

www.ti.com

SLOS434I-FEBRUARY 2004-REVISED JULY 2006

LOW-VOLTAGE RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS

Check for Samples: LMV821 SINGLE, LMV822 DUAL, LMV824 QUAD

FEATURES

- 2.5-V, 2.7-V, and 5-V Performance
- –40°C to 125°C Operation
- No Crossover Distortion
- Low Supply Current at V_{CC+} = 5 V:
 - LMV821...0.3 mA Typ
 - LMV822...0.5 mA Typ
 - LMV824...1 mA Typ
- Rail-to-Rail Output Swing
- Gain Bandwidth of 5.5 MHz Typ at 5 V
- Slew Rate of 1.9 V/µs Typ at 5 V

DESCRIPTION/ ORDERING INFORMATION

The LMV821 single, LMV822 dual, and LMV824 quad devices are low-voltage (2.5 V to 5.5 V), low-power commodity operational amplifiers. Electrical characteristics are very similar to the LMV3xx operational amplifiers (low supply current, rail-to-rail outputs, input common-mode range that includes ground). However, the LMV8xx devices offer a higher bandwidth (5.5 MHz typical) and faster slew rate (1.9 V/µs typical).

The LMV8xx devices are cost-effective solutions for applications requiring low-voltage/low-power operation and space-saving considerations. The LMV821 is available in the ultra-small DCK package, which is approximately half the size of SOT-23-5. The DCK package saves space on printed circuit boards and enables the design of small portable electronic devices (cordless and cellular phones, laptops, PDAs, PCMIA). It also allows the designer to place the device closer to the signal source to reduce noise pickup and increase signal integrity.

The LMV8xx devices are characterized for operation from -40°C to 85°C. The LMV8xxI devices are characterized for operation from -40°C to 125°C.

LMV824...D, DGV, OR PW PACKAGE (TOP VIEW)

LMV822...D OR DGK PACKAGE (TOP VIEW)

LMV821... DBV OR DCK PACKAGE (TOP VIEW)

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLOS434I - FEBRUARY 2004 - REVISED JULY 2006

www.ti.com

ORDERING INFORMATION

T _A		PACKAGE ⁽¹⁾		ORDERABLE PART NUMBER	TOP-SIDE MARKING (2)
		SC-70 – DCK	Reel of 3000	LMV821DCKR	DV
	Cin ala	SC-70 - DCK	Reel of 250	LMV821DCKT	RY_
	Single	COT 22 DDV	Reel of 3000	LMV821DBVR	RB8
		SOT-23 – DBV	Reel of 250	LMV821DBVT	KDO_
		SOIC - D	Tube of 75	LMV822D	MV822
	Duel	3010 - D	Reel of 2500	LMV822DR	IVIVOZZ
-40°C to 85°C	Dual	MSOP/VSSOP – DGK	Tube of 100	LMV822DGK	DA
		W30P/V350P - DGK	Reel of 2500	LMV822DGKR	RA_
		SOIC - D	Tube of 50	LMV824D	LMV824
		201C - D	Reel of 2500	LMV824DR	LIVI V 024
	Quad	TCCOD DW	Tube of 90	LMV824PW	M)/024
		1350P – PW	Reel of 2000	LMV824PWR	MV824
	TSSOP - PW TVSOP - DGV SC-70 - DCK	TVSOP - DGV	Reel of 2000	LMV824DGVR	MV824
		CC 70 DCV	Reel of 3000	LMV821IDCKR	D.7
	Single	30-70 - DCK	Reel of 250	LMV821IDCKT	RZ_
	Single	COT 22 DDV	Reel of 3000	LMV821IDBVR	DD4
		SOT-23 – DBV	Reel of 250	LMV821IDBVT	RB1_
		SOIC - D	Tube of 75	LMV822ID	MV822I
	Dual	201C - D	Reel of 2500	LMV822IDR	WIV 622I
-40°C to 125°C	Duai	MSOP/VSSOP – DGK	Tube of 100	LMV822IDGK	R8_
		WISOP/VSSOP - DGK	Reel of 2500	LMV822IDGKR	Ko_
		SOIC - D	Tube of 50	LMV824ID	LMV824I
		201C - D	Reel of 2500	LMV824IDR	LIVI V 6241
	Quad	TSSOP – PW	Tube of 90	LMV824IPW	M)/924I
		13307 - PW	Reel of 2000	LMV824IPWR	MV824I
		TVSOP - DGV	Reel of 2000	LMV824IDGVR	MV824I

Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

DBV/DCK/DGK: The actual top-side marking has one additional character that designates the assembly/test site.

SLOS434I-FEBRUARY 2004-REVISED JULY 2006

Figure 1. SYMBOL (EACH AMPLIFIER)

Figure 2. LMV824 SIMPLIFIED SCHEMATIC

SLOS434I-FEBRUARY 2004-REVISED JULY 2006

www.ti.com

Absolute Maximum Ratings(1)

over operating free-air temperature range (unless otherwise noted)

				MIN	MAX	UNIT
V_{CC}	Supply voltage (2)				5.5	V
V_{ID}	Differential input voltage (3)				$\pm V_{CC}$	V
VI	Input voltage range (either input)			V _{CC} -	V _{CC+}	V
	Duration of output short circuit (one amplifier) to ground (4)	At or below $T_A = 2$	25°C, V _{CC} ≤ 5.5 V	U	Inlimited	
		Dinaskaga	8 pin		97	
		D package	14 pin		86	
		DBV package	·		206	
θ_{JA}	Package thermal impedance (5) (6)	DCK package			252	°C/W
		DGK package			172	
		DGV package			127	
		PW package			113	
TJ	Operating virtual junction temperature				150	°C
T _{stg}	Storage temperature range			-65	150	°C

Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- All voltage values (except differential voltages and V_{CC} specified for the measurement of I_{OS}) are with respect to the network GND.
- Differential voltages are at IN+ with respect to IN-.
- Short circuits from outputs to V_{CC} can cause excessive heating and eventual destruction. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.
- The package thermal impedance is calculated in accordance with JESD 51-7.

