1 Gröbner basics

1.1 Left ideals in factor algebras

1.1 Fact. We assume we have $\mathbb{K}\langle \mathbf{X} \rangle$ equipped with an arbitrary monomial ordering and we take an ideal I with a finite Gröbner basis G. If we consider an ideal J of the algebra $A := \mathbb{K}\langle \mathbf{X} \rangle / I$ we know that $I \subseteq J$ as an subset of $\mathbb{K}\langle \mathbf{X} \rangle$. If J is an two-sided ideal generated by a set E it is easy to see that that in order to get a Gröbner basis for J we only need to compute a Gröbner basis of the set $E \cup G$ and then substract those elements in G. However, if we consider J as an left ideal things get a little more complicated. Recall that we have $J = {}_{A}\langle E \rangle := \{\sum c_i e_i \mid c_i \in A, e_i \in E\}$. We identify elements of A with their normal forms modulo I.

For notations: NF denotes the normal form, 1t the leading term, both with respect to a fixed ordering.

1.2 Definition. Let $J \subseteq \mathbb{K}\langle \mathbf{X} \rangle$ be an left ideal containing the two sided ideal I, and let $G \subset J$ be a set of non-zero polynomials, normal with respect to I. We call G a (left) Gröbner basis of the ideal $J/I \subseteq \mathbb{K}\langle \mathbf{X} \rangle/I$ if for every polynomial $p \in J/I$ there exists a polynomial $g \in G$ such that $\mathtt{lt}(g)$ is a suffix of $\mathtt{lt}(p)$. In other words $\mathtt{lt}(g)$ is a right divisor of $\mathtt{lt}(p)$, that is $\mathtt{lt}(p) = m\mathtt{lt}(g)$ for some $m \in \mathbb{K}\langle \mathbf{X} \rangle/I$.

Our first goal is to give an algorithm which allows us to do reduction with respect to J/I.

- **1.3 Theorem.** Let $p \in \mathbb{K}\langle \mathbf{X} \rangle$, let $s \geq 1$, and let $g_1, \ldots, g_s \in \mathbb{K}\langle \mathbf{X} \rangle \setminus \{0\}$ be normal polynomials with respect to I. Consider the following sequence of instructions:
 - 1. Set $q_1 = ... = q_s = 0$ and $v = NF_I(p)$.
 - 2. If there exists an index $j \in \{1, \ldots, s\}$ such that $lt(v) \equiv wlt(g_j)$ for some monomial $w \in \langle \mathbf{X} \rangle$, then replace q_j by $q_j + \frac{lc(v)}{lc(g_j)}w$ and v by $v \frac{lc(v)}{lc(g_j)}w$.
 - 3. Repeat step 2) until there is no more $j \in \{1, ..., s\}$ such that $lt(g_j)$ is a suffix of lt(v). Return the tuple $(v, q_1, ..., q_s)$.

This is an algorithm which returns a tuple (v, q_1, \ldots, q_s) such that $p - (\sum_{j_1}^s q_j g_j +$

 $v) \in I$ and such that the following conditions are satisfied:

- The polynomial v is in normal form with respect to I.
- For all $j \in \{1, ..., s\}$, q_j is in normal form with respect to I. If $q_j \neq 0$ for some $j \in \{1, ..., s\}$, then $lt(p) \geq lt(q_i g_j)$.
- If $v \neq 0$, then $lt(p) \geq lt(v)$ and there is no $j \in \{1, ..., s\}$ such that $lt(g_j)$ is a suffix of lt(v).

Proof: Omitted for the time being.

q.e.d.

Note that this algorithm only reduces the leading term of p. For a complete reduction we have to iterate over all terms of p after the leading term is completely reduced, that is restart the procedure with p - lt(p).

The polynomial v obtained in the algorithm is called a *left normal form* of p and we denote it by $\mathtt{lNF}(p)$.

- **1.4 Proposition.** Let $\mathbf{J} \subseteq \mathbb{K}\langle \mathbf{X} \rangle$ be a left ideal containing I and let $G \subset J$ be a set of polynomials in normal form with respect to I. The following conditions are equivalent:
 - The set G is a Gröbner basis of $J/I \subseteq \mathbb{K}\langle \mathbf{X} \rangle/I$.
 - Every normal polynomial $p \in J/I$ has a representation $p = \sum_{j=1}^{s} q_j g_j + h$ with $q_i \in \mathbb{K}\langle \mathbf{X} \rangle \setminus \{0\}, h \in I$ such that $lt(p) \geq lt(q_i g_i) \quad \forall i \in \{1, \dots, s\}$ and lt(p) > lt(h).
 - A polynomial $p \in \mathbb{K}\langle \mathbf{X} \rangle$ satisfies $p \in J$ if and only if $\mathsf{1NF}(p) = 0$.

Proof: as before

q.e.d.

more blabla needed?

