Problem Set 2 Avinash Iyer

Problem 1

Let \mathbb{F} be a field. Show that the following hold:

(i)
$$-1(a) = -a$$

(ii)
$$-(-a) = a$$

(iii)
$$-(a+b) = (-a) + (-b)$$

(iv)
$$(-a)^{-1} = -(a^{-1})$$

(v)
$$(ab)^{-1} = a^{-1}b^{-1}$$

(i)

$$0 = (1 + (-1))$$

$$0(a) = (1 + (-1))a$$

$$0 = 1(a) + (-1)(a)$$

$$0 = a + (-1)(a)$$

$$-a = (-1)(a)$$

(ii

$$0 = -(-a) + (-a)$$

$$a = -(-a) + ((-a) + a)$$

$$a = -(-a)$$

(iii

$$0 = -(a+b) + (a+b)$$

$$-b = -(a+b) + a + (b-b)$$

$$-a + (-b) = -(a+b) + (a-a)$$

$$(-a) + (-b) = -(a+b)$$

(iv

$$1 = (-a)^{-1}(-a)$$
$$-1 = (-a)^{-1}(a)$$
$$-1(a^{-1}) = (-a)^{-1}$$
$$-(a^{-1}) = (-a)^{-1}$$

Problem Set 2 Avinash Iyer

(v

$$1 = (ab)^{-1}(ab)$$
$$b^{-1} = (ab)^{-1}(a)$$
$$a^{-1}b^{-1} = (ab)^{-1}$$

Problem 2

Consider the set

$$K := \{ a + b\sqrt{2} \mid a, b \in \mathbb{Q} \}$$

Show that:

(i) $x, y \in K \Rightarrow x + y \in K \hat{x} y \in K$

(ii) $x \neq 0 \Rightarrow x^{-1} \in K$

(i)

Let $x, y \in K$. Then, $x = a + b\sqrt{2}$ and $y = c + d\sqrt{2}$, where $a, b, c, d \in \mathbb{Q}$.

 $x+y=(a+c)+(b+d)\sqrt{2}\in K$, as $\mathbb Q$ is closed under addition.

 $xy = (ac + 2bd) + (ad + bc)\sqrt{2} \in \mathbb{Q}$, as \mathbb{Q} is closed under multiplication.

(ii

Let $x = a + b\sqrt{2} \neq 0 \in K$. Thus, at least one of $a, b \neq 0$.

$$x^{-1} = \frac{1}{a + b\sqrt{2}}$$

$$= \frac{a - b\sqrt{2}}{a^2 - 2b^2}$$

$$= \frac{a}{a^2 - 2b^2} + \frac{-b\sqrt{2}}{a^2 - 2b^2}$$

Since $a/(a^2-2b^2)$ and $(-b)/(a^2-2b^2)$ are both in \mathbb{Q} , $x^{-1} \in K$.