

ARCHIVE

Association of life expectancy with other explanatory variables for different countries from the GapMinder dataset

A **correlation analysis** was conducted on the GapMinder dataset to understand the association of 14 explanatory variables (including income per person, alcohol consumption, armed forces rate, breast cancer per 100th, co2 emissions, female employment rate, hiv rate, internet use rate, oil per person, polity score, relectric per person, suicide per 100th, employment rate, urbanization rate) with the variable *life expectancy*.

After removing the observations with missing values the **pearson correlation coefficient** is computed. As can be seen from the below results, the variable *internetuserate* has a very strong positive correlation with the variable *life expectancy*. The variable *incomeperperson* also has a strong positive correlation with *life expectancy*. The variable *hivrate* is the variable most negatively associated with the variable life expectancy. The variable *armedforcesrate* has the least correlation with life expectancy. Also, the corresponding p-values (with the null hypothesis that the variables are not correlated) are reported. All the variables except *armedforcesrate* and *co2emissions* have **statistically significant correlations** at **5% level of significance**.

variables	pearson-r	p-value
hivrate	-0.542506	1.566318e-05
suicideper100th	-0.218335	1.059663e-01
armedforcesrate	0.023648	8.626540e-01
co2emissions	0.103990	4.456349e-01
employrate	0.210334	1.197189e-01
alcconsumption	0.218541	1.056298e-01
femaleemployrate	0.268129	4.571763e-02
polityscore	0.344843	9.248381e-03
oilperperson	0.422911	1.165352e-03
relectricperperson	0.551581	1.052532e-05
urbanrate	0.552084	1.029253e-05
breastcancerper100th	0.580247	2.769328e-06
incomeperperson	0.732452	1.400123e-10
internetuserate	0.769160	4.381504e-12

Segmenting
different
countries in the
GapMinder
dataset with
KMeans
Clustering using
Python Scikit
Learn and
Pandas

A k-means cluster analysis was conducted on the GapMinder dataset to identify underlying subgroups of countries based on their similarity of responses on 14 variables that represent characteristics that could have an impact on life expectancy. Clustering variables included the following variables income per person, alcohol consumption, armed forces rate, breast cancer per 100th, co2 emissions, female employment rate, hiv rate, internet use rate, oil per person, polity score, relectric per person, suicide per 100th, employment rate, urbanization rate. The variable life expectancy was not used in clustering, it was used later as ground truth, to verify whether the clusters obtained were significantly different by comparing mean life expectancy across the clusters (with ANOVA and Tukey HSD tests). All clustering variables were standardized (z-score normalized) to have a mean of 0 and a standard deviation of 1.

After removing the obeservations with missing values in the variable life expectancy, the data were first imputed (all the missing values in other variables were replaced by the corresponding median values) and then randomly split into a training set that included 70% of the observations (N=133) and a test set that included 30% of the observations (N=58).

A series of **k-means cluster** analyses were conducted on the training data specifying k=1-9 clusters, using Euclidean distance. The variance in the clustering variables that was accounted for by the clusters (r-square) was plotted for each of the nine cluster solutions in an elbow curve to provide guidance for choosing the number of clusters to interpret. The elbow curve was inconclusive, suggesting that the

Finding the most important predictors for life expectancy and making predictions with the GapMinder dataset with Random Forest and ExtraTree Forest Ensemble Classifiers using Python Scikit Learn and Pandas

sandipanumbc:

Finding patterns (decision rules) and predicting the life expectancy from the GapMinder dataset with Decision Tree (CART) with R

Decision tree analysis was performed to test nonlinear relationships among a set of explanatory variables and a binary, categorical response variable. All possible separations (categorical) or cut points (quantitative) are tested. For the present analyses, the entropy "goodness of split" criterion was used to grow the tree and a cost complexity algorithm was used for pruning the full tree into a final subtree.

