Enhanced Portfolio Optimization

Lasse Heje Pedersen, Abhilash Babu, and Ari Levine.

Financial Analysts Journal, 2021

解读者: 屠雪永

2022.03.21

1. Introduction-- Motivation

- Mean-variance optimization(MVO) often produces large and unintuitive bets that perform poorly in practice (Michaud 1989)
- Perhaps as a result, many investors skip optimization altogether
 - value (HML), size (SMB), and momentum (UMD)
- Optimization should be a big help

1. Introduction-- Questions

- Why does standard optimization perform so poorly?
 - noise in the estimation of risk and expected return in the least principal component
- Is there a better way to use the information contained in estimated risks, correlations, and expected returns?
 - down-weight these problem portfolios
 - —enhanced portfolio optimization (EPO)
 - unifies a broad range of existing methods
- If so, how much is performance improved?
 - the EPO method improves industry momentum and time series momentum performance

1. Introduction-- Related Literature

- **Improving the variance-covariance** estimate using shrinkage, factor models, or random matrix theory.
 - (Ledoit and Wolf, 2003; Elton, Gruber, andSpitzer, 2006. Fan, Fan, and Lv, 2008.
 e.g., Ledoit and Wolf 2004, 2012, 2017, Karoui 2008, and Bun, Bouchaud, and Potters 2017)

Expected returns

- Black and Litterman (1992)
- The literature on robust optimization
 - (Fabozzi, Huang, and Zhou, 2010; Raponi, Uppal, and Zaffaroni, 2020)
- Regularize regressions
 - (Ao, Li, and Zheng, 2019; Kozak, Nagel, and Santosh, 2020)

1. Introduction-- Framework

Identifying the problem with standard optimization

Principal components

Addressing the problem

Shrinking correlations: The Simple EPO

Anchoring expected returns: A Bayesian approach

Anchoring expected returns: Robust optimization

A unified approach

EPO in Practice

1. Introduction-- Contribution

- We develop a more general form of EPO
- One of our theoretical contributions is to unify and demystify these seemingly different frameworks

- A. Standard mean-variance optimization
 - The investor's future wealth

$$W = W_0 \left(1 + r^f + x'r \right)$$

Maximize her mean-variance utility

$$E(W|s) - \frac{\overline{\gamma}}{2} Var(W|s) = W_0 \left(1 + r^f + x's - \frac{\gamma}{2} x' \Sigma x \right)$$

To pick her optimal portfolio x

$$\max_{x} \left(x's - \frac{\gamma}{2} x' \Sigma x \right)$$

Standard mean-variance optimal portfolio

$$x^{MVO} = \frac{1}{\gamma} \Sigma^{-1} s$$

- B. Identifying "problem portfolios"
 - Variance-covariance matrix

$$\Sigma = \sigma \Omega \sigma$$

- The correlation matrix Ω , asset volatilities $\sigma = \operatorname{diag}(\sqrt{\Sigma^{11}}, ..., \sqrt{\Sigma^{nn}})$
- The first principal component:
 - Maximizes the function $h'\Omega h$ subject to h'h=1
 - Maximizes the variance $h'\Omega h$ of any portfolio h
- The second principal component:
 - Maximizes the same function $h'\Omega h$ being independent of the first
- The last principal components give trouble to the standard mean-variance optimization

- B. Identifying "problem portfolios"
 - The eigen-decomposition of the correlation matrix

$$\Omega = PDP^{-1}$$

$$P^{-1} = P'$$

- P:Its columns are the principal components (eigenvectors)
- D:diagonal matrix of the variances of each principal component (eigenvalues)
- Principal component portfolios have realized excess returns $P'\sigma^{-1}r$
 - expected excess returns $s^p = P'\sigma^{-1}s$
- The portfolio optimization problem

$$x's - \frac{\gamma}{2}x'\Sigma x = (P'\sigma x)'s^p - \frac{\gamma}{2}(P'\sigma x)'D(P'\sigma x) = z's^p - \frac{\gamma}{2}z'Dz$$

