Predicting Exoplanet Mass-Radius Relationship: a Nonparametric Approach

Bo Ning¹

with Angie Wolfgang^{2,3} and Sujit Ghosh¹

¹ North Carolina State University

²Pennsylvania State University

³NSF Astronomy & Astrophysics Postdoctoral Fellow

September 24, 2017

Project is supported by SAMSI and NSF.

Collaborators

Sujit Ghosh (NC State, SAMSI)

Peter Bloomfield (NC State University)

Angie Wolfgang (Penn State University)

Subhashis Ghoshal (NC State University)

Outline

- 1 Background
- 2 Bernstein polynomials
- 3 Building a model for estimating M-R relation
- 4 Results
- 5 Conclusion

Section 1

- 1 Background
- 2 Bernstein polynomials
- 3 Building a model for estimating M-R relation
- 4 Results
- 5 Conclusion

- Astronomers have discovered thousands of exoplanets with either Mass or radius measurements
- Knowing a planet's mass and radius is important for understanding its compositions
- Only small portion planets have both mass and radius measurements
- Mass: radial velocity; Radius: transits
- To estimate the mass-radius relation (M-R relation) and use it to predict other planets' mass or radius

- Astronomers have discovered thousands of exoplanets with either Mass or radius measurements
- Knowing a planet's mass and radius is important for understanding its compositions
- Only small portion planets have both mass and radius measurements
- Mass: radial velocity; Radius: transits
- To estimate the mass-radius relation (M-R relation) and use it to predict other planets' mass or radius

- Astronomers have discovered thousands of exoplanets with either Mass or radius measurements
- Knowing a planet's mass and radius is important for understanding its compositions
- Only small portion planets have both mass and radius measurements
- Mass: radial velocity; Radius: transits
- To estimate the mass-radius relation (M-R relation) and use it to predict other planets' mass or radius

- Astronomers have discovered thousands of exoplanets with either Mass or radius measurements
- Knowing a planet's mass and radius is important for understanding its compositions
- Only small portion planets have both mass and radius measurements
- Mass: radial velocity; Radius: transits
- To estimate the mass-radius relation (M-R relation) and use it to predict other planets' mass or radius

- Astronomers have discovered thousands of exoplanets with either Mass or radius measurements
- Knowing a planet's mass and radius is important for understanding its compositions
- Only small portion planets have both mass and radius measurements
- Mass: radial velocity; Radius: transits
- To estimate the mass-radius relation (M-R relation) and use it to predict other planets' mass or radius

A hierarchical Bayesian power-law model

Model (HBM, WRF16)

$$\begin{split} & \textit{M}_{i}^{\text{obs}} \overset{\textit{ind}}{\sim} \mathcal{N}(\textit{M}_{i}, \sigma^{\text{obs}}_{\textit{M}, i}), \\ & \textit{R}_{i}^{\text{obs}} \overset{\textit{ind}}{\sim} \mathcal{N}(\textit{R}_{i}, \sigma^{\text{obs}}_{\textit{R}, i}), \\ & \textit{M}_{i}|\textit{R}_{i}, \textit{C}, \gamma, \sigma_{\textit{M}} \sim \mathcal{N}(\textit{CR}_{i}^{\gamma}, \sigma_{\textit{M}}) \end{split}$$

 M_i is the planet mass divided by the Earth's mass, R_i is the planet radius divided by the Earth's radius.

A hierarchical Bayesian power-law model

Figure: M-R relation using power-law model. (Copy from WRF16)

A hierarchical Bayesian power-law model

Model (HBM, WRF16)

$$egin{aligned} M_i^{ ext{obs}} &\stackrel{ ext{ind}}{\sim} \mathcal{N}(M_i, \sigma_{M,i}^{ ext{obs}}), \ R_i^{ ext{obs}} &\stackrel{ ext{ind}}{\sim} \mathcal{N}(R_i, \sigma_{R,i}^{ ext{obs}}), \ M_i | R_i, C, \gamma, \sigma_M &\sim \mathcal{N}(CR_i^{\gamma}, \sigma_M) \end{aligned}$$

 M_i is the planet mass divided by the Earth's mass, R_i is the planet radius divided by the Earth's radius.

- Normal distributed?
- Constant intrinsic scatter?
- Only one power-law?

Section 2

- 1 Background
- 2 Bernstein polynomials
- 3 Building a model for estimating M-R relation
- 4 Results
- 5 Conclusion

Nonparametric approaches

- Basis expansion, Gaussian process, Kernel methods, Dirichlet process,
 Pólya tree
- Basis expansion: spline functions, Bernstein polynomials, wavelets trigonometric polynomials

Definition (Bernstein polynomial)

For a continuous function $F:[0,1]\to\mathbb{R}$, the associated Bernstein polynomial is defined as

$$B(x; k, F) = \sum_{k=0}^{d} F\left(\frac{k}{d}\right) {d \choose k} x^{k} (1-x)^{d-k}.$$

■ As $d \to \infty$, B(x; d, F) converge to F (uniformly) by Weierstrass approximation theorem

