

Mark Scheme (Results)

October 2022

Pearson Edexcel International Advanced Level in Physics (WPH14) Unit 4 Further Mechanics, Fields and Particles

| Question<br>Number | Answer                                                                                                                                                                                                                                                                   | Mark |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1                  | The only correct answer is <b>B</b> because mass is unchanged for an antiparticle but charge is opposite.                                                                                                                                                                | 1    |
|                    | A is not correct because anti-proton charge is negative                                                                                                                                                                                                                  |      |
|                    | C is not correct because mass cannot be negative                                                                                                                                                                                                                         |      |
|                    | D is not correct because mass cannot be negative                                                                                                                                                                                                                         |      |
| 2                  | The only correct answer is C because this was one of the main conclusions                                                                                                                                                                                                | 1    |
|                    | A is not correct because this was a feature of the disproved plum pudding model                                                                                                                                                                                          |      |
|                    | B is not correct because the existence of protons and neutrons was not known at this time                                                                                                                                                                                |      |
|                    | D is not correct because the conclusion was that most of the atom was empty space                                                                                                                                                                                        |      |
| 3                  | The only correct answer is <b>A</b> because this is the correct description of thermionic emission                                                                                                                                                                       | 1    |
|                    | B is not correct because this helps electrons to move freely when released C is not correct because the filament is not bombarded by high-energy electrons D is not correct because the metal filament is not maintained at a high potential                             |      |
| 4                  | The only correct answer is <b>B</b> because the field lines diverge (indicating alike charges) and the point where a unit charge experiences no resultant force is closer to charge X                                                                                    | 1    |
|                    | A is not correct because the null point would be equidistant between the charges C is not correct because this would create a different (attractive) pattern between the charges D is not correct because this would create a different (attractive) pattern between the |      |
|                    | charges                                                                                                                                                                                                                                                                  |      |
| 5                  | The only correct answer is <b>D</b> because this uses the formula $W = \frac{1}{2} QV$ and takes account of charge being measured in nC                                                                                                                                  | 1    |
|                    | A is not correct because this gives capacitance of the capacitor in nF                                                                                                                                                                                                   |      |
|                    | B is not correct because this uses an incorrect formula                                                                                                                                                                                                                  |      |
|                    | C is not correct because this does not take into consideration charge being measured in nC                                                                                                                                                                               |      |
| 6                  | The only correct answer is C because this is the only option expressed solely in base units                                                                                                                                                                              | 1    |
|                    | A is not correct because the newton is not a base unit                                                                                                                                                                                                                   |      |
|                    | B is not correct because the newton and the coulomb are not base units                                                                                                                                                                                                   |      |
|                    | D is not correct because the coulomb is not a base unit                                                                                                                                                                                                                  |      |
| 7                  | The only correct answer is <b>D</b> because it gives the correct charge +2e                                                                                                                                                                                              | 1    |
|                    | A is not correct because the charge is $-1e$                                                                                                                                                                                                                             |      |
|                    | B is not correct because this is a meson                                                                                                                                                                                                                                 |      |
|                    | C is not correct because this is a meson                                                                                                                                                                                                                                 |      |
| 8                  | The only correct answer is <b>A</b> as this is required for the operation of a Linac                                                                                                                                                                                     | 1    |
|                    | B is not correct because particles do not gain energy in the tubes                                                                                                                                                                                                       |      |
|                    | C is not correct because the p.d. between tubes is the same for successive tubes                                                                                                                                                                                         |      |
| 0                  | D is not correct because the time spent in each tube is the same                                                                                                                                                                                                         | 1    |
| 9                  | The only correct answer is <b>B</b> because m is proportional to $p^2 / E$                                                                                                                                                                                               | 1    |
|                    | A is not correct because the mass is m                                                                                                                                                                                                                                   |      |
|                    | C is not correct because the mass is m                                                                                                                                                                                                                                   |      |
|                    | D is not correct because the mass is m                                                                                                                                                                                                                                   |      |

