

6-(2-Halogenphenyl)-Triazolopyrimidine, Verfahren zu ihrer Herstellung und ihre Verwendung zur Bekämpfung von Schadpilzen sowie sie enthaltende Mittel

Beschreibung

5

Die vorliegende Erfindung betrifft substituierte Triazolopyrimidine der Formel I

in der die Substituenten folgende Bedeutung haben:

10 R^1, R^2 unabhängig voneinander Wasserstoff, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₃-C₆-Cycloalkyl, C₃-C₆-Halogencycloalkyl, C₂-C₆-Alkenyl, C₂-C₆-Halogenalkenyl, C₃-C₆-Cycloalkenyl, C₃-C₆-Halogencycloalkenyl, C₂-C₆-Alkinyl, C₂-C₆-Halogenalkinyl oder Phenyl, Naphthyl, oder ein fünf- oder sechsgliedriger gesättigter, partiell ungesättigter oder aromatischer Heterocyclus, enthaltend ein bis vier Heteroatome aus der Gruppe O, N oder S,

15

R^1 und R^2 können auch zusammen mit dem Stickstoffatom, an das sie gebunden sind, ein fünf- oder sechsgliedriges Heterocycl oder Heteroaryl bilden, welches über N gebunden ist und ein bis drei weitere Heteroatome aus der Gruppe O, N und S als Ringglied enthalten und/oder einen oder mehrere Substituenten aus der Gruppe Halogen, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₂-C₆-Alkenyl, C₂-C₆-Halogenalkenyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy, C₃-C₆-Alkenyloxy, C₃-C₆-Halogenalkenyloxy, C₁-C₆-Alkylen und Oxy-C₁-C₃-alkylenoxy tragen kann;

20

25 R^1 und/oder R^2 können eine bis vier gleiche oder verschiedene Gruppen R^a tragen:

R^a Halogen, Cyano, Nitro, Hydroxy, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Alkylcarbonyl, C₃-C₆-Cycloalkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy, C₁-C₆-Alkoxycarbonyl, C₁-C₆-Alkylthio, C₁-C₆-Alkylamino, Di-C₁-C₆-alkylamino, C₂-C₆-Alkenyl, C₂-C₆-Halogenalkenyl, C₃-C₆-Cycloalkenyl, C₂-C₆-Alkenyloxy, C₃-C₆-Halogenalkenyloxy, C₂-C₆-Alkinyl, C₂-C₆-Halogenalkinyl, C₃-C₆-Alkinyloxy, C₃-C₆-Halogenalkinyloxy, C₃-C₆-Cycloalkoxy, C₃-C₆-Cycloalkenoxy, C₁-C₃-Oxyalkylenoxy, Phenyl, Naphthyl, fünf- bis zehngliedriger gesättigter, partiell ungesättigter oder aromatischer Heterocyclus, enthaltend ein bis vier Heteroatome aus der Gruppe O, N oder S,

30

35

wobei diese aliphatischen, alicyclischen oder aromatischen Gruppen ihrerseits partiell oder vollständig halogeniert sein oder eine bis drei Gruppen R^b tragen können:

5 R^b Halogen, Cyano, Nitro, Hydroxy, Mercapto, Amino, Carboxyl, Aminocarbonyl, Aminothiocarbonyl, Alkyl, Haloalkyl, Alkenyl, Alkenyloxy, Alkinyloxy, Alkoxy, Halogenalkoxy, Alkylthio, Alkylamino, Dialkylamino, Formyl, Alkylcarbonyl, Alkylsulfonyl, Alkylsulfoxyl, Alkoxycarbonyl, Alkylcarbonyloxy, Alkylaminocarbonyl, Dialkylaminocarbonyl, Alkylaminothiocarbonyl, Dialkylaminothiocarbonyl, wobei die Alkylgruppen in diesen Resten 1 bis 6 Kohlenstoffatome enthalten und die genannten Alkenyl- oder Alkinylgruppen in diesen Resten 2 bis 8 Kohlenstoffatome enthalten;

15 und/oder einen bis drei der folgenden Reste:

20 Cycloalkyl, Cycloalkoxy, Heterocyclyl, Heterocyclyloxy, wobei die cyclischen Systeme 3 bis 10 Ringglieder enthalten; Aryl, Aryloxy, Arylthio, Aryl-C₁-C₆-alkoxy, Aryl-C₁-C₆-alkyl, Hetaryl, Hetaryloxy, Hetarylthio, wobei die Arylreste vorzugsweise 6 bis 10 Ringglieder, die Hetarylreste 5 oder 6 Ringglieder enthalten, wobei die cyclischen Systeme partiell oder vollständig halogeniert oder durch Alkyl- oder Haloalkylgruppen substituiert sein können;

25 Hal Halogen;

L¹, L² Wasserstoff, Cyano, C₁-C₄-Halogenalkyl, C₁-C₆-Alkoxy, C₃-C₆-Alkenyloxy oder C(=O)A, wobei mindestens eine Gruppe L¹ oder L² ungleich Wasserstoff ist;

30 A Wasserstoff, Hydroxy, C₁-C₈-Alkyl, C₁-C₈-Alkoxy, C₁-C₆-Halogenalkoxy, C₁-C₈-Alkylamino oder Di-(C₁-C₈-Alkyl)amino;

35 L³ Wasserstoff, Halogen, Cyano, Nitro, C₁-C₄-Halogenalkyl, C₁-C₆-Alkoxy, C₁-C₆-Alkoxycarbonyl;

X Halogen, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy oder C₁-C₂-Halogenalkoxy.

Außerdem betrifft die Erfindung Verfahren und Zwischenprodukte zur Herstellung dieser Verbindungen, sie enthaltende Mittel sowie ihre Verwendung zur Bekämpfung von pflanzenpathogenen Schadpilzen.

- 5 Aus EP-A 71 792, EP-A 550 113 sind 5-Chlor-6-phenyl-7-amino-triazolopyrimidine allgemein bekannt. In WO 03/080615 werden 6-Phenyl-Triazolopyrimidine allgemein vorgeschlagen, deren Phenylgruppe in para-Stellung eine Alkylamid-Gruppe tragen kann. Diese Verbindungen sind zur Bekämpfung von Schadpilzen bekannt.
- 10 Die erfindungsgemäßen Verbindungen unterscheiden sich von den in WO 03/080615 beschriebenen durch die Stellung der Alkylamid-Gruppe als Substituent des 6-Phenylringes.

Die Wirkung der bekannten Verbindungen ist jedoch in vielen Fällen nicht zufriedenstellend. Davon ausgehend, liegt der vorliegenden Erfindung die Aufgabe zugrunde, Verbindungen mit verbesserter Wirkung und/oder verbreitertem Wirkungsspektrum bereitzustellen.

Demgemäß wurden die eingangs definierten Verbindungen gefunden. Des weiteren wurden Verfahren und Zwischenprodukte zu ihrer Herstellung, sie enthaltende Mittel sowie Verfahren zur Bekämpfung von Schadpilzen unter Verwendung der Verbindungen I gefunden.

Die erfindungsgemäßen Verbindungen können auf verschiedenen Wegen erhalten werden. Vorteilhaft werden sie durch Umsetzung von 5-Aminotriazol der Formel II mit entsprechend substituierten Phenylmalonaten der Formel III, in der R für Alkyl, bevorzugt für C₁-C₆-Alkyl, insbesondere für Methyl oder Ethyl steht, dargestellt.

- Diese Umsetzung erfolgt üblicherweise bei Temperaturen von 80°C bis 250°C, vorzugsweise 120°C bis 180°C, ohne Solvens oder in einem inerten organischen Lösungsmittel in Gegenwart einer Base [vgl. EP-A 770 615] oder in Gegenwart von Essigsäure unter den aus Adv. Het. Chem. Bd. 57, S. 81ff. (1993) bekannten Bedingungen.
- 35 Geeignete Lösungsmittel sind aliphatische Kohlenwasserstoffe, aromatische Kohlenwasserstoffe wie Toluol, o-, m- und p-Xylo, halogenierte Kohlenwasserstoffe, Ether,

Nitrile, Ketone, Alkohole, sowie N-Methylpyrrolidon, Dimethylsulfoxid, Dimethylformamid und Dimethylacetamid. Besonders bevorzugt wird die Umsetzung ohne Lösungsmittel oder in Chlorbenzol, Xylol, Dimethylsulfoxid, N-Methylpyrrolidon durchgeführt. Es können auch Gemische der genannten Lösungsmittel verwendet werden.

5

Als Basen kommen allgemein anorganische Verbindungen wie Alkalimetall- und Erdalkalimetallhydroxide, Alkalimetall- und Erdalkalimetalloxide, Alkalimetall- und Erdalkalimetallhydride, Alkalimetallamide, Alkalimetall- und Erdalkalimetallcarbonate sowie Alkalimetallhydrogencarbonate, metallorganische Verbindungen, insbesondere Alkalimetallalkyle, Alkylmagnesiumhalogenide sowie Alkalimetall- und Erdalkalimetallalkoholate und Dimethoxymagnesium, außerdem organische Basen, z.B. tertiäre Amine wie Trimethylamin, Triethylamin, Tri-isopropylamin, Tributylamin und N-Methylpiperidin, N-Methylmorpholin, Pyridin, substituierte Pyridine wie Collidin, Lutidin und 4-Dimethylaminopyridin sowie bicyclische Amine in Betracht. Besonders bevorzugt werden tertiäre Amine wie Tri-isopropylamin, Tributylamin, N-Methylmorpholin oder N-Methylpiperidin.

Die Basen werden im allgemeinen in katalytischen Mengen eingesetzt, sie können aber auch äquimolar, im Überschuss oder gegebenenfalls als Lösungsmittel verwendet werden.

20

Die Edukte werden im allgemeinen in äquimolaren Mengen miteinander umgesetzt. Es kann für die Ausbeute vorteilhaft sein, die Base und das Malonat III in einem Überschuss bezogen auf das Triazol einzusetzen.

25

Phenylmalonate der Formel III werden vorteilhaft aus der Reaktion entsprechend substituierter Brombenzole mit Dialkylmalonaten unter Cu(I)-Katalyse erhalten [vgl. Chemistry Letters, S. 367-370, 1981; EP-A 10 02 788].

30

bekannten Bedingungen in die Dihalogenpyrimidine der Formel V überführt, in der Y ein Halogenatom, bevorzugt ein Brom oder ein Chloratom, insbesondere ein Chloratom bedeutet. Als Halogenierungsmittel [HAL] wird vorteilhaft ein Chlorierungsmittel oder ein Bromierungsmittel, wie Phosphoroxybromid oder Phosphoroxychlorid, ggf. in Anwesenheit eines Lösungsmittels, eingesetzt.

Diese Umsetzung wird üblicherweise bei 0°C bis 150°C, bevorzugt bei 80°C bis 125°C, durchgeführt [vgl. EP-A 770 615].

Dihalogenpyrimidine der Formel V werden mit Aminen der Formel VI,

5

in der R¹ und R² wie in Formel I definiert sind, zu Verbindungen der Formel I, in der X für Halogen steht, weiter umgesetzt.

Diese Umsetzung wird vorteilhaft bei 0°C bis 70°C, bevorzugt 10°C bis 35°C durchgeführt, vorzugsweise in Anwesenheit eines inerten Lösungsmittels, wie Ether, z. B. Dioxan, Diethylether oder insbesondere Tetrahydrofuran, halogenierte Kohlenwasserstoffe, wie Dichlormethan und aromatische Kohlenwasserstoffe, wie beispielsweise Toluol [vgl. WO-A 98/46608].

15 Die Verwendung einer Base, wie tertiäre Amine, beispielsweise Triethylamin oder anorganische Basen, wie Kaliumcarbonat ist bevorzugt; auch überschüssiges Amin der Formel VI kann als Base dienen.

Verbindungen der Formel I, in der X Cyano, C₁-C₆-Alkoxy oder C₁-C₂-Halogenalkoxy bedeutet, können vorteilhaft aus der Umsetzung von Verbindungen I, in der X Halogen, bevorzugt Chlor bedeutet, mit Verbindungen M-X' (Formel VII) erhalten werden. Verbindungen VII stellen je nach der Bedeutung der einzuführenden Gruppe X' ein anorganisches Cyanid, ein Alkoxylat oder ein Halogenalkoxylat dar. Die Umsetzung erfolgt vorteilhaft in Anwesenheit eines inerten Lösungsmittels. Das Kation M in Formel VII hat geringe Bedeutung; aus praktischen Gründen sind üblicherweise Ammonium-, Tetraalkylammonium- oder Alkali- oder Erdalkalimetallsalze bevorzugt.

30

Üblicherweise liegt die Reaktionstemperatur bei 0 bis 120°C, bevorzugt bei 10 bis 40°C [vgl. J. Heterocycl. Chem., Bd.12, S. 861-863 (1975)].

Geeignete Lösungsmittel umfassen Ether, wie Dioxan, Diethylether und, bevorzugt Tetrahydrofuran, Alkohole, wie Methanol oder Ethanol, halogenierte Kohlenwasserstoffe wie Dichlormethan und aromatische Kohlenwasserstoffe, wie Toluol oder Acetonitril.

35 Verbindungen der Formel I, in denen X für C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl steht, können vorteilhaft durch folgenden Syntheseweg erhalten werden:

Ausgehend von den Ketoestern IIIa werden die 5-Alkyl-7-hydroxy-6-phenyltriazolopyrimidine IVa erhalten. In Formeln IIIa und IVa steht X¹ für C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl. Durch Verwendung der leicht zugänglichen 2-Phenylacetessigestern (IIIa mit X¹=CH₃) werden die 5-Methyl-7-hydroxy-6-phenyltriazolopyrimidine erhalten [vgl.

- 5 Chem. Pharm. Bull., 9, 801, (1961)]. Die Herstellung der Ausgangsverbindungen IIIa erfolgt vorteilhaft unter den aus EP-A 10 02 788 beschriebenen Bedingungen.

Die so erhaltenen 5-Alkyl-7-hydroxy-6-phenyltriazolopyrimidine werden mit Halogenierungsmitteln [HAL] unter den weiter oben beschriebenen Bedingungen zu den 7-Halogenotriazolopyrimidinen der Formel Va umgesetzt, in der Y für ein Halogenatom steht. Bevorzugt werden Chlorierungs- oder Bromierungsmittel wie Phosphoroxybromid, Phosphoroxychlorid, Thionylchlorid, Thionylbromid oder Sulfurylchlorid eingesetzt. Die Umsetzung kann in Substanz oder in Gegenwart eines Lösungsmittels durchgeführt werden. Übliche Reaktionstemperaturen betragen von 0 bis 150°C oder vorzugsweise von 80 bis 125°C.

Die Umsetzung von Va mit Aminen VI erfolgt unter den weiter oben beschriebenen Bedingungen.

- 20 Verbindungen der Formel I in der X C₁-C₄-Alkyl bedeutet, können alternativ auch aus Verbindungen I, in der X Halogen, insbesondere Chlor, bedeutet und Malonaten der Formel VIII hergestellt werden. In Formel VIII bedeuten X" Wasserstoff oder C₁-C₃-Alkyl und R C₁-C₄-Alkyl. Sie werden zu Verbindungen der Formel IX umgesetzt und zu 25 Verbindungen I decarboxyliert [vgl. US 5,994,360].

Die Malonate VIII sind in der Literatur bekannt [J. Am. Chem. Soc., Bd. 64, 2714 (1942); J. Org. Chem., Bd. 39, 2172 (1974); Helv. Chim. Acta, Bd. 61, 1565 (1978)]

5 oder können gemäß der zitierten Literatur hergestellt werden.

Die anschließende Verseifung des Esters IX erfolgt unter allgemein üblichen Bedingungen, in Abhängigkeit der verschiedenen Strukturelemente kann die alkalische oder
10 die saure Verseifung der Verbindungen IX vorteilhaft sein. Unter den Bedingungen der Esterverseifung kann die Decarboxylierung zu I bereits ganz oder teilweise erfolgen.

Die Decarboxylierung erfolgt üblicherweise bei Temperaturen von 20°C bis 180°C, vorzugsweise 50°C bis 120°C, in einem inerten Lösungsmittel, gegebenenfalls in Gegenwart einer Säure.

15 Geeignete Säuren sind Salzsäure, Schwefelsäure, Phosphorsäure, Ameisensäure, Essigsäure, p-Toluolsulfonsäure. Geeignete Lösungsmittel sind Wasser, aliphatische Kohlenwasserstoffe wie Pentan, Hexan, Cyclohexan und Petrolether, aromatische Kohlenwasserstoffe wie Toluol, o-, m- und p-Xylool, halogenierte Kohlenwasserstoffe
20 wie Methylchlorid, Chloroform und Chlorbenzol, Ether wie Diethylether, Diisopropylether, tert.-Butylimethylether, Dioxan, Anisol und Tetrahydrofuran, Nitrile wie Acetonitril und Propionitril, Ketone wie Aceton, Methylethylketon, Diethylketon und tert.-Butylmethylketon, Alkohole wie Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol und tert.-Butanol, sowie Dimethylsulfoxid, Dimethylformamid und Dimethylacetamid, besonders bevorzugt wird die Reaktion in Salzsäure oder Essigsäure durchgeführt. Es können auch Gemische der genannten Lösungsmittel verwendet werden.

25 Verbindungen der Formel I, in denen X für C₁-C₄-Alkyl steht, können auch durch Kupplung von 5-Halogentriazolopyrimidinen der Formel I, in der X Halogen bedeutet, mit metallorganischen Reagenzien der Formel X erhalten werden. In einer Ausführungsform dieses Verfahrens erfolgt die Umsetzung unter Übergangsmetallkatalyse, wie Ni- oder Pd-Katalyse.

In Formel X steht M für ein Metallion der Wertigkeit Y, wie beispielsweise B, Zn oder Sn und X'' für C₁-C₃-Alkyl. Diese Reaktion kann beispielsweise analog folgender Methoden durchgeführt werden: J. Chem. Soc. Perkin Trans. 1, 1187 (1994), ebenda 1,

- 5 2345 (1996); WO-A 99/41255; Aust. J. Chem., Bd. 43, 733 (1990); J. Org. Chem., Bd. 43, 358 (1978); J. Chem. Soc. Chem. Commun. 866 (1979); Tetrahedron Lett., Bd. 34, 8267 (1993); ebenda, Bd. 33, 413 (1992).

Die Reaktionsgemische werden in üblicher Weise aufgearbeitet, z.B. durch Mischen
10 mit Wasser, Trennung der Phasen und gegebenenfalls chromatographische Reinigung der Rohprodukte. Die Zwischen- und Endprodukte fallen z.T. in Form farbloser oder schwach bräunlicher, zäher Öle an, die unter vermindertem Druck und bei mäßig erhöhter Temperatur von flüchtigen Anteilen befreit oder gereinigt werden. Sofern die Zwischen- und Endprodukte als Feststoffe erhalten werden, kann die Reinigung auch
15 durch Umkristallisieren oder Digerieren erfolgen.

Sofern einzelne Verbindungen I nicht auf den voranstehend beschriebenen Wegen zugänglich sind, können sie durch Derivatisierung anderer Verbindungen I hergestellt werden.

- 20 Sofern bei der Synthese Isomerengemische anfallen, ist im allgemeinen jedoch eine Trennung nicht unbedingt erforderlich, da sich die einzelnen Isomere teilweise während der Aufbereitung für die Anwendung oder bei der Anwendung (z.B. unter Licht-, Säure- oder Baseneinwirkung) ineinander umwandeln können. Entsprechende Umwandlungen
25 können auch nach der Anwendung, beispielsweise bei der Behandlung von Pflanzen in der behandelten Pflanze oder im zu bekämpfenden Schadpilz erfolgen.

