

Fundamentals of Data Communications

IP Routing

Levi Perigo, Ph.D.
University of Colorado Boulder
Department of Computer Science
Network Engineering

Review

Static Routing

- What is the purpose of routing?
- What is a static route?
- Static Routing vs Routing Protocols
 - Manual
 - Administrative Overhead
 - Scalability
 - Static not dynamic
 - (failover)
- Routing Table

Router

Inside a router

- Control plane: routing protocols
- Data plane: packet forwarding

Path selection

- Minimum-hop/cost and shortest-path routing
- Algorithms: Link-state vs. Distance vector routing

Topology change

- Using beacons to detect topology changes
- Propagating topology information

What is Routing?

 A famous quotation from RFC 791 (Internet Protocol 1981)

"A name indicates what we seek.

An address indicates where it is.

A route indicates how we get there."

-- Jon Postel

Routing vs. Forwarding

Routing: control plane

- Computing paths the packets will follow
- Routers talking amongst themselves
- Individual router <u>creating</u> a forwarding table

Forwarding: data plane

- Directing a data packet to an outgoing link
- Individual router <u>using</u> a forwarding table

Data and Control Planes

Where do Forwarding Tables come From?

- Routers have forwarding tables
 - Map IP prefix (subnet) to outgoing link(s)
- Entries can be statically configured
 - E.g., "map 12.34.158.0/24 to fastethernet 0/0.1"
 - But, this doesn't adapt
 - To failures
 - To new equipment
 - To the need to balance load
 - That is where routing protocols come in!

Recall the Internet Layering Model

Recall the Internet Layering Model

Computing Paths Between Routers

Routers need to know two things:

- 1. Which router to use to reach a destination prefix
- 2. Which outgoing interface to use to reach that router

Routers and Routing

Routing

- The process by which data/traffic gets from one location to another
- A router is the device used to route traffic
- Routers can forward packets over static routes or dynamic routes
 - Based on the router configuration and network design

Static routes

- A route that a network administrator enters into the router manually
- Unidirectional static routes must be configured to and from networks to allow bidirectional communications to occur

Dynamic routes

 A route that a network routing protocol adjusts automatically for topology or traffic changes

Layer 2 Addressing

Router Operations

A router needs to do the following:

- Know the destination address
- Identify the sources from which the router can learn
- Discover possible routes to the intended destination
- Select the best route
- Maintain and verify routing information

Router Operations (Cont.)

- Routers must learn destinations that are not directly connected
 - Routers automatically learn connected routes (if the interface is up!)

Identifying Static and Dynamic Routes

Static route

Uses a route that a network administrator enters into the router manually

Dynamic route

 Uses a route that a network routing protocol adjusts automatically for topology or traffic changes

Static Routes

Configure unidirectional static routes **to** and **from** a network to allow communications to occur.

Static Route Configuration

```
(config) # ip route network [mask]
{address | interface}[distance] [permanent]
```

- Defines a path to an IP destination network or subnet or host
- Address = IP address of the next hop router
- Interface = outbound interface of the local router
- Example:
 - ip route 192.168.1.0 255.255.255.0 192.168.222.254
 - *pro tip

or

(config) #ip route 172.16.1.0 255.255.255.0 s0/0/0

- This is a unidirectional route.
- You must have a route configured in the opposite direction for traffic to return.

Default Routes

 This route allows the "stub network" (behind RouterB) to reach all networks beyond Router A.

Verifying the Static Route Configuration

Route Table

```
RouterX# show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
    D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
    E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
    i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
    U - per-user static route

Gateway of last resort is 0.0.0.0 to network 0.0.0.0

10.0.0.0/8 is subnetted, 1 subnets
C    10.1.1.0 is directly connected, Serial0/0/0
S* 0.0.0.0/0 is directly connected, Serial0
```

P2P with Internet

Floating Static Routes

Dynamic Routing

Overview and Terminology

- Think beyond directly connected devices
- "Network Map" and Routing tables
- Static Routes (type the Internet)
 - Nearly 1 million routes!
- Routing protocols: Propagate information about available networks
- Routed protocols: L3 protocols that can be routed (IP)

Overview and Terminology

- Routing type: Link State vs. Distance Vector vs. Path Vector
- Exterior Routing Protocols (EGP): Intercorporate route distribution
- Interior Routing Protocols (IGP): Intracorporate route exchange
- Autonomous System (AS): Network under single management control (ISP)

Routing Objectives

- Build a routing table (learn & propagate)
- Pick best routes (if more than one available)
- Remove invalid routes
- Replace routes if better advertisement received
- Restore routes fast (convergence time)
- Prevent loops

What is a Routing Protocol?

