K-Nearest Neighbour Algorithm

K-Nearest Neighbor Classifiers (เพื่อนบ้านใกล้สุด k ตัว)

- Basic idea:
 - If it walks like a duck, quacks like a duck, then it's

ตัวอย่าง KNN animation

https://www.tomasbeuzen.com/animated-data/content/supervised-learning/k-nearest-neighbours.html

Introduction

- NN เป็น Instance-based Learning (Memory-Based Learning) หาคำตอบของข้อมูลชุดใหม่โดยมา เปรียบเทียบกับตัวอย่างที่อยู่ใน training set
- 🗕 ใช้หลักการเปรียบเทียบข้อมูลที่สนใจกับข้อมูลใน training set ว่ามีความคล้ายคลึงมากน้อยเพียงใด
- หากข้อมูลที่กำลังสนใจ อยู่ใกล้ข้อมูลใดมากที่สุด ระบบจะให้คำตอบเป็นเหมือนคำตอบของข้อมูลที่อยู่ใกล้ที่สุด
- หาผลรวม (Count Up) ของจำนวนเงื่อนไข หรือกรณีต่างๆสำหรับแต่ละคลาส และกำหนดเงื่อนไขใหม่ๆ ให้ คลาสที่เหมือนกันกับคลาสที่ใกล้เคียงกันมากที่สุด
- เทคนิคของ K-NN ไปใช้ในนั้นเป็นการหาวิธีการวัดระยะห่างระหว่างแต่ละAttributeในข้อมูลให้ได้ และจากนั้น คำนวณค่าออกมา
- วิธีนี้จะเหมาะสำหรับข้อมูลแบบตัวเลข แต่ตัวแปรที่เป็นค่าแบบไม่ต่อเนื่องนั้นก็สามารถทำได้ เพียงแต่ต้องการ การจัดการแบบพิเศษเพิ่มขึ้น อย่างเช่น ถ้าเป็นเรื่องของสี จะใช้อะไรวัดความแตกต่างระหว่างสีน้ำเงินกับสีเขียว ต่อจากนั้นต้องมีวิธีในการรวมค่าระยะห่างของ Attribute ทุกค่าที่วัดมาได้

Introduction

- หลังจากนั้นคำนวณระยะห่างระหว่างเงื่อนไขหรือกรณีต่างๆ ได้จากนั้นจะเลือกชุดของ
 เงื่อนไข ที่ใช้จัดคลาสมาเป็นฐานสำหรับการจัดคลาสในเงื่อนไขใหม่ๆ
- 🗕 การตัดสินได้ว่าขอบเขตของจุดข้างเคียงที่ควรเป็นนั้น ควรมีขนาดใหญ่เท่าไร และอาจ

ตัดสินใจได้ด้วยว่าจะนับจำนวนจุดข้างเคียงตัวมันได้อย่างไร

Finding Neighbors & Voting for Labels

https://www.datacamp.com/community/tutorials/k-nearest-neighbor-classification-scikit-learn

k-NN example (3-NN vs 5-NN)

ingredient	sweetness	crunchiness	food type
apple	10	9	fruit
bacon	1	4	protein
banana	10	1	fruit
carrot	7	10	vegetable
celery	3	10	vegetable
cheese	1	1	protein

Reference: Machine Learning with R, Brett Lantz, Packt Publishing

how sweet the food tastes

how sweet the food tastes

มะเขือเทศ sweet = 6, crunchiness = 4

how crunchy the food is

how sweet the food tastes

่ ■เรื่อง	จำนวนฉากจูบ	จำนวนฉากตบ	ประเภท
- นาคี	10	2	โรแมนติก
พิษสวาท	8	3	โรแมนติก
แรงเงา	9	5	โรแมนติก
บ างระจัน	2	15	แอคชั่น
่าขุนศึก	3	13	แอคชั่น
■ ตบแล้วจูบ	9	4	?

ฟังก์ชั่นการดำเนินการในอัลกอริทึม K-NN

การดำเนินการของอัลกอริทึมแบบ k-NN ประกอบไปการทำงานของ 2 ฟังก์ชั่น

- ฟังก์ชั่นระยะทาง (Distance Function)
 - โดยมีเงื่อนไขคือ
 - ค่าระยะทาง(ความห่าง)ที่คำนวณได้ต้องไม่ติดลบ
 - ถ้าตำแหน่งเดียวกันฟังก์ชันต้องเป็นศูนย์(ค่าเหมือนกัน)
 - การคำนวณวัดระยะทางไปกลับต้องเท่ากัน
- ■การดำเนินการการหาระยะทางระหว่าง จุด A และ B ใด ๆ ทำได้โดย
 - ─ ใส่ค่าสัมบูรณ์ (Absolute) ให้กับค่าระยะทาง: |A-B|
 - ■ยกกำลังสองให้กับค่าระยะทาง : (A-B)²

