20104016

DEENA

Importing Libraries

In [1]: import numpy as np
import pandas as pd
import seaborn as sns

Importing Datasets

In [2]: df=pd.read_csv("madrid_2016.csv")

Out[2]:

	date	BEN	со	EBE	имнс	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL
0	2016-11-01 01:00:00	NaN	0.7	NaN	NaN	153.0	77.0	NaN	NaN	NaN	7.0	NaN	NaN
1	2016-11-01 01:00:00	3.1	1.1	2.0	0.53	260.0	144.0	4.0	46.0	24.0	18.0	2.44	14.4
2	2016-11-01 01:00:00	5.9	NaN	7.5	NaN	297.0	139.0	NaN	NaN	NaN	NaN	NaN	26.0
3	2016-11-01 01:00:00	NaN	1.0	NaN	NaN	154.0	113.0	2.0	NaN	NaN	NaN	NaN	NaN
4	2016-11-01 01:00:00	NaN	NaN	NaN	NaN	275.0	127.0	2.0	NaN	NaN	18.0	NaN	NaN
209491	2016-07-01 00:00:00	NaN	0.2	NaN	NaN	2.0	29.0	73.0	NaN	NaN	NaN	NaN	NaN
209492	2016-07-01 00:00:00	NaN	0.3	NaN	NaN	1.0	29.0	NaN	36.0	NaN	5.0	NaN	NaN
209493	2016-07-01 00:00:00	NaN	NaN	NaN	NaN	1.0	19.0	71.0	NaN	NaN	NaN	NaN	NaN
209494	2016-07-01 00:00:00	NaN	NaN	NaN	NaN	6.0	17.0	85.0	NaN	NaN	NaN	NaN	NaN
209495	2016-07-01 00:00:00	NaN	NaN	NaN	NaN	2.0	46.0	61.0	34.0	NaN	NaN	NaN	NaN

209496 rows × 14 columns

Data Cleaning and Data Preprocessing

```
Out[4]: Index(['date', 'BEN', 'CO', 'EBE', 'NMHC', 'NO', 'NO_2', 'O_3', 'PM10', 'PM25
                              'SO_2', 'TCH', 'TOL', 'station'],
                            dtype='object')
In [5]:
                <class 'pandas.core.frame.DataFrame'>
                Int64Index: 16932 entries, 1 to 209478
                Data columns (total 14 columns):
                         Column Non-Null Count Dtype
                 --- ----- ------ -----
                 0 date 16932 non-null object
1 BEN 16932 non-null float64
2 CO 16932 non-null float64
3 EBE 16932 non-null float64
4 NMHC 16932 non-null float64
5 NO 16932 non-null float64
6 NO_2 16932 non-null float64
7 O_3 16932 non-null float64
7 O_3 16932 non-null float64
8 PM10 16932 non-null float64
9 PM25 16932 non-null float64
10 SO_2 16932 non-null float64
11 TCH 16932 non-null float64
11 TCH 16932 non-null float64
12 TOL 16932 non-null float64
13 station 16932 non-null int64
                  13 station 16932 non-null int64
                dtypes: float64(12), int64(1), object(1)
```

memory usage: 1.9+ MB

```
In [6]: data=df[['CO' ,'station']]
```

Out[6]:

	СО	station
1	1.1	28079008
6	0.8	28079024
25	1.0	28079008
30	0.7	28079024
49	8.0	28079008
209430	0.2	28079024
209449	0.4	28079008
209454	0.2	28079024
209473	0.4	28079008
209478	0.2	28079024

16932 rows × 2 columns

Line chart

Out[7]: array([<AxesSubplot:>, <AxesSubplot:>], dtype=object)

Line chart

Out[8]: <AxesSubplot:>

Bar chart

Histogram

Area chart

Out[12]: <AxesSubplot:>

Box chart

station

Pie chart

Out[14]: <AxesSubplot:ylabel='station'>

Scatter chart

7 of 19

```
In [15]: (160)
```

Out[15]: <AxesSubplot:xlabel='CO', ylabel='station'>

In [16]:

<class 'pandas.core.frame.DataFrame'>
Int64Index: 16932 entries, 1 to 209478
Data columns (total 14 columns):

#	Column	Non-Nu	ıll Count	Dtype
0	date	16932	non-null	object
1	BEN	16932	non-null	float64
2	CO	16932	non-null	float64
3	EBE	16932	non-null	float64
4	NMHC	16932	non-null	float64
5	NO	16932	non-null	float64
6	NO_2	16932	non-null	float64
7	0_3	16932	non-null	float64
8	PM10	16932	non-null	float64
9	PM25	16932	non-null	float64
10	S0_2	16932	non-null	float64
11	TCH	16932	non-null	float64
12	TOL	16932	non-null	float64
13	station	16932	non-null	int64
44	C1+	(1/12)	+ (1/1)	-1

