DESeq Model For RNA-seq Data

Biostatistics and Bioinformatics

June 22, 2021

Disclaimer

- DESeq has many limitations, not guaranteed to be the best
- ► There are alternative methods, each having their own limitations
- ► DESeq has nicely written R package
- DESeq is widely popular

[нтмы] Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2

MI Love, W Huber, S Anders - Genome biology, 2014 - genomebiology.biomedcentral.com In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-seq, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range ...

☆ 99 Cited by 23851 Related articles All 30 versions
≫

Format of RNA-Seq Data

expid	CNAG_00001	CNAG_00002	CNAG_00003	CNAG_00004	CNAG_00005
<chr></chr>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>
1_2019_P_M1_S1_L001_ReadsPerGene.out.tab	0	35	48	223	5
1_2019_P_M1_S1_L002_ReadsPerGene.out.tab	0	43	46	227	7
1_2019_P_M1_S1_L003_ReadsPerGene.out.tab	0	46	49	232	8
1_2019_P_M1_S1_L004_ReadsPerGene.out.tab	0	34	58	222	2

- ► RNA-Seq data are counts (not continuous real numbers)
- ► The total number of read counts varies across samples due to technical reasons

DESeq Data Format

K_{ij}	Sample 1	Sample 2	Sample 3
Gene 1	K_{11}	K_{12}	K_{13}
Gene 2	K_{21}	K_{22}	K_{23}
Gene 3	K_{31}	K_{32}	K_{33}
Gene 4	K_{41}	K_{42}	K_{43}
Gene 5	K_{51}	K_{52}	K_{53}

	Condition	Coded Condition	Gender	Coded Gender	Age
Sample 1	Untreated	0	Female	0	54
Sample 2	Treated	1	Male	1	67
Sample 3	Untreated	0	Male	1	39

Modeling RNA-Seq Data

Questions of interest:

- Do gene expression levels differ between two (or more) conditions?
- ► How are demographic/clinical/other variables associated with gene expression levels?

Connecting RNA-Seq read counts with features

- ► RNA-Seq counts (or expression level transformed from counts) is a perturbed version of true population mean
- ► The perturbation is described using a distribution
- ► The mean parameters of the distribution are connected to a function of covariates, such as linear combinations

Linear Regression Example

Connecting RNA-Seq read counts with features

- ► RNA-Seq counts (or expression level transformed from counts) is a perturbed version of true population mean
- ► The perturbation is described using a **distribution**
- ► The mean parameters of the distribution are connected to a function of covariates, such as linear combinations

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i, \quad \epsilon_i \sim N(0, \sigma^2)$$

or equivalently

$$Y_i \sim N(\mu_i, \sigma^2), \quad \mu_i = \beta_0 + \beta_1 X_i$$

Linear Regression

- Notation:
 - Y: response/outcome/dependent variables, continuous
 - X_1, \ldots, X_p : predictors/covariates/independent variables, can be continuous, count, categorical, etc.
- ▶ Goal: study the association between Y and X_1, \ldots, X_p .
- Model setting:

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \epsilon, \quad \epsilon \sim N(0, \sigma^2)$$

▶ Mean and variance of Y conditional on $X_1, ..., X_p$

$$\mu = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p, \quad \sigma^2$$

- lacktriangle The magic here is incorporation of predictor information in μ
- Estimation of all parameters is achieved using MLE

Linear Regression Illustration

Linear Regression: One Predictor Example

- Suppose for now, the expression of a gene is measured in continuous scale.
- \triangleright Y_i is the observed 'expression' of a gene from Sample i
- ▶ X_i denotes condition of Sample i: $X_i = 0$ for untreated, $X_i = 1$ for treated.
- ▶ Observed 'expression' $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$
- ▶ Population mean of Y_i conditional on X_i : $\mu_i = \beta_0 + \beta_1 X_i$
- $\mu_i = \beta_0$ for untreated, $\mu_i = \beta_0 + \beta_1$ for treated.
- Meaning of β_1 : the **expected increase** of 'expression' when condition is switched from untreated to treated
- ▶ Meaning of β_0 : the expected 'expression' when untreated
- $ightharpoonup \sigma^2$: **nuissance parameter**, not of interest but needed in the estimation of CI

