Applied Statistical Modelling - Lecture 7: multilevel models

Prof.ssa Chiara Seghieri

Laboratorio di Management e Sanità, Istituto di Management, L'EMbeDS Scuola Superiore Sant'Anna, Pisa c.seghieri@santannapisa.it c.tortu@santannapisa.it

What are multilevel data and multilevel analysis?

What are multilevel data?

- Multilevel data are data where observations are clustered in units
- •Observations within the same unit may be more similar than observations in separate units, on average
 - –What effect does this have on estimation and statistical inference?

Examples of multilevel data with contextual clustering

- Observations of students, clustered within schools
- Observations of siblings, clustered within families
- Observations of individuals, clustered within countries, states, or neighborhoods
- Patients within hospitals
- Repeated test scores, clustered within students (multilevel data with intra-person clustering)

Nested Data

• Data nested within a group tend to be more alike than data from individuals selected at random.

 Nature of group dynamics will tend to exert an effect on individuals.

Two-level hierarchical structures

Students within schools

Students within a school are more alike than a random sample of students. This is the 'clustering' effect of schools.

Nested Data

• Intraclass correlation (ICC) provides a measure of the clustering and dependence of the data

0 (very independent) to 1.0 (very dependent)

Details discussed later

Why Multilevel Modeling vs.

Traditional Approaches?

Traditional Approaches – 1-Level

- 1. Individual level analysis (ignore group)
- 2. Group level analysis (aggregate data and ignore individuals)

Problems with Traditional Approaches

1. Individual level analysis (ignore group)

Violation of <u>independence</u> of data assumption leading to misestimated standard errors (standard errors are smaller than they should be).

Problems with Traditional Approaches

Group level analysis
 (aggregate data and ignore individuals)

Aggregation bias = the meaning of a variable at Level-1 (e.g., individual level SES) may not be the same as the meaning at Level-2 (e.g., school level SES)

Multilevel Approach

- 2 or more levels can be considered simultaneously
- Can analyze within- and between-group variability

Multilevel regression models

- Also called
 - Hierarchical Linear Models
 - Mixed Models
 - Multilevel Models
 - Growth Models
 - Slopes-as-Outcomes Models

Multilevel Regression Models

- A form of regression models
- Used to answer questions about the relationship of context to individual outcomes
- Used to estimate both within-unit and betweenunit relationships (and cross-level interactions)
 - e.g., within- vs. between-school relationships between SES and achievement

Data frame for student within school example

Classifications or levels		Respons e	Explanatory variables		
Studen t i	School j	Student Exam score _{ij}	Student previous Examination score _{ij}	Student gender _{ij}	School type _j
1	1	75	56	M	State
2	1	71	45	M	State
3	1	91	72	F	State
1	2	68	49	F	Private
2	2	37	36	M	Private
3	2	67	56	M	Private
1	3	82	76	F	State

- 1 Does the gender gap vary across schools?
- 2 What is the between-school variation in student's progress?
- 3 Is School X (that is a specific school) different from other schools in the sample in its effect?
- 4 Are students in public schools less variable in their progress?

Classification, unit diagrams and data frames for **repeated measures structures**.

Perso n	H- Occ1	H- Occ2	H- Occ3	Age- Occ1	Age- Occ2	Age- Occ3	Gende r
1	75	85	95	5	6	7	F
2	82	91	*	7	8	*	M
3	88	93	96	5	6	7	F

Classifications or levels		Explanatory variables	
Person J	Height _{ij}	Age_{ij}	Gender _j
1	75	5	F
1	85	6	F
1	95	7	F
2	82	7	M
2	91	8	M
3	88	5	F
3	93	6	F
	Person J 1 1 2 2 3	Person Height _{ij} 1 75 1 85 1 95 2 82 2 91 3 88	Person J Height $_{ij}$ Age $_{ij}$ 1 75 5 1 85 6 1 95 7 2 82 7 2 91 8 3 88 5

F

96

Wide form 1 row per individual

Long form 1 row per occasion(required by *MLwiN*)

Three level structures

Students:classes:schools

MLM allow a different number of students in each class and a different number of classes in each school.

Non-hierarchical structures

So far all our examples have been exact nesting with lower level units nested in one and only one higher-level unit.

That is we have been dealing with strict hierarchies. But social reality can be more complicated than that.

- Cross-classified structures
- •Multiple membership structures

Cross-classified Model

In this structure schools are not nested within areas. For example

Pupils 2 and 3 attend school 1 but come from different areas Pupils 6 and 10 come from the same area but attend different schools

Schools are not nested within areas and areas are not nested within schools. School and area are cross-classified

Multiple membership models

Where first level units are seen as nested within more than one unit from a higher level classification:.

Health outcomes where patients are treated by a number of nurses, patients are multiple members of nurses

Students move schools, so some pupils are multiple members of schools.

