Diversity Combining via Universal Dimension-Reducing Space-Time Transformations

Elad Domanovitz and Uri Erez

June 18th, 2018 2018 International Symposium on Information Theory

Scenario of interest

What can be guaranteed universally without any CSI at the dimension reduction transformation?

Scenario of interest

- Denote $\mathbf{y} = \mathbf{h}x + \mathbf{n}$
 - ► Signal $x \sim \mathcal{CN}(0,1)$
 - Noise is $\mathbf{n} \sim \mathcal{CN}(0, \mathbf{I})$
 - $CSI = f(\mathbf{h}) \implies \mathcal{H} = \{\mathbf{h} \ s.t. \ f(\mathbf{h}) = CSI\}$
- Assume
 - $\|\mathbf{h}\|^2 = const$, for simplicity const = 1
 - Receiver projects the received signal: $\hat{x} = \langle y, g \rangle$
 - ▶ $SNR = | < \mathbf{h}, \mathbf{g} > |^2$
- Goal: maximize worst-case SNR ⇒

$$\mathsf{SNR}^* = \min_{\mathbf{h}} \max_{\mathbf{g}(\mathit{CSI})} \min_{\mathcal{H}} |<\mathbf{h},\mathbf{g}>|^2$$

Domanovitz, Erez

Scenario of interest

CSI	Projection	$\left \begin{array}{c} \min\limits_{\mathbf{h}} \max\limits_{\mathbf{g}(\mathit{CSI})} \min\limits_{\mathcal{H}} <\mathbf{h},\mathbf{g}> ^2 \end{array} \right $	
Full (h)	$\mathbf{g} = \mathbf{h}$ (MRC)	$SNR(\mathbf{h}) = \ \mathbf{h}\ ^2$ $SNR^* = 1$	NA MA
1-bit $(h_1 \leq h_2)$	$\mathbf{g} = \begin{cases} \begin{bmatrix} 1 & 0 \end{bmatrix}^T & h_1 \ge h_2 \\ \begin{bmatrix} 0 & 1 \end{bmatrix}^T & O/W \\ \text{(Selection)} \end{cases}$	$SNR(\mathbf{h}) = max(\mathbf{h}_1 ^2, \mathbf{h}_2 ^2)$ $SNR^* = \frac{1}{2}$	32
None	?	$SNR(\mathbf{h}) = <\mathbf{h},\mathbf{g}> ^2$ $SNR^* = 0$	13

Is there something to learn from the dual problem?

Performance of dual

CSI	Projection		
Full (h)	$\mathbf{g} = \mathbf{h}$ (Beamforming)	$SNR(\mathbf{h}) = \ \mathbf{h}\ ^2$ $SNR^* = 1$	***
$ \begin{array}{c c} & \text{1-bit} \\ & (h_1 \leqslant h_2) \end{array} $	$\mathbf{g} = \begin{cases} \begin{bmatrix} 1 & 0 \end{bmatrix}^T & h_1 \ge h_2 \\ \begin{bmatrix} 0 & 1 \end{bmatrix}^T & O/W \\ \text{(Selection)} \end{cases}$	$\begin{aligned} SNR(\mathbf{h}) &= max(\mathbf{h}_1 ^2, \mathbf{h}_2 ^2) \\ SNR^* &= \frac{1}{2} \end{aligned}$	100
None	?	$SNR(\mathbf{h}) = <\mathbf{g},\mathbf{h}> ^2$ $SNR^* = 0$	

Space-time codes to the rescue

- No matter what direction we choose, $SNR^*(\mathbf{h}) = 0$
- So we change the rules of the game
- Assuming channel is fixed over multiple symbols ⇒ Unitary space-time codes
 - Still linear but over two or more time instances
- Recall Alamouti modulation

Alamouti modulation

$$\bullet \begin{bmatrix} y(1) \\ y(2)^* \end{bmatrix} = \frac{1}{\sqrt{2}} \underbrace{\begin{bmatrix} h_1 & h_2 \\ -h_2^* & h_1^* \end{bmatrix}}_{\|\mathbf{h}\|\mathbf{H}_{eff}(h_1, h_2)} \begin{bmatrix} x(1) \\ x(2) \end{bmatrix} + \begin{bmatrix} n(1) \\ n(2) \end{bmatrix}$$

