

· Unidade de Ensino: 01 • Competência da Unidade: S.O., Evolução dos S.O., Tipos de SO: monoprogramáveis, multiprogramáveis e multiprocessamento, S.O.- Windows e Unix.

• Resumo: Introdução de Sistemas Operacionais, apresentando todo o contexto histórico.

S.O., · Palavras-chave: monoprogramáveis, multiprogramáveis e multiprocessamento, Windows e

Título da Teleaula: Introdução aos Sistemas Operacionais

Teleaula nº: 01

Contextualização

- ✓ A proposta é apresentar, avaliar e escolher, um sistema cional que atenda às necessidades de uma empresa de consultoria acadêmica, de pequeno porte, cujo modelo de negócios é baseado em orie
- Em parceria com as escolas da cidade, precisará imediatamente implantar um sistema operacional que permita a instalação dos aplicativos para envio e recebimento de materiais e informações sobre a evolução
- dos alunos nas disciplinas indicadas. ✓ A empresa, ainda, mantém-se conectada à internet todo o tempo, além de ter de compartilhar recursos, tais como
- o acesso à rede de computadores interna cabeada e sem fio; duas impressoras e uma máquina de fazer cópias

Contextualização

- ✓ Esses recursos e dispositivos precisam ser compartilhados
- com os professores e demais colaboradores da empresa. Além disso, há um software que é utilizado nas aulas, que sintetiza as informações trabalhadas e gera um rela de aula, baseado nas informações que o próprio aluno compreendeu e registrou.
- Perceba que vários são os seus desafios! Pergunte-se:
- "Qual sistema operacional consegue atender à necessidade de processamento, armazenamento e compartilhamento de recursos de que essa empresa de consultoria necessita?"
- Sua primeira entrega será pautada em:
 1º: verificar qual é o sistema operaci ional utilizado na empresa atualmente, de forma a entender o seu

A considerar que o sistema operacional é a interface entre o usuário, o hardware e os softwares ali instalados, é necessário que se compreenda:

• quais são os dispositivos que o S.O. precisará gerenciar;

• que tipo de operações são realizadas para que sejam inicializados os softwares que interpretam os comandos e que drivers são ativados nesse processamento;

• quais são os códigos de inicialização e que processos estão envolvidos;

• explicar, em nível de usuário, quais são as finalidades de um sistema utilitário (que executa ações que o sistema operacional não contempla), e, ainda, quais são os aplicativos e a sua eficiência de acordo com o sistema operacional.

Multitarefa, multiprogramável

- ✓ O segundo marco da evolução dos S.O foi pautado no compartilhamento de recursos e na possibilidade de se trabalhar com mais de um aplicativo, ou mesmo programa, sendo processados ao mesmo tempo. Com isso, uma das preocupações ou responsabilidades dos S.O passou a ser o gerenciamento de processamento, memória e o compartilhamento de recursos.
- ✓ Nesse sentido, os sistemas multitarefa também foram classificados em monousuário e multiusuário.
- Sistemas multiprogramáveis monousuário eram utilizados por apenas um usuário. Ex. várias tarefas ao mesmo tempo, como editar um texto, usar a internet, ...
- Sistemas multiprogramáveis multiusuário requerem o compartilhamento de recursos .

Multiprogramável Multiusuário Tipo de sistemas personais multiprogramáves de programa de personais multiprogramáves multiprogramáves multiprogramáves de programáves de pr

Sistemas com Múltiplos Processadores

- ✓ Esses utilizam duas ou mais UCPs (Unidade Central de Processamento) que trabalham em conjunto.
 ✓ Isso significa que uma máquina pode executar vários
- Isso significa que uma máquina pode executar vários programas simultaneamente e, além disso, que o seu processamento pode ser dividido entre os processadores. Ex.:utilizados para processamento de imagens e desenvolvimento aeroespacial.
- ✓ Esse tipo de sistema apresenta as seguintes vantagens:
 ✓ escalabilidade: termo utilizado para definir a capacidade de ampliar o potencial de processamento de dados pelo computador, através do uso de vários processadores;
- ✓ disponibilidade: a disponibilidade aqui sugerida é referente à possibilidade de manter o processo em execução, mesmo no caso de falhas.

