On the inexact scaled gradient projection method

Max Lemes

Universidade Federal de Goiás, Brazil

Seminário de Otimização do IME/UFG

Goiânia - Brazil, June 10, 2021

Joint work with: Orizon P. Ferreira (IME/UFG), Leandro F. Prudente (IME/UFG).

Outline

The problem, definitions and preliminaries results

Inexact scaled gradient method

Partial asymptotic convergence

Full asymptotic convergence

Iteration-complexity bound

Numerical experiments

The problem, definitions and preliminaries results

The main problem

We want to present an inexact version of the scaled gradient projection method for constrained convex optimization problem as follows

$$\min\{f(x): x \in C\},\tag{1}$$

where C is a closed and convex subset of \mathbb{R}^n and $f:\mathbb{R}^n\to\mathbb{R}$ is a continuously differentiable function.

Scaled Gradient Projection Method¹

Step 0. Choose $\sigma, \tau \in (0,1)$, $0 < \alpha_{\min} \le \alpha_{\max}$. Let $x^0 \in C$ and set k=0;

Step 1. Choose $\alpha_k \in [\alpha_{\min}, \alpha_{\max}]$ and a positive definite matrix D_k and take $w^k \in C$ as

$$w^k := \mathcal{P}_C^{D_k}(x^k - \alpha_k D_k^{-1} \nabla f(x^k))$$

If $w^k = x^k$, then **stop**; otherwise,

Step 2. Choose τ_k and define the next iterate x^{k+1} as

$$x^{k+1} = x^k + \tau_k(w^k - x^k). (2)$$

and go back to the Step 1.

¹S. Bonettini, R. Zanella, and L. Zanni. "A scaled gradient projection method for constrained image deblurring". In: *Inverse Problems* 25.1 (2009), pp. 015002, 23.

Scaled Gradient Projection Method

Let D be a $n \times n$ positive definite matrix and $\|\cdot\|_D : \mathbb{R}^n \to \mathbb{R}$ be the norm defined by

$$||d||_D := \sqrt{\langle Dd, d \rangle}, \quad \forall d \in \mathbb{R}^n.$$

For a fixed constant $\mu \geq 1$, denote by \mathcal{D}_{μ} the set of symmetric positive definite matrices $n \times n$ with all eigenvalues contained in the interval $[\frac{1}{\mu}, \mu]$.

- \mathcal{D}_{μ} is compact;
- If $D \in \mathcal{D}_{\mu}$, it follows that D^{-1} also belongs to \mathcal{D}_{μ} ;
- $\forall D \in \mathcal{D}_{\mu}$, we obtain

$$\frac{1}{\mu} ||d||^2 \le ||d||_D^2 \le \mu ||d||^2, \qquad \forall d \in \mathbb{R}^n.$$

Exact Projection

Definition

The exact projection of the point $v \in \mathbb{R}^n$ onto C with respect to the norm $\|\cdot\|_D$, denoted by $\mathcal{P}^D_C(v)$, is defined by

$$\mathcal{P}_C^D(v) := \arg\min_{z \in C} \|z - v\|_D^2.$$

Lemma

Let $v, w \in \mathbb{R}^n$. Then, $w = \mathcal{P}^D_C(v)$ if and only if $w \in C$ and

$$\langle D(v-w), y-w \rangle \le 0,$$

for all $y \in C$.

Inexact Projections²

Definition

The feasible inexact projection mapping, with respect to the norm $\|\cdot\|_D$, onto C relative to a point $u \in C$ and forcing parameter $\zeta \in (0,1]$, denoted by $\mathcal{P}^D_{C,\zeta}(u,\cdot): \mathbb{R}^n \rightrightarrows C$, is the set-valued mapping defined as follows

$$\mathcal{P}^D_{C,\zeta}(u,v) := \left\{ w \in C: \ \|w-v\|_D^2 \leq \zeta \|\mathcal{P}^D_C(v) - v\|_D^2 + (1-\zeta)\|u-v\|_D^2 \right\}.$$

Each point $w \in \mathcal{P}^D_{C,\zeta}(u,v)$ is called a feasible inexact projection, with respect to the norm $\|\cdot\|_D$, of v onto C relative to u and forcing parameter $\zeta \in (0,1]$.

