CS1.404: Assignment 1

Himanshu Singh

April 10, 2024

1 Trid Function

$$f(\mathbf{x}) = \sum_{i=1}^{d} (x_i - 1)^2 - \sum_{i=2}^{d} x_{i-1} x_i$$

1.1 Jacobian and Hessian

$$\nabla f(\mathbf{x}) = \begin{bmatrix} 2x_1 - x_2 - 2\\ 2x_2 - x_1 - x_3 - 2\\ 2x_3 - x_2 - x_4 - 2\\ \vdots\\ 2x_{d-1} - x_{d-2} - x_d - 2\\ 2x_d - x_{d-1} - 2 \end{bmatrix}$$

$$\nabla^2 f(\mathbf{x}) = \begin{bmatrix} 2 & -1 & 0 & \dots & 0 \\ -1 & 2 & -1 & \dots & 0 \\ 0 & -1 & 2 & \dots & 0 \\ 0 & 0 & -1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & -1 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix}$$

1.2 Calculation of Minima

We know from the SOSC for minima that \mathbf{x}^* is a local minima of the function $f(\mathbf{x})$, if the following conditions hold.

$$\nabla f(\mathbf{x}^*) = \mathbf{0}$$

$$\Rightarrow 2x_1 - x_2 = 2$$

$$\Rightarrow 2x_i - x_{i-1} - x_{i+1} = 2$$

$$\Rightarrow 2x_d - x_{d-1} = 2$$

$$\forall i \in [2, d-1]$$

$$\mathbf{y}^T \nabla^2 f(\mathbf{x}^*) \mathbf{y} > 0$$

$$\Rightarrow \left[2y_1 - y_2 \quad \dots \quad 2y_i - y_{i-1} - y_{i+1} \quad \dots \quad 2y_d - y_{d-1} \right]^T \mathbf{y} > 0$$

$$\forall \mathbf{y} \in \mathbb{R}^d$$

$$\Rightarrow 2\left(\sum_{i=1}^d y_i^2 - \sum_{i=2}^d y_{i-1} y_i \right) > 0$$

$$\forall \mathbf{y} \in \mathbb{R}^d$$

$$\implies 2\left(\sum_{i=1}^{d} y_i^2 - \sum_{i=2}^{d} y_{i-1}y_i\right) > 0 \qquad \forall \mathbf{y} \in \mathbb{R}^d$$

$$\implies \left(\sum_{i=2}^{d} y_{i-1}^2 + y_i^2 - 2y_{i-1}y_i\right) + y_1^2 + y_d^2 > 0 \qquad \forall \mathbf{y} \in \mathbb{R}^d$$

$$\implies \left(\sum_{i=2}^{d} (y_{i-1} - y_i)^2\right) + y_1^2 + y_d^2 > 0 \qquad \forall \mathbf{y} \in \mathbb{R}^d$$

$$(2)$$

Assuming $x_i = i(d+1-i)$, and substituting, we see that the inequalities (1) hold; while the inequality (2) holds regardless of **x**. Thus,

$$\mathbf{x}^* = (d, 2d - 2, 3d - 6, \dots, d) \tag{3}$$

1.3 Convergence of Algorithms

For the given test case, all the algorithms converged to the local minima $\mathbf{x}^* = (2, 2)$.

1.4 Plots

Figure 1: $f(\mathbf{x}_k)$ vs k, for $\mathbf{x}_0 = (-2, -2)$

Figure 2: $|\nabla f(\mathbf{x}_k)|$ vs k, for $\mathbf{x}_0 = (-2, -2)$

Figure 3: Contour plot, with direction of updates for $\mathbf{x}_0 = (-2, -2)$

2 Three Hump Camel

$$f(\mathbf{x}) = 2x_1^2 - 1.05x_1^4 + \frac{x_1^6}{6} + x_1x_2 + x_2^2$$

2.1 Jacobian and Hessian

$$\nabla f(\mathbf{x}) = \begin{bmatrix} 4x_1 - 4.2x_1^3 + x_1^5 + x_2 \\ x_1 + 2x_2 \end{bmatrix}$$

$$\nabla^2 f(\mathbf{x}) = \begin{bmatrix} 5x_1^4 - 12.6x_1^2 + 4 & 1\\ 1 & 2 \end{bmatrix}$$

2.2 Calculation of Minima

We know from the SOSC for minima that \mathbf{x}^* is a local minima of the function $f(\mathbf{x})$, if the following conditions hold.

