CMPT 733 – Big Data Programming II

Automated Machine Learning (AutoML)

Instructor Steven Bergner

Course website https://sfu-db.github.io/bigdata-cmpt733/

Slides by: Lydia Zheng and Jiannan Wang

Motivation

- 1. Machine learning is very successful
- 2. To build a traditional ML pipeline:
 - Domain experts with longstanding experience
 - Specialized data preprocessing
 - Domain-driven meaningful feature engineering
 - Picking right models
 - Hyper-parameter tuning
 -

H20 Driverless Al Demo

https://www.youtube.com/watch?v=ZqCoFp3-rGc

- 1. Will AutoML software replace Data Scientists?
- 2. How to approach AutoML as a data scientist?

AutoML Vision

For Non-Experts

AutoML allows non-experts to make use of machine learning models and techniques without requiring to become an expert in this field first

https://en.wikipedia.org/wiki/Automated_machine_learning

For Data Scientists

AutoML aims to augment, rather than automate, the work and work practices of heterogeneous teams that work in data science.

Wang, Dakuo, et al. "Human-Al Collaboration in Data Science: Exploring Data Scientists' Perceptions of Automated Al." Proceedings of the ACM on Human-Computer Interaction 3.CSCW (2019): 1-24.

What is AutoML?

Automate the process of applying machine learning to realworld problems

Outline

- Auto Feature Selection (Lecture 6)
- Auto Hyperparameter Tuning (Lecture 6)
- Auto Feature Generation (This Lecture) Neural Architecture Search (This Lecture)

Auto Feature Generation

Motivation

- The model performance is heavily dependent on quality of features in dataset
- It's time-consuming for domain experts to generate enough useful features

Feature Generation

- Unary operators (applied on a single feature)
 - Discretize numerical features
 - Apply rule-based expansions of dates
 - Mathematical operators (e.g., Log Function)
- Higher-order operators (applied on 2+ features)
 - Basic arithmetic operations (e.g., +, -, ×, ÷)
 - Group-by Aggregation (e.g., GroupByThenAvg, GroupByThenMax)

Featuretools

An open source library for performing automated feature engineering

Design to fast-forward feature generation across multi-relational tables

Concepts

- Entity is the relational tables
- An EntitySet is a collection of entities and the relationships between them
- Feature Primitives
 - Unary Operator: transformation (e.g., MONTH)
 - High-order Operator: Group-by Aggregation (e.g., GroupByThenSUM)

Entity sets

Customer

Product

Customer_id	Birthdate	MONTH(Birthdate)	SUM(Product.Price)			
1	1995-09-28	9	\$500			
2	1980-01-01	1				
3	1999-02-02	2				
Unary Operator:						

MONTH

GroupBy ThenSUM:

Product_id	Customer_id	Name	Price
1	1	Banana	\$100
2	1	Banana	\$100
3	1	Orange	\$300
4	2	Apple	\$50
	::		

Feature Primitives

Outline

- Auto Feature Selection (Lecture 5)
- Auto Hyperparameter Tuning (Lecture 5)
- Auto Feature Generation (This Lecture) Neural Architecture Search (This Lecture)

Neural Architecture Search (NAS)

Motivation

How can someone come out with such an architecture?

Neural Architecture Search: Big Picture

Search Space

- Define which neural architectures a NAS approach might discover in principle
- ❖ May have human bias → prevent finding novel architectural building blocks

Search Strategy

Basic Idea

Explore search space (often exponentially large or even unbounded)

Methods

- Random Search
- Bayesian Optimization [Bergstra et al., 2013]
- Evolutionary Methods [Angeline et al., 1994]
- Reinforcement Learning [Baker et al., 2017]
- **>**

Performance Estimation Strategy

Basic Idea

> The process of estimating predictive performance

Methods

- Simplest option: perform a training and validation of the architecture on data
- Initialize weights of novel architecture based on weights of other architectures have been trained before
- Using learning curve extrapolation [Swersky et al., 2014]
- **>**

Summary

What is AutoML and why we need it? How AutoML works?

- Auto Feature Selection (Lecture 5)
- Auto Hyperparameter Tuning (Lecture 5)
- Auto Feature Generation (This Lecture)
- Neural Architecture Search (This Lecture)