# DESIGN AND ANALYSIS OF ALGORITHMS

CS 4120/5120
MAXIMUM-SUBARRAY PROBLEM

#### **AGENDA**

- Maximum-subarray problem definition
- Divide-and-conquer algorithm
- Time complexity analysis

#### THE STOCK TRADING STORY

- Suppose that you can learn what the price of the stock will be in the future 17 days.
  - The price of the stock over the 17-day period.
  - You can buy or sell after the close of trading for the day.
  - Using this chart, you can make two trading activities: one buy and one sell.
- What is the best time to buy and the best time to sell?
  - What is the profit?





# THE STOCK TRADING STORY MAKING THE MOST MONEY

- Suppose that you can learn what the price of the stock will be in the future 17 days.
  - The price of the stock over the 17-day period.
  - You can buy or sell after the close of trading for the day.
  - Using this chart, you can make two trading activities: one buy and one sell.
- The maximum profit can be obtained by buying after the market closes on day \_\_\_\_\_ and sell after the market closes on day \_\_\_\_\_.
- Share your thoughts?



# THE STOCK TRADING STORY MODEL THE PROBLEM

#### Transformation

- Compute the change of price of two consecutive days.
- Store the changes in an array.
- Find the longest subarray whose values have the greatest sum.



#### PLAY WITH THE MODEL

• Given the following input instance.

| Index  | I  | 2   | 3 | 4 | 5  | 6 | 7 | 8   | 9 | 10 | П  | 12 | 13 | 14 | 15 | 16 |
|--------|----|-----|---|---|----|---|---|-----|---|----|----|----|----|----|----|----|
| Number | 19 | -20 | 8 | 4 | -4 | I | 7 | -15 | 8 | 6  | -4 | 6  | -1 | 2  | -6 | 3  |

• Find the longest subarray whose values have the greatest sum.

# MAXIMUM-SUBARRAY PROBLEM PROBLEM DEFINITION

#### Input

- Array A[1..n] containing both **positive** and **negative** numbers.

#### Output

- A contiguous subarray A[i..j] of A[1..n],  $1 \le i \le j \le n$ , such that the sum of values in A[i..j] is the largest of all contiguous subarrays of A[1..n].

- Goal
  - A contiguous subarray A[i..j] of A[1..n],  $1 \le i \le j \le n$ , such that the sum of values in A[i..j] is the largest of all contiguous subarrays of A[1..n].
- Brute-force solution
  - Step I: List all contiguous subarrays.
    - There are  $\binom{n}{2}$  or  $\binom{n}{2}$  different subarrays.

- Goal
  - A contiguous subarray A[i..j] of A[1..n],  $1 \le i \le j \le n$ , such that the sum of values in A[i..j] is the largest of all contiguous subarrays of A[1..n].
- Brute-force solution
  - **Step 2**: Calculate the sum of each subarray A[i..j].
    - For each subarray, the cost of computing the sum is the cost of traversing A[i..j].
    - Therefore, the cost of computing the sum of each subarray is  $\underline{j-i}$ , where  $i \neq j$  and  $i, j \in [1, n]$ .

- Goal
  - A contiguous subarray A[i..j] of A[1..n],  $1 \le i \le j \le n$ , such that the sum of values in A[i..j] is the largest of all contiguous subarrays of A[1..n].
- Brute-force solution
  - Step 3: Find the max of all sums.
    - The cost of finding the max of sums is  $\binom{n}{2} 1$

- Goal
  - A contiguous subarray A[i..j] of A[1..n],  $1 \le i \le j \le n$ , such that the sum of values in A[i..j] is the largest of all contiguous subarrays of A[1..n].
- Brute-force solution
  - The time complexity of brute-force solution is  $T(n) = \Omega(n^2)$ .
- Better solution?

# MAXIMUM-SUBARRAY PROBLEM DIVIDE AND CONQUER

- Apply the **three steps** 
  - **Divide** the problem into a number of subproblems that are smaller instances of the same problem.
  - Conquer the subproblems by solving them recursively.
    - If the subproblem sizes are small enough, just solve the subproblems in a straightforward manner.
  - Combine the solutions to the subproblems into the solution to the original problem.

