Matemáticas Discretas

Oscar Bedoya

oscar.bedoya@correounivalle.edu.co

http://eisc.univalle.edu.co/~oscarbed/MD/

- Lógica
- Conjuntos
- Funciones
- Sucesiones y sumatorias
- · Notación O

PARCIAL1. Viernes 9 de Abril

- * Definición de sucesión
- * Progresión aritmética
- * Progresión geométrica
- * Sumatorias

Indique el número que falta en cada una de las siguientes listas de términos:

Indique el número que falta en cada una de las siguientes listas de términos:

- 0, 1, 1, 2, 3, 5, 8, 13, **21**
- 3, 7, 11, 15, 19, **23**
- 2, 6, 18, 54, 162, **486**
- 1, 2, 6, 42, 1806, **3263442**

Indique el número que falta en cada una de las siguientes listas de términos:

- 0, 1, 1, 2, 3, 5, 8, 13, **21**. 8+13=21
- 3, 7, 11, 15, 19, **23**. 19+4=23
- 2, 6, 18, 54, 162, 486. 162·3=486
- 1, 2, 6, 42, 1806, **3263442**. 1806·1807=3263442

Obtener un término general para cada elemento de la lista:

• 0, 1, 1, 2, 3, 5, 8, 13, 21.
$$\alpha_n = ?$$

Obtener un término general para cada elemento de la lista:

• 0, 1, 1, 2, 3, 5, 8, 13, 21.
$$a_n = a_{n-1} + a_{n-2}$$
, donde $a_1 = 0$ y $a_2 = 1$

Obtener un término general para cada elemento de la lista:

- 0, 1, 1, 2, 3, 5, 8, 13, 21. $a_n = a_{n-1} + a_{n-2}$, donde $a_1 = 0$ y $a_2 = 1$
- 3, 7, 11, 15, 19, 23. $a_n = a_{n-1} + 4$, donde $a_1 = 3$
- 2, 6, 18, 54, 162, 486. $a_n = a_{n-1} \cdot 3$, donde $a_1 = 2$
- 1, 2, 6, 42, 1806, 3263442. $a_n = a_{n-1} \cdot (a_{n-1} + 1)$, donde $a_1 = 1$

Las siguientes son sucesiones:

- $\{a_n = a_{n-1} + a_{n-2}, \text{ donde } a_1 = 0, a_2 = 1\}$
- $\{a_n = a_{n-1} + 4, \text{ donde } a_1 = 3\}$
- $\{a_n = a_{n-1} \cdot 3, \text{ donde } a_1 = 2\}$
- $\{a_n = a_{n-1} \cdot (a_{n-1} + 1), \text{ donde } a_1 = 1\}$

Las siguientes son sucesiones:

- { $a_n = a_{n-1} + a_{n-2}$, donde $a_1 = 0$, $a_2 = 1$ } Lista de elementos: 0, 1, 1, 2, 3, 5, 8, 13, 21, ...
- $\{a_n = a_{n-1} + 4, donde \ a_1 = 3\}$ Lista de elementos 3, 7, 11, 15, 19, 23, ...
- {a_n=a_{n-1}·3, donde a₁=2} Lista de elementos: 2, 6, 18, 54, 162, 486, ...
- { $a_n = a_{n-1} \cdot (a_{n-1} + 1)$, donde $a_1 = 1$ } Lista de elementos: 1, 2, 6, 42, 1806, 3263442, ...