- Bei den in den vorstehenden Formeln angegebenen Definitionen der Symbole wurden Sammelbegriffe verwendet, die allgemein repräsentativ für die folgenden Substituenten
30 stehen:

Halogen: Fluor, Chlor, Brom und Jod;

- Alkyl: gesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 1 bis 4, 6
35 oder 8 Kohlenstoffatomen, z.B. C₁-C₆-Alkyl wie Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methyl-propyl, 2-Methylpropyl, 1,1-Dimethylethyl, Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 2,2-Di-methylpropyl, 1-Ethylpropyl, Hexyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethylbutyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dime-

thylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Tri-methylpropyl, 1-Ethyl-1-methylpropyl und 1-Ethyl-2-methylpropyl;

Halogenalkyl: geradkettige oder verzweigte Alkylgruppen mit 1 bis 2, 4 oder 6 Kohlen-

- 5 stoffatomen (wie vorstehend genannt), wobei in diesen Gruppen teilweise oder vollständig die Wasserstoffatome durch Halogenatome wie vorstehend genannt ersetzt sein können: insbesondere C₁-C₂-Halogenalkyl wie Chlormethyl, Brommethyl, Dichlor-methyl, Trichlormethyl, Fluormethyl, Difluormethyl, Trifluormethyl, Chlorfluormethyl, Dichlorfluormethyl, Chlordifluormethyl, 1-Chlorethyl, 1-Bromethyl, 1-Fluorethyl, 2-Fluo-rethyl, 2,2-Difluorethyl, 2,2,2-Trifluorethyl, 2-Chlor-2-fluorethyl, 2-Chlor-2,2-difluorethyl, 10 2,2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl, Pentafluorethyl oder 1,1,1-Trifluorprop-2-yl;

Alkenyl: ungesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 2 bis 4, 6 oder 8 Kohlenstoffatomen und einer oder zwei Doppelbindungen in beliebiger Positi-

- 15 on, z.B. C₂-C₆-Alkenyl wie Ethenyl, 1-Propenyl, 2-Propenyl, 1-Methylethenyl, 1-Butenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-1-propenyl, 2-Methyl-1-propenyl, 1-Methyl-2-propenyl, 2-Methyl-2-propenyl, 1-Pentenyl, 2-Pentenyl, 3-Pentenyl, 4-Pentenyl, 1-Methyl-1-but-enyl, 2-Methyl-1-but enyl, 3-Methyl-1-but enyl, 1-Methyl-2-but enyl, 2-Methyl-2-but enyl, 3-Methyl-2-but enyl, 1-Methyl-3-but enyl, 2-Methyl-3-pentenyl, 3-Methyl-3-pentenyl, 4-Methyl-3-pentenyl, 1,1-Dimethyl-2-propenyl, 1,2-Dimethyl-1-propenyl, 1,2-Dimethyl-2-propenyl, 1-Ethyl-1-propenyl, 1-Ethyl-2-propenyl, 1-Hexenyl, 2-Hexenyl, 3-Hexenyl, 4-Hexenyl, 5-Hex-20 enyl, 1-Methyl-1-pentenyl, 2-Methyl-1-pentenyl, 3-Methyl-1-pentenyl, 4-Methyl-1-pentenyl, 1-Methyl-2-pentenyl, 2-Methyl-2-pentenyl, 3-Methyl-2-pentenyl, 4-Methyl-2-pentenyl, 1-Methyl-3-pentenyl, 2-Methyl-3pentenyl, 3-Methyl-3-pentenyl, 4-Methyl-3-pentenyl, 1-Methyl-4-pentenyl, 2-Methyl-4-pentenyl, 3-Methyl-4-pentenyl, 4-Methyl-4-pentenyl, 1,1-Dimethyl-2-but enyl, 1,1-Dimethyl-3-but enyl, 1,2-Dimethyl-1-but enyl, 1,2-Dimethyl-2-but enyl, 1,2-Dimethyl-3-but enyl, 1,3-Dimethyl-1-but enyl, 1,3-Dimethyl-2-but enyl, 1,3-Dimethyl-3-but enyl, 2,2-Dimethyl-3-but enyl, 2,3-Dimethyl-1-but enyl, 2,3-Dimethyl-2-but enyl, 2,3-Dimethyl-3-but enyl, 3,3-Dimethyl-1-but enyl, 3,3-Dimethyl-2-but enyl, 1-Ethyl-1-but enyl, 1-Ethyl-2-but enyl, 1-Ethyl-3-but enyl, 2-Ethyl-1-but enyl, 2-Ethyl-2-but enyl, 2-Ethyl-3-but enyl, 1,1,2-Trimethyl-2-propenyl, 1-Ethyl-1-methyl-2-propenyl, 1-Ethyl-2-methyl-1-propenyl und 1-Ethyl-2-methyl-2-propenyl;

Halogenalkenyl: ungesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit

- 35 2 bis 8 Kohlenstoffatomen und einer oder zwei Doppelbindungen in beliebiger Position (wie vorstehend genannt), wobei in diesen Gruppen die Wasserstoffatome teilweise oder vollständig gegen Halogenatome wie vorstehend genannt, insbesondere Fluor, Chlor und Brom, ersetzt sein können;

Alkinyl: geradkettige oder verzweigte Kohlenwasserstoffgruppen mit 2 bis 4, 6 oder 8 Kohlenstoffatomen und einer oder zwei Dreifachbindungen in beliebiger Position, z.B. C₂-C₆-Alkinyl wie Ethinyl, 1-Propinyl, 2-Propinyl, 1-Butinyl, 2-Butinyl, 3-Butinyl, 1-Methyl-2-propinyl, 1-Pentinyl, 2-Pentinyl, 3-Pentinyl, 4-Pentinyl, 1-Methyl-2-butinyl, 1-Methyl-3-butinyl, 2-Methyl-3-butinyl, 3-Methyl-1-butinyl, 1,1-Dimethyl-2-propinyl, 1-Ethyl-2-propinyl, 1-Hexinyl, 2-Hexinyl, 3-Hexinyl, 4-Hexinyl, 5-Hexinyl, 1-Methyl-2-pentinyl, 1-Methyl-3-pentinyl, 1-Methyl-4-pentinyl, 2-Methyl-3-pentinyl, 2-Methyl-4-pentinyl, 3-Methyl-1-pentinyl, 3-Methyl-4-pentinyl, 4-Methyl-1-pentinyl, 4-Methyl-2-pentinyl, 1,1-Dimethyl-2-butinyl, 1,1-Dimethyl-3-butinyl, 1,2-Dimethyl-3-butinyl, 2,2-Dimethyl-3-butinyl, 3,3-Dimethyl-1-butinyl, 1-Ethyl-2-butinyl, 1-Ethyl-3-butinyl, 2-Ethyl-3-butinyl und 1-Ethyl-1-methyl-2-propinyl;

Cycloalkyl: mono- oder bicyclische, gesättigte Kohlenwasserstoffgruppen mit 3 bis 6 oder 8 Kohlenstoffringgliedern, z.B. C₃-C₈-Cycloalkyl wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl und Cyclooctyl;

fünf- bis zehngliedriger gesättigter, partiell ungesättigter oder aromatischer Heterocyclicus, enthaltend ein bis vier Heteroatome aus der Gruppe O, N oder S:

- 5- oder 6-gliedriges Heterocycl, enthaltend ein bis drei Stickstoffatome und/oder ein Sauerstoff- oder Schwefelatom oder ein oder zwei Sauerstoff- und/oder Schwefelatome, z.B. 2-Tetrahydrofuranyl, 3-Tetrahydrofuranyl, 2-Tetrahydrothienyl, 3-Tetrahydrothienyl, 2-Pyrrolidinyl, 3-Pyrrolidinyl, 3-Isoxazolidinyl, 4-Isoxazolidinyl, 5-Isoxazolidinyl, 3-Iothiazolidinyl, 4-Iothiazolidinyl, 5-Iothiazolidinyl, 3-Pyrazolidinyl, 4-Pyrazolidinyl, 5-Pyrazolidinyl, 2-Oxazolidinyl, 4-Oxazolidinyl, 5-Oxazolidinyl, 2-Thiazolidinyl, 4-Thiazolidinyl, 5-Thiazolidinyl, 2-Imidazolidinyl, 4-Imidazolidinyl, 2-Pyrrolin-2-yl, 2-Pyrrolin-3-yl, 3-Pyrrolin-2-yl, 3-Pyrrolin-3-yl, 2-Piperidinyl, 3-Piperidinyl, 4-Piperidinyl, 1,3-Dioxan-5-yl, 2-Tetrahydropyrananyl, 4-Tetrahydropyrananyl, 2-Tetrahydrothienyl, 3-Hexahydropyridazinyl, 4-Hexahydropyridazinyl, 2-Hexahydropyrimidinyl, 4-Hexahydropyrimidinyl, 5-Hexahydropyrimidinyl und 2-Piperazinyl;

- 5-gliedriges Heteroaryl, enthaltend ein bis vier Stickstoffatome oder ein bis drei Stickstoffatome und ein Schwefel- oder Sauerstoffatom: 5-Ring Heteroarylgruppen, welche neben Kohlenstoffatomen ein bis vier Stickstoffatome oder ein bis drei Stickstoffatome und ein Schwefel- oder Sauerstoffatom als Ringglieder enthalten können, z.B. 2-Furyl, 3-Furyl, 2-Thienyl, 3-Thienyl, 2-Pyrrolyl, 3-Pyrrolyl, 3-Pyrazolyl, 4-Pyrazolyl, 5-Pyrazolyl, 2-Oxazolyl, 4-Oxazolyl, 5-Oxazolyl, 2-Thiazolyl, 4-Thiazolyl, 5-Thiazolyl, 2-Imidazolyl, 4-Imidazolyl, und 1,3,4-Triazol-2-yl;

- 6-gliedriges Heteroaryl, enthaltend ein bis drei bzw. ein bis vier Stickstoffatome; 6-Ring Heteroarylgruppen, welche neben Kohlenstoffatomen ein bis drei bzw. ein bis vier Stickstoffatome als Ringglieder enthalten können, z.B. 2-Pyridinyl, 3-Pyridinyl, 4-Pyridinyl, 3-Pyridazinyl, 4-Pyridazinyl, 2-Pyrimidinyl, 4-Pyrimidinyl, 5-Pyrimidinyl und 2-Pyrazinyl;

Alkylen: divalente unverzweigte Ketten aus 3 bis 5 CH₂-Gruppen, z.B. CH₂, CH₂CH₂, CH₂CH₂CH₂, CH₂CH₂CH₂CH₂ und CH₂CH₂CH₂CH₂CH₂;

10 Oxyalkylen: divalente unverzweigte Ketten aus 2 bis 4 CH₂-Gruppen, wobei eine Valenz über ein Sauerstoffatom an das Gerüst gebunden ist, z.B. OCH₂CH₂, OCH₂CH₂CH₂ und OCH₂CH₂CH₂CH₂;

15 Oxyalkylenoxy: divalente unverzweigte Ketten aus 1 bis 3 CH₂-Gruppen, wobei beide Valenzen über ein Sauerstoffatom an das Gerüst gebunden ist, z.B. OCH₂O, OCH₂CH₂O und OCH₂CH₂CH₂O;

In dem Umfang der vorliegenden Erfindung sind die (R)- und (S)-Isomere und die Razemate von Verbindungen der Formel I eingeschlossen, die chirale Zentren aufweisen.

20 Die besonders bevorzugten Ausführungsformen der Zwischenprodukte in Bezug auf die Variablen entsprechen denen der Reste L und R³ der Formel I.

25 Im Hinblick auf ihre bestimmungsgemäße Verwendung der Triazolopyrimidine der Formel I sind die folgenden Bedeutungen der Substituenten, und zwar jeweils für sich allein oder in Kombination, besonders bevorzugt:

Verbindungen der Formel I werden bevorzugt, in denen R¹ nicht Wasserstoff bedeutet.

30 Verbindungen I werden besonders bevorzugt, in denen R¹ für C₁-C₆-Alkyl, C₂-C₆-Alkenyl oder C₁-C₆-Halogenalkyl steht.

Verbindungen I sind bevorzugt, in denen R¹ für eine Gruppe A steht:

35 worin

Z¹ Wasserstoff, Fluor oder C₁-C₆-Fluoroalkyl,

Z² Wasserstoff oder Fluor, oder

- Z¹ und Z² bilden gemeinsam eine Doppelbindung;
- q 0 oder 1 ist; und
- R³ Wasserstoff oder Methyl bedeuten.
- 5 Außerdem werden Verbindungen I bevorzugt, in denen R¹ für C₃-C₆-Cycloalkyl steht, welches durch C₁-C₄-Alkyl substituiert sein kann.
- Insbesondere werden Verbindungen I bevorzugt, in denen R² Wasserstoff bedeutet.
- 10 Gleichermassen bevorzugt sind Verbindungen I, in denen R² für Methyl oder Ethyl steht.
- Sofern R¹ und/oder R² Halogenalkyl oder Halogenalkenylgruppen mit Chiralitätszentrum beinhalten, sind für diese Gruppen die (S)- Isomere bevorzugt. Im Fall halogenfreier Alkyl oder Alkenylgruppen mit Chiralitätszentrum in R¹ oder R² sind die (R)-
- 15 konfigurierten Isomere bevorzugt.
- Weiterhin werden Verbindungen I bevorzugt, in denen R¹ und R² zusammen mit dem Stickstoffatom, an das sie gebunden sind, einen Piperidinyl-, Morpholinyl- oder Thiomorpholinylring bilden, insbesondere einen Piperidinylring, der ggf. durch eine bis drei
- 20 Gruppen Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl substituiert ist. Besonders bevorzugt sind die Verbindungen, in denen R¹ und R² zusammen mit dem Stickstoffatom, an das sie gebunden sind, einen 4-Methylpiperidinring bilden.
- Ein weiterer bevorzugter Gegenstand der Erfindung sind Verbindungen I, in denen R¹
- 25 und R² zusammen mit dem Stickstoffatom, an das sie gebunden sind, einen Pyrazolering bilden, der ggf. durch eine oder zwei Gruppen Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl, insbesondere durch 3,5-Dimethyl oder 3,5-Di-(trifluormethyl) substituiert ist.
- 30 Daneben sind auch Verbindungen der Formel I besonders bevorzugt, in denen R¹ CH(CH₃)-CH₂CH₃, CH(CH₃)-CH(CH₃)₂, CH(CH₃)-C(CH₃)₃, CH(CH₃)-CF₃, CH₂C(CH₃)=CH₂, CH₂CH=CH₂, Cyclopentyl oder Cyclohexyl; R² Wasserstoff oder Methyl; oder R¹ und R² gemeinsam -(CH₂)₂CH(CH₃)(CH₂)₂-, -(CH₂)₂CH(CF₃)(CH₂)₂- oder -(CH₂)₂O(CH₂)₂- bedeuten.
- 35 Verbindungen I werden bevorzugt, in denen X Halogen, C₁-C₄-Alkyl, Cyano oder C₁-C₄-Alkoxy, wie Chlor, Methyl, Cyano, Methoxy oder Ethoxy, besonders Chlor oder Methyl, insbesondere Chlor bedeutet.
- 40 In Formel I bedeutet Hal insbesondere Chlor oder Fluor.

Weiterhin sind Verbindungen I bevorzugt, in denen L¹ C₁-C₂-Alkoxy, wie Methoxy; Cyano; Halogenmethyl, wie Trifluormethyl oder C₁-C₄-Alkoxy carbonyl, wie Methoxycarbonyl bedeutet. Besonders bevorzugt bedeuten in diesen Verbindungen L² und L³ Wasserstoff.

Gleichsam sind Verbindungen I bevorzugt, in denen L² C₁-C₂-Alkoxy, wie Methoxy; Cyano; Halogenmethyl, wie Trifluormethyl oder C₁-C₄-Alkoxy carbonyl, wie Methoxycarbonyl bedeutet. Besonders bevorzugt bedeuten in diesen Verbindungen L¹ und L³

Wasserstoff.

Daneben sind Verbindungen I bevorzugt, in denen L³ Wasserstoff bedeutet.

Eine bevorzugte Ausführungsform der Erfindung betrifft Verbindungen der Formel I.1:

15

in der

G C₂-C₆-Alkyl, insbesondere Ethyl, n- und i-Propyl, n-, sek-, tert- Butyl, und C₁-C₄-Alkoxy methyl, insbesondere Ethoxymethyl, oder C₃-C₆-Cycloalkyl, insbesondere Cyclopentyl oder Cyclohexyl;

20 R² Wasserstoff oder Methyl; und

X Chlor, Methyl, Cyano, Methoxy oder Ethoxy bedeuten.

Eine weitere bevorzugte Ausführungsform der Erfindung betrifft Verbindungen, in denen R¹ und R² zusammen mit dem Stickstoffatom, an das sie gebunden sind, ein fünf- oder sechsgliedriges Heterocycl oder Heteroaryl bilden, welches über N gebunden ist und ein weiteres Heteroatom aus der Gruppe O, N und S als Ringglied enthalten und/oder einen oder mehrere Substituenten aus der Gruppe Halogen, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₂-C₆-Alkenyl, C₂-C₆-Halogenalkenyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy, C₃-C₆-Alkenyloxy, C₃-C₆-Halogenalkenyloxy, C₁-C₆-Alkylen und Oxy-C₁-C₃-alkylenoxy tragen kann. Diese Verbindungen entsprechen insbesondere Formel I.2,

in der

D zusammen mit dem Stickstoffatom ein fünf- oder sechsgliedriges Heterocyclyl oder Heteroaryl bildet, welches über N gebunden ist und ein weiteres Heteroatom aus der Gruppe O, N und S als Ringglied enthalten und/oder einen oder

5 mehrere Substituenten aus der Gruppe Halogen, C₁-C₄-Alkyl, C₁-C₄-Alkoxy und C₁-C₂-Halogenalkyl tragen kann; und

X Chlor, Methyl, Cyano, Methoxy oder Ethoxy bedeuten.

Eine weitere bevorzugte Ausführungsform der Erfindung betrifft Verbindungen der

10 Formel I.3.

in der Y für Wasserstoff oder C₁-C₄-Alkyl, insbesondere für Methyl und Ethyl, und X für Chlor, Methyl, Cyano, Methoxy oder Ethoxy steht.

15 Insbesondere sind im Hinblick auf ihre Verwendung die in den folgenden Tabellen zusammengestellten Verbindungen I bevorzugt. Die in den Tabellen für einen Substituenten genannten Gruppen stellen außerdem für sich betrachtet, unabhängig von der Kombination, in der sie genannt sind, eine besonders bevorzugte Ausgestaltung des betreffenden Substituenten dar.