Recommended Operating Conditions

	· · · ·	MIN	MAX	UNIT
V_{CC}	Supply voltage (single-supply operation)	2.5	5	V
т	Charating free six temperature	-40	125	°C
IA	Operating free-air temperature LMV8xx	-40	85	Ü

www.ti.com

SLOS434I - FEBRUARY 2004 - REVISED JULY 2006

LMV8xx 2.5-V Electrical Characteristics

 $V_{CC+} = 2.5 \text{ V}$, $V_{CC-} = 0 \text{ V}$, $V_{IC} = 1 \text{ V}$, $V_{O} = 1.25 \text{ V}$, and $R_L > 1 \text{ M}\Omega$ (unless otherwise noted)

	DADAMETED	TEST CONDITIONS		т	L	.MV8xx		UNIT
	PARAMETER	TEST CONDITIONS		T _A	MIN	TYP	MAX	UNIT
\/	Input offset voltege			25°C		1	3.5	mV
V _{IO}	Input offset voltage			-40°C to 85°C			4	mv
			High level	25°C	2.3	2.37		
	V 25 V B 600 O to 1.25 V	r light level	-40°C to 85°C	2.2				
	$V_{CC+} = 2.5 \text{ V}, R_L = 600 \Omega \text{ to } 1.25 \text{ V}$	Low level	25°C		0.13	0.2		
V	Output owing		Low level	-40°C to 85°C			0.3	V
Vo	Output swing		High lovel	25°C	2.4	2.46		V
		High level	-40°C to 85°C	2.3				
		$V_{CC+} = 2.5 \text{ V}, R_L = 2 \text{ k}\Omega \text{ to } 1.25 \text{ V}$	25 V	25°C		0.08	0.12	
			Low level	-40°C to 85°C			0.2	

LMV8xxI 2.5-V Electrical Characteristics

 V_{CC+} = 2.5 V, V_{CC-} = 0 V, V_{IC} = 1 V, V_{O} = 1.25 V, and R_L > 1 M Ω (unless otherwise noted)

	DADAMETED	TEST COMPITIONS		_	LMV8xxI			UNIT
	PARAMETER	TEST CONDITIONS		T _A	MIN	TYP	MAX	UNIT
.,	lanut affact valtage			25°C		1	3.5	\/
V_{IO}	Input offset voltage			-40°C to 125°C			5.5	mV
			High lovel	25°C	2.28	2.37		
	V = 2.5 V B = 600 O to 1.25 V	High level	-40°C to 125°C	2.18				
		$V_{CC+} = 2.5 \text{ V}, R_L = 600 \Omega \text{ to } 1.25 \text{ V}$	1 11	25°C		0.13	0.22	
.,	Outrot rolling		Low level	-40°C to 125°C			0.32	.,
Vo	Output swing		High lovel	25°C	2.38	2.46		V
	V_{CC+} = 2.5 V, R_L = 2 k Ω to 1.25 V	V 25 V D 2 kO to 4 25 V	High level	-40°C to 125°C	2.28			
		Lowlovel	25°C		0.08	0.14		
			Low level	-40°C to 125°C			0.22	

www.ti.com

SLOS434I - FEBRUARY 2004 - REVISED JULY 2006

LMV8xx 2.7-V Electrical Characteristics

 V_{CC+} = 2.7 V, V_{CC-} = 0 V, V_{IC} = 1 V, V_{O} = 1.35 V, and R_L > 1 M Ω (unless otherwise noted)