Nonparametric approaches

- Basis expansion, Gaussian process, Kernel methods, Dirichlet process,
 Pólya tree
- Basis expansion: spline functions, Bernstein polynomials, wavelets, trigonometric polynomials

Definition (Bernstein polynomial)

For a continuous function $F:[0,1]\to\mathbb{R}$, the associated Bernstein polynomial is defined as

$$B(x; k, F) = \sum_{k=0}^{d} F\left(\frac{k}{d}\right) {d \choose k} x^{k} (1-x)^{d-k}.$$

■ As $d \to \infty$, B(x; d, F) converge to F (uniformly) by Weierstrass approximation theorem

Nonparametric approaches

- Basis expansion, Gaussian process, Kernel methods, Dirichlet process,
 Pólya tree
- Basis expansion: spline functions, Bernstein polynomials, wavelets, trigonometric polynomials

Definition (Bernstein polynomial)

For a continuous function $F:[0,1]\to\mathbb{R}$, the associated Bernstein polynomial is defined as

$$B(x; k, F) = \sum_{k=0}^{d} F\left(\frac{k}{d}\right) {d \choose k} x^{k} (1-x)^{d-k}.$$

■ As $d \to \infty$, B(x; d, F) converge to F (uniformly) by Weierstrass approximation theorem

Bernstein polynomial

A Bernstein polynomial density can be obtained by taking derivative on B(x; k, F), such that

$$b(x;k,f) = \sum_{k=1}^{d} \left(F\left(\frac{k}{d}\right) - F\left(\frac{k-1}{d}\right) \right) \beta_k(x;k,d-k+1),$$

where $\beta_k(x; k, d - k + 1)$ is a beta density.

■ One often estimates the density by rewriting it corresponding to a weight sequence $\mathbf{w} = (w_1, \dots, w_d)$, such that

$$f_N(x|\mathbf{w}) \equiv b(x; k, f) = \sum_{k=1}^d w_k \beta_k(x; k, d-k+1), \ \sum_k w_k = 1, \ w_k \ge 0.$$

Bernstein polynomial

A Bernstein polynomial density can be obtained by taking derivative on B(x; k, F), such that

$$b(x;k,f) = \sum_{k=1}^{d} \left(F\left(\frac{k}{d}\right) - F\left(\frac{k-1}{d}\right) \right) \beta_k(x;k,d-k+1),$$

where $\beta_k(x; k, d - k + 1)$ is a beta density.

■ One often estimates the density by rewriting it corresponding to a weight sequence $\mathbf{w} = (w_1, \dots, w_d)$, such that

$$f_N(x|\mathbf{w}) \equiv b(x; k, f) = \sum_{k=1}^d w_k \beta_k(x; k, d-k+1), \ \sum_k w_k = 1, \ w_k \geq 0.$$

Bernstein polynomial (cont'd)

$$f_N(x|\mathbf{w}) = \sum_{k=1}^d w_k \beta_k(x; k, d-k+1), \ \sum_k w_k = 1, \ w_k \geq 0.$$

Connections

- Connection to mixture models: $f_N(x|\mathbf{w}) = \sum_{k=1}^d w_k \beta_k(x; k, d-k+1)$
 - Clustering: number of power-laws
 - d is not the number of clusters
 - Gaussian mixture models: requires to estimate parameters in each Gaussian component
- Connection to a multivariate density estimation. For $x, y \in [0, 1]$, a bivariate Bernstien polynomial density is,

$$f(x, y; k, F) = \sum_{k=1}^{d_1} \sum_{l=1}^{d_2} w_{kl} \beta_k(x; k, d_1 - k + 1) \beta_l(y; l, d_2 - l + 1),$$

$$\sum_{k=1}^{d_1} \sum_{l=1}^{d_2} w_{kl} = 1, \ w_{kl} \ge 0$$

- Modeling the joint density: when both masses and radii have measurement errors.
- The conditional and marginal distributions are mixture of beta distributions

Connections

- Connection to mixture models: $f_N(x|\mathbf{w}) = \sum_{k=1}^d w_k \beta_k(x; k, d-k+1)$
 - Clustering: number of power-laws
 - d is not the number of clusters
 - Gaussian mixture models: requires to estimate parameters in each Gaussian component
- Connection to a multivariate density estimation. For $x, y \in [0, 1]$, a bivariate Bernstien polynomial density is,

$$f(x,y;k,F) = \sum_{k=1}^{d_1} \sum_{l=1}^{d_2} w_{kl} \beta_k(x;k,d_1-k+1) \beta_l(y;l,d_2-l+1),$$

$$\sum_{k=1}^{d_1} \sum_{l=1}^{d_2} w_{kl} = 1, \ w_{kl} \ge 0$$

- Modeling the joint density: when both masses and radii have measurement errors.
- The conditional and marginal distributions are mixture of beta distributions

Connections (cont'd)

- Connection to Bayesian nonparametric: we could put a Dirichlet prior on
 w
 - Further connections to Bayesian density estimation
 - *Spectral density estimation: smoothing the periodogram
- Other connections will not mention in details: i.e., B-spline