20

Tabelle 1

Verbindungen der Formel I, in denen X Chlor, Hal Fluor, L¹ Methoxy, L² und L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

25

Tabelle 2

Verbindungen der Formel I, in denen X Cyano, Hal Fluor, L¹ Methoxy, L² und L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

30

Tabelle 3

Verbindungen der Formel I, in denen X Methyl, Hal Fluor, L¹ Methoxy, L² und L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

35

Tabelle 4

Verbindungen der Formel I, in denen X Methoxy, Hal Fluor, L¹ Methoxy, L² und L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

5

Tabelle 5

Verbindungen der Formel I, in denen X Chlor, Hal Fluor, L¹ Cyano, L² und L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

10

Tabelle 6

Verbindungen der Formel I, in denen X Cyano, Hal Fluor, L¹ Cyano, L² und L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

15

Tabelle 7

Verbindungen der Formel I, in denen X Methyl, Hal Fluor, L¹ Cyano, L² und L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

20

Tabelle 8

Verbindungen der Formel I, in denen X Methoxy, Hal Fluor, L¹ Cyano, L² und L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

25

Tabelle 9

Verbindungen der Formel I, in denen X Chlor, Hal Fluor, L¹ Trifluormethyl, L² und L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

30

Tabelle 10

Verbindungen der Formel I, in denen X Cyano, Hal Fluor, L¹ Trifluormethyl, L² und L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

35

Tabelle 11

Verbindungen der Formel I, in denen X Methyl, Hal Fluor, L¹ Trifluormethyl, L² und L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

40

Tabelle 12

Verbindungen der Formel I, in denen X Methoxy, Hal Fluor, L¹ Trifluormethyl, L² und L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

5

Tabelle 13

Verbindungen der Formel I, in denen X Chlor, Hal Fluor, L¹ Methoxycarbonyl, L² und L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

10

Tabelle 14

Verbindungen der Formel I, in denen X Cyano, Hal Fluor, L¹ Methoxycarbonyl, L² und L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

15

Tabelle 15

Verbindungen der Formel I, in denen X Methyl, Hal Fluor, L¹ Methoxycarbonyl, L² und L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

20

Tabelle 16

Verbindungen der Formel I, in denen X Methoxy, Hal Fluor, L¹ Methoxycarbonyl, L² und L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

25

Tabelle 17

Verbindungen der Formel I, in denen X Chlor, Hal Chlor, L¹ Methoxy, L² und L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

30

Tabelle 18

Verbindungen der Formel I, in denen X Cyano, Hal Chlor, L¹ Methoxy, L² und L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

35

Tabelle 19

Verbindungen der Formel I, in denen X Methyl, Hal Chlor, L¹ Methoxy, L² und L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

40

Tabelle 20

Verbindungen der Formel I, in denen X Methoxy, Hal Chlor, L¹ Methoxy, L² und L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

5

Tabelle 21

Verbindungen der Formel I, in denen X Chlor, Hal Chlor, L¹ Cyano, L² und L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

10

Tabelle 22

Verbindungen der Formel I, in denen X Cyano, Hal Chlor, L¹ Cyano, L² und L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

15

Tabelle 23

Verbindungen der Formel I, in denen X Methyl, Hal Chlor, L¹ Cyano, L² und L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

20

Tabelle 24

Verbindungen der Formel I, in denen X Methoxy, Hal Chlor, L¹ Cyano, L² und L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

25

Tabelle 25

Verbindungen der Formel I, in denen X Chlor, Hal Chlor, L¹ Trifluormethyl, L² und L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

30

Tabelle 26

Verbindungen der Formel I, in denen X Cyano, Hal Chlor, L¹ Trifluormethyl, L² und L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

35

Tabelle 27

Verbindungen der Formel I, in denen X Methyl, Hal Chlor, L¹ Trifluormethyl, L² und L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

40

Tabelle 28

Verbindungen der Formel I, in denen X Methoxy, Hal Chlor, L¹ Trifluormethyl, L² und L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

5

Tabelle 29

Verbindungen der Formel I, in denen X Chlor, Hal Chlor, L¹ Methoxycarbonyl, L² und L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

10

Tabelle 30

Verbindungen der Formel I, in denen X Cyano, Hal Chlor, L¹ Methoxycarbonyl, L² und L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

15

Tabelle 31

Verbindungen der Formel I, in denen X Methyl, Hal Chlor, L¹ Methoxycarbonyl, L² und L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

20

Tabelle 32

Verbindungen der Formel I, in denen X Methoxy, Hal Chlor, L¹ Methoxycarbonyl, L² und L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

25

Tabelle 33

Verbindungen der Formel I, in denen X Chlor, Hal Fluor, L¹ Wasserstoff, L² Methoxy, L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

30

Tabelle 34

Verbindungen der Formel I, in denen X Cyano, Hal Fluor, L¹ Wasserstoff, L² Methoxy, L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

35

Tabelle 35

Verbindungen der Formel I, in denen X Methyl, Hal Fluor, L¹ Wasserstoff, L² Methoxy, L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

40

Tabelle 36

Verbindungen der Formel I, in denen X Methoxy, Hal Fluor, L¹ Wasserstoff, L² Methoxy, L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

5

Tabelle 37

Verbindungen der Formel I, in denen X Chlor, Hal Fluor, L¹ Wasserstoff, L² Cyano, L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

10

Tabelle 38

Verbindungen der Formel I, in denen X Cyano, Hal Fluor, L¹ Wasserstoff, L² Cyano, L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

15

Tabelle 39

Verbindungen der Formel I, in denen X Methyl, Hal Fluor, L¹ Wasserstoff, L² Cyano, L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

20

Tabelle 40

Verbindungen der Formel I, in denen X Methoxy, Hal Fluor, L¹ Wasserstoff, L² Cyano, L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

25

Tabelle 41

Verbindungen der Formel I, in denen X Chlor, Hal Fluor, L¹ Wasserstoff, L² Trifluormethyl, L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

30

Tabelle 42

Verbindungen der Formel I, in denen X Cyano, Hal Fluor, L¹ Wasserstoff, L² Trifluormethyl, L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

35

Tabelle 43

Verbindungen der Formel I, in denen X Methyl, Hal Fluor, L¹ Wasserstoff, L² Trifluormethyl, L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

40

Tabelle 44

Verbindungen der Formel I, in denen X Methoxy, Hal Fluor, L¹ Wasserstoff, L² Trifluormethyl, L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

5

Tabelle 45

Verbindungen der Formel I, in denen X Chlor, Hal Fluor, L¹ Wasserstoff, L² Methoxy-carbonyl, L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

10

Tabelle 46

Verbindungen der Formel I, in denen X Cyano, Hal Fluor, L¹ Wasserstoff, L² Methoxycarbonyl, L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

15

Tabelle 47

Verbindungen der Formel I, in denen X Methyl, Hal Fluor, L¹ Wasserstoff, L² Methoxycarbonyl, L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

20

Tabelle 48

Verbindungen der Formel I, in denen X Methoxy, Hal Fluor, L¹ Wasserstoff, L² Methoxycarbonyl, L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

25

Tabelle 49

Verbindungen der Formel I, in denen X Chlor, Hal Chlor, L¹ Wasserstoff, L² Methoxy, L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

30

Tabelle 50

Verbindungen der Formel I, in denen X Cyano, Hal Chlor, L¹ Wasserstoff, L² Methoxy, L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

35

Tabelle 51

Verbindungen der Formel I, in denen X Methyl, Hal Chlor, L¹ Wasserstoff, L² Methoxy, L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

40

Tabelle 52

Verbindungen der Formel I, in denen X Methoxy, Hal Chlor, L¹ Wasserstoff, L² Methoxy, L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

5

Tabelle 53

Verbindungen der Formel I, in denen X Chlor, Hal Chlor, L¹ Wasserstoff, L² Cyano, L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

10

Tabelle 54

Verbindungen der Formel I, in denen X Cyano, Hal Chlor, L¹ Wasserstoff, L² Cyano, L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

15

Tabelle 55

Verbindungen der Formel I, in denen X Methyl, Hal Chlor, L¹ Wasserstoff, L² Cyano, L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

20

Tabelle 56

Verbindungen der Formel I, in denen X Methoxy, Hal Chlor, L¹ Wasserstoff, L² Cyano, L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

25

Tabelle 57

Verbindungen der Formel I, in denen X Chlor, Hal Chlor, L¹ Wasserstoff, L² Trifluor-methyl, L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

30

Tabelle 58

Verbindungen der Formel I, in denen X Cyano, Hal Chlor, L¹ Wasserstoff, L² Trifluor-methyl, L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

35

Tabelle 59

Verbindungen der Formel I, in denen X Methyl, Hal Chlor, L¹ Wasserstoff, L² Trifluor-methyl, L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

40

Tabelle 60

Verbindungen der Formel I, in denen X Methoxy, Hal Chlor, L¹ Wasserstoff, L² Trifluormethyl, L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

5

Tabelle 61

Verbindungen der Formel I, in denen X Chlor, Hal Chlor, L¹ Wasserstoff, L² Methoxycarbonyl, L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

10

Tabelle 62

Verbindungen der Formel I, in denen X Cyano, Hal Chlor, L¹ Wasserstoff, L² Methoxycarbonyl, L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

15

Tabelle 63

Verbindungen der Formel I, in denen X Methyl, Hal Chlor, L¹ Wasserstoff, L² Methoxycarbonyl, L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

20

Tabelle 64

Verbindungen der Formel I, in denen X Methoxy, Hal Chlor, L¹ Wasserstoff, L² Methoxycarbonyl, L³ Wasserstoff und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

25

Tabelle 65

Verbindungen der Formel I, in denen X Chlor, Hal Fluor, L¹ und L² Wasserstoff, L³ Fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

30

Tabelle 66

Verbindungen der Formel I, in denen X Cyano, Hal Fluor, L¹ und L² Wasserstoff, L³ Fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

35

Tabelle 67

Verbindungen der Formel I, in denen X Methyl, Hal Fluor, L¹ und L² Wasserstoff, L³ Fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

40

Tabelle 68

Verbindungen der Formel I, in denen X Methoxy, Hal Fluor, L¹ und L² Wasserstoff, L³ Fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

5

Tabelle 69

Verbindungen der Formel I, in denen X Chlor, Hal Fluor, L¹ und L² Wasserstoff, L³ Chlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

10

Tabelle 70

Verbindungen der Formel I, in denen X Cyano, Hal Fluor, L¹ und L² Wasserstoff, L³ Chlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

15

Tabelle 71

Verbindungen der Formel I, in denen X Methyl, Hal Fluor, L¹ und L² Wasserstoff, L³ Chlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

20

Tabelle 72

Verbindungen der Formel I, in denen X Methoxy, Hal Fluor, L¹ und L² Wasserstoff, L³ Chlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

25

Tabelle 73

Verbindungen der Formel I, in denen X Chlor, Hal Fluor, L¹ und L² Wasserstoff, L³ Cyano und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

30

Tabelle 74

Verbindungen der Formel I, in denen X Cyano, Hal Fluor, L¹ und L² Wasserstoff, L³ Cyano und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

35

Tabelle 75

Verbindungen der Formel I, in denen X Methyl, Hal Fluor, L¹ und L² Wasserstoff, L³ Cyano und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 76

Verbindungen der Formel I, in denen X Methoxy, Hal Fluor, L¹ und L² Wasserstoff, L³ Cyano und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der

5 Tabelle A entspricht

Tabelle 77

Verbindungen der Formel I, in denen X Chlor, Hal Fluor, L¹ und L² Wasserstoff, L³ Me-thoxy und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der

10 Tabelle A entspricht

Tabelle 78

Verbindungen der Formel I, in denen X Cyano, Hal Fluor, L¹ und L² Wasserstoff, L³ Methoxy und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile

15 der Tabelle A entspricht

Tabelle 79

Verbindungen der Formel I, in denen X Methyl, Hal Fluor, L¹ und L² Wasserstoff, L³ Methoxy und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile

20 der Tabelle A entspricht

Tabelle 80

Verbindungen der Formel I, in denen X Methoxy, Hal Fluor, L¹ und L² Wasserstoff, L³ Methoxy und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile

25 der Tabelle A entspricht

Tabelle 81

Verbindungen der Formel I, in denen X Chlor, Hal Fluor, L¹ und L² Wasserstoff, L³ Me-thoxycarbonyl und die Kombination von R¹ und R² für eine Verbindung jeweils einer

30 Zeile der Tabelle A entspricht

Tabelle 82

Verbindungen der Formel I, in denen X Cyano, Hal Fluor, L¹ und L² Wasserstoff, L³ Methoxycarbonyl und die Kombination von R¹ und R² für eine Verbindung jeweils einer

35 Zeile der Tabelle A entspricht

Tabelle 83

Verbindungen der Formel I, in denen X Methyl, Hal Fluor, L¹ und L² Wasserstoff, L³

Methoxycarbonyl und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 84

- 5 Verbindungen der Formel I, in denen X Methoxy, Hal Fluor, L¹ und L² Wasserstoff, L³ Methoxycarbonyl und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 85

- 10 Verbindungen der Formel I, in denen X Chlor, Hal Chlor, L¹ und L² Wasserstoff, L³ Fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 86

- 15 Verbindungen der Formel I, in denen X Cyano, Hal Chlor, L¹ und L² Wasserstoff, L³ Fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 87

- 20 Verbindungen der Formel I, in denen X Methyl, Hal Chlor, L¹ und L² Wasserstoff, L³ Fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 88

- 25 Verbindungen der Formel I, in denen X Methoxy, Hal Chlor, L¹ und L² Wasserstoff, L³ Fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 89

- 30 Verbindungen der Formel I, in denen X Chlor, Hal Chlor, L¹ und L² Wasserstoff, L³ Chlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 90

- 35 Verbindungen der Formel I, in denen X Cyano, Hal Chlor, L¹ und L² Wasserstoff, L³ Chlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 91

Verbindungen der Formel I, in denen X Methyl, Hal Chlor, L¹ und L² Wasserstoff, L³ Chlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

5

Tabelle 92

Verbindungen der Formel I, in denen X Methoxy, Hal Chlor, L¹ und L² Wasserstoff, L³ Chlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

10

Tabelle 93

Verbindungen der Formel I, in denen X Chlor, Hal Chlor, L¹ und L² Wasserstoff, L³ Cyano und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

15

Tabelle 94

Verbindungen der Formel I, in denen X Cyano, Hal Chlor, L¹ und L² Wasserstoff, L³ Cyano und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

20

Tabelle 95

Verbindungen der Formel I, in denen X Methyl, Hal Chlor, L¹ und L² Wasserstoff, L³ Cyano und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

25

Tabelle 96

Verbindungen der Formel I, in denen X Methoxy, Hal Chlor, L¹ und L² Wasserstoff, L³ Cyano und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

30

Tabelle 97

Verbindungen der Formel I, in denen X Chlor, Hal Chlor, L¹ und L² Wasserstoff, L³ Methoxy und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

35

Tabelle 98

Verbindungen der Formel I, in denen X Cyano, Hal Chlor, L¹ und L² Wasserstoff, L³ Methoxy und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 99

Verbindungen der Formel I, in denen X Methyl, Hal Chlor, L¹ und L² Wasserstoff, L³ Methoxy und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile

5 der Tabelle A entspricht

Tabelle 100

Verbindungen der Formel I, in denen X Methoxy, Hal Chlor, L¹ und L² Wasserstoff, L³ Methoxy und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile

10 der Tabelle A entspricht

Tabelle 101

Verbindungen der Formel I, in denen X Chlor, Hal Chlor, L¹ und L² Wasserstoff, L³ Methoxycarbonyl und die Kombination von R¹ und R² für eine Verbindung jeweils einer

15 Zeile der Tabelle A entspricht

Tabelle 102

Verbindungen der Formel I, in denen X Cyano, Hal Chlor, L¹ und L² Wasserstoff, L³ Methoxycarbonyl und die Kombination von R¹ und R² für eine Verbindung jeweils einer

20 Zeile der Tabelle A entspricht

Tabelle 103

Verbindungen der Formel I, in denen X Methyl, Hal Chlor, L¹ und L² Wasserstoff, L³ Methoxycarbonyl und die Kombination von R¹ und R² für eine Verbindung jeweils einer

25 Zeile der Tabelle A entspricht

Tabelle 104

Verbindungen der Formel I, in denen X Methoxy, Hal Chlor, L¹ und L² Wasserstoff, L³ Methoxycarbonyl und die Kombination von R¹ und R² für eine Verbindung jeweils einer

30 Zeile der Tabelle A entspricht

Tabelle 105

Verbindungen der Formel I, in denen X Chlor, Hal Fluor, L¹ Cyano, L² Wasserstoff, L³ Fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der

35 Tabelle A entspricht

Tabelle 106

Verbindungen der Formel I, in denen X Cyano, Hal Fluor, L¹ Cyano, L² Wasserstoff, L³

Fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 107

- 5 Verbindungen der Formel I, in denen X Methyl, Hal Fluor, L¹ Cyano, L² Wasserstoff, L³ Fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 108

- 10 Verbindungen der Formel I, in denen X Methoxy, Hal Fluor, L¹ Cyano, L² Wasserstoff, L³ Fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 109

- 15 Verbindungen der Formel I, in denen X Chlor, Hal Fluor, L¹ Cyano, L² Wasserstoff, L³ Chlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 110

- 20 Verbindungen der Formel I, in denen X Cyano, Hal Fluor, L¹ Cyano, L² Wasserstoff, L³ Chlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 111

- 25 Verbindungen der Formel I, in denen X Methyl, Hal Fluor, L¹ Cyano, L² Wasserstoff, L³ Chlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 112

- 30 Verbindungen der Formel I, in denen X Methoxy, Hal Fluor, L¹ Cyano, L² Wasserstoff, L³ Chlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 113

- 35 Verbindungen der Formel I, in denen X Chlor, Hal Fluor, L¹ Cyano, L² Wasserstoff, L³ Cyano und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 114

Verbindungen der Formel I, in denen X Cyano, Hal Fluor, L¹ Cyano, L² Wasserstoff, L³ Cyano und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

5

Tabelle 115

Verbindungen der Formel I, in denen X Methyl, Hal Fluor, L¹ Cyano, L² Wasserstoff, L³ Cyano und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

10

Tabelle 116

Verbindungen der Formel I, in denen X Methoxy, Hal Fluor, L¹ Cyano, L² Wasserstoff, L³ Cyano und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

15

Tabelle 117

Verbindungen der Formel I, in denen X Chlor, Hal Fluor, L¹ Cyano, L² Wasserstoff, L³ Methoxy und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

20

Tabelle 118

Verbindungen der Formel I, in denen X Cyano, Hal Fluor, L¹ Cyano, L² Wasserstoff, L³ Methoxy und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

25

Tabelle 119

Verbindungen der Formel I, in denen X Methyl, Hal Fluor, L¹ Cyano, L² Wasserstoff, L³ Methoxy und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

30

Tabelle 120

Verbindungen der Formel I, in denen X Methoxy, Hal Fluor, L¹ Cyano, L² Wasserstoff, L³ Methoxy und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

35

Tabelle 121

Verbindungen der Formel I, in denen X Chlor, Hal Fluor, L¹ Cyano, L² Wasserstoff, L³ Methoxycarbonyl und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 122

Verbindungen der Formel I, in denen X Cyano, Hal Fluor, L¹ Cyano, L² Wasserstoff, L³ Methoxycarbonyl und die Kombination von R¹ und R² für eine Verbindung jeweils einer

5 Zeile der Tabelle A entspricht

Tabelle 123

Verbindungen der Formel I, in denen X Methyl, Hal Fluor, L¹ Cyano, L² Wasserstoff, L³ Methoxycarbonyl und die Kombination von R¹ und R² für eine Verbindung jeweils einer

10 Zeile der Tabelle A entspricht

Tabelle 124

Verbindungen der Formel I, in denen X Methoxy, Hal Fluor, L¹ Cyano, L² Wasserstoff, L³ Methoxycarbonyl und die Kombination von R¹ und R² für eine Verbindung jeweils

15 einer Zeile der Tabelle A entspricht

Tabelle 125

Verbindungen der Formel I, in denen X Chlor, Hal Chlor, L¹ Cyano, L² Wasserstoff, L³ Fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der

20 Tabelle A entspricht

Tabelle 126

Verbindungen der Formel I, in denen X Cyano, Hal Chlor, L¹ Cyano, L² Wasserstoff, L³ Fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der

25 Tabelle A entspricht

Tabelle 127

Verbindungen der Formel I, in denen X Methyl, Hal Chlor, L¹ Cyano, L² Wasserstoff, L³ Fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der

