TPO 2015

October 20, 2015

Schamun Lucas, 62378

Sueldo Enrique, 62508

Massitti Martin,62623

Fernandez Monte Emanuel ,61955

Profesores: Gaydou David, Boglione Sergio

Curso:3R4

Fecha: 23/10/15

Metodo Fasorial

Figure 1:

Datos:

$$\bar{V}_{n1} = \bar{V}_1/2 \tag{1}$$

$$\bar{V}_{n2} = \bar{V}_{n1}/2 \tag{2}$$

$$\theta_{\bar{V}1} = \theta_{\bar{I}1} \tag{3}$$

$$|\bar{I}_1| = |\bar{I}_2| = |\bar{I}_3| \tag{4}$$

De (1) y (2)

$$\bar{V}_{n1} = \bar{V}_1/2 = 10V/2 = 5V$$

$$\bar{V}_{n2} = \bar{V}_{n1}/2 = 5V/2 = 2,5V$$

LKV

$$\bar{V}_1 - \bar{V}_{R1} - \bar{V}_{R2} - \bar{V}_{C2} = 0 \tag{5}$$

$$\bar{V}_{C2} + \bar{V}_{R2} - \bar{V}_{R3} - \bar{V}_{L3} - \bar{V}_{R4} = 0 \tag{6}$$

$$\bar{V}_{R4} - \bar{V}_{L5} = 0 \tag{7}$$

LKI

$$\bar{I}_1 = \bar{I}_2 + \bar{I}_3 \tag{8}$$

$$\bar{I}_3 = \bar{I}_4 + \bar{I}_5 \tag{9}$$

Teniendo en cuenta que

$$\bar{V_{n1}} = \bar{V_{R2}} + \bar{V_{C2}}$$

De 5

$$\bar{V_1} - \bar{V_{R1}} - \bar{V}_{n1} = 0$$

$$\bar{V_{R1}} = 10V - 5V$$

$$\bar{V}_{R1} = 5V$$

La relación tensión corriente en \bar{I}_1 es:

$$\bar{I}_1 = \frac{\bar{V}_{R1}}{R} = \frac{5V}{5\Omega} = 1A$$

De 3 se cumple que:

$$\theta_{\bar{V1}} = \theta_{\bar{I1}} = 0$$

Debido a que se cumple 4 y LKI en \bar{V}_{n1} , en el diagrama fasorial se formará un triángulo equilátero, ya que todos los módulos y angulos son iguales.

Como la suma de los ángulos internos de un triangulo es 180° , cada ángulo será de 60° , como se puede ver en el diagrama fasorial de la figura 2.

Calculo de \bar{I}_1 :

 \bar{I}_1 esta en fase con $\bar{V}_{R1},$ por lo tanto

$$\bar{I}_1 = 1 \angle 0^{\Omega}$$

Figure 2:

Calculo de \bar{I}_2 :

Debido a que la tensión esta atrasada con respecto a la corriente y como tiene una resistencia, esta comprendido entre 0° y 90° , por lo tanto

$$\bar{I}_2 = 1 \angle 60^{\Omega}$$

Calculo de \bar{I}_3 :

Lo mismo ocurre en \bar{I}_3 pero como la corriente en el inductor esta atrasada 90° con respecto a la tensión, se va a comprender entre 0° y -90°

$$\bar{I}_3 = 1 \angle - 60^{\circ}$$

Calculo de Impedancias del circuito

Calculo de R2 Y XC2

Si hacemos la impedancia equvalente entre R2 y XC2

$$Z_{RC} = \frac{\bar{V}_{n1}}{\bar{I}_2} = \frac{5}{1\angle 60} = 5\angle - 60^{\circ}$$

$$Z_{RC} = 2, 5 - j4, 33$$

Como la resistencia tiene parte reactiva cero, y el capacitor parte resistiva nula.

