SAMB for "Mn3Sn"

Generated on 2023-09-27 01:31 by MultiPie $1.1.14\,$

- Generation condition
 - $model\ type:\ {\tt tight_binding}$
 - time-reversal type: electric
 - irrep: [A1g]
 - spinless
- Unit cell:

$$a=1.0,\ b=1.0,\ c=1.0,\ \alpha=90.0,\ \beta=90.0,\ \gamma=120.0$$

• Lattice vectors:

$$\boldsymbol{a}_1 = \begin{pmatrix} 1.0 & 0 & 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -0.5 & 0.86602540378444 & 0 \end{pmatrix}$$

$$\mathbf{a}_3 = \begin{pmatrix} 0 & 0 & 1.0 \end{pmatrix}$$

Table 1: High-symmetry line: Γ -X.

symbol	position	symbol	position
Γ	$\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$	X	$\begin{pmatrix} \frac{1}{2} & 0 & 0 \end{pmatrix}$

• Kets: dimension = 40

Table 2: Hilbert space for full matrix.

No.	ket	No.	ket	No.	ket	No.	ket	No.	ket
1	$d_u@\mathrm{Mn}_1$	2	$d_v@\mathrm{Mn}_1$	3	$d_{yz}@\mathrm{Mn}_1$	4	$d_{zx}@\mathrm{Mn}_1$	5	$d_{xy}@\mathrm{Mn}_1$
6	$d_u@\mathrm{Mn}_2$	7	$d_v@\mathrm{Mn}_2$	8	$d_{yz}@\mathrm{Mn}_2$	9	$d_{zx}@\mathrm{Mn}_2$	10	$d_{xy}@\mathrm{Mn}_2$
11	$d_u@\mathrm{Mn}_3$	12	$d_v@\mathrm{Mn}_3$	13	$d_{yz}@\mathrm{Mn}_3$	14	$d_{zx}@\mathrm{Mn}_3$	15	$d_{xy}@\mathrm{Mn}_3$
16	$d_u@\mathrm{Mn}_4$	17	$d_v@\mathrm{Mn}_4$	18	$d_{yz}@\mathrm{Mn}_4$	19	$d_{zx}@\mathrm{Mn_4}$	20	$d_{xy}@\mathrm{Mn}_4$
21	$d_u@\mathrm{Mn}_5$	22	$d_v@\mathrm{Mn}_5$	23	$d_{yz}@\mathrm{Mn}_5$	24	$d_{zx}@\mathrm{Mn}_{5}$	25	$d_{xy}@\mathrm{Mn}_5$
26	$d_u@\mathrm{Mn}_6$	27	$d_v@\mathrm{Mn}_6$	28	$d_{yz}@\mathrm{Mn}_{6}$	29	$d_{zx}@\mathrm{Mn}_{6}$	30	$d_{xy}@\mathrm{Mn}_6$
31	d_u @Sn ₁	32	$d_v@\mathrm{Sn}_1$	33	d_{yz} @Sn ₁	34	d_{zx} @Sn ₁	35	d_{xy} @Sn ₁
36	d_u @Sn ₂	37	d_v @Sn ₂	38	d_{yz} @Sn ₂	39	d_{zx} @Sn ₂	40	d_{xy} @Sn ₂

• Sites in (primitive) unit cell:

Table 3: Site-clusters.

	site	position	mapping
S ₁ [6h: mm2]	Mn_1	$\left(0.8388 0.6776 \frac{1}{4}\right)$	[1,6,14,17]
	Mn_2	$\left(0.1612 0.3224 \frac{3}{4}\right)$	[2,3,13,18]
	Mn_3	$\left(0.1612 0.8388 \frac{3}{4}\right)$	[4,11,19,22]
	Mn_4	$\left(0.6776 0.8388 \frac{3}{4}\right)$	[5,12,20,21]
	Mn_5	$\left(0.8388 0.1612 \frac{1}{4}\right)$	[7,10,15,23]
	${\rm Mn}_6$	$\left(0.3224 0.1612 \frac{1}{4}\right)$	[8,9,16,24]
S ₂ [2c: -6m2]	Sn_1	$\left(\begin{array}{ccc} \frac{1}{3} & \frac{2}{3} & \frac{1}{4} \end{array}\right)$	[1,6,7,8,9,10,14,15,16,17,23,24]
	Sn_2	$\left(\begin{array}{ccc} \frac{2}{3} & \frac{1}{3} & \frac{3}{4} \end{array}\right)$	[2,3,4,5,11,12,13,18,19,20,21,22]

• Bonds in (primitive) unit cell:

Table 4: Bond-clusters.

	bond	tail	head	n	#	b@c	mapping
B ₁ [6h: mm2]	b_1	Mn_5	Mn_1	1	1	$\begin{pmatrix} 0 & 0.4836 & 0 \end{pmatrix} @ \begin{pmatrix} 0.8388 & 0.9194 & \frac{1}{4} \end{pmatrix}$	[1,-7,-15,17]
	b_2	Mn_3	Mn_2	1	1	$\begin{pmatrix} 0 & -0.4836 & 0 \end{pmatrix} @ \begin{pmatrix} 0.1612 & 0.0806 & \frac{3}{4} \end{pmatrix}$	[2,-4,13,-19]
	b_3	Mn_4	Mn_2	1	1	$\begin{pmatrix} -0.4836 & -0.4836 & 0 \end{pmatrix}$ @ $\begin{pmatrix} 0.9194 & 0.0806 & \frac{3}{4} \end{pmatrix}$	[3,-12,18,-21]
	b_4	Mn_4	Mn_3	1	1	$\begin{pmatrix} -0.4836 & 0 & 0 \end{pmatrix}$ @ $\begin{pmatrix} 0.9194 & 0.8388 & \frac{3}{4} \end{pmatrix}$	[-5,11,-20,22]
	b_5	Mn_{6}	Mn_1	1	1	$\begin{pmatrix} 0.4836 & 0.4836 & 0 \end{pmatrix} @ \begin{pmatrix} 0.0806 & 0.9194 & \frac{1}{4} \end{pmatrix}$	[6,-9,14,-24]
	b_6	Mn_6	Mn_5	1	1	$(0.4836 0 0) \stackrel{\checkmark}{@} (0.0806 0.1612 \frac{1}{4})$	[-8,10,-16,23]
B ₂ [6g: .2/m.]	b_7	Sn_2	Sn_1	1	1	$\left(\frac{1}{3} \frac{2}{3} -\frac{1}{2}\right)$ @ $\left(\frac{1}{2} 0 0\right)$	[1,-3,-13,14]
	b_8	Sn_2	Sn_1	1	1	$\left(\begin{array}{ccc} \frac{1}{3} & \frac{2}{3} & \frac{1}{2} \end{array}\right)$ @ $\left(\begin{array}{ccc} \frac{1}{2} & 0 & \frac{1}{2} \end{array}\right)$	[-2,6,17,-18]
	b_9	Sn_2	Sn_1	1	1	$\left(egin{array}{cccc} rac{1}{3} & -rac{1}{3} & -rac{1}{2} ight) @ \left(rac{1}{2} & rac{1}{2} & 0 ight)$	[-4,10,15,-22]
	b_{10}	Sn_2	Sn_1	1	1	$\begin{pmatrix} -\frac{2}{3} & -\frac{1}{3} & -\frac{1}{2} \end{pmatrix}$ @ $\begin{pmatrix} 0 & \frac{1}{2} & 0 \end{pmatrix}$	[-5,9,16,-21]
	b_{11}	Sn_2	Sn_1	1	1	$\begin{pmatrix} \frac{1}{3} & -\frac{1}{3} & \frac{1}{2} \end{pmatrix} \otimes \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$	[7,-11,-19,23]
	b_{12}	Sn_2	Sn_1	1	1	$\left(-\frac{2}{3} -\frac{1}{3} \stackrel{'}{2}\right)$ @ $\left(0 \frac{1}{2} \stackrel{1}{2}\right)$	[8,-12,-20,24]
B ₃ [12j: m]	b ₁₃	Sn_1	Mn_1	1	1		[1,17]
	b_{14}	Sn_2	Mn_2	1	1	$\left(-0.494533333333333333333333333333333333333$	[2,13]
	b_{15}	Sn_2	Mn_2	1	1	$\left(0.505466666666667 0.01093333333333333333333333333333333333$	[3,18]
	b_{16}	Sn_2	Mn_3	1	1	$\begin{pmatrix} -0.494533333333333 & -0.505466666666667 & 0 \end{pmatrix} @ \begin{pmatrix} 0.91393333333333 & 0.586066666666667 & \frac{3}{4} \end{pmatrix}$	[4,19]
	b_{17}	Sn_2	Mn_4	1	1	$\left(-0.01093333333333333333333333333333333333$	[5,20]
	b_{18}	Sn_1	Mn_1	1	1	$\left(-0.50546666666667 -0.01093333333333333333333333333333333333$	[6,14]
	b_{19}	Sn_1	Mn_{5}	1	1	$ \left(0.494533333333333 0.505466666666667 0\right) @ \left(0.086066666666667 0.41393333333333 \frac{1}{4}\right)' $	[7,15]
	b_{20}	Sn_1	${\rm Mn}_6$	1	1	$\left(\stackrel{.}{0}.010933333333333333333333333333333333333$	[8,16]
	b_{21}	Sn_1	Mn_{6}	1	1	(0.01093333333333333333333333333333333333	[9,24]
	b_{22}	Sn_1	Mn_5	1	1		[10,23]
	b_{23}	Sn_2	Mn_3	1	1	$\left(0.505466666666667 0.494533333333333 0\right) \stackrel{\circ}{@} \left(0.4139333333333 0.0860666666666667 \frac{3}{4}\right)^{\prime}$	[11,22]
	b_{24}	Sn_2	Mn_4	1	1	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	[12,21]

