II- L'organisation des électrons dans l'atome

notions abordées :

- Les systèmes hydrogénoïdes
- Les atomes polyélectroniques

1) Les systèmes hydrogénoïdes

· Fonction d'onde, probabilité de présence

- Modèle actuel de la méca quantique :
 - Dualité onde/ corpuscule (De broglie) : $\lambda = \frac{h}{m \cdot v} = \frac{h}{p}$
 - Principe d'indétermination (Heisenberg) : $\Delta x.\Delta p > \frac{h}{2\pi}$
 - Le concept de trajectoire n'existe pas en méca quantique
- Le comportement ondulatoire est décrit par une fonction d'onde (équation de schrödinger) :
 - pour un système hydrogénoïdes : $\Psi^2 = \frac{dP}{dV}$ (dP = proba de trouver la particule dans un volume élémentaire dV)
 - $P = \int_{V_0} \Psi^2 . dV = 1$ la fonction d'onde est normalisé (voir exemple)
 - Le carré de la fonction d'onde représente la densité de probabilité de présence simultanée des électrons dans l'espace. (voir équation de Schrödinger)

Nombres quantiques

- Les orbitales atomiques (OA) définissent des volume dans lequel un électron a une probabilité de se trouver dépendent de 3 nombres :
 - n : quantique **principale** (n>0)
 - I : quantique **azimutal** ($0 \le l < n$)
 - m : quantique magnétique ($-l \le m \le +l$)

Nomenclature des orbitales

• Chaque valeur de n définie une couche électronique

	n	1	2	3	4	5	6		
	couche	K	L	М	N	0	Р		
valour de l'définie une sous soushe électronique									

Chaque valeur de l définie une sous couche électronique

I	0	1	2	3	4
Sous couche	s	р	d	f	g

Voir tableau de nomenclautre

Expression des orbitales

- $^{\circ}$ Les orbitales atomiques dépendent de 3 coordonnées sphériques (r,θ,ϕ)
- On a donc : $x = r \sin \theta \cos \phi$; $y = r \sin \theta \sin \phi$; $z = r \cos \theta$
- Ainsi les fonctions d'ondes peuvent s'écrire selon le produit de 3 fonctions : $\Psi_{nlm}(r,\theta,\phi) = R_{nl}(r) \cdot \Theta_{lm}(\theta) \cdot \Phi_m(\phi)$

Représentation des orbitales

• Partie radiale : $D(r)=r^2|R_{nl}(r)|^2$ Densité de probabilité de présence de l'électron à une distance D(r)

r du noyau.

 \circ Partie angulaire : $\Theta_{\mathit{lm}}(heta).\Phi_{\mathit{m}}(\phi)$

· Spin de l'électron

 4 ème nombre quantique : le nombre quantique de spin m₅ il est lié à la rotation de l'électron sur lui même : il

Énergie des OA :

L'état d'un atome est défini par (n,l,m,m₅), chaque état est associé à une énergie

$$E_n = \frac{-m_e e^4 Z^2}{8 \epsilon_0^2 h^2 n^2} = -13.6 \frac{Z^2}{n^2}$$

- Chaque OA sur la même couche (n) ont la même énergies, elles sont dégénérées. Ainsi le degrés de dégénérescence est : $g=n^2$
- L'occupation de l'OA par un électron est schématisé par une flèche dépendant du spin.

2) Les atomes polyélectroniques :

Énergies des OA :

- L'équation de Schrödinger est insoluble de manière exacte pour les atomes polyélectroniques
- L'énergie d'une OA dépend donc des nombres quantiques n et I

Configuration électronique des éléments

- Principe d'exclusion de Pauli
 - Dans un atome donné, deux électrons ne peuvent être caractérisés par 4 nombres quantiques identiques.
 - Une OA peut être occupé par au plus 2 électrons
 - 2 OA occupent un même OA (n ,l,m identique) alors les spins sont différents.

- Règle de Klechkovski
 - Dans l'état fondamental, les électrons occupent les OA de plus basses énergies
 - Si n+l=n'+l' alors l'OA dont le nombre quantique n est inférieur a une énergie inférieure
- Règle de Hund
 - Dans une même sous couche les électrons occupent un maximum d'OA

• Le spin total doit être maximal

↑ ↑ ↑

Exemple l'atome de fer :

- Coeur et valence
 - électrons de cœur : électrons de couches internes, ils ne participent pas à la réactivité chimique du noyau
 - électrons de valence : électrons de la couche du plus grand n + les éléments de la dernière sous-couche non pleine
- · Exceptions aux règle de remplissage des OA
 - \circ Éléments $ns^2(n-1)d^9$
 - $ns^{1}(n-1)d^{10}$
 - \circ Eléments $ns^2(n-1)d^4$
 - $ns^1(n-1)d^5$