ALGORITHMS FOR SOLVING INFINITE GAMES ON GRAPHS

MARCIN JURDZIŃSKI UNIVERSITY OF WARWICK

How DIFFICULT IS IT TO FIND A WINNING STRATEGY ?

COMPUTATIONAL COMPLEXITY OF FINDING EQUILIBRIA

THM [1950's]

Finding equilibria in zero-sum games (in s.f.)
is poly-time equivalent to linear programming

THM [DGP, CD 2006]

Finding equilibria in non-zero sum games (in s.f.)

is poly-time equivalent to computing Browner

fixed points

COMPUTATIONAL COMPLEXITY OF FINDING EQUILIBRIA

PLAN

I Qualitative (w-regular) games

- 1. Motivating example
- 2. Games on graphs
- 3. Reachability/safety games
- 4. Buchi/co-Buchi games
- 5. Parity games
- 6. w-regular games
- 7. Two recent complexity improvements for parity games

SELF-IMPOSED LIMITATIONS

- · Finite graphs
- w-Regular objectives
- Zero-sum
- Perfect-information
- · Non-stochastic

Propositional Formula EVALUATION

Property : (rvp) 1 (7p1(qv7r))

PROPOSITIONAL FORMULA EVALUATION

Property : (rvp) A (7pA (qv7r))

PROPOSITIONAL FORMULA EVALUATION

Property p: (rvp) x (7px(qv7r))

Propositional Formula EVALUATION: GAME

Property 4: (rvp) 1 (7p1 (qv7r))

Propositional FORMULA EVALUATION: GAME

Property : (rvp) 1 (7p1 (qv7r))

TEMPORAL FORMULA EVALUATION

Knipke structure:

CTL property 4

E ((p v q) U r)

TEMPORAL FORMULA EVALUATION: GAME

CTL property 4:

TEMPORAL FORMULA EVALUATION: GAME

TEMPORAL FORMULA EVALUATION: GAME

FIXPOINT FORMULA EVALUATION

FIXPOINT FORMULA EVALUATION

PLAN

- [Qualitative (w-regular) games
 - 1. Motivating example
 - 2. Games on graphs
 - 3. Reachability/safety games
 - 4. Büchi/co-Büchi games
 - 5. Parity games
 - 6. w-regular games
 - 7. Two recent complexity improvements for parity games

GAMES ON GRAPHS: GAME GRAPH

n=|V| vertices, m=|E| edges

GAMES ON GRAPHS: POSITIONAL STRATEGIES

GAMES ON GRAPHS: PLAYS

Play
$$(2, \chi, \mu) = (2, 5, 3, 4, 5, 3, 4, 5, ...) \in V^{\omega}$$

GAMES ON GRAPHS: OBJECTIVES

Objectives:
$$W_{\mathbf{D}} \subseteq V^{\omega}$$

$$W_{\mathbf{A}} = V^{\omega} \setminus W_{\mathbf{D}}$$

Examples of objectives:

- Reachability: $W_{D} = \{(v_0, v_1, v_2, ...): v_i \in T \text{ for some } i \in \mathbb{N}\}$
- Safety: $W_{n} = \{(v_{\bullet}, v_{\bullet}, v_{\bullet}, \dots): v_{\bullet} \in T \text{ for no } i \in \mathbb{N}\}$

where T=V

GAMES ON GRAPHS: WINNING STRATEGIES

$$\chi \in \Sigma_{\square}$$
 is a winning strategy for \square from $v \in V$, if $\operatorname{Play}(v,\chi,\mu) \in W_{\square}$, for all $\mu \in \Sigma_{\Delta}$

$$\mu \in \Sigma_{\Delta}$$
 is a winning strategy for Δ from $v \in V$, if $\operatorname{Play}(v, \chi, \mu) \in \mathcal{W}_{\Delta}$, for all $\chi \in \Sigma_{\square}$

GAMES ON GRAPHS: ALGORITHMIC PROBLEM

Given: game graph $(V = V_D \uplus V_A, E)$ objective $W_D \subseteq V^{\omega}$ starting vertex $v \in V$

answer: if | has a winning strategy from v

GAMES ON GRAPHS: DETERMINACY

A game $(V = V_D \uplus V_\Delta, E; W_D)$ is determined if for every starting vertex $v \in V$

- . □ has a winning strategy from v, or
- \bullet Δ has a winning strategy from v

MARTIN'S DETERMINACY THEOREM

THM [MARTIN 1975]

Every game $(V=V_{\square} \uplus V_{\triangle}, E; W_{\square})$,

such that $W_{\square} \subseteq V^{\square}$ is a Borel set,
is determined

GAMES ON GRAPHS: ALGORITHMIC PROBLEM

Given: game graph $(V = V_D \uplus V_\Delta, E)$ objective $W_D \subseteq V^\omega$

compute: V = Wa + Ws such that

- . □ has a winning strategy from Wo, and
- . △ has a winning strategy from Ws

PLAN

- I Qualitative (w-regular) games
 - 1. Motivating example
 - 2. Games on graphs
 - 3. Reachability/safety games
 - 4. Büchi / co-Büchi games
 - 5. Parity games
 - 6. w-regular games
 - 7. Two recent complexity improvements for parity games