| 10 | The only correct answer is A because an alternating magnetic field is required to induce an alternating potential difference in M  B is not correct because there is no changing magnetic field C is not correct because there would be an e.m.f. of constant polarity D is not correct because there would be an e.m.f. of constant polarity | 1 |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|

| Question<br>Number | Answer                                                                                                                                                                                                                                                                  |     | Mark |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|
| 11(a)              | Quark and anti-quark                                                                                                                                                                                                                                                    | (1) | 1    |
|                    | [Accept $q\overline{q}$ , ignore correct examples such as $u\overline{d}$ , do not accept 'quarks and                                                                                                                                                                   |     |      |
|                    | antiquarks']                                                                                                                                                                                                                                                            |     |      |
| <b>11(b)</b>       | Any <b>one</b> from                                                                                                                                                                                                                                                     |     | 1    |
|                    | <ul> <li>Leptons are fundamental (particles)</li> <li>They cannot be broken down (into smaller particles)</li> <li>They have a lepton number ≠ 0</li> <li>Lepton number = 1 or -1</li> <li>L = 1 or -1</li> <li>They have a baryon number = 0</li> <li>B = 0</li> </ul> | (1) |      |
|                    | [Accept – not subject to strong (nuclear) force]                                                                                                                                                                                                                        |     |      |
|                    | [Accept – subject to weak force]                                                                                                                                                                                                                                        |     |      |
| <b>11(c)</b>       | • Charge on X must be 0                                                                                                                                                                                                                                                 | (1) | 4    |
|                    | Or X is neutral                                                                                                                                                                                                                                                         |     |      |
|                    | • Lepton number of a pion is 0                                                                                                                                                                                                                                          | (1) |      |
|                    | Muon has a lepton number of +1                                                                                                                                                                                                                                          | (1) |      |
|                    | • X must have a lepton number of −1                                                                                                                                                                                                                                     | (1) |      |
|                    | 4th mark dependent on all four points and a conclusion that the student is correct                                                                                                                                                                                      |     |      |
|                    | [Baryon number of $X = 0$ – not necessary for deduction, but accept as 1 mark alternative if MP1,2,3,4 not awarded]                                                                                                                                                     |     |      |
|                    | Total for question 11                                                                                                                                                                                                                                                   |     | 6    |

| Question<br>Number | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mark |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 12(a)              | <ul> <li>Curve of decreasing negative gradient beginning at a positive current value</li> <li>Initial current labelled as 0.077 (A)</li> <li>Use of Time Constant = RC</li> <li>Time for discharge marked as 11(.05) (s)</li> <li>Or 2.2 s marked when current has decreased to about 1/3 of initial value (0.028 A)</li> <li>Or 1.5 s marked when current has decreased to about 1/2 of initial value (0.038 A)</li> <li>Example of graph</li> <li>Current /A</li> <li>0.077</li> <li>Example of calculation</li> </ul> | 4    |
|                    | $I = V/R = 5000 \text{ V} / 65 \times 10^3 \Omega = 0.077 \text{ A}$ $T = RC = 65 \times 10^3 \Omega \times 34 \times 10^{-6} \text{ F} = 2.21 \text{ s}$                                                                                                                                                                                                                                                                                                                                                                |      |
| 12(b)              | • Use of $I_0 = V/R$ • Use of $\ln I = \ln I_0 - t/RC$ • $t = 0.53 \text{ ms}$ • Conclusion with comparison between relevant calculated quantity and corresponding value from question  Or • Use of $I_0 = V/R$ • Use $I = I_0 e^{-\frac{t}{RC}}$ with $I = 2.0 \text{ ms}$ • Conclusion with comparison between relevant calculated quantity and corresponding value from question  Example of calculation $I_0 = 5000/150 = 33.3 \text{ A}$                                                                            | 4    |
|                    | $\ln 30 = \ln 33.3 - t/150\Omega \times 34 \times 10^{-6} \mathrm{F}$<br>$t = 0.53 \mathrm{ms}$<br>which is less than 2.0 ms, so it does not meet the requirement<br><b>Total for question 12</b>                                                                                                                                                                                                                                                                                                                        | 8    |

