

PATENT COOPERATION TREATY

PCT

**NOTIFICATION CONCERNING
SUBMISSION OR TRANSMITTAL
OF PRIORITY DOCUMENT**

(PCT Administrative Instructions, Section 411)

From the INTERNATIONAL BUREAU

To:

SHIMIZU, Hatsushi
 Kantetsu Tsukuba Building 6F
 1-1-1, Oroshi-machi
 Tsuchiura-shi, Ibaraki 300-0847
 JAPON

Date of mailing (day/month/year) 14 January 2002 (14.01.02)			
Applicant's or agent's file reference H1-106PCT3	IMPORTANT NOTIFICATION		
International application No. PCT/JP00/04514	International filing date (day/month/year) 06 July 2000 (06.07.00)		
International publication date (day/month/year) 18 January 2001 (18.01.01)	Priority date (day/month/year) 08 July 1999 (08.07.99)		
Applicant HELIX RESEARCH INSTITUTE et al			

1. The applicant is hereby notified of the date of receipt (except where the letters "NR" appear in the right-hand column) by the International Bureau of the priority document(s) relating to the earlier application(s) indicated below. Unless otherwise indicated by an asterisk appearing next to a date of receipt, or by the letters "NR", in the right-hand column, the priority document concerned was submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b).
2. This updates and replaces any previously issued notification concerning submission or transmittal of priority documents.
3. An asterisk(*) appearing next to a date of receipt, in the right-hand column, denotes a priority document submitted or transmitted to the International Bureau but not in compliance with Rule 17.1(a) or (b). In such a case, **the attention of the applicant is directed** to Rule 17.1(c) which provides that no designated Office may disregard the priority claim concerned before giving the applicant an opportunity, upon entry into the national phase, to furnish the priority document within a time limit which is reasonable under the circumstances.
4. The letters "NR" appearing in the right-hand column denote a priority document which was not received by the International Bureau or which the applicant did not request the receiving Office to prepare and transmit to the International Bureau, as provided by Rule 17.1(a) or (b), respectively. In such a case, **the attention of the applicant is directed** to Rule 17.1(c) which provides that no designated Office may disregard the priority claim concerned before giving the applicant an opportunity, upon entry into the national phase, to furnish the priority document within a time limit which is reasonable under the circumstances.

<u>Priority date</u>	<u>Priority application No.</u>	<u>Country or regional Office or PCT receiving Office</u>	<u>Date of receipt of priority document</u>
08 July 1999 (08.07.99)	11/194179	JP	25 Augu 2000 (25.08.00)
18 Octo 1999 (18.10.99)	60/159,586	US	20 Octo 2000 (20.10.00)

The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland Facsimile No. (41-22) 740.14.35	Authorized officer Shinji IGARASHI Telephone No. (41-22) 338.83.38
--	--

E P

U S

特許協力条約

P C T

国際調査報告

(法8条、法施行規則第40、41条)
[PCT18条、PCT規則43、44]

出願人又は代理人 の書類記号 H1-106PCT3	今後の手続きについては、国際調査報告の送付通知様式(PCT/ISA/220)及び下記5を参照すること。	
国際出願番号 PCT/JPOO/04514	国際出願日 (日.月.年) 06.07.00	優先日 (日.月.年) 08.07.99
出願人(氏名又は名称) 株式会社ヘリックス研究所		

国際調査機関が作成したこの国際調査報告を法施行規則第41条(PCT18条)の規定に従い出願人に送付する。この写しは国際事務局にも送付される。

この国際調査報告は、全部で 2 ページである。

この調査報告に引用された先行技術文献の写しも添付されている。

1. 国際調査報告の基礎

a. 言語は、下記に示す場合を除くほか、この国際出願がされたものに基づき国際調査を行った。
 この国際調査機関に提出された国際出願の翻訳文に基づき国際調査を行った。

b. この国際出願は、ヌクレオチド又はアミノ酸配列を含んでおり、次の配列表に基づき国際調査を行った。
 この国際出願に含まれる書面による配列表
 この国際出願と共に提出されたフレキシブルディスクによる配列表
 出願後に、この国際調査機関に提出された書面による配列表
 出願後に、この国際調査機関に提出されたフレキシブルディスクによる配列表
 出願後に提出した書面による配列表が出願時における国際出願の開示の範囲を超える事項を含まない旨の陳述書の提出があった。
 書面による配列表に記載した配列とフレキシブルディスクによる配列表に記録した配列が同一である旨の陳述書の提出があった。

2. 請求の範囲の一部の調査ができない(第I欄参照)。

3. 発明の単一性が欠如している(第II欄参照)。

4. 発明の名称は 出願人が提出したものと承認する。

次に示すように国際調査機関が作成した。

5. 要約は

出願人が提出したものと承認する。

第III欄に示されているように、法施行規則第47条(PCT規則38.2(b))の規定により国際調査機関が作成した。出願人は、この国際調査報告の発送の日から1カ月以内にこの国際調査機関に意見を提出することができる。

6. 要約書とともに公表される図は、

第 _____ 図とする。 出願人が示したとおりである。

なし

出願人は図を示さなかった。

本図は発明の特徴を一層よく表している。

A. 発明の属する分野の分類 (国際特許分類 (IPC))

Int. C1' C12N15/16, C12N15/12, C12N15/85, C12N5/10, C12P21/02,
C07K14/575, C07K14/72, C12Q1/68, C12Q1/02, A61K67/027
// (C12P21/02, C12R1:91)

B. 調査を行った分野

調査を行った最小限資料 (国際特許分類 (IPC))

Int. C1' C12N15/16, C12N15/12, C12N15/85, C12N5/10, C12P21/02,
C07K14/575, C07K14/72, C12Q1/68, C12Q1/02, A61K67/027

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

SwissProt/PIR/GeneSeq, Genbank/EMBL/DDBJ/GeneSeq, BIOSIS (DIALOG), WPI (DIALOG)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X/A	Peter S. Nelson et al., "An Expressed-Sequence-Tag Database of Human Prostate: Sequence Analysis of 1168 cDNA Clones", GENOMICS (1998) Vol. 47, No. 1, p. 12~25	7/1~6, 8~18

C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示すもの

「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの

「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す)

「O」口頭による開示、使用、展示等に言及する文献

「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの

「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの

「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの

「&」同一パテントファミリー文献

国際調査を完了した日

02. 10. 00

国際調査報告の発送日

10.10.00

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号 100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官(権限のある職員)

本間 夏子

4 N 9637

電話番号 03-3581-1101 内線 3488

14T

特許協力条約

PCT

国際予備審査報告

(法第12条、法施行規則第56条)
〔PCT36条及びPCT規則70〕

REC'D 21 SEP 2001

WIPO

PCT

出願人又は代理人 の書類記号 H 1 - 1 0 6 P C T 3	今後の手続きについては、国際予備審査報告の送付通知（様式PCT/IPEA/416）を参照すること。	
国際出願番号 PCT/JPOO/04514	国際出願日 (日.月.年) 06.07.00	優先日 (日.月.年) 08.07.99
国際特許分類 (IPC) Int.C17 C12N15/16, C12N15/12, C12N15/85, C12N5/10, C12P21/02, C07K14/575, C07K14/72, C12Q1/68, C12Q1/02, A01K67/027 // (C12P21/02, C12R1:91)		
出願人（氏名又は名称） 株式会社ヘリックス研究所		

1. 国際予備審査機関が作成したこの国際予備審査報告を法施行規則第57条（PCT36条）の規定に従い送付する。

2. この国際予備審査報告は、この表紙を含めて全部で 4 ページからなる。

この国際予備審査報告には、附属書類、つまり補正されて、この報告の基礎とされた及び／又はこの国際予備審査機関に対して訂正を含む明細書、請求の範囲及び／又は図面も添付されている。
(PCT規則70.16及びPCT実施細則第607号参照)
この附属書類は、全部で _____ ページである。

3. この国際予備審査報告は、次の内容を含む。

- I 国際予備審査報告の基礎
- II 優先権
- III 新規性、進歩性又は産業上の利用可能性についての国際予備審査報告の不作成
- IV 発明の単一性の欠如
- V PCT35条(2)に規定する新規性、進歩性又は産業上の利用可能性についての見解、それを裏付けるための文献及び説明
- VI ある種の引用文献
- VII 国際出願の不備
- VIII 国際出願に対する意見

国際予備審査の請求書を受理した日 02.02.01	国際予備審査報告を作成した日 05.09.01
名称及びあて先 日本国特許庁 (IPEA/JP) 郵便番号 100-8915 東京都千代田区霞が関三丁目4番3号	特許庁審査官（権限のある職員） 本間 夏子 電話番号 03-3581-1101 内線 3488
	4N 9637

I. 国際予備審査報告の基礎

1. この国際予備審査報告は下記の出願書類に基づいて作成された。(法第6条(PCT14条)の規定に基づく命令に応答するために提出された差し替え用紙は、この報告書において「出願時」とし、本報告書には添付しない。PCT規則70.16, 70.17)

 出願時の国際出願書類

<input type="checkbox"/> 明細書 第 _____	ページ、	出願時に提出されたもの
<input type="checkbox"/> 明細書 第 _____	ページ、	国際予備審査の請求書と共に提出されたもの
<input type="checkbox"/> 明細書 第 _____	ページ、	付の書簡と共に提出されたもの
<input type="checkbox"/> 請求の範囲 第 _____	項、	出願時に提出されたもの
<input type="checkbox"/> 請求の範囲 第 _____	項、	PCT19条の規定に基づき補正されたもの
<input type="checkbox"/> 請求の範囲 第 _____	項、	国際予備審査の請求書と共に提出されたもの
<input type="checkbox"/> 請求の範囲 第 _____	項、	付の書簡と共に提出されたもの
<input type="checkbox"/> 図面 第 _____	ページ/図、	出願時に提出されたもの
<input type="checkbox"/> 図面 第 _____	ページ/図、	国際予備審査の請求書と共に提出されたもの
<input type="checkbox"/> 図面 第 _____	ページ/図、	付の書簡と共に提出されたもの
<input type="checkbox"/> 明細書の配列表の部分 第 _____	ページ、	出願時に提出されたもの
<input type="checkbox"/> 明細書の配列表の部分 第 _____	ページ、	国際予備審査の請求書と共に提出されたもの
<input type="checkbox"/> 明細書の配列表の部分 第 _____	ページ、	付の書簡と共に提出されたもの

2. 上記の出願書類の言語は、下記に示す場合を除くほか、この国際出願の言語である。

上記の書類は、下記の言語である _____ 語である。

- 国際調査のために提出されたPCT規則23.1(b)にいう翻訳文の言語
- PCT規則48.3(b)にいう国際公開の言語
- 国際予備審査のために提出されたPCT規則55.2または55.3にいう翻訳文の言語

3. この国際出願は、スクレオチド又はアミノ酸配列を含んでおり、次の配列表に基づき国際予備審査報告を行った。

- この国際出願に含まれる書面による配列表
- この国際出願と共に提出されたフレキシブルディスクによる配列表
- 出願後に、この国際予備審査（または調査）機関に提出された書面による配列表
- 出願後に、この国際予備審査（または調査）機関に提出されたフレキシブルディスクによる配列表
- 出願後に提出した書面による配列表が出願時における国際出願の開示の範囲を超える事項を含まない旨の陳述書の提出があった
- 書面による配列表に記載した配列とフレキシブルディスクによる配列表に記録した配列が同一である旨の陳述書の提出があった。

4. 補正により、下記の書類が削除された。

- 明細書 第 _____ ページ
- 請求の範囲 第 _____ 項
- 図面 図面の第 _____ ページ/図

5. この国際予備審査報告は、補充欄に示したように、補正が出願時における開示の範囲を越えてされたものと認められるので、その補正がされなかつたものとして作成した。(PCT規則70.2(c) この補正を含む差し替え用紙は上記1. における判断の際に考慮しなければならず、本報告に添付する。)

V. 新規性、進歩性又は産業上の利用可能性についての法第12条（PCT35条(2)）に定める見解、それを裏付ける文献及び説明

1. 見解

新規性 (N)

請求の範囲 1-6, 8-18
請求の範囲 7 有

進歩性 (I S)

請求の範囲 1-6, 8-18
請求の範囲 7 無

産業上の利用可能性 (I A)

請求の範囲 1-18
請求の範囲 有

2. 文献及び説明 (PCT規則70.7)

文献 1 : GENOMICS January 1998, Vol. 47, No. 1, p. 12-15

請求の範囲の請求項 7 について、国際調査報告で引用された上記文献 1 より、新規性を有しない。文献 1 には、本願請求項 1 に記載の配列番号: 1 にハイブリダイズし、少なくとも 15 ヌクレオチドの鎖長を有する DNA について記載されている。

