I. Limites

I.1. Limite en un point

E , F deux $\mathbb{K}\text{-espaces}$ vectoriels normés de dimension finie.

<u>définition</u>: $\mathcal{D} \subset E$, $f: \mathcal{D} \longrightarrow F$ $a \in \overline{\mathcal{D}}$ f admet une limite en a si:

$$\exists \ l \in F \quad \forall \ \varepsilon \in \mathbb{R}_+^* \quad \exists \ \alpha_{\varepsilon,a} \in \mathbb{R}_+^* \quad \forall \ x \in \mathcal{D} \quad \|x - a\|_E \le \alpha_{\varepsilon,a} \Longrightarrow \|f(x) - l\|_F \le \varepsilon$$

<u>théorème</u>: Si la limite existe , elle est unique , on écrit $l = \lim_{x \mapsto a} f(x)$ ou $l = \lim_{a} f(x)$

Remarque:
$$l = \lim_{x \mapsto a} f(x) \iff l = \lim_{h \mapsto 0} f(a+h)$$

 $\iff \lim_{x \mapsto a} (f(x) - l) = 0$

théorème : Toute fonction admettant une limite en un point est bornée au voisinage de ce point.

I.2. Limites et suites

théorème : caractérisation séquentielle de la limite : $f:\mathcal{D}\subset E\longrightarrow F$ $a\in\overline{\mathcal{D}}$

f admet pour limite $l \in F$ en a si et seulement si pour toute suite $(u_n)_n$ de points de \mathcal{D} convergeant vers a, la suite $(f(u_n))_n$ converge vers l

Remarque: sert principalement à démontrer qu'une fonction n'a pas de limite.

I.3. Extensions

a/ Cas E=IR. Limites à droite et à gauche

 \mathcal{I} intervalle de \mathbb{R} F \mathbb{K} -espace vectoriel normé de dimension finie.

 $f: \mathcal{I} \longrightarrow F$ admet une limite à droite en a si :

$$\exists \ l \in F \quad \forall \ \varepsilon \in \mathbb{R}_+^* \quad \exists \ \alpha_{\varepsilon,a} \in \mathbb{R}_+^* \quad \forall \ x \in \mathcal{I} \quad 0 \leq x - a \leq \alpha_{\varepsilon,a} \Longrightarrow \|f(x) - l\|_F \leq \varepsilon$$

Si la limite existe , elle est unique , on écrit $l = \lim_{x \mapsto a^+} f(x) = \lim_{x \mapsto a.x > a} f(x)$

 $f: \mathcal{I} \longrightarrow F$ admet une limite à gauche en a si :

$$\exists \ l \in F \quad \forall \ \varepsilon \in \mathbb{R}_+^* \quad \exists \ \alpha_{\varepsilon,a} \in \mathbb{R}_+^* \quad \forall \ x \in \mathcal{I} \quad 0 \leq a-x \leq \alpha_{\varepsilon,a} \Longrightarrow \|f(x)-l\|_F \leq \varepsilon$$

Si la limite existe , elle est unique , on écrit $l = \lim_{x \to a^-} f(x) = \lim_{x \to a.x \le a} f(x)$

<u>Propriété</u>: f admet une limite en a si et seulement si f admet en a une limite à droite et une limite à gauche égales.

b/ Limites infinies

 $E=\mathbb{R}$. F K-espace vectoriel normé de dimension finie.

 \mathcal{I} intervalle de \mathbb{R} tel que $\exists m \in \mathbb{R}$ $[m, +\infty[\subset \mathcal{I}]$

 $f: \mathcal{I} \longrightarrow F$ admet une limite en $+\infty$ si :

$$\exists \ l \in F \quad \forall \ \varepsilon \in \mathbb{R}_+^* \quad \exists \ \alpha_{\varepsilon,\infty} \in \mathbb{R}_+^* \quad \forall \ x \in \mathcal{I} \quad x \geq \alpha_{\epsilon,\infty} \Longrightarrow \|f(x) - l\|_F \leq \varepsilon$$

