

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS15050035502

FCC REPORT (BLE)

Applicant: Nexpro International Limitada

Address of Applicant: Guadalupe, Barrio Tournon, Frente Al Hotel Villas Oficinas Del

Bufete Facio Y Canas

Equipment Under Test (EUT)

Product Name: WCDMA Mobile Phone

Model No.: ROCKET

Trade mark: Sendtel

FCC ID: ZYPROCKET

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 25 May, 2015

Date of Test: 26 May, to 03 Jun., 2015

Date of report issued: 04 Jun., 2015

Test Result: PASS *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	04 Jun., 2015	Original

Prepared by: Date: 04 Jun., 2015

Report Clerk

Reviewed by: Date: 04 Jun., 2015

Project Engineer

3 Contents

			Page
1	cov	ER PAGE	1
2	VER	SION	2
3	CON	TENTS	3
		Г SUMMARY	_
4	IES	I SUMMARY	4
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	_
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	LABORATORY FACILITY	
	5.6	LABORATORY LOCATION	
	5.7	TEST INSTRUMENTS LIST	8
6	TES	Γ RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT:	a
	6.2	CONDUCTED EMISSION	_
	6.3	CONDUCTED OUTPUT POWER	
	6.4	Occupy Bandwidth	
	6.5	Power Spectral Density	
	6.6	BAND EDGE	20
	6.6.1	Conducted Emission Method	20
	6.6.2	Radiated Emission Method	22
	6.7	Spurious Emission	27
	6.7.1	Conducted Emission Method	27
	6.7.2	Radiated Emission Method	30
7	TEST	T SETUP PHOTO	35
_			
8	EUT	CONSTRUCTIONAL DETAILS	

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Nexpro International Limitada
Address of Applicant:	Guadalupe, Barrio Tournon, Frente Al Hotel Villas Oficinas Del Bufete Facio Y Canas
Manufacturer:	Shenzhen Malata Mobile Communication Co.,LTD.
Address of Manufacturer:	25/F, Malata Technology Building,NO.9998 Shennan Avenue, Shenzhen, P.R. China

5.2 General Description of E.U.T.

Product Name:	WCDMA Mobile Phone
Model No.:	ROCKET
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	1.69 dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V-1450mAh
AC adapter:	Input:100-240V AC,50/60Hz 0.15A Output:5V DC MAX 0.5A

Operation Frequency each of channel									
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency		
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz		
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz		
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz		
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz		
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz		
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz		
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz		
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz		
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz		
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

5.3 Test environment and mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Operation mode	Keep the EUT in continuous transmitting with modulation

Report No: CCIS15050035502

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

N/A

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Test Instruments list

Rad	Radiated Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017			
2	BiConiLog Antenna	BiConiLog Antenna SCHWARZBECK MESS-ELEKTRONIK		CCIS0005	03-28-2015	03-28-2016			
3	Double -ridged SCHWARZBECK waveguide horn MESS-ELEKTRONIK		BBHA9120D	CCIS0006	03-28-2015	03-28-2016			
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			
5	Amplifier (10kHz-1.3GHz)	· I HP		CCIS0003	04-01-2015	03-31-2016			
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016			
7	Pre-amplifier (18-26GHz) Rohde & Schwarz		AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016			
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016			
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A			
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A			
11	Spectrum analyzer 9k-30GHz		FSP	CCIS0023	03-28-2015	03-28-2016			
12	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	03-28-2015	03-28-2016			
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016			
14	Universal radio communication tester		CMU200	CCIS0069	03-28-2015	03-28-2016			
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-08-2015	04-08-2016			

Conducted Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	11-10-2012	11-09-2015			
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016			
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016			
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016			
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The BLE antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 1.69 dBi.

