Answers to Selected Exercises in Real and Complex Analysis*

Solutions by

MARCEL K. GOH

CHAPTER 1. ABSTRACT INTEGRATION

1. Does there exist an infinite σ -algebra which has only countably many members?

The answer is no.

Proof. Let X be a ground set and let \mathcal{F} be a σ -algebra (over X) with infinitely many members. First we claim that we can always find a set $E \neq \emptyset$ such that the set $\{F \cap E^c : F \in \mathcal{F}\}$ is infinite. If this did not hold, then take any $E \neq \emptyset$ in \mathcal{F} . Then by assumption, $\mathcal{S}_1 = \{F \cap E^c : F \in \mathcal{F}\}$ is finite and because $E^c \in \mathcal{F}$, $\mathcal{S}_2 = \{F \cap E : F \in \mathcal{F}\}$ is finite as well. Since any member of \mathcal{F} can be expressed as a union of an element of \mathcal{S}_1 with an element of \mathcal{S}_2 , the implies that \mathcal{F} is finite, a contradiction.

Now we may use the claim to construct a countable sequence of pairwise disjoint elements of \mathcal{F} . Let G_1 be the set E given by the claim. Now the infinite set \mathcal{S}_1 we constructed before is also a σ -algebra, so repeat the argument to get a set G_2 , disjoint from G_1 . Continuing in this manner, we obtain a sequence G_1, G_2, \ldots where the G_i are pairwise disjoint. Now we see that the map from the power set of the natural numbers to \mathcal{F} given by

$$A \mapsto \bigcup_{i \in A} G_i$$

is injective. So the uncountability of \mathcal{F} follows from the uncountability of $\mathcal{P}(\mathbf{N})$.

3. Prove that if f is a real function on a measurable space X such that $\{x : f(x) \ge r\}$ is measurable for every rational r, then f is measurable.

Proof. We immediately infer that for rational r and s, $f^{-1}([r,s))$ is measurable, since

$$f^{-1}([r,s)) = \{x : f(x) \ge r\} \cap \{x : f(x) \ge s\}^c.$$

Next, let $I \subseteq \mathbf{R}$ be an open interval. Setting $J = I \cap \mathbf{Q}$, we can show that $f^{-1}(I)$ is measurable, since

$$f^{-1}(I) = f^{-1}\bigg(\bigcup_{r \in J} \bigcup_{s \in J} [r, s)\bigg) = \bigcup_{r \in J} \bigcup_{s \in J} f^{-1}\big([r, s)\big)$$

is a countable union of measurable sets.

Now let $V \subseteq \mathbf{R}$ be open. By Lindelöf's lemma, we can express V as a countable union of open intervals $V = \bigcup_{n=1}^{\infty} I_n$. Then

$$f^{-1}(V) = f^{-1}\left(\bigcup_{n=1}^{\infty} I_n\right) = \bigcup_{n=1}^{\infty} f^{-1}(I_n)$$

is measurable.

- **5.** Prove the following statements:
- a) If $f: X \to [-\infty, \infty]$ and $g: x \to [-\infty, \infty]$ are measurable, then the sets

$${x : f(x) < g(x)}$$
 and ${x : f(x) = g(x)}$

are measurable.

^{*} Walter Rudin. 1987. Real and complex analysis, 3rd ed. McGraw-Hill, Inc., USA.

b) The set of points at which a sequence of measurable real-valued functions converges (to a finite limit) is measurable.

Proof. Observe that f(x) < g(x) if and only if there exists a rational number r such that f(x) < r < g(x). So

$$\{x: f(x) < g(x)\} = \bigcup_{r \in \mathbf{Q}} \left(\{x: f(x) < r\} \cap \{x: g(x) > r\} \right) = \bigcup_{r \in \mathbf{Q}} \left(f^{-1} \left([-\infty, r) \right) \cap g^{-1} \left((r, \infty] \right) \right)$$

is a countable union of measurable sets (since f and g are measurable functions). Then

$$\{x : f(x) = g(x)\} = \{x : f(x) < g(x)\}^c \cap \{x : g(x) < f(x)\}^c$$

is measurable as well, proving (a).