$$Z_{R2}=2,5\Omega$$

$$Z_{C2} = -j4,33$$

Calculo de R3 y XL3

Haciendo
$$Z_{RL} = rac{ar{V}_{n1} - ar{V}_{n2}}{ar{I}_3}$$

$$Z_{RL} = \frac{2.5V}{1\angle -60^{\circ}} = 2.5\angle 60^{\circ}$$

$$Z_{RL} = 1,25 + j2,16$$

$$Z_{R3} = R3 = 1,25\Omega$$

$$Z_{L3} = 2,16j$$

Calculo de R4 y XL5

$$\frac{1}{\frac{1}{ZR4} + \frac{1}{ZL5}} = \frac{\bar{V}_{n2}}{\bar{I}_3}$$

$$\frac{1}{Z_{R4}} + \frac{1}{z_{L5}} = \frac{\bar{I}_3}{\bar{V}_{n2}}$$

$$\frac{1}{Z_{R4}} + \frac{1}{z_{L5}} = \frac{1 \angle -60^{0}}{2.5}$$

$$\frac{1}{Z_{R4}} + \frac{1}{z_{L5}} = 0, 2 - 0, 34j$$

$$\frac{1}{Z_{R4}} = 0, 2$$

$$Z_{R4} = R_4 = 5\Omega$$

$$\frac{1}{Z_{L5}} = -0,34j$$

$$Z_{L5} = 2,887j$$

Metodo de los nodos

Referenciando al apunte "Teoría de los circuitos I" podemos decir que:

$$\begin{split} & [\bar{Y}] \ [\bar{V}] = [\bar{I}] \\ & \left[\begin{array}{c} y_{11} & y_{12} \\ y_{21} & y_{22} \end{array} \right] \left[\begin{array}{c} \bar{V}_{n1} \\ \bar{V}_{n2} \end{array} \right] = \left[\begin{array}{c} \bar{I}_1 \\ \bar{I}_2 \end{array} \right] \\ & \left[\begin{array}{c} \left(\frac{1}{ZR1} + \frac{1}{ZR2 + ZL3} + \frac{1}{ZR3 + ZL3} \right) & \left(-\frac{1}{ZR3 + ZL3} \right) \\ & \left(-\frac{1}{ZR3 + ZL3} \right) & \left(\frac{1}{ZR3 + ZL3} + \frac{1}{ZR4} + \frac{1}{ZL5} \right) \end{array} \right] \left[\begin{array}{c} \bar{V}_{n1} \\ \bar{V}_{n2} \end{array} \right] = \left[\begin{array}{c} \bar{I}_1 \\ \bar{I}_2 \end{array} \right] \\ & \left[\begin{array}{c} \left(\frac{1}{ZR1} + \frac{1}{ZR2 + ZL3} + \frac{1}{ZR3 + ZL3} \right) & \left(-\frac{1}{ZR3 + ZL3} \right) \\ & \left(-\frac{1}{ZR3 + ZL3} \right) & \left(\frac{1}{ZR3 + ZL3} + \frac{1}{ZR4} + \frac{1}{ZL5} \right) \end{array} \right] \left[\begin{array}{c} 5V \\ 2, 5V \end{array} \right] = \left[\begin{array}{c} 2 \\ 0 \end{array} \right] \\ & Y_L = 0, 263 + j4, 88 \\ \left[\begin{array}{c} y_{11} & y_{12} \\ y_{21} & y_{22} \end{array} \right] \left[\begin{array}{c} 5V \\ 2, 5V \end{array} \right] = \left[\begin{array}{c} 2 \\ 0 \end{array} \right] \\ & \end{array}$$

Teniendo en cuenta que $\bar{Y}=\frac{\bar{I}}{\bar{V}}$ y resolviendo
(ver apendice), obtenemos: Impedancia Z3

$$Z3 = 1, 18 + j2, 12$$

$$Z_{R3} = R_3 = 1,18\Omega$$

$$Z_{L3} = j2, 12\Omega$$

Impedancia Z2

$$Z_{R2}=2,5\Omega$$

$$Z_{C2} = -j4, 3\Omega$$

Impedancia Z4 y Z5

$$Z_{R4} = 5\Omega$$

$$Z_{L5} = j2, 9\Omega$$

Análisis de potencia del circuito

Potencia activa en las resistencias del circuito

$$P_{R1} = |\bar{I}_1|^2 R_1 = 5W$$

$$P_{R2} = |\bar{I}_2|^2 R_2 = 2,5W$$

$$P_{R3}=\bar{|I_3|}^2R_3=1,25W$$

$$P_{R4} = |\bar{I_4}|^2 R_4 = 1,25W$$

Potencia en el generador

$$\bar{S} = \bar{V}.\bar{I}^*$$

$$S = |\bar{V_1}||\bar{I_1}|$$

Como el ángulo de V1 y el ángulo de I1 son iguales, la potencia aparente es igual a la potencia activa.

