MicroBlaze Micro Controller System v3.0

LogiCORE IP Product Guide

Vivado Design Suite

PG116 November 22, 2019

Table of Contents

IP Facts

Chapter 1: Overview
Feature Summary 5
Licensing and Ordering 7
Chapter 2: Product Specification
Standards
Performance
Resource Utilization
Port Descriptions
Register Space
Chapter 3: Designing with the Core
General Design Guidelines
Clocking
Resets
Protocol Description
Chapter 4: Design Flow Steps
Customizing and Generating the Core 14
Constraining the Core
Simulation 36
Synthesis and Implementation
Appendix A: Upgrading
Migrating to the Vivado Design Suite
Upgrading in the Vivado Design Suite
Appendix B: Debugging
Finding Help on Xilinx.com
Debug Tools
Simulation Debug

Hardware Debug	41
Appendix C: Application Software Development	
Xilinx Software Development Kit	42
Device Drivers	42
Appendix D: Additional Resources and Legal Notices Xilinx Resources	45
Documentation Navigator and Design Hubs	45
References	46
Revision History	46
Please Read: Important Legal Notices	47

Introduction

The LogiCORE™ IP MicroBlaze™ Micro Controller System (MCS) core is a complete processor system intended for controller applications. It is highly integrated and includes the MicroBlaze processor, local memory for program and data storage as well as a tightly coupled I/O module implementing a standard set of peripherals.

The MicroBlaze processor included in the MicroBlaze MCS core only has two fixed configurations, optimized for minimal area and for high performance. The full-featured MicroBlaze processor is available in the Vivado® Design Suite.

The core uses the Hierarchical IP technology to achieve full integration with the standard Vitis™ unified software platform.

Features

- MicroBlaze processor
- Local Memory
- MicroBlaze Debug Module (MDM)
 - Debug UART
- Tightly Coupled I/O Module including
 - I/O Bus
 - Interrupt Controller using fast interrupt mode
 - UART
 - Fixed Interval Timers
 - Programmable Interval Timers
 - General Purpose Inputs
 - General Purpose Outputs

LogiCORE IP Facts Table			
	Core Specifics		
Supported Device Family ⁽¹⁾	UltraScale+™ UltraScale™ Zynq®-7000 SoC 7 Series		
Supported User Interfaces	Local Memory Bus (LMB), Dynamic Reconfiguration Port (DRP)		
Resources	Performance and Resource Utilization web page		
	Provided with Core		
Design Files	RTL		
Example Design	Not Provided		
Test Bench	Not Provided		
Constraints File	Not Provided		
Simulation Model	Verilog and/or VHDL Structural		
Supported S/W Driver ⁽²⁾	Standalone		
	Tested Design Flows(3)		
Design Entry	Vivado Design Suite		
Simulation	For supported simulators, see the Xilinx Design Tools: Release Notes Guide.		
Synthesis	Vivado Synthesis		
Support			
Release Notes and Known Issues	Master Answer Record: 54414		
All Vivado IP Change Logs	Master Vivado IP Change Logs: 72775		
Xilinx Support web page			

Notes:

- For a complete list of supported devices, see the Vivado IP catalog.
- Standalone driver details can be found in <Install
 Directory>/vitis/<Release>/data/embeddedsw/
 doc/xilinx_drivers.htm.
 Linux: Linux OS and driver support information is available from the Xilinx Wiki Page.
- 3. For the supported versions of the tools, see the Xilinx Design Tools: Release Notes Guide.

Overview

The MicroBlaze™ MCS core is a highly integrated processor system intended for controller applications. Data and program are stored in a local memory, debug is facilitated by the MicroBlaze Debug Module (MDM). A standard set of peripherals is also included, providing basic functionality like interrupt controller, UART, timers and general purpose input and outputs.

Figure 1-1: MicroBlaze Micro Controller System

Feature Summary

MicroBlaze

The MicroBlaze embedded processor soft core is a reduced instruction set computer (RISC) optimized for implementation in Xilinx® devices. Detailed information on the MicroBlaze processor can be found in the *MicroBlaze Processor Reference Guide* (UG984) [Ref 1].

The MicroBlaze parameters in the MicroBlaze MCS core are fixed except for the possibility to enable/disable the debug functionality, set BSCAN location, including debug UART, and the selection of minimum area or high performance. Table 4-2 shows the core parameter values. These values correspond to the MicroBlaze Configuration Wizard Minimum Area

configuration, except when the high performance option is selected, in which case a few parameters are changed as listed in the table.

MicroBlaze MCS allows selecting either area or performance optimization. Area optimization uses the MicroBlaze 3-stage pipeline, and does not enable any additional execution units to achieve minimum area. Performance optimization uses the MicroBlaze 5-stage pipeline, and includes a barrel shifter, hardware multiplier, hardware divider, and pattern comparator for higher performance. Unless performance is an issue, it is recommended to use the default area optimization. Choosing performance optimization might also reduce code size, because the additional execution units allow the compiler to generate more efficient code.

Local Memory

Local memory is used for data and program storage and it is implemented using the block RAM. The size of the local memory is parameterized and can be between 4 KB and 128 KB. The local memory is connected to MicroBlaze through the Local Memory Bus, LMB, and the LMB BRAM Interface Controller cores. Detailed information on the LMB core can be found in the *Local Memory Bus (LMB) V10 Product Guide* (PG113) [Ref 2] and detailed information on the LMB BRAM Interface Controller core can be found in the *LMB BRAM Interface Controller Product Guide* (PG112) [Ref 3].

The memory sizes 4 KB, 8 KB, 16 KB, 32 KB, 64 KB and 128 KB require less resources, and should be used if possible.

The LMB Bus and the LMB BRAM Interface Controller core parameters are fixed except for the memory size and the option to enable Error Correction Code (ECC). The parameter values are available from Table 4-4 to 4-7.

The local memory provides an option to enable the Error Correcting Code (ECC). The ECC corrects single bit errors, and detects double bit errors. Using ECC requires additional block RAM resources to store the check bits, and reduces the number of available memory sizes to 16K, 32K, 48K, 64K, 80K. 96K and 128K. Two additional signals are also added to indicate single bit errors (LMB_CE) and double bit errors (LMB_UE).

Debug

The MDM core connects MicroBlaze debug logic to the Xilinx System Debugger (XSDB). XSDB can be used for downloading software, to set break points, view register and memory contents. If the Debug UART is enabled, XSDB can also be used for standard input and standard output. Detailed information about the MDM core can be found in the *MicroBlaze Debug Module (MDM) Product Guide* (PG115) [Ref 4].

The MDM parameters, except the JTAG user-defined register, BSCAN location, and the Debug UART, are fixed and their values can be found in Table 4-8.

When more than one MicroBlaze MCS core instance with debug enabled is included in the same design, a unique JTAG register must be used for each instance. When a single instance is used, the default value USER2 should be kept unchanged.

It is possible to select whether internal, external, or no BSCAN is used. With internal BSCAN, MicroBlaze MCS instantiates an internal BSCAN primitive. With external BSCAN, the BSCAN interface is enabled for external connection. With no BSCAN, parallel debug with an AXI slave interface is enabled.

I/O Module

The I/O Module core is a light-weight implementation of a set of standard I/O functions commonly used in a MicroBlaze processor sub-system. Detailed information about the I/O Module core can be found in the I/O Module Product Guide (PG111) [Ref 5].

The I/O Module core registers are mapped at address 0x80000000, and the I/O Bus is mapped at address 0xC0000000-0xFFFFFFFF in the MicroBlaze memory space. The fixed I/O Module parameter values can be found in Table 4-3.

Licensing and Ordering

This Xilinx LogiCORE™ IP module is provided at no additional cost with the Xilinx Vivado® Design Suite under the terms of the Xilinx End User License. Information about other Xilinx LogiCORE IP modules is available at the Xilinx Intellectual Property page. For information on pricing and availability of other Xilinx LogiCORE IP modules and tools, contact your local Xilinx sales representative.

Product Specification

Standards

The I/O Bus interface provided by the I/O Module core is fully compatible with the Xilinx® Dynamic Reconfiguration Port (DRP). For a detailed description of the DRP, see the 7 Series FPGAs Configuration User Guide (UG470) [Ref 6].

