Digital Filters & Spectral Analysis

Spectral Analysis using the DFT
Effects of Windowing and Spectral Sampling

Spectral Analysis using the DFT

DFT Analysis of Sinusoidal Signals

```
Matlab code
```

```
% DFT Length N=10;
```

n=0:N-1;

% Signal $cos(2\pi F_0 n)$

Omega0=2*pi*0.2;

xn=cos(Omega0*n);

% DFT spectrum

Xk=fft(xn);

k=0:N-1;

stem(k,abs(Xk))

Expected Spectrum (DTFT)

Two impulses at Ω_0 and 2π - Ω_0

Spectrum looks as expected

Spectral Analysis using the DFT

DFT Analysis of Sinusoidal Signals

```
Matlab code
```

```
% DFT Length N=10; n=0:N-1;
```

```
% Signal cos(2\pi F_0 n)
Omega0=2*pi*0.25;
```

xn=cos(OmegaO*n);

```
% DFT spectrum Xk=fft(xn); k=0:N-1;
```

stem(k,abs(Xk))

Expected Spectrum (DTFT)

Two impulses at Ω_0 and 2π - Ω_0

Ooops.....

Spectral Analysis using the DFT

DFT Analysis of Sinusoidal Signals

What is going on?

Discrete Fourier Transform

Spectral Analysis using the DFT

From the DTFT to the DFT

Discrete Fourier Transform

Spectral Analysis using the DFT

From the DTFT to the DFT

DTFT

$$X(\Omega) = \sum_{n=-\infty}^{\infty} x[n] \cdot e^{-j\Omega n}$$

 $x[n] = \frac{1}{2\pi} \int_{2\pi} X(\Omega) e^{j\Omega n} d\Omega$

- Effect of Windowing on the Spectrum
 - Properties of different Windows

Spectral Smearing & Power Leakage

- Effect of Spectral Sampling
 - Frequency resolution

Misleading picture of the true spectrum

$$X[k] = \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi}{N}kn}$$

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j\frac{2\pi}{N}kn}$$

The Effect of Windowing on the DFT Spectrum

Why windowing

Audio signal duration : 10 sec
Sampling rate : 44 KHz

Total number of samples : 440,000

Minimum DFT Length : 440,000!

The Effect of Windowing on the DFT Spectrum

Windowing for very long or indefinitely long signals

The Effect of Windowing on the DFT Spectrum

DFT Analysis of Sinusoidal Signals

1. Continuous time signal

$$s_c(t) = A_0 \cos(\omega_0 t) + A_1 \cos(\omega_1 t), -\infty < t < \infty$$

2. Sampling

$$x[n] = A_0 \cos(\Omega_0 n) + A_1 \cos(\Omega_1 n), -\infty < n < \infty$$

3. Multiply signal with window

$$v[n] = A_0 w[n] \cos(\Omega_0 n) + A_1 w[n] \cos(\Omega_1 n)$$

4. DTFT of windowed signal v[n]

$$v[n] = x[n]w[n] \overset{DTFT}{\Leftrightarrow} V[\Omega] = \frac{1}{2\pi} X[\Omega] \otimes w[\Omega] = V[\Omega] = \frac{A_0}{2} W(\Omega - \Omega_0) + \frac{A_0}{2} W(\Omega + \Omega_0) + \frac{A_0}{2} W(\Omega - \Omega_1) + \frac{A_0}{2} W(\Omega + \Omega_1)$$

The Effect of Windowing on the DFT Spectrum

DTFT of rectangular window

$$w[n] = \begin{cases} 1 & 0 \le n \le M \\ 0 & \text{elsewhere} \end{cases}$$

$$W(\Omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n} = \sum_{n=0}^{M} e^{-j\Omega n} = 1 + e^{-j\Omega} + e^{-j2\Omega} + \dots + e^{-j(M-1)\Omega} + e^{-jM\Omega}$$
 (1)