Indique la sucesión para cada una de las siguientes listas de elementos:

ementos:
•1, 2, 2, 4, 8, 32, 256
$$Q_{n-1}(Q_{n-1}(Q_{n-2}))$$
 $Q_{1} = 1$
•2, -2, 2, -2, 2 $Q_{n} = (Q_{n-1})(-1)(n-1)$ $Q_{1} = 2$
•5, 8, 11, 14, 17 $Q_{n} = (Q_{n-1}) + 3$ $Q_{1} = 5$

Indique la sucesión para cada una de las siguientes listas de elementos:

- 1, 2, 2, 4, 8, 32, 256. $\{a_n = a_{n-1} \cdot a_{n-2}, donde \ a_1 = 1, a_2 = 2\}$
- 2, -2, 2, -2, 2. $\{a_n = a_{n-1} \cdot (-1), donde a_1 = 2\}$
- 5, 8, 11, 14, 17. $\{a_n = a_{n-1} + 3, donde a_1 = 5\}$

Muestre la lista de elementos de las siguientes sucesiones dada por a_1 , a_2 , a_3 , a_4

•
$$\{a_n=1/n\} = \{\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\}$$

$$\begin{aligned} & \cdot \{a_n = 3 \cdot 2^n\} & \left\{6, 12, 24, 48\right\} \\ & \cdot \{a_n = -1 + 4 \cdot n\} \left\{\frac{1}{3}, \frac{7}{7}, -11, \frac{1}{15}\right\} \end{aligned}$$

Muestre la lista de elementos de las siguientes sucesiones dada por a_1 , a_2 , a_3 , a_4

- $\{a_n=1/n\}$. 1, 1/2, 1/3, 1/4, ...
- $\{a_n=3 \cdot 2^n\}$. 6, 12, 24, 48, ...
- $\{a_n = -1 + 4 \cdot n\}$. 3, 7, 11, 15, ...

Considere la sucesión $\{a_n=2\cdot 3^n\}$ cuya lista de términos es 6, 18, 54, 162, 486,...

Considere la sucesión $\{a_n=2\cdot 3^n\}$ cuya lista de términos es 6, 18, 54, 162, 486,...

$$a_1=6$$

$$a_2 = 18$$

$$a_3 = 54$$

$$a_4 = 162$$

$$a_5 = 486$$

Considere la sucesión $\{a_n=2\cdot 3^n\}$ cuya lista de términos es 6, 18, 54, 162, 486,...

Considere la sucesión $\{a_n=2\cdot 3^n\}$ cuya lista de términos es 2, 6, 18, 54, 162, ...

Considere la sucesión $\{a_n=2\cdot 3^n\}$ cuya lista de términos es 2, 6, 18, 54, 162, ...

$$a_0 = 2$$

$$a_1=6$$

$$a_2 = 18$$

$$a_3 = 54$$

$$a_4 = 162$$

Considere la sucesión $\{a_n=2\cdot 3^n\}$ cuya lista de términos es 2, 6, 18, 54, 162, ...

Considere la sucesión $\{a_n=2\cdot 3^n\}$ cuya lista de términos es 18, 54, 162, 486, ...

Considere la sucesión $\{a_n=2\cdot 3^n\}$ cuya lista de términos es 18, 54, 162, 486, ...

$$a_2 = 18$$

$$a_3 = 54$$

$$a_4 = 162$$

$$a_5 = 486$$

Considere la sucesión $\{a_n=2\cdot 3^n\}$ cuya lista de términos es 18, 54, 162, 486, ...

Definición de sucesión

Una sucesión $\{a_n\}$ es una función de un subconjunto de los enteros a los términos de $\{a_n\}$

Indique el elemento que sigue en cada lista:

• 5, 11, 17, 23, 29, 35, 41, 47, 53, 59, ?65
$$q_{n} = q_{n-1} + 6$$

• -1, 4, 9, 14, 19, 24, ? $q_{n} = q_{n-1} + 5$ $q_{n-1} + 5$ $q_{n-1} = 5$
• 4, 2, 0, -2, -4, -6, -8, ? $q_{n-1} = q_{n-1} + 2$ $q_{n-1} = q_{n-1}$

Indique el elemento que sigue en cada lista:

- 5, 11, 17, 23, 29, 35, 41, 47, 53, 59, 59+6=65
- · -1, 4, 9, 14, 19, 24, 24+5=29
- 4, 2, 0, -2, -4, -6, -8, -8+(-2)=-10

• 5, 11, 17, 23, 29, 35, 41, 47, 53, 59, ...