Linear Regression: Two Predictors Example

- \triangleright Y_i is the observed 'expression' of a gene from Sample i
- ▶ X_{i1} denotes the condition of Sample i: $X_{i1} = 0$ for untreated, $X_{i1} = 1$ for treated.
- \triangleright X_{i2} denotes age of Sample i
- ▶ Observed 'expression': $Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \epsilon_i$
- Population mean of Y_i conditional on X_{i1} and X_{i2} : $u_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2}$

Linear Regression: Two Predictors Example

- Mean of Y_i conditional on X_{i1} and X_{i2} : $\mu_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2}$
- $\mu_i = \beta_0 + 40\beta_2$ for an untreated 40-year-old, $\mu_i = \beta_0 + \beta_1 + 40\beta_2$ for a treated 40-year-old, $\mu_i = \beta_0 + \beta_1 + 41\beta_2$ for a treated 41-year-old,
- Meaning of β_1 : with age unchanged, the expected increase of 'expression' if the individual is switched from untreated to treated
- Meaning of β_2 : with condition unchanged, the expected increase of 'expression' if age is increased by one unit.
- Meaning of β_0 : expected 'expression' of an untreated 0-year-old, a nuisance parameter

Modeling RNA-Seq Counts

- RNA-Seq counts is a perturbed version of true population mean
- The perturbation is described using a distribution
- ► The mean parameters of the distribution are connected to a function of covariates, such as linear combinations
- Linear regresion uses Gaussian distribution, which is continuous
- We need distribution for counts

Distributions for Count Data

Modeling the read count of a **given gene**:

- Poisson distribution
- Binomial distribution
- Negative Binomial distribution
- Others not discussed here: geometric distribution, beta-binomial distribution, etc.
- Continuous distributions can be used after transformation of count data

Poisson Distribution

- Used to model the count of occurrence of events
- ► Classical application: the number of patient arriving at an emergency room within a day
- ▶ Mean $\mu = \lambda$ and Variance $\sigma^2 = \lambda$
- Do highly expressed genes also have high variation in expression?

Binomial Distribution

- ▶ Used to model the number of (+)s in a sequence of N identical independent experiments with (+)/(-) outcomes
- ► Classical application: the number of heads in *N* flips of a coin when probability of head is *p*
- Mean and variance:

$$\mu = Np, \quad \sigma^2 = Np(1-p)$$

- ▶ What *N* to choose to model RNA-Seq read counts?
- ▶ Does variance σ^2 have any freedom once mean μ is fixed?

Connection between Poisson and Binomial Distribution

- As $N \to \infty$, binomial distribution converges to Poisson distribution
- ▶ Consider tossing a coin for $N=10^6$ times with a small success rate $p=10^{-5}$, i.e. Binomial distribution with $N=10^6$ and $p=10^{-5}$.
- Mean: $\mu = Np = 10$ and Variance $\sigma^2 = Np(1-p) = 9.9999$
- lt is very close to Poisson distribution with mean $\lambda=10$

Negative Binomial Distribution

- ▶ Used to model how many (-)s before getting r > 0 (+)s.
- Example: the number of male birth before the *r*th female birth when probability of female birth is *p*
- ► It is also connected to Poisson (theories not discussed here), as a "Poisson with extra variance"
- Mean and variance:

$$\mu = r \frac{1-p}{p}, \quad \sigma^2 = r \frac{1-p}{p^2} = \mu(1 + \mu \frac{/r}{p})$$

- $ightharpoonup \alpha = 1/r$ is often called the **overdispersion parameter**
- ▶ As $r \to \infty$ or $\alpha \to 0$, negative binomial becomes Poisson.

