Дискретная модель колебания длины низкоприоритетной очереди в тандеме систем обслуживания при циклическом алгоритме с продлением

Кочеганов Виктор Михайлович¹, Зорин Андрей Владимирович²

- 1 Нижегородский госуниверситет им. Н. И. Лобачевского, e-mail: kocheganov@gmail.com
- 2 Нижегородский госуниверситет им. Н. И. Лобачевского, e-mail: zoav1602@gmail.com

В настоящее время при построении математических моделей сетей массового обслуживания, и тандемов в частности, применяется описательный подход. При таком подходе задание входных потоков и алгоритмов обслуживания производится на содержательном уровне, законы распределения длительностей обслуживания требований считаются известными и задаются с помощью интегральной функции распределения времени обслуживания произвольного требования. При этом не удается решить проблему изучения выходящих потоков из узлов, а также рассмотреть сети с не мгновенным перемещением требований между узлами и с зависимыми, разнораспределенными длительностями обслуживания требований.

В настоящей работе применяется новый подход к построению вероятностных моделей тандемов конфликтных систем массового обслуживания с различными алгоритмами управления в узлах. В рамках этого подхода удается решить проблему выбора описаний ω элементарных исходов случайного эксперимента и математически корректно определить случайный процесс, описывающий эволюцию системы, а также решить перечисленные выше частные задачи.

Постановка задачи на содержательном уровне

Рассмотрим систему массового обслуживания следующего вида. Пусть в систему с одним обслуживающим устройством поступают потоки Π_1 , Π_2 , Π_3 и Π_4 . Требования по потоку Π_j становятся в соответствующую очередь O_j с неограниченной вместимостью, $j \in \{1,2,3,4\}$. Для $j \in \{1,2,3\}$ дисциплина очереди O_j , имеет тип FIFO (First In First Out). Таким образом, для обслуживания из соответствующей очереди выбирается то требование, которое пришло раньше. Дисциплина очереди O_4 будет описана ниже. Входные потоки Π_1 и Π_3 формируются внешней средой, которая, будем предполагать, имеет только одно состояние, то есть вероятностная структура потоков не меняется с течением времени. Требования потоков Π_1 и Π_3 формируют независимые между собой неординарные пуассоновские потоки, то есть стационарные, без

последействия и ординарные потоки групп требований. Интенсивности соответствующих простейших потоков для Π_1 и Π_3 будем обозначать λ_1 и λ_3 , а распределение числа заявок в группе по потоку Π_j будем описывать производящей функцией $f_j(z) = \sum_{\nu=1}^\infty p_\nu^{(j)} z^\nu, \ j \in \{1,3\}$, которая предполагается аналитической при любом z из внутренности круга $|z| < (1+\varepsilon), \varepsilon > 0$. Величина $p_\nu^{(j)}$ определяет вероятность того, что по потоку Π_j число требований в группе равно ν . Обслуженные требования потока Π_1 поступают на повторное обслуживание, формируя при этом поток Π_4 . Потоки Π_2 и Π_3 являются конфликтными, что означает запрет на одновременное обслуживание требований этих потоков и, следовательно, исследование системы не может быть сведено к задаче с меньшим числом потоков. В каждый момент времени обслуживающее устройство находится в одном из конечного множества состояний $\Gamma = \{\Gamma^{(k,r)} \colon k = 0, 1, \ldots, d; r = 1, 2, \ldots n_k\}$ с заданными натуральными числами d, n_0 , n_1 , ..., n_d . В каждом состоянии $\Gamma^{(k,r)}$ обслуживающее устройство находится в течение времени $T^{(k,r)}$.

Предполагается, что длительности обслуживания различных требований могут быть зависимыми и иметь различные законы распределения, поэтому вместо классического способа, состоящего в указании функции распределения длительности обслуживания произвольного требования, будут использованы потоки насыщения. Потоки насыщения $\Pi_j^{\text{нас}}$, $j \in \{1,2,3,4\}$, определяются как виртуальные выходные потоки при условии максимального использования ресурсов обслуживающего устройства, а для $j \in \{1,2,3\}$ еще и при условии максимальной загрузки соответствующих очередей. Поток насыщения $\Pi_j^{\text{нас}}$, $j \in \{1,2,3\}$, будет содержать неслучайное число $\ell_{k,r,j}$ требований, обслуженных в течение времени $T^{(k,r)}$, если обслуживается очередь O_j , и будет содержать 0 требований в противном случае.