Performance

The frequency and latency of the modules in the MicroBlaze™ MCS core are optimized for use together with MicroBlaze. This means that the frequency targets are aligned to MicroBlaze targets as well as the access latency optimized for MicroBlaze data access.

Maximum Frequencies

For details about maximum frequencies, visit Performance and Resource Utilization.

Latency

Data read from I/O Module registers is available two clock cycles after the MicroBlaze load instruction is executed.

Data write to I/O Module registers is performed the clock cycle after the MicroBlaze store instruction is executed. Data accesses to peripherals connected on the I/O bus take three clock cycles plus the number of wait states introduced by the accessed peripheral.

Throughput

The maximum throughput when using the I/O bus is one read or write access every three clock cycles.

Resource Utilization

For details about resource utilization, visit Performance and Resource Utilization.

Port Descriptions

The I/O ports and signals for MicroBlaze MCS core are listed and described in Table 2-1.

Table 2-1: MicroBlaze MCS Signals

Port Name	MSB:LSB	I/O	Description		
System Signals					
Clk		I	System clock		
Reset		I	System reset		
	MicroBla	ze Sig	gnals		
Trace_Valid_Instr		0	Valid instruction on trace port		
Trace_Instruction	0:31	0	Instruction code		
Trace_PC	0:31	0	Program counter		
Trace_Reg_Write		0	Instruction writes to the register file		
Trace_Reg_Addr	0:4	0	Destination register address		
Trace_MSR_Reg	0:14	0	Machine status register		
Trace_New_Reg_Value	0:31	0	Destination register update value		
Trace_Jump_Taken		0	Branch instruction evaluated TRUE (taken)		
Trace_Delay_Slot		0	Instruction is in delay slot of a taken branch		
Trace_Data_AccessT		0	Valid D-side memory access		
Trace_Data_Address	0:31	0	Address for D-side memory access		
Trace_Data_Write_Value	0:31	0	Value for D-side memory write access		
Trace_Data_Byte_Enable	0:3	0	Byte enables for D-side memory access		
Trace_Data_Read		0	D-side memory access is a read		
Trace_Data_Write		0	D-side memory access is a write		
М	icroBlaze Debug Module	Signa	als (C_USE_BSCAN = 1)		
BSCAN_tdi		I	External BSCAN TDI		
BSCAN_reset		I	External BSCAN Reset		
BSCAN_shift		I	External BSCAN Shift		
BSCAN_update		I	External BSCAN Update		
BSCAN_capture		I	External BSCAN Capture		
BSCAN_sel		I	External BSCAN Select		
BSCAN_drck		I	External BSCAN DRCK		
BSCAN_tdo		0	External BSCAN TDO		
BSCAN_bscanid_en		I	External BSCAN Id Enable		
BSCAN_tck		I	External BSCAN TCK		

Table 2-1: MicroBlaze MCS Signals (Cont'd)

Port Name	MSB:LSB	I/O	Description	
MicroBlaze Debug Module Signals (C_USE_BSCAN = 2)				
S_AXI_DEBUG_araddr	15:0	I	Read address	
S_AXI_DEBUG_arready		0	Read address ready	
S_AXI_DEBUG_arvalid		ı	Read address valid	
S_AXI_DEBUG_awaddr	15:0	ı	Write address	
S_AXI_DEBUG_awready		0	Write address ready	
S_AXI_DEBUG_awvalid		I	Write address valid	
S_AXI_DEBUG_bready		ı	Write response ready	
S_AXI_DEBUG_bresp	1:0	0	Write response	
S_AXI_DEBUG_bvalid		0	Write response valid	
S_AXI_DEBUG_rdata	31:0	0	Read data	
S_AXI_DEBUG_rready		I	Read data ready	
S_AXI_DEBUG_rresp	1:0	0	Read data response	
S_AXI_DEBUG_rvalid		0	Read data valid	
S_AXI_DEBUG_wdata	31:0	ı	Write data	
S_AXI_DEBUG_wready		0	Write data ready	
S_AXI_DEBUG_wstrb	3:0	I	Write data strobe	
S_AXI_DEBUG_wvalid		I	Write data valid	
	Local Memory S	ignals	(C_ECC = 1)	
LMB_CE ⁽¹⁾		0	Local Memory Correctable Error	
LMB_UE ⁽¹⁾		0	Local Memory Uncorrectable Error	
	I/O Bu	Sign	als	
IO_Addr_Strobe		0	Address strobe signals valid I/O bus output signals	
IO_Read_Strobe		0	I/O Bus access is a read	
IO_Write_Strobe		0	I/O Bus access is a write	
IO_Address	31:0	0	Address for access	
IO_Byte_Enable	3:0	0	Byte enables for access	
IO_Write_Data	31:0	0	Data to write for I/O Bus write access	
IO_Read_Data	31:0	ı	Read data for I/O Bus read access	
IO_Ready		I	Ready handshake to end I/O Bus access	
	UART	Signa	ls	
UART_rxd		I	Receive Data	
UART_txd		0	Transmit Data	
UART_Interrupt		0	UART Interrupt	

Table 2-1: MicroBlaze MCS Signals (Cont'd)

Port Name	MSB:LSB	1/0	Description		
FIT Signals					
FITx_Interrupt ⁽²⁾		0	FITx timer lapsed		
FITx_Toggle ⁽²⁾		0	Inverted FITx_Toggle when FITx timer lapses		
	PIT Si	gnal	S		
PITx_Enable ⁽²⁾		I	PITx count enable when C_PITx_PRESCALER = External		
PITx_Interrupt ⁽²⁾		0	PITx timer lapsed		
PITx_Toggle ⁽²⁾		0	Inverted PITx_Toggle when PITx lapses		
	GPO S	igna	ls		
GPIOx_tri_o ⁽²⁾	[C_GPOx_SIZE - 1]:0	0	GPOx Output		
	GPI Si	gnal	s		
GPIOx_tri_i ⁽²⁾	[C_GPIx_SIZE - 1]:0	I	GPIx Input		
GPIx_Interrupt ⁽²⁾		0	GPIx input changed		
INTC Signals					
INTC_Interrupt ⁽³⁾	0:[C_INTC_INTR_SIZE - 1]	ı	External interrupt inputs		

Notes:

- 1. These signals are combinatorial outputs from the error correction logic, synchronous to the Clk input. Ensure that they are clocked with the same clock externally.
- 2. x = 1, 2, 3 or 4
- 3. Each of the interrupt inputs is treated as synchronous to the clock unless the corresponding bit in the parameter C_INTC_ASYNC_INTR is set. In that case, the input is synchronized with the number of flip-flops defined by the parameter C_INTC_NUM_SYNC_FF.

Register Space

The address map for the MicroBlaze MCS core is shown in Table 2-2.

Table 2-2: MicroBlaze MCS Address Map

Address (hex)	Name	Access Type	Description
0x0 - C_MEMSIZE-1	Local Memory	RW	Local Memory for MicroBlaze software
C_MEMSIZE - 0x7FFFFFF	Reserved		
0x80000000 - 0x800000FF	I/O Module	RW	Mapped to I/O Module registers
0x80000100 - 0xBFFFFFF	Reserved		
0xC0000000 - 0xFFFFFFF	I/O Bus	RW	Mapped to I/O Bus address output

Designing with the Core

This chapter includes guidelines and additional information to facilitate designing with the core.

General Design Guidelines

I/O Module Interfaces

See the I/O Module Product Guide (PG111) [Ref 5] for design guidelines for the I/O Bus, UART, Fixed Interval Timer, Programmable Interval Timer, General Purpose Output, General Purpose Input, and Interrupt Controller. All of these interfaces are directly connected to the I/O Module inside the MicroBlaze™ MCS core.

MicroBlaze Trace Signals

See the *MicroBlaze Processor Reference Guide* (UG081) [Ref 1] for a detailed description of the MicroBlaze Trace signals. The Trace signals are directly connected to the MicroBlaze™ processor inside the MicroBlaze MCS core.

MicroBlaze Debug Module

See the *Vitis Unified Software Platform Documentation* (UG1416) [Ref 7] and the *MicroBlaze Debug Module (MDM) Product Guide* (PG115) [Ref 4] for a description of debugging with the MicroBlaze Debug Module (MDM) core.