6.2 Conducted Emission

Test Method: ANSI C63.4: 2009 Test Frequency Range: Class B Receiver setup: RBW=9kHz, VBW=30kHz Limit: Frequency range (MHz) Quasi-peak Avera 0.15-0.5 66 to 56* 56 to 46 5-30 60 * Decreases with the logarithm of the frequency. Test procedure 1. The E.U.T and simulators are connected to the main powe a line impedance stabilization network (L.I.S.N.), which procedure stabilization network (L.I.S.N.), which procedure stabilization network (Please refer to the block diagratest setup and photographs). 3. Both sides of A.C. line are checked for maximum cointerference. In order to find the maximum emission, the positions of equipment and all of the interface cables	er through provides a ment. ain power mpedance
Test Frequency Range: Class B Receiver setup: RBW=9kHz, VBW=30kHz Limit: Frequency range (MHz) Quasi-peak Avera 0.15-0.5 66 to 56* 56 to 4 0.5-5 56 46 5-30 60 50 * Decreases with the logarithm of the frequency. Test procedure 1. The E.U.T and simulators are connected to the main powe a line impedance stabilization network (L.I.S.N.), which pi 500hm/50uH coupling impedance for the measuring equipm 2. The peripheral devices are also connected to the main through a LISN that provides a 500hm/50uH coupling im with 500hm termination. (Please refer to the block diagratest setup and photographs). 3. Both sides of A.C. line are checked for maximum c interference. In order to find the maximum emission, the	er through provides a ment. ain power mpedance
Class / Severity: Receiver setup: RBW=9kHz, VBW=30kHz Limit: Frequency range (MHz) Quasi-peak Avera 0.15-0.5 66 to 56* 56 to 4 0.5-5 56 46 5-30 60 50 * Decreases with the logarithm of the frequency. Test procedure 1. The E.U.T and simulators are connected to the main powe a line impedance stabilization network (L.I.S.N.), which procedure stabilization impedance for the measuring equipmed a LISN that provides a 50ohm/50uH coupling impedance for the measuring equipmed a LISN that provides a 50ohm/50uH coupling impedance for the measuring equipmed a LISN that provides a 50ohm/50uH coupling impedance for the measuring equipmed a LISN that provides a 50ohm/50uH coupling impedance for the block diagratest setup and photographs). 3. Both sides of A.C. line are checked for maximum of interference. In order to find the maximum emission, the	er through provides a ment. ain power mpedance
Receiver setup: RBW=9kHz, VBW=30kHz	er through provides a ment. ain power mpedance
Limit: Frequency range (MHz)	er through provides a ment. ain power mpedance
Test procedure 1. The E.U.T and simulators are connected to the main power a line impedance stabilization network (L.I.S.N.), which procedure a line impedance stabilization network (L.I.S.N.), which procedure to the measuring equipm 2. The peripheral devices are also connected to the main through a LISN that provides a 500hm/50uH coupling impedance for the measuring equipm with 500hm termination. (Please refer to the block diagratest setup and photographs). 3. Both sides of A.C. line are checked for maximum content interference. In order to find the maximum emission, the	er through provides a ment. ain power mpedance
O.15-0.5 66 to 56* 56 to 46 O.5-5 56 46 5-30 60 50 * Decreases with the logarithm of the frequency. 1. The E.U.T and simulators are connected to the main powe a line impedance stabilization network (L.I.S.N.), which possible 50ohm/50uH coupling impedance for the measuring equipm 2. The peripheral devices are also connected to the main through a LISN that provides a 50ohm/50uH coupling impedance for the measuring equipm 3. Both sides of A.C. line are checked for maximum content interference. In order to find the maximum emission, the	er through provides a ment. ain power mpedance
Test procedure 1. The E.U.T and simulators are connected to the main powe a line impedance stabilization network (L.I.S.N.), which procedure 2. The peripheral devices are also connected to the main through a LISN that provides a 50ohm/50uH coupling impedance for the block diagratest setup and photographs). 3. Both sides of A.C. line are checked for maximum content interference. In order to find the maximum emission, the	er through provides a ment. ain power mpedance
* Decreases with the logarithm of the frequency. Test procedure 1. The E.U.T and simulators are connected to the main powe a line impedance stabilization network (L.I.S.N.), which possible 500hm/50uH coupling impedance for the measuring equipmed 2. The peripheral devices are also connected to the main through a LISN that provides a 500hm/50uH coupling impedance for the block diagratest setup and photographs). 3. Both sides of A.C. line are checked for maximum content interference. In order to find the maximum emission, the	er through provides a ment. ain power mpedance
* Decreases with the logarithm of the frequency. Test procedure 1. The E.U.T and simulators are connected to the main power a line impedance stabilization network (L.I.S.N.), which procedure 500hm/50uH coupling impedance for the measuring equipm 2. The peripheral devices are also connected to the main through a LISN that provides a 500hm/50uH coupling impedance for the block diagrates through a LISN that provides a 500hm/50uH coupling impedance refer to the block diagrates through a LISN that provides a 500hm/50uH coupling impedance for the main power alies are checked for maximum contents. 3. Both sides of A.C. line are checked for maximum contents. In order to find the maximum emission, the	er through provides a ment. ain power mpedance
Test procedure 1. The E.U.T and simulators are connected to the main power a line impedance stabilization network (L.I.S.N.), which procedure 500hm/50uH coupling impedance for the measuring equipm 2. The peripheral devices are also connected to the main through a LISN that provides a 500hm/50uH coupling impedance for the block diagratest setup and photographs). 3. Both sides of A.C. line are checked for maximum content interference. In order to find the maximum emission, the	provides a ment. ain power mpedance
· · ·	ne relative
Test setup: Reference Plane LISN 40cm 80cm Filter AC p Equipment Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	power
Test Instruments: Refer to section 5.7 for details	
Test mode: Refer to section 5.3 for details	
Test results: Passed	

