

Лекция 4. Сортировки (часть 1). Порядковые статистики

Алгоритмы и структуры данных

Мацкевич С.Е.

Быстрая сортировка = сортировка Xoapa = QuickSort

- 1. Разделим массив на 2 части, ${\exists \text{лементы} \atop \text{в левой}} \le {\exists \text{правой} \atop \text{в правой}},$
- 2. Применим эту процедуру рекурсивно к левой части и к правой части.

Быстрая сортировка. Partition.

Разделим массив А. Выберем разделяющий элемент — пивот. Пусть пивот лежит в конце массива.

- 1. Установим 2 указателя: і в начало массива, ј в конце перед пивотом.
- 2. Двигаем і вправо, пока не встретим элемент больше (или =) пивота.
- 3. Двигаем ј влево, пока не встретим элемент меньше пивота.
- 4. Меняем A[i] и A[j], если i < j.
- 5. Повторяем 2, 3, 4, пока i < j.
- Меняем A[i] и A[n-1] (пивот).

Левая часть – левее пивота, правая – правее. Пивот не входит в них.

Быстрая сортировка. Partition.

 i
 j

 K
 F
 C
 B
 S
 E
 Z
 D
 A
 H

 A
 M
 C
 B
 S
 E
 Z
 D
 K
 H

 A
 D
 C
 B
 E
 S
 Z
 M
 K
 H

 A
 D
 C
 B
 E
 H
 Z
 M
 K
 S

Быстрая сортировка


```
// Возвращает индекс, на который встанет пивот после разделения.
void Partition( int* a, int n ) {
    if(n \le 1)
        return 0;
    const int& pivot = a[n - 1];
    int i = 0; j = n - 2;
    while( i <= j ) {
        // Не проверяем, что i < n - 1, т.к. a[n - 1] == pivot.
        for( ; a[i] < pivot; ++i ) {}</pre>
        for(; j \ge 0 \&\& !(a[j] < pivot); --j) {}
        if( i < i ) {
            swap( a[i++], a[j--] );
    swap(a[i], a[n - 1]);
    return i;
void QuickSort( int* a, int n ) {
    int part = Partition( a, n );
    if( part > 0 ) QuickSort( a, part );
    if( part + 1 < n ) QuickSort( a + part + 1, n - ( part + 1 ) );
```

Быстрая сортировка. Анализ.

- Если Partition всегда пополам, то $T(n) \le 2T\left(\frac{n}{2}\right) + cn$, следовательно, $T(n) = O(n\log n)$.
- Утверждение. (без док.) B среднем $T(n) = O(n \log n)$.
- Если массив упорядочен, пивот = A[n-1], то массив делится в соотношении n-1:0. $T(n) \le T(n-1) + cn \le$ $\leq T(n-2) + c(n+n-1),$ $T(n) = O(n^2)$.

A B C D E F	G H	1	J
-------------	-----	---	---

Быстрая сортировка. Выбор пивота. «

- Последний,
- Первый,
- Серединный,
- Случайный,
- Медиана из первого, последнего и серединного,
- Медиана случайных трех,
- Медиана, вычисленная за O(n),
- •

Быстрая сортировка. Killer sequence.

Killer-последовательность – последовательность, приводящая к времени $T(n) = O(n^2)$.

Для многих предопределенных порядков выбора пивота существует killer-последовательность.

■ Последний, первый.

1, 2, 3, 4, 5, 6, 7.

• Серединный.

- x, x, x, 1, x, x, x.
- Медиана трех (первого, последнего и серединного). Массив будем делить в отношении 1: n-2.

Определение. К-ой порядковой статистикой называется элемент, который окажется на К-ой позиции после сортировки массива.

Медиана — серединный элемент после сортировки массива.

Алгоритм 1. Поиск K-ой порядковой статистики методом «Разделяй и властвуй». KSTATDC(A, N, K).

- 1. Выбираем пивот, вызываем PARTITION.
- 2. Пусть позиция пивота после разделения равна Р.
 - а) Если Р == K, то пивот является K-ой порядковой статистикой.
 - б) Если Р > K, то K-ая порядковая статистика находится слева,

вызываем KSTATDC(A, N - P, K).

в) Если Р < K, то K-ая порядковая статистика находится справа,

вызываем KSTATDC(A + (P + 1), N - (P + 1), K - (P + 1)).

Алгоритм 1. Поиск К-ой порядковой статистики методом «Разделяй и властвуй». KSTATDC(A, N, K).