Geometric series:
$$1+\alpha+\alpha^2+\ldots+\alpha^M=\frac{1-\alpha^{M+1}}{1-\alpha}$$
 with $\alpha=e^{-j\Omega}$

$$\stackrel{(1,2)}{\Longrightarrow} W(\Omega) = \frac{1 - e^{-j\Omega(M+1)}}{1 - e^{-j\Omega}} = \frac{e^{j\Omega/2}}{e^{j\Omega/2}} \frac{1 - e^{-j\Omega(M+1)}}{1 - e^{-j\Omega}} \stackrel{(3,4)}{=} e^{-j\Omega(M/2)} \frac{e^{j\Omega(M+1)/2} - e^{-j\Omega(M+1)/2}}{e^{j\Omega/2} - e^{-j\Omega/2}}$$

$$1 - e^{-j\Omega(M+1)} = e^{-j\Omega\frac{(M+1)}{2}} (e^{j\Omega\frac{(M+1)}{2}} - e^{-j\Omega\frac{(M+1)}{2}})$$
 (3)
$$e^{-j\Omega\frac{(M+1)}{2}} e^{j\frac{\Omega}{2}} = e^{-j\Omega(M/2)}$$

$$e^{-j\Omega\frac{(M+1)}{2}}e^{j\frac{\Omega}{2}}=e^{-j\Omega(M/2)}$$

The Effect of Windowing on the DFT Spectrum

DTFT of rectangular window

$$w[n] = \begin{cases} 1 & 0 \le n \le M \\ 0 & \text{elsewhere} \end{cases}$$

$$W(\Omega) = e^{-j\Omega(M/2)} \frac{e^{j\Omega(M+1)/2} - e^{-j\Omega(M+1)/2}}{e^{j\Omega/2} - e^{-j\Omega/2}} \qquad \Rightarrow \qquad W(\Omega) = e^{-j\Omega(M/2)} \frac{\sin(\Omega(M+1)/2)}{\sin(\Omega/2)}$$

$$e^{j\Omega(M+1)/2} - e^{-j\Omega(M+1)/2} = 2j\sin(\Omega(M+1)/2), \quad e^{j\Omega/2} - e^{-j\Omega/2} = 2j\sin(\Omega/2)$$

(5)

$$\frac{W(\Omega) = 0}{-\pi < \Omega < \pi}$$
 \Rightarrow $\sin(\Omega(M+1)/2) = 0$ $\Rightarrow \frac{\Omega(M+1)/2 = k\pi}{k = 0,1,2...}$ $\Rightarrow \Omega = \frac{k2\pi}{M+1}$

$$M = 7$$
: $W(\Omega) = 0$ at $2\pi/8$, $4\pi/8$, $6\pi/8$

The Effect of Windowing on the DFT Spectrum

DTFT of rectangular window

The Effect of Windowing on the DFT Spectrum

DTFT of Windowed Signal

Windowed signal in the time domain

$$v[n] = A_0 w[n] \cos(\Omega_0 n) + A_1 w[n] \cos(\Omega_1 n), \ 0 \le n < 64$$

$$A_0 = 1$$
, $A_1 = 0.75$, $\Omega_0 = 2\pi/14$, $\Omega_1 = 4\pi/15$

The Effect of Windowing on the DFT Spectrum

DTFT of Windowed Signal

DTFT of length 64 rectangular window

$$w[n] = \begin{cases} 1 & 0 \le n \le M \\ 0 & \text{elsewhere} \end{cases}$$

DTFT of signal

$$x[n] = A_0 \cos(\Omega_0 n) + A_1 \cos(\Omega_1 n)$$

with $A_0 = 1$, $A_1 = 0.75$, $\Omega_0 = 2\pi/6$, $\Omega_1 = 2\pi/3$

$$V[\Omega] = \frac{A_0}{2}W(e^{j(\Omega-\Omega_0)}) + \frac{A_0}{2}W(e^{j(\Omega+\Omega_0)}) + \frac{A_1}{2}W(e^{j(\Omega-\Omega_1)}) + \frac{A_1}{2}W(e^{j(\Omega-\Omega_1)})$$

The Effect of Windowing on the DFT Spectrum

DTFT of Windowed Signal - Power leakage

The two frequencies can be resolved

$$\Delta\Omega = \Omega_1 - \Omega_0 = \frac{\pi}{3} = 2\pi\Delta F \Rightarrow \Delta F = \frac{1}{6}, \ \Delta f = \Delta F \times f_s = \frac{1}{6} \times 10kHz = 1.66kHz$$

