Scilab Textbook Companion for Basics of Electrical, Electronics and Communication Engineering by N. Storey, E. Hughes and W. Tomasi¹

Created by
Keshav Pandey
B.Tech
Mechanical Engineering
Uttarakhand Technical University
College Teacher
None
Cross-Checked by
K. V. P. Pradeep

June 2, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Basics of Electrical, Electronics and Communication Engineering

Author: N. Storey, E. Hughes and W. Tomasi

Publisher: Pearson, India

Edition: 1

Year: 2010

ISBN: 978-81-317-3201-4

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4
1	DC circuits	5
2	Magnetic Circuits	12
3	Single phase AC circuits	18
5	Single Phase Transformers	26
6	DC Machines	2 9
7	Induction Machines	33
10	Amplifiers	35
11	Digital Systems	44
13	Radio Communication	47
15	Communication systems	56

List of Scilab Codes

Exa 1.1	Current in the circuit
Exa 1.2	Voltage across resistor
Exa 1.3	Circuit current
Exa 1.4	Resistance R1
Exa 1.5	Supply Current
Exa 1.6	Effective resistance and Supply current
Exa 1.7	Current in the resistor
Exa 1.8	Calculate current
Exa 1.10	Calculate current
Exa 1.11	Determine the currents
Exa 1.12	Determine I1 and I2
Exa 1.13	Determine V1 and V3
Exa 1.14	Calculate VAB
Exa 1.15	Voltage and emf
Exa 2.1	field strength and flux
Exa 2.2	Magnetomotive force
Exa 2.3	Reluctance and current
Exa 2.4	Coil Current
Exa 2.5	Induced emf
Exa 2.6	Flux and emf
Exa 2.7	Inductance of coil
Exa 2.8	Inductance
Exa 2.10	Self and mutual inductance
Exa 3.1	Frequency Period and emf
Exa 3.2	Peak values of current
Exa 3.3	Voltage and frequency
Exa 3.4	Ameter reading Form and Peak factor
Exa 3.5	Circuit current and phase angle

Exa 3.6	Supply voltage
Exa 3.7	Supply voltage and phase angle
Exa 3.8	Reactance and current
Exa 3.9	Reactance Impedence Current and phase
Exa 3.10	Capacitance and phase angle
Exa 3.11	Impedence current and voltage
Exa 3.12	Curent Phase angle and power
Exa 3.13	Power dissipated
Exa 3.14	Resistance Inductance and Power factor
Exa 5.1	Curent Turns and flux
Exa 5.2	Area Voltage ad current
Exa 5.3	Current and power factor
Exa 6.1	Generated emf
Exa 6.2	Conductors per slot
Exa 6.3	Generated emf
Exa 6.4	Calculate speed
Exa 6.5	Approximate speed
Exa 6.6	SPeed and gross torque
Exa 6.7	Power generated
Exa 7.1	Speed and frequency
Exa 7.2	Rotor emf and phase difference
Exa 1.1	Output Voltage
Exa 1.2	Voltage Gain
Exa 1.3	Output Voltage
Exa 1.4	Current Circuit
Exa 1.5	Output Power
Exa 1.6	Power gain of circuit
Exa 1.7	Power gain in decibels
Exa 1.8	Gain in dB
Exa 1.9	Power gain and voltage gain
Exa 1.10	Time constant and frequency
Exa 1.11	Determine frequencies
Exa 1.12	Time constant and frequency 41
Exa 1.13	SN ratio
Exa 1.13.1	Effect of overall gain
Exa 1.14	Overall gain
Exa 2.12	Binary to decimal
Exa 2.13	decimal to binary

Exa 2.14	decimal to binary	15
Exa 2.15		15
Exa 2.16	decimal to hexadecimal	16
Exa 2.17	Hexadecimal to binary	16
Exa 2.18	Binary to hexadecimal	16
Exa 4.1	Frequency Limits and Bandwidth	17
Exa 4.2	Frequency and modulation coefficient	18
Exa 4.3	Power and voltage	19
Exa 4.4	Determine power	19
Exa 4.5	Noise Figure improvement	60
Exa 4.6	Peak frequency and phase deviation	51
Exa 4.7	Frequency Modulation Index	51
Exa 4.8		52
Exa 4.9	Deviation ratio and bandwidth 5	53
Exa 4.10	Frequency and deviation ratio	53
Exa 4.11	Reduction in frequency drift	54
Exa 6.1	Angle of refraction	6
Exa 6.2		6
Exa 6.3	No of cells and frequency	57

Chapter 1

DC circuits

Scilab code Exa 1.1 Current in the circuit

```
//Ex 1.1
clc;clear;close;
format('v',4);
R=3;//kohm
V=220;//V
//First Case
I=V/R;//mA
disp(I,"1st case : Current in the circuit(mA)");
//Second Case
Req=R+R;//ohm(Equivalent resistance)
I=V/Req;//mA
disp(I,"2nd case : Current in the circuit(mA)");
```

Scilab code Exa 1.2 Voltage across resistor

```
1 //Ex 1.2
2 clc; clear; close;
3 format('v',5);
```

```
4  I=1.5; //A
5  R1=2; //ohm
6  R2=3; //ohm
7  R3=8; //ohm
8  V1=I*R1; //V
9  V2=I*R2; //V
10  V3=I*R3; //V
11  disp(V1, "Voltage across R1(V)");
12  disp(V2, "Voltage across R2(V)");
13  disp(V3, "Voltage across R3(V)");
14  V=V1+V2+V3; //V(Supply voltage)
15  disp(V, "Supply Voltage(V)");
```

Scilab code Exa 1.3 Circuit current

```
1 //Ex 1.3
2 clc; clear; close;
3 format('v',6);
4 Vs=100; //V(Supply voltage)
5 R1=40; //ohm
6 R2=50; //ohm
7 R3=70; //ohm
8 R=R1+R2+R3; //ohm(Equivalent resistance)
9 I=Vs/R; //A(Current in the circuit)
10 disp(I," Circuit current(A)");
```

Scilab code Exa 1.4 Resistance R1

```
1 //Ex 1.4
2 clc; clear; close;
3 format('v',6);
4 Vo=10; //V(Output voltage)
5 Vin=30; //V(Input voltage)
```

```
6 R2=100; //ohm
7 //V2/V=R2/(R1+R2)//Voltage divider rule
8 R1=(Vin*R2-Vo*R2)/Vo; //ohm
9 disp(R1, "Resistance of R1(ohm)");
```

Scilab code Exa 1.5 Supply Current

```
1 //Ex 1.5
2 clc; clear; close;
3 format('v',6);
4 V=110; //V
5 R1=22; //ohm
6 R2=44; //ohm
7 I1=V/R1; //A
8 I2=V/R2; //A
9 I=I1+I2; //A
10 disp(I, "Supply current(A)");
```

Scilab code Exa 1.6 Effective resistance and Supply current

```
1 //Ex 1.6
2 clc; clear; close;
3 format('v',5);
4 V=12; //V
5 R1=6.8; //ohm
6 R2=4.7; //ohm
7 R3=2.2; //ohm
8 R=1/(1/R1+1/R2+1/R3); //ohm(Effective resistance)
9 I=V/R; //A(Supply current)
10 disp(R, "Effective resistance(ohm)")
11 disp(I, "Supply current(A)");
```

Scilab code Exa 1.7 Current in the resistor

```
1 //Ex 1.7
2 clc; clear; close;
3 format('v',4);
4 I=8; //A
5 R2=2; //ohm
6 // Part (a)
7 R1=2; //ohm
8 I2=I*R1/(R1+R2); //A
9 disp(I2,"(a) Current in 2 ohm resistance(A)");
10 // Part (b)
11 R1=4; //ohm
12 I2=I*R1/(R1+R2); //A
13 disp(I2,"(b) Current in 2 ohm resistance(A)");
```