The following explanatory variables were included as possible contributors to a classification tree model evaluating life expectancy (my response variable, which is a continuous numeric variable (the histogram below shows the distribution of life expectancy, which I used to decide the cut point) but was binned into 2 categories: if life expectancy > 70, then life expectancy = High otherwise Low), income per person, alcohol consumption, armed forces rate, breast cancer per 100th, co2 emissions, female employment rate, hiv rate, internet use rate, oil per person, polity score, relectric per person, suicide per 100th, employment rate, urbanization rate.

The following shows the decision tree model learnt using CART algorithm in R:

df\$lifeexpectancy.factor <-

Testing associa betwee expectathe alcoconsum differer countricthe Gap dataset Chi-squ Post-howith Py Scikit Le

We are interested assoication betwee expectancy

and alcohol consi Gapminder datas variables are nun converted both of categorical variat around the media examining the as: expectancy (cate alcohol consumpt explanatory), a cl independence rev countries with low rates ((0-6] litres) have higher life ex them with (0-70] y those with high al rates (63% of the years), $\chi 2=18.61$ p-value=1.602279

The df or degree is the number of I explanatory varia since the alcohol levels (df 2-1=1).

	lifeexpectar
count	176.000000
mean	69.143682
std	9.828267
min	47.794000
25%	62.646000
50%	72.558500
75%	75.985000
max	83.394000

2, 3, 4 and 8-cluster solutions might be interpreted. The results below are for an interpretation of the 3-cluster solution.

Canonical discriminant analyses was used to reduce the 14 clustering variable down a few variables that accounted for most of the variance in the clustering variables. A scatterplot of the first two canonical variables by cluster (as shown below in the next figure) indicated that the observations in clusters were packed with relatively low within-cluster variance, and did not overlap much with the other clusters. Cluster 2 was generally distinct and densely packed and the observations had low spread suggesting low withincluster variance. Observations in cluster 0 were spread out more than the other clusters, showing high withincluster variance. The results of this plot suggest that the best cluster solution may have 3 or more than 3 clusters, so it will be especially important to also evaluate the cluster solutions with more than 3 clusters.

Clusters 0, 1 and 2 contained 28, 42, 63 observations respectively. The means on the clustering variables showed that, compared to the other clusters, countries in cluster 0 had high levels on most of the clustering variables. They had a relatively high income per person, alcohol consumption, breastcancer percentage, co2 emissions, internet use rate, oil per person, urban rate, suicide percentage, but moderate levels of armed forces rate, employment rate and female employment rate. They also appeared to have the lowest levels of hiv rate. Similarly, we can describe the other 2 clusters by the means of the clustering variables as shown below.

variables

Ensemble learning using Random
Forest and ExtraTree Forest were
performed to evaluate the
importance of a series of
explanatory variables in predicting a
binary, categorical response
variable with the GamMinder
dataset.

The following explanatory variables were included as possible contributors to a classification tree model evaluating life expectancy (my response variable, which is a continuous numeric variable but was binned into 2 categories: (0-60] and (60-100]). income per person, alcohol consumption, armed forces rate, breast cancer per 100th, co2 emissions, female employment rate, hiv rate, internet use rate, oil per person, polity score, relectric per person, suicide per 100th, employment rate, urbanization rate.

The following figure shows relations in between some of the predictors used and some exploratory visualizations:

After removal of the NA values in the life expectancy variable, the predictor variables in the original dataset were imputed, the missing values in the numeric columns were replaced with median values. Then the dataset was divided (by taking a random sample of size 60% of the entire dataset) into training dataset with 114 data tuples and test dataset with 77 data tuples. Then the Random Forest and Extra Tree classifiers were trained on the trainign dataset and the models were used to predict on the test dataset. Ans ensemble of 25 decision trees were used to build the random forest predictor and gini index measure was used for the best feature selection at each round as.factor(ifelse(df\$lifeexpectancy > 70, 'High', 'Low'))
tr <- rpart(lifeexpectancy.factor~.lifeexpectancy, df)

The original dataset contained 191 data tuples (each row representing a country) after removal of the NA values, which was then divided into training (by taking a random sample of size 60% of the entire dataset) and test dataset (the rest part).

