

Laboratorio 2: Convolución Señales y Sistemas

Facultad de Ingeniería y Ciencias Escuela de Ingeniería en Informática y Telecomunicaciones

1. Introducción

En este trabajo se desarrolla el concepto de convolución, en el que un Sistema Lineal Invariante en el Tiempo transforma una señal de entrada en una señal de salida.

2. Descripción

Este laboratorio tiene como objetivo introducir al alumno al concepto de convolución entre una señal y un sistema. Para esto, debe utilizar las herramientas provistas por los paquetes numpy y scipy de Python, graficando las señales, el sistema y la salida. El alumno, además, deberá resumir y presentar los resultados, explicando de manera correcta y con lenguaje técnico el comportamiento de la convolución aplicada en cada caso. Este trabajo se realizará en grupos de 2 personas.

3. Desarrollo

3.1. Pasos a Seguir

- Cree un conjunto de señales periódicas de entrada muestreadas en vectores en Python: Senoidal, cuadrada, triangular.
- 2. Cree un conjunto de señales aperiódicas de entrada muestreadas en vectores en Python: Exponencial decreciente (una porción de esta), exponencial creciente (también una porción), Impulso, Escalón y Sin(x)/(x).
- 3. Inyecte las señales senoidal, cuadrada, triangular en sistemas caracterizados por la función de transferencia de las señales aperiódicas, realizando su convolución
- 4. Aplique un factor de proporcionalidad (producto por una constante) y un corrimiento temporal en la función de transferencia en los casos anteriores y evalúe sus efectos
- 5. Realice la convolución intercambiando señales y funciones de transferencia para las señales aperiódicas.
- 6. Analice los resultados brevemente, en especial, el efecto de las funciones de transferencia sobre las señales de entrada.
- 7. Adjunte el código fuente en Python utilizado para este laboratorio en el momento de envío.

En cada uno de los casos anteriores debe graficar las entradas, las funciones de transferencia y las salidas

3.2. Informe

- Redacte un informe en Latex que no sobrepase las 8 páginas que contenga:
 - 1. Carátula
 - 2. Abstract
 - 3. Introducción describiendo brevemente el proceso de convolución.
 - 4. Algoritmos utilizados

- 5. Resultados: gráficos de entrada y salida (en tiempo); parámetros utilizados en el archivo de entrada y en las funciones
- 6. Análisis de resultados.
- 7. Dificultades encontradas y conclusión
- 8. Bibliografía
- Envíe el informe hasta el 15 de Abril de 2019 a medianoche, en formato PDF, utilizando la plantilla provista en el sitio del curso (template.zip), a la dirección de correo: diego.dujovne@mail.udp.cl con el tema "Laboratorio 2 Señales 2019 Sem 1" y en el texto del correo los nombres de los integrantes.

3.3. Pauta de Corrección

Para la corrección de este Trabajo Práctico se tomará en cuenta:

- Condición necesaria pero no suficiente de aprobación: El algoritmo debe funcionar de manera comprobada.
- Ortografía: No se tolerarán más que 2 errores ortográficos como máximo en el informe.
- Presentación: Todas las secciones mencionadas deben existir en el informe
- Extensión y formato: Deben respetarse la extensión máxima y el formato provisto en latex, incluyendo la bibliografía utilizada. No se deben usar citas a Wikipedia.
- Calidad del análisis de los resultados: El texto debe contener de manera clara y precisa la explicación de por qué se observa esa salida en los dominios del tiempo de acuerdo a la entrada y a la bibliografía consultada
- Presentación de gráficos: Las figuras y tablas deben estar numeradas, deben ser citadas en el texto, deben tener los ejes con las unidades y etiquetas correspondientes, deben ser generadas con gráficos vectoriales y no en formato de pixel (jpg,gif,tiff,png, etc.)
- Claridad y especificidad en la explicación de los algoritmos en la introducción y su coherencia con los resultados mostrados.
- La conclusión debe resumir los puntos importantes del informe.