Basics

Notations

- $\bullet \ \left(\begin{smallmatrix} V \\ k \end{smallmatrix} \right) \coloneqq \{A : A \subseteq V \land |A| = k\}$
- $[n] := \{1, \dots, n\} \subset \mathbb{N}$ Power set $2^X := \{A : A \subseteq X\}$

Graph

- **Definition**: G = (V, E) with vertex set V and edge set $E \subseteq \{\{u, v\} : u, v \in V\}$ $V, u \neq v$
- Vertex set: V(G)
- Edge set: E(G)
- Isomorphic (G_1 to another graph G_2): if \exists bijection $f: V_1 \to V_2$ with $\{u, v\} \in E_1 \iff \{f(u), f(v)\} \in E_2$
- Order: = |V(G)|, short |G|
- **Size**: = |E(G)|, short ||G||
- Complement: $\overline{G} = (V(G), (\begin{smallmatrix} V \\ 2 \end{smallmatrix}) E(G))$
- Degree sequence: multiset of degrees of vertices in V(G)
 - o graphic: deg. seq. (d_1,\ldots,d_n) , iff
- 1. $d_1 + \cdots + d_n$ even 2. $\sum_{i=1}^k d_i \le k(k-1) + \sum_i i = k+1^n \min(d_i,k)$ $(\forall 1 \le k \le n)$ Degree sum: $\sum_{v \in V(G)} \deg(v) = 2|E(G)|$ Minimum degree: $\delta(G) = \deg \operatorname{rec} v \in V(G)$ with smallest degree

- Maximum degree: $\Delta(G)$ = degree of $v \in V(G)$ with largest degree
- Adjacency matrix: $A(G) = \mathbb{R}^{n \times n} \ni A_{i,j} = \begin{cases} 1, & ij \in E \\ 0, & \text{else} \end{cases}$
- Eulerian: if it contains an Eulerian tour
- Connected: for any two vertices there is a link between them
- $\circ \,$ $\mathit{spanning tree} .$ if G is connected, then it has a spanning tree
- \circ peeling leaves: vertices can be ordered v_1,\dots,v_n s.t. $G[\{v_1,\dots,v_i\}]$ is connected for $i \in \{1, \dots, n\}$

Digraph

• **Definition**: G = (V, E) with vertex set V and edge set $E \subseteq \{(u, v) : u, v \in V\}$ $V, u \neq v$

Multigraph

• **Definition**: G = (V, E) with vertex set V and multiset E of V-pairs

Hypergraph

• **Definition**: G = (V, E) with vertex set V and edge set $E \subseteq 2^V = \{A : A \subseteq V\}$

Vertex

- Incident to $e \in E(G)$ if $v \in e$
- Adjacent to $\tilde{v} \in V(G)$ if $\{v, \tilde{v}\} \in E(G)$
- Neighborhood: $N(v) = \{u : uv \in E(G)\}$
- Degree: deg(v) = d(v) = |N(v)|
- Isolated: vertex with deg(v) = 0
- Leaf: vertex with deg(v) = 1

Subgraph

- **Definition**: H subgraph of G (write $H \subseteq G$) if $V(H) \subseteq V(G) \land E(H) \subseteq$
- Induced subgraph: H induced subgraph of G (write $H\subseteq G$), if $H\subseteq G$ and E(H) contains all edges from E(G) between vertices in V(H)
- Edge-induced subgraph: subgraph induced by $X \subseteq E(G)$, note G[X]
- Subgraph separation: $X \in V(G)$ separates $A, B \in V(G) \Leftrightarrow$ any A-B-path has vertex in X

Spanning graph

• Definition: Subgraph with same vertex set as supergraph

Line graph

- **Definition**: $L(G) = (E, \{\{e, e'\} : e \cap e' \neq \emptyset\})$
- **Graphic**: L is line graph of some G, if it doesn't contain one of 9 specific induced subgraphs

Vertex cover

• **Definition**: $V' \subseteq V(G)$ s.t. any $e \in E(G)$ is incident to a vertex in V'

