Fonctions Numériques Fonctions continues sur un intervalle MPSI 2

Fonctions continues 1

Soit I un intervalle non vide.

Soit $f: I \to \mathbb{R}$ une fonction dfinie sur I.

On dit que f est continue sur I si pout tout x_0 de I, f est continue en x_0 .

Théorème des valeurs intermdiaires

L'image d'un intervalle par une fonction continue est un intervalle.

Soit I un intervalle.

Soit $f: I \to R$ une application continue sut I.

Montrer que f(I) est un intervalle.

Ou montrer que $\forall (y, y') \in \mathbb{R}^2$, $((y, y') \in f(I)^2 \Rightarrow (\forall y'' \in \mathbb{R}, y < y'' < y' \Rightarrow y'' \in f(I))$

Soit y et y' deux lments distincts de f(I).

Alors il existe a et b dans I tels que: f(a) = y et f(b) = y'

y et y' sont distincts, donc a et b sont distincts.

On suppose par exemple que f(a) < f(b) et a < b

Montrer que $\forall z \in \mathbb{R}, (f(a) < z < f(b)) \Rightarrow (\exists x \in]a, b[, f(x) = z)$

Soit z un rel compris strictement entre f(a) et f(b).

On considre l'ensemble $E = \{x \in [a, b], f(x) < z\}$

Principe de Borne suprieure

Montrer que E admet une borne suprieure:

- E est non vide: $a \in E$
- E est major par b

Donc E admet une borne suprieure que l'on notera c

On a: $a \leqslant c \leqslant b$

Et $\forall \varepsilon \in \mathbb{R}^{+*}, \ \exists x \in E, \ c - \varepsilon < x \leqslant c$

Pour tout n de \mathbb{N}^* , on pose $\varepsilon = \frac{1}{n}$, et on pose x_n un rel vrifiant le critre. On dfinit donc une suite: $\forall n \in \mathbb{N}^*$, $x_n \in E$ et $c - \frac{1}{n} < x_n \geqslant c$