Kapitel 1

Grundlagen

Bekannt aus Analysis I-III

- Banachraum: vollständiger normierter Vektorraum (wir schreiben $(X, ||\cdot||_X)$
- Hilbertraum: vollständiger Skalarproduktvektorraum mit $||\cdot|| = \sqrt{(\cdot,\cdot)_X}$
- Cauchy-Folge: $(x_n), \forall \epsilon > 0 \ \exists n \in \mathbb{N} : \forall m \geq n : ||x_m x_n|| < \epsilon$
- vollständiger metrischer Raum, Topologie.

Definition 1.1 (Halbnorm, Seminorm). Sei X ein $\mathbb{K} - V$ ektorraum, wobei $\mathbb{K} = \mathbb{R}$ oder $\mathbb{K} = \mathbb{C}$. Für $x, y \in X$, $\lambda \in \mathbb{K}$ ist eine Halbnorm oder Seminorm eine Abbildung $||| \cdot ||| : X \to \mathbb{R}$, die die folgenden Eigenschaften erfüllt:

- (i) $|||x||| \ge 0$
- (ii) $|||\lambda x||| = |\lambda| \cdot |||x|||$
- (iii) $|||x + y||| \le |||x||| + |||y|||$

Eine Norm efüllt zusätzlich noch die Bedingung, dass sie nur dann verschwindet, wenn das Argument verschwindet.

Bemerkung 1.2. (a) $N := \{x \in X : |||x||| = 0 \text{ bildet einen Unterraum von } X.$

- (b) X/N ist normierter Raum über ||x + N|| := |||x|||
- (c) X ist vollständiger seminormierter $Raum \Rightarrow X/N$ ist ein Banachraum

Beispiel 1.3 (wichtige Vektorräume). Sei $(\Omega, \mathfrak{A}, \mu)$ ein Maßraum

(a) $\mathcal{L}^p(\Omega,\mu) = \{f: \Omega \to \mathbb{C} \text{ messbar, } \int_{\Omega} |f|^p d\mu < \infty \} \text{ ist ein seminormierter Raum mit } |||f|||_p := (\int_{\Omega} |f|^p d\mu)^{\frac{1}{p}}$

Etwaige Begriffe

1. Hausdorfsch, Hausdorffeigenschaft - Joa... Kugeln und so.