Machine Learning

By Ghazal Lalooha

Classification: logistic regression

Reminder: Regression

 Target. Estimation of a continuous quantity according to attribute values.

Email: Spam (yes/no?)

Online Transaction: Fraud (Yes / No?)
Cancerous gland: benign / malignant?

In these examples, the variable whose value we want to predict has two values:

 $y \in \{0,1\}$

Zero: "Negative class" (like benign tumor)
One: "positive class" (such as malignant tumor)

Classification: predicting a variable with discrete values.

- Binary classification
- Multiclass classification

malignant?

- Placing a threshold on the classifier output:
 - If $h_{\theta}(x) \ge 0.5$, then y = 1
 - If $h_{\theta}(x) < 0.5$, then y = 0

Placing a threshold on the classifier output:

If $h_{\theta}(x) \ge 0.5$, then y = 1

If $h_{\theta}(x) < 0.5$, then y = 0

In binary category we have:

$$y = 0 \text{ or } y = 1$$

• But in regression it is possible:

$$h_{\theta}(x) < 0 \text{ or } h_{\theta}(x) > 1$$

Logistic regression (categorization)

$$0 \le h_{\theta}(x) \le 1$$

Hypothesis representation in logistic regression

Hypothesis representation

target

Hypothesis

$$0 \le h_{\theta}(x) \le 1$$

$$0 \le \left| g(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}} \right| \le 1$$

Logistic Regression and Classification

Hypothesis

- Interpretation of the output of the hypothesis:
- "Probability that input x belongs to category y = 1."
- Example: if we have:

$$x = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ tumorSize \end{bmatrix}, \qquad h_{\theta}(x) = 0.7$$

• In this case, there is a 70% chance that this tumor is malignant.

$$p(y = 1|x; \theta) = h_{\theta}(x)$$

 $p(y = 0|x; \theta) = 1 - p(y = 1|x; \theta) = 1 - h_{\theta}(x)$

Hypothesis

Probabilistic interpretation of the hypothesis

Likelihood function

$$p(y = 1|x; \theta) = h_{\theta}(x)$$

$$p(y = 0|x; \theta) = 1 - h_{\theta}(x)$$

$$p(y|x; \theta) = h_{\theta}(x)^{y} (1 - h_{\theta}(x))^{1-y}$$

$$L(\theta) = p(Y|X;\theta) = \prod_{\substack{i=1\\m}}^{m} p(y^{(i)}|x^{(i)};\theta)$$
$$= \prod_{i=1}^{m} h_{\theta}(x^{(i)})^{y^{(i)}} (1 - h_{\theta}(x^{(i)}))^{1-y^{(i)}}$$

Maximum likelihood estimation

The logarithm of the likelihood function:

$$l(\theta) = \log L(\theta) = \log \prod_{i=1}^{m} h_{\theta}(x^{(i)})^{y^{(i)}} \left(1 - h_{\theta}(x^{(i)})\right)^{1 - y^{(i)}}$$

$$= \sum_{i=1}^{m} \log \left(h_{\theta}(x^{(i)})^{y^{(i)}} \left(1 - h_{\theta}(x^{(i)})\right)^{1 - y^{(i)}}\right)$$

$$= \sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log \left(1 - h_{\theta}(x^{(i)})\right)$$
It function:

Cost function:

$$J(\theta) = -l(\theta) = \sum_{i=1}^{m} -y^{(i)} \log h_{\theta}(x^{(i)}) - (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)}))$$

Linear regression and logistic regression

Decision Boundary

Decision Boundary

logistic regression:

$$h_{\theta}(x) = g(\theta^T x)$$

Placing a threshold on the bundle output:

$$y = 1$$
: $h_{\theta}(x) \ge 0.5 \Rightarrow \theta^T x \ge 0$

$$y = 0: h_{\theta}(x) < 0.5 \Rightarrow \theta^{T}x < 0$$

$$\theta^T x = 0$$

Decision boundary equation

Decision Boundary

Decision Boundary:

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

The output of y is equal to 1, if $-3 + x_1 + x_2 \ge 0$

- $\square \ x_1 + x_2 \ge 3 \ \Rightarrow \ y = 1$

Non-linear Decision Boundary

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2)$$
-1 0 0 1 1

$$x_1^2 + x_2^2 \ge 1 \Rightarrow y = 1$$

$$x_1^2 + x_2^2 < 1 \Rightarrow y = 0$$

Cost Function

Logistic Regression

Training Set

$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$$

Training Example

$$x \in \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix} \qquad x_0 = 1, \qquad y \in \{0, 1\}$$

Hypothesis

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

How to choose values of the theta parameters?

Logistic Regression

Cost function

$$J(\theta) = \sum_{i=1}^{m} \frac{1}{2} \left(h_{\theta} (x^{(i)}) - y^{(i)} \right)^{2}$$

$$cost(h_{\theta}(x^{(i)}), y^{(i)}) = \frac{1}{2}(h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

Attention: Since $h_{\theta}(x^{(i)})$ is a non-linear function of parameters, the cost function will no longer be a convex function.

Cost Function

Convex and non-convex functions

Cost function

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)), & y = 1\\ -\log(1 - h_{\theta}(x)), & y = 0 \end{cases}$$

Cost function simplification

$$J(\theta) = \sum_{i=1}^{m} cost(h_{\theta}(x^{(i)}), y^{(i)})$$
$$cost(h_{\theta}(x^{(i)}), y^{(i)}) = -y^{(i)} \log(h_{\theta}(x^{(i)})) - (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))$$

Cost function

$$J(\theta) = \sum_{i=1}^{m} cost(h_{\theta}(x^{(i)}), y^{(i)})$$

$$= \sum_{i=1}^{m} \left[-y^{(i)} \log(h_{\theta}(x^{(i)})) - (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right]$$

Parameters'
Value specification

$$\min_{\theta} J(\theta)$$

Prediction for New input x

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Cost function

$$J(\theta) = \sum_{i=1}^{m} \left[-y^{(i)} \log \left(h_{\theta}(x^{(i)}) \right) - \left(1 - y^{(i)} \right) \log \left(1 - h_{\theta}(x^{(i)}) \right) \right]$$

$$\nabla J(\theta) = X^T(h_{\theta}(X) - y)$$
 $\nabla J(\theta) \in \mathbb{R}^{n+1}$

$$H = X^T \operatorname{diag}(h_{\theta}(X)(1 - h_{\theta}(X)))X$$
 $H \in \mathbb{R}^{(n+1)\times(n+1)}$

Note: the Hessian matrix is a positive definite matrix, so the cost function is a convex function.

Gradient Descent Algorithm

$$J(\theta) = \sum_{i=1}^{m} \left[-y^{(i)} \log \left(h_{\theta}(x^{(i)}) \right) - \left(1 - y^{(i)} \right) \log \left(1 - h_{\theta}(x^{(i)}) \right) \right]$$

Gradient Descent Algorithm (vector form)

```
repeat until convergence { \theta \coloneqq \theta - \alpha \, \nabla J(\theta) } \nabla J(\theta) = X^T(h_\theta(X) - y)
```

Gradient Descent Algorithm

$$J(\theta) = \sum_{i=1}^{m} \left[-y^{(i)} \log \left(h_{\theta}(x^{(i)}) \right) - \left(1 - y^{(i)} \right) \log \left(1 - h_{\theta}(x^{(i)}) \right) \right]$$

Gradient Descent Algorithm

repeat until convergence {
$$\theta_{j}\coloneqq\theta_{j}-\alpha\frac{\partial}{\partial\theta_{j}}J(\theta)\qquad \qquad (j=0,1,...,n)$$
 }
$$\frac{\partial}{\partial\theta_{j}}J(\theta)=\sum_{i=1}^{m}\big(h_{\theta}\big(x^{(i)}\big)-y^{(i)}\big)\cdot x_{j}^{(i)}$$