	PARAMETER	TEST CONDIT	IONS	т.	L	.MV8xx		UNI
	PARAMETEK	IESI CONDII	IONS	T _A	MIN	TYP	MAX	UNI
.,	Input offset voltege			25°C		1	3.5	mV
V _{IO}	Input offset voltage			-40°C to 85°C			4	IIIV
α_{VIO}	Average temperature coefficient of input offset voltage			25°C		1		μV/°
	Input bing gurrant			25°C		30	90	~ Λ
I _{IB}	Input bias current			-40°C to 85°C			140	nΑ
	lanut offeet eurrent			25°C		0.5	30	~ ^
I _{IO}	Input offset current			-40°C to 85°C			50	nA
CMDD	Common made rejection retin	\/ - 0 to 1.7\/		25°C	70	85		dE
CIVIKK	Common-mode rejection ratio	$V_{IC} = 0$ to 1.7 V		-40°C to 85°C	68			uE
ılı	Positive supply-voltage	$V_{CC+} = 1.7 \text{ V to 4 V, } V_{CC}$	_ = −1 V,	25°C	75	85		dE
+k _{SVR}	rejection ratio	$V_{O} = 0, V_{IC} = 0$		-40°C to 85°C	70			uE
k	Negative supply-voltage	V _{CC+} = 1.7 V, V _{CC-} = -1	V to -3.3 V,	25°C	73	85		dE
–k _{SVR}	rejection ratio	$V_{O} = 0, V_{IC} = 0$		-40°C to 85°C	70			ae
V _{ICR}	Common-mode input voltage range	CMRR ≥ 50 dB		25°C	-0.2 to 1.9	-0.3 to 2		V
		$R_L = 600 \Omega \text{ to } 1.35 \text{ V},$	Coursing	25°C	90	100		
		$V_0 = 1.35 \text{ V to } 2.2 \text{ V}$	V	-40°C to 85°C	85			
		$R_1 = 600 \Omega \text{ to } 1.35 \text{ V},$		25°C	85	90		į.
^	Large-signal voltage	$V_0 = 1.35 \text{ V to } 0.5 \text{ V}$	Sinking	-40°C to 85°C	80			-11
A_{V}	amplification	$R_1 = 2 k\Omega \text{ to } 1.35 \text{ V},$	Carmain	25°C	95	100		dl
		$V_0 = 1.35 \text{ V to } 2.2 \text{ V}$	Sourcing	-40°C to 85°C	90			
		$R_1 = 2 k\Omega \text{ to } 1.35 \text{ V},$	Cipleina	25°C	90	95		
		$V_0 = 1.35 \text{ V to } 0.5 \text{ V}$	Sinking	-40°C to 85°C	85			
			I link lavel	25°C	2.5	2.58		
		$V_{CC+} = 2.7 \text{ V},$	High level	-40°C to 85°C	2.4			
		$R_L = 600 \Omega \text{ to } 1.35 \text{ V}$	Lavulavial	25°C		0.13	0.2	
. ,	Outrout audin a		Low level	-40°C to 85°C			0.3	V
V _O	Output swing		LP als Laura	25°C	2.6	2.66		V
		$V_{CC+} = 2.7 \text{ V},$	High level	-40°C to 85°C	2.5			
		$R_L = 2 k\Omega$ to 1.35 V	1 11	25°C		0.08	0.12	
			Low level	-40°C to 85°C			0.2	
ı	Output aurrant	V _O = 0 V	Sourcing	25°C	12	16		
lo	Output current	V _O = 2.7 V	Sinking	25°C	12	26		m.
		L MV/004	·	25°C		0.22	0.3	
		LMV821		-40°C to 85°C			0.5	
	Complex accument	LMV/000 /hatharas PC		25°C		0.45	0.6	6 3 1
cc	Supply current	LMV822 (both amplifiers))	-40°C to 85°C			0.8	
		LAAV (00.4 / - 11.7	>	25°C		0.72	1	
		LMV824 (all four amplifie	rs)	-40°C to 85°C			1.2	

www.ti.com

SLOS434I-FEBRUARY 2004-REVISED JULY 2006

LMV8xx 2.7-V Electrical Characteristics (continued)

 V_{CC+} = 2.7 V, V_{CC-} = 0 V, V_{IC} = 1 V, V_{O} = 1.35 V, and R_{L} > 1 $M\Omega$ (unless otherwise noted)

	DADAMETER	TEST COMPLIANCE	_	LMV8xx	LINUT
	PARAMETER	TEST CONDITIONS	T _A	MIN TYP MAX	UNIT
SR	Slew rate ⁽¹⁾		25°C	1.7	V/µs
GBW	Gain bandwidth product	(2)	25°C	5	MHz
Φ _m	Phase margin	(2)	25°C	60	deg
	Gain margin	(2)	25°C	8.6	dB
	Amplifier-to-amplifier isolation	$V_{CC+} = 5 \text{ V}, R_L = 100 \text{ k}\Omega \text{ to } 2.5 \text{ V}^{(3)}$	25°C	135	dB
V _n	Equivalent input noise voltage	f = 1 kHz, V _{IC} = 1 V	25°C	45	nV/√ Hz
In	Equivalent input noise current	f = 1 kHz	25°C	0.18	pA/√Hz
THD	Total harmonic distortion	$f = 1 \text{ kHz}, A_V = -2, R_L = 10 \text{ k}\Omega, V_O = 4.1 V_{p-p}$	25°C	0.01	%

 ⁽¹⁾ Connected as voltage follower with 1-V step input. Value specified is the slower of the positive and negative slew rates.
 (2) 40-dB closed-loop dc gain, C_L = 22 pF
 (3) Each amplifier excited in turn with 1 kHz to produce V_O = 3 V_{p-p}

www.ti.com

SLOS434I - FEBRUARY 2004 - REVISED JULY 2006

LMV8xxI 2.7-V Electrical Characteristics

 V_{CC+} = 2.7 V, V_{CC-} = 0 V, V_{IC} = 1 V, V_{O} = 1.35 V, and R_L > 1 M Ω (unless otherwise noted)

