Generalizations of the Theory and Deployment of Triangular Inequality for Compiler-Based Strength Reduction

-- 李鹏辉 付琳晴 刘国栋

Background

- Traditional Strength Reduction --individual instruction/statement
 - \circ Replacing expensive oprations with equivant but cheaper operations (e.g. 2xb => b << 1)
- Triangular inquality (ETI)

Bound estimation has been widely deployed in many algorithms. e.g.
 k-nearest neighbors

k-nearest neighbors

Distance bounds used to avoid unnecessary distance calculations

```
1: for i = 0 to N do
                                        for i = 0 to N do
        minDist = Int_max;
                                           minDist = Int_max;
                                           for j = 0 to M do
        for j = 0 to M do
           dist = d(a(i), b(i)):
                                              IbDist = Ib(a(i), b(j));
           if minDist > dist
                                              if minDist <= IbDist
              minDist = dist;
                                                continue;
              assign(i)= j;
 9:
                                        IIIb() function for lower bound of distance
10:
11:
                (a)
                                                        (b)
```

Motivation

- Distance computation among data points is essential in many algorithms of data analytics, graph analysis, machine learning and so on
- Traditional triangular inequality has been widely used in many manual algoritm designs

- Is ETI enough?
- Can integrate into compiler and automatically optimize deeply?

Contributions

Develop a novel TI called Angle Triangular Inequality

Effectively deploy in TI optimizations using guided TI adaptation

Intergrate the optimization technique into a LLVM based prototype compiler

Theorem 1. Angle Triangular Inequality

THEOREM 1. Angle Triangular Inequality: For three arbitrary vectors \vec{q} , \vec{t} and \vec{L} in a space, the angles among them, denoted as θ_{qL} , θ_{qL} , θ_{tL} , must meet the following condition:

$$cos(\theta_{qL} + \theta_{tL}) \le cos\theta_{qt} \le cos(\theta_{qL} - \theta_{tL}).$$
 (1)

Proof

Proof: Let $\vec{u_q}$, $\vec{u_t}$ and $\vec{u_L}$ represent three unit-length vectors in the direction of \vec{q} , \vec{t} and \vec{L} respectively.

We introduce two derived vectors

$$\vec{e_1} = \frac{\vec{u_q} - \vec{u_L} \cdot \cos(\theta_{qL})}{\sin(\theta_{qL})}$$
$$\vec{e_2} = \frac{\vec{u_t} - \vec{u_L} \cdot \cos(\theta_{tL})}{\sin(\theta_{tL})}.$$

Two unit vectors are perpendicular to $\vec{u_L}$

Proof - continued

$$\vec{u_q} = \vec{u_L} \cdot \cos(\theta_{qL}) + \vec{e_1} \cdot \sin(\theta_{qL})$$

$$\vec{u_t} = \vec{u_L} \cdot \cos(\theta_{tL}) + \vec{e_2} \cdot \sin(\theta_{tL}).$$
(2)

$$\vec{u_q} \cdot \vec{u_t} = \cos(\theta_{qL})\cos(\theta_{tL}) + \vec{e_1} \cdot \vec{e_2}\sin(\theta_{qL})\sin(\theta_{tL}).$$

Proof: Let $\vec{u_q}, \vec{u_t}$ and $\vec{u_L}$ represent three unit-length vectors in the direction of \vec{q}, \vec{t} and \vec{L} respectively.

We introduce two derived vectors

$$\vec{e_1} = \frac{\vec{u_q} - \vec{u_L} \cdot \cos(\theta_{qL})}{\sin(\theta_{qL})}$$

$$\vec{e_2} = \frac{\vec{u_t} - \vec{u_L} \cdot \cos(\theta_{tL})}{\sin(\theta_{tL})}.$$

$$\vec{u_q} \cdot \vec{u_t} \ge \cos(\theta_{qL})\cos(\theta_{tL}) - \sin(\theta_{qL})\sin(\theta_{tL})$$

$$\vec{u_q} \cdot \vec{u_t} \le \cos(\theta_{qL})\cos(\theta_{tL}) + \sin(\theta_{qL})\sin(\theta_{tL}).$$
(3)

