Probability theory II Facts

Taeyoung Chang

Textbook : Rick Durrett \ulcorner Probability : Theory and Examples \lrcorner 5th edition

Last Update : September 23, 2021

Contents

1 Conditional Expectation

 $\mathbf{2}$

1 Conditional Expectation

- Projection Thm for Hilbert Space
 - If E is a Hilbert space and $M \subset E$ is closed and convex, then for any $y \in E$, \exists a unique $w \in M$ s.t. $||y w|| = d(y, M) := \inf\{||y v|| : v \in M\}$. Denote it as $w = proj_M y$ i.e. w is a projection of y onto M.
 - If E is a Hilbert space and $M \subset E$ is a closed vector subspace, then for any $y \in E$,
 - i. \exists a unique decomposition y = w + v with $w = proj_M y \in M$ and $v \in M^{\perp}$
 - ii. For $w \in M$, $w = proj_M y \Leftrightarrow \langle y w, z \rangle = 0 \quad \forall z \in M$
- * $\mathcal{L}^2 := \{ \text{ Random Variable } X : E(X^2) = \int X^2 dP < \infty \}$
- $\sqrt{\text{ If } X \in \mathcal{L}^2 \text{ then } E|X|} < \infty$ i.e. every element of \mathcal{L}^2 is integrable.
 - \bigstar Trick : $|X| \leq X^2 + \frac{1}{4}$
- $\sqrt{\mathcal{L}^2}$ is a vector space
 - ★ Trick: inequality $(aX + bY)^2 \le 2(a^2X^2 + b^2Y^2)$
- \mathcal{L}^2 is a Hilbert space with inner product $\langle X, Y \rangle = E(XY)$
 - ★ Trick: Cauchy seq. having a subseq. converging to a point converges to the point.
- Lemma for proving \mathcal{L}^2 is a complete normed space.
 - If $\{X_n\} \subset_{seq} \mathcal{L}^2$ and $||X_n X_{n+1}|| \leq 2^{-n} \quad \forall n \in \mathbb{N} \text{ then } \exists X \in \mathcal{L}^2 \text{ s.t. } X_n \to X \quad a.s. \text{ and } ||X_n X|| \to 0 \text{ i.e. } X_n \to X \text{ in } \mathcal{L}^2.$
 - \bigstar Lemma: If a random variable Z satisfies $Z \geq 0$ and $E(Z) < \infty$ then $Z < \infty$ a.s.
- * For $X \in \mathcal{L}^2$, $\mathcal{L}^2(X) := \{g(X) \mid g : \mathbb{R} \to \mathbb{R} \text{ is a Borel function, } E[(g(X))^2] < \infty\}$
- $\sqrt{\text{ For } X \in \mathcal{L}^2}$, $\mathcal{L}^2(X)$ is a vector subspace of \mathcal{L}^2 .
- For $X \in \mathcal{L}^2$, $\mathcal{L}^2(X)$ is a closed vector subspace of \mathcal{L}^2 so that $\mathcal{L}^2(X)$ is also a Hilbert space.
- * Geometric definition for conditional expectation
 - For $X, Y \in \mathcal{L}^2$, define $E[Y|X] = Proj_{\mathcal{L}^2(X)}Y$
 - $-E[Y|X] = g(X) \ a.s.$ for some Borel function g
 - $||Y E[Y|X]|| = \min_{h(X) \in \mathcal{L}^2(X)} ||Y h(X)||$ i.e. $E[(Y - E[Y|X])^2] \le E[(Y - h(X))^2] \quad \forall \ h(X) \in \mathcal{L}^2$
 - For $g(X) \in \mathcal{L}^2(X)$, $g(X) = E[Y|X] \Leftrightarrow \langle Y g(X), h(X) \rangle = 0 \quad \forall \ h(X) \in \mathcal{L}^2$ $\Leftrightarrow E[(Y - g(X))h(X)] = 0 \quad \forall \ h(X) \in \mathcal{L}^2$
- Elementary properties of conditional expectation from geometric definition
 - If $X, Y, Z \in \mathcal{L}^2$ then the followings are true.
 - i. $E[c|X] = c \ a.s. \quad \forall \ c \in \mathbb{R}$
 - ii. $E[\alpha Y + \beta Z | X] = \alpha E[Y | X] + \beta E[Z | X] \quad \forall \alpha, \beta \in \mathbb{R}$
 - iii. E[Y|X] = E[Y] if X and Y are independent.

