Prédiction de la Couverture d'un réseau LTE-A

Planification Radio

Présentée par:

Takwa FAKHFAKH Radhouene BELHADJ ALAYA

Encadrante académique:

Sonia BEN REJEB CHAOUCH

SOMMAIRE

Introduction

Etat de l'art

Partie Pratique

Conclusion et Perspectives

Introduction

CONTEXTE

4G

• Circuler les appels vocaux sur IP.

- Multiplexer plusieurs types d'information sur un même canal
 - → augmenter la quantité d'information transmise.

CONTEXTE

LTE

- Débit sur l'interface radio
- Flexibilité de la bande passante
- Efficacité du spectre
- Méthode de duplexage
- Technologies d'accès
- Orthogonalité du DownLink et UpLink
- Coexistence et Interfonctionnement avec la 3G
- Mobilité
- Technologie d'antenne
- Support du multicast

CONTEXTE LTE-A

Augmenter la capacité du système.

 Utiliser le spectre 2G et 3G existants avec le nouveau spectre.

 Atteindre 100 Mbps en liaison montante et 50 Mbps en liaison descendante.

CONTEXTE

Architecture LTE/LTE-A

PROBLÉMATIQUES

- Qualité de couverture
- Absorption de la charge
- Mobilité
- Evolutivité

OBJECTIFS

- → Une meilleure compréhension de:
 - La technologie LTE-A,
 - Les modèles de propagation,
 - Les modèles de duplexage.
- → Une planification, une optimisation et une évaluation de la couverture radio et de la capacité à l'aide du logiciel de simulation Atoll.
- → Une couverture totale de la région choisie et assurer une bonne qualité de service.
- → Trouver les meilleurs emplacements pour eNodeB pour construire une couverture continue selon les exigences.

Etat de l'art

DIMENSIONNEMENT

Couverture

DIMENSIONNEMENT

Bilan de liaison

Pour le LTE, l'équation RLB de base peut être écrite comme suit (en dB) :

```
PathLoss = T_x Power + T_x Gains - T_x Losses - RequiredSINR + R_x Gain - R_x Losses - R_x Noise
```

Avec:

- PathLoss: perte de trajet totale rencontré par le signal provenant de l'émetteur au récepteur (dB)
- TxPower : La puissance transmise par l'antenne de l'émetteur (dBm)
- TxGains : Gain d'antenne d'émission (dBi)
- TxLosses : les pertes de l'émetteur (dB)
- RequiredSINR : Minimum de SINR requis (dB)
- RxGains : Gain d'antenne de réception (dB)
- RxLosses : Les pertes du récepteur (dB)
- RxNoise : Bruit du récepteur (dB)

DIMENSIONNEMENT

Bilan de liaison

$$MAPL = Pire - IM + RXg - K + SHG - RX$$

Avec:

- MAPL (Maximum AllowablePathLoss): L'affaiblissement maximal de parcours, exprimé en dB. C'est le paramètre qu'on veut déterminer à travers l'établissement d'un bilan de liaison.
- PIRE (Puissance Isotrope Rayonnée Equivalente): ou EIRP (Equivalent IsotropieRadiated Power), est la puissance rayonnée équivalente à une antenne isotrope.
- IM = Marge d'interférence
- RXg = Gain d'antenne de réception
- K = Perte de câble
- SHG = Gain de soft handover
- RX = Sensibilité de réception

MODÈLE DE PROPAGATION

- Type de terrain.
- Les hauteurs des antennes d'émission et de réception.
- Fréquence de l'onde.
- Distance parcourue par l'onde.
- Caractéristique et densité des bâtiments.
- saison (hiver, printemps..)

MODÈLE DE PROPAGATION

Modèle	Fréquence porteuse (Mhz)	Hauteur du mobile (m)	Hauteur de la station de base (m)	Distance (km)
Okumura-Hata	150 – 1500	1 – 10	30 - 200	1 - 20
ErceigGreenstein	500 – 2000	2 – 10	10 – 80	
Walfisch-Ikegami	800 – 2000	1 – 3	10 – 80	0,1 – 8
Cost231-Hata	1500 –2000	1 – 10	30 – 200	1 – 20

MODÈLE DE DUPLEXAGE

Partie pratique

3

ENVIRONNEMENT DE TRAVAIL

TUNIS 3D SAMPLE

Area: 3 sq. km.

3D model parameters:

- Resolution: 2.5/5/20 m
- Vertical accuracy (heights in DTM, Z): 2-2.5/10 m
 Planimetric accuracy (XY): 3-4/20 m
- · Buildings heights accuracy: 5-10 m
- · Format: any RF-planning tool format
- Relevance: 2007

Modèle de projet: LTE

Paramètre

Exposition de la carte: Grand Tunis

Délimitation de la zone de filtrage et zone de calcul

Délimitation de la zone de filtrage et zone de calcul

Réseau

Émetteurs et Sites

Modèle de propagation

Prédiction de la couverture: Couverture par niveau de champ (DL)

Prédiction de la couverture: Couverture par niveau de C/(I+N) (DL)

Prédiction de la couverture: Couverture par niveau de C/(I+N) (UL)

Etude de la capacité

Analyse ponctuelle

Optimisation de la couverture

Conclusion et Perspectives

CONCLUSION

- Manipulation d'un outil de simulation de planification.
- Comprendre les résultats en passant par une étude théorique.
- Déduire le nombre d'EnodeB minimal nécessaire à la couverture d'une zone bien déterminée en passant par les formules propre à chaque modèle de propagation suivant la nature du terrain de zone d'étude.

PERSPECTIVES

→ Tester les autres modèles de propagation.

→ Introduire des nouveaux réseaux intelligents.

→ Travailler avec d'autres cartes.

Merci de votre attention

