

Simulated Annealing — Part 2

Leandro L. Minku

Simulated Annealing

Simulated Annealing (assuming maximisation)

```
    current_solution = generate initial solution randomly
    Assignment Project Exam Help
    Repeat:
```


2.3 Reduce probability

Until a maximum number of iterations

Metallurgy Annealing

 A blacksmith heats the metal to a very high temperature.

When heated, the steels grownt Project Exam Heles
 can move fast and randomly.
 https://powcoder.com

Add WeChat powcoder

- The blacksmith then lets it cool down slowly.
- If cooled down at the right speed, the atoms will settle in nicely.
- This makes the sword stronger than the untreated steel.

Probability Function

Probability of accepting a solution of equal or worse quality, inspired by thermodynamics:

```
Assignment Project/Exam Help https://powcoder.com
```

```
Add WeChat powcoder

\Delta E = quality(rand_neighbour) - quality(current_solution)
(<=0)
```

Assuming maximisation...

```
T = temperature
```

e = 2.71828...

Exponential Function

(0,1)

3

1

Exponential Function

Exponential Function

Probability of accepting a solution of equal or worse quality:

T = temperature

The worse the neighbour is in comparison to the current solution, the less likely to accept it.

Probability of accepting a solution of equal or worse quality:

T = temperature (>0)

We always have some probability to accept a bad neighbour, no matter how bad it is.

Probability of accepting a solution of equal or worse quality:

T = temperature

The better the neighbour is, the more likely to accept it.

How Should the Probability be Set?

- Probability to accept solutions with much worse quality should be lower.
 - We don't wantstigtmedishojegeExamtethe optimum.

https://powcoder.com

- High probability in the beginning.

 Add WeChat powcoder

 More similar effect to random search.

 - Allows us to explore the search space.
- Lower probability as time goes by.
 - More similar effect to hill-climbing.
 - Allows us to exploit a hill.

Probability of accepting a solution of equal or worse quality:

```
Assignment Project/Exam Help
                     Add WeChat powcoder
\Delta \dot{E} = quality(rand_neighbour) - quality(current_solution)
(<=0)
                Assuming maximisation...
                     T = temperature
                     (>0)
```

Probability of accepting a solution of equal or worse quality:

Assuming maximisation...

If T is higher, the probability of accepting the neighbour is higher.

Probability of accepting a solution of equal or worse quality:

```
Assignment Project/fixam Help

https://powcoder.com

Add WeChat powcoder

\Delta E = quality(rand_neighbour) - quality(current_solution)
(<=0)

Assuming maximisation
```

Assuming maximisation...

T = temperature

If T is lower, the probability of accepting the neighbour is lower.

Probability of accepting a solution of equal or worse quality:

Assuming maximisation...

T = temperature

So, reducing the temperature over time would reduce the probability of accepting the neighbour.

How Should the Temperature be Set?

- High probability in the beginning.
 - More similar effect to random search.
 - Allows us to explore that the transfer of the search space.

T should start high. Add WeChat pow

- Lower probability as time goes by.
 - More similar effect to hillclimbing.
 - Allows us to exploit a hill.

T should reduce slowly over time.

How to Set and Reduce T?

- T starts with an initially high pre-defined value (parameter of the algorithm).
- There are different update rules (schedules)...
- Update rule: https://powcoder.com
 - $T = \alpha T$, Add WeChat powcoder α is close to, but smaller than, 1 e.g., $\alpha = 0.95$

Simulated Annealing

Simulated Annealing (assuming maximisation)

```
Input: initial temperature Ti
1. current_solution = generate initial solution randomly Assignment Project Exam Help
2. T = Ti
                           https://powcoder.com
3. Repeat:
   3.1 rand_neighbour = denerate random neighbour of current_solution
   3.2 If quality(rand_neighbour) <= quality(current_solution) {
       3.2.1 With probability e<sup>△E/T</sup>,
              current_solution = rand_neighbour
      } Else current_solution = rand_neighbour
   3.3 T = schedule(T)
```

Until a maximum number of iterations

Simulated Annealing

Simulated Annealing (assuming maximisation)

until a minimum temperature Tf is reached or

until the current solution "stops changing"

```
Input: initial temperature Ti, minimum temperature Tf
1. current_solution = generate initial solution randomly
                      Assignment Project Exam Help
2. T = Ti
                          https://powcoder.com
3. Repeat:
   3.1 rand_neighbour = geder we chat power of current_solution
   3.2 If quality(rand_neighbour) <= quality(current_solution) {
       3.2.1 With probability e<sup>△E/T</sup>,
             current_solution = rand_neighbour
      } Else current_solution = rand_neighbour
   3.3 T = schedule(T)
```

Local Search

- Simulated annealing can also be considered as a local search, as it allows to move only to neighbour solutions.
- However, it has mechanisms to try to escape from local optima.

 Assignment Project Exam Help

https://powcoder.com

Optimality

Is simulated annealing guaranteed to find the optimum?

- Simulated annealing is not guaranteed to find the optimum in a reasonable amount of time.
- Whether or not it will find the optimum depends on the termination criteria and the schedule/powcoder.com
- If we leave simulated an integrated to find an optimal solution, depending on the schedule used.
- However the time required for that can be prohibitive even more than the time to enumerate all possible solutions using brute force.
- Therefore, the advantage of simulated annealing is that it can frequently obtain good (near optimal) solutions, by escaping from several poor local optima in a reasonable amount of time.

Time and Space Complexity

Time complexity:

- We will run more or less iterations depending on the schedule and minimum temperature / termination criterion. Assignment Project Exam Help
- It is possible to compute the time complexity to reach the optimal solution, but it varies depending on the problem and may be even were that the force time complexity, as mentioned in the previous slide.

Space complexity:

Depends on how the design variable is represented in the algorithm.

Summary

- The probability of accepting neighbouring solutions of equal or worse quality than the current solution is inspired by metallurgy annealing.
- A "temperature" is used to control how low the probability is.
 Assignment Project Exam Help
- A schedule is used to reduce the "temperature" over time. https://powcoder.com
- The worse a neighbout its, the the other ances of accepting it.

Next

Dealing with constraints.