Chapter 2 EM Optimization Methods

- Missing Data Problem: Generally, a missing/incomplete data problem can be described as follows.
 - A statistical model is specified for X by the density $f_X(x;\theta)$, where θ is the parameter. (Here X could be X_1, \dots, X_n .)
 - We only observe Y = h(X), where h is a **many-to-one** function, therefore we only have incomplete information about X. For example, X = (Y, Z), but we can only observe Y.
 - The MLE of θ is derived by maximizing the observed-data likelihood as $\hat{\theta}_{MLE} = \arg\max_{\theta} l(\theta|Y=y) = \arg\max_{\theta} f_Y(y;\theta).$
 - In many cases, the complete-data likelihood $l(\theta|X = x) = f_X(x;\theta)$ has a simple form (often specified by the model), but $l(\theta|Y)$ is difficult to evaluate. In some cases, $l(\theta|Y)$ is possible to evaluate, but hard to maximize.

- Example: Censored Data. Assume that X_1, \dots, X_n are i.i.d. from the $N(\theta, 1)$ distribution, but the data is right censored at the value a. That is, we can only observe $Y_i = h(X_i) = \min\{X_i, a\}$.
 - For example, we can consider $\exp\{X_i\}$ as the survival time of individual i, and the observation is censored at e^a .
 - The distribution of Y_i consists of a continuous part and a discrete part with the PMF/PDF function

$$f_Y(y) = \begin{cases} \phi(y - \theta), & \text{if } y < a; \\ 1 - \Phi(a - \theta), & \text{if } y = a, \end{cases}$$

where $\Phi(y)$ and $\phi(y) = \frac{1}{\sqrt{2\pi}}e^{-y^2/2}$ are the CDF and PDF of the N(0,1) distribution, respectively.

- - Suppose that the observations are $(Y_1, \dots, Y_n) = (y_1, \dots, y_n)$. For convenience, we re-arrange the observations and assume that $y_i < a$ for $i = 1, \dots, m$ and $y_i = a$ for $i = m + 1, \dots, n$.
 - The MLE of θ is

$$\hat{\theta}_{MLE} = \arg \max_{\theta} \log l(\theta|Y_1, \dots, Y_n)$$

$$= \arg \max_{\theta} \sum_{i=1}^{n} \log f_Y(y_i)$$

$$= \arg \max_{\theta} \left[\sum_{i=1}^{m} \log \phi(y_i - \theta) + (n - m) \log \left(1 - \Phi(a - \theta) \right) \right]$$

$$= \arg \max_{\theta} \left[c - \frac{1}{2} \sum_{i=1}^{m} (y_i - \theta)^2 + (n - m) \log \left(1 - \Phi(a - \theta) \right) \right],$$

which does not have a closed-form solution.

• Example: Mixture Normal Distribution. Assume that U_{i1}, \dots, U_{iK} are independent random variables with $U_{ik} \sim N(\mu_k, \sigma_k^2)$. Further assume that $Z_i \in \{1, \dots, K\}$ is a discrete random variable independent of U_{i1}, \dots, U_{iK} with $P(Z_i = k) = p_k$. Here $p_1 + \dots + p_K = 1$. Define

$$Y_i = \sum_{k=1}^{K} I(Z_i = k) U_{ik}.$$

- The parameters are μ_k , σ_k^2 and p_k , $k=1,\cdots,K$.
- Let $X_i = (Y_i, Z_i)$, $i = 1, \dots, n$. Given X_1, \dots, X_n (assume they are independent), it is easy to find the MLE of $\theta = (\mu_1, \dots, \mu_k, \sigma_1^2, \dots, \sigma_K^2, p_1, \dots, p_K)$. (**Homework**)
- We can only observe the incomplete data Y_1, \dots, Y_n .

• Let $F_Y(y;\theta)$ and $f_Y(y;\theta)$ be the CDF and PDF of Y_i , respectively. Then

$$F_{Y}(y;\theta) = P(Y_{i} \leq y) = \sum_{k=1}^{K} P(Z_{i} = k) P(Y_{i} \leq y | Z_{i} = k)$$

$$= \sum_{k=1}^{K} P(Z_{i} = k) P(U_{ik} \leq y | Z_{i} = k)$$

$$= \sum_{k=1}^{K} P(Z_{i} = k) P(U_{ik} \leq y) = \sum_{k=1}^{K} p_{k} \Phi(\frac{y - \mu_{k}}{\sigma_{k}})$$

and

$$f_Y(y;\theta) = \sum_{k=1}^K p_k \frac{1}{\sigma_k} \phi\left(\frac{y - \mu_k}{\sigma_k}\right)$$

where $\Phi(y)$ and $\phi(y) = \frac{1}{\sqrt{2\pi}}e^{-y^2/2}$ are the CDF and PDF of the N(0,1) distribution, respectively. Obviously, $\frac{1}{\sigma_k}\phi\left(\frac{y-\mu_k}{\sigma_k}\right)$ is the PDF of the $N(\mu_k, \sigma_k^2)$ distribution. We call that Y_i follows a mixture of normal distributions.

