VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

Fakulta elektrotechniky a komunikačních technologií

DIPLOMOVÁ PRÁCE

Brno, 2023

Bc. Renata Zemanová

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

ÚSTAV MIKROELEKTRONIKY

DEPARTMENT OF MICROELECTRONICS

UNIVERZÁLNÍ MODUL PRO PODPORU TÝMOVÝCH HER

UNIVERSAL MODULE FOR SUPPORTING TEAM GAMES

DIPLOMOVÁ PRÁCE

MASTER'S THESIS

AUTOR PRÁCE

Bc. Renata Zemanová

AUTHOR

VEDOUCÍ PRÁCE

doc. Ing. Pavel Šteffan, Ph.D.

SUPERVISOR

BRNO 2023

Diplomová práce

magisterský navazující studijní program Mikroelektronika

Ústav mikroelektroniky

Studentka: Bc. Renata Zemanová ID: 211251

Ročník: 2 Akademický rok: 2022/23

NÁZEV TÉMATU:

Univerzální modul pro podporu týmových her

POKYNY PRO VYPRACOVÁNÍ:

V rámci diplomové práce navrhněte a realizujte univerzální modul pro podporu týmových her, který lze naprogramovat uživatelem. Jednotlivé hry budou definovány v samostatných ukázkových programech s možností uživatelské konfigurace. Při návrhu se zaměřte na možnost venkovního použití modulu, možnost bateriového napájení a bezdrátové komunikace s nadřazeným systémem, který umožní konfiguraci modulu. Zdůvodněte volbu jednotlivých komponent a zařízení realizujte.

DOPORUČENÁ LITERATURA:

Podle pokynů vedoucího práce

Termín zadání: 6.2.2023 Termín odevzdání: 23.5.2023

Vedoucí práce: doc. Ing. Pavel Šteffan, Ph.D.

doc. Ing. Lukáš Fujcik, Ph.D. předseda rady studijního programu

UPOZORNĚNÍ:

Autor diplomové práce nesmí při vytváření diplomové práce porušit autorská práva třetích osob, zejména nesmí zasahovat nedovoleným způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č.40/2009 Sb.

ABSTRAKT

Cílem práce je navrhnout elektronické zařízení Semafor, který slouží jako pomocník při outdoorových hrách a pro edukační účely. Při návrhu je kladen důraz na bezpečnost, jednoduchost a nízkou cenu.

Tato práce se zabývá výběrem a návrhem celkové elektroniky, kterou Semafor obsahuje. Je kladen důraz na výběr světelné signalizace, bezdrátového modulu a mikrokontroléru.

KLÍČOVÁ SLOVA

Semafor, mikrokontrolér, programovatelné LED WS2812C, baterie LiFePO4, LoRa modul, kapacitní dotyková tlačítka

ABSTRACT

The goal of this semestral thesis is to design device called Traffic light, which serves as an assistant in outdoor games and for education purposes. The design focuses on safety, simplicity and low cost.

This thesis deals with the selection and design of the overall electronics contained in the Traffic light. Emphasis is placed on the selection of the light signaling, wireless module and microcontroller.

KEYWORDS

Traffic light, microcontroller, programmable LED WS2812C, batteries LiFePO4, LoRa module, capacitive touch buttons

Vysázeno pomocí balíčku thesis verze 4.07; http://latex.feec.vutbr.cz

Prohlášení autora o původnosti díla

Bc. Renata Zemanová

VUT ID autora:	211251				
Typ práce:	Diplomová práce				
Akademický rok:	2022/23				
Téma závěrečné práce:	Univerzální modul pro podporu týmových her				
Prohlašuji, že svou závěrečnou práci jsem vypracovala samostatně pod vedením vedoucí/ho závěrečné práce a s použitím odborné literatury a dalších informačních zdrojů, které jsou všechny citovány v práci a uvedeny v seznamu literatury na konci práce. Jako autorka uvedené závěrečné práce dále prohlašuji, že v souvislosti s vytvořením této závěrečné práce jsem neporušila autorská práva třetích osob, zejména jsem nezasáhla nedovoleným způsobem do cizích autorských práv osobnostních a/nebo majetkových a jsem si plně vědoma následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon), ve znění pozdějších předpisů, včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č. 40/2009 Sb.					
Brno	podpis autorky*				

Jméno a příjmení autora:

^{*}Autor podepisuje pouze v tištěné verzi.

PODĚKOVÁNÍ

Ráda bych poděkovala vedoucímu diplomové práce panu doc. Ing. Pavlovi Šteffanovi, Ph.D. za odborné vedení, konzultace, podnětné návrhy k práci a zapůjčení testovacího hardwaru. Dále také děkuji RNDr. Janovi Mrázkovi za podnětné rady při návrhu elektroniky.

Obsah

Ú	vod		10		
1	Mo	tivace	11		
2	Reš	Rešerše elektronických komponent			
	2.1	Bezdrátová komunikace	12		
		2.1.1 WiFi	13		
		2.1.2 Bluetooth	13		
		2.1.3 NFC	14		
		2.1.4 Sigfox	14		
		2.1.5 LoRa	15		
		2.1.6 ZigBee	15		
	2.2	Světelná signalizace	16		
	2.3	Senzor doteku	16		
		2.3.1 Princip kapacitních dotykových tlačítek	18		
		2.3.2 Návrh kapacitního dotykového tlačítka	18		
	2.4	Napájení	19		
		2.4.1 Olověné baterie	19		
		2.4.2 Ni-MH	20		
		2.4.3 Li-Pol	20		
		2.4.4 Li-Ion	20		
		2.4.5 LiFePO4	21		
	2.5	Mikrokontrolér	21		
3	Výt	pěr a návrh elektroniky	23		
	3.1	Bezdrátová technologie	23		
		3.1.1 LoRa			
		3.1.2 WiFi			
	3.2	Mikrokontrolér			
	3.3	Napájení	26		
		3.3.1 Nabíjecí obvod	27		
		3.3.2 Zapojení nabíjecího obvodu	27		
	3.4	Senzory doteku	29		
	3.5	Vibrační motor	29		
	3.6	Převodník pro kapacitní tlačítka	29		
	3.7	Světelná signalizace	31		
		3.7.1 Zvvšovač napětí pro programovatelné LED	33		

	3.8	Zvuková signalizace	34	
	3.9	Konektor	34	
	3.10	Výsledné zapojení	36	
4	Náv	rh DPS	38	
	4.1	Kapacitní tlačítka	38	
	4.2	LED	38	
	4.3	Ostatní součáskty	39	
	4.4	Průběh návrhu	39	
	4.5	Osazení, oživení a testování DPS	39	
		4.5.1 Oživení	40	
		4.5.2 Testování	40	
5	Finá	ální verze DPS	43	
6	Firn	nware	45	
	6.1	Tvorba hlavní knihovny	45	
	6.2	Knihovna pro AT42QT1070	46	
	6.3	Webový server	46	
7	Hry	a jejich metodika	47	
	7.1	Odpočítávadlo	47	
	7.2	Vábnička	47	
	7.3	Pán hory	47	
	7.4	Semafor	48	
8	Soft	ware	49	
9	Voděodolnost			
10	Uživ	vatelský manuál	51	
	10.1	Funkce modulu v jednotlivých hrách	51	
Zá	věr		52	
Lit	erat	ura	53	
Se	znan	n symbolů a zkratek	58	
\mathbf{A}	Blol	kové schéma zapojení elektroniky	59	

Úvod

Tato práce se zabývá návrhem zařízení Semafor. Semafor slouží jako pomocník pro táborové hry nebo pro edukační účely. Je kladen důraz na co nejširší možnosti využití. Může plnit funkci například zástupu organizátora na stanovišti nebo fáborku pro určení směru, kam jít, a mnoho dalších. Pomocí dotykových senzorů lze zadávat kódy a na základě správného zadání lze získávat potřebné informace pro dokončení úkolu. Dotykové senzory také slouží pro konfiguraci a nastavení funkce samotného semaforu. Informace o stavu Semaforu, o průběhu hry, o správnosti kódu a podobně jsou předávány pomocí světelných, zvukových a vibračních signalizací.

Semafor je tedy navrhován pro outdoorové aplikace. Proto je kladen důraz na kompaktnost, bezpečnost, nízkou cenu, nízkou spotřebu a jednoduchost, aby s ním mohl manipulovat pouhý laik, který má k tomuto zařízení návod. Celý návrh je také koncipován tak, aby bylo možné zaručit voděodolnost výsledného zařízení.

Základními požadavky na funkci Semaforu je, aby mohl svítit různými barvami, proto je část práce věnována právě výběru součástek pro světelnou signalizaci. Dotykové senzory jsou vybírány dle požadavku na spolehlivost, cenu a možnost voděodolnosti.

Dalším požadavkem pro rozšíření možností her je, aby Semafory mohly komunikovat mezi sebou. Mohou si tak předávat informace o aktuální svítící barvě nebo stisknutém tlačítku.

Semafor je řízen mikrokontrolérem, proto je část práce věnována jeho výběru. Nemalá část je také věnována výběru typu napájení Semaforu vzhledem k použití na táborech a venkovních akcích.

Semafory musí být také jednoduše konfigurovatelné, aby mohl běžný laik nastavit konkrétní hru, její parametry a vše bez problémů spustit.

1 Motivace

Proč jsem se rozhodla vytvořit univerzální modul pro podporu týmových her?

Již několik let vedu pobytové letní tábory. Snad každý vedoucí tábora to zná, celý den je zapotřebí na hlídání dětí pár organizátorů a pak najednou chcete udělat stezku odvahy, noční hru nebo velkou závěrečnou hru. Jenže na to máte organizátorů málo, a tak hledáte lidi, kteří by vám přijeli pomoct na jeden konkrétní den nebo večer. Ten člověk má pak za úkol někde celou noc sedět a jen dětem předávat informaci, kam mají dál jít, nebo mu děti předají nějaký kód a on jim na základě správnosti předá další informace, kam a jak postupovat.

Už jen najít personální sílu je často složitý logistický úkol, nehledě na lidi, kteří s dětmi byli celý den a musejí si také někdy odpočinout. Proto jsem chtěla vyvinout zařízení, díky kterému nebude zapotřebí tak velký organizační tým na jednu hru. Cílem bylo vytvořit univerzální hardware, který bude moci být programován na základě požadavků zákazníka.

Myšlenka byla tedy taková, že se vezme již existující hra, modulu se přiřadí úkoly, které převezme za organizátora a podle požadavků se modul naprogramuje.

Dalším důvodem, proč jsem chtěla vytvořit toto zařízení bylo, že jsem chtěla děti nadchnout pro techniku. Sama si vzpomínám na chvíle, kdy mě technika uchvátila. Stačilo, když to blikalo nebo dělalo zvuky, a mě to přišlo jako kouzlo. Zájem o techniku by se měl vyvinout již v útlém dětství, proto je táborové prostředí velmi vhodným a zároveň možná trochu neočekávaným cílem.

Technika je budoucnost lidstva a svět bude potřebovat čím dál více lidí, kteří se jí zabývají a rozumí jí. Na to je ale zapotřebí pro ně děti nadchnout. Je zapotřebí dětem ukázat, že technika může být zábavná, že se s ní dají dělat zajímavé věci a že nemá místo jen v průmyslu, ale může mít zastoupení i na takových místech, jako jsou dětské tábory.

Poslední důvod pro tvorbu tohoto zařízení je školství. V dnešní době prochází výuka informatiky velkou reformou a většina učitelů tak sahá po edukačních jezdících robotech, které se žáci učí programovat. S tímto zařízením by se žáci mohli snadno učit programování na základě "wow efektu". Stačí 2 příkazy a rozsvítí se LED, pak mohou přidat ovládání LED pomocí tlačítka atd. Žáci tedy poznají zase jiný způsob programování, a také, že se nemusí programovat pouze jezdící roboti. Zároveň je možné modul naprogramovat a vytvořit z něj pomocníka do dalších předmětů, např. pro rozvoj logického myšlení. Je možné jej také využit pro hru v rámci adaptačních kurzů.

Myšlenkou je tedy vytvořit jednoduchý a zároveň univerzální hardware, který se bude moci rozvíjet po softwarové stránce a díky tomu bude mít velkou oblast využití.

2 Rešerše elektronických komponent

Základní návrh se skládá především z výběru bezdrátové komunikace, která je důležitou součástí Semaforu. Díky ní budou moci Semafory komunikovat mezi sebou, takže si například budou moci předávat informace o barvě, kterou svítí, nebo o stisku tlačítek apod.

Další nedílnou součástí je mikrokontrolér, který řídí veškerou činnost každého Semaforu. U Semaforu je také nutné řešit způsob napájení, takže i to je součástí návrhu.

Celkový návrh obsahuje také výběr senzorů doteku, zvukových a vizuálních signalizací a případných potřebných převodníků.

Obr. 2.1: Základní blokové schéma Semaforu.

2.1 Bezdrátová komunikace

Použití na táborech a outdoorových akcích vyřadilo z výběru drátovou komunikaci. K DPS by muselo být ještě velké množství kabelů o délce několika stovek metrů. Bezdrátová komunikace je z tohoto hlediska velmi praktická. Je to také moderní řešení náležící dnešní době.

Jedním ze základních požadavků bylo, že jednotlivé DPS mezi sebou musí být schopny komunikovat. Proto byl nejdříve vybrán komunikační protokol a následně k němu přizpůsoben hardware.