Scilab code Exa 1.8 Calculate current

```
1 //Ex 1.8
2 clc; clear; close;
3 format('v',6);
4 I1=3; //A
5 I2=-4; //A
6 I4=2; //A
7 //I1-I2+I3-I4=0//from KCL
8 I3=-I1+I2+I4; //A
9 disp(I3, "Current I3(A)");
```

Scilab code Exa 1.10 Calculate current

```
1 //Ex 1.10
2 clc; clear; close;
3 format('v',6);
4 I1=2.5; //A
5 I2=-1.5; //A
6 //I1+I2+I3=0//from KCL
7 I3=-I1-I2; //A
8 disp(I3, "Current I3(A)");
```

Scilab code Exa 1.11 Determine the currents

```
1 //Ex 1.11
2 clc; clear; close;
3 format('v',6);
4 I1=3; //A
5 I3=1; //A
6 I6=1; //A
7 //I1-I2-I3=0//from KCL at point a
8 I2=I1-I3; //A
9 //I2+I4-I6=0//from KCL at point b
10 I4=I6-I2; //A
11 //I3-I4-I5=0//from KCL at point c
12 I5=I3-I4; //A
13 disp(I2, "Current I2(A)");
14 disp(I4, "Current I4(A)");
15 disp(I5, "Current I5(A)");
```

Scilab code Exa 1.12 Determine I1 and I2

```
1 //Ex 1.12
2 clc; clear; close;
3 format('v',6);
4 R1=30; //ohm
```

```
5 R2=60; //ohm
6 R3=30; //ohm
7 I3=1; //A
8 I1=I3*(R2+R3)/R2; //A
9 I2=I1-I3; //A
10 disp(I1, "Current I1(A)");
11 disp(I2, "Current I2(A)");
```

Scilab code Exa 1.13 Determine V1 and V3

```
1 //Ex 1.13
2 clc; clear; close;
3 format('v',6);
4 E=12; //V
5 V2=8; //V
6 V4=2; //V
7 V1=E-V2; //V
8 //-V2+V3+V4=0; // for Loop B
9 V3=V2-V4; //V
10 disp(V1, "Voltage V1(V)");
11 disp(V3, "Voltage V3(V)");
```

Scilab code Exa 1.14 Calculate VAB

```
1  //Ex 1.14
2  clc; clear; close;
3  format('v',6);
4  V=20; //V
5  R1=25; //ohm
6  R2=40; //ohm
7  R3=15; //ohm
8  R4=10; //ohm
9  VAC=R3*V/(R1+R3); //V
```

```
10 VBC=R4*V/(R2+R4);//V

11 //0=VAB+VBC-VAC;///from KVL

12 VAB=-VBC+VAC;//V

13 disp(VAB, "Voltage VAB(V)");
```

Scilab code Exa 1.15 Voltage and emf

```
1 //Ex 1.15
2 clc; clear; close;
3 format('v',6);
4 E1=10; //V
5 V2=6; //V
6 V3=8; //V
7 //E1=V1+V2; //KCL for left loop
8 V1=E1-V2; //V
9 //-E2=-V2-V3; //KCL for right loop
10 E2=V2+V3; //V
11 disp(V1, "Voltage V1(V)");
12 disp(E2, "Voltage E2(V)");
```

Chapter 2

Magnetic Circuits

Scilab code Exa 2.1 field strength and flux

```
1 //Ex 2.1
2 clc; clear; close;
3 format('v',6);
4 N=200; // turns
5 c=600; //mm(circumference)
6 A=500; //m^2(Cross section area)
7 I=4; //A(Current through coil)
8 H=I*N/(c*10^-3); //A/m(Magnetic field strength)
9 disp(H,"(a) Magnetic field strength(A/m)");
10 mu0=4*%pi*10^-7; // constant
11 FD=mu0*H*10^6; // micro T(Flux density)
12 disp(FD,"(b) Flux density(micro T)");
13 Ft=FD*A*10^-6; // micro Wb(Total flux)
14 disp(Ft,"(c) Total flux(micro Wb)");
15 // Answer in the book is wrong.
```

Scilab code Exa 2.2 Magnetomotive force

```
1 //Ex 2.2
2 clc; clear; close;
3 format('v',6);
4 fi=0.015; //Wb(flux)
5 ag=2.5; //mm(airgap)
6 Ae=200; //cm^2(Effective area)
7 FD=fi/(Ae*10^-4); //T(Flux density)
8 mu0=4*%pi*10^-7; // constant
9 H=FD/mu0; //A/m(Magnetic field strength)
10 mmf=H*ag*10^-3; //A(magnetomotive force required)
11 disp(mmf, "Magnetomotive force required (A)");
12 //Answer in the book is not accurate.
```

Scilab code Exa 2.3 Reluctance and current

```
1 / Ex 2.3
2 clc; clear; close;
3 format('e',9);
4 A=500; //mm<sup>2</sup> (Cross sectional area)
5 c=400; //mm(circumference)
6 \text{ N=200;} // \text{turns}
7 fi=800; //micro Wb(flux)
8 B=fi*10^-6/(A*10^-6); //T(Flux density)
9 mu0=4*\%pi*10^-7; //constant
10 mur=380; // relative permeability
11 S=(c/1000)/(mur*mu0*A*10^-6); //A/Wb(Reluctance)
12 \operatorname{disp}(S,"(a) \operatorname{Reluctance} \text{ of the ring}(A/Wb)");
13 mmf=fi*10^-6*S; //A
14 Im=mmf/N; //A(Magnetizing current)
15 format('v',5);
16 disp(Im, "(b) Required magnetizing current(A)");
```

Scilab code Exa 2.4 Coil Current

```
1 / Ex 2.4
2 clc; clear; close;
3 format('v',5);
4 la=80; /mm
5 Aa=50; //mm<sup>2</sup> (Cross sectional area)
6 lb=60; / mm
7 Ab=90; //mm<sup>2</sup> (Cross sectional area)
8 \text{ lc=0.5; } / \text{mm}(\text{airgap})
9 Ac=150; //mm<sup>2</sup> (Cross sectional area)
10 N = 4000; //turns
11 Bc=0.30; //T(Flux density in airgap)
12 mu0=4*\%pi*10^-7; //constant
13 mur=1300; // relative permeability
14 fi=Bc*Ac*10^-6; //Wb(flux)
15 Fa=fi*la*10^-3/(mu0*mur*Aa*10^-6);//At
16 Fb=fi*lb*10^-3/(mu0*mur*Ab*10^-6); //At
17 Fc=fi*lc*10^-3/(mu0*1*Ac*10^-6); //At
18 F=Fa+Fb+Fc; //At
19 I=F/N*1000; //mA
20 disp(I, "Coil current(mA)");
```

Scilab code Exa 2.5 Induced emf

```
1  //Ex 2.5
2  clc; clear; close;
3  format('v',6);
4  L=0.5; //H
5  deltaI=2-5; //A
6  deltaT=0.05; //sec
7  dIBYdT=deltaI/deltaT; //A/s
8  emf=L*dIBYdT; //V
9  disp(emf, "emf induced(V)");
```

Scilab code Exa 2.6 Flux and emf

```
1 / Ex 2.6
2 clc; clear; close;
3 format('v',5);
4 N=300; // turns
5 L=10; /mH
6 I=5; //A
7 fi=L*10^-3/N*I*10^6; //micro Wb
8 disp(fi,"(a) Flux produced(micro Wb)");
9 //on reverse the current
10 delta_fi=2*fi;//micro Wb
11 //(as it goes to zero and increase to same value in
      reverse direction)
12 deltaT=8*10^-3; //seconds
13 dfiBYdT=delta_fi*10^-6/deltaT; //Wb/s
14 emf=N*dfiBYdT; //V(Average emf induced)
15 disp(emf, "(b) Average emf induced(V)");
```

