Platformy Programistyczne .NET i Java Kierunek Informatyczne Systemy Automatyki IPS Imię, nazwisko, numer albumu Igor Frysiak 272548 Link do projektu https://github.com/IFrysiak/PP_lab3

ETAP 1

Spis treści

1	\mathbf{Wstep}	1
2	Zadanie 1 - Wysokopoziomowe zrównoleglanie obliczeń	1
3	Wnioski	3

1 Wstęp

W ramach zadania należało wykonać aplikację konsolową w technologii .NET 8.0, która pozwoli na sprawdzenie przyspieszenia obliczeń równoległych względem sekwencyjnych, na przykładzie mnożenia macierzy.

Procesor komputera użytego do badań to AMD Ryzen 5 5500U mający 6 rdzeni fizycznych i 12 wątków logicznych. Badania przeprowadzono dla macierzy o rozmiarach od 100×100 do 500×500 elementów, testując różne liczby wątków (od 1 do 256). Każdy pomiar został wykonany 5 razy, a wyniki uśredniono.

2 Zadanie 1 - Wysokopoziomowe zrównoleglanie obliczeń

Do wykonania zadania użyta została biblioteka wysokiego poziomu *Parallel*, która pozwoli na wprowadzenie wielowątkowości do programu.

Table 1: Porównanie czasów wykonania [ms] i przyspieszenia równoległego i sekwencyjnego mnożenia macierzy

Rozmiar macierzy	Czas sekwencyjny [ms]	Liczba wątków	Czas równoległy [ms]	Przyspieszenie
100	32	1	38	0,84
100	32	2	21	1,52
100	32	4	14	2,29
100	32	8	11	2,91
100	32	16	7	4,57
100	32	32	7	4,57
100	32	64	5	6,4
100	32	128	5	6,4
100	32	256	6	5,33
200	245	1	243	1,01
200	245	2	128	1,91
200	245	4	89	2,75
200	245	8	58	4,22
200	245	16	47	5,21
200	245	32	40	6,13
200	245	64	39	
	245	128	37	6,28
200				6,62
200	245	256	37	6,62
300	827	1	841	0,98
300	827	2	463	1,79
300	827	4	283	2,92
300	827	8	171	4,84
300	827	16	162	5,1
300	827	32	133	6,22
300	827	64	130	6,36
300	827	128	128	6,46
300	827	256	129	6,41
400	1992	1	2046	0,97
400	1992	2	1094	1,82
400	1992	4	689	2,89
400	1992	8	386	5,16
400	1992	16	329	6,05
400	1992	32	322	6,19
400	1992	64	320	6,23
400	1992	128	308	6,47
400	1992	256	302	6,6
500	3892	1	4068	0,96
500	3892	2	2175	1,79
500	3892	4	1332	2,92
500	3892	8	799	4,87
500	3892	16	647	6,02
500	3892	32	634	6,14
500	3892	64	605	6,43
500	3892	128	595	6,54
500	3892	256	594	6,55
500	3092	200	034	0,00

3 Wnioski

- Dla wszystkich rozmiarów macierzy zaobserwowano znaczące przyspieszenie obliczeń przy użyciu wielu wątków w porównaniu do wersji sekwencyjnej.
- Najlepsze wyniki osiągnięto przy liczbie wątków zbliżonej do liczby wątków logicznych procesora (12).
 Dalsze zwiększanie liczby wątków nie przynosiło już znaczących korzyści, a czasem nawet pogarszało wyniki.
- Dla pojedynczego wątku wersja równoległa była nieco wolniejsza lub tak samo szybka.

Podsumowując, równoległe mnożenie macierzy przy użyciu biblioteki *Parallel* w .NET jest efektywną metodą przyspieszania obliczeń, szczególnie dla dużych macierzy. Optymalna liczba wątków jest zbliżona do liczby wątków logicznych procesora, a dalsze zwiększanie ich liczby nie przynosi znaczących korzyści.