# Silver - Aluminium - Copper

K.C. Hari Kumar and Oger Arkens

# Literature Data

The liquidus surface and isotherms were investigated by [1930Uen]. In a review article by [1977Cha] these data were corrected in order to be consistent with then accepted binary phase diagrams, especially along the Al-Cu edge. The first evaluation within the ongoing MSIT Evaluation Programs was made by [1990Ark], which is updated by the present work. Employing metallographic technique [1961Pan] determined phase equilibria near the Cu-rich corner at 500 and 700°C. Using optical microscopy, X-ray diffraction and electron microprobe analysis [1973Mas] determined phase relationships in the temperature range 575 to 625°C along the Ag-Cu side of the ternary systems. Their results are generally not in agreement with that of [1961Pan]. They also concluded that small additions of Cu to Ag<sub>3</sub>Al(h) phase stabilizes it well below the temperature of existence in the binary. Liquidus in the region Al-Al<sub>2</sub>Cu-Ag<sub>2</sub>Al was investigated by [1983Liu] using thermal analysis. They identified a ternary eutectic reaction at 500°C and claimed that the section Al<sub>2</sub>Cu-Ag<sub>2</sub>Al is pseudobinary, with a monovariant maximum at 527°C. [1989Ado1, 1989Ado2] established isothermal phase relationships along the Ag-Cu edge of the ternary at 500, 650 and 850°C by analyzing samples prepared from high purity starting materials, employing X-ray diffraction, metallography, thermal analysis and electron microprobe analysis. Their results are in agreement with that of [1973Mas], except that they could not observe any extended stability for the Ag<sub>3</sub>Al(h) phase. The isothermal section at 850°C should be treated as metastable since the fcc miscibility gap originating from Ag-Cu system is still present in the section. Moreover, this section is above the eutectic temperature of the Ag-Cu system and therefore liquid phase also should be present. [2000Fla] measured the partial enthalpies of components in the liquid phase and thereby integral enthalpies of mixing of liquid alloys at 873°C using a drop-calorimeter. Measurements were performed starting from pure Al to about 40 at.% Al along three sections with Ag:Cu ratios of about 1:3, 1:1 and 3:1. The partial enthalpies of mixing of the components of liquid alloys at 979°C were determined using a high-temperature isoperibolic calorimeter [2002Wit]. Measurements were performed starting from both pure Al and from binary liquid Ag-Cu alloys along sections with constant Ag:Cu ratios 1:3, 1:1, and 3:1. The integral enthalpies of mixing of these ternary alloys are calculated from the partial enthalpies of mixing using different methods. It was found that the partial enthalpy of Cu reported by [2000Fla] for all sections from are about 8 kJ·mol<sup>-1</sup> more negative in comparison with data of [2002Wit].

[1997Lim] modelled the Gibbs energy functions of the stable phases in the ternary system using the Calphad approach. They calculated the isothermal section at 575°C and the liquidus projection pertaining to the Al-corner.

## **Binary Systems**

The binary systems used in the present evaluations are: Al-Cu [2003Gro], Ag-Al [1995Lim] and Ag-Cu [2003Van].

## **Solid Phases**

The known binary phases are listed in Table 1. No ternary phase is formed in the Al-rich corner up to Ag<sub>2</sub>Al and to CuAl<sub>2</sub>, and not at the Ag-Cu-side up to 37 at.% Al, 63 at.% Cu and 50 at.% Ag, 50 at.% Al.

### **Pseudobinary Systems**

The existence of a pseudobinary section  $Ag_2Al-Al_2Cu$  is reported by [1983Liu]. Only the monovariant eutectic maximum (e<sub>6</sub>,  $L=\theta+\zeta$ ) is reported using DTA measurements: 527°C at the composition 21.8Ag-55.8Al-22.4Cu (at.%).

