HAVENS AND EMERSON LTD CLEVELAND OH F/G 13/2
WASTEWATER MANAGEMENT STUDY FOR CLEVELAND-AKRON AND THREE RIVER--ETC(U)
AUG 73
DACW49-72-C-0048 AD-A101 411 UNCLASSIFIED NL 1 or AD A

AC A 1 0 1 4 1 1

WASTEWATER MANAGEMENT STUDY

SECURITY CLASSIFICATION OF THIS PA . E (Who: Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION AD -A 101	ON NO. 3. RECIPIENT'S CATALOG NUMBER 411
4. TITLE (and Subtitle)	5. THE OF REPORT & PERIOD COVERE
Wastewater Management Study for Cleveland-Akr	on Final (L+
and Three Rivers Watershed Areas / Appendix III Municipal Wastewater and Stormwa	ter 6. PERFORMING ORG. REPORT NUMBER
Runoff AUTHOR(s)	8. CONTRACT OR GRANT NUMBER(s)
,	
	11/4/10-1-1
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
U.S. Army Engineer District, Buffalo 1776 Niagara Street	
Buffalo, New York 14207	
1. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
U.S. Army Engineer District, Buffalo 1776 Niagara Street	/- ' 1973
Buffalo, New York 14207	13. NUMBER OF PAGES
4. MONITORING AGENCY NAME & ADDRESS(If different from Controlling O	
	15a. DECLASSIFICATION/DOWNGRADING
	SCHEDULE
6. DISTRIBUTION STATEMENT (of this Report)	
Distribution Unlimited	
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if diffe	rent from Report)
8. SUPPLEMENTARY NOTES	
	number)
9. KEY WORDS (Continue on reverse side if necessary and identify by block	number)
	number)
9. KEY WORDS (Continue on reverse side if necessary and identify by block. Wastewater	number)
9. KEY WORDS (Continue on reverse side if necessary and identify by block. Wastewater	number)
9. KEY WORDS (Continue on reverse side if necessary and identify by block) Wastewater Cleveland-Akron	,
Wastewater Cleveland-Akron ABSTRACT (Continue on reverse side if necessary and identify by block in the continue on reverse side if necessary and identify by block in the continue on reverse side if necessary and identify by block in	number)
Wastewater Cleveland-Akron ABSTRACT (Continue on reverse side if necessary and identify by block in this special Appendix describes the results of	number) f a portion of the Survey Scope
Wastewater Cleveland-Akron ABSTRACT (Continue on reverse side if necessary and identify by block of the special Appendix describes the results of Study on Wastewater Management Alternatives for	f a portion of the Survey Scope or the Cleveland-Akron Three
Wastewater Cleveland-Akron Wastract (Continue on reverse side if necessary and identify by block on the second of	f a portion of the Survey Scope or the Cleveland-Akron Three d herein is related to the water
Wastewater Cleveland-Akron Wastract (Continue on reverse side if necessary and identify by block of the special Appendix describes the results of Study on Wastewater Management Alternatives for Rivers Watershed Area. This portion contained based treatment of municipal wastewater and side treatment, land-based treatment, and plan form	f a portion of the Survey Scope or the Cleveland-Akron Three d herein is related to the water tormwater. The industrial waste mulation was carried out by other
9. KEY WORDS (Continue on reverse side if necessary and identify by block) Wastewater Cleveland-Akron ABSTRACT (Continue on reverse side if necessary and identify by block of this special Appendix describes the results of Study on Wastewater Management Alternatives for Rivers Watershed Area. This portion contained based treatment of municipal wastewater and set	f a portion of the Survey Scope or the Cleveland-Akron Three d herein is related to the water-tormwater. The industrial waste mulation was carried out by other dices. The Specialty Appendices

HAVENS AND EMERSON LIMITED

CONSULTING ENGINEERS

GLEN H ABPLANALP STANLEY H. SUTTON GEORGE D. SIMPSON VINCENT A IADAVAIA PHILIP H. FLEWELLING GARY M SIEGEL JUNIUS W STEPHENSON SOL KOPLOWITZ CARL E LESHER, JR

CONSULTANTS JASPER W AVERY EDWARD S ORDWAY ALVIN M MOCK

CLEVELAND LEADER BLDG 526 SUPERIOR AVENUE 216/621-2407

NEW JERSEY SADDLE BROOK 299 MARKET STREET 201/848-0470 ATLANTA NORCROSS, GA ISO TECHNOLOGY PARK 404/449-ISSO

ENVIRONMENTAL ENGINEERING

WATER RESOURCES POLLUTION CONTROL SEWERAGE-DRAINAGE WASTEWATER TREATMENT WASTEWATER THEATMENT INDUSTRIAL WASTES SOLID WASTES DISPOSAL AIR POLLUTION CONTROL RATE INVESTIGATIONS SANITARY LABORATORIES

AD-Note Commit

PLEASE ADDRESS REPLY TO

CLEVELAND, OHIO 44114

April 10, 1973

Re: Submission of Final Report

Col. Robert L. Moore, District Engineer Buffalo District United States Army Corps of Engineers 1776 Niagara Street Buffalo, New York 14207

Dear Col. Moore:

We are submitting our final report on the "Wastewater Management Alternatives for the Cleveland-Akron, Three Rivers Watershed Area." The report, entitled a Specialty Appendix to conform to your guidance, consists of four separate volumes - a Summary Report and Three Technical Appendices which were previously submitted as Contract Phase Reports. This submission completes our assignment under Contract Number DACW49-72-C-0048 dated May 9, 1972.

We are pleased to have been chosen to work on this assignment and trust that this report will have meaningful value in completing your overall task.

We are at your convenience to discuss this report or items regarding its development.

Very truly yours,

HAVENS AND EMERSON, LTD.

/demmo George D. Simpson

LWC:ejr

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

OVER 50 YEARS of SERVICE

U.S. ARMY CORPS OF ENGINEERS BUFFALO DISTRICT

SURVEY SCOPE STUDY
FOR
WASTEWATER MANAGEMENT PROGRAM

Contract Summary Report

Prepared B
HAVENS AND EMERSON, LTD.
CONSULTING ENVIRONMENTAL ENGINEERS
Cleveland, Ohio

April 1972

Under Contract No.: DACW49-72-C-0048 ~

TABLE OF CONTENTS

			Page
INTR	ODUCT	ION	1
Α.	DISC	USSION OF TECHNICAL GOALS	2
	1.	LEVEL ONE	3
		1.1 MUNICIPAL TREATMENT PROCESS AND EFFECTIVENESS 1.2 BIOLOGICAL SYSTEM	3 7 7
	2.	LEVEL TWO	10
		2.1 MUNICIPAL TREATMENT PROCESS AND EFFECTIVENESS 2.2 BIOLOGICAL SYSTEM	11
В.	DESI	GN CRITERIA	13
	1. 2. 3.	BASIC DATA MUNICIPAL WASTEWATER	13
С.	METH	ODOLOGY OF DEVELOPING ALTERNATIVES	15
	1. 2.	MUNICIPAL WASTEWATERSTORMWATER	
D.	COST	ESTIMATION METHODOLOGY AND CRITERIA	20
	1. 2.	UNIT COSTSCOMPOSITE COSTS	20 21
		2.1 MUNICIPAL WASTEWATER	21 22
	3. 4.	PHASE II COST PROCEDUREPHASE III COST PROCEDURE	
E.	ALTE	RNATIVES	25
	1. 2.	COST ESTIMATIONELECTRICAL POWER AND CHEMICAL REQUIREMENTS	25 25

TABLE OF CONTENTS (CONT'D.)

			Page
F.	FIN	AL ALTERNATIVES	28
	1.	COST ESTIMATION	28
	2.	ELECTRICAL POWER AND CHEMICAL REQUIREMENTS	28

LIST OF TABLES

	<u>Pa</u>	age
A1	Municipal Wastewater Characteristics and Goals	4
A2	Combined Overflow Characteristics and Goals	5
A3	Stormwater Runoff Characteristics and Goals	6
C1	List of Alternatives	16
El	Annual Comparative Values	26
E2	Municipal Plants in 2020 - Electrical Power and Chemical Requirements2	27
F1	Summary - Total Present Worth 2	29
F2	Summary - Total Annual Cost 3	
F3	Municipal and Stormwater Plants - Electrical Power and Chemical Requirements 3	31

INTRODUCTION

This Specialty Appendix describes the results of a portion of the Survey Scope Study on Wastewater Management Alternatives for the Cleveland-Akron, Three Rivers Watershed Area. This portion contained herein is related to the water-based treatment of municipal wastewater and stormwater. The industrial waste treatment, land-based treatment, and plan formulation was carried out by others and are the subjects of other specialty appendices. The Specialty Appendices are being combined to form the background for the Survey Scope Study Report.

The Specialty Appendix consists of a Summary Report and Three Technical Appendices. The Technical Appendices contain the details of the work and rational behind the selection of the basis of design and cost. The Technical Appendices are arranged in a format to conform to the three contract phases. The Summary Report conforms to the guidance provided in the Wastewater Management Program Study Procedure, OCE, May 1, 1972 and is as follows:

SUMMARY REPORT

- A. Discussion of Technical Goals
- B. Design Criteria
- C. Methodology of Developing Alternatives
- D. Cost Estimations Methodology and Criteria
- E. Alternatives
- F. Final Alternatives

TECHNICAL APPENDIX

- Municipal Wastewater and Stormwater Runoff PHASE I
- PHASE II Systems Design and Estimate of Cost
 PHASE III Time Phasing of Selected Alternatives

A. DISCUSSION OF TECHNICAL GOALS

The objective of water quality goals is to establish a target for design of treatment processes for municipal wastewater, combined overflow and stormwater runoff. The level of treatment, with a higher level indicating greater degree of treatment, determines the water quality of both the effluent and the resulting quality of the receiving water. As the level of treatment increases, so does the cost. The treatment cost and resulting water quality benefit should be optimized to produce a program with the most favorable cost effectiveness.

In this study, two levels were established - Level 1 to reflect the proposed State Standards (as of June, 1972) and a higher level, Level 2, referred to as the O.C.E. goal. The O.C.E. goal used for this study was established by the letter of June 19, 1972 from the Buffalo District to O.C.E. It was based on the draft goals of May, 1972 but modified to reflect current technological limits. In their report of August 31, 1972, Environmental Quality Systems, Inc. suggested another set of goals which are shown on Tables A1, A2 and A3. The COD concentration of the August goal has been increased from 5 to 10 mg/l to reflect the more usual ratio of BOD-COD in a highly treated effluent. The process scheme developed for Level 2 will satisfy either goal. All of these are shown on Tables Al, A2 and A3 for municipal wastewater, combined overflow, and stormwater runoff respectively, and they are discussed in more detail later. The two levels were established to indicate the cost associated with higher degrees of treatment and a higher degree of receiving water quality. Both levels are higher than the existing levels of water quality, and both levels require tertiary treatment, or unit processes in addition to those commonly employed to treat wastewater or stormwater. Typical treatment processes that would be utilized to meet the standards are discussed with the associated level or goal. - 2 -

1. LEVEL 1

The degree of treatment under this condition would meet the State Standards as proposed in mid-1972. Since those standards were proposed there has been a modification in the technique of applying the criteria which in turn would change the actual limits. However, the treatment processes developed will produce an effluent that will meet the modified criteria. The Level 1 goal for municipal wastewater is shown in Table Al.

The Level 1 goal for combined overflow and stormwater is not as high as for municipal wastewater and is shown also on Tables A2 and A3.

Level 1 goals for municipal wastewater, combined overflow and stormwater can be met with today's technology. The effects of the degree of treatment on receiving water quality should be closely monitored to determine the impact and need for further treatment.

1.1 MUNICIPAL TREATMENT PROCESS AND EFFECTIVENESS

Two systems were considered for treating municipal waste - a biological and a physical-chemical. The biological system incorporates specific physical and biological treatment techniques, and is the system most likely to be applied to this area in the near future. Of the population receiving secondary treatment, (about 77 percent of the total), about 93 percent is provided by the activated sludge process or a modification thereof. Consequently, the activated sludge process with an aeration contact time of 5-6 hours is assumed as the one that must be upgraded to meet various wastewater management goals listed in Table Al. More details can be found in Technical Appendix - Phase II report, Part A-1.

1.2 BIOLOGICAL SYSTEM - LEVEL 1

The basic biological system adopted for this study consists of screening,

TABLE A1

MUNICIPAL WASTEWATER CHARACTERISTICS AND GOALS

(Values in mg/1)

			Level 1	1	Level 2	
Parameter	Influent Quality	Goal	Process Effectiveness	Goa1 (1)	Goa1 (2)	Process Effectiveness
Suspended Solids	182	æ	7	< 5	< 1	Trace
BOD	178	S	4	\$	۳ ۲	Trace
COD	360	N/A*	26	10	< 10	œ
Ammonia Nitrogen		7	Trace	< 1	ć. 5	Trace
(N _T) Total Nitrogen	23.3	N/A	17.2	S	4 3	0.7
Phosphorus (as P)	11.1	0.5	0.5	<. 5	(.2	0.1

*N/A indicates no goal established.

Goal (1) by June 19, 1972 Buffalo District letter Goal (2) by August 31, 1972 O.C.E. report of Environmental Quality System, Inc., with modified COD goal.

TABLE A2

COMBINED OVERFLOW CHARACTERISTICS AND GOALS

(Values in mg/1)

			Level 1		Level 2	
Parameter	Influent Quality	Goal	Process al Effectiveness	Goal (1)	Goal (1) Goal (2)	Process Effectiveness
Suspended Solids	200	N/A*	30	< 5 < 1	< ₁	-
BOD	09	N/A	10	< s	< 3	1
COD	220	N/A	20	10	< 10	œ
Total Volatile Solids	160	N/A	24	N/A		Trace
Suspended Volatile Solids	120	N/A	18	N/A		Trace
Phosphorus	œ	N/A	N/A	0.1	< .2	0.2
Total Nitrogen	12	N/A	A/A	N/A	\ 3	7
Chloride	161	N/A	N/A	N/A		161

N/A indicates no goal established.

TABLE A3

STORYWATER RUNOFF CHARACTERISTICS AND GOALS

(Values in mg/1)

	;	Quality		evel 1		Level 2	
Parameter	Influent	Dense Urban	Goal	Process Goal Effectiveness	Goa1 (1)	Goa1(1) Goa1(2)	Process Effectiveness
Suspended Solids	300	200	N/A*	20	< 5 < 1	< 1	~
ВОВ	20	30	N/A	10	S >	× ×	7
000	150	200	N/A		10	< 10	œ
Total Volatile Solids	110	140	N/A		N/A		Trace
Suspended Volatile Solids	80	105	N/A		N/A		Trace
Phosphorus	.7	5.	N/A		0.1	< .2	< 0.1
Nitrogen	3.1	2.2	N/A		N/A	8	6.0
Chloride	160	166	N/A		N/A		166

- 6 -

*N/A indicates no goal established.

grit removal, primary settling, secondary settling, aeration, and disinfection; with anaerobic sludge digestion followed by vacuum filtration and incineration or landfill. To meet Level 1, biological nitrification, phosphorus removal (using metal salts), additional solids removal by polymer addition and in-depth filtration, and post-aeration are the unit processes added. Solids handling is modified, with the major modification being the addition of sludge thickening and heat conditioning. Priority is placed on disposing of the sludge on strip mined areas.

1.3 PHYSICAL-CHEMICAL SYSTEM - LEVEL 1

The physical-chemical system adopted for this study consists of screening, grit removal, a flocculator-clarifier with lime and polymer addition for phosphorous and suspended solids removal, recarbonation to control pH and prevent encrustation of the carbon adsorption system, a filtration system for removal of fine solids, the carbon adsorption system itself, and disinfection. A regeneration system is provided for the carbon, and a recalcination system is provided for the sludge resulting from the flocculator-clarifier. Waste ash is landfilled. To this basic system additional phosphorus and BOD_{ς} removal must be provided as well as ammonia nitrogen removal to meet Level 1 criteria. To this end, a second stage flocculator-clarifier has been incorporated. Additional phosphorus removal and additional carbon adsorption are added to reduce the refractory organics. Breakpoint chlorination is used for ammonia nitrogen removal in lieu of clinoptilolite because the questions of resin detrition, recovery and reuse, and ultimate disposal of ammonia concentrate would remain. Post aeration would be added. The chlorine contact tank would become a reactor for the breakpoint chlorination process.

1.4 COMBINED OVERFLOW TREATMENT PROCESSES AND EFFECTIVENESS - LEVEL 1

There are large areas in Cleveland and Akron that are served by combined

sewer systems. During periods of dry weather, the municipal waste is conveyed to the plant for treatment, but during periods of rainfall, some of the stormwater runoff mixes with the municipal wastewater and is diverted away from the plant and is discharged directly to receiving waters without treatment

Table A2 indicates the quality of overflow considered in the design of the process, and the process effectiveness. Details can be found in the Technical Appendix, Phase I and Phase II, Part B on the quality and quantity of combined overflow.

Since stormwater runoff and combined overflows are intermittent, have high peak flows, and have a widely varying quality, a feasible treatment process requires storage basins which absorb the peak rates, decrease the required size of the treatment units, and standardize the quality. The storage and treatment facilities are designed to treat the one year stormwater runoff resulting from a 1 year, 6 hour duration rainfall. In a combined system the storage basins will be constructed of concrete with sludge collectors. The sludge will be piped to the closest wastewater treatment plant for ultimate disposal.

Flows in excess of the one-year storm would receive screening, settling and disinfection prior to discharge.

The volume in the storage basin is dependent upon the treatment scheme. In the scheme where treatment is provided at the storage site, the storage cost and treatment cost were optimized for a generalized case which indicated the treatment units should be capable of treating about 30% of the peak flow. The remainder of the inflow would be stored and treated at the maximum rate until the basin is empty. In the alternate scheme, combined overflow is stored in a concrete basin designed to hold the entire runoff volume of the 1 year, 6 hour duration storm with a pump out rate sized to empty the basin in three days. The polluted overflow from storage is discharged into the

closest interceptor sewer and conveyed to a municipal wastewater treatment plant for treatment. Sludge is also pumped to the wastewater treatment plant.

The treatment provided in the latter scheme has the same effectiveness as that provided for the municipal waste. In the former scheme where the treatment facilities are at the storage site, the unit processes consist of coarse screening, storage and sedimentation, microstraining, and disinfection by ozonation. This particular scheme has been adopted because it can respond quickly to a start up condition, or to changes in flow, and further, capital cost items are minimized in favor of higher flow dependent operating cost items.

1.5 STORMWATER RUNOFF TREATMENT PROCESSES AND EFFECTIVENESS - LEVEL 1

Stormwater runoff contains a pollution load that results from natural sources as well as those from man's use of the land. The quality and quantity of the load is influenced by the type of land use, density of population, type of sewer system, hydrology, and several other factors. Table A3 summarizes the stormwater quality as it is presented in the Technical Appendix, Phase I, Part B-6.

As with combined overflows, stormwater flows are intermittent, have high peaks, and vary widely in quality. Similarly, the treatment processes follow the same techniques. Storage and treatment are designed to treat the one year, 6 hour duration storm flow in areas where storage and treatment are combined at one location. The treatment scheme is designed specifically for stormwater. Storage may be in earth or concrete basins depending upon available land. In areas where the storm sewers are known to be heavily cross-connected with the sanitary system or in densely developed urban areas, preference was given to concrete basins. For these basins, storage and treatment was optimized as it was for the combined overflow treatment. When the stormwater is treated on site in concrete basins, all of the sludge is collected

and transported to the closest wastewater plant. When earth basins were used, the storage-sedimentation basin sludges were assumed to be removed periodically and taken to landfill.

In areas where the storage can be developed close to a treatment plant and the plant is used for treating the storm water, the storage volume provided is equivalent to 20 percent of the total annual runoff, which coincidentally is about equal to the 100 year storm runoff. A 30-day pump out rate was used. This is discussed in the Technical Appendix, Phase II, Part B-2.

Stormwater treatment to achieve the Level 1 goals consists of pretreatment, storage and sedimentation followed by microstraining and disinfection.

These plants would be highly automated to respond rapidly to changes in flow.

2. LEVEL 2

Level 2 is based upon the national goal identified in the Federal Water Pollution Control Act Amendments of 1972, ".... that the discharge of pollutants into the navigable waters be eliminated by 1985." The Office of the Chief of Engineers, Department of the Army (O.C.E.) established technical goals for this study commensurate with that national goal, i.e., (1) prevent the continued degredation of our water resources by waterbourne wastes and (2) to provide for the efficient reuse of treated or renovated wastewater and by-products.

The technical goals were translated into effluent criteria by O.C.E., consisting of the most stringent constituent levels from among those required for public water supply, irrigation water, livestock water, and aquatic habitat. Those criteria are referred to as the O.C.E. Goals. The O.C.E. Goals should not be interpreted as effluent standards established by the Federal Government, but rather the translation by the Corps of Engineers of

the stated national objective into a set of consistent guidelines for all similar wastewater management studies throughout the nation.

The Level 2 criteria was applied to both municipal wastewater and stormwater so that both processes would produce an equal effluent.

Municipal, combined sewer overflow and stormwater treatment processes and their effectiveness will be discussed in this section.

2.1 MUNICIPAL TREATMENT PROCESS AND EFFECTIVENESS

As with Level 1, two systems, a biological and a physical-chemical process, were considered.

2.2 BIOLOGICAL SYSTEM - LEVEL 2

The biological system for Level 2 goals consists of additional unit processes added to the Level 1 scheme. The goals and effectiveness values are shown on Table A1.

To meet the Level 2 goals, biological denitrification, additional phosphorous removal, and carbon adsorption for refractory organics are unit processes added to the Level 1 system. The solids handling remains the same, again with emphasis placed on disposal on strip mined areas.

2.3 PHYSICAL-CHEMICAL SYSTEM - LEVEL 2

The physical-chemical system for Level 2 goals consists of an additional unit process attached to Level 1. The goals are shown on Table Al.

To meet the Level 2 goals, ozonation is added to reduce the refractory organics and further polish the effluent. The post aeration facilities would be modified for the ozonation systems facilities.

2.4 COMBINED OVERFLOW TREATMENT PROCESSES AND EFFECTIVENESS - LEVEL 2

To meet the Level 2 goals for combined overflow requires unit processes

similar to the municipal treatment processes. As with the Level 1 program, two situations exist - one with storage and treatment at the site; and two, storage with treatment at a municipal plant.

The hydraulic capacity of the treatment facilities and storage are the same as with the Level 1 scheme. The treatment facilities are modified by adding breakpoint chlorination for nitrogen removal and downflow dual media granular activated carbon-sand filters to provide further soluble organic removal. A rapid mix and flocculation facility have been provided prior to the storage and sedimentation basin to increase organics and phosphorous removal. Ozonation is used for final organic polishing prior to release into the receiving body of water. More details are provided in the Technical Appendix, Phase II, Part B-1.

2.5 STORMWATER RUNOFF TREATMENT PROCESSES AND EFFECTIVENESS - LEVEL 2

Treatment of separate stormwater to meet the Level 1 goals is largely a reduction of particulate solids and disinfection. However, to meet the Level 2 goals, these reductions must be increased; soluble organics must be reduced; and phosphorous removal must be included.

The pretreatment, storage, and sedimentation are the same processes as in the Level 1 scheme. Powdered activated carbon is added for removal of soluble organics; its use was selected to minimize the granular activated carbon inventory and carbon contact time. Alum and a polymers are used to increase solids removal and reduce phosphorous. Ozonation is provided for disinfection and final organic polishing. Additional details are discussed in Technical Appendix, Phase II, Part B-1.

B. DESIGN CRITERIA

Detail design criteria is presented in the Phase I and II reports of the Technical Appendices. This section will summarize the data used to formulate the alternatives.

BASIC DATA

During the Phase I portion of the study, the basic data such as population, flows, land use, existing facilities, and planned programs were gathered. Much of this data had been gathered during the feasibility study and only required updating. Population data was available from the 1970 census and recent projections made by the Battelle Institute for the Northeast Ohio Water Development Plan. Several areas were adjusted to meet the expectations of the local planners. The land use was determined by discussion with local planning agencies and conforms closely to the land use used for the Northeast Ohio Water Development Plan Study. This projected land use concept would exist in 1990 according to the local planners; however, the densities would be on the lower side of the given ranges. The land use map indicates only general categories and ranges of population density.

2. MUNICIPAL WASTEWATER

Collection systems that are existing were examined for ultimate capacity and adaptability to plan variations. Proposed systems were designed for 2020 flows with 150 gpcd and a peaking factor of 2-4 depending upon the population. Industrial waste flows were added. All collection system components were designed for the ultimate flow or 2020. Useful lifes of the various components vary from 20 to 50 years. Part A-2 of the Phase II report discusses loading ratios, useful lifes, and detailed design criteria. Section A of this summary report refers to the unit process details.

3. STORMWATER RUNOFF

The design criteria for layout and the engineering features for the stormwater collection system are similar to the collection system for the municipal waste. Existing systems were compared to the design storm peak flows and for their adaptability to plan variations. The pipes were designed for the 1 year - 6 hour peak flow based on a runoff situation that was assumed to exist in 2020. Over the basin, this runoff averages 0.5 cfs per acre. The volume of runoff was taken from the hydrograph. As a basin average, the runoff is 1.25 inches, compared to the 3.6 inches of rainfall in the design storm. The design criteria for the storage and treatment are discussed in Section A of this summary report and Technical Appendix, Phase II, Part B.

C. METHODOLOGY OF DEVELOPING ALTERNATIVES

Alternatives for managing the municipal wastewater and stormwater runoff were formulated to indicate degrees of optimization due to regionalism and to show the cost of higher degrees of treatment. As discussed in Section A, two levels of treatment were selected to indicate the cost of higher degrees of treatment, and eight of the twelve alternatives were formulated and costed to both levels for this purpose. Table C1 lists the alternatives. In developing the alternatives, the goals of Section A and the design criteria of Section B were utilized. In this section municipal wastewater and stormwater runoff are discussed separately.

1. MUNICIPAL WASTEWATER

The twelve alternatives were formulated by the plan formulation contractor. The plant locations were provided as part of the formulated plan. Using the land use map and topographic maps, a preliminary interceptor pattern was laid out to serve the sewerage district for each plant. In established areas, the existing systems were reviewed for adequacy.

If a plant was existing, its capabilities were reviewed, and modifications were proposed to enlarge and increase its capabilities to meet the Level 1 or 2 goals as necessary.

For the initial twelve alternative plans, the methodology of comparison was to design and estimate cost of the plant capable of handling the 2020 flow immediately or as it was programmed to be phased into the plan. This, of course, is done only for comparison, and it actually would not be completed in this fashion.

The comparative capital cost then became the cost of constructing the plant with a design flow capability of 2020 to either Level 1 or Level 2

TABLE C1
LIST OF ALTERNATIVES

Plan	Level	Brief Description
1	1	All water based - separate storm
1	2	water treatment
2	1	All land - separate storm water
2	2	treatment
3	1	All water with storm water
3	2	taken to municipal plant
2 2 3 3 4	1	All land with storm water
4	2	taken to municipal plant
5	1	Combination - heavy water
5	2	Combination - heavy water
5 5 6	1	Combination - heavy land
6	2	Combination - heavy land
7	1	Combination - heavy water
7	2	Combination - heavy water
8	1	Combination - heavy land
8	2	Combination - heavy land
9	2	Combination - heavy land - massive
		regionalization
10	2	Similar to Plan 3. All municipal
		plants - advanced biological
11	2	Similar to Plan 3. All municipal
		plants - physical-chemical
12	2	Similar to Plan 4. All secondary
		treatment with aerated lagoons

depending upon the plan. The present worth of any existing structures was included in determining the total capital cost. If new interceptors or pumping stations were needed, they too were added to the capital cost. All interceptors and pumping stations were designed for the 2020 flow conditions.

The unit processes used to meet the goal depended upon the plan and its level of treatment. In the plans where the wastewater was applied to land treatment, the prior processes included primary and secondary treatment with disinfection. In those plans where the effluent was finally discharged into a waterway, then tertiary treatment, disinfection and nutrient removal or reduction was considered. The unit processes used are described in detail in the Technical Appendix, Phase II, Part A. All twelve alternative plans were compared using the same methodology. The plan formulation methodology and land treatment methodology will be discussed by the appropriate contractor.

In the Phase III portion of the study, three of the twelve alternative plans, (1, 7, and 8) were designated for further investigation. Slight modifications were made to these plans, and they are referred to as Plans A, B and C for the Phase III work. The three plans were reviewed by the Corps of Engineers prior to final cost phasing.

The cost comparison and methodology for the final selected plans was made in more detail. Again, if plants existed, their present worth was considered. All final plants were increased in capabilities by a reasonable phasing program to 2020 flow conditions adequate for Level 2 effectiveness. Since the majority of plants are secondary activated sludge, it was necessary to include tertiary units. In all water based plant schemes, the plant capability was increased to meet Level 1 goals prior to 1983, and Level 2 goals by 1985. The first modifications between 1972 and 1983 would be a Level 1 unit process addition. The design years for capacity were 1990 and 2020. The second

modification would be between 1983-1985, to a Level 2 standard. All enlargements after 1985 would be to Level 2 standards. This is discussed in more detail in the Phase III report.

Industrial waste flows compatible with the municipal treatment were added to the municipal wastes for treatment. In the cases of non-compatible industrial wastes, pretreatment would be accomplished at the source to provide a compatible effluent. Both industrial waste flow rates and pretreatment processes were developed by another contractor.

2. STORMWATER

The twelve alternative plans were developed using treatment goals and processes discussed in the preceding sections of this appendix. In developing the alternatives, the study area was divided into storm drainage districts based on topographic considerations. The time at which each district would be developed to a degree that storm drains could be installed was estimated and a preliminary storm drainage pattern was established for those areas not now served by storm drains or combined sewers.

The basin data for each drainage district was gathered and a generalized unit hydrograph was applied using a 1 year - 6 hour duration rainfall. All of the background data for the watersheds and the rationale can be found in the Technical Appendix, Phase I, Part B.

With the flow hydrograph for each basin established, and a general pattern of the storm drainage either existing or proposed, as the case may be, the collection system pipe sizes were established, and an area was selected for the treatment site. Depending upon the area and plan level, the method of treatment was chosen, and costs were estimated. Opportunities for consideration of drainage districts into regional systems were considered and optimized.

In selecting the method of treatment, several alternatives were estimated.

In combined sewer areas, the selection was narrowed somewhat, as only concrete storage basins were considered. The question of whether to treat on-site or to pump to a wastewater treatment plant was also investigated. Sludge from the combined sewer areas was taken to a wastewater treatment plant for disposal, in all cases.

In separate sewered areas, the stormwater runoff was stored in earth basins or concrete basins depending upon available land and local conditions. In the drainage districts where storm drains have been installed and the system is known to be highly interconnected with the sanitary sewers, and where space is at a premium the concrete basin was used. In newer suburbs, earth basins were considered. As areas develop and storm drains are installed, earth basins would be incorporated into the basic subdivision planning process. Also in the newer areas, the volume of runoff would be reduced because of imposed zoning constraints. It has been assumed that as new areas develop legislation will require some degree of upstream storage and that planned unit development will reduce the runoff. The storage-treatment processes are described in Section A of this report.

D. COST ESTIMATION METHODOLOGY AND CRITERIA

Each alternative plan is composed of various combinations of treatment units to achieve the designated goals. These combinations, as previously described, include advanced biological treatment, physical-chemical treatment, and land treatment of municipal wastewater; on-site storage and treatment, storage and treatment at the municipal plant, and storage plus land treatment of the combined sewer overflow and separate stormwater runoff. It is the purpose of this section to present the methodology and criteria used in preparing cost estimates of the alternative plans, with specific attention given to the various treatment techniques.

As previously discussed, this specialty appendix deals only with water-based treatment and stormwater runoff treatment. All costs associated with land treatment were done by the land treatment contractor.

UNIT COSTS

The treatment schemes proposed are combinations of various treatment units to achieve the level of treatment desired. Capital cost curves and operation and maintenance cost curves were developed therefore for each of these treatment units (e.g. carbon adsorption, microstrainers, vacuum filters, gravity sewers, etc.). These curves are presented in the Technical Appendix, Phase II report along with design parameters and cost data references. These unit costs were developed for the treatment units of the municipal wastewater plant as well as the stormwater water treatment plant. An ENR construction cost index of 1740 was used to relate assumed price levels.

2. COMPOSITE COSTS

In order to expedite costing of the alternative plans, composite cost curves were developed for each of the treatment schemes. The capital cost curves and operation and maintenance costs curves of the treatment units specified in a particular treatment scheme were used in the development of the composite curves.

2.1 MUNICIPAL WASTEWATER

There were five wastewater treatment plant variations for which composite cost curves were developed. These include:

- 1. Preliminary treatment plant
- 2. Conventional activated sludge plant
- 3. Advanced biological plant Level 1
- 4. Advanced biological plant Level 2
- 5. Physical-chemical plant Level 2

The physical-chemical plant was the only wastewater treatment composite curve which included sludge handling. There were four sludge disposal variations for which composite curves were developed. These included:

- 1. Strip mine application
- 2. In-basin agricultural application
- 3. Incineration
- 4. Ash disposal

The composite cost curves discussed above are presented in the Technical Appendix, Phase II, Part A-4, along with a detailed description of design parameters.

2.2 STORMWATER

The composite cost curves developed for stormwater treatment accounted for variations in type of stormwater (combined versus separate), type of storage (earth versus concrete), and level of treatment. The treatment schemes included:

- 1. Separate stormwater with earth basin Level 1.
- Separate stormwater and combined sewer overflows with concrete basins - Level 1.
- 3. Separate stormwater with earth basin Level 2.
- 4. Separate stormwater with concrete basin Level 2.
- 5. Combined sewer overflows with concrete basin Level 2.

These composite cost curves are presented in the Technical Appendix,

Phase II, Part B-3, along with a detailed description of design parameters.

3. PHASE II COST PROCEDURE

Twelve alternative plans were formulated in the Phase II portion of this Survey Scope Study. These plans are described in detail by the Plan Formulation contractor in his report and will not be duplicated here. The cost estimation of these plans was developed to provide an economic comparison of the plans to each other. The costs associated with these plans do not directly reflect the actual cost and were not intended to do so. These costs were used to provide the economic evaluation of the 12 plans in selecting the three plans to be further investigated in Phase III.

The procedure for the cost estimation includes the calculations of the following items for each of the major segments involved.

- Net capital cost This cost is based on the 2020 design flows and takes into account the present worth of the existing structures.
- Annual capital This cost is based on a capital recovery factor multiplied by the net capital cost. The capital recovery factor is a function of the useful life of the item and an interest rate of 7%.
- Operation and maintenance This cost is based on the 2020 design flow of the particular segment.
- 4. Annual comparative value This is the summation of the annual capital and the operation and maintenance.

The annual comparative value was used as the basis of the economic comparison. Section C of the Phase II Technical Appendix presents a detailed breakdown of these costs for each plan by the following category: wastewater-liquid phase, wastewater-solid phase, stormwater-liquid phase, and stormwater-solid phase.

Section E of this report summarizes the costs for Plans 1 through 12 as developed for the wastewater and stormwater portion of the cost estimation. It should be noted that the cost summaries as presented here are not the entire plan costs in that they include no cost for land treatments of wastewater, stormwater, or sludge and no cost for industrial waste pretreatment. Total cost can be found in report of the Plan Formulator.

4. PHASE III COST PROCEDURE

In the Phase III portion of the Survey Scope Study, three of the twelve alternative plans were investigated in more detail. The plans selected were Plans 1, 7 and 8. Slight modifications of the original plans were made to optimize the plans, which were re-designated Plans A, B and C respectively.

The costing procedure of Phase III provided a solid economic comparison of the three plans using a present worth technique.

This technique is described in detail in the Technical Appendix,

Phase III. Section F addresses the cost for the municipal wastewater and the stormwater portion of Plans A, B and C. A more detailed breakdown for each municipal plant and drainage district of each plan is also presented in the Technical Appendix, Phase III. It should be noted again that the cost summaries as prescribed here are not the entire plan costs in that they include no cost for land treatment of wastewater, stormwater or sludge and no cost for industrial waste pretreatment, and the total cost can be found in the report of the Plan Formulator.

E. ALTERNATIVES

In Phase II of this survey scope study twelve alternative plans were developed as wastewater management alternatives for the Cleveland-Akron Three Rivers Watershed Area. Detailed descriptions of these plans are presented in the Plan Formulators Phase II report and in Technical Appendix Phase II.

1. COST ESTIMATION

The methodology used in the development of these plans and the cost estimation of these plans are described in Section C and Section D of this report, respectively. Table El shows the results of the cost estimation in terms of Annual Comparitive Values. These cost coupled with the costs from the land treatment contractor were used as the bases of the economic comparison of the twelve alternative plans.

2. ELECTRICAL POWER AND CHEMICAL REQUIREMENTS

Estimates were made of the electrical power requirements and chemical requirements of the municipal wastewater plants. Table E2 summarizes these results for the twelve alternative plans. This information was required to provide data essential for evaluation of the plans. Additional information is provided with Technical Appendix, Phase II.

TABLE E1

ANNUAL COMPARITIVE VALUES*
(\$1,000,000/Yr.)

		Wastew		Storm	water	
Plan	Level	Liquid	Solid	Liquid	Solid	TOTAL
1	1	68	15	87	7	177
1	2	99	16	143	10	268
2	1	43	6	87	7	143
2	2	43	6	143	10	212
3	1	72	12	203	7	294
3	2	104	13	220	9	346
4	1	44	6	157	5	212
4	2	44	6	157	6	213
5	1	70	12	125	9	216
5	2	103	13	169	12	297
6	1	56	9	124	9	198
6	2	73	10	165	12	260
7	1	75	11	137	6	229
7	2	97	12	150	7	266
8	1	50	9	131	6	196
8	2	59	9	139	8	215
9	2	59	7	198	5	269
10	2	104	10	220	7	341
11	2	116	1	214	1	332
12	2	7	~	115	6	128

^{*}These costs include no costs associated with land treatment.

TABLE E2
MUNICIPAL PLANTS IN 2020

ELECTRICAL POWER AND CHEMICAL REQUIREMENTS*

Plan	<u>Level</u>	Electrical Power Requirements (MEGAWHR/DAY)	Chemical Requirements (TONS/DAY)
1	1	2040	237
2	1	1730	58
3	2	2460	416
4	2	1730	58
5	1	2791	222
6	1	1926	143
7	2	2171	404
8	2	1900	142
9	2	1200	266
10	2	2460	416
11	2	2460	962
12	2	557	0

^{*}These figures include \underline{no} requirements associated with land treatment.

F. FINAL ALTERNATIVES

In Phase III of this survey scope study, Plans 1, 7 and 8 of the original twelve alternative plans were investigated in more detail. Modifications were made to optimize these plans which were re-named Plans A, B and C. Detailed description of these plans are presented in the Plan Formulators Phase III. Subsequent to development of these three plans it was determined that Plan A, which had been designed to achieve Level II criteria, should also be designed and cost estimated to achieve Level I criteria. This effort was accomplished and is discussed in more detail in Appendix D of the Phase III report of this consultant's effort. (See Appendix III, Municipal Wastewater and Stormwater Runoff appendix of total Wastewater Management Report)

1. COST ESTIMATION

The methodology used in the development of these plans and in the cost estimation of these plans are described in Section C and Section D of this report, respectively. The results of the present worth costing technique are shown in Table Fl. These costs, coupled with the costs from the land treatment contractor, will be used as the basis of the economic comparison of the plans. For information, the annual costs by decade were computed to provide data of value to the evaluators. A summary of these costs are shown in Table F2.

2. ELECTRICAL POWER AND CHEMICAL REQUIREMENTS

Estimates were made of the electrical power requirements and chemical requirements of the numicipal wastewater plants and stormwater plants.

Table F3 summarizes these results for the three final alternative plans.

Additional information is provided in the Technical Appendix, Phase III.

TABLE F1
SUMMARY

TOTAL PRESENT WORTH *

(\$1,000)

	Capital	0 & M	Land	Total
PLAN A **				
Municipal	450,893	628,540	4,149	1,083,602
Stormwater	686,314	135,100	7,376	828,606
Total	1,137,207	763,640	11,525	1,912,208
PLAN B				
Municipal	397,891	585,050	3,970	986,919
Stormwater	644,866	127,377	7,496	779,800
Total	1,042,757	712,427	11,466	1,766,719
PLAN C				
Municipal	262,764	397,331	2,190	661,290
Stormwater	401,637	89,119	7,556	498,373
Total	664,401	486,450	9,746	1,159,663

^{*} These costs include no costs associated with land treatment.

Data presented relates to Plan A to Level II as displayed in the Phase III report prepared by this consultant; comparison of Plan A to Level I vs Plan A to Level II is displayed in Appendix D, of this consultant's Phase III report.

TABLE F2

SUMMARY

TOTAL ANNUAL COST *

(\$1,000/YEAR)

	1972	1975	1980	1985	1990	2000	2010	2020
PLAN A **								
Municipal	30,245	55,952	62,964	91,229	113,946	137,887	143,849	150,620
Stormwater	0	27,243	60,276	82,375	109,170	122,435	124,647	126,120
Total	30,245	83,195	123,240	173,604	223,116	260,322	268,496	276,740
PLAN B								
Municipal	30,897	52,168	58,642	84,127	101,301	123,852	128,346	133,456
Stormwater	0	27,246	58,921	78,309	101,063	109,576	111,320	112,303
Total	30,897	79,414	117,563	162,436	202,364	233,428	239,666	245,759
PLAN C								
Municipal	30,743	50,813	57,926	60,891	57,776	55,331	37,770	31,985
Stormwater	0	18,212	40,933	49,063	62,596	69,212	69,430	70,198
Total	30,743	69,025	98,859	109,954	120,372	124,543	107,200	102,183

^{*} These cost include no costs associated with land treatment.

^{**} Data presented relates to Plan A to Level II as displayed in the Phase III report prepared by this consultant; comparison of Plan A to Level I vs Plan A to Level II is displayed in Appendix D of this consultant's Phase III report.

TABLE F3
MUNICIPAL AND STORMWATER PLANTS

ELECTRICAL POWER AND CHEMICAL REQUIREMENTS *

	1980	1990	2000	2010	2020
PLAN A **					
CHEMICAL (TONS/DAY)	215	449	508	562	611
ELECTRICAL (MEGAWHR/DAY)	1362	1788	2028	2229	2414
PLAN B					
CHEMICAL (TONS/DAY)	203	423	476	526	566
ELECTRICAL (MEGARWHR/DAY)	1282	1692	1877	2038	2174
PLAN C					
CHEMICAL (TONS/DAY)	175	88	109	97	107
ELECTRICAL (MEGAWHR/DAY)	1337	1328	1317	891	973

^{*} These figures include \underline{no} requirements associated with land treatment.

^{**} Data presented relates to Plan A to Level II as displayed in the Phase III report prepared by this consultant; comparison of Plan A to Level vs Plan A to Level II is displayed in Appendix D of this consultant's Phase III report.

SURVEY SCOPE STUDY FOR WASTEWATER MANAGEMENT PROGRAM

Contract Phase Report
Phase I
Municipal Wastewater
and
Stormwater Runoff

Havens and Emerson, Ltd. Consulting Environmental Engineers

Contract No.: DACW49-72-C-0048

May 1972

TABLE OF CONTENTS

	Page
INTRODUCTION	A1
A - MUNICIPAL WASTEWATER	A2
1. Demography 2. Land Use 3. Existing Wastewater Treatment Plants 4. Plant Value 5. Subdistricts 6. Wastewater Flows and Loads (Present and Future) 7. Reuse Potential 8. Stream Flow Quality 9. Sediment Deposits in the Three Rivers Watershed Area a. Chagrin River b. Cuyahoga River c. Rocky River	A19 A25 A35 A56 A61 A66 A67 A69
B - STORNWATER RUNOFF	B1
1. Drainage District 2. Rainfall 3. Drainage Criteria 4. Runoff Factors 5. Hydrographs 6. Urban Stormwater Runoff 7. Rural Stormwater Runoff	B2 B4 B5 B6 B13
APPENDICES	
APPENDIX A - SELECTION OF DESIGN STORM APPENDIX B - DRAINAGE AREA CHARACTERISTICS APPENDIX C - DRAINAGE AREA PERCENT IMPERVIOUSNESS APPENDIX D - HYDROGRAPHS AND LOADS APPENDIX F - SUPPLEMENTAL DATA	

LIST OF TABLES

		Page
A-1-1	Population Change by County	A3
A-2-1	Corps of Engineer's Survey Scope Study Population Data	4.4
A-3-1	Operating Data and Wastewater Characteristics Wastewater Treatment Plants in the Cuyahoga River	A4
	Basin	A13
A-4-1	Plant Values and Expansion Plan	A20
A-5-1	Populations in Sewerage Districts	A27
A-5-2	Areas Outside of Sewerage Districts in 1980 that	
	are Served by Individual Systems	A33
A-6-1	Municipal Wastewater Flows (gpcd - gallons per capita per day)	A37
A-6-2	Municipal Wastewater Pollution Loads (pounds per capita	
	per day)	A37
A-6-3	Flows and Loads in Individual Sewerage Districts	
A-6-4	Municipal Waste Load Projections	
A-7-1	Domestic Water Quality Requirements	
A-7-2	Industrial Water Quality Requirements	
A-7-3	Present Reuse	A6 0
A-8-1	Summary of Cuyahoga River Ohio Department of Health	167
	Water Quality Standards	A03
A-9-1	Impoundments in Chagrin River Basin	
A-9-2	Impoundments in Cuyanoga River basin	A7E
A-9-3	Impoundments in Rocky River Basin	K/S
A-9-4	Natural Lakes and Impoundments on Tributaries of Three Rivers	A76
B-2-1	Rainfall Depths and Intensities	B 2
B-2-2	Rainfall Depths for Long Durations	B3
B-2-3	Ratio of Overall Area Rate to Maximum Point Rainfall	B 3
B-6-1	Combined Sewer Overflow Characteristics	B15
B-6-2	Separate System Stormwater Runoff Characteristics	B15
B-6-3	Urban Stormwater Runoff	B17
B-6-4	Percent Imperviousness (Weighted Average)	B19
B-7-1	Rural and Urban Areas	B21
B-7-2	Rural Stormwater Runoff	B22
B-7-3	Rural Stormwater Runoff	

LIST OF FIGURES

A-2-1 Land Use A	11
A-5-1 1980 Sewerage Districts A	26
A-8-1 Water Quality Zones A	
B-S-1 General Unit Hydrograph	8
and a second control of the second control o	9
	10
	11
· · · · · · · · · · · · · · · · · · ·	12
B-6-1 Pollutograph for BOD, COD, Suspended Solids B	16

INTRODUCTION

This Survey Scope Study is a continuation of the preliminary work performed under the Feasibility Study in 1971. The Cleveland-Akron area was chosen by the Corps of Engineers as one of five pilot areas in which to develop a wastewater management program. Three consulting engineering firms have been selected to work with the Corps in developing the Cleveland-Akron Survey Scope Study.

This report covers Phase I of the study, and identifies the wastewater management problem with respect to domestic and stormwater runoff wastewater as it exists today and as it is anticipated to exist in the future.

This data is presented by items as described in Phase I of the scope of work. This Phase I report is in the nature of a progress report, and although the data presented herein is complete, it is subject to minor modification and correction in the final report.

A - MUNICIPAL WASTEWATER

1. Demography - Population projections have recently been made for the Northeast Ohio Water Development Plan. In general, this data provided the source of population figures, which have been reviewed and adjusted in a few areas. The 1970 population estimates were adjusted to the 1970 census data, and the projections were made by the same percentage increases as in the data source. Several areas were varied from the data source to more closely conform to the expectations of the local planners. Specifically, Medina County and the central Cuyahoga Basin were adjusted upwards to reflect a higher growth pattern than projected in the NEOWD Plan. Table A-1-2 lists the population projections by county, city, village, and townships by decade through the year 2020.

The population projections were made in conjunction with the land use maps, and could be substantially altered in the future by a change in the growth philosophy of the local governmental bodies affecting land use.

The 1960-1970 population change in Ohio amounted to an increase of 9.7%. This entire gain was due to natural increase, that is, the difference between births and deaths. The net migration, (the difference between those who moved in and those who moved out of Ohio) between 1960 and 1970 was a negative number, meaning that more people moved out than moved in. Whereas Ohio as a whole experienced a net increase of 9.7%, the counties in the study area exhibited a much more dramatic change. For example, Portage County increased in population by 37.1%, making it the most rapidly growing county. Geauga County was second with an increase of 32.7%; Lake County was third with an increase of 32.6% and Medina County was sixth with a growth of 26.4%. Cuyahoga and Summit Counties had growths of 4.5% and 7.6% respectively. Table A-1-1 tabulates these population changes.

TABLE A-1-1
POPULATION CHANGE BY COUNTY

(1960 - 1970)

County	1960	1970	% Gain
Cuyahoga	1,647,895	1,721,404	4.5
Geauga	47,573	63,125	32.7
Lake	148,700	197,154	32.6
Lorain	217,500	256,843	18.1
Medina	65,315	82,583	26.4
Portage	91,798	125,868	37.1
Summit	513,569	552,498	7.6
Ohio (State)	9,706,397	10,652,017	9.7

TABLE A-1-2
CORPS OF ENGINEER'S SURVEY SCOPE STUDY

POPULATION DATA

	1970*	1980	1990	2000	2010	2020
Cuyahoga County	1,721,404	1,842,070	2,192,050	2, 3 93,720	2,519,800	2,523,000
		•			,	
Cities						
Bay	18,163	22,200	24,000	24,100	24,200	24,300
Beachwood	9,631	12,600	15,400	17,400	18,500	18,600
Bedford	17,552	20,500	23,900	26,401	27,800	27,800
Bedford Heights	13,063	19,200	24,400	28,100	30,100	30,300
Berea	22,396	27,600	33,000	36,900	39,100	39,100
Brecksville	9,137	14,200	18,200	20,300	22,100	22,600
Broadview Heights	11,463	15,600	19,300	21,900	23,400	23,600
Brooklyn	13,142	15,800	18,700	20,800	21,900	21,900
Brook Park	30,774	42,900	54,100	62,000	66,400	66,90C
Cleveland	750,903	738,900	788,400	833,100	856,600	846,000
Cleveland Heights	60,767	66,200	74,200	80,500	83,900	83,500
East Cleveland	39,600	44,100	50,200	54,900	57,400	57,200
Euclid	71,552	84,500	98,400	108,700	114,400	114,300
Fairview Park	21,681	27,000	32,200	36,000	38,000	38,100
Garfield Heights	41,417	47,200	54,200	59,500	62,400	62,300
Highland Heights	5,926	8,300	10,300	11,800	12,600	12,700
Independence	7,034	9,000	12,000	15,000	18,000	21,000
Lakewood	70,173	79,300	90,800	99,500	104,300	104,000
Lyndhurst	19,749	23,500	27,500	30,500	32,100	32,100
Maple Heights	34,100	39,100	45,000	49,400	51,800	51,700
Mayfield Heights	22,139	29,200	35,800	40,500	43,100	43,300
Middleburg Heights	12,367	16,500	20,300	23,000	24,500	24,600
North Olmsted	34,861	49,000	61,500	70,300	75,200	75,700
North Royalton	12,807	16,100	19,300	21,700	23,000	23,000
Parma	100,216	120,000	141,200	156,800	165,300	165,400
Parma Heights	27,192	34,000	41,200	46,400	49,400	49,400
Pepper Pike	5,933	6,500	8,100	9,400	10,900	11,000
Richmond Heights	9,220	12,100	14,900	17,000	18,100	18,200
Rocky River	22,958	28,000	33,200	37,000	39,100	39,200
Seven Hills	12,700	18,300	23,000	26,300	28,200	28,400
Shaker Heights	3 6,306	3 9,80 0	44,900	48,800	50,900	50,700
Solon	11,519	15,700	19,500	22,200	23,600	23,800
South Euclid	29,579	33,800	38,800	42,600	44,600	44,500
Strongsville	15,182	20,400	25,300	28,700	30,600	30,800
University lleights	17,055	18,000	20,300	22,000	23,000	22,800
Warrensville Heights	18,925	25,600	31,600	35,900	38,300	38,500
Westlake	15,686	22,000	29,000	36,000	44,000	50,000
Villages						
Bentleyville	338	400	400	500	500	500
Bratenahl	1,613	3,000	5,000	6,000	7,000	8,000
Brooklyn Heights	1,527	1,700	1,900	2,100	2,200	2,200
Chagrin Falls	4,848	6,200	7,400	8,300		8,900
Cuyahoga Heights	866	1,000	1,100	1,200	1,200	1,200
/		-,	-,	-,	-,	-, "

^{*}Actual 1970 Census Data

Cuyahoga County Villages (Cont'd.)	<u>1970</u>	1980	1990	2000	2010	2020
Gates Mills Glenwillow Hunting Valley	2,378 526 673	3,000 600 1,200	3,700 700 2,000	4,100 700 2,400	4,400 700 2,800	4,400 700 3,200
Linndale	145	200	200	200	200	200
Mayfield	3,550	4,800	5,900	6,700	7,200	7,200
Moreland Hills	3,000	3,900	4,500	5,000	5,300	5,300
Newburg Heights	3,396	3,600	4,100	4,400	4,600	4,500
North Randall	1,212	1,600	2,000	2,300	2,400	2,500
Oakwood	3,127	3,000	3,300	3,400	3,500	3,400
Olmsted Falls	2,504 2,112	3,000 2,400	3,500 2,800	3,800 3,000	4,000 3,200	4,000 3,200
Orange Valley View	1,422	2,000	2,400	3,000	3,500	4,000
Walton Hills	2,508	3,500	4,200	4,700	5,200	5,500
West View	2,523	3,500	4,300	4,900	5,200	5,300
Woodmere	976	1,500	1,900	2,200	2,400	2,400
Townships						
Chagrin Falls	84	170	250	320	400	500
Olmsted	6,318	5,800	5,800	6,000	6,000	6,000
River Edge	632	600	600	600	600	600
Warrensville	2,160	2,000	2,000	2,000	2,000	2,000
Geauga County	63,125	90,300	126,400	166,900	204,000	230,600
Villages				•		
Aquilla	389	600	800	1,000	1,200	1,400
Burton	1,214	1,600	2,000	2,600	3,100	3,500
Chardon	3,991	5,500	7,500	9,800	11,900	13,500
Hunting Valley (Part)	124	200	300	300	400	400
Middlefield	1,726	2,300	3,500	4,500	5,500	6,200
South Russell	2,673	4,500	6,800	9,200	11,400	13,100
Townships						
Auburn	1,517	2,300	3,200	4,200	5,100	5,800
Bainbridge	7,038	10,000	14,500	19,400	23,700	26,800
Burton Chardon	2,366 3,180	3,400 4,500	4,800 6,300	6,200 8,300	7,600 10,200	8,600 11,500
Chester	10,400	14,800	20,500	27,100	33,000	37,300
Claridon	2,124	3,000	4,200	5,600	6,800	7,700
Hambden	2,500	3,500	4,900	6,500	8,000	9,000
Huntsburg	1,792	2,600	3,600	4,700	5,800	6,500
Middlefield	2,738	3,900	5,400	7,200	8,800	9,900
Montville	1,307	1,900	2,600	3,400	4,200	4,700
Munson Newbury	3,569 4,038	5,100 5,700	7,100 8,000	9,400 10,600	11,500 12,900	12,900 14,600
HENDULY	4,030	3,700	0,000	10,000	12,500	14,000

Geauga County	1970	1980	1990	2000	2010	2020
Townships (Cont'd.)						
Parkman Russell Thompson Troy	2,084 4,669 1,834 1,652	3,000 6,700 2,600 2,400	4,200 9,300 3,600 3,300	5,500 12,300 4,800 4,300	6,700 15,000 5,900 5,300	7,600 17,000 6,600 6,000
Lake County	197,154	268,600	369,200	464,100	547,100	600,300
Cities						
Eastlake Mentor Mentor-on-the-Lake Painesville Wickliffe Willoughby Willowick	19,690 36,900 6,517 16,536 21,354 18,634 21,237	26,600 56,300 10,500 19,300 29,400 24,700 26,900	41,800 80,400 15,400 23,900 40,000 32,900 34,800	53,600 103,500 20,000 28,700 50,500 41,000 49,800	63,800 123,600 24,000 33,000 59,600 48,200 49,900	70,400 136,600 26,500 35,800 65,500 52,800 54,500
<u>Villages</u>						
Fairport Harbor Grand River Kirtland Kirtland Hills Lakeline Madison North Perry Perry Timberlake Waite Hille Willoughby Hills	3,665 613 5,530 452 223 1,678 851 917 964 514 5,247	3,700 800 7,200 600 300 2,300 1,200 1,300 700 7,000	4,100 1,100 9,500 800 400 3,000 1,600 1,700 1,800 1,000 9,400	4,600 1,400 11,700 1,000 500 3,800 2,000 2,100 2,200 1,200 11,700	5,100 1,700 13,700 1,200 600 4,400 2,300 2,500 2,600 1,400 13,800	5,400 1,800 15,000 1,300 700 4,900 2,500 2,700 2,900 1,500 15,100
Townships						
Concord Leroy Madison Painesville Perry	5,948 1,759 12,455 10,870 4,600	8,100 2,400 16,900 14,800 6,300	11,000 3,200 22,900 20,000 8,500	13,700 4,000 28,600 24,900 10,600	16,000 4,700 33,400 29,200 12,400	17,400 5,100 36,500 31,800 13,600
Lorain County Townships	7,003	7,500	8,000	8,300	8,400	8,200
Columbia Grafton	5,738 1,265	6,100 1,400	6,600 1,400	6,800 1,500	6,900 1,500	6,700 1,500

	1970	1980	1990	2000	2010	2020
Medina County	82,583	120,700	161,400	195,400	228,400	256,100
Cities						
Brunswick Chippewa-on-the-Lake	15,852 341	30,000 500	38,000 600	42,000 800	48,000 900	56,000 1,000
Medina	10,828	15,800	21,700	27,600	32,600	36,400
Wadsworth	13,142	17,600	23,500	29,500	34,900	38,600
<u>Villages</u>						
Briarwood Beach	508	700	900	1,100	1,400	1,500
Gloria Glens	332	500	600	800	900	1,000
Leroy	715	1,000	1,300	1,700	2,000	2,200
Lodi	2,399	2,900	3,600	4,400	5,100	5,600
Seville	1,400	1,700	2,300	2,800	3,300	3,700
Spencer	758	1,000	1,400	1,800	2,100	2,300
Townships						
Brunswick Hills	2,293	3,200	4,100	5,000	5,900	6,500
Chatman	1,258	1,600	2,200	2,700	3,200	3,600
Granger	2,142	2,700	3,700	4,700	5,500	6,100
Guilford	2,028	2,600	3,500	4,400	5,200	5,700
Harrisville	1,122	1,400	1,900	2,400	2,900	3,200
Hinckley	4,210	5,300	7,300	9,200	10,900	12,000
Homer	845	1,100	1,500	1,800	2,200	2,400
Lafayette	2,465	3,100	4,300	5,400	6,300	7,000
Litchfield	1,332	1,700	2,300	2,900	3,400	3,800
Liverpool	2,826	4,200	6,900	7,800	8,600	9,200
Medina	2 ,4 45	4,000	5,300	6,400	7,500	9,000
Montville	2,497	4,000	5,400	6,400	7,400	8,400
Sharon	2,764	3,500	4,800	6,000	7,100	7,800
Spencer	728	900	1,300	1,600	1,900	2,100
Wadsworth	4,371	5,600	7,500	9,500	11,200	12,300
Westfield	1,253	1,600	2,200	2,700	3,200	3,500
York	1,729	2,500	3,300	4,000	4,800	5,200
Portage County	123,078	166,400	221,600	279,800	326,800	357,600
Cities						
Garrettsville	1,718	2,000	2,400	2,900	3,400	3,700
Kent	28,183	40,800	56,100	71,900	85,100	93,700
Ravenna	11,800	14,000	17,300	20,900	24,100	26,100
Villages						
Aurora	6,549	9,700	13,400	17,200	20,400	22,500
Brady Lake	450	600	800	1,000	1,200	1,300
Hiram	1,484	2,100	2,900	3,700	4,300	4,800
	-	-	•	-		•

Portage County	1970	1980	1990	2000	2010	2020
Villages (Cont'd.)						
Mantua Mogadore (Part) Streetsboro Sugar Bush Knolls Windham	1,199 651 7,966 119 3,360	1,400 900 10,000 200 3,100	1,600 1,200 13,100 200 3,300	1,900 1,500 16,500 300 3,600	2,200 1,700 19,300 300 3,900	2,400 1,900 21,200 300 4,100
Townships						
Atwater Brimfield Charlestown Deerfield Edinburg Franklin Freedom Hiram Mantua Nelson Palmyra Paris Randolph Ravenna Rootstown Shalersville Suffield	2,408 6,721 864 2,175 1,563 5.839 1,649 1,400 1,199 1,839 1,717 1,400 4,150 8,836 6,010 4,967 5,799	3,300 9,200 1,200 3,000 2,100 8,000 2,300 1,900 1,600 2,500 2,400 1,900 5,700 12,100 8,200 6,800	4,400 12,300 1,600 4,000 2,900 10,700 3,000 2,600 2,200 3,400 3,200 2,500 7,600 16,200 11,000 9,100 10,600 2,000	5,600 15,500 2,000 5,000 3,600 13,500 3,800 3,200 2,800 4,300 4,000 3,100 9,600 20,400 13,900 11,500 13,400 2,500	6,500 18,200 2,300 5,900 4,200 15,800 4,500 3,800 3,200 5,000 4,600 3,700 11,200 23,900 16,200 13,400 15,600 2,900	7,100 19,800 2,600 6,400 4,600 17,200 4,900 4,100 3,500 5,400 5,100 4,000 12,200 26,100 17,700 14,700 17,100 3,100
Windham Summit County	1,063 552,498	,500 640,800	737,700	814,900	860,300	875,300
Cities						
Akron Barberton Cuyahoga Falls Munroe Falls Norton Stow Tallmadge	275,425 33,052 49,678 3,794 12,308 19,847 15,274	293,200 36,200 55,900 5,500 14,400 26,700 19,800	321,200 40,100 63,000 6,800 16,500 32,600 23,900	347,000 43,600 69,100 7,900 18,300 37,100 27,000	361,100 45,500 72,400 8,400 19,300 39,600 28,800	362,800 45,800 73,000 8,600 19,500 40,400 29,200
Villages						
Boston Heights Clinton Fairlawn Hudson Lakemore Macedonia Mogadore (Part) Northfield	846 1,335 6,102 3,933 2,708 6,375 3,207 3,870	1,000 1,700 8,600 5,500 3,000 8,500 3,100 4,100	1,100 2,100 10,700 7,100 3,300 10,300 3,200 4,500	1,200 2,400 12,300 8,700 3,600 11,700 3,400 5,000	1,300 2,500 13,100 8,100 3,800 12,500 3,500 5,600	1,300 2,600 13,400 10,000 3,800 12,700 3,500 6,200

Summit County	1970	1980	1990	2000	2010	2020
Villages (Cont'd.)						
Peninsula	692	800	900	1,000	1,000	1,000
Richfield	3,228	6,000	9,000	9,500	10,200	11,000
Reminderville	215	4,000	6,000	8,000	10,000	10,000
Silver Lake	3,637	4,000	4,200	4,400	4,400	4,400
Twinsburg	6,432	8,600	10,400	11,900	12,700	12,900
Townships						
Bath	7,552	9,400	11,100	12,500	13,200	13,400
Boston	1,504	1,900	2,200	2,500	2,600	2,700
Copley	8,633	10,800	12,700	14,300	15,100	15,300
Coventry	13,429	16,800	19,800	22,200	23,500	23,700
Franklin	15,114	18,900	22,300	25,000	26,500	26,700
Green	13,473	16,800	19,900	22,300	23,600	23,800
Hudson	4,462	6,500	7,300	7,800	8,600	9,100
Northampton	5,662	7,100	8,400	9,400	10,000	10,100
Northfield Center	3,950	7,000	11,000	13,000	15,000	17,000
Richfield	1,715	2,000	3,000	4,500	5,200	7,000
Sagamore Hills	6,710	10,000	13,000	18,000	21,000	22,000
Springfield	16,921	21,200	25,000	28,000	29,600	29,900
Twinsburg	1,415	1,800	2,100	2,300	2,500	2,500

2. Land Use - A composite land use map has been prepared using the land use projections of the local planning agencies. Certain modifications have been made to reflect current land use policies and proposed changes. The history of land use planning in Northeast Ohio has not been one of widespread success. Too often land use and zoning policies have been changed to accomodate development with little or no thought being given to long term effects or aesthetics. Until such time as land use planning is made more effective, it will be subject to incidental changes and spot zoning, and can only be considered a desirable concept of long term development. Because of this uncertainty, the composite land use plan shown herein categorizes only industrial-commercial, residential, agricultural, open space and low density residential.

Figure A-2-1 shows the land use concept for the study area.

The plan shown is the land use concept for both 1990 and 2020, with the major difference being in the population densities. The residential areas would approach the upper limit of the density range as the end of the time frame approaches. Using the land use map and associated densities of population, the land use plan will accommodate the projected 2020 population.

L

SURVEY SCOPE STUDY
WASTE WATER MANAGEMENT PROGRAM
CLEVELAND-AKRON METROPOLITAN
AND
THREE RIVERS WATERSHED AREAS

U. S. ARMY ENGINEER DISTRICT, BUFFALO

3. Existing Wastewater Treatment Plants - The existing publically owned and larger private plants, (larger than 20,000 gpd), have been tabulated and are shown on Table A-3-1. This tabulation is an updating of the one given in the Feasibility Report. For most plants, operating data for 1971 was available from the Ohio Department of Health. In cases where it was not, 1970 data was used. Operating data reported for most plants consist of BOD, suspended solids and flow. Several of the small plants do not collect any operating data. Some plants do not have meters to measure the flow. Many of the larger plants run additional analyses beyond the required BOD and suspended solids.

Treatment costs are included in the reports by some of the plants; however, they must be used cautiously since the methods of cost accounting for the plants are not uniform.

The design capacity and type of treatment provided has also been tabulated, along with current plans for either expansion or abandonment. When cost for these plans are available, they are also listed.

DABLE A-3-1 OPERATING DATA AND WASTEWATER CHARACTERISTICS MASTEMATER, TREATHER THANTS IN THE CUTAHOGA RIVER BASIN

		Wastewater (Wastewater Characteristics Effluent	1690		Trest	Į.		
Municipality or Separ District	Suspended Solids, mg/l	il	Suspended Solids, mg/l	S-Day BOD mg/l	Year	S.S. 1 BOD?	BOOT.	Hydraulic Loading Current Flow, agd	S/mg
Curaboga County									
Bedford	691	546	6.6	24	1970	34%	30%	2.91	
Redford Matchis	214	138	125	29	1970	421	212	1.59	
Claveland Essterily	131.8	126.7	39.8	25.8	1461	707	80%	119.3	
rieveland Southerly	298.3	200.4	29.5	17.5	1971	706	216	94.6	
Cleveland Westerly	196	472	140	170	1971	297	775	35.3	
guella	207	248	11	127	1971	199	767	16.20	
Heole Heights	186	165	6	19.3	1971	352	367	0.761	\$241.20
Solon - Central Area	296	324	15.	57.2	1970	187	762	1.697	
S.D. #1 - Parms (Woodbury Hills)	263	317	52	0†	1761	90.5%	87.4%	0.1337	
S.D. #2 - Shar-Bon (Seven Hills)	197	301	35	32	1971	88.27	27.68	0.054	
S.D. #3 - Richmond Heights (Scottish Highlands)	211	199	23	15	1811	89.13	92.5%	0.082	
S.D. #13 - Broadview Heights (Bramblewood Subd.)	241	767	۶,	53	1971	81.32	82.07	.0168	
S.D. #13 - Bracksville	195	201	91	18	1971	91.82	91.02	1,236	
S.D. #13 - Brecksville (South Estates)	322	322	16	30	1971	95.0%	90.72	0.0331	
S.D. #13 - Welton Hills	369	230	135	63	1971	63.42	72.61	0.294	
Cloverleaf Hilitop, Inc.		143		6	1969		176		
Pleasant Valley Shopping Center		No Data Available							
Seneca Club Apartments		No Data Available							
Geauge County									
Burton City Plant		No Date Available							
Broadwood Hills	254	345	38.8	56	1970	857	921		
Middlefield		No Data Available							
Middlefield Trailer Park		No Data Available							
Geauga Community Hospital		No Data Available							
Jacques Mobile Home Park		No Daca Available							
Plymouth Acres - Claridon S.D. #1	57	98	11	01	1970	767	881		
Punderson State Park		No Data Available							

OPERATING DATA AND WASTEWATER CHARACTERISTICS WASTEMATER TREATMENT PLANTS IN THE CUVANGEA RIVER BASIN

		Wastewater (haracteristics						
Municipality or Squar District	Suspended Solids, mg/l		5-Day 80D Suspended 5-Day 80D suspended 5-Day 80D Suspended 5-Day 80D	5-Day BOD mg/l	Year	Ireatment Efficiency S.S.L BODZ	2007 SucX	Hydraulic Loading Current Flow, and	Cost of Treatment
Medina County									
Granger Lake Apertments	No D	No Data Available							
Portage County									
Aurora Plant #2 - Geauga Lake	178	149	16.2	13.5	1970	216	\$16	0.118	
Aurora Plant #3 - Four-Seasons Subd.	187	246	29	29	1970	E .	5	0.120	
Kenc	218	206	25	17	1971	891	377	2.830	
Mastus	128	8	7	8.5	1971	952	7.	0.214	\$100.00
Ravenna	194	136	14	15.9	1971	932	78	1.204	\$110.20
Aurora Acres S.D.	188	282	16	13.2	1971	312	951	.066	\$477.36
Brimfield S.D. #1 (Beachcreat)	117	141	•	2.5	1971	937	ž	0.1886	\$228.65
Brimfield S.D. #3 (Holiday Inn)	114	128	10	3.4	1971	917	977	0.034	\$369.61
Field Local School District	# p	No Data Available							
Franklin S.D. #1	71	127	12	10.7	1971	242	922	.087	\$305.44
Frenklin S.D. #3	102	246	13	•	1969	877	97.52		
Gille Estates S.D.	203	256	œ	3.9	1971	961	7.00	0.2404	\$363,50
Kent Rhodes Apertments	# p	No Data Available							
Bandolph Trailer Park	¥	222	5.4	3.2	1971	ă	3		
Ravenna S.D. #1 - Lakeview Gardens	98	\$	14	9.3	1971	252	ž	0.0379	\$4.044
Lavenna S.D. A4 - Longfield	19	153	٠	:	1971	ğ	*	.00	
Rootstown S.D. #1 - Barousood	102	207	•	10.1	1971	912	951	0.0526	\$472.44
Shelereville S.D. #1 - Red For	227	397	•	2.6	1971	977	3	0.062	1001.93
Shalersville S.D. #2 - Boling Brook	eck 204	277	=======================================	::	1971	ŭ	'n	0. 1 043	\$209.27
Streetaboro S.D. #2 - Arrowhead	157	ž	5	.,	•	93.62	#.#		
Streetsboro S.D. #3 - Bolling Mills	11. 170	235	•	5.5	1971	355	ž	0.0677	\$377.14
Valley Mills Trailer Park	120	252	12	7.1	1971	3	Ř	. 127	#11. #
Bearly Labor	116	Š	Ħ	:	1971	216	ž	Š	H8.3
	7	W Data Available							

OPERATING DATA AND MASTEWATER CHARACIERISTICS WASTEWATER TREATMENT PLANTS IN THE CIVAHOGA RIVER RASIN

			Wastewater Characteristics			•	,		
Municipality or Sever District	Suspended Solids, mg/l		Suspended	5-Day BOD mg/1	Year	Efficiency S.S.7 BODZ	ency BODZ	Hydraulic Loading Current Flow, mgd	Cost of Treatment 3/mg
Sample County									
Akron	34.6	152	7	25	161	83%	78	75.99	99.79 \$
Hudson (Village)	180	252	4	7	1970	877.	847.	165.	
Northfield	178	231	7	62	1971	777	837.	.581	
Tellmedge	158	367	÷ŧ	œ	1969	97.52	97.8%		
Winsburg	227	217	33	27	1970	867	288	.765	
S.D. #1 - Rosaland Estates	ij	9	*1	25.4	1971	877	83%	160.	
5.5, 45 - Hudeon	133	671	11	6.9	161	927	957	. 1589	
5.0. 46 - General Motors	35.7	3	7.3	\$\$	161	522	719	.7891	
5,0, 87 - Magy Park Estates	801	797	**	•	1761	921	786		
S.D. 49 - Macedonia Estates	185	181	54	26.3	161	877.	198		
S.D. #14 - Rebee Estate	£.	181	ø	3.7	1971	256	186		
S.D. #15 - Northfleld-Macedonia	991	351	1.2	14.7	1871	92.77	90.2%	1.199	
S.D. 417 - Comm. Colonys Allog.	108	222	<u>:</u>	13.2	161	912	276	.0648	
president of Sagamore Hills	63.	165	23	31.6	1261	87.42	86.87		
Rawthornden State Hospital	G 0%	No Data Available							
Musical Arts Assoc. (Blossom Music Center)	No De	No Data Available							
Ohio 21-Corp.	No Da	No Data Available							
Revere Local School District	ec ex	No Data Availani.							
Stow-Kent Assoc.	No Da	No Data Avatlable							
124 to 5 %			2	ř	161				
	£' 9	;	÷	**	1971	78.57	26.90		

OPERATING DATA AND WASTEWATER CHARACTERISTICS
WASTEWATER TREATMENT PLANTS IN THE ROCKY RIVER BASIN

		Mastewater C	haracteristics			770000000000000000000000000000000000000			
Municipality or Sover District	Suspended Solids, mg/l	5-Day BOD	5-Day BOD Suspended 5-Day BOD Suspended 5-Day BOD #8/1 #8/1	5-Day BOD	Year	Efficiency S.S.X BODZ	BODZ.	Hydraulic Loading Current Flow, med	Cost of Treatment \$/mg
Cuyahoga County					į	<u>;</u>	014	1.726	\$158.41
Deres	207	200	18	Ğ	19/1	41.	; ;	9 10	
Brookpark	203	230	11.1	5.3	1971	\$50	. 476		* * * * * * * * * * * * * * * * * * *
	124	127	20	11	1971	847	116	16.70	9 33.07
	Ē	177	٠	¢	1970	94.7	\$28	3.68	
North Olmsted	: ;	1	17	Ų.	1971	93.5%	98.5%	0.228	
North Royalton - Area "A"	191	208					9	0.301	
Borth Royalton - Area "B"	137	207	12	Ų.	1971	¥1.4	****		
erromentile - Area "A"	173	168	٠	o	1971	957.	796	0.797	
	141	173	6.4	4	1971	957	987	0.177	
, , , , , , , , , , , , , , , , , , ,	150	186	٧	•	1971	2.2	977.	0.092	
	161	178	81	121.0	1971	49.67	32.0%	7.097	
S. E. W. C. Section Sections	175	£	17	9.9	1971	90.3%	93.3%	1.167	
S.D. 98 - MIGGIESUTS INCHIES	;		;	,	1971	91.57	94,87	0.0263	
S.D. #14 - Brentwood Estates	157	145	13.3	;	1971	ì	•		
Lakewood Country Club	10 11	No Data Available							
Olastad Falls School District	7	No Data Available							
Medica County			:	ŝ	1071	67.62	77.5%	1.47	
No di me	247	267	8	٥				38	
5.D. #7 - Colony Park	233	202	16	10.5	1971	937	, ACK		
S.D. #8 - Beverly Hills	154	130	16	10.6	1971	907	927		
S.D. #9 - Hinckley Lake	76°	No Data Available							
5.D. #11 - Village Homes	₹	No Data Available						•	
S.D. #100 - Medina County	241	175	18	14	1971	931	927	.6/1	
S.D. #500 - Liverpool	268	137	27	8.3	1971	706	176		

OPERATING DATA AND WASTEMATER CHARACTERISTICS WASTEMATER TREATMENT PLANTS IN THE CHACRIN RIVER DASIN

		1000	Wastewater Characteristics						
Municipality or Sever District	Suspended Solids, Mg'l	2	Suspended Soilds, mg/l	Effluent 5-Day 300 /1 mg/1	Year	Treatment Efficiency S.S.L BOOL	ent lency BOOL	Hydraulic Losding Current Flow, mgd	Cost of Trestment \$/mg.
Cuyahoga County									
Chagrim Falls	134	176	.4	13	1970	17.8	93%	0.610	
Papper Pike - Creek Side	150	116	11	v	161	92.72	78.76	0.0645	
Pepper Pike - Pepper Hills	153	132	11	os.	1761	88.97	93.22	0.035	
Michory Hills - Mayfield Heights	368	263	9	20	161	87.57	92.47.	0.0268	
Solon - N. 6 M.E. Area	135	130	9	80	1761	95.52	93.8%	0.228	\$527.60
Apple Hill Town House Corp. (Moreland Hills)		No Data Available							
Country Club, Inc.	-	No Data Available							
Woodbran Corp.	215	200	61	•	1969	168	196		
Geauge County									
S.D. #2 - Cheater Twp. (Willow Hills Estate)	265	997	13.7	13.7	1970	312	951		
S.D. #1 - Bainbridge Twp. (Filgrim Village Subd.)	219	278	ò	8	1970	747	827		
Chagrin River 5.D. Rugaell Park Wenhaven Opalacka	7; 106 153	138 131 190	10.9	4.4 10.6 27	1970 1970 1970	85% 90% 74%	977 927 867		\$528.46
McFarland Creek S.D. South Nusell Ravermood Tanglewood	176 276 91	285 285 271	242	17 21 20.6	1970 1970 1970	887 917 707	947 937 957		
Knowles Indus. Perk		No Data Available							
Mercury Local School		No Data Available							
SILVER CREEK SCHOOL DISCILLED		0 40 0000							
West Geauga Local School Selle Vernon Acres	8	95	6.6	3.4	1970	921	3 96		
Wilder Mobile Home Park		No Data Available							
Scarsdale Estates	207	210	10.2	6.2	1970	952	۲,		
Notre Dame Educ, Center		No Data Available							
Willoughby-Eastlake	167	130	7.3	82	1261	292	29%	4.28	\$ 69.88
Willoughby Hills (Dodd's Hill Subd.)		No Data Available							

OPERATING DATA AND WASTEWATER CHARACTERISTICS WASTEMATER TREATMENT PLANTS IN THE CHARRIER RIVER MASIN

Robbins Trailer Park	Aurora (Flant #1)	Portage County	Municipality or Sum Sever District Solid
No Data	5		Suspended Solids, mg/1
No Data Available	155		Wastevater Characteristic 5-Day BOD Simpended mg/1 Solids mg.
	19		Westewater Characteristics 5-Day 800 Suspended 5-Day 801 86(1 Solida, mg. 1 mg/1
	ī		5-Day BOD
	1971		Year
	83%		Treatment Efficiency S.S.L BO
	912		2007 2007 30
	0.370		Hydraulic Loading Current Flow, mad
	\$138.00		Cost of Treatment

4. Plant Value - Actual worth of the publicly owned plants and larger private plants was computed by the "reconstruction cost new less depreciation" method. Generally, reconstruction cost new was taken from generalized cost curves updated to 1972 price levels, except when the actual construction cost was recent and available. In some cases, such as the Cleveland plants, this cost had recently been computed and was simply up-dated for this study. Depreciation was taken at 2% per year for the larger facilities and 4-6% per year for the smaller plants. In some cases, the purchase price of small package plants was used, and actual worth was estimated, based on present condition. Actual worth as well as the reconstruction cost was reviewed with the County Sanitary Engineers.

Table A-4-1 tabulates the existing plant values and expansion plans.

In many cases, accurate figures for outstanding indebtedness are not available, since the auditors' debt figures often include debt on sewers, rumping stations and other facilities as well as treatment works. Where separated figures were known, they are shown in the tabulation.

			CUYANCEA RIVIR BASIN			
Manicipality or Sayar Digitics	1794 of 21485	Pesign Flow	Expansion Plans	Reconstr. Cost New	Actus! Worth	Oatstanding Debt
Sayahone County						
bad ford	w	7.2	Plans for expansion to 3.2 mgd are under consideration - estimated cost - 51,200,000	\$ 2,210,000	\$ 1,270,000	-
Dedford Buights	۰	3.6		3,600,000	3,600,000	
Claveland Easterly	•	172.0	To be expended with tertiary to 380 mgd - 1970-1975 - estimated cost - \$37,000,000	99,653,531	53,516,312	
Cleveland Southerly	w	0.96	To be expanded with tertiary - 1975-1977 estimated cost - \$70,000,000	110,130,155	67,931,638	
Chavelead Mesterly	•	36.0	To be expended with tertiary to 50 mgd - 1970-1975 - estimated cost - \$32,000,000	19,247,142	8,143,050	
Duelid		6.81	Secondary and terthary to be added 1970-1975 - estimated cost - \$11,500,000	12,000,000	000'000'6	
Maple faights	v	ڊ. :	To be abandoned and tied into C.V.I.	1,180,000	900,000	
Solon . Central Atea	w	.;		2,400,000	1,735,000	
5.D. #1 - Parms (Woodbury Hills)	w	21.	To be abandoned and tied into 1-M-1 Interceptor - 1975-1980	128,000	908'09	
5.0. 62 - Shaf-Bom (Sevan Hills)	•	\$6.	To be abandoned and tied into Crossview Incerceptor - 1975-1980	97,000	30,000	
S.D. #3 - Michmond Meights (Scottish Hambands)	v.	2	None	147,000	900,000	
S.D. #13 - Broadview Neights (Bramblewood Subd.,	vs	76.	Youe	20,000	9,000	
S.D. ell - Brechsville	•	1.0	To be abandoned and tied into C.V.I 1975-1980	1,180,000	000*009	
S.D. 013 - Brechswille (Snuthern Estates)	s		To be abandoned and tied into C.V.I	000*69	20,000	
S,D, #13 - Walton Hills	v	*:	holding canks to be added	180,000	121,000	
Clowerlesf Militop, Inc.	s	-:	to be abandoned and tied into C.V.I.	000.02	10,000	
Pleasant Valley Shopping Center	v	÷.	be abandoned and connected to Kayetone- Sprague interceptor	000.54	12,000	
Gentle County					•	
Burton City Flant	•	¥6°.	Expansion plants under design	94,000	24,000	
Breadwood Wills	ø	5.53		99,000	22,000	
Middlefield	•	7.5	attitut tecondary lagoous	100,000	25,000	
Middlefield Tracter Park	v	3,2,		900.09	2,000	
Genuge Commonity Hospital	•	9.33		000,48	23,000	
Jacques Mobile Home Park	r	9,025		64,000	21,000	

CUYANCCA RIVER BASIN (Cont. d.)

Out e canding Pabr		•												12,000		24,000		000,09						
Actual Vorth		\$ 10,000	20,000		26,000		152,000	117,000	3,330,000	107,600	900°059	26,000	100,000	98,000	24,000	900'09	8,000	300,000	35,000	20,000	18,000	20,000	35,000	100,000
Recomstr. Cont New		22,000	000*09		78,000		160,000	130,000	3,600,000	123,000	1,300,000	78,000	200,000	63,000	73,000	100,000	82,000	780,000	000*69	78,000	57,000	000,07	106,000	147,000
Fagans fon Plans		•	Expansion for park area - contracts awarded 1972				To be abandomed and tied into Aurora Westerly - 1972-1975	To be abandobed and tied into Aurora Westerly - 1972-1975			Plant enlargement in cooperation with Portage County	to be abandoned and tied into Aurora Westerly - 1972-1975	to be abandoned and tied into Fish Creek -	: Se abandoned and tied into Fish Creek - 1975-1980		Expansion to 1.0 mgd under design -	To be abandoned and tied into Franklin Hills - 1973				** he abandoned and tied into Ravenna Place - 1973-1975	In he shandoned and tied into Ravenna Plant - 1971-1975	or he shandoned and tied into Ravenna Plant or 1975-1980	
Destan Flow Imped		9,012	0.022		90.0		0.2	£.	0.1	ξ.	53	0.048		3	0.034	5 0''u	4672	Ţ	(6)	8.0	· B	ž	ž.	•
type of		v	vs		vs		v	V)	w	v	vs	W	v	v,	s	v	us.	'n	v	٠	v	v	v	•
Manicipality or Saver District	Geauge County (Cont'd.)	Plymouth Acres, Claridon 5.0, #1	Punderson State Park	Medias County	Granger Lake Apartments	Portage County	Aurora Plant #2 - Geauga Lake	Aurara Planc #3 . Four-Seasons Subd.	Lnt	Mantue	Revenue	Aurora Acres 5.D.	Brinffeld S.D. Pl (Beechtrest)	Brimffeld S.D. #3 (Nolthwy lan)	Field Local School District	Franklin S.D. *! (Franklin Hills)	Franklin S.D. #3 (Dale Terrace)	Gille Estation S.D.	Kant Rhod-s Apartments	Readolph Trailer Park	Ravenna 5.D. #1 Lakeview .ardens	Revenue S.D. 44 Longfield	Rootstown S.Z. *! Barimund	Shalersville S.D. #1 (Rad Fox)

CUPANGCA BLUEB BASIN (Cont.d.) Dasign Flow Flow (MMC) E-Spinsion Plage Cost. May Horsb.		0,13 \$ 133,000 \$ 95,000 .8	000,84 000,94	0,12 180,000 100,000	.036 To be abandoned and tied into Mavesque 120,000 100,000 100,000	000*007		39,000,000 31,200,000	0.35 Agrated Lagoons under design, eventually 720,000 500,000	000'027 000'096	0.15 142,000 71,000	0.6 Expansion with tertiary addition to 770,000 578,000 578,000	0.1 Commect to Twinsburg - 1975-1980 120,000 40,000	0.2 Discussion of expansion to 1.2 mgd 150,000 150,000 120,000 120,000	1,5	0.03 to be tied int (uvaloge Valley 30,000 10,000 Interceptor	0.03 30,000 10,000	0.1 To be abandoned and tird into Fish 120,000 40,000 Creek - 1975	1.0 Expansion with vertiary to 6.0 mgd 1,180,000 800,000	0.04 45,000 20,000	0.120 94,000	0.3 To be abandoned and impressed to Cuvehoga Valley interceptor 1975-1980 FM0,000 40,000	0.09	000'07 000'86 90'0	
		6 0.13	\$ 0.064	6 0.12		T (Microst.) . 600		\$ 87.5		s 0.4	\$ 0.15				1.13		0.03			%0.00 s	0.120		s 0.04	90.0	\$ 0.03
immecipality or Super Pinktier	BETAAR GORALE (Cont'4.)	Shelsmyills 5.D. 01 Belimprock	irrestabore 8.D. 02 Arrowhasd	trascebace 8.D. #3 Rolling Hills	souty Labor	bwin Labos	Mark Grant			Morthfald	N11mde	reinsberg	8.D. #1 Boseland Estates	8.D. 65 Buddon	S.D. 64 Gemeral Hotors	8,D. 47 they bark f cates	S.D. 99 Manadomia	S.D. Old Return Estatos	S.D. #15 Worthffeld-Macedomia	S.D. #17 Coun. Colomys Allot.	Greenmond of Sagmente Hills	hawthornulam State Bospitca?	Nasical Arts Assoc. (Blassom Masic Center)	Ohio 21 - Corp.	Section 6

basicipality or busic Hagist.	3m/17	rior (med)	Expension Plans	Cott. Br.	Ar twal	Outotaming	
Greeken Creaty							
hree	•	3.0		\$ 2,830,000	1 1,000,000	-	
Drawtpark	•	7.0	ъ.	900,000	900,000		
Laboreral	•	13.0		1,300,000	4,603,000		
Borth Olastes	6-	6 .0		000,000.0	7,000,000		
Herth Legalton - Area "A"	vs	£.3	Sludge removed being studied	1,620,000	1,214,000		
Borth Loyslton - Area "3"	•	1.0	Sludge removed being studied	1,140,000	945,000		
Strongsville - Area "A"	•	1.0	Either abandoned or temporarily enlarged	000*006	700,000		
Strongaville - Area "B"	•	0.23	To be expended to 1.7 mgd plant with tertiary - 1970-1975 - estimated cost - 91,000,000	300,000	135,000		
Strongsville - Area "C"	•	0.37	To be expanded with tertiary - 1970-1975	320,000	230,000		
S.D. 66 Booky Alver	out.	16.0	Secondary to be added 1970-1975, Contract awarded but in littgation estimated cost - 53,500,000	9,400,000			
S.D. 68 Middleburg Haights	*	2.0	Expandable to 6.0 mgd with minor modifications	3,000,000			
S.D. #14 Brestwood Catates	w	0.16	To be abendoned and tied into Westlake Interceptor - 1975-1980	348,000	000′67		
Catemood Country Club	n	0.025	To be abandoned and thed into Westlake Interceptor - 1975-1980	300.	21,000		
Olasted Fells School District	w	0.03		000'89	23,000		
Nadion County							
Parlian	₩	1.33	To be absendered and thed into Medine- Liverpool Plant - 1970-1975	1,500,000	930,000		
S.D. 67 Colony Park	86	113	To be absendoned and tled into Madina- Hinckley Plant - 1970-1975	130,000	000*0*		
S.D. 68 Beverly Hills	*	£1.	Temporary expansion to 0.26 mgd until abandoned in 1973 - estimated cost - \$60,000	130,000	40,000		
S.D. 89 Minckley Lake	w	010.	To be abandoned and tled into new Hinckley Regional Plant in 1980-1985	20,000	3,000	•	
5.0. Øll Village Homes	v s	0.012	To be abandoned and tied into Liverpool Plant - 1985-1990	34,000	9,000	6	
5.D. #100 Medine County	sv.	2.0	To be abandoned and tied into Liverpool Plant - 1975	2,000,000	1,306,900	300,300 (w. interest.	į
S.D. 6500 Liverpool	w	1.5	To be enlarged and become regional plant	1,200,000	1,200,000	4,000,000 (v/interest &	1

Municipality or Sever District,	Type of Plant	Design Flow (mgd)	Expansion Plans	Reconstr. Cost New	Actual	Outstanding
Cuyahoga County						
Chagrin Fells	so	7.0	Expansion with tertiary under design	\$ 220,000	\$ 165,000	v,
Pepper Pike - Creek Side	s	.12		87,000	29,000	
Pepper Pike - Pepper Hills	s	0.05		67,000	29,000	
Rickory Hills - Mayfield Heights	s	0.03		000*69	23,000	
Solon - W. & M.E. Area	s	0.78		000*096		
Apple Hill Town House Corp. (Moreland Hills)	v	0.025		000,49	21,000	
Country Club Inc.	Ŋ	0.05		300,000	000.67	
Woodbran Corp.	w	0.22		170,000		
Geauge County						
5.D. #2 Chestar Tup. (Willow Hills Estates)	v	0.012		25,000	12,000	
S.D. #1 %atabridge Twp. (Pilgrim Village Subd.)	s	0.025		20,000	20,000	
Chagrin Biver S.D. Musell Park Wanhaven Opelacke	os os t-	0.02 0.006 0.08		60,000 15,000 1804,000	20,000 6,000 85,000	000 \$7
McParland Creek S.D. South Russell Ravennood Taglewood Taglewood Rassels Indus. Park	S S (lagoon) S	0.09 0.0125 0.120	iv be abanjoned and tred into McFarland (rees 5.1 in sposed iversonal plant	:12,000 28,500 166,000 36,000	000 000 000 000 000 000	
Membury Local School	s	0.03		000,69	-	
Silver Greek School District	•	10.0		42,000		
West Geauga Local School	•	0.0		000*76		
Delle Vernon Acres	s	8.0		78,000		
Wilder Mobile Bome Park	•	0.03		000.69		
Scaredale Betate		.027		000'05	25,000	
Notre Dame Educ. Center	•	9.0		78,000		
Willoughby-Eastlake	H	3.86		375,000	290,000	
Willoughby Hills (Dodd's Hill Subd.)	-	0.024				
Portuge County						
Aurora (Plant 01)						
Achina Trailor Park	•	9.0				

CHAGRIN RIVER BASIN

5. Subdistricts - The study area was divided into major sewerage districts that are expected to exist in 1980 or at the conclusion of improvement plans now underway. The population was calculated for each subdistrict and the population served by sewers was estimated. These subdistricts are shown on Figure A-5-1, and the populations served are tabulated on Table A-5-1.

Table A-5-2 shows the populations served by individual systems. Individual systems are septic tanks or small package plants.

In general, these subdistricts would become totally additive in the event of regional consolidation. Some of the 1980 area that is shown as served individually could become tributary to a sewerage district in the future. The tributary area of the subdistricts has been based on discussions with the various agencies dealing with the planning for the study area.

SURVEY SCOPE STUDY
WASTEWATER MANAGEMENT PROGRAM
CLEVELAND-AKRON METROPOLITAN
AND
THREE RIVERS WATERSHED AREAS

U. S. ARMY ENGINEER DISTRICT, BUFFALO

1

A-26

	PAGENTAL SECTION SECTI		######################################	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OF . 134	1 10 July 1	77 - OD - OK 0 V	X .	20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	24 34 34 34 34 34 34 34 34 34 34 34 34 34	हेम्डड इस्ट इस्ट
	AS EDITIVE TOTAL		8 2 3 2 8 8 8 8 4 4 8 0	2008047	£		6	1.1	8	3 = 2 S S 4	8 5	,
	CE THOMA SEMETED ACCOMMENS	П		36323753	1 0	3,100	9.740	\$	ž	20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8 8 3 4	
	THE MINITED CTI	a.	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	26.0	3,522	200 21125	3	8	885987	5 5 5 4	- 3- 3
Ω	ANA JATOR G & HILLIN	·	88 20 8 2 7 7 1 4 8 5	1.653 3 pE 20	15			•	181	3.6.2884	8 \$	· · · · · · · · · · · · · · · · · · ·
_	LEON 2 D 2EMETE2 2ELATO 20 2 D 200 LOL MILHIN		व्यवस्थात्रकात्रकात्रकात्रकात्रकात्रकात्रकात्रक	358888 88888 1388 1388 1388 1388 1388 13	3.10	2002	4.00	8	8	5 5 8 8 5 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	27 12 15	
K ST	TE) GREWG ACE WITHIN TO MITHING TO MINIMAN	LCL	88588888884888888888888888888888888888		91.1	- F	198	÷.	3 3	8 - 2 8 8 4 5 - 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	9 9	
	ARMA JATA					1		+++	, ¥	++		
Sewerage WAT	LICH 2D SINGED DA 2D - 1000 LOG MILHIN	. PCP	(2) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	++-	200.	8	35	200	88875 2001 884435	\$ \$ \$ 3 * 8	্ ! কু ^ন ্ ব - সুস্তি
	TOTAL APER TOTAL STORM TOTAL T	1.4	######################################	with the second	Ş	38.	25 2444	7	3 × · ×	8-1 4-1 8-1-7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	\$ \$	
= >					· 	- +					*	
NOIT X	SEMES SEMES SEMES EX 2 D THE LA MILLERY	t.	638088862089	######################################	£	**			8 	88848 88448 8846 88448 88448 88448 88448 88448 88448 88448 88448 88448 88448 8846 86448 86448 86448 86448 86448 86448 86448 86448 86448 86448 86	\$ 1 8 8	¥ 2 6
POPULATIONS CKY R.	TO THE OWNER OWN THE WATCHING THE WATCHING THE OWN THE		85584513w485	4000 dad 4	ş	591	75.	3	<u>8</u>	8-2224 2	8 8	
	g3 m/44	1	3,300000000000000000000000000000000000	. \$ \$ 9 0 0 0 \$	-	8			-	\$00005.	·	7887
	PERMITER A TEN HALO A TEN HALO A TEN HALO A TEN CETHERS EVERO ON		ာ်ႏို နည်းရှိနှစ်ရှိလစ်စစ်ချစ် နည်းနှစ်နှစ်ရှိလစ်စစ်ချစ်	0985000	\$	4	2446 OC 1.448	1180	8	884000	8 8	585
	GE MINTIN TOTAL AKEN WITHIN TOTAL GE WITHIN TO WELL GE	K	6) 5° 4° 60 6° 4° 80 0 6 4° 6° 6° 6° 6° 6° 6° 6° 6° 6° 6° 6° 6° 6°	学院 当员 = \$5	3		100	ē	2	80 50 84 1888 5 5 5 5	§ §	
				· · · · · · · · · · · · · · · · · · ·		. !			11.	; · · · · · · · · · · · · · · · · · · ·		
				Mighally 6 minches of	T.					tuding sugar s		! ##. 2 94. 2
			CONTROL OF	MEDING COUNTY S O	T. POLYTICE AL	A. P. ILE	IDETA KOYALTON 'B.	3. Ann Agendant	Ret	Comm Chairte 3 0 Inferior Fifty	PERCHANTE METS	

					,				
	2 8 9 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		225 - 2 25 - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Ř	%+ 154+ 400 385343882	### ##### ############################	\$ 74.775 \$ 74.775	23552	
	HINTEN THE		ខ្គង់គ	bj.	ន្តែម្ និ ន្តនិត្	ម្នានមន្តិត្តិ គឺមិន	ន់អន់អ	នដូន្ត	
· •	14 - 1350m. -(2.2. 11.5 technik 1.44	a.	#84#3 #84#3	Ħ	X 8 8 8 1 5 X 2 8 X 8 8 8 1 5 X 2 8	¥945 2 39933	\$ 25 8 K E	93289 220 3	1.71
, i	as mulin	• •	.ी.गी.ची. .8×केंद्र	• • • •		្ត ភូមិ ខេស្សី ដូម្មើស ជំនិ			
	VERV TVEST		9 1 4						
,	-				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
	of 7 perset Substantin And 3 social		28 4 4 4 2 4 4 4 4	8 5	\$ 1 2 2 1 2 2 2 8 4 4 4 4 4 4 5 5 4 5 5 4 5 5 5 6 5 6 5 6	2	4 368) S	14 E	
! !	mindam . C.	 	ន្ទអូម	8	7248888	អ ្ ងនៃនៃ ទទ្ ទាំង		៩ភូនអូ	
	HANGER CAN MINIMARKA	a.	55555 53855	\$5.30C		. 885 * 42 488	\$ 85.50 kg	\$ 11, 3 4 5 5 4 7 4	
<u> </u>	dig militim	•	8882			5 t 2 t \$ \$ \$ \$ \$ 1 + 3	ধু ৯ ২, ৬	2828	· · · · · · · · · · · · · · · · · - · · ·
									1.1
<u> </u>	ar w 11	-	0 0 9 0 4			XC	5 55 8 88	*****	····
	SENARE S SELARE SEA SE SEE	' '	មម្ភម្ម ទីទីភូមិគី		্ৰুট্ৰক স্থাপন ক পুটাকী হ'ল বিভাগ বিভাগ কৰা ক	,		Part 4	.
	TOTAL NO.	٠,	ន់គីខ្គ			្នៃព្ធឧត្តិនាស		8881	
ı	PASSECT TO THE PASSEC	5	ប្បក្សដ្ឋ និគីដូដ្ឋ	3	8 1287 1412 8 8 8 8 1 9 4 4 8	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	音 1 And AB 第一 AM 第 4 张	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 - F - 3
:	03 13 11117 W		8848	 		*88 PQ 43 H 41	১ ১১ ৮ ৭	8.87.8	· · · · · · · · · · · · · · · · · · ·
	:	1							
=	as w as	i ,.	*6348	+ - -	Pasadabad	\$355 8 \$3385	, qE234	*# 4	
94	PARENCE SEA CATCARTO SEA C.D. Lower M. L. MILLERD	ì.	27. A.V.				.		
티	<u>-</u>	•	<u>इक्ष्म</u>	٠. ۲		្តស្ត្រស្នាស់ ស្ត្រស្តិស្ត្រស្ត្		, 37.35 3838 <u>8</u>	
	GOIDTIN 3 CO		28833 88833	. A	2,322,247 2,411,432,347	្នុង និង និង និង និង និង និង និង និង និង និ	1 4 5 5 1 5 4 1 7 3 7	12 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
빙	ABRA JAT T	, -	2558		និក្សសូ ង ,7५ឧទ	1801534 (11	<u> </u>	8 11 1	
Ą					1,		; t		or margingly
S	EMERS SEMERS	٠,٧	इंद्र इत्रेड	8	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 8 2 7 2 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	219.10 20.45.12 20.45	88338	
	NOW WITHIN TO PACE 19 ACC	٠	, 8888 E:: 258	- 18 18	11	88385888888		28 8 3888	4
!	No asses	,	28 4 4 3 8 8 4 4 3	8	\$835577888	85 38 28 28 3	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	18 2 5 8 8 8 8 8	
!	T A S NIHLIM				្រុះ ដែលជាក្នុងក្នុងក្នុង	g, an 1 - 1, 2, 1 4, 5	(2) Yest A	عوجمدتك	11:4:1
•	VERV TVLOS	١	8888		#530gg/202	8888233333	3387	8888	
			i		: ; - *** * * * * * * * * * * * * * * * * *			: 	
	EK-W E D ZEKAKU PA Z D 1010	اور نق	5.55 5.55 12.455 17.751 6.557	30	200 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	វិទុំខ្ទុំខ្ទុំខ្ទុំខ្ទុំ	2 52055		
!	MINITIM NOR		8888	8	> គន់ខិត្តិសុទិទិនិ	و بامارو و پارو	8885	 	
	NO CENSOS NO CEN		133 a 80 a	8	F 26 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	7 4 5 6 8 6 3 3 3	2 2 2 2 2		
<u>!</u> !	O & WITHIN TO	+ .	្តស្នក សូខ្លួ		8888888888 6 868885	8388230 .43	9. dav.	8888 4 2	╁┊┾╁╃┩╏╁╏╂╇╃╗╚╂╃┆
i i	1 1740	1			in in the state of the	raia i L	11	· · · · · · · · · · · · · · · · · · ·	
; ;			1		· · · · · · · · · · · · · · · · · · ·		HERE	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1 1	1		. I			1. [1]		1 11	
}	}		1 32 7		Pm 11 m	1			
			1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	i i i	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	COLUMN TO SERVICE SERV	149.00 14	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
			AND	Out.	AST STEMA AST STEMA STEM	ANTERNA PROPERTY OF THE PROPER	MONOTO MONOTO QUINC QUIN	FAST AND SALES	
		1	É.	ers'ERIV	3 300.685	12 12 0 5 2 3 2 3 5	0.77	FIL. Digage 1. 15Tang Lastrang Will Digage 1. Will Digage 1. Walfilang Cantund	
		_ـــــــــــــــــــــــــــــــــــــ	5	3	31111111	<u>illiilll</u>	<u> </u>	المالية المالية	

MHITTOWN NO. N. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Millian Au (

CUYAH	2	4	H	ABC	~		RIVER	ď	×	3	WATERSHE		S	H		9	\ddot{c}	CONT	H	ρ				
	ALLINE AND THE WATER	BOSTED ON	MITHTHE GOT OF 61 G T YOU GLEVELLE YOU GLEVE	T HORE	ATA HATTIN TO MATERIA TO THE MATERIA	DAMED ON	TE HOME OF THE PARTY OF THE PAR	ASSA JATOT G E MINTIN	MINIM TON MO GASAS	MILLIN ACE	SEMENS SEMENS SEMENS SEEGHED BA		WITHIN SOV WITHIN SOV	EVAND CH 2 D - 1000 NON MISHIN	LEDM 2:D 2EMEKS 2D VOO 2D VOO 2D VOO		G 2 MIHTIW WITHIN TON	NATION CYL	BEMETIKO BETIKARID EW BID SCIL BODS MILHIM	as mons	AS MINTA	PASED ON FOR WITHIN	натти тем	LHOST 7 D SERVED BY SE - 2020
	1 1	è		9.0	12	*	2	1:		++	a oa		,	++	è			ì	2		1		×	Þ
								+	+				- 1	-	1		-	- i	+	+	1		\prod	11
MACEDONIA BOSTON GIPT (NAS. THE PAINT WESTER) BOSTON GARRETT THE MACEDIAN	3 3 3 3	130		444	8838	2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	9 9 9 5 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Š 8 3 3	8 8 3 6	8888	8 1 8 0	Ш	8000	3000	3 8 8 8	locals	8583	A15 818	\$ 8 8 8 6 5 8 8	R RISHRI	85.85	2 - 5 E	888	10,000 11,70 10,200
	\perp \downarrow \downarrow \downarrow \downarrow	4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1171		+++			1	111	-++-+	45.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00		++++	+++	2	900		-++-	+++	282	£13		-++	28 3
ANTINOS CAMINE TO CALLE TO CAL	94	7,489 2,444	88	325	30	80 37 30 37 30 30	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	9 4	23 3 30 3	8 8	046°		34-4	25.00	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		3 c	883	200 P	888	50	8 3 3	8 81	000
THE TRACES	2.9	£2.	3.8	SEE	\$ 2 8, 2 8, 2 8, 2 8, 2 8, 2 8, 2 8, 2 8,	888 58	1	13621	1.11.5 2.11.5 2.11.5 2.11.5 3.	2 2	25. 7. 2.5.		12, 52	6234	995 995 30 30 30 30 30 30 30 30 30 30 30 30 30	12.5	36	2 3 3 2 3 3	00 00 00 00 00 00 00 00 00 00 00 00 00	8,8,8	8,8	3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,	88	18,010
AUGOL WISHEN TATABAL WE TATABAL WE TATABAL WE TATABAL TO THE TATAB	A Com	25 SEE SEE SEE SEE SEE SEE SEE SEE SEE SE	90000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25 25 25 25 25 25 25 25 25 25 25 25 25 2	18.818.82.812. 18.81818.0	2.4 CO O O O O O O O O O O O O O O O O O O	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 4 8 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	8883	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		3 2 8 0 0	20 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	5 5 8 7 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1	lajojali wa	9 0 8 4 -	9384	20 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	물 왕왕요; = 공	32800	62.50 2.00 2.00 2.00 2.00 2.00 2.00 2.00	និត្តនិត្	8 8 8 5 8
Talksoure Thresoure Thresoure Thresoure	8 8 5		8 00		8 8 0 8 0	080 100 00 00 00 00 00 00 00 00 00 00 00 0	ععللنان	8 3 ≃	++	8 6 0	00000		8 8,0		8 8 8 6 8		S S O	× 4.8.4	1 8 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8,575		4 2 2 3	8,8,8	2 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
NO CHITICAL SOLD		0,170	6	922	027.60	02	oi i a		72	1	5267	111	- 1	100	OF T		++++	38	er.	a		13 13		200
Mosey and Market Mark Work Mark Wood	8 5∤5	3 24 S	8 2 .	0 2 10	8 0 0 0 E	8833	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	18/2/2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	583	843.4		8 5 c	8 2 2	8 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1	8 4 2 6	2 8 8 8 8 8	<u>چ</u> بدایو چ	اه یا دا	3 X 5 3	8 8 8	3333
<u> Provent</u>	18	254	Ę	7,552	8	-++ \$	8, 8,	<u> </u>	(5) no.	ا د د است	13.4m		- 13 - 12	ę,	32		- 8	3	37.12	. : 	<u> </u>	\$	† • • • •	1
Z CAST C D	jo J	7,413				و چ	9	3	2° 1 3 • • • •	9	980	 	ž:	92 °	46 6.676	10			084 	· · ·	9 1	`\$. \$.		8
	-				!		+ +			++						;			++-	+++		+	***	
	 		+			.	44	 	1 			*****	, , , ,	i	: *****			+++	 			. 1	* .	
	 				111	→ + +		i — :									, ,		· · ·			: :::	-+- +-	
	+++	Ţ	++-		-+	++	· ·			· · ·	+-		··· · ·			,			i					

		٠,	
	2 4 3 M 40 A2 13 \ 4 45	-	प्रकृतकृतकः प्रकृति । स्वर्ताम् । स्वर्
	37 12 3 8 MIAHIR AA S. MIAHIR		និនិន្ទមិនក្នុងនិងនិងនិងនិងនិងនិងនិងជានិមិន្ទមិន
			22 2 8 2 8 2 2 2 3 2 3 3 3 5 6 5 5 5 5 5 8 8 8 8 8 8 8 8 8 8 8 8 8
	DE WITHIN	E.	. ने अन्तर है के कार्य के में हैं अर्थ के हैं भी में बुच्ची है है कि है
	ARMA LATAT	4	\$\$ \$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
		4:	
	·	4	
	LES PHONEL	è	- 8 8 13 8 13 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
H	SEMARES SAL	+	· T + Ext
E٠		-	
CONTE	11.7 CF26 CF3	è	්දේ මැයි මෙන් කිරීම සිට කිරීම යන පාර්ණයේ ද පැලි මේ විමිමේ මින් දින්තිම සිට කිරීම සිට කිරීම මේ දින්ති කිරීම සිට කිර
4	O S MINTIN	+	888 8 8 48 2 48 8 8 8 8 6 000 8 2 7 43 2 4 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Ö	ASMA IATOR	+	
O		-	
	as Miner	+	· * * * * * * * * * * * * * * * * * *
^	2TMYF2	2	1 电电子电影电影 医克勒氏试验 电光谱电子 化基金 化二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二
Ŋ	100 WITHUN 1070		8 R 8 B 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
闰	14.) C285VQ		19 \$ 7 \$ 8 \$ 8 \$ 7 \$ 5 \$ 5 \$ 5 \$ 5 \$ 5 \$ 5 \$ 5 \$ 5 \$ 5
	MIRRIN 4-24	¥ !	Here a a a a a a a a a a a a a a a a a a
芸	ATAL AREA	4	ลุซิจิริริธิริ <u>ตน</u> ธิริสิธิชิ จิติริธิริธิริธิริธิริธิริธิริ
Z.	·}		
X4		4	- 1 1 1 1 1 1 1 1 1 1
્રા	SEMEKS	à.	2.4.4.24.25.25.25.25.25.25.25.25.25.25.25.25.25.
H	HIHLIM ACE		នេះខ្លួន នភ្ជាន់ខ្លួន ស្តី និង និង និង និង ស្នង ស្នង ស្នង ស្នង ស្នង ស្នង ស្នង ស្ន
₫.	+	٠ .	i kin kin kin nin nin nin nin nin kanan kiki kawa kin kin kin kin kanan kin kin kin kin kin kin kin kin kin ki
WATERSH		E.	
>	ATTA ANTI-T	٠,	្តីមាន មាន ហើយដ្ឋាធិប្រជាព្រះ មាន ស្ត្រី មាន ស្ត្រី ស្ត្រី ស្ត្រី ស្ត្រី ស្ត្រី ស្ត្រី ស្ត្រី ស្ត្រី ស្ត្រី ស្ ស្ត្រីស្ត្រី ស្ត្រី
_		1	
RIVER		1.	
ผ	PEKING SIN	اغ	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
こ	SEMESS SPENED BA 1D 1000	E	
	MIHRIW TA	٠,٠	**************************************
- 2	0961 025	2	고 도로 보면 의 제품 중심을 보는 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등
7	GE HIRLIM	11	82.86.86. \$54.8848 86.86.85.534.88
	ARMA JATOT	+-	
45		į	
	25 H124		1884 . AFRO 8. BERAREA BAREA BAREA BAREA BAREA
Ŏ		2 11	
7	MINTIN TO		3830,836,803588888888888888888
CUYAH	SUSSES OF	1	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
S	OLST GE	r '	
71	ASHA JATOT G & MINTIW	4.	888882 8443688 886688 464848
Þ		r .	
Ü		1.0	
			•
	1		The state of the s
			Manual Company of the
			5 명 명명 6 2 등 명 6 일 등 점 6 일 등 A 6 일 을 을 을 을 을 을 을 을 을 을 을 을 을 을 을 을 을 을

	243 P4 24 4 1 24345445	18.5	2.55	3. 3.	X 2 2	\$2.50 miles
	24 1844 25 147 431					4 4 . 4 . 4
		* *£3£	# 4 8 	۶.		888888
	LEASTER OF THE PARTY OF THE PAR		5×3,4	3 6	4.0	- 英雄河南北美華
	48 (0)471W	484	· • • • • • • • • • • • • • • • • • • •	4		23444
	{				i	
	G 2 19 4 1	al saya	8883	*		PANET
	5.4 3828 5.2 131.448 1011216, 6.4		90 to 1		2 4 4	- 美有主义的基础。 - 美有主义的基础。
	1	ិ និង	388	٠		- 68 2 4 8 4
	1000 1 - 100 1 1	7 3934	3.84	2,4.2	34.7	बुद के ले हर हैं।
Q	appropriate with the same of t	4 8 8	444		a x	
阎						
	us vi vi	L 4483	**************************************	<u> </u>	 8 5 8	8889¥##
7	CLU VI NA SALAME AM CHANGE NE CAS	\$ 2 <u>4</u> 3	\$ # \$ 2 \$ 0 0 0 \$ 0 0 0		8 3 4	
(i)	PHIEZEAN of ad	* + * * * · ·	8 8 8		پې • • • • •	Name and the same
្ត	MITTER TO THE TOTAL TO THE TOTA	\$\\\ \xi_1 \xi_2 \xi_2	34.85	, .	***	· · · · · · · · · · · · · · · · · · ·
	13 HORES	1 4 5 3	4 4		* *	\$2°-2"
	}					
Watersh	22 14 64.4	~ #5# <u>1</u>			***	44444
	Salpanari Salpanari Salpanari Salpanari Salpanari				***	
Ľ		`				
* 3		1 7 8		4	रूप व च	- अ श्रम्भ क ्रिक्
同	A COUNTY			. A	: ,	and the state of t
RIV					f	1000
02	Plant 2 t.	1 32 2 1 3 2 2	F 1 9 E	3	854	\$2.43° \$4
6-4	Survice by		'તાનાં ⊥ ઘરુષ્	· · · ·		
ワ						7.5 2.4 4.5 5 5.5 5.0 0 7.
	Militim age	K ~ **		,		الواجعة واحد مادم مادم مادي مناسبون والأدار والمراورة والقطال والدوار والمراورة
HAGDIN	ALTAL ATTA	0 824 	418	. 	- 	88.2.4
9				İ		
S	FROM E E	3 3	£23.5	, , , ,	€8₹	300000
	PEMERZ PEMED DA RD 1000 NORMALITE		2.8.8	8	9 9	
U	BURNED OFFI				8 6 7 3 20 5 7 3	▗ ⋛▗▗▗ ▗ ▃ <u>▄</u> ╞ ╏ ╿┩╃╤┡╤┊ ┋┷ ╞ ╈┲╍╼╼╸╸╸┼┡╾┶╺╕╸╒╸╸┋╸╸╸
	SE HILBIN	}			ि के कि है। 	
	A3%A JATOT	- # 8 -	4			g george
		}	1. 1.	i	* :	
		Ì	i	1		
	}				1	
			3 8		ایت	
		200 x 0.1		Šis:	CHESTER THE PLASSELL THE	が 1 日本 1 日
		ANT SUBSTANTION TWP WE SEE SEE SEE SEE SEE SEE SEE SEE SEE	METANT CREEK Storm RUSSEL FLOST FARMERED SE	SOLON HOOFHUSS	FALEWOUNT R'D CASSIL RUSSÉ	
		a constant	ig vy	100	. 3	

TABLE A-5-2

	SYSTEMS
	뚮
c	S
잌	_
Ĕ	≨
2	8
۲.	ž
OF SEWERAGE DISTRICTS	INDIVIDUAL
3	
ŝ	ž
ام	ន
리	2
	S
Ħ	*
OUTSIDE	ARE SERVED
0	¥
2	THAT
V	
9	1961
	_

								ı				
	, +41	1970 Population	 141	1980 Population	14	1990 Population	# 41	2000 Population	141 141	2010 Population	M	2020 Population
	9	126	9	140	9	140	01	150	01	150	91	8.1
į	\$	2,317	S	2,920	×	4,020	S	5,055	æ	3,995	s	9,600
;	3	856	3	1,080	0,	1,480	3	1,880	9	2,200	3	2,440
; ;	2	276	9	350	91	087	2	009	91	710	2	780
	\$	7,250	%	9,025	96	10,655	96	12,000	\$	12,680	8	12,880
	9	716	9	1,420	91	1,820	10	2,030	2	2,210	9	2,260
e i enter Tranship	22	986	22	1,750	52	2,750	52	3,250	23	3,750	22	4,250
	901	1,504	100	1,900	100	2,200	100	2,500	100	2,600	8	2,700
	01	885	01	100	01	011	70	120	02	130	01	130
	901	692	90	900	100	006	80	1,000	8	1,000	8	1,000
brithampt n Tomehlp	9	2,265	3	2,840	9	3,360	07	3,760	3	7,000	3	070,7
•	1	312	^	455	7	512	,	346	^	602	,	638
•	4	792	4	1,067	÷	1,304	4	1,482	4	1,582	4	1,617
	60	1,221	80	1,583	3 0	1,912	•	2,160	•	2,303	•	2,338
20.2	-	2,7%		2,932	~	3,212		3,470	-	3,611		3,628
Abert Village	6	1,895	2	2,100	0/	2,310	92	2,510	02	2,660	6	2,660
bectagited Township	18	3,045	8 1	3,820	<u>s</u>	7,500	18	5,045	18	5,330	82	5,380
.lemillow	91	\$26	001	009	100	700	8	700	100	700	901	90,
Woreland Hills	2	2,100	8	2,730	0,	3,150	70	3,500	0,	3,710	6	3,710
Sonting Velley	9	269	3	087	0,	800	3	096	3	1,120	3	1,280
Setos Mills	3	950	9	1,200	0,	1,480	9	1,640	3	1,760	3	1,760
e yfield	47	1,670	4.7	2,258	7,	2,774	4.7	3.147	47	3,384	3	3,384
silloughby Hills Township	8	3,143	3	4,200	9	5,640	9	7,020	8	8,285	8	9,0%
Jeite Hill	100	514	8	700	a.:	1,000	001	1,200	100	1,400	001	1,500
Streetsboro	-	558	1	700	•	414	7	1,155	^	1,351	,	1,484
Franklin Township	39	2,277	£	3,120	96	4,170	36	5,260	39	6,160	33	6,710
Jurton Township	83	1,966	83	2,820	63	3,984	93	5,150	69	6,310	3	7,140
fiddlefield Township	11	597	11	799	17	615	17	1,223		1,497	2	1,663
d:/comp. complib	5.	1,054	2	1,500	5.7	#. C. C. C.	ž.	2,410	1.5	3,558	13	4,020
suffletd Township	6	5,219	\$	7,110	ç	9,540		020,53	96	14,050	0	15,400

AREAS OUTSIDE OF SEWERAGE DISTRICTS
IN 1980 THAT ARE SERVED BY INDIVIDUAL SYSTEMS

		1970		1980		066:		2000		2010	,	2020
725	м	Population	امه	Population	r4	Property ton	p-2	Population	1 41	Population	1 41	Populat ton
Randolph Township	Ç.	2,490	9	3,0	9	4,556	9	5,756	8	6,720	9	7,320
Mariboro Tornahip		2		73		100		125		150		175
Lake Township		807		8		125		150		271		200
Martwille		\$		e,		7.5		100		125		150
Hiram Township	01	0+1	01	÷.	9:	760	9	320	10	380	10	410
Membury Township	9	4,038	8	5,700	100	8,000	180	10,600	001	12,900	100	14,600
Kireland	90	5,530	8	1,200	100	9.500	100	11,700	001	13,700	100	15,000
Kireland Bills	25	113	22	95 !	52	200	25	250	25	300	25	325
Chardon Township	3	1,910	9	001,:	9	3,790	09	086,2	09	6,120	9	006*9
Rambden Township	*	05.80	*	061.:	7	1,668	*	2,210	አ	3,720	35	3,060
Montville Township	51	196	13	285	3	190	13	810	13	630	15	202
Chester Township	7	6,450	79	4,170	7	12,700	62	16,800	62	20,450	62	23,140
Russell Township	*	1,775	38	\$75.	ž	3,518	38	4,675	38	5,700	38	097*9
South Russell	^	187	1	111	•	+16	7	979	1	798	7	917
Auburn Iownship	100	1,517	100	304.**	Ę	9.236	001	4,200	100	5,100	100	5,800
Troy Township	8	1,404	38	000":	ž	2,900	88	3,700	\$8	4,500	88	5,000
Clairidon Township	901	2,124	8	ουσ'·	100	UC. * †	8	5,800	190	6,800	100	7,700
Munson Township	8	3,569	8	yo1.	30.	001.6	100	007'6	100	11,500	100	12,900
Buztsburg Township	2	574	2	612	~1	\$5.4	2	1,504	32	1,857	32	2,080
GRAID TOTAL		81,095		989'HO!		142,753		176,918		206,423		224,160

6. Wastewater Flows and Loads (Present and Future) - The development of reasonably accurate projected wastewater flows and loads is essential for the planning of future wastewater management programs, especially in consideration of municipal wastes, which account for the majority of wastewater flows.

The present per capita flow of municipal wastewater for separate and combined systems are found to be 110 to 156 gpcd, respectively, for the study area. These figures are based upon 1970 population data and on 1970 wastewater treatment plant records. Industrial flows have been deducted from the total plant flow in computing these figures, and are not included.

In projecting the future municipal waste flows, consideration was given to such factors as:

- 1. The present trend of increase in water consumption, per capita.
- 2. The increased use of water saving devices for the home.
- 3. The possible development of water reuse systems for the home.
- Reduction in infiltration rates due to improved sewer construction techniques.
- 5. Replacement of certain existing combined sewers with separate sewers.

Present trends in water consumption for the study area show an increase in water consumption in the range of 1.0 to 1.3 gpcd per year. This per capita increase is due in part to the increased use of various modern facilities such as the automatic clothes washer, the automatic dishwasher, and garbage grinder, which use more water than previous methods. This trend is also due to the fact that there is an "abundance" of water in the study area. In this area the population in general does not feel a water supply shortage, and therefore does not generally make an attempt to conserve water.

Approximately 70% of total household water usage is for toilet flushing and bathing. (1) Flow reduction devices have been developed for these two

⁽¹⁾ E.R. McLaughlin, "A Recycle System for Conservation of Water in Residences", Matter and Sewage Works, April, 1968.

critical areas. Present toilets use 4 to 6 gallons per flush. (2) The newly developed reduced flush toilets use 2-1/2 gallons per flush. These are already in use in some foreign countries where water shortages exist. Dual flush toilets have also been developed, which use even smaller quantities of water when only urine is to be disposed of.

Present shower heads discharge between 5 and 10 gallons per minute. This flow can be reduced and still be acceptable. The reduced flush toilet and the limited flow shower head might provide a 30-50% reduction in domestic water usage. They are also economically feasible in that the capital costs are low and the yearly water savings and waste flow reduction is substantial.

The following household water reuse methods have been investigated: (2)

- 1. Reuse of all wastewaters, except for drinking.
- 2. Reuse of nonsanitary water for toilet water and laundering.
- Aerobic treatment and reuse of all wastewaters for lawn watering.
- 4. Reuse of wash water for toilet flushing.

The only one of these which appears reasonably feasible in this area is the reuse of washwater for toilet flushing. It is doubtful however, that reuse technique will be developed to any significant extent in the study area. This is due to the relative abundance of water to handle future demands. In other areas of the country, where water shortages and water pollution from municipal wastes is a critical problem, these techniques will be more likely to be developed.

The resulting municipal wastewater flow projections are shown in Table A-6-1.

⁽²⁾ J. Bailey and H. Wallman, "Flow Reduction of Wastewater from Households", Water and Sewage Works, March, 1971.

TABLE A-6-1

MUNICIPAL WASTEWATER FLOWS
(gpcd - gallons per capita per day)

	1970	1980	1990	2000	2010	2020
Separate systems	110	120	125	130	140	150
Combined systems	156	160	164	168	172	175

The present and projected pollution loads from municipal wastewater treatment plants have also been estimated. The per capita generation rates for nitrogen and phosphorus were based upon monthly data from the Cleveland Easterly, Southerly, and Westerly Wastewater Treatment Plants. (3) Table A-6-2 shows the projected municipal wastewater pollution loads for the study area in pounds per capita per day.

MUNICIPAL WASTEWATER POLLUTION LOADS

(pounds per capita per day)

	1970	1980	1990	2000	2010	2020
BOD						
Separate System	. 17	. 18	. 185	. 19	. 19	. 195
Combined System	. 15	. 15	. 16	. 16	.17	. 17
Suspended Solids						
Separate System	. 18	. 185	. 19	. 195	. 195	. 20
Combined System	.23	. 23	. 24	. 24	. 25	. 25
Organic Nitrogen	.0146	.0146	.0146	.0146	.0146	.0146
Ammonia Nitrogen	.0097	.0097	.0097	.0097	.0097	.0097
Total Phosphorus as P	.0116	.0116	.0116	.0116	.0116	.0116
Sulfate	.0367	.0367	.0367	.0367	.0367	.0367
Chloride	.046	.046	.046	.046	.046	.046

⁽³⁾ H & E, Ltd., "Feasibility Study for Wastewater Management Program", for Department of the Army, July, 1971.

A computer program was written to calculate and tabulate the present and future municipal wastewater flows and pollution loads based on the data in Tables A-6-1 and A-6-2. The program was run for each of the sewerage districts in the study area, based upon the population projections. This information is given in Table A-6-3. The total municipal wastewater flows and pollution loads for the Cuyahoga, Rocky and Chagrin River watersheds and for the direct discharges into Lake Erie are shown in Table A-6-4.

These tables do not include industrial flows or loads. The industrial loads were computed by AWARE and are presented in this phase report.

FLOWS AND LOADS IN INDIVIDUAL SEWERAGE DISTRICTS

LAKE ERIE

OCKY RIVER	1970	1980	1790	2000	2010	5050
POPULATION	61537.	89340.	111900.	125805.	137700.	14 39 30
PLOW (HGD)	6.77	10.72	13.99	16.35	19.28	21.59
809 (LBS/YR)	3818370.	5869637.	7556047.	8724576.	9549493.	10244220
SUSPENDED SOLIDS (LBS/YR)	4042980.	6032682.	7760263.	8954170.	9800796.	10506890
GREANIC HITROGEN (LBS/YR)	327931.	476093.	596315.	670415.	733803.	767003
AIGGNIA MITROSEN (LUS/YR)	217872.	316 308.	396182.	445412.	467527.	509584
TOTAL PHOSPHORUS AS P (LBS/YR)	260548.	378265,	473784.	532658.	58 3022.	609379
SULFATE (LOS/YR)	824317.	1176753.	1478955.	16852.0.	1844560.	192801
CHLORIDE (LBS/YR)	1033206.	1500017.	1876800.	2112264.	2311982.	241658
NEW SEPARATE SEVER ARI		. ==		-		
ESTERLY	1970	1980	1790	2900	2010	5050
POPULATION	160000.	151000.	151000.	152000.	15 3000.	160000
FLOW (MGD)	24.96	24.16	20.76	25.54	26 . 32	28.00
800 (LBS/YR)	8759998.	8267248,	8818901.	8875901.	9493650.	992800
SUSPENDED SOLIDS (LBS/VR)	1 10 32000 .	12676450.	1 3227600.	13315200.	1 1961250.	14600000
ORGANIC HITROGEN (LHS/YR)	852640.	804674.	804679.	810004.	815337.	85768
MITROSEN (LUS/VR)	566483.	5 146 15.	574015.	5 19190.	441446.	56648
TOTAL PHOSPHORUS AS P (LBS/YR)	677440.	694714	6 99 1 94 .	nament,	047802.	677440
SULPATE (LIS/18)	,5143×7H,	10.2.14	23221.0.	9-10-119-2	104 (510)	4.5,54
(HEGRIDE (EBS/78)	20 90 4000	1.20%	21.1.210	- 044	1.481	21.45.9
COMBINED SENIOR AREA						
as fe ac v	.,,,,	1 - 1	1.05		2010	. 12:
POPIN AT EIRI	• • •	wast.	** 814 .	1 . 44	* 0.44.	•.•
E COM - FREST 1	*1, (*	2787819	ente de le	an Reflection	11 . 42 6 - 23 - 24 - 27 .	1 . 1 1 . 1 . 10
000 (LUS/TR) SUSPENDEL SOLIDS (LUS/TR)	19:27 .	4/1271///	ar a shirt.	NUMBER OF	essa ps.	- ne ma
ORGANIC NSTROSEN (LUS/YR)	2 42 W 41.	267015'.	3073851,	136011n.	3515477.	350420
APPIGNIA NITROSEN (LDS/TR)	16100°18,	1776-64.	2042216.	2732401,	2135625.	232613
TOTAL PHOSPHORUS AS P (LBS/TR)	1 125474,	2129670.	2442237.	266 1675.	2793118.	278416
SULPATE (LBS/YR)	6091804.	6722021.	772-777.	8446 303.	88 768 4 4 .	980851
CHLORIDE (LBS/YR) COMBINED SEWER AMEA	76 3550 1.	8425423.	9684740.	10586650.	11076160.	1104065
COMMITTED SEVEN MICH						

LAKE ERIE

Lio	1970	1980	1990	2000	2010	2020
POPULATION	117110.	142618.	175439.	204550.	226617.	≥ 370 30
FLOW (MGD)	12.66	17.11	21.93	26.50	31.73	35.55
800 (LBS/YR)	7142575.	03700°1.	11846520.	14185540.	15715890.	16870610
SUSPENDED SOLIDS (LUS/YR)	7562727.	9630279.	12166690.	14558840,	16129460.	17303180
ORGANIC NITROGEN (LUS/YR)	613421.	760011.	934914.	109 0047.	1207642.	1263132
AMMONIA NSTROGEN (LUS/YR)	407/47.	504939.	621142.	724209.	602337.	8 39205
TOTAL PHOSPHORUS AS P (LUS/YR)	487 376.	603944.	712809.	866064.	959496.	1003585
SULFATE (LBS/YR)	1541955.	1910438.	2150092.	2740049.	3035646.	3175135
CHLORIDE (LBS/YR)	1912606.	2394555.	2945619.	34 34 393.	3804818.	3979733
HEN SEPARATE SEWER AREA	<u>.</u>					
	1979	1480	 14 9 0	2000	2010	2020
HEN SEPARATE SEWER AREA	- .	1480		2000	2010	
HEH SEPARATE SEWER AREA	1979		1490			
HEH SEPARATE SEMER AREA DUGHNY-EASTLAKE	1979	52170.	1490 76900.	97 300.	115200.	1 268 n0
HEN SEPARATE SEMER AREA DUGHMY-EASTLAKE POPULATION PLOM (MGD)	1979 38324. 4.22	92170. 6,25	76900. 9.61	97300. 12.65	115200.	1268n0 19.02 9024988
HEH SEPARATE SEWER AREA COUGHBY-EASTLAKE POPULATION FLOW (MGD) BOD (LBS/YR) SUSPENDED	1979 18324. 4.22 2378003.	92190. 6,25 3422470.	76900. 9.61 5172672.	97300. 12.65	115200. 16.13 7989118.	126800
DUGHNY-EASTLAKE POPULATION PLON (MGD) BOD (LBS/YR) SUSPENDE (LBS/YR) ORGANIC	1979 18324. 4.22 2378003. 2517894.	92100. 6,25 3422370. 318052.	76900. 9.61 51/2677.	97300. 12.65 5787753. 6 (25326.	115200. 16.13 7989118. 8199358.	1268n0 19.02 9024988
OUGHBY-EASTLAKE POPULATION FLOW (MGD) BOD (LBS/YR) SUSPENDED SOLIDS (LBS/YR) ORGANIC HITROGEN (LBS/YR) AMMONIA	1979 18324, 4.22 2378003, 2517895, 2082, 8,	52170. 6,25 3422170. H 18052. 277641.	1990 76900, 9.61 5192672, 5334111, 403830,	97300. 12.65 5747753. 6 (25326. 51 5 512.	115200, 16.13 7989118, 8199358, 613901,	1268n0 19.02 9024988
OUGHBY-EASTLAKE POPULATION PLOW (MGD) BOD (LBS/YR) SUSPENDED SOLIDS (LBS/YR) ORGANIC NITROGEN (LBS/YR) AMMONIA NITROGEN (LBS/YR) TUTAL PROSPPORUS	1979 18324. 8.22 2378003. 2517894. 2082. 8.	52190. 6.25 3822370. 9.18052. 977681.	1490 76900. 9.61 \$142672. \$13.013. \$0.1800.	97300. 12.65 5747753. 6125326. 518512.	115200. 16.13 7989118. 8199458. 613961.	1268n0 19.02 9024988

TABLE A-6-3 (Cont'd.)

ROCKY RIVER WATERSHED

EDI: A CO. S D 400	1970	1980	1990	2000	5010	5050
POPULATION	20888.	47783.	66143.	83212.	100983.	120508
FLOW (MGD)	2,30	5.73	8.27	10.82	14.14	18.08
BOD (LUS/YR)	1296100.	3139342.	4466305.	5770751.	7003170.	8577156
SUSPENDED SOLIDS (LDS/YR)	1372341.	3226545.	4587016.	5922612.	7187464.	8797083
ORGANIC NITROGEN (LB5/YR)	111312.	254636.	352476.	443437.	538138.	642187
AMMONIA HITROGEN (LUS/YR)	73954.	169176.	234179.	294612.	357530.	426658
TOTAL PINOSPHORUS AS P (LUS/YR)	88440.	202313.	280049.	3523 19.	427562.	5 102 31
SULPATE (LBS/YR)	279805.	640077.	686018.	1114666.	1352717.	1614263
CHLORIDE (LBS/YR)	350709.	802276.	1110540.	1397129.	1695503.	2023329
NEW SEPARATE SEWER AREA		· 				
EDINA COUNTY S D	1970	1980	1990	\$000	2010	505 0
POPULATION	1025.	7616.	13785.	15812.	17505.	18840
FLOW (MGD)	0.20	0.91	1.72	2.06	2.46	2.83
800 (LBS/YR)	113241.	500371.	9 308 32.	1096562.	1219519.	1 34 09 36
SUSPENDED SOLIDS (LUS/VR)	119902.	514270.	9559 90.	1125419.	1251612.	1 375 319
ORGANIC NITHOGEN (LUS/YR)	4725.	0 0586.	73460.	84262.	93710.	100 398
AFRICAL (LBS/YR)	6461.	26364.	48906.	55982.	h2260.	b 67 03
TOTAL PHOSPHORUS AS P (LBS/YR)	77:1.	37.241 .	54 \$66.	664 89 ,	79.01.1.	74 7 68
SULPATE (LBS/YR)	24447.	10.10.10.	184657.	.11819	115560	252371
CHLORIDE (LUS/TR)	10642	127973.	231450.	espaining.	2 15252.	1163. 1
HEN SEPARATE SENER AREA						
	•	•••				
, ROYALTON A	1.07	1/4%	1 (90	2029	.:010	2020
POPULATION	2434.	17.	9694.	.7f ft.	10 340.	10100
FLOW (MGD)	1.27	1,(1	1.00	1.25	1.4.	1.5%
900 (LUS/ 78)	1541 (.)	3314 7.	99.4	67: 1 1 ,	717772.	3 3666-1
SUSPENDLU SOLIUS (LHS/YR)	1631 00	34.06.40	0.5000	erabtieiß,	*3.60.1.	755550
ORGANIC HITROGEN (LBS/YR)	13237.	27045.	46282.	52011.	55155.	55155
APHONIA HITROGEN (LBS/YR)	8795.	17968.	307 89 .	34555.	36644.	16644
TOTAL PHOSPHORUS AS P (LES/VR)	10517.	21498.	36772.	41 124.	4 3822,	43822
	13274.	67982.	116300.	1 307 40.	1 3864 3.	138643
SULFATE (LBS/TR)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					

TABLE A-6-3 (Cont!d.)