30 Tabelle A entspricht

Tabelle 128

Verbindungen der Formel I, in denen X Methoxy, Hal Chlor, L¹ Cyano, L² Wasserstoff, L³ Fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der

35 Tabelle A entspricht

Tabelle 129

Verbindungen der Formel I, in denen X Chlor, Hal Chlor, L¹ Cyano, L² Wasserstoff, L³

Chlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 130

- 5 Verbindungen der Formel I, in denen X Cyano, Hal Chlor, L¹ Cyano, L² Wasserstoff, L³ Chlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 131

- 10 Verbindungen der Formel I, in denen X Methyl, Hal Chlor, L¹ Cyano, L² Wasserstoff, L³ Chlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 132

- 15 Verbindungen der Formel I, in denen X Methoxy, Hal Chlor, L¹ Cyano, L² Wasserstoff, L³ Chlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 133

- 20 Verbindungen der Formel I, in denen X Chlor, Hal Chlor, L¹ Cyano, L² Wasserstoff, L³ Cyano und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 134

- 25 Verbindungen der Formel I, in denen X Cyano, Hal Chlor, L¹ Cyano, L² Wasserstoff, L³ Cyano und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 135

- 30 Verbindungen der Formel I, in denen X Methyl, Hal Chlor, L¹ Cyano, L² Wasserstoff, L³ Cyano und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 136

- 35 Verbindungen der Formel I, in denen X Methoxy, Hal Chlor, L¹ Cyano, L² Wasserstoff, L³ Cyano und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 137

Verbindungen der Formel I, in denen X Chlor, Hal Chlor, L¹ Cyano, L² Wasserstoff, L³ Methoxy und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

5

Tabelle 138

Verbindungen der Formel I, in denen X Cyano, Hal Chlor, L¹ Cyano, L² Wasserstoff, L³ Methoxy und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

10

Tabelle 139

Verbindungen der Formel I, in denen X Methyl, Hal Chlor, L¹ Cyano, L² Wasserstoff, L³ Methoxy und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

15

Tabelle 140

Verbindungen der Formel I, in denen X Methoxy, Hal Chlor, L¹ Cyano, L² Wasserstoff, L³ Methoxy und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

20

Tabelle 141

Verbindungen der Formel I, in denen X Chlor, Hal Chlor, L¹ Cyano, L² Wasserstoff, L³ Methoxycarbonyl und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

25

Tabelle 142

Verbindungen der Formel I, in denen X Cyano, Hal Chlor, L¹ Cyano, L² Wasserstoff, L³ Methoxycarbonyl und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

30

Tabelle 143

Verbindungen der Formel I, in denen X Methyl, Hal Chlor, L¹ Cyano, L² Wasserstoff, L³ Methoxycarbonyl und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

35

Tabelle 144

Verbindungen der Formel I, in denen X Methoxy, Hal Chlor, L¹ Cyano, L² Wasserstoff, L³ Methoxycarbonyl und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 145

Verbindungen der Formel I, in denen X Chlor, Hal Fluor, L¹ Methoxy, L² Wasserstoff, L³ Fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der

5 Tabelle A entspricht

Tabelle 146

Verbindungen der Formel I, in denen X Cyano, Hal Fluor, L¹ Methoxy, L² Wasserstoff, L³ Fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der

10 Tabelle A entspricht

Tabelle 147

Verbindungen der Formel I, in denen X Methyl, Hal Fluor, L¹ Methoxy, L² Wasserstoff, L³ Fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der

15 Tabelle A entspricht

Tabelle 148

Verbindungen der Formel I, in denen X Methoxy, Hal Fluor, L¹ Methoxy, L² Wasserstoff, L³ Fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer

20 Zeile der Tabelle A entspricht

Tabelle 149

Verbindungen der Formel I, in denen X Chlor, Hal Fluor, L¹ Methoxy, L² Wasserstoff, L³ Chlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der

25 Tabelle A entspricht

Tabelle 150

Verbindungen der Formel I, in denen X Cyano, Hal Fluor, L¹ Methoxy, L² Wasserstoff, L³ Chlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der

30 Tabelle A entspricht

Tabelle 151

Verbindungen der Formel I, in denen X Methyl, Hal Fluor, L¹ Methoxy, L² Wasserstoff, L³ Chlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der

35 Tabelle A entspricht

Tabelle 152

Verbindungen der Formel I, in denen X Methoxy, Hal Fluor, L¹ Methoxy, L² Wasser-

stoff, L³ Chlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 153

- 5 Verbindungen der Formel I, in denen X Chlor, Hal Fluor, L¹ Methoxy, L² Wasserstoff, L³ Cyano und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 154

- 10 Verbindungen der Formel I, in denen X Cyano, Hal Fluor, L¹ Methoxy, L² Wasserstoff, L³ Cyano und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 155

- 15 Verbindungen der Formel I, in denen X Methyl, Hal Fluor, L¹ Methoxy, L² Wasserstoff, L³ Cyano und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 156

- 20 Verbindungen der Formel I, in denen X Methoxy, Hal Fluor, L¹ Methoxy, L² Wasserstoff, L³ Cyano und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 157

- 25 Verbindungen der Formel I, in denen X Chlor, Hal Fluor, L¹ Methoxy, L² Wasserstoff, L³ Methoxy und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 158

- 30 Verbindungen der Formel I, in denen X Cyano, Hal Fluor, L¹ Methoxy, L² Wasserstoff, L³ Methoxy und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 159

- 35 Verbindungen der Formel I, in denen X Methyl, Hal Fluor, L¹ Methoxy, L² Wasserstoff, L³ Methoxy und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 160

Verbindungen der Formel I, in denen X Methoxy, Hal Fluor, L¹ Methoxy, L² Wasserstoff, L³ Methoxy und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

5

Tabelle 161

Verbindungen der Formel I, in denen X Chlor, Hal Fluor, L¹ Methoxy, L² Wasserstoff, L³ Methoxycarbonyl und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

10

Tabelle 162

Verbindungen der Formel I, in denen X Cyano, Hal Fluor, L¹ Methoxy, L² Wasserstoff, L³ Methoxycarbonyl und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

15

Tabelle 163

Verbindungen der Formel I, in denen X Methyl, Hal Fluor, L¹ Methoxy, L² Wasserstoff, L³ Methoxycarbonyl und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

20

Tabelle 164

Verbindungen der Formel I, in denen X Methoxy, Hal Fluor, L¹ Methoxy, L² Wasserstoff, L³ Methoxycarbonyl und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

25

Tabelle 165

Verbindungen der Formel I, in denen X Chlor, Hal Chlor, L¹ Methoxy, L² Wasserstoff, L³ Fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

30

Tabelle 166

Verbindungen der Formel I, in denen X Cyano, Hal Chlor, L¹ Methoxy, L² Wasserstoff, L³ Fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

35

Tabelle 167

Verbindungen der Formel I, in denen X Methyl, Hal Chlor, L¹ Methoxy, L² Wasserstoff, L³ Fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 168

Verbindungen der Formel I, in denen X Methoxy, Hal Chlor, L¹ Methoxy, L² Wasserstoff, L³ Fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer

- 5 Zeile der Tabelle A entspricht

Tabelle 169

Verbindungen der Formel I, in denen X Chlor, Hal Chlor, L¹ Methoxy, L² Wasserstoff, L³ Chlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der

- 10 Tabelle A entspricht

Tabelle 170

Verbindungen der Formel I, in denen X Cyano, Hal Chlor, L¹ Methoxy, L² Wasserstoff, L³ Chlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der

- 15 Tabelle A entspricht

Tabelle 171

Verbindungen der Formel I, in denen X Methyl, Hal Chlor, L¹ Methoxy, L² Wasserstoff, L³ Chlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der

- 20 Tabelle A entspricht

Tabelle 172

Verbindungen der Formel I, in denen X Methoxy, Hal Chlor, L¹ Methoxy, L² Wasserstoff, L³ Chlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer

- 25 Zeile der Tabelle A entspricht

Tabelle 173

Verbindungen der Formel I, in denen X Chlor, Hal Chlor, L¹ Methoxy, L² Wasserstoff, L³ Cyano und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der

- 30 Tabelle A entspricht

Tabelle 174

Verbindungen der Formel I, in denen X Cyano, Hal Chlor, L¹ Methoxy, L² Wasserstoff, L³ Cyano und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile

- 35 der Tabelle A entspricht

Tabelle 175

Verbindungen der Formel I, in denen X Methyl, Hal Chlor, L¹ Methoxy, L² Wasserstoff,

L³ Cyano und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 176

- 5 Verbindungen der Formel I, in denen X Methoxy, Hal Chlor, L¹ Methoxy, L² Wasserstoff, L³ Cyano und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 177

- 10 Verbindungen der Formel I, in denen X Chlor, Hal Chlor, L¹ Methoxy, L² Wasserstoff, L³ Methoxy und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 178

- 15 Verbindungen der Formel I, in denen X Cyano, Hal Chlor, L¹ Methoxy, L² Wasserstoff, L³ Methoxy und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 179

- 20 Verbindungen der Formel I, in denen X Methyl, Hal Chlor, L¹ Methoxy, L² Wasserstoff, L³ Methoxy und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 180

- 25 Verbindungen der Formel I, in denen X Methoxy, Hal Chlor, L¹ Methoxy, L² Wasserstoff, L³ Methoxy und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 181

- 30 Verbindungen der Formel I, in denen X Chlor, Hal Chlor, L¹ Methoxy, L² Wasserstoff, L³ Methoxycarbonyl und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 182

- 35 Verbindungen der Formel I, in denen X Cyano, Hal Chlor, L¹ Methoxy, L² Wasserstoff, L³ Methoxycarbonyl und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 183

Verbindungen der Formel I, in denen X Methyl, Hal Chlor, L¹ Methoxy, L² Wasserstoff, L³ Methoxycarbonyl und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

5

Tabelle 184

Verbindungen der Formel I, in denen X Methoxy, Hal Chlor, L¹ Methoxy, L² Wasserstoff, L³ Methoxycarbonyl und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

10

Tabelle A

Nr.	R ¹	R ²
A-1	H	H
A-2	CH ₃	H
A-3	CH ₃	CH ₃
A-4	CH ₂ CH ₃	H
A-5	CH ₂ CH ₃	CH ₃
A-6	CH ₂ CH ₃	CH ₂ CH ₃
A-7	CH ₂ CF ₃	H
A-8	CH ₂ CF ₃	CH ₃
A-9	CH ₂ CF ₃	CH ₂ CH ₃
A-10	CH ₂ CCl ₃	H
A-11	CH ₂ CCl ₃	CH ₃
A-12	CH ₂ CCl ₃	CH ₂ CH ₃
A-13	CH ₂ CH ₂ CH ₃	H
A-14	CH ₂ CH ₂ CH ₃	CH ₃
A-15	CH ₂ CH ₂ CH ₃	CH ₂ CH ₃
A-16	CH ₂ CH ₂ CH ₃	CH ₂ CH ₂ CH ₃
A-17	CH(CH ₃) ₂	H
A-18	CH(CH ₃) ₂	CH ₃
A-19	CH(CH ₃) ₂	CH ₂ CH ₃
A-20	CH ₂ CH ₂ CH ₂ CH ₃	H
A-21	CH ₂ CH ₂ CH ₂ CH ₃	CH ₃
A-22	CH ₂ CH ₂ CH ₂ CH ₃	CH ₂ CH ₃
A-23	CH ₂ CH ₂ CH ₂ CH ₃	CH ₂ CH ₂ CH ₃
A-24	CH ₂ CH ₂ CH ₂ CH ₃	CH ₂ CH ₂ CH ₂ CH ₃
A-25	(±) CH(CH ₃)-CH ₂ CH ₃	H
A-26	(±) CH(CH ₃)-CH ₂ CH ₃	CH ₃

Nr.	R ¹	R ²
A-27	(±) CH(CH ₃)-CH ₂ CH ₃	CH ₂ CH ₃
A-28	(S) CH(CH ₃)-CH ₂ CH ₃	H
A-29	(S) CH(CH ₃)-CH ₂ CH ₃	CH ₃
A-30	(S) CH(CH ₃)-CH ₂ CH ₃	CH ₂ CH ₃
A-31	(R) CH(CH ₃)-CH ₂ CH ₃	H
A-32	(R) CH(CH ₃)-CH ₂ CH ₃	CH ₃
A-33	(R) CH(CH ₃)-CH ₂ CH ₃	CH ₂ CH ₃
A-34	(±) CH(CH ₃)-CH(CH ₃) ₂	H
A-35	(±) CH(CH ₃)-CH(CH ₃) ₂	CH ₃
A-36	(±) CH(CH ₃)-CH(CH ₃) ₂	CH ₂ CH ₃
A-37	(S) CH(CH ₃)-CH(CH ₃) ₂	H
A-38	(S) CH(CH ₃)-CH(CH ₃) ₂	CH ₃
A-39	(S) CH(CH ₃)-CH(CH ₃) ₂	CH ₂ CH ₃
A-40	(R) CH(CH ₃)-CH(CH ₃) ₂	H
A-41	(R) CH(CH ₃)-CH(CH ₃) ₂	CH ₃
A-42	(R) CH(CH ₃)-CH(CH ₃) ₂	CH ₂ CH ₃
A-43	(±) CH(CH ₃)-C(CH ₃) ₃	H
A-44	(±) CH(CH ₃)-C(CH ₃) ₃	CH ₃
A-45	(±) CH(CH ₃)-C(CH ₃) ₃	CH ₂ CH ₃
A-46	(S) CH(CH ₃)-C(CH ₃) ₃	H
A-47	(S) CH(CH ₃)-C(CH ₃) ₃	CH ₃
A-48	(S) CH(CH ₃)-C(CH ₃) ₃	CH ₂ CH ₃
A-49	(R) CH(CH ₃)-C(CH ₃) ₃	H
A-50	(R) CH(CH ₃)-C(CH ₃) ₃	CH ₃
A-51	(R) CH(CH ₃)-C(CH ₃) ₃	CH ₂ CH ₃
A-52	(±) CH(CH ₃)-CF ₃	H
A-53	(±) CH(CH ₃)-CF ₃	CH ₃
A-54	(±) CH(CH ₃)-CF ₃	CH ₂ CH ₃
A-55	(S) CH(CH ₃)-CF ₃	H
A-56	(S) CH(CH ₃)-CF ₃	CH ₃
A-57	(S) CH(CH ₃)-CF ₃	CH ₂ CH ₃
A-58	(R) CH(CH ₃)-CF ₃	H
A-59	(R) CH(CH ₃)-CF ₃	CH ₃
A-60	(R) CH(CH ₃)-CF ₃	CH ₂ CH ₃
A-61	(±) CH(CH ₃)-CCl ₃	H
A-62	(±) CH(CH ₃)-CCl ₃	CH ₃
A-63	(±) CH(CH ₃)-CCl ₃	CH ₂ CH ₃

Nr.	R ¹	R ²
A-64	(S) CH(CH ₃)-CCl ₃	H
A-65	(S) CH(CH ₃)-CCl ₃	CH ₃
A-66	(S) CH(CH ₃)-CCl ₃	CH ₂ CH ₃
A-67	(R) CH(CH ₃)-CCl ₃	H
A-68	(R) CH(CH ₃)-CCl ₃	CH ₃
A-69	(R) CH(CH ₃)-CCl ₃	CH ₂ CH ₃
A-70	CH ₂ CF ₂ CF ₃	H
A-71	CH ₂ CF ₂ CF ₃	CH ₃
A-72	CH ₂ CF ₂ CF ₃	CH ₂ CH ₃
A-73	CH ₂ (CF ₂) ₂ CF ₃	H
A-74	CH ₂ (CF ₂) ₂ CF ₃	CH ₃
A-75	CH ₂ (CF ₂) ₂ CF ₃	CH ₂ CH ₃
A-76	CH ₂ C(CH ₃)=CH ₂	H
A-77	CH ₂ C(CH ₃)=CH ₂	CH ₃
A-78	CH ₂ C(CH ₃)=CH ₂	CH ₂ CH ₃
A-79	CH ₂ CH=CH ₂	H
A-80	CH ₂ CH=CH ₂	CH ₃
A-81	CH ₂ CH=CH ₂	CH ₂ CH ₃
A-82	CH(CH ₃)CH=CH ₂	H
A-83	CH(CH ₃)CH=CH ₂	CH ₃
A-84	CH(CH ₃)CH=CH ₂	CH ₂ CH ₃
A-85	CH(CH ₃)C(CH ₃)=CH ₂	H
A-86	CH(CH ₃)C(CH ₃)=CH ₂	CH ₃
A-87	CH(CH ₃)C(CH ₃)=CH ₂	CH ₂ CH ₃
A-88	CH ₂ -C≡CH	H
A-89	CH ₂ -C≡CH	CH ₃
A-90	CH ₂ -C≡CH	CH ₂ CH ₃
A-91	Cyclopentyl	H
A-92	Cyclopentyl	CH ₃
A-93	Cyclopentyl	CH ₂ CH ₃
A-94	Cyclohexyl	H
A-95	Cyclohexyl	CH ₃
A-96	Cyclohexyl	CH ₂ CH ₃
A-97	CH ₂ -C ₆ H ₅	H
A-98	CH ₂ -C ₆ H ₅	CH ₃
A-99	CH ₂ -C ₆ H ₅	CH ₂ CH ₃
A-100	-(CH ₂) ₂ CH=CHCH ₂ -	

Nr.	R ¹	R ²
A-101	-(CH ₂) ₂ C(CH ₃)=CHCH ₂ -	
A-102	-CH(CH ₃)CH ₂ -CH=CHCH ₂ -	
A-103	-(CH ₂) ₂ CH(CH ₃)(CH ₂) ₂ -	
A-104	-(CH ₂) ₃ CHFCH ₂ -	
A-105	-(CH ₂) ₂ CHF(CH ₂) ₂ -	
A-106	-CH ₂ CHF(CH ₂) ₃ -	
A-107	-(CH ₂) ₂ CH(CF ₃)(CH ₂) ₂ -	
A-108	-(CH ₂) ₂ O(CH ₂) ₂ -	
A-109	-(CH ₂) ₂ S(CH ₂) ₂ -	
A-110	-(CH ₂) ₅ -	
A-111	-(CH ₂) ₄ -	
A-112	-CH ₂ CH=CHCH ₂ -	
A-113	-CH(CH ₃)(CH ₂) ₃ -	
A-114	-CH ₂ CH(CH ₃)(CH ₂) ₂ -	
A-115	-CH(CH ₃)-(CH ₂) ₂ -CH(CH ₃)-	
A-116	-CH(CH ₃)-(CH ₂) ₄ -	
A-117	-CH ₂ -CH(CH ₃)-(CH ₂) ₃ -	
A-118	-(CH ₂)-CH(CH ₃)-CH ₂ -CH(CH ₃)-CH ₂ -	
A-119	-CH(CH ₂ CH ₃)-(CH ₂) ₄ -	
A-120	-(CH ₂) ₂ -CHOH-(CH ₂) ₂ -	
A-121	-(CH ₂) ₆ -	
A-122	-CH(CH ₃)-(CH ₂) ₅ -	
A-123	-(CH ₂) ₂ -N(CH ₃)-(CH ₂) ₂ -	
A-124	-N=CH-CH=CH-	
A-125	-N=C(CH ₃)-CH=C(CH ₃)-	
A-126	-N=C(CF ₃)-CH=C(CF ₃)-	

Die Verbindungen I eignen sich als Fungizide. Sie zeichnen sich aus durch eine hervorragende Wirksamkeit gegen ein breites Spektrum von pflanzenpathogenen Pilzen, insbesondere aus der Klasse der *Ascomyceten*, *Deuteromyceten*, *Oomyceten* und *Basidiomyceten*. Sie sind zum Teil systemisch wirksam und können im Pflanzenschutz als Blatt- und Bodenfungizide eingesetzt werden.

