Machine Learning W4 Tutorial

COMP30027 | Sandy Luo

Overview

Data conversion

Discrete, continuous

Naive Bayes

Theory, calculation

Naive Bayes

code!

Consider the following dataset:

instances / data points (rows)

ID	Color	Weight (g)	
1	Red	1021.2	
2	Red	1027.0	
3	Red	1012.5	
4	Blue	1010.4	
5	Blue	1019.5	
6	Gold	1016.4	
7	Gold	995.4	
8	Gold	Gold 1012.8	

attributes / features (columns)

attributes? instances?

Q1:

Which attribute is discrete and which is continuous?

ID	Color	Weight (g)	
1	Red	1021.2	
2	Red	1027.0	
3	Red	1012.5	
4	Blue	1010.4	
5	Blue	1019.5	
6	Gold	1016.4	
7	Gold	995.4	
8	Gold	1012.8	

Q1:

Which attribute is discrete and which is continuous?

Value set: {"Red", "Blue", "Gold"}

- 3 possible values
- → limited / finite
- **→** discrete

Value set: {1021.2, 1027.0,}

Many possible values

- → unlimited / infinite
- → <u>continuous</u>

ID	Color	Weight (g)
1	Red	1021.2
2	Red	1027.0
3	Red	1012.5
4	Blue	1010.4
5	Blue	1019.5
6	Gold	1016.4
7	Gold	995.4
8	Gold	1012.8

Discretisation Methods

1. Equal-width

- Find min. & max. values
- Partition into n bins of width (max min) / n

2. Equal-frequency

- Sort values
- Split sorted values into n bins with equal numbers of items

Discretisation Methods

3. Clustering (e.g. k-means)

- Randomly initialise *n* centre points for *n* clusters
- Iteratively assign each data point to the nearest centroid
- Update centroids as the mean of assigned points until convergence

4. Supervised classification

- Use class labels to determine bin boundaries
- Group values into class-contiguous intervals

Q2:

Discretise the continuous attribute into 2 bins using the (unsupervised) n = 2 methods of equal width, equal frequency, and k-means (break ties where necessary).

ID	Color	Weight (g)	
1	Red	1021.2	
2	Red	1027.0	
3	Red	1012.5	
4	Blue	1010.4	
5	Blue	1019.5	
6	Gold	1016.4	
7	Gold	995.4	
8	Gold	1012.8	

Equal-width:

- Find min. & max. values
- Partition into n bins of width (max - min) / n
- min = 995.4
- max = 1027.0
- width = (1027.0 995.4) / 2 = 15.8
- bins: [min, min+15.8), [min+15.8, max]
 = [995.4, 1011.2), [1011.2, 1027.0]

ID	Color	Weight (g)	
1	Red	1021.2	
2	Red	1027.0	
3	Red	1012.5	
4	Blue	1010.4	
5	Blue	1019.5	
6	Gold	1016.4	
7	Gold	995.4	
8	Gold	1012.8	

Equal-frequency:

- Sort values
- Split sorted values into *n* bins with equal numbers of items
- bin size = # instances / n= 8 / 2 = 4
- Sorted order (ascending):
 - o ID: 7, 4, 3, 8, 6, 5, 1, 2
- 4 values in each bin, hence:
 - ID: [7, 4, 3, 8], [6, 5, 1, 2]

ID	Color	Weight (g)	
1	Red	1021.2	
2	Red	1027.0	
3	Red	1012.5	
4	Blue	1010.4	
5	Blue	1019.5	
6	Gold	1016.4	
7	Gold	995.4	
8	Gold	1012.8	

k-means:

- 1. Randomly initialise n cluster centroids
- e.g. let 2 initial seeds be ID = 3, 4
- 2. Iteratively assign each data point to the nearest centroid
- 3. Update centroids as the mean of assigned points until convergence

ID	Color	Weight (g)	
1	Red	1021.2	
2	Red	1027.0	
3	Red	1012.5	A
4	Blue	1010.4	В
5	Blue	1019.5	
6	Gold	1016.4	
7	Gold	995.4	
8	Gold	1012.8	

- A: (1021.2 + 1027.0 + 1012.5 + 1019.5 + 1016.4 + 1012.8) / 6 = 1018.2
- B: (1010.4 + 995.4) / 2 = 1002.9

k-means:

- 1. Randomly initialise n cluster centroids
- e.g. let 2 initial seeds be ID = 3, 4
- 2. Iteratively assign each data point to the nearest centroid
- 3. Update centroids as the mean of assigned points until convergence

