Sunny Storage

Smart grid

Sunny reference

https://solarsystem.nasa.gov/system/basic_html_elements/11561_Sun.png

Smartgrid

Groene energie is de energie van de toekomst!

Maar hoe zorgen voor een slimme grid met zo laag mogelijke

kosten?

Smartgrid

- Drie wijken met huizen die maximale output genereren
- Deze moeten worden gekoppeld aan batterijen met een vaste capaciteit

Zo goedkoop mogelijk!

Smartgrid

5¹⁵⁰

pos [38, 12

Smartgrid - Problemen

- 1. Connect alle huizen met de batterijen
- 2. Bereken de totale kosten en optimaliseer
 - a. Kabels en batterijen
- 3. Optimaliseer door batterijen te verplaatsen
- 4. Optimaliseer de kosten door nieuwe batterijen te gebruiken

Connect alle huizen

- Average fit
- Decreasing first fit

	Wijk 1	Wijk 2	Wijk 3
First fit			Fit 149/150
Decreasing first fit		*	Fit 149/150
Average fit	***	***	***

- Random
- Greedy
- Hillclimber (random en greedy base)
- Randclimber (random en greedy base)
- Branch 'n bound (wijk 5)
- Depth first search (wijk 5)

Voorbeeld van random (wijk 1)...

Voorbeeld van greedy met hillclimber base (wijk 2)...

Lowerbound 9 * kortste manhattan distance + kosten batterij

Algoritme	Random		Greedy			
	Normaal	Hillclimber	Randclimber	Normaal	Hillclimber	Randclimber
Wijk 1	69388	56302	56230	57517	55429	55501
Wijk 2	63988	45646	45646	46375	45592	45529
Wijk 3	64915	43909	43891	45745	43765	43765

Kosten: 17979

Batterijen verplaatsen

Battery optimization

Optimale configuratie zoeken van batterijen: hoe kunnen we deze plaatsen zodat onze kabellengte, i.e. kosten zo laag

mogelijk blijven?

Batterijen verplaatsen

- Battery optimization
 - Pros: Betere oplossing, Altijd kloppend
 - Cons: Geen optimalisering op nieuwe locatie
- K means clustering
 - Pros: Een van de beste manieren om clusters te optimaliseren.
 - Cons: Moeilijk om te optimaliseren voor een kloppende oplossing

Nieuwe batterijen

- KmeansClustering

Batterijtype	Capaciteit	Prijs
PowerStar	450	900
Imerse-II	900	1350
Imerse-III	1800	1800

Kosten: 23157

Ter vergelijking: met de oude batterijen: 46510

Nieuwe batterijen

Conclusies

- Verschillende varianten van hillclimber geven de laagste prijs bij het oplossen van de standaardgrid.
- Kmeansclustering is een krachtige methode voor een systeem met dynamische batterijplaats en -aantal. (vergelijken met Battery-optimization)

Future work?

A* star voor advanced