Software Model-Checking: an algorithmic approach to prove programs correct

Damien Zufferey

IST Austria

May 27, 2011

Push-button approach

Implementation of the algorithm for 2 customers.

```
initial state: pc1 = 0, x1 = 0, pc2 = 0, x2 = 0 pc values: (0 \rightarrow outside), (1 \rightarrow waiting), (2 \rightarrow ordering)
```

```
while (true) {
     if(pc1 = 0){
3
     x1 = x2 + 1:
     pc1 = 1;
5
     else\ if(pc1 = 1 \&\&
6
7
8
               (x2 = 0 | |
                 x1 < x2 )){
       pc1 = 2;
     else if(pc1 = 2)
10
      pc1 = 0;
11
      x1 = 0:
12
13
     if (pc1==2 \&\& pc2==2){
14
       ERROR:
15
16 }
```

```
while (true) {
     if(pc2 == 0){
      x2 = x1 + 1:
     pc2 = 1;
   else\ if(pc2 = 1 \&\&
               (x1 = 0 | |
                x2 < x1 )){
8
       pc2 = 2;
     else if(pc2 = 2)
10
      pc2 = 0;
      x2 = 0:
11
12
13
     if (pc1==2 \&\& pc2==2){
14
      ERROR:
15
16 }
```

Why do we means by correct?

safety: no two customers fight.

liveness: every customers eventually get served (starvation-free).

For this talk we will care only about safety property.

The program as a dynamic system:

Initial state:
$$pc_1 = 0, x_1 = 0, pc_2 = 0, x_2 = 0$$

Transitions:
$$pc_1 = 0$$
 $\rightarrow pc_1' = 1, x_1' = x_2 + 1$ $pc_1 = 1 \land (x_2 = 0 \lor x_1 < x_2)$ $\rightarrow pc_1' = 2$ $\rightarrow pc_1' = 0$ $\rightarrow pc_1' = 0$ $\rightarrow pc_1' = 0$ $\rightarrow pc_2' = 0$ $\rightarrow pc_2' = 1, x_2' = x_1 + 1$ $\rightarrow pc_2' = 1 \land (x_1 = 0 \lor x_2 < x_1)$ $\rightarrow pc_2' = 2$ $\rightarrow pc_2' = 0, x_2' = 0$ $\rightarrow pc_1' = 2 \land pc_2' = 2$ $\rightarrow pc_2' = 0$ $\rightarrow pc_2' = 0$

State: $pc_1, x_1|pc_2, x_2$

0,0|0,0

State: $pc_1, x_1|pc_2, x_2$

finite abstraction of the state space

finer abstraction of the state space

finer abstraction of the state space

finer abstraction of the state space

The picture of abstraction

finer abstraction of the state space

Abstraction: preserving only some facts

problem: the range of x_1 and x_2 is infinite.

Maybe they are not important.

Initial state:
$$pc_1 = 0, pc_2 = 0$$

Transitions:

$$\begin{array}{lllll} pc_1 = 0 & \to & pc_1' = 1 \\ pc_1 = 1 & \to & pc_1' = 2 \\ pc_1 = 2 & \to & pc_1' = 0 \\ pc_2 = 0 & \to & pc_2' = 1 \\ pc_2 = 1 & \to & pc_2' = 2 \\ pc_2 = 2 & \to & pc_2' = 0 \\ pc_1 = 2 \land pc_2 = 2 & \to & \mathsf{ERROR} \end{array}$$

The abstract system preserves traces, but adds new ones.

Abstract trace:

$$\begin{aligned} &(\rho c_1 = 0 | \rho c_2 = 0) \\ &\rho c_2 = 0 \rightarrow \rho c_2' = 1 \\ &(\rho c_1 = 0 | \rho c_2 = 1) \\ &\rho c_2 = 1 \rightarrow \rho c_2' = 2 \\ &(\rho c_1 = 0 | \rho c_2 = 2) \\ &\rho c_1 = 0 \rightarrow \rho c_1' = 1 \\ &(\rho c_1 = 1 | \rho c_2 = 2) \\ &\rho c_1 = 1 \rightarrow \rho c_1' = 2 \\ &(\rho c_1 = 2 | \rho c_2 = 2) \\ &\rho c_1 = 2 \land \rho c_2 = 2 \rightarrow \mathsf{ERROR} \\ &\mathsf{ERROR} \end{aligned}$$

Abstract trace:

ERROR

$$\begin{aligned} &(\rho c_1 = 0 | \rho c_2 = 0) \\ &\rho c_2 = 0 \rightarrow \rho c_2' = 1 \\ &(\rho c_1 = 0 | \rho c_2 = 1) \\ &\rho c_2 = 1 \rightarrow \rho c_2' = 2 \\ &(\rho c_1 = 0 | \rho c_2 = 2) \\ &\rho c_1 = 0 \rightarrow \rho c_1' = 1 \\ &(\rho c_1 = 1 | \rho c_2 = 2) \\ &\rho c_1 = 1 \rightarrow \rho c_1' = 2 \\ &(\rho c_1 = 2 | \rho c_2 = 2) \\ &\rho c_1 = 2 \land \rho c_2 = 2 \rightarrow \mathsf{ERROR} \end{aligned}$$

$$(\rho c_1 = 0, x_1 = 0 | \rho c_2 = 0, x_2 = 0)$$

Abstract trace:

$$(pc_1 = 0|pc_2 = 0)$$

 $pc_2 = 0 \rightarrow pc'_2 = 1$
 $(pc_1 = 0|pc_2 = 1)$
 $pc_2 = 1 \rightarrow pc'_2 = 2$
 $(pc_1 = 0|pc_2 = 2)$
 $pc_1 = 0 \rightarrow pc'_1 = 1$
 $(pc_1 = 1|pc_2 = 2)$
 $pc_1 = 1 \rightarrow pc'_1 = 2$
 $(pc_1 = 2|pc_2 = 2)$
 $pc_1 = 2 \land pc_2 = 2 \rightarrow ERROR$
ERROR

$$(\rho c_1 = 0, x_1 = 0 | \rho c_2 = 0, x_2 = 0)$$

 $\rho c_2 = 0 \rightarrow \rho c_2' = 1, x_2' = x_1 + 1$
 $(\rho c_1 = 0, x_1 = 0 | \rho c_2 = 1, x_2 = 1)$

Abstract trace:

$$(pc_1 = 0|pc_2 = 0)$$

 $pc_2 = 0 \rightarrow pc'_2 = 1$
 $(pc_1 = 0|pc_2 = 1)$
 $pc_2 = 1 \rightarrow pc'_2 = 2$
 $(pc_1 = 0|pc_2 = 2)$
 $pc_1 = 0 \rightarrow pc'_1 = 1$
 $(pc_1 = 1|pc_2 = 2)$
 $pc_1 = 1 \rightarrow pc'_1 = 2$
 $(pc_1 = 2|pc_2 = 2)$
 $pc_1 = 2 \land pc_2 = 2 \rightarrow ERROR$
ERROR

$$(pc_1 = 0, x_1 = 0 | pc_2 = 0, x_2 = 0)$$

$$pc_2 = 0 \rightarrow pc'_2 = 1, x'_2 = x_1 + 1$$

$$(pc_1 = 0, x_1 = 0 | pc_2 = 1, x_2 = 1)$$

$$pc_2 = 1 \land (x_1 = 0 \lor x_2 < x_1) \rightarrow pc'_2 = 2$$

$$(pc_1 = 0, x_1 = 0 | pc_2 = 2, x_2 = 1)$$

Abstract trace:

$$(pc_1 = 0|pc_2 = 0)$$

 $pc_2 = 0 \rightarrow pc'_2 = 1$
 $(pc_1 = 0|pc_2 = 1)$
 $pc_2 = 1 \rightarrow pc'_2 = 2$
 $(pc_1 = 0|pc_2 = 2)$
 $pc_1 = 0 \rightarrow pc'_1 = 1$
 $(pc_1 = 1|pc_2 = 2)$
 $pc_1 = 1 \rightarrow pc'_1 = 2$
 $(pc_1 = 2|pc_2 = 2)$
 $pc_1 = 2 \land pc_2 = 2 \rightarrow ERROR$
ERROR

$$\begin{aligned} &(\rho c_1 = 0, x_1 = 0 | \rho c_2 = 0, x_2 = 0) \\ &\rho c_2 = 0 \rightarrow \rho c_2' = 1, \ x_2' = x_1 + 1 \\ &(\rho c_1 = 0, x_1 = 0 | \rho c_2 = 1, x_2 = 1) \\ &\rho c_2 = 1 \land (x_1 = 0 \lor x_2 < x_1) \rightarrow \rho c_2' = 2 \\ &(\rho c_1 = 0, x_1 = 0 | \rho c_2 = 2, x_2 = 1) \\ &\rho c_1 = 0 \rightarrow \rho c_1' = 1, \ x_1' = x_2 + 1 \\ &(\rho c_1 = 1, x_1 = 2 | \rho c_2 = 2, x_2 = 1) \end{aligned}$$