No. 1
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₁, S₁]

$$\hat{\mathbb{Z}}_1 = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{Y}_1[\mathbb{Q}_0^{(s,A_{1g})}]$$

No. 2
$$\hat{\mathbb{Q}}_2^{(A_{1g})}$$
 [M₁, S₁]

$$\hat{\mathbb{Z}}_2 = \mathbb{X}_2[\mathbb{Q}_2^{(a,A_{1g})}] \otimes \mathbb{Y}_1[\mathbb{Q}_0^{(s,A_{1g})}]$$

No. 3
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₁, S₁]

$$\hat{\mathbb{Z}}_3 = \frac{\sqrt{2}\mathbb{X}_8[\mathbb{Q}_{2,0}^{(a,E_{2g})}] \otimes \mathbb{Y}_2[\mathbb{Q}_{2,0}^{(s,E_{2g})}]}{2} + \frac{\sqrt{2}\mathbb{X}_9[\mathbb{Q}_{2,1}^{(a,E_{2g})}] \otimes \mathbb{Y}_3[\mathbb{Q}_{2,1}^{(s,E_{2g})}]}{2}$$

No. 4
$$\hat{\mathbb{Q}}_4^{(A_{1g})}$$
 [M₁, S₁]

$$\hat{\mathbb{Z}}_4 = \mathbb{X}_3[\mathbb{Q}_4^{(a,A_{1g})}] \otimes \mathbb{Y}_1[\mathbb{Q}_0^{(s,A_{1g})}]$$

No. 5
$$\hat{\mathbb{Q}}_{2}^{(A_{1g})}$$
 [M₁, S₁]

$$\hat{\mathbb{Z}}_5 = \frac{\sqrt{2}\mathbb{X}_{12}[\mathbb{Q}_{4,0}^{(a,E_{2g},2)}] \otimes \mathbb{Y}_2[\mathbb{Q}_{2,0}^{(s,E_{2g})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{13}[\mathbb{Q}_{4,1}^{(a,E_{2g},2)}] \otimes \mathbb{Y}_3[\mathbb{Q}_{2,1}^{(s,E_{2g})}]}{2}$$

No. 6
$$\hat{\mathbb{Q}}_{6}^{(A_{1g},2)}$$
 [M₁, S₁]

$$\hat{\mathbb{Z}}_6 = \frac{\sqrt{2}\mathbb{X}_{10}[\mathbb{Q}_{4,0}^{(a,E_{2g},1)}] \otimes \mathbb{Y}_2[\mathbb{Q}_{2,0}^{(s,E_{2g})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{Q}_{4,1}^{(a,E_{2g},1)}] \otimes \mathbb{Y}_3[\mathbb{Q}_{2,1}^{(s,E_{2g})}]}{2}$$

No. 7
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₁, S₂]

$$\hat{\mathbb{Z}}_7 = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{Y}_4[\mathbb{Q}_0^{(s,A_{1g})}]$$

$$\begin{tabular}{|c|c|c|c|c|}\hline No. & 8 & \hat{\mathbb{Q}}_2^{(A_{1g})} & [M_1,S_2] \\ \hline \end{tabular}$$

$$\hat{\mathbb{Z}}_8 = \mathbb{X}_2[\mathbb{Q}_2^{(a,A_{1g})}] \otimes \mathbb{Y}_4[\mathbb{Q}_0^{(s,A_{1g})}]$$

No. 9
$$\hat{\mathbb{Q}}_{4}^{(A_{1g})}$$
 [M₁, S₂]

$$\hat{\mathbb{Z}}_9 = \mathbb{X}_3[\mathbb{Q}_4^{(a,A_{1g})}] \otimes \mathbb{Y}_4[\mathbb{Q}_0^{(s,A_{1g})}]$$

No. 10
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{10} = \mathbb{X}_1[\mathbb{Q}_0^{(a, A_{1g})}] \otimes \mathbb{Y}_5[\mathbb{Q}_0^{(b, A_{1g})}]$$

No. 11
$$\hat{\mathbb{Q}}_2^{(A_{1g})}$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{11} = \mathbb{X}_2[\mathbb{Q}_2^{(a, A_{1g})}] \otimes \mathbb{Y}_5[\mathbb{Q}_0^{(b, A_{1g})}]$$

No. 12
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{12} = \frac{\sqrt{2}\mathbb{X}_{8}[\mathbb{Q}_{2,0}^{(a,E_{2g})}] \otimes \mathbb{Y}_{6}[\mathbb{Q}_{2,0}^{(b,E_{2g})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2,1}^{(a,E_{2g})}] \otimes \mathbb{Y}_{7}[\mathbb{Q}_{2,1}^{(b,E_{2g})}]}{2}$$

No. 13
$$\hat{\mathbb{Q}}_{4}^{(A_{1g})}$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{13} = \mathbb{X}_{3}[\mathbb{Q}_{4}^{(a,A_{1g})}] \otimes \mathbb{Y}_{5}[\mathbb{Q}_{0}^{(b,A_{1g})}]$$

No. 14
$$\hat{\mathbb{Q}}_{2}^{(A_{1g})}$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{14} = \frac{\sqrt{2}\mathbb{X}_{12}[\mathbb{Q}_{4,0}^{(a,E_{2g},2)}] \otimes \mathbb{Y}_{6}[\mathbb{Q}_{2,0}^{(b,E_{2g})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{13}[\mathbb{Q}_{4,1}^{(a,E_{2g},2)}] \otimes \mathbb{Y}_{7}[\mathbb{Q}_{2,1}^{(b,E_{2g})}]}{2}$$

No. 15
$$\hat{\mathbb{Q}}_{6}^{(A_{1g},2)}$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{15} = \frac{\sqrt{2}\mathbb{X}_{10}[\mathbb{Q}_{4,0}^{(a,E_{2g},1)}] \otimes \mathbb{Y}_{6}[\mathbb{Q}_{2,0}^{(b,E_{2g})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{Q}_{4,1}^{(a,E_{2g},1)}] \otimes \mathbb{Y}_{7}[\mathbb{Q}_{2,1}^{(b,E_{2g})}]}{2}$$

No. 16
$$\hat{\mathbb{Q}}_{6}^{(A_{1g},2)}$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{16} = -\mathbb{X}_{15}[\mathbb{M}_{1}^{(a,A_{2g})}] \otimes \mathbb{Y}_{10}[\mathbb{T}_{6}^{(b,A_{2g})}]$$