- iv. E[g(X)Y|X] = g(X)E[Y|X] if g satisfies $g(X) \in \mathcal{L}^2(X)$ and $\sup_x |g(x)| < \infty$
- v. E[E[Y|X]] = E[Y]
- $\sqrt{\ }$ In fact, the additional assumption about boundedness of g in (iv) is not necessary. We will see later.
- Extending the definition from \mathcal{L}^2 to all integrable functions

$$E[\{Y - E[Y|X]\}I(X \in A)] = 0 \quad \forall A \in \mathcal{B}(\mathbb{R}) \quad \because I(X \in A) \in \mathcal{L}^{2}(X)$$

$$\int_{(X \in A)} Y \, dP = \int_{(X \in A)} E[Y|X] \, dP \quad \forall A \in \mathcal{B}(\mathbb{R})$$

$$\int_{B} Y \, dP = \int_{B} E[Y|X] \, dP \quad \forall B \in \sigma(X)$$

- $-E[Y|X] \in \sigma(X)$ and $\int_B Y \, dP = \int_B E[Y|X] \, dP \quad \forall \ B \in \sigma(X)$. Such r.v. is unique in the sense that if any r.v. Z satisfies $Z \in \sigma(X)$ and $\int_B Y \, dP = \int_B Z \, dP \quad \forall \ B \in \sigma(X)$ then $Z = E[Y|X] \ a.s.$ provided $E[Y] < \infty$
- From the theory on \mathcal{L}^2 space, we get geometric understanding about conditional expectation. But now, from the equation above, we can guess that definition for conditional expectation may be extended to all integrable random variables.
- Proof for the uniqueness mentioned above
 - $-(\Omega, \mathcal{F}, P)$: a prob. space. $Y \in \mathcal{F}$ and $E|Y| < \infty$. $\mathcal{G} \subset \mathcal{F}$ is a sub σ -field. If X is a random variable satisfying (a) $X \in \mathcal{G}$ (b) $\int_A Y dP = \int_A X dP \quad \forall A \in \mathcal{G}$ then
 - i. X is integrable
 - ii. Such X is unique in the sense that if there is another X' then X = X' a.s.
 - ★ Trick: For any r.v. Z, $(Z > 0) = \bigcup_{\varepsilon > 0} (Z \ge \varepsilon) = \bigcup_{n \in \mathbb{N}} (Z > \frac{1}{n})$
 - ★ Lemma : For any \mathcal{F} -measurable and integrable X and Y, if $\int_A X dP = \int_A Y dP \quad \forall A \in \mathcal{F}$ then X = Y a.s.
- Radon-Nikodym Thm
 - If μ, ν are σ -finite measures on (Ω, \mathcal{F}) and $\nu \ll \mu$ ($\mu(A) = 0 \Rightarrow \nu(A) = 0 \quad \forall A \in \mathcal{F}$) then \exists a \mathcal{F} -measurable nonnegative function g s.t. $\nu(A) = \int_A g \, d\mu \quad \forall A \in \mathcal{F}$. The function g is unique in the sense that if h is another such function then $g = h \ \mu a.e.$
- * Definition of conditional expectation
 - $-(\Omega, \mathcal{F}_0, P)$: a prob. space. $\mathcal{F} \subset \mathcal{F}_0$: a sub σ -field. X is a random variable s.t. $X \geq 0, X \in \mathcal{F}_0$ and $E|X| < \infty$. Then \exists a unique r.v. Y s.t. $Y \geq 0, Y \in \mathcal{F}$ and $\int_A X \, dP = \int_A Y \, dP \quad \forall A \in \mathcal{F}$. Such Y is unique in the sense that if another Y' exists then Y = Y' a.s.
 - $-Y = E[X|\mathcal{F}]$ is said to be conditional expectation of X given \mathcal{F}
 - ★ Applying Radon Nikodym thm to measures $P|_{\mathcal{F}}$ and Q on (Ω, \mathcal{F}) where Q is defined by $Q(A) = \int_A X dP \quad \forall A \in \mathcal{F}$. Note that $Q \ll P|_{\mathcal{F}}$ and Q is a finite measure.
 - We can extend the definition to general integrable r.v. X $Y = E[X|\mathcal{F}]$ is a unique random variable s.t. $Y \in \mathcal{F}$ and $\int_A X dP = \int_A Y dP \quad \forall A \in \mathcal{F}$. $E[X|\mathcal{F}]$ is also integrable and the uniqueness is in the sense of a.s. equivalence relation. $Y = E[X|\mathcal{F}]$ can be derived by $Y = Y_1 Y_2$ where $Y_1 = E[X^+|\mathcal{F}]$ and $Y_2 = E[X^-|\mathcal{F}]$

