Machine Learning

Classification using Decision Trees

Speaker: Syeda Saleha Raza

Data Science and Machine Learning Workshop, 2017 Habib University

Acknowledgement

- Some slides of this lecture have been taken from:
 - lecture notes of Tan, Steinbach, Kumar Introduction to Data Mining
 - https://web.stanford.edu/class/cs46n

Data Science and Machine Learning Workshop, 201

What is Machine Learning?

Data Science and Machine Learning Workshop, 2017

Spam Filtering

Data Science and Machine Learning Workshop, 201

Face Detection in Cameras

[Face priority AE] When a bright part of the face is too bright

Data Science and Machine Learning Workshop, 2017

Face Recognition

Data Science and Machine Learning Workshop, 2017

Object Detection

Data Science and Machine Learning Workshop, 2017

News Clustering

Why today's earthquake - 1200 km away - was felt in Delhi

The Indian Express - 26-Oct-2015
Almost exactly six months after the Nepal earthquake that killed nearly 10,000 people, an earthquake of similar magnitude hit northwest.

Over 260 dead as 7.5 **earthquake** rocks Afghanistan, Pak and India In-Depth - Hindustan <u>Times - 26-Oct-</u>2015

Explore in depth(4,890 more articles)

400-Plus Quakes Strike San Ramon in 2 Weeks: USGS NBC Bay Area - 27-Oct-2015

San Ramon, California, appears to have broken a new **earthquake** record over the last two weeks: A total of 408 small ... (Published Tuesday, Oct. 27, 2015).

Record-Breaking 408 **Earthquakes** Hit Bay Area City Over Past 2 ... International - Live Science - 27-Oct-2015

Explore in depth (107 more articles)

Afghanistan earthquake 2015: Which country has the mo...

City A.M. - 26-Oct-2015
Today, the world was struck by yet another major **earthquake**. This time it was in the mountainous Kush region in northern Afghanistan, close to .

Man clears rubble after **earthquake** In-Depth - Economic <u>Times - 27</u>-Oct-2015 Explore in depth (166 more articles)

Data Science and Machine Learning Workshop, 2017

Recommendations

Data Science and Machine Learning Workshop, 2017

What is Machine Learning?

• Machine learning is the science of getting computers to act without being explicitly programmed.

Data Science and Machine Learning Workshop, 2017

Learning from Data

• A major focus of machine learning research is to <u>automatically</u> <u>learn to recognize complex patterns and make intelligent decisions</u> based on data.

Data Science and Machine Learning Workshop, 2017

.

Type of Learning

- Supervised Learning
- Unsupervised Learning
- Reinforcement Learning

Data Science and Machine Learning Workshop, 2017

Supervised Learning

 Supervised learning is where you have input variables (x) and an output variable (Y) and you use an algorithm to learn the mapping function from the input to the outpu'

Data Science and Machine Learning Workshop, 2017

1

Supervised Learning (contd.)

- Classification: A classification problem is when the output variable is a category, such as "Yes/No" or "blue" or "disease" and "no disease".
- **Regression**: A regression problem is when the output variable is a real value, such as "dollars" or "weight".

Data Science and Machine Learning Workshop, 2017

Classification

Data Science and Machine Learning Workshop, 2017

Classification Example

RECORD_ID	AGE	SEX	PAIN_TYPE	BLOOD_PRESSURE	CHOLESTEROL	ECG	HEART_RATE	ANGINA	OLD_PEAK	SLOPE	NUM_VESSELS	THAL	Check
120	41	f	3	112	268	2	172	Y	0	1	0	3	not necessary
106	46	f	3	142	177	2	160	y	1.4	3	0	3	maybe
237	97	f	4	262	392	0	345	n	1.4	1	0	3	not necessary
75	67	f	4	106	223	0	142	n	0.3	1	2	3	not necessary
16	71	f	4	112	149	0	125	n	1.6	2	0	3	maybe
124	64	f	4	130	303	0	122	n	2	2	2	3	maybe
146	62	f.	4	138	294	0	106	n	1.9	2	3	3	maybe
208	121	f	4	300	679	0	317	Y	0.6	1	0	3	maybe
191	121	f	4	324	493	0	297	Y	1.4	2	0	3	maybe
62	51	f	4	130	305	.0	142	γ.	1.2	2	0	7	necessary
101	63	f	4	108	269	0	169	у	1.8	2	2	3	maybe
130	66	f	4	178	228	0	165	у	1	2	2	7	necessary
344	103	f	4	248	488	2	319	n	0	1	0	3	not necessary
15	57	f	4	128	303	2	159	n	0	1	1	3	not necessary
693	215	f	4	472	1,171	2	544	n	3.2	2	0	3	maybe
60	128	f	4	300	632	2	268	n	5	2	3	7	necessary
214	62	f	4	140	268	2	160	n	3.6	3	2	3	maybe
206	62	f	4	160	164	2	145	n	6.2	3	3	7	maybe
166	91	f	4	276	479	2	304	Y	0.2	2	0	3	maybe
399	104	f	4	277	648	2	282	y	4	2	0	7	necessary

