

Bevezetés

- adatok valamely célszerűen rendezett, szisztéma szerinti tárolása
- az informatika elterjedése előtt is számos adatbázis létezett pl.
 - Vállalati személyzeti nyilvántartás
 - Könyvtári kartoték rendszerek

 Manapság adatbázis-kezelő rendszerekről beszélünk, melyekbe beleértjük az adatok mellett az adatok

Bevezetés

- Az adatok használata általános: gyakorlatilag minden szoftver használ, kezel adatokat
- Az adat állandóan változik: ipari, banki, korházi, oktatási rendszerek
- Az adat értéke, fontossága
 - Hardver könnyen pótolható
 - Szoftver újratelepíthető
 - Adatoknak naprakésznek kell lennie: korház, bank -> nagy értékkel bír, fontos a biztonsága, fontos olyan megoldásokat találni, amik ezt biztosítják
 - Az adatban rögzített információnak nagy kereskedelmi, katonai, magánértéke is lehet > fontos a védelem az illetéktelen hozzáférésektől való védelem
- Az adatok mennyisége nagy, és gyorsan nő

Számítógépes adatkezelés korszakai

- A programozás kora: a fájl alapú adatkezelő megoldás. Adatok tárolási logikáját a program ismeri (fizikai és logikai), az adatszerkezet módosulása esetén a programot is módosítani kell. A konkurens adatelérést a operációs rendszerek nem támogatják. Jogosultságok kezelése?
- Adatbázis alapú megoldás: Adatok tárolási logikáját a DBMS ismeri (fizikai és logikai). A DBMS-ben egy központi helyen lehet megoldani a konkurens adat elérés és a jogosultságok kérdését.
- A "harmadik" korszak: a megnövekedett anyagmennyiség feldolgozása új megoldásokat követel, ezek megjelenése, fejlesztése folyamatos

Adatbázis-kezelők előnyei

- Elfedi az adatok fizikai tárolási szerkezetét, a felhasználóknak, programoknak csak a logikai adatszerkezetet kell ismernie
- Hatékony adatelérést biztosítanak
- Adatintegritás ellenőrzése, jogosultságok kezelése
- Konkurens adatelérés és adatvesztés elleni védelem (hardver hiba esetén is)
- Lerövidíti a programfejlesztés idejét

Adatbázis-kezelő rendszerekkel szembeni elvárások

- Az adatbázisrendszer tegye lehetővé új adatbázis létrehozását, amelynek sémáját, logikai struktúrát adatdefiníciós nyelven adhatjuk meg (DDL-Data Definition Language)
- Az adatbázisrendszer tegye lehetővé az adatok lekérdezését és módosítását: lekérdező- és adatmanipulációs nyelv (DML: Data Manipulation Language)
- Az adatbázisrendszer támogassa a nagy adattömegek hatékony, hosszú időn keresztül való tárolását, garantálja az adatok biztonságát meghibásodás és illetéktelen hozzáférés ellen.
- Az adatbázisrendszer tegye lehetővé a tárolt adathalmazhoz való párhuzamos hozzáférést

Néhány ismertebb DBMS (Database Management System)

- xBase rendszerek (dBase, FoxPro, Clipper): elavult, de még sok alkalmazás működik.
- Access (Microsoft): könnyen kezelhető grafikus felület, kisebb alkalmazásokhoz.
- MySQL: nyílt forráskódú, adatbázis-szerver, közepes méretű (pl. webes) alkalmazásokhoz.
- Oracle: nagy adatbázis, sok felhasználó, különleges biztonsági követelmények.

Adatbázis-alkalmazás felépítése

Felhasználói felület

célalkalmazásként készített program

Adatmodell

DBMS

Fizikai adatstruktúra

Adatmodellek - Hierarchikus adatbázis modell

- A hierarchikus modell volt a legelső az adatbáziskezelőkben és egyben a leginkább korlátozott.
- A hierarchikus modell az 1960-s évek végén alakult ki és az 1970-s évek végéig használták.
- Az IBM IMS adatbáziskezelő rendszer alkalmazta ezt a modellt.
- A neve is utal rá, hogy az adatokat egy hierarchiában kell elrendezni.

