CMPE 200 Computer Architecture & Design

Lecture 4. Memory Hierarchy (6)

Haonan Wang

Row Operations & Row Buffer Locality

RBL & Memory Scheduling Schemes

Activation Counter:

R1: Activation = 1
R5: Activation = 2
R1: Activation = 3
R5: Activation = 4

Out-of-order scheduling

Activation Counter:

R1: Activation = 1
R1: Activation = 1
R1: Activation = 1
R5: Activation = 2

DRAM Milestones

	DRAM	Page DRAM	Page DRAM	Page DRAM	SDRAM	DDR SDRAM
Module Width	16b	16b	32b	64b	64b	64b
Year	1980	1983	1986	1993	1997	2000
Mb/chip	0.06	0.25	1	16	64	256
Die size (mm²)	35	45	70	130	170	204
Pins/chip	16	16	18	20	54	66
BWidth (MB/s)	13	40	160	267	640	1600
Latency (nsec)	225	170	125	75	62	52

 In the time that the memory to processor bandwidth has more than doubled the memory latency has improved by a factor of only 1.2 to 1.4

Review: DRAM vs. SRAM

DRAM

- Slower access (capacitor)
- Higher density (1T 1C cell)
- Lower cost
- Requires refresh (power, performance, circuitry)
- Manufacturing requires putting capacitor and logic together

SRAM

- Faster access (no capacitor)
- Lower density (6T cell)
- Higher cost
- No need for refresh
- Manufacturing compatible with logic process (no capacitor)

Magnetic Disk

- Purpose: Long term, nonvolatile storage
 - Lowest level in the memory hierarchy: large, cheap, slow

General structure

- 1 to 4 rotating platter coated with a magnetic surface (2 sides recordable)
 - Rotational speeds of 5,400 to 15,000 RPM
- Moveable read/write head to access the information for each platter
- 10,000 to 50,000 tracks per surface
 - Cylinder all the tracks under the head at a given point on all surfaces
- 100 to 500 sectors per track
 - The smallest unit that can be read/written (typically 512B)
 - Outer tracks can hold more sectors than the inner tracks

Magnetic Disk Characteristic

- 1. Seek time: position the head over the proper track
 - 3 to 12/15 ms on average
 - Due to locality of disk references, the actual average seek time may be only 25% to 33% of the advertised number

- 2. Rotational latency: wait for the desired sector to rotate under the head
 - $\frac{1}{2}$ of 1/RPM converted to ms: 0.5R/5400RPM = 5.6ms to 0.5R/15000RPM = 2.0ms
- 3. Transfer time: transfer a block of bits (one or more sectors) under the head to the disk controller's cache (70 to 125 MB/s are typical disk transfer rates)
 - the disk controller's "cache" takes advantage of spatial locality in disk accesses
 - cache transfer rates are much faster (e.g., 375 MB/s)
- 4. Controller time: the overhead the disk controller imposes in performing a disk I/O access (typically < 0.2 ms)

Typical Disk Access Time

The average time to read or write a 512B sector for a disk rotating at 15,000 RPM with average seek time of 4 ms, a 100MB/sec transfer rate, and a 0.2 ms controller overhead

Avg disk read/write

```
= 4.0 \text{ ms} + 0.5/(15,000 \text{RPM}/(60 \text{sec/min})) + 0.5 \text{KB}/(100 \text{MB/sec}) + 0.2 \text{ ms}
```

$$= 4.0 + 2.0 + 0.005 + 0.2 = 6.2 \text{ ms}$$

If the measured average seek time is 25% of the advertised average seek time, then

```
Avg disk read/write = 1.0 + 2.0 + 0.005 + 0.2 = 3.2 \text{ ms}
```


Disk Latency & Bandwidth Improvement

- Disk latency = average seek time + rotational latency.
- Disk bandwidth is the peak transfer speed of formatted data from the media (not from the cache).

Flash Storage

- Flash memory is semiconductor memory that is nonvolatile like disks but has latency 100 to 1000 times lower and is smaller, more power efficient, and more shock resistant.
 - Flash memory bits wear out. But with wear leveling it is unlikely that the write limits of the flash will be exceeded.
 - Example:

Storage	Write throughput	Read throughput	Latency
SSD	2,500 MB/S	3,500 MB/S	0.025 ms
DISK	250 MB/S	250 MB/S	5 ms

Flash Storage Characteristics

Flash memory is organized into blocks of pages

- page size 512B to 4KB, block size 32 to 128 pages (typical)
- "read" is page read
- "write" is block erase (~ 1 ms) followed by page write (and additional copying of other pages in that block)

Comes in two flavors: NOR Flash and NAND Flash

- NOR Flash is randomly addressable (Minimum access size 512 bytes)
- NAND Flash is less expensive (greater storage density) and is not randomly addressable (minimum access size 2048 bytes); so more popular

Dependability, Reliability, Availability

- Reliability measured by the mean time to failure (MTTF). Service interruption is measured by mean time to repair (MTTR)
- Availability a measure of service accomplishment

Availability = MTTF / (MTTF + MTTR)

- To increase MTTF, either improve the quality of components or design the system to continue operating in the presence of faulty components
 - 1. Fault avoidance: preventing fault occurrence by construction
 - 2. Fault tolerance: using redundancy to correct or bypass faulty components (hardware)

RAID: Redundant Array of Independent Disks

- Arrays of independent physical disks working together as one logical disk
 - Increase potential throughput by having many disk drives
 - Data can be spread across multiple disk
 - Multiple disk accesses can be made simultaneously for higher throughput
- Reliability for the array is lower than for a single disk
- Availability can be improved by adding redundant disks
 - Lost information can be reconstructed from redundant information
 - MTTR: mean time to repair is in the order of hours
 - MTTF: mean time to failure of disks is tens of years

RAID: Level 0 (Striping, No Redundancy)

Assumes one stripe = four blocks

sec1 sec2 sec3 sec4

sec4

sec1,b0 sec1,b1 sec1,b2 sec1,b3

- Multiple smaller disks as opposed to one big disk
 - Multiple blocks can be accessed in parallel to increase the performance
 - Works well for large data requests
- E.g., a 4-disk system gives four times the throughput (R/W) of a 1-disk system
 - Same cost as one big disk assuming 4 small disks cost the same as one big disk
- What if one disk fails?
 - No redundancy, data is lost
 - More likely to fail as the number of disks increases

RAID: Level 1 (Redundancy via Mirroring)

- # redundant disks = # of data disks, so always two copies of the data
 - Twice the cost of one big disk
 - Writes are made to both sets of disks and have no speed improvement
 - Reads can be 2 times faster
- If a disk fails, the system just goes to the "mirror" for the data

RAID: Design Choices

Category	Level	Disks	Features
Striping	0	N	No fault tolerance
Mirroring, no striping	1	2N	Expensive
Striping Rarely used	2 3	N + m N + 1	Hamming code Parity disk
Block level Striping Parity	4 5 6	N + 1 N + 1 N + 2	Parity disk Distributed parity Dual distributed parity

Parity: used for error detection

E.g., data: 00001111, parity bit: 0

Hamming code: limited error correction

Using multiple parity bits to locate 1 error bit

SAN JOSÉ STATE UNIVERSITY powering SILICON VALLEY