Word Size & Endianness

Word size

- Any given computer architecture has a "word size".
- Word size determines the number of bits used to store a memory address (a pointer in C).
- Therefore you can 2^{wordsize} number of memory addresses.
- Until recently, most machines used 32 bits (4 bytes) as word size
 - Limits addresses to 4GB of total RAM
- These days, machines have 64-bit word size, actually only uses 48 bits of it for addresses
 - Potentially, could have 2⁴⁸ addresses, thats a lot of memory.
 - Theoretically up to 65,000 times amount of RAM of 32-bit systems. (~260TB)

Word-oriented memory organization

- Address of a word in memory is the address of the first byte in that word.
- Consecutive word addresses differ by 4 (32-bit) or 8 (64-bit).

Byte ordering in a word

Big Endian

- Examples: Sun, PowerPC Mac, Internet
- Most significant byte has lowest address

Little Endian

- Examples: x86, ARM processors running Android, iOS, Windows
- Most significant byte has highest address
- In other words, if you have a multi-byte word, what order to the bytes appear? What "end" of the word does the MSB live at?

Byte ordering in a word con't

• Address given by dereferencing x is 0x100

Big Endian		0x100	0x101	0x102	0 x 103		
			01	23	45	67	
Little Endia	an		0x100	0x101	0x102	0x103	
			67	45	23	01	

• We can test this programmatically. See *memory/endian.c*

Byte ordering representation in C

- Casting any pointer to unsigned char* allows is to treat the memory as a byte array.
- Using printf format specifiers
 - %p print pointer
 - %x print value in hexadecimal
- See *memory/byte_ordering.c*

Floating Point

+ Fractional binary numbers

- How can we represent fractional binary numbers?
- One idea: use same approach as with decimal numbers, except use powers of 2 (as opposed to 10).
- So what is **1011.101**₂?

Fractional binary numbers

- How can we represent fractional binary numbers?
- One idea: use same approach as with decimal numbers, except use powers of 2 (as opposed to 10).
- So what is **1011.101**₂?

$$(1 * 2^3) + (0 * 2^2) + (1 * 2^1) + (1 * 2^0) + (1 * 2^{-1}) + (0 * 2^{-2}) + (1 * 2^{-3})$$

 $8 + 2 + 1 + \frac{1}{2} + \frac{1}{8}$
 11.625_{10}

Fractional binary numbers

- How can we represent fractional binary numbers?
- One idea: use same approach as with decimal numbers, except use powers of 2 (as opposed to 10).
- So what is **1011.101**₂?

$$(1 * 2^{3}) + (0 * 2^{2}) + (1 * 2^{1}) + (1 * 2^{0}) + (1 * 2^{-1}) + (0 * 2^{-2}) + (1 * 2^{-3})$$

 $8 + 2 + 1 + \frac{1}{2} + \frac{1}{8}$
 11.625_{10}

- Going the other direction
 - 5 3/4 —> 101.11₂
 - 2 7/8 —> 10.111₂

+,

Insufficient representation

- That way of representing floating point numbers is simple, but has two significant limitations.
 - Only numbers that can be written as the sum of powers of 2 can be represented exactly.
 - Example
 - **1/3** 0.0101010101[01]...₂
 - **1/5** 0.001100110011[0011]...₂
 - **1/10** 0.0001100110011[0011]...₂
 - Just one possible location for the binary point.
 - This limits how many bits can be used for the fractional part and the whole number part.
 - We can either represent very large numbers well or very small numbers well, but not both.

IEEE Floating Point

IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
- Before that, many idiosyncratic formats
- Supported by all major CPUs

Driven by numerical concerns

- Nice standards for rounding, overflow, underflow
- Numerical analysts predominated over hardware designers in defining standard
- Therefore, hard to make fast in hardware (i.e. its slow!)

Floating Point Representation

Numerical form

$$(-1)^s * M_2 * 2^E$$

- Sign bit s determines whether number is negative or positive
- Mantissa **M** *normally* a fractional value, range [1.0, 2.0)
- Exponent E weights value by power of two
- Encoding
 - Most significant bit is sign bit s
 - **exp** field *encodes* **E** (but is not equal to **E**)
 - **frac** field *encodes* **M** (but is not equal to **M**)

IEEE precision options

s	ехр	frac
1	8 -b its	23-bits

Double precision: 64 bits

s	ехр	frac
1	11-bits	52 -b its

Interpreting IEEE Values

- Three possible methods by which we evaluate a given bit vector representing a floating point type.
 - 'Normalized' values
 - 'Denormalized' values
 - Special' values
- Normalized is the most common case.
- Denormalized is for representing numbers very close to zero.
- Special, is well, special.
- The value of **exp** determines what kind of value it is, and therefore how it is encoded and interpreted.

