Braided Commutative Algebras over Quantized Enveloping Algebras

ROBERT LAUGWITZ (University of Nottingham) joint with CHELSEA WALTON (UI Urbana-Champaign)

Special Session on Geometry and Representation Theory of Quantum Algebras and Related Topics

AMS Sectional Meeting, Riverside, November 9, 2019

- ▶ *Davydov* ('09), the *full center* Z(A): C a monoidal category over a field k A an algebra in $C \Longrightarrow Z(A)$ a *commutative* algebra in Z(C)
- ► *L.-Walton*: C a monoidal category relative to a braided category \mathcal{B} (replacing $\mathbf{Vect}_{\mathbb{k}}$)

 A an algebra in $C \Longrightarrow Z_{\mathcal{B}}(A)$ a *commutative* algebra in $\mathcal{Z}_{\mathcal{B}}(C)$
- ▶ *Application:* Given an algebra with covariant action of $U_q(\mathfrak{b}_-)$, obtain a *commutative* algebra $Z_{\mathcal{B}}(A)$ with covariant action of $U_q(\mathfrak{g})$

Reference: Arxiv:1901.08980

CONTENTS

MOTIVATION

THE RELATIVE MONOIDAL CENTER

THE \mathcal{B} -CENTER CONSTRUCTION

EXAMPLES

Commutative algebras A in braided or symmetric tensor categories \mathcal{D} appear in

- ► *Extension theory* of vertex operator algebras (Huang–Kirillov–Lepowski '15)
- ► Construction of bialgebroids $A \times H$, when C = H-Mod (J.-H. Lu '96)
- ► Boundary conditions in 2D rational conformal field theory (Fuchs–Runkel–Schweigert '02, Kong–Runkel '08)
- ► Kirillov–Ostrik ('02) classification of commutative algebras in the *semi-simplification* of $U_q(\mathfrak{sl}_2)$ -Mod through certain Dynkin diagrams

THE MONOIDAL CENTER

Drinfeld, Majid, Joyal-Street:

 \mathcal{C} monoidal category $\Longrightarrow \mathcal{Z}(\mathcal{C})$ a *braided* monoidal category

▶ Objects: (V,c), $V \in C$, half-braiding $c_W : V \otimes W \to W \otimes V$, natural in W

$$c_{W \otimes U} = (\operatorname{Id}_W \otimes c_U)(c_W \otimes \operatorname{Id}_U) \Longrightarrow \bigvee = \bigvee$$

- $ightharpoonup (V, c_V)$ is a solution to the Quantum Yang–Baxter Equation
- ► Morphisms: required to commute with the half-braidings

YETTER-DRINFELD MODULES

Example

For a Hopf algebra H and C = H-**Mod**

$$\mathcal{Z}(\mathcal{C}) \simeq {}_H^H \mathbf{Y} \mathbf{D}$$

 $_{H}^{H}\mathbf{YD}$ is the category of Yetter–Drinfeld modules (V, a, δ) over H.

- ▶ $a = \bigvee : H \otimes V \rightarrow V$ makes V an H-module
- \bullet $\delta = C: V \to H \otimes V$ makes V an H-comodule
- ► Compatibility: *Yetter-Drinfeld condition*

$$C = H$$
-**Mod**, H — (finite-dimensional) k -Hopf algebra $\to C$ monoidal category, via *coproduct* map $\Delta : H \to H \otimes_k H$

Question: What is the center $\mathcal{Z}(\mathcal{C})$ in this case?

Answer: Modules over the Drinfeld double Drin(H)

 $Drin(H) = H \otimes_{\mathbb{k}} H^*$ as a \mathbb{k} -vector space H, H^* Hopf subalgebras.

$$U_q(\mathfrak{g}) = U_q(\mathfrak{n}_-) \otimes U_q(\mathfrak{t}) \otimes U_q(\mathfrak{n}_-)$$
 \mathfrak{g} — semisimple Lie algebra q — a parameter \mathfrak{n}_+ — nilpotent parts \mathfrak{t} — Cartan part

Theorem (Drinfeld)

 $U_q(\mathfrak{g})$ is a quotient of the double $Drin(U_q(\mathfrak{b}_-))$ of its Borel part $U_q(\mathfrak{b}_-)$.

