$A^2 \le B^2 220$	Cauchy stress tensor 283
adjoint operator 124, 158, 232	Céa's lemma 55, 90, 106, 126, 303
affine family 73, 91, 117	cg method 201
almost-affine families 73	characterization theorem 35
approximation error 79, 107	checkerboard instability 164, 292
approximate inverse 188	checkerboard ordering 216, 229
approximation property 237, 242	Clément's interpolation 84, 169, 175
a posteriori error estimates 172	closed range theorem 124
Argyris triangle 66, 67	coarse grid correction 228, 230, 275
Aubin–Nitsche lemma 91, 108	coercivity 38, 298
augmented Lagrange function 142	commuting diagram property 150, 152, 340
axiom	cone condition 32, 44
of Brezzi, Bathe, and Fortin 339	compact imbedding 32, 50, 87, 299
of Cauchy 282	compatibility condition 46, 157
of material frame-indifference 285	complexity 257
of static equilibrium 282	complete polynomials 60, 64
•	condition number 198, 206, 216, 242
Babuška-Brezzi condition,	ill conditioned problems 199, 309
cf. inf-sup condition	conditions
beams 308	Babuška condition,
Bernoulli beams 326, 334	cf. inf-sup condition
Timoshenko beams 310, 326	Brezzi condition 132, 135, 142, 160,
biharmonic equation 143	168, 294, 301
bilinear form	compatibility condition 46, 157
coercive 38	inf-sup condition 125, 126, 132, 134,
elliptic 38	139. 300, 301, 319, 327, 328, 345
Bogner–Fox–Schmit rectangle 72	LBB condition, cf. inf-sup condition
boundary condition	conjugate directions 201, 222
Dirichlet boundary condition,	Uzawa algorithm with conjugate
cf. Dirichlet problem	directions 222
essential boundary condition 44	conjugate gradients, cf. conjugate directions
natural boundary condition 44, 59, 147	consistency error 22, 107
Neumann boundary condition,	constitutive equations 284, 291
cf. Neumann problem	convergence theorem 24, 126, 188, 193, 244,
non-homogeneous boundary	251, 263, 267
condition 41	criss-cross grid 103
Bramble–Hilbert lemma 78, 87	curved elements 112, 118
bubble function 168, 320, 342, 345	
	dead load 283
canonical imbedding 39	deflection 323
cantilever beam 309	deformation 279
CASCADE algorithm 259	de Veubeke 302
Cauchy–Green strain tensor 280	diagonally dominant matrices 190

difference star, cf. stencil	nonconforming P_1 element,
Dirichlet principle 37	cf. Crouzeix-Raviart element
Dirichlet problem 18, 34, 40, 301	<i>Q</i> 1- <i>P</i> 0 element 163, 171
discrete Helmholtz decomposition 341	quadratic elements 66, 69
discrete Kirchhoff condition 328	Raviart-Thomas element 148, 181,
discretely connected 20	295, 321, 327
discrete maximum principle 20, 58	Taylor-Hood element 167
discrete norm 238	Zienkiewicz triangle 332
discrete curl 341	elliptic 8, 38, 42, 44, 128, 132, 297
displacement 279	uniformly elliptic 14, 15, 40
displacement approach 294, 297, 325, 338	energy norm 38, 54, 175, 248
divergence 28, 42, 74, 160, 161, 298	error indicator 173
discrete divergence 306	Euler equations 3, 36, 59
DKT element 328	existence theorem 40, 45, 125, 132, 299
duality techniques 92, 108, 114, 171, 243,	existence incorem 40, 43, 123, 132, 2))
245, 253	F-cycle 254, 260
243, 233	finite differences 16, 58
EAS alaments 155, 200, 210	•
EAS elements 155, 300, 310	finite element spaces, cf. elements
elasticity tensor 294, 322	five-point formula 18, 58, 192
elastic material 284, 290	Fortin interpolation 137
elements 60	Fortin's criterion 136, 168, 345
affine elements 73	Friedrichs' inequality 30, 33, 145
almost affine elements 73	cf. Poincaré–Friedrichs inequality
Argyris element 66, 67	
Arnold–Falk element 339	Galerkin method 54
Arnold–Winther element 317	Galerkin orthogonality 55
BDM element 149	Gauss-Seidel method 189
Bell element 66, 67	nonlinear Gauss-Seidel method 274
bilinear element 68, 309	Gelfand triple 123
Bogner–Fox–Schmit rectangle 72	gradient 196
C^k element 60, 62	conjugate gradients 201
conforming element 60	symmetric gradient 280
Courant triangle, cf. P_1 element	Green's formula 37, 158, 301
Crouzeix–Raviart element 109, 116, 170	, ,
cubic Hermite triangle 71, 329	$H^{-1}(\text{div}, \Omega)$ 327, 335
divergence-free element 170	$H(\text{div}, \Omega)$ 74, 146, 296, 317
