10th International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, 02 December, 2013, Tokyo, Japan

Modelling Energy-Aware Task Allocation in Mobile Workflows

Bo Gao and Ligang He

Department of Computer Science, University of Warwick, UK

Rise of the Smart-Devices (Battery Limited)

	Nokia 8310, Ericsson T68,		830mAh 650mAh	
2003	Sony Ericsson P900:	156MHz	1000mAh	
2005	Nokia N91,	220 MHz	900mAh	
	Blackberry 8800: iPhone 1:	312MHz, 412MHz,	1400mAh 1400mAh	9:41
	HTC Hero: Palm Pre:	528MHz, 600MHz,	1350mAh 1150mAh	
	Sony Z1: iPhone 5S:	Quad-Core 2.2GHz, Dual-Core 1.3GhZ,	3000mAh 1560mAh	2.5
		(iPad Ai	r 8820mAh)	5 ¥ G

Battery Management Tools

Hardware

- Fast Charging
- Energy-Efficient Processors, Displays
- New Chemical Compound?

Software

- Energy Profiling
 - PowerTop, Trepn Profiler, PowerTutor, AppScope, etc.
- Workload Offload
 - Cuckoo, CloneCloud, MAUI, etc.

Mobile Workflow Example 1

Mobile Workflow Example 2

Energy Model

Given an allocation scheme $\psi: T \to M$, we first derive the energy cost of computing $t_a, a \in \{1, \dots n\}$ to be

$$\mathcal{E}_{a\psi(a)}^{cmp} = e_{\psi(a)}^{cmp} \times \frac{c_a}{s_{\psi(a)}} \tag{1}$$

where $\psi(a)$ is the device to which t_a is assigned. Secondly, we have the energy cost of transferring d_{ab} , $(t_a, t_b) \in R$ as

$$\mathcal{E}_{ab\psi(a)\psi(b)}^{tran} = \underbrace{e_{\psi(a)}^{snd} \times \frac{d_{ab}}{b_{\psi(a)\psi(b)}}}_{\text{sender's cost}} + \underbrace{e_{\psi(b)}^{rcv} \times \frac{d_{ab}}{b_{\psi(a)\psi(b)}}}_{\text{receiver's cost}} \tag{2}$$

Formulation

To represent an allocation scheme ψ , we first construct an $n \times m$ binary matrix $X = (x_{ai})$, such that

$$x_{ai} = \begin{cases} 1 & \text{if } \psi(a) = i, \\ 0 & \text{otherwise.} \end{cases}$$
 (3)

We call matrix X an **assignment matrix** and a **valid** assignment must satisfy the following constraints

$$\sum_{i=1}^{m} x_{ai} = 1, \quad a = 1, 2, \dots, n,$$
(4)

$$x_{ai} \in \{0,1\}, \quad a = 1,2,\ldots,n, \quad i = 1,2,\ldots,m.$$
 (5)

Formulation (cont.)

Let coefficients q_{aibj} be the entries of an $mn \times mn$ matrix Q, such that q_{aibj} is on row (i-1) n+a and column (j-1) n+b, and $x = vec(X) = (x_{11}, x_{12}, \ldots, x_{1n}, x_{21}, \ldots, x_{mn})^T$ be the vector formed from the columns of X. Equivalent formulations for the minimum workflow energy cost problem's objective function are given by (8) and

$$vec(X)^T Q vec(X)$$
 (9)

Coefficient Matrix Q

Adjustment Algorithms

Simulation Definition

Definition 3.

A **typical mobile device** has a battery capacity of 2000mAh, draws a current of 250-400mA during data transmission and 100-200mA when executing local computation tasks.

Definition 4.

A task has a **unit workload** if its execution takes 1 second to complete on a typical device.

Simulation Definition (cont.)

Simulation Results

Fig. 3: Reduction in group energy cost and increase in workflow run count

Simulation Results

Fig. 4: Effect of adjustments within the MP.

Summary

- Energy Cost Model
- Formulate Optimisation Problems
- Adjustment Algorithm
- Verified by Simulation

Thank you

Bo Gao

Department of Computer Science, University of Warwick, UK. bogao@dcs.warwick.ac.uk