²Ernesto G. Birgin, José Mario Martínez, and Marcos Raydan. "Inexact spectral projected gradient methods on convex sets". In: *IMA J. Numer. Anal.* 23.4 (2003), pp. 539–559.

Inexact Projections³

Definition

The feasible inexact projection mapping, with respect to the norm $\|\cdot\|_D$, onto C relative to $u \in C$ and forcing parameter $\gamma \geq 0$, denoted by $\mathcal{R}^D_{C,\gamma}(u,\cdot): \mathbb{R}^n \rightrightarrows C$, is the set-valued mapping defined as follows

$$\mathcal{R}_{C,\gamma}^D(u,v) := \left\{ w \in C : \langle D(v-w), y-w \rangle \le \gamma \|w-u\|_D^2, \quad \forall \ y \in C \right\}.$$

Each point $w \in \mathcal{R}^D_{C,\gamma}(u,v)$ is called a feasible inexact projection, with respect to the norm $\|\cdot\|_D$, of v onto C relative to u and forcing parameter $\gamma \geq 0$.

³Fabiana R. de Oliveira, Orizon P. Ferreira, and Gilson N. Silva. "Newton's method with feasible inexact projections for solving constrained generalized equations". In: *Comput. Optim. Appl.* 72.1 (2019), pp. 159–177.

Inexact Projections

Lemma

Let $v\in\mathbb{R}^n$, $u\in C$, $\gamma\geq 0$ and $\zeta\in(0,1]$. If $0\leq\gamma<1/2$ and $\zeta=1-2\gamma$, then

$$\mathcal{R}_{C,\gamma}^D(u,v) \subset \mathcal{P}_{C,\zeta}^D(u,v).$$

Proposition

Let $v \in \mathbb{R}^n$, $u \in C$ and assume that C is a bounded set. Then, for each $0 < \gamma < 1/2$, there exist $0 < \zeta < 1$ such that

$$\mathcal{P}_{C,\zeta}^D(u,v) \subseteq \mathcal{R}_{C,\gamma}^D(u,v)$$

Inexact Projections

Lemma

Let $x \in C$, $\alpha > 0$ and $z(\alpha) = x - \alpha D^{-1} \nabla f(x)$. Take $w(\alpha) \in \mathcal{P}^D_{C,\zeta}(x,z(\alpha))$ with $\zeta \in (0,1]$. Then, there hold

- (i) $\langle \nabla f(x), w(\alpha) x \rangle \le -\frac{1}{2\alpha} \|w(\alpha) x\|_D^2 + \frac{\zeta}{2\alpha} \left[\|\mathcal{P}_C^D(z(\alpha)) z(\alpha)\|_D^2 \|x z(\alpha)\|_D^2 \right];$
- (ii) the point x is stationary for problem (1) if, and only if, $x \in \mathcal{P}^D_{C,\zeta}(x,z(\alpha))$;
- (iii) if $x \in C$ is a nonstationary point for problem (1), then $\left\langle \nabla f(x), w(\alpha) x \right\rangle < 0$. Equivalently, if there exists $\bar{\alpha} > 0$ such that $\left\langle \nabla f(x), w(\bar{\alpha}) x \right\rangle \geq 0$, then x is stationary for problem (1).

Inexact scaled gradient method

InexProj-SGM employing nonmonotone line search

Step 0. Choose $\sigma, \zeta_{\min} \in (0,1)$, $0 < \alpha_{\min} \le \alpha_{\max}$ and $\mu \ge 1$. Let $x^0 \in C$, $\nu_0 \ge 0$ and set $k \leftarrow 0$.

