Principal Component Analysis: dalla teoria alla pratica

Marco Buracchi

Università degli studi di Firenze

18 febbraio 2018

Sommario

Principal Component Analysis

Cosa fa?

Come funziona?

Implementazione Python

Strumenti

Implementazione

Caso di studio

Attacchi

Analisi

Risultati

PCA

- Trasformazione lineare della matrice dei dati ${\mathcal X}$
- Misurazione della variazione delle variabili utilizzando un numero minore di "fattori"
- Trasportare il problema in uno spazio k-variato (generalmente bi-trivariato)
- Semplificazione di visualizzazione e lettura dei dati

Esempio

- 40 campioni
- 2 variabili

Esempio - 2

 Nessuna delle due variabili descrive completamente la variabilità dei dati

Componenti

- Prendiamo come componenti principali le linee blu
- La prima componente spiega la massima percentuale di variabilità rappresentabile in una dimensione

Varianza

- Questa percentuale di variabilità può essere calcolata tramite la varianza
- La varianza è un indice della dispersione dei dati lungo una particolare direzione
- La varianza è indipendente dal sistema di riferimento
- Ruotare gli assi mantiene inalterata la varianza totale

Componenti - 2

- La prima componente cattura quasi tutta la variabilità presente nei dati (99.83%)
- La seconda descrive la rimanente (0.17%)
- Generalizzando, le componenti principali successive spiegano una sempre minore percentuale della variabilità originale
- Le ultime componenti principali descrivono principalmente rumore

1. Standardizzazione

- Standardizzare i dati (media = 0, varianza = 1)
- Possiamo lavorare con variabili su scale e unità di misure differenti
- 2. Calcolo covarianza/correlazione
 - Calcoliamo la matrice S di covarianza

$$S = \frac{1}{n-1} \sum_{1}^{n} (x - \mu)(x - \mu)^{T}$$

- Possiamo usare anche la matrice di correlazione
- 3. Calcolo autovalori/autovettori

•
$$S \times v = \lambda \times v$$

Funzionamento

4. Scelta delle componenti

- · Ordiniamo in maniera decrescente gli autovalori ottenuti
- Selezioniamo i primi k
- ullet Costruiamo ${\cal V}$, la matrice dei rispettivi autovettori

5. Rotazione dei dati

- Moltiplichiamo i dati originali per gli autovettori che indicano le direzioni dei nuovi assi (componenti principali)
- I dati ruotati vengono chiamati score

$$Sc = \mathcal{X} \times \mathcal{V}$$

Strumenti utilizzati

• Linguaggio: Python

• Libreria per l'analisi dei dati: PANDAS

Dataset: IRIS

PANDAS

- Libreria Python, open source, ad alte prestazioni e con licenza BSD
- Strutture dati e strumenti per l'analisi facili da usare (R-like)
 - Serie (unidimensionali)
 - Dataframe (bidimensionali)
- Dati organizzati in maniera relazionale o etichettata
- Sponsorizzato da NumFocus

 sviluppo continuo, a livello mondiale e sistema di donazioni a supporto

Dataset

- Dataset IRIS
- 150 misurazioni di fiori iris
- 3 diverse specie

Caricamento Dataset

1	sepal_len	sepal_wid	petal_len	petal_wid	class
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica

Divisione valori

- Matrice valori numerici $X \in \mathcal{M}^{150 \times 4}$
- Vettore specie $y \in \mathcal{M}^{150 \times 1}$

```
\# X = \text{tabella con valori}, y = \text{etichette} X = df.ix[:,0:4].values y = df.ix[:,4].values
```


Analisi descrittiva

```
# creazione istogrammi
feature_dict = {0: 'sepal length [cm]',
                1: 'sepal width [cm]',
                2: 'petal length [cm]',
                3: 'petal width [cm]'}
with plt.style.context('seaborn-whitegrid'):
    plt.figure(figsize = (8, 6))
    for cnt in range (4):
        plt.subplot(2, 2, cnt+1)
        for lab in ('Iris-setosa', 'Iris-versicolor', 'Iris-virginica'):
            plt.hist(X[y=lab, cnt],
                      label=lab,
                      bins=10.
                      alpha = 0.3.
        plt.xlabel(feature_dict[cnt])
    plt.legend(loc='upper right', fancybox=True, fontsize=8)
    plt.tight_layout()
    plt.show()
```


Analisi descrittiva

Analisi descrittiva

- Valori su scale diverse richiedono standardizzazione
- Usiamo la funzione di libreria

```
  \# \  \, \text{normalizzazione} \  \, \text{dati} \\  X\_\text{std} = S \text{tandardScaler()}. \, \text{fit\_transform(X)}
```