Время работы

- T(n) = O(n) в лучшем,
- T(n) = O(n) в среднем (без доказательства),
- $T(n) = O(n^2)$ в худшем.

Алгоритм 2 (Блюма-Флойда- Пратта-Ривеста-Тарьяна). Поиск K-ой порядковой статистики за линейное время. KSTATLIN(A, N, K).

- 1. Разобьем массив на пятерки.
- 2. Сортируем каждую пятерку, выбираем медиану из каждой пятерки.
- Ищем М медиану медиан пятерок, вызвав KSTATLIN (MEDIANS, N/5, N/10).
- 4. Разделяем по пивоту M, вызывая обычный PARTITION.
- 5. Пусть позиция пивота М после разделения равна Р. $(0.3n \le P \le 0.7n)$
 - а) Если P == K, то пивот является K-ой порядковой статистикой.
 - б) Если P > K, то K-ая порядковая статистика находится слева, вызываем KSTATLIN(A, N P, K).
 - в) Если P < K, то K-ая порядковая статистика находится справа, вызываем KSTATLIN(A + (P + 1), N (P + 1), K (P + 1)).

<u>Алгоритм 2 (Блюма-Флойда- Пратта-Ривеста-Тарьяна).</u> Поиск K-ой порядковой статистики за линейное время. KSTATLIN(A, N, K).

<u>Алгоритм 2 (Блюма-Флойда- Пратта-Ривеста-Тарьяна).</u> Поиск K-ой порядковой статистики за линейное время. KSTATLIN(A, N, K). Время работы:

$$T(n) \le T\left(\frac{n}{5}\right) + cn + T(0.7n).$$

По индукции докажем, что $T(n) \le 10cn$:

$$T(n) \le \frac{10cn}{5} + cn + 7cn = 10cn.$$

Итак,

$$T(n) = O(n)$$
.

Типы сортировок

<u>Определение.</u> **Стабильная** сортировка — та, которая сохраняет порядок следования равных элементов. <u>Пример.</u> Сортировка чисел по старшему разряду.

Типы сортировок

Определение. Локальная сортировка – та, которая не требует дополнительной памяти.

Примеры.

- HeapSort локальная.
- MergeSort нелокальная.

Как сортировать без сравнений?

<u>Задача.</u> Отсортировать массив A[0..n-1], содержащий неотрицательные целые числа меньшие k.

Решение 1.

- Заведем массив C[0..k-1], посчитаем в C[i] количество вхождений элемента i в массиве A.
- Выведем все элементы С по С[i] раз.


```
void CountingSort1( int* a, int n ) {
    int* c = new int[k];
    for ( int i = 0; i < k; ++i )
        c[i] = 0;
    for ( int i = 0; i < n; ++i )
        ++c[a[i]];
    int pos = 0;
    for ( int i = 0; i < k; ++i ) {
        for ( int j = 0; j < c[i]; ++j ) {
            a[pos++] = i;
    delete[] c;
```


Решение 2. Не создает элементы A, а использует копирование. Полезно при сортировке структур по некоторому полю.

- Заведем массив C[0,...,k-1], посчитаем в C[i] количество вхождений элемента і в массиве А.
- Вычислим границы групп элементов для каждого $i \in [0,...,k-1]$ (начальные позиции каждой группы).
- Создадим массив для результата В.
- Переберем массив А. Очередной элемент A[i] разместим в В в позиции группы C[A[i]]. Сдвинем текущую позицию группы.
- Скопируем В в А.


```
void CountingSort2( int* a, int n ) {
    int* c = new int[k];
    for ( int i = 0; i < k; ++i )
        c[i] = 0;
    for ( int i = 0; i < n; ++i )
        ++c[a[i]];
    int sum = 0;
    for ( int i = 0; i < k; ++i ) {
        int tmp = c[i];
        c[i] = sum; // Начала групп.
        sum += tmp;
    int* b = new int[n];
    for ( int i = 0; i < n; ++i ) {
       b[c[a[i]]++] = a[i];
    delete[] c;
    memcpy( b, a, n * sizeof( int ) );
```


A: 5 3 3 1 4

C1: 0 1 0 2 1 1

C2: 0 0 1 1 3 4

B 1 3 3 4 5

Сортировка подсчетом – стабильная, но не локальная.

Время работы
$$T(n,k) = O(n+k)$$
.