Scilab code Exa 2.7 Inductance of coil

```
1 //Ex 2.7
2 clc; clear; close;
3 format('v',6);
4 c=400; //mm(circumference)
5 A=500; //mm^2(Cross sectional area)
6 N=200; //turns
7 //Part (a)
8 I=2; //A
9 H=N*I/(c*10^-3); //A/m
10 B=1.13; //T(Corresponding Flux density)
11 fi=B*A*10^-6; //Wb(total flux)
12 L=N*fi/I*1000; //mH
13 disp(L,"(a) Inductance of coil(mH)");
14 //Part (a)
```

```
15  I=10; //A
16  H=N*I/(c*10^-3); //A/m
17  B=1.63; //T(Corresponding Flux density)
18  fi=B*A*10^-6; //Wb(total flux)
19  L=N*fi/I*1000; //mH
20  disp(L,"(b) Inductance of coil(mH)");
```

Scilab code Exa 2.8 Inductance

```
1 //Ex 2.8
2 clc; clear; close;
3 format('v',5);
4 c=400; //mm(circumference)
5 A=500; //mm^2(Cross sectional area)
6 N=200; //turns
7 mu0=4*%pi*10^-7; //constant
8 L=mu0*A*10^-6*(N^2)/(c*10^-3)*10^6; //micro H
9 disp(L,"Inductance(micro H)");
```

Scilab code Exa 2.10 Self and mutual inductance

```
1 //Ex 2.10
2 clc; clear; close;
3 format('v',6);
4 A=800; //mm^2(Cross sectional area)
5 r=170; //mm(radius)
6 N1=500; //turns
7 N2=700; //turns
8 mur=1200; // relative permeability
9 mu0=4*%pi*10^-7; // constant
10 S=2*%pi*r*10^-3/(mu0*mur*A*10^-6); //H
11 L1=N1^2/S; //H
12 disp(L1, "Self Inductance of coil 1(H)");
```

```
13 L2=N2^2/S; //H
14 disp(L2, "Self Inductance of coil 2(H)");
15 k=1; //constant
16 M=k*sqrt(L1*L2); //H
17 disp(M, "Mutual Inductance(H)");
```

Chapter 3

Single phase AC circuits

Scilab code Exa 3.1 Frequency Period and emf

```
1 / Ex 3.1
2 clc; clear; close;
3 format('v',5);
4 N = 100; //turns
5 R=1500; //rpm (Rotation)
6 B=0.05; //T(Magnetic field)
7 A=40; //cm^2(Cross sectional area)
8 f = R/60; //Hz
9 theta=30; // degree
10 \operatorname{disp}(f,"(a) \operatorname{Frequency}(\operatorname{Hz})");
11 Period=1/f;//seconds
12 disp(Period, "(b) Period(seconds)");
13 Em = 2 * \%pi * B * (A/10^4) * N * f; //V
14 disp(Em, "(c) Maximum value of gnerated emf(V)");
15 e=\%pi*sind(theta);//V
16 disp(e,"(d) Gnerated emf after rotation(V)");
```

Scilab code Exa 3.2 Peak values of current

```
1 //Ex 3.2
2 clc; clear; close;
3 format('v',6);
4 Irms=10; //A
5 Im=Irms*sqrt(2); //A
6 disp(-Im,+Im,"Peak values of current(A) are");
```

Scilab code Exa 3.3 Voltage and frequency

```
1 //Ex 3.3
2 clc; clear; close;
3 format('v',6);
4 //v=141.4*sin(377*t)
5 Vm=141.4; //V
6 V=Vm/sqrt(2); //V(rms voltage)
7 disp(V,"(a) r.m.s. Voltage(V)");
8 omega=377; //rad/s
9 f=omega/2/%pi; //Hz
10 disp(f,"(b) Frequency(Hz)");
11 t=3*10^-3; //seconds
12 v=141.4*sin(377*t); //V
13 disp(v,"(c) Instantaneous Voltage(V)");
```

Scilab code Exa 3.4 Ameter reading Form and Peak factor

```
1 //Ex 3.4
2 clc; clear; close;
3 format('v',5);
4 V=110; //V(Supply voltage)
5 R=50; //ohm
6 Vm=V*sqrt(2); //V(maximum voltage)
7 Im=Vm/R; //A(maximum current)
```

Scilab code Exa 3.5 Circuit current and phase angle

```
1  //Ex 3.5
2  clc; clear; close;
3  format('v',5);
4  V=100; //V
5  R=7; //ohm
6  L=31.8; //mH
7  f=50; // Hz
8  XL=2*%pi*f*L/1000; //ohm
9  Z=sqrt(R^2+XL^2); //ohm
10  I=V/Z; //A(circuit current)
11  disp(I,"(a) Circuit current(A)");
12  fi=atand(XL/R); // degree(lag)
13  disp(fi,"(b) Phase angle(lag) in degree");
```

Scilab code Exa 3.6 Supply voltage

```
1 / Ex 3.6
```

```
2 clc; clear; close;
3 format('v',5);
4 L=318; //mH
5 R=75; //ohm
6 VR=150; //V
7 f=50; // Hz
8 I=VR/R; //A
9 XL=2*%pi*f*L/1000; //ohm
10 VL=I*XL; //V
11 V=sqrt(VR^2+VL^2); //V
12 disp(V, "Supply Voltage(V)");
```

Scilab code Exa 3.7 Supply voltage and phase angle

```
1 //Ex 3.7
2 clc; clear; close;
3 format('v',4);
4 ZLr=50; //ohm
5 fiLr=45; // degree(lag)(between current & Voltage)
6 R=40; //ohm
7 I=3; //A(Circuit current)
8 VR=I*R; //V
9 VLr=I*ZLr; //V
10 V=sqrt(VR^2+VLr^2+2*VR*VLr*cosd(fiLr)); //V
11 disp(V, "Supply voltage(V)");
12 fi=acosd((VR+VLr*cosd(fiLr))/V); // degree
13 disp(fi, "Circuit phase angle(lag in degree)");
```

Scilab code Exa 3.8 Reactance and current

```
1 //Ex 3.8
2 clc; clear; close;
3 format('v',6);
```

```
4 C=30; // micro F
5 V=400; //V
6 f=50; // Hz
7 Xc=1/(2*%pi*f*C*10^-6); // ohm
8 disp(Xc,"(a) Reactance of capacitor(ohm)");
9 I=V/Xc; //A
10 disp(I,"(b) Current(A)");
```

Scilab code Exa 3.9 Reactance Impedence Current and phase

```
1 / Ex 3.9
2 clc; clear; close;
3 format('v',5);
4 R=12; //ohm(Coil resistance)
5 L=0.1; //H(Coil Inductance)
6 V = 100; //V
7 f = 50; //Hz
8 XL=2*%pi*f*L;//ohm
9 Z=sqrt(R^2+XL^2);//ohm
10 disp(Z, XL, "(a) Reactance (ohm) & impedence (ohm) of
      the coil are");
11 I=V/Z;/A
12 disp(I,"(b) Current(A)");
13 fi=atand(XL/R);//degree
14 fi=round(fi);//degree
15 disp(fi, "Phase difference(degree)");
```

Scilab code Exa 3.10 Capacitance and phase angle

```
1 //Ex 3.10
2 clc; clear; close;
3 format('v',5);
4 Pr=750; //W(rated)
```

```
5 Vr=100; //V(rated)
6 V=230; //V(Supply voltage)
7 f=60; //Hz
8 VC=sqrt(V^2-Vr^2); //V(Voltage across capacitor)
9 Ir=Pr/Vr; //A(Rated current)
10 C=Ir/(2*%pi*f*VC)*10^6; //micro F
11 disp(C,"(a) Capacitance required(micro F)");
12 fi=acosd(Vr/V); // degree
13 disp(fi,"(b) Phase angle(degree)");
```

