Representations of Ug(s/z) continued Fix a ground field lk and an element $q \in \mathbb{R}$ with $q \neq 0$ and $q^2 \neq 1$. Recall, the Quantized enveloping algebra $U_q(\cdot|z)$ is the associative, unital algebra over 1k generated by E, F, K, K' with relations: (R1) $KX^{-1} = 1 = K^{T}K$ (R2) $KEK^{-1} = q^{2}E$ (R3) $KFK^{-1} = q^{-2}E$ (R4) $EF-FE = K-K^{-1}$ $q-q^{-1}$ = [k; o] -> Last time we saw the following: Prop 2-1 Suppose that q is not a root of unity. Let M be a finite dimensional U-module. There are integers 9,8>0 with $E^{2}M=0$ and $F^{8}M=0$. For a U-module M, we defined

> Weight spaces for x=1k, x 70

M = { m \in M | Km = \lambda m}

\(\lambda \) is the called the weight of Mx. Prop 2:3 Suppose that q is not a root of unity.

and that char (Ik) \$\diau 2. Let M be a finite dinensional U-module. Then M is a direct sum of its weight spaces. All weights of M have the $\pm q^a$ with $a \in \mathbb{Z}$.

Last time we had defined certain infinite dimensional U-modules as following Take $\lambda \in \mathbb{R}$, $\lambda \neq 0$ and define $M(\lambda) = \frac{U}{(UE + U(K - \lambda))}$ \rightarrow M(N) has a basis $\{m_i\}_{i \in \mathbb{Z}, i \neq 0}$ where $m_i = \text{coset of } F^i$ The action of U on basis elements is given as follows: M(x) Latisfies the following universal brokerty: property: If M is a U-module and mEM a vector with Em=0 and Km=xm, there exists a unique homomorphism of U-modules $\varphi: \mathcal{M}(X) \longrightarrow \mathcal{M}$ with $\varphi(\mathcal{M}_0) = \mathcal{M}$.

Remarks:

If $\lambda = \pm q^a$ for some $\alpha \in \mathbb{Z}$, then the action of E on m_i can be simplified as follows: $Em_i = \pm [i] [a+1-i] m_i$ for $\lambda = \pm q^a$

② Since $Km_i = \lambda q^{-2i} m_i$, $m_i \in M(\lambda)_{\lambda q^{-2i}}$

=> If q is not a root of unity, then $q^{-2i}\lambda$ are distinct and we get $M(\lambda)_{q^{2i}\lambda} = km_i$ for all i > 0

Tf q is a primitive 1-th groot of writy, then $q^{-2i} \lambda = q^{-2j} \lambda$ if and only if I divides 2(j-i).

So there are 2 cases:

lodd: then weight spaces in M(x) are M(x) g-ziz = D lk mi+nl

l=2l' is even: then the weight spaces are

Description of simple U-modules

Prop 2:5: Suppose that q is not a root of unity. Let $\lambda \in \mathbb{R}$, $\lambda \neq 0$.

(i) If $\lambda = \pm q^n$ for all integers n > 0, then the U-module $M(\lambda)$ is simple.

(ii) If $\lambda = \pm q^n$ for some integer n > 0, then the {m; lizn+1} span a submodule of $M(\lambda)$ isomorphic to $M(q^{-2(m+1)}\lambda);$ this is the only submodule of $M(\lambda)$.

different from 0 and $M(\lambda)$.

-> Take a nonzero submodule M' (M(x). PROOF

Jose M' is K-stable, it is a direct sum of its weight spaces, i.e., of all M'n M(x)m.