Adatmodellek - Hierarchikus adatbázis modell

- Az adatbázis több egymástól független fából állhat.
- A fa csomópontjaiban és leveleiben helyezkednek el az adatok. A közöttük levő kapcsolat, szülő gyermek kapcsolatnak felel meg.
- 1:n típusú kapcsolatok képezhetők le segítségével.
- Az 1:n kapcsolat azt jelenti, hogy az adatszerkezet egyik típusú adata a hierarchiában alatta elhelyezkedő egy vagy több más adattal áll kapcsolatban.

- A hálós adatmodell esetén az egyes azonos vagy különböző összetételű adategységek (rekordok) között a kapcsolat egy gráffal írható le.
- A gráf csomópontok és ezeket összekötő élek rendszere, melyben tetszőleges két csomópont között akkor van adatkapcsolat, ha őket él köti össze egymással.
- Egy csomópontból tetszőleges számú él indulhat ki, de egy él csak két csomópontot köthet össze. Azaz minden adategység tetszőleges más adategységekkel lehet kapcsolatban. ebben a modellben n:m típusú adatkapcsolatok is leírhatók az 1:n típusúak mellett.
- 1971-ben az adatrendszer nyelvek konferenciáján (CODASYL) definiálták.

 A hierarchikus és a hálós modell esetén az adatbázisba fixen beépített kapcsolatok következtében csak a tárolt kapcsolatok segítségével bejárható adat-visszakeresések oldhatók meg hatékonyan (sok esetben hatékonyabban mint más modellekben).

Hátrányuk, hogy szerkezetük merev, módosításuk

nehézke

- Lekérdezések megvalósításához az eredeti javaslat a <u>CO</u>
 <u>BOL</u> nyelvet javasolta, ezt váltotta fel később a PL1 majd
 az interaktív felhasználói felület.
- Legismertebb hálós adatbázis kezelő programok:
 - TurboIMAGE
 - IDMS
 - RDM Embedded
 - RDM Server

- A hálós adatmodell a hierarchikus adatmodell továbbfejlesztett változata, a bonyolultabb kapcsolatok ábrázolását már jobban lehetővé teszi.
- 1969-ben a CODASYL bizottság által létrehozott DBTG (Data Base Task Group) jelentése alapján hozták létre.
- Két évtizeden keresztül, a relációs adatbázis megjelenéséig szinte kizárólag ezt használták.

Adatmodellek - Relációs adatbázis modell

- A relációs az egyik legáttekinthetőbb és a 80-as évektől kezdve a legelterjedtebb adatmodell.
- Kidolgozása E. F. Codd (1923-2003) nevéhez fűződik, 1970-ben jelent meg alapvető műve a ""A Relational Model Data Large Shared Data Banks".
- A relációs modellben az adatokat táblázatok soraiban képezzük le.
- A legfontosabb eltérés az előzőekben bemutatott két modellhez képest az, hogy itt nincsenek előre definiált kapcsolatok az egyes adategységek között, hanem a kapcsolatok létrehozásához szükséges adatokat tároljuk többszörösen.
- RDBMS = Relational DBMS.
 Szabványos leíró/lekérdező nyelv: SQL.

Adatmodellek - Relációs adatbázis modell

1:n típusú kapcsolatok leképzése a relációs modellben (n db. 1:1 kapcsolat) szülő-gyerek

szülők	gyerekek				
szülő1	gyerek1				
szülő1	gyerek2				
szülő1	gyerek3				

Relációk és attribútumok elnevezése legyen logikus

n:m típusú kapcsolatok leképzése a relációs modellben (n x m db. 1:1 kapcsolat) projekt-dolgozó

projektek	dolgozók
projekt1	dolgozó1
projekt1	dolgozó2
projekt2	dolgozó2
projekt2	dolgozó3

Adatmodellek - Objektum-relációs adatbázis modell

- Az objektum relációs adatmodell a relációs adatmodell bővítésével állt elő.
- Egyrészt az objektum orientált megközelítésben használt osztály, objektum, öröklődés fogalmakat alkalmazza az relációs adatbázis táblákra és a lekérdező nyelvet is ez irányba bővíti.
- Másrészt pedig támogatja az adatmodell bővítését saját adattípusokkal és azokat kezelő beépített függvényekkel.
- ORDBMS = Object-Relational DBMS.
 Leíró/lekérdező nyelv: SQL3 szabvány.