_		BEN	CO	EBE	NMHC	NO	NO_2	
	count	16932.000000	16932.000000	16932.000000	16932.000000	16932.000000	16932.000000	16
	mean	0.537970	0.349941	0.298955	0.099913	20.815734	39.373376	
	std	0.599479	0.203807	0.450204	0.079850	40.986063	31.170307	
	min	0.100000	0.100000	0.100000	0.000000	1.000000	1.000000	
	25%	0.200000	0.200000	0.100000	0.050000	1.000000	14.000000	
	50%	0.400000	0.300000	0.200000	0.090000	7.000000	34.000000	
	75%	0.700000	0.400000	0.300000	0.120000	23.000000	58.000000	
	max	12.300000	4.500000	13.500000	2.210000	829.000000	319.000000	1

EDA AND VISUALIZATION

In [19]:

Out[19]: <seaborn.axisgrid.PairGrid at 0x1ac855aaac0>


```
In [20]:
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[20]: <AxesSubplot:xlabel='station', ylabel='Density'>

In [21]:

Out[21]: <AxesSubplot:>

TO TRAIN THE MODEL AND MODEL BULDING

11 of 19 03-08-2023, 11:55

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)

Linear Regression

```
In [24]: from sklearn.linear_model import LinearRegression
          lr=LinearRegression()
Out[24]: LinearRegression()
In [25]:
         lr.intercept_
Out[25]: 28079040.16666302
In [26]:
          coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
Out[26]:
                 Co-efficient
            BEN
                    1.317056
             CO
                   6.426048
            EBE
                   0.511071
           NMHC
                   6.174209
           NO_2
                   -0.069588
            0_3
                   -0.028794
           PM10
                   0.022648
           SO_2
                   -0.839052
            TCH
                  -13.088157
            TOL
                   0.212470
```

```
In [27]: prediction =lr.predict(x_test)
```

Out[27]: <matplotlib.collections.PathCollection at 0x1ac8eacff40>

ACCURACY

```
In [28]:
Out[28]: 0.7977550894516356
Out[29]: 0.7932129126373898
    Ridge and Lasso
In [30]:
In [31]: rr=Ridge(alpha=10)
Out[31]: Ridge(alpha=10)
    Accuracy(Ridge)
In [32]:
Out[32]: 0.7979040290991042
In [33]:
Out[33]: 0.7929894292760988
In [34]: la=Lasso(alpha=10)
Out[34]: Lasso(alpha=10)
In [35]:
Out[35]: 0.6185114894305468
    Accuracy(Lasso)
In [36]:
Out[36]: 0.6236707279152129
In [37]: from sklearn.linear_model import ElasticNet
    en=ElasticNet()
    en.fit(x_train,y_train)
Out[37]: ElasticNet()
```

Evaluation Metrics

```
In [42]: from sklearn import metrics
print(metrics.mean_absolute_error(y_test,prediction))
print(metrics.mean_squared_error(y_test,prediction))
3.494153625629549
20.29530052319224
4.505030579606784
```

Logistic Regression

```
In [50]: [50]
In [51]:
      prediction=logr.predict(observation)
      [28079008]
In [52]:
Out[52]: array([28079008, 28079024], dtype=int64)
In [53]:
Out[53]: 0.9923812898653437
In [54]:
Out[54]: 1.0
In [55]:
Out[55]: array([[1.0000000e+00, 1.6336121e-46]])
      Random Forest
                    In [56]:
In [57]: rfc=RandomForestClassifier()
Out[57]: RandomForestClassifier()
In [58]: parameters={'max_depth':[1,2,3,4,5],
               'min_samples_leaf':[5,10,15,20,25],
              'n_estimators':[10,20,30,40,50]
In [59]: from sklearn.model_selection import GridSearchCV
      grid_search =GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="ac
Out[59]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                param_grid={'max_depth': [1, 2, 3, 4, 5],
                        'min_samples_leaf': [5, 10, 15, 20, 25],
                        'n_estimators': [10, 20, 30, 40, 50]},
                scoring='accuracy')
In [60]:
Out[60]: 0.9946000674991562
In [61]:
```

