Practice Assignment 4 Solution

Elliptic Curve Cryptography

Exercise 4-1

Consider the elliptic curve $E: y^2 = x^3 + 4x + 3 \pmod{23}$ and the point P = (7, 11). Compute the point 44P with as few point operations as possible.

Solution:

In order to calculate 44P with as few additions as possible, we can take calculate 44 as the summation of different powers of 2

Thus, we can find 44 = 32 + 8 + 4, Thus we can calculate 44P as 32P + 8P + 4P

Using the standard rules of point doubling in elliptic curves:

$$s=(3X_p^2+a)^*(2Y_P)^{-1}$$
, where $^{-1}$ indicates the multiplicative inverse $X_{2P}=s^2-2X_P$ $Y_{2P}=s*(X_P-X_{2P})-Y_P$ we find $2P=(17,4)$

we repeat the same steps for calculating 4P, 8P, 16P, 32P, to find:

$$4P = (1, 13)$$

 $8P = (6, 6)$

$$16P = (1, 10)$$

$$32P = (6, 17)$$

We then get 40P = 32P + 8P = (0, 0)

and
$$44P = 40P + 4P = (1, 13)$$

Exercise 4–2

Decide whether the points of the following elliptic curve define a group over Zp where p is a prime? If yes, find its additive group of integers (Zp, +).

$$E: y2 = x3 + 4x + 1 \pmod{7}$$

Solution:

We first need to check the singularity of the EC, we find that $4a^3 + 27b^2 = 3 \mod 7$, $\neq 0$, thus this curve is nonsingular and can form a group over \mathbb{Z}_7 . Substituting x = 0, we get (0, 1) and (0, 6) as 2 points belonging to the elliptic curve, we can use them along with the other points and the point at infinity O to fill the addition table.

Practice Assignment 4 Page 1/3

	0	(0, 1)	(4, 5)	(4, 2)	(0, 6)
0	0	(0, 1)	(4, 5)	(4, 2)	(0, 6)
(0, 1)	(0, 1)	(4, 5)	(4, 2)	(0, 6)	0
(4, 5)	(4, 5)	(4, 2)	(0, 6)	0	(0, 1)
(4, 2)	(4, 2)	(0, 6)	0	(0, 1)	(4, 5)
(0, 6)	(0, 6)	0	(0, 1)	(4, 5)	(4, 2)

Exercise 4-3

Let $E: y^2 = x^3 + 9x + 17$ be the elliptic curve F_{23} . What is the discrete logarithm k of Q = (4, 5) to the base P = (16, 5)?

Solution:

We are looking for k such that Q = kP. We compute kP for k > 1, until we find Q

K	kP		
2	(20, 20)		
3	(14, 14)		
4	(19, 20)		
5	(13, 10)		
6	(7, 3)		
7	(8, 7)		
8	(12, 17)		
9	(4, 5)		

Thus k = 9

Practice Assignment 4 Page 2/3