Flipped Assignment 8

Group 5

2/21/2022

Input Data

```
setwd('G:/OneDrive - Texas Tech University/IE 5344 Statistical Data Analysis/Flipped Assignment 8')
data <- read.csv('data-table-B9.csv', header = TRUE)
colnames(data) <- c('x1', 'x2', 'x3', 'x4', 'y')</pre>
```

Part a.

Fitting the Model

```
fit1 <- lm(y ~ x1 + x2 + x3 + x4 + x1:x2 + x1:x3 + x1:x4 + x2:x3 + x2:x4 + x3:x4, data)
summary(fit1)
##
## Call:
## lm(formula = y \sim x1 + x2 + x3 + x4 + x1:x2 + x1:x3 + x1:x4 +
       x2:x3 + x2:x4 + x3:x4, data = data)
## Residuals:
                10 Median
      Min
                                3Q
                                       Max
## -9.4804 -3.0766 -0.6635 2.9625 12.2221
##
## Coefficients: (2 not defined because of singularities)
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 15.88376
                          23.17863
                                    0.685 0.49616
                                     0.238 0.81255
                 0.18696
                            0.78447
## x1
## x2
                 0.37921
                            0.06332
                                     5.989 1.89e-07
## x3
              -11.99940
                          67.31148 -0.178 0.85919
## x4
               -8.86442
                           35.62553
                                    -0.249 0.80446
## x1:x2
                0.01155
                            0.00869
                                             0.18955
                                     1.329
## x1:x3
                     NA
                                 NA
                                         NA
## x1:x4
                -1.11525
                            1.14847
                                    -0.971
                                            0.33592
## x2:x3
                     NA
                                 NA
                                         NA
                -0.38547
## x2:x4
                            0.11962
                                    -3.222
                                             0.00218
## x3:x4
               72.85976 103.15353
                                     0.706 0.48308
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 4.683 on 53 degrees of freedom
## Multiple R-squared: 0.7496, Adjusted R-squared: 0.7118
```

F-statistic: 19.83 on 8 and 53 DF, p-value: 1.947e-13

Here, two interactions, x_1x_3 and x_2x_3 are dropped because of multicollinearity. So,

 $\hat{y} = 15.88376 + 0.18696x_1 + 0.37921x_2 - 11.99940x_3 - 8.86442x_4 + 0.01155x_1x_2 - 1.11525x_1x_4 - 0.38547x_2x_4 + 72.85976x_3x_4. \ R^2 \ \text{is } 0.7496 \ \text{and the adjusted one is } 0.7118.$

Checking for Model Adequacy

plot(fit1,1)

Fitted values + x2 + x3 + x4 + x1:x2 + x1:x3 + x1:x4 + x2:x3 +

This figure ensures the constant variance for we cannot see any patterns.

plot(fit1,2)

Theoretical Quantiles + x2 + x3 + x4 + x1:x2 + x1:x3 + x1:x4 + x2:x3 +

This figure ensures the normality for the line is almost straight.

plot(fit1,3)

Fitted values + x2 + x3 + x4 + x1:x2 + x1:x3 + x1:x4 + x2:x3 +

We don't think there is any outliers in this figure.

plot(fit1,5)

Also, we don't think there is any outliers in this figure.

Thus, we think this model has model adequacy.

Test of Significance of the Full Regression Model

```
X \leftarrow add\_column(data, x0 = rep(1, nrow(data)), .before = 'x1')
X \leftarrow cbind(X, data$x1*data$x2, data$x1*data$x4, data$x2*data$x4, data$x3*data$x4)
X \leftarrow X[,-c(6)]
Y <- data$y
SST \leftarrow t(Y)\%*\%Y - (sum(Y)^2)/nrow(data)
beta <- na.omit(fit1$coefficients)</pre>
SSE \leftarrow t(Y)%*%Y - t(as.vector(beta))%*%t(X)%*%Y
SSR <- SST - SSE
MSR <- SSR/(length(beta) - 1)
MSE <- SSE/(nrow(data) - length(beta))
f <- MSR/MSE
pvalue <- 1 - pf(f,length(beta) - 1, nrow(data) - length(beta))</pre>
pvalue
##
                  [,1]
## [1,] 1.947331e-13
f
            [,1]
## [1,] 19.8342
```

Reject H_0 because p-value < 0.001. So, we conclude that at least one of these regressors contributes significantly to the model, which implies that the pressure drop in a screen plate bubble column is related to at least of these factors. (This can be seen directly from the summary table of this model.)

Part b.

Reducedd Model

```
fit1 <- lm(y~x1+x2+x3+x4+x1:x2+x1:x4+x2:x4+x3:x4,data)
fit2 <- lm(y~x1+x2+x3+x4,data)
```

Test of Significance of the interactions

```
anova(fit2,fit1)
## Analysis of Variance Table
## Model 1: y \sim x1 + x2 + x3 + x4
## Model 2: y \sim x1 + x2 + x3 + x4 + x1:x2 + x1:x4 + x2:x4 + x3:x4
     Res.Df
               RSS Df Sum of Sq
                                     F Pr(>F)
## 1
         57 1432.8
## 2
         53 1162.4 4
                          270.37 3.0819 0.02352 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
X2 \leftarrow add_column(data, x0 = rep(1,nrow(data)), .before = 'x1')
X2 \leftarrow X2[,-c(6)]
beta2 <- as.vector(fit2$coefficients)</pre>
SSRreduced \leftarrow t(beta2)%*%t(X2)%*%Y - (sum(Y)^2)/nrow(data)
fpartial <- ((SSR-SSRreduced)/(length(beta)-length(beta2)))/MSE</pre>
fpartial
##
            [,1]
## [1,] 3.081881
pvaluepartial <- 1 - pf(fpartial,length(beta) - length(beta2), nrow(data) - length(beta))</pre>
pvaluepartial
##
               [,1]
## [1,] 0.02352117
```

Reject H_0 because p-value < 0.05. We conclude that at least one of these interactions contributes significantly to the model.