	PARAMETER	TEST CONDIT	IONS	T _A LMV8xxI	MIN 70 70 73 70 70 73 70 70 73 70 70 70 70 85 85 80 95 90 90 90 2.5 2.4 2.5 2.4 2.6 2.5 2.12 12		UNIT	
	FANAMETER	TEST CONDIT	10143	'A	MIN	TYP	MAX	UNIT
V _{IO}	Input offset voltage			25°C		1	3.5	mV
VIO	input onset voltage			-40°C to 125°C			5.5	IIIV
α_{VIO}	Average temperature coefficient of input offset voltage			25°C		1		μV/°C
	lanut higa gurrant			25°C		30	90	~ Λ
I _{IB}	Input bias current			-40°C to 125°C			140	nA
	Input offset current			25°C		0.5	30	nA
I _{IO}	input onset current			-40°C to 125°C			50	IIA
CMDD	Common mode rejection retio	V = 0 to 1.7.V		25°C	70	85		٩D
CIVIKK	Common-mode rejection ratio	$V_{IC} = 0 \text{ to } 1.7 \text{ V}$		-40°C to 125°C	68			dB
ılı	Positive supply-voltage	$V_{CC+} = 1.7 \text{ V to 4 V, } V_{CC}$	_ = −1 V,	25°C	75	85		dB
+k _{SVR}	rejection ratio	$V_{O} = 0, V_{IC} = 0$		-40°C to 125°C	70			uБ
1.	Negative supply-voltage	V _{CC+} = 1.7 V, V _{CC-} = -1	V to -3.3 V,	25°C	73	85		4D
–k _{SVR}	rejection ratio	$V_{O} = 0, V_{IC} = 0$		-40°C to 125°C	70			dB
V _{ICR}	Common-mode input voltage range	CMRR ≥ 50 dB		25°C		-0.3 to 2		V
		$R_L = 600 \Omega \text{ to } 1.35 \text{ V},$	Carraina	25°C	90	100		
		$V_0 = 1.35 \text{ V to } 2.2 \text{ V}$	25 V	-40°C to 125°C	85			
		$R_L = 600 \Omega \text{ to } 1.35 \text{ V},$		25°C	85	90		
	Large-signal voltage $\begin{array}{c} R_L = 600 \Omega \text{ to } 1.35 \text{ V}, \\ V_O = 1.35 \text{ V to } 0.5 \text{ V} \end{array}$ Sinking	Sinking	-40°C to 125°C	80				
A _V	amplification	$R_L = 2 k\Omega \text{ to } 1.35 \text{ V},$		25°C	95	100		dB
		$V_0 = 1.35 \text{ V to } 2.2 \text{ V}$	Sourcing	-40°C to 125°C	90			
		$R_1 = 2 k\Omega \text{ to } 1.35 \text{ V},$	0: 1:	25°C	90	95		
		$V_0 = 1.35 \text{ V to } 0.5 \text{ V}$	Sinking	-40°C to 125°C	85			
				25°C	2.5	2.58		
		$V_{CC+} = 2.7 \text{ V},$	High level	-40°C to 125°C	2.4			
		$R_L = 600 \Omega \text{ to } 1.35 \text{ V}$		25°C		0.13	0.2	
. ,			Low level	-40°C to 125°C			0.3	.,
V _O	Output swing			25°C	2.6	2.66		V
		$V_{CC+} = 2.7 \text{ V},$	High level	-40°C to 125°C	2.5			
		$R_L = 2 k\Omega$ to 1.35 V		25°C		0.08	0.12	
			Low level	-40°C to 125°C			0.2	
	0.1.1.1	V _O = 0 V	Sourcing	25°C	12	16		
I _O	Output current	V _O = 2.7 V	Sinking	25°C	12	26		mA
	V _O = 2.7 V LMV821		25°C		0.22	0.3		
			-40°C to 125°C			0.5		
				25°C		0.45	0.6	
I _{CC}	Supply current	LMV822 (both amplifiers))	-40°C to 125°C			0.8	8 1
				25°C		0.72	1	
		LMV824 (all four amplifie	ers)	-40°C to 125°C			1.2	

www.ti.com

SLOS434I-FEBRUARY 2004-REVISED JULY 2006

LMV8xxI 2.7-V Electrical Characteristics (continued)

 V_{CC+} = 2.7 V, V_{CC-} = 0 V, V_{IC} = 1 V, V_{O} = 1.35 V, and R_{L} > 1 $M\Omega$ (unless otherwise noted)

	DADAMETED	TEST CONDITIONS	т	LMV8xxI		LIMIT
	PARAMETER	TEST CONDITIONS	T _A	MIN TYP	XAM	UNIT
SR	Slew rate ⁽¹⁾		25°C	1.7		V/µs
GBW	Gain bandwidth product	(2)	25°C	5		MHz
Φ_{m}	Phase margin	(2)	25°C	60		deg
	Gain margin	(2)	25°C	8.6		dB
	Amplifier-to-amplifier isolation	$V_{CC+} = 5 \text{ V}, R_L = 100 \text{ k}\Omega \text{ to } 2.5 \text{ V}^{(3)}$	25°C	135		dB
V_n	Equivalent input noise voltage	$f = 1 \text{ kHz}, V_{IC} = 1 \text{ V}$	25°C	45		nV/√ Hz
In	Equivalent input noise current	f = 1 kHz	25°C	0.18		pA/√ Hz
THD	Total harmonic distortion	$f = 1 \text{ kHz}, A_V = -2, R_L = 10 \text{ k}\Omega, V_O = 4.1 V_{p-p}$	25°C	0.01		%

 ⁽¹⁾ Connected as voltage follower with 1-V step input. Value specified is the slower of the positive and negative slew rates.
 (2) 40-dB closed-loop dc gain, C_L = 22 pF
 (3) Each amplifier excited in turn with 1 kHz to produce V_O = 3 V_{p-p}

www.ti.com

SLOS434I - FEBRUARY 2004 - REVISED JULY 2006

LMV8xx 5-V Electrical Characteristics

 V_{CC+} = 5 V, V_{CC-} = 0 V, V_{IC} = 2 V, V_O = 2.5 V, and R_L > 1 M Ω (unless otherwise noted)

