EEDG/CE 6303: Testing and Testable Design

Mehrdad Nourani

Dept. of ECE Univ. of Texas at Dallas

Session 03

Test Generation for Combinational Circuits

Fault Analysis System (Review)

Test Generation Techniques

- There are two main test vector generation techniques
 - 1. Non-Structural (Analytical)
 - Analyzes the gate-level description of a circuit and implicitly enumerate all possible input combinations to find a test vector for a target fault.
 - Methods: (i) Direct Function, (ii) Boolean Difference, (iii)
 CNF (product-of-sum form), ...

2. Structural

- Analyzes the structure of a given circuit to generate a test vector for a given target fault, or declare it untestable.
- Methods: (i) D-Algorithm, (ii) PODEM, ...

Structural Test Generation

Structural Test Generation

- Analyzes the structure of a given circuit to generate a test vector for a given target fault, or declare it untestable.
 - Methods: (i) **D-Algorithm**, (ii) PODEM, ...

Motivation

Consider a 64-bit ripple-carry adder

Motivation (cont.)

- Functional (exhaustive) ATPG generate complete set of tests for circuit input-output combinations
 - 129 inputs, 65 outputs:
 - $2^{129} = 680,564,733,841,876,926,926,749,214,863,536,422,912 patterns$
 - Using 1 GHz ATE, would take 2.15 x 10²² years
- Structural test:
 - No redundant adder hardware, 64 bit slices
 - Each with 27 faults (using fault equivalence)
 - At most $64 \times 27 = 1728$ faults (tests)
 - Takes 0.000001728 s on 1 GHz ATE
- Designer gives small set of functional tests augment with structural tests to boost coverage to 98+ %

Algebra for Structural Test

- Represent two machines, which are simulated simultaneously by a computer program:
 - Good circuit machine (1st value)
 - Bad circuit machine (2nd value)
- Better to represent both in the algebra:
 - Need only 1 pass of ATPG to solve both
 - Good machine values that preclude bad machine values become obvious sooner & vice versa

Circuit Representation

 It's more efficient to carry (simulate) fault-free and faulty values at the same time.

Algebra for Structural Test (cont.)

Roth's 5-Valued and Muth's 9-Valued Algebra

Symbol	Meaning	Fault-Free (Good)	Faulty (Bad)
0	0/0	0	0
1	1/1	1	1
D	1/0	1	0
\overline{D}	0/1	0	1
X	X/X	X	X
G0	0/X	0	X
G1	1/X	1	X
F0	X/0	X	0
F1	X/1	X	1

Operations in Multi-Valued Logic

Examples (2-input AND and OR gates)

• e.g. D+0=1/0+0/0=1/0=D

Path Sensitization

- Three key tasks are needed
 - 1. Fault Sensitization (Stimulation)
 - 2. Fault (Effect) Propagation
 - 3. Line Justification
- Forward and Backward Implications

Examples of Backward Implications

Path Sensitization Example

- Propagate through top path.
- Using 5-valued logic

Path Sensitization Example (cont.)

- Propagate through top and bottom paths simultaneously
- Using 5-valued logic

Path Sensitization Example (cont.)

- Propagate through the bottom path
- Using 5-valued logic

Test Pattern Found

Path Sensitization Example (9-Valued Logic)

Trying bottom path:

Path Sensitization – Example 2

Top path does not work

- Bottom path does not work either (circuit is symmetrical)
- Both paths together can test the fault

History of Algorithms

Algorithm	Est. speedup over D-ALG (normalized to D-ALG time)	Year
D-ALG	1	1966
PODEM	7	1981
FAN	23	1983
TOPS	292	1987
SOCRATES	1574 † ATPG System	1988
Waicukauski et al.	2189 † ATPG System	1990
EST	8765 + ATPG System	1991
TRAN	3005 † ATPG System	1993
Recursive learning		1995
Tafertshofer et al.		1997

Symbols Used in Value Systems

- In the five-valued system
 - Unique symbols 0_5 , 1_5 , D_5 , and \overline{D}_5 are assigned to each set denoting a completely-specified value
 - One single symbol X₅
 denotes all sets with more than one basic value

