Blockchain and Cryptocurrency

Reference Book

- There is enough material on the Internet and book as such is not required
- For readers interested to delve deeper: Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller and Steven Goldfeder,
 Bitcoin and Cryptocurrency Technologies

What is Blockchain?

- Blockchain is a system comprised of..
 - Transactions
 - Immutable ledgers
 - Decentralized peers
 - Encryption processes
 - Consensus mechanisms
 - Optional Smart Contracts

Let's explore these concepts

Transactions

- As with enterprise transactions today, Blockchain is a historical archive of decisions and actions taken
- Proof of history, provides provenance

Notable transaction use cases

Land registration – Replacing requirements for research of Deeds (Sweden Land Registration)

Personal Identification – Replacement of Birth/Death certificates, Driver's Licenses, Social Security Cards (Estonia)

Transportation – Bills of Lading, tracking, Certificates of Origin, International Forms (Maersk/IBM)

Banking – Document storage, increased back office efficiencies (UBS, Russia's Sberbank)

Manufacturing – Cradle to grave documentation for any assembly or sub assembly

Food distribution – Providing location, lot, harvest date Supermarkets can pin point problematic food (Walmart)

Audits – Due to the decentralized and immutable nature of Blockchain, audits will fundamentally change.

• Demo - https://anders.com/blockchain/blockchain.html

Decentralized Peers

 Rather than the centralized "Hub and Spoke" type of network, Blockchain is a decentralized peer to peer network. Where each NODE has a copy of the ledger.

Legacy Network
Centralized DB

Blockchain Network
Distributed Ledgers

Consensus

- Ensures that the next block in a blockchain is the one and only version of the truth
- Keeps powerful adversaries from derailing the system and successfully forking the chain

Smart Contracts

- Computer code
- Provides business logic layer prior to block submission

Blockchain	Smart Contracts?	Language	
Bitcoin	No		
Ethereum	Yes	Solidity	
Hyperledger	Yes	Various	GoLang, C++, etc, depends
Others	Depends	Depends	

Blockchain Capabilities

A shared ledger technology allowing any participant in the business network to see the system of record (ledger)
Ensuring appropriate visibility; transactions are secure, authenticated &

All parties agree to network verified transaction

Business terms embedded in transaction database & executed with transactions

Blockchain Essentials

verifiable

- 1. A business problem to be solved
 - That cannot be solved with more mature technologies
- 2. An identifiable business network
 - With Participants, Assets and Transactions
- 3. A need for trust
 - Consensus, Immutability, Finality or Provenance

Negative Indicators, Anti-Patterns

- Need high performance (millisecond) transactions
- 2. Small organization (no business network)
- 3. Looking for a database replacement
- 4. Looking for a messaging replacement
- 5. Looking for transaction processing replacement
- 6. Process and metrics are not clear within the ecosystem
- 7. Value, velocity and/or variability are not present

Developing a Blockchain

Blockchain terminologies

Transaction & blocks

 A transaction is a value transfer; a block is a collection of transactions on the bitcoin network, gathered into a block that are hashed and added to the blockchain.

Image source: https://pplware.sapo.pt/informacao/monero-xmr-uma-moeda-segura-privada-e-sem-rasto/

Blockchain

Blockchain: Distributed, Decentralized, Immutable

Blockchain

Blockchain

* target: a deterministic function of previous blocks

Bitcoin: Cryptocurrency

Blockchain Implementation

Public Key Crypto: Encryption

Key pair: public key and private key

Public Key Crypto: Digital Signature

- First, create a message digest using a cryptographic hash
- Then, encrypt the message digest with your private key

Cryptographic Hash Functions

- Consistent: hash(X) always yields same result
- One-way: given Y, hard to find X s.t. hash(X) =
- Collision resistant: given hash(W) = Z, hard to find X such that hash(X) = Z

Key Challenges

- 1. No stealing: Only Alice can move her money
- 2. Minting: Fair money creation
- 3. No double-spending: Alice cannot duplicate her money

Key Challenges

- No stealing: Only Alice can move her money Cryptographic signatures
- 2. No double-spending: Alice cannot duplicate her money Global ledger
- 3. Minting: Fair money creation Mint for proof of work

Security in Bitcoin

- Authentication
 - Am I paying the right person? Not some other impersonator?
- Integrity
 - Is the coin double-spent?
 - Can an attacker reverse or change transactions?
- Availability
 - Can I make a transaction anytime I want?
- Confidentiality
 - Are my transactions private? Anonymous?