Negative Binomial Distribution (continued)

- ► The variance is $\mu(1 + \alpha \mu) = \mu(1 + \mu/r)$
- ► The flexibility of having varying variance without changing mean
- ▶ Larger $\alpha \Leftrightarrow$ smaller $r \Leftrightarrow$ more overdispersion \Leftrightarrow heavier right tail of PMF \Leftrightarrow less like Poisson

Negative Binomial Regression

- ▶ Goal: study the association between count variable K and X_1, \ldots, X_p .
- Model setting: K follows NB with mean and variance below

$$\mu = 2^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}, \quad \sigma^2 = \mu (1 + \alpha \mu)$$

- ▶ $\log_2(\cdot)$ is called the **link function**, which links the predictors with μ (not K since K is random)

NB Regression: One Predictor Example

- $ightharpoonup K_i$ is the number of reads mapped to a given gene from Sample i
- $ightharpoonup X_i$ denotes the condition of Sample i: $X_i = 0$ for untreated, $X_i = 1$ for treated
- ▶ Population mean of Y_i conditional on X_i : $\mu_i = 2^{\beta_0 + \beta_1 X_i}$
- \blacktriangleright $\mu_i = 2^{\beta_0}$ for parental, $\mu_i = 2^{\beta_0 + \beta_1}$ for UV2.
- Meaning of β_1 : gene expression level is expected to be **multiplied by** 2^{β_1} when condition is switched from untreated to treated
 - \triangleright β_1 is the log 2 fold change (LFC)
 - ▶ What does it mean when $\beta_1 < 0, = 0, > 0$?
- $ightharpoonup eta_0$ and lpha are nuisance parameters
- lacktriangle Dispersion parameter lpha will affect the length of CIs

NB Regression: Two Predictors Example

- $ightharpoonup K_i$ is the number of reads mapped to a given gene from Sample i
- ▶ X_{i1} denotes the condition of Sample i: $X_{i1} = 0$ for untreated, $X_{i1} = 1$ for treated
- \triangleright X_{i2} denotes age of Sample i
- ▶ Mean of Y_i conditional on X_{i1} and X_{i2} : $\mu_i = 2^{\beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2}}$
- $\mu_i=2^{eta_0+40eta_2}$ for an untreated 40-year-old, $\mu_i=2^{eta_0+eta_1+40eta_2}$ for a treated 40-year-old, $\mu_i=2^{eta_0+eta_1+41eta_2}$ for a treated 41-year-old,
- Meaning of β_1 : with age unchanged, the expression is expected to be multiplied by 2^{β_1} if the individual is switched from untreated to treated
- Meaning of β_2 : with condition unchanged, the expression is expected to be multiplied by 2^{β_2} if age is increased by one unit.
- $ightharpoonup eta_0$ and lpha are nuisance parameters
- lacktriangle Dispersion parameter lpha will affect the length of CIs

Changing the Coding of Variables

- ▶ We have used $X_i = 1$ for treated and $X_i = 0$ for untreated.
 - $\mu_i = 2^{\beta_0 + \beta_1 X_i}$
 - $\mu_i = 2^{\beta_0}$ for untreated, $\mu_i = 2^{\beta_0 + \beta_1}$ for treated.
 - ▶ LFC from untreated to treated β_1
- If we change the coding into $\widetilde{X}_i = 1$ for untreated and $\widetilde{X}_i = 0$ for treated, i.e. $\widetilde{X}_i = 1 X_i$

$$\log_2(\mu_i) = \beta_0 + \beta_1(1 - \widetilde{X}_i) = \underbrace{(\beta_0 + \beta_1)}_{\beta_0^*} \underbrace{-\beta_1}_{\beta_1^*} \widetilde{X}_i$$

- $\mu_i = 2^{\beta_0^*}$ for treated, $\mu_i = 2^{\beta_0^* + \beta_1^*}$ for untreated.
- ▶ LFC from untreated to treated: $-\beta_1^* = \beta_1$
- When the coding of a binary variable is changed, the sign of coefficient changed!

