第14回情報科学技術フォーラム2015年9月15日愛媛大学

組込み自己診断における テストパターン系列の 診断能力に関して

○宮本夏規 村上陽紀 王シンレイ 樋上喜信 高橋寛 (愛媛大学) 大竹哲史 (大分大学)

発表概要

- ●研究背景·目的
- ●提案する組込み自己診断(BISD)機構
- ●BISD機構におけるテストパターン系列の診断能力
- ●テストパターン系列の診断能力の向上化法
- ●予備実験·結果
- まとめ・今後の課題

研究背景

- ●コンピュータの機能を利用した、自動車の走行安全 制御への要求が高まっている
- ●制御用のデバイスが増加し、システムが 高度化・複雑化 ___

制御用マイコンの信頼性確保が必要不可欠

信頼性確保のための技術

●多重化、冗長化、組込み自己テスト・自己診断機能など

研究目的

- ●組込み自己テスト(BIST)機構を拡張した、 組込み自己診断(Built-in self diagnosis, BISD)機構の 提案
- ●提案する機構で故障診断に用いるテストパターン 系列の診断能力の向上化法の検討

提案する 組込み自己診断 (BISD) 機構

診断用署名に基づく故障診断

- ●故障診断
 - ●故障の検出された論理回路に対して、故障箇所を 推定する
- ●診断用署名に基づく故障診断
 - ●故障診断用シミュレーションを行うことで得られる 被疑故障署名と、被診断回路(CUD)から得られる 診断用署名とを比較

診断用署名と被疑故障署名が一致 ⇒ 故障箇所

診断用署名に基づく故障診断

BISDのシミュレーションモデル

テスト生成回路 (擬似ランダムパターン発生回路)

●LFSR (線形帰還シフトレジスタ)

BISDにおける テストパターン系列の診断能力

- ●診断可能な故障数
 - ・診断可能な故障
 - …推定される故障が1つだけのもの
 - ○診断可能な故障数が多い → 診断能力が高い
- ●クラス数
 - ・クラス
 - …診断可能な故障以外の故障について、被疑故障署名が同じ故障(要素)を1つにまとめる
- ●クラスの最大要素数および各クラスの分布 ○要素数の少ないクラスが多い → 診断能力が高い

LFSRで用いる初期値(シード)を、評価値の高い候補を用いて 再設定(リシード)を行う

- ●リシード候補の条件 クラスを構成する故障を分離できるテストパターン
- ●リシード候補の選択法 BISDのシミュレーションモデルを利用して求められた クラスに対して次の処理を行う
 - A) 故障診断用シミュレーションを利用して、いずれかのクラスに 属する故障を分離できるテストパターンtを求める
 - B) テストパターンtによって故障診断用シミュレーションを 実行し、クラスCに含まれる分離可能な故障の組数P(C)を求める
 - C) P(C)をすべてのクラスについて求め、テストパターンtの評価値 $E(t) = \sum P(C)$ を求める

A) 故障診断用シミュレーションを利用して、いずれかのクラスに属する故障を分離できるテストパターンtを求める

クラス C_i を分離 ... テストパターンt

B) テストパターンtによって故障診断用シミュレーションを実行し、各クラスCに含まれる分離可能な故障の組数P(C)を求める

各クラスの 分離可能な 故障の組数:*P(C)*

$$P(C_i) = 4$$

$$P(C_j) = 3$$

$$P(C_k) = 0$$
E

$$E(t) = 7$$

予備実験・結果

- ●提案するBISDのシミュレーションモデルを用いた ランダムテスト系列およびリシードテスト系列の 故障診断能力の評価
- ●対象回路 ISCAS'89ベンチマーク回路
- 対象故障モデル 単一縮退故障
- ●診断対象故障 全故障のうち、ランダムテスト系列で検出可能な故障 (系列数:5120)

予備実験・結果

●利用したランダムテスト 系列およびリシードテスト 系列について

予備実験·結果

回路名	対象 故障数	ランダムテスト系列			リシードテスト系列(向上化法)		
		診断可能な 故障数	クラス 数	クラス内の 最大故障数	診断可能な 故障数	クラス 数	クラス内の 最大故障数
cs9234	5,000	2,456	927	16	2,572	892	14
cs13207	7,685	3,085	1,636	16	3,104	1,589	18
cs15850	9,934	5,503	1,799	18	5,513	1,795	18
cs38417	27,089	18,481	3,449	25	18,792	3,311	30

平均值:7,381.3

平均值:7,495.3

まとめ・今後の課題

- ●まとめ
 - ●組込み自己テスト機構を拡張した組込み自己診断機構 およびシミュレーションモデルの提案
 - ●提案する機構のテストパターン系列の診断能力 向上化法の評価

- ●今後の課題
 - ●リシード候補選択の高効率化
 - ●縮退故障以外の故障への適応

ご清聴ありがとうございました