Matrices, suites récurrentes

Sujet 1: Théo Guillemaut

.

Ex. 19.1 Soit $M = \begin{pmatrix} 0 & 2 \\ 3 & -1 \end{pmatrix}$ la matrice d'un endomorphisme $f : E \to E$ dans la base $\mathcal{B} = (e_1, e_2)$.

Donner la matrice de f dans $\mathcal{B}' = (e_1 + e_2, e_1 - e_2)$.

Sujet 2: Nina Pommier

.

Ex. 19.2 Soient u = (0; 1; 2), v = (1; 2; 0) et w = (1; 0; -4).

- 1) La famille (u; v; w) est-elle libre? liée?
- 2) La famille (u; v; w) est-elle génératrice de \mathbb{R}^3 ?

Sujet 3 : Jérémi Roudil

 $\underbrace{\mathbf{Ex. } 19.3}_{\bullet} \quad \text{Soit } \phi : \left\{ \begin{array}{l} \mathbb{R}^2 & \to & \mathbb{R}^2 \\ (x;y) & \mapsto & (x+y;x-y) \end{array} \right. .$

Donner la matrice de ϕ dans la base $\mathcal{B} = ((2;1);(1;2))$.

Sujet 4 : Exos supplémentaires

Ex. 19.4 Soit $\phi \in \mathcal{L}(\mathbb{R}^2)$ et \mathcal{C} la base canonique de \mathbb{R}^2 .

On note M la matrice de ϕ dans \mathcal{C} .

Donner une CNS sur M pour que $\phi \circ \phi = 0$.

Ex. 19.5 Soit $\phi: P \in \mathbb{R}_3[X] \mapsto \phi(P) = P(-X) \in \mathbb{R}_3[X]$.

- 1) Calculer l'image par ϕ de la base canonique de $\mathbb{R}_3[X]$.
- 2) Montrer que ϕ est un automorphisme.
- 3) Montrer que ϕ est une symétrie.

Ex. 19.6 Soit $\phi: P \in \mathbb{R}_3[X] \mapsto \phi(P) = P(0) - P \in \mathbb{R}_3[X]$.

- 1) Montrer que ϕ est linéaire.
- 2) Calculer Ker ϕ .
- 3) Calculer $\operatorname{rg} \phi$.
- 4) Calculer l'image par ϕ de la base canonique de $\mathbb{R}_3[X]$.
- 5) Calculer Im ϕ .
- 6) ϕ est-elle surjective?

Lycée Lafayette Colles 2018/2019

Ex. 19.7 Soit $r \in \mathbb{K}^*$ (ici $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$).

On pose $R = r + \frac{1}{r}$ et pour tout entier $n \in \mathbb{N}$, $U_n = r^n + \frac{1}{r^n}$.

- 1) Montrer que si $R \in \mathbb{N}$ alors, pour tout entier $n \in \mathbb{N}$, $U_n \in \mathbb{N}$.
- 2) Soit $n \in \mathbb{N}$. Exprimer U_{n+2} en fonction de R, U_n et U_{n+1} .
- 3) Refaire la question 1) par récurrence double.
- 4) Montrer que pour tout entier n, $U_n = P_n(R)$ où P_n est un polynôme.
- 5) Donner un exemple d'*irrationnel (réel)* r tel que $R = r + \frac{1}{r}$ est entier. Écrire la propriété de la question 1) pour ce réel.
- 6) Même question mais on veut r complexe non réel (et $r \neq \pm i$).

<u>Ex. 19.8</u> Soit $r \in \mathbb{R}$ et u la suite définie par $u_0 = 0$ et $u_{n+1} = u_n^2 + r$.

- 1) Quel est le comportement de la suite u pour r = 0?
- 2) Quel est le comportement de la suite u pour $r > \frac{1}{4}$?
- 3) Quel est le comportement de la suite u pour r < -2?
- 4) On suppose maintenant que $r \in \left]0; \frac{1}{4}\right]$. Étudier la suite, notamment son sens de variation et son éventuelle limite.