 \mathcal{I} intervalle de \mathbb{R} tel que $\exists m \in \mathbb{R}$ $]-\infty, m[\subset \mathcal{I}$

 $f: \mathcal{I} \longrightarrow \mathbb{R}$ admet une limite en $-\infty$ si :

$$\exists \ l \in F \quad \forall \ \varepsilon \in \mathbb{R}_+^* \quad \exists \ \alpha_{\varepsilon,\infty} \in \mathbb{R}_+^* \quad \forall \ x \in \mathcal{I} \quad x \le -\alpha_{\varepsilon,\infty} \Longrightarrow \|f(x) - l\|_F \le \varepsilon$$

<u>F=R.</u> E K-espace vectoriel normé de dimension finie. $\mathcal{D} \subset E$

 $f: \mathcal{D} \longrightarrow \mathbb{R}$ admet en $a \in \bar{\mathcal{D}}$ pour limite $+\infty$ si:

$$\forall A \in \mathbb{R}_+^* \quad \exists \ \alpha_{A,a} \in \mathbb{R}_+^* \quad \forall \ x \in \mathcal{D} \quad ||x - a||_E \le \alpha_{A,a} \Longrightarrow f(x) \ge A$$

 $f: \mathcal{D} \longrightarrow \mathbb{R}$ admet en $a \in \bar{\mathcal{D}}$ pour limite $-\infty$ si:

$$\forall A \in \mathbb{R}_+^* \quad \exists \ \alpha_{A,a} \in \mathbb{R}_+^* \quad \forall \ x \in \mathcal{D} \quad \|x - a\|_E \le \alpha_{A,a} \Longrightarrow f(x) \le -A$$

$E = F = \mathbb{R}$.

 \mathcal{I} intervalle de \mathbb{R} tel que $\exists m \in \mathbb{R}$ $[m, +\infty[\subset \mathcal{I} \text{ ou }] -\infty, m[\subset \mathcal{I}$

 $f: \mathcal{I} \longrightarrow \mathbb{R}$ admet en $+\infty$ pour limite $+\infty$ si :

$$\forall A \in \mathbb{R}_+^* \quad \exists \ \alpha_{A,\infty} \in \mathbb{R}_+^* \quad \forall \ x \in \mathcal{I} \quad x \ge \alpha_{A,\infty} \Longrightarrow f(x) \ge A$$

 $f:\,\mathcal{I}{\longrightarrow}\,\mathbb{R}$ admet en $+\infty$ pour limite $-\infty$ si :

$$\forall A \in \mathbb{R}_{+}^{*} \quad \exists \ \alpha_{A,\infty} \in \mathbb{R}_{+}^{*} \quad \forall \ x \in \mathcal{I} \quad x \geq \alpha_{A,\infty} \Longrightarrow f(x) \leq -A$$

 $f:\,\mathcal{I}{\longrightarrow}\,\mathbbm{R}$ admet en $-\infty$ pour limite $+\infty$ si :

$$\forall A \in \mathbb{R}_+^* \quad \exists \ \alpha_{A,\infty} \in \mathbb{R}_+^* \quad \forall \ x \in \mathcal{I} \quad x \leq -\alpha_{A,\infty} \Longrightarrow f(x) \geq A$$

 $f: \mathcal{I} \longrightarrow \mathbb{R}$ admet en $-\infty$ pour limite $-\infty$ si :

$$\forall A \in \mathbb{R}_{+}^{*} \quad \exists \alpha_{A,\infty} \in \mathbb{R}_{+}^{*} \quad \forall x \in \mathcal{I} \quad x \leq -\alpha_{A,\infty} \Longrightarrow f(x) \leq -A$$

Remarque : le théorème de caractérisation séquentielle de la limite reste vrai si $a=+\infty$ ou $-\infty$ et si $l=+\infty$ ou $-\infty$