Sistemas com Múltiplos Processadores

- ✓ Isso significa apenas que pode ser que o processamento ocorra de forma um pouco mais lenta, no entanto os processos não deixarão de ser executados;
- ✓ balanceamento de carga: isso se dá pela capacidade de distribuição de processamento de acordo com os processadores disponíveis. O balanceamento de carga melhorar o desempenho da máquina.
- ✓ Uma das características dos sistemas operacionais que trabalham com múltiplos processadores é o modo como acontece a comunicação entre as UCPs.
- ✓ Além disso, também são considerados o nível de compartilhamento de recursos de memória e dos dispositivos de entrada e saída.

Sistemas com Múltiplos Processadores

- ✓ Por esse motivo, segundo Machado e Maia (2013), esses sistemas são classificados em:
- ✓ Fortemente acoplados: nesse tipo de sistema, há vários processadores compartilhando uma única memória física, e os dispositivos de entrada e saída são gerenciados por um único sistema operacional. Também, são conhecidos como multiprocessadores. Exemplos de sistemas operacionais fortemente acoplados são o Unix e o Windows
- Windows.

 *Fracamente acoplados: possuem dois ou mais sistemas interconectados em rede, sendo que cada sistema opera de forma independente com o seu próprio sistema operacional e gerenciamento de recursos de processamento (UCPs), memória e dispositivos. Cada sistema pode ter mais de um processador.

Comparação Monoprogramação e Multiprogramação

Serviço	Monoprogramação	Multiprogramação	
Utilização da UCP	17%	33%	
Utilização de memória	30%	67%	
Utilização de disco	33%	67%	Fonte: For
Utilização de impressora	33%	67%	
Tempo total de processamento	30 min	15 min	
Tour do throughout	6 prog / hora	12 prog / boro	7

Fonte: Fonte: Adaptado de Machado e Maia (2013)

Throughput: refere-se à quantidade de dados que são processados e ao tempo que levou para essa transferência acontecer. É aplicável tanto em transferências em disco rígido quanto em redes de computadores.

Características dos sistemas multiprogramáveis

Interrupção

- ✓ Ela não depende de um processo em execução, e sim ocorre em função de um evento externo ao programa que está em uso.
- Isso torna possível a implementação de concorrência entre os processos, que é a característica principal dos sistemas multiprogramáveis, sincronizando as tarefas e sua execução com as operações dos usuários e também o controle dos dispositivos.
- Uma interrupção ocorre de forma assíncrona, isso porque não está vinculada à execução de um programa que identifique o início e fim de cada agrupamento de bits.

Características dos sistemas multiprogramáveis

Interrupção

- ✓ Um exemplo de interrupção ocorre quando um dispositivo de entrada ou saída encerra uma tarefa, e o processador, por sua vez, interrompe a execução daquela instrução do programa para executar as instruções de encerramento da operação sinalizada.
- Com isso, a unidade de controle é acionada para verificar o que houve e iniciar a rotina de tratamento de interrupção.
- ✓ As instruções que forem executadas para esse tratamento de interrupção devem ser armazenadas em um registrador para que, ao retornar à execução do

Características dos sistemas multiprogramáveis

Interrupção

- √ programa, seja possível restaurar aquelas informações e dar continuidade ao processo interrompido.
- Como as instruções de tratamento ficam guardadas nos registradores, isso facilita o acesso à informação caso aquele evento volte a ocorrer e, com isso, acionar a rotina apropriada para realizar o desvio do fluxo de processamento de forma mais rápida.
- ✓ Há a necessidade de um controlador de pedidos de interrupção.

Características dos sistemas multiprogramáveis

Exceção

- Exceção é diretamente ligada ao programa, ou seja, é um evento ocorrido em função do processamento do programa e, por isso, também, síncrona.
- Um exemplo comum é o de overflow, que ocorre quando há uma divisão por zero e não foi previsto um tratamento no código-fonte do programa. Com isso, o S.O entende que uma instrução do programa gerou um erro lógico ao ser executada, e esse problema ocorrerá todas as vezes em que o programa for executado, portanto a solução é prever esse tipo de erro e incluir o tratamento das exceções no próprio programa.

Características dos sistemas multiprogramáveis

Operações de Entrada e Saída

- Eram controladas por um conjunto de instruções de entrada e saída, nos primeiros sistemas computacionais.
- Então, foi desenvolvido o controlador ou interface, que realiza essas operações de reconhecer os comandos e solicitações advindas dos dispositivos e que precisam se comunicar com o hardware e com o software.
- Sendo assim, o processador não se comunicava mais diretamente com o hardware e com o software, e sim o controlador ou interface.
- √ São dois os tipos de controladores: E/S controlada por programa e E/S controlada por interrupção.

