Regular Expressions

Recap from Last Time

Regular Languages

- A language L is a **regular language** if there is a DFA D such that $\mathcal{L}(D) = L$.
- *Theorem:* The following are equivalent:
 - *L* is a regular language.
 - There is a DFA for *L*.
 - There is an NFA for *L*.

Closure Properties

- Theorem: If L_1 and L_2 are regular languages over an alphabet Σ , then so are the following languages:
 - \overline{L}_1
 - $L_1 \cup L_2$
 - $L_1 \cap L_2$
 - L_1L_2
 - *L*₁*
- These properties are called closure properties of the regular languages.

New Stuff!

Another View of Regular Languages

Rethinking Regular Languages

- We currently have several tools for showing a language *L* is regular:
 - Construct a DFA for L.
 - Construct an NFA for L.
 - Combine several simpler regular languages together via closure properties to form L.
- We have not spoken much of this last idea.

Constructing Regular Languages

- *Idea*: Build up all regular languages as follows:
 - Start with a small set of simple languages we already know to be regular.
 - Using closure properties, combine these simple languages together to form more elaborate languages.
- A bottom-up approach to the regular languages.

Constructing Regular Languages

• *Idea*: Build up all regular languages as follows:

• Start with a small set of simple languages we

already

 Using c simple elabora

• A bottom language

Atomic Regular Expressions

- The regular expressions begin with three simple building blocks.
- The symbol \emptyset is a regular expression that represents the empty language \emptyset .
- For any $a \in \Sigma$, the symbol a is a regular expression for the language $\{a\}$.
- The symbol ε is a regular expression that represents the language $\{\varepsilon\}$.
 - Remember: $\{\epsilon\} \neq \emptyset$!
 - Remember: $\{\epsilon\} \neq \epsilon!$

Compound Regular Expressions

- If R_1 and R_2 are regular expressions, R_1R_2 is a regular expression for the *concatenation* of the languages of R_1 and R_2 .
- If R_1 and R_2 are regular expressions, $R_1 \cup R_2$ is a regular expression for the *union* of the languages of R_1 and R_2 .
- If R is a regular expression, R^* is a regular expression for the *Kleene closure* of the language of R.
- If R is a regular expression, (R) is a regular expression with the same meaning as R.

Operator Precedence

 Here's the operator precedence for regular expressions, from highest to lowest:

(R)

 R^*

 R_1R_2

 $R_1 \cup R_2$

Consider the regular expression

ab*c∪d

How many of the strings below are in the language described by this regular expression?

ababc abd ac

abcd

Regular Expression Examples

- The regular expression cat∪dog represents the regular language { cat, dog }.
- The regular expression booo* represents the regular language { boo, booo, boooo, ... }.
- The regular expression (candy!)*
 represents the regular language { ε,
 candy!, candy!candy!, candy!candy!
 candy!, ... }.

Regular Expressions, Formally

- The *language of a regular expression* is the language described by that regular expression.
- Formally:
 - $\mathcal{L}(\mathbf{\varepsilon}) = \{\mathbf{\varepsilon}\}$
 - $\mathcal{L}(\emptyset) = \emptyset$
 - $\mathcal{L}(\mathbf{a}) = \{\mathbf{a}\}$
 - $\mathscr{L}(R_1R_2) = \mathscr{L}(R_1) \mathscr{L}(R_2)$
 - $\mathscr{L}(R_1 \cup R_2) = \mathscr{L}(R_1) \cup \mathscr{L}(R_2)$
 - $\mathcal{L}(R^*) = \mathcal{L}(R)^*$
 - $\mathscr{L}((R)) = \mathscr{L}(R)$

Worthwhile activity: Apply this recursive definition to

a(b∪c)((d))

and see what you get.

- Let $\Sigma = \{a, b\}$.
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains } \mathbf{aa} \text{ as a substring } \}$.

- Let $\Sigma = \{a, b\}$.
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains } \mathbf{aa} \text{ as a substring } \}$.

```
(a \cup b)*aa(a \cup b)*
```

- Let $\Sigma = \{a, b\}$.
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains } \mathbf{aa} \text{ as a substring } \}$.

```
(a \cup b)*aa(a \cup b)*
```

- Let $\Sigma = \{a, b\}$.
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains } \mathbf{aa} \text{ as a substring } \}$.

$$(a \cup b)*aa(a \cup b)*$$

bbabbbaabab aaaa bbbbbabbbbbaabbbbb

- Let $\Sigma = \{a, b\}$.
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains } \mathbf{aa} \text{ as a substring } \}$.

$$(a \cup b)*aa(a \cup b)*$$

bbabbbaabab aaaa bbbbbabbbbaabbbbb

- Let $\Sigma = \{a, b\}$.
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains } \mathbf{aa} \text{ as a substring } \}$.