DESeq Data Format

K_{ij}	Sample 1	Sample 2	Sample 3
Gene 1	K_{11}	K_{12}	K_{13}
Gene 2	K_{21}	K_{22}	K_{23}
Gene 3	K_{31}	K_{32}	K_{33}
Gene 4	K_{41}	K_{42}	K_{43}
Gene 5	K_{51}	K_{52}	K_{53}

	Condition	Coded Condition	Gender	Coded Gender	Age
Sample 1	Untreated	0	Female	0	54
Sample 2	Treated	1	Male	1	67
Sample 3	Untreated	0	Male	1	39

DESeq Notation and Model Setting

- ▶ K_{ij} denotes the observed number of reads mapped to Gene i for sample j, i = 1, ..., m, j = 1, ..., n
- ► Kii follows NB with
 - Mean μ_{ii} (indexed by Gene i and Sample j)
 - ightharpoonup Dispersion parameter α_i (indexed by the Gene i)
- ▶ The mean is assumed to be $\mu_{ii} = s_i q_{ii}$ where

 - $ightharpoonup s_j$ is a Gene j specific normalization constant accounting for varying sequencing depth

DESeq: One Predictor Example

- $igwedge X_j$ denotes condition of Sample $j,\ X_j=0$ for untreated, $X_j=1$ for treated
- K_{ij} denotes the observed number of reads mapped to Gene i for sample j
- ► K_{ii} follows NB with
 - Mean $\mu_{ii} = s_i 2^{\beta_{i0} + \beta_{i1} X_j}$
 - ightharpoonup Dispersion parameter α_i
- Meaning of β_{i1} : expression of Gene i is expected to be **multiplied by** $2^{\beta_{i1}}$ when condition is switched from untreated to treated
- \triangleright β_{i1} is the LFC of Gene i
- ▶ Why does β_{i1} have index i?
- ▶ Why does *X* has index *j* but not *i*?
- \blacktriangleright Why does s_i has index j but not i?
 - ▶ Implicated assumption: within Sample *j*, the normalization parameter is constant across all the genes
- ▶ Why does α_i has index i but not j?

DESeq: Two Predictors Example

- X_{j1} denotes condition of Sample j, $X_{j1} = 0$ for untreated, $X_{j1} = 1$ for treated
- $ightharpoonup X_{j2}$ denotes age of Sample j
- K_{ij} denotes the observed number of reads mapped to Gene i for Sample j
- K_{ii} follows NB with
 - Mean $\mu_{ii} = s_i 2^{\beta_{i0} + \beta_{i1} X_{j1} + \beta_{i2} X_{j2}}$
 - ightharpoonup Dispersion parameter α_i
- Meaning of β_{i1} : when age stays unchanged, expression of Gene i is expected to be **multiplied by** $2^{\beta_{i1}}$ when condition is switched from untreated to treated
- Meaning of β_{i2} : when condition stays unchanged, expression of Gene i is expected to be **multiplied by** $2^{\beta_{i2}}$ when age is increased by one unit

DESeq Parameter Summary

- ► The main parameters of interest
 - m parameters on the effect of the 1st predictor

$$\beta_{11},\ldots,\beta_{m1}$$

m parameters on the effect of the 2nd predictor

$$\beta_{12},\ldots,\beta_{m2}$$

- more parameters for more predictors
- ► The unknown nuisance parameters are
 - ► The *m* gene specific intercepts

$$\beta_{10},\ldots,\beta_{m0}$$

► The *n* sample specific normalization constants

$$s_1, \ldots, s_n$$

The *m* gene specific dispersion parameters

$$\alpha_1, \ldots, \alpha_m$$

DESeq Parameter Estimation

- ▶ If s_i and α_i are known, $\beta_{i0}, \beta_{i1}, \ldots$ can be estimated using MLE
- ▶ The DESeq authors propose to estimate the normalization constant for sample j as

$$s_j = \text{median} \frac{K_{ij}}{K_i^R}$$

where

$$\mathcal{K}_{i}^{R} = \Big(\prod_{j=1}^{m} \mathcal{K}_{ij}\Big)^{rac{1}{m}}$$

- ▶ Here K_i^R is the geometric mean of $K_{i1}, ..., K_{in}$ (the *n* counts for gene *i*)
- ▶ The median is taken over all m genes for which K_i^R is positive