Clocking

The MicroBlaze MCS core is fully synchronous with all clocked elements clocked with the Clk input.

Resets

The Reset input is the master reset input signal for the entire MicroBlaze MCS core. In addition, the entire MicroBlaze MCS core or only the MicroBlaze processor can be reset from XSDB, provided that debug is enabled.

MicroBlaze MCS uses an embedded Processor System Reset IP core to generate internal reset signals. See the *Processor System Reset Module Product Guide* (PG164) [Ref 14] for a detailed description.

The Reset input is treated as asynchronous, which results in a 10 clock cycle delay until the MicroBlaze processor is reset after the input is set to 1. It is important to ensure that the clock is toggling nominally during this delay, otherwise the processor execution might be incorrect and result in corruption of the local memory.

After the Reset input is cleared to 0, there is a 73 clock cycle delay until the MicroBlaze processor fetches the first instruction of the reset vector at address 0x00000000 in the local memory.

Protocol Description

See the I/O bus timing diagrams in the I/O Module Product Guide (PG111) [Ref 5].

Design Flow Steps

This chapter describes customizing and generating the core, constraining the core, and the simulation, synthesis and implementation steps that are specific to this IP core. More detailed information about the standard Vivado® design flows and the IP integrator can be found in the following Vivado Design Suite user guides:

- Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994) [Ref 8]
- Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 9]
- Vivado Design Suite User Guide: Getting Started (UG910) [Ref 10]
- Vivado Design Suite User Guide: Logic Simulation (UG900) [Ref 11]

Customizing and Generating the Core

This section includes information on using Xilinx tools to customize and generate the core using the Vivado Design Suite.

If you are customizing and generating the core in the Vivado IP integrator, see the *Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator* (UG994) [Ref 8] for detailed information. IP integrator might auto-compute certain configuration values when validating or generating the design. To check whether the values do change, see the description of the parameter in this chapter. To view the parameter value you can run the validate_bd_design command in the Tcl console.

You can customize the IP for use in your design by specifying values for the various parameters associated with the IP core using the following steps:

- 1. Select the IP from the IP catalog.
- 2. Double-click the selected IP or select the Customize IP command from the toolbar or right-click menu.

For details, see the *Vivado Design Suite User Guide*: *Designing with IP* (UG896) [Ref 9] and the *Vivado Design Suite User Guide*: *Getting Started* (UG910) [Ref 10].

IMPORTANT: Using the Vivado Manage IP Flow for MicroBlaze MCS is not recommended, because the flow does not support hardware export to the Vitis^m software platform in the Vivado Integrated Design Environment (IDE), and any ELF association performed in the Manage IP Project is not available in the project where the existing IP is added.

Note: Figures in this chapter are illustrations of the MicroBlaze™ MCS core interface in the Vivado IDE. This layout might vary from the current version.

The MicroBlaze MCS core parameters are divided into eight tabs: Board, MCS, UART, FIT, PIT, GPO, GPI and Interrupts.

The Board tab is shown in Figure 4-1.

TIP: The board tab is only visible when a board has been defined for the project being used.

Figure 4-1: Board Tab

- Generate Board Based IO Constraints Enable board specific GPI, GPO, Reset, and UART interfaces. Board constraints are automatically generated for the selected interfaces.
- **Associate IP interface** ... Table to select board interface for Reset, UART, GPIO1, GPIO2, GPIO3, or GPIO4 interface.

The MCS parameter tab is shown in Figure 4-2.

Figure 4-2: MCS Parameter Tab

- Input Clock Frequency (MHz) Defines the input clock frequency. This parameter is not visible when customizing and generating the core in the Vivado IP integrator, because the IP integrator auto-computes the value from the Clk input.
- Memory Size Defines the local memory size, used to store the MicroBlaze processor software program instructions and data. Increase this value if the software program does not fit in available memory.
- **Error Correction Code** Enables Error Correction Codes (ECC) on the local memory to correct single bit errors and detect double bit errors.

- **Select MicroBlaze Optimization** Defines MicroBlaze optimization. When set to AREA, the smallest possible processor is implemented, using a 3-stage pipeline without any additional execution units. When set to PERFORMANCE, a higher performance processor is implemented, using a 5-stage pipeline including a barrel shifter, multiplier, divider, and pattern comparator.
- Enable I/O Bus Enables I/O Bus port.
- **Enable MicroBlaze Trace Bus** This option enables the MicroBlaze Trace bus, which provides access to several internal processor signals for trace purposes.
- Enable Debug Support When debug support is enabled (DEBUG ONLY or DEBUG & UART), it is possible to debug the software using JTAG, from the Xilinx Vitis unified software platform or directly using XSDB. When Debug UART is enabled (DEBUG & UART) it is also possible to use XSDB for software program standard input and standard output.
- **Debug JTAG User-defined Register** Specifies the JTAG user-defined register for debug. When more than one MicroBlaze MCS instance with debug enabled is included in the same design, a unique JTAG register must be used for each instance. When a single instance is used, the default value USER2 should be kept unchanged.
- **Select BSCAN location** Specifies whether internal, external, or no BSCAN is used. With internal BSCAN, MicroBlaze MCS instantiates an internal BSCAN primitive. With external BSCAN, the BSCAN interface is enabled for external connection. With no BSCAN, parallel debug with AXI slave interface is enabled.

The UART parameter tab is shown in Figure 4-3.

Figure 4-3: UART Parameter Tab

- **Enable Receiver** Enables UART receiver for character input. This is automatically connected to standard input (stdin) in the software program.
- **Enable Transmitter** Enables UART transmitter for character output. This is automatically connected to standard output (stdout) in the software program.
- **Define Baud Rate** Sets the UART baud rate. To get the correct baud rate, the input clock frequency must also be correctly defined.
- Programmable Baud Rate Determines if the UART baud rate is programmable. The
 default baud rate is calculated based on the input clock frequency and the defined
 baud rate.
- **Number of Data Bits** Defines the number of data bits used by the UART. Should almost always be set to 8.

- Use Parity Enable this parameter to use parity checking of the UART characters.
- Even or Odd Parity Select odd or even parity. Only available when parity is used.
- **Implement Receive Interrupt** Generate an interrupt when the UART has received a character. When the interrupt is not enabled the UART must be polled to check if data has been received.
- Implement Transmit Interrupt Generate an interrupt when the UART has sent a character. When the interrupt is not enabled the UART must be polled to wait until data has been transmitted.
- Implement Error Interrupt Generate an interrupt if an error occurs when the UART receives a character. This error can be a framing error, an overrun error or a parity error (if parity is used), When the interrupt is not enabled the UART must be polled to check if an error has occurred after a character has been received.

The FIT parameter tab showing the parameters for one of the four timers is illustrated in Figure 4-4.

Figure 4-4: FIT Parameter Tab

- Use FIT Enable the Fixed Interval Timer.
- **Number of Clocks Between Strobes** The number of clock cycles between each strobe.

• **Generate Interrupt** - Generate an interrupt for each Fixed Interval Timer strobe.

The PIT parameter tab showing the parameters for one of the four timers is illustrated in Figure 4-5.

Figure 4-5: PIT Parameter Tab

- Use PIT Enable the Programmable Interval Timer.
- Number of Bits for Timer The maximum number of cycles to count before stopping or restarting.
- **Shall Counter Value be Readable** The Programmable Interval Timer counter is readable by software when this parameter is set.

RECOMMENDED: It is recommended that you keep this enabled unless resource usage is critical.

 Define Prescaler - Selects a prescaler as source for the Programmable Interval Timer count. When no prescaler is selected the core input clock is used. Any Programmable Interval Timer or Fixed Interval Timer can be used as prescaler, as well as a dedicated external enable input.

• **Generate Interrupt** - Generate an interrupt when the Programmable Interval Timer has counted down to zero.

The GPO parameter tab showing the parameters for the four General Purpose Output ports is illustrated in Figure 4-6.

Figure 4-6: GPO Parameter Tab

- **Use GPO** Enable the General Purpose Output port.
- **Number of Bits** Set the number of bits of the General Purpose Output port.
- **Initial Value of GPO** Set the initial value of the General Purpose Output port. The right most bit in the value is assigned to bit 0 of the port, the next right most to bit 1, and so on.

