# Simulation Report - Week 1

### Pritom Gogoi

August 21, 2021

### 1. Introduction

This week I simulated an inverter circuit and a differential amplifier circuit that both use an opamp as the main component. As we are looking at introductory circuits from [1] this week, I decided to choose these two circuits as they perform some fundamental operations on signal and hence find wide applications in many electronic devices.

### 2. Simulation Details

• Environment: LTspiceXVII

• Important component(s): LM741 Opamp IC

• Reference Book: Gayakwad[1]

#### 2.1 Opamp Inverter circuit

#### A. Theory

This inverter circuit is simply a special case of the *inverting feedback amplifier* where the resistor  $R_1$  in series with the voltage source and the feedback resistor  $R_2$  (generally denoted in texts as  $R_F$ ) have equal resistance i.e.  $R_1 = R_2$ . Due to the feedback loop, if the output voltage of the opamp  $V_{out}$  increases, the same voltage is also applied to the inverting terminal  $v^-$  so this in turns decreases the output voltage.

The output of this circuit is equal in amplitude to the input signal  $V_1$  but inverted.

Gain of the feedback circuit, 
$$B = \frac{R_1}{R_1 + R_2}$$
  
=  $\frac{1}{2}$ 

#### B. Schematic and Waveform

See Fig. 1



Figure 1: Inverter circuit



Figure 2: Differential amplifier circuit

### 2.2 Opamp Differential Amplifier

#### A. Theory

The opamp differential amplifier is the combination of a non-inverting amplifier and an inverting amplifier. If we remove  $V_1$ , the inverting input in grounded and the resulting circuit is a non-inverting amplifier. Similarly, we can reduce the circuit to an inverting amplifier by removing the voltage source  $V_4$ .

Output voltage, 
$$V_{out} = -\frac{R_2}{R_1}(V_1 - V_4)$$
  
Voltage gain,  $A_D = -\frac{R_2}{R_1}$ 

#### B. Schematic and Waveform

See Fig. 2

## References

[1] Ramakant A. Gayakwad. Op-Amps and Linear Integrated Circuits. PHI Learning Pvt. Ltd., New Delhi-110001, fourth edition, 2010.