▼ 03 向量

▼ 向量 | 向量组'线性相关性

- ▼ 概念
 - 向量
 - 线性表出 ..相关 (3表达式:

$$k_1\boldsymbol{\alpha}_1+k_2\boldsymbol{\alpha}_2+\cdots+k_m\boldsymbol{\alpha}_m$$

$$\beta = k_1 \alpha_1 + k_2 \alpha_2 + \cdots + k_m \alpha_m$$

$$k_1\boldsymbol{\alpha}_1 + k_2\boldsymbol{\alpha}_2 + \cdots + k_m\boldsymbol{\alpha}_m = \mathbf{0}$$
,

- ▼ 判别 线性相关
 - 单α(3充要: 表 非零 部分)
 - $\alpha = \beta$
- ▼ 1 极大线性无关组 | 等价向量组 | 向量组'秩
 - ▼ 极大线性无关组 "代表"
 - 定义
 - 求法
 - ▼ 等价向量组
 - 定义
 - 判别
 - 与等价矩阵的区别
 - ▼ 向量组' 秩
 - 定义
 - 重要定理和公式(3性质:3r 行 s≤t

▼ 2 向量空间

- 概念(2:基维
- 基变换 $([\eta_1,\ldots,\eta_n]$ = $[\xi_1,\ldots,\xi_n]$ \mathbb{C} \to 坐标... $[\xi_1,\ldots,\xi_n]x=[\eta_1,\ldots,\eta_n]y$ \to x=Cy)

向量 | 向量组'线性相关性

概念

向量

- a. 1)n维向量:
 - n个数 构成的 有序数组
- b. 2)运算
 - 相等:对应元素都相等
 - 加法:
 - 对应相加即可

$$\alpha + \beta \stackrel{def}{=} [a_1 + b_1, a_2 + b_2, \cdots, a_n + b_n] (\alpha, \beta \exists \bot)$$

■ 数乘:

$$k\boldsymbol{\alpha} \stackrel{def}{=} [ka_1, ka_2, \cdots, ka_n]$$

线性表出 ..相关 (3表达式:

$$k_1\boldsymbol{\alpha}_1 + k_2\boldsymbol{\alpha}_2 + \cdots + k_m\boldsymbol{\alpha}_m$$

$$\beta = k_1 \alpha_1 + k_2 \alpha_2 + \cdots + k_m \alpha_m$$

$$k_1\boldsymbol{\alpha}_1 + k_2\boldsymbol{\alpha}_2 + \cdots + k_m\boldsymbol{\alpha}_m = \mathbf{0}$$
,

- a. 0)线性**组合**
 - 针对 一组向量组而言
 - m个n维向量 $lpha_1,\ldots,lpha_m$,m个数 k_1,\ldots,k_m
 - 形如

$$k_1\boldsymbol{\alpha}_1 + k_2\boldsymbol{\alpha}_2 + \cdots + k_m\boldsymbol{\alpha}_m$$

- 称 其为 向量组 的 线性组合
- b. 1)线性表出
 - 一个向量+一组向量组

- 向量 β 能 表示成 n维向量 $\alpha_1, \ldots, \alpha_m$ 的 线性组合
- 形如

$$\beta = k_1 \alpha_1 + k_2 \alpha_2 + \cdots + k_m \alpha_m$$

• 称 向量 β 能 被 n维向量 $\alpha_1, \ldots, \alpha_m$ 线性表出

c. 2)线性相关

- 针对 一组向量组而言 //拆一个 就是线性表出
 - a.相关
 - m个n维向量 $lpha_1,\dots,lpha_m$,若 存在一组不全为零的数 k_1,\dots,k_m
 - 使得线性组合为0
 - 東原 $k_1\boldsymbol{\alpha}_1 + k_2\boldsymbol{\alpha}_2 + \cdots + k_m\boldsymbol{\alpha}_m = \mathbf{0}$,
 - 称 向量组 $\alpha_1, \ldots, \alpha_m$ 线性 相关
 - 含 0向量 or 成比例的 向 量组必 线性相关

