Notes on the Cantor set

1. Definition of the Cantor set

Given a set $A \subset \mathbb{R}$, let $\frac{1}{3}A = \{\frac{1}{3}x : x \in A\}$; that is, the image of A under the map $x \to \frac{1}{3}x$. Similarly, $A + \frac{2}{3} = \{x + \frac{2}{3} : x \in A\}$.

Start with $C_0 = [0, 1]$, the closed unit interval in \mathbb{R} .

Let
$$C_1 = \frac{1}{3}C_0 \cup \left(\frac{1}{3}C_0 + \frac{2}{3}\right) = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1].$$

Let
$$C_2 = \frac{1}{3}C_1 \cup \left(\frac{1}{3}C_1 + \frac{2}{3}\right) = [0, \frac{1}{9}] \cup \left[\frac{2}{9}, \frac{1}{3}\right] \cup \left[\frac{2}{3}, \frac{7}{9}\right] \cup \left[\frac{8}{9}, 1\right].$$

Recursively, let $C_{k+1} = \frac{1}{3}C_k \cup \left(\frac{1}{3}C_k + \frac{2}{3}\right)$.

Note that if for any subset $A \subset [0,1]$, the sets $\frac{1}{3}A$ and $\frac{1}{3}A + \frac{2}{3}$ are disjoint sets, respectively contained in $[0,\frac{1}{3}]$ and $[\frac{2}{3},1]$.

We now see by induction that C_k consists of 2^k disjoint, closed intervals of length 3^{-k} . It is also easy to see that $C_{k+1} \subset C_k$ using induction: if $C_k \subset C_{k-1}$ then

$$C_{k+1} = \frac{1}{3}C_k \cup \left(\frac{1}{3}C_k + \frac{2}{3}\right) \subset \frac{1}{3}C_{k-1} \cup \left(\frac{1}{3}C_{k-1} + \frac{2}{3}\right) = C_k.$$

And we have that $C_1 \subset C_0$ to start the induction.

We now let $C = \bigcap_{k=1}^{\infty} C_k$, which is a nonempty compact subset of [0,1]. Also,

$$C = \frac{1}{3}C \cup \left(\frac{1}{3}C + \frac{2}{3}\right).$$

The complement of C is an open subset of (0,1) since $0 \in C$ and $1 \in C$, so the complement is the countable union of disjoint open intervals. These are the "middle thirds" that you remove to construct C, and there are exactly 2^{k-1} open intervals of length 3^{-k} for $k \ge 1$. Note that

$$\sum_{k=1}^{\infty} 2^{k-1} 3^{-k} = \frac{1}{2} \sum_{k=1}^{\infty} \left(\frac{2}{3}\right)^k = \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{1}{1 - \frac{1}{3}} = 1$$

so the lengths of those open intervals add up to 1.

2. Ternary expansions

We consider base 3 expansions of numbers $x \in [0,1]$. We will always take a_j is equal to 0, 1, or 2 in what follows.

Suppose we have a sequence $(a_1, a_2, a_3, ...) \in \{0, 1, 2\}^{\mathbb{N}}$. We associate to this sequence a number

$$\sum_{k=1}^{\infty} \frac{a_k}{3^k}.$$

The sequence $b_n = \sum_{k=1}^n a_k 3^{-k}$ is increasing in n, and bounded above by

$$2\sum_{k=1}^{\infty} \frac{1}{3^k} = \frac{2}{3} \frac{1}{1 - \frac{1}{3}} = 1$$

so the infinite sum makes sense as the least upper bound of the b_n .

We next see that this map from $\{0,1,2\}^{\mathbb{N}} \to [0,1]$ is onto (but not 1–1). First we consider $x \in [0,1)$.

• Suppose $x \in [0,1)$, and let a_1 be the largest integer such that $\frac{a_1}{3} \le x$. Then since $0 \le x < 1$ we have $0 \le a_1 \le 2$, and

$$(1) 0 \le x - \frac{a_1}{3} < \frac{1}{3}$$

Now let a_2 be the largest integer so $\frac{a_2}{3^2} \le x - \frac{a_1}{3}$. Then by (1) we must have $0 \le a_2 \le 2$, and

$$0 \le x - \frac{a_1}{3} - \frac{a_2}{3^2} < \frac{1}{3^2}$$

In general, we will take a_j recursively so that

(2)
$$0 \le x - \sum_{k=1}^{n} \frac{a_k}{3^k} < \frac{1}{3^n}$$

Briefly, the a_j are the largest integers from 0, 1, or 2 so that $\sum_{k=1}^{n} \frac{a_k}{3^k} \leq x$.

The bound (2) implies that

$$x = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{a_k}{3^k} = \sum_{k=1}^{\infty} \frac{a_k}{3^k}$$

This shows the map is onto [0,1). For the number 1, we take $a_j = 2$ for all j, and note

$$\sum_{i=1}^{n} \frac{2}{3^{k}} = \frac{2}{3} \sum_{k=0}^{n-1} \frac{1}{3^{k}} = \frac{2}{3} \frac{1 - (\frac{1}{3})^{n}}{1 - \frac{1}{3}} = 1 - \frac{1}{3^{n}}$$

Thus $\sum_{k=1}^{\infty} \frac{2}{3^k} = 1$.