Características dos sistemas multiprogramáveis

Operações de Entrada e Saída

- Atualmente, quase não há a intervenção da unidade de processamento central (UCP), pois, nas novas arquiteturas, há um processador de entrada e saída, que otimiza o tempo e uso de recursos pelo computador.
- Mas, além desses, como mencionado anteriormente, há também a técnica de buffering. Ela é responsável por fazer a transmissão dos dados dos dispositivos de entrada e saída para a memória principal, a partir do uso de registradores para fazer esse transporte.
- Com isso, o dado será sempre transferido primeiramente ao buffer, que permitirá o acesso à informação, que

Características dos sistemas multiprogramáveis

- ✓ deverá ser imediatamente processada. Isso faz com que os dispositivos de E/S sejam liberados para receber novas instruções e que seja reduzido o problema de diferença de processamento, leitura e gravação de novas instruções de E/S, bem como de sua execução.
- O buffer ainda permite que existam vários registros armazenados e ainda não lidos, e esses podem variar em tamanho de acordo com o tipo de informação que deverá ser lida pelo processador.
- Semelhante ao processo de buffering, a técnica de spooling (simultaneous peripheral operation on-line),

Características dos sistemas multiprogramáveis

- introduzida em 1950 com o intuito de aumentar a possibilidade de trabalho com processos concorrentes, trouxe a possibilidade de armazenar um conjunto de instruções ou Jobs, em fita magnética para serem processados.
- Essa técnica era realizada sequencialmente cada job armazenado, o que diminui o tempo de processamento e busca por cada instrução que deve ser processada.
- A saída desse tipo de processamento é o armazenamento da informação em outra fita magnética,
- ✓ ou outra área do disco rígido. Essa foi a base para o processamento batch .

Resolução da SP Escolha de Sistema Operacional

Há dois tipos de tratamento de interrupção: o vetor de interrupção e um registrador de status.

O vetor de interrupção tem como objetivo guardar o endereço em que está o conjunto de instruções que foram executadas para tratar o evento.

Já o registrador de status armazena qual foi o tipo de evento ocorrido e, então, para cada tipo de evento, há a sua respectiva rotina de tratamento.

A seguir, estão relacionados os processos que ocorrem para tratar a interrupção. De acordo com Machado e Maia (2013), são:

- 1. Processador recebe sinalização de ocorrência do evento.
- Processador encerra a execução da instrução que está efetuando no momento e interrompe o processamento das instruções daquele determinado programa.

- 3. Os registradores do tipo PC, ou seja, de contagem de instruções, são acionados para guardar tais instruções.
- 4. Processador verifica a qual rotina o evento está associado e busca no registradora informação para execução.
- O tratamento de interrupções é salvo e entra na pilha de controle do programa.
- 6. A rotina de tratamento é executada.
- 7. Em seguida, as informações que foram salvas nos registradores de uso geral são restauradas, para que o processador contínue a execução das instruções do programa que foi interrompido, exatamente do ponto que parou.

Esses podem ser considerados fatores fundamentais na escolha de um sistema operacional, pois não prejudicam o processamento de informações que estejam sendo executadas paralelamente em outros programas.

Sistemas Operacionais Embarcados

- ✓ São usados por ex. para computadores de mão, podendo ser utilizados em celulares, aparelhos de TV e forno micro-ondas.
- Estes sistemas possuem características dos sistemas operacionais de tempo real, mas possuem limitações de memória e consumo de energia.
- São exemplos de sistemas embarcados tvOS (Apple), WebOS (LG) e Tizen (Samsung).

Sistemas Operacionais Mobile

- ✓ Os sistemas operacionais mobile são encontrados em celulares, tablets e MP3 players.
- São mais simples e permitem a comunicação de dados sem fio por bluetooth e wi-fi.
- Ainda permitem a utilização de rádio, câmera, gravador de voz, entre outros.
- São exemplos de sistemas operacionais mobile: Android, Windows Phone, iOS, entre outros (GCFAPRENDELIVRE,

Sistemas Operacionais na Nuvem

- Utilizam os conceitos (todos os serviços oferecidos como banco de dados, redes, etc. são feitos pela internet) com base na computação na nuvem.
- Todos os dados do usuário e aplicativos ficam na nuvem (armazenamento de dados através da web) e o acesso é
- A Google lançou em 2009 o sistema operacional Chrome OS, que utiliza recursos armazenados on-line.
- S.O. de Cartões Inteligentes (smart cards) .
- Os cartões inteligentes são os menores S.O., são dispositivos do tamanho de cartões de crédito e contêm
- um chip de CPU. Estes S.O têm restrições severas de memória e de energia e são limitados a pagamentos eletrônicos e a saques, por exemplo.