Abstract trace:

 $(pc_1 = 0 | pc_2 = 0)$

$$pc_{2} = 0 \rightarrow pc'_{2} = 1$$
 $(pc_{1} = 0|pc_{2} = 1)$
 $pc_{2} = 1 \rightarrow pc'_{2} = 2$
 $(pc_{1} = 0|pc_{2} = 2)$
 $pc_{1} = 0 \rightarrow pc'_{1} = 1$
 $(pc_{1} = 1|pc_{2} = 2)$
 $pc_{1} = 1 \rightarrow pc'_{1} = 2$
 $(pc_{1} = 2|pc_{2} = 2)$
 $pc_{1} = 2 \land pc_{2} = 2 \rightarrow ERROR$
 $ERROR$

$$\begin{aligned} &(\rho c_1 = 0, x_1 = 0 | \rho c_2 = 0, x_2 = 0) \\ &\rho c_2 = 0 \rightarrow \rho c_2' = 1, \ x_2' = x_1 + 1 \\ &(\rho c_1 = 0, x_1 = 0 | \rho c_2 = 1, x_2 = 1) \\ &\rho c_2 = 1 \land (x_1 = 0 \lor x_2 < x_1) \rightarrow \rho c_2' = 2 \\ &(\rho c_1 = 0, x_1 = 0 | \rho c_2 = 2, x_2 = 1) \\ &\rho c_1 = 0 \rightarrow \rho c_1' = 1, \ x_1' = x_2 + 1 \\ &(\rho c_1 = 1, x_1 = 2 | \rho c_2 = 2, x_2 = 1) \\ &\rho c_1 = 1 \land (x_2 = 0 \lor x_1 < x_2) \rightarrow \rho c_1' = 2 \end{aligned}$$

Abstract trace:

$$(pc_{1} = 0|pc_{2} = 0) \qquad (pc_{1} = 0, x_{1} = 0|pc_{2} = 0, x_{2} = 0)$$

$$pc_{2} = 0 \rightarrow pc'_{2} = 1 \qquad pc_{2} = 0 \rightarrow pc'_{2} = 1, x'_{2} = x_{1} + 1$$