Measurement Data

Neutral:

Trace: 15

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL : WCDMA Mobile Phone Condition

EUT

Model : ROCKET Test Mode : BLE Mode

Power Rating: AC 120V/60Hz Environment: Temp: 23°C Huni:56% Atmos:101KPa

Test Engineer: MT

Remark

Remark	Freq	Read Level	LISN Factor		Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>dB</u>	dB	dBu₹	dBu₹	<u>dB</u>	
1_	0.274	23. 25	0.26	10.74	34.25	60.98	-26.73	QP
1 2 3 4 5 6 7 8 9	0.277	14.91	0.26	10.74	25.91	50.90	-24.99	Average
3	0.299	15.86	0.26	10.74	26.86	50.28	-23.42	Average
4	0.318	13.80	0.26	10.74	24.80	49.75	-24.95	Average
5	0.505	25.76	0.29	10.76	36.81	56.00	-19.19	QP
6	0.739	24.53	0.19	10.79	35.51	56.00	-20.49	QP
7	0.739	9.53	0.19	10.79	20.51	46.00	-25.49	Average
8	1.016	0.04	0.22	10.87	11.13	46.00	-34.87	Average
	1.043	25.48	0.22	10.88	36.58	56.00	-19.42	QP
10	3.140	30.73	0.29	10.91	41.93	56.00	-14.07	QP
11	3.140	3.43	0.29	10.91	14.63	46.00	-31.37	Average
12	4.772	25.27	0.28	10.86	36.41	56.00	-19.59	QP

Report No: CCIS15050035502

Line:

Trace: 13

Site : CCIS Shielding Room Condition : FCC PART15 B QP LISN LINE

EUT : WCDMA Mobile Phone

Model : ROCKET Test Mode : BLE Mode Power Rating : AC 120V/60H2

Power Rating: AC 120V/60Hz Environment: Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: MT

Remark :

