MATRICES In Geometry

G. V. V. Sharma

 $https://creative commons.org/licenses/by-sa/3.0/\\ and$

https://www.gnu.org/licenses/fdl-1.3.en.html

Contents

1	Vectors		3
	1.1	Sides	2
	1.2	Median	2
	1.3	Altitude	(
	1.4	Perpendicular Bisector	7
	1.5	Angle Bisector	9
	1.6	Eigenvalues and Eigenvectors	
2	Matrice	s	10
	2.1	Vectors	10
	2.2	Median	10
	2.3	Altitude	10
	2.4	Perpendicular Bisector	10
	2.5	Angle Bisector	1.
Appendix A: Points on a Line			1
Appe	Appendix B: Tangents to a Circle		

1 Vectors

Consider a triangle with vertices

$$\mathbf{A} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} -4 \\ 6 \end{pmatrix}, \ \mathbf{C} = \begin{pmatrix} -3 \\ -5 \end{pmatrix} \tag{1}$$

1.1 Sides

1.1.1. The direction vector of AB is defined as

$$\mathbf{B} - \mathbf{A} \tag{1.1.1.1}$$

Find the direction vectors of *AB*, *BC* and *CA*. **Solution:**

a) The Direction vector of AB is

$$\mathbf{B} - \mathbf{A} = \begin{pmatrix} -4 \\ 6 \end{pmatrix} - \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -4 - 1 \\ 6 - (-1) \end{pmatrix} = \begin{pmatrix} -5 \\ 7 \end{pmatrix} \quad (1.1.1.2)$$

b) The Direction vector of BC is

$$\mathbf{C} - \mathbf{B} = \begin{pmatrix} -3 \\ -5 \end{pmatrix} - \begin{pmatrix} -4 \\ 6 \end{pmatrix} = \begin{pmatrix} -3 - (-4) \\ -5 - 6 \end{pmatrix} = \begin{pmatrix} 1 \\ -11 \end{pmatrix}$$
(1.1.1.3)

c) The Direction vector of CA is

$$\mathbf{A} - \mathbf{C} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} - \begin{pmatrix} -3 \\ -5 \end{pmatrix} = \begin{pmatrix} 1 - (-3) \\ -1 - (-5) \end{pmatrix} = \begin{pmatrix} 4 \\ 4 \end{pmatrix} \quad (1.1.1.4)$$

1.1.2. The length of side BC is

$$c = \|\mathbf{B} - \mathbf{A}\| \triangleq \sqrt{(\mathbf{B} - \mathbf{A})^{\top} (\mathbf{B} - \mathbf{A})}$$
 (1.1.2.1)

where

$$\mathbf{A}^{\top} \triangleq \begin{pmatrix} 1 & -1 \end{pmatrix} \tag{1.1.2.2}$$

Similarly,

$$b = \|\mathbf{C} - \mathbf{B}\|, \ a = \|\mathbf{A} - \mathbf{C}\|$$
 (1.1.2.3)

Find a, b, c.

a) From (1.1.1.2),

$$\mathbf{A} - \mathbf{B} = \begin{pmatrix} 5 \\ -7 \end{pmatrix},\tag{1.1.2.4}$$

$$\implies c = \|\mathbf{B} - \mathbf{A}\| = \|\mathbf{A} - \mathbf{B}\| \tag{1.1.2.5}$$

$$= \sqrt{(5 - 7) \binom{5}{-7}} = \sqrt{(5)^2 + (7)^2} \quad (1.1.2.6)$$

$$=\sqrt{74}$$
 (1.1.2.7)

b) Similarly, from (1.1.1.3),

$$a = ||\mathbf{B} - \mathbf{C}|| = \sqrt{(-1 \quad 11)\binom{-1}{11}}$$
 (1.1.2.8)

$$= \sqrt{(1)^2 + (11)^2} = \sqrt{122}$$
 (1.1.2.9)

and from (1.1.1.4),

c)

$$b = ||\mathbf{A} - \mathbf{C}|| = \sqrt{4 + 4 \cdot 4 \cdot 4}$$
 (1.1.2.10)

$$=\sqrt{(4)^2+(4)^2}=\sqrt{32}$$
 (1.1.2.11)

1.1.3. Points A, B, C are defined to be collinear if

$$rank \begin{pmatrix} 1 & 1 & 1 \\ \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix} = 2 \tag{1.1.3.1}$$

Are the given points in (1) collinear?

Solution: From (1),

$$\begin{pmatrix} 1 & 1 & 1 \\ \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -4 & -3 \\ -1 & 6 & -5 \end{pmatrix} \xrightarrow{R_3 \leftarrow R_3 + R_2} \begin{pmatrix} 1 & 1 & 1 \\ 1 & -4 & -3 \\ 0 & 2 & -8 \end{pmatrix}$$
(1.1.3.2)

$$\stackrel{R_2 \leftarrow R_1 - R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 5 & 4 \\ 0 & 2 & -8 \end{pmatrix} \stackrel{R_3 \leftarrow R_3 - \frac{2}{5}R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 5 & 4 \\ 0 & 0 & \frac{-48}{5} \end{pmatrix}$$
(1.1.3.3)

There are no zero rows. So,

$$rank \begin{pmatrix} 1 & 1 & 1 \\ \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix} = 3 \tag{1.1.3.4}$$

Hence, the points **A**, **B**, **C** are not collinear. This is visible in Fig. 1.

Fig. 1. △*ABC*

(1.1.2.5) 1.1.4. The parameteric form of the equation of AB is

$$\mathbf{x} = \mathbf{A} + k\mathbf{m} \quad k \neq 0, \tag{1.1.4.1}$$

where

$$\mathbf{m} = \mathbf{B} - \mathbf{A} \tag{1.1.4.2}$$

is the direction vector of AB. Find the parameteric equations of AB, BC and CA.

Solution: From (1.1.4.1) and (1.1.1.2), the parametric equation for AB is given by

$$AB: \mathbf{x} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} + k \begin{pmatrix} -5 \\ 7 \end{pmatrix} \tag{1.1.4.3}$$

Similarly, from (1.1.1.3) and (1.1.1.4),

$$BC: \mathbf{x} = \begin{pmatrix} -4\\6 \end{pmatrix} + k \begin{pmatrix} 1\\-11 \end{pmatrix} \tag{1.1.4.4}$$

$$CA: \mathbf{x} = \begin{pmatrix} -3 \\ -5 \end{pmatrix} + k \begin{pmatrix} 4 \\ 4 \end{pmatrix}$$
 (1.1.4.5)

1.1.5. The normal form of the equation of AB is

$$\mathbf{n}^{\mathsf{T}} \left(\mathbf{x} - \mathbf{A} \right) = 0 \tag{1.1.5.1}$$

where

$$\mathbf{n}^{\mathsf{T}}\mathbf{m} = \mathbf{n}^{\mathsf{T}} \left(\mathbf{B} - \mathbf{A} \right) = 0 \tag{1.1.5.2}$$

or,
$$\mathbf{n} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \mathbf{m}$$
 (1.1.5.3)