$$(pc_{1} = 0|pc_{2} = 1) \qquad (pc_{1} = 0, x_{1} = 0|pc_{2} = 1, x_{2} = 1)$$

$$pc_{2} = 1 \rightarrow pc'_{2} = 0$$

$$(pc_{1} = 0|pc_{2} = 1, x_{2} = 1)$$

$$pc_{1} = 0|pc_{2} = 1, x_{2} = 1$$

$$pc'_{2} = 1, x'_{2} = 1, x'_{2} = 1$$

$$pc'_{2} = 1, x'_{2} = 1, x'_{2} = 1$$

$$pc'_{2} = 1, x'_{2} = 1, x'_{2} = 1$$

$$pc'_{2} = 1, x'_{2} = 1, x'_{2} = 1$$

$$pc'_{2} = 1, x'_{2} = 1, x'_{2} = 1$$

$$pc'_{2} = 1, x'_{2} = 1, x'_{2} = 1$$

$$pc'_{2} = 1, x'_{2} = 1, x'_{2} = 1$$

$$pc'_{2} = 1, x'_{2} = 1, x'_{2} = 1$$

$$pc'_{2} = 1, x'_{2} = 1, x'_{2} = 1$$

$$pc'_{2} = 1, x'_{2} = 1, x'_{2} = 1$$

$$pc'_{2} = 1, x'_{2} = 1, x'_{2} = 1$$

$$pc'_{2} = 1, x'_{2} = 1, x'_{2} = 1$$

$$pc'_{2} = 1, x'_{2} = 1, x'_{2} = 1$$

$$pc'_{2} = 1, x'_{2} = 1, x'_{2} = 1$$

$$pc'_{2} = 1, x'_{2} = 1, x'_{2} = 1$$

$$pc'_{2} = 1, x'_{2} = 1, x'_{2} = 1$$

$$pc'_{2} = 1, x'_{2} = 1, x'_{2} = 1$$

$$pc'_{2} = 1, x'_{2} = 1, x'_{2} = 1$$

$$pc'_{2} = 1, x'_{2} = 1, x'_{2} = 1$$

$$pc'_{2} = 1, x'_{2} = 1, x'_{2} = 1$$

$$pc'_{2} = 1, x'_{2} = 1, x'_{2} = 1$$

$$pc'_{2} = 1, x'_{2} = 1, x'_{2} = 1$$

$$pc'_{2} = 1, x'_{2} = 1, x'_{2} = 1$$

$$pc'_{2} = 1, x'_{2} = 1, x'_{2} = 1$$

$$pc'_{2} = 1, x'_{2} = 1, x'_{2} = 1$$

$$pc'_{2} = 1, x'_{2} = 1, x'_{2} = 1$$

$$pc'_{2} = 1, x'_{2} = 1, x'_{2} = 1$$

$$pc'_{1} = 1, x'_{1} = 1, x'_{1} = 1, x'_{1} = 1, x'_{2} = 1$$

$$pc'_{1} = 1, x'_{1} = 1, x'_{2} = 1, x'_{2} = 1$$

$$pc'_{1} = 1, x'_{1} = 1, x'_{2} = 1, x'_{2} = 1$$

$$pc'_{1} = 1, x'_{1} = 1, x'_{2} = 1, x'_{2} = 1$$

$$pc'_{1} = 1, x'_{1} = 1, x'_{2} = 1, x'_{2} = 1$$

$$pc'_{1} = 1, x'_{1} = 1, x'_{2} = 1, x'_{2} = 1$$

$$pc'_{1} = 1, x'_{1} = 1, x'_{2} = 1, x'_{2} = 1$$

$$pc'_{1} = 1, x'_{1} = 1, x'_{2} = 1, x'_{2} = 1$$

$$pc'_{1} = 1, x'_{1} = 1, x'_{2} = 1, x'_{2} = 1$$

$$pc'_{1} = 1, x'_{1} = 1, x'_{2} = 1, x'_{2} = 1$$

$$pc'_{1} = 1, x'_{2} = 1, x'_{2} = 1, x'_{2} =$$

Refinement: adding facts

We cannot track the exact ticket value. But we can remember who has the smallest number (<,=,>).

Initial state:
$$pc_1 = 0, pc_2 = 0, x_1 = x_2$$

Transitions:

$$\begin{array}{llll} pc_{1} = 0 & \rightarrow & pc'_{1} = 1, \ x'_{1} > x'_{2} \\ pc_{1} = 1 \land (? \lor x_{1} < x_{2}) & \rightarrow & pc'_{1} = 2 \\ pc_{1} = 2 & \rightarrow & pc'_{1} = 0, \ x'_{1} ? x'_{2} \\ pc_{2} = 0 & \rightarrow & pc'_{2} = 1, \ x'_{1} < x'_{2} \\ pc_{2} = 1 \land (? \lor x_{2} < x_{1}) & \rightarrow & pc'_{2} = 2 \\ pc_{2} = 2 & \rightarrow & pc'_{2} = 0, \ x'_{1} ? x'_{2} \\ pc_{1} = 2 \land pc_{2} = 2 & \rightarrow & \text{ERROR} \end{array}$$