The GPI parameter tab showing the parameters for the four General Purpose Input ports is illustrated in Figure 4-7.

Figure 4-7: GPI Parameter Tab

- Use GPI Enable the General Purpose Input port.
- Number of Bits Set the number of bits of the General Purpose Input port.
- **Generate Interrupt** Generate an interrupt when a General Purpose Input changes in the specified way either any change (Both Edges), only when changed from 0 to 1 (Rising Edge), or only when changed from 1 to 0 (Falling Edge).

The Interrupts parameter tab is shown in Figure 4-8.

Figure 4-8: Interrupts Parameter Tab

- Use External Interrupts Enable the use of external interrupt inputs.
- **Number of External Inputs** Select the number of used external interrupt inputs. This parameter is not visible when customizing and generating the core in the Vivado IP integrator, because the IP integrator auto-computes the value from the INTC_Interrupt input.
- Level or Edge of External Interrupts Select whether the input is considered level sensitive or edge triggered. Each bit in the value corresponds to the equivalent interrupt input. When a bit is set to one, the interrupt is edge triggered, otherwise it is level sensitive. This parameter is not visible when customizing and generating the core in the Vivado IP integrator, because the IP integrator auto-computes the value from the INTC Interrupt input.
- Positive or Negative External Interrupts Select whether to use High or Low level for level sensitive interrupts, and rising or falling edge for edge triggered interrupts. Each bit in the value corresponds to the equivalent interrupt input When a bit is set to one, High level or rising edge is used, otherwise Low level or falling edge is used. This

parameter is not visible when customizing and generating the core in the Vivado IP integrator, because the IP integrator auto-computes the value from the INTC_Interrupt input.

• Interrupts Asynchronous - Set whether to treat interrupts as asynchronous, by adding synchronization flip-flops on the input. Each bit in the value corresponds to the equivalent interrupt input When a bit is set to one, the input is treated as asynchronous.

Parameter Values

To create a MicroBlaze MCS core that is uniquely tailored for a specific system, certain features can be parameterized. This makes it possible for you to configure a component that only uses the resources required by the system, and operates with the best possible performance. The features that can be parameterized in the MicroBlaze MCS core are shown in Table 4-1. The internal modules of the MicroBlaze MCS core have fixed configurations detailed in:

- Table 4-2 MicroBlaze
- Table 4-3 I/O Module
- Table 4-4 and Table 4-5 LMB v10
- Table 4-6 and Table 4-7 LMB BRAM IF Controller
- Table 4-8 MicroBlaze Debug Module

Table 4-1: MicroBlaze MCS Parameters

Parameter Name	Feature/Description	Allowable Values	Default Value	VHDL Type
	MCS P	arameters		
C_FAMILY ⁽¹⁾	FPGA architecture	Supported architectures	kintex7	string
C_XDEVICE ⁽¹⁾	Device name	Supported devices	xc7k325t	string
C_XPACKAGE ⁽¹⁾	FPGA package name	Supported packages	ffg900	string
C_XSPEEDGRADE ⁽¹⁾	FPGA speed grade	Supported speed grades	-2	string
C_MICROBLAZE_ INSTANCE ⁽¹⁾	Instance name		microblaze_ 0	string
C_PATH	Hierarchical path from top of design to MCS core instance		mb/UO	
C_FREQ	Frequency of clk input		100000000	integer
C_MEMSIZE	Local memory size in bytes	4096 = 4KB 8192 = 8KB 12288 = 12KB 16384 = 16KB 20480 = 20KB 24576 = 24KB 32768 = 32KB 36864 = 36KB 49152 = 48KB 65536 = 64KB 69632 = 68KB 73728 = 72KB 81920 = 80KB 98304 = 96KB 131072=128KB	8192	integer

Table 4-1: MicroBlaze MCS Parameters (Cont'd)

Parameter Name	Feature/Description	Allowable Values	Default Value	VHDL Type	
C_DEBUG_ENABLED	Enable implementation of debug	0 = NONE 1 = DEBUG ONLY 2 = DEBUG & UART	0	integer	
C_ECC	Enable Error Correcting Code in local memory	0 = Disabled 1 = Enabled	0	integer	
C_OPTIMIZATION	Select optimization	0 = Area 1 = Performance	0	integer	
C_JTAG_CHAIN	Select JTAG user-defined register	1 = USER1 2 = USER2 3 = USER3 4 = USER4	2	integer	
C_USE_BSCAN	Select used BSCAN	0 = INTERNAL 1 = EXTERNAL 2 = NONE	0	integer	
C_BSCANID	Define BSCAN id	0 - 0xFFFFFFF	0x4900300	integer	
	I/O Bus	Parameter			
C_USE_IO_BUS	Use I/O Bus	0 = Not Used 1 = Used	0	integer	
	UART P	arameters			
C_USE_UART_RX	Use UART Receive	0 = Not Used 1 = Used	0	integer	
C_USE_UART_TX	Use UART Transmit	0 = Not Used 1 = Used	0	integer	
C_UART_BAUDRATE	Baud rate of the UART in bits per second	integer (for example 115200)	9600	integer	
C_UART_PROG_ BAUDRATE	Programmable UART baud rate	0 = Not Used 1 = Used	0	integer	
C_UART_DATA_BITS	The number of data bits in the serial frame	5 - 8	8	integer	
C_UART_USE_PARITY	Determines whether parity is used or not	0 = No Parity 1 = Use Parity	0	integer	
C_UART_ODD_PARITY	If parity is used, determines whether parity is odd or even	0 = Even Parity 1 = Odd Parity	0	integer	
C_UART_RX_INTERRUPT	Use UART RX Interrupt in INTC	0 = Not Used 1 = Used	0	integer	
C_UART_TX_INTERRUPT	Use UART TX Interrupt in INTC	0 = Not Used 1 = Used	0	integer	
C_UART_ERROR_ INTERRUPT	Use UART ERROR Interrupt in INTC	0 = Not Used 1 = Used	0	integer	
FIT Parameters					
C_USE_FITx ⁽¹⁾	Enable implementation of FIT	0 = Not Used 1 = Used	0	integer	

Table 4-1: MicroBlaze MCS Parameters (Cont'd)

Parameter Name	Feature/Description	Allowable Values	Default Value	VHDL Type
C_FITx_No_CLOCKS ⁽²⁾	The number of clock cycles between strobes	>2	6216	integer
C_FITx_INTERRUPT ⁽²⁾	Use FITx_Interrupt in INTC	0 = Not Used 1 = Used	0	integer
	PIT Pa	rameters		
C_USE_PITx ⁽²⁾	Enable implementation of PIT	0 = Not Used 1 = Used	0	integer
C_PITx_SIZE ⁽²⁾	Size of PITx counter	1 - 32	1	integer
C_PITx_READABLE ⁽²⁾	Make PITx counter software readable	0 = Not SW readable 1 = SW readable	1	integer
C_PITx_PRESCALER ⁽²⁾⁽³⁾	Select PITx prescaler	0 = No 5 = PIT1 prescaler 6 = PIT2 1 = FIT1 7 = PIT3 2 = FIT2 8 = PIT4 3 = FIT3 9 = External 4 = FIT4	0	integer
C_PITx_INTERRUPT ⁽²⁾	Use PITx_Interrupt in INTC	0 = Not Used 1 = Used	0	integer
	GPO Pa	arameters		
C_USE_GPOx ⁽²⁾	Use GPOx	0 = Not Used 1 = Used	0	integer
C_GPOx_SIZE ⁽²⁾	Size of GPOx	1 - 32	32	integer
C_GPOx_INIT ⁽²⁾	Initial value for GPOx	Fit Range (31:0)	all zeros	std_logic _vector
	GPI Pa	rameters		
C_USE_GPIx ⁽²⁾	Use GPIx	0 = Not Used 1 = Used	0	integer
C_GPIx_SIZE ⁽²⁾	Size of GPIx	1 - 32	32	integer
C_GPIx_INTERRUPT ⁽²⁾	Use GPIx_Interrupt in INTC	0 = None 1 = Both Edges 2 = Rising Edge 3 = Falling Edge	0	integer
	INTC P	arameters		-
C_INTC_USE_EXT_INTR	Use I/O Module external interrupt inputs	0 = Not Used 1 = Used	0	integer
C_INTC_INTR_SIZE	Number of external interrupt inputs used	1 - 16	1	integer
C_INTC_LEVEL_EDGE	Level or edge triggered for each external interrupt	For each bit: 0 = Level 1 = Edge	level	std_logic _vector

