Affine algebraische Mengen als Räume von Funktionen

11 Der affine Koordinatensatz

Sei $X \subseteq \mathbb{A}^n(k)$ abgeschlossen. Für den surjektiven (Def. von Morphismen) k-Algebren-Homomorphismus

$$k[I] \xrightarrow{\varphi} \text{hom}(X, \mathbb{A}^1(k))$$

 $f \mapsto (x \mapsto f(x)),$

wobei die Morphismen in folgende Weise eine k-Algebra bilden:

$$(f+g)(x) := f(x) + g(x)$$
$$(fg)(x) := f(x)g(x)$$
$$(\alpha f)(x) := \alpha f(x)$$

mit $f, g \in \text{hom}(X, \mathbb{A}^1(k)), \alpha \in k$. Es gilt:

$$\ker \varphi = I(X)$$

Definition 26. $\Gamma(X) := k[I]/I(X) \cong \text{hom}(X, \mathbb{A}^1(k))$ heißt der **affine Koordinatenring** von X. Für $x = (x_1, \dots, x_n) \in X$ gilt:

$$\mathbf{m}_{x} := \ker(\Gamma(X) \to k, f \mapsto f(x))$$

$$= \{ f \in \Gamma(X) \mid f(x) = 0 \}$$

$$= \text{Bild von } (T_{1} - x_{1}, \dots, T_{n} - x_{n})$$

$$= \ker(\Gamma(\mathbb{A}^{n}(k)) \to k)$$

unter der Projektion $\pi: k[\underline{T}] = \Gamma(\mathbb{A}^n(k)) \twoheadrightarrow \Gamma(X)$. Es ist \mathfrak{m}_x ein maximales Ideal von $\Gamma(X)$ mit $\Gamma(X)/\mathfrak{m}_x = k$. Für ein Ideal $\mathfrak{A} \subset \Gamma(X)$ setze

$$V(\mathfrak{A}) = \{ x \in X \mid f(x) = 0 \ \forall f \in \mathfrak{A} \} = V(\pi^{-1}(\mathfrak{A})) \cap X.$$

Dies sind genau die abgeschlossenen Mengen von X als Teilraum in $\mathbb{A}^n(k)$ mit der induzierten Topologie, diese wird auch **Zariski-Topologie** genannt. Für $f \in \Gamma(X)$ setze:

$$D(f) := \{x \in X \mid f(x) \neq 0\} = X \backslash V(f).$$

Lemma 27. Die offenen Mengen D(f), $f \in \Gamma(X)$, bilden eine Basis der Topologie, d.h.

$$\forall U \subset X \text{ offen } \exists f_i \in \Gamma(X), i \in I, \quad mit \ U = \bigcup_{i \in I} D(f_i)$$

Beweis. $U = X \setminus V(\mathfrak{A})$ für ein $\mathfrak{A} \subset \Gamma(X)$, $\mathfrak{A} = \langle f_1, \dots, f_n \rangle$. Wegen

$$V(\mathfrak{A}) = \bigcap_{i=1}^{n} V(f_i) \quad \Rightarrow \quad U = \bigcup_{i=1}^{n} D(f_i)$$

Es reichen also sogar endlich viele f_i !

Satz 28. Der Koordinatenring $\Gamma(X)$ einer affinen algebraischen Menge X ist eine endlich erzeugte k-Algebra, die reduziert ist (d.h. keine nilpotenten Elemente $\neq 0$ enthält). Ferner ist X irreduzibel genau dann, wenn $\Gamma(X)$ integer ist.

Beweis. $k[\underline{T}] \to \Gamma(X)$ impliziert "endlich erzeugte k-Algebra". Es ist:

$$\Gamma(X)$$
 irreduzibel $\Leftrightarrow I(X) = \operatorname{rad} I(X)$.

Denn mit Satz 10.ii) und Korollar 11 folgt:

$$X = V(\mathfrak{A}): I(X) = \operatorname{rad} \mathfrak{A}$$

$$\Rightarrow \operatorname{rad} I(X) = \operatorname{rad} \operatorname{rad} \mathfrak{A} = \operatorname{rad} \mathfrak{A} = I(X).$$

Mit Lemma 17 folgt: X irreduzibel

 $\Leftrightarrow I(X)$ Primideal.

$$\Leftrightarrow \Gamma(X) = k[T]/T(X).$$