

GPU Performance Details: GeForce GTX 1080

Contents:

- System Configuration
- · Results for datatype double
 - MTimes (double)
 - Backslash (double)
 - FFT (double)
- · Results for datatype single
 - MTimes (single)
 - · Backslash (single)
 - FFT (single)

System Configuration

MATLAB Release: R2016b

Host		GPU	
Name	Intel(R) Core(TM) i7-6800K CPU @ 3.40GHz	Name	GeForce GTX 1080
Clock	3401 MHz	Clock	1.733500e+03 MHz
Cache	1536 KB	NumProcessors	20
NumProcessor	s 6	ComputeCapability	6.1
OSType	Windows	TotalMemory	8.00 GB
OSVersion	Microsoft Windows 10 Home	CUDAVersion	8
		DriverVersion	6.14.13.8205 (382.05)

Results for MTimes (double)

These results show the performance of the GPU or host PC when calculating a matrix multiplication of two NxN real matrices. The number of operations is assumed to be $2*N^3 - N^2$.

This calculation is usually compute-bound, i.e. the performance depends mainly on how fast the GPU or host PC can perform floating-point operations.

Raw data for GeForce GTX 1080 - MTimes (double)

(
Array size (elements)	Num Operations	Time (ms)	GigaFLOPS
1,024	64,512	0.22	0.29
4,096	520,192	0.07	7.75
16,384	4,177,920	0.08	50.80
65,536	33,488,896	0.33	101.08
262,144	268,173,312	1.28	209.37
1,048,576	2,146,435,072	9.45	227.18
4,194,304	17,175,674,880	68.91	249.26
16,777,216	137,422,176,256	540.94	254.05
	a 9		

(N gigaflops = $N \times 10^9$ operations per second)

Results for Backslash (double)

These results show the performance of the GPU or host PC when calculating the matrix left division of an NxN matrix with an Nx1 vector. The number of operations is assumed to be $2/3*N^3 + 3/2*N^2$.

This calculation is usually compute-bound, i.e. the performance depends mainly on how fast the GPU or host PC can perform floating-point operations.

Raw data for GeForce GTX 1080 - Backslash (double)

(double)				
Array size (elements)	Num Operations	Time (ms)	GigaFLOPS	
1,024	23,381	1.03	0.02	
4,096	180,907	0.65	0.28	
16,384	1,422,677	1.08	1.31	
65,536	11,283,115	2.63	4.28	
262,144	89,871,701	4.14	21.70	
1,048,576	717,400,747	11.15	64.34	
4,194,304	5,732,914,517	45.61	125.70	
16,777,216	45,838,150,315	256.06	179.01	

Results for FFT (double)

These results show the performance of the GPU or host PC when calculating the Fast-Fourier-Transform of a vector of complex numbers. The number of operations for a vector of length $\mathbb N$ is assumed to be $5*N*log2(\mathbb N)$.

This calculation is usually memory-bound, i.e. the performance depends mainly on how fast the GPU or host PC can read and write data.

Raw data for GeForce GTX 1080 - FFT (double)

Array size (elements)	Num Operations	Time (ms)	GigaFLOPS
1,024	51,200	0.06	0.83
4,096	245,760	0.07	3.54
16,384	1,146,880	0.07	17.05
65,536	5,242,880	0.12	42.40
262,144	23,592,960	0.33	70.89
1,048,576	104,857,600	0.99	105.48
4,194,304	461,373,440	3.56	129.42
16,777,216	2,013,265,920	15.55	129.45
67,108,864	8,724,152,320	111.39	78.32

Results for MTimes (single)

These results show the performance of the GPU or host PC when calculating a matrix multiplication of two NxN real matrices. The number of operations is assumed to be $2*N^3 - N^2$.

This calculation is usually compute-bound, i.e. the performance depends mainly on how fast the GPU or host PC can perform floating-point operations.

Raw data for GeForce GTX 1080 - MTimes (single)

Array size (elements)	Num Operations	Time (ms)	GigaFLOPS
1,024	64,512	0.08	0.79
4,096	520,192	0.07	7.82
16,384	4,177,920	0.07	56.50
65,536	33,488,896	0.08	436.28
262,144	268,173,312	0.13	2052.11
1,048,576	2,146,435,072	0.53	4064.45
4,194,304	17,175,674,880	3.61	4763.19
16,777,216	137,422,176,256	34.24	4014.02
67,108,864	1,099,444,518,912	303.74	3619.70
(N gigaflons = $N \times 10^9$ operations per second)			

Results for Backslash (single)

These results show the performance of the GPU or host PC when calculating the matrix left division of an NxN matrix with an Nx1 vector. The number of operations is assumed to be $2/3*N^3 + 3/2*N^2$.

This calculation is usually compute-bound, i.e. the performance depends mainly on how fast the GPU or host PC can perform floating-point operations.

Raw data for GeForce GTX 1080 - Backslash (single)

Array size (elements)	Num Operations	Time (ms)	GigaFLOPS
1,024	23,381	1.62	0.01
4,096	180,907	1.95	0.09
16,384	1,422,677	1.77	0.80
65,536	11,283,115	1.17	9.61
262,144	89,871,701	3.73	24.13
1,048,576	717,400,747	6.52	109.98
4,194,304	5,732,914,517	16.64	344.43
16,777,216	45,838,150,315	61.09	750.34
67,108,864	366,604,539,221	287.77	1273.97
	_ 0		

(N gigaflops = $N \times 10^9$ operations per second)

Results for FFT (single)

These results show the performance of the GPU or host PC when calculating the Fast-Fourier-Transform of a vector of complex numbers. The number of operations for a vector of length N is assumed to be 5*N*log2 (N).

This calculation is usually memory-bound, i.e. the performance depends mainly on how fast the GPU or host PC can read and write data.

Raw data for GeForce GTX 1080 - FFT (single)

Array size	Num	Time	CigoFI ODS
(elements)	Num Operations	(ms)	Gigarlors

