Ejercicios de Algebra Relacional

S. Fernanda Colomo Fuente - A0178981983

Instrucciones

Se dispone de una Base de Datos RELACIONAL para un torneo internacional compuesto de diversas competencias. El esquema de la base de datos es el siguiente:

 COMPETENCIA (NombreCompetencia: STRING, NumPtos: INTEGER, Tipo: STRING)

Una competencia de un cierto TIPO, se identifica por su nombre NOMBRECOMPETENCIA y aporta un cierto número de puntos NUMPTOS.

COMPETENCIA

Nombre competencia	NUMPtos	TIPO
Redacción adecuada	20	Α
Pensamiento analítico	30	В
Uso de herramientas	55	С
Limpieza	70	D
Ortografía	50	Α

 PARTICIPANTE (Número: INTEGER, Apellidos: STRING, Nombre: STRING, Nacionalidad: STRING)

Una persona que participa en el torneo es identificada por un número de participante NUMERO y se registra con sus APELLIDOS, su NOMBRE y su NACIONALIDAD.

PARTICIPANTE

Número	Apellidos	Nombre	Nacionalidad
1	García	Diego	Mexicana
2	Fuente	Fernanda	Mexicana
3	Gómez	Carola	Española
4	Ruiz	Ana	USA
5	Centeno	Carmen	Chilena

• PUNTOSACUMULADOS(Número: INTEGER, Puntos: INTEGER)

Todo participante identificado por NUMERO acumula un número de puntos PUNTOS durante el torneo.

PUNTOS ACUMULADOS

Número	Puntos
1	80
2	60
3	40
4	60
5	70

CLASIFICACION(NombreCompetencia: STRING, Número: INTEGER, Lugar: INTEGER)

Para la competencia de nombre NOMBRECOMPETENCIA, el participante identificado con el número NUMERO fue clasificado en el lugar LUGAR.

CLASIFICACIÓN

NombreCompetencia	Número	Lugar
Redacción adecuada	1	3
Pensamiento analítico	1	2
Uso de herramientas	4	1
Uso de herramientas	1	2
Limpieza	3	3
Limpieza	1	5
Ortografía	5	2
Ortografía	1	1

Tomando en cuenta lo anterior, escriba en álgebra relacional las siguientes consultas:

1. Apellidos y nombre de los participantes de nacionalidad mexicana.

 Π Apellidos, Nombre (σNacionalidad=<<Mexicana>> (PARTICIPANTE))

2. Apellidos, nombre y puntos acumulados de los participantes de USA.

ΠApellidos,Nombre,Puntos(σNacionalidad=<<USA>> (PARTICIPANTE M PUNTOS ACUMULADOS))

3. Apellidos y nombre de los participantes que se clasificaron en primer lugar en al menos una competencia.

Forma 1:

ΠApellido,Nombre (σLugar=<<1>>(PARTICIPANTE Ν CLASIFICACIÓN))

Forma 2:

A=ρ Primero(σLugar=<<1>>(PARTICIPANTE M CLASIFICACIÓN))

B=ρ Demas(σLugar!=<<1>>(PARTICIPANTE M CLASIFICACIÓN))

C=ρ_Resultado A-B

4. Nombre de las competencias en las que intervinieron los participantes mexicanos.

Forma 1:

ΠNombre Competencia (σNacionalidad=<<Mexicana>>(PARTICIPANTE M COMPETENCIA))

Forma 2:

$D=\rho_PMexicanos(\sigma Nacionalidad=<< Mexicana>>(PARTICIPANTE M COMPETENCIA))$

ΠNombre Competencia (D)

5. Apellidos y nombre de los participantes que nunca se clasificaron en primer lugar en alguna competencia.

ΠApellidos,Nombre (Demas)

Tabla "Demas" proveniente de la consulta 3

6. Apellidos y nombre de los participantes siempre se clasificaron en alguna competencia.

ΠApellidos, Nombre (PARTICIPANTE ∩ CLASIFICACIÓN)

7. Nombre de la competencia que aporta el máximo de puntos.

COMPETENCIA

Nombre competencia	NUMPtos	TIPO
Redacción adecuada	20	Α
Pensamiento analítico	30	В
Uso de herramientas	55	С
Limpieza	70	D
Ortografía	50	Α

a. Obtener el máximo:

Aislar la columna de puntos (NUMPtos) mediante una proyección y hacer una tabla

T1= ρ _tabla1(Π (NUMPtos)COMPETENCIA)

T2=ρ_tabla2(Π(NUMPtos)COMPETENCIA)

NUMPtos

20
30
55
70
50

Renombrar la columna en tabla2

T3=ρ_NP2/NUMPtos(tabla2)

T4=ρ_tabla3(tabla1 X tabla2)

NUMPtos	NP2	
20	20	
30	30	
55	55	
70	70	
50	50	

tabla3

NUMPtos	NP2
20	20
20	30
20	55
20	70
20	50
30	20
30	30
30	55
30	70
30	50
55	20
55	30
55	55
55	70
55	50
70	20
70	30
70	55
70	70
70	50
50	20
50	30
50	55
50	70
50	50

Filtrar resultados en tabla 4

T5= ρ _tabla4 (σNUMPtos<NP2)tabla3

tabla 4

NUMPtos	NP2
20	30
20	55
20	70
20	50
30	55
30	70
30	50
55	70
50	55
50	70

Proyectar la columna de NUMPtos

T6=ρ_(Π(NUMPtos)tabla4)

tabla 5

NUMPtos	
20	
20	
20	
20	
30	
30	
30	
55	
50	
50	

Hacer la diferencia en base a la tabla 1 y tabla 5

T7=ρ_tablafinal(tabla1-tabla5)

NUMPtos (tabla5)	NUMPtos (tabla1)
20	20
20	30
20	55
20	70
30	50
30	
30	
55	
50	
50	

tablafinal

NUMPtos	
70	

Ahora en base a tablafinal y COMPETENCIA obtendremos el nombre que buscamos COMPETENCIA tablafinal

Nombre competencia	NUMPtos	NUMPtos
Redacción adecuada	20	70
Pensamiento analítico	30	
Uso de herramientas	55	
Limpieza	70	
Ortografía	50	

Ahora haremos una intersección entre ambas

$T8 = \rho_tabla filtrada (COMPETENCIA \ \cap \ tabla final)$

tablafiltrada

Limpieza	70

Proyectar el valor buscado

T9=ΠNombre competencia (tablafiltrada)

Nombre Competencia	
Limpieza	

8. Países (nacionalidades) que participaron en todas las competencias.

R1=ρ_tabla1(ΠNacionalidad,Número(PARTICIPANTE))

R2=ρ_tabla2(ΠNombre Competencia, (COMPETENCIA))

Ahora juntaremos tabla1 y tabla 2 con ayuda de la concatenación

R3= ρ tabla3(tabla1 Mtabla2)

tabla3

Nacionalidad	Número	Nombre Competencia

R4=ρ_**tabla4**(ΠNombre Competencia, Nacionalidad (tabla3))

Nombre Competencia	Nacionalidad

Para obtener una tabla con los países que compitieron sin los que no lo hicieron hacemos lo siguiente obteniendo así la tabla 5

tabla5

R5=ρ_tabla5((tabla4ΜΠNombre Competencia(COMPETENCIA)))

Nombre Competencia	Nacionalidad

Ahora bien, si se aplica la división entre la tabla que contiene únicamente los nombres de la competencia y tabla 5 podremos obtener una tabla con los países que compitieron en todas las competencias. (recordar que la división nos da como resultado una tupla que contiene los elementos en la primera tabla y los valores en base la segunda tabla).

R6=ρ_tabla6(tabla5÷ΠNombre Competencia(COMPETENCIA))

Ahora falta obtener las nacionalidades

R7=ρ_tablafinal(ΠNacionalidad(tabla6))

Referencias para el uso de la división

Explain division operation in relational algebra (DBMS)

Explain division operation in relational algebra (DBMS) - Query is a question or requesting information. Query language is a language which is used to retrieve information from a database.Query

Tabla de operaciones

Símbolo	Operación
σ	Selección
П	Proyección
M	Concatenación
U	Unión
Λ	Intersección
~	Diferencia
ρ	Renombrar
÷	División