Proof - continued

Recall the Trigonometric Addition Formulas:

$$cos(\theta_1 + \theta_2) = cos(\theta_1)cos(\theta_2) - sin(\theta_1)sin(\theta_1)$$

$$cos(\theta_1 - \theta_2) = cos(\theta_1)cos(\theta_2) + sin(\theta_1)sin(\theta_1).$$
(4)

Therefore, we have

$$cos(\theta_{qL} + \theta_{tL}) \le \vec{u_q} \cdot \vec{u_t} \le cos(\theta_{qL} - \theta_{tL}).$$

Because $\vec{u_q} \cdot \vec{u_t} = cos(\theta_{qt})$ as both u_q and u_t are unit vectors, we get

$$cos(\theta_{qL} + \theta_{tL}) \le cos(\theta_{qt}) \le cos(\theta_{qL} - \theta_{tL}).$$

The ATI theorem is hence proved. \Box

$$\vec{u_q} \cdot \vec{u_t} \ge \cos(\theta_{qL})\cos(\theta_{tL}) - \sin(\theta_{qL})\sin(\theta_{tL})$$
$$\vec{u_q} \cdot \vec{u_t} \le \cos(\theta_{qL})\cos(\theta_{tL}) + \sin(\theta_{qL})\sin(\theta_{tL}).$$

• COROLLARY 1

COROLLARY 1. For three arbitrary vectors \vec{q} , \vec{t} and \vec{L} in a space, the angles among them, denoted as θ_{qt} , θ_{qL} , θ_{tL} , must meet the following condition:

$$|\theta_{qL} - \theta_{tL}| \le \theta_{qt} \le \pi - |\pi - (\theta_{qL} + \theta_{tL})|. \tag{5}$$

• COROLLARY 2

COROLLARY 2. For three arbitrary vectors in a space \vec{q} , \vec{t} , \vec{L} , the following conditions must hold:

$$\vec{q} \cdot \vec{t} \ge |\vec{q}| \cdot |\vec{t}| \cdot \cos(\theta_{qL} + \theta_{tL})$$

$$\vec{q} \cdot \vec{t} \le |\vec{q}| \cdot |\vec{t}| \cdot \cos(\theta_{qL} - \theta_{tL}).$$
(6)

THEOREM 1. **Angle Triangular Inequality:** For three arbitrary vectors \vec{q} , \vec{t} and \vec{L} in a space, the angles among them, denoted as θ_{qL} , θ_{qL} , θ_{tL} , must meet the following condition:

$$cos(\theta_{qL} + \theta_{tL}) \le cos\theta_{qt} \le cos(\theta_{qL} - \theta_{tL}).$$
 (1)

Why ATI?

- Cosine values are used in computation between vectors
 - \circ e.g. $\mathbf{A} \cdot \mathbf{B} = |\mathbf{A}| |\mathbf{B}| \cos \langle \mathbf{A}, \mathbf{B} \rangle$
 - e.g. **Distance**(A,B) $^2 = |A-B|^2 = |A|^2 + |B|^2 2A \cdot B$

Theorem 2: Tighter ATI-based Distance Bound

Traditional ETI bounds

$$|d(q,L) - d(t,L)| \le \sqrt{|\vec{q}|^2 + |\vec{t}|^2 - 2|\vec{q}| \cdot |\vec{t}| \cdot \cos(\theta_{qL} - \theta_{tL})}$$

$$d(q,L) + d(\vec{t},\vec{L}) \ge \sqrt{|\vec{q}|^2 + |\vec{t}|^2 - 2|\vec{q}| \cdot |\vec{t}| \cdot \cos(\theta_{qL} + \theta_{tL})}$$
(9)

$$lb_{eti} = |\sqrt{|\vec{q}|^2 + |\vec{L}|^2 - 2|\vec{q}||\vec{L}|cos(\theta_{qL})} - \sqrt{|\vec{t}|^2 + |\vec{L}|^2 - 2|\vec{t}||\vec{L}|cos(\theta_{tL})} |$$

$$ub_{eti} = \sqrt{|\vec{q}|^2 + |\vec{L}|^2 - 2|\vec{q}||\vec{L}|cos(\theta_{qL})} + \sqrt{|\vec{t}|^2 + |\vec{L}|^2 - 2|\vec{t}||\vec{L}|cos(\theta_{tL})}.$$
(10)

• To proof that for arbitrarily given \mathbf{q} , \mathbf{t} , and \mathbf{L} , the largest value of \mathbf{lb}_{eti} is no larger than the lower bound of d(q,t) given by ATI.

