Buổi 5. Trực quan hóa dữ liệu

1 Thông tin chung

Mục tiêu

• Giới thiêu một số loại biểu đồ và các hàm vẽ biểu đồ để mô tả trực quan dữ liệu.

Kết quả đạt được

Sinh viên sau khi thực hành sẽ:

- Nắm vững được cách sử dụng các hàm vẽ biểu đồ để trực quan dữ liệu.
- Cài đặt được các ví dụ thực hành.

Thời gian thực hành: 3 tiết

Công cụ thực hành: Google Colab, Anaconda

2 Nội dung lý thuyết

2.1 Một số loại biểu đồ

- Biểu đồ (distribution plot/histogram): biểu diễn tần số xuất hiện của một thuộc tính, cho biết dạng phân phối, miền giá trị của thuộc tính đó
- Biểu đồ cột (bar plot)
- Biểu đồ hộp (box plot): mô tả dạng phân bố và tìm các giá trị ngoại biên/cá biệt của một thuộc tính. Boxplot gồm 5 giá trị như sau:
 - Giá trị nhỏ nhất (min)
 - Tứ phân vi thứ nhất (Q1)
 - Trung vị (median)
 - Tứ phân vị thứ 3 (Q3)
 - Giá trị lớn nhất (max)
- Biểu đồ violin (violin plot): biểu diễn nhiều thông tin hơn boxplot.
- Biểu đồ phân tán (scatter plot): thể hiện mối quan hệ giữa hai biến nguyên nhân và kết quả.
- Biểu đồ ma trận (matrixplot): heatmap thường được dùng để biểu diễn ma trận tương quan giữa các thuộc tính.

2.2 Các thư viện vẽ biểu đồ

- matplotlib (https://matplotlib.org/)
- seaborn (https://seaborn.pydata.org/): được phát triển dựa trên matplotlib

3 Nội dung thực hành

3.1 Mô tả bài toán

Cho bảng dữ liệu hoa Iris gồm các thuộc tính sau:

- sepal_length: chiều dài đài hoa (cm)
- sepal_width: chiều rộng đài hoa (cm)
- petal_length: chiều dài cánh hoa (cm)
- petal_width: chiều rộng cánh hoa (cm)
- species: 3 loài hoa (setosa, versicolour, virginia)

3.2 Trực quan hóa dữ liệu bài toán

Đọc dữ liệu từ tập tin iris.csv

```
[30]: import pandas as pd

iris = pd.read_csv('iris.csv')
iris.head()
# iris
```

```
[30]:
         sepal_length sepal_width petal_length petal_width species
                  5.1
                               3.5
                                             1.4
                                                          0.2 setosa
                  4.9
                               3.0
                                             1.4
                                                          0.2 setosa
      1
                  4.7
      2
                               3.2
                                             1.3
                                                          0.2 setosa
      3
                  4.6
                               3.1
                                             1.5
                                                          0.2 setosa
                  5.0
                               3.6
                                             1.4
                                                          0.2 setosa
```

```
[31]: iris.info()
```

Biểu diễn tần số xuất hiện của từng thuộc tính tương ứng với mỗi loại hoa.

```
[32]: import matplotlib.pyplot as plt
import seaborn as sns
sns.barplot(x = 'species', y = 'sepal_length', data = iris)
```

[32]: <matplotlib.axes._subplots.AxesSubplot at 0x17935a288c8>

[33]: <matplotlib.axes._subplots.AxesSubplot at 0x17935a549c8>

Nguyễn Chí Hiếu | Tài liệu thực hành Phân tích dữ liệu

```
[34]: sns.barplot(x = 'species', y = 'petal_length', data = iris)
```

[34]: <matplotlib.axes._subplots.AxesSubplot at 0x17936030b08>


```
[35]: sns.barplot(x = 'species', y = 'petal_width', data = iris)
```

