

版本信息

更改时间	更改人	内容
2015-10-30	hm & che	初始版本
2016-05-06	HCJ	V1.0: 对外发布版本; 主要修改脉宽描述, 过流功能描述
2016-11-24	HCJ	V1.01 修订 P7 电压有效值输出脉冲计算公式,去除工 艺修订描述

特点

- ◆ 大信号稳定性,采样电流300mA点,CF输出 跳动小于±0.2%

- 芯片具有防潜动设计,确保无电流时噪声功率切除。
- 芯片上有电源电压监测电路,检测掉电状况, 工作电压低于 2.7V 时,芯片进入复位状态
- 芯片内置 1.2V 参考电压源
- □ 芯片内置振荡电路,时钟约 2MHz
- □ 芯片单工作电源 3.3V, 低功耗 6mW(典型值)
- SOP8 封装

概述

BL0937 是一颗宽量程单相多功能电能计量芯片,适用于单相插座表、单相插排、智能家电控制电路等应用,具有较高的性价比。

BL0937集成了 2 路高精度 Sigma-Delta ADC,参考电压,电源管理等模拟电路模块,以及处理有功功率、电流电压有效值等电参数的数字信号处理电路。提供高频 CFI 用于指示电流/电压有效值,高频 CF用于电能计量。

BL0937 能够测量单相有功能量、有功功率、 电流电压有效值等参数;能够充分满足插座表、单 相插排、智能家电等领域的需要。

BL0937 具有专利防潜动设计,配合合理的外部硬件设计,

相关专利申请中

管脚与系统框图

1 引脚定义(SOP8)

管脚号	符号	说明
1	VDD	芯片电源(+3.3V),正常工作时电压应保持在+3.0V~3.6V之间。
2, 3	IP, IN	电流通道的模拟输入,管脚的最大差分电压±50mV。由于内部有 ESD 保
		护电路,如果电压过压在±1.5V时,仍然不会出现太大的破坏。
4	VP	电压信号正输入端,最大差分电压±200mV。(同上,信号最大幅度为
		±1.5V)
5	GND	芯片地。
6	CF	1) 有功功率高频脉冲输出,输出脉宽固定为38uS,频率与功率值成正比
		2) 过流指示脚。当过流时,输出 6.78KHz 的脉冲
7	CF1	SEL=0 时,输出电流有效值,输出脉宽固定为 38uS,频率与电流值成正比
		SEL=1 时,输出电压有效值,输出脉宽固定为 38uS,频率与电压值成正比
8	SEL	配置有效值输出引脚,带下拉。

2 封装尺寸

3 极限范围

(T = 25 °C)

项目	符号	极值	单位
电源电压 VDD	VDD	-0.3 ~ +4	V
模拟输入电压(相对于 GND)	IP、IN、VP	-4 ~ +4	V
数字输入电压(相对于 GND)	SEL	-0.3 ~ VDD+0.3	V
数字输出电压(相对于 GND)	CF、CF1	-0.3 ~ VDD+0.3	V
工作温度	Topr	-40 ~ +85	$^{\circ}\!\mathbb{C}$
贮藏温度	Tstr	-55 ~ +150	$^{\circ}\!\mathbb{C}$
功耗(SOP8)	P	10	mW

4 电参数

(VDD=3.3V, GND=0V, 片上基准电压源, 2MHz 晶振, 常温, 高频输出降频后测量)

测量项目	符号	测量条件	测量点	最小	典型	最大	单位
电源 VDD	VDD			3.0		3.6	V
功耗	Iop	VDD=3.3V			3		mA
有功功率测 量误差 (绝对误差)	WATTerr	2500:1 输入动态 范围	CF		0.3	0.5	%
有功功率测 量跳动 (大信号)	Δ @6%Ib, Ib=5A	300mA 输入@ 1mohm 采样电 阻,测试 2 圈平 均	CF		0.1	0.2	%
有功功率测 量跳动 (小信号)	Δ@1%Ib, Ib=5A	50mA 输入@ 1mohm 采样电 阻,测试 1 圈	CF		0.15	0.3	%
通道间相角 引起测量误 差(容性)	PF08err	相位超前 37 (PF=0.8)				0.5	%
通道间相角 引起测量误 差(感性)	PF05err	相位滞后 60 (PF=0.5)				0.5	%
AC 电源抑制 (输出频率 幅度变化)	ACPSRR	IP/N=100mV				0.1	%
DC 电源抑制 (输出频率 幅度变化)	DCPSRR	VP/N=100mV				0.1	%
电压有效值 测量精度(相 对误差)	VRMSerr		CF1		0.3		%
电流有效值 测量精度(相 对误差)	IRMSerr	Ib	CF1		0.3		%
模拟输入电 平(电流)		电流差分输入 (峰值)				50	mV
模拟输入电 平(电压)		电压差分输入 (峰值)				200	mV
模拟输入阻 抗			VP/IP/IN		370		kΩ