No. 17
$$\hat{\mathbb{Q}}_{2}^{(A_{1g})}$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{17} = -\frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{M}_{3,0}^{(a,E_{2g})}] \otimes \mathbb{Y}_{8}[\mathbb{T}_{2,0}^{(b,E_{2g})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{3,1}^{(a,E_{2g})}] \otimes \mathbb{Y}_{9}[\mathbb{T}_{2,1}^{(b,E_{2g})}]}{2}$$

No. 18
$$\hat{\mathbb{Q}}_{6}^{(A_{1g},2)}$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{18} = \mathbb{X}_{16}[\mathbb{M}_{3}^{(a,A_{2g})}] \otimes \mathbb{Y}_{10}[\mathbb{T}_{6}^{(b,A_{2g})}]$$

No. 19
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{19} = \mathbb{X}_1[\mathbb{Q}_0^{(a, A_{1g})}] \otimes \mathbb{Y}_{11}[\mathbb{Q}_0^{(b, A_{1g})}]$$

No. 20
$$\hat{\mathbb{Q}}_{2}^{(A_{1g})}$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{20} = \mathbb{X}_2[\mathbb{Q}_2^{(a,A_{1g})}] \otimes \mathbb{Y}_{11}[\mathbb{Q}_0^{(b,A_{1g})}]$$

No. 21
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{21} = \frac{\mathbb{X}_{4}[\mathbb{Q}_{2,0}^{(a,E_{1g})}] \otimes \mathbb{Y}_{12}[\mathbb{Q}_{2,0}^{(b,E_{1g})}]}{2} + \frac{\mathbb{X}_{5}[\mathbb{Q}_{2,1}^{(a,E_{1g})}] \otimes \mathbb{Y}_{13}[\mathbb{Q}_{2,1}^{(b,E_{1g})}]}{2} + \frac{\mathbb{X}_{8}[\mathbb{Q}_{2,0}^{(a,E_{2g})}] \otimes \mathbb{Y}_{14}[\mathbb{Q}_{2,0}^{(b,E_{2g})}]}{2} + \frac{\mathbb{X}_{9}[\mathbb{Q}_{2,1}^{(a,E_{2g})}] \otimes \mathbb{Y}_{15}[\mathbb{Q}_{2,1}^{(b,E_{2g})}]}{2} + \frac{\mathbb{Q}_{9}[\mathbb{Q}_{1,1}^{(a,E_{2g})}] \otimes \mathbb{Q}_{1,1}^{(a,E_{2g})}]}{2} + \frac{\mathbb{Q}_{9}[\mathbb{Q}_{1,1}^{(a,E_{2g})}] \otimes \mathbb{Q}_{1,1}^{(a,E_{2g})}}{2} + \frac{\mathbb{Q}_{9}[\mathbb{Q}_{1,1}^{(a,E_{2g})}]}{2} + \frac{\mathbb{Q}_{9}[\mathbb{Q}_{1,1}^{(a,E_{2g})}] \otimes \mathbb{Q}_{1,1}^{(a,E_{2g})}}{2} + \frac{\mathbb{Q}_{9}[\mathbb{Q}_{1,1}^{(a,E_{2g})}]}{2} + \frac{\mathbb{Q}_{9}[\mathbb{Q}_{1,1}^{(a,E_{2g})}] \otimes \mathbb{Q}_{1,1}^{(a,E_{2g})}}{2} + \frac{\mathbb{Q}_{9}[\mathbb{Q}_{1,1}^{(a,E_{2g})}] \otimes \mathbb{Q}_{1,1}^{(a,E_{2g})}}{2} + \frac{\mathbb{Q}_{9}[\mathbb{Q}_{1,1}^{(a,E_{2g})}] \otimes \mathbb{Q}_{1,1}^{(a,E_{2g})}}{2} + \frac{\mathbb{Q}_{9}[\mathbb{Q}_{1,1}^{(a,E_{2g})}] \otimes \mathbb{Q}_{1,1}^{(a,E_{2g})}}{2} + \frac{\mathbb{Q}_{9}[\mathbb{Q}_{1,1}^{(a,E_{2g})}] \otimes \mathbb{Q}_{1,1}^{(a,E_$$

No. 22
$$\hat{\mathbb{Q}}_{2}^{(A_{1g})}$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{22} = \frac{\mathbb{X}_4[\mathbb{Q}_{2,0}^{(a,E_{1g})}] \otimes \mathbb{Y}_{12}[\mathbb{Q}_{2,0}^{(b,E_{1g})}]}{2} + \frac{\mathbb{X}_5[\mathbb{Q}_{2,1}^{(a,E_{1g})}] \otimes \mathbb{Y}_{13}[\mathbb{Q}_{2,1}^{(b,E_{1g})}]}{2} - \frac{\mathbb{X}_8[\mathbb{Q}_{2,0}^{(a,E_{2g})}] \otimes \mathbb{Y}_{14}[\mathbb{Q}_{2,0}^{(b,E_{2g})}]}{2} - \frac{\mathbb{X}_9[\mathbb{Q}_{2,1}^{(a,E_{2g})}] \otimes \mathbb{Y}_{15}[\mathbb{Q}_{2,1}^{(b,E_{2g})}]}{2} - \frac{\mathbb{Q}_9[\mathbb{Q}_{2,1}^{(a,E_{2g})}] \otimes \mathbb{Q}_{14}[\mathbb{Q}_{2,0}^{(a,E_{2g})}]}{2} - \frac{\mathbb{Q}_9[\mathbb{Q}_{2,1}^{(a,E_{2g})}] \otimes \mathbb{Q}_{15}[\mathbb{Q}_{2,1}^{(b,E_{2g})}]}{2} - \frac{\mathbb{Q}_9[\mathbb{Q}_{2,1}^{(a,E_{2g})}] \otimes \mathbb{Q}_{15}[\mathbb{Q}_{2,1}^{(a,E_{2g})}]}{2} - \frac{\mathbb{Q}_9[\mathbb{Q}_{2,1}^{(a,E_{$$

No. 23
$$\hat{\mathbb{Q}}_{4}^{(A_{1g})}$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{23} = \mathbb{X}_3[\mathbb{Q}_4^{(a,A_{1g})}] \otimes \mathbb{Y}_{11}[\mathbb{Q}_0^{(b,A_{1g})}]$$

No. 24
$$\hat{\mathbb{Q}}_2^{(A_{1g})}$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{24} = \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{4,0}^{(a,E_{2g},2)}] \otimes \mathbb{Y}_{14}[\mathbb{Q}_{2,0}^{(b,E_{2g})}]}{6} + \frac{\sqrt{6}\mathbb{X}_{13}[\mathbb{Q}_{4,1}^{(a,E_{2g},2)}] \otimes \mathbb{Y}_{15}[\mathbb{Q}_{2,1}^{(b,E_{2g})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{6}[\mathbb{Q}_{4,0}^{(a,E_{1g})}] \otimes \mathbb{Y}_{12}[\mathbb{Q}_{2,0}^{(b,E_{1g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{4,1}^{(a,E_{1g})}] \otimes \mathbb{Y}_{13}[\mathbb{Q}_{2,1}^{(b,E_{1g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{4,1}^{(b,E_{1g})}] \otimes \mathbb{Y}_{13}[\mathbb{Q}_{4,1}^{(b,E_{1g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{4,1}^{(b,E_{1g})}] \otimes \mathbb{Y}_{13}[\mathbb{Q}_{4,1}^{(b,E_{1g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{4,1}^{(b,E_{1g})}] \otimes \mathbb{Y}_{13}[\mathbb{Q}_{4,1}^{(b,E_{1g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{4,1}^{(b,E_{1g})}] \otimes \mathbb{Y}_{13}[\mathbb{Q}_{4,1}^{(b,E_{1g})}]}{3} + \frac{\sqrt{3}\mathbb{Z}_{7}[\mathbb{Q}_{4,1}^{(b,E$$

