Notions de base sur les langages

Exercice 1

Sur l'alphabet $A = \{0, 1\}$, considérons les mots $w_1 = 01$ et $w_2 = 101$. Calculer $w_1 \cdot w_2$, $w_2 \cdot w_1$, w_1^3 , w_2^2 , $\epsilon \cdot w_1$, $|w_1|$.

Exercice 2

Soit $L = \{a, b\}$. Calculer L^n , n = 2, 3. Plus généralement, caractèriser L^n , pour n quelconque et caractèriser également l'union de tout ces langages : $M = \bigcup_{i/i \in N} L^i$. Mais au fait, l'union des puissances, c'est une opération classique que l'on réutilisera souvent, et il existe par conséquent une notation nettement plus simple pour décrire M, quelle est-t'elle?

Exercice 3

Considérons les deux langages sur l'alphabet $\{a,b\}$ définis par $L_1 = \{a,ba\}$ et $L_2 = \{\epsilon,b,aa\}$. Calculer $L_1L_2, L_2L_1, L_1^2, L_2^2, L_1^3, L_2^3, L_1^*, L_2^*$.

Exercice 4

Soit $L_1 = \{a\}$, et $L_2 = \{a, \epsilon\}$. Calculer L_1^n, L_2^n pour n = 0, 1, 2, 3, 10, pour finir, calculer L_1^*, L_2^*

Exercice 5

Pour un langage L arbitraire, que valent $L \cup \emptyset$, $L \cap \emptyset$ et $L \cdot \emptyset$? Existe-t-il un langage L_0 tel que pour tout $L, L \cdot L_0 = L_0 \cdot L = L$?

Exercice 6

On considère les langages définis sur l'alphabet $A = \{a,b\}$ par $L_1 = \{a\}^*.\{b\}^*, L_2 = (\{a\} \cup \{b\})^*, L_3 = \{ab\}^*, L_4 = \{a\}^* \cup \{b\}^*$ et $L_5 = (\{ab\} \cup \{a\})^*$.

Les questions 1 et 2 de cet exercice sont étroitement imbriquées, on peut les traiter en même temps pour chacun des langages.

- 1. Les mots suivants appartiennent-ils à chacun de ces langages : a, b, aa, ab, ba, aab, abab?
- 2. Trouver la forme générale des mots de chacun de ces langages.
- 3. Comparez ces langages (égalités, inclusions).

Exercice 7

On se donne un ensemble de caractères qui contient au moins les lettres a, b, c, d et un langage L fini sur cet alphabet.

Comment peut-on prétraiter l'information dans le langage L pour écrire une fonction qui teste si le mot $w \in L$ en ne parcourant qu'une seule foix les lettres du mot w?

On illustrera la méthode sur le langage $L \stackrel{\text{def}}{=} \{aabb, aaa, aaabb, aabc, abcd, baba, bac, bba, bbac\}.$

Exercice 8

Soit L_1 et L_2 deux langages arbitraires. Exprimer les langages suivants d'une autre manière, qui utilise moins d'opérations sur les langages :

- 1. $(L_1 \cdot L_2) \cup (L_1 \cdot L_3)$ avec deux opérations.
- 2. $(L_1^*)^*$ avec une opération.
- 3. $(\{\epsilon\} \cup L_1)^*$ avec une opération.
- 4. \emptyset^* avec aucune opération.
- 5. $(L_1^* \cdot L_2^*)^*$ avec deux opérations.