$$\nabla f(\mathbf{x}^*) = \mathbf{0}$$

$$\implies 4x_1 - 4.2x_1^3 + x_1^5 + x_2 = 0$$

$$x_1 + 2x_2 = 0$$
(4)

$$\mathbf{y}^{T} \nabla^{2} f(\mathbf{x}^{*}) \mathbf{y} > 0 \qquad \forall \mathbf{y} \in \mathbb{R}^{2}$$

$$\implies y_{1}^{2} (5x_{1}^{4} - 12.6x_{1}^{2} + 4) + 2y_{1}y_{2} + 2y_{2}^{2} > 0 \qquad \forall y_{1}, y_{2} \in \mathbb{R}$$
(6)

Solving (4) and (5), we get

$$\{\mathbf{x}^*\} = \{(-1.7476, 0.8738), (-1.0705, 0.5353), (0, 0), (1.0705, -0.5353), (1.7476, -0.8738)\}\$$
 (7)

Checking satisfiability of inequality (6) for all possibilities (7), we get

$$\{\mathbf{x}^*\} = \{(-1.7476, 0.8738), (0, 0), (1.7476, -0.8738)\}\tag{8}$$

2.3 Convergence of Algorithms

For the given test cases, all the algorithms converged to one of the local minimas.

2.4 Plots

Figure 4: $f(\mathbf{x}_k)$ vs k, for $\mathbf{x}_0 = (-2, -1)$

Figure 5: $|\nabla f(\mathbf{x}_k)|$ vs k, for $\mathbf{x}_0 = (-2, -1)$

Figure 6: Contour plot, with direction of updates for $\mathbf{x}_0 = (-2, -1)$

3 Styblinski-Tang Function

$$f(\mathbf{x}) = \frac{1}{2} \sum_{i=1}^{d} (x_i^4 - 16x_i^2 + 5x_i)$$

3.1 Jacobian and Hessian

$$\nabla f(\mathbf{x}) = \begin{bmatrix} 2x_1^3 - 16x_1 + \frac{5}{2} \\ 2x_2^3 - 16x_2 + \frac{5}{2} \\ \vdots \\ 2x_d^3 - 16x_d + \frac{5}{2} \end{bmatrix}$$

$$\nabla^2 f(\mathbf{x}) = \begin{bmatrix} 6x_1^2 - 16 & 0 & \dots & 0 \\ 0 & 6x_2^2 - 16 & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & 0 & 6x_d^2 - 16 \end{bmatrix}$$

3.2 Calculation of Minima

We know from the SOSC for minima that \mathbf{x}^* is a local minima of the function $f(\mathbf{x})$, if the following conditions hold.

$$\nabla f(\mathbf{x}^*) = \mathbf{0}$$

$$\implies 2x_i^3 - 16x_i + \frac{5}{2} = 0 \qquad \forall i \in [1, d]$$

$$\implies x_i \approx -2.9035, 0.15673, 2.7468 \qquad \forall i \in [1, d]$$
(9)

$$\mathbf{y}^{T} \nabla^{2} f(\mathbf{x}^{*}) \mathbf{y} > 0 \qquad \forall \mathbf{y} \in \mathbb{R}^{d}$$

$$\implies y_{i}^{2} (6x_{i}^{2} - 16) > 0 \qquad \forall y_{i} \in \mathbb{R}, i \in [1, d]$$

$$\implies x_{i}^{2} > \frac{8}{3} \qquad \forall i \in [1, d]$$

$$\implies |x_{i}| > 1.63 \qquad \forall i \in [1, d] \qquad (10)$$

Combining (9) and (10), we get $x_i = -2.9035, 2.7468$. Thus, the set of local minimas is

$$\{\mathbf{x}^*\} = \{-2.9035, 2.7468\}^d \tag{11}$$

3.3 Convergence of Algorithms

- 1. Pure and Damped Newton's Method converged, for all except the first test case. Notably, the Pure Netwon's Method returned $\mathbf{x} = (0.157, 0.157, 0.157, 0.157)$ on failure, which as we saw earlier satisfies the FONC.
- Steepest Descent with Backtracking, Steepest Descent with Bisection search, Levenberg-Marquardt Modification and Combined Damped Netwon's Method converged to one of the local minimas, for all the test cases.

