

Leveraging Cloud Computer Vision for a Real-Time Consumer Product

Pavan Kumar Founder & CTO, Cocoon Cam

No Insights + Discomfort by Current Baby Monitors

Audio and Video Baby Monitors

Can you believe this is a video? It doesn't look like the baby is moving!

Wearable Devices

Wearables cause more worry. (Image from Owlet website)

Cocoon Cam PLUS, 2018

Breathing Monitoring

Real-Time Graph/Circle

Cry Detection

Sleep/ Wake Up Alerts

Caregiver Management

Swaddle Stories

Support for Twins

Pinch to Zoom

PLUS all features of a traditional video & audio baby monitor.

Cocoon Cam Technology

Our Design Constraints

- Low development & production cost
- Low end-to-end latency for computer vision
- Run real-world tests before production
- Low upfront end-user cost
- Ability to scale services easily

We Observed Two Trends

IP Cameras are a Commodity

- Starts at \$15 for a 720p HD camera with 2-way audio
- Supports multiple resolutions and video encoders

Rise of Cloud Computing

- Easy and inexpensive to provision & maintain
- Scalable, reliable and faster time to market

Limitations of Real-Time CV in Cloud

- High recurring & operating costs
 - Might not work for one-time sale products
- Dependent on network connectivity
 - Poor internet results in poor CV service
- High network bandwidth consumption
 - Approximately 100GB/month for 480p video
- No off-the-shelf infrastructure allows real-time CV
 - Latency might be an issue

Is Cloud CV really cost prohibitive?

Cocoon Cam

- 3x CNNs, CV Tracking, Signal Processing
- Compute requirement: 5 to 10 GFLOPS

- 1 GB RAM, 1vCPU
- Compute performance: 30 GFLOPS
- Cost: \$8.5/ month of continuous use

Compute performance: 150 MFLOPS

Cost Per Compute in Cloud is Down

General Purpose Instance Hourly Pricing (7.5GB RAM, 2vCPUs)

Instance Type	Platform	Price start date	Price
m1.large	Linux/Unix	Dec. 15 2011	\$0.46
m1.large	Linux/Unix	Mar. 8 2012	\$0.46
m1.large	Linux/Unix	Jan. 11 2013	\$0.32
m1.large	Linux/Unix	Jan. 4 2014	\$0.23
		Apr 1, 2018	\$0.17
	m1.large m1.large m1.large	Type m1.large Linux/Unix m1.large Linux/Unix m1.large Linux/Unix	Type Dec. 15 2011 m1.large Linux/Unix Dec. 15 2011 m1.large Linux/Unix Mar. 8 2012 m1.large Linux/Unix Jan. 11 2013 m1.large Linux/Unix Jan. 4 2014

Pricing of next-generation General Purpose Instances

M3.large : \$0.133/hr M4.large : \$0.100/hr M5.large : \$0.096/hr T2.large : \$0.092/hr

Understanding Network Limitations

Is network connectivity good enough?

- We have observed 99%+ uptime in homes
- Our systems have less than 5 sec end-to-end latency
- Can we stream low-resolution video?
 - We can use 360p @ 5FPS video for real-time CV
 - Max. bandwidth utilization is 200GB per month
- Can networks handle 200GB bandwidth?
 - Most network providers have 1TB data limit

1PB+ Real-time Data Processed Per Month

Hardware Sensor

Postgres DB Cassandra DB Amazon S3 Redis Kafka **Data**

Interface

Minimizing Latency with CV in Cloud

- Making use of efficient data pipelines
 - Kafka, Redis, Cassandra, Containerization
- Make use of temporal information
 - Unlimited storage/retrieval is possible in cloud
- Not EVERY algorithm has to be run in real time
 - Ex: Tracking along with CNN for object detection
- Several Intel compiler optimizations are available
 - SSE, MMX, AVX etc.

Develop Faster & Deliver Higher Quality

Continuous experimentation

- Develop and test many algorithms at once
- Get more analytics on algorithm enhancements
- Reduced fragmentation & hardware testing cycles

Continuous integration and continuous delivery

- No need for scheduled firmware updates
- Easily rollback any unwanted updates
- Faster build and release cycles

Summary

- CV in the cloud offers significant advantages, such as low upfront and ongoing cost, unlimited compute and storage availability
- CV in cloud offers unlimited and on-demand compute & storage availability. This is great for subscription-based services.
- CV in the cloud is great for development teams since they can run more experiments to deliver a faster & more reliable product.

Additional Resources

- Real-time Video Analytics the killer app for edge computing https://www.microsoft.com/en-us/research/wp-content/uploads/2017/06/CO COMSI-2017-03-0045.R1 Ananthanarayanan.pdf
- Video Stream Analytics Using OpenCV, Kafka and Spark Technologies https://www.infoq.com/articles/video-stream-analytics-opencv
- A Holistic Cloud-Enabled Robotics System for Real-Time Video Tracking Application https://pdfs.semanticscholar.org/0089/426b9827019c58f2e628c5345ef1655b33ba.pdf
- Microsoft Azure: How to Analyze Videos in Real-time
 https://docs.microsoft.com/en-us/azure/cognitive-services/computer-vision/vision-api-how-to-topics/howtoanalyzevideo_vision

Thank You

Pavan Kumar

pavan@cocooncam.com www.cocooncam.com

Leveraging Cloud Computer Vision for a Real-Time Consumer Product

The capabilities of cloud computing are expanding rapidly and the compute costs are going down. At the same time, internet-connected cameras that can stream video and audio are becoming a commodity in the market. This makes it increasingly attractive to implement computer vision in the cloud, even for cost-sensitive applications requiring real-time response. In this presentation, we explore the benefits and limitations of computer vision in the cloud today – both for initial prototyping and for product deployment - based on Cocoon Cam's experience creating the first vision-enabled baby health and wellness monitor.