# Recitation 13 - Homework 6 and More Reduction Examples

John Chilton

November 29, 2006



► Homework 6 Problems and Examples

Problem 1. Show  $EQ_{CFG}$  is undecidable.

▶ Pick a problem you know is undecidable, ALL<sub>CFG</sub> seems relevent

## Problem 1. Show $EQ_{CFG}$ is undecidable.

- ▶ Pick a problem you know is undecidable, ALL<sub>CFG</sub> seems relevent
- ▶ Direct Reduction: Show how deciding EQ<sub>CFG</sub> allows for deciding ALL<sub>CFG</sub>, by describing a TM for deciding ALL<sub>CFG</sub> using a decider for EQ<sub>CFG</sub>

## Problem 1. Show $EQ_{CFG}$ is undecidable.

- ▶ Pick a problem you know is undecidable, ALL<sub>CFG</sub> seems relevent
- Direct Reduction: Show how deciding EQ<sub>CFG</sub> allows for deciding ALL<sub>CFG</sub>, by describing a TM for deciding ALL<sub>CFG</sub> using a decider for EQ<sub>CFG</sub>
- ▶ Mapping Reduction: Show  $ALL_{CFG} \leq_M EQ_{CFG}$ . For a given grammar G, describe how to make pair  $(G_1, G_2)$  such that G generates all strings iff  $L(G_1) = L(G_2)$ .

Problem 2. If  $A \leq_M B$  and B is regular, does that imply A is regular? Why or why not?

- Consider carefully the power of a computable mapping function
- ▶ Consider a simple regular language *B*, such as {1}.

Problem 3. Show that T is undecidable in two ways.

$$T = \{M \mid M \text{ accepts } w^R \text{ whenever } M \text{ accepts } w\}$$

Show two ways.

- ▶ Do this by applying Rice's Theorem.
- Do this by a reduction

$$T = \{M \mid M \text{ accepts } w^R \text{ whenever } M \text{ accepts } w\}$$

Prove T is undecidable by Rice's Theorem. Do this by showing two things:

- ► Show *T* is non-empty and does not contain all possible Turing machines
- ▶ Show whenever  $L(M_1) = L(M_2)$ ,  $M_1 \in T$  iff  $M_2 \in T$

$$T = \{M \mid M \text{ accepts } w^R \text{ whenever } M \text{ accepts } w\}$$

Prove T is undecidable by reduction. Show  $A \leq_M T$  for some undecidable language A or explicitly lay out a reduction proof like 5.2 or 5.3.

Read through proof that  $REGULAR_{TM}$  is undecidable.

$$SEVEN_{TM} = \{M \mid M \text{ accepts some } w \text{ such that } |w| = 7\}$$

Show  $SEVEN_{TM}$  is undecidable. Will do this using reduction and Rice's Theorem.

By contradiction and reduction. Assume  $SEVEN_{TM}$  is decidable, then the following decides  $A_{TM}$ , a contradiction:

By contradiction and reduction. Assume  $SEVEN_{TM}$  is decidable, then the following decides  $A_{TM}$ , a contradiction:

- T On input (M, w) where M is a TM.
  - 1. Construct the following TM, S:
    - S = On input x:
      - 1. If  $|x| \neq 7$ , accept.
      - 2. Else, Simulate M on w, accept if it does.
  - 2. Run SEVEN<sub>TM</sub> decider on S.
  - 3. If decider accepted, accept, else reject.

By contradiction and reduction. Assume  $SEVEN_{TM}$  is decidable, then the following decides  $A_{TM}$ , a contradiction:

- T On input (M, w) where M is a TM.
  - 1. Construct the following TM, *S*:
    - S = On input x:
      - 1. If  $|x| \neq 7$ , accept.
      - 2. Else, Simulate M on w, accept if it does.
  - 2. Run SEVEN<sub>TM</sub> decider on S.
  - 3. If decider accepted, accept, else reject.