Práce tedy započala tím, že byla udělána rešerše existujících bezdrátových komunikačních protokolů a následně byly tyto protokoly mezi sebou porovnány. Vzhledem

k použití na outdoorových akcích byl kladem důraz na komunikační vzdálenost, náročnost na výkon a také na dostupnost.

Dalším požadavkem bylo bezdrátové nastavování, tedy připojení k Semaforu např. přes telefon a odeslání konfigurace. Nastavení hry, která se hraje a např. čas, jak dlouho se bude hrát, nebo v kolika týmech, je tedy zapotřebí také dělat bezdrátově.

2.1.1 WiFi

Komunikace pomocí WiFi sítě je jednou z nejznámějších a nejpoužívanějších bezdrátových komunikací užívaných širokou veřejností. WiFi je dnes na každém pracovišti, na veřejných místech i v každé domácnosti. Využívána je především pro připojení k internetu. Přes WiFi lze přenášet velké objemy dat vysokou rychlostí. Pracuje v pásmech v okolí frekvencí 2,4 GHz a 5,0 GHz s dosahem desítek až nižších stovek metrů [19].

Výhody bezdrátové technologie WiFi jsou [19]:

- pracuje v bezlicenčním pásmu,
- levná,
- velmi rozšířená.

Nevýhody jsou [19]:

- omezený výkon (není možné pokrýt rozsáhlejší oblasti),
- vyšší spotřeba energie.

2.1.2 Bluetooth

Bluetooth je také velmi rozšířenou technologií bezdrátové komunikace. Používá se na přenos dat na krátké vzdálenosti. V dnešní době rozšířené WiFi komunikace je její použití omezené. Běžně se využívala pro přenos fotografií z jednoho zařízení do druhého apod. V dnešní době se spíše využívá pro připojení bezdrátových periferií jako jsou bezdrátová sluchátka, myši a klávesnice. Tato technologie je zaměřena především na nízkou spotřebu, i proto je komunikační vzdálenost maximálně 100 m [19]. V praxi jde ale o nižší desítky metrů. Bluetooth je také technologií pro propojení pouze 2 zařízení, kde jedno je tzv. master a druhý tzv. slave [19]. Jedno zařízení je tedy nadřazeno druhému. V případě telefonu a sluchátek je telefon nadřazený sluchátkům.

Výhody bezdrátové technologie Bluetooth jsou [19]:

• nízká spotřeba.

Nevýhody jsou [19]:

- krátký dosah,
- možnost propojení pouze 2 zařízení.

2.1.3 NFC

NFC je jedna z novějších technologií, která je známá především při použití platby kartou. Jde tedy o přenos malých objemů dat na velmi krátkou vzdálenost, tj. do desítek centimetrů [19]. NFC je technologií, kde stačí, aby pouze jedno zařízení mělo zdroj elektrické energie [19]. Druhé zařízení se chová jako anténa, ze které je možné vyčíst informace [19]. Například při platbě kartou v sobě karta nemá žádný zdroj energie, ale při přiložení k terminálu je pomocí elektromagnetické indukce vyčteno identifikační číslo karty. Díky tomu je možné zaplatit.

Výhody bezdrátové technologie NFC jsou [19]:

- rychlost,
- možnost interakce se zařízeními bez vlastního zdroje elektrické energie.

Nevýhody jsou [19]:

- velmi krátká komunikační vzdálenost,
- možnost komunikace pouze mezi dvěma zařízeními,
- nízká rychlost přenosu,
- malý objem přenášených dat.

2.1.4 Sigfox

Sigfox je prvním celorepublikovým mobilním operátorem v České republice určený především pro IoT [21]. Využívá vysílače mobilního operátora T-Mobile, díky čemuž má pokrytí více než 90 % území ČR [30]. Sigfox vysílá v nelicencovaném pásmu o frekvenci 868 MHz [21]. Jedná se o síť s velkým dosahem, 50 km na volném prostranství a až 5 km v zastavěných oblastech [30].

Jedná se o placenou službu, kdy až po zaplacení poplatku je poskytnuto připojení do sítě Sigfox [30]. Komunikace probíhá po 12 bajtových blocích s omezením na maximální počet 140 zpráv [30]. Síť je tedy určená především pro malý přenos dat např. pro dálkový odečet elektroměru nebo pro posílání dat ze senzorů.

Výhody bezdrátové sítě Sigfox jsou [21] [30]:

- nízké pořizovací náklady,
- nízká spotřeba energie (na baterie vydrží až 10 let),
- vysoké pokrytí území ČR,
- spolehlivost.

Nevýhody jsou [21]:

- placená služba,
- omezený počet zpráv na den.

2.1.5 LoRa

LoRa je technologie, která moduluje data do elektomagnetických vln na fyzické vrstvě (rádio) umožňující komunikaci na velké vzdálenosti [17].

LoRaWAN je komunikační protokol a architektura celé sítě [17]. Je vhodná pro komunikaci mezi pohybujícími se předměty a její komunikace je zabezpečená [17]. Tato sít má topologii hvězdy a pracuje v bezlicenčním pásmu [17]. V České republice je povolená frekvence v pásmu okolo 868 MHz zdarma.

LoRa je technologie vyvinutá primárně pro IoT, takže je bezpečná a spolehlivá [11]. Zajištuje také připojení na velkou vzdálenost (20 km na volném prostranství a 2 km v zastavěné oblasti) [11]. LoRa je také vyvinutá pro bateriová zařízení, takže je energeticky úsporná a na baterie vydrží zařízení až 10 let [11].

Výhody bezdrátové technologie LoRa jsou [11]:

- bezlicenční pásmo,
- spolehlivost,
- komunikace na velké vzdálenosti,
- obousměrná komunikace,
- dobrý poměr cena/výkon,
- energeticky úsporná.

2.1.6 ZigBee

ZigBee technologie je používána pro vytvoření malých sítí, kde může signál snadno přeskakovat z jednoho zařízení na druhé [22]. Není přitom zapotřebí, aby bylo každé zařízení připojeno k internetu pomocí WiFi [22]. Pro komunikaci je ale zapotřebí centrální rozbočovač, který zajištuje komunikaci mezi zařízeními [22]. Tato technologie je určena pro tvorbu rozsáhlejších bezdrátových sítí s přenosem menšího objemu dat [22]. Jedná se o spolehlivou technologii s nenáročnou implementací a nízkou spotřebou elektrické energie [22]. Díky ZigBee může mít uživatel v jedné aplikaci zařízení od různých značek a výrobců, protože právě ZigBee zajištuje jejich vzájemnou komunikaci [22].

Technologie ZigBee je určeno primárně pro senzorové sítě v průmyslových aplikacích [19]. Není vhodný pro práce s velkými objemy dat [19]. Pracuje v bezlicenčním frekvenčním pásmu [19].

Výhody bezdrátové technologie ZigBee jsou [22]:

- nízká spotřeba elektrické energie,
- spolehlivost,
- nenáročná implementace,
- pracuje v bezlicenčním frekvenčním pásmu.

Nevýhodou je nutnost centrálního rozbočovače [22].

2.2 Světelná signalizace

Jedním z nejdůležitějších požadavků na Semafor bylo, aby mohl svítit. Čím více možností jak svítit, tím bude využití při hrách a táborových programech různorodější. Pro světelnou signalizaci se nejvíce hodí použití LED. LED se výrabí programovatelné a neprogramovatelné.

Neprogramovatelné LED jsou běžné LED, které mají 2 vývody - katodu a anodu. Barva LED je dána výrobou a každá LED má pouze jednu barvu. Přiložením daného prahového napětí na diodu v propustném směru se LED rozsvítí danou barvou. Velikost prahového napětí je dána právě barvou LED. Běžně se pohybuje v rozmezí 1 až 2,5 V. Existují také RGB LED, které mají 4 vývody - 3 katody a společnou anodu. Přiložením napětí na konkrétní anodu je rozsvícena konkrétní barva. Při různě nastavené velikosti proudu lze regulovat jas LED a přiložením napětí na více LED lze svítit různými barvami a jejich odstíny.

Programovatelné LED mají datový vstup a napájecí napětí není závislé na barvě LED. Barva je určována programem, taktéž její jas. To tedy znamená, že je zapotřebí je řídit pomocí MCU. Programovatelné LED typu WS2812C lze také spojovat za sebe, takže jsou všechny potřebné LED připojeny k jednomu pinu MCU [29]. Každá LED má pin pro vstupní napětí, GND, vstupní datový pin a výstupní datový pin. Typ inteligentních LED WS2812C je vhodný pro bateriová zařízení. Oproti častěji používanému typu WS2812B mají $3 \times \text{menší}$ spotřebu elektrické energie. Napájecí napětí těchto LED by se mělo pohybovat v rozmezí 4,5 až 5,5 V [29].

2.3 Senzor doteku

Senzory doteku jsou nezbytnými prvky pro ovládání Semaforu. Mohou sloužit pro přepínání módů, ovládání Semaforu jako takového nebo jako herní součást. Ve hře mohou plnit úlohu přepínače režimů hry, zadávání kódů, určování směru apod.

Nejjednodušším a nejpoužívanějším senzorem doteku je tlačítko. Tlačítka mohou být realizována dvěma základními způsoby, mohou být elektromechanická, nebo dotyková kapacitní.

Stisková plocha mechanického tlačítka je nevodivá, často plastová. Mechanické prvky jsou častým zdrojem problémů. Je tím často omezena i životnost celého výrobku. Mechanická konstrukce tlačítek je složitá a finančně nákladná. Mechanická tlačítka zároveň generují zákmity, které je nutno filtrovat nebo tvarovat do použitelné podoby. Nejjednodušším řešením je přidání kondenzátoru. Mechanická tlačítka existují typu NO a NC.

Po zmáčknutí mechanického tlačítka typu NO jsou 2 kovové části tlačítka spojeny, tím dochází ke spojení elektrického obvodu a odpor smyčky je v ideálním případě

nulový. Obvod je tedy sepnut. Když je tlačítko rozpojeno, tak je elektrický obvod přerušen a odpor smyčky je v ideálním případě nekonečný. Obvod je tedy rozpojen. U tlačítka typu NC je to naopak. Při stisku tlačítka je obvod rozepnut a při uvolnění stisku je obvod sepnut.

Obr. 2.2: Princip mechanického tlačítka [23].

Výhody mechanických tlačítek jsou:

- jednoduché připojení ke každému GPIO mikrokontroléru,
- odezva je samotný stisk tlačítka,
- fyzické rozpojení obvodu.

Kapacitní tlačítka jsou bez veškerých mechanických prvků, zároveň jsou jednoduchá a mají téměř neomezenou životnost. Jejich výstupní signál je bez jakýchkoli zákmitů nebo rušení. Kapacitní tlačítka lze snadno použít v mnoha aplikacích.

Kapacitní tlačítka jsou tvořena měděnou vrstvou a nejsou nijak mechanicky namáhána. Tlačítko může být zmáčknuto i přes obal krabičky, a proto může být celé zařízení mechanicky odolné i voděodolné.

Nevýhodou kapacitních tlačítek je, že nemají žádnou odezvu na dotyk. U mechanických tlačítek je odezvou samotný fyzický stisk tlačítka. U kapacitních tlačítek lze tento fakt vyřešit například rozsvícením LED nebo vibrační odezvou. Vibrační odezva může být realizována pomocí vibračního motoru.

Některé mikrokontroléry nemají kapacitní vstupy, to znamená, že tlačítko nelze připojit přímo k GPIO pinu MCU [8]. Buď musí být vybrán mikrokontrolér, který kapacitní vstupy má, nebo může být použit převodník, který má kapacitní vstupy a jeho výstupy poté mohou být připojeny k MCU.

Výhody kapacitních tlačítek jsou:

- kompaktnost,
- variabilita,
- vysoká spolehlivost,
- odolnost vůči šumu,
- možnost kompenzace rušivých elementů,
- cena.

2.3.1 Princip kapacitních dotykových tlačítek

Základní princip je založen na měření změny kapacity. Měď, ze které je tlačítko vytvořeno má nějakou vlastní kapacitu (kapacita samotné nosné desky) a po přiložení prstu je kapacita zvýšena o paralelně připojenou kapacitu přechodu tlačítka a prstu díky obsahu železa v krvi a vodivosti kůže [28]. Prst se tedy chová jako druhá uzemněná elektroda [28].

Kapacita snímače se tedy volí co nejmenší, aby přiložený prst vyvolal co nejvetší změnu kapacity. Ve snímači se vyskytuje RC článek, kterého se mění doba nabíjení kondenzátoru a tím je možné detekovat stisk tlačítka [28].

Obr. 2.3: Princip kapacitního tlačítka [28].

2.3.2 Návrh kapacitního dotykového tlačítka

Tvar tlačítka nemá vliv na schopnost detekce dotyku [28]. Naopak velký vliv má plocha tlačítka, tloušťka izolační vrstvy, a také vzdálenost jednotlivých tlačítek od sebe [28].

Čím větší je plocha tlačítka, tím je větší změna kapacity při dotyku a díky tomu je vytvořena lepší schopnost detekce dotyku [28]. S rostoucí tloušťkou izolační vrstvy se naopak schopnost detekce dotyku snižuje [28].