DESeq Parameter Estimation

► A key issue in using the NB model is proper handling of the gene specific dispersion parameters

$$\alpha_1,\ldots,\alpha_m$$

- ▶ The estimation of the dispersion parameter is a challenging task
- ▶ DESeq2 assumes that α_i is random following a normal distribution
- ▶ The results are sensitive to the estimates
- One of the key differences between DESeq2 and DESeq is the approach taken to estimate these nuisance parameters

DESeq Hypotheses Testing

- Use one-predictor example: $\mu_{ij} = s_j 2^{\beta_{i0} + \beta_{i1} X_{j1}}$ where X_{j1} denotes condition untreated/treated
- ► Gene-level hypotheses:
 - ▶ Does treatment affect the expression of Gene *i*?
 - ▶ Null: H_{0i} : $\beta_{i1} = 0$
 - ▶ Alternative: H_{ai} : $\beta_{i1} \neq 0$
- Global hypotheses:
 - Does treatment affect the expression of any genes?
 - Null: $H_0: \beta_{11} = \beta_{21} = \cdots = \beta_{m1} = 0$, or equivalently H_{01}, \ldots, H_{0m} are all true
 - Alternative: H_a : at least one of $\beta_{i1} \neq 0$, or equivalently at least one of H_{a1}, \ldots, H_{am} is true

Multiple Testing

- Suppose we test for differential expression of *m* independent genes between the two cell lines
- ▶ Denote H_{0i} : $\mu_{i1} = \mu_{i2}$ vs H_{1i} : $\mu_{i1} \neq \mu_{i2}$ as the hypotheses for Gene i,
- ▶ Suppose none of the m genes are differentially expressed, H_{0i} is true for all genes
- ▶ The probability of not rejecting each H_{0i} is 1α
- ▶ The probability of making no type I error is $(1 \alpha)^m$
- ▶ The probability of making any type I error is $1 (1 \alpha)^m$

Counting the Correct and Wrong Decisions

- m: total number of genes
- $ightharpoonup m_0$: number of genes without differential expression
- $ightharpoonup m_1$: number of differentially expressed genes
- \triangleright R: number of genes rejecting H_{0i} according to the decision rule
- ightharpoonup A: number of genes failing to reject H_{0i}

	H_{0i} is true	H_{1i} is true	Total
H_{0i} is not rejected	A_0 (TN)	A_1 (FN)	Α
H_{0i} is rejected	R ₀ (FP)	R_1 (TP)	R
	m_0	m_1	m

Two Error Rate for Multiple Testing

	H_{0i} is true	H_{1i} is true	Total
H_{0i} is not rejected	A_0 (TN)	A_1 (FN)	Α
H_{0i} is rejected	R ₀ (FP)	R_1 (TP)	R
	m_0	m_1	m

- Family-wise error rate (FWER): the probability of making at least one type I error, i.e. $Pr(R_0 \ge 1)$
- ▶ False discovery rate (FDR), i.e. the expected proportion of wrong rejections (type I errors) over all rejection of H_{0i} , i.e. expectation of R_0/R , or more formally $E(\frac{R_0}{R}|R>0)*Pr(R>0)$
- When $m_0 = m$ (no gene is differentially expressed), FWER=FDR

Simulated Example of FWER and FDR

- ➤ Suppose the first 10 genes among 100 genes are differentially expressed, and the rest are not.
- Let's try to test each individual gene without correction for multiple testing

```
set.sea(2021)
n <- 20 # sample size
rejected <- rep(FALSE, 100)
for (g in 1:10){
   y1 <- rnorm(n); y2 <- rnorm(n)+1
   rejected[g] <- t.test(y1,y2)$p.value<0.05
}
for (g in 11:100){
   y1 <- rnorm(n); y2 <- rnorm(n)
   rejected[g] <- t.test(y1,y2)$p.value<0.05
}
ind_rejected <- which(rejected)
print(ind_rejected)</pre>
```

```
## [1] 2 3 6 7 8 9 10 11 19 63 93
# family-wise error: making any type I error
FWE <- any(ind_rejected>10)
# false discovery proportion: proportion of wrong rejection in all rejections
FDP <- sum(ind_rejected>10)/max(i,length(ind_rejected))
print(c(FWE,FDP))
```