 Routing protocols are used between routers to determine paths and maintain routing tables.

 After the path is determined, a router can route a routed protocol.

Classes of Routing Protocols

Distance Vector

Hybrid Routing

Link-State

301P_196

Interior Gateway Routing Protocols (IGP)

- Several available in the market. Protocols have evolved over time to respond to changing network conditions
- Considerations while choosing a protocol:
 - Type of routing protocol
 - Distance vector
 - Link-state
 - Hybrid
 - Update process
 - Full updates
 - Partial updates
 - Convergence time

- Metric
 - Measure of link quality / preference
- VLSM support
 - Subnet size variations
 - Permit better address allocation
- Classless vs. Classful
 - TX or Not TX mask info
 - If TX then VLSM supported

Distance Vector Protocols

Distance Vector Logic

- Add directly connected
- Send updates out include directly connected and learned routes
 - "Routing by Rumor"
- Listen for routing updates
- Routing info: subnet & metric
- Use broadcast or multicast for updates
- Chose best of multiple routes
- Send/expect periodic full updates
- If updates no longer received, remove routes learned from such neighbor
- Assume that the advertising router is the next hop for a route

Distance Vector Protocols

· RIPv1

- Metric: hop count (smaller better) Infinite metric = 16
- Full updates every 30s (subnet # & metric)
- Convergence 3-5 minutes (depending on size of routing table)
- Classful (no VLSM)
- Broadcasts updates (255.255.255.255)
- "Route-poisoning" and split horizon
 - Infinite metric of 16
 - · Prevent advertising back to the interface it was received

· RIPv2

- Same features as RIPv1
- Adds: VLSM support (updates include subnet #, mask & metric)
- MD5 and plain text authentication
- Includes next hop router IP on updates
- Uses external route tags (redistribution)
- Multicast routing updates (224.0.0.9)

Distance Vector Protocols

IGRP

- Proprietary
- Metric: bandwidth + delay (default), reliability, load, MTU
- Metric value (1 4 billion), smaller better.
- Metrics are cumulative: multi-hop path adds links delays
- Metrics are configurable
- Full updates every 90s
- No VLSM supported
- Infinite metric = 4,294,967,295 (smaller better)

Sources of Information and Discovering Routes

 Routers discover the best path to destinations from each neighbor.

Link State Protocols

Link State logic

- Add directly connected
- Don't transmit routing info until neighbors are discovered
- Routing info: topological information about the network, at the end every router has a complete map of the network.
- Use reliable protocol for route updates
- Calculate shortest path first (SPF) algorithm (Dijkstra) to determine best routes and next hop (also prevents loops)
- Full updates at start and after long periods of time (~30 min.)
- Partial updates when a link fails
- Fast convergence

Link State Protocols

OSPF

- Most popular
- Discover neighbors, then exchange routes
- Reliable Transport Protocol
- Run SPF and store best routes
- More memory required, more processing
- Metric: "cost" based on bandwidth (smaller-better)
- Averages 10s convergence time
- VLSM supported
- Hello messages to confirm neighbor reachability
- Full updates every 30 min
- Partial updates when link fails

Interface type	bandwidth	Cost
Fast Ethernet and faster	100 Mb/s and higher	1
Ethernet	10 Mb/s	10
E1	2 Mb/s	48
T1	1.544 Mb/s	64
128bps	128bps	781
64kbps	64kbps	1562
56kbps	56kbps	1785

