Матн 10 — Unit 3 Quick Снеск

 $Mr.\ Merrick\cdot\ October\ 9,\ 2025$

A. Multiple Choice

-				
1. Which is closest to	the thickness of a stand	lard credit card?		
(A) 0.76 mm	(B) 0.076 mm	(C) 7.6 mm	(D) $76 \mu\mathrm{m}$	
Solution: A				
2. Convert 3.25 km to inches (use 1 in $= 2.54$ cm).				
(A) 1.28×10^5 in	(B) 1.02×10^5 in	(C) 3.25×10^4 in	(D) 8.53×10^3 in	
Solution: A				
3. The area of a circle with diameter 2.00 in expressed in cm ² is closest to				
(A) 3.14 cm^2	(B) 20.3 cm^2	(C) 10.2 cm^2	(D) 6.45 cm^2	
Solution: B				
4. Convert 2.4 m ² into	$ m cm^2$.			
(A) 240 cm^2	(B) $24,000 \text{ cm}^2$	(C) 2400 cm^2	(D) $240,000 \text{ cm}^2$	
Solution: B				
5. A rectangular box measures 12 in \times 8 in \times 5 in. Its volume in litres is closest to				
(A) 7.9 L	(B) 3.9 L	(C) 4.9 L	(D) 7.0 L	
Solution: A				
6. Which metric unit	is most reasonable to m	easure the thickness of	a human hair?	
(A) Millimetre	(B) Micrometre	(C) Nanometre	(D) Centimetre	
Solution: B				
7. Convert 1 mile ² inte	o km ² (1 mi = 1.609 km	n).		

(A) 1.61 km^2	(B) 2.59 km^2	(C) 3.22 km^2	(D) 1.00 km^2
Solution: B			
8. The lateral surface	area of a cylinder of ra	dius $r = 3$ and height h	t=10 is
(A) 30π	(B) 60π	(C) 90π	(D) 120π
Solution: B			
9. The volume of a co	one of radius r and height	ht $3r$ is	
(A) πr^3	(B) $3\pi r^3$	(C) $\frac{1}{3}\pi r^3$	(D) πr^2
Solution: A			
10. A sphere has volun	ne 36π . Its surface area	is	
(A) 36π	(B) 48π	(C) 81π	(D) 144π
Solution: A			
	corded as 12.30 cm was a ses does it have, and to w		
(A) 3 s.f.; nearest 0.1 cm	(B) 4 s.f.; nearest 0.01 cm	(C) 4 s.f.; nearest 0.1 cm	(D) 5 s.f.; nearest 0.01 cm
Solution: B			
12. Which unit would	be most appropriate for	the area of a classroom	n floor?
$(A) \text{ mm}^2$	(B) cm^2	(C) m ²	(D) km^2
Solution: C			

C. Written Response

Show your work and include units.

1. Convert 45 km/h to m/s.

Solution:

45
$$\frac{\text{km}}{\text{h}} \times \frac{1000 \text{ m}}{1 \text{ km}} \times \frac{1 \text{ h}}{3600 \text{ s}} = 12.5 \text{ m/s}$$

2. A cylinder has radius 7.5 cm and height 20 cm. Find its total surface area.

Solution:

$$S = 2\pi r^2 + 2\pi rh = 2\pi (7.5)^2 + 2\pi (7.5)(20) = 412.5\pi \approx 1.296 \times 10^3 \text{ cm}^2.$$

3. The volume of a sphere is 288π cm³. Find its radius.

Solution:

$$\frac{4}{3}\pi r^3 = 288\pi \implies r^3 = 216 \implies r = 6 \text{ cm}.$$

4. Convert 15 ft³ into litres. (Use 1 ft = 0.3048 m, 1 m³ = 1000 L).

Solution:

$$15(0.3048)^3 \cdot 1000 \approx 4.25 \times 10^2 \text{ L}$$

5. A pyramid has square base 12 m and height 15 m. Find its volume.

Solution:

$$V = \frac{1}{3}bh = \frac{1}{3}(12^2)(15) = 720 \text{ m}^3.$$

6. A cylindrical water tank of diameter $3.6~\mathrm{m}$ and height $4.5~\mathrm{m}$ is filled to 80% of capacity. Find the volume of water in litres.

