Lecture 05

Evaluating the Proposal

- Once the proposals are generated, they are evaluated
- It is necessary to check
 - Technical Feasibility
 - 2. Operational Feasibility
 - 3. Economical Feasibility
- Risk Analysis
- Identify the areas (uncertain) of high risks for which uncertainty about getting successful outcome
 - Identify and Special attention take

Economical Feasibility

- Cost Benefit Analysis
- Cost: Place actual money value against any purchase or activity needed to implement the project
- Benefit: Place money value against any benefits that will accure from a new system created by the project
- Two steps
 - Estimation of Costs and Benefits
 - 2. Determine whether a project is worthwhile or not

Estimation of Costs and Benefits

- Goal is to produce a list of what is required to implement the project
- List of the new system benefits
- Evaluating Costs
 - Tangible Items (Direct value can be attached)
 - Intangible Items (Direct value can't be attached, guess)
- Evaluating Benefits
 - Tangible Items (Direct value can be attached)
 - Intangible Items (Direct value can't be attached, guess)

Cost of Tangible Items

- 1. Equipment costs for the new system
 - Computing equipments costs, accommodation costs, furniture costs etc.
- 2. Personnel Costs Analyst, Designers, Programmers etc.
- 3. Material Costs Stationary, manuals, documents etc.
- 4. Conversion Cost New forms, Procedures etc.
- 5. Training Costs Users, developers etc.
- 6. Other Costs Consultants costs, travel, management overhead etc.
- Value can't be precisely determined & subjective judgment
 - How much save to complete the project earlier
 - Provide new information to the decision makers

Benefits of Tangible & Intangible Items

- 1. Measure by actual value
 - Reduce of production cost
 - Reduce the processing cost

- 2. Can't be measure (only subjective judgement)
 - Increase the sales in the market
 - Wider market of marketing data
 - Maintain good business image

Determine whether a project is worthwhile or not

- 1. Payback method (Forward)
- 2. Present Value method(backward)
- Payback method (Forward)
 - Define time required to recover the initial cost
 - We know how much a project will cost to start
 - Know cost and benefits for each succeeding year

Example

- Cost at start is \$50,000 (project tenure is 5 years)
- Benefits \$10,000 at the end of 1st year
 - \$20,000 at the end of 2^{nd} year
 - \$30,000 at the end of 3^{rd} year
 - \$10,000 at the end of 4th year
 - \$5,000 at the end of 5th year

payback period is between 2nd and 3rd

vear

Determine whether a project is worthwhile or not (Cont.)

- We assume for banking system, and rate of interest is 10% per annum
- Present Value method(backward)
- Determine how much money it is worthwhile for investing now in order to receive a given return in some years time
- Project benefits are estimated for each year from today
- Then compute the present value of savings
- If the present cost exceeds the present value, then it is not worthwhile

Determine whether a project is worthwhile or not (Cont.)

Example

- At t=0, Initial investment is \$50,000
- At t=1, Benefit = \$10,000 then the amount deposited in the 0^{th} year= \$10000/(1+10/100)
- At t=2, Benefit = \$20,000 then the amount deposited in the 0th year= \$20000/ $(1+10/100)^2$
- At t=3, Benefit = \$30,000 then the amount deposited in the 0th year= $$30000/(1+10/100)^3$
- At t=4, Benefit = \$10,000 then the amount deposited in the 0^{th} year= $$10000/(1+10/100)^4$
- At t=5, Benefit = \$5,000 then the amount deposited in the 0^{th} year= \$,5000/ $(1+10/100)^5$
- Sum of the present value > Initial investment

- COCOMO I
- Barry Boehm introduce it
- Hierarchy of software estimation model
- Model takes the following form :
 - Model1(Basic COCOMO): is a static single valued model that computes software development effort (and cost) as a function of program size expressed in estimated line of code
 - 2. Model2(Intermediate COCOMO) :computes software development effort as a function of program size and a set of "cost drivers" that include subjective assessments of product, hardware, personnel and project attributes