請求の範囲 1-6, 8-18 に記載された発明は、国際調査報告で引用された文献 1 に対して進歩性を有する。文献 1 には、配列 1 の塩基配列および配列 2 のアミノ酸配列で特定される新規な増殖分化因子に関する事項が記載されておらず、しかもその点は文献 1 から当業者といえども容易に想到し得ないものである。

VII. 国際出願に対する意見

請求の範囲、明細書及び図面の明瞭性又は請求の範囲の明細書による十分な裏付についての意見を次に示す。

請求の範囲の請求項 12, 13 に記載の「遺伝子」及び「受容体」について、請求項 2 に記載の新規蛋白質を用いてスクリーニングすることにより得られるものであるが、明細書中には該「遺伝子」及び「受容体」をスクリーニングして得るための具体的な方法はなんら記載されておらず、明細書により十分な裏付けがなされていないものである。

また、請求項 15 に記載の「化合物」についても同様である。

8T
Translation
10/030225
5010

PATENT COOPERATION TREATY

PCT

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

(PCT Article 36 and Rule 70)

Applicant's or agent's file reference H1-106PCT3	FOR FURTHER ACTION SeeNotificationofTransmittalofInternational Preliminary Examination Report (Form PCT/IPEA/416)	
International application No. PCT/JP00/04514	International filing date (day/month/year) 06 July 2000 (06.07.00)	Priority date (day/month/year) 08 July 1999 (08.07.99)
International Patent Classification (IPC) or national classification and IPC C12N 15/16, 15/12, 15/85, 5/10, C12P 21/02, C07K 14/575, 14/72, C12Q 1/68, 1/02, A61K 67/027 // (C12P 21/02, C12R 1:91)		
Applicant HELIX RESEARCH INSTITUTE		

1. This international preliminary examination report has been prepared by this International Preliminary Examining Authority and is transmitted to the applicant according to Article 36.
2. This REPORT consists of a total of 4 sheets, including this cover sheet.

This report is also accompanied by ANNEXES, i.e., sheets of the description, claims and/or drawings which have been amended and are the basis for this report and/or sheets containing rectifications made before this Authority (see Rule 70.16 and Section 607 of the Administrative Instructions under the PCT).

These annexes consist of a total of _____ sheets.

3. This report contains indications relating to the following items:

- I Basis of the report
- II Priority
- III Non-establishment of opinion with regard to novelty, inventive step and industrial applicability
- IV Lack of unity of invention
- V Reasoned statement under Article 35(2) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement
- VI Certain documents cited
- VII Certain defects in the international application
- VIII Certain observations on the international application

Date of submission of the demand 02 February 2001 (02.02.01)	Date of completion of this report 05 September 2001 (05.09.2001)
Name and mailing address of the IPEA/JP	Authorized officer
Facsimile No.	Telephone No.

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No.

PCT/JP00/04514

I. Basis of the report

1. With regard to the elements of the international application:*

the international application as originally filed
 the description:

pages _____, as originally filed
 pages _____, filed with the demand
 pages _____, filed with the letter of _____

the claims:

pages _____, as originally filed
 pages _____, as amended (together with any statement under Article 19)
 pages _____, filed with the demand
 pages _____, filed with the letter of _____

the drawings:

pages _____, as originally filed
 pages _____, filed with the demand
 pages _____, filed with the letter of _____

the sequence listing part of the description:

pages _____, as originally filed
 pages _____, filed with the demand
 pages _____, filed with the letter of _____

2. With regard to the language, all the elements marked above were available or furnished to this Authority in the language in which the international application was filed, unless otherwise indicated under this item.

These elements were available or furnished to this Authority in the following language _____ which is:

the language of a translation furnished for the purposes of international search (under Rule 23.1(b)).
 the language of publication of the international application (under Rule 48.3(b)).
 the language of the translation furnished for the purposes of international preliminary examination (under Rule 55.2 and/or 55.3).

3. With regard to any nucleotide and/or amino acid sequence disclosed in the international application, the international preliminary examination was carried out on the basis of the sequence listing:

contained in the international application in written form.
 filed together with the international application in computer readable form.
 furnished subsequently to this Authority in written form.
 furnished subsequently to this Authority in computer readable form.

The statement that the subsequently furnished written sequence listing does not go beyond the disclosure in the international application as filed has been furnished.

The statement that the information recorded in computer readable form is identical to the written sequence listing has been furnished.

4. The amendments have resulted in the cancellation of:

the description, pages _____
 the claims, Nos. _____
 the drawings, sheets/fig _____

5. This report has been established as if (some of) the amendments had not been made, since they have been considered to go beyond the disclosure as filed, as indicated in the Supplemental Box (Rule 70.2(c)).**

* Replacement sheets which have been furnished to the receiving Office in response to an invitation under Article 14 are referred to in this report as "originally filed" and are not annexed to this report since they do not contain amendments (Rule 70.16 and 70.17).

** Any replacement sheet containing such amendments must be referred to under item 1 and annexed to this report.

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No.

PCT/JP00/04514

V. Reasoned statement under Article 35(2) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement

1. Statement

Novelty (N)	Claims	1-6,8-18	YES
	Claims	7	NO
Inventive step (IS)	Claims	1-6,8-18	YES
	Claims	7	NO
Industrial applicability (IA)	Claims	1-18	YES
	Claims		NO

2. Citations and explanations

Document 1: Genomics, January 1998, Vol. 47, No. 1, pages 12-15

The subject matter of claim 7 does not appear to be novel in view of document 1 cited in the ISR. Document 1 describes a DNA having a chain length of at least 15 nucleotides hybridized with the SEQ ID NO: 1 described in claim 1 of the present application.

The subject matters of claims 1-6 and 8-18 appear to involve an inventive step in view of document 1 cited in the ISR. Document 1 does not describe a matter concerning the novel proliferating and differentiating factor specified by the base sequence of SEQ ID NO:1 and the amino acid sequence of SEQ ID NO:2, and a person skilled in the art could not have easily conceived of the matter from document 1 either.

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No.

PCT/JP00/04514

VIII. Certain observations on the international application

The following observations on the clarity of the claims, description, and drawings or on the question whether the claims are fully supported by the description, are made:

The “gene” and “receptor” described in claims 12 and 13 can be obtained by screening using the new protein described in claim 2. However, the specification does not describe any particular method for obtaining said “gene” and “receptor” by screening. So, the specification does not sufficiently support the “gene” or “receptor”.

This applies also to the “compound” described in claim 15.

(19) 世界知的所有権機関
国際事務局

(43) 国際公開日
2001年1月18日 (18.01.2001)

PCT

(10) 国際公開番号
WO 01/04312 A1

(51) 国際特許分類⁷: C12N 15/16, 15/12, 15/85,
5/10, C12P 21/02, C07K 14/575, 14/72, C12Q 1/68, 1/02,
A61K 67/027 // (C12P 21/02, C12R 1:91)

(21) 国際出願番号: PCT/JP00/04514

(22) 国際出願日: 2000年7月6日 (06.07.2000)

(25) 国際出願の言語: 日本語

(26) 国際公開の言語: 日本語

(30) 優先権データ:
 ✓ 特願平11/194179 1999年7月8日 (08.07.1999) JP
 ✓ 60/159,586 1999年10月18日 (18.10.1999) US

(71) 出願人(米国を除く全ての指定国について): 株式会社
ヘリックス研究所(HELIX RESEARCH INSTITUTE)
[JP/JP]; 〒292-0812 千葉県木更津市矢那1532番地3
Chiba (JP).

(72) 発明者; および

(75) 発明者/出願人(米国についてのみ): 太田紀夫(OTA,
Toshio) [JP/JP]; 〒251-0042 神奈川県藤沢市辻堂新町
1-2-7-105 Kanagawa (JP). 磯貝隆夫 (ISOGAI, Takao)
[JP/JP]; 〒300-0303 茨城県稻敷郡阿見町大室511-12
Ibaraki (JP). 西川哲夫 (NISHIKAWA, Tetsuo) [JP/JP];
〒173-0013 東京都板橋区氷川町27-3-403 Tokyo (JP).

河合弓利 (KAWAI, Yuri) [JP/JP]; 〒292-0812 千葉
県木更津市矢那4508-19-201 Chiba (JP). 吉田賢二
(YOSHIDA, Kenji) [JP/JP]; 〒292-0043 千葉県木更津
市東太田4-11-1-302 Chiba (JP). 増保安彦 (MASUHO,
Yasuhiko) [JP/JP]; 〒184-0011 東京都小金井市東町
5-19-15 Tokyo (JP).

(74) 代理人: 清水初志, 外(SHIMIZU, Hatsushi et al.); 〒
300-0847 茨城県土浦市卸町1-1-1 関鉄つくばビル6階
Ibaraki (JP).

(81) 指定国(国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB,
BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM,
DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL,
IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT,
RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA,
UG, US, UZ, VN, YU, ZA, ZW.

(84) 指定国(広域): ARIPO 特許 (GH, GM, KE, LS, MW,
MZ, SD, SL, SZ, TZ, UG, ZW), ユーラシア特許 (AM,
AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許
(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,
LU, MC, NL, PT, SE), OAPI 特許 (BF, BJ, CF, CG, CI,
CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:
— 國際調査報告書

(続葉有)

(54) Title: PROLIFERATION DIFFERENTIATION FACTOR

(54) 発明の名称: 増殖分化因子

(57) Abstract: A protein encoded by PSEC137 cloned from a full-length human cDNA library. This protein is a novel protein having a thorombopoietin (TPO)/erythropoietin (EPO)-like amino acid sequence. This protein is expected as a novel hematopoietic factor inducing the differentiation of hemic precursor cells, etc.

(57) 要約:

全長ヒト cDNA ライブラリーからクローニングされた PSEC137 がコードする蛋白質が提供された。この蛋白質は、トロンボポエチン(thrombopoietin; TPO)・エリスロポエチン(erythropoietin; EPO)様のアミノ酸配列を持つ、新規な蛋白質である。本発明の蛋白質は、血液系前駆細胞の分化等を誘導する新たな造血因子として期待できる。

WO 01/04312 A1

WO 01/04312 A1

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

明細書

増殖分化因子

技術分野

本発明は、増殖分化因子をコードする遺伝子に関する。

背景技術

血液細胞の形成は、少数の造血幹細胞が特定細胞系列の前駆細胞を生じ、その後増殖と分化を経て成熟した血液細胞を生成する過程よりなる。この過程は特異的に作用する複数のホルモンの働きによって制御されており、これらホルモンは増殖分化因子・コロニー刺激因子と総称される (Dexter (1989) Br. Med. Bull. 45, 337 ; Ogawa (1989) Environ. Health Persp. 80, 199 ; Metcalf (1985) Science 229, 16 ; Golde and Gasson (1988) Scientific American July, 62)。

増殖分化因子は、様々な細胞に対して、増殖や分化のシグナルを伝える液性因子である。たとえばエリスロポエチン(erythropoietin; EPO)は、赤血球系の前駆細胞の増殖と分化を促進する因子として単離された。EPOは、後に造血因子として貧血の治療に利用されることになる重要な増殖分化因子である。

EPOが赤血球系前駆細胞に作用するのに対して、巨核球系細胞の増殖を促す因子の存在が予測されていた。そして c-mpl リガンドとして単離された遺伝子によってコードされる蛋白質に巨核球細胞の増殖作用が見出された。c-mpl リガンドは、巨核球細胞増殖因子であることが明らかになり、トロンボポエチン(thrombopoietin; TPO)と同定された(Lok et al. (1994) Nature 369, 568; Bartley et al. (1994) Cell 77, 1117; de Sauvage et al. (1994) Nature 369, 533)。巨核球系細胞は、血小板の形成などに関わる細胞である。TPOによって、抗がん剤

投与の副作用による血小板減少症等の治療が可能になるのではないかと期待されている。

ヒトTPOはそのN末端部分(アミノ酸残基1-172)がヒトEPOに対し、23%の配列相同意を示し(Gurney et al. (1995) Blood 85, 981-988; Bartley et al. (1994) Cell 77, 1117-1124; de Sauvage et al. (1994) Nature 369, 533)、増殖分化因子群の中でファミリーを形成する。しかし、その後、この種のEPO/TPOファミリーに属する増殖分化因子についての報告は少ない。新たな増殖分化因子は、その増殖分化誘導活性の大きさや、作用する細胞のスペクトル等の点で、既知の因子とは異なっている可能性がある。そのため、新たな因子の単離が望まれている。

発明の開示

本発明は、増殖分化因子とそれをコードする遺伝子、並びにそれらの製造方法及び用途を提供することを課題とする。新規な増殖分化因子、あるいはその活性や発現を修飾する化合物は、血液細胞の異常に伴う疾患の治療薬として期待される。

