Google

From MHLO to Linalg on tensors

Learnings from transitioning to Linalg on tensors

Overview

Quick overview of IREEs compilation flow

Representational enhancements to Linalg/IREE that were needed

Current compilation flow from MHLO to Machine code

Current compilation flow from MHLO to Machine code

Where we started: MHLO as front end

- Dispatch region formation based on rules on MHLO ops
 - Loosely these rules were based on "which operations can be fused".

```
%3 = "mhlo.dot"(%0, %1)
%4 = "mhlo.broadcast(%2)
%5 = "mhlo.add"(%4, %2)
```

- Elementwise fusion and tile + fuse run within a dispatch region.
- Suboptimal dispatch region creation (<u>Github Issue</u>)

Where we started: MHLO as front end

- Preferable to have
 - one dispatch region is lowered to one kernel
 - all memory needed for the dispatch to be explicit arguments to the dispatch region
 - Better scheduling and buffer allocation opportunities

```
%res = "mhlo.pad"(%input, %v) {
   edge_padding_low = dense<[0, 1]>,
   edge_padding_high = dense<[1, 5]>
} : (tensor<2x3xi32>, tensor<i32>)
   -> tensor<3x9xi32>
```

```
%linalg.fill(%res, %v) : memref<3x9xi32>
%sv = memref.subview %res
    [0, 1] [2, 3] [1, 1] :
    memref<3x9xi32> into memref<2x4xi32>
linalg.copy(%input, %sv) : memref<2x3xi32>,
```

MHLO as front end: Phase ordering issue

- Grouping at MHLO level needed to guess what the backends could fuse into a single kernel
 - MHLO ops need to know if the Linalg ops can be fused using elementwise fusion or tile + fuse.
 - As we do more fusion using Linalg, needed to map it back to the MHLO operations that could now be grouped together

Could be different for a backend

Linalg on tensors

 Create Linalg operations at tensor level that represent the final fused kernels

```
%3 = "mhlo.dot"(%0, %1) :
    (tensor<?x?xf32>, tensor<?x?xf32>) -> tensor<?x?xf32>
%4 = "mhlo.broadcast(%2) : tensor<?xf32> -> tensor<?x?xf32>
%5 = "mhlo.add"(%4, %2) :
    (tensor<?x?xf32>, tensor<?x?xf32>) -> tensor<?x?xf32>
```

Conversion from MHLO → Linalg on tensors

```
%cst = constant 0.0 : f32
%3 = linalg.init tensor [...]
%4 = linalg.fill(%cst, %3)
%5 = linalg.matmul ins(%0, %1 : ) outs(%4 : ) -> ...
%6 = linalg.init tensor [...]
%7 = linalg.generic {
    indexing maps = [affine map<(d0, d1) -> (d0), affine map<(d0, d1) -> (d0, d1)]
    ins(%2 : ) outs(%6 : ) {...}
%8 = linalg.init tensor [...]
%9 = linalg.generic {
    indexing maps = [affine map(d0, d1) \rightarrow (d0, d1), affine map(d0, d1) \rightarrow (d0, d1),
                      affine map(d0, d1) -> (d0, d1)]}
    ins(\%5, \%7 : ) outs(\%8 : ) {...}
```

Google

After element-wise fusion

```
%cst = constant 0.0 : f32
%3 = linalg.init_tensor [...]
%4 = linalg.fill(%cst, %3)
%5 = linalg.matmul ins(%0, %1 : ) outs(%4 : ) -> ...
%8 = linalg.init_tensor [...]
%9 = linalg.generic {
    indexing_maps = [affine_map(d0, d1) -> (d0, d1),
                     affine map(d0, d1) -> (d0),
                     affine map(d0, d1) -> (d0, d1)]}
    ins(%5, %2 : ) outs(%8 : ) {...}
```

Tile + Distribute using block-cyclic distribution

```
%id_y = flow.workgroup.workgroup_id[1] // id_y
%wgs_y = flow.workgroup.workgroup_count[1] // number_y
%nwg_y = flow.workgroup.workgroup_size[1] // same as %ts_M
%start = muli %id_y, %wgx_y
%step = muli %nwg_y, %wgs_y
scf.for %iv0 = %start to %M step %step {
    ....
}
```