UNIX

- \checkmark O Unix foi inicialmente desenvolvido em Assembly para um microcomputador PDP-7 da Digital. Para torná-lo mais fácil de ser portado para outras plataformas, Thompson desenvolveu uma linguagem de alto nível chamada B e reescreveu o código do sistema nessa nova linguagem.
- ✓ Em função das limitações da linguagem B, Thompson e Dennis Ritchie, também da Bell Labs, desenvolveram a linguagem C, na qual o Unix seria reescrito e, posteriormente, portado para um minicomputador PDP-11 em 1973" (MACHADO; MAIA, 2013, p. 18).

UNIX

- ✓ Um processo no Unix é formado por duas estruturas de dados: a estrutura do processo (proc estructure) e a área do usuário (user area ou u area).
- ✓ A estrutura do processo, que contém o seu contexto de software, deve ficar sempre residente na memória principal, enquanto a área do usuário pode ser retirada da memória, sendo necessária apenas quando o processo é executado" (MACHADO; MAIA, 2013, p. 24)

Característica	Unix	Windows NT	Comentários	
Saterna de Arquivo	UFS – Unix File System	NT File System (NTS) ou File Allocation Table (FAT)	FAT é mais compativel com outros sistemas operacionalis. Apresenta mais problemas de segurança e funcionalidade llimitadas. NTTS é comparáled ao sistema de arquivo do Unix.	
Sistema de Asquivo de Rede	Network File System. (NFS)	Server Message Block (SMB), Common Internet File System. (CBS)	Esse é um problema de integração. Possui utilitánios e canscheristicas diferentes, o que toma os sistemas incorrepativeis nesse aspecto. Como solução, é sugerido o software Sarriba.	
Senhas	/etc/passwd, /etc/ shadow, NIS ou NIS+	via Registry	No NT, infos dos usuários estilio no Registry. No Unio, em um simples arquivo ASCII.	
Usuario Principal	1001	administrator	Essa conta tem total controle sobre o sistema de arquivo.	
Multitarefa	Excelente	Modesta	Ambos podem executar múltiplas tarefas ao mesmo tempo.	
Multiusuario	Sim	Não	NT é originalmente monousuairlo, a menos que se utilizem outros softwares, como WinFrame da Citrix	

O Windows e o Linux possuem características distintas em relação: (GUIAPC, 2018)

 À licença: para usar o Windows, é necessário adquirir a licença da Microsoft, paga por computador que vai utilizá-la.
 Já o Linux é licenciado pela GNU Public License (GPL) e o usuário pode baixar e usar em quantas máquinas quiser.

usuário pode baixar e usar em quantas máquinas quiser.

- Ao acesso ao código-fonte: o código-fonte do Windows é restrito apenas a seus desenvolvedores. Já o código-fonte do Linux é aberto e todos os usuários têm acesso e podem modificado.

- À linha de comando: um dos pontos fortes do Linux é a linha de comando que permite uma administração efetiva do sistema operacional. O Windows também possui linha de comando,mas não é tão efetiva quanto a do Linux, porque quase todas as configurações são realizadas pela interface

- À flexibilidade e à rigidez: o Linux permite que o usuário adeque o sistema operacional do jeito que ele desejar em relação ao ambiente gráfico. No Windows, as regras são definidas pela Microsoft.
- Em relação a preço, o Linux é gratuito, já o Windows você paga por licença adquirida.
 Quanto ao suporte, o usuário do Windows pode contratar
- Quanto ao suporte, o usuário do Windows pode contratar o suporte pago da Microsoft ou utilizar os fóruns de ajuda pela internet. O Linux possui suporte em diversos fóruns e sites de ajuda, além de o usuário ter a opção de contratar o suporte de grandes empresas.
- contratar o suporte de grandes empresas.

 Quanto à popularidade, o que tornou o Windows um padrão de uso foi o acordo feito entre a Microsoft e os fabricantes de computadores. Por outro lado, a popularidade do Linux cresce a cada dia e cada vez mais

- as pessoas conhecem e aprendem sobre as vantagens de seu uso. $\,$
- Para instalar e executar tanto o Windows quanto o Linux, é necessária uma configuração mínima de hardware para que o sistema operacional rode "confortavelmente".