• 5, 11, 17, 23, 29, 35, 41, 47, 53, 59, ...

• 5, 5+6, 5+6+6, 5+6+6+6, 5+6+6+6, ...

```
• 5, 11, 17, 23, 29, 35, 41, 47, 53, 59, ...
    11-5=6
    17-11=6
    23-17=6
    29-23=6
• 5, 5+6, 5+6+6, 5+6+6+6, 5+6+6+6, ...
• 5+0.6, 5+1.6, 5+2.6, 5+3.6, 5+4.6, ...
• a_n = 5 + n \cdot 6
```

Progresión aritmética

Es una sucesión de la forma

donde el término inicial t y la diferencia d son números reales

Progresión aritmética

Es una sucesión de la forma

donde el **término inicial t** y la **diferencia** d son números reales

· La progresión aritmética se puede expresar como

$$\{a_n = + + n \cdot d\}$$

Indique cuáles son progresiones aritméticas y en tal caso exprésalas en la forma $\{a_n = t + n \cdot d\}$

- -1, 4, 9, 14, 19, 24, ... $\{a_n = -1 + n \cdot 5\}$
- 4, 7, 10, 13, 16, 20, 23, 26, no es progresión aritmética
- 4, 2, 0, -2, -4, -6, -8, ...
- 3, 6, 12, 24, 48, ...

- -1, 4, 9, 14, 19, 24, ... $\{a_n = -1 + n \cdot 5\}$
- 4, 7, 10, 13, 16, 20, 23, 26, no es progresión aritmética
- 4, 2, 0, -2, -4, -6, -8, $\{a_n = 4 + n \cdot (-2)\}$
- 3, 6, 12, 24, 48, no es progresión aritmética

• 3, 1, -1, -3, -5, -7, ...
$$q_1 = 3 - 2_0$$

- 2, 4, 6, 8, 10, 12, $\{a_n=2+n\cdot2\}$
- 2, 4, 8, 16, 32, 64, ...no es progresión aritmética
- 3, 1, -1, -3, -5, -7, ...
- 1/2, 3/2, 5/2, 5/1, 9/2, 11/2

- 2, 4, 6, 8, 10, 12, $\{a_n=2+n\cdot2\}$
- 2, 4, 8, 16, 32, 64, ...no es progresión aritmética
- 3, 1, -1, -3, -5, -7, ... $\{a_n=3+n\cdot(-2)\}$
- 1/2, 3/2, 5/2, 5/1, 9/2, 11/2.no es progresión aritmética

Indique el elemento que sigue en cada lista:

Indique el elemento que sigue en cada lista:

- 4, 8, 16, 32, 64, 64*2=128
- 10, 50, 250, 1250, 6250, 6250*5=31250

• 4, 8, 16, 32, 64, ...

• 4, 8, 16, 32, 64, ...

```
4, 8, 16, 32, 64, ...
8/4=2
16/8=2
32/16=2
64/32=2
4, 4.2, (4.2).2, (4.2.2).2, (4.2.2.2).2
```

```
4, 8, 16, 32, 64, ...
8/4=2
16/8=2
32/16=2
64/32=2
4, 4.2, 4.2.2, 4.2.2.2, 4.2.2.2.2
```

- 4, 4.2, 4.2.2, 4.2.2.2, 4.2.2.2.2
- 4·2°, 4·2¹, 4· 2², 4·2³, 4·2⁴

```
• 4, 8, 16, 32, 64, ...
    8/4=2
    16/8=2
    32/16=2
    64/32=2

    4, 4.2, 4.2.2, 4.2.2.2, 4.2.2.2.2

• 4·2°, 4·2¹, 4· 2², 4·2³, 4·2⁴
• \{a_n = 4 \cdot 2^n\}
```

Progresión geométrica

Es una sucesión de la forma

$$t$$
, $t \cdot r$, $t \cdot r^2$, $t \cdot r^3$, $t \cdot r^4$, ...

