

Outline 大綱

- A. 特徵選取 (Select Attribute)
- B. 切分資料 (Split Data)
- C. PLA 感知器
- D. 評估模型

選取的特徵?原因?

- ① 視覺化:
 Scatter Plot, 觀察特徵之間的關聯。
- ② 量化: 計算相關係數(Pearson Correlation),數值呈現。

Scatter Plot 散佈圖

sepal length vs. sepal width

sepal length vs. petal length

Scatter Plot 散佈圖

sepal length vs. petal width

sepal width vs. petal length

Scatter Plot 散佈圖

sepal width vs. petal width

petal length vs. petal width

Thinking About Scatter Plot

觀察後感想:

- A. Setosa皆能很快分出
- B. Versicolor及Virgina不容易分辨
- → 那應當如何選取?
- → 計算相關係數 (Correlation)

HeatMap

Pearson Correlation	species
sepal_length	0.783
sepal_width	-0.427
petal_length	0.949
petal_width	0.957
species	1.000

選擇Petal Length & Petal Width

再次檢視 petal length vs. petal width

切分資料

Train-Test-Split

105筆

Parameters

• Train_Size:用多少資料訓練,這邊設定*0.7*

• Test_Size : 用多少資料測試, 這邊設定*0.2*

• shuffle:是否要隨機抽樣 → 此資料集必須要設定True

• stratify:如何抽樣→依照原始'species'分布

```
from sklearn.model_selection import train_test_split
train, test = train_test_split(iris_data, train_size=0.7, test_size = 0.2, shuffle=True, stratify=iris_data['species'])
```

- **shuffle**:必須要設定True
- 若使用False,則僅會選到前面的資料

	Count
setosa資料數量:	50
versicolor資料數量:	50
virginica資料數量:	5

	petal_length	petal_width	species	
0	1.4	0.2	setosa	
1	1.4	0.2	setosa	
2	1.3	0.2	setosa	
3	1.5	0.2	setosa	
4	1.4	0.2	setosa	
100	6.0	2.5	virginica	
101	5.1	1.9	virginica	
102	5.9	2.1	virginica	
103	5.6	1.8	virginica	
104	5.8	2.2	virginica	
105 rows × 3 columns				

- stratify = species 分布
- Otherwise:抽樣不均勻,靠運氣

	Count
setosa資料數量:	23
versicolor資料數量:	41
virginica資料數量:	41

resample

或者可以利用resample,取得訓練資料

• 仍會是均勻的資料分布

```
from sklearn.utils import resample
train = resample(iris_data, n_samples=105, replace=False, stratify=iris_data['species'])
```

resample

- 處理類別不平衡問題 (By. <u>CSDN</u>)
- 但因為資料集分布均勻,所以沒有選擇使用及深入研究。

PLA 二元分類

(W1,W2,W0) (X1,X2,X0)

- ① Setosa
- ② Versicolor
- ③ Virginica

1. 區分Setosa

- Setosa最容易區分
 初始權重 w0 = np.array([0.,0.,0.])
- Learning Rate = 0.95
- Iters = 5

結果:很快就找到PLA

• Trained w4=np.array[-1.71, -2.945, 7.6]

1. 區分Setosa

Setosa為1;其他為0

• Iters = 1; w = [-2.47 - 2.85 5.7]

$$Y = (-2.47x1) + (-2.85x2) + 5.7$$

• Iters = 2; w = [-1.71 - 2.945 7.6]

Y = (-1.71x1) + (-2.945x2) + 7.6

2. 區分Versicolor

- Versicolor與Virginica較難區分
 - → 分為三階段調整權重
- 第一階段 w0 = np.array([0.,0.,0.]); **Learning Rate = 0.1**; Iters = 300
- 第二階段 w300=[-1.42 -5.81 16.] ; **Learning Rate = 0.01** ; Iters = 300
- 第三階段 w600=[-1.872 -4.205 16.08]; **Learning Rate = 0.001**; Iters = 300
- 最終權重 w900=[-1.8486 -4.1222 16.074]

