03/14/2016

Decision Trees

- Non-linear method for classification.
- Uses trees with two node types:
 - internal nodes test feature values (usually just one) and branch accordingly.
 - leaf nodes specify class h(x).

- Cuts x-space into rectangular cells.
- Works well with both categorical and quantitative features.
- Interpretable result (inference).
- Decision boundary can be arbitrarily complicated.
 - Can really reduce bias if boundary is truly complicated.
 - A lot of opportunity for over-fitting.

- Leaf is pure if every training sample in it has the same class.
- Consider classification first: Greedy, top-down learning heuristic:
- Let $S \subseteq \{1, 2, \dots, n\}$ be a list of sample indices.

• Top level call: $S = \{1, 2, ..., n\}$

```
\begin{aligned} \operatorname{GrowTree}(S): \\ & \text{if } (y_i = c \ \forall i \in S \ \operatorname{and \ some \ class \ C}): \\ & \text{return \ new \ leaf(C)} \end{aligned} & \text{else:} \\ & \text{choose best \ splitting \ feature \ } j \ \operatorname{and \ splitting \ point \ } \beta \ (*) \\ & S_\ell = \{i: X_{ij} < \beta\} \\ & S_r = \{: X_{ij} \geq \beta\} \\ & \text{return \ new \ node} (j, \beta, \operatorname{GrowTree}(S_\ell), \operatorname{GrowTree}(S_r)) \end{aligned}
```

- (*) How to choose best split?
 - Try all splits.
 - For a set S, let J(S) be the <u>cost</u> of S.
 - Choose the split that minimizes $J(S_{\ell})+J(S_r)$; or, the split that minimizes the weighted average $\frac{|S_{\ell}|J(S_{\ell})+|S_r|J(S_r)}{|S_{\ell}|+|S_r|}$
- How to choose cost J(S)?
 - Idea 1 (bad): Label S with the class C that labels the most samples in S. $J(S) \leftarrow$ number of samples in S not in class C.

* Problem: sometimes we make "progress," yet $J(S_{\ell}) + J(S_r) = J(S)$.

- Idea 2 (good): Measure entropy.
 - * Let Y be a random class variable, and suppose $P(Y = C) = p_c$.
 - * The surprise of Y being class C is $S(Y = C) = -log_2 p_c$.
 - · event with probability 1 gives us zero surprise.
 - \cdot event with probability 0 gives us infinite surprise.
 - * The entropy of an index set S is the average surprise: $H(S) = -\sum_{c} p_c \log_2 p_c$, where $p_c = \frac{|\{i \in S: y_i = C\}|}{|S|}$
 - * If all samples in S belong to same class? $H(S) = -1 \log_2 1 = 0$.
 - * Half class C, half class D? $H(S) = -\frac{1}{2} \log_2 \frac{1}{2} \frac{1}{2} \log_2 \frac{1}{2} = 1$.
 - * n samples, all different classes? $H(S) = -log_2 \frac{1}{n} = log_2 n$.

- Weighted average entropy after split is $H_{after} = \frac{|S_\ell|H(S_\ell) + |S_r|H(S_r)}{|S_\ell| + |S_r|}$
- Choose split that maximizes information gain $H(S) H_{after}$.

– Information gain always positive expect when one child is empty or $\forall C, P(y_i=C|i\in S_\ell)=P(y_i=C|i\in S_r)$

- More on choosing a split.
 - For binary feature x_i , children are $x_i = 0$ and $x_i = 1$.
 - If x_i has 3+ discrete values, split depends on application.

- If x_i is quantitative, sort samples in S by feature x_i ; remove duplicates try splitting between each pari of consecutive samples.
- Clever Bit: As you scan sorted list from left to right, you can update entropy in $\mathcal{O}(1)$ time per sample!

• Algorithms and running times:

- Test point: walk down tree until leaf. Return it's label.
 - * Worst-case time is $\mathcal{O}(\text{depth tree})$.
 - * For binary features, that's $\leq d$.
 - * Usually (not always) $\leq \mathcal{O}(\log n)$.
- Training:
 - * For binary features, try $\mathcal{O}(d)$ splits at each node.
 - * For quantitative features, try $\mathcal{O}(n'd)$ splits; n' = samples in node.
 - * Either way, $\Rightarrow \mathcal{O}(n'd)$ time at this node.
- Each sample participates in $\mathcal{O}(\text{depth})$ nodes, cost $\mathcal{O}(d)$ time in each node.
- Running time $\leq \mathcal{O}(dn \text{depth})$.