As can be seen from above 3 of the predictors were used by the decision tree for classification of the life expectancy binary class: income per person, internet user rate and hiv rate.

The income per person score was the first variable to separate the training sample into two subgroups. If a country has income per person more than 1256 (per capita in constant 2000 US \$) and the internet user rate is more than 26%, the country is more likely (97% of the time) to have High life expectancy. On the other hand, if a country has income per person less than 1256, it is likely to have Low life expectancy (in 95% of the cases present in the leaf node, where that rightmost leaf node itself contained 33% of the data tuples).

Another rule (pattern) found was: if the income per person for a country is higher than 1256 and the internet user rate is below 26% and the hiv rate is below 1.6% then also the country is likely to have High life expectancy.

The model learnt from the training dataset was used to predict the life expectancy for the countries in the test dataset. The confusion matrix (contingency table) on the test dataset is shown below, which shows that we obtained ~88.3% accuracy on the held-out unseen dataset.

lifeexpectancy alconsumption	(0, 70]	(70, 100]
(0, 6]	53	37
(6, 25]	22	64

chi-square value, p value, expected cou (18.61177373551309, 1.6022793011516588e [36.64772727, 49.35227273]]))

0.786667 0.366337 0.293333 0.633663

contingency table of observe
ct1=pandas.crosstab(df2['alcco
print (ct1)

chi-square
print ('chi-square value
cs1= scipy.stats.chi2_co
print (cs1)

Model Interpreta Chi-Square Test

Now in order to u association better numeric explanat consumption into the quartiles) and test. The Chi Squ independence ag alcohol consumpl ordered categorie expectancy (bina variable) were siç x-square=21.534 p-value=8.151870

lifeexpectancy alcconsumption	(0, 70]	(70, 100]
(0, 2,51	25	19
(10, 25]	8	34
(2.5, 6)	28	18
(6, 10]	14	30
lifeexpectancy alconsumption	(0, 70]	(70, 100]
(0, 2.5]	0.333333	0.188119
(10, 25]	0.106667	0.336634
(2.5, 6]	0.373333	0.178218

(21.534561903395307, 8.151870416676 [17.89772727, 24.10227273] [19.60227273, 26.39772727] [18.75 , 25.25]

> As we can see fn the p-value < 0.0! the null hypothesi and) conclude the variableslife expe consumption are

- 0. incomeperperson
- 1. alcconsumption
- 2. armedforcesrate
- 3. breastcancerper100th
- 4. co2emissions
- 5. femaleemployrate
- 6. hivrate
- 7. internetuserate
- 8. oilperperson
- 9. polityscore
- 10. relectricperperson
- 11. suicideper100th
- 12. employrate
- 13. urbanrate

Clustering variable means by cluster

variables

1 2
3 4
cluster

 0
 1.538475
 0.760138

 0.011147
 1.306950
 0.569876

 1
 -0.573720
 -0.577666

 -0.418215
 -0.676802
 -0.092707

 2
 -0.363449
 -0.029717

 0.193216
 -0.152813
 -0.146593

6 7 8 9 10 11 cluster

0 0.172466 -0.340029 1.486122 1.002050 0.491119 1.248254 0.1896

1 0.698932 0.261283 -0.919388 -0.225554 -0.479426 -0.435333 0.0319

2 -0.581180 -0.025354 -0.130583 -0.247051 0.002781

-0.311070 -0.3972

12

13 cluster

0 0.062857 1.101800
 1 0.795325 -0.924312
 2 -0.585185 0.165104

In order to externally validate the clusters, an Analysis of Variance (ANOVA) was conducted to test for significant differences between the clusters on life expectancy. A tukey test was used for post hoc comparisons between the clusters. Results indicated significant differences between the clusters on life expectancy (F(2, 130)=58.08, p<.00000001). The Tukey post hoc comparisons showed significant differences (rejecting the null hypothesis of no

for the decision trees

As can be seen from the 3 most important predictors selected by the ExtraTree Forest model were: hiv rate, income per person and internet user rate.

