Обзор GOLEM

Владимир Латыпов

07-02-2024

История появления

Изначально была библиотека FEDOT для AutoML, основана на piplelineах ≈произвольной структуры (dag), поиск происходит посредством эволюции. Но алгоритм графовой оптимизации оказался полезен и для кучи других задач, в т.ч. проектов лаборатории:

- BAMT (Bayesian AutoML Tool)
- NAS (Neural Architecture Search)
- GEFEST (Generative Evolution For Encoded STructures)
- пользовательские применения (коллаборация с химической лабораторией, например btw полезный подход)

Поэтому было решено выделить эту часть в отдельную библиотеку — GOLEM.

История появления

Возможности FEDOT

		STREAMLINE	Auto-Keras	H20-3 AutoML	MLme	LAMA	FEDOT	FLAML	ALIRO	PYCARET	Auto-Gluon	MLIJAR-supervised	Ludwig	TPOT	Auto-Sklearn	Auto-PyTorch	GAMA	Hyperopt-sklearn	Auto-WEKA	RECIPE	ML-PLan	TransmogrifAl	MLBox	Xcessiv	Auto_ML
Target	Binary Classification	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES
	MultiClass Classification	NO	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES		YES	YES	YES	YES	YES
	Regression	NO	YES	YES	NO	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	NO	YES	YES	YES	YES	YES
	Multi-Task	NO	YES	NO	NO	NO	NO	NO	NO	NO	NO	NO	YES	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
	Multi-Label	NO	NO	NO	NO	NO	NO		NO	NO	NO	NO	NO	NO	YES	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
	Clustering	NO	NO	NO	NO	NO	YES	NO	NO	YES	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
	Anomoly Detection	NO	NO	NO	NO	NO	NO	NO	NO	YES	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO

История появления

Глобально про алгоритм

Тюнинг, разные подходы

Многокритериальная оптимизация

История появления

Операторы Мутации и кроссовер учитывают GraphGenerationRequirements, а также GraphVerifier.

- Мутация
 - → Заменить аттрибут каждой ноды с заданной вероятность на то, что сгенерирует NodeFactory и так, как посоветует ChangeAdvisor (например, в химии некоторые связи невозможны)
 - → Добавление ребра между случайными нодами

 - → Заменить/выбросить ноду
 - → Заменить поддерево ноды на случайное
 - → ...пользовательские, особенно семантические

Операторы

- Кроссовер
 - → Замена случайных поддеревьев

 - → Смена родителями с аналогичной нодой в другом графе
 - → ... пользовательские
- Селекция
 - → Tournament(fraction): каждый раз из группы размера ≈ population_size * fraction выбирается лучший в итоговую популяцию и убирается из кандидатов.
 - \hookrightarrow SPEA-2

Strength — количество особей, которые доминирует заданная:

$$S(\boldsymbol{i}) = |\{\boldsymbol{j} \mid \boldsymbol{j} \in P_t + \overline{P_t} \wedge \boldsymbol{i} \succ \boldsymbol{j}\}|$$

Тогда назначаем raw fitness-ом сумму strengths всех, кого особь доминирует (то есть особо выгодно доминировать крутых):

$$R(\boldsymbol{i}) = \sum_{\boldsymbol{j} \in P_t + \overline{P_t}, \boldsymbol{i} \succ \boldsymbol{j}} S(\boldsymbol{j})$$

Но ещё хотим учитывать разнообразие. Про пространство оптимизации в общем случае ничего не знаем, поэтому считаем разнообразие в пространстве objective functions:

$$R(i) = \frac{1}{\sigma_i^k + 2}$$

, где $\sigma_{\pmb{i}}^k$ — расстояние k-го ближайшего среди популяции + архива, а k выбирают $\sqrt{N+\overline{N}}$

- - \hookrightarrow Слишком большой: truncat-им по фитнессу (раз недоминированные, эквивалентно, по плотности): на каждому шагу убираем лексикографически меньшего по вектору расстояний до k-го ближайшего:

Операторы

$$\mathbf{i} \leq_{d} \mathbf{j} :\Leftrightarrow \forall 0 < k < |\overline{P}_{t+1}| : \sigma_{\mathbf{i}}^{k} = \sigma_{\mathbf{j}}^{k} \lor
\exists 0 < k < |\overline{P}_{t+1}| : \left[\left(\forall 0 < l < k : \sigma_{\mathbf{i}}^{l} = \sigma_{\mathbf{j}}^{l} \right) \land \sigma_{\mathbf{i}}^{k} < \sigma_{\mathbf{j}}^{k} \right]$$

