output

												V		
	Pr	esen	t st	ate	Input	Ne	×+	state	ţ	ŀρ	flop	الى د	ρυt	5
We notice that we	_	Α	Ь	C	×	A	B	С	SA	RA	5ه	Rs	5ء	Ŋ,
are missing 000>	2	O	0	1	O	0	0	1	0	×	0	×	X	0
\checkmark	3	0	0)	1	0	١	0	0	×	1	0	0	ſ
We are missing states 0,6,7	4	0	1	0	0	0	١	1	0	×	×	0	1	0
(for both by a 1 and 0	5	0	ı	0	ı	١	0	0	1	0	0	١	0	×
transitions), which will	6	0	١	١	0	0	0	1	0	X	0	1	×	0
become don't cares	7	0	ſ	١	1	l	0	0	1	0	0	1	0	١
\uparrow	8	ı	0	0	0	١	0	ı	X	0	0	×	١	0
we are	9	I	0	0	١	١	0	0	X	0	0	×	0	×

SA.					R _A					S _B					R _B				
ABC	09 ×	01	U	10	ABC	× ×	0(lι	10	ΛΛ\-	× 00_	01	ΙU	10	ABC	× ×	01	W	10
00	×	×			00	×	×	×	X	00	×	$\langle \times \rangle$	$\langle - \rangle$		00	X	X		X
01			_		01	X			×	٥ı	X				01		1	$\overline{\wedge}$	
11	×	×	X	X	ţ ı	X	×	×	X	11	X	×	×	X	11	×	X	\bigvee	*
10	×	×	×		10				V	סו					10	×	X	×	X
	S _A :	- B>	<			R	A =	CX,			S	B =	Α, β,	Χ		ρ	- ع	β×	+ BC
	_																		

* Is the circuit self correcting? - A self-correcting circuit is one that, if it enters an unused or invalid state (due to noise, glitches, or other errors), can transition back to a valid state without external intervention. This is typically achieved by defining explicit transitions for all unused states to ensure the circuit returns to a valid state.

also

missing

eq: unused state 000:

Sc						Kc .					
	AB C	\ 00	٥١	lt	10	ABC	00	راه	Ιι	10	
\	00	X	X		X	00	X	K			
	01	1			\times	01		X	_		
	ţı	X	×	\times	X	Ţt	X	×	X	X	
	10	\mathcal{I}		\	X	10		\times			
\		/ 5 _c	= X))			Ro	; = `	×		

A	B	C	X
0	0	0	0

0 0 1

| 0 0 | × 0 0 × 0

$$S_A = 0$$
] C_{hange}^{NO} $S_B = 1$] 1 $S_c = 0$] 0 $R_c = 1$] 0

Set flip flop B to 1, Reset f/f C to 0 000 - 010

Synchronous Counters

A sequential circuit that goes through a predefined sequence of States upon application of input pulses is called a counter.

Counters are useful for generating timing sequences to control operations in a digital system. No external input, no external output.

Q(t) Present state	Q(t+1) Next state	
A B C	ABC	TA TB TC
0 0 0	0 0 1	0 0 1
1 0 0	0 1 0	0 1 1
0 1 0	0 1	0 0 1
0 1 1	1 0 0	1 1
1 0 0	1 0	0 0 1
101	1 0	0 1 1
1 1 0	1 1	0 0 1
1 1 1	0 0 0	
1 1 0	1 1 1	0 0 [

A T flip flop is generally considered to be the better choice for building Synchronous counters

$$T=0$$
 no change
 $T=1$ $Q(t)$