

SPI통신

임베디드스쿨1기 Lv1과정 2021. 08. 14 이충재

SPI 직렬통신 (Serial Peripheral Interface)

MOSI, MISO, SCK, SS 4개의 통신선을 사용하는 직렬 동기통신 SPI는 마스터 또는 슬레이브로 동작

MOSI (Master Output Slave Input): 마스터 출력 슬레이브 입력 단자

MISO (Master Input Slave Output): 마스터 입력 슬레이브 출력 단자

SCK(Serial Clock): 클록신호 단자

SS (Slave Select): 슬레이브 선택 단자

장점: 통신제어 간단하고 다른 동기통신에 비하여 속도가 빠르다.

단점: 마스터와 슬레이브 1:1 통신을 하기 때문에 슬레이브가 많아지면 회로 복잡해진다.

SPI 동작 방식

마스터에서 SS을 통하여 슬레이브를 선택하고 SCK선을 통해서 클록신호를 슬레이브에 전달한다. 클록신호에 맞춰 마스터는 슬레이브에 데이터를 보내고 동시에 슬레이브의 데이터를 읽는다.

데이터 전송 방식

SPI통신 데이터 전송방식은 4가지가 있다.

Table 18-2. SPI Modes

SPI Mode	Conditions	Leading Edge	Trailing eDge
0	CPOL=0, CPHA=0	Sample (rising)	Setup (falling)
1	CPOL=0, CPHA=1	Setup (rising)	Sample (falling)
2	CPOL=1, CPHA=0	Sample (falling)	Setup (rising)
3	CPOL=1, CPHA=1	Setup (falling)	Sample (rising)

CPOL = 0 에서는 평상시에 클록신호가 L이다.

CPOL = 1 에서는 평상시에 클록신호가 H이다.

CPHA = 0 에서는 앞 엣지에서 데이터 샘플링

CPHA = 1 에서는 뒤 엣지에서 데이터 샘플링

. SPI Transfer Format with CPHA=0

위 그림에서 mode0, mode2 모두 앞쪽 엣지에서 샘플링(CPHA = 0)하고 mode0에서는 상승엣지(CPOL = 0), mode2에서는 하강엣지 (CPOL = 1)에서 샘플링한다.

SPI Transfer Format with CPHA=1

위 그림에서 mode1, mode3 모두 뒤쪽 엣지에서 샘플링(CPHA = 1)하고 mode1에서는 하강엣지, mode3에서는 상승엣지에서 샘플링 한다.

SPCR - SPI Control Register

Bit	7	6	5	4	3	2	1	0	
0x2C (0x4C)	SPIE	SPE	DORD	MSTR	CPOL	СРНА	SPR1	SPR0	SPCR
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

SPIE (SPI Interrupt Enable):

SPI전송이 완료되어 SPSR - SPIF가 1이되어 인터럽트가 발생하는것을 허용.

SPE (SPI Enable):

SPI 동작 허용. SPI통신을 하기 위해서는 무조건 1로 두어야 한다.

DORD (Data Order):

데이터 전송순서 결정. 이 비트가 1 이면 SPDR에 저장된 데이터비트를 LSB부터 전송. 0이면 MSB부터 전송.

MSTR (Master / Slave Select)

이 비트가 1이면 SPI모듈이 Master로 동작. 0이면 Slave로 동작

CPOL (Clock Polarity)

이 비트가 0이면 통신하지 않을때 SCK클록신호가 L상태에 있다. 1이면 통신하지 않을때 SCK 클록신호가 H상태에 있다.

CPHA (Clock Phase)

이 비트가 0이면 앞쪽 엣지에서 데이터 샘플링 동작을 하고 1이면 뒤쪽 엣지에서 데이터 샘플링 동작을 한다.

SPR 1 ~ 0: 클록신호 주파수 결정

SPI2X	SPR1	SPR0	SCK Frequency
0	0	0	f _{osc} /4
0	0	1	f _{osc} /16
0	1	0	f _{osc} /64
0	1	1	f _{osc} /128
1	0	0	f _{osc} /2
1	0	1	f _{osc} /8
1	1	0	f _{osc} /32
1	1	1	f _{osc} /64

SPR 1~0 비트 값에 따라서 클록 주파수가 달라진다.

SPI2X는 SPSR레지스터에 있는 비트이다. 이 비트가 1이면 다른조건이 동일하다면 클록주파수는 0일때 두배가 된다.

SPSR - SPI Status Register

Bit	7	6	5	4	3	2	1	0	
0x2D (0x4D)	SPIF	WCOL	-	-	-	-	-	SPI2X	SPSR
Read/Write	R	R	R	R	R	R	R	R/W	
Initial Value	0	0	0	0	0	0	0	0	

SPIF (SPI Interrupt Flag):

이 비트는 SPI전송이 완료되면 1로 세트 되면서 인터럽트를 요청한다. 인터럽트가 수행되면 자동으로 0으로 클리어 된다.

WCOL (Write Collision Flag):

이 비트는 데이터 송신중에 SPDR 레지스터에 새로운 데이터를 써 넣으면 1이 된다. SPSR 레지스터를 읽고 SPDR에 접근하면 자동으로 0으로 클리어된다.

SPI2X: 이 비트가 1이면 클록주파수를 2배로 만든다.

SPDR - SPI Data Register

Bit	7	6	5	4	3	2	1	0	_
0x2E (0x4E)	MSB							LSB	SPDR
Read/Write	R/W	-							
Initial Value	Χ	Χ	Χ	Χ	X	X	X	Χ	Undefined

SPDR: 송수신할 데이터를 저장하는 레지스터