Для задания информации о системе введем следующие величины и элементы, а также укажем множества их возможных значений. Пусть \mathbb{Z}_+ — множество целых неотрицательных чисел. В качестве дискретной временной шкалы выберем последовательность $\tau_0=0,\,\tau_1,\,\tau_2,\,\ldots$ моментов смены состояний обслуживающего устройства. Обозначим Γ_i из множества Γ состояние обслуживающего устройства в течение времени $(\tau_{i-1};\tau_i]$, количество $\varkappa_{j,i}\in\mathbb{Z}_+$ требований в очереди O_j в момент времени τ_i , количество $\eta_{j,i}\in\mathbb{Z}_+$ требований, поступивших в очередь O_j по потоку Π_j в течение времени $(\tau_i;\tau_{i+1}]$, количество $\xi_{j,i}\in\mathbb{Z}_+$ требований по потоку насыщения Π_j^{hac} в течение времени $(\tau_i;\tau_{i+1}]$, количество $\xi_{j,i}\in\mathbb{Z}_+$ реально обслуженных требований по потоку Π_j в течение времени $(\tau_i;\tau_{i+1}],\,j\in\{1,2,3,4\}$.

Закон изменения состояния обслуживающего устройства будем предполагать заданным соотношением $\Gamma_{i+1} = h(\Gamma_i, \varkappa_{3,i})$, где вид отображения $h(\cdot, \cdot)$ описан в работе [...]. Для определения длительности T_{i+1} состояния обслуживающего устройства в течение времени $(\tau_i; \tau_{i+1}]$ удобно ввести функцию $h_T(\cdot, \cdot)$: $h_T(\Gamma_i, \varkappa_{3,i}) = T^{(k,r)}$, где $\Gamma^{(k,r)} = h(\Gamma_i, \varkappa_{3,i})$. Далее, функциональная зависимость

$$\overline{\xi}_{j,i} = \min\{\varkappa_{j,i} + \eta_{j,i}, \xi_{j,i}\}, \quad j \in \{1, 2, 3\},$$
(1)

между величиной $\overline{\xi}_{j,i}$ и величинами $\varkappa_{j,i}$, $\eta_{j,i}$, $\xi_{j,i}$ реализует стратегию механизма обслуживания требований. Далее, поскольку $\varkappa_{j,i+1} = \varkappa_{j,i} + \eta_{j,i} - \overline{\xi}_{j,i}$, то из (1) следует соотношение $\varkappa_{j,i+1} = \max\{0,\varkappa_{j,i} + \eta_{j,i} - \xi_{j,i}\}$ для $j \in \{1,2,3\}$. Из формулировки поставленной задачи также следуют соотношения для потока Π_4 : $\eta_{4,i} = \min\{\xi_{1,i},\varkappa_{1,i} + \eta_{1,i}\}$, $\varkappa_{4,i+1} = \varkappa_{4,i} + \eta_{4,i} - \eta_{2,i}$ и $\xi_{4,i} = \varkappa_{4,i}$.