Pokud jsou tlačítka příliš blízko u sebe, tak může docházet k jejich vzájemnému ovlivňování. Kvůli tomu pak může docházet k detekci dotyku špatného tlačítka, nebo k falešné detekci dotyku. Z doporučení plyne, že pro dotyk prstu je vhodná velikost snímací plochu pro prst 13×13 mm a jejich vzdálenost alespoň 5 mm od sebe [28]. Proti vzájemnému ovlivňování tlačítek se používají uzemňovací meziplošky [28].

U kapacitních dotykových tlačítek je zapotřebí dbát na správné připojení k MCU. U vícevrstvých DPS nesmí pod tlačítky, ani pod přívody k MCU, vést jiné dráhy, ani se zde nesmí vyskytovat jiné součástky [28]. Součástky nesmí být ani z vrchní, ani ze spodní strany DPS [28]. Přívody kapacitních tlačítek k MCU by měly být odstíněny pomocí GND signálu.

Voda a další nečistoty mění vlastní kapacitu tlačítka a může tak docházet k falešným stiskům tlačítka. Tento problém lze řešit softwarově. Lze využít faktu, že nečistoty působí dlouhodobě, ale stisk je krátkodobý [28]. Hodnotu vlastní kapacity tlačítka je tedy možné softwarově upravovat v závislosti na aktuálních dlouhodobějších stavech a detekovat tak přesněji krátkodobý stisk tlačítka.

Pro odlišení tlačítek může být místo označeno například barevným potiskem.

2.4 Napájení

Vzhledem k použití Semaforů při hrách na táborech byly možné pouze 2 způsoby napájení, pomocí powerbanky nebo baterií.

Ve výběru baterií hraje velkou roli kapacita, napětí, velikost a cena. Požadavkem je také možnost nabíjení. Při použití na táboře by jinak musely být stále nové baterie v balení a musely by se neustále doplňovat a udržovat.

Moderní baterie jsou náchylné na přepólování, a proto není bezpečné, aby uživatel měnil baterie sám. Baterie by tedy musely být zabudované v zařízení bez možnosti výměny uživatelem.

Z nabíjecích baterií je možno vybírat z olověných baterií, Ni-MH, Li-Ion, Li-Pol a LiFePO4 baterií.

2.4.1 Olověné baterie

Maximální životnost olověné baterie je 300 až 400 cyklů [15]. Nominální hodnota jednoho článku jsou 2 V [25]. Jejich výroba je oproti lithiovým bateriím velmi nenáročná [25]. Jejich kapacita je závislá na konkrétním typu baterie [25]. Tyto baterie jsou schopny dodávat vysoké rázové proudy [1]. Olověné akumulátory jsou velké a těžké a pro přenosná zařízení se tedy spíše nehodí. Hlavní nevýhodou je, že je potřeba je udržovat neustále v nabitém stavu [25]. Její účinnost je závislá na odebíraném proudu a její životnost je závislá na teplotě [25]. Mají dlouhou dobu nabíjení a obsahují toxické olovo, které je škodlivé pro životní prostředí [25]. Olověné baterie se používají především v automobilech jako startovací baterie, v zabezpečovacích systémech atd. [25].

Výhody olověných baterií jsou [25]:

- cena,
- bezpečnost provozu,
- možnost recyklace,
- spolehlivost.

2.4.2 Ni-MH

Baterie Ni-MH mají jmenovité napětí 1,2 V a jejich životnost je cca 1000 nabíjecích cyklů [1]. Tyto akumulátory je zapotřebí před prvním použití, nebo po dlouhém nepoužívání, tzv. naformátovat [1]. Jedná se o pozvolné nabíjení s nízkým nabíjecím proudem [1]. Pro optimální použití je také doporučeno baterii nabít nejpozději 2 hodiny před použitím, aby se snížil vnitřní odpor Ni-MH baterie [1].

Výhody Ni-MH baterií jsou [1]:

- cena,
- malé samovybíjení,
- vysoká mechanická odolnost.

2.4.3 Li-Pol

Li-Pol baterie poskytují vysoké nabíjecí proudy a vysokou kapacitu a jejich jmenovité napětí je 3,7 V [1]. Tyto baterie jsou citlivé na přesné nabití, a proto je možné používat pouze nabíječky určené pro nabíjení těchto baterií [1]. Tyto nabíječky mají také balancer [1]. Při skladování je také nutné udržovat nabití na 50 % kapacity [1]. Údržba takové baterie je proto velmi náročná a nehodí se do podobných zařízení, jako je Semafor. Při mechanickém poškození také hrozí požár těchto baterií [1].

Výhody Li-Pol baterií jsou [1]:

- vysoké nabíjecí proudy,
- vysoká kapacita,
- nízké samovybíjení,
- cena.

2.4.4 Li-Ion

Jmenovité napětí Li-Ion baterie je 3,6 V a její životnost je cca 2000 nabíjecích cyklů [6]. Tento typ baterie trpí tzv. stárnutím. Jde o proces, kdy ztrácí svoji kapacitu bez ohledu na používání [6]. Jejich kapacita je tedy závislá na reálném čase a na frekvenci používání. Jejich velkou nevýhodou je nebezpečí výbuchu při špatné manipulaci, např. zkratu apod. [6].

Výhody Li-Ion baterií jsou [6]:

- nízká hmotnost,
- malé rozměry,
- vysoká kapacita,
- rychlé nabíjení,
- šetrné k životnímu prostředí.

2.4.5 LiFePO4

LiFePO4 baterie mají jmenovité napětí v rozsahu 3 až 3,3 V [15]. Její minimální provozní napětí je pak 2,5 V a maximální je 3,65 V [15]. LiFePO4 je dnes baterie známá jako nejbezpečnější, nejspolehlivější a nejstabilnější baterie obsahující lithium [15]. Je to nejvhodnější baterie pro přenosná zařízení díky velmi dobrému poměru velikosti (hmotnosti) a kapacity. Její životnost je až 4× vetší než u baterie Li-Ion [15]. Je také hodnocena jako nejbezpečnější z dosud dostupných baterií [15]. Baterie LiFePO4 mohou standardně dosáhnout životnosti až 7000 cyklů, to odpovídá cca 15 letům při bežném používání [15]. Článek LiFePO4 je teplotně stabilní, nehořlavý (ani při zkratu), netrpí samovybíjením, není toxický a nevytéká [15].

LiFePO4 baterie v dnešní době nahrazují baterie typu Li-Ion nebo Li-Pol. Tyto bateriové články jsou vhodné především pro použití v elektromobilech, solárních a větrných elektrárnách, elektrokoloběžkách atd.

Výhody LiFePO4 baterií jsou [27]:

- vysoký jmenovitý proud,
- minimální ztráty,
- krátká doba dobíjení,
- chemická odolnost,
- vyníkající poměr výkonu ku hmotnosti,
- životnost tisíce cyklů,
- snadnější recyklace,
- bez využití toxických prvků.

2.5 Mikrokontrolér

Mikrokontrolér je hlavním prvkem každého zařízení včetně Semaforu. Mikrokontrolérů existuje nespočetné množství od mnoha výrobců a při výběru je nutno brát v potaz množství požadovaných parametrů a požadované periferie. Komunikační moduly pro bezdrátovou komunikaci se připojují nejčastěji pomocí I^2C nebo UART rozhraní. Pro připojení zvukových a vibračních periferií jsou zapotřebí GPIO piny.

Cenu mikrokontroléru určuje především počet periferií, počet GPIO pinů a výpočetní výkon.

Známými výrobci mikrokontrolérů jsou Microchip, Motorola, NXP nebo STMicroelectronics.

Faktory ovlivňující výběr řídicího mikrokontroléru:

- dostatečný počet GPIO pinů,
- dostatek paměti,
- nízká spotřeba,
- WiFi,
- ADC,
- I^2C ,
- UART,
- cena.

3 Výběr a návrh elektroniky

Výběr elektronických součástek probíhal dle jejich parametrů, využití, dostupnosti a ceny. Nejdříve byla vybrána bezdrátová technologie a mikrokontrolér a v závislosti na tom vše ostatní.

3.1 Bezdrátová technologie

Ke komunikaci Semaforů mezi sebou byla zvolena technologie LoRa a pro bezdrátovou konfiguraci Semaforů byla zvolena technologie WiFi.

3.1.1 LoRa

Tato technologie byla zvolena především kvůli komunikačnímu dosahu. Jedná se sice o dražší technologii, ale na tolik, aby ji nebylo možné v tomto zařízení použít. Táborové hry se většinou hrají na loukách, které mají rozlohu několik stovek metrů čtverečných. LoRa je jedinou dostupnou technologií, která na tyto vzdálenosti spolehlivě komunikuje. Bezdrátové propojení Semaforů bude použito pro posílání informací o aktuálně svítící barvě, či stisku tlačítka v závislosti na hře, která se aktuálně hraje. U některých her například může být žádoucí, aby po přepínání nesvítily všechny Semafory stejnou barvou a díky této komunikaci bude moci být takovým stavům zabráněno.

Byl vybrán bezdrátový LoRa modul E22-900T22D od firmy EBYTE. Tento modul komunikuje s mikrokontrolérem pomocí UART sběrnice [7]. Jeho napájecí napětí je od 2,1 V do 5,5 V a komunikační napětí je 3,3 V [7]. Rozsah komunikačních frekvencí bezdrátového modulu E22-900T22D je 850,125 MHz až 930,125 MHz a ve výchozím stavu je nastavena na 868,125 MHz [7]. Toto je frekvence, na které je v ČR povoleno komunikovat a to s maximálním vyzařovaným výkonem 25 mW [5]. Maximální povolený klíčovací poměr je 1 % [5]. V běžném režimu je spotřeba přibližně 151 mA a v režimu spánku 2 μ A [7]. Tento bezdrátový modul má externě připojitelnou anténu typu SMA-K s 50 Ω impedancí [7].

LoRa modul E22-900T22D je připojen k mikrokontroléru pomocí komunikačních pinů RX a TX sběrnice UART. Napájecí napětí tohoto modulu je spínáno mikrokontrolérem, aby jej šlo v případě nůzkého napětí baterie odpojit. Pin AUX slouží k indikaci funkčního stavu modulu. Při specifických aplikacích slouží pro probuzení externího mikrokontroléru. Pin AUX není v této aplikaci využíván, a proto není nikam připojen. Pomocí pinů M0 a M1 lze přepínat bezdrátový modul do různých režimů. Pokud jsou oba piny v logické 1, tak je modul přepnut do režimu spánku [7]. Pokud jsou oba piny v logické 0, tak je modul v normálním režimu [7]. V této

aplikaci je modul provozován pouze v normálním režimu, a proto jsou piny M0 a M1 připojeny k signálu GND.

Tab. 3.1: Konfigurační piny LoRa modulu E22-900T22D [7]

M 0	M1	Mód	Popis	
0	0	Normální	UART a bezdrátový kanál otevřený,	
			transparentní přenos zapnutý	
0	1	Režim WOR	Lze definovat jako vysílač WOR	
			a přijímač WOR	
1	0	Konfigurační mód	Přistup k registru přes sériový port	
			a ovládání pacovního stavu	
1	1	Režim hlubokého	Režim spánku	
		spánku		

3.1.2 WiFi

K propojení Semaforu s telefonem a dalšími zařízeními byla vybrána technologie WiFi. Jedná se o rozšířenou technologii, která je v telefonech a noteboocích zabudovaná. Propojení bude tedy jednoduché a nastavovat hry se mohou na webové stránce, kde bude seznam her, které Semafor umí. U jednotlivých her se poté budou moci nastavovat další parametry. Po nastavení se konfigurace pošle do Semaforu.

3.2 Mikrokontrolér

WiFi modul obsahuje jako jediný mikrokontrolér od firmy Espressif z řady ESP32. Konkrétně jde o typ ESP32-C3-MINI-1, dále již jen ESP32-C3. Je také nabízen za cenu, která je v porovnání s ostatními nízká a v porovnání s nabízenými parametry bezkonkurenční. Pro zařízení Semaforu je také se svým počtem periferií dostačující. ESP32-C3 má 384 kB ROM a 4 MB flash paměti [8]. Dále obsahuje WiFi modul pracující na frekvenci 2,4 GHz a Bluetooth [8]. ESP32-C3 obsahuje mnoho periferií jako je SPI, UART, I^2C , USB a další [8]. Mikrokontrolér má vyvedeno 13 GPIO pinů, které je možno softwarově nastavit jako vstupní nebo výstupní. Tyto piny slouží pro připojení senzorů, díky kterým je zprostředkována komunikace mezi mikrokontrolérem a okolním světem. V mikrokontroléru je také zabudován krystal s vlastní frekvencí 40 MHz a v rámci pouzdra je také anténa pro WiFi [8].

Rozsah napájecího napětí je 3 až 3,6 V [8]. Jeho maximální proudový odběr je 0.5 A [8]. Mikrokontrolér ESP32-C3 garantuje pracovní teplotu od -45 °C až do 85 °C [8].

Obr. 3.1: Blokové schéma mikrokontroléru ESP32-C3 [8].

K pinu 3V3, který slouží pro připojení napájecího napětí jsou také připojeny kondenzátory o hodnotě 10 μ F a 100 nF dle doporučení z dokumentace [8]. Tyto kondenzátory slouží pro filtraci napájecího napětí, aby bylo vyfiltrováno případné rušení o různých frekvencích.

