Using Test Oracles in Automation

Software Test Automation Conference Spring 2003

Douglas Hoffman
Software Quality Methods, LLC.
24646 Heather Heights Place
Saratoga, California 95070-9710
Phone 408-741-4830
Fax 408-867-4550
doug.hoffman@acm.org
www.SoftwareQualityMethods.com

Copyright © 2001 - 2003, Software Quality Methods, LLC. No part of these graphic overhead slides may be reproduced, or used in any form by any electronic or mechanical duplication, or stored in a computer system, without written permission of the author.

Douglas Hoffman

Copyright © 2001 - 2003, SQM, LLC.

1

Topics

- Some Models of Software Testing
- Automating Software Tests
- Strategies for capturing and comparing results

Douglas Hoffman

Copyright © 2001 - 2003, SQM, LLC.

Running A Software Test

- Test setup
 - SUT program state
 - Data values
 - System environment
- Run test exercise
- Capture/compare actual with expected results

Douglas Hoffman

Copyright © 2001 - 2003, SQM, LLC.

3

Hoffman's Expanded **Testing Model** Test Results Test Inputs Precondition Data Postcondition Data System Under Test Precondition ▲ Postcondition Program State Program State Environmental Environmental Inputs Results Douglas Hoffman Copyright © 2001 - 2003, SQM, LLC.

Fully Automated Software Tests

- Able to run two or more specified test cases
- Able to run a subset of the automated test cases
- No intervention needed after launching tests
- Automatically set-up and/or record relevant test environment
- Run test cases
- Capture relevant results
- Compare actual with expected results
- Report analysis of pass/fail

Douglas Hoffman

Copyright © 2001 - 2003, SQM, LLC.

5

Some Hard Parts of Test Automation

- Some methods of input stimulation (running a test)
- Capturing the results (noticing what happens)
- Differentiating expected from unexpected results (knowing pass from fail)
- Dealing with errors (capturing and recovery)

Douglas Hoffman

Copyright $\ensuremath{\mathbb{C}}$ 2001 - 2003, SQM, LLC.

What a Test Oracle Is

Two slightly different views on the meaning of the term:

- Reference Function: You ask it what the "correct" answer is.
 (It tells you the expected result.)
- Reference and Evaluation Function: You ask it if the program passed the test.
 (It tells you if the actual result is OK.)

Douglas Hoffman

Copyright © 2001 - 2003, SQM, LLC.

7

A Test Oracle

With an oracle, you can compare the test's actual result to a reference value (predicted or expected result) to decide whether the program passed or failed the test.

- <u>Deterministic</u> oracle (mismatch means program fails)
 (This is the commonly analyzed case.)
- <u>Probabilistic</u> oracle (mismatch means program probably fails.) (I analyze these in more detail.)

Douglas Hoffman

Copyright © 2001 - 2003, SQM, LLC.

Oracle Examples

- Spreadsheet Version N and Version N-1
 - Single function comparisons, combinations
 - What about revised functions?
 - Solidifying legacy errors
- Database management operations
 - Same data set, comparable functions across DBMs or query languages
- Bit comparisons (output files)
 - The problem of expected variability
 - Legacy errors in "golden masters"

Douglas Hoffman

Copyright © 2001 - 2003, SQM, LLC.

Some Deterministic Reference Functions

- Saved result from a previous test run
- Parallel function
 - previous version
 - competitor's product
 - reference standard function
 - alternate platform
 - custom model
- Inverse function
 - mathematical inverse
 - operational inverse (e.g. split a merged table)
- Useful invariant rules (e.g. $\sin^2(x) + \cos^2(x) = 1$)
- Expected result encoded into data

Douglas Hoffman

Copyright © 2001 - 2003, SQM, LLC.