- * Conditional expectation given a random variable
 - -X: integrable r.v. For a random variable Y, define $E[X|Y] := E[X|\sigma(Y)]$
 - \sqrt{Y} need not be integrable.
 - $\sqrt{\text{Since } E[X|Y] \in \sigma(Y), E[X|Y] = g(Y)}$ for some Borel function g. This coincides with the definition of conditional expectation in \mathcal{L}^2 space.
- * Conditional probability
 - For $A \in \mathcal{F}_0$ and a sub σ -field $\mathcal{F} \subset \mathcal{F}_0$, define $P(A|\mathcal{F}) := E[I_A|\mathcal{F}]$
 - For $A, B \in \mathcal{F}_0$, define $P(A|B) = P(A \cap B) / P(B)$
- Elementary properties of conditional expectation
 - $-(\Omega, \mathcal{F}_0, P)$: a prob. space. $\mathcal{F} \subset \mathcal{F}_0$: a sub σ -field. X, Y: integrable random variables
 - i. $E[c|\mathcal{F}] = c$
 - ii. $E[\psi(X)|X] = \psi(X)$ given $E[\psi(X)] < \infty$
 - iii. If \mathcal{F} is a trivial σ -field i.e. $\mathcal{F} = \{\Omega, \phi\}$ then $E[X|\mathcal{F}] = E[X]$
 - iv. $\Omega = \bigcup_{i=1}^{\infty} \Omega_i$ is a partition of Ω with $\Omega_i \in \mathcal{F}_0$ and $P(\Omega_i) > 0 \quad \forall i \in \mathbb{N}$ $\mathcal{F} = \sigma\{\Omega_1, \Omega_2, \dots\} = \{\bigcup_{j \in \kappa} \Omega_j : \kappa \subset \mathbb{N}\} \quad (\mathcal{F} \text{ is a } \sigma\text{-field}).$ Then we have

$$E[X|\mathcal{F}] = \sum_{i=1}^{\infty} a_i I_{\Omega_i} \quad with \quad a_i = \frac{E[XI_{\Omega_i}]}{P(\Omega_i)}$$

- $\sqrt{\text{For } A \in \mathcal{F}_0, \ P(A|\mathcal{F})} = P(A|\Omega_i)I_{\Omega_i}$
- \bigstar Lemma: If $Z \in \mathcal{F}$ for such \mathcal{F} , then we can write $Y = \sum_{i=1}^{\infty} c_i I_{\Omega_i}$ where $c_i \in \mathbb{R}$
- v. $E[aX + bY|\mathcal{F}] = aE[X|\mathcal{F}] + bE[Y|\mathcal{F}] \quad \forall a, b \in \mathbb{R}$
- vi. $X \ge 0 \Rightarrow E[X|\mathcal{F}] \ge 0$ a.s.
 - ★ Lemma: If Z > 0 on A with P(A) > 0 then $\int_A Z dP > 0$
- vii. $X \le Y \Rightarrow E[X|\mathcal{F}] \le E[Y|\mathcal{F}]$ a.s.
- viii. $\left| E[X|\mathcal{F}] \right| \le E[|X||\mathcal{F}]$
- X,Y: integrable r.v's where $X \perp\!\!\!\perp Y$. $\psi: \mathbb{R}^2 \to \mathbb{R}$ Borel measurable s.t. $E|\psi(X,Y)| < \infty$ Define $g: \mathbb{R} \to \mathbb{R}$ by $g(x) = E[\psi(x,Y)] \quad \forall x \in \mathbb{R}$. Then $E[\psi(X,Y)|X] = g(X)$
 - $\sqrt{g(x)} = E[\psi(x,Y)] = \int \psi(x,Y) \, dP = \int_{\mathbb{R}} \psi(x,y) dP Y^{-1}(y) = \int_{\mathbb{R}} \psi_x(y) \, d\mu_Y(y) \quad \forall x \in \mathbb{R}$ By Fubini thm in real analysis course, it is shown that g is Borel measurable & integrable.
- Conditional expectation and convergence
 - $-(\Omega, \mathcal{F}_0, P)$: a probability space. $\mathcal{F} \subset \mathcal{F}_0$: a sub σ -field
 - i. (MCT) If $X_n \geq 0$ and $X_n \nearrow X$ a.s. with $E(X) < \infty$ then $E[X_n | \mathcal{F}] \nearrow E[X | \mathcal{F}]$ a.s.
 - \square If $Y_n \searrow Y$ a.s. with $E|Y_1|$, $E|Y| < \infty$ then $E[Y_n|\mathcal{F}] \searrow E[Y|\mathcal{F}]$ a.s.
 - ii. (DCT) If $|X_n| \leq Y$, $E(Y) < \infty$ and $X_n \to X$ a.s. then $E[X_n|\mathcal{F}] \to E[X|\mathcal{F}]$ a.s.
 - \bigstar Lemma: For integrable r.v. Z, we have $E[E(Z|\mathcal{F})] = E[Z]$
 - iii. (Continuity from below) $\{B_n\} \subset_{seq} \mathcal{F}_0$ s.t. $B_n \subset B_{n+1} \quad \forall n \in \mathbb{N}. \quad B := \bigcup_n B_n$ Then $P(B_n|\mathcal{F}) \nearrow P(B|\mathcal{F})$
 - iv. (Countable additivity) If $\{C_n\} \subset_{seq} \mathcal{F}_0$ is mutually disjoint then $P(\bigcup_n C_n | \mathcal{F}) = \sum_n P(C_n | \mathcal{F})$

