SIDDAGANGA INSTITUTE OF TECHNOLOGY, TUMKUR

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING

Project 5: SECURE SOCKET LAYER PROTOCOL

Team

Kushala R 1SI18CS049 A M Siri 1SI18CS139 Prerana R Shetty 1SI18CS077 Sinchana P 1SI18CS109 Under the guidance of

Mrs.Shwetha A NAssistant Professor Dept of CSE, SIT

PROBLEM STATEMENT

Visualize different state transitions that happen as part of SSL protocol and how handshake is completed along with various parameters that are exchanged. Input: Packet Capture of SSL.

What is SSL?

- Secure Socket Layer
- Security to data that is transferred between web browser and server.
- Encrypts the link to ensure privacy and security from data breaches and attacks

Where is SSL?

KEY RESPONSIBILITIES

Integrity

Authentication

Confidentiality

SSL PROTOCOL STACK

Handshake Protocol	Change Cipher Spec Protocol	Alert Protocol	HTTP
SSL Record Protocol			
TCP			
		IP	

HANDSHAKE PROTOCOL

- Used to establish sessions.
- Allows client and server to authenticate with each other by sending a series of messages to each other.

Phase-1:

- Both Client and Server send hello-packets to each other.
- In this IP session, cipher suite and protocol version are exchanged for security purpose.

Phase-2:

- Server sends its certificate and Server-key-exchange.
- Server ends the phase-2 by sending Server-hello-end packet.

Phase-3:

- In this phase Client replies to the server by sending its certificate and Client-exchange-key.

Phase-4:

- Change-cipher suite occurs
- Handshake Protocol ends.

SSL RECORD PROTOCOL

- Application data is **divided into fragments**.
- The fragment is compressed and encrypted MAC (Message Authentication Code) is generated by algorithms like SHA.
- MD5 is appended.
- Later, encryption of the data is done
- Atlast SSL header is appended to the data.

Onto Analysis

