Functional and logic programming - written exam -

Important:

- 1. Subjects are graded as follows: of 1p; A 1.5p; B 2.5p; C 2.5p; D 2.5p.
- 2. Prolog problems will be resolved using SWI Prolog. The following are required: (1) explanation of the code and of the reasoning behind it; (2) recursive model that solves the problem, for all the predicates used; (3) specification of every predicate (parameters and their meaning, flow model, type of the predicate deterministic/non-deterministic).
- 3. Lisp problems will be resolved using Common Lisp. The following are required: (1) explanation of the code and of the reasoning behind it; (2) recursive model that solves the problem, for each function used; (3) specification of every function (parameters and their meaning).
- A. The following function definition in LISP is given

 (DEFUN Fct(F L)

 (COND

 ((NULL L) NIL)

 ((FUNCALL F (CAR L)) (CONS (FUNCALL F (CAR L)) (Fct F (CDR L))))

 (T NIL)

)

Rewrite the definition in order to avoid the double recursive call **(FUNCALL F (CAR L))**. Do NOT redefine the function. Do NOT use SET, SETQ, SETF. Justify your answer.

B. Given a heterogeneous list formed by numbers and non-empty linear numerical lists, write a SWI-Prolog program that computes the difference between the smallest maximum number from the sublists and the greatest minimum value from the sublists. We assume the input list contains at least one sublist. For example, for the list [[4, 2, 18], 7, 2, -3, [6, 9, 11, 3], 4, [5, 9, 19]] the result will be 6.

C. Given a list made of integer numbers, generate in PROLOG the list of all subsets with even number of elements. Write the mathematical models and flow models for the predicates used. For example, for the list $L=[2,3,4] \Rightarrow [[],[2,3],[2,4],[3,4]]$ (not necessarily in this order).

D. Given a nonlinear list, write a Lisp function to replace all even numerical values with their natural successor. **A MAP function shall be used. Example** for the list (1 s 4 (2 f (7))) the result is (1 s 5 (3 f (7))).