MATH-UA 349: Homework 6

James Pagan, March 2024

Professor Kleiner

Contents

1	Problem 1	2
2	Problem 2	2
3	Problem 3	2
4	Problem 4	3
5	Problem 5	3
6	Problem 6	3
7	Problem 7	4
8	Problem 8	4

1 Problem 1

Proof. Let r_1, \ldots, r_n be a basis of R as an F-vector space and select nonzero $r \in R$ arbitrarily; we must demonstrate that r is a unit. Define a mapping $\phi : R \to R$ by $\phi(x) = rx$. It is clear that ϕ is a linear operator on the F-vector space R.

- 1. ϕ is injective: $\phi(x) = 0$ implies rx = 0 implies x = 0, since R is an integral domain.
- 2. ϕ is surjective: this follows from the fact ϕ is a linear operator on a finite-dimensional vector space. Such operators are injective if and only if they are surjective by the Rank-Nullity Theorem.

Since ϕ is surjective, there exists $s \in R$ such that $\phi(s) = rs = 1$. We conclude that all nonzero $r \in R$ are units, so R is a field.

2 Problem 2

Proof. Simply substitute $x = \frac{-b+\delta}{2}$ into the quadratic equation:

$$x^{2} + bx + c = \left(\frac{-b+\delta}{2}\right)^{2} + b\left(\frac{-b+\delta}{2}\right) + c$$

$$= \frac{b^{2} - 2b\delta + \delta^{2}}{4} + \frac{-2b^{2} + 2b\delta}{4} + \frac{4c}{4}$$

$$= \frac{\delta^{2} - b^{2} + 4c}{4}$$

$$= \frac{(b^{2} - 4c) - b^{2} + 4c}{4}$$

$$= 0$$

Similar logic demonstrates that $x=\frac{-b-\delta}{2}$ is a root of the quadratic. Now, suppose that b^2-4c is not a square; then adjoin δ to F such that $\delta^2=b^2-4c$. Identical logic to the above demonstrates that $\frac{-b\pm\delta}{2}$ are the two roots of f. Since $\delta\notin F$, neither of these roots are elements of F—so f has no roots in F.

3 Problem 3

Proof. Observe that $a_0 \neq 0$ by the irreducibility of f, so $\alpha \neq 0$. Hence claim the inverse has the form

$$\alpha^{-1} = -\frac{1}{\alpha_0} \sum_{i=1}^n a_i \alpha^{i-1}.$$

To verify this, we need only multiply it by α :

$$\alpha \left(-\frac{1}{a_0} \sum_{i=1}^n \alpha_i \alpha^{i-1} \right) = -\frac{1}{a_0} \sum_{i=1}^n a_i \alpha^i$$

$$= -\frac{1}{a_0} \left(-a_0 + \sum_{i=0}^n a_i \alpha^i \right)$$

$$= -\frac{1}{a_0} \left(-a_0 + 0 \right)$$

$$= 1.$$

This completes the proof.

4 Problem 4

Proof. There are two facts which propel our observations:

- 1. $F(\alpha)$ has prime degree, and $\alpha^2 \in F(\alpha)$.
- 2. $\alpha^2 \notin F$, since α has degree 5.

Thus Corollary 15.3.7 implies that α^2 has degree 5, so $F(\alpha^2) = F(\alpha)$.

5 Problem 5

Proof. A quick examination using the Einstein criterion yields that $x^4 + 3x + 3$ is irreducible over \mathbb{Q} ; thus it is the minimal polynomial of some algebraic number α . Since 3 and 4 are relatively prime, we have that

$$12 = [\mathbb{Q}(\alpha,\sqrt[3]{2}):\mathbb{Q}] \,=\, [\mathbb{Q}(\alpha,\sqrt[3]{2}):\mathbb{Q}(\sqrt[3]{2})]\,[\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}] \,=\, [\mathbb{Q}(\alpha,\beta):\mathbb{Q}(\sqrt[3]{2})]\times 3.$$

Thus $[\mathbb{Q}(\alpha, \sqrt[3]{2}) : \mathbb{Q}(\sqrt[3]{2})] = 4$, so $\deg_{\mathbb{Q}(\sqrt[3]{2})}(\alpha) = 4$. We conclude that the minimal polynomial $x^4 + 3x + 3$ cannot be reduced in $\mathbb{Q}(\sqrt[3]{2})$.