ROCKY RIVER WATERSHED

MONGSVILLE B	1970	1980	1990	2000	5070	2020
POPULATIO'	1500.	3465.	1300.	1980.	5200.	5240
PLOW (MGD)	0.16	0.42	0.54	0.63	0.73	0.79
HOD (LUS/YR)	J3075.	227650.	290357.	338428.	360620.	372957
SUSPENDED SOLIDS (LUS/YR)	98550.	233974.	279205.	347334.	370110.	382520
ORGANIC Nitrogen (LUS/YR)	7993.	18465.	22915.	26006.	27711.	27924
AMMONIA Nitrogen (LBS/YR)	5311.	12268.	15224.	17278.	18411.	18552
TOTAL PHOSPHORUS AS P (LBS/YR)	6351.	14671.	18206,	29662.	22017.	22180
SULFATE (LBS/YR)	20093.	48415.	57601.	65370.	69657.	70192
CHLORIDE (LBS/YR)	25185.	53177.	72197.	81735.	87308.	87980
HEW SEPARATE SEWER ARE	٠ .	 -				
ROYALTUI U	1970	1980	1990	2000	2010	2020
POPULATION	2948.	3704.	4449.	*991.	5290.	5290
FLOW (MGD)	0.32	0.44	0.56	0.65	0.74	0.79
800 (LB5/YR)	182923.	243353.	300417.	346126.	366861.	376516
SUSPENDED SOLIDS (LUS/YR)	193(83.	250113.	308538.	155234.	376516.	386170
ORGANIC HITROGEN (LBS/YR)	15710.	17739.	23709.	26547.	28110.	28170
AMMONIA HITROGEN (LUS/YR)	10437.	13114.	15762.	17671.	18729.	18729
TOTAL PHOSPHORUS AS P (LUS/YR)	12482.	31,619.	11837,	20.12.	22309,	22 198
SUIFATE (LBS/YR)	11477.	40617.	en en	*** 7.	7 18 6	7086.
ACORDO CLASTVE)	0.1497	621 - 1	140.00	9700.	ян (1).	483)
MEH SEPAKATE SEHER AREA		·				
PONGSZTI CE C	19**	i ·	1000	ביי מיי,	.m.	.1020
POP A A L L	1			411.		# 4. ₂ . r
FL (No. 1 MFQ)		. • *	. 4.1		n h	1,1,
900 (a5 'FILE	***	:/ · · .		100	1391 / 1,	3.110.11
SOSPENDED SOCIOS (11 - 774)	* 194	part of	26 (461)	t 9 6 5 7 .	127 pt .	117.60
URGANIC Hithogen (Lus/YR)	(495)	.· 497.	2024%	22931.	24487.	24626
AMMONIA Nitrogen (Lus/YR)	8287,	10# 14.	13450.	15242.	16269.	1635
TOTAL PHOSPHORUS AS P (LBS/YR)	.∋91,	12/056	16.19%.	19227.	1185%	1256
SULPATE (LBS/YR)	16075.	* 0390.	50d84.	5766A.	11552.	6 168 1
CHLORIDE (LUS/TR)	20148.	52377.	6 3785.	72281.	77150.	77570
HEW SEPARATE SEWER ARE	A					

TABLE A-6-3 (Cont'd.)
ROCKY RIVER WATERSHED

				-			
er _e	1970	1980	1990	2000	2010	5050	
POPULATION	22396.	27600.	33000.	36900.	39100.	39100	
FLOW (MGD)	2.46	3. 31	4.12	4.80	5.47	5.86	
MOD (FR2\AM)	1387671.	181 3320.	2228325.	2559013.	2711583.	2782941	
SUSPENDED SOLIDS (LUS/YR)	1471417.	1867690.	2288548.	2626356.	2782941.	2854298	
ORGANIC NITROGEN (LBS/YR)	117348.	147080.	175857.	196640.	208364.	208 364	
AMONIA HITROGEN (LHS/YR)	79293.	97718.	116836.	130644.	138433.	13843	
TOTAL PHOSPHORUS AS P (LBS/YR)	94825.	116858.	139722.	156234.	165549.	16554	
SULFATE (LBS/YR)	300006.	369716.	442051.	191291.	523764.	52376	
CHLORIDE (LBS/YR)	376029.	463404.	554070.	619551.	656489.	65648	
NEW SEPARATE SEVER AREA							
Ö, OLMSTED	1970	1980	1990	2000	2010	2020	
POPULATION	45361.	70666.	91390.	107060.	114498.	11579	
FLON (MGD)	4.99	8.48	11.42	13.92	16.03	17.37	
800 (LBS/YR)	2814649.	4642755.	6171109.	7424610.	7940435.	824156	
SUSPENDED SOLIDS (LBS/YR)	2980216.	4771720.	6337895.	7619995.	8149393.	845288	
ORGANIC NITROGEN (LBS/YR)	241729.	376579.	487017.	570523.	610160.	61706	
AMMONIA HITROGEN (LBS/YR)	160601.	250193.	323566.	379046.	405380.	40996	
TOTAL PHOSPHORUS AS P (LHS/YR)	192058.	231200.	386941.	453,772.	484784.	₹ (026	
SULFATE (LUS/YR)	607: 31.	941.601.	1224.114.	1434127.	1533757.	155110	
CHLORIDE (LUS/YR)	701011.	1186452.	15 (46 7)	1797536.	1922420.	1 +4 4 3 6	
NEW SEPARATE SEWER AREA							
····				•			
IDOLEBURG HTS.	177	148"	1 /90	2000	.010	50.00	
POPULATION	1.2 31.7.	16500.	.00100.	. 1100.	.1 4 17√00.	. 460	
FLOW (MGD)	4.30	1.48	2.54	. 19	1.41	1.69	
BOD (LBS/YR)	70 * 67 1.	10 (4759.	1370757.	150004	16 /907 1.	1.750 - 1	
SJSPEHUFD SOLIDS (LUS/YR)	M12-17-	1114162.	1407844.	1637023.	174 3780.	17957	
ORGANIC NITROGEN (LUS/YR)	65404.	97728.	10817".	122567.	1 30560.	13109	
AMONIA MITROGEN (LBS/YR)	4 3785.	58418.	71872.	81431.	86742.	8709	
TOTAL PHOSPHORUS AS P (LUS/YR)	52362.	6+861.	9 59 50 .	97382.	103733.	10*15	
	165662.	221026.	271929.	305076.	328170.	12952	
SULPATE (LBS/YR)							

TABLE A-6-3 (Cont'd.)

ROCKY RIVER WATERSHED

KPARK	4910	1980	1,90	2000	2010	2020
POPULATION	16400.	23700.	2'1800.	43200.	36500.	36800.
FLOW (MGD)	1.80	2.84	3.72	5.62	5.11	5.52
UGD (LBS/YR)	1017620.	1557090.	2012245.	2975918.	2531273.	2619238.
SUSPENDED SOLIDS (LUS/YR)	1077480.	1600342.	2066628.	3074758.	2597886.	2686398.
ORGANIC NITROGEN (LBS/YR)	87396.	126297.	158904.	230213.	194508.	196107.
ANNONIA NITROGEN (LUS/YR)	ექციშ.	83910.	105507.	152949.	129228.	130290.
TOTAL PHOSPHORUS AS P (LUS/YR)	69438.	100340.	1.6173.	182909.	154541.	155911.
SULFATE (LUS/YR)	219686.	317473.	3,9186.	578686.	488936.	492954.
CHLORIDE (LBS/YR)	275356.	3 17423.	500347.	725 328.	612835.	617872.
NEW SEPARATE SEWER ARE		1,180			2010	3030
NEW SEPARATE SEWER ARE	1970	1:180	1990	2000	2010	2020
		1780 91860.			2010	_
₩000	1970		1990	5000		5050
POPULATION	1970	91860.	1990 105464.	2000	123082.	2020
POPULATION FLOW (MGD)	1970 .80632. 8.87	91860.	1990 105464. 13.18	2000 116240. 15.11	123082.	2020 124784. 18.72
POPULATION FLOW (MGD) UOO (LBS/YR) SUSPENDED	1970 .80632. 8.87 5003214.	91860. 11.02 6035200.	1990 105464. 13.18 7121456.	2000 116240. 15.11 8061243.	123082. 17.23 8535736.	2020 124784, 18.72 8881500
POPULATION FLOW (MGD) UOD (LBS/YR) SUSPENDED SOLIDS (LBS/YR) ORGANIC	1970 .80632. 8.87 5003214. 52975:21.	91860. 11.02 6035200. 6202845.	1990 105464, 13.18 7121456, 7313927.	2000 116240. 15.11 8061243. 8273380.	123082. 17.23 8535736. 8760300.	2020 124784, 18.72 8881500
POPULATION FLOW (MGD) UOD (LBS/YR) SUSPENDED SOLIOS (LUS/YR) ORGANIC HITROGEN (LBS/YR)	1970 .80632. 8.87 5003214. 5297521. 429698.	91860. 11.02 6035200. 6202845. 482522.	1990 105464. 13.18 7121456. 7311927.	2000 116240. 15.11 8061243. 8273380.	123082. 17.23 6535736. 8760300.	2020 124784, 18.72 8881500 9104230
POPULATION FLOW (MGD) UOD (LBS/YR) SUSPENDED SOLIOS (LBS/YR) ORGANIC HITROGEN (LBS/YR) AMMONIA NITROGEN (LBS/YR) TOTAL PHOSPHORUS	1970 .80632. 8.87 5003214. 5297521. 429698.	91860. 11.02 6035200. 6207845. 484522.	1990 105464, 13.18 7121856, 7313927, 562018,	2000 116740. 15.11 8061743. 8273380. 612443.	223082. 17.23 8535736. 8760300. 655904.	2020 124784, 18.72 8881500 9104230 664974

TABLE A-6-3 (Cont'd.)

CHAGRIN RIVER WATERSHED

RMOUNT NO	1970	1980	1990	2000	2010	5050
POPULAT I ON	628.	4485.	12430.	16450.	20030.	2268
FLOW (MED)	0.07	0.54	1.55	2.14	2,80	3.40
800 (LBS/YR)	38967.	294664.	8 39 336.	1140807.	1389080.	1614246
SUSPENDED SOLIDS (LUS/YR)	41260.	302850.	862020.	1170828.	1425635.	1655636
ORGANIC HITHOGEN (LUS/YR)	3347.	23901.	66239.	87662.	106740.	12086
APPONTA HITROGEN (LBS/YR)	2223.	15879.	44008.	58241.	70916.	80298
TOTAL PHOSPHORUS AS P (LBS/YR)	2659.	18989.	52629.	69649.	84807.	96021
SULPATE (LBS/YR)	8412.	60079.	166506.	220356.	268312.	30 3810
CHLORIDE (LOS/YR)	10544.	75303.	208700.	276195.	336304.	380791
NEW SEPARATE SEWER ARE	1970	1980	1990	2000	2010	2020
		1980	1990	2000	2010	2020
		1980 6720.	1990	2000	2010	
SRIN FALLS	1970					2020 12666 1.90
POPULATION	1970	6720.	9507.	11238.	12204.	12666
POPULATION FLOW (MGD)	1970 4606. 0.51	6720. 0.81	9507. 1.19	11238.	12204.	12666
POPULATION FLOW (MGD) BOD (L85/YR) SUSPENDED	1970 4606. 0.51 285802.	6720. 0.81 441504.	9507. 1.19 641960.	11238. 1.46 779355.	1220%. 1.71 846347.	12666 1.90 901502 924618
POPULATION FLOW (MCD) BOD (LBS/YR) SUSPENDED SOLIDS (LBS/YR) ORGANIC	1970 \$606. 0.51 285802. 302614.	6720. 0.81 841504. 443768.	9507. 1.19 641960. 659310.	11238. 1.46 779355.	12204. 1.71 846347. 868620.	12666 1.90 901502
POPULATION FLOW (MGD) BOD (LBS/YR) SUSPENDED SOLIDS (LBS/YR) ORCANIC HITROGEN (LBS/YR) AMMONIA	1970 4606. 0.51 285802. 302614.	6720. 0.81 441504. 453768.	9507. 1.19 641960. 659310.	11238. 1.46 779355. 793865.	12204. 1.71 846347. 868620.	12666 1.90 901502 924618 67497
POPULATION PLOW (MCD) BOD (LBS/YR) SUSPENDED SOLIDS (LBS/YR) ORÇANIC HITROGEN (LBS/YR) AMMONIA HITROGEN (LBS/YR) TOTAL PHOSPHORUS	1970 \$606. 0.51 285802. 302614. 28585. 16308.	6720. 0.81 441504. 453768. 35811.	9507. 1.19 6%1960. 659310. 50663.	11238. 1.46 779355. 793865. 59887.	12204. 1.71 846347. 868620. 65035.	12666 1.90 901502 924618 67497

TABLE A-6-3 (Cont'd.)

CHAGRIN RIVER WATERSHED

AURORA CENTRAL	1970	1960	1990	2000	2010	2020
POPULATION	1990.	31 36.	6549.	11500.	14020.	16285
FLOW (MGD)	0.22	0.38	0.82	1.51	1.96	2,44
900 (LBS/YR)	123479.	206035.	442221.	804460.	972287.	1159084
SUSPENDED Solids (LBS/YR)	1307*3.	211758.	454173.	825630.	997873.	1188804
ORGANIC HITROGEN (LBS/YR)	10605.	10712.	34900.	61816.	74713.	86783.
AMMONIA Nitrogen (LBS/YR)	7046.	11103.	23187.	41070.	49638.	57657
TOTAL PHOSPHORUS AS P (LBS/YR)	8426.	13276.	27728.	49314.	59361.	68951
SULFATE (LBS/YR)	26657.	4.'008.	67727.	155 388.	187805.	218196
CHLORIDE (LBS/YR)	33412.	52653.	109958.	194764.	235396.	273425
NEW SEPARATE SEWER AREA						
				 -		
MCFARLAND CREEK	1970	1980	1990	2000	2010	2020
POPULATION	1635.	5227.	15206.	20426.	25120.	28630
FLOW (MGD)	0.18	0.63	1.90	2.66	3.52	4.29
UOD (LUS/YR)	101452.	343414.	1026785.	141(543.	1742070.	2037739
SUSPENDED SOLIDS (LBS/YR)	107419.	35.2953.	1054536.	1453920.	1787915.	2089988
ORGANIC MITROGEN (LBS/YR)	8713.	27855.	91033.	108850.	133864.	152569
AMMONIA Nitrogen (LBS/YR)	5789.	18506.	53837.	72318.	88937,	101364
TOTAL PHOSPHORUS AS P (LHS/YR)	6423.	22131.	64382.	01444.	in in	1, 171 (
SILFATE (LOS/YR)	21 000	7021".	203642.	273/16.	3360 C.	181.11
CHECKICE (ENS/YR)	2745 .	47761.	255,100.	14.	0.11	4 9.51 3
THE SEPARATE SENTE AREA						
. —	-					
OLON HORTHEAST	1979	135	1110	2000	2312	27.20
POPULATION	13 .	410 %	wan.		Q	1 0.0.
FOM (MID)	1,1	€. ₹4	0.71	9. 1	12	1,50
BUD CELELAN.	917 7.	201.195.	7781	471 1 .	. 0.410.	711750
SUSPENDED SOLIDS (LOS/YR)	dyr	21.704.	19 1 160.	4/1107.	1.105.	* 40 0 60
ORGANIC HITROGEN (LBS/YR)	7194.	16786.	29842.	36770.	45829.	53290
AMMONIA Nitrogen (LBS/YR)	4780.	11153.	19827.	24429.	30448.	35405
TOTAL PHOSPHORUS AS P (LBS/YR)	5716.	13337.	23710.	29215.	36412.	42340
SULFATE (LBS/YR)	18084.	42196.	75015.	92429.	115201.	133955
CHLORIDE (LBS/YR)	22666.	52888.	34024.	115851.	144394.	167900.
NEW SEPARATE SEWER AREA	•					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

TABLE A-6-3 (Cont'd.)

-						
NIDOLEFIELD	1970	1460	1970	2000	2010	2020
POPULATION	1700.	3000.	4700.	5200.	7000.	8200
FLOW (MGD)	0.17	0.36	0.59	0.68	0.98	1.23
800 (L85/YR)	105485.	177170.	317367.	360620.	485450.	58 36 35
SUSPENDED SOLIDS (LBS/YR)	111690,	202575.	325945.	370110.	498225.	598690
ORGANIC HITROGEN (LRS/YR)	9059.	15987.	25046.	27711.	37303.	4369#
AMMUNIA NITROGEN (LUS/YR)	6019.	10621.	16640.	18411.	24783.	29032
TOTAL PHOSPHORUS AS P (LUS/YR)	7198.	12702.	19400.	22017.	29638.	34719
SULFATE (LUS/YR)	2277.	#0146.	62759.	63657.	93768.	10984 3
CHLORIDE (LUS/YR)	2854 3.	50370.	78913.	87308.	117530.	137678
NEW SEPARATE SEWER AREA						
The state of the s						-
BUILTON	1970	1980	1790	2000	5010	2020
POPULATION	1100.	2100.	2900.	3500.	\$200.	5100.
FLOW (MGD)	0.12	0.25	0.36	0.45	0.59	0.76
BOD (LUS/YR)	68255.	137970.	195822.	242725.	291270.	362992
SUSPENDED SOLIDS (LBS/YR)	12210.	141802.	201115.	249112.	298935.	372300.
ORGANIC NITROGEN (LUS/TR)	5862.	11191.	15454.	18651.	22382.	27178.
AMPONIA NITROGEN (L-15/4R)	3895.	7435.	10267.	12392.	14870.	18057
TOTAL PROSPRORUS AS P (LBS/YR)	4657.	8831.	12279.	14619.	17783.	21593
SULFATE (LBS/YR)	14735.	28131.	38947.	46984.	56261.	68317
CHLORIDE (LBS/TR)	1840).	35254.	48ú <i>j</i> l.	5876%.	70518.	85629.
NEW SEPARATE SEWER AREA		•				
ANTUA	1970	1980	1990	2000	2010	2020
POPILATION	1440.	1850.	≥ 330.	2380,	36.'0,	3175
FLOW (MGD)	0.16	0,22	7.30	0.38	0.51	0.60
BOD (LUS/YR)	99 852.	121545.	160709.	20 388 +.	251047.	282 120.
SUSPENDED SOLIOS (LUS/YR)	Short.	120 /21.	16505 1.	209254.	257653.	29017%
ORGANIC NITROGEN (LUS/YR)	7674.	9859.	12693.	15667.	19271.	21183.
AMMONTA HITROGEN (LUS/YR)	5078.	6550.	8426.	10409.	12817.	14073.
TOTAL PHOSPHORUS AS P (LBS/TR)	6097.	7833.	10077.	12446,	15327.	168 30 .
SULFATE (LBS/YR)	19290.	24782.	31881.	39383.	48492.	53247.
CHLORIDE (LBS/TR)	24178.	31061.	39960.	49363.	60780.	66740.
MEW SEPARATE SEVER AREA						

HALERSVILLE	1970	1980	1990	5000	5010	5050
POPULATION	2782.	4090.	5464.	6900.	8040.	8830.
FLOW (MGD)	0.33	0.4,	0.68	0.10	1.13	1.32
BOD (LBS/YR)	185031.	268056.	368756.	478515.	557574.	628475.
SUSPENDED	195/17.	275502.	378928.	491107.	572247.	644590.
ORGANIC HITROGEN (LBS/YR)	15891.	21742.	29118.	3677c.	#28 % 5.	47055.
ANMONIA HITROGEN (LUS/YR)	10558.	14445.	19345.	24429.	P8466.	31263.
TOTAL PHOSPHORUS AS P (LBS/YR)	1.2626.	17275.	23135.	21215.	34041.	J:386.
SULFATE (LBS/YR)	39945.	54654.	73193.	924.11.	107700.	118282.
CHLORIDE (LBS/YR)	50058.	68503.	91740.	115951.	134991.	10 1256.
NEW SEPARATE SEWER ARE	A					
WIN LAKES	1970	- 1980	1190	2000	2010	2020
POPULATION	0,	1630.	2226. 0.28	280%.	3282. 0.46	3587. 0.54
FLOW (HGD)	0.00	0.20 110376.	150311.	0.36 194527.	227607.	255447
BOD (LUS/YR) Suspendld						
SOLIDS (LUS/YR)	0.	113442.	154373.	1)9646.	233596.	261997.
ORGANIC Hitrogen (LUS/YR)	n.	8953.	11862.	14949.	17490.	1+120.
AMMONIA Nitrogen (LUS/YR)	n,	5948.	7861.	9931.	11620.	12777
TOTAL PHOSPHORUS AS P (LBS/YR)	ο.	7113.	1425.	11876.	13896.	15196.
SULFATE (LUS/YR)	٠.	S 15654.	2333	371.114.	43164.	19.577
CHLORIDE (LBS/YR)	<i>i</i> *.	112:7.	37375.	470 11.	55135.	6021-4
HEN SEPARATE SEWER ARE	A					
		-			•••	•
AVENIA	1979	1/97	1999	2001	701)	1020
POPULATION	1 30 41.	2.1324.	27160.	59550	68220.	74 (15)
FLOW (MGD)	1,44	2.04	4.7.4	*, >	4,95	11.15
BOD (LBS/YR)	8347	1466-00	150 1208,	harmen.	473100	s, 54 i 364
SUSPENDED SOLIDS (EBS/YR)	मुख्र स्थाः	15x174 *7.	257704	417441.	4855557.	1,424 (43
ORGANIC NITROGEN (LUS/YR)	71648.	118965.	198026.	312540.	363544.	396025
AMMONIA Nitrogen (Lus/YR)	47602.	79038.	131565.	207650.	241533.	263115
TOTAL PHOSPHORUS AS P (LBS/YR)	56926.	94520.	157335.	248324.	288843.	314650
SULFATE (LOS/YR)	180102.	29904).	497777.	785646.	913841.	975486
CHLORIDE (LBS/YR)	225741.	374870.	623916.	984733.	1195913.	1247748.
NEW SEPARATE SEWER ARE	•					

ENT	1970	1980	1990	5000	2010	7020
POPULATION	25365.	40800.	56100.	71900.	85100.	93700.
FLOW (MED)	2.79	4.90	7.01	9.35	11.91	14.06
MOD (LBS/YR)	1573917.	2680560.	3784152.	4986263.	5901681.	6469096.
SUSPENDED SOLIDS (LUS/YR)	1666480.	2755020.	3870533.	5117461.	6056991.	68400 98 .
GMEANEC HITMOGEN (LUS/YR)	135170.	217423.	298957.	38 3155.	453498.	499327.
AMMONIA NITROGEN (LBS/YR)	87805.	184452.	198622.	254562.	3012 96 .	331745.
TOTAL PHOSPHORUS AS P (LBS/YR)	107395.	172747.	237527.	301424,	360313.	396726.
SULFATE (LBS/TR)	339777.	546536.	751487.	963136.	1139957.	1255158.
CHLORIDE (LBS/YR)	425878.	695032.	941919.	1207200.	1429828.	1573722.
HEW SEPARATE SEVER ARE	-			** ***		
ISH CREEK	1970	1980	1998	2000	5010	2020
POPULATION	7659.	24041.	42462.	49604.	54690.	56900
FLOW (MGD)	0.84	2.63	5.31	6.45	7.60	8.53
BQD (LUS/YR)	47:241.	1579493.	2867246.	3440036.	3792750.	4049856
SUSPENDED SOLIDS (LBS/YR)	503126.	162 1367.	2944738.	3530563.	3892559.	4153698
ORGANIC HITROGEN (LBS/YR)	40815.	128114.	226280.	264340.	291443.	303220
AMONIA HITROGEN (LBS/YR)	27117.	85117.	150337.	179623.	193630.	201454
TOTAL PHOSPHORUS AS P (LBS/YR)	32428.	101781.	179784.	210023.	231557.	240914
SULFATE (LBS/YR)	102596.	322041,	568800.	664470.	732600.	762204
CHLORIDE (LUS/YR)	128595.	403648.	712937.	ጸ ያ2851.	418245.	955 853
NEW SEPARATE SEWER ARE						
	• • • • • •		•		•	
UDSON S D C	1.170	1 (80	1990	5000	2010	2020
POPULATION	4800.	8340.	11500,	14100.	17600.	20600
FLOW (MGD)	0.53	1.06	2.44	1.83	2.46	1.09
NOD (LBS/YR)	101563.	59 co 83.	7765.37.	977835.	1220559.	1466204
SUSPENDED SOLIDS (LUS/YR)	31 1397.	576721.	777525.	100397.	12%579.	1503798
ORGANIC HITRUGEN (LUS/YR)	258.19.	4710H.	61.283.	75131.	J3790.	10777
AMMONIA Mitrogen (LUS/YR)	17207.	31298.	40716.	49921.	62313.	72934
TOTAL PHOSPHORUS AS P (LBS/YR)	20577.	37429.	48691.	59699.	74518.	87220
	65102.	118416.	154048.	188876.	235761.	275947.
SULFATE (LBS/YR)						

TABLE A-6-3 (Cont'd.)

ERON	1970	1980	1990	.000	5010	2020
POPULATION	344977.	376227.	418211.	453304.	470361.	H71068
FLOW (MGD)	53.90	60.71	64.50	76.16	80.90	82.44
800 (LBS/YR)	19882000.	20601970.	24423500.	26472-140.	29185890.	2 922 9760
SUSPENDED Solids (LBS/YR)	28952400.	31589700.	36635260.	39709410.	42920430.	42984940
ORGANIC HITROGEN (LUS/YR)	1937849.	2005260.	2228645.	2415656.	2500553.	2510320
AMHONIA Hitrogen (LUS/YR)	1221037.	1332261.	1480676.	1604972.	1665312.	1667816
TOTAL PHOSPHORUS AS P (LBS/YR)	1400209.	1593219.	1770704.	1919288.	1991507.	1994501
SULFATE (LBS/YR)	4619799.	. 040618ر	5602144.	6072232.	6 100719.	6310189.
CHLORIDE (LUS/YR)	5790484.	6317941.	7021761.	7610972.	7897360.	7909230
COMBINED SEVER AREA						
district	-	-	*	•		
ACEDONIA	1970	1980	1990	2000	2010	2020
POPULATION	9064.	18843.	25557.	30520.	33169.	35560
FLOW (MGD)	1.00	2.26	3.19	3.97	4.64	5.33
BOD (LBS/YR)	562421.	1238313.	1725735.	2116560.	2300269.	2531409.
SUSPENDED Solids (LBS/YR)	595505.	1272711.	1772377.	2172260.	2360802.	2576317
ORGANIC Nitrogen (LBS/YR)	48302.	100441.	136193.	162641.	176758.	189531.
AMMONIA NITROGEN (LBS/YR)	32091.	66731.	30484.	108056.	117435.	125921.
TOTAL PHOSPHORUS AS P (LBS/YR)	38377.	79802.	108208.	12/277.	140437.	150586.
SULFATE (LUS/YR)	121417.	252478.	34. 344.	4098 ().	444315.	47/424
CHLORIDE (LHS/YR)	192186.	316449,	42 1192.	512431.	550907.	5 (7153
MEW SEPARATE SEWER ARE	EΛ					
				• -	•	
REENHOOD	1970	1980	1-220	2000	2010	טבמי
POPULATION	2099.	#550,	6080.	8.140.	1600.	10160
FLOW (MGD)	0.33	0.44	0.76	1.07	1.34	1.12
890 (L85/YR)	тиголя.	justne.	4100,52.	171464.	665760.	773138
SUSPENDED Solids (Lus/Yr)	1970,4.	307 (14.	4.1548.	59748.	€ (३, ७80 -	7 - 1 - 8 -
ORGANIC Nitrogen (LBS/YR)	15982.	24 300 .	32400.	43)11.	51159.	-,4143
AMMONIA Nitrogen (LUS/YR)	10619.	16145.	.1526.	20174.	33989.	35971
TOTAL PHOSPHORUS AS P (LBS/YR)	12698.	19307.	25783.	3488A.	40646.	43017
SULFATE (LBS/YR)	40173.	61083.	81445.	11)377.	128597.	136048
CHLORIDE (LBS/YR)	50353.	76562.	102083.	138349.	161184.	170586
NEW SEPARATE SEWER ARE	FA					

TABLE A-6-3 (Cont'd.)

37REE7380RO	1970	1980	1990	2000	2010	5050
POPULATION	4779.	#950.	12595.	15585.	18120.	19850.
FLOW (MED)	0.53	1.07	1.57	2.01	2.54	2.98
MGD (LBS/YR)	296517.	588015.	850477.	1080819.	1256621.	1412823.
SUSPENDED SOLIDS (LUS/YR)	313980.	604347.	873463.	1109262.	1289690.	1449049.
ORGANIC NITROGEN (LBS/YR)	25467.	47695.	67119.	03 052.	96561.	105781.
AMMONIA HITROGEN (LUS/YR)	16920.	31657.	44593.	55179.	64154.	70279
TOTAL PHOSPHORUS AS P (LBS/YR)	20234.	37894.	51327.	65987.	76720.	84045.
SULPATE (LOS/YR)	64017.	119890.	168716.	208769.	242726.	265901
CHLORIDE (LBS/YR)	60239.	150270.	211470.	261672,	304235.	333281
NEW SEPARATE SEVER AREA	A					
NURORA WESTERLY	1970	1980	1990	2000	2010	2020
POPULATION	1570.	10428.	15565.	20472.	24621.	25995
FLOW (MGD)	0.17	1.25	1.95	2.66	3.45	3.90
BGD (LBS/YR)	97418.	685120.	1051026.	1419733.	1707465.	1850193
SUSPENDED SOLIDS (LBS/YR)	103149.	704151.	1079432.	1457094.	1752399.	1897633
ORGANIC NITROGEN (LBS/YR)	8367.	55 57 1.	82946.	109095.	131205.	138527
ANMONIA NITROGEN (LBS/YR)	5559.	36920.	55108.	72481.	87171.	12035
TOTAL PHOSPHORUS AS P (LUS/YR)	6647.	haye.	65,102.	86678.	104245.	110063
SULFATE (LUS/YR)	21031.	139674.	208501.	274.133.	3.1810.	(48.116
CHEORIDE (LUS/YR)	.46360.	17508+ .	261330.	th 17.15.	413386.	434456
HEN SI PAPATE SEMER ARE	A					-
TWINSBURG	1+70	1 +80	1 190	2000	7810	.:a20
MIPULATION	6432.	9140.	12690.	18450.	15450.	15670
FLOW (MGD)	0.71	1.10	1.57	1.88	1.16	A. 15
900 (L85/YR)	() (bh.	6304 (3,	856892.	19 (2107)	1071457.	111502
SUSPENDED SOLIDS (LUS/YR)	#225 8 2.	617174.	860051.	1026479.	10/9653.	114 3409
QRGANIC HITROGEN (LUS/YR)	34276.	48707.	67625.	77004.	82333.	83505
AMONIA MITROSEN (LBS/YR)	22772.	32 360 .	44929.	51160.	54701.	55480
TOTAL PHOSPHORUS AS P (LBS/TR)	27233.	38679.	53729.	61181.	65415.	66 347
SULPATE (LBS/YE)	86160.	122475.	169 98 9.	193565.	206960,	209907
CHLORIDE (LBS/YR)	107993.	157461.	213065.	242615.	259405.	an 3099
HEN SEPARATE SEVER ARE	A					

SALON CENTRAL	1970	1980	1990	5000	2010	202 C
POPULATION	8250.	10720.	12925.	14190.	13820.	12600.
FLOW (MGD)	0.91	1.29	1.62	1.84	1.93	1.89
BOD (LUS/YR)	511912.	704304.	872751.	984076.	958417.	896805.
SUSPENDED SOLIDS (LBS/YR)	542025.	723868.	8)6349.	1009973.	983638.	919800
ORGANIC Nitrogen (LBS/YR)	43964.	57127.	63877.	75618.	73647.	67145
AMMONIA Nitrogen (LBS/YR)	29209.	37954.	45761.	50240.	48930.	44610.
TOTAL PHOSPHORUS AS P (LBS/YR)	34 9 30 .	45388.	54724.	60080.	58514.	5;348.
SULFATE (LBS/YR)	110513.	143000.	173137.	190082.	185126.	168783.
CHLORIDE (LUS/YR)	138517.	17/1989.	217011.	238250.	£32038.	211554.
NEW SEPARATE SEWER AREA						
Vitrositrija augustinini			•			
SEDFORD HTS.	197.)	1980	1790	5000	2013	2020
POPULATION	13219.	21427.	27824.	32030.	34280.	34400.
FLOW (MGD)	1.45	2.57	3.48	4,16	4.80	5.17
BOD (LUS/YR)	820237.	1407757.	1878814.	2221290.	2377317.	2454825.
SUSPENDED Solids (LBS/YR)	868485.	1446858.	1727593.	2274734.	2437378.	2517708.
ORGANIC HITROGEN (LBS/YR)	70444.	114134.	148274.	170698.	182678.	181747.
AMMONIA HITROGEN (LBS/YR)	46802.	79342.	(8511.	113402.	121368.	122117.
TOTAL PHOSPHORUS AS P (LUS/YR)	war.	107.11	111907.	139/15	14:141.	141031.
SULFATE (LUS/YR)	177075.	·9.1% .	17 710.	471019.	n: 1148.	hr . 911.
COLORING (EUS/YR)	221 047.	11.175.4	heret.	537784.	· ···1.	
NEW SEPARATE SEWER AREA						
The Trip	*	-		·-		
BEDFURD	1 (7)	1/41	1 (0)	20.39	.119	
POPULATION.	17 860	202.30	23/00.	Nan.	·7820.	17H
FLOW (MGD)	74	1. "	1,92	4.44	a, -u	1.8n
HAD CLUSTER)	30 272.	11/237#.	13)5760.	1941750.	17. 4 001.	1704 (40)
SUSPENDED SOLIDS (ENS/YR)	14734 -0.	17 10075.	20,/3040.	2312640.	2536750.	.5.35750.
ORGANIC MITROGEN (LUS/YR)	93434	179244.	127363.	140686.	148146.	148144.
AMMONIA Mitrogen (Lus/yr)	62143.	72580.	84018.	73469.	98426.	78420.
TOTAL PHOSPHORUS AS P (LBS/YR)	74315.	86797.	101142.	111777.	117705.	117705.
SULFATE (LUS/YR)	235118.	274608.	320152.	353641.	372395.	372395.
CHLORIDE (LBS/YR)	294698.	344195.	401281.	44 3256.	466762.	466762.
COMBINED SEWER AREA						

SOUTHERLY	1970	1939	1990	2111	2010	5050
POPULATION	651209.	734054.	845622.	126440.	973253.	274410
FLOW (MGD)	101.59	117.45	138.68	155.64	167.40	170.52
BOD (LBS/YR)	35653660.	40189440.	49384390.	54104080.	60390340.	60462130
SUSPENDED SOLIOS (LBS/YR)	54668990.	61623810.	74076460.	81156130.	88809330.	88914910
ORGANIC HITROGEN (LES/YR)	3470271.	3911773.	4506319.	49 36998.	5186464.	5192631
AMMONIA NITROGEN (LBS/YR)	2305605.	2598916.	2993923.	3280059.	3445801.	3449897
TOTAL PHOSPHORUS AS P (LBS/YR)	2757218.	3107987.	3580361.	3922545.	\$120751.	4125650
SULFATE (LBS/YR)	8723269.	9833018.	11327530.	12410120.	13037210.	13052710
CHLORIDE (LBS/YR)	10933800.	12324760.	14197990.	15554930.	16340920.	16360340
COMBINED SEWER AREA						
COMBINED SEWER AREA	1970	1980	1990	2000	5010	2020
	1970	1980 	1990 8880.	2000	2010	2020
ICHFIELD						
ICHFIELD POPULATION	0.	5560.	8880.	10620.	11430.	12150.
POPULATION FLOW (MGD)	0.00	5560. 0.67	8880.	10620.	11430. 1.60	12150.
POPULATION FLOW (MGD) BOD (LBS/YR) SUSPRINDED	0.	5560. 0.67 365292.	8880. 1.11 599622.	10620. 1.38 736497.	11430. 1.60 792670.	12150. 1.82 864776.
POPULATION FLOW (MGD) BOD (LBS/YR) SUSPENDED SOLIDS (LBS/YR) ORGANIC	0. 0.00 0.	5560. 0.67 365292. 375439.	8880. 1.11 599622. 615828.	10620. 1.38 736497. 755878.	11430. 1.60 792670. 813530.	12150. 1.82 864776. 886950.
POPULATION FLOW (MGD) BOD (LBS/YR) SUSPRNDED SOLIDS (LBS/YR) ORGANIC NITROGEN (LBS/YR)	0. 0.00 0. 0.	5560. 0.67 365292. 375439. 29629.	8880. 1.11 599622. 615828. 47322.	10620. 1.38 736497. 755878.	11430. 1.60 792670. 813530. 60910.	12150. 1.82 864776. 886950.
POPULATION PLOW (MGD) BOD (LBS/YR) SUSPENDED SOLIDS (LBS/YR) ORGANIC MITROGEN (LBS/YR) AMMONIA NITROGEN (LBS/YR) TOTAL PHOSPHORUS	0. 0.00 0. 0.	5560. 0.67 365292. 375439. 29629.	8880. 1.11 599622. 615828. 47322. 31*40.	10620. 1.38 736497. 755878. 56594.	11430. 1.60 792670. 813530. 60910.	12150. 1.82 864776. 886950. 64747.

IABLE A-6-4
MINICIPAL WASTE LOAD PROJECTIONS

Constituent	Watershed	0261	1980	0661	2000	2010	2020	
Population	Chagrin Cuyahoga Rocky Lake Erie	10,209 1,115,702 208,001 829,736	22,718 1,316,854 301,029 936,870	49,292 1,556,035 381,115 1,092,055	66,614 1,745,725 440,360 1,210,188	79,974 1,857,744 481,683 1,292,205	90,261 1,885,929 505,925 1,320,333	
	TOTAL	2,163,648	2,577,471	3,078,437	3,462,887	3,711,606	3,802,448	
Flow (MGD)	Chagrin Cuyahoga Rocky Lake Erie	1.12 169.36 22.88 119.55	2,73 203,26 36,12 138,54	6.16 244.73 47.64 164.89	8.66 280.38 57.25 187.07	11.20 307.17 67.44 206.91	13.54 319.72 75.89 219.24	
	TOTAL	312.91	380.65	463.+2	533.36	592.72	628.39	
BOD (Lhs/Yr.)	Chagrin Cuyahoga Rocky Lake Erie	633,468 61,829,710 12,906,460 46,997,300	1,492,572 74,134,500 19,777,600 54,404,030	3,328,422 93,320,710 25,734,770 67,099,670	4,619,679 105,668,760 30,538,940 75,357,760	5,546,196 118,093,200 33,404,700 83,681,760	6,424,325 120,787,330 36,009,180 86,870,190	
	TOTAL	122,366,938	149,808,702	189,483,592	216,185,139	240,725,856	250,091,025	
Suspended Solids (Lbs/Yr.)	Chagrin Guyahoga Rocky Lake Erie	670,731 91,800,514 13,665,660 65,733,090	1,534,032 107,494,700 20,326,980 73,984,560	3,418,398 126,699,048 26,430,300 89,016,610	4,741,250 142,201,377 31,342,610 98,988,190	5,692,147 151,007,511 34,283,760 108,287,360	6, 589, 051 153, 790, 455 36, 932, 500 111, 669, 990	
	TOTAL	171,869,995	203,340,272	245,564,356	277,273,427	299,270,778	308,981,996	
Organic Mitrogen (Lbs/Yr.)	Chagrin Cuyahoga Rocky Lake Erie	54,404 5,945,575 1,108,437 4,421,661	121,064 7,017,515 1,604,183 4,992,578	262,677 8,292,110 2,030,961 5,819,559	354,986 9,302,968 2,346,677 6,449,090	426,181 9,899,917 2,566,888 6,866,158	481,001 10,050,114 2,696,073 7,062,697	
	TOTAL	11,530,077	13,735,340	16,405,307	16,453,721	19,759,144	20,289,885	
Amonia Hitrogen (Lbs/Yr.)	Chagrin Cuyahoga Rocky Lake Erie	36,145 3,950,142 736,427 2,937,679	80,433 4,662,320 1,065,793 3,316,986	174,518 5,509,140 1,349,337 3,866,419	235,847 6,180,737 1,559,093 4,284,669	283,148 6,577,341 1,705,398 4,575,049	319,569 6,677,130 1,791,226 4,676,637	
	TOTAL	7,660,393	9,125,532	10,899,414	12,260,346	13,140,936	13,462,562	
Total Phosphorus as P (Lbs/Yr.)	Chagrin Cuyahoga Rocky Laka Erie	43,225 4,723,881 880,676 3,513,100	96,188 5,575,558 1,274,556 3,966,706	208,702 6,588,250 1,613,639 4,623,759	282,044 7,155,897 1,864,482 5,123,933	338,610 7,597,766 2,039,444 5,471,194	382,165 7,698,847 2,142,085 5,611,456	
	TOTAL	9,160,882	10,913,008	13,034,350	14,426,356	15,447,014	15,834,553	

Ų,	
٠	4
Ε	
ŗ	ì
à	ì
	ì
c	Š
à	ï
ā	i
c	1
4	í
Ç	2
•	
	ı
Ł	
ŧ	
2	ı
-	ì
-	
	1
4	i
	١
٠	٠
٠	į
E	
7	

				**	-		
Constituent	Watershed	0761	1980	0661	2000	<u> </u>	2020
Salphate (Lbs/Yr.)	Chagrin	136,755	304,319	660,291	892,328	1,071,291	
•	Cuyehoga	14,945,388	17,639,919	20,843,858	23, 384, 856	24,885,402	
	Rocky Lake Erie	2,786,273	12,549,839	14,628,620	16,211,072	17,309,729	
	TOTAL	28,983,143	34,526,510	41,237,994	46,387,097	49,718,806	\$1,002,651
Chloride (Lbs/Yr.)	Charits	171,409	381,+35	827,613	1,118,449	1,342,763	
•	Cuyshogs	18,732,633	22, 109, 374	26,125,810	29,310,713	31,191,500	
	Rocky	3,492,335	5,054,275	6,398,920	7,393,643	8,087,457	
	Lake Erie	3,780,771	5,150,768	6,943,195	8,298,776	9,393,853	
	TOTAL	26,177,148	32,696,453	40,295,528	46,121,581	50,015,573	

- 7. Reuse Potential Water quality requirements are dependent upon the use for which the water is intended. Throughout the study area the water usage varies widely from the industrialized urban areas to the rural farmlands. In an attempt to categorize water usage, the following groups were selected:
 - 1. Public water supply residential and commercial consumption.
 - 2. Irrigation.
 - 3. Agricultural livestock consumption.
 - 4. Recreation swimming, boating, etc.
 - 5. Fish sustain fish and other aquatic life.
 - 6. Industrial I Cooling Water.
 - 7. Industrial II Boiler Feed Water (150-250 psi).
 - 8. Industrial III Food Processing Industry consumption.
 - 9. Industrial IV Steel Manufacture, General Industrial consumption.

Each of these categories requires a different quality of water. The importance of defining the water quality criteria is to give insight to the potential of waters in regard to their reuse by certain water consumption categories. Tables A-7-1 and A-7-2 summarize the allowable values of various water quality parameters by water usage category. The principle sources of this data were Water Quality Criteria by McKee and Wolf and the Report of the Committee on Water Quality Criteria, F.W.P.C.A.

TABLE A-7-1 DOMESTIC WATER QUALITY REQUIREMENTS

	Public Water Supply	Irriga- tion	Agricul- tural	Recreation	Fish
Biochemical Oxygen Demand (monthly average), mg/l	1.5 - 2.5	-	-	*	*
Fecal Coliform, MPN per 100 ml (monthly average)	5,000	*	*	200	*
Dissolved Oxygen, mg/l	≥ 4	*	*	*	≥ 5
pH (average)	6.0 - 8.5	6 - 9	*	6.5 - 8.3	6.0 - 9.0
Chlorides (max.), mg/l	250	100	1500	-	400
Fluorides, mg/l	1.7	10.0	1.0	*	1.5
Phenolic Compounds, (max.) mg/l	.001	50	1000	*	0.2
Color, units (platinum-cobalt)	75	-	-	*	*
Turbidity, Jackson Units	10 - 250	-	-	*	50
Ammonia, mg/l	0.5	*	*	*	1.0
Dissolved Solids, mg/l	500	1000	2500	. *	2000
Temperature, °F	85	-	~	85	≤5° greater than monthly average

^{*}No data available
-Not a critical parameter

TABLE A-7-2
INDUSTRIAL WATER QUALITY REQUIREMENTS

		Indi	strial	
	I	II	III	IV
	Cooling	Boiler	Food	Stee1
	Water	Feed	Processing	Manu.
Turbidity, Jackson Units	50	10	1-10	*
Hardness, mg/l as CaCO3	50	40	10-250	*
Iron, mg/l	0.5	*	0.2	-
Manganese, mg/1	0.5	*	0.2	-
Iron and Manganese, mg/l	0.5	*	0.2-0.3	-
pH	6.5-7.5	8.4	*	5 - 9
Fluoride, mg/l	*	*	1.0	*
Dissolved Solids, mg/1	*	50-3000	850	1500
Chlorides, mg/l	*	*	50	175
Color, units (platinum-cobalt standard) -	2-80	10	-
Temperature, °F	100	120	*	100

^{*}No data available

⁻Not a critical parameter

There are several areas where reuse is presently being practiced either directly or indirectly. In the lower Cuyahoga River area, the effluent from the Southerly Plant along with the flow of Cuyahoga River water is being used for cooling purposes. In the upper Cuyahoga and in the Rocky and the Chagrin Rivers water is withdrawn for public water supply, and at least part of the volume withdrawn has had prior use. With development of the upper watersheds, it will become even more critical in the future to protect this reuse requirement by improving wastewater treatment. Table A-7-3 shows withdrawal and upstream uses.

TABLE A-7-3
PRESENT REUSE

Use Prior Major Users	Public Water Supply for Akron Mantua, Burton, Middlefield	Public Water Supply for Chagrin Falls, Aurora, Chesterland Willoughby	Medina Water Supply Agricultural only	Berea Water Supply Brunswick, Strongsville, North Royalton	ion Medina, Brunswick, Berea, North Royalton, Strongsville, North Olmsted, Brookpark, Middleburg Heights	ion Chagrin Falls, Aurora, Chesterland	Industrial Water Supply Akron, Cleveland sewerage district, and Cooling Central Cuyahoga River Watershed Communities
Withdrawal	Lake Rockwell - Public Wa Cuyahoga River	ghby - Chagrin	West Branch Rocky River Medina Wa	East Branch Rocky River Berea Wat	Lower Rocky River	Lower Chagrin River	Lower Cuyahoga River Industrial Warer Cuyahoga River
	Lake Rc Cuyahog	Willoug River	West B	East B	Lower F	Lower (Lower (

8. Stream Flow Quality - The feasibility report indicates major stream quality conditions and Figure A-8-1 indicates the general water quality zones. Additional information on the Cuyahoga River indicates that the reach from the Ohio Edison dam to the confluence with the Little Cuyahoga River does not continuously meet the temperature standard for Aquatic Life "A", stated in the Feasibility Report.

The stream water quality criteria has been revised by the Ohio Water Pollution Control Board. The revision upgrades the Aquatic Life "B" classification to Aquatic Life "A" class, and modifies the industrial water supply, recreation, and aquatic life criteria. The most recent water quality criteria is shown in Table A-8-1.

SURVEY SCOPE STUDY
WASTEWATER MANAGEMENT PROGRAM
CLEVELAND-AKRON METROPOLITAN
AND
THREE RIVERS WATERSHED AREAS

U. S. ARMY ENGINEER DISTRICT, BUFFALO

1

A-62

ANDLE 11-0-1

SUMMARY OF

CUYAHOGA RIVER OHIO DEPARTMENT OF HEALTH WATER QUALITY STANDARDS

	Aquatic Life Warm Water Fisheries	Industrial Water Supply	Public Water Supply	Secondary Py Contact C	ion Primary Contact
Cuyahoga River from S.R. 17 to Coast Guard Station:	×	×			
Cuyahoga River from Lake Rockwell Down to S.R. 17:	×			×	
Little Cuyahoga River upstream of S.R. 91 and downstream of Hazel Street, Akron:	×	×		×	
Little Cuyahoga River between S.R. 91 and Hazel Street; Summit Lake and the Ohio Canal:	×	×			
All other tributaries between Lake Rockwell and Harvard Avenue, Cleveland:	×	×		×	
Upper Cuyahoga River Basin above Lake Rockwell Dam:	×	×	×		×
Lakes, Hodgson, Muzzy and Sandy	×	×	×		×
Lakes, currently in use for swimming and water contact sports	×	×			×

TABLE A-8-1 (Cont'd.)
SUMMARY OF

CHAGRIN RIVER OHIO DEPARTMENT OF HEALTH STANDARDS

Reach	Aquatic Life Warm Water Fisheries	Industrial Water Supply	Public Water Cold Water Supply Fish-Seasonal	Recreation Secondary Pri	Primary Contact
Chagrin River and all tributaries	×	×		×	
East Branch and Main Stem near Daniels Park	×	· ×	×	×	
Main Stem upstream of Chagrin Falls	×	×		×	
Aurora Branch	×	×		×	
East Branch	X	×	×	×	
Chagrin River and all tributaries: Requires: 4 freedoms:	butaries:	East Branch and Main Stem near Daniels Park:	ist Branch and lain Stem near Daniels Park:	East	East Branch:
Bacteria: Fe	Fecal Coliforms		•	Requires:	4 freedoms
1,	1,000/100 ml, mo. geo. mean 2,000/100 ml, 10% samples		In addition, required threshold odor number: Not to exceed 24 at 60°C	D.0.:	6.0 mg/l, al'l times
Diss. Solids:	500 mg/l, mo. avg. 750 mg/l, any time	as a daily	a daily average.	: Hq	6.5-8.5
D.O.:	5.0 mg/l, daily avg. 4.0 mg/l, any time		5,000/100 ml, mo. avg. 20,000/100 ml, 5% samples	Temperature:	: Natural, no heat added
: Hd	6.0 - 8.5			Toxicity:	1/10 96 hr. median tolerance
Temperature:	90°F. (Max.)				limit.
Toxicity:	1/10 96 hr. median tolerance limit				

SUMMARY OF

ROCKY RIVER OHIO DEPARTMENT OF HEALTH STANDARDS

Recreation Secondary Primary Contact Contact	×		×	East Branch at Albion Park:	Same as Rocky River except coliforms. Fecal Coliforms:	200/100 ml, mo. geo. mean 400/100 ml, in more than 10% of monthly sample					
Industrial Public Water Se Water Supply Supply C	×	×	×	East Branch and Baldwin Creek near reservoir:	In addition, requires threshold odor number: Not to exceed 24 at 60°C as a daily average.	Bacteria: Total Coliforms 5,000/100 ml, mo. avg. 20,000/100 ml, 5% samples					
Aquatic Life Warm Water Fisheries	×	×	ark X		Fecal Coliforms the 1,000/100 ml, mo. geo. mean NG 2,000/100 ml, 10% samples 66	500 mg/l, mo. avg. 750 mg/l, any time	5.0 mg/l, daily avg. 4.0 mg/l, any time	6.0 - 8.5	90°F. (Max.)	1/10 96 hr. median tolerance limit	
Reach	Rocky River and all tributaries	East Branch and Baldwin Creek near reservoir	East Branch at Albion Park	Rocky River and all tributaries:	Bacteria:	Diss. Solids:	D.O.:	;Hd	Temperature:	Toxicity:	

9. Sediment Deposits in the Three Rivers Watershed Area - Sediment deposits occur along rivers and streams where the velocity of the river is reduced due to an increase in cross sectional area. This can be caused by natural formations or man-made dams or impoundments. Tables A-9-1, A-9-2 and A-9-3 tabulate the characteristics of the impoundments in the Chagrin River Basin, the Cuyahoga River Basin, and the Rocky River Basin, respectively. Table A-9-4 lists the Natural Lakes and Impoundments for each of the watersheds.

Following is a written description of the sediment deposit areas by watershed.

a. CHAGRIN RIVER

Main Branch - Bass Lake to Aurora Branch

Bass Lake - The outlet for several miles has a low gradient and has been dredged. Most recent dredging or channeling is in the Butternut Road-Cochran Road reach. Banks and substrate are not stable and contribute silt and organics to the stream flow.

Chagrin Falls - Chase Bag Co. Two impoundments, approximately ten feet deep. A third dam, ten feet in height, but holding a narrow pool of an estimated five or six acres, is located below the Chase Bag Co. impoundment and in the center of the town. It also is nearly full, but flushing action of high flows keeps the pool depths at an estimated one to three foot depth. Much of the fill appears to be gravel and rock slabs to a size of at least one foot.

Below this dam is a steep section in which the river drops about 40 feet in about 150 yards.

Main Branch - Aurora Branch to Lake Erie

From the confluence of the Aurora Branch with the Main Branch of the Chagrin River near Chagrin Falls Village to State Route 84 at Willoughby, small sediment beds made up of sills, sand and gravel are frequent. North of Mayfield Road some channel clearing operations have been carried out to maintain a freely flowing channel. Bank erosion is common to this entire reach, with sediments building on the inside of curves at and below the outside curve cutbanks.

Dam at Gates Mills Village - This impoundment holds an estimated 12-15 surface acres of flowing pool, approximately six feet deep. It is about one-half filled with rock debris, and sandy gravel.

Construction of Interstate 90 was accompanied by relocation of

the river channel on the flood plain in that area. Erosion was rapid and locally severe in this reach for several years but now the banks seem to be stabilizing.

Willoughby Dam and Pool - This is a six foot high dam impounding the main River for Public Water Supply. There are two intakes, one in the Main Branch about 150 feet above the dam, and the other in the East Branch near the head of the backed up pool. In general, the entire pool is filled to within one and one-half to three feet of the surface with sand, gravel, silt and organic matter. Annually, usually in June, the dam gate is opened to lower the water level. Bulldozers are used to push some of the sediments out and below the dam from the dam fact to the first intake and for a 100 foot width. The remainder of the pool has not been cleaned for several years. A sediment island in the pool south of State Route 84 bridge was removed in 1965. Silt deposits below the East Branch intake were removed in 1963. This bed has not rebuilt as rapidly as prior to 1963. This may be due in part to operational improvements at the upstream gravel pits.

The last two miles of the river course is estuarine. Silt beds form throughout. Basin sludge and filter wash from the Willoughby water plant are added to the river sediments.

Aurora Branch

No serious sediment accumulations were found. Except for Sunny Lake, impoundments are located on intermittent streams. Sunny Lake does not appear to have unusual silting problems.

East Branch

Generally high gradient with eroding type but generally stable bed. One or two reaches in the lower two-thirds of the streams course accumulate gravel and silt. One is the reach near Booth Road, Kirtland Hills Village, the other is at and just above the confluence and pool at Willoughby. Formerly a problem with washings from gravel operations were serious on the East Branch.

b. CUYAHOGA RIVER

From the Headwaters to Lake Rockwell

No sedimentation was found in this upper reach. As the river enters Lake Rockwell, as observed from State Route 14, extensive marshy island areas evidence sediment deposits in the lake area upstream from the highway.

Lake Rockwell to Kent

The reach from Lake Rockwell to Kent does not appear to have a sediment problem at this time, although Breakneck Creek, a tributary, has a continuing tendency to fill much of its own channel with silts including organics. Much of the organic matter is of natural origin. The creek channel east and northeast of Kent was dredged about two years ago.

Kent to Munroe Falls

From Kent to the Munroe Falls Dam, the Cuyahoga River is in a pool. Prior to 1969, a heavy organic load from the Kent Wastewater Treatment Plant helped to form a sludge bed and septic condition throughout the pool, a reach of about four miles. Improved treatment at the plant has removed the load and the river has shown marked recovery. Munroe Falls Dam has a height of approximately 12 feet. Measurement at the abutment indicated filling of about eight feet.

Old Gorge Reach

Through Cuyahoga Falls and North Akron the current scours and carries sediments at least as far as the Ohio Edison Generating Plant pool. Several small dams in the gorge reach do not appear to collect

much sediment. A few small marginal beds two to three inches deep occur in the upper pool at Cloverbrook Road. Sandstone bedrock is the substrate here.

The Ohio Edison dam holds a pool approximately 50 feet deep. Measurement at the State Route 59 bridge showed 23 feet of water over a soft substrate. It is not certain as to the distribution of sediment in the pool.

Akron Wastewater Treatment Plant to Peninsula

The reach above the treatment plant does not collect sludge or much silt. Sand and gravel and stable aluvial soil make up the stream substrate. Bars of gravel and sand build and shift at bends.

Although improved capacity and treatment at the Akron spill out has apparently reduced the solids load to the river some sludge still forms in downstream beds.

At Ira Road bridge the substrate is generally clean gravel and sand with a strong current. At Bolanz Road bridge the current is slower and sediments build on the left side of the channel. These sediment beds appeared to be one to two feet deep.

Septic conditions were also observed last summer in the flowing pool above the dam at Peninsula, State Route 303. The dam is about 12 feet high with the pool confined to the river bed. It is approximately one-half filled with silts, sand, gravel, rocks and some organics. This varies with flow conditions, with the lighter material building during moderate and low flow. These tend to be flushed out during high flows.

Peninsula to Station Road, Brecksville

Bank erosion is common. River meanders have cut banks and built up sediments on inside of bends. Previously there has been an

extensive sludge bed at the head of the pool behind the dam at Station Road. Summer conditions may make this bed evident again. Reduction in its size and activity would probably reflect treatment improvement at Akron.

The dam at Station Road diverts water into the Ohio Canal. The canal reach to the first lock and spillway at Alexander Road showed considerable septic activity on May 9 and 10, particularly in the quarter mile reach above the spillway.

Considerable aeration takes place at the spillways and no further septic bubbling was noticed throughout the remainder of the canal. The canal collects considerable silt and sludge sediments.

c. ROCKY RIVER

West Branch Above East Branch

In the upper watershed of the West Branch sediments are not a problem. The impoundment on the North Branch at the Medina Water Plant holds a pool about six feet deep and covering three to four surface acres. It is about eighty percent filled with silt, sand and gravel.

At Fenn Road a fallen tree is forcing a new channel cut that has removed about ten feet of bank in the past year.

In the low gradient reaches from this vicinity to Westview near Berea the river accumulates silts and heavier sediments during moderate and low flows. High flows tend to move these with final deposit in Lake Erie.

A low dam at Westview, maintained to supply irrigation water for greenhouse use in that area, collects rocks, gravel and tree debris.

The pool is narrow and confined to the river bed.

The next reach to the confluence with the East Branch is a high

gradient and does not collect light sediments.

West Branch - East Branch Confluence to Lake Erie

Re-channeling of some reaches of Rocky River below the confluence has kept the current sufficient to prevent further sediment bed formation to the mouth. The estuary at the mouth collects sediment and sludge from three upstream wastewater plants and combined sewerage system.

Septic conditions occur at the head of the estuary pool

East Branch Above Berea

No sediment beds were found to the impoundments at Berea. These are abandoned quarry holes and are reported to be 70 to 90 feet in depth, the general thickness of the sandstone in the area. Baldwin Lake on the river is used as public water supply by the City of Berea.

Sediments have collected to nearly the total capacity of the reservoir lake. Dredging in 1961 removed a few feet of the top layers. Much of this capacity has been lost to refilling. Water depths over large areas of the reservoir are only one to three feet.

Disposal of this large volume of sediments would be a serious problem.

Included in the area is Wallace Lake, a recreation lake near Baldwin Lake.

Berea Confluence with West Branch

This reach collects silts and sludge in low flow periods particularly in short low gradient sections. This sludge originates from the Berea Wastewater Plant. Recent improvements in effluent quality have reduced the size and impact of these sludge beds.

TABLE A-9-1

IMPOUNDMENTS IN CHAGRIN RIVER BASIN

Location of Impoundment	Dam Height	Pool Acres	% Fill	Type of Fill
CHAGRIN RIVER:				
Sunny Lake, Aurora	less than 10'	65	Unknown	-
Chase Bag Co., Chagrin Falls	(1) 10'	16.5	90	silt, gravel, cobbles
	(2) 10'	14.7	90	silt, gravel, cobbles
Chagrin Falls	101	5	85	silt, gravel, cobbles
Gates Mills	61	10	50	silt, gravel, cobbles, boulders
Willoughby Water Plant	6'	8	80	silt, gravel

^{*}Impoundment raises natural ponds

TABLE A-9-2
IMPOUNDMENTS IN CUYAHOGA RIVER BASIN

Location of Impoundment	Dam Height	Pool Acres	% Fill	Type of Fill
CUYAHOGA RIVER:				
East Branch Reservoir	greater than 10'	400	Unknown	
Lake Rockwell Reservoir	greater than 10'	736	Unknown	
Kent	less than 5'	5	10	silt, gravel
Munroe Falls	8'	96	50	silt, gravel, sludge, lime
Cuyahoga Falls	12' 10'	10 2	Unknown Unknown	
Ohio Edison Power	greater than 50'	38	50	silt, gravel, sludge
Peninsula	less than 10'	10	50	silt, gravel, cobbles, boulders, sludge
Canal Diversion Dam	less than 10'	15	50	silt, gravel, sludge

TABLE A-9-3

IMPOUNDMENTS IN ROCKY RIVER BASIN

Location of Impoundment	Dam Height	Pool Acres	% <u>Fill</u>	Type of Fill
ROCKY RIVER:				
Medina Water Plant	7'	6	80	silt, gravel, sand
Westview	81	6	40	silt, sand, gravel, cobbles
Olmsted Falls	4*	1	40	gravel, cobbles, boulders
Hinckley Lake	18'	81		
Baldwin Lake	71	33	95 .	silt, sand, gravel
Oxbow Dam	less than 10'	1	70	silt, sand, gravel, cobbles

TABLE A-9-4

IMPOUNDMENTS ON TRIBUTARIES OF THREE RIVERS

	Chagrin		Cuyahoga		Rocky		
N	Bass Lake	I	LaDue Reservoir	I	Montiville Lakes		
I	Lake Lucerne(s)	I	Restfull Lake	I	Lake Brunswick		
		N	Punderson	I	Sleepy Hollow Lake		
		N	Sandy Lake	Q	Wallace Lake - Quarry		
		NI	Muddy Lake	Q	Coe Reservation		
		N	Muzzy Lake	I	Lester Lakes(s)		
		I	Mogadore Res.				
		I	Lower Mogadore				
		N	Springfield Lake				
		I	Massilon Road Gage	ssilon Road Gage			
		NI	Wyoga Lake				
		I	Meadowbrook Lake(s)				
		I	Lake Forest				
		I	Pine Lake				
		I	Hudson Springs Lake				
		NI	Aurora Pond				
		I	Ghent Millpond				

s = sediment problem
N = Natural Lake
I = Impoundment
Q = Quarry

B - STORMWATER RUNOFF

I. Drainage District - The study area was divided into 162 storm drainage districts. The work maps used for this were USGS 1:24000 topographic maps and the land use maps prepared for this study. The drainage districts used in present urban areas were those that are defined by the local storm sewer system. In areas where storm sewer systems have not been installed, then the district was laid out according to normal engineering practice. The districts were identified by the type of systems - natural channel, separate storm sewer or combined sewer.

Future districts were considered to be separate. The 162 districts divide the study area into storm sewer districts that would be capable of providing drainage for the 2020 urban area. Rural areas were not sub-divided.

2. Rainfall - Rainfall intensities and depths were based on the local raingage records and U.S.W.B. Bulletin 40. The local records consisted of the official weather station at Cleveland Hopkins International Airport and six other gages which have records of varying periods. This data had been collected and arranged under prior contracts. The results are shown in Table B-2-1 for depths and intensities for various durations and frequencies. Table B-2-2 shows rainfall depths for 1 day through 10 day durations as interpolated from U.S.W.B. Bulletin 49.

TABLE B-2-1

RAINFALL DEPTHS AND INTENSITIES

Maximum	Depths	for	various	Durat	ions (inche	<u>:s</u>)
						-,-	
15 Min.	. 30	Min.	1 1	Hr.	2 Hr.	. 4	l Hr

Frequency	15 Min.	30 Min.	<u>l Hr.</u>	2 Hr.	<u>4 Hr.</u>	<u>6 Hr.</u>	12 Hr.*
6 Months	. 47	.56	.66	. 82	. 86	.90	~
l Year	.60	.78	.90	1.04	1.08	1.14	1.70
3 Years	. 86	1.10	1.30	1.46	1.50	1.58	-
5 Years	.99	1.28	1.50	1.66	1.70	1.80	2.70
10 Years	1.13	1.55	1.80	2.10	2.20	2.30	3.0

Maximum Intensities for Various Durations (in./hr.)

6 Months	1.87	1.12	.66	.42	.22	.15
l Year	2.42	1.56	.90	.52	.27	. 19
3 Years	3.42	2.20	1.30	. 73	.37	. 26
5 Years	3.96	2.56	1.50	.83	. 42	. 30
10 Years	4.52	3.10	1.80	1.05	.55	. 38

^{*}Depths for 12 hr. duration were obtained from U.S.W.B. Bulletin 40.

TABLE B-2-2
RAINFALL DEPTHS FOR LONG DURATIONS

	Duration (Days)				
Frequency	<u>1</u>	2	4	<u>7</u>	10
l Year	2.15				
2 Year	2.40	2.7	3.4	3.7	4.1
5 Year	3.00	3.3	3.8	4.5	5.0
10 Year	3.40	3.8	4.3	5.0	5.7

Areal distribution was accounted for in the hydrograph development by ratios of overall area rainfall to the maximum point rainfall. The rainfall data was all based on point rainfall records. The following table shows the ratios that were compiled from several sources as well as by Havens and Emerson for the Cleveland area.

TABLE B-2-3

RATIO OF OVERALL AREA RATE TO

MAXIMUM POINT RAINFALL

Area/Duration	(Marston)	60 Min. (Marston)	$\frac{6 \text{ Hr.}}{(\text{H} \cdot \text{\& E})}$
Point Rainfall	1.0	1.0	1.0
1,000 Acres	0.90	0.95	-
2,000 Acres	0.85	0.93	0.97
4,000 Acres	0.80	0.88	0.96
8,000 Acres	0.75	0.85	0.93
10,000 Acres	-	-	0.92
20,000 Acres	-	-	0.87

After consulting with the contract officer, a separate document was prepared on the selection of the design storm. This document is attached as Appendix A.

3. Drainage Criteria - For all 162 drainage districts, the basic data was gathered. This consisted of measuring the total area, the area of open space and the length and slope of the drainage course. This data has been put in tabular form on work sheets and is attached as Appendix B.

The average sizes of the drainge districts were:

	Average (acres)	Range (acres)
Cuyahoga	3200	340 - 23774
Rocky	2700	266 - 8145
Chagrin	1850	460 - 4440
Lake Erie Direct	7000	2800 - 23396

All measurements were made on the work maps - USGS 1:24000.

4. Runoff Factors - With the techniques chosen to develop hydrographs, it was necessary to determine the imperviousness of each drainage district. This imperviousness factor was then used to compute the runoff factor. This computation is discussed in the section on hydrographs. The imperviousness factors were based on several in-field measurements in selected areas which were in turn compared to aerial photographs. For areas where recent aerial photographs were not available, comparisons were made to USGS maps and local street maps.

As many of these areas develop the imperviousness factors will increase. In order to project this change, some typical drainage districts were selected and synthetically urbanized as a function of the projected populations. Homes were increased at a rate equal to the growth rate per decade. For example, in one selected area there were 948 homes and the 1970-1980 growth ratio was 1.4 making the estimated number of homes in 1980 as 1,327. Roads were increased by the same rate. An additional imperviousness percentage was added to account for an increase in commercial buildings, schools, parking lots and industrial buildings. This percentage ranged from 2 to 6 percent.

Each drainage district was then individually compared to the selected examples and the imperviousness factor selected. The land use maps were used as a guide but several factors were considered, such as distance from central cities, highway systems, present trends of development, and topography. The areas were done independently by two people and reviewed by a third to reduce judgmental bias.

This information has been prepared in tabular form by decade and is attached in work sheet form as Appendix C.

5. Hydrographs - A generalized unit graph was developed using the results of gaging data from 21% of the urban area. This data was gathered under previous studies, and the individual watersheds were analyzed separately. A unit graph for each was developed using stream gaging data and rainfall data gathered over a period of about two years. The unit graphs were compared and correlated to arrive at a general or average unit graph with the shape and geometric dimensions as shown on Figure B-5-1.

Peak flow rates of available unit hydrographs were plotted in a curve that shows the relation between peak flow rates and drainage area and is shown on Figure B-5-2. The equation for this curve was computed as:

$$Y_3 = 15 + \frac{235}{DA} - \frac{80}{DA^2}$$

Where Y_3 = unit hydrograph peak - cfs/1,000 acres DA = Drainage area - acres

This equation was used to compute the peak flow (Y_3) .

Knowing Y3, the area under the unit graph which represents 1" of runoff, and the geometric dimensions in terms of Y_3 and X_3 can be computed. Since the runoff volume is a function of the drainage area, the equation can be related to drainage area by the following equation:

$$X_3 = \frac{2122 \text{ DA}}{Y_3}$$

After computing Y_3 and X_3 , other points of the unit hydrograph were calculated by utilizing ratios shown on Figure B-5-1. Computed unit hydrographs compared closely with available graphs - See Fig. B-5-3.

This average unit graph was, in turn, used to predict hydrographs of the individual areas for various rainfalls. Figures B-5-4 and B-5-5 show the results of this general unit graph verification.

A six-hour design storm was selected at various frequencies including: 6 months, 1-year, 3-year and 5-year. The storm duration was divided into 15-minute rainfall periods and the most intensive 8 periods were used eliminating periods

at the beginning and end of the storm with rainfall depth of .01-inch.

The rainfall excess was computed according to the following equation:

DE = C x Imp. Ratio x DT + Perv. Ratio (DT-DL)

Where DE = Depth of excess rainfall

C = Coeff. of runoff from impervious areas

DT = Total depth of rainfall in 15-minute period

DL = Depth of rainfall lost by infiltration. This depth was computed by an equation to account for intensity and duration of rainfall.

Excess rainfall from eight 15-minute rainfall periods was applied to the unit hydrograph previously described and the total hydrograph for each design storm was computed. These computed hydrographs were compared with available hydrographs of five drainage areas. Peak flows and volume checked closely.

Using this technique and the data described in Sections 2, 3 and 4, hydrographs for the 162 drainage districts were computed. The hydrographs for the 1-year storm are assembled by river basin presented in Appendix D.

Appendix E lists the available supplemental data for the hydrographs for the 5, 10 and 100 year storms.

Appendix D consists of 163 pages of computer output sheets and Appendix E consists of 326 pages of output sheets. Due to the massiveness of this data, it has not been included in this report but will be available upon request to interested parties.

GENERAL UNIT HYDROGRAPH FIGURE B-5-1 GEOMETRIC RATIOS OF GENERAL UNIT HYDROGRAPH 0.40 0.16 3.64 |9.43 |0.14 ۱۶ ××× XXX 0.45 | 1.84 XX × × × X 5 x, x2 X3 X4

6. Urban Stormwater Runoff

Stormwater runoff from urban areas contribute significant pollution loads to Lake Erie. In an attempt to quantify these loads, the study area drainage areas were categorized as either a combined sewer overflow or separate system to account for the higher pollution concentrations resulting from the combined sewer overflow.

Table B-6-1, lists the pollution concentrations of the combined sewer overflows.

Table B-6-2, lists the pollution concentrations of the separate system urban stormwater runoff. These concentrations vary as the percent imperviousness varies. This is due to the fact that the degree of urbanization effects the character of the stormwater runoff.

Data for Tables B-6-1 and B-6-2 came from several sources including work done in the Cleveland Area. The data on the quality of combined sewer overflow varies greatly and the data in Table B-6-1 is weighted in favor of the Cleveland data.

A search of the literature was made to provide basic data on pollution loads in stormwater. The amount of data available is not great. When data on both the concentration and flow rate were available, it was converted to a percentage of the unoff duration versus percentage of the peak concentration for that runoff. By plotting them together, angraph was developed that relates concentration to discharge which is shown on Figure B-6-1 and has been termed a pollutograph.

Using the pollutograph, peak concentrations were selected for three types of areas: rural, urban and dense urban. Averages were computed for the same areas which are shown in Table B-6-2. In reviewing the literature, several problems were encountered that would cause the data to be inconsistent. These are listed below:

- The sampling time did not extend past the basin lag time
 which means most of the samples were collected before the
 peak discharge occurred and the lower concentration of suspended
 solids at the end of the runoff are not reflected.
- 2. The suspended solids 10-15 times the volatile suspended solids and 30-150 times the BOD concentrations indicate the suspended solids are probably inert silts.
- 3. Suspended solids tests were often run with a glass fiber matt and with concentrations as high as those reported the aliquots were undoubtedly very small.
- Low BOD-COD ratios in many cases probably indicate the BOD analysis
 was not done with an acclimated seed.
- 5. No mention of preceeding storm events or time between storm events.
- 6. No correlation with air pollution.

Table B-6-3 summarizes the Urban Stormwater Runoff pollutant loads for the study area by decade. This data was generated using the weighted average value of the percent imperviousness of each watershed. These weighted averages are presented in Table B-6-4. The results from this procedure were about 5% less than the actual sum of the individual districts.

TABLE B-6-1

COMBINED SEWER OVERFLOW CHARACTERISTICS

Suspended Solids	200 mg/1
BOD	60 mg/l
COD	220 mg/l
Total Volatile Solids	160 mg/l
Suspended Volatile Solids	120 mg/1
Phosphorus as P	8 mg/1
Nitrogen as N	12 mg/1
Chlorides	161 mg/l

TABLE 8-6-2
SEPARATE SYSTEM STORMWATER RUNOFF CHARACTERISTICS

	Rural	Urban	Dense Urban
Imperviousness	5%	25%	55%
Suspended Solids BOD COD Total Volatile Solids Suspended Volatile Solids Phosphorus as P Nitrogen as N Chlorides	200 mg/l 3 mg/l 50 mg/l 35 mg/l 25 mg/l .2 mg/l 2.0 mg/l 60 mg/l	300 mg/1 20 mg/1 150 mg/1 110 mg/1 80 mg/1 .7 mg/1 3.1 mg/1 160 mg/1	500 mg/l 30 mg/l 200 mg/l 140 mg/l 105 mg/l .5 mg/l 2.2 mg/l 166 mg/l

TABLE B-6-3

			RBAN	REAN STORMATER RUNOFF				
		1970	1980	1990	2000	2010	2020	
AFGA (ACTGS)	Lake Erie Cuyahoga Rocky Chagrin	72,443 111,574 28,666 12,340	77,741 160,379 36,730 16,480	77,741 218,775 41,823 37,890	77,741 259,983 94,472 63,140	77,741 263,748 94,472 63,140	77,741 263,748 94,472 63,140	
	TOTAL	225,0-3	293,730	416,232	495, 336	101,665	101.667	
Volume (mg/Year)	Lake Erie Cuyahoga Rocky Chagrin	13,357 17,220 3,438 1,440	14,460 24,300 4,450 2,050	15,006 32,690 12,021 12,021	15,950 39,260 12,311 7,850	16,660 41,380 13,251 8,350	17,130 42,300 13,621	
	TOTAL	35,455	:69*57	62,571	15,371	19,641	81,771	
Suspended Solids (Lbs/Year)	Lake Erie Cuyahoga Rocky Chagrin	27,185,1v3 35,878,560 6,918,186 2,802,790	31,502,380 52,556,330 10,507,963 4,198,735	34,225,280 73,645,360 22,087,191 9,806,440	38,638,000 92,339,288 28,426,851 16,956,950	42,196,260 102,047,200 33,895,601 19,713,240	44,686,790 107,906,970 36,214,311 21,912,320	
	TOTAL	72,784,900	98,765,409	3.44,764,500	176,361,000	197,852,000	210,720,000	
Biochemical Orygen Demand (Lbs/Year)	Lake Erie Cuyanoga Rocky Chagrin	4, 688, 306 4, 529, 580 259, 089 87, 530	5,016,750 5,616,780 457,658 154,340	5, 2, 920 6, 963, 610 950, 375 386, 780	5,504,980 8,365,418 1,397,728 713,630	5,714,050 9,450,050 1,971,048 996,110	5,860,000 9,862,900 2,218,958 1,226,650	
	TOTAL	9,564,000	11,247,000	13,545,000	15,982,000	18,131,000	19,169,000	
Chemical Oxygen Demand (Lbs/Year)	Lake Erze Cuyahoga Rocky Chagrin	20,434,397 22,096,920 2,356,512 885,530	22,729,360 29,605,340 3,893,747 1,435,330	23,900,970 39,221,110 ¥,166,157 3,~75,550	25,598,080 48,685,430 11,337,397 6,219,730	26,940,020 55,139,350 14,951,027 8,010,670	27,867,520 58,141,330 16,505,817 9,463,790	
	TOTAL	45,773,000	57,664,000	7.,764,000	91,841,000	105,041,000	111,978,000	
Total Volatile Solids (Lbs'Year)	lake Erie Cuyahoga Rocky Chagrin TOTAL	14,885,383 16,076,630 1,694,882 634,000	16,571,547 21,549,127 2,616,306 1,034,206	17,374,560 26,574,880 5,911,970 5,509,000 54,373,000	18,550,760 35,333,003 8,245,000 4,501,000	19,474,370 40,321,980 10,936,000 5,834,000	20,109,830 42,488,370 12,094,000 6,916,000	
		201111111	000.	000,000	200,000,000	200,000,00	200.00	
Suspended Volatile Solids (Lbs/Year)	Lake Erie Cuyahoga Rocky Chagrin	11,057,000 11,877,000 1,225,000 457,000	12.292,000 15,865,000 2,040,000 747,000	12,909,000 20,983,000 4,279,000 1,814,000	13,796,000 26,056,000 5,979,000 3,257,000	14,496,000 29,565,000 7,947,000 4,231,000	14,980,000 31,178,000 8,795,000 5,023,000	
	TOTAL	24,616,000	30,944,900	36,985,000	000,880,64	56,239,000	976,000	
Phosphorus as P (Lbs/Year)	Lake Erie Cuyahoga Rocky Chagrin	546,000 484,000 13,000 4,000	556,000 549,000 20,000 6,000	568,000 614,000 89,000	571,000 678,000 54,000 28,000	573,000 730,000 72,000 37,000	575,000 740,000 79,000 44,000	
	TOTAL	1,047,000	1,131,000	1,236,000	1,331,000	1,412,000	1,438,000	

			URBAN STOR	IRBAN STORMATER RUNOFF (Cont'd.	7.5			
		757	1980	0661	2000	2010	2020	
Mitrogen as N (Lbs/Year)	Lake Erie Cuyahoga Rocky	912,000	948,000 1,101,000 105,000	967,000 1,331,000 216,000 95,000	982,000 1,538,000 276,000 163,000	993,000 1,658,000 328,000 189,00 <u>0</u>	999,000 1,689,000 349,000 210,000	
	TOTAL	1,906,000	2,195,000	2,609,000	2,959,000	3,168,000	3,247,000	
Chlorides (Lbs/Year)	Lake Erie Cuyahoga Rocky	17,129,000 19,806,000 2,630,000	19,441,000 27,645,000 4,295,000	20,164,000 37,818,000 9,033,000	21,435,000 47,693,000 12,402,000	22,388,000 54,176,000 16,126,000	23,024,000 56,808,000 17,726,000	
	Chagrin	1,008,000	1,612,000	3,880,000	88 434,000	101.443.000	107,808,000	
		30.5	26.35					

TABLE B-6-4

PERCENT IMPERVIOUSNESS
(Weighted Average)

	1970	1980	1990	2000	2010	20 20
Chargin River Watershed						
Separate Systems	6	7	10	14	18	21
Combined Systems	-	-	-	-	-	-
Rocky River Watershed						
Separate Systems	1 7	9	13	17	22	24
Combined Systems	25	30	30	30	30	30
Cuyahoga River Watershed						
Separate Systems	10	13	17	21	24	26
Combined Systems	38	41	43	45	47	47
Lake Erie Watershed						
Separate Systems	20	26	30	34	37	39
Combined Systems	46	46	47	47	47	47

7. Rural Stormwater Runoff

Although the stormwater runoff pollution loads from a rural area are low as compared to an urban area of equal size, the total load from rural land in the study is significant due to the large amount of land in the category. Table B-7-1 shows land usage for the study area.

Table B-7-2 shows the concentrations of the waste constituents used for rural stormwater runoff. It is noted that these are the same as urban stormwater runoff of low percent imperviousness.

Table B-7-3 summarizes the annual rural stormwater pollution loads by decade for each of the watersheds in the study area.

TABLE B-7-1

RURAL AND URBAN AREAS

c

	1970	1980	ACRES 1990	2000	2010	2020
CUYAHOGA RIVER WATERSHED						
Urban Developable Rural*	111,600	160,400	218,800	260,000	263,800	263,800
Rural	256,600	256,600	256,600	256,600	256,600	256,600
ROCKY RIVER WATERSHED						
Urban	28,700	38,700	81,800	94,500	94,500	94,500
Developable Rural	65,800	55,700	12,700	0	0	0
Rural	93,700	93,700	93,700	93,700	93,700	93,700
CHAGRIN RIVER WATERSHED						
Urban	12,300	16,900	37,900	63,100	63,100	63,100
Developable Rural	20,800	46,300	25,200	0	0	0
Rural	107,600	107,600	107,600	107,600	107,600	107,600
LAKE ERIE						
Urban Developshie Dural	72,400	77,700	77,700	77,700	77,700	77,700
Rural	7,400	7,400	7,400	7,400	7,400	7,400

*Developable urban is defined as that land which is rural but will be developed into an urban area, according to the land use maps, by 2020.

TABLE B-7-2

RURAL STORMWATER RUNOFF

Suspended Solids	200	mg/1
B.O.D.		mg/1
C.O.D.	50	mg/1
Total Volatile Solids		mg/l
Suspended Volatile Solids		mg/1
Phosphorus as P		mg/l
Nitrogen as N		mg/1
Chlorides	60	mg/l

			TABLE	TABLE 8-7-3			
		1970	1980	1990 1990	2000	<u>2010</u>	<u> </u>
Area (Acres)	Lake Erie Guyahoga Rocky Chagrin	12,700 408,800 159,500 158,400	7,400 360,000 149,400 153,90 <u>0</u>	7,400 301,600 106,400 132,800	7,400 260,400 93,700 107,600	7,400 256,600 93,700 107,600	7,400 236,600 93,700 107,600
	TOTAL	739,400		548,200	464,100	465,300	465,300
Volume (Mill. Gal/Year)	Lake Erie Cuyahoga Rocky Chagrin	1,348 43,500 16,970 16,850	785 38,316 15,900 16,370	765 32,090 11,310 14,130	785 27,710 9,970 11,450	785 27,310 9,970 11,450	785 27,310 9,970 11,450
	TOTAL	78,668	71,365	58,315	516,64	49,515	49,515
Suspended Solids (1,000 Lbs/Year)	Lake Erie Cuyahoga Rocky Chagrin	2,307 74,373 29,021 28,830	,	1,343 54,867 19,351 24,180	1,343 47,388 17,049 19,585	1,343	1,343 46,703 17,049 19,585
Blochemical Orrgen Demand (1,000 Lbs/Year)	TOTAL Lake Cuyahoga Rocky Chagrin	134,531 36 1,179 460 457	122,053 21 1,038 431 443	95,74; 21 870 306 383	85,365 21 751 270 310	24,680 21 740 270 310	21 740 270 310
	TOTAL	2,132	1,933	1,580	1,352	1,341	1,341
Chemical Oxygen Demand (1,000 Lbs/Year)	Lake Erie Cuyahoga Rocky Chagrin	563 18,145 7,078 7,032	328 15,979 6,632 6,830	328 13,387 4,719 5,897	328 11,558 4,158 4,777	328 11,391 4,158 4,777	328 11, 391 4, 158 4, 777
	TOTAL	32,818	29,769	24,331	20,821	20,654	20,654
Total Volatile Solids (1,000 Lbs/Year)	Lake Evie Cuyahoga Rocky Chagrin TOTAL	394 12,702 4,954 4,922 22,972	229 11,186 4,642 4,781 20,838	229 9,371 3,303 4,129 17,032	229 8.091 2,910 3,344 14,574	229 7,974 2,910 3,344 14,457	229 7,974 2,910 3,344 14,457
Suspended Volatile Solids (1,000 Lbs/Year)	Lake Erie Cuyahoga Rocky Chagrin TOTAL	282 9,073 3,539 16,409	164 7,990 3,316 3,415 14,885	164 6,69-2 2,360 2,948 12,166	164 5,780 2,079 2,388 10,411	164 5,696 2,079 2,388 10,327	164 5,696 2,079 2,388 10,327
Phosphorus as P '1,000 lbs/Year)	Lake Erie Guyahoga Rocky Chagrin TOTAL	2 73 29 28 132	27 27 119	1 \$ 5 E E 1	1 47 17 19 84	1 46 66 17 17 17 19 18 18 18 18 18 18 18 18 18 18 18 18 18	1 46 17 19 83

2	2000 2010 2020	13 13 13 463 456 456 456 166 166 166	191	826	393	13,669	4,990 4,990 4,990 5,732 5,732 5,732	24,784
URAL STORMATER RUNOFF (Cont'd.	7990	13 536 188	236	973	393	16,064	7,077	29,198
RURAL STO	<u>0867</u>	13 640 265	273	1,191	393	19,175	8,196	35,723
	<u>0761</u>	22 726 283	281	1,312	675	27,12	8,438	39,381
		Lake Erie Cuyahoga Rocky	Chagrin	TOTAL	Lake Erie	Cuyahoga	Chagrin	TOTAL
		Nitrogen as N (1,000 Lbs/Year)			Chlorides (1,000 Lbs/Year)			

APPENDIX A

SELECTION OF DESIGN STORM

The magnitude of the design storm that a given facility must treat obviously affects both the storage and treatment cost. In the feasibility study a one year design storm was chosen, since that is the design currently being used for all of design work in the Cleveland area at this time. It is the purpose of this portion of the Survey Scope study to review this decision and compare designs of 6 months, 1, 3, 5 and 10 years.

The question to answer is - what is the economic and environmental impact of having a storm greater than the design storm occur? In order to compare volumes of runoff treated under certain design conditions, Table 1 was prepared to show the ratios, of the runoff from a 6 month, 1, 3, 5 or 10 year rainfall to the capacity of a storage treatment facility of various design sizes. Each design situation has a ratio of 1.00 when the frequency of a storm matches the design storm chosen to compute the volume of the storage basin.

To further compare these volumes, Table 2 has been prepared to show the efficiency of stormwater collection and treatment for various storms with different designs. Table 2 shows the percentage of total annual runoff time when the storage and treatment capacity is exceeded by a runoff resulting from a storm with a frequency greater than that used for the design. Figure 1 shows the reverse, that is, the percentage of total annual volume treated under the different storm occurrences and design schemes. It is important to note that the capacity is exceeded at the later part of a storm runoff occurrence and after the high concentrations that are normally associated with the first flush have occurred. Further, it should be noted these percentages will only occur once in the period of frequency. For example, if the facility is designed for the one year storm and a rainfall equal to the 10 year occurrence happens, then from Figure 1, 90% of the total annual volume would be treated. The other 10% would receive treatment, but the capacity of the facility would be exceeded hydraulically

and the degree of treatment would be reduced. Again this would only occur once in 10 years. However, within a 10 year period several rainfalls may occur which would exceed the one year frequency used for design, such as the 5 year, 3 year, 2 year, etc. To illustrate this, a period of record was chosen arbitrarily from 1950 to 1967, and a detailed analysis of the rainfall data was done. The results are shown in Table 3.

From Table 3, it can be shown that in a 16 year period only 2.7% of the runoff exceeded the design value. This is equivalent to 1.7% in a 10 year period of all accumulated runoff exceeding the 1 year runoff.

Costs were computed on typical areas for storage and treatment facilities with various design storm criteria. These costs were reduced to a cost per acre value and compared to the suspended solids removal achieved. This data is shown on Figure 2. Three treatment schemes were considered:

Scheme A would be the situation where land is available for earth storage lagoons.

Scheme B would be the situation when land is expensive and not available in tracts large enough for Scheme A. Storage would be in concrete storage tanks.

Scheme C would be the situation when no land is available for storage and treatment would have to be designed for the peak flow without storage.

Figure 3 compares the percent removal to cost per acre and cost per percent removal. The treatment technique for the three schemes in Figure 2 and Figure 3 is screening followed by sedimentation, microstraining and ozonation. The detention time in the sedimentation basin is two days. A polymer would be used to hasten sedimentation also. Figure 4 compares the percentage increase in cost to percentage increase in treatment.

Using this data, the design storm for the storage and treatment was

selected. The criteria for the collection system is governed by drainage and flooding constraints rather than pollution constraints. Generally, the collection systems were designed to handle a 5 to 10 year storm consistent with the usual engineering practices.

Referring to these graphs, it can be seen that for a storm water treatment design greater than one year the cost start to rise sharply. The 3, 5 and 10 year designs cost substantially more than the 6 month or 1 year; consequently the choice was then reduced to either the 6 month or 1 year design. When the actual rainfall data is reviewed in Table 3, it shows that the 6 month storm was exceeded 35 times in the 16.5 year period. If the one year design storm is compared to the actual data, it is noted to have been exceeded 17 times. Likewise, the 3 year storm was exceeded 5 times. Statistically, this is expected.

Again referring to Figure 4, it is seen that the cost to increase from a 6 month design to a one year design is about 11% for Scheme A which is the most commonly encountered scheme. This same increase also reduces the number of times the facility design is exceeded by fifty percent. Further, using the one year design will provide greater margin for the inevitable inconsistencies in rainfall occurrences.

After considering these facts, the 1 year design storm was selected for the survey scope study.

TABLE 1

Frequency of a	Ratio			en Storm to gn Storm o	•
Given Storm	6 Month Design	l Year Design	3 Year Design	5 Year Design	10 Year Design
6 Months	1.00	0.68	0.42	0.36	0.25
l Year	1.47	1.00	0.62	0.52	0.36
3 Years	2.38	1.62	1.00	0.85	0.58
5 Years	2.82	1.92	1.18	1.00	0.69
10 Years	4.06	2.76	1.72	1.45	1.00

TABLE 2

Frequency of a	₩he	n Treatme	nt Capacit	nual Runof y is Excee Given Fred	eded by
Given Storm	6 Month Design	l Year Design	3 Year Design	5 Year Design	10 Year Design
6 Months	0	0	0	0	0
1 Year	2%	0	0	0	0
3 Years	6%	4%	0	0	0
5 Years	8%	6%	2%	0	0
10 Years	12%	10%	7%	5%	0

TABLE 3

AMOUNT OF RUNOFF EXCEEDING STORAGE CAPACITY OF VARIOUS DESIGN STORM FREQUENCIES OVER THE PERIOD 1950-1967

(4/5)	Total Runoff Exceeding Design Storm Total Runoff in 16 Years	4.4%	2.7%	1,3%	1.0%	0.5%
(5)	Total Runoff From All Events During Period	126.5	126.5	126.5	126.5	126.5
(4)	Total Runoff Resulting From These Events	5.57	3.42	1.63	1.27	0.66
(3)	Total Rainfall Depth Resulting From These Events	15.05	7.80	3.20	2.40	1.12
(2)	Rainfall Events Exceeding the Design Storm In the Period	35	17	S	м	1
(1)	Design Storm	6 BO.	1 yr.	3 yr.	5 yr.	10 yr.

EXAMPLE: 5 YEAR STORM & I YEAR STORM FACILITY RESULT: 94% OF TOTAL ANNUAL VOLUME TREATED

F IG . 2

FIG. 3

FIG.4

APPENDIX B

DRAINAGE AREAS CHARACTERISTICS

ROCKY RIVER WATERSHED

Area Designation	Total Area (Acres)	Open Space Area (Acres)	% Area to be Developed	Length of Channel (Ft.)	Channel Slope Ft./Mile
R-1	716	0	100	(4,500)	23.46
R-2	3,994	0	100	20,000	13.20
R-3	2,112	0	100	21,000	27.65
R-4	845	0	100	(4,500)	58.66
R-5	872	0	100	4,000	92.4
R-6	3,434	0	100	17,000	18.63
R-7	2,222	0	100	15,000	24.64
R-8	2,544	0	100	8,000	33.0
R-9	266	0	100	4,000	26.40
R-10	6,437	275	96	30,000	31.68
R-11	3,921	0	100	30,000	10.56
R-12	7,484	0	100	40,000	48.84
R-13	7,466	368	96	40,000	46.20
R-14	1,120	0	100	12,000	61.6
R-15	918	0	100	8,000	79.20
R-16	2,213	0	100	15,000	116.16
R-17	1,285	0	100	11,000	148.80
R-18	3,471	0	100	22,000	33.60
R-19	3,177	0	100	15,000	8.80
R-20	4,187	0	100	11,000	52.80
R-21	532	0	100	9,000	76.26
R-22	2,185	321	86	18,000	85.06
R-23	5,197	0	100	26,000	57.87
R-24	3,140	184	95	26,000	\$6.86

DRAINAGE AREAS CHARACTERISTICS

ROCKY RIVER WATERSHED

Area Designation	Total Area (Acres)	Open Space Area (Acres)	% Area to be Developed	Length of Channel (Ft.)	Channel Slope Ft./Mile
R-25	3,155	0	100	27,000	70.40
R-26	762	0	100	7,000	52.80
R-27	2,480	0	100	28,000	60.34
R-28	8,145	0	100	30,000	18.48
R-29	2,553	0	100	14,000	113.14
R-30	1,423	0	100	15,000	65.12
R-31	780	0	100	15,000	52.80
R-32	313	275	92	22,000	38.40
R-33	799	0	100	6,000	158.40
R-34	1,588	0	100	22,000	33.60
R~35	2,736	0	100	18,000	29.33
		LAKE ERIE	VATERSHED		
LE-1	4,362	0	100	20,600	30.75
LE - 2	3,232	130	96	6,600	49.60
LE - 3	5,758	280	95	7,400	0
LE-4	15,444	1,080	93	55,800	55.35
LE-5	23,396	0	92	41,200	59.59
LE-6	4,980	0	92	10,000	0
LE-7	3,958	0	100	8,600	0
LE-8	2,800	0	100	7,500	0
LE-9	3,398	0	100	12,000	52.8
LE-10	5,115	0	100	23,000	34.43
LE-11	5,298	0	100	33,000	17.6

DRAINAGE AREAS CHARACTERISTICS

Area Designation	Total Area (Acres)	Open Space Area (Acres)	% Area to be Developed	Length of Channel _(Ft.)	Channel Slope Ft./Mile
CU-1	2,472	0	100	12,000	30.80
CU-2	4,684	0	100	36,000	77.73
CU-3	3,562	0	100	21,000	82.97
CU-4	23,770	0	100	76,000	37.51
CU~5	12,654	0	100	52,000	51.78
CU-6	3,995	138	97	26,000	38.58
CU-7	4,527	872	81	34,000	43.48
CU~8	8,870	780	92	42,000	72.91
CU-9	1,698	643	63	8,000	191.4
CU-10	1,846	460	76	10,000	147.84
CU-11	2,370	184	93	14,000	82.97
CU-12	340	0	100	7,000	75.42
CU-13	4,500	0	100	28,000	41.48
CU-14	3,425	698	80	18,000	152.53
CU-15	652	184	72	7,000	98.05
CU-16	1,791	165	91	14,000	82.97
CU-17	1,368	0	100	5,000	78.20
CU-18	551	0	100	4,000	26.4
CU-19	5,730	0	100	23,000	73.46
CU-20	1,515	0	100	15,000	95.04
CU-21	2,057	450	79	14,500	196.63
CU-22	1,386	643	54	12,000	171.60
CU-23	1,240	0	100	3,000	35.2
CU-24	3,388	0	100	17,000	62.1
CU-25	4,472	0	100	23,000	18.36

DRAINAGE AREAS CHARACTERISTICS

Area Designation	Total Area (Acres)	Open Space Area (Acres)	% Area to be Developed	Length of Channel (Ft.)	Channel Slope Ft./Mile
CU-26	1,221	0	100	10,000	58.00
CU-27	2,874	0	100	6,000	112.20
CU-28	1,634	0	100	11,000	72.0
CU-29	5,914	1,534	75	24,000	11.00
CU~30	1,974	0	100	11,000	52.80
CU-31	1,586	184	89	15,000	56.32
CU-32	2,020	0	100	14,000	128.22
CU-33	1,230	0	100	8,500	62.11
CU-34	2,507	0	100	11,000	12.00
CU-35	11,175	2,507	78	39,000	13.53
CU-36	3,186	0	100	6,000	79.20
CU-37	3,039	0	100	9,000	70.40
CU-38	2,121	0	100	8,500	99.38
CU-39	3,884	0	100	16,000	49.50
CU-40	863	184	79	11,000	120.00
CU-41	1,130	285	75	11,000	153.60
CU-42	1,625	0	100	13,000	77.16
CU-43	3,765	2,635	30	11,400	34.7
CU-44	3,094	464	85	18,000	10.6
CU-45	3,976	0	100	21,000	28.9
CU-46	1,616	0	100	20,400	47.9
CU-47	7,833	1,560	80	38,000	49.3
CU-48	1,625	0	100	10,000	66.0
CU-49	1,304	1 30	90	8,400	69.1
CU-50	8,228	0	100	35,700	16.3

DRAINAGE AREAS CHARACTERISTICS

Area Designation	Total Area (Acres)	Open Space Area (Acres)	% Area to be Developed	Length of Channel (Ft.)	Channel Slope Ft./Mile
CU-51	5,492	1,100	80	16,800	25.1
CU-52	1,882	94	95	12,600	3.4
CU-53	3,719	0	100	21,000	17.6
CU-54	3,526	350	90	13,200	52.80
CU-55	1,900	0	100	15,000	7.0
CU-56	2,800	0	100	15,000	17.6
CU-57	1,965	200	90	8,000	69.3
CU-58	7,906	474	94	30,200	25.4
CU-59	2,249	0	100	10,000	63.4
CU-60	2,534	0	100	2,000	158.4
CU-61	3,223	0	100	6,000	88
CU-62	3,150	0	100	23,000	\$0.5
CU-63	1,423	0	100	11,200	4.7
CU-64	3,324	0	100	8,000	33
CU-65	661	0	100	6,000	114.4
CU-66	3,085	0	100	11,800	53.7
CU-67	2,608	0	100	20,000	22.5
CU-68	1,905	0	100	9,000	70.4
CU-69	1,914	570	70	6,000	17.6
CU-70	6,327	0	100	29,000	24.6
CU-71	2,681	0	100	16,200	29.3
CU-73	1,056	0	100	10,000	79.20
CU-74	1,864	642	66	15,000	49.28
CU-75	2,663	321	88	18,000	23.46

DRAINAGE AREAS CHARACTERISTICS

Area Designation	Total Area (Acres)	Open Space Area (Acres)	% Area to be Developed	Length of Channel (Ft.)	Channel Slope Ft./Mile
CU-76	872	137	85	9,000	52.8
CU-77	2,000	367	82	12,000	57.20
CU-78	3,250	734	78	23,000	34.43
CU-79	1,360	275	80	8,000	79.2
CU-81	486	0	100	5,000	42.24
CU-82	551	0	100	3,000	158.4
CU-83	835	0	100	5,000	95.5
CU-84	677	0	100	4,000	238
	<u>cı</u>	HAGRIN RIVE	R WATERSHED		
CHN-1	2,070	550	74	13,000	20
CHN - 2	7,140	1,100	85	29,000	21.8
CHN-3	3,310	370	89	26,000	44.7
CHN-4	1,360	230	84	16,000	135.3
CHN-5	2,460	830	67	16,000	135.3
CHN-6	2,440	0	100	22,000	103.2
CHN-7	690	140	80	6,000	255.2
CHN-8	1,110	0	100	6,000	264.0
CHN-9	1,440	500	66	14,000	98.0
CHN-10	3,130	780	76	13,000	138.1
CHN - 11	3,750	1,700	55	15,000	140.8
CHN-12	1,590	410	75	11,000	67.2
CHN - 13	2,440	690	72	13,000	97.47
CHN-16	1,600	0	100	10,000	58.1
CHN - 17	1,330	0	100	13,000	60.9

DRAINAGE AREAS CHARACTERISTICS

CHAGRIN RIVER WATERSHED

Area Designation	Total Area (Acres)	Open Space Area (Acres)	% Area to be Developed	Length of Channel (Ft.)	Channel Slope Ft./Mile
CHN-18	640	0	100	4,500	152.5
CHN-19	710	0	100	5,000	95.0
CHN-20	690	230	67	7,000	113.1
CHN-21	460	0	100	4,000	171.6
CHN-22	740	50	92	6,500	146.2
CHN-23	1,230	0	100	6,000	184.8
CHN-24	2,760	0	100	17,000	40.4
CHN-25	2,400	640	74	15,000	70.4
CHN-26	1,910	370	81	14,000	113.1
CHN-27	2,670	320	89	12,000	105.6
CHN-28	2,150	0	100	14,000	83.0
CHN-29	660	0	100	8,000	66.0
CHN-30	1,070	0	100	5,000	116.2
CHN - 31	1,580	340	79	13,000	40.6
CHN-32	890	0	100	3,000	88.0
CHN - 33	910	0	100	6,000	70.40
CHN-34	770	0	100	10,000	37.0
CHN-35	1,340	447	67	16,000	13.2
CHN-36	2,520	840	67	10,000	26.8

APPENDIX C DRAINAGE AREAS PERCENT IMPERVIOUSNESS BY DECADE ROCKY RIVER WATERSHED

Area Designation	Area (Acres)	1970	1980	1990	2000	2010	2020	*
R-1	716	40	45	45	45	45	45	2
R-2	3,994	10	15	20	25	30	30	2
R-3	2,112	25	28	30	32	35	35	2
R-4	845	40	45	45	45	45	45	2
R-5	872	30	35	40	45	45	45	2
R-6	3,434	10	15	20	25	30	30	3
R-7	2,222	∢ 10	10	15	20	25	25	3
R-8	2,544	15	18	20	25	30	30	2
R-9	266	25	30	30	30	30	30	1
R-10	6,437	12	15	17	20	25	28	2
R-11	3,921	〈 10	(10	10	12	15	20	3
R-12	7,484	< 10	< 10	10	15	20	25	3
R-13	7,466	10	15	20	25	30	30	3
R-14	1,120	〈 10	(10	10	15	20	25	3
R-15	918	(10	< 10	10	15	20	25	3
R-16	2,213	〈 10	14	17	20	25	25	3
R-17	1,285	< 10	14	17	20	25	25	3
R-18	3,471	< 10	4 10	10	15	20	25	3
R-19	3,177	∢ 10	< 10	<10	10	15	18	3
R-20	4,187	<10	< 10	10	12	15	20	3
R-21	532	<10	<10	10	15	20	25	2
R-22	2,185	< 10	< 10	10	15	20	25	3

*Note: 1 = Combined

DRAINAGE AREAS PERCENT IMPERVIOUSNESS BY DECADE

ROCKY RIVER WATERSHED

	Area	1070	1000	1000	2000	2010	2020	_
Area Designation	(Acres)	1970	1980	1990	2000	2010	2020	<u>*</u>
R-23	5,197	₹10	<10	10	15	17	20	3
R-24	3,140	<10	< 10	10	15	20	25	3
R-25	3,155	<10	<10	(10	10	15	18	3
R-26	762	<10	(10	(10	10	12	15	3
R-27	2,480	< 10	< 10	10	15	17	20	3
R-28	8,145	<10	< 10	10	15	20	25	3
R-29	2,553	< 10	(10	<10	10	12	15	3
R-30	1,423	<10	< 10	<10	10	12	15	3
R-31	780	<10	(10	< 10	10	15	20	3
R-32	313	(10	(10	10	15	20	22	3
R-33	799	<10	< 10	<10	10	12	15	3
R-34	1,588	∢ 10	10	15	20	22	25	2
R-35	2,736	<10	10	15	20	22	25	2
Total	94,472 Ac	res				•		
	147.61 So							
Average Area	2,700 A	res						
		LAKE E	RIE WATE	RSHED				
LE-1	4,362	27	30	35	40	45	45	2
LE-2	3,232	30	35	40	45	45	45	2
LE-3	5,758	30	35	40	45	45	45	2
LE-4	15,444	17	25	30	35	40	45	3
LE-5	23,396	44	45	45	45	45	45	1
LE-6	4,980	56	56	56	56	56	56	1

*Note: 1 = Combined

DRAINAGE AREAS PERCENT IMPERVIOUSNESS BY DECADE

LAKE ERIE WATERSHED

Area Designation	Area (Acres)	1970	1980	1990	2000	2010	2020	*		
LE-7	3,958	47	47	50	50	50	50	1		
LE-8	2,800	40	45	45	45	45	45	2		
LE-9	3,398	25	3 0	35	35	35	35	2		
LE-10	5,115	15	18	20	25	30	30	2		
LE-11	5,298	< 10	10	12	15	18	20	2		
Total	77,741 Ac:	res								
	121.47 Sq. Mile									
Average Area	7,067 Ac	res								
	9	CUYAHOGA	RIVER WA	TERSHED						
CU-1	2,472	49	49	50	50	50	50	ı		
CU-2	4,684	47	47	50	50	50	50	ı		
CU-3	3,562	40	40	45	45	45	45	1		
CU-4	23,770	29	35	37	40	45	45	2		
CU-5	12,654	31	35	37	40 .	45	45	1		
CU-6	3,995	12	17	25	30	35	35	2		
CU-7	4,527	<10	10	15	20	25	30	3 .		
CU-8	8,870	15	17	22	25	30	30	3		
CU-9	1,698	<10	♦ 10	<10	10	12	15	3		
CU-10	1,846	< 10	< 10	10	12	15	20	3		
CU-11	2,370	20	23	25	30	35	35	2		
CU-12	340	20	23	25	30	35	35	2		
CU-13	4,500	<10	10	15	20	25	30	2		
CU-14	3,425	<10	14	17	20	25	25	3		
CU- 15	652	∢ 10	(10	10	15	20	20	3		

*Note: 1 = Combined

APPENDIX C (Cont'd.) DRAINAGE AREAS PERCENT IMPERVIOUSNESS BY DECADE CUYAHOGA RIVER WATERSHED

Area Designation	Area (Acres)	1970	1980	1990	2000	2010	2020	*
CU-16	1,791	<10	10	15	20	25	25	3
CU-17	1,368	∢ 10	10	15	17	23	25	3
CU-18	551	∢ 10	10	15	20	25	30	3
CU-19	5,730	<10	< 10	10	15	20	25	3
CU-20	1,515	< 10	14	17	20	25	25	3
CU-21	2,057	<10	<10	10	12	15	18	3
CU-22	1,386	₹10	<10	10	12	15	18	3
CU-23	1,240	<10	10	10	15	20	22	3
CU-24	3,388	∢ 10	10	15	20	25	25	3
CU-25	4,472	<10	10	15	20	25	25	3
CU-26	1,221	< 10	10	15	17	23	25	3
CU-27	2,874	< 10	10	15	20	25	25	2
CU-28	1,634	< 10	< 10	10	12	15	17	3
CU-29	5,914	<10	< 10	<10	10 ·	12	15	3
CU-30	1,974	(10	<10	<10	10	12	15	3
CU-31	1,586	< 10	< 10	< 10	10	12	15	3
CU- 32	2,020	< 10	< 10	10	15	20	20	3
CU-33	1,230	<10	10	15	20	25	25	3
CU~34	2,507	<10	<10	< 10	10	15	18	3
CU-35	11,175	<10	< 10	10	2.	15	17	3
CU-36	3,186	<10	<10	1	£ΰ	12	15	3
CU-37	3,039	<10	<10	< 10	10	12	15	3
CU-38	2,121	<10	<10	<10	10	12	15	3
CU-39	3,884	<10	< 10	10	12	15	17	3

*Note: 1 = Combined

APPENDIX C (Cont'd.) DRAINAGE AREAS PERCENT IMPERVIOUSNESS BY DECADE

CUYAHOGA RIVER WATERSHED

Area Designation	Area (Acres)	1970	1980	1990	2000	2010	2020	*
CU-40	863	<10	< 10	∠ 10	10	12	15	3
CU-41	1,130	< 10	<10	<10	10	12	15	3
CU-42	1,525	<10	< 10	10	10	12	15	3
CU-43	3,765	<10	<10	<10	≼ 10	10	10	3
CU-44	3,094	<10	<10	10	12	14	15	3
CU~45	3,976	<10	< 10	10	12	14	15	3
CU-46	1,616	<10	< 10	10	15	17	20	3
CU~47	7,833	<10	< 10	10	15	17	20	3
CU-48	1,625	25	27	30	35	35	35	2
CU-49	1,304	< 10	10	17	25	30	35	3
CU-50	8,228	<10	10	12	15	20	25	3
CU-51	5,492	10	15	17	20	25	30	2
CU-52	1,882	< 10	10	15	25	25	30	3
CU-53	3,719	15	20	25	30 .	35	40	2
CU-54	3,526	18	20	25	30	30	30	3
CU-SS	1,900	40	42	45	47	50	50	2
CU-56	2,800	20	25	30	40	45	45	2 .
CU-57	1,965	< 10	< 10	12	20	25	30	3
CU-58	7,906	< 10	<10	10	12	15	17	3
CU-59	2,249	40	45	50	50	50	50	2
CU-60	2,534	45	50	50	50	50	50	1
CU-61	3,223	30	35	40	45	45	45	1
CU-62	3,150	15	23	32	40	40	40	2
CU-63	1,423	35	37	40	45	45	45	2

*Note: 1 = Combined

2 = Separate

3 = Natural Channel

APPENDIX C (Cont'd.) DRAINAGE AREAS PERCENT IMPERVIOUSNESS BY DECADE

CUYAHOGA RIVER WATERSHED

Area Designation	Area (Acres)	1970	1980	1990	2000	2010	2020	*
CU-64	3,324	50	50	50	50	50	50	1
CU-65	661	45	50	50	50	50	50	1
CU-66	3,085	15	23	32	40	40	40	2
CU-67	2,608	<10	10	15	20	25	30	3
CU-68	1,905	50	50	50	50	50	50	2
CU-69	1,914	15	20	25	35	35	35	2
CU-70	6,327	20	25	30	35	40	45	2
CU-71	2,681	< 10	10	12	15	17	20	3
CU-73	1,056	<10	< 10	<10	10	12	15	3
CU-74	1,864	<10	<10	<10	10	12	15	3
CU-75	2,663	<10	< 10	<10	10	12	15	3
CU- 76	872	<10	4 10	<10	10	12	15	3
CU-77	2,000	<10	< 10	< 10	10	12	15	3
CU~78	3,250	<10	<10	< 10	10	. 12	15	2
CU- 79	1,360	< 10	<10	<10	10	12	15	3
CU~81	486	<10	< 10	< 10	10	12	15	3
CU~82	551	< 10	८ 10	<10	10	12	15	3
CU-83	835	< 10	10	12	15	20	25	3
CU-84	677	< 10	10	12	15	20	25	3

262,175 Acres Total 409 Sq. Miles

Average Area 3,197 Acres

*Note: 1 = Combined 2 = Separate 3 = Natural Channel

APPENDIX C (Cont'd.) DRAINAGE AREAS PERCENT IMPERVIOUSNESS BY DECADE

CHAGRIN RIVER WATERSHED

Area Designation	Area (Acres)	1970	1980	1990	2000	2010	2020	*
CHN-1	2,070	20	23	27	30	35	35	2
CHN-2	7,140	10	15	20	25	30	35	3
CHN-3	3,310	< 10	10	15	25	25	25	2
CHN-4	1,360	<10	< 10	10	15	20	25	3
CHN-5	2,460	<10	< 10	(10	10	15	18	3
CHN-6	2,440	< 10	< 10	10	15	20	25	3
CHN - 7	690	<10	< 10	10	15	20	20	3
CHN - 8	1,110	< 10	< 10	10	10	15	15	3
CHN-9	1,440	< 10	< 10	10	15	20	25	3
CHN-10	3,130	10	15	20	25	25	25	3
CHN-11	3,750	<10	<10	< 10	10	12	15	3
CHN-12	1,590	< 10	<10	< 10	10	15	17	3
CHN-13	2,440	< 10	< 10	10	13	17	20	3
CHN-16	1,600	∠10	< 10	10	12 .	15	18	3
CHN-17	1,330	< 10	< 10	10	12	15	18	3
CHN-18	640	∠10	८ 10	<10	10	12	15	3
CHN-19	710	< 10	८ 10	< 10	10	12	15	3
CHN-20	690	∠10	∠10	८ 10	10	12	15	3
CHN-21	460	<10	∠10	< 10	10	12	15	3
CHN-22	740	< 10	< 10	<10	10	12	15	3
CHN-23	1,230	< 10	10	10	15	20	25	2
CHN-24	2,760	< 10	८ 10	< 10	10	12	15	3
CHN-25	2,400	< 10	4 10	< 10	10	12	15	3
CHN-26	1,910	< 10	<10	< 10	10	15	20	2
CHN-27	2,670	< 10	< 10	10	15	20	25	3

*Note: 1 = Combined

APPENDIX C (Cont'd.)

DRAINAGE AREAS PERCENT IMPERVIOUSNESS BY DECADE

CHAGRIN RIVER WATERSHED

Area Designation	Area (Acres)	1970	1980	1990	2000	2010	2020	*
CHN-28	2,150	<10	<10	<10	10	12	18	3
CHN-29	660	< 10	410	410	10	12	1\$	3
CHN - 30	1,070	<10	∠ 10	~ 10	10	12	15	3
CHN-31	1,580	<10	41 0	<10	10	12	15	3
CHN-32	890	<10	~1 0	10	15	20	25	3
CHN-33	910	<10	L 10	<10	10	12	15	3
CHN-34	770	<10	∠10	<10	10	12	15	3
CHN-35	1,340	< 10	∠10	10	12	15	20	2
CHN-36	2,520	∠10	۷10	∠10	10	12	15	3
	(1.0(0.1							

Total 61,960 Acres 96 Sq. Miles

Average Area 1,822 Acres

*Note: 1 = Combined

2 = Separate

3 = Natural Channel

APPENDIX D

ONE YEAR STORM HYDROGRAPHS AND LOADS

This appendix has not been included because of its size. It will be available to interested parties. The original will be included with the submission of reports to the Buffalo District, Corps of Engineers.

APPENDIX E

SUPPLEMENTAL DATA

In the development of the stormwater alternatives, it became necessary to consider treatment of the 5, 10 and 100 year storm. Therefore, the computer program was used to generate the unit hydrographs for these storms for each of the 162 drainage districts.

This information was not reproduced due to the massiveness of the data and the fact that the 1 year storm was chosen for design purposes. The 1 year storm data is presented in Appendix D of this phase report.

U.S. ARMY CORPS OF ENGINEERS BUFFALO DISTRICT

SURVEY SCOPE STUDY FOR WASTEWATER MANAGEMENT PROGRAM

Contract Phase Report
Phase II
Systems Design
and
Estimates of Cost

Prepared by

HAVENS AND EMERSON, LTD.
CONSULTING ENVIRONMENTAL ENGINEERS
Cleveland, Ohio

October, 1972

Under Contract No.: DACW49-72-C-0048

TABLE OF CONTENTS

				Page
INT	ROD	UCTIO	<u>N</u>	Al
<u>A.</u>	WA:	STEWA	<u>TER</u>	A2
	<u>1.</u>	TREAT	IMENT PROCESSES AND EFFECTIVENESS	A 2
		1.1 1.2	WASTEWATER MANAGEMENT GOALS	
			1.21 BASIC BIOLOGICAL TREATMENT SYSTEM	
		1.3	PROCESS SEQUENCE SELECTION AND PERFORMANCE	A11
			1.31 LEVEL 1: PROPOSED STATE GOAL	A18
		1.4	MISCELLANEOUS DESIGN ASSUMPTION	A23
			1.41 HYDRAULIC SURGE CONTROL	A23
			RADIOACTIVE MATERIALS	A23
	<u>2.</u>	DES10	GN CRITERIA	A43
		2.1	DEFINITION OF FLOW TERMS	A43
		2.2	MUNICIPAL TREATMENT PLANTS	A43
		2.3	LOADING RATIOS	
		2.4	PUMP STATION	
		2.5	GRAVITY SEWERS	
		2.6	FORCE MAIN OUTFALL SEWERS	
	<u>3.</u>	UNIT	COSTS	A48
	4.	MUNIC	CIPAL TREATMENT PLANT DESIGN	A9 1
		4.1	WASTEWATER TREATMENT SCHEMES	A9 1
		4.2	SLUDGE HANDLING SCHEMES	
		4.3	COST COMPARISON	
<u>B.</u>	ST	ORMWA	TER RUNOFF	B1
	1.	TREAT	TMENT PROCESSES AND EFFECTIVENESS	B1
		1.1	PROCESS CONSIDERATION	B1 B2

TABLE OF CONTENTS (Cont'd.)

		Page
	1.21 LEVEL 1: SEPARATE STORMWATER RUNOFF	20
	TREATMENT SYSTEM	B2
	TREATMENT SYSTEM	B2
	1.23 LEVEL 2: SEPARATE STORMWATER RUNOFF TREATMENT SYSTEM	В3
	1.24 LEVEL 2: COMBINED SEWER OVERFLOW TREATMENT SYSTEM	В4
	1.25 LEVEL 1 AND LEVEL 2: SEPARATE OR COM- BINED SEWER RUNOFF TREATED IN MUNICIPAL	
	PLANTS	B 5
	2. DESIGN CRITERIA	B14
	2.1 COLLECTION	
	2.2 ADJUSTMENT FOR PLANNED UNIT DEVELOPMENT ZONING 2.3 STORAGE SEDIMENTATION BASIN WITH SEPARATE TREATMENT	
	FACILITIES	B15
	2.4 STORAGE BASINS WHEN RELEASED TO MUNICIPAL TREATMENT PLANTS	B16
	3. UNIT COSTS	B19
	3.1 CAPITAL COST	
	4. STORMWATER PLAN FORMULATION ALTERNATIVES	B31
	4.1 DESIGN STORM ALTERNATIVES	
	4.2 STORAGE ALTERNATIVES	
	4.4 COMPARISON OF LEVEL 1 AND LEVEL 2 LOADS TO RURAL	D 40
	RUNOFF	
	4.6 COST OF INCREASED TREATMENT	B43
С	ALTERNATIVE PLANS - COST ESTIMATES	Cl
	1. PROCEDURE	C1
	2. COMPARATIVE COST PRESENTATION	
	3. COST SUMMARY	C8
D	RELATED INFORMATION	D1
	1. ELECTRICAL POWER REQUIREMENTS	D1
	2. WASTEWATER TREATMENT CHEMICAL REQUIREMENTS 3. STORMWATER TREATMENT CHEMICAL REQUIREMENTS	D5 D8
A p D E	ENDICES	
		
	APPENDIX A - REFERENCES	
	APPENDIX B - PLANNING INPUT APPENDIX C - DISCHARGE REQUIREMENTS TO SURFACE WATERS	

LIST OF TABLES

		Page
1 2 3 4 5	Wastewater Management Study Goals	A22 A49 A95
B1 B2 B3 B4a	Stormwater Runoff Treatment - Alternatives	B19 B21
B4b	Area Compared to Chicago Area	
B4c	Including A 1 and 100 Year Storm Occurrence Comparison of Residual Annual Stormwater Runoff	
B5	Loads Including A 1 and 100 Year Storm Occurrence Cost of Increased Protection and Treatment - 100 Year	B37
	Compared to 1 Year Runoff	
B6	Concrete Storage Cost	B39
B7	Unadjusted VS. Adjusted Flow Costs	B40
B8	Effect of Treatment on Stormwater Runoff	B41
B9	Combined Overflow Cost	B42
B10	Stormwater Removal	B43
B11	Municipal Waste	
B12	Residual Loads 1,000 lbs/year	B44
C1	Wastewater Treatment Plant - Liquid Phase	C3
C2	Wastewater Treatment Plant - Solid Phase	C4
C 3	Stormwater Treatment Plant - Liquid Phase	C5
C4	Stormwater Treatment Plant - Solid Phase	C6
C5	Concrete/Earth Breakdowns	
C6	Annual Comparitive Values (\$1,000,000/yr.)	C 9
DI	Electrical Power Requirements	
D2	Chemical Requirements (pounds per day per mgd)	D6
D3	Chemical Requirements Per Plan (pounds per day)	D7
D4	Chemical Requirements - Stormwater & Combined Sewer Overflow Treatment	110
D5	Chemical Requirements (#/day) per Plan for Stormwater	עט
	& Combined Sewer Overflow Treatment	D10

LIST OF FIGURES

		Page
1	Wastewater Treatment - Unit Process Alternatives	
2	Waste Solids Treatment - Unit Process Alternatives	
3	Basic Biological Treatment System	
3A	Process Performance	A28
4	Basic Physical-Chemical Treatment System	
4A	Basic Physical-Chemical Treatment System	A30
5	Basic Biological Treatment System - Upgraded to Meet State Effluent Standards	A 7 1
5A	Process Performance	
5A 6	Basic Physical-Chemical Treatment System - Upgraded to	NJ2
U	Meet State Effluent Standards	A33
6A	Process Performance	
7	Basic Biological Treatment System - Upgraded to Meet	
	Federal Effluent Standards	A35
7A	Process Performance	A36
8	Basic Physical-Chemical Treatment System - Upgraded to	
	Meet Federal Effluent Standards	A37
8A	Process Performance	A38
9	Basic Biological Treatment System - Upgraded for Ultimate	4.70
0.4	Reuse Applications	A39
9A 10	Process Performance	A40
10	Ultimate Reuse Applications	A41
10A	Process Performance	
11	Capital Cost Activated Sludge w/Primary	A53
11A	OGM Costs Activated Sludge w/Primary	
12	Capital Cost Phosphate Removal	A55
12A	O&M Costs Phosphate Removal	A56
13	Capital Cost Chlorination	A57
13A	O&M Costs Chlorination	
14	Ozonation Capital Cost	A59
14A	OGM Cost Ozonation	A60
15	Capital Cost Nitrification	A61
15A 16	O&M Cost Nitrification	A62 A63
16A	Capital Cost Denitrification	A64
17	Capital Cost Coagulation and Sedimentation	
17A	O&M Cost Coagulation and Sedimentation	A66
18	Capital Cost Microstrainers	
18A	O&M Costs Microstrainers	
19	Capital Cost Mixed Media Filters	A69
19A	OGM Costs Mixed Media Filters	A70
20	Capital Cost Carbon Adsorption	A71
20A	OGM Costs Carbon Adsorption	A72
21	Capital Cost Breakpoint Chlorination	A73
21A	O&M Costs Breakpoint Chlorination	A74
22	Capital Cost Sludge Thickners	A75
23	Capital Cost Sludge Digestion	A76
23A	O&M Costs Sludge Digestion	A77

LIST OF FIGURES (Cont'd.)

		Page
24	Capital Cost Heat Treatment	A 7 8
24A	O&M Costs Heat Treatment	
25	Capital Cost Vacuum Filter	
25A	O&M Costs Vacuum Filter	
26	Capital Cost Incineration	
26A	O&M Costs Incineration	
27	Sewage Pumping Station Capital Cost	A84
27A	Sewage Pumping Station O&M Costs	A85
28	Gravity Sewer Costs Paved Urban Area	A86
29	Gravity Sewer Costs Rural Area	A87
30	Force Main Capital Cost	
31	Tunnel Costs	A89
32	Deep Tunnel Capital Costs	A90
33	Preliminary Treatment	
33A	Preliminary Treatment	
34	Conventional Activated Sludge Plant (Secondary Treatment) .	A99
34A	Conventional Activated Sludge Plant (Secondary Treatment).	A100
35	Advanced Biological Treatment Plant (Level 1)	A101
35A	Advanced Biological Treatment Plant (Level 1)	A102
36	Advanced Biological Treatment Plant (Level 2)	A103
36A	Advanced Biological Treatment Plant (Level 2)	A104
37	Physical-Chemical Treatment Plant (Level 2)	
37A	Physical-Chemical Treatment Plant (Level 2)	A106
38	Capital Cost Sludge Facilities Scheme 1	A107
38A	O&M Costs Sludge Facilities Scheme 1	A108
39	Capital Costs Sludge Facilities Scheme 2	A109
39 A	O&M Cost Sludge Facilities Scheme 2	A110
40	Capital Costs Sludge Facilities Scheme 3	
40A	O&M Costs Sludge Facilities Scheme 3	
B 1	Treatment System For Storm Water to Meet State Goals	B8
B2	Treatment System For Combined Overflows to Meet State	
	Goals	B9
В3	Basic Physical-Chemical Treatment System for Stormwater	
	to Meet Federal Goals	BIO
B3A	Treatment System for Stormwater To Meet Federal Goals	B11
B4	Basic Physical-Chemical Treatment System for Combined	
	Overflows to Meet Federal Goals	B12
B4A	Treatment System of Combined Overflows to Meet Federal	
	Goals	
B5	Stormwater Flow Reduction Formula	B17
В6	Cost Optimization - Stormwater Treatment to Level 1	
	w/Concrete Basin	B18
B7	Capital Cost Separate Stormwater w/Earth Basin Level 1	B24
B8	Capital Cost Separate Storm & Combined Sewer Overflows	
	w/Concrete Basin Level 1	B25
В9	Capital Cost Separate Stormwater w/Earth Basin Level 2	B26
B10	Capital Cost Separate Stormwater w/Concrete Basin Level 2.	B27
B11	Capital Cost Combined Sewer Overflows w/Concrete Basin	
	Level 2	B28

LIST OF FIGURES (Cont'd.)

		Page
	Capital Cost Earth Basin	
D1	Electric Power Requirements	D4

INTRODUCTION

This Survey Scope Study is a continuation of the preliminary work performed under the Feasibility Study in 1971. The Cleveland-Akron area was chosen by the Corps of Engineers as one of the five pilot areas in which to develop a wastewater management program. Three consulting engineering firms have been selected to work with the Corps in developing the Cleveland-Akron Survey Scope Study.

Phase I of the study identified the wastewater management problem with respect to domestic and storm water runoff wastewater as it exists today and as it is anticipated to exist in the future.

This report covers Phase II of the study which identifies treatment processes and effectiveness, design criteria, and unit costs associated with municipal wastewater treatment facilities and storm water treatment facilities. This report does not include, however, any data associated with land treatment of wastewater.

Also included in Phase II of the study were the cost estimates of the twelve alternative plans as developed by Wright-McLaughlin, Engineers.

This report is presented in four sections:

- A Wastewater
- B Stormwater Runoff
- C Alternative Plans Cost Estimates
- D Related Information

A - WASTEWATER

1. - TREATMENT PROCESSES AND EFFECTIVENESS

The development of a wastewater treatment plan for a municipality or political jurisdiction has two basic considerations. First, the required effluent quality must be established. Secondly, the applicable process sequence to most economically meet these requirements under local environmental constraints must be selected.

In this section, three basic wastewater management treatment goals are established using State and O.C.E.* guidelines. Existing process technology is reviewed, and optimum process sequences, as most applicable in Northeastern Ohio, are selected. Schematic and illustrative flow-concentration-mass diagrams are used to characterize and compare unit process and system performance. Influent quality is prevented in Phase I - Section 6.

1.1 - WASTEWATER MANAGEMENT GOALS

Table 1 defines the wastewater management goals for Level 1 and Level 2.

Detailed definitions of the required effluent quality are contained in

Appendix C.

Level 1 represents the proposed effluent standards of the State of Ohio. The quality criteria contained in Level 1 represent the State's maximum quality criteria. The conventional indices of pollution, such as the 5-Day Biochemical Oxygen Demand (BOD₅) and Suspended Solids (SS), vary as a function of the receiving water classification and dilution availability. Allowable phosphorus discharges are defined as a function of the receiving water location and daily discharge volume of wastewater with maximum removals required by 1980. Ammonia nitrogen residuals vary seasonally as a function of the stream classification and available dilution. Effluent *O.C.E. - Office of the Chief of Engineers, Department of the Army

dissolved oxygen (DO) concentrations are highest for receiving waters containing cold water fisheries. Allowable fecal coliform bacteria counts vary seasonally and dictate continuous disinfection.

Level 2 represents the O.C.E. Standards for municipal wastewater treatment. The major differences between State and O.C.E. standards are nitrogen removal, COD effluent standards, and increased removals of BOD₅, ammonia, phosphorus, and suspended solids. The O.C.E. effluent quality goals are independent of stream classification, dilution availability, receiving stream location, wastewater flows, and season of the year. Since the State's maximum effluent DO concentration is more stringent than the O.C.E. standard, it is assumed that an effluent DO of 6 mg/l or more must be achieved in Level 2. The State pH requirements were also assumed to apply for the O.C.E. standards.

1.2 TREATMENT TECHNOLOGY

All wastewater and waste solids treatment processes, excluding disinfection, are designed to promote a gaseous end product or separate and concentrate dissolved and particulate pollutants. The final gaseous or solid phase pollutant end product should be inert and of no pollutional significance in the final disposal site.

Treatment processes can be broadly classified as a function of the unit process goal. This concept is illustrated in Figures 1 (Wastewater Treatment: Unit Process Alternatives) and Figure 2 (Waste Solids Treatment: Unit Process Alternatives), where unit processes are defined in a generalized sequence of treatment steps such that a final product meeting any quality level can be achieved. These unit process flow diagrams should not be regarded as inflexible (often process goals can be and are combined

TABLE 1 - WASTEWATER MANAGEMENT STUDY GOALS

Item	Level 1	Level 2	Level 2 Modified
BOD _S	5 mg/1	<5.0 mg/l	< 3.0 mg/l
COD		Use 10 mg/1	< 5 mg/1
SS	8 mg/1	< 5.0 mg/l	< 1 mg/1
Total Phosphorus (As P)	0.5 mg/l	< .5 mg/1	0.1-0.2
Ammonia Nitrogen (As N)	2.0 mg/l	<1.0 mg/1	0.3-0.5
Dissolved Oxygen	0.9	Use 6 mg/l	Use 6 mg/l
Fecal Coliform Bacteria	200/100 ml	200/100 ml	200/100 ml
hф	5-9	5-9	5-9

Extracted from a preliminary draft of proposed effluent standards for municipal, industrial and other wastewaters to the inland waters of Ohio (Water Pollution Control Board, Ohio Department of Health; June, 1972). Level 1

Extracted from proposed critical levels for wastewater constituents, letter from NCBED-PB, June 19, 1972 and meeting of July 17, 1972, Washington, D. C. Level 2 also refered to in this report as Federal or OCE Goals. Level 2 -

Level 2 Modified - From "Design Considerations for Advanced Waste Treatment Plants", August 31, Not used as information. Was not available at beginning of phase two work. Note: Inorganic constituents (heavy metals and dissolved solids) are excluded from municipal system design considerations. See report by AWARE. in one physical unit) nor complete (rapidly expanding technology prevents totality) but rather as an illustration of the treatment alternatives available for application in a municipal wastewater management program. Definition of the management or water quality goals contained in Table 1 in conjunction with the elimination of economically unattractive or insufficiently demonstrated alternatives, reduces the multiplicity of treatment options.

For the purpose of this study, competitive process sequences incorporating basic biological and physical-chemical treatment processes for Northeastern Ohio were developed.

1.21 BASIC BIOLOGICAL TREATMENT SYSTEM

It is safe to conclude that, for the near future, the basic technology for municipal wastewater treatment will be a biological system combined with specific physical or chemical treatment techniques. This technology will most assuredly be applied to large existing wastewater treatment facilities and can be easily incorporated in new facility design.

In attempt to define the "typical" wastewater treatment facility for this area, <u>The 1968 Municipal Waste Facility Inventory</u> (U.S. Department of the Interior, Federal Water Quality Administration) reports the following for the Lake Erie Drainage Basin:

- 98 percent of the population receives some form of wastewater treatment;
- 79 percent of the population receives secondary treatment, of which,
 93 percent is serviced by the activated sludge process or modifications thereof.

From the preceding, it can be seen that the foundation for an effective wastewater management program is already established: wastewater

HAVENS AND EMERSON LTD CLEVELAND OH F/G 13/2 WASTEWATER MANAGEMENT STUDY FOR CLEVELAND-AKRON AND THREE RIVER—ETC(U) AUG 73 AD-A101 411 UNCLASSIFIED NL 3 oF

collection and transport to a treatment site, and use of the activated sludge process as the representative treatment concept. Therefore, the activated sludge process with an aeration contact time of 4.5 to 6 hours is assumed as the one that must be upgraded to meet the various wastewater management goals listed in Table 1. The basic activated sludge system is shown schematically in Fig. 3, with anaerobic solids digestion followed by vacuum filtration and incineration. Typically, waste solids cake and incinerator ash are ultimately disposed of upon municipal landfill operations.

To provide a basis of comparison, the unit and overall equilibrium process performance of this system was prepared for the estimated 1990 influent wastewater quality as illustrated in Figure 3A. This system would only meet the proposed BOD $_{\rm S}$ and SS criteria for Ohio's Class III streams (free flowing, warm water fisheries) if the average upstream BOD $_{\rm S}$ concentration increase was no more than 1 mg/1.

1.22 BASIC PHYSICAL-CHEMICAL TREATMENT SYSTEM

Physical-chemical treatment systems, when applied, will most likely be at new treatment sites or as additions to existing primary facilities. In terms of volume, the largest of the new physical-chemical systems presently proposed will be at Cleveland's Westerly Wastewater Treatment Plant where a physical-chemical system incorporating single stage lime coagulation with lime recovery and reuse, recarbonation, filtration and granular activated carbon adsorption, regeneration and reuse is proposed. Alternative systems, such as at Rocky River, Ohio, replace lime addition with polymer applications for suspended solids removal and add metal salts to meet phosphorus removal requirements. The Cleveland Westerly plant was assumed

the representative physical-chemical system for this study and its flow pattern is shown schematically in Figure 4.

Equilibrium system performance is illustrated in Figure 4A for the 1990 influent wastewater quality. The system, as proposed, is designed to maximize the phosphorus removal to lime dosage ratio with an influent wastewater alkalinity of 175 mg/l as CaCO₃. At a lime dose of about 240 mg/l as Ca(OH)₂, a reaction pH of about 10.5 should result. At this pH minimal Mg(OH)₂ precipitation will result and calcium solubilization will be minimal (thus, maximizing CaCO₃ formation). Recarbonation is provided to adjust the wastewater pH prior to carbon adsorption and to solubilize any effluent CaCO₃ to prevent encrustation of the filter. The filtration system is provided to protect the activated carbon system from particulate solids. The granular activated carbon system is shown with air or oxygen applications to prevent problems with septicity and effluent clarity and to meet effluent dissolved oxygen concentrations. A 30 percent wastage of calcined ash was assumed in the lime recovery and reuse system.

The proposed physical-chemical system, as shown, can meet Ohio's proposed minimum BOD₅ and SS effluent standards for Class I (cold water fisheries) and Class II (scenic waters) streams when the average BOD₅ concentration increase at critical stream flows is less than 0.3 mg/l and some Class III and Class IV (pooling waters with warm water fisheries) receiving streams. Ohio ammonia nitrogen effluent standards for November through March with Class III and IV streams are satisfied if the calculated ammonia concentration in the stream does not exceed 0.05 mg/l. The 1980 Ohio effluent phosphorus standards are satisfied for discharges of less than 10 mgd into Lake Erie and its tributaries. If the discharge is into a lake, reservoir, impoundment or pool, the system meets the proposed

phosphorus standard only when discharged volumes of wastewater are less than 1 mgd.

In comparing Figures 3A and 4A, fundamental differences between biological and physical-chemical systems become apparent. These are briefly reviewed.

a. Waste Solids

Waste sludge solids are generally higher for a physical-chemical system. Oftentimes, this is partially compensated for by improved dewaterability. The utilization of lime rather than a metal salt as the primary coagulant causes this difference to be especially pronounced.

b. Soluble Organic Removal

Economic and performance success or failure of this process goal in a biological system is dependent upon the main stream reactor and solids separation; whereas with a physical-chemical system it is dependent upon the main stream reactor and sidestream activated carbon regeneration and reuse. The biological system cannot remove highly refractory (non-biodegradeable) organics, but when effluent standards are developed in terms of BOD_5 , nondescriminate bio-degradeable and refractory organic removal by activated carbon make very low BOD_5 residuals difficult to achieve. A biological system metabollically converts about 1/4 to 1/2 of the applied organic carbon to CO_2 which is discharged to the atmosphere; in a strict sense, the physical-chemical system must handle this additional organic carbon which is not removed until carbon regeneration upon application of external energy or fuel. Although biological system can be upset by inhibitory wastes, activated carbon organic adsorption performance is pH dependent for organic acids and bases, anionic and

cationic surface active agents, and ampholytes; their removal cannot be simultaneously optimized for in a municipal wastewater since adjustment of pH may increase the removal of one organic compound while suppressing adsorption of others.

c. Costs

Generally, a trade-off is made when selecting biological versus physical-chemical systems. A physical-chemical system will usually show lower capital costs with its shorter reactor times. However, its operating expenditures and energy costs are generally higher than biological systems because of chemical costs and side-stream regeneration requirements. In urban areas with very little available land, the smaller land requirement of the physical-chemical system imparts an obvious advantage over biological systems. Generally, the physical-chemical components have a shorter life because of the larger amount of mechanical equipment which in turn tends to increase the total annual cost.

d. Unknowns

The disadvantages of the more conventional biological systems are well known and understood because of 40 or more years of experience. However, there are a number of unknowns about a physical-chemical process which may reduce its superficial attractiveness. For example, a lime-carbon system on raw wastewater application has not yet been supported by the successful demonstration of lime and activated carbon regeneration and reuse. Temperature influences upon carbon adsorption effectiveness represent an almost total unknown as well as the necessary reserve capacity to satisfy largely unbuffered diurnal flow and organic variations normally exhibited in municipal wastewater treatment.

In the following sections, these two basic wastewater treatment concepts are upgraded to meet the effluent quality levels listed in Table 1. It is thought that these process schemes represent an optimum and realistic application of today's technology to meet future treatment goals. Where applicable, fundamental comparisons of design alternatives are discussed and major risks and unknowns briefly enumerated.

1.3 - PROCESS SEQUENCE SELECTION AND PERFORMANCE

1.31 - LEVEL 1: PROPOSED STATE GOAL

BIOLOGICAL TREATMENT SYSTEM: The proposed Ohio effluent standards or state goal can be met by achieving ammonia oxidation (nitrification), applying metal salts for phosphorus removal, controlling effluent solids by organic polymer addition and in-depth filtration, and practicing post aeration. The upgraded biological system is shown schematically in Figure 5. System performance is illustrated in Figure 5A. As shown on these figures, the solids handling system has also been modified to include gravity waste activated sludge thickening and heat conditioning of the combined raw sludge after storage.

To achieve nitrification, the existing acrator has been separated into a 1/3 - 2/3 (high rate - nitrifying) volumetric split which would result in a nitrifying contact time of 3 to 4 hours, assuming the original aerator contact time was 6 hours. This new nitrifying contact time should be adequate for the climatic conditions of Northeastern Ohio. A new final clarifier is necessary to allow the complete separation of the two distinct biological cultures, designed for the removal of carbonaceous and nitrogenous oxygen demanding materials respectively. This system alternative for nitrification was selected over other possibilities (i.e., chemical additions and solids control in the primary clarifier, extended aeration) because in a general application this alternative gives the greatest assurance of economic performance success. It is also most compatible with metal salt addition for phosphorus removal and maximizes the potential for a low soluble BOD₅ residual.

Metal salt addition for phosphorus removal was selected because the chemical requirement is largely a function of the pollutant of concern, phosphorus, and the required soluble residual. Thus, should phosphorus levels in the influent wastewater be reduced by local or federal legislation or

should detergent reformulations occur in the future, the municipality will be able to reduce metal salt applications and derive proportional savings. As shown, metal salt additions for phosphorus removal do not require additional capital facilities other than a chemical storage and feed complex. Any source of precipitating metal ion, including some industrial wastes, can be used, but because of the generality of this study the alternatives have been reduced to commercially available ferric and aluminum salts, i.e., ferric chloride and alum. Aluminum was selected over ferric iron because of its higher pH value of optimum phosphorus precipitation (about 6 versus 5), its lower mass of precipitated solids, its precipitate's integrity during reducing conditions, and the absence of potential color problems in the final effluent. Although the metal salt can be added to any point in the major process stream, dosing to the aerator effluent was selected to maximize hydrolysis of influent complex phosphorus forms, minimize competing soluble phase side reactions due to raw waste organic components, and minimize floc shearing and upwards pH drift due to shearing and carbon dioxide stripping in the aerator. Dosing the chemical to the activated sludge system does not attenuate process performance but, rather provides a stabilizing influence upon the system due to the weighting effect derived from the inorganic precipitate within the activated sludge floc which results in a denser, faster settling floc. Chemical additions into the secondary also results in the accumulation of chemical precipitate which provides a buffer against diurnal phosphorus concentration peaks and lessens the sensitivity of chemical application rates to fluctuations in raw sewage phosphorus concentrations. A polishing dose of metal salt is added to the nitrifying activated sludge system to produce the required effluent phosphorus residual of 0.5 mg/l. By incorporating split-chemical treatment, only a small additional dose of aluminum is required, and the resultant

precipitated solids would not be expected to upset the system. The liability of metal salt addition for phosphorus removal is the introduction of extraneous ions which, in some instances, can be considered contaminants in their own right. In the case of alum, approximately 5.3 parts of sulfate are introduced per part of aluminum added. Although sulfate levels will increase over background levels, a net dissolved solids increase does not result due to the almost completely compensating removal of phosphate and other soluble phase pollutants.