Table 4-1: MicroBlaze MCS Parameters (Cont'd)

Parameter Name	Feature/Description	Allowable Values	Default Value	VHDL Type
C_INTC_POSITIVE	Polarity for each external interrupt	For each bit: 0 = active-Low 1 = active-High	active-High	std_logic _vector
C_INTC_ASYNC_INTR	Asynchronous interrupt for each external interrupt	For each bit: 0 = Synchronous 1 = Asynchronous	Asynchronous	std_logic _vector
C_INTC_NUM_SYNC_FF ⁽¹⁾	Number of synchronization flip-flops	0 - 7	2	integer

Notes:

- 1. Values automatically populated by tool.
- 2. x=1, 2, 3 or 4.
- 3. Selecting PIT prescaler the same as PITx is illegal; for example, PIT2 cannot be prescaler to itself.

Table 4-2: Internal MicroBlaze Parameters Settings

Parameter Name	Feature/Description	Value
C_FAMILY	Target family	Value of MicroBlaze MCS parameter C_FAMILY
C_AREA_OPTIMIZED	Select implementation to optimize area	0 when MicroBlaze MCS parameter C_OPTIMIZATION = 1
C_AKEA_OF THIVITZED	with lower instruction throughput	1 when MicroBlaze MCS parameter C_OPTIMIZATION = 0
C_INTERCONNECT	Select interconnect 2= AXI	2
C_ENDIANNESS	Select endianness (1 = Little endian)	1
C_FAULT_TOLERANT	Implement fault tolerance	0
C_LOCKSTEP_SLAVE	Lockstep Slave	0
C_AVOID_PRIMITIVES	Disallow FPGA primitives	0
C_PVR	Processor version register mode selection All other PVR parameters are don't care.	0
C_RESET_MSR	Reset value for MSR register	0x00
C_INSTANCE	Instance Name	Value of MicroBlaze MCS parameter C_MICROBLAZE_INSTANCE
C_D_AXI	Data side AXI interface, only used internally to connect to the MDM. All other data side AXI parameters are don't care.	1 when MicroBlaze MCS parameter C_DEBUG_ENABLED = 2, 0 otherwise
C_D_LMB	Data side LMB interface 1	
C_I_AXI	Instruction side AXI interface. All other instruction side AXI parameters are don't care.	0
C_I_LMB	Instruction side LMB interface	1

Table 4-2: Internal MicroBlaze Parameters Settings (Cont'd)

Parameter Name	Feature/Description	Value
C_USE_BARREL	Include barrel shifter	Value of MicroBlaze MCS parameter C_OPTIMIZATION
C_USE_DIV	Include hardware divider	Value of MicroBlaze MCS parameter C_OPTIMIZATION
C_USE_HW_MUL	Include hardware multiplier	Value of MicroBlaze MCS parameter C_OPTIMIZATION
C_USE_FPU	Include hardware floating point unit	0
C_USE_MSR_INSTR	Enable use of instructions: MSRSET and MSRCLR	0
C_USE_PCMP_INSTR	Enable use of instructions: CLZ, PCMPBF, PCMPEQ, and PCMPNE	Value of MicroBlaze MCS parameter C_OPTIMIZATION
C_USE_REORDER_INSTR	Enable use of instructions: LBUR, LHUR, LWR, SBR,SHR, SWR, SWAPB, and SWAPH	0
C_*EXCEPTION* ⁽¹⁾ C_OPCODE_0x0_ILLEGAL C_USE_STACK_PROTECTION	No exceptions are used	0
C_DEBUG_ENABLED	MDM Debug interface	1 when MicroBlaze MCS parameter C_DEBUG_ENABLED > 0, 0 otherwise
C_NUMBER_OF_PC_BRK	Number of hardware breakpoints	1 when MicroBlaze MCS parameter C_DEBUG_ENABLED > 0, 0 otherwise
C_NUMBER_OF_RD_ADDR_BRK	Number of read address watchpoints	0
C_NUMBER_OF_WR_ADDR_BRK	Number of write address watchpoints	0
C_INTERRUPT_IS_EDGE	Level/Edge interrupt	0
C_EDGE_IS_POSITIVE	Negative/positive edge interrupt	1
C_FSL_LINKS	Number of AXI stream interfaces. All other stream parameters are don't care	0
C_USE_ICACHE	Instruction cache. All other instruction cache parameters are don't care	0
C_USE_DCACHE	Data cache. All other data cache parameters are don't care	0
C_USE_MMU	Memory management. All other MMU parameters are don't care	0
C_USE_INTERRUPT	Enable interrupt handling	2
C_USE_EXT_BRK	Enable external break handling	1 when MicroBlaze MCS parameter C_DEBUG_ENABLED > 0, 0 otherwise

Table 4-2: Internal MicroBlaze Parameters Settings (Cont'd)

Parameter Name	Feature/Description	Value
C_USE_EXT_NM_BRK	Enable external non-maskable break handling	1 when MicroBlaze MCS parameter C_DEBUG_ENABLED > 0, 0 otherwise
C_USE_BRANCH_TARGET_CACHE	Enable branch target cache. All other BTC parameters are don't care	0
C_DEBUG_INTERFACE	Select type of interface for connecting the MicroBlaze Debug Module	Set if MicroBlaze MCS Parameter C_USE_BSCAN=2

Notes:

Table 4-3: Internal I/O Module Parameters Settings

Parameter Name	Feature/Description	Value
C_BASEADDR	LMB I/O Module register base address	0x80000000
C_HIGHADDR	LMB I/O Module register high address	0x8000FFFF
C_MASK	LMB I/O Module register address space decode mask	0xC000000
C_IO_HIGHADDR	LMB I/O Module I/O bus base address	0xC0000000
C_IO_LOWADDR	LMB I/O Module I/O bus address	0xFFFFFFF
C_IO_MASK	LMB I/O Module I/O bus address space decode mask	0xC000000
C_LMB_AWIDTH	LMB address bus width	32
C_LMB_DWIDTH	LMB data bus width	32
C_INTC_HAS_FAST	Use fast interrupt mode	1
C_INTC_ADDR_WIDTH	Interrupt address width	12 - 16 ⁽¹⁾

Notes:

Table 4-4: Internal LMB_v10 Parameters Settings (ILMB)

Parameter Name	Feature/Description	Value
C_LMB_NUM_SLAVES	Number of LMB slaves	1
C_LMB_AWIDTH	LMB address bus width	32
C_LMB_DWIDTH	LMB data bus width	32
C_EXT_RESET_HIGH	Level of external reset	1 = active-High reset

Table 4-5: Internal LMB_v10 Parameters Settings (DLMB)

Parameter Name	Feature/Description	Value
C_LMB_NUM_SLAVES	Number of LMB slaves	2
C_LMB_AWIDTH	LMB address bus width	32

^{1. *} denotes wildcard and represents any number of characters or numbers.

^{1.} Value depends on C_MEMSIZE: 12 for 4096, 13 for 8192, 14 for 16384, 15 for 32768, and 16 for 65536.