Σ*aaΣ*

bbabbbaabab aaaa bbbbbabbbbaabbbbb

- Let $\Sigma = \{a, b\}$.
- Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}$.

```
Let \Sigma = \{a, b\}.

Let L = \{w \in \Sigma^* \mid |w| = 4\}.
```

The length of a string w is denoted |w|

- Let $\Sigma = \{a, b\}$.
- Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}$.

- Let $\Sigma = \{a, b\}$.
- Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}$.

ΣΣΣΣ

- Let $\Sigma = \{a, b\}$.
- Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}$.

- Let $\Sigma = \{a, b\}$.
- Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}$.

- Let $\Sigma = \{a, b\}$.
- Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}$.

ΣΣΣΣ

- Let $\Sigma = \{a, b\}$.
- Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}$.

 Σ^4

- Let $\Sigma = \{a, b\}$.
- Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}$.

 Σ^4

- Let $\Sigma = \{a, b\}$.
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains at most one a } \}$.

Which of the following is a regular expression for L?

- **A. Σ*aΣ***
- B. **b***a**b*** ∪ **b***
- C. b*(a \cup ϵ)b*
- *D*. **b***a*b* ∪ **b***
- $E. b*(a* \cup \varepsilon)b*$
- F. None of the above, or two or more of the above.

Answer at **PollEv.com/cs103** or text **CS103** to **22333** once to join, then A, B, C, D, E, or F.

- Let $\Sigma = \{a, b\}$.
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains at most one a } \}$.

$$b*(a \cup \varepsilon)b*$$

- Let $\Sigma = \{a, b\}$.
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains at most one a } \}$.

$$b*(a \cup \varepsilon)b*$$

- Let $\Sigma = \{a, b\}$.
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains at most one a } \}$.

$$b*(a \cup \varepsilon)b*$$

bbbbbbb bbbbb abbb a

- Let $\Sigma = \{a, b\}$.
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains at most one a } \}$.

$$b*(a \cup \varepsilon)b*$$

- Let $\Sigma = \{a, b\}$.
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains at most one a } \}$.

bbbbbb bbbbb abbb

A More Elaborate Design

- Let $\Sigma = \{ a, ., @ \}$, where a represents "some letter."
- Let's make a regex for email addresses.

- Let $\Sigma = \{ a, ., @ \}$, where a represents "some letter."
- Let's make a regex for email addresses.

- Let $\Sigma = \{ a, ., @ \}$, where a represents "some letter."
- Let's make a regex for email addresses.

- Let $\Sigma = \{ a, ., @ \}$, where a represents "some letter."
- Let's make a regex for email addresses.

aa*

- Let $\Sigma = \{ a, ., @ \}$, where a represents "some letter."
- Let's make a regex for email addresses.

aa*

- Let $\Sigma = \{ a, ., @ \}$, where a represents "some letter."
- Let's make a regex for email addresses.

- Let $\Sigma = \{a, ., Q\}$, where a represents "some letter."
- Let's make a regex for email addresses.

- Let $\Sigma = \{ a, ., @ \}$, where a represents "some letter."
- Let's make a regex for email addresses.

- Let $\Sigma = \{ a, ., @ \}$, where a represents "some letter."
- Let's make a regex for email addresses.

- Let $\Sigma = \{ a, ., @ \}$, where a represents "some letter."
- Let's make a regex for email addresses.

- Let $\Sigma = \{ a, ., @ \}$, where a represents "some letter."
- Let's make a regex for email addresses.

- Let $\Sigma = \{ a, ., @ \}$, where a represents "some letter."
- Let's make a regex for email addresses.

- Let $\Sigma = \{ a, ., @ \}$, where a represents "some letter."
- Let's make a regex for email addresses.

- Let $\Sigma = \{ a, ., @ \}$, where a represents "some letter."
- Let's make a regex for email addresses.

- Let $\Sigma = \{ a, ., @ \}$, where a represents "some letter."
- Let's make a regex for email addresses.

```
a* (.aa*) *@ aa*.aa* (.aa*) *
```

- Let $\Sigma = \{ a, ., @ \}$, where a represents "some letter."
- Let's make a regex for email addresses.

$$a^+$$
 (. a^+)* @ a^+ . a^+ (. a^+)*

- Let $\Sigma = \{ a, ., @ \}$, where a represents "some letter."
- Let's make a regex for email addresses.

- Let $\Sigma = \{ a, ., @ \}$, where a represents "some letter."
- Let's make a regex for email addresses.

- Let $\Sigma = \{ a, ., @ \}$, where a represents "some letter."
- Let's make a regex for email addresses.

- Let $\Sigma = \{ a, ., @ \}$, where a represents "some letter."
- Let's make a regex for email addresses.

$$a^{+} (.a^{+}) * @ a^{+} (.a^{+})^{+}$$

- Let $\Sigma = \{ a, ., @ \}$, where a represents "some letter."
- Let's make a regex for email addresses.

$$a^+$$
 (.a⁺)*@ a^+ (.a⁺)⁺

- Let $\Sigma = \{ a, ., @ \}$, where a represents "some letter."
- Let's make a regex for email addresses.