REACHABILITY GAMES

• Reachability: $W_{\square} = \{(v_0, v_1, v_2, ...): v_i \in \top \text{ for some } i \in \mathbb{N}\}$

SAFETY GAMES

- Reachability: $W_n = \{(v_{\bullet_i}v_{\bullet_i}v_{\bullet_i}): v_i \in T \text{ for some } i \in IN\}$
- Safety: $W_{\Delta} = \{(v_0, v_1, v_2, ...): v_i \in T \text{ for no } i \in \mathbb{N}\}$

REACHABILITY/SAFETY GAMES

FACT
Reachability/safety games are positionally determined

SOLVING REACHABILITY/SAFETY GAMES: COMPUTING ATTRACTORS

$$\frac{F_{ACT}}{attr_{o}}(T) = \bigcup_{k>0} attr_{o}^{k}(T)$$

can be computed in O(m) time

PLAN

- I Qualitative (w-regular) games
 - 1. Motivating example
 - 2. Games on graphs
 - 3. Reachability/safety games
 - 4. Birchi / co-Büchi games
 - 5. Parity games
 - 6. w-regular games
 - 7. Two recent complexity improvements for parity games

GAMES ON GRAPHS: (CO-) BÜCHI OBJECTIVES

• Büchi:

$$\mathcal{W}_{D} = \left\{ (v_{\bullet_{i}}v_{\bullet_{i}}v_{\bullet_{i}},...) \colon v_{i} \in T \quad \text{for infinitely many } i \in \mathbb{N} \right\}$$

· co-Büchi

$$W_{\Delta} = \{(v_0, v_1, v_2, ...): v_i \in T \text{ for finitely many } i \in \mathbb{N}\}$$

where T = V

ORACLE LEMMA

LEMMA If U ⊆ win (G)

then
$$win_{\Delta}(G) = \bigcup^* \cup win_{\Delta}(G'')$$

$$win_{D}(G) = win_{D}(G'')$$

T-ATTRACTOR LEMMA

G

LEMMA

- 1. $win_{\Lambda}(G') = \bigvee_{\alpha} attr_{\alpha}(T) \subseteq win_{\Lambda}(G)$
- 2. If $G' = \emptyset$ then $win_{\mathbf{G}}(G) = V$

T-ATTRACTOR LEMMA

LEMMA_

- 1. $win_{\Lambda}(G') = \bigvee_{\alpha} attr_{\alpha}(T) \subseteq win_{\Lambda}(G)$
- 2. If $G' = \emptyset$ then $win_{G}(G) = V$

A DIVIDE-AND-CONQUER ALGORITHM

$$\begin{array}{ll} \underline{\mathsf{Win}(G)} \colon & \underset{\underline{\mathsf{if}}}{\mathsf{if}} \; \mathsf{W}_{\Delta}^{\mathsf{!}} = \emptyset & \underset{\underline{\mathsf{else}}}{\mathsf{then}} \; \; (\mathsf{W}_{\mathbf{D}_{\mathsf{!}}} \mathsf{W}_{\Delta}^{\mathsf{!}}) \coloneqq (\mathsf{V}_{\mathsf{!}} \emptyset) \\ & \underset{\underline{\mathsf{else}}}{\mathsf{else}} \; \; (\mathsf{W}_{\mathsf{D}_{\mathsf{!}}}^{\mathsf{!}} \mathsf{W}_{\Delta}^{\mathsf{!}}) \coloneqq \mathsf{W}_{\mathsf{!}} \mathsf{N} \left(\mathsf{G}^{\mathsf{!'}} \right) \\ & (\mathsf{W}_{\mathsf{D}_{\mathsf{!}}} \mathsf{W}_{\Delta}^{\mathsf{!}}) \coloneqq \left(\mathsf{W}_{\mathsf{D}_{\mathsf{!}}}^{\mathsf{!'}} \mathsf{W}_{\Delta}^{\mathsf{!}} \right) \coloneqq \left(\mathsf{W}_{\Delta}^{\mathsf{!'}} \right) \cup \; \mathsf{W}_{\Delta}^{\mathsf{!'}} \right) \\ & \mathsf{return} \; \left(\mathsf{W}_{\mathbf{D}_{\mathsf{!}}} \mathsf{W}_{\Delta} \right) \end{array}$$