そこで本発明者らは、上記の課題を解決するために、新規なヒト遺伝子のクローニングを目的として、下記の如く鋭意研究を行った。まず、オリゴキャップ法(Maruyama K. and Sugano S. Gene 138: 171-174, 1994; Suzuki Y. et al. Gene 200: 149-156, 1997)で作製した全長率の高いヒトcDNAライブラリーを構成するクローンを単離した。次いで、この方法で取得した全長率の高いcDNAクローンの塩基配列を5'側と3'側の両側から決定した。そして、ATGpr(Salamov A. A. et al. Bioinformatics 14: 384-390, 1998; <http://www.hri.co.jp/atgpr/>)等で全長cDNAクローンであると予想されるヒト全長cDNAを選択した。こうして得られたヒト全長cDNAクローンの塩基配列を利用し、PSORT(Nakai K and Kanehisa M. Genomics 14: 897-911, 1992)でシグナル配列を持つと予想されるクローン

を特異的に選別し、分泌蛋白質をコードする cDNA を有すると予想されるクローニングを取得した。該クローニングの全長 cDNA 配列を解析し、その塩基配列がコードするアミノ酸配列を推定した。そして推定アミノ酸配列に基づいて、BLAST(Altschul S. F. et al. J. Mol. Biol. 215: 403-410, 1990; Gish W. and States D. J. Nature Genet. 3: 266-272, 1993; <http://www.ncbi.nlm.nih.gov/BLAST/>)により、GenBank(<http://www.ncbi.nlm.nih.gov/Web/Genbank/index.html>)やSwissProt(http://www.ebi.ac.uk/ebi_docs/swissprot_db/swisshome.html)を利用して相同性解析を行った。

こうした解析を通じて、本発明者らは全長 cDNA クローニングの 1 つである PSEC0137 (以下、PSEC137 と記載する) に注目した。PSEC137 蛋白質 N 末端 213 残基は、TP0 における TP0 活性断片を含む N 末端 215 残基に対し 23.9% の同一性を示し、EP0193 残基に対しては、23.1% の同一性を示した (図 1)。蛋白質非重複データベースに対する BLAST 検索により、megakaryocyte stimulating factor (Genbank Accession, U70136)との相同性が示された (図 2)。C 末端領域では、PFAM thrombospondin type 1 domain が同定された (図 3)。PSEC137 蛋白質配列上には既存の蛋白質モティーフに属さない繰り返し配列が存在し (アミノ酸残基番号 47-127 と 128-208)、その配列は 84% 同一である。その他には構造的な共通性を持つ蛋白質は見出すことができず、PSEC137 が新規な蛋白質であることが示された。

これらの事実に基づき、本発明者らは、PSEC137 によってコードされる蛋白質が、新規な TP0/EPO 様分子であることを見出し本発明を完成させた。すなわち本発明は、以下の新規な分泌蛋白質、およびその遺伝子、並びにそれらの製造および用途に関する。

(1) 下記 (a) から (f) のいずれかに記載のポリヌクレオチド。

(a) 配列番号：1 に記載された塩基配列の蛋白質コード領域を含むポリヌクレオチド。

(b) 配列番号：2に記載されたアミノ酸配列からなる蛋白質をコードするポリヌクレオチド。

(c) 配列番号：2に記載に記載されたアミノ酸配列において、1若しくは数個のアミノ酸が置換、欠失、挿入、および／または付加したアミノ酸配列からなり、配列番号：2に記載されたアミノ酸配列からなる蛋白質と機能的に同等な蛋白質をコードするポリヌクレオチド。

(d) 配列番号：1に記載された塩基配列からなるポリヌクレオチドとストリンジエントな条件下でハイブリダイズするポリヌクレオチドであって、配列番号：2に記載されたアミノ酸配列からなる蛋白質と機能的に同等な蛋白質をコードするポリヌクレオチド。

(e) 配列番号：2に記載されたアミノ酸配列からなる蛋白質の部分ペプチドをコードするポリヌクレオチド。

(f) 配列番号：2に記載に記載されたアミノ酸配列において、1若しくは数個のアミノ酸が置換、欠失、挿入、および／または付加したアミノ酸配列からなり、配列番号：2に記載されたアミノ酸配列からなる蛋白質と機能的に同等な蛋白質の部分ペプチドをコードするポリヌクレオチド。

(2) (1)に記載のポリヌクレオチドによってコードされる蛋白質またはその部分ペプチド。

(3) 配列番号：2におけるN末端側の27から213アミノ酸残基から選択されるアミノ酸配列を含む、(2)に記載の部分ペプチド。

(4) (1)に記載のポリヌクレオチドが挿入されたベクター。

(5) (1)に記載のポリヌクレオチド、または(4)に記載のベクターを保持する形質転換体。

(6) (5)に記載の形質転換体を培養し、発現産物を回収する工程を含む、

(2)に記載の蛋白質またはその部分ペプチドの製造方法。

(7) (1)に記載のポリヌクレオチドのいずれか、またはその相補鎖にハイブリダイズするポリヌクレオチドであって、少なくとも15ヌクレオチドの鎖長を持つポリヌクレオチド。

(8) (7)に記載のポリヌクレオチドからなる、(1)に記載のポリヌクレオチド合成用プライマー。

(9) (7)に記載のポリヌクレオチドからなる、(1)に記載のポリヌクレオチドの検出用プローブ。

(10) (1)に記載のポリヌクレオチドもしくはその一部に対するアンチセンスDNA。

(11) (2)に記載の蛋白質の受容体をコードする遺伝子を単離する方法であって、

(a) 遺伝子のライブラリーを発現する細胞に(2)に記載の蛋白質を接触させる工程、および

(b) (2)に記載の蛋白質と結合することができるクローンを選択する工程、

を含む方法。

(12) (11)に記載の方法によって単離されうる(2)に記載の蛋白質の受容体をコードする遺伝子。

(13) (12)に記載の遺伝子によってコードされる(2)に記載の蛋白質の受容体。

(14) (2)に記載の蛋白質とその受容体との結合に干渉する化合物をスクリーニングする方法であって、

(a) (2)に記載の蛋白質の受容体を発現する細胞と(2)に記載の蛋白質とを、候補化合物の存在下で、または前記細胞と候補化合物を接触させた後に接触させる工程、および

(b) (2) に記載の蛋白質の結合量に干渉する化合物を選択する工程、を含む方法。

(15) (14) に記載の方法により単離されうる、(2) に記載の蛋白質とその受容体との結合に干渉する化合物。

(16) (2) に記載の蛋白質の発現が改変されるように操作された非ヒト脊椎動物。

(17) ノックアウト動物またはトランスジェニック動物である、(16) に記載の非ヒト脊椎動物。

(18) マウスである、(17) に記載の非ヒト脊椎動物。

本発明におけるアミノ酸配列や塩基配列の相同性は、Karlin and Altschul によるアルゴリズム BLAST (Proc. Natl. Acad. Sei. USA 90:5873-5877, 1993) によって決定することができる。このアルゴリズムに基づいて、NBLAST や XBLAST と呼ばれるプログラムが開発されている(Altschul et al. J. Mol. Biol. 215:40 3-410, 1990)。BLAST に基づいて NBLAST によって塩基配列を解析する場合には、パラメーターはたとえば score = 100、wordlength = 12 とする。また、BLAST に基づいて XBLAST によってアミノ酸配列を解析する場合には、パラメーターはたとえば score = 50、wordlength = 3 とする。BLAST と Gapped BLAST プログラムを用いる場合には、各プログラムのデフォルトパラメーターを用いる。これらの解析方法の具体的な手法は公知である(<http://www.ncbi.nlm.nih.gov.>)。

本発明は、新規な分泌蛋白質 PSEC137 に関する。本発明の蛋白質に含まれる P SEC137 (配列番号 : 2) は、ヒト胎盤組織から調製された cDNA をスクリーニングすることにより得られた遺伝子がコードする分泌蛋白質である。この蛋白質は、EPO や TPO の相同領域に類似した構造を持つ新規な増殖分化因子である。従って、本発明の蛋白質やその遺伝子、また、本発明の遺伝子の発現や蛋白質の活性を調節する化合物は、血液細胞の異常によってもたらされる疾患の予防や治療への応

用が考えられる。また、本発明の遺伝子や蛋白質の構造や発現レベルの異常を検出することにより、疾患の原因を明らかにすることもできる。

本発明の蛋白質は、組み換え蛋白質として、また天然の蛋白質として調製することが可能である。組み換え蛋白質は、例えば、後述するように本発明の蛋白質をコードする DNA を挿入したベクターを適当な宿主細胞に導入し、形質転換体内で発現した蛋白質を精製することにより調製することが可能である。

一方、天然の蛋白質は、例えば、後述する本発明の蛋白質に対する抗体を結合したアフィニティーカラムを利用して調製することができる(*Current Protocols in Molecular Biology* edit. Ausubel et al. (1987) Publish. John Wiley and Sons Section 16.1-16.19)。アフィニティー精製に用いる抗体は、ポリクローナル抗体であってもモノクローナル抗体であってもよい。また、インビトロトランスレーション(例えば、「On the fidelity of mRNA translation in the nucleic acid-treated rabbit reticulocyte lysate system. Dasso, M.C., Jackson, R.J. (1989) NAR 17:3129-3144」参照)などにより本発明の蛋白質を調製することも可能である。

本発明には、配列番号：2に示すアミノ酸配列において、1若しくは数個のアミノ酸が欠失、付加、挿入および／または他のアミノ酸による置換により修飾されたアミノ酸配列からなり、配列番号：2に記載のアミノ酸配列からなる蛋白質と機能的に同等な蛋白質が含まれる。「配列番号：2に記載のアミノ酸配列からなる蛋白質と機能的に同等」とは、対象となる蛋白質が PSEC137 蛋白質と同等の生物学的特性を有していることを意味する。PSEC137 蛋白質が持つ生物学的特性としては、血液系前駆細胞に作用し増殖分化を促進する活性を挙げることができる。本発明の蛋白質が有する増殖分化促進作用の少なくとも一部の同等の活性を有する蛋白質は、機能的に同等であると言うことができる。

本発明において PSEC137 と機能的に同等な蛋白質は、配列番号：2に示すアミノ酸配列に対して、少なくとも 85% 以上のアミノ酸の同一性を示すことが望ま

しい。本発明における機能的に同等な蛋白質は、具体的には90%以上、より望ましくは95%以上のアミノ酸配列の同一性を示す。アミノ酸配列の同一性は、BLAST検索アルゴリズムなどによって決定することができる。

蛋白質におけるアミノ酸の変異数や変異部位は、その機能が保持される限り制限はない。変異数は、典型的には、全アミノ酸の10%以内であり、好ましくは全アミノ酸の5%以内であり、さらに好ましくは全アミノ酸の1%以内である。

PSEC137と機能的に同等な蛋白質は、当業者であれば、例えば、蛋白質中のアミノ酸配列に変異を導入する方法（例えば、部位特異的変異誘発法（*Current Protocols in Molecular Biology* edit. Ausubel et al., 1987: Publish. John Wiley and Sons Section 8.1-8.5）を利用して調製することができる。また、このような蛋白質は、自然界におけるアミノ酸の変異により生じることもある。

その蛋白質が増殖分化因子としての活性を備えていることは、その受容体を発現する細胞の増殖や分化を観察することにより確認することができる。受容体発現細胞の同定には、組み換え蛋白質をアフィニティープローブとして利用できる。より具体的には、下記の方法を例示することができる。

(1) 受容体発現が同定された細胞、もしくは既知増殖因子受容体やそのホモログを発現する細胞を候補蛋白質の存在下で培養する。

(2) 細胞の増殖や分化の状態を観察し、陰性対照や既知の増殖分化因子存在下での結果と比較する。

候補蛋白質の増殖刺激活性は、細胞数の計測、 $[^3\text{H}]\text{-thymidine}$ の取り込みなどの方法によって評価できる。一般に血液前駆細胞の分化誘導作用は、前駆細胞コロニー形成に対する影響を調べることにより評価されている。このような評価方法は公知である("Colony Assays of Hematopoietic Cells Using Methylcellulose Media," An Introductory Technical Manual, Terry Fox Laboratory Media Preparation Service, Vancouver (1992))。このとき、必要に応じて、IL-3、IL-6や幹細胞因子(stem cell factor; SCF)等の造血細胞に作用するサ

イトカインなどを組み合わせることにより、増殖分化因子としての活性をより明瞭に検出することができる。

また実験動物に候補蛋白質を投与（皮下・静脈など）し、血液パラメータ、血清生化学値、病理像等を調べることにより、組み換え蛋白質が有する血液前駆細胞に対する作用を調べることができる。また、候補蛋白質をコードする遺伝子を過剰発現するトランスジェニック動物を作成することによっても、同様にその機能を評価することもできる。