Pin EN slouží pro povolení funkce mikrokontroléru. Tento pin nesmí zůstat nezapojený, tzv. floating. Jeho zapojení je převzato z dokumentace, tj. pullup rezistor o hodnotě 10 k Ω a ke GND je připojen přes kondenzátor o hodnotě 1 μ F [8].

ESP32-C3 má konfigurační piny, které slouží při restartu pro určení, odkud bude načten program pro mikrokontrolér. Tyto piny musí být při restartu v daném nastavení. Konfiguračními piny jsou GPIO2, GPIO8 a GPIO9. Piny GPIO8 a GPIO9 nesmí být nikdy nastaveny současně do logické nuly.

Tab. 3.2: Konfigurační piny ESP32-C3 [8]

			- v		
in	Výchozí	Načte	ní progra	amu	Načten

Pin	Výchozí	Načtení programu	Načtení programu	
		z flash paměti	z bootloaderu	
GPIO2	Není dostupný	1	1	
GPIO8	Není dostupný	Nezáleží	1	
GPIO9	Interní měkký pullup	1	0	

Obr. 3.2: Schéma zapojení mikrokontroléru ESP32-C3.

Protože bude využito programování přes USB piny D+ a D-, tak není zapotřebí načtení z bootloaderu a je tedy zapotřebí všechny konfigurační piny při restartu připojit do logické jedničky. Do logické jedničky lze připojit přes pullup rezistor. Pullup rezistory má sběrnice I^2C , takže na GPIO8 a GPIO9 byla připojena právě sběrnice I^2C . Pin GPIO2 nebyl využit pro připojení žádného senzoru, a proto byl připojen přes pullup rezistor o hodnotě 10 k Ω k napájecímu napětí.

3.3 Napájení

Zabudování baterie přináší kompaktnost řešení a pro použití není třeba dalších komponent. Pokud je ale na táboře větší využití, tak se baterie vybije. Na táborech většinou nebývá k dispozici připojení k elektrické síti, a proto je řešením powerbanka. Na Semaforu tedy bude napájecí vstup USB-A pro nabíjení baterií přímo z powerbanky bez nutnosti kabelu. Semafor musí být koncipován tak, aby se mohla baterie nabíjet a zároveň, aby při tom byly Semafory funkční.

Při realizaci Semaforu byla tedy zvolena kombinace napájení pomocí baterií i pomocí powerbanky. Článek baterie LiFePO4 byl vybrán právě kvůli již zmíněným vynikajícím vlastnostem. Vybraný mikrokontrolér má napájecí napětí v rozsahu 3 až 3,6 V [8]. Pro funkci mikrokontroléru tedy nebude muset být použit ani převodník napětí.

Napětí na baterii je měřeno pomocí děliče a připojeno na pin GPIO4, který má k dispozici AD převodník [8]. V softwaru bude nastaven útlum na 0 dB, to odpovídá rozsahu měřeného napětí od 0 do 700 mV [9]. Proto je napětí z baterie pomocí rezistorového děliče převedeno na rozsah od 0 do 600 mV. Zde je pomocí AD převodníku napětí na baterii měřeno. Spodní rezistor děliče byl zvolen o hodnotě 10 k Ω a druhý byl dopočítán na hodnotu 50 k Ω podle maximálního napětí baterií LiFePO4 3,6 V. Nejbližší hodnota rezistoru je 47 k Ω [18]. Tomu odpovídá maximální napětí na AD převodníku 0,63 V, což je stále v možném měřeném rozsahu.

Při nízkém napětí baterie jsou softwarově odpojovány periferie a senzory od jejich napájecího napětí. Děje se tak pomocí pinu GPIO5, na který je připojen spínací tranzistor.

3.3.1 Nabíjecí obvod

Nabíjecí obvody jsou závislé na konkrétním typu baterií, které budou nabíjeny. Vzhledem k vybranému typu baterií LiFePO4 byly uvažovány pouze komerčně dostupné integrované obvody, které jsou určeny pro nabíjení tohoto typu baterií.

Vybraný typ baterií LiFePO4 lze nabíjet pomocí obvodu CN3058E.

Nabíjecí obvod CN3058E je určen pro nabíjení pouze LiFePO4 baterií a lze jím napájet právě 1 článek těchto baterií [4]. Napájecí napětí tohoto nabíjecího čipu se pohybuje mezi 3,8 až 6 V [4]. Díky tomu lze přímo použít napětí z USB konektoru.

Když je nabíjecí obvod odpojen od napájecího napětí, tak přejde do režimu spánku [4]. V tomto režimu je baterie vybíjena proudem menším než 3 μ A [4]. Tento proud je oproti klidovým proudům jiných součástek zanedbatelný, a proto nemusí být baterie od nabíjecího obvodu odpojována, když není nabíjena.

Nabíjecí obvod CN3058E umí také vyhodnocovat teplotu baterie a v závislosti na tom přestávat baterii nabíjet [4]. Tato funkce není v zapojení Semaforu využita, proto je pin TEMP připojen k signálu GND [4].

Tento nabíjecí obvod se vyrábí ve standardizovaném pouzdře SOP8 [4].

3.3.2 Zapojení nabíjecího obvodu

Rezistor připojený k pinu ISET slouží pro nastavení hodnoty nabíjecího proudu [4]. V tomto zapojení byl počítán pro nabíjecí proud 1 A dle rovnice z dokumentace:

$$R_8 = \frac{1218}{I_{CH}} = \frac{1218}{1} = 1,218 \ k\Omega.$$
 [4]

Z výpočtu vyplývá, že rezistor by měl mít hodnotu 1,218 k Ω . Nejbližší hodnota z rezistorové řady E12 je hodnota 1,2 k Ω , proto byl také zvolen rezistor o této hodnotě [18]. Odpovídá tomu nabíjecí proud 1015 mA, který nebude mít vliv na životnost baterií.

Vstupní a výstupní kondenzátory slouží pro filtraci zákmitů napájecího napětí a také napětí, kterým je nabíjena baterie. Hodnoty kondenzátorů byly převzaty z doporučení z dokumentace, tj. 4,7 μ F [4].

Kladný pól nabíjené baterie je připojen na pinu BAT, záporný pól je připojen ke GND. Pin BAT poskytuje nabíjecí proud do baterie a zároveň poskytuje konstantní nabíjecí napětí. V režimu spánku je svodový proud tohoto pinu 3 μ A [4].

Pin VIN slouží pro napájení vnitřního obvodu CN3058E. Je na něj přikládáno napájecí napětí z USB, tedy 5 V. Pokud napájecí napětí klesne na napětí o 10 mV nižší, než je napětí na pinu BAT, tak vnitřní obvod přechází do režimu spánku [4]. V tomto režimu klesá proud pinu BAT na méně než 3 μ A [4].

Tento nabíjecí obvod má možnost indikace nabíjení baterií a dokončení nabíjení. Tato indikace je realizována pomocí 2 LED připojených přes pullup rezistor. Hodnota pullup rezistoru byla převzata z doporučení z dokumentace, tj. 330 Ω . Červená LED indikuje nabíjení baterií a je připojena na pin /CHRG a zelená LED indikuje dokončené nabíjení a je připojena na pin /DONE. Obě LED jsou k pinům nabíjecího čipu připojeny katodou.

Obvod CN3058E může také měřit teplotu na nabíjené baterii. Slouží k tomu vstupní pin TEMP. Měření probíhá pomocí odporového děliče, jehož střed je připojen na snímač teploty. Tento snímač je připojen na baterii. Pokud je napětí na pinu TEMP nižší než 45 % nebo vyšší než 80 % úrovně napájecího napětí, tak je indikována moc nízká nebo moc vysoká teplota baterie a nabíjení je zastaveno [4]. Jinak nabíjení pokračuje. Uzemněním pinu TEMP je funkce měření teploty deaktivována [4]. V této práci není měření teploty baterií využíváno, a proto je pin TEMP připojen ke GND.

Obr. 3.3: Schéma zapojení nabíjecího obvodu pro LiFePO4.

3.4 Senzory doteku

V návrhu Semaforu byla zvolena kapacitní dotyková tlačítka. Pro možnost použití uvnitř i venku jsou díky možnosti voděodolnosti vhodnějším řešením. Také velikost a označení tlačítka může být variabilní. Velikost může být na DPS navržena dle potřeby a potisk v místě tlačítka vyznačen barevně, nebo např. samolepkou. Odezva na dotyk bude realizována pomocí vibračního motoru.

3.5 Vibrační motor

Vibrační motory jsou založeny na principu kmitání. Motor je připevněn k zařízení, které je kmitáním rozvibrováno. Vibrační motory jsou dnes nedílnou součástí mnoha elektronických zařízení včetně mobilního telefonu nebo dětských hraček.

Dioda slouží jako ochrana proti přepětí, protože motor je indukční zátěž, takže vytváří napětové špičky. Díky diodě je mikrokontrolér chráněn proti špičkovému napětí, které by se na něj mohlo dostat. Kondenzátor slouží k tomu, aby napětové špičky eliminoval, nebo alespoň zmenšoval.

Vibrační motor je připojen k mikrokontroléru přes tranzistor, protože maximální výstupní proud z pinu MCU není dostatečně velký na to, aby motor roztočil. Tranzistor je tedy připojen na gate tranzistoru, který se při logické jedničce na pinu sepne a motorem protéká proud, který nedodává MCU, ale zdroj 3.3 V (v tomto případě baterie LiFePO4). Baterie tak dokáže dodat dostatek proudu, aby se motor roztočil.

Pro Semafor byl vybrán vibrační motor LCM1020A2945F. Tento motor má maximální požadovaný proud 120 mA [13]. Maximální proud, který lze odebírat z pinu mikrokontroléru ESP32-C3, je 40 mA [8]. Vibrační motor lze pouze spínat, nebo je možné jej připojit k pinu, který dokáže generovat PWM a lze tím regulovat jeho otáčky.

Vibrační motor slouží jako odezva na dotyk kapacitního tlačítka.

3.6 Převodník pro kapacitní tlačítka

Mikrokontrolér ESP32-C3 nemá kapacitní vstupy, proto je zapotřebí kapacitní dotyková tlačítka připojit přes převodník. Je zapotřebí připojit 5 tlačítek.

Vybraný převodník AT42QT1070 dokáže pracovat ve 2 režimech. V prvním režimu může být zapojeno maximálně 5 kapacitních tlačítek, která jsou připojena k pinům KEY0 až KEY4. Jako výstup se používají piny OUT0 až OUT4. Každé tlačítko má tedy svůj výstup, který může být připojen k GPIO pinům MCU nebo k nim mohou být připojeny např. LED [2].

Obr. 3.4: Schéma zapojení vibračního motoru.

Druhý režim je využitelný pouze v případě, je-li převodník připojen k MCU. V tomto případě může být k převodníku připojeno až 7 kapacitních tlačítek, která jsou připojena na pinech KEY0 až KEY6. Převodník poté komunikuje s MCU pomocí komunikační sběrnice I^2C [2]. Z registru převodníku lze poté vyčíst stavy daných kapacitních dotykových tlačítek.

Jelikož je v tomto návrhu Semaforu využit mikrokontrolér, který podporuje komunikaci po sběrnici I^2C , tak bylo využito zapojení právě s tímto typem komunikace. Díky tomu budou využity pouze 2 GPIO piny mikrokontroléru ESP32-C3 a ne 5 GPIO pinů, které by byly zapotřebí při zapojení bez komunikace pro sběrnici I^2C . Komunikační sběrnice I^2C vyžaduje pullup rezistory, proto byly mezi napájecí napětí a piny SDA a SCL převodníku AT42QT1070 přidány rezistory R17 a R18 o hodnotě 10 k Ω . To znamená, že komunikační sběrnice I^2C je aktivní v logické nule.

Kapacitní tlačítka jsou připojena přes rezistory R19 až R23 k převodníku AT42QT1070. Tyto rezistory jsou připojeny sériově a slouží ke snížení šumu, omezení elektrostatických výbojů a potlačení radiofrekvenčního rušení [2]. Doporučená hodnota je rezistorů je mezi $4,7k\Omega$ a 20 k Ω [2]. Byla zvolena střední hodnota z doporučeného rozsahu, tj $10~k\Omega$.

Převodník má kondenzátory C3 a C4 připojeny na napájecím pinu vůči GND, aby nebyly případné proudové špičky přivedeny na napájení převodníku. Rezistory R17 a R18 slouží jako pullup rezistory při komunikaci pomocí sběrnice I^2C s mikrokontrolérem EP32-C3. Na piny KEY0 až KEY4 jsou připojena kapacitní dotyková tlačítka.

Pin MODE je připojen k signálu GND, protože převodník je provozován v režimu

komunikujícím přes I^2C sběrnici [2].

Pin /CHANGE je připojen k GPIO pinu mikrokontroléru. Slouží pro indikaci změny stavu některého z připojených tlačítek [2]. Signál z tohoto pinu lze tedy využít jako indikátor vyvolání přerušení pro obsluhu tlačítek.

Obr. 3.5: Zapojení převodníku AT42QT1070 pro kapacitní tlačítka.

3.7 Světelná signalizace

Pro realizaci signalizace přítomnosti napájecího napětí byly vybrány neprogramovatelné LED. Zelené LED byly vybrány dvě, jedna pro indikaci přítomnosti napětí 5 V a druhá pro indikaci přítomnosti napětí 3,3 V z baterií. Tyto LED budou použity pouze na prototypu pro ulehčení oživování. Dále budou odstraněny kvůli šetření energie, protože jde o bateriově napájené zařízení. Přítomnost svitu tzv. power LED by také mohla mást při hře nebo různých úkolech.