	DADAMETED	TEST CONDIT	IONE	_	I	LMV8xx		UNIT
	PARAMETER	TEST CONDIT	IONS	T _A	MIN	TYP	MAX	UNII
V _{IO}	Input offset voltage			25°C		1	3.5	mV
V IO	input onset voltage			-40°C to 85°C			4	IIIV
α_{VIO}	Average temperature coefficient of input offset voltage			25°C		1		μV/°C
l	Input bias current			25°C		40	100	nA
I _{IB}	input bias current			-40°C to 85°C			150	IIA
l	Input offset current			25°C		0.5	30	nA
I _{IO}	input onset current			-40°C to 85°C			50	IIA
CMDD	Common made rejection retin	$V_{IC} = 0 \text{ to } 4 \text{ V}$		25°C	72	90		٩D
CIVIKK	Common-mode rejection ratio	V _{IC} = 0 t0 4 V		-40°C to 85°C	70			dB
ılı	Positive supply-voltage	$V_{CC+} = 1.7 \text{ V to 4 V, } V_{CC}$	_ = −1 V,	25°C	75	85		dB
+k _{SVR}	rejection ratio	$V_{O} = 0, V_{IC} = 0$		-40°C to 85°C	70			uБ
l.	Negative supply-voltage	$V_{CC+} = 1.7 \text{ V}, V_{CC-} = -1$	V to −3.3 V,	25°C	73	85		dB
–k _{SVR}	rejection ratio	$V_{O} = 0, V_{IC} = 0$		-40°C to 85°C	70			uБ
V _{ICR}	Common-mode input voltage range	CMRR ≥ 50 dB		25°C	-0.2 to 4.2	-0.3 to 4.3		V
		$R_L = 600 \Omega \text{ to } 2.5 \text{ V},$	Coursing	25°C	95	105		
		$V_0^2 = 2.5 \text{ V to } 4.5 \text{ V}$	Sourcing	-40°C to 85°C	90			
		signal voltage	0:-1:	25°C	95	105		
^	Large-signal voltage		Sinking	-40°C to 85°C	90			٩D
A_V	amplification $R_L = 2 k\Omega \text{ to } 2.$	$R_1 = 2 k\Omega$ to 2.5 V,	Carraina	25°C	95	105		dB
		$R_L = 2 \text{ k}\Omega \text{ to 2.5 V},$ Sou $R_L = 2 \text{ k}\Omega \text{ to 2.5 V},$ Sou	Sourcing	-40°C to 85°C	90			
			Cipling	25°C	95	105		
		$V_0 = 2.5 \text{ V to } 0.5 \text{ V}$	Sinking	-40°C to 85°C	90			
			High level	25°C	4.75	4.84		
		$V_{CC+} = 5 V$,	High level	-40°C to 85°C	4.7			
		$R_L = 600 \Omega \text{ to } 2.5 \text{ V}$	L over loved	25°C		0.17	0.25	
\/	Output swing		Low level	-40°C to 85°C			0.3	V
Vo	Output swing		High level	25°C	4.85	4.9		V
		$V_{CC+} = 5 V$,	nigii ievei	-40°C to 85°C	4.8			
		$R_L = 2 k\Omega$ to 2.5 V	Low level	25°C		0.1	0.15	
			Low level	-40°C to 85°C			0.2	
		V - 0 V	Sourcing	25°C	20	45		
	Output ourrent	$V_O = 0 V$	Sourcing	-40°C to 85°C	15			 Λ
lo	Output current	V 5.V	Cipling	25°C	20	40		mA
	V _O = 5 V	Sinking	-40°C to 85°C	15				
_		LM\/821		25°C		0.3	0.4	
		LMV821		-40°C to 85°C			0.6	
ı			25°C		0.5	0.7	m ^	
I _{CC}	Supply current	LMV822 (both amplifiers)) 	-40°C to 85°C			0.9	mA
		LM\/924 (all four amplific	ure)	25°C		1	1.3	
		LMV824 (all four amplifie	:15)	-40°C to 85°C			1.5	

www.ti.com

SLOS434I-FEBRUARY 2004-REVISED JULY 2006

LMV8xx 5-V Electrical Characteristics (continued)

 V_{CC+} = 5 V, V_{CC-} = 0 V, V_{IC} = 2 V, V_{O} = 2.5 V, and R_{L} > 1 $M\Omega$ (unless otherwise noted)

	DADAMETED	TEST CONDITIONS	т	L	MV8xx		LINIT
	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
SR	Slew rate	$V_{CC+} = 5 V^{(1)}$	25°C	1.4	1.9		V/µs
GBW	Gain bandwidth product	(2)	25°C		5.5		MHz
Φ _m	Phase margin	(2)	25°C		64.2		deg
	Gain margin	(2)	25°C		8.7		dB
	Amplifier-to-amplifier isolation	$V_{CC+} = 5 \text{ V}, R_L = 100 \text{ k}\Omega \text{ to } 2.5 \text{ V}^{(3)}$	25°C		135		dB
V _n	Equivalent input noise voltage	f = 1 kHz, V _{IC} = 1 V	25°C		42		nV/√ Hz
In	Equivalent input noise current	f = 1 kHz	25°C		0.2		pA/√ Hz
THD	Total harmonic distortion	$f = 1 \text{ kHz}, A_V = -2, R_L = 10 \text{ k}\Omega, V_O = 4.1 V_{p-p}$	25°C		0.01		%

 ⁽¹⁾ Connected as voltage follower with 3-V step input. Value specified is the slower of the positive and negative slew rates.
 (2) 40-dB closed-loop dc gain, C_L = 22 pF
 (3) Each amplifier excited in turn with 1 kHz to produce V_O = 3 V_{p-p}

SLOS434I - FEBRUARY 2004 - REVISED JULY 2006

www.ti.com

LMV8xxI 5-V Electrical Characteristics

 V_{CC+} = 5 V, V_{CC-} = 0 V, V_{IC} = 2 V, V_O = 2.5 V, and R_L > 1 M Ω (unless otherwise noted)