When do we need multilevel regression?

- In the intermediate case, where knowing the school gives us some, but not complete information about *Y*.
- e.g., test scores vary both within and between schools
- e.g., individuals vary within and between neighborhoods
- e.g., mood varies both within individuals (over time) and between individuals

What we know so far

- Two observations within the same unit may be more similar than two observations chosen at random
- If the regression model does not explain all of the between-unit differences (and it is unlikely that they will), we will have correlated errors within units
- This is a violation of the independence of residuals assumption in OLS
- At a minimum, this results in incorrect standard errors (too small)

How do we allow dependence in the regression model?

- We want a model that explicitly allows the level of the outcome variable to vary across level-two units
- For example, we want to let the mean reading score differ across schools
- So let's write a model that allows this

Some notation

- *i* indexes level-one units (people within schools, observations within persons)
- *j* indexes level-two units (e.g., schools, if we have students nested within schools)
- We will use r to denote a level-one residual, and u to denote a leveltwo residual

Our first multilevel model

• Instead of :
$$Y_{ij} = \beta_0 + \beta_1 X_{ij} + \epsilon_{ij}$$

• Let's write:

$$Y_{ij} = \beta_0 + \beta_1 X_{ij} + u_j + r_{ij}$$

What is u_j ?

- A residual term
- Specific to unit *j*
- Common to all observations in unit j
- Interpretation: the difference between the overall intercept and the intercept in unit *j*

What is r_{ij} ?

- A residual term
- Specific to observation *i* in unit *j*
- Has a mean of 0, so any part of ε_{ij} that is common to all observations within j has been removed
- So the r_{ij} 's may be independent
- Not guaranteed to be independent

Features of this model

- Note that: $\varepsilon_{ij} = u_j + r_{ij}$
- We also have:

$$Var(\varepsilon_{ij}) = Var(u_j + r_{ij})$$

$$= Var(u_j) + Var(r_{ij}) + 2*Cov(u_j, r_{ij})$$

$$= Var(u_j) + Var(r_{ij})$$

We will come back to variance decomposition later

Features of this model

- The <u>level</u> of Y_{ij} after adjusting for X_{ij} may vary across the units
- We have made no assumptions yet about the distribution of the u_j 's or the r_{ij} 's.
- The relationship between X and Y does not depend on j (β_1 does not depend on j)

So how do we estimate this model?

- We want an estimate of β_1 , the relationship between X_{ij} and Y_{ij} .
- Two approaches:
 - Fixed Effects estimator
 - Random Effects estimator

Another way to write this model

$$Y_{ij} = \beta_0 + \beta_1 X_{ij} + u_j + r_{ij}$$

$$= (\beta_0 + u_j) + \beta_1 X_{ij} + r_{ij}$$

$$= \beta_{0j} + \beta_1 X_{ij} + r_{ij}$$

where

$$\beta_{0j} = \beta_0 + u_j$$

The fixed effects estimator

$$Y_{ij} = \beta_{0j} + \beta_1 X_{ij} + r_{ij}$$

- We have 'absorbed' the level-two error terms (the u_j 's) into the intercept
- Now each aggregate unit has its own intercept; so between-unit variation is accounted for in the intercepts
- This solves the dependence problem with the r_{ij} 's (they may still not be independent, but not because of unexplained variation between-level-two units)

- Two level model
- houses at level 1 nested within districts at level 2
- continuous response: price of a house
- predictor: size = number of rooms and this variable has been centred around average size (5)

- ${\cal Y}$ is the outcome, price of a house
- χ_1 is the predictor, number of rooms, which we shall deviate around its mean

Simple regression model (cont)

$$y_i = \beta_0 + \beta_1 x_{1i} + (e_i)$$

 ${\cal Y}_i$ is the price of house i

 $\chi_{_1}$ is the individual predictor variable

 eta_0 is the intercept; eta_1 is the fixed slope term:

 \mathcal{C}_i is the residual/random term, one for every house

Summarizing the random term: ASSUME IID

Mean of the random term is zero

Constant variability (Homoscedasticy)

No patterning of the residuals (i.e, they are independent)

$$e \sim N(0, \sigma_e^2)$$

General Structure

- Response = fixed + random
- Specific case: the single level simple regression model

Response	Systematic	c Part	Random Part	
House =	Price of average- +	Cost of +	house residual	
Price	sized house	extra room	variation	
	Intercept	Slope	Residual	

Random intercepts model

Differential shift for each district j: index the intercept

Micro-model

$$y_{ij} = \beta_{0j} + \beta_1 x_{1ij} + e_{ij}$$

Macro-model: index parameter as a response

$$\beta_{0j} = \beta_0 + u_{0j}$$

Price of average = citywide + differential for district j

Substitute macro into micro......