## MAXIMUM-SUBARRAY PROBLEM DIVIDE

- Divide the original array A[1..n] into subarrays A[1..mid] and A[mid + 1..n].
  - $mid = \lfloor (1+n)/2 \rfloor$
  - Deal with A[1..mid] and A[mid + 1..n] individually by dividing them into smaller subproblems.



# MAXIMUM-SUBARRAY PROBLEM CONQUER

- Conquer the subproblems arisen from the divide step.
  - Two scenarios emerge.
    - Case I: The maximum subarray lies entirely in the left half A[1..mid] or entirely in the right half A[mid + 1..n].
    - Case 2: The maximum subarray A[i...j] happens to cross the midpoint.



# MAXIMUM-SUBARRAY PROBLEM CONQUER CASE 1

- The subproblems are the same as the original problem.
- Generally, the problem can be described as finding the maximum subarray of A[low..high].
- In this case, the indices of maximum subarray A[i..j] will always satisfy  $low \le i < j \le high$ .
- Solving case I is trivial.



# MAXIMUM-SUBARRAY PROBLEM CONQUER CASE 2

- The maximum subarray A[i..j] happens to cross the midpoint.
- In this case, the indices of maximum subarray A[i..j] will be  $low \le i \le mid < j \le high$ , which is **NOT** exactly the same as the original problem.
- In other words, solution consists of two arrays: A[i..mid] and A[mid + 1..j].



# MAXIMUM-SUBARRAY PROBLEM CONQUER CASE 2 (CONT'D)

- The solution A[i..j] crossing the midpoint means A[mid] is included in A[i..j].
- Start at A[mid].
  - Move i to the left side to find subarray A[i..mid] that has the greatest sum, max-left.
  - Move j to the right side to find subarray A[mid + 1..j] that has the greatest sum, max-right.
- The maximum sum is  $max-left + max-right_{inid}$

|         |    |    |     |    |    |     |     | <u> </u> |    |    |    |    |     |    |    |    |
|---------|----|----|-----|----|----|-----|-----|----------|----|----|----|----|-----|----|----|----|
| Index   | 1  | 2  | 3   | 4  | 5  | 6   | 7   | 8        | 9  | 10 | 11 | 12 | 13  | 14 | 15 | 16 |
| Array A | 13 | -3 | -25 | 20 | -3 | -16 | -23 | 18       | 20 | -7 | 12 | -5 | -22 | 15 | -4 | 7  |
|         |    |    |     |    |    | _   |     |          | _  |    |    |    |     |    |    |    |

 $\boldsymbol{n}$ 

## MAXIMUM-SUBARRAY PROBLEM COMBINE

- Combine the solutions obtained from case I and case 2. Pick the greatest sum.
  - Case I
    - A[i..j] exists entirely in the left half. The maximum sum is left-sum = 20.
    - A[i..j] exists entirely in the right half. The maximum sum is right-sum=20-7+12=25.
  - Case 2
    - A[i..j] crosses the midpoint. The maximum sum is crosssum = 18 + 20 7 + 12 = 43.

| Index   | 1        | 2  | 3   | 4  | 5  | 6   | 7   | 8        | 9  | 10 | 11 | 12 | 13  | 14 | 15 | 16       |
|---------|----------|----|-----|----|----|-----|-----|----------|----|----|----|----|-----|----|----|----------|
| Array A | 13       | -3 | -25 | 20 | -3 | -16 | -23 | 18       | 20 | -7 | 12 | -5 | -22 | 15 | -4 | 7        |
|         |          |    |     |    |    |     |     |          |    |    |    |    |     |    |    |          |
|         |          |    |     |    |    |     |     | <b>↑</b> |    |    |    |    |     |    |    | <b>↑</b> |
|         | $m{mid}$ |    |     |    |    |     |     |          |    |    | n  |    |     |    |    |          |

## MAXIMUM-SUBARRAY PROBLEM THE ALGORITHM

- The FIND-MAXIMUM-SUBARRAY algorithm
  - Use  $\Theta(1)$  to denote a constant time cost.
  - Use f (high low +
    1) to denote the cost
    of line 6
  - Use probability  $P_i$  to denote the probability of conditions being true at line 7 and 9.

