Xây dựng bảng phân tích cú pháp LR chính tắc cho văn phạm sau:

- $(1)S \rightarrow CC$
- $(2)C \rightarrow cC$
- $(3)C \rightarrow d$

Từ đây ta có:

$$\Delta = \{S, C\}$$

$$\Sigma = \{c, d\}$$

Giải:

- a) Xây dựng văn phạm tăng cường:
- (0) S' \rightarrow S
- $(1)S \rightarrow CC$
- $(2)C \rightarrow cC$
- $(3) C \rightarrow d$
- b) Xây dựng họ tập mục

Bước 1: Tính closure(I) = J, với I = $\{[S' \rightarrow .S, \$]\}$

- Đưa tất cả các mục có trong I vào J
- \Rightarrow Ta có J = {[S' \rightarrow .S, \$]}
 - Xét mục $\{[S' \rightarrow .S, \$]\}$

Ta có $S \rightarrow CC$

$$First(\$) = \{\$\}$$

Nên ta thêm $[S \rightarrow .CC, \$]$ vào J

$$\Rightarrow \text{Ta c\'o J} = \{[\text{S'} \rightarrow .\text{S}, \$], [\text{S} \rightarrow .\text{CC}, \$]\}$$

• Xét mục $\{[S' \rightarrow .CC, \$]\}$

Ta có $C \rightarrow cC$

First(C) = {c, d}

Nên ta thêm $[C \rightarrow .cC, c|d]$ và $[C \rightarrow .d, c|d]$

$$\Rightarrow$$
 Ta có $J = \{[S' \rightarrow .S, \$], [S \rightarrow .CC, \$], [C \rightarrow .cC, c|d], [C \rightarrow .d, c|d]\}$

Ta được bảng sau:

	I'	Closure(I')	
		$[S' \rightarrow .S, \$],$	
Closure($\{[S' \rightarrow .S, \$]\}$)	$[S' \rightarrow .S, \$]$	$[S \rightarrow .CC, \$],$	I ₀
ετουμε ν (([ε	[5 / 15, 4]	$[C \rightarrow .cC, c d],$	-0
		$[C \rightarrow .d, c d]$	

Bước 2: Tính goto của I_i với X (X là ký hiệu của văn phạm)

2.1. Tính $goto(I_0, S)$

- I' = ∅
- Thấy trong I_0 có $[S' \rightarrow .S, \$]$ nên ta đưa $[S' \rightarrow S., \$]$ vào I'
- closure(I') = {[S' \rightarrow S., \$]} = $goto(I_0, S) = I_1$

2.2. Tính goto (I_0, C)

- I' = ∅
- Thấy trong I_0 có $[S \rightarrow .CC, \$]$ nên ta đưa $[S \rightarrow C.C, \$]$ vào I'
- Closure(I')???

Có C
$$\rightarrow$$
 cC và C \rightarrow d và First(\$) = {\$}

Nên ta đưa [C \rightarrow .cC, \$] và [C \rightarrow .d, \$] vào closure(I')

$$\Rightarrow goto(I_0, C) = closure(I') = \{[S \rightarrow C.C, \$], [C \rightarrow .cC, \$], [C \rightarrow .d, \$]\} = \underline{I_2}$$

2.3. Tính $goto(I_0, c)$

- I' = ∅
- Thấy trong I_0 có $[S \rightarrow .cC, c|d]$ nên ta đưa $[S \rightarrow c.C, c|d]$ vào I'
- Tính closure(I')???

Có C
$$\rightarrow$$
 cC và C \rightarrow d và First(c) = {c}; First(d) = {d}

Nên ta đưa $[C \rightarrow .cC, c|d]$ và $[C \rightarrow .d, c|d]$ vào closure(I')

$$\Rightarrow$$
 goto(I₀, c) = closure(I') = {[S \rightarrow c.C, c|d], [C \rightarrow .cC, c|d], [C \rightarrow .d, c|d]} = I₃

2.4. Tính $goto(I_0, d)$

- I' = ∅
- Thấy trong I_0 có $[C \rightarrow .d, c|d]$ nên ta đưa $[C \rightarrow d., c|d]$ vào I'
- Tính closure(I')???

$$\Rightarrow$$
 goto(I₀, d) = closure(I') = {[C \rightarrow d., c|d]} = I₄

2.5. Tính $goto(I_2, C)$

- I' = ∅
- Thấy trong I_2 có $[S \rightarrow C.C, \$]$ nên ta đưa $[S \rightarrow CC., \$]$ vào I'
- Tinh closure(I')???

$$\Rightarrow$$
 goto(I_2 , C) = closure(I') = {[$S \rightarrow CC.$, \$]} = I_5

2.6. Tính $goto(I_2, c)$

- I' = ∅
- Thấy trong I_2 có $[C \rightarrow .cC, \$]$ nên ta đưa $[S \rightarrow c.C, \$]$ vào I'
- Tính closure(I')???