Security in Bitcoin

- Authentication → Public Key Crypto: Digital Signatures
 - Am I paying the right person? Not some other impersonator?
- Integrity → Digital Signatures and Cryptographic Hash
 - Is the coin double-spent?
 - Can an attacker reverse or change transactions?
- Availability

 Broadcast messages to the P2P network
 - Can I make a transaction anytime I want?
- - Are my transactions private? Anonymous?

60 Seconds on Cryptographic Hashing

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

String input

256 bit number (for example)

Given a 256bit number h, one cannot find an input string that results in h faster than repeatedly guessing inputs x and calculating H(x).

Bitcoin

- Electronic coin == chain of digital signatures
- BitCoin transfer: Sign(Previous transaction + New owner's public key)
- Anyone can verify (n-1)th owner transferred this to the nth owner.
- Anyone can follow the history

Given a BitCoin

Blockchain terminologies

• Distributed ledger - How it works?

Source:

https://ccl.yale.edu/sites/default/files/files/A%20Brief%20Introduction%20to%20Blockchain%20(Final%20 without%20Notes).pdf

Specific issues

Blockchain terminologies

Mining

 This process of solving cryptographic problems using computing hardware also triggers the release of cryptocurrencies

Source: https://marmelab.com/blog/2016/05/12/blockchain-expliquee-aux-

Use of Cryptographic Hashes

Proof-of-work

- Block contains transactions to be validated and previous hash value.
- □ Pick a nouce such that **H(prev hash, nounce, Tx) < E**. E is a variable that the system specifies. Basically, this amounts to finding a hash value who's leading bits are zero. The work required is exponential in the number of zero bits required.
- □ Verification is easy. But proof-of-work is hard.

BitCoin

- Validation
 - Is the coin legit? (proof-of-work) → Use of Cryptographic Hashes
 - How do you prevent a coin from double-spending? → consensus based verification
- Creation of a virtual coin/note
 - How is it created in the first place? -> Provide incentives for miners
 - How do you prevent inflation? (What prevents anyone from creating lots of coins?) → Limit the creation rate of the BitCoins

Preventing Double-spending

- The only way is to be aware of all transactions.
- Each node (miner) verifies that this is the first spending of the Bitcoin by the payer.
- Only when it is verified it generates the proof-of-work and attach it to the current chain.

Key Challenges

- No stealing: Only Alice can move her money Cryptographic signatures
- No double-spending: Alice cannot duplicate her money Global ledger
- 3. Minting: Fair money creation Mint for proof of work

Key Challenges

- 1. No stealing: Only Alice can move her money
 - **Cryptographic signatures**
- No double-spending: Alice cannot duplicate her money
 Global ledger
- 3. Minting: Fair money creation Mint for proof of work

Who runs the public key infrastructure? Who maintains the public ledger? Who gives money for puzzles?

Can this be decentralized?

BitCoin Economics

- Rate limiting on the creation of a new block
 - □ Adapt to the "network's capacity"
 - □ A block created every 10 mins (six blocks every hour)
 - How? Difficulty is adjusted every two weeks to keep the rate fixed as capacity/computing power increases
- □ N new Bitcoins per each new block: credited to the miner → incentives for miners
 - \square N was 50 initially. In 2013, N=25.
 - □ Halved every 210,000 blocks (every four years)
 - □ Thus, the total number of BitCoins will not exceed 21 million. (After this miner takes a fee)

Mining – Minting for Proof of Work

Mining – Minting for Proof of Work

Computationally difficult puzzle:

Find x such that
$$H(x|y) < t$$

Solver guesses values for x until finding a valid one

- Different strings y for different puzzles
- The target t determines the difficulty, average time to solve

Forks

Natural in a distributed system

Fork Resolution

- Longest chain wins
- Transactions are reverted
- Double-spending a threat

Fork Resolution

A transaction is **confirmed** when it is **buried** deep enough