(Nevyřešená) sbírka

geometrické konstrukce

Úloha 1. Je dána přímka p a bod A na ní neležící. Zkonstruujte přímku q, která bude procházet bodem A a s p bude svírat úhel 50° .

Úloha 2. Sestrojte trojúhelník ABC, jestliže

- (a) je dána úsečka AB, |AB| = 6, a $v_c = 4$, $t_c = 6;$
- (b) je dána úsečka AB, |AB| = 6, a b = 5, $\gamma = 90^{\circ}$:
- (c) $c = 6, b = 5, \gamma = 90^{\circ}$;
- (d) a = 6, b = 5, $\beta = 50^{\circ}$ (zkuste dvě možné konstrukce):
- (e) $a = 3, \alpha = 60^{\circ}, \gamma = 90^{\circ};$
- (f) je dána úsečka BB_1 (která je těžnicí t_b), $|BB_1| = 6$, a $\alpha = 45^{\circ}$, b = 5;
- (g) je dána úsečka AA_1 (která je těžnicí t_a), $|AA_1| = 5$, a $v_a = 4.5$, c = 5.5;
- (h) je dána úsečka AA₀ (která je výškou v_a), $|AA_0| = 5$, a $t_a = 6$, c = 5.5;
- $v_c = 4.5$

- \star (j) je dána úsečka AA_1 (která je těžnicí t_a), $|AA_1| = 6$, a $t_b = 3.9$, $\beta = 70^\circ$;
 - (k) $t_b = 5$, $v_b = 4$, $\gamma = 110^{\circ}$;
 - (1) $t_c = 3.5, b = 4, \gamma = 90^{\circ}$; (Nápověda: Jaký je v pravoúhlém trojúhelníku vztah mezi délkami t_c a c? Proč?)
- (m) je dána úsečka AA_1 (která je těžnicí t_a), $|AA_1| = 4$, a b = 5, c = 4;
- (n) $t_c = 3.5, b = 5, \gamma = 65^{\circ}$;
- (o) a = 5, $t_c = 4.5$, $v_b = 4$;
- (p) je dána úsečka BC, |BC| = 6, a $v_a = 4$, $t_b = 4.5;$
- (q) $t_a = 5$, $t_b = 6$, $t_c = 4$;
- (r) r=4 (poloměr kruž. opsané), c=5,
- (i) je dána úsečka BC, |BC| = 5, a $t_c = 5$, \star (s) $v_c = 5$, b = 6, $\rho = 2$ (poloměr kruž. vepsané).

Úloha 3. Sestrojte čtyřúhelník ABCD, jestliže

- (a) |BC| = 5, |AC| = 6, |CD| = 4, $|\triangleleft DAB| = 80^{\circ}$, $|\triangleleft BCD| = 100^{\circ}$;
- (b) je to rovnoběžník, je dána úsečka AB, |AB| = 3, |BD| = 5.5, $v_{AB} = 4$;
- (c) je to kosočtverec, $v_{AB} = 4$, |AC| = 5.
- * Úloha 4. Sestrojte všechny kružnice, které
 - (a) se dotýkají dvou daných rovnoběžných přímek a dané kružnice ležící uvnitř pásu;
 - (b) se dotýkají daného přímky p a procházejí danými body $A (A \in p)$ a $B (B \notin p)$;
 - (c) mají poloměr 1, dotýkají se dané přímky p a prochází daným bodem A ($A \notin p$) (rozeberte, za jakých okolností má úloha kolik řešení);
 - (d) mají poloměr 1, dotýkají se dané kružnice k a prochází daným bodem $A (A \notin k)$ (rozeberte, za jakých okolností má úloha kolik řešení).
- ** Úloha 5 (Mascherionovské konstrukce). Je dokázáno, že všechny konstrukce, které lze provést pravítkem (bez měřítka) a kružítkem, lze provést i jen kružítkem (přičemž předpokládáme, že přímka či úsečka je "zkonstruovaná", pokud jsou zkonstruovány dva (krajní) body na ní). Jen pomocí kružítka proveďte: (a) k AB nalezněte úsečku dvojnásobné délky; (b) k bodu C neležícím na AB sestrojte bod osově symetrický podle AB; (c) ke kružnici kse středem O neležícím na přímce AB sestrojte průsečík k s AB; (d) k AB nalezněte bod C tak, aby platilo $AB \perp AC$; (e) sestrojte střed úsečky AB. (Pokračování třeba někdy příště.)