$$pc_1 = 0 \rightarrow pc_1' = 1, x_1' > x_2'$$

$$pc_1 = 1 \land (? \lor x_1 < x_2) \rightarrow pc'_1 = 2$$

$$\boxed{0,0,>} \boxed{1,0,>} \rightarrow \boxed{2,0,>}$$

$$\boxed{0,0,=} \boxed{1,0,=} \rightarrow \boxed{2,0,=}$$

$$0,0,<$$
 $1,0,<$ \rightarrow $2,0,<$

$$0,1,>$$
 $1,1,>$ $2,1,>$

$$\boxed{0,1,=}$$
 $\boxed{1,1,=}$ \rightarrow $\boxed{2,1,=}$

$$\boxed{0,1,<} \boxed{1,1,<} \rightarrow 2,1,<$$

$$\boxed{0,2,>} \boxed{1,2,>} \rightarrow \boxed{2,2,>}$$

$$\boxed{0,2,=} \boxed{1,2,=} \rightarrow \boxed{2,2,=}$$

$$0,2,<$$
 $1,2,<$ $2,2,<$

ERROR

$$pc_1 = 2 \rightarrow pc'_1 = 0, x'_1 ? x'_2$$

$$pc_2 = 0 \rightarrow pc_2' = 1, x_1' < x_2'$$

$$pc_2 = 1 \land (? \lor x_2 < x_1) \rightarrow pc'_2 = 2$$

$$pc_1 = 2 \rightarrow pc'_1 = 0, x'_1 ? x'_2$$

ERROR

$$pc_1 = 2 \land pc_2 = 2 \rightarrow \mathsf{ERROR}$$

Safe abstract reachability graph

id	pc1	pc2	$x_1 = 0$	$x_2 = 0$	$x_1?x_2$
0	0	0	Т	Т	$x_1 = x_2$
1	1	0	\perp	Τ	$x_1 > x_2$
2	0	1	T	\perp	$x_1 < x_2$
3	1	1	\perp	\perp	$x_1 < x_2$
4	2	0	\perp	Τ	$x_1 > x_2$
5	0	2	Τ	\perp	$x_1 < x_2$
6	1	1	\perp	\perp	$x_1 > x_2$
7	2	1	\perp	\perp	$x_1 < x_2$
8	1	2	\perp	\perp	$x_1 > x_2$
9	0	1	Т	\perp	$x_1 > x_2$
10	1	0	\perp	Τ	$x_1 < x_2$
11	0	2	T	\perp	$x_1 > x_2$
12	2	0	\perp	Т	$x_1 < x_2$

General idea:

CEGAR: counterexample guided abstraction refinement

Questions?

Next part: The magic behind "finding new facts"

(hard hat required)

First iteration

predicates:

initial state:

```
while (true)
      if(
2
3
4
5
                              &&
      }else if(
6
7
8
9
                                )){
      } else
                              ){
10
11
12
13
      if(
                   &&
                                ){
14
        ERROR;
15
16 }
```

```
while (true)
     if(
 3
                           &&
     }else if(
                             )){
     }else if(
                          ){
10
11
12
13
     if(
                 &&
                             ){
       ERROR;
14
15
16
```

First iteration

predicates:

initial state:

```
while (true) {
     if(
     }else if(
                          &&
                           )){
     }else if(
                         ){
                &&
                           ){
14
       ERROR;
15
16
```

```
while (true)
     if(
3
                           &&
     }else if(
                            )){
     }else if(
10
11
12
13
                 &&
                            ){
       ERROR;
14
15
16
```

First iteration

predicates:

```
initial state:
```

```
while (true) {
                                      while (true)
     if(
                                         if(
            if ( pc1 = 0, x1 = 0, pc2 = 0, x2 = 0;
     } else
                                                             &&
                 while (true) {
                  if(pc1==2 \&\& pc2==2){
                                                               )){
                    ERROR;
     }else
                &&
                           ){
                                         if(
                                   13
                                                    &&
                                                               ){
14
       ERROR;
                                   14
                                           ERROR;
15
                                   15
16
                                   16
```

First counterexample

SSA formula:

$$pc_1 = 0 \land x_1 = 0 \land pc_2 = 0 \land x_2 = 0$$

 $pc_1 = 2 \land pc_2 = 2$

First counterexample

SSA formula:

$$pc_1 = 0 \land x_1 = 0 \land pc_2 = 0 \land x_2 = 0$$

 $pc_1 = 2 \land pc_2 = 2$

Formula is unsat ⇒ spurious counterexample

Finding out why the cex is spurious.

Let A and B be two formulas such that $A \wedge B$ unsat.

A [Craig] interpolant I has the following properties:

- I contains only AB-common symbols.
- A implies I
- $I \wedge B$ unsat.

$$pc_1 = 0 \land x_1 = 0 \land pc_2 = 0 \land x_2 = 0$$

$$pc_1 = 2 \land pc_2 = 2$$

Finding out why the cex is spurious.

Let A and B be two formulas such that $A \wedge B$ unsat.