Step 1. Choose positive real numbers α_k and ζ_k and a positive definite matrix D_k such that

$$\alpha_{\min} \le \alpha_k \le \alpha_{\max}, \qquad 0 < \zeta_{\min} < \zeta_k \le 1, \qquad D_k \in \mathcal{D}_{\mu}.$$

Compute $w^k \in C$ as any feasible inexact projection with respect to the norm $\|\cdot\|_{D_k}$ of

$$z^k := x^k - \alpha_k D_k^{-1} \nabla f(x^k)$$

onto C relative to x^k with forcing parameter ζ_k , i.e.,

$$w^k \in \mathcal{P}_{C,\zeta_k}^{D_k}(x^k, z^k).$$

If $w^k = x^k$, then **stop** declaring convergence.

InexProj-SGM employing nonmonotone line search

Step 2. Set $\tau_{\text{trial}} \leftarrow 1$. If

$$f(x^k + \tau_{\text{trial}}(w^k - x^k)) \le f(x^k) + \sigma \tau_{\text{trial}} \langle \nabla f(x^k), w^k - x^k \rangle + \nu_k,$$
 (3)

then $\tau_k \leftarrow \tau_{\text{trial}}$, define the next iterate x^{k+1} as

$$x^{k+1} = x^k + \tau_k(w^k - x^k), (4)$$

and go to **Step 3**. Otherwise, choose $\tau_{\rm new} \in [\underline{\omega}\tau_{\rm trial}, \bar{\omega}\tau_{\rm trial}]$, set $\tau_{\rm trial} \leftarrow \tau_{\rm new}$, and repeat test (3).

Step 3. Take $\delta_{k+1} \in [\delta_{\min}, 1]$ and choose $\nu_{k+1} \in \mathbb{R}$ satisfying

$$0 \le \nu_{k+1} \le (1 - \delta_{k+1}) \Big[f(x^k) + \nu_k - f(x^{k+1}) \Big].$$

Set $k \leftarrow k + 1$ and go to **Step 1**.

Nonmonotone line search

Remarks

There are several ways of choosing u_k

- (i) If $\nu_k = 0$, the line search (4) is the well-known Armijo line search.
- (ii) If $f_{\max} = \max\{f(x^{k-j}) \,|\, 0 \leq j \leq \min\{k,M\}\}$ and

$$\nu_k = f_{\text{max}} - f(x^k) \tag{5}$$

the line search (4) is the same defined by Grippo, Lampariello and Lucidi⁴.

⁴L. Grippo, F. Lampariello, and S. Lucidi. "A nonmonotone line search technique for Newton's method". In: *SIAM J. Numer. Anal.* 23.4 (1986), pp. 707–716.

Nonmonotone line search

(iii) Let $0 \le \eta_{min} \le \eta_{max} < 1$, $c_0 = f(x_0)$ and $q_0 = 1$. Choose $\eta_k \in [\eta_{min}, \eta_{max}]$ and set

$$q_{k+1} = \eta_k q_k + 1, \qquad c_{k+1} = (\eta_k q_k c_k + f(x^{k+1}))/q_{k+1}, \qquad \forall k \in \mathbb{N}.$$

If
$$\delta_{k+1} = 1/q_{k+1}$$
 and

$$\nu_k = c_k - f(x^k) \tag{6}$$

the line search (4) is the same defined by Zhang and Hager⁵.

⁵H. Zhang and W. W. Hager. "A nonmonotone line search technique and its application to unconstrained optimization". In: *SIAM J. Optim.* 14.4 (2004), pp. 1043–1056.