3.4 Plots

Figure 7: $f(\mathbf{x}_k)$ vs k, for $\mathbf{x}_0 = (3, 3, 3, 3)$

Figure 8: $|\nabla f(\mathbf{x}_k)|$ vs k, for $\mathbf{x}_0 = (3, 3, 3, 3)$

4 Rosenbrock Function

$$f(\mathbf{x}) = \sum_{i=1}^{d-1} [100(x_{i+1} - x_i^2)^2 + (x_i - 1)^2]$$

4.1 Jacobian and Hessian

$$\nabla f(\mathbf{x}) = \begin{bmatrix} 400x_1(x_1^2 - x_2) + 2(x_1 - 1) \\ 400x_2(x_2^2 - x_3) + 2(x_2 - 1) + 200(x_2 - x_1^2) \\ 400x_3(x_3^2 - x_4) + 2(x_3 - 1) + 200(x_3 - x_2^2) \\ \vdots \\ 400x_{d-1}(x_{d-1}^2 - x_k) + 2(x_{d-1} - 1) + 200(x_{d-1} - x_{d-2}^2) \\ 200(x_d - x_{d-1}^2) \end{bmatrix}$$

$$\nabla^2 f(\mathbf{x}) = \begin{bmatrix} 1200x_1^2 - 400x_2 + 2 & -400x_1 & 0 & \dots & 0 \\ -400x_1 & 1200x_2^2 - 400x_3 + 202 & -400x_2 & \dots & 0 \\ 0 & -400x_2 & 1200x_3^2 - 400x_4 + 202 & \dots & 0 \\ 0 & 0 & -400x_3 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & -400x_{d-1} \\ 0 & 0 & 0 & -400x_{d-1} & 200 \end{bmatrix}$$

4.2 Convergence of Algorithms

- 1. Pure Newton's Method, Damped Newton's Method, Levenberg-Marquardt Modification and Combined Damped Netwon's Method converged, for all except the third test case.
- 2. Steepest Descent with Backtracking and Bisection search converged for all the test cases.

4.3 Plots

Figure 9: $f(\mathbf{x}_k)$ vs k, for $\mathbf{x}_0 = (-2, 2, 2, 2)$

Figure 10: $|\nabla f(\mathbf{x}_k)|$ vs k, for $\mathbf{x}_0 = (-2, 2, 2, 2)$

5 Root of Square Function

$$f(\mathbf{x}) = \sqrt{1 + x_1^2} + \sqrt{1 + x_2^2}$$

5.1 Jacobian and Hessian

$$\nabla f(\mathbf{x}) = \begin{bmatrix} \frac{x_1}{\sqrt{1+x_1^2}} \\ \frac{x_2}{\sqrt{1+x_2^2}} \end{bmatrix}$$

$$\nabla^2 f(\mathbf{x}) = \begin{bmatrix} \frac{1}{\sqrt{(1+x_1^2)^3}} & 0\\ 0 & \frac{1}{\sqrt{(1+x_1^2)^3}} \end{bmatrix}$$

5.2 Calculation of Minima

We know from the SOSC for minima that \mathbf{x}^* is a local minima of the function $f(\mathbf{x})$, if the following conditions hold.

$$\nabla f(\mathbf{x}^*) = \mathbf{0}$$

$$\Rightarrow \frac{x_i}{\sqrt{1 + x_i^2}} = 0 \qquad \forall i \in [1, 2]$$

$$\Rightarrow x_i = 0 \qquad \forall i \in [1, 2]$$

$$\mathbf{y}^T \nabla^2 f(\mathbf{x}^*) \mathbf{y} > 0 \qquad \forall \mathbf{y} \in \mathbb{R}^2$$

$$\Rightarrow \frac{y_i^2}{\sqrt{(1 + x_i^2)^3}} > 0 \qquad \forall y_i \in \mathbb{R}, i \in [1, 2]$$

$$(12)$$

$$\implies (1 + x_i^2)^3 > 0 \qquad \forall i \in [1, 2]$$

$$\implies x_i^2 > -1 \qquad \forall i \in [1, 2]$$

$$(13)$$

Since (13) always hold, from (12) we get $x_i = 0$. Thus, the local minima is

$$\mathbf{x}^* = (0,0) \tag{14}$$

5.3 Convergence of Algorithms

- 1. Pure Newton's Method and Levenberg-Marquardt Modification converged, only for the second test case.
- 2. Steepest Descent with Backtracking, Steepest Descent with Bisection search, Damped Newton's Method and Combined Damped Netwon's Method converged to the local minima $\mathbf{x}^* = (0,0)$, for all the test cases.

