Mathematics in Computing 4COSC007C

Lecture 2: Algorithms

September Intake 2021

Algorithms

- An algorithm is a list of instructions for performing a specific task, or, for solving a particular type of problem.
- We use recipes for cooking: say to make a pizza.
- We use directions from SATNAV.
- We use techniques to add numbers.

Algorithm to Compute Truth Tables

- Let a formula C consists of the atomic propositions p_1, p_2, \dots, p_n .
- To compute the truth table do the following:
 - ① List its atomic propositions p_1, p_2, \ldots, p_n and count their number, n.
 - ② Form a table with $m = 2^n$ rows.
 - **3** List all possible combinations of the truth values for p_1, p_2, \ldots, p_n .
 - Prioritize the logical operations in C, finding main logic operation, etc.
 - Ompute these operations in order.

• How to add all natural numbers from 1 to 10?

• How to add all natural numbers from 1 to 10?

• Is this correct?

• How to add all natural numbers from 1 to 10?

Is this correct?

• How to add all natural numbers from 1 to 10?

- Is this correct?
- What is the conclusion? We can have more than one algorithm to solve a problem.

Algorithms: Efficiency

- Always try to find an optimal algorithm.
- Which one was more efficient to find the sum of numbers 1 to 10?

Problem Solving Strategies

- Always try to find the most efficient way of solving a problem.
- Look for patterns.
- Consider familiar cases with similar patterns or similar ways of identifying patterns.
- Look for possible repetitions of the same operation/method/technique.
- The latter is called recursion.

How to add all natural numbers from 1 to 100?

• We just saw a similar problem. Its solution was based on grouping numbers. Can we do the same here?

How to add all natural numbers from 1 to 100?

```
100
2
     +
          99
3
     +
           98
                                 10 \times 101 = 1010
           97
     +
                                 Repeat 4 more times:
5
          96
     +
                                 11 ... 20
                                           90 .... 81
                                 21 ... 30
                                           80 .... 71
6
          95
     +
                                 31 ... 40
                                          70 .... 61
                                           60 .... 51
                                 41 ... 50
7
     +
           94
                                 Altogether 5 times 1010
8
     +
          93
                                 = 5050
9
          92
     +
10 +
           91
```

How to add all natural numbers from 1 to 100?

 Different solution – similar to the one for the case of 10 numbers but different grouping.

Question?

- What would you do when you need to reuse a word in the text which you have already typed in? Is Copy and Paste always more efficient?
- Assume that the word we are using is **TEXT**. There are two ways to reuse the word.
 - Typing again the word TEXT,
 - Copy/Paste.
- Algorithm for Copy/Paste with the mouse:

Question?

- What would you do when you need to reuse a word in the text which you have already typed in? Is Copy and Paste always more efficient?
- Assume that the word we are using is **TEXT**. There are two ways to reuse the word.
 - Typing again the word **TEXT**,
 - Copy/Paste.
- Algorithm for Copy/Paste with the mouse:
 - Move the cursor to the beginning of the word
 - Highlight the word TEXT
 - Copy
 - Move the cursor to the new position where this word should be typed again
 - Paste the saved word

Is it more efficient than just typing 4 characters?

Classification of Formulae - Satisfiable and Unsatisfiable

Definition

In Logic a formula C is called SATISFIABLE if there exists at least one output value T (true) in the truth table for C.

Examples

• p, $\neg p$, $p \land q$

Definition

In Logic a formula C is called UNSATISFIABLE if there are no output values T (true) in the truth table for C.

Examples

• $p \land \neg p$

Classification of Formulae - Valid

Definition

In Logic a formula C is called VALID if its output values in the truth table are all T (true).

Are theses valid formulas?

 $\bullet \ \ p \lor \neg p, \ \neg (p \land \neg p), \ (p \land q) \to p$

Typical Simple Reasoning

- Logical Consequence from a Knowledge Base.
- Consider the following knowledge base:
 - File 'X' is either a binary file or a text file.
 - If file 'X' is a binary file then program 'P' does not accept it.
 - If file 'X' is a text file then program 'P' accepts it.
 - Program 'P' accepts file 'X'.
 - What can we conclude from here?
 - In particular, can we conclude that 'File 'X' is a text file'?

Logical Consequence from a Knowledge Base

- Having defined the vocabulary, the knowledge base is formalized as:
 - File 'X' is either a binary file or a text file
 - If file 'X' is a binary file then program 'P' does not accept it
 - If file 'X' is a text file then program 'P' accepts it
 - Program 'P' accepts file 'X'

Logical Consequence from a Knowledge Base

- Having defined the vocabulary, the knowledge base is formalized as:
 - File 'X' is either a binary file or a text file $p \lor q$
 - If file 'X' is a binary file then program 'P' does not accept it $p \Longrightarrow \neg r$
 - If file 'X' is a text file then program 'P' accepts it $q \implies r$
 - Program 'P' accepts file 'X' r

How Do We Reason

- What are the rules to apply when we reason?
- Many of these are based on Boolean.
- What can you conclude from:
 - A and $A \Longrightarrow B$?
 - $\neg A$ and $A \Longrightarrow B$?
 - $\bullet \neg B$ and $A \Longrightarrow B$?
 - A and $A \vee B$?
 - $\neg A$ and $A \lor B$?

Reasoning and Logical Consequence

Definition

B is a logical consequence of a knowledge base $A_1, A_2, A_3, ... A_n$ if the following formula is valid: $(A_1 \land (A_2 \land (A_3 \land ... A_n))) \Longrightarrow B$.

Informally: we form an implicative statement with all members of the knowledge base joint by conjunction on the left hand side and B on the right hand side.

Reasoning and Logical Consequence

- From p and $p \implies q$ we conclude q.
 - Knowledge Base:
 - Conclusion:
 - Apply the definition of the logical consequence, i.e form the implicative formula
 - Form the truth table

Good Tenants Problem

- A landlady has a room to let.
- Two conditions: tenants should not drink and should not smoke. Two students came.
 - A came and said: If I drink then I smoke, but I do not drink.
 - B came and said: If I drink then I smoke, but I do not smoke.
- Who is the one to get this room?