No. 25
$$\hat{\mathbb{Q}}_{4}^{(A_{1g})}$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{25} = -\frac{\sqrt{3}\mathbb{X}_{12}[\mathbb{Q}_{4,0}^{(a,E_{2g},2)}] \otimes \mathbb{Y}_{14}[\mathbb{Q}_{2,0}^{(b,E_{2g})}]}{3} - \frac{\sqrt{3}\mathbb{X}_{13}[\mathbb{Q}_{4,1}^{(a,E_{2g},2)}] \otimes \mathbb{Y}_{15}[\mathbb{Q}_{2,1}^{(b,E_{2g})}]}{3} + \frac{\sqrt{6}\mathbb{X}_{6}[\mathbb{Q}_{4,0}^{(a,E_{1g})}] \otimes \mathbb{Y}_{12}[\mathbb{Q}_{2,0}^{(b,E_{1g})}]}{6} + \frac{\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{4,1}^{(a,E_{1g})}] \otimes \mathbb{Y}_{13}[\mathbb{Q}_{2,1}^{(b,E_{1g})}]}{6} + \frac{\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{4,1}^{(b,E_{1g})}] \otimes \mathbb{Y}_{13}[\mathbb{Q}_{2,1}^{(b,E_{1g})}]}{6} + \frac{\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{4,1}^{(b,E_{1g})}] \otimes \mathbb{Y}_{13}[\mathbb{Q}_{2,1}^{(b,E_{1g})}]}{6} + \frac{\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{4,1}^{(b,E_{1g})}] \otimes \mathbb{Y}_{13}[\mathbb{Q}_{2,1}^{(b,E_{1g})}]}{6} + \frac{\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{4,1}^{(b,E_{1g})}] \otimes \mathbb{Y}_{13}[\mathbb{Q}_{4,1}^{(b,E_{1g})}]}{6} + \frac{\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{4,1}^{(b,E_{1g})}] \otimes \mathbb{Y}_{13}[\mathbb{Q}_{4,1}^{(b,E_{1g})}]}{6} + \frac{\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{4,1}^{(b,E_{1g})}]}{6} + \frac{\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{4,1}^{(b,E_{1g})}]}$$

No. 26
$$\hat{\mathbb{Q}}_{6}^{(A_{1g},2)}$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{26} = \frac{\sqrt{2}\mathbb{X}_{10}[\mathbb{Q}_{4,0}^{(a,E_{2g},1)}] \otimes \mathbb{Y}_{14}[\mathbb{Q}_{2,0}^{(b,E_{2g})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{Q}_{4,1}^{(a,E_{2g},1)}] \otimes \mathbb{Y}_{15}[\mathbb{Q}_{2,1}^{(b,E_{2g})}]}{2}$$

No. 27
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{27} = \mathbb{X}_{14}[\mathbb{Q}_4^{(a,B_{2g})}] \otimes \mathbb{Y}_{16}[\mathbb{Q}_4^{(b,B_{2g})}]$$

No. 28
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{28} = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{Y}_{17}[\mathbb{Q}_0^{(b,A_{1g})}]$$

No. 29
$$\hat{\mathbb{Q}}_2^{(A_{1g})}$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{29} = \mathbb{X}_2[\mathbb{Q}_2^{(a,A_{1g})}] \otimes \mathbb{Y}_{17}[\mathbb{Q}_0^{(b,A_{1g})}]$$

No. 30
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{30} = \frac{\sqrt{2}\mathbb{X}_{8}[\mathbb{Q}_{2,0}^{(a,E_{2g})}] \otimes \mathbb{Y}_{18}[\mathbb{Q}_{2,0}^{(b,E_{2g})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2,1}^{(a,E_{2g})}] \otimes \mathbb{Y}_{19}[\mathbb{Q}_{2,1}^{(b,E_{2g})}]}{2}$$

No. 31
$$\hat{\mathbb{Q}}_{6}^{(A_{1g},2)}$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{31} = \frac{\sqrt{2}\mathbb{X}_{8}[\mathbb{Q}_{2,0}^{(a,E_{2g})}] \otimes \mathbb{Y}_{20}[\mathbb{Q}_{4,0}^{(b,E_{2g},1)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2,1}^{(a,E_{2g})}] \otimes \mathbb{Y}_{21}[\mathbb{Q}_{4,1}^{(b,E_{2g},1)}]}{2}$$

No. 32
$$\hat{\mathbb{Q}}_{4}^{(A_{1g})}$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{32} = \mathbb{X}_{3}[\mathbb{Q}_{4}^{(a,A_{1g})}] \otimes \mathbb{Y}_{17}[\mathbb{Q}_{0}^{(b,A_{1g})}]$$

No. 33
$$\hat{\mathbb{Q}}_{2}^{(A_{1g})}$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{33} = \frac{\sqrt{2}\mathbb{X}_{12}[\mathbb{Q}_{4,0}^{(a,E_{2g},2)}] \otimes \mathbb{Y}_{18}[\mathbb{Q}_{2,0}^{(b,E_{2g})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{13}[\mathbb{Q}_{4,1}^{(a,E_{2g},2)}] \otimes \mathbb{Y}_{19}[\mathbb{Q}_{2,1}^{(b,E_{2g})}]}{2}$$

No. 34
$$\hat{\mathbb{Q}}_{6}^{(A_{1g},2)}$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{34} = \frac{\sqrt{2}\mathbb{X}_{10}[\mathbb{Q}_{4,0}^{(a,E_{2g},1)}] \otimes \mathbb{Y}_{18}[\mathbb{Q}_{2,0}^{(b,E_{2g})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{Q}_{4,1}^{(a,E_{2g},1)}] \otimes \mathbb{Y}_{19}[\mathbb{Q}_{2,1}^{(b,E_{2g})}]}{2}$$

No. 35
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{35} = \frac{\sqrt{2}\mathbb{X}_{10}[\mathbb{Q}_{4,0}^{(a,E_{2g},1)}] \otimes \mathbb{Y}_{20}[\mathbb{Q}_{4,0}^{(b,E_{2g},1)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{Q}_{4,1}^{(a,E_{2g},1)}] \otimes \mathbb{Y}_{21}[\mathbb{Q}_{4,1}^{(b,E_{2g},1)}]}{2}$$

No. 36
$$\hat{\mathbb{Q}}_{6}^{(A_{1g},2)}$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{36} = -\frac{\sqrt{2}\mathbb{X}_{12}[\mathbb{Q}_{4,0}^{(a,E_{2g},2)}] \otimes \mathbb{Y}_{20}[\mathbb{Q}_{4,0}^{(b,E_{2g},1)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{13}[\mathbb{Q}_{4,1}^{(a,E_{2g},2)}] \otimes \mathbb{Y}_{21}[\mathbb{Q}_{4,1}^{(b,E_{2g},1)}]}{2}$$

No. 37
$$\hat{\mathbb{Q}}_{6}^{(A_{1g},2)}$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{37} = -\mathbb{X}_{15}[\mathbb{M}_{1}^{(a,A_{2g})}] \otimes \mathbb{Y}_{26}[\mathbb{T}_{6}^{(b,A_{2g})}]$$

No. 38
$$\hat{\mathbb{Q}}_{2}^{(A_{1g})}$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{38} = -\frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{M}_{3,0}^{(a,E_{2g})}] \otimes \mathbb{Y}_{22}[\mathbb{T}_{2,0}^{(b,E_{2g})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{3,1}^{(a,E_{2g})}] \otimes \mathbb{Y}_{23}[\mathbb{T}_{2,1}^{(b,E_{2g})}]}{2}$$

No. 39
$$\hat{\mathbb{Q}}_{6}^{(A_{1g},2)}$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{39} = -\frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{M}_{3,0}^{(a,E_{2g})}] \otimes \mathbb{Y}_{24}[\mathbb{T}_{4,0}^{(b,E_{2g},1)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{3,1}^{(a,E_{2g})}] \otimes \mathbb{Y}_{25}[\mathbb{T}_{4,1}^{(b,E_{2g},1)}]}{2}$$

No. 40
$$\hat{\mathbb{Q}}_{6}^{(A_{1g},2)}$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{40} = \mathbb{X}_{16}[\mathbb{M}_3^{(a, A_{2g})}] \otimes \mathbb{Y}_{26}[\mathbb{T}_6^{(b, A_{2g})}]$$

Table 5: Atomic SAMB group.

group	bra	ket		
M_1	$d_u, d_v, d_{yz}, d_{zx}, d_{xy}$	$d_u, d_v, d_{yz}, d_{zx}, d_{xy}$		

Table 6: Atomic SAMB.