• - In this example, the logarithm of the observed-data likelihood is

$$\log l(\theta|Y_1, \dots, Y_n) = \sum_{i=1}^n \log f_Y(Y_i; \theta)$$

$$= \sum_{i=1}^n \log \left[\sum_{k=1}^K p_k \frac{1}{\sigma_k} \phi(\frac{Y_i - \mu_k}{\sigma_k}) \right]$$

$$= \sum_{i=1}^n \log \left[\sum_{k=1}^K p_k \frac{1}{\sigma_k} \cdot \frac{1}{\sqrt{2\pi}} \exp\left\{ -\frac{(Y_i - \mu_k)^2}{2\sigma_k^2} \right\} \right].$$

- It is not easy to maximize $\log l(\theta|Y_1, \dots, Y_n)$ or solve the equation $\nabla \log l(\theta|Y_1, \dots, Y_n) = 0$.

- Example: Peppered Moths. The coloring of peppered moths is determined by a gene with three possible alleles, denoted by C, I and T. Of these alleles, C is dominant to I, and I is dominant to T.
 - The genotypes CC, CI, and CT result in the *carbonaria* phenotype, which exhibits solid black coloring.
 - The genotypes II and IT produce the *insularia* phenotype, which varies widely in appearance but is generally mottled with intermediate color.
 - The genotype TT results in the *typica* phenotype, which exhibits light-colored patterned wings.
 - If the allele frequencies in the population are p_C , p_I , and p_T , the genotype frequencies should be p_C^2 , $2p_Cp_I$, $2p_Cp_T$, p_I^2 , $2p_Ip_T$, and p_T^2 for genotypes CC, CI, CT, II, IT, and TT, respectively. Here $p_C + p_I + p_T = 1$.
 - We want to know the allele frequencies $\theta = (p_C, p_I, p_T)$.

- - Suppose we capture n moths, of which there are n_C , n_I , and n_T of the carbonaria, insularia, and typica phenotypes, respectively. Thus, $n = n_C + n_I + n_T$.
 - We also use n_{CC} , n_{CI} , n_{CT} , n_{II} , n_{IT} , and n_{TT} to denote counts for genotypes CC, CI, CT, II, IT, and TT, respectively. Then we have

$$n = n_{CC} + n_{CI} + n_{CT} + n_{II} + n_{IT} + n_{TT},$$

 $n_C = n_{CC} + n_{CI} + n_{CT},$
 $n_I = n_{II} + n_{IT},$
 $n_T = n_{TT}.$

- The complete data are $X = (n_{CC}, n_{CI}, n_{CT}, n_{II}, n_{IT}, n_{TT})$, and the observed data are $Y = (n_C, n_I, n_T)$.

- - Multinomial Distribution: Consider an experiment having K possible outcomes with p_i , $i=1,\dots,K$, as the probability for the i-th outcome, where $p_i > 0$ and $p_1 + \dots + p_K = 1$.
 - * In *n* independent trials of this experiment, let X_i , $i = 1, \dots, K$, be the number of trials resulting in the *i*-th outcome.
 - * The probability mass function of (X_1, \dots, X_K) is

$$f(x_1, \dots, x_K) = \frac{n!}{x_1! \cdots x_K!} p_1^{x_1} \cdots p_K^{x_K},$$

where x_i 's are nonegative integers and $x_1 + \cdots + x_K = n$.

- * Such a distribution is called the *multinomial distribution*, denoted by Multinomial $(n; p_1, \dots, p_K)$.
- * The marginal distribution of each X_i is the binomial distribution $Bi(n; p_i)$, that is,

$$P(X_i = x_i) = \frac{n!}{x_i!(n - x_i)!} p_i^{x_i} (1 - p_i)^{n - x_i} \quad \text{for } x_i = 0, 1, \dots, n.$$

• If we have the complete data $X = (n_{CC}, n_{CI}, n_{CT}, n_{II}, n_{IT}, n_{TT})$, the log-likelihood function is

$$\log l(\theta|X) = c_1 + n_{CC} \log p_C^2 + n_{CI} \log(2p_C p_I) + n_{CT} \log(2p_C p_T) + n_{II} \log p_I^2 + n_{IT} \log(2p_I p_T) + n_{TT} \log p_T^2,$$

where c_1 is a constant. Note that $p_C + p_I + p_T = 1$. The MLE of $\theta = (p_C, p_I, p_T)$ is

$$\hat{p}_{C,X} = \frac{2n_{CC} + n_{CI} + n_{CT}}{2n},$$

$$\hat{p}_{I,X} = \frac{n_{CI} + 2n_{II} + n_{IT}}{2n},$$

$$\hat{p}_{T,X} = \frac{n_{CT} + n_{IT} + 2n_{TT}}{2n}.$$

• - We can only observe $Y = (n_C, n_I, n_T)$. The logarithm of the observed-data likelihood is

$$\log l(\theta|Y) = c_2 + (n_{CC} + n_{CI} + n_{CT}) \log(p_C^2 + 2p_C p_I + 2p_C p_T) + (n_{II} + n_{IT}) \log(p_I^2 + 2p_I p_T) + n_{TT} \log p_T^2,$$

which does not have a closed-form solution.

