CS 581 – ADVANCED ARTIFICIAL INTELLIGENCE

TOPIC: SEARCH

http://www.cs.iit.edu/~mbilgic

https://twitter.com/bilgicm

MOTIVATION

- AI is powered by search
- Consider multiple possibilities and find the "optimal" one
- Just a few examples
 - Travel from one location to another
 - Find the "optimal" route
 - Game playing
 - Find the "optimal" move
 - Machine learning
 - Find the "optimal" set of parameters
 - Machine translation
 - Find the "optimal" sequence of words
 - Constraint satisfaction
 - Find the "optimal" assignment

• . . .

WE WILL STUDY

- Hill climbing, A*, genetic algorithms, simulated annealing, ...
- Maximum likelihood estimation, Bayesian estimation, expectation maximization, gradient optimization, Lagrange multipliers, policy search,
- o Alpha-beta search, Monte-Carlo tree search, ...

TRAVEL - ABSTRACT REPRESENTATION

Given

- An initial state
- A goal state
- Available actions at each state
- A transition model
- The cost of each action

Find

• A sequence of actions that take you from the initial state to the goal state, where the total cost of the sequence is minimized

TRAVEL PROBLEM

- The world representation
 - In(City)
- Initial state
 - In(Madison, WI)
- Goal state
 - In(Detroit, MI)
- Actions
 - Travel to the neighboring city
- Transition model
 - If you are in city A and travel to city B, the state changes from In(A) to In(B)
- Cost
 - Distance traveled

TRAVELING SALESMAN PROBLEM

Given

- A list of N cities
- Distances between each pair of cities

Find

• A minimum-cost travel plan where the agent visits each city exactly once and returns to the city of origin

8 Puzzle

Start State

Goal State

8 QUEENS

8

OUTLINE

- Uniform cost search, greedy heuristic search, and A* search
 - E.g., travel problem, 3-puzzle problem
- Simulated annealing
 - E.g., traveling salesman problem
- Genetic algorithms
 - E.g., 8-queens problem

EXERCISE

- You are at an initial city D
- You are trying to reach to the city M
- The cities are not fully connected; you can travel from one city to only its neighbor cities
- You don't have access to the full map; you know only the parts you explored or discovered
- Each time you pick a city that you know and ask where you can go from there
- You want to find the shortest path from D to M, and you want to do it as fast as possible
- Notation:
 - c(n, n'): the cost of traveling from n to n'
 - h(n): the estimate of the distance from n to the goal
- Three settings:
 - Setting 1: You are given the *c* function but not *h*
 - Setting 2: You are given the *h* function but not *c*
 - Setting 3: You are given both *c* and *h* functions

Best-first Search Pseudocode

- Given
 - The initial state, goal state, available actions, action costs, and maybe a heuristic function
 - frontier a priority queue; explored: a set
- o Initialize frontier with the initial state
- While frontier is not empty
 - Pop the top node n in the frontier
 - Add n to explored
 - If n is the goal state, return the solution
 - For each child n' of n:
 - o If n' is not in explored
 - \circ If n' is not in frontier
 - Add it to frontier
 - Else if the new path to n' is better than the old path, replace the old n' with the new n' in the frontier
- Return failure // frontier is empty; goal was not found

BEST-FIRST SEARCH ALGORITHMS

- Define f(n) = h(n) + g(n)
 - h(n): Cost estimate from n to the goal
 - g(n): Cost from the initial state to n
- 1. Uniform-cost search
 - frontier is sorted using g(n)
- 2. Greedy heuristic search
 - frontier is sorted using h(n)
- 3. A* search
 - frontier is sorted using f(n)

A TRAVEL PROBLEM EXAMPLE

• See OneNote

OPTIMAL

- Assume the optimal path cost is p^*
- Uniform cost search is guaranteed to return the optimal path
 - Expands all nodes where $g(n) \le p^*$
- Greedy heuristic search is not optimal; ignores path costs
- A* is optimal only if h is admissible and consistent
 - Expands all nodes where $g(n) + h(n) \le p^*$

ADMISSIBLE? CONSISTENT?

• Admissible if

- h(n) never overestimates the optimal cost
- That is h(n) is always optimistic
- E.g., straight line distance between two cities

Consistent if

- If $h(n) \le c(n,n') + h(n')$
- *n* is the successor of *n*
- Triangle inequality
- If a heuristic is consistent, it is also admissible (the other way around is not guaranteed)

A* Optimality – Proof Sketch

- 1. If h(n) is consistent, then f(n) along any path is non-decreasing
- 2. When *n* is expanded, the optimal path to it has been found

UCS vs A*

- \circ A* = UCS if h(n) = 0 for all n
- UCS searches in circles whereas A* searches in ellipses
- Illustration in OneNote

8 Puzzle

Start State

Goal State

HEURISTICS

- How to design h(n)?
 - The answer is "depends on the domain" but some general principles exist
 - For example, relax the problem constraints a bit
- For travel problems
 - Flight distance
- For 8-Puzzle
 - Number of misplaced tiles
 - Manhattan distance

A 3-PUZZLE PROBLEM EXAMPLE

• See OneNote

OTHER SEARCH ALGORITHMS

- Depth-first search
- Breadth-first search
- Iterative deepening search
- Bidirectional search

COMPARING ALGORITHMS

- Time complexity
- Space complexity
- Completeness
 - If there is a solution, can it find it?
- Optimality
 - Is the found solution the optimal one?