- Model3(Advanced COCOMO): incorporates all characteristics of the intermediate version with an assessment of the cost driver's impact on each step (analysis, design etc.) of the software engineering process
- COCOMO may applied to 3 classes of the software projects:
 - 1. Organic mode: Small, simple s/w project
 - Ex. Tharmal analysis program
 - 2. Semi-detached mode: Intermediate size and complexity
 - Ex. Transaction processing
 - 3. Embedded mode:

- Basic COCOMO equation take the form :
- Effort= $E = a_b(KLOC) \exp(b_b)$ person-months
- Duration= $C_b(E) \exp(d_b)$ months
- Cost driver attributes:
 - Product attributes
 - I. Required s/w reliability
 - II. Size of application database
 - III.Complexity of the product

2. H/W attributes

- I. Run-time performance constraints
- II. Memory constraints
- III. Volatility of the virtual m/c environment
- IV. Required turnaround time
- 3. Personnel attributes
 - I. Analyst capability
 - II. S/w engineer capability
 - III. Applications experience
 - IV. Virtual m/c experience
 - V. Programming Language experience
- 4. Product attributes
 - I. Use of s/w tools
 - II. Application of S/w engineering methods
 - III.Required development schedule

Attributes value (Table by Boehm)

S/w project	a_a	b_b	c_c	d_d
Organic	2.4	1.05	2.5	0.38
Semidetached	3.0	1.12	2.5	0.35
Embedded	3.6	1.20	2.5	0.32

Attributes value (Table by Boehm)

S/w project	a_{i}	b_i
Organic	3.2	1.05
Semidetached	3.0	1.12
Embedded	2.8	1.20

COCOMO (Cont.)

- Each of the 15 attributes is rated on a 6-point scale that ranges from <u>very low</u> to <u>extra high</u>
- Based on the rating <u>effort multiplier</u> is determined from table published by Boehm
- Product of effort multipliers results is an effort adjustment factor (EAF) ranges from 0.9 to 1.4
- Intermediate COCOMO Equation takes the form:

$$E = a_i(KLOC) \exp(b_i) \times EAF$$

COCOMO II

- Hierarchy of estimation models that address the following areas:
 - 1. Application composition model: used during early stage of s/w engg., when prototyping of user interfaces, consideration of s/w and system interaction, assessment of performance and evaluation of technology maturity are paramount.
 - 2. Early design stage model: used once requirements have been stabilized and basic s/w architecture has been established
 - **3. Post- architecture stage model** : used during the construction of the s/w

COCOMO II (Cont.)

- Sizing information :
 - i. Object points
 - ii. Function points
 - iii. Lines of source code
- The COCOMO II in application composition modes uses object points
- An indirect s/w measure that is computed using counts of the number of (1) Screens (at the user interface), (2) Reports and (3) Components (likely to be required to build the application)

COCOMO II (Cont.)

 Each object instance (screen or report) is classified into one of three complexity levels

Object type	Complexity weight				
	Simple	Medium	Difficult		
Screen	1	2	3		
Report	2	5	8		
Components			10		

- Object point count is determine by multiplying the original number of object instances by the weighting factor in the table
- Summing to obtain total object point
- When component based development or general s/w reuse is to be applied, the % of reuse is estimated and the object point count is adjusted

COCOMO II (Cont.)

- New Object Point, NOP=(Object Point) X [(100-%reuse)/100]
- Productivity Rate, PROD=NOP/Person-month
- Estimated Effort, E= NOP/PROD
- Productivity rate :

Developer's	Very	Low	Nominal	High	Very
Experience/Capacity	low				High
Environment	Very	Low	Nominal	High	Very
Maturity/Capacity	low				High
PROD	4	7	13	25	50

Problems

1. Using COCOMO I

- Determine the Effort to develop of a Software product
- Determine the Duration to develop of a Software product
- Determine the Number of People engaged to develop of a Software product.
- Input of your program is Lines of Code and Effort Adjustment Factor.
- Also determine the type of project (i) Organic, (ii) Semidetached and (iii) Embedded.

Problems

- Using COCOMO II
 - Determine the Object Point to develop of a Software product
 - Determine the New Object Point to develop of a Software product
 - Determine the Effort to develop of a Software product
 - Determine the Number of People engaged to develop Software product, if Duration of development of the software is 5 years.
- If the software consist of 10 Screens, 4 Reports and 15 3GL Components. Assume component based development and 60% reuse is applied.