MA 106 Tutorial-1

Guramrit Singh (210050061)

March 8, 2023

All tutorial problems were discussed in class, solutions and approach to some of them which most students found difficult are given here.

Problem 3

If A and B are square matrices, show that I - AB is invertible iff I - BA is invertible. [Hint: Start from B(I - AB) = (I - BA)B.]

Approach:

To show that a square matrix M is invertible, it is sufficient to show that there exists a square matrix N such that MN = I = NM. Then N is the inverse of M.

Solution: Only one side of *iff condition* is shown in this solution. Try to workout the other side yourself!!!

To show

If I - AB is invertible then I - BA is also invertible.

Since I - AB is invertible, let C be it's inverse, i.e.

$$(I - AB)C = I = C(I - AB) \tag{1}$$

From equation (1), we can write BA as

$$BA = BIA \tag{2}$$

$$BA = B(I - AB)CA \tag{3}$$

Now using hint and equation (3)

$$I - BA = I - B(I - AB)CA \tag{4}$$

$$I - BA = I - (I - BA)BCA \tag{5}$$

$$(I - BA)(I + BCA) = I (6)$$

From equation (1), we can again write BA as

$$BA = BIA \tag{7}$$

$$BA = BC(I - AB)A \tag{8}$$

Note the following equality

$$A(I - BA) = (I - AB)A \tag{9}$$

Guramrit Singh 1 Spring 2022-23

Now using equations (8) and (9)

$$I - BA = I - BC(I - AB)A \tag{10}$$

$$I - BA = I - BCA(I - BA) \tag{11}$$

$$(I + BCA)(I - BA) = I \tag{12}$$

Equations (6) and (12) shows us that I - BA is invertible and I + BCA is it's inverse.

Hence proved

Problem 4

Let $N = \{1, 2, ..., n\}$. By a permutation on n letters we mean a bijective mapping $\sigma : N \to N$. Given a permutation $\sigma : N \to N$ define the permutation matrix P_{σ} to be the $n \times n$ matrix $((p_{ij}))$ where

$$p_{ij} = \begin{cases} 1 & \text{if } j = \sigma(i) \\ 0 & \text{otherwise.} \end{cases}$$

Prove that $P_{\sigma \circ \tau} = P_{\tau} P_{\sigma}$. Deduce that all permutation matrices are invertible and

$$P_{\sigma}^{-1} = P_{\sigma^{-1}} = P_{\sigma}^{T}$$

Approach:

Recall that for an $n \times n$ matrix A,

$$e_i^T A = A_i$$

where e_i is the i^{th} standard basis vector of \mathbb{R}^n and A_i is the i^{th} row of A.

Also recall that any **bijective** mapping σ is one-one, onto mapping which has an inverse mapping σ^{-1} such that $\sigma^{-1} \circ \sigma$ is the *Identity* function on the domain of σ i.e.

$$\sigma^{-1} \circ \sigma(x) = x$$
 , $\forall x \in Domain(\sigma)$

Solution:

Part 1 Look at entry p_{ij} of $P_{\sigma \circ \tau}$, we have by definition of permutation matrix

$$p_{ij} = \begin{cases} 1 & \text{if } j = \sigma \circ \tau(i) \\ 0 & \text{otherwise.} \end{cases}$$

Now we look at entry $p_{ij}^{'}$ of $P_{\tau}P_{\sigma}$

The entry p'_{ij} comes from product of $(P_{\tau})_i(P_{\sigma})^j$, where for a matrix A, A_i is it's i^{th} row and A^j is it's j^{th} column.

Explanation-1 For $p'_{ij} = 1$, it should be the case that $\tau(i) = \sigma^{-1}(j)$

 $(\tau(i))$ gives the column of entry corresponding to 1 in i^{th} row of P_{τ} and $\sigma^{-1}(j)$ gives the row of entry corresponding to 1 in j^{th} column of P_{σ})

Hence we get $j = \sigma \circ \tau(i)$

Explanation-2 For $p'_{ij} = 1$, it should be the case that $\sigma \circ \tau(i) = j$

 $(\tau(i))$ gives the column of entry corresponding to 1 in i^{th} row of P_{τ} and $\sigma \circ \tau(i)$ gives the column

of entry corresponding to 1 in $\tau(i)^{th}$ row of P_{σ} . The point to note is that $(P_{\tau})_i = e_{\tau(i)}^T$ and thus extracts $\tau(i)^{th}$ row of P_{σ} on pre-multiplication)

