Solution 5

NOTE: My interpretation of the context is that date and time distinguishes records by highly finite amounts, such as nanoseconds, rather than being grouped into a single time for the whole of a scan.

Records / Rows:

Scanned Area Count (SAC) = (Single area = 20,000m * 100,000m) * 10 scans

= 20,000,000,000 (20 billion measurements)

Co-ordinates Size (COS) = 8 bytes

Measurement Description (MD) = 100 bytes

Measurement Size (MS) = SAT * (CO + MD)

= 20,000,000,000 * (8 + 100) bytes

= 2,160,000,000,000 bytes

= 2,109,375,000 kilobytes

= 2,059,936.5234375 megabytes

= 2,011.656761169434 gigabytes

= 1.964508555829525 terabytes

Data:

Date and Time (DT) = 10 bytes

Laser Description (LD) = 5 bytes

Airplane Description (AD) = 15 bytes

Storage:

Disk Block (DB) = 16 kilobytes

= 16384 bytes

Block Header (BH) = 80 bytes

Table Header (TH) = 0 bytes

Row Directory Entry (RDE) = 4 bytes

Solutions:

Method 1

Tables:

Measurement: Co-ordinate ID, DateTime ID, Description

Scan: DateTime ID, Laser, Airplane

Conceptual Schema:

Relational Schema:

Method 2

Measurement: Co-ordinate ID, DateTime ID, Description, Laser, Airplane

Conceptual Schema:

Relational Schema:

Calculations for Method 1:

Measurement Table:

Average rows per Block (R) = ?

Total Block Header (TBH) = BH + RDE * R

= 80 + 4 * ?

PCTFREE = 0 (assumed)

Available Data Space per Block (ADS) = (DB - TBH) * (100 - PCTFREE) / 100

= (16384 - (80 + 4 * R)) * (100-0)/100

= (16304 - 4 * R) * 1 ≈

= 16304 - 4 * R

RowSize (RSize) = MD + COS + DT

= (100 + 8 + 10) bytes

= 118 bytes

R = ADS / RSize

= (16304 - 4 * R) / 118

≈ 138 – 0.04 * R

hence $138 - 0.04 * R = R => R \approx 137.96$

Blocks = SAC / R

= 20,000,000,000 / 137.96

≈ 144969556 blocks

Bytes = Blocks * DB

= (144,969,556 * 16384) bytes

≈ 2.16021 terabytes

Scan Table:

Average rows per Block (R) = ?

Total Block Header (TBH) = 80 + 4 * ? (solved previously)

PCTFREE = 0 (assumed)

Available Data Space per Block (ADS) = 16304 – 4 * R (solved previously)

RowSize (RSize) = DT + LD + AD

= (10 + 5 + 15) bytes

= 30 bytes

R = ADS / RSize

= (16304 - 4 * R) / 30

≈ 543 – 0.13 * R

hence $543 - 0.13 * R = R => R \approx 542.87$

Blocks = SAC / R

= 20,000,000,000 / 542.87

≈ 36841233 blocks

Bytes = Blocks * DB

= (36841233 * 16384) bytes

≈ 0.54898 terabytes

Total Size of Calculations for Method 1:

Storage Size = (2.16021 + 0.54898) terabytes

= 2.70919 terabytes

Calculations for Method 2:

Measurement Table:

Average rows per Block (R) = ?

Total Block Header (TBH) = 80 + 4 * ? (solved previously)

PCTFREE = 0 (assumed)

Available Data Space per Block (ADS) = 16304 – 4 * R (solved previously)

RowSize (RSize) = MD + COS + DT + LD + AD

= (100 + 8 + 10 + 5 + 15) bytes

= 138 bytes

R = ADS / RSize

= (16304 - 4 * R) / 138

≈ 118 – 0.03 * R

hence $118 - 0.03 * R = R => R \approx 117.97$

Blocks = SAC / R

= 20,000,000,000 / 117.97

≈169,534,627 blocks

Bytes = Blocks * DB

= (144,969,556 * 16384) bytes

≈ 2.52626 terabytes

Total Size of Calculations for Method 2:

Storage Size = 2.52626 terabytes

Result:

Storage size for method 2 is less than method 1:

(2.52626 terabytes < 2.70919 terabytes)

As such, storage method 2 is more optimal, due to storage concerns.