Lec 1 数列极限

1.1 几个常用的记号

- 1. \forall ← A ← any: 任意给定的一个;给定后为常数
- 2. $\exists \leftarrow E \leftarrow exist$: 存在一个; 通常不唯一
- 3. $\sup E$: 数集 E 的最小上界,即 E 的上确界 (supremum) $\sup E$ 同时满足两条件:
 - (a). $\forall x \in E, x \leq \sup E$;
 - (b). $\forall \varepsilon > 0, \exists x_0 \in E, \sup E \varepsilon < x_0.$
- 4. $\inf E$: 数集 E 的最大下界,即 E 的下确界 (infimum) $\inf E$ 同时满足两条件:
 - (a). $\forall x \in E, x \ge \inf E$;
 - (b). $\forall \varepsilon > 0, \exists x_0 \in E, x_0 < \inf E + \varepsilon$.

定义 1.1

- 1. $\sup E = \inf\{u \in \mathbb{R} : u \ge x, \forall x \in E\};$
- 2. inf $E = \sup\{u \in \mathbb{R} : u \le x, \forall x \in E\}$.

例 设 $E = \{1, 3, 5, 8\}F = (-\sqrt{3}, \pi]$, 则: $\sup E = 8$, $\inf E = 1$, $\sup F = \pi$, $\inf F = -\sqrt{3}$. 且有

- 1. $\sup E = -\inf(-E);$
- 2. $\inf F = -\sup(-F)$;

注 这里的 -E 表示 E 的相反数集合,即 $-E = \{-e : e \in E\}$.

1.2 数学分析建立在实数系上 ℝ 上

理由: 极限运算时微积分的最基本运算, 而有理数集合 $\mathbb Q$ 关于极限运算时不封闭的. 例如:

$$\lim_{n\to\infty} (1+\frac{1}{n})^n = e; \forall n \in \mathbb{N}, (1+\frac{1}{n}) \in \mathbb{Q}, \text{ 但 } e \notin \mathbb{Q}. \text{ 又如,} \forall n \in \mathbb{N}, a_n = \sum_{m=1}^n \frac{1}{m^2} \in \mathbb{Q}, \text{ 但 } e \notin \mathbb{Q}.$$

 $\lim_{n\to\infty} a_n = \frac{\pi^2}{6} \notin \mathbb{Q}.$ 实数集合 \mathbb{R} 在数轴上的点是连续不断的,且关于极限运算时封闭的. 因此,称实数集 \mathbb{R} 是具有连续性. 实数集 \mathbb{R} 的连续性也称为实数集的完备性.

描述实数集 ℝ 连续性的公理通常有五个:

- 1. 确界存在原理;
- 2. 单调有界极限存在准则;
- 3. 极限存在的柯西 (Cauchy) 准则;

- 4. 闭区间套定理;
- 5. 列紧性原理,即有界数列必有收敛子列定理.

这五个公理是互相等价的, 本课程采用确界存在原理作为实数集 ℝ 连续性的公理.

注 这五条公理与课本 1.1.3 的连续性公理是等价的, 即任意一个公理都可以推导出另外四个公理. 因此这里说这五个等价命题描述了 ℝ 的连续性.

定理 1.1 (公理: 确界存在原理)

有上(下)界的非空实数集E必有上(下)确界 $\sup E(\inf E)$.

1.3 数列极限的科学定义

设数列 $\{a_n\}$ 以常数 a 为极限, 科学的定义如下:

定义 1.2 (数列极限)

对于数列 $\{a_n\}$, 若 $\forall \varepsilon > 0$, $\exists N \in N^*$, $\forall n > N$ 都有 $|a_n - a| < \varepsilon$ 成立, 则 $\{a_n\}$ 以常数 a 为极限, 记为 $\lim_{n \to \infty} a_n = a$ 或 $a_n \to a(n \to \infty)$.

我们判断数列是否收敛,就是判断其是否满足数列极限存在的定义??. 除此之外,也可以使用如下的性质:

命题 1.1

对于数列 $\{a_n\}$, 以下命题等价:

- 1. $\forall \varepsilon > 0, \exists N \in N^*, \forall n > N$ 都有 $|a_n a| < \varepsilon$ 成立;
- 2. 存在常数 M, 使得 $\forall \varepsilon > 0, \exists N \in N^*, \forall n > N$ 都有 $|a_n a| < M\varepsilon$ 成立;

事实上, 所有的收敛的有理数列, 其极限点的全体即是实数集 \mathbb{R} . 即实数集 \mathbb{R} 是有理数列的极限值构成的.

注

- 1. ◎ 对极限是不封闭的;
- 2. 由 ◎ 组成的数列的极限可以是实数;
- 3. 由 ℚ 组成的数列的极限只能是实数;
- 4. 由 ℚ 组成的所有收敛数列, 他们的极限的集合, 恰好就是 ℝ, 不多不少.