A DIVIDE-AND-CONQUER ALGORITHM

$$\frac{\mathsf{Win}(G):}{\mathsf{win}(G):} \quad \underset{\mathsf{else}}{\mathsf{if}} \; \mathsf{W}_{\Delta}^{\mathsf{l}} = \emptyset \quad \underset{\mathsf{then}}{\mathsf{then}} \quad (\mathsf{W}_{\square_{1}}\mathsf{W}_{\Delta}^{\mathsf{l}}) := (\mathsf{V}_{1}\emptyset)$$

$$= \underbrace{\mathsf{win}(G'')}_{\mathsf{ul}} \quad (\mathsf{W}_{\square_{1}}\mathsf{W}_{\Delta}^{\mathsf{l}}) := \left(\mathsf{W}_{\square_{1}}^{\mathsf{ll}}, \mathsf{attr}_{\Delta}(\mathsf{W}_{\Delta}^{\mathsf{l}}) \cup \mathsf{W}_{\Delta}^{\mathsf{ll}}\right)$$

$$= \underbrace{\mathsf{veturn}(\mathsf{W}_{\square_{1}}\mathsf{W}_{\Delta}^{\mathsf{l}})}_{\mathsf{return}(\mathsf{W}_{\square_{1}}\mathsf{W}_{\Delta}^{\mathsf{l}})} := \left(\mathsf{W}_{\square_{1}}^{\mathsf{ll}}, \mathsf{attr}_{\Delta}(\mathsf{W}_{\Delta}^{\mathsf{l}}) \cup \mathsf{W}_{\Delta}^{\mathsf{ll}}\right)$$

Positional DETERMINACY OF (CO-BUCHI) GAMES

RUNNING TIME OF THE DIVIDE-AND-CONQUER ALGORITHM

LEMMA

Büchi/co-Büchi games are positionally determined (both on finite and infinite graphs)

$$T(n) = \frac{W_{ln}(G):}{\underset{\underline{e} \not = \emptyset}{\underline{t}_{ln}} \underbrace{(W_{ln}, W_{a}) := (\bigvee, \emptyset)}_{\underline{e} \not = \underbrace{(W_{ln}^{"}, W_{a}^{"}) := \underbrace{W_{ln}(G^{"})}_{\underline{e} \not = \underbrace{(W_{ln}^{"}, W_{a}^{"}) := \underbrace{(W_{ln}^{"}, e^{t} t_{\ell_{a}}(W_{a}^{'}) \cup W_{a}^{"})}_{\underline{e} \not = \underbrace{(W_{ln}^{"}, W_{a}^{"}) := \underbrace{(W_{ln}^{"}, e^{t} t_{\ell_{a}}(W_{a}^{'}) \cup W_{a}^{"})}_{\underline{e} \not= \underbrace{(W_{ln}^{"}, W_{a}^{"}) := \underbrace{(W_{ln}^{"}, e^{t} t_{\ell_{a}}(W_{a}^{'}) \cup W_{a}^{"})}_{\underline{e} \not= \underbrace{(W_{ln}^{"}, W_{a}^{"}) := \underbrace{(W_{ln}^{"}, W_{a}^{"}) := \underbrace{(W_{ln}^{"}, W_{a}^{"}) \cup W_{a}^{"})}_{\underline{e} \not= \underbrace{(W_{ln}^{"}, W_{a}^{"}) := \underbrace{(W_{ln}^{"}, W_{a}^{"}) := \underbrace{(W_{ln}^{"}, W_{a}^{"}) \cup W_{a}^{"})}_{\underline{e} \not= \underbrace{(W_{ln}^{"}, W_{a}^{"}) := \underbrace{(W_{ln}^{"}, W_{a}^{"}) := \underbrace{(W_{ln}^{"}, W_{a}^{"}) \cup W_{a}^{"})}_{\underline{e} \not= \underbrace{(W_{ln}^{"}, W_{a}^{"}) := \underbrace{(W_{ln}^{"}, W_{a}^{"}) := \underbrace{(W_{ln}^{"}, W_{a}^{"}) \cup W_{a}^{"})}_{\underline{e} \not= \underbrace{(W_{ln}^{"}, W_{a}^{"}) := \underbrace{(W_{ln}^{"}, W_{a}^{"}) := \underbrace{(W_{ln}^{"}, W_{a}^{"}) \cup W_{a}^{"})}_{\underline{e} \not= \underbrace{(W_{ln}^{"}, W_{a}^{"}) := \underbrace{(W_{ln}^{"$$

Recurrence: $T(n) \leq T(n-1) + O(m)$

Solution: $T(n) = O(n \cdot m)$

PLAN

[Qualitative (w-regular) games

- 1. Motivating example
- 2. Games on graphs
- 3. Reachability/safety games
- 4. Buchi / co-Büchi games
- 5. Parity games
- 6. w-regular games
- 7. Two recent complexity improvements for parity games

GAMES ON GRAPHS: PARITY OBJECTIVES

 $\operatorname{Inf}(a_0,a_1,a_2,...) = \{a: a_i=a \text{ for infinitely many } i \in \mathbb{N} \}$