Доп. память
$$M(n,k) = O(n+k)$$
.


```
void CountingSort2( int* a, int n ) {
    int* c = new int[k];
    for ( int i = 0; i < k; ++i )
        c[i] = 0;
    for ( int i = 0; i < n; ++i )
        ++c[a[i]];
    int sum = 0;
    for ( int i = 1; i < k; ++i ) {
        c[i] += c[i - 1]; // Концы групп.
    int* b = new int[n];
    for ( int i = n - 1; i \ge 0; --i ) {// Проход с конца.
       b[--c[a[i]]] = a[i];
    delete[] c;
    memcpy( b, a, n * sizeof( int ) );
```

Поразрядная сортировка = Radix sort

Если диапазон значений велик – сортировка подсчетом не годится.

Строки, целые числа можно разложить на разряды. Диапазон значений разряда не велик.

Можно выполнять сортировку массива по одному разряду, используя сортировку подсчетом.

С какого разряда начать сортировку?

- LSD least significant digit.
- MSD most significant digit.

Поразрядная сортировка. LSD.

Least Significant Digit.

Сначала сортируем подсчетом по младшим разрядам, затем по старшим.

Ключи с различными младшими разрядами, но одинаковыми старшими не будут перемешаны при сортировки старших разрядов благодаря стабильности поразрядной сортировки.

Поразрядная сортировка. LSD.


```
Время работы T(n,k,r) = O(r \cdot (n+k)), доп. память M(n,k,r) = O(n+k), где n- размер массива, k- размер алфавита, r- количество разрядов.
```

Поразрядная сортировка. MSD.

Most Significant Digit.

Сначала сортируем подсчетом по старшим разрядам, затем по младшим.

Чтобы не перемешать отсортированные старшие разряды, сортируем по младшим только группы чисел с одинаковыми старшими разрядами отдельно друг от друга.

237	2 37	216	211
318	2 16	211	216
216	2 11	2 <mark>3</mark> 7	237
462	2 68	2 <mark>6</mark> 8	268
211	<mark>3</mark> 18	318	318
268	4 62	4 <mark>6</mark> 2	460
460	4 60	4 <mark>6</mark> 0	46 <mark>2</mark>

Поразрядная сортировка. MSD.


```
// Поразрядная сортировка по одному конкретному байту.
// Заполняет массив c[0..k-1] - начала групп.
void CountingSort( long long* a, int n, int* c, int byte );

void MSDSort( long long* a, int n, int byte ) {
   if( n <= 1 )
      return;
   int* c = new int[k + 1];
   CountingSort( a, n, c, byte );
   if( byte > 0 ) {
      for( int i = 0; i < k; ++i )
            MSDSort( a + c[i], c[i + 1] - c[i], byte - 1 );
   }
   delete[] c;
}
```

Время работы $T(n,k,r) = O(r \cdot n \cdot k)$, доп. память $M(n,k,r) = O(n+r \cdot k)$, где n- размер массива, k- размер алфавита, r- количество разрядов.

Поразрядная сортировка. Ключи разной длины.

Расширим алфавит пустым символом "\0".

+ MSD можно не вызывать для группы с текущим разрядом = "\0".

Для массива строк различной длины такой MSD будет эффективнее.

- LSD будет обрабатывать все разряды в каждом ключе. Время работы пропорционально длине k:

$$T(n) = O(nk)$$

Похожа на MSD по битам.

1. Сортируем по старшему биту. Это Partition с фиктивным пивотом 10000..0.

2. Рекурсивно вызываем от левой части = 0ххххххх, от правой части = 1хххххххх.

