

«Московский государственный технический университет имени Н.Э. Баумана» (национальный исследовательский университет) (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ФУНДАМЕНТАЛЬНЫЕ НАУКИ

КАФЕДРА ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА И МАТЕМАТИЧЕСКАЯ ФИЗИКА (ФН11)

НАПРАВЛЕНИЕ ПОДГОТОВКИ МАТЕМАТИКА И КОМПЬЮТЕРНЫЕ НАУКИ (02.03.01)

Отчет

по лабораторной работе Ф60

Название лабораторной работы:
Проверка формулы Шокли для p-n
перехода и определение
ширины запрещенной зоны германия.

Вариант № 9

Дисциплина:		
Физика		
Студент группы ФН11-52Б	(Подпись, дата)	Очкин Н.В. (И.О. Фамилия)
Преподаватель	(Подпись, дата)	Π рименко А.Э. (И.О. Фамилия)

Задание

Опыт 1

- 1. По результатам измерений (табл. 1) построить графическую зависимость тока диода от напряжения.
- 2. Убедиться в существовании тока насыщения. Для дальнейшего расчета значение тока насыщения I_S взять без округления из табл. 1 при обратном смещении примерно $0, 15-0, 20~\mathrm{B}$.
- 3. Для различных напряжений вычислить величину $\ln(1+I/I_S)$, результаты записать в табл. 2.
- 4. На миллиметровой бумаге формата A4 построить графическую зависимость величины $\ln (1 + I/I_S)$ от напряжения (рис. 11).
- 5. В области напряжений примерно от -0, 1 до +0, 05 В точки должны хорошо ложиться на прямую линию, которую следует провести. Тем самым подтверждается формула Шокли (6,7).
- 6. Из наклона прямой на графике находят численное значение коэффициента пропорциональности q/kT. Для этого на полученном графике строят треугольник, как пояснено на рис. 11, и вычисляют искомую величину по формуле $q/kT = \Delta \ln \left(1 + I/I_S\right)/\Delta U$.
- 7. Зная температуру диода T, получают численное значение для отношения фундаментальных физических величин q/k и сравнивают его с табличным значением, равным $(q/k)_{\text{табл}} = 11590 \text{ Кл K} / \text{Дж}$.
- 8. Вычислить относительную погрешность измерения отношения q/k в процентах, приняв за абсолютную погрешность разность между измеренным и табличным значениями.
- 9. Результат измерения привести в виде $q/k = \dots (\pm \dots \%)$ Кл К / Дж.

Опыт 2

1. Вычислить величины T, 1/T и $\ln{(I_S/I_{SO})}$, записать их в табл. 2. Ток насыщения при минимальной температуре T_0 обозначен I_{SO} (см. раздел 6 теоретической части).

- 2. По результатам измерений построить графическую зависимость величины $\ln{(I_S/I_{SO})}$ от 1/T, схематически показанную на рис. 12 точками. (Примечание: ось абсцисс начинать не от нуля, а от минимального значения величины 1/T.) Через экспериментальные точки необходимо провести наилучшую "на глаз"прямую. Если точки мало отклоняются от проведенной прямой, то опыт подтверждает температурную зависимость (8). Значение величины E_g/k можно получить, подставив в (10) значения 1/T и $\ln{(I_S/I_{SO})}$ для какой-либо точки, лежащей на прямой в верхней части графика. Затем вычислить значение E_g в джоулях и электронвольтах (1 эВ = $1,61 \times 10^{-19}$ Дж, $k=1,38 \times 10^{-23}$ Дж/К).
- 3. Вычислить относительную погрешность измерения величины E_g в процентах, приняв за абсолютную погрешность разность между измеренным и табличным значениями, $(E_g)_{\text{табл}} = 0,66$ эВ.
- 4. Результат измерения привести в виде $E_g = \dots (\pm \dots \%)$ эВ.

Ход выполнения работы

Опыт 1

 $I_{\mathrm{S}}=0.031\,\mathrm{mkA}$

$N_{\overline{0}}$	U, B	І, мкА	$\ln(1+I/I_{ m S})$
1	-0.2	-0.031	-
2	-0.19	-0.031	-
3	-0.18	-0.031	-
4	-0.17	-0.031	-
5	-0.16	-0.031	-
6	-0.15	-0.031	-
7	-0.14	-0.031	-
8	-0.13	-0.031	-
9	-0.12	-0.031	-
10	-0.11	-0.031	-
11	-0.1	-0.031	-
12	-0.09	-0.03	-3.434
13	-0.08	-0.03	-3.434
14	-0.07	-0.029	-2.7408
15	-0.06	-0.028	-2.3354
16	-0.05	-0.027	-2.0477
17	-0.04	-0.025	-1.6422
18	-0.03	-0.022	-1.2368
19	-0.02	-0.017	-0.7949
20	-0.01	-0.01	-0.3895
21	0.0	0.0	0.0
22	0.01	0.016	0.4162
23	0.02	0.037	0.7855
24	0.03	0.068	1.1611
25	0.04	0.109	1.5077
26	0.05	0.162	1.8287
27	0.06	0.238	2.1607
28	0.07	0.339	2.4795
29	0.08	0.483	2.8082
30	0.09	0.658	3.1013
31	0.1	0.862	3.3606
32	0.11	1.155	3.6444
33	0.12	1.548	3.9306

$$\frac{q}{kT} \approx \frac{7.63}{0.2} = 38.15$$

$$T = 20.2 \, C^\circ = 293.35 K \to \frac{q}{k} \approx 11191 \, \text{Kл K} \, / \, \text{Дж}$$

$$\frac{q}{k} = 11191 \pm 3.443\% \, \frac{\text{Kл} \, \cdot \, \text{K}}{\text{Дж}}$$

$N_{\overline{0}}$	t, C°	T, K	$\frac{1}{T}$	I_S	$\ln(I_S/I_{S0})$
1	22	295.15	0.00338811	-0.020	0.00000000
2	27	300.15	0.00333167	-0.028	0.33647224
3	33	306.15	0.00326637	-0.049	0.89608802
4	36	309.15	0.00323468	-0.057	1.04731899
5	39	312.15	0.00320359	-0.068	1.22377543
6	42	315.15	0.00317309	-0.083	1.42310833
7	45	318.15	0.00314317	-0.099	1.59938758
8	48	321.15	0.00311381	-0.119	1.78339122
9	51	324.15	0.00308499	-0.142	1.96009478
10	54	327.15	0.00305670	-0.168	2.12823171

$$I_{S0} = -0.02$$
MKA $T_0 = 295.15$ K

Возьмем T = 315.15

$$\frac{E_g}{k} = \frac{\ln(I_S/I_{S0})}{1/T_0 - 1/T} \approx 6619K$$

$$E_g = 9.13 \cdot 10^{-20}$$
Дж ≈ 0.571 эВ

$$E_g = 0.571 \pm 13.48 \%$$
 эВ