Parity objective:

$$W_{\square} = \left\{ \left(v_0, v_1, v_2, \ldots \right) : \max \left(Jnf \left(p(v_0), p(v_1), p(v_2), \ldots \right) \right) \text{ is even} \right\}$$

where $p:V \rightarrow \mathbb{N}$ is the priority function

Winner of an infinite play: parity of the highest priority occurring infinitely often

LEMMA

1. If $win_{\Delta}(G') \neq \emptyset$ then $win_{\Delta}(G') \subseteq win_{\Delta}(G)$

HIGHEST-PRIORITY ATTRACTOR LEMMA

LEMMA

1. If
$$win_{\Delta}(G') \neq \emptyset$$
 then $win_{\Delta}(G') \subseteq win_{\Delta}(G)$

2. If
$$win_{\square}(G') = \emptyset$$
 then $win_{\square}(G) = V$

A DIVIDE-AND-CONQUER ALGORITHM

$$W'_{0} = win_{0}(G')$$

$$G' = G \setminus attr_{0}(H) \qquad attr_{0}(H)$$

A DIVIDE-AND-CONQUER ALGORITHM

$$\frac{\text{Win}(G):}{\underset{!}{\text{if}} \ \text{W}_{\square}^{\perp}, \text{W}_{\Delta}^{\perp}) := \text{Win}(G^{\prime})}{\underset{!}{\text{else}} \ (\text{W}_{\square}, \text{W}_{\Delta}) := (\text{V}_{\square}^{\vee}) \\ \text{else} \ (\text{W}_{\square}^{\parallel}, \text{W}_{\Delta}^{\parallel}) := \text{Win}(G^{\parallel}) \\ (\text{W}_{\square}, \text{W}_{\Delta}) := (\text{W}_{\square}^{\parallel}, \text{attr}_{\Delta}(\text{W}_{\Delta}^{\perp}) \cup \text{W}_{\Delta}^{\parallel}) \\ \text{return}(\text{W}_{\square}, \text{W}_{\Delta})$$

A DIVIDE-AND-CONQUER ALGORITHM

$$\frac{\mathsf{Win}(G):}{\mathsf{if}\;\mathsf{W}_{\square}^{1}\mathsf{W}_{\Delta}^{1}\mathsf{:=}\;\mathsf{W}_{\mathsf{IN}}\left(G^{1}\right)} \\ = \mathsf{if}\;\mathsf{W}_{\Delta}^{1} = \emptyset \quad \underbrace{\mathsf{then}}_{\mathsf{Len}}\left(\mathsf{W}_{\square}^{1}\mathsf{W}_{\Delta}^{1}\mathsf{:=}\left(\mathsf{V}_{\square}^{1}\emptyset\right)\right) \\ = \underbrace{\mathsf{else}}_{\mathsf{C}}\left(\mathsf{W}_{\square}^{1}\mathsf{W}_{\Delta}^{1}\right) := \mathsf{Win}\left(G^{1}\right) \\ \left(\mathsf{W}_{\square}^{1}\mathsf{W}_{\Delta}^{1}\right) := \left(\mathsf{W}_{\square}^{1}, \mathsf{attr}_{\Delta}\left(\mathsf{W}_{\Delta}^{1}\right) \cup \mathsf{W}_{\Delta}^{1}\right) \\ = \mathsf{return}\left(\mathsf{W}_{\square}, \mathsf{W}_{\Delta}\right)$$

POSITIONAL DETERMINACY

THM [Emerson, Jutla; Mostowski 1991]

Parity games are positionally determined (also on infinite graphs)

COROLLARY

(Deciding the winner in) parity games is in NPn co-NP

RUNNING TIME OF THE DIVIDE-AND-CONQUER ALGORITHM

$$T(n) \begin{bmatrix} \underline{\mathsf{Win}(G)} \colon & (\mathsf{W}_{\mathsf{G}_{\mathsf{I}}}^{\mathsf{I}}\mathsf{W}_{\mathsf{A}}^{\mathsf{I}}) \coloneqq \underline{\mathsf{Win}(G^{\mathsf{I}})} \\ \underline{\mathsf{if}} \; \mathsf{W}_{\mathsf{A}}^{\mathsf{I}} = \emptyset & \underline{\mathsf{then}} \; (\mathsf{W}_{\mathsf{B}_{\mathsf{I}}}\mathsf{W}_{\mathsf{A}}) \coloneqq (\mathsf{V}, \emptyset) \\ \underline{\mathsf{else}} \; (\mathsf{W}_{\mathsf{B}_{\mathsf{I}}}^{\mathsf{II}}\mathsf{W}_{\mathsf{A}}^{\mathsf{II}}) \coloneqq \underline{\mathsf{Win}(G^{\mathsf{II}})} \\ (\mathsf{W}_{\mathsf{B}_{\mathsf{I}}}, \mathsf{W}_{\mathsf{A}}) \coloneqq (\mathsf{W}_{\mathsf{B}_{\mathsf{I}}}, \mathsf{W}_{\mathsf{A}}) & \cdots & (\mathsf{W}_{\mathsf{A}_{\mathsf{A}}}^{\mathsf{II}}) \cup \underline{\mathsf{W}}_{\mathsf{A}}^{\mathsf{II}}) \\ \\ return \; (\mathsf{W}_{\mathsf{B}_{\mathsf{I}}}, \mathsf{W}_{\mathsf{A}}) & \cdots & (\mathsf{W}_{\mathsf{B}_{\mathsf{A}}}, \mathsf{W}_{\mathsf{A}}) & \cdots & (\mathsf{W}_{\mathsf{A}_{\mathsf{A}}}^{\mathsf{II}}) & \cdots & \mathsf{W}_{\mathsf{A}_{\mathsf{A}_{\mathsf{A}}}^{\mathsf{II}}} \end{bmatrix}$$