| • Use of eV to J conversion factor • Use of $\Delta E = c^2 \Delta m$ • Use of $\Delta E = c^2 \Delta m$ • Determines mass of Z boson = $1.62 \times 10^{-25}$ (kg) • Or mass of proton = $9.39 \times 10^8$ (eV/c²) • Mass is 97 times greater $\frac{\text{Example of calculation}}{(3 \times 10^8)^2 \text{ (m s}^{-1})^2} = 1.62 \times 10^{-25} \text{ kg}$ $\text{mass} = \frac{1.62 \times 10^{-25} \text{ kg}}{1.67 \times 10^{-27} \text{ kg}}$ $\text{mass} = 97 \text{ times that of a proton}$ $\text{Alternative: mass of proton} = \frac{1.67 \times 10^{-27} \text{kg} \times (3 \times 10^8)^2 \text{ (m s}^{-1})^2}{1.6 \times 10^{-19} \text{ jeV}^{-1}} = 0.939 \text{ GeV/c}^2$ $100 \times 0.939 \text{ GeV/c}^2 = 94 \text{ GeV/c}^2 \text{ which is just a bit more than mass of Z boson.}$ $13(b)$ • Mass-energy is conserved <b>Or</b> refers to $\Delta E = c^2 \Delta m$ • Need for large amounts of energy to create a high-mass particle • <b>Or</b> Need more energy because mass of Z much greater than mass of proton(s) [accept 97 times] • (Additional) energy comes from the kinetic energy of colliding particles  13(c) • At speeds close to the speed of light • Or time dilation occurs [do not accept dilution] • (1) | Question<br>Number | Answer                                                                                                                                                                                                                                                                     | Mark |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 13(b)• Mass-energy is conserved <b>Or</b> refers to $\Delta E = c^2 \Delta m$ (1)3• Need for large amounts of energy to create a high-mass particle<br><b>Or</b> Need more energy because mass of Z much greater than mass of<br>proton(s) [accept 97 times]<br>• (Additional) energy comes from the kinetic energy of colliding particles(1)13(c)• At speeds close to the speed of light<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    | • Use of $\Delta E = c^2 \Delta m$                                                                                                                                                                                                                                         | 4    |
| • there is a relativistic increase in lifetime                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | <ul> <li>Need for large amounts of energy to create a high-mass particle</li> <li>Or Need more energy because mass of Z much greater than mass of proton(s) [accept 97 times]</li> <li>(Additional) energy comes from the kinetic energy of colliding particles</li> </ul> |      |
| Total for question 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13(t)              | <ul> <li>there is a relativistic increase in lifetime</li> <li>Or time dilation occurs [do not accept dilution]</li> </ul>                                                                                                                                                 | _    |