Proof

• When the condition for **lb**_{eti} reaches maximal value when its derivative over **L** equals **0**.

$$\frac{d(lb_{eti})}{d|\vec{L}|} = 0.$$

Thus when

$$|\vec{L}| = \frac{|\vec{q}| \cdot |\vec{t}| \cdot \sin(\theta_{tL} - \theta_{qL})}{|\vec{t}| \cdot \sin(\theta_{tL}) - |\vec{q}| \cdot \sin(\theta_{qL}))}$$

$$\mathbf{lb_{eti}} = \sqrt{|\vec{q}|^2 + |\vec{t}|^2 - 2|\vec{q}| \cdot |\vec{t}| \cdot \cos(\theta_{qL} - \theta_{tL})}$$

COROLLARY 2. For three arbitrary vectors in a space \vec{q} , \vec{t} , the following conditions must hold:

$$\vec{q} \cdot \vec{t} \ge |\vec{q}| \cdot |\vec{t}| \cdot \cos(\theta_{qL} + \theta_{tL})$$

$$\vec{q} \cdot \vec{t} \le |\vec{q}| \cdot |\vec{t}| \cdot \cos(\theta_{qL} - \theta_{tL}).$$
 (6)

Similar for right hand side bounds.

Select landmark

- Previous work:
- (1) No-iterative algorithm: select in lightweight clustering.
- (2) Iterative algorithm: use previous iteration as landmarks.
- (3) Stringent memory space: use group filtering

- Problems:
- (1) All based on ETI
- (2) Ambiguous (Such as: dimension is not large)

(c) ghosts as landmarks (d) landmark hierarchy

ETI & ATI in Group Filtering

Distance calculation:

ATI:
$$lb(d(q,G)) = \sqrt{|\vec{q}|^2 + \min_{\vec{t} \in G} (|\vec{t}|^2 - 2|\vec{q}| \cdot |\vec{t}| \cdot \cos(\theta_{qL} - \theta_{tL}))};$$
$$ub(d(q,G)) = \sqrt{|\vec{q}|^2 + \max_{\vec{t} \in G} (|\vec{t}|^2 - 2|\vec{q}| \cdot |\vec{t}| \cdot \cos(\theta_{qL} + \theta_{tL}))}.$$
(16)

ETI:

$$lb(d(q,G)) = d(q,L) - \max_{\vec{t} \in G} d(L,t);$$

$$ub(d(q,G)) = d(q,L) + \max_{\vec{t} \in G} d(L,t).$$
(17)

ETI & ATI in Group Filtering

Cosine Similarity:

THEOREM 1. Angle Triangular Inequality: For three arbitrary vectors \vec{q} , \vec{t} and \vec{L} in a space, the angles among them, denoted as θ_{qt} , θ_{qL} , θ_{tL} , must meet the following condition:

$$cos(\theta_{qL} + \theta_{tL}) \le cos\theta_{qt} \le cos(\theta_{qL} - \theta_{tL}).$$
 (1)

(18)

$$lb(cos(\theta_{\vec{q},G})) = \begin{cases} cos(\theta_{\vec{q},\vec{L}} + \max_{\vec{t} \in G} \theta_{\vec{L},\vec{t}}) & \text{if } \theta_{\vec{q},\vec{L}} + \max_{\vec{t} \in G} \theta_{\vec{L},\vec{t}} \leq \pi; \\ -1 & \text{otherwise.} \end{cases}$$

$$ub(cos(\theta_{\vec{q},G})) = \begin{cases} cos(\theta_{\vec{q},\vec{L}} - \max_{\vec{t} \in G} \theta_{\vec{L},\vec{t}}) & \text{if } \max_{\vec{t} \in G} \theta_{\vec{q},\vec{t}} \leq \theta_{\vec{q},\vec{L}}; \\ 1 & \text{otherwise.} \end{cases}$$

ATI:

ETI & ATI in Early Stop

Check whether distances between point q and points in G are smaller than C:

Sort points in a descending order of d(t, L), check whether d(q, L) + d(t, L) (the upper bound) is smaller than C

Insights:

ATI should be used alone when optimizing Cosine Similarity.