Recurrence:
$$T(n) \leq 2 \cdot T(n-1) + O(n^2)$$

Solution:
$$T(n) = O(2^n)$$

RUNNING TIME OF THE DIVIDE-AND-CONQUER ALGORITHM

The recursion tree	#children	Work per child
T(n,d)	n	n²
$T(n,d-1) \qquad T(n,d-1) \qquad T(n,d-1)$ $\vdots \qquad T(n,d-2) \qquad \vdots$ $\vdots \qquad \vdots \qquad \vdots$ $T(n,d-k)$ $\vdots \qquad \vdots$ $T(n,d-k)$	n² n³ : n*+1 : nd-1	n ² n
	\(\)	d+1

PLAN

I Qualitative (w-regular) games

- 1. Motivating example
- 2. Games on graphs
- 3. Reachability/safety games
- 4. Buchi / co-Büchi games
- 5. Parity games
- 6. w-regular games
- 7. Two recent complexity improvements for parity games

GAMES ON GRAPHS: W-REGULAR OBJECTIVES

· Muller objectives:

 $\mathcal{W}_{\square} = \{(v_0, v_1, v_{2_1}...): \mathbf{Inf}(\overline{v}) \in \mathcal{F}\}$ where $\mathcal{F} \subseteq \mathcal{I}^{\mathsf{V}}$

· Rabin objectives:

 $W_{D} = \left\{ (v_0, v_1, v_{L_1}...) : \text{ for some } j = 0, 1, ..., k-1, \text{ we have} \\ \text{Inf}(\overline{v}) \cap G_j \neq \emptyset \text{ and Inf}(\overline{v}) \cap R_j = \emptyset \right\}$

· Streett objectives

 $\mathcal{W}_{D} = \left\{ (v_{0}, v_{1}, v_{2}, ...) : \text{ for all } j = 0, 1, ..., k-1, \text{ we have}$ $\text{Inf}(\overline{v}) \cap G_{j} \neq \emptyset \text{ implies Inf}(\overline{v}) \cap R_{j} \neq \emptyset \right\}$

where G, R, G, R, ..., G, R, R E

Split tree of a Muller objective

- If $\mathcal{F} = \emptyset$ or $\mathcal{F} = 2^{\mathsf{V}}$ then $\mathcal{F}_{\mathcal{F}} = [\mathsf{V}]$
- if $V_{0}, V_{1}, ..., V_{k-1}$ are all maximal subsets of V, such that V; ∈ F iff V ≠ F

then

SPLIT TREE OF A RABIN OBJECTIVE

Two Rabin pairs: (G, R1), (G2, R2) $\mathcal{F} = \{ U \subseteq V : (U \cap G_1 \neq \emptyset \text{ and } U \cap R_1 = \emptyset) \}$

SPLIT TREE OF A STREETT OBJECTIVE

Two Streett pairs: (G, R,), (G, R)

 $\mathcal{F} = \{ U \subseteq V : (U \cap G_1 \neq \emptyset \text{ implies } U \cap R_1 \neq \emptyset) \}$

$$\mathbf{m}_{\mathbf{f}} = \begin{cases} 1 & \text{if } \mathbf{f} = \emptyset \text{ or } \mathbf{f} = \emptyset \\ \max_{i=0}^{k-1} \left\{ \mathbf{m}_{\mathbf{f}_{i}} \right\} & \text{if } \mathbf{V} \notin \mathbf{f} \\ \sum_{i=0}^{k-1} \mathbf{m}_{\mathbf{f}_{i}} & \text{if } \mathbf{V} \in \mathbf{f} \end{cases}$$

$$Tor \quad S_{\mathfrak{F}} = \begin{bmatrix} V \\ S_{\mathfrak{F}_{0}} \end{bmatrix}$$

$$define: \quad Memory number of a Rabin objective$$

$$S_{\mathfrak{F}} = \begin{bmatrix} V \\ V \\ S_{\mathfrak{F}_{0}} \end{bmatrix}$$

$$define: \quad M_{\mathfrak{F}_{1}} = \begin{bmatrix} V \\ S_{\mathfrak{F}_{0}} \end{bmatrix}$$

$$m_{\mathfrak{F}_{1}} = \begin{bmatrix} V \\ S_{\mathfrak{F}_{0}} \end{bmatrix}$$

$$m_{\mathfrak{F}_{$$

If
$$F \subseteq 2^V$$
 is Rabin then $m_{\mathfrak{F}} = 1$

STRATEGIES WITH MEMORY

- · Positional strategies: $\chi: V_{\square} \longrightarrow V$ • Strategies with memony:

$$\chi: \mathbf{M} \times \mathbf{V}_{\mathbf{D}} \longrightarrow \mathbf{M} \times \mathbf{V}$$
automaton alphabet output

