Estimation and Detection (Fall - 2024)

- * Total points: 100
- * Due 10/21/2024

For all simulations, let the seed be 101, and the noise is WGN with variance σ^2 and zero mean.

1. (100 points)

In the DC level in WGN problem:

$$x[n] = A + \omega[n], \ n = 0, 1, ..., N - 1.$$

We mentioned that $\hat{\alpha} = \bar{x}^2$ is asymptotically optimal for estimating A^2 .

- (a) (5 points) Obtain $\mathbb{E}\{\hat{\alpha}\}\$ in terms of A. Is it unbiased?
- (b) (10 points) Obtain $var{\hat{\alpha}}$ in terms of A. Does it achieve the CRLB?
- (c) (5 points) Let \bar{x} be a variable. $g(\bar{x}) = \bar{x}^2$ is a nonlinear function of \bar{x} . Let $\tilde{g}(\bar{x})$ be the first order Taylor approximation at the Center A. Write down $\tilde{g}(\bar{x})$.
- (d) (15 points) Following (c), when $N \to \infty$, \bar{x} has very high probability in the linear approximation region. That is $\tilde{g}(\bar{x}) \approx g(\bar{x})$. Obtain $\mathbb{E}\{\tilde{g}(\bar{x})\}$ and $\operatorname{var}\{\tilde{g}(\bar{x})\}$ as functions of N for N=2:1:256.
- (e) (10 points) Repeat (a)-(d), let A=1 and $\sigma^2=0.1$. Plot $\mathbb{E}\{\hat{\alpha}\}$ and $\mathbb{E}\{\widetilde{g}(\bar{x})\}$ as functions of N for N=1:1:256. Also, plot $\mathrm{var}\{\hat{\alpha}\}$ and $\mathrm{var}\{\widetilde{g}(\bar{x})\}$ as functions of N for N=2:1:256.

- (f) (30 points) Now, we would like to verify the results via Monte Carlo simulation. Let the number M of the realizations be 4096, and $\widehat{\mathbb{E}\{\widetilde{g}(\bar{x})\}} = \frac{1}{M} \sum_{m=1}^{M} \bar{x_m}^2, \, \operatorname{var}\{\widetilde{g}(\bar{x})\} = \frac{1}{M} \sum_{m=1}^{M} (\bar{x_m}^2 A^2)^2.$ Plot $\widehat{\mathbb{E}\{\widetilde{g}(\bar{x})\}}$ and $\operatorname{var}\{\widetilde{g}(\bar{x})\}$ in the same figures for (e).
- (g) (10 points) Let $A=1,\,\sigma^2=1.$ Repeat (e)-(f).
- (h) (15 points) We would like to obtain an estimator that maximize the likelihood function, i.e. $\widehat{A_{ML}^2}$. Using transformation of variable, write down the likelihood function of A^2 , i.e. $P(\alpha;\underline{x})$. Then, obtain $A_{ML}^{\hat{2}}$ by maximizing $P(\alpha;\underline{x})$.