Integracion Simpson 3/8

José Ramón Pérez Navarro

Noviembre, 2019

0.1. Programa

El método de integración de Simpson 3/8 se basa en la aproximación de un polinomio de orden 3, es decir, necesita tres intervalos para deducir la formulación. Por tanto, el método como tal funciona con cuatro puntos.

Código del programa

```
% Programa para integrar una función numéricamente, utiliza la regla de Simpson ti
\% octavos. El programa inicia con dos intervalos y va aumentando el número de elllpha
% hasta que llega a un resultado en el cual dos soluciones consecutivas no sean
% diferentes respecto a una tolerancia especificada.
% La función es x^4 + 2*x + 8 en el intervalo [0,30].
% La solución analítica a esta integral da como resultado 4 861 140 clear all clc
% Regla de Simpson 3/8. a = 0;
% Límite inferior. b = 30;
% Límite superior. N = 3;
% Número de intervalos. h = (b-a)/N;
% Tamaño de cada intervalo. x = (a:h:b);
% Vector de muestras. fx = x.^4 + 2.*x + 8;
% Valor de la función en los puntos
% elegidos. k = 1;
% Contador de iteraciones. Is3(k) = (3*h/8)*(fx(1)+3*fx(2)+3*fx(3)+fx(4));
% Primer resultado de la integral
% con un solo intervalo.
\% Reducir el paso de integración. tol = 1; while tol > 1e-1 \mathbb N = 2*N;
% Duplicar el número de muestras.
                                     h = (b-a)/N;
% Determinar el paso de integración.
                                         x = (a:h:b);
% Vector de muestras.
                         fx = x.^4 + 2.*x + 8;
% Valor de la función en los puntos elegidos.
                                                  Sp = length(fx);
% Número de muestras.
% Aumenta el contador de iteraciones en 1.
                                       Is3(k) = (3*h/8)*(fx(1) + 3*sum(fx(2:3:Sp-2)))
% Integral numérica con N muestras.
% Evaluación de la tolerancia. end
% Muestra en la pantalla todas las aproximaciones. Is3
```