• EM Algorithm: Let X and Y be the complete data and observed data, respectively. Define

$$Q(\theta, \theta') = E_{\theta'} \left[\log l(\theta|X) | Y = y \right] = \int \left[\log f_X(x; \theta) \right] f_{X|Y}(x|y; \theta') dx$$

Suppose at iteration t, we have $\theta^{(t)}$. We update $\theta^{(t)}$ as follows.

- The E-Step (Expectation Step): Calculate

$$Q(\theta, \theta^{(t)}) = E_{\theta^{(t)}} \left[\log l(\theta|X) | Y = y \right].$$

Note that given $\theta^{(t)}$ and Y = y, $Q(\theta, \theta^{(t)})$ is a function of θ .

– The M-Step (Maximization Step): Let

$$\theta^{(t+1)} = \arg\max_{\theta} Q(\theta, \theta^{(t)}) = \arg\max_{\theta} E_{\theta^{(t)}} \big[\log l(\theta|X)|Y = y\big].$$

• Remarks:

- When X = (Y, Z), the EM algorithm has the update equation

$$\theta^{(t+1)} = \arg\max_{\theta} \int \left[\log f_{YZ}(y, z; \theta) \right] f_{Z|Y}(z|y; \theta^{(t)}) dz.$$

The standard MLE can be written as

$$\hat{\theta}_{MLE} = \arg\max_{\theta} \left[\log \int f_{YZ}(y, z; \theta) dz \right].$$

In many cases, it is easier to maximize $\int \left[\log f_{YZ}(y,z;\theta) \right] f_{Z|Y}(z|y;\theta^{(t)}) dz$ than $\log \int f_{YZ}(y,z;\theta) dz$.

- The EM algorithm needs to update $\theta^{(t)}$ iteratively.
- We can stop the algorithm when $\theta^{(t+1)} \theta^{(t)}$ is close to 0.

• Convergence of EM Algorithm:

- Note that $f_Y(y;\theta)f_{X|Y}(x|y;\theta) = f_{XY}(x,y;\theta) = f_X(x;\theta)$, then $\log l(\theta|Y=y) = \log f_Y(y;\theta) = \log f_X(x;\theta) \log f_{X|Y}(x|y;\theta).$
- Multiply both sides of the equation by $f_{X|Y}(x|y;\theta')$, and take integration with respect to x, we have

$$\log l(\theta|Y = y) = \int \left[\log f_X(x;\theta)\right] f_{X|Y}(x|y;\theta') dx$$
$$-\int \left[\log f_{X|Y}(x|y;\theta)\right] f_{X|Y}(x|y;\theta') dx$$
$$= Q(\theta,\theta') - H(\theta,\theta')$$

for any $\theta' \in \Theta$. Here $H(\theta, \theta') = \int \left[\log f_{X|Y}(x|y;\theta) \right] f_{X|Y}(x|y;\theta') dx$.

- Using the Jensen's inequality, we can prove that

$$H(\theta, \theta') \le H(\theta', \theta')$$

for any $\theta, \theta' \in \Theta$. (**How to prove it?**)

• - We have

$$\log l(\theta^{(t+1)}|Y = y) = Q(\theta^{(t+1)}, \theta^{(t)}) - H(\theta^{(t+1)}, \theta^{(t)})$$

$$\geq Q(\theta^{(t)}, \theta^{(t)}) - H(\theta^{(t+1)}, \theta^{(t)})$$

$$\geq Q(\theta^{(t)}, \theta^{(t)}) - H(\theta^{(t)}, \theta^{(t)})$$

$$= \log l(\theta^{(t)}|Y = y).$$

- So $\log l(\theta^{(0)}|Y=y)$, $\log l(\theta^{(1)}|Y=y)$, \cdots , $\log l(\theta^{(t)}|Y=y)$, \cdots forms a non-decreasing sequence, which has a limit when t goes to infinity.
- Under certain conditions, it can be shown that $\theta^{(t)}$ converges to a stationary point of the likelihood function.