| FII | ND-MAXIMUM-SUBARRAY(A, low, high)                                                           | Cost        | Time                                            |
|-----|---------------------------------------------------------------------------------------------|-------------|-------------------------------------------------|
| I   | $\mathbf{if}\ high == low$                                                                  | Θ(1)        | base                                            |
| 2   | <b>return</b> (low, high, A[low]) // base case                                              | $\Theta(1)$ | base                                            |
| 3   | else $mid = \lfloor (low + high)/2 \rfloor$                                                 | $\Theta(1)$ | 1                                               |
| 4   | (left-low, left-high, left-sum) =                                                           | T(mid -     | 1                                               |
|     | $FIND	ext{-}MAXIMUM	ext{-}SUBARRAY(A, low, mid)$                                            | low + 1)    |                                                 |
| 5   | (right-low, right-high, right-sum) =                                                        | T(high      | 1                                               |
|     | FIND-MAXIMUM-SUBARRAY(A, mid + 1, high)                                                     | -mid)       |                                                 |
| 6   | (cross-low, cross-high, cross-sum) =                                                        | f(high -    | 1                                               |
|     | FIND-MAXIMUM-CROSSING-SUBARRAY(A, low, mid, high)                                           | low + 1)    |                                                 |
| 7   | <b>if</b> $left$ - $sum \ge right$ - $sum$ <b>and</b> $left$ - $sum \ge cross$ - $sum$      | $\Theta(1)$ | 1                                               |
| 8   | return (left-low, left-high, left-sum)                                                      | $\Theta(1)$ | $P_1$                                           |
| 9   | <b>elseif</b> $right$ - $sum \ge left$ - $sum$ <b>and</b> $right$ - $sum \ge cross$ - $sum$ | $\Theta(1)$ | $P_1$                                           |
| 10  | return (right-low, right-high, right-sum)                                                   | Θ(1)        | $P_2$                                           |
| 11  | else return (cross-low, cross-high, cross-sum)                                              | Θ(1)        | $\begin{vmatrix} 1 - P_1 \\ -P_2 \end{vmatrix}$ |

• Derive the running time function of T(high - low + 1)

| FII | $ND	ext{-}MAXIMUM	ext{-}SUBARRAY(A, low, high)$                                             | Cost        | Time                                             |  |  |  |  |  |
|-----|---------------------------------------------------------------------------------------------|-------------|--------------------------------------------------|--|--|--|--|--|
| I   | $if \ high == low$                                                                          | $\Theta(1)$ | base                                             |  |  |  |  |  |
| 2   | <b>return</b> $(low, high, A[low])$ // base case                                            | $\Theta(1)$ | base                                             |  |  |  |  |  |
| 3   | else $mid = \lfloor (low + high)/2 \rfloor$                                                 | $\Theta(1)$ | 1                                                |  |  |  |  |  |
| 4   | (left-low, left-high, left-sum) =                                                           | T(mid -     | 1                                                |  |  |  |  |  |
| _   | FIND-MAXIMUM-SUBARRAY(A, low, mid)                                                          | low + 1)    | 1                                                |  |  |  |  |  |
| 5   | (right-low,right-high,right-sum) =                                                          | T(high      | 1                                                |  |  |  |  |  |
|     | FIND-MAXIMUM-SUBARRAY(A, mid + 1, high)                                                     | -mid)       | 1                                                |  |  |  |  |  |
| 6   | (cross-low, cross-high, cross-sum) =                                                        | f(high -    | 1                                                |  |  |  |  |  |
|     | FIND-MAXIMUM-CROSSING-SUBARRAY(A, low, mid, high)                                           | low + 1)    | ) 1                                              |  |  |  |  |  |
| 7   | if $left$ -sum $\geq right$ -sum and $left$ -sum $\geq cross$ -sum                          | $\Theta(1)$ | 1                                                |  |  |  |  |  |
| 8   | <b>return</b> (left-low, left-high, left-sum)                                               | $\Theta(1)$ | $P_1$                                            |  |  |  |  |  |
| 9   | <b>elseif</b> $right$ - $sum \ge left$ - $sum$ <b>and</b> $right$ - $sum \ge cross$ - $sum$ | $\Theta(1)$ | $P_1$                                            |  |  |  |  |  |
| 10  | return (right-low, right-high, right-sum)                                                   | Θ(1)        | $P_2$                                            |  |  |  |  |  |
| 11  | else return (cross-low, cross-high, cross-sum)                                              | Θ(1)        | $ \begin{array}{c} 1 - P_1 \\ -P_2 \end{array} $ |  |  |  |  |  |

```
• Let low = 1 and let \ high = n.

n = 
T(high - low + 1)
= \Theta(1) + 
T(mid - low + 1) + 
T(high - mid) + 
f(high - low + 1)
```