S	ехр	frac
---	-----	------

Normalized values

- Precondition: $exp \neq 000...0$ and $exp \neq 111...1$
- For some bit pattern: $value_{10} = (-1)^s * M_2 * 2^E$
- $\mathbf{s} = \text{sign bit } \mathbf{s}$
- $\mathbf{E} = [exp]$ bias
 - **bias** = 2^{k-1} 1
 - \mathbf{k} = number of bits in exp
- $\mathbf{M} = 1.[frac]$
 - By assuming the leading bit is 1, we get an extra bit for "free"
 - Smallest value when all bits are zero: 000...0, M = 1.0
 - Largest value when all bits are one: 111...1, M = 2.0- ϵ

S	exp	frac
---	-----	------

Normalized encoding example

• float
$$f = 15213.0$$
;
 $15213_{10} = 11101101101101_2$
 $= 1.1101101101101_2 \times 2^{13}$

$$value_{10} = (-1)^s * M_2 * 2^E$$

Normalized encoding example, con't

• float
$$f = 15213.0$$
;
 $15213_{10} = 11101101101101_2$
 $= 1.1101101101101_2 \times 2^{13}$

 $value_{10} = (-1)^s * M_2 * 2^E$

Mantissa

$$\mathbf{M} = 1.1101101101101_2 \times 2^{13}$$

 $frac = 1101101101101000000000002$

Normalized encoding example, con't

• float
$$f = 15213.0$$
;
 $15213_{10} = 11101101101101_2$
 $= 1.1101101101101_2 \times 2^{13}$

 $value_{10} = (-1)^s * M_2 * 2^E$

Mantissa

Exponent

E = 13
bias =
$$127 = (2^{8-1} - 1)$$

 $exp = 140 = 10001100_2$

s exp frac

0 10001100

1101101101101000000000

+Why?

- For normalized 32-bit single precision...
 - The value of exp is in the range 0 < exp < 255
 - The value of **E** is in the range -127 < E <= 127
 - Fairly large numbers; <= 2¹²⁷
 - Fairly small numbers; >=2⁻¹²⁶
- For normalized 64-bit double precision, obviously this range is greater.
- Note that there is always a leading 1 in the value of mantissa **M** for 'normalized values', so we cannot represent numbers that are *very* small.
- Next, we will observe what happens when *exp* is either 00...0 or 11...1

Denormalized values

- Precondition: exp = 000...0
- For some bit pattern: $value_{10} = (-1)^s * M_2 * 2^E$
- $\mathbf{M} = 0.[frac]$
 - No implicit 1 prefix.
 - Allows for representation of numbers much closer to 0
- E = 1 bias
 - **bias** = 2^{k-1} 1
 - $\mathbf{k} = \text{number of bits in } exp$
 - Differs from 'normalized', as exp obviously 0
- If exp = 000...0, frac = 000...0 represents 0.0
- If exp = 000...0, $frac \neq 000...0$ represent numbers $very\ close\ to\ 0.0$

Special values

- Precondition: exp = 111...1
- If exp = 111...1, frac = 000...0
 - Represents positive or negative infinity, a result of overflow
 - Examples:
 - $-1.0/-0.0 = +\infty$
 - $1.0/-0.0 = -\infty$
- If exp = 111...1, $frac \neq 000...0$
 - Not-a-Number (NaN)
 - A case when no numeric value can be determined
 - Examples:
 - sqrt(-1)
 - **■** ∞-∞
 - ∞*0

*Floating point encoding number line

Tiny Floating Point

- 6-bit Floating Point Representation
 - The sign bit *s* is in the most significant bit
 - The next three bits are the *exp*, with a **bias** of 3
 - Note that the bias is the same for all 6-bit precision numbers!
 - The last two bits are the *frac*
- IEEE Format
 - normalized, denormalized and special values

Tiny Normalized Example 1

value₁₀ =
$$(-1)^s * M_2 * 2^E$$

E = exp - bias

- 000100₂ (smallest positive value)
 - $\mathbf{s} = (-1)^0 = \mathbf{1}$
 - $M = 1.00_2$
 - **bias** = $2^{3-1} 1 = 3_{10}$
 - $E = 001_2 3_{10} = 1_{10} 3_{10} = -2_{10}$
 - $1*1.002*2^{-2} = .012 = 0.2510$

All possible 6-bit sequences

000000	010000	100000	110000
000001	010001	100001	110001
000010	010010	100010	110010
000011	010011	100011	110011
000100	010100	100100	110100
000101	010101	100101	110101
000110	010110	100110	110110
000111	010111	100111	110111
001000	011000	101000	111000
001001	011001	101001	111001
001010	011010	101010	111010
001011	011011	101011	111011
001100	011100	101100	111100
001101	011101	101101	111101
001110	011110	101110	111110
001111	011111	101111	111111
		1	