Pro realizaci světelné signalizace pro hry byly vybrány inteligentní programovatelné LED typu WS2812C. Bylo jich použito 12, protože z dvanácti LED lze jednoduše zhotovit ciferník pro odpočítávání času a také je lze rozdělit na segmenty na třetiny nebo čtvrtiny.

Komunikační napětová úroveň logické jedničky těchto LED by měla být alespoň na úrovni 70 % napájecího napětí [29]. Protože použitý mikrokontrolér ESP32-C3 má komunikační napětovou úroveň logické jedničky jeho napájecí napětí, což je 3 až 3,6 V, tak je zapotřebí využít převodník napětové úrovně [8]. Komunikace je v tomto případě pouze jednosměrná, to znamená, že MCU posílá data do LED, ale LED neposílají žádná data do MCU. Převodník je realizován unipolárním tranzistorem a jedním pullup rezistorem. Rezistor je připojen k napájecímu napětí inteligentních LED WS2812C. Tranzistor Q1 má gate připojený k napájecímu napětí MCU. Pokud bude mikrokontrolér do LED posílat logickou jedničku, tak bude rozdíl mezi gate a source 0 V. Tím pádem bude tranzistor uzavřený a tím se přes rezistor R4 připojí

k LED jejich napájecí napětí. Toto napětí je pro inteligentní LED logickou jedničkou. Pokud bude MCU posílat logickou nulu, tedy 0 V, tak je rozdíl napětí mezi gate a source napájecí napětí mikrokontroléru. Tranzistor je tedy otevřený a tím se napětí 0 V dostane k inteligentním LED a na rezistoru se objeví úbytek napětí o velikosti napájecího napětí inteligentních LED. Napětí 0 V je logickou nulou i pro inteligentní LED. Tento převodník je určen pouze pro komunikaci jedním směrem.

Obr. 3.6: Zapojení převodníku úrovní pro WS2812C.

Obr. 3.7: Zapojení inteligentních LED WS2812C.

Kondenzátor u každé LED slouží pro filtraci napájecího napětí.

Tyto programovatelné LED mají maximální spotřebu 5 mA na jeden kanál. Při zapnutí všech kanálů (svícení bílou) je maximální spotřeba jedné LED 15 mA [29]. Pokud LED nesvítí, tak je její maximální klidový proud 0,3 mA [29]. Při použití 12 LED je tedy maximální odběr všech LED 180 mA.

Pro napájení těchto inteligentních LED je zapotřebí napětí v rozsahu 4,5 až 5,5 V [29]. Použité baterie LiFePO4 mají napětí pouze 3,2 V, proto je zapotřebí použít zvyšovač napětí na 5 V.

3.7.1 Zvyšovač napětí pro programovatelné LED

Z komerčně dostupných integrovaných obvodů byl hledán zvyšovač napětí, který vytváří z napětí 3,3 V napětí 5 V a může přitom dodávat do výstupu proud alespoň 200 mA. Maximální odběr všech dvanácti potřebných inteligentní LED má maximální odběr 180 mA. S rezervou je tedy zapotřebí proud alespoň 200 mA. Nalezené obvody, které vyhovují těmto parametrům jsou LT1930 a MCP1640.

Obvod LT1930 v doporučeném zapojení při vstupním napětí 3,3V vytváří výstupní napětí o hodnotě 5 V s maximálním odběrem proudu 480 mA [14]. Napájecí napětí tohoto obvodu je v rozsahu 2,45 V až 16 V, což vyhovuje napájecímu napětí z baterií LiFePO4 [14].

Obvod MCP1640 v doporučeném zapojení s rozsahem vstupního napětí 3 až 4,2 V vytváří výstupní napětí o hodnotě 5 V s maximálním odběrem proudu 300 mA [16].

Byl vybrán zvyšovač napětí LT1930, díky své lepší dostupnosti v této době nedostatku čipů, a také dokáže do výstupu dodat vyšší proud. Zapojení obou čipů je téměř totožné.

Pin /SHDN slouží k zapínání a vypínání obvodu. Pomocí přiloženého napětí 2,4 V a více na tento pin je obvod zapnut [14]. Pin SW slouží pro připojení cívky, případně diody, aby se snížilo elektromagnetické rušení [14].

Shottkyho dioda byla vybrána dle doporučení z dokumentace. Byla vybrána dioda typu MBR0520, protože maximální napětí na diodě nepřekročí 20 V a protékající proud nepřesáhne 0,5 A [14].

Byla vybrána cívka, která odpovídá doporučení z dokumentace. Přesný typ, který byl v dokumentaci zmíněn nebyl k dispozici, a proto byl vybrán typ velmi podobný a vlastnostmi srovnatelný. Cívka CDRH3D18NP-4R7NC má feritové jádro, které je pro funkci požadováno [14]. Pro typ LT1930 by měl být proud, který cívkou může protékat, alespoň 1A a její indukčnost by měla být 4,7 μ H nebo 10 μ H [14]. Vybraná cívka má indukčnost 4,7 μ H, proud, který jí může protékat, je 1,35 A a její rozměry jsou 3,8 × 3,8 × 2 mm [24].

Pin FB slouží pro zapojení zpětné vazby napětí na baterii. Jeho referenční napětí musí být nastaveno v rozmezí 1,240 V až 1,270 V, typická hodnota je však 1,255 V [14]. Pro výstupní napětí 5 V byl zvolen rezistor R10 o hodnotě 13 k Ω z rezistorové řady E24 [18]. Řada E24 byla zvolena kvůli požadované přesnosti napětí na pinu FB obvodu LT1930. Napětí na rezistoru R10 musí být tedy 1.255 V. Na rezistoru R9 je tedy úbytek napětí 3,745 V. Pomocí trojčlenky byla dopočítána hodnota rezistoru R9 dle rovnice:

$$R_9 = \frac{R_{10} \cdot U_{R9}}{U_{R10}} = \frac{13 \cdot 3,745}{1,255} = 38,79 \ k\Omega.$$
 (3.2)

Nejbližší hodnota rezistoru z rezistorové řady E24 je 39 k Ω [18]. Reálná hodnota napětí na rezistoru R10, tj. napětí na pinu FB byla dopočítána dle rovnice:

$$U_{R10} = \frac{U_{OUT}}{R_9 + R_{10}} \cdot R_{10} = \frac{5}{39 + 13} \cdot 13 = 1,25 V.$$
 (3.3)

Napětí 1,25 V je v povoleném rozmezí napětí na pinu FB.

Přesné výstupní napětí se spočítá podle vzorce:

$$U_{OUT} = U_{FB} \cdot \left(1 + \frac{R_9}{R_{10}}\right) = 1,25 \cdot \left(1 + \frac{39}{13}\right) = 5 V.$$
 [14] (3.4)

Obr. 3.8: Zapojení zvyšovače napětí LT1930.

3.8 Zvuková signalizace

Zvuková signalizace může sloužit například pro potvrzení správnosti hesla, možnosti odejít na další stanoviště, vypršení času pro daný úkol a mnoho dalších.

Jako zvuková signalizace bylo vybráno piezo s vlastním oscilátorem typu BMT1205XH7.5 [3]. Maximální odebíraný proud vybraného pieza je 30 mA a rezonanční frekvence je 2,3 kHz [3]. Intenzita zvuku pieza je ve vzdálenosti 10 cm od něj minimálně 83 dB [3].

3.9 Konektor

Jako programovací konektor byl zvolen konektor USB-C. Tento konektor je v dnešní době velmi rozšířený a jeho použití se v následující době stále rozšiřuje.

Obr. 3.9: Schéma zapojení pieza.

Konektoru USB-C je využíván pouze jako standardní a dostupný konektor, který je mezi běžnou populací rozšířený a v následujících letech se bude rozšiřovat stále více. Je využito standardního jmenovitého napětí 5 V pro nabíjení baterií a nadále pinů D+ a D-, které jsou využity pro komunikaci při programování.

Konektor USB-C je robustní a oboustranný, díky čemuž nebude docházet k tak častému poškození, jak by mohlo být např. u konektoru Micro USB. Při používání běžnou veřejností se jedná o vítaný bonus.

Vybraný mikrokontrolér ESP32-C3 umožňuje komunikaci přímo po USB protokolu a není díky tomu zapotřebí žádného převodníku pro komunikaci [8].

Připojené Shottkyho diody k napájecímu napětí slouží pro zadržení případného zpětného proudu. Shottkyho diody jsou dimenzovány na proud, který odebírá celé zařízení. Vybrané Shottkyho diody B5819W mají maximální napětí 20 V, jmenovitý proud 1 A a maximální špičkový proud 9 A [12].

Transily připojené k napájecímu pinu a ke komunikačním pinům D+ a D- slouží k ochraně proti přepětí a elektrostatickým výbojům o velikosti až 30 kV.

Pro napájení pomocí powerbanky bez potřeby kabelu slouží konektor USB-A.

Rezistory o hodnotě 5,1 k Ω na pinech CC1 a CC2 slouží pro signalizaci, že je k USB-C připojeno zařízení. Dle standardu USB-C totiž nabíječka bez připojení těchto rezistorů nesmí připojit napájecí napětí 5 V na pin VBUS [26].

Obr. 3.10: Zapojení konektoru USB-C.

Obr. 3.11: Zapojení konektoru USB-A.

3.10 Výsledné zapojení

Pro realizaci Semaforu byly vybrány následující komponenty: mikrokontrolér ESP32-C3, baterie LiFePO4, nabíjecí obvod CN3056E, konektory USB-C a USB-A, kapacitní tlačítka s převodníkem AT42QT1070, inteligentní LED WS2812C s převodníkem napětí LT1930, piezo, vibrační motor a LoRa modul. LoRa modul komunikuje s mikrokontrolérem pomocí sběrnice UART, převodník pro kapacitní tlačítka pomocí sběrnice I^2C a programování bude probíhat pomocí USB sběrnice. Vše je zapojeno dle následujícího blokového schématu.

Obr. 3.12: Výsledné blokové schéma Semaforu.

4 Návrh DPS

Byl zvolen kruhový tvar desky s průměrem téměř 15 cm a s výběžkem USB-A pro připojení powerbanky. Deska plošného spoje byla navržena v programu KiCad 6.0 a má 2 vrstvy mědi. Některé součástky jsou natočeny tak, aby byly co nejvíce na kraji kulaté DPS.

Komunikační dráhy jsou vedeny o tloušťce 0.150 mm a napájecí dráhy jsou vedeny o tloušťce 0.5 mm.

Výrobní podklady byly vygenerovány pomocí programu Kikit. Deska byla vyrobena u firmy JLCPCB, protože je bezkonkurenčně nejlevnější a její dodání je rychlé a bezproblémové. Jejich výrobky také dosahují vysoké kvality.

4.1 Kapacitní tlačítka

Byl požadavek na 5 tlačítek. Jedno tlačítko je uprostřed a slouží jako hlavní tlačítko. U her bude používáno např. jako registrace průchodu místem apod. Bude tedy nejčastěji používáno a zároveň může být stisknuto, když hráč běží, takže by mělo být co nejjednodušeji stisknutelné. Proto bylo navrženo větší než zbylá tlačítka. Konkrétně má čtvercový tvar se zaoblenými rohy s rozměry 5 × 5 cm. Ostatní tlačítka slouží například jako směrovky, nebo pro vyklikávání nějakého kódu, aby získali nějakou informaci. Slouží tedy primárně, když účastník u Semaforu stojí, nebo sedí, a vyklikává. Díky tomu mohou být tlačítka menší než hlavní tlačítko, konkrétně mají 2 × 2 cm a jsou taktéž čtvercová se zaoblenými rohy. Tato tlačítka jsou proto umístěna po stranách hlavního tlačítka a jsou popsána BTN_ENTER, BTN_UP, BTN_DOWN, BTN_RIGHT a BTN_LEFT.

V oblastech kapacitních tlačítek nejsou umístěny žádné další součástky a v jejich okolí je rozmístěna země kvůli odstínění.

Pod spodním tlačítkem je ze spodní strany umístěno pouzdro na baterii. Kdyby bylo pouzdro až pod tlačítkem, musel by se ještě hodně zvětšit průměr DPS. Pokud by se při testování prototypu ukázalo, že kvůli umístění pouzdra baterie dochází k rušení tlačítka, tak dojde při výsledné verzi DPS k posunutí pouzdra baterie.

4.2 **LED**

Po obvodu DPS je poté rovnoměrně rozmístěno do kruhu všech 12 programovatelných LED. Takto rozmístěné LED mohou zobrazovat např. podíl uběhnutého času. 12 LED bylo zvoleno z důvodu možnosti rozdělení na 2, 3 nebo i 4 segmenty. Na 12ti LED v kruhu lze také zobrazovat čas.

4.3 Ostatní součáskty

Ze zadní strany DPS je umístěna veškerá řídicí elektronika. Ve spodní straně je umístěno pouzdro s baterií LiFePO4 a v jeho blízkosti je umístěn nabíjecí obvod. V levém spodním rohu je poté umístěn konektor USB-C, který slouží pro nabíjení baterie a zároveň pro programování. Nad pouzdrem pro baterii je umístěn zvyšovač napětí pro programovatelné LED a nedaleko jsou LED diody indikující přítomnost napájecího napětí 3,3 V a 5 V. Ze zadní strany je v levé horní části umístěn mikrokontrolér ESP32-C3 a v pravé horní části LoRa modul. Nad tlačítky je umístěn převodník pro kapacitní tlačítka AT42QT1070-S.