[35]: <matplotlib.axes._subplots.AxesSubplot at 0x179323ff248>

Biểu diễn tần suất xuất hiện các giá trị của từng thuộc tính.

```
[36]: plt.figure(figsize = (6, 6))
sns.distplot(a = iris['sepal_length'], bins = 50)
plt.show()
```


[37]: <seaborn.axisgrid.FacetGrid at 0x1793615ef08>

Kiểm tra thuộc tính sepal_length theo từng loại hoa

- Trục x là biến phân loại
- Trục y là biến liên tục

[38]: sns.stripplot(data = iris)

[38]: <matplotlib.axes._subplots.AxesSubplot at 0x179362afe48>


```
[39]: sns.stripplot(x = "species", y = "sepal_length", data = iris, jitter = False)
```

[39]: <matplotlib.axes._subplots.AxesSubplot at 0x17936319548>

• Nếu các điểm dữ liệu bị trùng nhau, ta có thể sử dụng hàm swarmplot để vẽ lại biểu đồ trên.

```
[40]: sns.swarmplot(x = "species", y = "sepal_length", data = iris)
```

[40]: <matplotlib.axes._subplots.AxesSubplot at 0x1793637bf08>

• Biểu diễn so sánh số lượng 3 loại hoa.

```
[41]: iris['species'].value_counts()

[41]: virginica     50
    versicolor    50
    setosa         50
    Name: species, dtype: int64

[42]: sns.countplot(x = 'species', data = iris)
```

[42]: <matplotlib.axes._subplots.AxesSubplot at 0x179363e3d88>

Tìm các giá trị ngoại biên/cá biệt của từng thuộc tính.

```
[43]: plt.figure(figsize = (6, 6))
    sns.set_style('whitegrid')
    sns.boxplot(x = "species", y = "sepal_length", data = iris)
    plt.show()
```


Ta thấy hoa virginica có một giá trị sepal_length ngoại biên.

```
[44]: iris.groupby(['species']).median()
[44]:
                  sepal_length sepal_width petal_length petal_width
      species
      setosa
                           5.0
                                         3.4
                                                      1.50
                                                                     0.2
                                                      4.35
                           5.9
                                         2.8
                                                                     1.3
      versicolor
                                         3.0
                                                      5.55
      virginica
                           6.5
                                                                     2.0
[45]: Q1 = iris[iris['species']=='virginica']['sepal_length'].quantile(0.25)
      Q3 = iris[iris['species'] == 'virginica']['sepal_length'].quantile(0.75)
      IQR = Q3 - Q1
      above_outlier = IQR * 1.5 + Q3
      below_outlier= Q1 - IQR * 1.5
      print('Q1 = ' + str(Q1))
```

Quan sát thuộc tính sepal_length của hoa virginica, ta thấy:

- Trung vi chiều dài 6.5 cm
- Khoảng 25% có chiều dài nhỏ hơn 6.225 cm
- Khoảng 75% có chiều dài nhỏ hơn 6.9 cm
- Tìm thấy một giá trị ngoại biên (giá trị có chiều dài 4.9 cm)

```
[48]: plt.figure(figsize = (6, 6))

sns.set_style('whitegrid')
ax = sns.boxplot(x = 'species', y = 'sepal_length', data = iris)
ax = sns.stripplot(x = 'species', y = 'sepal_length', data = iris)

plt.show()
```


• Biểu đồ Boxplot có thể bị sai lệch. Khi dữ liệu biến đổi, median và khoảng giá trị vẫn giống nhau.

