

# Screening of Protein Libraries by Anchor Less Display (ALD) and FACS



FIG. 1

# Isolation of Affinity Improved Mutants by Two Rounds of Sorting



*Size of the library =  $2 \times 10^6$  transformants*

FIG. 2



FIG. 3



FIG. 4



**FIG. 5**



**FIG. 6A**

**FIG. 6B**



**FIG. 6C**

10

GlnValGlnLeuLeuGlnSerAlaAlaGluValLysLysProGlyGluSerLeuLys  
CAGGTGCAGCTGTTGCAGTCTGCAGCAGAGGTGAAAAAGCCGGGGAGTCTCTGAAG  
G AG GG G GCT GTC T A G C GA  
ValGlu GlyGlyGlyLeuVal Gly Arg

20

30 CDR1

IleSerCysLysGlySerGlyTyrSerPheThrSerTyrTrpIleGlyTrpValArg  
ATCTCCTGTAAGGGTTCTGGATACAGCTTACCAGCTACTGGATCGGCTGGGTGCGC  
C GCA CC T C C GTGA AC GA A C  
Leu AlaAla PheThr SerAsp TyrMetSer Ile

40

52a

GlnMetProGlyLysGlyLeuGluTrpMetGlyIleIleTyrProGlyAspSerAsp  
CAGATGCCCGGGAAAGGCCTGGAGTGGATGGGATCATCTATCCTGGTACTCTGAT  
GCT A G G G TTCATAC TAG AG A GTAGTACC  
Ala ValSerTyr SerSerSerGly Thr

CDR2

70

ThrArgTyrSerProSerPheGlnGlyGlnValThrIleSerAlaAspLysSerIle  
ACCAGATAACAGCCCGTCCTCCAAGGCCAGGTACCACATCTCAGCCGACAAGTCCATC  
TATAC GCAGAC TG GA G GAT CAGG CG AG  
IleTyr AlaAsp ValLys ArgPhe Arg AsnAlaLys

80

82a b c

90

SerThrAlaTyrLeuGlnTrpSerSerLeuLysAlaSerAspThrAlaValTyrTyr  
AGCACCGCCTACCTGCAGTGGAGCAGCCTGGACACGGCCGTGTATTAC  
A T ACTG T AAT A GA GA  
AsnSerLeu MetAsn Arg Glu

CDR3

110

CysAlaArgAlaSerProSerGlyPheAspTyrTrpGlyGlnGlyThrLeuValThr  
TGTGCAAGAGCTTCTCCTCGGGGTTGACTATTGGGGCCAAGGTACCCTGGTCACC  
ACGGG TT C  
ThrGlyPhePro  
A G AT  
ThrTyr

ValSerSer

GTCTCGAGT

**FIG. 7A**

20

CAGTCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACC  
GlnSerValLeuThrGlnProProSerAlaSerGlyThrProGlyGlnArgValThr

CDR1 31 a b

ATCTCTTGTCTGGAAGCAGCTCCAACATCGGAAGTAATTATGTATACTGGTACCAG  
IleSerCysSerGlySerSerAsnIleGlySerAsnTyrValTyrTrpTyrGln

40

CDR2

CAGCTCCCAGGAACGGCCCCAAACTCCTCATCTATAGGAATAATCAGCGGCCCTCA  
GlnLeuProGlyThrAlaProLysLeuLeuIleTyrArgAsnAsnGlnArgProSer

60

70

GGGGTCCCTGACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATC  
GlyValProAspArgPheSerGlySerLysSerGlyThrSerAlaSerLeuAlaIle

80

CDR3

AGTGGGCTCCGGTCCGAGGATGAGGCTGATTATTACTGTGCAGCATGGATGACAGC  
SerGlyLeuArgSerGluAspGluAlaAspTyrTyrCysAlaAlaTrpAspAspSer

95 a b

100

CTGCGGGCTGTTGTATTGGCGGAGGGACCAAGCTGACCGTCCTA  
LeuArgAlaValValPheGlyGlyGlyThrLysLeuThrValLeu

G G CC  
GlyGlyPro  
CTCG ---  
ProArg---

**FIG. 7 B**



**FIG. 8**



**FIG. 9A**



**FIG. 9B**