• We now determine how the map $\{0,1,2\}^{\mathbb{N}} \to [0,1]$ can fail to be 1–1. Suppose that we have two sequences (a_1,a_2,\ldots) and (b_1,b_2,\ldots) such that

$$\sum_{k=1}^{\infty} \frac{a_k}{3^k} = \sum_{k=1}^{\infty} \frac{b_k}{3^k}$$

Suppose that n is the first position where $a_n \neq b_n$, and assume $a_n > b_n$. We then write

$$\frac{a_n - b_n}{3^n} + \sum_{k=n+1}^{\infty} \frac{a_k}{3^k} = \sum_{k=n+1}^{\infty} \frac{b_k}{3^k}$$

Since

$$\frac{a_n - b_n}{3^n} \ge \frac{1}{3^n}$$
 and $\sum_{k=n+1}^{\infty} \frac{b_k}{3^k} \le \sum_{k=n+1}^{\infty} \frac{2}{3^k} = \frac{1}{3^n}$

The only way we can have equality is if $a_n - b_n = 1$, and

$$a_k = 0$$
 and $b_k = 2$ for $k \ge n + 1$.

That is, the sequence a_k has terminal 0's and b_k has terminal 2's, for example

$$.12020000000\cdots = .1201222222\cdots$$

Other than this kind of case, the ternary expansion of $x \in [0, 1]$ is unique.

Note that the values of x for which the expansion has two possibilities are precisely those x of the form

$$x = \frac{m}{3^n}$$
 for some $m \in \{0, \dots, 3^m - 1\}$.

Observe: in the above argument, since $a_n = b_n + 1$ we must have either $a_n = 1$ or $b_n = 1$. So different sequences in $\{0, 2\}^{\mathbb{N}}$ cannot give the same value of x.

3. Ternary expansions and the Cantor set

We now claim that the Cantor set consists precisely of numbers of the form

$$(3) x = \sum_{k=1}^{\infty} \frac{a_k}{3^k}$$

where each a_k is either 0 or 2. The map $\{0,2\}^{\mathbb{N}} \to C$ is then a bijection by the above observation.

Suppose x is given by (3). Then

$$\frac{1}{3}x = \sum_{k=1}^{\infty} \frac{b_k}{3^k}$$
 where $b_1 = 0$, $b_k = a_{k-1}$ if $k \ge 2$,

$$\frac{1}{3}x + \frac{2}{3} = \sum_{k=1}^{\infty} \frac{b_k}{3^k}$$
 where $b_1 = 2$, $b_k = a_{k-1}$ if $k \ge 2$.

Thus, $x \in C_1$ if and only if it equals a ternary expansion where either $a_1 = 0$ or $a_1 = 2$, since it is of the form $\frac{1}{3}y$ or $\frac{1}{3}y + \frac{2}{3}$ for some $y \in [0, 1]$. Repeating the argument, we see that $x \in C_n$ iff it equals a ternary expansion where a_k is either 0 or 2 for $1 \le k \le n$.

It follows that ternary expansions where every digit is either 0 or 2 belong to C_n for every n, hence give an element of C. This shows that $\{0,2\}^{\mathbb{N}}$ maps into C under the ternary expansion.

Suppose now that $x \in C$. If the ternary expansion of x is unique, the above argument shows that every a_k is either 0 or 2. If x has two ternary expansions, let n be the first digit they differ. Then the above argument

shows that a_k is either 0 or 2 for $1 \le k < n$, and we know a_k is either identically 0 or identically 2 for k > n. And one of the two expansions has $a_n = 1$, the other must have $a_n = 0$ or 2. So x has one expansion where $a_k \ne 1$ for every k. This shows that $\{0,2\}^{\mathbb{N}}$ maps onto C under the ternary expansion.

4. The Cantor Map

We now can construct a map $f:C\to [0,1]$ that is onto. To do this, expression $x\in C$ uniquely as

$$x = \sum_{k=1}^{\infty} \frac{a_k}{3^k}$$
 where $a_k \in \{0, 2\}$.

Define

$$f(x) = \sum_{k=1}^{\infty} \frac{\frac{1}{2}a_k}{2^k}$$

That is, if x has ternary expansion $(a_1, a_2, ...)$, then f(x) has binary expansion $(\frac{1}{2}a_1, \frac{1}{2}a_2, ...)$. Since $a_k \in \{0, 2\}$ we have $\frac{1}{2}a_k \in \{0, 1\}$, so the binary expansion gives an element of [0, 1], and the map is onto since every sequence in $\{0, 1\}^{\mathbb{N}}$ is obtained this way.

The map is not 1–1: for example

$$\frac{1}{3} \to (0, 2, 2, 2, 2, 2, 2, \cdots) \to (0, 1, 1, 1, 1, 1, 1, \cdots) \to \frac{1}{2}$$

and

$$\frac{2}{3} \to (2,0,0,0,0,0,0,\cdots) \to (1,0,0,0,0,0,\cdots) \to \frac{1}{2}$$