Problem Set - 4 MTH-204, MTH-204A Abstract Algebra

- 1. Prove that the additive group \mathbb{Q} of rational numbers is not finitely generated.
- 2. Let G be a finite abelian group of order n and suppose the integer r is relatively prime to n. Prove that every $g \in G$ can be written as $g = x^n$ with $x \in G$.
- 3. Describe all homomorphisms $\phi : \mathbb{Z} \to \mathbb{Z}$, and determine which are injective, which are surjective, and which are isomorphisms.
- 4. Let $G = \mathbb{R} \setminus \{0\}$ be the group of nonzero real numbers under multiplication. Suppose r is a positive integer. Show that $x \mapsto x^r$ is a homomorphism. Determine the kernel, and determine r so that the map is an isomorphism.
- 5. Let G be the group of polynomials in x with real coefficients. Define the map $p(x) \mapsto P(x) = \int p(x)dx$ such that P(0) = 0. Show that f is a homomorphism, and determine its kernel.
- 6. Determine all homomorphisms from \mathbb{Z}_n to itself.
- 7. Let G be the group of nonzero complex numbers under multiplication and let N be the set of complex numbers of absolute value 1. Show that G/N is isomorphic to the group of all positive real numbers under multiplication.
- 8. Prove that for a group G if G/Z(G) is cyclic, then G is abelian.
- 9. Prove that if a group contains exactly one element of order 2, then that element is in the center of the group.
- 10. Find the center of the following groups.
- a. $GL_n(\mathbb{R})$, b. D_n , c. Q_8 .
- 11. What is the largest order of an element of S_{12} ?
- 12. If a > 1 is an integer, prove that n divides $\phi(a^n 1)$.