Landolt-Börnstein
New Series IV/11A1

MSIT®

# Invariant Equilibria

Certain plausible invariant equilibria in the system were discussed by [1925Got, 1976Mon, 1977Cha]. A ternary eutectic reaction L= $(Al)+\theta+\zeta$  occurring at 500°C is reported by [1983Liu]. Composition of the liquid phase is given in Table 2.

# Liquidus Surface

Figure 1 shows the liquidus projection along with few isotherms for the region Al-Al<sub>2</sub>Cu-Ag<sub>2</sub>Al as investigated by [1983Liu]. Liquidus data reported by [1930Uen] is not used here due to inconsistencies with binary systems. It should be noted that [1930Uen] determined the liquidus projection at a time when little was known about the binary systems and even the liquidus projection proposed by [1977Cha] ignores many reactions originating from the binaries Al-Cu and Ag-Al.

#### **Isothermal Sections**

The isothermal section at  $625^{\circ}$ C in the 0 to 40 at.% Al region is shown in Fig. 2. It is adapted from [1973Mas]. [1973Mas] also reports the 575°C isotherm, which is essentially similar to Fig. 3, except for a small three-phase region (Ag)+ $\beta_2$ + $\zeta$  appearing just inside the Ag-Al binary line at about 2.7 at.% Ag. Figure 3 depicts isothermal section at 500°C. It is based on the data from [1989Ado1, 1989Ado2].

# **Thermodynamics**

The evaluated integral enthalpy of mixing of liquid alloys demonstrates that the minimum for the Ag-Al-Cu is at -17.1 kJ·mol<sup>-1</sup> corresponding to the binary composition  $Al_4Cu_6$ . Figure 4 is taken from [2002Wit], that depicts isoenthalpy contours calculated using fitted equations.

### References

- [1925Got] Goto, S., Tokushicki, M., "On some Aluminium Alloys, 2nd Report" (in Japanese), *J. Min. Metall. Inst. Japan*, 1-17 (1925) (Experimental, Equi. Diagram, 2)
- [1930Uen] Ueno, S., "On the Ternary Silver Alloys IV Mechanical Properties of some Ternary Silver Alloys", *Kyoto Imp. Univ.*, **57**, 78-83 (1930) (Equi. Diagram, Experimental, 2)
- [1931Pre] Preston, G.D., "An X-Ray Investigation of some Copper-Aluminium Alloys", *Philos. Mag.*, **12**, 980-993 (1931) (Crys. Structure, Experimental, 11)
- [1961Pan] Panseri, C, Leoni, M., "The Constitution of Ternary Alloys of Cu, Al and Ag Containing High Percentages of Cu" (in Italian), *Allumino*, **30**, 289-298 (1961) (Equi. Diagram, Experimental, 8)
- [1973Mas] Massalski, T.B., Perepezko, J.H., "Constitution and Phase Relationships in Copper-Silver-Aluminium Ternary System", Z. Metallkd., 64, 176-181 (1973) (Experimental, Equi. Diagram, \*, 17)
- [1976Mon] Mondolfo, L.F., "Aluminium Alloys Structure and Properties", Butterworth, 420-421 (1976) (Review, Crys. Structure, Phys. Prop., 13)
- [1977Cha] Chang, Y.A., Goldberg, D., Neumann, J.P., "Phase Diagrams and Thermodynamic Properties of Ternary Copper-Silver Systems", *J. Phys. Chem. Ref. Data*, **6**, 621-673 (1977) (Review, Equi. Diagram, Crys. Structure, Thermodyn., #, 3)
- [1983Liu] Liu-Shuqi, Zhao-Shimin, Zhang-Qiyun, "Phase Diagram of the Aluminium-Copper-Silver Alloy System" (in Chinese), *Acta Metall. Sin.*, **19**, 70-73 (1983) (Experimental, Equi. Diagram, 9)
- [1985Mur] Murray, J.L., "The Aluminium-Copper System", *Int. Met. Rev.*, **30**, 211-233 (1985) (Equi. Diagram, Review, #, 230)
- [1989Ado1] Adorno, A.T., Cilense, M., Garlipp, W., "Phase Relationships in the Copper-Silver-Aluminum Ternary System, near the Copper-Rich Corner", *J. Mater. Sci. Lett.*, **8**(11), 1294-1297 (1989) (Experimental, Equi. Diagram, 4)