また、PSEC137と機能的に同等な蛋白質は、当業者に周知のハイブリダイゼーション技術、あるいは遺伝子增幅技術を利用して単離することも可能である。即ち、当業者であれば、ハイブリダイゼーション技術(*Current Protocols in Molecular Biology* edit. Ausubel et al., 1987: Publish. John Wiley and Sons Selection 6.3-6.4)を用いてPSEC137をコードするDNA配列（配列番号：1）またはその一部をもとにこれと相同性の高いDNAを単離して、該DNAからこれら蛋白質と機能的に同等な蛋白質を得ることは、通常行いうことである。このようにPSEC137をコードするDNAとハイブリダイズするDNAにコードされる蛋白質であって、これら蛋白質と機能的に同等な蛋白質もまた本発明の蛋白質に含まれる。

機能的に同等な蛋白質を単離する生物としては、ヒト以外に、例えばラット、ウサギ、ニワトリ、ブタ、ウシ等が挙げられるが、これらに制限されない。

機能的に同等な蛋白質をコードするDNAを単離するためのハイブリダイゼーションのストリンジエンシーは、通常「1xSSC、0.1% SDS、37°C」程度であり、より厳しい条件としては「0.5xSSC、0.1% SDS、42°C」程度であり、さらに厳しい条件としては「0.2xSSC、0.1% SDS、65°C」程度であり、ハイブリダイゼーションの条件が厳しくなるほどプローブ配列と高い相同性を有するDNAの単離を期待しうる。但し、上記SSC、SDSおよび温度の条件の組み合わせは例示であり、当業者であれば、ハイブリダイゼーションのストリンジエンシーを決定する上記若しくは他の要素（例えば、プローブ濃度、プローブの長さ、ハイブリダイゼーシ

ヨン反応時間など)を適宜組み合わせることにより、上記と同様のストリンジエンシーを実現することが可能である。

このようなハイブリダイゼーション技術を利用して単離される蛋白質は、通常、PSEC137とアミノ酸配列において高い相同性を有する。高い相同性とは、少なくとも85%以上、好ましくは90%以上、さらに好ましくは95%以上の配列の同一性を指す。

その他、遺伝子増幅技術(PCR)(Current protocols in Molecular Biology edit. Ausubel et al., 1987: Publish. John Wiley and Sons Section 6.1-6.4)を用いてPSEC137をコードするDNA配列(配列番号:1)の一部をもとにプライマーを設計し、PSEC137をコードするDNA配列またはその一部と相同性の高いDNA断片を単離して、これをもとにPSEC137蛋白質と機能的に同等な蛋白質を得ることも可能である。

本発明は、また、本発明の蛋白質の部分ペプチドを含む。この部分ペプチドには、例えば、シグナルペプチドが除去された蛋白質が含まれる。さらに、抗体調製のための抗原ペプチドが含まれる。部分ペプチドが本発明の蛋白質に特異的であるためには、少なくとも7アミノ酸、好ましくは8アミノ酸以上、より好ましくは9アミノ酸以上のアミノ酸配列からなる。TP0等の公知の増殖分化因子においては、N末端側に種を越えて保存された領域を含むことが知られている。そして、この領域が活性に重要な役割を果たしていることも明らかにされている。したがって、本発明による部分ペプチドにおいても、N末端側の27位から213位のアミノ酸を含む配列から選択されたアミノ酸配列からなる部分ペプチドは、様々な有用性を持つ。具体的には、第1に、本発明の蛋白質の活性をブロックすることができる抗体を得るために免疫原として有用である。第2に、本発明の蛋白質に対してアゴニストやアンタゴニストとして作用する合成ペプチドのアミノ酸配列を与えることできる。

本発明の部分ペプチドは、本発明の蛋白質に対する抗体や本発明の蛋白質の競合阻害剤の調製以外に、例えば、本発明の蛋白質に結合する受容体のスクリーニングなどに利用し得る。本発明の部分ペプチドは、例えば、遺伝子工学的手法、公知のペプチド合成法、あるいは本発明の蛋白質を適当なペプチダーゼで切断することによって製造する。

更に、本発明は、上記本発明の蛋白質をコードするポリヌクレオチドに関する。本発明のポリヌクレオチドとしては、本発明の蛋白質をコードしうるものであれば、その形態に特に制限はなく、cDNA の他、ゲノム DNA、化学合成 DNA、RNA なども含まれる。また、本発明の蛋白質をコードしうる限り、遺伝暗号の縮重に基づく任意の塩基配列を有するポリヌクレオチドが含まれる。本発明のポリヌクレオチドは、上記のように、PSEC137 をコードする塩基配列（配列番号：1）もしくはその一部をプローブとしたハイブリダイゼーション法やこれら塩基配列をもとに合成したプライマーを用いた PCR 法等の常法により単離することが可能である。

また、本発明は、本発明のポリヌクレオチドが挿入されたベクターに関する。本発明のベクターとしては、挿入したポリヌクレオチドを安定に保持するものであれば特に制限されず、例えば宿主に大腸菌を用いるのであれば、クローニング用ベクターとしては pBluescript ベクター(Stratagene 社製)などが好ましい。本発明の蛋白質を生産する目的においてベクターを用いる場合には、特に発現ベクターが有用である。発現ベクターとしては、試験管内、大腸菌内、培養細胞内、生物個体内で蛋白質を発現するベクターであれば特に制限されないが、例えば、試験管内発現であれば pGEM ベクター（プロメガ社製）、大腸菌であれば pET ベクター（Novagen 社製）、培養細胞であれば pME18S-FL3 ベクター（GenBank Accession No. AB009864）、生物個体であれば pME18S ベクター（Mol Cell Biol. 8:466~472, 1988）などが好ましい。ベクターへの本発明のポリヌクレオチドの挿入は常法により制限酵素サイトを用いたリガーゼ反応により行うことができる。

(Current protocols in Molecular Biology edit. Ausubel et al., 1987: Publish. John Wiley and Sons. Section 11.4~11.11)。

加えて本発明は、本発明のベクターを保持する形質転換体に関する。本発明のベクターが導入される宿主細胞としては特に制限はなく、目的に応じて種々の宿主細胞が用いられる。蛋白質を高発現させるための真核細胞としては、例えば、COS 細胞、CHO 細胞などを例示することができる。配列番号：2 に示したアミノ酸配列からなる本発明の蛋白質は、TP0 と同様にいくつかの糖鎖の結合が予測される構造を備えている。N 型糖鎖修飾可能部位に相当するトリペプチド Asn-X-[Ser, Thr]（ここで X は任意のアミノ酸、[Ser, Thr] は Ser か Thr のいずれか一方を表す）は、アミノ酸配列上に 5カ所存在し、その可能修飾位置はアミノ酸残基番号 93、174、300、341、392 にあたる。したがって、配列番号：2 に記載のアミノ酸配列からなる蛋白質の発現に真核細胞を用いれば、糖鎖の付加された分子を得ることができる。このような分子は、天然に存在する形態と構造的に近いものと考えられる。したがって、発現宿主として真核細胞を用いる方法は、本発明の望ましい態様を構成する。真核細胞には、特に COS 細胞や CHO 細胞等の哺乳動物細胞の利用が好ましい。

宿主細胞へのベクター導入は、例えば、リン酸カルシウム沈殿法、電気パルス穿孔法 (Current protocols in Molecular Biology edit. Ausubel et al., 1987: Publish. John Wiley and Sons. Section 9.1-9.9)、リポフェクタミン法 (G IBCO-BRL 社製)、マイクロインジェクション法などの方法で行うことが可能である。

また、本発明は、配列番号：1 に記載のポリヌクレオチドと特異的にハイブリダイズし、少なくとも 15 ヌクレオチドの鎖長を有するポリヌクレオチドに関する。本発明のポリヌクレオチドと「特異的にハイブリダイズする」とは、通常のハイブリダイゼーション条件下、好ましくは厳格な条件下で、本発明のポリヌクレオチドとハイブリダイズし、他のポリヌクレオチドとはハイブリダイズしない

ことを意味する。このようなポリヌクレオチドは、本発明のポリヌクレオチドを検出、単離するためのプローブとして、また、本発明のポリヌクレオチドを増幅するためのプライマーとして利用することが可能である。プライマーとして用いる場合には、通常、15bp～100bp、好ましくは15bp～35bpの鎖長を有する。また、プローブとして用いる場合には、本発明のポリヌクレオチドの少なくとも一部若しくは全部の配列を有し、少なくとも15bpの鎖長のポリヌクレオチドが用いられる。

本発明のポリヌクレオチドは、本発明の蛋白質の異常を検査・診断するために利用できる。例えば、本発明のポリヌクレオチドをプローブやプライマーとして用いたノーザンハイブリダイゼーションやRT-PCRにより、発現異常を検査したり、本発明のポリヌクレオチドをプライマーとして用いたポリメラーゼ連鎖反応(PCR)により、ゲノムDNA-PCRやRT-PCRにより本発明の蛋白質をコードするDNAやその発現制御領域を増幅し、RFLP解析、SSCP、シークエンシング等の方法により、配列の異常を検査・診断することができる。

本発明において、「配列番号：1に記載のポリヌクレオチドと特異的にハイブリダイズし、少なくとも15ヌクレオチドの鎖長を有するポリヌクレオチド」には、本発明の蛋白質の発現を抑制するためのアンチセンスDNAが含まれる。アンチセンスDNAは、アンチセンス効果を引き起こすために、少なくとも15bp以上、好ましくは100bp、さらに好ましくは500bp以上の鎖長を有し、通常、3000bp以内、好ましくは2000bp以内の鎖長を有する。このようなアンチセンスDNAには、本発明の蛋白質の異常（機能異常や発現異常）などに起因した疾患（特に、血液細胞の異常に関連した疾患）の遺伝子治療への応用も考えられる。該アンチセンスDNAは、例えば、本発明の蛋白質をコードするポリヌクレオチド（例えば、配列番号：1に記載のDNA）の配列情報を基にホスホロチオエート法(Stein, 1988 Physicochemical properties of phosphorothioate oligodeoxynucleotides. Nucleic Acids Res 16, 3209-21, 1988)などにより調製することが可能である。

本発明のポリヌクレオチドまたはアンチセンス DNA は、遺伝子治療に用いる場合には、例えば、レトロウイルスペクター、アデノウイルスペクター、アデノ随伴ウイルスペクターなどのウイルスペクターやリポソームなどの非ウイルスペクターなどをを利用して、*ex vivo* 法や *in vivo* 法などにより患者へ投与を行う。

また、本発明は、本発明の蛋白質に結合する抗体に関する。本発明の抗体の形態には特に制限はなく、ポリクローナル抗体やモノクローナル抗体または抗原結合性を有するそれらの一部も含まれる。また、全てのクラスの抗体が含まれる。さらに、本発明の抗体には、ヒト化抗体などの特殊抗体も含まれる。

本発明の抗体は、ポリクローナル抗体の場合には、常法に従いアミノ酸配列に相当するオリゴペプチドを合成して家兎に免疫することにより得ることが可能であり (Current protocols in Molecular Biology edit. Ausubel et al., 1987: Publish. John Wiley and Sons. Section 11.12~11.13) 、一方、モノクローナル抗体の場合には、常法に従い大腸菌で発現し精製した蛋白質を用いてマウスを免疫し、脾臓細胞と骨髄腫細胞を細胞融合させたハイブリドーマ細胞の中から得ることができる (Current protocols in Molecular Biology edit. Ausubel et al., 1987: Publish. John Wiley and Sons. Section 11.4~11.11) 。

本発明の蛋白質に結合する抗体は、本発明の蛋白質の精製に加え、例えば、本発明の蛋白質の発現異常や構造異常の検査・診断に利用することも考えられる。具体的には、例えば組織、血液、または細胞などから蛋白質を抽出し、ウェスタンブロッティング、免疫沈降、ELISA 等の方法による本発明の蛋白質の検出を通して、発現や構造の異常の有無を検査・診断することができる。

また、本発明の蛋白質に結合する抗体を、本発明の蛋白質に関連した疾患の治療などの目的に利用することも考えられる。抗体を患者の治療目的で用いる場合には、ヒト抗体またはヒト化抗体が免疫原性の少ない点で好ましい。ヒト抗体は、免疫系をヒトのものと入れ換えたマウス (例えば、「Functional transplant of megabase human immunoglobulin loci recapitulates human antibody respons

e in mice, Mendez, M.J. et al. Nat. Genet. 15: 146-156, 1997」参照)に免疫することにより調製することができる。また、ヒト化抗体は、モノクローナル抗体の超可変領域を用いた遺伝子組み換えによって調製することができる(Methods in Enzymology 203, 99-121, 1991)。