| uestion<br>umber |                                                                                                              |                                                                                                      | Answer                                                                                                     |                                                                                            |                                                   | Mar |
|------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------|-----|
| ļ                | •                                                                                                            | assesses a student<br>wer with linkages                                                              | •                                                                                                          |                                                                                            | •                                                 | 6   |
|                  |                                                                                                              | rded for indicatives of reasoning.                                                                   | ve content and                                                                                             | for how the an                                                                             | nswer is structured                               |     |
|                  | The following content.                                                                                       | table shows how                                                                                      | the marks sho                                                                                              | uld be awarde                                                                              | d for indicative                                  |     |
|                  | Number of<br>indicative<br>marking<br>points seen<br>in answer                                               | Number of<br>marks awarded<br>for indicative<br>marking points                                       | Max linkage<br>mark available                                                                              | Max final<br>mark                                                                          |                                                   |     |
|                  | 6                                                                                                            | 4                                                                                                    | 2                                                                                                          | 6                                                                                          |                                                   |     |
|                  | 5                                                                                                            | 3                                                                                                    | 2                                                                                                          | 5                                                                                          |                                                   |     |
|                  | 4                                                                                                            | 3                                                                                                    | 1                                                                                                          | 4                                                                                          |                                                   |     |
|                  | 3                                                                                                            | 2                                                                                                    | 1                                                                                                          | 3                                                                                          |                                                   |     |
|                  | 2                                                                                                            | 2                                                                                                    | 0                                                                                                          | 2                                                                                          |                                                   |     |
|                  | 1                                                                                                            | 1                                                                                                    | 0                                                                                                          | 1                                                                                          |                                                   |     |
|                  | 0                                                                                                            | 0                                                                                                    | 0                                                                                                          | 0                                                                                          |                                                   |     |
|                  | lines of reason                                                                                              | ing.                                                                                                 | N<br>m<br>fo<br>an<br>st                                                                                   | fumber of<br>narks awarded<br>or structure of<br>nswer and<br>ustained line of<br>easoning | d for structure and                               |     |
|                  |                                                                                                              |                                                                                                      | gical                                                                                                      | 2                                                                                          |                                                   |     |
|                  |                                                                                                              | ially structured wi<br>and lines of reason                                                           |                                                                                                            | 1                                                                                          |                                                   |     |
|                  | Answer has n<br>points and is                                                                                | o linkages between<br>unstructured                                                                   | 1                                                                                                          | 0                                                                                          |                                                   |     |
|                  | content should<br>answer with fir<br>some linkages<br>content and 1 ir<br>reasoning). If t<br>marking points | be added to the reverse indicative mar<br>and lines of reasonark for partial such there are no linka | mark for lines of<br>king points whoning scores 4<br>tructure and so<br>ges between po<br>overall score of | of reasoning. I<br>ich is partially<br>marks (3 mark<br>me linkages a<br>bints, the same   | y structured with  ks for indicative  nd lines of |     |

| Indicative content:                                                                         |   |
|---------------------------------------------------------------------------------------------|---|
|                                                                                             |   |
| IC1: Change in flux <u>linkage</u> as magnet falls (through each tube) <b>Or</b> (magnetic) |   |
| field lines cut the metal                                                                   |   |
| IC2: <u>EMF induced</u> (in each tube)                                                      |   |
| IC3: Tube(s) made of conducting material, so there is a current                             |   |
| <b>Or</b> Tube provides a closed circuit, so there is a current                             |   |
| IC4: Magnetic field associated with this current                                            |   |
| IC5: Upward force exerted on magnet as the field is such to oppose the change               |   |
| that creates                                                                                |   |
| <b>Or</b> Due to Lenz's law there is a force opposing the motion of the magnet              |   |
| IC6: Magnet takes less time to fall through Tube B because the slit reduces the             |   |
| <br>number of paths for current in the conductor                                            |   |
| Total for question 14                                                                       | 6 |

