КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ТАРАСА ШЕВЧЕНКА

	Фізичний факультет	
	(назва факультету, інституту)	
Кафедра	ядерної фізики	_
	Se ATDEDI	MAYIO.
	ЗАТВЕРД / Заступник	
	Sacrytiant Sacrytiant	
	Amm 1	Момот О.В.
	"IL" replan	D 2021 року
		7
РОБОЧА ПРО	ГРАМА НАВЧАЛЬНОЇ ДИ	СЦИПЛІНИ
<u>Пе</u> г	рехідні процеси в ядерних реакторах (повна назва навчальної дисципліни)	•
	для студентів	
галузь знань	10 Природничі науки (шифр і назва)	
спеціальність	104 — "Фізика та астрономія" (шифр і назва спеціальності)	
освітній рівень	<u>Marictp</u> (молодиий бакалавр, бакалавр, магістр)	
освітня програма	Ядерна енергетика	
вид дисципліни	<u>вибіркова</u>	
	Форма навчання	денна
	Навчальний рік	2021/2022
	Семестр	3
	Кількість кредитів ECTS	6_
	Мова викладання, навчання	
	та оцінювання	українська
	Форма заключного контролю	екзамен
Викладач: докт. техн. нау	к, В.І.Борисенко	
	ацівники, які забезпечують викладання даної дисципліни у відповіс	дному навчальному році)
Пролон	нговано: на 20/20 н.р(
	на 20/20 н.р(підпис, ПІБ, дата)) «» 20p.
	на 20/20 н.р((підпис, ПІБ, дата)) «» 20p.

КИЇВ – 2021

Розробники: Борисенко Володимир Іванович, доктор технічних наук

ЗАТВЕРДЖЕНО

aqui

Зав. кафедри ядерної фізики

(Каденко І.М.)

Протокол № <u>11</u> від «<u>10</u>» червня 2021 р.

Схвалено науково - методичною комісією фізичного факультету

Протокол від «<u>22</u>» <u>червня</u> 20<u>21</u> року № <u>4</u>

Голова науково-методичної комісії

(....О хілО)

ВСТУП

1. Мета дисципліни — надання студентам базових знань, щодо перехідних процесів в ядерних реакторах

2. Попередні вимоги до опанування або вибору навчальної дисципліни:

- 1. Успішне опанування загальних курсів "Математичний аналіз", "Аналітична геометрія", "Теорія ймовірностей", "Диференціальні рівняння", а також наступних спеціальних курсів: "Обладнання ядерних енергетичних установок" та "Ядерна безпека АЕС".
- 2. Вміти розв'язувати задачі в рамках загальних математичних курсів, а також курсів фізики та спеціальних курсів.
- 3. Володіти навичками роботи на комп'ютері щодо інформаційного пошуку в мережі Інтернет, а також числового вирішення математичних задач..

3. Анотація навчальної дисципліни:

Навчальна дисципліна "Перехідні процеси в ядерних реакторах" ϵ складовою циклу професійної підготовки фахівців освітньо-кваліфікаційного рівня "магістр".

Курс "Перехідні процеси в ядерних реакторах " дозволить значно покращити професійну підготовку студентів кафедри ядерної фізики, що пов'язано з набуттям нових навичок студентами для розрахунку параметрів ядерних реакторів та систем ядерних енергетичних установок для убезпечення використання ядерної енергії в енергетиці, медицині, прикладних та фундаментальних дослідженнях.

Структура курсу: робота з вивчення програмного матеріалу поділяється на два змістові модулі. У першому змістовному модулі вивчається матеріал за темою «Динаміка ядерного реактора нульової потужності», у другому — «Динаміка ядерного реактора зі зворотними зв'язками».

4. Завдання (навчальні цілі) — Сформувати у студенів уявлення про сучасні галузі застосування ядерної енергії.