Otvory pro připojení vypínače jsou umístěny u konektoru USB-C a otvory pro připojení vibračního motoru jsou umístěny mezi LoRa modulem a vrchním tlačítkem BTN2 UP1.

Z přední strany DPS je také umístěn bzučák.

4.4 Průběh návrhu

Při návrhu DPS byla dodržována pravidla a dobré způsoby správného návrhu.

V oblasti antény od ESP32-C3 mikrokontroléru nejsou taženy žádné dráhy, ani pod ní není rozlitá žádná měď. Je to z důvodu zaručení většího dosahu signálu a pro snížení rušení.

Filtrační kondenzátory jsou vždy umístěny co nejblíže pouzdrům daných čipů. Shottkyho diody jsou umístěny v blízkosti USB konektorů. Rozmístění součástek kolem zvyšovače napětí je provedeno dle doporučení z dokumentace.

Komunikační piny D+ a D- pro programování jsou taženy jako diferenciální pár.

4.5 Osazení, oživení a testování DPS

DPS byla taktéž strojově osazena u firmy JLCPCB. Z důvodu nedostupnosti některých součástek byly některé komponenty zakoupeny v jiných obchodních řetězcích a doosazeny ručně. Jednalo se o držák na baterie, piezo, kondenzátor C3 v pouzdře 0805 o hodnotě 100 μ F, čip pro kapacitní tlačítka AT42QT1070, vypínač a LoRa modul.

Nebyl sehnán přesný typ držáku, pro který byl modul navržen, proto byly nožičky držáku roztaženy, aby byla jejich rozteč zvětšena a mohlo dojít k zapájení. U pieza také chybělo označení polarity. Do finální verze bylo tedy přidáno do popisové vrstvy plus u správného vývodu. Vypínač byl kvůli testovacím účelům realizován pinheady a na ně byla nasazena propojka. Na místo LoRa modulu byly připájeny dutinky a LoRa modul byl pouze zasunut do dutinek. Hlavním důvodem byla cena tohoto

modulu. LoRa modul bude z prototypu přesunut na finální výrobek a nedojde tak k plýtvání součástek ani peněz.

4.5.1 Oživení

Po připájení všech součástek byla do pouzdra vložena baterie LiFePO4 a DPS byla pomocí propojky zapnuta. Po zapnutí DPS se rozsvítila LED indikující přítomnost napětí 3,3 V. Po připojení konektoru USB-C s napájecím napětím se rozsvítila i LED indikující napětí 5 V. Také se rozsvítila červená LED indikující nabíjení baterie. Baterie byla pod dohledem nabíjena v DPS. Nedošlo k zahřátí DPS ani baterie a po čase se u nabíjecího obvodu rozsvítila místo červené LED zelená LED. Tato LED indikuje plně nabitou baterii. Na plně nabité baterii bylo naměřeno napětí 3,4 V. Nabíjecí obvod byl tedy otestován a bylo zjištěno, že funguje správně.

Při měření napětí bylo zjištěno, že napájecí napětí pro programovatelné LED dosahuje pouze 1,7 V. Dalším měřením bylo zjištěno, že ani na vstupu zvyšovače napětí není 3,3 V, ale pouze 1,7 V. Díky tomu bylo zjištěno, že při logické 1 na pinu IO5 je 3,3 V, ale na spínaném výstupu je pouze 1,7 V. Bylo zjištěno, že byl použit tranzistor typu NMOS, který nelze v takovém zapojení plně otevřít. Tranzistor tedy zůstává v lineárním režimu, a proto je na výstupu pouze 1,7 V. Chyba byla vyřešena výměnou tranzistoru. Místo NMOS byl použit PMOS a do finální verze byla chyba opravena. Byla vyměněna schématická značka tranzistoru za PMOS a zároveň byl vyměněn kód součástky, aby byla správná součástka osazena již u firmy JLCPCB.

Po opravě již mělo napájecí napětí pro inteligentní LED hodnotu 5 V. Díky tomu bylo zjištěno, že zvyšovač napětí funguje správně.

4.5.2 Testování

DPS byla naprogramována a komunikace mezi počítačem a mikrokontrolérem proběhla bezproblémově. Byl napsán testovací SW pro programovatelné LED a další periferie. Díky tomu mohly být otestovány programovatelné LED. Všechny inteligentní LED bylo možné rozsvítit různými barvami, takže jsou plně funkční. Byla otestování funkčnost zapojení pieza a vibračního motoru. Obě zapojení byla funkční.

Dále bylo testováno zapojení kapacitních tlačítek a jejich čtení. Pro komunikaci s čipem AT42QT1070 byla použita knihovna AtTouch, která je primárně určena pro Arduino [20]. Knihovny pro Arduino bývají převážně s mikrokontroléry ESP32 kompatibilní. Nejdříve bylo zjištěno, že knihovna předpokládá připojení I2C na konkrétních pinech, tj. SCL na GPIO9 a SDA na GPIO8 [20]. Mnou navržený modul má piny připojené naopak, tj. SCL na GPIO8 a SDA na GPIO9. Došlo tedy k upravení knihovny, aby jako vstupní parametry byly přebírány i GPIO piny I2C. Testovací software, který používal upravenou knihovnu AtTouch ale nebyl funkční.

Nedocházelo k detekci stisku tlačítka a ani pin /CHANGE neměnil svůj stav. Ani po zapnutí softwarového pullup rezistoru nezačal pin /CHANGE generovat správné pulzy. Proto byla DPS připojena k osciloskopu. Nejdříve byla sledována komunikace po I2C pomocí pinů SCL a SDA. Díky tomu bylo zjištěno, že počáteční ustavovací komunikace probíhá v pořádku a mikrokontrolér se s čipem AT42QT1070 domluví. Díky tomu bylo zjištěno, že čip AT42QT1070 funguje správně, ale data jsou knihovnou AtTouch chybně zpracovávána. Tato knihovna také neumožňovala detekci stisků více tlačítek současně, i když tuto funkci použitý čip AT42QT1070 umí. Z tohoto důvodu bylo rozhodnuto, že bude mnou vytvořena nová knihovna, která bude tuto funkci podporovat a budou v ní odstraněny všechny chyby, které jsou v knihovně AtTouch.

Při tvorbě knihovny bylo zapotřebí otestovat funkci jednotlivých registrů. Registr Detection Status generuje při doteku jakéhokoli tlačítka jedničku na bitu nula. Zároveň, pokud je tento registr čten, tak pin /CHANGE negeneruje pulzy a zůstává v klidové pozici, tj. logické jedničce. Bylo tedy rozhodnuto, že pokud se bude daná informace používat, tak to bude právě z registru Detection Status a díky tomu se uvolní pin na mikrokontroléru, který bude moci být použit pro připojení dalších periferií. Registr Key Status indikuje pouze stisk jednoho tlačítka. Pokud je jich stisknuto více, tak se celý vynuluje. Toto chování může být způsobeno velikostí kapacitních tlačítek, jejich návrhem, nebo může být chyba v čipu AT42QT1070. Registry Key Signal uchovávají aktuální měřenou informaci o měřené kapacitě ve 2 bytech pro každé tlačítko. Tyto hodnoty se mění v závislosti na prostředí, ve kterém se modul nachází, a také v závislosti na stisknu. Při stisku jsou hodnoty změněny skokově a hodnota měřené kapacity se výrazně změní. Registry Reference Data uchovávají data po kalibraci. Při testování se stávalo, že se kalibrace spouštěla sama ve chvílích, kdy bylo některé z tlačítek stisknuto. Zejména dělalo problémy hlavní velké tlačítko. Proto byla v knihovně využívána data pouze z registrů Key Signal a změna byla detekována pouze pomocí tohoto registru. Díky tomu, že změna prostředí nedělá tak velké a prudké změny. Tlačítka byla nadále rozdělena do jednotlivých skupin, aby mohl být detekován i multistisk. To bylo nastaveno v registrech AVE/AKS. Bity 0 a 1 byly nastaveny do nuly, což znamená, že tlačítka nejsou v žádné skupině, takže je každé samostatně. Pro používaná tlačítka 0 až 4 byly nastaveny registry na hodnotu 32, což znamená, že měřená hodnota je průměrem z 8mi naměřených hodnot. Registry pro tlačítka 5 a 6 jsou vynulovány, a tím jsou tyto vstupy deaktivovány.

Pro práci s kapacitními tlačítky jsou tedy primárně využívány registry Key Signal a informace o stisku jsou z nich dopočítávány.

Byla otestována komunikace s E22-900T22D LoRa modulem. Vyčítání informací z LoRa modulu probíhalo v pořádku, ale kvůli nepřipojení pinů M0, M1 a AUX k mikrokontroléru nemohl být modul nastaven tak, aby komunikoval s dalšími moduly. Tyto chyby byly opraveny do finální verze a další testování tohoto modulu probíhalo

až na hardwaru finální verze DPS.

5 Finální verze DPS

Finální verze DPS byla zmenšena na průměr 10 cm, protože DPS od firmy JLCPCB jsou mnohem levnější, když mají maximální rozměry 10×10 cm. Také jejich skladovací nároky jsou mnohem menší. Kvůli tomuto zmenšení ale nebylo dost místa kolem kapacitních tlačítek, aby nedocházelo k jejich rušení z okolních obvodů. Zároveň by musely být tlačítka moc blízko u sebe, takže by mohlo docházet k jejich přeslechům. Routování takové DPS, aby dráhy nevedly v blízkosti kapacitních tlačítek ani pod nimi bylo takřka nemožné. Proto bylo přistoupeno k řešení 2 spojených DPS. Díky tomu mohly být obě DPS osazeny pouze z jedné strany, což ušetří další nemalé peníze. I při výrobě 2 kusů DPS o průměru 10 cm místo jedné velké byla cena výhodnější. Na spodní DPS je tedy veškerá řídicí elektronika a na vrchní DPS jsou pouze tlačítka a programovatelné LED. Kolem kapacitních tlačítek byla také vytvořena tzv. "guard"zóna, která slouží pro lepší odstínění tlačítek od ostatních signálů. Tato zóna byla připojena k převodníku AT42QT1070 dle datasheetu na pozici prvního tlačítka - pin KEY0 [2].

Po konzultaci bylo domluveno, že při napájení z baterie a možnosti napájení přes konektor USB-C není konektor USB-A zapotřebí. Rozměry DPS by se tím také opět zvětšily a výrobní náklady by tím stouply.

Do finální verze byl také přidán fototranzistor, který bude následně využíván pro regulaci jasu programovatelných LED typu WS2812C. Fototranzistor byl připojen na GPIO01 mikrokontroléru ESP32-C3. Na tomto pinu je k dispozici AD převodník [8]. Byl vybrán fototranzistor s označením SMD3528C-50, který je citlivý na viditelné světlo. Tento fototranzistor byl umístěn také na vrchní DP. Dále byl také přidán konektor pro připojení dalších programovatelných LED typu WS2812C, které budou na pásku, který bude připevněn po obvodu univerzálního modulu. Tyto LED budou zajišťovat, aby modul mohl svítit nejen dopředu, ale i do stran. Tato funkcionalita opět rozšiřuje možnosti využití tohoto modulu. Na datový pin těchto programovatelných LED byl připojen do série rezistor, který zabraňuje zničení pinu mikrokontroléru EPS32-C3, kdyby byly omylem zkratován s napájecím napětí.

Bylo zapotřebí připojit k mikrokontroléru i piny M0, M1 a AUX od LoRa modulu E22-900T22D. Na mikrokontroléru ale nebylo již dostatek volných pinů a tak byl použit expander GPIO pinů. Vybraný expander PCA9536D umožňuje připojení 4 GPIO a zároveň komunikuje s mikrokontrolérem přes sběrnici I^2C . Pin AUX byl tedy připojen k mikrokontroléru přímo přes GPIO05 a piny M0 a M1 byly připojeny k GPIO0 a GPIO1 expanderu. Protože byly ještě volné GPIO piny na expanderu, bylo realizováno ještě samostatné vypínání napájení programovatelných LED, protože i když tyto LED nesvítí, tak mají stále spotřebu 0,3 mA na jednu LED [29]. při bateriově napájení aplikaci je to stále nemalý proud, a proto byl realizován právě

samostatný vypínač napájení.

Ve finální verzi DPS byl použit posuvný vypínač se zahnutými vývody. Díky tomu mohl být vypínač umístěn na okraj DPS a nemusel být ručně pájen na drátkách. LED indikující přítomnost napájecího napětí 3,3 V a LED indikující nabíjení nebo plné nabití baterie byly dány na okraj spodní DPS tak, aby bylo možné je vidět, ale zároveň aby při používání modulu při hře nemohly zmást. LED indikující přítomnost napájecího napětí 5 V byla odstraněna pro její nadbytečnost.

Byly přidány také zkratovací prokovy na EN pinu mikrokontroléru s GND. Při zkratování je restartován mikrokontrolér. Tyto prokovy slouží pro snazší oživování a testování softwaru. Při proovozu nebude propojka zkratována a bude zabráněno jejímu náhodnomu zkratování díky obalu.