- **1.5 Remark.** Taking a generating set E for J/I and a Gröbner basis G_I for I, each polynomial $p \in J/I$ can be represented as $p = \sum_{j=1}^{s} q_j e_j + \sum_i c_i l_i g_i r_i$, where $e_k \in E, q_k \mathbb{K}\langle \mathbf{X} \rangle \setminus \{0\}, c_k \in \mathbb{K}, g_k \in G_I, l_k, r_k \in \langle \mathbf{X} \rangle$. It is easy to see that this representation does not necessarily satisfy the condition in 1.4, since there might be an index j such that $lt(q_j)lt(e_j) \geq lt(p)$ or $l_jlt(g_j)r_j \geq lt(p)$. There are three cases in which these terms may occur:
 - 1. There exist $j, j' \in \{1, \ldots, s\}, j \neq j'$ such that $lt(q_j)lt(e_j) \equiv lt(q_{j'})lt(g_{j'}) > lt(p)$, that is e_j and $g_{j'}$ have an left overlap.
 - 2. There exist $j, j' \in \{1, ..., s\}, j \neq j'$ such that $l_j lt(g_j) r_j \equiv l'_{j'} lt(g_{j'}) r_{j'} > lt(p)$, that is g_j and $g_{j'}$ have an overlap.

3. There $j \in \{1, ..., s\}, j' \in \mathbb{N}$ such that $lt(q_j)lt(e_j) \equiv l_{j'}lt(g_{j'})r_{j'}$. Since e_j is normal with respect to I and G_I is a Gröbner basis this implies there is $w \in \langle \mathbf{X} \rangle \setminus \{1\}$ such that $lt(q_j)lt(e_j) \equiv lt(g_{j'})w$.

Since G_I is a Gröbner basis for I one does not need to consider the second case, because one can simply use the Gröbner representation given by G_I .

1.6 Proposition. Let $G \subset J$ be a set of polynomials in normal form with respect to I and let $J/I \subseteq \mathbb{K}\langle \mathbf{X} \rangle/I$ be the left ideal generated by G. Say we have a finite Gröbner basis G_I for I. Define two sets as follows:

$$O_G = \{ \frac{1}{\mathtt{lc}(g)} g - \frac{1}{\mathtt{lc}(g')} w g' \mid g, g' \in G, g \neq g', w \in \langle \mathbf{X} \rangle, \mathtt{lt}(g) \equiv w \mathtt{lt}(g') \}$$

and

$$O_{GG_I} = \{ \frac{1}{\mathtt{lc}(g)} wg - \frac{1}{\mathtt{lc}(g')} g'r' \mid g \in G, g' \in G_I, w, r' \in \langle \mathbf{X} \rangle, w\mathtt{lt}(g) \equiv \mathtt{lt}(g')r' \}.$$

Then G is a Gröbner basis of J/I if and only if $\mathtt{INF}(p) = 0$ for all $p \in O_G \cup O_{GG_I}$. **Proof:** Omitted.

1.7 Algorithm.

Input: $E \subseteq \mathbb{K}\langle \mathbf{X} \rangle \setminus \{0\}$, a generating set for J, normal with respect to I, G_I , a Gröbner basis for I

Output: G, a Gröbner basis for J

```
Start with G = E

Set S = \{\frac{1}{1c(g)}g - \frac{1}{1c(g')}wg' \mid g,g' \in G,g \neq g',w \in \langle \mathbf{X} \rangle, \mathrm{lt}(g) \equiv w\mathrm{lt}(g')\} \cup \{\frac{1}{1c(g)}wg - \frac{1}{1c(g')}g'r' \mid g \in G,g' \in G_I,w,r' \in \langle \mathbf{X} \rangle, w\mathrm{lt}(g) \equiv \mathrm{lt}(g')r'\}
while S \neq \emptyset do

Take s \in S and set S = S \setminus \{s\}
Compute \overline{s} = \mathrm{ln}F(s).

if \overline{s} \neq 0 then
S = S \cup \{\frac{1}{1c(g)}g - \frac{1}{1c(\overline{s})}w\overline{s} \mid g \in G,w \in \langle \mathbf{X} \rangle, \mathrm{lt}(g) \equiv w\mathrm{lt}(\overline{s})\} \cup \{\frac{1}{1c(\overline{s})}w\overline{s} - \frac{1}{1c(g')}g'r' \mid g' \in G_I,w,r' \in \langle \mathbf{X} \rangle, w\mathrm{lt}(\overline{s}) \equiv \mathrm{lt}(g')r'\}
G = G \cup \{\overline{s}\}
end if
end while
return G
```

If J/I has a finite (left) Gröbner basis this algorithm terminates after finitely many steps and returns a reduced Gröbner basis of J/I.

Proof: With Proposition above and analogous to the normal Gröbner basis algorithm q.e.d.

1.8 Remark. Gebauer-Möllers criteria can be applied in a similar fashion as before, one has just to take the special forms of obstructions into account.