

ORACLE®

TRANSFORMAR O **EMPODERANDO AS PESSOAS** POR MEIO DA INOVAÇÃO

Quantas línguas você fala? Mas sua persistência, já é poliglóta?

Luciano Verissimo

Principal Solution Engineer Luciano.verissimo@oracle.com

Jan, 2019

Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle's products remains at the sole discretion of Oracle.

Uma visão de como chegamos na Persisitência Poliglota?

Monolítico, Procedural, Do-It-Yourself

Hey Doc, o que é isto? Um capacitor de fluxo, com ele será possível a viagem no tempo...

Não Doc... isto aqui?

Ah, este é primeiro banco relacional comercialmente viável com suporte à SQL

A Inovação: SQL Joins

SELECT A.COL FROM A, B WHERE **A.COL** = **B.COL**

A.I.D.

ATOMICIDADE

Uma transação tem vários comandos distintos que forma uma única unidade. Ou faz tudo, ou não faz nada.

ISOLAMENTO

Há 1 unidade no estoque. Duas compras ao mesmo tempo?

Isto não existe... A primeira executa. Se efetivar, a segunda (em espera) tem falta de estoque. Se a primeira falhar, a segunda ainda vê 1 unidade no estoque.

DURABILIDADE

Uma transação modifica a quantidade no estoque. A quantidade será sempre a mesma até que outra transação válida altere para outro valor... mesmo que o DBMS seja abrutamente reiniciado.

Leitura Consistente

DURAÇÃO DO RELATÓRIO 30 MINUTOS

Client/Server

Primeiro Banco de Dados Client/Server

Easy*Link (DB Links)

Não havia REST, SOAP, SOA, EAI, WEBSERVICE... ah, aplicações em 2 camadas ainda era novidade.

Figure 3 Oracle General Ledger's spreadsheet interface allows users to perform budgeting on a personal computer.

A.C.I.D.

ATOMICIDADE

Uma transação tem vários comandos distintos que forma uma única unidade. Ou faz tudo, ou não faz nada.

ISOLAMENTO

Há 1 unidade no estoque. Duas compras ao mesmo tempo?

Isto não existe... A primeira executa. Se efetivar, a segunda (em espera) tem falta de estoque. Se a primeira falhar, a segunda ainda vê 1 unidade no estoque.

DURABILIDADE

Uma transação modifica a quantidade no estoque. A quantidade será sempre a mesma até que outra transação válida altere para outro valor... mesmo que o DBMS seja abrutamente reiniciado.

CONSISTÊNCIA

Uma transação no banco de dados ocorre e ela respeita a unicidade da chave primária, o valor que não pode ser nulo, a referência da chave estrangeira, o datatype e quaisquer outras regras definidas na tabela

Resumo: Tudo era para o Desenvolvedor

Porque o Desenvolvedor tinha que fazer tudo na mão!

Versão 3

Commit e
Rollback, mas
sem leitura
consistente

Versão 4

Consistente, Oracle rodando com 640k

Versão 5

Client/Server,
DB Links, e
Cluster

Versão 6

Constraints e Lock de Linha, PL/SQL anônimo

A era da internet e a análise de dados

Release

1985 - 1997: 6, 7 and 8

1998 - 2012: 8i, 9i, 10g, 11g

SQL - Consultas Analíticas

SQL - Machine Learning + R (in DB)

```
SELECT
 a.data,
  a.nm loja,
  REGR SLOPE (SYSDATE-a.data, b.qtd * c.vl venda)
    OVER (PARTITION BY a.nm loja) AS slp,
 REGR INTERCEPT (SYSDATE-a.data, b.qtd * c.vl venda)
    OVER (PARTITION BY a.nm loja) AS icpt,
 REGR R2(SYSDATE-a.data, b.qtd * c.vl_venda)
    OVER (PARTITION BY a.nm loja) AS rsqr,
 REGR COUNT(SYSDATE-a.data, b.qtd * c.vl venda)
    OVER (PARTITION BY a.nm loja) AS cnt
FROM venda a, item venda b, produto c
WHERE a.id = b.venda id
 AND b.id produto = c.id
 AND a.data >= ?
```

SQL - Reconhecimento de Padrões

```
SELECT *
  FROM venda a, item venda b
  WHERE a.data = ? AND a.id = b.item_id)
 MATCH RECOGNIZE
  (PARTITION BY nm loja
  ORDER BY data
  MEASURES FIRST (x.data)
                  first t,
                  y.data last t,
                  y.amount amount
   PATTERN ( x{3,} y ) DEFINE
   x AS (b.qtd < 2000),
   y AS (b.qtd >= 1000000
        AND LAST (x.data) -FIRST (x.data) < 3
        AND y.data - LAST(x.data) < 10
    );
```

Não existe "One-Size-Fits-All"

Release

1985 - 1997: 6, 7 and 8

1998 – 2012: 8i, 9i, 10g, 11g

2013 - 2015: 12c

Navegando pela persistência poliglota

Documento, grafo, Shard... o que mais?