	Symbols i	in other valu	ie systems
16-valued	Five-valued	Six-valued	Nine-valued
{}			
<u>{0}</u>	05	06	09
{ <u>1</u> }	15	16	19
$\overline{\{D\}}$	D_5	D_6	D_9
$\overline{\{\overline{D}\}}$	\overline{D}_5	\overline{D}_6	\overline{D}_9
$\{\underline{0},\underline{1}\}$	X_5	χ6	xx_9
$\boxed{ \{\underline{0},D\} }$	X_5	X_6	<i>x</i> 0 ₉
$\{\underline{0},\overline{D}\}$	X_5	X_6	$0x_9$
$\{\underline{1},D\}$	X_5	X_6	$1x_9$
$\overline{\{\underline{1},\overline{D}\}}$	X_5	X_6	x1 ₉
$\{D,\overline{D}\}$	X_5	X_6	xx_9
$\{\underline{0},\underline{1},D\}$	X_5	X_6	xx_9
$\{\underline{\mathtt{0}},\underline{\mathtt{1}},\overline{D}\}$	X_5	X_6	xx_9
$\{\underline{\mathtt{0}},D,\overline{D}\}$	X_5	X_6	xx_9
$\{\underline{1},D,\overline{D}\}$	X_5	X_6	xx_9
$\{\underline{0},\underline{1},D,\overline{D}\}$	X_5	X_6	xx_9

Symbols Used in Value Systems (cont.)

In the six-valued system

- Unique symbols 0_6 , 1_6 , D_6 , and \overline{D}_6 are assigned to each set denoting a completely-specified value
- One single symbol χ_6 denotes the set $\{\underline{0}, \underline{1}\}$, i.e., the only incompletely-specified set that does not contain D or \overline{D}
- One single symbol X_6 denotes all sets with more than one basic value (including $\{0, 1\}$)

	Symbols in other value systems			
16-valued	Five-valued	Six-valued	Nine-valued	
{}				
<u>{0}</u>	05	06	09	
<u>{1</u> }	15	16	19	
$\overline{\qquad \qquad \{D\}}$	D_5	D_6	D_9	
$\overline{\{\overline{D}\}}$	\overline{D}_5	\overline{D}_6	\overline{D}_9	
${}{\{\underline{0},\underline{1}\}}$	X_5	χ6	xx_9	
${}{\{\underline{0},D\}}$	X_5	X_6	x0 ₉	
$\overline{\{\underline{0},\overline{D}\}}$	X_5	X_6	$0x_9$	
$\{\underline{1},D\}$	X_5	X_6	$1x_9$	
$\{\underline{\mathtt{1}},\overline{D}\}$	X_5	X_6	x1 ₉	
$\{D,\overline{D}\}$	X_5	X_6	xx_9	
$\boxed{ \{\underline{0},\underline{1},D\} }$	X_5	X_6	xx_9	
$\{\underline{\mathtt{0}},\underline{\mathtt{1}},\overline{D}\}$	X_5	X_6	xx_9	
$\overline{\{\underline{0},D,\overline{D}\}}$	X_5	X_6	xx_9	
$\overline{\{\underline{1},D,\overline{D}\}}$	X_5	X_6	xx_9	
$\overline{\{\underline{0},\underline{1},D,\overline{D}\}}$	X_5	<i>X</i> ₆	xx_9	

Behavior of Gates Using Multi-Valued System

2-Input NAND

$$V(c_{i_2})$$
 0
 1
 D
 \overline{D}
 $V(c_{i_1})$
 1
 0
 \overline{D}
 $\overline{D$

2-Input NOR

$V(c_i)$	$V(c_{j_1})$	• • •	$V(c_{j_l})$	• • •
<u>O</u>	<u>O</u>		<u>0</u>	
<u>1</u>	<u>1</u>	• • •	<u>1</u>	• • •
D	D	• • •	D	• • •
\overline{D}	\overline{D}	• • •	\overline{D}	•••

6-Valued Cube Cover

- A cube represents a combination of inputs.
 - singular cover: cubes with 0_6 or 1_6 at output (i.e., no fault effect)
 - **propagation cubes:** cubes with D_6 or \overline{D}_6 at output
 - cube cover: together, all the cubes

$V(c_{i_1})$	$V(c_{i_2})$	$V(c_j)$
06	X_6	16
X_6	06	16
D_6	\overline{D}_{6}	16
\overline{D}_6	D_6	1_{6}
16	16	06
$\overline{\overline{D}_6}$	16	D_6
16	\overline{D}_{6}	D_6
\overline{D}_6	\overline{D}_{6}	D_6
D_6	16	\overline{D}_6
16	D_6	\overline{D}_{6}
D_6	D_6	\overline{D}_6

2-Input NAND

Fault Excitation Cubes

- For test generation for single stuck-at fault in a combinational circuit
 - Only fault-free values may appear at the inputs of faulty circuit element
 - It is necessary to apply a combination of values at the inputs of the faulty element that can cause a D or \overline{D} to appear at its outputs
 - Fault excitation cubes capture this aspect of a faulty circuit element

Fault Excitation Cubes (cont.)