Scilab code Exa 3.11 Impedence current and voltage

```
1 / Ex 3.11
2 clc; clear; close;
3 format('v',5);
4 R=12; //ohm
5 L=0.15; //H
6 C=100; //micro F
7 V = 100; //V
8 f = 50; //Hz
9 XL=2*%pi*f*L;//ohm
10 XC=1/(2*\%pi*f*C*10^-6);/ohm
11 Z = sqrt(R^2 + (XL - XC)^2); //ohm
12 disp(Z,"(a) Impedence(ohm)");
13 I=V/Z; //A
14 disp(I,"(b) Current(A)");
15 VR=R*I;/V
16 VL=XL*I;/V
17 VC = XC * I; //V
18 \operatorname{disp}(VC, VL, VR, "(b) \operatorname{Voltge}(V) \operatorname{across} R, L \& C");
19 fi=acosd(VR/V);//degree
20 disp(fi,"(c) Phase difference(degree)");
```

Scilab code Exa 3.12 Curent Phase angle and power

```
1 //Ex 3.12
2 clc; clear; close;
3 format('v',5);
4 R=6; //ohm
5 L=0.03; //H
6 V = 50; //V
7 f = 60; //Hz
8 XL=2*%pi*f*L;//ohm
9 Z=sqrt(R^2+XL^2);/ohm
10 I=V/Z; //A
11 disp(I,"(a) Current(A)");
12 fi=atand(XL/R);//degree
13 disp(fi, "(b) Phase angle(degree)");
14 S=V*I; //VA(Apparent power)
15 disp(S,"(c) Apparent power(VA)")
16 P=S*cosd(fi);/W
17 P=round(P);/W
18 disp(P, "(d) Active power(W)")
```

Scilab code Exa 3.13 Power dissipated

```
1 //Ex 3.13
2 clc; clear; close;
3 format('v',5);
4 R=30; //ohm
5 V=230; //V
6 f=50; //Hz
7 VR=130; //V
8 VLr=180; //V
9 fiLr=acosd((V^2-VR^2-VLr^2)/(2*VR*VLr)); // degree(lag)
10 I=VR/R; //A
11 Pr=VLr*I*cosd(fiLr); //W
```

```
12 disp(Pr, "Power dissipated in the coil(W)");
```

Scilab code Exa 3.14 Resistance Inductance and Power factor

```
1 //Ex 3.14
2 clc; clear; close;
3 format('v',5);
4 V=230; //V
5 f=50; //Hz
6 I=5; //A
7 P=750; //W
8 Z=V/I; //ohm
9 R=P/I^2; //ohm(Resistance)
10 XL=sqrt(Z^2-R^2); //ohm(reactance)
11 L=XL/2/%pi/f; //H(Inductance)
12 disp(R,"(a) Resistance(ohm)");
13 disp(L*1000,"(a) Inductance(mH)");
14 pf=P/(V*I); //power factor(lag)
15 disp(pf,"(b) Power factor(lag)");
```

Chapter 5

Single Phase Transformers

Scilab code Exa 5.1 Curent Turns and flux

```
1 //Ex 5.1
2 clc; clear; close;
3 format('v',5);
4 kVA = 250; //kVA
5 V1=11000; //V(Primary voltage)
6 V2=400; //V(secondary voltage)
7 f=50; //Hz
8 N2=80; //no. of turns in secondary
9 Ifl1=kVA*1000/V1; //A(Full load primay current)
10 If12=kVA*1000/V2; //A(Full load secondary current)
11 disp("Part(a)");
12 disp(If11, "Full load primary current(A)");
13 disp(If12, "Full load secondary current(A)");
14 disp("Part(b)");
15 N1=N2*V1/V2; //no. of turns in secondary
16 disp(N1, "No. of turns in primary");
17 disp("Part(c)");
18 fi_m=V2/(4.44*N2*f);/Wb
19 disp(fi_m*1000, "Maximum value of flux(mWb)");
```

Scilab code Exa 5.2 Area Voltage ad current

```
1 / Ex 5.2
2 clc; clear; close;
3 format('v',7);
4 N1=480; //no. of turns in primary
5 N2=90; //no. of turns in secondary
6 lfp=1.8; //m(length of flux path)
7 ag=0.1; //mm(airgap)
8 Flux=1.1; //T(flux density)
9 MF=400; //A/m(Magnetic flux)
10 c_loss=1.7; /W/kg
11 f = 50; //Hz
12 d=7800; // kg/m^3 (density of core)
13 V=2200; //V(potential difference)
14 // Part (a)
15 fi_m=V/(4.44*N1*f); //Wb
16 A=fi_m/Flux; //m^2(Cross sectional area)
17 disp(A,"(a) Cross sectional area(m^2)");
18 // Part (b)
19 Vn12=V*N2/N1; //V(2ndary\ voltage\ on\ no\ load)
20 Vnl2=round(Vnl2); //V(2 \text{ ndary voltage on no load})
21 disp(Vnl2,"(b) 2ndary voltage on no load(V)");
22 // Part (c)
23 format('v',5);
24 Fm1=MF*lfp; //A(Magnetootive force for the core)
25 \text{Fm2=Flux/(4*\%pi*10^-7)*ag*10^-3;//A(Magnetootive}
      force for airgap)
26 Fm=Fm1+Fm2; //A(Total magnetomotive force)
27 Imax=Fm/N1; //A(maximum value of magnetizing current)
28 Iom=Imax/sqrt(2); //A(rms current)
29 v=lfp*A; //m^3(Volume of core)
30 m=v*d; //kg (Mass of core)
31 coreLoss=c_loss*m; //W(Core Loss)
```

```
32 Io1=coreLoss/V; //A(Core loss component of curent)
33 Io=sqrt(Iom^2+Io1^2); //A(no load current)
34 disp(Io,"(c) Primary current on no load(A)");
35 format('v',6);
36 pf=Io1/Io; //lagging pf on no load
37 disp(pf,"(c) Power factor(lagging) on no load");
```

Scilab code Exa 5.3 Current and power factor

```
1 / Ex 5.3
2 clc; clear; close;
3 format('v',5);
4 N1=1000; //no. of turns in primary
5 N2=200; //no. of turns in secondary
6 I0=3; //A
7 pf0=0.2; //lagging power factor
8 I2=280; //A(2 \text{ ndary current})
9 pf2=0.8; //lagging power factor
10 I2dash=I2*N2/N1; //A
11 cosfi0=pf0;cosfi2=pf2;sinfi0=sqrt(1-cosfi0^2);sinfi2
     =sqrt (1-cosfi2^2);
12 I1_cosfi1=I2dash*cosfi2+I0*cosfi0; //A
13 I1_sinfi1=I2dash*sinfi2+I0*sinfi0;//A
14 I1=sqrt(I1_cosfi1^2+I1_sinfi1^2);//A
15 disp(I1, "Primary current(A)");
16 fi1=atand(I1_sinfi1/I1_cosfi1);//degree
17 pf1=cosd(fi1); //lagging
18 disp(pf1, "Primary power factor(lagging)");
```

Chapter 6

DC Machines

Scilab code Exa 6.1 Generated emf

```
1 //Ex 6.1
2 clc; clear; close;
3 format('v',5);
4 P=4; //no. of poles
5 c=2; //no. of parallel paths
6 p=4/2; //no. of pair of poles
7 S=51; //no. of slots
8 C=12; //conductors per slot
9 N=900; //rpm(speed)
10 fi=25/1000; //Wb
11 Z=S*C; // total no. of conductors
12 E=2*Z/c*N*p/60*fi; //V
13 disp(E, "Generated emf(V)");
```