ORACLE LEMMA

LEMMA If
$$U \subseteq win_{\Delta}(G)$$

then $win_{\Delta}(G) = U^* \cup win_{\Delta}(G'')$
 $win_{D}(G) = win_{D}(G'')$

ORACLE LEMMA WITH MEMORY

LEMMA

If μ is winning for Δ from Uis winning for & from wind (G")

then
$$(\mu \cup \alpha \cup \mu'')$$
 is winning for Δ from $(U^* \cup win_{\Delta}(G''))$

$$\left| \text{Memony}(\mu \cup \alpha \cup \mu'') \right| \leqslant \max \left\{ \text{Memony}(\mu), \text{Memony}(\mu'') \right\}$$

MULLER GAMES: VV ATTRACTORS LEMMA

If
$$win_{\Delta}(G_{i}^{!}) = \emptyset$$
 for all $i = 0, 1, ..., k-1$
then $win_{\Box}(G) = V$

MULLER GAMES: VV ATTRACTORS LEMMA

LEMMA

EMMA

If
$$\chi_i$$
 is winning for \square in G_i^l for all $i=0,1,...,k-1$
 $\tau_i = \chi_i \cup \alpha_i \cup \sigma_i$

then $\tau = \tau_o \oplus \tau_1 \oplus \cdots \oplus \tau_{k-1}$ is winning for \square from V
 $|\text{Memory}(\tau)| = \sum_{i=0}^{k-1} |\text{Memory}(\tau_i)| \leqslant \sum_{i=0}^{k-1} m_{\mathfrak{F}_i} = m_{\mathfrak{F}_i}$

A DIVIDE-AND-CONQUER ALGORITHM

$$\frac{\text{Win}(G): \left(W_{0}^{i}, W_{\Delta}^{i}\right) := \text{Win}\left(G_{i}\right) \quad \text{for all } i = 0,1,...,k-1}}{\text{if } W_{\Delta}^{i} = \emptyset \quad \text{for all } i = 0,1,...,k-1}}$$

$$\frac{\text{then}\left(W_{0}, W_{\Delta}\right) := \left(V, \emptyset\right)}{\text{else}\left(W_{0}^{\parallel}, W_{\Delta}^{\perp}\right) := \frac{\text{Win}\left(G_{i}^{\parallel}\right)}{\text{attr}_{\Delta}\left(W_{\Delta}^{i}\right) \cup W_{\Delta}^{\parallel}\right)}}$$

$$\frac{\text{else}\left(W_{0}, W_{\Delta}\right) := \left(W_{0}^{\parallel}, \text{attr}_{\Delta}\left(W_{\Delta}^{i}\right) \cup W_{\Delta}^{\parallel}\right)}{\text{return}\left(W_{0}, W_{\Delta}\right)}$$

A DIVIDE-AND-CONQUER ALGORITHM

$$\frac{\text{Win}(G):}{\text{if } W_{\Delta}^{i}} := \frac{\text{Win}(G_{i})}{\text{for all } i = 0,1,...,k-1}$$

$$\frac{\text{if } W_{\Delta}^{i} = \emptyset \quad \text{for all } i = 0,1,...,k-1}$$

$$\frac{\text{then}(W_{D_{1}}W_{\Delta}^{i}) := (\bigvee, \emptyset)}{\text{else}(W_{D_{1}}^{I}W_{\Delta}^{i}) := \frac{\text{Win}(G_{i}^{I})}{\text{otherwork}} \quad \text{s.t. } W_{\Delta}^{i} \neq \emptyset$$

$$(W_{D_{1}}W_{\Delta}) := (W_{D_{1}}^{I}, \text{attr}_{\Delta}(W_{\Delta}^{i}) \cup W_{\Delta}^{II})$$