また、本発明は、本発明の蛋白質を利用した、本発明の蛋白質を結合する受容体をコードする遺伝子の単離方法に関する。この単離方法は、いわゆる発現クローニングの原理に基づいている。すなわち本発明に基づく受容体の単離方法は、

- (a) 遺伝子のライブラリーを発現する細胞に本発明の蛋白質を接触させる工程、
- (b) 本発明の蛋白質を結合することができるクローンを選択する工程を含む。

更に本発明は、この方法によって取得することができる遺伝子によってコードされる受容体蛋白質に関する。本発明の蛋白質とその受容体、並びにそれらをコードする遺伝子は、両者の結合に干渉する化合物のスクリーニング方法に有用である。あるいは、この受容体を配列番号：2に示すアミノ酸配列からなる蛋白質のホモログを単離するために利用することができる。

前記単離方法に用いる遺伝子ライブラリーは、受容体の遺伝子を含む可能性を持つものであれば限定されない。このようなライブラリーには、たとえば、各種の血液細胞やその前駆細胞に由来する cDNA ライブラリーを用いることができる。より具体的には、造血幹細胞、巨核球系前駆細胞、更には巨核球系前駆細胞が分化した細胞である、前巨核芽球、巨核芽球、前巨核球、そして巨核球細胞等に由来する cDNA ライブラリーを用いることができる。これらの細胞から cDNA を調製し、更に当該 cDNA を発現ライブラリーとする方法は公知である。

リガンドとなる本発明の蛋白質を結合するクローンの選択には、標識蛋白質を用いるのが有利である。たとえば、本発明の蛋白質を GFP のような蛍光性の蛋白質との融合蛋白質として発現させることにより、蛍光標識リガンドとすることができる。あるいは、myc タグのような免疫学的なタグとの融合蛋白質として発現させた場合には、このタグに対する抗体を使って、リガンドをトレースするこ

ともできる。このようにしてリガンドを結合するクローンを選択し、単離することによって、本発明の蛋白質の受容体をコードする遺伝子を単離することができる。

単離された受容体は、本発明の蛋白質との結合に干渉する物質のスクリーニングに用いることができる。すなわち本発明は、次の工程を含む、本発明の蛋白質とその受容体との結合に干渉する化合物をスクリーニングする方法を提供する。

(a) 前記受容体を発現する細胞と本発明の蛋白質とを、候補化合物の存在下で、または前記細胞と候補化合物を接触させた後に接触させる工程、および
(b) 本発明の蛋白質の結合量に干渉する化合物を選択する工程

前記受容体を発現する細胞としては、前記受容体を発現していることが明らかな天然の細胞を用いることができる。あるいは、本来は前記受容体を発現していないが、その遺伝子によって形質転換された細胞を利用することもできる。本発明の蛋白質の、前記受容体を発現する細胞への結合は、本発明の蛋白質を標識しておくことによって容易に確認することができる。本発明の蛋白質は、GFP のような蛍光性蛋白質や、各種の酵素、免疫学的なタグなどの公知の方法によって標識することができる。

本発明のスクリーニング方法によって、本発明の蛋白質と同様に受容体に結合する部分ペプチドを得ることができる。このような部分ペプチドは、TP0/EP0 と同様の造血系細胞の分化増殖因子としての活性を持つ可能性があり、医薬品として期待できる。あるいは逆に、本発明の蛋白質の受容体への結合を阻害し、しかもシグナル伝達を伴わない化合物においては、本発明の蛋白質の機能をよりいつそう明らかにするための研究材料として有用である。

本発明のスクリーニング方法により単離された化合物を医薬品として用いる場合には、単離された化合物自体を直接患者に投与する以外に、公知の製剤学的方法により製剤化して投与を行うことも可能である。例えば、薬理学上許容される担体もしくは媒体、具体的には、滅菌水や生理食塩水、植物油、乳化剤、懸濁剤

などと適宜組み合わせて製剤化して投与することが考えられる。患者への投与は、例えば、動脈内注射、静脈内注射、皮下注射など当業者に公知の方法により行い、うる。投与量は、患者の体重や年齢、投与方法などにより変動するが、当業者であれば適切な投与量を適宜選択することが可能である。また、該化合物がDNAによりコードされうるものであれば、該DNAを遺伝子治療用ベクターに組込み、遺伝子治療を行うことも考えられる。投与量、投与方法は、患者の体重や年齢、症状などにより変動するが、当業者であれば適宜選択することが可能である。

また、本発明は、本発明の蛋白質の発現が改変されるように操作された非ヒト脊椎動物を提供する。ここで「発現の改変」には、発現の増強および減弱が含まれる。また、「蛋白質の発現の改変」は、転写と翻訳のいずれのステップの改変も含まれる。このような非ヒト脊椎動物には、内因性の本発明の蛋白質の発現を停止または減少させるように操作された動物（ノックアウト動物）および外来性的本発明の蛋白質を発現するように該蛋白質をコードする遺伝子が導入された動物（トランスジェニック動物）が含まれる。このようなノックアウトおよびトランスジェニック非ヒト脊椎動物は、文献「ニューロサイエンス・ラボマニュアル3、神経生物学のための胚と個体の遺伝子操作法（編集・近藤寿人、シュプリンガー・フェアラーク東京株式会社）」に従って作製することができる。

例えば、本発明のPSEC137蛋白質をコードするDNAが染色体に組込まれたトランスジェニック動物を作製することにより、これらの蛋白質の発現を上昇させたり、発現パターンや分布の改変を行うことができる。また、これらの内因性遺伝子の発現制御領域に変異を導入したり、他の発現制御領域を付加または置換することなどにより、本来の遺伝子の発現レベルと比較して人工的に転写レベルを上昇、下降、または発現パターンや分布の改変を行うことができる。一方、エキソンの一部を欠損させたり、翻訳領域への点突然変異の導入により終止コドンへ置換することにより、蛋白質への翻訳を修飾することもできる。また、アンチセン

ス RNA やリボザイムを発現させることで、PSEC137 遺伝子の発現を制御することも可能である。これらの変異の導入は、公知の方法により行うことができる。

このような非ヒト脊椎動物は、転写機能の研究、転写に関連する疾患のメカニズムの解明、医薬品のスクリーニング等に用いる疾患モデル動物の開発に有用である。

図面の簡単な説明

図 1 は、本発明の PSEC137 蛋白質のアミノ酸配列と既知の TP0 蛋白質 (a)、および EP0 蛋白質 (b) のアミノ酸配列の比較結果を示す図である。同一のアミノ酸は「:」で、相同なアミノ酸は「.」で示した。

図 2 は、本発明の PSEC137 蛋白質のアミノ酸配列と、megakaryocyte stimulating factor (Genbank Accession, U70136)との比較結果を示す図である。両者の構成アミノ酸が共通の場合にはそのアミノ酸を示す 1 文字コードを記載した。相同なアミノ酸は「+」で示した。

図 3 は、本発明の PSEC137 蛋白質のアミノ酸配列において、C 末端領域に見出された、PFAM thrombospondin type 1 domain を示す図である。

図 4 は、PSEC137 遺伝子の組織分布の解析結果を示す写真である。(a) はノーザンプロットの結果を、(b) は RT-PCR の結果を示している。

図 5 は、チオアフィニティ精製による PSEC137 蛋白質の精製結果を示す写真である。アミノ酸配列より予想される PSEC137 融合蛋白質の推定分子量は 78.6KDa である。

発明を実施するための最良の形態

次に、本発明を実施例によりさらに具体的に説明するが、本発明は下記実施例に限定されるものではない。

[実施例 1] PSEC137 の単離

ヒト胎盤組織から、文献 (J. Sambrook, E. F. Fritsch & T. Maniatis, Molecular Cloning Second edition, Cold Spring harbor Laboratory Press, 1989) 記載の方法により mRNA を抽出した。さらに、オリゴ dT セルロースで poly (A)⁺RNA を精製した。

poly(A)⁺RNA よりオリゴキャップ法 [M. Maruyama and S. Sugano, Gene, 138: 171-174 (1994)]により cDNA ライブラリーを作成した。Oligo-cap linker(ag caucgagu cggccuuguu ggccuacugg／配列番号：3)およびオリゴ dT プライマー(g cggtctgaag acggcctatg tggcctttt tttttttt tt／配列番号：4)を用いて文献 [鈴木・菅野, 蛋白質 核酸 酵素, 41: 197-201 (1996)、Y. Suzuki et al., Gene, 200: 149-156 (1997)] の記載にしたがって BAP (Bacterial Alkaline Phosphatase) 処理、TAP (Tobacco Acid Phosphatase) 処理、RNA ライゲーション、第一鎖 cDNA の合成と RNA の除去を行った。次いで、5' (agcatcgagt cggccttggt g／配列番号：5) と 3' (gcggctgaag acggcctatg t／配列番号：6) の PCR プライマーを用い PCR (polymerase chain reaction) により 2 本鎖 cDNA に変換し、Sfi I 切断した。次いで、DraIII で切断したベクター pME18SFL3 に cDNA の方向性を決めてクローニングし、cDNA ライブラリーを作成した。これらより得たクローンのプラスミド DNA について、挿入 cDNA サイズが 1 kb 以下のクローンを除いた後、cDNA の 5' 端と 3' 端の塩基配列を DNA シーケンシング試薬 (Dye Terminator Cycle Sequencing FS Ready Reaction Kit, dRhodamine Terminator Cycle Sequencing FS Ready Reaction Kit または BigDye Terminator Cycle Sequencing FS Ready Reaction Kit, PE Biosystems 社製) を用い、マニュアルに従ってシーケンシング反応後、DNA シーケンサー (ABI PRISM 377, PE Biosystems 社製) で DNA 塩基配列を解析した。

オリゴキャップ法で作製したライブラリーの cDNA の 5'-末端の全長率を次の方法で求めた。公共データベース中のヒト既知 mRNA と 5'-末端配列が一致する全クローンについて、公共データベース中の既知 mRNA 配列より長く 5'-末端が

伸びている場合と 5' -末端は短いが翻訳開始コドンは有している場合を「全長」と判断し、翻訳開始コドンを含んでいない場合を「非全長」と判断した。各ライブラリーでの cDNA クローンの 5' -末端の全長率 [全長クローン数 / (全長クローン数 + 非全長クローン数)] をヒト既知 mRNA と比較することにより求めた。その結果、このライブラリーの全長率は 6.2 % であり、5' -端配列の全長率が非常に高いことが分かった。

次に、ATGpr と ESTiMateFL を用いて、cDNA の 5' -末端の全長率を評価した。

ATGpr は、ATG コドンの周辺の配列の特徴から翻訳開始コドンであるかどうかを予測するためにヘリックス研究所の A. A. Salamov, T. Nishikawa, M. B. Swindells により開発したプログラムである[A. A. Salamov, T. Nishikawa, M. B. Swindells, Bioinformatics, 14: 384-390 (1998); <http://www.hri.co.jp/atg/pr/>]。結果は、その ATG が真の開始コドンである期待値で表した (0.05-0.94)。その結果、PSEC137 の ATGpr1 値は、0.94 であった。

ESTiMateFL は、公共データベース中の EST の 5' -末端配列や 3' -末端配列との比較による全長 cDNA の可能性の高いクローンを選択するヘリックス研究所の西川・太田らにより開発された方法である。

この方法は、ある cDNA クローンの 5' -末端や 3' -末端配列よりも、長く伸びた EST が存在する場合には、そのクローンは「全長ではない可能性が高い」と判断する方法で、大量処理可能なようにシステム化したものである。公共データベース中の EST 配列より長く 5' -末端が伸びている場合、および 5' -末端が短いクローンでも両者の差が 50 塩基以内である場合を便宜的に全長とし、それ以上短い場合を非全長とした。EST との比較による完全長らしさの評価では、比較対照とする EST の数が多ければ予測精度は高まるが、対象 EST が少ない場合には予測結果の信頼性が低くなる欠点はある。この方法は、5' -末端配列での全長率が約 60% のオリゴキヤップ法による cDNA クローンから全長ではない可能性の高いクローンを排除するのに使えば有効である。また、ESTiMateFL は、公共データベー

スへの EST 登録が適當数あるヒト未知 mRNA の cDNA の 3'-末端配列の全長性を評価するには、特に有効な方法である。

次に、オリゴキャップ法で作成したライブラリーのクローンから、5'-末端配列の中のすべての ATG コドンから予測される推定アミノ酸配列について、中井・金久が開発した蛋白質の局在性予測プログラム「PSORT」[K. Nakai & M. Kanehisa, Genomics, 14: 897-911 (1992)]を用い、多くの分泌蛋白質のアミノ末端に特徴的なシグナルペプチドと予測される配列の有無を解析することにより、シグナル配列をもつと予測されるクローン（分泌蛋白質、または膜蛋白質の可能性が高い）を特異的に選別した。その結果、PSEC137 は、分泌蛋白質、または膜蛋白質で N-末端にシグナル配列が存在し、全長 cDNA クローンであることが予測された。