ID	Color	Weight (g)	
1	Red	1021.2	
2	Red	1027.0	
3	Red	1012.5	AA
4	Blue	1010.4	BB
5	Blue	1019.5	
6	Gold	1016.4	
7	Gold	995.4	
8	Gold	1012.8	

- A: (1021.2 + 1027.0 + 1012.5 + 1019.5 + 1016.4 + 1012.8) / 6 = 1018.2
- B: (1010.4 + 995.4) / 2 = 1002.9

$$Q2(c): n=2$$

Centroids:

• A: 1018.2

• B: 1002.9

- Assignment of values to clusters unchanged
 - Stop iteration

• ID: [4, 7], [1, 2, 3, 5, 6, 8]

ID	Color	Weight (g)	
1	Red	1021.2	
2	Red	1027.0	
3	Red	1012.5	
4	Blue	1010.4	
5	Blue	1019.5	
6	Gold	1016.4	
7	Gold	995.4	
8	Gold	1012.8	

Q3:

How could the discrete variable be converted to a continuous numeric variable?

ID	Color	Weight (g)	
1	Red	1021.2	
2	Red	1027.0	
3	Red	1012.5	
4	Blue	1010.4	
5	Blue	1019.5	
6	Gold	1016.4	
7	Gold	995.4	
8	Gold	1012.8	

Q3:

How could the discrete variable be converted to a continuous numeric variable?

1. Convert names → numbers:

2. One Hot Encoding (OHE):

 Create new boolean attributes for every attribute value

Consider the following dataset:

ID	Color Weight (g)		
1	Red	1021.2	
2	Red	1027.0	
3	Red	1012.5	
4	Blue	1010.4	
5	Blue	1019.5	
6	Gold	1016.4	
7	Gold	995.4	
8	Gold	1012.8	

• "Red": [1,1,1,0,0,0,0,0], "Blue": [0,0,0,1,1,0,0,0], "Gold": [0,0,0,0,0,1,1,1]

Naive Bayes

 Task: classify an instance T = < x₁, x₂, ..., x_n > into one of the possible classes c_i∈C

$$\hat{c} = \mathop{\arg\max}_{c_j \in C} P(c_j | x_1, x_2, \dots, x_n) \quad \begin{array}{l} \text{Choose class w/ highest prob.} \\ \text{given attributes x_1 to x_n} \end{array}$$

$$= \mathop{\arg\max}_{c_j \in C} \frac{P(x_1, x_2, \dots, x_n | c_j) P(c_j)}{P(x_1, x_2, \dots, x_n)} \quad \begin{array}{l} \text{Bayes Rule} \\ \text{Same for all } c_j \in C, \text{ so we can ignore it} \end{array}$$

$$= \mathop{\arg\max}_{c_j \in C} P(x_1, x_2, \dots, x_n | c_j) P(c_j)$$

"Naive" = Assume all attributes are independent

$$P(x_1, x_2, ..., x_n | c_j) \approx P(x_1 | c_j) P(x_2 | c_j) ... P(x_n | c_j)$$

$$= \prod_i P(x_i | c_j)$$

$$\hat{c} = \arg \max_{c_j \in C} P(c_j | x_1, x_2, ..., x_n)$$

$$= \arg \max_{c_j \in C} P(c_j) \prod_i P(x_i | c_j)$$

Bayesian Prior Independence assumption

- = Probability of each class prior receiving additional info.
- = frequency of each class in training data

$$\operatorname{arg\,max}_{c_j \in C} P(c_j) \prod_i P(x_i | c_j)$$
 What do we need to calculate?

Given the following dataset, build a Naive Bayes model to predict the label "Play."

ID	Outlook	Temp	Humid	Wind	Play
Α	S	Н	N	F	N
В	S	Н	Н	Т	N
С	0	Н	Н	F	Υ
D	R	М	Н	F	Υ
Е	R	С	N	F	Υ
F	R	С	N	Т	N

- 1. Priors: P(c_j)
- 2. Conditional probabilities: P(x_i|c_j)

$$\underset{c_j \in C}{\operatorname{arg max}} P(c_j) \prod_i P(x_i | c_j)$$
 Step 1: Calculate Prior

Given the following dataset, build a Naive Bayes model to predict the label "Play."

