1

Assignment 5

Yashas Tadikamalla - AI20BTECH11027

Download all python codes from

https://github.com/YashasTadikamalla/EE3900/blob/main/Assignment5/codes

and latex-tikz codes from

https://github.com/YashasTadikamalla/EE3900/blob/main/Assignment5/Assignment5.tex

1 Problem (Quadratic Forms Q2.31)

Find the equation of hyperbola with foci $\begin{pmatrix} 0 \\ \pm 12 \end{pmatrix}$ and length of latus rectum 36.

2 SOLUTION

Theorem 2.1. The equation of a conic with directrix $\mathbf{n}^{\mathsf{T}}\mathbf{x} = c$, eccentricity e and focus **F** is given by

$$\mathbf{x}^{\mathsf{T}}\mathbf{V}\mathbf{x} + 2\mathbf{u}^{\mathsf{T}}\mathbf{x} + f = 0 \tag{2.0.1}$$

where

$$\mathbf{V} = ||\mathbf{n}||^2 \mathbf{I} - e^2 \mathbf{n} \mathbf{n}^{\mathsf{T}}, \tag{2.0.2}$$

$$\mathbf{u} = ce^2 \mathbf{n} - ||\mathbf{n}||^2 \mathbf{F},\tag{2.0.3}$$

$$f = ||\mathbf{n}||^2 ||\mathbf{F}||^2 - c^2 e^2$$
 (2.0.4)

For |V| > 0, the equation represents an ellipse, while for |V| < 0, the equation represents a hyperbola.

Theorem 2.2. For $|V| \neq 0$ the equations of minor and major axes of the conic in (2.0.1) are given by

$$\mathbf{p_i}^{\mathsf{T}}(\mathbf{x} - \mathbf{c}) = 0, i = 1, 2$$
 (2.0.5)

Theorem 2.3. The eccentricity of the conic in (2.0.1) is given by

$$e = \sqrt{1 - \frac{\lambda_1}{\lambda_2}} \tag{2.0.6}$$

Definition 2.1 (Latus rectum). The latus rectum of a conic section is the chord (line segment) that passes through the focus, is perpendicular to the major axis and has both endpoints on the curve.

Theorem 2.4. The equation latus rectum of the conic in (2.0.1) is given by

$$\mathbf{n}^{\mathsf{T}} \left(\mathbf{x} - \mathbf{F} \right) = 0 \tag{2.0.7}$$

Theorem 2.5. For $|V| \neq 0$, the lengths of semi-major and semi-minor axes of the conic in (2.0.1) are

$$\sqrt{\frac{\mathbf{u}^{\top} \mathbf{V}^{-1} \mathbf{u} - f}{\lambda_{1}}}, \sqrt{\left| \frac{f - \mathbf{u}^{\top} \mathbf{V}^{-1} \mathbf{u}}{\lambda_{2}} \right|}$$
 (2.0.8)

Theorem 2.6. For $|V| \neq 0$, the length of latus rectum (LLR) of the conic in (2.0.1) is given by

$$LLR = \frac{2\left|\frac{f - \mathbf{u}^{\mathsf{T}} \mathbf{V}^{-1} \mathbf{u}}{\lambda_{2}}\right|}{\sqrt{\frac{\mathbf{u}^{\mathsf{T}} \mathbf{V}^{-1} \mathbf{u} - f}{\lambda_{1}}}}$$
(2.0.9)

Proof. Using (2.0.8), we can write

$$\mathbf{F} = \mathbf{c} \pm \left(\sqrt{\frac{(\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f)(\lambda_2 - \lambda_1)}{\lambda_1 \lambda_2}} \right) \mathbf{p_1} \quad (2.0.10)$$

Also, we know, for $|\mathbf{V}| \neq 0$,

$$\mathbf{n} = \sqrt{\lambda_2} \mathbf{p_1} \tag{2.0.11}$$

$$\Rightarrow \mathbf{p_1}^{\mathsf{T}} (\mathbf{x} - \mathbf{F}) = 0 \tag{2.0.12}$$

is the equation of latus rectum. Solving this with (2.0.1) and simplifying, we get

$$\mathbf{H} = \mathbf{F} \pm \sqrt{\lambda_1 \left(\frac{\mathbf{u}^{\mathsf{T}} \mathbf{V}^{-1} \mathbf{u} - f}{\lambda_2^2} \right)} \mathbf{p_2}$$
 (2.0.13)

