Exercices

Exercice 1

- 1. Il existe $x \in I$ tel que f(x) = 0
- 2. Pour tous $x_1, x_2 \in I$, $f(x_1) = f(x_2)$
- 3. Il existe $x_1, x_2 \in I$ tels que $f(x_1) \neq f(x_2)$
- 4. Pour tout $x \in I$, $f(x) \ge f(x_m)$
- 5. Pour tout $x \in I$, $f(x) \leq f(x_M)$
- 6. Pour tout $x \in I$, $f(x) \leq M$
- 7. Pour tout $M \in \mathbb{R}$, il existe $x \in I$ tel que f(x) > M

Exercice 2

- 1. Faux, pour x = -1, $\sqrt{(-1)^2} = 1$ et non -1
- 2. Vrai, on peut prendre x = 1
- 3. Faux, par exemple x = -3
- 4. Faux, $\sqrt{\frac{1}{4}} = \frac{1}{2} > \frac{1}{4}$

Exercice 3

Montrons par récurrence la propriété $P_n:u_n$ est bien défini et $u_n>0$

- Initialisation pour n = 0, $u_0 = 2$ est bien défini et $u_0 > 0$
- Hérédité Soit $n \in \mathbb{N}$ On suppose que $P_n : u_n$ est bien défini et $u_n > 0$ est vraie On a $u_{n+1} = \frac{u_n}{1+u_n}$. Par hypothèse de récurrence, $u_n > 0$, donc $1+u_n > 1 > 0$ donc en particulier $1+u_n \neq 0$ donc u_{n+1} est bien défini. Par ailleurs $u_n > 0$ et $1+u_n > 0$ donc $u_{n+1} = \frac{u_n}{1+u_n} > 0$
- Conclusion La propriété étant vraie pour n=0 et héréditaire, elle est vraie pour tout $n\in\mathbb{N}$

Exercice 4

- Initialisation pour n = 0, $u_0 = a = a + 0 \times r$
- Hérédité Soit $n \in \mathbb{N}$. On suppose que $P_n : u_n = a + nr$. est vraie On a $u_{n+1} = u_n + r = a + nr + r = a + (n+1)r$

• Conclusion La propriété étant vraie pour n=0 et héréditaire, elle est vraie pour tout $n\in\mathbb{N}$

Exercice 5

- Initialisation pour n = 0, $u_0 = 3 = 7 \times 2^0 4$
- *Hérédité* Soit $n \in \mathbb{N}$. On suppose que $P_n : u_n = 7 \times 2^n 4$. est vraie On a $u_{n+1} = 2u_n + 4 = 2(7 \times 2^n 4) + 4 = 7 \times 2^{n+1} 8 + 4 = 7 \times 2^{n+1} 4$
- Conclusion La propriété étant vraie pour n=0 et héréditaire, elle est vraie pour tout $n\in\mathbb{N}$

Exercice 6

- Initialisation pour n = 0, $u_0 = 1 = 2^1 1$
- Hérédité Soit $n \in \mathbb{N}$. On suppose que $P_n : u_n = 2^{n+1} 1$ est vraie On a $u_{n+1} = 2u_n + 1 = 2(2^{n+1} 1) + 1 = 2^{n+2} 2 + 1 = 2^{n+1} 1$
- Conclusion La propriété étant vraie pour n=0 et héréditaire, elle est vraie pour tout $n\in\mathbb{N}$

Exercice 7 • Initialisation pour n = 0, $v_0 = 0$ et $0 \le v_n \le 4$

- Hérédité Soit $n \in \mathbb{N}$. On suppose que $P_n : v_n$ est bien définie et $0 \le v_n \le 4$ On a $8 \le 0.5v_n + 8 \le 10$ donc $v_{n+1} = \sqrt{0.5v_n + 8}$ est bien défini et $0 \le \sqrt{8} \le v_{n+1} \le \sqrt{10} \le 4$.
- Conclusion La propriété étant vraie pour n=0 et héréditaire, elle est vraie pour tout $n\in\mathbb{N}$

Exercice 8 • Initialisation pour n = 1, $1^2 = \frac{1 \times 2 \times 3}{6}$ donc P_1 est vraie.