$\overline{V(c_{i_1})}$	$V(c_{i_2})$	$V(c_j)$
16	16	\overline{D}_6

Two-input NAND with output SA1

$\overline{V(c_{i_1})}$	$V(c_{i_2})$	$V(c_j)$		
06	χ_6	D_6		
χ_6	06	D_6		
Two input NAND with				

Two-input NAND with output SA0

$V(c_{i_1})$	$V(c_{i_2})$	$V(c_j)$
06	16	D_6

Two-input NAND with input c_{i_1} SA1

$V(c_i)$	$V(c_{j_1})$	 $V(c_{j_l})$	
06	06	 \overline{D}_{6}	

A fanout system with branch c_{j_l} SA1

$V(c_i)$	$V(c_{j_1})$		$V(c_{j_l})$	• • •
06	\overline{D}_{6}	• • •	\overline{D}_{6}	• • •

A fanout system with stem SA1

More Cube Covers

NAND

$V(c_{i_1})$	$V(c_{i_2})$	$V(c_j)$
06	X_6	16
X_6	06	16
D_6	\overline{D}_6	16
\overline{D}_6	D_6	16
16	16	06
\overline{D}_6	16	D_6
16	\overline{D}_6	D_6
\overline{D}_6	\overline{D}_6	D_6
D_6	16	\overline{D}_6
16	D_6	\overline{D}_6
D_6	D_6	\overline{D}_6

AND

$V(c_{i_2})$	$V(c_j)$
16	16
X_6	06
06	06
\overline{D}_6	06
D_6	06
16	D_6
D_6	D_6
D_6	D_6
16	\overline{D}_6
\overline{D}_6	\overline{D}_6
\overline{D}_6	\overline{D}_6
	$ \begin{array}{c} 0_6 \\ \overline{D}_6 \\ D_6 \end{array} $ $ \begin{array}{c} 1_6 \\ D_6 \\ \end{array} $ $ \begin{array}{c} 1_6 \\ \overline{D}_6 \end{array} $