更にこうして選択したクローンについて、全長 cDNA の塩基配列、並びに推定アミノ酸配列を決定した。塩基配列は、次に示す 3 種の方法を組み合わせ、各方法によって決定した塩基配列を完全にオーバーラップさせ、最終的な確定塩基配列を決定した。

(1) Licor DNA シーケンサーを用いた cDNA 挿入断片両末端からのロングリードシーケンス (Licor シーケンサー (アロカ社販売) のマニュアルに従ってシークエンシング反応後、Licor シーケンサーで DNA 塩基配列を解析した)、

(2) AT2 トランスポゾン試験管内転移を用いた Primer Island 法によるネストッドシーケンス [S. E. Devine and J. D. Boeke, Nucleic Acids Res., 22: 3765-3772, (1994)] (PE Biosystems 社製のキットとマニュアルにしたがってクローンを取得後、PE Biosystems 社製の DNA シーケンシング試薬でマニュアルに従ってシーケンシング反応し、ABI PRISM 377 で DNA 塩基配列を解析した)

(3) カスタム合成 DNA プライマーを用いたダイデオキシターミネーター法によるプライマーウォーキング (カスタム合成 DNA プライマーをもちい PE Biosyste

ms 社製の DNA シーケンシング試薬でマニュアルに従ってシーケンシング反応し、 ABI PRISM 377 で DNA 塩基配列を解析した)

これらの配列について、 ATGpr と PSORT による解析および GenBank や SwissProt に対する BLAST 解析を行った。その結果、 PSEC137 は、分泌蛋白質、または膜蛋白質で N-末端にシグナル配列が存在し、全長 cDNA クローンであると予測された。

〔実施例 2〕 蛋白質相同性解析

予想される PSEC137 蛋白質のアミノ酸配列についてモティーフ検索および既知蛋白質に対する相同性解析を行った。単離した PSEC137 cDNA は、 571 残基のアミノ酸配列（配列番号： 2 ）からなる蛋白質をコードしている。シグナル配列・蛋白質局在予想プログラム PSORT (Trends Biochem Sci. 1999 Jan;24(1):34-6.) により、 PSEC137 は 26 残基のシグナル配列を有し、アミノ酸 545 残基（アミノ酸 27-571 残基）を成熟型とする分泌蛋白質であることが予想された。 BLOCK S library (Nucl. Acids Res. 27:226-228 (1999)) に対する検索より、 erythropoietin (EPO)/ thrombopoietin (TPO) 蛋白質様の配列断片(BL00817)が低スコアで同定されたことから、 PSEC137 蛋白質とヒト EPO, TPO とそれぞれ二者間での配列比較を行った (SwissProt Accession. はそれぞれ、 P01588, P40225) 。

PSEC137 蛋白質 N 末端 213 残基は、 TPO 活性断片を含む N 末端 215 残基に対し 23.9% の同一性を示し、 EP0193 残基に対しては、 23.1% の相同性を示した (図 1) 。蛋白質非重複データベースに対する BLAST 検索により、 megakaryocyte stimulating factor (Genbank Accession, U70136)との相同性が示された (図 2) 。 C 末端領域では、 PFAM thrombospondin type 1 domain が同定された (図 3) 。 PSEC137 蛋白質配列上には既存の蛋白質モティーフ属さない繰り返し配列が存在し (アミノ酸残基番号 47-127 と 128-208) 、その配列は 84% 同一である。

〔実施例 3〕 遺伝子組織発現分布

PSEC137 遺伝子の組織発現分布をノーザンプロットおよび RT-PCR 法により解析した。PSEC137 StuI 遺伝子断片(243bp)を切り出し、RTG DNA Labelling Beads (dCTP) (アマシャムファルマシアバイオテク)を用いて ^{32}P -dCTP でラベルしプローブを調製した。ヒト 12 組織の mRNA がプロットされたフィルター(Human 1 2-Lane MTN Blot; クローンテック社)を用いて、ExpressHyb hybridization solution (クローンテック) 中にて、製造者の指示に従い、ハイブリダゼーションを行い、製造者の示す high stringency 条件でプローブを洗い落とした。

Human MTC Panel (クローンテック)を用いて、RT-PCR による組織発現解析を行った。增幅の際に用いたプライマーは以下の通りである。

hPSEC137FOR : GCTTCTGCCTGCGTTCCATGCTGTCTG (配列番号 : 7)

hPSEC137REV : GGCACACAGCCTCGGACCAACCTCACT (配列番号 : 8)

PCR のための耐熱性 DNA ポリメラーゼとして AmpliTaq Gold (PE アプライドバイオシステムズ) を選択し、製造者の指示通りに反応液を調整した。プライマーの終濃度は 200nM であった。反応サイクルは 94°C 10min の後、40 サイクルの 94°C 30sec, 55°C 30sec, 72°C 30sec であった。

図 4 にノーザンプロット (a) および RT-PCR の結果 (b) を示す。ノーザンプロットで約 3.0kb の転写産物が胎盤において検出された。このサイズは実施例 1 で示したクローニングした遺伝子配列全長と矛盾のない結果である。強い遺伝子発現は胎盤に限局しており、前立腺、精巣、腎（胎児期も含む）、脾に弱い発現が見られた。その発現が胎盤に限局して強く起こっていることより、PSEC137 産物の妊娠の成立維持、胎児生育維持への関与が示唆される。

〔実施例 4〕 PSEC137 蛋白質の調製

組み換え PSEC137 蛋白質は様々な発現システムにより生産することが可能である。例えばシグナル配列を除去した PSEC137 を組み換えチオレドキシン融合蛋白

質として発現可能である。pET-32a(Novagen)にシグナル配列を除去したPSEC137構造遺伝子を導入し、発現ベクターを構築した。PSEC137遺伝子を二つのプライマー-5'-ctccccgtgaagaaggccgcggctc-3'（配列番号：9）と5'-gcaagcttctagtactccttggcctcctgcaa-3'（配列番号：10）を用いてPCR増幅し、この断片をHindIIIで消化後、EcoRVとHindIIIで消化したpET32aへクローニングした。構築した発現ベクターでBL21(DE3)*trxB*株を形質転換し、Isopropyl β -D(-)-Thio galactopyranoside添加により発現誘導を行った。培養温度を30°Cにして発現誘導を行うことにより、約50%を可溶性蛋白質として回収できた。

以下、可溶性画分からの精製について例示する。培養(100mL)を27°Cにて行い、発現誘導を行ってから更に培養した培養液を遠心し、そのペレットを-80°Cのフリーザーにストックした。ペレットを氷上にて溶解後、5mLのプロテアーゼ阻害剤を含むバクテリア蛋白質抽出液B-PER (PIERCE)に懸濁した。室温にて10分間放置した後、遠心、上清を22 μ m濾過し、これをチオレドキシンに対するアフィニティ精製(ThioBond Resin:Invrogen)に供した。バッチにて結合後(1mL resin)、カラムにバックし、1mM 2-mercaptoethanol (2-ME)含有Tris buffer saline (pH 7.4)にて洗浄した。その後、それぞれ3mLの5, 10, 50, 100, 200, 500, 1000 mM 2-メルカプトエタノール(2-ME)にて溶出し、それぞれ集めた画分をSDS-PAGEおよびウエスタンプロットにて分析した。目的とするPSEC137融合蛋白質を、上記の条件にて樹脂に結合させ、50-200 mM 2-MEで溶出することにより部分精製が可能であった(図5)。

産業上の利用の可能性

本発明によって、新規な蛋白質PSEC137とそれをコードする遺伝子が提供された。PSEC137はTP0/EP0様のアミノ酸配列を含む蛋白質である。したがって、この蛋白質は増殖分化因子として有用である。本発明の蛋白質は、例えば血液系細胞に関する分化増殖活性が期待できる。この活性を利用すれば、造血作用を持つ

新規な医薬品とすることができます。一方本発明の遺伝子は、この蛋白質の製造に有用である。

また本発明の蛋白質をリガンドとして、血液系細胞が持つ増殖分化因子の新規な受容体を取得することができる。

請求の範囲

1. 下記 (a) から (f) のいずれかに記載のポリヌクレオチド。

(a) 配列番号：1に記載された塩基配列の蛋白質コード領域を含むポリヌクレオチド。

(b) 配列番号：2に記載されたアミノ酸配列からなる蛋白質をコードするポリヌクレオチド。

(c) 配列番号：2に記載に記載されたアミノ酸配列において、1若しくは数個のアミノ酸が置換、欠失、挿入、および／または付加したアミノ酸配列からなり、配列番号：2に記載されたアミノ酸配列からなる蛋白質と機能的に同等な蛋白質をコードするポリヌクレオチド。

(d) 配列番号：1に記載された塩基配列からなるポリヌクレオチドとストリンジエントな条件下でハイブリダイズするポリヌクレオチドであって、配列番号：2に記載されたアミノ酸配列からなる蛋白質と機能的に同等な蛋白質をコードするポリヌクレオチド。

(e) 配列番号：2に記載されたアミノ酸配列からなる蛋白質の部分ペプチドをコードするポリヌクレオチド。

(f) 配列番号：2に記載に記載されたアミノ酸配列において、1若しくは数個のアミノ酸が置換、欠失、挿入、および／または付加したアミノ酸配列からなり、配列番号：2に記載されたアミノ酸配列からなる蛋白質と機能的に同等な蛋白質の部分ペプチドをコードするポリヌクレオチド。

2. 請求項1に記載のポリヌクレオチドによってコードされる蛋白質またはその部分ペプチド。

3. 配列番号：2におけるN末端側の27から213アミノ酸残基から選択されるアミノ酸配列を含む、請求項2に記載の部分ペプチド。

4. 請求項1に記載のポリヌクレオチドが挿入されたベクター。

5. 請求項 1 に記載のポリヌクレオチド、または請求項 4 に記載のベクターを保持する形質転換体。
6. 請求項 5 に記載の形質転換体を培養し、発現産物を回収する工程を含む、請求項 2 に記載の蛋白質またはその部分ペプチドの製造方法。
7. 請求項 1 に記載のポリヌクレオチドのいずれか、またはその相補鎖にハイブリダイズするポリヌクレオチドであって、少なくとも 15 ヌクレオチドの鎖長を持つポリヌクレオチド。
8. 請求項 7 に記載のポリヌクレオチドからなる、請求項 1 に記載のポリヌクレオチド合成用プライマー。
9. 請求項 7 に記載のポリヌクレオチドからなる、請求項 1 に記載のポリヌクレオチドの検出用プローブ。
10. 請求項 1 に記載のポリヌクレオチドもしくはその一部に対するアンチセンス DNA。
11. 請求項 2 に記載の蛋白質の受容体をコードする遺伝子を単離する方法であつて、
 - (a) 遺伝子のライブラリーを発現する細胞に請求項 2 に記載の蛋白質を接觸させる工程、および
 - (b) 請求項 2 に記載の蛋白質と結合することができるクローンを選択する工程、
を含む方法。
12. 請求項 11 に記載の方法によって単離されうる請求項 2 に記載の蛋白質の受容体をコードする遺伝子。
13. 請求項 12 に記載の遺伝子によってコードされる請求項 2 に記載の蛋白質の受容体。
14. 請求項 2 に記載の蛋白質とその受容体との結合に干渉する化合物をスクリーニングする方法であつて、

(a) 請求項 2 に記載の蛋白質の受容体を発現する細胞と請求項 2 に記載の蛋白質とを、候補化合物の存在下で、または前記細胞と候補化合物を接触させた後に接触させる工程、および

(b) 請求項 2 に記載の蛋白質の結合量に干渉する化合物を選択する工程、を含む方法。

15. 請求項 1 4 に記載の方法により単離されうる、請求項 2 に記載の蛋白質とその受容体との結合に干渉する化合物。

16. 請求項 2 に記載の蛋白質の発現が改変されるように操作された非ヒト脊椎動物。

17. ノックアウト動物またはトランスジェニック動物である、請求項 1 6 に記載の非ヒト脊椎動物。

18. マウスである、請求項 1 7 に記載の非ヒト脊椎動物。

1/5

図 1

(a) PSEC137 213 aa vs. TPO 215 aa 23.9% identity;

