Composing Monads and Comonads

Jiaming Jiang and Harley Eades III

Abstract

TODO

1 Compose Monads

Definition 1. A monad on a category C is a triple (T, η, μ) , where

- T is an endofunctor on C that associates to each morphism $A \longrightarrow B$ in C to a morphism $T(A) \longrightarrow T(B)$ in C s.t. $T(id_A) = id_{TA}$ and $T(f) \circ T(g) = T(f \circ g)$
- η is a natural transformation, i.e. $\eta \circ f = T(f) \circ \eta$, or the diagram commutes:

• μ is a natural transformation, i.e. $\mu \circ T^2(f) = T(f) \circ \mu$, or the diagram commutes:

• $\mu \circ T\mu = \mu \circ \mu T$, i.e. the following diagram commutes:

• $\mu \circ \eta T = \mu \circ T \eta = id_T$, i.e. the following diagrams commute:

Definition 2. [1] Given two monads (M, η^M, μ^M) and (N, η^N, μ^N) on a category C, the **swap** morphism S associates to NMA for each object A in C an object MNA, i.e. $S_A: NMA \longrightarrow MNA$, subject to the following conditions:

• $s \circ NM(f) = MN(f0 \circ s, i.e.$

• $\mathbf{s} \circ \eta^N M = M \eta^N$, i.e.

• $\mathbf{s} \circ N\eta^M = M\eta^M N$, i.e.

Definition 3. Given two monads (M, η^M, μ^M) and (N, η^N, μ^N) on a category C, the **composition monad** (T, η, μ) of M and N is defined as follows:

- T maps each morphism $f:A\longrightarrow B$ in C to a morphism $T(f)=MN(f):MNA\longrightarrow MNB$.
- $\eta_A: A \longrightarrow MNA \ and \ \eta = \eta^M \circ \eta^N$.
- $\mu_A : MNMNA \longrightarrow MNA \ and \ \mu = (M\mu^N) \circ (\mu^M N^2) \circ (MsN).$

Theorem 4. The composition monad T of M and N defined above is a monad on C.

Proof. • To show $T(id_A) = id_{TA}$:

$$T(id_A) = MN(id_A)$$

$$= M(id_{NA})$$

$$= id_{MNA}$$

$$= id_{TA}$$

• To show $T(f) \circ T(g) = T(f \circ g)$:

$$T(f) \circ T(g) = MN(f) \circ MN(g)$$

$$= M(N(f) \circ N(f))$$

$$= MN(f \circ g))$$

$$= T(f \circ g)$$

• To show $\eta \circ f = T(f) \circ \eta$:

$$\eta \circ f = \eta^{M} \circ \eta^{N} \circ f$$

$$= \eta^{M} \circ N(f) \circ \eta^{N}$$

$$= MN(f) \circ \eta^{M} \circ \eta^{N}$$

$$= T(f) \circ \eta$$

• To show $\mu \circ T^2(f) = T(f) \circ \mu$:

$$\begin{split} \mu \circ T^2(f) &= M \mu^N \circ \mu^M N^2 \circ M \$ N \circ M N M N (f) \\ &= M \mu^N \circ \mu^M N^2 \circ M^2 N^2(f) \circ M \$ N \\ &= M \mu^N \circ M N^2(f) \circ \mu^M N^2 \circ M \$ N \\ &= M N(f) \circ M \mu^N \circ \mu^M N^2 \circ M \$ N \\ &= T(f) \circ \mu \end{split}$$

- To show $\mu \circ T\mu = \mu \circ \mu T$:
- To show $\mu \circ \eta T = \mu \circ T \eta$:

2 Compose Comonads

Definition 5. A comonad on a category C is a triple (T, ε, δ) , where

• T is an endofunctor on C that associates to each morphism $A \longrightarrow B$ in C to a morphism $T(A) \longrightarrow T(B)$ in C s.t. $T(id_A) = id_{TA}$ and $T(f) \circ T(g) = T(f \circ g)$

• ε is a natural transformation, i.e. $\varepsilon \circ T(f) = f \circ \varepsilon$, or the diagram commutes:

• δ is a natural transformation, i.e. $\delta \circ T(f) = T^2(f) \circ \delta$, or the diagram commutes:

• $\delta T \circ \delta = T \delta \circ \delta$, i.e. the following diagram commutes:

• $\varepsilon T \circ \delta = T \varepsilon \circ \delta = id_T$, i.e. the following diagrams commute:

Definition 6. Given two comonads (M, η^M, μ^M) and (N, η^N, μ^N) on a category C, the **co-swap** morphism S' associates to MNA for each object A in C an object NMA, i.e. $S'_A: MNA \longrightarrow NMA$, subject to the following conditions:

• $s' \circ MN(f) = NM(f) \circ s'$, i.e.

• $N\varepsilon^M \circ s' = \varepsilon^M N$, i.e.

• $\mathbf{s}' \circ \varepsilon^N M = M \varepsilon^N$, i.e.

Definition 7. Given two comonads $(M, \varepsilon^M, \delta^M)$ and $(N, \varepsilon^N, \delta^N)$ on a category C, the **composition comonad** (T, ε, δ) of M and N is defined as follows:

- T maps each morphism $f: A \longrightarrow B$ in C to a morphism $T(f) = MN(f): MNA \longrightarrow MNB$.
- $\varepsilon_A : MNA \longrightarrow A \text{ and } \varepsilon = \varepsilon^N \circ \varepsilon^M.$
- $\delta_A : MNA \longrightarrow MNMNA \text{ and } \delta = (Ms'N) \circ (M^2 \delta^N) \circ (\delta^M N).$

3 related work

todo

4 conclusion

todo

References

[1] Mark P Jones and Luc Duponcheel. Composing monads. Technical report, Citeseer, 1993.