$$z^{MVO} = \frac{1}{\gamma} D^{-1} s^p$$

$$\underline{z_i^{MVO}}_{\text{notional position in portfolio } i} = \frac{1}{\gamma} \underbrace{\frac{s_i^P}{\sqrt{D_i}}}_{\text{Sharpe}} \underbrace{\frac{1}{\sqrt{D_i}}}_{\text{leverage ratio of portfolio } i}_{\text{desired volatility for portfolio } i} \underbrace{\frac{1}{\sqrt{D_i}}}_{\text{leverage a chieve a volatility of 1 for portfolio } i}$$

$$\Sigma = \sigma \Omega \sigma$$

$$\Omega = PDP^{-1}$$

- A. Shrinking correlations: The Simple EPO
 - The problem :the estimated variances are likely to be too low for the safest portfolios (and too high for the riskiest ones).
 - An easy fix is to shrink their estimated variances toward their average.
 - The average variance:1 (correlation matrix)
 - The modified risks of the principal components $\widetilde{D} = (1-\theta)D + \theta I$
 - where $\theta \in [0,1]$ is the degree of shrinkage, I is the identity matrix
 - Correlation matrix

$$\widetilde{\Omega} = P\widetilde{D}P' = P((1-\theta)D + \theta I)P' = (1-\theta)\Omega + \theta I$$

- Variance-covariance matrix $\tilde{\Sigma} = \sigma \tilde{\Omega} \sigma$
- Enhanced portfolio optimization $EPO^s = \frac{1}{\gamma}\tilde{\Sigma}^{-1}s$

11

- B. Anchoring expected returns: A Bayesian approach
 - The investor observes a vector of signals $s = \mu + \epsilon$
 - ullet true (unobserved) expected return vector μ
 - $\epsilon \sim N(0,\Lambda)$
 - The **investor's prior beliefs** about μ

•
$$\mu = \gamma \Sigma a + \eta$$

$$x = \frac{1}{\gamma} \Sigma^{-1} \mu = a$$

- $\eta \sim N(0, \tau \Sigma)$
- an "anchor portfolio" a
- **Proposition 1.** In this Bayesian model, the investor's expected return given the observed signal is

$$E(\mu|s) = \Sigma(\tau\Sigma + \Lambda)^{-1}(\tau s + \gamma \Lambda a)$$

and the solution to the enhanced portfolio optimization problem is

$$x = \frac{1}{\gamma} (\tau \Sigma + \Lambda)^{-1} (\tau S + \gamma \Lambda a)$$

2022/3/21

- C. Anchoring expected returns: Robust optimization
 - Address noise in expected returns is to use robust optimization

$$\max_{x} \min_{\mu} \left((x-a)' \mu - \frac{\gamma}{2} x' \Sigma x \right) \text{s.t. } \mu \in \{ \bar{\mu} \mid (\bar{\mu} - s)' \Lambda^{-1} (\bar{\mu} - s) \le c^2 \}$$

• **Proposition 2.** The solution to the robust portfolio optimization problem is:

$$x = \frac{1}{\gamma} (\tau \Sigma + \Lambda)^{-1} (\tau s + \gamma \Lambda a)$$

- D. Putting optimization to work: The simple EPO and the anchored EPO
- The general EPO solution

$$EPO = \frac{1}{\gamma} (\tau \tilde{\Sigma} + \Lambda)^{-1} (\tau s + \gamma \Lambda a)$$

