ocupem toda a altura do ecrã sem, no entanto, ocuparem toda a sua largura?

Pág. 3/7	Nome	Número
correspondentes	condição da alínea a), especifique, em ter transformações de enquadramento que teriar s visores (o de cima C e o de baixo B). As r ssível!	m que ser aplicadas para se obter
$M_C =$		
$M_{\mathrm{B}} =$		
	abo encontra-se centrado na origem e con e-á aplicada uma Projecção Perspectiva no pla , sendo d≠0.	
a) Quantos pontos de	e fuga terá a imagem do cubo na projecção in	dicada?
	ansformação geométrica concreta M que, ap de fuga possível na projecção em causa. Just	·
М =		
-	ficação matemática do ponto C, seria possívo Ortogonal? Porquê?	el converter a projecção em causa
	pergunta da alínea c) fosse sobre a Projecç	

Ortogonal qual seria a resposta? ______ Justifique:

Nome __

a) Tomando os pontos A, B e C, <u>e só esses</u>, como pontos de controlo, pretende-se obter uma curva cúbica B-spline que seja fechada e apresente a maior suavidade (*smoothness*) possível. Para além disso, a curva deverá passar no <u>ponto médio</u> do segmento AB. Esboce essa curva na figura acima, identificando claramente todos os troços constituintes. Para cada troço *i*, escreva o vector de geometria *G_i* que lhe corresponda:

b) Que classes de continuidade paramétrica e geométrica possuirá a curva pretendida como resposta à alínea a)? ______ Justifique, de forma sucinta:

D'	c /7
Pag.	3//

Nome	Número

6. (3 valores)

Suponha a seguinte ordem para os bits de código no algoritmo de Cohen-Sutherland, em relação à janela de recorte e à progressão do algoritmo: para <u>cima</u>, para a <u>esquerda</u>, para a <u>direita</u> e para <u>baixo</u>. A convenção quanto à orientação dos eixos cartesianos é a que se usou nas aulas.

A especificação de uma determinada janela é dada por $80 \le x \le 300$ e $60 \le y \le 200$. Seja PQ um segmento de recta. Para cada uma das seis combinações de coordenadas de P e Q abaixo apresentadas, escreva o código desses pontos e indique, na coluna "Resposta", se o algoritmo

- aceita trivialmente o segmento PQ;
- rejeita trivialmente o segmento PQ;
- precisa de efectuar intersecções com PQ (se assim for, escreva apenas a **equação da recta** de recorte para a primeira intersecção obrigatória, por exemplo: x=300).

			Código de P	Código de Q	Resposta
1	P(0,140)	Q(120,0)			
2	P(440,320)	Q(60,240)			
3	P(420,40)	Q(40,260)			
4	P(320,140)	Q(400,220)			
5	P(320,180)	Q(260,20)			
6	P(140,100)	Q(260,180)			

 a) Independentemente de ser ou n\(\tilde{a}\) necess\(\tilde{a}\) rintersec\(\tilde{c}\) oes com as rectas da janela de recorte existem para o caso 				
	do segmento 1? do segmento 2? do segmento 3?			
	Explique como, de forma genérica, se chega a tais conclusões por observação dos códigos:			
b)	De entre os segmentos de recta dados, quais os que serão tratados mais eficientemente pelo algoritmo de Cohen-Sutherland do que pelo de Cyrus-Beck (Liang-Barsky)?			
	Porquê?			

7. (3 valores)

```
S(2,3,2); T(5,7,6);
glPushMatrix();
      S(2,1,2); P1();
glPopMatrix();
glPushMatrix();
      Rz(-10°); S(1,1,5);
      glPushMatrix();
            T(4,2,0); S(5,2,1); P2();
      glPopMatrix();
      glPushMatrix();
            P3();
      glPopMatrix();
      glPushMatrix();
            Rx(7°); P4();
      glPopMatrix();
glPopMatrix();
glPushMatrix();
      P5();
glPopMatrix();
glPushMatrix();
      T(2,0,2);
      glPushMatrix();
            S(1,3,3); Ry(-5^\circ); P6();
      glPopMatrix();
      Rz(20°);
      glPushMatrix();
            P7();
      glPopMatrix();
      glPushMatrix();
            T(3,2,5); P8();
      glPopMatrix();
glPopMatrix();
```

A listagem anterior é um pseudo-código que implementa, em OpenGL, o grafo de uma cena no qual os diversos Pi() representam as chamadas das primitivas gráficas utilizadas. Sabe-se que o código destas chamadas não contém transformações geométricas.

a) Escreva a maior composição de transformações geométricas que será calculada durante a execução do programa e indique a primitiva Pl sobre a qual ela incidirá:

b) O código acima apresentado não se encontra optimizado. Risque, nessa listagem, as instruções que possam ser dispensadas.

c) Construa o grafo de cena orientado para VRML que resulta da listagem anterior. O número de nós do grafo deverá ser o menor possível. Recorda-se que, em VRML, a ordem de execução das transformações geométricas num nó Transform é S-R-T.