ID	Outlook	Temp	Humid	Wind	Play
Α	S	Н	N	F	N
В	S	Н	Н	Т	N
С	0	Н	Н	F	Υ
D	R	М	Н	F	Υ
Е	R	С	N	F	Υ
F	R	С	N	Т	N

- = Probability of each class prior receiving additional info.
- = frequency of each class in training data

•
$$P(play=N) = 1/2$$

•
$$P(play=Y) = 1/2$$

Step 2: Calculate Conditional

Given the following dataset, build a Naive Bayes model to predict the label "Play."

ID	Outlook	Temp	Humid	Wind	Play
Α	S	Н	Ν	F	N
В	S	Н	Н	Т	N
С	0	Н	Н	F	Υ
D	R	М	Н	F	Υ
Е	R	С	N	F	Υ
F	R	С	N	Т	N

•
$$P(outlook=0 | play = N) = 0$$

Repeat for all other attributes x

$$\arg\max_{c_j \in C} P(c_j) \prod_i P(x_i|c_j)$$

Step 2: Calculate Conditional

- P(outlook=S | play = N) = 2/3
- P(outlook=0 | play = N) = 0
- P(outlook=R | play = N) = 1/3
- P(outlook=S | play = Y) = 0
- P(outlook=O | play = Y) = 1/3
- P(outlook=R | play = Y) = 2/3
- P(humid=N | play = N) = 2/3
- P(humid=H | play = N) = 1/3
- P(humid=N | play = Y) = 1/3
- P(humid=H | play = Y) = 2/3

- P(temp=H | play = N) = 2/3
- P(temp=M | play = N) = 0
- P(temp=C | play = N) = 1/3
- P(temp=H | play = Y) = 1/3
- P(temp=M | play = Y) = 1/3
- P(temp=C | play = Y) = 1/3
- P(wind=F | play = N) = 1/3
- $P(wind=T \mid play = N) = 2/3$
- P(wind=F | play = Y) = 1
- P(wind=T | play = Y) = 0

$$\arg\max_{c_j \in C} P(c_j) \prod_i P(x_i | c_j)$$

Prediction:

- P(c_j | x) = P(play = N | outlook = ?, temp = ?, humid = ?, wind = ?)
 P(play = N) * P(outlook = ?| play = N) * P(temp = ?| play = N) *
 - P(humid = ? | play = N) * P(wind = ? | play = N)
- P(c_j | x) = P(play = Y | outlook = ?, temp = ?, humid = ?, wind = ?)
 - P(play = Y) * P(outlook = ?| play = Y) * P(temp = ?| play = Y) *
 P(humid = ? | play = Y) * P(wind = ? | play = Y)

Use the model to classify these test instances (? represents missing value):

ID	Outlook	Temp	Humid	Wind	Play
G	0	М	N	Т	?
Н	?	Н	?	F	?

- P(play = N | outlook = O, temp = M, humid = N, wind = T)
 - P(play = N) * P(outlook = O| play = N) * P(temp = M| play = N) *
 P(humid = N | play = N) * P(wind = T | play = N)

- P(play = Y | outlook = O, temp = M, humid = N, wind = T)
 - P(play = Y) * P(outlook = O| play = Y) * P(temp = M| play = Y) *
 P(humid = N | play = Y) * P(wind = T | play = Y)

Q4:

Use the model to classify these test instances (? represents missing value):

ID	Outlook	Temp	Humid	Wind	Play
G	0	М	N	Т	?
Н	?	Н	?	F	?

Classify the test instances using:

- 1. No smoothing
- 2. Epsilon smoothing
- 3. Laplace smoothing (alpha = 1)

$$\arg\max_{c_j \in C} P(c_j) \prod_i P(x_i|c_j)$$

Step 2: Calculate Conditional

- P(outlook=S | play = N) = 2/3
- P(outlook=0 | play = N) = 0
- P(outlook=R | play = N) = 1/3
- P(outlook=S | play = Y) = 0
- P(outlook=O | play = Y) = 1/3
- P(outlook=R | play = Y) = 2/3
- P(humid=N | play = N) = 2/3
- P(humid=H | play = N) = 1/3
- P(humid=N | play = Y) = 1/3
- P(humid=H | play = Y) = 2/3

- P(temp=H | play = N) = 2/3
- P(temp=M | play = N) = 0
- P(temp=C | play = N) = 1/3
- P(temp=H | play = Y) = 1/3
- P(temp=M | play = Y) = 1/3
- P(temp=C | play = Y) = 1/3
- P(wind=F | play = N) = 1/3
- $P(wind=T \mid play = N) = 2/3$
- P(wind=F | play = Y) = 1
- P(wind=T | play = Y) = 0

Q4(a): No Smoothing

ID	Outlook	Temp	Humid	Wind	Play
G	0	М	N	Т	?
Н	?	Н	?	F	?