- Essential inequalities
 - i. (Markov) $P(|X| \ge c |\mathcal{F}) \le \frac{1}{c} E[|X||\mathcal{F}] \quad \forall c > 0$
 - ii. (Jensen) If $\phi : \mathbb{R} \to \mathbb{R}$ is convex then $\phi(E[X|\mathcal{F}]) \leq E[\phi(X)|\mathcal{F}]$ a.s.
 - ★ Trick: For each $x \in \mathbb{R}$ and convex function $\phi : \mathbb{R} \to \mathbb{R}$, we have $\phi(x) = \sup\{ax + b : (a, b) \in S\}$ where $S = \{(a, b) \in \mathbb{R}^2 : ax + b \le \phi(x) \ \forall \ x \in \mathbb{R}\}$
 - iii. (Cauchy-Schwarz) For $X, Y \in \mathcal{L}^2$, we have $E^2[XY|\mathcal{F}] \leq E[X^2|\mathcal{F}]E[Y^2|\mathcal{F}]$ a.s.
- Smoothing property of conditional expectation
 - i. If $X \in \mathcal{F}$, $E|Y| < \infty$, and $E|XY| < \infty$ then $E[XY|\mathcal{F}] = XE[Y|\mathcal{F}]$ a.s. $\sqrt{E|X|} < \infty$ assumption is not required.
 - \square If $X \in \mathcal{F}$ and $E|X| < \infty$ then $E[X|\mathcal{F}] = X$ a.s.
 - ii. If $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \mathcal{F}_0$ are sub σ -fields and $E|X| < \infty$ then
 - (a) $E[E(X|\mathcal{F}_1)|\mathcal{F}_2] = E[X|\mathcal{F}_1]$
 - (b) $E[E(X|\mathcal{F}_2)|\mathcal{F}_1] = E[X|\mathcal{F}_1]$
 - ★ Lemma : If $\mathcal{F}_1 \subset \mathcal{F}_2$ then $Y \in \mathcal{F}_1 \Rightarrow Y \in \mathcal{F}_2$
 - $\sqrt{}$ In short, "the smaller wins". In view of information, it is similar to projection onto vector subspaces $S_1 \subset S_2 \subset S$ where $Proj_{S_1}Proj_{S_2} = Proj_{S_2}Proj_{S_1} = Proj_{S_1}$
- \bullet Def. of conditional expectation by Radon-Nikodym derivative agrees with def. in \mathcal{L}^2 space.
 - If $E(X^2) < \infty$ then for $\mathcal{C} = \{Y : Y \in \mathcal{F}, E(Y^2) < \infty\},$ $E[\{X - E[X|\mathcal{F}]\}^2] = \inf_{Y \in \mathcal{C}} E[\{X - Y\}^2] \text{ and } E[X|\mathcal{F}] = \arg\min_{Y \in \mathcal{C}} E[\{X - Y\}^2]$ \bigstar Lemma : If $X \in \mathcal{L}^2$ then $E[X|\mathcal{F}] \in \mathcal{L}^2$
- * Independence of a random variable and a σ -field
 - A random variable X and a σ -field \mathcal{F} are said to be independent if $\sigma(X)$ and \mathcal{F} are independent
- If an integrable random variable X and a σ -field \mathcal{F} are independent then $E[X|\mathcal{F}] = E[X]$
- ☐ Two extreme cases of conditional expectations w.r.t information
 - Perfect information : If $X \in \mathcal{F}$ then $E[X|\mathcal{F}] = X$
 - No information : If $X \perp \!\!\! \perp \mathcal{F}$ then $E[X|\mathcal{F}] = E[X]$
- * Conditional variance

$$Var(X|\mathcal{F}) := E[\{X - E[X|\mathcal{F}]\}^2|\mathcal{F}] = E[X^2|\mathcal{F}] - E^2[X|\mathcal{F}]$$

Conditional variance is defined for $X \in \mathcal{L}^2$