	DÉDICACE

REMERCIEMENTS

	SOMMAIRE

Dédicace	i
Remerciements	ii
Sommaire	iv
Abréviations	\mathbf{v}
Liste des figures	vi
Liste des tableaux	vii
Résumé	viii
Abstract	ix
Introduction	1
I État de l'art	2
1 titre	3
2 titre	5
II Contribution	6
3 titre	7
4 titre	9
Conclusion	10

Ré	éférences	11
\mathbf{A}	titre annexe	12
	A.1 Presentation de INSBI	12
	A.2 DIAGRAMMES UML	13
Тэ	phla des matières	15

A RRÉVIATIONS
ADREVIATIONS

		_LISTE DES	FIGURES
1.1	Schéma de synthèse sur le coût d'un salarié		4

l
_LISTE DES TABLEAUX

1.1	Quelques modèles de cycle de vie	3
3 1	What gwan me luy?	7

RÉSUMÉ

La startup INSBI (Institut Business Intelligence) est une entreprise nouvellement créer qui dans son (Service qu'on propose) a une liste de service qui tourne autour de solutions de digitalisation d'entreprises et Business intelligence. Dans le souci de se faire un nom sur le marché INSBI a produit et lancé son premier produit qui est Hosteline. Hosteline est une plateforme d'hôtellerie en ligne qui a pour cible les propriétaires d'établissements hôteliers mettent leurs locaux à la disposition des clients qui à leur tour peuvent réserver ces diffèrent locaux. Hosteline est un portail web qui fédère les hôtels et donne un accès comparatif aux clients de cette plateforme. A travers cette plateforme les clients d'hôtels auront des avantages tant sur les prix que sur les facilités que pourront offrir ces établissements hôtelier grâce à son programme de fidélité. Ce système lorsqu'il sera mis en production génèreras une quantité importante de donnée par son système transactionnel. Sachant à quel point ces données sont utiles mais n'informent pas suffisamment a l'état brut, la direction de INSBI souhait mettre en place un système décisionnel pour pouvoir exploiter ces données et en tirer les choix et décisions stratégiques pour faire grandir le produit en offrant une meilleur qualité de service à ses consommateurs. Ces là que nous intervenons afin de mettre en place un système de repporting qui serviras les données issues des systèmes opérationnel dans des formats lisible et facilement interprétable. Notre travail consistait à répondre à un besoin précis consigné dans un cahier avec des contraintes de couts et de délais bien définies. Dans ce mémoire nous mettrons en relief, la méthode de travail, l'évolution des travaux à INSBI et le suivi qu'était le nôtre pendant toute la durée de notre stage. Ce travail nous a permis non seulement de mettre en pratique des enseignements reçus pendant notre formation, d'en apprendre davantage sur les méthodes de fonctionnement des entreprises et aussi sur des notions nouvelles.

Λ DCTD Λ CT
AD01DAV1

L'avènement des TIC (Technologies de l'information) vient changer notre façon de vivre en la rendent plus simple. Le secteur hôtelier n'est pas exclu de ces changements et proposer ses services sur internet n'est plus un lux mais un besoin fondamentale pour toute entreprise hôtelière qui souhaite rester compétitive. Sur la toile les sites web d'hôtels se multiplient et tout particulier ou entreprise cherchent un ou plusieurs locaux en ligne à une large gamme de site web d'hôtels à sa portée. Le problème quand les possibilités sont large et non exhaustives est que on n'a pas toujours le temps de visiter ces plateformes une par une et comparer leurs offres selon nos préférences. Des plateformes telles que Booking.com, Accordhotel.com et autres offrent une solution qui répond a ce problème de comparaison de prix et d'offres toujours est-il que le contexte et les particularités camerounaises et Africaines n'est pas toujours retrouvée. En effet sur les plateformes de ce type on retrouve des hôtels conventionnels qui respectent certaines normes et standards occidentaux. A titre d'exemple le ministère du tourisme reconnais officiellement 250 hôtels accrédité au Cameroun ce qui ne représente pas 30% du nombre réel d'établissements hôtelier du pays. Parmi les hébergeurs laissés on retrouve les propriétaires d'auberges, certaines résidences hôtelières, Appartements meublé, Villa et plein d'autre encore. Hosteline s'inspire des plateformes citées plus haut en adaptant le concept au milieu et aux coutumes Camerounaises. En effet Hosteline est une plateforme ouvert à tout type d'hébergeurs et hôteliers qui souhaitent se mettre à la disposition des clients et potentiels clients par le web.