- «Регуляризация» тоже пытается минимизировать сложность моделей (по умолчанию отключен): рассматривает все валидные и уникальные поддеревья и выбирает среди родителей и детей лучших (эти поддеревья проще и хорошо, если они окажутся не хуже родителей)
- Genetic scheme

- \hookrightarrow generational: новая популяция занимает место старой $(\mu,\lambda), \mu=\lambda$
- \hookrightarrow steady-state: каждый раз добавляем по одному $(\mu+1)$
- \rightarrow parameter-free: $(\mu + x) x$ растёт, если давно не было улучшений (\Rightarrow нужно увеличивать exploration)
- Регулятор репродукции (Population → Population): есть min_size, max_size; некоторые операторы вероятностны и не всегда генерируют подходящие под GraphRequirements графы: он пробует применять операторы несколько раз + изучает, сколько в среднем процентов успешны.
- Elitism: поддерживать HallOfFame, во внеочередном подярке добавлять individual-ов оттуда.

Проект под кодовым названием GAMLET <anonymized>

Глобально: втыкаем в разные места эволюции ML модели:

- Где мы точно не знаем, какой вариант лучше и поэтому выбираем случайный
- Где вычисление занимает очень много времени, и можно настроить аппроксиматор для его ускорения.

Общая схема

Расшаренный эмбеддинг для трёх задач:

Адаптивность

OperatorAgent: интерфейс подборщика мутаций, по умолчанию — RandomAgent, но может обучаться. Получается задача multi-armed bandit или contextual MAB.

В качестве контекста используются фичи графов, пытаемся рекомендовать мутации для конкретного графа, обучение происходит «под конкретную задачу» в прошлых прогонах + немного на лету:

- feather_graph ← FEATHER embedding
- nodes_num
- labeled_edges
- operations_quantity
- adjacency_matrix
- none_encoding

Shallow exploration + deep representation

Решают contextual MAB через нейросеть + LinUCB.

Доказывают, что $\tilde{O}\!\left(\sqrt{T}\right)$ regret.

см. статью.

Изначальные рекомендации pipleline-ов

Выдаёт nearest neighboors в пространстве embedding-а, либо использует генеративную GNN.

Surrogate model

Pilpeline (без учёта гиперпараметров) embedd-ится (общая часть с адаптивностью) с помощью GNN + attention (была картинка), датасет описывается метапризнаками (перечислены в статье), нужно предсказать, насколько хорошо будет себя вести модель. На практике — лучше получается формулировка с ранжированием (см. статью).

Как это всё обучать

Есть метахранилище, где много историй оптимизации, куча evaluationов разных pipleline-ов на разных dataset-ах.

С големом не поставляется, с FEDOT-ом — да.

Перспективы

Гиперпараметры эволюции всё ещё нужно указывать ручками, но их можно динамически подстраивать.

Кроме того, более широкий контекст в виде эволюционной ситуации для бандита.

Но какой-то inductive bias всё же должен быть.

С другой стороны, есть llm-guided evolution, которая ещё и обладает априорным знанием о пайплайнах и датасетах.

Ближе к коду

Язык: Python. Библиотеки:

- joblib + multiprocessing
- torch + mabwiser + karateclub для контекстуального бандита на GNN
- Package core contains the main classes and scripts.
- Package core.adapter is responsible for transformation between domain graphs and internal graph representation used by optimisers.
- Package core.dag contains classes and algorithms for representation and processing of graphs.

- Package core.optimisers contains graph optimisers and all related classes (like those representing fitness, individuals, populations, etc.), including optimization history.
- Package core.optimisers.genetic contains genetic (also called evolutionary) graph optimiser and operators (mutation, selection, and so on).
- Package core.utilities contains utilities and data structures used by other modules.
- Package serializers contains class Serializer with required facilities, and is responsible for serialization of project classes (graphs, optimization history, and everything related).

- Package visualisation contains classes that allow to visualise optimization history, graphs, and certain plots useful for analysis.
- Package examples includes several use-cases where you can start to discover how the framework works.
- All unit and integration tests are contained in the test directory.

The sources of the documentation are in the docs directory.