	I		
symbol	type	group	form
\mathbb{X}_1	$\mathbb{Q}_0^{(a,A_{1g})}$	M_1	$\begin{pmatrix} \frac{\sqrt{5}}{5} & 0 & 0 & 0 & 0 \\ 0 & \frac{\sqrt{5}}{5} & 0 & 0 & 0 \\ 0 & 0 & \frac{\sqrt{5}}{5} & 0 & 0 \\ 0 & 0 & 0 & \frac{\sqrt{5}}{5} & 0 \\ 0 & 0 & 0 & 0 & \frac{\sqrt{5}}{5} \end{pmatrix}$
\mathbb{X}_2	$\mathbb{Q}_2^{(a,A_{1g})}$	M_1	$\begin{bmatrix} \sqrt{\frac{14}{7}} & 0 & 0 & 0 & 0 \\ 0 & -\frac{\sqrt{14}}{7} & 0 & 0 & 0 \\ 0 & 0 & \frac{\sqrt{14}}{14} & 0 & 0 \\ 0 & 0 & 0 & \frac{\sqrt{14}}{14} & 0 \\ 0 & 0 & 0 & 0 & -\frac{\sqrt{14}}{7} \end{bmatrix}$
\mathbb{X}_3	$\mathbb{Q}_4^{(a,A_{1g})}$	M_1	$\begin{bmatrix} \frac{3\sqrt{70}}{35} & 0 & 0 & 0 & 0\\ 0 & \frac{\sqrt{70}}{70} & 0 & 0 & 0\\ 0 & 0 & -\frac{2\sqrt{70}}{35} & 0 & 0\\ 0 & 0 & 0 & -\frac{2\sqrt{70}}{35} & 0\\ 0 & 0 & 0 & 0 & \frac{\sqrt{70}}{70} \end{bmatrix}$
\mathbb{X}_4	$\mathbb{Q}_{2,0}^{(a,E_{1g})}$	M_1	$ \begin{pmatrix} 0 & 0 & 0 & \frac{\sqrt{14}}{14} & 0 \\ 0 & 0 & 0 & \frac{\sqrt{42}}{14} & 0 \\ 0 & 0 & 0 & 0 & \frac{\sqrt{42}}{14} \\ \frac{\sqrt{14}}{14} & \frac{\sqrt{42}}{14} & 0 & 0 & 0 \\ 0 & 0 & \frac{\sqrt{42}}{14} & 0 & 0 \end{pmatrix} $

Table 6

Table 6			
symbol	type	group	form
\mathbb{X}_5	$\mathbb{Q}_{2,1}^{(a,E_{1g})}$	M_1	$ \begin{pmatrix} 0 & 0 & \frac{\sqrt{14}}{14} & 0 & 0\\ 0 & 0 & -\frac{\sqrt{42}}{14} & 0 & 0\\ \frac{\sqrt{14}}{14} & -\frac{\sqrt{42}}{14} & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & \frac{\sqrt{42}}{14} \\ 0 & 0 & 0 & \frac{\sqrt{42}}{14} & 0 \end{pmatrix} $
\mathbb{X}_6	$\mathbb{Q}_{4,0}^{(a,E_{1g})}$	$ m M_1$	$ \begin{pmatrix} 0 & 0 & 0 & \frac{\sqrt{21}}{7} & 0 \\ 0 & 0 & 0 & -\frac{\sqrt{7}}{14} & 0 \\ 0 & 0 & 0 & 0 & -\frac{\sqrt{7}}{14} \\ \frac{\sqrt{21}}{7} & -\frac{\sqrt{7}}{14} & 0 & 0 & 0 \\ 0 & 0 & -\frac{\sqrt{7}}{14} & 0 & 0 \end{pmatrix} $
\mathbb{X}_7	$\mathbb{Q}_{4,1}^{(a,E_{1g})}$	M_1	$ \begin{pmatrix} 0 & 0 & \frac{\sqrt{21}}{7} & 0 & 0 \\ 0 & 0 & \frac{\sqrt{7}}{14} & 0 & 0 \\ \frac{\sqrt{21}}{7} & \frac{\sqrt{7}}{14} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -\frac{\sqrt{7}}{14} \\ 0 & 0 & 0 & -\frac{\sqrt{7}}{14} & 0 \end{pmatrix} $
\mathbb{X}_8	$\mathbb{Q}_{2,0}^{(a,E_{2g})}$	$ m M_1$	$\begin{pmatrix} 0 & -\frac{\sqrt{14}}{7} & 0 & 0 & 0 \\ -\frac{\sqrt{14}}{7} & 0 & 0 & 0 & 0 \\ 0 & 0 & -\frac{\sqrt{42}}{14} & 0 & 0 \\ 0 & 0 & 0 & \frac{\sqrt{42}}{14} & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_9	$\mathbb{Q}_{2,1}^{(a,E_{2g})}$	$ m M_1$	$\begin{pmatrix} 0 & 0 & 0 & 0 & \frac{\sqrt{14}}{7} \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{\sqrt{42}}{14} & 0 \\ 0 & 0 & -\frac{\sqrt{42}}{14} & 0 & 0 \\ \frac{\sqrt{14}}{7} & 0 & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_{10}	$\mathbb{Q}_{4,0}^{(a,E_{2g},1)}$	$ m M_1$	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{\sqrt{2}}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$

Table 6

Table 6			
symbol	type	group	form
\mathbb{X}_{11}	$\mathbb{Q}_{4,1}^{(a,E_{2g},1)}$	M_1	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{2} \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$
\mathbb{X}_{12}	$\mathbb{Q}_{4,0}^{(a,E_{2g},2)}$	$ m M_1$	$ \begin{pmatrix} \frac{\sqrt{14}}{14} & 0 & 0 & 0 & 0 \\ 0 & 0 & -\frac{\sqrt{14}}{7} & 0 & 0 \\ 0 & 0 & 0 & \frac{\sqrt{14}}{7} & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} $
\mathbb{X}_{13}	$\mathbb{Q}_{4,1}^{(a,E_{2g},2)}$	M_1	$ \begin{pmatrix} 0 & 0 & 0 & 0 & -\frac{\sqrt{42}}{14} \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{\sqrt{14}}{7} & 0 \\ 0 & 0 & -\frac{\sqrt{14}}{7} & 0 & 0 \\ -\frac{\sqrt{42}}{14} & 0 & 0 & 0 & 0 \end{pmatrix} $
\mathbb{X}_{14}	$\mathbb{Q}_4^{(a,B_{2g})}$	$ m M_1$	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 0 & \frac{1}{2} & 0 \end{pmatrix}$
\mathbb{X}_{15}	$\mathbb{M}_{1}^{(a,A_{2g})}$	$ m M_1$	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -\frac{\sqrt{10}i}{5} \\ 0 & 0 & 0 & \frac{\sqrt{10}i}{10} & 0 \\ 0 & 0 & -\frac{\sqrt{10}i}{10} & 0 & 0 \\ 0 & \frac{\sqrt{10}i}{5} & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_{16}	$\mathbb{M}_3^{(a,A_{2g})}$	M_1	$ \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{\sqrt{10}i}{10} \\ 0 & 0 & 0 & \frac{\sqrt{10}i}{5} & 0 \\ 0 & 0 & -\frac{\sqrt{10}i}{5} & 0 & 0 \\ 0 & -\frac{\sqrt{10}i}{10} & 0 & 0 & 0 \end{pmatrix} $

Table 6

symbol	type	group	form
\mathbb{X}_{17}	$\mathbb{M}_{3,0}^{(a,E_{2g})}$	M_1	$\begin{pmatrix} 0 & -\frac{\sqrt{2}i}{2} & 0 & 0 & 0\\ \frac{\sqrt{2}i}{2} & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0\\ 0 & 0 &$
\mathbb{X}_{18}	$\mathbb{M}_{3,1}^{(a,E_{2g})}$	$ m M_1$	$\begin{pmatrix} 0 & 0 & 0 & 0 & \frac{\sqrt{2}i}{2} \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$

Table 7: Cluster SAMB.

