Izmir Institute of Technology

CENG 461 – Artificial Intelligence

Representing Uncertainty with Probabilities

Introduction

- So far our examples were fully deterministic problems.
 - All actions at any state were known beforehand.
 - State transition results were also deterministic.
- Real life problems often involve uncertainty.
- We will represent this uncertainty by probabilities.
- In particular we will examine **Bayes Networks**, which can represent probabilistic relations of a large number of random variables in a compact manner.

Basic Probability

- Coin flips (H = Heads,T = Tails)
 - Fair Coin: P(H) = 0.5, P(T) = 0.5
 - ▶ Biased Coin: P(H) = p, P(T) = I p
- Repeated Independent Coin Flips
 - P(H, H) = P(H) * P(H)
 - P(H, H, T) = P(H) * P(H) * P(T)
 - P(two heads in three flips) =
 - = P(H, H, T) + P(H, T, H) + P(T, H, H)
 - = I P(H, H, H) P(T,T,H) P(T,H,T) P(H,T,T) P(T,T,T)

Joint Probability

- P(Rain):
 P(+Rain) and P(-Rain)
- P(Clouds):
 P(+Clouds) and P(-Clouds)
- P(Rain, Clouds):
 P(+Rain, +Clouds), P(+Rain, -Clouds),
 P(-Rain, +Clouds), P(-Rain, -Clouds)

Independence

If the joint probability is the product of marginal probabilities (P(X) and P(Y)) then we say the variables are independent and below equation becomes true.

$$P(X,Y) = P(X) * P(Y)$$

- For independent coin flips: P(H, H,T) = P(H) * P(H) * P(T)
- Independent random variables do not provide information about each other:

$$P(X | Y) = P(X)$$
 and $P(Y | X) = P(Y)$

- E.g.P(Having a toothache | It is raining) = P(Having a toothache)
- \blacktriangleright We denote the independence relation as $X \perp Y$

Dependence and Conditional Probability

- Knowing the value of a random variable might affect the probability of the other, we call them dependent.
- We write the conditional probability of X given the value of Y as P(X | Y).
- We also know that

$$\Sigma_{X} P(X \mid Y) = 1$$

$$\Sigma_{Y} P(Y \mid X) = 1$$

This also tells $P(-X \mid Y) = 1 - P(X \mid Y)$

Exercise: Foreign Language

- A foreign language containing only the letters {a, b} has the following properties:
 - For the first letter of the word: $P(L_1 = a) = 0.4$,
 - If the previous letter is a, then the probability for the following letter is $P(L_N = a \mid L_{N-1} = a) = 0.8$
 - If the previous letter is b, then the probability for the following letter is $P(L_N = a \mid L_{N-1} = b) = 0.3$

Compute

- ▶ The probability of the words "aba", "aaa"
- ▶ The probability that a three letter word will contain two 'b's
- The probability that the second letter will be 'a'
- ▶ The probability that the third letter will be 'a'

Joint Probability from Conditionals

The joint distribution P(X,Y) can be written in terms of the conditionals and the marginal probabilities as

$$P(X,Y) = P(X | Y) * P(Y) = P(Y | X) * P(X)$$

▶ E.g.:

P(Having a toothache | Having a cavity)=0.8

P(Having a cavity)=0.3

P(Having a toothache, Having a cavity)= 0.24

Marginalization and Total Probability

We can calculate the marginal probabilities from the joint distribution by summation:

$$P(Y) = \Sigma_X P(Y, X)$$

This can also be written as the total probability of all possible outcomes of one of the variables

$$P(Y) = \Sigma_i P(Y \mid X = i) * P(X = i)$$

Exercise

Consider that different coin flips are dependent

$$P(X_1 = H) = 0.5$$
, then $P(X_1 = T) = 0.5$
 $P(X_2 = H \mid X_1 = H) = 0.9$ $P(X_2 = T \mid X_1 = H) = 0.1$
 $P(X_2 = T \mid X_1 = T) = 0.8$ $P(X_2 = H \mid X_1 = T) = 0.2$
 $P(X_2 = H) = ?$

Solution:

$$P(X_2=H) = P(X_2=H \mid X_1=H) \cdot P(X_1=H) + P(X_2=H \mid X_1=T) \cdot P(X_1=T)$$

= 0.9 * 0.5 + 0.2 * 0.5 = 0.55

Bayes' Rule

Remember the joint probability

$$P(X,Y) = P(X | Y) * P(Y) = P(Y | X) * P(X)$$

We can derive the Bayes' Rule from the above equality

$$P(X \mid Y) = \frac{P(Y \mid X) * P(X)}{P(Y)} = \frac{P(Y \mid X) * P(X)}{\sum_{i} P(Y \mid X = i) * P(X = i)}$$
posterior total probability

This is probably the most important equation in probabilistic analysis.

