Examen de Física I (Febrer, 2008)

Llicenciatura de Química Universitat Autònoma de Barcelona

Exercici 1.

Un cos gira al final d'una corda de longitud L=2 m seguint una trajectòria circular horitzontal. Partint del repòs, assoleix en 4 segons una velocitat angular de 10 voltes per segon seguint una acceleració angular constant.

- 1. L'acceleració angular del cos α val, aproximadament...
 - (a) 2.5 rad/s^2
 - (b) 2.5 rad
 - (c) 15.7 rad/s^2 (*)
 - (d) 15.7 rad/s
- 2. El número de voltes que ha fet en els primers 4 segons és, aproximadament...
 - (a) 5
 - (b) 10
 - (c) 15
 - (d) 20(*)
- 3. La velocitat lineal v als 4 segons de començat el moviment val...
 - (a) $10 \, \pi \, \text{m/s}$
 - (b) $40 \pi \text{ m/s}$ (*)
 - (c) 100 m/s
 - (d) 200 m/s
- 4. La tensió de la corda en aquest moment val...
 - (a) αL , amb L la longitud de la corda
 - (b) $m \alpha L$, amb m la massa del cos
 - (c) v^2/L , amb v la velocitat del cos
 - (d) mv^2/L (*)

Exercici 2.

En el sistema de la figura, $m_2 = \frac{m_1}{3}$, i la politja no té massa ni es considera cap fricció.

- 5. El número de forces que actuen sobre el cos 1 és ...
 - (a) quatre forces
 - (b) tres forces (*)
 - (c) dues forces
 - (d) una força

- 6. L'acceleració del cos 2 val...
 - (a) 0, perquè $m_1 > m_2$
 - (b) g/2
 - (c) g/3
 - (d) g/4 (*)
- 7. La tensió, T_2 , de la corda unida al cos 2 és
 - (a) $m_1 g$
 - (b) $m_2 g$
 - (c) $m_1 a$ (*)
 - (d) $m_2 a$

Per a què no hi hagués moviment...

- 8. El coeficient de fregament estàtic entre el cos 1 i la superfície hauria de ser al menys...
 - (a) 1/2
 - (b) 1/3 (*)
 - (c) 1/4
 - (d) 0, perquè $m_1 > m_2$
- 9. ...i en aquest cas, la tensió T_2 valdria
 - (a) $m_1 g$
 - (b) $m_2 g$ (*)
 - (c) la meitat de T_1
 - (d) $\mu m_2 g$
- 10. ...i si tallem la corda 1, T_2 val
 - (a) el mateix que a la pregunta anterior
 - (b) 0 (*)
 - (c) $m_1 a$
 - (d) $m_2 a$

Exercici 3

Dues boles idèntiques (1 i 2) estan enganxades al sostre amb dos fils inextensibles de longitud L (veure figura). Si separem la bola 1 fins un angle φ de la seva posició d'equilibri, mantenint estès el seu fil, i la deixem lliure, aquesta xocarà amb la bola 2.

- A) Suposem que la col·lisió produïda per les dues boles és elàstica
 - 11. En aquest cas, podem aplicar el principi de conservació ...
 - (a) només del moment lineal del sistema
 - (b) només de l'energia cinètica del sistema
 - (c) del moment lineal i de l'energia cinètica del sistema (*)
 - (d) cap de les anteriors

- 12. La velocitat v_1 de la bola 1 quan aquesta xoca amb la bola 2 val
 - (a) $v_1 = 2 gL$
 - (b) $v_1 = \sqrt{2 gL}$
 - (c) $v_1 = \sqrt{2gL(1-\cos\phi)}$ (*)
 - (d) $v_1 = 2gL(1 \cos \varphi)$
- 13. Les velocitats d'ambdues boles desprès del xoc valen ...
 - (a) $v_1 = v_1 i v_2 = 0 \text{ m/s}$
 - (b) $v_1 = 0 \text{ m/s i } v_2 = v_1$ (*)
 - (c) $v_1 = v_2 = \frac{1}{2}v_1$
 - (d) $v_1 = v_2 = v_1$
- 14. Les altures màximes que agafarien les dues boles desprès de la col·lisió valen ...
 - (a) $h_1 = 0 \text{ m i } h_2 = L(1 \cos \varphi)$ (*)
 - (b) $h_1 = 0 \text{ m i } h_2 = L$
 - (c) $h_1 = L(1 \cos \varphi)$ i $h_2 = 0$ m
 - (d) $h_1 = L \text{ i } h_2 = 0 \text{ m}$
- B) Suposant que la col·lisió produïda per les dues boles és perfectament inelàstica ...
 - 15. En aquest cas, podem aplicar el principi de conservació ...
 - (a) només del moment lineal del sistema (*)
 - (b) només de l'energia cinètica del sistema
 - (c) del moment lineal i de l'energia cinètica del sistema
 - (d) cap de les anteriors
 - 16. Les velocitats de ambdues boles desprès del xoc valen ...
 - (a) $v_1 = v_1 i v_2 = 0 \text{ m/s}$
 - (b) $v_1 = 0$ m/s i $v_2 = v_1$
 - (c) $v_1 = v_2 = \frac{1}{2}v_1$ (*)
 - (d) $v_1 = v_2 = v_1$
 - 17. Les altures màximes que agafarien les dues boles desprès de la col·lisió valen ...
 - (a) $h_1 = h_2 = \frac{1}{2}L(1-\cos\varphi)$
 - (b) $h_1 = h_2 = \frac{1}{4}L(1-\cos\varphi)$ (*)
 - (c) $h_1 = 0$ i $h_2 = \frac{1}{2}L(1-\cos\varphi)$
 - (d) $h_1 = 0$ i $h_2 = \frac{1}{4}L(1-\cos\varphi)$

Exercici 4.