$$S = P_G = 10V.1A = 10W$$

$$P_G = P_{R1} + P_{R2} + P_{R3} + P_{R4}$$

$$P_G = 5W + 2,5W + 1,25W + 1,25W = 10W$$

Como se ve la potencia activa total es la suma de las potencias activas en cada resistencia

Método de circuito equivalente de Thevenin

Para calcula la Zth vista desde los terminales A y B, pasivamos las fuente interna V1, y el circuito equivalente es

Figure 3:

Equivalente de Thevenin

Figure 4:

$$Z_{TH} = \left(\frac{1}{Z_{R2} + z_{C2}} + \frac{1}{Z_{R1}}\right)^{-1} + z_{R3} + z_{L3} = 3,77 + J_{0},68$$

Para calcular Vth calculamos la corriente de malla, la cual circula por R1,R2 y $C2,por\ R3$ y L3, como el circulto esta abierto entre A y B, no va a circular corriente.

Figure 5:

LKV

$$\bar{V}_1 - i(Z_{R1} + Z_{R2} + Z_{C2}) = 0$$

 $i = \frac{\bar{V}_1}{Z_{R1} + Z_{R2} + Z_{C2}}$
 $i = 1 + j0, 57$

Teniendo esta corriente podemos calcular la tensión

$$V_{TH} = i(Z_{R2} + Z_{C2})$$

$$V_{TH} = 4,78 - j2,97$$

Figure 6:

Impedancia de entrada Zi

La impedancia de entrada vista desde los terminales A y B, es igual a la impedancia de Thevenin Zth

Figure 7:

$$\left[\begin{array}{cc} (R_2 + R_3 + X_{C2} + X_{L3}) & (R_2 + X_{C2}) \\ (R_2 + X_{C2}) & (R_1 + X_{C2} + R_2) \end{array} \right] \left[\begin{array}{c} I_f \\ I_1 \end{array} \right] = \left[\begin{array}{c} V_f \\ 0 \end{array} \right]$$

Utilizando la herramienta Octave calculamos If , y con Vf, obtenemos: $Z_i = Z_{TH} = 3,77 + J0,68$

Impedancia de carga Zl para maxima transferencia de potencia

Referenciando al apunte "Teoría de los circuitos I" podemos decir que: para lograr máxima transferencia de potencia se debe cumplir

$$Z_L = Z_{TH} *$$

$$Z_L = 3,77 - j0,68$$

Para expresar Zl como resistencias y reactancias en paralelo, se calcula la admitancia de Zl, en la cual la parte real corresponde a la resistencia, y la parte imaginaria de la Yl corresponde a la del inductor.

$$Y_L = \frac{1}{Z_L}$$

$$Y_L = G + jB$$

$$Y_L = 0,263 + j0,049$$

Figure 8:

Apéndice

Script

```
clear all; close all;
   disp('DATOS del circuito')
   v1=10 vn1=5 vn2=2.5 vr1=5
   I1=1 I2=(0.5)+(0.866025403784*i) I3=(0.5)-(0.866025403784*i)
   zr1=5
   disp('calculo de admitancias')
   y11=(I1/vr1) + (I2/vn1) + (I3/vn2)
   y22=-(((v1/zr1) - (y11*vn1))*vn1)/(vn2*vn2)
   y12 = -(y22*vn2)/vn1
   disp('calculo de impedacias propias, a partir de admitanicas')
   z12 = (-1/y12) zr3 = real(z12) zl3 = imag(z12)
   z11=1/((y11)-(1/zr1)-(1/z12)) zr2=real(z11) zc2=imag(z11)
   z22 = ((y22) - (1/z12));
   z22r=real(z22) z22i=imag(z22)
   zr4=1/z22r zl5=-1/z22i
   disp('calculo de circuito equivalente de thevenin ')
   zth = ((zr1*z11)/(zr1+z11) + z12)
   Ith=v1/(zr1+z11)
   vth=Ith*(z11)
   zl=conj(zth)
   yl=1/zl
```

$\mathbf{Z}\mathbf{i}$

%Tension del circuito

VF = 2; V2 = 0;

%Impedancias propias de cada malla

$$z11 = 2.5 - 4.33i + 1.18 + 2.12i;$$

$$z22\,=\,5\!+\!2.5\text{-}4.3\mathrm{i};$$

%Impedancias compartidas entre mallas z12 = 2.5-4.3i;