| FII | ND-MAXIMUM-SUBARRAY(A, low, high)                                                           | Cost        | Time                                             |  |  |  |  |
|-----|---------------------------------------------------------------------------------------------|-------------|--------------------------------------------------|--|--|--|--|
| I   | $\mathbf{if}\ high == low$                                                                  | $\Theta(1)$ | base                                             |  |  |  |  |
| 2   | return (low, high, A[low]) // base case                                                     | $\Theta(1)$ | base                                             |  |  |  |  |
| 3   | else $mid = \lfloor (low + high)/2 \rfloor$                                                 | $\Theta(1)$ | 1                                                |  |  |  |  |
| 4   | (left-low, left-high, left-sum) =                                                           | T(mid -     | 1                                                |  |  |  |  |
|     | $FIND	ext{-}MAXIMUM	ext{-}SUBARRAY(A, low, mid)$                                            | low + 1)    | 1                                                |  |  |  |  |
| 5   | (right-low, right-high, right-sum) =                                                        | T(high      | 1                                                |  |  |  |  |
|     | FIND-MAXIMUM-SUBARRAY(A, mid + 1, high)                                                     | -mid)       | 1                                                |  |  |  |  |
| 6   | (cross-low, cross-high, cross-sum) =                                                        | f(high -    | 1                                                |  |  |  |  |
|     | FIND-MAXIMUM-CROSSING-SUBARRAY(A, low, mid, high)                                           | low + 1)    | 1                                                |  |  |  |  |
| 7   | <b>if</b> $left$ - $sum \ge right$ - $sum$ <b>and</b> $left$ - $sum \ge cross$ - $sum$      | $\Theta(1)$ | 1                                                |  |  |  |  |
| 8   | <b>return</b> (left-low, left-high, left-sum)                                               | $\Theta(1)$ | $ P_1 $                                          |  |  |  |  |
| 9   | <b>elseif</b> $right$ - $sum \ge left$ - $sum$ <b>and</b> $right$ - $sum \ge cross$ - $sum$ | $\Theta(1)$ | $P_1$                                            |  |  |  |  |
| 10  | return (right-low, right-high, right-sum)                                                   | Θ(1)        | $P_2$                                            |  |  |  |  |
| 11  | else return (cross-low, cross-high, cross-sum)                                              | Θ(1)        | $ \begin{array}{c} 1 - P_1 \\ -P_2 \end{array} $ |  |  |  |  |

```
• Let low = 1 and let high = n. mid = _____.
```

• mid = (n+1 is even)

(n+1 is odd)

