

EGEC 180 – Digital Logic and Computer Structures

Spring 2024

Lecture 8: Designing Circuits in AND/NAND and OR/NOR(2.3.3)

Rakesh Mahto, Ph.D.

Office: E 314, California State University, Fullerton
Office Hour: Monday and Wednesday 2:00 - 3:30 pm

Or by appointment

Or by appointment

Office Hour Zoom Meeting ID: 891 2907 5346

Email: <u>ramahto@fullerton.edu</u> **Phone No**: 657-278-7274

Designing Circuits in NAND/NAND and NOR/NOR Form

DeMorgan's Theorem

Equivalent Gate Circuits

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Equivalent gate circuits

DeMorgan Rules Graphical Symbols

To obtain a De Morgan equivalent gate symbol for an AND, OR, NAND, or NOR gate:

1. Add bubbles to all inputs and bubbles to all outputs

- 2. Change ANDs to ORs and Change ORs to ANDs
- 3. Two bubbles result in no bubble; Double Negation Theorem

Example Problem #1 Graphical DeMorgan's

To obtain a De Morgan equivalent gate symbol for an AND, OR, NAND, or NOR gate:

1. Add bubbles to all inputs and bubbles to all outputs

- 2. Change ANDs to ORs and Change ORs to ANDs
- 3. Two bubbles result in no bubble; Double Negation Theorem

DeMorgan's Theorem Practice Problem #1

Given the following truth function $F_1(A,B,C,D) = ABC' + ABCD' + BCD$

$$F_1(A,B,C,D) = AB + BCD$$

Practice Problem #1

Graphical DeMorgan's

Double Negation

1. Add bubbles to all inputs and bubbles to all outputs

2. Change ANDs to ORs and Change ORs to ANDs

3. Apply Double Negation

Two-Level Gate Circuits

The maximum number of gates cascaded in series between a circuit input and output is referred to as the number of

levels.

A function written in SOPs form or POSs form corresponds directly to a two-level gate circuit.

We assume that all literals are available as circuit inputs. Inverters used to form the variable complements are not counted when determining the number of levels in a circuit.

AND-OR to NAND-NAND Transformation

Procedure for designing a minimum two-level NAND-NAND circuit:

- Find a minimum sum-of-products expression for F using a Karnaugh Map
- 2. Draw the corresponding two-level AND-OR circuit.

3. Add bubbles to inputs and bubbles to outputs

AND-OR to NAND-NAND Transformation

4. Replace all gates with NAND gates leaving the gate interconnection unchanged.

AND-OR to NAND-NAND Transformation (Practice Problem #2)

Given $F_2(A,B,C,D) = A'B'C' + BD' + AC'$

Find a minimum sum-of-products expression for F using a Karnaugh Map

$$F_2(A,B,C,D) = B'C' + BD' + AC'$$

2. Draw the corresponding two-level AND-OR circuit.

AND-OR to NAND-NAND Transformation

3. Add bubbles to inputs and bubbles to outputs

4. Replace all gates with NAND gates leaving the gate interconnection unchanged.

OR-AND to NOR-NOR Transformation

Procedure for designing a minimum two-level NAND-NAND circuit:

- 1. Find a minimum *product-of-sum* expression for F using a Karnaugh Map
- 2. Draw the corresponding 3. Add bubbles to inputs and two-level OR AND circuit. bubbles to outputs

OR-AND to NOR-NOR Transformation

4. Replace all gates with NOR gates leaving the gate interconnection unchanged.

OR/AND to NOR/NOR (Practice Problem #3)

Given $F_2(X,Y,Z) = X'Z' + XZ + Y$

 Find a minimum product-of-sum expression for F using a Karnaugh Map

$$F_2(X,Y,Z) = (X+Y+Z')(X'+Y+Z)$$

2. Draw the corresponding two-level OR-AND circuit.

OR/AND to NOR/NOR (Practice Problem #3)

3. Add bubbles to inputs and bubbles to outputs

4. Replace all gates with NOR gates leaving the gate interconnection unchanged.

Q&A

