Motion estimation Optical flow

Computer Vision (SJK02)

Universitat Jaume I

Optic flow

Goal: estimating *apparent* motion of objects in a scene from a sequence of images

Motion field

Motion field vs Optic flow

Application: Optical mouse

18 x 18 ~ 1k frames/s

Application: Autonomous driving

object tracking visual odometry semantic segmentation motion segmentation SLAM

Application: Action recognition

On the Integration of Optical Flow and Action Recognition (GCPR 2018)

- Optical flow is useful because it is invariant to appearance,
 even when the flow vectors are inaccurate
- EPE of current methods is not well correlated with action recognition performance
- Training optical flow to minimize classification error instead of minimizing EPE improves recognition performance

Application: video stabilisation

<u>input</u> <u>output</u>

More videos at project page

SteadyFlow: Spatially Smooth Optical Flow for Video Stabilization (CVPR 2014)

Application: Your turn

Think of an (interesting) application of optical flow estimation

www.socrative.com

Room 219986

Theoretical assumptions

$$u = \frac{8x}{8t}$$
, $v = \frac{6y}{8t}$

$$(xy)$$
 at t
 (uv) $(x+\delta x,y+\delta y)$ at $t+\delta t$

Assumption 1: Brightness remains constant over time

$$I(x+\delta x, y+\delta y, t+\delta t) = I(x, y, t)$$

Assumption 2: Displacement and time step are small

$$I(x+\delta x, y+\delta y, t+\delta t)$$
 can be linearly approximated

Optical flow constrained equation (YouTube)

Taylor series expansion

$$f(x+6x) = f(x) + \frac{\partial f(x)}{\partial x} \cdot \frac{\delta x}{1!} + \dots + \frac{\partial^{n} f(x)}{\partial x^{n}} \cdot \frac{(8x)^{n}}{n!}$$
If δx is small:
$$f(x+6x) = f(x) + \frac{\partial f(x)}{\partial x} \cdot \delta x + HOT$$

Linear approximation by ignoring H.O.T.

In our case, we have three variables (x, y, t)

$$J(x+8x,y+8y,t+8t) \cong J(x,y,t) + \frac{2J}{2x}s_{x} + \frac{2J}{2y}s_{y} + \frac{2J}{2t}s_{t}$$

$$J(x+8x,y+8y,t+8t) = J(x,y,t) + J_{x}s_{x} + J_{y}s_{y} + J_{t}s_{t}$$

Optical flow constraint equation

$$I(x+\delta x, y+\delta y, t+\delta t) = I(x,y,t)$$

$$\lim_{St\to0} I_{\times} \frac{\delta_{\times}}{St} + I_{Y} \frac{\delta_{Y}}{St} + I_{Y} \frac{\delta_{Y}}{St} = 0$$

$$I_{X} \frac{\delta_{\times}}{\delta_{Y}} + I_{Y} \frac{\delta_{Y}}{\delta_{Y}} + I_{t} = 0$$

$$I_xu+I_yv+I_t=0$$

Computing partial derivatives

$$J_{x}(i_{i,j,k}) = I_{y}(i_{i,j,k}) = I_{y}(i_{i,j,k}) = I_{z}(i_{i,j,k}) = I_{z}(i_{i,$$

Geometric interpretation of OF equation

$$I_{x}u+I_{y}v+I_{t}=0$$
 underconstrained
$$U=U$$

$$K = \alpha \times by + c = 0$$

$$V_n = \frac{\left(I_{x_1} I_y\right)}{\sqrt{I_{x_1}^2 + I_{y_2}^2}} \quad |U_n| = \frac{\left(I_{x_1} I_y\right)}{\sqrt{I_{x_1}^2 + I_{y_2}^2}}$$

$$d(P(x_0, y_0) | r) = \frac{|a \times b + b + c|}{\sqrt{a + b^2}} \quad |U_n| = \frac{|I_t|}{\sqrt{I_{x_1}^2 + I_{y_2}^2}}$$

$$U_n = |U_n| \cdot |U_n| = \frac{|I_t|}{\sqrt{I_{x_1}^2 + I_{y_2}^2}}$$

$$U_n = |I_t| \frac{(I_{x_1} I_y)}{I_{x_1}^2 + I_{y_2}^2}$$

$$U_n = |I_t| \frac{(I_{x_1} I_y)}{I_{x_1}^2 + I_{y_2}^2}$$

$$U_n = |I_t| \frac{(I_{x_1} I_y)}{I_{x_2}^2 + I_{y_2}^2}$$

$$\mathcal{U}_{n} = \frac{\left(\mathbf{I}_{x_{1}}\mathbf{I}_{y}\right)}{\left(\mathbf{I}_{x_{1}}\mathbf{I}_{y}\right)} \qquad |\mathcal{U}_{n}| = \frac{|\mathbf{I}_{t}|}{\sqrt{\mathbf{I}_{x_{1}}^{2}+\mathbf{I}_{y}^{2}}}$$

$$\mathcal{U}_{n} = |\mathbf{N}_{n}| \cdot \mathcal{U}_{n} = |\mathbf{I}_{t}| \frac{\left(\mathbf{I}_{x_{1}}\mathbf{I}_{y}\right)}{\mathbf{I}_{x_{1}}^{2}+\mathbf{I}_{y_{2}}^{2}}$$

