ACM/CS 114 Parallel algorithms for scientific applications

Michael A. G. Aïvázis

California Institute of Technology

Winter 2010

Dense matrix problems

- ▶ we'll take a look at
 - inner and outer products of two vector
 - matrix-vector and matrix-matrix multiplication
 - LU and Cholesky decompositions
 - QR factorizations
 - computing eigenvalues and eigenvectors
 - fast Fourier transforms
- \blacktriangleright when solving a problem of size n on p processors, we will assume
 - that p, and occasionally \sqrt{p} divides n
 - \triangleright that p is a perfect square, when forming two-dimensional process grids
 - ▶ matrices are $n \times n$ square, not rectangular
 - we are memory constrained and data replication must be minimized
- these problems have been studied extensively and form the core of scientific computing on parallel machines
 - excellent implementations available
 - interest has been revived due to the expected disruption by multi-core architectures

Vector inner product

 \blacktriangleright the inner product of two *n*-vectors *x*, *y* is given by

$$x^T y = \sum_{i=1}^n x_i y_i$$

which requires n multiplications and n-1 additions

- parallelization strategy:
 - ▶ *n* fine grain tasks, numbered i = 1, ..., n, that store x_i and y_i , and compute x_iy_i
 - ightharpoonup communication is a sum reduction over n fine grain tasks
 - \triangleright coarsening is achieved by coalescing n/p tasks together, assuming that each process can accommodate the data storage requirements
 - and mapping each coarse grain task to a process

Vector outer product

▶ the outer product of two *n*-vectors *x* and *y* is the $n \times n$ matrix *A* given by

$$A_{ij} = x_i y_j$$

which requires n^2 multiplications

- parallelization strategies are determined by the storage requirements
 - build a two-dimensional grid of n^2 fine grain tasks numbered (i, j), with i, j = 1, ..., n; each one computes $x_i y_i$
 - assuming no data replication is allowed
 - ▶ let task (i, 1) store x_i and task (1, i) store y_i
 - or, let task (i, i) store both x_i and y_i
 - either way, the task that owns each element must broadcast it to the other tasks: x_i along the i^{th} task row, y_j along the j^{th} task column
 - coarsening to p tasks can be accomplished by
 - ightharpoonup combining n/p rows or columns
 - forming $(n/\sqrt{p}) \times (n/\sqrt{p})$ grid of fine grain tasks
 - and each coarse grain task can be assigned to a process
- either way, naïve broadcasting of the components of x and y would require as much total memory as replication
 - storage can be reduced by circulating portions of x and y through the tasks, with each task using the available portion and passing it on

The product of a matrix with a vector

▶ given an $n \times n$ matrix A and an n-vector x, the matrix vector product yields an n-vector y whose components are given by

$$y_i = \sum_{j=1}^n A_{ij} x_j$$

requiring a total of n^2 multiply-add operations

- once again, the parallelization strategy is determined by how the data is distributed among fine grain tasks
 - build a two-dimensional grid of n^2 fine grain tasks numbered (i, j), with i, j = 1, ..., n; each one computes $A_{ij}x_i$
 - ▶ task (i,j) has $a_{i,j}$, but if no data replication is allowed
 - let task (i, 1) store x_i and task (1, i) store y_i
 - or, let task (i, i) store both x_i and y_i
 - ▶ the task that owns x_j must broadcast it along the j^{th} task row, and y_i is formed by sum reduction along the i^{th} task column
 - ► coarsening into p tasks can be accomplished by combining n/p rows/columns, or by forming $(n/\sqrt{p}) \times (n/\sqrt{p})$ blocks
 - and each coarse grain task can be assigned to a process

Coarsening along rows or columns

- for one-dimensional coarsening into n/p task rows
 - if x is stored in one task, it must be broadcast to all others
 - if x is distributed among tasks, with n/p components per task, then multiple broadcasts are required
 - each task computes the inner product of its n/p rows of A with the entire x to produce n/p components of y
- for one-dimensional coarsening into n/p task columns
 - \triangleright n/p components of x are distributed among the tasks
 - each task computes the linear combination of its n/p columns with coefficients from its copy of x
 - since the right parts of x are already available, no communication is required
 - ▶ y is generated by a sum reduction across tasks
- ▶ these two are *duals* of each other
 - row coarsening begins with broadcast, followed by communication-free inner products
 - column coarsening begins with communication-free linear combinations, follows by a reduction

Two dimensional coarsening

- for two dimensional coarsening, we form $(n/\sqrt{p}) \times (n/\sqrt{p})$ blocks of fine grain task
 - each one holding a $(n/\sqrt{p}) \times (n/\sqrt{p})$ block of A
 - with components of x distributed either across one task row, or along the diagonal, n/p components per task

S