Delta Flow-Salinity Modelling using Artificial Neural Networks: Tutorial

Workshop on Delta Flow-Salinity Modeling Using Machine Learning January 27, 2023 Module #3

Siyu Qi
UC Davis, Electrical and Computer Engineering

Outline

Overview

- 1. Datasets
- 2. ANN Architectures
 - 1. Baselines:
 - 1. Multi-Layer Perceptron (MLP);
 - 2. Residual Network (ResNet);
 - 3. Long-Short-Term Memory (LSTM);
 - 4. Gated Recurrent Unit (GRU).
 - 2. Proposed: Res-LSTM; Res-GRU.
- 3. Transfer Learning
- Demo

Overview

- Artificial Intelligence (AI): "the theory and development of computer systems able to perform tasks that normally require human intelligence." -- Oxford Languages
- Machine learning (ML): Al that can automatically adapt with minimal human interference
- Deep learning (DL): ML that uses artificial neural networks to mimic the learning process of the human brain

Overview

Index	Input Feature Name	Definition		
		Sum of Sacramento, Yolo Bypass, Mokelumne		
1	Northern Flow	River, Cosumnes River, and Calaveras		
2	Con Incoming Discon Files	River flows.		
2	San Joaquin River Flow	San Joaquin River at Vernalis Flow. Sum of pumping from Banks Pumping Plant,		
3	.	Jones Pumping Plant, and Contra Costa Water		
	Pumping	District at Rock Slough, Old River, and		
		Victoria Canal.		
4	Delta Cross-Channel Gate Operation	Delta Cross-Channel Gate Openings.		
	•	Net Delta Consumptive use estimated by Delta		
5	Consumptive Use	Channel Depletion (DCD) and Suisun Marsh		
		Channel Depletion (SMCD) models.		
6	Martinez Tidal Energy	Tidal energy at Martinez, calculated as the daily maximum-the daily minimum astronomical tide		
O	Wartinez Haar Eriergy	at Martinez.		
7	San Joaquin River EC	Electrical conductivity measured at San Joaquin		
		River at Vernalis.		
8	Sacramento River EC	Electrical conductivity measured at Sacramento		
		River at Greens Landing.		

8 Input variables

23 Electrical Conductivity (EC)
Monitoring Stations

Overview: Datasets

Excel File Name	Scenarios	Timespan	Usage
observed_data_daily (Observed)		2000-2019	Used for training in: 1. Train_ANN_on_Observed_Data-Chronological- Test_on_Augmented_Data.ipynb 2. Transfer_Learning_from_Augmented_to_Observe d_Chronological.ipynb
dsm2_ann_inputs_base (Simulated)			Used for validation in: Train_ANN_on_Augmented_Dataset.ipynb
dsm2_ann_inputs_\$SCENARIO\$ (Simulated, augmented)	rsacminus20pct, rsacplus20pct; rsacminus15day, rsacplus15day; rsanminus20pct, rsanplus20pct; rsanminus15day, rsanplus15day.	1990-2019	Used for training in 1. Train_ANN_on_Augmented_Dataset.ipynb 2. Model pre-training for transfer learning
	dcc0, dcc1; smscg0, smscg1.		Used for test in Train_ANN_on_Augmented_Dataset.ipynb

Note: all datasets are provided in daily resolution

Overview: Architectures – MLP [1]

Highlights:

- Feed-forward
- Fully-connected
- Mimics neural network in human brains

Training: provide input and output pairs (the "training set"), update weights to minimize difference between target and model outputs

Test: use a different set (the "test set") to evaluate model performance

Each layer has an activation function to introduce

non-linearity

Overview: Architectures – MLP [1]

Diagram of the MLP^[1] ANN in our study Numbers in layers = numbers of neurons

Overview: Architectures – ResNet

Diagram of a ResNet^[2]

In the convolutional layers, "f" = number of filters, "k" = kernel size, "s" = stride.

Main concept in ResNet: a shortcut path that learns to estimate "residuals" → adopt this idea in RNNs

Overview: Architectures – Recurrent Neural Networks (RNNs)

Highlights:

- Connection creates a cycle
- Internal memories
- Good at sequential data processing

Detailed diagram of a basic RNN. Left: Compressed; Right: unfolded

Overview: Architectures – Long-Short-Term Memory (LSTM) [3]

Diagram of a LSTM Network [3], a generic memory-based architecture

Highlights: maintains both short-term and long-term memories; good for long term sequences

Overview: Architectures – Gated Recurrent Unit (GRU) [4]

Diagram of a GRU Network [4], a generic memory-based architecture

Highlights: less complex hence faster than LSTM; no internal memory.

Overview: Architectures – Res-LSTM

Diagram of the Proposed Res-LSTM Network, with a **simplified** LSTM layer in the shortcut connection

Highlights: faster than baseline LSTM; better performance than baseline MLP

Overview: Architectures – Res-GRU

Diagram of the Proposed Res-GRU Network, with a **simplified** GRU layer in the shortcut connection

Highlights: faster than baseline GRU; better performance than baseline MLP

Overview: Transfer Learning^[5]

Environmental Variables

Salinity Levels (DSM2 Simulations)

Definition: Transferring the knowledge of one model to perform a new task.

Models trained on augmented simulation data (rich) ==> observed data (smaller)

Outputs of scripts:

- 1. Trained models in "models" folder
- 2. Plots in "images" folder
 - 1. Time Series Plots
 - 2. Exceedance Probability Plots
 - 3. Heat map
- 3. Numerical results (r2, Bias, RSR and NSE) in "results" folder

• Illustration: Time Series Plots

Illustration: Exceedance Probability Plots

Target

• Illustration: Station-wise Heatmap Plots

1. Train models on observed data (chronological split):

 Colab_Train_ANN_on_Observed_Data-Chronological-Test_on_Augmented_Data.ipynb

2. Train models on augmented data

Colab_Train_ANN_on_Augmented_Dataset.ipynb

3. Transfer Learning from augmented to observed data

Colab_Transfer_Learning_from_Augmented_to_Observed_Chronological.ipynb

References

- 1. Maier, Holger R., and Graeme C. Dandy. "Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications." *Environmental modelling & software* 15.1. 2000.
- 2. He, Kaiming, et al. "Deep residual learning for image recognition." *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2016.
- 3. Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory." Neural computation 9.8. 1997.
- 4. Cho, Kyunghyun, et al. "On the properties of neural machine translation: Encoder-decoder approaches." *arXiv* preprint arXiv:1409.1259. 2014.
- 5. Bozinovski, Stevo, and Ante Fulgosi. "The influence of pattern similarity and transfer learning upon training of a base perceptron b2." *Proceedings of Symposium Informatica*. Vol. 3. 1976.
- 6. https://www.coursera.org/articles/ai-vs-deep-learning-vs-machine-learning-beginners-guide
- 7. https://en.wikipedia.org/wiki/Recurrent_neural_network