- Example: Censored Data. Assume that X_1, \dots, X_n are i.i.d. from the $N(\theta, 1)$ distribution, but the data is right censored at the value a. That is, we can only observe $Y_i = h(x_i) = \min\{X_i, a\}$.
 - For convenience, we re-arrange the observations and assume that $y_i < a$ for $i = 1, \dots, m$ and $y_i = a$ for $i = m + 1, \dots, n$.
 - Th E-step:

$$Q(\theta, \theta^{(t)}) = E_{\theta^{(t)}} \left[\sum_{i=1}^{n} \log \phi(X_i - \theta) \middle| Y_1 = y_1, \cdots, Y_n = y_n \right]$$

$$= \sum_{i=1}^{m} E_{\theta^{(t)}} \left[\log \phi(X_i - \theta) \middle| Y_i = y_i \right] + \sum_{i=m+1}^{n} E_{\theta^{(t)}} \left[\log \phi(X_i - \theta) \middle| Y_i = a \right]$$

$$= c - \frac{1}{2} \sum_{i=1}^{m} E_{\theta^{(t)}} \left[(X_i - \theta)^2 \middle| X_i = y_i \right] - \frac{1}{2} \sum_{i=m+1}^{n} E_{\theta^{(t)}} \left[(X_i - \theta)^2 \middle| X_i > a \right].$$

 \bullet - Obviously,

$$E_{\theta(t)}\left[(X_i - \theta)^2 \middle| X_i = y_i\right] = (y_i - \theta)^2.$$

- We also have

$$E_{\theta^{(t)}} \left[(X_i - \theta)^2 \middle| X_i > a \right] = \int_a^\infty (x - \theta)^2 f_X(x | X_i > a; \theta^{(t)}) \, dx$$

where $f_X(x|X_i > a; \theta^{(t)})$ is the density function of X_i conditional on $X_i > a$ when $X_i \sim N(\theta^{(t)}, 1)$. It is easy to show that

$$f_X(x|X_i > a; \theta^{(t)}) = \frac{f_X(x; \theta^{(t)})}{P(X_i > a; \theta^{(t)})} = \frac{\phi(x - \theta^{(t)})}{1 - \Phi(a - \theta^{(t)})}, \quad x > a.$$

- Therefore,

$$Q(\theta, \theta^{(t)}) = c - \frac{1}{2} \sum_{i=1}^{m} (y_i - \theta)^2 - \frac{1}{2} \sum_{i=m+1}^{n} \int_{a}^{\infty} \frac{(x - \theta)^2 \phi(x - \theta^{(t)})}{1 - \Phi(a - \theta^{(t)})} dx.$$

• - Note that

$$Q'(\theta, \theta^{(t)}) = \sum_{i=1}^{m} (y_i - \theta) + (n - m) \int_{a}^{\infty} \frac{(x - \theta^{(t)} + \theta^{(t)} - \theta)\phi(x - \theta^{(t)})}{1 - \Phi(a - \theta^{(t)})} dx$$

$$= \sum_{i=1}^{m} y_i - m\theta + (n - m)\theta^{(t)} - (n - m)\theta$$

$$+ \frac{n - m}{1 - \Phi(a - \theta^{(t)})} \int_{a}^{\infty} (x - \theta^{(t)})\phi(x - \theta^{(t)}) dx$$

$$= \sum_{i=1}^{m} y_i + (n - m)\theta^{(t)} - n\theta + \frac{(n - m)}{1 - \Phi(a - \theta^{(t)})} \int_{a - \theta^{(t)}}^{\infty} u\phi(u) du$$

$$= \sum_{i=1}^{m} y_i + (n - m)\theta^{(t)} - n\theta + \frac{(n - m)}{1 - \Phi(a - \theta^{(t)})} \int_{a - \theta^{(t)}}^{\infty} \frac{e^{-u^2/2}}{\sqrt{2\pi}} d\frac{u^2}{2}$$

$$= \sum_{i=1}^{m} y_i + (n - m)\theta^{(t)} - n\theta + \frac{(n - m)}{1 - \Phi(a - \theta^{(t)})} \cdot \frac{e^{-(a - \theta^{(t)})^2/2}}{\sqrt{2\pi}}.$$

- The M-step:

$$\theta^{(t+1)} = \frac{1}{n} \left[\sum_{i=1}^{m} y_i + (n-m)\theta^{(t)} + \frac{(n-m)}{1 - \Phi(a - \theta^{(t)})} \cdot \frac{e^{-(a-\theta^{(t)})^2/2}}{\sqrt{2\pi}} \right]$$

$$= \frac{1}{n} \left[\sum_{i=1}^{m} y_i + (n-m)\theta^{(t)} + \frac{(n-m)\phi(a - \theta^{(t)})}{1 - \Phi(a - \theta^{(t)})} \right].$$

• Example: Mixture Normal Distribution. Assume that $U_i = (U_{i1}, \dots, U_{iK})$, where U_{i1}, \dots, U_{iK} are independent with $U_{ik} \sim N(\mu_k, \sigma_k^2)$. Further assume that $Z_i \in \{1, \dots, K\}$ is a discrete random variable independent of U_i with $P(Z_i = k) = p_k$. Here $p_1 + \dots + p_K = 1$. Define

$$Y_i = \sum_{k=1}^K I(Z_i = k) U_{ik}$$

and $X_i = (Y_i, Z_i)$, $i = 1, \dots, n$. The parameters of interests are μ_k , σ_k^2 and p_k , $k = 1, \dots, K$.