Polymer addition and some physical means of final effluent solids control are design necessities when low phosphorus residuals are required whether or not low $\ensuremath{\mathsf{BOD}}_\varsigma$ and SS residuals are treatment necessities. Polymer addition usually is a treatment necessity because of the colloidal haze that can occur with high dosages of precipitating chemicals. Anionic polyelectrolyte addition in conjunction with aluminum additions has resulted in excellent process stream clarity after simple sedimentation. The filtration system provides positive backup for the system and further effluent polishing. A dual or multi-media filtration system has been selected because of the low effluent suspended solids required. Examining the process streams before (E-2) and after filtration (FE) in Figure 5A shows that although the State BOD, and SS effluent standards can be met before filtration, precipitated phosphorus in the solids phase dominates, and effluent solids control by filtration should be provided. In the final effluent, differences between total nitrogen (N_+) and oxidized nitrogen (N-O) will largely consist of a soluble refractory organic nitrogen residual with ammonia nitrogen concentrations at trace levels. Lime additions in the nitrification system for this wastewater were necessary because of anticipated alkalinity depletions associated with metal salt addition and nitrification.

Chlorine dosages for disinfection would be reduced due to the absence

of ammonia nitrogen in the final effluent. No credit was taken for BOD5 and ammonia removal through the disinfection system. Chlorination for final effluent disinfection is an acceptable practice under current State and Federal regulations, even though chlorinated effluents can possess a certain toxicity to aquatic life. If not acceptable in the future, dechlorination can be practiced by chemical additions, i.e., sodium bisulfite, sulfite, thiosulfate or activated carbon adsorption.

To produce consistently an effluent with a dissolved oxygen concentration of 6 mg/l or more in the summer, a post-aeration step is necessary. The post-aeration step could be added before, during, or after conventional chlorination for disinfection.

In the waste solids handling system, gravity waste activated sludge thickening was provided over such alternatives as dissolved air flotation because it was felt that the weighting action of the inorganic precipitates should serve as a concentrating aid. Waste activated sludge return to the primary sedimentation tank was eliminated because of inevitable problems with solids resuspension and poorer capture. Although no problems would be expected with the anaerobic digestion system due to the inorganic precipitates, the additional mass of waste biological solids due to the high rate activated sludge system, and improved main stream solids capture may impair the operation of the anaerobic digester. In addition, it is not unreasonable to expect that the vacuum filter cake for this condition would slightly increase in its water content. Therefore, the primary digester was converted to a storage tank, heat conditioning of sludge solids was incorporated, and the secondary digester was converted to a decanting-storage facility. Heat conditioning offers the advantages of consistency in vacuum filter operation, increased cake dryness, high cake BTU values, and a "sterile" end product should conditioned sludge application to the land be contemplated. Its disadvantages center upon the magnitude of volatile solids solubilization which, if not completely biodegradeable, can deteriorate effluent organic values and will increase the mass of waste activated sludge. Nitrogen solubilization will be similar to that encountered with anaerobic digestion achieving 50 percent solids destruction. If considered in the basic design, the disadvantages associated with heat conditioning can be compensated for in system sizing.

Whether or not gravity waste activated sludge thickening and heat conditioning are incorporated, the final effluent from this plant will easily meet or exceed the proposed Ohio effluent standards. The aluminum-organic sludge may be incinerated or spread directly on the land. With land applications, the soil building and fertilizing benefits derived from the solid's organic fraction will more than compensate for any deleterious effect associated with the inorganic aluminum precipitates.

PHYSICAL-CHEMICAL TREATMENT SYSTEM: To meet the proposed Ohio effluent standards, the basic physical-chemical system must be upgraded to provide additional phosphorus and BOD₅ removal as well as incorporate a physical system specifically intended for ammonia nitrogen removal. To this end, a second stage flocculator-clarifier has been incorporated with breakpoint chlorination followed by additional carbon adsorption. Additional post aeration is a necessity to meet an effluent dissolved oxygen value of 6 mg/l or greater. The upgraded physical-chemical system is shown schematically in Figure 6 with its performance characterized in Figure 6A.

The reaction pH in the first stage flocculator-clarifier must be increased to 11.5 from 10.5 to achieve the additional phosphorus removal. This requires the lime dose to increase by almost 80 percent and necessitates the addition of a second-stage flocculator-clarifier to capture the precipitated

calcium carbonate following recarbonation to a pH 9.5. This results in an almost 50 percent increase in waste solids mass due to the additional calcium carbonate and precipitated magnesium hydroxide. A polishing dose of metal salts for phosphorus removal was not possible because of a lack of pH compatibility in the main and/or waste solids streams. The performance and chemical requirements for phosphorus removal with this system are largely independent of incoming phosphorus concentrations but vary as a function of pH dependent solubility products and the wastewater alkalinity. Thus, the system is insensitive to diurnal variations in phosphorus concentration but cannot be expected to return any economic savings should raw sewage phosphorus levels be reduced in the future.

In a physical-chemical system ammonia nitrogen removal cannot be by simple conversion to nitrate nitrogen but must be an actual physical removal. Commonly visualized techniques with today's technology are ammonia stripping, ion exchange, and breakpoint chlorination.

Ammonia stripping is compatible with lime treatment at pH values of 11 or greater but even if ammonia fluxing to the atmosphere were allowed, it suffers from physical scaling problems and performance limitations at ambient air temperatures less than 40° to 45°F.

Ion exchange using clinoptilolite, a naturally occurring zeolite, can produce an ammonia nitrogen residual of about 0.5 to 1.0 mg/l but questions with resin attrition, recovery and reuse as well as ultimate ammonia concentrate disposal still remain. If it is assumed that ultimate ammonia disposal to the atmosphere is not allowed, four alternatives for disposal of waste brine remain: breakpoint chlorination, biological nitrification and denitrification, disposal of a weak NH₄OH solution to an available market, and evaporation to a point where the dried salts can be handled directly in an incinerator. Since alternatives one and two offer no particular advantages over main stream contacting, and alternative three has no application in a generalized

study, only alternative four remains. It is thought, that the cost of drying this brine would be economically prohibitive in comparison to main stream breakpoint chlorination.

Breakpoint chlorination, following carbon adsorption for organic nitrogen removal, will produce a total effluent nitrogen of about 2 mg/l (about 1 mg/l organic nitrogen, 0.5 mg/l ammonia trichloride, and 0.5 mg/l oxidized nitrogen) with direct ammonia removal to nitrogen gas. This system suffers from the liability of dissolved solids addition and generally necessitates chemical additions for pH control. Clearly, for physical-chemical systems (including such exotic processes as distillation) the nitrogen removal question through ultimate disposal may determine their general applicability in wastewater treatment.

Ammonia removal by breakpoint chlorination is proposed as the means of meeting the proposed Ohio effluent standards for a physical-chemical system since at this point in time it has the least amount of unknowns and potential operating difficulties. It has the advantage that operating costs are directly a function of the applied ammonia mass and the required effluent residual. Should it be infeasible to handle the magnitude of chlorine indicated, either by purchase or on-site generation, the alternative technique would be ion exchange with ultimate ammonia disposal by evaporation and incineration.

As noted in Figures 6 and 6A, the breakpoint chlorination system is incorporating an expanded disinfection tank following the first stages of carbon contacting to remove organic nitrogen and competitive chlorine demanding materials. It is followed by a downflow carbon contactor for additional solids removal, dechlorination, and additional organic removal (included any chlorinated hydrocarbons formed during breakpoint chlorination). No actual organic (COD) removal was taken during the actual breakpoint operation because of the very slow reaction rates without such catalysts as

ultra-violet radiation. Obviously, effective disinfection and virus kill will occur during breakpoint chlorination. Post aeration should be provided either before or after the final stage of carbon contacting.

1.32 - LEVEL 2: PROPOSED TREATMENT GOAL

ADVANCED BIOLOGICAL TREATMENT SYSTEM: Biological nitrogen and refractory organic removal must be provided to meet the O.C.E. effluent standards. In terms of new capital facilities, as shown in Figure 7*, the system used to meet Level 2 must be a denitrification reactor, aerated channel, final clarifier and a carbon adsorption system with regeneration and reuse. Process performance is illustrated in Figure 7A*.

The alternative systems for biological denitrification are suspended versus attached growth reactors. Denitirfication, like nitrification, is a temperature sensitive reaction where contacting times per unit mass of biological flora and cell residence times are both temperature dependent. A suspended growth reactor was selected over an attached growth system (coarse filter) because of its greater operating flexibility under the temperature variations encountered in Northeastern Ohio. Methanol is added to the system to serve as the driving carbonaceous substrate and to accelerate the biological reduction of nitrate to elemental nitrogen gas. The magnitude of methanol addition is dependent upon the oxidized nitrogen mass into the unit and the required treatment efficiencies; effluent oxidized nitrogen values of 1.0 mg/l are easily obtained with no methanol breakthrough.

The polishing metal salt dose has been transferred to the end of the denitrification reactor and increased to achieve the required phosphorus residual. Ash shown in Figure 7A*, low phosphorus residuals are easily achieved with split chemical treatment.

^{*}Federal Effluent Standards refer to standards established by O.C.E. (Office of the Chief of Engineers).

The required effluent COD is only achieved with additional treatment for refractory organic removal even though BOD₅ and suspended solids goals are satisfied after denitrification and filtration. The activated carbon requirement for this application is only about 1/10 to 1/5 of that associated with the physical-chemical system upgraded to satisfy the proposed state effluent standards (Figure 6A). Similar savings are derived in the spent carbon dewatering and regeneration system and makeup carbon storage. To produce an effluent free of chlorine toxicity, the disinfection facility could be located prior to carbon adsorption. However, since the chlorine dose for disinfection would undoubtedly be low, the disinfection facility has been left as the final treatment process in the treatment scheme.

ADVANCED PHYSICAL-CHEMICAL TREATMENT SYSTEM: Figure 8* shows schematically the upgraded physical-chemical system to satisfy the proposed O.C.E. effluent standards. The system's performance is illustra ed in Figure 8A*. Ozonation is incorporated as the means of further effluent polishing.

Ozonation was necessary because it is doubtful if a physical-chemical treatment system incorporating activated carbon adsorption can achieve the required soluble organic concentrations due to the previously mentioned pH influences upon adsorption effectiveness. Ozonation will simultaneously provide further disinfection and achieve the required effluent dissolved oxygen concentrations.

1.33 - LEVEL 3: MAXIMUM REUSE APPLICATION

In the water rich area of Northeastern Ohio, the probability of wastewater renovation for direct potable reuse is very remote. However,
the two basic treatment systems have been carried to this point to illustrate
the technological requirements and probabl process performance. Furthermore, although total stream treatment is shown, it is projected that in

*Federal Effluent Standards refer to standards established by O.C.E. (Office
of the Chief of Engineers).

the future, fractions of the major process stream would be diverted to constant flow minor process sequences specifically designed to produce a product water to match the intended reuse application.

ADVANCED BIOLOGICAL AND PHYSICAL-CHEMICAL TREATMENT SYSTEMS: To meet the ultimate product water goal of direct potable reuse, both basic treatment systems must be upgraded for demineralization and "fail-safe" treatment redundancy. The unit process selected for this is reverse osmosis. Schematic flow and process performance diagrams for the upgraded biological system are shown in Figures 9 and 9A with similar diagrams for the upgraded physical-chemical system contained in Figures 10 and 10A.

Reverse osmosis was chosen over the other available demineralization processes (distillation, electrodialysis, and ion exchange) because it is the one process technique which potentially could replace all the preceding unit processes. In other words, it offers a capability of backing up and supporting the total treatment system giving 100 percent pollutant removal redundancy with the added benefit of demineralization. Such a unit process is necessary in a closed recycle system because of the potential buildup of trace organic carbonaceous and nitrogenous pollutants which may be unremovable in the upstream treatment unit processes.

It is likely that the buildup of these trace pollutants and their successful elimination will be more of an operational consideration than demineralization in a closed system and, thus, demand total flow treatment rather than split treatment to achieve some higher, tolerable dissolved solids in the final effluent. No other treatment concept offers the treatment potential of reverse osmosis. Unfortunately, the state of today's technology will not allow it to supersede the upstream systems due to flux and membrane fouling limitations. These problems are likely

to be solved in the future; leaving only the question of what to do with the waste brine.

In Northeast Ohio, assuming that brine disposal to underground cavities or surface waters is invalid, there is little choice but to go through an evaporation system where it must be dried to a point that it can be handled directly in an incinerator. The water in this brine cannot be recovered by direct distillation since as the waste volume is reduced the potential of distillate contamination by organics and residual ammonia will increase. Multiple redistillation or distillate treatment (carbon adsorption, ion exchange, etc.) are possible but would mean that higher purity water is only achieved with smaller recovered produce water volumes. This illustrates a fundamental fact of wastewater treatment, namely: zero contaminants in a product water are found only with zero product water.

In the upgraded biological system, the dried mineral salts can be handled in an expanded incineration system in conjunction with the organic solids. Whereas, in the upgraded physical-chemical system which incorporates solids reuse, the evaporated mineral salts must be handled separately in an unique incineration system to avoid fractional solubilization upon reuse.

Both systems are followed by final chlorine disinfection for consumer protection in the event of distribution system contamination. An off-stream storage tank is provided should consumer demands not coincide with wastewater flows.

Table 2 presents a comparative summary of the effluent quality achieved from the various levels of treatment as previously described.

TABLE 2

EFFLUENT QUALITY (mg/1)

Figure No.	34	44	YS.	Y 9	7A	*	8 6	10A
Total Phosphorus	10.2	0.7	0.5	0.2	0.1	0.2	0	0
Total Nitrogen	19.7	13.1	17.2	2.0	0.7	2.0	< 0.1	0.2
0 <u>0</u>	113	88	10	14	1	7	0	
8	69	45	56	15	0 0	œ	-	-
BOD	15	15	4	Ŋ	•	o ·	0	0
Suspended Solids	25	ıs	8	74	0	H	0	. 0
Treatment	Basic Biological Treatment Plant	Basic Physical- Chemical Treatment	Level 1, Biological Treatment Plant	Level 1, Physical- Chemical Treatment	Level 2, Biological Treatment Plant	Level 2, Physical- Chemical Treatment	Level 3, Biological Treatment Plant	Level 3, Physical- Chemical Treatment

1.4 MISCELLANEOUS DESIGN ASSUMPTIONS

1.41 HYDRAULIC SURGE CONTROL

In the design of these systems, the necessity of dampening hydraulic surges in the treatment systems has not been mentioned. Generally, for plant flows of 10 mgd or less, hydraulic surge control would be a worthwhile consideration because of wide diurnal variations. At higher daily flow rates hydraulic peaks are usually dampened because of the large service area. The necessity of providing positive influent flow control would be subject to the particular flow patterns found or anticipated at the treatment site. If flow equalization or surge control is necessary, an expanded sedimentation tank receiving the mixed liquor solids from the activated sludge system designed for the removal of carbonaceous materials would be recommended for the basic biological treatment system whereas with the basic physical-chemical treatment system a separate flow equalization chamber following chemical treatment would be recommended.

1.42 REMOVAL OF HEAVY METALS, PESTICIDES, CHLORINATED HYDROCARBONS, RADIOACTIVE MATERIALS

In the design of municipal wastewater treatment systems, specific process designs to remove the above pollutants were not considered since control at the source has been postulated in these studies. However, many of the unit processes contained in the treatment sequence can and do provide positive removals. Generally, with the exception of aeration stripping, the processes will concentrate these pollutants in waste solid streams which with and without incineration will reduce the feasible alternative for ultimate waste solids removal. As a review, the pollutants and unit processes for removal are summarized below:

Heavy metals - "sorbed" onto biological floc, some precipitated
with alum and trace quantities of sulfide, organic
compounds adsorbed upon activated carbon, excellent

removal generally found with high pH lime treatment reverse osmosis should provide good removal. With or without incineration, possibility of resolubilization under microbial action in final disposal site exists.

Pesticides and Chlorinated Hydrocarbons - "sorbed" onto biological floc and can be fractionally stripped into atmosphere via the biological aeration systems. Adsorbed upon activated carbon with backup support provided by reverse osmosis. Permanent oxidation provided under incineration or carbon regeneration at elevated temperatures.

Radioactive Materials - See heavy metals for removals, complete capture
may be impossible. Final destruction technique is time
dependent upon given half-lifes. Distribution in gaseous,
liquid and solid phases after treatment can be expected.

ALTERNATIVES WASTEWATER TREATMENT: UNIT PROCESS

HAVENS AND EMERSON, LIMITED

HAVENS AND EMERSON, LIMITED

BASIC BIOLOGICAL TREATMENT SYSTEM HAVENS AND EMERSON, LIMITED

FIGURE 3A
BASIC BIOLOGICAL TREATMENT SYSTEM
PROCESS PERFORMANCE

FIGURE 4
BASIC PHYSICAL - CHEMICAL TREATMENT

HAVENS ANT FOR SHIP EIN

FIGURE 4A
BASIC PHYSICAL - CHEMICAL TREATMENT
SYSTEM

A30

BASIC BIOLOGICAL TREATMENT SYSTEM UPGRADED TO MEET STATE EFFLUENT STANDARDS

HAVENS AND EMERSON, LIMITED

A3r

A32

HAVENS AND EMERSON, LIMITED

BASIC PHYSICAL-CHEMICAL TREATMENT SYSTEM UPGRADED TO MEET STATE FFLUENT STANDARDS

FIGURE 6

BASIC PHYSICAL - CHEMICAL TREATMENT
SYSTEM UPGRADED TO MEET STATE
EFFLUENT STANDARDS:
PROCESS PERFORMANCE
A 3

FIGURE 6A

HAVENS AND EMERSON, LIMITED

BASIC BIOLOGICAL TREATMENT SYSTEM UPGRADED TO MEET FEDERAL EFFLUENT STANDARDS

, A35

PIGURE 7A
BASK BOLOGICAL TREATMENT SYSTEM
UPGRADED TO MEET FEDERAL EFFLUENT
STANDARDS PROCESS PERFURMANCE
A 3 6

HAVENS AND EMERSON, LIMITED

BASIC PHYSICAL - CHEMICAL
TREATMENT SYSTEM
UPGRADED TO MEET FEDERAL FFFLUENT
STANDARDS

FIGURE BA

BASIC PHYSICAL - CHEMICAL

TREATMENT SYSTEM

UPGRADED TO MEET FEDERAL EFFLUENT

STANDARDS: PROCESS PERFORMANCE

BASIC BIOLOGICAL TREATMENT SYSTEM UPGRADED FOR ULTIMATE REUSE APPLICATIONS FIGURE

HAVENS AND EMERSON, LIMITED

A39

HAVENS AND EVERSON, LIMITED

BASIC BIOLOGICAL TREATMENT SYSTEM UPGRADED FOR ULTIMATE REUSE APPLICATIONS: PROCESS PERFORMANCE

BASIC PHYSICAL - CHEMICAL TREATMENT SYSTEM UPGRADED FOR ULTIMATE REUSE APPLICATIONS

2

FIGURE

HAVENS AND EMERSON, LIMITED

| REMOVAL EFFICIENCIES 7, | SS 89 95 99 99+ 100 800, | 74 74 76 97 100 100 100 100 | 51 51 52 96 98 99+ 100 100 100 | 51 51 52 96 98 99+ 100 100 | 51 51 90 90 95 98 98 100 | 75* 22 22 23 21 21 92 | 4* INTIAL 75 ASSUMED AT 785 mq/k

HAVENS AND EMERSON, LIMITED

FIGURE 10A
BASIC PHYSICAL - CHEMICAL TREATMENT
SYSTEM UPGRADED FOR ULTIMATE REUSE
APPLICATIONS: PROCESS PERFORMANCE

2. DESIGN CRITERIA

Design criteria were established for various basic elements of a wastewater management program for use in the preliminary design development of the alternative plans.

2.1 DEFINITION OF FLOW TERMS

A definition of flow related terms is provided followed by a description of the design criteria.

Dry weather flow (DWF) is defined as the flow received at the plant on days when no precipitation occurs, and when antecedent runoff is not affecting flow materially.

Average Daily Flow (ADF) is defined as the total annual flow received divided by 365 days. ADF includes ground water infiltration and certain amounts of storm water inflitration and is the value normally used in the sanitary engineering profession as the average design flow for treatment units.

Maximum Flow (MF) is defined as the peak hourly flow rate accepted for full treatment.

Maximum Daily Flow (MDF) is defined as the highest 24 hour flow received during a year.

Maximum Hourly Flow (MHF) is the flow received in the maximum hour in a day and represents the peak diurnal flow.

The above values are related as follows:

```
ADF = 1.1 to 1.2 x DWF

MDF = 1.4 to 1.7 x ADF

MF = 2.5 ADF = 2.9 DWF

MF = 1.35 x MDF = 1.35 x 1.6 x ADF

MHF = 1.2 to 1.5 ADF

Use: 1.15 x DWF

Use: 1.50 x ADF

Use: 2.50 x ADF

MHF = 1.2 to 1.5 ADF

Use: 1.35 x ADF
```

2.2 MUNICIPAL TREATMENT PLANTS

The design criteria for the conventional activated sludge plant, the advanced biological treatment plant, and the physical chemical plant are

discussed in detail in the previous section of this report. The conventional activated sludge plant and 're advanced biological plants were considered to have a useful life of 35 years. The physical chemical treatment plants were considered to have a useful life of 25 years.

In calculating these useful lifes, the following rational using a weighted average was employed:

ADVANCED BIOLOGICAL SYSTEM:

Component	Useful Life	Percent of Plant Cost
pretreatment and primary unit	45 years	33.3
secondary, denitrifications and nitrification unit	40 years	33.3
tertiary units	20 years	33.3
weighted average	35 years	
PHYSICAL CHEMICAL SYSTEM:		
phosphorous removal, coagulation sedimentation	40 years	25
carbon adsorption, breakpoint chlorination ozonation	20 years	75
weighted average	25 years	

2.3 LOADING RATIOS

In a treatment process, the various units are designed for both a hydraulic and pollutant mass loading greater than that of the average daily flow. Likewise, components of the unit process itself are designed with different loading factors. Generally, those unit processes such as sedimentation and physical separation are more dependant upon hydraulic loading whereas the biological-chemical reactors are more dependant upon pollutant mass loading.

The following statements define the loading ratios for the advanced

biological systems. For a physical-chemical system, the carbon absorption ration would be 1.5 times the average daily flow.

Preliminary, primary and secondary treatment:

Design criteria will be based on ADF with higher loadings permitted at MF. We therefore expect variations in effluent quality in the range of 20-30 mg/1 BOD and SS, through the secondary treatment stage.

Mixed Media Filtration:

Secondary treatment has a definite buffering effect, and the process effectiveness is related to solids loading as well as flow rate.

Design Rates: ADF = 2.0 gpm/s.f.MF = 5 gpm/s.f.

Biological Nitrification and Dentrifications:

These processes are nitrogen mass and temperature dependent and are partly effected by detention time. Use conservative design rates:

Nitrification: ADF = 6 hours detention MF = 4 hours Denitrification: ADF = 3 hours detention MF = 2 hours Carbon Adsorption: MF = $1.0 \times ADF$

Carbon adsorption when it follows filtration (as assumed herein) is primarily dependent upon dissolved organic concentration. Flow variations when following biological stabilization have minor effect. Design based on 3-4 gpm/s.f. 15 minute contact at MF. Reverse Osmosis:

The reverse osmosis process is dependent upon flux rate, but the process is capable of exceeding the standards established on some

constituents. For study purposes, a constant flow rate can be assumed at ADF, with maximum flow increments by-passed in a split flow process.

2.4 PUMP STATIONS

Sewage pumping stations must be evaluated based upon average flow conditions. The pumping station, however, should be sized greater than the average flow to account for variations in sewage flow and standby capacity for mechanical failures. For an average flow of 1 mgd (approximately 10,000 people) or less total standby has been provided. For an average flow of greater than 1 mgd, 1/2 standby has been provided. In all cases firm capacity is provided for peak flows with the largest unit out of service. The need for greater standby capacity in the smaller pump stations is due to the greater variation in average to peak flows. Cost estimates include provision of diesel-electric standby power generation.

Sewage pumping stations are generally designed for a 20 year design period.

The pumping station power costs have been based on a pump efficiency of 75%, the appropriate pumping head, and a power cost of 1.21¢ per KWH.

2.5 GRAVITY SEWERS

In determination of sewer slopes, profiles were taken from U.S.G.S.

1:24000; topographic maps. Pipe sizes were based on these slopes and
the resulting discharges from population and flow projections. A peaking
factor was applied to the average discharge. The peaking factor used was
curve A in figure 4 of the American Society of Civil Engineers manual number

37. This curve has been verified in the Northeast Ohio area by previous
studies done by Havens and Emerson. The minimum allowable velocity for 1970

minimum flows was 1.5 feet per second. The maximum allowable velocity for peak flows was 10 feet per second. The desired velocity was 3-6 feet per second. The minimum and maximum trench depths were 10 feet and 30 feet, respectively. For depths greater than 30 feet, tunneling was assumed. Mannings' roughness coefficient of 0.015 was selected for concrete pipe flowing full.

The gravity sewers were designed based on 2020 design flows with a useful life of 50 years.

2.6 FORCE MAINS

Force mains were designed for maintaining velocities between 4 and 6 feet per second. The discharges were based on population and flow projections. Force mains have a minimum cover of 5 feet except for any required tunneling. Cast iron pipe was considered for lines less than 24-inches in diameter and reinforced concrete pressure pipe was considered for lines 24-inches and larger in diameter. The roughness coefficient varies depending upon the character of the liquid (sludge or sewage) pumped and the pipe material. A minimum pipe diameter of 8-inches was established.

Force mains were designed based on 2020 design flow with a useful life of 50 years.

2.7 OUTFALL SEWERS

Outfall sewers were based on maintaining velocities of 2 to 4 feet per second. The outlet location was placed in at least 15 feet of water. Reinforced concrete pipe was used with a minimum diameter of 18 inches.

Outfall sewers were designed for 2020 design flows.

3. UNIT COSTS

Table 3 lists the wastewater treatment methods for which capital construction costs and operation and maintenance costs have been developed. These costs were developed for use in preparation of cost estimates for the alternative plans with an ENR construction index of 1740. Capital costs reflect the construction cost with no contingency allowance, except for the gravity sewer and force main cost which include 25% for contingencies. For the estimates construction costs without contingencies were used.

The capital costs are expressed in either Dollars per MGD of plant size (MGD) or Dollars per Dry Ton per Day of sludge facility size versus plant size (MGD) or sludge facility size (Dry Tons per Day), respectively. The operation and maintenance costs are expressed in either Dollars per MG of wastewater treated or Dollars per Dry Ton of sludge treated plant size (MGD) or sludge facility size (Dry Tons per Day), respectively. Plant size (MGD) is based on average daily flow. The reference numbers follow the process being discussed with the references listed in appendix A.

TABLE 3
WASTEWATER TREATMENT UNIT COSTS
FIGURE IDENTIFICATION

	Capital Cost	O&M Cost
Activated Sludge with Primary	11	11A
Phosphorus Removal	12	12A
Chlorination	13	13A
Ozonation	14	14A
Nitrification	15	15A
Denitrification	16	16A
Coagulation and Sedimentation	17	17A
Microstrainers	18	18A
Mixed Media Filters	19	19A
Carbon Adsorption	20	20A
Breakpoint Chlorination	21	21A
Sludge Thickener	22	-
Sludge Digestion	23	23A
Heat Treatment	24	24A
Vacuum Filter	25	25A
Incineration	26	26A
Pump Station	27	27A
Gravity Sewer - Urban	28	-
Gravity Sewer - Rural	29	-
Force Main	30	-
Tunne1	31	-
Deep Tunnel	32	-

Following is a brief description of these methods to identify assumed design parameters and cost data references.

Activated sludge with Primary - Figures 11 and 11A represent the total capital cost and operation and maintenance cost for a conventional activated sludge plant including preliminary treatment, primary settling tanks, aeration tanks, (4.5 to 6 hours contact time), final settling tanks, blower building, and administration and laboratory facilities. These curves do not reflect any costs for sludge handling. Ref. * 1,4,5,8,19

Phosphorus Removal - Figures 12 and 12A represent the total capital *For cost data sources see References, Appendix A.

cost and operation and maintenance cost for phosphorus removal accomplished through metal salt addition to the aerator effluent. Chemical feed facilities and housing are the only required capital expenditures. Ref. 4,15

Chlorination - Figures 13 and 13A represent the total capital cost and operation and maintenance cost for chlorination of plant effluent. A 30 minute contact time at average flow with a chlorine residual of 0.5 mg/l was the basic design criteria. Ref. 1,8,19,17

Ozonation - Figures 14 and 14A represent the total capital cost and operation and maintenance cost for ozonation. Costs have been computed for various dosage concentrations to illustrate the cost fluctuations. It was assumed that 5 mg/l was adequate for disinfection and 20-30 mg/l was adequate for COD removal. Ref. 9,11

Nitrification - Figures 15 and 15A represent the total capital cost and operation and maintenance cost for nitrification. This is accomplished through modification of the conventional activated sludge plant with a 1/3 - 2/3 volumetric split of the existing aerator which results in a nitrifying contact time of 3 to 4 hours. A new final clarifier is required to allow the complete separation of the two distinct biological cultures. The capital cost therefore assumes addition to a conventional activated sludge plant.

Ref. 10,14

Denitrification - Figures 16 and 16A represent the capital cost and operation and maintenance cost for denitrification. This includes a denitrification reactor, (3 hours detention) an aerated channel, and an additional final clarifier. Ref. 10

Coagulation and Sedimentation - Figures 17 and 17A represent the capital cost and operation and maintenance cost for coagulation and sedimentation after lime addition. This is a two stage treatment consisting of a flash

mix chamber, and a flocculator-clarifier basin followed by recarbonation and a second stage flocculator-clarifier. The lime recovery and reuse system includes lime mud dewatering, a recalcination reactor and slaker. Ref. 1,4,15,19

Microstrainers - Figures 18 and 18A represent the capital cost and operation and maintenance cost for microstraining of secondary effluent.

Maximum hydraulic loadings were assumed between 600-800 gal/sq.ft./hr., with a Mark I (35 micron fabric) screen. Ref. 1,4,16

Mixed Media Filters - Figures 19 and 19A represent the capital cost and operation and maintenance cost for mixed media filters. Filter loading rates are based on a hydraulic loading of 2 gpm/sq.ft. for average daily flow. Ref. 1,4,16,3,18,19

Carbor Adsorption - Figures 20 and 20A represent the capital cost and operation and maintenance cost for carbon adsorption following filtration. The design is based on 3-4 gpm/sq.ft. and a contact time of 15 minutes for average daily flow. Included in this cost is regeneration of the spent carbon in a high temperature reactor. Ref. 1,4,12,18

Breakpoint Chlorination - Figures 21 and 21A represent the total capital cost and operation and maintenance cost for breakpoint chlorination. This cost includes a small contact chamber and facilities for the chemical feed equipment. For the physical chemical plant (Level 2) the dosage is 103 mg/1. For the stormwater treatment plant (Level 2) the dosage is 52 mg/1.

Sludge Thickeners - Figure 22 represents the total capital cost for gravity thickening of waste activated sludge. The design assumes a loading of four pounds/sq.ft./day. Ref. 1

Sludge Digestion - Figures 23 and 23A represent the total capital cost and operation and maintenance cost for sludge digester. The design assumes a 30 day detention period with a percent feed solids of 3.6. Ref. 1,5,18,12

Heat Treatment - Figures 24 and 24A represent the total capital cost and operation and maintenance cost for heat treatment. This design assumes a low pressure oxidation unit with allowances made for shift differential for various plant sizes. One shift for plants less than 10 mgd, two shifts for plants between 10-30 mgd, and three shifts for plants greater than 30 mgd. Ref. 6,2

Vacuum Filter - Figures 25 and 25A represent the total capital cost and operation and maintenance cost for vacuum filters. A loading rate of 4 lbs./sq.ft./hr. was assumed for digested sludge and 10 lbs./sq.ft/hr. for heat treated sludge. Allowances were also made for shift differentials for the same plant sizes as for heat treatment. Ref. 1,5,18,2

Incineration - Figures 26 and 26A represent the total capital cost and operation and maintenance cost for incinerating sludge filter cake.

Allowances were also made for shift differentials for various plant size.

Ref. 5,2

Pump Station - Figures 27 and 27A represent the total capital cost and operation and maintenance cost for pump station. Operation and maintenance costs are shown for total dynamic heads of 50, 100, and 200 feet. Ref. 4,5

Gravity Sewer - Urban and Rural - Figures 28 and 29 represent the total capital cost for gravity sewers for urban and rural areas, respectively. Each figure shows two curves to allow for different depths of cover. This cost includes sewer cost, excavation, backfill, pavement replacement and 25% for contingencies. The urban cost allows for utility protections, off site storage of excavated materials, and tighter working conditions.

Force Main - Figure 30 represents the capital cost for force mains.

This cost includes pipe cost, excavation, backfill, allowances for pavement replacement, and 25% for contingencies.

Tunnel - Figure 31 represents the total capital cost for tunnel construction. This cost was used for river crossings, railroad crossings, and in certain instances in heavily urbanized areas.

Deep Tunnel - Figure 32 represents the total capital cost for deep tunnel construction in shale. The tunnel will be drilled using a shield type mining machine and lined with a minimum of 18 inches of reinforced concrete. Ref. 20

PLANT SIZE (MOD)

Figure No. 11A

Figure No. 12

Pigure No. 12A

FEART SIZE (MOD)

PLANT SIZE (MGD)

Figure No. 16

Figure No. 144

PLANT SIZE (MGD)

PLANT SIZE (MGD)

PLANT SIZE (MGD)

Figure No. 17

PLANT SIZE (MGD)

Figure No. 19

PLANT SIZE (MGD)

Figure No. 20

PLANT SIZE (MGD)

Figure No. 22

DRY TONS / DAY

Pierre Bo. 254

•

Figure No. 26A

FIRM CAPACITY (MGD)

Figure No. 38

4. MUNICIPAL TREATMENT PLANT DESIGN

4.1 WASTEWATER TREATMENT SCHEMES

The municipal treatment plant design varied from plan to plan depending upon the level of treatment required or the designated treatment prior to land treatment. Following is a description of the five wastewater treatment plant variations. Cost curves were developed by adding appropriate unit process costs from Figures 11-32.

- 1) Preliminary Treatment Plant Figures 33 and 33A represent the capital and operation and maintenance cost for preliminary treatment. This cost includes facilities for screening, aerated grit chambers, and flow measurement. This cost was used in those plans where aerated lagoons were the method of secondary treatment prior to land application.
- 2) Conventional Activated Sludge Plant Figures 34 and 34A represent the capital cost and the operation and maintenance cost for a conventional activated sludge plant including disinfection by chlorination. This curve does not reflect any costs for sludge handling. These costs were used in those plans where secondary treatment was required prior to land application.
- Advanced Biological Treatment Plant (Level 1) Figures 35 and 35A represent the capital and operation and maintenance cost for an advanced biological treatment plant to achieve Level 1 criteria. The schematic diagram of this plant is shown in Figure 5. The costs include those for a conventional activated sludge plant, nitrification, mixed media filtration, phosphorus removal, and chlorination. These curves do not reflect any cost for sludge handling. This plant was used in all Level 1 plans where a water

based plant was required.

- 4) Advanced Biological Treatment Plant (Level 2) Figures 36 and 36A represent the capital cost and operation and maintenance cost for an advanced biological treatment plant to achieve Level 2 criteria. The schematic diagram of this plant is shown in Figure 7. The costs include those for a conventional activated sludge plant, nitrification, denitrification, mixed media filtration, phosphorus removal, carbon adsorption, and chlorination. These curves do not reflect any costs for sludge handling. This plant was used on all Level 2 plans where a water based plant was required except for Plan 11.
- Physical-Chemical Treatment Plant (Level 2) Figures 37 and 37A represent the capital and operation and maintenance cost for a physical-chemical treatment plant to achieve Level 2 criteria. The schematic diagram of this plant is shown in Figure 8. These costs include those for coagulation and sedimentation (two stage lime clarification), mixed media filters, carbon adsorption, breakpoint chlorination, downflow carbon, and ozonation. The curve includes cost for sludge dewatering and recalcination. Costs do not include handling of the waste ash. This plant was used for all water-based plants in Plan 11.

4.2 SLUDGE HANDLING SCHEMES

Each of the wastewater treatment schemes described above generate different quantities of sludge. By referring to the mass diagrams of the treatment schemes, the sludge quantities generated were determined in TPD/MGD (Dry Tons per Day per million gallons per day). The following

lists the quantities of sludge generated for each scheme:

Conventional Activated Sludge: 0.645 TPD/MGD

Advanced Biological Treatment Plant (Level 1): 1.06 TPD/MGD

Advanced Biological Treatment Plant (Level 2): 1.14 TPD/MGD

Physical-Chemical Treatment Plant (Level 2): 0.86 TPD/MGD*

*TPD of waste ash from recalcination furnace.

The sludge handling technique varied from plan to plan as described in the Formulation Phase 1, Synopsis Report, prepared by the Plan Formulators. Following is a brief description of the four sludge disposal variations used in the development of the alternative plans cost estimation. The quantity of sludge generated as previously described was the basis of design of the sludge handling facilities.

- the biological plants were assumed to be digested and pumped to the main transmission lines. The land contractor included the cost of the main transmission lines in his section. Figures 38 and 38A represent the capital cost and operation and maintenance cost for sludge digestion. A 5 percent solids concentration of discharged sludge was assumed. Pumping costs and transmission costs to the main transmission line was based on the data presented in the Unit Cost section. Digestion removal efficiencies were assumed for the different treatment plant schemes based on the mass diagrams. For the conventional activated sludge plant, the dry tons per day discharged from the digester was 53% of the TPD of sludge generated by the plant. For the advanced biological treatment plant, Level 1 and 2, the dry tons per day discharged was 64% of the TPD of sludge generated by the plant.
- 2) In-basin Agricultural Application The sludges generated in the

biological treatment plants were digested and vacuum filtered. The land treatment contractor included the cost of picking up the filter cake and applying it to the land in his section. Figures 39 and 39A represent the capital cost and operation and maintenance cost for sludge digestion and vacuum filtration. A 20 percent solids concentration was assumed for the filter cake. Different removal efficiencies were assumed for the different treatment plant schemes based on the mass diagrams. For the conventional activated sludge plant the dry tons per day of solids discharged from the vacuum filter was 60% of the TPD generated by the plant. For the advanced biological treatment plant (Levels 1 and 2), the dry tons per day discharged from the vacuum filter was 64% of the TPD generated by the plant.

- 3) Incineration This process includes thickening of the waste activated sludge, storage of the combined sludges, heat treatment, vacuum filtration, and incineration. Figures 40 and 40A represent the capital cost and operation and maintenance cost for this incineration scheme. Only sludge generated in the advanced biological treatment plant was incinerated. The resultant dry tons per day on ash was 35% of the dry tons per day of sludge generated by the plant.
- Ash Disposal This sludge handling technique disposes of the waste ash from the incinerators in a sanitary landfill. The cost used for this technique was \$6 per dry ton of ash. This cost was used for the disposal of the waste ash from the recalcination furnace and for the disposal of the ash from the incineration disposal scheme.

4.3 Cost Comparison

Tables 4 and 5 present the component costs for the advanced

biological treatment plants and the physical-chemical treatment plants at Level 2. The tables show the costs used in the Chicago Regional study versus that used in the Cleveland Regional study.

TABLE 4

ADVANCED BIOLOGICAL TREATMENT PLANT (LEVEL 2)

	Chicago ₁			Cleveland	
	Capital ₂ \$1000/mgd	O&M \$/MG	Capital \$1000/mgd	O&M \$/MG	
Primary and Secondary	367	60	420	76	
Phosphorus Removal ₃	118	50	10	45	
Nitrification & Denitrification	n 136	35	106	38	
Mixed Media Filtration	49	15	47	18	
Carbon Adsorption	165	68	175	45	
Post Aeration	6	10	12	10	
Chlorination	4	4	10	8	
TOTAL	845	242	780	240	
Chicago Plant with					
Phosphorus removal used in Cleveland Plant	737	237	780	240	

- 1.) Reference: Regional Wastewater Management Systems for the Chicago Metropolitan Area, Technical Appendix, Office of the Chief of Engineers, Department of the Army, March, 1972.
- 2.) Capital Costs from the Reference were adjusted from an ENR of 1850 to 1740.
- 3.) The Chicago report used a tertiary process for phosphorus removal whereas the Cleveland report incorporated phosphorus removal into the secondary plant.

TABLE 5

PHYSICAL-CHEMICAL TREATMENT PLANT (LEVEL 2)

	Chicago ₁		Cleveland
	Capital ₂ \$1000/mgd	0&M \$/M G	Capital O&M \$1000/mgd \$/MG
Phosphorus Removal ₃	118	50	110 82
Carbon Adsorption	165	68	175 45
Mixed Media Filtration	49	15	47 18
Post Aeration	6	10	
Ammonia Removal	156	72	-
Chlorination	4	4	
Downflow Carbon	-	-	83 23
Breakpoint Chlorination	-	-	10 47
Ozonation		<u> </u>	<u>34</u> <u>31</u>
TOTAL	492	219	459 246

- 1.) See Note 1, Table 4.
- 2.) See Note 2, Table 4.
- 3.) Same as Coagulation and Sedimentation in the Cleveland Study.

Figure No. 33

Figure No. 33A

PLANT SIZE (MGD)

HAVENS AND EMERSON LTD CLEVELAND OH F/6 13/2 WASTEWATER MANAGEMENT STUDY FOR CLEVELAND-AKRON AND THREE RIVER--ETC(U) AUG 73 DACW49-72-C-0048 AD-A101 411 UNCLASSIFIED NL 4 oF \$ AD A

Figure No. 35

Figure No. 36

Figure No. 36A

Figure No. 37

Figure No. 37A

Figure No. 38

Figure No. 39

Figure No. 40A

B - STORMWATER RUNOFF

This section of the Phase II report discusses the treatment of urban stormwater runoff as part of the total wastewater management study. The wastewater management goals for stormwater are the same as defined in the wastewater section for the O.C.E. goals; however, for the State goals, screening and sedimentation followed by microstraining and disinfection were established to be adequate. The State or Level 1 stormwater effluent quality criteria is different from wastewater due to the character of the constituents of runoff. A large percentage of the suspended solids in stormwater runoff would be categorized as inert suspended solids for which the State allowable concentrations can be satisfied by the unit processes considered.

1. TREATMENT PROCESSES AND EFFECTIVENESS

Quality of storm runoff flows are intermittent and have high peak rates.

Quality of storm runoff varies widely during the storm and from one storm to another because of the hydrologic factors involved, such as percentage of imperviousness of the drainage area, rainfall intensities and duration and antecedent rainfall. A feasible treatment process requires a storage basin to reduce the peak rates so that treatment units may be sized for lower rates of flow. It is also economical to utilize the storage basin for sedimentation in order to capture a substantial part of suspended solids, BOD and other pollutants. The storage basin will serve also as a means to mix the stormwater and produce a more homogeneous mixture which approaches the average quality assumed for design.

1.1 PROCESS CONSIDERATIONS

Process considerations for stormwater treatment facilities include the following:

- (a) Hydraulic surge control and storage to reduce instantaneous maximum hydraulic rates to treatment;
- (b) Capability of providing immediate service at or near maximum efficiency with low degree of operator attention;
- (c) Avoidance of substantial inventory in idle capital equipment, i.e., maximize flow dependent operating expenditures;
- (d) Self-contained process sequence exclusive of solids disposal.

1.2 STORMWATER RUNOFF TREATMENT SYSTEMS

As a function of the stormwater source, treatment systems and their rationale are presented herein.

1.21 LEVEL 1 - SEPARATE STORMWATER RUNOFF TREATMENT SYSTEM

Figure B1 shows a schematic diagram for separate stormwater treatment to Level 1. The process includes: coarse screening, storage and sedimentation basin (which may be earth or concrete), and a pumping station to pump stormwater from the basin to a microstrainer installation. Disinfection of stormwater by ozonation follows before flow is finally discharged to streams, rivers or Lake Erie. Microstrainer backwash is treated by sedimentation. Earth basins will normally include three cells to provide for periodic sludge removal by bulldozing and trucking or piping to landfills or the central sludge disposal site. Concrete basins will be provided with mechanical sludge collectors, and sludge will be pumped to a central sludge disposal site.

1.22 LEVEL 1 - COMBINED SEWER OVERFLOW TREATMENT SYSTEM

Figure B2 shows a schematic for combined sewer overflows treatment to Level 1. This process is similar to that of Figure B1, described above. The storage sedimentation basin will be concrete with mechanical sludge collectors in all cases. Combined sewer areas are highly urbanized with limited available land, and combined overflows have higher BOD concentration than separate stormwater.

1.23 LEVEL 2 - SEPARATE STORMWATER RUNOFF TREATMENT SYSTEM

Treatment of separate stormwater largely reduces to one of particulate solids control and disinfection. However, to meet the proposed Federal effluent BOD₅ and COD standard, soluble organic removal must be provided. The proposed treatment sequence is schematically shown in Figure B3*with its performance illustrated in Figure B3A*.

The pretreatment, and storage and sedimentation tank are the same as contained in the systems designed to meet the proposed State effluent standards. Sequentially, in the flash mix and flocculation facilities, powdered activated carbon, alum, and polymer are added in flow dependent dosages. The powdered activated carbon (with a cost of about 1/3 the granular activated carbon) is applied to remove the majority of soluble organics; its use was selected to minimize the idle granular activated carbon inventory and minimize the required carbon contacting time in the subsequent downstream filtration process. Alum is added as a primary coagulant. Some precipitation of soluble phase phosphorus would be predicted. The organic polymer is applied as a secondary coagulant for its floc building and strengthening properties. The long detention time and low surface overflow rate of the storage/sedimentation tank should result in an effluent with low suspended solids.

The downflow dual media granular activated carbon-sand filter will provide further soluble organic removal with effluent suspended solids residuals at a point acceptable to the proposed Federal effluent standards. Backwashing will most likely not be required during stormwater treatment and will normally be conducted following a storm with an ozonated backwash stream to remove accumulated solids and "sterilize" the bed so that bacterial activity is at a minimum during idle conditions. An alternative to this mode of operation would be to aerate the carbon bed during idle operation to promote bacterial removal of the adsorbed organics, and thus, achieve some microbial regeneration of the carbon. Spent or exhausted carbon is to be trucked and regenerated at *Federal Goals refer to standards established by O.C.E.

B3
(Office of the Chief of Engineers).

the furnaces contained at the regional wastewater treatment plant.

Ozonation is provided for disinfection and final organic polishing or removal prior to discharge into the receiving body of water.

1.24 LEVEL 2 - COMBINED SEWER OVERFLOW TREATMENT SYSTEM

Combined sewer overflow treatment presents the same technical problems as municipal wastewater treatment except that it is somewhat more dilute. System hydraulic loads vary rapidly from zero to peak rate as influenced by the storm intensity and runoff characteristics of the service area. Rather than substantially oversize the main wastewater treatment facility, a treatment facility that could complement or operate at an isolated location is proposed. Such a system is shown schematically in Figure B4 with its performance illustrated in Figure B4A. In situations where the combined sewer overflow treatment system is contained on the same physical site as the municipal wastewater treatment plant, the latter would be operated at its peak capacity during the storm with the stormwater treatment installation to reduce costs.

As shown in Figures B4* and B4A*, the only additional unit process for this treatment system as compared to the sequence proposed for separate stormwater runoff is breakpoint chlorination for nitrogen removal. Excluding the polymer application, powdered activated carbon and alum dosages have been increased for higher organic and phosphorus removal, respectively. A lower polymer application is possible because of the higher dosage of alum for phosphorus precipitation. Lime addition in both the flocculation and breakpoint chlorination systems is for alkalinity control. The granular activated carbon filter follows breakpoint chlorination to remove any chlorinated hydrocarbons that may have been formed during breakpoint; no real organic removal is assumed to result with this operation.

^{*}Federal Goals refer to standards established by O.C.E. (Office of the Chief of Engineers).

1.25 LEVEL 1 and LEVEL 2 - SEPARATE OR COMBINED SEWER RUNOFF TREATED IN MUNICIPAL PLANTS

As discussed in the wastewater design criteria section, the unit processes are designed to treat flows greater than average. During the course of a day, the sanitary flow will fluctuate from a minimum which usually occurs in the early morning hours to a maximum which usually occurs at mid-day. Likewise, the flow in the sewers fluctuates by similar cycle. Under the concept of treating storm or combined sewer runoff in a municipal plant, the runoff water would be stored in storage basins and discharged into the sewer systems and carried to the plant during the hours of low flow.

Storage under this scheme becomes a significant cost because of the volume of runoff water to be treated. The rate at which this can be released into the municipal system is a function of the plant size. The question is how much storm water or combined overflow can be taken through the plant without upsetting the pollutant mass loading and decreasing the efficiency of the process? The control of the release would have to be routed such that the release from storage would not increase the flow above the peak design sanitary flow. The system would have to be flow monitored at several locations along the pipeline as well as at the plant itself. In systems with several storage basins releasing stored water, the system would undoubtedly have to be controlled by on-system-mini-computers and automatically controlled gates and variable speed pumps. The maximum rate of release is also a function of plant size as indicated below.

Plant Size as	<u>Ratios</u>		
Defined by ADF	Q MF Q ADF	Q MDF Q ADF	Q MF Q MDF
0- 5	3.00	1.5	2.0
5-10	2.85	1.5	1.9
10-15	2.70	1.5	1.8
15-20	2.55	1.5	1.7
20-25	2.40	1.5	1.6
Greater than 25	2.25	1.5	1.5

To compute the maximum flow that can be released, the following procedure was used:

Example: 100 mgd advanced biological plant.

ADF = 100 mgd

Max. Flow = 225 mgd

Max. Daily Flow = 150 mgd

Maximum Allowable Stormwater Release 225 - 150 = 75 mgdAverage Daily Flow with Stormwater 100 + 75 = 175 mgd

Several units within the treatment scheme must be enlarged to treat this increased flow. The increase in cost necessary to enlarge the unit processes is approximately a one-third increase in construction cost over the plant sized for the municipal average daily flow. The unit processes would remain the same. Operation and maintenance cost for the additional flow is the same as for domestic flow.

This particular scheme has several technical difficulties. First, it has not been attempted in plants with flows of this magnitude. Consequently, there is an unknown with regards to the efficiency of operation. Second, if storm water runoff does not need the same degree of treatment, there would be no way of separating the combined flows. Third, the expense of storm water collection and storage may make the construction of the system economically difficult and require a phasing of wastewater followed by stormwater at a later date. Fourth, the diversion of the water downstream to regional plants will reduce the flow in several reaches of streams and may completely dry up some small tributaries.

Consequently, the use of this technique in Phase III will require detailed consideration of a location and type of storage basin, size of wastewater treatment plant, and capacity and condition of existing sewer system.

Table B1 presents the alternatives in condensed form.

TABLE B1

STORMWATER RUNOFF TREATMENT

ALTERNATIVES

	Level 2	2 hour detention storage in concrete tanks w/sludge collection followed by advanced stormwater treatment plant	2 hour detention, concrete w/o sludge collection but solids suspension and pump to plant		
NED		a)	Q		
COMBINED	Level 1	2 hour detention storage in concrete tank w/sludge collection followed by microstraining and disinfection	2 hour detention concrete w/o sludge collection but solids suspension and pump to plant		
		a)	b)		
	Level 2	2 hour detention, concrete w/sludge collection & advanced stormwater treatment plant	l year storm storage 3 day release, earth w/o sludge collection advanced stormwater treatment plant	30-day storage earth and pump to plant	30-day storage earth microstraining and disinfection and pump to land
STORM		a)	p	်	(p
ST	Level 1	2 hour detention, concrete w/sludge collection & microstraining plus disinfection	l year storm storage 3 day release, earth w/o sludge collection microstraining and disinfection	30-day storage earth and pump to plant	
		a)	(q	်	

PIQUEE BI
TREATMENT SYSTEM FOR STORM WATER
TO MEET STATE GOALS

83 8

30 ō

5 4

9 36

808 8

0.0.0 S

I -IN STORAGE & SEDIMENTATION BASIN = 2400 GAL. M.G. OF COMBINED SEWER OVERFLOWS 2 -IN BACKWASH SEDIMENTATION BASIN = 600 GAL. M.G. OF STORM WATER

TREATMENT SYSTEM FOR COMBINED OVERFLOWS TO MEET STATE GOALS FIGURE B2

HAVENS AND EMERSON, LIMITED

FIGURE B3

BASIC PHYSICAL- CHEMICAL TREATMENT SYSTEM FOR STORMWATER TO MEET FEDERAL GOALS **B** 70

FIGURE B3A
TREATMENT SYSTEM FOR STORM WATER
TO MEET FEDERAL GOALS

HAVENS AND EMERSON, LIMITED

HAVENS AND EMERSON, LIMITED

FIGURE B4

BASIC PHYSICAL - CHEMICAL TREATMENT SYSTEM FOR COMBINED OVERFLOWS TO MEET FEDERAL GOALS B12

	REMOVA	REMOVAL EFFICIENCIES -	FNCIES	۲°
	C -1	£-3	£-3	۲
\$ \$	9.6	9.5	÷66	66
8008	6.7	67	93	98
COD	9 80	98	93	96
100	6.7	87	9.4	97
z	32	7.8	83	83
u ^t	93	63	9.7	2.6

FIGURE B4A
TREATMENT SYSTEM OF COMBINED
OVERFLOWS TO MEET FEDERAL GOALS

2. DESIGN CRITERIA

The design criteria for the stormwater system is similar to the wastewater system. The unit processes or items that are different are presented herein.

2.1 COLLECTION

The collection system is that network of pipes required to pick up the local storm drains and deliver the water to the treatment plant or storage site. In areas where development is not sufficient to warrant a storm drainage system but where growth indicates the need at a later decade, the collection system was laid out to intercept the natural drainage patterns. The collection system was designed to carry the one year peak flow either natural or adjusted. The 2020 land use was used for the design. As discussed in the Phase I report, land use changes were accounted for. Further adjustments were made in undeveloped areas to account for changing development patterns and are discussed in Section 3.2.

2.2 ADJUSTMENT FOR PLANNED UNIT DEVELOPMENT ZONING

Stormwater flows can be reduced in future developments by appropriate planning if the concept of Planned Unit Development (P.U.D.) is adopted. The storm runoff from the developed portion of the area would be treated, whereas the runoff from the green space or recreational area would not be treated. This, of course, is different from the usual urban sprawl development in that the storm water from the occupied area would be physically separated. It was assumed that the P.U.D. concept would not be widespread until 1980. Only areas that have an imperviousness factor of 10% or less in 1980 would be available for P.U.D. construction. To account for a more dense development around cities, the projected imperviousness factor also had to be less than 40% in 2020.

Figure B5 illustrates the rationale used in the development of the modified runoff volumes. As the fraction impervious increases, the volume of runoff increases, from a theoretical $\mathbf{Q}_{\mathbf{Q}}$, at zero fraction impervious. $\mathbf{Q}_{\mathbf{Q}}$ can be calculated as follows:

$$Q_o = Q_b - I_b \left(\frac{Q_b - Q_a}{I_b - I_a} \right)$$

 Q_0 = Total annual runoff volume at zero fraction impervious

Q₂ = Total annual runoff volume for 1970 (m.g.)

 Q_b = Total annual runoff volume for 2020 (m.g.)

 I_a = Percent impervious for 1970 expressed as a decimal

 I_{b} = Percent impervious for 2020 expressed as a decimal

Assuming that the total runoff will be treated when an area reaches 0.40 fraction impervious it can be seen that the runoff from the undeveloped portion will decrease from $Q_{_{\scriptsize O}}$ to zero at 0.40 fraction impervious. Knowing this, the total runoff which must be treated, $Q_{_{\scriptsize m}}$, can be calculated:

$$Q_{m} = I_{b}[2.5Q_{b} + (\frac{Q_{b} - Q_{a}}{I_{b} - I_{a}}) (1-2.5I_{b})],$$

 $Q_{\rm m}$ = Modified annual runoff volume to be collected and treated in 2020 (m.g.).

2.3 STORAGE SEDIMENTATION BASIN WITH SEPARATE TREATMENT FACILITIES

Under the plans with separate treatment facilities, the storage sedimentation basins are of either concrete or earth construction. Concrete basins are assumed in urban areas where land is at a premium and a public nuisance or hazard exist. The earth storage basins are assumed in suburban areas where the basins with adequate buffer zones can be incorporated in the planning of the area, and cost could be minimized. The balance between storage and treatment has been optimized and is shown in Figure B6. The optimum rates of treatment to storage varies from 25 to 40% of the peak flow. The treatment units are designed to be capable of treating 30%

of the peak flow, and the storage basin has capacity to store the remainder of the hydrograph plus two hours detention volume based on the treatment rate of 30% of the peak flow.

The earth basins would be designed into the developments and utilized as green space or parks. The storage capacity of the basins is equivalent of the one year design storms. The treatment units would have capacity to empty the basin in three days.

The concrete basins would also be used for combined sewage overflows. Sludge in the combined sewer concrete basins is collected and pumped or trucked to a municipal plant for final disposal.

Sludge is collected in the separate concrete and earth basins and taken to a central sludge disposal area.

2.4 STORAGE BASINS WHEN RELEASED TO MUNICIPAL TREATMENT PLANTS

Under the plans where the storm water or combined sewer overflow is stored and released to plants, the volume of storage is equal to 20% of the annual runoff for the earth basins and the 1-year storm volume for concrete basins. In stormwater basins, the pump out capacity is designed to empty the basin in thirty (30) days and in the combined sewer overflow areas the pump out capacity is three (3) days. Both concrete and earth basins are used, with only concrete being used for the combined sewer area. Sludge is not removed in the concrete basins but is collected and pumped with the outfall to the municipal plant. In the earth basins, the sludge would be removed by earth moving machinery on an annual basis.

FIGURE B6
COST OPTIMIZATION
STORMWATER TREATMENT
TO LEVEL: W/CONCRETE BASIN

3. UNIT COSTS

Table B2 shows a list of various unit capital costs of processes used for treatment of separate stormwater and combined sewer overflows to Level 1 and Level 2. These costs were used in preparation of cost estimates for the alternative plans, and were based on January, 1972 cost with ENR construction index of 1740.

3.1 CAPITAL COST

The reference numbers follow the process being discussed.

TABLE B2

SEPARATE STORMWATER AND COMBINED SEWER OVERFLOWS UNIT CAPITAL COST FIGURE IDENTIFICATION

Separate Stormwater w/earth Basin - Level 1	В7
Separate Stormwater and Combined Sewer Overflows w/concrete Basin - Level 1	B8
Separate Stormwater w/earth Basin - Level 2	В9
Separate Stormwater w/concrete Basin - Level 2	B10
Combined Sewer Overflows w/concrete Basin - Level 2	B11
Earth Basin	B12
Microstrainers	B13

These processes are briefly discussed below to identify design parameters, the items included in each process, and the cost data reference.

Separate storm with Earth Basin - Level 1, Figure B7 represents the total construction cost of treatment as shown on the schematic diagram of Figure 41, and includes diversion and screening, earth storage and sedimentation basin, pumping, microstrainers, backwash sedimentation and ozonation. Ref. 21,1,4,16,9

Separate storm and combined sewer overflows - Level 1, Figure B8

represents the total construction cost of treatment as shown on the schematic diagram of Figure B2, and includes diversion and screening, concrete storage and sedimentation basin, pumping, microstrainers, backwash sedimentation and ozonation. Ref. 22,1,4,16,9

Separate stormwater w/earth Basin - Level 2, Figure B9 represents the total construction cost of treatment as shown on the schematic diagram of Figure B3, and includes diversion and screening, earth storage and sedimentation with chemicals, pumping, carbon filter and ozonation.

Ref. 21,1,14,12,9,11

Separate stormwater w/concrete Basin - Level 2, Figure B10 represents the total construction cost of treatment as shown on Figure B4, and includes diversion and screening, concrete storage and sedimentation with chemicals, pumping, carbon filter and ozonation. Ref. 22,1,14,12,9,11

Combined sewer overflows w/concrete Basin - Level 2, Figure B11 represents the total construction cost of treatment as shown on Figure B4, and includes diversion and screening, concrete storage and sedimentation with chemicals, pumping, breakpoint chlorination, carbon filter and ozonation. Ref. 22,1,14,12,9,11

Earth Basin Figure B12 represents the total construction cost of earth storage basin with depth of 10-15 ft. Ref. 21 $\,$

Microstrainers Figure B13 represents the total construction cost for microstrainers with a hydraulic loading of 1200-1600 gal./sq.ft./hr. using a Mark 0 (23 micron) screen.

3.2 OPERATION AND MAINTENANCE UNIT COSTS

Facilities for stormwater and combined sewer overflows treatment will be intermittently operated to treat flows from rainfall events as they occur. Therefore, cost data, which is available from various references and based on continuous operation, was multiplied by a reduction factor to reflect the intermittent nature of treatment.

Most of the operation and maintenance unit cost data available was based on rate of flow, but since rate of flow is variable during each storm and from one storm to another, it will be logical to base 0 & M cost on volume of stormwater and combined sewer overflows. To accomplish this, a detailed design was worked out for a typical storm subdistrict and all units of treatment were sized for Level 1 and Level 2 according to the basis of design discussed before. The cost of chemicals required for each process was also included. Ref. 5,1,4,16,12,22

Following is a summary of this cost analysis:

TABLE B3

OPERATION AND MAINTENANCE UNIT COST

Process	Unit 0 3 M Cost Dollars/Million Gallon
1 - Concrete Storage (Based on 20% of Annual Volume)	68
2 - Earth Storage (Based on 20% of Annual Volume)	33
3 - Level 1: Treatment w/Concrete Basin	62
4 - Level 1: Treatment w/Earth Basin	35
5 - Level 2: Separate Stormwater Treatment w/Earth Bas	in 250
6 - Level 2: Separate Stormwater Treatment w/Concrete	Basin 290
7 - Level 2: Combined Sewer Overflow Treatment w/Concr Basin	ete 385

The above mentioned operation and maintenance unit costs are further described below:

Concrete Storage: This storage was sized to receive 20% of the total annual runoff and would be used to store stormwater or combined sewer overflows before release for treatment at domestic waste treatment plant. Concrete storage basin will be provided with mechanical sludge

collectors. The operation and maintenance cost includes manpower, materials supply and electric power required for screening, basin with collectors and pumping.

Earth Storage: Capacity was based on 20% of the total annual runoff and would be used to store stormwater before release for treatment at domestic wastewater treatment plant. The operation and maintenance cost includes manpower, materials supply and electric power required for screening, basin and pumping.

Level 1 - Treatment w/Concrete Basins: The capacity of storagesedimentation basin in this process is designed according to the basis of
design in article II-B-3, and this volume is considerably less than the
concrete storage mentioned above in Concrete Storage. The operation and
maintenance cost includes manpower, materials supply and electric power
required for screening, storage and sedimentation with collectors,
pumping, microstrainers and disinfection.

Level 1 - Treatment w/Earth Basin: The capacity of storagesedimentation basin in this process is designed to receive the volume of
one-year storm which is less than 20% of annual volume used for earth
storage mentioned above in Earth Storage. The operation and
maintenance cost includes manpower, materials supply, and electric power
required for screening, storage-sedimentation pumping, microstrainers
and disinfection.

Level 2 - Separate Stormwater Treatment w/Earth Basin: Storage-sedimentation basin capacity is the same as in Level 1 mentioned above. Chemical cost is substantial and includes: powdered activated carbon: 89 \$/MG, ozone: 50 \$/MG, granular activated carbon (make up) 8 \$/MG a total chemical cost of 188 \$/MG. In addition to chemical cost, the

operation and maintenance cost includes manpower, materials supply and electric power required for screening, flash mixing and flocculation, storage and sedimentation, pumping, activated carbon filter and ozonation.

<u>Level 2 - Separate Stormwater Treatment w/Concrete Basin</u>: This process is similar to the one described in Level 2 above except for concrete storage sedimentation basin with sludge collectors.

Level 2 - Combined Sewer Overflows Treatment w/Concrete Basin: The capacity of storage-sedimentation basin in this process is the same as described in Level 1 - Treatment w/Concrete Basins above, and is provided with mechanical sludge collectors. The chemical cost constitutes a major portion of the operation and maintenance cost. The chemical cost includes: powdered activated carbon: 100 \$/MG, Lime: 3 \$/MG, Alum: 26 \$/MG, polymer: 5 \$/MG, chlorine for solids stabilization: 35 \$/MG, chlorine for breakpoint chlorination: 22 \$/MG, lime for breakpoint chlorination: 5 \$/MG, ozone: 50 \$/MG, granular activated carbon (filter make up) 8 \$/MG, a total chemical cost of 254 \$/MG.

In addition to chemical cost, the operation and maintenance cost includes manpower, materials supply, and electric power required for screening, flash mixing and flocculation, storage and sedimentation, pumping, breakpoint chlorination, activated carbon filter and ozonation.

Breakpoint chlorination 0 \S M cost was based on a chlorine dosage of 8 x ammonia nitrogen concentrators in the influent.

ONE-YEAR VOLUME (M.G.)

BASIN VOLUME (M.G.)

PLANT CAPACITY (MGD)

4. STORM WATER PLAN FORMULATION ALTERNATIVES

This section presents a discussion of the alternatives considered for storm water treatment in formulation of the wastewater management plans.

4.1 Design Storm Alternative

A study of the hydrology of the study area, and of the runoff generated by storms of various intensities and frequencies was made in the Phase I portion of the Survey Scope Studies. As a result of these investigations, the 1-year storm was recommended as the design storm for the runoff collection and treatment system. For details of this subject, the reader is referred to the Phase I report, but a discussion of this matter is presented here for amplification and for comparison with the plans prepared in the Chicago area studies.

As established in the Phase I hydrologic studies, the 1-year design storm yields runoff at a peak rate of approximately 0.5 cfs per acre, which is the critical design value used to size elements of the collection system. This is the same runoff rate used in design of the collection system in the Chicago area studies. For storms of greater intensity, storm water runoff would be stored on the surface, in street gutters and in natural depressions and would eventually be conveyed to the storage and treatment facilities.

In the present Cleveland-Akron studies, two general plans of storm water treatment are used, depending on relative economy and local conditions. Where storm water is to be stored and treated in the municipal wastewater treatment plants, storage facilities were designed to contain 20% of the total annual volume of runoff. This storage volume is equivalent to the volume necessary to contain runoff from the 100-year storm, and amounts to 1.26 inches of runoff over the gross area.

Where storm water is stored and treated at separate storm water treatment plants, the storage facilities were designed to contain the 1-year storm, equivalent to approximately 0.4 inches of runoff. Flows in excess of this volume would undergo screening, sedimentation and disinfection, so that no storm water flows would be discharged without some treatment. All flows up to the design 1-year storm would receive complete Level 1 and Level 2 treatment as called for by the particular alternative plan. In comparing these criteria to the preliminary design of the Chicago area system, several important differences in characteristics of the study area should be noted. Due to the intense urbanization in Chicago, a higher runoff factor was used, which results in a greater quantity of runoff from a given storm. As shown in Table B4a, the runoff from a 1-year storm in Chicago is approximately 1.0 inch whereas, in the Cleveland study area, the total runoff from a storm of the same frequency is 0.4 inches. For the 100-year storm, runoff in the Chicago area, is 2.5 inches compared with 1.26 inches in Cleveland.

Since the runoff intensity rate of 0.5 cfs per acre was used in both cases, and in both cases facilities for storage and treatment with municipal wastewater can accept runoff from the 100-year storm, the two systems are exactly comparable in this regard. It is

only in those instances in the Cleveland plan where storm water storage and treatment is handled separately from municipal treatment plants that the Cleveland design is based on retention and treatment of 0.4 inches, equivalent to the 1-year storm criteria. These figures are shown on Table B4a.

STORMWATER COLLECTION AND TREATMENT
IN CLEVELAND-AKRON AREA
COMPARED TO CHICAGO AREA

RAINFALL-RUNOFF	CHICAGO	CLEVELAND
1-year storm rainfall	1.80 inches	1.14 inches
1-year storm runoff	1.0 inches	0.4 inches
100 year storm rainfall	4.40 inches	3.60 inches
100 year storm runoff	2.5 inches	1.26 inches
Design discharge for pipes	0.5 cfs/acre	0.5 cfs/acre
Storage and Treatment with municipal wastewater	2.50 inches	1.26 inches
Storage and Treatment at separate stormwater plants	No comparable plan	0.40 inches

To further discuss this question, cost estimates were prepared for a collection system adequate to convey the 1, 10, and 100-year storm runoffs. Using the 1-year collection system cost as a base of 1, the cost ratio of the 10-year collection system would be 1.65, and of the 100-year systems would be 3.3. Expressed as a percentage of the total storm water collection and treatment cost, these values are respectively 32%, 43% and 60%.

The percentage of the total runoff treated under the different alternates for the 1-year and 100-year storms were computed and

compared to the Chicago plan. In addition, the estimated pollutant loads generated and the residual pollutant loads discharged to the receiving waters were calculated for comparison of the approximate overall benefit to be derived from the additional expenditures necessary.

Table B4b shows the total BOD and SS loads generated in the study area, together with the residual loads discharged to the receiving waters for a year including a 1-year storm occurrence compared with loads discharged for a year including a 100-year storm occurrence. The residual loads are calculated for the 100-year storm design and for the 1-year storm design, both to Level 2 treatment.

The table shows the reduction in residual loads in going from the 1-year to the 100-year design to be 0.83 percent of the total BOD load generated and 6.2 percent of the total SS load generated. These percentages are for a year including a 100-year storm occurrence.

For an average year, the percentage reductions would be even less. This appears to be a minimal improvement for an increased expenditure of 60%.

Finally, Table B4c shows a comparison between the Chicago and Cleveland-Akron designs in terms of residual loads discharged from the combined and urban stormwater discharges only. (Not including municipal sewage effluents). Although this comparison is only approximate because of differences in the study area, the table shows that the residual loads discharged in the two cases are closely comparable.

TABLE B4b

CLEVELAND AREA RESIDUAL ANNUAL STORMWATER RUNOFF LOADS INCLUDING A 1 AND 100 YEAR STORM OCCURRENCE

	Munici Separate	Municipal arate Sewage	Combined	Overflow	Senarate	Stormwater	Total	a.l
	1 Year	100 Year	1 Year	100 Year	1 Year	1 Year 100 Year	1 Year	100 Year
2020 Flow mg/year (percent of total)	295,810 (78)	295,810 (75)	16,150 (4)	19,200 (5)	65,600	79,600	377,560 (100)	394 , 610 (100)
BOD Total 1000#/year (percent of total)	435,000 (96)	435,000 (95)	8,070 (2)	9,600	11,100 (2)	13,400 (3)	454,170 (100)	458,000 (100)
Suspended Solids, Total, 1000#/year (percent of total)	441,000	441,000 (63)	26,900 (4)	32,000 (5)	183,800 (28)	223,000 (32)	651,700	(100)
Residual BOD 1000 #/year with Level 2 treatment 100 year storm design (percent of total)	860 (82)	860 (79)	80 (8)	(6) 96	111 (10)	134	1,051 (100)	1,090
Residual SS (as above) (percent of total)	879 (45)	879 (41)	135 (7)	160	920 (48)	1,115 (52)	1,934	2,154
Residual BOD 1000#/year with Level 2 treatment I year storm design (percent of total)	860	860	80	1,610	111 (10)	2,411 (49)	1,051	4,881 (100)
Residual SS (as above) (percent of total)	879 (45)	879 (2)	135 (7)	5,100 (11)	920 (48)	39,200 (87)	1,934 (100)	45,179 (100)

After consideration of these and other factors, the previously established storm design criteria is confirmed, and is used in the Phase II and III studies.

TABLE B4c

COMPARISON OF RESIDUAL ANNUAL STORMWATER RUNOFF LOADS INCLUDING A 1 AND 100 YEAR STORM OCCURRENCE

0; II;		100 Years	152,000	22,800	582,000	228	2,910
CHICAGO Equivalent Area	Total	l Year	000,86	14,700	375,000	147	1,880
		100 Years	008,86	24,000	255,000	230	1,275
	Total	1 Year	81,750	19,170	210,700	191	1,055
CLEVELAND	Separate Stormwater	100 Years 1	79,600	13,400	223,000	134	1,113
CLEVI	Separate	1 Year	009,59	11,100	183,800	111	.920
	Overflows	100 Years	19,200	009'6	32,000	96	160
	Combined (1 Year 100 Year	16,150	8,070	26,900	80	135
			Flow mg/year	BOD Total 1000 #/year	S.S. Total 1000 #/year	Residual BOD 1000 #/year Level 2 Treatment 100 year storm design	Residual SS (as above)

(1)For comparison, this data has been computed for an area of Chicago equal to the study area in the Cleveland-Akron Three Rivers Plan.

TABLE B5

COST OF INCREASED PROTECTION AND TREATMENT

100 Year Compared To 1 Year Runoff

		Ratio of Ca	ipital Cost
		Level 1	Level 2
Alternative of Treatment	with		
municipal wastewater*	Earth Basin	1.08	1.06
•	Concrete Basin	1.67	1.66
Alternative of separate			
treatment	Earth Basin	2.56	2.52
	Concrete Basin	4.37	3.14

^{*}low ratio results because with this scheme the storage capacity is 20% of the annual volume which is approximately equal to the 100 year storm. This capacity of storage is required in order to release low flows that can be conveyed in existing sewers and not overload the wastewater treatment plant.

4.2 STORAGE ALTERNATIVES

The construction of concrete storage basins is more expensive than constructing earth basins. Concrete basins have the advantages of being covered to prevent accidents, control odors, make sludge collection simpler and uses less land. The earth basins have the advantages of being less costly, providing additional green space, and could be developed into recreational areas.

For plans 1 and 2, the storm water runoff plans were formulated in two ways - one: all concrete basins; second, a combination of concrete basins and earth basins. With the combination plan, concrete basins were considered for all dense urban sites or areas that were already developed with storm and sanitary sewers when infiltration or illegal cross-connections were a problem. All combined sewer areas were supplied with concrete basins. The cost comparisons for these plans are shown in Table B6 and reflect cost for the unadjusted flows as described in 4.3. For a cost comparison, the plan was computed for a situation having all earth basins. This, of course, would not be recommended in combined sewer areas and is presented for cost information only.

TABLE B6
CONCRETE STORAGE COST

	2020 Volume (MG/YEAR)	Plant Capital (\$1000)	Plant O&M (\$1000/Yr)	Pipe Capital (\$1000)	Pipe O&M (\$1000/Yr)	Annual Compar. Value (\$1000/Yr)
Plan #1 Concrete & Earth	86,693	784,540	4,309	348,646	2,179	92,330
Plan #1 All Concrete	86,693	1,752,900	5,377	348,646	2,179	160,395
Plan #1 All Earth	86,693	440,000	4,400	348,646	2,179	71,079

4.3 SENSITIVITY OF FLOW ADJUSTMENT ASSUMPTION

As discussed in Section 2.2, the peak flow and volume were adjusted for the institutional constraint of zoning. In order to show the potential benefit of the type of zoning, plans 1 and 2 were computed using the unadjusted flow rates and volumes. The results are shown in Table B7.

TABLE B7
UNADJUSTED VS. ADJUSTED FLOW COSTS

	2020 Volume (MG/Year)	Plant Capital (\$1000)	Plant O&M (\$1000/Yr)	Pipe Capital (\$1000)	Pipe O & M (\$1000/Yr)	Annual Compar. Value (\$1000/Yr)
Plan #1 & #2 Unadjusted Flow	86,693	784,540	4,309	348,646	2,179	92,330
Plan #1 & #2 Adjusted Flow	74,254	747,886	3,718	345,824	2,156	88,683

4.4 COMPARISON OF LEVEL 1 AND LEVEL 2 LOADS TO RURAL RUNOFF

BOD and suspended solids loads from the urban area, both combined and separate, and the rural loads are compared to evaluate the significance of each source and reduction possible by treatment of the urban runoff.

Comparing the rural load contribution to the urban load shows that 6.6% of the BOD and 28.3% of the suspended solid originates from the rural area.

Table B8 illustrates the net effect on stormwater BOD and suspended solids residuals as compared to the total stormwater runoff for the study area. Increasing the degree of treatment from Level 1 to Level 2 increases the BOD percent removal from 68 to 91 and the suspended solid percent removal from 63 to 71.

This is discussed further in Section 4.6 with respect to the total load from the study area.

TABLE BS

EFFECT OF TREATMENT ON STORMWATER

RUNOFF

	MG/	<u>1970</u> Yr. %	<u>5</u>	MG/	2020 Yr. %
VOLUMES					
Urban (Combined) Runoff Urban (Separate) Runoff Rural Runoff Total Runoff))	65 49	,150 12 ,561 51 ,515 37 ,226 100
	2020	1000 lbs.	1000 lbs.	Percent	of Total
	1000 lbs./Yr.	Removed	Residual	Removed	Residual
BOD					
(Urban (Combined)	8,070	6,690	1,380	32	8
(Urban (Separate)	11,099	7,390	3,709	36	18
Level 1 (Rural	1,341	0	1,341	0	6
(Total	20,510	14,080	6,430	68	32
(Urban (Combined)	8,070	7,908	162	38	0.8
(Urban (Separate)	11,099	10,766	333	53	1.6
Level 2 (Rural	1,341	0	1,341	0	6.6
(Total	20,510	18,674	1,836	91	9
	2020	1000 lbs.	1000 lbs.	Percent	of Total
	1000 lbs./Yr.	Removed	Residual	Removed	Residual
SUSPENDED SOLIDS					
(Urban (Combined)	26,908	22,871	4,037	7	2
(Urban (Separate)	183,812	165,430	18,382	56	6
Level 1 (Rural	84,680	0	84,680	0	29
(Total	295,400	188,302	107,099	63	37
(Urban (Combined)	26,908	26,638	270	9	.1
(Urban (Separate)	183,812	181,973	1,839	62	.6
Level 2 (Rural	84,680	0	84,680	0	28.3
(Total	295,400	208,611	86,789	71	29

4.5 COST OF TREATING NON-SEPARABLE COMBINED SEWER OVERFLOWS

The plans 1 through 12 present cost data for runoff which does in fact include all runoff resulting from rainfall. These costs are not totally additive to municipal wastewater treatment cost since a part of this runoff is in combined sewered areas when the flows are mixed and the storm water is treated regardless of the scheme. In order to present the appropriate wastewater management cost, the combined sewer area cost has been separated from the total stormwater runoff cost. The flow from the combined sewer areas would be the first to receive treatment.

Table B9 shows the separation. Flows from each area are indicated and the total capital cost of constructing collection, storage, and treatment facilities are shown.

TABLE B9

COMBINED OVERFLOW COST

		Combined	Separate	Total Ca Combined	pital Cost
Plan	Level	Overflow MG/Yr.	Stormwater MG/Yr.	\$1,000,000	Separate \$1,000,000
1	1	16,218	58,036	348	744
2	1	16,218	58,036	348	744
3	2	16,218	58,036	812	1,734
4	2	16,218	58,036	537	1,380
5	1	16,218	58,036	750	801
6	1	16,218	58,036	731	798
7	2	16,218	58,036	338	1,339
8	2	16,218	58,036	369	1,286
9A	2	16,218	58,036	555	1,791
10	2	16,218	58,036	812	1,734
11	2	16,218	58,036	768	1,709
12	2	16,218	58,036	388	1,049

4.6 COST OF INCREASED TREATMENT

The total annual cost of increasing treatment to meet the level 2 goals over level 1 is compared with the increase in pollutant residual mass loads. This data reflects the incremental removal using plan 1 which was designed both for level 1 and 2 goals.

TABLE B10
STORM WATER REMOVAL

	Tota Remova	-	Incremental Removal of	Incremental Removal Cost of
Parameter	Level 1	Level 2	Level 2	Level 2
Suspended Solids	84%	99%	15%	\rightarrow
BOD ₅	65%	97%	32%	100%
Nitrogen, (Total)	54%	95%	41%	100%
Phosphorus	77%	94%	17%	

TABLE B11
MUNICIPAL WASTE

	Tot Remov	al al of	Incremental Removal of	Incremental Removal Cost of
Parameter	Level 1	Level 2	Level 2	Level 2
Suspended Solids	99%	99%	0%	
BOD ₅	97%	99%	2%	479
Nitrogen, (Total)	26%	97%	71%	43%
Phosphorus	96%	99%	3%	
COD	93%	98%	5%)

Table B12 shows the residual loads resulting from the two levels expressed in pounds per year and also as a percent of the total load. The rural loads are not treated. The urban load is the total from both the separate and combined sewered areas.

TABLE B12

RESIDUAL LOADS* 1,000 lbs/year

	G nedwil	unoff	Rural	Runoff	Munic	ipal	Tota	a.l
Parameters	Level 1 Level	Level 2	Level 1	Level 1 Level 2	Level 1	Level 1 Level 2	Level 1 Lev	Level 2
Suspended Solids	22,419	2,109	84,680	84,680	4,838	879	111,937	87,668
BODS	5,089	495	1,341	1,341	12,046	860	18,476	2,696
Nitrogen, Total	1,496	163	825	825	41,901	1,689	44,222	2,677
Phosphorus	343	81	83	83	1,207	241	1,633	405
		RESIL	UAL LOADS,	RESIDUAL LOADS, percent of total	total			
Suspended Solids	20	х	76	96	4	1	100	100
BODS	28	18	7	20	65	32	100	100
Nitrogen, Total	3	9	2	31	95	63	100	100
Phosphorus	21	20	Ŋ	20	74	09	100	100

*Total load discharged to receiving waters.

The incremental cost of treating storm water to Level 2 is primarily in the unit process concepts designed for soluble pollutant removal (i.e., organics, nitrogen and phosphorus), with additional suspended solids capture. Nitrogen in the storm and combined sewer runoff is an insignificant percentage of the total when compared to the municipal residual in both Level 1 and 2. The BOD residual, as shown in Table B12, is 36% of the total load when compared to Rural and Municipal, and the suspended solids is 20% of the total load. The suspended solids, although they are 20% of the load, would contain a high percentage of inert materials such as silt. Level 2 treatment reduces the BOD to 18% and Suspended Solids to 3% of the total load.

Comparing the residuals, it would appear that the benefit of treating storm water to Level 2 does not justify the incremental cost.

With municipal wastes, the incremental cost is primarily due to the unit process techniques required for nitrogen and COD removal. Nearly the total load of nitrogen is in the municipal waste and is reduced by 94% by the Level 2 treatment process over Level 1. If the removal of nitrogen can be scientifically shown to reduce the euthrophication of Lake Erie, then its removal should be considered. The incremental cost of Level 2 can be decreased by about 20%, if the COD requirement is reduced. The additional COD removed for this 20 percent cost increment is largely refractory or biologically inert. Thus, its immediate influence on the environment would be minimal whereas its long term affect is unknown. The necessity for this removal and the associated unit process should be weighed against, what are now, immeasurable future benefits.

C. ALTERNATIVE PLANS - COST ESTIMATES

1. - PROCEDURE

Twelve alternative plans have been developed for total wastewater management of the study area. These plans are described in detail by the Plan Formulators, Wright-McLaughlin Engineers, in their phase report and will not be duplicated here.

This section of the report presents the cost estimations of the twelve plans as related to our portion of the study. This portion is described in the following paragraphs. Plans 1 through 8 were computed to both Levels 1 and 2 in order to better evaluate the merits of the plans.

The procedure for the cost estimation include the calculation of the following items for each of the major segments involved.

- Net capital cost This cost is based on the 2020 design flows and takes into account the present worth of the existing structures.
- 2) Annual Capital This cost is based on a capital recovery factor multiplied by the net capital cost. The capital recovery factor is a function of the useful life of the item and an interest rate of
- 3) Operation and Maintenance This cost is based on the 2020 design flow of the particular segment.

2. - COMPARATIVE COST PRESENTATION

Havens and Emerson's portion of the alternative plans cost estimation is divided into four basic areas to better evaluate the relative features and costs of each plan. These areas include:

1) Wastewater Treatment Plants - Liquid Phase. Table C1 includes the cost breakdown for each plan as previously described for the liquid phase of the wastewater treatment plants and the pipe costs for the required interceptor systems. Of particular importance in the examination

- of this table is that the cost fluctuations between plans is dependent upon the quantity of wastewater receiving secondary treatment and the quantity of wastewater receiving advanced treatment.
- breakdown for each plan for the solid phase of the wastewater treatment plant. There are two important variations which explain the cost fluctuation between the plans. The first is that each plan has different combinations of the three techniques utilized for ultimate sludge disposal (incineration, agricultural application, strip mine reclamation). The second is that different quantities of sludge are being generated in each plan due to the differences in the levels of treatment.
- Storm Water Treatment Liquid Phase. Table C3 includes the cost breakdown for each plan for the liquid phase of stormwater treatment. There
 are four basic schemes of stormwater treatment which should be noted in
 the evaluation due to their significant effect on the cost fluctuations
 of the plans. The difference is largely due to the variation in volumes
 of storage required for each of these schemes. Scheme 1 requires storage
 of slightly less than the 1 year storm. Scheme 2 and 3 require storage
 of the 1 year storm. Scheme 4 requires storage of 20% of the annual runoff, which is the equivalent of the runoff resulting from a 100 year
 rainfall. Table C5 shows the actual storage volumes required for each
 plan. Following is a list of the four schemes:
 - Separate storm water treatment (Levels 1 and 2) with discharge to stream.
 - 2. Storm water storage and treatment with discharge to land treatment.
 - Storm water storage only with discharge to land treatment. This
 was done for Plan 12 only.

- 4. Storm water storage with discharge to the sanitary system for treatment at the municipal plant.
- 4) Storm Water Treatment Solid Phase Table C4 includes the cost breakdown for the solid phase of stormwater treatment. The quantity of
 sludge generated appears to be the most significant variable in causing
 cost fluctuations between the plans. This varies depending upon the
 method of stormwater treatment.

HASTEMATER MANGEMENT PROCRAM TABLE CI HASTEMATER TREATMENT PLANT - LIQUID PHASE

Annual Compar.	Value (\$1000/Yr.)	68,130	99,022	43,332	43,332	711,117	103,891	43,702	43,702	69,947	103,301	56,310	73,080	75,322	97,024	20,477	697'65	59,002	103,854	115,760	6,720
Secen	0 & M (\$1000/Yr.)	077	077	359	359	436	436	372	372	422	777	777	777	697	697	373	373	248	436	436	907
Sewer Annual Capital	Cost (\$1000/Yr.)	5,024	5,024	4,720	4,720	5,440	5,440	4,720	4,720	768.4	768.7	768,4	7,894	5,381	5,381	4,769	4,769	9,000	5,440	5,435	4,720
Sever	Capital (\$1000)	69,310	69,310	62,099	65,099	75,039	75,039	62,099	62,099	67,507	67,507	67,507	67,507	74,218	74,218	62,779	62,779	82,754	75,046	74,969	68,099
Total	0 & M (\$1000/Yr.)	43,507	59,628	23,014	23,014	46,481	62,615	23,082	23,082	45,395	65,590	34,144	42,092	49,142	58,392	29,136	34,269	33,831	62,615	76,503	1,248
Plant Annual Capital	Cost (\$1000/Yr.)	19,159	33,930	15,239	15,239	19,360	35,400	15,528	15,528	19,236	32,395	16,850	25,672	20,336	32,788	16,199	20,058	18,623	35,363	33,386	346
Ne t	Capital (\$1000)	248,170	439,520	197,401	197,401	250,785	458,073	201,135	201,135	249,165	419,628	218,270	332,543	263,427	424,711	209,835	259,815	241,225	458,073	389,124	4,478
Present	Worth (\$1000)	156,066	156,066	169,566	169,566	167,825	167,825	169,566	169,566	170,066	170,066	173,931	173,931	162,933	162,933	169,541	169,541	92,695	167,825	•	•
Plants	0 & M (\$1000/Yr.)	43,507	59,628			46,481	62,615		•	43,659	63,854	21,211	29,159	7,400	26,690	10,846	13,979	32,633	62,615	76,503	ı
Advanced Plants	(\$1000)	404,236	985,586	•		418,610	625,898	•	•	395,224	565,587	195,792	310,065	402,743	564,027	96,100	146,080	332,500	625,898	389,124	•
	P 28	794	794	•	•	794	794	•		768	891	105	105	168	768	761	761	997	194	194	•
Plants	0 & M (\$1000/Yr,)	•	•	23,014	23,014	•	•	23,082	23,082	1,736	1,736	12,933	12,933	1,702	1,702	18,290	18,290	1,198	•		•
Secondary Plants	Capital (\$1000)	•	•	368,967	368,967	,	•	370,701	370,701	24,007	24,007	196,409	196,409	23,617	23,617	283,276	283,276	1,420	•		4,478
1	1 00	•	٠	794	194	•		194	194	97	56	393	393	56	56	909	9	328		•	764
	Level	-	7	7	2	~	2	1	7		7	-	7		7	-	7	7	~	~	~
	Plan	~	~	7	7	Е	3	4	4	'n	٠	٠	٠	7	7	80	80	٧6	10	::	13

WASTENATER MANACHENT PROCRAM TABLE C2 WASTENATER TREATMENT PLANT - SOLID PHASE

	\$100	Sludge Volumes			Cer	Capital Cost			,	Opera	Operation and Maintenance	nance	•
1	Ä	Dry Tone/Day	1	Inciner-	Agricult- ural App-	Strip	Pump Station &		Annual Capital	Capital	Pump Station &	V	Amnual Compar.
н,	Inciner-	ural App-	Strip	4t100 (\$1000)	11eation (\$1000)	Mines (\$1000)	Force Main (\$1000)	Total (\$1000)	Cost (\$1000/Yr.)	Fac. (\$1000/Yr.)	Force Main (\$1000/Yr.)	Disposal (\$1000/Yr.)	Value (\$1000/Yr.)
	835	•	•	64,360	•	•	•	64,360	696.4	9,438	,	405	14,811
	926		•	68,134	•	•	•	68,134	5,260	10,152	•	299	16,079
		*	411	,	6,572	40,758	7,924	55,254	4,266	1,499	0.47	•	6,235
	•	*	417	•	6,572	40,758	7,924	55,254	4,266	1,499	0.47	•	6,235
	1	7.8	586	29,900	10,852	25,180	2,359	68, 291	5,272	6,038	142	357	11,809
	\$115	2	330	31,700	11,670	26,710	2,359	72,439	5,590	6,533	142	393	12,658
	•	*	11.1	•	6,572	40,758	7,924	55,254	4,266	1,499	470	•	6,235
		*	117		6,572	40,758	7,294	55,254	4,266	1,499	7.0	•	6,235
	376	æ	424	35,675	5,205	33,500	2,408	76,788	5,928	5,718	145	289	12,080
	413	ĸ	994	37,600	5,355	38,050	2,408	83,313	6,431	6,110	145	316	13,002
	267	14	393	18,250	7,705	30,858	3,307	60,120	4,641	4,261	187	187	9,273
	272	7	410	19,250	7,705	36,590	3,307	66,852	5,160	4,577	184	902	10,127
	372	ន	949	30,500	3,325	36,000	2,875	72,700	5,612	5,229	173	284	11,298
	1114	13	767	32,450	3,325	050'07	2,875	78,700	9,000	5,622	173	314	12,185
	38	28	315	20,350	5,105	26,810	4,130	56,395	4,354	4,037	248	201	8,840
	284	28	316	21,050	5,105	27,010	4,130	57,305	4,424	4,189	248	712	8,078
	317	•	377	20,700	•	20,000	1,097	41,797	3,227	3,564	99	243	7,100
		386	537	•	31,880	35,915	7,197	74,992	5,789	3,443	425	•	9,657
	•	ı		•		•		,	•	•	•	1,494	1,494
	,	1	,	•	•	•	•	•	•	•	•	í	•

*Preliminary Treatment Only

HASTEMATER MANACHENT PROCRAM TABLE C3 STORMATER TREATMENT PLANT - LIQUID PHASE

	Annual Compar. Value (\$1000/Yr.)	88,683	149,905	88,683	149,905	203,049	220,476	156,541	156,541	124,735	169,023	124,106	165,034	136,718	149,877	131,376	139,120	198,411	220,476	214,298	115,128
	0 & M (\$1000/Yr.)	2,156	2,156	2,156	2,156	2,286	2,286	1,737	1,737	1,390	1,479	1,885	1,901	2,233	2,238	2,216	2,216	11,768	2,286	2,286	7,466
	Pipe Cost Annual Capital Cost (\$1000/Yr,)	25,072	25,072	25,072	25,072	26,987	26,987	20,155	20,155	16,095	17,158	21,532	22,050	25,900	25,955	25,660	25,665	154,092	26,987	26,987	103,380
	Capital	345,824	345,824	345,824	345,824	372,247	372,247	278,000	278,000	222,000	236,663	297,000	304,143	357,249	358,000	354,000	354,000	2,125,407	372,247	372,247	1,425,931
	1 Treatment 0 & M (\$1000/Yr.)	•		•	•	24,441	27,694	14,243	14,243	5,511	7,940	5,931	6,347	13,702	16,169	10,134	10,800	13,427	27,694	26,827	2,720
	Stormwater to Municipal Plants Combined Treatment Storage Plant Capital Capital Capital Cost 0 & M (Yr. (\$1000) (\$1000) (\$1000/Yr.) (\$1000/Yr.)	•	•	•	•	139,362	144,017	115,670	115,670	57,830	58,640	50,088	50,930	66,670	67,879	64,281	64,770	7,981	144,017	138,706	
	unicipal P Plant Capital (\$1000)	ı		ı	•	110,272	163,856	112,933	112,933	21,110	31,600	18,799	29,735	44,211	59,861	46,050	52,385	103,380	163,856	95,063	•
	Storage Capital (\$1000)	Ì	•	i	•	1,811,986	1,811,986	1,475,205	1,475,205	775,190	775,190	670,840	670,840	872,515	872,515	837,605	837,605	*	1,811,980	1,811,980	*
	Store	•	•	•	•	65,072	65,072	55,711	55,711	15,492	15,492	16,111	16,111	38,345	38,345	33,053	33,053	707'69	65,072	65,072	48,530
	Plant 0 & M (\$1000/Yr.)	3,718	21,816	3,718	21,816	536	4,260	801	801	2,749	16,256	2,749	16,256	1,909	7,770	2,316	3,998	2,049	4,260	4,260	969
Treatment	Plant Annual Capital Cost (\$1000/Yr,)	57,737	100,861	57,737	100,861	9,437	15,232	3,935	3,935	41,160	67,550	41,921	67,550	26,304	29,866	26,764	31,677	760'6	15,232	15,232	866
Separate Treatment	Plant + Storage Capital (\$1000)	747,886	1,306,500	747,886	1,306,500	122,250	197,300	50,972	50,972	533,150	875,009	543,021	875,009	266,870	386,870	369,163	410,248	117,800	197,300	197,300	11,2224
	SWTP ² MG/Yr.	•	•	,	•	,	•	18,061	18,061	•	•	•	•	3,125	3,125	32,541	32,541	ı	•	•	25,613
	ASHTP ¹ MG/Yr.	74,254	74,254	74,254	74,254	9,704	9,704	,	•	57,546	57,546	58,085	58,085	32,712	32,712	7.617	7,617	5,463	9,704	9,704	•
	Level	1	7	-	7	-	2	-	7	-	7	-	7	-	7	-	7	7	7	7	~
	Plan	-	-	7	~	٣	r	4	4	•	•	٠	Φ	^	7	90	a 0	•	2	=	12

185WTP - Separate Stormwater Treatment Discharging to Waterway 25WTP - Separate Stormwater Treatment Discharging to Land Treatment

3 Storage Capital Included in Pipe Capital Figure ⁴Storage Only

WASTEWATER MANACEMENT PROGRAM TABLE C4 STORMWATER TREATHENT PLANT - SOLID PHASE

Sedimentation and Storage Sludge Treatment Sludge 6 M Dry Ions Capital 0 & M Lavel Per Year (Sl000) (Sl000/Yr.) Per Year (Sl000) (Sl000/Yr.)	Treatment Sludge Dry Ions Capital Per Year (\$1000)	Treatment Sludge Dry Tons Capital Per Year (\$1000)	Treatment Sludge Dry Tons Capital Per Year (\$1000)	Treatment Sludge Capital (Slood)				Total Capital	Annual Capital Cost (\$1000/Yr.)	Total 0 & M (\$1000/Yr)	Annusl Compar, Value
									70000000	(11)	11100016
1 124,067 27,293		27,293		2,225	•	•	3,141	27,293	2,107	5,302	7,409
2 206,376 31,335		31,335		2,884	•	•	006.4	31,335	2,419	7,784	10,203
1 124,067 27,293		27,293		2,225	•		3,141	27,293	2,107	5,302	1,409
2 206,376 31,335		31,335		2,884	•	٠	7,900	31,335	2,419	7,784	10,203
1 76,493 18,790	18,790			1,124	8,190	10,950	3,265	29,740	2,295	4,389	789.9
2 124,321 23,020	23,020			1,166	8,190	10,950	4,722	34,810	2,687	5,880	8,567
1 60,124 4,760 1	4,760			1,694	31,117	10,215	1,995	14,975	1,156	3,689	578.7
2 86,107 5,800 1	5,800		-	1,904	31,117	10,215	2,422	16,015	1,236	4,326	5,562
1 120,226 30,560 2	30,560		2	2,253	11,174	2,060	3,898	35,620	2,750	6,151	8,901
2 200,034 37,945 2,	37,945		2,	2,943	1,967	2,060	5,429	43,005	3,319	8,372	11,691
1 120,226 30,560 2,	30,560		2,	2,253	11,174	5,060	3,898	35,620	2,750	6,151	8,901
2 200,034 37,945 2,9	37,945		2,9	2,943	1,967	2,060	5,429	43,005	3,319	8,372	11,691
1 89,737 11,900 2,	11,900		2,	2,024	22,262	086'6	2,517	21,880	1,689	4,541	6,230
2 115,359 14,630 2,	77,630		2,	2,755	22,262	086'6	2,770	24,610	1,900	5,525	7,425
1 81,138 15,920 1	15,920		~	1,303	3,983	7,930	3,110	23,850	1,841	4,413	6,254
2 138,140 20,830 1	20,830		-	1,577	3,983	7,930	4,562	28,760	2,220	6,139	8,359
2 95,865 - 3	•		m	3,393	17,845	10,360	1,283	10,360	800	4,676	5,476
2 124,321 18,695 1	18,695			1,166	8,190	10,075	3,651	28,770	2,221	4,817	7,038
2 124,321 - 1	•			1,166	8,190		43	•	ı	1,209	1,209
2 98,831 5,800 2	5,800		2	2,343	31,117	10,115	2,422	16,015	1,236	4,765	100.4

CONCRETE/EARTH BREAKDOWNS

TABLE C5

		. /	(mg)		Capital			
Plan	Volume (mg/yr) Earth	Storage V Concrete	Earth	Storage (S	Earth	No. of B Concrete	Earth
11411	concrete		<u>concrete</u>	Dar en	<u>concrete</u>	<u>Laren</u>	concrete	<u>Lai tii</u>
1	41,107	33,389	2,815	2,310	427,995	24,414	36	97
2	41,107	33,389	2,815	2,310	427,995	24,414	36	97
3	41,267	32,697	7,813	6,176	1,879,030	32,479	38	98
4 .	40,577	32,993	7,206	5,078	1,485,840	25,216	35	91
5	39,574	34,489	4,105	2,918	958,080	23,531	33	98
6	39,574	34,489	4,105	2,918	958,080	23,531	33	98
7*	34,197	29,926	4,283	4,837	1,042,300	27,083	37	94
8	42,468	31,060	3,990	4,627	982,705	26,466	39	88
9	41,800	31,120	7,626	6,224	1,640,070	29,415	48	74
10	41,267	32,697	7,813	6,176	1,879,030	32,479	38	98
11	41,267	32,697	7,813	6,176	1,879,030	32,479	38	98
12	40,577	32,993	7,206	5,078	1,261,130	25,216	35	91
*Easterly								
Off-Shore Storage	9,1	07	1,8	21	5,0	OO	1	

3. - COST SUMMARY

Table C6 summarizes the costs for Plans 1 through 12 as developed for the wastewater and stormwater portions of the cost estimation as previously described. It should be noted again that the cost summaries as presented here are not the entire plan costs in that they include no cost for land treatment of wastewater, stormwater, or sludge and no cost for industrial waste pretreatment.

It should be further noted that with Plan II, there has been no attempt to consider the outstanding bonded indebtedness of existing plants that would be abandoned. This would increase the annual cost. The Plan II, physical-chemical, cost estimates do not have the same degree of reliability as the biological systems since the history of actual construction cost is limited.

TABLE C6

ANNUAL COMPARITIVE VALUES*
(\$1,000,000/Yr)

Plan	Level	Wastew Liquid	Solid Solid	Stormw Liquid	Solid	TOTAL
1	1	68	15	87	7	177
1	2	99	16	143	10	268
2	1	43	6	87	7	143
2	2	43	6	143	10	212
3	1	72	12	203	7	294
3	2	104	13	220	9	346
4	1	44	6	157	5	212
4	2	44	6	157	6	213
5	1	70	12	125	9	216
5	2	103	13	169	12	297
6	1	56	9	124	9	198
6	2	73	10	165	12	260
7	1	75	11	137	6	229
7	2	97	12	150	7	266
8	1	50	9	131	6	196
8	2	59	9	139	8	215
9	2	59	7	198	5	269
10	2	104	10	220	7	341
11	2	116	1	214	1	332
12	2	7	-	115	6	128

^{*}These costs include \underline{no} costs associated with land treatment.

D - RELATED INFORMATION

1. ELECTRICAL POWER REQUIREMENTS

The electric power requirements needed to treat a given volume of wastewater were obtained from Figure Dl. Four basic plots are included in this figure. These represent power requirements per million gallons of wastewater for primary and secondary treatment, state goals (Level 1), federal goals (Level 2) and aeration for pre-treatment.

In computing values for plotting the primary and secondary treatment curve, the electric power requirement was computed for treatment plants having a wide range of average plant flows. The ratio of kilowatt-hours to million gallons treated was computed for these various plants initially for only the diffused, single-stage aeration assuming 1.5 cubic feet of air required per gallon, 25 cubic feet of air produced per minute per horsepower and the conversion from horsepower to kilowatts (taking into consideration motor efficiencies, etc.). The power required for the aeration process was then assumed to be approximately 60% of the total KWH/MG for primary and secondary treatment excluding pumping.

Computation of power requirements for state goals (Level 1) includes power consumed in primary treatment, aeration and by the use of microstrainers. Five horsepower is needed for every 10 MGD for the microstrainers. Aeration, which is a combination of 0.7 cu.ft./gal. for high rate activated sludge, 1.5 cu.ft./gal. for nitrifying activated sludge, and 0.1 cu.ft./gal. for post-aeration, requires a direct ratio of cu.ft./gal. to the power required for the aeration process of the primary-secondary process. Here, 2.3 cu.ft. of air per gallon is required compared to 1.5 cu.ft. per gallon of the primary-secondary process. Power for the primary treatment process is the same as the previous power requirements for this process.

O.C.E. goal (Level 2) treatment power requirements are a combination of electric power used for carbon adsorption, aeration, denitrification mixing, and primary treatment. The power requirement for carbon adsorption is based on a total dynamic head of 20 feet and the conversion from horsepower to kilowatts. Primary treatment requires 40% of the power required for the combined primary and secondary process. Aeration, which is a combination of high rate activated sludge aeration (.7 cu.ft./gal.), nitrifying activated sludge aeration (1.5 cu.ft./gal.), denitrifying reaeration (0.1 cu.ft./gal.), and post-aeration (0.1 cu.ft./gal.), requires a direct ratio of cu.ft./gal. to the power required for the aeration process of the primary-secondary process. Here, 2.4 cubic feet of air per gallon is required compared to the 1.5 cubic feet per gallon of the primary-secondary process. Five horsepower is required per MGD for the denitrification mixing process.

Power requirements for pre-treatment aeration is a constant 700 kilowatt-hours per million gallons. This is obtained by assuming an electrical power cost of \$7/MG at a rate of 1.21¢ per kilowatt-hour.

Using Figure D1*, the power required for each plan was computed. The average plant size for each particular plan was entered onto the abscissa of Figure D1 and the power requirement in kilowatt-hours per million gallons was read off the curve of the appropriate treatment level. This power requirement (KWH/MG) was then multiplied by the total flow for each plan for the total power required. The power required for each plan is summarized on Table D1. The total cost for power for each plan can be computed by multiplying 1.21¢/KWH times the power required in the aforementioned table.

^{*}Federal Goals refer to standards established by O.C.E. (Office of the Chief of Engineers).

TABLE D1

ELECTRICAL POWER REQUIREMENTS

/DAY)	Pre-Treatment												557
POWER REQUIREMENTS (MEGAW/DAY)	TYPE OF PLANT									35			
POWER REQUIR	TYPE OF Tertiary	2040		2460		2700	961	2080	520	1140	2460	2460	
	Secondary		1730		1730	91	965	91	1380	25			
	Pre-Treatment												794
(g	Primary									318			
FLOW (MGD)	Tertiary	794		794		768	401	768	194	458	794	794	
	Secondary		794		794	26	393	26	009	œ			
		7	7	ю	4	s	9	7	∞	6	10	11	12

ELECTRIC POWER REQUIREMENTS

2. WASTEWATER TREATMENT CHEMICAL REQUIREMENTS

A breakdown of the daily chemical requirements for various treatment processes is summarized on Table D2. Chemicals needed for both the biological and physical-chemical treatment systems are shown for a basic system, state goals (Level 1), O.C.E. goals (Level 2), and the ultimate reuse applications. Each chemical additive is broken down into a requirement in pounds per day as taken from the mass balance diagrams for each process. The more stringent goals require more chemicals for both treatment systems while the physical-chemical process requires from 2 to 4 times as many chemicals as the biological process.

Table D3 illustrates chemical requirements necessary for each type of treatment implemented per plan for wastewater only. Plans meeting federal goals require the most chemicals except where physical-chemical treatment is utilized as in Plan 11. Plan 12 requires no chemicals since it only involves the pre-treatment processes. The values for Table D3 were obtained by multiplying the total flow in each plan for each distinct process by the total requirements needed in that process as shown on Table D2.

TABLE D2

CHEMICAL REQUIREMENTS (pounds per agd)

Total (#/day)	136	734	584	2423	1048	2423	1048	2423
Ca0 (#/day)	•	720	ı	1050	ı	1050	ı	1050
Methanol (#/day)	•	•		•	420	ı	420	ı
Polymer (#/day)	1	14	છ	13	ю	13	м	13
Ca(0H) ₂ (#/day)	•	•	420	200	470	200	470	200
A1+3 (#/day)	ı	ı	111	ı	122	ı	122	ı
C12 (#/day)	99	,	20	860	33	860	33	860
Lime & FeCl3 (#/day)	70	,	1	•	,	•	1	ι
Treatment	Basic Biological Treatment System	Basic Phys-Chem Treatment System	Basic Bio. Treatment System (State Goals)	Basic Phys-Chem Treat- ment Sys. (S. Goals)	Basic Bio. Treatment System (Fed. Goals)	Basic Phys-Chem Treat- ment Sys. (Fed. Goals)	Basic Bio. Treatment System (Ultimate Reuse)	Basic Phys-Chem Treat- ment Sys. (Ultimate Reuse)

TABLE D3

CHEMICAL REQUIREMENTS PER PLAN

(pounds per day)

Totals	474,400	118,000	833,000	118,000	445,540	287,500	808,540	285,100	532,600	833,000	1,925,000	ı
Phys-Chem (OCE. Goals)	•	1	ı	ı	ı	,	•	ı	•	ı	1,925,000	•
Phys-Chem (State Goals)	49,400	ı	1	ı	ı	ı	ı	ı	1	ı	ı	1
Biological (Fed. Goals)	ı	ı	833,000	1	ı	1	805,000	203,500	488,000	833,000	ı	
Biological (State Goals)	425,000	ı	ı	ı	442,000	234,000	ı	ı	ı	1	ı	•
Secondary	·	118,000	1	118,000	3,540	53,500	3,540	81,600	44,600	•	ı	1
Plan	-	7	м	4	Ŋ	9	7	∞	თ	10	11	12

3. STORMWATER TREATMENT CHEMICAL REQUIREMENTS

The chemicals required for treatment of stormwater runoff and combined sewer overflows are illustrated in Table D4. State goals (Level 1) require no chemicals for both types of flows while it is necessary to use 872 #/MG and 2310 #/MG of chemicals for stormwater runoff and combined sewer overflows respectively for O.C.E. goals (Level 2).

Table D5, which is a breakdown of chemical requirements per plan for stormwater and combined sewer overflow treatment, was formulated by multiplying the total requirements in #/MG in Table D4 for the various treatment processes by the flow in each plan for each distinct process. Plan 11 requires the most chemicals because of the physical-chemical treatment involved in municipal plant treatment while Plans 1 and 2 require no chemicals since all treatment meets only State goals without any municipal plants handling stormwater.

TABLE D4
- CHEMICAL REQUIREMENTS -

STORMWATER & COMBINED SEWER OVERFLOW TREATMENT

TREATMENT PROCESS	POWDERED ACTIVATED CARBON (#/MG)	ALUM(AL ⁺³) (#/MG)	POLYMER (#/MG)	GRANULAR ACTIVATED CARBON(#/MG)	CL ₂ (#/MG)	CA (OH) ₂ (#/MG)	TOTAL (#/MG)	
STORMWATER TREATMENT (OCE GOALS)	830	8	8	26			872	
COMBINED OVERFLOW TREATMENT (OCE GOALS)	1000	100	4	26	430	750	2310	
STORMWATER TREATMENT (STATE GOALS)							0	
COMBINED OVERFLOW TREATMENT (STATE GOALS)				***************************************			0	

TABLE DS

CHEMICAL REQUIREMENTS (#/DAY) PER PLAN FOR STORMWATER & COMBINED SEWER OVERFLOW TREATMENT

PLAN	LEVEL	SEPARATE STORMWATER	COMBINED OVERFLOW	MUNICIPAL PLANT	TOTAL	
1	1				0	
2	1				0	
3	2	6,170	45,500	187,000	238,670	
4	2	26,200	45,500	20,800	92,500	
5	1			24,560	24,560	
6	1			8,980	8,980	
7	2	68,500	45,500	106,500	220,500	
8	2	65,500	80,000	46,650	192,150	
9	2	8,150	13,000	126,190	147,340	
10	2	6,170	45,500	187,000	238,670	
11	2	6,170	45,500	434,500	486,170	
12	2	51,500	4,070		55,570	

APPENDIX A REFERENCES

- 1. Smith, Robert, "Cost of Conventional and Advanced Treatment of Wastewater", Journal WPCF, September 1968.
- 2. Federal Water Pollution Control Administration, "A Study of Sludge Handling and Disposal", (PC-20-4), April, 1968.
- 3. Environmental Protection Agency, "Advanced Waste Treatment as Practiced at South Tahoe", (WPRD 52-01-67), August, 1971.
- Burgess & Niple, Ltd., "Project Cost Study" for Northeast Ohio Water Development Plan, Ohio Department of Natural Resources, June, 1970.
- 5. Black & Veatch, "Preliminary, Estimating Cost and Manpower Requirements for Conventional Wastewater Pretreatment Facilities," Environmental Protection Agency, October, 1971.
- 6. Confidential data from various manufacturers representatives on past and future projects.
- 7. Dryden, Franklin, "Demineralization of Reclaimed Water", <u>Industrial</u> Waste Engineering, August/September, 1971.
- 8. Cost data from bid sheets on previous Havens and Emerson, Ltd. projects.
- 9. Culp, Russel L. and Culp, Gorden L., Advanced Wastewater Treatment, January, 1971.
- 10. Mulbarger, M.C., "Nitrification and Denitrification in Activated Sludge Systems", Journal WPCF, October, 1971.
- "Ozone Adds Punch to Oxidation of Wastewaters", Chemical Week, November 3, 1971.
- 12. Environmental Quality Systems, Inc., "Preliminary Technical Review of Activated Carbon Treatment Costs and Effectiveness", U.S. Army Corps of Engineers, March 1, 1972.
- 13. Environmental Quality Systems, Inc., "Interim Technical Review of Electrodialysis and Reverse Osmosis Costs and Effectiveness", U.S. Army Corps of Engineers, May 1, 1972.
- 14. Environmental Quality Systems, Inc., "Interim Technical Review of Biological Nitrogen Removal Cost" and Effectiveness", U.S. Army Corps of Engineers, March 31, 1972
- 15. Environmental Quality Sys 3, Inc., "Interim Technical Review of Chemical Phosphorus Removal Costs and Effectiveness", U.S. Army Corps of Engineers, March 17, 1972.
- 16. Environmental Quality Systems, Inc., "Interim Technical Review of Selected Filtration Process Costs and Effectiveness", U.S. Army Corps of Engineers, March 10, 1972.

- 17. Environmental Quality Systems, Inc., "Technical Note on the Occurrence of Viruses in Wastewater and Disinfection Procedures", U.S. Army Corps of Engineers, June 1, 1972.
- 18. Stanley Consultants, Inc., "Wastewater Treatment Unit Processes, Estimating Costs, 1972."
- 19. Office of the Chief of Engineers, Department of the Army, "Regional Wastewater Management Systems for the Chicago Metropolitan Area, Cost Data Annex to the Technical Appendix", March, 1972.
- 20. Dalton-Dalton-Little, Resource Engineering Associates, "Program for the Lower Cuyahoga River", Industrial Waste Survey for Department of Public Utilities, Clean Water Task Force, Cleveland, Ohio, January, 1971.
- 21. Burgess & Niple, Ltd., "Design Criteria for Northeast and Southwest Ohio Water Development Plans", Ohio Department of Natural Resources, September, 1971.

APPENDIX B PLANNING INPUT

During the course of this study, the following people, firms, and agencies were contacted for information or input.

- 1. Tri County Regional Planning Commission.
- 2. Geauga County Planning Commission.
- 3. Department of Natural Resources, State of Ohio.
- 4. Mr. George Garrett, Department of Health, Division of Sanitary Engineering, State of Ohio.
- 5. Three Rivers Watershed District.
- 6. Geauga County Sanitary Engineers.
- 7. Portage County Sanitary Engineers.
- 8. Medina County Sanitary Engineers.
- 9. County Sanitary Engineers, Group of Northeast Ohio.
- 10. Burgess and Niple, Consulting Engineers.
- 11. Willard Schade and Associates, Consulting Engineers.
- 12. Alden Stilson and Associates, Consulting Engineers.
- 13. Berlie L. Schmidt, Ohio Agricultural Research and Development Center.
- 14. James M. Beattie, Ohio Agricultural Research and Development Center.
- 15. Michael Benza, Jr., Consulting Engineer.
- 16. Lewis DeBevec, City of Akron.

APPENDIX C: DISCHARGE REQUIREMENTS TO SURFACE WATERS

Goal II - Pederal Government	Trace	Trace	None	<5 mg/l			✓ 75 Color Units	Non Offcnsive	Critical levels for all constituents not specifically mentioned shall be based upon natural background levels of the receiving watercourse or aquifor with exception of constituents that are highly toxic or injurious to the environment at trace levels. If current State water quality stundards are higher, these standards shall apply; or levels of nontoxic constituents may be relaxed upward (above background levels) should they be proven to be not injurious to the environment of the region.	Absent (not detectable by standard methods and current technory many) No Comment Absent III	
Goal I - State of Ohio	Substantially complete removal - monthly ave. 0.3 ml/l max. 1.0 ml/l	Lowest practical level attainable by today's technology monthly ave. 10 mg/l max. 20 mg/l	Substantially complete removal	Reduction to such a degree as to not cause noticeable turbidity in the receiving stream, but shall not exceed:	Free Flowing Warm Cold Water Fisheries, Pooling Water Fisheries Streams, Scenic Rivers, Reservoirs and Inland Lakes	Monthly Maximum Monthly Maximum Ave. Daily Ave. Daily 30 mg/l 30 mg/l	Effluent imparts no objectionable color nor increases the back-ground level by 5 standard units.	Reduction to such a degree as to not cause an objectionable odor, a threshold odor number 724 to potable water supplies, nor cause fish flesh tainting.	Reduction of any and all materials to such a degree that the concentration thereof, singly or in combinations, in any discharge is not harmful to human health or aquatic life to such a degree that the concentration thereof in the discharge does not kill 25% of a mixed fish population common to the receiving stream in a 1:1 dilution of the sample with waters of the receiving stream provided that the calculated concentration in the receiving attendand does not exceed 1/20 of the 96 hour median tolerance level.	0.05 mg/l 1.0 mg/l 0.01 mg/l 0.03 mg/l 0.05 mg/l 1.0 mg/l 1.0 mg/l 5.0 mg/l 0.03 mg/l 0.05 mg/l 0.05 mg/l 0.05 mg/l 0.05 mg/l 0.05 mg/l	
Item	Settleable Solids	Oils (and grease)	Debris, Scum, Flotables	Suspended Solids (Inert)			Color	Taste and Odor	"Toxic" Constituents and Feavy Metals	Arsenic Barium Cadmium Chromium (hex.) Chromium (cor.) Copper Iron (total) (soluble) Lead Mercury Nickel Silver	7117

Item	Goal I	Goal I - State of Ohio	Goal II - Pederal Government
Phosphorus	Volume of Wastewater Effluent Concennugd 1975 Discharges to: (a) Free Flowing Tributaries of Lake Erice 10-9.9 1.0 8.0	Effluent Concentration 1975 mg/l - P 1960 aries of Lake Eric 0.5 1.0 1.0 1.0 8.0 1.0	
Comperature	(5) Free Flowing Tributaries of the Objob 1.0 10-49.9 1.0-10 8.0 1.0-10 1.0-10 1.0-1.0-1.0 1.0-1.0-1.0 1.0-1.0-1.0 1.0-1.0-1.0-1.0 1.0-1.0-1.0-1.0 2.0 1.0-1.0-1.0-1.0 2.0 1.0-1.0-1.0-1.0 2.0 2.0 2.0 2.0 2.0 3.0 Alleat Pisheries Reduction of heat centent so that the discharge increase the river to more than 5°F., if below the follousphies: Allewable Heat Discharge Fate (BTU) T _A = Allewable Maximum River Icmp.	Free Flowing Tributaries of the Obio River 30+ 1.0 0.5 10-49.9 2.0 1.0 1.0-10 8.0 2.0 1.0-10 8.0 2.0 1.0-10-2.0 0.5 1.0-2.0 0.5 1.0-2.0 0.5 1.0-3.0 0.	< בֹ 1°C. (1.8°;.) of ambient water temperature (מבׁ 1°C. (1.8°;.) of ambient water temperature (מבּיבּיבּיבּיבּיבּיבּיבּיבּיבּיבּיבּיבּיב
Torbidity	Month Jan Feb Mar Apr TA 50 50 60 70 T _R = River Temp. (do:	Month Jan Feb Mar Apr New Jun Jul Aug Sep Oct Nov Dec TA 50 50 60 70 50 90 90 90 90 78 70 57 TR = Riv.r Temp. (dnily ave.) above discharge	< 5 Jackson Unite

A Commander	
Padent	
, , ,	

		Goal I	. I - State of Ohio	of Ohio		Goal II - Federal Government
	Control to load does r the receivi provides receiving v concentrati dissolved s	Control to such a point that lad does not increase the di- the receiving waters by more the provided that (a) the dissolve provided that (b) the dissolve processing waters is not exceet concentration in the discharge dissolved solids criteria for	Control to such a point that the discharged dissolved so lead does not increase the dissolved solids concentration the receiving waters by more than 5% on a calculated bus brouded that (a) the dissolved solids criterion in the preceiving waters is not exceeded, or (b) the dissolved sencentration in the discharge ones not exceed five time dissolved solids criteria for the receiving water.	he discharged dissolves oblode solids concentrated by the discriminated, or (b) the dissource not exceed fiving receiving water.	Control to such a point that the discharged dissolved solids load does not increase the dissolved solids concentration in the receiving waters by more than \$% on a calculated basis provided that (a) the dissolved solids criterion in the receiving waters is not exceeded, or (b) the dissolved solids concentration in the discharge upes not exceed five times the dissolved solids criteria for the receiving water.	<pre>4500 mg/l w/speci: c limits established for specific inorganics, i.e CO2 < 25 mg/l SO4 < 10 mg/l Ca < 30 mg/l C1 < 750 mg/l N3 < 10 mg/l mg/l E1 < 17 mg/l F1 < 17 mg/l HC3 < 50 mg/l HC3 < 50 mg/l Na < 10 mg/l F1 < 18 mg/l Na < 18 mg/l</pre>
12 de 1	4.0 mg/l + 6.0 mg/l +	for streams for streams	s classified s classified	as warn wa as cold wa	$4.0~{\rm mg/l}$ + for streams classified as warn water fisheries $6.0~{\rm mg/l}$ + for streams classified as cold water fisheries	No communic except Prob level ≤ effluent Do
verng Wastes , and 55)	Reduction depressed h	Reduction so that DO level depressed below established with the following criteria.	Reduction so that DO level of receiving stream is not depressed below established criteria and in accordance with the following criteria.	ceiving str ria and in	eam is not accordance	8005 < πg/1 SS < πg/1
	Class I - (Effluc conc.	Class I - Cold Mater Fisherier Effluent conc. (monthly) conc. increase at critica	.I - Cold Mater Fisheriee Effluent conc. (monthly) can be if ave. BuDs conc. increase at critical	be if ave.	ციე ^გ	
	BCDS-mg/1	18/2 22/2 Dov	SS-mg/1	g/1	Flow in Stream is	
	15	23		22.81	0.3	
	j r- in	0 K 80	I C) AL	នេះដ	v 0. c	
	Class II -	Scenic Waters,	ers, Streams,	Reservoirs	5, 53805	
	1.5	23	20	. 52	6.0	
	10	17 5	ea l	ao in	ဖွင့် လုံင	
	. rv	္င္လ	, (E)		6.5	
	Class III - (free f	free Flowing Warm flowing for at leas	Lag Marm Well	Water Dispersion	Koter Dorogico t 15 m. es belea di charpe)	
	0.435.05.00 0.435.05.00 0.435.05.00 0.435.05.00 0.435.05.00 0.435.05.00 0.435.05.00 0.435.05.00 0.435.05.00 0.435.05.00 0.435.05.00 0.435.	का द्वित्र १०० द्वि चाची १०० ४	\$4.51DE	ाठ्ड ब्राट्ट भौगेर (स्ट्राट	25 14	
	•					

Goal II - Federal Government

6031 1 2 317th C. 6310	Decaygonating Wastes Class IV - Pacing Stream Impending Lack Maters and 500s, and 58)	8 Volume S
	ck Suters and isheries	Flow in Street is No flore than mg/1 0.5

Exceptions for Class III and IV Saturs

22

- A) In compost of the populated and industrial corridors where discharges of a manage of administrate to similar or extension with a partial contribute to similar or extension with a partial contribute to similar or extension and different reduction will be received as follows:
- 1) Additive offects of oftople discharges shall not exceed by a conflict of one discharge of the company discharge of the company discharge of the company discharge of the company of the company discharge of the company of the comp
- 3) If the left the start of which the object of project in the object of - For is and any national Date of the and an unitedial white last of last that discharge the dry weather different and the all last of the only prictical cloud of treatment, all subsections quality will be a last only and be a last of the contractions of the contracti ĵ.

Arraia Mitrogen

Caledated Strein	(f. (000), 1800a (f. 1807) (6.19		ນ ຄູ ⊒ ຄ
	So the factor		J
# 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	April -		·
Stream of sufficience	:	71 P 111	

1111

11 · 11 · 12

The area and Meritas Organic Mitrogen

✓ .0 mg/l

Ford Nitrogen 45 mg/l

V : √1

Coal II - Federal Covernment	Absent Absent Absent Absent	Pewifeides and chlorinated hydrocarbons - Absent	Atha Radiation & 1 pcl St. Radiation & 100 pcl VIP + Radiation - Trace		me vated, bet present at trace levels	'''' styated, bopresent at trace levels	or refficeor at, alkalinity mest second-130 mg/l when pH is
Goal 1 - State of Case	No Corrent	0.017 mg/1 0.003 mg/1 0.042 mg/1 0.047 mg/1 0.047 mg/1 0.018 mg/1 0.018 mg/1 0.035 mg/1 0.035 mg/1 0.035 mg/1 0.035 mg/1	Reduction to such a degree that (1) concentrations or unadon- differentiation and the 1 so area do not avec 1 (a) 10 p. 1 or (b) Indian values specified by the 2010 or after the action contain radionallides are known to be obsert; or (2) concentrations of <u>identified</u> that omediates a not exceed limit specified by ARC.	May tarcush October (2007/20 m) - man jone, myrric on a 100 Meg. (2007) - most tour through our one and the same of the same o	We Comment	Charles of the control of the contro	
ː tem	Aluminam Antimory Boryllium Boryllium Boryllium Cobaic Cobaic Molybicaum Selentum Inalium Itan Itan Cyanide (cotol) Chanols	Aldrin Chlordane DSI Diedrin Factorin Bentachlor Bentachlor Lindine Lindine Lindine Captorine D94 Carbonates Factorine	Pactorine Piterials	Fet . Coliform Bacteria	U.	Fig. Stratforfed	32 公司 (10 元)

U.S. ARMY CORPS OF ENGINEERS BUFFALO DISTRICT

SURVEY SCOPE STUDY FOR WASTEWATER MANAGEMENT PROGRAM

Contract Phase Report
Phase III
Time Phasing of
Selected Alternatives

Prepared by HAVENS AND EMERSON, LTD. Cleveland, Ohio

October, 1972 Under Contract No.: DACW49-72-C-0048

TABLE OF CONTENTS

			Page
INTR	ODUCT	ION	A1
Α	METH	ODOLOGY	A2
	1	WASTEWATER MANAGEMENT GOALS	A2
	2.	BASIS OF DESIGN	A3
		2.1 MUNICIPAL WASTEWATER	A3 A3
	3.	DESIGN CRITERIA	A 5
		3.1 MUNICIPAL WASTEWATER	A5 A5
	4.	COST ESTIMATING TECHNIQUE	A 7
		4.1 ECONOMIC COMPARISON	A7 A9
В.	PLAN	SELECTION	B1
	1.	<u>PLAN A</u>	B3
	2.	<u>PLAN_B</u>	В7
	3.	<u>PLAN C</u>	B10
<u>c.</u> _	COST	OF SELECTED PLANS	$\mathfrak{C}1$
	1.	COST OF MUNICIPAL PLANTS	C2
		1.1 PLAN A	C2 C2 C2
	2.	STORMWATER PLANTS	C9
		2.1 PLAN A	C9 C9 C9
	3.	COST SUPPIARY	C14

TABLE OF CONTENTS (Cont'd.)

		Page
D.	EARLY ACTION PROGRAMS	Dì
	1. DEMONSTRATION PROJECTS	D2
	2. MONITORING PROGRAM	DS
<u>E.</u>	RELATED ENVIRONMENTAL EFFECTS	E1
	1. CHETICAL REQUIREMENTS	E2
	2. POWER REQUIREMENTS	E5
	3. AIR POLLUTION	E7
	4. LAND	E9
	5. MANPOWER	E10
APPE!	DICES	
	APPENDIX A - COMPUTER PRINTOUTS PLAN A TO LEVEL II APPENDIX B - COMPUTER PRINTOUTS PLAN B APPENDIX C - COMPUTER PRINTOUTS PLAN C APPENDIX D - SUPPLEMENTAL APPENDIX PLAN A TO LEVEL I	

LIST OF TABLES

		Page
A1 A2 A3	Capital Costs Operation and Maintenance Costs Annual Cost	A10 A11 A12
B1 B2 B3	Plan A - Description	B5 B3 B11
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13	Plan A - Municipal Total Present Worth Plan A - Municipal Total Annual Cost Plan B - Municipal Total Present Worth Plan B - Municipal Total Annual Cost Plan C - Municipal Total Present Worth Plan C - Municipal Total Present Worth Plan C - Municipal Total Annual Cost Plan A - Total Present Worth Stormwater Treatment Plan A - Total Annual Cost Stormwater Treatment Plan B - Total Present Worth Stormwater Treatment Plan B - Total Annual Cost Stormwater Treatment Plan C - Total Present Worth Storrwater Treatment Plan C - Total Annual Cost Stormwater Treatment Summary - Total Present Worth Summary - Total Annual Cost	C3 C4 C5 C6 C7 C8 C11 C12 C12 C13 C13 C15 C16
D1 D2	Water Quality Monitoring Program Continuous Observation Sites	D7
D3 D4 D5	Sites Estimated Cost of Monitoring Program	D9 D10 D11 D11
E1 E2 E3 E4 E5 E6	Chemical Requirements - Municipal Flows Chemical Requirements - Stormwater Flows Power Requirements Power Generating Station Capacities in 1972 Incinerator Emissions Summary Acres Required for Water Based Treatment Plants Manpower Requirements for Stormwater and Wastewater	E2 E3 F5 E6 E8
	Plants in 2020	E11

NOTE: Additional Tables are included in Appendix D

INTRODUCTION

The Cleveland-Akron area was chosen by the Corps of Engineers as one of the five pilot areas in which to develop a wastewater management program. This Survey Scope Study is a continuation of the preliminary work performed under the Feasibility Study in 1971.

The planning efforts of this program have been divided into the following areas: plan formulation, domestic wastewater and stormwater runoff, industrial wastewater, land treatment, and plan evaluation.

Havens and Emerson, Ltd. has been responsible for the domestic wastewater and stormwater runoff portion.

Phase I of the study identified the wastewater management problem with respect to domestic wastewater and stormwater runoff as it exists today and as it is anticipated to exist in the future.

Phase II of the study identified treatment processes and effectiveness, design criteria, and unit costs associated with municipal wastewater treatment facilities and stormwater treatment facilities. Also included were cost estimates of twelve alternative plans for wastewater management of the study area.

Upon completion of Phase II, three of the alternative plans were chosen by the Corps of Engineers for further investigation. This Technical Appendix covers Phase III of the study, which will develop a thorough cost presentation of these three plans, present recommendations for early action programs, and evaluate related environmental effects.

A - METHODOLOGY

1. WASTEWATER MANAGEMENT GOALS

Level 1 represents the proposed effluent standards of the State of Ohio.

Level 2 represents the O.C.E. Standards for wastewater treatment effluents.

The Phase II report discusses these wastewater management goals in detail.

The twelve alternative plans formulated in Phase II of the study were designed to achieve either Level 1 or Level 2 effluent criteria. In other words, not all plans were specifically formulated to achieve the same effluent criteria. However, in the wastewater and stormwater treatment portion of the Phase II study, costs for Plans 1 through 8 were computed based on achieving both Level 1 and Level 2, to better evaluate the merits of each plan.

In Phase III, the achievement of the wastewater management goals are based upon guidance provided by the Corps of Engineers (NCBED-PB 31 January 1973) to comply with the Corps interpretations of the Federal Water Pollution Control Act of 1972. New construction or expansion will be phased according to the following schedule:

Municipal and Industrial Wastewater

- a. Secondary Treatment by 1977
- b. Level 1 by 1983
- c. Level 2 by 1985

Stormwater and Combined Overflow Runoff

- a. Combined Overflow to Level 1 by 1980
- b. Separate Stormwater to Level 1 by 1983
- c. All Runoff Treatment to Level 2 by 1985

Therefore, the three alternative plans for this portion of the study will all be at Level 2 by 1985, for all wastewaters.

2. BASIS OF DESIGN

2.1 MUNICIPAL WASTEWATER. Future wastewater flows and loads to municipal plants were established in Phase I, Part A, of the Survey Scopy Study.

This was accomplished through a systematic development of land use and population projections along with estimates of future per capita wastewater flows and loads.

Also defined in the Phase I, Technical Appendix, were characteristics of the existing wastewater treatment plants, including type of treatment, treatment efficiencies, cost of treatment, and present worth. In addition, the 1980 sewerage districts were also defined.

The above data coupled with the industrial flow projections from AWARE, Inc., resulted in design flows by decade for each of the sewerage districts in the study area. These design flows were used in this portion of the study to time phase construction of each plant in each of the three selected plans. The computer printout sheets in Section C present the projected domestic and industrial flows by decade for each of the municipal plants.

2.2 STORMWATER. Future stormwater flows and loads were established in Phase I, Part B, of the Survey Scope Study. This was done for each of the 162 drainage districts which, in total, encompass the entire present and future urban area. For each of these districts, drainage criteria and runoff factors were developed.

After careful consideration and much deliberation, the one year storm was selected as the design storm for the stormwater treatment facilities. This selection of the one year design storm and the associated stormwater treatment techniques provide partial protection to the receiving waters from runoffs greater than the one year storm runoff. See the Phase II.

Technical Appendix. A generalized unit hydrograph was developed and applied to predict hydrographs for the six-hour duration, one year storm for each of the drainage districts. Quality characteristics were also investigated and established for combined sewer overflows and separate system stormwater.

Using the above data, stormwater flows and loads were calculated by decade up to 2020. As discussed in the Phase II, Technical Appendix, the stormwater flows from presently undeveloped areas were adjusted to account for the use of the Planned Urban Development (P.U.D.) concept. The computer printout sheets in Section C present the one year storm volume and annual volume by decade for each of the storm drainage districts. These figures reflect the adjusted flows for the P.U.D. concept, if applicable.

3. DESIGN CRITERIA

3.1 MUNICIPAL WASTEWATER. Treatment schemes to achieve Level 1 and Level 2 effluent criteria have been established for advanced biological plants and for physical chemical plants. The Phase II, Technical Appendix, Part A, contains detailed mass balances of these treatment schemes in addition to related unit costs of these facilities.

The alternative plans under investigation are a combination of various treatment schemes. When water-based treatment is designated for a particular sewerage district, the schemes previously described are used to attain the designated effluent criteria. When land-based treatment is designated, secondary treatment is provided prior to land application.

In addition to defining the various treatment schemes and related costs, the Phase II, Technical Appendix, also establishes design criteria for other elements of the treatment system, including pump stations, gravity sewers, force mains, and outfall sewers.

The design criteria for the wastewater treatment plants was established in the Phase II portion of the study.

3.2 STORMWATER. Treatment schemes to achieve Level 1 and Level 2 effluent criteria have been established for combined sewer overflows and separate system stormwater. Variations of these treatment schemes are dependent upon the type of stormwater (combined overflow versus separate system), the type of storage (concrete versus earth), drainage district location (separate facilities versus treatment at municipal plants), and the level of treatment required (Level 1 versus Level 2).

The Phase II, Technical Appendix, Part B, contains detailed mass balances of the treatment schemes, in addition to related unit costs of these facilities. Also contained in that report is a complete description

of the variations previously mentioned and their relative economic effect on the alternative plans.

The design criteria for the stormwater treatment facilities was established in the Phase II portion of the study.

4. COST ESTIMATING TECHNIQUE

- 4.1 ECONOMIC COMPARISON. In Phase III, the principal concern is to make an equitable economic comparison of alternative plans selected for facility program phasing. The *hree items of principal concern in making the economic comparisons are:
- The plans are composed of structures and facilities which have different useful lives varying from twenty to sixty years, so that the residual value at some comparison date must be considered.
- 2. High capital expenditures occur at various decades up to 2020 with several occurring in the period of 1990-2020. This must be considered to make the plans with a high early capital cost comparable to plans where facilities can be expanded by decades with lower early capital cost requirements.
- The plans have different operation and maintenance cost relationships through the period.

With due consideration to these concerns, the following procedure was developed after considerable study by the consultants and the evaluation team, for preparing the economic comparison:

- All costs should be developed to 2020 using projections previously made. This provides for full implementation of each of the plans and also provides due benefits to those plans with low 0 & M costs in the later decades.
- 2. Capital costs should be adjusted to a present worth in 1972. This provides a common base for comparison, with allowance for the cost of implementation in future decades. Credit for the present worth of structures remaining after 2020 is given.

- 3. 0 & M costs should be computed up to the year 2020 and adjusted to a present worth. This can be done by computing the average total 0 & M costs for successive 5 to 10 year periods.
- 4. The cost comparison of alternative plans should be made upon the sum of the present worth of the capital and 0 & M costs so computed.

Tables A1 and A2 illustrate the procedure for economic comparison for expansion of the Cleveland Southerly Sewage Treatment Plant.

Table Al indicates the net capital cost for the Southerly plant up to the year 2020. The capital expenditure for plant and sludge facility expansion and for sewer construction are based on 1972 dollars. The present worths of these future structures were then computed and tabulated. In Row 1 of Table Al, it is shown that in the year 2000 the existing 96 mgd plant will have to be replaced. This replacement cost, based on 1972 dollars, is \$40,000,000. The present worth of \$40,000,000 in 1972 is \$6,016,000 using a present worth factor of 0.1504 (7% interest rate over a 28-year period 2000-1972). In 2020 this portion of the plant based on a straight line depreciation (35 year useful life) is worth \$17,100,000. These residual values in 2020 are discounted to 1972 and shown as a credit towards the plan. Rows 2 through 11 are further expansions and modifications. Row 12 is the total of all present worths.

Table A2 shows the O & M Cost for the Southerly Plant up to the year 2020. The O & M costs for various years up to 2020 were calculated including costs for plant and sludge facilities and sewers, based on 1972 dollars. An average period cost was developed between these years and adjusted to the total required at the beginning of the period. This total was then adjusted to a 1972 present worth. For the period between 1975 and 1980,

the average annual 0 & M cost was \$9,869,000 per year. The total required at the beginning of the period was \$40,463,000. This adjusted to a present worth yielded \$33,026,000. The present worth factor of 0.8162 was based on a 7% interest rate over a 3 year period (1975-1972). This same procedure was used to discount the remaining period 0 & M costs to a present worth.

The Net Capital Cost from Table Al and the Net O & M Cost from Table

A2 are added to become the total dollars required in 1972 to construct and

operate the facilities of the plant until 2020. (\$163,780,000 + 184,716,000 =

\$348,496,000). The summation of all of the plant or facility present worths

then becomes the total 1972 dollars required to formulate and implement

the plant and becomes the number for economic comparison of alternative

plans.

4.2 ANNUAL COSTS. Annual costs have been computed to provide actual dollar expenditures by time period. This provides additional data to use in plan evaluation, but was not used for economic comparison of plans.

Table A3 presents the annual costs for expansion of the Southerly

Sewage Treatment Plant as previously described in the Economic Comparison section. The itemized capital costs were calculated using a capital recovery factor based on an interest rate of 7% over the life of the structure.

It should be noted that annual costs do not reflect present outstanding bonded indebtedness.

