

פרויקט סיום – חלק מעשי

הבהרות והנחיות:

- 1. בדיקת התרגילים תיעשה בעזרת הפעלת הקוד. הקפידו על כתיבה מסודרת ותיעוד.
 - 2. תיעזרו בפונקציות, אותן כתבתם/ן במהלך הקורס.
- 3. בתרגיל תתבקשו לייצר שני סרטונים. צריך להוסיף colorbar (תבחרו צבעים מתאימים) ויש להוסיף כותרת מתאימה, כולל יחידות מתאימות.
- 4. תתבקשו לעלות קובץ ZIP ששמו יכלול שם ות.ז. הקובץ יכלול את קבצי הפייתון, תמונות וסרטונים כנדרש דוקובץ PDF עבור משימה 1, סעיף ב (עבור ההסבר).
 - 5. מועד ההגשה המדויק יופיע במודל (יישלח מייל בנושא)

משימה 1: פתרון משוואת גלים עם סכמה Explicit

נתון מודל אקוסטי בעל צפיפות אחידה (ρ=1) ומקור אשר מייצר גלים וממוקם בקוארדינטה (x=3000, z=2800).

השכבה המפרידה בין שני חצאי המרחב נדגמה ע"י חמשת הנקודות הבאות:

x (m)	0	1000	2600	4600	6000
z(m)	2600	4000	3200	3600	2400

משוואת הגלים הדו-מיימדית:

$$\frac{\partial^2 u}{\partial t^2} = c^2 \nabla^2 u + F = c^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial z^2} \right) + F$$

פונקציית המקור נתונה ע"י:

$$F(t) = \begin{cases} t \cdot e^{2\pi t} \cdot \sin(2\pi t) & 0 \le t \le 0.05[s] \\ 0 & 0.05[s] < t \end{cases}$$

- א. ייצגו את שכבת ההפרדה על ידי Cubic Spline.
- לפני שמתחילים לפתור את משוואת הגלים חשוב לוודא שמודל המהירויות תקין.
- חשבו את התקדמות שדה הגלים בתווך בעזרת סכמת Finite difference 4th order במרחב, עבור צעד מרחבי יניצד משתנה הפתרון? בזמן, עבור צעדי הזמן: $\Delta t = 0.01 \, s$, $0.03 \, s$ בזמן, עבור צעדי בממן, עבור צעדי הזמן: $\Delta x = \Delta z = 100 m$ הסבירו.
 - 0.15~s, 0.4~s, 0.7~s, 1s בזמנים הבאים: (Snapshot) עבור $\Delta t = 0.01~s$ עבור $\Delta t = 0.01~s$ $0.0.15 \, s, 0.3 \, s, 0.6 \, s, 0.9 \, s$ עבור $\Delta t = 0.03 \, s$ הציגו את שדה הגלים בזמנים:
 - . ($\Delta t = 0.01 \, s$) הכינו סרטון מלא לשדה הגלים בתווך

משימה 2: פתרון משוואת חום עם סכמה Implicit

נתונה משוואת חום אי-הומוגנית דו מימדית:

$$\frac{\partial T}{\partial t} = k \nabla^2 T + F = k \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) + F$$

כאשר F הוא כיור חום (Sink) גאוסינאי המוגדר לפי:

$$F(x,y,t) = \ -10^4 \cdot e^{\left(-\frac{(x-1)^2}{2\sigma_x^2}\right)} \cdot e^{\left(-\frac{(y-0.5)^2}{2\sigma_y^2}\right)} \cdot e^{-0.1t}$$

: מניחים שערכי הקוארדינטות הן במטרים וסטיות התקן הן

$$\sigma_x = \sigma_v = 0.00625 \,[\text{m}]$$

<u>נתונים ותנאי התחלה:</u>

$$k = 1.786 \cdot 10^{-3} [m^2 s^{-1}]$$

 $T(x, y, t = 0) = 10 [°C]$

נתונים ותנאי התחלה:

$$k = 1.786 \cdot 10^{-3} [m^2 s^{-1}]$$

 $T(x, y, t = 0) = 10 [^{\circ}C]$

תנאי שפה:

 $(^{\circ}\mathrm{C}$ ארבעת קצוות המודל נשמרים במשך [s] ארבעת קצוות המודל נשמרים במשך

$$T(x, 0, t) = 100$$

$$T(x, 1.5, t) = 10$$

$$T(1.5, y, t) = 100 - 60y$$

$$T(0, y, t) = \begin{cases} 100 - 112.5y & 0 \le y \le 0.8 \\ 10 & 0.8 < y \le 1.5 \end{cases}$$

- - $15 \, s, 30 \, s, 60s$ ב. הציגו את שדה הטמפרטורה בזמנים:
 - ג. הכינו סרטון מלא לשדה הטמפרטורה בתווך, כאשר מציגים את שדה הטמפרטורה כל 10 צעדי זמן.

בהצלחה!