| Question<br>Number | Answer                                                                                                                                                                                                                                                                                                                   |                          | Mark |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------|
| 15(a)              | MAX 2 for beta and 2 for gamma                                                                                                                                                                                                                                                                                           |                          | 3    |
|                    | <ul> <li>Beta</li> <li>Beta particles are much less massive than alpha particles</li> <li>So beta might be deflected by the electrons (surrounding the nucleus of gold)</li> <li>Or</li> </ul>                                                                                                                           | (1)<br>(1)               |      |
|                    | <ul> <li>Beta more penetrating</li> <li>So beta less likely to interact / scatter / deflect</li> <li>Or</li> </ul>                                                                                                                                                                                                       | (1)<br>(1)               |      |
|                    | <ul> <li>Alpha has double the charge (of beta)</li> <li>So for alpha deflecting force will be more (for same separation)</li> </ul>                                                                                                                                                                                      | (1)<br>(1)               |      |
|                    | <ul> <li>Gamma</li> <li>Gamma isn't charged</li> <li>So gamma will not deflect at all (electrostatically)</li> </ul>                                                                                                                                                                                                     | (1)                      |      |
|                    | Or gamma will not experience any electrostatic force Or                                                                                                                                                                                                                                                                  | (1)                      |      |
|                    | <ul><li>Gamma more penetrating</li><li>So gamma less likely to interact</li></ul>                                                                                                                                                                                                                                        | (1)<br>(1)               |      |
| 15(b)(i)           | At least four straight radial lines between the two potential lines     Equidistributed / equispaced     At least one arrow pointing away from nucleus  Example of diagram  Gold nucleus                                                                                                                                 | (1)<br>(1)<br>(1)<br>(1) | 3    |
| 15(b)(ii)          | <ul> <li>Measures the distance to both potential lines from centre of gold nucleus</li> <li>Use of V = Q/4πε<sub>o</sub>r</li> <li>This line is in the correct place as V × r is the same for each case</li> <li>Example of calculation</li> <li>Measures distance to 40 V = 1 cm and distance to 10 V = 4 cm</li> </ul> | (1)<br>(1)<br>(1)        | 3    |
| 15(b)(iii)         | So $k = 40 \times 1 = 40$ and $k = 10 \times 4 = 40$ • Charge on alpha particle is 2e                                                                                                                                                                                                                                    | (1)                      | 3    |
|                    | <ul> <li>Use of potential difference = W/Q</li> <li>W = 60 (eV)</li> <li>Example of calculation</li> <li>Change in potential = 40 V -10 V = 30 V</li> </ul>                                                                                                                                                              | (1)<br>(1)               |      |
|                    | Change in potential energy = $30 \text{ V} \times 2e = 60 \text{ eV}$ <b>Total for question 15</b>                                                                                                                                                                                                                       |                          | 12   |
|                    | Total for question 15                                                                                                                                                                                                                                                                                                    |                          | 14   |

| Question<br>Number | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mark |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 16(a)              | • Use of $\omega = \Delta\theta / \Delta t$<br>• Use of $v = r\omega$<br>• $v = 4.7 \text{ m s}^{-1}$<br>• Use of $\Delta s = r \Delta \theta$<br>• Use of $v = \Delta s / \Delta t$<br>• $v = 4.7 \text{ m s}^{-1}$                                                                                                                                                                                                                                                                                                                                           |      |
|                    | Example of calculation<br>$\omega = 1.3 \text{ rads} / 0.22 \text{ s} = 5.9 \text{ rad s}^{-1}$<br>$v = 5.9 \text{ rad s}^{-1} \times 0.80 \text{ m} = 4.73 \text{ m s}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                  |      |
| 16(b)(i)           | <ul> <li>Use of p = mv</li> <li>Use of the scale 1:2</li> <li>Adds scaled line at 56° to correctly represent initial momentum</li> <li>Adds scaled line to correctly represent final momentum of ball</li> <li>Concludes that conservation of momentum is obeyed as their diagram completes a triangle</li> <li>Or Concludes that conservation of momentum isn't obeyed as their triangle has a small gap</li> </ul>                                                                                                                                           | 5    |
|                    | • Use of $p = mv$ • Use of the scale 1:2 • Adds scaled line at 56° to correctly represent initial momentum • Adds line to complete triangle • Concludes that conservation of momentum is obeyed as their line is the right length  Or Concludes that conservation of momentum isn't obeyed as their line is not the right length  Example of vector diagram  Or  Example of calculation  Momentum ball before = 0.16 kg × 13 m s <sup>-1</sup> = 2.08 N s, length = 4.16 cm  Momentum ball after = 0.16 kg × 16 m s <sup>-1</sup> = 2.56 N s, length = 5.12 cm |      |

| 16(b)(ii) | • Use of $E_k = \frac{1}{2}mv^2$ • Uses total kinetic energy before = $E_k$ heel + $E_k$ ball before • Total kinetic energy before = 21.0 (J) <b>or</b> kinetic energy after = 20.5 (J) • Elastic collision because total $E_k$ before = $E_k$ after • <b>Or</b> Not elastic collision total $E_k$ before is not the same as $E_k$ after ( <b>both</b> figures must have been correctly calculated)  Example of calculation $E_k$ heel = $\frac{1}{2} \times 3.0 \text{ Ns} \times 5.0 \text{ m s}^{-1} = 7.5 \text{ J}$ $E_k$ ball before = $\frac{1}{2} \cdot 0.16 \text{ kg} \times 13^2 \text{ (m s}^{-1})^2 = 13.5 \text{ J}$ Total kinetic Energy before = 21.0 J |    |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|           | Total for question 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12 |

