ЛЕКЦИЯ 9.2 КВАДРАТУРНЫЕ ФОРМУЛЫ ГАУССА

1. Начальный пример

Как было показано в предыдущих лекциях, квадратурные формулы для приближённого вычисления интегралов имеют вид

$$\int_{a}^{b} f(x)dx \approx \sum_{i=1}^{n} A_{i}f(x_{i}).$$

Коэффициенты A_i (веса квадратуры) зависят от шага h. Точки x_i (узлы) выбираются на отрезке [a;b] равномерно с шагом h. Гаусс предложил такие формулы численного интегрирования, в которых и веса, и узлы выбраны так, чтобы квадратуры были точными для некоторого класса функций, а именно, для полиномов как можно более высокой степени.

Рассмотрим для начала простые примеры. Пусть надо вычислить

$$I = \int_{-1}^{1} f(x) dx.$$

Построим квадратуру в двумя узлами:

$$I^* = A_1 f(x_1) + A_2 f(x_2).$$

Надо найти четыре неизвестных A_1,A_2,x_1,x_2 — два узла и два веса. Потребуем, чтобы для полиномов степени от о до m квадратура давала точные значения интегралов. Очевидно, что формула будет точна для любого многочлена P_m степени m тогда и только тогда, когда она будет точна для всех x^k , $k=0,\ldots,m$. Вычислим точные значения этих интегралов:

$$I_k = \int_{-1}^{1} x^k \, dx = \frac{1}{k+1} (1 - (-1)^{k+1}).$$

Значит, имеем следующие уравнения для определения неизвестных:

$$A_1 x_1^k + A_2 x_2^k = \frac{1}{k+1} (1 - (-1)^{k+1}), \tag{1}$$

k = 0, 1, ..., m.

Неизвестных четыре, а значит, и уравнений должно быть четыре, для степеней полиномов $0,\ 1,\ 2,\ 3.$ Таким образом, эта квадратура с двумя узлами будет точна для

многочленов не выше третьей степени, и это максимально возможная степень. Имеем систему уравнений

$$A_1 x_1^k + A_2 x_2^k = \frac{1}{k+1} (1 - (-1)^{k+1}),$$

k = 0, 1, 2, 3, или в развёрнутом виде

$$\begin{cases} A_1 + A_2 = 2, \\ A_1 x_1 + A_2 x_2 = 0, \\ A_1 x_1^2 + A_2 x_2^2 = \frac{2}{3}, \\ A_1 x_1^3 + A_2 x_2^3 = 0. \end{cases}$$

Решая эту нелинейную систему, получаем

$$\begin{cases} A_1 = 1, \\ A_2 = 1, \\ x_1 = -\frac{1}{\sqrt{3}}, \\ x_2 = \frac{1}{\sqrt{3}}. \end{cases}$$

Это означает, что приближенное значение интеграла равно

$$I^* = f\left(-\frac{1}{\sqrt{3}}\right) + f\left(\frac{1}{\sqrt{3}}\right),$$

причём оно совпадает с точным значением для любого многочлена от нулевой до третьей степени.

Если же количество точек n=3, то система уравнений (1) для неизвестных весов и узлов квадратуры примет вид

$$A_1 x_1^k + A_2 x_2^k + A_3 x_3^k = \frac{1}{k+1} (1 - (-1)^{k+1}),$$

k = 0, 1, 2, 3, 4, 5 (6 неизвестных, 6 уравнений). Эта система имеет решение

$$\begin{cases} A_1 = \frac{5}{9}, \\ A_2 = \frac{8}{9}, \\ A_3 = \frac{5}{9}, \\ x_1 = -\sqrt{\frac{3}{5}}, \\ x_2 = 0, \\ x_3 = \sqrt{\frac{3}{5}}. \end{cases}$$

Интегралы вычисляются по квадратуре

$$I^* = \frac{5}{9}f\left(-\sqrt{\frac{3}{5}}\right) + \frac{8}{9}f(0) + \frac{5}{9}f\left(\sqrt{\frac{3}{5}}\right),$$

точной для любого многочлена не выше пятой степени.

