Fourier Transform of sine - Gaussian

Define Functions

$$ln[83]:=$$
 sineGaussian[t_] := A $e^{-\Gamma t^2}$ Sin[2 π f_c t]

In[84]:=
$$FT[f] := Abs \left[\frac{1}{\sqrt{T}} \int_{0}^{T} \left(sineGaussian[t] e^{2\pi f i t} \right) dt \right]$$

Define constants

In[116]:= T = 1;
$$f_c = 1*^3$$
; Q = 1; $\Gamma = \frac{2 \pi f_c}{Q^2}$; A = 1*^6;

Plot time-series

ln[117]:= Plot[sineGaussian[t], {t, -0.1, 0.1}, PlotRange \rightarrow All]

If I copy the output of typing FT[f] and turn it into a new function, and plot the new function, it is significantly faster than just plotting FT[g]—this takes much longer.

In[44]:=

Plot Fourier Transform

ln[118]:= LogLogPlot[Evaluate[FT[f]], {f, 0.01, 10^5}, PlotRange \rightarrow Full]

- General: Exp[-1570.83] is too small to represent as a normalized machine number; precision may be lost.
- General: Exp[-4716.9 6283.59 i] is too small to represent as a normalized machine number; precision may be lost.
- General: $\exp[-4716.84 + 6283.71 \,i]$ is too small to represent as a normalized machine number; precision may be lost.
- General: Further output of General::munfl will be suppressed during this calculation.