6 Problem 6

Realize that the minimal polynomial of ζ_5 is $x^4 + x^3 + x^2 + x + 1$ and the minimal polynomial of ζ_7 is $x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$ — hence they have degrees 4 and 6. Clearly these polynomials are irreducible in \mathbb{Q} .

By Corollary 15.3.8 in Artin, $[\mathbb{Q}(\zeta_5, \zeta_7) : \mathbb{Q}]$ is divisible by $[\mathbb{Q}(\zeta_5) : \mathbb{Q}] = 4$ and $\mathbb{Q}(\zeta_7 : \mathbb{Q}) = 6$, but is less than their product — hence it is either 12 or 24. Hence.

$$\left[\mathbb{Q}(\zeta_5,\zeta_7):\mathbb{Q}(\zeta_7)\right]\times 6 = \left[\mathbb{Q}(\zeta_5,\zeta_7):\mathbb{Q}(\zeta_7)\right]\left[\mathbb{Q}(\zeta_7):\mathbb{Q}\right] = \left[\mathbb{Q}(\zeta_5,\zeta_7):\mathbb{Q}\right] \in \{12,24\}.$$

Thus $[\mathbb{Q}(\zeta_5,\zeta_7):\mathbb{Q}(\zeta_7)]$ is not 1, so $\mathbb{Q}(\zeta_5,\zeta_7)\neq\mathbb{Z}(\zeta_7)$. We conclude that $\zeta_5\notin\mathbb{Q}(\zeta_7)$.

7 Problem 7

The polynomial $x^4 - a$ factors in $\mathbb{Q}(\sqrt[4]{2})$ as

$$(x^2 + \sqrt{a})(x + \sqrt[4]{2})(x - \sqrt[4]{2}).$$

This makes it clear that $\sqrt[4]{2}$ has degree 2 in $\mathbb{Q}[\sqrt{2}]$. Thus

$$[\mathbb{Q}(\sqrt[4]{2}) : \mathbb{Q}] = [\mathbb{Q}(\sqrt[4]{2}) : \mathbb{Q}(\sqrt{2})] [\mathbb{Q}(\sqrt{2}) : \mathbb{Q}] = 2 \times 2 = 4,$$

which yields the required result.

8 Problem 8

Proof. Let deg $\alpha = n$ and deg $\alpha = m$. We start with the following observation:

$$[\mathbb{Q}(\alpha,\beta):\mathbb{Q}] = [\mathbb{Q}(\alpha,\beta):\mathbb{Q}(\alpha)][\mathbb{Q}(\alpha),\mathbb{Q}]. \tag{1}$$

Clearly $[\mathbb{Q}(\alpha), \mathbb{Q}] = n$. As per $[\mathbb{Q}(\alpha, \beta) : \mathbb{Q}(\alpha)]$: the set $1, \beta, \dots, \beta^{n-1}$ spans $\mathbb{Q}(\alpha, \beta)$ over $\mathbb{Q}(\alpha)$, so its dimension as a $\mathbb{Q}(\alpha)$ -vector space is n or smaller. Thus both terms on the right-hand side of equation are finite, so $[\mathbb{Q}(\alpha, \beta) : \mathbb{Q}]$ is finite. We conclude that $\mathbb{Q}(\alpha, \beta)$ is a finite extension over \mathbb{Q} .

Since $\alpha + \beta$ and $\alpha\beta$ are elements of the finite extension $\mathbb{Q}(\alpha, \beta)$, they must be algebraic. \square