| FI | ND-MAXIMUM-SUBARRAY(A, low, high)                                                           | Cost        | Time                                             |
|----|---------------------------------------------------------------------------------------------|-------------|--------------------------------------------------|
|    | $\mathbf{if}\ high == low$                                                                  | Θ(1)        | base                                             |
| 2  | return (low, high, A[low]) // base case                                                     | $\Theta(1)$ | base                                             |
| 3  | else $mid = \lfloor (low + high)/2 \rfloor$                                                 | $\Theta(1)$ | 1                                                |
| 4  | (left-low, left-high, left-sum) =                                                           | T(mid -     | 1                                                |
|    | FIND-MAXIMUM-SUBARRAY(A, low, mid)                                                          | low + 1)    | 1                                                |
| 5  | (right-low,right-high,right-sum) =                                                          | T(high      | 1                                                |
|    | FIND-MAXIMUM-SUBARRAY(A, mid + 1, high)                                                     | -mid)       | 1                                                |
| 6  | (cross-low, cross-high, cross-sum) =                                                        | f(high -    | 1                                                |
|    | FIND-MAXIMUM-CROSSING-SUBARRAY(A, low, mid, high)                                           | low + 1)    | 1                                                |
| 7  | <b>if</b> $left$ - $sum \ge right$ - $sum$ <b>and</b> $left$ - $sum \ge cross$ - $sum$      | $\Theta(1)$ | 1                                                |
| 8  | <b>return</b> (left-low, left-high, left-sum)                                               | $\Theta(1)$ | $P_1$                                            |
| 9  | <b>elseif</b> $right$ - $sum \ge left$ - $sum$ <b>and</b> $right$ - $sum \ge cross$ - $sum$ | $\Theta(1)$ | $P_1$                                            |
| 10 | return (right-low, right-high, right-sum)                                                   | Θ(1)        | $P_2$                                            |
|    | else return (cross-low, cross-high, cross-sum)                                              | Θ(1)        | $ \begin{array}{c} 1 - P_1 \\ -P_2 \end{array} $ |

The running time function

$$T(n)$$

$$= \Theta(1) + T\left(\frac{n+1}{2}\right) +$$

$$T(\frac{n-1}{2}) + f(n) \quad (n+1 \text{ is even})$$

$$= \Theta(1) + 2T\left(\frac{n}{2}\right) + f(n) \quad (n+1 \text{ is odd})$$

• Tolerate sloppiness  $T(n) = 2T\left(\frac{n}{2}\right) + f(n)$ 

|                | FIN      | ND-MAXIMUM-SUBARRAY(A, low, high)                                                           | Cost        | Time                                             |
|----------------|----------|---------------------------------------------------------------------------------------------|-------------|--------------------------------------------------|
|                | I        | $\mathbf{if}\ high == low$                                                                  | $\Theta(1)$ | base                                             |
|                | 2        | return (low, high, A[low]) // base case                                                     | $\Theta(1)$ | base                                             |
|                | 3        | $else mid = \lfloor (low + high)/2 \rfloor$                                                 | $\Theta(1)$ | 1                                                |
|                | 4        | (left-low, left-high, left-sum) =                                                           | T(mid -     | 1                                                |
|                |          | $FIND	ext{-}MAXIMUM	ext{-}SUBARRAY(A, low, mid)$                                            | low + 1)    | 1                                                |
|                | 5        | (right-low,right-high,right-sum) =                                                          | T(high      | 1                                                |
| ı)             | <u> </u> | FIND-MAXIMUM-SUBARRAY(A, $mid + 1$ , $high$ )                                               | -mid)       | 1                                                |
|                | 6        | (cross-low, cross-high, cross-sum) =                                                        | f(high -    | . 1                                              |
|                | 0        |                                                                                             | low + 1)    | 1                                                |
| <sub>1</sub> ) | 7        | <b>if</b> $left$ - $sum \ge right$ - $sum$ <b>and</b> $left$ - $sum \ge cross$ - $sum$      | $\Theta(1)$ | 1                                                |
|                | 8        | <b>return</b> (left-low, left-high, left-sum)                                               | $\Theta(1)$ | $P_1$                                            |
|                | 9        | <b>elseif</b> $right$ - $sum \ge left$ - $sum$ <b>and</b> $right$ - $sum \ge cross$ - $sum$ | $\Theta(1)$ | $P_1$                                            |
|                | 10       | return (right-low, right-high, right-sum)                                                   | $\Theta(1)$ | $P_2$                                            |
|                | 11       | else return (cross-low, cross-high, cross-sum)                                              | Θ(1)        | $ \begin{array}{c} 1 - P_1 \\ -P_2 \end{array} $ |

