Metoda Simplex

Metody optymalizacji

• Warunki przekształcenia (nierówności w równanie):

WZORY I ZASADY

- \leq dodajemy nową zmienną x_i
- \geq odejmujemy nową zmienną x_i
- Kryterium wejścia:
 - MIN do bazy wejdzie zmienna dla której wartość $c_i z_i$ jest najmniejsza
 - MAX do bazy wejdzie zmienna dla której wartość $c_i z_i$ jest największa
- Kryterium wyjścia z bazy wyjdzie zmienna dla której wartość b_i/a_i jest najmniejsza (nie bierzemy pod uwagę wartości ujemnych)
- Przekształcenie macierzy:
 - wiersz z kryterium wyjścia dzielimy przez wartość leżącą na skrzyżowaniu kryterium wejścia oraz wyjścia.
 - pozostałe wiersze: od *i*-tego wiersza odejmujemy wiersz z kryterium wyjścia (z nowej macierzy) pomnożony przez wartość z i-tego wiersza leżącą w kolumnie z kryterium wejścia.

• Kryterium stopu:

- MIN gdy wszystkie wartości z wiersza $c_i z_i$ są nieujemne
- MAX gdy wszystkie wartości z wiersza $c_i z_i$ są niedodatnie

Warunki przekształcenia (nierówności w równanie):

- \leq dodajemy nową zmienną x_i
- \geq odejmujemy nową zmienną x_i

- Maximum funkcji: $f(x) = x_1 + 2x_2$
- Ograniczenia:

•
$$x_1 + x_2 \le 10$$

•
$$-2x_1 + x_2 \le 4$$

• Warunki nieujemności: $x_1, x_2 \ge 0$

Przekształcamy ograniczenia według powyższych zasad. Ograniczenia w przykładzie są typu \leq , w związku z tym dodajemy nowe zmienne x_3 oraz x_4 i przekształcamy nierówność w równanie:

$$x_1 + x_2 + x_3 = 10$$

$$-2x_1 + x_2 + x_4 = 4$$

Uzupełniamy pierwszą macierz Simplex. W pierwszym wierszu uzupełniamy współczynniki z funkcji f(x) stojące przy kolejnych zmiennych x_i (odpowiednio wpisanych w 2 wierszu). Analogicznie w wierszach 3 i 4 wpisujemy współczynniki przy kolejnych ograniczeniach. W kolumnie b_i wpisujemy wartości po znaku równości. W kolumnie pierwszej wstawiane są współczynniki w funkcji stojące przy zmiennych wstawionych w kolumnie drugiej.

- Maximum funkcji: $f(x) = x_1 + 2x_2$
- Przekształcone ograniczenia:

•
$$x_1 + x_2 + x_3 = 10$$

$$-2x_1 + x_2 + x_4 = 4$$

• Warunki nieujemności: $x_1, x_2 \ge 0$

	c_i		1	2	0	0		
		X_i X_j	x_{I}	x_2	x_3	x_4	b_i	b_i/a_i
Zależne	0	x_3	1	1	1	0	10	
od K - ilości ograniczeń	0	X_4	-2	1	0	1	4	
	$z_j = \sum_{i=0}^K c_i x_i$							
	$c_j - z_j$							

Uzupełniamy pierwszą macierz Simplex.

Wyliczamy wartości z dwóch ostatnich wierszy zgodnie z przedstawionym wzorem.

- Maximum funkcji: $f(x) = x_1 + 2x_2$
- Przekształcone ograniczenia:

•
$$x_1 + x_2 + x_3 = 10$$

$$-2x_1 + x_2 + x_4 = 4$$

• Warunki nieujemności: $x_1, x_2 \ge 0$

Zależne od K - ilości ograniczeń

	c_i		1	2	0	0		
_		X_i X_j	x_1	x_2	x_3	x_4	b_i	b_i/a_i
	0	x_3	1	1	1	0	10	
	0	x_4	-2	1	0	1	4	
	$z_j = \sum_{i=0}^K c_i x_i$		0*1+0*(-2) = 0	0*1+0*1	0*1+0*0	0*0+0*1		
	$c_j - z_j$		1-0	2-0	0-0	0-0		

Określamy kryterium wejścia:

Kryterium wejścia: MAX – do bazy wejdzie zmienna dla której wartość $c_i - z_i$ jest największa

Największa wartość $c_j - z_j$ to 2, czyli kryterium wejścia, to x_2

- Maximum funkcji: $f(x) = x_1 + 2x_2$
- Przekształcone ograniczenia:

•
$$x_1 + x_2 + x_3 = 10$$

•
$$-2x_1 + x_2 + x_4 = 4$$

• Warunki nieujemności: $x_1, x_2 \ge 0$

Zależne od K - ilości – ograniczeń

c_i c_j		1	2	0	0		
	x_i x_j	x_1	x_2	x_3	x_4	b_i	b_i/a_i
0	x_3	1	1	1	0	10	10
0	x_4	-2	1	0	1	4	4
$z_j = \sum_{i=0}^K c_i x_i$		0	0	0	0		
$c_j - z_j$		1	2	0	0		

Określamy kryterium wyjścia:

Kryterium wyjścia: z bazy wyjdzie zmienna dla której wartość b_i/a_i jest najmniejsza (nie bierzemy pod uwagę wartości ujemnych)

Najmniejszą nieujemną wartością jest 4, czyli kryterium wyjścia jest x_4 .

- Maximum funkcji: $f(x) = x_1 + 2x_2$
- Przekształcone ograniczenia:

•
$$x_1 + x_2 + x_3 = 10$$

•
$$-2x_1 + x_2 + x_4 = 4$$

• Warunki nieujemności: $x_1, x_2 \ge 0$

Zależne od K - ilości ograniczeń

	c_i c_j		1	2	0	0		
_		X_i X_j	x_1	x_2	x_3	x_4	b_i	b_i/a_i
	0	x_3	1	1	1	0	10	10
	0	x_4	-2	1	0	1	4	4
	$z_j = \sum_{i=0}^K c_i x_i$		0	0	0	0		
	$c_j - z_j$		1	2	0	0		

Kryterium wyjścia

• Kolejnym krokiem jest przekształcenie macierzy:

- wiersz z kryterium wyjścia dzielimy przez wartość leżącą na skrzyżowaniu kryterium wejścia oraz wyjścia zaznaczoną na zielono.
- pozostałe wiersze: od *i*-tego wiersza odejmujemy wiersz z kryterium wyjścia (już z nowej macierzy) pomnożony przez wartość z i-tego wiersza leżącą w kolumnie z kryterium wejścia.
- Dodatkowo zmienną kryterium wejścia wstawiamy zamiast tej z kryterium wyjścia.

c_i		1	2	0	0		
	X_i X_j	x_1	x_2	x_3	x_4	b_i	b_i/a_i
0	x_3	1	1	1	0	10	10
0	x_4	-2	1	0	1	4	4
$z_j = \sum_{i=0}^K c_i x_i$		0	0	0	0		
$c_j - z_j$		1	2	0	0		

Kryterium wyjścia

Kryterium wejścia

c_i c_j		1	2	0	0		
	X_i X_j	x_1	x_2	x_3	x_4	b_{i}	b_i/a_i
0	x_3	1	1	1	0	10	10
0	x_4	-2	1	0	1	4	4
$z_j = \sum_{i=0}^K c_i x_i$		0	0	0	0		
$c_j - z_j$		1	2	0	0		

Kryterium wyjścia

Kryterium wejścia

c_i c_j		1	2	0	0		
	X_i X_j	x_1	x_2	x_3	x_4	b_i	b_i/a_i
0	x_3	1-1*(-2)	1-1*1	1-1*0	0-1*1	10-1*4	
2	x_2	-2	1	0	1	4	
$z_j = \sum_{i=0}^K c_i x_i$							
$c_j - z_j$							

Na skrzyżowaniu jest 1, więc wiersz kryterium wyjścia się nie zmienił

c_i c_j		1	2	0	0		
	X_i X_j	x_1	x_2	x_3	x_4	b_i	b_i/a_i
0	x_3	3	0	1	-1	6	
2	x_2	-2	1	0	1	4	
$z_j = \sum_{i=0}^K c_i x_i$							
$c_j - z_j$							

c_i		1	2	0	0		
	x_i x_j	x_1	x_2	x_3	x_4	b_i	b_i/a_i
0	x_3	3	0	1	-1	6	
2	x_2	-2	1	0	1	4	
$z_j = \sum_{i=0}^K c_i x_i$		-4	2	0	2		
$c_j - z_j$		5	0	0	-2		

Kryterium stopu nie jest spełnione, więc przechodzimy do kolejnej iteracji:

 MIN – gdy wszystkie wartości z wiersza c_j – z_j są nieujemne

MAX - gdy wszystkie wartości z wiersza $c_j - z_j$ są niedodatnie

Kryterium wejścia: MAX – do bazy wejdzie zmienna dla której wartość $c_j - z_j$ jest największa

c_i		1	2	0	0		
	X_i X_j	x_{I}	x_2	x_3	x_4	b_i	b_i/a_i
0	x_3	3	0	1	-1	6	
2	x_2	-2	1	0	1	4	
$z_j = \sum_{i=0}^K c_i x_i$		-4	2	0	2		
$c_j - z_j$		5	0	0	-2		

Kryterium wejścia

Kryterium wyjścia: z bazy wyjdzie zmienna dla której wartość b_i/a_i jest najmniejsza (nie bierzemy pod uwagę wartości ujemnych)

c_i c_j		1	2	0	0		
	X_i X_j	x_1	x_2	x_3	x_4	b_i	b_i/a_i
0	x_3	3	0	1	-1	6	2
2	x_2	-2	1	0	1	4	-2
$z_j = \sum_{i=0}^K c_i x_i$		-4	2	0	2		
$c_j - z_j$		5	0	0	-2		

Kryterium wejścia

c_i c_j		1	2	0	0		
	X_i X_j	x_{I}	x_2	x_3	x_4	b_i	b_i/a_i
0	x_3	3	0	1	-1	6	2
2	x_2	-2	1	0	1	4	-2
$z_j = \sum_{i=0}^K c_i x_i$		-4	2	0	2		
$c_j - z_j$		5	0	0	-2		

Kryterium wyjścia

Kryterium wejścia

• Przekształcenie macierzy:

- wiersz z kryterium wyjścia dzielimy przez wartość leżącą na skrzyżowaniu kryterium wejścia oraz wyjścia.
- pozostałe wiersze: od *i*-tego wiersza odejmujemy wiersz z kryterium wyjścia (z nowej macierzy) pomnożony przez wartość z i-tego wiersza leżącą w kolumnie z kryterium wejścia.

c_i c_j		1	2	0	0		
	X_i X_j	x_{I}	x_2	x_3	x_4	b_i	b_i/a_i
0	x_3	3	0	1	-1	6	2
2	x_2	-2	1	0	1	4	-2
$z_j = \sum_{i=0}^K c_i x_i$		-4	2	0	2		
$c_j - z_j$		5	0	0	-2		

c_i		1	2	0	0		
	x_i x_j	x_1	x_2	x_3	x_4	b_i	b_i/a_i
1	x_1	1	0	1/3	-1/3	2	
2	x_2						
$z_j = \sum_{i=0}^K c_i x_i$							
$c_j - z_j$							

c_i c_j		1	2	0	0		
	X_i X_j	x_{I}	x_2	x_3	x_4	b_i	b_i/a_i
0	x_3	3	0	1	-1	6	2
2	x_2	-2	1	0	1	4	-2
$z_j = \sum_{i=0}^K c_i x_i$		-4	2	0	2		
$c_j - z_j$		5	0	0	-2		

c_i c_j		1	2	0	0		
	X_i X_j	x_1	x_2	x_3	x_4	b_i	b_i/a_i
1	x_1	1	0	1/3	-1/3	2	
2	x_2	-2-1*(-2)	1-0*(-2)	0-1/3*(-2)	1-(-1/3)*(-2)	4-2*(-2)	
$z_j = \sum_{i=0}^K c_i x_i$							
$c_j - z_j$							

c_i		1	2	0	0		
	x_i x_j	x_{I}	x_2	x_3	x_4	b_i	b_i/a_i
1	x_1	1	0	1/3	-1/3	2	
2	x_2	0	1	2/3	1/3	8	
$z_j = \sum_{i=0}^K c_i x_i$							
$c_j - z_j$							

c_i c_j		1	2	0	0		
	X_i X_j	x_1	x_2	x_3	x_4	b_i	b_i/a_i
1	x_1	1	0	1/3	-1/3	2	
2	x_2	0	1	2/3	1/3	8	
$z_j = \sum_{i=0}^K c_i x_i$		1	2	5/3	1/3		
$c_j - z_j$		0	0	-5/3	-1/3		

Kryterium stopu spełnione:

MIN - gdy wszystkie wartości z wiersza $c_j - z_j$ są nieujemne

MAX - gdy wszystkie wartości z wiersza $c_j - z_j$ są niedodatnie

Rozwiązanie (zielone pole): $x_1=2$, $x_2=8$

f(x) = 18