Hybrid Protocols

EIGRP

- Cisco Proprietary*
- Uses features from both link-state and distance vector protocols (balanced hybrid protocol: topology + routing tables)
- Diffused Update Algorithm (DUAL): exchange more info than distance vector but less than link-state
- Demands less computation
- Calculated best and "feasible successor routes" (alternatives), permits immediate convergence.
- Discovers neighbors like OSPF
- Metric based on bandwidth and delay (Idem IGRP * 256)
- Does not send periodic full updates

Loop Prevention in Distance Vector Protocols

Problems:

- Multiple routes to same network
- Miscommunications on a single link
- Information loops through alternative paths
- Counting to infinity

Administrative Distance: Ranking Routes

Administrative Distance

- Applies to similar routes received from different protocols
- Prioritizes different routing protocols (which protocol do I believe first?)
- The <u>lower</u> the AD number, the better
- Examples:

•	Directly connected	0
---	--------------------	---

•	Static	Routes	1
---	--------	--------	---

- EIGRP (internal) 90
- *IGRP* 100
- OSPF 110
- IS-IS 115
- *RIP* 120
- EIGRP (external) 170
- *iBGP* 200

Classful Routing Protocol

- Classful routing protocols do not include the subnet mask with the route advertisement.
- Within the same network, consistency of the subnet masks is assumed.
- Summary routes are exchanged between foreign networks.
- These are examples of classful routing protocols:
 - RIPv1
 - IGRP

Classless Routing Protocol

- Classless routing protocols include the subnet mask with the route advertisement.
- Classless routing protocols support a variablelength subnet mask (VLSM). (aka subnetting)
- Summary routes can be manually controlled within the network.
- These are examples of classless routing protocols:
 - RIPv2
 - EIGRP
 - OSPF
 - · IS-IS

Link-State Routing can be Problematic

Topology information is flooded

- High bandwidth and storage overhead
- Forces nodes to divulge sensitive information

Entire path computed locally per node

High processing overhead in a large network

Minimizes some notion of total distance

- Works only if policy is shared and uniform
- Typically used only inside an AS
 - E.g., OSPF and IS-IS

Distance Vector is on the Right Track

Advantages

- Hides details of the network topology
- Nodes determine only "next hop" toward the destination

Disadvantages

- Minimizes some notion of total distance, which is difficult in an interdomain setting
- Slow convergence due to the counting-to-infinity problem ("bad news travels slowly")

Idea: extend the notion of a distance vector

To make it easier to detect loops

Path-Vector Routing

- Extension of distance-vector routing
 - Support flexible routing policies

- Key idea: advertise the entire path
 - Distance vector: send distance metric per dest d
 - Path vector: send the entire path for each dest d

Faster Loop Detection

Node can easily detect a loop

- Look for its own node identifier in the path
- E.g., node 1 sees itself in the path "3, 2, 1"

Node can simply discard paths with loops

- E.g., node 1 simply discards the advertisement

Path-Vector: Flexible Policies

Each node can apply local policies

- Path selection: Which path to use?
- Path export: Which paths to advertise?

Node 2 prefers "2, 3, 1" over "2, 1"

Node 1 doesn't let 3 hear the path "1, 2"

End-to-End Signaling

- Establish end-to-end path in advance
 - Learn the topology (as in link-state routing)
 - End host or router computes and signals a path
 - Signaling: install entry for each circuit at each hop
 - Forwarding: look up the circuit id in the table

Distance Vector vs. Path Vector

Distance-vector routing

- Pro: Less information and computation than link state
- Con: Slower convergence (e.g., count to infinity)

Path-vector routing

- Share entire path, not distance: faster convergence
- More flexibility in selecting paths
- Different goals / metrics if inter- or intra-domain

Questions?

Lab

Appendix A

Host-to-Host Packet Delivery (1 of 17)

Application: Network, I have some data to send to 192.168.4.2. and I don't need a reliable connection.

Transport: I'll use UDP. Send me the data.

Application: Here is the data.

APP DATA

L3 = 192.168.3.1

L2 = 0800:0222:2222

L3 = 192.168.3.2

L2 = 0800:0333:2222

L3 = 192.168.4.1

L2 = 0800:0333:1111

L3 = 192.168.4.2

Host-to-Host Packet Delivery (2 of 17)

APP DATA

UDP: I'll put in a UDP header.