Besondere Bedeutung haben sie für die Bekämpfung einer Vielzahl von Pilzen an verschiedenen Kulturpflanzen wie Weizen, Roggen, Gerste, Hafer, Reis, Mais, Gras, Bananen, Baumwolle, Soja, Kaffee, Zuckerrohr, Wein, Obst- und Zierpflanzen und Gemüsepflanzen wie Gurken, Bohnen, Tomaten, Kartoffeln und Kürbisgewächsen, sowie an den Samen dieser Pflanzen.

Speziell eignen sie sich zur Bekämpfung folgender Pflanzenkrankheiten:

- *Alternaria*-Arten an Gemüse und Obst,
- *Bipolaris*- und *Drechslera*-Arten an Getreide, Reis und Rasen,
- 5 • *Blumeria graminis* (echter Mehltau) an Getreide,
- *Botrytis cinerea* (Grauschimmel) an Erdbeeren, Gemüse, Zierpflanzen und Reben,
- *Erysiphe cichoracearum* und *Sphaerotheca fuliginea* an Kürbisgewächsen,
- *Fusarium*- und *Verticillium*-Arten an verschiedenen Pflanzen,
- *Mycosphaerella*-Arten an Getreide, Bananen und Erdnüssen,
- 10 • *Phytophthora infestans* an Kartoffeln und Tomaten,
- *Plasmopara viticola* an Reben,
- *Podosphaera leucotricha* an Äpfeln,
- *Pseudocercospora herpotrichoides* an Weizen und Gerste,
- *Pseudoperonospora*-Arten an Hopfen und Gurken,
- 15 • *Puccinia*-Arten an Getreide,
- *Pyricularia oryzae* an Reis,
- *Rhizoctonia*-Arten an Baumwolle, Reis und Rasen,
- *Septoria tritici* und *Stagonospora nodorum* an Weizen,
- *Uncinula necator* an Reben,
- 20 • *Ustilago*-Arten an Getreide und Zuckerrohr, sowie
- *Venturia*-Arten (Schorf) an Äpfeln und Birnen.

Die Verbindungen I eignen sich außerdem zur Bekämpfung von Schadpilzen wie *Pae-*
ciliomyces variotii im Materialschutz (z.B. Holz, Papier, Dispersionen für den Anstrich,
25 Fasern bzw. Gewebe) und im Vorratsschutz.

Die Verbindungen I werden angewendet, indem man die Pilze oder die vor Pilzbefall zu
schützenden Pflanzen, Saatgüter, Materialien oder den Erdboden mit einer fungizid
30 wirksamen Menge der Wirkstoffe behandelt. Die Anwendung kann sowohl vor als auch
nach der Infektion der Materialien, Pflanzen oder Samen durch die Pilze erfolgen.

- Die fungiziden Mittel enthalten im allgemeinen zwischen 0,1 und 95, vorzugsweise zwi-
schen 0,5 und 90 Gew.-% Wirkstoff.
- 35 Die Aufwandmengen liegen bei der Anwendung im Pflanzenschutz je nach Art des
gewünschten Effektes zwischen 0,01 und 2,0 kg Wirkstoff pro ha.

Bei der Saatgutbehandlung werden im allgemeinen Wirkstoffmengen von 1 bis 1000 g/100 kg Saatgut, vorzugsweise 1 bis 200 g/100 kg, insbesondere 5 bis 100 g/100 kg verwendet.

- 5 Bei der Anwendung im Material- bzw. Vorratsschutz richtet sich die Aufwandmenge an Wirkstoff nach der Art des Einsatzgebietes und des gewünschten Effekts. Übliche Aufwandmengen sind im Materialschutz beispielsweise 0,001 g bis 2 kg, vorzugsweise 0,005 g bis 1 kg Wirkstoff pro Kubikmeter behandelten Materials.
- 10 Die Verbindungen I können in die üblichen Formulierungen überführt werden, z.B. Lösungen, Emulsionen, Suspensionen, Stäube, Pulver, Pasten und Granulate. Die Anwendungsform richtet sich nach dem jeweiligen Verwendungszweck; sie soll in jedem Fall eine feine und gleichmäßige Verteilung der erfindungsgemäßen Verbindung gewährleisten.
- 15 Die Formulierungen werden in bekannter Weise hergestellt, z.B. durch Verstreichen des Wirkstoffs mit Lösungsmitteln und/oder Trägerstoffen, gewünschtenfalls unter Verwendung von Emulgiermitteln und Dispergiermitteln. Als Lösungsmittel / Hilfsstoffe kommen dafür im wesentlichen in Betracht:
 - 20 - Wasser, aromatische Lösungsmittel (z.B. Solvesso Produkte, Xylol), Paraffine (z.B. Erdölfraktionen), Alkohole (z.B. Methanol, Butanol, Pentanol, Benzylalkohol), Ketone (z.B. Cyclohexanon, gamma-Butryolacton), Pyrrolidone (NMP, NOP), Acetate (Glykoldiacetat), Glykole, Dimethylfettsäureamide, Fettsäuren und Fettsäureester. Grundsätzlich können auch Lösungsmittelgemische verwendet werden,
 - 25 - Trägerstoffe wie natürliche Gesteinsmehle (z.B. Kaoline, Tonerden, Talkum, Kreide) und synthetische Gesteinsmehle (z.B. hochdisperse Kieselsäure, Silikate); Emulgiermittel wie nichtionogene und anionische Emulgatoren (z.B. Polyoxyethylen-Fettalkohol-Ether, Alkylsulfonate und Arylsulfonate) und Dispergiermittel wie Lignin-Sulfitablaugen und Methylcellulose.
- 30

Als oberflächenaktive Stoffe kommen Alkali-, Erdalkali-, Ammoniumsalze von Ligninsulfonsäure, Naphthalinsulfonsäure, Phenolsulfonsäure, Dibutylnaphthalinsulfonsäure, Alkylarylsulfonate, Alkylsulfate, Alkylsulfonate, Fettalkoholsulfate, Fettsäuren und sulfatierte Fettalkoholglykolether zum Einsatz, ferner Kondensationsprodukte von sulfonierte Naphthalin und Naphthalinderivaten mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphthalinsulfonsäure mit Phenol und Formaldehyd, Polyoxyethoxyoctylphenolether, ethoxyliertes Isooctylphenol, Octylphenol, Nonylphenol, Alkylphenolpolyglykolether, Tributylphenylpolyglykolether, Tristerylphenylpolyglykolether, Alkylarylpolyetheralkohole, Alkohol- und Fettalkoholethylenoxid-Kondensate, ethoxyliertes

Rizinusöl, Polyoxyethylenalkylether, ethoxyliertes Polyoxypropylen, Laurylalkoholpolyglykoletheracetal, Sorbitester, Ligninsulfitablaugen und Methylcellulose in Betracht.

- Zur Herstellung von direkt versprühbaren Lösungen, Emulsionen, Pasten oder Öldispersionen kommen Mineralölfaktionen von mittlerem bis hohem Siedepunkt, wie Kerosin oder Dieselöl, ferner Kohlenteeröle sowie Öle pflanzlichen oder tierischen Ursprungs, aliphatische, cyclische und aromatische Kohlenwasserstoffe, z.B. Toluol, Xylool, Paraffin, Tetrahydronaphthalin, alkylierte Naphthaline oder deren Derivate, Methanol, Ethanol, Propanol, Butanol, Cyclohexanol, Cyclohexanon, Isophoron, stark polare Lösungsmittel, z.B. Dimethylsulfoxid, N-Methylpyrrolidon oder Wasser in Betracht.

Pulver-, Streu- und Stäubemittel können durch Mischen oder gemeinsames Vermahlen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.

- Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate, können durch Bindung der Wirkstoffe an feste Trägerstoffe hergestellt werden. Feste Trägerstoffe sind z.B. Mineralerden, wie Kieselgele, Silikate, Talkum, Kaolin, Attaclay, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel, wie z.B. Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoffe und pflanzliche Produkte, wie Getreidemehl, Baumrinden-, Holz- und Nußschalenmehl, Cellulosepulver und andere feste Trägerstoffe.

- Die Formulierungen enthalten im allgemeinen zwischen 0,01 und 95 Gew.-%, vorzugsweise zwischen 0,1 und 90 Gew.-% des Wirkstoffs. Die Wirkstoffe werden dabei in einer Reinheit von 90% bis 100%, vorzugsweise 95% bis 100% (nach NMR-Spektrum) eingesetzt.

- Beispiele für Formulierungen sind:
1. Produkte zur Verdünnung in Wasser
 - A Wasserlösliche Konzentrate (SL)
10 Gew.-Teile einer erfindungsgemäßen Verbindung werden in Wasser oder einem wasserlöslichen Lösungsmittel gelöst. Alternativ werden Netzmittel oder andere Hilfsmittel zugefügt. Bei der Verdünnung in Wasser löst sich der Wirkstoff.
 - B Dispergierbare Konzentrate (DC)
20 Gew.-Teile einer erfindungsgemäßen Verbindung werden in Cyclohexanon unter Zusatz eines Dispergiermittels z.B. Polyvinylpyrrolidon gelöst. Bei Verdünnung in Wasser ergibt sich eine Dispersion.

C Emulgierbare Konzentrate (EC)

15 Gew.-Teile einer erfindungsgemäßen Verbindung werden in Xyloöl unter Zusatz von Ca-Dodecylbenzolsulfonat und Ricinusölethoxylat (jeweils 5 %) gelöst. Bei der Verdünnung in Wasser ergibt sich eine Emulsion.

5

D Emulsionen (EW, EO)

40 Gew.-Teile einer erfindungsgemäßen Verbindung werden in Xyloöl unter Zusatz von Ca-Dodecylbenzolsulfonat und Ricinusölethoxylat (jeweils 5 %) gelöst. Diese Mischung wird mittels einer Emulgiermaschine (Ultraturax) in Wasser eingebracht und zu einer homogenen Emulsion gebracht. Bei der Verdünnung in Wasser ergibt sich eine Emulsion.

10

E Suspensionen (SC, OD)

20 Gew.-Teile einer erfindungsgemäßen Verbindung werden unter Zusatz von Dispergier- und Netzmitteln und Wasser oder einem organischen Lösungsmittel in einer Rührwerkskugelmühle zu einer feinen Wirkstoffsuspension zerkleinert. Bei der Verdünnung in Wasser ergibt sich eine stabile Suspension des Wirkstoffs.

15

F Wasserdispersierbare und wasserlösliche Granulate (WG, SG)

20 Gew.-Teile einer erfindungsgemäßen Verbindung werden unter Zusatz von Dispergier- und Netzmitteln fein gemahlen und mittels technischer Geräte (z.B. Extrusion, Sprühturm, Wirbelschicht) als wasserdispersierbare oder wasserlösliche Granulate hergestellt. Bei der Verdünnung in Wasser ergibt sich eine stabile Dispersion oder Lösung des Wirkstoffs.

25

G Wasserdispersierbare und wasserlösliche Pulver (WP, SP)

75 Gew.-Teile einer erfindungsgemäßen Verbindung werden unter Zusatz von Dispergier- und Netzmitteln sowie Kiesel säuregel in einer Rotor-Strator Mühle vermahlen. Bei der Verdünnung in Wasser ergibt sich eine stabile Dispersion oder Lösung des Wirkstoffs.

30

2. Produkte für die Direktapplikation**H Stäube (DP)**

5 Gew.-Teile einer erfindungsgemäßen Verbindung werden fein gemahlen und mit 95 % feinteiligem Kaolin innig vermischt. Man erhält dadurch ein Stäubemittel.

I Granulate (GR, FG, GG, MG)

0.5 Gew.-Teile einer erfindungsgemäßen Verbindung werden fein gemahlen und mit 95.5 % Trägerstoffe verbunden. Gängige Verfahren sind dabei die Extrusion, die

40

Sprühtrocknung oder die Wirbelschicht. Man erhält dadurch ein Granulat für die Direktapplikation.

J ULV- Lösungen (UL)

- 5 10 Gew.-Teile einer erfindungsgemäßen Verbindung werden in einem organischen Lösungsmittel z.B. Xylol gelöst. Dadurch erhält man ein Produkt für die Direktapplikation.

- 10 Die Wirkstoffe können als solche, in Form ihrer Formulierungen oder den daraus bereiteten Anwendungsformen, z.B. in Form von direkt versprühbaren Lösungen, Pulvern, Suspensionen oder Dispersionen, Emulsionen, Öldispersionen, Pasten, Stäubemitteln, Streumitteln, Granulaten durch Versprühen, Vernebeln, Verstäuben, Verstreuen oder Gießen angewendet werden. Die Anwendungsformen richten sich ganz nach den Verwendungszwecken; sie sollten in jedem Fall möglichst die feinste Verteilung der erfindungsgemäßen Wirkstoffe gewährleisten.

- 20 Wässrige Anwendungsformen können aus Emulsionskonzentraten, Pasten oder netzbaren Pulvern (Spritzpulver, Öldispersionen) durch Zusatz von Wasser bereitet werden. Zur Herstellung von Emulsionen, Pasten oder Öldispersionen können die Substanzen als solche oder in einem Öl oder Lösungsmittel gelöst, mittels Netz-, Haft-, Dispergier- oder Emulgiermittel in Wasser homogenisiert werden. Es können aber auch aus wirksamer Substanz Netz-, Haft-, Dispergier- oder Emulgiermittel und eventuell Lösungsmittel oder Öl bestehende Konzentrate hergestellt werden, die zur Verdünnung mit Wasser geeignet sind.

- 25 Die Wirkstoffkonzentrationen in den anwendungsfertigen Zubereitungen können in größeren Bereichen variiert werden. Im allgemeinen liegen sie zwischen 0,0001 und 10%, vorzugsweise zwischen 0,01 und 1%.

- 30 Die Wirkstoffe können auch mit gutem Erfolg im Ultra-Low-Volume-Verfahren (ULV) verwendet werden, wobei es möglich ist, Formulierungen mit mehr als 95 Gew.-% Wirkstoff oder sogar den Wirkstoff ohne Zusätze auszubringen.

- 35 Zu den Wirkstoffen können Öle verschiedenen Typs, Netzmittel, Adjuvants, Herbizide, Fungizide, andere Schädlingsbekämpfungsmittel, Bakterizide, gegebenenfalls auch erst unmittelbar vor der Anwendung (Tankmix), zugesetzt werden. Diese Mittel können zu den erfindungsgemäßen Mitteln im Gewichtsverhältnis 1:10 bis 10:1 zugemischt werden.

Die erfindungsgemäßen Mittel können in der Anwendungsform als Fungizide auch zusammen mit anderen Wirkstoffen vorliegen, der z.B. mit Herbiziden, Insektiziden, Wachstumsregulatoren, Fungiziden oder auch mit Düngemitteln. Beim Vermischen der Verbindungen I bzw. der sie enthaltenden Mittel in der Anwendungsform als Fungizide mit anderen Fungiziden erhält man in vielen Fällen eine Vergrößerung des fungiziden Wirkungsspektrums.

Die folgende Liste von Fungiziden, mit denen die erfindungsgemäßen Verbindungen gemeinsam angewendet werden können, soll die Kombinationsmöglichkeiten erläutern, nicht aber einschränken:

- Acylalanine wie Benalaxyl, Metalaxyl, Ofurace, Oxadixyl;
- Aminderivate wie Aldimorph, Dodine, Dodemorph, Fenpropimorph; Fenpropidin, Guazatine, Iminoctadine, Spiroxamin, Tridemorph;
- Anilinopyrimidine wie Pyrimethanil, Mepanipyrim oder Cyrodinyl;
- Antibiotika wie Cycloheximid, Griseofulvin, Kasugamycin, Natamycin, Polyoxin oder Streptomycin;
- Azole wie Bitertanol, Bromoconazol, Cyproconazol, Difenoconazole, Dinitroconazol, Enilconazol, Epoxiconazol, Fenbuconazol, Fluquiconazol, Flusilazol, Flutriafol, Hexaconazol, Imazalil, Metconazol, Myclobutanil, Penconazol, Propiconazol, Prochloraz, Prothioconazol, Tebuconazol, Triadimefon, Triadimenol, Triflumizol, Triticonazol;
- Dicarboximide wie Iprodion, Myclozolin, Procymidon, Vinclozolin;
- Dithiocarbamate wie Ferbam, Nabam, Maneb, Mancozeb, Metam, Metiram, Propineb, Polycarbamat, Thiram, Ziram, Zineb;
- Heterocyclische Verbindungen wie Anilazin, Benomyl, Boscalid, Carbendazim, Carboxin, Oxycarboxin, Cyazofamid, Dazomet, Dithianon, Famoxadon, Fenamidon, Fenarimol, Fuberidazol, Flutolanil, Furametpyr, Isoprothiolan, Mepronil, Nuarimol, Probenazol, Proquinazid, Pyrifenoxy, Pyroquilon, Quinoxyfen, Silthiofam, Thiaben-dazol, Thifluzamid, Thiophanat-methyl, Tiadinil, Tricyclazol, Triforine;
- Kupferfungizide wie Bordeaux Brühe, Kupferacetat, Kupferoxychlorid, basisches Kupfersulfat;
- Nitrophenylderivate, wie Binapacryl, Dinocap, Dinobuton, Nitrophthal-isopropyl;
- Phenylpyrrole wie Fenpiclonil oder Fludioxonil;
- Schwefel;
- Sonstige Fungizide wie Acibenzolar-S-methyl, Benthiavalicarb, Carpropamid, Chlothalonil, Cyflufenamid, Cymoxanil, Dazomet, Diclomezin, Diclocymet, Diethofencarb, Edifenphos, Ethaboxam, Fenhexamid, Fentin-Acetat, Fenoxanil, Ferimzone, Fluazinam, Fosetyl, Fosetyl-Aluminium, Iprovalicarb, Hexachlorbenzol, Metrafenon, Pencycuron, Propamocarb, Phthalid, Toloclofos-methyl, Quintozene, Zoxamid;

- Strobilurine wie Aroxystrobin, Dimoxystrobin, Fluoxastrobin, Kresoxim-methyl, Metominostrobin, Orysastrobin, Picoxystrobin, Pyraclostrobin oder Trifloxystrobin;
- Sulfensäurederivate wie Captafol, Captan, Dichlofluanid, Folpet, Tolyfluanid;
- Zimtsäureamide und Analoge wie Dimethomorph, Flumetover oder Flumorph.

5

Synthesebeispiele

Die in den nachstehenden Synthesebeispielen wiedergegebenen Vorschriften wurden unter entsprechender Abwandlung der Ausgangsverbindungen zur Gewinnung weiterer Verbindungen I benutzt. Die so erhaltenen Verbindungen sind in der anschließenden Tabelle mit physikalischen Angaben aufgeführt.

Beispiel 1: Herstellung von 5-Chlor-6-(2-fluor,3-trifluormethyl-phenyl)-7-(4-methyl-piperidinyl)-1,2,4-triazolo[1,5a]pyrimidin

15

a) 2-(2-Fluor,3-trifluormethyl-phenyl)-malonsäuredimethylester

Eine Mischung aus 5,1 g (0,03 mol) Kalium-dimethylmalonat und 1 g Kupferbromid in 40 ml Diethylenglykoldimethylether wurden ca. 1 Std. bei 100°C gerührt. Anschließend gab man 2,43 g (0,01 mol) 2-Fluor-3-trifluorophenyl-brombenzol hinzu und rührte ca. 3 Std. bei 100°C weiter. Nach Zugabe von weiteren 3 g Kalium-dimethylmalonat wurden noch 3 Std. bei 110°C gerührt.

