- Combination	→ Combination of Ridge & Luno		
-> Helpful when	n dealing with high dimensionality data and not sure if all features are		
important o	or not in predicting the target.		
\			
1	$\lambda = a+b \qquad hyperparameters$ $(y_1 - \hat{y}_1^2 + a \beta ^2 + b \beta $ $l1 - ratio = \frac{a}{a+b} \qquad default \lambda = 1, l1 - ratio = 0.5$	ll-rato = a	
L= >	(y,-y)2+a B 2+b B 1 rato = 0.5	a= x l1_rate	
	a+b	b= \lambda-a	
- Also help	ful When dealing with multicoknearity		
<u>'</u>			
	class sklearn.linear_model. ElasticNet (alpha=1.0, *, l1_ratio=0.5, fit_intercept=True, precompute=False max_iter=1000, copy_X=True, tol=0.0001, warm_start=False, positive=False, random_state=None, selection='cy		
		/circ) ¶ [source]	
	Linear regression with combined L1 and L2 priors as regularizer.		
	Minimizes the objective function:		
	1 / (2 * n_samples) * y - Xw ^2_2 + alpha * l1_ratio * w _1		
	+ 0.5 * alpha * (1 - l1_ratio) * w ^2_2		
	If you are interested in controlling the L1 and L2 penalty separately, keep in mind that this is equivalent to:		
	a * w _1 + 0.5 * b * w _2^2		
	where:		
	alpha = a + b and l1_ratio = a / (a + b)		
	The parameter I1_ratio corresponds to alpha in the glmnet R package while alpha corresponds to the lambda p		
	glmnet. Specifically, I1_ratio = 1 is the lasso penalty. Currently, I1_ratio <= 0.01 is not reliable, unless you supply sequence of alpha.	your own	