MA5701 Optimización no Lineal

Profesor: Alejandro Jofré **Auxiliar:** Benjamín Vera Vera

Examen

Tiempo: 3:00 10 de julio de 2025

Considérese el problema de encontrar un minimizador para:

$$\min_{x} f(x)$$

$$g_{j}(x) \le 0, \quad j \in \{1, \dots, m\}$$

en que $f:\mathbb{R}^d \to \mathbb{R}$ tiene la forma

$$f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x)$$

con $(f_i)_i, (g_j)_j \in \mathcal{C}^1(\mathbb{R}^d)$. Suponga que para $0 < \mu \le L$, las $(f_i)_i$ son convexas L-suaves y que f es μ -fuertemente convexa. Suponga también que las $(g_j)_j$ son afines dadas por $g_j(x) = a_j^\top x + b_j$ $(a_j \in \mathbb{R}^d, b_j \in \mathbb{R})$ de tal modo que el conjunto factible

$$\mathcal{X} = \{x \in \mathbb{R}^d : g_j(x) \le 0, j \in \{1, \dots, m\}\}$$

tiene interior no vacío en \mathbb{R}^d .

Sea la función barrera logarítmica relajada $B: \mathbb{R} \times \mathbb{R}^+ \to \mathbb{R}$ dada por

$$B(z,\delta) = \begin{cases} -\delta \log(-z), & z \le -\delta \\ \frac{1}{2} \left(\frac{(z+2\delta)^2}{\delta} - \delta \right) - \delta \log(\delta), & z \ge -\delta. \end{cases}$$

Dado $k \in \mathbb{N}$ y $\delta_k \geq \delta_{\infty} > 0$, consideremos el problema irrestricto

$$\min_{x \in \mathbb{R}^d} \left\{ f(x) + \frac{1}{m} \sum_{j=1}^m B(g_j(x), \delta_k) \right\}$$

con minimizador que denotamos por $x^*(\delta_k)$. Dado $\delta_\infty>0$, consideremos el siguiente esquema de gradiente estocástico con penalización:

$$x^{k+1} = x^k - \gamma(\nabla f_{i_k}(x_k) + \nabla B(g_{j_k}(x_k), \delta_k))$$
(1)

en que $x_0 \in \mathbb{R}^d$ e $i_k \in \{1, \dots, n\}, j_k \in \{1, \dots, m\}$ se escogen de manera uniforme e independiente entre iteraciones, δ_k representa un paso positivo y δ_k es parámetro de barrera en la iteración k. El objetivo es probar que si se toma $\{\gamma_k\}_{k \geq 0}$ tal que

$$\sum_{k=0}^{\infty} \gamma_k = \infty, \qquad \sum_{k=0}^{\infty} \gamma_k^2 < \infty$$

y $\{\delta_k\}_{k\geq 0}$ dada por $\delta_k=\delta_\infty+\varepsilon_k$ en que $\{\varepsilon_k\}_{k\geq 0}$ es tal que

$$\sum_{k=0}^{\infty} \gamma_k \varepsilon_k < \infty,$$

entonces para casi cualquier $\{x_k\}_{k>0}$ dado por (1) se cumple que $\lim_{k\to\infty} x_k = x^*(\delta_\infty)$. Para esto, procedemos como sigue:

- **P1.** Sea $\tilde{x}_k = x_k x^*(\delta_\infty)$.
 - a) Pruebe que

$$\mathbb{E}_{k} \left[\|\tilde{x}_{k+1}\|^{2} \right] = \|\tilde{x}_{k}\|^{2} + \gamma_{k}^{2} \mathbb{E}_{k} \left[\|\nabla \Phi_{i_{k}, j_{k}}(x_{k})\|^{2} \right] + \gamma_{k}^{2} \mathbb{E}_{k} \left[\|\nabla C_{j_{k}}(x_{k}, \delta_{k})\|^{2} \right]$$

$$- 2\gamma_{k} \mathbb{E}_{k} \left[\nabla \Phi_{i_{k}, j_{k}}(x_{k})^{\top} \tilde{x}_{k} \right] + 2\gamma_{k} \mathbb{E}_{k} \left[\nabla C_{j_{k}}(x, k, \delta_{k})^{\top} \tilde{x}_{k} \right]$$

$$- 2\gamma_{k}^{2} \mathbb{E}_{k} \left[\nabla \Phi_{i_{k}, j_{k}}(x_{k})^{\top} \nabla C_{j_{k}}(x_{k}, \delta_{k}) \right]$$

en que

$$\nabla \Phi_{i_k,j_k}(x_k) = \nabla f_{i_k}(x_k) + \nabla B(g_{j_k}(x_k), \delta_{\infty})$$
$$\nabla C_{j_k}(g(x_k), \delta_k) = \nabla B(g_{j_k}(x_k), \delta_{\infty}) - \nabla B(g_{j_k}(x_k), \delta_k)$$

b) Sea $\Phi: \mathbb{R}^d \to \mathbb{R}$ dada por

$$\Phi(x_k) = \frac{1}{n} \sum_{i=1}^{n} f_i(x_k) + \frac{1}{m} \sum_{i=1}^{m} B(g_j(x_k), \delta_{\infty}).$$