Find the normal form of the equations of AB, BC and CA. **Solution:**

a) From (1.1.1.3), the direction vector of side **BC** is

$$\mathbf{m} = \begin{pmatrix} 1 \\ -11 \end{pmatrix} \tag{1.1.5.4}$$

$$\implies \mathbf{n} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ -11 \end{pmatrix} = \begin{pmatrix} -11 \\ -1 \end{pmatrix} \tag{1.1.5.5}$$

from (1.1.5.3). Hence, from (1.1.5.1), the normal equation of side BC is

$$\mathbf{n}^{\mathsf{T}} \left(\mathbf{x} - \mathbf{B} \right) = 0 \tag{1.1.5.6}$$

$$\implies \begin{pmatrix} -11 & -1 \end{pmatrix} \mathbf{x} = \begin{pmatrix} -11 & -1 \end{pmatrix} \begin{pmatrix} -4 \\ 6 \end{pmatrix} \quad (1.1.5.7)$$

$$\implies BC: (11 \ 1)\mathbf{x} = -38$$
 (1.1.5.8)

b) Similarly, for AB, from (1.1.1.2),

$$\mathbf{m} = \begin{pmatrix} -5\\7 \end{pmatrix} \tag{1.1.5.9}$$

$$\implies \mathbf{n} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} -5 \\ 7 \end{pmatrix} = \begin{pmatrix} 7 \\ 5 \end{pmatrix} \tag{1.1.5.10}$$

and

$$\mathbf{n}^{\mathsf{T}} \left(\mathbf{x} - \mathbf{A} \right) = 0 \tag{1.1.5.11}$$

$$\implies AB: \quad \mathbf{n}^{\mathsf{T}}\mathbf{x} = \begin{pmatrix} 7 & 5 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \tag{1.1.5.12}$$

$$\implies (7 \quad 5)\mathbf{x} = 2 \tag{1.1.5.13}$$

c) For *CA*, from (1.1.1.4),

$$\mathbf{m} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \tag{1.1.5.14}$$

$$\implies \mathbf{n} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \quad (1.1.5.15)$$

$$\implies \mathbf{n}^{\mathsf{T}} (\mathbf{x} - \mathbf{C}) = 0 \tag{1.1.5.17}$$

$$\implies$$
 $\begin{pmatrix} 1 & -1 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 1 & -1 \end{pmatrix} \begin{pmatrix} -3 \\ -5 \end{pmatrix} = 2$ (1.1.5.18)

1.1.6. The area of $\triangle ABC$ is defined as

$$\frac{1}{2} \| (\mathbf{A} - \mathbf{B}) \times (\mathbf{A} - \mathbf{C}) \|$$
 (1.1.6.1)

where

 $\mathbf{A} \times \mathbf{B} \triangleq \begin{vmatrix} 1 & -4 \\ -1 & 6 \end{vmatrix}$ (1.1.6.2) Find the area of $\triangle ABC$.

Solution: From (1.1.1.2) and (1.1.1.4),

$$\mathbf{A} - \mathbf{B} = \begin{pmatrix} 5 \\ -7 \end{pmatrix}, \mathbf{A} - \mathbf{C} = \begin{pmatrix} 4 \\ 4 \end{pmatrix}$$
 (1.1.6.3)

$$\implies (\mathbf{A} - \mathbf{B}) \times (\mathbf{A} - \mathbf{C}) = \begin{vmatrix} 5 & 4 \\ -7 & 4 \end{vmatrix}$$
 (1.1.6.4)
= $5 \times 4 - 4 \times (-7)$

(1.1.6.5)

$$=48$$
 (1.1.6.6)

$$\implies \frac{1}{2} \|(\mathbf{A} - \mathbf{B}) \times (\mathbf{A} - \mathbf{C})\| = \frac{48}{2} = 24 \qquad (1.1.6.7)$$

(1.1.5.4) which is the desired area. 1.1.7. Find the angles A, B, C if

$$\cos A \triangleq \frac{(\mathbf{B} - \mathbf{A})^{\top} \mathbf{C} - \mathbf{A}}{\|\mathbf{B} - \mathbf{A}\| \|\mathbf{C} - \mathbf{A}\|}$$
(1.1.7.1)

a) From (1.1.1.2), (1.1.1.4), (1.1.2.7) and (1.1.2.11)

$$(\mathbf{B} - \mathbf{A})^{\mathsf{T}}(\mathbf{C} - \mathbf{A}) = \begin{pmatrix} -5 & 7 \end{pmatrix} \begin{pmatrix} -4 \\ -4 \end{pmatrix}$$
 (1.1.7.2)

$$= -8$$
 (1.1.7.3)

$$\implies \cos A = \frac{-8}{\sqrt{74}\sqrt{32}} = \frac{-1}{\sqrt{37}}$$
 (1.1.7.4)

$$\implies A = \cos^{-1} \frac{-1}{\sqrt{37}} \tag{1.1.7.5}$$

b) From (1.1.1.2), (1.1.1.3), (1.1.2.7) and (1.1.2.9)

$$(\mathbf{C} - \mathbf{B})^{\mathsf{T}} (\mathbf{A} - \mathbf{B}) = \begin{pmatrix} 1 & -11 \end{pmatrix} \begin{pmatrix} 5 \\ -7 \end{pmatrix}$$
 (1.1.7.6)

$$= 82$$
 (1.1.7.7)

$$\implies$$
 cos $B = \frac{82}{\sqrt{74}\sqrt{122}} = \frac{41}{\sqrt{2257}}$ (1.1.7.8)

$$\implies B = \cos^{-1} \frac{41}{\sqrt{2257}} \tag{1.1.7.9}$$

c) From (1.1.1.3), (1.1.1.4), (1.1.2.9) and (1.1.2.11)

$$(\mathbf{A} - \mathbf{C})^{\mathsf{T}} (\mathbf{B} - \mathbf{C}) = \begin{pmatrix} 4 & 4 \end{pmatrix} \begin{pmatrix} -1 \\ 11 \end{pmatrix}$$
 (1.1.7.10)

$$=40$$
 (1.1.7.11)

$$\implies \cos C = \frac{40}{\sqrt{32}\sqrt{122}} = \frac{5}{\sqrt{61}} \quad (1.1.7.12)$$

$$\implies C = \cos^{-1} \frac{5}{\sqrt{61}} \tag{1.1.7.13}$$

All codes for this section are available at

codes/triangle/sides.py

1.2 Median

1.2.1. If **D** divides BC in the ratio k:1,

$$\mathbf{D} = \frac{k\mathbf{C} + \mathbf{B}}{k+1} \tag{1.2.1.1}$$

Find the mid points \mathbf{D} , \mathbf{E} , \mathbf{F} of the sides BC, CA and ABrespectively.

Solution: Since **D** is the midpoint of BC,

$$k = 1,$$
 (1.2.1.2)

$$\implies \mathbf{D} = \frac{\mathbf{C} + \mathbf{B}}{2} = \frac{1}{2} \begin{pmatrix} -7\\1 \end{pmatrix} \tag{1.2.1.3}$$

Similarly,

$$\mathbf{E} = \frac{\mathbf{A} + \mathbf{C}}{2} = \begin{pmatrix} -1 \\ -3 \end{pmatrix} \tag{1.2.1.4}$$

$$\mathbf{F} = \frac{\mathbf{A} + \mathbf{B}}{2} = \frac{1}{2} \begin{pmatrix} -3\\ 5 \end{pmatrix}$$
 (1.2.1.5)

1.2.2. Find the equations of AD, BE and CF.

Solution::

a) The direction vector of AD is

$$\mathbf{m} = \mathbf{D} - \mathbf{A} = \begin{pmatrix} \frac{-7}{2} \\ \frac{1}{2} \end{pmatrix} - \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} -9 \\ 3 \end{pmatrix} \equiv \begin{pmatrix} -3 \\ 1 \end{pmatrix}$$
 (1.2.2.1) 1.2.4. Verify that
$$\implies \mathbf{n} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$
 (1.2.2.2)