The model learnt from the training dataset was used to predict the life expectancy for the countries in the test dataset. The confusion matrix (contingency table) on the test dataset is shown below, which shows that we obtained ~90.9% accuracy on the held-out unseen dataset.

Part of the python code attached:

sandipanumbo

1 note

Predicted Using netway Analysis of 25 Variance with R and Python to find the Association between quantitative response variable Life expectancy and the converted categorical explanatory variable Income per person / Alcohol consumption in the GapMinder **Dataset**

Model Interpretation for ANOVA:

When examining the association between the life expectancy in number of years (quantitative response) and the variable income per person (which is the GDP per capita in constant 2000 US\$) categorized into 2 ordered categories (if income per person is in between (0, 2385], it's low, otherwise it's high, where 2385 is approximately the median value of the variable, splitting around which we got categorical explanatory variable) for different countries from the Gapminder dataset, a (one-way) Analysis of Variance (ANOVA) revealed that among the countries with high (2385-52302] income per person, reported to have significantly more life expectancy (Mean=75.74 s.d. ±6.08) compared to the countries with low (0-2385] income per person (Mean=63.57, s.d. ±8.86), $F(1, 174)=113.0, p = 1.8 \times 10^{-20}$.

Note that the degrees of freedom that I report in parentheses) following 'F' can be found in the OLS table as the DF model and DF residuals. In this example 113.0 is the actual F value from the OLS table and we commonly report a very very small p value as simply = 1.8 x 10^(-20).

Now, we need to comparisons to to between different consumption. The levels, so we nee square tests for e alcohol consumpl expectancy, with correction on p-vi 0.05/6=0.08333 a significance).

Post hoc compar expectancy by particles and consumption cate higher life expects the countries with alcohol consumpt with (high) alcohol between (10,25] I (statistically) sign expectancy (with value≈0.00073<0 countries with (lor consumption rate

alcconsumption2.5v25	(0, 70]	(70, 100
(0, 2.5]	25	1
(10, 25]	8	3
lifeexpectancy alcconsumption2.5v25	(0, 70]	(70, 16
(θ, 2.5]	0.757576	0.3584
(18 25]		0.6419

chi-square value, p value, expected co (11.415351134476344, 0.000728397289290

In comparison, por of life expectancy expectancy is state among those cour consumptions (0, p-value greater the in the following re

chi-square value, p value, expected (0.031042583339548117, 0.86014541859) [27.08888889, 18.91111111]]

difference) between all of the 3 clusters on *life expectancy*. Countries in cluster 0 had the highest life expectancy (mean=79.32, sd=2.85), and cluster 1 had the lowest life expectancy (mean=61.6, sd=8.38).

OLS Regression Results								
	Dep. Variable: lifeexpectancy			R-squared: Adj. R-squared:			0.472 0.464	
	Model: OLS Method: Least Squares						9.464 58.08	
Date:				Prob (F-statistic):		١٠	9.48e-19	
Time:				Log-Lik		,.	-444	
	bservations:		133	AIC:			894	
	siduals:			BIC:			90	2.9
Df Mo			. 2					
	iance Type:	nc	onrobust					
		coef	std err		t P>	t [95.0% Cont	f. Int.]
Inter		79.3245	1.304	60.82	8 0.0	99	76.744	81.905
C(clu	ster)[T.1]	79.3245 -17.7251 -7.8677	1.684	-10.52	8 0.0	99	-21.056	-14.394
	ster)[T.2]	-7.8677	1.567	-5.01	9.0	99		-4.767
Omnib	us: Omnibus):			Durbin-I	Bera (JB):		2.0	204
Skew:	Juli 2002).			Prob(JB			2.38e	
Kurto	sis:			Cond. N				.67
means	for lifeexpe	ctancy by clus	ter s				pectancy by	cluster
cluste	lifeexpect	tancy		luster 11	feexpectan	cy .		
e	79.3	24464			2.8479	96		
1	61.59		1		8.3823	71		
2	71.49	56794	2		7.0612	98		
85								
	duster						_	
80	1			_				
- 00	2							
_								
75	T						+	
							- ;	
_ 70			- 1					
ffeexpectancy 8								
25 65								
8 -								
<u>g</u>				_				
· 60				1				
				*				
55	_							
				1				
50								
45								
3	1	1		2		0		
				duster				
0.25	cluster :	= 0		cluster = 1		d	luster = 2	
0.20		A						
015								
0.10							A	
0.05		-//					//\	
0.03		MIN						1
0.00	40 50 60	70 80 90 3	0 40 50	60 70		40 50	- The state of the	80 90
30	40 50 60 Meanmach	70 80 90 3	90 40 50		80 90 30	40 50 Hos		80 90