	PARAMETER	TEST CONDIT	IONS	т.	L	IXX8VM_		UNI [.]
	FARAWEIEK	TEST CONDIT	IUNO	T _A	MIN	TYP	MAX	UNI
V _{IO}	Input offset voltage			25°C		1	3.5	mV
*10	inpar onoct voltage			-40°C to 125°C			5.5	111.0
α_{VIO}	Average temperature coefficient of input offset voltage			25°C		1		μV/°
ı	Input bigg ourrent			25°C		40	100	nΛ
l _{IB}	Input bias current			-40°C to 125°C			150	nA
ı	Input offset ourrent			25°C		0.5	30	nA
Ю	Input offset current			-40°C to 125°C			50	ПА
CMDD	Common mode rejection retic	V 0 to 4 V		25°C	72	90		40
JIVIKK	Common-mode rejection ratio	$V_{IC} = 0 \text{ to } 4 \text{ V}$		-40°C to 125°C	70			dB
. le	Positive supply-voltage	$V_{CC+} = 1.7 \text{ V to 4 V, V}_{CC}$	_ = -1 V,	25°C	75	85		40
+k _{SVR}	rejection ratio	$V_0 = 0, V_{IC} = 0$		-40°C to 125°C	70			dB
l.	Negative supply-voltage	V _{CC+} = 1.7 V, V _{CC-} = -1	V to -3.3 V,	25°C	73	85		10
-k _{SVR}	rejection ratio	$V_O = 0$, $V_{IC} = 0$,	-40°C to 125°C	70			dE
√ _{ICR}	Common-mode input voltage range	CMRR ≥ 50 dB		25°C	-0.2 to 4.2	-0.3 to 4.3		V
		$R_L = 600 \Omega \text{ to } 2.5 \text{ V},$	0	25°C	95	105		
		$V_0 = 2.5 \text{ V to } 4.5 \text{ V}$	Sourcing	-40°C to 125°C	90			
		$R_L = 600 \Omega \text{ to } 2.5 \text{ V},$ Sin	0	25°C	95	105		
Large-signal voltage amplification	$V_0 = 2.5 \text{ V to } 0.5 \text{ V}$	Sinking	-40°C to 125°C	90				
	$R_L = 2 k\Omega \text{ to } 2.5 \text{ V},$		25°C	95	105		dE	
	ampilication	$V_0 = 2.5 \text{ V to } 4.5 \text{ V}$	Sourcing	-40°C to 125°C	90			Ī
		$R_1 = 2 k\Omega \text{ to } 2.5 \text{ V},$	01-11	25°C	95	105		
		$V_0 = 2.5 \text{ V to } 0.5 \text{ V}$	Sinking	-40°C to 125°C	90			
			I Pada Lavari	25°C	4.75	4.84		
		V _{CC+} = 5 V,	High level	-40°C to 125°C	4.6			
		$R_L = 600 \Omega \text{ to } 2.5 \text{ V}$	11	25°C		0.17	0.25	
,	Outrot suisse		Low level	-40°C to 125°C			0.3	V
V _O	Output swing		I limb laval	25°C	4.85	4.9		V
		V _{CC+} = 5 V,	High level	-40°C to 125°C	4.8			
		$R_L = 2 k\Omega$ to 2.5 V	Lowlovel	25°C		0.1	0.15	
			Low level	-40°C to 125°C			0.2	
		V = 0 V	Sourcing	25°C	20	45		
ı	Output ourront	$V_O = 0 V$	Sourcing	-40°C to 125°C	15			<i>!</i>
0	Output current	V - F V	Ciplein a	25°C	20	40		m/
		V _O = 5 V SinI	Sinking	-40°C to 125°C	15			
-				25°C		0.3	0.4	-
				-40°C to 125°C			0.6	
	Cupply ourroad	1	25°C		0.5	0.7		
СС	Supply current	LMV822 (both amplifiers)	1	-40°C to 125°C			0.9	m <i>P</i>
		IMV924 (all face amplific	.ro\	25°C		1	1.3	
		LMV824 (all four amplifie	rs)	-40°C to 125°C			1.5	

www.ti.com

SLOS434I-FEBRUARY 2004-REVISED JULY 2006

LMV8xxI 5-V Electrical Characteristics (continued)

 $V_{\text{CC+}}$ = 5 V, $V_{\text{CC-}}$ = 0 V, V_{IC} = 2 V, V_{O} = 2.5 V, and R_{L} > 1 M Ω (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	-	LMV8xxI			LINIT
FARAWIETER		TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
SR	Slew rate	$V_{CC+} = 5 V^{(1)}$	25°C	1.4	1.9		V/µs
GBW	Gain bandwidth product	(2)	25°C		5.5		MHz
Φ_{m}	Phase margin	(2)	25°C		64.2		deg
	Gain margin	(2)	25°C		8.7		dB
	Amplifier-to-amplifier isolation	$V_{CC+} = 5 \text{ V}, R_L = 100 \text{ k}\Omega \text{ to } 2.5 \text{ V}^{(3)}$	25°C		135		dB
V _n	Equivalent input noise voltage	f = 1 kHz, V _{IC} = 1 V	25°C		42		nV/√ Hz
In	Equivalent input noise current	f = 1 kHz	25°C		0.2		pA/√Hz
THD	Total harmonic distortion	$f = 1 \text{ kHz}, A_V = -2, R_L = 10 \text{ k}\Omega,$ $V_O = 4.1 V_{p-p}$	25°C		0.01		%

Connected as voltage follower with 3-V step input. Value specified is the slower of the positive and negative slew rates.

 ^{(2) 40-}dB closed-loop dc gain, C_L = 22 pF
 (3) Each amplifier excited in turn with 1 kHz to produce V_O = 3 V_{p-p}

SLOS434I-FEBRUARY 2004-REVISED JULY 2006

www.ti.com

TYPICAL CHARACTERISTICS

 $T_A = 25$ °C, $V_{CC+} = 5$ -V Single Supply (Unless Otherwise Noted)

SOURCING CURRENT vs OUTPUT VOLTAGE

www.ti.com

SLOS434I-FEBRUARY 2004-REVISED JULY 2006

TYPICAL CHARACTERISTICS (continued)

 $T_A = 25$ °C, $V_{CC+} = 5$ -V Single Supply (Unless Otherwise Noted)

Figure 7.

SUPPLY VOLTAGE 80 $R_L = 2 k\Omega$ to Mid Rail Output Voltage From Supply Voltage - mV 70 60 **Negative Swing** 50 40 **Positive Swing** 30 20 10 2.6 3 3.8 4.6 5

OUTPUT VOLTAGE SWING

Figure 10.