Solution: Full volume = $\pi r^2 h = \pi (1.8^2)(4.5) = 45.8 \text{ m}^3$. Water = $0.8 \times 45.8 = 36.7 \text{ m}^3 \approx 3.67 \times 10^4 \text{ L}$.

7. A wooden beam is cut into a square prism 20 cm long with diagonal cross-section 10 cm. Find its volume.

Solution: Square side = $\frac{10}{\sqrt{2}}$ = 7.07 cm. Volume = $20(7.07^2) \approx 1.00 \times 10^3$ cm³.

8. The Great Pyramid of Giza has base length 230 m and original height 146 m. Approximate its volume in cubic kilometres.

Solution:
$$V = \frac{1}{3}(230^2)(146) \approx 2.57 \times 10^6 \text{ m}^3 = 2.57 \times 10^{-3} \text{ km}^3$$
.

9. A steel sphere of radius 5 cm is melted and recast into cylindrical rods of radius 0.5 cm and length 20 cm. How many rods can be made?

Solution: Sphere volume = $\frac{4}{3}\pi(125)$ = 523.6 cm³. Cylinder volume = $\pi(0.5^2)(20)$ = 15.7 cm³. Ratio ≈ 33 rods (whole rods).

10. A cube of edge x cm has the same surface area as a sphere of radius r = 6 cm. Find x.

Solution: Cube area = $6x^2$, sphere area = $4\pi r^2 = 144\pi$. Equate: $6x^2 = 144\pi \Rightarrow x = \sqrt{24\pi} \approx 8.68$ cm.

11. A cone and a hemisphere share the same base radius r and equal volumes. Find the ratio of the cone's height h to r.

Solution:
$$\frac{1}{3}\pi r^2 h = \frac{2}{3}\pi r^3 \Rightarrow h = 2r$$
.

12. A right circular cylinder of radius 40 cm and length 1.5 m lies on its side and is filled to half its depth. Derive a formula (in terms of r, L, θ) for the volume of liquid, and then evaluate numerically.

Solution: For fill depth h, the cross-sectional area is the circular segment $A = \frac{r^2}{2}(\theta - \sin \theta)$ with $\theta = 2\arccos\left(\frac{r-h}{r}\right)$. At half depth (h=r), $\theta = \pi$, so $A = \frac{\pi r^2}{2}$. Volume $= L \cdot A = \frac{\pi r^2 L}{2}$. With r=40 cm and L=150 cm: $V = \frac{\pi (40)^2 (150)}{2} \approx 3.77 \times 10^5$ cm³ $\approx 3.77 \times 10^2$ L.

13. A decorative garden light consists of a hemisphere (radius 9 cm) mounted on a right circular cylinder (radius 9 cm, height 18 cm). Find the total exterior surface area (exclude the join) and the total volume.

Solution: Surface area = $2\pi rh$ (cylinder curved) $+2\pi r^2$ (hemisphere) = $2\pi(9)(18) + 2\pi(9)^2 = 324\pi + 162\pi = 486\pi$ cm² $\approx 1.53 \times 10^3$ cm². Volume = $\pi r^2 h + \frac{2}{3}\pi r^3 = \pi(9)^2(18) + \frac{2}{3}\pi(9)^3 = 1458\pi + 486\pi = 1944\pi$ cm³ $\approx 6.11 \times 10^3$ cm³.

14. The area of an irregular garden bed is estimated by decomposing it into a $6.0~\mathrm{m} \times 4.0~\mathrm{m}$ rectangle and a semicircle of diameter $6.0~\mathrm{m}$. State the area to an appropriate number of significant figures and comment on the effect of measurement precision on your result.

Solution: Rectangle = 24.0 m². Semicircle with r = 3.0 m has area $\frac{1}{2}\pi r^2 = \frac{1}{2}\pi (9.0) = 14.137...$ m². Total ≈ 38.1 m². Given inputs to 2–3 s.f., report 38.1 m² (3 s.f.). Uncertainty in the ± 0.1 m measurements changes area by roughly a few percent.