Scilab code Exa 6.2 Conductors per slot

```
1 //Ex 6.2
2 clc; clear; close;
```

```
3 format('v',5);
4 P=8;//no. of poles
5 c=8;//no. of parallel paths
6 p=8/2;//no. of pair of poles
7 E=260;//V(generated emf)
8 fi=0.05;//Wb
9 S=120;//no. of slots
10 N=350;//rpm(speed)
11 Z=E/(2/c*N*p/60*fi);//V
12 disp(round(Z),"No. of conductors per slot");
```

Scilab code Exa 6.3 Generated emf

```
//Ex 6.3
clc;clear;close;
format('v',5);
Ra=0.1;//ohm(Armature resistance)
Vs=250;//V(supply voltage)
//part(a)
I=80;//A
Vdrop=Ra*I;//V
emf=Vs+Vdrop;//V(Generated emf)
disp(emf,"Part(a) Generated emf(V)");
//part(b)
I=60;//A(current taken by Motor)
Vdrop=Ra*I;//V
emf=Vs-Vdrop;//V(Generated emf)
disp(emf,"Part(b) Generated emf(V)");
```

Scilab code Exa 6.4 Calculate speed

```
1 //Ex 6.4
2 clc; clear; close;
```

```
3 format('v',5);
4 P=4;//no. of poles
5 Vs=440;//V
6 c=2;//no. of parallel paths
7 p=4/2;//no. of pair of poles
8 Ia=50;//A
9 Ra=0.28;//ohm
10 Z=888;//conductors
11 fi=0.023;//Wb
12 emf=Vs-Ia*Ra;//V
13 N=emf/(2*Z/c*p/60*fi);//rpm
14 disp(round(N), "Speed in rpm");
```

Scilab code Exa 6.5 Approximate speed

```
1 //Ex 6.5
2 clc; clear; close;
3 format('v',5);
4 N=900; //rpm
5 Vs=460; //V
6 Vs_new=200; //V
7 fi_ratio=0.7; // ratio of new flux to original flux
8 kfi=Vs/N; // for original flux
9 Nnew=Vs_new/kfi/fi_ratio; //rpm(new speed)
10 disp(round(Nnew), "Speed in rpm");
```

Scilab code Exa 6.6 SPeed and gross torque

```
1 //Ex 6.6
2 clc; clear; close;
3 format('v',5);
4 Ia=110; //A
5 Vs=480; //V
```

```
Ra=0.2; //ohm
P=6; //no. of poles
c=6; //no. of parallel paths
p=P/2; //no. of pair of poles

Z=864; //no. of conductors
fi=0.05; //Wb
emf=Vs-Ia*Ra; //V
N=emf/(2*Z/c*p/60*fi); //rpm
N=round(N); //rpm
disp(N,"(a) Speed in rpm");
Pm=Ia*emf; //W(Mechanical power developed)
Pm=M/(N/60)/(2*%pi); //Nm(Torque)
disp(M,"(b) Gross torque developed(Nm)");
```

Scilab code Exa 6.7 Power generated

```
1 //Ex 6.7
2 clc; clear; close;
3 format('v',6);
4 N=15; // rps
5 M=2*1000; //Nm(Torque required)
6 Loss=8*1000; //W
7 P=2*%pi*M*N; //W(Power required)
8 Pa=P-Loss; //W(Power generated in armature)
9 disp(Pa/1000, "Power generated in armature(kW)");
```

Chapter 7

Induction Machines

Scilab code Exa 7.1 Speed and frequency

```
1 / Ex 7.1
2 clc; clear; close;
3 format('v',5);
4 P=4; //no. of poles
5 f = 50; //Hz
6 S=4/100; //slip
7 N = 600; //rpm
8 p=P/2;//pair of poles
9 //(a)
10 Ns=60*f/p;//rpm(Synchronous speed)
11 disp(Ns,"(a) Synchronous speed(rpm)");
12 //(b)
13 Nr=Ns-S*Ns; //rpm(Rotor speed)
14 disp(Nr, "(b) Rotor speed(rpm)");
15 //(c)
16 Sdash=(Ns-N)/Ns;//per unot slip
17 fr=f*Sdash; //Hz(Rotor frequency)
18 disp(fr, "Rotor frequency(Hz)");
```

Scilab code Exa 7.2 Rotor emf and phase difference

```
1 / Ex 7.2
2 clc; clear; close;
3 format('v',5);
4 Zs=240; //no. of conductors in stator winding
5 Zr=48; //no. of conductors in rotor winding
6 Rr=0.013; //ohm/phase(resstance rotor windig)
7 XL=0.048; //ohm/phase(leakega reactance)
8 \text{ Vs} = 400; //V
9 //(a)
10 Eo=Vs*Zr/Zs; //V(rotor emf)
11 \operatorname{disp}(\mathsf{Eo},"(a) \operatorname{Rotor} \operatorname{emf}(V)");
12 //(b)
13 S=4/100; //slip
14 Eo=Eo*S; //V(rotor emf for 4\% slip)
15 \operatorname{disp}(\mathsf{Eo},"(\mathsf{b}) \operatorname{Rotor} \operatorname{emf} \operatorname{at} 4\% \operatorname{slip}(\mathsf{V})");
16 Z=sqrt(Rr^2+(S*XL)^2);//ohm/phase(rotor impedence at
        4\% slip)
17 Ir=Eo/Z; //A(Rotor curren at 4% slip)
18 disp(Ir,"(b) Rotor curren at 4\% slip(A)");
20 fi_r=atand(S*XL/Rr);//degree
21 disp(fi_r,"(c) Phase difference at 4% slip(degree)")
22 S=100/100; //100\% slip
23 fi_r=atand(S*XL/Rr);//degree
24 disp(fi_r,"(c) Phase difference at 100% slip(degree)
       ");
```

Chapter 10

Amplifiers

Scilab code Exa 1.1 Output Voltage

```
//Part B Ex 1.1
clc; clear; close;
format('v',5);
Av=10; // voltage gain
Ri=1; // kohm
Ro=10; // ohm
Vs=2; // V(Sensor voltage)
Rs=100; // ohm (Sensor resistance)
RL=50; // ohm
Vi=Vs*Ri*1000/(Rs+Ri*1000); // V
Vo=Av*Vi*RL/(Ro+RL); // V
disp(Vo, "Output voltage of amplifier(V)");
```

Scilab code Exa 1.2 Voltage Gain

```
1 // Part B Ex 1.2
2 clc; clear; close;
3 format('v',5);
```

```
4 Av=10; // voltage gain
5 Ri=1; // kohm
6 Ro=10; // ohm
7 Vs=2; // V(Sensor voltage)
8 Rs=100; // ohm (Sensor resistance)
9 RL=50; // ohm
10 Vi=Vs*Ri*1000/(Rs+Ri*1000); // V
11 Vo=Av*Vi*RL/(Ro+RL); // V
12 Av=Vo/Vi; // voltage gain of circuit
13 disp(Av, "Voltage gain of circuit");
```

Scilab code Exa 1.3 Output Voltage

```
//Part B Ex 1.3
clc;clear;close;
format('v',5);
    Av=10;//voltage gain
    Ri=%inf;//ohm
    Ro=0;//ohm
    Vs=2;//V(Sensor voltage)
    Rs=100;//ohm(Sensor resistance)
    RL=50;//ohm
//Vi=Vs*Ri/(Rs+Ri) leads to Vi approximately equals to Vs as Ri=%inf
Vi=Vs;//V
Vo=Av*Vi*RL/(Ro+RL);//V
disp(Vo,"Output voltage of amplifier(V)");
```

