- (a) at room temperature, f = 5
- (b) at high temperature, f = 7
- For triatomic gas,
- (a) Linear f= 5 (b) Non-linear f= 6

For each vibrational mode, f = 2

SPECIFIC HEAT CAPACITY

- a) $\boldsymbol{C}_{P} \boldsymbol{C}_{V} = \mathbf{R}$
- b) $C_P C_V = \frac{R}{M}$ (specific heat per unit mask)
- Mono- $\gamma = \frac{5}{3}$

If $C_{\rm p}$ and $C_{\rm v}$ denote the specific heats

and volume respectively, then

of unit mass of nitrogen at constant pressure

a) $C_p - C_v = \frac{R}{28}$ b) $C_p - C_v = \frac{R}{14}$ c) $C_p - C_v = \frac{R}{7}$ d) $C_p - C_v = R$

- c) $C_V = \frac{R}{\gamma 1} = \frac{f}{2} R$
- d) $C_P = \frac{\gamma_R}{\gamma_{-1}} = \left(1 + \frac{f}{2}\right)^R$

$$e) \gamma = \frac{C_p}{C_v} = 1 + \frac{2}{f}$$

MIXING OF GASES

$$C_{\text{Vmix}} = \frac{\mathbf{n}_{1}\mathbf{c}_{v_{1}} + \mathbf{n}_{2}\mathbf{c}_{v_{2}} + \dots}{\mathbf{n}_{1} + \mathbf{n}_{2} + \dots}$$

$$C_{Pmix} = \frac{n_1 c_{P_1} + n_2 c_{P_2} + \dots}{n_1 + n_2 + \dots}$$

$$\gamma_{\text{mix}} = \frac{C_{\text{P mix}}}{C_{\text{V mix}}}$$

LAW OF EQUIPARTITION OF ENERGY

Energy for each molecule per $f = \frac{1}{2}K_B T$

Total energy for molecule = $\frac{1}{2}K_B T$

Monoatomic Molecule = $\frac{3}{2}$ K_B T

Total energy for a mole= $\frac{f}{2}RT$

Total energy for n moles=nfRT

Monoatomic= $\frac{3}{2}$ R T

Diatomic = $\frac{5}{2}$ R T

Translatory Kinetic energy= $\frac{3}{2}RT$

Consider a mixture of n moles of helium gas and 2n moles of oxygen gas (molecules taken to be rigid) as an ideal gas. It's C_p/C_v value will be:

a) 19/13 b) 67/45 c) 40/27 d) 23/15

A gas mixture consists of 2 moles of 0_2 and 4 moles of Ar at temperature T. Neglecting all vibrational modes, the total internal energy of the system is

a) 4RT b) 15RT c) 9RT d) 11RT

Root Mean square speed:

Square root of mean of square of speeds of different molecules,

Ideal gas is composed of polyatomic

Total degrees of freedom is

a) 12 b) 14 c) 8 d) 6

molecule that has 4 vibrational modes.

$$V_{rms} = \sqrt{\frac{V_{1}^{2} + V_{2}^{2} + \dots + V_{n}^{2}}{n}}$$

$$V_{rms} = \sqrt{\frac{3RT}{M}} = \sqrt{\frac{3P}{\rho}} = \sqrt{\frac{3K_{B}T}{m}}$$

Average Speed:

Arithmetic mean of speed of molecules of gas at given temperature.

$$\mathbf{v}_{avg} = \underbrace{|\overrightarrow{\mathbf{v}_1}| + |\overrightarrow{\mathbf{v}_2}| + \dots + |\overrightarrow{\mathbf{v}_n}|}_{\mathsf{n}}$$

$$\mathbf{v}_{avg} = \sqrt{\frac{8RT}{\pi M}} = \sqrt{\frac{8P}{\pi \rho}}$$

Most probable speed:

Speed possessed by maximum number of molecules of gas.

$$V_{mp} = \sqrt{\frac{2RT}{M}} = \sqrt{\frac{2P}{\rho}} = \sqrt{\frac{2k_BT}{m}}$$

VELOCITY OF GAS

 $V_{mp} : V_{avg} : V_{rms} = 1 : 1.13 : 1.225$

MEAN FREE PATH

Average distance travelled by molecules between two successive collisions

$$\lambda_{\text{mean}} = \frac{1}{\sqrt{2} \pi d^2 n}$$

d = diameter of molecules

n = no. of molecules per

FIRST LAW OF THERMODYNAMICS

 $Q_0 = \triangle U + W$ △U=NC, △T

 $W = \int P dv$

Consider a gas of triatomic molecules. The molecules are assumed to be triangular, made up of massless rigid rods whose vertices are occupied by atoms. The internal energy of a mole of the gas at temperature T is:

a) $\frac{5}{2}$ RT b) $\frac{3}{2}$ RT c) $\frac{9}{2}$ RT d) 3RT

The rms speeds of the molecules of Hydrogen, Oxygen & Carbon dioxide at the same temparature are V_H, V_o and V_c respectively, then:

a) V V V

a) $V_H > V_O > V_C$ b) $V_C > V_O > V_H$ c) $V_H = V_O > V_C$ d) $V_H = V_O = V_C$

The mean free path of molecules of gas (radius r) is inversely proportional to a) r³ b) r²

c) r d)√r

 $\frac{|\bm{V}_1|}{|\bm{T}_1|} = \frac{|\bm{V}_2|}{|\bm{T}_2|}$,when gas change its state under constant pressure.

= constant; V = constant.

, when gas changes its state under constant Volume.

PRESSURE OF GAS

 $PV = \frac{1}{3} mn V_{ms}^2 = \frac{1}{3} mn \overline{V^2}$

Relation between pressure and Kinetic Energy.

 $E = \frac{3}{2} PV$

 $\lambda \propto \frac{1}{d^2}$

 $\lambda \propto \frac{1}{r^2}$

 $\lambda \propto \frac{T}{P}$

IDEAL GAS LAW

PV=nRT

R=8.314 JK⁻¹mol⁻¹

p = PM

Specific heat of Solids = 3R WATER = 9R

. PV = constant, if T = Constant

 $P_1V_1 = P_2V_2$, when gas changes it's state under constant temperature.

CHARLE'S LAW

. V α T; $\frac{\mathbf{V}}{\mathbf{T}}$ = constant; P = constant.

LUSSAC'S