5

10

15

20

30

Claims

- 1. Method for automated measurement of the ohmic rotor resistance $(R_{\rm r})$ of an asynchronous machine controlled via an inverter while being acted upon by a non-rotating field, the method comprising
 - a. measuring the ohmic stator resistance (R_s) , the leakage inductances $(L_{\sigma s},\ L_{\sigma r})$ and the main inductance (L_m) of the asynchronous machine,
 - b. applying a testing signal (U_{sa}) consisting of a predetermined direct signal with a superimposed alternating signal to a phase winding (a) of the asynchronous machine, the frequency of the alternating signal corresponding approximately to a nominal slip frequency (f_s) of the asynchronous machine,
 - c. measuring the amplitude and the phase (ϕ) of the phase signal($\bar{I}_{sa})$ resulting from the testing signal, and
 - d. calculating the ohmic rotor resistance $(R_{\rm r})$ from the measured values according to steps a) and c).
- 25 2. Method according to claim 1, in which an ohmic rotor resistance (R'_r) transformed to the stator side is determined first, and the actual ohmic rotor resistance (R_r) is calculated by means of the measured values according to steps a) and c).
 - 3. Method according to claim 1 in which the frequency (f_s) of the alternating signal is in the range from 1 to 8 Hz.

- Method according to claim 1 in which the direct 4. signal is a direct voltage which generates a direct current having an amplitude of less than half a nominal magnetising current (I_{mn}) of the asynchronous machine.
- Method according to claim 4, in which the direct 5. current is such that the dynamic main inductance (L_{Dm}) is approximately equal to the static main inductance (L_m) of the asynchronous machine, whereby the dynamic main inductance can be expressed by the equation

$$L_{Dm} = \frac{dL_m}{dI_m} \cdot I_m + L_m$$

15

5

10

in which L_{Dm} is the dynamic main inductance, L_{m} the static main inductance and I_{m} the magnetising current.

Method according to claim 1 in which the testing 20 6. signal is a phase voltage (U_{sa}) having a reference $\left(\text{U}_{\text{ref}} \right)$ set on the basis of a previously measured characteristic, stored in a memory, the characteristic describing the relation between the phase current (Isa) and the reference.

25