Zkouška OPT 21.1.2021

Každý příklad pište na samostatnou stránku a ofoťte do samostatného souboru, jehož jméno (bez přípony) je číslo příkladu.

Každý příklad musí mít nejen odpověď, ale i postup. Odpověď bez postupu se nepočítá.

1. **(5b)** Máme okno tvaru obdélníka sjednoceného s půlkruhem (viz obrázek). Jaký má být poměr stran obdélníkové části okna, aby obsah okna byl co největší při konstantním obvodu okna?

- 2. Dáno je n bodů $(x_1, y_1, z_1), \ldots, (x_n, y_n, z_n) \in \mathbb{R}^3$. Tyto body tvoří sloupce matice $\mathbf{X} \in \mathbb{R}^{3 \times n}$. (Poznámka: Nepoužívejte počítač, matlabský kód jen napište na papír. Pokud kód nebude syntakticky zcela správně, nevadí.)
 - (a) (3b) Napište matlabskou funkci [a,b,c]=fun(X), která spočítá čísla $a,b,c \in \mathbb{R}$ taková, aby číslo $\sum_{i=1}^{n} d_i^2$ bylo minimální, kde d_i značí vzdálenost bodu (x_i,y_i,z_i) od množiny $\{(x,y,z) \in \mathbb{R}^3 \mid ax+by+cz=0\}$.
 - (b) (3b) Napište matlabskou funkci [a,b,c]=fun(X), která spočítá čísla $a,b,c \in \mathbb{R}$ taková, aby číslo $\sum_{i=1}^{n} |ax_i + by_i + c z_i|^2$ bylo minimální.
 - (c) (3b) Napište lineární program, který spočítá čísla $a, b, c \in \mathbb{R}$ taková, aby číslo $\sum_{i=1}^{n} |ax_i + by_i + c z_i|$ bylo minimální.
- 3. (4b) Máme funkci dvou proměnných $f(x_1, x_2) = x_1(3x_1 2x_2 + 1) x_2(x_1 + 2x_2 + 3)$. Napište Taylorův polynom druhého stupně funkce f v bodě $(\frac{1}{3}, -1)$. Zvolte co nejjednodušší postup (jednoduchost postupu se hodnotí).
- 4. Máme funkci $f(x,y) = x^2 2xy + 2y$.
 - (a) (4b) Napište funkci ve tvaru $f(\mathbf{x}) = (\mathbf{x} \mathbf{x}_0)^T \mathbf{A} (\mathbf{x} \mathbf{x}_0) + \alpha$, kde $\mathbf{x} = (x, y) \in \mathbb{R}^2$, $\mathbf{x}_0 = (x_0, y_0) \in \mathbb{R}^2$, matice $\mathbf{A} \in \mathbb{R}^{2 \times 2}$ je symetrická a $\alpha \in \mathbb{R}$. (Rada: Ověřte správnost výsledku tohoto podúkolu. Když ho budete mít špatně, máte špatně i ostatní podúkoly.)
 - (b) (2b) Najděte vlastní čísla matice A.
 - (c) (2b) Najděte minimum a maximum funkce f, pokud existují. Pokud některé z nich neexistuje, vysvětlete.
 - (d) (2b) Vrstevnice výšky 2 funkce f je kuželosečka. Je to elipsa, hyperbola, parabola, nebo nic z toho? Proč?
 - (e) (1b) Vrstevnice výšky 1 funkce f je kuželosečka. Je to elipsa, hyperbola, parabola, nebo nic z toho? Proč?
- 5. **(6b)** Jsou dána kladná čísla c_1, \ldots, c_n . Minimalizujte funkci $f(\mathbf{y}) = \sum_{i=1}^n \frac{c_i^2}{y_i}$ na standardním simplexu, tedy za podmínek $\mathbf{y} \geq \mathbf{0}$ a $\mathbf{1}^T \mathbf{y} = 1$.
- 6. Vyřešte úvahou následující úlohy. Výsledkem u každé úlohy bude (co nejjednodušší) vzorec pro optimální **hodnotu** a vzorec pro optimální **argument** úlohy.
 - (a) (4b) min{ $|x-a| | x \in \mathbb{R}, x \geq 0$ }, kde $a \in \mathbb{R}$ je dáno.
 - (b) (3b) min{ $\|\mathbf{x} \mathbf{a}\|_1 \mid \mathbf{x} \in \mathbb{R}^n, \ \mathbf{x} \geq \mathbf{0}$ }, kde $\mathbf{a} = (a_1, \dots, a_n) \in \mathbb{R}^n$ je dáno.
- 7. **(4b)** p-norma vektoru je definovaná jako $\|\mathbf{x}\|_p = (|x_1|^p + |x_2|^p + \cdots + |x_n|^p)^{1/p}$ pro $p \ge 1$. Dokažte z definice normy, že pro $p = \frac{1}{2}$ se nejedná o normu.
- 8. (4b) Lineární program max $\{ \mathbf{c}^T \mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \geq \mathbf{0} \}$ (pozor, je tam maximum!) je daný simplexovou tabulkou

Udělejte jednu iteraci simplexového algoritmu a napište výslednou simplexovou tabulku. Napište aktuální bázové řešení a hodnotu kritéria po této iteraci. Pokud to nejde, vysvětlete.