Arbitrariness and Social Prediction:

The Confounding Role of Variance in Fair Classification

A. Feder Cooper Cornell University | The GenLaw Center

Existing fairness practices...
Look at **error rates across groups**

Existing fairness practices...

Look at **error rates across groups** typically, for a **single** model

Existing fairness practices...

Look at **error rates across groups (definite)** typically, for a **single** model (**feasible**)

Existing fairness practices...

Look at error rates across groups (definite), typically, for **a single model** (**feasible**)

This can lead to **arbitrary** outcomes

(Cooper & Abrams, AIES '21 Oral; Cooper* et al. ICLR '21 Workshop Oral, Cooper* et al. FAccT '22)

Individual models → distributions over possible models

(Cooper et al. CSLAW '22)

An intuition for arbitrariness

Training 100 different logistic regression models on **COMPAS** using bootstrapping

(Dataset used to predict prison recidivism)

An intuition for arbitrariness

Training 100 different logistic regression models on COMPAS using **bootstrapping**

(split into train/test sets) (resample train set)

Training 100 different logistic regression models on COMPAS using bootstrapping

Looking at the resulting predictions for 2 individuals in the test set

Training 100 different logistic regression models on COMPAS using bootstrapping

Looking at the resulting predictions for 2 individuals in the test set

Training 100 different logistic regression models on COMPAS using bootstrapping

Looking at the resulting predictions for 2 individuals in the test set

We turn this picture into a metric (**self-consistency**) to capture **arbitrariness**

Our contributions

Quantifying arbitrariness via self-consistency

Developing an algorithm that *abstains* from making arbitrary predictions

Running a large-scale empirical study on the *role of arbitrariness in fair classification*

Packaging a large-scale dataset (won't get into this, but at the end will explain why)

Our contributions

Quantifying arbitrariness via self-consistency

Developing an algorithm that abstains from making arbitrary predictions

Running a large-scale empirical study on the *role of arbitrariness in fair classification*

Packaging a large-scale dataset (won't get into this, but at the end will explain why)

self-consistency =
$$1 - \frac{2B_0B_1}{B(B-1)}$$
.

Defined in terms of # of bootstrap replicates B

 B_o = the number of o predictions B_t = the number of 1 predictions

self-consistency* =
$$1 - \frac{2B_0B_1}{B(B-1)}$$
.

Defined in terms of # of bootstrap replicates B

 B_o = the number of o predictions B_a = the number of 1 predictions

*This is our empirical approximation definition

self-consistency =
$$1 - \frac{2B_0B_1}{B(B-1)}$$
.

Defined in terms of # of bootstrap replicates B

 B_o = the number of o predictions B_t = the number of 1 predictions

Interpretation

a value on [~0.5, 1]

self-consistency =
$$1 - \frac{2B_0B_1}{B(B-1)}$$
.

Defined in terms of # of bootstrap replicates B

 B_o = the number of 0 predictions B_o = the number of 1 predictions

Interpretation

a value on [~0.5, **1**]

B = 100 logistic regression models

Ind. 1:
$$B_0 = 0$$
, $B_1 = 100$

Ind. 2:
$$B_0 = 50$$
, $B_1 = 50$

self-consistency =
$$1 - \frac{2B_0B_1}{B(B-1)}$$
.

Defined in terms of # of bootstrap replicates B

 B_o = the number of 0 predictions B_1 = the number of 1 predictions

Interpretation

a value on [~0.5, 1]

B = 100 logistic regression models

Ind. 1:
$$B_0 = 0$$
, $B_1 = 100$

Ind. 2:
$$B_0 = 50$$
, $B_1 = 50$

self-consistency =
$$1 - \frac{2B_0B_1}{B(B-1)}$$
.

Defined in terms of # of bootstrap replicates B

 B_o = the number of o predictions B_t = the number of 1 predictions

Interpretation

a value on [~0.5, 1]

does **not** depend on dataset labels y

COMPAS, random forests, B=101 (mean +/- STD over 10 trials)

About 20% of COMPAS looks like Ind. 2

Their predictions are *arbitrary*

COMPAS, random forests, B=101 (mean +/- STD over 10 trials)

Old Adult, random forests, *B*=101 (mean +/- STD over 10 trials)

COMPAS, random forests, B=101 (mean +/- STD over 10 trials)

Old Adult, random forests, B=101 (mean +/- STD over 10 trials)

systematic arbitrariness

(actually happens rarely in practice)

COMPAS, random forests, B=101 (mean +/- STD over 10 trials)

Our contributions

Quantifying arbitrariness via self-consistency

Developing an algorithm that abstains from making arbitrary predictions

Running a large-scale empirical study on the *role of arbitrariness in fair classification*

Packaging a large-scale dataset (won't get into this, but at the end will explain why)

Self-consistency is derived from variance (High self-consistency \rightarrow low variance)...

Self-consistency is derived from variance (High self-consistency \rightarrow low variance)...

...so let's try to do variance reduction to improve self-consistency

Self-consistency is derived from variance (High self-consistency \rightarrow low variance)...

...so let's try to do variance reduction to improve self-consistency

→ Leo Breiman's 1996 bagging algorithm

Self-consistency is derived from variance (High self-consistency \rightarrow low variance)...