Partial asymptotic convergence

Partial asymptotic convergence analysis

Lemma

There holds
$$0 \le \delta_{k+1} \Big[f(x^k) + \nu_k - f(x^{k+1}) \Big] \le \Big(f(x^k) + \nu_k \Big) - \Big(f(x^{k+1}) + \nu_{k+1} \Big)$$
, for all $k \in \mathbb{N}$. As consequence the sequence $\big(f(x^k) + \nu_k \big)_{k \in \mathbb{N}}$ is non-increasing.

Theorem

Assume that $\lim_{k\to +\infty} \nu_k = 0$. Then, Algorithm InexProj-SGM stops in a finite number of iterations at a stationary point of problem (1), or generates an infinite sequence $(x^k)_{k\in\mathbb{N}}$ for which every cluster point is stationary for problem (1).

Partial asymptotic convergence analysis

Proposition

If
$$\delta_{min}>0$$
, then $\sum_{k=0}^{+\infty} \nu_k < +\infty$. Consequently, $\lim_{k\to +\infty} \nu_k = 0.6$

Remark

Armijo line search and nonmonotone line search strategy defined by (6) satisfies a condition $\delta_{min}>0$. However, for the nonmonotone line search strategy proposed by (5), we can only guarantee that $\delta_{min}\geq0$. Hence, we need deal with this case separately.

⁶Geovani N. Grapiglia and Ekkehard W. Sachs. "On the worst-case evaluation complexity of non-monotone line search algorithms". In: *Comput. Optim. Appl.* 68.3 (2017), pp. 555–577.

Partial asymptotic convergence analysis

Proposition

Assume that the sequence $(x^k)_{k\in\mathbb{N}}$ is generated by Algorithm InexProj-SGM with the nonmonotone line search (5), i.e., $\nu_k=f_{\max}-f(x^k)$ for all $k\in\mathbb{N}$. In addition, assume that the level set $C_0:=\{x\in C:\ f(x)\leq f(x^0)\}$ is bounded and $\nu_0=0$. Then, $\lim_{k\to +\infty}\nu_k=0$.

Full asymptotic convergence

We will prove, under suitable assumptions, the full convergence of the sequence $(x^k)_{k\in\mathbb{N}}$. For this end, we assume that in **Step 1** of Algorithm InexProj-SGM:

- **A1.** For all $k \in \mathbb{N}$, we take $w^k \in \mathcal{R}^{D_k}_{C,\gamma_k}(x^k,z^k)$ with $\gamma_k = (1-\zeta_k)/2$.
- **A2.** For all $k \in \mathbb{N}$, we take $0 \le \nu_k$ such that $\sum_{k=0}^{+\infty} \nu_k < +\infty$.

Armijo line search and nonmonotone line search strategies defined by (6) satisfies the assumption **A2**.

UFG

Lemma

For each $x \in C$, there holds

$$||x^{k+1} - x||_{D_k}^2 \le ||x^k - x||_{D_k}^2 + 2\alpha_k \tau_k \left\langle \nabla f(x^k), x - x^k \right\rangle + \xi \Big[f(x^k) - f(x^{k+1}) + \nu_k \Big], \quad \forall k \in \mathbb{N}.$$

where
$$\xi := \frac{2\alpha_{\max}}{\sigma} > 0$$
.

Corollary

Assume that f is a convex function. If $U := \{x \in C : f(x) \leq \inf_{k \in \mathbb{N}} (f(x^k) + \nu_k)\}$ is not empty, then $(x^k)_{k \in \mathbb{N}}$ converges to a stationary point of problem (1).

Theorem

If f is a convex function and $(x^k)_{k\in\mathbb{N}}$ has no cluster points, then $\Omega^*=\varnothing$, $\lim_{k\to\infty}\|x^k\|=+\infty$, and $\inf_{k\in\mathbb{N}}f(x^k)=\inf\{f(x):x\in C\}$.

Corollary

If f is a convex function and $(x^k)_{k\in\mathbb{N}}$ has at least one cluster point, then $(x^k)_{k\in\mathbb{N}}$ converges to a stationary point of problem (1).