Substituting the macro model into the micro model yields

$$y_{ij} = (\beta_0 + u_{0j}) + \beta_1 x_{1ij} + e_{ij}$$

Grouping the random parameters in brackets

$$y_{ij} = \beta_0 + \beta_1 x_{1ij} + (u_{0j} + e_{ij})$$

- Fixed part $\beta_0 + \beta_1$
- Random part (Level 2) $u_{0j} \sim N(0, \sigma_{u0}^2)$
- Random part (Level 1) $e_{0ij} \sim N(0, \sigma_{e0}^2)$
 - District and house differentials are independent $Cov[u_{0j}, e_{0ij}] = 0$

The regression coefficient β 1 is common to all groups!

What is u_j ?

- A residual term
- Specific to unit *j*
- Common to all observations in unit j
- Subscript *j*, no subscript *i*
- Interpretation: the difference between the overall intercept and the intercept in unit *j*

Random intercept models(parallel lines)

What is e_{ij} ?

- A residual term
- Specific to observation *i* in unit *j*

The meaning of the random terms

Level 2 : between districts

$$u_{0j} \sim N(0, \sigma_{u0}^2)$$

$$\sigma_{u0}^2$$

 σ_{u0}^2 • Between district variance conditional on size

Level 1: within districts between houses

$$e_{0ij} \sim N(0, \sigma_{e0}^2)$$

$$\sigma_{e0}^2$$

 $\sigma_{\rho 0}^2$ • Within district, between-house variation variance conditional on size

Variance decomposition

•
$$Var(Y_{ij}) = Var(u_j) + Var(e_{ij})$$

= $\sigma_u^2 + \sigma_e^2$

• Intraclass Correlation (ρ): the proportion of the total variance in Y_{ij} that is between level-2 units

$$\rho = \sigma_u^2 / (\sigma_u^2 + \sigma_e^2)$$

Random intercepts and slopes model

Micro-model

$$y_{ij} = \beta_{0j} x_{0ij} + \beta_{1j} x_{1ij} + e_{0ij} x_{0ij}$$

Note: Index the intercept and the slope associated with a constant, and number of rooms, respectively

Macro-model (Random Intercepts)

$$\beta_{0j} = \beta_0 + u_{0j}$$

Macro-model (Random Slopes)

$$\beta_{1j} = \beta_1 + u_{1j}$$

Slope for district j = citywide slope + differential slope for district j

Substitute macro models into micro model.....

Random intercepts and slopes model

Estimation Methods

- Maximum Likelihood (ML),
- Restricted Maximum Likelihood (RML)
- Iterative Generalized Least Squares (IGLS) algorithms
- Empirical Bayes (EB) estimate

Performing gradient-based optimization:

Iteration 0: $\log \text{ likelihood} = -76445.159$

Iteration 1: $\log likelihood = -76445.159$ (backed up)

Computing standard errors:

Mixed-effects ML regression Group variable: cosp	Number of obs = 21,570 Number of groups = 35					
	Obs per group: min = 109					
wean of school level intercepts Variance at the school level (level 2)	avg = 616.3 max = $1,808$					
Log likelihood = -76445.159	Wald chi2(0) = . Prob > chi2 = .					
Y Coef. Std. Err. z	P> z [95% Conf. Interval]					
_cons 9.030971 .5703157 15.84	0.000 7.913173 10.14877					
Random-effects Parameters Estimate Std	. Err. [95% Conf. Interval]					
school: Identity var(_cons) 11.21163 2.	71967 6.969283 18.0364					
var(Residual) 69.62139 .67	09417 68.31871 70.94891					

LR test vs. linear model: chibar2(01) = 3363.17 Prob >= chibar2 = 0.0000

Ho: Random-effects = 0

Variance Decomposition

Variance decomposition

•
$$Var(Y_{ij}) = Var(u_j) + Var(r_{ij})$$

= $\tau_{00} + \sigma^2$

• Intraclass Correlation (ρ): the proportion of the total variance in Y_{ij} that is between level-2 units

$$\rho = \tau_{00} / (\tau_{00} + \sigma^2)$$

. estat icc

Intraclass correlation

Le	evel	ICC	Std. Err.	[95% Conf.	Interval]
 S	school .	.1387012	.0290024	.090962	.2058223

Intraclass correlation:13.8%

If the interclass correlation (IC) approaches 0 then the grouping by school are of no use (you may as well run a simple regression).

Resources

Books

- Hierarchical Linear Models: Applications and Data Analysis Methods, 2nd ed. Raudenbush & Bryk, 2002.
- Introducing Multilevel Modeling. Kreft & DeLeeum, 1998.
- Journals
 - Educational and Psychological Measurement
 - Journal of Educational and Behavioral Sciences
 - Multilevel Modeling Newsletter