



# Joint Class-Affinity Loss Correction for Robust Medical Image Segmentation with Noisy Labels

Xiaoqing Guo

Yixuan Yuan<sup>†</sup>

City University of Hong Kong

xqguo.ee@my.cityu.edu.hk

yxyuan.ee@cityu.edu.hk



## • Background:





## • Background:



SFDA: source-free domain adaptation



• Existing approaches:



#### • Existing approaches:



Resampling and reweighting strategy [1]

[1] Guo, X., Chen, Z., Liu, J., Yuan, Y. Non-equivalent images and pixels: Confidence-aware resampling with meta-learning mixup for polyp segmentation. Medical Image Analysis, 78, 102394, (2022).



#### • Existing approaches:





Resampling and reweighting strategy [1]

Label Correction [2]

[1] Guo, X., Chen, Z., Liu, J., Yuan, Y. Non-equivalent images and pixels: Confidence-aware resampling with meta-learning mixup for polyp segmentation. Medical Image Analysis, 78, 102394, (2022). [2] Li, S., Gao, Z., He, X.: Superpixel-guided iterative learning from noisy labels for medical image segmentation. In: MICCAI. pp. 525–535. Springer (2021)



#### Existing approaches:





#### Resampling and reweighting strategy [1]

Label Correction [2]



Loss correction w/ confusion matrix [3]

Loss correction w/ noise transition matrix (NTM) [4]

- [1] Guo, X., Chen, Z., Liu, J., Yuan, Y. Non-equivalent images and pixels: Confidence-aware resampling with meta-learning mixup for polyp segmentation. Medical Image Analysis, 78, 102394, (2022).
- [2] Li, S., Gao, Z., He, X.: Superpixel-guided iterative learning from noisy labels for medical image segmentation. In: MICCAI. pp. 525–535. Springer (2021)
- [3] Zhang, L., Tanno, et al., Alexander, D.: Disentangling human error from ground truth in segmentation of medical images. NeurIPS 33, 15750–15762 (2020)
- [4] Guo, X., Liu, J., Liu, T., Yuan, Y.: Simt: Handling open-set noise for domain adaptive semantic segmentation. In: CVPR (2022)



#### Motivation





#### Motivation





#### Motivation





#### • Motivation





#### Motivation

The pair-wise manner reduces label noise rate





Clean affinity label



Noisy label



Noisy affinity label



Noise rate:

44%



23%

$$T_{C\to A}(0,1) = \frac{\sum_{m} \left[ N_m \sum_{n} T_C(m,n) \right]^2 - \sum_{m} (N_m)^2 \|T_C\|_2^2}{\sum_{m} \left[ N_m (\sum_{m} N_m - N_m) \right]},$$

$$T_{C\to A}(0,0) = 1 - T_{C\to A}(0,1),$$

$$T_{C \to A}(1,1) = \frac{\sum_{m} (N_m)^2 ||T_C||_2^2}{\sum_{m} (N_m)^2},$$

$$T_{C\to A}(1,0) = 1 - T_{C\to A}(1,1).$$



#### Motivation

- The pair-wise manner reduces label noise rate
- Unify the pixel-wise and pair-wise manners













Noise rate:

44%



$$\boldsymbol{T}_{C\to A}(0,1) = \frac{\sum_{m} \left[ N_{m} \sum_{n} \boldsymbol{T}_{C}(m,n) \right]^{2} - \sum_{m} (N_{m})^{2} \|\boldsymbol{T}_{C}\|_{2}^{2}}{\sum_{m} \left[ N_{m} (\sum_{m} N_{m} - N_{m}) \right]},$$

$$T_{C\to A}(0,0) = 1 - T_{C\to A}(0,1),$$

$$T_{C \to A}(1,1) = \frac{\sum_{m} (N_m)^2 ||T_C||_2^2}{\sum_{m} (N_m)^2},$$

$$T_{C\to A}(1,0) = 1 - T_{C\to A}(1,1).$$



#### Motivation

- The pair-wise manner reduces label noise rate
- Unify the pixel-wise and pair-wise manners
- The first effort in exploiting the affinity relation between pixels within an image for noisy mitigation







$$\boldsymbol{T}_{C\to A}(0,1) = \frac{\sum_{m} \left[ N_{m} \sum_{n} \boldsymbol{T}_{C}(m,n) \right]^{2} - \sum_{m} (N_{m})^{2} \|\boldsymbol{T}_{C}\|_{2}^{2}}{\sum_{m} \left[ N_{m} (\sum_{m} N_{m} - N_{m}) \right]},$$

$$T_{C\to A}(0,0) = 1 - T_{C\to A}(0,1),$$

$$T_{C \to A}(1,1) = \frac{\sum_{m} (N_m)^2 ||T_C||_2^2}{\sum_{m} (N_m)^2},$$

$$T_{C\to A}(1,0) = 1 - T_{C\to A}(1,1).$$

#### Method



#### Our approach: Joint Class-Affinity Loss Correction (JCAS)

- Pixel-wise supervision signal derived from class label preserves semantics
- Pair-wise supervision signal derived from affinity label reduces noise rate



