

planetmath.org

Math for the people, by the people.

proof of Cayley's theorem

Canonical name ProofOfCayleysTheorem

Date of creation 2013-03-22 12:30:50 Last modified on 2013-03-22 12:30:50

Owner Evandar (27) Last modified by Evandar (27)

Numerical id 5

Author Evandar (27)

Entry type Proof

Classification msc 20B99

Let G be a group, and let S_G be the permutation group of the underlying set G. For each $g \in G$, define $\rho_g : G \to G$ by $\rho_g(h) = gh$. Then ρ_g is invertible with inverse $\rho_{g^{-1}}$, and so is a permutation of the set G.

Define $\Phi: G \to S_G$ by $\Phi(g) = \rho_g$. Then Φ is a homomorphism, since

$$(\Phi(gh))(x) = \rho_{gh}(x) = ghx = \rho_g(hx) = (\rho_g \circ \rho_h)(x) = ((\Phi(g))(\Phi(h)))(x)$$

And Φ is injective, since if $\Phi(g) = \Phi(h)$ then $\rho_g = \rho_h$, so gx = hx for all $x \in X$, and so g = h as required.

So Φ is an embedding of G into its own permutation group. If G is finite of order n, then simply numbering the elements of G gives an embedding from G to S_n .