La molècula de BeCl₂ és lineal, amb l'àtom de Beril·li al centre i els àtoms de Clor (Cl) separats d = 1.7 Å del Beril·li (Be). Considerem que aquesta molècula té una energia cinètica de $4 \cdot 10^{-4}$ eV.

<u>Dades:</u> massa atòmica de Be = 9 uma; massa atòmica de Cl = 35.5 uma;

1 uma = $1.66 \cdot 10^{-27}$ kg; càrrega de l'electró = $1.6 \cdot 10^{-19}$ C.

- 18. El moment d'inèrcia del BeCl₂ respecte d'un eix perpendicular a la molècula que passa pel seu centre de masses val...

 - (a) 7.7 10⁻⁴⁶ kg m² (b) 1.7 10⁻⁴⁵ kg m² (c) 3.4 10⁻⁴⁵ kg m² (*) (d) 2.3 10⁻⁴⁵ kg m

Si tota l'energia cinètica és de rotació...

- 19. ...el centre de masses de la molècula...
 - (a) es desplaça amb una velocitat uniforme no nul·la
 - (b) es desplaça amb una acceleració uniforme
 - (c) no es desplaça (*)
 - (d) cap de les anteriors
- 20...la velocitat angular de la molècula val aproximadament...
 - (a) $2.0 \cdot 10^{10} \, \text{s}^{-1}$

 - (b) $2.1 \cdot 10^{10} \text{ s}$ (c) $1.9 \cdot 10^{11} \text{ s}^{-1}$ (*)
 - (d) $4.0 \cdot 10^{-11} \, \text{s}^{-1}$

Exercici 5.

Considereu la reacció següent: ${}_{1}^{2}H + {}_{1}^{2}H \rightarrow {}_{2}^{4}He$. Dades: 1 uma equival a 931.5 MeV

element	massa (uma)
² H	2.014102
⁴ ₂ He	4.002603

- 21. Aquesta reacció...
 - (a) És de fusió i allibera energia (*)
 - (b) És de fusió i absorbeix energia
 - (c) És de fissió i allibera energia
 - (d) És de fissió i absorbeix energia
- 22. L'energia intercanviada amb l'exterior, en valor absolut, val
 - (a) 21.2 MeV
 - (b) 23.8 MeV (*)
 - (c) 0.0256 MeV
 - (d) Cap de les anteriors
- 23 La relació, 1 uma equival a 931.5 MeV, s'obté de l'equació...
 - (a) $E = \frac{1}{2} m c^2$, on E és energia, m és massa i c, la velocitat de la llum
 - (b) $E = m/c^2$
 - (c) $E = m^2 c$
 - (d) Cap de les anteriors (*)

- 24. En una reacció nuclear...
 - (a) No és necessari que es conservi la càrrega elèctrica.
 - (b) Es conserva l'energia cinètica.
 - (c) Es conserva el moment lineal. (*)
 - (d) Cap de les anteriors.

Exercici 6.- Un dipòsit tancat de secció 2 m² conté aigua i a sobre aire comprimit exercint una pressió de 3 atm. A una distància vertical de 4 m per sota la superfície lliure del líquid hi ha una obertura circular de 4 cm de diàmetre. La pressió atmosfèrica és de 1 atm i volem calcular la velocitat i el cabdal de sortida de l'aigua. Considereu que la fricció es menyspreable.

Dades: $1 \text{ atm} = 1.013 \cdot 10^5 \text{ Pa}$

- 25. El quocient de velocitats de l'aigua als punts 1 i 2, v_1/v_2 , val aproximadament...
 - (a) $6 \cdot 10^{-4}$ (*)
 - (b) 0.16
 - (c) 90
 - (d) 1600
- 26. La diferència de pressions entre els punts 1 i 2, $|p_1 p_2|$, val
 - (a) 1 atm
 - (b) 2 atm (*)
 - (c) 0.4 atm
 - (d) 2.4 atm
- 27. Per trobar la velocitat de sortida ...
 - (a) Hem d'aplicar només el principi fonamental de la hidrostàtica
 - (b) Hem d'aplicar l'equació de Bernouilli (*)
 - (c) Hem de considerar l'aigua com un fluid viscós
 - (d) No es pot resoldre perquè falten dades.
- 28. La velocitat de sortida del agua és, aproximadament
 - (a) 10 m/s
 - (b) 22 m/s (*)
 - (c) 12 cm/s
 - (d) Cap de les anteriors
- 29. D'altre banda, si el dipòsit estigués obert a l'atmosfera ...
 - (a) L'aigua no sortiria
 - (b) L'aigua sortirà amb una velocitat superior
 - (c) L'aigua sortirà amb una velocitat inferior (*)
 - (d) Cap de les anteriors

Si no hi hagués forat 2, de forma que l'aigua estigués en repòs..

- 30. La diferència de pressions entre els punts 1 i 2, $|p_1 p_2|$, valdria
 - (a) 1 atm
 - (b) 2 atm
 - (c) 0.4 atm (*)
 - (d) 2.4 atm