→ Feature Engineering: Transformations

▼ Read in text

```
import pandas as pd

data = pd.read_csv("SMSSpamCollection.tsv", sep='\t')
data.columns = ['label', 'body_text']
```

Create the two new features

```
import string

def count_punct(text):
    count = sum([1 for char in text if char in string.punctuation])
    return round(count/(len(text) - text.count(" ")), 3)*100

data['body_len'] = data['body_text'].apply(lambda x: len(x) - x.count(" "))
data['punct%'] = data['body_text'].apply(lambda x: count_punct(x))
data.head()
```

label		body_text	body_len	punct%
0	spam	Free entry in 2 a wkly comp to win FA Cup fina	128	4.7
1	ham	Nah I don't think he goes to usf, he lives aro	49	4.1
2	ham	Even my brother is not like to speak with me	62	3.2
3	ham	I HAVE A DATE ON SUNDAY WITH WILL!!	28	7.1
4	ham	As per your request 'Melle Melle (Oru Minnamin	135	4.4

▼ Plot the two new features

from matplotlib import pyplot
import numpy as np
%matplotlib inline

bins = np.linspace(0, 200, 40)

pyplot.hist(data['body_len'], bins)
pyplot.title("Body Length Distribution")
pyplot.show()

bins = np.linspace(0, 50, 40)

pyplot.hist(data['punct%'], bins)
pyplot.title("Punctuation % Distribution")
pyplot.show()

Transform the punctuation % feature

300 -

▼ Box-Cox Power Transformation

Base Form:

X	Base Form	Transformation
-2	y^{-2}	$\frac{1}{y^2}$
-1	y^{-1}	$\frac{1}{y}$
-0.5	$y^{rac{-1}{2}}$	$rac{1}{\sqrt{y}}$
0	y^0	log(y)
0.5	$y^{rac{1}{2}}$	\sqrt{y}
1	y^1	y
2	y^2	y^2

Process

- 1. Determine what range of exponents to test
- 2. Apply each transformation to each value of your chosen feature
- 3. Use some criteria to determine which of the transformations yield the best distribution

 y^x