- Normalized

 Denormalized
- Special

Tiny Normalized Example 2

value₁₀ =
$$(-1)^s * M_2 * 2^E$$

E = exp - bias

- 011011₂ (largest positive value)
 - $\mathbf{s} = (-1)^0 = \mathbf{1}$
 - $M = 1.11_2$
 - **bias** = $2^{3-1} 1 = 3_{10}$
 - $\mathbf{E} = 110_2 3_{10} = 6_{10} 3_{10} = 3_{10}$
 - 1 * 1.11₂ * 2³ = 1110₂ = 14.0₁₀

All possible 6-bit sequences

- Normalized

 Denormalized
- Special

Tiny Denormalized Example 1

value₁₀ =
$$(-1)^s * M_2 * 2^E$$

E = 1 - bias

- 100011₂ (smallest negative value)
 - $\mathbf{S} = (-1)^1 = -1$
 - $M = 0.11_2$
 - **bias** = $2^{3-1} 1 = 3_{10}$
 - $\mathbf{E} = \mathbf{1}_{10} \mathbf{3}_{10} = -2_{10}$
 - $-1*0.112*2^{-2} = -0.00112 = -0.187510$

S	exp	frac
1	3-bits	2-bits

All possible 6-bit sequences

Tiny Denormalized Example 2

- 000001_2 (smallest positive less than 1)
 - $\mathbf{s} = (-1)^0 = \mathbf{1}$
 - $M = 0.01_2$
 - **bias** = 2^{3-1} 1 = 3_{10}
 - $\mathbf{E} = \mathbf{1}_{10} 3_{10} = -2_{10}$
 - 1 * 0.01₂ * 2⁻² = 0.0001₂ = 0.0625₁₀

000001 010001 10 000010 010010 10 000011 010011 10 000100 010100 10 000101 010101 10 000110 010110 10 000111 010111 10 001000 011000 10 001001 011001 10 001010 011010 10 001101 011101 10 001101 011101 10 001110 011110 10	0000 110000 0001 110001 0010 110010 0011 110101 0100 110100 0101 110101 0110 110110 0111 11001 1001 111001 1010 11101 1011 11101 1110 11110 1111 11111
--	--

All possible 6-bit sequences

Special

Normalized

Denormalized

Tiny special values

Result of overflow or infeasibility

- exp = 111, frac = 00
 - **•** 011100, 111100
 - Positive or negative infinity
- exp = 111, $frac \neq 00$
 - 011101, 011110, 011111, 111101, 1111110
 - Not-a-Number (NaN)

All possible 6-bit sequences

Special

000000 000001 000010 000011 000100 000101 000110 000111 001000 001001	010000 010001 010010 010011 010100 010101 010110 010111 011000 011011	100000 100001 100010 100011 100100 100101 100110 100111 101000 101011 101100 101111	110000 110001 110010 110011 110100 110101 110110
001011	011011	101011	111011
001100	011100	101100	111100
001101	011101	101101	111101

Normalized
Denormalized

Exercises

Exercise 1

value₁₀ =
$$(-1)^s * M_2 * 2^E$$

E = ? - bias

• 100111₂

- $s = (-1)^s = ?$
- $M = ?_2$
- bias = $?_{10}$
- $E = ?_{10}$
- value₁₀ = ? = -0.4375_{10}

All possible 6-bit sequences

000000 000001 000010 000011 000100 000101 000110 000111 001000 001001	010000 010001 010010 010011 010100 010101 010111 010100 011001 011010 011011	100000 100001 100010 100011 100100 100101 100110 100111 101000 101001 101011 101100 101101	110000 110001 110010 110011 110100 110101 110111 111000 111011 111010 111101 111110 111111

NormalizedDenormalizedSpecial

Exercise 2

value₁₀ =
$$(-1)^s * M_2 * 2^E$$

E = ? - bias

100001₂

- $s = (-1)^s = ?$
- $M = ?_2$
- bias = $?_{10}$
- $E = ?_{10}$
- value₁₀ = ? = -0.0625_{10}

All possible 6-bit sequences

000000 010000 000001 010001 000010 010010 000011 01001 000100 010100 000101 010101 000110 010110 000111 010111 001000 011000 001010 011010 001011 011011 001011 01101 001101 01110 001110 011110 001111 011111	100000 100001 100010 100011 100100 100101 100110 100111 101000 101001 101011 101100 101111 101110 101111	110000 110001 110010 110011 110100 110101 110110

NormalizedDenormalizedSpecial