The Effect of Windowing on the DFT Spectrum

DTFT of Windowed Signal - Power leakage

The Effect of Windowing on the DFT Spectrum

DTFT of Windowed Signal - Power leakage

The two frequencies can barely be resolved

The Effect of Windowing on the DFT Spectrum

DTFT of Windowed Signal - Power leakage

The two frequencies cannot be resolved any more

The Effect of Windowing on the DFT Spectrum

Spectral smearing, power leakage and reduced resolution

Types of Window

Rectangular Window

Largest side-lobe relative amplitude of all commonly used windows

Narrowest main lobe $(\Delta_{ml}=4\pi/L)$

Types of Window

Triangular Window

Wider main lobe width

Types of Window

Hanning Window (raised cosine)

Main lobe width $\Delta_{ml} = 8\pi/L$

Types of Window

Hamming Window

Main lobe width $\Delta_{ml} = 8\pi/L$

Types of Window

Blackman Window

Main lobe width $\Delta_{ml} = 12\pi/L$

Types of Window

Kaiser-Bessel Window

Wider main lobe width

Lower side-lobe relative amplitude

Trade-off between main lobe width and side-lobe relative amplitude possible

Types of Window

Dolph-Chebyshev Window

Wider main lobe width

Lower side-lobe relative amplitude

Trade-off between main lobe width and side-lobe relative amplitude possible

Comparison of commonly used windows

Tapering the window smoothly to zero reduces the side-lobe amplitude

Type of Window	Peak Side-Lobe Amplitude (Relative)	Approximate Width of Main Lobe
Rectangular	-13	$4\pi/(M+1)$
Bartlett	-25	$8\pi/M$
Hann	-31	$8\pi/M$
Hamming	-41	$8\pi/M$
Blackman	-57	$12\pi/M$

The Effect of Windowing on the DFT Spectrum

DTFT of Windowed Signal

Windowed signal in the time domain

$$v[n] = A_0 w[n] \cos(\Omega_0 n) + A_1 w[n] \cos(\Omega_1 n), \ 0 \le n < 64$$

$$A_0 = 1$$
, $A_1 = 0.75$, $\Omega_0 = 2\pi/14$, $\Omega_1 = 4\pi/15$

The Effect of Spectral Sampling

Spectral smearing & spectral sampling: misleading picture of true spectrum

$$\begin{array}{c|c}
\Omega_{0} = \frac{2\pi}{N} k_{0} \Rightarrow k_{0} = \frac{N\Omega_{0}}{2\pi} \\
\Omega_{0} = 2\pi/14 , N = 64
\end{array}
\Rightarrow k_{0} = 4.571..$$

$$\Omega_{1} = \frac{2\pi}{N} k_{1} \Rightarrow k_{1} = \frac{N\Omega_{1}}{2\pi} \\
\Omega_{1} = 2\pi/7.5 , N = 64
\end{aligned}
\Rightarrow k_{1} = 8.533..$$

$$k = 4 < k_{0} < k = 5$$

$$\Omega_{1} = 2\pi/7.5 , N = 64$$

The locations of peaks in DFT do not necessarily coincide with the exact frequency locations of the peaks in the DTFT since the true spectrum peaks can lie between spectrum samples

$$v[n] = A_0 w[n] \cos(\Omega_0 n) + A_1 w[n] \cos(\Omega_1 n), \quad 0 \le n < 64 \quad A_0 = 1, A_1 = 0.75, \Omega_0 = 2\pi/14, \Omega_1 = 4\pi/15$$

Spectral Smearing & Periodicity

Spectral smearing as a result of a lack of periodicity

For the signal to be periodic in 64

$$\Omega_0 N = 2\pi k \Rightarrow \Omega_0 = 2\pi \frac{k}{N}$$
 in application of $\Omega_0 N = 2\pi k \Rightarrow \Omega_0 = 2\pi \frac{k}{N}$

$$\Omega_0 = 2\pi/14$$
, $\Omega_1 = 4\pi/15$

$$\frac{2\pi}{14} = \frac{2\pi}{64} k \implies k = \frac{64}{14} = 4.571..$$

$$\frac{2\pi}{7.5} = \frac{2\pi}{64}k \Rightarrow k = \frac{64}{7.5} = 8.533..$$

DT periodicity (Lecture 5):
$$x[n] = x[n+N]$$

N integer

$$\cos(\Omega_0 n) = \cos[\Omega_0 (n+N)] = \cos(\Omega_0 n + \Omega_0 N)$$

$$\Omega_0 N = 2\pi k \Rightarrow \Omega_0 = 2\pi \frac{k}{N} \quad \text{same applies to}$$

$$e^{j\Omega_0 n} = e^{j\Omega_0 (n+N)}$$

Spectral Smearing & Periodicity

Spectral smearing as a result of discontinuities at the borders

Windowing the signal => Potential discontinuities between $x_p[mN-1]$ and $x_p[mN]$