donde el término inicial t y la razón r son números reales

Progresión geométrica

Es una sucesión de la forma

$$t$$
, $t \cdot r$, $t \cdot r^2$, $t \cdot r^3$, $t \cdot r^4$, ...

donde el término inicial t y la razón r son números reales

· La progresión geométrica se puede expresar como

$$\{a_n = t \cdot r^n\}$$

$$\Re r - - - \Im n$$

• 2, 2/3, 2/9, 2/27, 2/81, ...
$$9_n = 2\left(\frac{1}{3}\right)^n$$

- 10, 50, 250, 1250, 6250, ... $\{\alpha_n = 10.5^n\}$
- 3, 6, 12, 25, 50, 100, 200, ...no es progresión geométrica
- 1, 6, 8, 12, 25, ...
- 2, 2/3, 2/9, 2/27, 2/81, ...

- 10, 50, 250, 1250, 6250, ... $\{a_n = 10.5^n\}$
- 3, 6, 12, 25, 50, 100, 200, ...no es progresión geométrica
- 1, 6, 8, 12, 25, no es progresión geométrica
- 2, 2/3, 2/9, 2/27, 2/81, ... $\{a_n = 2 \cdot (1/3)^n\}$

$$\Theta_n = S_x 2^{1}$$

$$Q_0 = -3_x - 1^0$$

- 5, 10, 20, 40, $\{\alpha_n = 5 \cdot 2^n\}$
- -4, -2, 0, 2, 4, 6, no es progresión geométrica
- 3, -3, 3, -3, ...
- 1/2, 1/6, 1/12, 1/18, ...

- 5, 10, 20, 40, $\{a_n = 5 \cdot 2^n\}$
- -4, -2, 0, 2, 4, 6, no es progresión geométrica
- 3, -3, 3, -3, $\{a_n = 3 \cdot (-1)^n\}$
- 1/2, 1/6, 1/12, 1/18, no es progresión geométrica

- Dadas las siguientes sucesiones indique cuáles son progresiones aritméticas y cuáles progresiones geométricas
- Exprese las progresiones aritméticas en la forma $\{a_n=t+n\cdot d\}$ y las geométricas en la forma $\{a_n=t\cdot r^n\}$

Sucesión	Progresión aritmética	Progresión geométrica	No es ni progresión aritmética ni geométrica
-3, -7, -11, -15, -19,	an 3+1 (- 4)	
-2, -7/3, -8/3, -3, -10/3,	905-54067)	
3, 12, 48, 192, 768,)	Presert	

Sumatorias

Carl Friedrich Gauss

- Contribuyó a la teoría de números, estadística, astronomía y óptica
- Encontró la fórmula para la sumatoria de 1 a n en una asignación de clase de primaria
- Inventó la aritmética modular
- Descubrió la construcción de un heptadecágono

1777- 1855

Heptadecágono

Johann Bartels 1769-1836

Calcular la sumatoria

Calcular la sumatoria

$$1+2+3+4+5+...+100=\sum_{i=1}^{100} i$$

donde la variable i se conoce como el **índice** de la sumatoria y toma los valores **enteros** entre el límite inferior y superior

$$1+2+3+4+5+...+100=\sum_{i=1}^{100} i = 5050$$

a)
$$\sum_{i=1}^{5} i^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 55$$

b)
$$\sum_{i=1}^{3} \left(\frac{1}{i}\right) = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} = 1,8333$$

c)
$$\sum_{i=1}^{8} (-1)^{i} = 1 + 1 + 1 - 1 + 1 = 1$$

a)
$$\sum_{i=1}^{5} i^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 55$$

b)
$$\sum_{i=1}^{3} \left(\frac{1}{i}\right) = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} = \frac{11}{6}$$

c)
$$\sum_{i=4}^{8} (-1)^{i} = (-1)^{4} + (-1)^{5} + (-1)^{6} + (-1)^{7} + (-1)^{8} = 1$$