Hence the normal equation of median AD is

$$\mathbf{n}^{\mathsf{T}} \left(\mathbf{x} - \mathbf{A} \right) = 0 \tag{1.2.2.3}$$

$$\implies \begin{pmatrix} 1 & 3 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = -2 \qquad (1.2.2.4)$$

b) For BE,

$$\mathbf{m} = \mathbf{E} - \mathbf{B} = \begin{pmatrix} -1 \\ -3 \end{pmatrix} - \begin{pmatrix} -4 \\ 6 \end{pmatrix} = \begin{pmatrix} 3 \\ -9 \end{pmatrix} \equiv \begin{pmatrix} 1 \\ -3 \end{pmatrix} \quad (1.2.2.5)$$

$$\implies \mathbf{n} = \begin{pmatrix} 3 \\ 1 \end{pmatrix} \tag{1.2.2.6}$$

Hence the normal equation of median BE is

$$\mathbf{n}^{\mathsf{T}} \left(\mathbf{x} - \mathbf{B} \right) = 0 \tag{1.2.2.7}$$

$$\implies \begin{pmatrix} 3 & 1 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 3 & 1 \end{pmatrix} \begin{pmatrix} -4 \\ 6 \end{pmatrix} = -6 \qquad (1.2.2.8)$$

c) For median CF,

$$\mathbf{m} = \mathbf{F} - \mathbf{C} = \begin{pmatrix} \frac{-3}{2} \\ \frac{5}{2} \end{pmatrix} - \begin{pmatrix} -3 \\ -5 \end{pmatrix} = \begin{pmatrix} \frac{3}{2} \\ \frac{15}{2} \end{pmatrix} \equiv \begin{pmatrix} 1 \\ 5 \end{pmatrix}$$
 (1.2.2.9)

$$\implies \mathbf{n} = \begin{pmatrix} 5 \\ -1 \end{pmatrix} \tag{1.2.2.10}$$

Hence the normal equation of median CF is

$$\mathbf{n}^{\mathsf{T}} \left(\mathbf{x} - \mathbf{C} \right) = 0 \tag{1.2.2.11}$$

$$\implies$$
 $(5 -1)\mathbf{x} = (5 -1)\begin{pmatrix} -3 \\ -5 \end{pmatrix} = -10 \quad (1.2.2.12)$

1.2.3. Find the intersection \mathbf{G} of BE and CF.

Solution: From (1.2.2.8) and (1.2.2.12), the equations of BE and CF are, respectively,

$$(3 1)\mathbf{x} = (-6) (1.2.3.1)$$

$$\begin{pmatrix} 5 & -1 \end{pmatrix} \mathbf{x} = \begin{pmatrix} -10 \end{pmatrix} \tag{1.2.3.2}$$

From (1.2.3.1) and (1.2.3.2) the augmented matrix is

$$\begin{pmatrix} 3 & 1 & -6 \\ 5 & -1 & -10 \end{pmatrix} \xrightarrow{R_1 \leftarrow R_1 + R_2} \begin{pmatrix} 8 & 0 & -16 \\ 5 & -1 & -10 \end{pmatrix}$$

$$(1.2.3.3)$$

$$\xrightarrow{R_1 \leftarrow R_1/8} \begin{pmatrix} 1 & 0 & -2 \\ 5 & -1 & -10 \end{pmatrix} \xrightarrow{R_2 \leftarrow R_2 - 5R_1} \begin{pmatrix} 1 & 0 & -2 \\ 0 & -1 & 0 \end{pmatrix}$$

$$(1.2.3.4)$$

$$\xrightarrow{R_2 \leftarrow -R_2} \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 0 \end{pmatrix}$$

$$(1.2.3.5)$$

using Gauss elimination. Therefore,

$$\mathbf{G} = \begin{pmatrix} -2\\0 \end{pmatrix} \tag{1.2.3.6}$$

$$\frac{BG}{GE} = \frac{CG}{GF} = \frac{AG}{GD} = 2 \tag{1.2.4.1}$$

Solution:

a) From (1.2.1.4) and (1.2.3.6),

$$\mathbf{G} - \mathbf{B} = \begin{pmatrix} 2 \\ -6 \end{pmatrix}, \mathbf{E} - \mathbf{G} = \begin{pmatrix} 1 \\ -3 \end{pmatrix} \qquad (1.2.4.2)$$

$$\implies \mathbf{G} - \mathbf{B} = 2(\mathbf{E} - \mathbf{G}) \tag{1.2.4.3}$$

$$\implies \|\mathbf{G} - \mathbf{B}\| = 2\|\mathbf{E} - \mathbf{G}\| \tag{1.2.4.4}$$

or,
$$\frac{BG}{GE} = 2$$
 (1.2.4.5)

b) From (1.2.1.5) and (1.2.3.6),

$$\mathbf{F} - \mathbf{G} = \frac{1}{2} \begin{pmatrix} 1 \\ 5 \end{pmatrix}, \ \mathbf{G} - \mathbf{C} = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$$
 (1.2.4.6)

$$\implies \mathbf{G} - \mathbf{C} = 2(\mathbf{F} - \mathbf{G}) \tag{1.2.4.7}$$

$$\implies \|\mathbf{G} - \mathbf{C}\| = 2\|\mathbf{F} - \mathbf{G}\| \tag{1.2.4.8}$$

or,
$$\frac{CG}{GF} = 2$$
 (1.2.4.9)

c) From (1.2.1.3) and (1.2.3.6),

$$\mathbf{G} - \mathbf{A} = \begin{pmatrix} -3\\1 \end{pmatrix}, \ \mathbf{D} - \mathbf{G} = \frac{1}{2} \begin{pmatrix} -3\\1 \end{pmatrix}$$
 (1.2.4.10)

$$\mathbf{G} - \mathbf{A} = 2(\mathbf{D} - \mathbf{G}) \tag{1.2.4.11}$$

$$\implies \|\mathbf{G} - \mathbf{A}\| = 2\|\mathbf{D} - \mathbf{G}\| \tag{1.2.4.12}$$

or,
$$\frac{AG}{GD} = 2$$
 (1.2.4.13)

From (1.2.4.5), (1.2.4.9), (1.2.4.13)

$$\frac{BG}{GE} = \frac{CG}{GF} = \frac{AG}{GD} = 2 \tag{1.2.4.14}$$

Fig. 2. Medians of $\triangle ABC$ meet at **G**.