■ b.无关

- m个n维向量 $lpha_1,\dots,lpha_m$,不存在一组不全为零的数 k_1,\dots,k_m
 - 使得线性组合为0
- 称 向量组 $\alpha_1, \ldots, \alpha_m$ 线性 无关
 - 即 单个非0向量,两个不 成比例的向量均 线性无

判别 线性相关

单 α (3充要: 表 非零 部分

- a. 向量组 α_1,\ldots,α_m
 - 1)线性相关 充要条件
 - ①向量组中 至少有一个向量 可由 其余的 **n—1** 个向量 线性表出
 - ②齐次线性方程组Ax=0,有 非零解。其中 A= $[lpha_1,\ldots,lpha_m]$
 - 同理,线性无关 的充要 即为 only零解
 - //针对m个n维向量

$$\alpha_1,\ldots,\alpha_m$$

■ 其中

$$oldsymbol{lpha}_1 = [a_{11}, a_{21}, \cdots, a_{n1}]^{\mathrm{T}},$$
 $oldsymbol{lpha}_2 = [a_{12}, a_{22}, \cdots, a_{n2}]^{\mathrm{T}},$
 \cdots

$$\boldsymbol{\alpha}_{m} = [a_{1m}, a_{2m}, \cdots, a_{nm}]^{T}.$$

■ ③<u>部分</u>向量 **线性相关** ,整个向量 组 **线性相关**

α 与 β

- a. 1)线性表出
 - a. β 可由 $\alpha_1, \ldots, \alpha_s$ 线性表出 的 充要 条件
 - 非齐次方程组 $\alpha_1\beta_1+\ldots+$ $\alpha_s\beta_s=\beta$ 有解

$$r[\alpha_1,\ldots,\alpha_s]$$
=
 $r[\alpha_1,\ldots,\alpha_s,\beta]$

- b.向量组 β_1,\ldots,β_t 可由 α_1,\ldots,α_s 线性表示
 - ①t≤s, β_1, \ldots, β_t 线性无关

- ②t>s, β_1,\ldots,β_t 线性相关
- $\mathrm{c.}\alpha_1,\ldots,\alpha_s$ 线性无关, $\beta,\alpha_1,\ldots,\alpha_s$ 线性相关
 - ■ β 可由 α₁,...,α_s, 线性表出,

 且 表示法唯一

1 极大线性无关组 | <u>等价</u>向量组 | 向量组'秩

极大线性无关组 - "代表"

定义

- a. 1)数学定义
 - $lacksymbol{1}$ ①向量组 $lpha_1,\ldots,lpha_s$ 中存在 部分组 $lpha_{i_1},\ldots,lpha_{i_s}$
 - ② 向量组中的 任一向量 α_i 均可由此 部 分组 线性表出
- b. 2)理解:
 - a.其 能够代表向量组中 <u>所有成员</u> 的一组向量(彼此 线性无关)
 - 即 向量组 中的 任一向量都能够由 其 线性表出
 - 线性相关的有一组即可
 - b.极大线性无关组 一般不唯一 (线性相关 向量 的选取 不唯一)
 - c.特殊:
 - 只由 一个0向量 组成的 向量组 不存在~
 - 一个 <u>线性无关向量组</u> 的~ 就是其本身

求法

等价向量组

定义

- a. 1)基本定义:
 - 设定:
 - 两个向量组(\square) α_1,\ldots,α_s , (\square) β_1,\ldots,β_t
 - ■若
 - 1)α中 每个向量α_i 均可 由β 中 的向量 线性表出
 - 称 向量组α可由向量组β 线性表出
 - 2)向量组(I)与 向量组(II)可相互 线性表出
 - 称 向量组(Ⅰ)与 向量组(Ⅱ) 是 等价 向量组
 - 记作
 - (I)≅(II)
- b. 2)性质
 - 反身
 - (I)≅(I)
 - 对称
 - 若(Ⅰ)≅(Ⅱ),则(Ⅱ)≅(Ⅰ)
 - 传递
 - 若(Ⅰ)≅(Ⅱ),(Ⅱ)≅(Ⅲ),则(Ⅰ)≅(Ⅲ)
- c. 3)向量组 与 其 **极大线性无关组** 是 等价向量组