Při návrhu byly také brány v potaz tekoucí proudy danými drahami. Tloušťky drah tomu byly přizpůsobeny a případné prokovy také. Například dráhy od baterie, jak k nabíjecímu obvodu, tak k USB mají tloušťku 2 mm, signálové dráhy mají tloušťku 0,125 mm a ostatní napájení dráhy mají tloušťku 1 mm. Prokovy mají vždy vrtanou díru stejně velkou, jako je tloušťka dráhy a okolní měď má průměr alespoň o 0,2 mm větší než vrtaná díra. U dvounožičkových součástek byl také řešen thombstone efekt. Proto u takových součástek byly dráhy vyvedeny stejně tlusté, případně alespoň co nejpodobnější.

Rozložení součástek zvyšovače napětí bylo realizováno dle doporučení z datasheetu. Prokovy k signálu GND byly umístěny co nejblíže k vstupnímu i výstupnímu kondenzátoru. Propojovací konektory byly umístěny po obvodu a byly na ně připojeny všechny potřebné signály. Napájecí napětí a GND signál byly přivedeny přes jeden konektor, aby se tak zlepšilo EMC.

DPS byla následně opět vyrobena a osazena u firmy JLCPCB.

6 Firmware

V následující kapitole je popsán firmware univerzálního modulu. Jsou zde popsány veškeré vytvořené funkce a moduly, které jsou potřebné pro následnou tvorbu softwaru univerzálního modulu.

6.1 Tvorba hlavní knihovny

Hlavní knihovna lib.h a lib.cpp slouží pro sdružování veškerých funkcí, které jsou univerzálnímu modulu k dispozici. Funkce init slouží pro počáteční inicializaci univerzálního modulu. Jsou zde zadefinovány piny mikrokontroléru, zda jsou vstupní, nebo výstupní, případně je zapnut softwarový pullup rezistor. Jsou zde nastaveny počáteční hodnoty výstupních pinů, vypnut vibrační motor, vypnuto piezo a zhasnuty všechny programovatelné LED. Jsou zde také vytvořeny všechny potřebné objekty, jako jsou tlačítka a programovatelné LED.

Pro programování LED byla využita již existující knihovna Adafruit_NeoPixel.h. Nad touto knihovnou byly vytvořeny nádstavbové funkce, aby práce s programovatelnými LED byla ještě snazší. Pro práci s programovatelnými LED byly vytvořeny následující funkce. Funkce set_brightness vyčítá hodnotu z fototranzistoru a dle ní nastavuje jas programovatelných LED. Funkce colors přebírá jako parametr název barvy a ten převádí do RBG kódu, se kterým již knihovna NeoPixel umí pracovat. Funkce get color přebírá jako parametr index LED a vrací barvu, kterou daná LED aktuálně svítí. Pomocí funkce LED_light, která přebírá jako parametr index LED a barvu, lze rozsvítit LED na dané pozici danou barvou. Funkce LED toggle při každém volání funkce přepíná barvu LED mezi zadanou barvou a zhasnutím LED. Tato funkce přebírá jako parametr právě barvu, kterou má blikat a pozici LED, která má blikat. Funkce LED_off zhasne LED na pozici, která je předána parametrem. Pro usnadnění práce se všemi LED yly vytvořeny také funkce LEDs_all_off, která zhasne všechny LED, LEDs all on, která přebírá jako parametr barvu a tou barvou poté rozsvítí všechny LED, a LEDs all toggle, která přebírá jako parametr barvu, kterou blikají všechny LED. Přepínání zhasnutí LED a rozsvícení danou barvou probíhá při každém zavolání této funkce.

Pro hlídání stavu nabití baterií byly vytořeny 2 funkce. První funkce measure_battery_voltage měří napětí na baterie ve voltech, tato hodnota je také návratovou hodnotou této funkce. Druhou funkcí je is_battery_voltage_ok, která vrací informaci, zda je baterie dostatečně nabitá. Pokud by vrátila informaci, že baterie je málo nabitá, tak na tento stav může program reagovat. Například je vytvořena funkce switch_off_voltage_periferies, která odpojí od napětí periferie, které mají vyšší spotřebu. Jsou to například programovatelné LED nebo LoRa modul.

6.2 Knihovna pro AT42QT1070

Pro převodník AT42QT1070, který převádí signál z kapacitních tlačítek na komunikaci po sběrnici I^2C , byla připravena knihovna AT42QT1070.h. Tato knihovna obsahuje 3 třídy, které dopomáhají práci s tlačítky a usnadňují ji.

Třída s názvem AT42QT1070Touch obsahuje funkci begin, která slouží pro nastavení čipu AT42QT1070, rozděluje tlačítka do jednotlivých skupin a dělá počáteční kalibraci. Z tohoto důvodu nesmí být při zapnutí modulu stisknuto žádné tlačítko. Pokud by tomu tak bylo, tak by se tlačítka chybně zkalibrovala a docházelo by tak k falešným stiskům. Funkce tick musí být volána pravidelně, aby docházelo k neustálé obnově dat a kalibraci tlačítek. Díky tomu nejsou vyvolány falešný stisky při změně prostředí, která může způsobovat pozvolnou změnu kapacity. Funkce get_raw_data_btn berejako parametr index tlačítka a vrátí hodnotu kapacity tlačítka přímo z registru čipu AT42QT1070. Funkce is_touched_btn přebírá jako parametr index tlačítka a vrací informaci o tom, zda je tlačítko stisknuto či nikoli.

Třída s názvem TouchButton reprezentuje tlačítko. V této třídě je definována funkce tick, která přebírá aktuální vzorek z tlačítka. Tento vzorek je porovnáván s průměrně naměřenou hodnotou. Pokud je aktuálně naměřená hodnota blízká průměrné hodnotě, tak je tento vzorek započítán do průměru. Pokud je aktuálně naměřená hodnota dostatečně rozdílná oproti předchozím průměru, tak je detekován stisk. Stisk je signalizován až ve chvíli, když je neměřen 3× za sebou. Díky tomu jsou vyloučeny falšené stisky, které mohou být vyvolány například okolním rušením.

Třída s názvem Moving Average slouží pro počítání klouzavého průměru z naměřených hodnot z tlačítek. Funkce push_sample převezme naměřený vzorek a nahradí jím nejstarší vzorek, který je pro počítání průměru využit. Funkce setup přebírá 2 parametry. První parametr size určuje, z kolika posledních naměřených vzorků bude průměr počítán, a druhý parametr initial_value udává první hodnoty, které jsou po spuštění využity pro počítání průměru. Při použití jsou poté předávány hodnoty z počáteční kalibrace.

6.3 Webový server

Pro práci s WiFi byla vybrána knihovna WiFi.h, která je určena pro Arduino i mikrokontroléry typu ESP32 [10]. Testovací kód obsahoval vytvoření WiFi sítě a následně vytvoření webové stránky. Telefon byl připojen k vytvořené WiFi síti a poté byl přesměrován na vytvořenou webovou stránku. Dále probíhalo testování získávání dat z nastavení na webové stránce.

7 Hry a jejich metodika

7.1 Odpočítávadlo

Funkce Semaforu ve hře:

V konfiguraci je nastavena délka časového limitu. Poté je vysvícena dvanáctina času, který zbývá do konce časového limitu. Stisknutím prostředního tlačítka je odpočet zastaven. Zastavení času je signalizováno blikáním daného počtu LED červenou barvou. Opětovným stiskem prostředního tlačítka odpočet pokračuje.

7.2 Vábnička

Funkce Semaforu ve hře:

Hru Vábnička lze hrát ve třech režimech. Nastavení režimu probíhá v konfiguračním menu.

Režimy hry Vábnička:

- Boční tlačítka mají charakter barev jednotlivých týmů. Po zmáčknutí daného tlačítka se Semafor rozsvítí danou barvou.
- Středové tlačítko slouží pro přepnutí barvy na náhodnou jinou barvu, než kterou Semafor svítil do teď.
- Středové tlačítko slouží pro přepnutí barvy na následující barvu, která je aktuálně v pořadí.

V konfiguraci lze také zapnout probíhání kontroly, aby jednotlivé Semafory nikdy nesvítily všechny stejnou barvou. Alespoň jeden Semafor musí svítit jinou barvou než ostatní. K tomu slouží komunikace mezi jednotlivými Semafory.

7.3 Pán hory

Hra Pán hory spočívá v délce času, jak dlouho který tým na hoře panuje. Každý tým musí doběhnout na horu a stisknout tlačítko svého týmu. Poté se počítá čas jeho týmu na úkor ostatních. Cílem je držet horu co nejdéle v rámci herního času. Hra je pro 2 až 4 týmy.

Na počátku hry je čas všech týmů držení hory stejný.

Funkce Semaforu ve hře:

Jednotlivá boční tlačítka reprezentují barvy jednotlivých týmů a po stisku daného tlačítka se zahajuje přidávání času pro daný tým na úkor ostatních týmů. Kruh LED vždy svítí celý a barvy v něm jsou rozděleny právě v poměru časů držení hory daných týmů. Středové tlačítko slouží pro zastavení času. Žádný tým se nikam neposouvá.

Boční LED slouží pro zobrazení barvy týmu, který je aktuálně pánem hory. Počet týmů je nastavován v konfiguračním menu.

7.4 Semafor

Jde o naprogramování funkce klasického dopravního semaforu.

<u>Funkce Semaforu ve hře:</u> Kruh je rozdělen na třetiny a každá třetina svítí jednou z barev klasického dopravního semaforu. Délka trvání jednotlivých stavů je náhodná v rozsahu 10-60 sekund.

8 Software

9 Voděodolnost

Pro zajištění voděodolnosti byl zvolen obal z průhledného silikonu. Do silikonu je DPS zalita, proto musela být navržena forma pro následné odlití. V následující části je popsán postup návrhu formy a následná výroba silikonového pouzdra. Nejdříve byl celý proces otestován na prototypových DPS: Po odladění bylo vše překresleno podle finální verze DPS a byly zapouzdřeny i finální verze univerzálního modulu.

Nejprve byl vyexportován z programu KiCad 3D model celé DPS včetně všech součástek, které měly 3D model již z interní knihovny. Pro součástky, které neměly 3D model a zároveň byly důležité pro výsledný vzhled pouzdra, byly 3D modely dokresleny v programu SolidWorks. Pouzdra byly kresleny bez větších detailů. S přesností byly kresleny pouze kritická místa, kde součástka ovlivňuje rozměry pouzdra nebo kde musí procházet pouzdrem až na povrch.

Náledně byl nakreslen model pouzdra, jak by mělo vypadat bez vložené DPS. Poté byla vytvořena sestava, kde byla DPS již vložené v pouzdře. Z pouzdra musely vyčnívat součásti, které nesmí být zality v silikonu. Nesmí být zalit USB konektor, prostřednictvím něhož je modul napájen a programován, dále vypínač a piezo, protože by jinak nemohlo vydávat zvuk.

Z takto vytvořeného modelu byla vytvořena forma. Byl nakreslen válec, který byl z každé strany o 3 mm větší než DPS s obalem. Poté byl použit nástroj "Kombinovat", který umožnil odečtení vytvořeného modelu DPS s obalem, takže vznikla dutá forma pro potřebný tvar. Následně byla forma rozdělena na 2 díly, které na sebe pasují a protínají v polovině všechny otvory tak, aby se do těchto půlek dala DPS zavřít.

Ve formě byl vytvořen otvor pro vstřik silikonu a také otvory pro XXX.

Forma na silikonový obal byla vytištěna na FMD 3D tiskárně. Nemohla být použita 3D tiskárna typu SLA, protože resin, ze kterého se v SLA tiskárnách tiskne, zabraňuje tuhnutí použitého typu silikonu.

Byl umíchán silikon z XXX v poměru 1:1. Pomocí stříkačky byl vtlačen silikon XXX. Tvrdnutí této silikonové směsy trvalo XXX.

10 Uživatelský manuál

Po zapnutí Semaforu vypínačem je načtena poslední hraná hra.

Po dobu XXX je možné přepnout modul do konfiguračního módu. Tento mód je k dispozici pomocí současného stisku tlačítek XXX. Konfigurační mód signalizován XXX. Po zapnutí tohoto módu je zapotřebí telefon nebo notebook, který má možnost připojit se k WiFi síti. V zařízení je zapotřebí najít WiFi sít s názvem XXX. Připojení proběhne po zadání hesla XXX. Po připojení k této WiFi síti přejďete do internetového vyhledávače. Do něj napište XXX.

Zobrazí se webová stránka s konfiguračním menu modulu. Zde si můžete najít konkrétní hru i s jejím popisem. Pokud lze u dané hry nastavit nějaké parametry, jako je například počet hrajících týmů apod, tak jsou u této hry místa, kam lze daný parametr vyplnit. Pro nastavení dané hry stiskněte tlačítko dané hry. V tuto chvíli se spustí dané hra na nastavovaném modulu a zároveň na všech modulech, které jsou v danou chvíli zapnuty a neuběhl u nich čas XXX od jejich zapnutí.

Tímto způsobem lze konfigurovat až 9 modulů současně.

Krátký popis funkce modulu v jednotlivých hrách je popsána na konfigurační webové stránce.

10.1 Funkce modulu v jednotlivých hrách

Závěr

Tato práce se zabývá návrhem zařízení Semafor, které slouží jako doplněk pro táborové hry a také pro edukační účely. Byla navržena kompletní elektronika potřebná pro funkce, které má Semafor splňovat.