Let (f_n) be a sequence of real-valued measurable functions. Then (f_n) converges at a point x if and only if it is Cauchy at x, i.e. for any $\epsilon > 0$ there exists $N \in \mathbf{N}$ such that for all $m, n \geq N$, $|f_m(x) - f_n(x)| < \epsilon$. By the Archimedean property, we can replace ϵ with 1/k for some $k \in \mathbf{N}$. So the set of all points at which (f_n) converges can be written thus:

$$\bigcap_{k=1}^{\infty} \bigcup_{N=1}^{\infty} \bigcap_{m=1}^{\infty} \bigcap_{n=1}^{\infty} \left\{ x : |f_m(x) - f_n(x)| < 1/k \right\}$$

Set $g_{m,n} = f_m - f_n$; this is a measurable function. Hence the set

$$\left\{x: |f_m(x) - f_n(x)| < 1/k\right\} = \left\{x: |g_{m,n}(x)| < 1/k\right\} = g_{m,n}^{-1} \left((-1/k, 1/k)\right)$$

is measurable for every m, n, and k. We have thus proved that the set of all points at which (f_n) converges is a countable union of measurable sets.

6. Let X be an uncountable set, let \mathcal{M} be the collection of all sets $E \subseteq X$ such that either E or E^c is at most countable, and define $\mu(E) = 0$ in the first case, $\mu(E) = 1$ in the second. Prove that \mathcal{M} is a σ -algebra in X and that μ is a measure on \mathcal{M} . Describe the corresponding measurable functions and their integrals.

First we prove that \mathcal{M} is a σ -algebra and that μ is a measure.

Proof. Since \emptyset is countable, $X \in \mathcal{M}$. Then for any set $E \in \mathcal{M}$, either E or E^c is at most countable; in any case $E^c \in \mathcal{M}$. Lastly, let $\{E_n\}$ be a collection of sets in \mathcal{M} . If every set E_n is at most countable, then $\bigcup_{n=1}^{\infty} E_n$ is countable and thus in \mathcal{M} . Otherwise, there is some k for which E_k is uncountable. Then $E_k^c \in \mathcal{M}$ is at most countable and $(\bigcup_{n=1}^{\infty} E_n)^c = \bigcap_{n=1}^{\infty} E_n^c \subseteq E_k^c$ is countable, so $\bigcup_{n=1}^{\infty} E_n$ is in \mathcal{M} . This shows that \mathcal{M} is a σ -algebra.

It is clear that the range of μ is in $[0,\infty]$. To show that μ is countably additive, let $\{E_n\}$ be a disjoint collection of sets in \mathcal{M} . If every E_n is at most countable, then $\bigcup_{n=1}^{\infty} E_n$ is at most countable and $\mu(\bigcup_{n=1}^{\infty} E_n) = 0 = \sum_{n=1}^{\infty} \mu(E_n)$. Otherwise, there exists E_k such that E_k^c is countable and thus we have $\mu(E_k) = 1$ and $\mu(E_k^c) = 0$. Since the E_n are pairwise disjoint, $E_n \subseteq E_k^c$ for all $n \neq k$. So $\mu(E_n) = 0$ for all $n \neq k$. So $\mu(\bigcup_{n=1}^{\infty} E_n) = 1 = \sum_{n=1}^{\infty} \mu(E_n)$ and μ is a measure.

Now we claim that the measurable functions are those that are constant at all but countably many points.