I.4. Propriétés des limites

théorème : lien avec une base de $F: f: \mathcal{D} \subset E \longrightarrow F$ avec $(e_1; \dots, e_p)$ base de F

$$x \longmapsto \sum_{k=1}^{p} f_k(x)e_k$$
 où $f_k: \mathcal{D} \longrightarrow \mathbb{K}$

$$a \in \bar{\mathcal{D}}$$
 alors $\lim_{x \to a} f(x) = l \iff \forall \ k \in [1, \cdots, p]$ $\lim_{x \to a} f_k(x) = l_k$ avec $l = \sum_{k=1}^p l_k e_k$

théorème de composition des limites : E, F, G trois \mathbb{K} -espaces vectoriels de dimension finie, $\mathcal{D} \subset E$, $\mathcal{D}' \subset F$, $f: \mathcal{D} \longrightarrow F$ $g: \mathcal{D}' \longrightarrow G$ avec $f(\mathcal{D}) \subset \mathcal{D}'$, $\lim_{x \mapsto a} f(x) = l$ et $\lim_{x \mapsto l} g(x) = l'$ alors $\lim_{x \mapsto a} (g \circ f)(x) = l'$

Autres propriétés:

 $\underline{\text{th\'eor\`eme: produit par une application scalaire:}} \ \mathcal{D} \subset E \ , \ f: \mathcal{D} \longrightarrow F \quad \ g: \mathcal{D} \longrightarrow \mathbb{K}$

avec $\lim_{x \to a} f(x) = l$ et $\lim_{x \to l} g(x) = l$ ' alors $\lim_{x \to a} (gf)(x) = ll'$

 $\underline{\textbf{th\'eor\`eme: produit par une application born\'ee:}} \; \mathcal{D} \subset E \; , \; f: \; \mathcal{D} \longrightarrow F \quad \; g: \; \mathcal{D} \longrightarrow \mathbb{K} \quad \text{avec}$

 $\lim_{x \to a} f(x) = 0_F$ et g bornée au voisinage de a (respectivement f bornée au voisinage de a et $\lim_{x \to a} g(x) = 0$)

alors $\lim_{x \to a} (gf)(x) = 0_F$

<u>théorème : limite et norme :</u> $\mathcal{D} \subset E$, $f: \mathcal{D} \longrightarrow F$ avec $\lim_{x \mapsto a} f(x) = l$

alors $\lim_{x \to a} ||f(x)||_F = ||l||_F$

théorème : quotient par une application scalaire : $\mathcal{D} \subset E$, $f:\mathcal{D} \longrightarrow F$ $g:\mathcal{D} \longrightarrow \mathbb{K}$

 $\text{avec } \lim_{x \mapsto a} f(x) = l \quad \text{et } \lim_{x \mapsto a} g(x) = l' \quad \text{ avec } l' \neq 0$

alors $\frac{f}{g}$ est définie dans un voisinage de a et $\lim_{x\mapsto a}\left(\frac{f}{g}\right)(x)=\frac{l}{l'}$

Cas où $F=\mathbb{R}$:

théorème de compatibilité avec la relation d'ordre :

 $f,g:\mathcal{D}\subset E\longrightarrow \mathbb{R}\quad \text{avec }\lim_{x\mapsto a}\,f(x)=l\quad \lim_{x\mapsto a}\,g(x)=l'$

alors si $\forall x \in \mathcal{I}$ f(x) < g(x) (respectivement $f(x) \leq g(x)$), on a $l \leq l'$

théorème des gendarmes : $f,g,h:\mathcal{D}\subset E\longrightarrow \mathbb{R}$ avec $\forall\;x\in\mathcal{I}$ $f(x)\leq g(x)\leq h(x)$

on suppose $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = l$ alors $\lim_{x \to a} g(x) = l$

II. Relations de comparaison

E, F deux \mathbb{K} -espaces vectoriels normés de dimension finie, $\mathcal{D} \subset E$, $f: \mathcal{D} \longrightarrow F$ $\varphi: \mathcal{D} \longrightarrow \mathbb{K}$ $a \in \bar{\mathcal{D}}$