01000	ত্রিবার ১ ১ ১	0 [O] EI 0 4	0.01010.4	0 0 0 0 1	0.0004
0 1 0 0 0	01000	00101	0 0 0 0 1	00001	00001
10000	0 0 0 0 1	0 0 0 0 1	0 0 1 0 1	0 0 1 0 1	00101
0 1 1 0 0	0 1 1 0 0	0 0 1 1 1	0 0 1 1 1	0 0 1 1 1	00111
0 0 1 1 1	0 0 1 1 1	0 1 1 0 0	01000	01000	01000
0 1 1 1 0	0 1 1 1 0	0 1 1 1 0	0 1 1 1 0	0 1 1 0 0	01100
1 0 1 0 1	0 1 1 0 1	0 1 1 0 1	0 1 1 0 1	0 1 1 0 1	01101
1 0 0 1 0	0 1 1 1 0	0 1 1 1 0	0 1 1 1 0	0 1 1 1 0	0 1 1 1 0
10000	00101	0 1 0 0 0	0 1 1 0 0	0 1 1 1 0	0 1 1 1 0
0 0 1 0 1	10000	10000	10000	10000	10000
0 1 1 1 0	1 0 0 1 0	1 0 0 1 0	1 0 0 1 0	10000	10000
1 1 0 1 1	1 1 0 1 1	1 0 1 0 1	10000	100[1]0	10010
1 1 1 0 1	1 1 1 0 1	10000	1 0 1 0 1	1 0 1 0 1	10101
0 1 1 0 1	1 0 1 0 1	1 0 1 0 1	1 0 1 0 1	1 0 1 0 1	1 0 1 0 1
1 0 1 1 1	1 0 1 1 1	1 0 1 1 1	1 0 1 1 1	1 0 1 1 1	10111
0 0 0 0 1	1 0 0 0 0	1 1 1 0 1	1 1 0 1 1	11011	11011
10101	10101	1 1 0 1 1	1 1 <u>1</u> 0 1	11101	1 1 1 0 1


```
void BinaryQuickSort( int* a, int 1, int r, int w ) {
    if( r <= l || w > BitsInWord )
       return;
    int i = 1; j = r;
    while( i != j ) {
        while ( digit ( a[i] , w ) == 0 && i < j ) ++i;
        while (digit (a[j], w) == 1 && i < j) --j;
        swap( a[i], a[j] );
    if( digit( a[r], w ) == 0 )
        ++j;
    BinaryQuickSort( a, 1, j - 1, w + 1);
    BinaryQuickSort( a, j, r, w + 1 );
```


Время работы T(n,r) = O(rn), доп. память M(n,r) = O(1), где n- размер массива, r- количество разрядов.

Не стабильна! Зато локальна.

TimSort

Гибридная сортировка Тима Петерса – TimSort (2002г) Реальные данные часто бывают частично отсортированы. Используется в Java 7, Python как стандартный алгоритм.

- 1. Вычисление minRun.
- 2. Сортировка вставками каждого run.
- 3. Слияние соседних run (отсортированных).

TimSort. Вычисление minRun


```
int GetMinrun( int n )
{
    // Станет 1, если среди сдвинутых битов будет хотя бы 1 ненулевой.
    int r = 0;
    while( n >= 64 ) {
        r |= n & 1;
        n >>= 1;
    }
    return n + r;
}
```

TimSort. Вычисление run'ов, их сортировка.

Собираем run:

- Ищем максимально отсортированный подмассив, начиная с текущей позиции.
- Разворачиваем его, если он отсортирован по убыванию.
- Дополняем отсортированный подмассив до minRun элементов.

Сортируем вставками каждый run.

 Отсортированную часть run'а заново не сортируем, только новые элементы вставляем на свои места.

TimSort. Вычисление run'ов, их сортировка.

Выполняем слияние соседних run'ов.

- Используем стек убывающих run'ов.
- Не сливаем, если $X_n > X_{n+1} + X_{n+2}$ и $X_{n+1} > X_{n+2}$. Иначе сливаем, X_{n+1} и меньший из соседних.
- Слияние оптимизировано меньшим промежуточным буфером.
- Слияние оптимизировано галопом.

TimSort

Визуализация:

http://www.youtube.com/watch?v=NVIjHj-lrT4

Сравнение сортировок. Итог.

Алгоритм	В лучшем	В среднем	В худшем	Память	Стабильность	Метод	
Quicksort	$n \log n$	$n \log n$	n^2	1	No	Partitioning	
Merge sort	$n \log n$	$n \log n$	$n \log n$	n	Yes	Merging	
In-place merge sort	_	_	$n\log^2 n$	1	Yes	Merging	
Heapsort	$n \log n$	$n \log n$	$n \log n$	1	No	Selection	
Insertion sort	n	n^2	n^2	1	Yes	Insertion	
Selection sort	n^2	n^2	n^2	1	No	Selection	
Timsort	n	$n \log n$	$n \log n$	n	Yes	Insertion & Merging	
LSD	r(k+n)	r(k+n)	r(k+n)	k + n	Yes	Radix	
MSD	$n \log n$	$n \log n$	rnk	rk + n	Yes	Radix	
Binary QuickSort	$n \log n$	$n \log n$	rn	1	No	Radix	