→ But M(x) g-2ix = 1kmi => M' = + km; for some mi

Let j be the minimal element in I then $m_i = F^{i-i}m_j \in M'$ $\forall i > j$ $M' = 8 pan \{ m_i \mid i = j \}$

 \rightarrow If j=0 then $M'=M(\lambda)$

 \rightarrow So let's assume j > 0But $Em_j = em_{j-1}$ for some $c \in \mathbb{R}$

and j is least index in I → Emj =D

$$\Rightarrow c = [ij] \frac{\lambda q^{1-i} - \lambda^{-1}q^{i-1}}{q - q^{-1}} = 0$$

$$\Rightarrow \lambda q^{1-i} = \lambda^{-1}q^{i-1}$$

$$\Rightarrow \lambda^{2} = q^{2(i-1)}$$

$$\Rightarrow \lambda = \pm q^{i-1}$$
Thus, if $\lambda \neq \pm q^{n}$ then $Em_{i} \neq 0$, hence $M = M(\lambda)$

$$\therefore M(\lambda) \text{ is simple.}$$

If $\lambda = \pm q^{n}$ then there is almost one submodule of $M(\lambda)$ different from O and $M(\lambda)$.

However if $\lambda = \pm q^{n}$ then $\lambda = \pm q^{n}$ the

However if $\lambda = \pm q^n$ then $E M_{n+1} = 0 \quad A \quad K M_{n+1} = \lambda q^{-2(n+1)} M_{n+1}$ Set $M' = Span \{ M_i \mid i > n+1 \}$

Theorem 2.6: Suppose that q is not a goot of unity. There are for each integer n>0 there are two simple U-modules (ii) L(n,-) with basis mo', m,', ---, mn' and action (i) L(n,+) with basis m_0, m_1, \dots, m_n and action $K \cdot m_i = q^{n-2i} m_i$ K·mi = - 9 mi Fomi- { mit if i < n } $F \cdot M_i' = \begin{cases} M_{i+1} & i < N \\ 0 & i = N \end{cases}$ $E \cdot m_i = \begin{cases} [i][n+1-i] m_{i-1} & \text{if } i > 0 \\ 0 & \text{i=0} \end{cases}$ $E \cdot m_i' = \begin{cases} -[i][n+1-i]m_{i-1}' & i > 0 \\ 0 & a = 0 \end{cases}$ for all Die in Each simple U-module of dimension n+1 is isomorphic to L(n,+) or L(n,-1). PRODF: Define $L(n, t) = \frac{M(tq^n)}{M'}$ where M' = span {mi | i > n+1} CM(Iq")
then the simplicity of L(n, ±) follows
from Prop. 2-5. Take m_i (resp m_i') to be the images of $m_i \in M(\pm q^n)$ under the quotient mab. Then the actions of E, F, Y on mi, mi' follows from definition. eg: E.m; = [i][n+1-i] mi, for m; EM[±0])
After taking quotient by M', get above relation. Let M be any finite dimensional simple U-module >By Prop 2.3, M = AM,

- -> Since dim $M < \infty$, the set of λ with $M_{\lambda} \neq 0$ is finite.
- → Then we can find > s.t. M, 70 but

 Mg2, = 0
- > Pick mEM, m = D. We had seen earlier that Em = MZX

 => Em = D
 - \rightarrow By universal property of U-module $M(\lambda)$, we get a homo. $(\phi: M(\lambda) \longrightarrow M$
 - » Since M is simple, quis surjective
 - Tf $\lambda \neq \pm q^n$ then M(x) is simple. Since φ is non-zero, by Schur's lemma, it has to be an iso. But M is finite dim. $\Rightarrow \lambda = \pm q^n$ for some $n \in TL$, $n \geqslant 0$.

$$: M \stackrel{\sim}{=} M(x)$$
red cop

Rer q is a submodule of M(x)

But only possible submodule is M'
(by Prof 2-4)

 $\Rightarrow : M \stackrel{\sim}{=} \frac{M(\lambda)}{M'} = L(x, \pm).$

Remark: If 1k has char 2, then $M(+q^n) \cong M(-q^n)$ because $2q^n = q^n + q^n = 0$ $\Rightarrow q^n = -q^n$

this in turn implies $L(n,+) \cong L(n,-)$

Complete reducibility of Uq(slz)

We stort by analyzing the center of Uq(slz).