	Freq	Read Level		Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∀	<u>d</u> B	₫B	dBu₹	dBu∜	<u>dB</u>	
1	0.277	25.94	0.26	10.74	36.94	60.90	-23.96	QP
2	0.277	14.97	0.26	10.74	25.97	50.90	-24.93	Average
3	0.299	15.57	0.26	10.74	26.57	50.28	-23.71	Average
2 3 4 5 6 7 8 9	0.318	13.49	0.26	10.74	24.49	49.75	-25.26	Average
5	0.510	27.52	0.28	10.76	38.56	56.00	-17.44	QP
6	0.727	10.65	0.22	10.78	21.65	46.00	-24.35	Average
7	0.747	26.56	0.23	10.79	37.58	56.00	-18.42	QP
8	1.077	25.36	0.25	10.88	36.49	56.00	-19.51	QP
9	1.077	2.41	0.25	10.88	13.54	46.00	-32.46	Average
10	1.939	26.20	0.26	10.96	37.42	56.00	-18.58	QP
11	3.190	32.41	0.27	10.91	43.59	56.00	-12.41	QP
12	3.258	3.11	0.27	10.91	14.29	46.00	-31.71	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)				
Test Method:	ANSI C63.4:2009 and KDB558074				
Limit:	30dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				
Remark:	Test method refer to KDB558074 v03r01 (DTS Measure Guidance) section 9.2.2.2				

Measurement Data

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	-0.98		
Middle	-0.62	30.00	Pass
Highest	-0.58		

Test plot as follows:

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)					
Test Method:	ANSI C63.4:2009 and KDB558074					
Limit:	>500kHz					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result	
Lowest	0.836			
Middle	0.836	>500	Pass	
Highest	0.830			

Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result
Lowest	1.100		
Middle	1.094	N/A	N/A
Highest	1.094		

Test plot as follows:

Highest channel

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)					
Test Method:	ANSI C63.4:2009 and KDB558074					
Limit:	8 dBm					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	-1.28		
Middle	-0.92	8.00	Pass
Highest	-0.82		

Test plots as follow:

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Test Method:	ANSI C63.4:2009 and KDB558074						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plots as follow:

Highest channel

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205						
Test Method:	ANSI C63.4: 20	09					
Test Frequency Range:	2.3GHz to 2.5G	Hz					
Test site:	Measurement D	istance: 3m					
Receiver setup:	Frequency Above 1GHz	Detector Peak	RBW 1MHz	VBW 3MHz	Remark Peak Value		
	7.0000 . 0.12	Peak	1MHz	10Hz	Average Value		
Limit:	Freque Above 1		Limit (dBuV/ 54.0	0	Remark Average Value		
			74.0		Peak Value e 0.8 meters above		
Test Procedure:	the ground to determin 2. The EUT wantenna, watower. 3. The antenre the ground Both horizon make the number of the test-re Specified Euther in the limit spof the EUT have 10 defined to determine the street of the EUT have 10 defined to determine the limit spof the EUT have 10 defined to determine the limit spof the EUT have 10 defined to determine the limit spof the EUT have 10 defined to determine the limit spof the EUT have 10 defined to determine the limit spof the EUT have 10 defined to determine the limit spof the EUT have 10 defined to determine the limit spof the EUT have 10 defined to determine the limit spof the EUT have 10 defined to determine the limit spof the	at a 3 meter case the position was set 3 meter hich was mour has height is var to determine to the and vertice neasurement. Uspected emissionen the antennal the rota table maximum read ceiver system and width with sion level of the ecified, then te would be repositioned.	amber. The toof the highests away from inted on the too ied from one he maximum al polarizations ion, the EU a was turned to ing. was set to Polarize was set to Polarize was turned to ing. was set to Polarize was set to Polarize was turned to ing. was set to Polarize was set to Polarize was turned to ing. was set to Polarize was set to Polarize was turned to ing. was set to Polarize was set to Polarize was turned to ing. was set to Polarize was set to Pola	table was rost radiation. The interfer op of a variate meter to for a value of the ons of the air to heights from 0 degreak Detect old Mode. The was arranged in the emit one by one by one by one of the one by one of the interferom of the emit one by one of the interferom of the int	rence-receiving able-height antenna our meters above the field strength. Intenna are set to anged to its worst from 1 meter to 4 ees to 360 degrees		
Test setup:	Antenna Tower Horn Antenna Spectrum Analyzer Turn Table Amplifier						
Test Instruments:	Refer to section	5.7 for details					
Test mode:	Refer to section	5.3 for details					
Test results:	Passed						