V první části jsou rozebrány možnosti použitých komponent, které mohou být využity při výrobě Semaforu. Následně jsou z výběru použity nejvhodnější komponenty dle periferií, ceny i možností použití v outdoorových aplikacích. Pro komunikaci Semaforů mezi sebou je připojen LoRa modul, který zajišťuje komunikaci na dostatečnou vzdálenost při použití na táborech.

Výsledné schéma je přiloženo v příloze.

Pro konfiguraci her, např. nastavení, která hra se hraje a s jakými parametry, slouží kapacitní dotyková tlačítka a do budoucna bude také vytvořena webová stránka, ke které se bude připojovat pomocí WiFi. Konfigurace bude probíhat na vytvořené webové stránce.

Bylo vytvořeno schéma zapojení elektroniky pro Semafor, které se skládá z mikrokontroléru ESP32-C3 ve verzi s anténou a LoRa modulu pro bezdrátovou komunikaci mezi jednotlivými Semafory. Napájení je realizováno pomocí baterie LiFePO4 a USB konektoru pomocí powerbanky. Baterie jsou nabíjeny pomocí nabíjecího obvodu CN3058E a konektoru USB-C nebo USB-A. Komunikace s okolním světem je zajištěna kapacitními tlačítky, vibračním motorem, piezem a inteligentními LED typu WS2812C. Mikrokontrolér ESP32-C3 nemá kapacitní vstupy, a proto je použit převodník AT42QT1070. Pro napájení inteligentních LED je využit převodník napětí LT1930.

Literatura

- [1] ASTRA: Přehledné informace o typech akumulátorů [online]. 2018, poslední aktualizace 28.11.2018 [cit. 05.12.2022]. Dostupné z URL: httml>
- [2] Atmel: Atmel AT42QT1070 [online]. 2013, poslední aktualizace 05.2013 [cit. 9.11.2022]. Dostupné z URL: https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-9596-AT42-QTouch-BSW-AT42QT1070 Datasheet.pdf>
- [3] Bestar Acoustic: Magnetic transducer [online]. 2003, poslední aktualizace 28.05.2003 [cit. 01.01.2023]. Dostupné z URL: https://www.tme.eu/Document/1ff2ab27ffcd141d4c8d7506962ac351/bmt1205xh7_5_020200.pdf
- [4] CONSONANCE: 1A LiFePO4 Battery Charger CN3058E [online]. 2022, poslední aktualizace 2022 [cit. 31.10.2022]. Dostupné z URL: http://www.consonance-elec.com/en/static/upload/file/20220425/1650867856106004.pdf
- [5] Český telekomunikační úřad: Všeobecné oprávnění č. VO-R/10/07.2021-8 k využívání rádiových kmitočtů a k provozování zařízení krátkého dosahu [online]. 2021, poslední aktualizace 20.07.2021 [cit. 17.03.2023]. Dostupné z URL: https://www.ctu.cz/sites/default/files/obsah/vo-r10-072021-8.pdf
- [6] DUFKOVÁ, M.: Li-ion baterie [online]. 2015, poslední aktualizace 25.04.2015 [cit. 05.12.2022]. Dostupné z URL: https://www.3pol.cz/cz/rubriky/prakticke-informace/1677-li-ion-baterie
- [7] EBYTE: *E22-900T22D* [online]. 2018, poslední aktualizace 2018 [cit. 17. 03. 2023]. Dostupné z URL: https://www.ebyte.com/en/product-view-news.html?id=1117
- [8] Espressif Systems: ESP32-C3-MINI-1 [online]. 2022, poslední aktualizace 2022 [cit. 31.10.2022]. Dostupné z URL: https://www.espressif.com/sites/default/files/documentation/esp32-c3-mini-1_datasheet_en.pdf
- [9] Espressif Systems: ESP32-C3 Technical Reference Manual [online]. 2022, poslední aktualizace 20.02.2023 [cit. 02.01.2023]. Dostupné z URL: https://www.espressif.com/sites/default/files/documentation/esp32-c3_technical_reference_manual_en.pdf>

- [10] Espressif Systems: WiFi [online]. poslední aktualizace 16.12.2022 [cit. 12.04.2023]. Dostupné z URL: https://www.espressif.com/sites/default/files/documentation/esp32-c3_technical_reference_manual_en.pdf
- [11] IoTPORT: LoRaWAN připojení do sítě IoT [online]. 2022, [cit. 28.12.2022]. Dostupné z URL: https://www.iotport.cz/lorawan-sit-pro-iot
- [12] JCET: SOD-123 Plastic-Encapsulate Diodes2015, [online]. 04.201501. 01. 2023]. poslední aktualizace cit. Dostupné URL: https://datasheet.lcsc.com/lcsc/1809140216 Jiangsu-Changjing-Electronics-Technology-Co---Ltd--B5819W-SL_ C8598.pdf>
- [13] LEADER: PRODUCT SPECIFICATION LCM1020A2945F [online]. 2021, poslední aktualizace 20.08.2021 [cit. 9.11.2022]. Dostupné z URL: https://datasheet.lcsc.com/lcsc/2109230030_LEADER-LCM1020A2945F_C2891560.pdf
- [14] LINEAR TECHNOLOGY: LT1930/LT1930A [online]. 2001, poslední aktualizace 2001 [cit. 5.11.2022]. Dostupné z URL: https://www.analog.com/media/en/technical-documentation/data-sheets/1930f.pdf
- [15] MALINA GROUP: Co jsou to baterie LiFePO4? [online]. 2021, poslední aktualizace 27.11.2021 [cit. 05.12.2022]. Dostupné z URL: https://malinagroup.cz/co-jsou-to-baterie-lifepo4/?gclid="cj0KCQiAyracBhDoARIsACGFcS5eip8JqXIovxZ4ZCmRtD1Qhd0keRIml-H54afd2dTpAnDb95mwpwcB">https://malinagroup.cz/co-jsou-to-baterie-lifepo4/?gclid="cj0KCQiAyracBhDoARIsACGFcS5eip8JqXIovxZ4ZCmRtD1Qhd0keRIml-H54afd2dTpAnDb95mwpwcB">https://malinagroup.cz/co-jsou-to-baterie-lifepo4/?gclid="cj0KCQiAyracBhDoARIsACGFcS5eip8JqXIovxZ4ZCmRtD1Qhd0keRIml-H54afd2dTpAnDb95mwpwcB">https://malinagroup.cz/co-jsou-to-baterie-lifepo4/?gclid="cj0KCQiAyracBhDoARIsACGFcS5eip8JqXIovxZ4ZCmRtD1Qhd0keRIml-H54afd2dTpAnDb95mwpwcB"
- [16] Microchip Technology Inc.: MCP1640/B/C/D [online]. 2010, [cit. 30.12.2022]. Dostupné z URL: https://ww1.microchip.com/downloads/aemDocuments/documents/APID/ProductDocuments/DataSheets/MCP1640-Family-Data-Sheet-DS20002234E.pdf
- [17] PECH, J.: IOT TECHNOLOGIE: LORA A LORAWAN (3/5) [online]. 2019, poslední aktualizace 19.02.2019 [cit. 28.12.2022]. Dostupné z URL: https://www.eman.cz/blog/iot-technologie-lora-a-lorawan-3-5/
- [18] Radioklub OK1KVK: Elektrotechnické E3.řady hodnotE6.aktualizace E12.E24[online]. 2011, poslední 25.05.2011 [cit. Dostupné z URL: https://ok1kvk.cz/clanek/2011/ 31. 10. 2022]. elektrotechnicke-rady-hodnot-e3-e6-e12-e24/>

- [19] RNDr. Michal Černý, Ph.D.: Bezdrátové protokoly základní přehled [online]. 2014, poslední aktualizace 16.01.2014 [cit. 12.11.2022]. Dostupné z URL: https://is.muni.cz/el/1421/jaro2013/VIKMB15/um/Bezdratove protokoly.pdf>
- [20] Shibley, Noah: Arduino Library for the Atmel AT42QT1070 QTouch 7-channel Sensor IC via i2c [online]. 2011, poslední aktualizace 16.07.2015 [cit. 11.04.2023]. Dostupné z URL: https://github.com/nullboundary/AtTouch
- [21] Sigfox: Sigfox.cz [online]. 2021 [cit. 03.01.2023]. Dostupné z URL: https://sigfox.cz/cs
- [22] Smart-switch: ZIGBEE VS WIFI, CO JE LEPŠÍ? [online]. 2021, poslední aktualizace 10.03.2021 [cit. 13.11.2022]. Dostupné z URL: https://www.smart-switch.cz/blog/zigbee-vs-wifi-co-je-lepsi/
- [23] SSP Brno: *Klávesnice* [online]. 2019, poslední aktualizace 19.02.2019 [cit. 29.12.2022]. Dostupné z URL: https://moodle.sspbrno.cz/pluginfile.php/11562/mod_resource/content/2/cast2_06_klavesnice.pdf
- [24] Sumida: SMD Power Inductor CDRH3D18 [online]. 2017, poslední aktualizace 09.01.2017 [cit. 01.01.2023]. Dostupné z URL: https://datasheet.lcsc.com/lcsc/1809140821_Sumida-CDRH3D18NP-4R7NC_C167273.pdf
- [25] ŠPINA, M.: Olověné baterie: Stálice na poli akumulace již více než půldruhého století [online]. 2021, poslední aktualizace 17.06.2021 [cit. 05.12.2022]. Dostupné z URL: https://oenergetice.cz/akumulace-energie/olovene-baterie-stalice-poli-akumulace-jiz-vice-nez-puldruheho-stoleti
- [26] USB 3.0 Promoter Group: Universal Serial Bus Type-C Cable and Connector Specification [online]. 2019, poslední aktualizace 08.2019 [cit. 01.01.2023]. Dostupné z URL: https://www.usb.org/sites/default/files/USB%20Type-C%20Spec%20R2.0%20-%20August%202019.pdf
- [27] VANDA, D.: LiFePO4 baterie: V čem jsou lepší než Li-Ion či Li-Pol a proč je chtít? [online]. 2022, poslední aktualizace 05.10.2022 [cit. 05.12.2022]. Dostupné z URL: https://insmart.cz/lifepo4-baterie-v-cem-jsou-lepsi-nez-li-ion-ci-li-pol-a-co-nabizi/>
- [28] VOJÁČEK, A.: Pravidla pro konstrukci kapacitních dotykových tlačítek mTouch [online]. 2008, poslední aktualizace 13.12.2008 [cit. 26.10.2022]. Dostupné z URL: https://automatizace.hw.cz/pravidla-pro-konstrukci-kapacitnich-dotykovych-tlacitek-mtouch

- [29] Worldsemi: WS2812C Intelligent control LED [online]. 2007, poslední aktualizace 2007 [cit. 10.11.2022]. Dostupné z URL: https://datasheet.lcsc.com/lcsc/1810231210_Worldsemi-WS2812C_C114587.pdf
- [30] ZOOCO: Co je to síť Sigfox? [online]. 2023 [cit. 03.01.2023]. Dostupné z URL: https://zooco.beyondpage.info/napoveda-zooco/faq/sigfox/co-je-to-sit-sigfox>

Seznam obrázků

2.1	Základní blokové schéma Semaforu	12
2.2	Princip mechanického tlačítka	17
2.3	Princip kapacitního tlačítka	18
3.1	Blokové schéma mikrokontroléru ESP32-C3	25
3.2	Schéma zapojení mikrokontroléru ESP32-C3	26
3.3	Schéma zapojení nabíjecího obvodu pro LiFePO4	28
3.4	Schéma zapojení vibračního motoru	30
3.5	Zapojení převodníku AT42QT1070 pro kapacitní tlačítka	31
3.6	Zapojení převodníku úrovní pro WS2812C	32
3.7	Zapojení inteligentních LED WS2812C	32
3.8	Zapojení zvyšovače napětí LT1930	34
3.9	Schéma zapojení pieza	35
3.10	Zapojení konektoru USB-C	36
3.11	Zapojení konektoru USB-A	36
3.12	Výsledné blokové schéma Semaforu	37
A.1	Blokové schéma zapojení elektroniky Semaforu	59

Seznam symbolů a zkratek

AD Analog to Digital - analogově-digitální

dB decibel - jednotka intenzity zvuku

DPS Deska plošného spoje

EMC Elektromagnetická kompatibilita

FDM Fused deposition modeling - metoda 3D tisku pomocí taveného

nanášení

GND Ground - nulový potenciál

GPIO General Purpose Input/Output - vstupně-výstupní piny

IoT Internet of Things

 I^2C Inter-Integrated Circuit - multi-masterová sériová komunikační

sběrnice

LED Light-Emitting Diode - dioda emitující světlo

LoRa Long Range Radio

LoRaWAN Long Range Wide Area Network

MCU Mikrokontrolér

NFC Near Field Communication - typ bezdrátové komunikace

RF Rádiová frekvence

ROM Read-Only Memory - typ elektronické paměti

SLA Stereolitografie

SPI Serial Peripheral Interface - sériové komunikační periferní rozhraní

UART Universal asynchronous receiver-transmitter - komunikační sběrnice

USB Universal Serial Bus - univerzální komunikační sériová sběrnice

WiFi Wireless Fidelity

A Blokové schéma zapojení elektroniky

Obr. A.1: Blokové schéma zapojení elektroniky Semaforu.