Simulated Example of FWER and FDR

- ➤ Suppose the first 10 genes among 100 genes are differentially expressed, and the rest are not.
- Let's try to test each individual gene without correction for multiple testing

```
set.seed(2021)
n <- 20 # sample size
nsim <- 1000 # number of simulation rounds
ngene <- 100: ndiff <- 10
FWE <- rep(FALSE, nsim); FDP <- rep(0, nsim)
for (i in 1:nsim){
 rejected <- rep(FALSE, 100)
 for (g in 1:ndiff){
    v1 <- rnorm(n); v2 <- rnorm(n)+1
    rejected[g] <- t.test(y1,y2)$p.value<0.05
 for (g in (ndiff+1):ngene){
    v1 <- rnorm(n); v2 <- rnorm(n)
    rejected[g] <- t.test(y1,y2)$p.value<0.05
 ind_rejected <- which(rejected)
  # family-wise error: making any type I error
 FWE[i] <- any(ind_rejected>ndiff)
  # false discovery proportion: proportion of wrong rejection in all rejections
 FDP[i] <- sum(ind rejected>ndiff)/max(1.length(ind rejected))
# family wise error rate (FWER), false discovery rate (FDR)
print(c(mean(FWE), mean(FDP)))
```

Correction for Multiple Testing

- ▶ To achieve FWER< α or FDR< α , rejection of each H_{0i} should be harder than the original decision rule that controls for type I error of each H_{0i}
- Method to achieve FWER< α</p>
 - ▶ Bonferroni's method: reject H_{0i} if its pvalue< $\frac{\alpha}{m}$. Easy to calculate, doesn't require independence among genes, can be super conservative
- Method to achieve FDR< α</p>
 - Benjamini-Hochberg method: assumes independence among genes, generally less conservative than Bonferroni's method
 - ▶ Benjamini-Yekutieli method: allows for positive dependence, but more conservative in making rejections

Adjusted p-values

- After the correction of multiple testing, the adjusted p-value for each individual H_{0i} is larger. (How about the length of CI?)
- ► The adjusted p-value of each gene changes if you change the set of genes to test
 - In general, the more genes you test, the more correction you need
- q-value: the adjusted p-value to control pFDR (a slightly different definition of FDR)

Simulated Example of FWER and FDR (Bonferroni Correction)

- Suppose the first 10 genes among 100 genes are differentially expressed, and the rest are not.
- Let's try the Bonferroni's method

```
set.seed(2021)
n <- 20 # sample size
nsim <- 1000 # number of simulation rounds
ngene <- 100; ndiff <- 10 # experiment the codes by changing these values
FWE <- rep(FALSE, nsim); FDP <- rep(0, nsim)
for (i in 1:nsim){
 rejected <- rep(FALSE, 100)
 for (g in 1:ndiff){
    y1 <- rnorm(n); y2 <- rnorm(n)+1
    rejected[g] <- t.test(y1,y2)$p.value<0.05/ngene
 for (g in (ndiff+1):ngene){
    v1 <- rnorm(n): v2 <- rnorm(n)
    rejected[g] <- t.test(y1,y2)$p.value<0.05/ngene
 ind_rejected <- which(rejected)
  # family-wise error: making any type I error
 FWE[i] <- any(ind_rejected>ndiff)
  # false discovery proportion: proportion of wrong rejection in all rejections
 FDP[i] <- sum(ind rejected>ndiff)/max(1.length(ind rejected))
# family wise error rate (FWER), false discovery rate (FDR)
print(c(mean(FWE), mean(FDP)))
```