COMPARING HEURISTICS

- $oldsymbol{o}$ h_i dominates h_i iff
 - $h_i(n) \ge h_j(n) \ \forall n$
- For the 8-Puzzles problem
 - Manhattan distance dominates # of misplaced tiles
- If you have multiple admissible heuristics where none dominates the other
 - Let $h(n) = \max(h_1(n), h_2(n), ..., h_m(n))$
 - h(n) is admissible and it dominates all $h_i(n)$
 - Of course, computing a heuristic is not free, and hence we need to consider the computational cost of h(n) compared to each $h_i(n)$

EFFECTIVE BRANCHING FACTOR

- If the total number of nodes generated is N and the solution depth is d, then
 - b* is the branching factor that a uniform tree of depth d would need to have in order to contain N+1 nodes
- $N+1 = 1 + b^* + (b^*)^2 + ... + (b^*)^d$
- o If A^* finds a solution at depth 4 using 40 nodes, what is b^* ?
 - ≈2.182
- A good heuristic function achieves $b^* \approx 1$

EMPIRICAL COMPARISONS

- Figure 3.26 in http://aima.cs.berkeley.edu/figures.pdf
- https://github.com/aimacode/aima-python/blob/master/search4e.ipynb

DISCRETE SPACES WITH COMPLETE-STATE FORMULATIONS

DISCRETE STATE SPACE SEARCH

- Each state
 - Is discrete
 - Represents a complete representation of a possible solution
 - Has a "desirability" score
 - Might have neighbors reachable through actions/moves
- The goal is to find the maximum/minimum scoring state
- Some examples
 - Bayesian network structure search
 - A state is a candidate structure; the score is BIC; actions are to "add/remove/reverse" an edge
 - 8-Queens
 - A state is placement of 8 queens on the board; the score is the number of pairs of queens attacking each other; the actions are to move a queen to another empty square
 - Traveling salesman
 - A state is a travel plan; the score is the cost of the plan; the actions are to swap the order of two neighboring cities
- The actions and state representations are not written on stone; you can define them in a different way
 - How you define the states and actions can have a profound impact on the shape of the search space

ONENOTE ILLUSTRATION

- You are at state A
- Actions are: Left or Right
- Every state has a value
- You want to find the state with the maximum value

HILL CLIMBING

```
function HILL-CLIMBING(problem) returns a state that is a local maximum current \leftarrow problem.INITIAL while true do
neighbor \leftarrow \text{a highest-valued successor state of } current
\textbf{if Value}(neighbor) \leq \text{Value}(current) \textbf{ then return } current
current \leftarrow neighbor
```

Figure 4.2 The hill-climbing search algorithm, which is the most basic local search technique. At each step the current node is replaced by the best neighbor.

Figure from http://aima.cs.berkeley.edu/algorithms.pdf

THE SEARCH LANDSCAPE

Figure 4.1 A one-dimensional state-space landscape in which elevation corresponds to the objective function. The aim is to find the global maximum.

8-QUEENS EXAMPLE

(a) (b)

Figure 4.3 (a) The 8-queens problem: place 8 queens on a chess board so that no queen attacks another. (A queen attacks any piece in the same row, column, or diagonal.) This position is almost a solution, except for the two queens in the fourth and seventh columns that attack each other along the diagonal. (b) An 8-queens state with heuristic cost estimate h = 17. The board shows the value of h for each possible successor obtained by moving a queen within its column. There are 8 moves that are tied for best, with h = 12. The hill-climbing algorithm will pick one of these.

SIMULATED ANNEALING

- Optimization by Simulated Annealing
 - S. Kirkpatrick, C. D. Gelatt Jr., M. P. Vecchi
 - Science 13 May 1983:
 - Vol. 220, Issue 4598, pp. 671-680
 - https://science.sciencemag.org/content/220/4598/671

SIMULATED ANNEALING

```
function SIMULATED-ANNEALING(problem, schedule) returns a solution state  \begin{array}{l} current \leftarrow problem. \\ \text{INITIAL} \\ \text{for } t = 1 \text{ to } \infty \text{ do} \\ T \leftarrow schedule(t) \\ \text{if } T = 0 \text{ then return } current \\ next \leftarrow \\ \text{a randomly selected successor of } current \\ \Delta E \leftarrow \\ \text{VALUE}(current) - \\ \text{VALUE}(next) \\ \text{if } \Delta E > 0 \text{ then } current \leftarrow \\ next \\ \text{else } current \leftarrow \\ next \text{ only with probability } e^{-\Delta E/T} \\ \end{array}
```

Figure 4.4 The simulated annealing algorithm, a version of stochastic hill climbing where some downhill moves are allowed. The schedule input determines the value of the "temperature" T as a function of time.

SIMULATED ANNEALING EXAMPLE

GIF from https://en.wikipedia.org/wiki/Simulated_annealing

AN ASSIGNMENT IDEA

- Implement and test simulated annealing
 - Traveling salesman
 - Another problem of interest
- Study its behavior
 - Parameters
- Write a report