Asymptotická složitost algoritmů

Cvičení 1. Určete, co bude u následujících dat rozhodující délkou vstupu při určení časové složitosti algoritmu:

- (a) posloupnost prvků,
- (b) graf o n vrcholech a m hranách,
- (c) matice $n \times m$,
- (d) číslo, jehož hodnota je podstatná pro délku výpočtu (např. test prvočíselnosti).

Cvičení 2. Uspořádejte následující funkce do posloupnosti f_1, f_2, \ldots tak, aby $f_1 \in O(f_2), f_2 \in O(f_3), \ldots$ Dále určete rozklad, v němž funkce f a g leží v jedné třídě právě když $f \in \Theta(g)$.

$$n!, \quad n^{\frac{1}{\ln n}}, \quad e^n, \quad n^2, \quad \ln n!, \quad 2^{2^{n+1}}, \quad \ln \ln n, \quad n, \quad 4^{\ln n}, \quad n \log n, \quad \sum_{k=1}^n \frac{1}{k}, \quad \ln n^{\ln n}, \quad (\ln n)^{\ln n}.$$

Cvičení 3. Dokažte nebo vyvraťte: Pro každou dvojici funkcí $f, g: N \to R$ platí:

- (a) pokud $f(n) \in O(g(n))$, pak $g(n) \in O(f(n))$,
- (b) pokud $f(n) \in O(g(n))$, pak $2^{f(n)} \in O(2^{g(n)})$,
- (c) pokud $f(n) \in O(g(n))$, pak $g(n) \in \Omega(f(n))$,
- (d) $f(n) \in O(f(n)^2)$.

Cvičení 4. Dostaneme dvě čísla $a, b \in N$ (čísla mohou být i tak dlouhá, že se nevejdou do dvou proměnných) a chceme spočítat jejich součin. Z určitých důvodu nemůžeme použít instrukci pro násobení a instrukci pro bitový posun. Máme k dispozici pouze instrukci pro sčítání. Pro jednoduchost předpokládejme, že součet dvou čísel trvá konstantní čas.

Ukažte, že následující triviální řešení má exponenciální časovou složitost vůči velikosti vstupu.

mezivysledek := b for i := 2 to a do

mezivysledek := mezivysledek + b

 ${f return}\ mezivy sledek$

Cvičení 5. Vymyslete řešení předchozího cvičení s lineární časovou složitostí vůči velikosti vstupu.

Cvičení 6. Dokažte, že $\Omega(n \log n)$ je dolním odhadem pro časovou složitost porovnávacího třídícího algoritmu i v průměrném případě.

Návod: Buď D(T) součet délek všech cest z kořene do listů stromu T pro rozhodovací strom T s k > 1 listy, levým podstromem LT a pravým podstromem PT je D(T) = D(LT) + D(PT) + k

- (a) položme $d(k) = \min\{D(T)|T$ je rozhodovací strom s k > 1 listy},
- (b) Pak $d(k) = \min_{1 \le i \le k-1} \{d(i) + d(k-i) + k\},\$
- (c) $\exists c > 0 \text{ tž. } d(k) \geq c \log k$.

Vyberte si jednu z následujících úloh:

Domácí úkol 1. Dostanete balíček zamíchaných karet. Jakým způsobem ho setřídíte? Dokážete něco říci o tomto algoritmu? Jakou bude mít časovou složitost v nejhorším a průměrném případě? Jaké budou jeho nároky na pamět?

Domácí úkol 2. Zařaďte funkci $(n^{\log n})^{\log n}$ mezi funkce ze cvičení 2. Vztah k nejbližším funkcím shora i zdola zdůvodněte výpočtem, ne graficky.