2. Общая квадратура Гаусса

Эти примеры показывают, что можно так подобрать узлы и веса квадратуры, что она будет точна для многочленов не выше какой-то степени. Эта задача в более общей постановке была решена Гауссом.

Но прежде чем сформулировать задачу, которую поставил и решил Гаусс, получим предварительный результат об алгебраической степени квадратурных формул. Пусть вычисляется интеграл

$$I = \int_{a}^{b} p(x)f(x)dx,$$
 (2)

p – весовая функция. Как всегда, заменяем его приближённо квадратурой

$$I^* = \sum_{i=1}^{n} A_i f(x_i).$$
 (3)

Выберем на отрезке [a;b] точки x_1, \dots, x_n и интерполируем по ним как по узлам функцию f. Вычислим приближённое значение интеграла, заменив f интерполяционным многочленом P_{n-1} :

$$I^* = \int_{a}^{b} p(x) P_{n-1}(x) dx.$$
 (4)

Тогда можно легко вычислить веса квадратуры, подставив P_{n-1} в (4). Таким образом, произвольно выбрав n узлов, мы можем интерполировать функцию f многочленом степени n-1 и построить квадратуру. Такая квадратурная формула называется интерполяционной. Из самого правила её построения следует, что она точна для любого многочлена степени не выше n-1. Верно и обратное утверждение. Всё вместе сформулируем в виде теоремы.

Теорема 1. Квадратурная формула с n узлами является интерполяционной тогда и только тогда, когда она точна для любого многочлена степени не выше n-1.

Определение. Квадратурная формула имеет *алгебрацческую степень точности т*, если она точна для любого многочлена степени не выше m и не даёт точного значения для x^{m+1} .

Из теоремы 1 следует, что интерполяционные квадратурные формулы имеют алгебраическую степень точности не меньше чем n-1. Это мы наблюдали у формул Ньютона-Котеса.

Теперь у нас есть результат, от которого отталкивался Гаусс: если произвольно выбрать n узлов, то можно построить квадратуру с алгебраической степенью точности не меньше чем n-1. Гаусс поставил такую задачу. Если узлы не выбирать произвольно, а специальным образом, то можно ли повысить степень точности? Конкретно: как выбрать узлы, чтобы степень точности была максимально возможной?

Если выбираются n узлов, то, похоже, что за счёт их специального выбора можно повысить степень точности на n, т.е. достичь степени 2n-1. И действительно, оказалось, что можно выбрать узлы x_1, \dots, x_n так, что построенная по ним интерполяционная формула имеет алгебраическую степень точности не меньше чем 2n-1. Сформулируем решение, полученное Гауссом. Пусть весовая функция p неотрицательна и интегрируема на [a;b] и

$$\int_{a}^{b} p(x)dx > 0.$$

Далее, предполагается существование интегралов

$$\mu_k = \int_a^b p(x) x^k dx \tag{5}$$

при всех k=0,1,2,... . Числа μ_k называются моментами весовой функции. Функции ϕ и ϕ ортогональны с весом p на [a;b], если

$$\int_{a}^{b} p(x)\varphi(x)\varphi(x)dx = 0.$$

Основной результат, требуемый для построения квадратуры, даёт следующая теорема.

Теорема 2. Для того чтобы квадратурная формула была точна для любого многочлена степени 2n-1, необходимо и достаточно, чтобы она была интерполяционной, и её узлы x_1, \dots, x_n были корнями многочлена

$$A_n(x) = (x - x_1) \cdots (x - x_n),$$

ортогонального с весом p любому многочлену Q_k степени k, меньшей n:

$$\int_{a}^{b} p(x)A_{n}(x)Q_{k}(x)dx = 0,$$

k = 0, 1, ..., n - 1.