MSIT<sup>®</sup>
Landolt-Börnstein
New Series IV/11A1

[1989Ado2] Adorno, A.T., Cilense, M., Garlipp, W., "Phase Relationships in the Copper-Silver-Aluminum Ternary System, Near the Copper-Rich Corner", *J. Mater. Sci. Lett.*, **8**(3), 281-284 (1989) (Experimental, Equi. Diagram, 4)

- [1989Mee] Meetsma, A., de Boer, J.L., van Smaalen, S., "Refinement of the Crystal Structure of Tetragonal Aluminum-Copper (Al<sub>2</sub>Cu)", *J. Solid State Chem.*, **83**(2), 370-372 (1989) (Crys. Structure, Experimental, 17)
- [1990Ark] Arkens, O., "Silver Aluminium Copper", MSIT Ternary Evaluation Program, in *MSIT Workplace*, Effenberg, G. (Ed.), MSI, Materials Science International Services GmbH, Stuttgart; Document ID: 10.11841.1.20, (1990) (Crys. Structure, Equi. Diagram, Assessment, 7)
- [1994Mur] Murray, J.L., "Al-Cu (Aluminium-Copper)", in "Phase Diagrams of Binary Copper Alloys", Subramanian, P.R., Chakrabarti, D.J., Laughlin, D.E., (Eds.), ASM International, Materials Park, OH, 18-42 (1994) (Equi. Diagram, Crys. Structure, Thermodyn., Review, #, \*, 226); similar to [1985Mur]
- [1995Lim] Lim, M.S.S., Rossiter, P.L., Tibballs, J.E., "Assessment of the Al-Ag Phase Diagram", *Calphad*, **19**(2), 131-141 (1995) (Assessment, Equi. Diagram, Theory, Thermodyn., 27)
- [1997Lim] Lim, M.S.S., Tibballs, J.E., Rossiter, P.L., "An Assessment of Thermodynamic Equilibria in the Ag-Al-Cu-Mg Quaternary System in Relation to Precipitation Reactions", *Z. Metallkd.*, **88**(3), 236-245 (1997) (Assessment, Equi. Diagram, Theory, Thermodyn., 40)
- [1998Liu] Liu, X.J., Ohnuma, I., Kainuma, R., Ishida, K., "Phase Equilibria in the Cu-rich Portion of the Cu-Al Binary System", *J. Alloys Compd.*, **264**, 201-208 (1998) (Equi. Diagram, Experimental, #, \*, 25)
- [2000Fla] Flandorfer, H., Hayer, E., "Partial and Integral Enthalpy of Molten Ag-Al-Cu Alloys", J. Alloys Compd., 296, 112-118 (2000) (Experimental, Thermodyn., 6)
- [2002Gul] Gulay, L.D, Harbrecht, B., "The Crystal Structures of the  $\zeta_1$  and  $\zeta_2$  Phases in the Al-Cu System", Abstr. VIII Int. Conf. "Crystal Chemistry of Intermetallic Compounds", September 2002, Lviv, P139, 73 (2002) (Crys. Structure, Experimental, 5)
- [2002Wit] Witusiewicz, V.T., Hecht, U., Rex, S., Sommer, F., "Partial and Integral Enthalpies of Mixing of Liquid Ag-Al-Cu and Ag-Cu-Zn Alloys", *J. Alloys Compd.*, **337**, 189-201 (2002) (Experimental, Thermodyn., 30)
- [2003Gro] Groebner, J., "Al-Cu (Aluminium Copper)", MSIT Binary Evaluation Program, in *MSIT Workplace*, Effenberg, G. (Ed.), MSI, Materials Science International Services GmbH, Stuttgart; to be published, (2003) (Equi. Diagram, Crys. Structure, Assessment, 68)
- [2003Van] van Rompaey, T., Rogl, P., "Ag-Cu (Silver Copper)", MSIT Binary Evaluation Program, in *MSIT Workplace*, Effenberg, G. (Ed.), MSI, Materials Science International Services GmbH, Stuttgart, Document ID: 20.14511.1.20, (2003) (Equi. Diagram, Crys. Structure, Assessment, 28)