Scilab code Exa 1.4 Current Circuit

```
1 // Part B Ex 1.4
2 clc; clear; close;
3 format('v',5);
```

```
4 VOC=10;//V(open circuit voltage)
5 //VOC=source voltage here
6 R=1;//kohm
7 ISC=VOC/R;//mA
8 disp(ISC, "Current generated by the circuit(mA)");
```

Scilab code Exa 1.5 Output Power

```
1 //Part B Ex 1.5
2 clc; clear; close;
3 format('v',4);
4 Av=10; // voltage gain
5 Ri=1; // kohm
6 Ro=10; //ohm
7 Vs=2; // V(Sensor voltage)
8 Rs=100; //ohm(Sensor resistance)
9 RL=50; //ohm
10 Vi=Vs*Ri*1000/(Rs+Ri*1000); //V
11 Vo=Av*Vi*RL/(Ro+RL); //V
12 Po=Vo^2/RL; //W
13 disp(Po,"Output power(W)");
```

Scilab code Exa 1.6 Power gain of circuit

```
1 //Part B Ex 1.6
2 clc; clear; close;
3 format('v',5);
4 Av=10; // voltage gain
5 Ri=1; //kohm
6 Ro=10; //ohm
7 Vs=2; //V(Sensor voltage)
8 Rs=100; //ohm(Sensor resistance)
9 RL=50; //ohm
```

```
10 Vi=Vs*Ri*1000/(Rs+Ri*1000); //V
11 Vo=Av*Vi*RL/(Ro+RL); //V
12 Po=Vo^2/RL; //W
13 Pi=Vi^2/Ri; //mW
14 Ap=Po*1000/Pi; //Power gain
15 disp(Ap, "Power gain");
16 //Answer in the book is wrong.
```

Scilab code Exa 1.7 Power gain in decibels

```
1 // Part B Ex 1.7
2 clc; clear; close;
3 format('v',5);
4 Ap=1400; // Power gain
5 Ap_dB=10*log10(Ap); // dB
6 disp(Ap_dB, "Power gain(dB)");
```

Scilab code Exa 1.8 Gain in dB

```
1 //Part B Ex 1.8
2 clc; clear; close;
3 format('v',4);
4 Ap1=5; //Power gain
5 Ap1_dB=10*log10(Ap1); //dB
6 disp(Ap1_dB, "Power gain of 5 in dB");
7 Ap2=50; //Power gain
8 Ap2_dB=10*log10(Ap2); //dB
9 disp(Ap2_dB, "Power gain of 50 in dB");
10 Ap3=500; //Power gain
11 Ap3_dB=10*log10(Ap3); //dB
12 disp(Ap3_dB, "Power gain of 500 in dB");
13 Av1=5; //Voltage gain
14 Av1_dB=20*log10(Av1); //dB
```

```
disp(Av1_dB,"Voltage gain of 5 in dB");
Av2=50;//Voltage gain
Av2_dB=20*log10(Av2);//dB
disp(Av2_dB,"Voltage gain of 50 in dB");
Av3=500;//Voltage gain
Av3_dB=20*log10(Av3);//dB
disp(Av3_dB,"Voltage gain of 500 in dB");
```

Scilab code Exa 1.9 Power gain and voltage gain

```
1 //Part B Ex 1.9
2 clc; clear; close;
3 format('v',6);
4 G1 = 20; //dB
5 \text{ G2} = 30; //dB
6 G3=40; //dB
7 Ap1=10^(G1/10);//Power Gain
8 disp(Ap1, "Power gain for 20 dB");
9 Av1=10^(G1/20); // Voltage Gain
10 disp(Av1, "Voltage gain for 20 dB");
11 Ap2=10^(G2/10);//Power Gain
12 disp(Ap2, "Power gain for 30 dB");
13 Av2=10^(G2/20); // Voltage Gain
14 disp(Av2, "Voltage gain for 30 dB");
15 Ap3=10^(G3/10); //Power Gain
16 disp(Ap3, "Power gain for 40 dB");
17 Av3=10^(G3/20); // Voltage Gain
18 disp(Av3, "Voltage gain for 40 dB");
```

Scilab code Exa 1.10 Time constant and frequency

```
1 //Part B Ex 1.10
2 clc; clear; close;
```

```
3 format('v',5);
4 C=10;//micro F
5 R=1;//kohm
6 T=C*10^-6*R*1000;//seconds
7 disp(T,"Time constant(seconds)");
8 omega_c=1/T;//rads/s
9 disp(omega_c,"omega_c(rads/s)");
10 fc=1/2/%pi/T;//Hz
11 disp(fc,"fc(Hz)");
```

Scilab code Exa 1.11 Determine frequencies

```
1 // Part B Ex 1.11
2 clc; clear; close;
3 format('v',5);
4 //(a)
5 f=1; //kHz
6 n=1; //no. of octave (above)
7 f1=f*2^n;//Hz
8 disp(f1,"(a) An octave above 1 kHz (in kHz)=");
9 //(b)
10 f = 10; //Hz
11 n=3; //no. of octave (above)
12 f1=f*2^n; //Hz
13 disp(f1, "(b) Three octave above 10 Hz (in Hz)=");
14 //(c)
15 f = 100; //Hz
16 n=1; //no. of octave (below)
17 f1=f/2^n; //Hz
18 disp(f1,"(c)) An octave below 100 Hz (in Hz)=");
19 //(d)
20 f = 20; //kHz
21 n=1; //no. of decade (above)
22 f1=f*10^n; //Hz
23 disp(f1,"(d)) An decade above 20 Hz (in Hz) = ");
```

Scilab code Exa 1.12 Time constant and frequency

```
1 //Part B Ex 1.12
2 clc; clear; close;
3 format('v',5);
4 C=10; //micro F
5 R=1; //kohm
6 T=C*10^-6*R*1000; //seconds
7 disp(T,"Time constant(seconds)");
8 omega_c=1/T; //rads/s
9 disp(omega_c,"omega_c(rads/s)");
10 fc=1/2/%pi/T; //Hz
11 disp(fc,"fc(Hz)");
```

Scilab code Exa 1.13 SN ratio

```
1 // Part B Ex 1.13
2 clc; clear; close;
3 format('v',5);
4 format('v',5);
```

```
 \begin{array}{ll} 5 & \text{Vs=2.5; //V} \\ 6 & \text{Vn=10; //mV} \\ 7 & \text{SNratio=20*log10(Vs/(Vn/1000)); //dB} \\ 8 & \text{disp(SNratio,"S/N ratio(dB)");} \end{array}
```

Scilab code Exa 1.13.1 Effect of overall gain

```
1 // Part B Ex 1.13 at page 1.47
2 clc; clear; close;
3 format('v',6);
4 G=100; //stable voltage gain
5 A=100000:200000; // variable gain
6 B=1/G; // Unitless
7 disp("When the gain of amplifier(A) is 100000");
8 G1=min(A)/(1+min(A)*B); // overall gain
9 disp(G1, "The overall gain(G) is ");
10 disp("When the gain of amplifier(A) is 200000");
11 G2=\max(A)/(1+\max(A)*B); // overall gain
12 disp(G2, "The overall gain(G) is ");
13 change=(G2-G1)/G*100; //\% Change in gain
14 disp("Effect of variable gain:");
15 disp(change, "Corresponding to 100% Change in gain of
       active amplifier, Change in overall gain is (%) "
     );
```

Scilab code Exa 1.14 Overall gain

```
1 // Part B Ex 1.14
2 clc; clear; close;
3 format('v',5);
4 A=10000; // stable voltage gain
5 B=1/A; // unitless
6 // For A=100000; // gain
```

```
7 A=100000; //gain
8 G=A/(1+A*B); //overall gain
9 disp(G,"When the gain of amplifier is 100000,
        Overall gain will be");
10 A=200000; //gain
11 G=A/(1+A*B); //overall gain
12 disp(G,"When the gain of amplifier is 200000,
        Overall gain will be");
```