• Hérédité On suppose que $P_n: 1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$ est vraie pour un certain n (Hypothèse de Récurrence).

Alors
$$1 + 2 + \dots + (n+1)^2 = \frac{n(n+1)(2n+1)}{6} + (n+1)^2 = (n+1)(\frac{n(2n+1)}{6} + (n+1)) = (n+1)\frac{n(2n+1) + 6n + 6}{6} = (n+1)\frac{2n^2 + 7n + 6}{6}$$
 et $(2n+3)(n+2) = 2n^2 + 3n + 4n + 6 = 2n^2 + 7n + 6$ donc $1 + 2 + \dots + (n+1)^2 = \frac{(n+1)(n+2)(2n+3)}{6}$ et donc P_{n+1} est vraie.

• Conclusion La propriété étant héréditaire pour $n \geq 1$ et vraie pour n = 1, elle est donc vraie pour tout $n \in \mathbb{N}^*$.

Exercice 9

Montrons que pour tout $n \ge 1$, la propriété $(e^{nx})' = ne^{nx}$ est vraie

- Initialisation pour n = 1, $(e^x)' = e^x$
- Hérédité Soit $n \ge 1$. On a $(e^{nx})' = ne^{nx}$. On a $(e^{(n+1)x})' = (e^x e^{nx})' = e^x ne^{nx} + e^x e^{nx} = (n+1)e^x e^{nx} = (n+1)e^{(n+1)x}$
- Conclusion La propriété étant héréditaire pour $n \geq 1$ et vraie pour n = 1, elle est donc vraie pour tout $n \in \mathbb{N}^*$.

Exercice 10

Montrons par récurrence que la propriété P_n : "la somme des angles d'un polygone convexe à n sommets est $(n-2)\pi$ " est vraie pour tout $n \geq 3$

- Initialisation La somme des angles d'un triangle est π
- Hérédité Soit $n \geq 3$. On suppose P_n vraie. Considérons un polygone à n+1 côtés $A_1A_2...An+1$

Si on considère le polygone $A_1
ldots A_n$, par hypothèse de récurrence la somme de ses angles est $(n-2)\pi$. Et la somme des angles du triangle $A_1A_nA_{n+1}$ est π . Donc la somme des angles du polygone $A_1A_2
ldots A_n+1$ est $(n-2)\pi+\pi=(n-1)\pi$

• Conclusion La propriété étant héréditaire pour $n \geq 3$ et vraie pour n = 3, elle est donc vraie pour tout $n \geq 3$.

Exercice 11

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction croissante et soit $a \in \mathbb{R}$, et soit ula suite (u_n) définie par $u_0 = a$ et $u_{n+1} = f(u_n)$.

On fait une disjonction de cas.

Cas $u_1 \ge u_0$ Montrons par récurrence que dans ce cas, la propriété $P_n : u_{n+1} \ge u_n$ est vraie pour tout $n \in \mathbb{N}$

- Initialisation pour $n = 1, u_1 \ge u_0$
- Hérédité Soit $n \in \mathbb{N}$. Supposons P_n vraie. On a donc $u_{n+1} \geq u_n$. Or f est croissante donc $f(u_{n+1}) \geq f(u_n)$, c'est à dire $u_{n+2} \geq u_{n+1} : P_{n+1}$ est vraie.
- Conclusion La propriété étant vraie au rang 0 et héréditaire, elle est vraie pour tout $n \in N$

On a donc montré que la suite était croissante

Cas $u_1 < u_0$ On procède de la même façon pour montrer que la suite est décroissante. Dans tous les cas, la suite est donc monotone.