SEL 下拉电 阻		SEL(下拉)			80		kΩ
模拟输入带 宽		(-3dB)			3.5		kHz
内部电压基 准	Vref		VREF		1.218		V
逻辑输入高 电平		VDD=3.3V± 5%		2.6			V
逻辑输入低 电平		VDD=3.3V ± 5%				0.8	V
逻辑输出高 电平		VDD=3.3V± 5% IOH=5mA		VDD-0.5			V
逻辑输出低 电平		VDD=3.3V± 5% IOL=5mA				0.5	V
过流阈值		1mΩ 电流采样 电阻			36		A
过流指示频 率 CF					6.7		KHz
过流响应时 间						200	ms

5 工作原理

5.1 有功计算原理

电能计量主要把输入的电压和电流信号按照时间相乘,得到功率随着时间变化的信息,假设电流电压信号为余弦函数,并存在相位差 Φ ,功率为:

$$p(t) = V \cos(wt) \times I \cos(wt + \Phi)$$

$$p(t) = \frac{VI}{2} (1 + c \circ s 2wt)$$

$$\begin{split} &p(t) = V\cos(wt) \times I\cos(wt + \Phi) \\ &= V\cos(wt) \times \left[I\cos(wt)\cos(\Phi) + \sin(wt)\sin(\Phi)\right] \\ &= \frac{VI}{2}(1 + \cos(2wt))\cos(\Phi) + VI\cos(wt)\sin(wt)\sin(\Phi) \\ &= \frac{VI}{2}(1 + \cos(2wt))\cos(\Phi) + \frac{VI}{2}\sin(2wt)\sin(\Phi) \end{split}$$

p(t)称为瞬时功率信号,理想的 p(t)只包括两部分:直流部分和频率为 2ω 的交流部分。 前者又称为瞬时实功率信号,瞬时实功率是电能表测量的首要对象。 在通过对电流电压信号高精度采样及模数转换后,电流电压信号通过数字乘法器得到瞬态功率信号p(t)。让p(t)通过一个截至频率很低(如1Hz)的取直低通滤波器,把即时实功率信号取出来。然后对该实功率信号对时间进行积分,得到能量的信息。如果选择积分时间十分的短,可以认为得到的是即时能量消耗的信息,也可以认为是即时功率消耗的信息,因为前后两者成正比关系。如果选择的较长的积分时间,得到的是平均的能量消耗的信息,同样也可以认为是平均功率消耗的信息。

取直低通滤波器的输出会被送到一个数字-频率转换的模块,在这里即时实功率会根据要求作长时或短时的积分(即累加计数),转换成与周期性的脉冲信号。输出的脉冲信号频率与能量消耗的大小成正比。

同样,电压和电流有效值计算出来后也会被送到数字-频率转换模块,转换成一定频率的脉冲信号,频率与电压电流有效值的大小成正比。

5.2 电源供电监视

芯片包含一块片上电源监视电路,能够连续检测电源(VDD)。如果电源电压小于 2.7V ±5%,则芯片不被激活(不工作),也就是说当电源电压小于 2.7V 时,不进行能量累加。这种做法可以保证设备在电源上电掉电时保持正确的操作。此电源监视电路有滞后及滤波机制,能够在很大程度上消除由于噪声引起的错误触发。一般情况下,电源供电的去耦部分应该保证在 VDD 上的波纹不超过 3.3V±5%。

6 芯片应用

6.1 BL0937 典型应用

BL0937 典型应用框图如下所示。采用 3.3V 供电。电流信号通过合金电阻采样后接入BL0937 的 IP 和 IN 管脚,电压信号则通过电阻分压网络后输入到 BL0937 的 VP 管脚。CF、CF1、SEL 直接接入到 MCU 的管脚,通过计算 CF、CF1 的脉冲周期来计算功率值、电流有效值和电压有效值的大小。

