Bài toán. Tìm giới hạn của hàm số f(x,y) khi điểm $M(x,y) \rightarrow M_0(x_0,y_0)$

Trước hết chúng ta phải biết việc điểm $M(x,y) \rightarrow M_0(x_0,y_0)$ bằng cách như thế nào? Rõ ràng là có vô số cách, chúng ta quan tâm đến 2 cách sau đây:

- (1) hoặc là $x \rightarrow x_0$ trên một đường (cong/thẳng/zích zắc/...) nào đó, trong khi y không thay đổi, sau đó $y \rightarrow y_0$ trên một đường (cong/thẳng/zích zắc/...); hoặc ngược lại, tức là $y \rightarrow y_0$ trên một đường (cong/thẳng/zích zắc/...) trong khi x không thay đổi, sau đó $x \rightarrow x_0$ trên một đường (cong/thẳng/zích zắc/...).
- (2) $x \rightarrow x_0$ đồng thời với $y \rightarrow y_0$ (cũng vậy, $y \rightarrow y_0$ đồng thời với $x \rightarrow x_0$). Điều này tương đương với khoảng cách $d = \sqrt{(x - x_0)^2 + (y - y_0)^2}$ giữa hai điểm M(x,y) và $M_0(x_0,y_0)$ dần về 0.

Tương ứng với 2 cách $M(x,y) \rightarrow M_0(x_0,y_0)$ như trên, các Nhà toán học đã đưa ra định nghĩa giới hạn của hàm số f(x,y) khi điểm $M(x,y) \to M_0(x_0,y_0)$ là

1. Giới hạn lặp
$$\lim_{x \to x_0} \left[\lim_{y \to y_0} f(x,y) \right]$$
 và tương tự $\lim_{y \to y_0} \left[\lim_{x \to x_0} f(x,y) \right]$

Ví dụ. Cho hàm số $f(x,y) = \frac{\sqrt{2xy+1-1}}{3xy^2}$ và $M_0(x_0,y_0)$ với $(x_0,y_0) \equiv (0,1)$, tính các giới hạn sau đây

(a)
$$\lim_{y \to y_0} \left[\lim_{x \to x_0} f(x, y) \right] = \lim_{y \to 1} \left(\lim_{x \to 0} \frac{\sqrt{2xy + 1} - 1}{3xy^2} \right)$$
 (b) $\lim_{x \to x_0} \left[\lim_{y \to y_0} f(x, y) \right] = \lim_{x \to 0} \left(\lim_{y \to 1} \frac{\sqrt{2xy + 1} - 1}{3xy^2} \right)$

(b)
$$\lim_{x \to x_0} \left[\lim_{y \to y_0} f(x, y) \right] = \lim_{x \to 0} \left(\lim_{y \to 1} \frac{\sqrt{2xy + 1} - 1}{3xy^2} \right)$$

Bài giải. Tập xác định D(f) = ? Coi như bài tập!

(a) Tính
$$\lim_{y\to 1} \left(\lim_{x\to 0} \frac{\sqrt{2xy+1}-1}{3xy^2} \right)$$

Bước 1. Tính $\lim_{x\to 0} \frac{\sqrt{2xy+1-1}}{3xy^2}$, giới hạn này có dạng vô định $\frac{0}{0}$ khi $x\to 0$

Chúng ta biến đổi
$$f(x,y) = \frac{\sqrt{2xy+1}-1}{3xy^2} = \frac{(\sqrt{2xy+1}-1)(\sqrt{2xy+1}+1)}{3xy^2(\sqrt{2xy+1}+1)} = \frac{2}{3} \frac{1}{y(\sqrt{2xy+1}+1)}$$

$$\Rightarrow \lim_{x \to 0} \frac{\sqrt{2xy+1}-1}{3xy^2} = \lim_{x \to 0} \frac{2}{3} \frac{1}{y(\sqrt{2xy+1}+1)} = \frac{2}{3} \lim_{x \to 0} \frac{1}{y(\sqrt{2xy+1}+1)} = \frac{2}{3} \cdot \frac{1}{2y} = \frac{1}{3y}$$

Bước 2. Tính
$$\lim_{y\to 1} \left(\lim_{x\to 0} \frac{\sqrt{2xy+1}-1}{3xy^2} \right) = \lim_{y\to 1} \frac{1}{3y} = \frac{1}{3}$$
.

(b) Tính
$$\lim_{x\to 0} \left(\lim_{y\to 1} \frac{\sqrt{2xy+1}-1}{3xy^2} \right)$$

Bước 1. Tính
$$\lim_{y\to 1} \frac{\sqrt{2xy+1}-1}{3xy^2} = \frac{\sqrt{2x+1}-1}{3x}$$

Bước 2. Tính $\lim_{x\to 0} \left(\lim_{y\to 1} \frac{\sqrt{2xy+1}-1}{3xy^2} \right) = \lim_{x\to 0} \frac{\sqrt{2x+1}-1}{3x}$, giới hạn này có dạng vô định $\frac{0}{0}$ khi x $\to 0$

Chúng ta biến đổi
$$\frac{\sqrt{2x+1}-1}{3x} = \frac{(\sqrt{2x+1}-1)(\sqrt{2x+1}+1)}{3x(\sqrt{2x+1}+1)} = \frac{2}{3(\sqrt{2x+1}+1)}$$

$$\Rightarrow \lim_{x \to 0} \frac{2}{3(\sqrt{2x+1}+1)} = \frac{2}{3} \lim_{x \to 0} \frac{1}{\sqrt{2x+1}+1} = \frac{2}{3} \cdot \frac{1}{2} = \frac{1}{3}.$$

Từ kết quả của Ví dụ trên, xuất hiện câu hỏi: $\lim_{x\to x_0} \left| \lim_{y\to y_0} f(x,y) \right| = \lim_{y\to y_0} \left| \lim_{x\to x_0} f(x,y) \right|$ có đúng với mọi hàm số f(x,y) không?

2. **Giới hạn kép** $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$, cách viết khác $\lim_{\substack{x\to x_0\\y\to y_0}} f(x,y)$ như chúng ta đã học!

Từ định nghĩa của Giới hạn lặp và Giới hạn kép xuất hiện câu hỏi: Cùng một hàm số f(x,y) thì Giới hạn lặp có bằng Giới hạn kép không?