Note

MOTIVATION

$$\mathrm{Drin}(U_q(\mathfrak{b}_-))$$
 is defined on $U_q(\mathfrak{n}_-)\otimes U_q(\mathfrak{t})\otimes U_q(\mathfrak{t})^*\otimes U_q(\mathfrak{n}_+)$

$$\Longrightarrow \mathcal{Z}(U_q(\mathfrak{b}_-)\text{-}\mathbf{Mod})$$
 is too large

Solution: Use a relative version $\mathcal{Z}_{\mathcal{B}}(\mathcal{C})$ of the monoidal center.

Braided Hopf Algebras

Idea: Take the Drinfeld double of $U_q(\mathfrak{n}_-) \subseteq U_q(\mathfrak{b}_-)$

Problem: $U_q(\mathfrak{n}_-)$ is *not* a Hopf algebra in \mathbf{Vect}_{\Bbbk} Solution: $U_q(\mathfrak{n}_-)$ is a *braided* Hopf algebra in \mathbf{Vect}_{\Bbbk}^q

 \mathbf{Vect}^q_{\Bbbk} : \mathbb{Z} -graded vector spaces with braiding

$$\Psi_{V,W}(v\otimes w)=q^{\deg(v)\deg(w)}w\otimes v$$

Bialgebra condition involves braiding

$$B \quad B \quad B \quad B \quad B$$

$$B \quad B \quad B \quad B$$

Assumption: C is B-augmented if there exist:

ightharpoonup a braided category \mathcal{B}

MOTIVATION

- ▶ a forgetful functor $F: C \to B$
- ▶ a functor $T: \mathcal{B} \to \mathcal{C}$ which is a section to F

Recall: $\mathcal{Z}(\mathcal{C})$ objects \longleftrightarrow pairs (V, c)

$$V \in \mathcal{C}$$
 object, $c_M \colon V \otimes M \xrightarrow{\sim} M \otimes V$ natural in M

$$(V,c)\in\mathcal{Z}_{\mathcal{B}}(\mathcal{C})\quad\Longleftrightarrow\quad \mathrm{F}(c_{\mathrm{T}(B)})=\Psi_{\mathrm{F}(V),B}$$
 braiding of \mathcal{B}

 \leadsto isomorphisms $c_{\mathsf{T}(B)}$ on objects B of \mathcal{B} descent to braiding Note: $\mathcal{Z}_{\mathcal{B}}(\mathcal{C})$ can be understood as a Mügers centralizer

YETTER–DRINFELD MODULES IN ${\cal B}$

Let *H* be a *braided* Hopf algebra in \mathcal{B} and $\mathcal{C} = H\text{-}\mathbf{Mod}(\mathcal{B})$

Proposition (L.)

The relative monoidal center $\mathcal{Z}_{\mathcal{B}}(\mathcal{C})$ is equivalent as a braided category to the category ${}^H_H\mathbf{Y}\mathbf{D}(\mathcal{B})$ of Yetter–Drinfeld modules over H in \mathcal{B} .

 ${}_{H}^{H}\mathbf{YD}(\mathcal{B})$ consists of objects (V, a, δ) over H.

- ▶ $a = \bigvee : H \otimes V \rightarrow V$ makes V an H-module in \mathcal{B}
- \bullet $\delta = \bigcap : V \to H \otimes V$ makes V an H-comodule in \mathcal{B}
- ► Compatibility: *Yetter–Drinfeld condition*

$$H \qquad V \qquad H \qquad V$$

$$H \qquad V \qquad H \qquad V$$

QUANTUM GROUPS EXAMPLE

$$\mathcal{C} = \mathrm{U}_q(\mathfrak{n}_-) ext{-}\mathrm{Mod}(\mathcal{B}), \qquad \mathcal{B} = \mathrm{Vect}^q_\Bbbk$$