5.4 Plots

Figure 11: $f(\mathbf{x}_k)$ vs k, for $\mathbf{x}_0 = (-0.5, 0.5)$

Figure 12: $|\nabla f(\mathbf{x}_k)|$ vs k, for $\mathbf{x}_0 = (-0.5, 0.5)$

Figure 13: Contour plot, with direction of updates for $\mathbf{x}_0 = (-0.5, 0.5)$

Appendix: Output for all test cases

Test Case	Function	Initial Point	Backtracking	Bisection	Pure	Damped	Levenberg-	Combined
							Marquardt	
1	Trid	(-2, -2)	(2, 2)	(2, 2)	(2, 2)	(2, 2)	(2, 2)	(2, 2)
2		(-2, 1)	(-1.748, 0.874)	(-1.748, 0.874)	(-1.748, 0.874)	(-1.748, 0.874)	(-1.748, 0.874)	(0, 0)
3	Three Hump Ca	(2, -1)	(1.748, -0.874)	(1.748, -0.874)	(1.748, -0.874)	(1.748, -0.874)	(1.748, -0.874)	(0, 0)
4		(-2, -1)	(0, 0)	(1.748, -0.874)	(-1.748, 0.874)	(-1.748, 0.874)	(-1.748, 0.874)	(-1.748, 0.874)
5		(2, 1)	(0, 0)	(-1.748, 0.874)	(1.748, -0.874)	(1.748, -0.874)	(1.748, -0.874)	(1.748, -0.874)
6	Rosenbrock	(2, 2, 2, -2)	(1, 1, 1, 1)	(1, 1, 1, 1)	(1, 1, 1, 1)	(1, 1, 1, 1)	(1, 1, 1, 1)	(1, 1, 1, 1)
7		(2, -2, -2, 2)	(1, 1, 1, 1)	(1, 1, 1, 1)	(1, 1, 1, 1)	(1, 1, 1, 1)	(1, 1, 1, 1)	(1, 1, 1, 1)
8		(-2, 2, 2, 2)	(1, 1, 1, 1)	(1, 1, 1, 1)	(-0.776, 0.613,	(-0.776, 0.613,	(-0.776, 0.613,	(-0.776, 0.613,
					0.382, 0.146)	0.382, 0.146)	0.382,0.146)	0.382, 0.146)
9		(3, 3, 3, 3)	(1, 1, 1, 1)	(1, 1, 1, 1)	(1, 1, 1, 1)	(1, 1, 1, 1)	(1, 1, 1, 1)	(1, 1, 1, 1)
10		(0, 0, 0, 0)	(-2.904,	(-2.904,	(0.157, 0.157,	(0, 0, 0, 0)	(-2.904,	(-2.904,
	Styblinski-Tang		-2.904, -2.904,	-2.904, -2.904,	0.157, 0.157)		-2.904, -2.904,	-2.904, -2.904,
			-2.904)	-2.904)			-2.904)	-2.904)
11		(3, 3, 3, 3)	(-2.904,	(-2.904,	(2.747, 2.747,	(2.747, 2.747,	(2.747, 2.747,	(2.747, 2.747,
			-2.904, -2.904,	-2.904, -2.904,	2.747, 2.747)	2.747, 2.747)	2.747, 2.747)	2.747, 2.747)
			-2.904)	-2.904)				
12		(-3, -3, -3, -3)	(-2.904,	(-2.904,	(-2.904,	(-2.904,	(-2.904,	(-2.904,
			-2.904, -2.904,	-2.904, -2.904,	-2.904, -2.904,	-2.904, -2.904,	-2.904, -2.904,	-2.904, -2.904,
			-2.904)	-2.904)	-2.904)	-2.904)	-2.904)	-2.904)
13		(3, -3, 3, -3)	(2.747, -2.904,	(2.747, -2.904,	(2.747, -2.904,	(2.747, -2.904,	(2.747, -2.904,	(2.747, -2.904,
			2.747, -2.904)	2.747, -2.904)	2.747, -2.904)	2.747, -2.904)	2.747, -2.904)	2.747, -2.904)
14		(3, 3)	(0, 0)	(0, 0)	(-8.72e+115,	(0, 0)	(-8.72e+115,	(0, 0)
	Root Square				-8.72e+115)		-8.72 + 115)	
15		(-0.5, 0.5)	(0, 0)	(0, 0)	(0, 0)	(0, 0)	(0, 0)	(0, 0)
16		(-3.5, 0.5)	(0, 0)	(0, 0)	(4.9e+14, 0)	(0, 0)	(4.9e+14, 0)	(0, 0)