S will accept a string of length 7 iff M accepts w, hence deciding  $SEVEN_{TM}$  would allow us to decide  $A_{TM}$ . Since  $A_{TM}$  is undecidable,  $SEVEN_{TM}$  must be undecidable.

By Rice's Theorem. Let P be the property that a given TM accepts some string of length 7.

By Rice's Theorem. Let P be the property that a given TM accepts some string of length 7.

TMs can decide  $\{0\}$  and  $\{0000000\}$ , so some TMs posses property P, but not all

 $\therefore P$  is non-trivial

By Rice's Theorem. Let P be the property that a given TM accepts some string of length 7.

TMs can decide  $\{0\}$  and  $\{0000000\}$ , so some TMs posses property P, but not all

∴ P is non-trivial

If  $M_1$  and  $M_2$  are TMs s.t.  $L(M_1) = L(M_2)$ , then  $w \in L(M_1)$  iff  $w \in L(M_2)$ , so  $M_2$  accepts some string of length 7 iff  $M_1$  does P is property of languages not machines

By Rice's Theorem. Let P be the property that a given TM accepts some string of length 7.

TMs can decide  $\{0\}$  and  $\{0000000\}$ , so some TMs posses property P, but not all

 $\therefore P$  is non-trivial

If  $M_1$  and  $M_2$  are TMs s.t.  $L(M_1) = L(M_2)$ , then  $w \in L(M_1)$  iff  $w \in L(M_2)$ , so  $M_2$  accepts some string of length 7 iff  $M_1$  does P is property of languages not machines

Since P is a non-trivial property of languages of Turing machines it is undecidable by Rice's Theorem.

### Problem 4. Consider

 $A = \{(M, w) \mid M \text{ moves left on left most tape pos. on } w\}$ 

## Problem 4. Consider

 $A = \{(M, w) \mid M \text{ moves left on left most tape pos. on } w\}$ 

Show A is undecidable.

Rice's Theorem valid?

### Problem 4. Consider

 $A = \{(M, w) \mid M \text{ moves left on left most tape pos. on } w\}$ 

- Rice's Theorem valid?
- ▶ One Approach: Reduce a simple undecidable problem about Turing machines such as  $A_{TM}$  to A

### Problem 4. Consider

 $A = \{(M, w) \mid M \text{ moves left on left most tape pos. on } w\}$ 

- Rice's Theorem valid?
- ightharpoonup One Approach: Reduce a simple undecidable problem about Turing machines such as  $A_{TM}$  to A
- ► How would a decider for this problem allow you to decide A<sub>TM</sub>

#### Problem 4. Consider

 $A = \{(M, w) \mid M \text{ moves left on left most tape pos. on } w\}$ 

- Rice's Theorem valid?
- ▶ One Approach: Reduce a simple undecidable problem about Turing machines such as  $A_{TM}$  to A
- ► How would a decider for this problem allow you to decide A<sub>TM</sub>
- Key Idea: When simulating a Turing machine, is it ever necessary to move left on the left most tape position?

Here is a somewhat similar problem. Show the following language is undecidable:

$$NO\$_{TM} = \{(M, w) \mid M \text{ never writes a } \$ \text{ to the tape on } w \}$$

Will show that a decider for  $NO\$_{TM}$ , would allow for construction of a decider for  $A_{TM}$ . Since  $A_{TM}$  is undecidable, the decider for  $NO\$_{TM}$  cannot exist and  $NO\$_{TM}$  must be undecidable.

If  $NO\$_{TM}$  were decidable then some deciding TM would decide it and the following TM would decide  $A_{TM}$ .

- T= On input (M, w) where M is a TM.
  - 1. M' := Replace \$ with \$' in formal def. of M
  - 2. w' := Replace \$ with \$' in w
  - 3. Construct the following TM, S:
    - S = On input y:
      - 1. Simulate modified M' on y.
      - 2. If M' accepts, write a \$ to the tape halt.
  - 4. Run NO\$ decider on (S, w'), if it accepts, reject, else accept.