 $\mathcal{Z}_{\mathcal{B}}(\mathcal{C})$ is equivalent to the category of $U_q(\mathfrak{g})$ -modules V satisfying

- ▶ *V* is a weight module, i.e. $V = \bigoplus_{i \in \mathbb{Z}} V_i$, where $K_j \cdot v_i = q^{i \cdot j} v_i$ for any $v_i \in V_i$
- ▶ *V* is locally finite, i.e. $\dim(U_q(\mathfrak{n}_+) \cdot v) < \infty$ for any $v \in V$
- $\leadsto \mathcal{Z}_{\mathcal{B}}(\mathcal{C})$ contains an analogue of category \mathcal{O} : \mathcal{O}_q defined by Andersen–Mazorchuk
- → braided monoidal category

BRAIDED COMMUTATIVE ALGEBRAS

Definition

An *algebra* C is an object A together with morphisms

$$m: A \otimes A \rightarrow A$$
, $u: \mathbf{1} \rightarrow A$

satisfying associativity and unitary axioms. We say A is *commutative* in C if

$$m \circ \Psi_{A,A} = m \qquad \iff \qquad \bigtriangledown = \bigvee$$

Goal

Construct *commutative algebras* in $U_q(\mathfrak{g})$ -**Mod** and $\mathcal{Z}_{\mathcal{B}}(\mathcal{C})$

The \mathcal{B} -center

Definition

Let \mathcal{C} be a \mathcal{B} -augmented monoidal category, A an algebra in \mathcal{C} . The \mathcal{B} -center $(Z_{\mathcal{B}}(A), \zeta_A)$ of A is the terminal pair (Z, ζ) , where Z is an object in $\mathcal{Z}_{\mathcal{B}}(\mathcal{C})$ with half-braiding $c_{Z,A}$ and $\zeta \colon Z \to A$ is a morphism in \mathcal{C} such that the following diagram commutes:

Davydov's full center: the case $\mathcal{B} = \mathbf{Vect}_{\mathbb{k}}$

- $ightharpoonup Z_{\mathcal{B}}(A)$ is a *commutative algebra* in $\mathcal{Z}_{\mathcal{B}}(\mathcal{C})$
- ▶ $\zeta_A: Z_B(A) \to A$ is an algebra morphism
- \blacktriangleright The \mathcal{B} -center extends to an *invariant of C-module categories*

Question: When does $Z_{\mathcal{B}}(A)$ exist and how to compute it?

Theorem (Davydov, L.-Walton)

Assume the monoidal functor $F \colon \mathcal{Z}_{\mathcal{B}}(\mathcal{C}) \to \mathcal{C}$ has a right adjoint R such that the counit of the adjunction is an epimorphism.

Then R(A) is an algebra in $\mathcal{Z}_{\mathcal{B}}(C)$ and the \mathcal{B} -center $Z_{\mathcal{B}}(A)$ is the left center of R(A).

Note: The assumptions hold for $C = H\text{-}\mathbf{Mod}(\mathcal{B})$, categories of modules over a braided Hopf algebra H in \mathcal{B} .

In this case, $Z_{\mathcal{B}}(A)$ exists e.g. for $\mathcal{B} = K$ -**Mod** (K a quasitriangular Hopf algebra).

The case C = H- $\mathbf{Mod}(C)$

Given H a Hopf algebra in \mathcal{B} and A a H-module algebra.

Theorem (Davydov, L.-Walton)

The \mathcal{B} -center $Z_{\mathcal{B}}(A)$ is isomorphic as an algebra in \mathcal{B} to the $(\Psi^{-1}$ -opposite algebra) of the (left) centralizer $\operatorname{Cent}_{A \rtimes H}^{l}(A)$ of A inside of the (braided) smash product $A \rtimes H$.

 \Longrightarrow This helps to compute $Z_{\mathcal{B}}(A)$ in examples

I at II has a heart do d II and alcohous in P

Let H be a braided Hopf algebra in \mathcal{B} .

