Graphs, Part 5

Depth-First-Search

- One of the simplest algorithms for graph searching
- Very efficient
- Many applications
 - Topological sort
 - Strongly connected components

Depth-First Search

```
DFS-Visit(G, u)
DFS(G)
   for each vertex u \in G.V{
                                           1 time = time + 1:
       u.color = WHITE;
                                           u.d = time;
                                           u.color = GRAY;
  u.\pi = NIL;
                                           4 for each vertex v \in G.Adj[u]
  time = 0:
                                                   if (v.color == WHITE){
                                           5
 for each vertex u \in G.V
                                                       V.\pi = U
       if (u.color == WHITE){
                                                       DFS-Visit(G. v)
7
           DFS-Visit(G, u);
       };
                                           9 time = time + 1:
   }
                                           10 u.f = time:
                                           11 u.color = BLACK;
```

```
Define the predecessor sub-graph of G as G_{\pi}=(V_{\pi},E_{\pi}), where V_{\pi}=\{v\in V:v.\pi\neq NIL\}\cup\{s\} E_{\pi}=\{(v.\pi,v):v\in V_{\pi}-\{s\}\}
```

 G_{π} defines the Depth-first forest.


```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

DFS-Visit(G, a)

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

DFS-Visit(G, a): Lines 1-3

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

DFS-Visit(G, a): b is WHITE

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

DFS-Visit(G, a): Line 6

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

DFS-Visit(G,	b)	
	_	

DFS-Visit(G, a)

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

```
DFS-Visit(G, b): Lines 1-3
```

DFS-Visit(G, a)

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

```
DFS-Visit(G, b): y is WHITE
```

DFS-Visit(G, a)

Graph G, adjacency list alphabetical

DFS-Visit(G, a)

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

DFS-Visit(G,	y)
DFS-Visit(G,	b)
DFS-Visit(G,	a)

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

```
DFS-Visit(G, y): Lines 1-3
DFS-Visit(G, b)
```

DFS-Visit(G, a)

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

DFS-Visit(G, y): Lines 9-11

DFS-Visit(G, b)

DFS-Visit(G, a)

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

DFS-Visit(G, b)

DFS-Visit(G, a)

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

DFS-Visit(G, b): Lines 9-11

DFS-Visit(G, a)

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

DFS-Visit(G, b): Lines 9-11

DFS-Visit(G, a)

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

DFS-Visit(G, a)

Graph G, adjacency list alphabetical

DFS-Visit(G, a): x is WHITE

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

DFS-Visit(G, a): Line 6

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

<pre>DFS-Visit(G,</pre>	x)

DFS-Visit(G, a)

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

DFS-Visit(G, x): Lines 1-3

DFS-Visit(G, a)

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

DFS-Visit(G, x): b is BLACK

DFS-Visit(G, a)

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

DFS-Visit(G, x): y is BLACK

DFS-Visit(G, a)

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

DFS-Visit(G, x): Lines 9-11

DFS-Visit(G, a)

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

DFS-Visit(G, a)

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

DFS-Visit(G, a): Lines 9-11

Graph G, adjacency list alphabetical

DFS(G): c is WHITE

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

DFS-Visit(G, c)

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

DFS-Visit(G, c): Lines 1-3

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

DFS-Visit(G, c): y is BLACK

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

DFS-Visit(G, c): z is WHITE

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

DFS-Visit(G, c): Line 6

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

<pre>DFS-Visit(G,</pre>	z)	

DFS-Visit(G, c)

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

DFS-Visit(G, z): Lines 1-3

DFS-Visit(G, c)

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

DFS-Visit(G, z): z is GRAY

DFS-Visit(G, c)

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

DFS-Visit(G, z): Lines 9-11

DFS-Visit(G, c)

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

DFS-Visit(G, c)

Graph G, adjacency list alphabetical

DFS-Visit(G, c): Lines 9-11

Graph G, adjacency list alphabetical

DFS(G): z is black

Graph G, adjacency list alphabetical

Graph G, adjacency list alphabetical

DFS Frost

Arizona State University

Graphs, Part 6