Table 4-5: Internal LMB_v10 Parameters Settings (DLMB) (Cont'd)

Parameter Name	Feature/Description	Value
C_LMB_DWIDTH	LMB data bus width	32
C_EXT_RESET_HIGH	Level of external reset	1 = active-High reset

Table 4-6: Internal LMB BRAM IF Controller Parameters Settings (ILMB Controller)

Parameter Name	Feature/Description	Value
C_BASEADDR	LMB BRAM base address	0
C_HIGHADDR	LMB BRAM high address	Value of MicroBlaze MCS Parameter C_MEMSIZE
C_MASK	LMB decode mask	0x80000000
C_LMB_AWIDTH	LMB address bus width	32
C_LMB_DWIDTH	LMB data bus width	32
C_ECC	Implement error correction and detection All other ECC as well AXI parameters are don't care	Value of MicroBlaze MCS parameter C_ECC

Table 4-7: Internal LMB BRAM IF Controller Parameters Settings (DLMB Controller)

Parameter Name	Feature/Description	Value
C_BASEADDR	LMB BRAM base address	0
C_HIGHADDR	LMB BRAM high address	Value of MicroBlaze MCS Parameter C_MEMSIZE
C_MASK	LMB decode mask	0x80000000
C_LMB_AWIDTH	LMB address bus width	32
C_LMB_DWIDTH	LMB data bus width	32
C_ECC	Implement error correction and detection All other ECC as well as AXI parameters are don't care	Value of MicroBlaze MCS parameter C_ECC

Table 4-8: MicroBlaze Debug Module Parameters Settings

Parameter Name	Feature/Description	Value
C_FAMILY	FPGA architecture	Value of MicroBlaze MCS Parameter C_FAMILY
C_MB_DBG_PORTS	Number of MicroBlaze debug ports	1
C_USE_UART	Enables the UART interface.	Set if MicroBlaze MCS Parameter C_DEBUG_ENABLED=2
C_DBG_MEM_ACCESS	Enable AXI memory access from debug	0
C_DBG_REG_ACCESS	Enable debug register access from AXI	Set if MicroBlaze MCS Parameter C_USE_BSCAN=2
C_USE_CROSS_TRIGGER	Enable cross trigger	0

Table 4-8: MicroBlaze Debug Module Parameters Settings (Cont'd)

Parameter Name	Feature/Description	Value
C_DEBUG_INTERFACE	Select type of interface for connecting the MicroBlaze Debug Module	Set if MicroBlaze MCS Parameter C_USE_BSCAN=2
C_USE_BSCAN	Select BSCAN location	If MicroBlaze MCS Parameter C_USE_BSCAN > 0 set to C_USE_BSCAN + 1
C_BSCANID	Define BSCAN id	MicroBlaze MCS Parameter BSCANID

Parameter - Port Dependencies

The width of many of the MicroBlaze MCS signals depends on design parameters. The dependencies between the design parameters and I/O signals are shown in Table 4-9.

Table 4-9: Parameter-Port Dependencies

Parameter Name	Ports (Port width depends on parameter)
C_INTC_INTR_SIZE	INTC_Interrupt
C_GPO1_SIZE	GPIO1_tri_o
C_GPO2_SIZE	GPIO2_tri_o
C_GPO3_SIZE	GPIO3_tri_o
C_GPO4_SIZE	GPIO4_tri_o
C_GPI1_SIZE	GPIO1_tri_i
C_GPI2_SIZE	GPIO2_tri_i
C_GPI3_SIZE	GPIO3_tri_i
C_GPI4_SIZE	GPIO4_tri_i

Tool Flow

The MicroBlaze MCS core uses the generic tool flow of all Vivado IP catalog cores. The Vitis software platform development flow is briefly described here.

Generic Vivado Design Suite Tool Flow

The generic tool flow in the Vivado Design Suite is shown in Figure 4-9.

Figure 4-9: Generic Vivado Design Suite Tool Flow

This flow shows the specific steps required to implement a project with the MicroBlaze MCS core in the Vivado Design Suite, and the relationship between the hardware and software tools.

Export Hardware

In the Vivado Design Suite, select **File** > **Export** > **Export Hardware**.

If this is done after generating the bitstream, the bitstream can also be exported by selecting **Include bitstream**.

Note: The Vitis software platform can be started from the Vivado Design Suite using **Tools** > **Launch Vitis**.

Associate ELF Files

Select **Tools > Associate ELF Files...**. Initially, the default infinite loop ELF file, mb_bootloop_le.elf, is associated with the MicroBlaze MCS core. ELF files for implementation and simulation are specified separately.

The final bitstream updated with software is typically called <toplevel>.bit, and is normally located in the project directory ct-name>.runs/impl_1. For additional information, see the Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 9].

Vitis Software Platform

The Vitis software platform commands to achieve the MicroBlaze MCS specific steps above are as follows:

- 1. Import Hardware Description (All MicroBlaze MCS components are imported with one command)
 - a. Select File > New > Application Project....
 - b. Enter the application project name and click **Next**.
 - c. Select the tab Create a new platform from hardware (XSA).
 - d. Click +, and navigate to the hardware description file which is typically called <toplevel>.xsa.
 - e. Click Next to perform the import.
 - f. Ensure that the MicroBlaze MCS CPU is selected and click **Next**.
 - g. Select a template and click **Finish** to create the project.

After the application project has been created, a standalone board support package is available, which provides MicroBlaze processor-specific code, and the I/O Module software driver. The MicroBlaze MCS configuration is available in the generated file <toplevel>/<processor name>/standalone_domain/bsp/<processor name>/include/xparameters.h.

2. Import Hardware Implementation

This is done the same way as Import Hardware Description, but using a hardware description file that includes the bitstream.

For additional information, see the *Vitis Unified Software Platform Documentation* (UG1416) [Ref 7].

Output Generation

For details, see the Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 9].

User Parameters

Table 4-10 shows the relationship between the fields in the Vivado IDE and the User Parameters (which can be viewed in the Tcl Console).

Table 4-10: Vivado IDE Parameter to User Parameter Relationship

Vivado IDE Parameter/Value	User Parameter/Value	Default Value
Memory Size	C_MEMSIZE	8 KB
Error Correction Code	C_ECC	0
Select MicroBlaze Optimization	C_OPTIMIZATION	0
Enable IO Bus	C_USE_IO_BUS	0
Enable MicroBlaze Trace Bus	C_TRACE	0
Enable Debug Support	C_DEBUG_ENABLED	0
Select BSCAN location	C_USE_BSCAN	0
Debug JTAG User-defined Register	C_JTAG_CHAIN	2
Enable Receiver	C_USE_UART_RX	0
Enable Transmitter	C_USE_UART_TX	0
Define Baud Rate	C_UART_BAUDRATE	9600
Programmable Baud Rate	C_UART_PROG_BAUDRATE	0
Number of Data Bits	C_UART_DATA_BITS	8
Use Parity	C_UART_USE_PARITY	0
Even or Odd Parity	C_UART_ODD_PARITY	0
Implement Receive Interrupt	C_UART_RX_INTERRUPT	0
Implement Transmit Interrupt	C_UART_TX_INTERRUPT	0
Implement Error Interrupt	C_UART_ERROR_INTERRUPT	0
Use FIT	C_USE_FITn ⁽¹⁾	0
Number of Clocks Between Strobes	C_FITn_No_CLOCKS ⁽¹⁾	6216
Generate Interrupt	C_FITn_INTERRUPT ⁽¹⁾	0
Use PIT	C_USE_PITn ⁽¹⁾	0
Number of Bits for Timer	C_PITn_SIZE ⁽¹⁾	32
Shall Counter Value Be Readable	C_PITn_READABLE ⁽¹⁾	1
Define Prescaler	C_PITn_PRESCALER ⁽¹⁾	0
Generate Interrupt	C_PITn_INTERRUPT ⁽¹⁾	0
Use GPO	C_USE_GPOn ⁽¹⁾	0
Number of Bits	C_GPOn_SIZE ⁽¹⁾	32
Initial Value of GPO	C_GPOn_INIT ⁽¹⁾	0x00000000
Use GPI	C_USE_GPIn ⁽¹⁾	0
Number of Bits	C_GPIn_SIZE ⁽¹⁾	32
Generate Interrupt	C_GPIn_INTERRUPT ⁽¹⁾	0
Use External Interrupts	C_INTC_USE_EXT_INTERRUPT	0

Table 4-10: Vivado IDE Parameter to User Parameter Relationship (Cont'd)

Vivado IDE Parameter/Value	User Parameter/Value	Default Value
Number of External Inputs	C_INTC_INTR_SIZE	1
Level or Edge External Interrupts	C_INTC_LEVEL_EDGE	0x0000
Positive or Negative External Interrupts	C_INTC_POSITIVE	0xFFFF

Notes:

1. n = 1-4

Constraining the Core

This section contains information about constraining the core in the Vivado Design Suite.

Required Constraints

This section is not applicable for this IP core.