Có C
$$\rightarrow$$
 cC và C \rightarrow d và First(\$) = {\$}

Nên ta đưa $[C \rightarrow .cC, \$]$ và $[C \rightarrow .d, \$]$ vào closure(I')

$$\Rightarrow$$
 goto(I_2 , c) = closure(I') = {[S \rightarrow c.C, \$], [C \rightarrow .cC, \$], [C \rightarrow .d, \$]} = I_6

2.7. Tính $goto(I_2, d)$

- I' = ∅
- Thấy trong I_2 có $[C \rightarrow .d, \$]$ nên ta đưa $[S \rightarrow d., \$]$ vào I'
- Tính closure(I')???

$$\Rightarrow$$
 goto(I_2 , d) = closure(I') = {[$S \rightarrow d.$, \$]} = I_7

2.8. Tính goto(I₃, C)

- I' = ∅
- Thấy trong I_3 có $[C \rightarrow c.C, c|d]$ nên ta đưa $[S \rightarrow cC., \$]$ vào I'
- Tính closure(I')???

$$\Rightarrow$$
 goto(I₃, C) = closure(I') = {[S \rightarrow cC., c|d]} = I₈

2.9. Tính $goto(I_3, c)$

- I' = ∅
- Thấy trong I_3 có $[C \rightarrow .cC, c|d]$ nên ta đưa $[S \rightarrow c.C, c|d]$ vào I'
- Tính closure(I')???

Có C
$$\rightarrow$$
 cC và C \rightarrow d và First(c) = {c}; First(d) = {d}

Nên ta đưa [C \rightarrow .cC, c|d] và [C \rightarrow .d, c|d] vào closure(I')

$$\Rightarrow$$
 goto(I₃, c) = closure(I') = {[S \rightarrow c.C, c|d], [C \rightarrow .cC, c|d], [C \rightarrow .d, c|d]} = I₃

2.10. Tính $goto(I_3, d)$

- I' = ∅
- Thấy trong I_3 có $[C \rightarrow .d, c|d]$ nên ta đưa $[S \rightarrow d., c|d]$ vào I'
- Tính closure(I')???

$$\Rightarrow$$
 goto(I₃, d) = closure(I') = {[C \rightarrow d., c|d]} = I₄

2.11. Tính $goto(I_6, C)$

- I' = ∅
- Thấy trong I_6 có $[C \rightarrow c.C, \$]$ nên ta đưa $[C \rightarrow cC., \$]$ vào I'
- Tính closure(I')???

$$\Rightarrow$$
 goto(I_6 , C) = closure(I') = {[$C \rightarrow cC.$, \$]} = I_9

2.12. Tính $goto(I_6, c)$

- I' = ∅
- Thấy trong I_6 có $[C \to .cC, \$]$ nên ta đưa $[C \to c.C, \$]$ vào I'
- Tính closure(I')???

Có C
$$\rightarrow$$
 cC và C \rightarrow d và First(\$) = {\$}

Nên ta đưa $[C \rightarrow .cC, \$]$ và $[C \rightarrow .d, \$]$ vào closure(I')

$$\Rightarrow goto(I_6, c) = closure(I') = \{[S \rightarrow c.C, \$], [C \rightarrow .cC, \$], [C \rightarrow .d, \$]\} = I_6$$

2.13. Tính $goto(I_6, d)$

- I' = ∅
- Thấy trong I_6 có $[C \rightarrow .d, \$]$ nên ta đưa $[C \rightarrow d., \$]$ vào I'
- Tính closure(I')???

$$\Rightarrow goto(I_6, d) = closure(I') = \{[S \rightarrow d., \$]\} = I_7$$

Từ tất cả những kết luận ở trên, ta có bảng sau:

	I' (Nếu [$A \rightarrow \alpha \cdot X\beta$, a] \in I thì đưa [$A \rightarrow \alpha X \cdot \beta$, a] vào I')	Closure(I')	
$closure(\{S' \rightarrow \bullet S, \$\})$	S' → • S, \$	$S' \rightarrow \bullet S, \$$	I_0

		S → • CC, \$	
		$C \rightarrow \cdot cC, c/d$	
		$C \rightarrow \bullet d, c/d$	
Goto(I ₀ , S)	S' → S •, \$	S' → S •, \$	I_1
Goto(I ₀ , C)	$S \rightarrow C \cdot C, $ \$	$S \to C \cdot C, $ \$	
		$C \rightarrow \cdot cC, \$$	I ₂
		$C \rightarrow \cdot d, $ \$	
Goto(I ₀ , c)	$C \rightarrow c \cdot C, c/d$	$C \rightarrow c \cdot C, c/d$	
		$C \rightarrow \cdot cC, c/d$	I_3
		$C \rightarrow \cdot d, c/d$	
Goto(I ₀ , d)	$C \rightarrow d \cdot, c/d$	$C \rightarrow d \bullet, c/d$	I ₄
	:	1	
Goto(I ₂ , C)	$S \to CC \cdot, \$$	$S \to CC \cdot, \$$	I_5
Goto(I ₂ , c)	$C \rightarrow c \cdot C,$ \$	$C \rightarrow c \cdot C, $ \$	
		$C \rightarrow \cdot cC, \$$	I ₆
		$C \rightarrow \cdot d, $ \$	
Goto(I ₂ , d)	$C \rightarrow d \cdot, \$$	C → d •, \$	I ₇
Goto(I ₃ , C)	$C \rightarrow cC \cdot, c/d$	$C \rightarrow cC \cdot, c/d$	I_8
Goto(I ₃ , c)	$C \rightarrow c \cdot C, c/d$		≡ I ₃
Goto(I ₃ , d)	$C \rightarrow d \cdot, c/d$		≡ I 4
Goto(I ₆ , C)	C → cC •, \$	C → cC •, \$	I ₉
Goto(I ₆ , c)	$C \to cC \cdot, \$$ $C \to c \cdot C, \$$		≡ I ₆
Goto(I ₆ , d)	C → d •, \$		≡I ₇