Thus, we get

$$p_{ij}^{'} = \begin{cases} 1 & \text{if } j = \sigma \circ \tau(i) \\ 0 & \text{otherwise.} \end{cases}$$

Since $p_{ij} = p'_{ij} \ \forall i, j$, it implies

$$P_{\sigma \circ \tau} = P_{\tau} P_{\sigma}$$

Part 2 To find P_{σ}^{-1} , consider the permutation matrix obtained from the bijection σ^{-1} , then as shown in Part-1,

$$P_{\sigma \circ \sigma^{-1}} = P_{\sigma^{-1}} P_{\sigma}$$

and also

$$P_{\sigma^{-1} \circ \sigma} = P_{\sigma} P_{\sigma^{-1}}$$

By using the property that $\sigma \circ \sigma^{-1}$ and $\sigma^{-1} \circ \sigma$ are Identity function, we get that

$$P_{\sigma^{-1}}P_{\sigma} = I = P_{\sigma}P_{\sigma^{-1}}$$

Therefore $P_{\sigma}^{-1} = P_{\sigma^{-1}}$ The other equality $P_{\sigma}^{-1} = P_{\sigma}^{T}$ can be directly verified by showing that $P_{\sigma}P_{\sigma}^{T} = I = P_{\sigma}^{T}P_{\sigma}$ (Try to

Problem 5

The matrix $A = \begin{bmatrix} a & i \\ i & b \end{bmatrix}$, where $i^2 = -1$, $a = \frac{1}{2}(1 + \sqrt{5})$ and $b = \frac{1}{2}(1 - \sqrt{5})$, has the property $A^2 = A$. Describe completely all 2×2 matrices A with complex entries such that $A^2 = A$.

Just square the matrix A and you will get 4 equations to solve.

Definition:

A matrix A such that $A^2 = A$ is called an *idempotent* matrix.

Solution:

Take a general 2×2 matrix A

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Then,

$$A^{2} = \begin{bmatrix} a^{2} + bc & ab + bd \\ ac + cd & bc + d^{2} \end{bmatrix}$$

Equating A^2 and A gives us the following set of equations:

$$a^2 + bc = a \tag{13}$$

$$ab + bd = b (14)$$

$$ac + cd = c (15)$$

$$bc + d^2 = d (16)$$

Subtracting equation (16) from (13) gives us

$$a^2 - d^2 = a - d (17)$$

Solution to (17) is either a = d or a + d = 1

Case-1 (a=d)

New set of equations become

$$a^2 + bc = a ag{18}$$

$$2ab = b (19)$$

$$2ac = c (20)$$

Case-1.1

b = 0 and c = 0.

Then equation (18) dictates that a = 0 or a = 1.

We get two solutions here.

Case-1.2

b=0 and $c\neq 0$.

Then equation (20) dictates that $a = \frac{1}{2}$ but it doesn't satisfy equation (18).

No solution here.

Case-1.3

 $b \neq 0$ and c = 0.

Then equation (19) dictates that $a = \frac{1}{2}$ but it doesn't satisfy equation (18).

No solution here.

Case-1.4

 $b \neq 0$ and $c \neq 0$.

Then equation (19) dictates that $a = \frac{1}{2}$ which satisfies equation (20). To satisfy equation (18), $bc = \frac{1}{4}$.

Infinite solutions here, solution are of the form $a = d = \frac{1}{2}$, $bc = \frac{1}{4}$.

Case-2 (a+d=1)

Equations (14) and (15) automatically gets satisfied.

Note that from equations (13) and (16), we get a and d as roots of

$$x^2 - x + bc = 0 (21)$$

So given b, c, we can get a and d such that they are roots of equation (21) (Verify that sum of roots is indeed equal to 1).

Note

Solutions from Case-1.4 are a **subset** of solutions from Case-2 as they have a+d=1 and restricted b, c i.e. $bc=\frac{1}{4}$.

Finally, all solution matrices A are given below

$$A \in \left\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right\} \cup \left\{ \begin{bmatrix} \frac{1+\sqrt{1-4bc}}{2} & b \\ c & \frac{1-\sqrt{1-4bc}}{2} \end{bmatrix} \middle| b, c \in \mathbb{C} \right\} \cup \left\{ \begin{bmatrix} \frac{1-\sqrt{1-4bc}}{2} & b \\ c & \frac{1+\sqrt{1-4bc}}{2} \end{bmatrix} \middle| b, c \in \mathbb{C} \right\}$$