II.1. Relation de domination

f est dominée par φ au voisinage de a si

 $\exists M \in \mathbb{R}_+ \quad \exists \alpha \in \mathbb{R}_+^* \quad \forall x \in \mathcal{D} \cap \mathcal{B}(a,\alpha) \setminus \{a\} \quad \|f(x)\|_F \leq M|\varphi(x)|$

On écrit f=O(g) en a

II.2. Relation de négligeabilité

f est négligeable devant φ au voisinage de a si

 $\forall \ \varepsilon \in \mathbb{R}_+^* \quad \exists \ \alpha_\varepsilon \in \mathbb{R}_+^* \quad \forall \ x \in \mathcal{D} \cap \mathcal{B}(a,\alpha) \setminus \{a\} \quad \|f(x)\|_F \le \varepsilon |\varphi(x)|$

On écrit f=o(g) en a

Remarque: Si f = o(g) en a, alors f = O(g) en a

II.3. Relation d'équivalence (que pour des fonctions scalaires)

 $f, g: \mathcal{D} \longrightarrow \mathbb{K} \qquad a \in \bar{\mathcal{D}}$

PC Lycee Pasteur 2023 2024

f est équivalente à g au voisinage de a si f-g=o(g) en a on écrit $f\sim_a g$

Si g n'est pas la fonction nulle, $f \sim_a g \iff \lim_{x \mapsto a} \frac{f}{g} = 1$

Propriétés:

$$1/f \sim_a g \text{ et } \lim_{x \to a} g(x) = l \text{ alors } \lim_{x \to a} f(x) = l$$

$$2/\ f_1 \sim_a g_1$$
 et $f_2 \sim_a g_2$ alors $f_1 f_2 \sim_a g_1 g_2$

$$3/f \sim_a g \text{ alors } \frac{1}{f} \sim_a \frac{1}{g}$$

$$4/e^f \sim_a e^g \iff \lim_{x \mapsto a} (f-g)(x) = 0$$

5/ Pas de somme d'équivalents

 $6/ \operatorname{Si} f = g + h$ en a avec h = o(g) en a alors $f \sim_a g$

 $7/f \sim_a g \quad \alpha \in \mathbb{R}$ tel que f^{α} et g^{α} soient définies alors $f^{\alpha} \sim_a g^{\alpha}$

8/ Si f admet en a un développement limité non réduit à 0, alors f est équivalente en a au premier terme non nul du développement limité.

III. Continuité

III.1. Définitions

E, F deux \mathbb{K} -espaces vectoriels de dimension finie, $f: \mathcal{D} \subset E \longrightarrow F$ est continue en $a \in \mathcal{D}$ si

$$\lim_{x \to a} f(x) = f(a)$$

f est continue sur \mathcal{D} si f est continue en tout point de \mathcal{D} .

III.2. Propriétés

1. $f: \mathcal{D} \subset E \longrightarrow F$

f est continue en $a \in \mathcal{D}$ si et seulement si pour toute suite $(u_n)_n$ de points de \mathcal{D} qui converge vers a, alors $(f(u_n)_n)$ converge vers f(a).

2. $f: \mathcal{D} \subset E \longrightarrow F$ (e_1, \cdots, e_p) base de F

$$x \longmapsto \sum_{k=1}^{p} f_k(x) e_k \quad \text{avec } f_k : \mathcal{D} \longrightarrow \mathbb{K}$$

f est continue en $a \in \mathcal{D}$ (respectivement sur \mathcal{D}) $\iff \forall k \in [1, \dots, p]$ f_k est continue en a (respectivement sur \mathcal{D})

3. $f: \mathcal{D} \subset E \longrightarrow F, g: \mathcal{D}' \subset F \longrightarrow G$ avec $f(\mathcal{D}) \subset \mathcal{D}'$, alors

si f continue en $a \in \mathcal{D}$ (respectivement sur \mathcal{D}) et g continue en f(a) (respectivement sur \mathcal{D}), alors gof est continue en a (respectivement sur \mathcal{D})