| Question<br>Number | Answer                                                                                                                                                                  |            | Mark |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|
| 17(a)              | • Vector velocities at the two positions as part of a triangle and third side identified as $\Delta v$                                                                  | (1)        |      |
|                    | • Small angle, so $\Delta v/v \approx \theta \approx \sin \theta$<br><b>Or</b> Small angle, so arc AB $\approx$ chord AB                                                | (1)        |      |
|                    | Or Small angle, so $s/r = \theta \approx \sin \theta$<br>• Use of $\theta / t = \omega$ and $v = r\omega$                                                               | (1)        |      |
|                    | Or Use of similar triangles and $\theta = s/r$ and $s/t = v$ • Use of acceleration $a = \Delta v/t$                                                                     | (1)<br>(1) | 5    |
|                    | • Suitable algebra to show $a = v^2/r$                                                                                                                                  |            |      |
|                    | Example of derivation                                                                                                                                                   |            |      |
|                    | $ \frac{\nu_{\mathrm{B}}}{-\nu_{\mathrm{A}}} $                                                                                                                          |            |      |
|                    | Small angle, so $\Delta v/v \approx \theta \approx \sin \theta$                                                                                                         |            |      |
|                    | $\begin{cases} \theta/t = \omega \\ \text{So } \theta = \omega t \end{cases}$                                                                                           |            |      |
|                    | But $v = r\omega$<br>So $\theta = vt/r$                                                                                                                                 |            |      |
|                    | $\Delta v/v \approx \theta$ So $vt/r = \Delta v/v$                                                                                                                      |            |      |
|                    | $a = \Delta v/t = v^2/r$                                                                                                                                                |            |      |
| 17(b)(i)           | <ul> <li>Idea that vertical component of lift force equals weight of aeroplane</li> <li>Vertical component of resultant force is zero, so aeroplane does not</li> </ul> | (1)        |      |
|                    | accelerate vertically                                                                                                                                                   | (1)        |      |
|                    | <b>Or</b> Vertical component of resultant force is zero so it would remain flying horizontally                                                                          | (1)        |      |
|                    | Horizontal component of lift force acts as centripetal force                                                                                                            |            |      |
|                    | Or Resultant force on aeroplane is horizontal and acts as centripetal force<br>Or Horizontal component of lift force acts at 90° to motion                              | (1)        | 4    |
|                    | So it follows a circular path (dependent on MP3)                                                                                                                        |            |      |
| 17(b)(ii)          | • Use of $W = mg$                                                                                                                                                       | (1)        |      |
|                    | • Use of $L\cos\theta = mg$                                                                                                                                             | (1)        |      |
|                    | • Use of $L\sin\theta = mv^2 / r$<br>• Radius = $3.2 \times 10^5$ m                                                                                                     | (1)<br>(1) | 4    |
|                    | Example of calculation                                                                                                                                                  |            |      |
|                    | $W = 4.1 \times 10^5 \times 9.81 = 4.02 \times 10^6 \mathrm{N}$                                                                                                         |            |      |
|                    | $L\cos 5.2^{\circ} = 4.02 \times 10^{6} \mathrm{N}$                                                                                                                     |            |      |
|                    | $L = 4.04 \times 10^6 \mathrm{N}$                                                                                                                                       |            |      |
|                    | $mv^2/r = 4.04 \times 10^6 \text{N} \times \sin 5.2^\circ = 3.66 \times 10^5 \text{N}$                                                                                  |            |      |
|                    | $3.66 \times 10^{5} \text{ N} = 4.1 \times 10^{5} \times 530^{2} / r$ $r = 3.15 \times 10^{5} \text{ m}$                                                                |            |      |
|                    | Total for question 17                                                                                                                                                   |            | 13   |