- Complete the Cost and Time columns.
  - Consider ONLY the worst-case scenario

| FI | ND-MAX-CROSSING-SUBARRAY(A, low, mid, high)                 | Cost        | Time<br>(Worst-case) |
|----|-------------------------------------------------------------|-------------|----------------------|
| I  | $left$ - $sum = -\infty$                                    | Θ(1)        | 1                    |
| 2  | sum = 0                                                     | $\Theta(1)$ |                      |
| 3  | <b>for</b> $i = mid$ <b>downto</b> $low$                    | $\Theta(1)$ |                      |
| 4  | sum = sum + A[i]                                            | $\Theta(1)$ |                      |
| 5  | <b>if</b> $sum > left$ - $sum$                              | $\Theta(1)$ |                      |
| 6  | left- $sum = sum$                                           | $\Theta(1)$ |                      |
| 7  | max- $left = i$                                             | $\Theta(1)$ |                      |
| 8  | $right$ - $sum = -\infty$                                   | $\Theta(1)$ |                      |
| 9  | sum = 0                                                     | $\Theta(1)$ |                      |
| 10 | $\mathbf{for} \ j = mid + 1 \ \mathbf{to} \ high$           | $\Theta(1)$ |                      |
| 11 | sum = sum + A[j]                                            | $\Theta(1)$ |                      |
| 12 | if sum > right-sum                                          | Θ(1)        |                      |
| 13 | right- $sum = sum$                                          | Θ(1)        |                      |
| 14 | max- $right = j$                                            | Θ(1)        |                      |
| 15 | <b>return</b> $(max-left, max-right, left-sum + right-sum)$ | Θ(1)        |                      |

- Complete the Cost and Time columns.
  - Consider ONLY the worst-case scenario

| E I I | IND-MAX-CROSSING-SUBARRAY(A, low, mid, high)                |             | Time             |
|-------|-------------------------------------------------------------|-------------|------------------|
|       | VD-MAX-CROSSING-SOBARRAI (A, tow, mta, mgn)                 | Cost        | (Worst-case)     |
| I     | $left$ - $sum = -\infty$                                    | $\Theta(1)$ | 1                |
| 2     | sum = 0                                                     | $\Theta(1)$ | 1                |
| 3     | for i = mid downto low                                      | $\Theta(1)$ | (mid - low + 2)  |
| 4     | sum = sum + A[i]                                            | $\Theta(1)$ | (mid - low + 1)  |
| 5     | <b>if</b> $sum > left$ - $sum$                              | $\Theta(1)$ | (mid - low + 1)  |
| 6     | left- $sum = sum$                                           | $\Theta(1)$ | (mid - low + 1)  |
| 7     | max- $left = i$                                             | $\Theta(1)$ | (mid - low + 1)  |
| 8     | $right$ - $sum = -\infty$                                   | $\Theta(1)$ | 1                |
| 9     | sum = 0                                                     | $\Theta(1)$ | 1                |
| 10    | $\mathbf{for}j = mid + 1\mathbf{to}high$                    | $\Theta(1)$ | (high - mid + 1) |
| П     | sum = sum + A[j]                                            | $\Theta(1)$ | (high - mid)     |
| 12    | <b>if</b> $sum > right$ - $sum$                             | $\Theta(1)$ | (high - mid)     |
| 13    | right- $sum = sum$                                          | $\Theta(1)$ | (high - mid)     |
| 14    | max- $right = j$                                            | $\Theta(1)$ | (high - mid)     |
| 15    | <b>return</b> $(max-left, max-right, left-sum + right-sum)$ | $\Theta(1)$ | 1                |