Theorem

Assume that f is a convex function and $\Omega^* \neq \emptyset$. Then, $(x^k)_{k \in \mathbb{N}}$ converge to an optimal solution of problem (1).

Besides assuming that in Step 1 of Algorithm InexProj-SGM we take $(x^k)_{k\in\mathbb{N}}$ satisfying A1 and A2, we also need the following assumption.

A3. The gradient ∇f of f is Lipschitz continuous with constant L > 0.

Lemma

The steepsize au_k in Algorithm InexProj-SGM satisfies $au_k \geq au_{\min}$,

where

$$\tau_{\min} := \min \left\{ 1, \frac{\tau(1-\sigma)}{\alpha_{\max} \mu L} \right\}.$$

Theorem

For every $N \in \mathbb{N}$, the following inequality holds

$$\min \left\{ \| w^k - x^k \| : \ k = 0, 1 \dots, N - 1 \right\} \le \sqrt{\frac{2\alpha_{\max}\mu \left(f(x^0) - f^* + \sum_{k=0}^{\infty} \nu_k \right)}{\sigma \tau_{\min}}} \frac{1}{\sqrt{N}}.$$

Theorem

Let f be a convex function on C. Then, for every $N \in \mathbb{N}$, there holds

$$\min \left\{ f(x^k) - f^* : \ k = 0, 1 \dots, N - 1 \right\} \le \frac{\|x^0 - x^*\|_{D_0}^2 + \xi \left[f(x^0) - f^* + \sum_{k=0}^{\infty} \nu_k \right]}{2\alpha_{\min}\tau_{\min}} \frac{1}{N}$$

Lemma

Let N_k be the number of function evaluations after $k \geq 1$ iterations of Algorithm InexProj-SGM. Then,

$$N_k \le 1 + (k+1) \left\lceil \frac{\log(\tau_{\min})}{\log(\tau)} + 1 \right\rceil.$$

Theorem

For a given $\epsilon>0$, the number of function evaluations in Algorithm InexProj-SGM are at most

$$1 + \left(\frac{2\alpha_{\max}\mu\left(f(x^0) - f^* + \sum_{k=0}^{\infty}\nu_k\right)}{\sigma\tau_{\min}} \frac{1}{\epsilon^2} + 1\right) \left(\frac{\log(\tau_{\min})}{\log(\tau)} + 1\right),\,$$

to compute x^k and w^k such that $||w^k - x^k|| \le \epsilon$.

Theorem

Let f be a convex function on C. For a given $\epsilon > 0$, the number of function evaluations in Algorithm InexProj-SGM are at most

$$1 + \left(\frac{\|x^0 - x^*\|_{D_0}^2 + \xi \left(f(x^0) - f^* + \sum_{k=0}^{\infty} \nu_k\right)}{2\alpha_{\min}\tau_{\min}} \frac{1}{\epsilon} + 1\right) \left(\frac{\log(\tau_{\min})}{\log(\tau)} + 1\right),$$

to compute x^k such that $f(x^k) - f^* \le \epsilon$.

Given A and B two $m \times n$ matrices, with $m \ge n$, and $c \in \mathbb{R}$, we consider the matrix function $f: \mathbb{R}^{n \times n} \to \mathbb{R}$ given by:

$$f(X) := \frac{1}{2} ||AX - B||_F^2 + \sum_{i=1}^{n-1} \left[c \left(X_{i+1,i+1} - X_{i,i}^2 \right)^2 + (1 - X_{i,i})^2 \right],$$

which combines a least squares term with a Rosenbrock-type function. $X_{i,j}$ stands for the ij-element of the matrix X and $\|\cdot\|_F$ denotes the Frobenius matrix norm, i.e., $\|A\|_F:=\sqrt{\langle A,A\rangle}$ where the inner product is given by $\langle A,B\rangle=\operatorname{tr}(A^TB)$.