b)
$$\sum_{k=0}^{3} 2^k = 2^6 + 2^1 + 2^2 + 2^3 = 15$$

c)
$$\sum_{j=5}^{9} (j-2) = 3 + 4 + 5 + 6 + 1 = 25$$

d)
$$\sum_{k=2}^{5} 2 \cdot k = 9 + 6 + 8 + 10 = 28$$

a)
$$\sum_{k=1}^{4} 1 = 1 + 1 + 1 + 1 = 4$$

b)
$$\sum_{k=0}^{3} 2^k = 2^0 + 2^1 + 2^2 + 2^3 = 15$$

c)
$$\sum_{j=5}^{9} (j-2) = (5-2) + (6-2) + (7-2) + (8-2) + (9-2) = 25$$

d)
$$\sum_{k=2}^{3} 2 \cdot k = 2 \cdot 2 + 2 \cdot 3 + 2 \cdot 4 + 2 \cdot 5 = 28$$

Forma cerrada

La forma cerrada de una sumatoria permite conocer el valor de la suma de forma directa

Forma cerrada

La forma cerrada de una sumatoria permite conocer el valor de la suma de forma directa

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

Forma cerrada

La forma cerrada de una sumatoria permite conocer el valor de la suma de forma directa

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$
• 1+2+3+4+5+...+100=
$$\sum_{k=1}^{100} k = ?$$

Forma cerrada

La forma cerrada de una sumatoria permite conocer el valor de la suma de forma directa

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

• 1+2+3+4+5+...+100=
$$\sum_{k=1}^{100} k = \frac{100 \cdot 101}{2} = 5050$$

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6} \qquad \sum_{i=1}^{n} c = c \cdot n$$

$$\sum_{i=1}^{n} c = c \cdot n$$

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

$$\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}$$

$$\sum_{k=0}^{n} ar^k = \frac{ar^{n+1} - a}{r-1} \text{ , si } r \neq 1$$

$$\sum_{k=0}^{n} ar^k = (n+1)a \text{ , si } r=1$$

$$\sum_{k=0}^n ar^k = (n+1)a$$
 , si r=1

a)
$$\sum_{j=0}^{8} \frac{3}{3} \cdot (5)^{j}$$
 $\sum_{j=0}^{6} q \gamma^{j} = \frac{2\gamma^{5} - 2}{\gamma - 1} = \frac{3x5^{9} - 3}{4}$

b)
$$\sum_{i=1}^{50} i^2 = \sum_{i=1}^{n} i^2 - n(n+1)(2n+1) = 50(51)(101)$$

a)
$$\sum_{j=0}^{8} 3 \cdot (5)^j = \frac{3 \cdot 5^9 - 3}{5 - 1} = 1464843$$

b)
$$\sum_{i=1}^{50} i^2 = \frac{50(51)(101)}{6} = 42925$$

a)
$$\sum_{j=0}^{8} 3 \cdot (5)^j = \frac{3 \cdot 5^9 - 3}{5 - 1} = 1464843$$

b)
$$\sum_{i=1}^{50} i^2 = \frac{50(51)(101)}{6} = 42925$$

c)
$$\sum_{k=1}^{5} k^3 = \frac{\int_{0}^{2} (1) + 1}{4} = \frac{25(36)}{4}$$

d)
$$\sum_{j=1}^{5} (j+j^2) = \sum_{j=1}^{5} j + \sum_{j=1}^{5} j^2 = 5 \frac{(6)}{5} \frac{(11)}{6}$$

e)
$$\sum_{i=1}^{100} 3 = 300$$

a)
$$\sum_{j=0}^{3} 3 \cdot (5)^j = \frac{3 \cdot 5^9 - 3}{5 - 1} = 1464843$$

b)
$$\sum_{i=1}^{50} i^2 = \frac{50(51)(101)}{6} = 42925$$

c)
$$\sum_{k=1}^{5} k^3 = \frac{5^2 (6)^2}{4} = 225$$

d)
$$\sum_{j=1}^{5} (j+j^2) = \sum_{j=1}^{5} j + \sum_{j=1}^{5} j^2 = \frac{5 \cdot 6}{2} + \frac{5 \cdot 6 \cdot 11}{6} = 70$$