Dann wurde die Reaktionsmischung mit konz. Salzsäure angesäuert und mit Methyl-t-butylether (MTBE) extrahiert. Die vereinigten organischen Phasen wurden getrocknet und vom Lösungsmittel befreit. Der erhaltene Rückstand wurde mit Cyclohexan/Essigester-Gemischen aufgenommen und über Kieselgel abfiltriert. Das Eluat wurde vom Lösungsmittel befreit, der Rückstand getrocknet. Als Rückstand wurden 2,7 g der Titelverbindung erhalten.

30

¹H-NMR (CDCl₃, δ in ppm): 7,75 (t, 1H); 7,6 (t, 1H); 7,3 (t, 1H); 5,1 (s, 1H); 3,8 (s, 6H).

b) 5,7-Dihydroxy-6-(2-fluor,3-trifluormethyl-phenyl)-1,2,4-triazolo[1,5a]pyrimidin

Eine Lösung von 2,7 g (9,2 mmol) 2-(2-Fluor,3-trifluormethyl-phenyl)-malonsäuredimethylester (aus Bsp. 1a) und 0,8 g (9,5 mmol) Aminotriazol in 2,1 g Tributylamin wurden ca. 3 Std. bei etwa 170°C gerührt, wobei Methanol abdestillierte. Anschließend wurde die Reaktionsmischung auf ca. 80-100°C abgekühlt und mit 20 %iger Natronlauge versetzt. Man extrahierte die wässrige Phase mit MTBE und säuerte sie mit konz. Salzsäure an. Die wässrige Phase wurde mit Methylenchlorid extrahiert, die

wässrige Phase wurde abfiltriert, der Filterrückstand wurde in Tetrahydrofuran gelöst. Sowohl die vereinigten organischen Phasen wurden getrocknet und von den Lösungsmitteln befreit. Als Rückstand erhielt man 2,0 g der Titelverbindung als beigen Festkörper, der ohne weitere Reinigung in die nächste Reaktion eingesetzt wurde.

5

c) 5,7-Dichlor-6-(2-fluor,3-trifluormethyl-phenyl)-1,2,4-triazolo[1,5a]pyrimidin

Eine Lösung von 2,0 g (6,7 mmol) 5,7-Dihydroxy-6-(2-fluor,3-trifluormethyl-phenyl)-1,2,4-triazolo[1,5a]pyrimidin (aus Beispiel 1b) in 30 ml Phosphoroxychlorid wurden ca.

- 10 5 Std. bei 100°C gerührt. Anschließend destillierte man das überschüssige Phosphoroxychlorid ab, nahm den Rückstand mit Methylenchlorid und Wasser auf und neutralisierte diese Mischung mit NaHCO₃. Anschließend wurden die Phasen getrennt und die wässrige mit Methylenchlorid extrahiert. Dann trocknete man die vereinigten organischen Phasen und destillierte das Lösungsmittel ab. Nach Chromatographie an Kieselgel mit Cyclohexan/Essigester-Gemischen wurden 0,9 g der Titelverbindung erhalten.

15

¹H-NMR (CDCl₃, δ in ppm): 8,65 (s, 1H); 8,4 (t, 1H); 7,6 (t, 1H); 7,5 (t, 1H).

- 1d) 5-Chlor-6-(2-fluor,3-trifluormethyl-phenyl)-7-(4-methylpiperidinyl)-1,2,4-triazolo[1,5a]pyrimidin

20 Eine Lösung von 0,25 g (0,7 mmol) 5,7-Dichlor-6-(2-fluor,3-trifluormethyl-phenyl)-1,2,4-triazolo[1,5a]pyrimidin (aus Beispiel 1c), 0,106 g (146 µl, 1,05 mmol) Triethylamin und 0,104 g 4-Methylpiperidin (als 0,8 m Lösung in Methylenchlorid) in 4 ml Methylenchlorid wurden 5 Std. bei 35°C und 15 Stunden bei 20-25°C gerührt. Die Reaktionsmischung wurde mit verd. Salzsäure und Kochsalz-Lösung extrahiert. Die organische Phase wurde getrocknet und vom Lösungsmittel befreit. Es blieben 0,156 g der Titelverbindung als blasse Kristallmasse vom Fp. 166-170°C zurück.

- 25 30 HPLC/MS: R_t=3,929 min; m/z=414 (M⁺+H)
- HPLC-Säule: RP-18 Säule (Chromolith Speed ROD von Merck KgaA, Deutschland)
Eluent: Acetonitril + 0,1% Trifluoressigsäure (TFA)/ Wasser + 0,1% TFA (Gradient von 5:95 bis 95:5 in 5 min), 40°C.
- 35 35 MS: Quadrupol Elektrospray Ionisation, 80 V (positiv Modus)

Tabelle I – Verbindungen der Formel I

Nr.	R ¹	R ²	X	Hal	L'	L ²	L ³	Phys. Daten (¹ H-NMR (CDCl ₃ , δ [ppm]); Fp [°C])
I-1	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	Cl	F	CF ₃	H	H	H	166-170
I-2	CH ₂ C(CH ₃)=CH ₂	CH ₂ CH ₃	Cl	F	H	CF ₃	H	139-143
I-3	CH(CH ₃)-C(CH ₃) ₃	H	Cl	F	H	CF ₃	H	144-147
I-4	CH(CH ₃)-CH ₂ CH ₃	H	Cl	F	H	CF ₃	H	135-137
I-5	CH(CH ₃)-CF ₃	H	Cl	F	H	CF ₃	H	100-130
I-6	CH ₂ CF ₃	H	Cl	F	H	CF ₃	H	Öl
I-7	(R)-CH(CH ₃)-CH(CH ₃) ₂	H	Cl	F	H	CF ₃	H	110-115
I-8	-CH(CH ₃)-(CH ₂) ₃ -	Cl	F	CF ₃	H	H	H	163-168
I-9	-CH(CH ₃)-(CH ₂) ₄ -	Cl	F	CF ₃	H	H	H	159-161
I-10	CH(CH ₃)-CH(CH ₃) ₂	H	Cl	F	H	CF ₃	H	107-113
I-11	(R)-CH(CH ₃)-C(CH ₃) ₃	H	Cl	F	H	CF ₃	H	159
I-12	(S)-CH(CH ₃)-CF ₃	H	Cl	F	H	CF ₃	H	Öl
I-13	-CH ₂ CH(CH ₃)-(CH ₂) ₂ -	Cl	F	-(C=O)-OCH ₃	H	H	H	73-94
I-14	-CH ₂ CH(CH ₃)-(CH ₂) ₂ -	Cl	F	OCH ₃	H	H	H	70-92
I-15	-CH(CH ₃)-(CH ₂) ₃ -	Cl	F	-(C=O)-OCH ₃	H	H	H	77-115
I-16	-CH(CH ₃)-(CH ₂) ₃ -	Cl	F	OCH ₃	H	H	H	171-177
I-17	-CH(CH ₃)-(CH ₂) ₄ -	Cl	F	-(C=O)-OCH ₃	H	H	H	66-105
I-18	-CH(CH ₃)-(CH ₂) ₄ -	Cl	F	OCH ₃	H	H	H	66-105
I-19	CH(CH ₃)-C(CH ₃) ₃	H	Cl	F	H	-(C=O)-OCH ₃	H	135-147
I-20	CH(CH ₃)-C(CH ₃) ₃	H	Cl	F	H	OCH ₃	H	162-169

Nr.	R ¹	R ²	X	Hal	L'	L ²	L ³	Phys. Daten (¹ H-NMR (CDCl ₃ , δ [ppm]); Fp [°C])
I-21	(R)-CH(CH ₃)-C(CH ₃) ₃	H	Cl	F	H	-(C=O)-OCH ₃	H	121-126
I-22	(R)-CH(CH ₃)-C(CH ₃) ₃	H	Cl	F	OCH ₃	H	166-170	
I-23	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	Cl	F	-(C=O)-OCH ₃	H	H	135-165	
I-24	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	Cl	F	OCH ₃	H	H	158-165	
I-25	CH ₂ -C(CH ₃)=CH ₂	CH ₂ CH ₃	Cl	F	H	-(C=O)-OCH ₃	H	99-105
I-26	CH ₂ -C(CH ₃)=CH ₂	CH ₂ CH ₃	Cl	F	H	OCH ₃	H	102-106
I-27	CH(CH ₃)-CH(CH ₃) ₂	H	Cl	F	H	-(C=O)-OCH ₃	H	147-151
I-28	CH(CH ₃)-CH(CH ₃) ₂	H	Cl	F	H	OCH ₃	H	Öl
I-29	CH(CH ₃)-CH ₂ CH ₃	H	Cl	F	H	-(C=O)-OCH ₃	H	174-179
I-30	CH(CH ₃)-CH ₂ CH ₃	H	Cl	F	H	OCH ₃	H	Öl
I-31	(R)-CH(CH ₃)-CH(CH ₃) ₂	H	Cl	F	H	-(C=O)-OCH ₃	H	133-137
I-32	(R)-CH(CH ₃)-CH(CH ₃) ₂	H	Cl	F	H	OCH ₃	H	Öl
I-33	CH(CH ₃)-CF ₃	H	Cl	F	H	-(C=O)-OCH ₃	H	146-149
I-34	CH(CH ₃)-CF ₃	H	Cl	F	H	OCH ₃	H	Öl
I-35	CH ₂ CF ₃	H	Cl	F	H	-(C=O)-OCH ₃	H	Öl
I-36	CH ₂ CF ₃	H	Cl	F	H	OCH ₃	H	170-175
I-37	(S)-CH(CH ₃)-CF ₃	H	Cl	F	H	-(C=O)-OCH ₃	H	Öl
I-38	(S)-CH(CH ₃)-CF ₃	H	Cl	F	H	OCH ₃	H	Öl
I-39	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	Cl	F	-CN	H	H	213	
I-40	(R)-CH(CH ₃)-CH(CH ₃) ₂	H	Cl	F	H	CN	H	157
I-41	CH ₂ CF ₃	CH ₃	Cl	F	H	-(C=O)-OCH ₃	H	186-187

Nr.	R ¹	R ²	X	Hal	L ¹	L ²	L ³	Phys. Daten (¹ H-NMR (CDCl ₃ , δ [ppm]); F p [°C])
I-42	CH ₂ CF ₃	CH ₃	Cl	F	H	OCH ₃	H	133-135
I-43	-CH ₂ -CH(CH ₃)-(CH ₂) ₂ -	CH ₃	Cl	F	CF ₃	H	H	155-157
I-44	CH ₂ CF ₃	CH ₃	Cl	F	H	CF ₃	H	196-197
I-45	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		Cl	Cl	H	OCH ₃	-OCH ₃	175-183
I-46	CH ₂ -C(CH ₃)=CH ₂	CH ₂ CH ₃	Cl	Cl	OCH ₃	H	-OCH ₃	150-154
I-47	CH(CH ₃)-C(CH ₃) ₃	H	Cl	Cl	OCH ₃	H	-OCH ₃	175-177
I-48	CH(CH ₃)-CH(CH ₃) ₂	H	Cl	Cl	OCH ₃	H	-OCH ₃	112-120
I-49	CH(CH ₃)-CH ₂ -CH ₃	H	Cl	Cl	OCH ₃	H	-OCH ₃	150-160
I-50	CH(CH ₃)-CF ₃	H	Cl	Cl	OCH ₃	H	-OCH ₃	OI
I-51	CH ₂ CF ₃	H	Cl	Cl	OCH ₃	H	-OCH ₃	276-279
I-52	-CH(CH ₃)-(CH ₂) ₃ -		Cl	Cl	H	OCH ₃	-OCH ₃	170-182
I-53	-CH(CH ₃)-(CH ₂) ₄ -		Cl	Cl	H	OCH ₃	-OCH ₃	144-148
I-54	(R)-CH(CH ₃)-C(CH ₃) ₃	H	Cl	Cl	OCH ₃	H	-OCH ₃	146-153
I-55	(S)-CH(CH ₃)-CF ₃	H	Cl	Cl	OCH ₃	H	-OCH ₃	250-253
I-56	(R)-CH(CH ₃)-CH(CH ₃) ₂	H	Cl	Cl	OCH ₃	H	-OCH ₃	72-78
I-57	-CH ₂ -CH(CH ₃)-(CH ₂) ₂ -		Cl	Cl	H	OCH ₃	-OCH ₃	87-102
I-58	-CH ₂ -CH(CH ₃)-(CH ₂) ₂ -		Cl	F	H	OCH ₃	Cl	89-106
I-59	-CH(CH ₃)-(CH ₂) ₄ -		Cl	F	H	OCH ₃	Cl	213-217
I-60	CH(CH ₃)-C(CH ₃) ₃	H	Cl	F	OCH ₃	H	Cl	179-182
I-61	(R)-CH(CH ₃)-C(CH ₃) ₃	H	Cl	F	OCH ₃	H	Cl	184-186
I-62	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		Cl	F	H	OCH ₃	Cl	86-94

Nr.	R ¹	R ²	X	Hal	L ¹	L ²	L ³	Phys. Daten (¹ H-NMR (CDCl ₃ , δ [ppm]); Fp [°C])
I-63	-CH ₂ -C(CH ₃)=CH ₂	CH ₂ CH ₃	Cl	F	OCH ₃	H	Cl	127-143
I-64	CH(CH ₃)-CH(CH ₃) ₂	H	Cl	F	OCH ₃	H	Cl	OI
I-65	CH(CH ₃)-CH ₂ CH ₃	H	Cl	F	OCH ₃	H	Cl	141-146
I-66	(R)-CH(CH ₃)-CH(CH ₃) ₂	H	Cl	F	OCH ₃	H	Cl	OI
I-67	CH(CH ₃)-CF ₃	H	Cl	F	OCH ₃	H	Cl	196-200
I-68	CH(CH ₃)-CF ₃	H	Cl	F	OCH ₃	H	OCH ₃	97-100
I-69	CH ₂ CF ₃	H	Cl	F	OCH ₃	H	Cl	256-260
I-70	CH ₂ CF ₃	H	Cl	F	OCH ₃	H	OCH ₃	222-228
I-71	(S)-CH(CH ₃)-CF ₃	H	Cl	F	OCH ₃	H	Cl	OI
I-72	(S)-CH(CH ₃)-CF ₃	H	Cl	F	OCH ₃	H	OCH ₃	OI
I-73	-CH ₂ -CH(CH ₃)-(CH ₂) ₂ -		Cl	F	H	OCH ₃	OCH ₃	112-114
I-74	-CH ₂ -CH(CH ₃)-(CH ₂) ₂ -		Cl	Cl	H	CN	CN	192
I-75	CH(CH ₃)-CF ₃	H	Cl	Cl	CN	H	CN	OI
I-76	CH ₂ CF ₃	H	Cl	Cl	CN	H	CN	OI
I-77	(S)-CH(CH ₃)-CF ₃	H	Cl	Cl	CN	H	CN	OI
I-78	-CH ₂ -CH(CH ₃)-(CH ₂) ₂ -		Cl	F	H	OCH ₃	OCH ₃	OI
I-79	CH ₂ -C(CH ₃)=CH ₂	CH ₂ CH ₃	Cl	F	OCH ₃	H	OCH ₃	99
I-80	CH ₂ -C(CH ₃)=CH ₂	CH ₂ CH ₃	Cl	Cl	CN	H	CN	195-202
I-81	CH(CH ₃)-C(CH ₃) ₃	H	Cl	F	OCH ₃	H	OCH ₃	105-112
I-82	CH(CH ₃)-C(CH ₃) ₃	H	Cl	Cl	CN	H	CN	196-201
I-83	-CH(CH ₃)-(CH ₂) ₃ -		Cl	F	H	OCH ₃	OCH ₃	112

Nr.	R ¹	R ²	X	Hal	L'	L ²	L ³	Phys. Daten (¹ H-NMR (CDCl ₃ , δ [ppm]); Fp [°C])
I-84	-CH(CH ₃)-(CH ₂) ₃ -	Cl	Cl	H	CN	CN	CN	Öl
I-85	-CH(CH ₃)-(CH ₂) ₄ -	Cl	F	H	OCH ₃	OCH ₃	OCH ₃	168-174
I-86	-CH(CH ₃)-(CH ₂) ₄ -	Cl	Cl	H	CN	CN	CN	Öl
I-87	(R) -CH(CH ₃)-C(CH ₃) ₃	H	Cl	F	-OCH ₃	H	OCH ₃	128-129
I-88	CH(CH ₃)-CH(CH ₃) ₂	H	Cl	F	-OCH ₃	H	OCH ₃	159-162
I-89	CH(CH ₃)-CH(CH ₃) ₂	H	Cl	Cl	-CN	H	CN	Öl
I-90	CH(CH ₃)-CH ₂ CH ₃	H	Cl	F	-OCH ₃	H	OCH ₃	145-146
I-91	CH(CH ₃)-CH ₂ CH ₃	H	Cl	Cl	-CN	H	CN	243-245
I-92	CH ₂ CF ₃	CH ₃	Cl	Cl	-CN	H	CN	243-247
I-93	CH ₂ CF ₃	CH ₃	Cl	Cl	-CN	H	CN	154-157
I-94	(R) -CH(CH ₃)-CH(CH ₃) ₂	H	Cl	F	-OCH ₃	H	OCH ₃	129-131
I-95	(R) -CH(CH ₃)-CH(CH ₃) ₂	H	Cl	Cl	-CN	H	CN	Öl
I-96	CH ₂ CF ₃	CH ₃	Cl	Cl	-OCH ₃	H	OCH ₃	214-216
I-97	CH ₂ CF ₃	CH ₃	Cl	F	-OCH ₃	H	Cl	177-178
I-98	CH ₂ CF ₃	CH ₃	Cl	F	-OCH ₃	H	OCH ₃	182-184
I-99	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	Cl	Cl	Cl	H	OCH ₃	Cl	168-170
I-100	-CH ₂ -C(CH ₃)=CH ₂	CH ₂ CH ₃	Cl	Cl	-OCH ₃	H	Cl	182-184
I-101	CH(CH ₃)-CH(CH ₃) ₂	H	Cl	Cl	-OCH ₃	H	Cl	Öl
I-102	CH(CH ₃)-CH ₂ -CH ₃	H	Cl	Cl	-OCH ₃	H	Cl	176-178
I-103	CH(CH ₃)-C(CH ₃) ₃	H	Cl	Cl	-OCH ₃	H	Cl	175-177
I-104	-CH(CH ₃)-(CH ₂) ₃ -	Cl	Cl	H	OCH ₃	Cl	Cl	210-216