Tile + fuse + distribute

```
%3 = flow.dispatch.workgroups[...]-> tensor<?x?xf32> {
   %wg x = flow.dispatch.workgroup size[0]
   %wg y = flow.dispatch.workgroup size[1]
   %y0 = scf.for %iv0 = %start y to %M step %step y
     %y1 = scf.for %iv1 = %start x to %N step %step x
        %4 = linalg.init tensor [%wg y, %wg x] : tensor<?x?xf32>
       %5 = linalg.fill(..., %4)
        %6 = tensor.extract slice %0[..,..] [%wg y, %K] [1, 1] : ...
        %7 = tensor.extract_slice %1[..,..] [%K, %wg x] [1, 1] : ...
        \%8 = linalg.matmul ins(\%6, \%7 : ) outs(\%5 : )
        %9 = tensor.extract slice %2[..] [%wg y] [1]
        %10 = linalg.generic {...} ins(%8, %9 : ) outs(%5) {...}
```

Representational enhancements to Linalg on tensors

Adapt read-modify-write semantics

Output Shape representation.

Tile + distribute on Linalg on tensors.

Linalg on buffers for matmul

```
linalg.matmul ins(%lhs, %rhs : memref<?x?xf32>, memref<?x?xf32>)
  outs(%result : memref<?x?xf32>)
```

In loop form

Named ops are pre-defined linalg.generic operations.

```
linalg.generic {
 iterator types = ["parallel", "parallel", "reduction"]} // M, N and K loops
  indexing maps = {[affine map<(d0, d1, d2) -> (d0, d2)>, // LHS indexing
                     affine map\langle (d0, d1, d2) - \rangle (d2, d1) \rangle, // RHS indexing
                     affine map<(d0, d1, d2) \rightarrow (d0, d1)> // Output indexing
 ins(%lhs, %rhs : memref<?x?xf32>, memref<?x?xf32>)
 outs(%result : memref<?x?xf32> {
  ^bb0(%arg0: f32, %arg1 : f32, %arg2 : f32) : // Loaded scalar values
   %0 = mulf %arg0, %arg1 : f32
   %1 = addf %0, %arg2 : f32
    linalg.yield %1 : f32
```

Loop bounds are determined based on operand shapes

- affine_map<(d0, d1, d2) -> (d0, d2)> ... ins(%lhs, ...)
 - Outer loop bound: memref.dim %lhs, 0
 - Inner loop bound: memref.dim %lhs, 1
- affine_map<(d0, d1, d2) -> (d2, d1)> ... ins(.., %rhs)
 - Inner loop bound : memref.dim %rhs, 0
 - Middle loop bound: memref.dim %rhs, 1
- affine_map<(d0, d1, d2) -> (d0, d1)> ... outs(%result)
 - Outer loop bound: memref.dim %result, 0
 - Middle loop bound: memref.dim %result, 1

Elementwise operations representation (with memref operands)

```
linalg.generic {
  indexing maps = {[affine map<(d0, d1) -> (d0, d1)>,
                    affine map<(d0, d1) -> (d0)>, // Broadcast access
                    affine map<(d0, d1) \rightarrow (d0, d1)> // Output indexing
  iterator types = ["parallel", "parallel"]} // No reduction loops
  ins(%lhs, %rhs : memref<?x?xf32>, memref<?xf32>)
  outs(%result : memref<?x?xf32> {
  ^bb0(%arg0: f32, %arg1 : f32, %arg2 : f32) :
   %0 = addf %arg0, %arg1 : f32
    linalg.yield %0 : f32 // No output reads (only writes)
```

Adapt Read-Modify-Write abstraction

- Tensor are SSA values
 - All elements "defined" simultaneously and not mutable.
- One solution

```
%result = linalg.matmul
ins(%lhs, %rhs : tensor<?x?xf32>, tensor<?x?xf32>) -> tensor<?x?xf32>
```

- Different computation than representation in buffer
- Make the initial value an explicit operand

```
%result = linalg.matmul
ins(%lhs, %rhs : tensor<?x?xf32>, tensor<?x?xf32>),
outs(%init : tensor<?x?xf32>) -> tensor<?x?xf32>
```