```
In [62]: from sklearn.tree import plot_tree
         plt.figure(figsize=(80,40))
Out[62]: [Text(2071.0384615384614, 1993.2, 'SO_2 <= 4.5\ngini = 0.5\nsamples = 7554\nv</pre>
         alue = [5975, 5877] \setminus (100)
          Text(1030.1538461538462, 1630.8000000000002, 'TCH <= 1.455\ngini = 0.079\nsa
         mples = 3780\nvalue = [244, 5683]\nclass = b'),
          Text(472.15384615384613, 1268.4, 'TCH <= 1.415\ngini = 0.009\nsamples = 355
         8\nvalue = [25, 5541]\nclass = b'),
          Text(257.53846153846155, 906.0, 'PM10 <= 10.5\ngini = 0.001\nsamples = 3508\
         nvalue = [4, 5487] \setminus nclass = b'),
          Text(171.69230769230768, 543.599999999999, '0_3 <= 61.5\ngini = 0.003\nsamp
         les = 1480\nvalue = [4, 2292]\nclass = b'),
          Text(85.84615384615384, 181.199999999999, 'gini = 0.0\nsamples = 793\nvalu
         e = [0, 1187]\nclass = b'),
          Text(257.53846153846155, 181.19999999999982, 'gini = 0.007\nsamples = 687\nv
         alue = [4, 1105] \setminus class = b'),
          Text(343.38461538461536, 543.599999999999, 'gini = 0.0\nsamples = 2028\nval
         ue = [0, 3195] \setminus class = b'),
          Text(686.7692307692307, 906.0, 'TOL <= 0.75\ngini = 0.403\nsamples = 50\nval
         ue = [21, 54] \setminus ass = b'),
          Text(515.0769230769231, 543.599999999999, 'NMHC <= 0.075\ngini = 0.36\nsamp
         les = 10\nvalue = [13, 4]\nclass = a'),
          Text(429.23076923076917, 181.19999999999982, 'gini = 0.494\nsamples = 5\nval
         ue = [5, 4] \setminus ass = a'),
          Text(600.9230769230769, 181.1999999999982, 'gini = 0.0\nsamples = 5\nvalue
         = [8, 0] \setminus ass = a'),
          Text(858.4615384615383, 543.599999999999, 'BEN <= 0.35\ngini = 0.238\nsampl
         es = 40\nvalue = [8, 50]\nclass = b'),
          Text(772.6153846153845, 181.199999999999, 'gini = 0.444\nsamples = 9\nvalu
         e = [5, 10] \setminus class = b'),
          Text(944.3076923076923, 181.1999999999982, 'gini = 0.13\nsamples = 31\nvalu
         e = [3, 40] \setminus class = b'),
          Text(1588.153846153846, 1268.4, 'TOL <= 2.05\ngini = 0.477\nsamples = 222\nv
         alue = [219, 142] \setminus (ass = a'),
          Text(1373.5384615384614, 906.0, '0_3 <= 19.5\ngini = 0.266\nsamples = 113\nv
         alue = [160, 30] \setminus class = a'),
          ples = 18\nvalue = [15, 14]\nclass = a'),
          Text(1116.0, 181.199999999999, 'gini = 0.0\nsamples = 6\nvalue = [0, 12]\n
         class = b'),
          Text(1287.6923076923076, 181.1999999999982, 'gini = 0.208\nsamples = 12\nva
         lue = [15, 2] \setminus ass = a',
          Text(1545.230769230769, 543.599999999999, 'SO_2 <= 2.5\ngini = 0.179\nsampl
         es = 95\nvalue = [145, 16]\nclass = a'),
          Text(1459.3846153846152, 181.199999999999, 'gini = 0.487\nsamples = 17\nva
         lue = [18, 13] \setminus ass = a'),
          Text(1631.0769230769229, 181.1999999999982, 'gini = 0.045\nsamples = 78\nva
         lue = [127, 3] \setminus ass = a'),
          Text(1802.7692307692307, 906.0, 'PM10 <= 14.5\ngini = 0.452\nsamples = 109\n
         value = [59, 112]\nclass = b'),
          Text(1716.9230769230767, 543.599999999999, 'gini = 0.0\nsamples = 13\nvalue
         = [22, 0] \setminus (ass = a'),
          Text(1888.6153846153845, 543.599999999999, '0_3 <= 4.5\ngini = 0.373\nsampl
         es = 96\nvalue = [37, 112]\nclass = b'),
```