Muestre que

$$\mathbb{E}_k \left[\nabla \Phi_{i_k, j_k}(x_k)^\top \tilde{x}_k \right] = \nabla \Phi(x_k)^\top \tilde{x}_k$$

y utilice la fuerte convexidad de f para obtener que

$$-2\gamma_k \nabla \Phi(x_k)^\top \tilde{x}_k \le -2\gamma_k \Phi_0(x_k) - \mu \gamma_k \|\tilde{x}_k\|^2$$

en que $\Phi_0(u) = \Phi(u) - \Phi(x^*(\delta_\infty))$.

c) Utilizando lo anterior, concluya que

$$\mathbb{E}_{k} \Big[\|\tilde{x}_{k}\|^{2} \Big] \leq \|\tilde{x}_{k}\|^{2} + 2\gamma_{k}^{2} \mathbb{E}_{k} \Big[\|\nabla \Phi_{i_{k}, j_{k}}(x_{k})\|^{2} \Big] + 2\gamma_{k}^{2} \mathbb{E}_{k} \Big[\|\nabla C_{j_{k}}(x_{k}, \delta_{k})\|^{2} \Big]$$
$$- \mu \gamma_{k} \|\tilde{x}_{k}\|^{2} - 2\gamma_{k} \Phi_{0}(x_{k}) + 2\gamma_{k} \mathbb{E}_{k} [\|\nabla C_{j_{k}}(x_{k}, \delta_{k})\| \|\tilde{x}_{k}\|].$$

Indicación: Recuerde que $2u^{T}v \leq 2||u||||v|| \leq ||u||^{2} + ||v||^{2}$.

P2. Se puede probar (no lo haga) que existen constantes positivas $\hat{c}, \bar{a}, \bar{a}, \hat{b}, \bar{b}$ tales que

$$\mathbb{E}_{k}[\|\nabla C_{j_{k}}(x_{k},\delta_{k})\|\|\tilde{x}_{k}\|] \leq \|\tilde{x}_{k}\|^{2} \left(\bar{a}\frac{\varepsilon_{k}}{\delta_{k}\delta_{\infty}} + \hat{c}\varepsilon_{k}\bar{a} + \bar{b}\frac{\varepsilon_{k}}{\delta_{k}\delta_{\infty}}\right) + \frac{\hat{c}\varepsilon_{k}}{4}\bar{a} + \frac{1}{4}\bar{b}\frac{\varepsilon_{k}}{\delta_{k}\delta_{\infty}}$$

$$\mathbb{E}_{k}\Big[\|\nabla C_{j_{k}}(x_{k},\delta_{k})\|^{2}\Big] \leq 3\hat{a}\frac{\varepsilon_{k}^{2}\|\tilde{x}_{k}\|^{2}}{\delta_{k}^{2}\delta_{\infty}^{2}} + 3\hat{c}^{2}\varepsilon_{k}^{2}\bar{a} + \frac{3\bar{b}\varepsilon_{k}^{2}}{\delta_{k}^{2}\delta_{\infty}^{2}}$$

$$\mathbb{E}_{k}\Big[\|\nabla\Phi_{i_{k},j_{k}}(x_{k})\|^{2}\Big] \leq 4\hat{L}\Phi_{0}(x_{k}) + 2\sigma_{\Phi}$$

 $\operatorname{con} \hat{L} > 0, \sigma_{\Phi} \geq 0.$

a) Muestre que, para ξ_k , r_k a definir:

$$\mathbb{E}_{k} \left[\|\tilde{x}_{k+1}\|^{2} \right] \leq (1 - \gamma_{k}(\mu - \xi_{k})) \|\tilde{x}_{k}\|^{2} - 2\gamma_{k}(1 - 4\gamma_{k}\hat{L})\Phi_{0}(x_{k}) + \gamma_{k}\varepsilon_{k}r_{k} + 4\gamma_{k}^{2}\sigma_{\Phi}(x_{k}) + \gamma_{k}\varepsilon_{k}r_{k} + \gamma_{k}\varepsilon_{k}r$$

b) Utilizando lo encontrado, pruebe que existe $k_0 \ge 0$ tal que para $k \ge k_0$:

$$\mu - \xi_k > 0, \qquad \gamma_k (1 - 4\gamma_k \hat{L}) \ge 0.$$

Concluya que para $k \geq k_0$,

$$\mathbb{E}_{k} \left[\left\| \tilde{x}_{k+1} \right\|^{2} \right] \leq \left(1 - \gamma_{k} (\mu - \xi_{k}) \right) \left\| \tilde{x}_{k} \right\|^{2} + \gamma_{k} \varepsilon_{k} r_{k} + 4 \gamma_{k}^{2} \sigma_{\Phi}$$

y que las iteraciones \tilde{x}_k están acotadas casi seguramente.