Output shape representation

Without reduction do not need initial value

Only the result value carries loop bounds of one of the loops

Output shape representation

Add a "dummy" initial value just for shape information

```
%d0 = ... // Some computation generated by the producer of this IR
%d1 = ... // Some computation generated by the producer of this IR
%init = linalg.init_tensor [%d0, %d1] : tensor<?x?xf32> // Output shape
%result = linalg.generic {...}
ins(%source: tensor<?xf32>), outs(%init : tensor<?x?xf32>)
```

- Each operation carries all the information needed to compute the result (including the shape) in its operands
- Dynamic shape code-generation without any external shape information

Detour Tiling with Linalg on memref operands

- Tiling is one of the core transformations in Linalg
 - Tile + fuse is tile the consumer and compute the operands of the tile in-place.

```
linalg.matmul ins(%lhs, %rhs : memref<?x?xf32>, memref<?x?xf32>)
  outs(%result : memref<?x?xf32>
```

- Linalg tiling algorithm uses the indexing maps to generate the tiled implementation
 - Any operation that implements the structured op interface can be tiled (any named ops and linalg.generic)

Detour Tiling with Linalg on memref operands

Tiling is done using parametric tile sizes.

Detour Tiling with Linalg on memref operands with Parallel loops

Generate tiled loops while maintaining information about parallel inter-tile loops

```
scf.parallel (%iv0, %iv1) = (0, 0) to (%M, %N) step (%ts_M, %ts_k)
scf.for %iv2 = 0 to %K step %ts_K
    %tile_lhs = memref.subview %lhs[%iv0, %iv2] [%ts_M, %ts_K]
    %tile_rhs = memref.subview %rhs[%iv2, %iv1] [%ts_K, %ts_N]
    %tile_output = memref.subview %result[%iv0, %iv1] [%ts_M, %ts_N]
    linalg.matmul ins(%tile_lhs, %tile_rhs : ...) outs(%tile_output : ...)
```

Detour: Structured Control Flow on tensors

Each iteration of a loop is an iteration as a function

- Arguments are induction variable and values from previous iteration
- The body of the loop computes the result of current iteration and "yields" it which gets forwarded to the next iteration of the loop
- The value yielded by the last iteration is the result of the loop.

```
%result = scf.for %iv0 = ... init (%arg1 = %init) {
    %0 = ... %arg1 ...
    %yield = ...
    scf.yield %yield
}
```

Tiling for Linalg on tensors: Using Destructive updates

```
%result = scf.for %iv0 = 0 to %M step %ts M init(%arg1 = %init) {
  \%0 = scf.for \%iv1 = 0 to \%N step \%ts N init(\%arg2 = \%arg1) {
    %1 = scf.for \%iv2 = 0 to \%K step \%ts K init (\%arg3 = \%arg2) {
      %tile lhs = tensor.extract slice %lhs[%iv0, %iv2] [%ts M, %ts K]
      %tile rhs = tensor.extract slice %rhs[%iv2, %iv1] [%ts K, %ts N]
      %tile init = tensor.extract slice %arg3[%iv0, %iv1] [%ts M, %ts N]
      %tile result = linalg.matmul ins(%tile lhs, %tile rhs : ...) outs(%tile init : ...)
      %2 = tensor.insert slice %tile result into %arg3[%iv0, %iv1] [%ts M, %ts N]
      scf.yield %2
    scf.yield %1
  scf.yield %0
```

Representational issue with tiling for Linalg on tensors

- In tensors, each loop iteration value is forwarded to the next iteration
 - Cannot represent parallel inter-tile loops at this level.
 - Tile + Distribute that worked with memref operands, doesn't work anymore

- Essentially this is an abstraction gap
 - You eventually have to go from a tensor representation to a memref-based representation, at that time you can get back to the same semantics as before.
 - Issue is the destructive updates.

Avoiding destructive updates during tile + distribute

- Recap : IREE does tile + distribute (+fuse) during dispatch region formation
- Create two new operations within the dispatch region
 - flow.dispatch.tensor.load : Load a tile of the input to the dispatch region
 - flow.dispatch.tensor.store : Store a tile of into the result of the dispatch region.
- Across workgroups there is no synchronization between loads/stores
 - If multiple workgroups overlap in reads/writes, then it is a race condition.

