UJIAN TENGAH SEMESTER **GANJIL TAHUN AKADEMIK 2024/2025**

Nama	:	ASEP RIDWAN HIDAYAT	Mata Kuliah	:	Statistik dan Data Analysis
NIM	:	231012050036	Program Studi	:	Teknik Informatika S2
Kelas	:	02MKME001	Fakultas	:	Program Pasca Sarjana

Jawaban No. 1

Berikut adalah data berkelompok dari hasil survey tinggi mahasiswa Prodi MIPA Jurusan Matematika sebagai berikut:

Interval Tinggi (cm)	Frekuensi (f)
150 - 154	6
155 - 159	10
160 - 164	18
165 - 169	25
170 - 174	15
175 - 179	6
Total	80

a) ANALISIS PEMUSATAN DATA

a. NILAI RATA-RATA MEAN

Diketahuin N = 80, Karena jenis data berkelompok maka dilakukan pencarian nilai titik Tengah terlebih dahulu.

Interval Tinggi (cm)	Frekuensi (f)	Titik Tengah (x)	f. x
150 - 154	6	152	912
155 - 159	10	157	1570
160 - 164	18	162	2916
165 - 169	25	167	4175
170 - 174	15	172	2580
175 - 179	6	177	1062
Total	80		13215

Rumus Mean data berkelompok
$$\mathbf{Mean} = \frac{\sum f \cdot x}{n}$$

Maka:

$$Mean = \frac{13215}{80} = 165.19$$

Jika menggunkan R sebagai berikut:

```
> # Data
> intervals <- list(c(150, 154), c(155, 159), c(160, 164), c(165, 169), c(170, 174), c(175, 179))
> frequencies <- c(6, 10, 18, 25, 15, 6)
>
> # Menghitung titik tengah setiap interval
> midpoints <- sapply(intervals, function(interval) mean(interval))
>
> # Menghitung mean (rata-rata)
> n <- sum(frequencies)
> mean_value <- sum(frequencies * midpoints) / n
> cat("Mean (Rata-rata):", mean_value, "\n")
Mean (Rata-rata): 165.1875
> |
```

Kesimpulan

Didapat nilai rata-rata tinggi badan Prodi MIPA Jurusan Matematika adalah 165.19cm. jadi rata-rata tinggi badan setiap mahasiswa 165.19 cm.

b. NILAI TENGAH MEDIAN

Interval Tinggi (cm)	Frekuensi (f)	Titik Tengah (x)	F _{kum}	Lower Boundary	f. x
150 - 154	6	152	6	149.5	912
155 – 159	10	157	16	154.5	1570
160 - 164	18	162	34	159.5	2916
165 – 169	25	167	59	164.5	4175
170 - 174	15	172	74	169.5	2580
175 – 179	6	177	80	174.5	1062
Total	80				13215

$$Median = LB + \frac{(\frac{n}{2} - \frac{F_{kum} <}{f_{med}})}{n}.I$$

Diketahui dari table diatas:

- 1) $\frac{n}{2} = \frac{80}{2} = 40$, posisi median ada di data 40
- 2) Kelas posisi ke 40 adalah 165-169
- 3) LB = 164.5
- 4) Frekuensi Median 25
- 5) Frekuensi Kumulatif sebelum kelas media 34
- 6) Panjang interval kelas atau I = 5

$$Median = 164.5 + (\frac{(\frac{80}{2} - \frac{34}{25})}{80}) \times 5$$

 $Median = 164.5 + 1.2 = 165.7 atau 166$

Jika menggunakan R sebagai berikut

Kesimpulan

Jadi nilai median atau nilai tengan tinggi badan mahasisawa diatas adalah $165.7 \approx 166$ cm, berada dirange 165 cm-169 cm

c. NILAI MODUS

Nilai modus data berkelompok dihitung dengan rumus

$$Modus = LB + \left(\frac{f_a}{f_a + f_b}\right) . I$$

Diketahui LB = 164.5 frekuensi sebelum kelas modus $f_a = 18$ frekuensi sesudah kelas modus $f_b = 25$ I = 5

$$Modus = 164.5 + \left(\frac{18}{18+25}\right).5 = 166.59 atau 167$$

Maka nilai modus didapat 166.59 atau 167

Jika menggunakan R Sebagai berikut:

b) ANALISIS PENYEBARAN DATA

Dari data berkelompok didapat

Interval Tinggi (cm)	Frekuensi (f)	Titik Tengah (x)	$(x-\overline{x})$	$(x-\overline{x})^2$	$f.(x-\overline{x})^2$
150 - 154	6	152	-13.2	173.94	1043.64
155 - 159	10	157	-8.19	67.08	670.8
160 - 164	18	162	-3.19	10.18	183.2
165 - 169	25	167	1.81	3.28	82
170 - 174	15	172	6.81	46.37	695.55
175 - 179	6	177	11.81	139.42	836.52
					3511.75

Dengan rumus Variansi:

$$s^{2} = \frac{\sum f \cdot (x - \overline{x})^{2}}{n - 1}$$
$$s^{2} = \frac{3511.75}{80 - 1} = 44.45$$
$$s = \sqrt{44.45} = 6.67$$

