Macroeconomic Consequences of Disasters in the Philippines: OG-PHL Simulations

Philip Arnold P. Tuano¹
Gay D. Defiesta²
Jhon Louie B. Sabal^{3,1}
Christian C. Pasion⁴
Joe Mari S. Francisco⁵
Paolo Magnata¹
Cymon Kayle Lubangco^{1,6}

¹Ateneo de Manila University, ²University of the Philippines – Visāyās, ³Xavier University – Ateneo de Cagayan, ⁴Ateneo de Davao University, ⁵Institute for Labor Studies, ⁶Bangko Sentral ng Pilipinas

Background of the Study

- The Philippines is vulnerable to climate-induced disasters.
- Due to these devastating climate-induced events, we investigate the long-run effects on macroeconomic aggregates.

Research Question

What is the effect of a 100-year typhoon shock on the economy?

How will the economy adjust in the presence and absence of productivity enhancements after the disaster event?

Framework

Exogenous Shock: Severe Typhoon

Mechanism and Pathways:

- Earnings Ability → Reduced laborer's earning potential
- Disutility of Labor → Physical and Psychological Burden
- Total Factor Productivity → Capital Destruction + Supply Chain

Simulated scenarios

Scenario 1	Scenario 2	Scenario 3	Scenario 4
Baseline	Decrease in deterministic ability process (e) by 1%	Decrease in deterministic ability process (e) by 1%	Decrease in deterministic ability process (e) by 1%
	Increase in disutility of labor (chi_n) by 1%	Increase in disutility of labor (chi_n) by 1%	Increase in disutility of labor (chi_n) by 1%
		Decrease in total	Increase in total
	No change in total factor productivity (Z)	factor productivity (Z) by 1%	factor productivity (Z) by 1%

Simulated scenarios: codes

Scenario 2	Scenario 3	Scenario 4
#reduced earning ability p2.e = p.e*0.99	#reduced earning ability p2.e = p.e*0.99	#reduced earning ability p2.e = p.e*0.99
#increased disutility of labor p2.chi_n = p.chi_n*1.01	#increased disutility of labor p2.chi_n = p.chi_n*1.01	#increased disutility of labor p2.chi_n = p.chi_n*1.01
#no change in TFP	#decreased in TFP p2.Z = p2.Z*0.99	#increased in TFP p2.Z = p2.Z*1.01

Scenario 2: A more accurate specification is needed

Scenario 3: Wages are lower if TFP declines

Scenario 4: Building back better raises wages and welfare

Conclusion and ways forward

- Functional forms of the model must be further understood and appreciated to trace the channels of the impacts of disasters.
- A labor and capital supply shock can also be included in the model to simulate deaths and destruction of labor and capital, respectively.
- An exogenous government response after the disaster can be simulated as well.
- Simulation of a temporary shock can also be considered.