Table 1: Crystallographic Data of Solid Phases

| Phase/<br>Temperature Range<br>[°C] | Pearson Symbol/<br>Space Group/<br>Prototype | Lattice Parameters [pm] | Comments/References    |
|-------------------------------------|----------------------------------------------|-------------------------|------------------------|
| (Ag) < 961.93                       | <i>cF4 Fm3m</i> Cu                           | a = 408.57              | pure Ag at 25°C [Mas2] |
| (Al) < 660.452                      | <i>cF4</i><br><i>Fm3m</i><br>Cu              | a = 404.96              | at 25°C [Mas2]         |

Landolt-Börnstein
New Series IV/11A1

MSIT®

| Phase/<br>Temperature Range<br>[°C]                                                                 | Pearson Symbol/<br>Space Group/<br>Prototype                | Lattice Parameters [pm]                | Comments/References                                                                               |  |  |
|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------|--|--|
| (Cu)<br>< 1084.62                                                                                   | <i>cF</i> 4<br><i>Fm</i> 3̄ <i>m</i><br>Cu                  | a = 361.46                             | at 25°C [Mas2]<br>melting point [1994Mur]                                                         |  |  |
| β <sub>2</sub> , Ag <sub>3</sub> Al(h)<br>600-778                                                   | cI2<br>Im3m<br>W                                            | a = 324                                | [Mas2]<br>[V-C2], 700°C                                                                           |  |  |
| μ, Ag <sub>3</sub> Al(r) < 450                                                                      | <i>cP</i> 20<br><i>P4132</i><br>Mn                          | a = 694.2                              | [Mas2]<br>[V-C2]                                                                                  |  |  |
| ζ, Ag <sub>2</sub> Al < 726                                                                         | hP2<br>P63/mmc<br>Mg                                        | a = 287.79<br>c = 462.25               | 22.9-41.9 at.% Al [Mas2]<br>[V-C2] 25°C                                                           |  |  |
| β, Cu <sub>3</sub> Al<br>1049-559                                                                   | cI2<br>Im3m<br>W                                            | a = 295.64                             | 70.6 to 82 at.% Cu [1985Mur] [1998Liu] at 672°C in β + (Cu) alloy                                 |  |  |
| $ \frac{\alpha_2, \operatorname{Cu}_{1-x} \operatorname{Al}_x}{< 363} $                             | ~TiAl <sub>3</sub><br>long period<br>superlattice           | a = 366.8<br>c = 368.0                 | 0.22 ≤ <i>x</i> ≤ 0.235 [Mas, 1985Mur] at 76.4 at.% Cu (subcell only)                             |  |  |
| $\gamma_0$ , $Cu_{1-x}Al_x$<br>1037-800                                                             | cI52<br>I43m<br>Cu <sub>5</sub> Zn <sub>8</sub>             | -                                      | $0.31 \le x \le 0.40 \text{ [Mas2]}$<br>$0.32 \le x \le 0.38 \text{[1998Liu]}$                    |  |  |
| γ <sub>1</sub> , Cu <sub>9</sub> Al <sub>4</sub> < 890                                              | cP52<br>P43m<br>Cu <sub>9</sub> Al <sub>4</sub>             | a = 870.68<br>a = 871.32               | at 33.8 at.% Al [V-C] from single crystal [V-C]                                                   |  |  |
| $ \frac{\delta, \operatorname{Cu}_{1-x} \operatorname{Al}_{x}}{< 686} $                             | h <u>R</u> *<br>R3m                                         | a = 1226<br>c = 1511                   | $0.381 \le x \le 0.407$ [Mas2, 1985Mur] at $x = 38.9$ [V-C]                                       |  |  |
| $ \begin{array}{c} \epsilon_1, \operatorname{Cu}_{1-x} \operatorname{Al}_x \\ 958-848 \end{array} $ | c**?                                                        | -                                      | 0.379 ≤ <i>x</i> ≤ 0.406<br>[Mas2, 1985Mur]                                                       |  |  |
| ε <sub>2</sub> , Cu <sub>2-x</sub> Al<br>850-560                                                    | <i>hP</i> 6<br><i>P63/mmc</i><br>Ni <sub>2</sub> In         | a = 414.6<br>c = 506.3                 | 0.47 ≤ <i>x</i> ≤ 0.78<br>55.0 to 61.1 at.% Cu<br>[Mas, 1985Mur, V-C2]<br>NiAs in [Mas2, 1994Mur] |  |  |
| ζ <sub>1</sub> , ~Cu <sub>47.8</sub> Al <sub>35.5</sub> (h)<br>590-530                              | oF88 - 4.7<br>Fmm2<br>Cu <sub>47.8</sub> Al <sub>35.5</sub> | a = 812<br>b = 1419.85<br>c = 999.28   | 55.2 to 59.8 at.% Cu [Mas2, 1994Mur] structure: [2002Gul]                                         |  |  |
| $ \overline{\zeta_2, \text{Cu}_{11.5}\text{Al}_9(r)} $ < 570                                        | oI24 - 3.5<br>Imm2<br>Cu <sub>11.5</sub> Al <sub>9</sub>    | a = 409.72<br>b = 703.13<br>c = 997.93 | 55.2 to 56.3 at.% Cu [Mas2, 1985Mur] structure: [2002Gul]                                         |  |  |
| η <sub>1</sub> , CuAl(h)<br>624-560                                                                 | o*32                                                        | a = 408.7 $b = 1200$ $c = 863.5$       | 49.8 to 52.4 at.% Cu<br>[V-C2, Mas2, 1985Mur]<br>Pearson symbol: [1931Pre]                        |  |  |

