密码学原理与实践

(第三版)

第7章 签名方案heory and Practice

苏明

[加] Douglas R. Stinson 著 冯登国 等译

- > 7. 1引言
- 7. 2 签名方案的安全性需求
- ▶ 7. 3 ElGamal签名方案
- ▶ 7. 4 ElGamal签名方案的变形 Schnorr签名方案 数字签名算法(DSA) 椭圆曲线DSA

7.1 引言

Digital Signature

定义 一个签名方案是一个满足下列条件的 5 元组 $(\mathcal{P}, \mathcal{A}, \mathcal{K}, \mathcal{S}, \mathcal{V})$:

- 1. P 是由所有可能的消息组成的一个有限集合。
- 2. A 是由所有可能的签名组成的一个有限集合。
- 3. K 为密钥空间,它是由所有可能的密钥组成的一个有限集合。
- 4. 对每一个 $K \in \mathcal{K}$,有一个签名算法 $\operatorname{sig}_K \in \mathcal{S}$ 和一个相应的验证算法 $\operatorname{ver}_K \in \mathcal{V}$ 。对每一个消息 $x \in \mathcal{P}$ 和每一个签名 $y \in \mathcal{A}$,每个 $\operatorname{sig}_K : \mathcal{P} \to \mathcal{A}$ 和 $\operatorname{ver}_K : \mathcal{P} \times \mathcal{A} \to \{\operatorname{true}, \operatorname{false}\}$ 都是满足下列条件的函数:

$$\operatorname{ver}_{K}(x, y) = \begin{cases} \operatorname{true} & y = \operatorname{sig}_{K}(x) \\ \operatorname{false} & y \neq \operatorname{sig}_{K}(x) \end{cases}$$

由 $x \in \mathcal{P}$ 和 $y \in \mathcal{A}$ 组成的对 (x, y) 称为签名消息。

7. 2 签名方案的安全性需求

- ■攻击模型
- key-only attack
- known message attack
- chosen message attack
- 攻击目标
- total break
- selective forgery
- existential forgery

7.3 ElGamal签名方案

密码体制 ElGamal 签名方案

设 p 是一个使得在 \mathbb{Z}_p 上的离散对数问题是难处理的素数,设 $\alpha \in \mathbb{Z}_p^*$ 是一个本原元。设 $\mathcal{P} = \mathbb{Z}_p^*$, $\mathcal{A} = \mathbb{Z}_p^* \times \mathbb{Z}_{p-1}$, 定义

$$\mathcal{K} = \{ (p, \alpha, a, \beta) : \beta \equiv \alpha^a \pmod{p} \}$$

值 p, α, β 是公钥, a 是私钥。

对 $K = (p, \alpha, a, \beta)$ 和一个(秘密的)随机数 $k \in \mathbb{Z}_{p-1}^*$, 定义

$$\operatorname{sig}_K(x,k) = (\gamma,\delta)$$

其中

$$\gamma = \alpha^k \mod p$$
, $\delta = (x - a\gamma)k^{-1} \mod (p - 1)$

 $对 x, \gamma \in \mathbb{Z}_p^* \, \Lambda \delta \in \mathbb{Z}_{p-1}, \, 定义$

$$\operatorname{ver}_{K}(x,(\gamma,\delta)) = \operatorname{true} \Leftrightarrow \underline{\beta^{\gamma}\gamma^{\delta}} \equiv \alpha^{x} \pmod{p}$$

Security: Elgamal Digital Signature

- Finite field Discrete Logarithm
- Hash function
- Randomness of PRNG
- Solving a linear equation with two unknowns

7.3 ElGamal签名方案安全性

- 假定没有使用Hash(x)
- 存在性伪造: 设法求出满足**签名方程**的参数

- ◆ 使用不当: k(*随机值*)泄露→推算出私钥
- ◆对不同消息签名使用相同k值

7.4 变形-Schnorr签名方案

- 缩短签名-支持智能卡的使用
- 签名方程在Zp*的q元子群中构建

密码体制 Schnorr 签名方案

设p是使得 \mathbb{Z}_p^* 上离散对数问题难处理的一个素数,q是能被p-1整除的素数。设 $\alpha \in \mathbb{Z}_p^*$ 是 1 模 p 的 q 次根, $\mathcal{P} = \{0,1\}^*$, $\mathcal{A} = \mathbb{Z}_q \times \mathbb{Z}_q$,并定义

$$\mathcal{K} = \{ (p, q, \alpha, a, \beta) : \beta \equiv \alpha^a \pmod{p} \}$$