Discontinuities ⇔ multiple frequencies

```
N=100;
Omega0=0.015*2*pi;
n=0:N-1;
xn=cos(Omega0*n);
xp = [xn,xn,xn];
n2 = -N:2*N-1;
plot(n2,xp)
axis([-10,110,-1,1]);
```


The Effect of Windowing on the DFT Spectrum

DTFT of Windowed Signal

Windowed signal in the time domain

$$v[n] = A_0 w[n] \cos(\Omega_0 n) + A_1 w[n] \cos(\Omega_1 n), \ 0 \le n < 64$$

$$A_0 = 1$$
, $A_1 = 0.75$, $\Omega_0 = 2\pi/16$, $\Omega_1 = 2\pi/8$

The Effect of Spectral Sampling

Spectral smearing & spectral sampling: misleading picture of true spectrum

Although the signal has significant frequency content at almost all frequencies, the DFT does not show that because of the sampling of the spectrum (Ω_0 and Ω_1 are multiples of $2\pi/N$)

$$v[n] = A_0 w[n] \cos(\Omega_0 n) + A_1 w[n] \cos(\Omega_1 n), \quad 0 \le n < 64 \quad A_0 = 1, A_1 = 0.75, \Omega_0 = 2\pi/16, \Omega_1 = 2\pi/8$$

The Effect of Spectral Sampling

What happens if we increase the spectral sampling rate (DFT length - zero padding)

$$\Omega_0 = \frac{2\pi}{N} k_0 \Rightarrow k_0 = \frac{N\Omega_0}{2\pi} \\
\Omega_0 = 2\pi/16, \quad N = 128$$

$$\Rightarrow k_0 = \frac{128}{16} = 8$$

$$\Omega_1 = \frac{2\pi}{N} k_1 \Rightarrow k_1 = \frac{N\Omega_1}{2\pi} \\
\Omega_1 = 2\pi/8, \quad N = 128$$

$$\Rightarrow k_1 = \frac{128}{8} = 16$$

With finer sampling of the spectrum the presence of significant spectral content at other frequencies becomes apparent

$$v[n] = A_0 w[n] \cos(\Omega_0 n) + A_1 w[n] \cos(\Omega_1 n), \quad 0 \le n < 64 \quad A_0 = 1, A_1 = 0.75, \Omega_0 = 2\pi/16, \Omega_1 = 2\pi/8$$

Problem with DFT: Spectrum not always what we expect

Spectrum looks as expected

$$k_1 = 10 \times 2 \times 0.2\pi / 2\pi = 2$$
 $k_2 = 10 - 2 = 8$ $k_1 = N\Omega_0 / 2\pi$, $k_2 = N - k_1$

Problem with DFT: Spectrum not always what we expect

Matlab


```
N=10;
n=0:N-1;
Omega0=0.25*2*pi;
xn=cos(n*Omega0);
Xk = fft(xn);
k=0:N-1;
stem(k,abs(Xk))
```

Ooops....

$$k_1 = 10 \times 0.25 \times 2\pi / 2\pi = 2.5$$
 $k_2 = 10 - 2.5 = 7.5$ $k_1 = N\Omega_0 / 2\pi$, $k_2 = N - k_1$

Windowing & Zero Padding

Keiser Window – Different window lengths

DFT analysis with Kaiser window. (a) Windowed sequence for L = 64. (b) Magnitude of DFT for L = 64. (c) Windowed sequence for L = 32. (d) Magnitude of DFT for L = 32.

Windowing & Zero Padding

Keiser Window – Fixed window length with zero padding

Time Frequency Tradeoffs

Large Window

- Good resolution in frequency
- + Less spectral smearing / power leakage
- Poor resolution in time
- Higher complexity

Small Window

- + Good resolution in time
- Lower complexity
- Poor resolution in frequency
- More spectral smearing / power leakage

Uncertainty Principle: Resolution in time x Resolution in frequency = constant