• Rápido acesso para leituras e escritas.

 Não precisa ser durável Precisa de atualizações transacionais (ACID)

Precisa de alta disponibilidade em múltiplas localizações, permite escrita inconsistente

 Precisa atravessar rapidamente links entre amigos, compras de produtos e avaliações

- Muitas leituras, poucas escritas, dados agrupados
- SQL é amigável para ferramentas de relatórios
- Analytics com larga escala em cluster
- Alto volume de escritas em múltiplos nós

RDBMS vs. Modelo de Documento

ACID, **Schema on Write**, normalização (armazena o dado só uma vez) e SQL, **FOCO EM INTEGRIDADE**

Documento (XML, JSON)

Schema on Read, SQL-like, self-contained, FOCO EM FLEXIBILIDADE

RDBMS vs. Modelo de Grafo

ACID, Schema on Write, normalização (armazena o dado só uma vez) e SQL, **FOCO EM INTEGRIDADE**

Grafo

Schema relativamente flexível, FOCO EM CORRELACIONAMENTOS

RDBMS vs. Modelo Chave/Valor

FK

Relacional

key	Index	ex Index Index			
ID	Name	Age	Gender		
100	John	22	Male		
101	Mary	20	Female		
102	Paul	25	Male		

ACID, Schema on Write, normalização (armazena o dado só uma vez) e SQL, **FOCO EM INTEGRIDADE**

Chave/Valor

key	Value					
ID	Name	Age	Gender			
100	John	22	Male			
101	Mary	20	Female			
102	Paul	25	Male			

Schema on Read, **FOCO EM ALTO THROUGHPUT PARA LEITURA E ESCRITA**, geralmente operado
por **GET**, **PUT** e **DELETE** através de Primary Key.

Aplicações Diferentes tem Necessidades Diferentes

		User Sessions	Financial Transactions	Shopping Cart	Recommend. Engine	Product Catalog	Reporting	Analytics	Activity Logs
	Heavy Writes								V
	Heavy Reads				V	V	V	V	
h a	Fast Read/Write	V							
sing	Data Consistency		V	V					
Sess	Data Durability		V						
Processing	Analytic						V	V	
	Graph				V				
	Spatial								
	Geo Distribution			٧		V			V
Data	Relational		٧				V	V	
	Key/Value	V		V					V
	Document/JSON					V			V
	Graph				٧				

Duas Possibilidades para Persistência Poliglota

Single-model

Relational Database

Graph Database

Key-value Store

JSON/XML Database

Multi-model

Tendências da Persistência Poliglota

- Soluções single-model são mais comuns para aplicações "de ponta" ou "Cutting-Edge Applications";
- Aplicações de negócio naturalmente convergem para multi-model
 - As aplicações "de ponta" de hoje serão as aplicações mainstream de amanhã
 - Com o tempo a eficiência do multi-model supera as vantagens do single-model especializado;
- Sempre haverá soluções single-model

Technology Adoption Lifecycle

Entendendo o perfil das empresas em relação à adoção de novas tecnologias

Em resumo...

Não há uma resposta correta sobre qual é a melhor arquitetura, há apenas trade-offs

- Qual arquitetura suporta seus requisitos?
 - Relacional, JSON, XML, ACID
- Você tem diferentes requerimentos de performance/escalabilidade?
 - Portal de compras com acesso na internet vs pagamento back-end
- Precisa compartilhar dados importantes?
 - Informação sobre saúde de um paciente, ou informações financeiras de um cliente
- Precisa compartilhar controles operacionais comuns?
 - Modelos de segurança comuns, user profiles, integrações comuns com outros sistemas, requerimentos de HA comuns, administração comuns