Jadi penyebaran data nya dari setiap data ke rata-rata adalah 6.67

c) <u>ANALISIS PENDUGAAN PARAMETER RATA-RATA, DENGAN TINGKAT</u> <u>SIGNIFIKAN 90%</u>

Untuk penduga parameter menggunakan s^2 karena σ^2 tidak diketahui dan sampel berukuran besar $n \geq 30$, rumus yang digunakan:

$$\bar{X} - Z_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}} < \mu < \bar{X} + Z_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}$$

Diketahui dari hasil perhitungan sebelumnya, dengan tingkat signifikan 90% nilai $Z=1.645~\bar{X}=165.19, n=80, s=6.67$, maka:

$$Z_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}} = 1.645 \frac{6.67}{\sqrt{80}} \approx 1.23$$

Interval kepercayaan untuk rata-rata pada tingkat kepercayaan 90%

$$\bar{X} - 1.23 < \mu < \bar{X} + 1.23$$

165.19 - 1.23 < $\mu < 165.19 + 1.23$
163.96 < $\mu < 166.42$

Kesimpulan

Dengan tingkat keyakinan 90%, rata-rata tinggi badan siswa diperkirakan berada antara 163.96 cm hingga 166.42 cm.

JAWABAN NO 2

- a) Formula Hipotesis
 - Hipotesis nol (H_0) = Rata rata kecepatan unduhan 100 Mbps $(H_0 = 100)$
 - Hipotesis Alternatif $(H_1) = Rata rata$ kecepatan unduhan \neq 100 Mbps $(H_1 \neq 100)$
- b) Uji Signifikansi

Diketahui:

- 1. Rata-rata $(\bar{X}) = 97 \text{ mbps}$
- 2. Ukuran sampel n = 50
- 3. Standar deviasi s = 8
- 4. Rata -rata populasi $\mu_0 = 100 \ mbps$
- 5. Tingkat signifakansi $\alpha = 1\%$ atau 0.01

Karena sampel ≥ 30 , maka $Z_{\alpha/2}=\pm 2.58$ penduga selang kepercayaan sebagai berikut

$$Z = \frac{\overline{X} - \mu_0}{\frac{S}{\sqrt{n}}}$$

$$Z = \frac{97 - 100}{\frac{8}{\sqrt{50}}}$$

$$Z = -2.65$$

Didapat Z hitung -2.65 dan statistic uji $Z = \pm 2.58$

Kesimpulan

Dengan Tingkat kesalahan 1%, karena nilai Z hitung -2.65 ada dalam area **penolakan** H_0 artinya Hipotesa alternatif diterima, jadi dapat disimpulkan pada tingkat signifikansi 1%, terbukti cukup untuk menyimpulkan bahwa rata-rata kecepatan unduhan berbeda dari 100 Mbps (tidak sama denga 100 Mbps) seperti yang diklaim oleh ISP.

<mark>Jawaban No. 3</mark>

Diketahui

- 1. Rata-rata (μ) = 200 ms
- 2. Standar deviasi (σ) = 25 ms
- 3. Ukuran sampel (n) = 1000
- 4. Asumsi distribusi: Normal
- a) Probabilitas waktu respon lebih dari 230 ms.

Probabilitas waktu respon lebih dari P(X > 230), diketahui

$$\bar{X}$$
 = 230 ms

$$\mu = 200$$

$$\sigma = 25$$

Maka digunakan rumus z

$$Z = \frac{\bar{X} - \mu_0}{\sigma}$$

$$Z = \frac{230 - 200}{25} = 1.2$$

Mencari Probabilitas

P(Z > 1.2) Menggunakan tabel distribusi normal \approx **0.8849**, Oleh karena itu, $P(Z > 1.2) = 1 - P(Z \le 1.2) \approx 1 - 0.8849 =$ **0.1151**

Kesimpulan:

Jadi, probabilitas bahwa waktu respon acak yang diambil akan lebih dari 230 ms adalah sekitar 11.51%.

b) Batas Waktu Respon Maksimum untuk 90% Permintaan

Nilai z yang sesuai dengan area di bawah kurva normal sebesar 0.90. Menggunakan tabel distribusi normal \approx 1.28.

Digunakan rumus z-score untuk mencari nilai x (batas waktu respon maksimum):

$$Z = \frac{\bar{X} - \mu_0}{\sigma}$$

Substitusikan nilai yang diketahui:

$$1.28 = \frac{\bar{X} - 200}{25}$$

Maka

$$X = 1.28 \times 25 + 200 = 232 ms$$

Kesimpulan:

Agar 90% permintaan diproses dalam waktu kurang dari nilai tertentu, batas waktu respon maksimum yang harus ditetapkan adalah sekitar 232 ms.

Kesimpulan Akhir

Berdasarkan analisis di atas, perusahaan teknologi dapat menyimpulkan.

- Ada sekitar 11.51% kemungkinan bahwa waktu respon server akan melebihi 230 ms.
- Untuk memastikan 90% permintaan diproses dengan cepat, perusahaan perlu membatasi waktu respon maksimum menjadi sekitar 232 ms.