- $\mathbf{H}_{\text{eff}}(h_1, h_2)$ is an **orthonormal** matrix for **any** h_1, h_2 : $\mathbf{H}_{\text{eff}}(h_1, h_2)\mathbf{H}_{\text{eff}}(h_1, h_2)^H = \mathbf{I}$
- Using an estimation of $\mathbf{H}_{\mathrm{eff}}(h_1,h_2) \Longrightarrow \hat{x} = \mathbf{H}_{\mathrm{eff}}^H \mathbf{y} = \frac{\|\mathbf{h}\|}{\sqrt{2}} \mathbf{x} + \mathbf{n}'$

$$\mathsf{SNR}(\mathbf{h}) = \frac{\|\mathbf{h}\|^2}{2}$$
, $\mathsf{SNR}^* = \frac{1}{2}$

Domanovitz, Erez

Going back to Rx scenario

- We're missing a counterpart for Alamouti modulation
- Once the question is defined, the answer is quite evident...

So what is **G** in case of Alamouti?

- Alamouti modulation (complex): $\mathbf{X} = \frac{1}{\sqrt{2}} \begin{bmatrix} -x(2)^* & x(1) \\ x(1)^* & x(2) \end{bmatrix}$
- Can be written over the reals as:

$$\frac{1}{\sqrt{2}} \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{bmatrix}
\underbrace{\begin{bmatrix}
x_R(1) \\
x_I(1) \\
x_R(2) \\
x_I(2)
\end{bmatrix}}_{\mathbf{x}}$$

- ullet Note this operation amounts to **dimension expansion** (4 \longrightarrow 8)
- We want the other way around **dimension reduction** $(8 \longrightarrow 4)...$

Linear universal combining at the receiver

- Signal received at antenna i = 1, 2, at time $t : s_i(t) = h_i x(t) + n_i(t)$
- Stack two receive symbols $\begin{bmatrix} s_1(1) & s_1(2) \\ s_2(1) & s_2(2) \end{bmatrix}$

 Note that G^T is Alamouti modulation over the reals (dimension expansion→ dimension reduction)

Domanovitz, Erez

Linear universal combining at the receiver

• The following holds :
$$\mathbf{y} = \frac{\|\mathbf{h}\|}{\sqrt{2}} \mathbf{U}(h_1, h_2)\mathbf{x} + \mathbf{G}\mathbf{n}$$

$$= \frac{\|\mathbf{h}\|}{\sqrt{2}} \mathbf{U}(h_1, h_2)\mathbf{x} + \mathbf{n}'$$
where $\mathbf{U}(h_1, h_2) = \frac{1}{\|\mathbf{h}\|} \begin{bmatrix} h_{1R} & -h_{1I} & h_{2R} & -h_{2I} \\ h_{1I} & h_{1R} & -h_{2I} & -h_{2R} \\ h_{2R} & -h_{2I} & -h_{1R} & h_{1I} \\ h_{2I} & h_{2R} & h_{1I} & h_{R1} \end{bmatrix}$

- $U(h_1, h_2)$ is an **orthonormal** matrix for any h_1, h_2 : $U^T(h_1, h_2)U(h_1, h_2) = I$
- Using an estimation of $\mathbf{U} \Longrightarrow \hat{\mathbf{x}} = \mathbf{U}^T(h_1, h_2) \cdot \mathbf{y}$ $= \frac{\|\mathbf{h}\|}{\sqrt{2}} \mathbf{x} + \mathbf{n}''$
- Remark: Channel needs to be estimated only at the end terminal

Rx combining

CSI	Projection	$\min_{\mathbf{h}} \left(\max_{\mathbf{g} = \mathbf{f}(\mathbf{CSI})} < \mathbf{y}, \mathbf{g} > \right)$	
Full (h)	$\mathbf{g} = \mathbf{h}$ (MRC)	$SNR(\mathbf{h}) = \ \mathbf{h}\ ^2$ $SNR^* = 1$	N2
1-bit $(h_1 \stackrel{?}{\lessgtr} h_2)$	$\mathbf{g} = \begin{cases} \begin{bmatrix} 1 & 0 \end{bmatrix}^T & h_1 \ge h_2 \\ \begin{bmatrix} 0 & 1 \end{bmatrix}^T & O/W \\ \text{(Selection)} \end{cases}$	$SNR(\mathbf{h}) = max(\mathbf{h}_1 ^2, \mathbf{h}_2 ^2)$ $SNR^* = rac{1}{2}$	12
None	G (Universal combining)	$SNR(\mathbf{h}) = \frac{\ \mathbf{h}\ ^2}{2}$ $SNR^* = \frac{1}{2}$	·

But can we think of any application?