При сделанных ранее предположениях о весовой функции (интегрируемость, неотрицательность, существование моментов, положительность нулевого момента) многочлен A_n существует. Надо сформулировать алгоритм его построения.

Узлы интерполяции x_i находятся из условия ортогональности A_n с весом p любому многочлену степени меньше n. Очевидно, что достаточно потребовать ортогональности одночленам x^k , $k=0,\ldots,n-1$. Если записать многочлен A_n в стандартном виде

$$A_n(x) = x^n + a_1 x^{n-1} + \dots + a_n, \tag{6}$$

то его коэффициенты $a_{\scriptscriptstyle 1}$, ... , $a_{\scriptscriptstyle n}$ можно найти как решение системы

$$\int_{a}^{b} p(x)(x^{n} + a_{1}x^{n-1} + \dots + a_{n})x^{k} dx = 0,$$
(7)

 $k=0,\dots,n-1$ (n уравнений, n неизвестных). Если в (7) раскрыть скобки, разложить интеграл суммы в сумму интегралов и учесть обозначение моментов (5), то система запишется в виде

$$\mu_{n+k} + a_1 \mu_{n+k-1} + a_2 \mu_{n+k-2} + \dots + a_n \mu_k = 0,$$

k = 0, ..., n - 1, или в развёрнутой форме

$$\begin{cases} a_1\mu_{n-1}+a_2\mu_{n-2}+\cdots+a_n\mu_0=-\mu_n,\\ a_1\mu_n+a_2\mu_{n-1}+\cdots+a_n\mu_1=-\mu_{n+1},\\ \vdots\\ a_1\mu_{2n-2}+a_2\mu_{2n-3}+\cdots+a_n\mu_{n-1}=-\mu_{2n-1}. \end{cases}$$

Эта система имеет единственное решение. При этом узлы квадратуры — корни многочлена A_n — вещественны, различны и все находятся внутри отрезка [a;b] (этот результат примем без доказательства).

Теперь надо найти веса квадратуры. Для этого записываем интерполяционный многочлен Лагранжа для функции f по узлам x_1,\dots,x_n :

$$L_{n-1}(x) = \sum_{i=1}^{n} \frac{\omega_n(x)y_i}{(x - x_i)\omega'_{n-1}(x_i)},$$

$$\omega_n(x) = \prod_{i=1}^{n} (x - x_i), \omega'_{n-1}(x_i) = \prod_{\substack{j=1 \ j \neq i}}^{n} (x_i - x_j),$$

$$y_i = f(x_i)$$

(здесь он имеет степень n-1, нумерация узлов от 1 до n). Подставляем его вместо f в (2) и получаем

$$I = \int_{a}^{b} p(x)f(x)dx \approx I^{*} = \int_{a}^{b} p(x) \sum_{i=1}^{n} \frac{\omega_{n}(x)y_{i}}{(x-x_{i})\omega'_{n-1}(x_{i})} dx = \int_{a}^{b} \sum_{i=1}^{n} p(x) \frac{\omega_{n}(x)y_{i}}{(x-x_{i})\omega'_{n-1}(x_{i})} dx = \sum_{i=1}^{n} \left(\int_{a}^{b} p(x) \frac{\omega_{n}(x)}{(x-x_{i})\omega'_{n-1}(x_{i})} dx \right) y_{i}.$$
 (8)

Отсюда следует, что

$$A_i = \int_a^b p(x) \frac{\omega_n(x)}{(x - x_i)\omega'_{n-1}(x_i)} dx, \tag{9}$$

i=1,...,n. Поскольку формула (8) точна для многочленов нулевой степени, в частности, для $f\equiv 1$, то подставив в неё $f\equiv 1$, получим

$$\int_{a}^{b} p(x)dx = \sum_{i=1}^{n} A_{i} \Rightarrow \sum_{i=1}^{n} A_{i} = \mu_{0}.$$

Это равенство можно использовать для проверки решения.

Итак, квадратура Гаусса — это формула (3), веса которой A_i вычисляются по (9), а узлы x_i — корни многочлена (6).

