Approach Machinehack analytics olympiad 2022

Create a machine learning model to help an insurance company understand which claims are worth rejecting and the claims which should be accepted for reimbursement.

- Basic exploratory data analysis using pandas, matplotlib, seaborn packages.
- Data pre-processing
 - Column name lower casr
 - Feature Engineering
 - Create a binary indicator to indicate if the policyholder has a child without marriage.
 - o get a categorical columns percentage
 - numerical groupby numerical summary
- The final features for the model
 - 0_age
 - 1_gender
 - 2_driving_experience
 - 3_education
 - 4_income
 - 5_credit_score
 - 6_vehicle_ownership
 - 7_vehicle_year
 - 8_married
 - 9_children

- 10_annual_mileage
- 11_speeding_violations
- 12 duis
- 13_past_accidents
- 14_type_of_vehicle
- 15_not_married_hv_child
- 16_id_age_percentage
- 17_id_gender_percentage
- 18_id_driving_experience_percentage
- 19_id_education_percentage
- 20_id_income_percentage
- 21_id_vehicle_ownership_percentage
- 22_id_vehicle_year_percentage
- 23_id_married_percentage
- 24_id_children_percentage
- 25_id_type_of_vehicle_percentage
- 26_id_not_married_hv_child_percentage
- 27_id_annual_mileage_percentage
- 28_id_speeding_violations_percentage
- 29_id_duis_percentage
- 30_id_past_accidents_percentage
- 31_age_credit_score_median
- 32_age_credit_score_min
- 33_age_credit_score_mean
- 34_age_credit_score_max

- 35_age_annual_mileage_median
- 36_age_annual_mileage_min
- 37_age_annual_mileage_mean
- 38_age_annual_mileage_max
- 39_age_speeding_violations_median
- 40_age_speeding_violations_min
- 41_age_speeding_violations_mean
- 42_age_speeding_violations_max
- 43_age_duis_median
- 44_age_duis_min
- 45_age_duis_mean
- 46_age_duis_max
- 47_age_past_accidents_median
- 48_age_past_accidents_min
- 49_age_past_accidents_mean
- 50_age_past_accidents_max
- 51_gender_credit_score_median
- 52 gender credit score min
- 53_gender_credit_score_mean
- 54_gender_credit_score_max
- 55_gender_annual_mileage_median
- 56_gender_annual_mileage_min
- 57_gender_annual_mileage_mean
- 58_gender_annual_mileage_max
- 59_gender_speeding_violations_median

- 60_gender_speeding_violations_min
- 61_gender_speeding_violations_mean
- 62_gender_speeding_violations_max
- 63_gender_duis_median
- 64_gender_duis_min
- 65_gender_duis_mean
- 66_gender_duis_max
- 67_gender_past_accidents_median
- 68_gender_past_accidents_min
- 69_gender_past_accidents_mean
- 70_gender_past_accidents_max
- 71_driving_experience_credit_score_median
- 72_driving_experience_credit_score_min
- 73_driving_experience_credit_score_mean
- 74_driving_experience_credit_score_max
- 75_driving_experience_annual_mileage_median
- 76_driving_experience_annual_mileage_min
- 77_driving_experience_annual_mileage_mean
- 78_driving_experience_annual_mileage_max
- 79_driving_experience_speeding_violations_median
- 80_driving_experience_speeding_violations_min
- 81_driving_experience_speeding_violations_mean
- 82_driving_experience_speeding_violations_max
- 83_driving_experience_duis_median
- 84_driving_experience_duis_min

```
85_driving_experience_duis_mean
```

- 86_driving_experience_duis_max
- 87_driving_experience_past_accidents_median
- 88_driving_experience_past_accidents_min
- 89_driving_experience_past_accidents_mean
- 90_driving_experience_past_accidents_max
- 91_education_credit_score_median
- 92_education_credit_score_min
- 93_education_credit_score_mean
- 94_education_credit_score_max
- 95_education_annual_mileage_median
- 96_education_annual_mileage_min
- 97_education_annual_mileage_mean
- 98_education_annual_mileage_max
- 99_education_speeding_violations_median
- 100_education_speeding_violations_min
- 101_education_speeding_violations_mean
- 102_education_speeding_violations_max
- 103_education_duis_median
- 104_education_duis_min
- 105_education_duis_mean
- 106_education_duis_max
- 107_education_past_accidents_median
- 108_education_past_accidents_min
- 109_education_past_accidents_mean

- 110_education_past_accidents_max
- 111_income_credit_score_median
- 112_income_credit_score_min
- 113_income_credit_score_mean
- 114 income credit score max
- 115_income_annual_mileage_median
- 116_income_annual_mileage_min
- 117_income_annual_mileage_mean
- 118_income_annual_mileage_max
- 119_income_speeding_violations_median
- 120_income_speeding_violations_min
- 121_income_speeding_violations_mean
- 122_income_speeding_violations_max
- 123_income_duis_median
- 124_income_duis_min
- 125_income_duis_mean
- 126_income_duis_max
- 127_income_past_accidents_median
- 128_income_past_accidents_min
- 129_income_past_accidents_mean
- 130_income_past_accidents_max
- 131_vehicle_ownership_credit_score_median
- 132_vehicle_ownership_credit_score_min
- 133_vehicle_ownership_credit_score_mean
- 134_vehicle_ownership_credit_score_max

```
135_vehicle_ownership_annual_mileage_median
```

