Exercício: Algoritmos e Estrutura de Dados I Universidade Federal do ABC

RAs e Notas (AVL)

O professor ABC guarda os RAs (número de registro do aluno) e nota de cada aluno em um sistema. Esse sistema usa uma árvore binária de busca (AVL). O sistema possui funções para incluir e remover dados. Para avaliar o desempenho do sistema, o professor ABC resolveu adicionar alguns indicadores: altura da árvore e quantidade de comparações realizadas na busca.

Exercício:

Escreva um programa em linguagem C que receba uma sequência de operações (inserção, remoção, busca e obter altura). Quando for feita uma **operação de busca**, o programa deve imprimir a quantidade de comparações realizadas na **árvore binária de busca**. Nas operações de inserção e remoção o programa deve mostrar detalhes do balanceamento, conforme especificado na seção **Rotações**.

Salve o código no arquivo: avlnotas.c O programa deverá utilizar uma árvore AVL.

Atenção: libere a árvore da memória ao final do programa.

Entrada e saída

O sistema receberá diversas entradas e, dependendo da operação, pode haver parâmetros adicionais:

Operação	Exemplo	Descrição
I [RA] [Nota]	I 90 8	Insere um item na árvore, com o RA e a nota informados. RA e nota são números inteiros (int). Caso o RA informado já exista na árvore, apenas a nota é atualizada (e não é inserido um novo nó). Portanto, não haverá nós com RAs repetidos na árvore. O programa deve imprimir detalhes sobre o balanceamento, conforme especificado na seção Rotações.
R [RA]	R 90	Remove o nó com o RA informado. Para a remoção, use a remoção por cópia de T. Hibbard e D. Knuth. Considere a versão que usa o sucessor quando um elemento que possui duas subárvores não nulas é removido. O programa deve imprimir detalhes sobre o balanceamento, conforme especificado na seção Rotações.

B [RA]	В 90	Busca o nó com o RA informado. Após realizar a busca, mostre a quantidade de comparações realizadas até o fim da busca e a nota do aluno no seguinte formato: "C=[NumComparações] Nota=[Nota]". Por exemplo, "C=2 Nota=9". Quando o RA não for encontrado, assuma nota = -1. Por exemplo, "C=2 Nota=-1".
A	A	Mostra a altura da árvore no formato "A = [Altura]". Por exemplo, "A=3".
P	P	Imprime a árvore em pós-ordem, libera a árvore da memória e finaliza o programa. Imprimir "[]" se árvore já estiver vazia.

Rotações

Há quatro rotações possíveis em uma AVL. As figuras a seguir são dos slides da aula sobre Árvores AVL: http://professor.ufabc.edu.br/~mirtha.lina/UFABC/docAEDI/aedi_AVL.pdf

Após uma inserção ou remoção, deve ser impresso [Ja esta balanceado] se não foi necessário aplicar qualquer rotação para balancear a árvore. Caso seja aplicada alguma rotação, deve ser impresso o nó desbalanceado, a rotação aplicada e os nós envolvidos. Utilize o formato do exemplo a seguir:

[No desbalanceado: 16]
[Rotacao: SE]
[x=16 y=20 z=22]

Observações:

- não há acentos nas palavras impressas;
- os valores x, y e z referem-se aos nós especificados nas figuras das rotações apresentadas;
- na remoção, pode haver mais de uma rotação.

Exemplos (as saídas estão em verde):

Exemplo 1 (sem remoção)	Exemplo 2 (sem remoção)
I 8 10	I 20 10
[Ja esta balanceado]	[Ja esta balanceado]
I 16 9	I 10 7
[Ja esta balanceado]	[Ja esta balanceado]
I 20 5	I 5 9
[No desbalanceado: 8]	[No desbalanceado: 20]
[Rotacao: SE]	[Rotacao: SD]
[x=8 y=16 z=20]	[x=5 y=10 z=20]
A	I 8 4
A=1	[Ja esta balanceado]
I 10 5	I 6 8
[Ja esta balanceado]	[No desbalanceado: 5]
I 15 4	[Rotacao: DE]
[No desbalanceado: 8]	[x=5 y=6 z=8]
[Rotacao: SE]	I 15 9
[x=8 y=10 z=15]	[Ja esta balanceado]
В 15	I 18 9
C=3 Nota=4	[No desbalanceado: 20]
P	[Rotacao: DD]
[8 15 10 20 16]	[x=15 y=18 z=20]
	A
	A=2
	В 20
	C=3 Nota=10
	P
	[5 8 6 15 20 18 10]

Exemplo 3 (com remoção)	Exemplo 4 (com remoção que requer duas rotações)
I 8 10	I 50 6
[Ja esta balanceado]	[Ja esta balanceado]
I 16 9	I 25 6
[Ja esta balanceado]	[Ja esta balanceado]
I 20 5	I 78 8
[No desbalanceado: 8]	[Ja esta balanceado]
[Rotacao: SE]	I 15 0
[x=8 y=16 z=20]	[Ja esta balanceado]
A	I 40 9
A=1	[Ja esta balanceado]
I 10 5	I 60 5
[Ja esta balanceado]	[Ja esta balanceado]
I 15 4	I 80 5
[No desbalanceado: 8]	[Ja esta balanceado]
[Rotacao: SE]	I 35 10
$[x=8 \ v=10 \ z=15]$	[Ja esta balanceado]

```
В 15
                                        I 55 10
C=3 Nota=4
                                        [Ja esta balanceado]
R 8
                                        I 65 3
[Ja esta balanceado]
                                        [Ja esta balanceado]
R 16
                                        I 90 9
[No desbalanceado: 20]
                                        [Ja esta balanceado]
[Rotacao: DD]
                                        I 62 7
[x=10 y=15 z=20]
                                        [Ja esta balanceado]
A=1
                                        A=4
В 20
                                        R 15
C=2 Nota=5
                                        [No desbalanceado: 25]
                                        [Rotacao: DE]
[10 20 15 ]
                                        [x=25 y=35 z=40]
                                        [No desbalanceado: 50]
                                        [Rotacao: DE]
                                        [x=50 y=60 z=78]
                                        R 55
                                        [No desbalanceado: 50]
                                        [Rotacao: SD]
                                        [x=25 y=35 z=50]
                                        Α
                                        A=3
                                        B 40
                                        C=4 Nota=9
                                        В 60
                                        C=1 Nota=5
                                        [25 40 50 35 62 65 90 80 78 60 ]
```