e)
$$\sum_{i=1}^{100} 3 = 3.100 = 300$$

a)
$$\sum_{i=2}^{60} i^2$$
 $\sum_{i=1}^{5} i^2$... $1^2 + 2^2 + 3^2 + ... + 1^2$
b) $\sum_{j=1}^{8} 3 \cdot (5)^j$ $2^2 + 3^2 + ... + 1^2$
c) $\sum_{i=2}^{5} k^3$ $\sum_{i=2}^{6} i^2 - 1^2 \cdot \sum_{i=1}^{6} i^3 - 1^2 \cdot$

$$\frac{8}{3(5)^{3}} = 3(5)^{3} - 3(5)^{3} + 3(5$$

$$\frac{S}{S} = \frac{1}{1}$$

$$\frac{S}{K^{3}} = \frac{S^{2}(6)^{2} - 1^{3} - 2^{3}}{4}$$

$$\frac{S}{K^{2}} = \frac{S^{2}(6)^{2} - 1^{3} - 2^{3}}{4}$$

$$\frac{1=500}{5000} = \frac{5000}{5000} = \frac{5000}{50$$

a)
$$\sum_{i=2}^{50} i^2 = \sum_{i=1}^{50} i^2 - 1^2 = 42925 - 1 = 42924$$

b)
$$\sum_{j=1}^{8} 3 \cdot (5)^j = \sum_{j=0}^{8} 3 \cdot (5)^j - 3 \cdot (5)^0 = 1464840$$

c)
$$\sum_{k=3}^{5} k^3 = \sum_{k=1}^{5} k^3 - 1^3 - 2^3 = 225 - 1 - 8 = 216$$

a)
$$\sum_{i=2}^{50} i^2 = \sum_{i=1}^{50} i^2 - 1^2 = 42925 - 1 = 42924$$

b)
$$\sum_{j=1}^{8} 3 \cdot (5)^j = \sum_{j=0}^{8} 3 \cdot (5)^j - 3 \cdot (5)^0 = 1464840$$

c)
$$\sum_{k=3}^{5} k^3 = \sum_{k=1}^{5} k^3 - 1^3 - 2^3 = 225 - 1 - 8 = 216$$

d)
$$\sum_{k=3}^{10} 7 \cdot (-3)^k$$

a)
$$\sum_{i=2}^{50} i^2 = \sum_{i=1}^{50} i^2 - 1^2 = 42925 - 1 = 42924$$

b)
$$\sum_{j=1}^{8} 3 \cdot (5)^j = \sum_{j=0}^{8} 3 \cdot (5)^j - 3 \cdot (5)^0 = 1464840$$

c)
$$\sum_{k=3}^{5} k^3 = \sum_{k=1}^{5} k^3 - 1^3 - 2^3 = 225 - 1 - 8 = 216$$

d)
$$\sum_{k=3}^{10} 7 \cdot (-3)^k = 310009 - (49) = 309960$$

a)
$$\sum_{k=-2}^{10} k$$

$$= 2 + -1 + 0 + 1 + 2 \dots$$

$$= \sum_{k=-2}^{10} k + (-2) + (-1) + 0$$
b)
$$\sum_{k=-3}^{20} k^{2}$$

$$= \sum_{k=-2}^{10} K + (-2) + (-1) + (-1) + (-2)$$

a)
$$\sum_{k=-2}^{10} k = (-2) + (-1) + (0) + \sum_{k=1}^{10} k = -3 + \frac{10 \cdot 11}{2} = 52$$

b)
$$\sum_{k=-3}^{20} k^2 = (-3)^2 + (-2)^2 + (-1)^2 + (0)^2 + \sum_{k=1}^{20} k^2 = 2884$$

c)
$$\sum_{k=-2}^{15} k^3 = (-2)^3 + (-1)^3 + (0)^3 + \sum_{k=1}^{15} k^3 = 14391$$

Calcule las siguientes sumatorias.