CAPITAL COSTS (\$1,000)

									\$163,780	Total Net Present Worth **	Total Net P
									\$ 5,610	s 169,390	12
144,600	M								\$ 5,610		II.
4,900					16,256			50 yr. life		\$ 6,744	10
4,000							40,000	50 yr. life		\$ 32,648	•
1,600				11,100				Sludge (Exp.) 465 TPD 35 yr. life		\$ 3,283	600
18,100		25,320					25,320	Sludge 376 TPD 35 yr. life		\$ 22,600	7
9,200			21,580					Existing 73 TPD 35 yr. life		\$ 3,245	6
4,500			22,500					Level 2, Exp. 234 mgd		\$ 3,384	5
3,900				27,000				Level 1, Exp. 234 mgd 35 yr. life		\$ 7,986	•
42,000		70,000			70,000			Level 2 206 mgd 25 yr. life		\$ 34,391	w
39,300		55,000					55,000	Level 1 182 mgd 35 yr. life		\$ 49,093	2
17,100			40,000					Existing 96 mgd Secondary 35 yr, life		\$ 6,016	1
Sesidual	2020	2010	2000	1990	1985	1980	1975	Item	1972 Present Worth (\$1000) (-)	Present (\$11	Row

TABLE A2 OPERATION AND MAINTENANCE COSTS

	1972	1975	1980	1985	5	1990	*	2000	2010		2020
Plant (\$1000/Tr.)	\$ 2,943	6,624	7,769	10,164	3	15,362	 	17,293	18,888		19,644
Sludge (\$1000/Yr.)	\$ 1,304	2,345	2,600	2,764	3	3,431	<u> </u>	3,786	4,051		4,243
Severa (\$1000/Yr.)		200	58	2	281	281		281	78	281	281
Total (\$1000/Yr.)	\$ 4,247	9,169	10,569	13,209	8	19,074		21,360	23, 220	2	24,168
Average for Period (\$1000/Yr,)	\$ 6,	6,708	9,869	11,889	16,141	43	20,217	22,	22,290	23,694	2
Present Value Pactor	2.6	2.6243 4.	4.1001 4	4.1001	4,1001	100	7.0235	7.0	7.0235	7.0235	ñ
Total OGH Required @ Beginning of Period (\$1000)	\$17,603	40,463	48,746	66,179	79	141,994	-	156,553	166,414	4	1
Present Worth Factor	1,00	.8162	. 5820	.4149	6,7	. 2958		.1504	.0764	3	
Present Worth	\$17,603	33,026	28,370	27,457	57	42,001		23,545	12,714	4	
Total Present Worth of 0 & M Costs	Worth of () & M Costs	\$184,716								

AMRUAL COSTS (\$1000/Yr.)

49,121 50,069	47,261	38,292	29,487	19,665	18,265	\$ 4,247	Total
	281	281	281	200	200	•	Sovers
4,051	3,786	3,431	2,764	2,600	2,345	\$ 1,304	Sludge
	17,293 18,888	15,362	10,164	7,769	6,624	\$ 2,943	Plant
1,176	1,176	1,176	1,176				Severs
2,896	2,896	2,896	2,896	2,896	\$ 2,896	ļ	Sourze
	856	856					Sludge, Exp.
	1,954	1,954	1,954	1,954	\$ 1,954		Sludge, Exp.
1,665	1,665						Existing Sludge
	1,930						Level 2, Exp.
2,084	2,084	2,084					Level 1, Exp.
	6,006 6,006	·6,006	6,006				Lavel 2
4,246	4,246	4,246	4,246	4,246	\$ 4,246		Level 1
3,088	3,088						Existing Secondary
	2000 2010	1990	1985	1980	1975	1972	Ite

B - PLAN SELECTION

Twelve alternative plans were designed, cost estimated, and evaluated in Phase II portion of the Survey Scope Study. Part C of our Phase II, Technical Appendix, presents the cost estimates of these plans relative to municipal wastewater treatment plants and stormwater plants.

In this report (Phase III), three of the twelve alternative plans have been investigated in more detail. The plans selected were Plans 1, 7, and 8. The Corps of Engineers made the final selections and prepared guidance for this phase which was presented to the Contractors. (Refer to NCBED-PB 19 December, 1972). Modifications of these original plans have been made to optimize these plans; therefore, the designation of those plans have been changed to Plan A, Plan B, and Plan C, respectively. Tables B1, B2 and B3 provide a generalized description by major areas for Plans A, B, and C.

A combination scheme of stormwater treatment has been investigated to take full economic advantage of adjacent land treatment sites and available capacities in municipal plants. Sludge handling techniques have also been modified to take full advantage of strip mine application in Harrison County.

A complete itemized cost estimate by time period has been made of the final three plans and is presented in Part C of this report.

Certain terminology has been adopted for convenience of this report. Advanced biological treatment refers to biological secondary treatment followed by various advanced treatment techniques involving physical, chemical and biological processes. Physical-chemical treatment refers to a process sequence in which the overall process is by these methods and biological processes are of minor importance.

Land treatment refers to the use of effluent from a secondary level treatment process, ultimately aerated lagoons in most cases, for irrigation either by spray irrigation or overland flow techniques. The Phase II Technical Appendix describes these processes in more detail.

1. PLAN A

Plan A is similar to Old Plan 1 and is basically a modification of present planning by the water planning agencies throughout the watershed to higher effluent levels. With Plan A, all plants are either advanced biological or physical-chemical with effluent discharged to the receiving water. Digested sludge is ultimately applied to strip mines or to agricultural lands within the basin. Table Bl shows the ultimate disposition of the generalized areas.

In the upper Rocky River basin, a single plant is proposed at Liverpool which will phase out Medina and the Medina County plant serving
Brunswick. This will eliminate all effluent discharges upstream of this
plant. The new plant will be an advanced biological plant, and it will
also treat some stormwater. Digested sludge from this plant will be
applied to local agricultural lands.

The Lakewood plant will be the only other plant in the basin after the Southwest Interceptor phases out the North Olmsted plant and the smaller plants serving the communities on the East Branch of the Rocky River such as Berea, Strongsville, North Royalton and Hinkley. The Southwest Interceptor is scheduled for construction in the early 1980's with the North Olmsted connection taking place in the early 1990's. Design of this interceptor is underway and allowances for the wastewater flows are being made in the Southerly Plant design.

Regionalization is limited in the upper Chagrin River. The plants will be located at Chagrin Falls, McFarland Creek, Aurora Central, Fowlers Mill, Newbury Township, Fairmount Road, and in the East Branch of the Chagrin. Digested sludge from these plants is applied to agricultural lands. In the lower Chagrin basin, the Willoughby-Eastlake plant becomes

a regional facility with its digested sludge being pumped through a pipeline to the strip mined areas for land reclamation.

The upper Cuyahoga basin will have eight small plants with sludge being applied to the agricultural lands. The eight plants are Burton, Middlefield, Auburn, Troy, East Claridon, Butternut Creek, Mantua and Randolph. The wastewater from the area west and south of Chardon is pumped to the Chardon plant and is discharged into the Grand River. Cost given are for pumping.

Kent is scheduled to be served by a new physical-chemical plant with incineration. Ravenna is an advanced biological plant with digested sludge going to the strip mine areas.

The three largest plants, Akron, Southerly, and Easterly are all advanced biological plants with digested sludge being pumped to the strip mine areas after 1990. These plants also treat some combined sewer overflow. The proposed Cuyahoga Valley Interceptor will deliver wastewater from the Central Cuyahoga basin to the Southerly Plant.

This interceptor is scheduled for construction in the 1980-1990 period with the Tinkers Creek branch scheduled in the early 1990's.

The Westerly and Rocky River plants are both physical-chemical and are now under design and construction respectively. Both plants will continue to serve the area currently served. Westerly plant sludge is incinerated and Rocky River sludge is taken to agricultural land.

The Euclid plant will be an advanced biological plant serving the area it now serves. Sludge will be pumped to the strip mine areas.

TABLE BI PLAN A - DESCRIPTION

			PLAN A - DESCRIPTION	SCKI PI TON			Plan A (Old Plan 1)
			MUNICIPAL WASTEWATER (26 Planes)			STORMATER	
Area	Land Based I	Treatment Out of Basin	Water Bused Treatment	Sludge Handling	Land Based Treatment	Water Based Treatment	Sludge Handling
Upper Rocky	None	Мопе	Regionalization of Medina irea with an advanced bishopkical plant constructed at the Liverpool site. (1 Plant)	Digested sludge disposal on agricultural lands.	No ne	Available capacity in the Liverpool plant was used to treat drainage districts during off peak hours. Individual stormwater treatment plants were used for the resalining.	Only earth basins were used in this area. unrefore sludge will be periodically removed for recycle or landfill.
Lower Rocky	Мопе	None	North The and other plants of the by 1980-4, with construction of The Construction of	Digested sludge dis- posal on agricultural lands.	None	Individual stormwater treatment plants were used for the drainage districts with the districts with the sever district in Berea which was connected to the Southwast Inter-	With one exception, only earth basins were used in this area. Therefore sludge is periodically removed for recycle or landfill.
Upper Chagrin	None	None	Regionalization limited Several small plants developed as advanced biological plants. (7 Plants)	Digested sludge dis- posal on agricultural lands.	None	Available capacity in Only earth basins with plants were used to task in this area, irear drainage dis- Tricre during off peak be periodically rel hours. Individual for recycle or law stormanter plants were fill.	Only earth basins were and in the are. Therefore sludge will be periodically removed for recycle or land-
Lower Chagrin	None	Моле	Willoughby-Esstlake plant developed as advanced biological plant. (! Plant)	Digosted sludge application to strip mines	None	ing the	Omly earth basins were and in the are. Therefore sludge will be periodically removed for recycle or land-fill.
Upper Cuyahoga	None	None	Regionalization limited Discreted sludge discretization and properly as advanced lands. Plological plants. Chadon flow is pumped out of basin.	Digested sludge dis- posal on agricultural lands.	None	Available capacity in Only earth basins with plants were used to used in this area. Fracted drainage dis- Fricts during off peak be periodically rel hours. Individual stormwater plants were fill. stormwater plants were fill. drainage districts.	Only earth basins were used in this area. Therefore sludge will be periodically removed for recycle or land-fill.
Kent-Ravenna	None	None	Physical-chemical plant Sludge application to at kent. Advanced bio-jettjo mines from a logical plant at Ravenna. Incineration Ravenna. (2 Plants) at kent	Siudge application to strip mines from Ravenna. Incineration at Kent	None	in id to eak	Only earth basins were used in this area. Therefore sludge will be periodically removed for recycle or land-fill.

		MUNICIPAL (26 I	MUNICIPAL MASTEWATER (26 Plants)			STORMATER	
Area	Lend Based 7 In Basin	Trestment Out of Basin	Water Based Treatment	Sludge Handling	Land Based Treatment	Water Based Treatment	Sludge Handling
Akron	None	None	Advanced biological plant. (1 Plant)	Sludge application to strip mines.	None	Available capacity in Sludge from the con- the plant was used to crete basins was taken treat some of drainage to the municipal plant destricts during off the sevents. Sludge peak hours. Individual from eatth basins will stormwater plants were be periodically removes. from eatth basins will remaining districts.	Available capacity in Sludge from the con- treat some of drainage to the wunicipal plant districts during off via severe. Sludge peak hours. Individual from earth basins will stormwater plants were be periodically removed remaining districts.
Southerly	Мотве	None	Advanced biological plant. (1 Plant)	Sludge applicat on to strip mines.	None	Aveilable capacity in Sludge from the contract the plant was used to creet basins was raken treat some of drainage to the municipal plant districts during off via severa. Sludge peak hours. Individual from earth basins will stormwater plants were be periodically remove the most to treat the for recycle or landfill remaining districts.	Available capacity in Sludge from the contract the plant was used to creet bains was taken treat some of drafings to the municipal plant districts during off via severa. Sludge peak hours. Individual from earth hasins will accumulate plants were be periodically removed to treat the for recycle or landfill remaining districts.
Westerly	None	None	Physical chemical plant, Incineration (1 Plant)	Incineration	None	Available capacity in the plant was used to treat drainage dis. tricts during off peak hours.	Sludge from concrete basing taken to the municipal plant.
Essterly	None	None	Advanced biological plant. (1 Plant)	Sludge application to strip mines.	None	Available capacity in the plant was used to treat drainage dis- tricts during off peak hours.	Sludge from concrete basins taken to the municipal plant.
Lake Krie	Kone	None	Physical chemical plant at Rocky River. Ad- vanced biological plant at Euclid. (2 Plants)	Ofgested sludge from Rocky River disposed of on agricultural lands. Euclid sludge applied to strip mines.	None	Available capacity in Sludge from earth the plant was used to basine will be perior treat drainage districts during off peak recycle or landfill. hours.	Sludge from earth basins will be period- ically removed for recycle or landfill.

2. PLAN B

Plan B is a modification of Plan A whereas a number of areas served by advanced biological plants under Plan A would remain as secondary plants with the effluent given land treatment as the advanced treatment process. All land treatment takes place within the Three Rivers Watershed basins except for the sludge which is taken to the strip mine area. Table B2 shows the ultimate plan for the generalized areas. In the upper Rocky River basin, for example, the single plant concept used for Plan A is replaced by six smaller secondary plants with effluent applied to the agricultural land within the basin. There is no change in the lower Rocky River basin over Plan A.

In the upper Chagrin River all of the advanced biological plants are replaced by secondary plants with effluent being applied to lands within the basin. Runoff from several stormwater districts is applied to the land. In the lower Chagrin River, the plan remains basically the same as in Plan A except for some stormwater districts.

In the Kent-Ravenna area, the only change is at the Ravenna Plant where the plant remains a secondary facility with land treatment within the basin rather than becoming an advanced biological plant.

Akron, Southerly, Westerly, Easterly, Rocky River and Euclid remain the same as in Plan A.

TABLE B2 PLAN B - DESCRIPTION

		HUNICIPA (31	MUNICIPAL WASTEWATER (31 Plants)			STORMATER	
Area	Land Based Treatment In Basin Out	reatment Out of Basin	Water Based Treatment	Judgendling	Land Based Irestment	Water Sased treatment	Sludge Handling
('pper Racky	Regionalization indiced Several smaller plants provide secondary (f. Plants)	None	e e e e e e e e e e e e e e e e e e e	of the contract of ages, and and a contract of the contract of	cramage in districts, and creat- ind nent to land treat- ment sites was applied ment sites and following.	identity in districts, Available capacity in "mis early basins of event to land treat- the inverpool plant was used in this area, ment sites was applied used or treat drainage. Therefore sludge when the land following, districts during off for recycle or land to the land of the land land with very used. In the remaining.	fully eart; basins were used in this area. Therefore along will be periodically removed for recycle or land-fill.
Lower Rocky	None	None	Sortial Period of a virtual plants provided of a virtual provided	TO BOOK TO A STATE OF THE STATE	F	in the second se	uned in this area. used in this area. be refore sludge will be periodically re- moved for recycle or landfill
Upper Chagrin	Regionalization limited, Plants provide secon- dary treatment prior to land. (6 Plants)	None	ē		and another constitute of a state	ing to	Only earth basing were the death has area. Therefore sludge will be periodically removed for recycle or land-fill.
Lower Chaggin	None	None	"House T volument to these advanced Pelant. (1 Plant.	leave pplication to	urainase districts Adalable capacity adjacent colond frest (to plant ser use montains at use use use increase in the land following livers during off plantse. To the land following livers individual storage. Storage districts drainage districts drainage districts drainage districts to the impain	5	only sertic basina were bused in this area. Therefore aludge will for recycle or land- fill.
Toper Cuvahoga	Regionalization limited. Thants provide secondary treatment prior to land application. (9 Plants)	None	Non		A single of discount of the control	0 x 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Only earth basins were used in this area. Therefore sludge will be periodically removed for recycle or land- fill.
Kent-Ravenna	Secondary treatment at Ravenua prior to land application. (1 plant)	None	Physical-chemical plant located at Kont. (1 Plant)	Incineration of kint. Rayenna studs, dispo- sal on apricultural lands,	None	Assibble espect in mix errib basins to plants were used to used in this area. Tree for a sludge we rists during off peak be periodically related to the fill.	Univertity basins were used in this area. Threfore sludge will be periodically removed for recycle or land-

Œ,

TABLE B2 (CONT'D.)

Plan B (Old Plan 7)

	,					
	Sludge Hundling	Sludge from the con- crete basins was raken to the municipal plans via sewers. Sludge from earth basins will be periodically removed for recycle or land-	Sludge from the con- tere basins was taken to the municipal plant via severs. Sludge from earth hasins will be periodically removed fall.	Sludge from concrete basins taken to the municipal plant.	Sludge from concrete basins taken to the municipal plant.	Sludge from earth basins will be period- ically removed for recycle or landfill.
STORMATER	Water Based Treatment	Available capacity in the plant was used to treat some of drainage districts during off peak hours. Individual stormwater plants were used to treat the trea	Available capacity in Sludge from the contract the plant was used to crete basins was riken treat some of drainage to the municipal plant districts during off via sewers. Sludge peak hours. Individual from earth hasins will stormwater plants were be periodically remove the mad to treat the for recycle or land-remaining districts.	Available capacity in the plant was used to treat drainage dis- tricts during off peak hours.	Available capacity in the plant was used to treat drainage dis- tricts during off peak hours.	Available capacity in the plant was used to treat drainage dis- tricts during off peak hours.
	Land Based Treatment	None	None	None	None	None
	Sludge Handling	Sludge application to atrip mines.	Sludge application to strip mines.	Incineration	Sludge application to strip mines.	Digested sludge from Rocky River disposed of on agricultural lands, Euclid sludge applied to strip mines,
IPAL WASTEWATER (31 Plants)	Water Based Treatment	Advanced biological plant. (! Plant)	Advanced Stological plant at Southerly. (! Plant:	Physical chemical plant, (1 Plant)	Advanced biological plant. (1 Plant)	Physical chemical plant Digested sludge from as Rocky River. Ad- Rocky River disposed ovanced biological plant on agricultural landa at Euclid. (2 Plants) Euclid sludge applied to strip mines.
JINIL	Treatment Out of Basin	None	None	None	None	None
	Land Based 1	None	None	None	Kone	None
	Area	Akron	Southerly	Westerly	Easterly	Lake Erie

3. PLAN C

Plan C contains the most land treatment. A large tunnel conveys raw wastewater to the western lands where it receives secondary treatment in aerated Iagoons and is applied to the land. Table B3 describes the ultimate plan for the generalized areas. Within the basin most of secondary plants are replaced by aerated lagoons. Akron remains as the only advanced biological plant and the only plant discharging to the Lake or receiving streams within the study area.

The tunnel is scheduled for construction in the 1980-1990 decade. The initial section within the basin would be constructed first and would act as a storage and conveyance facility for the combined sewer area. The section from the basin to the western lands would be available by 1985 and after that time all of the plants would be phased out rather than expanded to advanced treatment plants. The sludge that was generated at these plants would then be removed at the western lands aerated lagoon and applied to the land in that area. No sludge is taken to the strip mine area.

The upper Rocky, upper Chagrin and upper Cuyahoga are similar under Plans B and C. In the Kent-Ravenna area, both plants would be aerated lagoons with land treatment.

PLAN C - DESCRIPTION

Plan C (old Plan 8)

Drainage in districts

Adjacent to land treas-the Liverpool plant was used in this structure should used to trait dualings the time to the land following districts during off the periodically included the peak hours. Individual moved for receiving tracts discharge districts discharge to the remaining destinate districts discharge to the remaining destinate to Mestern Olio treat of peak hours.

Adjacent drainage districts.

Individual stormwater honer. Therefore sludge will districts.

Adjacent do and treas-the plants were used for moved for treiving individual stormwater by plants were used for additing districts.

Adjacent do and treas-the plants were used to used in this area.

In adjacent to and treas-the plants were used for honey of the ment sites were applied treas drainage districts.

Available capacity in Only outh basins were need to the sands were supplied treas drainage districts.

Stormage during of peak hours, individual for recycle or landcommatter plants were fill, used for the remaining districts, was lible capacity in Only carth basins were used to used in this area, treat drainage districts during off peak be periodically remanded hours. stormwater plants were fill.

used for the remaining designed describes.

Available capacity in Only carth basins were the plants were used to used in this area. Itself designed districts during off peak to periodically removed hours. Individuals for recycle or land-scormwater plants were fill. Desinge districts draining edistricts.

Desinge districts Available capacity in Only carth basins are adjacent to land treat- the plants were used to used in this area, ment sites were applied treat drainings districts to the land following tricts during off peak be periodically remover to the land following tricts during off peak be periodically remover storage. Sludge Bridling stormwater plants were used for the remaining Water Based Treatment Adjacent drainage dis-tricts discharge to tunnel to Western Ohio lands. Land Based Treatment Your = Sludge disposal on agricultural lands in Western Ohio. ŗ ë Sludge disposal on agricultural lands i basin Sludge desposal on agricultural lands in basin, Sludge disposal on agricultural lands in Western Ohio, Sludge disposal on agricultural lands basin. Sludge disposal on agricultural lands basin. Sludge Handling Buter Bused treatment None ouc. None one MUNICIPAL WASTEWATER Willoughby-Eastlake discharges to tunnel to Western Ohio lands. (1 Plant) Lakewood and North Olmsted plants dis-charge to tunnel to Western Ohio lands. (2 Plants) Out of Basin None None Land Based Treatmen Regionalization limited.
Plants provide secondary treatment prior to land. (6 Plants) Regionalization limited.
Plants provide secondary teatment prior to land application.
(6 Plants) Regionalization limited Plants provide second-ary treatment prior to land application. (9 Plants) Plants at Kent and
Raverma provide secondary treatment prior to
land application. In Basin Sone None Upper Cuyahoga Upper Chagrin Lower Chagrin Kent-Ravenna Area Upper Rocky Lower Rocky

5	,	
6	3	i
	2	

		MUNICIPAL MASIEMATER (32 Plants)	IPAL MASIEWAIER (32 Plants)			STORMATER	
Area	Land Based In Basin	Treatment Out of Basin	Water Based Ireatment	Slucze Handling	Land Based Ireatment	Water Based Treatment	Sludge Handling
Akton	None	None	Aovanced biologicai plant, (Plant)	Sludge disposal on agricultural lands in basin.	None	Available capacity in the plant was used to treat some of drainage districts during of peak hours. Individual stormwater plants were remained of startice	Sludge from the con- crete basins was raken to the municipal plant that sewers. Sludge from earth basins will be periodically removed for recycle or land-
Southerly	None	Regionalization Ifmited Discoparate to Flan A. Discharge to tunnel to Western Ohio lands. (1 Plant)	None	Slady, disposal on spriceitoral lands in historn Ohio.	Adjacent drainage dis- tricts discharge to tumed to Western Chic lands.	Available capacity in the plant was used to treat some of drainage districts during off sterning and sterning off stornmaker plants were read to treat the	Sludge from the con- crete basins was taken to the municipal plant via sewers. Sludge from arth basins will be periodically removed for recycle or land-
Westerly	None	Discharge to tunnel to Western Ohio lands. (1 Plant)	None	Sludse disposal on agricultural lands in Western Ohio.	Adjacent urainage districts discharge to tunnel in Western Ohio lands.	Available capacity in the plant was used to treat drainage districts during off peak nours.	Sludge from concrete basins taken to the municipal plant,
Easterly	None	Discharge to tunnel to Western Ohio lands. (1 Plant)	None	Sludge disposal on agricultural lands in Western Ohio.	Adjacent dialinage districts discharge to tunnel to Western Ohio lands.	Available capacity in the plant was used to treat drainage districts during off peak nours.	Sludge from concrete basins taken to the municipal plant.
Lake Trie	eu on	Euclid and Rocky Piver plants discharge to tunnel to Western Ohio lands. (2 Plants)	None	Sludke disposal un agricultural lands in Westirn Ohio.	ndjacent usainage Usstricts discharge to tunnel to Western Ohio lands.	Available capacity in the plant was used to treat drainage districts during off peak outs.	Sludge from earth basins will be pertod- ically removed for recycle or landfill.

C - COST OF SELECTED PLANS

A detailed description of the three selected plans is presented in the Plan Formulators Phase report. Cost of these plans have been estimated using the economic technique as described in Section A-4 of this report.

Due to the complexity of the costing technique and the quantity of data to be generated, a computer program was used for the computation and presentation of data. The cost presentation format is similar to that described in Section A-4 of this report which includes all component costs for capital expenditures and operation and maintenance. In addition, all pertinent information, including population projections, industrial and domestic flows, one year storm runoff and annual runoff, is shown.

It should be emphasized that the costs presented in the following sections are <u>not</u> the total plan costs in that they only represent the cost estimation of the three plans as related to the Havens and Emerson, Ltd. portion of the study. All costs associated with land treatment and the total plan cost summary are presented in the Land Contractor's Phase III report. Unit costs and composite costs for the various types of treatment used in the three plans are discussed in detail in the Phase II report.

All plans include costs for interim plants. Interim plants include those facilities which are phased out during the study period in favor of another regional plant. In particular, the interim plants include all those affected by the construction of the future Southwest Interceptor and the Cuyahoga Valley Interceptor.

Land cost were computed for those plants where the operating agency did not own sufficient land for future expansions.

1. COST OF MUNICIPAL PLANTS

- 1.1 PLAN A. Plan A is basically a modification of present planning to higher effluent levels. All municipal plants are developed as either advanced biological plants or physical-chemical plants. Table Cl summarizes the total present worth for the municipal plants. Table C2 summarizes the total annual costs for the municipal plants. These costs were taken from the computer sheets which are displayed in Appendix A of this Technical Appendix.
- 1.2 PLAN B. Plan B is a combination of land-based and water-based treatment. Basically, only the smaller municipal plants in the upper basin regions were taken to land-treatment. At these plants secondary treatment is provided prior to the land application. Table C3 summarizes the total present worth for the municipal plants. Table C4 summarizes the total annual costs for the municipal plants. These costs were taken from the computer sheets which are displayed in Appendix B of this Technical Appendix.
- 1.3 Plan C ultimately provides for land-based treatment for all municipalities with the exception of Akron. The land-based treatment includes in-basin application for the upper basin municipalities and out-of-basin application for the shoreline, and lower basin municipalities. The out-of-basin application is via a tunnel to Western Ohio.

 Table C5 summarizes the total present worth for the municipal plants.

 Table C6 summarizes the total annual costs for the municipal plants.

 These costs were taken from the computer sheets for each plant which are displayed in Appendix C of this Technical Appendix.

TABLE C1
PLAN A - MUNICIPAL
TOTAL PRESENT WORTH
(\$1,000)

Total	\$ 35,804	326,568	19,241	35,036	5,885	9,773	4,802	3,400	7,398	6,148	5,353	23,371	3,170	1,183	2,376	5,712	2,122	1,093	2,209	149,140	28,735	16,077	2,042	221,600	40,934	88,173	256	36,001	\$1,083,602	
Land	O \$3	2,780	0	0	30	0	20	15	179	0	20	0	12	2	6	27	∞	S	0	118	220	0	∞	0	360	0	0	33	\$4,149	
OGN	\$ 12,306	171,011	15,349	22,750	2,109	2,768	1,895	1,489	3,342	2,193	2,110	12,837	1,198	510	1,055	2,701	676	496	1,121	96,993	15,299	7,127	963	155,966	25,232	44,231	21	24,539	\$628,540	
Capital	\$ 23,497	152,777	3,891	12,285	3,746	7,004	2,887	1,896	3,876	3,955	3,223	10,533	1,960	299	1,311	2,984	1,185	292	1,087	52,028	12,916	8,950	1,070	65,633	15,342	43,942	234	11,422	\$450,893	
Plant	Liverpool	Southerly	Rocky River	Lakewood	Aurora Central	McFarland Creek	Fowlers Mill	Newbury Twp.	Chagrin Falls	Fairmount Road	Chagrin E. Branch	Willoughby-Eastlake	Butternut Creek	East Claridon	Burton	Middlefield	Auburn Twp.	Troy Twp.	ifantua	Akron	Kent	Ravenna	Randolph Twp.	Easterly	Euclid	Westerly	Chardon	Interim Plants	Totals	

TABLE C2
PLAN A - MUNICIPAL
TOTAL ANNUAL COST
(\$1000/YR)

Plant	1972	1975	1980	1985	1990	2000	2010	2020
Liverpool	\$ 298	\$ 2,025	\$ 2,200	\$ 2,988	\$ 4,128	\$ 4,441	\$ 4,840	\$ 5,309
Southerly	7,301	15,303	18,150	28,237	34,817	45,439	47,148	47,954
Rocky River	638	816	1,157	1,365	1,851	2,716	2,986	3,199
Lakewood	1,388	2,109	2,144	2,885	3,329	4,046	4,149	4,253
Aurora Central	32	201	303	447	820	886	626	1,088
McFarland Creek	23	546	576	771	1,174	1,287	1,414	1,527
Fowlers Mill	99	258	275	359	559	607	629	759
Newbury Twp.	52	146	159	228	453	464	538	616
Chagrin Falls	107	339	399	267	857	985	1,073	1,151
Fairmount Road	თ	259	292	455	834	925	1,028	1,121
Chagrin E. Branch	9/	271	331	428	625	671	731	199
Willoughby-Eastlake	264	280	1,394	2,064	2,742	3,632	4,055	4,415
Burton	28	93	133	155	313	339	375	421
Middlefield	110	288	319	441	675	726	811	889
Auburn Twp.	56	81	115	159	268	299	334	367
Troy Twp.	14	43	49	72	142	160	180	200
Mantua	45	107	113	164	. 592	289	325	351
Akron	4,688	6,423	6,947	14,988	16,964	18,476	20,094	21,915
Kent	487	1,681	1,884	2,154	2,864	3,213	3,596	4,212
Ravenna	210	749	816	1,140	1,933	2,385	2,618	2,814
Randolph	32	105	113	132	250	272	306	329
Easterly	8,253	11,101	11,709	17,354	20,738	29,350	29,888	30,606
Euclid	1,146	1,928	2,109	2,999	4,416	2,760	6,223	6,564
Westerly	3,014	6,497	6,548	6,655	8,247	8,376	8,504	8,708
East Claridon	12	148	186	243	431	454	472	492
Butternut Creek	37	145	191	244	390	423	471	529
Chardon	0	0	31	31	31	32	32	32
Interim Plants	1,891	3,710	4,321	3,504	3,830	1,196	0	0
Total	\$30,245	\$55,952	\$62,964	\$91,229	\$113,946	\$137,887	\$143,849	\$150,620

TABLE C3
PLAN B - MUNICIPAL
TOTAL PRESENT WORTH
(\$1.000)

Plant	Capital	1130	Land	Total
	\$ 2,036	\$ 279	0	\$ 2,315
	152,469	169,006	2,780	324,255
	3,891	15,349	0	19,241
	12,285	22,750	0	35,036
Aurora Central	868	157	30	1,085
	892	192	20	1,041
	229	127	15	371
	3,511	520	0	4,031
Fairmount Road	772	113	0	885
Branch	1,011	224	20	1,255
Willoughby-Eastlake	10,533	12,837	0	23,371
Butternut Creek	789	139	12	833
	113	46	S	164
	1,187	339	36	1,562
	214	84	œ	306
	15	44	S	64
	21	101	. 0	122
	52,028	96,993	118	149,140
	12,916	15,299	520	28,735
	191	91	∞	290
	65,633	155,966	0	221,600
	15,342	25,232	360	40,934
	43,942	44,231	0	88,173
Branch	22	47	0	69
	2,330	222	0	2,552
	165	19	0	226
	1,307	490	0	1,797
	1,145	211	0	1,356
	1,252	446	0	1,698
	353	85	33	472
	9	9	0	12
Plants	10,565	23,363	0	33,928
	\$397,891	\$585,050	\$3,970	\$986,919

TABLE C4
PLAN B - MUNICIPAL
TOTAL ANNUAL COST

2010	\$ 202 \$ 207																															
2000	\$ 200	45,051	2,716	4,046	168	83	62	400	105	113	3,632	79	13	143	31	4	9	18,476	3,218	22	29,347	5,760	8,376	7	227	19	141	115	133	52		•
1990	\$ 199	34,478	1,851	3,329	166	82	61	341	103	112	2,742	78	12	142	30	83	IN	16,964	2,864	21	20,741	4,416	8,247	9	226	18	134	114	130	51	-	
1985	\$ 198	28,085	1,365	2,885	81	82	2	339	63	112	2,064	78	12	136	30	33	S	14,988	2,154	20	17,775	2,999	6,655	S	225	18	132	113	128	20	-	
1980	\$ 197	18,084	1,157	2,144	80	81	S	337	61	111	1,394	77	12	122	30	2	4	6,947	1,884	20	12,523	2,109	6,548	4	224	17	130	112	127	49	-1	
1975	\$ 195	15,270	816	2,109	S	81	4	310	61	69	280	41	11	83	3	2	4	6,423	1,681	20	11,872	1,928	6,497	3	223	17	129	111	125	9	0	
1972	\$ 53	7,301	638	1,388	32	99	52	130	6	9/	264	37	12	138	26	14	45	4,688	487	32	8,979	1,146	3,014	0	0	13	210	53	179	2	0	
	001	Southerly	River	akewood	a Central	Fowlers Mill	iry Twp.	Chagrin Falls	mount Road	rin E. Branch	Willoughby-Eastlake	Butternut Creek	East Claridon	uo:	Auburn Twp.	Troy Twp.	Mantua	Akron	New Kent	Randolph Twp.	erly	Euclid	Westerly	er E. Branch	Hinckley	Mallet Creek	Ravenna	ina Co.	New Medina	Shalersboro	Chardon	

TABLE CS
PLAN C - MUNICIPAL
TOTAL PRESENT WORTH
(\$1,000)

Plant	Capital	M\$0	Land	Tota1
Liverpool	\$ 2,036	\$ 279	0	\$ 2,315
Southerly	92,403	94,313	1,000	187,716
Rocky River	1,170	8,561	0	9,732
Lakewood	7,060	13,434	0	20,494
Aurora Central	868	157	30	1,085
Fowlers Mill	829	192	20	1,041
Newbury Twp.	229	127	15	371
Chagrin Falls	3,511	520	0	4,031
Fairmount Road	772	113	0	885
Chagrin E. Branch	1,011	224	20	1,255
Willoughby-Eastlake	5,892	5,476	0	11,368
Butternut Creek	682	139	12	833
East Claridon	113	46	ιΩ	164
Burton	1,187	339	36	1,562
Auburn Twp.	214	84	œ	306
Troy Twp.	15	44	S	64
Mantua	21	101	0	122
Akron	52,028	96,993	118	149,140
New Kent	4,054	1,247	520	5,821
Randolph Twp.	191	91	∞	290
Easterly	23,687	102,969	0	126,656
Euclid	6,370	13,510	360	20,240
Westerly	32,700	30,279	0	. 62,979
Upper E. Branch	22	47	0	69
Hinckley	2,330	222	0	2,552
Mallet Creek	165	61	0	226
Ravenna	1,307	490	0	1,797
Medina Co.	1,145	211	0	1,356
New Medina	1,252	446	0	1,698
Shalersboro	353	85	33	472
North Olmsted	9,933	10,808	0	20,741
Chardon	9	9	0	12
Interim Plants	9,178	15,717	0	23,897

\$661,290

\$2,190

\$397,331

\$262,764

Total

TABLE C6
PLAN C - MUNICIPAL
TOTAL ANNUAL COST
(\$1000/YR)

2. STORMWATER PLANTS

- 2.1 PLAN A. In Plan A, stormwater is treated in individual stormwater plants and at the municipal plants. There is no land treatment of stormwater in Plan A. The treatment arrangement was optimized to take full economic advantage of available capacity in the municipal plants as well as regionalization of individual stormwater plants, where applicable. Table C7 summarizes the total present worth for the stormwater plants. Table C8 summarizes the total annual costs for the stormwater plants. These costs were taken from the computer sheets for each drainage district, which are displayed in Appendix A of this Technical Appendix.
- 2.2 PLAN B. In Plan B, stormwater is treated in individual stormwater plants, at the municipal plants, and at in-basin land treatment sites. The major difference between the treatment arrangement of Plan A and Plan B is the addition of land treatment of stormwater in the upper basin areas. The stormwater districts were developed on the basis of their proximity to land treatment areas. Table C9 summarizes the total present worth for the stormwater plants. Table C10 summarizes the total annual costs for the stormwater plants. These costs were taken from the computer sheets for each drainage district which are displayed in Appendix B of this Technical Appendix.
- 2.3 PLAN C. Plan C ultimately provides for land-based treatment for most of the stormwater districts in the study area. Stormwater is treated at some individual stormwater plants and at municipal plants, however, where land application was not feasible. As in Plan B, in-basin land treatment of stormwater was provided in the upper basin areas. Out-of-basin land treatment of stormwater was provided for the Lake Erie and lower basin drainage districts. These were discharged to the tunnel for treatment in

Western Ohio. Table C11 summarizes the total present worth for the stormwater plants. Table C12 summarizes the total annual costs for the stormwater plants. These costs were taken from the computer sheets for each drainage district which are displayed in Appendix C of this Technical Appendix.

TABLE C7
PLAN A
TOTAL PRESENT WORTH
STORMWATER TREATMENT
(\$1000)

	Capital	OEM	Land	Total
Chagrin	19,141	8,174	947	28,260
Rocky	55,905	14,265	533	70,712
Lake Erie	246,834	43,956	356	291,510
Cuyahoga	364,434	68,705	5,540	438,124
TOTAL	686,314	135,100	7,376	828,606

TABLE C8 PLAN A TOTAL ANNUAL COST STORMWATER TREATMENT (\$1000/YEAR)

	1975	1980	1985	1990	2000	2010	2020
Chagrin	0	754	1,439	4,360	7,660	7,973	8,283
Rocky	65	4,410	6,054	11,668	13,956	14,374	14,734
Lake Erie	11,822	25,957	29,848	35,955	36,232	36,467	36,611
Cuyahoga	15,356	29,155	45,034	57,187	64,587	65,833	66,492
TOTAL	27,243	60,276	82,375	109,170	122,435	124,647	126,120

TABLE C9
PLAN B
TOTAL PRESENT WORTH
STORMWATER TREATMENT
(\$1000)

	Capital	O&M	Land	Total
Chagrin	14,524	6,234	947	21,720
Rocky	47,477	12,773	548	60,812
Lake Erie	246,834	43,956	356	291,510
Cuyahoga	336,031	64,414	5,645	405,758
TOTAL	644,866	127,377	7,496	779,800

TABLE C10
PLAN B
TOTAL ANNUAL COST
STORMWATER TREATMENT
(\$1000/YEAR)

	1975	1980	1985	1990	2000	2010	2020
Chagrin	0	720	1,381	3,567	5,105	5,270	5,438
Rocky	68	4,259	5,300	9,804	11,185	11,439	11,623
Lake Erie	11,822	25,957	29,848	35,955	36,232	36,467	36,611
Cuyahoga	15,356	27,985	41,780	51,737	57,054	58,144	58,631
TOTAL	27,246	58,921	78,309	101,063	109,576	111,320	112,303

TABLE C11
PLAN C
TOTAL PRESENT WORTH
STORMWATER TREATMENT
(\$1000)

	Capital	OGM	Land	Total
Chagrin	14,118	3,956	947	19,032
Rocky	34,385	9,767	548	44,715
Lake Erie	96,692	25,581	356	122,635
Cuyahoga	256,442	49,815	5,705	311,991
TOTAL	401,637	89,119	7,556	498,373

TABLE C12 PLAN C TOTAL ANNUAL COST STORMWATER TREATMENT (\$1000/YEAR)

	1975	1980	1985	1990	2000	2010	2020
Chagrin	0	679	1,191	3,214	4,497	4,574	4,661
Rocky	64	2,412	3,361	7,740	8,980	9,205	9,389
Lake Erie	6,416	13,740	13,625	12,849	11,898	11,944	11,980
Cuyahoga	11,732	24,102	30,886	38,793	43,837	43,707	44,168
TOTAL	18,212	40,933	49,063	62,596	69,212	69,430	70,198

3. COST SUMMARY - MUNICIPAL AND STORMWATER

Table C13 displays the total present worth for Plans A, B, and C for both municipal and stormwater facilities. As mentioned previously, these are not the total plan costs which is the reason for the apparent low cost of Plan C. The Plan C cost presented do not include costs associated with land treatment and the cost of the tunnel to Western Ohio. Total cost summaries can be found in the Plan Formulation report.

Table C14 displays the total annual costs for Plans A, B, and C that are associated with the cost in Table C13.

TABLE C13
SUMMARY
TOTAL PRESENT WORTH
(\$1000)

	Capital	O&M	Land	Total
Plan A				
Municipal	450,893	628,540	4,149	1,083,602
Stormwater	686,314	135,100	7,376	828,606
Total	1,137,207	763,640	11,525	1,912,208
Plan B				
Municipal	397,891	585,050	3,970	986,919
Stormwater	644,866	127,377	7,496	779,800
Total	1,042,757	712,427	11,466	1,766,719
Plan C				
Municipal	262,764	397,331	2,190	661,290
Stormwater	401,637	89,119	7,556	498,373
Total	664,401	486,450	9,746	1,159,663

TABLE C14 SUMMARY TOTAL ANNUAL COST (\$1000/YEAR)

	1972	1975	1980	1985	1990	2000	2010	2020
Plan A								
Municipal	30,245	55,952	62,964	91,229	113,946	137,887	143,849	150,620
Stormwater	0	27,243	60,276	82,375	109,170	122,435	124,647	126,120
Total	30,245	83,195	123,240	173,604	223,116	260,322	268,496	276,740
Plan B								
Municipal	30,897	52,168	58,642	84,127	101,301	123,852	128,346	133,456
Stormwater	0	27,246	58,921	78,309	101,063	109,576	111,320	112,303
Total	30,897	79,414	117,563	162,436	202,364	233,428	239,666	245,759
Plan C								
Municipal	30,743	50,813	57,926	60,891	57,776	55,331	37,770	31,985
Stormwater	0	18,212	40,933	49,063	62,596	69,212	69,430	70,198
Total	30,743	69,025	98,859	109,954	120.372	124,543	107,200	102,183

D - EARLY ACTION PROGRAMS

Early action demonstration and monitoring programs are recommended to provide guidance for future decisions and reliable criteria for design. The demonstration projects would be constructed and placed in operation as soon as possible to provide data on cost and effectiveness. These projects should be arranged to produce information by the beginning of the first phase of construction. The monitoring program is recommended to provide baseline conditions and to record changes as additional treatment is provided.

1. DEMONSTRATION PROJECTS

Several programs and demonstration projects which appear to be desireable have resulted from this study. Many of unit processes required to meet the stringent effluent criteria herein are untried on a scale of this magnitude, and may have residual effects that are unknown. It is important to make clear that it is the intent of this plan to demonstrate the effectiveness and monitor the environmental change both beneficial and detrimental of these processes.

Because of the uncertainties of the location and scope of work, costs have not been assigned to the demonstration projects.

(1) Treatment of Urban Stormwater Runoff from a Separate Sewered Densely Populated Area of Mixed Residential, Industrial and Commercial Developments.

This demonstration project would be a stormwater treatment plant in a densely populated area. Storage would be provided in concrete basins and would be optimized with the treatment plant capacity to result in the lowest total annual cost. Monitoring would be done on both the influent and effluent. Rainfall and subsequent runoff would be also measured. The treatment scheme would be planned to treat to both Level 1 and Level 2.

(2) Treatment of Urban Stormwater Runoff from a Separate Sewered Moderately Populated Area not in a Metropolitan Urban Environment.

This demonstration project would be a stormwater treatment plant in a suburban residential area such as a smaller outlying city in rural surroundings. Storage would be provided in earth basins. Treatment capacity would be provided to empty the basin in about 30 days. The monitoring of both quality and quantity would be similar to the demonstration project in densely populated areas. The treatment would be arranged such that the effluent quality would meet Level 1 or Level 2 quality depending upon the process selected for demonstration.

(3) Physical-Chemical Treatment for Municipal Wastewater.

This demonstration project would be conducted at a 5-10 mgd plant. The unit processes would be capable of treating to a Level 2 effluent quality. Cost of operation will be monitored closely with efficiency to determine the relationships. Also, side stream studies could be made to determine response to highly varying flow rates.

The proposed Westerly plant unit processes may be used for investigating the ability of these processes to treat a mixed domestic-industrial waste. Some side stream modifications would be required to meet the level criteria.

(4) Advanced Biological Plant.

A plant should be constructed using the advanced biological scheme unit processes for Levels 1 and 2 treatment. The plant influent and effluent will be monitored as will the river above and below the plant effluent. The river should be monitored both for chemical and biological quality to assess the benefits of higher degrees of treatment. The results of this demonstration should clearly exhibit the cost and benefit of higher degrees of treatment.

(5) Field Demonstration of Runoff Reduction by Urban Drainage Management.

Under this demonstration project, a representative development project would be modified to provide storm drains, on-site storage, parking lot storage, roof-top storage, and site work, all designed for maximum infiltration. The purpose is to demonstrate the techniques that can be used to reduce runoff. Sedimentation control practices could also be demonstrated.

(6) Sludge Handling.

Several demonstration projects should be undertaken concerning various ways sludge can be handled. A project demonstrating the application of sludge to the land should be carried out on agricultural land, strip mined areas and in a sanitary landfill. Leacheate and surface runoff should both be monitored for metals, salts, nutrients, and viruses. Growth characteristics of crops on the conditioned land should be compared to typical local soils that have not been conditioned. Techniques of applying the sludge should also be investigated and cost computed, including problems posed by wintertime conditions.

(7) Land Treatment.

Several demonstration projects are desirable on land treatment.

These are: a land treatment demonstration in the upper Cuyahoga basin for a small city; a larger project using the Mahoning-Ellsworth soils; and a project in the Western area site. Both municipal and domestic wastewater should be used. Details of these projects are presented in the land treatment report.

2. MONITORING PROGRAM

A program is recommended for monitoring the quality and quantity of the waters of the Three Rivers area. The purpose of the monitoring program is to record the change in quality and quantity of the river as additional treatment is provided. These data can be used to assess the benefit and compare it to the cost for future decision making.

In order to determine water quality conditions for concurrence or non-concurrence with standards, measurements of the critical parameters must be made. For the existing standards, these critical parameters are dissolved oxygen, temperature, pH and dissolved solids. Continuous recording analyzers are available for D.O., temperatures, specific conductivity, and pH. Dissolved solids can be estimated by specific conductance measurements. Flow is an additional measurement which is necessary for computing flowing loads and determining the occasions of critical low flow. Table D1 and D2 list the continuous and periodic observation sites which would be required for adequate coverage of the entire study area. The column marked adequate control refers to stream channel stability for flow gaging. Of course, the more stable the cross section, the less the rating curve would change, meaning less frequent discharge measurements required and a lower operational and maintenance cost for the gaging station.

Table D2 lists those analyses which should be taken intermittently, since, because of present technology, they cannot be done continuously. Generally, these parameters would not have to be measured on a year-round basis, and some of the determinations might be done by a local wastewater treatment plant.

Table D3 gives an estimate of cost for this program as outlined in Tables D1 and D2.

Table D4 lists the minimum measurements suggested for adequate knowledge of the character of different wastewaters inputs. Table D5 lists additional analysis that would be helpful in a further definition of the pollutant load.

A central agency should be responsible for collecting and evaluating this data. Periodic summaries on the water quality should be distributed to those people responsible for the operation of the plants and to those agencies responsible for the enforcement of the water quality or effluent standards.

TABLE DI WATER QUALITY MONITORING PROGRAM CONTINUOUS OBSERVATION SITES

Cuyahoga River Location	D.0.	TEMP.	핆	Spec.	Flow	Adequate Control
Hiram Rapids	×	×	×	×	×	No.
Upstream of Lake Rockwell	×	×	×	×	×	No
Munroe Falls - Downstream of Dam	×	×	×	×	×	Yes
Ohio Edison Pool		×				Yes
Portage Path	×	×	×	×	×	No
Near Furnace Run @ Sag	×	×	×	×	×	No
Ohio Canal Diversion River Weir					×	Yes
Independence	×	×	×	×	×	No
Head of Navigation Channel	×	×	×	×		
Lorain Avenue Bridge	×	×	×	×		
Little Cuyahoga River						
opstream of Confidence with Cuyahoga River	×	×	×	×	×	N _O
Chagrin						
Downstream of Aurora Branch	×	×	×	×	×	No

TABLE DI (CONT'D.)
WATER QUALITY MONITORING PROGRAM
CONTINUOUS OBSERVATION SITES

Chagrin Cont'd.	D.0.	TEMP.	H	Spec. Cond.	Flow	Adequate Control
Downstream of East Branch @ Willoughby Gage	×	×	×	×	×	N O
East Branch near Houth	×	×	×	×	×	No
Rocky River						
Downstream of Medina S.D. 100 Effluent @ Columbia Station S.R. 82	×	×	×	×	×	NO O
Berea Gage @ Cedar Point	×	×			×	NO NO
East Branch near Mouth	×	×	×	×	×	No
Mouth and Boat Ramp Area	×	×	×	×	×	Yes

TABLE D2
WATER QUALITY MONITORING PROGRAM
PERIODIC OBSERVATION SITES

Cuyahoga River			Solids	S	Total	Fecal	Fecal	Sedi-
Location	<u>@</u>	8	Diss.	Susp.	Coliform	Coliform	Strep.	ment
Hiram Rapids	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Weekly
Upstream of Lake Rockwell	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Weekly
Munroe Falls - Downstream of Dam	Weekly	Weekly	Weekly	Weekly	Weekly	Weekly	Weekly	Monthly
Portage Path	Weekly	Weekly	Weekly	Weekly	Weekly	Weekly	Monthly	Daily
Near Furnace Run @ Sag	Week1y	Weekly	Weekly	Weekly	Weekly	Weekly	Monthly	ı
Ohio Canal Diversion - River Weir	Weekly	Weekly	Weekly	Weekly	Weekly	Weekly	Weekly	,
Independence	Weekly	Weekly	Weekly	Weekly	Weekly	Weekly	Weekly	Daily
Head of Navigation Channel	Weekly	Weekly	Weekly	Weekly	Weekly	Weekly	Weekly	ı
Lorain Avenue Bridge	Weekly	Weekly	Weekly	Weekly	Weekly	Weekly	Weekly	•
Little Cuyahoga River								
Upstream of Confluence with Cuyahoga River	Weekly	Weekly	Weekly	Weekly	Weekly	Weekly	Weekly	,
Chagrin								
Downstream of Aurora Branch	Weekly	Weekly	Weekly	Weekly	Weekly	Weekly	Weekly	Weekly
Downstream of East Branch @ Willoughby Gage	Weekly	Weekly	Weekly	Weekly	Weekly	Weekly	Weekly	Weekly
East Branch near Mouth	Weekly	Week1y	Weekly	Weekly	Weekly	Weekly	Weekly	Weekly

TABLE D2 (CONT'D.)
WATER QUALITY MONITORING PROGRAM
PERIODIC OBSERVATION SITES

Rocky River	BOD	COD	Solids Diss. Su	ds Susp.	Total Coliform	Fecal	Fecal Strep.	Sedi- ment
Downstream of Medina & S.D. 100 Effluent @ Columbia Station	no 	3 14 13	3 7 7	3	W 00 1	3. 7.	3 7 7 7	1
.K. 82	weekly	Meerly	HECKLY	ueev ty	HEEVIS	Heerty	MCCNIY	ı
Berea Gage @ Cedar Point	Weekly	Weekly	Weekly	Weekly	Weekly	Weekly	Weekly	Weekly
East Branch near Mouth	Weekly	Weekly	Weekly	Weekly	Weekly	Weekly	Weekly	Weekly
Mouth & Boat Ramp Area	Weekly	Weekly	Weekly	Weekly	Weekly	Weekly	Weekly	Monthly

TABLE D3 ESTIMATED COST OF MONITORING PROGRAM

\$500,000	71,200	20,000	61,000	30,000	\$712,200
Capital cost of constructing gage and monitoring house Plus installing low flow controls.	Annual Cost at 7% for 10 years	Annual O & M of station and rating gages	Annual cost of periodic sampling and analysis	Administrative cost	Total Annual Cost

SUGGESTED MINIMUM MEASUREMENT OF WASTEWATER INPUTS*1

Source	BOD	00	핆	Temp.	Susp. Solids	Spec. Cond.	Total Colif. Fecal Colif.	8	Organic N	اے
Domestic Waste Water	×	×	×	×	×	×	×	×	×	×
Industrial Process Water*2	×	×	×	×	×	×		×		
Industrial Cooling Water		×		×						
Storm Water Discharges	×				×		×	×	×	×
Combined Sewer Overflows Discharge					×		×	×	×	×

*1Frequency would depend on size of plant or operation of process.

*2An initial list for various industries should be prepared.

ADDITIONAL MEASUREMENTS OF WASTEWATER INPUTS

	Soluble BOD	Soluble	Soluble	Soluble Nitrogens	Heavy Metals	Dissolved Solids
Domestic Wastewater	×	×	× .	×	×	×
Storm Water Discharge		×			×	
Combined Sewer Overflow Discharge		×			×	

E - RELATED ENVIRONMENTAL EFFECTS

The various methods of wastewater treatment and solids disposal involve different effects on the environment, and different environmental trade-offs. It is the task of the Evaluation Consultant to evaluate the environmental impacts of each plan, but in this section, some of the basic information necessary for this assessment is presented.

1. CHEMICAL REQUIREMENTS

The approximate chemical requirements for the municipal portion of Plans A, B and C are shown in Table E1 and E2 followed by a brief description of each chemical.

TABLE E1
CHEMICAL REQUIREMENTS - MUNICIPAL FLOWS
(TONS/DAY)

	Chlorine Cl ₂	Alum	Polymer	Methanol	Lime
Plan A					
1980	35.7	23.1	1.0	-	133.0
1990	38.6	31.5	1.2	108.4	175.6
2000	43.1	35.2	1.4	121.0	196.0
2010	48.0	39.0	1.5	134.4	217.8
2020	52.6	42.5	1.7	146.4	238.0
Dlam D					
Plan B					
1980	36.5	22.0	1.0	-	125.6
1990	40.2	28.5	1.2	101.0	163.5
2000	46.0	32.0	1.4	112.1	183.5
2010	51.6	35.8	1.5	123.0	203.0
2020	57.0	38.6	1.6	132.4	220.5
Plan C					
rian C					
1980	31.5	25.2	1.0	-	81.0
1990	18.0	5.5	.5	-	40.0
2000	8.5	6.2	.5	-	38.1
2010	3.2	7.2	. 2	-	27.1
2020	3.8	8.4	. 2	-	31.5

TABLE E2
CHEMICAL REQUIREMENTS - STORMWATER FLOWS
(TONS/DAY)

	Chlorine	Alum	Polymer	Methanol	<u>Lime</u>	Granular Activated Carbon	Powered Activated Carbon
Plan A							
1980	2.6	2.7	.1	-	12.7	-	-
1990	8.9	5.2	.4	12.6	27.7	1.0	32.7
2000	9.6	5.9	.5	14.4	31.1	1.2	41.9
2010	10.1	6.5	.5	16.0	33.5	1.3	45.0
2020	10.2	6.7	.6	17.0	34.6	1.5	49.9
Plan B							
1980	2.5	2.8	. 1	-	12.8	-	-
1990	9.0	5.1	.3	12.5	28.0	.8	27.4
2000	9.5	5.6	. 4	13.8	30.3	. 9	32.1
2010	9.6	5.8	. 4	15.2	32.7	1.0	34.8
2020	10.3	6.3	.4	15.9	33.5	1.1	36.6
Plan C							
1980	5.6	3.5	. 2	€.0	21.4	-	-
1990	6.6	1.2	.2	.8	12.0	.5	1.9
2000	7.4	1.4	. 2	1.0	13.0	.7	22.8
2010	6.3	1.6	.2	1.3	12.3	.7	24.9
2020	6.6	1.6	.2	1.4	12.9	.8	26.4

Chlorine

Chlorine gas is 5th in the list of the top 50 chemicals produced in the United States. National capacity at present is 28,960 tons per day. Annual increases in production have averaged 8% per year. The largest user of chlorine is the plastic industry in making vinyl chloride, with other large users being the pulp and paper industry and the dry cleaning and metal cleaning businesses. The Plan A 2020 demand for chlorine is 63 tons per day.

Alum

Alum is produced from bauxite, clay and sulfuric acid and is 32nd on the list of the top 50 chemicals produced. Annual production has been increasing about 3% per year and now is about 1.2 million tons per year.

Under Plan A, 50 tons per day would be required or 18,250 tons per year in 2020.

Methanol

Methanol is produced using natural gas (methane) and carbon dioxide. Its usage has increased 10% per year over the past several years making it 19th in the top 50 chemicals produced in 1971. Total capacity for production in the United States is 1.2 billion gallons per year. Currently, the largest use of methane is producing formaldehyde for the plastic industry.

Plan A has the highest requirement for methanol - 164 tons/day (2020) or about 20 million gallons annually which is 1.6% of current production. With the current problems with natural gas, and the possible nationwide demand for higher degree of wastewater treatment, methanol could be a potential limiting resource.

Lime

Lime and limestone are among the most abundant materials on earth. According to the National Lime Association, only air, water, sand and gravel exceed it in volume. The lime commonly used in treatment processes is Quicklime (Ca O). Quicklime is formed by heating the limestone to the dissociation temperature for a sufficient duration to remove the carbon dioxide.

No attempt has been made to project industrial needs of these chemicals to the year 2020 and combine with the demands nationally by wastewater treatment. However, this should be done to compare to national and world resources as well as possible production. This type of impact should be addressed by the project evaluators.

2. POWER REQUIREMENTS

Power requirements for the portion of each plan have been computed and are shown in Table E3. For this report the requirements are based on general data developed for typical plants. A discussion for power requirements for the municipal wastewater treatment facilities can be found in the Technical Appendix, Phase II, Part D.

For the stormwater treatment facilities, the unit process power requirements were added on a per million gallon treated base with an allowance for pumping computed on fifty feet of total dynamic head

TABLE E3
POWER REQUIREMENTS, MEGA WATT HOURS PER DAY

	1980	1990	2000	2010	2020
Plan A	1362	1788	2028	2229	2414
Plan B	1280	1684	1862	2019	2153
Plan C	1335	1321	1301	871	. 951

Comparing these requirements to existing need of 1000 megawatt hours per day, it can be seen that the additional environmental impact of generating this extra power must also be considered by the project evaluators.

Table E4 shows both the total power generating capacity of the station as well as that which is normally available within the area of Northeast Ohio. Table E4 shows the present generating capabilities.

POWER GENERATING STATION CAPACITIES IN 1972

CEI - Eastlake	1301	megawatts	(447 mw available for CEI)
CEI - Avon Lake	1287	megawatts	
CEI - Lakeshore	533	megawatts	
Cleveland Municipal	110	megawatts	
Ohio Edison - Gorge Plant	96	megawatts	
Ashtabula	459	megawatts	
Seneca Power Plant	381	megawatts	(305 mw available for CEI)
Davis Beese (Scheduled for com-			•
pletion in 1975)	906	megawatts	(431 mw available for CEI)
Perry (Planning Stage)		•	
(Scheduled for completion in			
early 1980's)	2410	megawatts	(no percent of ownership
		-	established)
Ohio Edison Total Capacity	3844	megawatts	•

Ohio Edison serves 8973 square miles in 39 northern and central Ohio counties. Ohio Edison and CEI are part of a five company interconnected group - CAPCO (Central Area Power Coordination). Power can be brought into Northeast Ohio from plants located in several states under emergency conditions.

3. AIR POLLUTION

In the plans, several treatment facilities were equipped initially with incinerators for sludge volume reductions. The ash from these facilities is to be handled in a landfill.

The question arising from the use of incinerators is the potential for transfer of the pollution from the water or land to the air. In the preliminary design considerations and costing, allowances have been made for adequate air pollution control devices to meet existing standards.

A summary by decade of incinerator emissions is presented in Table E5 for each of the three plans. In addition to the stack flow rate and particulate emissions, the approximate concentrations of various constituents of the stack flow are given below:

The figures presented above and in Table E5 are merely intended to be generalizations and should not be taken for specific data, since emissions depended largely on the emission control device, magnitude of excess air, ambient air quality, moisture content, auxiliary fuel used, type of sludge, degree of industrial contribution, and relative mixture of primary and secondary sludges. These data were averages from unpublished data of three multiple hearth incinerators equipped with scrubbers. The tests were run by the EPA using EPA Method 5. The pounds of emission decrease as more incinerators are phased out and sludge is applied to agricultural or strip-mined land.

TABLE ES INCINERATOR EMISSIONS SUMMARY

	1980	1990	2000	2010	2020
Plan A					
Daily Stack Flow Rate (DSCF)* Daily Particulate Emissions (lbs)**	124,000,000 7,737	163,000,000 10,171	19,600,000 1,223	22,200,000 1,390	24,000,000 1,500
Plan B					
Daily Stack Flow Rate (DSCF) Daily Particulate Emissions (lbs)	124,000,000 7,737	161,000,000 10,046	19,600,000 1,223	22,200,000 1,390	24,000,000 1,500
Plan C					
Daily Stack Flow Rate (DSCF) Daily Particulate Emissions (1bs)	115,000,000 7,176	87,000,000 5,429	93,500,000 5,834	1 1	1 1

*DSCP = dry standard cubic feet **Average particulate emission - 0.030 grains per standard cubic foot

4. LAND

The land requirements in this section address only those required for the water-based portions of the three plans. Allowances have been made for a 500 foot buffer strip around each major municipal wastewater treatment plant. Buffer zones are not planned for stormwater treatment facilities as it is expected they will be placed in green areas within the PUD zoned areas. In areas that are currently developed, the land cost is so high that it would be too expensive to purchase more than absolutely necessary. The stormwater treatment facilities in general are used intermittently and would not have the odor or visual problems of a wastewater treatment plant.

Area for aerated lagoons is not included in this table; however, it will be included in the plan formulators report.

ACRES REQUIRED FOR WATER BASED TREATMENT PLANTS

PLAN	WASTEWATER	STORMWATER	TOTAL
Α	729.5	1740.6	2470.1
В	728.0	2133.6	2899.9
С	517.0	2445.1	3000.4

5. MANPOWER

One of the major problems facing the wastewater treatment industry today is adequately trained manpower. The treatment processes required to meet the Level 2 effluent standards are complex in both the physical and theoretical sense. The level of training and education of the staff necessary to operate one of these plants must be increased which must be reflected in salary cost. As automation increases, the level of training for the maintenance staff will have to increase.

Manpower requirements shown in following table were projected assuming a high degree of automation. Manpower requirements are governed more by the type of unit process than by plant sizes. The numbers given reflect only plant operation, and do not include pumping station and sewer maintenance which usually is a function of local authority rather than the regional authority.

Manpower for the aerated lagoons is not included, but it will be included in the plan formulation report.

TABLE E7
MANPOWER REQUIREMENTS FOR STORMWATER & WASTEWATER PLANTS IN 2020

MUNICIPAL PLANTS

	Engineer	Chemists	Supervisors	Operators	Others	Total
Plan A	40	20	70	210	670	1010
Plan B	34	17	60	180	575	870
Plan C	16	8	28	83	266	400

STORMWATER PLANTS

	Engineer	Chemists	Supervisors	Operators	Others	Total
Plan A	15	30	55	200	1200	1500
Plan B	8	16	28	101	606	758
Plan C	4	8	15	56	339	422

APPENDIX A

This appendix includes all computer printout sheets for the municipal plants and stormwater districts of Plan A.

WASTEWATER TREATMENT PLANT

CURPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . LIVERPOOL

	1972	1975	1980	1985	1990	2000	2010	2020
POPULATION	88805	34335	47783	56943	66143	83212	100983	120508
FLOW (MGD)				٠				
DOMEST IC	2.30	4-01	5.73	7.00	8.27	10.82	14.14	16.08
INDUSTRIAL	0.78	0.87	0-76	1-04	1.13	1.42	1. 71	2.01
TOTAL	3.08	4-88	6.69	8.04	9.40	12.24	15.85	20.09
TOTAL	3400	1700	0.07	•	-440	12.27	.,,,,	
SLUDGE (TPD)								
GENERATED	3.26	2-18	7-09	8.53	10.72	13.95	18.07	22.90
DI SCHARGED	2.09	3.31	4.54	5-46	6.86	8.93	11-56	14-66

TREATMENT PLANT TYPE : ADVANCED BIOLOGICAL PLANT SLUDGE HANGLING TYPE : AGRICULTURAL APPLICATION

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRE SENT WORTH	1972	1975	1980	1985	1990	2000	50 10	2020	RESIDUAL
		-								
NEW PLANT	6069		6800					6800		4855
EXPANSION	2824					9550				1336
EXPAND TO LEVEL	2 1768				3600			3600		2160
SLUDGE FACILITIE	5 1160		1300					1300		928
SLUDGE FACILITIE						2550				356
SEWERS	9794		12000							1200
SEWERS	1590				3834					1150
RESIDUAL	465								TOTAL	11987
NET CAPITAL	23497		·		• -		-	·•• • • = ·		

TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	269	427	586	763	960	1250	1619	2053
SLUDGE	(\$1000/YR)	28	45	62	68	78	101	131	167
SENERS	(\$1000/YR)	٥	59	59	79	79	79	79	19
TOTAL	(\$1000/YR)	298	533	708	911	1118	1431	1830	2299
PRESENT VALUE	AT BEGIN-								
NING OF PERIO		1091	2545	3319	4159	8955	11458	14505	0
PRESENT WORTH	(\$1000)	1091	2017	1932	1725	2648	1723	1108	0

NET G.+M. . 12307.

TABLE III : TOTAL PRESENT WORTH

CAPITAL D.+M.	(\$1000) (\$1000)	23497 12306
LAND	(\$1000)	
TOTAL	(\$1000)	35804

TABLE IV : ANNUAL COSTS 191000/YR1

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
								_
NEW PLANT		524	524	524	524	524	524	524
EXPANSION					137	737	737	737
EXPAND TO LEVEL 2				308	308	308	308	308
SLUDGE FACILITIES		100	100	100	100	100	100	100
SLUDGE FACILITIES					196	196	196	196
SE WER S		868	868	868	868	868	868	868
SEWERS				277	277	277	211	277
TOTAL D.+M.	298	533	708	911	1118	1431	1830	2299
			-					
TOTAL ANNUAL	298	2025	2200	2988	4)28	4443	484D	5309

NOTE 1 : ANNUAL CUSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEGNESS WITE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

PLAN A , SOUTHERLY

	1972	1)75	1930	1935	1990	5000	2010	2020
POPULATION	552262	637743	723224	832422	1041622	1161810	1232326	1241914
FLOW (MGD) DOMESTIC INDUSTRIAL	88.62 13.03	100.15 15.29	111.69 17.55	134.36 21.02	15d.03 24.49	180.67 25.48	198.76 26.45	206.75 27.45
TOTAL	101.65	115.44	129.24	155.48	182.52	206.15	225.21	234.20
SLUDGE (TPD) GENERATED DISCHARGED	107.75 68.36	122.37 78.32	136.99 87.68	165 .2 3 105 .7 5	203.07 133.17	235.01 150.41	256.74 164.31	266.99 170.87

TREATMENT PLANT TYPE : ADVANCED BIOLOGICAL PLANT SLUDGE HANDLING TYPE : STRIP MINE APPLICATION

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

PRESI WOR1		1975	1980	1985	1990	2000	2010	2020	RESIDUAL
EXPAND TO LEVEL 1 496 EXPAND TO LEVEL 2 366 SLUDGE FACILITIES 146 SEWERS 163 SEWERS 133	563 592 511 281 620 132 953	55000 16000 19765	23975	88000	19000	110130	55000 16000		47245 33269 0 11423 2653 1975 4794 6834
RESIDUAL 4	431							TOTAL	114205
NET CAPITAL 1527	777								

TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1930	1985	1990	2000	2010	2020
PLANT SLUDGE SEWERS	(\$1000/YR) (\$1000/YR) (\$1000/YR)	6121 1179 0	6952 1339 98	7783 1500 218	11521 1055 218	15938 379 304	18058 429 304	19728 468 304	20515 487 304
TOTAL	(\$1000/YR)	7301	8391	9502	12795	16672	18791	20501	21307
	LUE AT BEGIN- RIOD (\$1000)	20591	36683	45711	60411	124541	137986	146320	o
PRESENT WOR	RTH (\$1000)	20591	29940	26604	25064	36839	20753	11217	0
NET 0.+M. =	171011								

TABLE III : TOTAL PRESENT WORTH

CAPITA O.+M. LAND	(\$1000) (\$1000) (\$1000)	152777 171011 2780
TOTAL	(\$1000)	326568

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1935	1993	5000	2010	2020
ANNUAL CAPITAL								
EXISTING PLANT						8502	8502	8502
EXPAND TO LEVEL 1		4245	4245	4245	4245	4245	4245	4245
EXPAND TO LEVEL 2			-	6793	6793	6793	6793	6793
SLUDGE FACILITIES		1235	1235	1235	1235	1235	1235	1235
SLUDGE FACILITIES					346 6	1466	1466	1466
SEWERS		1430	1430	1430	1430	1430	14 30	1430
SEWERS			1735	1735	1735	1735	1735	1735
SEHERS				_	1257	1237	1237	1237
TOTAL O.+M.	7301	8331	9502	12795	10572	18791	20501	21357
TOTAL ANNUAL	7301	15393	18150	28237	34817	4543)	47148	47954

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT MAS USED FOR ALL CALCULATIONS

PLAN A , ROCKY RIVER

	1972	1975	1980	1985	1990	2000	2010	2020
POPULATION	61537	75438	89340	100620	111900	125805	137700	143930
FLOW (MGD) DOMESTIC	6.77, - 0.37	8 . 74 0 . 36	10.72 0.39	_ 12.35 0.39	.13.99 . 0.40	.16.35 0.42	. 19.28 0.44	2L.59 - " 0.46
TOTAL	7.14	51.6	11.11	12.75	14.39	16.77	19.72	22.05
SLUDGE (TPD) Generated Discharged	5.00 3.20	6.39 4.09	7.78 4.98	8.92 5.71	10.07 6.45	11.74 7.51	13.60 8.83	15.43 9.86

TREATMENT PLANT TYPE : PHYSICAL CHEMICAL PLANT
SLUDGE HANDLING TYPE : AGRICULTURAL APPLICATION

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
EXISTING PLANT	1263						8400			3603
E XPANSION	813					2750				384
EXPAND TO LEVEL 1	723			1050				1050		419
EXPAND TO LEVEL 2	275				560			560		336
SLUDGE FACILITIES	611			960					960	822
SLUDGE FACILITIES	428					1450				202
RESIDUAL	223								TOTAL	5770
NET CAPITAL	3891									

TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
	•								
PLANT	(\$1000/YR)	596	762	928	1102	1286	1499	1763	1971
St udge	(\$1000/YR)	41	53	65	50	29	34	40	45
SEWERS	[\$1000/YR]	0	0	۵	O	. 0	Ö	ō	ő
TOTAL	(\$1000/YR)	638	816	993	1153	1316	1533	1803	2016
PRESENT VAL	UE AT BEGIN-								
NING OF PER		1909	3711	4402	5062	10009	11721	13417	0
PRESENT WORT	TH (\$1000)	1909	3029	2562	2100	2960	1762	1025	0

NET 0.+M. = 15349.6

TABLE III : TOTAL PRESENT WORTH

CAPITAL	. (\$1000) (\$1000)	3891
LAND	(\$1000)	15349
	-	
TOTAL	(\$10001	19241

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
EXISTING PLANT						648	648	648
EXPANSION					212	212	_ 212	212
EXPAND TO LEVEL 1			90	90	90	90	90	90
EXPAND TO LEVEL 2				48	48	46	48	48
SLUDGE FACILITIES			74	74	74	74	74	74
SLUDGE FACILITIES					111	111	111	111
TOTAL O.+M.	638	616	993	. 1153	1316	1533	1803	2016
TOTAL AMMIAL	438		1157	1145	1051	2716	2004	
TOTAL ANNUAL	638	816	1157	1365	1851	2716	2986	3199

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NUTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

PLAN A . LAKEHOOD

	1972	1975	1980	1985	1990	2000	2010	2020
POPULATI ON	80632	86244	91860	98662	105464	116240	123082	124784
FLOW (MGD) UDMESTIC INDUSTRIAL	16.92 0.19	17.34 0.20	17-80 0-20	18.29 0.20	18.79 p. 21	18.78	19.77	20.76 0.24
TOTAL	17,11	17.56	18.00	18.50	19.00	19.00	20.00	21.00
SLUDGE (TPD) GENERATED DISCHARGED	18.14 11.61	18.61	19.08 12.21	19.61 12.55	21.66 13.86	21.66 13.86	22.80 14.59	23.94 15.32

TREATHENT PLANT TYPE : ADVANCED BIOLOGICAL PLANT SLUDGE HANDLING TYPE : AGRICULTURAL APPLICATION

TABLE 1 : PRESENT WURTH - CAPITAL COSTS - (\$1000)

	PRESENT	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
E	1704						9300			3989
EXISTING PLANT	1398		4				4200			
EXPANSION	3748		4200					4200		2998
EXPAND TO LEVEL	1 1933		2900				\$000			399
EXPAND TO LEVEL	2 2702			4	5500			5500		3300
SLUDGE FACILITIE	S 2186		2450					2450		1749
SLUDGE FACILITIE						2750		- 10-0		384
RESIDUAL	497								TOTAL	12822
NET CAPITAL	12285									

TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1985	1980	1985	1990	2000	2010	2020
					140	1003	1007	2002	
PLANT	_(\$1000/YR)_		1281	1314				2007 .	
SLUDGE	(\$1000/YR)	139	142	146	100	55	55	58	61
SEWERS	[\$1000/YR]	0	0	0	0	0	٥	٥	0
TOTAL	1 \$1000/YR1	1388	1424	1460	1703	1962	1962	2065	5169
PRESENT VALUE	AT BEGIN-								
NING OF PERIO	D (\$1000)	3690	5913	6486	7515	13782	14145	14871	0
PRESENT WORTH	(\$1000)	3690	4826	3775	3118	4076	7515	1136	0

22750.7 NET 0.44. =

TABLE III : TOTAL PRESENT WORTH

CAPITAL	(\$1000)	12285
0.+M.	(\$1000)	22750
LAND	(\$1000)	0
TOTAL	(410001	36034

TABLE 1V : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
EXISTING PLANT						717	71.7	717
E XPANSION		324	324	324	324	324	324	324
EXPAND TO LEVEL 1		171	171	171	171	171	171	171
EXPAND TO LEVEL 2				471	471	471	471	471
SLUDGE FACILITIES		189	189	189	189	169	189	189
SLUDGE FACILITIES					212	212	212	212
TOTAL O.+M.	1388	1424	1460	1703	1962	1965	2065	2169
TOTAL ANNUAL	1386	9015	2144	2885	3329	4046	4149	4253

MUTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEONESS NOTE 2 : AN INTEREST RATE UF 7 PERCENT WAS USED FOR ALL CALCULATIONS

PLAN A . AURCRA CENTRAL

	1972	1975	1980	1985	1990	2000	2010	2020
POPULATION	1990	2563	3136	4842	6549	11600	14020	16285
FLOW (MGD)						,		
DOMEST 1C	0.22	0.30	0.38	0.60	0. 62	1.51	1-96	2.44
I NOUSTRI AL	0.00	0-11	0.22	0.36	0.50	0.22	0- 35	0.54
TOTAL	0.22	0-41	0.60	0.96	1.32	1.73	2.31	2.98
SLUDGE (TPD)								
GENERATED	0.23	0.43	0.64	1.02	1.50	1.97	2.63	3. 40
DISCHARGED	0.15	0.28	0.41	0.65	0.96	1.26	1.69	2.17

TREATMENT PLANT TYPE : ADVANCED BIOLOGICAL PLANT SLUDGE HANDLING TYPE : AGRICULTURAL APPLICATION

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL .
								1550		1106
NEW PLANT	1363		1550			24.50		1730		342
EXPANSION	724					2450				
EXPAND TO LEVEL	2 442				900			900		540
SLUDGE FACILITIE	S 267		300					300		214
SLUDGE FACILITIE						550				76
SEWERS	558			960						191
SEWERS	319					1080				431
RES I DUAL	112								TOT AL	2904
NET CAPITAL	3746									

TABLE II : PRESENT WORTH - D.+H. COSTS

	•	1972	1975	1980	1985	1990	2000	2010	2020
			~						
PLANT	(\$1000/YR)	30	56	82	140	204	268	358	462
SLUDGE	[\$1000/YR]	2	3	5	7	8	10	14	16
SEWERS	(\$1000/YR)	0	0	4	4	10	10	10	10
TOTAL	(\$1000/YR)	32	59	92	152	223	289	362	491
PRESENT VALUE								****	_
NING OF PERIO	0 (\$1000)	120	312	501	769	1800	2361	3069	0
PRESENT WORTH	(\$1000)	120	255	291	319	532	355	234	0

NET 0.+M. = 2109.17

TABLE III : TOTAL PRESENT WORTH

3746 2109 30	(\$1000) (\$1000) (\$1000)	CAPITAL O.+M. LAND
5005	******	TOTAL

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
NEW PLANT		119	119	119	119	119	119	119
EXPANSION					189	189	189	189
EXPAND TO LEVEL 2				77	77	77	77	77
SLUDGE FACILITIES .		23	23	23	23	23	23	23
SLUDGE FACILITIES					42	42	42	42
SEWERS			69	69	69	69	69	49
SE WER S					78	78	78	78
TOTAL D.+M.	32	59	92	152	223	289	382	491
TOTAL ANNUAL	32	201	707	447	820	886	979	1088
IUIAL ARMUNE	<i></i>	201	303	44/	820	660	¥/¥	1000

NOTE 1: ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING RUNDED INDEBTEDNESS NOTE 2: AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

PLAN A . NCFARLAND CREEK

		1972	1975	1980	1985	1990	2000	2010	2020
POPU	LATION	1635	3431	5227	10216	15206	20426	25120	28630
FLDW	(MGD) DUMESTIC INDUSTRIAL	0.18 0.00	0.40 0. 50	0.63 0.00	1.26 0.00	1.90 0.00	2.66 0.00	3.52 0.00	4.29 0.00
	TOTAL	0.18	0.10	0.63	1.26	1.90	2.66	3.52	4.29
SŁUD	GE (TPD) GENERATEO DISCHARGED	0.19 0.12	9.43 0.27	0.67 0.43	1.34 0.86	2.17 1.39	3.03 1.94	4.01 2.57	4.89 3.13

TREATMENT PLANT TYPE : ADVANCED BIOLOGICAL PLANT SLUDGE HANDLING TYPE : AGRICULTURAL APPLICATION

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RE SI DUAL
MEW PLANT	1785		2600					2000		1427
EXPANSION	958					3240				453
EXPAND TO LEVEL					1200			1200		720
SLUDGE FACILITIE	5 348		390					390		278
SLUDGE FACILITIE	5 189					640				89
SEWERS	3264		4600							400
RES TOUAL	130								TOTAL	3369
NET CAPITAL	7004									

TABLE 11 : PRESENT WORTH - G.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PL ANT	(\$1000/YR)	22	50	78	168	270	378	501	610
SLUDGE	(\$1000/YR)	1	3	4	8	10	14	19	23
SEWERS	(\$1000/YR)	ō	19	19	19	19	19	19	19
TOTAL	(\$1000/YR)	23	73	103	196	300	413	540	653
PRESENT VALUE	AT BEGIN-								
NING OF PERIC		127	361	614	1019	2506	3347	4193	0
PRESENT WORTH	(\$1000)	127	295	357	423	741	503	320	0

TABLE III : TOTAL PRESENT WORTH

CAPITAL D.+M. LAND	(\$1000) (\$1000) (\$1000)	7004 2768
TOTAL	(\$1000)	9773

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020

ANNUAL CAPITAL								
NEW PLANT		154	154	154	154	154	154	154
EXPANSION					250	250	250	250
EXPAND TO LEVEL 2				1 02	102	LOZ	102	102
SLUDGE FACILITIES		30	30	30	30	30	30	30
SLUDGE FACILITIES					49	49	49	49
SE WERS		289	289	289	289	289	289	289
TOTAL Q.+M.	23	73	103	196	300	413	540	653
TOTAL ANNUAL	23	546	576	771	1174	1287	1414	1527

NUTE 1 : ANNUAL COSTS DO NUT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FUR ALL CALCULATIONS

÷		1972	1975	1980	1985	1990	2000	2010	2020
POPUL	.AT ION	3820	4580	5340	6190	7040	8780	11000	13200
FLOW	(MGD)								
	DOMESTIC	0.42	0.53	0.64	0.76	0.88	1.14	1.54	1.98
	INDUSTRIAL	0.00	0.00	0.00	0.00	0.00	0.00	0-00	0.00
	TOTAL	0.42	0.53	0.64	0.76	0.88	1.14	1.54	1.98
SLUDE	SE (TPO)								
	GENERATED	0.45	0.56	0.68	0.81	1.00	1.30	1.76	2.26
	DISCHARGED	0.28	0.36	0.43	0.52	0.64	0.83	1.12	1.44

TREATMENT PLANT TYPE : ADVANCED BIOLOGICAL PLANT SLUDGE HANDLING TYPE : AGRICULTURAL APPLICATION

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972 1975	1980	1985	1990	2000	2010	2020	RESIDUAL
NEW PLANT	981	1100					1100		785
EXPANSION	535	••••			1810				253
EXPAND TO LEVEL				660			660		396
SLUDGE FACILITIE		220					220		157
SLUDGE FACILITIE					400				55
SEWERS	799	979							97
RESIDUAL	67							TOTA	1745
NET CAPITAL	2887								

TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1 975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	61	77	93	121	152	197	266	343
SLUDGE	(\$1000/YR)	4	6	7	7	7	9	12	16
SEWERS	(\$1000/YR)	ò	•	4	4	4	4	4	4
TOTAL	(\$1000/YR)	66	88	105	133	164	212	284	364
PRESENT VALUE	AT BEGIN-								
MING OF PERIO	D (\$1000)	202	398	490	611	1323	1744	2280	0
PRESENT WORTH	(\$1000)	202	324	285	253	391	262	174	0

MET 0.+M. = 1895.23

TABLE 111 : TOTAL PRESENT WORTH

2887 1895 20	(\$1000) (\$1000)	CAPITAL O.+M. LAND
4 802	(\$1000)	TOTAL

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1960	1985	1990	2000	2010	2020
				~				
ANNUAL CAPITAL								
NEW PLANT		84	84	84	84	84	84	84
EXP ANS ION					139	139	1.39	139
EXPAND TO LEVEL 2				54	56	56	56	56
SLUUGE FACILITIES		16	16	16	16	16	16	16
SLUDGE FACILITIES					30	30	30	30
SEWERS		70	70	70	70	70	70	70
TOTAL 0.+M.	66	88	105	133	164	212	284	364
TOTAL ANNUAL	66	258	275	359	559	607	679	759

NOTE 1: ANNUAL COSTS DU NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NUTE 2: AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

	1972	1975	1980	1985	1990	2000	2010	2020
POPULATION	3000	3585	4170	4845	5520	6910	8090	10300
FLOW (MGD)								
DOMESTIC	0.33	0.41	0.50	0.59	0.69	0.90	1.13	1.54
INDUSTRIAL	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL	0.33	0.41	0.50	0.59	0.69	0.90	1.13	1.54
SLUDGE (TPD)								
GENERATED	0.35	0.44	0.53	0.63	0.79	1.03	1.29	1.76
DISCHARGED	0-22	0.28	0.34	0-40	0.50	0.66	0.82	1-12

TREATMENT PLANT TYPE : ADVANCED BIOLOGICAL PLANT

SLUDGE HANDLING TYPE : AGRICULTURAL APPLICATION

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL .
NEW PLANT	770		863					863		616
EXPANSION	449					1520				212
EXPAND TO LEVEL	2 254				517			517		310
SLUDGE FACILITIE	5 174		195					195		139
SLUDGE FACILITIE	\$ 99					335		•••		46
SEWERS	211					715				285
RESIDUAL	62								TOTAL	1611
NET CAPITAL	1004									
MEI CAPITAL	1896									

TABLE II : PRESENT WORTH - O.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	48	60	73	97	125	164	206	281
SLUDGE	(\$1000/YR)	3	4	5	5	6	8	10	14
SEWERS	(\$1000/YR)	0	Ó	ō	ō	3	3	3	3
TOTAL	(\$1000/YR)	52	65	78	103	135	176	220	298
	UE AT BEGIN-	154	295	374	491	1095	1391	1822	0
PRESENT WOR	TH (\$1000)	154	241	217	203	323	209	139	0

NET Da+M. = 1489.32

TABLE III : TOTAL PRESENT WORTH

CAPITAL D.+M.	(\$1000) (\$1000)	1 896 1 489
LAND	(\$1000)	
TOTAL	(\$1000)	3400

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
NEW PLANT		66	66	66	66	66	66	66
EXPANSION					117	117	117	117
EXPAND TO LEVEL 2				44	44	44	44	44
SLUDGE FACILITIES		15	15	15	15	15	15	15
SLUDGE FACILITIES					25	25	25	25
SEWEAS					51	51	51	51
TOTAL O.+M.	52	45	78	103	135	176	220	298
70744 444444								
TOTAL ANNUAL	52	146	159	228	453	494	538	616

MOTE 1 : ANNUAL COSTS DO NUT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NUTE 2 : AN INTEREST RATE OF 7 PERCENT MAS USED FOR ALL CALCULATIONS

PLAN A . CHAGRIN FALLS

	1972	1975	1980	1985	1990	2000	2010	2020
POPULATION	5956	7913	9870	12488	15107	18138	20804	22566
FLOW (MGD)								
DOMESTIC	0.66	0.92	1.19	1.54	1.89	2.36	2.91	3.40
INDUSTRIAL	0.15	0.16	0.16	0-16	0.16	0.17	0.17	0.18
FOTAL	0.81	1.08	1.35	1.70	2.05	2.53	3.08	3.58
SLUGGE (TPD)								
GENERATED	0.86	. I'.15 .	. 1.43	. 1.80	. 2.34	2.88	3.52	4.08
D1 SCHARGED	0.55	0.73	0.91	1-15	1.49	1.84	2.25	2.61

TREATMENT PLANT TYPE : ADVANCED BIOLOGICAL PLANT

SLUDGE HANDLING TYPE : AGRICULTURAL APPLICATION

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
NEW PLANT	1919		2150					2150		1535
EXPANSION	633					2140				299
EXPAND TO LEVEL	2 589				1200			1200		720
SLUDGE FACILITIE	\$ 374		420					420		299
SLUDGE FACILITIE	5 189					640				89
SEWERS	195			336						67
SEWERS	108						720			432
RES TOUAL	133								TOTAL	3443
NET CAPITAL	3876									

TABLE 11 : PRESENT WORTH - O.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
							,		
PLANT	151000/YR)	101	134	167	232	306	378	461	535
SLUDGE	(\$1000/YR)	5	7	9	10	11	14	17	20
SEWERS	(\$1000/YR)	0	0	1	1	1	5	5	. 5
TOTAL	(\$1000/YR)	107	142	178	244	320	398	484	562
PRESENT VALUE	E AT BEGIN-								
NING OF PERIO	D (\$1000)	326	657	868	1158	2522	3100	3676	0
PRESENT WORTH	4 (\$1000)	326	536	505	480	746	466	280	0

NET 0.+M. = 3342.95

TABLE III : TOTAL PRESENT WORTH

CAPITAL	L (\$1000)	3876
0.+M.	(\$1000)	3342
LAND	(\$1000)	179
	-	
TOT AL	(\$1000)	7398

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
NEW PLANT		165	165	165	165	165	165	165
EXPANS 10M					165	165	165	165
EXPAND TO LEVEL 2				102	102	102	102	102
SLUDGE FACILITIES		32	32	32	32	32	32	32
SLUDGE FACILITIES					49	49	49	49
SEWERS			24	24	24	24	24	24
SEVERS						. 52		52
TOTAL O.+M.	107	142	176	244	320	398	484	562
								
TOTAL ANNUAL	107	339	399	567	857	985	1073	1151

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

		1972	1975	1980	1985	1990	2000	2010	2020
POPULAT (C)M	628	2556	4485	8457	12430	16450	20030	22680
FLOW (MGE))								
	STIC	0.07	0.31	0.54	1.05	1.55	2.14	2.80	3.40
	ISTRIAL	0.00	0.00	0.00	0.00	0.00	0.00	0-00	0.00
TOTA	ŭ.	0.07	9.31	0.54	1.05	1.55	2.14	2.80	3.40
SLUDGE (1	reo)								
GENE	RATED	0.07	0.32	0.57	1.11	1.77	2.44	3.19	3.88
0150	HARGED	0.05	0.21	0.37	0.71	1.13	1.56	2.04	2.48

TREATMENT PLANT TYPE : ADVANCED BIOLOGICAL PLANT SLUDGE MANDLING TYPE : AGRICULTURAL APPLICATION

2192.96

NET 0.+M. =

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRE SENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RES I DUAL
NEW PLANT	1562		1750					1750		1249
EXPANSION	789					2670				373
EXPAND TO LEVEL					1000			1600		600
SLUDGE FACILITI			340					340		242
SLUDGE FACILITI						620				86
SEWERS	587		720							72
SEWERS	147					498				199
RESTOUAL	109								TOTAL	2824
NET CAPITAL	3955									

TABLE II : PRESENT WORTH - O.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT .	(\$1000/YR)	•	40	70	146	231	320	419	508
SLUUGE	(\$1000/YR)	ă	2	4	7	9	12	16	19
SEWERS	(\$1000/YR)	Ö	3	3	3	6	6	6	6
TOTAL	(\$1000/YR)	9	46	79	157	247	338	441	534
PRESENT	VALUE AT BEGIN-								
NING OF	PERIOD (\$1000)	73	257	465	829	2057	2739	3427	0
PRESENT	WORTH (\$1000)	73	209	282	344	608	412	261	0

TABLE III : TOTAL PRESENT WORTH

CAPITAL G.+M.	(\$1000)	3955 2192
LAND	(\$1000)	
TOTAL	(\$1000)	6148

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
NEW PLANT		135	135	135	135	135	135	135
E XPAN SI ON					206	206	206	204
EXPAND TO LEVEL 2				85	85	85	85	85
SLUDGE FACILITIES		26	26	26	26	26	26	26
SLUDGE FACILITIES					47	47	47	47
SEWERS		52	52	52	52	52	52	52
SEWERS					36	36	36	36
FOTAL O. +M.	9	46	79	157	247	338	441	534
TOTAL ANNUAL		259	292	455	834	925	1028	1121

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT MAS USED FOR ALL CALCULATIONS

PLAN A . CHAGRIN E. BRANCH

	1972	1975	1980	1985	1990	2000	2010	2020
POPULATION	4420	5205	5990	6985	7980	9600	11340	13020
FLOW (MGD) DOMESTIC INDUSTRIAL	0.49 0.00	0.61 0.00	0.72 0.00	0.86	1.00	1.25 0.00	1.58	1.95
TOTAL	0.49	0-61	0.72	0.86	1.00	1.25	1.58	1.95
SLUDGE (TPD) GENERATED OISCHARGED	0.52 0.33	0-64 0-41	0.76 0.49	0. 91 0. 58	1.14 0.73	1.43 0.91	1.80 1.15	2-22 1-42

TREATMENT PLANT TYPE & ADVANCED BIOLOGICAL PLANT

SLUDGE HANDLING TYPE : AGRICULTURAL APPLICATION

TABLE 1 : PRESENT HORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RES TOU AL
NEW PLANT	1115		1250					1250		892
EXPANSION	461					1560				216
EXPAND TO LEVEL					750			750		450
SLUDGE FACILITIE			240					240		171
SLUDGE FACILITIE						530				74
SEWERS	668		819							81
SEWERS	315			542						108
RESIDUAL	77								TOTAL	1996
MET CADITAL	3223									

TABLE 11 : PRESENT WORTH - O-+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PL ANT	(\$1000/YR}	71	88	105	138	175	219	276	341
SLUDGE	(\$1000/YR)	5	6	7	7	7	9	11	14
SEWERS	(\$1000/YR)	0	4	6	6	6	6	6	•
TOTAL	(\$1000/YR)	76	98	119	152	189	235	295	363
PRESENT VAL	UE AT BEGIN-	•							
NING OF PER	10D (\$1000)	230	448	558	701	1491	1 863	2312	0
PRESENT WOR	TH (\$1000)	230	365	324	290	441	280	176	0
NET Q.+#. =	2110.54	•							

TABLE III : TOTAL PRESENT WORTH

CAPITAL D.+M. LAND	(\$1000) (\$1000)	3223 2110 20
TOTAL	f \$1 0001	4 353

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
NEW PLANT		96	96	96	96	96	96	96
EXPANSION					120	120	120	120
EXPANO TO LEVEL 2				64	64	64	64	64
SLUDGE FACILITIES		18	18	18	16	18	16	16
SLUDGE FACILITIES					40	40	40	40
SEWER S		59	59	59	59	59	59	59
SEWERS			39	39	39	39	39	39
TOTAL O.+M.	76	98	119	152	189	235	295	363
TOTAL ANNUAL	76	271	331	428	625	671	731	799

NOTE 1 : ANNUAL COSTS DJ NUT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEONESS NUTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

PLAN A . WILLOUGHBY-EAST.

	1972	1975	1980	1985	1990	2000	2010	2020
POPULATI ON	38324	45212	52100	64500	76900	97300	115200	124800
FLOW (MGD)							•	
DOMESTIC	4.22	5.23	6.25	7.93	9.61	12.65	16.13	19.02
INGUSTRIAL	1.33	1.50	1.67	1.84	2.00	2.42	2.63	3.25
TOTAL	5.55	6.73	7.92	9.76	11.61	15.07	18.96	22.27
SLUDGE (TPO)		•						
GENERATED	3.58	7.14	8.40	10.35	13.24	17.18	21.61	25.39
DISCHARGED	2.29	4.57	5.37	6.62	8.47	11.00.	13.83	16.25

TREATMENT PLANT TYPE : ADVANCED BIOLOGICAL PLANT

SLUDGE HANDLING TYPE : STRIP MINE APPLICATION

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RES IDUAL
										
EXISTING PLANT	56						375			160
E XPANSION	2641			4150					4150	3556
EXPAND TO LEVEL	1 891			1400					1400	1199
EXPAND TO LEVEL	2 2210				4500			4500		2700
EXPANSION	947						6300			2702
SLUDGE FACILITIES	5 1115		1250					1250		892
SLUGGE FACILITIE	\$ 665					2250				314
SEWERS	489		600							60
SEWERS	1371			2356						471
SENERS	646					2184				673
RES IDUAL	501								TOTAL	12932
NET CAPITAL	10533	•								

TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
				~~~~				<del></del>	
PLANT	(\$1000/YR)	253	417	621	899	1228	1595	2006	2357
SLUDGE	(\$1300/YR)	11	20	21	56	33	43	55	64
SEWERS	(NY\00014)	0	2	14	14	25	25	25	25
TOTAL	(\$1000/YR)	264	441	657	941	1283	1664	2087	2447
PRESENT VAL	UE AT BEGIN-								
NING OF PER	1100 (\$1003)	927	2254	3277	4570	10379	13178	15928	0
PRESENT WOR	40001	927	1839	1907	1646	3067	1981	1516	ø

NET D.+M. = 12837.9

TABLE III : TOTAL PRESENT WORTH

CAPITAL	(\$1000)	10533
0.+H.	(\$1000)	12537
LAND	(\$1000)	0

TOTAL [\$1030] 23371

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1965	1990	2000	2010	2020
ANNUAL CAPITAL								
EXISTING PLANT						28	28	28
FXPANSIUN			320	320	320	320	320	320
EXPAND TO LEVEL I			108	108	1 08	108	108	108
EXPAND TO LEVEL 2				386	386	386	306	386
EXPANSION						486	436	486
SLUDGE FACILITIES		96	96	96	96	96	95	96
SLUDGE FACILITIES					173	173	173	173
SEWER S		43	43	43	43	43	43	43
SEWERS			170	170	170	170	170	170
SEWERS				_	158	158	158	158
TOTAL U. M.	264	44 E	657	9+1	1238	1664	2037	2447
Total Augusti	265	580	1394	3364				
TOTAL AVRUAL	204	240	1 394	2054	2742	3632	4055	4415

KITE 1: ANNUAL COSTS OR NOT EVELUDE PRESENT CUTSTANGING RONDED INDEBTEDNESS NOTE 2: AN INTERPSE RATE OF 7 PROCENT WAS USED SURFALL CALCULATIONS.

PLAN A , BUTTERNUT CREEK

	1972	1975	1980	1985	1990	2000	2010	2020
POPULATION	2180	2630	3080	3540	4000	5080	6360	7800
FLOW (MGD) DOMESTIC INDUSTRIAL	0.24 0.00	0.31	0.37 0.00	0.44 0.00	0.50 0.00	0.66 0.00	0.89	1.17
TOTAL	0.24	0.31	0.37	0.44	0.50	0.66	0.89	1.17
SLUDGE (TPD) GENERATED DISCHARGED	0.25 0.16	0.32 0.21	0.39 0.25	0.46 0.30	0.57 0.36	0.75	1.01	1.33

TREATMENT PLANT TYPE : ADVANCED BIOLOGICAL PLANT SLUDGE HANDLING TYPE : AGRICULTURAL APPLICATION

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RES IDUAL
NEW PLANT EXPAND TO LEVEL 2 EXPANSION SLUDGE FACILITIES SLUDGE FACILITIES SEWERS SEWERS	381 133		625 150 480	468	375	1290 280		625 375 150		446 225 180 107 39 48 93
RESIDUAL	44								TOTAL	1139
NET CAPITAL	1960									

TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
SLUDGE	(\$1000/YR) (\$1000/YR) (\$1000/YR)	35 2 0	44 3 2	54 4	74	98 5	130	175	230
TOTAL	(\$1000/YR)	37	50	63	84	108	141	189	243
PRESENT VALUE AT		115	232	301	395	880	1165	1537	0
PRESENT WORTH	(\$1000)	115	189	175	163	260	175	117	0
NET 0.+M. =	1198.39								

TABLE III : TOTAL PRESENT WORTH

CAPITAL O.+M. LAND	(\$1000) (\$1000) (\$1000)	1960 1198 12
TOTAL	(\$1000)	3170

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL NEW PLANT EXPAND TO LEVEL 2		48	48	48 32	48 32	48 32	48 32	48 32
EXPANSION SLUDGE FACILITIES SLUDGE FACILITIES		11	11	11	99 11 21	99 11 21	99 11 21	99 11 21
SEWERS SEWERS TOTAL O.+M.	37	34 50	3h 33 63	34 33 84	34 33 108	34 33 141	34 33 189	34 33 248
TOTAL ANNUAL	37	145	191	244	390	423	471	529

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEDTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

PLAN A , EAST CLARIDON

	1972	1975	1980	1985	1990	2000	2010	5050
POPULATION	730	950	1170	1425	1680	2380	2780	3200
FLOW (HGD) DOMESTIC INDUSTRIAL	0.08	0.11 0.00	0.14 0.00	0.17	0.21 0.00	0.31 0.00	0.39 0.00	0.48 0.00
TOTAL	0.08	0.11	0.14	0.17	0,21	0.31	0.39	0.48
SLUDGE (TPD) GENERATED DISCHARGED	0.08 0.05	0.12 0.07	0.15 0.09	0.19 0.12	0.24 0.15	0.35 0.23	0.44 0.28	0.55 0.35

TREATMENT PLANT TYPE : ADVANCED BIOLOGICAL PLANT SLUDGE HANDLING TYPE : AGRICULTURAL APPLICATION

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	5050	RES IDUAL
NEW PLANT EXPAND TO LEVEL 2 EXPANSION SLUDGE FACILITIES SLUDGE FACILITIES SEWERS	159 71		263 80 120	-	157	540 150		263 157 80		187 94 75 57 20
RESIDUAL	17								TOTAL	447
NET CAPITAL	667									

TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	5050
PLANT SLUDGE SEWERS	(\$1000/YR) (\$1000/YR) (\$1000/YR)	11 1 0	16 1 0	20 2 0	30 2 0	43 3 0	64 5 0	81 6 0	99
TOTAL	(\$1000/YR)	12	18	23	34	47	70	88	108
PRESENT VALUE NING OF PERIO	AT BEGIN- D (\$1000)	41	85	118	168	416	558	693	0
PRESENT WORTH	(\$1000)	41	69	68	70	123	84	52	0
NET 0.+M. =	510.124	I							

TABLE 111 : TOTAL PRESENT WORTH

CAPITAI O.+M. LAND	(\$1000) (\$1000) (\$1000)	667 510 5
	-	
TOTAL	(\$1000)	1183

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
NEW PLANT EXPAND TO LEVEL 2		20	50	20 13	20 13	20 13	20 13	20 13
EXPANSION SLUDGE FACILITIES		6	6	6	41	41 6	41 6	41
SLUDGE FACILITIES SEWERS		. 8	. 8	. 8	11 .8	11 8	11 8	11 8
TOTAL O.+M.	12	18	23	34	47	70	88	108
TOTAL ANNUAL	.12	148	186	243	431	454	472	192

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

PLAN A . BURTON

		1972	1975	1980	1985	1990	2000	5010	2020
POPUL	ATION	1100	1600	2100	2500	2900	3500	4200	5100
1	(MGD) DOMESTIC INDUSTRIAL	0.12 0.06	0.19 0.06	0.25 0.07	0.31 g.08	0.36 0.09	0.45 0.11	0.59	0.76 0.15
	TOTAL	0.18	0.25	0.32	0.38	0.45	0.56	0. 72	0. 91
	E (TPD) GENERATED DISCHARGED	0.19 0.12	0.26 0.17	0.34 0.22	0.41 0.26	0.51 0.33	0.64 0.41	0.82 0.53	1.04 0-67

TREATMENT PLANT TYPE : ADVANCED BIOLOGICAL PLANT SLUDGE HANDLING TYPE : AGRICULTURAL APPLICATION

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
NEW PLANT	501		562					562		401
EXPANSION	272		<i>,</i>			920		,02		128
EXPAND TO LEVEL						338				47
SLUDGE FACILITIE	5 124		140					140		99
SLUDGE FACILITIE	S 66					225				31
SEWERS	209			360						71
SEWERS	70					240				95
RESIDUAL	34								TOTAL	876
NET CAPITAL	1311									

#### TABLE II : PRESENT WORTH - O.+M. COSTS

		1972	1975	1980	1985	1990	2000	20 10	2020
PL ANT	(\$1000/YR)	25	36	47	68	92	116	150	190
SLUDGE	(\$1000/YR)	2	•	5	6	7	9	12	15
SEWERS	(\$1000/YR)	0	0	1	1	2	2	2	2
TOTAL	(\$1000/YR)	28	10	54	76	103	129	165	209
PRESENT VAL	UE AT BEGIN-								
NING OF PER		90	193	266	368	817	1034	1315	0
PRESENT WOR	TH (\$1000)	90	158	155	153	241	155	100	0

NET 0.+M. = 1055.38

#### TABLE III : TOTAL PRESENT WORTH

CAPITAL (\$1000) 0.+M. (\$1000) LANO (\$1000) 1311 1055 9 TOTAL (\$1000) 2376

# TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1 975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
NEW PLANT		43	43	43	43	43	43	43
EXPANSION					71	71	71	71
EXPAND TO LEVEL 2					26	26	26	26
SLUDGE FACILITIES		lo	10	10	10	10	10	10
SLUDGE FACILITIES					17	17	17	17
se wer s			26	26	26	26	26	26
SEW ERS					17	17	17	17
TOTAL O.+M.	28	40	54	76	103	129	165	Z 09
TOTAL ANNUAL	26	93	133	155	313	339	375	421

NOTE 1 : ANNUAL COSTS DO NUT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE UF 7 PERCENT MAS USED FOR ALL CALCULATIONS

PLAN A . MIDDLEFIELD

	1972	1975	1980	1985	1990	2000	20 10	2020
POPUL AT 10Y	1700	2350	3000	3850	4700	5200	7000	8200
FLOW (MGD)								
DOMESTIC	0.19	J. 27	0.36	0.47	0.59	0.68	0.98	1.23
INDUSTRIAL	0.58	0.64	0.70	0.76	0.83	1.04	1 -25	1-47
FOTAL	0.77	0.91	1.06	1.24	1.42	1.72	2.23	2.70
SLUDGE (TPD)								
GENERATED	0. 82	0.97	1.12	1.31	1.62	1.96	2.54	3.08
DISCHARGED	0.52	0.62	0.72	0.84	1.04	1.25	1-63	1.97

TREATMENT PLANT TYPE : ADVANCED BIOLOGICAL PLANT

SLUDGE HANDLING TYPE : AGRICULTURAL APPLICATION

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
NEW PLANT	1428		1600					1600		1142
EXPAND TO LEVEL					950			950		570
EXPANSION	573					1940		7,70		271
SLUDGE FACILITIES			310			1,740		310		221
SLUDGE FACILITIE			714			520		310		72
SEWERS	97		120			720				
SEWERS	76		120	132						12
SEWERS	10			136						26
RESIDUAL	89								TOTAL	2316
MET PARITAL	2084									

# TABLE II : PRESENT WORTH - G.+M. COSTS

	1972	1975	1980	1985	1990	2000	2010	2020
(\$1000/YR)	103	123	143	183	228	276	358	433
(\$1000/YR)	6	8	9	9	9	11	14	17
(\$1000/YR)	Ō	0	i	1	1	1	1	i
(\$1000/YR)	110	132	153	193	238	288	374	452
E AT BEGIN-								
OD (\$1000)	319	586	712	887	1853	2328	2904	0
H (\$1000)	319	478	414	368	548	350	221	0
	(\$1000/YR) (\$1000/YR) (\$1000/YR) E AT BEGIN- OD (\$1000)	(\$1000/YR) 103 (\$1000/YR) 6 (\$1000/YR) 0 (\$1000/YR) 110 E AT BEGIN- OD (\$1000) 319	(\$1000/YR) 103 123 (\$1000/YR) 6 8 (\$1000/YR) 0 0 (\$1000/YR) 110 132 E AT BEGIN- OD (\$1000) 319 586	(\$1000/YR) 103 123 143 (\$1000/YR) 6 8 9 (\$1000/YR) 0 0 1 (\$1000/YR) 110 132 153 E AT BEGIN- OD (\$1000) 319 586 712	(\$1000/YR) 103 123 143 183 (\$1000/YR) 6 8 9 9 9 (\$1000/YR) 0 0 1 1 1 (\$1000/YR) 110 132 153 193 E AT BEGIN- OD (\$1000) 319 586 712 887	(\$1000/YR) 103 123 143 183 228 (\$1000/YR) 6 8 9 9 9 9 (\$1000/YR) 0 0 1 1 1 1 (\$1000/YR) 110 132 153 193 238 E AT BEGIN- OD (\$1000) 319 586 712 887 1853	(\$1000/YR) 103 123 143 183 228 276 (\$1000/YR) 6 8 9 9 9 11 (\$1000/YR) 0 0 1 1 1 1 1 (\$1000/YR) 110 132 153 193 238 288 E AT BEGIN- OD (\$1000) 319 586 712 887 1853 2328	(\$1000/YR) 103 123 143 183 228 276 358 (\$1000/YR) 6 8 9 9 9 11 14 (\$1000/YR) 0 0 1 1 1 1 1 1 1 1 1 (\$1000/YR) 110 132 153 193 238 288 374 E AT REGIN- OD (\$1000) 319 586 712 887 1853 2328 2904

NET O.+M. = 2701.17

## TABLE III : TOTAL PRESENT WORTH

CAPITA Q.+M. LAND	(\$1000) (\$1000) (\$1000)	2984 2701 27
	-	
TOTAL	t \$1000 3	5712

# TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL						******		
NEW PLANT		123	123	123	123	123	123	153
EXPAND TO LEVEL 2				81	81	81	81	81
EXPANS ION					149	149	149	149
SLUDGE FACILITIES		23	23	23	23	23	23	23
SLUDGE FACILITIES					40	40	40	40
SEWERS				6	8	8		
SE WER S			9	9	9	9	9	•
TOTAL G.+M.	110	132	153	193	238	288	374	452
TOTAL ANNUAL	110	288	319	441	675	726	811	889

NUTE 1 : ANNUAL CUSTS DO NUT INCLUDE PRESENT OUTSTANDING BUNDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

PLAN A . AUBURN THP.

	1972	1975	1980	1985	1990	2000	2010	2020
POPULATION	1550	£940	2330	2725	3120	4080	4930	5600
FLOW (MGD)								
DOMEST IC	0.17	0.22	0-28	0.33	0.39	0.53	0.69	0.84
INDUSTRIAL	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL	0.17	0.22	0.28	0.33	0.39	0,53	0.69	0.84
SLUDGE (TPD)								
GENERATED	0.18	0.24	0.30	0.36	0.44	0.60	0.79	0.96
DISCHARGED	0. 12	0.15	0.19	0.23	0.28	0.39	0.50	0.61

TREATMENT PLANT TYPE : ADVANCED BIOLOGICAL PLANT SLUDGE HANDLING TYPE : AGRICULTURAL APPLICATION

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	_PRESENT	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
	HUK I II			1700						
NEW PLANT	434		487					487		347
EXPAND TO LEVEL			•••		292			292		175
EXPANSION	266					900				125
SLUDGE FACILITIE			125					125		89
SLUDGE FACILITIE			•			225				31
SEWERS	195			336						67
RESIDUAL	32								TOTAL	836
NET CAPITAL	1185									

#### TABLE II : PRESENT WORTH - O.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	24	32	40	59	81	110	143	174
SL UDGE	(\$1000/YR)	1	2	3	3	4	6	8	10
SEWERS	(\$1000/YR)	Ō	0	1	1	1	1	1	1
TOTAL	- {\$1000/YR}	26	35	45	64	87	118	153	186
	UE AT BEGIN-		166	226	312	724	956	1196	٥
NING OF PER	100 1310001	•1	100	220	312	124	,,,,	****	•
PRESENT MOR	TH (\$1000)	81	135	132	129	214	143	91	0

NET 0.+M. = 929.049

## TABLE III : TOTAL PRESENT WORTH

CAPITAL	L (\$1000)	1185
O.+M.	(\$1000)	929
LAND	(\$1000)	
	-	
TOTAL	1510003	2122

#### TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1 990	2000	2010	2020
				<del></del>				
ANNUAL CAPITAL						_		
NEW PLANT		37	37	37	37	37	37	37
EXPAND TO LEVEL 2				25	25	25	25	25
EXPANSION					69	69	69	69
SLUDGE FACILITIES		•	9	9	9	9	•	9
SLUDGE FACILITIES		-			17	17	17	2.7
SEWERS			24	24	24	24	24	24
TOTAL O.+M.	26	35	45	64	87	118	153	1 66
· · · · · · · · · · · · · · · · · · ·	*							
TOTAL ANNUAL	26	81	115	159	268	299	334	367

NOTE 1 : ANNUAL CUSTS DO NOT INCLUDE PRESENT OUTSTANDING BUNDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

PLAN A . TROY TWP.

	1972	1975	1980	1985	1990	2000	2010	2020
POPULATION	820	1035	1250	1465	1680	2230	2720	3140
FLOW (MGD) DOMESTIC INDUSTRIAL	0.09 0.00	0.12 9.00	0.15 0.00	81.0	0.21 0.00	0.29 0.00	0.38 0.00	0.47
TOTAL	0.09	0.12	0.15	0.18	0.21	0.29	0.38	0.47
SLUDGE (TPD) GENERATED DISCHARGED	0.10 0.06	0.13 0.08	0.16 0.10	0.19 0.12	0.24 0.15	0.33 0.21	0.43 0.28	0.54 0.34

TREATMENT PLANT TYPE : ADVANCED BIOLOGICAL PLANT SLUDGE HANDLING TYPE : AGRICULTURAL APPLICATION

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT MORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
NEU DI AMT	234		263					263		187
NEW PLANT			203		158			158		94
EXPAND TO LEVEL					1 70			170		
E XPANSI ON	153					520				72
SLUDGE FACILITIE	S 71		80					80		57
SLUDGE FACILITIE						150				20
						96				38
SEWERS	28					70				36
RESIDUAL	18								T OT AL	471
NET 5401741										

## TABLE II : PRESENT WORTH - 0.+M. COSTS

	•	1972	1975	1980	1985	1990	2000	2010	2020	
PLANT	(\$1000/YR)	13	17	21	31	43	60	79	97	
	(\$1000/YR)	1	1	1	2	2	3	4	5	
	(\$1000/YR)	Õ	Ō	Ö	0	0	0	0	0	
TOTAL	(\$1000/YR)	14	18	23	33	46	64	84	104	
PRESENT VALUE A	T BEGIN-									
NING OF PERIOD		43	87	118	165	390	522	661	0	
PRESENT WORTH	(\$1000)	43	71	68	68	115	78	50	o	

NET 0.+M. = 496.667

#### TABLE III : TOTAL PRESENT WORTH

CAPITAL	(\$1000)	592
D.+M.	(\$1000)	496
 LAND	[\$1,000]	5
T OT AL	(\$1000)	1093

#### TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
NEW PLANT		20	20	20	20	20	20	20
EXPANO TO LEVEL 2				13	13	13	13	13
EXPANSION					40	40	40	40
SLUDGE FACILITIES		6	•	6	6	•	6	•
SLUDGE FACILITIES		-			11	11	11	11
SEHERS					6	6	6	•
TOTAL O.+M.	14	1.6	23	33	46	64	84	104
TOTAL ANNUAL	14	43	49	72	142	160	180	200

NOTE 1: ANNUAL COSTS DO NUT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2: AN INTEREST RATE UF 7 PERCENT 4AS USED FOR ALL CALCULATIONS

PLAN A . MANTUA

NET 0.+M. =

1121.43

		1972	1975	1980	1985	1990	2000	2010	2020
POPU	LATION	1440	1645	1850	2115	2380	2940	3620	3975
FLOW	(MGD)								
	DOME STIC	0.16	0.19	0.22	0.26	0.30	0.38	0.51	0.60
	INDUSTRIAL	0.13	0-14	0-15	0.16	0.17	0-20	0.23	0.26
	TOTAL	0. 29	0.33	0.37	0.42	0.47	0.58	0.74	0.86
SLUD	GE (TPD)								
	GENERATED	0.31	0.35	0.39	0.45	0.54	0.66	0.84	0.98
	DISCHARGED	0.20	0.22	0.25	0.28	0.34	0.42	0.54	0.63

TREATMENT PLANT TYPE : ADVANCED BIOLOGICAL PLANT
SLUDGE HANDLING TYPE : AGRICULTURAL APPLICATION

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
NEW PLANT	526		590					590		421
EXPAND TO LEVEL	2 172				352			352		211
EXPANSION	230					780				109
SLUDGE FACILITIE	S 124		140					140		99
SLUDGE FACILITIE	<b>66</b> 23		<b></b>	<del></del> -		225 .				31,
RESIDUAL	33					•			TOTAL	873
NCT CADITAL	1087									

## TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT SLUDGE	(\$1000/YR) (\$1000/YR)	42	40	54	74	97	120	153	178
SEWERS	(\$1000/YR)	ő	ó	ŏ	ŏ	ó	ò	ó	ő
TOTAL	(\$1000/YR)	45	52	58	79	103	127	163	189
PRESENT VALUE		128	226	281	374	813	1022	1239	0
PRESENT WORTH	(\$1000)	128	184	164	155	240	153	94	0

## TABLE III : TOTAL PRESENT WORTH

CAPITAL O.+M. LAND	(\$1000) {\$1000} (\$1000)	1087 1121 0
****		3300

## TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
NEW PLANT		45	45	45	45	45	45	45
EXPAND TO LEVEL 2				30	30	30	30	30
EXPANSI ON					60	60	60	60
SLUDGE FACILITIES		10	10	. 10	10	10	10	10
SLUDGE FACILITIES					17	17	17	17
TOTAL D.+M.	45	52	58	79	103	127	163	109
TOTAL ANNUAL	45	107	113	164	265	289	325	351

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

PLAN A . AKRON

NET 0.+#. -

96993.9

		1972	1975	1980	1985	1990	2000	2010	2020
POPU	LATI ON	344877	364584	364292	398001	411711	481404	503361	509668
FLON	(MGD) DUMESTIC INDUSTRIAL	55.81 15.19	62.46 15.09	69.10 14.99	75.90 15.05	82.71 15.12	95.53 15.80	112.55 16.48	132.51 17.16
	TOTAL	71.00	77.54	84.09	90.96	97. 83	111.33	129.03	149.67
SLUD	GE (TPD) GENERATED DISCHARGED	75.26 48.17	82.20 52.61	89.14 57.05	96.42 61-71	111.53 71.38	126.92 81.23	147.09 94.14	170.62 109.20

TREATMENT PLANT TYPE : ADVANCED BIOLOGICAL PLANT

SLUDGE HANDLING TYPE : STRIP MINE APPLICATION

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

PRE SENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
EXISTING PLANT 586						3900			1673
EXPAND TO LEVEL 1 7140		8000					8000		5711
EXPAND TO LEVEL 2 10808				22000			22000		13200
EXPANSION 20122				48500					0
SLUDGE FACILITIES 7854		8800					8800		6283
SLUDGE FACILITIES 4771				11500					0
SEWERS 88		108							10
SEMERS 698			1200						239
SEWERS 1064					3400				1439
RESIDUAL 1108								TOTAL	28559
NET CAPITAL 52028									

## TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
								~	
PLANT	(\$1000/YR)	4275	4670	5064	6723	8569	9752	11303	13111
SLUDGE	(\$1000/YR)	412	450	488	351	203	231	268	311
SEWERS	(\$1000/YR)	0	0	6	6	24	24	24	24
TOTAL	(\$1000/YR)	4688	5120	5558	7081	8797	10008	11596	13447
PRESENT VALUE		12870	21893	25913	32553	66044	75870	87944	0
PRESENT MORTH	(\$1000)	12870	17869	15081	13506	19535	11410	6718	0

## TABLE III : TOTAL PRESENT WORTH

CAPITAL D.+M. LAND	(\$1000) (\$1000) (\$1000)	52028 96993 118
TOTAL	(\$1000)	149140

#### TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
******								
ANNUAL CAPITAL								
EXISTING PLANT						301	301	301
EXPAND TO LEVEL 1		617	617	617	617	617	617	617
EXPANO TO LEVEL 2				1887	1887	1887	1887	1887
E XPANSI ON				3744	3744	3744	3744	3744
SLUDGE FACILITIES		679	679	679	679	679	679	679
SLUDGE FACILITIES				887	687	887	887	887
SE WER S		7	7	7	7	7	7	7
SEWERS			86	86	86	86	86	86
SE WERS					260	260	260	260
TOTAL D.+M.	4488	5120	5558	7081	8797	10008	11594	13447
TOTAL ANNUAL	4488	6423	6947	14988	16964	18476	20094	21915

NOTE & ANNUAL COSTS UD NUT INCLUDE PRESENT OUTSTANDING BUNDED INDEBTEDNESS NOTE 2 3 AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

	-	1972	1975	1980	1985	1990	2000	2010	2020
				<del></del>				*****	
POPUL AT	TION	33024	48932	64841	81701	98562	121504	139790	150600
DC	GD) DESTIC DUSTRIAL	3.63 2.20	5.70 2.55	7.78 2.90	10.05	12.32 3.61	15.80	19.57 5.08	22.59 5.82
Ŧ	TAL	5.83	8.25	10.68	13.30	15.93	20.15	24.65	28.41
SLUDGE	(TPD)								
G	NERATED	5.01	7.10	9.18	11.44	13.70	17.33	21.20	24.43
DI	SCHARGED	5.01	7.10	9.18	11.44	13.70	17.33	21.20	24.43

TREATMENT PLANT TYPE : PHYSICAL CHEMICAL PLANT

SLUDGE HANDLING TYPE : INCINERATION

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RE SIDUAL
							<del></del>	<del></del>		
NEW PLANT	6998		7240				7240			1447
EXPAND TO LEVEL	2 275				560			560		336
EXPANSION	1989					5680			5680	4544
SEWERS	3917		4800							480
RESIDUAL	264								TOTAL	6807
MET CAPITAL	12014									

#### TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PL ANT	(\$1000/YR)	487	689	892	1114	1337	1691	2069	2385
SLUDGE	(\$1000/YR)	0	0	0	0	0	0	0	0
SEWERS	(\$1000/YR)	0	23	23	23	23	23	23	23
TOTAL	(\$1000/YR)	487	713	916	1136	1361	1715	2093	2409
PRESENT VAI	LUE AT BEGIN-								
NING OF PER	(100 (\$1000)	1576	3342	4213	5124	10805	1 33 76	15811	0
PRESENT WO	RTH (\$1000)	1576	2728	2452	2126	3196	2011	1207	0
NET 0.44.	15299.2	2							

TABLE III : TOTAL PRESENT WORTH

CAPITA	L (\$1000)	12916
G.+M.	{\$1000}	15299
LAND	(\$1000)	520
	-	<del></del>
TOTAL	(\$1000)	28735

## TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1960	1985	1990	2000	2010	2020
ANNUAL CAPITAL					<del></del>			
NEW PLANT		621	621	621	621	621	621	621
EXPAND TO LEVEL 2				48	48	48	48	48
EXPANS I ON					487	487	487	487
SE WERS		347	347	347	347	347	347	347
TOTAL D.+M.	487	713	916	1138	1361	1715	2093	2409
				*			~	
TOTAL ANNUAL	487	1681	1884	2154	2864	3216	3596	4212

NOTE 1 : ANNUAL COSTS DO NUT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

PLAN A . RAVENNA

	1972	1975	1980	1985	1990	2000	2010	2020
POPULATION	13445	17884	22324	29742	37160	58650	68220	74315
FLOW (MGD) DUMESTIC INJUSTRIAL	1.48 0.57	2.08 0.62	2.48 0.67	3.66 0.72	4.64 0.77	7.62 0.91	9.55 1.05	11.15
TOTAL	2.05	2.70	3.35	4.38	5.41	8.53	10.60	12.34
SLUDGE (TPD) GENERATED D1 SCHARGED	2.17	2.86 1.83	3.55 2.27	4.65 2.97	. 6.17. 3.95	9.72. 6.22	12.04 7.73	14.07 9-00

TREATMENT PLANT TYPE : ADVANCED SIGLOGICAL PLANT SLUDGE HANDLING TYPE : STRIP NINE APPLICATION

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

\$	PRESENT MORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
-				<del></del>						
EXISTING PLANT	195						1300			557
EXPAND TO LEVEL 1	289		300				300			59
EXPANSION	3088		3460					3460		2470
EXPAND TO LEVEL 2	1129				2300			2300		1380
EXPANSION	2070					7000				979
SLUDGE FACILITIES	776		870					670		621
SLUDGE FACILITIES	443		•			1500				209
SENERS	1204		1476							147
RESTOUAL	249								TOTAL	6426
NET CAPITAL	8950									

## TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT (	\$1000/YR)	202	266	330	455	592	934	1160	1351
SLUDGE (	\$1000/YR)		11	14	15	16	26	33	38
SEWERS (	\$1000/YR1	0	7	7	7	7	7	7	7
TOTAL (	\$1000/YR)	210	284	351	478	616	968	1201	1397
PRESENT VALUE AT		650	1305	1702	2245	5565	7617	9124	0
PRESENT WORTH (	\$1000)	650	1065	990	931	1646	1145	697	0

7127.31 NET 0.+M. =

## TABLE III : TOTAL PRESENT WORTH

T OT AL	(\$1000)	16077
<del></del>		
L AND	111000)	0
D.+M.	(\$1000)	7127
CAPITAL	(\$1000)	8950

#### TABLE IV : ANNUAL COSTS (81000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
EXISTING PLANT						100	100	100
EXPAND TO LEVEL 1		25	25	25	25	25	25	25
EXPANSION		267	267	267	267	267	267	267
EXPAND TO LEVEL 2				197	197	197	197	197
EXPANSION	,				540	540	540	540
SLUDGE FACILITIES		47	67	67	67	67	67	47
SLUGGE FACILITIES					115	- i15 -	115	115
SEMERS		106	106	106	106	106	106	104
TOTAL O.+M.	210	284	351	478	616	964	1201	1397
TOTAL ANNUAL	210	749	816	1140	1933	2385	2618	2824

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

## PLAN A . RANDOLPH

	1972	1975	1980	1985	1990	2000	2010	2020
PUPULATION	1820	2160	2500	2850	3200	3840	4650	5000
FLOW (MGD)								
OUMESTIC	0.20	0.25	0.30	0.35	0.40	0.50	0.65	0.75
INDUSTRIAL	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL	0.20	0.25	0.30	0.35	0.40	0.50	0.65	0.75
SLUDGE (TPD)								
GENERATED	0.21	0.27	0.32	0.37	0.46	0.57	0.74	0.86
DI SCHARGED	0.14	0.17	0.20	0.24	0.29	0. 36	0.47	0.55

TREATMENT PLANT TYPE : ADVANCED BIOLOGICAL PLANT SLUDGE HANDLING TYPE : AGRICULTURAL APPLICATION

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
NEW PLANT	446		500					500		356
EXPAND TO LEVEL						300			300	240
EXPANSION	207					700				97
SLUDGE FACILITIES	S 111		125					125		89
SLUDGE FACILITIES						205				28 21
SEHERS	172		211							21
RESIDUAL	32								TOTAL	834
NET CAPITAL	1070									

## TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT SLUDGE	(\$1000/YR)	29	36	43	61	83	104	135	156
SEWERS	(\$1000/YR)	õ	ĭ	. i	í	ĭ	ĭ	ī	1
TOTAL	(\$1000/YR)	32	41	49	68	91	113	147	170
PRESENT VALUE NING OF PERIOD		97	187	2.42	327	720	918	1116	0
PRESENT WORTH	(\$1000)	97	152	141	136	213	138	85	0

__ NET_DatNa_s____963a 809______

#### TABLE III : TOTAL PRESENT WORTH

CAPITA	L (\$1000)	1 07 0
G.+M. Land	(\$1000) (\$1000)	963 8
	-	
T OT AL	(\$1000)	2042

## TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL							• •	••
NEW PLANT		38	38	38	38	38	38	38
EXPAND TO LEVEL 2					25	25	25	25
EXP ANS ION					54	54	54	54
SLUDGE FACILITIES		•	9	9	9	•	9	•
SLUDGE FACILITIES					15	15	15	15
SEWERS		15	15	15	15	15	15	15
TOTAL O.+M.	32	41	49	68	91	113	147	170
TOTAL ANNUAL	32	105	113	132	250	272	304	329

# WASTEWATER TREATMENT PLANT

## CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A , EASTERLY

	1972	1975	1980	1985	1990	2000	2010	2020
POPULATION	454765	478288	501812	539314	576316	630533	659688	657573
FLOW (MGD) DOMESTIC INDUSTRIAL	113.00 12.00	120.15 12.35	127.30 12.70	130.95 13.05	134.60 13.40	143.60 14.40	148.80 15.20	156.10 15.90
TOTAL	125.00	132.50	140.00	144.00	143.00	153.00	164.00	172.00
SLUDGE (TPD) GENERATED DISCHARGED	132.50 64.80	140.45 89.89	148.40 94.98	152.64 97.69	168.72 107.93	180.12 115.28	186.96 119.65	196.08 125.49

TREATMENT PLANT TYPE : ADVANCED BIOLOGICAL PLANT SLUDGE HANDLING TYPE : STRIP MINE APPLICATION

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	RESENT WORTH	1972	1975	1980	1985	19 <b>90</b>	2000	2010	2020	RES IDU/
EXISTING PLANT EXPAND TO LEVEL 1 EXPAND TO LEVEL 2 SLUDGE FACILITIES SLUDGE FACILITIES SEWERS	15017 13835 21125 13388 5028 848		15500 15000	1458	43000	17000	99853	15500 43000 15000		42836 11066 25800 10709 2379 291
RESIDUAL	3611								TOTAL	93085
NET CAPITAL	65633									

## TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1993	2000	2010	2020
PLANT SLUDGE SEWERS	(\$1000/YR) (\$1000/YR) (\$1000/YR)	7528 1450 0	7979 1537 0	8431 1624 7	10643 974 7	12964 307 7	13840 328 7	14366 341 7	15067 357 7
TOTAL	(\$1000/YR)	8979	9517	10063	11625	13279	1417€	14714	15432
PRESENT VALUE		24270	40143	44464	51057	96421	101460	105869	0
PRESENT WORTH	(\$1000)	24270	32764	25878	21183	28 <b>52</b> 1	15259	8088	0

NET 0.+M. = 155967.

## TABLE III : TOTAL PRESENT WORTH

CAPITAL O.+M. LAND	(\$1000) (\$1000) (\$1000)	65633 155966 0
	-	
TOTAL	(\$1000)	221600

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1930	1985	1999	2000	2010	2020
ANNUAL CAPITAL EXISTING PLANT						7703	7703	7700
EXPAND TO LEVEL 1 EXPAND TO LEVEL 2		1196	1196	1196 3649	1196 363)	1196 3682	1196 3689	1196 363)
SLUDGE FACILITIES SLUDGE FACILITIES		1157	1157	1157	1157 1312	1157 1312	1157 1312	1157 1312
SEWERS TOTAL 0.+M.	8979	9517	105 10063	105 1 <b>162</b> 5	175 13273	105 14176	105 14714	105 15432
TOTAL ANNUAL	8979	11672	12523	17775	20731	29347	29085	30602

# MASTEWATER TREATMENT PLANT CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . EUCLID

		1972	1975	1980	1985	1990	2000	2010	2020
POPUL	ATION	115110	128864	142618	159028	175439	204530	226617	237030
	(MGD) DOMESTIC INDUSTRIAL	12.66 1.87	14.88 1.93	17.11 2.00	19.52 2.06	21.93 2.12	26.59 2.01	31.73 1.90	35.55 1.79
	TOTAL	14.53	16.82	19.11	21.58	24.05	28.60	33,63	37.34
	E (TPD) GENERATED DISCHARGED	15-40 9-86	17.83 11.41	20.26 12.96	22.87 14.64	27.42 17.55	32.60 20.87	38.34 24.54	42.57 27.24

TREATMENT PLANT TYPE : ADVANCED BIOLOGICAL PLANT

SLUDGE HANDLING TYPE : STRIP MINE APPLICATION

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRE SENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
EXISTING PLANT	1804						12000			5148
EXPAND TO LEVEL 1	1695		1900					1900		1356
EXPANSION	3124		3500					3500		2498
EXPAND TO LEVEL 2	3193				6500			<b>4500</b>		3900
E XPANSION	29 57					10000				1399
SLUDGE FACILITIES	2142		2400			•	•	2400		1713
SLUDGE FACILITIES	1064					3600				503
RESIDUAL	641								TOTAL	16521
NET CAPITAL	15342									

#### TABLE 11 : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
	•						<del></del>		
PLANT	(\$1000/YR)	1034	1197	1360	1732	2150	2557	3007	3339
SLUDGE	(\$1000/YR)	112	130	147	108	60	71	83	93
SEWERS	(\$1000/YR)	0	0	٥	0	0	ō	O	0
TOTAL	(\$1000/YR)	1146	1327	1508	1841	2210	2628	3091	3432
PRESENT VALUE	AT BEGIN-								
	(\$1000)	3246	5812	6866	6307	16995	20088	22909	0
PRESENT WORTH	(\$1000)	3246	4744	3996	3446	5027	3021	1750	0

NET O.+M. . 25232.1

# TABLE III : TOTAL PRESENT WORTH

المراكب بدراجه في وي جوافه المراجع بين المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع	CAPITAL (\$1000) D.+M. (\$1000) LAND (\$1000)	_25232

TOTAL (\$1000) 40934

## TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
EXISTING PLANT						034		
						926	926	926
EXPAND TO LEVEL 1		146	146	146	146	146	146	146
EXPANSION		270	270	270	270	270	270	270
EXPAND TO LEVEL 2				557	557	557	557	557
EXPANSI ON					771	771	771	771
SLUDGE FACILITIES		185	165	185	185	185	185	185
SLUDGE FACILITIES			•		277	277	277	277
TOTAL O.+M.	1146	1327	1508	1841	2210	2628	3091	3432
TOTAL ANNUAL	1146	1928	2109	2999	4416	\$760	6223	6564
· U · AL			*100	2797	4410	3/00	4443	9304

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

PLAN A . WESTERLY

	<del></del>	~~~							
		1972	1975	1980	1985	1990	2000	2010	2020
POPU	LATION	160000	155500	151000	151000	151000	152000	153000	160000
FLOW	(MGD)								
	DOMESTIC	29.01	26.70	28-40	28.75	29.10	30.09	31.08	32.97
	INDUSTRIAL	6-90	1.82	8-74	9.66	10.59	11-13	11.67	12.21
	TOTAL	35.91	36.52	37.14	38.41	39.69	41.22	42.75	45.18
SEUDO	SE (TPD)								
	GENERATED	30.88	31.41	31.94	33.04	34.13	35,45	36.76	38.85
	DISCHARGEO	30.88	31.41	31.94	33.04	34.23	35,45	36.76	38.85

TREATMENT PLANT TYPE : PHYSICAL CHENICAL PLANT

SLUDGE HANDLING TYPE : INCINERATION

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
EXPANSION EXISTING PLANT	386 <del>64</del> 5693		46000			19247	40000			7999 2694
RESIDUAL	414								TOTAL	10694
NET CARTTAN	43043									

TABLE II : PRESENT WORTH - O.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	3014	3066	3117	3224	3331	3460	3588	3792
SLUDGE	(\$1000/YR)	0	0	0	٥	0	0	Ó	0
SEWERS	(\$1000/YR)	ō	Ō	Ö	0	Ō	Ö	ŏ	Ö
TOTAL	(\$1000/YR)	3014	3066	3117	3224	3331	3460	3588	3792
PRESENT VAL	UE AT BEGIN-								
NING OF PER		7979	L2677	13003	13441	23853	24755	25922	٥
PRESENT WOR	TH (\$1000)	7979	10347	7567	5577	7055	3723	1980	٥

NET 0.+#. = 44231.1

TABLE III : TOTAL PRESENT WORTH

CAPITAL	(\$1000)	43942
D.+M.	(\$1000)	44231
LAND	(\$1000)	0
TOTAL	(\$1000)	88173

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
EXPANSI ON		3431	3431	3431	3431	3431	3431	3431
EXISTING PLANT					1485	1485	1485	1485
TOTAL O.+M.	3014	3066	3117	3224	3331	3460	3588	3792
TOTAL ANNUAL	3014	6497	6548	6655	8247	8376	8504	8708

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS MITE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

PLAN A . CHARDUN

		1572	1975	1960	1985	1990	2000	2010	2020
POPU	LATIUN	1800	2980	4160	6080	8000	10000	12100	13300
FLOW	(MGU) DOMESTIC INDUSTRIAL	0. UZ 0. UZ	0.03 0.00	0.05 0.00	0.07 0.00	0.13 0.00	0.13 0.00	0.17 0.00	0.20 0.00
	TOTAL	0.02	0.03	0.05	0.07	0.10	0.13	0.17	0.20
SLUD	GE (TPJ) Genekateu Discharged	0. <i>00</i>	0.U0	0.00 0.00	0.00 <b>0.</b> 00	0.00 0.00	0.00 0.00	0.00	0.00

TREATMENT PLANT TYPE : PRELIMINARY TREATMENT

SLUDGE HANDLING TYPE : NONE

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

			, , , ,	1 . LUCAL	W WOKIN	OW TIME C	3313 - 142	0007		
	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
EXISTING PLANT SEHERS	34 203			50 350				50		19 69
RESIDUAL	. 3								TGTAL	89
NET CAPITAL	234									
			TABLE	11 : PRES	ENT WORTH	- 0.+M. CO	STS			
		1972	1975	1980	1985	1990	2000	2010	2020	
	(\$1000/YK)	0	0	0	0	0	0	0	1	
	(\$1000/YA) (\$1000/YR)	0	0	0	3 1	0 1	7	0 1	0 1	
TOTAL	(\$1000/YR)		0	2	2	2	2	2	2	
PRESENT VALUE A		0	•	8	9	16	18	19	0	
PRESENT WORTH	(\$1000)	9	3	•	3	4	2	1	0	
NET O.+M. =	21.5991									

## TABLE 111 : TOTAL PRESENT WURTH

CAPITAL	(\$1000)	234
0.+M.	(\$1000)	21
LAND	(\$1000)	0
TOTAL	(\$1000)	256

## TABLE IV : ANNUAL CUSTS (\$1000/YR)

	1972	1975	1980	1985	1590	2000	2010	2020
ANNUAL CAPITAL								
I ATSTING PLANT			4	4	4	•	4	4
St mt # S			25	25	25	25	25	25
total O.+M.	0	0	2	2	2	2	2	2
· · · · · · · · · · · · · · · · · · ·		0	31	<u>-</u>	31	32	32	32

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . CH-162

	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUME (MG) 1 YR STORM RUNOFF ANNUAL RUNOFF		43 597	1195	89 1238	92 1282	96 1366	<u>103</u>	107
SLUDGE QUANTITIES (DT/YR) SEDIMENT_BASIN TREATMENT PLANT	0	872 0	1744 728	1808 755	1871 782	1994 833	2179 910	2451 1024

TREATMENT SCHEME : STORAGE PLUS TREATMENT AT MUNICIPAL PLANT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

## TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000):

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
SLUDGE HANDLING	330 523			520 900					520	445 179
PIPES	291			500						99
RESIDUAL	28								TOTAL	725
NET CAPITAL	1117									

## TABLE II : PRESENT WORTH - O.+M. COSTS

	•	1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	0	0	296	347	401	427	467	525
SLUDGE	(\$1000/YR)	Ŏ	ō	48	50	52	55	60	68
SEWERS	(\$1000/YR)	ō	ō	2	2	2	2	2	2
TOTAL	(\$1000/YR)	0	0	347	400	456	485	530	596
	LUE AT BEGIN- RIOD (\$1000)	0	0	1533	1755	3307	3569	3958	. 0
PRESENT WO	RTH (\$1000)	0	0	892	728	978	536	302	•

3438.43 NET 0.+M. =

## TABLE III : TOTAL PRESENT WORTH

CAPITAL O.+M. LAND	(\$1000) (\$1000) (\$1000)	1117 3438 700
	•	
TITAL	4410001	5254

#### TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020	 -
******** *******							<del></del>		
ANNUAL CAPITAL SLUGGE HANDLING			40	40	40	40	40	40	
BASIN			65	65	45	45	65	65	
PIPES			36	36	36	36	36	36	
TOTAL O.+M.	0	•	347	400	456	485	530	594	
TOTAL ANNUAL	0	0	489	541	597	427	672	737	

NOTE 1: ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2: AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CUMPS OF ENGINEERS - SURVEY SCOPE STODY

PLAN A . CH-3

	=							
	1972	1475	1480	1985	1990	2000	2010	2020
STORMMATER VOLUME (MG)								
1 YR STURM RUNOFF	0	4	9	11	14	19	24	24
ANNUAL RUNDEF	0	72	145	181	218	291	363	363
SLUDGE QUANTITIES (DT/YR)								
SEUIMENT.BASIN	٥	105	211	264	318	424	529	529
TREATMENT PLANT	ø	o	88	110	132	177	221	221

TREATMENT SCHEME : STORAGE PLUS TREATMENT AT MUNICIPAL PLANT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE 1 : PRESENT MORTH - CAPITAL COSTS - (\$1000)

	PRE SENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	A65 FOUAL
SLUDGE HANGLING BASIN PIPES	145 46 124				350 112 300	.—_				105 0 90
RESIDUAL	7								TGTAL	195
NET CAPITAL	308									

## TABLE II : PRESENT WORTH - C.+M. COSTS

		1972	1975	1580	1985	1990	2000	2010	2020
PLANT	(\$1000/YK)	٥	•	0	63	63	78	98	58
		_	0	v		63	::	14	14
SLUDGE .	(\$1000/YR)_		. 0_		,8 ,				4.4
SEWERS	(\$1000/YK)	0	c	0	1	1	1	ı	1
TOTAL	[\$1000/YK]			0	73	73	91	114	114
PRESENT VAL	UE AT BEGIN-								
NING OF PEK		0	0	0	301	581	724	802	0
PRESENT NUR	TH (\$1000)	0	0	0	125	171	108	61	0

NET 0.+#. = 467.446

#### TABLE 311 : TOTAL PRESENT WORTH

CAP ITA	L (\$1000)	308
Q.+M.	(\$1000)	467
LAND	(\$1000)	73
	-	

TGTAL (\$1000) 849

## TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1980	2000	2010	2020
ANNUAL CAPITAL								
SLUDGE HANDLING				25	25	25	25	25
BASIN				8	8	8	8	8
PIPES				21	21	21	21	21
TOTAL O.+M.	v	0	0	73	73	91	114	114
TCTAL ANNUAL				129	129	147	170	170

NOTE 1 : ANNIAL CUSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INCEBTEUNESS NOTE 2 : AN INTEREST HATE UF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . CH-4

	1972	1972 1975 1980 1985 1990		2000	2000 2010			
								2020
STORMWATER VOLUME (MG)						•		
1 YR STORM RUNOFF	0	0	0	1	3	` <b>5</b>	7.	10
ANNUAL RUNOFF	0	0	ō	30	60	89	119	149
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT.BASIN	٥	0	0	0	87	129	173	217
TREATMENT PLANT	ã	a	ā	Ö	36	54	72	90

TREATMENT SCHEME : STORAGE PLUS TREATMENT AT MUNICIPAL PLANT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

# TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000).

	PRE SENT MORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL	
SLUDGE HANDLING	13					46					
BAS IN	62					210				83	
PIPES	88					300				119	
RESIDUAL						- <b></b>			TOTAL	210	
NET CAPITAL	156					•					

TABLE II :- PRESENT -HORTH -- D.+M. COSTS ...