The EPO solution can be written as

$$EPO(w) = \Sigma_w^{-1} \left([1 - w] \frac{1}{\gamma} s + wVa \right)$$

• With
$$\Sigma_w = [1-w]\tilde{\Sigma} + wV = \sigma\{[1-w]\tilde{\Omega} + wI\}\sigma$$

$$w = \lambda/(\tau + \lambda) \in [0,1]$$

$$\Lambda = \lambda V$$

$$V = \sigma^2$$

- $s = \mu + \epsilon$
- $\epsilon \sim N(0, \Lambda)$

- 3. Addressing the problem: Enhanced portfolio optimization
- D. Putting optimization to work: The simple EPO and the anchored EPO
- The EPO solution can be written as

$$EPO(w) = \Sigma_w^{-1} \left([1 - w] \frac{1}{\gamma} s + wVa \right)$$

• Simple EPO: $EPO^s(w) = \frac{1}{\gamma} \Sigma_w^{-1} s$ with $a = \frac{1}{\gamma} V^{-1} s$

Anchored EPO

$$EPO^{a}(w) = \Sigma_{w}^{-1} \left([1 - w] \frac{\sqrt{a'\widetilde{\Sigma}a}}{\sqrt{s'\Sigma_{w}^{-1}\widetilde{\Sigma}\Sigma_{w}^{-1}s}} s + wVa \right)$$

$$\gamma = \sqrt{s' \Sigma_w^{-1} \tilde{\Sigma} \Sigma_w^{-1} s} / \sqrt{a' \tilde{\Sigma} a}$$

E. A unified approach to optimization

$$EPO = \frac{1}{\gamma} (\tau \tilde{\Sigma} + \Lambda)^{-1} (\tau s + \gamma \Lambda a)$$

- **Proposition 3.** The EPO solution (13) is equal to
 - a) **standard MVO** when the estimate of variance has no noise so $\tilde{\Sigma} = \Sigma$ and the signal of expected returns has no noise so $\Lambda = 0$.
 - b) the anchor when $\tau = 0$ as in **reverse MVO**.
 - c) the **Bayesian estimator** from Section II.B, which is equivalent to **Black-Litterman** when the anchor portfolio is the market portfolio, the signal is their "view portfolios", and we assume that the variance-covariance matrix is estimated without error.
 - d) the solution to **robust optimization** with ellipsoidal uncertainty set.
 - e) a **generalized ridge regression** (a form of regularization used in machine learning) of expected returns on the variance-covariance matrix

Abbreviation	Data Set		Optimization	Risk Model	Return	Start of	Start of	
Global 1	Global equities, bonds,	of Assets	EPO ^s	Exponentially-weighted	Signal TSMOM	Data 1/1/1970	1/1/1985	$EPO^{s}(w) = \frac{1}{v} \Sigma_{w}^{-1} s$
	FX, and commodities		2. 3	daily volatilties (60-day center-of-mass) and 3-day overlapping correlations (150 day center-of-mass)) -			$w^{-1} \left([1-w] \frac{\sqrt{a'\bar{\Sigma}a}}{\sqrt{s'\Sigma_w^{-1}\bar{\Sigma}\Sigma_w^{-1}s}} s + wVa \right)$
Global 2	Global equities, bonds, FX, and commodities	55	EPO ^s	Risk model from Global 1, where correlations are shrunk 5%	TSMOM	1/1/1970	1/1/1985	
Global 3	Global equities, bonds, FX, and commodities	55	EPO ^s	Risk model from Global 1, enhanced via random matrix theory	TSMOM	1/1/1970	1/1/1985	
Equity 1	49 industry portfolios	49	EPO ^s	60 months (equal-weighted), 5% shunk	XSMOM	1/1/1927	1/1/1942	
Equity 2	49 industry portfolios	49	EPO ^s	40 days (equal-weighted), 5% shunk	XSMOM	1/1/1927	1/1/1942	
Equity 3	49 industry portfolios	49	EPO ^s	120 days (equal-weighted), 5% shunk	XSMOM	1/1/1927	1/1/1942	
Equity 4	49 industry portfolios	49	EPO ^s	120 days (equal-weighted), 5% shunk	XSMOM* σ	1/1/1927	1/1/1942	
Equity 5	49 industry portfolios	49	EPO ^s	120 days (equal-weighted), 5% shunk	XSMOM* σ^2	1/1/1927	1/1/1942	
Equity 6	49 industry portfolios	49	EPO ^a with anchor= 1/N	60 months (equal-weighted), 5% shunk	XSMOM	1/1/1927	1/1/1942	
Equity 7	49 industry portfolios	49	EPO ^a with anchor= 1/σ	60 months (equal-weighted), 5% shunk	XSMOM	1/1/1927	1/1/1942	
Equity 8	Each industry split in 2 portfolios based on past 12 month return	98	EPO ^s	60 months (equal-weighted), 5% shunk	XSMOM	1/1/1927	1/1/1942	