3

Um pouco de como o Oracle Database pode endereça a Persistência Poliglota

Oracle RDBMS

Oracle DBMS

SODA Simple Oracle Document Access

- Cria e remove collections / índices
- Permite NoSQL atráves de APIs que permitem executar operações CRUD
- Aplica filtros, também chamados query-by-example (QBE)
- Expõe collections através de chamadas REST
- Realiza bulk Inserts

Acesso NoSQL: Alguns Parâmetros usando QBE no SODA

Ordenando o retorno

```
{"$query":{},"$orderby":{"releaseDate":-1}}
```

Valor exato

```
{"location.city": "SAN FRANCISCO"}
```

Lista de valores

```
{"id":{"$in":[245168,299687,177572,76757]}}
```

Full Text Searching

```
{"plot":{"$contains":"$(colour)"}}
```

Múltiplos predicados

```
{"movieId":109410,
    "startTime":{
         "$gte":"2016-09-12T07:00:00.000Z",
         "$lt":"2016-09-13T07:00:00.000Z"
     },
         "$orderby":{"screenId":1,"startTime":2}
}
```

Pesquisa por distância

```
{"location.geoCoding":{
    "$near":{
        "$geometry":{
            "type":"Point",
            "coordinates":[37.8953,-122.1247]
        },
        "$distance":5,
        "$unit":"mile"
    }}}
```

Acesso NoSQL

RESTFul Database Tables

Oracle REST Data Services HTTP(s) API App-Dev com Tabelas no Oracle Database

ORDS maps standard URI requests to corresponding relational SQL (not schemaless): e.g. SQL SELECT from customers and orders table.

ORDS also transforms the SQL results into the highly popular JavaScript Object Notation (JSON), other formats include HTML, binary and CSV. Fully committed to supporting any and all standards required by Fusion / SaaS / FMW; we are actively engaged in the ongoing dialog.

Outros Recursos para suporte à persistência poliglota

Oracle Database Sharding

Banco de Dados Oracle sem Sharding

Um Banco de Dados Oracle com Sharding

Criação de Schema - Tabelas Sharded e Duplicated

Database Tables

Orders

Order	Customer
4001	123
4002	456
4003	999
4004	456
4005	456

Line Items

Customer	Order	Line		
1 23	4001	40011		
2 999	4003	40012		
1 23	4001	40013		
4 56	4004	40014		
2 999	4003	40015		
2 999	4003	40016		

Sharded Tables

Products

SKU	Product
100	Coil
101	Piston
102	Belt

Duplicated Tables

Acesso Chave/Valor otimizado para Leitura

- Novo Hash Index para leitura otimizada
- Sem bloqueios, 100% em memória
- Desvia da camada SQL e executa diretamente na camada de dados


```
CREATE TABLE test_lookup

( key_col NUMBER(5) PRIMARY KEY,

value_col VARCHAR2(15))

MEMOPTIMIZE FOR READ;
```


"Desliga" a Durabilidade (D do ACID)

ALTER [SYSTEM | SESSION] **SET** COMMIT_WRITE = 'BATCH,NOWAIT';

Ou

INSERT INTO TAB VALUES ... COMMIT BATCH NOWAIT;

Ajusta a Leitura Consistente

SELECT COLUNA
FROM TABELA
WHERE COLUNA = VALOR
AS OF VERSION | TIME

Formatos de Dados Híbridos Linha e Coluna

Row Format

InMemory Column Format

C1	C2	C3	C4	C1	C2	C 3	C4	C1	C2
C3	C4	C1	C2	C3	C4	C1	C2	C3	C4
C1	C2	C3	C4	C1	C2	C 3	C4	C1	C2
C 3	C4	C1	C2	C 3	C4	C1	C2	C 3	C4

Block 1

Block 1

Block 2

SELECT * FROM TAB WHERE C1 = ? (OLTP QUERY)

SELECT * FROM TAB WHERE C1 = ? (OLTP QUERY)

SELECT C2, COUNT(*) FROM TAB GROUP BY C2 (ANALYTICAL QUERY)

SELECT C2, COUNT(*) FROM TAB GROUP BY C2 (ANALYTICAL QUERY)

C1 = Primary Key

ALTER TABLE TAB INMEMORY;

In-Memory JSON Queries

• CREATE TABLE TAB

(.... COL BLOB CHECK IS JSON);

ALTER TABLE TAB INMEMORY;

Estratégia da Oracle para Big Data

Visão Convencional de Data Management Visão Emergente de Data Management

Integrated Cloud

Applications & Platform Services

ORACLE®