OR

$egin{array}{c cccc} V(c_{i_1}) & V(c_{i_2}) & V(c_{j_1}) \\ \hline 1_6 & X_6 & 1_6 & 1_6 \\ X_6 & 1_6 & 1_6 & 1_6 \\ \hline D_6 & \overline{D}_6 & 1_6 & 1_6 \\ \hline D_6 & D_6 & 0_6 & 0_6 \\ \hline D_6 & 0_6 & D_6 & D_6 \\ \hline D_6 & D_6 & D_6 & D_6 \\ \hline D_6 & D_6 & \overline{D}_6 & \overline{D}_6 \\ \hline D_6 & \overline{D}_6 & \overline{D}_6 & \overline{D}_6 \\ \hline D_6 & \overline{D}_6 & \overline{D}_6 & \overline{D}_6 \\ \hline D_6 & \overline{D}_6 & \overline{D}_6 & \overline{D}_6 \\ \hline D_6 & \overline{D}_6 & \overline{D}_6 & \overline{D}_6 \\ \hline D_6 & \overline{D}_6 & \overline{D}_6 & \overline{D}_6 \\ \hline D_6 & \overline{D}_6 & \overline{D}_6 & \overline{D}_6 \\ \hline D_6 & \overline{D}_6 & \overline{D}_6 & \overline{D}_6 \\ \hline D_6 & \overline{D}_6 & \overline{D}_6 & \overline{D}_6 \\ \hline D_6 & \overline{D}_6 & \overline{D}_6 & \overline{D}_6 \\ \hline D_6 & \overline{D}_6 & \overline{D}_6 & \overline{D}_6 \\ \hline D_6 & \overline{D}_6 & \overline{D}_6 & \overline{D}_6 \\ \hline D_6 & \overline{D}_6 & \overline{D}_6 & \overline{D}_6 \\ \hline D_6 & \overline{D}_6 & \overline{D}_6 & \overline{D}_6 \\ \hline D_6 & \overline{D}_6 & \overline{D}_6 & \overline{D}_6 \\ \hline D_6 & \overline{D}_6 & \overline{D}_6 & \overline{D}_6 \\ \hline D_6 & \overline{D}_6 & \overline{D}_6 & \overline{D}_6 \\ \hline D_6 & \overline{D}_6 & \overline{D}_6 & \overline{D}_6 \\ \hline D_6 & \overline{D}_6 & \overline{D}_6 & \overline{D}_6 \\ \hline D_6 & \overline{D}_6 & \overline{D}_6 & \overline{D}_6 \\ \hline D_6 & \overline{D}_6 & \overline{D}_6 & \overline{D}_6 \\ \hline D_6 & \overline{D}_6 & \overline{D}_6 & \overline{D}_6 \\ \hline D_6 & \overline{D}_6 & \overline{D}_6 & \overline{D}_6 \\ \hline D_6 & \overline{D}_6 & \overline{D}_6 & \overline{D}_6 \\ \hline D_6 & \overline{D}_6 & \overline{D}_6 & \overline{D}_6 \\ \hline D_6 & \overline{D}_6 & \overline{D}_6 & \overline{D}_6 \\ \hline D_6 & \overline{D}_6 & \overline{D}_6 & \overline{D}_6 \\ \hline D_6 & \overline{D}_6 & \overline{D}_6 & \overline{D}_6 \\ \hline D_6 & \overline{D}_6 & \overline{D}_6 & \overline{D}_6 \\ \hline D_6 & \overline{D}_6 & \overline{D}_6 & \overline{D}_6 \\ \hline D_6 & \overline{D}_6 & \overline{D}_6 & \overline{D}_6 \\ \hline D_6 & \overline{D}_6 & \overline{D}_6 & \overline{D}_6 \\ \hline D_6 & \overline{D}_6 & \overline{D}_6 & \overline{D}_6 \\ \hline D_6 & \overline{D}_6 & \overline{D}_6 & \overline{D}_6 \\ \hline D_6 & \overline{D}_6 & \overline{D}_6 & \overline{D}_6 \\ \hline D_6 & \overline{D}_6 & \overline{D}_6 & \overline{D}_6 \\ \hline D_6 & \overline{D}_6 & \overline{D}_6 & \overline{D}_6 \\ \hline D_6 & \overline{D}_6 & \overline{D}_6 & \overline{D}_6 \\ \hline D_6 & \overline{D}_6 & \overline{D}_6 & \overline{D}_6 \\ \hline D_6 & \overline{D}_6 & \overline{D}_6 & \overline{D}_6 \\ \hline D_6 & \overline{D}_6 & \overline{D}_6 & \overline{D}_6 \\ \hline D_6 & \overline{D}_6 & \overline{D}_6 & \overline{D}_6 \\ \hline D_6 & \overline{D}_6 & \overline{D}_6 & \overline{D}_6 \\ \hline D_6 & \overline{D}_6 & \overline{D}_6 & \overline{D}_6 \\ \hline D_6 & \overline{D}_6 & \overline{D}_6 & \overline{D}_6 \\ \hline D_6 & \overline{D}_6 & \overline{D}_6 & \overline{D}_6 \\ \hline D_6 & \overline{D}_6 & \overline{D}_6 & \overline{D}_6 \\ \hline D_6 & \overline{D}_6 & \overline{D}_6 & \overline{D}_6 \\ \hline D_6 & \overline{D}_6 & \overline{D}_6 & \overline{D}_6 \\ \hline D_6 & \overline{D}_6 & \overline{D}_6 & \overline{D}_6 \\ \hline D_6 & \overline{D}_6 & \overline{D}_6 & \overline{D}_6 \\ \hline D_6 & \overline{D}_6 & \overline{D}_6 & \overline{D}_6 \\ \hline D_6 & $			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$V(c_{i_1})$	$V(c_{i_2})$	$V(c_j)$
$\begin{array}{c cccc} D_6 & \overline{D}_6 & 1_6 \\ \overline{D}_6 & D_6 & 1_6 \\ \hline D_6 & 0_6 & 0_6 \\ \hline D_6 & 0_6 & D_6 \\ \hline D_6 & D_6 & D_6 \\ D_6 & D_6 & D_6 \\ \hline \overline{D}_6 & 0_6 & \overline{D}_6 \\ \hline \overline{D}_6 & \overline{D}_6 & \overline{D}_6 \\ \hline D_6 & \overline{D}_6 & \overline{D}_6 \\ \hline \end{array}$	16	X_6	
$\begin{array}{c cccc} \overline{D}_{6} & D_{6} & 1_{6} \\ \hline 0_{6} & 0_{6} & 0_{6} \\ \hline D_{6} & 0_{6} & D_{6} \\ 0_{6} & D_{6} & D_{6} \\ D_{6} & D_{6} & D_{6} \\ \hline \overline{D}_{6} & 0_{6} & \overline{D}_{6} \\ 0_{6} & \overline{D}_{6} & \overline{D}_{6} \\ \hline \end{array}$	X_6	16	16
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	D_6	\overline{D}_6	16
$\begin{array}{c cccc} D_6 & 0_6 & D_6 \\ 0_6 & D_6 & D_6 \\ D_6 & D_6 & D_6 \\ \hline \overline{D}_6 & 0_6 & \overline{D}_6 \\ 0_6 & \overline{D}_6 & \overline{D}_6 \end{array}$	\overline{D}_6	D_6	16
$\begin{array}{c ccc} 0_6 & D_6 & D_6 \\ \underline{D_6} & D_6 & \underline{D_6} \\ \hline \overline{D_6} & 0_6 & \overline{D_6} \\ 0_6 & \overline{D_6} & \overline{D_6} \end{array}$	06	06	06
$\begin{array}{c ccc} D_6 & D_6 & D_6 \\ \hline \overline{D}_6 & 0_6 & \overline{D}_6 \\ 0_6 & \overline{D}_6 & \overline{D}_6 \end{array}$	D_6	06	D_6
$\begin{array}{c cccc} \overline{D}_6 & 0_6 & \overline{D}_6 \\ 0_6 & \overline{D}_6 & \overline{D}_6 \end{array}$	06	D_6	D_6
0_6 \overline{D}_6 \overline{D}_6	D_6	D_6	D_6
	\overline{D}_6	06	\overline{D}_6
\overline{D}_6 \overline{D}_6 \overline{D}_6	06	\overline{D}_6	\overline{D}_6
	\overline{D}_6	\overline{D}_6	\overline{D}_6