- The logarithm of the complete-data likelihood is

$$\log l(\theta|X_1, \dots, X_n) = \sum_{i=1}^n \log f(X_i; \theta) = \sum_{i=1}^n \log \left[f(Y_i|Z_i; \theta) f(Z_i; \theta) \right]$$
$$= \sum_{i=1}^n \sum_{k=1}^K I(Z_i = k) \left[\log p_k - \log \sigma_k + \log \phi \left(\frac{Y_i - \mu_k}{\sigma_k} \right) \right].$$

• - Given $Y_i = y_i$, we have

$$\begin{split} E_{\theta^{(t)}}\big[I(Z_i = k)|Y_i = y_i\big] &= P(Z_i = k|Y_i = y_i; \theta^{(t)}) \\ &= \frac{P(Z_i = k, Y_i = y_i; \theta^{(t)})}{P(Y_i = y_i; \theta^{(t)})} \\ &= \frac{P(Z_i = k; \theta^{(t)})P(Y_i = y_i|Z_i = k; \theta^{(t)})}{\sum_{s=1}^K P(Z_i = s; \theta^{(t)})P(Y_i = y_i|Z_i = s; \theta^{(t)})} \\ &= \frac{p_k^{(t)} \cdot \frac{1}{\sigma_k^{(t)}} \phi\left(\frac{y_i - \mu_k^{(t)}}{\sigma_k^{(t)}}\right)}{\sum_{s=1}^K p_s^{(t)} \cdot \frac{1}{\sigma_s^{(t)}} \phi\left(\frac{y_i - \mu_s^{(t)}}{\sigma_s^{(t)}}\right)} := q_{k,i}^{(t)}. \end{split}$$

- The E-step:

$$Q(\theta, \theta^{(t)}) = E_{\theta^{(t)}} \left[\log l(\theta | X_1, \dots, X_n) \middle| Y_1 = y_1, \dots, Y_n = y_n \right]$$
$$= \sum_{i=1}^n \sum_{k=1}^K q_{k,i}^{(t)} \left[\log p_k - \frac{1}{2} \log \sigma_k^2 - \frac{(y_i - \mu_k)^2}{2\sigma_k^2} + c \right].$$

• The M-step: Solving the equation $\nabla Q(\theta, \theta^{(t)}) = \mathbf{0}$, we obtain

$$p_k^{(t+1)} = \frac{\sum_{i=1}^n q_{k,i}^{(t)}}{\sum_{i=1}^n \sum_{s=1}^K q_{s,i}^{(t)}} = \frac{1}{n} \sum_{i=1}^n q_{k,i}^{(t)},$$

$$\mu_k^{(t+1)} = \frac{\sum_{i=1}^n q_{k,i}^{(t)} y_i}{\sum_{i=1}^n q_{k,i}^{(t)}},$$

$$(\sigma_k^2)^{(t+1)} = \frac{\sum_{i=1}^n q_{k,i}^{(t)} (y_i - \mu_k^{(t+1)})^2}{\sum_{i=1}^n q_{k,i}^{(t)}}.$$
(Note that $p_1 + \dots + p_K = 1$ and $q_{1,i}^{(t)} + \dots + q_{K,i}^{(t)} = 1$.)

- Example: Peppered Moths. Suppose we capture n moths, of which there are n_C , n_I , and n_T of the carbonaria, insularia, and typica phenotypes, respectively. We also use n_{CC} , n_{CI} , n_{CT} , n_{II} , n_{IT} , and n_{TT} to denote counts for genotypes CC, CI, CT, II, IT, and TT, respectively. We want to estimate the parameter $\theta = (p_C, p_I, p_N)$.
 - The complete data are $X = (n_{CC}, n_{CI}, n_{CT}, n_{II}, n_{IT}, n_{TT})$, and the observed data are $Y = (n_C, n_I, n_T)$.
 - The log-likelihood function of complete data is

$$\log l(\theta|X) = c_1 + n_{CC} \log p_C^2 + n_{CI} \log(2p_C p_I) + n_{CT} \log(2p_C p_T) + n_{II} \log p_I^2 + n_{IT} \log(2p_I p_T) + n_{TT} \log p_T^2.$$

- We want to calculate

$$Q(\theta, \theta^{(t)}) = E_{\theta^{(t)}} \left[\log l(\theta|X) \middle| Y = (n_C, n_I, n_T) \right].$$

