Задача 5. Для регенерации выдыхаемого воздуха на подводных лодках или орбитальных станциях обычно используют картриджи с твёрдыми бинарными соединениями **A** и **Б**, образованные металлами одной группы Периодической системы химических элементов. Известно, что массовая доля кислорода в **A** составляет 41,03 %, в то время как в **Б** она немного больше – 45,07 %. После полного использования картриджей в них остаются только индивидуальные соли – **В** и **Г** соответственно (*реакции 1 и 2*). Соль **В** окрашивает бесцветное пламя в жёлтый цвет и реагирует с соляной кислотой с выделением газа (*реакция 3*). **Г** даёт светло-фиолетовое окрашивание пламени и малорастворимое вещество при взаимодействии с хлоридом бария (*реакция 4*).

- 1. Определите формулы веществ А-Г. Ответ подтвердите расчётом.
- 2. Напишите уравнения *реакций* 1-4.
- 3. В каком мольном соотношении необходимо взять вещества А и Б для наполнения регенерирующего картриджа, чтобы общее давление в системе при его использовании не менялось.
- 4. Какую минимальную массу смеси из п. 3 надо загрузить в картридж, чтобы регенерировать углекислый газ, выдыхаемый 4 членами экипажа за полёт длительностью 66 дней, если известно, что человек выдыхает в среднем 800 г углекислого газа в сутки.

Рекомендации к решению

Установим формулу бинарных соединений **A** и **Б**, исходя из массовой доли кислорода в них, считая, что формула каждого из них - X_2O_n :

$$\omega(O) = \frac{n \cdot M(O)}{2 \cdot M(X) + n \cdot M(O)}$$

$$M(X)_A = \frac{M(O) \cdot (1 - \omega(O))}{2 \cdot \omega(O)} \cdot n = \frac{16,000 \cdot (1 - 0,4103)}{2 \cdot 0,4103} \cdot n = 11,5 \cdot n$$

$$M(X)_B = \frac{M(O) \cdot (1 - \omega(O))}{2 \cdot \omega(O)} \cdot n = \frac{16,000 \cdot (1 - 0,4507)}{2 \cdot 0,4507} \cdot n = 9,75 \cdot n$$

Поскольку при взаимодействии соединений $\bf A$ и $\bf B$ с диоксидом углерода выделяется кислород, они являются пероксидами или надпероксидами активных металлов. Путём несложного перебора приходим к пероксиду натрия $\bf A-Na_2O_2$ и надпероксиду калия $\bf B-KO_2$ (или $\bf K_2O_4$). При их взаимодействии с диоксидом углерода образуются карбонаты натрия и калия соответственно $\bf B-Na_2CO_3$ и $\bf \Gamma-K_2CO_3$.

Уравнения *реакций 1-4*:

- 1) $2Na_2O_2 + 2CO_2 \rightarrow 2Na_2CO_3 + O_2$
- 2) $4KO_2 + 2CO_2 \rightarrow 2K_2CO_3 + 3O_2$ или $2K_2O_4 + 2CO_2 \rightarrow 2K_2CO_3 + 3O_2$
- 3) $Na_2CO_3 + 2HCl \rightarrow 2NaCl + H_2O + CO_2$
- 4) $K_2CO_3 + BaCl_2 \rightarrow BaCO_3 \downarrow + 2KCl$

В ходе первой реакции из 2x моль CO_2 образуются x моль O_2 , во второй – из 2y моль CO_2 – 3y моль O_2 . Поскольку общее давление в системе не изменяется, общее количество CO_2 и кислорода совпадают:

$$2x + 2y = x + 3y$$
$$x = y$$

Согласно нашему предположению, в картридже должно быть 2x = 2y моль Na_2O_2 и 4у моль KO_2 , что говорит о мольном соотношении веществ 1:2.

Рассчитаем общее количество CO₂, выдыхаемого членами экипажа за указанный промежуток времени:

$$n(CO_2) = \frac{m(CO_2)}{M(CO_2)} = \frac{800 \text{ г} \cdot 66 \cdot 4}{44 \text{ Г/MOЛЬ}} = 4800 \text{ моль}$$

Тогда в каждую реакцию должно вступить ровно половина из указанного количества, то есть по 2400 моль. Для поглощения такого количество CO_2 необходимо 2400 моль Na_2O_2 и 4800 моль KO_2 соответственно. Рассчитаем минимальную массу смеси, которую нужно загрузить в картридж:

$$m(Na_2O_2)=M(Na_2O_2)\cdot n(Na_2O_2)=78\,^{\Gamma}/_{\text{МОЛЬ}}\cdot 2400$$
 моль = 187,2 кг $m(KO_2)=M(KO_2)\cdot n(KO_2)=71\,^{\Gamma}/_{\text{МОЛЬ}}\cdot 4800$ моль = 340,8 кг $m(\text{смеси})=m(Na_2O_2)+m(KO_2)=187,2$ кг + 340,8 кг = 528 кг

Критерии оценивания	
1. Установление формул веществ А и Б	по 3 балла
Установление формул веществ В и Г	по 1 баллу
2. Уравнения <i>реакций 1-4</i>	по 1 баллу
3. Определение мольного соотношения веществ в картридже	4 балла
4. Расчёт общей массы веществ в картридже	4 балла
Итого	20 баллов