Math 600 Fall 2017 Homework #7

Due Nov. 27, Mon. in class

Note: For the Euclidean space \mathbb{R}^n , consider the usual metric induced by the Euclidean norm $\|\cdot\|_2$ on \mathbb{R}^n , unless otherwise stated.

- 1. Let $f_n : [1,2] \to \mathbb{R}$ be $f_n(x) = \frac{x}{(x+1)^n}$.
 - (1) Use the Weierstrass M-test to show that $\sum_{n=1}^{\infty} f_n(x)$ is uniformly convergent on A = [1, 2];
 - (2) Determine if $\int_{1}^{2} \left(\sum_{n=1}^{\infty} f_{n}(x)\right) dx = \sum_{n=1}^{\infty} \int_{1}^{2} f_{n}(x) dx$, and justify your answer. (*Note*: do NOT try to find the values of the integrals of f_{n} and the series over [1,2].)
- 2. Let $A = [-a, a] \subset \mathbb{R}$ with a > 0, and let

$$f_n(x) = \frac{(-1)^{n-1}x^{2n-1}}{(2n-1)!}, \quad x \in \mathbb{R}.$$

- (1) Use the Weierstrass M-test to show uniform convergence of the series $\sum_{n=1}^{\infty} f_n$ on A;
- (2) Let f_* be the limit function of the series on A, i.e., $f_*(x) = \sum_{n=1}^{\infty} f_n(x)$. Is f_* differentiable on (-a, a)? If so, is $f'_*(x) = \sum_{n=1}^{\infty} f'_n(x)$ on (-a, a)? Justify your answers.
- 3. Let A be a bounded set in \mathbb{R} , and $f_n : \mathbb{R} \to \mathbb{R}$ be

$$f_n(x) = \frac{(-1)^{n+1}x}{\sqrt{n}}.$$

- (1) Use the Cauchy criterion to show that the series $\sum_{n=1}^{\infty} f_n$ converges uniformly on A.
- (2) Show that the Weierstrass M-test fails for this series.
- \star This problem shows that the Weierstrass M-test is a sufficient condition for uniform convergence but not a necessary one.
- 4. Let $f_n: \mathbb{R} \to \mathbb{R}$ be $f_n(x) = \frac{x}{n^2 + x^2}$.
 - (1) Use the Weierstrass M-test to show that the series $s_* := \sum_{n=1}^{\infty} f_n$ converges uniformly on any bounded set $A \subset \mathbb{R}$. Furthermore, show that s_* is continuous at any point in \mathbb{R} .
 - (2) Show that the series $\sum_{n=1}^{\infty} f_n$ does not converge uniformly on \mathbb{R} via the Cauchy criterion.
- 5. Let $(V, \|\cdot\|)$ be a complete normed vector space and its induced metric $d(x, y) = \|x y\|$ for $x, y \in V$. Let $f: V \to V$ be a linear mapping/function, i.e., $f(x + y) = f(x) + f(y), \forall x, y \in V$ and $f(\alpha x) = \alpha f(x)$ for all $x \in V$ and $\alpha \in \mathbb{R}$. You may assume the following facts without proof: f(0) = 0 and $f(x y) = f(x) f(y), \forall x, y \in V$.
 - (1) Show that f is a contraction if and only if there exists a constant C with 0 < C < 1 such that $||f(x)|| \le C||x||$ for all $x \in V$.
 - (2) Suppose that f is a contraction. Let $x_0 \in V$ be arbitrary, and define the sequence (x_n) recursively by $x_n = f(x_{n-1}), n \in \mathbb{N}$. Show that (x_n) converges to the zero vector in V.

6. Let the constant K satisfy 0 < K < 1. Consider the linear function $f: \mathbb{R}^2 \to \mathbb{R}^2$ defined by

$$f(x) = \frac{K}{\sqrt{2}} (x_1 + x_2, x_2 - x_1), \quad \forall \ x = (x_1, x_2) \in \mathbb{R}^2.$$

To solve the following problems, you may use the results of Problem 5.

- (1) Show that when the 2-norm (i.e., $\|\cdot\|_2$) is used, f is a contraction.
- (2) Show that when the 1-norm (i.e., $\|\cdot\|_1$) is used, f is not a contraction if $\frac{1}{\sqrt{2}} < K < 1$.
- (3) Let $x^0 = (x_1^0, x_2^0) \in \mathbb{R}^2$ be arbitrary. Define the sequence (x^k) as $x^k = f(x^{k-1})$, $k \in \mathbb{N}$. Explain why the sequence (x^k) is convergent when the 2-norm is used. (*Note:* recall that $(\mathbb{R}^2, \|\cdot\|_2)$ is complete.)
- (4) Show that the sequence defined in (3) is convergent when the 1-norm is used. (*Hint:* use the equivalence of norms on a Euclidean space shown in Problem 3 of Homework #5.)
- * This problem shows that the contractive property is a sufficient condition for convergence but not a necessary one.

Miscellaneous practice problems: Do not submit

- 1. Let $f_n : \mathbb{R} \to \mathbb{R}$ be such that the sequence (f_n) converges uniformly to f_* on the set A. Suppose that each f_n is bounded on A, i.e., for each f_n , there exists $M_n > 0$ (dependent on f_n) such that $|f_n(x)| \leq M_n, \forall x \in A$. Show that f_* is bounded on A.
- 2. Find the largest possible constant $r \in (0,1)$ such that the function $f:[0,r] \to [0,r]$ defined by $f(x) = x^2$ is a contraction.