Quentin Biache & Anthony Delannoy Xueyang Li & Jérôme Combaniere

4 juin 2014

PLAN

INTRODUCTION

Introduction

INTERFACE GRAPHIQUE

SIGNAUX TÉLÉCOMS

RECONSTRUCTION

CONCLUSION

Le sujet :

- ► Son contexte
- Les problématiques des transmissions en télécommunications
- ► Le problème de l'échantillonnage non uniforme
- ► La prise en main du sujet, la répartition des tâches

INTRODUCTION

- ► ...fait l'objet d'une thèse
 - o déterminer si l'échantillonnage non-uniforme peut être utilisé en pratique,
 - o notre objectif : fournir une interface graphique remplaçant de lourdes fonctions de reconstruction
- ...dans la continuité d'un projet long
 - leur objectif : création de codes Matlab pour appliquer les méthodes théoriques de reconstruction, calcul d'erreur et de complexité
 - réutilisation des codes fournis pour les intégrer dans une interface graphique utilisable sans pré-requis

- ...fait l'objet d'une thèse
 - o déterminer si l'échantillonnage non-uniforme peut être utilisé en pratique,
 - o notre objectif: fournir une interface graphique remplaçant de lourdes fonctions de reconstruction
- ...dans la continuité d'un projet long
 - o leur objectif : création de codes Matlab pour appliquer les méthodes théoriques de reconstruction, calcul d'erreur et de complexité
 - o réutilisation des codes fournis pour les intégrer dans une interface graphique utilisable sans pré-requis

- ...fait l'objet d'une thèse
 - o déterminer si l'échantillonnage non-uniforme peut être utilisé en pratique,
 - o notre objectif : fournir une interface graphique remplaçant de lourdes fonctions de reconstruction
- ...dans la continuité d'un projet long
 - o leur objectif : création de codes Matlab pour appliquer les méthodes théoriques de reconstruction, calcul d'erreur et de complexité
 - o réutilisation des codes fournis pour les intégrer dans une interface graphique utilisable sans pré-requis

- ...fait l'objet d'une thèse
 - o déterminer si l'échantillonnage non-uniforme peut être utilisé en pratique,
 - o notre objectif: fournir une interface graphique remplaçant de lourdes fonctions de reconstruction
- ...dans la continuité d'un projet long
 - o leur objectif : création de codes Matlab pour appliquer les méthodes théoriques de reconstruction, calcul d'erreur et de complexité
 - o réutilisation des codes fournis pour les intégrer dans une interface graphique utilisable sans pré-requis

- ...fait l'objet d'une thèse
 - o déterminer si l'échantillonnage non-uniforme peut être utilisé en pratique,
 - o notre objectif: fournir une interface graphique remplaçant de lourdes fonctions de reconstruction
- ...dans la continuité d'un projet long
 - o leur objectif : création de codes Matlab pour appliquer les méthodes théoriques de reconstruction, calcul d'erreur et de complexité
 - o réutilisation des codes fournis pour les intégrer dans une interface graphique utilisable sans pré-requis

Problématiques des transmissions en télécoms :

000000

Problématiques des transmissions en télécoms : l'échantillonnage

Introduction

L'échantillonnage non-uniforme :

- « Jitter »sur les instants d'échantillonnage : déviation de la période par rapport à la valeur d'origine;
- ► Utilisation possible d'un échantillonnage volontairement non-uniforme pour s'adapter au contenu de l'image.

Introduction

L'échantillonnage non-uniforme :

- ► « Jitter »sur les instants d'échantillonnage : déviation de la période par rapport à la valeur d'origine ;
- ► Utilisation possible d'un échantillonnage volontairement non-uniforme pour s'adapter au contenu de l'image.

INTRODUCTION

000000

L'échantillonnage non-uniforme :

- « Jitter »sur les instants d'échantillonnage : déviation de la période par rapport à la valeur d'origine;
- ► Utilisation possible d'un échantillonnage volontairement non-uniforme pour s'adapter au contenu de l'image.