- We don't like loose ends...
- Why not make use of full CSI? After all, we're talking receiver side...
- Justification for 1-bit CSI (selection)
 - Reduce number of analog to digital converters (ADC)
 - Reduce number of bits in fronthaul
- Why is selection (1-bit CSI) not good enough? What is the benefit of universality?
 - Minor: in traditional scenarios, selection has some drawbacks (complexity, delay, errors)
 - ▶ Major: in case of multi-user detection, selection fails

Potential applications - multi user

 Reduce the number of ADCs

 "Dumb" (low latency / enhanced diversity) relaying

- Ultra-reliable, low-latency communication (ad-hoc netwroking)
- Time-domain sub-Nyquist sampling

Application 1: ADC

(a) MRC - $h_{\text{eff}} = \|\mathbf{h}\|$

(c) Selection - $h_{\mathrm{eff}} = \max(|h_1|, |h_2|)$

(b) Arbitrary selection - $h_{
m eff} = h_1$

(d) Universal combining - $h_{ ext{eff}} = \frac{\|\mathbf{h}\|}{\sqrt{2}}$

Application 1: reduce number of ADC, single user

Comparison of the mutual information $I_{
m scheme}(P) = \log \left(1 + h_{
m eff,scheme}^2 P \right)$ attained by each of the schemes

Figure: 2×1 i.i.d. Rayleigh fading channel, with a target rate of $R_{\rm tar} = 2$ bits per complex symbol.

Application 1: reduce number of ADC, multi user

Comparison of the symmetric-capacity attained by each of the schemes

Figure: 8 transmitters, a common receiver equipped with two antennas. All users transmit at an equal rate $R_{\rm tar}$ such that $8R_{\rm tar}=2$ bits per complex symbol.

Theorem 1

For a Rayleigh fading $2 \times N$ MIMO-MAC, for any fixed (symmetric) target rate, at asymptotic high SNR, the universal combining scheme suffers a power penalty factor no greater than 2 with respect to an optimal receiver.

Outlook¹

- What about more than 2 Rx antennas?
 - Extensions to Alamouti: OSTBC
 - Straightforward implementation fails (rate-1 complex orthogonal designs do not exist beyond the case of two antennas)
 - ightharpoonup The problem: Effective channel is non-square \Longrightarrow not invertible
 - * Extension 1: dither
 - * Extension 2: quasi orthogonal codes
 - Other?
- Every Tx technique involving OSTBC can be considered ...
- What about more than a single antenna per user?
 - Is there a dual to Golden/Perfect codes??

Thank you for your attention

Application 2: "dumb" relaying

- "Dumb" relay = can only apply channel-independent linear processing followed by scalar quantization
- The output is fed into a rate-constrained bit pipe

- The signal received at relay i=1,2 and antenna j=1,2 is given by $s_i^i(t)=h_{i1}^i\cdot x_1(t)+h_{i2}^i\cdot x_2(t)+n_i^i(t)$.
- The corresponding channel matrix of relay i: $\mathbf{H}^i = \left[\begin{array}{cc} h^i_{11} & h^i_{12} \\ h^i_{21} & h^i_{22} \end{array} \right]$.

Application 2: "dumb" relaying

• The signal passed to the cloud from relay *i*:

$$\mathbf{y}^{i} = \mathbf{U}(h_{11}^{i}, h_{21}^{i})\mathbf{x}_{1} + \mathbf{U}(h_{12}^{i}, h_{22}^{i})\mathbf{x}_{2} + \mathbf{n'}^{i},$$

• Effective channel:

$$\begin{bmatrix} \mathbf{y}^{1} \\ \mathbf{y}^{2} \end{bmatrix} = \underbrace{\begin{bmatrix} \mathbf{U}(h_{11}^{1}, h_{21}^{1}) \mid \mathbf{U}(h_{12}^{1}, h_{22}^{1}) \\ \mathbf{U}(h_{11}^{2}, h_{21}^{2}) \mid \mathbf{U}(h_{12}^{2}, h_{22}^{2}) \end{bmatrix}}_{\mathcal{G}} \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \end{bmatrix} + \begin{bmatrix} \mathbf{n}'^{1} \\ \mathbf{n}'^{2} \end{bmatrix}.$$

