Universität zu Köln Institut für Festkörperphysik

Versuchsprotokoll

B2.2: Überstruktur in Cu_3Au

Autoren: Jesco Talies¹

 ${\rm Timon\ Danowski^2}$

Durchgefuehrt am: 19.05.2021

Betreuer: Julian Wagner

 $^{^{1}}$ jtalies@smail.uni-koeln.de, Matrikel-Nr.: 7348338

² tdanowsk@smail.uni-koeln.de, Matrikel-Nr.: 7348629

Inhaltsverzeichnis

1	Einleitung	1
2	Theoretische Vorbereitung 2.1 Reziprokes Gitter	2 2 2 2 2
	2.4.1 Aufbau eines Röntgendiffraktometers 2.4.2 Röntgenstrahlung 2.4.3 Intensität der gestreuten Röntgenstrahlung 2.5 Reflexindizierung im Röntgendiffraktogramm 2.6 Die resistive Methode	2 2 2 2
3	Versuchsaufbau	3
4	Auswertung	4
5	Diskussion	4

1 Einleitung

In vielen Legierungen bildet sich zusätzlich zu der Gitterstruktur des Festkörpers eine übergeordnete Struktur, die sogenannte Überstruktur. Sie lässt sich in vergleichsweise Makroskopischen Systemen über die Minimierung der Energie erreichen und ist häufig beeinflusst durch Fehlstellen und Deformationen. Diese Überstrukturen lassen sich beeinflussen bzw. erzeugen, sie treten nur unterhalb einer kritischen Temperatur auf, sodass sich durch gezieltes Erhitzen und Abkühlen eines Systems, Proben mit mehr oder Weniger Ordnung erzeugen lassen, sodass im resultierenden Spektrum die Unterschiede zu erkennen sind. Im folgenden Versuch werden wir uns genau dieses Phänomen zu nutze machen, indem drei verschieden geordnete Proben miteinander vergleichen werden. Dazu wird zunächst die röntgenographische Methode und anschließend die restive verwendet.

2 Theoretische Vorbereitung

2.1 Reziprokes Gitter

Das reziproke Gitter beschreibt in der Festkörperphysik die Röntgen-, Elektronen-, und Neutronenbeugung an Kristallinen strukturen. Es wird häufig in zusammenhang mit den Miller'schen Indizes verwendet um die Netebenen (hkl) zu beschreiben. Es bietet sich an diese im Reziproken zu definieren, da die Länge eines Vektors der die Position eines Gitterpunkts beschreibt gleich dem Reziproken des Abstands der Netzebenen entspricht. Aus den Basisvektoren des Punktgitter $(\vec{a_1}, \vec{a_2}, \vec{a_3})$ ergeben sich über folgende Beziehung die Basisvektoren $(\vec{b_1}, \vec{b_2}, \vec{b_3})$ des Reziproken gitters.

$$\vec{b_1} = 2\pi \frac{\vec{a_2} \times \vec{a_3}}{\vec{a_1} \cdot (\vec{a_2} \times \vec{a_3})}$$

$$\vec{b_2} = 2\pi \frac{\vec{a_3} \times \vec{a_1}}{\vec{a_1} \cdot (\vec{a_2} \times \vec{a_3})}$$

$$\vec{b_3} = 2\pi \frac{\vec{a_1} \times \vec{a_2}}{\vec{a_1} \cdot (\vec{a_2} \times \vec{a_3})}$$

Über dieses Definition der Basisvektoren lassen sich die Koordinateneines Punktes im reziproken Gitter über die Miller'schen indizes (hkl) beschreiben.

Bragg Gleichung

Die Bragg Gleichung liefert einen Zusammenhang zwischen dem Netzebenenabstand d_{hkl} und dem Beugungswinkel θ . Damit dieser Zusammenhang gilt muss jedoch der einfallende und gestreute Strahl symetrisch zur reflektierende Netzebene verlaufen. Dann lässt sich der Zusammenhang beschreiben durch

$$n\lambda = 2d_{hkl}\sin(\theta) \tag{1}$$

aus dieser lässt sich die äquivalente Laue Bedingung ableiten, welche aussagt, dass ein Röntgenstrahl genau dann gestreut wird, wenn der Beugungsvektor \vec{k} gleich dem reziproken Gittervektor ist.

2.2 Ordnungsparameter und Phasenübergänge

- 2.3 Überstrukturen
- 2.3.1 CuZn
- **2.3.2** *CuAu*
- **2.3.3** Cu_3Au
- 2.4 Die röntgenographische Methode
- 2.4.1 Aufbau eines Röntgendiffraktometers
- 2.4.2 Röntgenstrahlung
- 2.4.3 Intensität der gestreuten Röntgenstrahlung
- 2.5 Reflexindizierung im Röntgendiffraktogramm
- 2.6 Die resistive Methode

3 Versuchsaufbau

- 4 Auswertung
- 5 Diskussion