Fig. 3. AFDE forms a parallelogram in triangle ABC

1.2.5. Show that **A**, **G** and **D** are collinear.

Solution: Points A, D, G are defined to be collinear if

$$\operatorname{rank}\begin{pmatrix} 1 & 1 & 1 \\ \mathbf{A} & \mathbf{D} & \mathbf{G} \end{pmatrix} = 2$$

$$(1.2.5.1)$$

$$\implies \begin{pmatrix} 1 & 1 & 1 \\ 1 & -\frac{7}{2} & -2 \\ -1 & \frac{1}{2} & 0 \end{pmatrix} \stackrel{R_3 \leftarrow R_3 + R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 1 & 1 \\ 1 & -\frac{7}{2} & -2 \\ 0 & -3 & -2 \end{pmatrix}$$

$$(1.2.5.2)$$

$$\stackrel{R_2 \leftarrow R_2 - R_1}{\longleftrightarrow} \begin{pmatrix} 1 & 1 & 1 \\ 0 & -\frac{9}{2} & -3 \\ 0 & -3 & -2 \end{pmatrix} \stackrel{R_3 \leftarrow R_3 - \frac{2}{3}R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 1 & 1 \\ 0 & -\frac{9}{2} & -3 \\ 0 & 0 & 0 \end{pmatrix}$$

$$(1.2.5.3)$$

Solution:

$$\mathbf{A} - \mathbf{F} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} - \begin{pmatrix} \frac{-3}{2} \\ \frac{5}{2} \end{pmatrix} = \begin{pmatrix} \frac{5}{2} \\ \frac{-7}{2} \end{pmatrix}$$
 (1.2.7.2)

$$\mathbf{E} - \mathbf{D} = \begin{pmatrix} -1 \\ -3 \end{pmatrix} - \begin{pmatrix} \frac{-7}{2} \\ \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{5}{2} \\ \frac{-7}{2} \end{pmatrix}$$
 (1.2.7.3)

$$\implies \mathbf{A} - \mathbf{F} = \mathbf{E} - \mathbf{D} \tag{1.2.7.4}$$

See Fig. 3,

All codes for this section are available in

codes/triangle/medians.py codes/triangle/pgm.py

Thus, the matrix (1.2.5.1) has rank 2 and the points are collinear. Thus, the medians of a triangle meet at the point **G**. See Fig. 2.

1.2.6. Verify that

$$G = \frac{A + B + C}{3}$$
 (1.2.6.1)

G is known as the <u>centroid</u> of $\triangle ABC$.

Solution:

$$\mathbf{G} = \frac{\begin{pmatrix} 1 \\ -1 \end{pmatrix} + \begin{pmatrix} -4 \\ 6 \end{pmatrix} + \begin{pmatrix} -3 \\ -5 \end{pmatrix}}{3}$$
$$= \begin{pmatrix} -2 \\ 0 \end{pmatrix}$$
 (1.2.6.2)

1.3 Altitude

1.3.1. \mathbf{D}_1 is a point on BC such that

$$AD_1 \perp BC \tag{1.3.1.1}$$

and AD_1 is defined to be the altitude. Find the normal vector of AD_1 .

Solution: The normal vector of AD_1 is the direction vector BC and is obtained from (1.1.1.3) as

$$\mathbf{n} = \begin{pmatrix} 1 \\ -11 \end{pmatrix} \tag{1.3.1.2}$$

1.3.2. Find the equation of AD_1 .

Solution: The equation of AD_1 is

$$\mathbf{n}^{\mathsf{T}}(\mathbf{x} - \mathbf{A}) = 0 \tag{1.3.2.1}$$

$$\implies$$
 $(-1 \quad 11)\mathbf{x} = (-1 \quad 11)\begin{pmatrix} 1 \\ -1 \end{pmatrix} = -12 \quad (1.3.2.2)$

1.2.7. Verify that

$$\mathbf{A} - \mathbf{F} = \mathbf{E} - \mathbf{D}$$

(1.2.7.1) 1.3.3. Find the equations of the altitudes BE_1 and CF_1 to the sides AC and AB respectively.

The quadrilateral *AFDE* is defined to be a parallelogram.

Solution:

a) From (1.1.1.4), the normal vector of CF_1 is

$$\mathbf{n} = \begin{pmatrix} -5\\7 \end{pmatrix} \tag{1.3.3.1}$$

and the equation of CF_1 is

$$\mathbf{n}^{\mathsf{T}} \left(\mathbf{x} - \mathbf{C} \right) = 0 \tag{1.3.3.2}$$

$$\implies \left(-5 \quad 7\right) \left(\mathbf{x} - \begin{pmatrix} -3\\ -5 \end{pmatrix}\right) = 0 \tag{1.3.3.3}$$

$$\implies (5 \quad -7)\mathbf{x} = 20, \tag{1.3.3.4}$$

b) Similarly, from (1.1.1.2), the normal vector of BE_1 is

$$\mathbf{n} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \tag{1.3.3.5}$$

and the equation of BE_1 is

$$\mathbf{n}^{\mathsf{T}} \left(\mathbf{x} - \mathbf{B} \right) = 0 \tag{1.3.3.6}$$

$$\implies (1 \quad 1)\left(\mathbf{x} - \begin{pmatrix} -4\\6 \end{pmatrix}\right) = 0 \tag{1.3.3.7}$$

 $\implies \begin{pmatrix} 1 & 1 \end{pmatrix} \mathbf{x} = 2, \tag{1.3.3.8}$

Fig. 4. Altitudes BE_1 and CF_1 intersect at \mathbf{H}

1.3.4. Find the intersection **H** of BE_1 and CF_1 .

Solution: The intersection of (1.3.3.8) and (1.3.3.4), is obtained from the matrix equation

$$\begin{pmatrix} 1 & 1 \\ 5 & -7 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 2 \\ 20 \end{pmatrix} \tag{1.3.4.1}$$

which can be solved as

$$\begin{pmatrix} 1 & 1 & 2 \\ 5 & -7 & 20 \end{pmatrix} \xrightarrow{R_2 \leftarrow R_2 - 5R_1} \begin{pmatrix} 1 & 1 & 2 \\ 0 & -12 & 10 \end{pmatrix} \quad (1.3.4.2)$$

$$\stackrel{R_2 \leftarrow \frac{R_2}{-12}}{\longleftrightarrow} \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & \frac{-5}{6} \end{pmatrix} \stackrel{R_1 \leftarrow R_1 - R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & \frac{17}{6} \\ 0 & 1 & \frac{-5}{6} \end{pmatrix} \quad (1.3.4.3)$$

yielding

$$\mathbf{H} = \frac{1}{6} \begin{pmatrix} 17 \\ -5 \end{pmatrix}, \tag{1.3.4.4}$$

See Fig. 4

1.3.5. Verify that

$$(\mathbf{A} - \mathbf{H})^{\mathsf{T}} (\mathbf{B} - \mathbf{C}) = 0 \tag{1.3.5.1}$$

Solution: From (1.3.4.4),

$$A - H = -\frac{1}{6} {11 \choose 1}, B - C = {-1 \choose 11}$$
 (1.3.5.2)

$$\implies (\mathbf{A} - \mathbf{H})^{\top} (\mathbf{B} - \mathbf{C}) = \frac{1}{6} \begin{pmatrix} 11 & 1 \end{pmatrix} \begin{pmatrix} -1 \\ 11 \end{pmatrix} = 0 \quad (1.3.5.3)$$

All codes for this section are available at

codes/triangle/altitude.py

1.4 Perpendicular Bisector

1.4.1. The equation of the perpendicular bisector of BC is

$$\left(\mathbf{x} - \frac{\mathbf{B} + \mathbf{C}}{2}\right)(\mathbf{B} - \mathbf{C}) = 0 \tag{1.4.1.1}$$

Substitute numerical values and find the equations of the perpendicular bisectors of AB, BC and CA.