$$s_t^i = XSMOM_t^i := c_t (r_{t-12,t}^i - \frac{1}{n} \sum_{j=1,\dots,n} r_{t-12,t}^j)$$

$$s_t^i = 0.1 \times \sigma_t^i \times sign(r_{t-12,t}^i)$$

Performance of Optimized TSMOM Portfolios

	Global 1	Global 2	Global 3
		(Shrunk)	(RMT)
Portfolio			
Long Only: 1/N	0.44	0.44	0.44
Long Only: 1/Sigma	0.76	0.76	0.76
TSMOM: Equal Notional Weight	0.74	0.74	0.74
TSMOM: Equal Volatility Weight	1.09	1.09	1.09
<i>EPO</i> ^s : Out-Of-Sample	1.24	1.24	1.23
<i>EPO^s (w)</i> : Shrinkage parameter <i>w</i>			
0% (Naïve MVO)	0.87	1.08	1.02
10%	1.15	1.18	1.19
25%	1.24	1.26	1.26
50%	1.31	1.31	1.32
75%	1.32	1.31	1.32
90%	1.26	1.26	1.26
99%	1.13	1.13	1.13
100% (Anchor)	1.09	1.09	1.09

$$x_{t}^{\text{TSMOM, equal-notional-weighted}} = \frac{1}{n_{t}} \, sign(r_{t-12,t}^{i}) \\ x_{t}^{\text{TSMOM, equal-volatility-weighted}} = \frac{1}{n_{t}} \, \frac{sign(r_{t-12,t}^{i})}{\sigma_{t}^{i}} \, sign(r_{t-12,t}^{i}) \\ = \frac{1}{n_{t}} \, \frac{40\%}{\sigma_{t}^{i}} \, sign(r_{t-12,t}^{i})$$
Moskowitz, Ooi, and Pedersen (2012)

Alpha of Out-of-Sample EPO for TSMOM

		able			
		TSM	TSMOM		
Alpha	2.48%	2.17%	2.11%	-0.43%	-0.34%
	(3.36)	(2.92)	(2.93)	(-0.57)	(-0.45)
Long Only (1/Sigma)		0.06	0.07		-0.02
		(2.77)	(3.57)		(-0.86)
TSMOM	0.91	0.90			
	(44.82)	(43.77)			
TSMOM(COM)			0.53		
			(26.02)		
TSMOM(EQ)			0.30		
			(14.99)		
TSMOM(FI)			0.34		
			(16.77)		
TSMOM(FX)			0.32		
			(15.69)		
EPO				0.91	0.92
				(44.82)	(43.77)
Information Ratio	0.60	0.53	0.54	-0.10	-0.08
R-Squared	83%	84%	85%	83%	83%

Leverage and Turnover of Optimized TSMOM Portfolios

	Gross Leverage	Annualized Turnover		
	per 10% Volatility	as % of Avg. Gross NAV		
Portfolio				
Long Only: 1/N	135%	26%		
Long Only: 1/Sigma	267%	43%		
TSMOM: Equal Notional Weight	167%	153%		
TSMOM: Equal Risk	358%	163%		
<i>EPO</i> ^s : Out-Of-Sample	457%	254%		
<i>EPO^s (w)</i> : Shrinkage parameter <i>w</i>				
0% (Naïve MVO)	991%	546%		
10%	767%	480%		
25%	649%	417%		
50%	551%	339%		
75%	479%	263%		
90%	424%	208%		
99%	368%	166%		
100% (Anchor)	358%	163%		

- Gross leverage statistics are shown for portfolios ex-post scaled to 10% annualized volatility
- Annualized turnover statistics are reported as a percentage of average gross leverage.