		1972	1975	1980	1985	1990	2000	5010	2020
PLANT	(\$1000/YR)	0	o	0	0	17	24 :	32	40
SFADEE	(\$1000/YR)	o.	0	Ō	0	2	3.	4	6
SENERS	(\$1000/YR)	. 0	0	0	0	1	1	1	1
TOTAL	-' (\$1000/YR)	0				21	29	38	41
PRESENT VAL	UE AT BEGIN-								
	100 (\$1000)	0	0	0	0	177	237	303	•
PRESENT WOR	TH (\$1000)	•	0	0	0	52	35	23 -	•

NET 0.+M. = 111.339

#### TABLE III : TOTAL PRESENT WORTH

CAPITAL D.+M. Land	(\$1000): (\$1000). (\$1000)	154 111 11
TOTAL	[ \$1000} .	278

## TABLE IV : ANNUAL COSTS (81000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
AMNUAL CAPITAL	<del></del> '		<del></del>					
SLUDGE HANDLING					3	3	3	3
BASIN					15	15	15	13
PIPES					21	21	21 .	21
TOTAL OL+M.	•	•	•	•	21	29	38	47.
TOTAL MINUAL			0	0	61	69	78	

NOTE 1: ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEB TEOMESS NOTE 2: AM INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

## CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . CH-5

	1972	1975	1980	1985	1990	2000	2010	2020	
					<del></del>				
STORMWATER VOLUME ING)									
1 YR STORM RUNOFF	0	•	0	0	ø	6	Lo	12	
ANNUAL RUNGFF	0	0	0	0	0	108	162	194	
SLUDGE QUANTITIES (DT/YR)			, _,_,_						
SEDIMENT BASIN	0	0	0	0	0_	157	236	283	_ •
TREATMENT PLANT	0	0	0	0	0	45	76	118	

TREATMENT SCHEME : STORAGE PLUS TREATMENT AT MUNICIPAL PLANT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL .
	<del></del>	<del></del>	<del></del>							
SLUDGE HANDLING	8						59			25
BASIN	37						250			150
PIPES	45						300			180
RESIDUAL	13								TOTAL	355
NET CAPITAL	77									

# TABLE II : PRESENT WORTH - D.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR).	. 0	0	0	٥	٥	29	43 -	52
SLUDGE	(\$1000/YR)	0	0	Ó	o.	ă	•	7	7
SEWERS	(\$1000/YR)	Ō	Ö	ō	õ	Ď	i	ĭ	i.
			·	~					
TOTAL	(\$1000/YR)	0	0	0	0	0	35	51 .	61
PRESENT VALUE	AT BEGIN-								
NING OF PERIO	D (\$1000)	•	0	0	0	٥	305	399	0
PRESENT WORTH	(\$1000)	0	0	0	•	٥	45	30	0

NET 0.+M. = 76.3896

## TABLE 111 : TOTAL PRESENT WORTH

D-+H-	(\$1000) (\$1000)	77 76
LAND	(\$1000)	<u></u>
TOT 41	(41000)	

#### TABLE IV : AMNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
SLUDGE HANDLING						4	•	•
BAS I N						16	16	10
PIPES						21	21 -	21
TOTAL O.+M.	•	•	0	•	0	35	51	61
TOTAL ANNUAL	<del></del> '	0	<del></del>			79	94	106

NOTE 1 I ANNUAL COSTS DO NOT INCLUDE PRESENT DUTSTANDING BONDED INCESTEDNESS NOTE 2 I AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A , CH-6

	1972	1975	1980	1985	1990	2000	2010	2020
STORMMATER VOLUME (MG)					•			
1 YR STORM RUNOFF	0	٥	0	3	6	11	15	18
ANNUAL RUNGFF	ŏ	ŏ	Ö	53	106	161	214	267
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT. BASIN	0	o.	0	8	154	235	312	389
TREATMENT PLANT	ō	ō	Ö	0	64	98	130	162

TREATMENT SCHEME : STORAGE PLUS TREATMENT AT MUNICIPAL PLANT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN & EARTH

## TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000):

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
SLUDGE HANDLING BASIN PIPES	24 68 88					83 300 300				11. 119 119
RESIDUAL	9								TOTAL	251
NET CAPITAL	192		•							

# TABLE 11 : PRESENT WORTH - 0.+M. COSTS

	•	1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	•	٥	0	0	30	43	57	72
\$LUDGE	(\$1000/YR)	0	٥	٥	0	4	•		70
SE WERS	(\$1000/YR)	٥	o	ō	٥	1.	i.	ì	1
TOTAL	(\$1000/YR)	0	0			36	51	68	84
PRESENT VALUE									
NING OF PERIO	0 (\$1000)	0	0	0	0	309	419	535	0
PRESENT WORTH	( \$1000)	•	0	0	0	91.	63	40	•

NET 0.+M. = 195.554

## TABLE III : TOTAL PRESENT WORTH

•	CAPITAL 0.+M. LAND	(\$1000) (\$1000) (\$1000)		192 195 20
			_	
	TOTAL	(81000)		407

#### TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2019	2020
ANNUAL CAPITAL								
SLUDGE HANDLING					•	6	•	
BAS IN					21	21	21	21
PIPES TOTAL O.+M.		٥		_	21	51	21	21
I UI AL US YNS	U	•	•	9	36	51	48	84
TOTAL ANNUAL		0	0	0	86	101	117	134

NOTE 1: ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2: AM INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . CH-7

	1972	1975	1980	1985	1990	2000	2010	2020
					<del></del> '			
STORMMATER VOLUME (MG)								
1 YR STORM RUNOFF	0	0	0	. 1	2	3	3	3
ANNUAL RUNOFF	0	0	o	15	30	45	61	61
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT. BASIN	٥	•	0	٥	75	112	152	152
TREATMENT PLANT	Ŏ	۵	ã	٥	ā		0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
TREATMENT PLANT BASIN	502 29				,	170 <b>0</b> 100				237 39
PIPES	59					200				79
RES I DUAL	13 -								TOTAL	357
MET CARITAL										•

TABLE II :	PRESENT.	WORTH -	D-+M-	COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	•	0.	•		7	11	15	15
SLUDGE SEWERS	(\$1000/YR) (\$1000/YR)	0	0	0	0	1.	2	3 0	3 0
TOTAL	(\$1000/YR)	<u>o</u>		•		10	15	20	20
	UE AT BEGIN- 100 (\$1000)	0	0	0	0	89	123	140	0
PRESENT WOR	TH (\$1000).	0	0	•	0	26	16	10	0

55.7411 NET 0.+M. .

## TABLE III : TOTAL PRESENT WORTH

CAPITAL O.+M. LAND	(\$1000) (\$1000)	577 55 4
TOTAL	4410001	ART

# TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1965	1990	2000	2010	2020
ANNUAL CAPSTAL								
TREATMENT PLANT					131	131	131	131
BAS IN					. 7	. 7		. 7
PIPES TOTAL O.+M.	٥				14	14 15	14 20	14 20
TOTAL ANNUAL	•				163	166	173	173

NOTE 1 : ANNUAL COSTS DU NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT MAS USED FOR ALL CALCULATIONS

1972	1975	1980	1985	1990	2000	2010	2020
0	0	0	1	2	2	•	4
ō	0	Ō	24	48	48	73	73
1							
0	0	0	0	120	120	182	162
Ó	0	Ō	Ó	0	0	Ō	0
	0	0 0		0 0 0 1 0 0 0 24	0 0 0 1 2 0 0 0 24 48	0 0 0 1 2 2 0 0 0 0 24 48 48 0 0 0 0 120 120	0 0 0 1 2 2 4 0 0 0 0 24 48 48 73

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000).

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
TREATMENT PLANT BASIN PIPES	591 32 782					2000 110 2647				279 43 1058
RESIDUAL	53								TOTAL	1302
HET CARITAL	1353				•					

#### TABLE II : PRESENT WORTH - Q.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	0	٥	0	0	12	12	18	18
SL UDGE	(\$1000/YR)	0	0	0	0	3	3	4	4
SEWERS	(\$1000/YR)	<b>a</b>	0	0	0	13	13	13	13
TOTAL	{\$1000/YR}			<del></del> 6		28	28	36	36
PRESENT VALUE	AT BEGIN-								
NING OF PERIOD	(\$1000)	0	0	0	0	198	225	253 -	0
PRESENT WORTH	(\$1000)	٥	0	0	0	58	33	19	•

NET 0.+M. = 111.954

## TABLE III : TOTAL PRESENT WORTH

CAPITAL 0.+n. Land	(\$1000) (\$1000)	1353 111 1

TOTAL (\$1000) 1466

## TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL	<del></del>	<del></del>				~		
TREATMENT PLANT					154	154	154	154
0AS IN					7	7	7.	7.
PIPES TOTAL OL+M.	•		۵		191	191	191	191
TOTAL GOVE	. •		•		28	28	36	36
TOTAL MINUAL	0	-			302	302	390	390

NOTE 1: ANNUAL COSTS DO NOT INCLUDE PRESENT DUTSTANDING BONDED INDERTEDNESS NOTE 2: AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY.

PLAN A . CH-9

	1972	1975	1980	1985	1990	2000	2010	2020
STORMMATER VOLUME (MG)								
1 YR STORM RUNOFF	۵	٥	٥.	2	4 .	4	•	11
ANNUAL RUNOFF	ō	Ŏ	Ŏ	31	62	94	126	157
SLUDGE QUANTITIES (DT/YR)						,		
SEDIMENT - BAS IN	0	0	b	0	155	235	315	392
TREATMENT PLANT	Ō	0	Ō	0	0	0	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT MORTH	1972	1975	1980	1985	1990	2000	2010	2020	RE SI DUAL
TREATMENT PLANT BASIN PIPES	798 47 59					2700 160 200				377 63 79
RESIDUAL						200			TOTAL	521
NET CAPITAL	894									
			TABLE	II : PRES	ENT WORTH	- D.+M. CQ	sts			
	,	1972	1975	1980	1985	1990	2000	2010	2020	
PLANT	(\$1000/YR)	. 0	0	0	0	15	23	31	39	

		<del></del>							
PL ANT	(\$1000/YR)	. 0	0	a	0	15	23 -	31	39
SLUDGE	(\$1000/YR)	0	0	0	0	3	5	7	9
SEWERS	(\$1000/YR)	. 0	0	0	0	0	0	0	0
TOTAL	(\$1000/YR)	0	0	0		20	30	40	50
PRESENT VALUE	AT BEGIN-								
NING OF PERIO	0 (\$1000)	0	0	0	0	17.8	248	317	0
PRESENT WORTH	(\$1000)	•	0	0	0	52	37	₹4 .	0

NET O.+M. = 114.35

TABLE III : TOTAL PRESENT WORTH

CAPITAL (\$1000) 884 0.+M. (\$1000) 114 LAND [\$1000] 12

TABLE IV : ANNUAL COSTS (\$1000/YR).

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPETAL								
TREATMENT PLANT					208	208	208	208
BASIN					11	11.	11	11
PIPES					14	14	14	14
TOTAL D.+M.	0	0	0	•	20	30	40	50
TOTAL ANNUAL		0	0		254	264	274	284

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A , CH-10

·	1972	1975	1980	1985	1990	2000	2010	2020
STURMWATER VOLUME ING)								
1 YR STORM RUNDFF	0	14	29	30	31	32	32	32
ANNUAL RUNGFF	Ō	197	395	410	426	457	457 .	457
SLUDGE QUANTITIES (DT/YR)	١.							
SEDIMENT.BASIN	0	493	987	1026	1065	1142	1142	1142
TREATMENT PLANT	Ö	0	Õ	0	0	0	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PERIODIC RENGVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RES IDUAL
				·	<del></del>					<del></del>
TREATMENT PLANI	580				1400					٥
PLANT EXPANSION	916					3100				433
BAS IN	114				275			· · · · · · · · · · · · · · · · · · ·		- 82
PIPES	1155				2784					835
RESIDUAL	52								TOTAL	1351
NET CAPITAL	2714							•		

TABLE II : PRESENT HORTH = 0.00. COSTS

•	•	1972	1975	1780	1985	1990	2000	2010	2020
PLANT SLUDGE SEWERS	(\$1000/YR); (\$1000/YR); (\$1000/YR)	0 0	0 0 0	0	106 26 13	106 26 13	114 28 13	114 28 13	114 28 13
TOTAL	(\$1000/YR)				147	147	154	156	156
PRESENT VALUE NING OF PERIOD		0	0	0	602	1066	1100	1100	0
PRESENT WORTH	(\$1000)	. 0	0	0	250	315	165	84 .	0

615.343

TABLE III : TOTAL PRESENT WORTH

CAPITAL D.+M.	(\$1000)	2714 815
LAND	<b>4\$1000}</b> -	34
TOTAL	(\$1000)	3563

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1945	1990	2000	2010	2020
ANNUAL CAPITAL			~					
TREATMENT PLANT				108	108	108	108	108
PLANT EXPANSION					239	239	239	239
BAS IN				19	19	19	19	19.
PIPES				201	201	201	201 .	201
TOTAL O.+M.	•	0	0	147	147	156	154	156
TOTAL ANNUAL	0.	-		476	715	725	725	725

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AM INTEREST RATE OF 7 PERCENT MAS USED FOR ALL CALCULATIONS

PLAN A . CH-11

	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUME (MG)								
1 YR STORM RUNGFF	0	0	0	0	0	11	13	16
ANNUAL RUNOFF	Ō	Ō	Q	0	0	164	197	246
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT. BASIN	0	ø	٥	0	0	410	492	615
TREATMENT PLANT	Ō	Ō	o	٥	0	0	0	0

TREATMENT SCHENE : STORAGE PLUS TREATMENT

98.3192

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STURAGE BASIN : EARTH

NET 0.+M. =

## TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	l975	1980	1985	1990	\$000	2010	2020	RESIDUAL
	<del></del>	<u> </u>		'						
TREATMENT PLANT	496						3300			1415
BASIN	30						200			150
PIPES	30						200			120
RESIDUAL	64								TOT AL	1655
NET CAPITAL	492									

## TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	0	0	0	o	0 -	41	49	61
SLUDGE	(\$1000/YR)	0	0	Q	٥	9	10	12	15
SEWERS	(\$1000/YR)	0	0	0	4		0		0
TOTAL	(#1900/YR)	. 0	0	0	0	0	52	62 ,	77
PRESENT VALUE	T BEGIN-								
NING OF PERIOD		0	a	0	0	0	403	493	0
PRESENT WORTH	(\$1000)	0	0	0	0	0	60	37	0

## TABLE III : TOTAL PRESENT WORTH

CAPITAL	(\$1000) (\$1000)	492 98
LAND	(\$1000)	4
	-	
TOTAL	(41000)	594

## TABLE IV : ANNUAL COSTS (81000/YR).

	1972	1975	1980	1985	1996	2000	2010	2020
ANNUAL CAPETAL		~~~~						
TREATHENT PLANT						254	254	254
BASIN						14	14	14
PIPES TOTAL CL+M.	0	٥	٥	0	0	- 14 52	14 <b>6</b> 2	14 77
70,72 000,70								
TOTAL ANNUAL	0 .	0	0	ā	0	335	346	361

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT DUTSTANDING BONDED INDEBTEDMESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY-

PLAN A . CH-12613

	1972	1975	1980	1985	1990	2000	2010	2020			
STORMWATER VOLUME (MG)											
1 YR STORM RUNOFF	0	0	0	3	7	14	20	23			
ANNUAL RUNGFF	0	0	0	53	206	209	286	332			
SLUDGE QUANTITIES (DT/YR)											
SEDIMENT.BASIN	0	٥	0	0	265	522	715	830			
TREATMENT PLANT	0	0	0	0	0	0	0	0			

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL:
TREATMENT PLANT	946					3200				447
PLANT EXPANSION	206		•				1370			587
BASIN	56					190				75
BASIN	12						86			51 :
PIPES	443					1500				599
PIPES	225						1500	*		900
RESIDUAL	103								TOTAL	2663
MET CADITAL	1707									

TABLE II : PRESENT WORTH - O.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	0	0	9	o	26	52	71 -	83
SEWERS	(\$1000/YR) (\$1000/YR)	ő	0	. 0	9	7.	13 14	17. 14	20 14
TOTAL	(\$1000/YR)	0	0	0	0	40	80	104	118
PRESENT VALU		0	0	0	•	424	648	783	•
PRESENT WORT	H (\$1900)	•	•	0	ò	125	97	59	0

283.036

TABLE 111 : TOTAL PRESENT WORTH

CAPLIAL (\$1000) 1787 U-N- (\$1000) 283 LAND (\$1000) 5 5

TOTAL . (\$1000) 2075

TABLE IV : ANNUAL COSTS (\$1000/WR).

	1972	1975	1960	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
TREATMENT PLANT					247	247	247	247
PLANT EXPANSION						105	105	105
BAS IN					13	13	13	13
BAS IN					100	100		
P1PES P1PES					108	108	106 108	108 108
TOTAL O.+M.	o j		0	. 0	40	80.	104	,110 .
TOTAL ANNUAL					410	670	694	708

NOTE 1: ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2: AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

LAN A . CH-16617618

	1972	1975	1980	1985	1990	2000	2010	2020
TORMWATER VOLUME (MG)								
1 YR STORM RUNOFF	0	0	0	4	8	- 10	13	15
ANNUAL RUNOFF	0	0	0	70	141	181	226	269
LUDGE QUANTITIES IDT/YR	)							
SEDIMENT.BASIN	0	0	0	0	205	264	329	39 <i>2</i>
TREATMENT PLANT	Ö	Ö	0	0	36	110	137	164

REATMENT SCHEME : STORAGE PLUS TREATMENT AT MUNICIPAL PLANT

LUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT NORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
				<del></del>						
SLUDGE HANDLING	25					86				12
BASIN	85					290				115
TPES	1127					3813				1525
RESIDUAL	64								TOTAL	1653
NET CAPITAL	1174							•		

# TABLE 11 : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
LANT	(\$1000/YR)	0	0	0	0	62	80	100	119
LUDGE	(\$1000/YR)	0	0	0	. 0	7	10	12	15
LEWERS	(\$1000/YR)	. 0	0	0	0	19	19	19	19
TOTAL	(\$1000/YR)		0	0	0	89	109	131	153
RESENT VALU	E AT BEGIN-								
ING OF PERI	DD (\$1000).	0	0	0	0	698	. 84 8	1002	0
PRESENT WORT	H (\$1000)	0	o	0	0	206	127	76	0

## TABLE III : TOTAL PRESENT WORTH

410.853

/ET 0.+M. =

CAPITAL	. (\$1000)	1174
0.+M.	(\$1000)	410
LAND	(\$1000)	11
	•	
TOTAL	(\$1000)	1596

## TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL SLUDGE HANDLING		1			4	4	4	4
BASIN					20	20	20	20
PIPES					276	276	276	276
TOTAL O.+M.	0	0	0	0	89	109	131	153
·						413	455	
TOTAL ANNUAL	0	0	0	0	393	413	435	457

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CONES OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . CH-19

1972	1975	1980	1985	1990	2000	2010	2020
0	U	J	, a	a	2	2	3
o	Ú	o	0	Ŏ	31	37	46
0	9	0	0	0	77	92	115
¢	υ	0	0	0	٥	0	0
	0 0	0 0	0 0 0			0 0 0 0 0 0 2 0 0 0 0 0 77	0 0 0 0 0 0 2 2 0 0 0 0 77 92

TREATMENT SCHEME : STURAGE PLUS TREATMENT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE I : PRESENT WORTH - CAPITAL COSTS - 181000)				<del></del>		TABLE I s	PRESENT	WGRTH - CAPITAL	COSTS - (\$1000)
---------------------------------------------------	--	--	--	-------------	--	-----------	---------	-----------------	------------------

	PRESENT MORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESI DUAL
TREATMENT PLANT	225						1500			643
BASIN	13						90			54
PIPES	30						200			120
RESIDUAL	31								TOTAL	817
NET CARTE	227									

## TABLE II : PRESENT WORTH - O.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	o	0	ų.	O	٥	7	9	11
SLUQGE	(\$1000/YR)	0	0	0	Ö	ō	1	2	2
SEWERS	(\$1000/YR)	0	0	0	ō	o	ō	ō	ō
TOTAL	(\$1000/YR)	0	<u>-</u>	0	0	0	16	12	15
	LUE AT BEGIN- RIGO (\$1000)	0	ø	o	0	o	81	98	0
PRESENT WO	RTH (\$1000)	0	0	o	c	0	12	7	o

NET 0.+M. = 19.7754

#### TABLE III : TOTAL PRESENT WORTH

CAPITAL	[\$1000]	237
0.+M.	(\$1600)	19
LAND	(\$1000)	1
	•	
T OT AL	(\$1000)	258

#### TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL			*****					
TREATMENT PLANT BASIN PIPES						115	115	115
TOTAL O.+M.	0	0	٥	C	٥	14	14 12	14 15
TOTAL ANNUAL	0	0	0	o		147	149	152

NOTE 1: ANNUAL COSTS DU NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2: AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS



CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . CH-20

	1972	1975	1980	1985	1990	2000	5010	2020
STORMWATER VOLUME (MG)								
1 YR STORM RUNOFF	0	0	0	0	0	2	2	3
ANNUAL RUNOFF	0	0	0	0	0	30	36	45
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT BASIN	0	2	0	0	0	75	90	112
TREATMENT PLANT	٥	٥	0	0	0	0	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT HORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL .
TREATMENT PLANT	225						1500			643
BASIN	13						90.			54
PIPES	30						200			120
RESIDUAL	31 .								TOTAL	817
NET CAPITAL	237									

TABLE II : PRESENT WORTH - O.+M. COSTS

	,	1972	1975	1980	1985	1990	2000	2010	2020
	4 = 1 = 0 = 1 = 1			0	•	0	•	_	. 11.
PLANT	(\$1000/YR)	. 0	0	U	· ·	Ų	•		**
SLUDGE	(\$1000/YR)	. 0	0	0	G	Q	1.	Z	Z
SEWERS	[\$1000/YR]	Ō	Ö	0	o o	<b>Q</b> .	0	o	<b>Q</b> .
	<u>.</u> '								
TOTAL	(\$1000/YR)	0	0	0	0	<b>0</b> .	10	lz	15
PRESENT VALU	JE AT BEGIN-								
NING OF PERI		0	0	0	0	0.	79	95	•
PRESENT WORT	H (\$1000)	0	0	0	0	0	11.	7.	0

19.2776 NET 0.+#. =

TABLE III : TOTAL PRESENT WORTH

CAPITAL O.+M. LAND	(\$1000) (\$1000) (\$1000)	237 19 1
TOTAL	(\$1000)	257

TABLE IV : ANNUAL COSTS (\$1000/YR):

	1972	1975	1980	1985	1990	2000	2010	2020
	<del></del>	<del></del> '						
ANNUAL CAPITAL TREATMENT PLANT						115	115	115
BASIN							. 6	
PIPES	_	_	_	_	_	14	14	14
TOTAL O.+M.	0	0	0	0	0	10	12	15
TOTAL ANNUAL	0		0	. 0	0	147	149	151

NUTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT MAS USED FOR ALL CALCULATIONS

## CORPS OF ENGINEERS - SURVEY SCOPE STUDY

#### PLAN A . CH-21622

	1972	1975	1980	1985	1990	2000	2010	2020
STORMNATER VOLUME (MG)								•
1 YR STORM RUNOFF	0	0	0	0	0	3 -	3	<b>4</b> .
ANNUAL RUNOFF	Ō	Ó	0	0	0	53	63	79
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT. BASIN	0	0	0	0	0	132	157	197
TREATMENT PLANT	ō	0	•	0	0	0	0	0

TREATHENT. SCHEME .: STORAGE PLUS TREATHENT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

#### TABLE 1 : PRESENT MORTH - CAPITAL COSTS - (\$1000):

	PRE SENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RES IDUAL :
							•	<del></del> ···	:	·
TREATMENT PLANT	278						1850			793
BASIN	16 .						110			66
PIPES	180						1200			720
RESIDUAL	61								TOTAL	1579
NET CAPITAL	413									

#### TABLE II : PRESENT WORTH - O.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	( \$1000/YR)	. 0	0	0	0	0	13	15	19
SLUDGE	(\$1000/YR)	0	0	0	0	9	3	3	4
SEWERS	(\$1000/YR)	. Ō.	0	•	0	. 0	5	5	5
TOTAL	(\$1000/YR)		0	0		0	22	25	30
PRESENT VALUE	AT BEGIN-								
NING OF PERIO	0 (\$1000)	0	0	•	0	0	169	197 .	<b>0</b> .
PRESENT WORTH	(\$1000)	•	0	0	0	0	25	15	•

40.6093 NET 0.+M. =

#### TABLE III : TOTAL PRESENT WORTH

CAPITAL O.+M.	(\$1000) (\$1000)	413
LAND	(\$1,000)	1
TOTAL	(\$1000)	455

## TABLE IV : ANNUAL COSTS (\$1000/YR) ..

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL			<del></del>					
TREATMENT PLANT						142	142	142
BASIN		•				7.	7.	7.
PIPES TOTAL O.+M.		•		•	0	<b>86</b> 22	86 . 25	30
TOTAL DIVING				-				
TOTAL ANNUAL						260	263	268

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT DUTSTANDING BONDED INDEBTEDMESS NOTE 2 : AN INTEREST RATE DF 7 PERCENT WAS USED FOR ALL CALCULATIONS

#### PLAN A . CH-23626627

	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUME (MG)								
1 YR STORM RUNOFF	٥	2	4	7	10	21	31	39
ANNUAL RUNOFF	ŏ	29	58	114	170	341	468	595
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT-BASIN	٥	42	84	166	248	497	683	866
TREATMENT PLANT	Ō	0	35	69	1 03	208	285	362

TREATMENT SCHENE : STORAGE PLUS TREATMENT AT MUNICIPAL PLANT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

#### TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
SLUDGE HANDLING	114			180					180	154
BASIN	145			250				-		49
BAS IN	109					370				147
BAS IN	40						270			162
PIPES	1571			2700						539
PIPES	976					3300				1319
PIPES	75						500			300
RESIDUAL	1,03								TOTAL	2674
MET CAPITAL	29.79									

#### TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
								<del></del>	<del></del>
PLANT	(\$1000/YR)	0	0.	21	46	75	151 .	207	263
SLUDGE	(\$1000/YR)	0	0	3	6	9	19	26	33
SEWERS	(\$1000/YR).		0	13	13	29	32	32	32
TOTAL	(\$1000/YR).	<del></del>	0	38	66	114	202	266	329
PRESENT VALU	E AT BEGIN-								
NING OF PERI	00 (\$1000)	0	0	215	371	1116	1647.	2093	0
PRESENT WORT	H (\$1000)	0	0	125	154 .	330	247 .	159	

NET 0.+M. = 1017-32

## TABLE III : TOTAL PRESENT WORTH

CAPITAL C.+M. LAND	(\$1000) (\$1000)	2929 1017 32
TOTAL	(\$1000)	3978
	C.+M. LAND	LAND (\$1000)

TABLE IV : ANNUAL COSTS (\$1000/YR).

	1972	1975	1980 .	1985	1990	2000	2010	2020
ANNUAL CAPITAL							<del></del>	
SLUDGE HANDLING			13	13	13 -	13 -	13	13
BASIN			18	18	18	18	16	18
BAS IN					26	26	26	26
BASIN						19	19	19
PIPES			195	. 195	195	195	195	195
PIPES					238	238	238	238
PIPES						36	36	36
TOTAL G.+M.	0	o	38	66	114.	202	266	329
TOTAL ANNUAL			265	293	608	751	815	878

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT DUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . CH-24

	1972	1975	1980	1965	1990	₹000	2010	2020
STORMWATER VOLUME (MG) . 1 YR STORM RUMOFF ANNUAL RUMOFF	. 0	9	0	0	0	4 121	9 146	12 1 <b>6</b> 2
SLUGGE QUANTITIES (DT/VR) SEDIMENT-BASIN TREATMENT PLANT	0 0	0	0	0	0	302	365	455 0

TREATMENT SCHEME : STORAGE PLUS TREATMENT

73.1623

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN

NET On+Ma =

## TABLE I : PRESENT HORTH - CAPITAL GOSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1965	1990	2000	2010	2020	RES IDUAL:
								<del></del>		
TREATMENT PLANT	436						2900			1244
BASIN	25						170			102
PIPES	30						200		•	120
RESIDUAL	56					<del></del>			TOTAL	1466
MET CARLEA	4.74									

TABLE II : PRÉSENT NORTH - Q.+N. COSTS. 1990 1972 1975 1980 1945 2000 . 2010 2020 (\$1000/YR) (\$1000/YR) (\$1000/YR) 000 **PLANT** 30 SEWERS 90 7 TOTAL PRESENT VALUE AT BEGIN-NING OF PERIOD (\$1000) 0 300 366 PRESENT WORTH (\$1000) 45

TABLE III : TOTAL PRESENT WORTH

CAPITAL (\$1000) D.+M. (\$1000) -TOTAL (\$1000) 511

# TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1965	1990	2000	2010	5050
ANNUAL CAPITAL					-	~		
TREATMENT PLANT						223	223	\$23
BASIN PIPES						12 14	12 14	14
TOTAL D. M.	•	0	•	0	0	36	44	57
TOTAL ANNUAL		0	0	0	0	289	297	306

NOTE 1: ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2: AM INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

## PLAN A . CH-25

	1972	1975	1980	1985	1990	2000	2010	2020	
STORMWATER VOLUME (MG)									
1 YR STORM RUNOFF	0	. 0	0	0	0	. 7		11 .	
ANNUAL RUNOFF	ŏ	ŏ	ō	Ō	Ŏ	105	126	158	
SLUDGE QUANTITIES_ (DT/YR)					**************	=			مرواه رحم
SEDIMENT BASIN	0	0	0	0	0	262	315	395	
TREATMENT PLANT	ō	Ö	Ō	0	0	٥	0	. 0	

TREATMENT SCHENE : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

#### TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000):

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RES I LUM
TREATMENT PLANT	421						2800			1201
BAS IN PIPES	25 30						170 200			102 120
RESIDUAL	55								TOTAL	1423
HET CADITAL	A 21									

## TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PL ANT	(\$1000/YR)	0	0	0	0	0	26	31	39
SLUDGE	(\$1000/YR)	0	0	0	G	0	6	7.	9
SEWERS	(\$1000/YR)	0	o	0	0	0	0	0	0
TOTAL	(\$1000/YR)		0	0	0	<del></del>	33	40	50
PRESENT VAL	UE AT BEGIN-								
NING OF PER	100 (\$1000)	0	0	0	0	0	260	318	0
PRESENT WOR	TH (\$1000)	0	0	0	0	0 .	39	24	0

63.5314 NET 0.+A. =

## TABLE III : TOTAL PRESENT WORTH

421	(\$1000)	CAPITAL
63	(\$1000)	D.+H.
3	(\$1000)	LAND
	•	
488	(\$1000)	T OT AL

## TABLE IV : ANNUAL COSTS (\$1000/YR).

	1972	1975	1980 .	1985	1990	2000	2010	2020
AMNUAL CAPITAL	<del></del> ·							
TREATMENT PLANT						216	216	216
BASIN						12	12	12
PIPES TOTAL O.+M.	0	0	0	٥	٥	14 33	14 40	14 50
TOTAL ANNUAL	0	0	0	0	0	276	283	293

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NUTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

COMPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . CH-28

	1972	1975	1980	1985	1990	2000	2010	2020
STURMMATER WILLINE (MG)								
1 YR STORM RUNGEF	0	٥	0	0	٥	6	R	10
ANNUAL KUNGFF	ŏ	ŏ	ŏ	ō	ŏ	95	113	141
SLUDGE QUANTITIES (DT/YR)								
SECIMENT-BASIN	٥	۵	٥	0	٥	138	164	205
TREATMENT PLANT	ā	ō	Ö	0	Ö	57	68	86

TREATMENT SCHEME : STORAGE PLUS TREATMENT AT MUNICIPAL PLANT

SLUGGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STURAGE BASIN : EARTH

TABLE I : PRESENT WURTH - CAPITAL COSTS - 1\$1000)

19
96
180
305
295

## TABLE 11 : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1984	1985	1990	2000	2010	2020
								<del></del>	
PLANT	( \$ 1000/YR )	٥	0	0	0	0	40	47	59
SLUDGE	(\$1000/YR)	٥	0	0	0	0	4	5	6
SENERS	(\$1000/YR)	0	Q	0	0	0	1	1	1
TOTAL.	(\$1000/YR)	0	0	0		0	45	54	67
PRESENT VALUE	AT BEGIN-								
NING OF PERIO		0	0	0	0	0	35 1	427	0
PRESENT WORTH	(31000)	o	0	0	Q	0	52	32	0

NET 0.+H. -85.5948

# TABLE III : TOTAL PRESENT WORTH

CAPITAL	(\$1000)	64
D.+M.	(\$1000)	85
LAND	(\$1000)	2
TOTAL.	1510001	152

# TABLE IV : ANNUAL COSTS (\$1000/YR)

<u> </u>	1972	. 1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL					-			
SLUDGE HANDLING						3	3	3
BASIN						11	11	11
PIPES						21	21	21
TOTAL U.+M.	0	0	0	0	0	45	54	67
TOTAL ANNUAL	0	<del></del>	0	0	0	82	91	104

NOTE 1 2 ANNUAL COSTS DU NOT INCLUDE PRESENT GUTSTANGING EDMDED INDEBTEDNESS NOTE 2 2 AN INTEREST RATE DF 7 PERCENT WAS USED FUR ALL CALCULATIONS

# PLAN A . CH-29

	1972	1975	1980	1985	1990	2000	2010	2020
STORMMATER VOLUME (MG)								
1 YR STURM RUNOFF	٥	0	C	0	0	1	1	3
ANNUAL RUNGEF	0	0	0	0	. 0	28	34	43
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT . BASIN	0	0	0	٥	ø	70	85	107
TREATMENT PLANT	0	0	0	U	0	0	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT

18.2821

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

NET Q.+M. =

#### TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
					<del></del>					
TREATMENT PLANT	225						1500			643
BASIN	13						90			54
PIPES	30						200			120
RESIDUAL	31								TOTAL	617
NET CAPITAL	237									

## TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	5010	2020
PLANT SLUDGE SEWERS	(\$1000/YR) (\$1000/YR) (\$1000/YR)	0	0 0	0	0 0 0	0	7 1 0	8 2 0	10 2 0
TOTAL			. ———		o_	0	9	<u>11</u> .	14
	LUE AT BEGIN— RIOD (\$1000)	0	o	0	0	0	75	91	0
PRESENT WOR	RTH (\$1000)	0	0	0	0	0	11	6	0

# TABLE III : TUTAL PRESENT WORTH

CAP IT AL	(\$1000)	237
0.+K.	(\$1000)	28
LAND	(\$1000)	1
	٠.	
TOTAL	(\$1000)	256

#### TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
TREATMENT PLANT						115	115	115
BASIN						. 6	. 6	. 6
PIPES TOTAL O.+M.	0	0	0	0	0	14	14 11	14
TOTAL ANNUAL	0	0	0	0	0	146	148	151

NOTE 1: ANNUAL CUSTS DU NUT INCLUDE PRISENT DUTSTANDING BUNDED INDEBTEUNESS NOTE 2: AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

## CORPS OF ENGINEERS - SURVEY SCOPE STUDY

## PLAN A . CH-30632N

	1972	1985	1980	1985	1990	2000	2010	2020
STORMMATER VOLUME (MG) 1 YR STORM RUMOFF ANNUAL RUMOFF	0	6	<b>a</b> 0	0	1 12	11 158	11 164	11 174 .
SLUDGE QUANTITIES (DT/YR) SEDIMENT-BASIN TREATMENT PLANT	0	•	0	0	17 7	230 . 96	239 100	254 106

TREATMENT SCHEME : STORAGE PLUS TREATMENT AT MUNICIPAL PLANT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

## TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000):

	PRESENT MORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL .
C111000 11100 1110	17					58	_			
SLUDGE HANDLING	70					240				95
BASIN	369					1250		• . • .		499
PIPES PIPES	165						1100			660
RES LOUAL	49								TOTAL	1264
NET CAPITAL	574									

#### TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	0	0	0	0	5	72	75	79 '
SLUDGE	[\$1000/YR]	ŏ	č	0	0	0	9	9	10
	(\$1000/YR)	Ŏ	ŏ	ŏ	ŏ		11	11	11.
SEVERS	(21000) 1K)			. •	•	•	••		
TOTAL	(\$1000/YR)		0	0		12	93	96	101
PRESENT VAL	UE AT BEGIN- 100 (\$1000)	0.	•	0	0	371	665	694	•
PRESENT WOR	TH (\$1000)	•	0	0	0	109	100	53	• .

263-02 NET 0.+#. =

## TABLE III : TOTAL PRESENT WORTH

CAPITAL O.+M. LAND	(\$1000) (\$1000) (\$1000)	574 263 3
TOTAL	(\$1000)	840

## TABLE IV : ANNUAL COSTS (\$1000/YR) :

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL					_			_
SLUDGE HANDLING					<b>•</b> .	• .	• .	•
BAS IN					17 :	17	17 .	17 .
PIPES					90 -	90	90	90
						79	79	79
PIPES	_	_	٥		12	93 -	96	101
TOTAL G.+M.	0	0	v	v	12	43.	70	101
TOTAL ANNUAL	0	•	0	0	124	285	288	293

## PLAN A . CH-31

· · · · · · · · · · · · · · · · · · ·								
	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUME (MG)								
1 YR STORM RUNOFF	0	0	0	0	0	4	6	7
ANNUAL RUNUFF	0	0	0	0	0	68	83	103
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT.BASIN	0	0	0	0	0	170	207	257
TREATMENT PLANT	ō	Ö	Ō	٥	o	0	٥	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

#### TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT .									055.001.1
	WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
TREATMENT PLANT	330						2200			943
BASIN	19						130			78
PIPES	30						200			120
RESIDUAL	44								TOTAL	1141
NET CAPITAL	336									
			TARI F	II : PRES	SENT WORTH	- G.+M. CC	2575			

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YK)	0	0	0	a	o	17	20	25
SLUOGE	(\$1000/YR)	0	٥	0	0	0	4	5	6
SEMERS	(\$1000/YR)	0	0	0	0	٥	0	0	0
TOTAL	[\$1000/YR]	0	0	0	0	0	22	26	33
PRESENT VALUE	AT BEGIN-								
NING OF PERIOD	(\$1000)	0	0	0	0	0	172	211	0
PRESENT WORTH	(\$1000)	o	0	0	0	0	25	16	0

NET 0.+M. = 42.1106

# TABLE III : TOTAL PRESENT WORTH

CAPITAL	(\$1000)	336
0.+M.	(\$1000)	42
LAND	(\$1000)	2
TOTAL	4810001	380

# TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1930	1985	1990	2000	2010	2020
ANNUAL CAPITAL		<del></del>						
TREATMENT PLANT						169	169	169
BASIN						9	9	9
PIPES TOTAL O.+M.	o	a	a	a	o	14 22	14 26	14 33
151AC 017A.								
TOTAL ANNUAL	o o	0	0	٥	o	215	220	226

NOTE 1 : ANNIAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEUNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . CH-325833

	1972	1975	1980	1985	1990	2000	2010	5050	
STORMHATER VOLUME (MG)									
1 YR STORM RUNOFF	. 0	a	0	٥	1	13	14	14	
ANNUAL RUNDEF	ō	9	0	13	26	143	194	205	
SLUDGE QUANTITIES (DT/YR)	:								
SEDIMENT BASIN	٥	0	0	0	63	457 .	- 445 -	215	
TREATHENT PLANT			0			4_ريـ		0	

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000):

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
TREATHENT PLANT PLANT EXPANSION BASIN BASIN	443 187 25 11					1500	1250			209 536 33 44
PIPES PIPES	331 33					1120	220			132
RESIDUAL NET CAPITAL	977								TOTAL	1404

## TABLE II : PRESENT MORTH - 0.+M. COSTS

	•	1972	1975	1980	1985	1990	2000	2010	2020	
		'سسنہ				<del></del>				
PLANT	(\$1000/YR) .	0	0	0	0	•	45	48	51	•
SLUDGE	(\$1000/YR)	Q.	0	0	0	1	11	12	12	
SEWERS	(\$1000/YR)	ů.	0	0	Ó	5	6	•	•	
TOTAL	(\$1000/YR):	<del></del>	0			13	63	67	70	
PRESENT VALUE		•	a	٥	o	272	460	484 .	0	
MIND OF PERIOD	1010001	•	•	•	•	***		••••	•	
PRESENT WORTH	(\$1000)	0	0	•	D	80	69	37	0	

146.973 NET C.+R. =

# TABLE ILL : TOTAL PRESENT WORTH

CAPITAL O++N- LAND	{\$1000} {\$1000} {\$1000}	977 186 2
TOTAL	(\$1000) ·	1166

# TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020	
AMMILIAE CARTTAN	·								
ANNUAL CAPITAL									
TREATMENT PLANT					115	115	115	115	
PLANT EXPANSION						96	94	94	
BASIN	•				<b>6</b> .	6 .	` 6	•	• .
BASIN						5	5	5	
PIPES				•	81	*1	61 .	81	
PIPES						15	15	13	
TOTAL Outhor	0	• .	0	,. <u>.</u> <b>.</b> . <b>.</b>	,13 .	63	🛂		
TOTAL ANNUAL					216	384	388	,391	

NOTE 1 & ANNUAL COSTS DO NOT INCLUDE PRESENT GUYSTANDING BONDED INDEBTEDNESS... NOTE 2 & AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . CH-34~

	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUME (MG)	_			_		_	_	
YR STORM RUNOFF ANNUAL RUNOFF	0	0	0	9	0	34	40	3 51
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT.BASIN	0	0	0	0	0	85	100	127
TREATMENT PLANT	0	0	0	0	0	٥	Q	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

#### TABLE I = PRESENT WORTH - CAPITAL COSTS - (\$1000):

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
	<del></del>									
TREATMENT PLANT	233						1550			664
BASIN	13						90			54
PIPES	30						200			120
RESIDUAL	32								JATOT	838
NET CARLTAI	344									

#### TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
		<del></del>	~ <b></b>						
PLANT	(\$1000/YR)	0	٥	٥	a	٥		10	12 '
SLUDGE	(\$1000/YR)	0	0	0	o	٥	2	2	3
SEWERS	(\$1000/YR)	Ò	ō	ō	ō	o o	Õ	ō	Ō
TOTAL	(\$1000/YR)	0	<del></del>			<del></del> 0	11	13	16
PRESENT VALU	E AT BEGIN-								
NING OF PERI		0	0	٥	٥	٥	88	106	0
PRESENT WORT	H (\$1000)	0	0	0	a	۰	13		0

NET O.+No. = 21.4365

# TABLE III : TOTAL PRESENT WORTH

CAPITAL D.+M. LAND	(\$1000) (\$1000) (\$1000)	244 21 1
<del></del>		
TOTAL	/ \$10001	266

## TABLE IV : ANNUAL COSTS (\$1000/YR).

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL			<del></del>					
TREATMENT PLANT						119	119	119
BASIN						6	6	6
PIPES						14	14	14
TOTAL O.+M.	0	0	0	. 0	0	11	13 -	16
***************************************								
TOTAL ANNUAL	0	0	U	0	0	152	154	157 .

MOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT DUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . CH-35

	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUME (MG)								
1 YR STORM RUNOFF	٥	•	0	2	4	5	6	9
ANNUAL RUNOFF	Ŏ	ě	Ö	29	59	71	88 -	110
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT.BASIN	0	•	0	0	147	177	220	295
TREATMENT PLANT	0	6	0	٥	0	0	0	٥

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

## TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRE SENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
TREATMENT PLANT BASIN PIPES	680 41 59_				<u> </u>	2300 140 200			_	321 55 79
RESI DUAL	17.	•							TOTAL	457 .
NET CAPITAL	763									

#### TABLE II : PRESENT WORTH - Q.+N. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PL ANT	(\$1000/YR)	0	0	0	0	14	17	22	29
SLUDGE	(\$1000/YR) .	. 0	0	0	0	3	4	5	7.
SEWERS	(\$1000/YR).	Ď	•	Ö	0	o	0	0	0
TOTAL	(\$1000/YR)	0	•	0	0	19	23	26	37
PRESENT VAL	LUE AT BEGIN-								
NING OF PE	RIDD (\$1000):	0	0	<b>0</b> -	0	149	181 .	233	•
PRESENT WO	RTH (\$1000)	<b>a</b> .	0	0	0	44	27	17	0
NET C+H+	- 89.3856	•							

## TABLE III : TOTAL PRESENT WORTH

D.+M. LAND	(\$1000) (\$1000) (\$1000)	763 89 2
TOTAL	( \$1000)	854

## TABLE IV : ANNUAL COSTS (\$1000/YR).

	1972	1975	1980	1985	1990	2000	2010	5050
ANNUAL CAPITAL								
TREATMENT PLANT					177	177	177	177 -
BAS IN					10	10	10.	10
PIPES					14	14	14	14
TOTAL O.+M.	0	0	0	0	19	23	28	37
TOTAL ANNUAL	0		0	0	221	225	230	240

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . CH-36

	1972	1975	1980	1985	1990	2000	2010	2020	
STORMWATER VOLUME (MG)									
1 YR STORM RUNOFF	٥	٥	0	0	٥		•	11	
ANNUAL RUNOFF	ŏ	ŏ	ŏ	ŏ	ŏ	111	133	166	
					<u>-</u> .			•	اله د رسیساند
SLUDGE QUANTITIES (DT/YR)									
SEDIMENT.BASIN	0	0	0	0	0	277	332	415	
TREATMENT PLANT	0	0	0	0	0	0	٥	0	

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
		<del></del>								
TREATMENT PLANT	428						2850			1222
BAS IN	25						170			102
PIPES	105						700			420
RESIDUAL	67								TOTAL	1744
NET CAPITAL	491									

#### TABLE 11 : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	0	0	0	٥	0	27	33	41
SLUDGE	(\$1000/YR)	0	0	0	0	0	6	•	10
SEWERS	(\$1000/YR)	0	0	0	0	0	3	3	3
TOTAL	(\$1000/YR)	. 0	0	0	0	o	38	45	55
PRESENT VALUE	AT BEGIN-								
NING OF PERIOD	(\$1000)	0	0	0	0	0	292	352	0
PRESENT WORTH	[\$1000]	0	0	0	٥	0	43	26	0

NET 0.+M. = 70.917

## TABLE 111 : TOTAL PRESENT WORTH

<del></del>	
0.+M. (\$1000) LAND (\$1000)	3
CAPITAL (\$1000) 0.+M. (\$1000)	491 70

## TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL			<del></del>					
TREATMENT PLANT						220	220	220
BASIN						12	12	12
PIPES						50	50	50
TOTAL O.+M.	0	0	0	0	0	38	45	55
TOTAL ANNUAL	0		<u>_</u>	0	0	321	328	338

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . R-1-4-5

	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUME (MG)								
1 YR STORM RUNOFF	0	14	29	29	29	30	30	30
ANNUAL RUNOFF	Ō	262	524	524	524	579	579	579
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT.BASIN	٥	362	765	765	765	845	845	845
TREATMENT PLANT	o	0	319	319	319	353	353	353 -

TREATMENT SCHEME : STORAGE PLUS TREATMENT AT MUNICIPAL PLANT

SLUDGE HANDLING : PIPE SLUDGE TO MUNICIPAL PLANT

STORAGE BASIN : CONCRETE

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

							•	•	•	
	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
SLUDGE HANDLING	208			328					326	281
BASIN	4976			8550					-	1709
PIPES	407			700						139
RESIDUAL	82								TOTAL	2131
MET CAPITAL	5509									

TABLE 11 : PRESENT WORTH - O.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	0	0	156	156 -	156	172	172	172
SLUDGE	(\$1000/YR)	Ď	٥	32	32	32	35	35	35
SEWERS	(\$1000/YR)	Ŏ	Ō	3	3	3	3	3	. 3
TOTAL	(\$1000/YR)			192	192	192	211	211	211
PRE SENT VALUE									
NING OF PERIO	D (\$1000):	0	0	788	786	1419	1468	1488	0
PRESENT WORTH	(\$1000)	0	0	458	326	419	223	113	0

TABLE TILL & TOTAL PRESENT_MORTH

CAPITAL	(\$1000)	5509
O.+M.	(\$1000)	1543
LAND	(\$1000)	20
TOTAL	(\$1000)	7072

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ADDULA								
ANNUAL CAPITAL								
SLUDGE HANDLING			25	25	25	25	25	25
BAS IN			619	619	619	619	619	619 .
PIPES			50	50	50	50	50	50
TOTAL O.+M.	O	0	192	192	192	211	211	511
<del></del> ·								
TOTAL ANNUAL	0	٥	887	847	887	907	907	907

NOTE 1: ANNUAL COSTS DO NOT INCLUDE PRESENT QUESTANDING BONDED INDEBTEDNESS NOTE 2: AM INTEREST RATE OF 7 PERCENT MAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . R-3

	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUME (NG)								
1 YR STORM RUNOFF	o	11	22	22	23	23	24	24
ANNUAL RUNOFF	Ŏ	160	321	325	330	352	385	385
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT.BASIN	0	300	601	610	825	880	962	962
TREATMENT PLANT	0	0	0	0	0	0	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PIPE SLUDGE TO MUNICIPAL PLANT

STORAGE BASIN : CONCRETE

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000):

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
	<del></del> .							·	<del></del>	<del></del> '
TREATMENT PLANT	7638			12000					12000	10283
SLUDGE HANDLING	265			417					417	357
BASIN	3233			5555						1110
PIPES	116			200						39
RESIDUAL						<del></del>			TOTAL	11792
NET CAPITAL	10795									

TABLE II : PRESENT WORTH - O.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	0	0	19	57	95	102	111	111.
SLUDGE	(\$1000/YR)	0	0	12	12	16	17.	19	19
SEWERS	(\$1000/YR)	. 0	0	0	<b>Q</b> .	0	•	o	0 -
TOTAL	(\$1000/YR)	0	<del></del>	33	70	113	120	131 .	131
PRESENT VAL	UE AT BEGIN-								
	100 (\$1000)	0	0	213	377	821	886	926	0
PRESENT NOR	TH (\$1000)	0	0	124	156	242	133	70	0

728.125 NET D.+M. =

TABLE III : TOTAL PRESENT WORTH

10795	(\$1000)	CAPITAL
728	(\$1000)	0.+ M.
42	(\$1000)	LAND
11565	(\$1000)	TOTAL

TABLE IV : ANNUAL COSTS (\$1000/YR):

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								<del></del>
TREATMENT PLANT			926	926	926	926	926	926
SLUDGE HANDLING			32	32	32	32	32	32
BAS IN			402	402	402	402	402	402
PIPES			14	14	14	14	14	14
TOTAL O.+M.	0	0	33	70	113	120	131	131
TOTAL ANNUAL	<del></del>		1408	1446	1408	1495	1507	1507

NOTE 1: ANNUAL COSTS DO NOT INCLUDE PRESENT DUTSTANDING BONDED INDEBTEDNESS NOTE 2: AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

PLAN A . R-6-7-8N

	1972	1975	1980	1985	1990	2000	2010	2020	
STORMWATER VOLUME (MG)									
1 YR STORM RUNOFF	0	28	56	62	69	74 1027	78 1098	78 1098	
ANNUAL RUNOFF	0	384	769	862	955	1027	IDAS	1040	
SLUDGE QUANTITIES (DT/YR)					er e-man, en men Po				سامعامیات سا
SEDIMENT_BASIN	0	720	1441	1616	2387	2567	2745	2745	
TREATMENT PLANT	0	0	0	0	0	0	0	0	

TREATMENT SCHENE : STORAGE PLUS TREATMENT

SLUDGE HANDLING & PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL.
TACATMENT 81 ANT				1000					1900	1628
TREATMENT PLANT	1209			1900	3300				4700	
PLANT EXPANSION	1327				3200					_0
BASIN	209			360						71
BAS IN	83				202					60
PIPES	6776			11644						2328
RESIDUAL	158								TOTAL	4039
NET CAPITAL	9448									

#### TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	٥	0	26	122	238	256	274	274
SLUDGE	(\$1000/YR)	٥	0	36	40	59	64	68	68
SEWERS	(\$1000/YR)	ō	ō	58	58	58	58	. 58	58
TOTAL	(\$1000/YR)	0	0	121	221	356	379	401	401
PRESENT VALU		0	0	702	1185	2583	2740	2018	0
PRESENT WORT	H (\$1000).	0	0	408	491	764	412	215	0.

NET 0.+#. -2292-49

## TABLE III : TOTAL PRESENT WORTH

CAPITAL D.+M.	(\$1000) (\$1000)	944 <i>8</i> 2292
LAND	(\$1000)	77 .
TOTAL	(\$1000)	11817

## TABLE IV : ANNUAL COSTS (\$1000/YR).

	1972	1975	1980	1985	1990	2000	2010	2020	
	<del></del> '								•
ANNUAL CAPITAL									
TREATMENT PLANT			146	146	146	146	146	146	
PLANT EXPANSION				247	247	247	247	247	
BASIN			26	26	26	26	24	26	
BASIN				14	14	14	14	14	
PIPES			843	. 843	843	843	843	843	
TOTAL O. + Man	<u></u> <b> Q</b>		121	221	356	379	491	401	
			-			<del></del> -			
TOTAL ANNUAL	0	. 0	1136	1498	1634	1654	1678	1674	

NOTE 1: ANNUAL COSTS DO NOT INCLUDE PRESENT DUTSTANDING BONDED INDEBTEDNESS NOTE 2: AM INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . R-85-11-19

	1972	1 975	1980	1985	1990	2000	2010	2020	
STORMWATER VOLUME (MG)									
1 YR STORM RUNOFF	0	3	6	12	18	71	76	79	
ANNUAL RUNOFF	0	32	65	152	240	984	1054	1112	
SLUDGE QUANTITIES (DT/YR)									
SEDIMENT . BAS IN	٥	60	121	285	600	2460	2635	2780	
TREATMENT PLANT	0	0	0	0	0	0	0	0	

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000):

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
TREATMENT PLANT PLANT EXPANSION PLANT EXPANSION	490 1541 258 .			770		5210	1720		770	459 729 737
BASIN BASIN BASIN PIPES	93 63 17 650	ت در میرس		160		216 2200	116	·		31 86 69 879
RESIDUAL Met capital	123 2991	<b>FG</b> 7	· .,			e Permise e e e e e e e e e e e e e e e e e e		ना क्षेत्रक नाक्ष्मका सक्षात	TOTAL	3195

## TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
	•	<del></del> ,	_ <del></del>						
PLANT	(\$1000/YR)	0	•	2	21	60	246	263	278
SL UDGE	(\$1000/YR).	0	0	3	7.	15	61.	65	69
SEWERS	(\$1000/YR).	0	0	0	0	10	10	10	10
TOTAL	(\$1000/YR).	0	0	5	26	85	316	340	358
PRESENT VALUE	AT BEGIN-								
NING OF PERIO	D [\$1000).	0	0	70	235	1420	2313	2454	0
PRESENT WORTH	(\$1000)	0	0	40	97	420	347	187 .	0

1094.21 NET 0.+M. =

#### TABLE III : TOTAL PRESENT WORTH

CAPITAL O.+M. LAND	(\$1000) (\$1000)	2991 1094 30
TOTAL	(\$1000)	4115

#### TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL				<del></del>				
TREATMENT PLANT			59	59	59	59	59	59
PLANT EXPANSION					402	402	402	402
PLANT EXPANSION						132	132	132
BAS IN			11	11	11	11	11	11
BASIN					15	15	15	15
BASIN				•				
PIPES					159	159	159	159
TOTAL O.+M.	0	0	5	28	85	314	340	358
TOTAL ANNUAL		<del></del>	76	99	734	1107	1129	1147

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT MAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A , R-9

1972	1975	1980	1905	1990	2000	2010	2020
2	2	2	2	. 2	2	2	2
38	39	41	41	41	41	. 41	41
:							
22	23	23	23	23	23	23	23
8	9	9	9	9	9	9	. 9
	2 38	2 2 3 36 39	2 2 2 2 3 23 23	2 2 2 2 2 2 3 41 41 22 23 23 23	2 2 2 2 2 2 36 39 41 41 41 22 23 23 23 23	2 2 2 2 2 2 2 3 36 39 41 41 41 41 41 22 23 23 23 23 23 23 23	2 2 2 2 2 2 2 2 2 3 36 39 41 41 41 41 41 41 41 22 23 23 23 23 23 23 23 23

TREATMENT SCHEME : STORAGE PLUS TREATMENT AT MUNICIPAL PLANT

SLUGGE HANDLING : PIPE STUDGE TO MUNICIPAL PLANT

STORAGE BASIN : CONCRETE

## TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

		PRE SENT WORTH		1975	1980	1985	1990		2010	2020	RESIDUAL .
			1972					2000			
											~;
5	LUDGE HANDLING	6		7.					7		•
	IAS IN	465		570							57
P	PIPES	163		200							20
	RESIDUAL	3								TOTA	L
	MET CABITM	431									

## TABLE II : PRESENT WORTH - D.+M. COSTS

		1972	L975	1980	1985	1990	2000	2010	2050
PLANT	(\$1000/YR)	0	7		9	11 .	11	11	11
SLUDGE	(\$1000/YR)	0	0	0	9	0	G	0	0
SEWERS	(\$1000/YR)	0	Ó	0	Ó	0	0	0	Ó
TOTAL	(\$1000/YR)	0		9	10	12	12	12	12
PRESENT VALUE	E AT BEGIN-								
NING OF PERI	00 (\$1000):	0	37	41 .	47	86	84	86	0
PRESENT HORT	H (\$1000)	0	30	23	19	25	13	•	

NET 0.+H. = 119.642

## TABLE III : TOTAL PRESENT WORTH

631 119	(\$1000) (\$1000)	0.+M.
11	( \$1000)	LAND
762	(\$1000)	TOTAL

## TABLE IV : ANNUAL COSTS (\$1000/YR).

	1972	1975	1980	1965	1990	2000	2010	2020
ANNUAL CAPITAL	<del></del> .		· · ·			<del></del>	<del></del>	
SLUDGE HANDLING		•	0	0	0	0	•	. 0.
BASIN		41	41	41.	41	41 .	41.	41.
PIPES		14	14	14	14	14	14	14
TOTAL O.+M.	0		9	10	15	12	12	12 .
TOTAL ANNUAL	<del></del>	45	45	47	49		44	

MOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDMESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

## PLAN A . R-10

					<del></del>			
	1972	1 975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUME (MG)								
1 YR STORM RUNOFF	0	30	60	60	61	63	67 -	69
ANNUAL RUNOFF	0	106	813	825	838	877	941	97 <b>9</b>
SLUDGE QUANTITIES (DT/YR	<b>3</b> .							
SEDIMENT.BASIN	0	762	1524	1547	2095	2192	2352	2447
TREATMENT PLANT	Ö	6	0	0	0	0	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

#### TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000):

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
TREATMENT PLANT	1336			2100					2100	1799
PLANT EXPANSION	1360					4600				643
BASIN	232			400						
PIPES	116			200						39
RESIDUAL	99								TOTAL	2563
NET CAPITAL	2947									

## TABLE II : PRESENT WORTH - D.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020	
PLANT	(\$1000/YR)			28	117	209	219	. 235	- 244	:
SLUDGE	(\$1000/YR)	0	0	3 <b>8</b>	38	52 0	54 0	58 0	61 . 0	•
SEWERS	(\$1000/YR)		··············							
TOTAL	(\$1000/YR)	0	0	67	157	262	275	295	306	
PRESENT VALUE		0	0	461	861	1889	2002	2114	•	
PRESENT WORTH	H (\$1000):	0	0	268	357	558	301	161 .	0	

1647-17 NET C.+M. =

### TABLE III : TOTAL PRESENT WORTH

2947 1647 74	(\$1000) (\$1000) (\$1000)	CAPITAL D.+M. LAND
4668	(\$1000)	TOTAL

### TABLE IV : ANNUAL COSTS (\$1000/YR) .

	1972	_ 1975 _	1980	1985	1,990	2000	2010_	2020	
ANNUAL CAPITAL									
TREATMENT PLANT			162	162	162	162	162	162	
PLANT EXPANSION					355	355	355	355	
BASIN			28	28	28	- 28	28	28 -	
PIPES			14	14	14	14	14	14	
TOTAL C.+M.	0	0	67	157	262	275	295	304	
TOTAL MINUAL	<del></del>		273	362	823	835	455	867	

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

### CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A , R-12

	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUME (MG)								
1 YR STORM RUNOFF	0	•	0	11	22	33	45	- 56
ANNUAL RUNGFF	0	•	0	164	328	494	658	823
SLUDGE QUANTITIES (DY/YR)								
SED IMENT BASIN	0		0	9	820	1235	1645	2057
TREATMENT PLANT	0	•	0	0	0	. 0	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANOFILL OR RECYCLE

STORAGE BASIN : EARTH

### TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000):

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL.
		<del></del>								
TREATMENT PLANT	1424					5500				769
BASIN	1.09					370				147
PIPES	485					1640				655
RESIDUAL	61					•			TOTAL	1573
NET CAPITAL	2140									

### TABLE II : PRESENT WORTH - Q.+M. COSTS

	•	1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	0	0	0		82	123	164	205 .
SLUDGE	(\$1000/YR)	0	0	0	0	20	30	41	5 <b>1</b> ′
SEBERS	( \$1000/YR)	0	0	0	0		•	•	
TOTAL	(\$1000/YR)	0	0	0	0	110	162	213	265
PRESENT VALUE	UE AT BEGIN-	0	0.	9	0	959	1321	1682	0
PRESENT WOR		0		0	0	283	198	128	

NET 0.+ M. = 611.245

### TABLE III : TOTAL PRESENT WORTH

CAPITAL	( \$1 000)	2160
0.+M.	(\$1000)	611
LAND	(\$1000)	64
TOTAL	(\$1000)	2035

### TABLE IV : ANNUAL COSTS (\$1000/YR):

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL TREATMENT PLANT					424	424	424	424
BASIN					26	26	26	26
PIPES					116	118	118	111
TOTAL G.+M.	ø	ø	0	0	110	162	213	265
TOTAL ANNUAL			<del></del>		480	732	703	835

NOTE 1 : AMMUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A , R-13

	1972	1975 .	1980	. 1985	1990	2000	2010	2020
STORMWATER VOLUME (MG)								
1 YR STCRM RUNOFF	o	34	69	71	74	78	82	82
ANNUAL RUNOFF	0	471	944	980	1017	1091	1167	1167
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT.BASIN	٥	884	1768	1837	2542	2727	2917	2917
TREATMENT PLANT	0	0	0	0	0	0	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUGGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
TREATMENT PLANT	1400			2 200					2200	1885
PLANT EXPANSION	1478					5000				699
BASIN	256			440						87
RESIDUAL	103								TOTAL	2673
MET CAPITAL	3031									

### TABLE II : PRESENT WORTH - 0.+M. CUSTS

	1972	1975	1980	1985	1990	2000	2010	2020
PLANT (\$1000/YK)	0	0	33	139	254	272	291	291
SLUDGE (\$1000/YR)	٥	0	44	45	63	68	72	72
SEWERS (\$1000/YK)	0	0	0	G	0	0	0	0
TOTAL (\$1000/YR)	0		77	185	317	340	364	364
PRESENT VALUE AT BEGIN- NING OF PERIOD (\$1000)	0	0	538	1031	2313	2477	2561	0
PRESENT WORTH (\$1000)	0	0	313	428	684	372	195	٥

NET 0.+H. = 1994.39

### TABLE 111 : TOTAL PRESENT WORTH

CAPITAL	. (\$1000)	3031
O.+#.	(\$1000)	1994
LAND	(\$1000)	88
	-	
TOTAL	(\$10001	5114

### TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
TREATHENT PLANT			169	169	169	169	169	169
PLANT EXPANSION					385	385	385	385
BASIN			31	31	31	31	31	31
TOTAL O.+H.	0	0	77	185	317	340	364	364
TOTAL ANNUAL			278	367	905	928	952	952

NOTE 1: ANNUAL COSTS DU NOT INCLUDE PRESENT DUTSTANDING BUNDED INCEBTEDNESS NOTE 2: AM INTEREST RATE UF 7 PERCENT WAS USED FUR ALL CALCULATIONS

### PLAN A . R-14621

	1972	1975	1980	1945	1990	2000	2010	2020	
ETORMUNTED VOLUME (MCI									
STORMWATER VOLUME (NG) 1 YR STORM RUNDFF		•	•	1		•	•	10	
ANNUAL RUNOFF	ă		ă	35	71	108	144	179	
	•	-	_					_	
SLUDGE QUANTITIES (DT/YR)									
SEDIMENT.BASIN	0	•	0	0	177	270	360	447	
TREATMENT PLANT	0	•	0	0	0	0	0	0	*

TREATMENT SCHENE : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

### TABLE 1 : PRESENT WORTH - CAPITAL COSTS - 191000) .

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RES IDUAL
								<del></del>		
TREATMENT PLANT	857					2900				405
BASIN	50					170 .				<b>67</b> .
PIPES	414					1400				559
RESIDUAL	40								TOTAL	1033
NET CAPITAL	1282									

## TABLE II : PRESENT WORTH - 0.44. COSTS

		1972	1975	1980	1985	1990	2000	5010	2020
PL ANT	(\$1000/YR)	o	٥	٥	0	17	27	36	44
STADGE	(\$1000/YR)	0	0	0	0	•	6	9	11
SEWERS	(\$1000/YR)	٥	0	•	0	•	•	• 6	- <b>6</b> -
TOTAL	- (\$1000/YR)	<del></del>				29	40	51	62
PRESENT VAL NING OF PER	UE AT BEGIN-	٥	0	•	c	245	325	403	0
PRESENT WOR	TH (\$100Q)	٥	0	0	•	72	48	30	•

NET 0.+M. = 152-474

### TABLE III : TOTAL PRESENT WORTH

CAPITAL D.+M. LAND	(\$1000)	1282 152 3
TOTAL	(\$1000)	1437

### TABLE IV : ANNUAL COSTS (\$1000/YR)

ANNUAL CAPITAL	1972	1975	1960	1985	1990	\$000	2010	2020	<u>.</u> .
TREATMENT PLANT BASIN PIPES	·			<b></b>	223 12 101	223 12 101	223 12 101	223 12 101	<del>-</del>
TOTAL O. H.	•,	•	0	. •	29	40	51	68	
TOTAL MINUAL					364	378	349	400	

HOTE 1 : ANNUAL COSTS OF NOT INCLUDE PRESENT OUTSTANDING BONDED INDERTEDNESS NOTE 2 : AM INTEREST RATE OF 7 PERCENT MAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . R-15622

	1972	1975	1980	1985	1990	2000	2010	2020
					~			
STORMWATER VOLUME (MG)								
i yr storm runoff	0	0	0	5	10	13	18	22
ANNUAL RUNOFF	٥	0	Ó	68	136	204	273	341
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT.BASIN	٥	0	0	0	340	510	682	852
TREATMENT PLANT	0	0	0	0	0	0	0	. 0

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000):

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
							· ——			
TREATMENT PLANT	1094					3700 .				517
BASIN	68					230				91
PIPES	709					2400				959
RES I DUAL	60								TOTAL	1569
NET CAPITAL	1011									

TABLE II : PRESENT WORTH - D. M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020	
PLANT	(\$1000/YR)	0	0	0		34	51	68	85	
SLUDGE	(\$1000/YR)	Ō	Ď	ā	ò		12	17	21	
SEWERS	(\$1000/YR)	ō	ŏ	Õ	ŏ	11 .	11	11	11.	
TOTAL	(\$1000/YR)	0	0	0	0	54	75	97	118	
PRESENT VALL	UE AT BEGIN									
NING OF PERI		0	0	0	0	457	607	758		× Y
PRESENT WORT	TH (\$1000):	0	0	0	0	135	91	57 .	<b>D</b> .	
NET 0.+M. =	284.625	1								

TABLE III : TOTAL PRESENT WORTH

CAPITAL O.+M. LAND	(\$1000) (\$1000)	1811 284 5
TOTAL	/ \$1 000)	2101

### TABLE IV : ANNUAL COSTS (\$1000/YR):

	1972	1975	1980	1985	1990	2000	2010	2020
AMMUAL CAPITAL		<del></del> '			<del></del> '		<del></del>	
TREATMENT PLANT					285	285	285	285
BASIN					16	14	14	16
PIPES					173	173	173	173 -
TOTAL O.+M.	0	0	0	. 0	54	75	97	116
TOTAL ANNUAL	0	0	0		530	551	573	594

NOTE 1: ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2: AN INTEREST RATE OF 7 PERCENT MAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A , R-16617

	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUME (MG)								
1 YR STORM RUNOFF	a	15	31	32	33	33 -	36	36
ANNUAL RUNOFF	Ō	217	434	444	455	476	510	510
SLUDGE QUANTITIES (DTYYR)								
SED IMENT. BAS IN	0	542	1065	1111 .	1137	1190	1275	1275
TREATMENT PLANT	Ó	0	0	0	0	0	0	0

TREATMENT SCHENE : STORAGE PLUS TREATMENT.

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

### TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000) .

	PRESENT	1972	1975.	1980	1985	1990	2000	2010	2020	RESIDUAL:
TREATMENT PLANT	1867				4500				•	0
BASIN	114				280					84
PIPES	672				1620					486
RESIDUAL	22								ATOT	570
MET CAPITAL	24.33									

### TABLE II : PRESENT MORTH - 0.+M. COSTS

		1972	1975	1980	1985	1996	2000	2010	2020 .
PLANT SLUDGE SEWERS	(\$1000/YR1   (\$1000/YR)   (\$1000/YR)	0	0	0	113	113	119	127	127
TOTAL	(\$1000/YR)		<del></del>		150	150	156	167	<del></del>
PRESENT VALUE NING OF PERIOD	(\$1000)	0	9	•	616	1076	1138	1176 .	•
PRESENT MORTH	(\$1000)	0	•	0	255	314	171 .	19	•

MET G.+M. -#35.869

#### TABLE III : TOTAL PRESENT WORTH

CAPITAL 0.+M. LANO	(\$1000) (\$1000) (\$1000)	2433 835 8
TOTAL	(41000)	3477

### TABLE IV : ANNUAL COSTS (\$1000/YR) ..

	1972	1975	1980	1985	1996	2000	2010	2020		
AMMUAL CAPITAL		•	<del></del>				• •• ••••••••••••••••••••••••••••••••••	م المسلم الماريخ المسلم الماريخ الماري		
TREATMENT PLANT	,			347	347	347	347	347		
BASIN				20	20	20	20	20	•	
PIPES				117	117	117	117	117		
TOTAL OM.	0	0	0	150	150	156	167	167		
TOTAL ANNUAL		0		635	635	641.	652	452	-	

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS -NOTE 2 : AM INTEREST RATE OF 7 PERCENT MAS USED FOR ALL CALCULATIONS

PLAN A , R-18

	1972	1985	1980	1985	1990	2000	2010	2020	· ·
STORMWATER VOLUME (MG) 1 YR STORM RUNOFF ANNUAL RUNOFF	0	0	0	5 76	10 152	15 228	21 304	26 381	
SLUDGE QUANTITIES (DT/YR) SEDIMENT.BASIN TREATMENT PLANT	0	0	0	0	380 0	570 0	760 0	952 0	

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

### TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RE SI DUAL
TREATMENT PLANT	1183					4000				559
BASIN	73					250				99
PIPES	59					200				79
RESIDUAL	28								TOTAL	739
NET CAPITAL	1287									

## TABLE II : PRESENT WORTH - 0.+M. COSTS

	,	1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	0	0	0	0	38	57	76	95
SLUDGE	(\$1000/YR)	ŏ	Š	ŏ	ŏ	-9	14	19	23
		Ų	•	_	•	-			
SEWERS	1 \$ 1000/YR)	0	Ģ	0	0	0	0	. 0	0
TOTAL	(\$1000/YR)	0	0	0	0	48	72	95	120
PRESENT VA	LUE AT BEGIN-								
NING OF PE	RIGD (\$1000)	0	0	0	0	424	590	758	٥
PRESENT WO	RTH (\$1000)	0	0	0	0	125	88	57	٥
NET O.+M.	272.269	5					-		•

### TABLE III : TOTAL PRESENT WORTH

CAPITAL O.+M. LAND	(\$1000) (\$1000) (\$1000)	1287 272 6
TOTAL	(\$1000)	1565

# TABLE IV : ANNUAL COSTS (\$1000/YR):

	1972	1975	1980	1965	1990	2000	2010	2020	
*******	·'	<del></del> '							•
ANNUAL CAPITAL					308	308	308	308	
TREATMENT PLANT						18	18	18	
BAS IN					18	14	1.6	- 11	••
PIPES		- <b>-</b>	· · · <u>-</u> ·		<u></u>				<b>-</b>
TOTAL O.+M.	U	•	U	0	44	12	95	120	
<del></del> '	· · · · ·					413			
TOTAL ANNUAL	0	0	0	O	369	413	437	461	

NOTE 1 : AMNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . R-20

	1972	1975	1480	1985	1990	2000	2010	2020
STORNHATER VOLUME (MG)								
1 YR STORM RUNOFF	0	•	0	6	12	14	19	25
ANNUAL RUNDEF	0	0	0	92	184	220	275	368
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT-BASIN	0	0	0	a	460	550	687	920
TOCATMENT OLANT	^	Δ.	٥	٥	0	0	۵	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

### TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000):

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010 -	2020	RESIDUAL
TREATMENT PLANT BASIN PIPES	1715 56 1156					5800 190 3909				811 75 1563
RESIDUAL	95								TOTAL	2451
NET CAPITAL	2833									
			TABLE	II : PRES	ENT WORTH	- 0.+M. CC	2120			
	•		1076	1000	1095	1000	2000	2010	2020	

•	1972	1975	1980	1985	1990	2000	2010	2020
		<del></del>		<del></del>		<del></del>		
PLANT (\$1000/YR)	. 0	0	0	0	46	55	68	92
SLUDGE (\$1000/YR)		0	0	0	11	13 -	17.	23
SEWERS (\$1000/YR)		ō	Ō	0	19	19	19	19
TOTAL (\$1000/YR)			0	ō	77	88	105	134
PRESENT VALUE AT BEGIN-								
NING OF PERIOD (\$1000)	0	0	0	0	580	680	842	0
PRESENT MORTH (\$1000)	. 0		0 .			102		<u> </u>

NET 0.+#. = 338.497

### TABLE III : TOTAL PRESENT WORTH

CAPITAL O.+M. LAND	(\$1000) (\$1000) (\$1000)	2033 330 4
	•	
TOTAL	(41000)	2177

# TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	5010	2020
	<del></del> `		<del></del>					· <del></del>
ANNUAL CAPITAL TREATMENT PLANT					447	447 .	447	447
BASIN					13	13	13	13
PIPES					283	283	283	283
TOTAL O.+M.	0	0	0	0	77	88	105	134
TOTAL ANNUAL			<del></del>		821	832	850	879
	-	-	_		· -			

NOTE 1: AMMUAL COSTS OD NOT INCLUDE PRESENT DUTSTANDING BONDED INDEBTEDNESS NOTE 2: AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

### PLAN A . R-23625N

	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUME (MG)								
1 YR STORM RUNOFF	٥	0	0	7	15	28	35	42
ANNUAL RUNDEF	0	Ó	0	113	227	426	512	445
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT-BASIN	0	0	0	0	331	621	747	970
TREATMENT PLANT	٥	0	0	0	138	259	312	405

TREATMENT SCHEME : STORAGE PLUS TREATMENT AT MUNICIPAL PLANT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

### TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
SLUDGE HANDLING	39					135			<del></del>	18
BASIN	136					460				183
BASIN	31						210			126
PIPES	158					535				213
PIPES	75						500			300
RESIDUAL	32								TOTAL	. 842
NET CAPITAL	408					•				

## TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	. 0	0	0	0	71	133	160	208
SLUDGE	(\$1000/YR)	٥	0	0	0	11.	20	24	32
SEWERS	(\$1000/YR)	. 0	0	0	0	2	5	5	5
TOTAL	(\$1000/YR)	0	ō			84	159	190	245
PRESENT VALUE	AT BEGIN-								
MING OF PERIOD	(\$1000)	0	0	0	0	857 -	1227 .	1531	0
PRESENT WORTH	(\$1000)	0	0	0	0	253	184	116.	٥

NET 0.+M. = 555.159

### TABLE III : TOTAL PRESENT WORTH

CAPITAL C.+M. LAND	(\$1000) (\$1000) (\$1000)	408 555 10
TOTAL	(\$1000)	973

# TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
*******	<del></del>							
ANNUAL CAPITAL								
SLUDGE HANDLING					10	10	10	10
BAS IN					33 -	33 -	33	33 -
BASIN						15	15	15
PIPES				•	38	38	38	38
PIPES						36	36	36
TOTAL O.+M.	0	0	0	O	84	159	190	245
2224			<del></del>					370
TOTAL ANNUAL	U	U	v	0	167	293	324	379

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT DUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

COMPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . R-24

	1972	1975	1980	1985	1990	2000	2010	2020
STORMHATER VOLUME (MG)								
1 YR STORM RUNOFF	0	•	0	4	•	14	19	23
ANNUAL RUNOFF	0	•	0	64	137	206	275	345
SLUDGE QUANTITIES (DT/YR)		•						
SEDIMENT <b>.BASIN</b>	0	•	0	٥	342	515	687	862
TREATMENT PLANT	o	•	0	0	0	0	0	0

TREATMENT SCHENE : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PERIODIC REMOVAL TO LAMOFILL OR RECYCLE

STORAGE BASIN : EARTH

### TRALE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT MORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
TREATMENT PLANT	1094					3700				517 .
BASIN	68					230				91 .
PIPES	59					200				79
RESIDUAL	26 .	والمعطورات في المراد المرادات و					بـ: ـــــــــــــــــــــــــــــــــــ	ب. سرب استحسریت	TOTAL	407

NET CAPITAL 1194

TABLE :	11 1	PRE SENT	MORTH -	0-+16-	COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	٥	•	٥	0	34 .	51 .	48	96
SLUDGE	(\$1000/YR)	ŏ	Ĭ	ă	ă	1	12	17	ži
SEWERS	(\$1000/YR)	Ō	•	Ŏ	ō	ō	0	0	<b>0</b> .
TOTAL	(\$1000/YR)			0	0	43	65	86	108
PRESENT VALUE		0			0	383	534 .	687	٥
MING OF FERIL	D (310001	·	•	•	·	363	234 .		•
PRESENT WORTH	(\$1000)	. 0	•	0	0	113	80	52	0

NET 0.+M. = 246.347

## TABLE III : TOTAL PRESENT WORTH

CAPITAL G.+H. LAND	(\$1000) (\$1000) (\$1000)	1194 244 5
<del></del> -		
TOTAL	(\$1000)	1446

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL				•			·	·
TREATMENT PLANT					285	285	285	285
BASIN	•				16	16	16	16
PIPES					14	14	14	14
TOTAL O.+H.	•	•	. 0	. 0	43	65	84	108
TOTAL ANNUAL	0		0		360	382	403	425

NOTE 1: ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2: AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

### CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . R-255626

	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUME (MG)								
1 YR STORM RUNOFF	٥	•	٥	G	۵	5	7	10
ANNUAL RUNOFF	ŏ	•	ŏ	ŏ	ō	88	123	150
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT.BASIN	٥	•	٥	0	٥	122	179	219
TREATMENT PLANT	ŏ	ě	ŏ	ō	ŏ	53	75	91

TREATMENT SCHENE : STORAGE PLUS TREATMENT AT MUNICIPAL PLANT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANGFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000):