Solution: From (1.1.1.2), (1.1.1.3), (1.1.1.4), (1.2.1.3), (1.2.1.4) and (1.2.1.5),

$$\frac{\mathbf{B} + \mathbf{C}}{2} = \frac{1}{2} \begin{pmatrix} -7\\1 \end{pmatrix}, \ \mathbf{B} - \mathbf{C} = \begin{pmatrix} -1\\11 \end{pmatrix} \tag{1.4.1.2}$$

$$\frac{\mathbf{A} + \mathbf{B}}{2} = \frac{1}{2} \begin{pmatrix} -3\\ 5 \end{pmatrix}, \mathbf{A} - \mathbf{B} = \begin{pmatrix} 5\\ -7 \end{pmatrix} \tag{1.4.1.3}$$

$$\frac{\mathbf{C} + \mathbf{A}}{2} = \begin{pmatrix} -1 \\ -3 \end{pmatrix}, \ \mathbf{C} - \mathbf{A} = \begin{pmatrix} -4 \\ -4 \end{pmatrix}$$
 (1.4.1.4)

(1.4.1.5)

yielding

$$(\mathbf{B} - \mathbf{C})^{\mathsf{T}} \left(\frac{\mathbf{B} + \mathbf{C}}{2} \right) = \begin{pmatrix} -1 & 11 \end{pmatrix} \begin{pmatrix} -\frac{7}{2} \\ \frac{1}{2} \end{pmatrix} = 9 \qquad (1.4.1.6)$$

$$(\mathbf{A} - \mathbf{B})^{\mathsf{T}} \left(\frac{\mathbf{A} + \mathbf{B}}{2} \right) = \begin{pmatrix} 5 & -7 \end{pmatrix} \begin{pmatrix} -\frac{3}{2} \\ \frac{5}{2} \end{pmatrix} = -25 \quad (1.4.1.7)$$

$$(\mathbf{C} - \mathbf{A})^{\mathsf{T}} \left(\frac{\mathbf{C} + \mathbf{A}}{2} \right) = \begin{pmatrix} -4 & -4 \end{pmatrix} \begin{pmatrix} -1 \\ -3 \end{pmatrix} = 16 \qquad (1.4.1.8)$$

Thus, the perpendicular bisectors are obtained from (1.4.1.1) as

$$BC: (-1 \quad 11)\mathbf{x} = 9$$
 (1.4.1.9)

$$CA: (5 -7)\mathbf{x} = -25$$
 (1.4.1.10)

$$AB: (1 \quad 1)\mathbf{x} = -4 \quad (1.4.1.11)$$

1.4.2. Find the intersection **O** of the perpendicular bisectors of *AB* and *AC*.

Solution:

Fig. 5. Circumcircle of $\triangle ABC$ with centre **O**.

The intersection of (1.4.1.10) and (1.4.1.11), can be obtained as

$$\begin{pmatrix}
5 & -7 & -25 \\
1 & 1 & -4
\end{pmatrix}
\xrightarrow{R_2 \leftarrow 5R_2 - R_1}
\begin{pmatrix}
5 & -7 & -25 \\
0 & 12 & 5
\end{pmatrix}$$

$$(1.4.2.1)$$

$$\stackrel{R_1 \leftarrow \frac{12}{7}R_1 + R_2}{\longrightarrow} \begin{pmatrix}
\frac{60}{7} & 0 & \frac{-265}{7} \\
0 & 12 & 5
\end{pmatrix}
\xrightarrow{R_2 \leftarrow \frac{1}{12}R_2}
\begin{pmatrix}
1 & 0 & \frac{-53}{12} \\
0 & 1 & \frac{5}{12}
\end{pmatrix}$$

$$(1.4.2.2)$$

$$\Longrightarrow \mathbf{O} = \begin{pmatrix}
\frac{-53}{12} \\
\frac{5}{12}
\end{pmatrix}$$

1.4.3. Verify that **O** satisfies (1.4.1.1). **O** is known as the circumcentre.

Solution: Substituting from (1.4.2.3) in (1.4.1.1), when substituted in the above equation,

$$\left(\mathbf{O} - \frac{\mathbf{B} + \mathbf{C}}{2}\right)^{\mathsf{T}} \left(\mathbf{B} - \mathbf{C}\right)$$

$$= \left(\frac{1}{12} \begin{pmatrix} -53 \\ 5 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} -7 \\ 1 \end{pmatrix}\right)^{\mathsf{T}} \begin{pmatrix} -1 \\ 11 \end{pmatrix}$$

$$= \frac{1}{12} \begin{pmatrix} -11 \\ -1 \end{pmatrix} \begin{pmatrix} -1 \\ 11 \end{pmatrix} = 0 \quad (1.4.3.1)$$

1.4.4. Verify that

$$OA = OB = OC (1.4.4.1)$$

1.4.5. Draw the circle with centre at **O** and radius

$$R = OA \tag{1.4.5.1}$$

This is known as the circumradius.

Solution: See Fig. 5.

1.4.6. Verify that

$$\angle BOC = 2\angle BAC. \tag{1.4.6.1}$$

Solution:

a) To find the value of $\angle BOC$:

$$\mathbf{B} - \mathbf{O} = \begin{pmatrix} \frac{5}{12} \\ \frac{67}{12} \end{pmatrix}, \mathbf{C} - \mathbf{O} = \begin{pmatrix} \frac{17}{12} \\ -\frac{65}{12} \end{pmatrix}$$

$$(1.4.6.2)$$

$$\implies (\mathbf{B} - \mathbf{O})^{\mathsf{T}} (\mathbf{C} - \mathbf{O}) = \frac{-4270}{144}$$

$$\implies ||\mathbf{B} - \mathbf{O}|| = \frac{\sqrt{4514}}{12}, ||\mathbf{C} - \mathbf{O}|| = \frac{\sqrt{4514}}{12}$$

$$(1.4.6.3)$$

Thus,

$$\cos BOC = \frac{(\mathbf{B} - \mathbf{O})^{\top} (\mathbf{C} - \mathbf{O})}{\|\mathbf{B} - \mathbf{O}\| \|\mathbf{C} - \mathbf{O}\|} = \frac{-4270}{4514} (1.4.6.5)$$

$$\implies \angle BOC = \cos^{-1}\left(\frac{-4270}{4514}\right)$$
 (1.4.6.6)

$$= 161.07536^{\circ} \text{ or } 198.92464^{\circ}$$
 (1.4.6.7)

b) To find the value of $\angle BAC$:

$$\mathbf{B} - \mathbf{A} = \begin{pmatrix} -5 \\ 7 \end{pmatrix}, \ \mathbf{C} - \mathbf{A} = \begin{pmatrix} -4 \\ -4 \end{pmatrix}$$

$$(1.4.6.8)$$

$$\implies (\mathbf{B} - \mathbf{A})^{\top} (\mathbf{C} - \mathbf{A}) = -8 \qquad (1.4.6.9)$$

$$\|\mathbf{B} - \mathbf{A}\| = \sqrt{74} \|\mathbf{C} - \mathbf{A}\| = 4\sqrt{2}$$

$$(1.4.6.10)$$

Thus,

$$\cos BAC = \frac{(\mathbf{B} - \mathbf{A})^{\top} (\mathbf{C} - \mathbf{A})}{\|\mathbf{B} - \mathbf{A}\| \|\mathbf{C} - \mathbf{A}\|} = \frac{-8}{4\sqrt{148}}$$
(1.4.6.11)

$$\implies \angle BAC = \cos^{-1}\left(\frac{-8}{4\sqrt{148}}\right) \tag{1.4.6.12}$$

$$= 99.46232^{\circ}$$
 (1.4.6.13)

From (1.4.6.13) and (1.4.6.7),

$$2 \times \angle BAC = \angle BOC \tag{1.4.6.14}$$

1.4.7. Let

$$\mathbf{P} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \tag{1.4.7.1}$$

where

$$\theta = \angle BOC \tag{1.4.7.2}$$

Verify that

$$\mathbf{B} - \mathbf{O} = \mathbf{P}(\mathbf{C} - \mathbf{O}) \tag{1.4.7.3}$$

All codes for this section are available at

codes/triangle/perp-bisect.py

1.5 Angle Bisector

1.5.1. Let \mathbf{D}_3 , \mathbf{E}_3 , \mathbf{F}_3 , be points on AB, BC and CA respectively such that

$$BD_3 = BF_3 = m, CD_3 = CE_3 = n, AE_3 = AF_3 = p.$$
 (1.5.1.1)

Obtain m, n, p in terms of a, b, c obtained in Problem 1.1.2.