DKT element 328	$H(\text{rot}, \Omega)$ 74, 322, 335
EAS elements 155, 300, 310	H^m 29, 123
Hsieh–Clough–Tocher element 66, 67	H ^s -regular 89, 109, 123, 237
instable element 162	heat equation 6, 11
isoparametric element 117	Hellinger–Reissner principle 295, 300, 317
linear element cf. P_1 element	Helmholtz decomposition 336
	_
macro-element 67, 166, 167	discrete Helmholtz decomposition 341
MINI-element 168	Helmholtz equation 14, 122, 185
MITC element 339	Hermite triangle 71, 329
nonconforming element 106	hierarchical bases 213
PEERS element 317, 321	Hooke's law 288
P_1 element 56, 60, 65	hour glass mode 164, 292

Hu–Washizu principle 297, 302	lemma
hyperbolic equations 4, 17	Aubin-Nitsche lemma 91, 108
hypercircle method 181	Bramble-Hilbert lemma 78, 87
hyperelastic material 290	Céa's lemma 55, 90, 106, 126, 286
hypotheses	lemma on conjugate directions 202
of Brezzi, Bathe, and Fortin 340	Reusken's lemma 246
of Kirchhoff–Love 324	Star lemma 19
of Mindlin and Reissner 323	Strang's lemmas 106, 107
	lexicographical ordering 193
ill conditioned problems 199, 309	linear elasticity problem 293
improperly posed problems 42	linearity hypothesis 323
imbedding theorem 32, 50	Lipschitz boundary 32
incomplete Cholesky decomposition 214,	locking effect 308, 335
227	logarithmic convexity 239
inequality	Love's hypothesis,
Korn's inequality 297, 298, 314	cf. hypothesis of Kirchhoff–Love
Nečas' inequality 159	71
of Kantorowitsch 198	macro element 67, 166, 167
of Poincaré–Friedrichs 30, 33	mass matrix 98, 215, 218
strengthened Cauchy inequality 156,	material
263, 265	elastic material 284
interpolation	hyperelastic material 290
Fortin interpolation 137	isotropic material 286
by polynomials in 2D 64	nearly incompressible material 161, 304
by Raviart–Thomas elements 149	neo-Hookean material 292
inverse estimate 86, 242	objective material 285
isomorphism 125, 131, 132, 138	St. Venant–Kirchhoff material 288
isoparametric element 117	material law, cf. constitutive equations
isotropy 286, 291	maximum principle 12
jump conditions	discrete 20, 56
of H^1 elements 62	membrane 315
in <i>H</i> (div) 74	membrane elements 316
in <i>H</i> (rot) 74, 322	membrane locking 308
	mesh-dependent norm 76, 107, 153, 330
kinematics 279	mesh refinement 100, 179, 212, 270
Kirchhoff plate 324	method
Korn's inequality 297, 298, 314	cg-method 201
Kuhn's triangulation 102	enhanced assumed strains method 155
	finite difference method 16, 58
L ₂ -estimate 91, 111, 115, 171, 243	Galerkin method,
L_2 -projector 94	cf. Ritz-Galerkin method
ℓ_2 33, 40	Gauss-Seidel method 189
Lagrange function 129	gradient method 196
augmented Lagrange function 142	Jacobi method 167, 201, 218
Lagrange multiplier 130, 147, 221, 335	minimal residual method 207
Lamé constants 288	multigrid method, cf. multigrid
Lamé equations 295	of conjugate gradients,
Laplace operator 2	cf. cg-methods
	•

477 1 17 440	
of Fletcher and Reeves 218	nodal basis 65
of Polak and Ribière 218	nonconforming elements 106
pcg method 201	nonlinear nested iteration 276
Petrov Galerkin method 54	norm
Rayleigh–Ritz method 54	broken norm 76, 109
Ritz–Galerkin method 54	discrete norm 238
Schwarz' alternating method 262	energy norm 38, 54, 175, 248
SSOR method 194, 213, 227	negative norms 122
Mindlin–Reissner plate 323, 335	Sobolev norm 29
minimal property 36, 45, 129, 147, 203, 294	cf. also mesh-dependent norm
minimal residual algorithm 207	normal hypothesis 324
mixed methods 134	
for the biharmonic equation 143	Ostrowski–Reich Theorem 193
dual 145, 147, 301	overrelaxation 193, 213
equivalent nonconforming elements	
149, 306	parabolic equations 6
for the membrane 317	parallelization 216
for the Kirchhoff plate 326	penalty term, cf. saddle point problem
for linear elasticity problems 295, 297	Piola–Kirchhoff stress tensor 284
for the Mindlin plate 338, 342	Piola's transformation 283
for nearly incompressible material 304	plane strain state 316
for nonconforming elements 243	plane stress state 315
for the Poisson equation 145	plate 323
primal 145, 147	Kirchhoff plate 324
for the Stokes problem 162	Mindlin plate, cf.