Problem I⁷:

$$\begin{aligned} & \min \quad f(X) \\ & \text{s.t.} \quad X \in SDD^+, \\ & \quad L \leq X \leq U, \end{aligned}$$

where SDD^+ is the cone of symmetric and diagonally dominant real matrices with positive diagonal, i.e.,

$$SDD^{+} := \{ X \in \mathbb{R}^{n \times n} \mid X = X^{T}, \ X_{i,i} \ge \sum_{i \ne i} |X_{i,j}| \ \forall i \},$$

L and U are given $n \times n$ matrices, and $L \leq X \leq U$ means that $L_{i,j} \leq X_{i,j} \leq U_{i,j}$ for all i, j.

⁷Ernesto G. Birgin, José Mario Martínez, and Marcos Raydan. "Inexact spectral projected gradient methods on convex sets". In: *IMA J. Numer. Anal.* 23.4 (2003), pp. 539–559.

Problem II⁸⁹:

min
$$f(X)$$

s.t. $X \in \mathbb{S}^n_+$,
 $\operatorname{tr}(X) = 1$,

where \mathbb{S}^n_+ is the cone of symmetric and positive semidefinite real matrices. The feasible set of Problem II was known as *spectrahedron* and appears in several interesting applications.

⁸Zeyuan Allen-Zhu et al. "Linear convergence of a Frank-Wolfe type algorithm over trace-norm balls". In: *Advances in Neural Information Processing Systems*. 2017, pp. 6191–6200.

⁹D.S. Gonçalves, M.A. Gomes-Ruggiero, and C. Lavor. "A projected gradient method for optimization over density matrices". In: *Optimization Methods and Software* 31.2 (2016), pp. 328–341.

We are interested in the spectral gradient version of the SPG method, so we set $D_k := I$ for all k, $\alpha_0 := \min(\alpha_{\max}, \max(\alpha_{\min}, 1/\|\nabla f(x^0)\|))$ and, for k > 0,

$$\alpha_k := \begin{cases} \min(\alpha_{\max}, \max(\alpha_{\min}, \langle s^k, s^k \rangle / \langle s^k, y^k \rangle)), & \text{if } \langle s^k, y^k \rangle > 0 \\ \alpha_{\max}, & \text{otherwise}, \end{cases}$$

where
$$s^k := X^k - X^{k-1}$$
, $y^k := \nabla f(X^k) - \nabla f(X^{k-1})$, $\alpha_{\min} = 10^{-10}$, and $\alpha_{\max} = 10^{10}$.

Concerning the stopping criterion, all runs were stopped at an iterate X^k declaring convergence if

$$\max_{i,j}(|X_{i,j}^k - W_{i,j}^k|) \le 10^{-6},$$

where $W^k \in \mathcal{P}^{D_k}_{C,\zeta_k}(x^k,z^k)$.

Influence of the inexact projection

Figure 1: Results for 10 instances of Problem I using n=100, m=200, and c=10. Average number of: (a) iterations; (b) Dykstra's iterations; (c) CPU time in seconds needed to reach the solution for different choices of ζ_k .

Influence of the inexact projection

Figure 2: Results for 10 instances of Problem II using n=800, m=1000, and c=100. Average number of: (a) iterations; (b) computed eigenpairs; (c) CPU time in seconds needed to reach the solution for different choices of γ_k .

Influence of the line search scheme

Figure 3: Performance profiles for Problem I considering the SPG method with the Armijo, the Average-type, and the Max-type line searches strategies using as performance measurement: (a) number of function evaluations; (b) number of (outer) iterations; (c) number of Dykstra's iterations; (d) CPU time.

Influence of the line search scheme

Figure 4: Performance profiles for Problem II considering the SPG method with the Armijo, the Average-type, and the Max-type line searches strategies using as performance measurement: (a) number of function evaluations; (b) number of (outer) iterations; (c) number of computed eigenpairs; (d) CPU time.