Solution: From the given information,

$$a = m + n, (1.5.1.2)$$

$$b = n + p, (1.5.1.3)$$

$$c = m + p (1.5.1.4)$$

which can be expressed as

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} m \\ n \\ p \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
 (1.5.1.5)

$$\implies \binom{m}{n} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}^{-1} \binom{a}{b}$$
 (1.5.1.6) 1.5.4. Draw the circumcircle of $\triangle D_3 E_3 F_3$. This is known as the incircle of $\triangle ABC$.

Using row reduction,

$$\begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_3 \leftarrow R_3 - R_1} \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & -1 & 1 & -1 & 0 & 1 \end{pmatrix}$$
(1.5.1.7)

$$\stackrel{R_3 \leftarrow R_3 + R_2}{\longleftrightarrow} \stackrel{R_1 \leftarrow R_1 - R_2}{$$

$$\stackrel{R_2 \leftarrow 2R_2 - R_3}{\longleftrightarrow} \stackrel{2}{\longleftrightarrow} \begin{pmatrix} 2 & 0 & 0 & 1 & -1 & 1 \\ 0 & 2 & 0 & 1 & 1 & -1 \\ 0 & 0 & 2 & -1 & 1 & 1 \end{pmatrix}$$
(1.5.1.9)

yielding

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}^{-1} = \frac{1}{2} \begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ -1 & 1 & 1 \end{pmatrix}$$
 (1.5.1.10)

Therefore.

$$p = \frac{c+b-a}{2} = \frac{\sqrt{74} + \sqrt{32} - \sqrt{122}}{2}$$

$$m = \frac{a+c-b}{2} = \frac{\sqrt{74} + \sqrt{122} - \sqrt{32}}{2}$$

$$n = \frac{a+b-c}{2} = \frac{\sqrt{122} + \sqrt{32} - \sqrt{74}}{2}$$
(1.5.1.11)

upon substituting from (1.1.2.7), (1.1.2.9) and (1.1.2.11).

1.5.2. Using section formula, find

$$\mathbf{D}_3 = \frac{m\mathbf{C} + n\mathbf{B}}{m+n}, \ \mathbf{E}_3 = \frac{n\mathbf{A} + p\mathbf{C}}{n+p}, \ \mathbf{F}_3 = \frac{p\mathbf{B} + m\mathbf{A}}{p+m}$$
(1.5.2.1)

1.5.3. Find the circumcentre and circumradius of $\Delta D_3 E_3 F_3$. These are the incentre and inradius of $\triangle ABC$.

Fig. 6. Incircle of $\triangle ABC$

Solution: See Fig. 6

1.5.5. Using (1.1.7.1) verify that

$$\angle BAI = \angle CAI. \tag{1.5.5.1}$$

AI is the bisector of $\angle A$.

1.5.6. Verify that BI, CI are also the angle bisectors of $\triangle ABC$. All codes for this section are available at

1.6 Eigenvalues and Eigenvectors

The equation of the incircle is given by

$$g(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} \mathbf{V} \mathbf{x} + 2 \mathbf{u}^{\mathsf{T}} \mathbf{x} + f = 0 \tag{1.6.1}$$

where

$$V = I, u = -O, f = ||O|| - r^2,$$
 (1.6.2)

 \mathbf{O} being the incentre and r the inradius. Here \mathbf{I} is the identity matrix.

1.6.1. Compute

$$\Sigma = (\mathbf{V}\mathbf{h} + \mathbf{u})(\mathbf{V}\mathbf{h} + \mathbf{u})^{\mathsf{T}} - g(\mathbf{h})\mathbf{V}$$
 (1.6.1.1)

for $\mathbf{h} = \mathbf{A}$.

1.6.2. Find the roots of the equation

$$\left| \lambda \mathbf{I} - \mathbf{\Sigma} \right| = 0 \tag{1.6.2.1}$$

These are known as the eigenvalues of Σ .

1.6.3. Find **p** such that

$$\mathbf{\Sigma}\mathbf{p} = \lambda\mathbf{p} \tag{1.6.3.1}$$

using row reduction. These are known as the eigenvectors of Σ .

1.6.4. Define

$$\mathbf{D} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}, \tag{1.6.4.1}$$

$$\mathbf{P} = \begin{pmatrix} \frac{\mathbf{p}_1}{\|\mathbf{p}_1\|} & \frac{\mathbf{p}_2}{\|\mathbf{p}_2\|} \end{pmatrix} \tag{1.6.4.2}$$

1.6.5. Verify that

$$\mathbf{P}^{\mathsf{T}} = \mathbf{P}^{-1}.\tag{1.6.5.1}$$

P is defined to be an orthogonal matrix.

1.6.6. Verify that

$$\mathbf{P}^{\mathsf{T}}\mathbf{\Sigma}\mathbf{P} = \mathbf{D},\tag{1.6.6.1}$$

This is known as the spectral (eigenvalue) decomposition of a symmetric matrix

1.6.7. The direction vectors of the tangents from a point **h** to the circle in (1.6.1) are given by

$$\mathbf{m} = \mathbf{P} \begin{pmatrix} \sqrt{|\lambda_2|} \\ \pm \sqrt{|\lambda_1|} \end{pmatrix} \tag{1.6.7.1}$$

1.6.8. The points of contact of the pair of tangents to the circle in (1.6.1) from a point **h** are given by

$$\mathbf{x} = \mathbf{h} + \mu \mathbf{m} \tag{1.6.8.1}$$

where

$$\mu = -\frac{\mathbf{m}^{\top} (\mathbf{V} \mathbf{h} + \mathbf{u})}{\mathbf{m}^{\top} \mathbf{V} \mathbf{m}}$$
(1.6.8.2)

for **m** in (1.6.7.1). Compute the points of contact. You should get the same points that you obtained in the previous section.