CONCLUSION

RÉPARTITION DES TÂCHES

RÉPARTITION DES TÂCHES

INTRODUCTION

00000

Interface graphique

Définition des caractéristiques de l'IDR

création de la version 1 puis 1.5

création de la version 2

Etude des méthodes de reconstruction

Etude de la théorie de l'échantillonnage non-uniforme

Etude des codes fournis

Amélioration des codes, ajouts de commentaires

Tests et implémentation dans l'IDR

Etude des signaux télécoms

Etude des différents signaux, caractéristiques

INTERFACE GRAPHIQUE

Cahier des charges

IDR 1.0 IDR 1.5

IDR 2.0

Démonstration

SIGNAUX TÉLÉCOMS

RECONSTRUCTION

CONCLUSION

CAHIERS DES CHARGES

- ► Interface intuitive et claire
- ► Dynamisme de l'interface
- ▶ Placement des fenêtres automatique
- ► Multiples signaux utilisés en télécommunications
- ► Echantillonnage non-uniforme (jitter uniforme)
- ► Diverses méthodes de reconstruction

00000

INTRODUCTION

IDR 1.5

INTRODUCTION

⊘ IDR 1.5
Untitled 1
1-> Signal à échantillonner : BPSK BPSK
Fréquence = 0 Phase = 0
Ajout de bruit blanc gaussien SNR: 10
2 -> Type d'échantillonnage : Uniforme
Fe = 0 Jitter: 0
3 -> Méthode de reconstruction : Lagrange
Lancer la simulation

00000

Compatibilité Windo	ows 🛊
Signal	Avancé
Bruit	Ampl.= 1
Nbr de points 1000	
Generer Clear	
Echantillonnage	Tracer
Uniforme	Signal
Fe (kHz)= 44.1	TFD log

IDR 2.0

● O O IDR	2.0
Compatibilité Windows	‡]
Sinus 💠	- Avancé
Bruit	Ampi.= 1
Nbr de points 1000	
Generer Clear	
- Echantillonnage	Tracer—
Uniforme ‡	Signal
Fe (kHz)= 44.1	☐ TFD ☐ log

RECONSTRUCTION

00000

IDR 2.0

● ○ ○ IDR	2.0
Compatibilité Windows	‡]
Signal \$	- Avance F1 (kHz)= 1
Bruit	Ampl.= 1
Nbr de points 1000	
Generer Clear	
Echantillonnage	Tracer-
Uniforme ‡	Signal
Fe (kHz)= 44.1	TFD log

IDR 2.0

000	IDR 2.0
Compatibilité Wind	ows 💠
Signal	Avancé
Sinus 💠	F1 (kHz)= 1
Bruit	Ampl.=
Nbr de points 1000	
Generer Clear	
- Ecnantilionnage	- Tracer-
Uniforme	Signal
Fe (kHz)= 44.1	☐ TFD ☐ log

IDR 2.0

INTRODUCTION

13

CONCLUSION

- Compatibilité - Windows	\$]
Signal	Avancé
Sinus *	F1 (kHz)= 1
Bruit	Ampl.=
Nbr de points 1000	
Generer Clear	
Echantillonnage	Tracer—
Uniforme ‡	Signal
Fe (kHz)= 44.1	☐ TFD ☐ log

0000

Démonstration

Introduction

INTRODUCTION

INTERFACE GRAPHIQUE

SIGNAUX TÉLÉCOMS

Signaux de télécommunication

Signal ASK

Signal BPSK Signal FSK

Signal QAM

Signal RZ

Signal NRZ différentiel

RECONSTRUCTION

CONCLUSION

SIGNAUX DE TÉLÉCOMMUNICATION

Principe général

LA MODULATION ASK (Amplitude Shift Keying)

Tracé:

$$s(t) = \begin{cases} A_0 \cos(2\pi f_c t), & \text{binary 0} \\ A_0 \cos(2\pi f_c t), & \text{binary 1} \end{cases}$$

LA MODULATION BPSK (Binary Phase Shift Keying) Tracé:

$$s(t) = \begin{cases} A\cos(2\pi f_c t), & \text{binary 1} \\ A\cos(2\pi f_c t + \pi), & \text{binary 0} \end{cases}$$

LA MODULATION FSK (Frequency Shift Keying)

Tracé:

 \rightarrow sauts de fréquence

LA MODULATION QAM (Quadrature Amplitude Modulation)

Principe

INTRODUCTION

 \rightarrow sauts d'amplitude et de phase; un symbole code plusieurs bits.

LA MODULATION QAM (Quadrature Amplitude Modulation)

Principe

 \rightarrow sauts d'amplitude et de phase ; un symbole code plusieurs bits.

LA MODULATION QAM

Tracé:

LA MODULATION RZ (Return to Zero)

Tracé:

LA MODULATION NRZ (Non Return to Zero)

Tracé:

INTRODUCTION

INTERFACE GRAPHIQUE

SIGNAUX TÉLÉCOMS

RECONSTRUCTION

Limites des méthodes classiques Reconstruction matricielle Reconstruction Lagrangienne Reconstruction par splines cubiques Reconstruction itérative

CONCLUSION

LIMITES DES MÉTHODES DE RECONSTRUCTION **CLASSIQUES**

LIMITES DES MÉTHODES DE RECONSTRUCTION CLASSIQUES

Interpolateur de Shannon

LIMITES DES MÉTHODES DE RECONSTRUCTION CLASSIQUES

Interpolateur de Shannon

► Cas uniforme:

$$x_r(t) = \sum_{k=1}^{N_{ech}} x(t_k) \operatorname{sinc}(\pi f_{ech}(t - t_k))$$

Avec $t_k = kT_{ech}$. Ainsi :

$$\operatorname{sinc}(\pi f_{ech}(t_i - t_k)) = \delta_{ij}$$

 \rightarrow on passe par tous les points de x_r échantillonnés.