	PRESENT	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL.
		~~~~								
SLUDGE HANDLING	4						31.			13
BASIN	31 .						210			126
PIPES	300						2000			1200
RESIDUAL	51								TOTAL	1339
MET CAPITAL	285									

TABLE II : PRESENT WORTH - Q.+M. COSTS

	•	1972	1975	1980	1985	1990	2000	2010	2020
PLANT	[\$1000/YR]	0				0			
			, ,	0		Ξ	27	38	46
SLUOGE	(\$1000/YR) .	0	•	0	0	0	•	5	7.
SEWERS	(\$1000/YR)	O	•	0	0	0	9,	9	9
TOTAL	(\$1000/YR)	0	0	0		0	41	54	64
PRESENT VAL	UE AT BEGIN-								
NING OF PER	100 (\$1000)	0	•	0	0	0	338	416	0
PRESENT WORT	TH (\$1000)	0	•	0	0	0	50	31	0

TABLE III : TOTAL PRESENT WORTH

 0.+M.	(\$1000) (\$1000)	285
TOTAL	(\$1000)	369

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL							· 	
SLUDGE H andling Basin						2 15	2 15) 2) 5
PIPES TOTAL Q.+M.	٥	٥	0	. 0	0.	144	144 54	144
¹								
TOTAL ANNUAL	Ų	U	U	ď	0	204	216	226

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEONESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . R-27

	1972	1975	1980	1985	1990	2000	2010	2020
STORMHATER VOLUME (MG)								
1 YR STORM RUNGFF	0	0	0	3 .	7	11	13	14
ANNUAL RUNDEF	٥	ò	Ō	54	109	164	203	511
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT.BASIN	٥	0	0	0	159	239	296	316
TREATMENT PLANT	۵	ā	Õ	Ď	44	100	123	132

TREATMENT SCHEME : STORAGE PLUS TREATMENT AT MUNICIPAL PLANT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000):

	PRESENT WORTH	1972	1975	1980	1985	1990	2000 .	2010	2020	RESTOUAL :
SLUDGE HANDLING BASIN PIPES	13 73 88					44 250 300				99 119
RES IDUAL	•								TOTAL	226
NET CAPITAL	166									

TABLE A LA COLLEGIO DE CONTROL DE LA COSTA DE COSTA DE COSTA DE COSTA DE COSTA DE COSTA DE CONTROL DE COSTA DE CONTROL DE COSTA D

	•	1972	1975	1980	1985	1990	2000	2010	5050
PLANT	(\$1000/YR)	0	0	0	0	34	51	43	67
SLUDGE	(\$1000/YR)	0	0	o	0	5	7	•	10
SEWERS	(\$1000/YR).	.0	, , •	0	. 0	1.	3.	1	1
TOTAL	(\$1000/YR)					40	60	74	79
	VE AT BEGIN-	_	_	_	_				_
NING OF PER	(00 (21000)	0	•	0	0	357	476	544	•
PRESENT MORT	TH (\$1000).	0	•	0 .	0	105	71.	41	0

MET 0.+M. = 218.948

TABLE 111 : TOTAL PRESENT WORTH

	(\$1000)	166
O.+M. Land	(\$1000)	21.6 3
T OT AL	(\$1000)	388

TABLE IV : ANNUAL COSTS (\$1000/YR).

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL						<u>_</u>		
SLUDGE HANDLING					3	3	3	3
BASIN					18	16	14	10
PIPES	_	_	_	_	21	21	21	21
TOTAL G.M.	0		a	. 0	40	60	74	79
TOTAL ANNUAL			0	0	84	104	110	123

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . R-28

NET D.+M. =

	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUME (NG)								
1 YR STORM RUNOFF	0	0	٥	0	0	37	49	62
ANNUAL RUNDEF	ŏ	Ŏ	Ö	Ö	Ö	537	716	495
SLUGGE QUANTITIES (DT/YR)								
SEDIMENT.BASIM	0	0	0	0	0	1342	1790	2237 .
TREATHENT PLANT	0	0	0	0	0	0	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT

343.474

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000):

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
TREATMENT PLANT BASIN	872 58						5800 390			2488 234
PIPES	30						200			120
RESIDUAL	110								TOTAL	2842
NET CAPITAL	850									

TABLE II : PRESENT - WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020 -	
								 '		
PLANT	(\$1000/YR)	- 0	0	0	. 0	0	134	179	223	
SLUDGE	(\$1000/YR)	ō	Ö	0	0	0	33	44	55	
SEWERS	(\$1000/YR)	Ō	Õ	0	0	0	0	0	Ô	
TOTAL	(\$1000/YR)	0	<u> </u>		0	•	168	224	280	
PRESENT VALUE	AT REGIN-		٠.,	•		·				
NING OF PERIOD		0	0	0	٥	0	1382	1774	0	
PRESENT WORTH	(\$1000)	•	0	o	٥	0	207	135	0	

TABLE III : TOTAL PRESENT WORTH

850 343	(\$1000) (\$1000)	CAPITAL
14	(\$1000)	LAND
1206	(\$1000)	TOTAL

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL							 .	
TREATMENT PLANT						447	447	447
BASIN						28	28	58
PIPES						14	14	14
TOTAL O.+M.	0	0	0	0	0	168	224	280
TOTAL ANNUAL	0	0	0		0	659	715	771

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . R-29

	1972	1975	1980	1985	1990	2000	2010	2020
							~	~
STORMWATER VOLUME (MG)								
I YR STORM RUNOFF	0	9	0	0	0		10	11
ANNUAL RUNOFF	0	•	ō	ō	•	112	135	168
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT .BASIN	0	0	0	0	0	210	253	315
TREATMENT PLANT	0	•	Ö	٥	0	0	Ŏ	20

TREATMENT SCHEME : STORAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
TREATMENT PLANT	79 33						530 225			227 135
PIPES	170						1136			401.
RESIDUAL	40								TOTAL	1043
NET CAPITAL	243									

TABLE 11 : PRESENT WORTH - Q.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020	
									~	
PLANT	(£1000/YR)	0	•	0	٥	0	3	. 4	5	
SLUDGE	(\$1000/YR)	0	0	0	٥	٥	5	Ă	ź	
SEWERS	131000/YR)	0	0	Ō	Ŏ	ō	5	5	5	
TOTAL	(\$1000/YR)		•	0		0	14	16	19	
PRESENT VALUE								•		
MING OF PERIO	0 (\$1000)	0	0	0	0	0	110	127	0	
PRESENT WORTH	(\$1000)	0	•	0	0	0	16	•	0	

MET 0.+H. = 26. 345

TABLE III : TOTAL PRESENT WORTH

CAPITAL G.+M. LAND	(\$1000) (\$1000) (\$1000)	243 24 3
TOTAL	(\$1000)	273

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1780	1985	1990	2000	2010	2020
ANNUAL CAPITAL								~
TREATMENT PLANT						40	40	40
BASIN PIPES						16	14	16
TOTAL O.+M.	٥	•	0		_	82	82	82
			_	•	0	14	16	19
TOTAL ANNUAL			0			154	154	158

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT DUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT MAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . R+306#233

	1972	1975	1980	1985	1990	2000	2010	2020
								
STORMWATER VOLUME (MG)								
1 YR STORM RUNDFF	0	0	0	0	0	5	8	9
ANNUAL RUNOFF	0	0	0	0	0	67	91	121
SLUDGE QUANTITIES (DT/YR)					•			
SEDIMENT.BASIM	9	0	0	0	0	167	227 .	302
TREATMENT PLANT	0	0	0	0	0	0	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRE SENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
TREATMENT PLANT	391 .						2600 150			1115 90
BAS IN PIPES	119						797		,	478
RESIDUAL	65								TOTAL	1683
NET CAPITAL	448									

TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020	
·						. 		·	. ——.	
PLANT	(\$1000/YR) .	0	0	0	0	0	16	22	30	
SLUDGE	(\$1000/YR).	0	0	0	0	0	4	5	7	
SEWERS	(\$1000/YR).	. 0	0	0	0	0	3	3	3	
TOTAL	(\$1000/YR)			0	0	0	24	32	41	
PRESENT VALUE		٥	0	0	0	0	201	260	0	
MANO OL VERAL	20 171000	•	•	•	•	•			•	
PRESENT WORTH	(\$1000)	0.	0	0	•	0	30	19	0	
MET O.+M. =	50.2007									

TABLE III : TOTAL PRESENT WORTH

CAPITAL D.+M. LAND	(\$1000) (\$1000) (\$1000)	468 50 2
T OT AL	(\$1000)	520

TABLE IV : ANNUAL COSTS (\$1000/YR):

	1972	1975	1980	1985	1990	2000	2010	2020
AMNUAL CAPITAL								
TREATMENT PLANT						200	200	200
BASIN						10 57	10 57	10 57
PIPES TOTAL O.+M.	٥	0	0		0	24	32	41
TOTAL ANNUAL	0	0	0	0	0	294	301	311

NOTE 1 3 ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2 3 AM INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

PLAN A . R-32

	1972	1975	1980	1985	1990	2000	2010	2020
STORMMATER VOLUME (MG) 1 YR STORM RUNOFF AMNUML RUNOFF	0	0	0	0	0	1 34	3 51	4 70
SLUDGE QUANTITIES (OT/YR) SEDIMENT-BASIN TREATMENT PLANT	0 0	0	0	0	0	8 5 0	127	175

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN & EARTH

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
TREATMENT PLANT BAS IN PIPES	195 10 30						1300 70 200			357 42 120
RESIDUAL	27								TOTAL	719
MET CARITM	200									

TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	5000	2010	2020
									
PLANT	(\$1000/YR)	. 0	0	0	•	0		12	17
SLUDGE	(\$1000/YR)	0	0	0	0	0	2	3	4
SEWERS	(\$1000/YR)	. 0	o	0	ō	Ó	ō	Ö	Ó
TOTAL	(\$1000/YR)	•			0	0	11	16	22
PRESENT VALUE	AT BEGIN-								
NING OF PERIOD	(\$1000)	0	0	0	•	•	100	139-	•
PRESENT WORTH	(\$1000)	0	0	0	0	0	15	10	0

25. 7673 NET 0.+M. =

TABLE III : TOTAL PRESENT WORTH

CAPITAL	(\$1000) (\$1000)	20e 25
LAND	(\$1000)	ī
	•	
TOTAL	(610001	234

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1960	1985	1990	2000	2010	2020
AMNUAL CAPITAL		 '		~~~~		*******		
TREATMENT PLANT						100	100	100
BASIM PIPES						14	5 14	5 14
TOTAL O.+M.	G	0	0	0	0	iĩ	16	22
TOTAL ANNUAL						131	136	142
	•	•	•	•	•			***

NOTE 1: ANNUAL COSTS OD NOT INCLUDE PRESENT DUTSTANDING BONDED INDEBTEDNESS NOTE 2: AN INTEREST RATE OF 7 PERCENT MAS USED FOR ALL CALCULATIONS

STURMMATER TREATMENT PLANT CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . R-32

	1972	1975	1960	1985	1990	2000	2010	2020
STORMWATER VULUME (MG)								
1 YR STONH RUNUFF	0	o	C	4	9	14	19	21
ANNUAL RUNDEF	o	Ō	0	48	137	206	274	302
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT-BASIN	U	0	٥	0	0	515	685	755
TREATMENT PLANT	0	Ú	Ú	0	ō	0	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
TREATMENT PLANT BAS IN PIPES	1005 62 562					3400 210 1900				475 83 759
RESIDUAL	51								TOTAL	1319
NET CAPITAL	1578									

TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1575	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YK)	0	0	0	0	0	51	68	75
SLUDGE	(\$1000/YZ)	υ	٥	٥	0	0	12	17	18
SEWERS	(\$1000/YR)	0	U	o	0	9	9	9	9
TOTAL	4\$1000/YR)	0	0	0	0	9	73	95	1 03
PRESENT VAL	UE AT BEGIN-							•	
NING OF PER	(IGD (\$1000)	0.	٥.,	0	¢	292	593	698	0
PRESENT WOR	TH (\$1000)	o	0	0	o	86	89	53	o

NET 0.+M. = 229.259

TABLE III : TOTAL PRESENT WERTH

CAPITAL D.+M. Land	(41000) (41000) (41000)	1578 229 20
	-	
TOTAL	(\$1000)	1827

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1575	1960	1985	1990	200 0	2010	2020
ANNUAL CAPITAL						•——		
TREATMENT PLANT					262	262	262	262
BAS IN					15	15	15	15
PIPES	_		_		137	137	137	137
TOTAL O.+M.	0	0	0	0	9	73	95	103
TOTAL ANNUAL		·			424	489	510	
TOTAL HITTORY	v	v	· ·	U	727	707	210	519

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRISENT CUTSTANDING BONDED INDEBTEONESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT NAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . R-34

	1972	1975	1980	1965	1990	2000	2010	2020
STORMMATER VOLUME (MG)								
1 YR STORM RUNOFF	•	2	4	5	7	•	11	11
ANNUAL RUNGEF	. 0	34	49	86	104	139	153	174
SLUGGE QUANTITIES (DT/YR)								
SEDIMENT . BAS IN	0	86	172	216	260	347	382	435
TREATMENT PLANT	0		٥	0	0	0	0	D

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANGFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT MORTH	1972	1975	1980	1985	1990	2000	2019	2020	RESIDUAL
TREATMENT PLANT	1327				3200					•
BASIN	78				190 ·					57
PIPES	82				200					60
RESIDUAL	•								TOTAL	117
NET CAPITAL	1484	_								

TABLE 11 : PRESENT NORTH - D.+M. COSTS

		1972	1975	1980	19#5	1990	2000	2010	2920
									
PLANT	(\$1000/YR)	٥	G	0	26	26	34 .	38	43
SLUDGE	(\$1000/YR)	0	0	0	6	6	•	9	10
SEWERS	(\$1000/YR)	•	0	0	0	0	0	0	0
TOTAL	131000/YR)	0	0	0	33	33	4	44	55
PRESENT VALUE NING OF PERIOD		đ	•	•	137	273	327	345	0
PRESENT WORTH	(\$1000)	0	0	•	54	80	49	27	•

NET 0.+N. = 215.152

TABLE III : TOTAL PRESENT WORTH

CAPITAL 151000) Q.+M. (51000) LAND (51000) 1484 215 17 TOTAL (\$1000) 1717

TABLE IV : ANNUAL COSTS 151000/YR1.

	L 972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL	- ,							
TREATMENT PLANT				247	247	247 .	247	247
BASIN				13	13	13	13	1.3
PIPES				14	14	14	14	14
TOTAL O.+M.	0	0	9	33	33	44	48	55
TOTAL MINUAL	0	0	0	308	200	319	324	330

NOTE 1 & ANNUAL COSTS DO NOT INCLUDE PRESENT DUTSTANDING BONDED INDEBTEDNESS NOTE 2 & AM INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . R-35

<u> </u>	1972	1975	1980	1985	1990	2000	5010	2020
STORMMATER VOLUME (MG)	_	•	-	•	12	16	17	20
1 YR STORM RUNOFF	0			•				
ANNUAL RUNOFF	0	40	120	150	160	240	264	300
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT.BASIN	٥	150	300	375	450	400	660	750
TREATMENT PLANT	0	0	0	0	0	0	0	0

SLUDGE HANDLING : PERIODIC RENOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000).

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
TREATMENT PLANT BASIN PIPES	1493 91 82				3600 220 200					0 66 60
RESIDUAL	4								TOTAL	126
NET CAPITAL	1663 -									

TABLE II : PRESENT WORTH - C.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	0	0	0	45	45	60	66	75
SLUDGE	(\$1000/YR)	0	0	0	11	11	15	16	18
SEWERS	(\$1000/YR)		Ō	0	0	0	0	0	0
TOTAL	(\$1000/YR)	0		0	57	57	75	83	94
PRESENT VAI	LUE AT BEGIN-							•	
MING OF PER	RIOD (\$1000)	0	0	0	234	467	560	625	0
PRESENT HOP	RTH (\$1000)	0	0	0	97	136	84	47	0
NET D.+H.	367.87	.							

TABLE III : TOTAL PRESENT WORTH

CAPITAL U+M. LAMD	(\$1000) (\$1000) (\$1000)	1663 367 22
	•	
7074	4410001	3053

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
TREATMENT PLANT				277	277	277	277	277
BAS IN				15	15	15	15	15
PIPES				14	14	14	14	14
TOTAL O.+M.	0	0	0	57	57	75	83	94
TOTAL ANNUAL				365	365	384	391	403

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEONESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT MAS USED FOR ALL CALCULATIONS

STORMMATER TREATMENT PLANT CORPS OF ENGINEERS - SURVEY SCOPE STUDY Survey and a survey of the sur

PLAN A , LE-1

	1972	1975	1980	1985	1990	2000	2010	2020
STORMMATER VOLUME (MG)								
1 YR STORM RUNOFF	0	24	48	49	50	53	55	55
ANNUAL RUNOFF	0	340	681	738	795	909	1022	1055
SAUDGE QUANTITIES IDT/YRS								
SEDIMENT . BAS IN	0	638	1276	1363	1987	2272	2555	2555
TREATMENT PLANT	0	•	0	0	0	0	0	٥

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PIPE SLUDGE TO MUNICIPAL PLANT

STORAGE BASIN : CONCRETE

FABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000).

	PRESENT HORTH	1972	1475	1980	1985	1990	2000	2010	2,020	RESIDUAL
		·	<u>_</u>							
TREATMENT PLANT	4137			4500					6500 .	5570
PLANT EXPANSION	3993					13500				1889
SLUDGE HANDLING	339			534 .					534	457
BASIN	5529			9500						1899
PIPES	2037			3500						699
RESIDUAL	408								TOTAL	10518
NET CAPITAL	15628									

TABLE II : PRESENT WORTH - O-+M- COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	0	0	42	129	230	263	296	296
SLUDGE	(\$1000/YR)	ō	ō		9	13	15	17	17.
SEWERS	(\$1000/YR)		Ō	17	17	17.	17	17	17 .
TOTAL	(\$1000/YR)		0	68	157	261	297	331	331
PRESENT VALU	E AT BEGIN-								
NING OF PERI		•	0	442	859	1962	2208	2330	0
PRESENT WORT	H (\$1000)	•	0	269	356	580	332	178	•

NET 0.+M. = 1716.53

TABLE III : TOTAL PRESENT WORTH

CAPITAL	(\$1000)	15628
0.+M.		1716
LAND	T \$16061 ~~	20,

TOTAL (\$1000) 17364

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1 790	2000	2010	2020
ANNUAL CAPITAL					 -			
TREATMENT PLANT			501	501	501	501	501	501
PLANT EXPANSION					1042	1042	1042	1042
SLUDGE HANDLING			41	41	42	41	41	41
BAS IN			487	687	687	687	687	687
PIPES			253	253	253	253	253	253
TOTAL O.+M.	0	0	44	157	241	297	331	331
TOTAL ANNUAL	, 0 ,	 ,	1552	1641	2788	2823	2850	2858

NOTE 1 : ANNUAL COSTS OD NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . LE-2

	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUME (MG) 1 VR STORM RUNGFF	0	18 294	37 589	3 8 631	39 673	41 757	41 757	41 757
ANNUAL RUNGFF SLUDGE QUANTITIES (DT/YR)	_	274	70*	431	-73	737	737	151
SEDIMENT BASIN	0	552	1104	1183	1682	1892	1892	1892
TREATHENT PLANT	0	0	0	٥	Q	0	٥	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PIPE SLUDGE TO MUNICIPAL PLANT

STORAGE BASIN : CONCRETE

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL .
TREATMENT PLANT	3819			6900					6000	5141
PLANT EXPANSION	3697					12500				1749
SLUDGE HANDLING	273			429					429	367
BASIN	4621			7940						1587
PIPES	2153			3700						739
RESIDUAL	372								TOTAL	9547
MET CAPITAL	14192									

TABLE II : PRESENT MORTH - 0.+M. COSTS

	1972	1975	1980	1985	1990	2000	5010	2020
PLANT (\$10	00/YR) 0	0	36	111	195	219	219	519
SLUDGE (\$10	00/YR) 0	0	7	7	10	11	11	11
SEWERS (\$10	00/YR) 0	0	1.6	16	18	19	18	18
TOTAL (\$10	00/YR) 0	0	62	137	223	249	249.	249
PRESENT VALUE AT BE		0	409	740	1661	1751	1751	٥
PRESENT WORTH (\$10	001 0	0	238	307	491 .	263	133	0

NET 0.+N. -1434.43

TABLE III : TOTAL PRESENT WORTH

CAPITAL D.+M. LAND	(\$1000) (\$1000) (\$1000)	14192 1434 20
	• *	
TOTAL	(\$1000)	15646

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
								
ANNUAL CAPITAL								
TREATMENT PLANT			463	463	463	463	463	463
PLANT EXPANSION					964	964	964	964
SLUDGE HANDLING			33	33	33	33	33	33
BAS IN			574	574	574	574	574	574
PIPES			267	267	267	267	267	267
TOTAL G.+M.	0	0	42	137	223	249	249	249
				14.74				
TOTAL ANNUAL	Q	0	1401	1476	2527	2553	2553	2553

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . LE-3

	1972	1975	1980	1985	1990	2000	2010	. 2020
								
STORMWATER VOLUME (HG)								
1 YR STORM RUNOFF	0	33	67	68	70	73	73	73
ANNUAL RUNGFF	0	525	1050	1125	1200	1350	1350	1350
SLUDGE QUANTITIES (OT/YR)								
SEDIMENT BASIN	0	766	1533	1642	1752	1971	1971	1971
TREATMENT PLANT	0	0	640	686	732	825	823	823

TREATMENT SCHEME : STORAGE PLUS TREATMENT AT MUNICIPAL PLANT

SLUDGE HANDLING : PIPE SLUDGE TO MUNICIPAL PLANT

STORAGE BASIN : CONCRETE

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT MORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
SLUDGE HANDLING BASIN PIPES	439 121 <i>0</i> 5 2211			690 20800 3800					690	591 4159 759
RESIDUAL	213								TOTAL	5511
NET CAPITAL	14542									

TABLE II : PRESENT WORTH - O.+N. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	0	0	276	324	375	422	422	422
SLUDGE	(\$1000/YR)	0	0	14	14	14	16	16	16
SEWERS	(\$1000/YR)	0	0	18	18	18	18	18	18
TOTAL	(\$1000/YR)	0	0	309	357	409	458	458	458
PRESENT VALUE	AT BEGIN-							•	
NING OF PERIOD	(\$1000)	0	0	1367	1572	3047	3216	3218	0
PRESENT WORTH	(\$1000)	0	0	796	652	901	484	245	0

MET 0.+#. = 3080.08

TABLE 111 : TOTAL PRESENT WORTH

CAPITAL	(\$1000)	14542
0.+M.	(\$1000)	3080
LAND	(\$1000)	30

TOTAL (\$1000) 17652

TABLE IV : ANNUAL COSTS (81000/YR).

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL					 '			
SLUDGE HANDLING			53	53	53	53	53	53
BAS IN			1505	1505	1505	1505	1505	1505
PIPES			275	275	275	275	275	275
TOTAL O.+M.	0	0	309	357	409	458	458	458
TOTAL ANNUAL			2143	2191	2243	2292	2292	2292

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT DUTSTANDING BONDED INDEBTEDNESS HOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

PLAN A . LE-4

	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUME (MG)								
1 YR STORM RUNUFF	G	81	162	166	171	179	188	197
ANNUAL RUNOFF	Ō	1110	2237	2325	2414	2816	3219	3621
SLUGGE QUANTITIES (DT/YR)								
SEDIMENT BASIN	0	1633	3266	3395	3524	4111	4699	5286
TREATMENT PLANT	0	0	1364	1418	1472	1717	1963	2208

TREATMENT SCHEME : STORAGE PLUS TREATMENT AT MUNICIPAL PLANT

SLUDGE MANCLING & PIPE SLUDGE TO MUNICIPAL PLANT

STORAGE BASIN : CUNCRETE

TABLE I : PRESENT WORTH - CAPITAL COSTS - 451000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
SLUDGE HANDLING BASIN PIPES	1050 32708 494			1650 56200 850					1650	1414 11239 169
RESIDUAL	497								TOTAL	12824
NET CAPITAL	33755									

TABLE II : PRESENT WGRTH - C.+M. CCSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	0	0	498	617	743	867	991	1115
SLUDGE	(\$1000/YK)	0	0	23	24	24	29	33	37
SEVERS	(\$100U/YR)	0	O	4	4	4	4	4	4
TUTAL	(\$1000/YR)	0	0	526	645	7/2	900	1029	1156
PRESENT VALUE	AT BEGIN-							•	
NING OF PERIO	D (\$1000)	0	0	2402	2907	5876	6776	7676	a
PRESENT WORTH	(\$1000)	0	o	1398	1206	1738	1019	586	0

NET 0-+K- = 5948.93

TABLE III : TOTAL PRESENT WORTH

CAPITAL	(\$1000)	33755
0.+H.	1 \$10001	5948
LAND	(\$1000)	50
TOTAL	(\$1000)	39754

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
SLUDGE HANDLING			127	127	127	127	127	127
BASIN			4668	4068	4068	4068	+048	4068
PIPES			61	61	41	61	61	61
TOTAL O.+M.	O	o	526	645	712	900	1029	1156
			4.324	4003		5158	£204	6414
TOTAL ANNUAL	U	0	4734	4903	50 JU	3120	5286	5414

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEUNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

PLAN A . LE-5

	1972	1975	1980	1985	1990	2000	2010	2020
STORMATER VOLUME (MG)								
1 YR STORM RUNOFF	297	298	299	299	299	299	299	299
ANNUAL RUNOFF	5364	5425	5486	5486	5486	5486	5486	5486
SLUDGE QUANTITIES (DT/YR)	•							
SEDIMENT .BASIN	3137	3173	3209	3209	3209	3209	3209	3209
TREATMENT PLANT	1233	1247	1261	1261	1261	1261	1261	1261

TREATMENT SCHEME : STORAGE PLUS TREATMENT AT MUNICIPAL PLANT

STORAGE BASIN : CONCRETE

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESI DUAL
SLUDGE HANDLING	870		975					975		696
BASIN	69540		85200							8520
PIPES	10692		13100							1310
RESIDUAL	408								TOTAL	10526
NET CAPITAL	80694									

TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	0	1264	1278	1483	1689	1689	1689	1689
SLUDGE	(\$1000/YR)	0	22	22	22	22	22	22	22
SEWERS	(\$1000/YR)	0	65	65	65	65	65	65	45
TOTAL	(\$1000/YR)	0	1351	1366	1571	1777	1777	1777	1777
PRESENT VALUE	AT BEGIN-								
NING OF PERIO	(\$1000)	0	5571	6022	6866	12484	12484	12464	0
PRESENT WORTH	(\$1000)	0	4547	3505	2948	3692	1877	953 -	0

17426. NET 0.+H. =

TABLE III : TOTAL PRESENT WORTH

CAPITAL O.+M. LAND	(\$1000) (\$1000)	80694 17426 8 0
	-	
TOTAL	(\$1 0001	98 200

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
SLUDGE HANDLING		75	75	75	75	75	75	75
BASIN		6168	6168	6168	6168	6168	6168	6168
PIPES		948	948	948	948	948	948	948
TOTAL O.+M.	0	1351	1366	1571	1777	1777	1777	1777
TOTAL ANNUAL	0	8543	8558	8764	8969	8969	8969	8969

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS MOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . LE-6

	1972	1975	1980	1945	1990	2000	2010	2020
STORMWATER VOLUME (MG)								
1 YR STORM RUNOFF	70	70	70	70	70	70	70	70
ANNUAL RUNDFF	1453	1453	1453	1453	1453	1453	1453	1453
SLUDGE QUANTITIES (DT/YR)							
SEDIMENT.BASIN	850	850	850	850	850	850	850	850
TREATMENT PLANT	334	334	334	334	334	334	334	334

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PIPE SLUDGE TO MUNICIPAL PLANT

STORAGE BASIN : CONCRETE

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT MORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
										
TREATMENT PLANT	6515		7300					7300		5212
PLANT EXPANSION	4289					14500				2029
SLUDGE HANDLING	565		634					634		452
BASIN	9957		12200							1220
PIPES	6611		8100							810
RESIDUAL	377								TOTAL	9724

TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	•	90	90	324	559	559	559	559
SLUDGE	(\$1000/YR)	0	5	5	5	5	5	5	5
SEWERS	(\$1000/YR)	0	40	40	40	40	40	40	40
TOTAL	(\$1000/YR)	0	136	136	371	605	605	605	605
PRESENT VALUE		_							_
NING OF PERIOD	(\$1000)	0	559	1040	2002	4255	4255	4255	0
PRESENT WORTH	(\$1000)	0	456	605	830	1250	639	325	0

4117-2 NET 0.+M. -

TABLE III : TOTAL PRESENT WORTH

CAPITAL	(\$1000)	27562
0.+M.	(\$1000)	4117
LAND	(\$1000)	25

TOTAL (\$1000) 31704

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
TREATMENT PLANT		563	563	563	563	563	563	563
PLANT EXPANSION					1119	1119	1119	1119
SLUDGE HANDLING		48	48	48	48	48	48	48
BAS IN		883	883	863	883	883	883	883
PIPES		586	586	544	584	586	586	586
TOTAL O.+M.	0	136	136	371	605	605	605	605
TOTAL AMMUAL		2218	2218	2453	3807	3807	3807	3807

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2 & AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

COAPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . LE-7

	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUME (MG)								
1 YR STORM RUNGFF	51	51	51	52	53	53	53	53
ANNUAL RUNDEF	969	969	969	1000	1031	1031	1031	1031
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT.BASIN	564	566	566	584	603	603	403	603
TREATMENT PLANT	222	222	222	230	237	237	237	237

TREATMENT SCHEME : STORAGE PLUS TREATMENT AT MUNICIPAL PLANT

SLUDGE HANDLING : PIPE SLUDGE TO MUNICIPAL PLANT

STORAGE BASIN : CONCRETE

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000).

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
										
SLUDGE HANDLING BASIN PIPES	423 8162 81		474 1 90 00 100					474		338 1000 10
RESIDUAL	52								TOTAL	
MET CAPITAL	8614									•

TABLE II : PRESENT MORTH - O.+N. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020	
PLANT	(\$1000/YR).		288	288	298	307	307	307	307	
SLUDGE	(\$1000/YR)		3	3 -						
SEWERS	(\$1000/YR)	ŏ	ō	ō	ō	•	Ó	0	0	₹_
TOTAL	(\$1000/YR)		293	293	302	311	311	311	311	
PRESENT VALUE	AT BEGIN-									
NING OF PERIO		0	1202	1221 .	1259	2190 .	2190	2190	•	
PRESENT WORTH	(\$1000)	0	781	710	522	649	329	167	•	

3359.72 NET 0.+#. .

TABLE III : TOTAL PRESENT WORTH

CAPITAL	(\$1000)	8614
O+H.	(\$1000)	3359
LAND	(\$1000)	20

TOTAL (\$1000) 11994

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
SLUDGE HANDLING		36	36	34	36	36	34	36
BASIN		723	723	723	723	723	723	T23
PIPES		7			7.	?	7	7.
TOTAL O.+M.	. •	293	293	302	311	311	311	311
TOTAL ANNUAL		1061	1041	1070	1079	1079	1079	1079
	<u>.</u>		-					

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AM INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . LE-8

· · · · · · · · · · · · · · · · · · ·	-							
	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUME (MG)								
1 YR STORM RUNOFF	0	17	35	35	35	35	35	35
ANNUAL RUNGFF	0	328	656	656	656	656	656	456
SLUGGE QUANTITIES (DT/YR)								
SEDIMENT-BASIN	0	615	1230	1230	1640	1640	1640	1640
TREATMENT PLANT	0	0	0	0	0	0	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT

1572.26

SLUGGE HANDLING : PIPE SLUGGE TO MUNICIPAL PLANT

STORAGE BASIN : CONCRETE

NET 0.+M. -

TABLE I : PRESENT MORTH - CAPITAL COSTS - 181000):

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL .
TREATMENT PLANT	3691			5800					5800	4970
PLANT EXPANSION	3549					12000				1679
SLUDGE HANDLING	231			363 -					363	311
BASIN	890			1530						305
PIPES	2956			5080						1015
RESIDUAL	321								TOTAL	8283
MET CARTTAL	10007									

TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	. 0	•	40	115	190	190	190	190
SL UDGE	(\$1000/YR)		Ó	25	25	32	32	32	32
SEWERS	(\$1000/YR)	Ō	o o	25	25	25	25	25	25
TOTAL	(\$1000/YR)		0	91	166	248	248	248	248
PRESENT VALUE	AT REGIM-								
NING OF PERIO		0	0	528	849	1744	1744	1744	0
PRESENT MORTH	(\$1000)	0	0	307 -	352	516	262	133	0

TABLE 111 : TOTAL PRESENT WORTH

CAPITAL O.+M. LAND	(\$1000) (\$1000) (\$1000)	10997 1572 20
TOT AL	4410001	12500

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL			 .					
TREATMENT PLANT			447 .	447	447	447	447	447
PLANT EXPANSION					926	926	926	924
SLUDGE HANGLING			28	28	28	28	28	28
BAS IN			110	110	110	110	110	110
PIPES			367	367	347	367	367	347
TOTAL O.+M.	0	0	91	166	248	248	248	248
TOTAL ANNUAL		0	1046	1120	2129	2129	2129	2129

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT DUTSTANDING BONDED INDEBTEDMESS NOTE 2 : AM INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . LE-9

	1972	1975	1960	1985	1990	2000	2010	5050
STORMWATER VOLUME (MG)								
1 YR STORM RUNOFF	0	18	37 .	38	39	39	39	39
ANNUAL RUNOFF	Ô	265	531 .	575	619	619	619	619
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT-BASIN	0	307	775	839	903	903	903	903
TREATMENT PLANT	0	•	323	350	377	377	377	377

TREATMENT SCHENE : STORAGE PLUS TREATMENT AT MUNICIPAL PLANT

SLUDGE HANGLING & PIPE SLUDGE TO HUMICIPAL PLANT.

STORAGE BASIN : CONCRETE

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT JORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
SLUDGE HANDLING BASIN PIPES	70 48 88 27 9 3			110 8400 4800					110	94 1679 95 <i>9</i>
RESIDUAL	106								TOTAL	2734
NET CAPITAL	7646									
			TABLE	II : PRES	ENT WORTH	- 0.+M. CO	ST\$			

		1972	1975	1980	1965	1990	2000	2010	2020
PLANT SLUDGE SEWERS	(\$1000/YR) (\$1000/YR) (\$1000/YR)	0 8 0	0	157 25 23	175 26 23	193 28 23	193 28 23	193 28 23	193 28 23
TOTAL	(\$1000/YR).	0	0	206	224	245	245	245	245
PRESENT VALUE NING OF PERIOD		0	0	467	967	1727	1727	1727	0
PRESENT WORTH	(41000)	•	0	516	401	510	259	131	•

1821.04

TABLE III : TOTAL PRESENT HORTH

~		(\$1000) (\$1000) (\$1000)	7646 1621, 15
			~
	TOTAL	(\$1000)	9482

TABLE IV : ANNUAL COSTS (\$1000/YR).

ANNUAL CAPITAL	1972	1975	1980	1985	1990	2000	2010	2020
SLUDGE HANDLING								
BASIN			608	608	608	608	408	608
PIPES			347	347	347	347	347	347
TOTAL CL+ML	•	0	204	226	245	245	245	245
TOTAL ANNUAL			1171	1190	1210	1210	1210	1210

MOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A , LE-10

	-							
	1972	1975	1980	1985	1990	2000	2010	2020
STORMMATER VOLUME (MG)								
1 YR STORM RUNGFF	0	24	49	49	50	53	56	56
ANNUAL RUNOFF	Ö.	336	676	484	696	747	799	799
SLUDGE QUANTITIES (OT/YR)								
SECIMENT. BASIN	0	633	1267	1286	1740	1867	1997	1997
TREATMENT PLANT	0	•	0	0	0	0	0	0

TREATMENT SCHENE : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PIPE SLUDGE TO MUNICIPAL PLANT

STORAGE BASIN : CONCRETE

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
TREATMENT PLANT	4137			6500					6500	5570
PLANT EXPANSION	3993					13500				1889
SLUDGE HANDLING	. 301			474					474	406
BAS IN	6984			12000						2399
PIPES	4103			7050						1409
RESIDUAL	453								TOTAL	11676
MET CAPITAL	19044									

TABLE II : PRESENT WORTH - C.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT SLUDGE SEWERS	(\$1000/YR) {\$1000/YR} {\$1000/YR}	0	0	41 29 35	120 28 35	201 38 35	216 41 35	231 43 35	231 43 35
TOTAL	(\$1000/YR)			106	184	275	292	310	310
PRESENT VALUE		0	0	597	943	1995	2120	2103	0
PRESENT MORTI	(\$1000)	•	0	347	391	590	310	166	0

MET 0.+M. = 1815.15

TABLE III : TOTAL PRESENT WORTH

19064	(\$1000)	CAPITAL
1015	(\$1000)	0.+M.
15	(\$1000)	LAND
20894	(\$1000)	TOTAL

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL	<u> </u>							
TREATMENT PLANT			501	501	501	501	501	501
PLANT EXPANSION					1042	1042	1042	1042
SLUDGE HANGLING			34	34	36	36	36	36
BASIM			868	848	848	868	869	868
PIPES			510	510	510	510	510	510
TOTAL O.+R.	0	•	106	184	275	292	310	310
TOTAL AMMUAL			2023	2102	3235	3252	3270	3270

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT DUTSTANDING BONDED INDEB TEDNESS NOTE 2 : AM INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . LE-11 12

	1972	1465	1980	1985	1990	2000	2010	2020	
									
STORMMATER VOLUME (MG)									
1 YR STORM RUNDFF	0	26 368	53	55	58	65	73	76	
ANNUAL RUNDEF	0	368	53 737	55 779	822	933	1043	1009	
SLUDGE QUANTITIES (DT/YR)	•								
. SEDIMENT BASIN		321	1142	1948	2055	. 2332	2607 .	2722	
TREATMENT PLANT	0	0	0	0	0	0			,

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PIPE SLUDGE TO MUNICEPAL PLANT

STORAGE BASIN : CONCRETE

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000).

	PRESENT	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
TREATMENT PLANT	7675				18500					•
SLUDGE HANDLING	290				700					0
BAS IN	6721				16200 .					4860
RESIDUAL	188								TOTAL	4860
WET CARTTAL	14400									

TABLE II : PRESENT WORTH - Q.+M. COSTS

		1972	1975	1980	1965	1990	2000	2010	5050
PLANT SLUDGE SEWERS	(\$1000/YR); (\$1000/YR); (\$1000/YR);	0	0	0 0	238 45 0	230 45 0	270 51 0	302 57 . 0	315 59 0
TOTAL	(\$1000/YR)	0		0	283	283	321	359	375
PRESENT VALUE		0	0	٥	1162	2126	2394	2583	0
PRESENT WORTH	(\$1000)	•	0	9	482	628	360	197	•

NET 0.+N. = 1668.78

TABLE III : TOTAL PRESENT WORTH

CAPITAL 0.+M. LAND	(\$1000) (\$1000) (\$1000)	14498 1668 61
TOTAL	(\$1000)	14228

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	£975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
TREATMENT PLANT				1428	1428	1428	1428	1428
SLUDGE HANDLING				54	54	54	54	54
BASIN		•	٥	1172 203	1172 283	1172 321	1172 359	1172
TOTAL CL+M				243	243	321	324	375
TOTAL MINUAL				2938	2938	2977	3014	3030

NOTE 1 1 ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING CONDED INDESTEDNESS NOTE 2 2 AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

PLAN A . CU-1

	1972	1975	1980	1985	1990	2000	2010	2020
STORMMATER VULUME (MG)								
1 YM STORM RUNJEF	32	32	32	32	33	33	33	33
ANNUAL RUNGEF	631	631	631	637	644	644	644	644
SLUDGE QUANTITLES (DT/YR)								
SEDIMENT-BASIN	448	448	448	452	978	978	978	976
TREATMENT PLANT	0	0	Ü	٥	0	0	0	0

TREATMENT SCHEME : STURAGE PLUS TREATMENT

SLUDGE HANDLING : PIPE SLUDGE TO MUNICIPAL PLANT

STORAGE BASIN : CONCRETE

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2900	2010	2020	RESIDUAL
TREATMENT PLANT	50 87		5700					5700		4069
PLANT EXPANSION	4771				11500					0
SLUDGE HANDLING	191		214					214		152
BASIN	5590		6850							685
PIPES	163		200							20
RESIDUAL	191								TOTAL	4927
NET CAPITAL	15613									

TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	0	39	39	142	247	247	247	247
SLUCGE	(\$1000/YR)	ō	2	2	2	4	4	4	4
SEWERS	(\$1000/YH)	ō	ō	٥	0	٥	0	0	o
TOTAL	(\$1000/YR)	0	42	42	145	253	253	253	253
PRESENT VALUE		_		205	22.0	1202			
NING OF PERI	IDD (21000)	0	173	385	819	1782	1782	1782	0
PRESENT WURT	TH (\$1000)	0	141	224	339	527	268	136	0

NET C-+M- = 1637.76

TABLE 111 : TOTAL PRESENT WORTH

C AP IT A	1 110001	15613
O.+M.	(\$1000)	1637
LAND	(\$1000)	20
	-	
TOTAL	(\$1000)	17270

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1490	2000	2010	2020
ANNUAL CAPITAL								
TREATMENT PLANT		440	440	440	440	440	440	440
PLANT EXPANSION				887	887	087	887	887
SLUDGE HANDLING		16	16	16	16	16	16	16
BASIN		495	495	495	495	495	495	495
PIPES		14	14	14	14	14	14	14
TOTAL O.+M.	0	42	42	145	253	253	253	253
TOTAL ANNUAL	Ú	1009	1639	2000	2108	2109	2108	2108

MOTE 1 : ARMUAL COSTS OO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTECHESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

PLAN A . CU-2

	=							
	1972	1975	1980	1985	1990	2000	2010	2020
STORMMATER VOLUME (MG)								
1 YR STORM RUNDEF	61	61	61	61	62	62	62	62
ANNUAL RUNOFF	1147	1147	1147	1183	1220	1220	1220	1220
SLUDGE QUANTITIES (DT/YR)								
SEUIMENT-BASIN	814	614	814	840	1854	1854	1854	1854
TREATMENT PLANT	0	0	0	0	٥	0	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PIPE SLUDGE TO MUNICIPAL PLANT

STORAGE BASIN : CONCRETE

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESI DUAL
						~				
TREATMENT PLANT	6248		7000					7000		4997
PLANT EXPANSION	5808				14000					0
SLUDGE HANDLING	361		. 405					405		289
BAS (N	8366		10250							1025
PIPES	163		200							20
R ES IDUAL	245								TOTAL	4332
NET CAPITAL	20701									

TABLE 11 : PRESENT WORTH - 0.+M. COSTS

	1972	1975	1980	1985	1990	2000	2010	2020
								
PLANT (\$1000/YR)	0	71	71	264	469	469	469	469
SLUDGE (\$1000/YR)	0	4	4	4	9	9	9	9
SEWERS (\$1000/YR)	o	0	Q	0	•	0	0	o
TOTAL (\$1000/YR)		76	76	269	479	479	479	479
PRESENT VALUE AT BEGIN-								
NING OF PERIOD (\$1000)	0	312	769	1536	3371	3371	3371	0
PRESENT WORTH (\$1000)	٥	254	412	637	997	507	257	0

MET 0.+M. = 3067.04

TABLE III : TUTAL PRESENT WERTH

CAPITAL	. (\$1000)	20701
D.+M.	(\$1000)	3067
LAND	1 \$10001	25
	-	
TOTAL	(\$1000)	23793

TABLE IV : ANNUAL COSTS [\$1000/YR]

		1972	. 1975	1980	1985	1990	2000	2010	2020
									
ANNUAL CAPIT	TAL								
TREATM	ENT PLANT		540	540	540	540	540	540	540
PLANT (EXPANS LUN				1040	1060	1080	1080	1080
SLUOGE	HANDLING		31	31	31	31	31	31	31
BAS IN			742	742	742	742	742	742	742
PIPES			14	14	14	14	14	14	14
TOTAL O.+M.		0	76	76	269	479	479	479	479
	-								
TOTAL ANNUAL	L.	0	1404	1404	2678	2809	2889	2089	2889

NOTE 1 : ANNUAL CUSTS DO NOT INCLUDE PRESENT OUTSTANDING BUNDED INDESTEUNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

PLAN A . CU-3

	1972	1975	1960	1965	1996	2000	2010	2020
								
STORMMATER VOLUME (MG)								
1 YR STORM RUNOFF	43	43	43	44	45	45	45	45
ANNUAL RUNOFF	742	742	742	788	835	835	835	835
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT-BASIN	526	526	526	559	1269	1269	1269	1269
TREATMENT PLANT	0	0	0	0	o	0	0	0

TREATMENT SCHEME : STURAGE PLUS TREATMENT

SLUDGE HANDLING : PIPE SLUDGE TO MUNICIPAL PLANT

STORAGE BASIN : CONCRETE

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRE SENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
					~					
TREATMENT PLANT	5623		6300					6300		4498
PLANT EXPANSION	5269				12700					0
SLUDGE HANDLING	248		278		•			278		198
BAS IN	6774		8300							830
PIPES	163		200							20
RESIDUAL	215								TOTAL	5546
NET CAPITAL	17863									

TABLE II : PRESENT WORTH - U.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	. (\$1000/YR)	0	46	. 46 .	176	321	321	321	321
SLUDGE	(\$1000/YR)	0	2	2	2	6	6	6	6
SEWERS	(\$1000/YR)	0	0	0	0	o	0	0	0
TOTAL	(\$100U/YR)	0	49	49	180	328	328	328	328
PRESENT VALUE	JE AT BEGIN- IOD (\$1000)	0	203	470	1043	2309	2309	2309	0
PRESENT WOR	TH (\$1000)	o	166	274	432	663	347	176	0

NET 0.+M. = 2079-87

TABLE III : TOTAL PRESENT WORTH

CAPITAL	(\$1000)	17863
G.+H.	(\$1000)	2079
LAND	(\$1000)	20
	•	

TOTAL (\$1000) 19963

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
TREATMENT PLANT		486	486	486	466	486	486	486
PLANT EXPANSION				980	980	980	980	980
SLUDGE HANDLING		21	21	21	21	21	21	21
BASIN		600	600	600	600	600	600	600
PIPES		14	14	14	14	14	14	14
TOTAL O.+M.	0	49	49	180	328	328	328	328
TOTAL AUGUST		117			24.27	27.12	2422	3433
TOTAL ANNUAL	U	117/	1172	2283	2432	2432	2432	2432

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BUNDED INDEBTEUNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

	1972	1975	1980	1985	1990	2000	2010	2020
							,	
STORMHATER VOLUME (MG)								
1 YR STURM RUNUFF	30	31	32	32	33	34	35	35
ANNUAL RUNDEF	424	462	500	\$13	527	575	642	642
SLUGGE QUANTITIES (DT/YR)								
SEDIMENT .BAS IN	301	328	354	364	801	874	975	975
TREATMENT PLANT	0	G	0	٥	0	0	0	0

TREATMENT SCHENE : STORAGE PLUS TREATMENT

SLUGGE HANDLING : PIPE SLUGGE TO MUNICIPAL PLANT

STORAGE BASIN : CONCRETE

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RES IDUAL
TREATMENT PLANT	6962		7800					7800		5569
PLANT EXPANSIUN	3236				7866	•				0
SLUDGE HANDLING	191		214					214		152
BASIN	5427		6650							465
PIPES	11018		13500							1350
RESIDUAL	300								TOTAL	7736
NET CAPITAL	26535									

TABLE II : PRESENT WORTH - C.+M. COSTS

	1972	1975	1980	1985	1990	2000	2010	2020
PLANT (\$1000/YR)	٥	28	31	114	202	221	247	247
SLUDGE (\$1000/YR)	0	1	1	1	4	4	4	4
SEWERS (\$1000/YR)	0	67	67	67	67	67	67	67
TOTAL (\$1000/YR)	0	97	100	184	274	293	319	319
PRESENT VALUE AT BEGIN- NING OF PERIOD (\$1000)	0	406	582	939	1993	2151	2244	0
PRESENT WORTH (\$1000)	0	331	339	369	589	323	171	0

NET 0.+#. = 2145.44

TABLE III : TOTAL PRESENT WORTH

TOTAL	(\$1000)	28731
LAND	(\$1000)	50
G.+M.	(\$1000)	2145
CAPITAL	(\$ 1000)	26535

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1480	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
TREATMENT PLANT		602	602	602	402	402	602	602
PLANT EXPANSION				602	602	402	602	602
SLUGGE HANCLING		16	16	14	16	14	16	16
BASIN		481	461	481	481	481	461	481
PIPES		977	917	977	977	977	977	977
TOTAL O.+M.	U	97	100	144	274	293	319	319
FOT AL ANNUAL	0	2175	2177	2865	2954	2972	2999	2999

NOTE 1 : ANNUAL CUSTS DU NOT INCLUDE PRESENT GUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AM INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

STORINATER TREATHENT PLANT

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A , CU-48-C-D

	1972	1975	1930	1935	1990	2000	2010	2020
								
STORMWATER VOLUME (MG) 1 YR STORM RUNOFF ANNUAL RUNOFF	230 3240	237 3540	245 3840	247 3945	249 4050	256 4400	269 4940	269 4940
SLUDGE QUANTITIES (DT/YR) SEDIMENT.BASIN TREATMENT PLANT	4730 1976	5168 2159	5606 2342	5759 2406	5913 2470	6424 2684	7212 3013	7212 3013

TREATMENT SCHEME : STORAGE PLUS TREATMENT AT MUNICIPAL PLANT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

NET 0.+14. =

9558.43

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
SLUDGE HANDLING BASIN PIPES	1934 395 931			3040 680 1600	-				3040	2605 135 319
RESIDUAL	118								TOTAL	3061
NET CAPITAL	3143									

TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	5000	2010	2020
PLANT	(\$1000/YR)	0	n	760	929	1105	1201	1348	1348
SLUDGE	(\$1000/YR)	0	0	151	156	160	174	195	195
SEWERS	(\$1000/YR)	3	0	7	7	7	7	7	7
TOTAL	(\$1000/YR)	0	0	920	1093	1273	1383	1551	1551
PRESENT VAL	UE AT BEGIN-							•	
NING OF PER		0	0	4127	4852	9330	10307	10900	0
PRESENT WOR	TH (\$1000)	0	0	2402	2013	2760	1550	832	0

TABLE 111 : TOTAL PRESENT WORTH

CAPITAL O.+II. LAND	(\$1300) (\$1000) (\$1000)	3143 9558 1800
TOTAL	(\$1000)	14501

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1930	1935	1990	2000	2010	2020
ANNUAL CAPITAL	~~~~							
SLUDGE HANDLING BASIN PIPES			234 47 115	234 49 115	234 49 115	234 49 115	234 49 115	23 4 49 115
TOTAL O.+M.	9	0	าลว์	1073	1273	1383	1551	1551
TOTAL ANNUAL	0	0	1317	14)2	1673	1782	1)51	1751

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTLOWESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

AN	•	CU-5

	1972	1975	1980	1985	1990	2000	2010	2020
STORMMATER VOLUME (MG) 1 YR STORM RUNOFF ANNUAL RUNOFF	141 2044	144 2175	147 2307	148 2373	150 2439	154 2637	162 2967	162 2967
SLUDGE QUANTITIES (DT/YR) SEDIMENT.BASIN TREATMENT PLANT	1 451 0	1544 0	1637 0	1684 0	3707 0	4 008 0	4509 0	4 509 0

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PIPE SLUDGE TO MUNICIPAL PLANT

STORAGE BASIN : CONCRETE

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
TREATMENT PLANT PLANT EXPANSION SLUDGE HANDLING BASIN PIPES	8747 7468 892 17303		9800 1000 21200 200		18000			9800 1000		6997 0 713 2120 20
RESIDUAL	382 34192								TOTAL	9851

TABLE II : PRESENT WORTH - 0.+M. COSTS

	1972	1975	1980	1985	1990	50.00	2010	2020
PLANT (\$1000/YR) SLUDGE (\$1000/YR) SEWERS (\$1000/YR)	0	134 7 0	143 8 0	5 3 0 0	939 18 0	1015 20 0	1142 22 0	1142 22 0
TOTAL (\$1000/YR)		143	152	539	958	1036	1165	1165
PRESENT VALUE AT BEGIN- NING OF PERIOD (\$1000)	0	606	1418	3071	7005	7733	8188	0
PRESENT WORTH (\$1000)	0	494	825	1274	2072	1163	625	0
NET 0.+M. = 6455.95	;							

TABLE III : TOTAL PRESENT WORTH

CAPITAL O.+M. LAND	(\$1000) (\$1000) (\$1000)	34192 6455 346
	-	
TOTAL	(\$1000)	40994

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	5050
ANNUAL CAPITAL TREATMENT PLANT		756	756	756	756	756	756	756
PLANT EXPANSION		1,50	1,50	1389	1369	1389	1389	1389
SLUDGE HANDLING		77	77	77	77	77	77	77
BASIN		1534	1534	1534	1534	1534	1534	1534
PIPES		14	14	14	14	14	14	14
TOTAL O.+M.	0	143	152	539	958	1036	1165	1165
TOTAL ANNUAL		2526	2535	4312	4731	4509	4938	4938

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDHESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VULUME (MG)								
I YR STORM RUNDFF	38	39	41	42	44	47	49	49
ANNUAL PUNGFF	526	547	568	600	633	677	790	790
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT.BASIN	767	798	829	876	924	988	1153	1153
TREATMENT PLANT	320	333	346	366	386	412	481	461

TREATMENT SCHEME : STURAGE PLUS TREATMENT AT MUNICIPAL PLANT

SLUDGE HANCLING : PIPE SLUDGE TO MUNICIPAL PLANT

STORAGE BASIN . CONCRETE

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	290 0	2010	2020	RESIDUAL
										
SLUDGE HANDLING BASIN PIPES	283 5470 954			446 9400 1640					446	382 1879 327
RESIDUAL	100								TOTAL	2590
NET CAPITAL	8044									

TABLE II : PRESENT WORTH - O.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
									
PLANT	(\$1000/YR)	Ü	C	132	162	194	208	243	243
SLUDGE	1\$1 UOU/YK)	٥	0	5	6	6	7	8	8
SEWERS	(\$1000/YR)	0	0	8	8	8	8	8	8
TOTAL	(\$1000/YR)	0	0	146	176	209	223	259	259
PRESENT VAL	LUE AT BEGIN-								
NING OF PER	RI 00 (\$1000)	o	o	662	792	1522	1697	1823	0
PRESENT WOR	RTH (\$1000)	0	0	385	328	450	255	139	o
NET 0.+H. =	1559.43	ı							

TABLE III : TOTAL PRESENT WORTH

CAPITAL D.+H. LANG	(\$1000) (\$1000)	6608 1559 105
TOTAL	(\$1000)	8273

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
SLUDGE HANDLING			34	34	34	34	34	34
BASIN			680	680	680	680	680	680
PIPES			118	118	118	118	116	118
TOTAL C.+H.	0	0	146	176	209	223	259	259
TOTAL ANNUAL			980	1010	1043	1057	1093	1093

NOTE 1: ANNUAL CUSTS DO NOT INCLUDE PRESENT GUTSTANDING BUNDED INDEBTEDNESS NOTE 2: AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CURPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . LU-7 18

	1972	1575	1 580	1985	1990	2000	2010	2020
STURMMATER VOLUME (MG)								
I YN STORM RUNUFF	0	7	15	19	23	30	37	46
ANNUAL RUNOFF	0	111	223	278	334	446	577	600
SEUDGE QUANTITIES (DI/YR)								
SEULKENT BASIN	0	162	325	406	487	651	842	876
TREATMENT PLANT	0	0	136	169	203	272	351	366

TREATMENT SCHEME : STURAGE PLUS TREATMENT AT MUNICIPAL PLANT

SLUDGE HANGLING & PERSUDIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RE SI DUAL
SLUDGE HANDLING	33				80					0
BASIN	236				570					171
PIPES	1452				3500					1050
RES TOUAL	47								TOTAL	1221
NET CAPITAL	1674									

TABLE II : PRESENT WORTH - O.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	0	0	0	91	91	121	157	163
SLUDGE	(\$1000/YR)	0	U	0	13	13	17	22	23
SEWERS	(\$1000/1K)	0	o	0	17	17	17	17	17
TOTAL	(\$1000/YK)	0			121	121	156	197	205
PRESENT VAL	UE AT BEGIN-								
NING UF FER	100 (\$1000)	0	0	0	499	979	1245	1414	0
PRESENT NOR	TH (\$1000)	0	0	o	207	289	187	108	0

792.403 NET 0.+M. =

TABLE III : TOTAL PRESENT BORTH

CAPITAL	(\$1000)	1674
O.+M.	(\$1000)	792
LAND	(\$1000)	288
TCTAL	4410001	2754

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
SLUDGE HANDLING				6	•	6	6	6
BASIN				41	41	41	41	41
PIPES				253	253	253	253	253
TOTAL C.+M.	0	0	0	121	121	156	197	205
TOTAL ANNUAL				422	422	457	498	505

NOTE 1 : ANNUAL COSTS D) NOT INCLUDE PRESENT OCTSTANDING BONDED INDERTEURESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CURPS OF ENGINEERS - SURVEY SCEPE STUDY

PLAN A . CU-8

	1972	1975	1960	1985	1990	2000	2010	2020

STORMBATER VULUME (MG)								
1 YR STURM RUNOFF	0	42	84	86	89	93	98	98
ANNUAL RUNOFF	0	577	1155	1199	1243	1246	1386	1386
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT-BASIN	0	843	1686	1750	1814	1892	2023	2023
TREATMENT PLANT	ō	352	704	731	756	790	845	845

TREATMENT SCHEME : STORAGE PLUS TREATMENT AT MUNICIPAL PLANT

SLUDGE HANCLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RE SIDUAL
SLUDGE HANDLING	117			185					185	158
BAS IN	477			820						163
PIPES	174			300						59
RES LOUAL	14								TOTAL	382
MET CAPITAL	754									

TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1575	1980	1985	1990	2000	2010	2020
									
PLANT	(\$1000/YR)	0	0	228	282	339	353	378	378
SLUDGE	(\$1000/YR)	Q	0	45	47	49	51	54	54
SEWERS	(\$1000/YR)	0	0	1	1	1	1	1	i
TOTAL	(\$1000/YR)	0	0	275	331	389	406	434	434
PRESENT VALUE	E AT BEGIN-							•	
NING OF PERI		0	0	1244	1478	2797	2954	3053	0
PRESENT WORTE	H (\$1000)	0	0	724	613	827	444	233	o

NET 0.+M. = 2842-94

TABLE III : TOTAL PRESENT WORTH

CAPITAL	(\$1000)	754
O.+M.	1\$10001	2842
LAND	(\$10001	591
TOTAL	(\$1000)	4188

TABLE IV & ANNUAL COSTS 441000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
SLUDGE HANDLING			14	14	14	14	14	14
BASIN			59	59	59	59	59	59
PIPES			21	21	21	21	21	21
TOTAL G.+M.	0	0	215	331	389	406	434	434
TOTAL ANNUAL	0	0	371	426	485	501	530	530

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDENTELNESS NOTE 2 : AN INTEREST KATE OF 7 PERCENT MAS USED FOR ALL CALCULATIONS

CULPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . CU-9

	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUME (MG)								
1 YR STORM RUNOFF	0	0	0	0	0	4	6	7
ANNUAL RUNUFF	0	G	Q	0	٥	74	89	112
SAUDGE QUANTITIES (DT/YR)								
SEDIMENT.BASIN	G	٥	0	a	0	108	129	163
TREATMENT PLANT	a	0	0	0	0	45	54	68

TREATMENT SCHEME : STORAGE PLUS TREATMENT AT MUNICIPAL PLANT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL CR RECYCLE

STORAGE BASIN : EARTH

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RES I DUAL
SLUDGE HANDLING	2						15			6
BASIN	33						220			132
PIPES	300						2000			1200
RESIDUAL	51								TOTAL	1336
NET CAPITAL	284									

TABLE II : PRESENT WORTH - C.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	0	o	0	0	0	20	24	30
SLUDGE	(\$1000/YR)	6	٥	0	0	0	2	3	4
SEWERS	(\$1000/YR)	0	Q	0	0	o	9	9	9
TOTAL	(\$1000/YR)	0	0	0	0	0	33	37	•
PRESENT VAL	UE AT BEGIN-							•	
NING OF PER	100 (\$1000)	0	0	0	0	0	249	290	
PRESENT WOR	TH (\$1000)	0	o	0	o	0	37	22	0

59.6922 NET Q.+#. =

TABLE III : TOTAL PRESENT WORTH

284	4 \$ 1000 1	CAPITAL
59	(\$1000)	G.+M.
24	(\$1000)	LAND
367	£\$10001	TOTAL

TABLE IV : ANNUAL CUSTS (\$1000/YR)

	1972	1975	1980	1965	1990	2000	2010	2020
ARNUAL CAPITAL								
SLUDGE HANDLING BASIN PIPES						1 15 144	1 15 144	1 15 144
TOTAL O.+M.	0	U	0	0	0	33	37	45
TOTAL ANNUAL		Ū	Ü	0	0	195	199	206

NOTE 1 & ANNUAL COSTS DO NOT INCLUDE PRESENT DUTSTANDING HONDED INDEBTEUNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

COMPS OF ENGINEERS - SURVEY SCUPE STUDY

PLAN A . CU-10

	1972	1975	1980	1985	1990	2000	2010	2020
STORMMATER VOLUME (MG)								
1 YR STORM RUNCFF	0	0	0	2	5	6	8	11
ANNUAL RUNDEF	0	U	Q	40	80	97	121	162
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT-BASIN	0	٥	0	0	116	141	176	236
THEATMENT PLANT	0	Q	0	0	48	59	73	98

TREATMENT SCHEME & STORAGE PLUS TREATMENT AT MUNICIPAL PLANT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL ON RECYCLE

STORAGE BASIN : EARTH

TABLE 1 : PRESENT MORTH - CAPITAL COSTS - 141000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
									~	
SLUDGE HANDLING	63					216				30
BASIN	79					270				107
PIPES	86					300				119
RESIDUAL	10								TOTAL	258
MET CAPITAL	222									

TABLE II : PRESENT WORTH - Q.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	٥	G	a	٥	21	26	33	44
SLUDGE	(\$1000/YR)	٥	0	0	0	3	3	4	6
SEWERS	(\$1000/YK)	Q	0	0	٥	1	7	1	1
JATOT	(\$1000/YR)		0	0	a	26	31	39	52
PRESENT VALUE		o	Q	0	Q	204	249	321	0
PRESENT WORTH	(\$1000)	0	a	0	0	60	37	24	a

NET 0.+M. = 122.691

TABLE III : TUTAL PRESENT WURTH

CAPITAL	(\$100C)	222
0.+M.	(\$1000)	152
LAND	(\$1000)	34
TCTAL	(\$1000)	379

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1485	1990	2000	2010	2020
ANNUAL CAPITAL								
SLUDJE HANDLING					16	16	16	16
BASIN					19	19	19	19
PIPES					21	21	21	21
TOTAL O.+M.	0	u	0	0	26	31	39	52
TOTAL ANNUAL					84	89	71	110

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRÉSENT DUTSTANDING BONDED INCEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FUR ALL CALCULATIONS

	1972	1975	1980	1985	1990	2000	2010	2020
								
STORMHATER VOLUME (MG)								
1 YR STORM RUNOFF	0	12	24	24	24	26	27	27
ANNUAL RUNUFF	0	168	337	341	346	370	432	432
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT. BASIN	0	246	492	498	505	540	630	630
TREATMENT PLANT	0	0	205	208	211	225	263	263

TREATMENT SCHEME : STORAGE PLUS TREATMENT AT MUNICIPAL PLANT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANCFILL OR RECYCLE

STORAGE BASIN . EARTH

TABLE 1 : PRESENT WGRTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
SLUDGE HANDLING BASIN PIPES	36 261 174			58 450 300					50	49 89 59
RESIDUAL	7								TOTAL	199
NET CAPITAL	465									

TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	5010	2020
									
PLANT	(\$1000/YK)		0	66	. 80	94	101	117 ~	117
SLUDGE	(\$1000/YR)	Ü	0	13	13	13	14	17	17
SEWERS	(\$1000/YK)	0	0	1	1	1	1	i	ì
TOTAL	(\$1000/YR)	0	<u>o</u>	81	95	109	117	136	136
PRESENT VA	LUE AT BEGIN-							•	
	RIOD (\$1000)	0	0	362	420	796	890	958	0
PRESENT WO	RTH (\$1000)	0	0	211	174	235	133	73	0

NET 0.+H. -828.405

TABLE III : TOTAL PRESENT WORTH

CAPITAL	(\$1000) (\$1660)	465 828
LAND	(\$1000)	184

TOTAL (\$1000) 1478

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
SLUDGE HANDLING			4	4	4	4	•	4
BASIN			32	32	32	32	32	32
PIPES			21	21	21	21	21	21
TOTAL C.+P.	0	0	81	95	109	117	136	136
TOTAL ANNUAL			140	159	168	175	195	195

NOTE 1: ANNUAL CUSTS DI) NOT INCLUDE PRESENT OUTSTANDING BURDED INDEBTEDNESS NOTE 2: AN INTEREST RATE OF 7 PERCENT HAS USED FOR ALL CALCULATIONS

CURPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . CU-13

	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUME (MG)								
1 YR STORM RUNUFF	0	6	13	16	20	27	34	40
ANNUAL RUNGEF	0	99	198	247	297	396	494	594
SLUDGE QUANTITIES (DT/YK)								
SEDIMENT-BASIN	٥	247	495	618	742	990	1235	1485
TREATMENT PLANT	0	0	٥	0	0	0	٥	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

. _ STORAGE BASIN_ .. . EARTH ...

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (81000)

	PRESENT MORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
					 -					
TREATMENT PLANT	1991				4800					0
BAS IN	128				310					93
PIPES	62				200					60
RESIDUAL	5								TOTAL	153
NET CAPITAL	2197									

TABLE II : PRESENT WORTH - O.+M. COSTS

		1972	1975	1980	1985	1990	5000	2010	2020
	******				74	74	99	123	148
PLANT	(\$1000/YR)	0	0	0	18				
SLUUGE	(\$1000/YR)	U	0	0		18	24	30	37
SEWERS	(\$1000/YR)	0	0	0	0	0	o	0	0
TOTAL	(\$1000/YR)	0	0	0	93	93	124	155	186
PRESENT VA	LUE AT BEGIN-							•	
NING OF PE	RIOD (\$1000)	0	0	0	384	767	983	1201	0
PRESENT WO	(C0012) HTR	0	0	o	159	227	147	91	0
NET D.+M.	- 626.335								

TABLE III : TOTAL PRESENT WORTH

CAPITAL		2197
O.+M. Land	(\$1000)	626 45
	•	
TOTAL	(\$1000)	2868

TABLE IV : ANNUAL CUSTS (\$1000/YR)

	1912	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
TREATMENT PLANT				370	370	370	370	370
BASIN				22	22	22	22	22
PIPES				14	14	14	14	14
TOTAL G.+M.	0	O	o	93	93	124	155	186
TOTAL ANNUAL				561	501	332	562	594

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT DUISTANDING BUNDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A , CU-14

\								
	1972	1975	1930	1985	1990	2000	2010	2050
STORHWATER VOLUME (MG)								
1 YR STORM RUNOFF	0	15	31	31	32	77	35	35
ANNUAL RUNOFF	0	515	425	435	4 จี 6	466	รอัง	35 500
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT.BASIN	0	310	620 259	635	651	68n	730	730
TREATMENT PLANT	0	- 0	259	635 265	651 272	680 284	730 305	385

TREATMENT SCHEME : STORAGE PLUS TREATMENT AT MUNICIPAL PLANT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
SLUDGE HANDLING BASIN PIPES	203 601				3 490 1450					0 147 435
RES IDUAL	22								TOTAL	582
NET CAPITAL	783									

TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1930	1985	1990	2000	2010	2020
PLANT SLUDGE SEWERS	(\$1000/YR) (\$1000/YR) (\$1000/YR)	0 0	0 0	0	121 17 7	121 17 7	127 18	136 19	136 19
TOTAL	(\$1000/YR)	0	0	 0	146	146	152	163	163
PRESENT VALUE NING OF PERIOR		0	0	o	601	1051	1111	1148	
PRESENT WORTH	(\$1000)	0	0	0	249	311	167	87	0

NET 0.+M. = 815.497

TABLE III : TOTAL PRESENT WORTH

CAPITAI O.+M. LAND	(\$1000) (\$1000) (\$1000)	783 815 107
	-	
TOTAL	(\$1000)	1706

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1930	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
SLUDGE HANDLING				0	9	0	0	0
BASIN PIPES				35 104	35 174	35 104	35	35
TOTAL O.+M.	0	0	0	146	346	152	104 163	104 163
TOTAL ANNUAL	0	0	0	237	237	293	304	304

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . CU-15

	1972	1975	1980	1985	1990	2000	2010	2020
STORMHATER VOLUME (MG)	_	_	_	_	_	_		
1 YR STORM RUMOFF	•	•	0	0	1	3	. 3	3
ANNUAL RUNOFF	•	•	0	14	28	42	56	56
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT. BASIN	٥		0	0	40	- 61	81	81 -
TREATMENT PLANT	Ó	•	Ö	0	17	25	34	34

TREATMENT SCHEME : STORAGE PLUS TREATMENT AT HUNICIPAL PLANT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANOFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000).

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
SLUDGE HANDLING BAS IN PIPES	2 47 88					8 160 300				1 63 119
RES IDUAL	7								TOTAL	185
NET CAPITAL	131									

TABLE II . PRESENT NORTH - D. M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	0	•	0	0	7	11	15	15
SLUDGE	(\$1000/YR)	0	•	0	Ō	i	- i	2	2
SEWERS	(\$1000/YR)	•	•	0	Ō	ĭ	ī	ī	ī
TOTAL	(\$1000/YR)	0	•	0	0	10	14	19	19
PRESENT VA	LUE AT BEGIN-								•
NING OF PER	RIOD (\$1000)	o	•	0	0	87	110	133	0
PRESENT WO	RTH (\$1000)	•	•	0	0	25	17	10	0

NET Q.+M. = 53.8021

TABLE III : TOTAL PRESENT WORTH

CAPITAL	1 \$10003	131
0.+M.	[\$1000]	53
LAND	(\$1000)	12
	•	
TOTAL	(\$1000)	197

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1900	1985	1990	2000	5010	2020
ANNUAL CAPITAL								
SLUDGE HANDLING					0	0	0	0
BASIN					11	11	11	11
PIPES					21	21	21	21 .
TOTAL O.+M.	. •	•	•	٥	10	14	19	19
TOTAL ANNUAL		•				48	52	52

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BUNDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

	1972	1975	1980	1985	1990	2000	2010	2020
STORMHATER VOLUME (MG)	0	2	•	•	7	10	13	13
1 YR STORM RUNOFF ANNUAL RUNOFF	Ď	39	78	98	118	157	196	196
SLUDGE QUANTITIES (DT/YR)	_					229	***	286
SECTMENT-BASIN	0	56	113	143	172		284	119
TREATMENT PLANT	0	0	47	59	71	95	119	TTA

TREATMENT SCHENE : STORAGE PLUS TREATMENT AT MUNICIPAL PLANT

SLUGGE HANDLING : PERIODIC REMOVAL TO LANOFILL OR RECYCLE

STORAGE BASIN I EARTH

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000):

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RES TOUAL
SLUDGE HANDLING BASIN PIPES	10 124 124				26 300 300					0 90 90
RESIDUAL	•								TOTAL	180
NET CAPITAL	252									

TABLE II : PRESENT MORTH - D.+N. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
						 ·			
PLANT	(\$1000/YR)	ø	0	0	32	32	42	53	53
SL UOGE	(\$1000/YR)	0.	0	0	•	4	6	7	7
SEWERS	(\$1000/YR)	0	•	0	1	1.	1	1.	1.
TOTAL	(\$1000/YR)	0	0	0	38	36	50	62	62
PRESENT VALUE				_					_
NING OF PERIO	D (\$1000)	0	•	0	157	312	397	440	•
PRESENT WORTH	(\$1000)	0	0	0	45	92	59	33	•

NET 0.+M. = 251.225

TABLE III : TOTAL PRESENT WORTH

CAPITAL O-+M- LAND	(\$1000) (\$1000)	252 251 42
TOTAL	(110001	545

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1960	1785	1990	2000	2010	2020
ANNUAL CAPSTAL								
SLUDGE HANDLING				2	2	2	2	2
BASIN				21	21	57	21	21
PIPES	_		•	21	21	21	21	21
TOTAL Q.+M.	•		0	38	38	50	62	62
TOTAL ANNUAL				a3		96	108	108

WOTE 1: ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2: AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

	1972	1975	1980	1985	1990	2000	2010	2020
STORMHATER VOLUME (MG)								
1 YR STORM RUNOFF	٥		3	4	5	7	•	10
ANNUAL RUNOFF	Ŏ	30	60	74	89	102	138	149
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT-BASIN	0	43	87	108	129	148	201	217
TREATMENT PLANT	ō	•	36	45	54	62	84	90

TREATMENT SCHEME : STORAGE PLUS TREATMENT AT MUNICIPAL PLANT

SLUDGE HANDLING : PERIODIC REMOVAL TO LAMBFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE I : PRESENT WORTH - CAPITAL COSTS - 181000):

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	5010	2020	RESIDUAL
SLUDGE HANDLING					20					0
BASIN	107				260					78
PIPES	1269				3060					918
RESIDUAL	34								TOTAL	996
NET CAPITAL	1347									

TABLE II : PRESENT WORTH - G.+M. COSTS

_		1972	1975	1980	1985	1990	2000	2010	2020
•									
PLANT	(\$1000/YR)	0	•	0	24	24	27	37	40
SEUDGE	(\$1000/YR)	0	•	0	3	3	4	5	5
SEWERS	(\$1000/YR)	0	•	Ó	15	15	15	15	15
TOTAL	(\$1000/YR)	0	•		43	43	47	58	61
PRE SENT VAL	UE AT BEGIN-							•	•
NING OF PER	100 (\$1000):	0	•	0	176	317	370	422	0
PRESENT WOR	(\$1000)	•	•	0	73	93	55	32	0
NET O.+M. =	255.203	ŀ							

TABLE 111 : TOTAL PRESENT WORTH

CAPIT AL O.+M. Land	(\$1000) (\$1000) (\$1000)	1347 255 31
TOTAL	(\$1000)	1637

TABLE IV : ANNUAL COSTS (\$1000/YR)

AMMUML CAPITAL	1972	1975	1980	1965	1990	2000	2010	2020
SLUDGE HANGLING BASIN PIPES				1 . 18 221	1 . 10 221	1 18 221	1 10 221	1. 18 221
TOTAL O.+H.	•	•	0	43	43	47	58	61.
TOTAL ANNUAL				265	743	289	300	303

NOTE 1: ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2: AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

PLAN A . CU-19 20 32

	1972	1975	1980	1985	1990	2000	2010	2020
STORMHATER VOLUME (NG)								
1 YR STORM RUNDFF	0	6	13	13	14	49	41	71
ANNUAL RUNOFF	0	94	100	192	197	717	902	1020
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT.BASIN	0	235	470	481	492	1792	2255	2570
TREATMENT PLANT	0	•	0	0	0	0	0	0

TREATMENT SCHENE : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (81000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	5010	2020	RESIDUAL
										
TREATMENT PLANT	1286				3100					٥
PLANT EXPANSION	1331					4500				629
BAS IN	36				88					26
BAS IN	89					302				120
PIPES	207				500					150
PIPES	532					1800				719
RESIDUAL	63								TOTAL	1647
MET CAPITAL	3419									

TABLE II & PRESENT HORIN - Q.+M. COSTS

		1972	1975	1900	1985	1990	2000	2010	2020
PLANT	(\$1000/YR).		0.	٥	49	49	179	225	257
SLUDGE	(\$1000/YR)	ă	o í	ŏ	12				
		-		v		12	44	56	84
SEWERS	{ \$1000/YR}	0.	0	0	2	11	11	11 .	11
TOTAL	[\$1000/YR].	0	0	-	64	73	235	293	332
PRESENT VAL	UE AT BEGIN-								
NING OF PER		0	0	0	281	1083	1857	2198	. 0
PRESENT WORT	TH (\$1000)	ò	0	0	116	320	279	167	0

NET 0.+M. = 864.58

TABLE III : TOTAL PRESENT WORTH

CAPITAL O.+M. LAND	(\$1000) (\$1000) (\$1000)	3419 884 71
TOTAL	(\$1000)	4374

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1900	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
TREATMENT PLANT				239	239	239	239	239
PLANT EXPANSION				_	347	347	347	347
MI ZAB MI ZAB				•			•	6
PIPES				-4	21	21	ST	21 .
PIPES				. 36	34	36	36	.36
TOTAL O. +M.	٥	٥	0	64	130 73	130 235	130	130
	_ + :		. •	•	••	233	293	332
TOTAL AMMUAL		-	0	345	854	1017	1074	1114

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDESTEDNESS NOTE 2 : AM INTEREST RATE OF 7 PERCENT MAS USED FOR ALL CALCULATIONS

•	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUME (MG)								
1 YR STORM RUNDFF	0	0	0	3	6	7	q	10
ANNUAL RUNUFF	0	Ü	U	45	91	108	135	163
SLUDGE QUANTITIES (DT/YR)								
SEDIFENT.BASIN	Ü	0	U	0	132	157	197	237
TREATMENT PLANT	0	0	U	0	55	65	82	99

TREATMENT SCHEME : STORAGE PLUS TREATMENT AT MUNICIPAL PLANT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
SLUDGE HANDLING BASIN PIPES	6 79 118					22 270 400				3 107 159
RESIDUAL	10								TOTAL	271
NET CAPITAL	194									

TABLE 11 : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YK)	0	o	0	0	24	29	36	44
SLUDGE	(\$1000/YR)	0	0	Ü	G	4	5	6	8
SEWERS	(\$1000/YR)	٥	0	0	Ō	1	1	1	ĭ
TOTAL	(\$1000/YR)	<u>o</u>	0	0	0	31	37	45	54
PRESENT VAL	UE AT BEGIN-							•	
	(000 (\$1000)	0	0	0	0	240	291	353	0
PRESENT WOR	TH (\$1000)	0	0	0	0	71	43	27	o

142.116 NET 0.+M. =

TABLE III : TOTAL PRESENT WORTH

CAPITAL	1110001	194
O.+M.	(\$1000)	142
LAND	(\$1000)	33
	-	
TOTAL	(\$1000)	369

TABLE IV : ANNUAL CUSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ARNUAL CAPITAL								
SLUDGE HANDLING					1	1	1	1
BASIN					19	19	19	19
PIPES					28	28	28	28
TOTAL U.+M.	o	0	0	0	31	37	45	54
TOTAL ANNUAL		0		0	81	81	96	105

NOTE 1 : ANNUAL COSTS OU NOT INCLUDE PRESENT OUTSTANLING BONDEC INDEBTEONESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

	1972	1 975	1980	1985	1990	2000	5010	2020

STORMWATER VOLUME (MG)								
1 YR STORM RUNGFF	٥	•	0	2	4	4	5	7
ANNUAL RUNOFF	Ó	•	0	30	61	72	91	109
• *								
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT.BASIN	0	•	0	0	89	105	132	159
TREATMENT PLANT	0	•	0	0	37	43	55	66

TREATMENT SCHEME : STORAGE PLUS TREATMENT AT MUNICIPAL PLANT

SLUDGE MANOLING 2 PERIODIC REMOVAL TO LANOFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
SLUDGE HANDLING	4					15				2
BASIN	65	•				220				87
PIPES	110					400				159
RESIDUAL	•								TOTAL	250
NET CARTES	170									

TABLE II : PRESENT WORTH - O.+M. COSTS

· ·	1972	1975	1980	1985	1990	2000	2010	2020
PLANT (\$1000/	YR) 0		•		16	19	24	29
			ž	7		**		47
SLUDGE (\$1000/		•	Ų	0.	~	2	•	•
SEWERS (\$1000/	YR): 0	•	0 .	0 .	1	1	1	1
TOTAL (\$1000/	YR)		0	. 0	21	24	30	. 36
PRESENT VALUE AT BEGIN	-							
MING OF PERIOD (\$1000)	• 0.	•	0	٥	160	192	233	0
PRESENT WORTH (\$1000)	. 0	•	•	٥	47	29	17	0

MET 0.+M. = 94.201

TABLE III : TOTAL PRESENT WORTH

CAPITAL D.+M. LAND	(\$1000) (\$1000) (\$1000)	178 94 22
TOTAL	4 4 3 4 4 4 4 4	204

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
WORUAL CAPITAL	 '							
SLUDGE HANDLING					1	1	1.	1
BASIN					15	15	15	15
PIPES					28	28	28	28
OT AL C.+M.	• • • • • •	•	•	0	51	24	30	34
OTAL ANNUAL	0	•		0	67	70	76	82

OTE 1 2 AMMUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS OTE 2 2 AM INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A , CU-23

	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUME (MG)								
1 YR STORM RUNOFF	0	1	2	2	2	5	7	7
ANNUAL RUNOFF	ā	51	55	55	55	81	108	119
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT.BASIN	a	40	80	80	80	118	157	173
TREATMENT PLANT	Q.	0	33	33	33	49	65	72

TREATMENT SCHEME : STORAGE PLUS TREATMENT AT MUNICIPAL PLANT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STURAGE BASIN : EARTH

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT HORTH	1972	1975	1980	1985	1990	2000	5010	2020	RESIDUAL
										
SLUDGE HANDLING	6				16					٥
BASIN	95				230					69
PIPES	942				2320					694
RES IDUAL	29								TOTAL	765
NET CAPITAL	1034									

TABLE II : PRESENT WORTH - Q.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
								 .	
PLANT	(\$1000/YR)	0	0	0	15	15	22	29	32
SLUDGE	(\$1000/YR)	0	0	0	2	2	3	4	4
SEWERS	(\$1000/YR)	0	0	0	11	11	11	11	11
TOTAL	1 \$1000/YR)	0	0	<u> </u>	28	28	36	45	48
PRESENT VALUE		0	0	0	118	230	288	330	0
PRESENT WORTH	(\$1000)	0		0	48	68	43	25	0

185.944 NET D.+N. =

TABLE III : TOTAL PRESENT WORTH

- (CAPITAL D.+M. LAND	(\$1000) (\$1000) (\$1000)	1934 185 25
•			
	1A TIT	(41000)	1 745

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
AMNUAL CAPITAL						•		
SLUDGE HANDLING				1	1.	1	1	1.
BASIN				16	16	16	16	16
PIPES				167	167	167	167	167
TOTAL O.+M.	0	0	0	28	28	36	45	48
TOTAL ANNUAL	0		0	214	214	222	231	234

MOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . CU-24

	1972	1975	1760	1985	1990	2000	2010	2020
STORMWATER VOLUME (NG)			10	12	15	20	25	25
1 YR STORM RUNOFF ANNUAL RUNOFF	0	74	149	186	223	297	372	372
SLUGGE QUANTITIES (OT/YR)			•••		110	433	743	543
SEDIMENT.BASIN	0	148	217	271 .	325		543	
TREATMENT PLANT	0		90	113	136	181	224	226

TREATMENT SCHEME : STORAGE PLUS TREATMENT AT MUNICIPAL PLANT

SLUDGE HANDLING : PERIODIC REMOVAL TO LAMOFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1905	1990	2000	2010	2020	RESIDUAL
SLUDGE HANDLING BASIN PIPES	20 174 124				50 420 300					0 126 90
RESIDUAL MET CARLTAI	311								TOTAL	216

TABLE II : PRESENT NORTH - O.+N. COSTS

	1972	1975	1900	1965	1990	2000	2010	2020	
PLANT [\$1000/YR]			ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ	60	60	44	101-		्ड का का जिल्लाक
SLUDGE (\$1000/YR) SEWERS (\$1000/YR)	0,	•	, 0,	ĭ	i,	'n	1	• • • • • • • • • • • • • • • • • • • •	
TOTAL (\$1000/YR)	. 0.	•	0	71	71	94	117	117	
PRESENT VALUE AT BEGIN- NING OF PERIOD (\$1000)	•	•	0	291.	581 .	744	827	0	
PRESENT WORTH (\$1000)	0.	•	0	121	171	112	63	•	
NET Q.+#. = 468.27	8								

468.278

TABLE III : TOTAL PRESENT WORTH

CAPITAL O.+M. LAND	(\$1000) (\$1000) (\$1000)	311 468 79
CARD	(\$1000)	
TOTAL	(\$1000)	858

TABLE IV : ANNUAL COSTS (\$1000/YR):

	1972	1975	1980	1985	1990	2000	2010	2020
MANUAL CAPITAL	 '	<u></u>						
SLUDGE HANDLING				3	3	3	3	3
BAS IN				30	30	30	30	30 .
PIPES TOTAL O.+M.	•	•		21 71	21 71	21 94	21 117	21 117
TOTAL GOVES							***	_ ***
TOTAL ANNUAL				127	127	150	173	173

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT DUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

PLAN A . CU-25 & 35

	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUME (MG)								
1 YR STORM RUNOFF	0	19	39	40	41	67	82	90
ANNUAL RUNDEF	Ō	260	520	542	564	982	1228	L327
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT.BASIN	0	650	1300	1355	1410	2455	3070	3317
TREATMENT PLANT	0	0	0	0	0	0	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STURAGE BASIN : EARTH

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000):

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
TREATMENT PLANT	1825				4400					0
PLANT EXPANSION	1286					4350				608
BASIN	116				280					84
BASIN	89					304				121
PIPES	248				600					180
PIPES	59					200				79
RESIDUAL	41								TOTAL	1074
NET CAPITAL	3584									

TABLE II : PRESENT WORTH - O.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	0	0	0	141	141	245	307	331
SLUDGE	(\$1000/YR).	0	0	0	35	35	61	76	82
SEWERS	(\$1000/YR)	0	0	Ō	2	3	3	3	3
			· ·	··					
TOTAL	(\$1000/YR).	0	0	0	179	180	310	387	418
PRESENT VAL	UE AT BEGIN-							•	
	100 (\$1000)	0	0	0	734	1724	2453	2832	0
PRESENT MOR	TH (\$1000):	0	0	0	305	510	368	216	•

1401.3 MET 0.+M. -

TABLE III : TOTAL PRESENT WORTH

CAPITAL	(\$1000)	3584
0.44.	(\$1000)	1401
L AND	(\$1000)	102
	•	
T OT AL	(\$1000)	5088

TABLE IV & ANNUAL COSTS (\$1000/YR).

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
TREATMENT PLANT				339	339	339	339	339
PLANT EXPANSION					335	335	335	335
BASIM				20	20	20	20	20
BAS IN					22	22	22	22
PIPES				43	43	43	43	43
PIPES					14	14	14	14
TOTAL O.+M.	0	0	0	179	180	310	387	418

TOTAL ANNUAL	0 .	0	0	582	955	1 084	1163	1194

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AM INTEREST RATE OF 7 PERCENT MAS USED FOR ALL CALCULATIONS

	1972	1975	1980	1985	1990	2000	2010	2020
								
STORMWATER VOLUME (MG)								
1 YR STURM RUNUFF	0	1	3	4	5	6		8
ANNUAL RUNOFF	0	27	54	67	81	91	153	134
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT .BASIN	0	67	135	168	202	227	307	335
TREATMENT PLANT	0	0	0	0	0	0	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
									-	
TREATMENT PLANT	995				2400					0
BASIN	58				140					42
PIPES	82				200					60
RESIDUAL	3								TOTAL	102
NET CAPITAL	1132									

TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
	(\$1000/YR)	0	0	0	20	20	22	30	33
PLANT		_	ý	ž	20	20	-:	30	
SLUDGE	(\$1000/YK)	Q.	0	0	,	•	•	7	
SEWERS	f\$1000/YRI	. 0	0	0	0 .	0 .	0	0	0
TOTAL	(\$1000/YR)	0	0	0	26	26	29	39	42
PRESENT VAL	UE AT BEGIN-							•	
NING OF PER	[OD (\$1000)	0	0	0	107	195	241	289	0
PRESENT WOR	TH (\$1000)	0	0	٥	44	57	36	22	0

AET 0.+#. = 161.134

TABLE 111 : TOTAL PRESENT WORTH

CAP IT AL	(\$1000)	1132
D.+M.	(\$1,000)	161
LAND	(\$1000)	10
	•	
TOTAL	1410001	1 204

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
TREATMENT PLANT				185	185	185	185	185
BAS IN				10	10	10	10	10
PIPES				14	14	14	14	14
TOTAL G.+M.	0	0	٥	26	26	29	39	42
TOTAL ANNUAL		0		236	236	239	244	252

NOTE 1 : ANNUAL COSTS DU NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . CU-27

	1972	1975	1980	1965	1990	2000	2010	2020
STORMWATER VOLUME (MG)								
1 YR STORM RUNOFF	٥	4	9	10	12	17	22	22
ANNUAL RUNOFF	Ö	43	126	158	190	252	316	316
SLUGGE QUANTITIES (DT/YR)								
SEDIMENT.BASIN	0	157	315	395	475	630	790	790
TREATMENT PLANT	Ŏ	0	0	C	0	0	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE 1 : PRESENT MORTH - CAPITAL COSTS - (\$1000):

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
TREATMENT PLANT BASIM PIPES	1535 95 1680				3700 230 4 0 50					0 69 1215
RES I DUAL	49								TOTAL	1284
NET CAPITAL	3261									

TABLE II : PRESENT WORTH - 0.+M. COSTS

		_1972	_ 1975	1980	1985	1990	ـ _ 2000	2010	2020	المدمد بالسايد
										
PL ANT	(\$1000/YR)	0	0	0	47	47	63	79	79	
SLUDGE	(\$1000/YR)	0	0	0	11	11	15	19	19	
SEWERS	(\$1000/YR)	O	0	0	20	20	20	20	20	
TOTAL	(\$1000/YR)	0	 0	0	79	79	98	110	110	
PRESENT VALUE		0	0	0	326	627	765	435	0	
PRESENT WORTH	((\$1000):	•	0	0	135	185	115	43	•	

499.999 NET 0.+M. =

TABLE III : TOTAL PRESENT WORTH

CAPITAL O.+M. LAND	(\$1000) (\$1000) (\$1000)	3261 499 24
	1720007	
TOTAL	1510001	1785

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
								
AMMUAL CAPITAL TREATMENT PLANT				285	285	285	285	285
BASIN				16	16	16	16	16
PIPES				293	293	293	293	293
TOTAL O. M.	0	0	0	79	79	98	118	116
			 ,				714	
TOTAL ANNUAL	•	0	U	675	675	694	174	- 714

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . CU-28

	1972	1975	1960	1985	1990	2000	2010	2020
STORMMATER VOLUME (MG) 1 YR STORM RUNOFF AMNUAL RUNOFF	0	0	0	2 36	72	5 86	7	8 121
SLUDGE QUANTITIES (DT/YR) SEDIMENT.BASIN TREATMENT PLANT	0	0	0	0	1 8 0 0	215 0	270 0	302

TREATMENT SCHEME : STORAGE PLUS TREATMENT

__SLUDGE HANDLING & PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000) .

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
										
TREATMENT PLANT	709					2400				335
BASIM	44					150				59
PIPES	532					1800				71.9
RES IDUAL	. 43 ,								TOTAL	1115
NET CARTTA	1243									

TABLE II : PRESENT WORTH - Q.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PL ANT	(\$1000/YR)	•	0	0.	0	18	21	27	30
SLUDGE	(\$1000/YR)	0	0	0	0	4	5	6	7
SEHERS	(\$1000/YR)	0	0	0	Ó				
TOTAL	(\$1000/YA)	0	0	0	0	31	35	42	44
PRESENT VALL									
NING OF PERI	QD (\$1000)	0	0	•	0	236	276	314	0
PRESENT WORT	H (\$1000)	0	0	0	0	69	41	24	•

NET 0.+H. = 135.544

TABLE III : TOTAL PRESENT WORTH

CAPITAL	L (\$1000)	1243
G.+M.	(\$1000)	135
LAND	(\$1000)	2
	-	
TOTAL	(\$1000)	1360

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1960	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
TREATHENT PLANT					185	185	105	185
BAS IN	•				10	10	10	10
PIPES	_	_	_	_	130	130	130	130
TOTAL O.+M.	0	0	0	. 0	31	35	42	46
TOTAL ANNUAL					357	342	349	373

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT MAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . CU-29631

	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUME (MG)								
1 YR STORM RUNOFF	0	0	0	0	0	21	27	34
ANNUAL RUNOFF	0	0	0	0	0	329	395	495
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT.BASIN	0	0	0	0	0	822	987	1237
TREATMENT PLANT	0	0	0	0	0	0	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
TREATMENT PLANT	676						4500			1930
BAS IN PIPES	43 330						290 2200			174 1320
RESIDUAL	132								TOTAL	3424
NET CAPITAL	918									

TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
				 '					
PLANT	(\$1000/YR)	٥	0	0	0	0	82	98	123
SLUDGE	(\$1000/YR)	. 0	٥	٥	G	0	20	24	30
SEWERS	(\$1000/YR)	0	0	٥	0	0	10	10	10
TOTAL	(\$1000/YR)	0	-	0	0	0	113	134	145
PRESENT VALUE	AT BEGIN-								
NING OF PERIOD		0	0	0	0	0	871	1053	o
PRESENT WORTH	(\$1000)	0	0	0	0	0	131	80	0

NET C.+M. = 211.64

TABLE III : TOTAL PRESENT WORTH

CAPITAL	[\$1000]	918
0.+M.	(\$1000)	211
LAND	[\$1000}	8
	•	
TOTAL	[\$1000]	1130

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL		`			 '			
TREATMENT PLANT						347	347	347
BASIN						20	20	20
PIPES TOTAL O.+M.	•	•	٥	٥	۵	159 113	159 134	159 165
I UI AL UI YA	v	•	٧,	U	·	113	134	107
TOTAL ANNUAL	0	0			0	641	662	693

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . CU-30

	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUME (MG)								
1 YR STORM RUNOFF	0	0	0	0	0	5	•	
ANNUAL RUNOFF	ō	0	Ô	Ō	ō	86	103	129
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT . BASIN	٥	0	0	0	٥	215	257	322
TREATMENT PLANT	ŏ	ō	Õ	ā	Ď	0	۵	
INCRIMENT FORMS	•	•	•	•	•	_	_	•

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANOFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT HORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL .
TREATMENT PLANT BASIN PIPES	375 22 582						2500 150 3870			1072 90 2322
RESIDUAL	135								TOTAL	3484
NET CAPITAL	845									

TABLE 11 : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020	
. PLANT	1\$1000/W.L.	Δ.		0	 ~.		- 21	25	32	
SLUDGE	(\$1000/YR)				~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	<u> </u>	~~~~~	عصد دے مدد مر		
SEWERS	(\$1000/YR)	ō	Ö	Ŏ	ŏ	, o	19	19	19	
TOTAL	(\$1000/YR)	•	0	0			46	51	59	
PRESENT VALUE	AT BEGIN-									
NING OF PERIOD		0	0	0	0	. •	343	390	•	
PRESENT WORTH	(\$1000)	0	0	0	•	0	51	29	0	

NET 0.+M. = 81.44%

TABLE III : TOTAL PRESENT WORTH

CAPITAL O.+M. LAND	(\$1000) (\$1000)	845 81 2
		~
TOTAL .	(\$1000)	928

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1965	1990	2000	2010	2020
ANNUAL CAPITAL								
TREATMENT PLANT BASIN						192 10	192 10	192 10
PIPES						280	280	280 .
TOTAL O.+M.	•	•	0	•	0	44	51.	59
TOTAL ANNUAL				0		530	535	543

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEB TEDNESS NOTE 2 : AM INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . CU-33

	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUME (MG)								
1 YR STORM RUNOFF	0	1	2	3	5	7		
ANNUAL RUNOFF	ŏ	27	54	67	81	108	134	134
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT.BASIM	0	39	78	98	118	157	195	195
TREATMENT PLANT	Ó	0	32	41	49	65	61	81

TREATMENT SCHENE : STORAGE PLUS TREATMENT AT MUNICIPAL PLANT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000):

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL .
										
SLUDGE HANDLING	7				10					0
BAS IN	103				250					75
PIPES	1124				27 10					813
RESIDUAL	34								TOTAL	888
MET CARITAL	1201					-				

TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	0	0	0	22	22	29	36	36
SLUDGE	(\$1000/YR)	0	0	0	3	3	4	5	5
SE WERS	(\$1000/YR)	0	٥	0.	13	13	13	13	13
TOTAL	(\$1000/YR)		0	0	38	38	47	55	55
PRESENT VAL	UE AT BEGIN-							•	
NING OF PER	IOD (\$1000) .	0	0	0 .	159	302	360	369	0
PRESENT WOR	TH (\$1000)	0	G	0	56	89	54	29	0

NET 0.+M. = 239.637

TABLE III : TOTAL PRESENT WORTH

CAPITAL O.+N.	{ \$1000} . { \$1000}	1201 239
LAND	(\$1000)	6
		
TOTAL	(\$1000) .	1446

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
SLUDGE HANDLING				1	1.	1	1	1.
BASIN				18	18	1.0	10	10
PIPES				196	196	196	196	196
TOTAL O.+M.	. 0	0	0.	38	38	47	55	55
TOTAL AMARIAN				~ 				
TOTAL ANNUAL	0	0	0	254	254	262	271	271

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT DUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

	_		-	_		-	-
-		•	_		ni.	-1	44

Control of the Contro								
	1972	1975	1960	1985	1990	2000	2010	2020
								
STORMWATER VOLUME (MG)						_	_	_
1 YR STORM RUNOFF	0	٥	0	0	0	2	3	
ANNUAL RUNOFF	0.	0	0.	0	0	33	50	40
SLUDGE QUANTITIES (DT/YR)			_	_	_			150
SED IMENT-BASIN	9	9	0	D	0	82	125	
TREATMENT PLANT	0	0	٥	0	0	0	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1960	1965	1990	2000	2010	2020	RESIDUAL
TREATMENT PLANT BASIN PIPES	233 13 267						1550 90 1780			664 54 1068
RESIDUAL	69								TOTAL	1786
NET CAPITAL	445									

TABLE II : PRESENT WORTH - 0.+M. COSTS

	1972	1975	1980	1985	1990	2000	2010	2020
PLANT (\$1000/YR) \$LUGE (\$1000/YR) \$EMERS (\$1000/YR) TOTAL (\$1000/YR)	0	0 0 0	0	0	0	8 2 8 	12 3 6	15 3 8 ——————————————————————————————————
PRESENT VALUE AT BEGIN- NING OF PERIOD (\$1000) PRESENT WORTH (\$1000)	0	0	0	0	0	153 23	183 13	0

NET 0.-M. = 37.0991

TABLE III : TOTAL PRESENT WORTH

CAPITAL	(\$1000)	445
0.+M.	(\$1000)	37
LANO	(\$1000)	1
TOTAL	141000	. 2

TABLE IV : ANNUAL LUSTS (\$1000/YR)

in page and a second second second	1972	1975	1980	1965	1990	2000	2010	5050
ANNUAL CAPITAL TREATMENT PLANT BASIN PIPES TGTAL O.+M.	0	0	0	0	0	119 6 128 19	119 6 128 24	119 6 128 27
TOTAL ANNUAL						274	279	282

NOTE 1 : ANNUAL CUSTS DO NOT INCLUDE PRESENT DUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . CU-348

	1972	1975	1980	1965	1990	2000	2010	2020			
											
STORMMATER VOLUME (MG) 1 YR STORM RUNOFF	o	0	o	0	a	1	2	3			
ANNUAL RUNOFF	0	0	0	0	0	22	33	40			
SLUDGE QUANTITIES (DT/YR)			_	_	_						
SEDIMENT.BASIN	0	0	0	Ō	0	55	82	100			
TREATMENT PLANT	0	0	0	0	0	0	0	0			

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANGLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STURAGE BASIN : EARTH

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000).

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
TREATMENT PLANT	210						1400			600
BASIN	12						81 -			48
PIPES	30						200			120
									****	74.5
RESIDUAL	29								TOTAL	769
NET CAPITAL	222									

TABLE II : PRESENT HORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	0	0	0	0	0	5		10
SLUDGE SEMERS	(\$1000/YR) (\$1000/YR)	0	0	0	ŏ	0	ò	ő	ò
TOTAL	(\$1000/YR)		0	0	0	0	7	11	13
PRESENT VALUE		0	0	0	•	0	67	87	0
PRESENT WORTH	4 (\$1000)	0	0	0	0	0	10	4	0

NET 0.+#. . 16. 7913

TABLE III : TOTAL PRESENT WORTH

CAPITAL	(\$1000)	222 16 1
LAND	(\$1000) -	
TOTAL	(\$1000)	260

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL TREATMENT PLANT						108	108	108
BASIN PIPES TOTAL O.+M.	0	0		0	0	14 7	14 11	14 13
TOTAL ANNUAL						136	139	141

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT DUTSTANDING BONDED INDEBTEDMESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . CU-34C & 40641

·	1972	1975	1980	1985	1990	2000	2010	2020	-1. Tage
STORMUSTER VOLUME (MG)									
1 YR STORM RUNOFF	0	•	0	0	0	5	7	11	
ANNUAL RUNGFF	0	0	0	0	Ō	93	111	138	
SLUDGE QUANTITIES (OT/YR)									
SEDIMENT.BASIN	0	0	0	0	0	232	277	345	
TREATMENT PLANT	0	0	0	٥	0	0	0	0	

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000) .

	PRESENT	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL .
TREATMENT PLANT BASIN PIPES	421 26 451						2800 . 175 3000			1201 105 1800
RESIDUAL	120								TOTAL	3106
NET CAPITAL	778									•

TABLE II : PRESENT MORTH - D.+M. COSTS

	·	1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	0	٥	0	٥	0	23	27	34
SLUDGE	(\$1000/YR)	0	Ö	Ō.	ě	ŏ	5	-	
SEWERS	(\$1000/YR)	0	Ō	Ö	ō	õ	14	14	14
TOTAL	(\$1000/YR).					0	44.	49	50
PRESENT VAL	UE AT BEGIN-								
NING OF PER		0	0	0	0	0	329	378	0 .
PRESENT WOR	TH (\$1000)	0	0	0	0	0	49	28	0

NET 0.+M. = 78.4414

TABLE III : TOTAL PRESENT WORTH

CAPITAL D.+M. LAND	(\$1000)	778 78 2
7.07.44	1410001	

TABLE IV : ANNUAL COSTS (\$2000/YR):

	1972	1975	1980	1985	1990	2000	2010	2020	
ANNUAL CAPITAL									
TREATMENT PLANT						216	216	216	
BASIN PIPES						12 217	12 217	12	
TOTAL O.+M.	0	•	•	0	0	44	49	217 . 58	
TOTAL ANNUAL						490	495	504	

NOTE 1: ANNUAL COSTS DO NOT INCLUDE PRESENT DUTSTANDING BONDED INDEBTEDNESS NOTE 2: AN INTEREST RATE OF 7 PERCENT MAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . CU-34D

	1972	1975	1980	1985	1990	2000	2010	2020
STORNWATER VOLUME (MG)								
	_	_	_	_				
1 YR STORM RUNOFF	Q	0	0	0	0	3	5	6
ANNUAL RUNGFF	0	0	0	0	0	50	74	90
SLUDGE QUANTITIES (OT/YR)								
SEDIMENT. BASIN	٥	0	۵	0	٥	125	185	225
TREATMENT PLANT		ŏ		ŏ	ŏ	12		
INCHINENT PERMI	v	v	•	v	U	0	0	a

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

			. I ABL	: 1 3 PKE36	- H134UM 145	CAPITAL C	.0515 ~ (\$)	.0001		
	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RES IDUAL
TREATMENT PLANT BASIN PIPES	293 17 530						1950 115 3530			836 69 2118
RESI DUAL	117								TOTAL	3023
NET CAPITAL	724									
			TABLE	II : PRES	ENT WORTH	- 0.+M. CC	2512			
		1972	1975	1980	1985	1990	2000	2010	5050	

		1972	1975	1980	1985	1990	2000	2010	\$020
PL ANT	(\$1000/YR)	0	0	o	o	٥	12	10	22
SLUDGE	(\$1000/YR)	0	0	Ó	0	ā	3		-5
SEWERS	(\$1000/YR)	0	0	0	Ö	ō	17	17	17
TOTAL	(\$1000/YR)	0	0				33	40	45
PRESENT VALUE	F AT BEGIN-								
NING OF PERIC		0	0	0	0	0	260	303	9
PRESENT WORTH	(\$1000)	0	0	0	0	0	39	23	0

NET 0.+N. = 62.3319

TABLE III : TOTAL PRESENT WORTH

CAPITAL (\$1000) 0.+M. (\$1000) LAND (\$1000) 724 62 2 TOTAL (\$1000) 788

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
TREATMENT PLANT BASIN PIPES						150 8	150 8	150
TOTAL G.+M.	0	0	0	0	0	255 33	255 40	255 45
TOTAL MINUAL				0		447	455	440

NOTE 1 1 ANNUAL CUSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2 2 AM INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . CU-36

	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUME (MG)								
1 YR STORM RUNOFF	0	0	0	0	0	8	10	13
ANNUAL RUNDFF	0	0	0	0	0	139	167	209
SLUGGE QUANTITIES (DT/YR)								
SEDIMENT.BASIN	0	0	0	0	0	347	417	522
TREATMENT PLANT	0	0	o	0	٥	0	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000):

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
TREATMENT PLANT	466						3100			1329
BASIN	28						190			114
PIPES	1114						7410			4446
RES I DUAL	228								TOTAL	5889
NET CAPITAL	1380									

TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	0	o	0	0	0	34	41	52
SLUDGE	(\$1000/YR)	0	0	Ð	0	0	8	10	13
SEWERS	(\$1000/YR)	0	0	0	0	0	37	37 -	37
TOT AL	(\$1000/YR)	0			0	0	80	89	102
PRESENT VALU	E AT BEGIN								
NING OF PERT	00 (\$1000)	0	0	0	0 *	0	596	672	0,
PRESENT WORT	H (\$1000)	٥	0	a	0	0	89	51	0

NET 0.+M. = 141-049

TABLE III : TOTAL PRESENT WORTH

Č	APITAL 3.+M. AND	{\$1000} {\$1000} {\$1000}	1380 141 3
-			
1	ATD	(\$1000)	1524

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	5000	2010	2020
ANNUAL CAPITAL							******	
TREATMENT PLANT						239	239	239
M12AB						13	13	13
PIPES						536	536	536
TOTAL O.+M.	0	0	0	0	0	80	89	102
TOTAL ANNUAL		0	0	0	0	870	878	891

NOTE 1: ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2: AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . CU-37

	1972	L975	1980	1985	1990	2000	2010	2020
					~			
STORMWATER VOLUME (MG)								
1 YR STORM RUNGFF	0	0	0	0	0	9	11	14
ANNUAL RUNOFF	0	0	0	0	0	133	159	199
SLUDGE QUANTITIES (DT/VR)	•							
SEDIMENT.BASIN	0	0	0	0	0	332	397	497
TREATMENT PLANT	0	0	0	0	0	0	Ö	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000).

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RES I DUAL
				_ —	~ .					
TREATMENT PLANT	451						3000			1247
BASIN	27						180			108
PIPES	30						200			120
RES IDUAL	58								TOTAL	1515
NET CAPITAL	449									

TABLE II : PRESENT WORTH - O.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
									
PLANT	(\$1000/YA)	. 0	0	0	0	0	33	39	49
SLUDGE	(\$1000/YR)	. 0	0	0	0	0	8	9	12
SEWERS	(\$1000/YR)	0	0	0	0	0	0	0	0
TOTAL	(\$1000/YR)	0	0	0	0	0	42	50	63
PRESENT VALU	JE AT BEGIN-								
NING OF PERI		٥	0.	0	0	0	327	399	0
PRESENT WORT	TH (\$1000)	6	0	0	0	0	49	30	0

79.8039 MET 0.4%. =

TABLE III : TOTAL PRESENT WORTH

D.+M.	(\$1000)	449 79
LAND	(\$1000)	
TOTAL	(\$1000)	532

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL	 `	 ·						
TREATMENT PLANT						231	231	231
BASIN						13	13	13
PIPES TOTAL O.+M.	٥	٥	٥	•	٥	14 42	14	14
, , , , , , , , , , , , , , , , , , ,						72	50	43
TOTAL ANNUAL	9					301	309	322

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT DUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

	1972	1975	1980	1985	1990	2000	2010	2020	
STORMWATER VOLUME (MG)	· ·					, ~ . ~ ~		- / ~	-,
1 YR STURM RUNOFF	0	0	0	0	0	5	7	9	
ANNUAL RUNOFF	0	0	0	0	0	93	112	139	
SLUDGE QUANTITIES (DT/YR)									
SEDIMENT. BASIN	0	0	0	0	0	232	260	347	
TREATMENT PLANT	0	0	0	0	0	0	0	0	

TREATMENT SCHENE : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE I : PRESENT HORTH - CAPITAL COSTS - (\$1000):

	PRESENT	1972	1975	1900	1985	1990	2000	2010	2020	RESIDUAL
TREATMENT PLANT BASIN PIPES	398 22 451						2650 150 3000			1136 90 1800
RESIDUAL	117			•					TOTAL	3024
NCT C101741	754									

TABLE II : PRESENT MORTH - O.+M. COSTS

		1972	1975	1980	1905	1990	2000	2010	2020
									
PLANT	(\$1000/YR)	٥	0	0	0	0	23	28	34
SLUDGE	(\$1000/YR)	. 0	٥	0	0	0	5	7	
SEVERS	1 \$1000/YR)	0	0	۰.	•	0	14	14	14
TOTAL	(\$1000/YR)			0			44	49	58
PRESENT VAL	UE AT BEGIN-								
NING OF PER	10D (\$1000)	0	0	•	•	0	330	380	•
PRESENT WOR	TH (\$1000)	0	•	•	•	•	47	29	

78.7742

TABLE III : TOTAL PRESENT WORTH

CAPITAL O.+M. LAND	(\$1000) (\$1000) (\$1000)	754 76 2
	•	
TOT M.	(41000)	A39

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
TREATMENT PLANT						204	204	204
BASIN						10	10	10
FIRES			0			217	217 . 49 .	217 50
 •								
TOTAL ANNUAL	0.	•	0	0	0	474	482	491

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT MAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . CU-39

	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUME (MG)								
1 YR STORM RUNDFF	0	0	G	5	11	14	18	20
ANNUAL RUNOFF	0	Ó	ō	85	171	205	256	290
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT.BASIN	٥	0	0	0	427	512	640	725
TREATMENT PLANT	Ō	ō	ō	ō	Ö	0	940	163

TREATMENT SCHENE : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE I : PRESENT MORTH - CAPITAL COSTS - (\$1000) .

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
TREATMENT PLANT BASIN PIPES	1044 66 867					3600 225 3000			**********	503 89 1199
RESIDUAL	69								TOTAL	1793
MET CAPITAL	1949									
			TABLE	II + PRES	ENT WORTH	- 0.+M. CO	STS			

		1972	1975	1980	1985	1990	2000	2010	2020
									~
PL ANT	(\$1000/YR)	0	0	0	0	42	51	44	72
SLUDGE	(\$1000/YR)	0	0	0	0	10	12	16	10
SEMERS	(\$1000/YR)	ā	ō	ŏ	ă	14	14		
		Υ,	- ,	•	•		14	14	14
101AL	(\$1000/YR)	0	0	0	•	44	79	94	105
PRESENT VAL	UE AT BEGIN-								
NING OF PER	100 (\$1000)	•	0	0	0	517	611	704	0
PRESENT MOR	TH [\$10001	0_:_	_ Q		ـ ـهـ	133 _		53	0.

NET 0.+M. - 298.98

TABLE III : TOTAL PRESENT WORTH

CAPITAL G.+M. LAND	(\$1000) (\$1000) (\$1000)	1949 298 5
TOTAL	(\$1000)	2253

TABLE IV : ANNUAL COSTS (\$1000/YR).

	1972	1975	1980	1985	1990	2000	2010	2020
AMMUAL CAPITAL								
TREATMENT PLANT					277	277	277	277 .
BASIN PIPES					14	16	16	16
TOTAL O.+M.	٥	0	0		217 68	217 79	217	217
	`						94	105
TOTAL AMMIAL	0	0	0	0	579	590	606	617

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . CU-42

	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUME (NG):								
1 YR STORM RUNOFF	0	0	0	2	4	•	5	7
ANNUAL RUNOFF	Õ	0	0	36	72	72	86	107
SLUDGE QUANTITIES (DT/YR)								
SEDINENT. BASIN	0	0	0	0	180	180	215	267
TREATMENT PLANT	0	0	0	0	0	0	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING & PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000).

	PRESENT	1972	1975	1900	1985	1990	2000	2010	5050	RES I DUAL :
TREATMENT PLANT	5 0 2 29					1700 100				237 39
PIPES	59					200				79
RESIDUAL	13								TOTAL	357
MET CARITA										

TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1960	1905	1990	2000	2010	2020
PLANT	(\$1000/YR)	•	0	0	0	18	10	21	26
SLUDGE	(\$1000/YR)	•	0	0	0	•	•	5	6
SEWERS	(\$1000/YR)	0	0	•	•	0	•	•	•
TOTAL	(\$1000/W)	0	0	•	•	23	23	27	
PRE SENT VALUE	AT SEGIN-								
NING OF PERIO	0 (11000)	•	•	•	0	145	180	216	•
PRESENT MORTH	(\$1000)	•	0	•	•	44	27	10	•

92.4752

TABLE 111 : TOTAL PRESENT WORTH

CAPITAL 0.+M. LAND	(\$1000) (\$1000)	577 92 1
TOTAL	(\$1000)	671

TABLE IV : ANNUAL COSTS (81000/YR)

	1972	1975	1940	1965	1990	2000	2010	2020
AMMUAL CAPITAL TREATMENT PLANT BASIN					131 7.	131	131	131
PIPES TOTAL O.+M.	0	•	•		14 23	14 23	14 27	14 34
TOTAL AMNUAL					174	174	1.00	107

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEONESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUME (MG) 1 YR STORM RUNOFF AMNUAL_RUNOFF		250,	34 	86 <u>0</u>	84 1241	106 1546	127 1856	140
SLUDGE QUANTITIES (DT/YR) SEDIMENT.BASIN TREATMENT PLANT	0	350 0	700 292	1256 524	1811 757	2257 943	2709 1132	2940 1228

TREATMENT SCHEME : STORAGE PLUS TREATMENT AT MUNICIPAL PLANT

SLUDGE HANDLING : PERIDDIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
SLUDGE HANDLING				249						
	171								269	230
eas in	6460			11100						2219
BASIN	242					620				327
PIPES	1444			2520						503
PIPES	177 .					600				239
RESIDUAL	136								TOTAL	3522
NET CAPITAL	4341									

TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT SLUDGE	(\$1000/YR) (\$1000/YR)	0	0	95 16 12	202	338	422	506 73	549 79
TOTAL	(\$1000/YR)			124	249	403	498		645
PRESENT VALU		0	•	170	1330	3146	3843	4357	0
PRESENT WORT	H (\$1000)	•	•	448	555	937	578	332	0

MET 0.+M. -2851.95

TABLE III : TOTAL PRESENT MORTH

0.	PITAL M. MD	(\$1000) (\$1000) (\$1000)	9381 2851 305
_			
-		4410001	

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
AMMUAL CAPITAL								
SLUDGE HANDLING			20	20	20	20	20	20
BASIN			803	803	603	803	803	803
				403				-03
BASIN					59	59	59	59
PIPES			102	1 82	182	182	102	182
PIPES					43	43	43	43
TOTAL O.+M.	0	0	126	249	403	498	595	645
								
TOTAL ANNUAL	٥	0	1133	1254	1513	1608	1705	1754

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

	1972	1975	1980	1985	1990	2000	2010	2020
	-			-				
STORMWATER VOLUME (MG)								
1 YR STORM RUNOFF	0	34	49	70	72	76	78	78
ANNUAL RUNOFF	ŏ	534	1049	1102	1136	1344	1447	1447
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT. BASLM	0	1002	2004	2047	2840	3360	3617	3617
TREATMENT PLANT	•	0	0	0	0	Q	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PIPE SLUDGE TO MUNICIPAL PLANT

STORAGE BASIN : CONCRETE

TABLE I : PRESENT WORTH - CAPITAL COSTS - (81000)

	PRESENT WORTH	1972	1975	1980	l 965	1990	2000	2010	2020	RESIDUAL
*********	4007			7600					7400	4513
TREATMENT PLANT PLANT EXPANSION	4037 . 6161			1000	14850				, 400	4715
SLUGGE HANDLING	279			461						96
BASIN	1006			1730						345
PIPES	9515			14350						3269
	396								TOTAL	10225
RESIDUAL	370									
NET CAPITAL	21404									

TABLE II : PRESENT MORTH - D.-M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PL ANT	(\$1000/YR)	•	•	66	194	329	309	417	417
SL UDGE	(\$1 000/ TR)	•	0	10	10	14	16	16	10
SENERS	(\$1000/YR)	Ō	0	81	81	81	81	01	ěl.
TOTAL	(51006/YR)			158	284	425	466	51.9	519
PRESENT VALUE	AT BEGIN						/- /		
MING OF PERIO		G	0	710	1450	3206	3537	3040	•
	4.1.0001		•	520	404	848	422	278	_

MET 0.+M. -2095-29

TABLE III : TOTAL PRESENT HORTH

CAPITAL D.+H. LAND	(\$1000) (\$1000)	21404 2 89 5 130
TOTAL	(11000)	24429

24429

TABLE IV : ANNUAL COSTS (61000/YR)

	1972	1975	1960	1965	1990	2000	2010	2020
AMHUAL CAPITAL								
TREATMENT PLANT			584	506	584	586	584	584
PLANT EXPANSION				1146	1146	1146	1144	1144
SLUDGE HANDLING			34	34	34	34	34	34
BASIN			125	125	125	125	125	125
PIPES			1103	1163	1183	1183	1183	1163
TOTAL G.+R.	•	•	158	206	425	485	21.0	519
TOTAL ANNUAL	-		2088	3363	3502	3545	3574	3594

MOTE 1: ANNUAL COSTS DO NOT INCLUDE PRESENT DUTSTANDING BONDED INDEBTEDNESS NOTE 2: AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . 49650657

	1972	L975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUME (MG) 1 YR STORM RUMOFF	٥	15	31	36	41	57	. 74	92
ANNUAL RUNGFF	ŏ	232	464	555	646	859	1011	1384
SAUDGE QUANTITIES (OT/YR)			1140	1207		2147	2022	2442
SEDIMENT.BASIN	0	580	1160	1387	1615	2147	2527	3440
TREATMENT PLANT	0	Q	0	0	D	0	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE I & PRESENT WORTH - CAPITAL COSTS - (\$1000).

			11000		,	· · · · · · · · · · · · · · · · · · ·				
	PRESENT _		1975	1980	1985	1990	2000	2010	2020	RESIDUAL
	MORTH	1972	4713	1700 '			2000			~~~~
TREATMENT PLAN	1 2779				4700	'				•
BAS IN	261				630					189
PIPES	1226				2940					888
PIPES	1064					3600				1439
11/62	7000					2000				
RESIDUA	L 97								TOTAL	2514
NET CAPITA	5236									
			TABLE	II : PRES	ENT WORTH	- 0.+M. CO	STS			
		1972	1975	1980	1985	1990	2000	2010	2020	
PLANT	(\$1000/YR)			•	161	161	214	252	346	
SLUDGE	(\$1000/YR)			ŏ	40	40	53	. 63	84	
350005	141000/141			7	11	12	12	32	32	

PLANT SLUDGE SEWERS	(\$1000/W) (\$1000/YR) (\$1000/YR)	0 9 0	• •	0 0	161 40 14	161 40 32	214 53 32	· 63 32	344 84 32
TOTAL	[\$1 000/YR]	•	0		214	234	301	348	465
PRESENT VALUE NING OF PERIOD		•	•	•	925	1861	2282	2050	•
PRESENT WORTH	(\$1000)	•	0	0	343	554	343	510	•

1502.29 NET 0.+M. -

TABLE 111 : TOTAL PRESENT WORTH

CAPITAL G.+R. LAND	(\$1000) (\$1000) (\$1000)	5234 1502 200
	•	
TOTAL	1 \$10001	4934

TABLE IV- : ANNUAL COSTS 181000/YR)

	1972	1975	1980	1905	1990	2000	2010	2020
AMINAL CAPITAL				517	517	517	517	517
TREATMENT PLANT								
BASIN				45	45	45	45	43
PIPES				214	214	214	214	214
PIPES					240	260	260	260
TOTAL O.+M.	0	•	0	214	234	301	348	465
TOTAL AMNUAL				993	1272	1339	1304	1503

MOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS MOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

					س ٠٠٠٠٠٠٠٠			
	1972	1975	1980	1985	1990	. 2000	2010	2020
					 ·			
STORMMATER VOLUME (MG)								
1 YR STORM RUNOFF	0	•	19	22	26	30	32	35
ANNUAL RUNOFF	Ó	141	322	351	381	441	483	524
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT.BASIM	0	402	805	878	952	1102	1207	1310
TREATMENT PLANT	0	0	0	0	. 0	• •	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE I : PRESENT MORTH - CAPITAL COSTS - (\$1000)

	PRESENT	1972	1975	1980	1965	1990	2000	2010	2020	RESIDUAL
TREATMENT PLANT BASIN PIPES	4812 174 62				11400 420 200					0 126 60
RES IDUAL	7								TOTAL	106
NET CAPITAL	5042									

TABLE II : PRESENT WORTH - O.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
							 .		
PL ANT	(\$1000/W)	. •	0	•	75	95	110	120	131
SLUDGE	(\$1000/YR)	0	0	0	53	23	27	30	32
SENERS	(\$1000/YR)	•	•	•	0	•	•	•	•
TOTAL	(\$1000/YR)	•	•	•	150	120	136	151	164
	ALUE AT DEGIN-							•	
NING OF P	ERIOD (\$1000)	•	0	•	492	909	1021	1112	•
PRESENT W	DRT H (\$1000)	•	0	•	204	268	153	84	. •

MET 0.+H. -711.685

TABLE III : TOTAL PRESENT WORTH

CAPITA O.+M. LAND	(\$1000) (\$1000) (\$1000)	5062 711 82
	-	
TOTAL	(81000)	5457

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020	
AMOUAL CAPITAL								-	
TREATMENT PLANT				895	875	895	895	895	
BASIN				30	30	. 30	30	30	
PIPES	10 mg/m			14	14	14	14	14	
TOTAL O.+M.	2.4	0	•	. 120	. 120	138	151 -	164 .	
TOTAL ANNUAL		0		1060	1060	1079	1092	1105	

NOTE 1: ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2: AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . CU-SLAES8

	1972	1975	1980	1985	1990	2000	2010	2020
								
STORMWATER VOLUME (MG)							•	
1 YR STORM RUNOFF	0	2	5	23	42	48	54	59
ANNUAL RUNOFF	Ö	32	64	335	606	. 693	797	867
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT.BASIN	0	46	93	489	884	1011	1163	1265
TREATMENT PLANT	ò	0	39	204	369	422	486	528

TREATMENT SCHENE : STORAGE PLUS TREATMENT AT MUNICIPAL PLANT

SLUGGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE I : PRESENT WORTH - CAPITAL COSTS - (81000)

	PRE SENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
SLUDGE HANDLING	92			145					145	124
BAS IN	203			350						69
BASIM	136					460				103
PIPES	1996			3430						685
PIPES	88					300				119
RESIDUAL	45								TOTAL	1104
**** *******										

TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	0	0	16	67	159	182	209	220
SLUDGE	(\$1000/YR)	ō	0	3	10	33	37	43	47
SEWERS	(\$1000/YR)	Ō	Ō	17	17	18	10	10	1.0
TOTAL	(\$1000/YR)		•	37	123	211	236	271	294
PRESENT VAL	UE AT BEGIN-								
NING OF PER	100 (\$1000)	•	0	329	484	1580	1793	1980.	•
-	TH (\$1000)	0	0	191	284	467	269	151	0

MET 0.+M. -1345.67

TABLE III : TOTAL PRESENT WORTH

CAPITAL D.+M. LAND	(\$1000) (\$1000) (\$1000)	2471 1365 97
	-	
TOTAL	4410001	1011

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
								
AMNUAL CAPITAL								
SLUDGE HANDLING			11	11	11	11	11	11
BASIN			25	25	25	25	25	25
BASIN					33	33	33	33
PIPES			248	248	248	248	248	248
			240	270				
PIPES					21	21	51	21
TOTAL O.+M.	0	0	37	123	211	234	271	294
								·
TOTAL ANNUAL	0	0	322	406	551	578	411	634

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . CU-53

	1972	1975	1980	1985	1990	2000	2010	2020
	*							
STORMHATER VOLUME (NG)								
1 YR STORM RUNDFF	٥	18	36	37	39	41	43	45
ANNUAL RUNGEF	0	253	506	524	543	561	678	775
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT .BASIN	0	369	738	765	792	848	989	1131
TREATMENT PLANT	0	Q	308	319	331	354	413	472

TREATMENT SCHEME : STORAGE PLUS TREATMENT AT MUNICIPAL PLANT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
	• • • •									
SLUDGE HANTLING	116			183					143	156
BASIN	349	•		400						119
PIPES	276			475						94
RESIDUAL	14								TOTAL	371
NET CAPITAL	727									

TABLE II : PRESENT NORTH - Q.+N. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	0	0	153	166	180	193	225	258
SLUGGE	(\$1000/YR)	0	9	21	22	22	23	27	31
S EW ERS	(\$1000/YR)	D	. 0	2	2	2	2	2	2
TOTAL	(\$1000/YR)			177	191	205	219	255	292
PRESENT VALUE A	T RECIM-								
NING OF PERIOD		0	•	754	673	1493	1670	1925	0
PRESENT HORTH	1 8 1 000)	0	0	440	337	442	251	247	0

MET C.+M. = 1617.59

TABLE III : TOTAL PRESENT WORTH

CAPITAL	(27000)	727
D.+M.	(27000)	1617
LAND	(27000)	164
5 00 AL	4410001	2611

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
SLUGGE HANDLING			14	14	14	14	14	14
Basin -			43	43	43	43	43	43
Pipes			34	34	34	34	34	34
TOTAL O M.	. 0	٥.	177	191	205	57.0	255	292
FOTAL AMMUAL			269	283	297	311	347	384

NOTE 1: ANNUAL COSTS DU NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2: AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . CU-59

	1972	1975	1980	1985	1990	2000	2010	2020
STORMMATER VOLUME (MG) 1 YR STORM RUNOFF	0	14	28	29	30	30	30	30
ANNUAL RUNOFF	ō	563	527	556	585	585	565	585
SLUDGE QUANTITIES (DT/YR)							1445	1449
SEDIMENT.BASIN	0	494	988	1042	1462	1462	1462	1462
TREATMENT PLANT	0	•	0	0	0	0	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
										
TREATMENT PLANT	3500			5500					5500	4713
PLANT EXPANSION	3076					10400				1455
SLUGGE HANDLING	124			195					1 95	167
BASIN	3841			6600						1319
PIPES	26 19			4500						899
RESIDUAL	331								TOTAL	8554

TABLE II : PRESENT WORTH - D.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
SLUDGE	(\$1000/YR) (\$1000/YR) (\$1000/YR)	0 0 0	0 9 0	32 4 22	97 5 22	169 7 22	169 7 22	169 7 22	169 7 22
TOTAL	(\$1000/YR)	0		40	125	199	199	199	199
PRESENT VALUE A		0	9	360	444	1400	1400	1400	0
PRESENT WORTH	(\$1000)	•	0	221	276	414	210	107	0

1230.13 NET 0-+#. - '

TABLE, ISE, E TOTAL PRESENT NORTH

CAPITA	(\$1000)	12821
0.+M.	(\$1000)	1 230
LAND	(\$1000)	50
	-	
TOTAL	(41000)	14109

TABLE IV & ANNUAL COSTS (\$1000/YR).

	1972	1975	1980	1985	1990	2000	2010	2020
				~				
AMMUAL CAPITAL								
TREATMENT PLANT			424	424	424	424	424	424
PLANT EXPANSION					802	802	802	802
SLUDGE HANDLING			15	15	15	15	15	15
BASIN			477	477	477	477	477	477
			325		325	325	325	325
PIPES				325				
TOTAL O.+M.	0	0	40	125	199	199	199	199
TOTAL ANNUAL	0	٥	1303	1364	2245	2245	2245	2245

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . CU-606614663E664H

	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VÖLUME (MG) 1 YR STURM RUNDFF ANNUAL RUNDFF	81 1484	83 1543	85 1603	87 1631	89 1659	92 1725	92 1725	92 1725
SLUDGE QUANTITIES (DT/YR) SEDIMENT.BASIN TREATMENT PLANT	1053 0	1095 0	1138 0	1158 0	2521 0	2622 0	2622 0	2622 0

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PIPE SLUDGE TO MUNICIPAL PLANT

STORAGE BASIN : CONCRETE

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
						· 				
TREATMENT PLANT	6962		7800					7800		5569
PLANT EXPANSION	4436					15000				2099
SLUDGE HANDLING	606		680					680		485
BASIN	13957		17100							1710
PIPES	41354		50667							5066
RESIDUAL	579								TOTAL	14931
NET CAPITAL	66738									

TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	0	95	99	364	638	664	664	664
SLUDGE	(\$1000/YR)	Ö	5	5	5	12	13	13	13
SEWERS	(\$1000/YR)	. 0	253	253	253	253	253	253	253
TOTAL	(\$1000/YR)	0	354	358	623	904	930	930	930
PRESENT VAL	UE AT BEGIN- 100 (\$1000)	0	1461	2013	3133	6444	6535	6535	0
PRESENT NOR	TH (\$1000)	0	1192	1171	1299	1906	982	499	0

NET C.+M. = 7053.27

TABLE III : TOTAL PRESENT WORTH entra e la martina del proprio del persona del como del c

CAPITAL	(\$1000)	66738
D. +M.	1\$1000)	7053
LAND	(\$1000)	20
	-	
TOTAL	(\$1000)	73811

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
AMNUAL CAPITAL								
TREATMENT PLANT		602	602	602	602	602	602	402
PLANT EXPANSION					1157	1157	1157	1157
SLUDGE HANDLING		52	52	52	52	52	52	52
MIZAB		1238	1238	1238	1238	1238	1238	1238
PIPES TOTAL O.+M.	0	366 8 354	366 8 35 8	3668 623	3668 904	366 8 930	3668 930	366 8 930
TOTAL GOVE	•	374	376	923	704	730	730	730
TOTAL ANNUAL		5915	5919	6184	7623	7649	7649	7649

NOTE 1 : ANNUAL COSTS OF NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

PLAN A . CU-61E66Z

	1972	1975	1980	1985	1990	2000	2010	2020
STORMMATER VOLUME (MG)								
1 YR STORM RUNOFF	٥	23	47	49	51	54	54	54
ANNUAL RUNOFF	Ō	340	681	738	795	958	958	958
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT. BASIN	G	241	483	523	1208	1456	1456	1456
TREATMENT PLANT	o	0	0	0	0	0	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PIPE SLUDGE TO MUNICIPAL PLANT

STORAGE BASIN : CONCRETE

TABLE I : PRESENT MORTH - CAPITAL COSTS - (\$1000)

	PRESENT MORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
TREATMENT PLANT	1209			1900					1900	1628
PLANT EXPANSION	1659				4000					0
SLUDGE HANDLING	327			514					514	446
BASIN	5965			10250						2049
.PJP.ES				200					-	. 39
RESIDUAL	161							•	TOTAL	4158
MET CAPITAL	9114									

TABLE 11 : PRESENT WORTH - G.+M. COSTS

		1972	1975	1980	1985	. 1990	2000	2010	2020
PLANT	(\$1000/YR)	0	0	42	164	305	368	368	368
SLUDGE	151000/YR)	0	0	2	Z	6	7	7	7
SEWERS	(\$1000/YR)	o	G	0	0	0	0	ο.	0
TOTAL	(\$1000/YR)		0	45	168	312	377	377	377
PRESENT VALUE		0	0	438	985	2421	2648	2648	0
NING OF PERIO	1 1 2 1 0001	U	v	730	767	2421	6040	2070	•
PRESENT WORTH	(\$1000)	0	0	255	408	716	398	202	0

MET D.+M. = 1980.71

TABLE III : TOTAL PRESENT WORTH

CAPITAL C.+M. LAND	(\$1000) (\$1000) (\$1000)	9116 1980 77
	,	
TOTAL	(61000)	11174

TABLE IV : ANNUAL COSTS (\$1000/YR)

_	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL							• • •	
TREATMENT PLANT			146	146	146	146	146	144
PLANT EXPANSION				308	308	308	308	308
SLUDGE HANDLING			39	39	39	39	39	39
BASIN			742	742	742	742	742	742
PIPES			14	14	14	14	14	14
TOTAL O.+M.	0	0	45	148	312	377	377	377
TOTAL ANNUAL		0	988	1419	1564	1628	1628	1628

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

PLAN A . CU-63W

	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUME (MG) 1 YR STORM RUNOFF ANNUAL RUNOFF	0	5 - ·	<u>_ 11</u>	200	12 207	233	13 233	13 233
SLUDGE QUANTITIES (DT/YR) SEDIMENT-BASIN TREATMENT PLANT	0	181	363 0	375 0	517 0	582 0	582 0	582 0

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PIPE SLUDGE TO MUNICIPAL PLANT

STORAGE BASIN : CONCRETE

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRE SENT MORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL .
								·		
TREATMENT PLANT	2546			4000					4000	3427
PLANT EXPANSION	2898					9800				1371
SLUDGE HANDLING	136			215					215	184
BASIN	1489			2560						511
PIPES	116			200						39
RESTOUAL	214								TOTAL	5536
NET CAPITAL	6973									

TABLE II : PRESENT MORTH - D.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
							67	67	
PLANT	(\$1000/YR)	0	0	12	35	60	07	67	67
SLUDGE	(\$1000/YR)	0	0	. 1	1	2	2	2	2
SEWERS	(\$1000/YR)	0	0	0	0	0	0	٥	0
TOTAL	(\$1000/YR)	0	0	14	38	63	71	71	71
PRESENT VALUE	AT BEGIN-								
NING OF PERIO	D (\$1000)	0	0	106	208	474	502	502	0
PRESENT WORTH	(\$1000)	o	o	63	86	140	75	38	0

NET 0.+M. = 404.032

TABLE III : TOTAL PRESENT NORTH

LAND	(\$1000)	
TOTAL	(\$1000)	7405

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								*****
TREATMENT PLANT			308	308	308	308	308	308
PLANT EXPANSION					756	756	756	754
SLUDGE HANDLING			. 16	16	16	16	16	14
BASIN		-	185	185	185	185	185	185
PIPES			14	14	14	14	14	14
TOTAL O.+M.	0	0	14	36	63	71	71	71
TOTAL ANNUAL	0	0	540	563	1345	1353	1353	1353

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BUNDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

PLAN A . CU-64SE

	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUPE (MG) 1 YR STGRM RUNOFF ANNUAL RUNUFF	18	18 347						
SLUDGE QUANTITIES (DT/YR) SEDIMENT.BASIN TREATMENT PLANT	246 0	246 0	246 0	246 0	527 0	527 0	527 0	527 0

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PIPE SLUDGE TO MUNICIPAL PLANT

STORAGE BASIN : CUNCRETE

TABLE 1 . PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
										
TREATMENT PLANT	3659		4100					4100		2927
PLANT EXPANSION	2662					9000				1259
SLUDGE HANDLING	103		116					116		82
BASIN	2791		3420							342
PIPES	489		600							60
RESIDUAL	181								TOTAL	4672
NET CAPITAL	9525									

TABLE II : PRESENT WORTH - 0.+M. COSTS

	1972	1975	1980	1985	1990	2000	2010	2020
PLANT (\$1000/Y	1) 0	21	21	77	133	133	133	133
SLUDGE 151000/Y	()	1	1	1	2	2	2	2
SEWERS (\$1000/YF	()	2	2	2	2	2	2	2
TOTAL (\$1000/Y	0	25	25	81	139	139	139	139
PRESENT VALUE AT BEGIN-								
NING OF PERIOD (\$1000)	Q	105	220	453	977	977	977	0
PRESENT WORTH (\$1000)	0	86	128	167	289	147	74	o

NET G.+M. = 913.497

TABLE III : TOTAL PRESENT WORTH

	(\$1000) (\$1000)	G.+H. Land
	(\$1000)	CAPITAL
A) AE	******	C 401 TAI

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
AMNUAL CAPITAL								
TREATMENT PLANT		316	316	316	316	316	316	316
PLANT EXPANSION					694	694	694	694
SLUDGE HANDLING		8	8	8	8		8	6
BASIN		247	247	247	247	247	247	247
PIPES		43	43	43	43	43	43	43
TOTAL 0.4M.	0	25	25	81	139	139	139	.39
TOTAL ANNUAL	0	642	642	698	1450	1450	1450	1450

NOTE 1 : ANNUAL COSTS OU NOT INCLUDE PRESENT OUTSTANDING BONDED INDESTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

PLAN A . CU-64NEG65

	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUME (MG) 1 YR STORM RUNDFF ANNUAL RUNOFF	8 172	172						
SLUDGE QUANTITIES (DT/YR) SEDIMENT.BASIN TREATMENT PLANT	122 0	122	122 0	122	261 0	261 0	261 0	261 0

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PIPE SLUDGE TO MUNICIPAL PLANT

STORAGE BASIN : CONCRETE

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000):

	PRESENT	1972	1975	1980	1985	1990	2000	5010	2020	RESIDUAL
TREATMENT PLANT	3124		3500					3500		2498
PLANT EXPANSION	4436					15000				2099
SLUDGE HANDLING	190		213					213		152
BASIN	1167		1430							143
PIPES	1183		1450							145
RESIDUAL	195								TOTAL	5039
NET CAPITAL	9906									
			TABLE	II : PRES	ENT WORTH	- 0.+M. CO	575		•	

		1972	1975	1980	1985	1990	2000	2010	2020
									 ·
PL ANT	(\$1000/YR)	0	10	10	38	66	66	66	66
SLUDGE	(\$1000/YR)	0	8	٥	٥	1.	1	1	1
SEWERS	(\$1000/YR)	0	7	7	7	7	7.	7.	7
TOTAL	(\$1000/YR)	0	18	18	46	74	74	74	74
PRESENT VALU	E AT BEGIN-							•	
NING OF PERI	00 (\$1000)	0	75	132	248	525	525	525	0
PRESENT WORT	H (\$1900)	0	61	π	102	155	78	40	0

516.794 NET G.+M. =

TABLE III : TOTAL PRESENT WORTH

CAPITAL	(\$1000)	9906
D.+M.	(\$1000)	516
L AND	(\$1000)	20
	•	
TOTAL	(\$1000)	10443

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL							 ,	
TREATMENT PLANT		270	270 .	270	270 1157	270 1157	270 1157	270 1157
PLANT EXPANSION Sludge Handling		16	16	16	16	14	14	16
BASIM Pipes		103 104	103 104	103 104	103 104	103 104	103 104	103 104
TOTAL O.+M.	0	18	10	46	74	74	74	14
TOTAL ANNUAL	0	513	513	541	1727	1727	1727	1727

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

PLAN A . CU-66

	1972	1975	1980	1965	1990	2000	2010	2020
STORMMATER VOLUME (MG) 1 YR STORM RUMOFF ANNUAL RUMOFF	0	15 219	31 438	32 476	34 514	37 643	37 643	37 443
SLUDGE QUANTITIES (DT/YR) SEDIMENT-BASIN TREATMENT PLANT	0	· .#10	821 0	892 0	1285 0	1607 0	1607 0	1607

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000):

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
TREATMENT PLANT	954			1500					1500	1285
PLANT EXPANSION	976					3300				461
BASIN	171			295						58
PIPES	3142			5400						1079
RESIDUAL	111								TOTAL	2886
MET CAPITAL	61 33									

TABLE II : PRESENT WORTH - D.+N. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	0	0	15	67	128	160	160	160
SLUDGE	(\$1000/YR)	0	0	20	22	32	40	40	40
SEWERS	(\$1000/YR)	ō	Ō	26	26	26	26	26	26
TOTAL	(\$1000/YR)			62	117	187	227	227	227
PRESENT VALUE	AT BEGIN- D (\$1000)		0	369	624	1459	1600	1600	0
PRESENT WORTH	(\$1000)	• .	0	214	259	431	240	122	0

1268.76 NET O.+M. =

TABLE III : TOTAL PRESENT WORTH

5133 1268 79	(\$1000) (\$1000) (\$1000)	CAPITAL O.+M. Land
4481	(41000)	TOTAL

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL TREATMENT PLANT PLANT EXPANSION		,	115	115	115 254	115 254	115 254	115 254
BASIN PIPES		. !	390 21	21 390	21 390	21 390	21 390	390
TOTAL Q.+M.	•	0	42	117	187 -	227	227	227
TOTAL ANNUAL			590	645	970	1010	1010	1010

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEONESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . CU-67 & 71

								
	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUME (MG)								
1 YR STORM RUNOFF	0	7	15	18	21	. 27	32	39
ANNUAL RUNOFF	Ö	116	232	272	313	405	486	579
SLUDGE QUANTITIES (DT/YR)					`			
SEDIMENT.BASIN	0	290	580	681	782	1012	1215	1447
TREATMENT PLANT	0	0	٥	0	0	0	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL.
TREATMENT PLANT	1991				4800					0
BASIN	124				300					90
PIPES	518				1250					375
								•		
RESIDUAL	18								TOTAL	465
NET CAPITAL	2616									

TABLE 11 : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020	
						 -				
PLANT	_ [\$1000/YR}_ {\$1000/YR}	0	0 .	Q		78	101_	121	194	
SLUDGE	(\$1000/YR)	0 '	0	0	19	19	25	30 .	36	_
SEWERS	(\$1000/YR)	0	. 0	0	•	6	6	♦.	6	
TOTAL	(\$1000/YR)	0	0	0	104	104	132	158	187	
PRESENT VALUE		0	o	o	426	631	1021	1212	•	
PRESENT WORTH	{\$1000}	0	0	o	177	246	153	92	•	

MET 0.+M. = 669.393

TABLE III : TOTAL PRESENT WORTH

CAPITAL O.+M. LAND	(\$1000) (\$1000) (\$1000)	2614 669 44		
TOTAL	(\$1000)	3329		

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
TREATMENT PLANT				370	370	370	370	370
BASIN				21	21	51	21	21
PIPES				90	90	90	90	90
TOTAL O.+M.	0	0	g	104	104	132	158	187 .
TOTAL ANNUAL				586	586	615	640	669

NOTE 1: ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2: AM INTEREST RATE OF T PERCENT WAS USED FOR ALL CALCULATIONS

PLAN A . CU-68

1

	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUME (MG)								
1 YR STORM RUNOFF	٥	12	25	25	25	25	25	25
ANNUAL RUNOFF	Ö	248	496	496	496	496	496	496
SLUDGE QUANTITIES (DT/YR)								
SECIMENT .BASIN	٥	465	930	930	1240	1240	1240	1240
TREATMENT PLANT	0	0	0	0	0	0	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PIPE SLUDGE TO MUNICIPAL PLANT

STORAGE BASIN : CONCRETE

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

•	PRESENT WORTH	1972 1975	1980-	1985 1990 200020	10 2030	- RESIDUAL
			~			
TREATMENT PLANT	3246		5100		5100	4370
PLANT EXPANSION	3253			11000		1539
SLUDGE HANDLING	180		283		283	242
BASIN	2648		4550			909
PIPES	4033		6930			1385
RESIDUAL	327				TOTAL	8449
NET CAPITAL	13033					

TABLE II : PRESENT WORTH - O.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
		·	 `						
PLANT	(\$1000/YR)	0	0	30	87	143	143	143	143
SLUDGE	(\$1300/YR)	0	0	4	4	6	6	6	6
SEWERS	(\$1000/YR)	Ö	0	34	34	34	34	34	34
TOTAL	(\$1000/YR)	0	0	70	126	164	184	184	184
PRESENT VALUE		0	0	403	638	1297	1297	1297	o
PRESENT WORTH	(\$1000)	0	0	234	264	383	195	99	0

1177.3 NET 0.+H. =

TABLE III : TOTAL PRESENT WORTH

D-+M-	(\$1000) (\$1000) (\$1000)	13033 1177 45
LAND	(310001	

TOTAL (\$1000) 14255

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
AMMUAL CAPITAL								
TREATMENT PLANT			393	393	393	393	393	393
PLANT EXPANSION					849	849	849	849
SLUDGE HANDLING			21	21	21	21	21	21
BASIN			329	329	329	329	329	329
PIPES			501	501	501	501	501	501
TOTAL O.+M.	0	0	70	126	184	184	184	184
TOTAL ANNUAL			1316	1373	2280	2280	2280	2280

NOTE 1: ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2: AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

	_							
	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUME (MG) 1 YR STORM RUMOFF ANNUAL RUMOFF	0	42 592	84 1184	87 1226	90 1268	95 1502	99 1667	101 1 432
SLUDGE QUANTITIES (DT/YR) SEDIMENT-BASIN TREATMENT PLANT	0	1110	2220	2296 0	3170 0	3755 0	4167 0	4580

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PIPE SLUDGE TO MUNICIPAL PLANT

STORAGE BASIN : CONCRETE

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RES IDUAL
TREATMENT PLANT	5092			8000					8000	6855
PLANT EXPANSION	4664					15770				2207
SLUDGE HANDLING	70			110					110	94
BAS IN	11290			19400						3079
PIPES	2362			4060						811
RESIDUAL	537								TOTAL	13050
NET CAPITAL	22943									

TABLE II : PRESENT WORTH - Q.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PL ANT	(\$1000/YR)	. 0	0	73	215	367	435	483	531
SLUDGE	(\$1000/YR)	Ó	0	11	11	15	18	20	22
SEWERS	(\$1000/YR)	Ō	o	20	20	20	20	20	20
TOTAL	(\$1000/YR)			104	247	403	474	524	574
PRESENT VA	LUE AT BEGIN-								
NING OF PE	RIGO (\$1000)	0	0	722	1335	3085	3509	3859	0
PRESENT NO	RTH (\$1000)	•	0	420	554	912	527	294	0
MET O.AM.	n 2709.74								

TABLE III : TOTAL PRESENT WORTH

	000} 2294: .000} 270 .000} 12:
--	--------------------------------------

TOTAL (\$1000) 25772

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
AMMUAL CAPITAL								
TREATMENT PLANT			617	617	617	617	617	417
PLANT EXPANSION					1217	1217	1217	1217
SLUDGE HANDLING			8		8	•	8	
BAS IN			1404	1404	1404	1404	1+04	1404
PLPES			293	293	293	293	293	293
TOTAL O.+M.	0	0	104	247	403	474	524	574
TOTAL MINUAL			2429	2572	3945	4015	4066	4116

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INTERFEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . CU-73674

	1972	1975	1980	1965	1990	2000	5010	2020
STORMMATER VOLUME (MG)								
1 YR STORM RUNOFF	0	0	0	٥	٥		•	12
ANNUAL RUNOFF	. 0	0	0.	Ö	ō	126	153	191
SLUDGE QUANTITIES (OT/YR)								
SEDIMENT . BASIN	0	•	0	0	0	315	382 '	477
TREATMENT PLANT	0	•	0	0	0	. 0	٥	0

TREATMENT SCHENE : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000).

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
TREATMENT PLANT	451						3000			1287
BASIN	27						180			108
PIPES	215						1430			858
RESIDUAL	87					••			TOTAL	2253
Attions	- :									
MET CAPITAL	405									

TABLE 11 . PRESENT NORTH - COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	0	0	0	0	٥	31.	38	47
SLUDGE	(\$1000/YR)	0	0	0	0	0	7	9	11
SEWERS	(\$1000/YR)	0	0	0	ø	0	7	7	7
TOTAL	(\$1000/YR)		0	0	0		46	54	66
PRESENT VALUE		0	0	0	0	0	356	427	0
PRESENT WORTH	(\$1000)	0	0	0	0	0	53	32	0

MET 0.+M. = 86.281

TABLE III : TOTAL PRESENT WORTH

CAPITAL O.+R. LAND	(\$1000) (\$1000) (\$1000)	605 86 3
TOTAL	(\$1000)	495

TABLE IV : ANNUAL COSTS (\$1000/YR).

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
TREATMENT PLANT BASIN						23 1 13	231 13	231 13
PIPES						103	103	103
TOTAL O-+M-	0	0	0	. 0	0	46	54	66
TOTAL ANNUAL				0	0	394	403	415

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AM INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . CU-75676

·	_							
	1972	1975	1980	1985	1990	2000	2010	2020
STORMMATER VOLUME (MG)								
1 VR STORM RUNOFF	0	4	0	0	0	10	11	14
ANNUAL RUNOFF	Ŏ	•	0	٥	0	154	185	230
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT . BASIN	0	•	0	Q	0	385	462	575
TREATMENT PLANT	0	•	0	0	0	0	0	0

TREATMENT SCHEME & STORAGE PLUS TREATMENT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

: EARTH STORAGE BASIN

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
TREATMENT PLANT BASIN PIPES TREATMENT PLANT	496 30 186 0	•					3300 200 1240	o ·		1415 120 744 0
RESIDUAL	8.5					•			TOTAL	2279
NET CAPITAL	624					•				

TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
									
PLANT	(\$1000/YR)	0	0	0	9	0	38	46	57 -
SLUDGE	(\$1000/YR)	0	0	0	0	0	9	11	14
SEWERS	(\$1000/YR)	0	0	0	0	0	6	6	•
TOTAL	(\$1000/YR)	. 0	0		0	0	54	64.	78
PRESENT VALUE	AT BEGIN-								
NING OF PERIO	(\$1000)	0	0	0	0	0	415	498	0
PRESENT WORTH	(\$1000)	0	0	0	•	0	62	39	0

100-624

TABLE III : TOTAL PRESENT WORTH

CAPITAL O.+ M. LAND	(\$1000) (\$1000)	624 100 4
TOTAL	1410001	770

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
****** C * * * * * * * * * * * * * * *								
AMMUAL CAPITAL TREATMENT PLANT						254	254	254
BASIN						14	14	14
PIPES						89	89	17
TREATHENT PLANT						••	- 6	ő
TOTAL D. M.	0	0	0	0	0	54	64	70.
TOTAL ANNUAL	0	0	0	0	0	413	423	437

NOTE 1: ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDERTEDNESS NOTE 2: AN INTEREST RATE OF 7 PERCENT MAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . CU-77

	1972	1975	1980	1985	1990	2000	2010	2020
								
STORMWATER VOLUME (MG)								
1 YR STORM RUNOFF	0	0	0	0	0	5	6	8
ANNUAL RUNOFF	0	0	0	0	0	67	105	132
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT BASIN	0	0	0	0	0	217	262	330
TREATMENT PLANT	0	0	٥	0	0	0	0	. 0

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RE SIDUAL
TREATMENT PLANT BASIN PIPES	375 22 30				,		2500 150 200			1072 90 120
RESIDUAL	49								TOTAL	1282
NET CAPITAL	378									
			TABLE	II : PRES	ENT WORTH	- 0.+M. CO	212			
		1972	1975	1980	1985	1990	2000	2010	2020	

		1972	1975	1980	1985	1990	2000	2010	2020
PL ANT	(\$1000/YR)	0	0	0	0	0	21	26	33
SLUDGE	(\$1000/YR)	0	0	0	0	0	5	6	8
SEWERS	(\$1000/YR)	0	0	0	0	, 0	0	0	0
TOTAL	(\$1000/YR)	0	0	0		0	28	33	42
PRESENT VALUE	AT BEGIN-							•	
NING OF PERIO	D (\$1000)	0	0	0	0	0	217	267	0
PRESENT WORTH	(\$1000)	. 0	0	0	•	0	32	20	0

53.1537 NET 0.+M. =

TABLE III : TOTAL PRESENT WORTH

CAPITAL	(\$1000)	378
0.+M.	(\$1000)	53
LAND	(\$1000)	
	•	
TOTAL	(\$1000)	434

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
TREATMENT PLANT						192	192	192
BAS IN						10	10	10
PIPES						14	14	14
TOTAL O.+M.	0	٥	0	0	0	28	33	42
TOTAL ANNUAL			0	0		246	252	260

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT DUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . CU-78679681

	1972	1975	1980	1985	1990	2000	2010	2020
STORMMATER VOLUME (MG) 1 YR STOPH RUNOFF ANNUAL RUNOFF	0	0	0	0	Q O	15 224	18 268	22 325
SLUDGE QUANTITIES (DT/YR) SEDIMENT.BASIN TREATMENT PLANT	0	•	0	0	0	327 136	391 163	474 198

TREATMENT SCHEME : STORAGE PLUS TREATMENT AT MUNICIPAL PLANT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE I : PRESENT MORTH - CAPITAL COSTS - (\$1000):

	PRESENT	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
SLUDGE MANDLING BASIN PIPES	15 60 8 <i>2</i> 7						103 400 5500	 .		44 240
RESIDUAL	139								TOTAL	3584
NET CAPITAL	763									

TABLE II : PRESENT MORTH - 0.4M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020	
	•									
PLANT	(\$1000/YR)	0	0	0	0	0	105	126	153	
SLUDGE	(\$1000/YR)	0	0	0	0	0	13 -	- 15,		
SEWERS	(\$1000/YR)	0	0	0	. 0	0	27	27	27	
TOTAL	(\$1000/YR)	0		0			146	169.	200	
PRESENT VAL	UE AT BEGIN-									
NING OF PER	100 (\$1000)	0	0	•	0	0	1111	1299	0	
PRESENT WOR	RTH (\$1000)	0	0	0	0	0	167	99	0	
NET 0.+M. =	266-465	.								

TABLE III : TOTAL PRESENT WORTH

CAPITAL Da+Ma	(\$1000) (\$1000)	763 266
LAND	(\$1000)	14
	-	
TOTAL	1410003	1044

TABLE IV : ANNUAL COSTS (\$1000/WR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
SLUDGE HANDLING						7	7	7
BASIN						26	28	20
PIPES TOTAL O.+M.	۵	0		•	0	398 144	3 98 169	398 200
IOIAC GOVAG								
TOTAL ANNUAL			0	•		581	605	435

NOTE 1: ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2: AN INTEREST RATE OF 7 PERCENT MAS USED FOR ALL CALCULATIONS

PLAN A . CU-82

	1972	1975	1980	1985	1990	2000	2010	2020
	 `							
STORMWATER VOLUME (MG)								
1 YR STORM RUNOFF	0	•	0	0	0	1	1	2
ANNUAL RUNDFF	0	0	٥	0	0	24	29	36
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT.BASIN	0	0	0	0	0	60	72	90
TREATMENT PLANT	0	•	0	0	0	0	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : PARTH

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
TREATMENT PLANT	203						1350	•		579
BASIN	12						80			48
PIPES	90						400			369
RESIDUAL	38								TOTAL	. 987
NET CAPITAL	247									

TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
					_	_		-	_
PLANT	(\$1000/YR)	0	0	O .	v	0	•	•	•
SLUDGE	(\$1000/YR)	0	6	0	0	0	1	1	Z
SEWERS	(\$1000/YR)	ŏ	0	Ō	Ö	Ō	Z	2	2
TOTAL	(\$1000/W)	. —		0	0		10	12	14
PRESENT VALUE		0	0	0	6	0	79	92	0
PRESENT WORTH	H (\$1000)	0	0	0	0	0	11	7	0

NET 0.+M. -

TABLE III : TOTAL PRESENT WORTH

CAPITA	[[\$]000]	267
G.+M.	(\$1000)	18
LAND	1510001	1
	-	
TOTAL	(\$1000)	286

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1900	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
TREATMENT PLANT BASIN	คาร์การ์วิเทล				,	104	104 5	104
PIPES TOTAL Q.+H.	•	0	•	•	0	43 10	43	43 - 14
TOTAL MINUAL					0	163	165	167

NOTE 1: ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2: AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

	1972	1975	1980	1985	1990	2000	2010	2020	
					. •	.~			. .
STORMMATER VOLUME (MG)									
1 YR STORM RUNOFF	0	3	7	7	7	7			
ANNUAL RUNOFF	Ŏ.	46	97	98	100	105	113	122	
SLUDGE QUANTITIES (DT/YR)									
SEDIMENT. BASIN	0	70	141	143	146	153	164	178	
TREATMENT PLANT	0	•	59	60	61	64	68	74	

TREATMENT SCHEME : STORAGE PLUS TREATMENT AT HUNICIPAL PLANT

SLUDGE HANDLING & PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE I : PRESENT MORTH - CAPITAL COSTS - (81000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	5010	2020	RESIDUAL
SLUDGE HANDLING BASIN PIPES	23 82 788				54 200 1900			•		0 40 570
RESIDUAL	24								TOTAL	630
NET CAPITAL	870									

TABLE II : PRESENT WORTH - G.+M. COSTS

		1972	1975	1980	1965	1990	2000	2010	2020
									
PLANT	(\$1000/YR)	. 0	0	0	60	60	63	48	73
SLUDGE	(\$1000/YR)	0	0	0	6	6	7	7	
SEWERS	(\$1000/YR)	. 0	0	Ô	9	ğ	9	ġ	Ť
TOTAL	(\$1000/YR)	. 0	0	0	76	76	79	85	91
PRESENT VALUE	AT BEGIN-								
NING OF PERIO	D (\$1000)	0	0	0	314	549 -	580	620	0
PRESENT WORTH	(\$1000)	0	0	•	130	162	87 .	47	0

427.754 NET C.+#. =

TABLE III : TOTAL PRESENT WORTH

CAPITAL	. (\$1000)	870
0.+M.	1510001	427
LAND	1 \$10001	4
	-	
TOTAL	(\$1000)	1301

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
SLUGGE HANDLING				4	4	4	4	•
BASIN				. 14	. 14	. 14	14	14
PIPES				137	137	137	137	137
TOTAL O.+M.	. 0	. 0	0	76	76	79	85	91.
TOTAL ANNUAL			0	232	232	236	241	247

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT DUTSTANDING BONDED INDEBTEONESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

STORMMATER TREATMENT PLANT CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN A . CU-84

	1972	1975	1980	1985	1990	2000	2010	2020
STORMHATER VOLUME (MG)								
1 YR STORM RUNOFF	0	2	5	5	6	6	6	7
ANNUAL RUNOFF	0	39	78	79	81	65	92	98
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT-BASIN	0	56	113	116	118	124	134	143
TREATMENT PLANT	0	0	47	48	49	51	56	59

TREATMENT SCHEME : STORAGE PLUS TREATMENT AT MUNICIPAL PLANT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
SLUDGE HANDLING	17				43				•	0
BASIN	78				190					57
PIPES	1016				2450					735
RESIDUAL	30								TOTAL	792
MET CAPITAL	1082									

TABLE II : PRESENT WORTH - O.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
									
PLANT	(\$1000/YR)	•	0	0	48	48	51	55	59
SLUDGE	(\$1000/YR)	0	0	٥	5	5	5	6	6
SEWERS	(\$1000/YR)	0	0	0	12	12	12	12	12
TOTAL	(\$1000/YR)				66	66	69	74	78
PRESENT VALU	E AT BEGIN-							•	
NING OF PERI	00 (\$1000)	0	0	•	273	477 .	503	534	•
PRESENT WORT	H (\$1000)	0	·· ·	- · · · · · · · · · · · · · · · · · · ·	113 "	141	75	40	

371-277

L

TABLE III : TOTAL PRESENT WORTH

CAPITAL Q.+H. LAND	(\$1000) (\$1000) (\$1000)	1082 371 3
TOT AL	(\$1000)	1456

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
SLUDGE HANDLING				3	3	3	3	3
BASIN				13	13	.13	. 13	13
PIPES TOTAL D.+N.	0	٥	0	177 66	177 66	177 69	177 74	177 78
TOTAL ANNUAL	0	0	0	261	261	263	268	272

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT DUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT MAS USED FOR ALL CALCULATIONS

APPENDIX B

This appendix includes all computer printout sheets for the municipal plants and stormwater districts of Plan B except for those municipal plants or stormwater districts which are identical in Plan A. Those which are identical to Plan A are listed below. See Appendix A for these associated computer sheets.

CH - 1	LE - 1	CU -13	CU -50
- 2	- 2	-14	-51A
- 3	- 2 - 3	-15	-51A -54
	- 3 - 4		
- 4		-16	-55
- 5	- 5	-17	-56
- 6	- 6	-18	-57
- 9	- 7	-19	-58
-10	- 8	-20	-60
-11	- 9	-21	-61W
R - 1	-10	-22	-61E
- 3	-11	-23	-62
- 4	-12	- 24	-63E
- 5		- 25	-64W
- 6	CU - 1	-32	-64NE
- 7	- 2	-33	-65
- 8N	- 3	-34A	-66
-10	- 4A	-34B	-68
-12	- 4B,C,D	- 341)	-69
-13	- 5	-35	-70
-14	- 6	-43	-53
-15	- 7	-44	
-16	- 8	-45	
-17	- 9	-46	
-18	-10	-47	
-21	-11	-48	
-22	-12	-49	

Lakewood Willoughby-Eastlake Kent Akron Euclid Easterly Westerly Rocky River

PLAN 8 . LIVERPOOL

	1972	1975	1980	1985	1990	2000	5010	2020
PUPULATION	3121	7323	10920	13300	15683	19769	24357	33333
FLMW (MGD)								
DUME STIC	0.41	0.86	1.31	1.64	1.96	2.57	3.41	5.00
INDUSTRIAL	u.00	0.00	6.30	0.00	0.00	0.00	0.00	0.00
TUTAL	0.41	0.36	1.31	1.64	1.96	2.57	3.41	5.00
SLUDGE (TPD)	•				•			
GENE ! AT CO	Ú.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
DISCHARGED	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

TREATMENT PLANT TYPE : PRELIMINARY TREATMENT

SLUDGE HANDLING TYPE : NUNE

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PKESENT WURTH	1972	1975	1980	1985	1990	2000	2010	2020	RES LOUAL
										
NEW PLANT Sewers	62 1984		70 2 432					70		49 243
R ES I DUAL	11								TOTAL	293
NET CAPITAL	2036									

TABLE II : PRESENT HORTH - O.+M. CUSTS

		1972	1975	1943	1985	1970	2000	2010	2020
PLANT	(\$1000/YR)	46	2	3	4	5	7	9	13
SLUUGE	(\$1000/YR)	5	0	0	0	0	٥	0	0
SE WERS	(\$1000/YK)	0	51	12	12	12	15	12	12
TOTAL	[\$1000/YK]	53	14	15	16	17	19	81	25
	LUE AT BEGIN- RIOD (\$1000)	88	62	66	70	123	142	166	o
PRESENT WO	RTH [\$1000]	88	50	38	29	38	21	12	o
NET 0.+M. :	279								

TABLE III : TUTAL PRESENT WORTH

CAPITA	KL (SIJUU)	2036
U.+H.	[51900]	279
LAND	(\$1000)	0
TOTAL	(\$1000)	279

TABLE IV : ANNUAL CUSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANVUAL CAPITAL								
NEW PLANT		5	5	خ	5	5	5	5
SE IERS		176	176	176	176	176	176	176
TOTAL U.+M.	53	1+	15	16	1.7	19	21	25
TOTAL ANNUAL	53	195	147	193	177	200	202	207

MOTE 1: MANUAL COSTS OF NOT INCLUDE PAISENT AUSTANDING CORDED INDESTEDNESS WITE 2: AN INT. ALST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS.

PLAN B . :	SOUTHERLY
------------	-----------

	1972	1975	1980	1985	1990	2000	2010	2020
POPULATION	546902	631563	716224	874442	1032660	1150890	1219966	1228581
FLOW (HGD) DOMESTIC INDUSTRIAL	88.62 13.03	99.70 15.29	110.78 17.55	132.98 21.02	155.19 24.49	177.19 25.48	194.57 26.45	201.92 27.45
TOTAL	101.65	111.99	128.33	154.00	179.68	202.67	221.02	229.37
SLUDGE (TPD) GENERATED DISCHARGED	107.75 68.96	121.89 78.01	136.03 87.06	163.25 104.48	204.84 131.09	231.04 147.87	251.96 161.26	261.48 167.35

TREATMENT PLANT TYPE : ADVANCED BIGLOGICAL PLANT SLUDGE HANDLING TYPE : STRIP MINE APPLICATION

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
EXISTING PLANT 16563 EXPAND TO LEVEL 1 49092 EXPAND TO LEVEL 2 36511 SLUDGE FACILITIES 5620 SEWERS 13953 SEWERS 13953 4728		55000 16000 19765	23975	88000	19000 15986	110130	55000 16000		47245 39269 0 11423 2659 1976 4794 6394
RESIDUAL 4414		٠						TOTAL	113765

TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT SLUDGE SEWERS	(\$1000/YR) (\$1000/YR) (\$1000/YR)	6121 1179 0	6925 1334 98	7728 1489 213	11382 1042 218	15739 373 298	17753 421 298	19 361 459 298	20092 47 7 298
TOTAL	(\$1000/YR)	7301	8358	9436	12644	16412	18474	20119	20868
PRESENT VALUE NING OF PERIOD		20548	36482	45267	59567	122512	135532	143941	0
PRESENT WORTH	(\$1000)	20548	29776	26345	24714	36239	20384	10997	0

NET 0.+M. = 169006.

TABLE III : TOTAL PRESENT WORTH

0.+M.	(\$1000) (\$1000)	152469 169006
LAND	(\$1000)	2780

TOTAL (\$1000) 324255

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL			١					
EXISTING PLANT						8502	8502	8502
EXPAND TO LEVEL 1		4245	4245	4245	4245	4245	4245	4245
EXPAND TO LEVEL 2		· ·		6793	6793	6733	6793	6793
SLUDGE FACILITIES		1235	1235	1235	1235	1235		1235
SLUDGE FACILITIES		-	•		1466	1466	1235 1466	1466
SEVERS		1430	1430	1430	1430	1430	1430	1430
SEWERS			1735	1735	1735	1735	1735	1735
SEWERS					1157	1157	1157	1157
TOTAL O.+M.	7301	8358	9436	12644	16412	18474	20119	20868
TOTAL ANNUAL	7301	15270	18034	23035	34473	45.141	46087	67436

PLAN B . AUKURA CENTRAL

	1972	1975	1980	1985	1990	2000	2010	2020
DPULAT ION	1990	2563	3136	4842	6549	11600	14020	16285
FLOW (MGD)	•							
DUMESTIC	0.22	0.30	0.38	0.60	0.82	1.51	1.96	2.44
INDUSTRIAL	0.00	0.11	0.22	U-36	0.50	0.22	0.35	0.54
TUTAL	0.22	0.41	0.60	0.96	1.32	1.73	2.31	2.98
	0.22	0.71	0.00	01.70	1.52	1.73	2. 31	2. 70
SLUDGE (TPJ)								
GENERATED	0. 00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
UISCHARGED	0.00	0.00	0.00	0-00	0.00	0.00	0.00	0.00

TREATMENT PLANT TYPE : PRELIMINARY TREATMENT

SLUDGE HANDLING TYPE : NONE

TABLE I : PRESENT WORTH - CAPITAL CUSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDIJAL
NEW PLANT SEWERS SEWERS	46 558 319		52	960		1080		52		37 191 431
RESTOUAL	25								TOTAL	661
NET CAPETAL	898									

TABLE II : PRESENT WORTH - O.+M. COSTS

		1972	1975	1980	1985	1490	2000	2010	2020
PLANT SLUDGE SEWERS	(\$1000/YR) (\$1000/YR) (\$1000/YR)	30 2 0	1 0	2 0 4	3 0 4	4 0 10	6 0 10	8 0 10	10 0 10
TOTAL	(\$1000/YK)	32	 1		8	15	16	18	
	LUE AT BEGIN- Riud (\$1000)	3	17	31	47	110	123	139	o
PRESENT WOR	RTH (\$1000)	3	14	18	19	32	18	10	o
NET 0.+H. =	157								

TABLE III : TOTAL PRESENT WORTH

CAPITA	L (\$1000)	448
U.+M.	(\$1000)	157
LAND	(\$1000)	3ა
	_	
T GT AL	(\$10.50)	1085

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1905	1770	2000	2010	2020
ANNUAL CAPITAL								
NEW PLANT		4	4	4	4	4	4	4
SLAFRS			uy	69	69	69	69	69
SEMERS					78	78	78	78
FUTAL I.+K.	32	1	6	8	15	16	18	21
TOTAL ANNUAL	32	5	٥٥	81	166	168	170	172

NOTE 1 : ANNUAL COSTS OF NOT INCLUDE P ESENT OUTSTANDING BORDED INDEBTEDNESS HOTE 2 : AN INTUGEST MARE OF 7 PERCONE WAS USED FOR ALL CALCULATIONS

WASTE WATER TREATMENT PLANT

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN & . FOWLERS MILL

		1972	1975	1980	1 785	1990	2000	2010	2020
POPU	LATION	3320	4540	>340	6190	7040	8780	11000	13200
FLOW	(MGC)								
	DOMESTIC	0.42	1.53	0.64	0.76	0.88	1.14	1.54	1. 98
	INDUSTRIAL	0.03	0.00	0.00	0.03	0.00	0.00	0.00	0.00
	70.74	0. 42	0.53	0.64	0.76	0.88	1.14	1.54	1.98
	TOTAL	U- 72	V. /3	0.00	00.4	0.00		••••	1070
SLUD	GE (TPG)								
	GENERATED	0.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	GISCHARGED	J-JJ	3.00	0.00	0.00	0.00	0.00	0.00	0.00

TREATMENT PLANT TYPE : PRELIMINARY TREATMENT

SLUDGE HANDLING TYPE : NONE

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESTOUAL
NEW PLANT	35 79 9		40 979					40		28 97
SEWERS	199		717							
RESIDUAL	4								TOTAL	126
NET CAPITAL	329									

TABLE II : PRESENT WORTH - 0.+M. CUSTS

		1972	1975	1980	1985	1990	2000	2010	2020	
PL ANT	(\$1000/YR)	61	2	2	3	3	4	6	8	
SLUDGE	(\$1000/YR)	- A	0	v	3	Q	0	0	0	
SEWERS	(\$1000/YK)	ď	4	4	4	4	4	4	4	
TOTAL	(\$1000/YR)	66	7	7	8	8	9	11	13	
	UE AT BEGIN-				_				_	
NING OF PER	(ng (\$1000)	96	30	32	34	65	75	88	٥	
PRESENT JOH	TH (\$1000)	96	24	18	14	19	11	6	0	
NET (1.44. =	192									

TABLE III : TUTAL PRESENT WORTH

(CAPITAL	(\$1000)	329
	C.+M.	(\$1000)	192
	LAND	(\$1000)	20
	T CT AL	(\$1000)	1041

TABLE IV : ANNUAL CUSTS (\$1000/YR)

	1972	1975	198.	1985	1990	2000	2010	2020
ANNHAL CAPITAL								
NEW PLANT	•	3	3	3	3	3	3	3
Sentau	4.4	10	70	10	70	7 มู	70	70
TOTAL U.+M.	66	,	,	8	5	9	11	13
FOTAL A MUAL	66	51	Ul	82	02	23	85	87

NOTE 1 : ASSUME COSES OF WELL INCOME PROSENT AUTOTAMOING UNIDED INVESTIGATIONS NOTE 2 : A 4 - 194 (0 % of (0.5)) is T - PORCEST. A 5 - USED FOR ALL CALCULATIONS

PLAN S . NEWHURY THP

		1972	1975	1980	1985	1990	2000	2010	2020
PUPU	LATI ON	3000	3585	4170	4845	5>20	6910	8090	10300
FLUA	(MGa)								
	DUMESTIC	0.33	0.41	0.50	0.59	0.69	U. 90	1.13	1.54
	INDUSTRIAL	0.03	J.00	0.00	0.00	0.00	0.00	0.00	0.00
	TOTAL	0.33	0.41	0.50	0.59	0.69	0.93	1.13	1.54
SLUD	SE LTPOL					,			
	GENERATED	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	DISCHARGED	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

TREATMENT PLANT TYPE : PRELIMINARY TREATMENT

SLUDGE HANDLING TYPE : NONE

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	R E SI DUAL
NEW PLANT	30		34					34		24
SEWERS	211					715				285
RESIDUAL	12								TOTAL	310
NET CAPITAL	229									

TABLE II : PRESENT WORTH - 0.+M. COSTS

	1972	1975	1980	1985	1990	2000	2010	2020
PLANT (\$1000/YK)	48	2	2	3	3	4	6	8
SLUDGE (\$1000/YR) SEWERS (\$1000/YR)		0	0	0	0 3	3	0 3	0 3
TOTAL (\$1000/YR)	52	<u>ž</u>	2	3	7		• 9	12
PRESENT VALUE AT SEGIN- NING UF PERIOD (\$1000)	71	10	12	21	55	64	76	0
PRESENT WORTH (\$1000)	71	ช	7	9	16	9	5	0
NET 0.+M. = 127	-							

TABLE III : TOTAL PRESENT WORTH

CAPITAL	(\$1000)	229
U.+M.	(\$1000)	127
LAND	(\$1300)	15
TOTAL	(\$1000)	371

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1960	1985	1990	2000	5010	2020
ANNUAL CAPITAL								
NE 4 PLANT		2	2	2	2	2	2	2
SGAERS					51	51	51	51
TUTAL U.+M.	52	2	2	3	7	8	9	12
TUTAL ANNIAL	52	4	5	5	61			66

NOTE 1 : ANNIAL COSTS OF NOT INCLUDE PRESENT OUTSTANDING HONDLD INDERTEONESS NOTE 2 : AN INFOREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS.

PLAN 8 . CHAGRIN FALLS

	1972	1975	1980	1995	1990	2000	2010	2020
POPULATION	759L	11344	1509/	22705	30313	38564	45924	51296
FLDW (MGO)								
DOMEST 1C	0.84	1.33	1.82	2.78	3.75	5.02	6.43	7.69
INDUSTRIAL	0.15	0.16	0.16	0.16	0.16	0.17	0.17	0.18
FOTAL	0.99	1.49	1.96	2.44	3. 91	5, 19	6.60	7.87
SLUDGE (TPD)								
GE NERATED	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CISCHARGED	0.00	0.30	0.00	0.00	0,00	0.00	0.00	0.00

TREATMENT PLANT TYPE : PRELIMINARY TREATMENT

SLUDGE HANDLING TYPE : NUNE

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
NEW PLANT	83		94					94		67
SEWERS	3160		3872							387
SEWERS	195			336						67
SEWERS	1 08						720			432
RESIDUAL	36								T OT AL	953
NET CAPITAL	3511									

TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020	
PLANT SLUUGE SEWERS	(\$1000/YR) (\$1000/YR) (\$1000/YR)	123	3 0 19	4 0 21	6 0 21	8 0 21	11 0 24	14 0 24	17 0 24	
TOTAL	(\$1000/YK)	130	22	25	27	29	35	39	41	
PRESENT VALUE	UE AT BEGIN- IDD (\$1000)	199	98	108	117	230	263	284	0	
PRESENT NORT	TH (\$1000)	199	80	63	48	68	39	21	0	
NET U.+M. =	520									

TABLE III : TOTAL PRESENT WORTH

CAPITAL	[1000]	3511
G.+M.	(\$1000)	520
L AND	(\$1000)	0
	-	
TOTAL	(\$1000)	4031

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1930	1985	1990	2000	2010	2020
A.M								
ANNUAL CAPITAL								
NEW PLANT		7	7	7	7	7	7	7
SEWERS		230	280	280	280	280	280	280
SEWERS			24	24	24	24	24	24
SEWERS						52	52	52
TUTAL 9.+M.	130	22	25	27	29	35	39	41
FOTAL ANNUAL	130	310	337	915	341	400	403	405

MOFF 1 1 ANNUAL COSTS OF NOT INCLUDE PRESENT OUTSTANDING BUNDED INCENTENCESS.
NOTE 2 1 AN INTEREST RATE OF 7 PERGRAF WAS USED FOR ALL CALCULATIONS.

PLAN 4 . FALMOUNT HUAD

	19/2	197>	1487	1985	1490	2000	2010	2020
POPULATI GN	628	2550	4485	8457	12430	16450	20030	22640
FLOW (MGD)								
DUMESTIC	0.07	0.31	0.54	1.05	1.55	2.14	2.80	3.40
INDUSTRIAL	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL	0.07	0.31	0.54	1.05	1.55	2.14	2.80	3.40
SLUDGE (TPD)								
GENERATED	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
DI SCHARGEU	0.00	6.00	0.33	0.00	0.00	0.00	0.00	0.00

TREATMENT PLANT TYPE : PRELIMINARY TREATMENT

SLUDGE HANDLING TYPE : NUNE

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - 181000)

	PRESENT WURTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
NEW PLANT	49		56					56		39
SEWERS	587		720					,,		72
SEWERS	147					498				199
RESIDUAL	12								TOTAL	311
NET CAPITAL	772									

TABLE II : PRESENT WORTH - D.+M. COSTS

		19/2	1975	1980	1985	1990	2300	2010	2020	
										
PLANT	(\$1000/YR)	9	1	1	3	5	7	9	11	
SLUUGE	(\$1000/YK)	0	Ú	Q	0	0	Ó	٥	ō	
SEWERS	(\$1000/YR)	0	3	3	3	6	6	6	6	
TOTAL	(\$1000/YR)	9	4	5	7	11	13	15	17	
PRESENT VAL	UF AT BEGIN-							•		
NING OF PER	100 (\$1000)	17	20	25	37	85	99	114	0	
PRESENT WOR	TH (\$1000)	17	16	1+	15	25	15	8	0	
NET U.+M. =	113									

TABLE III : TOTAL PRESENT WORTH

CAPITAL	(\$1000)	772
D.+M.	(\$1000)	113
LAND	[\$1500]	0
	•	
TUTAL	[\$1000]	885

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1905	1990	2000	2010	2020
ANNUAL CAPITAL								
NEW PLANT		4	4	4	4		4	4
SEWERS SEWERS		52	52	52	5 2	52	52	52
TUTAL U.+M.	9	4	5	7	36 11	36 13	36 15	36 17
TUTAL ANNUAL	9	61	61	63	103	105	107	109

NUTE 1 1 ANNUAL COSTS DO NOT INCOUGE PRISENT HOUSTANDING HUBBLED INJUSTIONESS MOTE 2 1 AN INTUSEST MATE OF 7 PERCENT HAS USED FOR ALL CALCULATIONS

WASTERATER TREATMENT PLANT

CURPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN 5 . CHAGRIN E. BRANCH

	1972	1975	1930	1485	1490	2000	2010	2020
POPULATION	++20	5205	5990	6985	7980	9600	11340	13020
FLOW (MGD)								
DOMESTIC	0.49	2.61	0.72	0.86	1.00	1.25	1.58	1.95
INDUSTRIAL	C-00	J.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL	0;49	0.01	0.72	0.86	1.00	1.25	1.58	1.95
SLUGGE (TPD)								
GENERATED	0.00	0.00	0.00	0-00	0.40	0.00	0.00	0.00
DI SCHARGED	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

TREATMENT PLANT TYPE : PRELIMINARY TREATMENT

SLUDGE HANDLING TYPE : NONE

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT Worth	1972	1975	1980	1985	1990	- 2000	2010	2020	RESIDUAL
NEW PLANT	35		40					40		28
SEWERS	668		819							81
SE#FRS	315			542						108
RESIDU	AL S								TOTAL	210
MET CAPIT	AL 1011									

TABLE II : PRESENT WORTH - C.+M. CUSTS

		1972	1 975	1930	1985	1790	2000	2010	5050
PLANT	(\$1000/YR)	71	2	3	3	4	5	6	8
SLUOGE	(\$1JJG/YR)	5	0	J	Ü	J	0	0	0
SEWERS	(\$ 1000\ 4 X)	0		6	6	6	6	6	6
TOTAL	(\$100U/YR)	76	6	9	10		12	. 13	15
PRESENT VALUE	AT BEGIN-								
NING OF PERIO	n (21000)	107	34	42	44	32	91	102	0
PRESENT WURTH	(\$1000)	107	27	24	18	24	13	7	ø

NET G.+M. = 224

TABLE III : TOTAL PRESENT WORTH

CAPITAL	. [10000]	1011
0.+ M.	(+1000)	224
LAND	[11000]	20
	-	
TOTAL	1110001	1255

TABLE IV : ANNUAL COSTS (\$1000/YK)

	1972	1975	1930	1935	1993	2000	2010	2370
ANNUAL CAPITAL						~~~~		
NEW PLANT		3	3	3	4	3	3	3
SEWERS		53	59	59	59	5.3	59	59
SÉWERS			39	51)	3.1	34	39	39
TOTAL O.+M.	76	6	9	10	11	1.2	13	15
TUTAL ANNUAL	76	ون	ili	112	117	115	115	116

NOTE 1 T ANNUAL COSTS ON NOT INCLUDE "FLOCIAL OUTSTANDEN COME, O TYPE SO NOTE 2 T AN INTEREST HATE HE T PERCENT HAS USED FOR ALL CALCULATIONS.

PLAN	В		BUTTERNUT	CREEK
	•	•		

		1972	1975	1930	1985	1990	2000	2010	2020
POPU	LATION	2160	263u	3090	3540	4000	508J	6360	7800
FLGd	(MGD) OUMESTIC INOUSTRIAL	0.24 0.00	0.31 0.00	0.37 0.00	0.44 0.00	0.50 0.00	0.66 0.00	0.89 0.00	1.17
	TUTAL	0.24	0.31	0.37	0.44	0.50	0.66	0.89	1.17
SLUD	GE (TPO) GENERATED DISCHARGED	0.00 0.00	0.00 3.00	0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00

TREATMENT PLANT TYPE : PRELIMINARY TREATMENT

SLUDGE HANDLING TYPE : NONE

NET 0.+M. =

139

TABLE 1 : PRESENT WURTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	5010	2020	RESIDUAL
NEW PLANT	24		28					28		19
SEWERS SEWERS	391 272		480	468						4 <i>8</i> 93
RESIDUAL	6								TOTAL	161
NET CAPITAL	682									

TABLE II : PRESENT WORTH - G.+M. COSTS

		1972	1975	1980	1985	1990	2300	2010	2020
PLANT SLUDGE SEWERS	(\$1000/YR) (\$1000/YR) (\$1000/YR)	3\$ 2	2 0 2	2 0 4	2 0 6	3 0 4	4 0	5 0 4	7 0
TOTAL		37		7	7	8	9	10	12
PRESENT VALU		54	23	30	32	60	69	80	0
PRESENT HORI	TH (\$1000)	54	19	17	13	17	10	6	0

TABLE III : TUTAL PRESENT WORTH

CAPITA	L (\$1000)	682
O.+M.	(\$1000)	139
LAND	(\$1000)	12
	-	
TOTAL	(\$1000)	833

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1960	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
NEW PLANT		2	2	2	2	2	2	2
SEWERS		34	34	34	34	34	34	34
SE WER S			3 د	33	33	33	33	33
.K Q JATOT	37	•	7	7	8	9	10	12
TOTAL ANNUAL	37	41	17	78	78	79		33

NOTE 1: ANNUAL COSTS 00 NOT INCLUDE PRESENT DUTSTANDING BUNDED INDIGITEDNESS NOTE 2: AN INTEREST PARE OF 7 PERCENT HAS USED FOR ALL CALCULATIONS

PLAN B . EAST CLARIDUN

	1972	1975	1980	1985	1990	2000	2010	2020
POPULATION	730	950	1170	1425	1680	2380	2780	3200
FLCW (PGD)								
DUMESTIC	0.08	0.11	0.14	0.17	0.21	0.31	U- 39	0.48
INDUSTRIAL	0.00	0.00	0.00	0.00	J. 00	0.00	0.00	0.00
TOTAL	0.08	0.11	0.14	0.17	0.21	0.31	0.39	0.48
SLUGGE (TPD)								
GENERATED	0.00	0.00	0.00	0.00	0.00	0.00	0.20	0.00
DI SCHARGED	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0-00

TREATMENT PLANT TYPE : PRELIMINARY TREATMENT

SLUDGE HANDLING TYPE : NONE

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

,	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
NEW PLANT	16		18					18		12
SEWERS	97		120							12
RESIDUAL	0								TOTAL	24
MET CARITAL	113									

TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
_PLANT	LELOCOLYZJ		-1	1				3	4
SL UDGE	(\$1000/VR)	1	0	0	0	0	ò	0	0
SEWFRS	(\$1000/YR)	ď	0	0		0	0	0	0
TOTAL	(\$1000/YR)	12	1	<u>i</u>	2	2	3	• 4	5
PRESENT VAL	UE AT BEGIN-								
NING OF PER	(100 (\$1000)	17	7	8	10	22	28	34	0
PRESENT MUR	ITH (\$1000)	17	6	5	4	6	4	2	0
NET O.+M. =	46								

TABLE III : TOTAL PRESENT WORTH

CAPITA O.+M.	(\$1000)	113 46
LAND	(\$1000)	5
	-	
TOTAL	(41000)	164

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1990	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
NEW PLANT		1	1	1	1	ı	1	1
St WERS		5	8	8	8	8	8	6
TOTAL D.+M.	12	1	1	2	2	3	4	5
TUTAL ANNUAL	12	11	12	12	 12	13	14	15

NOTE 1: ANNUAL CUSTS DO NOT INCLUDE PRESENT OUTSTANDING PONDED INDESTFONESS NOTE 2: AN INTEREST RATE OF PRESCNIT MAS USED FOR ALL CALCULATIONS

HASTEHATER TREATMENT PLANT

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN B , BURTON

	1972	1975	1980	1985	1990	2000	2010	2020
POPULATION	2800	3950	5100	6350	7600	8700	11200	13300
FLOW (MGD) DOMESTIC INDUSTRIAL	0.31 0.64	0.46 0.70	0.61 0.77	0.78 0.84	0.95 0.92	1.13 1.15	1.57 1.38	1.99
TOTAL	0.95	1.16	1.38	1.62	1.87	2.28	2.95	3.61
SLUDGE (TPD) GENERATED DISCHARGED	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

TREATMENT PLANT TYPE : PRELIMINARY TREATMENT

SLUDGE HANDLING TYPE : NONE

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDU
										
NEW PLANT SEWERS SEWERS SEWERS	50 791 286 70		5 7 970	492		240		57		40 97 98 95
RESIDUAL	12								TOTAL	332
NET CAPITAL	1187									·

TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT SLUDGE SEVERS	(\$1000/YR) (\$1000/YR) (\$1000/YR)	128 8 0	3 0 4	4 0 7	5 0 7	6 0 8	7 0 8	9 0 8	11 0 8
TOTAL	(\$1000/YR)	138	- 8	11	15	14	15	18	20
PRESENT VAL	UE AT BEGIN- 100 (\$1000)	194	42	50	55	107	120	135	0
PRESENT WOR	TH (\$1000)	194	34	29	23	31	18	10	0
NET 0.+M. =	339						•	· · - · ·	

TABLE III : TOTAL PRESENT WORTH

CAPITA O.+M. LAND	(\$1000) (\$1000) (\$1000)	1187 339 36
	-	
TOTAL	(\$1000)	1562

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1930	1935	1990	2000	2010	2020
ANNUAL CAPITAL NEW PLANT		<u> </u>	4	•		•		
SEWERS SEHERS SEWERS		70	70 35	70 35	70 35 17	70 35 17	70 35 17	70 35 17
TOTAL 0.+M.	136	8	11	12	. 14	15	18	20
TOTAL ANNUAL	138	83	152	122	142	143	145	148

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

WASTEWATER TREATMENT PLANT

CURPS OF ENGINEERS - SURVEY SCUPE STUDY

PLAN B . AUGURA THP.

	1 7 7 2	1975	1980	1985	1990	2000	2010	2020
POPULATION	1550	1940	2330	2125	3120	4010	4930	5600
FERM (MGS)								
JBMF STIC	0.17	0.22	0.28	0.33	U. 39	0.53	0.69	0.84
INSUSTRIAL	0.00	0.00	U. 00	0.00	0.00	0.00	0.00	0.00
TOTAL	0.17	0.22	0.28	0.33	0.39	0.53	0.69	0.84
SLUNGE (TPO)								
GENE CATEO	0.00	0.00	0.00	0.00	0.00	0.00	3.00	0.00
DI SCHAPGED	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

TREATMENT PLANT TYPE : PRELIMINARY TREATMENT

SLUDGE HANDLING TYPE : NUNE

TABLE 1 : PRESENT WURTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
NEW PLANT SEWERS	22 195		25	336				25		17 67
RESIDUAL	. 3								TOTAL	85
NET CAPITAL	214									

TABLE II : PRESENT WORTH - 0.+M. COSTS

	1972	1975	1980	1935	1990	2000	2010	2020
PLANT (\$1000/YK)	24	1	2	5	2	4	5	6
SEUDGë 141330/7/1.						0 _		
SEWERS (\$1000/YH)	ò	Ō	1	i	ī	i	1	1
TUTAL (51000/Y4)	26	1	3	4	4	5	. 6	8
PRESENT VALUE AT BEGIN-								
NING UF PEKIUD (\$1000)	35	11	16	1 8	36	44	52	0
PRESENT WORTH (\$1000)	35	9	9	7	10	6	4	0
NET 0.+M. = 84								

TABLE III : TOTAL PRESENT WORTH

CAPITAL	1 \$10001	214
U.+M.	(\$1000)	84
LAND	(\$10,0)	ಕ
TOTAL	(\$1000)	306

TABLE IV : ANNUAL CUSTS (\$1000/YR)

	1472	1915	1930	1485	1990	2000	2010	2020
ANNUAL CAPITAL								
NEI PLAT		1	1	1	1	1	1	ı
SEHER S			24	24	24	24	24	24
TOTAL J.+H.	26	1	3	4	4	5	6	8
TOTAL ANNUAL	26	٠	30	3)	٠	31	33	34

NOTE 1 : ANYONE COSTS ON THE INCLUDE PROSPRIED HUTSTANDING SOCIED ENGLISHED TONESS. NOTE 2 : AN INFRICEST ONLY OF TIPE WENT WAS USED FOR ALL CALCULATIONS.

PLAN B . IFDY IMP.

	1972	1975	1980	1965	1990	2000	2010	2020
POPULATION	820	1035	1250	1465	1680	2230	2720	3140
FLOW (MGD)								
034757 (C	0.09	U. 12	0.15	0.18	0.21	0.29	0.38	0.47
INDUSTRIAL	0.00	0.00	0.00	0.00	J- 00	0. 00	0.00	0.00
TUTAL	0.09	0.12	0.15	0.18	0.21	0.29	0-38	0.47
SLUDGE (TPD)								
GENERATED	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
DI SCHARGED	0. 00	J. 00	0.00	0.00	0.00	0.00	0.00	0.00

TREATMENT PLANT TYPE : PRELIMINARY TREATMENT

SLUDGE HANDLING TYPE : NONE

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WURTH	1972	1975	1980	1965	1990	2000	2010	2020	RESIDUAL
NEW PLANT	16		18					18		12
RESIDIAL	o								TOTAL	12
NET CAPITAL	15									

TABLE 11 : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
									
PL ANT	(\$1000/YK)	13	1	1	1	2	Z	3	4
SLUDGE	(\$1u00/YR)	• • • • • • • • • • • • • • • • • • • •	0	0	0	Ó	0	0	0
SEMFHS	(\$1000/YR)	oʻ	ō	٥	0	Ō	0	ø	ø
TATAL	(\$1000/YK)	14	 1	<u>ī</u>	1		2	3	
PRESENT VAL	UE AT BEGIN-							•	
	(100 (\$1000)	20	5	6	8	17	24	30	o
PRESENT WOR	TH (\$1000)	20	4	4	3	5	3	2	0
NÉT 0.+M. =	44								

TABLE III : TOTAL PRESENT WORTH

CAPITAL	(\$1000)	15
U.+M. LAND	(\$1000)	5

TUTAL (\$1000)

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1912	1975	1985	1985	1990	2030	2010	2020
A400141 C.O. T.A.								
ANNUAL CAPITAL NEW PLANT		ì	1	1	1	1	1	. 1
TOTAL U. +Ma	14	ì	1	1	Z	2	3	4
TUTAL ANNUAL	14	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2		3		5	6

NOTE 1 1 ANNUAL COSTS OF BUT INCLUDE 250, SENT OUTSTANDING HUNDED INDERTEONESS NOTE 2 1 AN INTEREST RATE OF 7 PERCENT WAS USED FOR MEL CALCULATIONS.

PLAN B . MANTUA

	1972	1975	1940	1995	1990	2000	2010	2020
AT ION	1440	1645	1850	2115	2380	2940	3620	3975
(MGO)								
DUMI STIC	0.16	0.19	0.22	0.27	0.33	0.38	0.51	0.60
INDUSTA 14L	0. 13	0.14	0.15	0.16	0-17	0.20	0.23	0.26
TUTAL	0.29	0.33	0.37	0.43	0.50	0.58	0.74	0.86
(TPU)					•			
SENERATED	0.00	0.00	0.06	0.00	0.00	0.00	0.00	0.00
JI SCHARGED	0.00	0.00	0.40	0.00	0.00	0.00	0.00	0.00
	IMGO) DUMISTIC NUDUSTRIAL TUTAL E ITPU) SENERATEU	ATION 1440 [MGA] DUMISTIC 0.16 [MDUSTRIAL 0.13 [UTAL 0.29 [ITPU] SENEKATED 0.00	ATION 1440 1645 [MGG] DUMISTIC 0.16 0.19 [MDUSTRIAL 0.13 0.14 [UTAL 0.29 0.33 [ITPU] SENEKATEU 0.00 0.00	ATION 1440 1645 1850 [MGG] DUMISTIC 0.16 0.19 0.22 [MDUSTRIAL 0.13 0.14 0.15 [UTAL 0.29 0.33 0.37 [ITPU] SENEKATED 0.00 0.00 0.00	ATION 1440 1645 1850 2115 [MGG] DUMISTIC 0.16 0.19 0.22 0.27 [MDUSTRIAL 0.13 0.14 0.15 0.16 [UTAL 0.29 0.33 0.37 0.43 [ITPU] SENEKATED 0.00 0.00 0.00 0.00	ATION 1440 1645 1850 2115 2380 [MGA] [MGA] [MGA] [MUSTRIC 0.16 0.19 0.22 0.27 0.33 [MUSTRIAL 0.13 0.14 0.15 0.16 0.17 [MUSTRIAL 0.29 0.33 0.37 0.43 0.50 [TPU] [TUTAL 0.29 0.33 0.37 0.43 0.50 [TPU] [ENERATED 0.00 0.00 0.00 0.00 0.00 0.00	ATION 1440 1645 1850 2115 2380 2940 [MGA] [MGA] [MGA] [MUSTRIC 0.16 0.19 0.22 0.27 0.33 0.38 [MUSTRIAL 0.13 0.14 0.15 0.16 0.17 0.20 [MTAL 0.29 0.33 0.37 0.43 0.50 0.58 [TPD] [ETPL] [ENERATED 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	ATION 1440 1645 1850 2115 2380 2940 3620 [MGA] [

TREATMENT PLANT TYPE : PRELIMINARY TREATMENT

SLUDGE HANGLING TYPE : NOME

	PHESENT	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
NEW PLANT	22		25					25		17
RESIDU	NL 0								TOTAL	17
NET CAPITA	AL 21									
			TABLE	II : PRESI	ENT WORTH -	- 0.+M. CO	212			
		1972	1975	1980	1985	1990	2000	2010	2020	
PLANT	(\$100u/YR)	42	2	2	3	3	4	5	6	
SEMER 2	(\$1000/YR) (\$1000/YR)	3	0	0	O U	0	0	0 u	0	
TOTAL	(\$1000/YR]	45	 2	2	3	3		<u>-</u> \$		
PRESENT VALUE NING OF PERIOR		61	10	12	14	29	35	. 43	o	
PRESENT WORTH	(\$10001	61	8	7	6	8	5	3	0	
NET (1.+M. =	101									
			TABLE	111 : 1014	AL PRESENT	NURTH				

CAPITAL	(\$1000)	21
U.+ M.	(\$1300)	101
LAND	0	
	-	
TOTAL	(\$1000)	122

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1 975	1960	1785	1990	5000	5010	5050
ANNUAL CAPITAL					~			
NEW PLANT		1	1	1	1	ι	ı	
TOTAL U.+M.	45	2	2	3	3	4	Š	6
TOTAL ANNUAL	45		4	 5		6	-·· ;	

NOTE 1 : ANNUAL COSTS DO NOT INCLUSE PRESENT OUTSTANDING BURGED EXPEDITEDNESS MALE 2 : AN INTEREST RATE OF 7 PENCINT WAS USED FOR ALL CALCULATIONS

MASTEHATER TREATMENT PLANT

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN B . RANDOLPH THP.

	1972	1973	1980	1985 _	1390	2000	2010	2020
POPULATION	1820	2160	2500	2850	3200	3840	4450	5000
FLOW (MGD)								
DOMESTIC	0.20	0.25	0.30	0.35	0.40	0.50	0.65	0.75
INDUSTRIAL	0.00	0.00	0.00	0.00	0.00	0.00	0.00	7.00
TOTAL	0.20	0.25	0.30	0.35	0.40	0.50	0.65	0.75
SLUDGE (TPD)					1 11			
GENERATED	U.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
DI SCHARGED	o . 00	0-00	0.00	0.00	0.00	0.00	0.00	0.00

TREATMENT PLANT TYPE : PRELIMINARY TREATMENT

SLUDGE HANDLING TYPE : NONE

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
										
NEW PLANT	20		23					23		16
SEWERS	172		511							51
RESIDUAL	1								TOTAL	37
NET CAPITAL	191									

FABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT SLUDGE	(\$1000/YR) (\$1000/YR)	29	2	5	2	3 0	•	5 0	6 0
SEWERS	(\$1000/YK)	30	<u>-</u>		1		<u>1</u>		
PRESENT VALUE NING UF PERIOR		32 46	13	. 15	3 16	32	39	. *	0
PRESENT WORTH	(\$1000)	46	10	8	6	9	5	3	0

NET 0.+M. =

TABLE III : TOTAL PRESENT WORTH

CAPITAL D.+M. LAND	(\$1000) (\$1000) (\$1000)	191 91 8
TOTAL	(\$1000)	290

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
NEW PLANT		1	1	1	1	1	1	ı
SEWERS		15	15	15	-15	15	15	15
TOTAL 13.4M.	32	3	3	3	4	5	6	7
TOTAL ANNUAL	32	20	20	20		22		24

NOTE 1: ANNUAL COSTS OF NOT INCLUDE PRESENT OUTSTANDING BUNDED INDESTFONESS NOTE 2: AN INTERIST MATE OF 7 PERCENT MAS USED FOR ALL CALCULATIONS

WASTEWATER INLATMENT PLANT

CURPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN & . UPPER EAST BRANCH

	1972	1975	1980	1985	1990	2000	5010	2020
POPULATION	721	1863	3000	4220	5440	6230	6860	7333
FLUM (MGD) DUMESTIC INDUSTRIAL	0.04 0.00	0.22 0.00	0.36 0.00	0.52 4.00	0.68 0.00	0.81 0.00	0.96 0.00	1-11
TOTAL	0.08	0.22	U-36	0.52	0.68	0.81	0.46	1.11
SLUDGE (TPD) Generated Discharged	0.00 0.00	'0.00 0.00	0.00	0.00 9.00	0.00 0.00	0.40 0.00	0.00 0.00	0.00 0.00

TREATMENT PLANT TYPE : PRELIMINARY TREATMENT

SLUDGE HANDLING TYPE : NUNE

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT	1972	1975	1980	1985	1990	2000	2010	2020	KESI DUAL
NEW PLANT	23		56	•				26		18
R ES I DUAL	٥								TOTAL	18
NET CAPITAL	22									

TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	0	1	2	3	4	5	7	8
SLUDGE	(\$1J00/YR)	ō	ō	Ö	ō	ō	ō	ò	ŏ
SEWERS	(SLUGG/YR)	Ö	Ō	Ō	Ō	Ō	ŏ	ŏ	ŏ
TOTAL	(\$1000/YR)	0	1	2	3	4	5	7	
PRESENT VALUE A	T BEGIN-								
NING OF PERIOD		Z	8	13	17	38	45	53	0
PRESENT WORTH	(\$1000)	2	7	7	7	11	6	4	0

NET 0.+M. = 47.2511

TABLE III : TOTAL PRESENT WORTH

CAPITAL O.+M. LAND	(\$1000) (\$1000)	22 47 0
TaTA	(\$1000)	40

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
HER PLANT		2	2	2	2	2	2	2
TOTAL O. +M.	0	1	2	3	4	5	7	ā
TOTAL ANNUAL								10

MOTE & 4 AMMIAC COSTS ON BUT TACCOUR PRESCRI DUTSTANDING HISDED INDEBTEUNESS NUTS 2 4 AN INTEREST RATE OF 7 PERSONS WAS USED FOR ALL CALCULATIONS

MASTEMATER TREATMENT PLANT

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN B . HINCKLEY

		1972	1975	1980	1965	1990	2000	2010	2020
POPU	LATION	1090	2835	4580	6450	8320	9600	10700	11470
FLUJ	[HGU] DUME STIC [NOUST KI AL	0.12 0.00	4. 33 4. 00	0.55 0.00	0.79 0.00	1.04	1.25	1.50	1.72
	T GT AL	V.12	9.33	0.55	0. 79	1.04	1.25	1.50	1.72
SLUDO	GE (TPO) GENEPATED OISCHARGED	0.00 0.00	4.00 4.00	0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00

TREATMENT PLANT TYPE : PRELIMINARY TREATMENT

SLUDGE HANDLING TYPE : NONE

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RES IDUAL
NEW PLANT Sewers	32 2309		36 2830					36		25 283
RESIDU	NL 11								TOTAL	308
NET CAPIT	AL 2330		٠							

TABLE II : PRESENT WURTH - 0.+M. COSTS

	1972	1975	1960	1985	1990	2000	2010	2020	

(\$1000/YR)	٥	1	2	3	4	5	7	8	
(\$1000/YK)	0	Ð	o	0	0	v	0	0	
(\$1J00/YR)	0	14	14	14	14	14	14	14	
(\$1000/YR)	0	15	16	17	19	20	21	22	
LUE AT BEGIN-									
RIND (\$1000)	21	66	71	75	137	145	153	0	
KTH (\$1000)	21	54	41	31	40	21	11	a	
1	(\$1000/YK) (\$1000/YK) (\$1000/YK) UE AT BEGIN- SIND (\$1000)	(\$1000/YR) 0 (\$1000/YR) 0 (\$1000/YR) 0	(\$1000/YR) 0 1 (\$1000/YR) 0 D (\$1000/YR) 0 14 (\$1000/YR) 0 15	(\$1000/YR) 0 1 2 (\$1000/YR) 0 0 0 (\$1000/YR) 0 14 14 (\$1000/YR) 0 15 16	(\$1000/YR) 0 1 2 3 (\$1000/YR) 0 0 0 0 0 (\$1000/YR) 0 14 14 14 (\$1000/YR) 0 15 16 17	(\$1000/YR) 0 1 2 3 4 (\$1000/YR) 0 D 0 0 0 (\$1000/YR) 0 14 14 14 14 (\$1000/YR) 0 15 16 17 19 UE AT BEGIN- SIND (\$1000) 21 66 71 75 137	(\$1000/YR) 0 1 2 3 4 5 (\$1000/YR) 0 D 0 0 0 0 (\$1000/YR) 0 14 14 14 14 14 (\$1000/YR) 0 15 16 17 19 20 UE AT BEGIN- (\$1000) 21 66 71 75 137 145	(\$1000/YR) 0 1 2 3 4 5 7 (\$1000/YR) 0 0 0 0 0 0 0 0 (\$1000/YR) 0 14 14 14 14 14 14 (\$1000/YR) 0 15 16 17 19 20 21 UE AT BEGIN- (\$1000) 21 66 71 75 137 145 153	(\$1000/YR) 0 1 2 3 4 5 7 8 (\$1000/YR) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NET O.+M. . 222.852

TABLE III : TOTAL PRESENT WORTH

CAPITAL	[\$1000]	2330
U.+M.	[\$1000]	222
LAND	(\$1,00)	0
TOTAL	(41000)	2552

TABLE IV : ANWIAL COSTS (\$1000/YR)

	19/2	1975	1980	1985	1390	2000	201 0	2020
ANIMAL CAPITAL								
NEW PLANT		2	2	2	2	2	2	2
SEWERS		204	204	204	204	204	204	204
TOTAL U. M.	0	15	16	17	19	20	21	22
TOTAL ANNUAL	3	223	224	225	226	227	228	229

MUTC 1 1 ANNIME COSTS DU NUT INCLUSE PRESENT OUTSTANDING HUNDED INDECTIONESS NUTF 2 2 AN INTEREST RATE OF 7 PERCENT HAS USED FOR ALL CALCULATIONS

WASTEWATER TREATMENT PLANT

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN B . MALLET CREFK

	1972	1975	1980	1 985	1990	2000	2010	2020
POPULATION	900	1285	1670	2035	2400	3080	3570	4000
FLOW (MGD) DOMESTIC INDUSTRIAL	0.10 0.00	3.15 0. 00	0.20 0.00	0. 25 0.00	0.30 0.00	0.40 0.00	0.50 0.00	0.60 0.00
TOTAL	0.10	0.15	0.20	0.25	0.30	0.40	0.50	0.60
SLUDGE (TPD) GENERATEU UISCHARGED	0.00 0.00	0.00	0.00 0.00	0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00

TREATMENT PLANT TYPE : PRELIMINARY TREATMENT

SLUDGE HANDLING TYPE : NUNE

NET D.+4. = 61

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

- -- --

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RES IDUAL
NEW PLANT SEWERS	17 148		20 182					20		14 18
RESIDUAL	1								TOTAL	32
NET CAPITAL	165		,							
			TABLE	II : PRES	ENT WORTH	- 0.+M. CO	sts			
		1972	L975	1980	1985	1990	2000	2010	2020	

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$ 1000/YR)	12	1	2	2	3	4	5	6
SLUDGE	(\$1000/YR)		0	0	Ö	0	0	Ō	٥
SEWERS	[\$1000/YK]	ō	o	0	ō	Ŏ	ō	0	ō
TOTAL	(\$1000/YK)	13	 2	<u>2</u>	3	3	4	6	7
PRESENT V	ALUE AT REGIN-								
NING OF P	ERIOD (\$1000)	19	11	13	15	31	38	45	0
PRESENT N	H)RTH [\$1000]	19	9	7	6	9	5	3	o

TABLE III : TOTAL PRESENT WURTH

CAPITAL	(\$1000)	165
U.+M.	(\$1000)	61
LAND	(\$1030)	0
TOTAL	(\$1000)	226

TABLE IV : ANNUAL CUSTS (\$1000/YR)

	1972	1975	1980	1985	1490	2000	2010	2020
ANNUAL CAPITAL								
NEW PLANT		1	1	1	1	1	1	1
SEWERS		13	13	13	13	13	13	13
TOTAL O.+M.	13	2	2	3	3	4	6	7
TOTAL ANNUAL	13	17	17	13	18	19	20	

MOTE 1 : ANNUAL COSTS DJ NGT INCLUDE PRESENT UUTSTANDING BONDED INDERTEUNESS NOTE 2 : AN IMPEREST HALL OF T PERGENT HAD USED FOR ALL CALCULATIONS

PLAN B , RAVERNA

NET 0.+/1. =

	1972	1975	1980	1)35	1990	2000	2010	2020
POPULATION	13445	178-4	22324	23/42	37160	53650	66220	74315
FLOW (MGD) DOMESTIC INDUSTRIAL	1.43 0.57	0.62 2.03	2.63 0.67	3.66 5.72	4.64 0.77	7.62 0.91	9.55 1.05	11.15
TOTAL	2.05	2.70	3.35	4.33	5.41	3.53	10.60	12.34
SLUDGE (TPD) GENERATED DISCHARGED	0.00	2.00 0.00	0.00	0. 0 0 0.00	0.00 0.00	0.00	0.00	0.00

TREATHERT PLANT TYPE : PRELIMINARY TREATMENT

SLUDGE HANDLING TYPE : NONE

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1930	1935	1990	2000	2010	2020	RESIDUAL
HEM PLANT SEVERS	111 1204		125 1476					125		89 147
RESIDUAL	9								TOTAL	236
HET CAPITAL	1307									
			TABLE	II : PRES	ENT WORTH	- 0.+M. CO	STS			

		1972	19/5	1930	1935	1990	2000	2010	2020
PLANT SLUDGE SEVERS	(\$1000/YR) (\$1000/YR) (\$1000/YR)	202 8 0	5 0 7	6 0 7	3 0 7	10 0 7	17 0 7	21 0 7	24 0 7
TOTAL	(\$1000/YR)	210	12	14	16	13	24	58	32
PRESENT VALUE		291	55	62	70	150	136	213	0
PRESENT WORTH	(\$1000)	291	45	36	29	44	2 3	16	0

TABLE III : TOTAL PRESENT WORTH

CAPITAL	(\$1000)	1307
0.+11.	(\$1000)	490
LAND	(\$1000)	0
TOTAL	(\$1,000)	1797

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1933	1,935	1990	2000	2010	2020
ANNUAL CAPITAL								
NEW PLANT SEWERS TOTAL O.+N.	210	106 12	198 14	106 16	126 13	106 24	106 28	106 32
TOTAL ABBUAL	210	150	137	132	134	141	1115	143

HOTE 1: ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDESTEDNESS NOTE 2: AN INTEREST PATE OF 7 PERCENT (AS USED FOR ALL CALCULATION)

PLAN B . MEDINA CO.

NET C.+M. =

	1972	1975	1980	1985	1990	2000	. 2010	2020
POPULATION	3727	7323	10920	13300	15680	19769	24357	33333
FLUM (MGD) DOMESTIC INDUSTRIAL	0.41 0.00	0.86 4.00	1.31 0.60	1-64 0-00	1.96	2.57 0.00	3.41 0.00	5.00 0.00
TOTAL	0.41	0.86	1.31	1.64	1.96	2.57	3.41	5.00
SLUDGE (TPD) GENERATED DISCHARGED	0.00 0.00	0.00 0.00	0.00 0.00	0. 00 0.00	0. 00 0.00	0.00 0.00	0.00 0.00	0.00 0.00

TREATMENT PLANT TYPE : PRELIMINARY TREATMENT

SLUDGE HANDLING TYPE : NONE

211

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRE SENT WORTH	L972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
NEW PLANT SEWERS	62 1090		70 1336					70		49 133
RESTOUAL	. 7								TOTAL	183
MET CAPITAL	1145									

TABLE II : PRESENT WORTH - O.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT SLUDGE SEWERS	[\$1000/YR] [\$1000/YR] [\$1000/YR]	48 5	2 0 6	3 0 6	4 0 6	5 0 6	7 0 6	9 0 6	13 0 6
TOTAL	(\$1000/YR)	53		10	11	12	13	16	20
THE SENT VALUE		6 1	39	43	47	90	104	127	0
PRESENT WORTH	(\$1000)	81	32	25	19	26	15	9	0

TABLE III : TOTAL PRESENT WORTH

1145 211	(\$1000) (\$1000)	CAPITAL
211	(\$1000)	LAND
U	1210001	LAND
1356	(\$1000)	TOTAL

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ARNUAL CAPITAL								
NEW PLANT		5	5	5	5	5	5	5
S Ew ERS		96	96	96	96	96	96	96
OTAL n.+M.	53	9	15	11	12	13	16	20
JALMINA JATOT	53	111	112	113	114	115	118	122

THE 1: ANNUAL COSTS ON NUT INCLUDE PRESENT DUTSTANDING BUNDLD INDESTFUNESS HOTE 2: AN INTERFST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

WASTEMATER TREATMENT PLANT

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PI AM	•	MEH	MEDI	ALC:
PR AM	23 .	REW	meu	7

	1972	1975	1980	1985	1990	2000	2010	2020	
POPULATION	5545	10939	16333	19886	23440	29540	36500	49866	
FLOW (MGD) DOMESTIC INDUSTRIAL	1.38 0.78	2.14 0.87	2.91 0.96	3.48 1.04	4.05 1.13	5.28 1.42	6.82 1.71	7.48 2.01	
TOTAL	2.16	3.01	3.87	4.52	5.18	6.70	8.53	9.49	-
SLUDGE (TPD) Generated Discharged	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 0.00	

TREATMENT PLANT TYPE : PRELIMINARY TREATMENT

SLUDGE HANDLING TYPE : NONE

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	5050	RESIDUA
			-		***************************************					
NEW PLANT	93 1167		105 1430			÷		105	· · · -	143
RESIDUAL	8								TOTAL	217

NET CAPITAL 1252

TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT SLUDGE SEWERS	(\$1000/YR) (\$1000/YR) (\$1000/YR)	161	6 0 7	8 0 7	9 0 7	11 0 7	14 0 7	18 0 7	20 0 7
TOTAL	(\$1000/YR)	161	13	15	17	18	51	· 25	27
PRESENT VALUE A		249	60	67	72	141	167	188	₀ -
PRESENT WORTH	(\$1000)	249	49	38	30	41	25	14	0

NET 0.+M. = 446

TABLE III : TOTAL PRESENT WORTH

PITAL +M.		1252 446 0
	_	
TAL	(\$1000)	1698

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2050
ANNUAL CAPITAL		-	~					
NEW PLANT		8	8	8	8	8	8	8
SEWERS		103	103	103	103	103	103	103
TOTAL O.+M.	179	13	15	17	18	21	25	27
TOTAL ANNUAL	179	125	127	128	130	133	137	139

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING NONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

WASTELLATER TREATMENT PLANT

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN B , SHALER SUORO

	1972	2775	1930	1985	1999	2001	2010	2020
PUPULATION	5360	6160	7300	7230	8)60	10)20	12363	13333
FLOW (NGD) DUNCSTIC HAUSTRIAL	0.57 0.00	1.71 3.00	0.00	0.98 0.00	1.12	1.42	1.73	2.03
TOTAL	0.5)	9.71	3.84	0.93	1.12	1.42	1.73	2.00
SLUDGE (TPU) GENERATED DISCHARGED	0.00 0.00	3.00 9.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00

TREATHENT PLANT TYPE : PRELIMINARY TREATHENT

SLUDGE HANDLING TYPE : NONE

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT	1972	1375	1930	1935	1997	2000	2010	2020	RESIDUAL
HEW PLANT SEWERS	35 323	r	40	556				40		28 111
RESIDUAL	5								TOTAL	139
HET CAPITAL	353									

TABLE II : PRESENT WORTH - 0.+M. COSTS

PLANT (\$1000/YR) SLUDGE (\$1000/YR) SEWERS (\$1000/YR)	ō	3 0 3	30 2	4 0 2	4 3 2	6 0 2	7 0 2	3 0 2
101AL (\$1000/YR)	2	3	 6	7	7		10	
PRESENT VALUE AT BEGIN- HING OF PERIOD (\$1000)	7	19	27	30	53	67	76	э
PRESENT WORTH (\$1000)	7	16	16	12	17	10	5	0

NET 0.+M. = 85.6765

TABLE III : TOTAL PRESENT WORTH

CAPITA O.+N. LAND	(\$1000) (\$1000) (\$1000)	353 85 33
	-	
TOT	CEL 1203	1173

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1)72	19/5	1930	1955	1990	2010	2010	2020
ANNUAL CAPITAL								
HEN PLANT SEHERS		3	3 40	3 40	3 43	40	43 43	43 43
TOTAL O.+IS.	5	3	6	7	7	Ĵ	10	11
TOTAL ARRUAL	2		4.1	١٠ از	51	58	- 53	54

NOTE 1 : ANNHAL COSTS DO NOT INCLUDE PREJENT OUTSTANDING SOURCE INDESTEDNESS HOTE 2 : AN INTEREST RATE OF 7 PERCENT MAS USED FOR ALL CALCULATIONS

PLAN B . CHARDON

		1972	1975	1980	1985	1990	2000	2010	2020
POPU	LATE ON	1806	2980	4160	6060	8000	10000	12100	13300
FLOW	(MGO) DGMESTIC INDUSTRIAL	0- 00 0- 02	0.03 0.00	0.05 0.00	0.07 0.00	0.10 0.00	0.13 0.00	0.17 9.00	0.20 0.00
	TOTAL	0-02	0.03	0.05	0.07	0.10	0.13	0,17	0.20
SLUD	GE (TPD) GENEKATED DISCHARGED	0-00 0-00	0.00	0.00 0.00	0.00 0.00	0-00 0-00	0.00 0.00	0.00 0.00	0- 00 0- 00

TREATMENT PLANT TYPE : PRELEMINARY TREATMENT

SLUDGE HANDLING TYPE : NOME

6.7929

NET D.+M. .

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT	1972	1975	1940	1985	1990	2000	5010	2020	RES IQUAL
EXISTING PLANT	6			10					10	
RESIDUAL	•								TOTAL	
NET CAPITAL										

TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	•	0	0	0	0	0	1	1
SLUDGE	(\$1000/YR)	0	0	0	0	0	0	Ō	0
SEWERS	(\$1000/YR)	•	0	0	0	0	0	0	9
TOTAL	(\$1000/YR)	•		0		0	0	. 1	1
PRESENT VALU	F AT REGIM-								• • • •
NING OF PERI		0	1	1	2	5	7	9	•
PRESENT WORTH	H [\$1000}	•	0	1	1	1	1	0	•

TABLE III : TOTAL PRESENT WORTH

CAPITAL U.+M. Land	(\$1000) (\$1000) (\$1000)	6 4 0
	•	
TOTAL	(\$1000)	12

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPETAL								
EXISTING PLANT			. 0	0	0	Q	0	0
TOTAL O.+M.	•	0	' G	Ç	0	0	ı	1
TOTAL ANNUAL		0		1		1		2

NOTE 1 : ANNUAL CUSTS DU NUT INCLUDE PRESENT OUTSTANDING BONDEC INDEBTEONESS NOTE 2 : AN INTEREST MATE UP 7 PEACENT WAS USED FUR ALL CALCULATIONS

STORMBATER TREATMENT PLANT CORPS OF EMPLOYERS - SURVEY SCOPE STUDY

PLAN B , CH-7

	1972	1975	1983	1965	1490	2000	5010	2020
STURNWATER VULUAR ING)								
1 YR STORM RUNCEF	٥	J	0	1	2	3	3	3
ANNIAL RUNUFF	0	ð	0	15	30	45	61	61
SLUDGE DUANTITIES (DT/YR)								
SEDIMENT-BASIN	0	0	U	0	56	84	114	114
TREATMENT PLANT	0	0	0	0	0	٥	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT ON LAND

SEUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE I : PRESENT WORTH - CAPITAL EOSTS - (\$1000)

	PRESENT HURTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
TREATMENT PLANT	81					275				38
BASIN	39					135				53
PIPES	59					200				79
RESIDUAL	6								TOTAL	172
NET CAPITAL	173									

TAGLE II : PRESENT WORTH - 0.+M. CESTS

		1972	1975	1980	1985	1990	2000	5010	2020
									
PLANT	(\$1000/YR)	0	0	0	0	1	1	2	2
SLUDGE	(\$1000/YR)	0	0	0	0	1	2	2	2
SEWERS	(\$1000/YR)	o	0	o	0	0	o	0	0
TOTAL	(\$1000/YR)	ō		0	0	3	4	5	5
PRESENT VA	LUE AT BEGIN-							•	
	RIOD (\$1000)	0	0	0	0	28	37	42	0
PRESENT WO	KTH (\$1000)	0	0	0	0		5	3	o

NET 0.+#. = 17.313

TABLE III : TOTAL PRESENT WORTH

 U. +M	1410771		
LAND	(\$1000)	4	
T OT AL	(\$1000)	195	

TAPLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1490	2000	2010	2020
ANNUAL CAPITAL				·				
TREATMENT PLANT					21	21	21	21
BAS IN					9	9	9	9
PIPES					14	14	14	14
TOTAL U.+M.	0	ů	0	0	3	•	5	5
TOTAL ANNUAL		0			43	50	51	51

NOTE 1: ANNUAL CUSTS DU NOT INCLUDE PRESENT OUTSTANDING HONDED INDERTEDWESS NOTE 2: AN INTEREST MATE UP 7 PERCENT WAS USED FOR ALL CALCULATIONS

	1972	1475	1980	1 485	1990	2000	2010	2020
STORMMATER VOLUME (46)								
1 YR STURM MUNUFF	0	0	v	1	2	2	4	4
ANNUAL RISUFF	O	v	0	24	46	48	73	73
SLUDGE QUANTITIES (OFFICE)								
SEUIMINT. 13111	υ	0	0	0	90	90	136	136
TREATM-NI PLANT	U	0	ů.	0	0	0	0	0

TREATMENT SCHEME : STURAGE PLUS TREATMENT ON LAND

SELOGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STURAJE BASIN : EARTH

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
TREATMENT PLANT	83					300				41 58
BASIN	43					147				58
PIPES	702					2647				1058
RESTOUAL	44								TOTAL	1159
NET CAPITAL	370									

TABLE II : PRESENT WURTH - U.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
			0	0	_			•	2
PLANT	(\$1007/98)	0	-	v	0	•			•
SLUDGE	(\$1U00/YA)	Ü	0	U	0	~	2	3	,
SE WERS	(\$1000/YR)	o	0	0	0	13	13	13	13
TOTAL	(\$1000JY8)	o	0	0	0	17	17	19	19
PRESENT VAL	LUP AT BEGIN-								
NENG OF PER	KIUD (\$1000)	0	0	0	0	120	127	134	o
PRESENT WOR	RTH (\$1000)	0	0	0	0	35	19	10	0

NET 0.+M. = 65.1832

TABLE III : TOTAL PRESENT WURTH

TUTAL	(\$1000)	936
LAND	(2 (0 0 0)	1
0.+M.	(\$1000)	65
CAPITAL	(\$1000)	870

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1965	1990	2000	2010	2020
ANNUAL CAPITAL								
TREATMENT PLANT					23	23	23	23
BAs IN					10	. 10	10	10
PIPES					191	191	191	191
TOTAL O.+M.	ა	o	0	0	17	17	19	19
TOTAL ANNUAL	0			0	242	242	244	244

NOTE 1 : ASSUME COSTS OF NOT INCLUDE THE STATE OFFICE AND INCLUDENT PARTY OF THE PROPERTY OF THE AND INCLUDENT MATERIAL OF THE PROPERTY OF THE ALL CALCULATIONS.

STEW WAT IN TARSES MT PLANT

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PEAN U . CH-12613

	1972	1975	1980	1 465	1990	2000	2010	2020
		+						
STORMWATER VOLUME (MG)								
1 YR STORM KUNDFF	0	Ú	0	3	7	14	20	23
A WHUAL KINDEF	C	J	0	53	106	209	286	332
SLUNGE CUANTITIES LOT/YAL								
SEJIMENT. BASIN	٥	0	0	0	198	391	536	622
TREATMENT PLANT	v	o	ა	O	a	٥	0	٥

LIGHT TARK TO BE STANDED TO STAND THE STAND THE STANDED TO STANDED

SLUDGE HANDLING : PERIODIC REMOVAL TO LANOFILL OR RECYCLE

STURAGE BASIN : EARTH

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PAESENT WORTH	1972	1975	1980	ز 198	1990	2000	2010	2020	RE SIDUAL
TREATMENT PLANT	212					720				100
BASIN	103					350				139
PIPES	443					1500				599
PIPES	225						1500			900
RESIDUAL	67								TOTAL	1740
NET CAST TAL	914									

TABLE 11 : PRESENT WORTH - U.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
								·	
PL ANT	(\$1000/YA)	0	0	0	0	3	7	10	11
SL UDGE	(\$1003/YR)	Ü	0	0	0	4	9	13	15
SEWERS	(\$1000)YR1	0	0	0	a	7	14	14	14
TOTAL	[\$10J0/YR]	0	0		0	16	32	38	42
PRESENT VAL	UE AT BEGIN-								•
NING OF PER	ton (steau)	0	0	Q	0	169	247	283	0

NET 0.+M. = 109.033

TABLE III : TOTAL PRESENT WONTH

619	(\$1000)	CAPITAL
109	(\$1000)	D.+M.
5	(\$10001	LAND
1032	(\$1000)	T OT AL

TABLE IV : ANNUAL COSTS [\$1000/YR]

	1972	1975	1950	1985	1790	2000	2010	2020
About the CARLE AL								
ANNUAL CAPITAL TREATMENT PLANT					55	55	55	55
BASIN					25	25	25	25
PIPES					1 08	108	108	1 08
PIPES						108	108	108
TOTAL O.+M.	J	a	o	O	16	32	38	42
TOTAL ANNUAL					205	330	336	340

NOTE 1: ANNUAL COSTS DO NOT INCLUDE PRESENT UUTSTANDING BONCHO INDEBTEUNESS NOTE 2: AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

STURMWATER TREATMENT PLANT

CUMPS OF ENGINEERS - SURVEY SCUPE STUDY

PLAN B . CH-16-17-18

	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUME (MG)								
1 YR STURM KUNDEF	0	0	0	4	8	10	13	15
ANNUAL RUNDEF	0	0	0	70	141	181	526	269
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT - RASIN	0	0	0	0	205	264	329	392
TREATMENT PLANT	Ü	o	0	0	0	, U	0	0

TREATMENT SCHEME : STURAGE PLUS TREATMENT AT MUNICIPAL PLANT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE 1 : PRESENT WURTH - CAPITAL COSTS - (\$1000)

		PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESTOUAL
BAS IN		85 1127					290 3813				115 1525
	RESIDUAL	63								TOTAL	1641
NE	T CAPITAL	1149									

TABLE II : PRESENT WURTH - U.+N. COSTS

	,	1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	0	0	0	0	5	7	9	11
SLUOGE	(\$1000/YR)	0	0	0	0	5	6	8	9
SEWERS	(\$1000/YR)	0	o	v	0	19	19	17	19
TOTAL	(\$1000/YK)	0	0	0	0	30	33	36	40
PRESENT VALU	UF AT BEGIN-	0	0	0	0	222	246	270	o
MING OF PER	100 (31000)	U	U	•	•	222	240	210	Ū
PRESENT WOR	TH (\$1000)	0	0	0	0	65	37	20	0

NET U.+M. # 123.535

TABLE III : TOTAL PRESENT WORTH

CAPITAL	(\$1000)	1149
0.+M.	(\$1000)	123
LAND	(\$1000)	11

TOTAL (\$1000) 1284

TABLE IV : ANNUAL CUSTS (\$1000/YR)

	1972	1975	1930	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
HASIN					20	20	20	20
PIPES					276	216	276	276
TOTAL U.+M.	0	0	0	0	30	33	36	40
TUTAL ANNIAL					327	330	333	337

NOTE 1: AGNUAL COSTS OF NOT INCLUDE PRESENT JUISTANDING BUNDED INDESTEDNESS NOTE 2: AN INTRACEST SAIL OF 7 PERCENT GAS USED FOR ALL CALCULATIONS

DAZMATE C TOTALMENT PLANT

CORPS OF ENGINEERS - SURVEY SCOPE STOOM

PLAN H . CH-19

	19/2	1975	1680	1985	1990	5,100	2010	2020
STURMADTER VOLUME (MG)								
1 YO STORM RUNUEF	Ü	0	0	0	ı	2	2	3
ANDAL GUALIFF	U	0	υ	7	15	31	37	46
SUBDGE DUANTITIES (DT/YK)								
SECHMENT BASIN	0	0	¢	0	28	5 d	69	86
TREATMENT PLANT	υ	0	υ	0	0	o	o	0

TREATMENT SCHEME : STURAGE PLUS TREATMENT ON LAND

SUPPLY THE STANDARD OF THE STANDARD STA

TURAGE BASIN : EARTH

TABLE 1 : PRESENT WURTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESTOUAL
					 -					
LEATMENT PLANT	81					275				38
.SIN	35					120				41
PIPES	59					200				79
RESTOUAL	6								TOTAL	160
NET CAPITAL	169									

TABLE II : PRESENT WORTH - C.+M. CUSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	[\$1000/YR]	0	o	0	0	0	ı	1	1
" UUst	[\$£G00743])	0	ď	Q	υ	1	1	2
WEKS	(\$1000/YR)	0	0	0	0	o	0	0	v
FOTAL	- (\$1000/YR)	3		Ū	0	2		4	4
PRESENT VAL	UF AT BEGIN-								
ING OF PEX	139 (\$1000)	Ú	0	0	0	20	56	30	0
PRESENT WAR	TH (\$1000)	0	0 .	J	0	5	3	2	o

NET (1.4M. = 12.3450

TABLE III : TUTAL PRESENT WORTH

CAPITAL	(\$1600)	169
U.+M.	(610.00)	1.2
LAND	1410001	1
TOTAL	(\$1000)	132

TABLE IV : AMMIAL CUSTS (\$1000/YK)

	1972	1975	1483	1 405	1990	2000	2010	2020
INTINE CAPITAL	~							
THE ATT AT PLANT					21	21	21	21
0.554-4					υ	8	ы	8
PIPIS					14	14	14	14
TOTAL H. +4.	Ú	U	o	J	2	3	4	4
TAL VINDAL	ù	5			4,	41	34	49

NOTE TO A 2004 COSTS OF NOT INCLOSE POSSING BUTSTANDING SCROLL FROM SSINGLE 2: AN I-CHRIST KATE OF PROCEED WAS USED FOR ALL CALCULATIONS

STORMANTER TREATMENT PEAGE

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN H . CH-20

1977	1975	1980	1985	1889	2400	2010	2020
υ	Ú	0	0	0	2	2	3
U	J	0	U	0	30	36	45
v	0	0	v	0	56	67	84
ن	0	٥	ò	Ö	ə	0	0
	υ υ	0 0				υ υ 0 0 0 2 υ υ 0 0 0 30 υ 0 0 0 56	U U O O O O 2 2 2 0 36 0 0 0 30 36 07

TREATMENT SCHEME : STORAGE PLUS TREATMENT UN LAND

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE I : PRESENT WURTH - CAPITAL CUSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
TREATMENT PLANT	41						275			117
BASIN	18						120			72
PIPES	30						200			120
RESIDUAL	12								TOTAL	309
NET CAPITAL	77									

TABLE 11 : PRESENT WORTH - D.+M. COSTS

	1972	1975	1980	1985	1990	2000	2010	2020
			~					
PLANT (\$1000/YR)	υ	Ů	v	0	0	1	1	1
SLUDGE (\$1000/YK)	0	0	0	0	0	1	1	2
\$EHERS (\$1000/YK)	0	0	0	o	0	0	0	0
TOTAL (\$1000/YR)	0	0	0	0	0	3	3	4
PRESENT VALUE AT BEGIN-								
NING OF PERIOD (\$1000)	. 0	0	0	o	0	26	30	0
PRESENT WURTH (\$1000)	0	0	0	0	0	3	2	0

NET 0.+M. = 6.22632

TABLE 111 : TOTAL PRESENT WORTH

CAPIT AL	(\$1000)	77
0.+ M.	(\$1000)	6
LANU	(\$1000)	1
	-	
TOTAL	(\$1000)	84

TABLE IV : ANNUAL COSTS (\$1000/YK)

	1972	1975	1980	1965	1990	2000	2010	2020
ANNUAL CAPITAL								
THEATMENT PLANT						21	21	21
BASIN Pipis						8 14	3 14	8 14
TCTAL U.+M.	0	0	0	o	٥	3	13	17
TOTAL ANNUAL		U		0		47	43	49

NOTE 1 & ANNUAL COSTS OF NOT INCLUDE PRESENT UNISTANDING BUNDED INDEBTEONESS NUTE 2 & AN INTEREST RATE OF T PERGLAF HAS USED FOR ALL CALCULATIONS

PLAN 5 . CH-21677

	1972	1975	1460	1985	1990	2000	2010	2020
STURBIKATER VULUME ENG)								
1 YR STOPM RUNUEF	v	U	0	0	0	3	3	4
ANNUAL RUNAF	O	0	0	0	0	53	63	79
SLUDGE QUANTITIES (UT/YR)	•							
SEDIMENT.BASIN	0	0	0	0	0	99	118	148
TREATMENT PLANT	0	0	0	0	٥	0	0	0

TREATMENT SCHEME : STURAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STURAGE BASIN : EARTH

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1995	2000	2010	2020	RESIDUAL
TREATMENT PLANT	46						310			132
BASIN	21						140			64
PIPES	180						1200			720
RESIDUAL	36								TOTAL	936
NET CAPITAL	211									

TABLE II : PRESENT WORTH - O.+M. COSTS

		1972	1975	1980	1985	1998	2000	2010	2020
PLANT	(\$1000/YR)	Ø	0	0	0	6	ı.	2	2
SLUDGE	(\$10J3/YR)	0	v	0	0	•	2	2	3
SEHFRS	(\$1000/YR)	0	o	0	0	•	5	5	5
TUTAL	[\$1000/YK]	0	ō		0	•	10	11	12
PRESENT VA	LUC AT BEGIN-								
NING OF PE	KIOD (\$1000)	0	ø	0	0	•	75	82	0
PRESENT SU	RTH (\$1000)	0	0	0	o	•	11	6	٥

17.6931 NET 0.+4. =

TABLE III : TOTAL PRESENT WORTH

CAPITAL	{ \$1000 }	211
O.+M.	(\$1000)	17
LAND	(\$1000)	1
	•	
TOTAL	(\$1000)	230

TABLE IV : ANHUAL COSTS (\$1600/YR)

	1472	1975	1980	1935	1990	2000	2010	2020
ANNUAL CAPITAL								
TREATMENT PLANT						23	23	23
HASIN						10	10	10
PIPES TUTAL O.+M.	o	0	ú	٥	0	86 10	86 11	86 12
TOTAL AVNUAL	o	v	ა	0	•	131	132	133

NOTE 1 : ANNUAL COSTS ON NOT INCLUDE PRESENT OUTSTANDING BONDED INFESTERNESS NOTE 2 : AN INTERIST HALL DE 7 PERCENT WAS USED FOR ALL CALCULATIONS

PLAN R . CH-23-26-27

	1972	1975	1980	1985	1990	2000	2010	2020
STORMHATER VOLUME (MG)								
1 YR STORM RUNGEF	G	2	4	7	10	21	31	39
ANNUAL RUNUFF	ō	29	58	114	170	341	448	595
SLADGE QUANTITIES 40T/YR)								
SEDIMENT-BASIN	0	42	84	166	248	497	683	868
TREATMENT PLANT	Ö	v	0	o	Q	0	0	0

TREATMENT SCHEME STOKAGE PLUS TREATMENT AT MUNICIPAL PLANT SLUDGE HANDLING PERIODIC REMOVAL TO LANDFILL OR RECYCLE STORAGE BASIN : EARTH

TABLE I : PRESENT HORTH - CAPITAL COSTS - 181000)

	PRESENT WORTH	1 972	1975	1980	1985	1990	2000	2010	2020	RE SI DU
MIZAB	145			250						49
BASIN	109					370				247
BAS IN	40						270			125
PIPES	1571			2700						539
PIPES	976					3300				1319
PIPES	75						500			300
RESIDUAL	97								TOTAL	2519
NET CAPITAL	2320									

TABLE II : PRESENT WORTH - 0.+M. COSTS

	1 	972	1975	1980	1985	1990	2000	2010	2020
SLUDGE (8	L000/YR) L000/YR) L000/YR)	0 0	0 0 0	2 2 13	4 4 13	6 6 29	13 12 32	18 17 32	23 21 32
TETAL 15	1000/YR) -	0	0	17	22	42	58	67	77
PRESENT VALUE AT I		0	o	81	133	354	442	510	o
PRESENT WORTH (5	1000)	0	0	47	55	104	66	38	0

NET 0.+M. = 313.509

TABLE III : TOTAL PRESENT WORTH

CAPITAL	(\$1006)	2820
0.+M.	(\$1600)	313
LAND	1\$10301	32
		
TOTAL	(\$1000)	3164

- TABLE IV : ANNUAL CUSTS (\$1000/YR)

•	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL		~						
HASIN			16	19	18	16	16	18
BAS I N					26	26	26	26
BASIN						19	19	19
PIPES			195	195	195	195	195	195
PIPES					238	238	238	238
PIPFS						36	36	36
TOTAL O.+M.	0	0	17	22	42	58	67	77
	~~~~				<del></del>			
TOTAL ANNUAL	Ü	0	231	235	522	593	602	612

