UTS TEKNIK OPTIMASI

Nama: Muhammad Yusril Ananta

NIM : 1900018307

Kelas: B

1. Gambar skema representasi struktur kromosom/individunya

	P1	P2	Р3	P4	P5	Р6	P7	Р8	Р9	P10
	1000	750	250	1100	750	920	100	400	550	880
individu 1	1	0	1	1	1	1	0	0	1	1
	Kro1	Kro2	Kro3	Kro4	Kro5	Kro6	Kro7	Kro8	Kro9	Kro10

individu gen

2. Membangkitkan populasi awal yang di dalamnya terdapat sebanyak 5 kromosom/individu.

	P1	P2	Р3	P4	P5	P6	P7	P8	P9	P10	
	1000	750	250	1100	750	920	100	400	550	880	
individu 1	1	0	1	1	1	1	0	0	1	1	7
individu 2	1	0	1	0	1	1	0	1	1	0	6
individu 3	0	1	0	1	0	1	0	0	1	0	4
individu 4	0	0	0	1	1	1	0	0	1	1	5
individu 5	0	1	0	1	1	1	1	0	1	1	7

3. Tulis dan jelaskan model matematis dari fungsi fitness yang digunakan

 $Fitness = \Sigma((P1+...+P10)*x)$

X = 0, 1 (jika terpilih x = 1)

IF Fitness <= Budget THEN

"FIT"

ELSE

"NOT FIT"

Fitness adalah nilai total value dari item yang terpilih (x=1). Ketika nilai fitness lebih kecil dari budget maka nilai fitness dikatakan fit atau cukup, bila nilai fitness lebih besar dari budget maka nilai fitness dikatakan not fit atau tidak cukup.

4. hitunglah nilai fitness yang diperoleh oleh tiap-tiap individu tersebut

	P1	P2	Р3	P4	P5	Р6	P7	Р8	Р9	P10			
	1000	750	250	1100	750	920	100	400	550	880			
indiv 1	1	0	1	1	1	1	0	0	1	1	7	5450	NOT FIT
Indiv 2	1	0	1	0	1	1	0	1	1	0	6	3870	FIT
indiv 3	0	1	0	1	0	1	0	0	1	0	4	3320	FIT
indiv 4	0	0	0	1	1	1	0	0	1	1	5	4200	FIT
indiv 5	0	1	0	1	1	1	1	0	1	1	7	5050	NOT FIT

5. Membagi populasi kedalam dua himpunan, yaitu himpunan individu yang fit dana himpunan individu yang tidak fit

Himpunan fit

	P1	P2	Р3	P4	P5	P6	P7	P8	P9	P10			
	1000	750	250	1100	750	920	100	400	550	880			
Indiv1	1	0	1	0	1	1	0	1	1	0	6	3870	FIT
Indiv3	0	1	0	1	0	1	0	0	1	0	4	3320	FIT
Indiv4	0	0	0	1	1	1	0	0	1	1	5	4200	FIT
Budget	5000												

Himpunan not fit

	P1	P2	Р3	P4	P5	P6	P7	P8	Р9	P10			
	1000	750	250	1100	750	920	100	400	550	880			
indiv1	1	0	1	1	1	1	0	0	1	1	7	5450	NOT FIT
indiv5	0	1	0	1	1	1	1	0	1	1	7	5050	NOT FIT
Budget	5000												

6. Memperbaharui populasi dengan melakukan crossover. Crossover rate (cr) sebesar 0.8.

Cr = 0.8

C1 ,	0,0															
	P1	_	P2	Р3	P4	P5	P6	P7	P8	P9	P10					
	10	000	750	250	1100	750	920	100	400	550	880			ri		С
indiv 1	1	1	0	1	1	1	1	0	0	1	1	7	5450		0,24	1
Indiv 2	2	1	0	1	0	1	1	0	1	1	0	6	3870		0,26	1
indiv 3	3	0	1	0	1	0	1	0	0	1	0	4	3320		0,97	0
indiv 4	4	0	0	0	1	1	1	0	0	1	1	5	4200		0,83	0
indiv 5	5	0	1	0	1	1	1	1	0	1	1	7	5050		0,63	1
																3

Menentukan populasi yang akan di crossover

Individu 1, individu 2, individu 5

Combinasi: 3!/2!(3-2)!=3/1=3

Acak one-cut point = 7 atau gen ke 8

Indiv 1 >< indiv 2

Indiv 1 >< indiv 5

Indiv 2 >< indiv 5

Individu 1 >< individu 2

1011110011 >< 1010110110

Crossover

1011110010 >< 10101101**11**

Individu 1 >< individu 5

1011110011 >< 0101111011

Crossover

1011110011 >< 01011110**11**

Individu 2 >< individu 5

1010110110 >< 0101111011

Crossover

10101101111 >< 01011110**10**

7. Melakukan mutation dengan mutation rate sebesar 0.2

individu 3 0 1 0 1 0

Mr = 0.2

Jumlah mutasi = jumlah populasi * Mr = 5 * 0,2

Jumlah mutasi = 1

Index individu = 2 atau individu ke 3

Index gen = 6 atau gen ke 7

	P1	P2	Р3	P4	P5	Р6	Р7	Р8	Р9	P10					
	1000	750	250	1100	750	920	100	400	550	880					
individu 1	1	0	1	1	1	1	0	0	1	1	7				
individu 2	1	0	1	0	1	1	0	1	1	0	6				
individu 3	0	1	0	1	0	1	0	0	1	0	4				
individu 4	0	0	0	1	1	1	0	0	1	1	5				
individu 5	0	1	0	1	1	1	1	0	1	1	7				
Individu ya	Individu yang dimutasi:														
individu 3	C)	1	0	1	0	1	0	0	1	0				
Individu ya	Individu yang telah termutasi														

0

1

1 0

1