Definition Subset	Notation: $A \subseteq B$, informally $A \subset B$ if $x \in A$, then $x \in B$
Definition Proper Subet	Notation: $A \subset B$ $A \subseteq B \text{ and } A \neq B$
Definition Union	Notation: $A \cup B$ $\{x \mid x \in A \text{ or } x \in B\}$
Definition Intersection	Notation: $A \cap B$ $\{x \mid x \in A \text{ and } x \in B\}$

Definition Disjoint Sets	A and B are disjoint if $A \cap B = \emptyset$
Definition $Equal\ Sets$	A and B are equivalent if $A \subset B$ and $B \subset A$
Definition $Complement$	For any set $A \subset U$ $A' = \{x \in U \mid x \notin A\}$
Definition $Difference$	$A \backslash B = A \cap B'$

Definition Cartesian Product	$A \times B = \{(a,b) \mid a \in A \text{ and } b \in B\}$
Definition $Relation$	A relation from A to B is a subset of $A \times B$
Definition Function or Map	Notation: $f:A\to B$, where A is the domain and B is the target $ \text{A relation from A to B where } \forall a\in A,\exists!\ (a,b) $ $ f(a)=b \text{ means } (a,b)\in f $
Definition Image of Function	$f(A) = \{f(a) : a \in A\}$ Note: $f(A) \subset B$

Definition $Surjective$	Also known as $onto$ A function $f:A\to B$ for which $f(A)=B$
Definition Injective	Also known as $one\text{-}to\text{-}one$ $A \text{ function } f: A \to B \text{ for which } f(a_1) = f(a_2) \text{ implies } a_1 = a_2$
Definition Bijective	A function which is both injective and surjective.
Definition Composition	For $f:A\to B$ and $g:B\to C$, the composition $g\circ f$ is defined as: $(g\circ f)(x)=g(f(x))$ Notes: $g\circ f:A\to C$, and composition is associative

Definition $Composition\ Properties$	 If g and f are surjective, g ∘ f is surjective If g and f are injective, g ∘ f is injective If g and f are bijective, g ∘ f is bijective
Definition	Notation: id_s
Identity Map	$id(x) = x, id: S \to S$ Note: $id_s = \{(x,x): x \in S\}$
Definition	
Inverse	Notation: f^{-1} $g = f^{-1} \iff g \circ f = id_A$ f is invertible iff it has an inverse. $f \text{ is invertible iff it's bijective.}$