• Note that $n_C = n_{CC} + n_{CI} + n_{CT}$. It is easy to know given $\theta^{(t)}$ and n_C , (n_{CC}, n_{CI}, n_{CT}) follows a multinomial distribution with cell probabilities proportional to $((p_C^{(t)})^2, 2p_C^{(t)}p_I^{(t)}, 2p_C^{(t)}p_T^{(t)})$. Thus,

$$\begin{split} E_{\theta^{(t)}}[n_{CC}|n_C] &= n_C \cdot \frac{(p_C^{(t)})^2}{(p_C^{(t)})^2 + 2p_C^{(t)}p_I^{(t)} + 2p_C^{(t)}p_T^{(t)}} := n_{CC}^{(t)}, \\ E_{\theta^{(t)}}[n_{CI}|n_C] &= n_C \cdot \frac{2p_C^{(t)}p_I^{(t)}}{(p_C^{(t)})^2 + 2p_C^{(t)}p_I^{(t)} + 2p_C^{(t)}p_T^{(t)}} := n_{CI}^{(t)}, \\ E_{\theta^{(t)}}[n_{CT}|n_C] &= n_C \cdot \frac{2p_C^{(t)}p_I^{(t)} + 2p_C^{(t)}p_T^{(t)}}{(p_C^{(t)})^2 + 2p_C^{(t)}p_I^{(t)} + 2p_C^{(t)}p_T^{(t)}} := n_{CT}^{(t)}. \end{split}$$

- Similarly,

$$E_{\theta^{(t)}}[n_{II}|n_{I}] = n_{I} \cdot \frac{(p_{I}^{(t)})^{2}}{(p_{I}^{(t)})^{2} + 2p_{I}^{(t)}p_{T}^{(t)}} := n_{II}^{(t)},$$

$$E_{\theta^{(t)}}[n_{IT}|n_{I}] = n_{I} \cdot \frac{2p_{I}^{(t)}p_{T}^{(t)}}{(p_{I}^{(t)})^{2} + 2p_{I}^{(t)}p_{T}^{(t)}} := n_{IT}^{(t)}.$$

- - Obviously, $E_{\theta(t)}[n_{TT}|n_T] = n_{TT}$.
 - The E-step:

$$Q(\theta, \theta^{(t)}) = E_{\theta^{(t)}} \left[\log l(\theta|X) \middle| Y = (n_C, n_I, n_T) \right]$$

$$= c_1 + n_{CC}^{(t)} \log p_C^2 + n_{CI}^{(t)} \log(2p_C p_I) + n_{CT}^{(t)} \log(2p_C p_T)$$

$$+ n_{II}^{(t)} \log p_I^2 + n_{IT}^{(t)} \log(2p_I p_T) + n_{TT} \log p_T^2.$$

- The M-step: Solving the equation $\nabla Q(\theta, \theta^{(t)}) = 0$, we obtain

$$p_C^{(t+1)} = \frac{2n_{CC}^{(t)} + n_{CI}^{(t)} + n_{CT}^{(t)}}{2n},$$

$$p_I^{(t+1)} = \frac{n_{CI}^{(t)} + 2n_{II}^{(t)} + n_{IT}^{(t)}}{2n},$$

$$p_T^{(t+1)} = \frac{n_{CT}^{(t)} + n_{IT}^{(t)} + 2n_{TT}}{2n}.$$

2.3 EM Variants

- Monte Carlo EM: When $Q(\theta, \theta^{(t)}) = E_{\theta^{(t)}} [\log l(\theta|X)|Y = y]$ is difficult to compute analytically, it can be approximated via the Monte Carlo method. At each iteration t,
 - Draw samples $X_1^{(t)}, \dots, X_m^{(t)}$ from the conditional distribution $f_{X|Y}(x|y;\theta^{(t)})$.
 - The E-step: Calculate

$$\hat{Q}(\theta, \theta^{(t)}) = \frac{1}{m} \sum_{i=1}^{m} \log l(\theta | X_i^{(t)}) \xrightarrow{a.s.} E_{\theta^{(t)}} \left[\log l(\theta | X) | Y = y \right].$$

- The M-step: let

$$\theta^{(t+1)} = \arg\max_{\theta} \hat{Q}(\theta, \theta^{(t)}).$$

2.3 EM Variants

- EM Gradient Algorithm: In some cases, it may not be easy to find $\theta^{(t+1)} = \arg \max_{\theta} Q(\theta, \theta^{(t)}).$
 - Actually, if $\theta^{(t+1)}$ satisfies $Q(\theta^{(t+1)}, \theta^{(t)}) > Q(\theta^{(t)}, \theta^{(t)})$, then $\log l(\theta^{(t+1)}|Y = y) = Q(\theta^{(t+1)}, \theta^{(t)}) H(\theta^{(t+1)}, \theta^{(t)})$ $> Q(\theta^{(t)}, \theta^{(t)}) H(\theta^{(t+1)}, \theta^{(t)})$

$$\geq Q(\theta^{(t)}, \theta^{(t)}) - H(\theta^{(t)}, \theta^{(t)})$$
$$= \log l(\theta^{(t)}|Y = y).$$