Multiple Comparison of Means - Tukey HSD,FWER=0.05 group1 group2 meandiff lower upper reject 0 1 -17.7251 -21.7172 -13.733 True 0 2 -7.8677 -11.5841 -4.1512 True 1 2 9.8575 6.5979 13.117 True

The following table shows the **mean** values for clustering variables in the **test** dataset:

Python code fragment for the analysis

27 # Data Management	
28 data clean - data.drop('country', 1)	
29 data clean = data clean.convert objects(convert numeric=True) #.dtypcs	
00 data clean - data clean.droma(subset = ['lifexpectancy'])	
all conference of the conferen	
32 # subset clustering variables	
33 cluster-data clean[f'incompenserson', 'alconsumption', 'armedforcesnate'.	
34 'breastcancerper100th', 'colemissions', 'femaleemployrate', 'hivrate',	
35 'internetuserate', 'oilparperson', 'polityscore', 'relectricperperson',	
36 'suicideper188th', 'employrate', 'urbanrate', 'lifeexpectancy']]	
37 cluster.describe()	
CLEATER SHEET LEWY	
39 # standardize clustering variables to have mean=0 and sd=1	
40 clustervar-cluster.copy()	
41 clustervar = clustervar.fillna(clustervar.median())	
42 clustervar['incompercerson']-enegracessing.scale(clustervar['incompercerson'].astype('float64'))	
43 clustervar[incomparperson]-preprocessing.scale(clustervar[incomparperson].astype(float64)) 43 clustervar['alconsumption']-preprocessing.scale(clustervar['alconsumption'].astype('float64'))	
44 clustervar['armedforcesrate']-preprocessing.scale(clustervar['armedforcesrate'].astype('float64'))	
45 clustervar['breastcancerper188th']*preprocessing.scale(clustervar['breastcancerper188th'].astype('float64'))	
46 clustervar['colemissions']=preprocessing.scale(clustervar['colemissions'].astype('float64'))	
47 clustervar['femaleemployrate']=preprocessing.scale(clustervar['femaleemployrate'].astype('float64'))	
48 clustervar['hivrate']=preprocessing.scale(clustervar['hivrate'].astype('float64'))	
49 clustervar['internetuserate']=preprocessing.scale(clustervar['internetuserate'].astype('float64'))	
50 clustervar['oilperperson']-preprocessing.scale(clustervar['oilperperson'].astype('float64'))	
51 clustervar['polityscore']-preprocessing.scale(clustervar['polityscore'].astype('float64'))	
52 clustervar['relectricperperson']-preprocessing.scale[clustervar['relectricperperson'].astype('float64'))	
53 clustervar['suicideper100th']-preprocessing.scale(clustervar['suicideper100th'].astype('float64'))	
54 clustervar['employrate']-preprocessing.scale(clustervar['employrate'].astype('float64'))	
55 clustervar['urbanrate']-preprocessing.scale(clustervar['urbanrate'].astype('float64'))	
56 clustervar['lifeexpectancy']-preprocessing.scale(clustervar['lifeexpectancy'].astype('float64'))	
57	
SS # split data into train and test sets	
59 clus_train, clus_test = train_test_split(clustervar, test_size=.3, random_state=123)	
60	
61# k-means cluster analysis for 1-9 clusters	
62 from scipy.spatial.distance import cdist	
63 clusters-range(1,18)	
64 mendist=[]	
65	
66 for k in clusters:	
67 model-KMeans(n clusters-k)	
68 model.fit(clus train)	
69 clusassism-model.oredict(clus train)	
70 meandist append(sum(np.min(cdist(clus train, model.cluster_centers_, 'euclidean'), axis-1))	
71 / clus train.shape(01)	
72	