Gradient Descent Algorithm

$$J(\theta) = \sum_{i=1}^{m} \left[-y^{(i)} \log \left(h_{\theta}(x^{(i)}) \right) - \left(1 - y^{(i)} \right) \log \left(1 - h_{\theta}(x^{(i)}) \right) \right]$$

Gradient Descent Algorithm

```
repeat until convergence { \theta_j \coloneqq \theta_j - \alpha \sum_{i=1}^m \bigl(h_\theta\bigl(x^{(i)}\bigr) - y^{(i)}\bigr) \cdot x_j^{(i)} \qquad (j=0,1,...,n) }
```

Note: This algorithm is just like the linear regression algorithm and the only difference is in the hypothesis function.

Classification with more than two classes

Classification with more than two classes

Email: work, family, entertainment Medical charts: healthy, cold, flu

Weather: sunny, cloudy, rainy, snowy

$$y \in \{1, 2, 3, ..., k\}$$

Classification with more than two classes

Multi-class classification

 x_2 x_2 x_2 x_2 x_3

Binary classification

Classification with more than two classes: one to many

Classification with more than two classes: one to many

- One vs. All: For each category i, train the logistic regression classifier $h_{\theta}^{(i)}(x)$ to estimate the probability that input x belongs to category i.
- Prediction: In order to categorize the new input x, choose category is such that:

$$y = \arg\max_{i} h_{\theta}^{(i)}(x)$$

$$h_{\theta}^{(1)}(x) = 0.25$$
 $h_{\theta}^{(2)}(x) = 0.70$
 $y = 2$
 $h_{\theta}^{(3)}(x) = 0.45$

Objective: To find the value of theta in order to minimize the cost function.

$$\min_{\theta} J(\theta)$$

Assumption: we have a program that can calculate the following values by having theta values:

$$J(\theta) \qquad \frac{\partial}{\partial \theta_j} J(\theta)$$
 repeat until convergence {
$$\theta_j \coloneqq \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta) \qquad \qquad (j = 0, 1, ..., n)$$
 Gradient Descent

 Assumption: we have a program that can calculate the following values by having theta values:

$$J(\theta) \qquad \frac{\partial}{\partial \theta_i} J(\theta)$$

- Advanced optimization algorithms:
 - Conjugate gradient
 - BFGS
 - L-BFGS
- Advantages: these methods do not need to choose the learning rate and usually converge earlier than the gradient descent algorithm.

Example

$$J(\theta) = (\theta_0 - 5)^2 + (\theta_1 - 5)^2$$

$$\frac{\partial}{\partial \theta_0} J(\theta) = 2(\theta_0 - 5)$$

$$\frac{\partial}{\partial \theta_1} J(\theta) = 2(\theta_1 - 5)$$

```
def J(theta):
    return (theta[0] - 5) ** 2 + (theta[1] - 5) ** 2
```

```
def grads(theta):
    return np.array([2 * (theta[0] - 5), 2 * (theta[1] - 5)])
```

Example

$$J(\theta) = (\theta_0 - 5)^2 + (\theta_1 - 5)^2$$

$$\frac{\partial}{\partial \theta_0} J(\theta) = 2(\theta_0 - 5)$$

$$\frac{\partial}{\partial \theta_1} J(\theta) = 2(\theta_1 - 5)$$

```
from scipy.optimize import minimize

minimize(J, x0=[0, 0], method='CG', jac=gra jac: array([1.71271335e-08, 1.71271335e-08])
message: 'Optimization terminated successfully.'
nfev: 20
nit: 2
njev: 5
status: 0
success: True
x: array([5., 5.])
```

Example

$$J(\theta) = (\theta_0 - 5)^2 + (\theta_1 - 5)^2$$

$$\frac{\partial}{\partial \theta_0} J(\theta) = 2(\theta_0 - 5)$$

$$\frac{\partial}{\partial \theta_0} J(\theta) = 2(\theta_1 - 5)$$

Further study

Pages 725-727

Pages 130-137

Pages 119-128

Convex optimization