...so let's try to do variance reduction to improve self-consistency

→ Leo Breiman's 1996 bagging algorithm (with a twist)

Abstain if too self-inconsistent

Our contributions

Quantifying arbitrariness via self-consistency

Developing an algorithm that abstains from making arbitrary predictions

Running a large-scale empirical study on the *role of arbitrariness in fair classification*

Packaging a large-scale dataset (won't get into this, but at the end will explain why)

COMPAS, logistic regression, B=101 (mean +/- STD over 10 trials)

Fairness metrics

Examine false positive rate disparities

COMPAS, logistic regression, B=101 (mean +/- STD over 10 trials)

Fairness metrics

Examine false positive rate disparities

We yield results that are very close-to-fair (<2% disparity in FPR) (and **super** variant abstains <5%)

	Simple	Super
∆fêr	$3.0\pm1.4\%$	$1.8 \pm 1.0\%$
FPR _{NW}	$11.4\pm1.0\%$	$12.9\pm.8\%$
FPRW	$8.4\pm1.0\%$	$11.1\pm.6\%$

COMPAS, logistic regression, *B*=101 (mean +/- STD over 10 trials)

Fairness metrics

Examine false positive rate disparities

We yield results that are very close-to-fair (<2% disparity in FPR) (and **super** variant abstains <5%)

And we haven't run any algorithmic fairness method!

	Simple	Super
Δ F $\hat{\mathbf{P}}$ R	$3.0\pm1.4\%$	$1.8 \pm 1.0\%$
FPR _{NW}	$11.4\pm1.0\%$	$12.9\pm.8\%$
FPRW	$8.4\pm1.0\%$	$11.1\pm.6\%$

COMPAS, logistic regression, *B*=101 (mean +/- STD over 10 trials)

Datasets:

- (South) German Credit
- **COMPAS**
- Old Adult
- Taiwan Credit

Datasets:

- (South) German Credit
- COMPAS
- Old Adult
- Taiwan Credit
- New Adult (race, sex)
 - Income
 - Public Coverage
 - Employment

Datasets:

- (South) German Credit
- COMPAS
- Old Adult
- Taiwan Credit
- New Adult (race, sex)
 - Income
 - Public Coverage
 - Employment
- Home Mortgage Disclosure Act (race, ethnicity, sex)
 - o **NY 2017**
 - o **TX 2017**

Datasets:

- (South) German Credit
- COMPAS
- Old Adult
- Taiwan Credit
- New Adult (race, sex)
 - Income
 - Public Coverage
 - Employment
- Home Mortgage Disclosure Act (race, ethnicity, sex)
 - o NY 2017
 - o TX 2017

Models: logistic regression, decision trees, random forests, MLPs, SVMs (most common fair classification models)

Overall, these patterns hold (and more)

Datasets:

- (South) German Credit
- COMPAS
- Old Adult
- Taiwan Credit
- New Adult (race, sex)
 - o Income
 - Public Coverage
 - Employment
- Home Mortgage Disclosure Act (race, ethnicity, sex)
 - o NY 2017
 - o TX 2017

We improve self-consistency, attain accuracy, *and* (in almost every single case) **achieve close-to-fairness** ...

Models: logistic regression, decision trees, random forests, MLPs, SVMs (most common fair classification models)

Overall, these patterns hold (and more)

Datasets:

- (South) German Credit
- COMPAS
- Old Adult
- Taiwan Credit
- New Adult (race, sex)
 - Income
 - Public Coverage
 - Employment
- Home Mortgage Disclosure Act (race, ethnicity, sex)
 - o NY 2017
 - TX 2017 We packaged this because we struggled to find algorithmic unfairness above

Models: logistic regression, decision trees, random forests, MLPs, SVMs (most common fair classification models)

We improve self-consistency, attain accuracy, *and* (in almost every single case) **achieve close-to-fairness** ...

Overall, these patterns hold (and more)

Datasets:

- (South) German Credit
- COMPAS
- Old Adult
- Taiwan Credit
- New Adult (race, sex)
 - Income
 - Public Coverage
 - Employment
- Home Mortgage Disclosure Act (race, ethnicity, sex)
 - o NY 2017
 - TX 2017 We packaged this because we struggled to find algorithmic unfairness above

We improve self-consistency, attain accuracy, *and* (in almost every single case) **achieve close-to-fairness** ...

... without using a single field-standard theory-backed technique that aims to improve fairness

Models: logistic regression, decision trees, random forests, MLPs, SVMs (most common fair classification models)

There are huge takeaways here

(Please ask me about the details)

Takeaways

This finding is **really shocking**

What does it mean for empirical rigor and reproducibility of existing approaches?

Do fairness interventions actually improve fairness in practice?

Are conclusions from prior empirical work confounded by a more general problem of arbitrariness in predictions?

Takeaways

This finding is **really shocking**

What does it mean for empirical rigor and reproducibility of existing approaches?

Do fairness interventions actually improve fairness in practice?

Are conclusions from prior empirical work confounded by a more general problem of arbitrariness in predictions?

Arbitrariness is rampant when predicting on social data.

How practically useful are prior theoretical formulation choices?

Arbitrariness and Social Prediction:

The Confounding Role of Variance in Fair Classification

A. Feder Cooper Cornell University | The GenLaw Center

Thank you!