XOR

		_
$V(c_{i_1})$	$V(c_{i_2})$	$V(c_j)$
16	06	16
06	16	16
D_6	\overline{D}_6	16
\overline{D}_6	D_6	16
06	06	06
16	16	06
D_6	D_6	06
\overline{D}_6	\overline{D}_6	06
06	D_6	D_6
D_6	06	D_6
16	\overline{D}_6	D_6
\overline{D}_6	16	D_6
16	D_6	\overline{D}_6
D_6	16	\overline{D}_6
06	\overline{D}_6	\overline{D}_6
\overline{D}_6	06	\overline{D}_6

Fanout System

$V(c_i)$	$V(c_{j_1})$		$V(c_{j_l})$	
16	16		16	
06	06	• • • •	06	
D_6	D_6		D_6	
\overline{D}_6	\overline{D}_6		\overline{D}_6	

More Fault Excitation Cubes

2-Input NAND

$V(c_{i_1})$	$V(c_{i_2})$	$V(c_j)$
16	16	\overline{D}_6

output SA1

$V(c_{i_1})$	$V(c_{i_2})$	$V(c_j)$
06	Х6	D_6
Χ6	06	D ₆

output SA0

$V(c_{i_1})$	$V(c_{i_2})$	$V(c_j)$
06	16	D_6

input c_{i1} SA1

input c_{i1} SA0

2-Input XOR

$V(c_{i_1})$	$V(c_{i_2})$	$V(c_j)$
06	06	\overline{D}_6
16	16	\overline{D}_6

output SA1

$V(c_{i_1})$	$V(c_{i_2})$	$V(c_j)$
06	16	D_6
16	06	D_6

output SA0

$V(c_{i_1})$	$V(c_{i_2})$	$V(c_j)$
06	16	D_6
06	06	\overline{D}_6

input c_{i1} SA1

$$\begin{array}{c|cccc}
 V(c_{i_1}) & V(c_{i_2}) & V(c_j) \\
 \hline
 1_6 & 0_6 & D_6 \\
 \hline
 1_6 & 1_6 & \overline{D}_6
 \end{array}$$