All codes for this section are available at

codes/triangle/tangpair.py

2 Matrices

The matrix of the veritices of the triangle is defined as

$$\mathbf{P} = \begin{pmatrix} \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix}$$

- 2.1. Obtain the direction matrix of the sides of $\triangle ABC$ defined

$$\mathbf{M} = \begin{pmatrix} \mathbf{A} - \mathbf{B} & \mathbf{B} - \mathbf{C} & \mathbf{C} - \mathbf{A} \end{pmatrix} \tag{2.1.1.1}$$

Solution:

2.1 Vectors

$$\mathbf{M} = \begin{pmatrix} \mathbf{A} - \mathbf{B} & \mathbf{B} - \mathbf{C} & \mathbf{C} - \mathbf{A} \end{pmatrix} \tag{2.1.1.2}$$

$$= \begin{pmatrix} \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix} \begin{pmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

2.4 Perpendicular Bisector

 $= \begin{pmatrix} \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix} \begin{pmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}$ $= \begin{pmatrix} \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix} \begin{pmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}$ $= \begin{pmatrix} 2.4 & Perpendicular Bisector \\ (2.1.1.3) & 2.4.1. & Find the normal matrix for the perpendicular bisectors$ **Solution:** $The normal matrix is <math>\mathbf{M}_2$ **Solution:** The normal matrix is M_2

> 2.4.2. Find the constants vector for the perpendicular bisectors. **Solution:** The desired vector is

 $\mathbf{c}_2 = \operatorname{diag} \{ (\mathbf{M}^{\mathsf{T}} \mathbf{P}) \}$

$$\mathbf{c}_3 = \operatorname{diag} \left\{ \mathbf{M}_2^{\mathsf{T}} \begin{pmatrix} \mathbf{D} & \mathbf{E} & \mathbf{F} \end{pmatrix} \right\}$$
 (2.4.2.1)

2.2. Obtain the normal matrix of the sides of $\triangle ABC$ **Solution:** Considering the roation matrix

$$\mathbf{R} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \tag{2.1.2.1}$$

the normal matrix is obtained as

$$\mathbf{N} = \mathbf{RM} \tag{2.1.2.2}$$

2.3. Obtain *a*, *b*, *c*.

Solution: The sides vector is obtained as

$$\mathbf{d} = \sqrt{\operatorname{diag}(\mathbf{M}^{\mathsf{T}}\mathbf{M})} \tag{2.1.3.1}$$

2.4. Obtain the constant terms in the equations of the sides of the triangle.

Solution: The constants for the lines can be expressed in vector form as

$$\mathbf{c} = \operatorname{diag}\left\{ \left(\mathbf{N}^{\mathsf{T}} \mathbf{P} \right) \right\} \tag{2.1.4.1}$$

- 2.2 Median
- 2.2.1. Obtain the mid point matrix for the sides of the triangle

$$\begin{pmatrix} \mathbf{D} & \mathbf{E} & \mathbf{F} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
(2.2.1.1)

2.2.2. Obtain the median direction matrix.

Solution: The median direction matrix is given by

$$\mathbf{M}_1 = \begin{pmatrix} \mathbf{A} - \mathbf{D} & \mathbf{B} - \mathbf{E} & \mathbf{C} - \mathbf{F} \end{pmatrix} \tag{2.2.2.1}$$

$$= \left(\mathbf{A} - \frac{\mathbf{B} + \mathbf{C}}{2} \quad \mathbf{B} - \frac{\mathbf{C} + \mathbf{A}}{2} \quad \mathbf{C} - \frac{\mathbf{A} + \mathbf{B}}{2}\right) \tag{2.2.2.2}$$

$$= (\mathbf{A} \quad \mathbf{B} \quad \mathbf{C}) \begin{pmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & 1 & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} & 1 \end{pmatrix}$$
 (2.2.2.3)

- 2.2.3. Obtain the median normal matrix.
- 2.2.4. Obtian the median equation constants.
- 2.2.5. Obtain the centroid by finding the intersection of the medians.
- 2.3 Altitude
 - 2.3.1. Find the normal matrix for the altitudes

2.3.2. Find the constants vector for the altitudes.

Solution: The desired vector is

$$\mathbf{M}_2 = \begin{pmatrix} \mathbf{B} - \mathbf{C} & \mathbf{C} - \mathbf{A} & \mathbf{A} - \mathbf{B} \end{pmatrix} \tag{2.3.1.1}$$

$$= (\mathbf{A} \quad \mathbf{B} \quad \mathbf{C}) \begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{pmatrix}$$
 (2.3.1.2)

(2.3.2.1)

$$= \begin{pmatrix} \mathbf{A} - \mathbf{B} & \mathbf{B} - \mathbf{C} & \mathbf{C} - \mathbf{A} \end{pmatrix}$$
 (2.1.1.2)

where the second matrix above is known as a circulant matrix. Note that the 2nd and 3rd row of the above matrix are circular shifts of the 1st row.

2.5 Angle Bisector

2.5.1. Find the points of contact.

Solution: The points of contact are given by

$$\left(\frac{m\mathbf{C}+n\mathbf{B}}{m+n} \quad \frac{n\mathbf{A}+p\mathbf{C}}{n+p} \quad \frac{p\mathbf{B}+m\mathbf{A}}{p+m}\right) = \left(\mathbf{A} \quad \mathbf{B} \quad \mathbf{C}\right) \begin{pmatrix} 0 & \frac{n}{b} & \frac{m}{c} \\ \frac{n}{a} & 0 & \frac{p}{c} \\ \frac{m}{a} & \frac{p}{b} & 0 \end{pmatrix}$$
(2.5.1.1)

APPENDIX A POINTS ON A LINE

A.1. The equation of a line is given by

$$y = mx + c \tag{A.1.1}$$

$$\implies \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ mx + c \end{pmatrix} = \begin{pmatrix} 0 \\ c \end{pmatrix} + x \begin{pmatrix} 1 \\ m \end{pmatrix} \tag{A.1.2}$$

yielding (1.1.4.1).

A.2. (A.1.1) can also be expressed as

$$y - mx = c (A.2.1)$$

$$\implies \left(-m \quad 1\right) \begin{pmatrix} x \\ y \end{pmatrix} = c \tag{A.2.2}$$

yielding (1.1.5.1).

A.3. From (1.1.4.1), if \mathbf{A} , \mathbf{D} and \mathbf{C} are on the same line,

$$\mathbf{D} = \mathbf{A} + q\mathbf{m}$$

$$\mathbf{C} = \mathbf{D} + p\mathbf{m} \qquad (A.3.2)$$

(A.3.1)

$$\implies p(\mathbf{D} - \mathbf{A}) + q(\mathbf{D} - \mathbf{C}) = 0, \quad p, q \neq 0 \quad (A.3.3)$$

$$\implies$$
 D = $\frac{p\mathbf{A} + q\mathbf{C}}{p+q}$ (A.3.4)

yielding (1.2.1.1) upon substituting

$$k = \frac{p}{a}. (A.3.5)$$

 $(\mathbf{D} - \mathbf{A}), (\mathbf{D} - \mathbf{C})$ are then said to be <u>linearly dependent</u>. A.4. If $\mathbf{A}, \mathbf{B}, \mathbf{C}$ are collinear, from (1.1.5.1),

$$\mathbf{n}^{\mathsf{T}}\mathbf{A} = c \tag{A.4.1}$$

$$\mathbf{n}^{\mathsf{T}}\mathbf{B} = c \tag{A.4.2}$$

$$\mathbf{n}^{\mathsf{T}}\mathbf{C} = c \tag{A.4.3}$$

which can be expressed as

$$\begin{pmatrix} \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix}^{\mathsf{T}} \mathbf{n} = c \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \tag{A.4.4}$$

$$\implies \begin{pmatrix} 1 & 1 & 1 \\ \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} \mathbf{n} \\ -c \end{pmatrix} = \mathbf{0} \tag{A.4.5}$$

yielding (1.1.3.1). Rank is defined to be the number of linearly indpendent rows or columns of a matrix.