```
DFS(G)
1  for each vertex u∈ G.V{
2      u.color = WHITE;
3      u.π = NIL;
4  }
5  time = 0;
6  for each vertex u∈ G.V{
7      if (u.color == WHITE){
8          DFS-Visit(G, u);
9      };
10  }
```


Graph G, adjacency list alphabetical

DFS(G): Lines 1-5

```
DFS(G)
1  for each vertex u∈ G.V{
2     u.color = WHITE;
3     u.π = NIL;
4  }
5  time = 0;
6  for each vertex u∈ G.V{
7     if (u.color == WHITE){
8         DFS-Visit(G, u);
9     };
10 }
```


Graph G, adjacency list alphabetical

DFS(G): a is WHITE

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

DFS-Visit(G, a)

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

DFS-Visit(G, a): Lines 1-3

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

DFS-Visit(G, a): b is WHITE

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

DFS-Visit(G, a): Line 6

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

DFS-Visit(G,	b)
DFS-Visit(G,	a)

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

```
DFS-Visit(G, b): Lines 1-3
```

DFS-Visit(G, a)

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

```
DFS-Visit(G, b): a is GREY
```

DFS-Visit(G, a)

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

```
DFS-Visit(G, b): x is WHITE
```

DFS-Visit(G, a)

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

```
DFS-Visit(G, b): Line 6
```

DFS-Visit(G, a)

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

DFS-Visit(G,	x)
DFS-Visit(G,	b)
DFS-Visit(G,	a)
DFS(G)	

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

```
DFS-Visit(G, x): Lines 1-3
DFS-Visit(G, b)
DFS-Visit(G, a)
```

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

DFS-Visit(G,	x):	a	is	GRAY
DFS-Visit(G,	b)			
DFS-Visit(G,	a)			

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

```
DFS-Visit(G, x): b is GRAY
DFS-Visit(G, b)
DFS-Visit(G, a)
```

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

```
DFS-Visit(G, x): y is WHITE

DFS-Visit(G, b)

DFS-Visit(G, a)
```

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

```
DFS-Visit(G, x): Line 6
DFS-Visit(G, b)
DFS-Visit(G, a)
```

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

DFS-Visit(G,	y)
<pre>DFS-Visit(G,</pre>	x)
<pre>DFS-Visit(G,</pre>	b)
<pre>DFS-Visit(G,</pre>	a)
DFS(G)	

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

DFS-Visit(G,	y):	Lines	1-3
DFS-Visit(G,	x)		
DFS-Visit(G,	b)		
DFS-Visit(G,	a)		
DFS(G)			

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

DFS-Visit(G,	y): b is GRAY
DFS-Visit(G,	x)
DFS-Visit(G,	b)
DFS-Visit(G,	a)
DFS(G)	

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

```
DFS-Visit(G, y): c is WHITE

DFS-Visit(G, x)

DFS-Visit(G, b)

DFS-Visit(G, a)

DFS(G)
```

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

```
DFS-Visit(G, y): Line 6

DFS-Visit(G, x)

DFS-Visit(G, b)

DFS-Visit(G, a)