## Method



#### • Our approach: Joint Class-Affinity Loss Correction (JCAS)

- Pixel-wise supervision signal derived from class label preserves semantics
- Pair-wise supervision signal derived from affinity label reduces noise rate
- Differentiated affinity reasoning (DAR) module

$$P_{intra}(k_1) = P(k_1) + \sum_{k_2}^{n} P'(k_1, k_2) Q(k_2); P_{inter}(k_1) = P(k_1) - \sum_{k_2}^{n} P'_{re}(k_1, k_2) Q(k_2)$$



#### Method



#### Our approach: Joint Class-Affinity Loss Correction (JCAS)

- Pixel-wise supervision signal derived from class label preserves semantics
- Pair-wise supervision signal derived from affinity label reduces noise rate
- Differentiated affinity reasoning (DAR) module

$$P_{intra}(k_1) = P(k_1) + \sum_{k_2}^{n} P'(k_1, k_2) Q(k_2); P_{inter}(k_1) = P(k_1) - \sum_{k_2}^{n} P'_{re}(k_1, k_2) Q(k_2)$$

• Class-affinity loss correction (CALC) strategy  $\left.\mathcal{L}_{CACR} = \left\|m{T}_{C o A} - m{T}_A
ight\|_2$ 





#### Datasets:

Endovis18: 2235 images (1639 training images & 596 test images)
 3 instrument part classes (shaft, wrist and clasper classes)









Noise patterns:

synthetic label noise (elipse, symmetric and asymmetric noises) real-world label noise (noisy pseudo labels in source-free domain adaptation (SFDA))



Evaluation metrics:

Dice, Jac per class



#### • Experimental results

Superior to state-of-the-art methods





#### • Experimental results

Superior to state-of-the-art methods





## • Experimental results

Superior to state-of-the-art methods





## • Experimental results

Ablation study under ellipse label noise

| Method        | Shaft    |               | Wrist    |         | Clasper       |               | Average  |         |
|---------------|----------|---------------|----------|---------|---------------|---------------|----------|---------|
|               | Dice (%) | Jac (%)       | Dice (%) | Jac (%) | Dice (%)      | Jac (%)       | Dice (%) | Jac (%) |
| Upper bound   | 88.740   | 81.699        | 65.045   | 52.627  | 70.531        | 56.618        | 74.772   | 63.648  |
| Baseline [18] | 79.021   | 68.097        | 42.069   | 29.582  | 55.489        | 40.175        | 58.860   | 45.951  |
| w/ Affinity   | 82.158   | 72.339        | 49.128   | 35.455  | 58.933        | 43.594        | 63.406   | 50.463  |
| w/ DAR        | 82.698   | 72.992        | 52.207   | 38.442  | 61.544        | 46.027        | 65.483   | 52.487  |
| w/ CALC       | 82.973   | 73.126        | 61.885   | 47.527  | 60.416        | 44.821        | 68.425   | 55.158  |
| Ours (JCAS)   | 84.683   | <u>75.378</u> | 65.599   | 51.623  | <u>63.871</u> | <u>48.356</u> | 71.384   | 58.452  |



#### • Experimental results

Ablation study under ellipse label noise

| Method        | Shaft    |               | Wrist    |         | Clasper       |         | Average  |         |
|---------------|----------|---------------|----------|---------|---------------|---------|----------|---------|
|               | Dice (%) | Jac (%)       | Dice (%) | Jac (%) | Dice (%)      | Jac (%) | Dice (%) | Jac (%) |
| Upper bound   | 88.740   | 81.699        | 65.045   | 52.627  | 70.531        | 56.618  | 74.772   | 63.648  |
| Baseline [18] | 79.021   | 68.097        | 42.069   | 29.582  | 55.489        | 40.175  | 58.860   | 45.951  |
| w/ Affinity   | 82.158   | 72.339        | 49.128   | 35.455  | 58.933        | 43.594  | 63.406   | 50.463  |
| w/ DAR        | 82.698   | 72.992        | 52.207   | 38.442  | 61.544        | 46.027  | 65.483   | 52.487  |
| w/ CALC       | 82.973   | 73.126        | 61.885   | 47.527  | 60.416        | 44.821  | 68.425   | 55.158  |
| Ours (JCAS)   | 84.683   | <u>75.378</u> | 65.599   | 51.623  | <u>63.871</u> | 48.356  | 71.384   | 58.452  |