Nr.	R ¹	R ²	X	Hal	L ¹	L ²	L ³	Phys. Daten (¹ H-NMR (CDCl_3 , δ [ppm]); Fp [$^{\circ}\text{C}$])
I-105	(R)-CH(CH ₃)-C(CH ₃) ₃	H	Cl	Cl	-OCH ₃	H	Cl	186-189
I-106	(R)-CH(CH ₃)-CH(CH ₃) ₂	H	Cl	Cl	-OCH ₃	H	Cl	118-121
I-107	-CH(CH ₃)-(CH ₂) ₄ -	Cl	Cl	H	OCH ₃	Cl		190-193
I-108	-CH ₂ -CH(CH ₃)-(CH ₂) ₂ -	Cl	Cl	H	OCH ₃	Cl		Öl
I-109	-CH(CH ₃)-(CH ₂) ₃ -	Cl	F	H	OCH ₃	Cl		210-212
I-110	CH ₂ CF ₃	CH ₃	Cl	OCH ₃	H	Cl		193-195
I-111	CH(CH ₃)-CF ₃	H	Cl	Cl	OCH ₃	H	Cl	Öl
I-112	CH ₂ CF ₃	H	Cl	Cl	OCH ₃	H	Cl	Öl
I-113	(S)-CH(CH ₃)-CF ₃	H	Cl	Cl	OCH ₃	H	Cl	193
I-114	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	Cl	Cl	H	CN	CN		Öl
I-115	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	Cl	Cl	H	OCH ₃	F		203-204
I-116	CH ₂ -C(CH ₃)=CH ₂	CH ₂ CH ₃	Cl	Cl	OCH ₃	H	F	153-154
I-117	CH(CH ₃)-C(CH ₃) ₃	H	Cl	Cl	OCH ₃	H	F	165-166
I-118	CH(CH ₃)-CH(CH ₃) ₂	H	Cl	Cl	OCH ₃	H	F	Öl
I-119	CH(CH ₃)-CH ₂ CH ₃	H	Cl	Cl	OCH ₃	H	F	Öl
I-120	-CH(CH ₃)-(CH ₂) ₃ -	Cl	Cl	H	OCH ₃	F		214-216
I-121	-CH(CH ₃)-(CH ₂) ₄ -	Cl	Cl	H	OCH ₃	F		Öl
I-122	-CH ₂ -CH(CH ₃)-(CH ₂) ₂ -	Cl	Cl	H	OCH ₃	F		Öl
I-123	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	Cl	Cl	H	OCH ₃	-(C=O)-OCH ₃		Öl
I-124	CH ₂ -C(CH ₃)=CH ₂	CH ₂ CH ₃	Cl	Cl	OCH ₃	H	-(C=O)-OCH ₃	156-157
I-125	CH(CH ₃)-C(CH ₃) ₃	H	Cl	Cl	OCH ₃	H	-(C=O)-OCH ₃	139

Nr.	R ¹	R ²	X	Hal	L ¹	L ²	L ³	Phys. Daten (¹ H-NMR (CDCl ₃ , δ [ppm]); F p [°C])
I-126	CH(CH ₃)-CH(CH ₃) ₂	H	Cl	Cl	OCH ₃	H	-(C=O)-OCH ₃	168-169
I-127	CH(CH ₃)-CH ₂ -CH ₃	H	Cl	Cl	OCH ₃	H	-(C=O)-OCH ₃	179-180
I-128	-CH(CH ₃)-(CH ₂) ₃ -		Cl	Cl	H	OCH ₃	-(C=O)-OCH ₃	142-143
I-129	-CH(CH ₃)-(CH ₂) ₄ -		Cl	Cl	H	OCH ₃	-(C=O)-OCH ₃	Öl
I-130	-CH ₂ -CH(CH ₃)-(CH ₂) ₂ -		Cl	Cl	H	OCH ₃	-(C=O)-OCH ₃	Öl
I-131	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		Cl	Cl	H	OCH ₃	CN	Öl
I-132	CH ₂ -C(CH ₃)=CH ₂	CH ₂ CH ₃	Cl	Cl	OCH ₃	H	CN	247-248
I-133	CH(CH ₃)-C(CH ₃) ₃	H	Cl	Cl	OCH ₃	H	CN	215-217
I-134	CH(CH ₃)-CH(CH ₃) ₂	H	Cl	Cl	OCH ₃	H	CN	205-207
I-135	CH(CH ₃)-CH ₂ CH ₃	H	Cl	Cl	OCH ₃	H	CN	204-206
I-136	-CH(CH ₃)-(CH ₂) ₃ -		Cl	Cl	H	OCH ₃	CN	225-228
I-137	-CH(CH ₃)-(CH ₂) ₄ -		Cl	Cl	H	OCH ₃	CN	204-206
I-138	-CH ₂ -CH(CH ₃)-(CH ₂) ₂ -		Cl	Cl	H	OCH ₃	CN	126-128
I-139	(R)-CH(CH ₃)-C(CH ₃) ₃	H	Cl	Cl	OCH ₃	H	CN	Öl
I-140	(R)-CH(CH ₃)-CH(CH ₃) ₂	H	Cl	Cl	OCH ₃	H	CN	176-177
I-141	(R)-CH(CH ₃)-C(CH ₃) ₃	H	Cl	Cl	OCH ₃	H	F	Öl
I-142	(R)-CH(CH ₃)-CH(CH ₃) ₂	H	Cl	Cl	OCH ₃	H	F	Öl
I-143	(R)-CH(CH ₃)-C(CH ₃) ₃	H	Cl	Cl	OCH ₃	H	-(C=O)-OCH ₃	Öl
I-144	(R)-CH(CH ₃)-CH(CH ₃) ₂	H	Cl	Cl	OCH ₃	H	-(C=O)-OCH ₃	173-174
I-145	CH(CH ₃)-CF ₃	H	Cl	Cl	OCH ₃	H	F	Öl
I-146	CH(CH ₃)-CF ₃	H	Cl	Cl	OCH ₃	H	-(C=O)-OCH ₃	Öl

Nr.	R ¹	R ²	X	Hal	L ¹	L ²	L ³	Phys. Daten (¹ H-NMR (CDCl ₃ , δ [ppm]); Fp [°C])
I-147	CH(CH ₃)-CF ₃	H	Cl	Cl	OCH ₃	H	CN	Öl
I-148	CH ₂ CF ₃	H	Cl	Cl	OCH ₃	H	F	Öl
I-149	CH ₂ CF ₃	H	Cl	Cl	OCH ₃	H	-(C=O)-OCH ₃	Öl
I-150	CH ₂ CF ₃	H	Cl	Cl	OCH ₃	H	CN	Öl
I-151	CH ₂ CF ₃	CH ₃	Cl	Cl	OCH ₃	H	F	Öl
I-152	CH ₂ CF ₃	CH ₃	Cl	Cl	OCH ₃	H	-(C=O)-OCH ₃	Öl
I-153	CH ₂ CF ₃	CH ₃	Cl	Cl	OCH ₃	H	CN	Öl
I-154	(S)-CH(CH ₃)-CF ₃	H	Cl	Cl	OCH ₃	H	F	Öl
I-155	(S)-CH(CH ₃)-CF ₃	H	Cl	Cl	OCH ₃	H	-(C=O)-OCH ₃	Öl
I-156	(S)-CH(CH ₃)-CF ₃	H	Cl	Cl	OCH ₃	H	CN	249-250
I-157	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ ⁻		Cl	Cl	H	-(C=O)-OCH ₃	Cl	Öl
I-158	CH ₂ -C(CH ₃)=CH ₂	CH ₂ CH ₃	Cl	Cl	(C=O)-OCH ₃	H	Cl	Öl
I-159	CH(CH ₃)-C(CH ₃) ₃	H	Cl	Cl	(C=O)-OCH ₃	H	Cl	Öl
I-160	CH(CH ₃)-CH(CH ₃) ₂	H	Cl	Cl	(C=O)-OCH ₃	H	Cl	Öl
I-161	CH(CH ₃)-CH ₂ CH ₃	H	Cl	Cl	(C=O)-OCH ₃	H	Cl	Öl
I-162	-CH(CH ₃)-(CH ₂) ₃ ⁻		Cl	Cl	H	-(C=O)-OCH ₃	Cl	Öl
I-163	-CH(CH ₃)-(CH ₂) ₄ ⁻		Cl	Cl	H	-(C=O)-OCH ₃	Cl	Öl
I-164	-CH ₂ -CH(CH ₃)-(CH ₂) ₂ ⁻		Cl	Cl	H	-(C=O)-OCH ₃	Cl	Öl
I-165	CH(CH ₃)-CF ₃	H	Cl	Cl	(C=O)-OCH ₃	H	Cl	Öl
I-166	CH ₂ CF ₃	H	Cl	Cl	(C=O)-OCH ₃	H	Cl	Öl
I-167	(R)-CH(CH ₃)-C(CH ₃) ₃	H	Cl	Cl	(C=O)-OCH ₃	H	Cl	Öl

Nr.	R ¹	R ²	X	Hal	L'	L ²	L ³	Phys. Daten (¹ H-NMR (CDCl ₃ , δ [ppm]); Fp [°C])
I-168	(R)-CH(CH ₃)-CH(CH ₃) ₂	H	Cl	Cl	-(C=O)-OCH ₃	H	Cl	136-138
I-169	(S)-CH(CH ₃)-CF ₃	H	Cl	Cl	-(C=O)-OCH ₃	H	Cl	175-176
I-170	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -			Cl	H	OCH ₃	H	171-176
I-171	CH ₂ -C(CH ₃)=CH ₂	CH ₂ CH ₃		Cl	OCH ₃	H	H	120-153
I-172	CH(CH ₃)-C(CH ₃) ₃	H	Cl	Cl	OCH ₃	H	H	58-78
I-173	CH(CH ₃)-CH ₂ CH ₃	H	Cl	Cl	OCH ₃	H	H	138-144
I-174	CH(CH ₃)-CF ₃	H	Cl	Cl	OCH ₃	H	H	180-189
I-175	CH ₂ CF ₃	H	Cl	Cl	OCH ₃	H	H	170-176
I-176	(R)-CH(CH ₃)-CH(CH ₃) ₂	H	Cl	Cl	OCH ₃	H	H	Öl
I-177	-CH(CH ₃)-(CH ₂) ₃ -			Cl	H	OCH ₃	H	163-188
I-178	-CH(CH ₃)-(CH ₂) ₄ -			Cl	H	OCH ₃	H	145-165
I-179	CH(CH ₃)-CH(CH ₃) ₂	H	Cl	Cl	OCH ₃	H	H	116-123
I-180	(R)-CH(CH ₃)-C(CH ₃) ₃	H	Cl	Cl	OCH ₃	H	H	60-98
I-181	(S)-CH(CH ₃)-CF ₃	H	Cl	Cl	OCH ₃	H	H	Öl
I-182	-CH ₂ -CH(CH ₃)-(CH ₂) ₂ -			Cl	F	H	CF ₃	Öl
I-183	CH ₂ CF ₃	H	Cl	F	CF ₃	H	H	Öl
I-184	CH(CH ₃)-CF ₃	H	Cl	F	CF ₃	H	H	72-78
I-185	CH(CH ₃)-CH ₂ CH ₃	H	Cl	F	CF ₃	H	H	Öl
I-186	CH(CH ₃)-CH(CH ₃) ₂	H	Cl	F	CF ₃	H	H	Öl
I-187	CH ₂ -C(CH ₃)=CH ₂	CH ₂ CH ₃		Cl	F	CF ₃	H	Öl
I-188	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -			Cl	F	H	CF ₃	222-227

Nr.	R ¹	R ²	X	Hal	L ¹	L ²	L ³	Phys. Daten (¹ H-NMR (CDCl ₃ , δ [ppm]); Fp [°C])
I-189	CH(CH ₃)-C(CH ₃) ₃	H	Cl	F	CF ₃	H	H	Öl
I-190	(R)-CH(CH ₃)-CH(CH ₃) ₂	H	Cl	F	CF ₃	H	H	Öl
I-191	(S)-CH(CH ₃)-CF ₃	H	Cl	F	CF ₃	H	H	Öl
I-192	-CH ₂ -CH(CH ₃)-(CH ₂) ₂ -		Cl	Cl	H	OCH ₃	H	Öl
I-193	-CH ₂ -CH(CH ₃)-(CH ₂) ₂ -		Cl	Cl	H	-(C=O)-OCH ₃	H	74-143
I-194	CH(CH ₃)-CF ₃	H	Cl	Cl	-(C=O)-OCH ₃	H	H	Öl
I-195	CH ₂ CF ₃	H	Cl	Cl	-(C=O)-OCH ₃	H	H	Öl
I-196	(S)-CH(CH ₃)-CF ₃	H	Cl	Cl	-(C=O)-OCH ₃	H	H	Öl
I-197	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		Cl	Cl	H	-(C=O)-OCH ₃	H	169-171
I-198	CH ₂ -C(CH ₃)=CH ₂	CH ₂ CH ₃	Cl	Cl	-(C=O)-OCH ₃	H	H	148-153
I-199	CH(CH ₃)-C(CH ₃) ₃	H	Cl	Cl	-(C=O)-OCH ₃	H	H	88-90
I-200	-CH(CH ₃)-(CH ₂) ₃ -		Cl	Cl	H	-(C=O)-OCH ₃	H	160-182
I-201	-CH(CH ₃)-(CH ₂) ₄ -		Cl	Cl	H	-(C=O)-OCH ₃	H	175-177
I-202	(R)-CH(CH ₃)-C(CH ₃) ₃	H	Cl	Cl	-(C=O)-OCH ₃	H	H	84-89
I-203	CH(CH ₃)-CH(CH ₃) ₂	H	Cl	Cl	-(C=O)-OCH ₃	H	H	Öl
I-204	CH(CH ₃)-CH ₂ -CH ₃	H	Cl	Cl	-(C=O)-OCH ₃	H	H	Öl
I-205	(R)-CH(CH ₃)-CH(CH ₃) ₂	H	Cl	Cl	-(C=O)-OCH ₃	H	H	Öl
I-206	CH ₂ CF ₃	CH ₃	Cl	Cl	OCH ₃	H	H	147-150
I-207	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		Cl	Cl	H	CN	H	188-189
I-208	CH ₂ -C(CH ₃)=CH ₂	CH ₂ CH ₃	Cl	Cl	CN	H	H	124-125
I-209	CH(CH ₃)-C(CH ₃) ₃	H	Cl	Cl	CN	H	H	199-200

Nr.	R ¹	R ²	X	Hal	L'	L ²	L ³	Phys. Daten (¹ H-NMR (CDCl_3 , δ [ppm]); Fp [$^\circ\text{C}$])	
								δ [ppm]	Fp [$^\circ\text{C}$]
I-210	CH(CH ₃)-CH(CH ₃) ₂	H	Cl	Cl	CN	H	H	152-153	Öl
I-211	CH(CH ₃)-CH ₂ CH ₃	H	Cl	Cl	CN	H	H		
I-212	-CH(CH ₃)-(CH ₂) ₃ -	Cl	Cl	H	CN	H			204
I-213	-CH(CH ₃)-(CH ₂) ₄ -	Cl	Cl	H	CN	H			189-190
I-214	-CH ₂ CH(CH ₃)-(CH ₂) ₂ -	Cl	Cl	H	CN	H			Öl
I-215	(R)-CH(CH ₃)-C(CH ₃) ₃	H	Cl	Cl	CN	H	H		Öl
I-216	(R)-CH(CH ₃)-CH(CH ₃) ₂	H	Cl	Cl	CN	H	H		Öl
I-217	CH(CH ₃)-CF ₃	H	Cl	Cl	CN	H	H		Öl
I-218	CH ₂ CF ₃	H	Cl	Cl	CN	H	H		Öl
I-219	CH ₂ CF ₃	CH ₃	Cl	Cl	CN	H	H		Öl
I-220	(S)-CH(CH ₃)-CF ₃	H	Cl	Cl	CN	H	H		Öl

Beispiele für die Wirkung gegen Schadpilze

Die fungizide Wirkung der Verbindungen der Formel I ließ sich durch die folgenden Versuche zeigen:

5

Die Wirkstoffe wurden getrennt als eine Stammlösung aufbereitet mit 25 mg Wirkstoff, welcher mit einem Gemisch aus Aceton und/oder DMSO und dem Emulgator Uniprol® EL (Netzmittel mit Emulgier- und Dispergierwirkung auf der Basis ethoxylierter Alkylphenole) im Volumen-Verhältnis Lösungsmittel-Emulgator von 99 zu 1 ad 10 ml aufgefüllt wurde. Anschließend wurde ad 100 ml mit Wasser aufgefüllt. Diese Stammlösung wurde mit dem beschriebenen Lösungsmittel-Emulgator-Wasser Gemisch zu der unten angegebenen Wirkstoffkonzentration verdünnt.

Anwendungsbeispiel 1 - Wirksamkeit gegen den Grauschimmel an Paprikablättern

15 verursacht durch *Botrytis cinerea* bei protektiver Anwendung

Paprikasämlinge der Sorte "Neusiedler Ideal Elite" wurden, nachdem sich 2 - 3 Blätter gut entwickelt hatten, mit einer wässrigen Suspension in der unten angegebenen Wirkstoffkonzentration bis zur Tropfnässe besprüht. Am nächsten Tag wurden die behandelten

20 Pflanzen mit einer Sporensuspension von *Botrytis cinerea*, die $1,7 \times 10^8$ Sporen/ml in einer 2 %igen wässrigen Biomalzlösung enthielt, inkuliert. Anschließend wurden die Versuchspflanzen in eine Klimakammer mit 22 bis 24°C, Dunkelheit und hoher Luftfeuchtigkeit gestellt. Nach 5 Tagen konnte das Ausmaß des Pilzbefalls auf den Blättern visuell in % ermittelt werden.

25

In diesem Test zeigten die mit 63 ppm der Wirkstoffe I-3, I-4, I-7, I-13 bis I-16, I-18 bis I-22, I-24 bis I-26, I-28, I-30 bis I-32, I-34, I-38, I-40, I-42, I-45, I-47 bis I-49, I-52, I-54 bis I-57, I-88, I-99, I-106-I-114, I-116, I-121, I-136, I-137, I-140, I-144, I-149, I-159,

30 I-167, I-172, I-174, I-176, I-179, I-180, I-182 bis I-185, I-190, I-191, I-193, I-199, I-202, I-207 bis I-209, bzw. I-215 behandelten Pflanzen nicht über 30 % Befall, während die unbehandelten Pflanzen zu 85 % befallen waren.

Anwendungsbeispiel 2: Wirksamkeit gegen die Dürrfleckenkrankheit der Tomate verursacht durch *Alternaria solani*

35

Blätter von Topfpflanzen der Sorte "Goldene Königin" wurden mit einer wässriger Suspension in der unten angegebenen Wirkstoffkonzentration bis zur Tropfnässe besprüht. Am folgenden Tag wurden die Blätter mit einer wässrigen Sporenaufschwemmung von *Alternaria solani* in 2 % Biomalzlösung mit einer Dichte von $0,17 \times 10^8$ Sporen/ml infiziert.

40 Anschließend wurden die Pflanzen in einer wasserdampf-gesättigten Kammer bei Temperaturen zwischen 20 und 22°C aufgestellt. Nach 5 Tagen hatte sich die Krankheit auf

den unbehandelten, jedoch infizierten Kontrollpflanzen so stark entwickelt, dass der Befall visuell in % ermittelt werden konnte.