as the points of intersection. Hence, the length of line segment is

$$LLR = \left\| 2 \sqrt{\lambda_1 \left(\frac{\mathbf{u}^{\mathsf{T}} \mathbf{V}^{-1} \mathbf{u} - f}{\lambda_2^2} \right)} \mathbf{p_2} \right\| = \frac{2 \left| \frac{f - \mathbf{u}^{\mathsf{T}} \mathbf{V}^{-1} \mathbf{u}}{\lambda_2} \right|}{\sqrt{\frac{\mathbf{u}^{\mathsf{T}} \mathbf{V}^{-1} \mathbf{u} - f}{\lambda_1}}}$$
(2.0.14)

Given, length of latus rectum is 36 and focii are Hence, the required equation is $\begin{pmatrix} 0 \\ \pm 12 \end{pmatrix}$. Let us consider $\begin{pmatrix} 0 \\ 12 \end{pmatrix}$ for solving the problem.

$$\mathbf{F} = \begin{pmatrix} 0 \\ 12 \end{pmatrix} \Rightarrow ||\mathbf{F}|| = 12 \tag{2.0.15}$$

Let $\mathbf{u}^{\mathsf{T}}\mathbf{V}^{-1}\mathbf{u} - f = \alpha$. From (2.0.8),(2.0.6),(2.0.9)

$$\sqrt{\frac{\alpha}{\lambda_1}}\sqrt{1-\frac{\lambda_1}{\lambda_2}} = 12 \tag{2.0.16}$$

$$\frac{2\left(\frac{-\alpha}{\lambda_2}\right)}{\sqrt{\frac{\alpha}{\lambda_1}}} = 36\tag{2.0.17}$$

Dividing (2.0.16) by (2.0.17) gives

$$\frac{\lambda_1}{\lambda_2} = -3 \tag{2.0.18}$$

$$\Rightarrow e = 2 \tag{2.0.19}$$

$$\Rightarrow \sqrt{\frac{\alpha}{\lambda_1}} = 6 \tag{2.0.20}$$

The associated directrix is perpendicular to the yaxis and passes through the point

$$\left(\frac{0}{\sqrt{\frac{\alpha}{e^2\lambda_1}}}\right) = \begin{pmatrix} 0\\3 \end{pmatrix}$$
(2.0.21)

Hence, its equation is

$$\begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{x} - \begin{pmatrix} 0 \\ 3 \end{pmatrix} \end{pmatrix} = 0$$
(2.0.22)

$$\Rightarrow \begin{pmatrix} 0 & 1 \end{pmatrix} \mathbf{x} = 3 \tag{2.0.23}$$

Comparing it with $\mathbf{n}^{\mathsf{T}}\mathbf{x} = c$

$$\mathbf{n} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, c = 3 \Rightarrow ||\mathbf{n}|| = 1 \tag{2.0.24}$$

Calculating V, u and f,

$$\mathbf{V} = 1^2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - 2^2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \end{pmatrix}$$
 (2.0.25)

$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ 0 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -3 \end{pmatrix} \tag{2.0.26}$$

$$\mathbf{u} = 3(2^2) \begin{pmatrix} 0 \\ 1 \end{pmatrix} - 1^2 \begin{pmatrix} 0 \\ 12 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 (2.0.27)

$$f = 1^2(12^2) - 3^2(2^2) = 108$$
 (2.0.28)

$$\mathbf{x}^{\mathsf{T}} \begin{pmatrix} 1 & 0 \\ 0 & -3 \end{pmatrix} \mathbf{x} + 108 = 0 \tag{2.0.29}$$

(2.0.15) Also, from (2.0.7), the equations of latus rectum is

$$\begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{x} - \begin{pmatrix} 0 \\ 12 \end{pmatrix} \end{pmatrix} = 0 \tag{2.0.30}$$

$$\Rightarrow \begin{pmatrix} 0 & 1 \end{pmatrix} \mathbf{x} = 12 \tag{2.0.31}$$

Similarly, the equations of directrix and latus rectum associated with $\begin{pmatrix} 0 \\ -12 \end{pmatrix}$ are given by

$$(0 1)\mathbf{x} = -3$$
 (2.0.32)
 $(0 1)\mathbf{x} = -12$ (2.0.33)

$$\begin{pmatrix} 0 & 1 \end{pmatrix} \mathbf{x} = -12 \tag{2.0.33}$$

Fig. 0: Hyperbola