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

Pro 355RF

WCDMA Mobile Phone EUT

Model : ROCKET Test mode : BLE-L Mode Power Rating : AC120/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT REMARK :

		ReadAntenna Cable Pream req Level Factor Loss Facto				Limit Line	Over Limit	Remark	
-	MHz	dBu₹	dB/m	₫B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	2390.000								
2	2390.000	10.58	27.58	6.63	0.00	44.79	54.00	-9.21	Average

Page 23 of 36

Test channel: Lowest

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: 355RF Pro

EUT WCDMA Mobile Phone

: ROCKET Model : BLE-L Mode Test mode

Power Rating: AC120/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: MT

REMARK

	Freq		Antenna Factor						Remark
3	MHz	dBu∇	—dB/m	dB	<u>dB</u>	dBu∜/m	dBuV/m	dB	
1 2	2390.000 2390.000								

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 355RF Condition

Pro

: WCDMA Mobile Phone EUT

Model : ROCKET
Test mode : BLE-H Mode
Power Rating : AC120/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT REMARK

THEN!	n .								
	Freq		Antenna Factor						Remark
	MHz	dBu₹	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1	2483.500	23.14	27.52	6.85	0.00	57.51	74.00	-16.49	Peak
2	2483, 500	12, 58	27, 52	6, 85	0.00	46, 95	54.00	-7.05	Average

Test channel: Highest

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 355RF Condition

Pro

: WCDMA Mobile Phone EUT

Model : ROCKET Test mode : BLE-H Mode Power Rating : AC120/60Hz Environment : Temp:25.5°C

Huni:55%

Test Engineer: MT

REMARK

	Freq		Antenna Factor					Over Limit	
	MHz	dBu₹	dB/m	<u>d</u> B	<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	-
1 2	2483.500 2483.500								

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Test Method:	ANSI C63.4:2009 and KDB558074						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plot as follows:

Lowest channel

Date: 29.MAY.2015 12:06:19

30MHz~25GHz

Middle channel

Date: 29.MAY.2015 12:07:31

30MHz~25GHz

Highest channel

Date: 29.MAY.2015 12:08:48

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.4:2009							
Test Frequency Range:	9KHz to 25GHz							
Test site:	Measurement D	istance: 3m						
Receiver setup:								
•	Frequency	Detector	RBW	VBW	Remark			
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value			
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
	Above IGHZ	Peak	1MHz	10Hz	Average Value			
Limit:								
	Frequency		Limit (dBuV/m	@3m)	Remark			
	30MHz-88MHz		40.0		Quasi-peak Value			
	88MHz-216MHz		43.5		Quasi-peak Value			
	216MHz-960MH		46.0		Quasi-peak Value			
	960MHz-1GHz		54.0		Quasi-peak Value			
	Above 1GHz		54.0		Average Value			
			74.0		Peak Value			
Test Procedure:	the ground to determin 2. The EUT vantenna, was tower. 3. The antenrathe ground Both horizon make the make the make the make the make sand to find the make specified Base of the EUT have 10 dB	at a 3 meter e the position was set 3 minion was set 3 minion was mountained and vertical and ve	camber. The of the highes eters away funted on the taried from or the maximulation in the maximulation of the maximulation was turned along. In Maximum Home EUT in peresting could be orted. Other of the taries are the could be re-tested.	table was at radiation. From the inop of a variance meter to the importance of the i	ele 0.8 meters above rotated 360 degrees atterference-receiving liable-height antenna of four meters above of the field strength, antenna are set to arranged to its worst as from 1 meter to 4 rees to 360 degrees retect Function and as 10 dB lower than and the peak values missions that did not e using peak, quasing reported in a data			