	10	20	30	40	50	
psec137	MRALDRAGLLLCVLLAALLEAALGLPVKKPRLRGPRPGS-LTRLAEV	-----	SASPDP			
tpo	MELTE-----LLLKVVML---LTARLTLSSPAPPACDLRVLSKLLRDSHVLSRLSQCP	EV				
	10	20	30	40	50	
	60	70	80	90	100	
psec137	RPLKEEEEAPLLP-----RTHLQAEPHQH--GCWTVTPEAAMTPGNTTPR	-----TPEVTP				
tpo	HPLPTPVLLPAVDFSLGEWKTQMEETKAQDILGAVTLLLEGVMAARGQLGPTCLSSLLGQ					
	60	70	80	90	100	
	110	120	130	140	150	160
psec137	LRLELQKLPGLASTLSTP-NPDTQASASPDPRPLREEEEARLLPRTHLQAELHQHGCWT					
tpo	LSGQVRLLLALQSLLGTQLPPQGRTTAHKDPNAIFLSFQHLLRGKVRF---LMLVGGST					
	120	130	140	150	160	170
	170	180	190	200	210	
psec137	VTEPAALTGPGNATPPRTQEVTPLLLELQKLPELVHATLSTPNPDNQVTIK					
tpo	LCVRRA-PPTTAVPSRTS---LVTLNELPNRITSGLLETNFTASARTTG					
	180	190	200	210		

(b) PSEC137 213 aa vs. EPO 193 aa 23.1% identity;

	10	20	30	40	50	
psec137	MRALDRAGLLC---VLLAALLEAALGLPV-KKPRLRGPRPGSLTRLAEVSASPDPRP					
EPO	M-----GVHECPAWLWLLSLLSPLGLPVLGAP-----PRLICDSRVLE-----RY					
	10	20	30	40		
	60	70	80	90	100	110
psec137	LKEEEEAPLLPRTHLQAEPHQHGCWTVTPEAAMTPGNTTPRTPEVTPLRLELQKLPGA					
EPO	LLEAKEAENI--TTGCAE-HCSLNENITVPD--TKVNFYAWKRMEVGQQAVEVWQ--GLA					
	50	60	70	80	90	
	120	130	140	150	160	170
psec137	STTLSTPNPDQASASPD-PRLREEEEARLLPRTHLQAELHQHGCW--TVTEPAALTGP					
EPO	LLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLLRALGAQKEAISPPDA---A					
	100	110	120	130	140	150
	180	190	200	210		
psec137	NATPPRTQEVTPLLLELQKLPELVHATLSTPNPDNQVTI-K					
EPO	SAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGACRTGDR					
	160	170	180	190		

2/5

図 2

Score = 135 (47.5 bits), Expect = 6.5e-05, P = 6.5e-05
Identities = 57/210 (27%), Positives = 79/210 (37%)

Query: 29 VKKPRLRGPRPGSLTRLAEVSASPDPRPLKEEEEAPLLPRTHLQAEPHQHGCWTVTEPAA 88
+K+P P+ + LA + +P ++ AP P+ P+ T EPA
Sbjct: 717 LKEPAPTPKKPAPKELAPTTK-EPTSTTSQDPAPTPKGTAAPTPKEPAPTPKEPAP 775

Query: 89 MTPGNTPRPEVTPLRLELQKLPGLASTTLSTPNPDTQASASPDPRPLREEEEARLLP 148
TP T P E P + LA TT P T S P P +E A P
Sbjct: 776 TTPKGTAAPTLKEPAPTPKKPAPKELAPTTKGPTSTT---SDKPAPTPKETAPTP 831

Query: 149 RTHLQAEHQHGCWTVTEPAALTPGNATPPRTQEV-TPLLLELQKLPELVHATL--STPN 205
+ T +PA TP PP T EV TP K P +H + STP
Sbjct: 832 KEPAPT-----TPKKPAPTP-ETPPPTSEVSTPTT---KEPTTIHKSPDESTPE 879

Query: 206 PDNQVTIKVVEDPQAEVSIDLAEPSNPPPQDT 238
+ T K +E+ E + P+ P+ T
Sbjct: 880 LSAEPTPKALENSPKEPGVPTTKTPAATKPEMT 912

3/5

☒ 3

Report scores above: 17.00
Scan window size: 1000
Do complementary strand: no
Fancy alignment output: yes
[Printing multiple non-overlapping hits per sequence]

44.35 (bits) f: 330 t: 370 Target: PSEC137

Alignment to HMM consensus:

*SPWsEWSPCSVTCGMGMRRqRMCNmPfPMgGePCtgDvQEETEMCnMM
+WS+WSPCS C+ G ++R+R C CT + T+ C +
PSEC137 330 KEWSPWSPCSGNCSTGKQQRTRPCG-----YGCTATE---TRTC-DL 367

dPC*
+ C
PSEC137 368 PSC 370

図 4

図 5

1/12

SEQUENCE LISTING

<110> Helix Research Institute

<120> Differentiation Growth Factor

<130> H1-106PCT3

<140>

<141>

<150> JP 1999-194179

<151> 1999-07-08

<150> US 60/159586

<151> 1999-10-18

<160> 10

<170> PatentIn Ver. 2.0

<210> 1

<211> 2981

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (58)..(1770)

<400> 1

gactgggttc gcggccgcgt gcagaggtgc aggcagagca gcctcggaac cgagacg 57

atg cgt gcg ctc cgc gac cga gcc ggg ctc ctc ctc tgc gtg ctg ctg 105

Met Arg Ala Leu Arg Asp Arg Ala Gly Leu Leu Leu Cys Val Leu Leu

1

5

10

15

2/12

ctg	gcg	gcf	ctg	ctg	gag	gcf	gcf	cta	ggg	ctc	ccc	gtg	aag	aag	ccg	153
Leu	Ala	Ala	Leu	Leu	Glu	Ala	Ala	Leu	Gly	Leu	Pro	Val	Lys	Lys	Pro	
															30	
			20							25						
cgf	ctc	cgc	gga	cca	cgf	cct	ggg	agc	ctc	acg	agg	ctc	gca	gag	gtc	201
Arg	Leu	Arg	Gly	Pro	Arg	Pro	Gly	Ser	Leu	Thr	Arg	Leu	Ala	Glu	Val	
															45	
			35							40						
tca	gcc	tcc	cca	gat	cct	agg	cct	ctg	aag	gaa	gag	gag	gag	gca	cca	249
Ser	Ala	Ser	Pro	Asp	Pro	Arg	Pro	Leu	Lys	Glu	Glu	Glu	Glu	Ala	Pro	
															60	
			50							55						
ctg	ctc	ccc	aga	acc	cac	ctg	cag	gca	gag	cca	cac	caa	cat	gga	tgc	297
Leu	Leu	Pro	Arg	Thr	His	Leu	Gln	Ala	Glu	Pro	His	Gln	His	Gly	Cys	
															80	
			65				70				75					
tgg	act	gtc	act	gag	cca	gca	gcc	atg	acc	cca	ggc	aac	acc	acc	cct	345
Trp	Thr	Val	Thr	Glu	Pro	Ala	Ala	Met	Thr	Pro	Gly	Asn	Thr	Thr	Pro	
															95	
			85							90						
ccc	agg	acc	cca	gag	gtt	act	ccg	ttg	cgf	ctg	gag	ctg	cag	aag	ctg	393
Pro	Arg	Thr	Pro	Glu	Val	Thr	Pro	Leu	Arg	Leu	Glu	Leu	Gln	Lys	Leu	
															110	
			100							105						
ccg	gga	ttg	gcc	agc	aca	acc	ttg	agt	acc	cct	aac	cct	gat	acc	cag	441
Pro	Gly	Leu	Ala	Ser	Thr	Thr	Leu	Ser	Thr	Pro	Asn	Pro	Asp	Thr	Gln	
															125	
			115				120									
gct	tca	gcc	tcc	cca	gat	cct	agg	cct	ctg	agg	gaa	gag	gag	gag	gca	489
Ala	Ser	Ala	Ser	Pro	Asp	Pro	Arg	Pro	Leu	Arg	Glu	Glu	Glu	Ala		
															140	
			130				135									
cga	ctg	ctc	ccc	aga	acc	cac	ctg	cag	gca	gag	cta	cac	caa	cat	gga	537
Arg	Leu	Leu	Pro	Arg	Thr	His	Leu	Gln	Ala	Glu	Leu	His	Gln	His	Gly	
															160	
			145				150				155					
tgt	tgg	act	gtc	act	gag	cca	gca	gcc	ctg	acc	cca	ggg	aat	gcc	acg	585

3/12

Cys Trp Thr Val Thr Glu Pro Ala Ala Leu Thr Pro Gly Asn Ala Thr			
165	170	175	
cct ccc agg acc cag gag gtt act ccc ttg ctg ctg gag ctg cag aag 633			
Pro Pro Arg Thr Gln Glu Val Thr Pro Leu Leu Leu Glu Leu Gln Lys			
180	185	190	
ctg cca gaa ttg gtc cac gca acc ttg agt acc cct aac cct gat aac 681			
Leu Pro Glu Leu Val His Ala Thr Leu Ser Thr Pro Asn Pro Asp Asn			
195	200	205	
cag gtg acc atc aag gtg gtg gag gac ccc cag gcc gag gtg tcg ata 729			
Gln Val Thr Ile Lys Val Val Glu Asp Pro Gln Ala Glu Val Ser Ile			
210	215	220	
gac ctg ttg gct gag ccc agc aat ccc ccg ccc cag gat acc ctt agc 777			
Asp Leu Leu Ala Glu Pro Ser Asn Pro Pro Gln Asp Thr Leu Ser			
225	230	235	240
tgg ctg ccc gcc ctc tgg ccc ttc ctc tgg gga gac tac aaa gga gag 825			
Trp Leu Pro Ala Leu Trp Pro Phe Leu Trp Gly Asp Tyr Lys Gly Glu			
245	250	255	
gaa aaa gac agg gcc cca ggg gag aag ggg gag gaa aag gag gaa gac 873			
Glu Lys Asp Arg Ala Pro Gly Glu Lys Gly Glu Glu Lys Glu Glu Asp			
260	265	270	
gag gac tat cct tca gag gat atc gag ggt gag gat caa gag gac aaa 921			
Glu Asp Tyr Pro Ser Glu Asp Ile Glu Gly Glu Asp Gln Glu Asp Lys			
275	280	285	
gag gaa gat gag gaa gag cag gcg ctc tgg ttc aat gga act aca gac 969			
Glu Glu Asp Glu Glu Glu Gln Ala Leu Trp Phe Asn Gly Thr Thr Asp			
290	295	300	
aac tgg gac cag ggc tgg ctg gcc ccc ggg gat tgg gtc ttc aag gat 1017			
Asn Trp Asp Gln Gly Trp Leu Ala Pro Gly Asp Trp Val Phe Lys Asp			

4/12

305	310	315	320	
				1065
tct gtc agc tac gac tat gag cct cag aag gag tgg agt ccc tgg tct Ser Val Ser Tyr Asp Tyr Glu Pro Gln Lys Glu Trp Ser Pro Trp Ser				
325	330	335		
				1113
ccc tgc agt ggg aac tgc agc act ggc aag cag cag agg act cgg ccc Pro Cys Ser Gly Asn Cys Ser Thr Gly Lys Gln Gln Arg Thr Arg Pro				
340	345	350		
				1161
tgt ggc tat ggc tgc act gcc acc gag acc cgt acc tgt gac ctg ccc Cys Gly Tyr Gly Cys Thr Ala Thr Glu Thr Arg Thr Cys Asp Leu Pro				
355	360	365		
				1209
tcc tgt cct ggc act gag gac aag gac acc ttg ggc ctc ccc agt gag Ser Cys Pro Gly Thr Glu Asp Lys Asp Thr Leu Gly Leu Pro Ser Glu				
370	375	380		
				1257
gag tgg aag ctc ctg gcc cgc aat gct acg gac atg cat gat caa gat Glu Trp Lys Leu Leu Ala Arg Asn Ala Thr Asp Met His Asp Gln Asp				
385	390	395	400	
				1305
gtg gac agc tgt gag aag tgg ctg aac tgc aag agc gac ttc cta atc Val Asp Ser Cys Glu Lys Trp Leu Asn Cys Lys Ser Asp Phe Leu Ile				
405	410	415		
				1353
aag tat ctg agc cag atg ctg cgg gac ctg ccc agc tgc ccg tgt gcc Lys Tyr Leu Ser Gln Met Leu Arg Asp Leu Pro Ser Cys Pro Cys Ala				
420	425	430		
				1401
tac cca ctg gag gcc atg gac agc cct gtg agc cta cag gac gag cac Tyr Pro Leu Glu Ala Met Asp Ser Pro Val Ser Leu Gln Asp Glu His				
435	440	445		
				1449
cag ggc cgc agc ttc cgg tgg agg gat gcc agt ggc cct cgc gag cgc Gln Gly Arg Ser Phe Arg Trp Arg Asp Ala Ser Gly Pro Arg Glu Arg				
450	455	460		