判别

与等价矩阵的区别

向量组' 秩

定义

- a. 向量组 的**极大线性无关组**中 所含向量的个数 r
 - 记作 $rank(\alpha_1, \ldots, \alpha_s)$ = r 或 $r(\alpha_1, \ldots, \alpha_s)$ = r
- b. 等价向量组 具有相等的 r
 - r 相等 不一定 是等价向量组

重要定理和公式(3性质:3r 行 s≤t

- a. 1)三r相等:
 - 矩阵A的秩 = A 的 行/列 向量组 的秩
- b. 2)若 A 初等行变换 $\rightarrow B$
 - A 与B
 - 行向量组 是 等价向量组
 - 部分<u>列</u>向量组 具有 相同的 线性相 关性
- c. 3) $r(\alpha_1,\ldots,\alpha_s) \le r(\beta_1,\ldots,\beta_t)$
 - 每个向量 α_i 均可由 β 中的向量 <mark>线性表</mark> 出

2 向量空间

概念(2:基维

- a. n维向量空间 \mathbb{R}^n 中
 - 有 线性无关 的有序向量组 ξ_1, \ldots, ξ_n
 - ullet 任意 $lpha\in R^n$ 均可由 ξ_1,\ldots,ξ_n 线性表出
 - 记为 $\alpha=a_1\xi_1,\ldots,a_n\xi_n$

- 称
 - 有序向量 ξ_1, \dots, ξ_n 为 R^n 的<u>一个</u> **基**
 - <u>基向量</u> 的<u>个数</u> n 称为 向量空间的 **维数**
 - $[a_1,\ldots,a_n]([a_1,\ldots,a_n]^T)$ 称为 向量 α 在基 ξ 下的 **坐标**
 - 或称 α的 **坐标**<u>行(列)向量</u>

基变换(
$$[\eta_1,\ldots,\eta_n]$$
 = $[\xi_1,\ldots,\xi_n]$ C \rightarrow 坐标...($[\xi_1,\ldots,\xi_n]x=[\eta_1,\ldots,\eta_n]y \rightarrow x=Cy$)

a. 基变换

- n维向量空间 \mathbb{R}^n 中
 - 两个基 为 η_1,\ldots,η_n , ξ_1,\ldots,ξ_n
 - 其满足 $[\eta_1,\ldots,\eta_n]$ = $[\xi_1,\ldots,\xi_n]$ C

$$\begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{bmatrix}$$

- π 1 h π 1 h π 2 h π 2 h π 3 h π 4 h π 4 h π 5 h π 6 h π 6 h π 6 h π 6 h π 7 h π 6 h π 7 h π 8 h π 9 h π 8 h π 9 h π
- 称 矩阵*C* 为 **过渡矩阵**,且*C* 为可逆矩阵
 - C 的第 i 列 即 是 η_i 在基 ξ 下的坐标

b. 坐标变换

- α 在基 ξ_1, \ldots, ξ_n 和 基 η_1, \ldots, η_n 下
- 坐标分别是 $x=[x_1,\ldots,x_n]^T$, $y=[y_1,\ldots,y_n]^T$
 - ・ 即 lpha= $egin{bmatrix} [\xi_1,\ldots,\xi_n]x=[\eta_1,\ldots,\eta_n]y \end{bmatrix}$
 - 由基变换公式得

$$\bullet \ \alpha = [\xi_1, \dots, \xi_n] \ Cy$$

- 得 x = Cy 或 $y = C^{-1}x$
 - 称 之为 坐标变换公式