Below 1GHz

Horizontal:

: 3m chamber Site

: FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

: 355RF Pro

WCDMA Mobile Phone EUT

Model : ROCKET Test mode : BLE Mode
Power Rating : AC120/60Hz
Environment : Temp:25.5 C Huni:55%

Test Engineer: MT REMARK

LMAKK									
	-		Antenna				Limit		n .
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Kemark
_	MHz	dBu∀	dB/m	₫B	dB	dBuV/m	dBuV/m	dB	
1	31.843	34.26	12.32	0.45	29.97	17.06	40.00	-22.94	QP
2	47.492	31.16	13.41	0.59	29.84	15.32	40.00	-24.68	QP
3	76.781	35.31	8.08	0.83	29.67	14.55	40.00	-25.45	QP
4	101.644	33.76	13.02	0.98	29.52	18.24	43.50	-25.26	QP
5	361.714	38.80	14.43	1.98	28.61	26.60	46.00	-19.40	QP
6	468.876	31.94	15.83	2.31	28.90	21.18	46.00	-24.82	QP

Vertical:

Site : 3m chamber

Condition : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL

Pro : 355RF

EUT : WCDMA Mobile Phone

Model : ROCKET Test mode : BLE Mode Power Rating : AC120/60Hz

Power Rating: AC120/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: MT

REMARK

	Freq		Antenna Factor					Over Limit	Remark	
-	MHz	dBu₹	<u>dB/m</u>	dB	dB	dBuV/m	dBuV/m	dB		-
1	75.977	37.56	7.97	0.83	29.67	16.69	40.00	-23.31	QP	
2	102.001	34.65	12.97	0.98	29.51	19.09	43.50	-24.41	QP	
2	243.377	35.88	12.08	1.59	28.58	20.97	46.00	-25.03	QP	
4	306.754	33.41	13.15	1.79	28.47	19.88	46.00	-26.12	QP	
5	463.970	39.00	15.71	2.30	28.89	28.12	46.00	-17.88	QP	

Above 1GHz

Test channel:			Lo	west	Le	vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	46.02	31.53	8.90	40.24	46.21	74.00	-27.79	Vertical
4804.00	47.32	31.53	8.90	40.24	47.51	74.00	-26.49	Horizontal
Т	est channel	•	Lo	west	Le	vel:	A۱	verage
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	37.12	31.53	8.90	40.24	37.31	54.00	-16.69	Vertical
4804.00	37.66	31.53	8.90	40.24	37.85	54.00	-16.15	Horizontal

Т	est channel	:	Mi	Middle		vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	46.32	31.58	8.98	40.15	46.73	74.00	-27.27	Vertical
4884.00	45.57	31.58	8.98	40.15	45.98	74.00	-28.02	Horizontal
Т	est channel	•	M	iddle	Le	vel:	A۱	verage
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	36.39	31.58	8.98	40.15	36.80	54.00	-17.20	Vertical
4884.00	36.14	31.58	8.98	40.15	36.55	54.00	-17.45	Horizontal

Т	:	Hiç	ghest	Le	vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	45.85	31.69	9.08	40.03	46.59	74.00	-27.41	Vertical
4960.00	46.14	31.69	9.08	40.03	46.88	74.00	-27.12	Horizontal
Т	est channel	•	Highest		Le	vel:	A۱	verage
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	36.63	31.69	9.08	40.03	37.37	54.00	-16.63	Vertical
4960.00	37.25	31.69	9.08	40.03	37.99	54.00	-16.01	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366