UDP APP HDR DATA

UDP: IP, send this to 192.168.4.2.

SRC IP 192.168.3.1 DST IP 192.168.3.2 UDP HDR APP DATA IP: I'll put in an IP header.

IP: Layer 2, send this to 192.168.4.2.

L3 = 192.168.3.1

L2 = 0800:0222:2222

L3 = 192.168.3.2

L2 = 0800:0333:2222

L3 = 192.168.4.1

L2 = 0800:0333:1111

L3 = 192.168.4.2

Host-to-Host Packet Delivery (3 of 17)

Layer 2: ARP, do you have a mapping for 192.168.4.2?

ARP: No, Layer 2 will have to hold the packet while I reselve the addressing.

SRC IP 192.168.3.1

DST IP 192.168.4.2 UDP HDR APP DATA

L2 = 0800:0222:2222

L3 = 192.168.3.2

L2 = 0800:0333:2222

L3 = 192.168.4.1

L2 = 0800:0333:1111

L3 = 192.168.4.2

Host-to-Host Packet Delivery (4 of 17)

Parking Lot

Packet

ARP: I am on 192.168.3.0/24 and the destination is on 192.168.4.0/24, so we are on different segments. I'll have to use the default gateway.

ARP: My default gateway is 192.168.3.2, but I don't have its MAC address.
I'll have to resolve the adressing

L3 = 192.168.3.1

L2 = 0800:0222:2222

L3 = 192.168.3.2

L2 = 0800:0333:2222

L3 = 192.168.4.1

L2 = 0800:0333:1111

L3 = 192.168.4.2

Host-to-Host Packet Delivery (5 of 17)

L2 = 0800:0333:2222

L2 = 0800:0333:1111

Host-to-Host Packet Delivery (6 of 17)

Parking Lot

Packet

Router: I just received an ARP request. Let me add host 192.168.3.1 to my ARP table with a MAC address of 0800:0222:2222.

ARP Request

DST MAC Broadcast SRC MAC 0800:0222:2222

ARP Request

L3 = 192.168.3.1

L2 = 0800:0222:2222

L3 = 192.168.3.2

L2 = 0800:0333:2222

L3 = 192.168.4.1

L2 = 0800:0333:1111

L3 = 192.168.4.2

Host-to-Host Packet Delivery (7 of 17)

Host-to-Host Packet Delivery (8 of 17)

Parking Lot

Packet

ARP: I just got an ARP reply from 192.168.3.2. Let me add its IP and MAC to my ARP table.

ARP: Now I have a mapping for my default gateway. I can give Layer 2 a mapping for 192.168.4.2.

ARP Reply

ARP: Layer 2, I have 192.168.4.2 mapped to 0800:0333:2222.

DST MAC 0800:0222:2222 SRC MAC 0800:0222:1111 ARP Reply

L3 = 192.168.3.1

L2 = 0800:0222:2222

L3 = 192.168.3.2

L2 = 0800:0333:2222

L3 = 192.168.4.1

L2 = 0800:0333:1111

L3 = 192.168.4.2

Host-to-Host Packet Delivery (9 of 17)

Layer 2: I can send out that pending frame.

 APP DATA
 UDP HD
 DST IP 192.168.4.2
 SRC IP 192.168.3.1
 SRC MAC 0800:0222:2222
 DST MAC 0800:0333:2222

L3 = 192.168.3.1

L2 = 0800:0222:2222

L3 = 192.168.3.2

L2 = 0800:0333:2222

L3 = 192.168.4.1

L2 = 0800:0333:1111

L3 = 192.168.4.2

Host-to-Host Packet Delivery (10 of 17)

Router L2: I received a frame with my MAC address. I need to pass it to L3.

Router L3: This isn't my address. It needs to be routed.

Router L3: I need to forward this packet.

