CS4495/6495 Introduction to Computer Vision

7C-L2 Particle filters

Recall: Propagation of general densities

Particle Filters: Basic Idea

Density is represented by both **where** the particles are and their **weight**.

 $p(x = x_0)$ is now probability of drawing an x with value (really close to) x_0 .

 \rightarrow set of *n* (weighted) particles X_t

Goal: $p(x_t \in X_t) \approx p(x_t | z_{\{1...t\}})$ with equality when $n \to \infty$

Last time: Bayes Filters

Likelihood

$$Bel(x_t) = \eta P(z_t | x_t) \int P(x_t | u_{t-1}, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

prediction *before* taking measurement Prior probability $P^-(x_t)$

Imagine a robot with only a simple map of a hallway:

The robot also has a sensor that looks to the side and detects whether it sees

a "hole" or "wall"

Quiz: Door detector

Hallway with doors:

Simplified representation with discrete positions:

Current position: x (unknown), sensor reading: z Direction of movement: Left to Right

Quiz: Door detector

		W	W	D	D	W	W	W	D	W	W
t	Z	0	1	2	3	4	5	6	7	8	9
0	W	V	V			V	V	V		V	V
1	D										
2	W										
3	W										

Check those boxes where you think you might be at time t

Quiz: Door detector [answer]

		W	W	D	D	W	W	W	D	W	W
t	Z	0	1	2	3	4	5	6	7	8	9
0	W	V	V			V	V	V		V	V
1	D			V					V		
2	W									V	
3	W										V

Check those boxes where you think you might be at time t

A more realistic example

Properties of the real world:

- Position of robot is not discrete (a real number)
- Sensor is noisy, so some readings may be false

As a result, the predicted position given sensor readings is a *probability distribution* over space

Why Particle Filters?

- At any point in time we'll have a density but it's unlikely to be anything like a Gaussian or any other parameterized density
- It typically won't be unimodal, for example
- Perfect for a particle filter

Particle Filters

The prior density:

```
p(s)
```

Sensor Information

Sensor Information

Sensor Information

$$Bel(x_t) = \eta P(z_t \mid x_t) \operatorname{Pred}(x_t)$$

Robot Motion

$$Bel^{-}(x) \leftarrow \int p(x|u,x') Bel(x') dx'$$

Next Sensor Reading

Next Sensor Reading

Robot Moves Again

Algorithm particle filter $\{S_{t-1} = \langle x_{t-1}^j, w_{t-1}^j \rangle, u_t, z_t\}$

1.
$$S_t = \emptyset$$
, $\eta = 0$

 $5. w_t^i = p(z_t \mid \underline{x}_t^i)$

2 For
$$i-1$$

2. **For** i = 1...n

Sample index j(i) from the discrete distribution given by w_{t-1}

3.

4.

7.

Sample x_t^i from $p(x_t | x_{t-1}, u_t)$ using $x_{t-1}^{j(i)}$ and u_t Control

Compute importance weight (reweight) 6. $\eta = \eta + w_t^i$ Update normalization factor

 $S_t = S_t \cup \{\langle x_t^i, w_t^i \rangle\}$ Insert

8. **For** i = 1...n

 $W_t^i = W_t^i / \eta$

Normalize weights

Graphical steps

