Лабораторная работа №2

Распараллеливание алгоритмов с использованием OpenMP

Цель работы: изучить способы создания параллельных программ для симметричных мультипроцессоров с использованием стандарта OpenMP.

Теоретические материалы

Директива распараллеливания циклов.

Для того, чтобы распределить выполнение цикла по имеющимся ядрам, используется следующая директива:

#pragma omp for [clause ...] newline for loop

Распределение итераций в директиве for регулируется параметром (clause) schedule:

- static итерации делятся на блоки по chunk итераций и статически разделяются между потоками; если параметр chunk не определен, итерации делятся между потоками равномерно и непрерывно;
- dynamic распределение итерационных блоков осуществляется динамически (по умолчанию chunk=1);
- guided размер итерационного блока уменьшается по экспоненциальному закону при каждом распределении;
- chunk определяет минимальный размер блока (по умолчанию chunk=1);
- runtime правило распределения определяется переменной OMP_SCHEDULE (при использовании runtime параметр chunk задаваться не должен).

Директива параллельных секций

Для выделения раздельных фрагментов кода в параллельные области используется директива **sections**. Отметим ряд свойств этой директивы:

- каждый фрагмент выполняется однократно (директива **section**);
- разные фрагменты выполняются разными потоками;
- завершение директивы по умолчанию синхронизируется;
- директивы **sections** должны использоваться только в статическом контексте.

Директива непараллельных секций

Чтобы выполнить блок только один раз, используется директива single

#pragma omp single [name]

<структурный блок >

Для запрета конкурентного выполнения блока кода используется директива critical:

#pragma omp critical [name]

<структурный блок >

Отличия этих директив друг от друга состоит в том, что блок single выполняется только единожды каким-либо потоком, а блок critical – всеми потоками, но только одним одновременно.

Задание на лабораторную работу

Распараллельте заданный алгоритм с использованием OpenMP. Оцените ускорение многопоточного выполнения. При создании параллельной программы требуется использовать имеющиеся инструменты OpenMP: параллельный цикл и параллельную секцию.

- 1. Распараллельте алгоритм с использованием параллельного цикла OpenMP. Оцените время выполнения
- 2. Распараллельте этот же алгоритм с использованием механизма параллельных секций OpenMP. Тоже оцените время выполнения.
- 3. Оцените время выполнения последовательного варианта.

Сравните быстродействие во всех трёх случаях и поясните результаты.

Варианты заданий

Вариант	Операции с векторами
1	C = A + B
2	C = A - B*x
3	a = (B*C)
4	a = MAX(B)*C
5	b = MIN(A+C)
6	A = B*MIN(C)
7	A = B + C - D*e
8	C = A - B + D
9	d = MAX(A + B + C)

Вариант	Операции с векторами
10	d = ((A + B) * C)
11	d = (A * (B + C))
12	d = (A*B) + (C*B)
13	d = (B*C) - (A*B) + (C*B)
14	E = A + B + C - D*e
15	E = A + C - B*e + D
16	e = ((A + B)*(C + D))

Пояснения: A, B, C, D — векторы некоторого размера (одинакового для всех в рамках одного варианта); e, x — некоторые скалярные величины, задаваемые пользователем.