

FUNDAMENTOS DE COMPUTADORES 1° Curso del Grado en Ingeniería Informática

TEMA 5

Problemas resueltos

Problemas resueltos del tema 5

- 1. Realizar las siguientes sumas binarias:
 - a) 100100111.011 + 010111011.110
 - b) 101101.10101 + 110111.01101
 - c) 111.101010100 + 010.110101101

Solución:

- **2.** Realizar las siguientes restas binarias:
 - a) 100100111.011 010111011.110
 - b) 111101.10101 110111.01101
 - c) 111.101010100 010.110101101

Solución:

- **3.** Sabiendo que las siguientes combinaciones están expresadas en notación de complemento a 1, determinar la cantidad que representan y cambiarlas de signo:
 - a) 11011010
 - b) 10001110
 - c) 01101011

Solución:

a)
$$11011010 = -127 + 90 = -37$$

Para cambiarla de signo le hacemos el complemento a 1 a la combinación:

$$^{1}(11011010) = 00100101 = +37$$

b)
$$10001110 = -127 + 14 = -113$$

Para cambiarla de signo le hacemos el complemento a 1 a la combinación:

$$^{1}(10001110) = 01110001 = +113$$

c) 011010111 = +107

Para cambiarla de signo le hacemos el complemento a 1 a la combinación:

$$^{1}(01101011) = 10010100 = -127 + 20 = -107$$

- **4.** Sabiendo que las siguientes combinaciones están expresadas en notación de complemento a 2, determinar la cantidad que representan y cambiarlas de signo:
 - a) 11110000
 - b) 10111001
 - c) 01111011

Solución:

a)
$$11110000 = -128 + 112 = -16$$

Para cambiarla de signo le hacemos el complemento a 1 a la combinación:

$$^{2}(11110000) = 00010000 = +16$$

b)
$$10111001 = -128 + 57 = -71$$

Para cambiarla de signo le hacemos el complemento a 1 a la combinación:

$$^{2}(10111001) = 01000111 = +71$$

c)
$$01111011 = +123$$

Para cambiarla de signo le hacemos el complemento a 1 a la combinación:

$$^{2}(01111011) = 10000101 = -128 + 5 = -123$$

5. Diseñar un circuito que transforme a BCD Natural una combinación de cuatro bits expresada en BCD Aiken usando un circuito sumador.

Solución:

Para pasar de BCD Aiken a BCD natural se deben realizar las conversiones especificadas en la siguiente tabla:

Dígito decimal	\mathbf{K}_3	\mathbf{K}_2	\mathbf{K}_{1}	\mathbf{K}_{0}	KN ₃	KN ₂	KN_1	KN ₀
0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	1
2	0	0	1	0	0	0	1	0
3	0	0	1	1	0	0	1	1
4	0	1	0	0	0	1	0	0
5	1	0	1	1	0	1	0	1
6	1	1	0	0	0	1	1	0
7	1	1	0	1	0	1	1	1
8	1	1	1	0	1	0	0	0
9	1	1	1	1	1	0	0	1

Como se puede apreciar, las combinaciones correspondientes a los dígitos comprendidos entre 0 y 4 ($K_3 = 0$) deben mantenerse intactas, mientras que las correspondientes a los dígitos comprendidos entre 5 y 9 ($K_3 = 1$) pueden obtenerse restando 6 (0110) a la combinación de entrada. Para restar 0110 a una combinación se debe sumar a la misma el complemento a 2 de esta cantidad, es decir 1010. Por tanto, en aquellas combinaciones para las que $K_3 = 0$ se deberá sumar 0000 a la combinación de entrada y en aquellas donde $K_3 = 1$ se sumará 1010.

En la siguiente figura se representa el diagrama lógico de un circuito que presenta este comportamiento.

6. Diseñar un circuito que transforme a BCD Natural una combinación de cuatro bits expresada en BCD exceso 3 usando un circuito sumador.

Solución:

Para pasar de BCD Exceso 3 a BCD natural se deben realizar las conversiones especificadas en la siguiente tabla:

Dígito decimal	E ₃	$\mathbf{E_2}$	$\mathbf{E_1}$	$\mathbf{E_0}$	EN ₃	EN ₂	EN ₁	EN ₀
0	0	0	1	1	0	0	0	0
1	0	1	0	0	0	0	0	1
2	0	1	0	1	0	0	1	0
3	0	1	1	0	0	0	1	1
4	0	1	1	1	0	1	0	0
5	1	0	0	0	0	1	0	1
6	1	0	0	1	0	1	1	0
7	1	0	1	0	0	1	1	1
8	1	0	1	1	1	0	0	0
9	1	1	0	0	1	0	0	1

De la tabla anterior se deduce que se debe restar 3 (0011) a todas las combinaciones, o sea, sumarle su complemento a 2, es decir 1101. Un circuito que realiza esta operación se representa en la siguiente figura.