Nearest Neighbor Classification

- Compute distance between two points:
 - Euclidean distance

$$d(p,q) = \sqrt{\sum_{i} (p_{i} - q_{i})^{2}}$$

 $c^2 = a^2 + b^2$

Manhattan

$$\sum_{i=1}^{k} |x_i - y_i|$$

No.	Gender	Age	Salary	inactive
1	F	27	19,000	No
2	M	51	64,000	Yes
3	M	52	105,000	Yes
4	F	33	55,000	Yes
5	M	45	45,000	No
new	F	45	100,000	???

	Identical Gender	A-B Age	A-B Salary	Distance dsum
d(1,n)	0	18	81,000	81018
d(2,n)	1	6	36,000	36007
d(3,n)	1	7	5,000	5008
d(4,n)	0	12	45,000	45012
d(5,n)	1	0	55,000	55001

>>> เรียงdsumจากน้อยไปหามากจะได้เป็น 3 2 4 5 1 – Y,Y,Y,N,N

ตัวอย่างที่ 2

Discrete values

Humidity	temperature	Run
30	25	+
48	40	-
80	64	-
28	30	+
50	60	-

x =

New instance $x_q =$ <40, 30, run=?? > We can run inside(+) or outside (-)

$$d(x_q, x_1) = \sqrt{(40-30)^2 + (30-25)^2} = 11.18$$

$$d(x_q, x_2) = \sqrt{(40-48)^2 + (30-40)^2} = 12.80$$

$$d(x_q, x_3) = \sqrt{(40-80)^2 + (30-64)^2} = 52.5$$

$$d(x_q, x_4) = \sqrt{(40-28)^2 + (30-30)^2} = 12$$

$$d(x_q, x_5) = \sqrt{(40-50)^2 + (30-60)^2} = 31.62$$

$$3-NN (x1, x2, x4)$$
Answer run inside (+)
$$4-NN (x1, x2, x4, x5)$$
Answer run inside (+) or (-)
$$4(x_q, x_5) = \sqrt{(40-50)^2 + (30-60)^2} = 31.62$$

$$5-NN$$
Answer run inside(-)

ตัวอย่างที่ 3

Real	va	lues
------	----	------

Humidity	temperature	Rainfall
30	25	5.1
48	40	15.5
80	64	20.2
28	30	3.2
50	60	12.0

$$x =$$

New instance $x_q =$ <40, 30, Rainfall =?? >

$$d(x_q, x_1) = \sqrt{(40 - 30)^2 + (30 - 25)^2} = 11.18$$

$$d(x_q, x_2) = \sqrt{(40 - 48)^2 + (30 - 40)^2} = 12.80$$

$$d(x_q, x_3) = \sqrt{(40 - 80)^2 + (30 - 64)^2} = 52.5$$

$$d(x_q, x_4) = \sqrt{(40 - 28)^2 + (30 - 30)^2} = 12$$

$$d(x_q, x_5) = \sqrt{(40 - 50)^2 + (30 - 60)^2} = 31.62$$

ข้อดี-ข้อเสียของ KNN

21 ข้อดี

- ■หากเงื่อนไขการตัดสินใจมีความซับซ้อนวิธีนี้สามารถสร้างโมเดลที่มีประสิทธิภาพได้
- ■ทำนายข้อมูลใหม่โดยอาศัยการเปรียบเทียบกับข้อมูลเรียนรู้จำนวน K ตัวที่อยู่ใกล้ที่สุด
- พิจารณาคำตอบจาก
 - ฅ้าตอบของข้อมูลเรียนรู้ที่อยู่ใกล้ที่สุด K ตัวที่พบมากที่สุดเป็น คำตอบ หรือ
 - ─ให้ค่าน้ำหนักโดยการพิจารณาระยะห่างระหว่างข้อมูลที่สนใจกับข้อมูลที่อยู่ใกล้สุด K ตัวร่วมด้วย
- ข้อเสีย
 - ■ใช้ระยะเวลาในการคำนวณนาน
 - ถ้าAttributeมีจำนวนมากจะเกิดปัญหาในการคำนวณค่า
 - ■ทำนายได้เฉพาะข้อมูลที่เป็นแบบประเภท (nominal) เท่านั้น เช่น หญิง หรือ ชาย ฯลฯ