V_{CC+} - Supply Voltage - V

SLOS434I-FEBRUARY 2004-REVISED JULY 2006

www.ti.com

TYPICAL CHARACTERISTICS (continued)

 $T_A = 25$ °C, $V_{CC+} = 5$ -V Single Supply (Unless Otherwise Noted)

Figure 12.

www.ti.com

SLOS434I-FEBRUARY 2004-REVISED JULY 2006

LMV821 SINGLE, LMV822 DUAL, LMV824 QUAD

TYPICAL CHARACTERISTICS (continued)

 $T_A = 25$ °C, $V_{CC+} = 5$ -V Single Supply (Unless Otherwise Noted)

GAIN AND PHASE MARGIN

Figure 16.

SLOS434I-FEBRUARY 2004-REVISED JULY 2006

www.ti.com

TYPICAL CHARACTERISTICS (continued)

 $T_A = 25$ °C, $V_{CC+} = 5$ -V Single Supply (Unless Otherwise Noted)

GAIN AND PHASE MARGIN

Figure 17.

GAIN AND PHASE MARGIN

www.ti.com

SLOS434I-FEBRUARY 2004-REVISED JULY 2006

LMV821 SINGLE, LMV822 DUAL, LMV824 QUAD

TYPICAL CHARACTERISTICS (continued)

 $T_A = 25$ °C, $V_{CC+} = 5$ -V Single Supply (Unless Otherwise Noted)

GAIN AND PHASE MARGIN

Figure 19.

GAIN AND PHASE MARGIN

SLOS434I-FEBRUARY 2004-REVISED JULY 2006

www.ti.com

TYPICAL CHARACTERISTICS (continued)

 $T_A = 25$ °C, $V_{CC+} = 5$ -V Single Supply (Unless Otherwise Noted)

GAIN AND PHASE MARGIN

Figure 21.

30-Nov-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
LMV821DBVR	OBSOLETE	SOT-23	DBV	5		TBD	Call TI	Call TI	-40 to 85	(RB8B ~ RB8C ~ RB8I)	
LMV821DBVRE4	OBSOLETE	SOT-23	DBV	5		TBD	Call TI	Call TI	-40 to 85		
LMV821DBVRG4	OBSOLETE	SOT-23	DBV	5		TBD	Call TI	Call TI	-40 to 85		
LMV821DBVT	OBSOLETE	SOT-23	DBV	5		TBD	Call TI	Call TI	-40 to 85	(RB8B ~ RB8C ~ RB8I)	
LMV821DBVTE4	OBSOLETE	SOT-23	DBV	5		TBD	Call TI	Call TI	-40 to 85		
LMV821DBVTG4	OBSOLETE	SOT-23	DBV	5		TBD	Call TI	Call TI	-40 to 85		
LMV821DCKR	OBSOLETE	SC70	DCK	5		TBD	Call TI	Call TI	-40 to 85	(RYB ~ RYC ~ RYI)	
LMV821DCKRE4	OBSOLETE	SC70	DCK	5		TBD	Call TI	Call TI	-40 to 85		
LMV821DCKRG4	OBSOLETE	SC70	DCK	5		TBD	Call TI	Call TI	-40 to 85		
LMV821DCKT	OBSOLETE	SC70	DCK	5		TBD	Call TI	Call TI	-40 to 85	(RYB ~ RYI)	
LMV821DCKTE4	OBSOLETE	SC70	DCK	5		TBD	Call TI	Call TI	-40 to 85		
LMV821DCKTG4	OBSOLETE	SC70	DCK	5		TBD	Call TI	Call TI	-40 to 85		
LMV821IDBVR	OBSOLETE	SOT-23	DBV	5		TBD	Call TI	Call TI	-40 to 125	(RB15 ~ RB1B)	
LMV821IDBVRE4	OBSOLETE	SOT-23	DBV	5		TBD	Call TI	Call TI	-40 to 125		
LMV821IDBVRG4	OBSOLETE	SOT-23	DBV	5		TBD	Call TI	Call TI	-40 to 125		
LMV821IDBVT	OBSOLETE	SOT-23	DBV	5		TBD	Call TI	Call TI	-40 to 125	RB1B	
LMV821IDBVTE4	OBSOLETE	SOT-23	DBV	5		TBD	Call TI	Call TI	-40 to 125		
LMV821IDBVTG4	OBSOLETE	SOT-23	DBV	5		TBD	Call TI	Call TI	-40 to 125		
LMV821IDCKR	OBSOLETE	SC70	DCK	5		TBD	Call TI	Call TI	-40 to 125	(RZB ~ RZI)	
LMV821IDCKRE4	OBSOLETE	SC70	DCK	5		TBD	Call TI	Call TI	-40 to 125		
LMV821IDCKRG4	OBSOLETE	SC70	DCK	5		TBD	Call TI	Call TI	-40 to 125		
LMV821IDCKT	OBSOLETE	SC70	DCK	5		TBD	Call TI	Call TI	-40 to 125	(RZB ~ RZI)	
LMV821IDCKTE4	OBSOLETE	SC70	DCK	5		TBD	Call TI	Call TI	-40 to 125		
LMV821IDCKTG4	OBSOLETE	SC70	DCK	5		TBD	Call TI	Call TI	-40 to 125		
LMV822D	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI	-40 to 85	MV822	
LMV822DE4	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI	-40 to 85		
LMV822DG4	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI	-40 to 85		
LMV822DGKR	OBSOLETE	VSSOP	DGK	8		TBD	Call TI	Call TI	-40 to 85	(RAB ~ RAC)	