symbol	type	cluster	form
\mathbb{Y}_1	$\mathbb{Q}_0^{(s,A_{1g})}$	S_1	$\left(rac{\sqrt{6}}{6} - rac{\sqrt{6}}{6} - rac{\sqrt{6}}{6} - rac{\sqrt{6}}{6} - rac{\sqrt{6}}{6} - rac{\sqrt{6}}{6} ight)$
\mathbb{Y}_2	$\mathbb{Q}_{2,0}^{(s,E_{2g})}$	S_1	$ \begin{pmatrix} \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} \\ \frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} & -\frac{\sqrt{3}}{6} & -\frac{\sqrt{3}}{6} & -\frac{\sqrt{3}}{6} \\ \end{pmatrix} $
\mathbb{Y}_3	$\mathbb{Q}_{2,1}^{(s,E_{2g})}$	S_1	$\begin{pmatrix} 0 & 0 & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$
\mathbb{Y}_4	$\mathbb{Q}_0^{(s,A_{1g})}$	S_2	$\left(rac{\sqrt{2}}{2} - rac{\sqrt{2}}{2} ight)$
\mathbb{Y}_5	$\mathbb{Q}_0^{(b,A_{1g})}$	B_1	$\left(\begin{array}{cccc} \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} \end{array}\right)$
\mathbb{Y}_6	$\mathbb{Q}_{2,0}^{(b,E_{2g})}$	B_1	
\mathbb{Y}_7	$\mathbb{Q}_{2,1}^{(b,E_{2g})}$	B_1	$\left(-rac{1}{2} \ -rac{1}{2} \ rac{1}{2} \ 0 \ rac{1}{2} \ 0 ight)$
\mathbb{Y}_8	$\mathbb{T}_{2,0}^{(b,E_{2g})}$	B_1	$\left(egin{array}{cccccccccccccccccccccccccccccccccccc$
\mathbb{Y}_9	$\mathbb{T}_{2,1}^{(b,E_{2g})}$	B_1	$\begin{pmatrix} \frac{i}{2} & \frac{i}{2} & \frac{i}{2} & 0 & \frac{i}{2} & 0 \\ \frac{\sqrt{3}i}{6} & \frac{\sqrt{3}i}{6} & -\frac{\sqrt{3}i}{6} & -\frac{\sqrt{3}i}{3} & -\frac{\sqrt{3}i}{6} & -\frac{\sqrt{3}i}{3} \end{pmatrix}$
\mathbb{Y}_{10}	$\begin{array}{c} \mathbb{Q}_{0}^{(b,E_{2g})} \\ \mathbb{Q}_{2,0}^{(b,E_{2g})} \\ \mathbb{Q}_{2,1}^{(b,E_{2g})} \\ \mathbb{T}_{2,0}^{(b,E_{2g})} \\ \mathbb{T}_{2,1}^{(b,E_{2g})} \\ \mathbb{T}_{6}^{(b,A_{2g})} \end{array}$	B_1	$\left(\begin{array}{ccc} \frac{\sqrt{6}i}{6} & \frac{\sqrt{6}i}{6} & -\frac{\sqrt{6}i}{6} & \frac{\sqrt{6}i}{6} & -\frac{\sqrt{6}i}{6} & \frac{\sqrt{6}i}{6} \end{array}\right)$
\mathbb{Y}_{11}	$\mathbb{Q}_0^{(b,A_{1g})}$	B_2	$\left(rac{\sqrt{6}}{6} - rac{\sqrt{6}}{6} - rac{\sqrt{6}}{6} - rac{\sqrt{6}}{6} - rac{\sqrt{6}}{6} - rac{\sqrt{6}}{6} ight)$
\mathbb{Y}_{12}	$\mathbb{Q}_{2,0}^{(b,E_{1g})}$ $\mathbb{Q}_{2,1}^{(b,E_{1g})}$	B_2	
\mathbb{Y}_{13}	$\mathbb{Q}_{2,1}^{(b,E_{1g})}$	B_2	$\begin{pmatrix} 0 & 0 & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \left(\frac{\sqrt{3}}{3} & -\frac{\sqrt{3}}{3} & -\frac{\sqrt{3}}{6} & -\frac{\sqrt{3}}{6} & \frac{\sqrt{3}}{6} & \frac{\sqrt{3}}{6} \end{pmatrix}$

Table 7

symbol	type	cluster	form
\mathbb{Y}_{14}	$\mathbb{Q}_{2,0}^{(b,E_{2g})}$	B_2	$\begin{pmatrix} \frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} & -\frac{\sqrt{3}}{6} & -\frac{\sqrt{3}}{6} & -\frac{\sqrt{3}}{6} & -\frac{\sqrt{3}}{6} \end{pmatrix}$
\mathbb{Y}_{15}	$\mathbb{Q}_{2,1}^{(b,E_{2g})}$	B_2	$\begin{pmatrix} 0 & 0 & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$
\mathbb{Y}_{16}	$\mathbb{O}_{4}^{(b,B_{2g})}$	$_{ m B_2}$	$\left(\frac{\sqrt{6}}{6} - \frac{\sqrt{6}}{6} \frac{\sqrt{6}}{6} \frac{\sqrt{6}}{6} - \frac{\sqrt{6}}{6} - \frac{\sqrt{6}}{6} \right)$
\mathbb{Y}_{17}	$\mathbb{Q}_0^{(b,A_{1g})}$	B_3	
\mathbb{Y}_{18}	$\mathbb{Q}_{2,0}^{(b,E_{2g})}$	B_3	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
\mathbb{Y}_{19}	$\mathbb{Q}_{2,0}^{(b,E_{2g})} \\ \mathbb{Q}_{2,1}^{(b,E_{2g})}$	B_3	$ \left(-\frac{\sqrt{6}}{12} - \frac{\sqrt{6}}{12} \frac{\sqrt{6}}{12} - \frac{\sqrt{6}}{6} \frac{\sqrt{6}}{12} \frac{\sqrt{6}}{12} - \frac{\sqrt{6}}{6} \frac{\sqrt{6}}{12} \frac{\sqrt{6}}{6} - \frac{\sqrt{6}}{12} - \frac{\sqrt{6}}{12} \frac{\sqrt{6}}{6} \right) $
\mathbb{Y}_{20}	$\mathbb{Q}_{4,0}^{(b,E_{2g},1)}$	B_3	$\left(egin{array}{cccccccccccccccccccccccccccccccccccc$
\mathbb{Y}_{21}	$\mathbb{Q}_{4,1}^{(b,E_{2g},1)}$	B_3	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
\mathbb{Y}_{22}	$\mathbb{T}_{2,0}^{(b,E_{2g})}$ $\mathbb{T}_{2,1}^{(b,E_{2g})}$	B_3	$\left(egin{array}{cccccccccccccccccccccccccccccccccccc$
\mathbb{Y}_{23}	$\mathbb{T}_{2,1}^{(b,E_{2g})}$	B_3	$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$
\mathbb{Y}_{24}	$ _{\pi}(b,E_{2g},1) $	B_3	$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
\mathbb{Y}_{25}	$\mathbb{T}^{(b,E_{2g},1)}$	B_3	$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
\mathbb{Y}_{26}	$\mathbb{T}_6^{(b,A_{2g})}$	B_3	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Table 8: Polar harmonics.