• Running time f(high - low + 1)

| E I I | <b>ND-MAX-CROSSING-SUBARRAY</b> (A, low, mid, high)         | Cost        | Time             |
|-------|-------------------------------------------------------------|-------------|------------------|
| 1.11  | VD-MAX-CROSSING-SOBARRAI (A, tow, mta, ntgn)                | Cost        | (Worst-case)     |
|       | $left$ - $sum = -\infty$                                    | $\Theta(1)$ | 1                |
| 2     | sum = 0                                                     | $\Theta(1)$ | 1                |
| 3     | $\mathbf{for}\ i = mid\ \mathbf{downto}\ low$               | $\Theta(1)$ | (mid - low + 2)  |
| 4     | sum = sum + A[i]                                            | $\Theta(1)$ | (mid - low + 1)  |
| 5     | <b>if</b> $sum > left$ - $sum$                              | $\Theta(1)$ | (mid - low + 1)  |
| 6     | left- $sum = sum$                                           | $\Theta(1)$ | (mid - low + 1)  |
| 7     | max- $left = i$                                             | $\Theta(1)$ | (mid - low + 1)  |
| 8     | $right$ - $sum = -\infty$                                   | $\Theta(1)$ | 1                |
| 9     | sum = 0                                                     | $\Theta(1)$ | 1                |
| 10    | $\mathbf{for} \ j = mid + 1 \ \mathbf{to} \ high$           | $\Theta(1)$ | (high - mid + 1) |
|       | sum = sum + A[j]                                            | $\Theta(1)$ | (high - mid)     |
| 12    | <b>if</b> $sum > right$ - $sum$                             | $\Theta(1)$ | (high - mid)     |
| 13    | right- $sum = sum$                                          | Θ(1)        | (high - mid)     |
| 14    | max- $right = j$                                            | Θ(1)        | (high - mid)     |
| 15    | <b>return</b> $(max-left, max-right, left-sum + right-sum)$ | Θ(1)        | 1                |

- Let low = 1, high = n.
- f(high low + 1)= f(n)=

| E I I | <b>ND-MAX-CROSSING-SUBARRAY</b> (A, low, mid, high)         | Cost        | Time             |
|-------|-------------------------------------------------------------|-------------|------------------|
| 1.11  | VD-MAX-CROSSING-SOBARRAI (A, tow, mta, ntgn)                | Cost        | (Worst-case)     |
| I     | $left$ - $sum = -\infty$                                    | $\Theta(1)$ | 1                |
| 2     | sum = 0                                                     | $\Theta(1)$ | 1                |
| 3     | $\mathbf{for}\ i = mid\ \mathbf{downto}\ low$               | $\Theta(1)$ | (mid - low + 2)  |
| 4     | sum = sum + A[i]                                            | $\Theta(1)$ | (mid - low + 1)  |
| 5     | <b>if</b> $sum > left$ - $sum$                              | $\Theta(1)$ | (mid - low + 1)  |
| 6     | left- $sum = sum$                                           | $\Theta(1)$ | (mid - low + 1)  |
| 7     | max- $left = i$                                             | $\Theta(1)$ | (mid - low + 1)  |
| 8     | $right$ - $sum = -\infty$                                   | $\Theta(1)$ | 1                |
| 9     | sum = 0                                                     | $\Theta(1)$ | 1                |
| 10    | $\mathbf{for} \ j = mid + 1 \ \mathbf{to} \ high$           | $\Theta(1)$ | (high - mid + 1) |
|       | sum = sum + A[j]                                            | $\Theta(1)$ | (high - mid)     |
| 12    | <b>if</b> $sum > right$ - $sum$                             | $\Theta(1)$ | (high - mid)     |
| 13    | right- $sum = sum$                                          | Θ(1)        | (high – mid)     |
| 14    | max- $right = j$                                            | Θ(1)        | (high - mid)     |
| 15    | <b>return</b> $(max-left, max-right, left-sum + right-sum)$ | Θ(1)        | 1                |

## MAXIMUM-SUBARRAY PROBLEM TIME COMPLEXITY

- Combine the recursive function T(n) and f(n).
- The recursive running time of the FIND-MAXIMUM-SUBARRAY algorithm is

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ 2T(n/2) + \Theta(n) & \text{if } n > 1 \end{cases}$$

#### NEXT UP STRASSEN'S ALGORITHM

#### REFERENCE

- <a href="https://www.vectorstock.com/royalty-free-vector/stacks-of-coins-and-money-bag-vector-log9019">https://www.vectorstock.com/royalty-free-vector/stacks-of-coins-and-money-bag-vector-log9019</a>
- The stock price chart is a screenshot from the textbook.