理由如下:

对 $\forall x \in \mathbb{R}$, 设 x 的小数表示为: $x = a_0.a_1a_2a_3\cdots$, 则有理数列: $a_0, a_0.a_1, a_0.a_1a_2, \cdots$ 当 $n \to \infty$ 时, 其极限为 x. 若 x 是有理数, 则 $a_0.a_1a_2\cdots a_n$ 是有限小数或循环小数, 若 x 是无理数, 则 $a_0.a_1a_2\cdots a_n$ 是无限不循环小数, 则极限点 x 是无理数.

此处 $x = a_0.a_1a_2a_3\cdots$,其中每一个 a_i 都是一个数字, a_0 是整数部分, $a_1a_2a_3\cdots$ 是小数部分. 比如, $a_0=3.1415926\cdots$,那么 $a_0=3, a_1=1, a_2=4, a_3=1, a_4=5, a_5=9, a_6=2, a_7=6,\cdots$.

可以由 $x = a_0.a_1a_2a_3\cdots$ 构造出一个数列 $\tau_1 = a_0, \tau_2 = a_0.a_1, \tau_3 = a_0.a_1a_2, \cdots$, 说 x 为极限指的, 是 x 是数列 $\{\tau_n\}$ 的极限, 记为 $\lim_{n\to\infty} \tau_n = x$. 都用 x 代指, 是因为我这里不能确定 x 是不是有限小数, 有理数还是无理数. 但是 x 是数列 $\{\tau_n\}$ 的极限是确定的.

1.4 极限存在的两个常用准则

定理 1.2 (单调有界极限存在准则)

若数列 $\{a_n\}$ 单调增 (减) 且有上 (下) 界, 则 $\{a_n\}$ 收敛. 且 $\lim_{n\to\infty}a_n=\sup a_n (\inf a_n)$.

 \bigcirc

证明 单调增有界极限存在.

设数列 $\{a_n\}$ 单调增且有上界, 由确界存在定理, $\{a_n\}$ 有上确界. 令 $\sup a_n = \beta$, 则 β 是 $\{a_n\}$ 满足以下两点:

- 1. $\forall n \in N, a_n \leq \beta$;
- 2. $\forall \varepsilon > 0, \exists a_{n_0} \in \{a_n\}, \beta \varepsilon < a_{n_0}.$

又因为 $\{a_n\}$ 单调增, 故 $\forall n > n_0, a_n \leq a_{n_0} > \beta - \varepsilon$, 且 $a_n \geq \beta < \beta + \varepsilon$. 即 $|\beta - a_n| < \varepsilon$ 在 $n > n_0$ 时成立.

由定义??, 有 $\lim_{n\to\infty} a_n = \beta = \sup\{a_n\}$. 同理, 单调减有下界极限存在.

定理 1.3 (夹逼准则)

设数列 $\{a_n\},\{b_n\},\{c_n\}$ 满足 $a_n\leq b_n\leq c_n,\lim_{n\to\infty}a_n=\lim_{n\to\infty}c_n=a,$ 则 $\lim_{n\to\infty}b_n=a.$

证明 从 $\lim_{n\to\infty} a_n = a \Leftrightarrow \forall \varepsilon > 0, \exists N_1 \in N^*, \forall n > N_1$ 都有 $|a_n - a| < \varepsilon. \Rightarrow a - \varepsilon < a_n < a + \varepsilon$ 当 $n > N_1$ 时恒成立.

再从 $\lim_{n\to\infty} c_n = a \Rightarrow$ 对上述 ε , $\exists N_2 \in N^*, \forall n > N_2$ 都有 $|c_n - a| < \varepsilon$. $\Rightarrow a - \varepsilon < c_n < a + \varepsilon$ 当 $n > N_2$ 时恒成立.

令 $N = \max\{N_1, N_2\}$, 则当 n > N 时, $a - \varepsilon < a_n \le b_n \le c_n < a + \varepsilon$, 即 $|b_n - a| < \varepsilon$ 成立. 由定义??, $\lim_{n \to \infty} b_n = a$.

例 1.1 下列 a, b, q, c_1, c_2 皆为常数.

- 1. 设 |q| < 1, 证明 $\lim_{n \to \infty} aq^n = 0$;
- 2. $\mathfrak{P}(a > 0, \mathbb{N}) \lim_{n \to \infty} a^{\frac{1}{n}} = 1;$
- 3. 证明 $\lim_{n\to\infty} \sqrt[n]{n} = 1$;
- 4. 设 $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$, 证明 $\lim_{n\to\infty} (c_1a_n + c_2b_n) = c_1a + c_2b$. 即线性组合的极限等于极限的线性组合,称此为极限的线性性质.

