Class Test 5

23rd October, 2025

Q1. Given any $A \subset X$, recall the boundary is defined as $\partial A := \overline{A} \cap \overline{X \setminus A}$, and the subset A is called nowhere dense if $\operatorname{int}(\overline{A}) = \emptyset$. Prove the following. $[2 \times 5 = 10]$

a) Suppose U is open in X. Show that ∂U is nowhere dense.

Solution : Note that boundary of any set is closed. Now, for any open set V, we have

$$V \subset \partial U = \bar{U} \cap \overline{X \setminus U} = \bar{U} \cap (X \setminus U) \Rightarrow V \cap U = \emptyset \Rightarrow V \cap \bar{U} = \emptyset \Rightarrow V = \emptyset.$$

Hence, $\operatorname{int}(\partial U) = \emptyset$, i.e., ∂U is nowhere dense.

b) Suppose C is closed in X. Show that ∂C is nowhere dense.

Solution : Suppose C is closed. Then, $U=X\setminus C$ is open. Now, $\partial C=\bar C\cap \overline{X\setminus C}=\overline{X\setminus U}\cap \bar U=\partial U$. Thus, ∂C is nowhere dense.

c) Give an example of some $A \subset X$, such that ∂A is not nowhere dense.

Solution : Consider $A=\mathbb{Q}\subset X=\mathbb{R}$, which is neither open nor closed. Now $\partial A=\mathbb{R}$, which is not nowhere dense.

d) Suppose $A \subset X$ is nowhere dense, and closed. Show that $A = \partial U$ for some $U \subset X$ open.

Solution : Since A is closed, consider $U=X\setminus A$, which is open. As A is nowhere dense, $U=X\setminus A$ is dense, i.e., $\bar{U}=X$. Then,

$$\partial U = \bar{U} \cap \overline{X \setminus U} = X \cap \bar{A} = X \cap A = A.$$

e) Give an example of some nowhere dense $A \subset X$ such that A is not a boundary of any open subset of X.

Solution : Consider $A=\left\{\frac{1}{n}\;\middle|\;n\geq1\right\}\subset X=\mathbb{R}.$ Then, $\operatorname{int}(\bar{A})=\emptyset$, and thus, A is nowhere dense. On the other hand, A is not closed, and hence cannot be the boundary of any open set (or any subset) of X.