Take $A = \mathbf{1}$, the tensor unit in $C = H\text{-}\mathbf{Mod}(\mathcal{B})$. Then $Z_{\mathcal{B}}(\mathbf{1}) = H$ with action a and coaction δ given by

$$a = 0$$
 , $\delta = \Delta = 0$

Note: These are the adjoint action and regular coaction.

Corollary

With this structure H is commutative in ${}_H^H\mathbf{YD}(\mathcal{B})$.

This generalizes the same result for H a k-Hopf algebra (i.e. $\mathcal{B} = \mathbf{Vect}_k$) of Cohen–Fischman–Montgomery ('99) to general \mathcal{B} .

A FAMILY OF $u_q(\mathfrak{sl}_2)$ -EXAMPLES

- ► Let $C = \mathbf{u}_q(\mathfrak{sl}_2^+)$ -Mod(Vect $_{\mathbb{R}}^q$), $q^{2n} = 1$, then $\mathcal{Z}_{\mathcal{B}}(\mathcal{C}) \simeq \mathbf{u}_q(\mathfrak{sl}_2)$ -Mod, with $\mathbf{u}_q(\mathfrak{sl}_2)$ generators $\mathbf{k}, \mathbf{e}, \mathbf{f}$
- ▶ For $\gamma \in \mathbb{k}$, $A_{\gamma} = \mathbb{k}[\mathbf{u}]$ is an algebra in \mathcal{C} with

$$\mathbf{k} \cdot \mathbf{u} = q^2 \mathbf{u} \qquad \qquad \mathbf{f} \cdot \mathbf{u} = \gamma \mathbf{1}$$

The \mathcal{B} -center of A_{γ} is

$$Z_{\mathcal{B}}(A_{\gamma}) = \begin{cases} H \otimes \mathbb{k}[\mathbf{u}^n], & \text{for } \gamma = 0 \\ \mathbb{k}[\mathbf{z}], & \text{for } \gamma \neq 0, \end{cases} \subseteq A_{\gamma} \times \mathbf{u}_q(\mathfrak{sl}_2^+)$$

with
$$\mathbf{z} := \sum_{i=0}^{n-1} \gamma^{-i} q^{-2(\binom{i+1}{2}+i)} (1 - q^2)^i (\mathbf{f}^i \otimes \mathbf{u}^{i+1}).$$

For $\gamma \neq 0$, $Z_{\mathcal{B}}(A_{\gamma})$ is a commutative algebra in $u_q(\mathfrak{sl}_2)$ -**Mod** via

$$\mathbf{k} \cdot \mathbf{z} = q^2 \mathbf{z}, \qquad \mathbf{f} \cdot \mathbf{z} = \gamma 1, \qquad \mathbf{e} \cdot \mathbf{z} = -q \gamma^{-1} \mathbf{z}^2.$$

EXAMPLES

000

REFERENCES

MOTIVATION

Thank you very much for your attention!

- [CFM99] M. Cohen, D. Fischman, and S. Montgomery, *On Yetter-Drinfeld categories and H-commutativity*, Comm. Algebra **27** (1999), no. 3, 1321–1345.
 - [Dav10] A. Davydov, Centre of an algebra, Adv. Math. 225 (2010), no. 1, 319–348.
- [Dav12] _____, Full centre of an H-module algebra, Comm. Algebra **40** (2012), no. 1, 273–290.
- [HKL15] Y.-Z. Huang, A. Kirillov Jr., and J. Lepowsky, *Braided tensor categories* and extensions of vertex operator algebras, Comm. Math. Phys. **337** (2015), no. 3, 1143–1159.
- [Lau18] R. Laugwitz, The relative monoidal center and tensor products of monoidal categories, Preprint available at https://arxiv.org/abs/1803.04403v4 (2018). To appear in Comm. Cont. Math.
- [LW19] R. Laugwitz and C. Walton, *Braided commutative algebras over quantized enveloping algebras*, Preprint available at https://arxiv.org/abs/1901.08980v2 (2019).