ATI should be combined with ETI when optimizing distance calculation.

Algorithm combined ATI & ETI in distance calculation

```
//check whether group filtering is applicable
....
if (group filtering is applicable)
  //prepare for group-level filtering with ETI
  for L in Landmarks do
     sort target points in L based on their distances to L
for i = 0 to |Q| do
  //ETI for group-level filtering
  for L in Landmarks do
     if ETI_bound(Q[i], L) passes the comparison
        continue;
     for target point t in L do
        //ETI for point-level filtering
        if ETI_bound(Q[i], t) passes the comparison
           break:
        //ATI for point-level filtering
        if ATI_bound(Q[i], t) passes the comparison
           continue:
        //if all previous filtering fails, run the original code.
```

Guided TI Adaptation: determine suitable configuration

- Classify the program into: non-iterative & iterative distance calculation or cosine similarity
- Use built-in performance model to calculate the time saving

$$T_{save} = T_{savedDistance} - T_{overhead};$$

$$T_{savedDistance} = (r_d \cdot n \cdot m) \cdot t_{distance};$$

$$T_{overhead} = T_{createLM} + T_{LMdistance} + T_{checks}$$

$$\simeq (p \cdot m \cdot k) \cdot t_{distance}$$

$$+ (n + m) \cdot t_{distance}$$

$$+ (r_c \cdot n \cdot m + n \cdot k) \cdot t_{checks};$$
 k: number of landmarks

Form a small sample and find the best number of landmarks

Integration with Compilers

- Through Pattern Matching
- Through Assistance of API

Integration with Compilers

- Through Pattern Matching
 - avoid computation of some of the results.
 - allowed usage patterns

(a) Pattern 1

(b) Pattern 2

Figure 7. Allowed usage patterns of distances or dot products.

Integration with Compilers

Through Assistance of API

```
_SR_dotProduct(_SR_vector, _SR_vector);
_SR_vectorMatrixProduct(_SR_vector, _SR_matrix);
_SR_mm(_SR_matrix, _SR_matrix);
_SR_defDistance (enum);
_SR_getLowerBound (_SR_pointSet, _SR_pointSet);
_SR_getUpperBound (_SR_pointSet, _SR_pointSet);
_SR_findClosestTargets (int, _SR_pointSet, _SR_pointSet);
_SR_findFarthestTargets (int, _SR_pointSet, _SR_pointSet);
_SR_findTargetsWithin (float, _SR_pointSet, _SR_pointSet);
_SR_findTargetsBeyond (float, _SR_pointSet, _SR_pointSet);
_SR_update (_SR_pointSet, ...);
```

Figure 8. Core APIs for assisting TI-based Strength Reduction.

• 8 influential algorithms from various domains

- compared with 2 other versions
 - standard
 - o optimized (TOP)

Speedup over standard version

- Achieves as much as 134X(Nbody) and 46X on average.
- Over 91% computation savings for all the datasets.(Except RBM).
- At least 93% and frequently over 99% of the distance computations
- At least 91% and frequently over 94% of the vector product computations

Speedup over optimized version

Prog	KNN	KNNjoin	KMeans	ICP	Nbody	DC	KDR	RBM	geomean
Speedup	1.35X	1.46X	1.19X	1.17X	1.14X	9.19X	10.13X	3.23X	2.35

- The extra speedup comes from 2 aspects
 - ATI
 - guied TI adaption

Tighter bounds by ATI

Figure 11. Fraction of extra savings of the distance computations due to the tighter bounds by ATI over those by ETI on KNNJoin.

Guided TI Adaption

Figure 10. Speedup brought by the guided TI adaptation over using rigid rules [15] for deploying TI-based optimizations. The top black segment on each bar represents the overhead incurred by the runtime sampling and adaptation.

Related Work

- This work was inspired by TOP, but makes some significant extensions in both theory and implementation.
- This paper is the first that proposes the concept of TI-based strength reduction.
- Removing redundant computations from a program is a classic topic in compiler.
- Triangular inequality has been used in the design of many algorithms.
 - All these are manual algorithm designs, and exploit only ETI.
- Recent years witnessed some development of approximation-based program optimizations, TI-based strength reduction uses no approximations, and hence introduces no errors into the computation results.