Chapter 11

Digital Systems

Scilab code Exa 2.12 Binary to decimal

```
//Part B Ex 2.12
clc; clear; close;
format('v',5);
binary='11010';//given binary value
decimal=bin2dec(binary);//equivalent decimal
disp(decimal, "Equivalent decimal value is");
```

Scilab code Exa 2.13 decimal to binary

```
1 // Part B Ex 2.13
2 clc; clear; close;
3 format('v',5);
4 decimal=26; // given decimal value
5 binary=dec2bin(decimal); // equivalent binary value
6 disp(binary, "Equivalent binary value is");
```

Scilab code Exa 2.14 decimal to binary

```
1 //Part B Ex 2.14
2 clc; clear; close;
3 format('v',9);
4 dec=34.6875; // given decimal value
5 i=floor(dec);//integer part
6 f=dec-i; //fraction part
7 i_bin=dec2bin(i); //binary equivalent of integer part
8 f_bin=' ';//for initializing(string)
9 \text{ for } n=1:4
10
       t=2*f;
11
       if t \ge 1 then
12
           p(n)=1;
13
           f=t-1;
14
        end
15 if t<1 then
       p(n)=0;
16
17
       f = t;
18 \, end
19 f_bin=f_bin+string(p(n)); //binary equivalent of
      fraction part
20 end;
21 bin=i_bin+'.'+f_bin;//Binary equivalent of complete
22 disp(bin, "Binary equivalent of complete no. is");
```

Scilab code Exa 2.15 Hexadecimal to decimal

```
1 //Part B Ex 2.15
2 clc; clear; close;
3 format('v',7);
4 hex='A013';//given hexadecimal value
5 dec=hex2dec(hex);//equivalent decimal value
6 disp(dec," Equivalent decimal value is");
```

Scilab code Exa 2.16 decimal to hexadecimal

```
//Part B Ex 2.16
clc;clear;close;
format('v',7);
dec=7046;//given decimal value
hex=dec2hex(dec);//equivalent hexadecimal value
disp(hex, "Equivalent hexadecimal value is");
```

Scilab code Exa 2.17 Hexadecimal to binary

```
//Part B Ex 2.17
clc;clear;close;
format('v',7);
hex='F851';//given hexadecimal value
dec=hex2dec(hex);//equivalent decimal value
bin=dec2bin(dec);//equivalent binary value
disp(bin, "Equivalent binary value is");
```

Scilab code Exa 2.18 Binary to hexadecimal

```
//Part B Ex 2.18
clc;clear;close;
format('v',7);
bin='111011011000100';//given binary value
dec=bin2dec(bin);//equivalent decimal value
hex=dec2hex(dec);//equivalent hexadecimal value
disp(hex,"Equivalent hexadecimal value is");
```

Chapter 13

Radio Communication

Scilab code Exa 4.1 Frequency Limits and Bandwidth

```
1 / Ex 4.1
2 clc; clear; close;
3 format('v',6);
4 fc=100; //kHz
5 \text{ fm=5; } //\text{kHz}
6 LSB=[fc-fm fc]; //kHz
7 USB=[fc fc+fm]; //kHz
8 disp("Part (a)");
9 disp("Lower sideband is from "+string(LSB(1))+" kHz
      to "+string(LSB(2))+" kHz");
10 disp("Upper sideband is from "+string(USB(1))+" kHz
      to "+string(USB(2))+" kHz");
11 B=2*fm; //kHz
12 disp(B,"(b) Bandwidth(kHz)");
13 disp("part (c)");
14 fm=3; //kHz
15 f_usf=fc+fm;//kHz
16 disp(f_usf,"Upper side frequency(kHz)");
17 f_lsf=fc-fm; //kHz
18 disp(f_lsf, "Lower side frequency(kHz)");
```

Scilab code Exa 4.2 Frequency and modulation coefficient

```
1 / Ex 4.2
2 clc; clear; close;
3 format('v',6);
4 fc=500; //kHz
5 \text{ fm}=10; //kHz
6 /Am = 7.5*Vp \& Ac = 20*Vc
7 Em=7.5; //times of Vp
8 Ec=20; //times of Vp(unmodulated carrier)
9 disp("Part (a)");
10 f_usf=fc+fm; //kHz
11 disp(f_usf,"Upper side frequency(kHz)");
12 f_1sf=fc-fm; //kHz
13 disp(f_lsf, "Lower side frequency(kHz)");
14 disp("Part (b)");
15 m=Em/Ec; //modulation coefficient
16 disp(m, "Modulation coefficient");
17 M=100*m; //\% modulation
18 disp(M, "% Modulation");
19 disp("Part (c)");
20 Ec1=Ec; //times of Vp(modulated carrier)
21 Eusf=m*Ec/2; //times of Vp
22 Elsf=m*Ec/2; //times of Vp
23 disp("Peak amplitude of modulated carrier is "+
      string(Ec1)+"*Vp");
24 disp("Upper & lower side frequency voltages, Eusf =
      Elsf = "+string(Eusf) + "*Vp");
25 disp("Part (d)");
26 Vmax=Ec+Em; // times of Vp
27 Vmin=Ec-Em; //times of Vp
28 disp("Maximum amplitude of envelope is "+string(Vmax
      ) +" *Vp");
29 disp("Minimum amplitude of envelope is "+string(Vmin
```

```
) + " * Vp" );
```

Scilab code Exa 4.3 Power and voltage

```
1 / Ex 4.3
2 clc; clear; close;
3 format('v',6);
4 fc=1; //MHz
5 \text{ fm=5}; //kHz
6 m=60/100; // Modulation
7 Pc=6; /kW
8 \text{ RL} = 50; /W
9 Pavg=Pc*(1+m^2/2); //kW(Average power delivered to
      load)
10 disp("Part(a)");
11 disp(Pavg, "Average power of modulated signal(kW)");
12 PdB=10*log10(Pavg*1000);//dB
13 disp(PdB, "Average power of modulated signal(dB)");
14 PdBm=10*log10(Pavg*10^6);//dBm
15 disp(PdBm, "Average power of modulated signal(dBm)");
16 disp("Part(b)");
17 VS_RMS=sqrt (2*RL*Pavg*1000) /1000; //kV
18 disp(VS_RMS, "RMS voltage of modulated signal(kV)");
19 Vp = sqrt(2) * VS_RMS; //V
20 disp(Vp, "Peak value of modulated signal(kV)");
21 //Answer is wrong in the book.
```

Scilab code Exa 4.4 Determine power

```
1 //Ex 4.4
2 clc; clear; close;
3 format('v',7);
4 Vc=10; //times of Vp
```

```
5 \text{ RL}=10; //\text{ohm}
6 m=1; //modulation coefficient
7 Pc=Vc^2/2/RL;/W
8 Pusb=m^2*Pc/4; /W
9 Plsb=m^2*Pc/4;/W
10 disp("Part(a)");
11 disp(Pc, "Carrier power(W)");
12 disp(Pusb, "Upper side band power(W)");
13 disp(Plsb, "Lower side band power(W)");
14 disp("Part(b)");
15 Psbt=m^2*Pc/2; //W
16 disp(Psbt, "Total side band power(W)");
17 disp("Part(c)");
18 Pt=Pc*(1+m^2/2);/W
19 disp(Pt, "Total power of modulated wave(W)");
20 disp("Part(e)");
21 m=0.5; //modulation coefficient
22 Pusb=m^2*Pc/4;/W
23 Plsb=m^2*Pc/4;/W
24 disp(Pc, "Carrier power(W)");
25 disp(Pusb, "Upper side band power(W)");
26 disp(Plsb, "Lower side band power(W)");
27 Psbt=m^2*Pc/2; //W
28 disp(Psbt, "Total side band power(W)");
29 Pt=Pc*(1+m^2/2); //W
30 disp(Pt, "Total power of modulated wave(W)");
```