- 136_vehicle_ownership_annual_mileage_min
- 137_vehicle_ownership_annual_mileage_mean
- 138_vehicle_ownership_annual_mileage_max
- 139_vehicle_ownership_speeding_violations_median
- 140_vehicle_ownership_speeding_violations_min
- 141_vehicle_ownership_speeding_violations_mean
- 142_vehicle_ownership_speeding_violations_max
- 143_vehicle_ownership_duis_median
- 144_vehicle_ownership_duis_min
- 145_vehicle_ownership_duis_mean
- 146_vehicle_ownership_duis_max
- 147_vehicle_ownership_past_accidents_median
- 148_vehicle_ownership_past_accidents_min
- 149_vehicle_ownership_past_accidents_mean
- 150_vehicle_ownership_past_accidents_max
- 151_vehicle_year_credit_score_median
- 152 vehicle year credit score min
- 153_vehicle_year_credit_score_mean
- 154_vehicle_year_credit_score_max
- 155_vehicle_year_annual_mileage_median
- 156_vehicle_year_annual_mileage_min
- 157_vehicle_year_annual_mileage_mean
- 158_vehicle_year_annual_mileage_max
- 159_vehicle_year_speeding_violations_median

- 160_vehicle_year_speeding_violations_min
- 161_vehicle_year_speeding_violations_mean
- 162_vehicle_year_speeding_violations_max
- 163_vehicle_year_duis_median
- 164 vehicle year duis min
- 165_vehicle_year_duis_mean
- 166_vehicle_year_duis_max
- 167_vehicle_year_past_accidents_median
- 168_vehicle_year_past_accidents_min
- 169_vehicle_year_past_accidents_mean
- 170_vehicle_year_past_accidents_max
- 171_married_credit_score_median
- 172_married_credit_score_min
- 173_married_credit_score_mean
- 174_married_credit_score_max
- 175_married_annual_mileage_median
- 176_married_annual_mileage_min
- 177_married_annual_mileage_mean
- 178_married_annual_mileage_max
- 179_married_speeding_violations_median
- 180_married_speeding_violations_min
- 181_married_speeding_violations_mean
- 182_married_speeding_violations_max
- 183_married_duis_median
- 184_married_duis_min

```
185_married_duis_mean
```

- 186_married_duis_max
- 187_married_past_accidents_median
- 188_married_past_accidents_min
- 189 married past accidents mean
- 190_married_past_accidents_max
- 191_not_married_hv_child_credit_score_median
- 192_not_married_hv_child_credit_score_min
- 193_not_married_hv_child_credit_score_mean
- 194_not_married_hv_child_credit_score_max
- 195_not_married_hv_child_annual_mileage_median
- 196_not_married_hv_child_annual_mileage_min
- 197_not_married_hv_child_annual_mileage_mean
- 198_not_married_hv_child_annual_mileage_max
- 199_not_married_hv_child_speeding_violations_median
- 200_not_married_hv_child_speeding_violations_min
- 201_not_married_hv_child_speeding_violations_mean
- 202_not_married_hv_child_speeding_violations_max
- 203_not_married_hv_child_duis_median
- 204_not_married_hv_child_duis_min
- 205_not_married_hv_child_duis_mean
- 206_not_married_hv_child_duis_max
- 207_not_married_hv_child_past_accidents_median
- 208_not_married_hv_child_past_accidents_min
- 209_not_married_hv_child_past_accidents_mean

- 210_not_married_hv_child_past_accidents_max
- 211_children_credit_score_median
- 212_children_credit_score_min
- 213_children_credit_score_mean
- 214_children_credit_score_max
- 215_children_annual_mileage_median
- 216_children_annual_mileage_min
- 217_children_annual_mileage_mean
- 218_children_annual_mileage_max
- 219_children_speeding_violations_median
- 220_children_speeding_violations_min
- 221_children_speeding_violations_mean
- 222_children_speeding_violations_max
- 223_children_duis_median
- 224_children_duis_min
- 225_children_duis_mean
- 226_children_duis_max
- 227_children_past_accidents_median
- 228_children_past_accidents_min
- 229_children_past_accidents_mean
- 230_children_past_accidents_max
- 231_type_of_vehicle_credit_score_median
- 232_type_of_vehicle_credit_score_min
- 233_type_of_vehicle_credit_score_mean
- 234_type_of_vehicle_credit_score_max

```
235 type of vehicle annual mileage median
236_type_of_vehicle_annual_mileage_min
237_type_of_vehicle_annual_mileage_mean
238_type_of_vehicle_annual_mileage_max
239 type of vehicle speeding violations median
240_type_of_vehicle_speeding_violations_min
241 type of vehicle speeding violations mean
242_type_of_vehicle_speeding_violations_max
243_type_of_vehicle_duis_median
244_type_of_vehicle_duis_min
245_type_of_vehicle_duis_mean
246_type_of_vehicle_duis_max
247_type_of_vehicle_past_accidents_median
248_type_of_vehicle_past_accidents_min
249_type_of_vehicle_past_accidents_mean
250_type_of_vehicle_past_accidents_max
```

- Created catboost classifier model and tuned hyperparameters by using optuna framework. Model evaluated with Logloss. After 100 trials,
 - The best score is 0.680893

The best hyperparemeters are,

{'reg_lambda': 605,

'learning_rate': 0.04731571585972637,

'n_estimators': 772,

'max_depth': 6,

'random_state': 1024,

'boosting_type': 'Plain',

'bootstrap_type': 'Bayesian',

'bagging_temperature': 8.801547913767672}

 Visualizing the Optimization History - Explains the best score at each trials.

Visualizing High-dimensional Parameter Relationships

Visualizing Parameter Importances

Catboost SHAP feature importances plot

Catboost SHAP top features impact the model

• Top feature influences for class 1

Top feature influences for class 0

Overall Train and Validation Logloss

Catboost Model Overall Train and Validation Logloss

- Train logloss: 0.67978, Validation logloss: 0.68106
- Final competition score

o Private LB: 0.68081

o Public LB: 0.68037