NUTE 1 4 ANNIAL COSTS OF NOT BICLUDE PRESENT OUTSTANDING BOILDED INDEBTEINESS NOTE 2 4 AN INTEREST HATE UP 7 PERCENT WAS USED FOR ALL CALCULATIONS

	1972	1975	1980	1985	1990	2000	2010	2020
STORMHATER VOLUME (MG)								
	_						9	12
1 YR STIJRK RUNUFF	Q	0	0	0	0	8	-	
ARNUAL RUNOFF	ú	٥	· o	0	0	121	144	182
SLUDGE SUANTITIES (DT/YR)								
SEDIMENT - HAS IN	0	٥	0	0	0	226	273	341
	ŏ	ō	ō	0	ů.	0	0	٥
TREATMENT PLANT	•	U	U	•	•	•	•	•

TREATMENT_SCHEME = STORAGE PLUS_TREATMENT_ON_LAND.

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

## TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

4

·	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
TREATMENT PLANT BASIN 'IPES	79 37 30	•		7	-		530 250 200			227 1>0 120
RESTUUAL	19			í					TOTAL	497
NET CAPITAL	128									

# TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1965	1990	2000	2010	2020
LANT	(\$1000/YR)	0	o	0	o	0	4	5	6
LUDGE	(\$1000/Y4)	٥	0	v	Ü	0	5	6	8
SEWERS	[\$1000/YR]	0	0	0	0	O	0	0	0
OTAL	(\$1000/YR)	0	0	0	o	0	10	12	15
	VALUE AT REGIN— PERIOD (\$1000)	0	٥	0	o	a	83	101	0
MENG OF I	PER 100 1910001	•	•	•	•	•			_
-RESENT I	NURTH (\$1000)	0	0	0	0	0	12	7	0

20.3441 ET 0.+M. =

#### TABLE III : TOTAL PRESENT WORTH

CAPITAL	. (\$1000)	128
U.+M.	(\$1000)	20
LANG	(\$1000)	3
	-	
TOTAL	(\$1000)	151

## - TABLE IV : ANNUAL COSTS (\$1000/YR)

•	1972	1975	1980	1985	1990	2000	2010	2020
m.MUAL CAPITAL								
TREATMENT PLANT						40	40	40
RASIN						18	18	18
PIPES						14	14	14
TAL O.+M.	U	0	0	0	U	10	12	15
TOTAL AHAJAL	J	U	0	0	0	84	86	89

THE 1: ANNUAL CHAIS DU NUT TACLUDE PRESENT OUTSTANDING BUNDED ENDEBTEUNESS. THE 2: AN INTEREST RATE OF T PERCENT WAS USED FOR ALL CALCULATIONS

PLAN B . CH-25

	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUME (MG)								
1 YM STERM KUNDFF	0	0	0	0	0	7	•	11
ANNUAL KUNDFF	0	0	à	ŏ	ō	105	126	158
SLUDGE QUANTITIES (DT/YR)								
SEUIMENT.BASIN	0	0	0	٥	0	196	236	296
TREATMENT PLANT	0	٥	0	ō	Ö	0	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING : PERIODIC REMUVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

## TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RES 10UA
	<del></del>									
TREATMENT PLANT	79						530			227
BASIN	37						250			150
PIPES	30						200			120
RES I DUAL	19								TOTAL	497
NET CAPITAL	128									

# TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
									<del></del>
PLANT	1\$1000/YR)	0	0	0	0	0	3	4	•
SLUDGE	(\$1000/YR)	0	Ö	Ō	õ	Ď	Ĭ	Š	ž
SEMEKS	[\$1000/YK]	9	Ó	Ö	Õ	Ŏ	ò	ó	ò
TOTAL	(\$1000/YR)						9,	11	13
PRESENT VALUE	AT REGIN-	•							
NING OF PERIOD		0	0	0	0	0	73	66	0
PRESENT WORTH	(\$1000)	o	· o	o	0	0	11	6	0

NET G.+N. = 17.8208

# TABLE III : TOTAL PRESENT WORTH

CAPITAL	(\$1000)	128
O.+M.	(\$1000)	17
LAND	(\$1000)	3

TOTAL (\$1000) 148

# TABLE IV : ANNUAL CUSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL			<del></del>					
TREATMENT PLANT						40	40	40
BAS IN						18	18	18
PLIES						14	14	14
TOTAL D.+M.	0	0	0	0	0	9	11	13
TUTAL ANNUAL	0				0	63	84	87

NOTE 1: ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BUNDED INDEBTEDNESS NOTE 2: AN INTEREST HASE OF 7 PERCENT HAS USED FOR ALL CALCULATIONS

STURNHATER TREATMENT PLANT

## CORPS OF ENGINEERS - SURVEY SCOPE STUDY

LAN B . CH-28

		4 13 18 17	1000	1000	1000			2000
	1972	1975	1960	1985	1990	2000	2010	2020
		<del></del>		<del></del>		<del></del>		
TORMWATER VOLUME (MG)								
I YR STORM RUNDFF	0	0	0	0	9	6	8	10
ANNUAL KUNUFF	0	Q	0	0	•	95	113	141
LUDGE QUANTITIES (DT/YR)								
SEDIMENT. JAS IN	0	0	0	0	•	178	211	264
TREATMENT PLANT	0	0	0	Q	٥	٥	0	0

TREATMENT SCHENE : STURAGE PLUS TREATMENT ON LAND

LUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

## TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	19 <b>90</b>	2000	2010	2020	RESIDUAL
						<del></del>		<del></del>		
IREATMENT PLANT	73						490			210
BASIN	33						225			1.35
PIPES	45						300			180
RESIDUAL	20								TOTAL	525
NET CAPITAL	132									

## TABLE II : PRESENT WORTH - 0.+ M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
	•					<del></del>			•
LANT	(\$1000/YR)	0	0	0	0	0	3	3	4
LUDGE	(\$1000/YR)	0	0	0	Ű	a	4	5	6
WERS	(\$1000/YR)	Q	0	0	0	9	1	1	1
TOTAL	(\$1000/YR)	0	0	0		0	9	10	13
RESENT	VALUE AT BEGIN-						•		
	PERTOD (\$1000)	0	o	Q	0	0	70	83	0
PRESENT	HCRTH (\$1000)	0	0	٥	0	0	10	6	0

ET D.+N. = 16.9636

## TABLE III : TOTAL PRESENT WORTH

CAPITAL D.+M.	(\$1000)	132 16
LAND	(\$1000)	2
	•	
TOTAL	(\$1000)	151

### TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
INUAL CAPITAL					~~~~			
TREATMENT PLANT						37	37	37
BASIN						16	16	16
PIPES						21	21	51
TAL U.+M.	0	O	0	0	0	9	10	13
TTAL ANNUAL	0	0	0	0	0	85	86	88

ITE & : ANJUAL CUSTS ON NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS. ITE 2: AN INTEREST HAFE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS.

## PLAN B . CH-29

	1972	1975	1980	1985	1490	2000	2010	2020
STORMHATER VOLUME (MG)								
1 YR STORM RUNUFF	0	0	Ü	0	0	1	1	3
ANNUAL RUNGEF	0	v	0	0	0	28	34	43
SLUDGE QUANTITIES (DI/YR)								
SEDIMENT-BASIN	0	0	0	0	0	52	63	80
TREATMENT PLANT	0	0	0	0	0	0	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN # EARTH

#### TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RES I DUAL
TREATMENT PLANT	41		*			•	275			117
BASIN	15						100			60
PIPES	30						200			120
TREATMENT PLANT	0							0		0
RESIDUAL	11								TOTAL	297
NET CAPITAL	74									

## TABLE 11 : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$100J/YR)	0	0	0	0	0	٥	1	1
SLUDGE	(\$1000/YR)	0	0	0	0	0	1	1	2
SEWERS	(\$1000/YR)	0	ø	o	0	0	0	0	ō
TOTAL	(\$1000/YR)	0	0	0	0		3	3	4
PRESENT VALUE	AT BEGIN-						•		
NING OF PERIO		0	0	0	0	0	24	29	0
PRESENT WORTH	(\$1000)	. 0	0	0	0	0	3	2	0

5.96548 NET 0.+M. =

## TABLE III : TOTAL PRESENT WORTH

	(\$1000) (\$1000)	74
G.+M. Land	(\$1000)	i
TOTAL	(\$1000)	81

### TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1940	1985	1990	2000	2010	2020
ANNUAL CAPITAL		<del></del>						
TREATMENT PLANT						21	21	21
BASIN						7	. 7	. 7
PIPES Treatment plant						14	14	14
TOTAL O.+M.	0	0	0	0	0	3	š	4
TOTAL ANNUAL	<del></del>	0			<del></del>	46	46	47

NOTE 1: ANNIAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BUNDED INDEDTEDNESS MOTE 2: AN INTEREST RATE OF 7 PERCENT MAS USED FOR ALL CALCULATIONS

#### UNHHATER TREATMENT PLANT

# CUPPS OF ENGINEERS - SURVEY SCOPE STUDY

#### PLAN B . CH-30632N

	1972	1975	1960	1985	1990	2000	2010	\$020
STURMWATER VULUME (MG)								
1 YM STURM RUNDFF	0	0	0	a	1	11	11	11
ANNUAL RUNCFF	٥	0	0	6	12	150	164	174
SCUDGE QUANTITIES (DT/YR)								
SEDIMENT.BASIN	0	0	0	0	17	230	239	254
TREATMENT PLANT	0	0	0	ō	Ö	Ö	0	Ö

MEATMENT SCHEME : STORAGE PLUS TREATMENT AT MUNICIPAL PLANT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

ORAGE BASIN : EARTH

#### TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

		PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
											<del></del>
I SIN		70					240				95
PES		369					1250				499
· PES		165						1100			660
	RESTOUAL	48								TOTAL	1255
NE	T CAPITAL	557									

## TABLE II : PRESENT WORTH - G.+M. COSTS

		1972	1975	1980	1985	1990	2000	5010	2020
PLANT	(\$1000/YR)	٥	0	0	0	0	6	7	7
SLUDGE	(\$1000/YR)	ō	ō	Ō	Ō	Ŏ	5	Ś	Ġ
CHERS	(\$1000/YR)	Ö	0	0	ō	6	11	11	11
TAL	(\$1000/YR)		<u>_</u>	0	0	7	24	24	25
PRESENT VALU	E AT BEGIN-								
I''NG OF PERI		0	0	0	0	110	172	176	. 0
! ESENT WORT	H (\$1000)	0	0	0	0	32	25	13	0

NET 0.+M. = 72.1838

## TABLE III : TOTAL PRESENT WORTH

CAPITAL	(\$1000)	55
D.+M.	(\$1000)	7
LAND	(\$1000)	3

## TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
BASIN					17	17	17	17
PIPES					90	90	90	90
PIPES						79	79	79
TOTAL G.+M.	0	0	o	0	7	24	24	25
TAL ANNUAL					115	211	212	213

NOTE 1: ANNUAL COSTS DO NOT INCLUDE PRESENT DUTSTANDING BUNDED INDEBTEDNESS NOTE 2: AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

STORMHATER TREATMENT PLANT

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN B . CH-31

	1972	1975	1980	1985	1990	2000	2010	2020
STORMHATER VOLUME (MG)								
1 YR STORM RUNDEF	0	0	٥	0	٥	4	6	7
ANNUAL RUNDEF	0	0	Ó	o	Ō	68	43	103
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT. BASIN	0	0	0	0	0	127	155	193
FREATMENT PLANT	٥	0	a	Ö	ŏ	0	0	Ō

TREATMENT SCHEME : STURAGE PLUS TREATMENT ON LAND

SLUGGE HANGLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

## TABLE 1 : PRESENT HURTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH 1	1972	1975	1980	1985	1990	2000	2010	2020	RES I DUAL
							****		<del></del>	
TREATMENT PLANT	60						400			171
RASIN	26						175			105
PIPES	30						200			120
RESIDUAL	15								TOTAL	396
MET CARLES	101	*								

#### TABLE 11 : PRESENT WORTH - 0.+M. CUSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT SLUDGE SEHERS	(\$1000/YR) (\$1000/YR) (\$1000/YR)	0 0 0	0 U 0	0 0 0	0 0	0	2 3 0	2 3 0	3 4 0
TOTAL	(\$1000/YR)	0	<u>ō</u>	ō			<u> </u>	7	
	LUE AT BEGIN- RIOD (\$1000)	0	0	0	Q	0	50	60	0
PRESENT WO	RTH (\$1000)	o	0	0	o	0	7	4	O

NET 0.+M. = 12.2086

## TABLE 111 : TOTAL PRESENT WORTH

CAPITAL	(\$1000)	101
0.+M.	(\$1000)	12
LAND	(\$1000)	2

115

TOTAL (\$1000)

# TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1900	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
TREATMENT PLANT						30	30	30
BASIN PIPES						12	12	12
TOTAL O.+M.	U	а	0	0	0	14	14	14
				~-~~				
TUTAL AHNUAL	O	0	Ü	0	ü	64	65	67

NOTE 1: ANNUAL COSTS OU NOT INCLUDE PRESENT DUISTANDING BUNDED INDEBTEDNESS NOTE 2: AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

#### PLAN B . CH-325643

1972	1975	1980	1985	1940	2000	2010	2020
	<del></del>						~
0	0	0	0	1	13	14	14
0	0	0	13	26	183	194	205
U	0	0	٥	48	343	363	384
0	0	0	0	0	0	0	0
	0 0	0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1 0 0 0 13 26	0 0 0 0 1 13 0 0 0 1 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1 13 14 0 0 0 13 26 183 194 0 0 0 0 48 343 363

TREATMENT SCHEME : STURAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

#### TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RES I DUAL
TREATMENT PLANT	168					570				79
- BAS IN	73					250				99
PIPES	331					1120				447
PIPES	30						200			120
RESIDUAL	29				-				TOTAL	747
NET CAPITAL	574									

TABLE !	11:	PRESENT	HURTH	- D. +H.	COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	[\$1000/Yk]	0	0	Ü	0	o	6	6	7
SLUDGE	(\$1003/YR)	0	0	0	G	1	ð	9	9
SE WFRS	[\$1000/YR]	0	0	0	0	5	6	6	6
TOTAL	(\$1000/YR)	0	0	0	0	7	51	22	23
PRESENT VALU	E AT BEGIN-						•		
NING OF PERI	00 (\$1000)	0	0	0	0	105	154	161	0
PRESENT WORT	н (\$1000)	0	0	0	0	30	23	12	o

66.0294 NET 0.+M. =

### TABLE III : TOTAL PRESENT WORTH

CAPITAL	(\$1000)	574
O.+M.	(\$1000)	66
LAND	(\$1000)	2
TOTAL	(\$1000)	642

#### TABLE IV : ANNUAL CUSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL		<del></del> -						
TREATMENT PLANT					44	44	44	44
BASIN					16	iš	18	18
PIPES					81	81	61	81
PIPES						14	14	14
TOTAL O.+M.	0	3	0	0	7	21	22	23
FUTAL ANNIAL					150	179	180	
FUTAL ANNUAL	•	U	U	U	1 20	117	100	161

NOTE 1: ANNUAL COSTS DU NAT INCLUDE PRESENT OUTSTANDING BUNDED INDESTRUMESS NOTE 2: AN INTEREST MATE LE 7 PERCENT WAS USED FOR ALL CALCULATIONS

PLAN 8 . CH-34

	1972	1975	1980	1785	1990	2000	2010	2020
					~~~			·
STORMWATER VOLUME (MG)								
1 YR STORM RUNOFF	0	a	0	0	٥	1	2	3
ANNUAL RUNDEF	0	q	Ü	٥	0	34	40	51
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT . BASIN	G	0	٥	0	٥	63	75	95
TREATMENT PLANT	Q	0	0	0	D	0	Q	0

TREATMENT SCHEME : STURAGE PLUS TREATMENT ON LAND

6.79194

NET O.+M. =

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL UR RECYCLE

STORAGE BASIN : EARTH

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT HORTH	1972	1975	1980	1985	1993	2000	2010	2020	RESIDUA
TREATMENT PLANT	41						275			117
BASIN	18						120			72
PIPES	30						200			120
RESIDUAL	12								TOTAL	309
NET CAPITAL	77									

TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT SLUDGE	(\$1000/YR) (\$1000/YR)	0	0	0 0	0	0	1 1	1	1 2
SEWERS	(#1000/4K)	٥	a	0	0	0	0	Ō	0
TOTAL	(\$1000/YA)	0	0	ō	0	0	3	4	5
PRESENT VALUE		a	0	o	a	_	20		•
MING OF PERIO	00 (\$1000)	v	v	U	U	Q	28,	33	o
PRESENT WORTH	4 (\$1000)	0	0	o	0	0	4	2	٥

TABLE III : TOTAL PRESENT WORTH

CAPITAL	[\$1000]	77
0.+H.	(\$1000)	6
LAND	(\$1000)	1
TOT AL	(\$1000)	85

TABLE IV : ANNUAL CUSTS (\$1000/YR)

	1912	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
TREATMENT PLANT BASIN						21 8	21 8	21 8
PIPES	0		^	•		14	14	14
TOTAL 9.+M.		0	٥	0	0	3	•	>
TOTAL ANNUAL	o	ō	o	0	0	48	48	49

NOTE 1 : ANNUAL COSTS UP NOT INCLUDE PRESENT OUTSTANDING EDNUED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF I PERCENT WAS USED FOR ALL CALCULATIONS

PLAN B . CH-35

	1972	1975	1940	1985	1990	2000	2010	2020
								
STORMHATER VOLUME (MG)								
1 YR STURM RUNOFF	0	0	0	2	4	5	6	9
ANNUAL RUNGEF	0	Ú	0	29	59	71	88	118
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT_BASIN	. 0	0	a	0	110	133	165	221
TREATMENT PLANT	0	0	0	0	0	0	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT ON LAND

26.1279

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

NET 0.+M. =

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
TREATMENT PLANT	136					460				64
BASIN	54					185				73
PIPES	59					200				79
RESIDUAL	8								TOTAL	218
NET CAPITAL	241									

TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1999	2000	2010	2020
									
PL ANT	(\$1000/YR)	0	0	0	0	2	2	3	4
SLUDGE	[\$1000/YA]	0	0	0	0	2	3	4	5
SEWERS	[\$1000/YR]	0	0	0	0	٥	0	0	0
TOTAL	- (\$1000/YR)		0	<u>ō</u>		5	• .	8	10
PRESENT VAL	UE AT BEGIN-								
NING OF PER		0	0	0	0	44	52	66	0
PRESENT WOR	TH (\$1000)	0	0	0	0	13	7	5	0

TABLE III : TOTAL PRESENT WORTH

CAPITAL	(\$1000)	241
O.+M.	(\$1000)	26
LAND	(\$1000)	2
TOTAL	(\$1000)	269

TABLE IV : ANNUAL COSTS (\$1000/78)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL TREATMENT PLANT					35	35	35	35
BASIN					13	13	13	13
PIPES					14	14	14	14
TOTAL O.+M.	0	0	0	0	5	6	8	10
TOTAL ANNUAL	<u>-</u>				69	70	71	74

NOTE 1: ANNUAL CUSTS OD NUT INCLUDE PRESENT OUTSTANDING BONDED INDESTERNESS NOTE 2: AN INTEREST HATE UF 7 PERCENT WAS USED FOR ALL CALCULATIONS

STURMHATER TREATMENT PLANT

CORPS OF ENGLISHERS - SURVEY SCOPE STUDY

PLAN B . CH-36

	1972	1975	1930	1965	1990	2000	2010	2020
STORMWATER VULUME (MG)								
1 YR STORM KUNDEF	0	U	υ	0	O	8	9	11
ANNUAL RUNOFF	0	0	O	0	O	111	133	166
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT.BASIN	0	0	0	J	υ	208	249	311
TREATMENT PLANT	0	0	O	0	0	o	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT ON LAND

STUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL UN RECYCLE

STORAGE BASIN : EARTH

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RF ST DUAL
TREATMENT PLANT	76						510			218
BASIN	33						220			132
PIPES	105						700			420
RESIDUAL	29								TOTAL	770
NET CAPITAL	185									

TABLE II : PRESENT WURTH - U.+M. CUSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	o	а	٥	٥	٥	3	4	5
SE UDGE	(\$1000/YR)	0	0	0	v	•	5	6	7
SEWEKS	(\$1000/YR}	ა	0	0	0	D	3	3	3
TOTAL	(\$1000/YR)	0	0	0	0	0	12	14	17
PRESENT VAL	UE AT BEGIN-								
NING UF PER	100 (\$1000)	٥	O	0	0	D	94	110	0
PRESENT WOR	TH (\$1000)	٥	o	0	0	0	14	8	o

NET 0.+#. = 22.6948

TABLE III : TOTAL PRESENT WORTH

TOTAL	(\$1000)	210
LAND	[\$1020]	3
0.+M.	(\$1000)	22
CAPITAL	(\$1000)	185

TABLE IV : ANNUAL COSTS (\$1000/YA)

	1972	1975	1440	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
THEATMENT PLANT						39 15	39 15	39 15
PIPES						50	50	50
TOTAL O.+M.	0	0	0	0	0	12	14	17
TUTAL ANNUAL	U	5	0	ō	9	118	120	123

NOTE 1 : AMNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING ROMOFD INSERTEDNESS. NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS.

PLAN B . R-85 11

	1972	1975	1990	1985	1990	2000	2010	2020
STORMWATER VOLUME (MG) . 1 YR STORM RUNOFF ANNUAL RUNOFF	 0 0	3 32	6 65	12 152	18 240	61 845	62 845	62 861
SLUDGE QUANTITIES (OT/YR) SEDIMENT-BASIN TREATHENT PLANT	0	60 0	121	265 0	600 0	2112 0	2112 0	2152 0

TREATMENT SCHEME : STORAGE PLUS TREATMENT

SI OGE HANDLING : PERIODIC REMOVAL TO LANDFILL GR RECYCLE

STURAGE BASIN : EARTH

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRE SE NT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RES I DUAL
TR ITHENT PLANT	490			770					770	659
PLIT EXPANSION	1541					5210				729
BAS IN	93			160						31
BASIN	63					216				86
PI :S	650					2200			•	879
RESIDUAL	92								TOTAL	2387
NET CAPITAL	2746									

TABLE II : PRESENT WORTH - Q.+M. COSTS

	1972	1975	1980	1985	1990	2000	2010	2020
,								
PL T (\$1000/YR)	o	0	2	21	60	211	211	215
SL: GE (\$1000/YR)	0	0	3	7	15	52	52	53
SEWERS (\$1000/YR)	0	0	0	0	10	10	10	10
TO- L (\$1000/YR)	0	0	5	28	85	275	275	280
PRI ENT VALUE AT BEGIN-							•	
NING OF PERIOD (\$1000)	0	0	70	235	1267	1931	1949	0
PRETENT WORTH (\$1000)	o	0	46	97	375	290	148	0

953.078 NE1).+M. =

TABLE III : TOTAL PRESENT WORTH

CAPITAL	. (\$1000)	2746
0.+M.	(\$1000)	953
LAND	(\$1000)	15
	•	
TOTAL	(\$1000)	3714

TABLE IV : ANNUAL CUSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNLAL CAPITAL								
TREATMENT PLANT			59	59	59	59	59	59
PLANT EXPANSION					402	. 402	402	402
BASIN			11	11	11	11	11	11
BASIN					15	15	15	15
PIPES					159	159	159	159
TOTAL O.+M.	0	0	5	24	85	275	275	280
TOT ANNUAL			16	99	734	923	923	928

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDEC INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

PLAN B . R-9

	7415	1975	1980	1985	1990	2000	2010	2020
								
STURMWATER VOLUME (MG)								
1 YR STOLM RUNDEF	2	2	2	2	2	2	2	2
ANNUAL RUNUFF	38	39	41	41	41	41	41	41
SLUDGE QUANTITIES (DT/YK)								
SEDIMENT. HASIN	22	23	23	23	23	23	23	23
TREATMENT PLANT	ಕ	9	9	9	9	9	9	9

TREATMENT SCHEME : STORAGE PLUS TREATMENT AT MUNICIPAL PLANT

SLUDGE HANDLING : PIPE SLUDGE TO MUNICIPAL PLANT

STORAGE BASIN : CONCRETE

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
SLUDGE HANDLING BASIN PIPES	8 465 163		10 570 200					10		7 57 20
RESIDUAL	3								TOTAL	84
NET CAPITAL	634									

TABLE II : PRESENT WORTH - G.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	U	10	10	11	13	13	13	13
SLUDGE	(\$1000/YR)	٥	Ú	0	0	0	ø	0	0
SEWERS	(\$1000/YR)	0	0	0	0	0	0	0	0
TOTAL	(\$1000/YR)	0	11	12	13	14	14	14	14
PRESENT VA	LUE AT BEGIN-						•		
NING OF PE	RIGO (\$1000)	0	49	52	57	102	102	102	0
PRESENT WO	KTH (\$1000)	0	40	30	23	30	15	7	0

148.564 NET 0.+M. =

TABLE III : TOTAL PRESENT WORTH

CAPITAL	(\$1000)	634
D.+M.	(\$1000)	146
LAND	(\$1000)	11
TOTAL	(\$1000)	793

TABLE IV : ANNUAL CUSTS (\$1000/YR)

	1912	1975	1960	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
SLUDGE HANDLING		0	0	0	a	0	0	0
BASIN		41	41	41	41	41	41	41
PIPES		14	14	14	24	14	14	14
TOTAL D.+H.	0	11	12	13	14	14	14	14
TOTAL ANNUAL	0	68	68	69	71	71	71	71

NOTE 1: ANNUAL COSTS DO NUT INCLUDE PRESENT OUTSTANDING BUNDED INDEBTEDMESS NOTE 2: AN INTEREST HATE OF 7 PLECTAL MAS USED FOR ALL CALCULATIONS

STORMMATER TREATMENT PLANT

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN 8 , K-19

1972	1975	1980	1985	1990	2000	2010	2020
0	0	0	0	0	9	14	17
Ó	0	0	0	0	139	209	251
0	0	0	0 .	O	260	391	470
0	0	0	0	0	0	0	0
	0 0	0 0	0 0 0 0			0 0 0 0 0 0 9 0 0 139 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 9 14 0 0 0 0 0 139 209

TREATMENT SCHEME : STURAGE PLUS TREATMENT ON LAND

SLUDGE MANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STURAGE BASIN : EARTH

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1960	1985	1990	2000	2010	2020	RESIDUAL
TREATMENT PLANT	91						610			261
BASIN	42						280			168
PIPES	30						200			120
RESIDUAL	21						•		TOTAL	549
MET CAPITAL	142									

TABLE 11 : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	0	0	0	0	0	4	7	8
SLUDGE	(\$1000/YR)	0	0	0	0	0	6	9	11
SEWERS	(\$1000/YR)	Ō	0	0	0	0	0	0	0
TOTAL	(\$1000/YR)		- 0	0	0		12 .	18	21
PRESENT VAL	UE AT BEGIN-								
	(100 (\$1000)	0	0	0	0	0	107	139	0
PRESENT WOR	TH (\$1000)	o	0	0	Q	0	16	10	0

NET 0.+M. = 26.7464

TABLE 111 : TOTAL PRESENT WORTH

CAPITAL O.+M.	(\$1000) (\$1000)	142 26
LAND	(\$1000)	30
TOTAL	(\$1000)	199

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
TREATMENT PLANT						47	47	47
BASIN						20	20	20
PIPES	_		_	•	_	14	14	14
TOTAL O.+M.	0	o	0	0	•	12	18	51
TOTAL ANNUAL		0	0		 -	94	99	103

NOTE 1 : ANNIAL COSTS UD NOT INCLUDE PRESENT QUESTÁNDING BONDED INDEBTEONESS NUTE 2 : AN INTEREST RATE UF 7 PERCENT WAS USED FUR ALL CALCULATIONS

PLAN 8 . R-20

	1972	1975	1980	1985	1990	2000	2010	2020
								
STORMWATER VOLUME (MG)								
1 YR STURM RUNUFF	0	0	0	6	12	14	19	25
ANNUAL RUNDEF	0	0	0	92	184	220	275	368
SLUDGE QUANTITIES (UT/YR)								
SEDIMENT.BASIN	0	0	o	0	345	412	515	690
TREATMENT PLANT	0	0	0	٥	0	0	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT ON LAND

141.63

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

NET 0.+H. =

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
TREATMENT PLANT	176					595				83
BASIN	100					340				135
PIPES	1156					3909				1563
RESIDUAL	69								TOTAL	1782
NET CAPITAL	1363									

TABLE 11 : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	0	0	0	0	6	7	9	12
SLUDGE	(\$1000/YR)	U	Ú	0	0		10	12	17
SEWERS	(\$1000\As)	0	0	0	0	19	19	19	19
TOTAL	(\$1000/YR)	0	0	0	0	34	37	42	49
PRESENT VALUE	E AT BEGIN-						•		
NING OF PERI	DD (\$1000)	0	0	0	0	253	279	322	٥
PRESENT WORT	H (\$1000)	0	0	0	0	74	42	24	0

TABLE III : TOTAL PRESENT WORTH

TOTAL	(\$1000)	1511
LAND	(\$1000)	6
D.+M.	1510001	141
CAPITAL	(\$1000)	1363

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
TREATMENT PLANT					45	45	45	45
BASIN					24	24	24	24
PIPES					283	283	283	283
TOTAL Q.+M.	o	a	0	v	34	37	42	49
TOTAL ANNUAL	0	0	0	0	388	391	395	403

NOTE 1: ANNUAL COSTS OF NOT INCLUDE PRESENT OUTSTANDING BUNDED INDEBTERNESS NOTE 2: AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

	1972	1975	1 480	1985	1990	2000	2010	2020
	- ~							
STURAL CONTROL (MG)								
A ALL STORM SUMMED	C	Ú	Ü	7	15	28	35	42
AMBIAL + JACKE	U	0	0	113	227	426	512	665
SLUDGE SUMBLITIES (DIZYR)								
St 219r 31 - 948 IN	0	o	0	o	331	621	747	970
TRUATE AT PLANT	0	v	0	U	0	0	0	0

TREATM OF SCHOOL STURAGE PLUS TREATMENT AT MUNICIPAL PLANT

SEUDO HURBITUGE : PERIODIC RESOVAL TO EAMORILL OR RECYCLE

STOPACE BASIN : EASTH

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1983	1985	1990	2000	2010	2020	RE SIDUAL
BASIA	133					450				179
PIPES	158					535				213
PIPIS	75						500			300
RES IDUAL	26								TOTAL	693
MET CAPTIAL	339									

TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANI	(\$1000/YR)	0	0	0	0	8	16	19	25
SLUJUL	(\$1000/YK)	0	0	0	0	8	15	18	24
STHEKS	(\$1000/Y3)	o	Œ	a	o	2	5	5	5
TOTAL	(\$1000/YR)	0		0	0	19	36	43	54
PRESENT VAL NIMG OF PLE	0 AT 8/GIN- 100 (\$1000)	o	o	0	0	193	281	344	0
PRESENT MOD	TH (£1000)	o	n	o	0	54	42	26	0

NET 0.48. 3 127.367

TABLE III : TOTAL PRESENT WORTH

CAPITA	[11000]	339
0.44.	(\$1000)	127
LAND	(\$1000)	10
	-	
T CT AL	(11000)	477

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1960	1935	1990	2000	2010	2020
	~							
ANNUAL CAPITAL BASIN					32	32	32	32
£19£\$					38	86	38	30
PIPES						36	36	36
TOTAL H. +M.	0	0	0	0	14	36	43	54
JOLAL WASHE		0	0	0	\$G	144	150	167

WRITE FOR ALL MATERIALS FOR ALL OF FRANCIS PROSENT DUESTANDED, BRANCED INDEBTE , SS NOTE λ : ALL INTEREST LIMIT IN λ PERCONI WAY USED FOR ALL CALCULATIONS.

PLAN B . R-24

	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VULUME (MG)								
1 YR STORM RUNGEF	0	٥	٥	4	9	14	19	23
ANNUAL RUNDEF	Ü	0	0	68	137	206	275	345
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT-BAS IN	O	0	0	0	256	386	515	646
TREATMENT PLANT	0	0	0	0	0	0	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STURAGE BASIN : EARTH

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
TREATMENT PLANT	218					740				103
BASIN	106					360				143
PIPES	59					200				79
RESIDUAL	12								TOTAL	327
NET CAPITAL	371									

TABLE II : PRESENT WORTH - O.+M. COSTS

	1972	1975	1980	1985	1990	2000	2010	2020
PLANT (\$10	00/YP) (0	0	4	7	9	12
	00/YR) (0	0	0	6	9	12	16
-56 wers 4410	00/4R))		0-	0-			0.
TOTAL (\$10	09/YR) (0	0	0	15	17	23	29
PRESENT VALUE AT BE	GIN®							
NING UF PERIOD (\$10	00) (0	0	0	105	145	185	0
PRESENT WURTH (\$10	00) (0	0	31	21	14	0

NET 0.+M. = 67.2621

TABLE III : TOTAL PRESENT WORTH

CAPITAL	(\$1000)	371
0.+H.	(\$1000)	67
LAND	(\$1000)	5
TOTAL	(\$1000)	444

. TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL				******				
TREATHENT PLANT					57	57	57	57
BAS IN					26	26	26	26
PIPES					34	14	14	14
TOTAL H.+M.	0	0	0	0	12	17	23	29
FOTAL ANNUAL	0		ō		109	115	121	126

WOTE 1: ANNUAL CUSTS DU NIJT INCLUUL PRUSENT BUTSTANDING BONDED INDEBTEDNESS MUTE 2: AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

PLAN B . R-25\$626

	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUME (MG)							_	_
1 YR STORM RUNUFF	0	0	0	0	0	5	7	10
ANNUAL RUNGEF	0	0	0	0	0	88	123	150
SLUDGE QUANTITIES (DI/YR)								
SEDIMENT.BASIN	0	0	0	v	0	165	230	281
TREATMENT PLANT	0	0	0	0	0	0	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

3 EANTH STORAGE BASIN

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000) ..

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
										
TREATMENT PLANT	72						480			205
BASIN	29						195			117
PIPES	300						2000			1200
RESIDUAL	59								TOTAL	1522
MET CAPITAL	343									

TABLE 11 : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
			 -						
PLANT	(\$1000/YR)	0	G	ø	0	٥	3	4	5
SLUDGE	(\$1000/YR)	0	0	0	0	0	4	5	7
* E WERS	(\$1000/YR)	0	0	0	0	0	9	9	9
FOTAL	(\$1000/YR)	ō	0	0	0	0	17	20	22
	ALUE AT BEGIN-	_	_		_			140	
NING OF P	ERIGO (\$1000)	0	o	0	0	0	130	148	U
PRESENT W	ORTH (\$LOUD)	0	0	0	0	0	19	11	0

\$1.0506 NET G.+M. =

TABLE III : TOTAL PPESENT WURTH

CAP IT AL	[[\$1030]	34.3
0.+M.	(\$1000)	31
LAND	1 \$ 1000)	2
·	-	
TOTAL	(51000)	37 6

TABLE IV : ANNUAL CUSTS (\$1000/YR)

	1972	1975	1980	1985	1490	5000	2010	2020

ANNUAL CAPITAL								
12LATMENT PLANT						37	37	37
BASIN						14	14	14
PIPES						144	144	144
TOTAL D.+M.	Ü	0	0	0	0	17	20	22
TOTAL AMMIAL	0	0	0	ō	0	213	216	218

NOTE 1 I ANNUAL COSTS ON NOT INCLUDE PRESENT UUTSTANDING BUNDED INDEBTEDNESS NOTE 2 I AN INTEREST RATE UP 7 PERCENT MAS USED FOR ALL CALCULATIONS

STORMWATER TREATMENT PLANT

PLAN B . 3-27

- F2-77-5-76-77-7-7-7-7-7-7-7-7-7-7-7-7-7-7-	·							
	1972	1975	1980	1985	1990	2000	2010	2020
								
STORMWATER VOLUME (MG)								
1 YR STURM RUNUFF	J	0	G	3	7	11	13	14
ANNUAL RUNUFF	0	0	0	54	109	164	203	217
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT .BAS IN	0	0	0	0	204	307	380	406
TREATMENT PLANT	0	0	o	0	0	0	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT ON LAND

53.8208

SLUDGE HANDLING : PERIOUIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

NET 0.+M. =

TABLE 1 : PRESENT WURTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
TREATMENT PLANT	171					580				61
BASIN	76					260				103
PIPES	88					300				119
RESIDUAL	11								TOTAL	305
NET CAPITAL	325									

TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
									
PLANT	(\$100J/YR)	o	0	0	0	3	5	7	7
SLUDGE	(\$1000/YK)	0	0	0	0	5	7	9	10
SEWERS	(\$1000/YR)	Ö	0	0	0	1	1	1	1
TOTAL	(\$1003/YR)	ō	0	0	0	10	14 ·	18	19
PRESENT VALUE	AT BEGIN-								
NING OF PERIOD		0	0	0	0	89	116	131	0
PRESENT WORTH	(\$1000)	0	o	o	0	26	17	10	o

TABLE 111 : TOTAL PRESENT WORTH

3
325 53

TABLE IV : ANNUAL CUSTS (\$1000/YR)

	1972	1975	1930	1965	1990	2000	2010	2020
ANNUAL CAPITAL								
TREATMENT PLANT					44	44	44	44
HASIN					18	18	18	18
PIPES					21	21	21	21
TOTAL D.+H.	o	0	0	0	10	14	18	19
TOTAL ANNUAL			0	0	95	100	103	104

NOTE 1: ANNUAL CISTS OU NOT INCLUDE PRESENT DUTSTANDING BUNDED ENDEBTEUNESS NOTE 2: AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

PLAN 8 . K-28

	1972	1975	1940	1985	1990	2000	2010	2020
STORMWATER VOLUME (MG)								
1 YM STURM KUNGFF	0	0	0	0	0	37	49	62
ANNUAL HUNDEF	0	0	0	0	0	537	716	895
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT-BASIN	0	0	0	0	0	1006	1342	1678
TREATMENT PLANT	0	Ō	0	0	Ō	0	0	0

TRUITMENT SCHEME : STORAGE PLUS TREATMENT ON LAND

SLUDGE HANGLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

ST AGE BASIN : EARTH

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

		PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
TR.	THERT PLANT	340					1150				160
BA	N	159					540				215
P1:	S	59					200				79
	RESIDUAL	17								TOTAL	456
	NET CAPITAL	541	•								

TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	0	0	0	0	0	18	25	31
SLUDGE	(\$1000/YR)	0	0	0	0	0	25	33	41
SEPTES	(\$1000/YR)	0	٥	0	0	0	0	0	0
101 .	(\$1000/YR)	0	0	0	0	0	44	59	74
PRESENT VALUE	AT BEGIN					_			
NING OF PERLOD		0	0	0	0	161	367	470	0
PRE :NT WORTH	(\$1000)	0	0	0	0	47	55	35	0

NET 0.+M. = 138.915

TABLE III : TOTAL PRESENT WORTH

CAPITAL	[\$1000 }	541 138		
D.+M.	(\$1000)			
LAND	(\$100C)	14		
				
TOTAL	(\$1000)	694		

TABLE IV : ANNUAL COSTS (\$1000/YR)

•	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
TREATMENT PLANT					88	88	86	88
BAS IN					39	39	39	39
PIPES					14	14	14	14
TOTAL U.+M.	0	0	0	0	0	44	59	74
TOT ANNUAL					143	187	201	216

NCTE 1 : ANNUAL COSTS DO NUT INCLUDE PRESENT JUTSTANDING BUNDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

PLAN 8 . R-29

	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VULUME (MG)								
1 YR STORM RUNGEF	a	0	0	0	6	8	10	11
ANNUAL RUNDEF	ŏ	Ō	Ō	Ō	ō	112	135	168
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT . BASIN	0	0	C	0	0	210	253	315
TREATMENT PLANT	0	0	υ	0	Ð	0	0	0

TREATMENT SCHEME : STURAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

·	PRE SE NT WORTH	1972	1975	1980	1985	1996	2080	2010	2020	RESIDUA
•										
TREATMENT PLANT	79						530			227
BAS IN	36						240			144
PIPES	170						1136			681
RESIDUAL	43								TOTAL	1052
NET CAPITAL	245									

TABLE II : PRESENT WORTH - 0.+N. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	0	0	0	0	0	3	4	5
SLUDGE	(\$1000/Y4)	0	0	0	0	0	5	6	7
SEWFRS	(\$1000/YR)	0	0	0	0	0	5	5	5
TOTAL	(\$1000/YR)	0	0			•	14	16	19
PRESENT VALU	E AT BEGIN-						•		
NING OF PERI		0	0	0	0	0	110	127	0
PRESENT WORT	H (\$1000)	0	0	0	0	0	16	9	0

NET O.+M. = 26.385

TABLE III : TOTAL PRESENT WORTH

CAPITAL	(\$1000)	245
Q.+M.	(\$1000)	26
LAND	(\$1000)	3
		
TOTAL	(\$1000)	275

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	5010	2020
ANNUAL CAPITAL								
TREATMENT PLANT BASIN						40 17	40 17	40 17
PIPES TOTAL U.+M.	a	a	Ú	U	0	82 14	82 16	82 19
TOTAL O.TH.								
TUTAL ANNUAL	O	υ	0	Ü	0	155	157	159

NOTE 1: ANNUAL COSTS DU NUT INCLUDE PRESENT DUTSTANDING BUNDED INDEBTEDNESS NOTE 2: AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

PLAN B . P~30633

	1972	1975	1980	1985	1990	2000	2010	2020	
The second secon	- 8- 82 27	·							•
STORMMATER VOLUME (MG)									
1 YR STUK4 KUNDEF	0	0	O	a	0	5	A	٩	
ANNUAL RUNDEF	0	o	ā	ō	ŏ	67	91	121	
SLUDGE QUANTITIES (DT/YR)									
SECINENT- BASIN	0	0	0	0	0	125	170	226	
TREATMENT PLANT	0	Q.	0	õ	Ö	0	0	0	

TREATMENT SCHENE : STURAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING : PERIODIC REMOVAL TO LANOFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
								~~~		
TREATMENT PLANT	69						460			197
3AS I N	30						205			123
PIPES	119						797			478
RESIDUAL	30								TOTAL	798
NET CAPITAL	188									

## TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PL ANT	(\$1000/YR)	٥	0	0	0	0	2	3	4
SLUDGE	(\$1000/YR)	ŏ	ō	ŏ	ă	ā	3	4	5
EWERS	(\$1000/YR)	0	0	ā	õ	ō	3	3	ā
OTAL	(\$1000/YR)	~ō		0	<del></del> 0		9	11	13
PRESENT VA	LUE AT BEGIN-					•			
IING OF PE	(00014) GD1H	0	0	0	0	0	73	88	٥
⊋RESENT WO	ORTH (\$100J)	0	0	0	O	o	11	6	Q

NET 0.+M. = 17.8373

## TABLE III : TOTAL PRESENT WURTH

(41000)	208
	~
(\$1000)	2
	17
	186
	AL (\$1000) (\$1000) (\$1000)

## - TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1983	1985	1990	2000	2010	2020
'NNUAL CAPITAL			•					
TREATMENT PLANT Basin Pipes						35 14 57	35 14 57	35 14 57
TOTAL U.+H.	0	0	0	0	0	9	ii	13
OTAL ANNUAL	0				ō	117	119	121

NUTE 1 : ANNUAL CUSTS NO MIT INCLUDE PRESENT OUTSTANDING BONIED INDEBTEDNESS NUTE 2 : AN INTEREST RATE GF 7 PERCENT WAS USED FOR ALL CALCULATIONS

PLAN B , K-31

·	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUME (MG)								
	_		_	_	_		_	
1 VP STORM RUNDEF	o	0	0	0	0	7	•	_ •
ANNUAL RUNOFF	C	0	0	0	0	34	51	70
SLUDGE QUANTITIES (UT/YR)								
SEDIMENT . BASIN	0	0	Ü	0	0	63	95	131
	ū	0	Ō	Ŏ	ō	0	0	
TREATMENT PLANT	Ų	v	U	U	U	U	U	U

TREATMENT SCHEME : STURAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	MARKET PRE	SENT JRTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
	٠-۸ ــــــ						<del></del>				<del></del>
TREATMENT PI	LANT	43						290			124
BASIN	-	24						160			
PIPES	-	30						200			120
RESI	DUĄŁ	13								TOTAL	340
NET CAP	I TAL	84									

TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	0	0	0	0	· 0	1	1	2
SLUUGE	(\$1000/YR)	0	0	0	0	0	1	2	3
SEWERS	(\$1000/YR)	O	0	٥	0	0	0	0	0
TOTAL	(\$1000/YR)		<u>o</u>	0	0	0	3	5	6
PRESENT VALU	JE AT BEGIN-						•		
NING OF PERT	100 (\$1000)	0	0	0	0	a	31	41	0
PRESENT WORT	H (\$1000)	0	0		0			3	

NET 0.+M. = 7.92663

TABLE III : TOTAL PRESENT WORTH

CAPITAL	(\$1000)	84
D.+M.	(\$1000)	?
LAND	(\$1000)	1
TOTAL	1110001	9.3

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1 972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL						·		
TREATMENT PLANT						22	22	22
BASIN						11 14	11 14	11 14
PIPES TOTAL U.+M.	٥	0	o	0	0	3	• • • •	. 6
TOTAL ANNUAL	0	Ü	Ü	0	0	52	53	5 <b>5</b>

NOTE 1: ANNHAL COSTS DU NOT INCLUDE PRESENT OUTSTANDING BUNDED INDEBTEDNESS NOTE 2: AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

#### PLAN R . K-32

	1972	1975	1983	1985	1990	2000	2010	2020
•								
STORMENTER VOLUME (MG)								
1 YR STORM RUNUFF	v	٥	0	0	Ð	14	19	21
ANNUAL KUNUFF	0	O	Ú	0	•	206	274	302
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT.BASIN	0	0	0	0	•	386	513	566
TREATMENT PLANT	0	0	v	0	8	0	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RELYCLE

STORAGE BASIN : EARTH

## TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
								<del></del>		
TREATMENT PLANT	105						700			300
BAS IN	48						320			192
PIPES	285						1900			1140
RES 10UAL	63								TOTAL	1632
NET CAPITAL	375									

#### TABLE 11 : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1994	2000	2010	2020
						<del></del>			
PLANT	(\$1030/YK)	G	0	0	0	o	7	9	10
SLUDGE	(\$1000/YR)	0	0	0	Ú	0	9	12	14
SEWFRS	(\$1000/YR)	0	0	0	0	9	9	9	9
TOTAL	(\$1000/YR)	0	0	0	<del></del> 0	0	26	31	34
PRESENT VA	LUE AT BEGIN-								
NING UF PE	RIUD (\$1000)	0	0	0	0	0	204	232	0
PRESENT WO	RTH (\$1000)	0	0	0	0	0	30	17	0

NET 0.+M. = 48.5427

6

## TABLE III : TOTAL PRESENT WORTH

APITAL	(11000)	375
).+M.	(\$1000)	48
.AND	(\$10001	20
	•	
TOTAL.	(\$1000)	444

# TABLE IV : ANNUAL COSTS (\$1000/TR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
TREATHONT PLANT						54	54	54
GASIN						23	23	23
PIPES						137	137	137
TOTAL O.+M.	0	0	o	0	٥	26	31	34
TOTAL ANNUAL	0	0	0	0	0	241	246	248

NOTE 1 : ANNUAL COSTS OU HIT INCLUDE PRESENT OUTSTANDING BUNDED INDEBILDMESS NUT E 2 : AN INTEREST RATE OF 7 PERCENT MAS USED FOR ALL CALCULATIONS

PLAN B . R-34

	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUME (MG)								
1 YR STORM RUNDEF	0	2	4	5	7	•	11	11
ANNUAL RUNGEF	Ö	34	69	86	104	139	153	174
SLUDGE QUANTITIES (DT/YR)								
SEU IMENT.BASIN	0	64	129	162	195	260	284	326
TREATMENT PLANT	0	- 0	0	0	0	0	0	ō

TREATMENT SCHEME : STORAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
TREATMENT PLANY BASIN PIPES	211 101 82				510 245 200					73 40
RESIDUAL	5								TOTAL	133
NET CAPITAL	391									

#### TABLE II : PRESENT WORTH - O.+K. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT [	\$1000/YR)	0	0	0	3	3	4	5	6
SLUDGE (	\$1000/YR)	0	0	٥	4	4	6	7	Ā
SEWERS (	\$1000/W)	0	0	ō	Ó	•	Ŏ	ò	ŏ
TOTAL	\$1000/YR)	0		0	9	9	12	13	15
PRESENT VALUE AT	BEGIN-						•		
NING OF PERIOD (		0	0	0	39	76	90	101	0
PRESENT WORTH (	\$1000)	0	0	0	16	22	13	7	0

NET 0.+M. = 60.3341

## TABLE III : TOTAL PRESENT WORTH

O.+M. Land	(\$1000)	60 17
	-	
TOTAL	(\$1000)	468

## TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL	*							
TREATMENT PLANT				39	39	39	39	39
BASIN				17	- 17	17	17	17
PIPES				14	14	14	14	14
TOTAL O.+M.	g	0	0	9	9	12	13	15
TOTAL ANNUAL	0		0	81		83	85	86

NUTE 1 : ANNUAL CUSTS DJ NOT INCLUDE PRESENT OUTSTANDING RONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

## PLAN 0 . H-35

	1972	1975	1980	1985	1990	2000	2010	2020
		<del></del>						
STORMHATER VOLUME (MG)								
1 YH STUHM RUNLAF	0	3	7	9	12	16	17	20
ANNUAL RUNOFF	o	60	120	150	1 80	240	264	300
SLUDGE QUANTITIES (DT/YK)								
SEDIMENT.BASIN	0	112	225	281	337	450	495	562
TREATMENT PLANT	0	0	0	0	0	0	0	0

TREATMENT SCHEME : STURAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

## TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
TREATMENT PLANT	432			680					680	582
BASIN	197			340						67
PIPES	116			200						39
RESIDUAL	26								TOTAL	690
NET CAPITAL	720									

TABLE 11 : PRESENT WORTH - 0.+N. COST	TABLE	11	2	PRE SENT	WORTH -	0.+M.	COST	\$
---------------------------------------	-------	----	---	----------	---------	-------	------	----

		1972	1975	1980	1985	1990	2000	2010	2020
						<del></del>			
PL ANT	( \$1000/YX )	0	· 0	σ	6	4	8	9	10
SLUDGE	(\$1000/YR)	٥	0	0	8	. 8	11	12	14
SEWERS	(\$1000/YR)	0	0	0	0	0	0	0	0
TOTAL	- (\$1JOU/YR)	0	0	0	15	15	20	22	25
PRESENT VAL	UE AT BEGIN-								
NING OF PER	100 (\$1000)	0	0	34	64	127	151	169	0
PRESENT WOR	TH (\$1000)	0	0	19	26	37	22	12	0

120.317 NET 0.+M. =

## TABLE III : TOTAL PRESENT WORTH

CAPITA	L (\$1000)	720
0.+4.	(\$1000)	120
LAND	(\$1000)	22
	-	
T OY AL	(\$10u0)	86.2

## TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
TREATMENT PLANT			52	52	52	52	52	52
BASIN			24	24	24	24	24	24
PIPES			14	14	14	14	14	14
TOTAL O. +M.	0	0	0	15	15	20	22	25
TOTAL ANNUAL	0	0	92	107	107	112	114	117

NOTE 1: AMNUAL COSTS OF NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEUNESS NOTE 2: AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

PLAN B . CU-26

	1972	1975	1980	1965	1990	2000	2010	2020
STORMWATER VOLUME (MG) 1 YR STORM RUNOFF	0		2	4	•		•	
ANNUAL RUNDEF	ŏ	27	54	67	ย์	91	123	134
SLUDGE QUANTITIES (OT/YR)	_	•		• • •				
SEDIHENT.BAS IN	0		101	126	121	170		25]
TREATMENT PLANT	0	υ	o	0	0	0	0	0
SEDIMENT . BAS IN	0	<b>5</b> 0	101	126	151 0	170	230 0	

TREATMENT SCHEME : STURAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIOU:
TREATMENT PLANT	182				440					0
BASIN	91				220					**
PIPES	82				20 <b>0</b>					<b>♦</b> 0
RESIDUAL	4								TOTAL	126
NET CAPITAL	351									

#### TABLE II : PRESENT WORTH - O.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	0	0	0	2	2	, з	4	4
SLUDGE	(\$1000/YR)	0	0	0	· 3	3	•	5	6
SEWERS	(\$1000/YR)	0	0	0	0	0	0	0	0
TOTAL	(\$1000/YR)	0	0	0	7	7	•	11	11
PRESENT VALUE	E AT REGIN-						•		
NING OF PERIO		0	0	0	31	56	68	60	0
PRESENT WURTH	1 (\$1000)	0	0	0	12	16	10	•	0

46.1814 NET U.+M. =

## TABLE III : TOTAL PRESENT WORTH

CAPITAL		351
G.+M. LAND	(\$1000) (\$1000)	46 10
TOTAL	4410001	408

## TABLE IV & ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
					*			
ANNUAL CAPITAL TREATMENT PLANT				33	33	33	33	33
BASIN				15	15	15	15	15
PIPES				14	14	14	14	14
TOTAL G.+M.	0	0	0	7	7	•	11	11
TOTAL ANNUAL	0	0		72	72	72	75	76

NOTE 1 : ANNIAL CUSIS DU NUR INCLUDE PRESENT DUTSTANDING BUNDED INDEBTEUNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT MAS USED FOR ALL CALCULATIONS

PLAN 8 . CU-27

	19/2	1975	1980	1985	1990	2000	2010	2020
STORMWATER VULUME (MG)								
1 YR STORM RUNUFF	0	4	9	10	12	17	22	22
ANNUAL RUNOFF	Q	63	126	158	190	252	316	316
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT - HAS IN	0	118	236	296	356	472	592	592
TREATMENT PLANT	G	U	Ú	0	0	0	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
			<del></del>							
TREATMENT PLANT	294				710					0
BASIN	149				360					108
PIPES	1680				4050					1215
RESIDUAL	51								TOTAL	1323
NET CAPITAL	2072									

#### TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	1 \$1000/YR)	0	0	0	6	6	8	11	11
SLUDGE	(\$1000/YK)	0	0	0	8		11	14	14
SEWERS	(\$1000/YR)	0	0	0	20	20	20	20	20
TOTAL	(\$1000/YR)	0	0	0	35	35	40	46	46
PRESENT VALU	E AT BEGIN-						•		
NING OF PERI	00 (\$1000)	0	0	0	146	269	305	323	0
PRESENT WORT	H (\$1000)	0	0	0	60	79	45	24	0

NET 0.+M. = 211.276

### TABLE 111 : TOTAL PRESENT WORTH

CAPITAL	(\$1000)	2072
O.+M.	(\$1000)	211
LAND	(\$1000)	24

TOTAL (\$1000) 2308

# TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
TREATMENT PLANT				54	54	54	54	54
BAS IN				26	26	26	26	26
PIPES				293	293	293	293	293
TOTAL U.+M.	0	U	0	35	35	40	46	46
STAL ANNUAL	0			409	499	414	420	420

NOTE 1 : ANNUAL COSTS UD NUT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE UF / PERCENT WAS USED FOR ALL CALCULATIONS

#### PLAN B . CU-28

	1972	1975	1980	1985	1990	2000	5010	2020
STORMHATER VOLUME (MG)								
1 YR STORM RUNUFF	0	0	G	2	4	5	7	•
ANNUAL RUNDEF	0	0	0	36	72	86	108	121
SLUDGE QUANTITLES (DT/YR)								
SEDIMENT. BASIN	D	0	0	0	135	161	202	226
TREATMENT PLANT	0	. 0	0	0	•	O	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL CR RECYCLE

STORAGE BASIN : EARTH

## TABLE 1 : PRESENT WORTH - CAPITAL COSTS - 181000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDA
					<del></del>					
TREATMENT PLANT BASIN PIPES	130 62 532					440 210 1 <b>80</b> 0				63 6: 71
RESIDUAL	33								TOTAL	86:
NET CAPITAL	691									

#### TABLE 11 : PRESENT WORTH - 0.+4 COSTS

		1972	1975	1980	1985	1998	2000	2010	2020
PLANT SLUDGE	(\$1000/YR) (\$1000/YR)	0	0	0	0	2 3	3	3 5	4 5
SEWERS	(\$1000//R)	0	0	0	٥		•	8	6
TOTAL	[ \$1000\AY ]	0	0	0	0	14	16	17	18
PRESENT VALU		0	0	o	٥	108	118	129	0
PRESENT WORT	H (\$1000)	0	0	0	0	32	17	9	0

59.8918 HET O.+M. =

### TABLE III : TOTAL PRESENT WORTH

CAPIT	AL (\$1000)	691
U.+M.	(\$1000)	59
LAND	(\$1000)	2
TOTAL	(41000)	75.1

## TABLE IV : ANNUAL COSTS (\$1000/YR)

	1472	1975	1980	1985	1996	2000	2010	2020
Abbuttat CARTTAL					<del></del>			
ANNUAL CAPITAL TREATMENT PLANT					<b>)</b> 3	33	33	33
BASIN					15	15	15	15
PIPES		_		_	730	130	130	130
TOTAL 0.+M.	0	0	0	0	34	16	17	18
TOTAL ANNUAL	0	0	0	0	194	195	197	198

NOTE 1 : ANNUAL COSTS OF BOT BY INCLUDE PRESENT OUTSTANDING BONDED INDEBTFONESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

## PLAN B . CU-29631

	1972	1975	1980	1985	1990	2000	2010	2020
STURMMATER VOLUME (MG)								
1 YR STORM RUNUFF	0	0	0	0	0	21	27	34
ANNUAL RUNDEF	0	Ó	ō	Ó	ō	329	395	495
SLUNGE QUANTITIES (DT/YR)								
SEUIMENT. BASIN	0	0	0	0	0	616	740	928
TREATMENT PLANT	0	0	0	0	Ó	0	0	0

TREA)MENT SCHEHE : STORAGE PLUS TREATMENT ON LAND

-----SLUDGE-HANDLING-- :- PER 100 IC-REMUVAL-TO-LANDEILL-OR-RECYCLE------

STURAGE BASIN : EARTH

#### TABLE I : PRESENT WURTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1965	1990	2000	2010	2020	RES LOUAL
							<del></del>			
TREATMENT PLANT	130						870			373
RAS IN	61						410			246
PIPES	330						2200			1320
RESTOUAL	75								TOTAL	1939
MET CAPITAL	448									

#### TABLE II : PRESENT WORTH - Q.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
						<del></del>			
PLANT	(\$1000/YR)	0	0	0	0	0	11	13	17
<b>SLUNGE</b>	(\$1000/YR)	0	0	0	0	0	15	18	23
SF WFKS	(\$1000/YR)	0	0	0	0	0	10	10	10
TOTAL	(\$1000/44)	0		0	0	0	37	43	51
PRESENT VALUE	AT BEGIN-								
NING OF PERIO	n (\$1000)	0	0	0	0	0	285	333	0
PRESENT WORTH	(\$1000)	0	0	0	0	0	42	25	0

68.3811 NET O.+M. =

#### TABLE III : TOTAL PRESENT WURTH

CAPITAL	(\$1000)	448
O.+M.	(\$1000)	68
LAND	(\$1000)	8
TOTAL	(\$1000)	524

## TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1 975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL			*					
TREATMENT PLANT						67	67	67
RASIN PIPES						29 159	29 159	29 159
TOTAL O. +M.	0	0	0	0	0	37	43	51
TOTAL ANNUAL		0			<del></del> ō	294	299	307

NOTE I I ANNIAL CUSTS UN NUT INCLUDE PRESENT OUTSTANDING BUNDED INDEDTEDNESS NUTC 2 I AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

STORMHATER TREATMENT PLANT

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN B . CU-3u

	1972	1975	1980	1985	1990	2000	2010	2020
COOMLAYED HOLLING INC.								
STORMHATER VOLUME (MG)								
1 YR STÚRM RUNUFF	0	O	0	٥	٥	4	4	
ARMUAL HUNOFF	ō	0	Ŏ	ō	ō	86	103	129
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT.BASIN	٥	0	۵	٥	۵	161	193	241
TREATMENT PLANT	ă	ŏ	ă	ŏ	ŏ			471
INCAINCH I CANT	•	•	•	v	U	0	0	9

TREATMENT SCHEME : STORAGE PLUS TREATMENT ON LANC

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

## TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
TREATMENT PLANT BASIN PIPES	69 33 582		- · · · -	<u></u>	• -		460 220 3870			197 132 2322
RESIDUAL	102								TOTAL	2651
MET CAPITAL	581									

#### TABLE II : PRESENT WORTH - O.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
				<del></del>	<del></del>				
PLANT	(\$1000/YR)	0	o	0	0	0	3	3	4
<b>STNDGE</b>	(\$1000/YR)	a	٥	0	6	Ŏ	Ĭ.	Ĭ.	7
SEWERS	(\$1000/YR)	0	0	0	Ó	Ö	19	19	19
TOTAL	(\$1000/YR)	<u> </u>	0		0		26	27	29
PRESENT VALUE	AT BEGIN-							•	
NING OF PERIO		٥	0	. 0	0	0	190	202	0
PRESENT WORTH	(\$1000)	0	0	٥	0	0	28	15	0

NET 0.+M. = 44.0925

## TABLE III : TOTAL PRESENT WORTH

CAPITAL O.+M. LAND	(\$1000) (\$1000) (\$1000)	581 44 2
TOTAL	(\$1000)	627

## TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ARMUAL CAPITAL	<del></del>							
TREATMENT PLANT BAS IN PIPES						35 15	35 15	35 15
TOTAL U.+H.	0	0	0	0	0	280 26	280 27	280 29
TOTAL ANNUAL	<u>_</u>		0			358	359	361

NOTE 1 : ARNUAL CUSTS OO NOT INCLUDE PRESENT DUTSTANDING BUNGED INDERTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

## PLAN B . CU-34C-40-41

	1 472	1975	1930	1985	1990	2000	2010	2020
STORMWATER VOLUME (MG)								
1 YR STORM RUNOFF	0	0	0	٥	0	5	7	11
ANNUAL RUNUFF	0	0	0	0	o	93	111	136
SLUDGE QUANTITIES (DT/YR)								
SED INENT-BASIN	0	0	0	0	0	174	208	258
TREATMENT PLANT	Ó	0	Ü	0	0	0	0	0

TREATMENT SCHEME : STURAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESTOUAL
							<del></del>			
TREATMENT PLANT	76						510			218
BASIN	33						225			135
PIPES	451						3000			1800
RESIDUAL	63								TOTAL	2153
MET CARITAL	478									

#### TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YK)	0	0	0	0	٥	3	3	4
SLUDGE	[ \$1000/YK)	0	0	0	U	0	4	5	6
SEWERS	(\$1000/YZ)	0	0	0	0	0	14	14	14
TOTAL	(\$1000/YR)	0		0			22 .	2.4	26
PRESENT VAL	UE AT BEGIN-								
NING OF PER	100 (\$1000)	0	. 0	0	0	0	164	176	0
PRESENT WOR	TH (\$1000)	0	0	0	0	٥	24	13	0

NET 0.+H. = 38, 1854

### TABLE III : TOTAL PRESENT WORTH

CAPITAL	( \$ 1000)	478
O.+M.	(\$1000)	38
LAND	(41000)	2
TOTAL	(\$1000)	518

## TABLE 1V : ANNUAL COSTS (\$1000/YM)

	1972	1975	1980	1985	1790	2000	2010	2020
ANNUAL CAPITAL								
THEATMENT PLANT						39	39	39
BASIN						16	16	16
PIPFS						217	217	217
TOTAL O.+M.	Ů	0	0	0	0	22	24	26
TUTAL ANNUAL			0		0	245	296	299

MOTE 1: ARMIAL COSTS DU NUT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2: AN INTEREST HATL UP 7 PERCENT WAS USED FOR ALL CALCULATIONS

PLAN H . CU-36

1972	1975	1980	1985	1990	2000	2010	2020
							******
0	0	0	0	0	8	10	13
v	o	o	0	0	139	167	209
0	Q	0	0	0	260	313	391
Ů	0	0	o	0	0	0	0
	0 0	0 0 0	0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 8 0 139 0 0 0 0 0 260	0 0 0 0 0 8 10 0 0 0 0 0 139 167

TREATMENT SCHEME : STURAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE I : PRESENT WORTH - CAPITAL COSTS - (41000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
TREATMENT P BASIN PIPES	PLANT 82 40 1114						550 270 7410			235 162 4446
RESI	IDUAL 187								TOTAL	4843
NET CAP	71 TAL 1049									
<del>-</del>			TABLE	-11- + PRES	ENT. WORTH.	- 0.+M. CO				
		1972	1975	1980	1985	1990	2000	2010	2020	
PLANT	(\$1000/YR)	o	0	0	0	0	4	5	7	
SL UDGE S EWERS	(\$1000/YR) (\$1000/YR)	0	0	0 <b>0</b>	0	0	6 37	7 37	9 37	
TOTAL	(\$1000/YR)	<u>0</u>	ō	0	- <del></del> 0	0	48	50	54	
	UF AT BEGIN-	0	, o	0	o	0	348	368	o	
PRE SENT, NOR	TH (\$1000)	o	0	o	0	0	52	28	o	
NET 0.+#. =	80.5101									
			TABLE	111 : 101	AL PRESENT	WORTH				

CAPITA	L (\$1000)	1049
0.+M.	(\$1000)	80
LAND	(\$1000)	3
	-	
TOTAL	(\$1000)	1133

## TABLE IV : ANNUAL COSTS (\$2000/Y2)

	1972	1975	1980	1985	1 -		2010	2020
ANNUAL CAPITAL								
TREATMENT PLANT BAS IN PIPES						42 19 536	42 1 y 53 6	42 19 536
TOTAL O.+M.	v	0	U	o	ø	48	50	54
TOTAL ANNUAL	0	0	<del></del>			646	649	652

NOTE 1 & ANNUAL CUSTS DO NOT INCLUDE PRESENT OUTSTANDING BUNDED INDEGTEUNESS NOTE 2 & AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

STORMMATER TREATMENT PLANT CURPS OF ENGINEERS - SURVEY SCOPE STORY

PLAN B . CU-37

	1972	1975	1980	1985	1990	2000	2013	2020
STURMWATER WILLUME (MG)								
1 YR STORM RUNOFF	0	0	Ù	0	0	9	11	14
ANNUAL RUNGFF	0	U	0	0	0	133	159	199
SLUDGE QUANTITIES (DT/YR)								
SED IMENT.BASIN	0	o	0	Ü	O	249	298	373
TREATMENT PLANT	0	0	0	0	Ö	0	0	0

TREATMENT SCHEME : STURAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING & PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASEN : EARTH

TABLE I : PRESENT WIRTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
TREATMENT PLANT	87						580			248
BASIN	43						290			174
PIPES	30						200			120
RESIDUAL	21								TOTAL	542
NET CAPITAL	139									

## TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	0	0	0	0	٥	3	3	4
SLUOGE	(\$1000/YR)	0	0	o	0	0	8	10	13
SEWERS	(\$1000/YR)	o	0	Q	o	0	0	O	0
TOTAL	(\$1000/YK)		0	ō	0		13	15	19
PRESENT VAL	UE AT BEGIN-								
	100 (\$1000)	0	. 0	0	0	0	99	120	0
PRESENT WOR	TH (\$1000)	J	0	0	0	0	15	9	0

NET U.+M. = 24.2741

## TABLE III : TOTAL PRESENT WORTH

CAPITAL	(\$1000)	139
U.+M.	(\$1000)	24
LAND	(\$1000)	3
	•	
TOTAL	(\$1000)	167

## TABLE IV : ANNUAL CUSTS (\$1000/YK)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
TREATMENT PLANT						44	44	44
<b>BASIN</b>						20	20	20
PIPES						14	14	14
TOTAL O.+M.	0	Ú	v	O	0	13	15	19
TOTAL ANNUAL	<del>-</del> 0	0	0	0	ō	93	95	99

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BUNDED INDIBITEDNESS NOTE 2 : AM INTEREST HATE OF 7 PERCENT HAS USED FOR ALL CALCULATIONS