#### Problem 5. Consider

$$A = \{(M, w) \mid M's \text{ head ever moves left on } w\}$$

$$A = \{(M, w) \mid M's \text{ head ever moves left on } w\}$$

The following TM T recognizes A.

- T On input (M, x) where M is a TM.
  - 1. Simulate M on input x.
  - 2. If at any point *M* moves left, *accept*.
  - 3. If M halts, reject.

Only recognizes A, because it does not halt if M just continues to move to the right forever. A decider will need to know when this is happening. How can it tell?

Problem 6.

$$J = \{ w \mid w = 0x \text{ for some } x \in A_{TM} \text{ or } w = 1y \text{ for some } y \in \overline{A_{TM}} \}$$

Show J and  $\overline{J}$  are not Turing-recognizable.

The only not Turing-recognizable language we have seen is  $\overline{A_{TM}}$ , so try to give a reduction from this to J and then to  $\overline{J}$ . This should be fairly straight-forward.

Problem 7. Read through pages 199-204. If everything makes sense, this problem should be pretty straight forward. If not, reread until the problem seems straight forward.

Post correspondence problem.

Post correspondence problem.

$$\left\{ \begin{bmatrix} cac \\ c \end{bmatrix}, \begin{bmatrix} b \\ abb \end{bmatrix}, \begin{bmatrix} bba \\ b \end{bmatrix} \right\}$$

Post correspondence problem.

$$\left\{ \begin{bmatrix} cac \\ c \end{bmatrix}, \begin{bmatrix} b \\ abb \end{bmatrix}, \begin{bmatrix} bba \\ b \end{bmatrix} \right\}$$

Solution:

PCP 
$$\begin{bmatrix} bba \\ b \end{bmatrix} \begin{bmatrix} bba \\ b \end{bmatrix} \begin{bmatrix} b \\ abb \end{bmatrix} \begin{bmatrix} b \\ abb \end{bmatrix}$$

MPCP Needs to start with  $\begin{bmatrix} cac \\ c \end{bmatrix}$ , no solution exists.

A MPCP instance, called P', is described on page 200-204 which reduces  $A_{TM}$  to MPCP. Show that P' always has a trivial match if we have no requirements about the first domino in a match, i.e. if we treat P' as PCP problem and not a MPCP problem.

# Some other things to talk about.

- Show J is undecidable.
- ▶ Show  $E_{TM}$  is not Turing recognizable.
- ▶ Show *EQ<sub>CFG</sub>* is co-Turing recognizable.
- A computation history problem
- ▶ Talk some more about the PCP problem.

Reducing  $A_{TM}$  to MPCP. Given some (M, w) create an instance of MPCP that has a match iff (M, w) has some accepting computation history.

Big Idea:

$$\begin{bmatrix} \# C_1 \# C_2 \# C_3 \# \dots \# C_n \# \\ \# C_1 \# C_2 \# C_3 \# \dots \# C_n \# \end{bmatrix}$$

Part 1. First domino requires bottom starts with a computation history.

$$\begin{bmatrix} # \\ #q_0w_1w_2\dots w_n\# \end{bmatrix}$$

Part 2&3.

$$\delta(q,a)=(r,b,R) ext{ add } egin{bmatrix} qa \\ br \end{bmatrix}$$
  $\delta(q,a)=(r,b,L) ext{ add } egin{bmatrix} cqa \\ rcb \end{bmatrix} (orall c \in \Gamma)$ 

Part 4&5 For all 
$$\forall a \in \Gamma$$
 add  $\begin{bmatrix} a \\ a \end{bmatrix}$ . Add  $\begin{bmatrix} \# \\ \# \end{bmatrix}$  and  $\begin{bmatrix} \# \\ \sqcup \# \end{bmatrix}$