Question 9
Let set A be consist of any 5 integers.
Let set B be all possible remainders when an integer is
divided by 4 then B = 10,1,2,3.43, 181=4
divided by 4. then B= {0,1,2,3.43, A =4. Assume there is no repetitive element in A, then IAI=1
Avording to Pigeonhole principle, there must be two element
in set A mapping to set B.
Assume there are repetitive elements in A, such as U,=a
then their remainders when divided by 4 are equal.
Question 10
Let set B be all possible results of and number of
other computers connected,
then B= {1,2,3,4,5}. 1B1 = 5
since 1A1 = 6.
amording to pidgeonhole principle, there are at least
two computers that are directed to the same number of other
computers.
Question 11
Let set A be the 51 numbers selected from {1,2,,6.}
then 1A1 = 51,
Note that for each element from II, so), there is
an element from [51, 100] that their sum equals to 101.
the corresponding relation can be represented as
B= { \$1,10.3, \$1,993, }50,513, 1B1=50.
Assume that so elemen there is only one element in A

is in range lised and all others are 51~100, they's always an element in B that shows a corresponding integer that makes their sum equal to 101.
that makes their sum equal to 101.
Question 12
Let set A be the 51 houses. IAI = 51.
Let set B be all non-ronsecutive even integers from
1000 to 1099, then B= { 1000, 1002, 1004,, 1098}
131 = 50.
Assume that all houses with even-number-address
mbo in 1) then the only one left count he on even number
without repetition, thus there is always one exem number
in A. Therefore there is always an ever number besid
that odd number, which means these two house addresses.
are consective.
Question 13
Let set A be all possible pair of points that
their mid points are integer coordinates.
A = 180,037, 302,043, 503,053, 101,0533
Let set B be all possible integer midpoints,
B= { a2 , a3 , a4 }
Since 1A1 = 4 , 1B1 = 3
Since, 1A1 = 4, 1B1 = 3 then for every element in B. there exists at
least two elements in A mapping to it.
which is to say, for every possible integer midple
there is at least one pair of points that can form a line
that fits the given condition. corresponding.
eg. for mid point as (3,3), those are two lines, some which is (a1, a5) and (a1, u4).