Introduction aux équations aux dérivées partielles

Avant-propos

Le but de ce cours est de vous proposer une introduction à la théorie des équations aux dérivées partielles (EDP dans la suite). Nous étudierons plusieurs équations ainsi que leur discrétisation par la méthode des différences finies.

Dans le cadre du programme officiel de la préparation à l'agrégation de mathématiques (épreuve de modélisation), nous aborderons notamment :

- des notions élémentaires portant sur les EDP classiques en dimension 1,
- l'équation de transport linéaire avec la méthode des caractéristiques,
- l'équation des ondes et de la chaleur; une résolution par série de Fourier et transformée de Fourier sera proposée ainsi qu'une méthode de séparation des variables. Les aspects qualitatifs seront abordés.
- les équations elliptiques avec l'utilisation du théorème de Lax-Milgram
- des exemples de discrétisation des EDP en dimension 1 avec la méthode des différences finies. L'étude des propriétés de ces discrétisations sera proposée : notions de consistance, stabilité, convergence et d'ordre.

Vous êtes par ailleurs invités à lire le rapport du jury (disponible sur internet). Vous vous rendrez compte que le jury insiste notamment sur le fait que :

- l'épreuve de modélisation, comme les autres, requiert de la rigueur mathématique,
- il faut équilibrer sa présentation entre une présentation du modèle étudié, des preuves mathématiques rigoureuses, des illustrations informatiques,
- il attend une prise de recul de la part des candidats. Il faudra donc notamment être capable de critiquer les limites du modèle présenté dans le texte, d'expliquer le comportement qualitatif de celui-ci (par exemple expliquer ce qu'il se passe quand la valeur d'un paramètre change) et être capable de conclure sur la problématique de départ.

Ce cours sera composé de

- cinq séances de cours de deux heures chacune,
- une séance de programmation de deux heures.

Dans une première partie, nous présenterons les équations étudiées dans ce cours en donnant une idée des problèmes physiques associés. Chacune des parties suivantes sera consacrée à l'étude plus approfondie d'une EDP. Nous y traiterons notamment les principales caractéristiques de cette EDP, les outils utilisés pour mener des preuves ainsi qu'une discrétisation par différences finies. Les EDP étudiées dans la suite seront les équations elliptiques, l'équation de transport, l'équation de la chaleur et enfin l'équation des ondes.

1 Présentation des EDP du cours

Nous présentons dans cette section les EDP étudiées dans la suite du cours. Nous essayons de donner une signification physique aux différents termes.

Nous nous intéressons à des EDP de la forme

$$a\frac{\partial^2 u}{\partial x^2} + b\frac{\partial^2 u}{\partial x \partial y} + c\frac{\partial^2 u}{\partial y^2} + d\frac{\partial u}{\partial x} + e\frac{\partial u}{\partial y} + fu = F.$$

Pour déterminer la nature de l'EDP, on associe à chaque dérivée la variable qui correspond à la direction de dérivation. L'équation précédente devient donc

$$ax^2 + bxy + cy^2 + dx + ey + f = F.$$

S'il s'agit de l'équation :

- d'une ellipse, on dira que l'équation est elliptique;
- d'une parabole, on dira que l'équation est parabolique;
- d'une hyperbole, on dira que l'équation est hyperbolique.

Cette dénomination n'est pas juste esthétique. En effet, comme nous le verrons plus loin dans ce cours, chacun de ces types d'équations dispose de propriétés spécifiques.

Notons également que les équations précédentes dépendent de deux variables d'espace. La dénomination précédente se généralise dans le cas où on aurait une seule variable ou strictement plus de deux variables. Dans le cadre de ce cours, nous nous concentrerons sur l'étude déquations avec une seule dimension d'espace. On considérera donc une seule variable x dans le cas d'un problème stationnaire et deux variables t (le temps) et x (l'espace) dans le cas d'un problème instationaire.

Dans la suite de ce cours, on notera Ω un ouvert borné de \mathbb{R}^d avec d=1,2,3.

1.1 Équations elliptiques

Les équations elliptiques apparaissent principalement dans deux contextes que nous allons maintenant aborder. Le premier est le cas où des particules circulent dans un domaine. Ce problème est représenté sur la figure 1. Dans la partie droite de cette figure, nous nous intéressons à un problème où des particules circulent dans un milieu unidimensionnel. La position est repérée par la coordonnée d'espace x. On note u(x) la densité de particules en x. Certaines particules entrent ou sortent du domaine en x, on les note f(x) le terme source les représentant. De plus, les particules se déplacent à travers le domaine, on note q(x) le flux de particules en x (le nombre de particules qui traversent l'axe vertical d'abscisse x). Ce flux est négatif si les particules vont vers la gauche (x décroissants) et positif si elles vont vers la droite (x croissants).

On s'intéresse au cas où les flux sont à l'équilibre, il n'y a donc pas d'accumulation de particules en aucun point de l'espace. Le problème ne dépend pas du temps.