Lorsque la plateforme sera lancé et tournera à plein régime la quantité de données cumulé sur une année sera énorme et en exploitant la plateforme sur plusieurs année encore ne produira qu'une masse de données conséquente. Pour anticiper sur les besoins de s'informer grâce à ces données qui iront grandissant, Mr Kendjio le fondateur de Hosteline souhaite se munir d'un système décisionnel pour être prêt à exploiter et tirer avantage de ce volume important de données. La mise en œuvre de ce système décisionnel est le but de la rédaction du présent mémoire. Il faut finir les parties du document

Première partie État de l'art

CHAPITRE 1	
1	
	(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

TABLE 1.1: Quelques modèles de cycle de vie

Modèles	Avantages	Inconvénients
Cascade	Simple de compréhension et	Aucun produit logiciel avant la fin du
	d'utilisation, facile à manager,	cycle, risque et incertitude élevé, in-
	les étapes s'exécutent une à la	adapté pour les projets complexes et
	fois, bonne documentation des	orientés objet, difficulté de mesure de
	résultats	l'évolution
V	Très discipliné, marche bien pour	Risque et incertitude élevé, non adé-
	de petits projets, simple et facile	quat aux projets complexes et orientés
	d'utilisation	objet, non adéquat pour des projets
		comportant un haut risque de change-
		ment
Spirale	Possibilité d'adaptation en cas de	Gestion plus complexe du projet, la fin
	changement des spécifications, le	du projet n'est pas très vite percep-
	développement peut être divisé	tible, onéreux pour de petits projets,
	en petites parties, meilleure ges-	la spirale peut ne pas s'achever
	tion des risques	
Itératif	Résultats périodiques, possibi-	Requiert d'importantes ressources,
	lité de développement parallèle,	difficile de changer les spécifications
	faible coût de changement, test	initiales malgré la facile adaptation au
	et débuggage continu, meilleure	changement, requiert beaucoup d'at-
	analyse des risques	tention managériale, incompatible aux
		petits projets

Table 1.1: Quelques modèles de cycle de vie (suite)

Modèles	Avantages	Inconvénients
RAD (Rapid	Favorable au changement de spé-	Dépend de l'habilité technique de
Application	cifications, mesure de l'évolution,	l'équipe à détecter des outils puis-
Development)	évolution rapide en cas d'utilisa-	sants, seul les systèmes modulables
	tion de puissants outils, productif	peuvent être développés avec ce mo-
	avec un faible effectif, temps de	dèle, requiert des développeurs et
	développement réduit, encourage	concepteurs hautement qualifiés, com-
	la réutilisation des composants	plexité de management, adéquat pour
		les systèmes orientés composant et
		scalables
SCRUM	Approche très réaliste pour le dé-	Pas favorable à la gestion de dé-
	veloppement logiciel, encourage	pendances complexes, risques élevé
	le travail en équipe, possibilité de	de maintenance et d'extensibilité, dé-
	développement et de démonstra-	pend de l'interaction avec le client,
	tion rapide des fonctionnalités,	manque de documentation donc diffi-
	ressources requises minimales, fa-	culté de transfert technologique à une
	vorable au changement de spéci-	nouvelle équipe
	fications, facile à manager	

FIGURE 1.1 – Schéma de synthèse sur le coût d'un salarié

CHAPITRE 2		
		TITDE

Deuxième partie Contribution

CHAPITRE 3	
	'T'T'RE:

TABLE 3.1: What gwan me luv?

Modèles	Avantages	Inconvénients
Cascade	Simple de compréhension et d'utilisation, facile à manager, les étapes s'exécutent une à la fois, bonne documentation des résultats	Aucun produit logiciel avant la fin du cycle, risque et incertitude élevé, inadapté pour les projets complexes et orientés objet, difficulté de mesure de l'évolution
V	Très discipliné, marche bien pour de petits projets, simple et facile d'utilisation	Risque et incertitude élevé, non adéquat aux projets complexes et orientés objet, non adéquat pour des projets comportant un haut risque de changement
Spirale	Possibilité d'adaptation en cas de changement des spécifications, le développement peut être divisé en petites parties, meilleure ges- tion des risques	Gestion plus complexe du projet, la fin du projet n'est pas très vite percep- tible, onéreux pour de petits projets, la spirale peut ne pas s'achever
Itératif	Résultats périodiques, possibilité de développement parallèle, faible coût de changement, test et débuggage continu, meilleure analyse des risques	Requiert d'importantes ressources, difficile de changer les spécifications initiales malgré la facile adaptation au changement, requiert beaucoup d'at- tention managériale, incompatible aux petits projets

TABLE 3.1: Quelques modèles de cycle de vie (suite)