APP UDP DST IP SRC IP 192.168.4.2 192.168.3.1

APP DATA UDP HD DST IP 192.168.4.2 SRC IP 192.168.3.1 SRC MAC 0800:0222:2222 DST MAC 0800:0333:2222

L3 = 192.168.3.1

L2 = 0800:0222:2222

L3 = 192.168.3.2

L2 = 0800:0333:2222

L3 = 192.168.4.1

L2 = 0800:0333:1111

L3 = 192.168.4.2

Host-to-Host Packet Delivery (11 of 17)

Destination	Next Hop	Interface
192.168.3.0/24	Connected	fa 0/0
192.168.4.0/24	Connected	fa 0/1

Router L3: I have an interface on the 192.168.4.0/24 segment. I can forward this packet directly to the host.

Router L3: L2, send this packet.

APP UDP DATA HDR 1

DST IP 192.168.4.2 SRC IP 192.168.3.1

L3 = 192.168.3.1

L2 = 0800:0222:2222

L3 = 192.168.3.2

L2 = 0800:0333:2222

L3 = 192.168.4.1

L2 = 0800:0333:1111

L3 = 192.168.4.2

Host-to-Host Packet Delivery (12 of 17)

Router L3: I have an interface on the 192.168.4.0/24 segment. I can forward this packet directly to the host.

Router L3: L2, send this packet.

APP DATA UDP HDR DST IP 192.168.4.2 SRC IP 192.168.3.1

L3 = 192.168.3.1

L2 = 0800:0222:2222

L3 = 192.168.3.2

L2 = 0800:0333:2222

L3 = 192.168.4.1

L2 = 0800:0333:1111

L3 = 192.168.4.2

Host-to-Host Packet Delivery (13 of 17)

L2 = 0800:0222:2222

L3 = 192.168.3.1

L2 = 0800:0333:2222

L3 = 192.168.3.2

L2 = 0800:0333:1111

L3 = 192.168.4.1

L2 = 0800:0222:1111

Host-to-Host Packet Delivery (14 of 17)

ARP Request

DST MAC Broadcast SRC MAC 0800:0333:1111 ARP Request

L2 = 0800:0222:2222

L3 = 192.168.3.1

L2 = 0800:0333:2222

L3 = 192.168.3.2

L2 = 0800:0333:1111

L3 = 192.168.4.1

L2 = 0800:0222:1111

Host-to-Host Packet Delivery (15 of 17)

DST MAC SRC MAC ARP Reply 0800:0222:1111 Reply

DST MAC 0800:0333:1111

SRC MAC 0800:0222:1111 ARP Reply

L2 = 0800:0222:2222

L3 = 192.168.3.1

L2 = 0800:0333:2222

L3 = 192.168.3.2

L2 = 0800:0333:1111

L3 = 192.168.4.1

L2 = 0800:0222:1111

ARP

Host-to-Host Packet Delivery (16 of 17)

Router ARP: Now I have a mapping. I can give Layer 2 a mapping for 192.168.4.2.

Router ARP: Layer 2, I have 192.168.4.2 mapped to 0800:0222:1111.

ARP Reply

DST MAC 0800:0333:1111

SRC MAC 0800:0222:1111 ARP Reply

L2 = 0800:0222:2222

L3 = 192.168.3.1

L2 = 0800:0333:2222

L3 = 192.168.3.2

L2 = 0800:0333:1111

L3 = 192.168.4.1

L2 = 0800:0222:1111

Host-to-Host Packet Delivery (17 of 17)

Appendix B

RIP Overview

- Maximum is 16 equal-cost paths (default = 4)
- Hop-count metric selects the path
- Routes update every 30 seconds

RIPv1 and RIPv2 Comparison

	RIPv1	RIPv2
Routing protocol	Classful	Classless
Supports variable-length subnet mask?	No	Yes
Sends the subnet mask along with the routing update?	No	Yes
Addressing type	Broadcast	Multicast
Defined in	RFC 1058	RFCs 1721, 1722, and 2453
Supports manual route summarization?	No	Yes
Authentication support?	No	Yes

IP Routing Configuration Tasks

- -Router configuration
 - Select routing protocols
 - Specify networks or interfaces

RIP Configuration

RouterX(config) # router rip

Starts the RIP routing process

RouterX(config-router)# version 2

Enables RIP version 2

RouterX(config-router)# network network-number

- Selects participating attached networks
- Requires a major classful network number

RIP Configuration Example