5/12

ctg gac atc tac cag ccc acg gcg cgc ttc tgc ctg cgt tcc atg ctg			1497
Leu Asp Ile Tyr Gln Pro Thr Ala Arg Phe Cys Leu Arg Ser Met Leu			
465	470	475	480
tct ggg gag agc agc aca ctg gcc gcc cag cac tgc tgc tat gac gag			1545
Ser Gly Glu Ser Ser Thr Leu Ala Ala Gln His Cys Cys Tyr Asp Glu			
485	490	495	
gac agc cgg ctg ctg acc cgt ggc aag ggc gcc ggc atg ccc aac ctc			1593
Asp Ser Arg Leu Leu Thr Arg Gly Lys Gly Ala Gly Met Pro Asn Leu			
500	505	510	
atc agc acc gac ttc tca cct aag ctg cac ttc aag ttc gac acg acg			1641
Ile Ser Thr Asp Phe Ser Pro Lys Leu His Phe Lys Phe Asp Thr Thr			
515	520	525	
ccc tgg atc ctg tgc aag ggg gac tgg agc cgc ctc cac gct gtg ctc			1689
Pro Trp Ile Leu Cys Lys Gly Asp Trp Ser Arg Leu His Ala Val Leu			
530	535	540	
cct ccc aac aac ggc cga gcc tgc acc gac aac ccc ctg gag gag gag			1737
Pro Pro Asn Asn Gly Arg Ala Cys Thr Asp Asn Pro Leu Glu Glu Glu			
545	550	555	560
tac cta gca cag ttg cag gag gcc aag gag tac tagtgacggg gttgctgaac			1790
Tyr Leu Ala Gln Leu Gln Glu Ala Lys Glu Tyr			
565	570		
agacactgca gggagagggc aggccggctgc tgctgttgc cgggagaact ttccctggtag			1850
ggccctcacc cgccccctgcc cagacagggt gagaaaaaggg ctccccact gaggttggtc			1910
cgaggctgtg tgccctctgc cagcgacccc gaagcagata tctcagtgaa gtttagtgaga			1970
aggttgaagg gtatgttaggg cccagggtgg gtgtccctgg gagccctgga aatgtgcata			2030

6/12

tgtgcatgtg tctgccgggg cctccctctg ctgcctgctg ggaccctggc cactcatttt 2090
tctcctcctt gggagctggg ctcttctgcc ctggctctgc acataagtgt tagccagcag 2150
ctccagaaaa atcccatttc ccgggatctg ccacgagtca ctcctactcc accctgatgg 2210
ccagcagagg aagggccact cttctcatgg gcacagccat ccttgcggg gggggcatcc 2270
agccccgggtg gccacccctc cttatctctg ggtggtgcac atgcccitct ttccccactc 2330
cctgccacga gccactgcac aggaggctat ctgtagcccc aagctgcctt tctgttggac 2390
accaacttta gtcttggct gcaagccagc ccagctgagg cgaagtggac tccaggcagg 2450
aatgggttg cccaattctg gtccctttcc tttgctcagc cccctctgtt ctgctgattt 2510
tagggatgtg cagggctggg agttggcact ccccccgagt ggggaggtga cagcttgtca 2570
cagtagccag gcttgggtgg gttcagcact agctcggac ggtgtgtcac acgtctatag 2630
taaaccagtt ctctggagg gaaaaaaagc cctgatttat tgcatttggg cagcttctgt 2690
ggtgtaaatt ctcccagcag tgtcccatgt catgctgcc acatcactga atgcactgaa 2750
ctcagagttg ggaagagatg cacataatcg ctctccggc acacctcatg cctttccct 2810
gcctccccat tcccctggct gcacttcctt gccttctatg gggttgaat gttgaagtct 2870
caactgtctc tggtcacaag agccacccaa agtttagggta cttcagtcct agcccccaga 2930
tggccgcctt gaagctctct gggctcctca gcaataaagc actttatTTT C 2981

<210> 2

<211> 571

<212> PRT

<213> Homo sapiens

7/12

<400> 2

Met Arg Ala Leu Arg Asp Arg Ala Gly Leu Leu Leu Cys Val Leu Leu
1 5 10 15

Leu Ala Ala Leu Leu Glu Ala Ala Leu Gly Leu Pro Val Lys Lys Pro
20 25 30

Arg Leu Arg Gly Pro Arg Pro Gly Ser Leu Thr Arg Leu Ala Glu Val
35 40 45

Ser Ala Ser Pro Asp Pro Arg Pro Leu Lys Glu Glu Glu Ala Pro
50 55 60

Leu Leu Pro Arg Thr His Leu Gln Ala Glu Pro His Gln His Gly Cys
65 70 75 80

Trp Thr Val Thr Glu Pro Ala Ala Met Thr Pro Gly Asn Thr Thr Pro
85 90 95

Pro Arg Thr Pro Glu Val Thr Pro Leu Arg Leu Glu Leu Gln Lys Leu
100 105 110

Pro Gly Leu Ala Ser Thr Thr Leu Ser Thr Pro Asn Pro Asp Thr Gln
115 120 125

Ala Ser Ala Ser Pro Asp Pro Arg Pro Leu Arg Glu Glu Glu Ala
130 135 140

Arg Leu Leu Pro Arg Thr His Leu Gln Ala Glu Leu His Gln His Gly
145 150 155 160

Cys Trp Thr Val Thr Glu Pro Ala Ala Leu Thr Pro Gly Asn Ala Thr
165 170 175

Pro Pro Arg Thr Gln Glu Val Thr Pro Leu Leu Leu Glu Leu Gln Lys
180 185 190

8/12

Leu Pro Glu Leu Val His Ala Thr Leu Ser Thr Pro Asn Pro Asp Asn
195 200 205

Gln Val Thr Ile Lys Val Val Glu Asp Pro Gln Ala Glu Val Ser Ile
210 215 220

Asp Leu Leu Ala Glu Pro Ser Asn Pro Pro Pro Gln Asp Thr Leu Ser
225 230 235 240

Trp Leu Pro Ala Leu Trp Pro Phe Leu Trp Gly Asp Tyr Lys Gly Glu
245 250 255

Glu Lys Asp Arg Ala Pro Gly Glu Lys Gly Glu Glu Lys Glu Glu Asp
260 265 270

Glu Asp Tyr Pro Ser Glu Asp Ile Glu Gly Glu Asp Gln Glu Asp Lys
275 280 285

Glu Glu Asp Glu Glu Gln Ala Leu Trp Phe Asn Gly Thr Thr Asp
290 295 300

Asn Trp Asp Gln Gly Trp Leu Ala Pro Gly Asp Trp Val Phe Lys Asp
305 310 315 320

Ser Val Ser Tyr Asp Tyr Glu Pro Gln Lys Glu Trp Ser Pro Trp Ser
325 330 335

Pro Cys Ser Gly Asn Cys Ser Thr Gly Lys Gln Gln Arg Thr Arg Pro
340 345 350

Cys Gly Tyr Gly Cys Thr Ala Thr Glu Thr Arg Thr Cys Asp Leu Pro
355 360 365

Ser Cys Pro Gly Thr Glu Asp Lys Asp Thr Leu Gly Leu Pro Ser Glu
370 375 380

9/12

Glu Trp Lys Leu Leu Ala Arg Asn Ala Thr Asp Met His Asp Gln Asp
385 390 395 400

Val Asp Ser Cys Glu Lys Trp Leu Asn Cys Lys Ser Asp Phe Leu Ile
405 410 415

Lys Tyr Leu Ser Gln Met Leu Arg Asp Leu Pro Ser Cys Pro Cys Ala
420 425 430

Tyr Pro Leu Glu Ala Met Asp Ser Pro Val Ser Leu Gln Asp Glu His
435 440 445

Gln Gly Arg Ser Phe Arg Trp Arg Asp Ala Ser Gly Pro Arg Glu Arg
450 455 460

Leu Asp Ile Tyr Gln Pro Thr Ala Arg Phe Cys Leu Arg Ser Met Leu
465 470 475 480

Ser Gly Glu Ser Ser Thr Leu Ala Ala Gln His Cys Cys Tyr Asp Glu
485 490 495

Asp Ser Arg Leu Leu Thr Arg Gly Lys Gly Ala Gly Met Pro Asn Leu
500 505 510

Ile Ser Thr Asp Phe Ser Pro Lys Leu His Phe Lys Phe Asp Thr Thr
515 520 525

Pro Trp Ile Leu Cys Lys Gly Asp Trp Ser Arg Leu His Ala Val Leu
530 535 540

Pro Pro Asn Asn Gly Arg Ala Cys Thr Asp Asn Pro Leu Glu Glu
545 550 555 560

Tyr Leu Ala Gln Leu Gln Glu Ala Lys Glu Tyr
565 570

10/12

<210> 3

<211> 30

<212> RNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Artificially
Synthesized Oligo-cap Linker

<400> 3

agcaucgagu cggccuuguu ggccuacugg

30

<210> 4

<211> 42

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Artificially
Synthesized Primer Sequence

<400> 4

gcggctgaag acggcctatg tggcctttt tttttttt tt

42

<210> 5

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Artificially
Synthesized Primer Sequence

<400> 5

agcatcgagt cggccttgtt g

21

11/12

<210> 6
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Artificially
Synthesized Primer Sequence

<400> 6
gcggctgaag acggcctatg t

21

<210> 7
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Artificially
Synthesized Primer Sequence

<400> 7
gtttctgcct gcgttccatg ctgtctg

27

<210> 8
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Artificially
Synthesized Primer Sequence

12/12

<400> 8

ggcacacagc ctcggaccaa cctcact

27

<210> 9

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Artificially
Synthesized Primer Sequence

<400> 9

ctccccgtga agaagccgcg gctc

24

<210> 10

<211> 32

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Artificially
Synthesized Primer Sequence

<400> 10

gcaagcttct agtactcctt ggcctcctgc aa

32

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/04514

A. CLASSIFICATION OF SUBJECT MATTER

Int.Cl⁷ C12N15/16, C12N15/12, C12N15/85, C12N5/10, C12P21/02,
C07K14/575, C07K14/72, C12Q1/68, C12Q1/02, A61K67/027
//(C12P21/02, C12R1:91)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl⁷ C12N15/16, C12N15/12, C12N15/85, C12N5/10, C12P21/02,
C07K14/575, C07K14/72, C12Q1/68, C12Q1/02, A61K67/027

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

SwissProt/PIR/GeneSeq, Genbank/EMBL/DDBJ/GeneSeq, BIOSIS (DIALOG),
WPI (DIALOG)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X/A	Peter S. Nelson et al., "An Expressed-Sequence-Tag Database of Human Prostate: Sequence Analysis of 1168 cDNA Clones", GENOMICS (1998), Vol.47, No.1, p.12-25	7/1-6, 8-18

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:	
"A" document defining the general state of the art which is not considered to be of particular relevance	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"E" earlier document but published on or after the international filing date	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"O" document referring to an oral disclosure, use, exhibition or other means	"&" document member of the same patent family
"P" document published prior to the international filing date but later than the priority date claimed	

Date of the actual completion of the international search
02 October, 2000 (02.10.00)

Date of mailing of the international search report
10 October, 2000 (10.10.00)

Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Faxsimile No.

Telephone No.

国際調査報告

国際出願番号 PCT/JPOO/04514

A. 発明の属する分野の分類 (国際特許分類 (IPC))

Int. C1' C12N15/16, C12N15/12, C12N15/85, C12N5/10, C12P21/02,
 C07K14/575, C07K14/72, C12Q1/68, C12Q1/02, A61K67/027
 // (C12P21/02, C12R1:91)

B. 調査を行った分野

調査を行った最小限資料 (国際特許分類 (IPC))

Int. C1' C12N15/16, C12N15/12, C12N15/85, C12N5/10, C12P21/02,
 C07K14/575, C07K14/72, C12Q1/68, C12Q1/02, A61K67/027

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

SwissProt/PIR/GeneSeq, Genbank/EMBL/DDBJ/GeneSeq, BIOSIS (DIALOG), WPI (DIALOG)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X/A	Peter S. Nelson et al., "An Expressed-Sequence-Tag Database of Human Prostate: Sequence Analysis of 1168 cDNA Clones", GENOMICS (1998) Vol. 47, No. 1, p. 12-25	7/1-6, 8-18

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示すもの
- 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日 02.10.00	国際調査報告の発送日 10.10.00
国際調査機関の名称及びあて先 日本国特許庁 (ISA/JP) 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号	特許庁審査官 (権限のある職員) 本間 夏子 4N 9637 電話番号 03-3581-1101 内線 3488

