

Packet Tracer. Исследование методов реализации сети VLAN

Таблица адресации

Устройство	Интерфейс	IP-адрес	Маска подсети	Шлюз по умолчанию
S1	VLAN 99	172.17.99.31	255.255.255.0	_
S2	VLAN 99	172.17.99.32	255.255.255.0	Н/Д (недоступно)
S3	VLAN 99	172.17.99.33	255.255.255.0	_
PC1	NIC	172.17.10.21	255.255.255.0	172.17.10.1
PC2	NIC	172.17.20.22	255.255.255.0	172.17.20.1
PC3	NIC	172.17.30.23	255.255.255.0	172.17.30.1
PC4	NIC	172.17.10.24	255.255.255.0	172.17.10.1
PC5	NIC	172.17.20.25	255.255.255.0	172.17.20.1
PC6	NIC	172.17.30.26	255.255.255.0	172.17.30.1
PC7	NIC	172.17.10.27	255.255.255.0	172.17.10.1
PC8	NIC	172.17.20.28	255.255.255.0	172.17.20.1
PC9	NIC	172.17.30.29	255.255.255.0	172.17.30.1

Задачи

Часть 1. Наблюдение за трафиком широковещательной рассылки в сети VLAN

Часть 2. Наблюдение за трафиком широковещательной рассылки без сетей VLAN

Общие сведения

В этом упражнении необходимо отслеживать пересылку широковещательного трафика через коммутаторы при сконфигурированных и не сконфигурированных VLAN.

Инструкции

Часть 1. Наблюдение за трафиком широковещательной рассылки в сети VLAN

Шаг 1. Отправьте эхо-запрос от РС1 на РС6.

- а. Дождитесь, когда все индикаторы состояния каналов загорятся зеленым цветом. Для ускорения процесса нажмите кнопку **Fast Forward Time** (Ускорить), расположенную на нижней панели инструментов желтого цвета.
- b. Нажмите на вкладку **Simulation (Симулирование)** и используйте инструмент Add Simple PDU (**Добавить простой PDU**). Нажмите кнопку **PC1**, а затем нажмите кнопку **PC6**.

с. Нажмите на кнопку **Capture/Forward (Захват/Вперед)**, чтобы перейти к следующему шагу. Понаблюдайте за прохождением ARP-запросов по сети. При появлении окна Buffer Full (Буфер переполнен) нажмите кнопку **View Previous Events** (Просмотреть предыдущие события).

Успешно ли выполнена проверка связи? Дайте пояснение.

Нет, запросы не были успешными, потому что PC1 находится в другой VLAN, чем PC6

Взгляните на Simulation Panel (Панель моделирования) и скажите, куда коммутатор **S3** отправил пакет после того, как получил его?

S3 отправил его на PC4, потому что он находился в той же VLAN, что и PC1.

При нормальной эксплуатации, когда коммутатор получает широковещательный кадр на одном из своих портов, он пересылает кадр из всех портов. Обратите внимание, что коммутатор **\$2** отправляет ARP-запрос из интерфейса Fa0/1 на коммутатор **\$1**. Также обратите внимание, что коммутатор **\$3** отправляет ARP-запрос из интерфейса Fa0/11 на коммутатор **\$4**. Узлы **PC1** и **PC4** принадлежат сети VLAN 10. Узел **PC6** принадлежит сети VLAN 30. Поскольку широковещательный трафик находится в пределах сети VLAN, узел **PC6** не может получить ARP-запрос от узла **PC1**. Поскольку узел **PC4** не является пунктом назначения, он отбрасывает ARP-запрос. Эхо-запрос от узла **PC1** не удался, потому что **PC1** не может получить ARP-ответ.

Шаг 2. Отправьте эхо-запрос от РС1 на РС4.

- а. Нажмите на кнопку **New (Создать)** под раскрывающейся вкладкой Scenario 0 (Сценарий 0). Теперь щелкните значок **Add Simple PDU** (Добавить простой PDU) в правой части Packet Tracer и с помощью утилиты ping проверьте связь компьютера **PC1** с **PC4**.
- b. Нажмите на кнопку **Capture/Forward (Захват/Вперед)**, чтобы перейти к следующему шагу. Понаблюдайте за прохождением ARP-запросов по сети. При появлении окна Buffer Full (Буфер переполнен) нажмите кнопку **View Previous Events** (Просмотреть предыдущие события).

Успешно ли выполнена проверка связи? Дайте пояснение.

Да, потому что PC1 и PC4 оба принадлежат VLAN 10, поэтому путь к запросу ARP тот же, что и раньше.

с. Изучите Simulation Panel (Панель моделирования).

Почему коммутатор **S1**, получив пакет, пересылает его на узел **PC7**?

PC7 VLAN 10, ARP VLAN 10

Часть 2. Наблюдение за трафиком широковещательной рассылки без сетей VLAN

Шаг 1. Очистите настройки на всех трех коммутаторах и удалите базу данных VLAN.

- а. Вернитесь в режим реального времени (**Realtime**).
- b. Удалите загрузочную конфигурацию на всех трех коммутаторах.

Какая команда используется для удаления загрузочной конфигурации на коммутаторах?

Где на коммутаторах хранится файл сети VLAN?

flash:vlan.dat

с. Удалите файл VLAN на всех трех коммутаторах.

delete vlan.dat

© © 2013 г. - гггг Корпорация Сіsco и/или ее дочерние компании. Все права защищены. Открытая информация Сіsco С помощью какой команды можно удалить файл сети VLAN на коммутаторах?

Шаг 3. Нажмите кнопку Capture/Forward (Захват/Вперед), чтобы отправить ARP-запросы и проверить связь с помощью утилиты ping.

- а. После того как коммутаторы перезагрузятся, а индикатор состояния канала загорится зеленым, сеть будет готова к пересылке ваших ARP- и эхо-запросов.
- b. Выберите Scenario 0 (Сценарий 0) в раскрывающейся вкладке, чтобы вернуться к сценарию 0.
- с. В режиме Simulation (Моделирование) нажмите на кнопку Capture/Forward (Захват/Вперед), чтобы перейти к следующему шагу. Обратите внимание, что теперь коммутаторы пересылают ARP-запросы из всех портов, кроме порта, на котором ARP-запрос был получен. Подобное поведение коммутаторов демонстрирует, каким образом сети VLAN могут повышать производительность сети. Широковещательный трафик находится в пределах каждой сети VLAN. При появлении окна Buffer Full (Буфер заполнен) нажмите на кнопку View Previous Events (Просмотреть предыдущие события).

Вопросы для повторения

1. Если компьютер в сети VLAN 10 отправляет широковещательное сообщение, какие устройства его получат?

Bce VLAN 10

2. Если компьютер в сети VLAN 20 отправляет широковещательное сообщение, какие устройства его получат?

Все устройства VLAN 20

3. Если компьютер в сети VLAN 30 отправляет широковещательное сообщение, какие устройства его получат?

Все устройства VLAN 30

4. Что происходит с кадром, отправленным с компьютера сети VLAN 10 на компьютер сети VLAN 30?

Он будет

5. Что представляют собой коллизионные домены на коммутаторе применительно к портам?

Каждый порт является отдельным доменом столкновения.

6. Что представляют собой широковещательные домены на коммутаторе применительно к портам?

Они делятся на количество VLAN в свитче.