Sử dụng violinplot để mô tả các thuộc tính theo loại hoa

• Xét thuộc tính sepal_length

• Ta thấy, hoa virginica có sepal_length dài hơn 2 loại còn lại.

```
[50]: plt.figure(figsize = (20, 6))

plt.subplot(1, 3, 1)
    sns.swarmplot('species', 'sepal_length', data=iris);

plt.subplot(1, 3, 2)
    sns.boxplot('species', 'sepal_length', data=iris);

plt.subplot(1, 3, 3)
    sns.violinplot('species', 'sepal_length', data=iris);

plt.show()
```


Kiểm tra sự tương quan giữa các cặp thuộc tính

• sepal_length và sepal_width.

```
[51]: sns.scatterplot(x = 'sepal_length', y = 'sepal_width', data = iris)
```

[51]: <matplotlib.axes._subplots.AxesSubplot at 0x17937642088>

• Iris được phân thành 3 lớp khác nhau, nên ta có thể chọn màu sắc tương ứng cho từng loài hoa.

```
[52]: sns.scatterplot(x = 'sepal_length', y = 'sepal_width', hue = 'species', data = 

⇔iris)
```


• sepal_length và petal_length.

```
[53]: sns.scatterplot(x = 'sepal_length', y = 'petal_length', hue = 'species', data =_{\sqcup} _{\hookrightarrow}iris)
```

[53]: <matplotlib.axes._subplots.AxesSubplot at 0x179361cc848>

Biểu diễn độ tương quan của tất cả các cặp thuộc tính

```
[54]: corr_matrix = iris.corr()
      corr_matrix
[54]:
                    sepal_length sepal_width petal_length petal_width
      sepal_length
                        1.000000
                                     -0.109369
                                                    0.871754
                                                                  0.817954
      sepal_width
                       -0.109369
                                      1.000000
                                                   -0.420516
                                                                 -0.356544
      petal_length
                        0.871754
                                     -0.420516
                                                    1.000000
                                                                  0.962757
     petal_width
                                     -0.356544
                        0.817954
                                                    0.962757
                                                                  1.000000
[55]: plt.figure(figsize = (6, 6))
      ax = sns.heatmap(corr_matrix, annot = True, cmap= 'coolwarm', square = True, __
       \rightarrowlinewidths = 1)
      ## Doạn lệnh sửa lỗi mất dòng đầu, dòng cuối ở phiên bản matplotlib 3.1.1
      bottom, top = ax.get_ylim()
      ax.set_ylim(bottom + 0.5, top - 0.5)
      ##
      plt.show()
```


Quan sát bản đồ nhiệt ta thấy có 3 cặp thuộc tính có mối tương quan đồng biến:

```
- sepal_length, petal_width: 0.87
- sepal_length, petal_width: 0.82
- petal_length, petal_width: 0.96
```

• Độ tương quan giữa các cặp thuộc tính của loại hoa setosa và versicolor.

```
plt.figure(figsize = (6, 6))
corr_not_virginica = iris[iris['species'] != 'virginica'].corr()
mask = np.tri(*corr_not_virginica.shape).T
ax = sns.heatmap(corr_not_virginica, annot = True, cmap= 'coolwarm', square = True, linewidths = 1, mask = mask)

## Doan lênh sửa lỗi mất dòng đầu, dòng cuối ở phiên bản matplotlib 3.1.1
bottom, top = ax.get_ylim()
ax.set_ylim(bottom + 0.5, top - 0.5)
###
```


Biểu diễn mối quan hệ giữa tất cả các cặp thuộc tính trong dữ liệu.

sepal_width

```
[57]: sns.pairplot(iris, hue = 'species', markers = ['o', 's', 'D'], height = 4)
```

petal_length

petal_width

[57]: <seaborn.axisgrid.PairGrid at 0x17937594e08>

sepal_length


```
[58]: sns.pairplot(iris, kind = 'reg', hue = 'species', height = 4)
```

[58]: <seaborn.axisgrid.PairGrid at 0x1793853e9c8>

3.3 Bài tập

Cho tập dữ liệu các loại Pokemon tại địa chỉ:

https://gist.github.com/armgilles/194bcff35001e7eb53a2a8b441e8b2c6

• Vẽ các loại biểu đồ để trực quan hóa dữ liệu các loại Pokemon.