Algebra Basic Definitions

Riccardo Finotello

- **Semigroup** $(G, \cdot) \longrightarrow e.g.: (\mathbb{N} \setminus \{0\}, +), (\mathbb{Z}, min):$
 - i) G is a set,
 - ii) $\cdot: G \times G \to G$, $(g,h) \mapsto l \mid (g \cdot h) \cdot l = g \cdot (h \cdot l) \quad \forall g,h,l \in G$.
- Monoid $(M, \cdot) \longrightarrow e.g.: (\mathbb{N}, +), (\mathbb{N} \setminus \{0\}, \cdot):$
 - i) M is a semigroup,
 - ii) $\exists \mathbb{1}_M \mid m \cdot \mathbb{1}_M = \mathbb{1}_M \cdot m = m \quad \forall m \in M.$
- Group $(\mathbb{G},\cdot) \longrightarrow \text{e.g.: } (\mathbb{Z}_n, \cdot), (S_n, \cdot), (SO(n), \cdot)$:
 - i) G is a monoid,
 - ii) $\forall g \in \mathbb{G} \ \exists \ g^{-1} \in \mathbb{G} \ | \ g \cdot g^{-1} = g^{-1} \cdot g = \mathbb{1}_{\mathbb{G}}.$
- Ring $(\mathbb{R}, +, \cdot) \longrightarrow e.g.: (\mathbb{Z}, +, \cdot)$, End (\mathbb{G}) where \mathbb{G} is an abelian group:
 - i) $(\mathbb{R}, +)$ is an abelian group (i.e. $g + h = h + g \quad \forall g, h \in \mathbb{R}$),
 - ii) (\mathbb{R}, \cdot) is a monoid,
 - iii) $r \cdot (s+t) = r \cdot s + r \cdot t \quad \forall r, s, t \in \mathbb{R},$
 - iv) $(r+s) \cdot t = r \cdot t + s \cdot t \quad \forall r, s, t \in \mathbb{R}.$
- Division ring $(R, +, \cdot) \longrightarrow e.g.: (\mathbb{H}, +, \cdot):$
 - i) $(R, +, \cdot)$ is a ring,
 - ii) $\forall r \in \mathbb{R} \ \exists \ r^{-1} \in \mathbb{R} \ | \ r \cdot r^{-1} = r^{-1} \cdot r = \mathbb{1}_{\mathbb{R}}.$
- Field $(\mathbb{F}, +, \cdot) \longrightarrow e.g.: (\mathbb{C}, +, \cdot):$
 - i) $(\mathbb{F}, +, \cdot)$ is a commutative ring (i.e. $f \cdot g = g \cdot f \quad \forall f, g \in \mathbb{F}$),
 - ii) $\exists \, \mathbb{1}_{\mathbb{F}} \in \mathbb{F} \mid \, \mathbb{1}_{\mathbb{F}} \cdot f = f \cdot \mathbb{1}_{\mathbb{F}} = f \quad \forall f \in \mathbb{F}.$
- R-module M \longrightarrow e.g.: C^{∞} (M)-module of $X \in \Gamma$ (M, TM):
 - i) (M, +) is an abelian group,
 - ii) $(R, +, \cdot)$ is a ring,
 - iii) $\cdot : \mathbf{R} \times \mathbf{M} \to \mathbf{M}, \ (r,m) \mapsto r \cdot m \ | \ r \cdot (m+n) = r \cdot m + r \cdot n \ \forall r \in \mathbf{R}, \ \forall m,n \in \mathbf{M},$
 - iv) $: \mathbb{R} \times \mathbb{M} \to \mathbb{M}, (r, m) \mapsto r \cdot m \mid (r + s) \cdot m = r \cdot m + s \cdot m \quad \forall r, s \in \mathbb{R}, \forall m \in \mathbb{M},$
 - v) $: \mathbf{R} \times \mathbf{M} \to \mathbf{M}, (r, m) \mapsto r \cdot m \mid (r \cdot s) \cdot m = r \cdot (s \cdot m) \quad \forall r, s \in \mathbf{R}, \forall m \in \mathbf{M},$
 - vi) \cdot : R × M \rightarrow M, $(r, m) \mapsto r \cdot m \mid \mathbb{1}_{R} \cdot m = m \cdot \mathbb{1}_{R} = m \ \forall m \in M.$
- F-vector space $V \longrightarrow e.g.: (\mathbb{R}^n, +, \cdot)$
 - i) V is a F-module,
 - ii) F is a field.