Aperture problem

Locally, only the **normal** flow can be determined

To fully solve the OF equation, we need additional constraints

True or false?

The aperture problem does not depend on the image contents; it is an intrinsic limitation of the optical flow constraint equation

www.socrative.com
Room 219986

Lucas-Kanade method

Assumption: flow is the same in a small neighbourhood W

$$I_{X}(111)$$
 $I_{Y}(111)$
 $I_{X}(112)$ $I_{Y}(112)$
 \vdots
 $I_{X}(n_{1}n)$ $I_{Y}(n_{1}n)$

$$\begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} J_{+}(1/1) \\ J_{+}(4/2) \\ \vdots \\ J_{+}(n/n) \end{bmatrix}$$

n equations,
2 unknowns
Linearly independent?

$$Au = b$$

Least Squares

$$Au = b$$

$$A^{T}Au = A^{T}b$$

$$u = (A^{T}A)^{-1}A^{T}b$$

$$A^{T}A = A^{T}b = A$$

$$\begin{bmatrix} J_{x}(1) & J_{y}(1) \\ J_{x}(1) & J_{y}(1) \\ \vdots & \vdots \\ J_{x}(n) & J_{y}(n) \end{bmatrix} - \begin{bmatrix} J_{t}(1) \\ J_{t}(1) \\ \vdots \\ J_{t}(n) \end{bmatrix}$$

$$\begin{bmatrix} J_{x}(1) & J_{y}(1) \\ \vdots & \vdots \\ J_{x}(n) & J_{y}(n) \end{bmatrix}$$

$$U = (A^T A)^{-1} A^T b$$

Must be invertible

Must be well-conditioned

$$\lambda_1, \lambda_2 \equiv \text{eigen values of } A^T A$$

$$\lambda_1 > \mathcal{E}, \lambda_2 > \mathcal{E}$$

$$\lambda_1 > \lambda_2 \quad (\text{but not } \lambda_1 \gg \lambda_2)$$

textureless

$\lambda_1,\lambda_2 = 0$

edge

textured

$$\lambda_1 \approx \lambda_2$$
 $\lambda_1, \lambda_2 > \varepsilon$

textureless

edge

textured

$$\lambda_1,\lambda_2=0$$

$$\lambda_1 \approx \lambda_2$$
 $\lambda_1, \lambda_2 > \varepsilon$

Where can OF estimates be more reliable?

www.socrative.com
Room 219986

What about large motions?

Linear approximation no longer valid

Optic flow equation not valid

Coarse-to-fine strategy

Repeat OF and warp (accumulating flows!)

Alternative approach: template matching

Slow (for large search windows)

Mismatches are possible

Horn-Schunk method

$$E = \iint igl[(I_x u + I_y v + I_t)^2 igr]$$

 $\int \mathrm{d}x\mathrm{d}y$

Smoothness term

Would we minimise or maximise *E*?

Dense or sparse method?

Horn-Schunck Optical Flow with a Multi-Scale Strategy (demo)

Global motion Image registration

Transformation model

A(x,y)
$$\theta = \text{set of motion parameters}$$

$$T(x,y;\theta)$$

$$T(x,y;t_x,t_y)=(x+t_x,y+t_y)$$
 $B(x,y)=A\left(T(x,y;t_x,t_y)\right)$
 $translation: \theta=(t_x,t_y)$
 $rotation: \Theta=(\beta)$
 $scale: \theta=(\alpha_x,\alpha_y)$
 $aggine: \theta=(\alpha_x,b_x,t_x,\alpha_y,b_y,t_y)$
 $Projective \theta=(---8 params---)$

Registration problem

$$\theta^* = arg \text{ opt } f(A_1B_1T_{\theta})$$
 SSD (Sim of Squared Differences)

 $\theta^* = arg \text{ min } \sum_{x,y} \left(A(x,y) - B(T_{\theta}(x,y))\right)^2$

Can we use SSD if A and B have different ranges of gray values?

Some demos

Homography & RANSAC

Coarse-to-fine, least squares