Bachelorarbeit

Thema:

Merkmalserkennung von Gebäuden und Grundstücken in Satellitenbildern mittels Deeplearning

Vorgelegt von: Sebastian Mischke

Dorfstraße 8, 01257 Dresden geb. am 09.11.1995 in Dresden Bibliotheksnummer: 37612

Studiengang: Medieninformatik

Externer Betreuer: Ann-Christin Storms

New Web Technology GmbH

Betreuender Prüfer: Prof. Dr. Marco Block-Berlitz

Zweitgutachter: ??

Abgabetermin:

Inhaltsverzeichnis

1	Einleitung und Motivation	1
2	Konkretisierung der Aufgabenstellung	1
3	Satellitenbilder 3.1 Google Static Maps API	1 1 1
4	Erzeugung der Trainingsdaten	1
5	Erstellen eines Convolutional Neural Network	
6	Ergebnisvisualisierung	1
7	Zusammenfassung und Ausblick	1

 ${\it Verzeichnis} \ {\it verwendeter} \ {\it Abk\"{u}rzungen}$

Verzeichnis verwendeter Begriffe und deren Bedeutung (Glossar)

A 1 1 •1 1	
Abbilding	gsverzeichnis
IDDIIGUII	50 101 2010111115

1 Einleitung und Motivation 4

- Bildanalyse mittels Deeplearning
- Datenanreicherung
- Marketing

2 Konkretisierung der Aufgabenstellung

- Vorgabe der Daten von NWT
- Liste mit zu erkennenden Merkmalen
- Entscheidung, welche Merkmale machbar sind
 - zeitlich
 - logisch
- Programmiersprache: Python

3 Satellitenbilder

- Satellitenbilder / Flugzeugbilder
- Haus / Grundstück
- Probleme unterschiedlicher APIs
- Unterschiedliche Centermodes
 - -XY
 - Adresse
 - Tiles

3.1 Google Static Maps API

- Bilder werden auf Bedarf erzeugt und heruntergeladen
- Unterschied zwischen XY und Adresse
- API-Key und Limitierungen

3.2 Bing Maps

- Bereits heruntergeladen mit zugehöriger CSV-Datei
- Tiles

4 Erzeugung der Trainingsdaten

- Probleme:
 - Aufwändig
 - Vorwissen notwendig
 - Nicht in Bild erkennbar
- Separate Anwendung
- Output:
 - CSV-Datei
 - SQLite

5 Erstellen eines Convolutional Neural Network

- Funktionsweise eines CNN
- Keras
- Merge Neural Networks Splitten von Image und Meta Daten
- Layer-Typen
- Aufbau des Netzes

6 Ergebnisvisualisierung

- Plot Point (siehe Abbildung 1)
- Liste mit Adressen für bestimmtes Merkmal

7 Zusammenfassung und Ausblick

- Verbesserung der API
- Anwendung zum Suchen bestimmter Merkmale

Abbildung 1: Point Plot Beispiel

Literatur