Exercise

Consider the following cancer diagnostic problem:

```
    P(+Cancer) = 0.01
    P(+Test | +Cancer) = 0.9
    P(+Test | +Cancer) = 0.9
    P(-Test | +Cancer) = 0.1
    P(-Test | -Cancer) = 0.8
```

- Calculate P(+Cancer | +Test)
- Solution:

$$P(+Cancer | +Test) = P(+Test | +Cancer) \cdot P(+Cancer) / P(+Test)$$

$$= \frac{P(+Test | +Cancer) \cdot P(+Cancer)}{P(+Test | +Cancer) \cdot P(+Cancer) + P(+Test | -Cancer) \cdot P(-Cancer)}$$

$$= \frac{0.9 * 0.01}{0.9 * 0.01 + 0.2 * 0.99} = 0.043$$

Simple Bayes Networks

- We can graphically represent the joint distribution of a set of variables by a directed graph.
- We have a node for each random variable and we have edges for each conditional probability in the factorized joint distribution:

$$P(X,Y) = P(X | Y) * P(Y)$$

Simple Bayes Networks

- To write the joint distribution for a Bayes Network, we write a factor for each graph node conditioned on its parent nodes.
- Nodes without a parent correspond to marginal probabilities of the corresponding random variable:

$$P(X,Y) = P(X | Y) * P(Y)$$

Not observable

Observable

In diagnostic reasoning example: Y is cancer, we know P(Cancer)

X is test, we know P(+Test|Cancer)

We want to infer P(Cancer|+Test)

Conditional Independence

- Sometimes knowledge of one random variable affects the independence relation between two other random variables.
- In the Bayes Network below, in general, X_1 and X_2 are not independent random variables.
- Given Y, however, X_1 and X_2 are conditionally independent of each other.

$$X_1 \perp X_2 \mid Y$$

$$P(X_2|Y, X_1) = P(X_2|Y)$$

 $P(X_1, X_2, Y) = P(X_1|Y) * P(X_2|Y) * P(Y)$

Exercise

Consider the following diagnostic problem:

$$P(+C) = 0.01$$

C: Cancer

$$P(+T \mid +C) = 0.9$$

T: Test

- What if we apply the test two times?
- Calculate P(+Cancer | +T₁, +T₂)

Bayes Rule:
$$P(+C \mid +T_1, +T_2) = P(+T_1, +T_2 \mid +C) \cdot P(+C) / P(+T_1, +T_2)$$

Use conditional indepen. :
$$P(+T_1,+T_2 \mid +C) = P(+T_1,+C) \cdot P(+T_2,+C)$$

Bayes Rule becomes

$$P(+T_1|+C) \cdot P(+T_2|+C) \cdot P(+C)$$

$$P(+T_1|+C) \cdot P(+T_2|+C) \cdot P(+C) + P(+T_1|-C) \cdot P(+T_2|-C) \cdot P(-C)$$

$$= 0.9*0.9*0.01 / 0.9*0.9*0.01 + 0.2*0.2*0.99 = 0.1698$$

Conditional Independence

- We have seen that given Y, X_1 and X_2 are independent.
- Does that mean X_1 and X_2 are independent even if we do not know Y?

- In cancer diagnosis, intuitively, getting a positive test result increases the prob. of having cancer, and this raises the probability of getting a positive from a second test.
- As an exercise calculate P (+T₂| +T₁) Hint: Since they are not independent, =P(+T₂|+T₁,+C) · P(+C|+T₁) + P(+T₂|+T₁,-C) · P(-C|+T₁) =P(+T₂|+C) · P(+C|+T₁) + P(+T₂|-C) · P(-C|+T₁)

Absolute versus Conditional Independence

- We have seen that conditional independence does not imply independence.
- ▶ How about the other way around?
- If two random variables are independent, are they always conditionally independent given a third random variable?