Proof. It suffices to prove this for a real-valued function. Suppose $f: X \to [-\infty, \infty]$ is measurable. For any $a \in \mathbf{R}$, let $E_a = f^{-1}([-\infty, a))$. Note that for any a, either E_a is countable or E_a^c is countable. Note also that if $a \leq b$, then $E_a \subseteq E_b$. So let there is a constant c such that

$$k = \sup\{a : E_a \text{ is countable}\}.$$

This supremum is not $-\infty$, since if it were, then E_a^c would be countable for all $a \in \mathbf{R}$, and since $\bigcap_{n=0}^{\infty} E_{-n} = \emptyset$, $X = \bigcap_{n=0}^{\infty} E_{-n}^c$ is countable, a contradiction. By a similar argument, we know that the supremum is not

 ∞ . So $k \in \mathbf{R}$ and there exists a sequence (a_n) all of whose terms are less than k and whose limit is k. Hence $E_k = \bigcup_{n=1}^{\infty} E_{a_n}$ is countable. Now let (b_n) be a sequence that converges to k such that $b_n > k$ for all n. Then note that if f(x) > k, then $f(x) \in [b_n, \infty) = E_{b_n}^c$ for some n. So

$$\{x: f(x) \neq k\} = E_k \cup \{x: f(x) > k\} \subseteq E_k \cup \left(\bigcup_{n=0}^{\infty} E_{b_n}^c\right)$$

is countable and f equals k at all but countably many points.

Lastly, we show that if f is measurable and takes on the value k at all but countably many points, then $\int_E f d\mu = k$ for all uncountable $E \in \mathcal{M}$. (If E is countable then $\int_E f d\mu = 0$.)

Proof. Let $E \in \mathcal{M}$ be uncountable; so $\mu(E) = 1$. Let s be a simple measurable function such that $0 \le s \le f$. Suppose that s takes values α_i on the n disjoint sets A_i that cover X. We know that one of the α_i , call it α_j , is equal to a constant k_s and that A_i is at most countable for all $i \ne j$. So for all $i \ne j$, $A_i \cap E$ is countable and $A_j \cap E$ must be uncountable. Then we have

$$\int_{E} s \, d\mu = \sum_{i=1}^{n} \alpha_{i} \mu(A_{i} \cap E) = \alpha_{j} \mu(A_{j} \cap E) = k_{s} \cdot 1 = k_{s},$$

where $0 \le k_s \le k$. So we have

$$\int_{E} f \, d\mu = \sup \left\{ \int_{E} s \, d\mu : 0 \le s \le f \right\} = \sup \{ k_s : 0 \le s \le f \} = k,$$

which is what we had to show.

7. Suppose $f_n: X \to [0,\infty]$ is measurable for $n=1,2,3,\ldots, f_1 \geq f_2 \geq f_3 \geq \cdots \geq 0, f_n(x) \to f(x)$ as $n \to \infty$ for every $x \in X$, and $f_1 \in L^1(\mu)$. Prove that then

$$\lim_{n \to \infty} \int_X f_n \, d\mu = \int_X f \, d\mu$$

and show that this conclusion does not follow if the condition " $f_1 \in L^1(\mu)$ " is omitted.

Proof. Consider the sequence of functions $(f_1 - f_n)$. This sequence is nonnegative, nondecreasing and for any $x \in X$, $\lim_{n\to\infty} (f_1 - f_n)(x) = f_1(x) - f(x)$. So by the monotone convergence theorem,

$$= \lim_{n \to \infty} \int_X f_1 - f_n \, d\mu = \int_X f_1 - f \, d\mu.$$

Since the integrals of f_n are finite, we can apply Theorem 1.27 to get

$$\int_{X} f_1 d\mu - \lim_{n \to \infty} \int_{X} f_n d\mu = \int_{X} f_1 d\mu - \int_{X} f d\mu,$$

which gives us what we want after subtracting $\int_X f_1 d\mu$ (which is finite) and multiplying by -1.

The condition $f_1 \in L^1(\mu)$ is necessary. Let I = [0,1] and $f_n = \frac{1}{nx^2}$, which converges to the constant function 0. Then $\lim_{n\to\infty} \int_I f_n d\mu = +\infty$ but $\int_I 0 d\mu = 0$.