Adapter Subsystem (преобразование между представлениями графа)

- Обычно предметная область имеет своё представление графа (например, из внешней либы): химия, ВАМТ, FEDOT
- Fitness, операторы
- oregister_native, e.g.
 GraphVerifier
- Поставляется адаптер к NetworkX

Ближе к коду 16/27

Сериализация

- Pickle (e.g. бандиты)
- json (в т.ч. pipleline-ы в FEDOT)

Evaluator

Issues

Направления развития

Источники:

- Issues
- Разговоры с коллективом лаборатории
- Мои рассуждения
- Рекомендации из review к paper по GOLEM-y.

Expressive encodings

- Прямо как в жизни в геноме кодируется распределение, не просто какой-то конкретный фенотип, а больше информации. Заодно и, частично, то, как проходит эволюция.
- Приближает к положению дел в ML, где используют достаточно абстрактные модели вместо экспертного знания.

Definition 1 (Expressive Encoding). An encoding $E: X \to Y$ is *expressive* for a simple genetic operator g if, for any set of parent phenotypes $\{y_1, \ldots, y_{n_g}\} = Y_p \subset Y$, any probability density μ over Y, and any $\epsilon > 0$, there exists a set of parent genotypes $\{x_1, \ldots, x_{n_g}\} = X_p \subset X$ such that $E(x_i) = y_i \ \forall \ y_i \in Y_p$, and

$$\left| \Pr\left[E(g(X_p)) = y \right] - \mu(y) \right| < \epsilon \ \forall y \in Y. \tag{2}$$

Figure 1: Miracle Jump Parents. (a) Two GP parents whose phenotypes are all 0's, but whose crossover has maximal jump (to a child of all 1's) with probability 0.25. They differ only in their values of a and b; the probability is independent of phenotype dimensionality. (b) Two NN parents with this same property; They differ only in the weights in the second layer. (c) Directly encoded parents cannot have this property: If both parents are all 0's, their crossover cannot yield all 1's. This minimal example illustrates how expressive encodings yield high-dimensional structured behavior that direct encodings cannot capture.

Примеры expressive encodings Complexity — размер генома, требуемый для фиксированного уровня аппроксимации.

Theorem 4.2. Genetic programming is an expressive encoding for single-point mutation, with complexity $O(\frac{mn}{\epsilon})$.

Theorem 4.4. Feed-forward neural networks with sigmoid activation are an expressive encoding for single-point mutation, with complexity $O(\frac{mn}{\epsilon})$.

Definition 2 (E_{Ω}). Let Ω be any universal function approximator. Define E_{Ω} to be an encoding whose genotypes are of the form $\omega(\mathbf{a})$, where $\mathbf{a} \in \{0, 1\}^L$, and $\omega \in \Omega$ is a function $\omega : \{0, 1\}^L \to Y$.

Theorem 4.5. E_{Ω} is an expressive encoding for uniform crossover.

Потом на разных примерах показывают более хорошую асмиптотику expressive encoding-ов по сравнению с direct.

В нашем случае это может быть GNN с тривиальными мутациями.

NOTEARS

Theorem 1. A matrix $W \in \mathbb{R}^{d \times d}$ is a DAG if and only if

$$h(W) = \operatorname{tr}\left(e^{W \circ W}\right) - d = 0,\tag{7}$$

where \circ is the Hadamard product and e^A is the matrix exponential of A. Moreover, h(W) has a simple gradient

$$\nabla h(W) = \left(e^{W \circ W}\right)^T \circ 2W,\tag{8}$$

and satisfies all of the desiderata (a)-(d).

→ сводим к задаче непрерывной оптимизации; целевая функция и ограничения — дифференцируемы. Решаем с помощью метода расширенной Лагранжианы.

Ограничения:

- Целевая функция должна естественно (дифференцируемо, поменьше константа Липшица, легко вычислима) продолжаться на вещественные веса
- Как задать на пространстве, содержащем категориальные переменные?

Как может совмещаться с GOLEM-ом? Идея: оператор локального улучшения.

Метаэволюция

Пытаемся адаптировать гиперпараметры эволюции (частоту мутаций, размер популяции и т.д.). Похоже на предложение к GAMLET, но теперь эти параметры именно эволюционируют.

см. Parameter Control in Evolutionary Algorithms: Trends and Challenges

Коэволюция

см. proposal.

Поддержка разнообразия

см. proposal.