Файловая система в UNIX

Организация файловой системы в UNIX. Работа с файлами и директориями.

Что такое файловая система?

{{

Файловая система - это часть операционной системы, назначение которой состоит в том, чтобы организовать эффективную работу с данными, хранящимися во внешней памяти и обеспечить пользователю удобный интерфейс при работе с этими данными.

Физические носители информации

- магнитные диски
- оптические диски
- твердотельные накопители
- и т.д.

Структура разная, интерфейс одинаковый:

- драйвер устройства
- файловая система

Логические диски

Физические носители принято делить на логические диски или разделы (partitions)

- несколько ОС;
- несколько видов ФС;
- различные категории файлов;
- внутренние требования ОС или ФС.

Логическая структура ФС

В UNIX существуют файлы нескольких типов:

- регулярные файлы;
- директории;
- файлы типа FIFO;
- файлы устройств;
- сокеты (sockets);
- файлы связи (link).

Полное имя файла

• Корневой узел – «/»

• Имя директории в пути, после него «/»

 Для каждой очередной директории в пути приписываем к уже получившейся строке справа «/» и имя соответствующей директории

<u>Файловая система s5fs</u>

- System V File System (s5fs) прародитель современной ФС в Linux
 - заголовок раздела: массив индексов узлов и суперблок;
 - логические блоки.

Файл:

- тип файла, права доступа;
- id владельца и его группы;
- размер файла;
- время последнего доступа;
- время последней модификации файла;
- время последней модификации узла.

Понятие суперблока

- Тип ФС;
- Флаги состояния ФС;
- Размер логического блока в байтах;
- Размер ФС в ЛБ;
- Размер массива индексных узлов;
- Число свободных индексных узлов;
- Число свободных блоков для размещения данных;
- Часть списка свободных индексных узлов;
- Часть списка свободных блоков для размещения данных.

Операции над файлами

Файлы:

- Последовательный доступ
 - чтение порции (read);
 - запись порции (write);
 - позиционирование на начале (rewind).
- Прямой доступ
 - чтение порции (read);
 - запись порции (write);
 - позиционирование на требуемой части данных (seek).
- Кроме того
 - создание нового объекта (new);
 - уничтожение существующего (free);
 - прочитать атрибуты (get attribute);
 - установить атрибуты (set attribute).

Для директорий

read = get record;

write = add record;

rewind (seek) = delete record.

Работа с файлами

Команды:

• chmod, cp, rm, mv, ls

Системные вызовы:

open(), close(), read(), write()

Системный вызов creat

• Прототип системного вызова

#include <fcntl.h>

int creat(char *path, int mode);

Изменение атрибутов файлов

stat()

fstat()

Istat()

Изменение длины файла

ftruncate()

Изменение текущей позиции

Iseek()

Создание связей

- Жесткая связь (hard link)
 - проблема удаления, счетчик ЖС
 - опасность зацикливания, запрет ЖС на директориюIn, link()
- Мягкая (символическая) связь (soft (symbolic) link)
 symlink()
- unlink() удаление