Autovalori e autovettori

```
# vettore delle medie e matrice di covarianza
mean\_vec = np.mean(X\_std, axis=0)
cov_mat = (X_std - mean_vec).T.dot((X_std - mean_vec)) / (X_std.shape[0]-1)
print ('Matrice di covarianza calcolata: \n%s\n' %cov_mat)
# funzione di libreria
print('Matrice di covarianza NumPy: \n%s\n' %np.cov(X_std.T))
separate()
# calcolo autovalori e autovettori su matrice di covarianza
cov_mat = np.cov(X_std.T)
eig_vals, eig_vecs = np.linalg.eig(cov_mat)
print('Autovettori cov: \n%s\n' %eig_vecs)
print ('Autovalori cov: \n%s\n' %eig_vals)
separate()
# calcolo autovalori ed autovettori su matrice di correlazione dati
     standardizzati
cor_mat1 = np.corrcoef(X_std.T)
eig_vals, eig_vecs = np.linalg.eig(cor_mat1)
print('Autovettori corrSTD: \n%s\n' %eig_vecs)
print('Autovalori corrSTD: \n%s\n' %eig_vals)
separate()
```


Autovalori e autovettori

```
# calcolo autovalori ed autovettori su matrice di correlazione dati grezzi
cor.mat2 = np.corrcoef(X.T)
eig.vals, eig.vecs = np.linalg.eig(cor.mat2)
print('Autovettori corr: \n%s\n' %eig.vecs)
print('Autovalori corr: \n%s\n' %eig.vals)
separate()

# decomposizione ai valori singolari
u,s,v = np.linalg.svd(X.std.T)
print('Autovettori SVD: \n%s\n' %u)
separate()
```

In tutti i casi otteniamo la matrice

```
    0.52237162
    -0.37231836
    -0.72101681
    0.26199559

    -0.26335492
    -0.92555649
    0.24203288
    -0.12413481

    0.58125401
    -0.02109478
    0.14089226
    -0.80115427

    0.56561105
    -0.06541577
    0.6338014
    0.52354627
```


Selezione componenti

- Gli autovettori calcolati forniscono solamente la direzione perché sono tutti a norma unitaria
- Per scegliere i più interessanti ordiniamo i rispettivi autovalori

```
# ordinamento degli autovalori
## creazione coppie (autovalore,autovettore)
eig_pairs = [(np.abs(eig_vals[i]), eig_vecs[:,i]) for i in range(len(eig_vals))]
## Ordinamento dal maggiore al minore
eig_pairs.sort(key=lambda x: x[0], reverse=True)
```


Varianza spiegata

- Calcoliamo la varianza spiegata dalle singole componenti
- Visualizziamo il risultato su un grafico

Varianza spiegata

Matrice di proiezione

- Passiamo da 4 a 2 dimensioni
- Estraiamo le prime due componenti dalla matrice degli autovettori

ullet Creiamo la matrice di proiezione ${\mathcal W}$

```
\mathcal{W} = \begin{bmatrix} 0.52237162 & -0.37231836 \\ -0.26335492 & -0.92555649 \\ 0.58125401 & -0.02109478 \\ 0.56561105 & -0.06541577 \end{bmatrix}
```


Proiezione

• Proiettiamo nel nuovo sottospazio

$$\mathcal{Y} = \mathcal{X} imes \mathcal{W} \qquad \mathcal{Y} \in \mathcal{M}^{150 imes 2}$$

proiezione nel nuovo spazio $Y = X_std.dot(matrix_w)$

Risultato

Post Scriptum

- ullet Esiste una funzione di libreria che calcola ${\mathcal Y}$ direttamente da ${\mathcal X}$
- L'unico parametro da fornire è il numero di componenti che si vogliono prendere in considerazione

```
# pacchetto scikit-learn
sklearn_pca = sklearnPCA(n_components=2)
Y_sklearn = sklearn_pca.fit_transform(X_std)
```


Caso di studio

Caso di studio

Attacco SMURF

Attacco Neptune

Attacchi Network Probe

NP

Analisi

Preprocessing

Rilevazione

Rilevazione

Bibliografia

T.W. Anderson.

An Introduction to Multivariate Statistical Analysis.

Wiley Series in Probability and Statistics. Wiley, 2003.

Multivariate analysis.

Probability and mathematical statistics. Academic Press, 1979.

http://pandas.pydata.org/pandas-docs/stable/index.html.

http://pandas.pydata.org/.

An application of principal component analysis to the detection and visualization of computer network attacks.

Annales Des Télécommunications, 61(1):218–234, Feb 2006.