4. $f, g: \mathcal{D} \subset E \longrightarrow F$

si f et g continues en $a \in \mathcal{D}$ (respectivement sur \mathcal{D}) et λ dans \mathbb{K} , alors $\lambda f + g$ est continue en a (respectivement sur \mathcal{D})

5. $f: \mathcal{D} \subset E \longrightarrow F \text{ et } q: \mathcal{D} \subset E \longrightarrow \mathbb{K}$

si f et g continues en $a \in \mathcal{D}$ (respectivement sur \mathcal{D}), alors fg est continue en a (respectivement sur \mathcal{D})

PC Lycee Pasteur 2023 2024

6. $f: \mathcal{D} \subset E \longrightarrow F \text{ et } g: \mathcal{D} \subset E \longrightarrow \mathbb{K}$

si f et g continues en $a \in \mathcal{D}$ et $g(a) \neq 0$ (respectivement sur \mathcal{D} et g ne s'annule pas), alors $\frac{f}{g}$ est continue en a (respectivement sur \mathcal{D})

Exemple: Une fonction lipschitzienne est continue.

III.3. Restriction. Prolongement:

Restriction: $f: \mathcal{D} \subset E \longrightarrow F$ continue sur \mathcal{D} , soit $A \subset \mathcal{D}$, alors la restriction de f à A est continue sur A

Prolongement par continuité : $f: \mathcal{D} \subset E \longrightarrow F$ continue sur \mathcal{D} , alors $\tilde{f}: \mathcal{D}' \longrightarrow F$ est un prolongement par continuité de f si \tilde{f} est continue sur \mathcal{D}' et $\tilde{f}_{\mathcal{D}} = f$

III.4. Continuité sur un fermé borné:

théorème des bornes atteintes admis : $f: \mathcal{D} \subset E \longrightarrow \mathbb{R}$, avec \mathcal{D} fermé borné de E et f continue sur \mathcal{D} , alors f est bornée et atteint ses bornes (ie $\exists (c,d) \in \mathcal{D}^2 \quad f(c) = \min_{x \in \mathcal{D}} f(x) \qquad f(d) = \max_{x \in \mathcal{D}} f(x)$)

III.5. Lien avec les ouverts et les fermés :

<u>théorème</u>: $f: \mathcal{D} \subset E \longrightarrow \mathbb{R}$, f continue sur \mathcal{D} , alors si $a \in \mathbb{R}$

 $\{x \in \mathcal{D} ; f(x) > a\}$ est un ouvert de E

 $\{x \in \mathcal{D} : f(x) \ge a\}$ est un fermé de E

 $\{x \in \mathcal{D} ; f(x) = a\}$ est un fermé de E

III.6. Propriétés des fonctions à valeurs réelles

 $\mathcal I$ intervalle de $\mathbb R$

1. $f: \mathcal{I} \longrightarrow \mathbb{R}$ continue en a (respectivement sur \mathcal{I}) alors f^+ , f^- sont continues en a (respectivement sur \mathcal{I}) où $f^+(x) = \sup(f(x), -f(x))$ $f^-(x) = \inf(f(x), -f(x))$

car
$$f^+ = \frac{f + |f|}{2}$$
 $f^- = \frac{|f| - f}{2}$

2. $f, g: \mathcal{I} \longrightarrow \mathbb{R}$ continues en a (respectivement sur \mathcal{I}) alors $\sup(f, g)$ et $\inf(f, g)$ sont continues en a (respectivement sur \mathcal{I})

$$\operatorname{car}\, \sup(f,g) = \frac{f+g+|f-g|}{2} \qquad \inf(f,g) = \frac{f+g-|f-g|}{2}$$

3. théorème de continuité sur un segment : $f:[a,b] \longrightarrow \mathbb{R}$ continue sur le segment [a,b], alors f est bornée et atteint ses bornes $(m=\inf_{x\in[a,b]}f(x))$ et $M=\sup_{x\in[a,b]}f(x)$ existent et $\exists (x_1,x_2)\in[a,b]^2$ $m=f(x_1)$ $M=f(x_2)$