LIMITES DES MÉTHODES DE RECONSTRUCTION CLASSIQUES

Interpolateur de Shannon

► Cas uniforme:

$$x_r(t) = \sum_{k=1}^{N_{ech}} x(t_k) \operatorname{sinc}(\pi f_{ech}(t - t_k))$$

Avec $t_k = kT_{ech}$. Ainsi :

$$\operatorname{sinc}(\pi f_{ech}(t_i - t_k)) = \delta_{ij}$$

- \rightarrow on passe par tous les points de x_r échantillonnés.
- ► Cas non-uniforme : L'ensemble $\{t_k\}_{k\in Z}$ n'a plus aucune raison d'être dans multiples de T_{ech} !

LIMITES DES MÉTHODES DE RECONSTRUCTION **CLASSIQUES**

Conséquences:

FIGURE: Reconstruction avec échantillonnage uniforme

FIGURE: Reconstruction avec échantillonnage non uniforme (jitter = 50% de $\frac{T_{ech}}{2}$)

→ nécessité d'utiliser d'autres méthodes de reconstruction

LA RECONSTRUCTION MATRICIELLE

Principe:

En notant $\{t_j|j\in \llbracket 1,N_{ech}\rrbracket \}$ les instants uniformes et $\{t_k^*|k\in \llbracket 1,N_{eval}\rrbracket \}$ les instants non-uniformes, on peut écrire :

$$x(t_j) = \sum_{k=1}^{N_{eval}} x_r(t_k^*) \operatorname{sinc}(\pi f_e(t_j - t_k^*))$$

Principe:

En notant $\{t_j|j\in [\![1,N_{ech}]\!]\}$ les instants uniformes et $\{t_k^*|k\in [\![1,N_{eval}]\!]\}$ les instants non-uniformes, on peut écrire :

$$x(t_j) = \sum_{k=1}^{N_{eval}} x_r(t_k^*) \operatorname{sinc}(\pi f_e(t_j - t_k^*))$$

Reconstruction du signal

Le signal est reconstruit ensuite par inversion matricielle (pseudo-inverse).

Principe:

En notant $\{t_i | j \in [1, N_{ech}]\}$ les instants uniformes et $\{t_k^*|k \in [1, N_{eval}]\}$ les instants non-uniformes, on peut écrire :

$$x(t_j) = \sum_{k=1}^{N_{eval}} x_r(t_k^*) \operatorname{sinc}(\pi f_e(t_j - t_k^*))$$

Reconstruction du signal

Le signal est reconstruit ensuite par inversion matricielle (pseudo-inverse).

Remarque

Il faut nécessairement évaluer la reconstruction sur des instants uniformes.

LA RECONSTRUCTION MATRICIELLE

Tests sous Matlab

INTRODUCTION

- Ajout de commentaires dans le code fourni
- Ajout de fonctions pour simplifier la compréhension

Tests sous Matlab

- ► Ajout de commentaires dans le code fourni
- ► Ajout de fonctions pour simplifier la compréhension

Tracés obtenus:

FIGURE : Reconstruction du signal (jitter = 99% $\frac{T_{ech}}{2}$, fenêtre de 21 points)

INTRODUCTION

Principe:

Utilisation des polynômes interpolateurs de Lagrange

Principe:

Utilisation des polynômes interpolateurs de Lagrange

Formules issues de la théorie :

$$x(t) = \lim_{M \to \infty} H_{M}(t) \left[\sum_{|k|=0}^{M} a_{M}(t, t_{k}) x(t_{k}) \right]$$

$$a_{M}(t, t_{k}) = \frac{G_{M}(t_{k})}{(t - t_{k})F'_{M}(t_{k})\sin(\pi t_{k})}$$

$$H_{M}(t) = \frac{F_{M}(t)}{G_{M}(t)}\sin(\pi t)$$

$$G_{M}(t) = \pi t \prod_{1 \le |k| \le M-1} \left(1 - \frac{t}{k} \right) \text{ et } F_{M}(t) = \prod_{0 \le |k| \le M} \left(1 - \frac{t}{t_{k}} \right)$$