– We let $g(\theta) = Q(\theta, \theta^{(t)})$ and apply the Newton's iteration once with $\theta^{(t)}$ as the initial value, that is,

$$\theta^{(t+1)} = \theta^{(t)} - \left[\nabla^2 g(\theta^{(t)})\right]^{-1} \nabla g(\theta^{(t)})$$

$$= \theta^{(t)} - \left[\nabla^2 g(\theta, \theta^{(t)})\right]^{-1} \Big|_{\theta = \theta^{(t)}} \nabla_\theta Q(\theta, \theta^{(t)}) \Big|_{\theta = \theta^{(t)}}.$$

• **Problem:** We want to maximize an objective function $g(\theta)$ for $\theta \in \Theta$.

• The MM algorithm:

- Suppose that there exists a function $M(\theta, \theta^*)$ satisfying

$$M(\theta, \theta^*) \le g(\theta)$$
 and $M(\theta^*, \theta^*) = g(\theta^*)$

for all $\theta, \theta^* \in \Theta$, it is said that $M(\theta, \theta^*)$ minorizes $g(\theta)$.

- For each given θ^* , $m(\theta) := M(\theta, \theta^*)$ is an "optimal" lower bound of $g(\theta)$.
- We iteratively maximizing the minorizing function by letting

$$\theta^{(t+1)} = \arg \max_{\theta \in \Theta} M(\theta, \theta^{(t)}).$$

for $t = 0, 1, 2, \cdots$

• Remarks:

- It can be seen that

$$g(\theta^{(t)}) = M(\theta^{(t)}, \theta^{(t)}) \le M(\theta^{(t+1)}, \theta^{(t)}) \le g(\theta^{(t+1)}).$$

 $-\theta^{(t+1)}$ need not to be the maximum point of $M(\theta, \theta^{(t)})$. It is suffice to find $\theta^{(t+1)}$ such that

$$M(\theta^{(t+1)}, \theta^{(t)}) > M(\theta^{(t)}, \theta^{(t)}).$$

- The EM algorithm is a special case of the MM algorithm.
 - * Let X and Y be the complete data and observed data, respectively.
 - * Define

$$Q(\theta, \theta^*) := E_{\theta^*} \left[\log l(\theta|X) | Y = y \right] = \int \left[\log f_X(x; \theta) \right] f_{X|Y}(x|y; \theta^*) dx$$

and

$$H(\theta, \theta^*) := \int \left[\log f_{X|Y}(x|y;\theta) \right] f_{X|Y}(x|y;\theta^*) dx.$$

• - * We have

$$\log l(\theta|Y = y) = \log f_Y(y;\theta)$$

$$= \log f_X(x;\theta) - \log f_{X|Y}(x|y;\theta)$$

$$= \int \left[\log f_X(x;\theta)\right] f_{X|Y}(x|y;\theta^*) dx$$

$$- \int \left[\log f_{X|Y}(x|y;\theta)\right] f_{X|Y}(x|y;\theta^*) dx$$

$$= Q(\theta,\theta^*) - H(\theta,\theta^*)$$

for any $\theta, \theta^* \in \Theta$.

* Using the Jensen's inequality, we also know that

$$H(\theta, \theta^*) \le H(\theta^*, \theta^*)$$

• - * Let
$$M(\theta, \theta^*) = Q(\theta, \theta^*) - H(\theta^*, \theta^*)$$
. Then
$$M(\theta, \theta^*) = Q(\theta, \theta^*) - H(\theta^*, \theta^*)$$
$$< Q(\theta, \theta^*) - H(\theta, \theta^*) = \log l(\theta|Y = y)$$

and

$$M(\theta^*, \theta^*) = Q(\theta^*, \theta^*) - H(\theta^*, \theta^*)$$
$$= \log l(\theta^*|Y = y).$$

So $M(\theta, \theta^*)$ minorize $\log l(\theta|Y=y)$.

* The EM algorithm calculates

$$\begin{split} \boldsymbol{\theta}^{(t+1)} &= \arg\max_{\boldsymbol{\theta} \in \Theta} Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}) \\ &= \arg\max_{\boldsymbol{\theta} \in \Theta} \left\{ Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}) - -H(\boldsymbol{\theta}^{(t)}, \boldsymbol{\theta}^{(t)}) \right\} = \arg\max_{\boldsymbol{\theta} \in \Theta} M(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}). \end{split}$$

- How to find the minorizing function $M(\theta, \theta^*)$?
- One way is to use the second order Taylor series expansion.
 - Note that

$$g(\theta) = g(\theta^*) + (\theta - \theta^*)^T \nabla g(\theta^*) + \frac{1}{2} (\theta - \theta^*)^T \nabla^2 g(\overline{\theta}) (\theta - \theta^*),$$

where $\overline{\theta}$ is a point between θ and θ^* .