Avoiding destructive updates

```
%result = flow.dispatch.workgroups[%N, %M, 1]
  (%lhs, %rhs, %init) -> tensor<?x?xf32> =
  (%arg0 : !flow.tensor<readonly:?x?xf32>, %arg1 : !flow.tensor<readonly:?x?xf32>,
   %arg2 : !flow.tensor<readonly:?x?xf32>, %arg3 : !flow.tensor<writeonly:?x?xf32>) {
    %wg y, %wg x = ...
    scf.for %iv0 = %start y to %M step %step y
      scf.for %iv1 = %start x to %N step %step x
        %lhs tile = flow.tensor.load %arg0 [...][%wg y, %K]
        %rhs tile = flow.tensor.load %arg1 [...][%K, %wg x]
        %init tile = flow.tensor.load %arg2 [...][%wg_y, %wg_x]
        %result tile = linalg.matmul ins(%lhs tile, %rhs tile : ) outs(%init tile :)
        flow.tensor.store %result tile into %arg3 [...][%wg y, %wg x]
```

Bridging the abstraction gap

- The "runtime" does not need to do anything special.
 - Conversion to memref should give back the old semantics
 - flow.tensor.load becomes a tensor.extract_slice

```
hal.executable {
  hal.interface @io {
    hal.interface.binding @arg0, access = "Read"
    hal.interface.binding @arg1, access = "Read"
    hal.interface.binding @arg2, access = "Read"
    hal.interface.binding @arg3, access = "Write"
}
hal.executable.target dylib-llvm-* {
    hal.executable.entry_point @entry_fn
    module { ... }
```

Bridging the abstraction gap

```
func @entry_fn() {
    scf.for %iv0 = %start_y to %M step %step_y
    scf.for %iv1 = %start_x to %N step %step_x
        %lhs_tile = memref.subview %arg0 [...][%wg_y, %K]
        %rhs_tile = memref.subview %arg1 [...][%K, %wg_x]
        %init_tile = memref.subview %arg2 [...][%wg_y, %wg_x]
        %result_tile = memref.subview %arg3 [...][%wg_y, %wg_x]
        linalg.copy(%init_tile, %result_tile)
        linalg.matmul ins(%lhs_tile, %rhs_tile : ) outs(%result_tile : )
```

- Intra-executable bufferization has to update results in-place
- Extra copy here is because
 - Flow → Hal lowering creates a buffer for all inputs and outputs
 - linalg.matmul on tensors has initial value and extra operand

In-place updates

Marking operands of flow.dispatch.workgroups as read-write

```
%result = flow.dispatch.workgroups[%N, %M, 1](%lhs, %rhs, %init) -> %init =
  (%arg0 : !flow.tensor<readonly:?x?xf32>, %arg1 : !flow.tensor<readonly:?x?xf32>,
   %arg2 : !flow.tensor<readwrite:?x?xf32>) {
    \%wg \vee, \%wg \times = ...
    scf.for %iv0 = %start y to %M step %step y
      scf.for %iv1 = %start x to %N step %step x
        %lhs tile = flow.tensor.load %arg0 [...][%wg y, %K]
        %rhs tile = flow.tensor.load %arg1 [...][%K, %wg x]
        %init_tile = flow.tensor.load %arg2 [...][%wg y, %wg x]
        %result tile = linalg.matmul ins(%lhs tile, %rhs tile : ) outs(%init tile :)
        flow.tensor.store %result tile into %arg2 [...][%wg y, %wg x]
```

In-place updates

```
hal.executable {
 hal.interface @io {
    hal.interface.binding @arg0, access = "Read"
    hal.interface.binding @arg1, access = "Read"
    hal.interface.binding @arg2, access = "Read|Write"
   func @entry fn() {
     scf.for %iv0 = %start y to %M step %step y
       scf.for %iv1 = %start x to %N step %step x
         %lhs tile = memref.subview %arg0 [...][%wg y, %K]
         %rhs tile = memref.subview %arg1 [...][%K, %wg x]
         %result tile = memref.subview %arg2 [...][%wg y, %wg x]
         linalg.matmul ins(%lhs tile, %rhs tile : ) outs(%result tile : )
```

Intra-dispatch bufferizations

- Useful to think of bufferization in IREE as two phases
 - Inter-dispatch region bufferization
 - Intra-dispatch region bufferization
- Intra-dispatch region bufferization has different constraints
 - No additional heap allocations
 - Try to compute results in place (using readwrite annotations on dispatch region operands)