$$\text{return}(W_{D_{1}}W_{\Delta})$$

A DIVIDE-AND-CONQUER ALGORITHM

$$attr_{\Delta}(W_{\Delta}^{i})$$

$$G_{i}^{"} = G \setminus attr_{\Delta}(W_{\Delta}^{i})$$

$$W_{\Delta}^{i} = win_{\Delta}(G_{i})$$

$$\frac{\mathsf{Win}(G): \left(\mathsf{W}_{\mathbf{0}}^{i}, \mathsf{W}_{\mathbf{A}}^{i}\right) := \mathsf{Win}\left(G_{i}\right) \quad \text{for all } i = 0,1,...,k-1}}{\mathsf{if} \; \mathsf{W}_{\Delta}^{i} = \emptyset \quad \text{for all } i = 0,1,...,k-1}} \\ \mathsf{then} \; \left(\mathsf{W}_{\mathbf{0}}, \mathsf{W}_{\Delta}\right) := \left(\mathsf{V}, \emptyset\right) \\ \mathsf{else} \; \left(\mathsf{W}_{\mathbf{0}}^{i}, \mathsf{W}_{\Delta}^{i}\right) := \mathsf{Win}\left(G_{i}^{i}\right) \quad \text{s.t.} \; \mathsf{W}_{\Delta}^{i} \neq \emptyset \\ \left(\mathsf{W}_{\mathbf{0}}, \mathsf{W}_{\Delta}\right) := \left(\mathsf{W}_{\mathbf{0}}^{i}, \mathsf{attr}_{\Delta}\left(\mathsf{W}_{\Delta}^{i}\right) \cup \mathsf{W}_{\Delta}^{i}\right) \\ \mathsf{return}\left(\mathsf{W}_{\mathbf{0}}, \mathsf{W}_{\Delta}\right)$$

FORGETFUL DETERMINACY OF W-REGULAR GAMES

THM [Gurevich, Harrington 1982; Zielonka 1998]

Muller games are forgetfully determined:

- □ has a winning strategy with memory m_∓
- ullet Δ has a winning strategy with memory $m_{\overline{\phi}}$

COROLLARY [Klanhund 1991]

Player | has a positional winning strategy in Rabin games

PLAN

[Qualitative (w-regular) games

- 1. Motivating example
- 2. Games on graphs
- 3 Reachability/safety games
- 4. Büchi / co-Büchi games
- 5. Parity games
- 6. w-regular games
- 7. Two recent complexity improvements for parity games

TWO RECENT IMPROVEMENTS

Many priorities
$$d = \Omega\left(n^{\frac{1}{2}+\epsilon}\right)$$
Few priorities
$$d = O(n^{1/2})$$
Randomized beterministic

Expected
$$O(\sqrt{n})$$

$$n$$
old
old
old
$$O(n^{d/2})$$
old
$$new$$

TWO RECENT IMPROVEMENTS

Many priorities $d = \Omega(n^{\frac{1}{2} + \epsilon})$

thata = iviatio

Expected O(In)

Randomized

old

Few priorities $d = O(n^{1/2})$

n

O(\sqrt{n})

O($n^{d/2}$)

O($n^{d/3}$)

old

new

Dominions

DEF D∈V is an dominion for ∆ if

△ has a trapping strategy in D

that is winning for her

FACT $win_{\Delta}(G')$ is a dominion for Δ in G

<u>FACT</u> A dominion of size $\leq l$ can be found in $n^{O(e)}$ time

A SUBEXPONENTIAL ALGORITHM

Recurrence: $T(n) \leq n^{O(\ell)} + T(n-1) + T(n-\ell)$

Solution: $T(n) = n^{O(\sqrt{n})}$ if $\ell = \sqrt{n}$

TWO RECENT IMPROVEMENTS

Many priorities
$$d = \Omega\left(n^{\frac{1}{2} + \epsilon}\right)$$
Few priorities
$$d = O(n^{\frac{1}{2}})$$
Randonized beterministic
$$\text{Expected}$$

$$O(\sqrt{n})$$

$$N$$
old
$$\text{old}$$

$$\text{new}$$

A SUFFICIENT CONDITION FOR WINNING PLAYS

 v_1, v_2, v_3, \dots is winning for \square

A SUFFICIENT CONDITION FOR WINNING PLAYS

$$\begin{array}{c}
\overset{\mathbf{v}_{1}}{1} \longrightarrow \overset{\mathbf{v}_{2}}{2} \longrightarrow \overset{\mathbf{v}_{3}}{3} \longrightarrow \overset{\mathbf{v}_{3}}{2} \longrightarrow \overset{\mathbf{v}_{5}}{1} \longrightarrow \overset{\mathbf{v}_{5}}{1} \longrightarrow \overset{\mathbf{v}_{5}}{2} \longrightarrow \overset{\mathbf{v}_{5}}{3} \longrightarrow \overset{\mathbf{v}_{2}}{4} \cdots \\
\begin{pmatrix} \mu_{3} \\ \mu_{1} \end{pmatrix} : \begin{pmatrix} 2 \\ 1 \end{pmatrix} > \overset{\mathbf{v}_{c}}{(2)} > \overset{\mathbf{v}_{c}}{(2)} > \overset{\mathbf{v}_{c}}{(1)} > \overset{\mathbf{v}_{c}}{(1)} > \overset{\mathbf{v}_{c}}{(1)} > \overset{\mathbf{v}_{c}}{(1)} > \overset{\mathbf{v}_{c}}{(1)} \\
\end{pmatrix} > \overset{\mathbf{v}_{c}}{(1)} > \overset{\mathbf{$$

v₁, v₂, v₃,... is winning for □ if there are $\mu_1, \mu_3, ..., \mu_{d-1}: V \rightarrow \mathbb{N}$, s.t.