- Suppose that we can find a **positive definite matrix** B so that $\nabla^2 g(\theta) B$ is nonnegative definite for all θ , denoted by $B \leq \nabla^2 g(\theta)$.
- Define

$$M(\theta, \theta^*) := g(\theta^*) + (\theta - \theta^*)^T \nabla g(\theta^*) + \frac{1}{2} (\theta - \theta^*)^T B(\theta - \theta^*).$$

Then $M(\theta, \theta^*)$ minorizes $g(\theta)$.

– The MM algorithm let $\theta^{(t+1)} = \theta^{(t)} - B^{-1} \nabla g(\theta^{(t)})$.

• Example: Logistic Regression. Let $(X_1, Y_1), \dots, (X_n, Y_n)$ be independent and identically distributed random vectors, where $Y_i \in \{0, 1\}$ and X_i , $i = 1, \dots, n$, are d-dimensional random vectors. Consider a logistic regression model

$$P(Y_i = 1 \mid X_i = x_i, \beta) = \frac{\exp\{x_i^T \beta\}}{1 + \exp\{x_i^T \beta\}}.$$

Given observations $(x_1, y_1), \dots, (x_n, y_n)$, we want to estimate $\beta = (\beta_1, \dots, \beta_d)^T$.

- The log-likelihood function is

$$\log l(\beta) = c + \sum_{i=1}^{n} y_i \cdot x_i^T \beta - \sum_{i=1}^{n} \log \left[1 + \exp\{x_i^T \beta\} \right].$$

• The gradient and Hessian of $\log l(\beta)$ are

$$\nabla \log l(\beta) = \sum_{i=1}^{n} y_i \cdot x_i - \sum_{i=1}^{n} \frac{1}{1 + \exp\{-x_i^T \beta\}} \cdot x_i$$

and

$$\nabla^2 \log l(\beta) = -\sum_{i=1}^n \frac{\exp\{-x_i^T \beta\}}{\left[1 + \exp\{-x_i^T \beta\}\right]^2} \cdot x_i x_i^T.$$

- Note that

$$-\frac{1}{4} \sum_{i=1}^{n} x_i x_i^T \le -\sum_{i=1}^{n} \frac{\exp\{-x_i^T \beta\}}{\left[1 + \exp\{-x_i^T \beta\}\right]^2} \cdot x_i x_i^T.$$

- The MM algorithm let

$$\beta^{(t+1)} = \beta^{(t)} + \left[\frac{1}{4} \sum_{i=1}^{n} x_i x_i^T \right]^{-1} \nabla \log l(\beta^{(t)}).$$

We don't need to calculate $\nabla^2 \log l(\beta^{(t)})$ for each iteration.

Homework

1. Assume that $U_i = (U_{i1}, \dots, U_{iK})$, where U_{i1}, \dots, U_{iK} are independent with $U_{ik} \sim N(\mu_k, \sigma_k^2)$. Further assume that $Z_i \in \{1, \dots, K\}$ is a discrete random variable independent of U_i with $P(Z_i = k) = p_k$, where $p_1 + \dots + p_K = 1$. Define

$$Y_i = \sum_{k=1}^K I(Z_i = k) U_{ik}$$

and $X_i = (Y_i, Z_i)$, $i = 1, \dots, n$. Given X_1, \dots, X_n (assume they are independent), find the MLE of $\theta = (\mu_1, \dots, \mu_k, \sigma_1^2, \dots, \sigma_K^2, p_1, \dots, p_K)$.

Homework

- 2. Assume $X = (X_1, X_2, X_3)$ follows the Multinomial $(n; p_1, p_2, p_3)$ distribution, where $p_i > \text{and } p_1 + p_2 + p_3 = 1$.
 - (a) Use the probability mass function of the multinomial distribution to prove that $X_1 + X_2$ follows a Binomial $(n; p_1 + p_2)$ distribution.
 - (b) Prove that given $X_1 + X_2 = m$, $m \le n$, (X_1, X_2) follows the distribution

Multinomial
$$\left(m; \frac{p_1}{p_1 + p_2}, \frac{p_2}{p_1 + p_2}\right)$$
.

Equivalently, given $X_1+X_2=m$, X_1 follows a Binomial $(m; p_1/(p_1+p_2))$ distribution.

Homework

- 3. Consider the peppered moth example with $n_C = 85$, $n_I = 196$, and $n_T = 341$. Suppose the sample collected by the researchers actually included $n_U = 578$ more moths that were known to be insularia or typica but whose exact phenotypes could not be determined.
 - (a) Derive the EM algorithm for maximum likelihood estimation of p_C , p_I , and p_T for this modified problem having observed data n_C , n_I , n_T , and n_U as given above.
 - (b) Apply the algorithm to find the MLE of p_C , p_I , and p_T .