A.5. Consequently, points A, B and C form a triangle if

$$p(\mathbf{A} - \mathbf{B}) + q(\mathbf{C} - \mathbf{B}) \tag{A.5.1}$$

$$= (p+q)\mathbf{B} - p\mathbf{A} - q\mathbf{C} = 0 \tag{A.5.2}$$

$$\implies p = 0, q = 0$$
 (A.5.3)

A.6. In Fig. 7

$$AF = BF, AE = BE,$$
 (A.6.1)

and the medians BE and CF meet at G. Show that

$$\frac{GB}{GE} = \frac{GC}{GF} = 2 \tag{A.6.2}$$

Solution: From (1.2.1.1),

Fig. 7. $k_1 = k_2 = 2$.

$$\mathbf{G} = \frac{k_1 \mathbf{E} + \mathbf{B}}{k_1 + 1} = \frac{k_2 \mathbf{F} + \mathbf{C}}{k_2 + 1}$$
 (A.6.3)

$$\implies \frac{k_1\left(\frac{\mathbf{A}+\mathbf{C}}{2}\right)+\mathbf{B}}{k_1+1} = \frac{k_2\left(\frac{\mathbf{A}+\mathbf{B}}{2}\right)+\mathbf{C}}{k_2+1} \quad (A.6.4)$$

$$\implies$$
 $(k_2 + 1) \{k_1 (\mathbf{A} + \mathbf{C}) + 2\mathbf{B}\} = (k_1 + 1) \{k_2 (\mathbf{A} + \mathbf{B}) + 2\mathbf{C}\}$
(A.6.5)

which can be expressed as

$$\{2 + k_2 - k_1 k_2\} \mathbf{B} - (k_2 - k_1) \mathbf{A} - \{k_1 + 2 - k_1 k_2\} \mathbf{C} = 0$$
(A.6.6)

and is of the form (A.5.3) with

$$p = k_2 - k_1, q = k_1 + 2 - k_1 k_2.$$
 (A.6.7)

Thus, from (A.5.3)

$$k_2 - k_1 = 0, (A.6.8)$$

$$k_1 + 2 - k_1 k_2 = 0 (A.6.9)$$

Thus, from (A.6.9)

$$k_1 = k_2$$
 (A.6.10)

and substituting the above in (A.6.9) results in the quadratic

$$k_1^2 - k_1 - 2 = 0 (A.6.11)$$

$$\implies (k_1 - 2)(k_1 + 1) = 0$$
 (A.6.12)

admitting $k_1 = k_2 = 2$ as the only possible solution.

A.7. Substituting $k_1 = 2$ in (A.6.3)

$$G = \frac{A + B + C}{3} \tag{A.7.1}$$

A.8. In Fig. 8, AG is extended to join BC at **D**. Show that AD is also a median.

Fig. 8. $k_3 = 2, k_4 = 1$

Solution: Considering the ratios in Fig. 8,

$$G = \frac{k_3 \mathbf{D} + \mathbf{A}}{k_3 + 1}$$
 (A.8.1)
$$\mathbf{D} = \frac{k_4 \mathbf{C} + \mathbf{B}}{k_4 + 1}$$
 (A.8.2)

$$\mathbf{D} = \frac{k_4 \mathbf{C} + \mathbf{B}}{k_4 + 1} \tag{A.8.2}$$

Substituting from (A.7.1) in the above,

$$(k_2 + 1) \left(\mathbf{A} + \mathbf{B} + \mathbf{C} \right)$$

$$(k_3 + 1)\left(\frac{\mathbf{A} + \mathbf{B} + \mathbf{C}}{3}\right) = k_3\left(\frac{k_4\mathbf{C} + \mathbf{B}}{k_4 + 1}\right) + \mathbf{A}$$
(A.8.3)

$$\implies (k_3 + 1)(k_4 + 1)(\mathbf{A} + \mathbf{B} + \mathbf{C}) = 3\{k_3(k_4\mathbf{C} + \mathbf{B}) + (k_4 + 1)\mathbf{A}\}\$$

(A.8.4)

which can be expressed as

$$(k_3k_4 + k_3 - 2k_4 - 2) \mathbf{A}$$

- $(-k_3k_4 - k_4 + 2k_3 - 1) \mathbf{B}$
- $(-k_3 - k_4 - 1 + 2k_3k_4) \mathbf{C} = \mathbf{0}$ (A.8.5)

Comparing the above with (A.5.3),

$$p = -k_3k_4 - k_4 + 2k_3 - 1, q = -k_3 - k_4 - 1 + 2k_3k_4$$
(A.8.6)

yielding

$$-k_3k_4 - k_4 + 2k_3 - 1 = 0 (A.8.7)$$

$$-k_3 - k_4 - 1 + 2k_3k_4 = 0 (A.8.8)$$

Subtracting (A.8.7) from (A.8.8),

$$3k_3(k_4 - 1) = 0 (A.8.9)$$

$$\implies k_4 = 1$$
 (A.8.10)

which upon substituting in (A.8.7) yields

$$k_3 = 2$$
 (A.8.11)

APPENDIX B TANGENTS TO A CIRCLE

The equation of the incircle is given by

$$\|\mathbf{x} - \mathbf{O}\|^2 = r^2 \tag{B.1}$$

which can be expressed as (1.6.1) using (1.6.2). In Fig. 6, Let (1.6.8.1) be the equation of AB. Then, the intersection of (1.6.8.1) and (1.6.1) can be expressed as

$$(\mathbf{h} + \mu \mathbf{m})^{\mathsf{T}} \mathbf{V} (\mathbf{h} + \mu \mathbf{m}) + 2\mathbf{u}^{\mathsf{T}} (\mathbf{h} + \mu \mathbf{m}) + f = 0$$
 (B.2)

$$\implies \mu^2 \mathbf{m}^\top \mathbf{V} \mathbf{m} + 2\mu \mathbf{m}^\top (\mathbf{V} \mathbf{h} + \mathbf{u}) + g(\mathbf{h}) = 0$$
 (B.3)

For (B.3) to have exactly one root, the discriminant

$$\left\{ \mathbf{m}^{\top} \left(\mathbf{V} \mathbf{h} + \mathbf{u} \right) \right\}^{2} - g \left(\mathbf{h} \right) \mathbf{m}^{\top} \mathbf{V} \mathbf{m} = 0$$
 (B.4)

and (1.6.8.2) is obtained. (B.4) can be expressed as

$$\mathbf{m}^{\mathsf{T}} \left(\mathbf{V} \mathbf{h} + \mathbf{u} \right)^{\mathsf{T}} \left(\mathbf{V} \mathbf{h} + \mathbf{u} \right) \mathbf{m} - g \left(\mathbf{h} \right) \mathbf{m}^{\mathsf{T}} \mathbf{V} \mathbf{m} = 0 \tag{B.5}$$

$$\implies \mathbf{m}^{\mathsf{T}} \mathbf{\Sigma} \mathbf{m} = 0$$
 (B.6)

(B.10)

for Σ defined in (B.6). Substituting (1.6.6.1) in (B.6),

$$\mathbf{m}^{\mathsf{T}} \mathbf{P} \mathbf{D} \mathbf{P}^{\mathsf{T}} \mathbf{m} = 0 \tag{B.7}$$

$$\implies \mathbf{v}^{\mathsf{T}} \mathbf{D} \mathbf{v} = 0 \tag{B.8}$$

where

$$\mathbf{v} = \mathbf{P}^{\mathsf{T}}\mathbf{m} \tag{B.9}$$

1 as
$$\lambda_1 v_1^2 - \lambda_2 v_2^2 = 0$$
 (B.10)

$$\implies \mathbf{v} = \begin{pmatrix} \sqrt{|\lambda_2|} \\ + \sqrt{|\lambda_1|} \end{pmatrix} \tag{B.11}$$

after some algebra. From (B.11) and (B.9) we obtain (1.6.7.1).