5. Результати навчання за дисципліною:

	сэультати навтания за дисциплиною:			
Результат навчання (1. знати; 2. вміти; 3. комунікація; 4. автономність та відповідальність)		Методи викладання і	Методи	Відсоток у підсумковій оцінці з
Код	Результат навчання	навчання	оцінювання	оцінці з дисципліни
1.1	Знати особливості розрахунку	лекція	Контрольні	50
	різних типів реакторів та		завдання	
підходи до динаміки ядерних				
	реакторів			
2.1	Вміти розв'язувати основні типи	лекція	Контрольні	50
	задач з ядерної енергетики.		завдання	

6. Співвідношення результатів навчання дисципліни із програмними результатами навчання (необов'язково для вибіркових дисциплін)

Результати навчання дисципліни	1.1	2.1
Програмні результати навчання		
РН02. Проводити експериментальні та теоретичні дослідження з		
фізики та астрономії, аналізувати отримані результати в		
контексті існуючих теорій, робити аргументовані висновки		
(включаючи оцінювання ступеня невизначеності) та пропозиції		
щодо подальших досліджень.		
РН03. Застосовувати сучасні теорії наукового менеджменту та		+
ділового адміністрування для організації наукових та		
прикладних досліджень в області фізики та астрономії.		
РН05. Здійснювати феноменологічний та теоретичний опис		+
досліджуваних фізичних та астрономічних явищ, об'єктів та		
процесів.		
РН06. Обирати ефективні математичні методи та інформаційні	+	+
технології та застосовувати їх для здійснення досліджень та/або		
інновацій в області фізики та астрономії		
РН07. Оцінювати новизну та достовірність наукових результатів	+	
з обраного напряму фізики та астрономії, оприлюднених у		
формі публікацій чи усної доповіді.		
РН13. Створювати фізичні, математичні і комп'ютерні моделі		+
природних об'єктів та явищ, перевіряти їх адекватність,		
досліджувати їх для отримання нових висновків та поглиблення		
розуміння природи, аналізувати обмеження.		
РН14. Розробляти та викладати фізичні навчальні дисципліни у	+	+
закладах вищої, фахової передвищої, професійної (професійно-		
технічної), загальної середньої та позашкільної освіти,		
застосовувати сучасні освітні технології та методики,		
здійснювати необхідну консультативну та методичну підтримку		
здобувачів освіти.		
РН17. Володіти сучасними комп'ютерними технологіями у	+	+
фізиці ядра та елементарних частинок		
РН18. Володіти основами фізики реакторів, ядерної безпеки	+	+
АЕС, експлуатації ядерних енергоблоків		
РН24. Знати основи теорії теплопровідності, конвективного	+	+
теплообміну в однофазних та двофазних потоках, основні		
моделі та методи дослідження теплогідравлічних процесів.		
, , , , , , , , , , , , , , , , , , ,	<u> </u>	

Контроль знань і розподіл балів, які отримують студенти.

Контроль здійснюється за модульно-рейтинговою системою.

У змістовий модуль 1 (3M1) входять теми 1 - 2, а у змістовий модуль 2 (3M2) — теми 3 — 4. Обов'язковим для іспиту/заліку є виконання і захист домашних

самостійних завдань, та позитивна оцінка за кожну з модульних контрольних робіт.

Оцінювання за формами контролю:

	3M1		3M 2	
	Min. – 15балів	<i>Max.</i> – 30 бали	<i>Min.</i> − 15 бали	<i>Max.</i> – 30 балів
Усна відповідь				
Доповнення				
Лабораторна робота				
Домашні самостійні завдання	5	10	5	10
Реферат				
Модульна контрольна робота 1	10	20	10	20
Модульна контрольна робота 2				

[&]quot;3" – мінімальна/максимальна оцінку, яку може отримати студент.
1 – мінімальна/максимальна залікова кількість робіт чи завдань.

Для студентів, які набрали сумарно меншу кількість балів ніж критичнорозрахунковий мінімум — 30 балів для одержання іспиту/заліку обов'язково: vвипадку отримання незадовільної контрольної модульної рейтингової оцінки студент повинен повторно пройти модульний контроль в установленому порядку. При повторному проходженні модульного контролю або його допуску до модульної контрольної роботи за клопотанням деканату максимальна величина контрольної модульної рейтингової оцінки зменшується на один бал у порівнянні з наведеною више.

У випадку відсутності студента з поважних причин відпрацювання та перездачі МКР здійснюються у відповідності до "Положення про порядок оцінювання знань студентів при кредитно-модульній системі організації навчального процесу" від 1 жовтня 2010 року.

