学院 专业

年级

姓名

(A 卷) 共 4 页, 第 1 页

2021~2022 学年第一学期期末考试试卷

《大学物理 2B 》 (A 卷)(共 4 页)

(考试时间: 2022年1月11日)

题号	 =	三(21)	三(22)	三(23)	三(24)	成绩	核分人签字
得分							

一、选择题(每小题3分,共30分)

1. 已知某简谐运动的振动曲线如图所示,则此简谐运动的振动表达式为 (x 的单位为 cm, t 的 单位为s)为:

(A)
$$x = 2\cos(\frac{2}{3}\pi t - \frac{2}{3}\pi)$$
. (B) $x = 2\cos(\frac{2}{3}\pi t + \frac{2}{3}\pi)$. $2 \frac{x(cm)}{x(cm)}$

2. 一沿 x 轴正方向传播的平面简谐波在 t=0s 时刻的波形图如下,传播速度为 u=1.5 m/s,则 O处质点的振动速度表达式为

- (A) $v = -0.3\pi \sin(3\pi t \frac{\pi}{2})$. (B) $v = -0.1\pi \sin(\pi t \frac{\pi}{2})$.
- (C) $v = -0.3\pi \sin(3\pi t + \frac{\pi}{2})$. (D) $v = -0.1\pi \sin(\pi t + \frac{\pi}{2})$.

3. 在迈克尔逊干涉仪的一支光路中放入一厚度为4µm 的透明介质薄片后,观察到干涉条纹产生 了7.0条条纹的移动。如果入射光波长为632.8nm,则透明介质片的折射率为

- (A) 1.107 (B) 1.554 (C) 2.107
- (D) 2.554

- 4. 如图所示,一光学平板玻璃 A 与待测工件 B 之间形成空气劈尖,用波长 $\lambda = 600$ nm 的单色 光垂直照射。反射光的干涉条纹如图,弯曲幅度最大的条纹的顶点恰好与其左边条纹的直线部分 的连线相切,则工件的上表面缺陷是
 - (A) 不平处为凸起纹,最大高度为600 nm.
 - (B) 不平处为凸起纹,最大高度为300 nm.
 - (C) 不平处为凹槽,最大深度为600 nm.
 - (D) 不平处为凹槽,最大深度为300 nm.

- 5. 当机械波在介质中传播时,某一介质元的最大形变发生在(其中 A 是振幅)
- (A) 介质元离开其平衡位置的最大位移处. (B) 介质元离开平衡位置 $\frac{\sqrt{2}}{2}$ A 处.
- (C) 介质元在其平衡位置处.
- (D) 介质元离开平衡位置 $\frac{1}{2}A$ 处.
- **6.** 沿着相反方向传播的两列相干波, 其波动方程为 $y_1 = A\cos(\omega t \frac{2\pi}{1}x)$ 和 $y_2 = A\cos(\omega t + \frac{2\pi}{\lambda}x)$ 。叠加后形成的驻波中,其波节的位置坐标为

 - (A) $x = \pm k\lambda$. (B) $x = \pm \frac{1}{2}k\lambda$.
 - (C) $x = \pm \frac{1}{2} (2k+1)\lambda$. (D) $x = \pm (2k+1)\lambda/4$. $\sharp + \text{ in } k = 0, 1, 2, 3, \cdots$
- 7. 三个偏振片 P_1 , P_2 与 P_3 堆叠在一起, P_3 与 P_4 的偏振化方向相互垂直, P_3 与 P_4 的偏振化方 向间的夹角为 45° 。强度为 I_{\circ} 的自然光垂直入射于偏振片 P_{\circ} ,并依次透过偏振片 P_{\circ} 、 P_{\circ} 与 P_{\circ} , 则通过三个偏振片后的光强 1 为:
 - (A) $0.125I_0$
- (B) $0.25I_0$
- (C) $0.15I_0$
- (D) $0.5I_0$
- 8. 下述几种有关黑体的说法中, 正确的是
- (A) 黑体不辐射可见光
- (B) 黑体不辐射任何波长的光

