PROFESSIONAL CERTIFICATE IN MACHINE LEARNING AND ARTIFICIAL INTELLIGENCE

Module 21: Deep Neural Networks pt. 1

Office Hours with Francesca Vera February 24, 2025 9:00pm UTC

ICE BREAKER

Welcome, Everyone! Hope you had a good break!

How is your capstone going?

Have you met with your LF?

Any findings?

AGENDA FOR TODAY

My OH aim is to provide you with helpful tips and an overview of the module content (for you to dive deeper into individually)

- Capstone feedback + General Observations
- Concepts in Neural Networks
 - + What to expect in pt. 2?
- Example Walkthrough

CAPSTONE ADMIN

Looking forward

CAPSTONE ADMIN

Next Steps

- 1) Submit your Initial Report if you have not done so already
 - a) If you have, review the feedback you received!
- 2) Schedule 1:1 with your LF
 - a) Come with questions and comments
 - b) Take note of feedback given
- 3) Adjust project
 - a) More experiments
 - b) Clean everything up
 - c) Write your report

CAPSTONE FEEDBACK

Clean up your repo!

- If you want to upload images, create a folder
- Descriptive filename (colabnotebook.ipynb or project.ipynb vs. loan_default_predictor.ipynb)

Use formatting features to your advantage:

"The model features include age, zip code, income, number of previous defaults, amount of loan, years with credit score."

Model Features:

- Age
- Zip Code
- Income
- Number of Previous Defaults
- Loan Amount
- Years with Credit Score

CAPSTONE FEEDBACK

Don't assume anything! Write as though the person encountering your repo has no idea what your project is about:

- Is my research question clear? Is what I'm predicting clear?
- Is the methodology clear? Do I justify my choices (e.g. model choices, feature selection, evaluation metric etc.)?
- Are my results clear and concise?

Display your results in a helpful format:

RF Accuracy 0.93 KNN Accuracy 0.89 LR Accuracy 0.96

Model	Train Accuracy	Test Accuracy
Random Forest	0.94	0.93
K Nearest Neighbors	0.88	0.89
Logistic Regression	0.96	0.96

VS...

AGENDA FOR TODAY

My OH aim is to provide you with helpful tips and an overview of the module content (for you to dive deeper into individually)

- Capstone feedback + General Observations
- Concepts in Neural Networks
 - + What to expect in pt. 2?
- Example Walkthrough

NEURAL NETWORKS

Task:

Predict if a patient has diabetes; Given a dataset with features like:

- Glucose concentration
- Blood pressure
- Skin thickness
- Age
- Outcome

What algorithms could I use?

- Logistic Regression
- SVM
- KNN
- Decision Tree

NEURAL NETWORKS

Task: Identify lifelike cat images from a dataset of images from an Internet search of "cat images"

Can I use the same algorithms?
How well would they do?

NEURAL NETWORKS

For complex tasks, like those in computer vision or with language, simple classification algorithms often won't work well.

- The data may be too complex
- There may be too many features
- The "patterns" in the data to learn from may be distributed in a way that is not captured by simple classification algorithms

For complicated problems, we use more complicated and powerful models like Neural Networks.

NEURAL NETWORK STRUCTURE

Recall from Linear Regression:

$$h(x) = A^{T} \phi(x) + b$$

$$h(x) = [a_1 \ a_2 \ \dots \ a_{m-1}] \begin{bmatrix} \phi_1(x) \\ \phi_2(x) \\ \dots \\ \phi_{m-1}(x) \end{bmatrix} + b$$

Neural networks use specific feature functions called **activation functions** (Sigmoid, Tanh, ReLU etc.)

Neural networks **add coefficients** to all lines of the graph.

Neural networks allow for multiple layers.

Linear regression : $\phi(x)$ Neural network : $\phi(Ax + b)$

NEURAL NETWORK STRUCTURE

Neural networks use specific feature functions called **activation functions** (Sigmoid, Tanh, ReLU etc.)

Neural networks add coefficients to all lines of the graph.

Neural networks allow for multiple layers.

NEURAL NETWORK STRUCTURE

NEURAL NETWORK STRUCTURE

Neuron

NEURAL NETWORK STRUCTURE

Understanding a neuron **Should I eat this sandwich?**

NEURAL NETWORK STRUCTURE

Understanding a neuron **Should I eat this sandwich?**

NEURAL NETWORK STRUCTURE

What adjustments ("design choices") can I make?

NEURAL NETWORK STRUCTURE

NEURAL NETWORK STRUCTURE

Neural Networks support multiclass classification

Visualizing the larger network...

The softmax layer has one output node for each class

NEURAL NETWORK TRAINING

Loss - What is loss? (Think of it as akin to "error")

We want to have as low a loss (ie. low "error") as possible!

Network 1:

Network 2:

Network 3:

Network 2: **Low** loss Network 3: **High** loss