STURMWATER TREATMENT PLANT

CORPS OF ENGINEERS - SURVEY SCUPE STUDY

PLAN 8 . CU-38

	1972	1975	1980	1985	1990	2000	2010	2020
			-				~~~~	
STOPHWATER VOLUME (MG)								
1 YR STORM RUNUFF	0	0	Q	٥	O	5	7	9
ARCHUR JAUNNA	0	0	Q	Ō	ō	93	112	139
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT . BAS IN	0	0	Q	٥	0	174	210	260
TREATMENT PLANT	0	0	Ú	ō	Ď	- 0	0	200

TREATMENT SCHEME : STORAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
TREATMENT PLANT BASIN PIPES	69 33 451						460 220 3000			197 132 1800
RES IOUAL	82								TOTAL	2129
NET CAPITAL	470									

## TABLE 11 : PRESENT WORTH - O.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	٥	Q	0	0	0	3	3	4
SLUDGE	[\$1000\A3]	Ú	0	0	G	0	4	5	6
SEWERS	(\$1000/YR)	0	0	0	0	•	14	14	14
TOTAL	(\$1000/YR)	3	0	0	0	0	22	24	26
PRESENT VA	LUE AT BEGIN-	•	•						
NING OF PE	R100 (\$1000)	o	0	0	0	٥	164	177	0
PRESENT WO	RTH (\$1000)	0	0	0	0	0	24	13	0
NET O.+M.	* 38.2725								

TABLE III : TUTAL PRESENT WURTH

(\$1000)	511
(\$1000)	2
[\$1000]	38
(\$1000)	470
	(\$1000) (\$1000)

## TABLE IV : ANNUAL COSTS (SEDUDOYR)

	1972	1975	1930	1935	1990	2000	2010	2020
ANNUAL CAPITAL								
THEATMENT PLANT						35	35	35
BASIN						15	15	15
PIPES						217	217	217
TOTAL U.+M.	G	0	v	0	Ü	22	24	26
TUTAL ANNUAL		ō	<del>-</del>	3	0	291	292	295

NOTE 1: ANNUAL CUSTS DU NOT INCLUDE PRESENT OUTSTANDING BUNDED INDEBTERRESS NOTE 2: AN INTEREST HATE HE F PERCENT HAS USED FOR ALL CALCULATIONS

	1972	1975	1930	1985	1490	2000	2010	2020
eronustra unitare cuel								
STORMWATER VOLUME (MG)								
1 YR STORM RUNUFF	0	0	0	5	11	14	18	20
ANNUAL RUNUFF	0	J	0	85	171	205	256	290
SLUDGE QUANTITIES (DT/YR)								
SENIMENT BASIN	0	6	0	0	320	384	480	543
TREATHENT PLANT	ง	Ó	Ű	Ō	0	0	ō	0

TREATMENT SCHEME : STURAGE PLUS TREATMENT UN LAND

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT MORTH	1972	1975	1980	1985	1990	2000	5010	2020	RESIDUAL
TREATMENT PLANT	198					670				93
BAS IN	94					320				127
PIPES	887					3000				1199
RESTOUAL	55								TOTAL	1421
NET CAPITAL	1125									

## TABLE II : PRESENT WORTH - O.+M. CUSTS

		1972	1975	1980	1985	1990	2000	2010	2020	
		**********								
PLANT	(\$100J/YR)	0	0	٥	0	5	7	A	10	
SLUDGE	(\$1000/YR)	o	0	Ö	Ŏ	á	ġ	12	13	
SEWERS	(\$1000/YK)	0	0	q	ō	14	14	14	14	
TOTAL	#\$1000/YR				0	29	31	35	38	
PRESENT VAL	UE AT BEGIN-									
NING OF PER		0	. 0	0	0	213	237	262	0	
PRESENT WOR	TH (\$1000)	0	`o	0	0	63	35	20	0	
NET 0.+M. =	118.965									

## TABLE 111 : TOTAL PRESENT WORTH

CAPITAL	L (\$1000)	1125
D.+M.	(\$1000)	116
LAND	(\$1000)	5
	-	
TOTAL	(\$1000)	1249

#### .TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1440	2000	2010	2020
ANNUAL CAPITAL								
TREATMENT PLANT					51	51	51	51
BASIN					23	23	23	23
PIPES					217	217	217	217
TUTAL D.+M.	0	٥	0	0	29	31	35	38
TUTAL ANNUAL	5		0	ō	321	323	328	330

NOTE 1: ANNUAL COSTS NO HOL INCLUDE PRESENT DUTSTANDING BONDED INDEBTEURESS NOTE 2: AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

STURMMATER TREATMENT PEANT

CORPS OF ENGINEERS - SURVEY SCUPE STUDY

PLAN II . CU-42

	1972	1975	1980	1985	1990	2000	2010	2050
STORMHATER VOLUME ING)								
1 YR STURM RUNIFF	0	O	٥	2	4	4	5	7
ANNUAL RUNDEF	0	0	0	36	72	72	86	107
SLUDGE QUANTITIES (OT/YK)								
SEDIMENT.BASIN	0	0	٥	0	135	135	161	200
TREATMENT PLANT	٥	0	0	0	0	0	0	0

TREATMENT SCHEME : STURAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE I : PRESENT WURTH - CAPITAL COSTS - (\$1000)

	PRE SENT WURTH	1972	1975	1930	1985	1990	2000	2010	2020	RESIDUAL
TREATMENT PLANT	118					400				55
BASIN	56					190				75
PIPES	59					200				79
RESIDUAL	8								TOTAL	211
NET CAPITAL	225									

#### TABLE II : PRESENT WORTH - U.+M. COSTS

	1972	1975	1980	1985	1990	2000	2010	2020
PLANT (\$1000/YR	1 0	۵	0	0	2	2	3	3
SLUNGE (\$1000/YR	) 0	0	0	0	3	3	4	5
SEWERS (\$1000/YR	1 0	Ð	0	0	0	0	0	٥
TOTAL (\$1000/YR	,	0	0	0		6	8	9
PRESENT VALUE AT BEGIN-								
NING OF PERIOD (\$1000)	0	0	0	0	48	52	62	0
PRESENT WORTH (\$1000)	0	. 0	0	0	14	7	4	0

26-9897 NET 0.+#. =

#### TABLE III : TUTAL PRESENT WURTH

CAPITAL	(\$1000)	225
0.+M.	(\$1000)	26
LAND	(\$1000)	1
TOTAL	(\$1000)	253

## TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
TREATMENT PLANT					30	30	30	30
BASIN					13	13	13	13
PIPES					14	14	14	14
TOTAL U.+M.	0	o	υ	0	6	6	8	9
TOTAL ANNUAL	0	<del></del> 0	0	0	66	66	67	68

NOTE 1: ANNUAL CUSTS ON NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEUMESS NOTE 2: AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

## PLAN d . CU-510-52

	1972	1975	1980	1985	1990	2000	2010	2020
		<del></del>						
STORYWATER VOLUME (MG)								
1 YR STORM RUNOFF	0	9	19	22	26	30	32	35
ANNUAL RUNLIFF	0	161	322	351	381	441	483	529
SLUDGE QUANTITIES (DT/YR)								
SED IMENT BASIN	0	301	603	659	714	826	905	991
TREATMENT PLANT	o	0	0	0	0	0	0	0

TREATMENT SCHEHE : STURAGE PLUS TREATMENT UN LAND

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

#### TABLE 1 : PRESENT WIRTH - CAPITAL COSTS - 1810001

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESTUUAL
TREATMENT PLANT	373				900					0
BASIN	174				420					126
PIPES	82				200					60
RESIDUAL	7								TOTAL	1 86
NET CAPITAL	623									

## TABLE II : PRESENT WURTH - 0.+M. COSTS

	1972	1975	1980	1985	1990	2000	2010	2020
		~						
PLANT (\$1000/	YR) 0	٥	0	13	13	15	16	18
SLUDGE (\$1000/	74) 0	0	0	17	17	20	22	24
SEWERS (\$1000/	YR) O	٥	0	0	0	0	0	0
TOTAL (\$1000/	YR) 0	0		32	32	37	40	44
PRESENT VALUE AT BEGIN						•		
NING OF PERIOD (\$1000)	0.	0	0	1 32	243	272	297	0
PRESENT WORTH (\$1000)	o	. 0	0	54	73	41	22	o

190.536 NET 0.+M. =

#### TABLE III : TOTAL PRESENT WORTH

CAPITAL	(\$1000)	623
D.+M.	(\$1000)	190
LAND	[ \$1000 ]	82
TOTAL	1410001	896

## . TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
THEATMENT PLANT				69	<b>&amp;</b> *3	. 69	69	69
RASIN				30	30	30	30	30
P1 PE S				14	14	14	14	14
TOTAL II.+M.	0	0	٥	32	32	37	40	44
TOTAL A FUAL	<u>_</u>	<u>_</u>		146	1 46	151	154	158

NUTE 1: ANNUAL CONTS DU NOT INCLUDE PRESCRE DUTSTANDING BUNDED INDINTERESS NOTE 2: AN INTEREST HATE UP 7 PENCENT MAS USED FOR ALL CALCULATIONS

PLAN B . CU-53

	1972	1975	1980	1945	1990	2000	2010	2020
STORMWATER VOLUME (MG)								
1 YR STORM RUNOFF	o	18	36	37	39	41	43	45
ANNUAL AUNOFF	0	253	5 <b>0</b> ù	524	543	581	678	776
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT.BASIN	0	369	738	765	792	848	989	1132
TREATMENT PLANT	a	0	0	0	0	0	0	a

TREATMENT SCHEME : STURAGE PLUS TREATMENT AT MUNICIPAL PLANT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WURTH	1972	1975	1980	1965	1990	2000	2010	2020	RESTOUAL
BASIN	293			505						100
PIPES	276			475						94
RESIDUAL	7								TOTAL	195
NET CAPITAL	502									

#### TABLE II : PRESENT WORTH - G.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	5050
PLANT	[\$1000/43]	a	ø	127	135	142	152	178	204
SLUDGE \$FWFRS	- 44100074K1 - 44100074K1	~ <b>.0</b>	<del>- 0</del>	2-	2	19	<del>-</del> - <del></del> - <del></del>	24 2	26
TOTAL	(\$1000/YR)			148	156	165	176	205	234
PRESENT VALUE							·		
NING OF PERIO	0 (\$1000)	0	0	625	659	1149	1340	1545	0
PRESENT WORTH	(\$1300)	0	0	363	273	354	201	116	Q

NET U.+M. = 1311.75

#### TABLE III : TOTAL PRESENT WORTH

CAPITAL	(\$1000)	542 1311
LAND	(\$1000)	166
TOTAL	(\$1000)	2040

#### TABLE IV : ANNUAL CUSTS (\$1000/YR)

	1972	1975	1460	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
BASIN			36	36	36	36	36	34
PIPES			34	34	34	34	34	34
TOTAL U.+M.	٥	0	146	156	165	176	205	234
TOTAL ANNUAL		0	219	227	235	247	276	305

NOTE 1 : ANNUAL COSTS OF NUT INCLUDE PRESENT OUTSTANDING BENDED INDEBTEUNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

## PLAN H . CU-59

	1972	1975	1980	1985	1990	2000	2010	2020
STOPMINATER VILLIME (MG)								
		• • •	•	10	3.0	30	30	30
1 YK STOOM ROWIEF	v	14	28	29	30	30	30	30
ANNUAL RUNDER	o	263	527	556	585	585	585	585
SLUDGE QUANTITIES (OT/YR)								
SECTIMENT. BASTA	0	494	988	1042	1096	1096	1096	1096
TREATMENT PLANT	0	0	0	a	0	0	0	0

TREATMENT SCHERE : STURAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING : PERIOUIC REMOVAL TO LANDFILL UR RECYCLE

STORAGE BASIN : EASTH

## TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
TREATMENT PLANT	521			820					820	702
BAS IN	256			440						87
PIPES	2619			4500						899
IREAIMENT PLANT	0							0		0
RESIDUAL	65								TOTAL	1690
NET CAPITAL	3331									

#### TABLE 11 : PRESENT WERTH - 0.+M. COSTS

		19/2	1975	1980	1945	1990	2000	2010	2020
PLANT	(\$1000/Y#1	o	0	18	19	20	20	20	20
SUUDGE	131330/YR1	0	0	24	26	21	27	27	27
SEWERS	( \$1000/AK )	0	0	22	22	22	22	22	22
TOTAL	[\$1000/YH)	0	0	65	68	70	70	70	70
PRESENT VAL	UE AT BESIN						•		
NEGO UF PER	100 (51000)	0	0	274	283	494	494	494	0
PRESENT MOR	TH (\$1000)	u	o	159	117	146	74	37	0

NET 0.+M. = 535.011

## TABLE III : TUTAL PRESENT WORTH

T OT AL	1510001	3917
LAND	[ \$1 330 ]	50
D. M.	1 \$ 10001	535
CAPITAL	1210001	3331

## TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1475	1960	1985	1940	2000	2010	2020
ANNUAL CARTER								
ANGUAL CAPITAL								
TREATMENT PLANT			63	63	63	63	63	63
HASIN			31	31	31	31	31	31
PIPES			325	325	325	325	325	325
TREATMENT PLANT							0	ັນ
TOTAL D.+M.	0	v	65	68	70	70	70	70
TOTAL ANNUAL	0	0	434	488	491	491	491	491

MITE 1 & ANNUAL COSTS IN NOT INCLUDE PRESENT GUTSTANDING BONDED INDEBTEONESS. NOTE 2 & AN INTEREST MATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS.

## The PLAN By an Clin Cinit and the contract of 
	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VULUME (MG)								
1 YR STORM RUNUFF	0	5	11	11	12	13	13	13
ANNUAL RUNOFF	0	97	194	200	207	233	233	233
SLUDGE QUANTITIES (DT/YR)						_		
SEDIMENT.BASIN	0	181	363	375	368	436	436	436
TREATMENT PLANT	0	0	0	σ	ø	0	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING : PIPE SLUDGE TO MUNICIPAL PLANT

STORAGE BASIN : CONCRETE

#### TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
						<del></del>			<del></del>	
TREATMENT PLANT	343			540					540	462
BASIN	162			280						55
PIPES	1164			2000						399
RESIDUAL	35								TOTAL	916
MET CAPITAL	1635									

#### TABLE II : PRESENT WORTH - G.+M. COSTS

		1972	1975	1980	1965	1990	2000	2010	2050
PL ANT	(\$1000/W)	0	0	12	12	12	14	14	14
SLUDGE	(61000/YR)	٥	0	1	1	1	2	2	2
SEWERS	(\$1000/YR)	0	0	9	•	•	•	•	•
TOTAL	[81000/YR]			23	24	24	26	26	26
PRESENT VAL	UF AT REGIN-								
	(100 (41000)	0	J	96	100	1 60	187 .	107	0
PRESENT WOR	1810003	•	o	57	43	53	26	14	0

HFT 0.+M. - 195.027

## TABLE III : TOTAL PRESENT WORTH

1635 195	(\$1000)	CAPITAL
28	(\$1000)	LANU
1858	(61000)	TOTAL

#### TABLE IV : ANNUAL COSTS ESECUCIVED

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
THEATMENT PLANT			41	41	41	41	41	41
BASIN			20	20	20	20	20	20
PIPES			144	144	144	144	144	144
TOTAL O.+M.	0	0	23	24	24	26	26	26
TOTAL ANNUAL			230	231	231	233	233	233

NOTE 1: ANNUAL CUSTS TO NUT INCLUDE PRESENT UUTSTANDING BONDED INDEBTEUNESS NOTE 2: AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

## PLAN 6 . CU-67671

	<del>-</del>							
	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUME (MG)								
1 YR STORM RUNOFF	0	7	15	18	21	27	32	39
ANNUAL RUNDEF	0	116	232	272	313	405	486	579
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT.BASIN	O	217	435	510	586	759	911	1085
TREATMENT PLANT	0	0	0	Q	0	0	0	0

TREATMENT SCHEME : STURAGE PLUS TREATMENT UN LAND

SLUDGE HANDLING & PERIODIC REMUVAL TO LANGFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1965	1990	2000	2010	2020	RESIDUAL
		*								<u>:</u>
TREATMENT PLANT	394				950					0
BASIN	182				440					132
PIPES	516				1250					375
RESIDUAL	19								TOTAL	507
MET CARITAL	1/175									

#### TABLE II : PRESENT WORTH - D.+N. COSTS

		1972	1975	1980	1985	1 940	2000	2010	2020
PLANT '	(\$1000/YA)	0	0	0	10	10	14	17	20
SLUDGE	(%Y\0\0/Y\)	0	0	0	14	14	1.0	22	27
SEWERS	( \$ 1000/ AH)	٥	Ų	0	6	•	•	6	•
-TOTAL					- <del> 1</del>	<del>и</del> .	39	64	53
PRESENT VAL	UF AT BEGIN-								
MING UF PER	1100 (\$1000)	0	0	0	1 30	250	300	350	o
PRESENT WOR	TH (\$1000)	•	0	0	54	74	45	26	0

NET 0.+M. . 200-158

## TABLE III : TOTAL PRESENT WORTH

1075	1 61 000 1	CAPITAL
200	(\$1000)	U.+M.
44	(\$1000)	LAMD
1319	(\$1000)	TOTAL

## TABLE IV : ANNUAL CUSTS (\$1003/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
TREATMENT PLANT				73	73	73	73	73
BAS 1 N				31	اد	31	31	31
PI PE S				90	90	90	90	90
TOTAL U.+M.	0	0	0	31	31	39	46	53
TOTAL ANNUAL	0	ō		227	221	235	241	249

MOTE 1: ANNUAL CUSTS DU NUT INCLUDE PRESENT OUTSTANDING BUNDED INDERTEURESS NOTE 2: AN INTEREST FATE UP 7 PERCENT WAS USED FOR ALL CALCULATIONS

STORMHATEN TRESTMENT PLANT

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

# PLAN B . CU-73474

1972	1975	1980	1985	1490	2000	5010	2020
			-				
0	0	0	0	0	6	9	15
0	0	0	0	0	126	153	191
0	0	0	a	0	236	264	356
0	0	0	0	G	0	•	0
	0 0	0 0				0 0 0 0 0 8 0 126 0 0 0 0 0 0 236	0 0 0 0 0 8 9 0 0 126 153

TREATMENT SCHEME : STORAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING : PERIODIC REMUVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

#### TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT MDRTH	1972	1975	1980	1765	1990	2000	<b>20</b> 10	\$050	RESIDUAL
								-		<del></del>
TREATMENT PLANT	79						\$30			227
BASIN	39						260			154
PIPES	215						1430			854
RESIDUAL	44								TOTAL	1541
NET CAPITAL	285									

## TABLE II : PRESENT WORTH - 0.04. COSTS

	1972	1975	1980	1965	1990	5000	5010	2020
PLANT (61 303/1		0	0	•	•	•	•	•
\$EUGGE { \$1000/1		0	0	0		7	í	Ţ
TOTAL (\$1000/1	72)0	0	0		•	17	19	22
PRESENT VALUE AT BEGIN- NING UP PENIOD (81000)		0	o	0	•	130	149	•
PRESENT WORTH (\$1000)	0	0	0	0	•	19	44	0

MET 0.+#. . 31.311

#### TABLE III : TOTAL PRESENT WORTH

CAPLIAL	[000]	285
0. ·M.	1810001	31
LAND	[81000]	3
	•	
TOTAL	(\$1000)	319

## TABLE IV : ANNUAL COSTS (\$1000/YE)

	1972	1975	1940	1985	1 390	5000	3010	2020
AMMUNE CAPITAL								
THE ATMENT PLANT						40	40	40
BASIN PIPES						18 103	103	103
FOTAL C.+M.	0	٥	0	G	•	17	19	55
TOTAL MINUAL						100	102	186

NOTE 1: ANYWAL CITES IN MUT INCLUDE PARSENT DUTSTANDING BONDED INDEBTEDAISS NOTE 2: AN INTEREST PATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

## PLAN B . CU-75-76

·	-1972	4975	1980	1565	1990	2000	2010	2020
			<del></del>		<del></del>			<del></del>
STORMWATER VOLUME (MG)								
1 YR STURY RUNOFF	0	0	0	0	0	10	11	14
ANNUAL RUNUFF	0	o	0	0	0	154	185	230
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT . BASIN	0	o	0	0	0	286	346	431
TREATHENT PLANT	0	0	0	0	0	0	0	0

TREATMENT SCHEME : STURAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRE SENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESTUUAL
				<del></del>						
TREATMENT PLANT	87						580			248
BAS IN	42						280			168
PIPES	186						12+0			744
RESIDUAL	45								TOTAL	1160
NET CAPITAL	270									

#### TABLE 11 : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1960	1985	1990	2000	2010	2020
PLANT	[\$1000/YR]	٥	o	0	0	0	5	6	8
SEUDGE	(\$10GU/YK)	0	U	0	0	9	7		10
SE WERS	(\$1000/YR)	J	v	0	0	0	6	6	6
TOTAL	[\$1000/YR]	0	0		0	0	10	51	75
PRESENT VAL	JF AT SEGIN-								
NING OF PER	100 (\$1000)	0	0	0	0	0	141	162	O
PRESENT #OR	TH (\$1000)	•	0	0	0	0	21	12	0

NET U.+M. = 33.652

## TABLE SIE : TOTAL PRESENT WORTH

CAPITA	L 1510001	210
U.+M.	1010001	33
LAND	1810001	4
	-	
TUTAL	(\$1000)	303

## TABLE IV : ANNUAL CUSTS (\$1000/YH)

	1972	1975	1480	1942	1990	2000	2010	2020
ANNUAL CAPITAL								
THEATMENT PLANT						44	44	44
BASIN						20	20	20
PIPES						89	89	89
TOTAL O M.	v	٥	0	0	υ	وز	21	25
TOTAL ANNUAL					<del>-</del>	173	176	179

NOTE 1 1 ANNIAL COSTS DO NOT 14CLUL PRESENT DUTSTA FILE FORDED FROEDT MESS. NUTE 2 1 AN INTEREST PATE UP 7 PERCENT WAS USED FUR ALL CALCULATIONS.

## PLAN B . CU-77

	19/2	1975	1480	1985	1990	2000	2010	2020
					<del></del>			
STURMMATER VOLUME (Ma)								
1 YR STURM PONDEF	0	0	0	0	0	5	6	•
ANNUAL RUN-TEF	0	0	0	0	0	87	105	132
SLUDGE QUANTITIES (ST/YR)								
SEDIMENT-RASIN	o	0	0	0	0	163	196	247
TREATMENT PLANT	v	0	o	0	U	0	0	٥

TREATMENT SCHEME : STURAGE PLUS TREATMENT UN LAND

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDETLE OR RECYCLE

STORAGE BASIN : FAKTH

#### TABLE ! : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PPE SENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
						<del></del>				
TREATMENT PLANT	66						440			189
BAS IN	33						220			135
PIPES	33						220			132
R ES LOUAL	17								TOTAL	452
	*****									
NET CAPITAL	114									

#### TABLE II : PRESENT WORTH - U.+M. CUSTS

		1972	1975	1980	1985	1940	5 000	2010	2020	
								<del></del>	<del></del>	
PLANI	(\$1000/44)	v	0	0	U	0	3	3	•	
SLUGGE	(\$100 1/74)	o	0	0	0	0	•	•	•	
SEWERS	(SING WYR)	Š	Ű	0	0	0	1	1	1	
TUTAL	(\$100 )/¥4)	0	0	0			•	. •	11	
PRESINE VAL	LUE AT SICINE									
MING OF PER	K100-1610031	O	. •	٥	0	. 0		25	- · · · · · · · · · · · · · ·	
PRESELT WOR	KFH (\$1000)	0	υ	o	٥	0	•	5	0	

15.2611 RF1 18.+ M. .

#### TABLE III : TOTAL PRESENT WORTH

CAP LI AL	(\$1000)	114
LAND	(11000)	2
TUTAL	(\$1006)	132

#### TABLE IV : ANNUAL COSTS (\$1000/YR)

	15/2	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
TREATMENT PLANT						33	33	33
5:AS31v						15	15	15
PIPLS		_	_	٥		15	15	15
TOTAL O M.	U	0	0	u	0	•	•	11
Tute: ASSUAL	J					74	75	77

METER 1 2 ANNUAL COSTS ON NUT INCLOSE PRESENT OUTSTANDING BONDED INDERTEUNESS NUTS 2 2 AN ENTREED SAFE OF TIMESCENT WAS USED FUR ALL CALCULATIONS.

COMPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN 6 , CU-73-79-31

	<del></del>							
	1972	1975	1950	1)35	1000	2013	2010	2020
STORMWATER VOLUME (MG) 1 YR STORM RUNOFF AMMUAL RUNOFF	0	0	0	0	0	15 224	18 268	22 325
SEUDGE QUARTITIES (DT/YE) SEDIMENT.BASIN	0	0	э	0.	ü	327	391	474
TREATHENT PLANT	0	9	•	0	O	;	5 5	Ó

TREATMENT SCHEME : STORAGE PLUS TREATMENT AT MUNICIPAL PLANT SLUDGE MANDLING : PERIODIC REPOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

AMMUNE CAPITAL BASTII PIPES

TOTAL U.+II.

TOTAL AUDUAL

			TAUL	E I : PRES	ERT WORTH	- CAPITAL	COSTS - (\$1	<b>ე</b> სე <b>)</b>		
	PRESENT	1972	1075	1930	1935	1990	2000	2010	2020	RESIDUAL
BASIN PIPES	55 C12						37 ¹ 5400			222
RES 101	IAL 134								TOTAL	3462
NET CAPIT	733+									
			TAUL	E 11 : PRE	SENT WETH	- 0.44. C	OSTS			
		1972	1975	1933	1035	1999	2000	2010	5050	
PLANT SLUDGE SEVERS	(\$1000/YR) (\$1000/YR) (\$1000/YR)	) 0 0	3000	 0 0	0	? ?	26	21 26	13 11 20	
TOTAL	(\$1000/YK)	<del></del> 5	- 0	0		<del></del>	- 44	गउ	<del></del>	
PRESENT VALUE NING OF PERIO		0	າ	0	ð	c	325	353	J	
PRESENT WATE	(\$1000)	0	၁	3	0	c	43	26	3	
HET 0.+H. =	75.0073									
			TALL	C 111 : TO	TAL PRESENT	r MORTH				
					\$1001) \$1000) \$1000)	733 75 14				
				TOTAL (	- (1111)	323				
			TAUL	E IV : AUN	UNI. COSTS (	(\$13)0 <b>/</b> Y4)				

NOTE 1 : ANNUAL COSTS DO HAY INCLUDE PRESENT OUTSTANDING NAMED INFLATEDIESS NOTE 2 : AN INTEREST PATE OF 7 PEPCCHT MAS USED FOR ALL CALCULATIONS

2375

23.3

)

1335

ō

1)??

)

2000

26 3)0 44 2010

46,

20.00

. % 5)0 2

17/2

# PLAN U , CU-02

	1)72	1975	2930	1935	1))0	2000	2010	2020
STORMATER VOLUME (MG)	0	0	2	0	•	,	,	•
1 YR STORII RUHUFF Anhual Ruhuff	ŏ	ő	3	ŏ	ŏ	24	29	36
comes authorized (DT/VO)								
SLUDGE QUANTITIES (DT/YR) SED MENT. DASIN	0	0	3	0	0	45	54	67
TREATHENT PLANT	0	0	э	0	9	ŏ	Ō	Ò

TREATMENT SCHENE : STORAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

			TABLE	I : PRESEN	T WORTH -	CAPITAL CO	STS - (\$1	2002		
	PRESENT	1972	1975	1930	1935	1999	5000	2010	2020	RES IDUAL
TREATHENT PLAN BASIN PIPES	T 37 16 20						250 110 600			107 66 360
RES IDUA	L 20								TOTAL	533
NET CAPITA	123									
			TAULE	11 : PRESE	HT MORTH	- U.+N. CO	STS			
•		1972	1975	1930	1935	1797	5000	2010	5050	
PLANT SLUDGE SEVERS	(\$1000/YR) (\$1000/YR) (\$1000/YR)	0 2	000	? ? ?	0 0 0	) )	0 1 2	1 1 2	1 1 2	
TOTAL	(\$1000/YR)	7	<del></del> 0	<del></del>	<del></del> 3	<del></del>		5	5	
PRESENT VALUE NENG OF PERIOD		າ	ŋ	o	0	າ	36	39	0	
PRESENT WORTH	(\$1000)	3	ņ	٦	J	)	5	3	0	
NET 0.+/1. =	8.49354									
			TAULE	111: 1011	L PRESENT	PORTA				
					100) 330) 330)	123				
			•	TOTAL (31	1303	133				

TABLE IV : AMEDAL COSTS (\$177)/YR	TABLE	lv	:	AMEDAL	COSTS	(\$177)/**)
------------------------------------	-------	----	---	--------	-------	-------------

	1)72	1975	1931	1/35	1,73	5000	2010	2020
ANNUAL CAPITAL								
TREATHENT PLANT BASIN PIPES						7 43	19 7 43	19 7 43
TOTAL O.+II.	0	0	າ	э	)	ħ	5	5
TOTAL MARGAL	<del></del>	- 7	<del></del>	<del></del>		75	76	<del>70</del>

NOTE 1: ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING WONDED INFLUTENIESS NOTE 2: AN INTEREST RATE OF V DEPOCHT WAS USED FOR ALL CALCULATIONS

STURMWATER TREATMENT PLANT

COMPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN & . CU-J3

	1572	1975	1980	1985	1490	2000	2010	2020
STURMENTER VOLUME (MG)								
1 YR STURM PUNDEF	ů	3	7	7	7	7		8
ANNUAL RUNGEF	0	48	97	98	100	105	113	122
SLUDGE QUANTITLES EDT/YR)								
SECIMENT . MASIN	0	70	141	143	146	153	164	178
TREATMENT PLANT	Ų	o o	o	0	٠ ن	0	0	• ```

TREATMENT SCHIME : STURAGE PLUS TREATMENT AT MUNICIPAL PLANT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STURAGE BASIN : EARTH

## TABLE 3 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

_	HORTH	1972	1975	1980	1985	1990	2000	2010	2020	RES IDUAL
BASIN PIPFS	30 285						205 1900			123 1140
RESIDUAL	49								TOTAL	1263
NET CAPITAL	267									

## TABLE 11 : PRESENT WORTH - D.+M. CUSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1009/Yk)	U	U	0	0	۵	4	4	
SLUDGE	(\$Y\000/Ya)	Ü	o	ō	ŏ	ě	3	7	- 1
SEWERS	(\$1000/YA)	Ü	ō	ŏ	ŏ	ŏ	Š	Ť	3
								_ •	•
TOTAL	(\$1000/YR)	υ	0	0	0	9	17	18	19
PRESENT 1	VALUE AT BEGIN-								
	PERIOD (\$1000)	v	0	0	0		126	131	0
PRESENT 1	WORTH (\$1000)	o	o	0	0	•	19	10	o

NET 0.+#. = 29.1207

# TABLE III : TOTAL PRESENT WORTH

CAPITAL	(\$1000)	267
U.+M.	(\$1000)	29
LAND	(\$1000)	4
TOTAL	(\$1000)	300

## TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL		~~~~						
BASIN Pipes						14 137	14 137	14 137
TOTAL O. +M.	Ú	U	0	0	0	17	18	19
TOTAL ANNUAL	0	0	ô		•	173	170	

NOTE 1 & ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDERTINESS NUTE 2 & AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

## PLAN 8 . CU-04

	1972	1975	1980	1985	1990	2000	2010	2020	
STURMWATER VOLUME (MG)									
1 YR STORM RUNDFF	0	2	5	5	6	6	6	7	
ANNUAL-RUNGFF	<del>0</del>	39				85	92	9&	
	-			• • •					
SLUGGE QUANTITIES (DT/Y")									
SF TIMENT . UASIN	0	56	113	116	119	124	134	143	
IREATMENT PLANT	٥	0	v	0	υ	0	٥	0	
- · <del>-</del> · · - · · ·									

TREATMENT SCHEME : STORAGE PLUS TREATMENT AT MUNICIPAL PLANT

SLUGGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

## TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIUUA
BASIN PIPES	76 1016				185 2450					55 735
RESTUUAL	30								TOTAL	790
NIT CAPITAL	1062									

#### TABLE 11 : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PL ANT	(\$1000/YR)	o	0	4	4	4	4	4	5
SLUDGE	(\$1000/YR)	0	0	2	2	2	3	3	3
SEWERS	(\$1000/YR)	0	0	e	12	12	12	12	12
TOTAL	(\$1000/YR)	0		<del></del> 7	19	19	19	20	21
PRESENT VALUE	UE AT BEGIN-								
NING OF PER	100 (\$1000)	0	0	54	80	138	142	146	0
PRESENT WOR	TH (\$1000)	0	0	31	33	41	21	11	0

134.459 NET O.+F. =

## TABLE III : TOTAL PRESENT WORTH

1062	(\$1000)	CAPITAL
138	(\$1000)	0.+M.
3	(\$1000)	LAND
1204	(\$1000)	TOTAL

#### TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1963	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
HASIN				13	13	13	13	13
PIPES				177	177	177	177	177
TOTAL C.+M.	0	0	7	19	19	19	20	21
TOTAL A IMIAL	<del></del> -		7	710	210	210	211	211

NOTE 1: ARRIVAL COSTS DO NOT INCLUDE PRESCRIP OUTSTANDING BONDED INDERTEUNESS NOTE 2: AR INLIGIST MATE JE 7 PARCENT WAS USED FOR ALL CALCULATIONS

## APPENDIX C

This appendix includes all computer printout sheets for the municipal plants and stormwater districts of Plan C except for those municipal plants or stormwater districts which are identical to Plan B. Those which are identical to Plan B are listed below. See Appendix B for those associated computer sheets.

CH - 7	R -8S	CU -20	Cบ -55
- 8	-10	-25	-56
- 9	-11	-26	-57
-10	-12	-27	-59
-11	-13	-28	-60
-12	-14	-29	-61 E.W.
-13	-15	-30	-62
-14	-16	-31	-63 E.W.
-15	-17	-32	-64 W.NE.SE.
-16	-18	-34A	-65
-17	-19	-35	-66
-18	-20	-36	-67
-19	-21	-37	-68
-20	-22	-38	-69
-21	-23	-39	-70
-22	-24	-40	-71
-23	-25	-41	-71 -72
-24	-26	-42	-73
-25	-27	-43	-74
-26	-28	-44	-75
-27	-29	-45	-76
-28	- 30	-46	-77
-29	-31	-47	-78
-30	-32	-48	-79
-31	-33	-49	-80
-32	-34	-50	-81
-33	-35	-51B	-82
-34	- 33	-52	-83
-35	CU -13	-53	-84
-36	-19	- 54	-04
- 50	- 1 3	- 54	

Upper East Branch Hinckley Medina Co. New Medina Mallet Creek Liverpool Fowlers Mill Newbury Twp. Fairmount Road Aurora Central Chagrin Falls Chagrin E. Branch Chardon Butternut Creek East Claridon Burton Troy Twp. Auburn Twp. Mantua Shalersboro Randolph Ravenna Akron

PLAN C , SOUTHERLY

	1972	1975	1930	1945	1990	2000	2010	2020
PUPULATION	563062	ú002d3	632504	715496	723498	378945	923927	926606
FLOW (MGD) DOMESTIC INDUSTRIAL	83.87 12. <b>7</b> 8	94.94 15.00	101.01	115.07 20.55	130.73	148.05 24.85	160.99 25.80	165.61 26.76
TOTAL	101.65	159.94	118 23	136.42	154.61	172.90	186.79	192.37
SLUDGE (TPD) GENERATED DISCHARGED	107.75 63.96	116.54 74.58	125.32 80.21	144.61 92.55	93.95 63.33	110.66 <b>70.</b> 32	0.20	0.00

TREATMENT PLANT TYPE : PRELIMINARY TREATMENT

SLUDGE HANDLING TYPE : NONE

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RES IDUAL
EXPAND TO LEVEL 1 SLUDGE FACILITIES SEWERS SEWERS SEWERS			55000 16000 19765	23975	<del></del>	15986				0 0 1976 4794 6394
RESIDUAL	510								TOTAL	13154
NET CAPITAL	92403									

TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1965	1990	2000	2010	2020
PLANT SLUDGE SEWERS	(\$1000/YR) (\$1000/YR) (\$1000/YR)	6121 1173	6621 1276 98	7120 1372 218	6199 1583 218	4740 1083 293	5301 1211 298	272 0 298	280 0 298
TOTAL	(\$1000/YR)	7301	7996	8711	8001	6122	6311 (548)	571	579
PRESENT VALUE		20072	34251	34262	28954	45420	39 29	4041	0
PRESENT WORTH	(\$1000)	20072	27955	19940	12013	13435	\$90	308	0

NET 0.+M. = 94313

## TABLE III : TOTAL PRESENT WORTH

CAPITAL O.+M. LAND	(\$1000) (\$1000) (\$1000)	92403 94313 1000
	-	
TOTAL	(\$1900)	187716

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1935	1990	2000	2010	2020
ANNUAL CAPITAL  EXPAND TO LEVEL 1  SLUDGE FACILITIES		4245 1235	4245 1235	4245 1235	4245 1235	4245 1235	4245 1235	
SEWERS SEWERS SEWERS		1430	1430 1735	1430 1735	1430 1735 1157	1430 1735 1157	1430 1735 1157	14 50 1735 1157
TOTAL O.+M.	7301	7056	8711	8001	(122	6311	571	573
TUTAL ANTIUAL	7301	14)113	17351	1664)	1:)27	16616	10376	1204

NOTE 1: ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BOSDED INDEDITIONESS NOTE 2: AN INTEREST PAIR OF 7 PURCENT WAS USED FOR ALL CALCULATION.

DTfC

WASTEWATER TREATMENT PLANT

. CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN C . ROCKY RIVER

	1972	1975	1980	1985	1990	2000	2010	2020
	****							
POPULATION	61540	75435	89330	100625	111920	125770	137710	143930
FLOW (MGD)								
DOMESTIC	6.77	8.74	10.72	12.35	13.99	16-35	19.28	21.59
INDUSTRIAL	0.37	0.38	0-39	0.39	0- 40	0-4Z	0.44	0-44
FOTAL	7.14	9.12	11.11	12.75	14.39	16.77	19.72	22.05
TOTAL	11.24	7712	••••	1417			23072	22,003
SLUDGE (TPD)								
GENERATED	5.00	6.39	7.77	8.92	10.08	11.74	0.00	0.00
DISCHARGED	3.20	4.09	4.98	5.71	6.45	7.51	0.00	0.00

TREATMENT PLANT TYPE : PRELIMINARY TREATMENT

SLUGGE HANDLING TYPE : NONE

8562

NET 0.+M. =

#### TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (81000)

	PRESENT WORTH	1972	1975	1980	1985	1990	5000	2010	2020	RESI QUAL
EXPAND TO LEVEL SLUDGE FACILITIE				1050 <b>96</b> 0						0
RESIDUAL	0								JATOT	0
NET CAPITAL	1170									

### TABLE II : PRESENT WORTH - G.+M. COSTS

		1972	1975	1980	1985	1990	2 000	2010	2020
PLANT	(\$1000/YR)	596	762	928	788	577	31	36	40
SLUDGE	(\$1000/YR)	41	53	65	74	84	0	0	0
SENERS	(\$1000/YR)	Q	0	0	0	0	0	. 0	0
TOTAL	{\$1000/YR}	638	816	993	863	<b>662</b> (26)	31	36	40
PRESENT VALUE	AT BEGIN-								
NING OF PERIC		1908	3709	3607	3128	200	235	267	0
PRESENT WORTH	(\$1000)	1908	3027	2215	1298	29	35	20	0

## TABLE III : TOTAL PRESENT WORTH

CAPITAL 0-4M- LAND	(\$1000) (\$1000) (\$1000)	1170 8561 0
TOTAL	(\$1000)	9732

## TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2050
ANNUAL CAPITAL								
EXPAND TO LEVEL 1			90	90	90	90	90	
SEUDGE FACILITIES			74	74	74	74	74	74
TUTAL D.+M.	638	81 6	993	863	662	0	0	0
TOTAL ANNUAL	638	816	1157	1027	826	164	164	74

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NUTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

	1972	1975	1980	1985	1990	2000	2010	2020
POPULATION	80632	86246	91 860	98662	105464	116240	123082	124784
FLOW (MGD)								
DOMESTIC	16.92	17.36	17.80	18.29	18.79	18.96	19.77	20.76
INDUSTRIAL	0.19	0.19	0.20	0.20	0.21	0.22	0.23	0.24
FOTAL	17.11	17.55	18.00	18.50	19.00	19.00	20.00	21.00
SLUDGE (TPD)								
GENERATED	18.14	18.61	19.08	19.61	12.16	0.00	0.00	0.00
DISCHARGED	11-61	11.91	12.21	12.55	7.78	0.00	0.00	0.00

TREATMENT PLANT TYPE : PRELIMINARY TREATMENT

SLUDGE HANDLING TYPE : NONE

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRE SENT WORTH	1972	1975	1980	1985	1990	2000	2010	5050	RESIDUAL
EXPANSION EXPAND TO LEVEL SLUDGE FACILITIE			4200 2000 2450							0 0 0
RESIDUAL	o								TOTAL	
NET CAPITAL	7060									

## TABLE II : PRESENT WORTH - O.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	5050
PLANT	(\$1000/YR)	1249	1281	1314	1012	693	35	36	38
SL UDGE	(\$1000/YR)	139	142	146	150	93	0	Ō	0
SEWERS	(\$1000/YR)	0	0	0	٥	Ó	•	ō	ō
TOTAL	[\$1000/YR]	1386	1424	1460	1163	786	35	36	38
PRESENT VAL	UE AT BEGIN-					(35)		•	
NING OF PER		3690	5913	5378	3997	246	251	262	0
PRESENT MOR	TH (\$1000)	3690	4826	3130	1658	73	37	20	0

NET D.+M. = 13434 TABLE III : TOTAL PRESENT WORTH

7060	(\$1000)	CAPITAL
13434	1000123	D-+M-
0	(\$1000)	LAND

TOTAL (\$1000) 20494

## TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL	~							
EXPANSION		324	324	324	324	324	324	
EXPANU TU LEVEL 1		171	171	171	171	171		
SLUDGE FACILITIES		189	189	189	189	189	189	
TOTAL 0.+M.	1388	1424	1460	1163	786	35	36	38
TOTAL ANNUAL	1388	2109	2145	1848	1471	720	549	38

NOTE 1 : ANNUAL COSTS DO NUT INCLUDE PRESENT UUTSTANDING BONDED INDERTEUNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

## PLAN C . WILLDUGHBY-EASTLAKE

	1972	1975	1980	1985	1990	2000	2010	2020
POPULATION	36324	45212	52100	64500	76900	97300	115200	126800
FLOW (MGD) DOMESTIC INDUSTRIAL	4. 22 1. 33	5.23 1.50	6.25 1.67	7.93 1.84	9.61 2.00	12.65 2.41	16-13 2-83	19.02 3.25
TOTAL	5.55	6.73	7.92	9.76	11.61	15.06	18.96	22.27
SLUDGE (TPD) GENERATED DISCHARGED	3.58 2.29	7.14 4.57	8.40 5.37	10.35 6.62	7.43 4.76	0.00 0.00	0.00 0.00	0.00 0.00

TREATMENT PLANT TYPE : PRELIMINARY TREATMENT

SLUDGE HANDLING TYPE : NONE

## TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRE SENT WORTH	1972	1975	1980	1985	1990	2090	2010	2020	RES LOUAL
EXPANS ION	2420			4150						0
										0
SLUDGE FACILITIE	<b>S</b> 1020		1250							0
SEWERS	489		600							60
SEWERS	1371			2356						471
SEWERS	646					2184				673
RESIDUAL	· _{\$4} ·					· · · -			TOTAL	1404
NET CAPITAL	5892									

### TABLE II : PRESENT WORTH - G.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	253	417	621	588	487	27	34	40
SLUOGE	(\$1000/YR)	11	20	21	26	18	0	0	0
SEWFRS	(\$1000/YR)	0	2	14	14	25	25	25	25
TOTAL	(\$1000/YR)	264	441	657	629	532 (46)	53	60	66
PRESENT VAL	UE AT BEGIN-								
NING OF PER	100 (\$1000)	927	2254	2638	2360	323	398	444	0
PRESENT NOR	TH (\$1000)	927	1839	1535	987	96	59	33	0

NET 0.+M. = 5476

#### TABLE III : TOTAL PRESENT WORTH

CAPITAL	(\$1000) (\$1000)	5 <b>89</b> 2 54 <i>7</i> 6
LAND	(\$1000)	0
TOTAL	(\$1000)	11368

## TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
AMUAL CAPITAL EXPANSION			320	320	320	320	320	320
SLUDGE FACILITIES		96	96	96	96	96	96	
SE WERS		43	43	43	43	43	43	43
SE WER S			170	170	170	110	170	170
SEWERS				_	158	158	158	158
TOTAL O.+M.	264	441	657	629	532	53	60	66
TOTAL ANNUAL	264	581	1280	1258	1319	840	847	853

NOTE 1 : ANNUAL CUSTS DI NOT INCLUDE PRESENT DUTSTANDING BUNDED INDEBTEDNESS. NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS.

## PLAN C . NEW KENT

		-							
		1972	1975	1980	1985	1990	2000	2010	2020
POPU	ATEON	33000	48900	64800	81680	98560	121600	139785	150400
FLOW	(MGD)					•• ••			
	DUMESTIC ENDUSTRIAL	3.63 2.20	5.70 2.55	7.7 <b>8</b> 2.90	10.05 3.25	12.32 3.61	15.40 4,35	19.57 5.08	22.59 5.82
	TOTAL	5.83	8.25	10-68	13.30	15.93	20.145	24-65	28,41
SLUDI	E (TPD)								
	GENERATED	0-00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	DI SCHARGED	0-00	0.00	0.00	0-00	0.00	0.00	0.00	0.00

TREATHENT PLANT TYPE : PRELIMINARY TREATMENT

SLUDGE HANGLING TYPE : NONE

	PRESENT	L972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
NEW PLANT SEWERS	160 3917		180 4800					160		126 480
RESIDUA	L 23								TOTAL	608
NET CAPITA	L 4054									
			TABLE	II : PRE	SENT WORTH	- G.+M. CO	575			
		1972	1975	1980	1985	1990	2000	2010	2020	
PLANT	(\$1000/YR)	487	15	19	24	59	36	44	51	
SLUDGE SEWERS	(\$1000/YR) (\$1000/YR)	0	0 23	0 23	0 23	0 23	\$3 0	0 23	0 23	
TOTAL	(\$1000/YR)	487	39	43	48	53	60	68	75	
PRESENT VALUE		690	169	188	207	399	455	508	0	
PRESENT WORTH	{ \$1000}	690	138	109	86	118	48	34	0	
NET 0.+H	1247									
			TABLE	111 : TO	TAL PRESENT	WORTH				
					\$1000j \$1000j \$1000j	4054 1247 520				

CAPITAL G.+K. LAND	(\$1000) (\$1000) (\$1000)	4054 1247 520		
TOTAL	(\$1000)	5921		

## TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	5000	5010	2020
ANNUAL CAPITAL					<del></del>		<del></del>	
NEW PLANT		13	13	13	13	13	13	13
SEWERS		347	347	347	347	347	347	347
TOTAL D.+M.	487	34	43	48	53	<b>♦</b> 0	68	75
TOTAL ANNUAL	487	400	404	409	414	422	430	437

NOTE 1 & ANNUAL CUSTS DO NUT INCLUDE PRESENT CUTSTANDING BONDED INDEBLEDNESS NOTE 2 & AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

PLAN C , EASTERLY

	1972	1975	1980	1965	1990	2000	2010	2020
POPULATION	454765	478288	501812	539314	576516	<b>63</b> 0533	659688	657573
FLOW (MGD) DOMESTIC INDUSTRIAL	113.00 12.00	120.15 12.35	127.30 12.70	130.95 13.05	134.60 13.40	143.60 14.40	148.80 15.20	156.10 15.90
TOTAL	125.00	132.50	140.00	144.30	148.00	153.00	164.00	172.00
SLUDGE (TPD) GENERATED D1SCHARGED	132.50 84.80	140.45 89.89	148.40 94.98	152.64 97.69	94.72 60.62	101.12 64.72	0.00	0.00

TREATHENT PLANT TYPE : PRELIMINARY TREATMENT

SLUDGE HANDLING TYPE : NONE

102969

NET 0.+M. =

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
EXPAND TO LEVEL 1 12650 SLUDGE FACILITIES 10200 SEWERS 848		15500 12500	1453						0 0 291
RESIDUAL 11								TOTAL	291
NET CAPITAL 23687									

TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	5050
PLANT SLUDGE SEWERS	(\$1000/YR) (\$1000/YR) (\$1000/YR)	7528 1450 0	7979 1537 0	8431 1624 7	6543 1671 7	4537 1037 7	4844 1107 7	239 0 7	251 0 7
TOTAL	(\$1000/YR)	8979	9517	10063	8222	5502	5958 (237)	246	258
PRESENT VALUE NING OF PERIOD		24270	40143	37487	28 300	40529	1690	1773	0
PRESENT WORTH	(\$1000)	24270	32764	21817	11741	11988	254	135	0

TABLE III : TOTAL PRESENT WORTH

CAPITAL 0.+M. LAND	(\$1000) (\$1000) (\$1000)	23687 102969 0
TOTAL	(41000)	125656

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL						<del></del>		<del></del>
EXPAND TO LEVEL 1 SLUDGE FACILITIES		1329 964	1329 964	1329 964	1329 964	1329 96 <b>4</b>	964	
SEWERS TOTAL O.+M.	8979	9517	105 1 <b>0</b> 063	105 3222	105 5532	105 5958	105 246	105 258
TOTAL ANNUAL	8979	11812	12404	10022	7932	8359	1318	265

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEDTEDNESS NOTE 2 : AN INTEREST RATE OF ? PERCENT WAS USED FOR ALL CALCULATIONS

PLAN C . EUCLID

NET 0.+M. =

	1972	1975	1980	1905	1990	2000	2010	2020
POPULATION	115110	128864	142618	159028	175439	204550	226617	237036
FLOW (MGD) DONESTIC INDUSTRIAL	12.66 1.87	14.88 1.93	17-11 2-00	19-52 2-06	21.93 2.12	26.59 2.01	31-73 1-90	35.55 1.79
TOTAL	14.53	16.82	19.11	21.58	24.05	28.60	33.63	37.34
SLUDGE (TPD) GENERATED DISCHARGED	15.40 9.86	17.83 11.41	20 - 26 12 - 96	22-87 14-64	15.39 9.85	0.00 0.00	0.00 0.00	0.00 0.00

TREATMENT PLANT TYPE : PRELIMINARY TREATMENT

SLUDGE HANDLING TYPE : NONE

13510

### TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
	<del></del>									
EXPAND TO LEVEL	1 1550		1900				1900			0
EXPANSION	2860		3500					3500		0
SLUDGE FACILITIE	S 1960		2400					2400		0
PESIDUAL	0								TOTAL	0
NET CAPITAL	6370									

### TABLE II : PRESENT WORTH - D.+M. COSTS

		1972	1975	1980	1985	1990	5000	2010	2020
PL ANT SLUDGE	(\$1000/YR) (\$1000/YR)	1034 112	1197 130	1360 147	1153 166	860 112	52 0	62 0	68 0
SEWERS	(\$1000/YR)	ō	0	Ö	0	ō	ŏ	Ō	Ŏ
TOTAL	(\$1000/YR)	1146	1327	1508	1320	972 (44)	52	62	68
PRESENT VALUE		3246	5812	5799	4701	337	400	456	0
PRESENT WORTH	H [\$1000]	3246	4744	3375	1950	100	60	35	0

TABLE III : TOTAL PRESENT WORTH

CAPITAL D-+M- LAND	(\$1000) (\$1000) (\$1000)	6370 13510 <b>360</b>
	•	
T CT AL	(41000)	20.240

## TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
EXPANO TO LEVEL 1		163	163	163	163	163		
EXPANSIUN		270	270	270	270	270	270	
SLUDGE FACILITIES		185	185	185	185	185	185	
TOTAL G.+M.	1146	1327	1508	1320	972	52	62	48
<del></del>								
TOTAL ANNUAL	1146	1945	2126	1939	1591	670	457	68

NOTE 1 : ANNIAL COSTS DO NUT INCLUDE PRESENT OUTSTANDING BONDED INDEBTERMESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

AN	•	_	MESTERL	•

NET 0.+M. =

	1972	1975	1980	1985	1990	2000	2010	2020
						-		
AT EON	160000	155500	151000	151000	151000	152000	153000	160000
(MGO)								
DOMESTIC					29.10	30.09	31-08	32.97
INDUSTRIAL	6. 90	7.82	8.74	9.66	10.59	11.13	11.67	12.21
TOTAL	25.01	34.52	37.14	39 41	30 49	41 22	43.76	45.18
IUIAL	37.71	30.72	31424	30.71	37.07	44.22	46.13	43.16
E (TPO)								
GENERATED	30.88	31.41	31.94	33.04	34.13	35.45	0.00	0.00
DISCHARGED	30.88	31.41	31.94	33.04	34.13	35.45	0.00	0.00
	(NGO) DOMESTIC INDUSTREAL TOTAL SE (TPD) GENERATED	ATION 140000  (NGO) DOMESTIC 29.01 INDUSTRIAL 6.90  TOTAL 35.91  SE 1TPD1 GENERATED 30.88	ATION 140000 155500 (NGO) DOMESTIC 29.01 28.70 INDUSTRIAL 6.90 7.82 TOTAL 35.91 36.52 SE (TPD) GENERATED 30.88 31.41	ATION 140000 155500 151000  (NGO) DOMESTIC 29.01 28.70 28.40 INDUSTRIAL 6.90 7.82 8.74  TOTAL 35.91 36.52 37.14  SE (TPD) GENERATED 30.88 31.41 31.94	ATION 160000 155500 151000 151000 (MGO) 29.01 28.70 28.40 28.75 (MOUSTRIAL 6.90 7.82 8.74 9.66 (TOTAL 35.91 36.52 37.14 38.41 (SE (TPD)) GENERATED 30.88 31.41 31.94 33.04	ATION 140000 155500 151000 151000 151000 (NGO) 29.01 28.70 28.40 28.75 29.10 (NOUSTRIAL 6.90 7.82 8.74 9.66 10.59 (TOTAL 35.91 36.52 37.14 38.41 39.69 (SE (TPD)) GENERATED 30.88 31.41 31.94 33.04 34.13	ATION 160000 155500 151000 151000 152000 (NGO) DOMESTIC 29.01 28.70 28.40 28.75 29.10 30.09 (NOUSTRIAL 6.90 7.82 8.74 9.66 10.59 11.13 TOTAL 35.91 36.52 37.14 38.41 39.69 41.22 SE [TPD] GENERATED 30.88 31.41 31.94 33.04 34.13 35.45	ATION 160000 155500 151000 151000 152000 153000 (NGO) DOMESTIC 29.01 28.70 28.40 28.75 29.10 30.09 31.08 INDUSTRIAL 6.90 7.82 8.74 9.66 10.59 11.13 11.67 TOTAL 35.91 36.52 37.14 38.41 39.69 41.22 42.75 SE (TPD) GENERATED 30.88 31.41 31.94 33.04 34.13 35.45 0.00

TREATMENT PLANT TYPE : PRELIMINARY TREATMENT

SLUDGE HANDLING TYPE : NONE

30279

## TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
EXPANSION	32700		40000							. 0
RESIDUAL	0								TOTAL	0
NET CAPITAL	32700									
			TABLE	II + PRES	SENT WORTH	- 0-+W- CO	STS	-		

							-	-	
		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	3014	3066	3117	2201	1216	1263	78	82
SLUDGE	(\$1000/YR)	0	0	0	0	0	0	0	0
EWERS	(\$1000/YA)	0	0	0	0	0	0	0	0
OTAL	(\$1000/YR)	3014	3066	3117	2201	1216	1263 (75)	78	82
PRESENT VALU	S AT REGIM-								
IING OF PER		7979	12677	10904	7007	8711	536	563	0
RESENT NOT	N (\$1000)	7979	10347	6346	2907	2576	<b>8</b> 1	43	0

## TABLE III : TOTAL PRESENT WORTH

CAPITAL	(\$1000) (\$1000)	32700 <b>30</b> 279
LAND	(\$1000)	0
	•	
TOTAL	(\$1000)	62979

## TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	5800	2010	2020
ANNUAL CAPITAL EXPANSION		3431	3431	3431	3431	3431	٥	0
OTAL 0.+M.	3014	3066	3117	2201	1216	1263	78	82
TOTAL ANNUAL	3014	6498	6549	5633	4648	4695	78	82

"HOTE 1 : ANNUAL COSTS DO NUT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS AUTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

PLA	N	c		NOR	TH	OLMST	ED
-----	---	---	--	-----	----	-------	----

	1972	1975	1980	1985	1990	2000	2010	2020
POPULATION	45361	64232	83104	139413	195723	224096	240033	241793
FLOW (HGD) DOMESTIC INDUSTRIAL	4.99 0.25	11.75 0.29	18.52 0.33	21.49 0.47	24.46 0.61	29.14 0.63	33.59 0.65	35.58 0.69
TOTAL	5.24	12.04	18.85	21.96	25.07	29.17	34.24	36.27
SLUDGE (TPD) GENERATED DISCHARGED	5.55 3.55	12.77 8.17	19.98 12.79	23.28 14.90	16.04 10.27	0.00	0.00	0.00

TREATMENT PLANT TYPE : PRELIMINARY TREATMENT

SLUDGE HANDLING TYPE : NONE

### TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	5070	2020	RESIDUA
EXPANS ION	3200			5500		80				0 11
EXPANSION SLUDGE FACILITIE	23 5 2610		3200			•				0
SEWERS	4156		-	7141						1428
RESIDUAL	5,6								TOTAL	1439
NET CAPITAL	9933									

## TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	5050
PLANT SLUDGE SEWERS	(\$1000/YR) (\$1000/YR) (\$1000/YR)	363 14 0	835 32 0	1307 51 35	1162 55 35	915 35 35	54 0 35	62 0 35	66 0 35
TOTAL	(\$1000/YR)	377	867	1394	1253	985 ( <b>80)</b>	90	• . 98	101
PRESENT VALU		1634	4637	5426	4590	596	661	702	0
PRESENT WORT	н (\$1000)	1634	3784	3158	1904	176	99	53	0

"NET 0.+M. = 10808

### TABLE 111 : TOTAL PRESENT WORTH

CAPITA	L (\$1000)	9933
0.+M.	(\$1000)	10808
LAND	(\$1000)	0
	-	
TOTAL	(\$1000)	20741

# TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	5010	2020
ANNUAL CAPITAL EXPANSION			424	424	424	424	424 6	424
EXPANSION SLUDGE FACILITIES SEWERS	227	247 867	247 517 1394	247 517 1253	247 517 935	247 517 90	247 517 98	517 101
TOTAL ANHUAL	377 377	1111	2582	2441	2136	1284	1293	1049

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDERTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT HAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN C . CH-1+2

	1972	1975	1980	1985	1990	<b>200</b> 0	2010	2020
								~~~~
STORMWATER VOLUME (MG)								
1 YR STORM RUNGFF	0	43	87	89	92	96	103	107
ANNUAL RUNOFF	0	597	1195	1238	1282	1366	1493	1679
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT.BASIN	0	872	1744	1808	1871	1994	2179	2451
TREATMENT PLANT	0	0	728	755	782	0	٥	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING & PERIODIC REMOVAL TO LANOFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
BAS IN PIPES	523 291			900 5 00						179 99
RE	S I DUAL 10								TOTAL	279
MET C	ADITAL BOS									

TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	0	0	296	245	189	45	49	55
SLUDGE	(\$1000/YR)	0	0	48	50	52	49	54	61
SEWERS	(\$1000/YR)	0	0	2	2	2	2	2	2
TOTAL	(\$1000/YR)	0	0	347	298	244	97	. 106	119
PRESENT VALU		0	0	1323	1112	1200	715	791	0
PRESENT WORT	H (\$1000)	0	0	770	461	355	107	60	0

NET 0.+M. = 1755.41

TABLE III : TOTAL PRESENT WORTH

CAPETAL	(\$1000)	803
O.+M.	(\$1000)	1755
LAND	(\$1000)	700
	-	
TOTAL	(\$1000)	3259

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
BASIN			65	65	65	45	65	65
PLPES			36	36	36	36	36	36
TOTAL O.+M.	0	0	347	298	244	97	106	119
TOTAL ANNUAL	0	0	448	399	345	198	207	220

NOTE 1 : ANNUAL COSTS OO NUT INCLUDE PRESENT OUTSTANDING BUNDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

	1972	1975	1980	1985	1990	2000	2010	2010
STORMWATER VOLUME (NG) 1 YR STORM RUMOFF ANNUAL RUMOFF	0	72	9 145	11 101	14 218	19 291	24 343	24 343
SLUDGE QUANTITIES (DT/YR) SEDIMENT.BASIN TREATHENT PLANT	0	0	0	0	318	424	529 0	529 0

TREATMENT SCHEME : STORAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING & PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (81000)

			TABLE	1 : PRESE	MI MOKIM -	CAPITAL C	0212 - 191	0001		
	PRESENT WORTH	1972	1973	1980	1985	1990	2000	5010	2020	RESIDUAL
BASIN PIPES	145 124				350 300					105
RESTO	JAL 7								TOTAL	195
NET CAPIT	TAL 262									
			TABLE	II : PRES	ENT WORTH	- 0.+M. GG	575			
		1972	1975	1980	1985	1990	3000	2010	2020	
PLANT	(\$1000/YR)	0	0	0	25	25	10	11	11 13	

									
(\$1000/YR)	0	0	0	25	25	•	11	11	
	0	0	0	7	7	10	13	13	
(\$1000/YR)	0	0	0	1	1	1	1	1	
(\$1000/YR)	0	0	0	34	34	21	. 26	26	
DD (\$1000)	0	0	0	141	197	170	107	0	
H (\$1000)	0	0	0	58	58	25	14	0	
	(\$1000/YR) HE AT BEGIN- IOD (\$1000)	(\$1000/YR) 0 (\$1000/YR) 0 (\$1000/YR) 0	(\$1000/YR) 0 0 (\$1000/YR) 0 0 (\$1000/YR) 0 0	(\$1000/YR) 0 0 0 0 (\$1000/YR) 0 0 0 0 (\$1000/YR) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(\$1000/YR) 0 0 0 7 (\$1000/YR) 0 0 0 1 (\$1000/YR) 0 0 0 34	(\$1000/YR) 0 0 0 7 7 7 (\$1000/YR) 0 0 0 1 1 1 (\$1000/YR) 0 0 0 34 34 (\$1000/YR) 0 0 0 141 197	(\$1000/YR) 0 0 0 7 7 7 10 (\$1000/YR) 0 0 0 1 1 1 1 1 (\$1000/YR) 0 0 0 34 34 21 (\$1000/YR) 0 0 0 141 197 170	(\$1000/YR) 0 0 0 7 7 10 13 (\$1000/YR) 0 0 0 1 1 1 1 1 1 (\$1000/YR) 0 0 0 34 34 21 26 (\$1000/YR) 0 0 0 141 197 170 187	(\$1000/YR) 0 0 0 7 7 7 10 13 13 (\$1000/YR) 0 0 0 1 1 1 1 1 1 1 1 (\$1000/YR) 0 0 0 34 34 21 26 26 26 26 26 26 26 26 26 26 26 26 26

NET 0.+H. # 157-101

TABLE III : TOTAL PRESENT WORTH

CAPITAL O.+M. LAND	(\$1000) (\$1000) (\$1000)	262 157 73
	•	
70744	1410001	402

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL BASIN				25	25	25	25	25
PIPES				21	21	21	21	51
TOTAL O.+M.	0	0	0	34	34	21	26	24
TOTAL ANNUAL		0	0	81	81	45	73	73

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEUNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

PLAN C . CH-4

	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUME (MG)								
1 YR STORM RUNOFF	0	0	٥	1	3	5	7	10
ANNUAL RUNOFF	0	0	ō	30	40	89	119	149
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT.BASIN	0	0	0	0	87	129	173	217
TREATMENT PLANT	0	0	0	Ō	Ö	0	- ö	ò

TREATMENT SCHEME : STORAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1965	1990	2000	2010	2020	RESIDUAL
BASIN PIPES	62 88					210 30 0				83 119
RES I DUAL	7								TOTAL	203
NET CAPITAL	142									

TABLE II : PRESENT WORTH - G.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	Q	0	0	Q	1	2	3	4
SLUDGE	(\$1000/YR)	0	0	0	0	2	3	Ā	ς.
SEWERS	(\$1000/YR)	Q	0	0	0	1	ì	i	ĩ
TOTAL	[\$1000/YR]	0	0	0		5	7	9	11
PRESENT VAL	UE AT BEGIN-								
NING OF PER	100 (\$1000)	0	0	0	0	46	16	75	0
PRESENT WOR	TH (\$1000)	0	0	0	0	13	9	5	0

NET 0.+H. = 28.8952

TABLE III : TOTAL PRESENT WORTH

TOTAL	(\$1000)	182
LAND	(\$1000)	11
0.+M.	(\$1000)	28
CAPITAL	(\$1000)	142

TABLE IV : ANNUAL COSTS (61000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
BASIN					15	15	15	15
PIPES TOTAL O.+M.	0	٥	0	•	21	21	21	21
			_	0	,	,	9	11
TOTAL ANNUAL	0	<u>_</u>		0	42	44	46	48

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN C . CH-5

	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUME (MG)								
1 YR STORM RUNOFF	0	0	0	0	٥	•	10	12
ANNUAL RUNOFF	0	0	0	0	ŏ	104	165	194
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT.BASIN	0	0	0	0	0	157	236	283
TREATMENT PLANT	0	0	0	Ō	ō	ó	Õ	-0

TREATMENT SCHEHE : STORAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE I : PRESENT WORTH - CAPITAL COSTS - 181000)

	PRESENT	1972	1975	1980	1965	1990	2000	5010	2020	RESTOUAL
BASIN PIPES	37 45						250 300			150 180
RES IDUA	L 12								TOT AL	330
MET CAPITA										

TABLE II : PRESENT HORTH - 0.+M. COSTS

	1972	1975	1960	1985	1990	2000	2010	2020
PLANT (\$1000/YR) 0	0	0	0	٥		•	
SLUDGE (\$1000/YR) 0	0	0	ō	ŏ	š	í	,
SEWERS (\$1000/YR) 0	0	Ó	õ	Ö.	ī	ī	í
TOTAL (\$1000/YR	,	0	0	0	0	9	. 12	14
PRESENT VALUE AT BEGIN-								
NING OF PERIOD (\$1000)	0	0	0	0	0	76	97	0
PRESENT WORTH (\$1000)	0	0	0	0	0	11	7	0

NET D.+M. = 18.9386

TABLE III : TOTAL PRESENT WORTH

	(\$1000)	69
O.+M. Land	(\$1000) (\$1000)	18 15
LANU	1210001	17
TOTAL	(\$1000)	103

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL				~~~~				
BAS IN PIPES						18 21	18 21	18 21
TOTAL O.+H.	0	0	0	0	0	•	12	14
TOTAL ANNUAL	ō	0	0	0		48	52	54

NOTE 1 & ANNUAL CUSTS DD NOT INCLUDE PRESENT DUTSTANDING BONDED INDERTEUNESS NOTE 2 & AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN C . CH-6

	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUME (MG)								
1 YR STORM RUNOFF	0	0	٥	3	6	11	15	18
ANNUAL RUNDEF	0	0	0	53	106	161	214	267
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT_BASIN	0	0	0	0	154	235	312	389
TREATMENT PLANT	0	0	0	0	0	0	0	0

TREATMENT SCHEME : STURAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

0

STORAGE BASIN : EARTH

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

22 15

	PRE SENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
BASIN PIPES	88 88					300 300				119 119
RESIDUAL	9								TOTAL	239
NET CAPITAL	168									
			74015		CMT MODEL	- 0 AM CC	KTE.			

		1972	1975	1980	1985	1990	2000	2010	2020
PL ANT	(\$1000/YR)	0	0	0	0	3	>	7	8
SLUOGE	(\$1000/YR)	0	0	0	0	3	5	7	9
SEWERS	(\$1000/YR)	0	0	0	o	1	1	1	1
TOTAL	(\$1000/YR)	0	0	0	0	8	12	16	20
PRESENT VALU	E AT BEGIN-							-	
NING OF PERI	OD (\$1000)	. 0	0	0	0	75	. 102	127	0

0

PRESENT WORTH (\$1000)
NET 0.+M. = 47.5161

TABLE III : TOTAL PRESENT WORTH

CAPITAL O.+M. LAND	(\$1000) (\$1000) (\$1000)	168 47 20
TOTAL	(\$1000)	235

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
BASIN					21	21	21	21
PIPES		_	_		21	21	21	21
TOTAL O.+M.	0	0	0	0	8	12	16	20
TOTAL ANNUAL	0	0	0	0	52	56	59	63

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUISTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN C . R-1+4+5

	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUME (MG)								
1 YR STORM RUNDFF	0	14	29	29	29	30	30	30
ANNUAL RUNGFF	Ö	262	524	524	524	579	579	579
SLUDGE QUANTITIES (DT/YK)						•		
SEDIMENT . BAS IN	0	262	524	524	524	579	579	579
TREATMENT PLANT	0	0	0	O	0	0	- 0	- ō

TREATMENT SCHEME : STORAGE PLUS TREATMENT UN L'AND

SLUDGE HANDLING : SOLIDS TO TUNNEL

STORAGE BASIN : CONCRETE

TABLE I : PRESENT WORTH - CAPITAL COSTS - (82000)

	PRESENT NORTH	1972	1975	1980	1985	1990	2000	2010	5050	RESIDUAL
BAS IN PIPES	1658 407			2850 700						569 139
AES	IDUAL 27								TOTAL	709
MET CA	2020									

TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020

PL ANT	(\$1000/YR)	0	0	35	35	35	39	39	39
SLUDGE	(\$1000/YE)	Q	0	0	0	0	0	0	0
SEWERS	(\$1000/YR)	0	0	3	3	3	3	3	3
TOTAL	181 000/YR)	0		39	39	39	42	. 42	42
PRESENT VALUE A	T BEGIN-								
NING OF PERIOD	(\$1000)	. 0	G	160	160	288	301	301	0
PRESENT MORTH	(\$1000)	0	ø	93	66	85	45	23	•

NET 0.+H. = 313.844

TABLE III : TOTAL PRESENT WORTH

CAPITAL	. (\$1000)	2038
O.+M.	(\$1000)	313
L AND	(\$1000)	20
	-	
TOTAL	[\$1000]	2172

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL		~						
BASIN			206	206	206	206	204	206
PIPES			50	50	50	50	50	50
TOTAL O.+N.	0	0	39	39	39	42	42	42
TOTAL ANNUAL		0	296	296	296	299	299	299

NOTE 1 : ANNUAL COSTS ON NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEUMESS MOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN C . R-3

	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUME (HG)								
1 YR STORM RUNOFF	0	11	22	22	23	23	24	24
ANNUAL RUNOFF	0	160	321	325	330	352	385	385
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT . BASIN	0	160	321	325	330	352	385	385
TREATMENT PLANT	0	0	0	0	0	Ö	0	Ö

TREATMENT SCHEME : STORAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING : SOLIDS TO TUNNEL

STORAGE BASIN : CONCRETE

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
BASIN PIPES	1326 116			2280 200						455 39
RESID	UAL 19								TOTAL	495
MET CARL	7.41									

TABLE II : PRESENT WORTH - O.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT SLUDGE SENERS	(\$1000/YR) (\$1000/YR) (\$1000/YR)	0 0 0	0	21 0 0	22 0 0	22 0 0	23	26	26
TOTAL	(\$1000/YR)				23	23	24	. 27	27
PRESENT VAL NING OF PER	UE AT BEGIN- 100 (\$1000)		0	94	95	170	183	191	0
PRESENT WOR	TH {\$1000}	0	0	54	39	50	27	14	0

NET 0.+H. -187.078

TABLE III : TOTAL PRESENT WORTH

CAPITAL	. (\$1000)	1424
0.+4.	(\$1000)	187
LAND	(\$1000)	42
	-	
TOT AL	(\$1000)	1653

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
BASIN			165	165	165	165	165	165
PIPES			14	14	14	14	14	14
TOTAL O.+M.	0	٥	25	23	23	24	27	27
TOTAL ANNUAL		0	202	202	203	204	206	206

NOTE 1 : ANNUAL COSTS ON NOT INCLUDE PRESENT OUTSTANDING BUNDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN C . R-6+7+8N

	1972	1975	1980	1985	1990	2000	2010	2020
STORMHATER VOLUME (MG)								
1 YR STORM RUNDFF	0	28	56	62	69	74	74	76
ANNUAL RUNOFF	0	384	769	862	955	1027	1098	1098
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT.BASIN	0	56L	1122	1258	1394	1499	1603	1603
TREATMENT PLANT	0	0	469	525	582	0	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

		PRESENT WORTH	1972	1975	1980	1985	1990	2000	5070	5050	RESIDUAL
BASIN		209			360						71
BAS IN PIPES		83 6776			11644	202					40 232 8
	RESIDUAL	95								TOTAL	2461
NE	T CAPITAL	6974									

TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT SLUDGE SEWERS	(\$1000/YR) (\$1000/YR) (\$1000/YR)	. 0	0 0	171 31 56	153 33 58	127 34 58	33 37 58	36 40 50	36 40 58
TOTAL	(\$1000/YR)	<u>-</u>		261	244	220	129	. 134	134
	TIOD (\$1000)	q	ø	1037	953	1228	927	944	0
PRESENT WO	RTH (\$1000)	o	0	603	395	363	139	72	0
NET 0.+M.	1574.24	•							

TABLE III : TOTAL PRESENT WORTH

6974 1574 77	(\$1000) (\$1000)	CAPETAL D.+M. LAND
8625	(\$1000)	T OT AL

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL							• •	
BASIN			24	26	24	56	26	26
BASIN				14	14	14	14	14
PIPES			643	843	843	843	843	843
TOTAL G.+M.	0	0	261	244	220	129	134	134
					1103	1013	1018	1016
TOTAL ANNUAL	0	o	1130	1128	1103	1012	1010	1018

NOTE 1 : ANNUAL CUSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEUNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN C . R-89

	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUME (MG) 1 YR STORM RUNOFF AMMUAL RUNOFF	2 38	2 39	2 41	2 41	2 41	2 41	2 41	2 41
SLUDGE QUANTITIES (DT/YR) SEDIMENT.BASIN TREATMENT PLANT	22 8	23 9	23 9	23 9	23 9	23 0	23	23 0

TREATMENT SCHEME : STORAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING : SOLIDS TO TUNNEL

STORAGE BASIN : CONCRETE

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

•	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RE SI DUAL
BASIN	465		570							57
PIPES	163		200							20
RES IDUA	. 2								TOTAL	77

TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1965	1990	2000	2010	2020
PL ANT	(\$1000/YR)	٥	7		7	6	,	,	. ,
SLUDGE	(\$1000/YR)	ŏ	ò	ŏ	ò	ŏ	ā	ō	ā
SEWERS	(\$1000/YR)	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ
TOTAL	(\$1000/YR)	0	9	9	8		3	3	3
PRESENT VAL	LUE AT BEGIN-							•	
	RIOD (\$1000)	0	37	37	34	41	26	26	0
PRESENT WO	RTH (\$1000)	0	30	21	14	12	4	2	0

NET 0.+M. = 84.9265

TABLE 111 : TOTAL PRESENT WORTH

CAPITAL D.+M. LAND	(\$1000) (\$1000) (\$1000)	625 84 11
TOTAL	(\$1000)	721

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
BASIN		41	41	41	42	41	41	42
PIPES		14	14	14	14	14	14	14
ŢOTAL O.+M.	0	9	9	8		3	3	3
TOTAL ANNUAL		64	65	64	63	59	59	59

NOTE 1: ANNUAL COSTS DJ NOT INCLUJE PRESENT OUTSTANDING BONDED INDEBTEONESS NOTE 2: AN INTERFST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN C . LE-1

	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUME (MG)								
1 YR STURM RUNUFF	a	24	48	49	50	53	53	55
ANNUAL RUNDEF	Ö	340	681	738	795	909	1022	1022
SLUDGE QUANTITIES (01/YR)								
SEDIMENT.BASIN	0	638	1276	1383	795	909	1022	1022
TREATMENT PLANT	0	0	0	0	0	0	0	0

TREATMENT SCHEME : STURAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING : SOLIDS TO TUNNEL

STORAGE BASIN : CONCRETE

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRE SE NT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIQUAL
BASIN PIPES	2979 2037			5120 3500						1023 499
RESIDUA									TOTAL	1723
NET CAPITA	4949									

TABLE II : PRESENT WORTH - 0.+M. COSTS

	1972	1975	1980	1985	1990	2000	\$010	2020
PLANT (\$1000/YR	•	0	158	111	54	41	69	69
SLUDGE (\$1000/YR	0	0	8	4	0	0	0	0
SEWERS (\$1000/YR		0	17	17	17	17	17	17
TOTAL (\$1000/YR)	0	0	185	133	71	79	87	67
PRESENT VALUE AT BEGIN-							•	
NING OF PERIOD (\$1000)	0	0	653	420	530	584	611	•
PRESENT MIRTH (\$1000)	0	0	380	174	156	67	46	0

NET G.+M. = 846.166

TABLE III : TOTAL PRESENT WORTH

CAPITAL B.+M.	(\$1000)	4949 846
LAND	(\$1000)	20
TOTAL	(\$1000)	5816
10146	. ******	3010

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
BASIN			370	370	370	370	370	370
PIPES			253	253	253	253	253	253
TOTAL O. +N.	0	0	185	133	71	79	87	97
TOTAL ANNUAL	0	0	809	757	695	703	711	711

NOTE 1: ANNUAL COSTS UN NOT INCLUDE PRESENT OUTSTANDING BONDED INVESTEDNESS NOTE 2: AN INTEREST RATE UP 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN C . L3-2

	1972	1975	1960	1985	1990	2000	2010	2020
STORMMATER VOLUME (MG) 1 YR STORM RUNOFF	0	16	37	38	39	41	41	41
ANNUAL RUNOFF	ŏ	294	589	631	673	757	757	757
SLUGGE QUANTITIES (DT/YR)								
SEDIMENT. BASIN	0	552	1104	1183	673	757	757	757
TREATMENT PLANT	٥	0	0	0	0	Ó	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING : SOLIDS TO TUNNEL

STORAGE BASIN : CONCRETE

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
BASIN PIPES	232 6 2153			4 <i>0</i> 00 3700						799 739
RESIDUAL	59								TOTAL	1539
MET CAPITAL	4421									

TABLE II : PRESENT MORTH - D.+M. COSTS

		1972	1975	1980	1965	1990	2000	2010	2020
PL ANT	(\$1000/YR)	o	٥	137	94	45	51	51	51
SLUDGE	(\$1000/YR)	0	0	7	4	0	0	0	ō
SEWERS	(\$1000/YR)	0	•	18	18	18	18	10	18
TOTAL	(\$1000/YK)		0	163	117	64	70	70	70
PRESENT VA	LUE AT BEGIN-							•	
NING OF PE	R100 (\$1000)	0	. 0	576	373	471	492	492	٥
PRESENT WO	RTH [\$1000]	0	0	335	154	139	73	37	0
NET O.+M.	- 741.408)							

TABLE III : TOTAL PRESENT WORTH

CAPITAL D.+M. LAND	(\$1000) (\$1000)	4421 741 20
TOTAL	(41000)	5183

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
AMMUAL CAPITAL	*							
BASIN			289	289	289	289	289	289
PIPES			267	267	267	267	267	267
TOTAL O.+M.	0	0	163	117	64	70	70	70
TOTAL ANNUAL		0	720	675	621	627	627	627

NOTE 1: ANNUAL CUSTS DO NOT INCLUDE PRESENT GUTSTANDING BONDED INDEBTEDNESS NOTE 2: AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VULUME (MG)								
1 YR STORM RUNOFF	0	33	67	68	70	73	73	73
ANNUAL RUNDEF	Ö	525	1050	1125	1200	1350	1350	1350
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT-BASIN	0	76 6	1533	1642	1200	1350	1350	1350
TREATHENT PLANT	0	0	640	686	0	0	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING : SOLIDS TO TUNNEL

STORAGE BASIN : CONCRETE

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RE SI DUAL
BASIN PIPES	3980 2211		= -	6840 3800	-					1367 759
RESIDUAL	62								TOTAL	2127
NET CAPITAL	61 09									
			TABLE	II : PRESE	NT WORTH	- 0.+M. CO	STS			
		1972	1975	19#0	1985	1990	2000	2010	\$020	

		1972	1975	1940	1985	1990	2000	2010	2020
									
PL ANT	(\$1000/YR)	0	0	276	242	201	91	91	91
SLUDGE	(\$1000/YR)	0	0	14	13	7	0	0	0
SEWERS	1\$1000/YR1	0	0	16	18	18	18	16	16
TOTAL	(\$1000/YR)		0	309	274	228	110	110	110
PRESENT VALUE	AT BEGIN-								
NING OF PEPIDD	(\$1000)	0	0	1197	1031	1192	779	779	0
PRESENT MORTH	(\$1000)	Q	0	696	427	352	117	59	0

MET 0.+M. = 1654.05

TABLE 111 : TOTAL PRESENT WORTH

CAPITAL O.+M. LAND	(\$1000) (\$1000)	6109 1654 30
LARU	(\$1000)	
T OT AL	(\$1000)	7793

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
BASIN			495	495	495	495	495	495
PIPES			275	275	275	275	275	275
TOTAL O.+M.	0	0	309	274	228	110	110	110
FOTAL ANNUAL		<u></u>	1079	1044	998	981	881	981

NOTE 1 : ANNUAL COSTS DU NOT INCLUDE PRESENT GUTSTANDING BUNDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF / PERLENT WAS USED FUR ALL CALCULATIONS

STORMMATER TREATMENT PLANT CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN C . LE-4

· I	1972	1975	1980	1965	1990	2000	2010	2020
								
STORMWATER VOLUME (MG)								
1 YR STORM RUNOFF	0	61	162	166	171	179	146	197
ANNUAL RUNOFF	0	frré	2237	2325	2414	2816	3574	3621
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT, BASIN	8	1633	3266	3395	2414	2816	3574	3421
TREATMENT PLANT	0	0	1364	1414	0	0	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT ON LAND

3007.59

MET 0.+M. -

SLUDGE HANDLING . SOLIDS TO TUNNEL

STORAGE BASIN : CONCRETE

TABLE I : PRESENT MORTH - CAPITAL COSTS - (\$1000)

	PRESENT MONTH	1972	1975	1980	1985	1990	2000	2010	2020	RE SI DUA
BASIN PIPES	10941 494			18800 8 50						3759 169
RESI	152 TOUAL								TOTAL	39 29
MET CAP	21 TAI 11283									

TABLE II : PRESENT WORTH - D.+M. COSTS

		1972	1975	1980	1905	1990	2000	2010	2020
PLANT	(\$1000/YR)	•	0	521	466	405	191	218	246
SLUOGE	(\$1000/YR)	0	0	23	50	12	0	0	0
SENERS	1\$1000/YR)	0	Ó	•	4	4	•	4	4
TOTAL	(\$1000/YR)	0	0	548	491	421	196	223	250
PRESENT VALUE	AT BEGIN-								
NING OF PERIOD	(\$1000)	0	0	2131	1471	2169	1473	1465	Q
PRESENT WORTH	(\$1000)	•	0	1240	776	641	521	127	0

TABLE ILI : TOTAL PRESENT WORTH

50
O) 3007
00) 11283

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
APRILAL CAPITAL			*******		~			
BASIN			1361	1361	1361	1361	1361	1361
PIPES			61	61	61	61	61	61
TOTAL D.+M.	0	0	548	491	421	196	223	250
TOTAL ANNUAL			1971	1913	1844	1616	1646	1673

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AM INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN C . LE-5

	1972	1975	1980	1985	1990	2000	2010	2020
								
STORMWATER VOLUME (MG)								
1 YR STORM RUNDFF	297	298	299	299	299	299	299	299
ANNUAL RUNOFF	5364	5425	5486	5486	5486	5486	5486	5486
SLUDGE QUANTITIES IDI/YR)							
SEDIMENT.BASIN	3137	31 73	3209	3209	3209	3209	3209	3209
TREATMENT PLANT	1233	1247	1261	1261	0	G	0	0

TREATMENT SCHEME : STURAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING : SOLIDS TO TUNNEL

STORAGE BASIN : CONCRETE

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIGNAL .
BASIN	23261		28500							2050
PIPES	10692		13100							1310
RESIDUA	ML 161								TOTAL	4160
NET CAPITA	AL 33792									

TABLE II : PRESENT WORTH - D.+M. COSTS

		1972	1975	1960	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	0	1264	1278	1099	921	373	373	373
SLUDGE	(\$1000/YR)	0	22	22	19	16	0	0	•
SENERS	(\$1000/YR)	0	65	65	65	45	65	45	45
TOTAL	1\$1000/YR)	0	1351	1366	1184	1003	438	436	436
PRESENT VALUE	AT BEGIN-							•	
NING OF PERIO		0	5571	5229	4485	5064	3082	3082	0
PRESENT WORTH	(\$1000)	0	4547	3043	1860	1497	463	235	0

NET 0.+M. . 11648.7

TABLE III : TOTAL PRESENT WORTH

TOTAL	(\$1000)	45521
LAND	1110001	80
0.+M.	(\$1000)	11648
CAPITAL	(\$1000)	33792

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
BAS IN		2063	2063	2 063	2063	2063	2063	2063
PIPES		94 6	948	948	946	748	948	748
TOTAL O.+P.	0	1351	1366	1184	1003	436	438	438
TOTAL ANNUAL		4363	4377	4196	4015	3450	3450	3450

NUTE 1 : ANNUAL CUSTS DO NOT INCLUDE PRESENT DUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN C . LE-6

	1972	1975	1960	1985	1990	2000	2010	2020
STORMWATER VOLUME (HG)								
1 YR STORM RUNOFF	70	70	70	70	70	70	70	70
ANNUAL RUNGEF	1453	1453	1453	1453	1453	1453	1453	1453
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT.BASIN	850	650	850	850	850	350	850	850
TREATMENT PLANT	334	334	334	334	0	0	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING : SOLIDS TO TUNNEL

STORAGE BASIN & CONCRETE

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT	1972	1975	1980	1985	1990	8000	2010	2020	RESIDUAL
BASIN PIPES	5346 6611		6550 8100							810
RES I DU AL	56								TOTAL	1465
MET CAPITAL	11900									

TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1945	1990	2000	5010	2020
PLANT	1\$1000/YR)	0	338	338	518	98	98	98	98
SLUDGE	1\$1000/YR)	0	5	5	5	4	g	0	ø
SEWERS	(\$1000/YR)	0	40	40	40	40	40	40	40
TOTAL	(\$1000/YR)	0	384	384	₹65	143	139	139	139
PRESENT VALUE	AT BEGIN-								
NING OF PERIO	(\$1000)	0	1578	1332	437	993	978	978	0
PRESENT WORTH	(\$1000)	0	1288	775	347	293	147	74	0

NET 0.+#. = 2927.45

TABLE III : TOTAL PRESENT WORTH

CAPITAL O.+M. LAND	(\$1000) (\$1000)	11900 2927 25
TOTAL	(11000)	14852

TABLE IV : ANNUAL COSTS (61000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
AMNUAL CAPITAL								
BASIN		474	474	474	474	474	474	474
PIPES		586	586	586	586	586	586	586
TOTAL O.+M.	0	384	384	265	143	139	139	139
TOTAL ANNUAL		1445	1445	1325	1204	1200	1200	1200

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT GUTSTANDING BINDED INDERTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

	1972	1975	1980	1985	1990	2000	5010	2020
STORMWATER VOLUME (MG)								
1 YR STORM RUNOFF	51	51	51	52	53	53	53	53
ANNUAL RUNOFF	969	969	969	1000	1031	1031	1031	1031
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT.BASIN	566	566	566	584	603	603	603	603
	222	222	222	230	a	0	O	0
TREATMENT PLANT	422	222	444	230	u	•	v	v

TREATMENT SCHEME : STORAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING : SOLIDS TO TUNNEL

STORAGE BASIN : CONCRETE

TABLE I : PRESENT WORTH - CAPITAL COSTS - (81000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
BASIN PIPES	4167 81		5130 100				,			513 10
RESIDUAL	50								TOTAL	523
NET CAPITAL	4248									

TABLE II : PRESENT WORTH - O.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PL ANT	(\$1000/YR)	0	225	225	150	70	70	70	70
SLUDGE	(\$1000/YR)	0	3	3	3	3	0	0	0
SEWERS	(\$1000/YR)	0	0	0	9	0	0	0	0
TOTAL	(\$1000/YR)	0	230	230	154	73	70	70	70
PRESENT VALU	UE AT BEGIN-							•	
NING OF PERI	100 (\$1000)	0	943	788	467	506	496	496	٥
PRESENT WORT	TH (\$1000)	0	770	459	194	149	74	37	0

1685.97 MET C.+M. *

TABLE III : TOTAL PRESENT WORTH

CAPITA	L (\$1000)	4248
Q.+M.	(\$1000)	1685
LAND	(\$1000)	50
	-	
T OT AL	1\$10001	5954

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1960	1985	1990	2000	2010	2020
AMANIA: CASITAI		~						
ANNUAL CAPITAL Basin		371	371	371	371	371	371	371
PIPES		7	7	7	7	7	7	7
TOTAL O.+A.	0	230	230	154	73	70	70	70
TOTAL ANNUAL		608	808	533	452	449	449	449

NOTE 1 : ANNUAL CUSTS OO NOT INCLUDE PRESENT DUISTANDING BONDED INDEBTEDNESS NOTE 2 : AN INFEREST RATE UP 7 PERCENT WAS USED FUR ALL CALCULATIONS

PLAN C . LE-8

	1972	1975	1980	1985	1990	2000	2010	2020
STORMMATER VOLUME (MG)								
1 YK STORM RUNOFF	0	17	35	35	35	35	35	35
ANNUAL RUNUFF	0	328	656	656	656	656	656	656
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT.BASIN	0	615	1230	1230	656	656	456	656
TREATMENT PLANT	0	0	٥	0	0	0	a	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING : SOLIDS TO TUNNEL

STORAGE BASIN : CONCRETE

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
BAS IN PIPES	1990 2956			3420 5080						693 1015
RES IDUAL	65								TOTAL	1699
NET CAPITAL	4881									

TABLE II : PRESENT MORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	5050
PLANT	(\$1000/YR)	0	0	152	98	44	44	44	44
SLUDGE	(\$1000/YR)	0	0	8	4	0	٥	0	0
SEWERS	(\$1000/YR)	q	0	25	25	25	25	25	25
TOTAL	(\$1000/YR)	0	0	186	128	70	70	. 70	70
PRESENT VALUE	AT BEGIN-								
NING OF PERIO		0	0	646	407	492	492	492	0
PRESENT WORTH	(\$1000)	0	0	376	168	145	74	37	0

NET 0.+M. = 802.354

TABLE III : TOTAL PRESENT WORTH

CAPI TAL	(\$1000)	4881
O.+M.	(\$1000)	602
LAND	1810001	20
~	•	
TOTAL	(\$1000)	5703

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
AMNUAL CAPITAL								
BASIN			247	247	247	247	247	247
PIPES			367	367	367	367	367	367
TOTAL O.+M.	0	0	186	128	70	70	70	70
TOTAL ANNUAL		0	802	743	685	685	685	685

NOTE 1 : ANNUAL COSTS DO NUT INCLUDE PRESENT WITSTANDING BURDED INDESTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

	1972	1975	1980	1485	1990	2000	2010	2020
STORMWATER VOLUME (MG)								
1 YR STORM RUNGEF	0	18	37	38	39	39	39	39
ANNUAL RUNDEF	Ō	265	531	575	619	619	619	691
SLUDGE QUANTITIES (DT/YR))							
SEDIMENT BASIN	0	387	775	839	619	619	619	691
TREATMENT PLANT	o	0	323	350	0	0	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING : SOLIDS TO TUNNEL

STORAGE BASIN : CONCRETE

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
BASIN PIPES	2159 2793			3710 4800						741 959
RESTOUAL				1000					TOTAL.	1701
NET CARITA										

TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YRJ	o	0	139	153	103	42	42	46
SLUDGE	(\$1000/YK)	ŏ	ō	25	13	O	Ō	0	0
SEWERS	(\$10JQ/YR)	Ö	0	23	23	23	23	23	23
TOTAL	(\$100J/YR)	0	0	188	161	128	66	66	71
PRESENT VAL	UE AT BEGIN-							•	
NING OF PER	100 (\$1000)	0	o	718	593	682	464	481	0
PRESENT WOR	TH (\$1000)	0	0	418	246	201	69	36	0
NET Q.+M. =	973.119	,							

TABLE III : TUTAL PRESENT WORTH

15	
773	
886	
1	886

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
	~~~~							
ANNUAL CAPITAL BASIN			268	268	268	868	268	268
PIPES			347	347	347	347	347	347
TOTAL Q.+M.	0	0	188	161	128	66	66	71
TOTAL ANNUAL	0	ō	805	777	744	582	682	687

NOTE 1 : ANNUAL COSTS DO NUT ENGLUGE PRESENT OUTSTANDING BUNDED INDEBTECHESS NOTE 2 : AN ENTERESE RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

## PLAN C . LE-10

	1972	1975	1980	1985	1990	2000	2010	2020
STORMMATER VOLUME (MG)								
1 YR STORM RUNOFF	٥	24	49	49	50	53	55	54
ANNUAL RUNUFF	o	338	670	686	696	747	799	799
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT BASIN	0	633	1267	1286	696	747	799	799
TREATHENT PLANT	٥	0	0	0	0	. 0		0

TREATMENT SCHEME : STORAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING : SOLIDS TO TUNNEL

STURAGE BASIN : CONCRETE

### TABLE I : PRESENT WORTH - CAPITAL COSTS - (61000)

	PRESENT WORTH	1972	1975	1400	1965	1990	2000	\$010	2020	RESIDUAL
		~								
BASIN	3148			5410						1041
PIPES	4103			7050						1409
RESID	NUAL 96								TOTAL	2491
MET CADI	7155									

#### TABLE II : PRESENT WIREH - O. . COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR) (\$1000/YR)	0	0	157 29	103	47	50	54	54
SLUDGE SEWERS	(\$1000\AK)	ő	0	35	14 35	0 35	0 35	35	35
TOTAL	(\$1000/YR)	0	0	221	153	82	86	89	89
PRESENT VALUE	UE AT BEGIN- IOD (\$1000)	0	0	769	483	592	417	. 629	0
PRESENT WIN	TH (\$1000)	0	0	447	200	175	92	48	0

NET 0.+M. = 964.73

### TABLE III : TOTAL PRESENT WONTH

CAPITAL	(\$1000)	7155
D.+M.	1113001	964
L ATIO	(\$1000)	15
	•	
TOTAL	151000	9134

# TABLE IV : ANNUAL COSTS (\$1600/YR)

	1972	1975	1 440	1985	1790	2000	2010	2020
ANNUAL CAPITAL	<del></del>							
BASEN			391	341	391	391	391	391
PIPES			510	510	510	510	510	210
TOTAL O.+H.	0	0	271	153	82	85	89	89
TOTAL ANNUAL		0	1174	1055	984	998	991	991

NOTE & 2 ANNUAL CUSTS OF NAT INCLUSE PRESENT OUTSTANDING BORGED EDUCATIONSS NOTE 2 & A4 INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN C . LE-11+12

	1972	1975	1980	1985	1990	2000	2010	2020
				-				
STORMWATER VOLUME (MG)								
1 YR STORM RUNOFF	0	26	53	55	58	65	73	76
ANNUAL RUNDEF	0	368	737	179	822	933	1043	1089
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT.BASIN	0	368	737	779	822	933	1043	1069
TREATMENT PLANT	0	0	0	0	0	0	0	0

TREATMENT SCHEME : STURAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING : SOLIDS TO TUNNEL

STORAGE BASIN : CONCRETE

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRE SE NT MURTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
BAS IN PIPES	3074 82				7410 200					2223 60
RESI	DUAL 88								TOTAL	2263
NET CAD	840E									

### TABLE II : PRESENT WORTH - C.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$100U/YR)	0	0	0	55	55	63	70	74
SLUDGE	(\$1UUO/YK)	0	0	0	0	0	٥	0	0
SEWERS	[\$1000/YA]	0	0	0	0	0	Ō	ō	ō
TOTAL	(\$1000/YR)	0	ō		54	56	64	72	75
PRESENT VA	LUE AT BEGIN-								
	R100 (\$100)	0	0	0	233	426	479	516	٥
PRESENT WO	RTH (\$1000)	0	٥	o	96	126	72	39	۵

NET 0.+H. = 334.774

## TABLE III : TOTAL PRESENT WORTH

LAND	(\$1000)	61
TOTAL	(\$1000)	3464

## TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
BASIN				536	536	536	536	536
PIPES				14	14	14	14	14
TOTAL O. +H.	0	0	0	56	56	64	72	75
TOTAL ANNUAL	0			607	637	615	622	626

NOTE 1 : ANNUAL COSTS OF NUT INCLUED PRESENT OUTSTANDING BONGED PARIETEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN C . CU-1

	1977	1975	1980	1985	1990	2000	2010	2020
STORMMATER VOLUME (MG)								
1 YR STORM RUNUFF	32	32	32	32	33	33	33	33
ANNUAL RUNOFF	631	631	631	637	644	644	644	644
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT.BASIN	369	369	369	372	376	376	376	376
TREATMENT PLANT	145	145	145	146	0	0	Q.	0
INEXINENI LEAVI			• • •					

TREATMENT SCHEHE : STORAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING : SOLIDS TO TUNNEL

STORAGE BASIN : CONCRETE

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRE SENT WORTH	1972	1975	1980	1985	1990	\$000	2010	2020	BESTOURL
BASIN PIPES	2562 163		3140 200							314 20
RESIDUAL	12								TOTAL	334
MET CADITAL	2713									

### TABLE II : PRESENT WORTH - 0.+ M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	0	147	147	95	43	<b>43</b>	43	43
SL UDGE	(\$1000/YR)	0	2	2	2	1	0	0	0
SEWERS	(\$1000/YR)	0	0	0	0	0	•	•	D
TOTAL	(\$1000/YR)	0	150	150	99	46	44	44	44
	LUE AT BEGIN~	o	617	512	299	321	314	314	0
PRESENT WOR	RTH (\$1000)	0	503	298	124	95	47	24	0

NET 0.+M. = 1092.49

TABLE III : TOTAL PRESENT WORTH

80
1092
2713

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	5010	2020
ANNUAL CAPITAL								
BASIN		227	227	227	227	227	227	227
PIPES		14	14	14	14	14	14	14
TOTAL O.+M.	ů	150	150	99	46	44	44	44
TOTAL ANNUAL	ō	392	392	340	268	286	286	284

NOTE 1 2 ANNHAL COSTS OF NOT INCLUDE PRESENT DUTSTANGING BOND, D. INDEBTEDNESS NOTE 2 2 AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS.

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN C . CU-2

	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUME (MG)								
1 YR STORM RUNOFF	61	61	61	61	62	62	62	62
ANNUAL RUNGEF	1147	1147	1147	1183	1220	1220	1220	1520
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT BASIN	670	670	670	692	713	713	713	713
TREATMENT PLANT	263	263	263	272	0	0	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING : SOLIDS TO TUNNEL

STORAGE BASIN : CUNCRETE

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
BAS IN	4889		5990							599
PIPES	163		200							20
RES I DU AL	24								TOTAL	619
NET CARLES	5030									

### TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
				<del></del>					
PLANT	(\$1000/YR)	٥	267	267	178	82	82	82	82
SLUDGE	(\$1000/YR)	Q	4	4	4	3	0	٥	0
SEWERS	(\$1000/YR)	0	0	0	0	0	0	0	0
TOTAL	(\$1000/YR)	0	212	272	183	87	84	84	84
PRESENT VALU	E AT BEGIN-								
NING OF PERI	00 (\$1000)	0	1119	935	555	602	590	590	0
PRESENT WORT	H (\$1000)	0	913	544	230	178	88	45	0

NET 0.+H. = 2000.02

## TABLE III : TOTAL PRESENT WORTH

CAPITAL	(\$1000)	5028
D.+M.	(\$1000)	2000
LAND	[\$1000]	25
TOTAL	(\$1000)	7053

## TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL			~_					
BASTN		433	433	433	433	433	433	433
PIPES		14	14	14	14	14	14	14
TOTAL G.+M.	0	272	272	183	87	84	84	84
TOTAL ANNUAL	ō	721	721	631	535	532	532	532

NOTE 1 2 ANNUAL COSTS DU NOT INCLUDE PRESENT QUISTANDING BONDED INVESTEDNESS NUTE 2 2 AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CURPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN C . CU-3

	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUME (MG)								
1 YR STORM RUNDEF	43	43	43	44	45	45	45	45
ANNUAL RUNDEF	742	742	742	788	835	835	835	835
SLUDGE QUANTITIES (DI/YR)								
SENIMENT.BASIY	434	434	434	461	488	486	444	488
TREATHENT PLANT	170	170	170	181	0	0	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING : SULIDS TO TUNNEL

STORAGE BASIN : CONCRETE

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT MORTH	1972	1975	1960	1985	1990	2000	3010	2020	RESIDUAL
			**				<del></del>			
BAS IN	3493		4280							428
PIPES	163		200							20
RES I DUAL	17								TOTAL	448
NET CAPITAL	3639									

## TABLE II : PRESENT WORTH - D.+M. COSTS

		1972	1975	1980	1965	1990	5000	5010	2020
PLANT SLUDGE	(\$1000/YR)	0	172 3	172 3	116	56 2	54 0	54	54 0
SEWERS	(\$1000/YR)	0	0	0	ō	Ō	0	Ŏ	ō
TOTAL	(\$1000/YR)	0	176	176	122	60	57	. 57	57
PRESENT VAL NENG OF PER	UE AT BEGIN- 100 (\$1000)	0	725	613	374	414	406	406	0
PRESENT WOR	TH (\$1000)	0	592	357	155	122	61	31	0

NET 0.+M. = 1319.28

## TABLE III : TOTAL PRESENT WORTH

TOTAL	(\$1000)	4978
LAND	(\$1000)	20
D.+M.	[\$1000]	1319
CAPITAL	(000012)	3639

## TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1485	1990	2000	2010	2020
ANNUAL CAPITAL	<del></del>							
BASIN		309	309	309	309	309	309	309
PIPES		14	14	14	14	14	14	14
TOTAL O.+M.	0	176	176	122	60	57	57	57
TOTAL ANNUAL	ō	501	501	446	384	362	382	382

NOTE 1 : ANNUAL COSTS D) NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN 1 $\pm$ 1 EREST RATE OF 7 PERCINT WAS USED FOR ALL CALCULATIONS

c

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN C . CU-4A

	1972	1975	1980	1985	1990	2000	2010	2020
STORMHATER VOLUME (MG)								
1 YR STORM RUNOFF	30	31	32	32	33	34	35	35
ANNUAL RUNDEF	424	462	500	513	527	575	642	642
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT . BASIN	248	270	292	300	308	336	375	375
TREATMENT PLANT	97	106	115	118	0	0	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING : SOLIDS TO TUNNEL

STORAGE BASIN : CONCRETE

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT NORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
BAS IN	2791		3420							342
PIPES	11018		13500							1350
RESIDUA	L 65								TOTAL	1692
NET CAPITA	L 13744									

### TABLE II : PRESENT WORTH - 0.+M. COSTS

	1972	1 975	1980	1985	1990	2000	2010	2020
PLANT (\$1000	)/YR) 0	107	116	77	35	39	43	43
SLUDGE (\$1000	0 (8Y\c	1	2	1	1	0	0	0
SEWERS (\$1000	1/YR] 0	67	67	67	67	67	67	67
TOTAL (\$1000	)/YR) 0	177	186	146	104	106	. 111	111
PRESENT VALUE AT BEGI	IN-							
NING OF PERIOD (\$1000	)) 0	744	186	515	742	764	780	0
PRESENT WORTH (\$1000	0	607	396	213	219	115	59	0

NET 0.+M. = 1612.66

TABLE III : TOTAL PRESENT WORTH

CAPITAL	(\$1000) (\$1000)	13744 1612
LAND	(\$1000)	50
TOTAL	(\$1000)	15407

## TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
BASIN		247	247	247	247	247	247	247
PIPES		977	977	977	977	977	977	977
TOTAL O.+M.	0	177	186	146	104	106	111	111
TOTAL ANYUAL	0	1402	1411	1371	1329	1331	1336	1336

NOTE 1: ARMUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BUNDED INDEBTEDNESS NOTE 2: AN INTEREST RATE OF 7 PERCENT WAS USED FUP ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STURY

PLAN C . CU-48+C+D

l		1972	1975	1980	1985	1990	2000	2010	2020
ŀ									
	STORMWATER VOLUME (MG)								
	1 YR STORM RUNOFF	230	237	245	247	249	256	269	269
l	ANNUAL RUNOFF	3240	3540	3840	3945	4050	4400	4940	4940
	SLUDGE QUANTITIES (DT/YR)								
	SEDIMENT-BASIN	0	5148	5606	5759	5913	6424	7212	7212
	TREATMENT PLANT	0	0	2342	2406	2470	0	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT ON LAND

SLUGGE HANDLING : PERIODIC REHOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

		PRESENT WORTH	1972	1975	1980	1985	1990	2000	\$010	2020	RES IDUAL
BASIN PIPES	·	785 931			1350 1600				• - •		269 319
	RESIDUAL	22								TOTAL	589
	+	14.04									

### TABLE II : PRESENT WORTH - D.+M. COSTS

		1972	1975	1980	1985	1990	2000	5010	2020
								•	
PLANT	(\$1000/YR)	0	0	760	621	473	514	163	163
SLUDGE	(\$1000/YR)	0	0	151	156	160	160	180	180
SEVERS	(\$1000/YR)	Ō	Ö	7	7	7	7	7	7
TOTAL	(\$1000/YR)	ō		920	785	642	683	351	351
PRESENT VALUE	AT BEGIN-							•	
NING OF PERIOD	(\$1000)	0	0	3496	2924	4654	3633	2467	0
PRESENT WORTH	(\$1000)	0	٥	2034	1214	1376	544	160	0

NET 0.+M. = 5360.87

TABLE III : TOTAL PRESENT WORTH

CAPITAL D.+M. LAND	(\$1000) (\$1000) (\$1000)	1694 5360 1800
TOTAL	(\$1000)	8854

## TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL							-	
BASIN			97	97	97	•7	97	97
PIPES			115	115	115	115	115	115
FOTAL G.+M.	0	0	920	785	642	483	351	351
TOTAL ANNUAL			1133	998	855	896	544	564

NOTE 1 : ANNUAL CUSTS DO NOT INCLUDE PRESENT DUTSTANDING BONDED INDERTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

PLAN C . CU-5

	1972	1975	1980	1985	1990	2000	2010	2020
STURMWATER VOLUME (MG)								
1 YR STORM RUNOFF	141	144	147	148	150	154	162	162
ANNUAL RUNGEF	2044	2175	2307	2373	2439	2637	2967	2967
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT . BASIN	1195	1272	1349	1388	1426	1542	1735	1735
TREATMENT PLANT	470	500	530	545	0	0	0	۵

TREATMENT SCHEME : STORAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING : SOLIDS TO TUNNEL

STURAGE BASIN : CONCRETE

WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
12569 163		15400 200							1540 20
60								TOTAL	1560
12672									
		TABLE	II : PRES	ENT WORTH	- 0.+M. CQ	sts			
	1972	1975	1980	1985	1990	2000	2010	2020	
.000/YR}	0	506 8	537	357	165	179	201	Z01 0	
	12569 163 60 12672	12569 163 60 12672 1972 1972 000/YR) 0	12569 15400 200 60 12672 TABLE 1972 1975 1975 000/YR) 0 506 0 0 8	12569 15400 200 60 12672 TABLE II : PRESC 1972 1975 1980 000/YR) 0 506 537 000/YR) 0 8 9	MORTH 1972 1975 1980 1985  12569 15400 200  60  12672  TABLE II : PRESENT MORTH -  1972 1975 1980 1985  000/YR) 0 506 537 357 000/YR) 0 8 9 8	MORTH 1972 1975 1980 1985 1990  12569 15400 200  60  12672  TABLE II : PRESENT MORTH - 0.+M. CO. 1972 1975 1980 1985 1990  000/YR) 0 506 537 357 165 000/YR) 0 8 9 8 7	MORTH 1972 1975 1980 1985 1990 2000  12569 15400 200  60  12672  TABLE II : PRESENT MORTH - 0.+M. COSTS  1972 1975 1980 1985 1990 2000  000/YR) 0 506 537 357 165 179 000/YR) 0 8 9 8 7 0	MORTH 1972 1975 1980 1985 1990 2000 2010  12569 163 200  60  12672  TABLE II: PRESENT MORTH - 0.+M. COSTS  1972 1975 1980 1985 1990 2000 2010  000/YR) 0 506 537 357 165 179 201 000/YR) 0 8 9 8 7 0 0	MORTH 1972 1975 1980 1985 1990 2000 2010 2020  12569 163 200  60 TOTAL  12672  TABLE II : PRESENT MORTH - 0.+M. COSTS  1972 1975 1980 1985 1990 2000 2010 2020  000/YR) 0 506 537 357 165 179 201 201 000/YR) 0 8 9 8 7 0 0 0

PLANT	(\$1000/YR)	0	506	537	357	165	179	201	201
SLUDGE	(\$1000/YR)	٥	8	9	8	7	0	Ō	0
SEWERS	(\$1000/YR)	0	0	0	0	0	0	0	0
TOTAL	(\$1000/YR)		516	547	366	173	180	202	202
PRESENT VALUE	E AT BEGIN-								
NING OF PERT	00 (\$1000)	0	2182	1874	1107	1244	1346	1425	0
PRESENT MORTI	H (\$1000)	0	1781	1.090	440	348	202	108	•

NET 0.+M. = 4011.71

TABLE III : TOTAL PRESENT WORTH

CAPITAL	(\$1000)	12672
0.+M.	(\$1000)	4011
LAND	(\$1000)	346

TOTAL (\$1000) 17029

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL		~		<del></del>				
BASIN		1114	1114	1114	1114	1114	1114	1114
PIPES		14	14	14	14	14	14	14
. TOTAL O.+M.	0	516	547	366	173	180	202	202
TOTAL ANNUAL		1646	1677	1495	1303	1309	1332	1332

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT DUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE UP 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN C . CU-6 LZ

1972	1975	1960	1905	1990	2000	2010	2020
38	39	41	42	44	47	49	49
526	547	568	600	633	677	790	790
0	798	829	876	924	788	1153	1153
G	0	346	366	3 86	412	481	481
	38 526	38 39 526 547 0 798	38 39 41 526 547 568 0 798 829	38 39 41 42 526 547 568 600 0 798 829 876	38 39 41 42 44 526 547 568 600 633 0 798 829 876 924	38 39 41 42 44 47 526 547 568 600 633 677 0 798 829 876 924 988	38 39 41 42 44 47 49 526 547 568 600 633 677 790 0 798 829 876 924 988 1153

REATMENT SCHEME : STORAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING : SOLIDS TO TUNNEL

TORAGE BASIN : CONCRETE

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - 4810003

1	PRESENT WORTH	1972	1975	1980	1985	1990	3000	2010	2020	RESIDUAL
		_								
BAS IN	5470			9400						1479
IPES	954			1440						327
	RESIDUAL 85								TOTAL	2207

### TABLE II : PRESENT WORTH - O.+M. COSTS

	•	1972	1975	1980	1905	1990	2000	2010	2020
LANT	(\$1000/YR)	0	a	115	105	96	102	53	53
4.UDGE	{\$L000/YR}	0	0	5	6	6	4	•	•
JEWERS	(\$1000\AY)	0	٥	8	8	8	•	•	
TOTAL	(\$1000/YR)	0	0	126	119	110	116	62	62
	LUE AT BEGIN-							•	
ING OF PE	MIOO (\$1000)	0	0	504	472	797	625	435	0
PRESENT WC	RTH (\$1000)	0	a	293	156	235	94	33	0
IET 0.+M.	852.754	•							

### TABLE III : TOTAL PRESENT WORTH

CAP) TAL O.+H. LAND	(\$1000) (\$1000) (\$1000)	<b>6339</b> <b>8</b> 52 105
TOTAL	4410001	7267

## TABLE IV : ANNUAL COSTS (\$1000/YR)

	1974	1975	1980	1985	1990	2000	2010	2020
INNUAL CAPITAL								· <del>-</del> -
BAS IN			680	440	080	680	480	680
PIPES			118	118	118	110	118	110
TOTAL G.+H.	0	0	126	119	110	114	42	42
TUTAL ANNUAL			925	518	910	915	861	861

MOTE 1 & ANNUAL COSIS OD NGT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEUNESS NOTE 2 : AN INTEREST RATE UF 7 PERCENT WAS USED FOR ALL CALCULATIONS

## PLAN C . CU-7+18

	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUME (MG)								
1 YR STORM RUNOFF	0	7	15	19	23	30	37	46
ANNUAL RUNOFF	0	111	223	278	334	446	577	660
SLUDGE QUANTITIES IDT/YR)								
SEDIMENT .BASIN	0	162	325	406	487	651	842	963
TREATMENT PLANT	0	0	136	169	203	0	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

### TABLE 1 : PRESENT WORTH - CAPITAL COSTS - 1\$1000)

	PRESENT MORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
BAS IN PIPES	236 1452				570 3500					171 1050
RESIDUAL	47								TOTAL	1221
NET CAPITAL	1641									

### TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	0	0	0	39	39	52	19	21
SLUDGE	(\$1000/YR)	0	0	0	13	13	16	21	24
SENERS	(\$1000/YR)	0	0	0	17	17	17	17	17
TOTAL	(\$1000/YR)	0	<u>ō</u>	0	69	69	85	57	63
PRESENT VAL	UE AT BEGIN-								
NING OF PER	100 (\$1000)	0	0	0	286	546	504	424	0
PRESENT WOR	TH (\$1000)	0	0	0	118	161	75	32	0

NET 0.+M. = 386.787

### TABLE III : TOTAL PRESENT WORTH

CAPITA	L (\$1000)	1641
0.+M.	(\$1000)	388
LAND	(\$1000)	288
	_	
TOTAL	(\$1000)	2318

#### TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
BASIN				41	41	41	41	41
PIPES				253	253	253	253	253
TOTAL D.+M.	0	0	0	69	69	85	57	63
TOTAL ANNUAL	0	0		364	364	380	352	358

NOTE 1 : ANNUAL CUSTS DO NUT INCLUDE PRESENT DUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

CORPS OF ENGINEERS - SURVEY SCOPE STUBY

PLAN C . CU-8

1		1972	1975	1980	1985	1990	2000	2010	2020
I				<del></del>		<del></del>			
•	STORMWATER VOLUME (MG)								
	1 YR STORM RUNOFF	٥	42	84	86	89	93	98	98
_		ŏ	577	1155	1199	1243	1296	1386	1386
ı	ANNUAL RUNOFF	U	211	****	••••	2673	1270	1300	1300
ł	SLUDGE QUANTITIES (DT/YR)								
•	SED EMENT - BASIN	0	843	1686	1750	1814	1892	2023	2023
	TREATMENT PLANT	ō	0	704	731	758	0	0	0
	IREAINENI FERNI	•	•				-	•	•

TREATMENT SCHEHE : STORAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

			TABLE	I : PRESE	NT WORTH -	CAPITAL C	0575 - (\$1	0001		
	PRESENT WORTH	1972	1975	1980	1945	1990	2000	\$010	2020	RESIDUAL
BASIN PIPES	477 174			820 300						163 59
	IDUAL 8								TOTAL	223
NET CA	PITAL 643									
			TABLE	II : PRES	ENT WORTH	- 0.+M. CO	K1\$			
		1972	1975	1980	1945	1990	2000	2010	\$050	
PL ANT	(\$1000/YR)	0	0	228	106	145	151	45	45	
SLUDGE SEWERS	(\$1000/YR) (\$1000/YR)	0	0	45	47 1	49 1	47	\$0 1	50 1	
TOTAL	(\$1000/YR)	0	0	275	237	196	200	97	97	
	LUE AT BEGIN- Riod (\$1000)	0	0	1052	889	1392	1047	687	0	
PRESENT MO	RTH (\$1000)	0	٥	612	369	411	157	52	0	

1603.78

TABLE 111 : TOTAL PRESENT WORTH

CAPITAL	(\$1000)	643
O.+M.	(\$1000)	1603
LAND	(\$1000)	591
T OT AL	(\$1000)	2837

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL Basin			59	59	59	59	59	59
PIPES			21	21	21	21	21	21
TOTAL O. +H.	0	0	275	237	196	200	97	97
TOTAL ANNUAL		0	356	318	277	281	178	176

MOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT DUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

	1972	1975	1980	1985	1990	2000	2010	2050
STORMMATER VOLUME (MG)								
1 YR STORM RUNOFF	0	0	0	Q	0	•	6	7
ANNUAL RUNOFF	0	0	0	0	0	74	89	112
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT. BASIN	٥	0	0	0	0	108	129	163
TREATMENT PLANT	0	0	0	0	0	0	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT ON LAND

SLUGGE HANDLING : PERIODIC REMOVAL TO LANDFILL DR RECYCLE

STORAGE BASIN : EARTH

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RES IDUAL
BASIN PIPES	33 300						220 2000			132 1200
RESIDUA	L 51								TOTAL	1332
MET CAPITA	282									

## TABLE IS : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
					<del></del>	<del></del> -			
PLANT	(\$1000/YR)	0	0	0	٥	0	2	2	3
SLUDGE	(\$1000/YR)	0	0	0	0	0	2	3	•
SEWERS	(\$1000/YR)	0	0	0	0	0	9	9	9
TOTAL	(\$1000/YR)	0	0	0	0	0	15	16	17
PRESENT VALUE		0	0	0	o	0	110	119	0
WING DE LEKTOR	1310001	•	•	•	_	•		•••	-
PRESENT WORTH	(\$1000)	0	0	0	0	0	16	9	0

25,6606 MET 0.+M. =

## TABLE 111 : TOTAL PRESENT WORTH

CAPITAL	(\$1000)	282
D.+H.	(\$1000)	25
LAND	(\$1000)	24
	•	
TOTAL	(\$1000)	331

## TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
BASIN						15	15	15
PIPES	0	0	•	0	0	144 15	144 16	144
TOTAL O.+M.								
TOTAL ANNUAL	0	0	0	0	0	175	176	178

NOTE 1 : ANNUAL CUSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

STORMMATER TREATMENT PLANT CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN C . CU-10

	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUME (MG)								
1 YR STORM RUNGFF	0	٥	0	2	5	6		11
AMNUAL RUNGFF	0	O	Ô	40	80	97	121	162
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT . BAS IN	0	0	0	0	116	141	176	236
TREATMENT PLANT	0	0	0	0	48	0	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING & PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
BASIN PIPES	79 66					270 300				107 119
RES I DU AL									T OT AL	277
NET CAPITAL	159									

## TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
								·	
PLANT	(\$1000/YR)	٥	0	0	0	9	11	3	5
SLUDGE	(\$1000/YR)	0	0	0	0	3	3	4	5
SEWERS	(\$1000/YR)	0	0	0	o	1	1	1	2
TOTAL	(\$1000/YR)	0	0	<u>o</u>		14	16	9	12
PRESENT VALU	E AT BEGIN-						•		
NING OF PERI		0	0	0	0	106	92	79	0
PRESENT WORT	TH (\$1000)	0	0	0	0	31	13	6	0

NET G.+M. = 51.5649

### TABLE III : TOTAL PRESENT WORTH

TOTAL	(\$1000)	245
LAND	(\$1000)	34
CAPITAL	(\$1000) (\$1000)	159 51

## TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL		<del></del>					<del></del>	
BAS IN					19	19	19	19
PIPES	_	_	_	_	21	21	21	21
TOTAL O-+M-	0	0	0	0	14	16	9	12
TOTAL ANNUAL		0	0		55	57	51	54

NOTE 1: ANNUAL COSTS DO NOT INCLUDE PRESENT DUTSTANDING BOUNDED INDEBTEDUESS OF 2: AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

## PLAN C . CU-11

	1972	1975	1980	1985	1990	2000	2010	2020
STORMNATER VOLUME ING)								
1 YR STORM RUNOFF	0	12	24	24	24	26	27	27
ANNUAL RUNOFF	ŏ	168	337	341	346	370	432	432
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT. BASIN	0	246	492	498	505	540	630	o <b>3</b> 0
TREATMENT PLANT	0	0	205	208	211	0	0	0

TREATMENT SCHEME : STURAGE PLUS TREATMENT ON LAND

SLUGGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

### TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRE SE NT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
BASIN	261			450						69
PIPES	174			300						59
RESIDUAL	5								TOTAL	149
NET CAPITAL	430									

### TABLE II : PRESENT WORTH + 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
						~			
PL ANT	(\$1000/YR)	o	0	66	53	40	43	14	14
SLUDGE	(\$1000/YR)	0	0	13	13	13	13	15	15
SEWERS	(\$1000/YR)	0	0	1	1	1	1	ı	1
TOTAL	(\$1000/YR)			81	68	<del></del> 55	58	. 31	31
PRESENT V	ALUE AT BEGIN-								
	EKIOD (\$1000)	0	0	308	255	400	315	221	0
PRE SENT W	ORTH (\$1000)	٥	0	179	1 05	118	47	16	0

NET 0.+M. = 467.978

### TABLE III : TOTAL PRESENT WORTH

CAPITAL	(\$1000)	430
0.+M.	(\$1000)	467
LAND	(\$1000)	184
	-	
TOTAL	(\$1000)	1082

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
BASIN			32	32	32	32	32	32
PIPES			21	21	21	21	21	21
TOTAL D.+M.	0	0	61	68	55	58	31	31
TOTAL ANNUAL	0	<u>0</u>	135	123	109	112	85	85

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING RUNDED INDEBTEONESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

STORMATER TREATMENT PLANT

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN C , CU-14

	1972	1975	1980	1985	1990	2000	2010	5050
STORMATER VOLUME (NG)  1 YR STORM RUMOFF  AMMUAL RUMOFF	0	15 212	31 425	31 435	32 446	33 466	35 500	35 <b>5</b> 00
SLUDGE QUANTITIES (DY/YR) SEDIMENT.DASIN TREATMENT PLANT	0	310 0	620 259	<b>63</b> 5 <b>26</b> 5	651 272	63 o	730 0	730

TREATMENT SCHEME : STORAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING : PERIODIC REMOVAL TO LAMBFILL OR RECYCLE

SYCRAGE BASIN : EARTH

c

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT	1972	1975	1900	1985	1990	2000	2010	2020	RESIDUAL
BASIN PIPES	203 601				490 1450					147 435
RESIDUAL	22								TOTAL	502
NET CAPITAL	782									

## TABLE 81 : PRESENT WORTH - 0.+h. COSTS

		1972	1975	1980	1985	1997	2000	2010	\$020
PLANT	(\$2000/YR)	0	0	0	52	52	58	26	16
SLUGGE SEVERS	(\$1000/YR) (\$1000/YR)	9	0	<b>0</b> . 3	17 7	17	17 7	1£ 7	18
TOTAL	(\$1000/YR)		0	0	77	77	78	41	41
PRESENT VALUE / NING OF PERIOD	(\$1000)	o	0	0	315	547	424	294	0
PRESENT WORTH	(\$1000)	0	0	0	131	161	63	22	0
NET 0.+M. =	<b>37</b> 9.333								

#### TABLE III : TOTAL PRESENT WORTH

TOTAL	(\$1000)	1268
	-	
LAND	(\$1000)	107
0. <b>4</b> H.	(\$1300)	379
CAPITAL	(\$1300)	782

#### TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1939	1985	1933	2009	2010	2020
AMMUAL CAPITAL					<del></del>	<del></del>		<del></del>
BASIH PIPES TOTAL O.+N.	0	•	0	35 10 <b>4</b> 77	168 77	35 164 78	35 104 \$1	35 104
	•	v	•	**	17	10	41	41
TOTAL ANNOUAL		<del></del> 8	0	217	217	217	182	182

NOTE 1 : APPRIAL COSTS NO HIGT INCLUDE PRESENT OUTSTANDING DONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT HAS USED FOR ALL CALCULATIONS

STORMMATER TREATMENT PLANT

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN C . CU-15

	1972	1975	1980	1985	1990	2000	2010	2020
STORMMATER VOLUME (MG)								
1 YR STORM RUNOFF	٥	٥	0	a	1	3	3	3
ANNUAL RUNOFF	Ŏ	0	Ō	14	28	42	56	54
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT-BASIN	0	0	0	0	40	61	81	81
TREATMENT PLANT	a	0	0	0	17	0	. 0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT ON LAND

SLUDGE MANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN . . EARTH

#### TABLE I : PRESENT WORTH - CAPITAL COSTS - 481000)

	PRESENT WURTH	1972	1975	1980	1985	1990	2000	2010	2420	RESIDUAL
BASIN PIPES	47 88					160 300				43 119
RESIDUAL	7								TOTAL	103
NET CAPITAL	128							•		

#### TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	0	0	0	0	3	4	1	1
SLUDGE	(\$1000/YR)	0	0	0	0	1	1	2	2
SEWERS	(\$1000/YR)	0	0	0	0	1	1	1	1
TOTAL	(\$1000/YR)	0	0	0	0	5	7	5	5
PRESENT VAL	UE AT BEGIN-							•	
NING OF PER	RIOD (\$1000)	0	0	0	0	48	46	37	0
PRESENT WOR	RTH (\$1000)	0	0	0	0	14	7	2	0

NET O.+M. = 24. 3052

#### TABLE III : TOTAL PRESENT WORTH

CAPITAL U.+M.	(\$1000) (\$1000)	126 24
LAND	(\$1000)	12
TOTAL	(\$1000)	165

#### TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
BAS IN					11	11	11	11
PIPES TOTAL O.+M.	0	0	0	٥	21 5	21 7	21	21
FOTAL ANNUAL	0	0	0	0	39	41	36	36

NOTE 1 : ANNUAL CUSTS DU NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

STORMWATER TREATMENT PLANT

COMPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN C . CU-16

	1972	1975	1980	1965	1990	2000	5010	2020
STORMWATER VOLUME (MG)								
1 YR STORM RUNOFF	0	2	5	6	7	10	13	13
ANNUAL RUNOFF	•	39	74	98	110	157	194	196
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT.BASIN	0	56	113	143	172	229	286	286
TREATMENT PLANT	0	0	47	59	71	0	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

#### TABLE 1 : PRESENT WORTH - CAPITAL COSTS - 1410001

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
					~					
BAS IN PIPES	124 124				<b>306</b> <b>3</b> 00					90 90
RESIDUAL	6								TOT AL	180
NET CAPITAL	241									
•			TABLE	II + PRES	ENT MORTH	- D.+M. CO	2120			

#### TABLE 11 : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1965	1990	2000	2010	2020
PL ANT	( \$1000/YRI	ø	0	0	13	13	18	6	6
SLUDGE	[\$1000/YR]	ō	Ō	0	4	4	5	7	7
SEWERS	181000/YR)	Ó	O	0	1	1	1	1	i
TOTAL	(\$1000/YR)		0		19	19	25	15	15
PRESENT VALUE	AT BEGIN-								
NING OF PERIO		0	0	0	81	160	143	106	0
PRESENT WORTH	i (\$1000)	0	0	0	33	47	21		0

110.938 NET 0.+M. =

#### TABLE III : TOTAL PRESENT WORTH

CAPITAL O.+M. LAND	(\$1000) (\$1000) (\$1000)	241 110 42
TOTAL	(\$1000)	394

#### TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
BAS IN				21	21	21	21	21
PIPES	_	_	_	21	21	21	21	21
TOTAL O.+H.	0	0	0	19	19	25	15	15
TOTAL ANNUAL		0	0	63	63	69	58	58

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BUNDED INDEBTEONESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

PLAN C . CU-17

	1972	1975	1980	1985	1990	2000	2010	2020
STORMWATER VOLUME (MG) I YR STORM RUNOFF AMMUAL RUNOFF	0	1 30	3 60	74	5 8 <del>9</del>	7 102	9 138	10 149
SLUDGE QUANTITIES (DT/YR) SEDIMENT.BASIN		43	87	108	129	146	201	217
TREATHENT PLANT	ō	0	36	45	54	0	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT ON LAND

SLUGGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

YABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	5050	RES IDUAL
BASIN PIPES	107 1269				260 3060					76 910
RESI	DUAL 38								TOTAL	996
NET CAP	JTAL 1338									

#### TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT SLUDGE SEWERS	(\$1000/YR) (\$1000/YR) (\$1000/YR)	0 0 0	0 0	0 0 0	10 3 15	10 3 15	11 3 15	4 5 15	4 5 15
TOTAL	(\$1000/YR)	0		0	29	29	30	24	25
PRESENT VALUE A		<b>0</b>	0	0_	119	211 .	. 196	177	0
PRESENT WORTH	(\$1000)	0	0	0	49	62	29	13	0

NET O.+M. = 155.311

#### TABLE III : TOTAL PRESENT WORTH

CAPITAL	(\$1000)	1338
O.+M.	(\$1000)	155
LAND	(\$1000)	31
T OT AL	(\$1000)	1525

#### TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL		<del></del>						
BASIN				18	18	18	10	16
PIPES				221	221	251	221	221
TOTAL O.+M.	0	0	0	29	29	30	24	25
TOTAL ANNUAL	0	0	0	269	269	271	265	266

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS MOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

STORMHATER TREATMENT PLANT

CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN C . CU-ZI

_	***************************************								
l		1972	1975	1980	1985	1990	2000	2010	2020
ł									
	STORMWATER VOLUME (MG)								
	1 YR STORM RUNOFF	0	0	0	3	6	7	9	10
•	ANNUAL RUNOFF	0	0	0	45	91	108	135	163
•	SLUDGE QUANTITIES (DT/YR)								
	SEDIMENT_BASIN	0	0	G	0	132	157	197	237
	TREATHENT PLANT	0	0	0	0	55	0	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

: EARTH STORAGE BASIN

# TABLE 1 : PRESENT MORTH - CAPITAL COSTS - (\$1000)

		RESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
BAS IN PIPES	e e la mortina	79 118		. =	- · ·		270 400	·			107 159
	RESIDUAL	10								TOTAL	267
NE	T CAPITAL -	187									

#### TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	0	0	0	0	10	12	•	5
SLUDGE	(\$1000/YR)	0	0	0	0	3	3	4	5
WERS	[ \$1COO/YR]	0	Ö	0	0	1	1	1	1
TOTAL	(\$1000/YR)	0	0		0	16	18	11	13
PRESENT Y	VALUE AT BEGIN-								
NING OF	PERIOD (\$1000)	0	0	0	0	122	105	86	0
PRESENT	NORTH (\$1000)	0	0	0	0	36	15	6	0

NET 0.+M. = 58,6283

#### TABLE III : TOTAL PRESENT WURTH

CAPETAL	100014)	167
0.+M.	(\$1000)	58
LAND	1510001	33
TOTAL	(\$1000)	279

#### TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1960	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
BASIN					19	19	19	19
PIPES					28	28	28	26
TOTAL O.+M.	0	0	0	0	16	16	11	13
TOTAL ANNUAL	0	0		0	64	67	59	61

NOTE 1: ANNUAL COSTS DU NOT ENCLUDE PRESENT OUTSTANDING BONDED INDEBILONESS NOTE 2: AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

#### STORMMATER TREATMENT PLANT

#### CORPS OF ENGINEERS - SURVEY SCOPE STUDY

PLAN C . CU-22

	1972	1975	1980	1985	1990	2000	2010	2020
STORNWATER VOLUME (MG)								
1 YR STORM RUNOFF	Ø	ø	0	2	•	4	5	7
ANNUAL RUNOFF	0	0	0	30	61	72	91	109
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT.BASIN	0	0	0	0	89	105	132	159
TREATMENT PLANT	0	0	0	0	37.	0	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

#### TABLE I : PRESENT WURTH - CAPITAL COSTS - (\$1000)

	PRESENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
BASIN PIPES	65 1 18					220 400				87 1 <b>59</b>
RESIDUAL	<b>9</b> 1								TOTAL	247
NET CAPITAL	173									

#### TABLE II : PRESENT WORTH - 0.+M. COSTS

	1972	1975	1980	1985	1990	2000	2010	2020
								<del></del>
PLANT (\$1000/YR	0	0	0	0	7		3	3
SLUDGE (\$1000/YR)	0	0	0	0	2	2	3	3
SEWERS (\$1000/YR)		0	0	0	ĺ	ī	1	1
TOTAL (\$1000/YR	0	0	0	0	11	13		9
PRESENT VALUE AT BEGIN-								
NING OF PERIOD (\$1000)	0	0	0	0	86	75	62	0
PRESENT WORTH (\$1000)	0	٥	0	0	25	11	4	0

41.6483 NET O.+M. =

#### TABLE III : TOTAL PRESENT WORTH

CAPITAL	(\$1000)	173
D.+M.	(\$1000)	41
LAND	(\$1000)	22
	-	
TOT AL	(\$1000)	. 237

TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								<del></del>
BASIN					15	15	15	15
PIPES					28	28	28	28
TOTAL U.+H.	0	0	0	0	11	13		9
TOTAL ANNUAL	0	0	0	0	56	57	53	54

NOTE 1 : ANNUAL COSTS OU NOT INCLUDE PRESENT UUTSTANDING BUNDED INDEBTEONESS NOTE 2 : AM INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

PLAN C . CU-23

	1972	1975	1980	1985	1990	2000	2010	2020
STORMHATER VOLUME ING!								
. 1. YR, STURN RUNUFF	O	1	2	<b> 2</b>		. 5	7	7
ANNUAL RUNGEF	0	27	55	55	55	61	108	119
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT BASIN	Ú	40	80	80	80	118	157	173
TREATMENT PLANT	0	0	33	33	33	0	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT ON LAND

SLUDGE MANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRE SENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
BAS IN PIPES	95 962				230 2320					69 696
RESID	UAL 29								TOTAL	765
NET CAPI	TAL 1028									

#### TABLE II : PRESENT WORTH - O.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
					<del></del>	<del></del>			
PLANT	(\$100U/YR)	0	0	C	6	6	9	3	3
SLUDGE	(\$1000/YK)	0	0	0	2	2	2	3	4
SEHERS	(\$1000/YR)	0	o	0	11	11	11	11	11
TOTAL	(\$1000/YR)	0	<u>-</u>	<u>0</u>	20	20	24	19	19
PRESENT VA	LUE AT BEGIN-								
NING OF PE	F100 (\$1000)	0	0	0	82	155	151	136	0
PRESENT WO	RTH [\$1000]	0	0	0	34	45	22	10	0
NET 0.+#.	= 113.582	2							

#### TABLE III : TOTAL PRESENT WORTH

25
25
113
1028

#### TABLE IV : ANNUAL CGSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
BASIN				16	16	16	16	16
PIPES				167	167	167	167	167
TOTAL O.+M.	0	0	0	20	50	24	19	19
TUTAL ANNUAL			0	204	204	208	203	204

NOTE 1 : ANNUAL COSTS GO NOT INCLUDE PRESENT GUTSTANDING BUNDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT MAS USED FOR ALL CALCULATIONS

#### PLAN C . CU-24

	1972	1975	1980	1985	1990	2000	2010	2020
	*							
STORNWATER VOLUME (MG)								
1 YR STORM RUNOFF	0	5	10	12	15	20	25	25
ANNUAL RUNOFF	Ö	74	149	186	223	297	372	372
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT.BASIN	0	108	217	271	325	433	543	543
TREATMENT PLANT	0	0	90	113	136	0	0	0

TREATMENT SCHEME : STORAGE PLUS TREATMENT ON LAND

202.674

SLUGGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

NET 0.+#. =

#### TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRESENT MORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
	<del></del>									
BASIN PIPES	174 124				420 300		,			126 90
	ESIDUAL 8								TOTAL	216
MET 4	200									

#### TABLE 11 : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	5010	2020
PLANT	(\$1000/YR)	0	0	0	26	26	34	12	12
SLUDGE	(\$1000/YR)	0	0	0		•	10	13	13
SEWERS	(\$1000/YR)	0	0	0	1	1	1	1	1
TOTAL	(\$1000/YR)	0	0	0	36	36	47.	27	27
PRESENT VALUE	AT BEGIN-							•	
NING OF PERIOD	(\$1000)	0	0	. 0	149	293	261	192	0
PRESENT WORTH	(\$1000)	0	0	0	61	86	39	14	•

#### TABLE III : TOTAL PRESENT WORTH

CAPITAL D.+H. LAND	(\$1000) (\$1000) (\$1000)	290 202 79
TOTAL	(\$1000)	572

#### TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL						<del></del>		
BASIN				30	30	30	30	30
PIPES				21	21	21	21	21
TOTAL O.+M.	0	0	0	36	36	47	27	27
TOTAL ANNUAL		ō	0	88	88	99	79	79

NOTE 1 : ANNUAL CUSTS OO NOT INCLUDE PRESENT OUTSTANDING BONDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

PLAN C , CU-33

	1972	1975	1980	1985	1990	2000	2010	2020
							<del></del>	
STORMWATER VOLUME (MG)								
1 VR STORM RUNOFF	0	1	2	3	5	7	8	8
ANNUAL RUNDFF	0	27	54	67	9.7	108	134	134
SCUDGE QUANTITIES (DT/YR)								
SED I MENT BASIN	0	39	78	98	118	157	195	195
TREATMENT PLANT	0	0	32	41	49	0	0	0

TREATMENT SCHERE : STORAGE PLUS TREATMENT ON LAND

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN = EARTH

TABLE I : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRE SENT WORTH	1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
BASIN PIPES	1 03 1124				250 2710					75 813
RESID	UAL 34								TOTAL	838
NET CAPI	TAL 1193									

#### TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PL ANT	(\$1000/YR)	0	D	0	9	9	12	4	4
SLUDGE	(\$1000/YR)	0	0	0	3	3	3	4	4
SEWERS	(\$1000/YR)	0	o _.	0	13	13	13	13	13
TOTAL	(\$1000/YR)	0	0	0	26	26	30	22	22
PRESENT VAL	JE AT BEGIN-								
NING OF PER	100 (\$1000)	0	0	0	107	197	186	· 160	0
PRESENT WORT	TH (\$1000)	0	0	0	44	58	27	12	0

143.422 NET G.+M. *

#### TABLE III : TOTAL PRESENT WORTH

119	(\$1000) (\$1000) (\$1000)	CAPITAL D.+M. LAND
	(31000)	
1 247	(410001	TOTAL

#### TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
BASIN				18	18	18	18	18
PIPES				196	196	196	196	196
TOTAL O.+M.	0	0	0	26	26	30	22	22
TOTAL ANNUAL		ō	0	240	240	244	237	237

NOTE 1 : ANNUAL COSTS DO NOT INCLUDE PRESENT OUTSTANDING BUNDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE UF 7 PERCENT WAS USED FOR ALL CALCULATIONS

#### STORMWATER TREATHENT PLANT

#### CORPS OF ENGINEERS - SURVEY SCOPE STUDY

#### PLAN C . CU-514+58

	1972	1975	1980	1985	1990	2000	2010	2020
STORMMATER VOLUME (MG)								
1 YR STURK RUNDFF	0	2	5	23	42	48	54	59
ANNUAL RUNGFF	ŏ	32	64	335	606	693	797	867
SLUDGE QUANTITIES (DT/YR)								
SEDIMENT.BASIN	0	46	93	489	884	1011	1143	1245
TREATMENT PLANT	o	0	0	0	0	0	0	0

TREATMENT SCHENE : STURAGE PLUS TREATMENT AT MUNICIPAL PLANT

SLUDGE HANDLING : PERIODIC REMOVAL TO LANDFILL OR RECYCLE

STORAGE BASIN : EARTH

#### TABLE 1 : PRESENT WORTH - CAPITAL COSTS - (\$1000)

	PRES MGR		1972	1975	1980	1985	1990	2000	2010	2020	RESIDUAL
BASIN		203			350						69
BASIN		136					460				183
PIPES		996			3430						665
PIPES		88					300				119
(	RESIDUAL	41								TOTAL	1059
NET	CAPITAL 2	383									

#### TABLE II : PRESENT WORTH - 0.+M. COSTS

		1972	1975	1980	1985	1990	2000	2010	2020
PLANT	(\$1000/YR)	0	0	2	11	19	22	26	20
SLUDGE	(\$1000/YR)	0	٥	2	12	22	25	29	31
SEWERS	(\$1000/YR)	0	0	17	17	18	18	10	10
TOTAL	(\$1000/YR)			21	40	60		74	70
PRESENT VALUE	E AT BEGIN-							•	
NING OF PERI	00 (\$1000)	. 0		127	207	448	494	337	
PRESENT WORTH	H (\$1000)	0	0	74	86	132	74	41	0

NET 0.+M. = 408.044

#### TABLE III : TOTAL PRESENT WORTH

CAPETAL	. (\$L0001	2363
Q.+M.	(\$1000)	408
LAND	(\$1000)	91
	-	
TOTAL	(\$1000)	2888

#### TABLE IV : ANNUAL COSTS (\$1000/YR)

	1972	1975	1980	1985	1990	2000	2010	2020
ANNUAL CAPITAL								
BAS IN			25	25	25	25	25	25
BASIN					33	33	33	33
PIPES			248	248	248	248	248	248
. PIPES					21	21	21	21
TOTAL O.+M.	0	0	21	40	60	64	74	78
TOTAL ANNUAL	0	0	295	314	389	395	402	407

NOTE 1 : ANNUAL COSTS OF NOT INCLUDE PRESENT DUTSTANDING BUNDED INDEBTEDNESS NOTE 2 : AN INTEREST RATE OF 7 PERCENT WAS USED FOR ALL CALCULATIONS

# U.S. ARMY CORPS OF ENGINEERS BUFFALO DISTRICT

SURVEY SCOPE STUDY
FOR
WASTEWATER MANAGEMENT PROGRAM

APPENDIX D

SUPPLEMENTAL APPENDIX

PLAN A TO LEVEL 1

HAVENS AND EMERSON, LTD.
CONSULTING ENVIRONMENTAL ENGINEERS
Cleveland, Ohio

June, 1973

# SUPPLEMENTAL APPENDIX PLAN A TO LEVEL 1

This supplemental appendix presents cost data for Plan A only to

Level 1 for comparison to the Plan A to Level 2 cost. These two

costs when compared will indicate the cost of achieving a higher water

quality (Level 2). This illustrates the economic impact of the new

Federal "no discharge" legislation. It is important to understand that

the "no discharge" or Level 2 criteria is that which has been

interpreted by the Corps of Engineers.

This plan has been done to the same degree of effort as was performed to arrive at the cost of Plans A, B & C in the Technical Appendix Phase III.

The development of this plan is the same as Plan A to Level 2
until 1983-85. At this time, all treatment facilities would have attained
Level 1 treatment and would be expanded as necessary at Level 1 degree
of treatment instead of being upgraded to meet Level 2 standards.

Both plans, Plan A to Level 1 and Plan A to Level 2, have the same
facilities locations. The locations and degree of regionalization were
optimized for the Level 2 cost and may not be, in fact, optimized for
the Level 1 cost which has lower unit cost both in capital and operations
and maintenance.

Table SA-1 is the same as Table IV-1* and shows the municipal-industrial wastewater treated by decade. Table SA-2 gives the sludge volumes for disposal. This is comparable to Table IV-4; however, sludge volumes are less for Plan A to Level 1 because of the reduction in the removal of suspended solids and decrease in chemical additions.

*All tables referred to are in Appendix 1, Plan Formulation Technical - Part II

Each municipal plant in Plan A to Level 1 is described in

Table SA-3. Again, this table is comparable to Table IV-7. Basically,

the only change is in not upgrading the plants to Level 2. Table SA-4

shows the sludge disposal schemes and is the same as Table IV-10.

Table SA-5 gives the storm runoff volumes. Again, the locations and size of the stormwater facilities do not change and would be the same as described in Table IV-14, except the term advanced stormwater treatment plant is not applicable since only Level 1 treatment is provided.

The costs were computed using the basic data as described above, unit costs as presented in Technical Appendix Phase II, the same techniques used in Technical Appendix Phase III to assure the comparability. The total present worth of Plan A to Level 1 is shown in Table SA-6 compared to the Plans A, B & C to Level 2.

#### TABLE SA-6

# TOTAL PRESENT WORTH (In \$1,000 - Factor 7%)

Plan A - Level 1	2,661,759
Plan A - Level 2	3,470,500*
Plan B - Level 2	3,360,600*
Plan C - Level 2	3,227,500*

*from Table V-1

The total present worth for each municipal plant is shown in Table SA-7 and is comparable to Table V-4. The summation of the individual plant worths with the addition of the contingencies, industrial pretreatment, and storm runoff is shown in Table SA-8 for Plan A to Level 1 as compared to Plan A to Level 2. (See Table V-2, pg. V 12, Plan Formulation Part II)

Total annual costs of Plan A to Level 1 and Plan A to Level 2

are compared in Table SA-9*. Capital expenditures, annual capital and
operation and maintenance costs for each plant for the 1972-2020

time frame are shown on Tables SA-10, 11 and 12. These are comparable
to Table V-10. Tables SA-13 and SA-14 compares chemical usage for
municipal flows and stormwater flows, respectively, of Plan A to Level 1
and Level 2. Table SA-15 compares electrical requirements of Plan A to
Level 1 and Level 2. Table SA-16 compares manpower needs.

^{*} See Table V-6, pg. V 17, Plan Formulation Part II.

TABLE SA-1
PLAN A - LEVEL 1

# MUNICIPAL/INDUSTRIAL WASTEWATER (MGD)

PLANT	1972	1980	1990	2000	2010	2020
Lake Erie						
Cleveland Easterly	125.00	140.00	148.00	158.00	164.00	172.00
Cleveland Westerly	35.91	37.14	39.69	41.22	42.75	45.18
Euclid	14.53	19.11	24.05	28.60	33.63	37.34
Rocky River	7.14	11.11	14.39	16.77	19.72	22.05
Total	182.58	207.36	226.13	244.59	260.10	276.57
Rocky River Basin						
Lakewood	17.11	18.00	19.00	19.00	20.00	21.00
Liverpool	3.08	6.69	9.40	12.24	15.85	20.09
Total	20.19	24.69	28.40	31.24	35.85	41.09
Cuyahoga River Basin						
Akron	71.00	84.09	97.83	111.33	129.03	149.67
Auburn Township	0.17	0.28	0.39	0.53	0.69	0.84
Burton	0.18	0.32	0.45	0.56	0.72	0.91
Butternut Creek	0.24	0.37	0.50	0.66	0.89	1.17
Chardon*	0.03	0.07	0.10	0.13	0.17	0.20
Cleveland Southerly	101.65	129.24	182.52	206.15	225.21	234.20
East Claridon	0.08	0.14	0.21	0.31	0.39	0.48
Kent	5.83	10.68	15.93	20.15	24.65	28.41
Mantua	0.29	0.37	0.47	0.58	0.74	0.86
<b>Middle</b> field	0.77	1.06	1.42	1.72	2.23	2.70
Rando1ph	0.20	0.30	0.40	0.50	0.65	0.75
Ravenna	2.05	3.35	5.41	8.53	10.60	12.34
Troy Township	0.09	0.15	0.21	0.29	0.38	0.47
Total	182.58	230.42	305.84	351.44	396.35	433.00
Chagrin River Basin						
Aurora Central	0.22	0.60	1.32	1.73	2.31	2.98
Chagrin E. Branch	0.49	0.72	1.00	1.25	1.58	1.95
Chagrin Falls	0.81	1.35	2.05	2.53	3.08	3.58
Fairmount Road	0.07	0.54	1.55	2.14	2.80	3.40
Fowler's Mill	0.42	0.64	0.88	1.14	1.54	1.98
McFarland Creek	0.18	0.63	1.90	2.66	3.52	4.29
Newbury Township	0.33	0.50	0.69	0.90	1.13	1.54
Willoughby-Eastlake	5.55	7.92	11.61	15.07	18.96	22.27
Total	8.07	12.90	21.00	27.42	34.92	41.99
Interim Plants	20.10	21.21				
Grand Total	413.52	496.58	581.37	654.69	727.22	792.65

[•] Chardon is treated out of the Study Area and is not costed in this plan.

TABLE SA-2
PLAN A - LEVEL 1

SLUDGE VOLUMES FOR DISPOSAL (Dry Tons Per Day - DT/Day)

PLANT	1972	1980	1990	2000	2010	2020
Lake Erie						
Cleveland Easterly	84.80	94.98	100.40	107.19	111.26	116.68
Cleveland Westerly	30.88	31.94	34.13	35.45	36.76	38.85
Euclid	9.86	12.96	16.32	19.40	22.81	25.33
Rocky River	3.20	4.98	6.45	7.51	8.83	9.88
Total	128.74	144.86	157.30	169.55	179.66	190.74
Rocky River Basin						
Lakewood	11.61	12.21	12.89	12.89	13.57	14.25
Liverpool	2.09	4.54	6.38	8.30	10.75	13.64
Total	13.70	16.75	19.27	21.19	24.32	27.89
Cuyahoga River Basin						
Akron	48.17	57.05	66.37	75.53	87.53	101.54
Auburn Township	0.12	0.19	0.26	0.36	0.47	0.57
Burton	0.12	0.22	0.30	0.38	0.49	0.62
Butternut Creek	0.16	0.25	0.34	0.45	0.60	0.79
Cleveland Southerly	68.69	87.68	123.82	139.85	152.78	158.88
East Claridon	0.05	0.09	0.14	0.21	0.26	0.33
Mantua	0.19	0.25	0.32	0.39	0.50	0.58
Middlefield	0.52	0.72	0.96	1.17	1.51	1.83
New Kent	5.01	9.18	13.70	17.33	21.20	24.43
Randolph	0.14	0.20	0.27	0.34	0.44	0.51
Ravenna	1.39	2.27	3.67	5. <b>7</b> 9	7.19	8.37
Troy Township	0.06	0.10	0.14	0.20	0.26	0.32
Total	124.89	158.20	210.29	242.00	273.23	298.77
Chagrin River Basin						
Aurora Central	0.15	0.41	0.90	1.17	1.57	2.02
Chagrin E. Branch	0.33	0.49	0.68	0.85	1.07	1.32
Chagrin Falls	0.55	0.91	1.39	1.71	2.09	2.43
Fairmount Road	0.05	0.37	1.05	1.45	1.90	2.31
Fowler's Mill	0.28	0.43	0.93	1.21	1.63	2.10
McFarland Creek	0.12	0.43	1.29	1.80	2.39	2.91
Newbury Township	0.22	0.34	0.47	0.61	0.77	1.04
Willoughby-Eastlake	2.29	5.37	7.87	10.22	12.86	15.11
Total	3.99	8.75	14.58	19.02	24.28	29.24
Grand Total	271.33	328.56	401.44	451.76	501.49	546.64

TABLE SA-3

PLAN A - LEVEL 1

MUNICIPAL/INDUSTRIAL TREATHGHT PACILITIES

	1972 1977 1	1980 1985 2020
Cleveland Essterly Euclid	Existing biological treatment plants are upgraded to meet level 1 standards.	Treatment Plants are expanded as necessary.
Cleveland Westerly	Existing physical-chemical treatment plant is upgraded to meet Level 1 and 2 standards.	Treatment plant is expanded as necessary.
Rocky River	Physical-chemical component is added to the existing biological treatment plant to neet Level 1 standards.	Treatment plant is empanded as necessary.
Rocky River Basin		Page 1 and 1
Lakewood	Existing biological trestment plant is upgraded to meet Level   standards.	Tregiment plant 16 expanded as necessary.
Liverpool	New advanced biological treatment plant is constructed to meet level 1 standards,	Treatment plant to expense as recession
Cuyshoga River Basin Akron Cleveland Southerly	Existing biological treatment plants are upgraded to meet level 1 standards.	Treatment plants are expanded as necessary.
New Kent	New physical-chemical treatment plant is constructed to meet Level I standards.	Treatment plant is expanded as necessary.
Auburn Township Burcon Butternut Greek East Claridon Manital Middieffeld Randolph Troy Commanip	New advanced biological treatment plants are constructed to meet Lavel 1 standards and to satisfy secondary treatment requirement by 1977.	Treatment plants are expanded as necessary.
Chardon	A pumping plant and force main are constructed t	A pumping plant and force main are constructed to transmit the severe to a trestment plant outside the Study Area.
Aurora Central  Aurora Central  Chagrin Falls  Fairmount Road  Fowler's Mill  Mechary Township	Mew advanced biological treatment plants are constructed to meet Level 1 standards.	Treatment plants are expanded as nacessary.
Willoughby-Eastlake	Existing biological treatment plant is upgraded to meet Level 1 standards.	to Treatment plant is expanded as necessary.

1-48 21672

FLAN A - LEVEL 1 SLUDGE DISPOSAL

1977

1972

**2** 

2020

Cleveland Easterly	Sludge will be piped to Cleveland Southerly for Incineration.	for Incineration,	Sludge will be sent wis new pipeline to strip-mined land.
Cleveland Westerly	Sludge will be Incinerated,		
Eucl 1d	Sludge will be vacuum-filtered and trucked to agricultural land.	to agricultural land.	Sludge will be sent wis new pipeline to strip-mined land.
Rocky River (Primary)	Sludge will be vacuum-filtered and trucked to agricultural land.	to agriculturel land.	Sludge from Rocky River (primary) and Lakewood will be sent via pipeline to agricultural land.
Rocky River Basin			
Lakewood	Sludge will be flash dried and will be trucked to agricultural land.	cked to agricultural land.	Sludge from Rocky River (primary) and Lakewood will be sent via pipeline to agricultural land.
Liverpool	Sludge handling from existing facilities will be phased out by 1977.	Sludge will be sent wim pipeline to agricultural land.	line to agricultural land.
Cuyahoga River Basin*			
Akron	Sludge will be vacuum-filtered and trucked to agricultural land	to agricultural land,	
Cleveland Southerly	Sludge will be Incinerated.		Sludge will be sent via new pipeline to strip-mined land.
Lavenna	Sludge will be sent wis the existing pipeline to strip-mined land,	ine to strip-wined land,	
New Kent	Sludge will be Incinerated,		
Auburn Township Burton Butternut Creek Mantus Middleffeld Randolph	Sludge handling from existing facilities will be phased out by 1977.	Liquid eludge will be trucke	Liquid eludge will be trucked to adjacent agricultural land.
Zest Claridon Iroz Tombelip	Sludge handling from extering facilities will be shased out by 1977.	Sludge will be dried in sand	Sludge will be dried in send drying beds and will be trucked to adjacent agricultural land.
Chaggin River Basin			
Aurora Central Chagrin E. Branch Chagrin Falls Fairmount Road Fowler's Hill McParland Creek Heebury Toerahie	Sludge handling from existing facilities will be phased out by 1977.	. Liquid sludge will be truck	Liquid sludge will be trucked to adjacent agricultural land.
Willoughby-Eastlaks	Sludge will be sent wis the existing pipeline to strip-mined land.	ine to strip-wined land.	Studge will be sent wis pipeline to agricultural land.

^{*} No sludge disposal from Chardon.

# TABLE SA-5

# PLAN A - LEVEL 1

# STORM RUNOFF AVERAGE ANNUAL VOLUMES TO BE TREATED (Millions of Gallons per Year - MG/Year)

Type of Treatment Facility	1980	1990	2000	2010	2020
Advanced Stormwater Treatment Plant	8,422	27,302	34,700	38,428	41,260
Municipal Sewage Treatment Plant	6,976	22,848	25,871	28,448	29,997
TOTAL	15,398	50,150	60,571	66,876	71,257

TABLE SA-7

TOTAL PRESENT WORTH
(In \$1,000 - Factor 7%)

Plant	Plan A - Level 1	Plan A - Level 2
Randolph	2260	2609
New Kent	27231	28328
Burton	2559	2956
Mantua	2309	2767
Butternut Creek	3201	3730
Chardon	258	241
East Claridon	973	1208
Troy Township	897	1127
Auburn Township	2207	2623
Ravenna	13174	15864
Aurora Central	5696	6771
Fairmount Road	5886	7092
Fowlers Mill	4722	5545
Newbury Township	2978	3648
Chagrin Falls	7682	9020
Chagrin East Branch	5280	6154
Liverpool	33737	38221
Middlefield	5661	6737
McFarland Creek	9372	10799
Akron	132018	161575
Euclid	35826	43744
Lakewood	32988	38688
Rocky River	21399	22687
Willoughby-Eastlake	19502	24221
Easterly	176860	221569
Southerly	<b>2738</b> 51	323350
Westerly	81109	84303
Interim Plants	36818	36818
Strip-Mine Pipeline	10232	10232
TOTAL	956686	1122627

TABLE SA-8

TOTAL PRESENT WORTH (In \$1,000 - Factor 7%)

		TAN A - LEVEL	<b>9</b>		DIAN A - FEVEL 2	r
Treatment Category	Base Total	Base Total Contingency Grand Total	Grand Total	Base Total	Base Total Contingency	Grand Total
Industrial Pretreatment	ent 517,300	122,400	639,700	820,700	193,100	1,013,800
Municipal/Industrial	926,686	234,064	1,190,750	1,122,700	272,300	1,395,000
Storm Runoff	645,732	185,577	831,309	826,900	234,800	1,061,700
TOTAL	2,119,718	542,041	2,661,759	2,770,300	766,200	3,470,500

TABLE SA-9

ANNUAL CAPITAL AND OPERATION AND MAINTENANCE COSTS

(In \$1,000 - Factor 7%)

	1972	1980	1990	2000	2010	2020
PLAN A - LEVEL 1						
Municipal/Industrial						
Capital O & M	226 <b>30,58</b> 1	25,432 39,930	44,304 43,254	66,795 45,918	66,329 51,180	65,616 56,136
Storm Runoff						
Capital O & M	0	51,991 7,111	63,817 9,412	69,326 11,217	69,303 12,269	69,319 12,943
Contingencies	6,183	32,634	42,968	52,261	53,377	54,294
TOTAL	36,990	157,098	203,755	235,517	242,458	258,308
PLAN A - LEVEL 2						
Municipal/Industrial						
Capital O & M	300 31,000	25,600 40,300	60,200 58,300	80,100 63,000	79,700 70,300	79,700 77,000
Storm Rumoff						
Capital O & M	500 0	53,200 7,100	91,100 18,200	100,500 22,000	100,400 24,200	100,400 25,700
Contingencies	6,400	33,100	60,700	71,200	72,900	74,500
TOTAL	38,200	159,300	288,500	336,800	347,500	357,300

TABLE SA-10

PLAN A - LEVEL 1

CAPITAL EXPENDITURES (In \$1,000)

PLANT	1972	1975	1980	1985	1990	2000	2010	2020	TOTAL	RESIDUAL
Randolph	60	1001	130	•	178	155	816	180	3,094	548
Hew Kent	520	12,040	•	٠	5,306	7,240	,	5,306	30,412	6,172
Burton	•	716	\$15	338	1,024	155	1,280	185	4,483	171
Mantua	•	920	150	•	845	155	920	200	3,190	611
Butternut Creek	12	1,445	623	•	1,206	180	1,065	200	4,731	836
Chardon	•		007	•	٠	•	20	•	720	88
East Clatidon	S	187	15	1	667	25	352	30	1,407	319
Iro" Jounship	•	367	13	•	917	25	352	30	1,270	344
Auburn Township	<b>8</b> 0	178	486	•	931	155	818	175	3,351	909
Ravenna	•	970.9	•	•	6,170	1,600	4,270	•	18,086	4,677
Aurora Central	9	2,104	1,310		3,460	325	2,279	275	9,783	2,223
Fairmount Rd.		3.046	410	•	3,144	345	2,506	260	9,711	2,066
Fowlers Mill	20	2,564	205	•	1,752	255	1,685	280	6,771	1,245
Newbury Township	15	1,044	•	•	1,964	•	1,044	•	4,067	1,206
Chagrin Falls	179	3,246	871	•	720	1,235	3,311	705	10,267	7,594
Chagrin E. Branch	20	2,202	762	٠	1,908	225	1,828	310	7,255	1,451
Liverpool	•	21,800	200	3,834	9.545	575	8,700	1,750	46,704	9,367
Middlefield	23	2,480	392	•	1,974	305	2,283	700	7,861	1,630
McFarland Creek	•	6,643	097	•	3,095	400	2,838	280	13,716	2,467
Akron	3,264	16,832	1,200	43,555	3,600	39,000	16,180	63,126	185,787	29,974
Euclid	1,110	7,930	•	9	10,510	13,900	9,530	,	43,040	12,067
Lakewood	750	8,605	•	9	3,160	11,400	6,630	750	31,355	9,374
Rocky River	400	1115	2,010	110	8,990	009'6	1,085	700	22,710	5,404
Willoughby-Eastlake	•	1,760	7,906	•	6,274	6,835	6,040	•	28,815	9,313
Essterly	•	19,500	1,458	•	15,800	99,853	29,500	•	111,991	66,403
Southerly	2,780	89,665	23,975	27,300	34,736	110,130	006'69	88,000	967 977	113,218
Westerly	•	38,650	•	•	19,247	38,650	ı	•	96,547	10,424
Interim Plants	33	14,002	0	0	0	•	0	0	14,035	0
Strip-Mine Pipeline	0	900	700	21,000	0	2,000	2,500	306	27,700	10,010
TOTAL	9,175	257,205	44,213	96,257	147.113	144.753	177,752	163,742	1,250,195	305,408

TABLE SA-11

# PLAN A - LEVEL 1

ANNUAL CAPITAL COSTS (In \$1,000/Yr. - Factor 7%)

Plant	<u>1972</u>	1975	1980	1985	1990	2000	2010	2020
Randolph	-	78	88	114	150	160	175	176
New Kent	-	1006	1006	1006	1463	1463	1463	1463
Burton	-	68	105	134	209	228	228	228
Mentua	-	71	82	82	147	158	174	174
Butternut Creek	0	110	155	156	251	264	287	287
Chardon	-	-	29	29	30	30	30	30
East Claridon	-	38	39	40	79	81	82	82
Troy Township	-	28	30	30	76	78	79	79
Auburn Township	-	61	96	96	168	179	195	195
Ravenna	-	463	463	462	938	1039	1039	1039
Aurora Central	2	164	163	258	519	544	577	577
Fairmount Road	-	229	259	261	500	526	559	558
Fowlers Mill	-	196	210	. 211	347	<b>365</b>	394	394
Newbury Township	1	82	82	83	231	232	232	231
Chagrin Falls	12	261	325	326	518	609	664	664
Chagrin E. Branch	1	197	252	253	385	402	428	327
Liverpool	-	1613	1613	1920	2661	2703	2751	2751
Middlefield	0	186	216	217	369	<b>39</b> 2	420	419
McFarland Creek	-	491	525	526	762	791	827	827
Akron	8	1492	1624	4976	5236	8246	8246	8246
Euclid	-	686	708	714	1524	2449	2448	2395
Lakewood	-	726	735	742	982	1707	1714	1715
Rocky River	-	29	202	210	883	1542	1551	1551
Willoughby-Eastlake	-	133	744	745	1210	1626	1679	1679
Easterly	•	2525	2517	2526	3743	11432	11432	11432
Southerly	200	7007	8734	10825	13414	21894	21895	21336
Westerly	-	3316	3256	3316	4802	4802	4802	4802
Interim Plants	2	1080	1080	1080	1080	1080	2	2
Strip-Mine Pipeline		65	94	94	1627	1773	1956	1956
TOTAL	226	22401	25432	31432	44304	66795	66329	65616

TABLE SA-12
PLAN A - LEVEL 1

# ANNUAL OPERATION AND MAINTENANCE COSTS (In \$1,000/Yr.)

Plant	1972	1975	1980	1985	1990	2000	2010	<u>2020</u>
Randolph	32	57	66	80	93	117	141	157
New Kent	487	713	916	1065	1186	1494	1823	2097
Burton	28	56	71	87	103	126	153	184
Mantua	45	67	77	91	104	126	150	169
Butternut Creek	37	62	82	95	110	139	172	218
Chardon	-	-	2	2	2	2	2	2
East Claridon	13	19	24	31	38	55	68	84
Troy Township	14	20	24	31	36	50	65	75
Auburn Township	26	50	61	72	91	119	144	168
Ravenna	210	284	351	418	467	732	908	1056
Aurora Central	32	77	119	170	216	266	348	448
Fairmount Road	9	64	103	176	240	311	400	489
Fowlers Mill	66	108	132	147	158	192	252	326
Newbury Township	52	82	102	117	134	163	198	271
Chagrin Falls	107	172	225	257	303	359	435	512
Chagrin E. Branch	76	120	150	167	179	211	260	322
Liverpool	298	576	782	872	922	1176	1508	1882
Middlefield	110	160	194	214	229	263	336	412
McFarland Creek	23	90	129	218	291	375	488	596
Akron	4688	6158	6681	7098	6105	6944	8044	9327
Euclid	1146	1535	1740	1921	1592	1893	2226	2471
Lakewood	1388	1725	1771	1769	1448	1448	1524	1598
Rocky River	638	920	1120	1228	1342	1540	1782	1975
Willoughby-Eastlake	264	441	657	807	1070	1382	1630	1910
Easterly	8979	9517	10063	9654	9206	9828	10201	10698
Southerly	7301	8391	9502	10661	11649	13118	14302	14861
Westerly	2621	2666	2771	2804	2897	3009	3120	3298
Interim Plants	1891	2506	1975	2306	2633	0	0	0
Strip-Mine Pipeline	0	35	40	45	410	480	500	526
TOTAL	30581	36671	39930	42603	43254	45918	51180	56136

TABLE SA-13

CHEMICAL REQUIREMENTS - MUNICIPAL FLOWS
(TONS/DAY)

	Chlorine	Alum	Polymer	Methanol	Lime
Plan A, Level 2					
1980	35.7	23.1	1.0	-	133.0
1990	38.6	31.5	1.2	108.4	175.6
2000	43.1	35.2	1.4	121.0	196.0
2010	48.0	39.0	1.5	134.4	217.8
2020	52.6	42.5	1.7	146.4	238.0
Plan A, Level 1					
1980	35.7	23.1	1.0	-	133.0
1990	43.0	28.6	1.2	-	162.8
2000	48.0	32.0	1.4	-	181.6
2010	53.4	35.5	1.5	-	202.0
2020	58.4	38.7	1.7	•	220.5

TABLE SA-14

CHEMICAL REQUIREMENTS - STORMWATER FLOWS
(TONS/DAY)

	Chlorine	Alum	Polymer	<u>Methanol</u>	Lime	Granular Activated Carbon	Powdered Activated Carbon
Plan A, Level 2							
1980	2.6	2.7	.1	-	12.7	-	-
1990	8.9	5.2	.4	12.6	27.7	1.0	32.7
2000	9.6	5.9	.5	14.4	31.1	1.2	41.9
2010	10.1	6.5	.5	16.0	33.5	1.3	45.0
2020	10.2	6.7	.6	17.0	34.6	1.5	49.9
Plan A, Level 1							
1980	2.6	2.7	.09	-	12.7		-
1990	3.6	3.3	.12	-	16.3	<u>-</u>	-
2000	4.0	3.8	.14	-	18.4	-	-
2010	4.3	4.2	.15	-	20.3	-	-
2020	4.5	4.5	.16	-	21.4	-	-

TABLE SA-15

POWER REQUIREMENTS, MEGA WATT HOURS PER DAY

	1980	1990	2000	2010	2020
Plan A (Level 2)	1362	1788	2028	2229	2414
Plan A (Level 1)	1362	1548	1764	1944	2105

# TABLE SA-16

# MANPOWER REQUIREMENTS

# MUNICIPAL PLANTS

	Engineers	Chemists	Supervisors	Operators	Others	Total
Plan A (Level 2)	40	20	70	210	670	1010
Plan A (Level 1)	34	17	58	175	560	844

## STORMWATER PLANTS

	Engineers	Chemists	Supervisors	Operators	<u>Others</u>	Total
Plan A (Level 2)	15	30	55	200	1200	1500
Plan A (Level 1)	13	25	46	166	1000	1250

