Lecture Notes 2: Timing, Numpy, Plotting

Limitation of pure Python:

• Python is a simple and compact scripting language, but relatively slow

Machine learning problems require specific data structures:

- Vector spaces
- Data matrices
- Linear projections
- Distance matrices

Numpy provides fast methods to manipulate such data structures:

- In surface: intuitive user interface for manipulating arrays
- Under the hood: optimized code based on high performance libraries (BLAS, Lapack, etc)

Performance evaluation

To be convinced that Numpy provides a computational benefit over standard Python, we should be able to compare the running time of a similar computation performed in Python and in Numpy.

```
In [1]: import time
In [2]: ## Adding two vectors in python
        a = [i \text{ for } i \text{ in } range(1000000)]
        b = [1 \text{ for i in range}(1000000)]
        c = [0 for i in range(1000000)] # output vector (initialized to zero)
        # Start the computation
        start = time.clock()
        for i in range(1000000):
            c[i] = a[i] + b[i]
        end = time.clock()
        print('%.3f seconds'%(end-start))
0.311 seconds
In [3]: ## Adding two vectors in numpy
        import numpy
        a = numpy.arange(1000000)
        b = numpy.ones(1000000)
        c = numpy.zeros(1000000)
        # Start the computation
        start = time.clock()
        numpy.add(a,b,out=c)
        end = time.clock()
        print('%.3f seconds'%(end-start))
0.006 seconds
```

The Timelt "Magic Command"

Exercise 1: Plotting Performance

First, we load some modules for plotting in IPython

We run the computation with different parameters (e.g. size of input arrays)

Numpy basics

Numpy arrays can be directly initialized by the function numpy.array

Numpy arrays can be initialized randomly following a probability distribution

```
In [12]: numpy.random.uniform(0,1,[3,3])
```

```
Out[12]: array([[ 0.36957268,  0.24852523,  0.84041215],
                [ 0.34741939, 0.98912633, 0.89519385],
                [ 0.94520512, 0.76769106, 0.09574112]])
In [13]: numpy.random.exponential(1,[3,3])
Out[13]: array([[ 0.22617325,  1.08486358,  0.32758166],
                [ 1.06398485, 1.23876862, 1.1873128 ],
                [ 0.38338351, 2.00111191, 1.03153185]])
   Multidimensional arrays can be created
In [14]: numpy.ones([2,2,2,2])
Out[14]: array([[[[ 1., 1.],
                  [1., 1.]],
                 [[ 1., 1.],
                  [1., 1.]]],
                [[[ 1., 1.],
                  [1., 1.]],
                 [[ 1., 1.],
                  [1., 1.]]])
The properties of an array
In [15]: a = numpy.ones([2,2])
         print type(a), a.shape, a.size, a.ndim, a.dtype
<type 'numpy.ndarray'> (2, 2) 4 2 float64
In [16]: a = numpy.ones([3,3,3],dtype='float32')
         print type(a), a.shape, a.size, a.ndim, a.dtype
<type 'numpy.ndarray'> (3, 3, 3) 27 3 float32
Casting
Explicit Casting
In [17]: a = numpy.ones([2,2])
         print a
         b = a.astype('int16')
         print b
[[ 1. 1.]
[1. 1.]]
[[1 1]
 [1 1]]
  Automatic Casting
In [18]: a = numpy.array([[1.0,2.0],[3.0,4.0]],dtype='float64')
         b = numpy.array([[2.0,3.0],[4.0,5.0]],dtype='float32')
         a*b
```

- Output array is assigned precision as high as the most precise input array (here, float64).
- Warning for Matlab users: Multiplication and division operators apply element-wise.

Reshaping

Explicit Reshaping

```
In [21]: a = numpy.array([[1.0,2.0],[3.0,4.0],[5.0,6.0]])
Out[21]: array([[ 1., 2.],
               [3., 4.],
               [5., 6.]])
In [22]: a.flatten()
Out[22]: array([ 1., 2., 3., 4., 5., 6.])
In [23]: a.reshape([2,3])
Out[23]: array([[ 1., 2., 3.],
               [4., 5., 6.]])
  Automatic Reshaping
In [24]: a = numpy.array([[1.0,2.0],[3.0,4.0],[5.0,6.0]])
Out[24]: array([[ 1., 2.],
               [3., 4.],
               [5., 6.]])
In [25]: a+3
Out[25]: array([[ 4., 5.],
               [6., 7.],
               [8., 9.]])
In [26]: a*numpy.array([1.0,0.0])
Out[26]: array([[ 1., 0.],
               [3., 0.],
               [5., 0.]])
In [27]: shape1 = (3,1,2)
        shape2 = (1,4,1)
        (numpy.zeros(shape1)+numpy.zeros(shape2)).shape
Out[27]: (3, 4, 2)
```