11

Some Probabilistic Reference Functions

- Compare [apparently] complete attributes
 - compare calculated results of two parallel math functions (but ignore duration, available memory, pointers, display)
- Almost-deterministic approach (statistical evaluation)
 - test for outliers, means, predicted distribution
- Compare incidental but informative attributes
 - duration, order
- Check [apparently] incomplete attributes
 - ZIP Code entries are 5 or 9 digits
- Check probabilistic attributes
 - a parent is usually older than their children

Douglas Hoffman

Copyright $\ensuremath{\mathbb{C}}$ 2001 - 2003, SQM, LLC.

Oracle Characteristics

- Completeness of information
- Accuracy of information
- Usability of the oracle or of its results
- Maintainability of the oracle
- Complexity
- Temporal relationships
- Costs

Douglas Hoffman

Copyright © 2001 - 2003, SQM, LLC.

13

Oracle Strategies for Verification

	No Oracle	True Oracle	Consistency	Self Referential (SVD)	Heuristic
Definition	- Doesn't check correctness of results	- Independent generation of all expected results	- Verifies current run results with a previous run (Regression Test)	- Embeds answer within data in the messages	- Verifies some characteristics of values
Advantages	- Can run any amount of data (limited only by the time the SUT takes)	- All encountered errors are detected	Fastest method using an oracle Verification is straightforward Can generate and verify large amounts of data	Allows extensive post-test analysis Verification is based on message contents Can generate and verify large amounts of complex data	- Faster and easier than True Oracle - Often much less expensive to create and use
Disadvantages	- Only spectacular failures are noticed.	- Expensive to implement - Complex and often time-consuming when run	- Original run may include undetected errors	- Mist define answers and generate messages to contain them	- Can miss errors - Can miss systematic errors

Douglas Hoffman

Copyright © 2001 - 2003, SQM, LLC.

'No Oracle' Strategy

- Easy to implement
- Tests run fast
- Only spectacular errors are noticed
- False sense of accomplishment

Douglas Hoffman

Copyright © 2001 - 2003, SQM, LLC.

15

True Oracle Strategy

- Independent implementation
- Coverage over domains
 - Input ranges
 - Result ranges
- Provides "Correct" results
- Usually expensive
- Never complete

Douglas Hoffman

Copyright $\ensuremath{\mathbb{C}}$ 2001 - 2003, SQM, LLC.

Consistency Strategy

- A / B compare
- Check for changes
- Regression checks
 - Validated
 - Unvalidated
- Alternate versions or platforms
- Foreign implementations

Douglas Hoffman

Copyright © 2001 - 2003, SQM, LLC.

10

Self-Referential Strategy

- Embed results in the data
- Cyclic algorithms
- Shared keys with algorithms

Douglas Hoffman

Copyright © 2001 - 2003, SQM, LLC.

Heuristic Strategy

- Rules of thumb

 - similar results that don't always work
 low expected number of false errors, misses
- Levels of abstraction
 - General characteristicsStatistical properties
- Simplify
 - use subsets

 - break down into rangesstep back (20,000 or 100,000 feet)
- Other relationships not explicit in SUT
 - date/transaction number
 - one home address
 - employee start date

Douglas Hoffman

Copyright © 2001 - 2003, SQM, LLC.

Choosing Which Strategy

- Decide how the oracle fits in
- Identify the oracle strategy or combinations
- Prioritize testing risks

Douglas Hoffman

Copyright © 2001 - 2003, SQM, LLC.

Summary

- Test oracles are critical factors in making good automated tests
- A variety of different types of test oracles are possible
- There are many ways to evaluate results

Douglas Hoffman

Copyright © 2001 - 2003, SQM, LLC.

21

References

- Nyman, Noel; "Self Verifying Data Validating Test Results Without An Oracle" STAR East, 1999.
- Hoffman, Douglas; "A Taxonomy of Test Oracles" Quality Week 1998.
- Hoffman, Douglas; "Heuristic Test Oracles" Software Testing and Quality Engineering Magazine, Volume 1, Issue 2, March/April 1999.
- Hoffman, Douglas; "Mutating Automated Tests" STAR East, 2000.

Douglas Hoffman

Copyright $\ensuremath{\mathbb{C}}$ 2001 - 2003, SQM, LLC.