Для $j \in \{1,3\}$ и $t \in \mathbb{R}$ функцию $\varphi_j(\cdot,\cdot)$ введем из разложения $\sum_{\nu=0}^{\infty} z^{\nu} \varphi_j(\nu,t) = \exp\{\lambda_j t(f_j(z)-1)\}$. Функцию $\psi(\cdot,\cdot,\cdot)$ зададим формулой $\psi(k;y,u) = C_y^k u^k (1-u)^{y-k}, \, k,y \in Z_+, \, u \in [0;1]$. Пусть $a=(a_1,a_2,a_3,a_4) \in \mathbb{Z}_+^4$ и $x=(x_1,x_2,x_3,x_4) \in \mathbb{Z}_+^4$ и $\Gamma^{(\tilde{k},\tilde{r})}=h(\Gamma^{(k,r)},x_3)$. Тогда из постановки задачи на содержательном уровне следует, что при фиксированном значении пары $(\Gamma_i;\varkappa_i)$ вероятность $\varphi(a,k,r,x)$ одновременного выполнения равенств $\eta_{1,i}=a_1,\,\eta_{2,i}=a_2,\,\eta_{3,i}=a_3,\,\eta_{4,i}=a_4$ есть $\varphi_1(a_1,h_T(\Gamma^{(k,r)},x_3))\times\psi(a_2,x_4,p_{\tilde{k},\tilde{r}})\times\varphi_3(a_3,h_T(\Gamma^{(k,r)},x_3))\times\delta_{a_4,\min\{\ell(\tilde{k},\tilde{r},1),x_1+a_1\}}$. Пусть $b=(b_1,b_2,b_3,b_4)\in\mathbb{Z}_+^4$. Из содержательной постановки задачи также следует, что вероятность $\zeta(b,k,r,x)$ одновременного выполнения равенств $\xi_{1,i}=b_1,\,\xi_{2,i}=b_2,\,\xi_{3,i}=b_3,\,\xi_{4,i}=b_4$ при фиксированном значении $(\Gamma_i;\varkappa_i)$ есть $\delta_{b_1,\ell(\tilde{k},\tilde{r},1)}\times\delta_{b_2,\ell(\tilde{k},\tilde{r},2)}\times\delta_{b_3,\ell(\tilde{k},\tilde{r},3)}\times\delta_{b_4,x_4}$.

В статье [...] конструктивно задается вероятностное пространство, на котором могут быть реализованы сформулированные выше функциональные связи и вероятностные свойства введенных объектов. Ниже в этой работе сформулированы три теоремы, формализующих модель колебаний длины низкоприоритетной очереди O_3 в терминах марковских цепей.

Теорема 1. Пусть $\Gamma_0 = \Gamma^{(k,r)} \in \Gamma$ и $\varkappa_{3,0} = x_{3,0} \in \mathbb{Z}_+$ фиксированы. Тогда последовательность $\{(\Gamma_i, \varkappa_{3,i}); i \geqslant 0\}$ является однородной счетной цепью Маркова.

Теорема 2. Пусть x_3 , $\tilde{x}_3 \in \mathbb{Z}_+$ и $\Gamma^{(k,r)}$, $\Gamma^{(\tilde{k},\tilde{r})} = h(\Gamma^{(k,r)},x_3)$. Тогда переходные вероятности $\mathbf{P}(\Gamma_{i+1} = \Gamma^{(\tilde{k},\tilde{r})},\varkappa_{3,i+1} = \tilde{x}_3|\Gamma_i = \Gamma^{(k,r)},$ $\varkappa_{3,i} = x_3)$ однородной счетной марковской цепи $\{(\Gamma_i,\varkappa_{3,i}); i \geqslant 0\}$ вычисляются по следующей формуле: $(1-\delta_{\tilde{x}_3,0})\varphi_3(\tilde{x}_3+\ell(\tilde{k},\tilde{r},3)-x_3,h_T(\Gamma^{(k,r)},x_3))+\delta_{\tilde{x}_3,0}\sum_{a=0}^{\ell(\tilde{k},\tilde{r},3)-x}\varphi_3(a,h_T(\Gamma^{(k,r)},x_3))$

Обозначим для $1\leqslant r\leqslant n_0$ множество $S_{0,r}^3=\{(\Gamma^{(0,r)},x_3)\colon x_3\in Z_+,$ $L\geqslant x_3>L-\max_{k=1,2,\ldots,d}\{\sum_{t=0}^{n_k}\ell_{k,t,3}\}\}$ и для $1\leqslant k\leqslant d,$ $1\leqslant r\leqslant n_k$ множество $S_{k,r}^3=\{(\Gamma^{(k,r)},x_3)\colon x_3\in Z_+,x_3>L-\sum_{t=0}^{r-1}\ell_{k,t,3}\}\}$, тогда верна также и следующая теорема.

Теорема 3. Множествами существенных состояний марковской цепи $\{(\Gamma_i, \varkappa_{3,i}); i \geqslant 0\}$ являются множества $\bigcup_{1 \leqslant r \leqslant n_0} S_{0,r}^3, \bigcup_{\substack{1 \leqslant k \leqslant d \\ 1 \leqslant r \leqslant n_k}} S_{k,r}^3$ и только они.

Список литературы

[1]