For Comparison

$$a^{+}(.a^{+})*@a^{+}(.a^{+})^{+}$$

Shorthand Summary

- R^n is shorthand for $RR \dots R$ (n times).
 - Edge case: define $R^0 = \varepsilon$.
- Σ is shorthand for "any character in Σ ."
- R? is shorthand for $(R \cup \varepsilon)$, meaning "zero or one copies of R."
- R^+ is shorthand for RR^* , meaning "one or more copies of R."

The Power of Regular Expressions

Theorem: If R is a regular expression, then $\mathcal{L}(R)$ is regular.

Proof idea: Use induction!

- The atomic regular expressions all represent regular languages.
- The combination steps represent closure properties.
- So anything you can make from them must be regular!

Thompson's Algorithm

- In practice, many regex matchers use an algorithm called *Thompson's algorithm* to convert regular expressions into NFAs (and, from there, to DFAs).
 - Read Sipser if you're curious!
- **Fun fact:** the "Thompson" here is Ken Thompson, one of the co-inventors of Unix!

The Power of Regular Expressions

Theorem: If L is a regular language, then there is a regular expression for L.

This is not obvious!

Proof idea: Show how to convert an arbitrary NFA into a regular expression.

These are all regular expressions!

Note: Actual NFAs aren't allowed to have transitions like these. This is just a thought experiment.

a a a b a b b

b

b

a

a

a

Key Idea 1: Imagine that we can label transitions in an NFA with arbitrary regular expressions.

Is there a simple regular expression for the language of this generalized NFA?

Is there a simple regular expression for the language of this generalized NFA?

Is there a simple regular expression for the language of this generalized NFA?

Is there a simple regular expression for the language of this generalized NFA?

Key Idea 2: If we can convert an NFA into a generalized NFA that looks like this...

...then we can easily read off a regular expression for the original NFA.

Here, R_{11} , R_{12} , R_{21} , and R_{22} are arbitrary regular expressions.

Question: Can we get a clean regular expression from this NFA?

The first step is going to be a bit weird...

Could we eliminate this state from the NFA?

Note: We're using concatenation and Kleene closure in order to skip this state.

What regex should go on this edge?

 $A. R_{12} R_{21}$

B. $R_{12} R_{22} * R_{21}$ **C.** $R_{21} R_{12}$

 $\mathbf{D}_{\bullet} R_{21} R_{11} * R_{12}$

Answer at **PollEv.com/cs103** or text CS103 to 22333 once to join, then A, B, C, or D.

Note: We're using **union** to combine these transitions together.

The Construction at a Glance

- Start with an NFA N for the language L.
- Add a new start state $q_{\rm s}$ and accept state $q_{\rm f}$ to the NFA.
 - Add an ε -transition from q_{ε} to the old start state of N.
 - Add ϵ -transitions from each accepting state of N to $q_{\rm f}$, then mark them as not accepting.
- Repeatedly remove states other than q_s and q_f from the NFA by "shortcutting" them until only two states remain: q_s and q_f .
- The transition from $q_{\rm s}$ to $q_{\rm f}$ is then a regular expression for the NFA.

Eliminating a State

- To eliminate a state q from the automaton, do the following for each pair of states q_0 and q_1 , where there's a transition from q_0 into q and a transition from q into q_1 :
 - Let R_{in} be the regex on the transition from q_0 to q.
 - Let R_{out} be the regex on the transition from q to q_1 .
 - If there is a regular expression R_{stay} on a transition from q to itself, add a new transition from q_0 to q_1 labeled $((R_{in})(R_{stay})*(R_{out}))$.
 - If there isn't, add a new transition from q_0 to q_1 labeled $((R_{in})(R_{out}))$
- If a pair of states has multiple transitions between them labeled $R_1, R_2, ..., R_k$, replace them with a single transition labeled $R_1 \cup R_2 \cup ... \cup R_k$.

Our Transformations

Theorem: The following are all equivalent:

- \cdot L is a regular language.
- · There is a DFA D such that $\mathcal{L}(D) = L$.
- · There is an NFA N such that $\mathcal{L}(N) = L$.
- · There is a regular expression R such that $\mathcal{L}(R) = L$.

Why This Matters

- The equivalence of regular expressions and finite automata has practical relevance.
 - Tools like grep and flex that use regular expressions capture all the power available via DFAs and NFAs.
- This also is hugely theoretically significant: the regular languages can be assembled "from scratch" using a small number of operations!

Next Time

- Applications of Regular Languages
 - Answering "so what?"
- Intuiting Regular Languages
 - What makes a language regular?
- The Myhill-Nerode Theorem
 - The limits of regular languages.