of Hellinger and Reissner 295, 300, 317	Mindlin–Reissner plate 323, 335
of Hu and Washizu 297, 302	Poincaré–Friedrichs inequality 30, 33, 146
softening character 154, 305, 310	Poisson equation 3, 34, 41, 56, 109, 145,
with penalty term 137, 305, 310, 335	174, 192, 214
mixed interpolated tensorial components 339	Poisson locking 304, 308
modus of elasticity 288	Poisson ratio 285, 288
multigrid method 225	polar decomposition 289
cascadic multigrid algorithm 259	polar set 124, 127, 131
convergence of multigrid methods 237	postprocessing 152, 184
idea of multigrid method 227	post-smoothing 230, 275
multigrid Newton method 273	potential equation 2, 10
nonlinear multigrid method 274	_
•	Prange 300
for saddle point problems 247	preconditioning 210, 219 of A^2 220
natural state 279	pre-smoothing 230, 275
nearly incompressible elasticity 289, 304	pressure 157
negative norms 122, 159, 178, 336	principle of Stolarski and Belytschko 303
nested iteration 255	prolongation 232, 275
nonlinear nested iteration 267	
Neumann problem 46, 49, 102, 143	red-black ordering, cf. checkerboard
Newton's method 273	ordering
incremental methods 277	reduced cubic polynomial 329
Nitsche's trick 91	reduced equation, cf. Schur complement

reduced integration 310, 339	strain 280
reentrant corner 34	strengthened Cauchy inequality 156, 263,
reference configuration 279	265
reference element 73, 76, 81, 117	stress 282, 283
refinement rules 101, 179	stress principle of Euler and Cauchy 282
regularity theorem 89, 171, 305, 327	stress tensor 283, 284, 293
response function 284	St. Venant–Kirchhoff material 288, 291, 294
restriction 232, 275	superconvergence 96
Reusken's lemma 246	symmetric derivative 280
Riesz representation theorem 39, 122	system matrix 54, 97
Ritz projector 58	system matrix 54, 77
rotation 318, 322, 335, 338	theorem
discrete 341	
	Cauchy's theorem 255
Runge's rule 173	closed range theorem 124
	imbedding theorem 32, 50
saddle point problem 129, 221	of Lax–Milgram 38, 126
with penalty term 137, 142, 161,	of Prager and Synge 147, 184, 185, 322
305, 310, 335	Ostrowski–Reich theorem 193
cf. mixed method	regularity theorem 89, 171, 305, 327
scale of Hilbert spaces 238	Rellich selection theorem 32, 78
scaling argument 83	Riesz representation theorem 39, 122
Schur complement 221, 223	Rivlin–Ericksen theorem 286
Schwarz' alternating method 262	shift theorem 239
semi-iterative method 207	trace theorem 44, 48
serendipity class 66, 69, 75	three-direction mesh 332
shape function 97	Timoshenko beams 310, 326
shape regularity 61, 118	transformation formula 80
shear 323, 325, 335	transverse displacement 323
shear locking 308, 310	triangulation
shift theorem 239	admissible 61
smoothing property 226, 237, 240, 246, 251	shape regular 61
smoothing step 228, 230, 234	uniform 61
Sobolev spaces 28, 122	two-grid algorithm 228, 243
solution	types of PDE's 8
classical solution 3, 34, 36, 157, 278	types of FBE's o
weak solution 40, 158, 278	Uzawa algorithm 221
space decomposition 261	variational formulation 36, 45, 132, 147,
spectral condition number, cf. condition	
_	158, 293, 300, 310, 326
number	V-cycle 231, 250
spectral radius 188	
SSOR method 194, 213, 227	wave equation 4, 11
standard five point stencil 18, 58, 192	W-cycle 231
starting value 255, 276	weak derivative 28, 340
static condensation 99, 152, 168, 321	weak solution, cf. solution
stencil 17, 58, 59, 123	well-posed problems 9
stiffness matrix, cf. system matrix	
Stokes equation 157, 304, 339	zero energy modes 317
stored energy function 290, 293, 311, 325	Zienkiewicz triangle 332