Muestre el procedimiento realizado

•
$$\sum_{k=3}^{16} 5 \cdot (-2)^k = \sum_{k=0}^{16} 5(-2)^k - \sum_{k=0}^{2} 5(-2)^k$$

• $\sum_{k=-3}^{15} k^2 = \sum_{k=1}^{15} k^2 + (0)^2 + (-1)^2 + (-2)^2 + (-3)^2$

$$\frac{100}{\sum_{i=1}^{100}} 2i \xrightarrow{i=1}^{100}$$

$$\frac{1-1}{100}$$
 $\frac{1-1}{100}$ $\frac{1-1}{100}$ $\frac{1-1}{100}$ $\frac{1-1}{100}$

Sumas sobre conjuntos

$$\sum_{S \in \{0,2,4\}} S$$

$$P = \{2,3,5,8,9,12,22\}$$

$$\sum_{j \in P} j \rightarrow \{1\} \sum_{j \in P} z_{j} = 122$$

Sumas sobre conjuntos

Representa la suma de los valores de s para todos los miembros del conjunto {0,2,4}

$$\sum_{S \in \{0,2,4\}} S$$

Sumas sobre conjuntos

Representa la suma de los valores de s para todos los miembros del conjunto {0,2,4}

$$\sum_{S \in \{0,2,4\}} s = 0 + 2 + 4 = 6$$

Dado S={1,3,5,7}, indique cuáles son los valores de las siguiente sumas:

a)
$$\sum_{j \in S} j$$
 \subseteq

b)
$$\sum_{j \in S} j^2$$

c)
$$\sum_{i \in S} 1$$

Dado S={1,3,5,7}, indique cuáles son los valores de las siguiente sumas:

a)
$$\sum_{j \in S} j = 1 + 3 + 5 + 7 = 16$$

b)
$$\sum_{i \in S} j^2 = 1^2 + 3^2 + 5^2 + 7^2 = 84$$

c)
$$\sum_{j \in S} 1 = 1 + 1 + 1 + 1 = 4$$

$$\sum_{i=0}^{n} \sum_{j=0}^{n} \frac{1}{j} = 0$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{1}{i} = 0$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \frac{1}{i} = 0$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{1}{i} = 0$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{1}{i} = 0$$

$$\sum_{i=1}^{n} \sum_{j=1$$

	و ر ا				ı			Λ	
•		7	3	, , , , , , , , , , , , , , , , , , ,		5	7 K <u>2</u> 0	5	1_~ (
\bigcirc		<u>S</u> ø		-	~ V Q	KE	1	<u></u> Ξ ,	1
1	17	51	31	~ ~ ^	· U	\ <u>\</u>	₽ .	n (1	7-1
2	12	27	3~		'\\	< 	- v \	_	2
3	13	$S_{\mathcal{J}}$	33	~ ^ ^	- U3 /	\ \ \ \ \			\
- 7						1/-			·
,	1	ح ں	3)	\bigcap	ν			,
, ,							= 1		
						1			

$$\sum_{i=0}^{j=0} \sum_{i=0}^{j=0} j_{i}$$

$$\frac{30}{30} \left(\frac{0.041}{3000} \right) = 30.04 + \frac{50}{200}$$

$$\frac{30}{3000} \left(\frac{0.041}{3000} \right) = 30.04 + \frac{50}{2000}$$

$$\frac{30}{3000} \left(\frac{0.041}{3000} \right) = 30.04 + \frac{50}{2000}$$

$$\frac{30}{3000} \left(\frac{0.041}{3000$$

 $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1$

 $\frac{2}{(1+1)} - 6 \left(\frac{2}{(1+1)(2n+1)} + (0+(-1)+(-2)^2 + (-3)^2 +$

 $\frac{1}{1}$ $\frac{1}$

 $\left(\begin{array}{c} 1 \\ 1 \\ 2 \end{array}\right) = \begin{bmatrix} 1 \\ 2 \\ 2 \end{array}\right)$

$$\sum_{i=5}^{5} \frac{3^{i}}{3^{i}}$$