- P(play = N | outlook = O, temp = M, humid = N, wind = T)
 = P(play = N) * P(outlook = O| play = N) * P(temp = M| play = N) *
 P(humid = N | play = N) * P(wind = T | play = N)
 = 1/2 * 0 * 0 * 2/3 * 2/3 = 0
- P(play = Y | outlook = O, temp = M, humid = N, wind = T)
 = P(play = Y) * P(outlook = O| play = Y) * P(temp = M| play = Y) * P(humid = N | play = Y) * P(wind = T | play = Y)
 = 1/2 * 1/3 * 1/3 * 1/3 * 0 = 0
- → Both O probability, no labels predicted

Q4(a): No Smoothing

ID	Outlook	Temp	Humid	Wind	Play
G	0	М	Ν	Т	?
Н	?	Н	?	F	?

P(play = N | outlook = ?, temp = H, humid = ?, wind = F)

P(play = Y | outlook = ?, temp = H, humid = ?, wind = F)

$$\rightarrow$$
 1/6 > 1/9 \rightarrow Predict play = Y

Q4(b): Epsilon

ID	Outlook	Temp	Humid	Wind	Play
G	0	М	N	Т	?
Н	?	Н	?	F	?

Epsilon smoothing = replace 0 values with epsilon

- <u>P(play = N | outlook = O, temp = M, humid = N, wind = T)</u>
 - = 1/2 * **epsilon** * **epsilon** * 2/3 * 2/3 = 2/9 * epsilon^2
- P(play = Y | outlook = 0, temp = M, humid = N, wind = T)
 - = 1/2 * 1/3 * 1/3 * 1/3 * epsilon = 1/54 * epsilon
- → Which is larger? Here, we choose play = Y. Why?

Q4(b): Epsilon

ID	Outlook	Temp	Humid	Wind	Play
G	0	М	N	Т	?
Н	?	Н	?	F	?

No zero values → same as no smoothing

Q4(c): Laplace

ID	Outlook	Temp	Humid	Wind	Play
G	0	М	N	Т	?
Н	?	Н	?	F	?

- P(play = N | outlook = O, temp = M, humid = N, wind = T)
 - = P(play = N) * P(outlook = O| play = N) * P(temp = M| play = N) *
 P(humid = N | play = N) * P(wind = T | play = N)

$$= \frac{1}{2} * (0+1)/(3+3) * (0+1)/(3+3) * (2+1)/(3+2) * (2+1)/(3+2) = 0.005$$

- P(play = Y | outlook = O, temp = M, humid = N, wind = T)
 - = P(play = Y) * P(outlook = O| play = Y) * P(temp = M| play = Y) *P(humid = N | play = Y) * P(wind = T | play = Y)

$$= \frac{1}{2} * (1+1)/(3+3) * (1+1)/(3+3) * (1+1)/(3+2) * (0+1)/(3+2) = 0.0044$$

 \rightarrow 0.005 > 0.0044 \rightarrow Predict play = N

Unsmoothed:

Smoothed:

$$P_i = \frac{x_i}{N}$$

$$P_i = \frac{x_i + \alpha}{N + \alpha d}$$

d = number of unique values for the attribute

Q4(c): Laplace

ID	Outlook	Temp	Humid	Wind	Play
G	0	М	Ν	Т	?
Н	?	Н	?	F	?

- P(play = N | outlook = ?, temp = H, humid = ?, wind = F)
 - = P(play = N) * P(temp = H | play = N) * P(wind = F | play = N)
 - = 1/2 * (2+1)/(3+3) * (1+1)/(3+2) = 0.1
- <u>P(play = Y | outlook = ?, temp = H, humid = ?, wind = F)</u>
 - = P(play = Y) * P(temp = H | play = Y) * P(wind = F | play = Y)
 - = 1/2 * (1+1)/(3+3) * (3+1)/(3+2) = 0.13

 \rightarrow 0.13 > 0.1 \rightarrow Predict play = Y

Unsmoothed:

$$P_i = \frac{x_i}{N}$$

Smoothed:

$$P_i = \frac{x_i + \alpha}{N + \alpha d}$$