Data Science and Machine Learning Workshop, 2017

Classification Example

Venue	Type of Wicket	Type of match	Batted first	Winning Team
Pakistan	Slow	ODI	Pakistan	Pakistan
India	Fast	Test	Pakistan	Pakistan
India	Slow	ODI	India	India
Pakistan	Slow	ODI	Pakistan	India
Third country	Fast	ODI	India	Pakistan
India	Fast	ODI	India	India
Pakistan	Fast	Test	India	Pakistan
Third country	Fast	Test	Pakistan	India
Third country	Slow	Test	India	Pakistan
Third country	Slow	ODI	Pakistan	Pakistan
Pakistan	Fast	ODI	Pakistan	India
Third country	Slow	Test	Pakistan	Pakistan
Pakistan	Fast	ODI	India	Pakistan
Third country	Fast	Test	Pakistan	India
India	Slow	ODI	Pakistan	???

Data Science and Machine Learning Workshop, 201

1

Decision Boundaries

Decision Boundary

https://web.stanford.edu/class/cs46n

Data Science and Machine Learning Workshop, 2017

1

Decision Boundary

Data Science and Machine Learning Workshop, 2017

Decision Boundary

Data Science and Machine Learning Workshop, 2017

2:

Illustrating Classification Task

Test Set

Tan, Steinbach, Kumar Introduction to Data Mining

Data Science and Machine Learning Workshop, 2017

Application of Classification

- E-mail Classification (Spam vs. Inbox)
- Object Recognition
- Intrusion Detection
- Loan Defaulter
- Fraud Detection
- Biometric Identification
 - Fingerprinting
 - Handwriting
 - Speech Recognition
- Search Engines

Data Science and Machine Learning Workshop, 2017

2:

Popular Machine Learning Techniques

- Classification
 - Decision Trees
 - Naïve Bayes
 - Artificial Neural Networks
 - Logistic Regression
 - Support Vector Machine
 - Random Forest
 - K-Nearest Neighbor

Data Science and Machine Learning Workshop, 201

Decision Tree Classifier

Data Science and Machine Learning Workshop, 201

2

Identifying Decision Boundary

Data Science and Machine Learning Workshop, 2017

Identifying Decision Boundary

Identifying Decision Boundary

Data Science and Machine Learning Workshop, 2017

Identifying Decision Boundary

Classification Example

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Data Science and Machine Learning Workshop, 2017

Classification Tree

Fig.1: 'Buys Computer?' Decision Tree (Han, Kamber & Pei).

Data Science and Machine Learning Workshop, 2017

31

Example of a Decision Tree

Data Science and Machine Learning Workshop, 2017

Apply Model to Test Data

Another Example of Decision Tree

There could be more than one tree that fits the same data!

Data Science and Machine Learning Workshop, 2017

Decision Tree Classification Task

Data Science and Machine Learning Workshop, 2017

21

Tree Induction

- Greedy strategy.
 - Split the records based on an attribute test that optimizes certain criterion.
- Issues
 - Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
 - Determine when to stop splitting

Data Science and Machine Learning Workshop, 2017

Measuring Impurity

Disease	Symptom 1	Symptom 2	Symptom 3
True	9	5	3
False	1	5	7

Data Science and Machine Learning Workshop, 2017

-

Measuring Impurity

- Greedy approach:
 - Nodes with homogeneous class distribution are preferred
- Need a measure of node impurity:

C0: 5 C1: 5 C0: 9 C1: 1

Non-homogeneous,

High degree of impurity

Homogeneous,

Low degree of impurity

Data Science and Machine Learning Workshop, 201

Measures of Node Impurity

• Gini Index

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

Entropy

$$Entropy(t) = -\sum_{j} p(j \mid t) \log p(j \mid t)$$

Data Science and Machine Learning Workshop, 2017

39

Examples for computing GINI

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
 $Gini = 1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$
Gini = 1 - $(1/6)^2$ - $(5/6)^2$ = 0.278

$$P(C1) = 2/6$$
 $P(C2) = 4/6$
 $Gini = 1 - (2/6)^2 - (4/6)^2 = 0.444$

Data Science and Machine Learning Workshop, 201

Measure of Impurity: Entropy

Entropy at a given node t:

NOTE:
$$Entropy(t) = -\sum_{j} p(j|t) \log p(j|t)$$

- Measures homogeneity of a node.
 - Maximum (log $\rm n_c$) when records are equally distributed among all classes implying least information
 - Minimum (0.0) when all records belong to one class, implying most information
- Entropy based computations are similar to the GINI index computations

Data Science and Machine Learning Workshop, 2017

4

Examples for computing Entropy

$$Entropy(t) = -\sum_{j} p(j \mid t) \log_{2} p(j \mid t)$$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

C2 **6** Entropy =
$$-0 \log 0 - 1 \log 1 = -0 - 0 = 0$$

Entropy =
$$-(1/6) \log_2 (1/6) - (5/6) \log_2 (5/6) = 0.65$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Entropy =
$$-(2/6) \log_2 (2/6) - (4/6) \log_2 (4/6) = 0.92$$

Data Science and Machine Learning Workshop, 201

Inducing a decision tree

- The key to building a decision tree which attribute to choose in order to branch.
- The *heuristic* is to choose the attribute with the minimum GINI/Entropy.

Data Science and Machine Learning Workshop, 2017

40

Algorithm for Decision Tree Induction

- Basic algorithm (a greedy algorithm)
 - Tree is constructed in a top-down recursive manner
 - At start, all the training examples are at the root
 - · Attributes are categorical
 - Examples are partitioned recursively based on selected attributes
 - Test attributes are selected on the basis of a heuristic or statistical measure (e.g., GINI/Entropy)
- Conditions for stopping partitioning
 - All examples for a given node belong to the same class
 - There are no remaining attributes for further partitioning majority voting is employed for classifying the leaf
 - There are no examples left

Data Science and Machine Learning Workshop, 20:

Evaluating a Classifier

Data Science and Machine Learning Workshop, 2017

4

Evaluating a Classifier

Data Science and Machine Learning Workshop, 2017

.

Partitioning Data into Train & Test

Data Science and Machine Learning Workshop, 2017

Cross Validation

https://sebastianraschka.com/faq/docs/evaluate-a-model.html

Data Science and Machine Learning Workshop, 2017

Measuring Classification Accuracy

Confusion Matrix:

	PRE			
		Class=Yes	Class=No	o. TD (Amus mositive)
ACTUAL	Class=Yes	а	b	a: TP (true positive) b: FN (false negative
CLASS	Class=No	С	d	c: FP (false positive) d: TN (true negative)

Data Science and Machine Learning Workshop, 2017

4

Metrics for Performance Evaluation...

		PREDICTED CLASS				
			Class=Yes	Class=No		
	ACTUAL CLASS	Class=Yes	a (TP)	b (FN)		
•		metric: Class≌No	c (FP)	d (TN)		

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Limitation of Accuracy

- Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10
- If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9%
 - Accuracy is misleading because model does not detect any class 1 example

Data Science and Machine Learning Workshop, 2017

5

Classification Accuracy Metrics

Measure	Formula		
Accuracy	$\frac{TP + TN}{TP + TN + FP + FN}$		
Misclassification rate (1 – Accuracy)	$\frac{FP + FN}{TP + TN + FP + FN}$		
Sensitivity (or Recall)	$\frac{TP}{TP + FN}$		
Specificity	$\frac{TN}{TN + FP}$		
Precision (or Positive Predictive Value)	$\frac{TP}{TP + FP}$		

Data Science and Machine Learning Workshop, 2017

Code Walkthrough

Hand-written digit recognition in Python using scikit-learn http://bit.ly/2ud6pPZ

Data Science and Machine Learning Workshop, 201

53

Exercise - Classification in Python using scikit-learn

http://bit.ly/2ud6pPZ

Data Science and Machine Learning Workshop, 2017