Part c. Finding the Best Model

```
Test x_3x_4
```

```
fit3 <- lm(y~x1+x2+x3+x4+x1:x2+x1:x4+x2:x4,data) anova(fit3, fit1)  
## Analysis of Variance Table  
## ## Model 1: y ~ x1 + x2 + x3 + x4 + x1:x2 + x1:x4 + x2:x4  
## Model 2: y ~ x1 + x2 + x3 + x4 + x1:x2 + x1:x4 + x2:x4 + x3:x4  
## Res.Df RSS Df Sum of Sq F Pr(>F)  
## 1 54 1173.4  
## 2 53 1162.4 1 10.942 0.4989 0.4831  
Don't reject H_0 because p - value > 0.05. So we drop x_3x_4.
```

```
Test x_2x_4
```

```
fit4 \leftarrow lm(y~x1+x2+x3+x4+x1:x2+x1:x4,data)
anova(fit4, fit3)
## Analysis of Variance Table
## Model 1: y \sim x1 + x2 + x3 + x4 + x1:x2 + x1:x4
## Model 2: y \sim x1 + x2 + x3 + x4 + x1:x2 + x1:x4 + x2:x4
## Res.Df RSS Df Sum of Sq
                                     F Pr(>F)
## 1
         55 1401.8
## 2
         54 1173.4 1
                         228.39 10.511 0.002036 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Reject H_0 because p-value < 0.05. So we keep x_2x_4.
Test x_1x_4
fit5 <- lm(y~x1+x2+x3+x4+x1:x2+x2:x4,data)
anova(fit5, fit3)
## Analysis of Variance Table
##
## Model 1: y \sim x1 + x2 + x3 + x4 + x1:x2 + x2:x4
## Model 2: y \sim x1 + x2 + x3 + x4 + x1:x2 + x1:x4 + x2:x4
   Res.Df
               RSS Df Sum of Sq
                                     F Pr(>F)
## 1
        55 1193.2
## 2
         54 1173.4 1
                         19.837 0.9129 0.3436
Don't reject H_0 because p - value > 0.05. So we drop x_1x_4.
Test x_1x_2
fit6 <- lm(y~x1+x2+x3+x4+x2:x4,data)
anova(fit6, fit5)
## Analysis of Variance Table
## Model 1: y \sim x1 + x2 + x3 + x4 + x2:x4
## Model 2: y \sim x1 + x2 + x3 + x4 + x1:x2 + x2:x4
   Res.Df
               RSS Df Sum of Sq
                                      F Pr(>F)
## 1
         56 1225.5
## 2
         55 1193.2 1
                         32.307 1.4892 0.2275
Don't reject H_0 because p-value > 0.05. So we drop x_1x_2.
Test x_1
fit7 <- lm(y~x2+x3+x4+x2:x4,data)
anova(fit7, fit6)
## Analysis of Variance Table
##
## Model 1: y \sim x2 + x3 + x4 + x2:x4
## Model 2: y \sim x1 + x2 + x3 + x4 + x2:x4
```

```
## Res.Df RSS Df Sum of Sq F Pr(>F) ## 1 57 1236.8 ## 2 56 1225.5 1 11.262 0.5146 0.4761 Don't reject H_0 because p-value>0.05. So we drop x_1.
```

Test x_3

```
fit8 \leftarrow lm(y~x2+x4+x2:x4,data)
anova(fit8, fit7)
## Analysis of Variance Table
##
## Model 1: y \sim x2 + x4 + x2:x4
## Model 2: y \sim x2 + x3 + x4 + x2:x4
     Res.Df
               RSS Df Sum of Sq
## 1
         58 1480.4
## 2
         57 1236.8 1
                           243.6 11.227 0.001435 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Reject H_0 because p - value > 0.05. So we keep x_3.
```

The Best Fitting

fitbest <-lim(y~x2+x3+x4+x2:x4,data)

```
summary(fitbest)
##
## Call:
## lm(formula = y \sim x2 + x3 + x4 + x2:x4, data = data)
##
## Residuals:
##
     Min
             1Q Median
                           3Q
## -9.959 -3.358 -1.131 3.040 11.646
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
                         4.03964
## (Intercept) 1.52261
                                    0.377 0.70763
               0.38056
                          0.06084
                                    6.255 5.47e-08 ***
## x3
              34.51062
                        10.29961
                                    3.351 0.00144 **
## x4
               9.52471
                          2.96093
                                    3.217 0.00214 **
              -0.30472
                          0.09056 -3.365 0.00137 **
## x2:x4
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 4.658 on 57 degrees of freedom
## Multiple R-squared: 0.7336, Adjusted R-squared: 0.7149
## F-statistic: 39.24 on 4 and 57 DF, p-value: 9.297e-16
```

The best fitting is $\hat{y} = 1.52261 + 0.38056x_2 + 34.51062x_3 + 9.52471x_4 - 0.30472x_2x_4$. The R^2 is 0.7336 and the adjusted one is 0.7149. We don't think there exists a significant difference between the best fitting and the original one.

Part d. Confidence Interval

So, CI for the first point is (24.00618, 30.87717) and that for the second point is (15.76975, 21.45208).

Part e. Prediction Interval

So, PI for the first point is (17.501496, 37.38186) and that for the second point is (8.860183, 28.36165).