证明

- 1. (a). $\mbox{$\stackrel{d}{=}$ } q=0 \mbox{ } \mbox{\mid} \lim_{n\to\infty} aq^n = \lim_{n\to\infty} 0 = 0;$
 - (b). 当 0 < |q| < 1 时, 对 $\forall 0 < \varepsilon < 1$,使得 $|q^n 0| < \varepsilon$,只要 $n \ln |q| < \ln \varepsilon$,即 $n > \frac{\ln \varepsilon}{\ln |q|}$,

令
$$N=[rac{\ln arepsilon}{\ln |q|}]+1$$
,则当 $n>N$ 时, $n>rac{\ln arepsilon}{\ln |q|}\Rightarrow |q^n-0|,即 $\lim_{n o\infty}aq^n=0$.综上可知, $\lim_{n o\infty}aq^n=0$, $\forall |q|<1$.$

- 2. (a). 当 a > 1 时,则 $a^{\frac{1}{n}} > 1$,设 $a^{\frac{1}{n}} = 1 + \lambda_n$,则 $a = (1 + \lambda_n)^n = 1 + n\lambda_n + \frac{n(n-1)}{2!}\lambda_n^2 + \dots + \lambda_n^n > n\lambda_n$,则 $0 < \lambda_n < \frac{a}{n}$ 且 $\lim_{n \to \infty} \frac{a}{n} = 0$,由夹逼准则??, $\lim_{n \to \infty} a^{\frac{1}{n}} = 1$.
 - (b). 当 0 < a < 1 时,令 $b = \frac{1}{a}$,则 b > 1,由上一步可知 $\lim_{n \to \infty} b^{\frac{1}{n}} = 1$,即 $\lim_{n \to \infty} a^{\frac{1}{n}} = 1$. 注 助教: 我觉得最后一步的说明有一点跳步,讲义使用了 $\lim_{n \to \infty} a^{1/n} = \lim_{n \to \infty} \frac{1}{b^{1/n}} = \frac{1}{\lim_{n \to \infty} b^{1/n}} = 1$.中间第二个等号是未证明的,这个将在之后极限的四则运算得到证明
- 3. 当 $n \ge 2$ 时, $\sqrt[n]{n} \ge 1$, 设 $\sqrt[n]{n} = 1 + \lambda_n$, 则 $\lambda_n > 0$. 且 $n = (1 + \lambda_n)^n > \frac{n(n+1)}{2} \lambda_n^2$, 则 $0 < \lambda_n < \sqrt{\frac{2}{n-1}}$, 且 $\lim_{n \to \infty} \sqrt{\frac{2}{n-1}} = 0$, 由夹逼准则??, $\lim_{n \to \infty} \sqrt[n]{n} = 1$.

 4. 由 $\lim_{n \to \infty} a_n = a \Rightarrow \forall \varepsilon > 0$, $\exists N_1 \in N^*$, 当 $n > N_1$ 时, $|a_n a| < \varepsilon$. 由 $\lim_{n \to \infty} b_n = b$, 对
- 4. 由 $\lim_{n\to\infty} a_n = a \Rightarrow \forall \varepsilon > 0$, $\exists N_1 \in N^*$, $\exists n > N_1$ 时, $|a_n a| < \varepsilon$. 由 $\lim_{n\to\infty} b_n = b$, 对上述 $\varepsilon > 0$, $\exists N_2 \in N^*$, $\exists n > N_2$ 时, $|b_n b| < \varepsilon$. 令 $N = \max\{N_1, N_2\}$, 则当 n > N 时, $|a_n a| < \varepsilon$, $|b_n b| < \varepsilon$, 则 $|c_1 a_n + c_2 b_n c_1 a c_2 b| = |c_1 (a_n a) + c_2 (b_n b)| \leq |c_1 (a_n a)| + |c_2 (b_n b)| \leq (|c_1| + |c_2|)\varepsilon$, 即 $\lim_{n\to\infty} (c_1 a_n + c_2 b_n) = c_1 a + c_2 b$. 注 证明数列极限时,需要证明 $\forall \varepsilon > 0$, $\exists N \in N^*$, $\exists n > N$ 时, $|a_n a| < \varepsilon$ 成立. 如果我们能证明 $\forall \varepsilon > 0$, $\exists N \in N^*$, $\exists n > N$ 时, $|a_n a| < \varepsilon$ 也是可以的. 可以思考一下这是为什么?提示:??.

数列的极限具有线性性质,同理函数极限也是具有线性性质的,统称为极限的线性性质. 由极限的线性性质,可导出微积分中绝大多数概念也具有线性性质.如函数的导数、导数、微分、积分,都具有线性性质.

 \triangle frw ex1.2:1(2)(4),3,4,5,6,8(5),15(1),19.