Home ► My courses ► EEE117-2017S-Tatro ► Homework ► Homework 11 - Chapter 14

Started on Saturday, 8 April 2017, 1:38 PM

State Finished

Completed on Thursday, 13 April 2017, 6:05 PM

Time taken 5 days 4 hours

Grade 100.00 out of 100.00

Correct

Mark 20.00 out of 20.00

P14.1 9ed

a) Find the cutoff frequency in hertz.

$$f_c = 2021.27$$
 \checkmark Hz

b) Find $H(j\omega = 0)$ in polar form.

$$H(jw = 0) = Mag$$
 at angle 0 \checkmark ° (Degrees)

Now examine the output magnitude and phase as the input frequency varies.

c) Find H(jw = $0.2\omega_c$) in polar form..

$$H(jw = 0.2\omega_c) = Mag = 0.981$$
 at angle -11.31 \checkmark ° (Degrees)

d) Find $H(j\omega = \omega_c)$ in polar form.

$$H(j\omega = \omega_c) = Mag \left[0.7071 \right]$$
 at angle $\left[-45 \right]$ $\checkmark \circ (Degrees)$

e) Find H(j $\omega = 5\omega_c$) in polar form.

$$H(jw = 5\omega_c) = Mag = 0.196$$
 at angle -78.69 \checkmark (Degrees)

Now given $v_i(t) = 10 \cos(\omega t) V$. Write the steady-state expression for v_0 for:

f)
$$\omega = 0.2\omega_{\rm c}$$

$$v_0(t) = 9.81$$
 $cos(2540)$ $t + -11.31$ $cos(3540)$

g)
$$\omega = \omega_c$$

$$v_0(t) = 7.07$$
 $\sqrt{\cos(12700)}$ $t + -45$ $\sqrt{\circ}$ Volts

h)
$$\omega = 5\omega_c$$

$$v_0(t) = \begin{vmatrix} 1.96 & \checkmark \cos(| 63500 & \checkmark t + | -78.69 & \checkmark \circ) \text{ Volts} \end{vmatrix}$$

Correct

Correct

Mark 20.00 out of 20.00

P14.3_9ed

A resistor R₁ is added in series with the inductor in this circuit.

Given: $R_1 = 75 \Omega$ (Ohm) L = 10 mH (mill H) $R = 127 \Omega$ (Ohm)

a) Find the s domain transfer function $H(s) = V_0/V_1$.

b) At what frequency will the magnitude of H(jw) be maximum?

$$W_{H,max} = \boxed{0}$$
 rad/sec

c) What is maximum value of the magnitude of H(jw)?

$$H(jw)_{max} = \boxed{0.6287}$$

d) At what frequency will the magnitude of H(jw) equal its maximum value divided by square root of 2?

$$W_{H,max,sqrt(2)} = 20160.7$$
 rad/sec

e) Find w_c (omega_c)

$$w_c = 20160.7$$
 \checkmark rad/sec

Now examine the transfer function magnitude and phase as the frequency varies.

f) Find H(jw = 0) in polar form..

$$H(jw = 0) = Mag = 0.6287$$
 at angle 0 \checkmark ° (Degrees)

g) Find $H(jw = 0.3w_c)$ in polar form.

$$H(jw = 0.3w_c) = Mag = 0.6022$$
 at angle -16.70 \checkmark (Degrees)

h) Find $H(jw = w_c)$ in polar form.

$$H(jw = w_c) = Mag \left[0.446 \right]$$
 at angle $\left[-45 \right]$ \checkmark (Degrees)

i) Find $H(jw = 3w_c)$ in polar form.

$$H(jw = 3w_c) = Mag = 0.1988$$
 at angle -71.57 \checkmark (Degrees)

Correct

Correct

Mark 20.00 out of 20.00

P14.3_6ed

A resistor R_L is connected in parallel with the capacitor in this circuit. The circuit thus becomes a loaded low-pass filter.

Given: $R = 20 \text{ k}\Omega$ (kilo Ohm) C = 4 nF $R_L = 300 \text{ k}\Omega$ (kilo Ohm)

a) Find the s domain transfer function $H(s) = V_0/V_1$.

$$H(s) = 12500$$
 $\checkmark / (s + 13333.33 $\checkmark)$$

b) Find w_c (omega_c)

$$w_c = \boxed{13333.33}$$
 \checkmark rad/sec

Now examine the transfer function magnitude and phase as the frequency varies.

c) Find H(j0)

d) Find $H(jw_c)$ i.e. evaluate H(jw) at $w = w_c$

$$H(jw_c) = Mag \left[0.6629 \right]$$
 Angle $\left[-45 \right]$

e) Find $H(j0.2w_c)$ i.e. evaluate H(jw) at $w = 0.2 w_c$

$$H(j0.2w_c) = Mag 0.9193$$
 Angle -11.31

f) Find H(j8w_c) i.e. evaluate H(jw) at $w = 8w_c$

$$H(j8w_c) = Mag = 0.1163$$
 Angle -82.87

Correct

Correct

Mark 20.00 out of 20.00

P14.10_9ed

a) Find the cutoff frequency f_c for this high-pass filter.

$$f_c = 636.62$$
 \checkmark Hz

b) Find the H(jw) for

$$H(jw = w_c) = \boxed{0.707}$$
 at angle $\boxed{45}$ ° (degrees)
 $H(jw = 0.2w_c) = \boxed{0.196}$ at angle $\boxed{78.69}$ ° $\boxed{11.3}$ ° $\boxed{0.98}$ at angle $\boxed{11.3}$ °

c) If $v_i(t) = 500 \cos(\omega t)$ mV (milli V), write the steady-state output voltage $v_o(t)$ for

For
$$\omega = \omega_c$$
, $v_o(t) = 353.5$ $\cos(wt + 45)$ o 0 mV (milli V)
For $\omega = 0.2\omega_c$, $v_o(t) = 98$ o 0 cos(wt + 78.69 o 0) mV (milli V)
For $\omega = 5\omega_c$, $v_o(t) = 490$ o 0 cos(wt + 11.3 o 0) mV (milli V)

Correct

Correct

Mark 20.00 out of 20.00

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

P14.11_9ed

Given: $R_c = 12.5 \text{ k}\Omega$ (kilo Ohm) C = 5 nF $R = 50 \text{ k}\Omega$ (kilo Ohm)

a) Find the cutoff frequency f_c for this high-pass filter.

$$f_c = \boxed{509.3}$$
 \checkmark Hz

b) Find the H(jw) for

$$H(jw = w_c) = \boxed{0.565}$$
 at angle $\boxed{45}$ \checkmark (degrees)

 $H(jw = 0.2w_c) = \boxed{0.1569}$ at angle $\boxed{78.69}$ \checkmark at angle $\boxed{11.31}$ \checkmark °

c) If $v_i(t) = 500 \cos(\omega t)$ mV (milli V), write the steady-state output voltage $v_0(t)$ for

For
$$\omega = \omega_c$$
, $v_o(t) = 282.5$ $< cos(wt + 45)$ $< cos(wt + 45)$ $< cos(wt + 45)$ $< cos(wt + 78.69)$ $< cos$

Correct