Connections (cont'd)

- Connection to Bayesian nonparametric: we could put a Dirichlet prior on
 w
 - Further connections to Bayesian density estimation
 - *Spectral density estimation: smoothing the periodogram
- Other connections will not mention in details: i.e., B-spline

Section 3

- 1 Background
- 2 Bernstein polynomials
- 3 Building a model for estimating M-R relation
- 4 Results
- 5 Conclusion

Bernstein polynomials model

Model (Bernstein polynomials model)

$$\begin{split} \textit{M}_{i}^{\text{obs}} &\overset{\textit{ind}}{\sim} \mathcal{N}(\textit{M}_{i}, \sigma_{\textit{M}_{i}}^{\text{obs}}), \\ \textit{R}_{i}^{\text{obs}} &\overset{\textit{ind}}{\sim} \mathcal{N}(\textit{R}_{i}, \sigma_{\textit{R}_{i}}^{\text{obs}}), \\ (\textit{M}_{i}, \textit{R}_{i}) &\overset{\textit{iid}}{\sim} \textit{f}(\textit{m}, r | \textbf{\textit{w}}, \textit{d}), \\ \textit{f}(\textit{m}, r | \textbf{\textit{w}}, \textit{d}) &= \sum_{k=1}^{d} \sum_{l=1}^{d} \textit{w}_{kl} \frac{\beta_{k}(\frac{\textit{m}-\underline{\textit{M}}}{\overline{\textit{M}}-\underline{\textit{M}}})}{\overline{\textit{M}} - \underline{\textit{M}}} \frac{\beta_{l}(\frac{\textit{r}-\underline{\textit{R}}}{\overline{\textit{R}}-\underline{\textit{R}}})}{\overline{\textit{R}} - \underline{\textit{R}}}, \end{split}$$
 where $\textbf{\textit{w}} = (\textit{w}_{11}, \ldots, \textit{w}_{dd}), \sum_{k=1}^{d} \sum_{l=1}^{d} \textit{w}_{kl} = 1, \textit{w}_{kl} \geq 0.$

- Estimate *d* using 10-fold cross validation
- Estimate w using convex programming package "Rsonlp" in R

Section 4

- 1 Background
- 2 Bernstein polynomials
- 3 Building a model for estimating M-R relation
- 4 Results
- 5 Conclusion

M-R relations: comparison of two models

WRF16:

RV only $<4R_{\oplus}$: $M_i|R_i \sim N(2.7R_i^{1.3}, 1.9^2)$; **RV** only $<8R_{\oplus}$: $M_i|R_i \sim N(1.6R_i^{1.8}, 2.9^2)$

M-R relations: comparison of two models

Figure: Instrinsic scatter plot for M-R relations.

Blue and light blue line: Power-law model. Dark blue line: Bernstein polynomials model

M-R relation for full Kepler dataset

Figure: M-R relation for Kepler dataset.

Dark line: mean M-R relation. Grey area: 16% and 84% prediction intervals. Blue area: 16% and

84% bootstrap confidence intervals

M-R relation for full Kepler dataset: conditional densities

Figure: The conditional distributions for mass given radius

The uncertainty region are 16% and 84% bootstrap confidence intervals.

Section 5

- 1 Background
- 2 Bernstein polynomials
- 3 Building a model for estimating M-R relation
- 4 Results
- 5 Conclusion

Conclusion and comments

- We considered a more flexible Bernstein polynomial model to estimate the M-R relation.
- Bernstein polynomials model is a mixture beta model
- Compares to the power-law model, the power-law model is underfitting the data, thus have smaller s.d.
- Easy to extent the model to incorporate a third variable
- Statistics properties of this model is under investigation

Looking for more details? Our draft is coming soon: Ning, Wolfgang & Ghosh (2017).

Reference

Bernstein polynomials

- NWG17 Ning, B., Wolfgang, A. and Ghosh, S. K. 2017, in preparation
 - TK13 Turnbull, B. C. and Ghosh, S. K. 2014. Computational Statistics & Data Analysis, 13, 72
- BCC02 Babua, G. J., Cantyb, A. J., Chaubeyb, Y. P. 2002, Journal of Statistical Planning and Inference, 105, 377

Spectral density estimation

- CGR04 Chuoudhuri, N., Ghosal, S., Roy, A. 2004, Journal of the American Statistics Association, 99, 486
- EMC17 Edwards, M. C., Meyer, R., Christensen, N. 2017, arXiv: 1707.04878v1

Bayesian density estimation using Bernstein polynomials

- P99-a Petrone, S.1999, the Scandinavian Journal of Statistics, 26, 373
- P99-b Petrone, S.1999, the Canadian Journal of Statistics, 27, 105
- PW02 Petrone, S., Wasserman, L. 2002, Journal of the Royal Statistical Society, Series B, 64, 79
 - G01 Ghosal, S. 2001, the Annals of Statistics, 29, 5
- GV17 Ghosal, S., van der Vaart, A. 2017, Cambridge university press.