Scilab code Exa 4.5 Noise Figure improvement

```
1 //Ex 4.5
2 clc; clear; close;
3 format('v',3);
4 RF=200; //kHz
5 IF=10; //kHz
6 BI=RF/IF; // unitless (Bandwidth Improvement)
```

```
7 NF=10*log10(BI);//dB
8 disp(NF, "Noise Figure improvement(dB)");
```

Scilab code Exa 4.6 Peak frequency and phase deviation

```
1 //Ex 4.6
2 clc; clear; close;;
3 format('v',6)
4 // Part (a)
5 K1=5; //kHz/V
6 //\text{vm}(t) = 2 * \cos(2 * p * 2000 * t);
7 Vm = 2; //V
8 \text{ fm} = 2000; //Hz
9 delta_f=K1*Vm; //kHz
10 disp(delta_f,"(a) Pak frequency deviation(kHz)");
11 m=delta_f*1000/fm; //modulation index
12 disp(m,"(a) Modulation index");
13 // Part (b)
14 K=2.5; // \text{rad} / \text{V}
15 //\text{vm}(t) = -\cos(2*p*2000*t);
16 fm=2000; //Hz
17 m=K*Vm; //rad(Peak phase shift)
18 disp(m,"(b) Peak phase shift(rad)");
```

Scilab code Exa 4.7 Frequency Modulation Index

```
1 //Ex 4.7
2 clc; clear; close;
3 format('v',5);
4 //v(t)=20*sin(6.28*10^6*t+10*sin(6.28*10^3*t));
5 //Comparing with VPM(t)=A*sin(omega_c*t+mp*sin(omega_m*t))
6 A=20;
```

```
7 omega_c=6.28*10^6; //rad
8 omega_m=6.28*10^3; //rad
9 fc=omega_c/2/%pi/10^6; //MHz
10 fm=omega_m/2/%pi/10^3; //kHz
11 mp=10; // modulation index
12 delta_theta=mp; // radians
13 disp(fc,"(a) Carrier freuency(MHz)");
14 disp(fm,"(b) Modulating freuency(kHz)");
15 disp(mp,"(c) Modulation index(mp)");
16 disp(delta_theta,"(d) Peak phase deviation(radians)");
```

Scilab code Exa 4.8 Minimum Bandwidth

```
1 / Ex 4.8
2 clc; clear; close;
3 format('v',5);
4 delta_f=10; //kHz
5 \text{ fm}=10; //kHz
6 Vc = 10; //V
7 fc=500; //kHz
8 m=delta_f/fm; // modulation index
9 //For m=1 we have 3 sidebands
10 B=2*(3*fm); //kHz
11 disp(B,"(a) Actual minimum bandwidh(kHz)");
12 B=2*(fm+delta_f); //kHz
13 disp(B,"(b) Approximate minimum bandwidh(kHz)");
14 A0=0.77*fm; //V
15 A1=0.44*fm; //V
16 A2=0.11*fm; //V
17 A3=0.02*fm; //V
18 //For frequency spectrum
19 A = [A3 A2 A1 A0 A1 A2 A3]; //V(Amplitudes)
20 f = [fc + 3*fm fc + 2*fm fc + fm fc + fc + fm fc + 2*fm fc + 3*fm];
      //kHz
```

```
21 plot(f,A);
22 title('Output frequency spectrum');
23 xlabel('Frequency(kHz)');
24 ylabel('Amplitudes(V)');
```

Scilab code Exa 4.9 Deviation ratio and bandwidth

```
1 / Ex 4.9
2 clc; clear; close;
3 format('v',6)
4 // Part (a)
5 \text{ delta_f} = 75; //kHz
6 \text{ fm}=15; //kHz
7 DR=delta_f/fm; // Deviation ratio
8 disp(DR,"(a) Deviation ratio");
9 //For m or DR=5 we have 8 sidebands
10 B=2*(8*fm); //kHz
11 disp(B,"(a) Bandwidh for worst case(kHz)");
12 // Part (b)
13 delta_f=75/2; //kHz
14 fm=15/2; //kHz
15 DR=delta_f/fm;//Deviation ratio
16 disp(DR, "(b) Deviation ratio or modulation index");
17 //For m or DR=5 we have 8 sidebands
18 B=2*(8*fm); //kHz
19 disp(B,"(b) Bandwidh for worst case(kHz)");
```

Scilab code Exa 4.10 Frequency and deviation ratio

```
1 //Ex 4.10
2 clc; clear; close;
3 format('v',6);
4 //Part (a)
```

Scilab code Exa 4.11 Reduction in frequency drift

```
1 //Ex 4.11
2 clc; clear; close;
3 format('v',11);
4 VCO = 200; //ppm(VCO stability)
5 \text{ fc=} 5.1; //MHz
6 ft_old=91.8; //MHz
7 k0=10; //kHz/V
8 \text{ kd=2}; //V/kHz
9 f2=30.6; /MHz
10 fc=fc*10^6+(VC0*10^-6*fc*10^6);//Hz(with feedback
      loop open)
11 N1=2; N2=3;
12 f2_{new}=N1*N2*fc;//Hz
13 df2=f2_new-f2*10^6; //Hz(Frequency drift)
14 ft=N2*f2_new/10^6; //MHz(Transmit frequency)
15 df2_reduced=df2/(1+N1*N2*kd*k0); //Hz(reduced
      frequency drift)
16 df2_reduced=round(df2_reduced);//Hz
```

Chapter 15

Communication systems

Scilab code Exa 6.1 Angle of refraction

```
1 //Ex 6.1
2 clc; clear; close;
3 format('v',6);
4 theta1=30; // degree(Angle of incedence)
5 n1=1.5; // (refractive index for glass)
6 n2=1.36; // (refractive index for ethyl alcohol)
7 theta2=asind(n1*sind(theta1)/n2); // degree(Angle of refraction)
8 disp(theta2, "Angle of refraction(degree)");
```

Scilab code Exa 6.2 No of channels

```
1 //Ex 6.2
2 clc; clear; close;
3 format('v',6);
4 clusters=10; //no. of clusters
5 cells=7; //no. of cells in a cluster
6 channels=10; //no. of channels in a cell
```

```
7 F=cells*channels;//no. of full duplex channels/
        cluster
8 disp(F,"Number of channels per cluster");
9 C=clusters*cells*channels;//total no. of channels
10 disp(C,"Total channel capacity");
```

Scilab code Exa 6.3 No of cells and frequency

```
1 / Ex 6.3
2 clc; clear; close;
3 format('v',6);
4 Asys=1520; //\text{km}^2
5 Ch=1140; //no. of channels
6 Acell=4; / \text{km}^2
7 i=3; j=2; //For hexagon cells
8 N=i^2+i*j+j^2;//cells in a cluster
9 disp(N,"(a) No. of cells in a cluster");
10 Acluster=N*Acell; //km<sup>2</sup>
11 cluster=Asys/Acluster;//no. of clusters
12 disp(cluster, "(b) Number of clusters");
13 disp(Acluster,"(c) Area of each cellular cluster(km
      ^2)");
14 C=cluster*Ch; //system capacity
15 disp(C,"(d) Increased system capacity(No. of
      channels)");
16 //Without frequency reuse :-
17 c_sys=Asys/Acell;//No. of cell in a system
18 ch_cell=Ch/c_sys;//No. of channels/cell
19 disp(ch_cell,"(e_i) Without frequency reuse, No. of
      channels/cell");
20 //With frequency reuse :-
21 ch_cell=Ch/N; //No. of channels/cell
22 disp(ch_cell,"(e_ii) With frequency reuse, No. of
      channels/cell");
```