 $MSIT^{\circledR}$ 

| Phase/<br>Temperature Range<br>[°C] | Pearson Symbol/<br>Space Group/<br>Prototype | Lattice Parameters [pm]                                         | Comments/References                                                 |  |  |
|-------------------------------------|----------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------|--|--|
| η <sub>2</sub> , CuAl(r)<br>< 569   | mC20<br>C2/m<br>CuAl(r)                      | a = 1206.6<br>b = 410.5<br>c = 691.3<br>$\beta = 55.04^{\circ}$ | 49.8 to 52.4 at.% Cu<br>[V-C2]                                      |  |  |
| θ, CuAl <sub>2</sub> < 591          | tI12<br>I4/mcm<br>CuAl <sub>2</sub>          | a = 606.3<br>c = 487.2                                          | 31.9 to 33.0 at.% Cu [1994Mur]<br>Single crystal<br>[V-C2, 1989Mee] |  |  |

 Table 2: Invariant Equilibria

| Reaction                                     | T[°C] | Type | Phase | Composition (at.%) |      |      |
|----------------------------------------------|-------|------|-------|--------------------|------|------|
|                                              |       |      |       | Ag                 | Cu   | Al   |
| $L \rightleftharpoons (Al) + \theta + \zeta$ | 500   | Е    | L     | 17.5               | 14.0 | 68.5 |



 $\mathsf{MSIT}^{\circledR}$ 

**Fig. 2: Ag-Al-Cu.** Isothermal section at 625°C



**Fig. 3: Ag-Al-Cu.** Isothermal section at 500°C



 $MSIT^{\circledR}$ 

Landolt-Börnstein New Series IV/11A1





Landolt-Börnstein New Series IV/11A1