2. 區分Versicolor

- Iters = 300
- w=[-1.42 -5.81 16.]
- Y = (-1.42x1) + (-5.81x2) + 16.0

(11.27, 0); (0, 2.75)

- Iters = 600
- W=[-1.872 -4.205 16.08]
- Y = (-1.87x1) + (-4.21x2) + 16.08

(8.59, 0); (0, 3.82)

- Iters = 900
- w=[-1.8486 -4.1222 16.074]
- Y = (-1.85x1) + (-4.12x2) + 16.07

(8.7, 0); (0, 3.9)

20

2. 區分Versicolor

• 第一批次訓練

• 第二批次訓練

• 第三批次訓練

合併圖表

1. 區分Setosa

2. 區分Versicolor

評估模型

- ① Confusion Matrix
- ② Accuracy VS. Precision VS. Recall

評估流程

評估指標

• 正確率 Accuracy: 在所有情況中,正確判斷真假的比例。

$$Accuracy = \frac{TP + TN}{TP + FP + TN + FN}$$

• 精確率 Precision: 判斷為真的情況下, 有多少是真的真。

$$Precision = \frac{TP}{TP + FP}$$

· 召回率 Recall:為真的情況下,有多少被正確判斷出來。

$$Recall = \frac{TP}{TP + FN}$$

First PLA Validation

區分Setosa

• 答對15個;答錯0個

▶正確率:100.0%

➤ Precision: 100.0%

➤ Recall: 100.0%

Predict(預測)

	不是Setosa	Setosa
不是Setosa	^{TN} 10	FP 0
Setosa	FN O	^{TP} 5

Label (真實)

Second PLA Validation

區分versicolor

Predict (預測)

- 答對9個;答錯1.0個
- 判斷錯誤的資料:

petal length (cm)	petal width (cm)	label	predict
4.5	1.7	0.0	1.0

Label (真實)

	不是Versicolor	Versicolor
不是Versicolor	TN ₄	FP 1
Versicolor	FN 0	TP 5

▶正確率:90.0%

➤ Precision: 83.33%

➤ Recall : 100.0%

Validation

		預測		
	Validation	Setosa	Versicolor	Virginica
	Setosa	5	0	0
真實	Versicolor	X	5	0
	Virginica	X	1	4

First PLA Test

區分Setosa

• 答對30個;答錯0個

▶正確率:100.0%

➤ Precision: 100.0%

➤ Recall: 100.0%

Predict(預測)

Label (真實)

	不是Setosa	Setosa
不是Setosa	^{TN} 20	FP 0
Setosa	FN 0	^{TP} 10

Second PLA Test

區分versicolor

Predict(預測)

- 答對19個;答錯1.0個
- 判斷錯誤的資料:

petal length (cm)	petal width (cm)	label	predict
5.0	1.7	1.0	0.0

	不是Versicolor	Versicolor
不是Versicolor	^{TN} 10	FP 0
Versicolor	FN 1	TP 9

▶正確率:95.0%

➤ Precision: 100.0%

➤ Recall: 90.0%

Test

		預測		
	Validation	Setosa	Versicolor	Virginica
	Setosa	10	0	0
真實	Versicolor	X	9	1
	Virginica	X	0	10

關於 Second PLA

區分versicolor

- 驗證所有Versicolor & Virginica資料
- 答對95個;答錯5.0個
- 判斷錯誤的資料:

	petal length (cm)	petal width (cm)	label	predict
0	4.8	1.8	1.0	0.0
1	5.0	1.7	1.0	0.0
2	4.5	1.7	0.0	1.0
3	5.0	1.5	0.0	1.0
4	5.1	1.5	0.0	1.0

Label (真實) Predict (預測)

	不是Versicolor	Versicolor	
不是Versicolor	^{TN} 47	FP 3	
Versicolor	FN 2	^{TP} 48	

▶正確率:95.0%

➤ Precision : 94.12%

> Recall : 96.0%

簡報完畢

讚美感謝主

榮耀歸神