MATEMÁTICA DISCRETA I

Ejercicio 1 (7 puntos)

- a) Encontrar la expresión más sencilla, en forma de suma de productos, para la función que detecta los números de un solo dígito que son primos o múltiplos de tres, pero no pares.
- b) Simplificar, utilizando el método de Quine McCluskey, la función booleana cuyo conjunto de verdad es S(f) = {11011, 11101, 10111, 01011, 11001, 11100, 10101, 01001, 00110}.

ť

t

ť

-10-1 -10-1

Solución

a) f(x, y, z, t) = xt + yt + zt

	У	,	У	<u>'</u>
.,	12	14	10	8
X	13	15	11	9
لد	5	7	3	1
x'	4	6	2	0
	z'	2	z'	

		у		y'	
.,	1	1	1	0	†'
×			-	1	
1	1	1	1	0	†
x'	0	0	0	0	t'
	z'		z	z'	ı

b)			
•	11101	11-01	
	10111	1110-	_
	11011	1-101	
	01011	101-1	
	11001	-1011	
	11100	110-1	
	10101	010-1	
	01001	-1001	
	00110		

	11101	10111	11011	01011	11001	11100	10101	01001	00110
-10-1			√	√	√			7	
11-01	1				√				
1110-	1					√			
1-101	1						1		
101-1		1					1		
00110									1

f(x, y, z, t, w) = y z' w + x y z t' + x y' z w + x' y' z t w'

MATEMÁTICA DISCRETA I

Ejercicio 2 (3,5 puntos)

Demostrar por inducción que \forall $n \in \mathbb{N}$, $4^{2n} - 1$ es divisible por 15.

Solución

Si n = 1, $4^{2n} - 1 = 15$ es divisible por 15. Si $4^{2n} - 1$ es divisible por 15, entonces $4^{2(n+1)} - 1 = 4^2 4^{2n} - 1 = 16 \cdot 4^{2n} - 1 = 15 \cdot 4^{2n} + 4^{2n} - 1$ es divisible por 15.

Ejercicio 3 (8,5 puntos)

Una empresa quiere renovar parte del material informático comprando ordenadores e impresoras. Los ordenadores valen 750 € cada uno y las impresoras 300 € cada una. Si quiere gastar exactamente 3000 €, ¿cuántos ordenadores e impresoras puede comprar? Describir todas las formas distintas en que puede hacerlo.

Solución

750 x + 300 y = 3000 \Leftrightarrow 5 x + 2 y = 20

Las soluciones de la ecuación diofántica son: $x = 20 + 2k \ge 0$, $y = -40 - 5k \ge 0 \Rightarrow -8 \ge k \ge -10$ por tanto, las soluciones válidas para el problema son:

4 ordenadores y 0 impresoras (k = -8)

2 ordenadores y 5 impresoras (k = -9)

O ordenadores y 10 impresoras (k = -10)

Ejercicio 4 (9 puntos)

- a) Calcular 8! (mod 11) y 21¹⁸ (mod 11).
- b) Comprobar si 299 es primo.
- c) Calcular 28^{527} en Z_{299} .

Solución

- a) Puesto que p = 11 es primo, entonces $10! \equiv 10 \pmod{11} \Leftrightarrow 8!.9.10 \equiv 10 \pmod{11} \Rightarrow 8! \equiv 9^{-1} \pmod{11} = 5 \pmod{11}$ Se tiene que $[21]_{11}^{18} = [-1]_{11}^{18} = [1]_{11}$
- b) Se tiene que $17 < \sqrt{299}$, probamos con los primos hasta 17 y resulta que 299 = 13.23
- c) $299 = 13.23 \Rightarrow \Phi(299) = \Phi(13) \cdot \Phi(23) = 12 \cdot 22 = 264$ $mcd(28, 299) = 1 \Rightarrow 28^{\Phi(299)} = 1$ en $Z_{299} \Rightarrow 28^{527} = (28^{264})^2 \cdot 28^{-1} = 28^{-1}$ el inverso de 28 en Z_{299} es la solución de la ecuación diofántica $28 \times + 299 \text{ y} = 1$ por el algoritmo de Euclides:

$$299 = 28.10 + 19$$
 $1 = 19 - 9.2 = 19 - (28-19)\cdot 2 =$ $28 = 19 + 9$ $19 = 9.2 + 1$ $19 - 9.2 = 19 - (28-19)\cdot 3 - 28.2 =$ $19 - 9.2 + 1$ $19 - 9.2 = 19 - (28-19)\cdot 3 - 28.2 =$ $19 - 9.2 + 1$ $19 - 9.2 = 19 - (28-19)\cdot 2 =$ $19 - 9.2 =$ $19 - 9.2$

Luego el inverso de 28 en Z_{299} es -32 y 28^{527} = -32 = 267

MATEMÁTICA DISCRETA I

Ejercicio 5 (7 puntos)

Resolver la ecuación $56 x \equiv 40 \pmod{68}$.

Solución

La ecuación en congruencias $56 x \equiv 40 \pmod{68}$ tiene solución si y sólo si mcd(56,68)|40 en cuyo caso hay que resolver la ecuación diofántica $56 \times + 68 \times +$

$$68 = 56 + 12$$
 $4 = 12 - 8 = 12 - (56 - 12.4) = 12.5 - 56 = 56 = 12.4 + 8$ $= (68 - 56)$, $5 - 56 = 56$. $(-6) + 68.5$ $12 = 8 + 4$ $40 = 56$. $(-60) + 68.50$ $mcd(56,68)=4|40$

Las soluciones de la ecuación diofántica son: x = -60 + 17k, y = 50 - 14k y la ecuación en congruencias tiene cuatro soluciones distintas en Z_{68} que son: $x_1 = -60 = 8$, $x_2 = -43 = 25$, $x_3 = -26 = 42$, $x_4 = -9 = 59$.