При простому розрахунку отримаємо:

	Змістовий модуль1	Змістовий модуль2	іспит / залік	Підсумкова оцінка
Мінімум	15	15	30/	60
Максимум	30	30	40/	100

При цьому, кількість балів:

- 1-34 відповідає оцінці «незадовільно» з обов'язковим повторним вивченням дисципліни;
- 35-59 відповідає оцінці «незадовільно» з можливістю повторного складання;
- 60-64 відповідає оцінці «задовільно» («достатньо»);
- 65-74 відповідає оцінці «задовільно»:
- **75 84** відповідає оцінці «добре»;
- **85 89** відповідає оцінці «добре» («дуже добре»);
- **90 100** відповідає оцінці «відмінно».

Шкала відповідності (за умови іспиту) заліку)

Шкала відповідності (за умови

За 100 – бальною шкалою	За національною шкалою
90 – 100	
85 – 89	
75 – 84	Зараховано
65 – 74	
60 - 64	

За 100 – бальною шкалою	За національною шкалою		
90 – 100	5	відмінно	
85 – 89	4		
75 – 84	4	добре	
65 – 74	2	:	
60 – 64	3	задовільно	
35 – 59	2	не задовільно	
1 – 34			

не зараховано

СТРУКТУРА НАВЧАЛЬНОЇ ДИСЦИПЛІНИ ТЕМАТИЧНИЙ ПЛАН ЛЕКЦІЙ І ПРАКТИЧНИХ ЗАНЯТЬ

No	·	Кількість годин			
п/п	Норва пакий		Лабораторні роботи	C/P	
	Змістовий модуль 1 Динаміка ядерного реактора нульово	<mark>oï nomyə</mark>	<mark>кності</mark>		
1	Тема 1. Кінетика нейтронів в ядерному реакторі: Миттєві нейтрони; Характеристики продуктів поділу	4	3	20	
2	Тема 2. Нейтрони, що запізнюються, та їх ядра — попередники: Нейтрони, що запізнюються; Запізніле гамма-випромінення та фотонейтрони	6	3	20	
3	Тема 3. Рівняння обернених годин: Зв'язок між реактивністю та періодом реактора; Зв'язок між реактивністю та періодом реактора для складних систем.	6	-	20	
	Модульна контрольна робота 1		2		
	Змістовий модуль 2 . Динаміка ядерного реактора зі зворотними зв'язками				
4	Тема 4. Визначення кінетичних параметрів ядерного реактора: Статистичні методі визначення реактивності; Динамічні методі визначення реактивності.	4	3	20	
<u>5</u>	Тема 5. Кінетика реактора зі зворотними зв'язками: Ефекти реактивності; Кінетика реактора зі зворотними зв'язками.	6	3	20	
<mark>6</mark>	Тема 6. Теорія стійкості ядерного реактора: Питання нелінійної динаміки; Просторова стійкість ядерного реактора	4	3	20	
	Підсумкова модульна контрольна робота		2		
	ВСЬОГО	45	15	120	

Загальний обсяг **180** год., в тому числі: Лекцій — **45** год. Лабораторні роботи — **15** год. Самостійна робота **- 120** год.

РЕКОМЕНДОВАНА ЛІТЕРАТУРА:

Основна: (Базова)

1. Физические основы кинетики ядерных реакторов./ Кипин Дж. Р. - М.: Атомиздат, 1967. - 428 с

- 2. Динамика ядерных реакторов. / В.Ф.Колесов, П.А. Леппик, С.П.Павлов и др.-М.: Энергоатомиздат, 1990. 518 с.
- 3. Основы теории и методы расчета ядерных энергетических реакторов. Бартоломей Г.Г. и др.-М. Энергоатомиздат. 1989. 512 с.
- 4. Физика ядерных реакторов. С.В.Широков, 1998. 288 с.
- 5. ВВЭР-1000: физические основы эксплуатации, ядерное топливо, безопасность /А.М.Афров, С.А.Андрушечко, В.Ф.Украинцев и др.- М.: Университетская книга, Логос, 2006.-488 с.

Додаткова:

- 6. Ядерные энергетические реакторы. С.В.Широков, 1997. 280 с.
- 7. Теория ядерных реакторов. Фейнберг С.М. и др.М.: Атомиздат, 1978. -400 с.

В тому числі й інтернет ресурси

- 1. http://www.icjt.org/nukestat/index.html
- 2. www.worldnuclearorg/education/whyu.htm
- 3. http://nuclphys.sinp.msu.ru/