Estatística II, 2012/2013 Modelo de exame

NB: Este modelo pretende dar uma ideia do grau de dificuldade/extensão do exame – não visa dar indicação clara a respeito das questões efectivamente incluídas no mesmo. Em cada questão inclui-se as respectivas soluções.

Duração: 2h. Pode-se utilizar **máquina de calcular sem memória de texto**. **Tabelas estatísticas fornecidas com o enunciado** – a/os estudantes **não** devem levá-las para o exame.

Cotações

$$(1a) - 1, b) - 1;$$
 $(2 - 2);$ $(3a) - 1,5, b) - 1,5;$ $(4a) - 1,5, b) - 2,5;$ $(5a) - 2,5, b) - 1,5;$ $(6 - 2);$ $(7a) - 1,5, b) - 1,5.$

- Um sistema electrónico é composto por dois subsistemas, S_1 e S_2 . Sabe-se que: a probabilidade de S_1 falhar é 0,2, a probabilidade de apenas S_2 falhar é 0,15, e a probabilidade de S_1 e S_2 falharem simultaneamente é 0,15. Calcule a probabilidade de
- a) Falhar apenas S_1 .
- **b**) Falhar pelo menos um dos dois subsistemas.

Resposta: a) 0.05 b) 0.35

2 Determinada doença afecta 1 em cada 10000 pessoas. Um teste clínico para a doença tem as seguintes características: se a pessoa não tem a doença, o teste confirma esta situação com probabilidade 0,9; se a pessoa tem a doença, o teste confirma o facto com a mesma probabilidade (0,9). Administrado o teste a uma pessoa escolhida ao acaso, o mesmo indicou a presença da doença.

Qual a probabilidade de a pessoa estar doente? No seu caso, ficaria preocupada/o? [Sugestão. Defina os acontecimentos, D: "ter a doença", T: "o teste indica presença da doença", e calcule P(D|T) utilizando o teorema de Bayes.]

R.: Provavelmente não: P(D|T) = 1/1112.

- Seja a função de densidade da v.a. X, $f(x) = (2x^3)^{-1}$, x > 1/2.
- *a*) Determine a função de distribuição de *X*.
- **b**) Calcule P(X > 4|X > 2).

R:
$$a$$
) $\begin{cases} 0, & x < 1/2 \\ 1 - 1/(4x^2), & x \ge 1/2 \end{cases}$ b) $1/4$

- **4** A v.a. N representa o número de estudantes atendidos no Gabinete de Atendimento ao Estudante (GAE), por hora, durante o horário de expediente. Admita que N segue uma distribuição Poisson de parâmetro $\mu=4$. Calcule
- *a*) A probabilidade de, num período de 2 horas, o GAE atender 6 alunos.
- **b**) O tempo médio, em minutos, que decorre entre 2 atendimentos consecutivos.

Informação adicional

Função probabilidade *Poisson* de parâmetro $\mu > 0$:

$$f_N(n) = e^{-\mu} \mu^n / n!, n \in \{0,1,2,...\}.$$

Função densidade exponencial negativa de parâmetro $\nu > 0$:

$$f_T(t) = \nu e^{-\nu t}, t > 0.$$

R.: *a*) 0,122 *b*) 15 minutos

- **5** A v.a. X tem média e variância finitas, dadas, respectivamente, por $E(X) = \alpha$, $V(X) = \beta > 0$.
- a) Calcule a média e variância da estatística $\bar{X} = n^{-1} \sum_{i=1}^{n} X_i$, em que $(X_1, X_2, ..., X_n)$ designa uma amostra casual de dimensão n desta população.
- **b**) Considerando a resolução da alínea anterior, calcule plim $_{n\to\infty}$ \bar{X} . Justifique.

R.:
$$\alpha$$
) $E(\bar{X}) = \alpha$ $V(\bar{X}) = \beta/n$ b) $plim_{n\to\infty} \bar{X} = \alpha$

Mediante registos históricos, sabe-se que o desvio-padrão das vendas de determinado produto, por retalhista, é $\sigma=200$ euros, admitindo-se que o volume de vendas é uma v.a. normal. Qual a dimensão mínima de uma amostra casual, de modo que a amplitude de um intervalo de confiança a 95% para a média das vendas não seja superior a 200 euros?

Informação adicional Variável fulcral:
$$(\bar{X} - \mu)/(\sigma/\sqrt{n}) \sim \mathcal{N}(0,1)$$
.

R.: 16

- A vida útil, X, das televisões de determinada marca é uma v.a. normal com desvio-padrão $\sigma=500$ horas. A marca anuncia uma vida útil média das suas televisões de 9000 horas. Recolhe-se uma amostra casual de n televisões, registando-se a respectiva vida média útil, \bar{x} . Teste, ao nível de 5%, a afirmação da marca, contra a alternativa unilateral esquerda, nas seguintes situações:
- a) $n = 15, \bar{x} = 8800 \text{ horas}.$
- **b**) $n = 35, \bar{x} = 8800 \text{ horas.}$

Informação adicional Estatística de teste: $(\bar{X} - \mu)/(\sigma/\sqrt{n}) \sim \mathcal{N}(0,1)$.

R.: a) Não se rejeita H_0 b) Rejeita-se H_0