Set $C = FE + \frac{KQ + K^{-1}q^{-1}}{(q-q^{-1})^2}$ Using (R4), we can write

$$C = EF + \frac{K - K^{-1}}{9 - 9^{-1}} + \frac{KQ + K^{-1}q^{-1}}{(9 - 9^{-1})^{2}}$$

$$= EF + \frac{KQ + K^{-1}q^{-1} + (K - K^{-1})(9 - 9^{-1})}{(9 - 9^{-1})^{2}}$$

$$C = EF + \frac{Kq^{-1} + K^{-1}q}{(q-q^{-1})^2}$$

Cemma 2:7: a) The element C is central in U.

b) C acts on each $M(\chi)$ as scalar multiplication by $(2q + \chi^{-1}q^{-1})$ $(q-q^{-1})^{2}$

e) Cacts on $M(\lambda)$ and $M(\mu)$ by the same scalar if and only if $\lambda = \mu$ or $\lambda = \mu^{-1} e^{-2}$.

PROOF: Recall that V is a graded ring with deg(E)=1, deg(K)=0, deg(F)=-1

a) Follows from elementary calculations & some tricks developed in Pablos talk.
b) $Cm_0 = EFm_0 + \frac{kq + k^- q^-}{(q - q^{-1})^2}$ $= (Em_1) + \frac{q(km_0)}{(q - q^{-1})^2}$

 $= \left[\frac{1}{2} \left(\frac{\lambda q^{-1} - \lambda^{-1} q^{-1}}{q - q^{-1}} \right) m_0 + \left(\frac{q \lambda + q^{-1} \lambda^{-1}}{(q - q^{-1})^2} \right) m_0 \right]$ $= \left\{ \frac{(\lambda - \lambda^{-1})(2 - 2^{-1}) + q^{\lambda} + q^{-1} \lambda^{-1}}{(2 - q^{-1})^{2}} \right\} m_{o}$ $= \left[\frac{\lambda q + \lambda^{\prime} q^{\prime}}{(q - q^{-1})^2}\right] m_{\circ}$

(c) Using (b) we get the same & calar if and only if $\chi_{q+} \chi_{q-} = \mu_{q} + \mu_{q-1}$ = (2-1-) q-1

 $\Rightarrow \lambda = \mu \quad \text{or} \quad q = \lambda^{\dagger} \mu^{\dagger} q^{\dagger}$

Remark: If $\varphi: M(\lambda) \to M$ is a homo. then C also acts on $\varphi(M(\lambda)) \subset M$ as scalars. Lemma: Suppose that q is not a root of unity. Let L and L' be finite dinl simple U modules.

If C acts on L and L' by the same ecolor then $L \cong L'$. PROOF: By theorem 2-6, 7 integers n, m > 0 and signs e, e' & \1,-1} such that $L = L(N, \varepsilon) \quad \text{and} \quad L' = L(M, \varepsilon')$ $= M(\varepsilon_{q}^{n}) \quad = M(\varepsilon_{q}^{m})$ M'If C acts by the same scalar on L and L', then it also acts by the same scalar on $M(\xi q^n) + M(\xi q^n)$. Then using last lemma, we get that Eq" = 2'q" or Eq" = E'q2 q-m (⇒ L = L' as desired) = 25 = I since q is not a soot of whity.