6.2 CF、CF1 的频率

BL0937对输入的电压和电流两个通道的输入电压求乘积,并通过信号处理,把获取的有功功率信息转换成频率;在这个过程中,同时通过运算计算出电压有效值和电流有效值并转换成频率。有功功率、电压和电流有效值分别以高电平有效的方式从CF、CF1输出相关的频率信号。

(1) 有功功率的输出脉冲频率计算公式:

$$F_{CF} = 1721506 * \frac{V(V)*V(I)}{V_{ref}^2}$$

(2) 电压有效值输出脉冲计算公式:

$$F_{CFU} = 15397 * \frac{V(V)}{V_{ref}}$$

(3) 电流有效值输出脉冲计算公式:

$$F_{CFI} = 94638 * \frac{V(I)}{V_{ref}}$$

V(V)——电压通道管脚的输入电压有效值

V(I)——电流通道管脚的输入电压有效值

Vref——基准电压(1.218V)

6.3 防潜动

BL0937 具有专利防潜动设计,配合合理的外部硬件设计,可确保在无电流时噪声功率不被计入电能脉冲。防潜动阈值为满量程输入信号对应有功功率的十万分之 3.5

6.4 过流检测

BL0937 内部有快速过流检测功能,能在 200mS 内检测电流过载,同时在 CF 管脚输出过流指示信号。便于设计过流保护电路。

6.5 电流/电压有效值输出

BL0937 的电流/电压有效值通过 SEL 选择从 CF1 管脚输出, SEL=0 时 CF1 管脚输出电流有效值对应的高频脉冲, SEL=1 时 CF1 管脚输出电压有效值对应的高频脉冲。内部电流、电压有效值计算模块独立, SEL 切换等待时间<10uS。

版本信息

更改时间	更改人	内容
2016-06-06	HCJ	V1.0: 对外发布版本;
2016-11-24	HCJ	V1.01: 修订电压有效值输出脉冲计算公式描述

BL0937 应用指南

BL0937 是我公司开发的一款用于智能家居领域进行电能测量的专用芯片。 具有体积小(SOP8 封装),外围电路简单,成本低廉的优点。

芯片功能特点:

	BL0937			
测量范围	5mA~20A (1W~2500W)			
跳动	0.1%			
功耗	1.7mA			
信号响应时间	<300ms			
防潜值	1.7mA			
启动电流	2mA, 可测量			
工作电压	3.3V			
工作电压跌落保护	$2.7 \mathrm{V} \pm 50 \mathrm{mV}$			
有效值切换等待时间	<10uS			

芯片管脚说明:

管脚号	符号	说明
1	VDD	芯片电源(+3.3V),正常工作时电压应保持在+3.0V~3.6V之间。
2, 3	IP, IN	电流通道的模拟输入,管脚的最大差分电压±50mV。
4	VP	电压信号正输入端,最大差分电压±200mV。
5	GND	芯片地。
6	CF	1) 有功功率高频脉冲输出,输出脉宽固定为 38uS,频率与功率值成正比
		2) 过流指示脚。当过流时,输出 6.78KHz 的脉冲
7	CF1	SEL=0 时,输出电流有效值,输出脉宽固定为 38uS,频率与电流值成正比
		SEL=1 时,输出电压有效值,输出脉宽固定为38uS,频率与电压值成正比
8	SEL	配置有效值输出引脚,带下拉。

应用电路图:

考虑插座的容许电流最大为 16A, 电流采用使用合金电阻 1 毫欧, 电压采样通道使用电阻分压方式将 220V 电压降低到 110mV rms 由芯片的 Vp 管脚进行采样。

BL0937 与 MCU 的连接电路非常简单,系统电平一致的情况下只需 3 个 IO 与 CF, CF1, SEL 直连即可。MCU 通过测量 CF, CF1 的脉冲周期,计算功率,电压,电流,进而统计电量。与 SEL 相连的只需普通 IO 即可,切换 SEL 高低电平,测量电压或电流。

在 PCB 布线时需要注意:

- 1) 电流采样的电阻、电容尽量靠近 BL0937 管脚,防止引线过长,PCB 板上其他信号线的干扰;(电流采样信号 5uV~16mV)
- 2) 电流采样 IP、IN 的外接电路参数尽量平衡,走线应保持平行,并尽可能短;
- 3) 由于负载电流是流过合金电阻,因此需要注意负载电流最大可能到 16A,在 PCB 板上连接合金采样电阻的走线尽量粗(大电流走线);

关于校准

BL0937 在定义产品时考虑到智能插座类产品厂家不是专业计量器具厂家,没有专业昂贵的校准设备,对电能计量精度要求也相对较低,只是提供用电参考信息,不作计费标准。智能插座只需要读取功率,电压,电流,并根据功率计量累积电量,所以BL0937 与 MCU 间不要复杂的通讯协议去实时的读取计量芯片寄存器,计量精度校准也相对简单,只需在额定功率负载时校准系数,也不需要复杂的校准设备。

BL0937对输入的电压和电流两个通道的输入电压求乘积,并通过信号处理, 把获取的有功功率信息转换成频率;在这个过程中,同时通过运算计算出电压有效值和电流有效值并转换成频率。有功功率、电压和电流有效值分别以高电平有

效的方式从CF、CF1输出相关的频率信号。

理论计算公式如下:

(1) 有功功率的输出脉冲频率计算公式:

$$F_{CF} = 1721506 * \frac{V(V) * V(I)}{V_{ref}^2}$$

(2) 电压有效值输出脉冲计算公式:

$$F_{CFU} = 15397 * \frac{V(V)}{V_{ref}}$$

(3) 电流有效值输出脉冲计算公式:

$$F_{CFI} = 94638 * \frac{V(I)}{V_{ref}}$$

V(V)——电压通道管脚的输入电压有效值

V(I)——电流通道管脚的输入电压有效值

Vref——基准电压(1.218V)

在实际应用中由于外围电路的合金采样电阻、电压采样网络电阻误差、计量芯片基准偏差等会带来一定的偏差,使得计量芯片输出的脉冲频率与理论计算频率有偏差,所以我们需要进行计量校准。

推荐使用单点校准方式,BL0937 在校准时可以在智能插座施加额定电压 U0,电流 I0,有功功率 P0 时 MCU 测得的对应脉冲频率 U_Freq0、I_Freq0、P_Freq0,换算出对应的转换系数:

电压转换系数
$$Ku = \frac{U0}{U_freq0}$$
 电流转换系数 $Ki = \frac{I0}{I_Freq0}$ 有功功率转换系数 $Kp = \frac{P0}{P_Freq0}$

并在系统中保存这些系数,校准后在实际测量点计量芯片输出的频率值系统软件 应该与对应系数相乘以获得正确的测量值。

测量脉冲的频率就是测量两个脉冲的间隔时间(周期),那么只要测定两个脉冲的相同边沿(上升或下降沿)时间间隔。可以使用 MCU 的定时器捕捉功能来测量两个脉冲间的中断间隔获得脉冲频率。

关于电能计量:

根据校准时所加负载对应的有功功率 P0(瓦),检测到的 CF 脉冲频率 Freq0 (Hz),可以推算出对应于 1 个 CF 脉冲的电能为多少,这样通过对 CF 脉冲进行计数就可以得到电能数据。

1度电=1千瓦每小时,即有功功率 1000W,持续1小时,用电为1度电;

1 个 CF 对应电量 =
$$\frac{P0}{Freq0 * 3600000}$$

BL0937设计的BOM表(计量部分外围相关电路)

序号	类别	规格	封装	数量		代号		备注
1	贴片电容	0.1uF	0603	1	C22			去耦
2		33nF	0603	3	C31	C32	C24	
3	贴片电阻	1K	0603	3	R14	R15	R45	
4		330K	0603	6	R16	R17	R18	
					R20	R46	R47	
5	IC	BL0937	SPO8	1	U4			
		1毫欧						
6	合金电阻	/SMA25A3FR001T	2512	1	R13			南京萨特
7	安规电容	680nF/275V	C-2610	1	C7			
8	功率电阻	220/3W	R0120H	1	R6			
9	二极管	IN4007	DIODE	1	D2			阻容降压
10	稳压管	8.2V/1W	DW	1	D3			供电方式
11	稳压器	78L33	TO-92	1	U16			
12	电解电容	470uF/10V	C-10	1	CD3			_

参考文献: BL0937_Datasheet_V1.01.pdf