No.	symbol	rank	irrep.	mul.	comp.	form
1	$\mathbb{Q}_0^{(A_{1g})}$	0	A_{1g}	_	_	1
2	$\mathbb{Q}_2^{(A_{1g})}$	2	A_{1g}	_	_	$-\frac{x^2}{2} - \frac{y^2}{2} + z^2$
3	$\mathbb{Q}_{2,0}^{(E_{1g})}$	2	E_{1g}	_	0	$\sqrt{3}xz$
4	$\mathbb{Q}_{2,1}^{(E_{1g})}$	2	E_{1g}	_	1	$\sqrt{3}yz$
5	$\mathbb{Q}_{2,0}^{(E_{2g})}$	2	E_{2g}	_	0	$\frac{\sqrt{3}(x-y)(x+y)}{2}$
6	$\mathbb{Q}_{2,1}^{\overline{(E_{2g})}}$	2	E_{2g}	_	1	$-\sqrt{3}xy$
7	$\mathbb{Q}_4^{(A_{1g})}$	4	A_{1g}	_	_	$\frac{3x^4}{8} + \frac{3x^2y^2}{4} - 3x^2z^2 + \frac{3y^4}{8} - 3y^2z^2 + z^4$
8	$\mathbb{Q}_4^{(B_{2g})}$	4	B_{2g}	_	_	$\frac{\sqrt{70}yz(3x^2 - y^2)}{4}$

Table 8

No.	symbol	rank	irrep.	mul.	comp.	form
9	$\mathbb{Q}_{4,0}^{(E_{1g})}$	4	E_{1g}	_	0	$-\frac{\sqrt{10}xz(3x^2+3y^2-4z^2)}{4}$
10	$\mathbb{Q}_{4,1}^{(E_{1g})}$	4	E_{1g}	_	1	$-\frac{\sqrt{10}yz(3x^{2}+3y^{2}-4z^{2})}{4}$
11	$\mathbb{Q}_{4,0}^{(E_{2g},1)}$	4	E_{2g}	1	0	$\frac{\sqrt{35}(x^2-2xy-y^2)^4(x^2+2xy-y^2)}{8}$
12	$\mathbb{Q}_{4,0}^{(E_{2g},1)} \\ \mathbb{Q}_{4,1}^{(E_{2g},1)}$	4	E_{2g}	1	1	$\frac{\sqrt{35}xy(x-y)(x+y)}{2}$
13	$\mathbb{Q}_{4,0}^{(E_{2g},2)}$	4	E_{2g}	2	0	$-\frac{\sqrt{5}(x-y)(x+y)(x^2+y^2-6z^2)}{4}$
14	$\mathbb{Q}_{4,1}^{(E_{2g},2)}$	4	E_{2g}	2	1	$\frac{\sqrt{5}xy(x^2+y^2-6z^2)}{2}$
15	$\mathbb{Q}_{6}^{(A_{2g})}$	6	A_{2g}	_	_	$\frac{\sqrt{462}xy(x^2-3y^2)(3x^2-y^2)}{16}$

Table 9: Axial harmonics.

No.	symbol	rank	irrep.	mul.	comp.	form
1	$\mathbb{G}_1^{(A_{2g})}$	1	A_{2g}	_	_	Z
2	$\mathbb{G}_3^{(A_{2g})}$	3	A_{2g}	_	_	$-\frac{Z(3X^2+3Y^2-2Z^2)}{2}$
3	$\mathbb{G}_{3,0}^{(E_{2g})}$	3	E_{2g}	_	0	$\sqrt{15}XYZ$
4	$\mathbb{G}_{3,1}^{(E_{2g})}$	3	E_{2g}	_	1	$\frac{\sqrt{15}Z(X-Y)(X+Y)}{2}$

 \bullet Group info.: Generator = $\{3^+_{\ 001}|0\},\ \{2_{001}|00\frac{1}{2}\},\ \{2_{110}|0\},\ \{-1|0\}$

Table 10: Conjugacy class (point-group part).

rep. SO	symmetry operations
{1 0}	{1 0}
$\{2_{001} 00\frac{1}{2}\}$	$\{2_{001} 00\frac{1}{2}\}$

continued ...

Table 10

rep. SO	symmetry operations
$\{2_{100} 0\}$	$\{2_{100} 0\}, \{2_{010} 0\}, \{2_{110} 0\}$
${\{2_{120} 00\frac{1}{2}\}}$	$\{2_{120} 00\frac{1}{2}\}, \{2_{210} 00\frac{1}{2}\}, \{2_{1-10} 00\frac{1}{2}\}$
${\{3^{+}_{001} 0\}}$	$\{3^{+}_{001} 0\}, \{3^{-}_{001} 0\}$
${\left\{6^{+}_{001} 00^{\frac{1}{2}}\right\}}$	$\{6^{+}_{001} 00^{\frac{1}{2}}\},\ \{6^{-}_{001} 00^{\frac{1}{2}}\}$
-1 0	$\{-1 0\}$
$\{m_{100} 0\}$	$\{m_{100} 0\}, \{m_{010} 0\}, \{m_{110} 0\}$
$\{m_{001} 00\frac{1}{2}\}$	$\{m_{001} 00\frac{1}{2}\}$
$\{m_{120} 00\frac{1}{2}\}$	$\{m_{120} 00\frac{1}{2}\}, \{m_{210} 00\frac{1}{2}\}, \{m_{1-10} 00\frac{1}{2}\}$
$-3^{+}_{001} 0$	$\{-3^{+}_{001} 0\}, \{-3^{-}_{001} 0\}$
$\left\{-6^{+}_{001} 00^{\frac{1}{2}}\right\}$	$\{-6^{+}_{001} 00^{\frac{1}{2}}\}, \{-6^{-}_{001} 00^{\frac{1}{2}}\}$

Table 11: Symmetry operations.

No.	SO	No.	SO	No.	SO	No.	SO	No.	SO
1	$\{1 0\}$	2	$\{2_{001} 00\frac{1}{2}\}$	3	$\{2_{100} 0\}$	4	$\{2_{010} 0\}$	5	$\{2_{110} 0\}$
6	$\{2_{120} 00\frac{1}{2}\}$	7	$\{2_{210} 00\frac{1}{2}\}$	8	$\{2_{1-10} 00\frac{1}{2}\}$	9	$\{3^{+}_{001} 0\}$	10	$\{3^{-}_{001} 0\}$
11	$\{6^{+}_{001} 00^{\frac{1}{2}}\}$	12	$\{6^{001} 00\frac{1}{2}\}$	13	$\{-1 0\}$	14	$\{m_{100} 0\}$	15	$\{m_{010} 0\}$
16	$\{m_{110} 0\}$	17	$\{m_{001} 00\frac{1}{2}\}$	18	$\{m_{120} 00\frac{1}{2}\}$	19	$\{m_{210} 00\frac{1}{2}\}$	20	$\{m_{1-10} 00\frac{1}{2}\}$
21	$\{-3^{+}_{001} 0\}$	22	$\{-3^{-}_{001} 0\}$	23	$\{-6^{+}_{001} 00^{\frac{1}{2}}\}$	24	$\{-6^{-}_{001} 00\frac{1}{2}\}$		

Table 12: Character table (point-group part).

	1	2001	2100	2120	3 ⁺ ₀₀₁	6 ⁺ ₀₀₁	-1	m ₁₀₀	m ₀₀₁	m ₁₂₀	-3^{+}_{001}	-6^{+}_{001}
A_{1g}	1	1	1	1	1	1	1	1	1	1	1	1
A_{2g}	1	1	-1	-1	1	1	1	-1	1	-1	1	1
B_{1g}	1	-1	-1	1	1	-1	1	-1	-1	1	1	-1
B_{2g}	1	-1	1	-1	1	-1	1	1	-1	-1	1	-1

Table 12

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-6^{+}_{001} 1 -1
2 0 -2 0 -1	$\begin{array}{c} 1 \\ -1 \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1
-1 -1 -1 -1	-1
-1 1 -1 1 -1	-1
-1 1 1 -1 -1	1
-1 -1 1 1 -1	1
-2 0 2 0 1	-1
-2 0 -2 0 1	1
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 13: Parity conversion.

\longrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow
$A_{1g} (A_{1u})$	$A_{2g} (A_{2u})$	B_{1g} (B_{1u})	$B_{2g} (B_{2u})$	E_{1g} (E_{1u})
$E_{2g} (E_{2u})$	$A_{1u} (A_{1g})$	$A_{2u} (A_{2g})$	$B_{1u} (B_{1g})$	$B_{2u} (B_{2g})$
$E_{1u} (E_{1g})$	$E_{2u} (E_{2g})$			

Table 14: Symmetric product, $[\Gamma \otimes \Gamma']_+$.