www.ti.com

30-Nov-2013

Orderable Device	Status	Package Type	_	Pins	_	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
LMV822DGKRG4	OBSOLETE		DGK	8		TBD	Call TI	Call TI	-40 to 85		
LMV822DR	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI	-40 to 85	MV822	
LMV822DRE4	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI	-40 to 85		
LMV822DRG4	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI	-40 to 85		
LMV822ID	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI	-40 to 125	MV822I	
LMV822IDE4	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI	-40 to 125		
LMV822IDG4	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI	-40 to 125		
LMV822IDGKR	OBSOLETE	VSSOP	DGK	8		TBD	Call TI	Call TI	-40 to 125	(R8B ~ R8C)	
LMV822IDGKRG4	OBSOLETE	VSSOP	DGK	8		TBD	Call TI	Call TI	-40 to 125		
LMV822IDR	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI	-40 to 125	MV822I	
LMV822IDRE4	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI	-40 to 125		
LMV822IDRG4	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI	-40 to 125		
LMV824D	OBSOLETE	SOIC	D	14		TBD	Call TI	Call TI	-40 to 85	LMV824	
LMV824DE4	OBSOLETE	SOIC	D	14		TBD	Call TI	Call TI	-40 to 85		
LMV824DG4	OBSOLETE	SOIC	D	14		TBD	Call TI	Call TI	-40 to 85		
LMV824DGVR	OBSOLETE	TVSOP	DGV	14		TBD	Call TI	Call TI	-40 to 85	MV824	
LMV824DGVRE4	OBSOLETE	TVSOP	DGV	14		TBD	Call TI	Call TI	-40 to 85		
LMV824DGVRG4	OBSOLETE	TVSOP	DGV	14		TBD	Call TI	Call TI	-40 to 85		
LMV824DR	OBSOLETE	SOIC	D	14		TBD	Call TI	Call TI	-40 to 85	LMV824	
LMV824DRE4	OBSOLETE	SOIC	D	14		TBD	Call TI	Call TI	-40 to 85		
LMV824DRG4	OBSOLETE	SOIC	D	14		TBD	Call TI	Call TI	-40 to 85		
LMV824ID	OBSOLETE	SOIC	D	14		TBD	Call TI	Call TI	-40 to 125	LMV824I	
LMV824IDE4	OBSOLETE	SOIC	D	14		TBD	Call TI	Call TI	-40 to 125		
LMV824IDG4	OBSOLETE	SOIC	D	14		TBD	Call TI	Call TI	-40 to 125		
LMV824IDGVR	OBSOLETE	TVSOP	DGV	14		TBD	Call TI	Call TI	-40 to 125	MV824I	
LMV824IDGVRE4	OBSOLETE	TVSOP	DGV	14		TBD	Call TI	Call TI	-40 to 125		
LMV824IDGVRG4	OBSOLETE	TVSOP	DGV	14		TBD	Call TI	Call TI	-40 to 125		
LMV824IDR	OBSOLETE	SOIC	D	14		TBD	Call TI	Call TI	-40 to 125	LMV824I	
LMV824IDRE4	OBSOLETE	SOIC	D	14		TBD	Call TI	Call TI	-40 to 125		
LMV824IDRG4	OBSOLETE	SOIC	D	14		TBD	Call TI	Call TI	-40 to 125		
LMV824IPW	OBSOLETE	TSSOP	PW	14		TBD	Call TI	Call TI	-40 to 125	MV824I	

www.ti.com

PACKAGE OPTION ADDENDUM

30-Nov-2013

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
LMV824IPWE4	OBSOLETE	TSSOP	PW	14		TBD	Call TI	Call TI	-40 to 125		
LMV824IPWG4	OBSOLETE	TSSOP	PW	14		TBD	Call TI	Call TI	-40 to 125		
LMV824IPWR	OBSOLETE	TSSOP	PW	14		TBD	Call TI	Call TI	-40 to 125	MV824I	
LMV824IPWRE4	NRND	TSSOP	PW	14		TBD	Call TI	Call TI	-40 to 125		
LMV824IPWRG4	OBSOLETE	TSSOP	PW	14		TBD	Call TI	Call TI	-40 to 125		
LMV824PW	OBSOLETE	TSSOP	PW	14		TBD	Call TI	Call TI	-40 to 85	MV824	
LMV824PWE4	OBSOLETE	TSSOP	PW	14		TBD	Call TI	Call TI	-40 to 85		
LMV824PWG4	OBSOLETE	TSSOP	PW	14		TBD	Call TI	Call TI	-40 to 85		
LMV824PWR	OBSOLETE	TSSOP	PW	14		TBD	Call TI	Call TI	-40 to 85	MV824	
LMV824PWRE4	OBSOLETE	TSSOP	PW	14		TBD	Call TI	Call TI	-40 to 85		
LMV824PWRG4	OBSOLETE	TSSOP	PW	14		TBD	Call TI	Call TI	-40 to 85		

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight

in homogeneous material)

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

PACKAGE OPTION ADDENDUM

30-Nov-2013

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF LMV821:

Automotive: LMV821-Q1

NOTE: Qualified Version Definitions:

Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

DGV (R-PDSO-G**)

24 PINS SHOWN

PLASTIC SMALL-OUTLINE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.

D. Falls within JEDEC: 24/48 Pins – MO-153 14/16/20/56 Pins – MO-194 DBV (R-PDSO-G5)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Falls within JEDEC MO-178 Variation AA.

DCK (R-PDSO-G5)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Falls within JEDEC MO-203 variation AA.

DGK (S-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- E. Falls within JEDEC MO-187 variation AA, except interlead flash.

D (R-PDSO-G14)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AB.

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom Amplifiers amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u>

RFID <u>www.ti-rfid.com</u>

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com/omap

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>