Device, Package, and Speed Grade Selections

This section is not applicable for this IP core.

Clock Frequencies

This section is not applicable for this IP core.

Clock Management

The MicroBlaze MCS core is fully synchronous with all clocked elements clocked by the Clk input.

Clock Placement

This section is not applicable for this IP core.

Banking

This section is not applicable for this IP core.

Transceiver Placement

This section is not applicable for this IP core.

I/O Standard and Placement

This section is not applicable for this IP core.

Simulation

For comprehensive information about Vivado Design Suite simulation components, as well as information about using supported third party tools, see the *Vivado Design Suite User Guide: Logic Simulation* (UG900) [Ref 11].

IMPORTANT: For cores targeting 7 series or Zynq®-7000 devices, UNIFAST libraries are not supported. Xilinx IP is tested and qualified with UNISIM libraries only.

Synthesis and Implementation

For details about synthesis and implementation, see the *Vivado Design Suite User Guide: Designing with IP* (UG896) [Ref 9].

Upgrading

This appendix contains information about migrating a design from ISE® to the Vivado® Design Suite, and for upgrading to a more recent version of the IP core. For customers upgrading in the Vivado Design Suite, important details (where applicable) about any port changes and other impact to user logic are included.

Migrating to the Vivado Design Suite

For information on migrating from Xilinx ISE Design Suite tools to the Vivado Design Suite, see the *ISE to Vivado Design Suite Migration Guide* (UG911) [Ref 12].

Upgrading in the Vivado Design Suite

This section provides information about any changes to the user logic or port designations that take place when you upgrade to a more current version of this IP core in the Vivado Design Suite.

The parameters, GPI1_INTERRUPT, GPI2_INTERRUPT, GPI3_INTERRUPT, and GPI4_INTERRUPT were changed in v2.0 of the core released in Vivado 2013.1, to add support for triggering GPI interrupts on either a rising or falling edge.

The parameters, USE_BOARD_FLOW, GPIO1_BOARD_INTERFACE, GPIO1_BOARD_INTERFACE, GPIO1_BOARD_INTERFACE, GPIO1_BOARD_INTERFACE, and UART_BOARD_INTERFACE were added in v2.0 of the core released in 2013.3, to add support for board level constraints.

The port names UART_Rx, UART_Tx, GPOn, and GPIn have been changed to UART_rxd, UART_txd, GPIOn_tri_o and GPIOn_tri_i respectively in v3.0 of the core.

The bus interface name IOBUS has been changed to IO in v3.0 of the core.

The parameters C_OPTIMIZATION and C_ECC were added in v3.0 of the core.

Because hardware export is performed with the generic Vivado tool flow in v3.0 of the core, the processor name is defined by the design hierarchy. This can be seen in the Software Development Kit, and in the Board Support Package generated files, in particular the defines in xparameters.h. The generic hardware export also results in changed memory

definitions in the automatically generated linker scripts for memory sizes requiring two physical LMB memories (12 KB, 20 KB, 24 KB, 36 KB, 40 KB, 48 KB, 68 KB, 72 KB, 80 KB, 96 KB). The two memory blocks can be merged by manually editing the linker script.

Debugging

This appendix includes details about resources available on the Xilinx Support website and debugging tools.

Finding Help on Xilinx.com

To help in the design and debug process when using the MicroBlaze MCS core, the Xilinx Support web page contains key resources such as product documentation, release notes, answer records, information about known issues, and links for obtaining further product support.

Documentation

This product guide is the main document associated with the MicroBlaze MCS core. This guide, along with documentation related to all products that aid in the design process, can be found on the Xilinx Support web page or by using the Xilinx® Documentation Navigator.

Download the Xilinx Documentation Navigator from the Downloads page. For more information about this tool and the features available, open the online help after installation.

Answer Records

Answer Records include information about commonly encountered problems, helpful information on how to resolve these problems, and any known issues with a Xilinx product. Answer Records are created and maintained daily ensuring that users have access to the most accurate information available.

Answer Records for this core can be located by using the Search Support box on the main Xilinx support web page. To maximize your search results, use proper keywords such as

- Product name
- Tool message(s)
- Summary of the issue encountered

A filter search is available after results are returned to further target the results.

Master Answer Record for the MicroBlaze MCS Core

AR: 54414

Technical Support

Xilinx provides technical support at the Xilinx Support web page for this LogiCORE™ IP product when used as described in the product documentation. Xilinx cannot guarantee timing, functionality, or support if you do any of the following:

- Implement the solution in devices that are not defined in the documentation.
- Customize the solution beyond that allowed in the product documentation.
- Change any section of the design labeled DO NOT MODIFY.

To contact Xilinx Technical Support, navigate to the Xilinx Support web page.

Debug Tools

The main tool available to address MicroBlaze MCS design issues is the Vivado® Design Suite debug feature.

Vivado Design Suite Debug Feature

The Vivado Design Suite debug feature inserts logic analyzer and virtual I/O cores directly into your design. The debug feature also allows you to set trigger conditions to capture application and integrated block port signals in hardware. Captured signals can then be analyzed. This feature in the Vivado IDE is used for logic debugging and validation of a design running in Xilinx devices.

The Vivado logic analyzer is used with the logic debug IP cores, including:

- ILA 2.0 (and later versions)
- VIO 2.0 (and later versions)

See Vivado Design Suite User Guide: Programming and Debugging (UG908) [Ref 13].

Reference Boards

All 7 series and UltraScale™ Xilinx development boards support the MicroBlaze MCS core. These boards can be used to prototype designs and establish that the core can communicate with the system.

Simulation Debug

The simulation debug flow for Mentor Graphics Questa Advanced Simulator is described below. A similar approach can be used with other simulators.

- Check for the latest supported versions of Questa Advanced Simulator in the Xilinx Design Tools: Release Notes Guide. Is this version being used? If not, update to this version.
- If using Verilog, do you have a mixed mode simulation license? If not, obtain a mixed-mode license.
- Ensure that the proper libraries are compiled and mapped. In the Vivado Design Suite
 Flow > Simulation Settings can be used to define the libraries.
- Have you associated the intended software program for the MicroBlaze processor with the simulation? Use the command **Tools** > **Associate ELF Files** in the Vivado Design Suite.

Hardware Debug

This section provides debug steps for common issues. The Vivado Design Suite debug feature is a valuable resource to use in hardware debug.

General Checks

Ensure that all the timing constraints for the core were properly incorporated from the example design and that all constraints were met during implementation.

- Does it work in post-place and route timing simulation? If problems are seen in hardware but not in timing simulation, this could indicate a PCB issue. Ensure that all clock sources are active and clean.
- If using MMCMs in the design, ensure that all MMCMs have obtained lock by monitoring the locked port.

Application Software Development

Xilinx Software Development Kit

The MicroBlaze™ MCS core can be used with the Xilinx® Vitis™ unified software platform in the same way as any embedded system.

The specific steps needed with the MicroBlaze MCS core are described in Vitis Software Platform in Chapter 4.

Device Drivers

The I/O Module is supported by the I/O Module driver (*iomodule*), included with the Xilinx Software Development Kit. The I/O Module driver API is designed to be as similar as possible to the equivalent discrete peripheral driver API.

The correspondence between the *iomodule* driver API and the *intc*, *uartlite*, *tmrctr* and *gpio* driver API is listed in Table C-1. The I/O Module functions are equivalent to the discrete driver counterparts in terms of semantics and syntax, except that all take an XIOModule instance pointer.