	A_{1g}	A_{2g}	B_{1g}	B_{2g}	E_{1g}	E_{2g}	A_{1u}	A_{2u}	B_{1u}	B_{2u}	E_{1u}	E_{2u}
A_{1g}	A_{1g}	A_{2g}	B_{1g}	B_{2g}	E_{1g}	E_{2g}	A_{1u}	A_{2u}	B_{1u}	B_{2u}	E_{1u}	E_{2u}
A_{2g}		A_{1g}	B_{2g}	B_{1g}	E_{1g}	E_{2g}	A_{2u}	A_{1u}	B_{2u}	B_{1u}	E_{1u}	E_{2u}
B_{1g}			A_{1g}	A_{2g}	E_{2g}	E_{1g}	B_{1u}	B_{2u}	A_{1u}	A_{2u}	E_{2u}	E_{1u}
B_{2g}				A_{1g}	E_{2g}	E_{1g}	B_{2u}	B_{1u}	A_{2u}	A_{1u}	E_{2u}	E_{1u}
E_{1g}					$A_{1g} + E_{2g}$	$B_{1g} + B_{2g} + E_{1g}$	E_{1u}	E_{1u}	E_{2u}	E_{2u}	$A_{1u} + A_{2u} + E_{2u}$	$B_{1u} + B_{2u} + E_{1u}$
E_{2g}						$A_{1g} + E_{2g}$	E_{2u}	E_{2u}	E_{1u}	E_{1u}	$B_{1u} + B_{2u} + E_{1u}$	$A_{1u} + A_{2u} + E_{2u}$
A_{1u}							A_{1g}	A_{2g}	B_{1g}	B_{2g}	E_{1g}	E_{2g}
A_{2u}								A_{1g}	B_{2g}	B_{1g}	E_{1g}	E_{2g}
B_{1u}									A_{1g}	A_{2g}	E_{2g}	E_{1g}
B_{2u}										A_{1g}	E_{2g}	E_{1g}
E_{1u}											$A_{1g} + E_{2g}$	$B_{1g} + B_{2g} + E_{1g}$
E_{2u}												$A_{1g} + E_{2g}$

Table 15: Anti-symmetric product, $[\Gamma \otimes \Gamma]_{-}$.

A_{1g}	A_{2g}	B_{1g}	B_{2g}	E_{1g}	E_{2g}	A_{1u}	A_{2u}	B_{1u}	B_{2u}	E_{1u}	E_{2u}
_	_	_	_	A_{2g}	A_{2g}	_	_	_	_	A_{2g}	A_{2g}

Table 16: Virtual-cluster sites.

No.	position	No.	position	No.	position	No.	position
1	$\begin{pmatrix} 1+\sqrt{3} & -1+\sqrt{3} & 1 \end{pmatrix}$	2	$\left(-\sqrt{3}-1 1-\sqrt{3} 1\right)$	3	$\begin{pmatrix} 2 & 1 - \sqrt{3} & -1 \end{pmatrix}$	4	$\left(-\sqrt{3}-1 -2 -1\right)$
5	$\begin{pmatrix} -1 + \sqrt{3} & 1 + \sqrt{3} & -1 \end{pmatrix}$	6	$\begin{pmatrix} -2 & -1 + \sqrt{3} & -1 \end{pmatrix}$	7	$\begin{pmatrix} 1+\sqrt{3} & 2 & -1 \end{pmatrix}$	8	$\begin{pmatrix} 1 - \sqrt{3} & -\sqrt{3} - 1 & -1 \end{pmatrix}$
9	$\begin{pmatrix} 1 - \sqrt{3} & 2 & 1 \end{pmatrix}$	10	$\begin{pmatrix} -2 & -\sqrt{3} - 1 & 1 \end{pmatrix}$	11	$\begin{pmatrix} 2 & 1 + \sqrt{3} & 1 \end{pmatrix}$	12	$\begin{pmatrix} -1 + \sqrt{3} & -2 & 1 \end{pmatrix}$
13	$\left(-\sqrt{3}-1 1-\sqrt{3} -1\right)$	14	$\begin{pmatrix} -2 & -1 + \sqrt{3} & 1 \end{pmatrix}$	15	$\begin{pmatrix} 1+\sqrt{3} & 2 & 1 \end{pmatrix}$	16	$\begin{pmatrix} 1 - \sqrt{3} & -\sqrt{3} - 1 & 1 \end{pmatrix}$
17	$\begin{pmatrix} 1+\sqrt{3} & -1+\sqrt{3} & -1 \end{pmatrix}$	18	$\begin{pmatrix} 2 & 1 - \sqrt{3} & 1 \end{pmatrix}$	19	$\left(-\sqrt{3}-1 -2 1\right)$	20	$\begin{pmatrix} -1 + \sqrt{3} & 1 + \sqrt{3} & 1 \end{pmatrix}$
21	$\begin{pmatrix} -1 + \sqrt{3} & -2 & -1 \end{pmatrix}$	22	$\begin{pmatrix} 2 & 1 + \sqrt{3} & -1 \end{pmatrix}$	23	$\begin{pmatrix} -2 & -\sqrt{3} - 1 & -1 \end{pmatrix}$	24	$(1-\sqrt{3} 2 -1)$

Table 17: Virtual-cluster basis.

symbol	1	2	3	4	5	6	7	8	9	10
$\mathbb{Q}_0^{(A_{1g})}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_1^{(A_{2u})}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_{1,0}^{(E_{1u})}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$
	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$

Table 17

symbol	1	2	3	4	5	6	7	8	9	10
	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_{1,1}^{(E_{1u})}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$
	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$
	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_{2,0}^{(E_{1g})}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$
	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$
	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_{2,1}^{(E_{1g})}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$
	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$
	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_{2,0}^{(E_{2g})}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	0	$-\frac{1}{4}$	$\frac{1}{4}$	0	$-\frac{1}{4}$	0	$-\frac{1}{4}$
	$-\frac{1}{4}$	0	$\frac{1}{4}$	$\frac{1}{4}$	0	$-\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	0	$-\frac{1}{4}$
	0	$-\frac{1}{4}$	$-\frac{1}{4}$	0						
$\mathbb{Q}_{2,1}^{(E_{2g})}$	$-\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{12}$
	$-\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$
	$\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{6}$						
$\mathbb{Q}_3^{(B_{1u})}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$
	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_3^{(B_{2u})}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_{3,0}^{(E_{2u})}$	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	0	$\frac{1}{4}$	$-\frac{1}{4}$	0	$\frac{1}{4}$	0	$-\frac{1}{4}$
	$-\frac{1}{4}$	0	$-\frac{1}{4}$	$\frac{1}{4}$	0	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{4}$	0	$-\frac{1}{4}$
	0	$\frac{1}{4}$	$\frac{1}{4}$	0						
$\mathbb{Q}_{3,1}^{(E_{2u})}$	$-\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{12}$
	$-\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$
	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$						
$\mathbb{Q}_4^{(B_{1g})}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$

Table 17

Table 17										
symbol	1	2	3	4	5	6	7	8	9	10
	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_4^{(B_{2g})}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$
-	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_{4,0}^{(E_{2g},1)}$	$\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$
	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$
	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$						
$\mathbb{Q}_{4,1}^{(E_{2g},1)}$	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	0	$\frac{1}{4}$	$-\frac{1}{4}$	0	$\frac{1}{4}$	0	$-\frac{1}{4}$
	$-\frac{1}{4}$	0	$\frac{1}{4}$	$-\frac{1}{4}$	0	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	0	$\frac{1}{4}$
	0	$-\frac{1}{4}$	$-\frac{1}{4}$	0						
$\mathbb{Q}_{5,0}^{(E_{1u},1)}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$
	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-rac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$
	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_{5,1}^{(E_{1u},1)}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$
	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$
-	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_{5,0}^{(E_{2u},1)}$	$\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$
	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$
	$\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{6}$						
$\mathbb{Q}_{5,1}^{(E_{2u},1)}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	0	$-\frac{1}{4}$	$\frac{1}{4}$	0	$-\frac{1}{4}$	0	$-\frac{1}{4}$
	$-\frac{1}{4}$	0	$-\frac{1}{4}$	$-\frac{1}{4}$	0	$\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	0	$\frac{1}{4}$
	0	$\frac{1}{4}$	$\frac{1}{4}$	0						
$\mathbb{Q}_{6}^{(A_{2g})}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$
	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_{6,0}^{(E_{1g},1)}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$
	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$
	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{12}$						

Table 17										
symbol	1	2	3	4	5	6	7	8	9	10
$\mathbb{Q}_{6,1}^{(E_{1g},1)}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$
	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$
	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_7^{(A_{1u})}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$
	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$						