(C) 黑体不反射可见光

(D) 黑体不反射任何波长的光

学院	专业	班	年级	学号	姓名	(A 卷) 共 4 页,第 2 页
9. 己知某单色	也光照射到一金属表面产生了光电效应,若此	金属的逸出电势是 U_0	(使电子从金属	14. 在双缝干涉到	实验中,所用光波波长 <i>λ</i> =546	6.1nm,双缝与屏间的距离 $D=30$ cm,双缝间
逸出需作功 eU_0),	则此单色光的波长ん必须满足		[]	距为 d=1.34×10 ⁻⁴ m	1,则中央明条纹两侧	的两个第三级明条纹之间的距离为
(A) $\lambda \leq hc/($	(eU_0) . (B) $\lambda \ge hc/(eU_0)$. (C) $\lambda \le eU_0$	$U_0 / (hc)$. (D) $\lambda \ge$	eU_0 / (hc).		o	
10. 在原子的	L 壳层中,电子可能具有的四个量子数(n,l,m	(m_l,m_s) 是		15. 在单缝夫琅牙	 氏费衍射实验中,设第一级暗	纹的衍射角很小,若钠黄光($λ_1 = 589$ nm) 中央
(1) $(2, 0, 1, \frac{1}{2})$	(2) $(2, 1, 0, -\frac{1}{2})$ (3) $(2, 1, 0)$	(4)	$(2, 1, -1, -\frac{1}{2})$	明纹宽度为 4.0 mm,	则 ϟ = 442nm 的蓝紫色光的	中央明纹宽度为。
以上四种取值中,明	那些是正确的					
(A) 只有(1)、(C) 只有(2)、	(2)是正确的.(B) 只有(2)、(3)(3)、(4)是正确的.(D) 全部是正确			16. 一束自然光自	自空气射向透明介质 1,布儒	斯特角为 $i_{B1}=60^{\circ}$,若该自然光自空气射向透
				明介质 2, 布儒斯特	持角为 i _{B2} = 53°, 则若光从か	个质 1 向介质 2 入射时,布儒斯特角 i _B =
	题 3 分, 共 30 分) 期作简谐运动的质点, 当其由平衡位置向 x 轴	正方向运动时,从该	立置到正二分之	•		
	程所需要的最短时间为	m/3 1/C-/31/1 / //(D/)	<u> 五旦71年</u> 一77~		図v 相对于地球匀速运动,在	船中放有一根长度为 1m 的米尺,米尺顺着飞
	有,同频率的简谐振动,其合振动的振幅为 2)	空 一人符.比卡··	48.44.54.54.54.54.BB		的长度为0.5m,则v= ; 在测量
				运业日的家 鹿时 443		
的相位差为 π/6, 表	吉第一个简谐振动的振幅为 $\sqrt{3}$ m,则第二个简	谐振动的振幅为	,两个简	(这个八的名)及时, ^{地上}	水上观景有的侧里纪木定飞所	3上宇航员测量结果的倍。
谐振动的相位差为	·o			18. 一电子以 0.9	c 的速率运动,则电子的总 eta	b量是
13. 图为一种	声波干涉仪,声波从入口 E 进入仪器,分 B、	C 两路在管中传播,	然后到达喇叭口	的动能与相对论动能	之比等于	_。(电子静止质量为9.11×10 ⁻³¹ kg)
A 后汇合传出,弯	管 C 可以移动以改变管路长度, 当它渐渐移	动时从喇叭口发出的	声音周期性地增			<u>-</u>
强或减弱,设 C 管	一每移动 6 cm,由 A 口发出的声音就减弱一次	,则该声波的频率为	(空气中声速为	19. 己知基态氢原	泵子的能量为-13.6eV,当基态	氢原子被能量为 12.09eV 的光子激发后, 其主
340 m/s)	0			, <u> </u>	变为	
B A	\sum_{C}					$R = 1.66$ cm 的圆轨道运动的 $α$ 粒子的德布罗意 $\times 10^{-34}$ J·s, $α$ 粒子所带电量为 3.2×10^{-19} C)

年级

学院

专业

班

学号

姓名

(A卷) 共4页,第3页

三、计算题(每题10分,共40分)

21. 已知有一沿 x 轴负方向传播的平面余弦波,在 $t = \frac{1}{3}$ s 时的波形如图所示,且周期 T = 0.2 s 。

- (1) 写出 O 点的振动方程;
- (2) 写出波动表达式;
- (3) 写出 Q 点振动表达式。

- **22.** 用一束具有两种波长的平行光垂直入射在光栅上, $\lambda_1 = 600$ nm 和 $\lambda_2 = 400$ nm,发现距中央明纹 5cm 处 λ_1 光的第 k 级主极大和 λ_2 光的第 (k+1) 级主极大相重合,放置在光栅与屏之间的透镜的焦距为 f = 50cm,试问:
 - (1) 上述 k=?
 - (2) 光栅常数 d =?
 - (3) 若该光栅第六级缺级,求光栅狭缝的最小宽度 a =?

 学院
 专业
 班
 年级
 学号
 姓名
 (A卷) 共4页,第4页

 23. 已知 X 射线光子的能量为 0.60 MeV,若在康普顿散射中散射光子的波长为入射光子的
 24. 一质量为 m 的粒子被限制在宽度为 L 的一维有限深方势阱(在 | x | < L/2 范围内,势能函数 E p = 0) 中,已知该粒子的某定态波函数为</th>

$$\varphi(x) = \begin{cases} Ae^{\frac{\pi(x+L/2)}{2L}} & x < -L/2 \\ B\cos\frac{\pi x}{2L} & |x| \le L/2 \\ Ce^{-\frac{\pi(x-L/2)}{2L}} & x > L/2 \end{cases}$$

求常数 $A \setminus B$ 和 C。(提示:利用波函数的连续与归一化条件。)