4. théorème: $f: \mathcal{I} \longrightarrow \mathbb{R}$ continue sur \mathcal{I} telle que $\exists (a,b) \in \mathcal{I}^2$ f(a)f(b) < 0 alors $\exists c \in \mathcal{I}$ f(c) = 0

<u>5. théorème des valeurs intermédiaires</u>: $f: \mathcal{I} \longrightarrow \mathbb{R}$ f continue sur \mathcal{I} alors $f(\mathcal{I})$ est un intervalle

6. théorème de bijection monotone : $f: \mathcal{I} \longrightarrow \mathbb{R}$ continue sur \mathcal{I} alors

f est une bijection de \mathcal{I} sur $f(\mathcal{I})$ si et seulement si f est strictement monotone sur \mathcal{I}

7. théorème : $f: \mathcal{I} \longrightarrow f(\mathcal{I})$ continue strictement monotone, alors f^{-1} est continue sur $f(\mathcal{I})$ et strictement monotone de même sens de monotonie que f

IV. Continuité des applications linéaires

IV.1. Théorème

E, F, deux K-espaces vectoriels normés, $f \in \mathcal{L}(E, F)$, on a équivalence entre :

- (i) f continue sur E
- (ii) f continue en 0_E
- (iii) f bornée sur la boule unité fermée
- $(iv) \exists k \in \mathbb{R}_+ \quad \forall x \in E \quad ||f(x)||_F \le k||x||_E$
- (v) f lipschitzienne

<u>théorème</u>: E \mathbb{K} -espace vectoriel normé de dimension finie, F \mathbb{K} -espace vectoriel normé, $f \in \mathcal{L}(E, F)$, alors f continue sur E.

IV.2. Applications multilinéaires

<u>théorème</u>: E, F, G trois \mathbb{K} -espaces vectoriels normés tous trois de dimension finie, $B: E \times F \longrightarrow G$ bilinéaire, alors B est continue sur $E \times F$ et $\exists k \in \mathbb{R}_+ \quad \forall \ x \in E \quad \forall \ y \in F \quad ||B(x,y)||_G \le k||x||_E||y||_F$

<u>Généralisation</u>: E_1, \dots, E_n, F n+1 K-espaces vectoriels normés tous de dimension finie,

 $\varphi: E_1 \times \cdots \times E_n \longrightarrow F$ n-linéaire, alors φ est continue sur $E_1 \times \cdots \times E_n$ et

$$\exists k \in \mathbb{R}_+ \quad \forall (x_1, \dots, x_n) \in E_1 \times \dots \times E_n \quad \|\varphi(x_1, \dots, x_n)\|_F \le k \prod_{i=1}^n \|x_i\|_{E_i}$$

Exemples: 1. E espace vectoriel euclidien $E \times E \longrightarrow \mathbb{R}$ est bilinéaire donc continue sur E^2 $(x,y) \longmapsto \langle x,y \rangle$

- 2. E Kespace vectoriel de dimension n , $\mathcal B$ base de E $det_{\mathcal B}$ est n-linéaire donc continue
- 3. $\mathbb{K}^n \longrightarrow \mathbb{K}$ est une forme linéaire donc continue

$$(x_1,..,x_n) \longmapsto \sum_{k=1}^n a_k x_k$$

et par produit de telles fonctions $(x_1,..,x_n) \longmapsto P(x_1,..,x_n)$ polynôme en $(x_1,...,x_n)$ est continue sur \mathbb{K}^n

4. $\mathcal{M}_{n,p}(\mathbb{K}) \times \mathcal{M}_{pq}(\mathbb{K}) \longrightarrow \mathcal{M}_{nq}(\mathbb{K})$ est bilinéaire donc continue sur $\mathcal{M}_{n,p}(\mathbb{K}) \times \mathcal{M}_{pq}(\mathbb{K})$ $(A,B) \longmapsto AB$