The results from python are shown below.

means for lifeexpectancy by incomeperperson categories
lifeexpectancy
incomeperperson

incomeperperson (0, 2385] 63.566886 (2385, 52302] 75.742580

The following are the same results with R

Model Interpretation for post hoc ANOVA results:

When examining the association between the life expectancy in number of years (quantitative response) and another explanatory variable alcohol consumption (avg in litres) categorized into 4 ordered categories (splitting around the quartiles we got categorical explanatory variable with 4 levels (0,3], (3-6], (6-10], (10-25]) for different countries from the same dataset, (one-way) ANOVA revealed that among daily, the life expectancy (quantitative response variable) and alcohol consumption were significantly associated, F (3, 172)=8.927, p=1.57x10^-5.

Post hoc comparisons of the alcohol consumption by pairs of categories revealed that the countries with alcohol consumption level (10,25] (group 1) reported significantly more life expectancy compared to those with level (0,3] (group 0). Similarly, the countries with alcohol consumption level (10,25] reported significantly more life expectancy compared to those with level (3,6]. And the countries with alcohol consumption level (6,10] reported significantly more life expectancy compared to those with level (3,6]. All other comparisons were statistically similar.

The results from python are shown below.

means for lifeexpectancy by alcconsumption lifeexpectancy

alcconsumption	
(0, 3]	66.850458
(10, 25]	74.411119
(3, 6]	64.897810
(6, 10]	70.670250

Date: Sat, 1	3 Feb 2016	Prob (F-stati	stic):	1.57e-8	6	
Time:	23:57:07	Log-Likelihoo	d:	-638.7	9	
No. Observations:	176	AIC:		1285		
Of Residuals:	172	BIC:		1298		
Of Model:	3					
	coe	f std err	t	P> t	[95.8% Cor	f. Int.
Intercept	66,850	5 1.331	50,225	0.000	64,223	69,47
C(alcconsumption)[T.(10, 25	11 7.560	7 1.948	3.880	0.000	3.715	11.40
C(alcconsumption)[T.(3, 6]]	-1.952	6 1.948	-1.002	0.318	-5.799	1.89
C(alcconsumption)[T.(6, 10]	3.819	8 1.925	1.985	0.049	0.021	7.61
					-	
Omnibus:	15.572	Durbin-Watson		1.85	3	
Prob(Omnibus):	0.000	Jarque-Bera (18):	17.54	7	
Skew:	-0.753	Prob(JB):		0.00015	5	
Kurtosis:	2.646	Cond. No.		4.6	2	
					-	

mc1 = multi.MultiComparison(df2['lifeexpectancy'], df2['alcconsumption'])
res1 = mc1.tukeyhsd()
rpint(res1.summary())
Multiple Comparison of Means - Tukey HSD,FWER-0.05

	group1	group2	meandiff	lower	upper	reject
	0	1	7.5607	2.5055	12.6158	True
	0	2	-1.9526	-7.0078	3.1025	False
	0	3	3.8198	-1.1737	8.8133	False
	1	2	-9.5133	-14.7342	-4.2924	True
	1	3	-3.7409	-8.9021	1.4204	False
	2	3	5.7724	0.6112	10.9337	True

The following are the same results with R