其中 $0 \le a \le q-1$,值p,q, α 和 β 是公钥,a 为私钥。最后,设 $h: \{0,1\}^* \to \mathbb{Z}_q$ 是一个安全 Hash 函数。

对于 $K = (p, q, \alpha, a, \beta)$ 和一个(秘密的)随机数k, $1 \le k \le q-1$, 定义

$$\operatorname{sig}_{K}(x,k) = (\gamma,\delta)$$

其中 $\gamma = h(x \parallel \alpha^k \mod p)$ 且 $\delta = k + a\gamma \mod q$ 。

对于 $x \in \{0,1\}^*$ 和 $\gamma, \delta \in \mathbb{Z}_q$, 验证是通过下面的计算完成的:

$$\operatorname{ver}_{K}(x, (\gamma, \delta)) = \operatorname{true} \iff h(x \parallel \alpha^{\delta} \beta^{-\gamma} \bmod p) = \gamma$$

7.4 变形-DSA

密码体制 7.4 数字签名算法(DSA)

设 p 是长为 L 比特的素数,在 \mathbb{Z}_p 上其离散对数问题是难处理的,其中 $L\equiv 0 \pmod{64}$ 且 $512 \leq L \leq 1024$, q 是能被 p-1 整除的 160 比特的素数。设 $\alpha \in \mathbb{Z}_p^*$ 是 1 模 p 的 q 次根。设 $\mathcal{P}=\{0,1\}^*$, $\mathcal{A}=\mathbb{Z}_q^* \times \mathbb{Z}_q^*$,并定义

$$\mathcal{K} = \{ (p, q, \alpha, a, \beta) : \beta \equiv \alpha^a \pmod{p} \}$$

其中 $0 \le a \le q-1$ 。值p,q, α 和 β 是公钥,a为私钥。 对于 $K = (p, q, \alpha, a, \beta)$ 和一个(秘密的)随机数k, $1 \le k \le q-1$,定义

$$\operatorname{sig}_{\kappa}(x,k) = (\gamma,\delta)$$

其中

$$\gamma = (\alpha^k \bmod p) \bmod q$$
$$\delta = (SHA-1(x) + a\gamma)k^{-1} \bmod q$$

 $(如果\gamma=0或\delta=0, 应该为k另选一个随机数)。$

对于 $x \in \{0,1\}^*$ 和 $\gamma, \delta \in \mathbb{Z}_q^*$, 验证是通过下面的计算完成的:

$$e_1 = SHA-1(x)\delta^{-1} \bmod q$$

$$e_2 = \gamma \delta^{-1} \bmod q$$

$$\operatorname{ver}_K(x, (\gamma, \delta)) = \operatorname{true} \iff (\alpha^{e_1} \beta^{e_2} \bmod p) \bmod q = \gamma$$

NIST

要求q为160比特素数 建议p:1024bit 素数 改变签名方程的符号

7.4 变形-ECDSA

DSA VS ECDSA

- Zp上的乘法群→ECC加法群
- ECDSA的第一个分量取 *kA的x坐标* 模q

7.4 变形-ECDSA

密码体制 椭圆曲线数字签名算法

设p是一个大素数,E是定义在 \mathbb{F}_p 上的椭圆曲线。设A是E上阶为q(q是素数)的一个点,使得在 $\langle A \rangle$ 上的离散对数问题是难处理的。设 $\mathcal{P} = \{0,1\}^*, \mathcal{A} = \mathbb{Z}_q^* \times \mathbb{Z}_q^*$,定义

$$\mathcal{K} = \{(p,q,E,A,m,B) : B = mA\}$$

其中 $0 \le m \le q-1$ 。值 p , q , E , A 和 B 是公钥, m 是私钥。 对于 K = (p, q, E, A, m, B) 和一个(秘密的)随机数 k , $1 \le k \le q-1$, 定义

$$\operatorname{sig}_{K}(x,k) = (r,s)$$

其中

$$kA = (u, v)$$

 $r = u \mod q$

以及

$$s = k^{-1}(SHA-l(x) + mr) \bmod q$$

(如果r=0或s=0,应该为k 另选一个随机数)。 对于 $x \in \{0,1\}^*$ 和 $r,s \in \mathbb{Z}_q^*$,验证是通过下面的计算完成的:

$$w = s^{-1} \mod q$$

$$i = wSHA-1(x) \mod q$$

$$j = wr \mod q$$

$$(u, v) = iA + jB$$

$$ver_{K}(x, (r, s)) = true \Leftrightarrow u \mod q = r$$