Table C-1: I/O Module Driver API Correspondence

I/O Module Function	Discrete Function	Remark
XIOModule_Initialize	XIntc_Initialize	Should only be called once for the entire I/O Module driver
XIOModule_Start	XIntc_Start	
XIOModule_Stop	XIntc_Stop	
XIOModule_Connect	XIntc_Connect	
XIOModule_Disconnect	XIntc_Disconnect	
XIOModule_Enable	XIntc_Enable	
XIOModule_Disable	XIntc_Disable	
XIOModule_Acknowledge	XIntc_Acknowledge	
XIOModule_LookupConfig	XIntc_LookupConfig	
XIOModule_ConnectFastHandler	XIntc_ConnectFastHandler	

Table C-1: I/O Module Driver API Correspondence (Cont'd)

I/O Module Function	Discrete Function	Remark
XIOModule_SetNormalIntrMode	XIntc_SetNormalIntrMode	
XIO Module_Void Interrupt Handler	XIntc_VoidInterruptHandler	
XIOModule_InterruptHandler	XIntc_InterruptHandler	
XIOModule_SetOptions	XIntc_SetOptions	
XIOModule_GetOptions	XIntc_GetOptions	
XIOModule_SelfTest	XIntc_SelfTest	
	XIntc_SimulateIntr	Corresponding hardware function not available in I/O Module
XIOModule_Initialize	XUartLite_Initialize	Should only be called once for the entire I/O Module driver
XIOModule_CfgInitialize	XUartLite_CfgInitialize	Should only be called once for the entire I/O Module driver
XIOModule_ResetFifos	XUartLite_ResetFifos	
XIOModule_Send	XUartLite_Send	
XIOModule_Recv	XUartLite_Recv	
XIOModule_IsSending	XUartLite_IsSending	
XIOModule_SetBaudRate		Programmable baud rate not available in discrete hardware
XIOModule_GetStats	XUartLite_GetStats	
XIOModule_ClearStats	XUartLite_ClearStats	
	XUartLite_SelfTest	The I/O Module self-test uses UART TX for output
XIOModule_Uart_EnableInterrupt	XUartLite_EnableInterrupt	
XIO Module_Uart_Disable Interrupt	XUartLite_DisableInterrupt	
XIOModule_SetRecvHandler	XUartLite_SetRecvHandler	
XIOModule_SetSendHandler	XUartLite_SetSendHandler	
XIOModule_Uart_InterruptHandler	XUartLite_InterruptHandler	
XIOModule_Initialize	XTmrCtr_Initialize	Should only be called once for the entire I/O Module driver
XIOModule_Timer_Start	XTmrCtr_Start	Added <i>Timer</i> to function name to avoid conflicting names
XIOModule_Timer_Stop	XTmrCtr_Stop	Added <i>Timer</i> to function name to avoid conflicting names
XIOModule_GetValue	XTmrCtr_GetValue	
XIOM odule_Set Reset Value	XTmrCtr_SetResetValue	
XIOModule_GetCaptureValue	XTmrCtr_GetCaptureValue	
XIOModule_IsExpired	XTmrCtr_IsExpired	
XIOModule_Reset	XTmrCtr_Reset	
XIOModule_Timer_SetOptions	XTmrCtr_SetOptions	Added <i>Timer</i> to function name to avoid conflicting names

Table C-1: I/O Module Driver API Correspondence (Cont'd)

I/O Module Function	Discrete Function	Remark
XIOModule_Timer_GetOptions	XTmrCtr_GetOptions	Added <i>Timer</i> to function name to avoid conflicting names
XIOModule_Timer_GetStats	XTmrCtr_GetStats	Added <i>Timer</i> to function name to avoid conflicting names
XIOModule_Timer_ClearStats	XTmrCtr_ClearStats	Added <i>Timer</i> to function name to avoid conflicting names
XIOModule_Timer_SelfTest	XTmrCtr_SelfTest	Added <i>Timer</i> to function name to avoid conflicting names
XIOModule_SetHandler	XTmrCtr_SetHandler	
XIOModule_Timer_InterruptHandler	XTmrCtr_InterruptHandler	Added <i>Timer</i> to function name to avoid conflicting names
XIOModule_Initialize	XGpio_Initialize	Should only be called once for the entire I/O Module driver
XIOModule_CfgInitialize	XGpio_CfgInitialize	Should only be called once for the entire I/O Module driver
	XGpio_SetDataDirection	Separate GPI/GPO, so not necessary
	XGpio_GetDataDirection	Separate GPI/GPO, so not necessary
XIOModule_DiscreteRead	XGpio_DiscreteRead	
XIOModule_DiscreteWrite	XGpio_DiscreteWrite	
XIOModule_DiscreteSet	XGpio_DiscreteSet	
XIOModule_DiscreteClear	XGpio_DiscreteClear	
	XGpio_SelfTest	No self-test of GPI or GPO provided
	XGpio_InterruptGlobalEnable	Corresponding hardware function not available in I/O Module
	XGpio_InterruptGlobalDisable	Corresponding hardware function not available in I/O Module
	XGpio_InterruptEnable	Corresponding hardware function not available in I/O Module
	XGpio_InterruptDisable	Corresponding hardware function not available in I/O Module
	XGpio_InterruptClear	Corresponding hardware function not available in I/O Module
	XGpio_InterruptGetEnabled	Corresponding hardware function not available in I/O Module
	XGpio_InterruptGetStatus	Corresponding hardware function not available in I/O Module

Additional Resources and Legal Notices

Xilinx Resources

For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx Support.

Documentation Navigator and Design Hubs

Xilinx® Documentation Navigator provides access to Xilinx documents, videos, and support resources, which you can filter and search to find information. To open the Xilinx Documentation Navigator (DocNav):

- From the Vivado® IDE, select Help > Documentation and Tutorials.
- On Windows, select Start > All Programs > Xilinx Design Tools > DocNav.
- At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics, which you can use to learn key concepts and address frequently asked questions. To access the Design Hubs:

- In the Xilinx Documentation Navigator, click the **Design Hubs View** tab.
- On the Xilinx website, see the Design Hubs page.

Note: For more information on Documentation Navigator, see the Documentation Navigator page on the Xilinx website.

References

These documents provide supplemental material useful with this user guide:

- 1. MicroBlaze Processor Reference Guide (UG984)
- 2. Local Memory Bus (LMB) V10 Product Guide (PG113)
- 3. IP Processor LMB BRAM Interface Controller Product Guide (PG112)
- 4. MicroBlaze Debug Module (MDM) Product Guide (PG115)
- 5. I/O Module Product Guide (PG111)
- 6. 7 Series FPGAs Configuration User Guide (UG470)
- 7. Vitis Unified Software Platform Documentation (UG1416)
- 8. Vivado® Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)
- 9. Vivado Design Suite User Guide: Designing with IP (UG896)
- 10. Vivado Design Suite User Guide: Getting Started (UG910)
- 11. Vivado Design Suite User Guide Logic Simulation (UG900)
- 12. ISE® to Vivado Design Suite Migration Guide (UG911)
- 13. Vivado Design Suite User Guide: Programming and Debugging (UG908)
- 14. Processor System Reset Module LogiCORE IP Product Guide (PG164)

Revision History

The following table shows the revision history for this document.

Date	Version	Revision
11/22/2019	3.0	Added support for selection of internal BSCAN, external BSCAN, or AXI parallel debug.
		• Updated to replace SDK with Vitis™.
12/20/2017	3.0	Updated to reflect the core changes to propagate clock, reset, and external interrupt properties from ports in the IP Integrator block designs. Removed corresponding settings from the IP configuration dialog.
10/05/2016	3.0	Updated Xilinx automotive applications disclaimer.
		Added note about Manage IP Flow.

Date	Version	Revision
04/06/2016	3.0	Added support for Hierarchical IP technology.
		Added option to enable Error Correction Codes (ECC) on the internal block RAM.
		Added option to set MicroBlaze optimization (area or performance).
11/18/2015	2.3	Added support for UltraScale+ families.
06/24/2015	2.3	Moved performance and resource utilization data to the web.
04/01/2015	2.3	Updated due to core revision.
04/02/2014	2.2	Updated due to core revision.
		Option to enable Debug UART added.
		Additional memory sizes added.
12/18/2013	2.1	Updated due to core revision.
		Synchronization flip-flops added on asynchronous interrupt inputs.
10/02/2013	2.0	Document version number advanced to match the core version number.
		Updated due to core revision.
		Added description of board interfaces.
03/20/2013	1.0	Initial release as a Product Guide; replaces PG048. No other documentation changes.

Please Read: Important Legal Notices

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT LIABILITY.

© Copyright 2013–2019 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Spartan, Versal, Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. AMBA, AMBA Designer, Arm, ARM1176JZ-S, CoreSight, Cortex, PrimeCell, Mali, and MPCore are trademarks of Arm Limited in the EU and other countries. All other trademarks are the property of their respective owners.