Приведём без доказательства некоторые свойства квадратур Гаусса:

- 1. Все веса A_i положительны.
- 2. Алгебраическая степень точности равна 2n-1, т.е. они точны для всех многочленов степени не выше 2n-1 и неточны для многочленов степени 2n и выше.
- 3. Они имеют наивысшую степень точности, т.е. никакая квадратура по n узлам не может иметь алгебраическую степень точности большую, чем 2n-1.
- 4. При заданном n квадратура Гаусса единственна.

Эти свойства выполняются при оговоренных ранее условиях на весовую функцию.

3. Погрешность

Формулу остаточного члена приближённого значения интеграла по квадратуре Гаусса даёт следующая теорема.

Теорема 3. Пусть функция f имеет на отрезке [a;b] непрерывную производную порядка 2n. Тогда погрешность (остаточный член) квадратурной формулы Гаусса вычисляется по формуле

$$R_n = \frac{f^{(2n)}(\xi)}{(2n)!} \int_{a}^{b} p(x) \omega_n^2(x) dx,$$

где $\xi \in [a; b]$.

Она применяется для оценки погрешности так же, как и аналогичный результат для формул Ньютона-Котеса.

4. Понятие о методе Монте-Карло численного интегрирования

В заключение рассмотрим в самых общих чертах такой интересный приём численного интегрирования как метод Монте-Карло. Как известно, это метод численного моделирования (разыгрывания) случайных величин. Как же его можно применить для вычисления интеграла?

Пусть надо вычислить

$$I = \int_{a}^{b} f(x) dx,$$

где $0 \le f(x) \le c$, $x \in [a;b]$; f непрерывна на [a;b]. Рассмотрим двумерную случайную величину (X,Y), распределенную равномерно в прямоугольнике D с основанием (b-a) и высотой c, плотность вероятности которой

$$r(x,y) = \begin{cases} \frac{1}{(b-a)c}, & (x,y) \in D, \\ 0, & (x,y) \notin D. \end{cases}$$

Площадь прямоугольника, в котором находится криволинейная трапеция (напомним, что интеграл от неотрицательной функции есть площадь криволинейной трапеции), равна S=(b-a)c. Разыграем независимо N точек, принадлежащих прямоугольнику D,n из которых оказались под кривой y=f(x). Поскольку распределение точек равномерно, то отношение $\frac{n}{N}$ приблизительно равно отношению площадей $\frac{I}{S}$. Так мы сможем оценить значение интеграла - площади криволинейной трапеции:

$$I \approx S \frac{n}{N}$$
.

Погрешность метода Монте-Карло уменьшается с ростом количества точек N.

Пример. Пусть надо вычислить интеграл

$$\int_{0}^{1} \sin x \, dx.$$

С помощью программы MathCad моделируем двумерную случайную величину (X;Y), представляя ее как систему двух независимых одномерных равномерно распределённых случайных величин на отрезке [0;1].

В первом эксперименте для N=100 точек n=43 точки попадали под криволинейную трапецию (для них $y_i \leq \sin x_i$) и

$$I \approx \frac{43}{100} = 0.43.$$

Для N=250 точек n=116 точек попали под криволинейную трапецию и

$$I \approx \frac{116}{250} = 0,464.$$

Точное значение интеграла

$$I = \int_{0}^{1} \sin x \, dx = 0,460.$$

Для вычисления интегралов методом Монте-Карло для произвольной функции надо разыграть равномерно распределенную случайную величину в прямоугольнике $[a;b] \times [c;d]$, где $c \le f(x) \le d$, $x \in [a;b]$. В случае c < 0 надо вычислить число точек, попавших в криволинейную трапецию $0 \le f(x) \le d$, $x \in [a;b]$, и число точек, попавших в криволинейную трапецию $c \le f(x) \le d$, $c \in [a;b]$. Далее пропорционально числу точек оценить площади криволинейных трапеций выше оси абсцисс и ниже оси абсцисс.