Cycle

- Definition: $C_n \coloneqq (\{v_1,\dots,v_n\},\{\{v_1,v_2\},\dots,\{v_{n-1},v_n\},\{v_n,v_1\}\})$
- Shorthand: (v_1, \ldots, v_n, v_1)
- Length (of cycle): = $|V| \equiv |E|$
- Cyclic subgraph: If $\delta(G) \ge 2$, then G has cycle with length $\ge \delta + 1$

Path

- **Definition**: $(\{v_1, \dots, v_n\}, \{\{v_1, v_2\}, \dots, \{v_{n-1}, v_n\}\})$
- Shorthand: (v_1, \ldots, v_n)
- Length (of path): = $|E| \neq |V|$
- v_0v_k -path: path starting at v_0 and ending at v_k
- **Independent**: two ab-paths are independent \Leftrightarrow they only share a and b

Walk

· Definition: non-empty alternating sequence of vertices and edges

$$\begin{aligned} &v_0e_0\dots e_{k-1}v_k\\ \text{with } e_i = v_iv_{i+1}, \text{length } k \in \mathbb{N} \end{aligned}$$

- \circ closed: if $v_0 = v_k$
- \circ *even*: if k is even
- \circ odd: if k is odd
- Eulerian tour:
- o Definition: closed walk with
 - no edges of G are repeatedly used
 - all edges of G are used
- Even degrees: G connected has Euler tour $\Leftrightarrow \forall v \in V(G) : \deg(v)$ even
- v_0v_k -walk: walk starting at v_0 and ending at v_k
- Induces path: $\exists uv$ -walk $\Rightarrow \exists uv$ -path
- Odd closed walk, odd cycle: G has odd closed walk ⇒ G has odd cycle

Connected component

• **Definition**: maximal connected subgraph (connected, but any supergraph isn't)

Block

- · Block: maximal 2-connected subgraph or bridge
- o share ≤ 1 vertices with one another
- · Block-cut-vertex graph
 - $\circ V = \text{set of blocks} \cup \text{set of vertices}$
 - $E = \{\{v, B\} : v \in V(B), \text{ cut-vertex } v, \text{ block } B\}$
 - o block-cut-vertex graph of connected graph is tree

Acyclic graph, Forest

• Definition: Graph with no cycle as subgraph

Tree

- · Definition: Graph that is connected and acyclic
- $\circ \iff G$ is connected and $\forall e \in E(G) : G e$ is disconnected (minimal-connected)
- $\circ \iff G$ is acyclic and $\forall xy \notin E(G) : G \cup xy$ has cycle (maximal-acyclic)
- $\circ \Leftrightarrow G$ is connected and 1-degenerate $(\forall G' \subseteq G : \delta(G') \le 1)$
- $\circ \iff G$ is connected and ||G|| = |G| 1
- $\circ \iff G$ is acyclic and ||G|| = |G| 1
- $\circ \iff \forall u, v \in V(G) \exists \text{ unique } uv\text{-path}$
- · Special trees: path, star, spider, caterpillar, broom
- Leaf existence: Tree T, $|T| \ge 2 \Rightarrow T$ has leaf • Edge count: Tree T, $|T| = n \Rightarrow ||T|| = n - 1$

k-regular graph

• **Definition**: Graph with $\deg(v) = k \in \mathbb{N}_0 \quad (\forall v \in V(G))$

Bipartite graph

- **Definition**: G is bipartite $\iff G$ contains no cycles of odd length
- o complete bipartite: $K_{m,n} = (A \cup B, \{a,b\} : a \in A, b \in B)$
- o saturating: $G = (A \cup B, E)$ has matching saturating A $\Leftrightarrow \forall S \subseteq A : N(S) \ge |S| \ (N(S) \coloneqq \{b \in B : ab \in E, a \in S\})$

- $\circ \text{ nearly: } G = (A \cup B, E), \forall S \subseteq A : |N(S)| \ge |S| d \quad (d \ge 1).$
 - $\Rightarrow \exists$ matching M saturating all but at most d vertices of A
- Matching vs vertex cover: size of largest matching = size of smallest vertex cover