DFS(G)
```

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

DFS-Visit(G,	c)
DFS-Visit(G,	y)
DFS-Visit(G,	x)
DFS-Visit(G,	b)
DFS-Visit(G,	a)
DFS(G)	

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

DFS-Visit(G,	c):	Lines	1-3
<pre>DFS-Visit(G,</pre>	y)		
DFS-Visit(G,	x)		
DFS-Visit(G,	b)		
DFS-Visit(G,	a)		
DFS(G)			

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

DFS-Visit(G,	c): y is GRAY
DFS-Visit(G,	y)
DFS-Visit(G,	x)
DFS-Visit(G,	b)
DFS-Visit(G,	a)
DFS(G)	

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

DFS-Visit(G,	c): z is WHITE
DFS-Visit(G,	y)
DFS-Visit(G,	x)
DFS-Visit(G,	b)
DFS-Visit(G,	a)
DFS(G)	

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

DFS-Visit(G,	c):	Line	6
<pre>DFS-Visit(G,</pre>	y)		
DFS-Visit(G,	x)		
DFS-Visit(G,	b)		
DFS-Visit(G,	a)		
DFS(G)			

Graph G, adjacency list alphabetical

DFS-Visit(G,	z)
DFS-Visit(G,	c)
DFS-Visit(G,	y)
DFS-Visit(G,	x)
DFS-Visit(G,	b)
DFS-Visit(G,	a)
DFS(G)	

Graph G, adjacency list alphabetical

DFS-Visit(G,	z):	Lines	1-3
<pre>DFS-Visit(G,</pre>	c)		
DFS-Visit(G,	y)		
DFS-Visit(G,	x)		
DFS-Visit(G,	b)		
DFS-Visit(G,	a)		
DFS(G)			

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

DFS-Visit(G,	z):	С	is	GRAY	
<pre>DFS-Visit(G,</pre>	c)				
DFS-Visit(G,	y)				
DFS-Visit(G,	x)				
DFS-Visit(G,	b)				
DFS-Visit(G,	a)				
DFS(G)					

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

DFS-Visit(G,	z):	Lines	9-11	
<pre>DFS-Visit(G,</pre>	c)			
DFS-Visit(G,	y)			
DFS-Visit(G,	x)			
DFS-Visit(G,	b)			
DFS-Visit(G,	a)			
DFS(G)				

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

DFS-Visit(G,	c)
DFS-Visit(G,	y)
DFS-Visit(G,	x)
DFS-Visit(G,	b)
DFS-Visit(G,	a)
DFS(G)	

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

DFS-Visit(G,	c):	Lines	9-11
<pre>DFS-Visit(G,</pre>	y)		
<pre>DFS-Visit(G,</pre>	x)		
<pre>DFS-Visit(G,</pre>	b)		
DFS-Visit(G,	a)		
DFS(G)			

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

<pre>DFS-Visit(G,</pre>	y)
<pre>DFS-Visit(G,</pre>	x)
<pre>DFS-Visit(G,</pre>	b)
<pre>DFS-Visit(G,</pre>	a)
DFS(G)	

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

```
DFS-Visit(G, y): x is GRAY
DFS-Visit(G, x)
DFS-Visit(G, b)
DFS-Visit(G, a)
DFS(G)
```

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

```
DFS-Visit(G, y): Lines 9-11
DFS-Visit(G, x)
DFS-Visit(G, b)
DFS-Visit(G, a)
DFS(G)
```

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```

Graph G, adjacency list alphabetical


```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical


```
DFS-Visit(G, x): Lines 9-11
DFS-Visit(G, b)
```

DFS-Visit(G, a)

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

DFS-Visit(G, b)
DFS-Visit(G, a)

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

DFS-Visit(G, b): y is BLACK

DFS-Visit(G, a)

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

DFS-Visit(G, b): Lines 9-11

DFS-Visit(G, a)

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

DFS-Visit(G, a)

Graph G, adjacency list alphabetical

DFS-Visit(G, a): x is BLACK

```
DFS-Visit(G, u)
1    time = time + 1;
2    u.d = time;
3    u.color = GRAY;
4    for each vertex v∈G.Adj[u]
5        if (v.color == WHITE){
6             v.π = u
7             DFS-Visit(G, v)
8        }
9    time = time + 1;
10    u.f = time;
11    u.color = BLACK;
```


Graph G, adjacency list alphabetical

DFS-Visit(G, a): Lines 9-11

Graph G, adjacency list alphabetical

DFS(G): z is BLACK

Graph G, adjacency list alphabetical

Graph G, adjacency list alphabetical

DFS Frost

Arizona State University