Résultats après simplification :

$$x(t) = \lim_{M \to \infty} \sum_{0 \le |k| \le M} x(t_k) \frac{f_k(t)}{f_k(t_k)}$$

$$f_k(t) = \begin{cases}
\left(-1\right)^{l+1} \frac{\prod\limits_{\substack{0 \le |j| \le M \\ j \ne k}} \left(1 - \frac{t}{t_j}\right)}{\prod\limits_{\substack{1 \le |j| \le M - 1 \\ j \ne k}} \left(1 - \frac{t}{j}\right)}, & \text{pour } t = l \in \llbracket -(M-1), M-1 \rrbracket \\
\begin{cases}
\prod\limits_{\substack{0 \le |j| \le M \\ j \ne k}} \left(1 - \frac{t}{t_j}\right) \\
\text{sinc}(\pi t) \frac{\prod\limits_{\substack{1 \le |j| \le M - 1 \\ j \ne k}} \left(1 - \frac{t}{j}\right)}{\prod\limits_{\substack{1 \le |j| \le M - 1}} \left(1 - \frac{t}{j}\right)}, & \text{sinon}
\end{cases}$$

Résultats:

Tracés de la reconstruction:

FIGURE : Reconstruction du signal (jitter = 90% $\frac{T_{ect}}{2}$, fenêtre de 20 points)

RECONSTRUCTION PAR SPLINES CUBIQUES

INTRODUCTION

RECONSTRUCTION PAR SPLINES CUBIQUES

Tests sous Matlab Utilisation de la fonction *interp1.m*

RECONSTRUCTION PAR SPLINES CUBIQUES

Tests sous Matlab

Utilisation de la fonction interp1.m

Résultats:

Tracés de la reconstruction :

FIGURE : Reconstruction du signal (jitter = 90% $\frac{T_{ech}}{2}$, fenêtre de 20 points)

RECONSTRUCTION ITÉRATIVE

INTRODUCTION

CONCLUSION

Principe:

INTRODUCTION

Troncature de la FFT puis reconstruction

RECONSTRUCTION ITÉRATIVE

Principe:

Troncature de la FFT puis reconstruction

Schéma:

RECONSTRUCTION ITÉRATIVE

Résultats:

Tracés de la reconstruction:

FIGURE : Reconstruction du signal (jitter = 99% $\frac{T_{ech}}{2}$, fenêtre de 51 points)

Bilan

- Application développée conforme au cahier des charges établi ;
- ► Le projet a permis de traiter des cas concrets, conformes à la réalité physique;
- Codes rendus plus « accessibles »et plus simples à appréhender.

- ► Ajout de signaux autres que des signaux de télécommunications ; développer l'importation de fichiers
- ► Ajout d'une aide interactive pour un descriptif des signaux utilisés.

Bilan

INTRODUCTION

- ► Application développée conforme au cahier des charges établi :
- ► Le projet a permis de traiter des cas concrets, conformes à la réalité physique;
- ► Codes rendus plus « accessibles »et plus simples à appréhender.

- ► Ajout de signaux autres que des signaux de télécommunications ; développer l'importation de fichiers
- ► Ajout d'une aide interactive pour un descriptif des signaux utilisés.

Bilan

INTRODUCTION

- ► Application développée conforme au cahier des charges établi:
- ► Le projet a permis de traiter des cas concrets, conformes à la réalité physique;
- ► Codes rendus plus « accessibles »et plus simples à appréhender.

- Ajout de signaux autres que des signaux de télécommunications; développer l'importation de fichiers
- ► Ajout d'une aide interactive pour un descriptif des signaux utilisés.

Bilan

- ► Application développée conforme au cahier des charges établi:
- ► Le projet a permis de traiter des cas concrets, conformes à la réalité physique;
- Codes rendus plus « accessibles »et plus simples à appréhender.

- Ajout de signaux autres que des signaux de télécommunications; développer l'importation de fichiers
- ► Ajout d'une aide interactive pour un descriptif des signaux utilisés.

Bilan

- ► Application développée conforme au cahier des charges établi ;
- ► Le projet a permis de traiter des cas concrets, conformes à la réalité physique;
- Codes rendus plus « accessibles »et plus simples à appréhender.

- ► Ajout de signaux autres que des signaux de télécommunications ; développer l'importation de fichiers
- ► Ajout d'une aide interactive pour un descriptif des signaux utilisés.

Bilan

- ► Application développée conforme au cahier des charges établi ;
- Le projet a permis de traiter des cas concrets, conformes à la réalité physique;
- Codes rendus plus « accessibles »et plus simples à appréhender.

- ► Ajout de signaux autres que des signaux de télécommunications ; développer l'importation de fichiers
- ► Ajout d'une aide interactive pour un descriptif des signaux utilisés.