Session 66: Counting with Repetitions

- Permutations with Repetition
- Combinations with Repetition
- Permutations with Indistinguishable Objects

Permutations with Repetition

Definition: An **r-permutation** with repetition of a set of distinct objects is an ordered arrangement of r elements from the set, where elements can occur multiple times.

Theorem 3: The number of r-permutations of a set of n objects with repetition allowed is n^r .

Proof: There are *n* ways to select an element of the set for each of the *r* positions in the *r*-permutation when repetition is allowed.

Hence, by the product rule there are n^r r-permutations with repetition.

Example

How many strings of length *r* can be formed from the uppercase letters of the English alphabet?

r-combinations with Repetition

Definition: An **r-combination** with repetition of elements of a set is an unordered selection of *r* elements from the set, where elements can occur multiple times

Example: How many ways are there to select four pieces of apples, oranges, and pears if the order does not matter and the fruit are indistinguishable?

```
4 apples 4 oranges 4 pears
3 apples, 1 orange 3 apples, 1 pear 3 oranges, 1 apple
3 oranges, 1 pear 3 pears, 1 apple 3 pears, 1 orange
2 apples, 2 oranges 2 apples, 2 pears 2 oranges, 1 apple, 1 pear 2 pears, 1 apple, 1 orange
```

r-Combinations with Repetition

Example: How many ways are there to select five bills of the following

denominations: \$1, \$2, \$5, \$10, \$20, \$50, and \$100?

Combinations with Repetition

Theorem 4: The number of *r*-combinations from a set with *n* elements when repetition of elements is allowed is

$$C(n + r - 1, r) = C(n + r - 1, n - 1).$$

Proof:

Each r-combination of a set with n elements with repetition allowed can be represented by a list of n-1 bars and r stars.

The bars mark the n cells containing a star for each time the ith element of the set occurs in the combination.

The number of such lists is C(n + r - 1, r): each list is a choice of the r positions to place the stars, from the total of n + r - 1 positions to place the stars and the bars.

This is also equal to C(n + r - 1, n - 1), which is the number of ways to place the n - 1 bars.

Example

How many solutions does the equation

$$X_1 + X_2 + X_3 = 11$$

have, where x_1 , x_2 and x_3 are nonnegative integers?

Permutations with Indistinguishable Objects

Example: How many different strings can be made by reordering the letters of the word *SUCCESS*.

Permutations with Indistinguishable Objects

Theorem 5: The number of different permutations of n objects, where there are n_1 indistinguishable objects of type 1, n_2 indistinguishable objects of type 2,, and n_k indistinguishable objects of type k, is:

$$\frac{n!}{n_1!n_2!\cdots n_k!}$$
.

Proof: By the product rule the total number of permutations is:

$$C(n, n_1) C(n - n_1, n_2) \cdots C(n - n_1 - n_2 - \cdots - n_k, n_k)$$
 since

- The n_1 objects of type one can be placed in the n positions in $C(n, n_1)$ ways, leaving $n n_1$ positions.
- Then the n_2 objects of type two can be placed in the $n-n_1$ positions in $C(n-n_1, n_2)$ ways, leaving $n-n_1-n_2$ positions.
- This is repeated, until n_k objects of type k are placed in $C(n n_1 n_2 \cdots n_k, n_k)$ ways.

Then

$$\frac{n!}{n_1!(n-n_1)!} \frac{(n-n_1)!}{n_2!(n-n_1-n_2!)} \cdots \frac{(n-n_1-\dots-n_{k-1})!}{n_k!0!} = \frac{n!}{n_1!n_2!\dots n_k!} .$$

Summary: Permutations and Combinations

TABLE 1	Combinations and Permutations W	Vith	
and Without Repetition.			

Туре	Repetition Allowed?	Formula
r-permutations	No	$\frac{n!}{(n-r)!}$
<i>r</i> -combinations	No	$\frac{n!}{r!\;(n-r)!}$
<i>r</i> -permutations	Yes	n^r
<i>r</i> -combinations	Yes	$\frac{(n+r-1)!}{r! (n-1)!}$