c) Xây dựng bảng LR chính tắc:

```
QT2.a: Nếu [A \rightarrow \alpha \cdot a\beta, b] \in I và goto (I, a) = I thì action[i, a] = "shift j", a là ký hiệu kết thúc
- Xét tập I<sub>0</sub> có:
                                                                                       - Xét tập I3 có:
           (1) C \rightarrow \cdot cC, c/d
                                                                                                   (1) C \rightarrow cC, c/d
                       Goto(I_0, c) = I_3
                                                                                                              Goto(I_3, c) = I_3
                       \rightarrow action[0,c] = S<sub>3</sub>
                                                                                                               \rightarrow action[3, c] = S<sub>3</sub>
           (2) C \rightarrow \cdot d, c/d
                                                                                                   (2) C \rightarrow \cdot d, c/d
                       Goto(I_0, d) = I_4
                                                                                                               Goto(I_3, d) = I_4
                       \rightarrow action[0,d] = S<sub>4</sub>
                                                                                                               \rightarrow action[3, d] = S<sub>4</sub>
- Xét tập I1 không có mục nào thỏa mãn.
                                                                                       - Xét các tập I4, I5 không có mục nào thỏa mãn.
- Xét tập I2 có:
                                                                                       - Xét tập I6 có:
           (1) C \rightarrow cC, $
                                                                                                   (1) C \rightarrow cC, $
                       Goto(I_2, c) = I_6
                                                                                                              Goto(I_6, c) = I_6
                       \rightarrow action[2, c] = S<sub>6</sub>
                                                                                                               \rightarrow action[6,c] = S<sub>6</sub>
           (2) C \rightarrow \cdot d, $
                                                                                                   (2) C \rightarrow \cdot d, \$
```

$Goto(I_2, d) = I_7$	$Goto(I_6, d) = I_7$
\rightarrow action[2, d] = S ₇	\rightarrow action[6, d] = S ₇
	- Xét các tập I ₇ , I ₈ , I ₉ không có mục nào thỏa mãn.

QT2.b: Nếu $[A \to \alpha^{\bullet}, a] \in I_i$ thì action $[i, a]$ = "reduce $(A \to \alpha)$ ", $A \neq S$		
- Xét các tập I ₀ , I ₁ , I ₂ , I ₃ không có mục nào thỏa mãn.	- Xét tập I ₇ có:	
- Xét tập I ₄ có:	$C \rightarrow d \cdot, \$$	
$C \rightarrow d \cdot, c/d$	\rightarrow action[7, \$] = R ₃ với R ₃ : C \rightarrow d	
\rightarrow action[4, c] = R ₃	- Xét tập I ₈ có:	
action[4, d] = R_3 với R_3 : $C \rightarrow d$	$C \rightarrow cC \cdot, c/d$	
- Xét tập I ₅ có:	\rightarrow action[8, c] = R ₂	
$S \to CC \cdot, \$$	action[8, d] = R_2 với R_2 : $C \rightarrow cC$	
\rightarrow action[5, \$] = R ₁ với R ₁ : S \rightarrow CC	- Xét tập I ₉ có:	
- Xét tập I ₆ không có mục nào thỏa mãn.	$C \rightarrow cC \cdot, \$$	
	\rightarrow action[9, \$] = R ₂ với R ₂ : C \rightarrow cC	

QT 2.c: Nếu
$$[S' \rightarrow S \cdot , \$] \in I_i$$
 thì action $[i, \$]$ = "accept".
Có $[S' \rightarrow S \cdot , \$] \in I_i \rightarrow \text{action}[1, \$]$ = "accept".
QT3: Nếu goto $(I_i,A)=I_j$ thì goto $[i,A]=j$, A là kí hiệu chưa kết thúc $Goto(I_0,S)=I_1 \rightarrow goto[0,S]=1$
 $Goto(I_0,C)=I_2 \rightarrow goto[0,C]=2$
 $Goto(I_2,C)=I_5 \rightarrow goto[2,C]=5$
 $Goto(I_3,C)=I_8 \rightarrow goto[3,C]=8$
 $Goto(I_6,C)=I_9 \rightarrow goto[6,C]=9$