• Curve of test Jac vs. epoch with four different types of noise labels



## • Experimental results

Ablation study under ellipse label noise

| Method        | Shaft    |               | Wrist    |               | Clasper       |               | Average  |         |
|---------------|----------|---------------|----------|---------------|---------------|---------------|----------|---------|
|               | Dice (%) | Jac (%)       | Dice (%) | Jac (%)       | Dice (%)      | Jac (%)       | Dice (%) | Jac (%) |
| Upper bound   | 88.740   | 81.699        | 65.045   | 52.627        | 70.531        | 56.618        | 74.772   | 63.648  |
| Baseline [18] | 79.021   | 68.097        | 42.069   | 29.582        | 55.489        | 40.175        | 58.860   | 45.951  |
| w/ Affinity   | 82.158   | 72.339        | 49.128   | 35.455        | 58.933        | 43.594        | 63.406   | 50.463  |
| w/ DAR        | 82.698   | 72.992        | 52.207   | 38.442        | 61.544        | 46.027        | 65.483   | 52.487  |
| w/ CALC       | 82.973   | 73.126        | 61.885   | <u>47.527</u> | 60.416        | 44.821        | 68.425   | 55.158  |
| Ours (JCAS)   | 84.683   | <u>75.378</u> | 65.599   | 51.623        | <u>63.871</u> | <u>48.356</u> | 71.384   | 58.452  |



## • Experimental results

Ablation study under ellipse label noise

| Method        | Shaft    |               | Wrist    |         | Clasper       |         | Average  |         |
|---------------|----------|---------------|----------|---------|---------------|---------|----------|---------|
|               | Dice (%) | Jac (%)       | Dice (%) | Jac (%) | Dice (%)      | Jac (%) | Dice (%) | Jac (%) |
| Upper bound   | 88.740   | 81.699        | 65.045   | 52.627  | 70.531        | 56.618  | 74.772   | 63.648  |
| Baseline [18] | 79.021   | 68.097        | 42.069   | 29.582  | 55.489        | 40.175  | 58.860   | 45.951  |
| w/ Affinity   | 82.158   | 72.339        | 49.128   | 35.455  | 58.933        | 43.594  | 63.406   | 50.463  |
| w/ DAR        | 82.698   | 72.992        | 52.207   | 38.442  | 61.544        | 46.027  | 65.483   | 52.487  |
| w/ CALC       | 82.973   | 73.126        | 61.885   | 47.527  | 60.416        | 44.821  | 68.425   | 55.158  |
| Ours (JCAS)   | 84.683   | <u>75.378</u> | 65.599   | 51.623  | <u>63.871</u> | 48.356  | 71.384   | 58.452  |



### • Experimental results

Ablation study under ellipse label noise

| Method        | Shaft    |               | Wrist    |         | Clasper       |               | Average  |         |
|---------------|----------|---------------|----------|---------|---------------|---------------|----------|---------|
|               | Dice (%) | Jac (%)       | Dice (%) | Jac (%) | Dice (%)      | Jac (%)       | Dice (%) | Jac (%) |
| Upper bound   | 88.740   | 81.699        | 65.045   | 52.627  | 70.531        | 56.618        | 74.772   | 63.648  |
| Baseline [18] | 79.021   | 68.097        | 42.069   | 29.582  | 55.489        | 40.175        | 58.860   | 45.951  |
| w/ Affinity   | 82.158   | 72.339        | 49.128   | 35.455  | 58.933        | 43.594        | 63.406   | 50.463  |
| w/ DAR        | 82.698   | 72.992        | 52.207   | 38.442  | 61.544        | 46.027        | 65.483   | 52.487  |
| w/ CALC       | 82.973   | 73.126        | 61.885   | 47.527  | 60.416        | 44.821        | 68.425   | 55.158  |
| Ours (JCAS)   | 84.683   | <u>75.378</u> | 65.599   | 51.623  | <u>63.871</u> | <u>48.356</u> | 71.384   | 58.452  |

• Curve of test Jac vs. epoch with four different types of noise labels





## Thanks!

Emails: xqguo.ee@my.cityu.edu.hk