Absolute versus Conditional Independence

- In general independence does not imply conditional independence.
- ▶ For the Bayes Network below, given Y, X_1 and X_2 are NOT conditionally independent.

$$P(X_1, X_2, Y) = P(Y | X_1, X_2) * P(X_1) * P(X_2)$$

Exercise

- Consider the Bayes Network on the right, with H representing the event "Happy", S representing "Sunny weather", and R representing "Raise in salary".
- With the following information

$$P(+S) = 0.7$$

$$P(+R) = 0.01$$

$$P(+H \mid +S, +R) = I$$

$$P(+H \mid -S, +R) = 0.9$$

$$P(+H \mid +S, -R) = 0.7$$

$$P(+H \mid -S, -R) = 0.1$$

Calculate P(+R | +S)= 0.01

Explaining Away

- Once you know the value of Y, the probabilities of X₁ and X₂ change to explain the value of Y.
- If you also learn the value of X_1 , this might already explain the Y observation. Then, X_2 will change since the value of Y is explained away by X_1 .

E.g. If happiness is explained away by sunny weather, changes of getting

raise decreases.

$$X_1 \perp X_2$$
 $X_1 \perp X_2$
 $X_1 \perp X_2 \mid Y$

$$P(X_1, X_2, Y) = P(Y | X_1, X_2) * P(X_1) * P(X_2)$$

Exercise: Explain away

 Consider the Bayes Network on the right, with the following information

$$P(+S) = 0.7$$
 $P(+R) = 0.01$

- $P(+H \mid +S, +R) = I$
- $P(+H \mid -S, +R) = 0.9$
- $P(+H \mid +S, -R) = 0.7$
- $P(+H \mid -S, -R) = 0.1$

Bayes rule:
$$P(+R|+H,+S) = P(+H|+R,+S) \cdot P(+R|+S) / P(+H|+S)$$

$$P(+H|+R,+S) \cdot P(+R)$$

$$P(+H|+R,+S) \cdot P(+R) + P(+H|-R,+S) \cdot P(-R)$$

$$= 0.0142$$

Exercise: Explain away

Same exercise but this time we do not know about the weather.

$$P(+S) = 0.7$$
 $P(+R) = 0.01$

- $P(+H \mid +S, +R) = I$
- $P(+H \mid -S, +R) = 0.9$
- $P(+H \mid +S, -R) = 0.7$
- $P(+H \mid -S, -R) = 0.1$

Bayes rule: $P(+R|+H) = P(+H|+R) \cdot P(+R) / P(+H)$.

It may or may not be sunny. Long story short:

$$P(+H,+R,+S) + P(+H,+R,-S)$$

Remember joint prob. $P(+H,+R,+S) = P(+H|+R,+S) \cdot P(+R) \cdot P(+S)$

Exercise: Explain away

- P(+R) = 0.01
- $P(+R \mid +S) = P(+R) = 0.01$
- $P(+R \mid +H) = 0.0185$
- $P(+R \mid +H, +S) = 0.0142$
 - Happiness explained away by sunny weather
 - S and R are not conditionally independent, i.e. given H, they become dependent.
- P(+R | +H, -S) = ?
 Do at home.

Bayes Networks

The joint distribution for the network on the right is

$$P(A, B, C, D, E) = P(A) * P(B)$$

$$* P(C|A, B)$$

$$* P(D|C) * P(E|C)$$

Parameter Counts

- Bayesian networks are more compact than full joint distributions.
- How many parameters (probability values) are required to specify the full joint distribution of 5 binary random variables?

3 |

How many parameters are needed to specify the joint distribution of the Bayes network on the right?
10

Example

How many parameters are needed to represent the complete joint distribution of 9 binary random variables?

 \rightarrow 511

How many parameters are needed to represent the network on the right?

 \rightarrow 23

- The concept of D-separation (D stands for dependence) help us to find out if two random variables are dependent or not.
- For the graph on the right,

```
    is D ⊥ E ?
    is D ⊥ E | C ?
    is A ⊥ E | B ?
    is A ⊥ E | C ?
    is A ⊥ B | C ?
```


Definitions:

- Given a graph, two random variables are D-connected if any path between them is active.
- An active path carries information, so it causes the connected random variables to be dependent.
- A path is active if every node on it is active.
- We need to decide when a node is active, the rest follows from the previous definitions.

When none of the nodes are in the conditioned set, i.e. when C is not given, all but the last paths are active.

If node C is in the conditioned set, the path is active only in the last case:

Lastly, if a descendant of node C is in the conditioned set, (e.g. node Z is given here), the node C is active also active as a path element between A and B:

For the graph on the right

is $C \perp A$? no is $C \perp A \mid B$? yes is $B \perp D$? no is $C \perp D$? no is $C \perp D \mid A$? yes is $C \perp E \mid D$? yes

Exercise

- I. $F \perp A$ yes
- 2. F ⊥ A | D no
- 3. $F \perp A \mid G$ no
- 4. $F \perp A \mid H$ yes