| Question<br>Number | Answer                                                                                                                                                                                                                                                                                                                                                                                    |                                   | Mark |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------|
| 18(a)(i)           | • Use of $E = V/d$<br>• $V = 4.5 \times 10^4 \text{ V}$                                                                                                                                                                                                                                                                                                                                   | (1)<br>(1)                        | 2    |
|                    | Example of calculation $7.5 \times 10^5 = V / 0.06$ $V = 4.5 \times 10^4 \text{ V}$                                                                                                                                                                                                                                                                                                       |                                   |      |
| 18(a)(ii)          | • Use of $E = F/Q$<br>• Use of $\Delta W = F\Delta s$ with $s = 3.0$ cm<br>• Use of $\Delta W = E_k = \frac{1}{2}mv^2$<br>• $v = 5.2 \times 10^5 \text{ (m s}^{-1)}$                                                                                                                                                                                                                      | (1)<br>(1)<br>(1)<br>(1)          |      |
|                    | Or  • Use of $E = F/Q$ • Use of $F = ma$ • Use of $v^2 = u^2 + 2as$ with $s = 3.0$ cm • $v = 5.2 \times 10^5 \text{ (m s}^{-1)}$                                                                                                                                                                                                                                                          | (1)<br>(1)<br>(1)<br>(1)          |      |
|                    | Or  • Use of $V = W/Q$ • Understanding that $V = 2.25 \times 10^4$ V (ecf from (i)) • Use of $\Delta W = E_k = \frac{1}{2}mv^2$ • $v = 5.2 \times 10^5$ (m s <sup>-1</sup> )                                                                                                                                                                                                              | (1)<br>(1)<br>(1)<br>(1)          | 4    |
|                    | Example of calculation $7.5 \times 10^5 \text{ Vm}^{-1} = F / 1.6 \times 10^{-19} \text{ C} \ (F = 1.2 \times 10^{-13} \text{ N})$ $\Delta W = 1.2 \times 10^{-13} \text{ N} \times 0.03 \text{ m} \ (\Delta W = 3.6 \times 10^{-15} \text{ J})$ $3.6 \times 10^{-15} \text{ J} = \frac{1}{2} \times 2.7 \times 10^{-26} \text{ kg} \times v^2$ $v = 5.16 \times 10^5 \text{ (m s}^{-1)}$ |                                   |      |
| 18(b)(i)           | <ul> <li>The direction of electric force will be downwards so magnetic force must be upwards</li> <li>and the magnetic field is into the page (dependent on MP1)</li> </ul>                                                                                                                                                                                                               | (1)<br>(1)                        | 2    |
| 18(b)(ii)          | • Use of $F_E = EQ$<br>• Use of $F_M = BQv$<br>• $B = 0.021 \text{ T}$                                                                                                                                                                                                                                                                                                                    | (1)<br>(1)<br>(1)                 | 3    |
|                    | Example of calculation $F_E = 10500 \text{ V m}^{-1} \times 1.6 \times 10^{-19} \text{C} = 1.68 \times 10^{-15} \text{ N}$ $B \times 1.6 \times 10^{-19} \text{C} \times 5.0 \times 10^{5} \text{ m s}^{-1} = 1.68 \times 10^{-15} \text{ N}$ $B = 0.021 \text{ T}$                                                                                                                       |                                   |      |
| 18(c)              | <ul> <li>Isotopes have different masses</li> <li>The magnetic force will be the same because charge is the same</li> </ul>                                                                                                                                                                                                                                                                | (1)                               |      |
|                    | <ul> <li>Or r = mv / Bq and B, q, v are all the same</li> <li>Different mass will lead to a circle/path with different radius/deflection (so only one isotope is detected)</li> </ul>                                                                                                                                                                                                     | <ul><li>(1)</li><li>(1)</li></ul> | 3    |
|                    | Total for question 18                                                                                                                                                                                                                                                                                                                                                                     |                                   | 14   |