```
Text(1802.7692307692307, 181.1999999999982, 'gini = 0.0\nsamples = 25\nvalu
e = [0, 36] \setminus class = b'),
Text(1974.4615384615383, 181.1999999999982, 'gini = 0.44\nsamples = 71\nval
ue = [37, 76] \setminus nclass = b'),
Text(3111.9230769230767, 1630.8000000000000, 'PM10 <= 24.5\ngini = 0.063\nsa
mples = 3774\nvalue = [5731, 194]\nclass = a'),
 Text(2446.6153846153843, 1268.4, '0_3 <= 4.5\ngini = 0.014\nsamples = 2530\n
value = [3944, 29] \setminus class = a'),
Text(2146.153846153846, 906.0, 'BEN <= 0.75\ngini = 0.271\nsamples = 46\nval
ue = [57, 11] \setminus nclass = a'),
Text(2060.3076923076924, 543.599999999999, 'gini = 0.48\nsamples = 9\nvalue
= [4, 6] \setminus (ass = b'),
Text(2232.0, 543.59999999999, 'NO_2 <= 52.0\ngini = 0.158\nsamples = 37\nv
alue = [53, 5] \setminus ass = a'
Text(2146.153846153846, 181.199999999999, 'gini = 0.278\nsamples = 5\nvalu
e = [1, 5] \setminus ass = b'),
Text(2317.846153846154, 181.199999999999, 'gini = 0.0\nsamples = 32\nvalue
= [52, 0] \setminus ass = a'),
Text(2747.076923076923, 906.0, 'CO <= 0.65\ngini = 0.009\nsamples = 2484\nva
lue = [3887, 18] \setminus class = a'),
Text(2575.3846153846152, 543.599999999999, 'SO_2 <= 5.5\ngini = 0.003\nsamp
les = 2445\nvalue = [3839, 6]\nclass = a'),
Text(2489.5384615384614, 181.199999999999982, 'gini = 0.029\nsamples = 251\nv
alue = [397, 6] \setminus ass = a'),
Text(2661.230769230769, 181.1999999999982, 'gini = 0.0\nsamples = 2194\nval
ue = [3442, 0] \setminus ass = a'),
Text(2918.7692307692305, 543.599999999999, 'EBE <= 0.3\ngini = 0.32\nsample
s = 39 \cdot nvalue = [48, 12] \cdot nclass = a'),
Text(2832.9230769230767, 181.1999999999982, 'gini = 0.0\nsamples = 8\nvalue
= [0, 11] \setminus class = b'),
Text(3004.6153846153843, 181.199999999999, 'gini = 0.04\nsamples = 31\nval
ue = [48, 1] \setminus class = a'),
Text(3777.230769230769, 1268.4, 'CO <= 0.65\ngini = 0.155\nsamples = 1244\nv
alue = [1787, 165]\nclass = a'),
Text(3433.8461538461534, 906.0, 'TCH <= 1.355\ngini = 0.048\nsamples = 924\n
value = [1398, 35]\nclass = a'),
Text(3262.1538461538457, 543.599999999999, '0_3 <= 28.0\ngini = 0.227\nsamp
les = 15\nvalue = [3, 20]\nclass = b'),
Text(3176.307692307692, 181.1999999999982, 'gini = 0.0\nsamples = 10\nvalue
= [0, 18] \setminus class = b'),
Text(3347.99999999995, 181.199999999982, 'gini = 0.48\nsamples = 5\nvalu
e = [3, 2] \setminus ass = a'),
Text(3605.5384615384614, 543.599999999999, '0_3 <= 3.5\ngini = 0.021\nsampl
es = 909\nvalue = [1395, 15]\nclass = a'),
Text(3519.6923076923076, 181.19999999999982, 'gini = 0.476\nsamples = 13\nva
lue = [14, 9] \setminus ass = a'),
Text(3691.3846153846152, 181.199999999999982, 'gini = 0.009 \nsamples = 896 \nv
alue = [1381, 6] \setminus ass = a',
Text(4120.615384615385, 906.0, 'SO_2 <= 7.5\ngini = 0.375\nsamples = 320\nva
lue = [389, 130] \setminus nclass = a'),
 Text(3948.9230769230767, 543.599999999999, 'NMHC <= 0.185\ngini = 0.199\nsa
mples = 81\nvalue = [16, 127]\nclass = b'),
Text(3863.076923076923, 181.19999999999982, 'gini = 0.0\nsamples = 64\nvalue
= [0, 113]\nclass = b'),
Text(4034.7692307692305, 181.1999999999982, 'gini = 0.498\nsamples = 17\nva
lue = [16, 14] \setminus nclass = a'),
```

```
Text(4292.307692307692, 543.599999999999, 'EBE <= 0.65\ngini = 0.016\nsampl
es = 239\nvalue = [373, 3]\nclass = a'),
  Text(4206.461538461538, 181.1999999999982, 'gini = 0.291\nsamples = 11\nval
ue = [14, 3]\nclass = a'),
  Text(4378.153846153846, 181.199999999999, 'gini = 0.0\nsamples = 228\nvalu
e = [359, 0]\nclass = a')]</pre>
```


Conclusion

Accuracy

Linear Regression :0.7932129126373898

Ridge Regression :0.6185114894305468

Lasso Regression :0.6236707279152129

ElasticNet Regression: 0.6828599253726944

Logistic Regression : 0.9923812898653437

Random Forest :0.9946000674991562

Random Forest is suitable for this dataset

19 of 19