- In diesem Test zeigten die mit 63 ppm der Wirkstoffe I-14, I-20, I-22, I-24, I-26, I-28, I-30, I-33, I-34, I-36, I-45, I-47, I-54, I-60, I-61, I-98, I-103, I-105, I-107, I-114, I-159, I-167, bzw. I-182 behandelten Pflanzen nicht über 30 % Befall, während die unbehandelten Pflanzen zu 90 % befallen waren.
- 5

Patentansprüche

1. Triazolopyrimidine der Formel I

5 in der die Substituenten folgende Bedeutung haben:

R¹, R² unabhängig voneinander C₁-C₈-Alkyl, C₁-C₈-Halogenalkyl, C₃-C₈-Cycloalkyl, C₃-C₈-Halogencycloalkyl, C₂-C₈-Alkenyl, C₂-C₈-Halogenalkenyl, 10 C₃-C₆-Cycloalkenyl, C₃-C₆-Halogencycloalkenyl, C₂-C₈-Alkinyl, C₂-C₈-Halogenalkinyl oder Phenyl, Naphthyl, oder ein fünf- oder sechsgliedriger gesättigter, partiell ungesättigter oder aromatischer Heterocyclus, enthaltend ein bis vier Heteroatome aus der Gruppe O, N oder S;

15 R¹ und R² können auch zusammen mit dem Stickstoffatom, an das sie gebunden sind, ein fünf- oder sechsgliedriges Heterocycl oder Heteroaryl bilden, welches über N gebunden ist und ein weiteres Heteroatom aus der Gruppe O, N und S als Ringglied enthalten und/oder einen oder mehrere Substituenten aus der Gruppe Halogen, C₁-C₆-Alkyl, C₁-C₈-Halogenalkyl, 20 C₂-C₆-Alkenyl, C₂-C₈-Halogenalkenyl, C₁-C₆-Alkoxy, C₁-C₈-Halogenalkoxy, C₃-C₆-Alkenyloxy, C₃-C₈-Halogenalkenyloxy, C₁-C₆-Alkylen und Oxy-C₁-C₃-alkylenoxy tragen kann;

25 R¹ und/oder R² können eine bis vier gleiche oder verschiedene Gruppen R^a tragen:

30 R^a Halogen, Cyano, Nitro, Hydroxy, C₁-C₆-Alkyl, C₁-C₈-Halogenalkyl, C₁-C₈-Alkylcarbonyl, C₃-C₈-Cycloalkyl, C₁-C₆-Alkoxy, C₁-C₈-Halogenalkoxy, C₁-C₆-Alkoxycarbonyl, C₁-C₆-Alkylthio, C₁-C₆-Alkylamino, Di-C₁-C₆-alkylamino, C₂-C₈-Alkenyl, C₂-C₈-Halogenalkenyl, C₃-C₈-Cycloalkenyl, C₂-C₆-Alkenyloxy, C₃-C₈-Halogenalkenyloxy, C₂-C₈-Alkinyl, 35 C₂-C₈-Halogenalkinyl, C₃-C₆-Alkinyloxy, C₃-C₈-Halogenalkinyloxy, C₃-C₆-Cycloalkoxy, C₃-C₆-Cycloalkenoxy, C₁-C₃-Oxyalkylenoxy, Phenyl, Naphthyl, fünf- bis zehngliedriger gesättigter, partiell ungesättigter oder aromatischer Heterocyclus, enthaltend ein bis vier Heteroatome aus der Gruppe O, N oder S,

wobei diese aliphatischen, alicyclischen oder aromatischen Gruppen ihrerseits partiell oder vollständig halogeniert sein oder eine bis drei Gruppen R^b tragen können:

- 5 R^b Halogen, Cyano, Nitro, Hydroxy, Mercapto, Amino, Carboxyl, Aminocarbonyl, Aminothiocarbonyl, Alkyl, Haloalkyl, Alkenyl, Alkenyloxy, Alkinyloxy, Alkoxy, Halogenalkoxy, Alkylothio, Alkylamino, Dialkylamino, Formyl, Alkylcarbonyl, Alkylsulfonyl, Alkylsulfoxyl, Alkoxycarbonyl, Alkylcarbonyloxy, Alkylaminocarbonyl, Dialkylaminocarbonyl, Alkylaminothiocarbonyl, Dialkylaminothiocarbonyl, wobei die Alkylgruppen in diesen Resten 1 bis 6 Kohlenstoffatome enthalten und die genannten Alkenyl- oder Alkinylgruppen in diesen Resten 2 bis 8 Kohlenstoffatome enthalten;
- 10
- 15 und/oder einen bis drei der folgenden Reste:
- 20 Cycloalkyl, Cycloalkoxy, Heterocycl, Heterocyclxy, wobei die cyclischen Systeme 3 bis 10 Ringglieder enthalten; Aryl, Aryloxy, Arylothio, Aryl-C₁-C₆-alkoxy, Aryl-C₁-C₆-alkyl, Hetaryl, Hetaryloxy, Hetarylothio, wobei die Arylreste vorzugsweise 6 bis 10 Ringglieder, die Hetarylreste 5 oder 6 Ringglieder enthalten, wobei die cyclischen Systeme partiell oder vollständig halogeniert oder durch Alkyl- oder Haloalkylgruppen substituiert sein können;
- 25
- Hal Halogen;
- 30 L¹, L² Wasserstoff, Cyano, C₁-C₄-Halogenalkyl, C₁-C₆-Alkoxy, C₃-C₆-Alkenyloxy oder C(=O)A, wobei mindestens eine Gruppe L¹ oder L² ungleich Wasserstoff ist;
- 35 A Wasserstoff, Hydroxy, C₁-C₈-Alkyl, C₁-C₈-Alkoxy, C₁-C₆-Halogenalkoxy, C₁-C₈-Alkylamino oder Di-(C₁-C₈-Alkyl)amino;
- L³ Wasserstoff, Halogen, Cyano, Nitro, C₁-C₄-Halogenalkyl, C₁-C₆-Alkoxy, C₁-C₆-Alkoxy carbonyl;
- X Halogen, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy oder C₁-C₂-Halogenalkoxy.
- 40

2. Verbindungen der Formel I gemäß Anspruch 1, in der R¹ nicht Wasserstoff bedeutet.

3. Verbindungen der Formel I.1,

5

in der

G C₂-C₆-Alkyl, C₁-C₄-Alkoxymethyl, oder C₃-C₆-Cycloalkyl;

R² Wasserstoff oder Methyl; und

X Chlor, Methyl, Cyano, Methoxy oder Ethoxy bedeuten und

10 L¹ bis L³ und Hal gemäß Anspruch 1 definiert sind.

4. Verbindungen der Formel I.2,

in der

15 D zusammen mit dem Stickstoffatom ein fünf- oder sechsgliedriges Heterocycli oder Heteroaryl bildet, welches über N gebunden ist und ein weiteres Heteroatom aus der Gruppe O, N und S als Ringglied enthalten und/oder einen oder mehrere Substituenten aus der Gruppe Halogen, C₁-C₄-Alkyl, C₁-C₄-Alkoxy und C₁-C₂-Halogenalkyl tragen kann;

20 X Chlor, Methyl, Cyano, Methoxy oder Ethoxy bedeuten und

L¹ bis L³ und Hal gemäß Anspruch 1 definiert sind.

25 5. Verfahren zur Herstellung der Verbindungen der Formel I gemäß Anspruch 1, in der X für Halogen, Cyano, C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder C₁-C₂-Halogenalkoxy steht, durch Umsetzung von 5-Aminotriazol der Formel II

II

mit Phenymalonaten der Formel III,

66

III

in der R für Alkyl steht, zu Dihydroxytriazolopyrimidinen der Formel IV,

IV

Halogenierung zu den Dihalogenverbindungen der Formel V,

V

5

in der Y für Halogen steht und Umsetzung von V mit Aminen der Formel VI

VI

zu Verbindungen der Formel I, in der X für Halogen steht, gewünschtenfalls zu Herstellung von Verbindungen I, in denen X für Cyano, C₁-C₄-Alkoxy oder C₁-C₂-Halogenalkoxy steht, Umsetzung von Verbindungen I, in denen X Halogen bedeutet, mit Verbindungen der Formel VII,

M-X'

VII

die, je nach der einzuführenden Gruppe X', ein anorganisches Cyanid, ein Alkoxylat oder ein Halogenalkoxylat darstellen und in der M für ein Ammonium-, Tetraalkylammonium-, Alkali- oder Erdalkalimetallikation steht und, gewünschtenfalls, zur Herstellung von Verbindungen der Formel I gemäß Anspruch 1, in der X für Alkyl steht, durch Umsetzung der Verbindungen I, in denen X für Halogen steht, mit Malonaten der Formel VIII,

VIII

20 in der X'' Wasserstoff oder C₁-C₃-Alkyl und R C₁-C₄-Alkyl bedeuten, zu Verbindungen der Formel IX

und Decarboxylierung zu Verbindungen I, in denen X für Alkyl steht.

6. Verfahren zur Herstellung der Verbindungen der Formel I gemäß Anspruch 1, in
5 der X für C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl steht, durch Umsetzung von
5-Aminotriazol der Formel II gemäß Anspruch 5 mit Ketoestern der Formel IIIa,

in der X¹ für C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl und R für C₁-C₄-Alkyl steht, zu
5-Alkyl-7-hydroxy-6-phenyltriazolopyrimidinen der Formel IVa,

10

Halogenierung von IVa zu 7-Halogenotriazolopyrimidinen der Formel Va,

15

in der Y für Halogen steht und Umsetzung von Va mit Aminen der Formel VI ge-
mäß Anspruch 5 zu Verbindungen I, in denen X für C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl steht.

20

7. Verbindungen der Formeln IV, IVa, V und Va gemäß Ansprüchen 5 und 6.
8. Fungizides Mittel, enthaltend einen festen oder flüssigen Träger und eine Verbin-
dung der Formel I gemäß Anspruch 1

9. Saatgut, enthaltend 1 bis 1000 g einer Verbindung der Formel I gemäß Anspruch 1 pro 100 kg.
10. Verfahren zur Bekämpfung von pflanzenpathogenen Schadpilzen, dadurch gekennzeichnet, dass man die Pilze, oder die vor Pilzbefall zu schützenden Materialien, Pflanzen, den Boden oder Saatgüter mit einer wirksamen Menge einer Verbindung der Formel I gemäß Anspruch 1 behandelt.
5

INTERNATIONAL SEARCH REPORT

International Application No PCT/EP2004/014328
--

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 C07D487/04 A01N43/90

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C07D A01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, CHEM ABS Data, BEILSTEIN Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 02/50077 A (BAYER AKTIENGESELLSCHAFT; GEBAUER, OLAF; ELBE, HANS-LUDWIG; HENRICH, M) 27 June 2002 (2002-06-27)	1,2,7,8, 10
Y	Verbindung auf der Seite 15, unten links page 4, paragraph 1; claims 1,3,4,6; examples 10,15,17,22,25,30,33,38,41,46,49,54,57,62, 65,70 page 38, paragraph 3 page 14, line 28 – page 16, line 30	1-10
X	WO 03/091254 A (BAYER CROPSCIENCE AKTIENGESELLSCHAFT; GEBAUER, OLAF; GREUL, NICO, JOER) 6 November 2003 (2003-11-06)	1,2,4,8, 10
Y	page 13, paragraph 1; claims 1,3,5; examples 15,16 page 30, paragraph 2	1-10
		-/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the International filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search

14 March 2005

Date of mailing of the International search report

23/03/2005

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel: (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Guspanova, J

INTERNATIONAL SEARCH REPORT

International Application No PCT/EP2004/014328

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	EP 0 550 113 A (SHELL INT RESEARCH) 7 July 1993 (1993-07-07) page 3, line 47 – page 5, line 16; claims 1,7-9; examples 8,27,31,55,60,77; table I -----	1-5,7-10
Y	WO 03/080615 A (BASF AKTIENGESELLSCHAFT; TORMO I BLASCO, JORDI; BLETTNER, CARSTEN; MUE) 2 October 2003 (2003-10-02) page 3, line 36 – page 7, line 9 page 16, lines 43,44 page 22, lines 29-34 page 23, lines 19-24,33-35; claims 1,6-10 -----	1-10
Y	WO 03/004465 A (GRAMMENOS WASSILIOS ; RHEINHEIMER JOACHIM (DE); BASF AG (DE); GEWEHR M) 16 January 2003 (2003-01-16) abstract; claims 1,4,7,9; tables 11,und,A -----	1-5,7-10
P,X	WO 2004/041824 A (BASF AKTIENGESELLSCHAFT; TORMO I BLASCO, JORDI; BLETTNER, CARSTEN; MUE) 21 May 2004 (2004-05-21) Verbindungen 120-134 in der Tabelle I page 21, paragraph 3; claims 1,6-10 -----	1-5,7-10

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No	
PCT/EP2004/014328	

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
WO 0250077	A 27-06-2002	DE AU WO EP JP US	10063115 A1 3167602 A 0250077 A2 1349859 A2 2004516296 T 2004097522 A1	27-06-2002 01-07-2002 27-06-2002 08-10-2003 03-06-2004 20-05-2004
WO 03091254	A 06-11-2003	DE AU BR WO EP	10218592 A1 2003229657 A1 0309568 A 03091254 A1 1501832 A1	06-11-2003 10-11-2003 15-02-2005 06-11-2003 02-02-2005
EP 0550113	A 07-07-1993	EP EP GR AT AT AU AU BR CA CN CN DE DE DE DE DK DK ES ES GR HK HU IL JP JP NZ PL PL PT RU SG US ZA	0550113 A2 0782997 A2 3033916 T3 159256 T 192154 T 667204 B2 3043592 A 9205172 A 2086404 A1 1075144 A ,C 1141119 A ,C 69222746 D1 69222746 T2 69230977 D1 69230977 T2 550113 T3 782997 T3 2108727 T3 2147411 T3 3025920 T3 1010105 A1 63305 A2 104244 A 3347170 B2 5271234 A 245581 A 297160 A1 171579 B1 782997 T 2089552 C1 47563 A1 5593996 A 9210043 A	07-07-1993 09-07-1997 30-11-2000 15-11-1997 15-05-2000 14-03-1996 01-07-1993 06-07-1993 01-07-1993 11-08-1993 29-01-1997 20-11-1997 12-02-1998 31-05-2000 09-11-2000 09-02-1998 07-08-2000 01-01-1998 01-09-2000 30-04-1998 23-06-2000 30-08-1993 13-07-1997 20-11-2002 19-10-1993 26-07-1995 06-09-1993 30-05-1997 29-09-2000 10-09-1997 17-04-1998 14-01-1997 28-07-1993
WO 03080615	A 02-10-2003	AU BR CA WO EP HR	2003215664 A1 0308529 A 2479766 A1 03080615 A1 1490372 A1 20040985 A2	08-10-2003 01-02-2005 02-10-2003 02-10-2003 29-12-2004 31-12-2004
WO 03004465	A 16-01-2003	BR CA WO EP	0210858 A 2452625 A1 03004465 A2 1406903 A2	29-06-2004 16-01-2003 16-01-2003 14-04-2004

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP2004/014328

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 03004465	A	HU	0400385 A2	28-12-2004
		JP	2004533485 T	04-11-2004
		MX	PA04000045 A	21-05-2004
		NZ	530822 A	27-08-2004
WO 2004041824	A	21-05-2004	WO 2004041824 A2	21-05-2004

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP2004/014328

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 C07D487/04 A01N43/90

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationsymbole)
IPK 7 C07D A01N

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, CHEM ABS Data, BEILSTEIN Data

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	WO 02/50077 A (BAYER AKTIENGESELLSCHAFT; GEBAUER, OLAF; ELBE, HANS-LUDWIG; HENRICH, M) 27. Juni 2002 (2002-06-27)	1,2,7,8, 10
Y	Verbindung auf der Seite 15, unten links Seite 4, Absatz 1; Ansprüche 1,3,4,6; Beispiele 10,15,17,22,25,30,33,38,41,46,49,54,57,62, 65,70 Seite 38, Absatz 3 Seite 14, Zeile 28 – Seite 16, Zeile 30	1-10
X	WO 03/091254 A (BAYER CROPSCIENCE AKTIENGESELLSCHAFT; GEBAUER, OLAF; GREUL, NICO, JOER) 6. November 2003 (2003-11-06)	1,2,4,8, 10
Y	Seite 13, Absatz 1; Ansprüche 1,3,5; Beispiele 15,16 Seite 30, Absatz 2	1-10
		-/-

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
- *A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- *E* älteres Dokument, das jedoch erst am oder nach dem Internationalen Anmelde datum veröffentlicht worden ist
- *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- *O* Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Aussstellung oder andere Maßnahmen bezieht
- *P* Veröffentlichung, die vor dem internationalen Anmelde datum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

- *T* Spätere Veröffentlichung, die nach dem Internationalen Anmelde datum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- *X* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- *Y* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der Internationalen Recherche	Absendedatum des Internationalen Recherchenberichts
14. März 2005	23/03/2005
Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Bevollmächtigter Bediensteter Guspanova, J

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP2004/014328

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN		
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
Y	EP 0 550 113 A (SHELL INT RESEARCH) 7. Juli 1993 (1993-07-07) Seite 3, Zeile 47 - Seite 5, Zeile 16; Ansprüche 1,7-9; Beispiele 8,27,31,55,60,77; Tabelle I -----	1-5,7-10
Y	WO 03/080615 A (BASF AKTIENGESELLSCHAFT; TORMO I BLASCO, JORDI; BLETTNER, CARSTEN; MUE) 2. Oktober 2003 (2003-10-02) Seite 3, Zeile 36 - Seite 7, Zeile 9 Seite 16, Zeilen 43,44 Seite 22, Zeilen 29-34 Seite 23, Zeilen 19-24,33-35; Ansprüche 1,6-10 -----	1-10
Y	WO 03/004465 A (GRAMMENOS WASSILIOS ; RHEINHEIMER JOACHIM (DE); BASF AG (DE); GEWEHR M) 16. Januar 2003 (2003-01-16) Zusammenfassung; Ansprüche 1,4,7,9; Tabellen 11,und,A -----	1-5,7-10
P,X	WO 2004/041824 A (BASF AKTIENGESELLSCHAFT; TORMO I BLASCO, JORDI; BLETTNER, CARSTEN; MUE) 21. Mai 2004 (2004-05-21) Verbindungen 120-134 in der Tabelle I Seite 21, Absatz 3; Ansprüche 1,6-10 -----	1-5,7-10

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP2004/014328

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
WO 0250077	A	27-06-2002	DE AU WO EP JP US	10063115 A1 3167602 A 0250077 A2 1349859 A2 2004516296 T 2004097522 A1	27-06-2002 01-07-2002 27-06-2002 08-10-2003 03-06-2004 20-05-2004
WO 03091254	A	06-11-2003	DE AU BR WO EP	10218592 A1 2003229657 A1 0309568 A 03091254 A1 1501832 A1	06-11-2003 10-11-2003 15-02-2005 06-11-2003 02-02-2005
EP 0550113	A	07-07-1993	EP EP GR AT AT AU AU BR CA CN CN DE DE DE DE DK DK ES ES GR HK HU IL JP JP NZ PL PL PT RU SG US ZA	0550113 A2 0782997 A2 3033916 T3 159256 T 192154 T 667204 B2 3043592 A 9205172 A 2086404 A1 1075144 A ,C 1141119 A ,C 69222746 D1 69222746 T2 69230977 D1 69230977 T2 550113 T3 782997 T3 2108727 T3 2147411 T3 3025920 T3 1010105 A1 63305 A2 104244 A 3347170 B2 5271234 A 245581 A 297160 A1 171579 B1 782997 T 2089552 C1 47563 A1 5593996 A 9210043 A	07-07-1993 09-07-1997 30-11-2000 15-11-1997 15-05-2000 14-03-1996 01-07-1993 06-07-1993 01-07-1993 11-08-1993 29-01-1997 20-11-1997 12-02-1998 31-05-2000 09-11-2000 09-02-1998 07-08-2000 01-01-1998 01-09-2000 30-04-1998 23-06-2000 30-08-1993 13-07-1997 20-11-2002 19-10-1993 26-07-1995 06-09-1993 30-05-1997 29-09-2000 10-09-1997 17-04-1998 14-01-1997 28-07-1993
WO 03080615	A	02-10-2003	AU BR CA WO EP HR	2003215664 A1 0308529 A 2479766 A1 03080615 A1 1490372 A1 20040985 A2	08-10-2003 01-02-2005 02-10-2003 02-10-2003 29-12-2004 31-12-2004
WO 03004465	A	16-01-2003	BR CA WO EP	0210858 A 2452625 A1 03004465 A2 1406903 A2	29-06-2004 16-01-2003 16-01-2003 14-04-2004

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP2004/014328

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
WO 03004465	A	HU 0400385 A2	28-12-2004
		JP 2004533485 T	04-11-2004
		MX PA04000045 A	21-05-2004
		NZ 530822 A	27-08-2004
WO 2004041824	A	21-05-2004	WO 2004041824 A2 21-05-2004