Performance of Optimized Equity Portfolios.

	Equity 1	Equity 2	Equity 3	Equity 4	Equity 5	Equity 6	Equity 7	Equity 8
Portfolio	_							
1/N	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.57
INDMOM	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.67
MVO (no correlation shrinkage)	0.19	-0.02	0.92	0.84	0.47	0.21	0.21	0.01
EPO: Out-Of-Sample	0.79	0.72	0.96	0.99	0.66	0.83	0.90	0.90
EPO(w): In Sample with Shrinkage of w								
0% (MVO w/ 5% correlation shrinkage)	0.56	0.82	0.97	0.96	0.66	0.50	0.51	0.60
10%	0.68	0.89	0.98	0.99	0.71	0.59	0.60	0.80
25%	0.75	0.92	0.98	0.99	0.72	0.66	0.67	0.91
50%	0.79	0.93	0.96	0.97	0.71	0.72	0.75	0.98
75%	0.80	0.91	0.93	0.94	0.69	0.85	0.91	0.98
90%	0.79	0.88	0.89	0.92	0.67	0.83	0.90	0.94
99%	0.73	0.77	0.77	0.91	0.65	0.60	0.63	0.86
100% (Anchor)	0.71	0.73	0.73	0.91	0.63	0.59	0.62	0.81

Alpha of EPO for Equity Portfolios.

64%

29%

R-Squared

	Dependent Variable: Out-of-Sample EPO Portfolios							
	Equity 1	Equity 2	Equity 3	Equity 4	Equity 5	Equity 6	Equity 7	Equity 8
Alpha (Annualized)	3.82%	8.09%	7.65%	6.25%	2.50%	1.07%	1.31%	4.40%
	(4.41)	(6.68)	(6.29)	(6.07)	(2.38)	(1.80)	(2.49)	(5.07)
INDMOM	0.78	0.53	0.53	0.69	0.67	0.31	0.33	0.78
	(32.11)	(15.66)	(15.64)	(24.00)	(22.71)	(18.85)	(22.43)	(32.21)
Mkt-RF	0.08	-0.09	-0.07	-0.07	-0.04	0.85	0.91	0.10
	(3.12)	(-2.38)	(-1.95)	(-2.10)	(-1.23)	(45.87)	(55.57)	(3.69)
SMB	-0.06	-0.04	-0.02	-0.04	-0.07	0.16	0.09	-0.05
	(-2.27)	(-1.14)	(-0.66)	(-1.32)	(-2.14)	(9.33)	(5.88)	(-2.04)
HML	-0.01	0.10	0.10	0.04	0.01	0.03	0.05	-0.03
	(-0.44)	(2.04)	(2.12)	(0.94)	(0.23)	(1.40)	(2.31)	(-1.01)
CMA	-0.14	-0.12	-0.12	-0.05	-0.01	-0.02	0.00	-0.10
	(-4.05)	(-2.43)	(-2.35)	(-1.22)	(-0.27)	(-0.84)	(0.12)	(-2.73)
RMW	-0.04	-0.04	-0.04	-0.03	0.01	0.06	0.08	-0.03
	(-1.42)	(-1.04)	(-1.06)	(-0.95)	(0.40)	(3.33)	(5.16)	(-1.10)
Information Ratio	0.63	0.96	0.90	0.87	0.34	0.26	0.36	0.73

28%

49%

46%

83%

87%

64%

V. Conclusion

- We develop a simple and transparent method to make portfolio optimization work in practice.
- EPO improves portfolio performance by accounting for noise in the investor's estimates of risk and expected return.
- We identify the "problem portfolios" that MVO gives large weight despite their poor performance.