Class7

Hetian Su

K-means clustering

create a custom data to cluster

```
tmp <- c(rnorm(30, -3), rnorm(30,3))
x <- cbind(x=tmp, y=rev(tmp))
plot(x)</pre>
```


Try the kmeans clustering function in base R

Available components:

- [1] "cluster" "centers" "totss" "withinss" "tot.withinss" [6] "betweenss" "size" "iter" "ifault"
- Q

What are the components of the clustering that give:

- cluster center: "centers"
- cluster size: "size"
- plot the centers as blue points on top of the scatter plot where the clusters are colored differently

```
plot(x, col=km$cluster)
points(km$centers, col='blue', pch=15)
```


Hierarchical Clustering

```
tmp <- c(rnorm(30, -3), rnorm(30,3))
d <- cbind(x=tmp, y=rev(tmp))

hc <- hclust(dist(d))
plot(hc)</pre>
```

Cluster Dendrogram

dist(d)
hclust (*, "complete")

```
grp <- cutree(hc, k=2)</pre>
```

UK Food Data

Q1

```
#import data
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url)

#inspect number of rows and columns
dim(x)</pre>
```

[1] 17 5

inspect the data to make sure the dataframe is correctly imported

```
# view(x)
head(x, 6)
```

X England Wales Scotland N. Ireland Cheese Carcass_meat Other_meat Fish 5 Fats_and_oils Sugars

Rename the row names to sample/food names

```
rownames(x) <- x[,1]
x <- x[,-1]
head(x,6)
```

	England	Wales	${\tt Scotland}$	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

Q2

In this case where the structure of the dataframe is known to us, we should use the setting row names while importing method to be concise with codes. However, in cases where we do not know the structure of the dataframe before inspecting it, the first method is more robust.

Q3

Change the histogram to be stacked

```
barplot(as.matrix(x), beside = F, col = rainbow(nrow(x)))
```


Q5

create and interpret a pairwise plot of the dataset

Each pairwise scatter plot has x axis representing one region and y axis representing another region. A diagonal line indicates that the data points have similar values in both regions.

Q6

As compared to all other 3 regions, N.Ireland has more data points that are off the diagonal line. The most evident ones are the points colored in blue, orange and cyan.

Q7

Use base R PCA function to analyze the data.

```
pca <- prcomp(t(x))
summary(pca)</pre>
```

Importance of components:

	PC1	PC2	PC3	PC4
Standard deviation	324.1502	212.7478	73.87622	4.189e-14
Proportion of Variance	0.6744	0.2905	0.03503	0.000e+00
Cumulative Proportion	0.6744	0.9650	1.00000	1.000e+00

```
#plot PC1 va PC2
plot(pca$x[,1], pca$x[,2], xlab='PC1', ylab='PC2', xlim=c(-270, 500))
text(pca$x[,1], pca$x[,2], colnames(x))
```


Q8

Change the color of the text to match the colors on the map

```
plot(pca$x[,1], pca$x[,2], xlab='PC1', ylab='PC2', xlim=c(-270, 500))
text(pca$x[,1], pca$x[,2], colnames(x), col = c('orange','red','blue','green'))
```


We can also retrieve the properties of the PCA from pca data

```
# retrieve the standard deviations
sd <- round(pca$sdev^2/sum(pca$sdev^2)*100)
sd

[1] 67 29 4 0

z <- summary(pca)
z$importance</pre>
```

```
PC1 PC2 PC3 PC4
Standard deviation 324.15019 212.74780 73.87622 4.188568e-14
Proportion of Variance 0.67444 0.29052 0.03503 0.000000e+00
Cumulative Proportion 0.67444 0.96497 1.00000 1.000000e+00
```

```
barplot(sd, xlab = 'Principle Components', ylab = 'Percent Variance')
```


Principle Components

```
# retrieve the loading scores of each varianle on PC1
par(mar=c(10, 3, 0.35, 0))
barplot(pca$rotation[,1], las=2, ylab = 'PC1')
```


Q9

```
par(mar=c(10, 3, 0.35, 0))
barplot(pca$rotation[,2], las=2)
```


PC2 loading scores show that Fresh_potatoes most strongly pushes Wales up the axis from England and N.Ireland, while Soft_drinks most strongly pushes Scotland down the axis from England and N.Ireland.