Matching

- **Definition**: graph with $\delta(G) = \Delta(G) = 1$
- Perfect matching: spanning + matching subgraph of G (aka 1-factor)
 - existence: G has perfect matching $\Leftrightarrow \forall S \subseteq V(G): q(G-S) \leq S$ (q(G) = number of components in G with odd order)

Coloring

- Proper coloring: = $c: V(G) \to [k]$ with $c(u) \neq c(v) \quad (\forall uv \in E(G))$
- Equitable coloring: proper coloring + color classes have almost (±1) equal size
 existence: any graph has equitable coloring in (\(\Delta(G) + 1\)) colors

Chromatic number

- **Definition**: $\chi(G) = \min\{k : G \text{ has proper coloring with } k \text{ colors}\}\$
- Examples: $\chi(C_{2n}) = 2$, $\chi(C_{2n+1}) = 3$

Factors

- k-factor: spanning k-regular subgraph (easy to find)
- **f-factor**: spanning subgraph $H \subseteq G$ with $\deg_H(v) = f(v)$, $f: V(G) \to \{0, 1, \dots\}$ with $f(v) \le \deg(v) \quad (\forall v \in V)$
- **H-factor** (aka perfect H-packing): spanning subgraph s.t. each component is $\cong H$ existence: if $\delta(G) \ge \left(1 \frac{1}{k}|V(G)|\right)$ and k divides |G|, then G has K_k -factor

Connectivity

- k-connected: if |G| > k and deleting < k vertices does not disconnect G
- k-linked: if for any 2k vertices $(s_1,\ldots,s_k,t_1,\ldots,t_k)$ \exists pairwise disjoint s_it_i -paths (note: k-connected $\not\Rightarrow k$ -linked)
- Vertex-connectivity: $\kappa(G) = \max\{k : G \text{ is } k\text{-connected}\}$
- l-edge-connected: if deleting < l edges does not disconnect G
- Edge-connectivity: $\kappa'(G) = \max\{l : G \text{ is } l\text{-edge-connected}\}$
- Vertex- vs Edge-connectivity: $\kappa(G) \le \kappa'(G) \le \delta(G)$
- Three-connected + contraction: 3-connected $\Leftrightarrow \exists$ separate G_0,\ldots,G_k with $G_0=K_4,\ G_k=G,\ G_i=G_{i+1}\circ xy$ with $\deg(x),\deg(y)\geq 3$
- Three-connected + decontraction: all 3-connected graphs can be built by iteratively de-contracting vertices of ${\cal K}_4$
- Average degree ≥ 4 : has k-connected subgraph ($k \geq 2$)

Cuts

- Cut-Set: $X \subseteq V(G) \cup E(G)$ s.t. #components in (G X) greater than in G
- Cut-Vertex: Cut-Set consisting of single vertex
- Cut-Edge (or bridge): Cut-Set consisting of single edge
- Menger's theorem: for A, B ⊆ V(G): min # of vertices separating A and B = max # of disjoint A-B-paths
- Menger global:
 - 1. k-connected $\Leftrightarrow \forall a, b \in V(G) \exists k$ pairwise independent ab-paths
- 2. k-edge-connected $\iff \forall a, b \in V(G) \ \exists \ k$ pairwise edge-disjoint ab-paths

Ear-decomposition

- Definition: G has ear-decomposition $\iff \exists$ sequence of graphs G_0, \ldots, G_k with $G_k = G, G_0 = \text{cycle}, G_{i+1}$ obtained from G_i by attaching "ear" (path that shares only endpoints with G_i)
- 2-connected $\Leftrightarrow \forall$ cycles C in G there is ear-decomposition starting at C

Edge contraction

· Contraction:

$$G \circ xy = ((V \setminus \{x,y\}) \cup v_{xy},$$

$$(E \setminus \{e : x \in E \lor y \in e\}) \cup \{v_{xy}z : z \in (N_G(x) \cup N_G(y)) \setminus \{x,y\}\})$$
 with $xu \in E(G)$

• **De-contraction**: if $\exists xy \in E(G) : \kappa(G \circ xy) \ge 3$ (for G with $\kappa(G) \ge 3$, $|G| \ge 5$)