input c_{i1} SA0

Fanout System

$V(c_i)$	$V(c_{j_1})$	 $V(c_{j_l})$	
06	06	 \overline{D}_6	

branch c_{il} SA1

$V(c_i)$	$V(c_{j_1})$	 $V(c_{j_l})$	
06	\overline{D}_6	 \overline{D}_6	

stem c_i SA1

$V(c_i)$	$V(c_{j_1})$	 $V(c_{j_l})$	• • • •
16	16	 D_6	

branch c_{il} SA0

$V(c_i)$	$V(c_{j_1})$	 $V(c_{j_l})$	
16	D ₆	 D_6	• • • •

stem c_i SA0

Test Generation Basics

- Fault effect excitation (FEE) is the process of creating a fault effect (D or D) at one or more outputs of the faulty circuit element
- Fault effect propagation (FEP) is the process of assigning values to circuit lines such that a fault-effect propagates from an output of the faulty circuit element to a primary output
 - One or more paths must exist between the fault site and a primary output, such that every line along the path has \overline{D}_6 or \overline{D}_6

Test Generation Example

 In our example, only a single path c₁c₆z exists for such propagation, i.e., FEP via G₆ and G₈ necessary

Fault excitation cube for G₁

$\overline{V(x_1)}$	$V(x_2)$	$V(c_1)$
06	06	D_6

- To propagate via G₆, first use propagation cubes for G₆
- Next, eliminate rows incompatible with currently assigned values
- Make one of the remaining assignments
 - Only one remained in this case

Propagation cubes for G₆

$V(c_1)$	$V(c_2)$	$V(c_6)$
$\overline{D_6}$	06	D_6

Similarly, propagate via G₈

Propagation cubes for G₈

V(c6)	V(c7)	V(z)
$\overline{D_6}$	06	$\overline{D_6}$

- Justification is the task of assigning values to primary inputs so as to imply a desired value at an internal line
 - Values at c₂ and c₇ are **not** justified

Singular cover of G_2 $V(x_3)$ $V(x_4)$ $V(c_2)$ 1_6 X_6 0_6 X_6 1_6 0_6

- Justification is the task of assigning values to primary inputs so as to imply a desired value at an internal line
 - Values at c₂ and c₇ are **not** justified
 - Justify value at c₂
 - Identify all cubes in singular cover of G₂
 - Eliminate cubes not consistent with currently applied values
 - + Two choices remain
 - o Either 1₆ at x₃
 - o Or 1₆ at x₄
 - + In this **fanout-free circuit** use either one
 - Similarly, justify value at c₇

Singular cover of G₂

$V(x_3)$	$V(x_4)$	$V(c_2)$
16	X_6	06
X_{6}	16	06

- Consider a circuit with fanouts for a more general case
 - Initialization: All lines in fanout of fault site X_6 , other lines χ_6
 - Fault-effect excitation
 - G₁ and G₄ as possible sites for FEP
 - **D-frontier** is a set of gates where each gate has
 - + D_6 or \overline{D}_6 at one or more inputs, and
 - + X₆ at output
 - Each gate in D-frontier is a candidate for FEP
 - Here, $D = \{G_1, G_4\}$

SA₀

Fault excitation cubes for fanout system with stem x₄ with SA0 at x₄

$V(x_4)$	$V(c_1)$	$V(c_2)$
16	D_6	D_6

- Since $D = \{G_1, G_4\}$ has more than one gate
 - Select, only say, G₁ for FEP
 - Perform FEP via G₁
 - Assign 1₆ at x₃
 - Now the D-frontier $D = \{G_2, G_4\}$

Propagation cubes for G₁

$V(x_3)$	$V(c_1)$	$V(c_3)$
16	D_6	D_6

- Since $D = \{G_2, G_4\}$
 - Select one, say G₂
 - FEP via G₂
 - Assign 0_6 to x_2

- Implications of currently assigned values
 - Only when a unique value can be identified

Relevant parts of cube covers of:

Fanout system with stem c₄

$V(c_4)$	$V(c_5)$	$V(c_6)$
D_6	D_6	D_6

NOT gate G₃

	' 3
$V(c_5)$	$V(c_7)$
D_6	\overline{D}_6

XOR gate G₄

		•
$V(c_2)$	$V(c_6)$	$V(c_8)$
D_6	D_6	06

OR gate G₅

•		<u> </u>
$V(x_1)$	$V(c_7)$	$V(c_9)$
16	X_6	16
06	D_6	D_6

NAND gate G₆

$V(c_8)$	$V(c_9)$	V(z)
06	X_6	1_{6}

- Current status
 - $-D = \{G_5\}$
 - But $V(z) = 1_6$, i.e., no possibility of obtaining D_6 or \overline{D}_6 at output
 - —In other words, proceeding further will **not** lead to a test vector
 - —Hence we must **backtrack**, i.e.,
 - Identify the most recent primary input value assignment for which an untried alternative exists
 - + Restore the state to prior to that assignment was made
 - + Make the alternative value assignment

Test generation basics

- Identifying the most recent primary input value assignment for which an untried alternative exists
 - During assignment of 0_6 to x_2 , alternative 1_6 at x_2 untried
- Executing backtrack
 - Restore circuit values to before 0_6 was assigned to x_2
 - Assign 1_6 at x_2 (no more alternatives exist)
 - Perform implication

- Now D = $\{G_6\}$
 - Select G₆ for FEP
 - Objective 1₆ at c₉, which can be attained by 1₆ at x₁
 + Assign 1₆ at x₁
 - Perform implication

- Now D₆ at output and no unjustified lines
 - —Hence test generation complete with vector $(1_6, 1_6, 1_6, 1_6)$
 - —In reality, need to apply only the value corresponding to fault-free circuit in each of above composite values
 - -That is, apply test (1, 1, 1, 1)

Importance of Implication

- Implication is the process of determining logic values that appear at circuit lines as a consequence of the values assigned to some of its lines
- It also
 - Identifies any inconsistency between the values assigned
 - Updates D-frontier and list of unjustified lines
- An implication procedure iteratively uses implication operation
 - A direct implication operation determines values at inputs or outputs of a circuit element, given values assigned at the element's inputs and/or outputs
 - Forward implication operation proceeds from lines to those in its fanout
 - Backward implication proceeds from lines to those in fanin

Generic Test Generation Algorithm

- 1. Read the circuit under test (CUT)
- Preprocessing
 - a. Identify static indirect implications
 - b. Compute testability metrics
- 3. For each target fault in the fault list
 - Insert the target fault by using the appropriate description of the behavior of the faulty element
 - Initialize circuit lines
 - In five-valued system, assign X₅ to all lines
 - In six-valued system, assign X_6 to all lines in transitive fanout of fault site and χ_6 to all other lines
 - In sixteen-valued system
 - + Assign $\{0, 1, D, \overline{D}\}$ to all lines in transitive fanout of the fault site
 - + Assign $\{0, 1\}$ to all the other lines
 - Perform forward implication starting at each output of the faulty circuit element

Generic Test Generation Algorithm (cont.)

- c. Identify test generation sub-tasks (TGSTs)
 - Analyze values at primary outputs of CUT and outputs of the faulty circuit element
 - Analyze gates in the D-frontier D
 - Analyze the set of unjustified lines U
 - Determine, whether
 - + Test generation is complete print vector, manage fault list, go to Step 3 and process next fault
 - + Conflict, i.e., not possible to generate a vector for target by further specifying currently assigned vector (values) initiate **backtrack**
 - Continue search by carrying out a TGST
 - 1. FEE fault-effect excitation,
 - 2. FEP fault-effect propagation, or
 - 3. Justification
- d. Identify a value assignment to accomplish the selected TGST
- e. Assign selected value
 - Save the state of the test generation: e.g., values at circuit lines, untried alternatives TGSTs and/or value assignments
 - Assign selected value
 - Perform implications
 - + If successful, continue
 - + Else, backtrack

Identification of TGSTs

- Backtrack
 - Find the most recent value assignment at which an untried alternative existed
 - Restore the state of the test generation algorithm to prior to that value assignment
 - Make an alternative TGST/value assignment and try it, starting at Step 3d or 3e
- Assignment of each logic value by test generator followed by implication that
 - Either returns CONFLICT and initiates backtrack
 - Else, returns SUCCESS after updating
 - Values at circuit lines
 - D-frontier D
 - List of unjustified lines U
- Subsequently, values at circuit lines, D, and U are analyzed to identify TGSTs with following possible outcomes
 - Fault-effect excitation (FEE)
 - Fault-effect propagation (FEP)
 - Justification
 - Backtrack
 - FEE impossible
 - FEP impossible
 - Test generation complete

Identification of TGSTs