Theorem 2.9 Suppose that q is not a root
of unity. Let M be a finite
of unity. Let M be a finite dimensional U-module that is a
direct sum of its weight spaces. Then
direct sum of its weight spaces. Then M is a semisimple V-module.
(note that when char (1/k) 72, then 171 being finite dim
(note that when char (lk) + 2, then M being finite dim) N = direct onn of weight spaces by Prop 2.3
1 1 2 2 1
PROOF: Let M be a finite dine. U-module.
-> Pick a composition series
PROOF: Let M be a finite dind. U-module. > Pick a composition series D=MoCM, CM2 CMr=M of M
Min white iso- to
> Each Mi is simple, thus iso- to L(n, ±) for somen,0
→ S6 C acts a scalar, say μ_i , on M_{i-1}
- 56 C Was or Bearwy, say his on Mi-
0
·
> Then I (C-Mi) annihilates M
> Then I (C-Mi) annihilates M
> Then I (C-Mi) annihilates M
> Then II (C-Mi) annihilates M in the minimal poly. has to divide Then (C-Mi)
> Then II (C-Mi) annihilates M in the minimal poly. has to divide Then (C-Mi)
> Then II (C-Mi) annihilates M in the minimal poly. has to divide Then (C-Mi)
> Then II (C-Mi) annihilates M in the minimal poly. has to divide Then (C-Mi)
Then IT (C-Mi) annihilates M in the minimal poly. has to divide Tizz (C-Mi) the minimal poly. of Cacting on M splits into linear factors, and M is direct sum of the generalized eigenspaces of C
Then IT (C-Mi) annihilates M in the minimal poly. has to divide Tizz (C-Mi) the minimal poly. of Cacting on M splits into linear factors, and M is direct sum of the generalized eigenspaces of C
Then IT (C-Mi) annihilates M in the minimal poly. has to divide Tizz (C-Mi) the minimal poly. of Cacting on M splits into linear factors, and M is direct sum of the generalized eigenspaces of C
> Then II (C-Mi) annihilates M in the minimal poly. has to divide Then (C-Mi)

- > Since (is central in U, H u \in U)

 MEM(m), (C-\mu)^kum = u (C-\mu)^km

 : um \in M(m)

 M(m) is a submodule of M.
 - : It suffices to prove that each $M_{(m)}$ is semisimple.

ted us assume that M= M(n) for some pr.

Then C-p acts nilpotently on M, hence on each Mi/Mi-1.

- → On the other hand, Cacks as multiby μ_i on Mi/M_{i-1} . ⇒ $\mu_i = \mu$ for all i
- By lemma 2.8, $\exists n>0$ and a sign ϵ such that each Mi/Mi-1 is isomorphic to $L(n,\epsilon)$.
 - By assumption, M is a direct sum of its weight spaces in = 0, M,
 - → If N is a submodule of M, then

 N= ⊕ N N and N = N n M for

 all v.

 ⇒ dim M = dim N + dim (M),

- Applying this repeatedly to the composition series, we get that $\dim (M_v) = \sum_{i \ge 1}^{q} \dim (\frac{M_i}{M_{i-1}})_v = r \dim L(n, \epsilon)_v$
 - In them $v = \epsilon q^n$ then we had seen before in them 2.6 that $L(n,\epsilon)_{x} = 1 k m_0$ and $L(n,\epsilon)_{q^2v} = 0$
 - :. dim $M_{\gamma} = \gamma \operatorname{dim} L(\eta, \epsilon)_{\gamma} = \gamma \operatorname{for} \gamma = \epsilon q^{\gamma}$ and dim $M_{q^2 \gamma} = 0$ \Rightarrow $M_{q^2 \gamma} = 0$
 - → :. For any ve My we have therefore Ev=0

So the submodule UV is the homomorphic image of M(V)

- → Since Uv is finite dinl ⇒ Uv = L(n, E)
- -> Choose a basis v,,..., vr of Mr.

Then $M = \sum_{i=1}^{n} Uv_i$, since $\left(M / \sum_{i=1}^{n} Uv_i\right)_{v} = 0$

4 sina each composition factor L of M(E; Uvi) is isomorphic to L(n, E).

satisfies Ly # O.

Since dim $M = n \operatorname{dim} L(n, \epsilon)$ $= \sum_{i=1}^{n} \operatorname{dim}(Uv_i)$ $\therefore M = \bigoplus Uv_i$ Hence M is semisimple.