$$\begin{pmatrix} \mu_{d-1} \\ \vdots \\ \mu_{p(v_i)} \end{pmatrix} (v_i) \geqslant^{\text{lax}} \begin{pmatrix} \mu_{d-1} \\ \vdots \\ \mu_{p(v_i)} \end{pmatrix} (v_{i+1})$$

$$\geqslant^{\text{lax}} \text{ if } p(v_i)$$
is odd!

CHARACTERIZING EXISTENCE OF WINNING PLAYS

LEMMA

There is a winning play (from every vertex) for \Box there are $\mu_1, \mu_3, ..., \mu_{d-1}: V \rightarrow \mathbb{N}$, s.t.

$$\begin{pmatrix} \mu_{d-1} \\ \vdots \\ \mu_{p(v_i)} \end{pmatrix} (v) \geqslant_{\text{lax}} \min_{(\mathbf{v}, \mathbf{w}) \in E} \begin{pmatrix} \mu_{d-1} \\ \vdots \\ \mu_{p(v_i)} \end{pmatrix} (w)$$

CHARACTERIZING UNIVERSALITY OF WINNING PLAYS

All plays (from every vertex) are winning for a if there are $\mu_1, \mu_2, ..., \mu_{d-1}: V \rightarrow \mathbb{N}$, s.t.

$$\begin{pmatrix} \begin{pmatrix} \mu_{d-1} \\ \vdots \\ \mu_{p(v_i)} \end{pmatrix} (v) \geqslant_{\text{lax}} \max \begin{pmatrix} \begin{pmatrix} \mu_{d-1} \\ \vdots \\ \mu_{p(v_i)} \end{pmatrix} (w)$$

CHARACTERIZING EXISTENCE OF WINNING STRATEGIES

THEOREM

There is a winning strategy for (from every vertex) there are $\mu_1, \mu_3, ..., \mu_{d-1}: V \rightarrow \mathbb{N}$, s.t.

•
$$\begin{pmatrix} \begin{pmatrix} \mu_{d-1} \\ \vdots \\ \mu_{p(v_l)} \end{pmatrix} (v) \geqslant_{\text{lax}} \max \begin{pmatrix} \mu_{d-1} \\ \vdots \\ \mu_{p(v_l)} \end{pmatrix} (w) \qquad \Rightarrow_{\text{lax}} \inf_{\substack{v \in V_{\Delta} \\ v \in \text{odd}}} f(v) \qquad \text{for } v \in V_{\Delta}$$

SMALL PROGRESS MEASURES

THEOREM
There is a winning strategy for (from every vertex) there are $\mu_1, \mu_2, ..., \mu_{d-1}: V \rightarrow \mathbb{N}$, s.t.

and
$$M_k: V \rightarrow \{0,1,2,...,n_k\}$$
 where $n_k = |p^{-1}(k)|$

SMALL PROGRESS MEASURES

LEMMA

The number of tuples $\binom{\mu_{d-1}}{\vdots} \in \mathbb{N}^{d/2}$ s.t. $\mu_k \in \{0, 1, 2, ..., n_k\}$ where $n_k = \lfloor p^{-1} \rfloor$ is $\left \leq \left(\frac{n}{d/2} \right)^{d/2} \right$

PROGRESS MEASURE LIFTING ALGORITHM

- 1. Start with $\mu: \bigvee \ni v \mapsto (0,0,...,0)$
- 2. While μ violates the progress inequality at some $v \in V$, lift $\mu(v)$ (minimally) so that it doesn't

Running time: $\leqslant n \cdot \left(\frac{n}{d/2}\right)^{d/2}$

SMALLER PROGRESS MEASURES FOR DOMINIONS

THM If $D \subseteq V$ is a dominion of size $\leq \ell$, then there is a progress measure $\mu: V \to M_G^{\infty}(\ell)$, s.t. $\mu(D) \subseteq M_G(\ell)$, where $M_G(\ell) = \left\{ \mu \in \mathbb{N}^{d/2} : \sum_{k=1}^{d} \mu_k \leqslant \ell \right\}$

Cor

- 1. All dominions of size $\leq \ell$ can be found in time $\binom{\ell+\frac{d}{2}}{\frac{d}{2}}$
- 2. All dominions of size $\leq n^{2/3}$ can be found in time $n^{d/3}$

THE RECURSION TREE FOR SCHEWE'S ALGORITHM

COMPUTATIONAL COMPLEXITY OF SOLVING INFINITE GAMES