Numpy Reduce-type Functions

Datasets and scatter plots

Create a dataset of 100 randomly sampled data points

```
In [33]: import numpy.random
    x1 = numpy.random.uniform(0,1,[100,1])
    x2 = numpy.random.uniform(0,1,[100,1]) * x1**2
    X = numpy.concatenate([x1,x2],axis=1)
```

Plot the dataset

```
In [34]: plt.figure(figsize=(5,5))
      plt.scatter(X[:,0],X[:,1],color='black',s=10)
```

Out[34]: <matplotlib.collections.PathCollection at 0x7f1182341690>

Exercise 2: Computing and plotting the mean of a dataset

0.0

0.2

0.4

0.6

8.0

1.0

1.2

Selection on Arrays

```
In [37]: a = numpy.array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]],dtype='float')
Out[37]: array([[ 1.,
                        2.,
                              3.],
                  4.,
                        5.,
                              6.],
                [ 7.,
                       8.,
                              9.],
               [ 10., 11.,
                             12.]])
In [38]: a[0]
Out[38]: array([ 1., 2., 3.])
In [39]: a[1,0]
Out[39]: 4.0
In [40]: a[:2]
Out[40]: array([[ 1., 2., 3.],
                [4., 5., 6.]])
```

```
In [41]: a[:,:2]
Out[41]: array([[ 1.,
                        2.],
                [ 4.,
                        5.],
                [ 7.,
                        8.],
                [ 10., 11.]])
In [42]: a[1:3,1:2]
Out[42]: array([[ 5.],
                [8.]])
In [43]: a[::2]
Out[43]: array([[ 1., 2., 3.],
               [7., 8., 9.]])
In [44]: a[:,::-1]
Out[44]: array([[ 3.,
                        2.,
                              1.],
                [ 6., 5.,
                             4.],
                [ 9.,
                      8.,
                             7.],
                [ 12., 11., 10.]])
In [45]: a[[0,3],:]
Out[45]: array([[ 1., 2., 3.],
                [ 10., 11., 12.]])
In [46]: a[[0,3]][:,[0,2]]
Out[46]: array([[ 1., 3.],
                [ 10., 12.]])
Matrix multiplication
In [47]: a = numpy.array([[1.0,2.0],[3.0,4.0],[5.0,6.0]])
         b = numpy.array([[1.0,2.0,1.0,2.0],[3.0,4.0,2.0,1.0]])
         a.shape,b.shape
Out[47]: ((3, 2), (2, 4))
In [48]: numpy.dot(a,b).shape
Out[48]: (3, 4)
Datasets and distance matrices
In [49]: X = numpy.random.mtrand.RandomState(123).uniform(0,1,[100,2])
In [50]: plt.figure(figsize=(5,5))
        plt.scatter(*X.T)
Out[50]: <matplotlib.collections.PathCollection at 0x7f11827b06d0>
```


Compute distance matrix (square Euclidean)

Distance matrices can also be written with numpy.dot

We can verify that both computations are equivalent

```
In [53]: ((Dalt-D)**2).mean()
Out[53]: 1.6221555628483391e-32
```

Exercise 3: Finding Points that are Furthest Apart

Max distance between data points

```
In [54]: D.max()
Out[54]: 1.7882784080338652
```

Which pair of points has max distance

```
In [55]: numpy.argmax(D)
```

Out[55]: 5967

We need to convert the index of the flattened array to the index of the original array

```
59 [ 0.00268806  0.98834542]
67 [ 0.98352161  0.07936579]
```

Verify that these two points are indeed the ones with maximum distance

```
In [57]: ((X[a]-X[b])**2).sum() - D.max()
```

Out[57]: -2.2204460492503131e-16

Plotting these two distant points

Out[58]: <matplotlib.collections.PathCollection at 0x7f1182895fd0>

Exercise 4: Building a Nearest Neighbor Graph

Plotting pairs of points that are at a smaller distance than a tenth of the average

```
In [59]: m = D.sum() / (len(D) * (len(D)-1))
    ind = numpy.where(D < 0.1*m)
    plt.figure(figsize=(5,5))
    plt.scatter(*X.T)
    for i,j in zip(*ind): plt.plot(*X[[i,j]].T,color='red',alpha=0.25)</pre>
```

