Reinforcement Learning

Mid Sem Exam Retake, 29/11/2024

Sanjit K. Kaul

Question 1. 30 marks You would like to estimate the value function using every-visit Monte Carlo for a set $\{1, 2, 3, 4, 5\}$ of non-terminal states and the terminal state 0. The set of actions is $\{-2, -1, 1, 2\}$. You start with an initial estimate of the value function. Suppose you generate two episodes using a policy that chooses actions with equal probability. The first episode results in the state sequence 4, 3, 5, 1, 0. The corresponding action sequence is -2, 2, 2, -1 and the reward sequence is -10, -5, 5, 10. The corresponding sequences from the second episode are the state sequence 2, 3, 3, 4, 0, the action sequence 1, -1, -2, 1, and the rewards -6, 8, 4, -4. Derive your estimates of the value function at the end of each episode. Assume $\gamma = 1$ and use the sample mean to estimate expected values.

Derive your estimates of the value function at the end of each episode for an ϵ -greedy policy, with $\epsilon = 0.1$.

Question 2. 50 marks You are given a stochastic policy π , which picks any action from the set of all actions A(s) with probability greater than $\epsilon/|A(s)|$. For the policy, write down $v_{\pi}(s)$ in terms of $q_{\pi}(s,a)$ and $\pi(a|s)$. Now consider a policy μ that is an ϵ -greedy policy, which in any state s chooses the greedy action to be the action that maximizes $q_{\pi}(s,a)$. Show that $q_{\pi}(s,\mu(s))$, which is the action value function $q_{\pi}(s,a)$ with s chosen as per policy s and the reward-to-go as per policy s, is at least as large as $v_{\pi}(s)$, $\forall s$. [Hint: To do so, you will want to write $q_{\pi}(s,\mu(s))$ in terms of $q_{\pi}(s,a)$ and the ϵ -greedy policy ϵ . Also, in the expression for $v_{\pi}(s)$ rewrite the probabilities as a sum of two terms, one of them being $\epsilon/|A(s)|$.] Suppose $v_{*}(s)$ is the optimal state value function and $q_{*}(s,a)$ is the corresponding action value function. Assume that the optimal policy is an ϵ -greedy policy. Write down $v_{*}(s)$, for any s, in terms of $q_{*}(s,a)$ and the corresponding optimal ϵ -greedy policy and expand the resulting expression in terms of $v_{*}(s)$ and the MDP PMF(s) p(s',r|s,a). We will call the resulting system of equations as the Bellman equations for $v_{*}(s)$.

Further suppose $v_{\mu}(s) = v_{\pi}(s)$, $\forall s$. Show that $v_{\pi}(s)$ satisfies the above derived Bellman equations for $v_*(s)$. To do so, first write down $v_{\mu}(s)$ in terms of $q_{\mu}(s,a)$ and the policy μ , wherein the ϵ -greedy action selection as per policy μ must be made explicit. Next rewrite the obtained expression in terms of the MDP, the ϵ -greedy action selection as per μ , and $v_{\mu}(s)$. Finally, rewrite the last obtained expression in terms of $v_{\pi}(s)$ and the MDP. Argue that the final expression results in a system of equations that is obtained by replacing $v_*(s)$ by $v_{\pi}(s)$ in Bellman equations for $v_*(s)$ that we derived earlier.

Question 3. 20 marks Given a Markov Decision process, are rewards R_t and R_{t+1} independent? Prove your claim.

1