Si l'on considère un élément du domaine de taille δx comme sur la droite de la figure 1, le nombre de particules doit rester constant au cours du temps. On obtient donc la relation de conservation $q(x) - q(x + \delta x) + f(x)\delta x = 0$, ce qui donne

$$\frac{\partial q}{\partial x} = f. ag{1}$$

FIGURE 1 – Un flux de particules. Gauche : représentation du problème. Droite : équilibre des flux.

De plus, on considère que les particules fuient les zones de forte densité : le flux q(x) est orienté dans le sens inverse du gradient de u. On note donc

$$q(x) = -k(x)\frac{\partial u}{\partial x}(x). \tag{2}$$

Ici k est un coefficient positif qui peut dépendre de l'espace. Il traduit le rapport de proportionnalité entre le gradient de la densité et le flux qui en résulte. Ainsi, pour une densité fixée, si k est grand alors les particules circuleront facilement et le flux sera important; à l'inverse, un k petit traduit le fait que les particules ont du mal à circuler dans le milieu. On dit que k est un coefficient de diffusion.

L'équation finale sur u est donc

$$-\frac{\partial}{\partial x}\left(k\frac{\partial u}{\partial x}\right) = f.$$

Si l'on considère plusieurs dimensions d'espace, cette équation devient

$$-\nabla \cdot (k\nabla u) = f,$$

où $\nabla \cdot$ et ∇ sont respectivement les opérateurs divergence et gradient.

En pratique les particules peuvent réellement représenter des particules physiques, dans ce cas u sera une densité de particules, q un flux de particules, f un terme représentant l'apparition ou la disparition de particules et k sera un coefficient de diffusion des particules. On peut aussi dire que les particules représentent de l'énergie thermique. Dans ce cas, u sera la température, q un flux thermique, f une source ou un puit de chaleur et k un coefficient de diffusion thermique. Nous citerons une dernière possibilité selon laquelle les particules sont des individus (humains ou animaux). Dans ce cas, u correspond à une densité de population, q à un flux de population, f représente des naissances ou des morts dans la population et k est un coefficient de diffusion représentant la facilité avec laquelle la population peut se déplacer.

!! TABLEAU!!

!! CONDITIONS FRONTIERES!!

FIGURE 2 – Un flux de particules. Gauche : représentation du problème. Droite : équilibre des flux.

Un autre cas où ces équations apparaissent est le cas d'un matériau soumis à des contraintes mécaniques. Par exemple, on représente sur la figure 2 une barre élastique en équilibre.

La barre dans son état initial est représentée en pointillés. Sous l'effet d'une force linéique f, cette barre s'allonge et atteint l'état d'équilibre représenté en bas de la figure. On note u(x) le déplacement de matière qui a eu lieu entre l'état sous la charge f et l'état de référence en pointillés.

On considère que la barre est à l'équilibre mécanique. On note q(x) la force qu'exerce la section de gauche sur la section de droite en x. En faisant un bilan de force comme sur la partie droite de la figure 1, les forces s'exerçant sur une portion infinitésimale de barre sont la force q(x) à gauche, la force $-q(x+\delta x)$ à droite et la force linéique $f(x)\delta x$. La barre étant à l'équilibre la somme de ces forces est nulle. On retrouve donc (1).

De plus, la force s'exerçant en x à travers la section de la barre est proportionnelle à l'élongation de la barre et s'oppose au mouvement imposé. Ceci est intuitif, pensez à un élastique si vous l'allongez il s'exerce une force qui tend à le faire revenir vers sa position initiale. De plus, plus l'élongation est importante, plus l'intensité de la force est grande. On obtient donc la loi d'élasticité (2) où k est un coefficient de raideur : plus k est grand, plus la barre est raide, plus il faut forcer pour la déformer. En pratique, le coefficient de raideur dépend du matériau choisi et de la géométrie de la section de la barre.

Notons que dans (2), la dérivée en espace correspond à l'élongation de la barre en x. Pour s'en convaincre, on regardera la partie droite de la figure 2. Un élément de matière de longueur δx dans sa position de référence a pour longueur $x + \delta x + u(x + \delta x) - u(x) - x$ sous charge f. La nouvelle longueur est donc de $\delta x + u(x + \delta x) - u(x) \simeq \left(1 + \frac{\partial u}{\partial x}\right) \delta x$ et la dérivée partielle en x est donc bien une élongation linéique.

!! CONDITIONS FRONTIERES!! La partie hachurée à gauche du dessin représente le fait que la barre est encastrée dans un mur. Ainsi son déplacement est forcément nul à gauche.

!! EDP elliptique!! A faire en exo!!

- 1.2 Équation de transport
- 1.3 Équation de la chaleur
- 1.4 Équation des ondes
- 2 Équations elliptiques
- 3 L'équation de transport
- 4 L'équation de la chaleur
- 5 L'équation des ondes