Adatmodellek - Objektumorientált adatbázis modell

- Az objektumorientált adatmodell az objektumorientált programozás módszertanának egy része.
 - egységbezártság: az objektum adatok és műveletek összessége
 - adat absztrakció: adatokat absztrakt módon lehet ábrázolni
 - öröklődés: az alacsonyabb szinteken lévő objektumokból (szülő) levezetett magasabb szintű objektumok (gyerek) öröklik a szülők tulajdonságait.
 - többalakúság: ugyanazt az utasítást az egyes objektumok saját előírásaiknak megfelelően értelmezik.
- Az objektumorientált adatbázisok az objektumorientált programozási nyelvek térhódításával terjedtek el.
- Hatékonyságukban jelenleg még alulmaradnak a relációs adatbázisokkal szemben.
- A legfontosabb objektumorientált termékek
 - Gemstone
 - Jasmine
 - ObjectStore
 - 02

Adatmodellek – félig-strukturált adatbázis modell

- A félig-struktulált modellben a séma az adatokból kikövetkeztethető, nem előre, elkülönítetten kerül meghatározásra
- Legfontosabb megvalósítása XML-el segítségével valósul

Adatmodellek - NoSQL

- A NoSQL adatbázisok elsősorban nem táblákban tárolják az adatokat, és általában nem használnak SQL nyelvet lekérdezésre.
- A legtöbb NoSQL adatbázis szerver erősen optimalizált írás és olvasás műveletekre, míg ezen túl nem sok műveletet támogatnak.
- Ezt a viszonylag szűk funkcionalítást a jobb sebességgel és skálázhatósággal kompenzálják.
- A NoSQL adatbázisokat kategóriákra bonthatjuk az adattárolás módja alapján
 - Dokumentumtárolók
 - Gráf adatbázisok
 - Kulcs-érték adatbázisok
 - Objektum-adatbázisok

Adatmodellek – Miért van ilyen sokféle?

Relációs adatbázisok

- Strukturált adatok
- Rögzített adatbázisséma (táblák rendszere)
- Megbízható, gyors
- SQL lekérdező nyelv

Name	Null?	Туре
EMPLOYEE_ID	NOT NULL	NUMBER(6)
FIRST_NAME		VARCHAR2(20)
LAST_NAME	NOT NULL	VARCHAR2 (25)
EMAIL	NOT NULL	VARCHAR2 (25)
PHONE_NUMBER		VARCHAR2(20)
HIRE_DATE	NOT NULL	DATE
JOB_ID	NOT NULL	VARCHAR2(10)
SALARY		NUMBER(8,2)
COMMISSION_PCT		NUMBER(2,2)
MANAGER_ID		NUMBER(6)
DEPARTMENT_ID		NUMBER(4)

IR	DEPARTMENTS department_id	LOCATIONS location_id street_address
	department_name manager_id location_id	postal_code city state_province
JOB_HISTORY	A	country_id
employee_id start_date		
end_date job_id department_id	employee_id first_name last_name email phone_number hire_date	COUNTRIES country_id country_name region_id
JOBS	job_id	
job_id job_title min_salary max_salary	salary commission_pct manager_id department_id	REGIONS region_id region_name