Modèles	Avantages	Inconvénients					
RAD (Rapid	Favorable au changement de spé-	Dépend de l'habilité technique de					
Application	cifications, mesure de l'évolution,	l'équipe à détecter des outils puis-					
Development)	évolution rapide en cas d'utilisa-	sants, seul les systèmes modulables					
	tion de puissants outils, productif	peuvent être développés avec ce mo-					
	avec un faible effectif, temps de	dèle, requiert des développeurs et					
	développement réduit, encourage	concepteurs hautement qualifiés, com-					
	la réutilisation des composants	plexité de management, adéquat pour					
		les systèmes orientés composant et					
		scalables					
SCRUM	Approche très réaliste pour le dé-	Pas favorable à la gestion de dé-					
	veloppement logiciel, encourage	pendances complexes, risques élevé					
	le travail en équipe, possibilité de	de maintenance et d'extensibilité, dé-					
	développement et de démonstra-	pend de l'interaction avec le client,					
	tion rapide des fonctionnalités,	manque de documentation donc diffi-					
	ressources requises minimales, fa-	culté de transfert technologique à une					
	vorable au changement de spéci-	nouvelle équipe					
	fications, facile à manager						

CHAPITRE 4	
1	
	TITRF

CONCLUSION

_		_
	DÉFÉ	DEMORG
	$D_{L}L_{L}L_{L}$	$\mathbf{D} \mathbf{C} \cup \mathbf{M} \cup \mathbf{C} \cup \mathbf{C} \cup \mathbf{C}$

- $[1]\,$ Laurent AUDIBERT, $\mathit{UML}\,\,2$. Institut Universitaire de Technologie de Villetaneuse. 2007 2008, 178 pages
- [2] François Jacquenet, Génie logiciel : Processus de développement logiciel. Université Saint Etienne France, Institut Universitaire de Technologie de Villetaneuse. 03 Octobre 2016
- [3] Tutorial point, Sdlc overview, https://www.tutorialspoint.com/sdlc. 09 Mars 2017. Consulté le 25/05/2017 à 17h00

A.1 Presentation de INSBI

CREATION

Elle a été créée en 2009 par 2 ingénieurs ayant travaillés pendant plus de 10 ans pour les grands intégrateurs français et sur de nombreux comptes clients. La Sarl INSBI (Institut Business Intelligence) a une ligne directrice essentiellement centrée sur l'informatique décisionnelle (Business Intelligence). Elle travaille avec une dizaine de collaborateurs en réseaux. En 2013, Sarl INSBI s'associe à la SAS IFICLIDE et prend la direction et le développement du pôle business intelligence. Depuis le début d'année 2017, l'associé Rodrigue Kendjio a entrepris l'extension des activités en Afrique. Amorcé dès le second trimestre 2017 par un projet d'e-commerce, le lancement officiel des activités est prévu au Cameroun à la fin d'année 2017.

A.1.1 MISSION

Là où le contexte est en évolution permanente et les facteurs majeurs de transformation sont centrés sur les défis concurrentiels et la globalisation de l'information, nos experts interviennent pour vous accompagner dans la mise en place de projets informatiques : d'INFRA-STRUCTURES, D'APPLICATIONS et de services. Nous intervenons dans le domaine bancaire, l'assurance la grande distribution et l'industrie

A.1.2 PRESENTATION

Conseil Stratégique : Accompagner les directions générales dans leur besoin de pilotage Ä Métier : Guider les directions métiers dans l'expression de leurs besoins Ä Technologique : Aider au choix de solution de gestion et d'aide à la décision Ä Conduite du changement : Faciliter, valoriser et promouvoir le changement Réalisation Ä Audit : Analyser l'existant et réaliser l'étude d'impact Ä Gestion de projet : Piloter et animer le projet Ä Technique : Concevoir et

mettre en œuvre le système d'information BI $\ddot{\rm A}$ Formation : Former les utilisateurs à la nouvelle plateforme

A.2 DIAGRAMMES UML

____TABLE DES MATIÈRES

Dédicace	i
Remerciements	ii
Sommaire	iv
${f A}$ bréviations	v
Liste des figures	v
Liste des tableaux	vii
Résumé	viii
Abstract	ix
Introduction	1
I État de l'art	2
1 titre	3
2 titre	5
II Contribution	6
3 titre	7
4 titre	g
Conclusion	10

Ré	éférei	nces												11
\mathbf{A}	titre	e anne	xe											12
	A.1	Preser	tation de I	NSBI		 		 	 	 	 		 	12
			CREATIC)N		 		 	 	 	 		 	12
		A.1.1	MISSION			 		 	 	 	 		 	12
		A.1.2	PRESENT	ΓΑΤΙΟΙ	V .	 		 	 	 	 		 	12
	A.2	DIAG	RAMMES	UML		 		 	 	 	 		 	13
Та	hle c	les ma	tières											15