MPLOYEE_ID	FIRST_NAME	LAST_NAME	EMAIL	PHONE_NUMBER	HIRE_DAT
100	Steven	King	SKING	515.123.4567	17-JUN-87
101	Neena	Kochhar	NKOCHHAR	515.123.4568	21-SEP-89
102	Lex	De Haan	LDEHAAN	616.123.4669	13-JAN-93
103	Alexander	Hunold	AHUNOLD	590.423.4567	03-JAN-90
104	Bruce	Emst	BERNST	590.423.4568	21-MAY-91
107	Diana	Lorentz	DLORENTZ	690.423.5567	07-FEB-99
124	Kevin	Mourgos	KMOURGOS	650.123.5234	16-NOV-99
141	Trenna	Rajs	TRAJS	650.121.8009	17-OCT-95
142	Curtis	Davies	CDAVIES	650.121.2994	29-JAN-97
143	Randall	Matos	RMATOS	650.121.2874	15-MAR-96
144	Peter	Vargas	PVARGAS	650.121.2004	09-JUL-98
149	Eleni	Zlotkey	EZLOTKEY	011.44.1344.429018	29-JAN-00
174	Ellen	Abel	EABEL	011.44.1644.429267	11-MAY-96
176	Jonathon	Taylor	JTAYLOR	011.44.1644.429265	24-MAR-96
178	Kimberely	Grant	KGRANT	011.44.1644.429263	24-MAY-99
200	Jennifer	VVhalen	JWHALEN	616.123.4444	17-SEP-87
201	Michael	Hartstein	MHARTSTE	616.123.6666	17-FEB-96
202	Pat	Fay	PFAY	603.123.6666	17-AUG-97
205	Shelley	Higgins	SHIGGINS	615.123.8080	07-JUN-94
206	William	Gietz	VVGIETZ	616.123.8181	07-JUN-94

Adatmodellek – Miért van ilyen sokféle?

A relációs adatmodell korlátai

Hogyan tárolnánk ezt relációs adatbázisban?

Adatmodellek – Miért van ilyen sokféle? A relációs adatmodell korlátai

Miből áll ez az oldal?

Vegyes új évre, lassú kilábalásra, a munkanélküliség további növekedésére és az infláció drasztikus visszatérésére számít az Európai Unió gazdaságában Barcza György, a K&H Bank elemzési igazgatója. Magyarországot a román vagy török szintre való "lezárkózás" veszélye fenyegeti.

1. SZÖVEG

2. KÉP

DEVIZA		
CHF/HUF	183.92	+0.003%
EUR/HUF	273.36	0%
EUR/USD	1.43	+0.005%
USD/HUF	191.07	0%

3. TÁBLÁZAT

Erős	marad az MVM
Egysé	eges lesz az eredetiségvizsgálat
Oszk	ó eltörölné az iparűzési adót
Meg	kell szüntetni a lánctartozást
Kina l	hónapokon belül megelőzheti Japánt
Jól te	ljesítenek a regionális programok
Jövör	e stabilizálódik a mobilpiac

4. FORMÁZÁS

5. GRAFIKON

6. HIPERLINK

Relációk és a velük kapcsolatos alapfogalmak

Fogalmak

- A reláció nem más mint egy <u>táblázat</u>, a táblázat soraiban tárolt adatokkal együtt.
- A relációs adatbázis pedig relációk és csak relációk összessége.
- Az egyes relációkat egyedi névvel látjuk el.
- A relációk <u>oszlopa</u>iban azonos mennyiségre vonatkozó adatok jelennek meg. Az oszlopok névvel rendelkeznek, melyeknek a reláción belül egyedieknek kell lenniük, de más relációk tartalmazhatnak azonos nevű oszlopokat.
- A reláció soraiban tároljuk a logikailag összetartozó adatokat. A reláció sorainak sorrendje közömbös, de nem tartalmazhat két azonos adatokkal kitöltött sort.
- Egy sor és oszlop metszésében található táblázat elemet mezőnek nevezzük, a mezők tartalmazzák az adatokat. A mezőkben oszloponként különböző típusú (numerikus, szöveges stb.) mennyiségek tárolhatók.
- A reláció helyett sokszor a tábla vagy táblázat, a sor helyett a rekord, az oszlop helyett pedig az attribútum elnevezés is használatos.

Példa

	Oszlop		15 15
Sor			
5 A			
		Mező	

Személy					
Személyi szám	Név	Város	Foglalkozás		
1 650410 1256	Kiss lászló	Győr	kőműves		
2 781117 0131 Nagy Á		Szeged	tanuló		
1 610105 1167	Kiss László	Budapest	lakatos		