A [Craig] interpolant I has the following properties:

- I contains only AB-common symbols.
- A implies I
- $I \wedge B$ unsat.

$$pc_1 = 0 \land x_1 = 0 \land pc_2 = 0 \land x_2 = 0$$

$$pc_1 = 2 \land pc_2 = 2$$

Second iteration

```
predicates: pc1 = 0
initial state: pc1 = 0
```

```
while (true) {
     if(pc1 = 0){
3
4
       pc1 = 1;
5
     else if(pc1 = 1 \&\&
6
7
8
                           )){
       pc1 = 2:
9
     else\ if(pc1 = 2)
10
       pc1 = 0:
11
12
13
     if (pc1==2 &&
14
       ERROR:
15
16 }
```

```
while (true) {
     if(
                          &&
     }else if(
                            )){
     }else if(
                         ){
10
11
12
13
     if (pc1==2 &&
                            ){
14
       ERROR:
15
16
```

Second iteration

```
predicates: pc1 = 0
initial state: pc1 = 0
```

```
w.:le (true) {
2
     if(p_1 = 0){
       pc1 = 1:
     else if(pc1 = 1 \&\&
                         )){
       pc1 = 2;
     else\ if(pc1 = 2)
       pc1 = 0:
     if ( pc1==2 &&
14
       ERROR;
15
16
```

```
while (true) {
     if(
                          &&
     }else if(
                            )){
     }else if(
                         ){
10
11
12
13
     if (pc1==2 &&
                            ){
14
       ERROR;
15
16
```

Second counterexample

```
\begin{array}{lll} & \text{pc1=0, x1=0, pc2=0, x2=0;} \\ & \text{assume(pc1 === 0);} \\ & \text{x1 = x2 + 1;} \\ & \text{pc1 = 1;} \\ & \text{assume(pc1==2 \&\& pc2==2);} \\ & \text{ERROR;} \end{array}
```

SSA formula:

$$pc_1 = 0 \land x_1 = 0 \land pc_2 = 0 \land x_2 = 0$$

 $pc_1 = 0$
 $x'_1 = x_2 + 1$
 $pc'_1 = 1$
 $pc'_1 = 2 \land pc_2 = 2$

Second counterexample

```
\begin{array}{lll} & \text{pc1=0, x1=0, pc2=0, x2=0;} \\ & \text{assume(pc1 === 0);} \\ & \text{x1 = x2 + 1;} \\ & \text{pc1 = 1;} \\ & \text{assume(pc1==2 \&\& pc2==2);} \\ & \text{ERROR;} \end{array}
```

SSA formula:

$$pc_1 = 0 \land x_1 = 0 \land pc_2 = 0 \land x_2 = 0$$

 $pc_1 = 0$
 $x'_1 = x_2 + 1$
 $pc'_1 = 1$
 $pc'_1 = 2 \land pc_2 = 2$

Formula is unsat \Rightarrow spurious counterexample

$$pc_1 = 0 \land x_1 = 0 \land pc_2 = 0 \land x_2 = 0$$

$$pc_1 = 0$$

$$x_1' = x_2 + 1$$

$$pc_{1}' = 1$$

$$pc_1'=2 \land pc_2=2$$

$$pc_1 = 0 \land x_1 = 0 \land pc_2 = 0 \land x_2 = 0$$

Т

$$pc_1 = 0$$

$$x_1' = x_2 + 1$$

$$pc_{1}' = 1$$

$$pc_1' = 2 \wedge pc_2 = 2$$

$$pc_1 = 0 \land x_1 = 0 \land pc_2 = 0 \land x_2 = 0$$

Т

$$pc_1 = 0$$

 $\overline{}$

$$x_1' = x_2 + 1$$

$$pc_{1}' = 1$$

$$pc_1'=2 \land pc_2=2$$

 $pc_1' = 2 \land pc_2 = 2$

$$pc_{1} = 0 \land x_{1} = 0 \land pc_{2} = 0 \land x_{2} = 0$$
 $pc_{1} = 0$
 $x'_{1} = x_{2} + 1$
 $pc'_{1} = 1$

T

T

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

Third iteration

```
predicates: pc1 = 0, pc1 = 1
initial state: pc1 = 0
```

```
while (true) {
     if(pc1 = 0){
3
4
       pc1 = 1;
5
     else if(pc1 = 1 \&\&
6
7
8
                           )){
       pc1 = 2:
9
     else\ if(pc1 = 2)
10
       pc1 = 0:
11
12
13
     if(pc1==2 \&\&
14
       ERROR:
15
16|}
```

```
while (true) {
     if(
                          &&
     }else if(
                            )){
     }else if(
                         ){
10
11
12
13
     if (pc1==2 &&
                            ){
14
       ERROR:
15
16
```

Third iteration

```
 \begin{array}{lll} \mbox{predicates: } \mbox{pc1} = 0, \mbox{ pc1} = 1 \\ \mbox{initial state: } \mbox{pc1} = 0 \end{array}
```

```
while (true) {
  f(pc1 = 0){
  pc1 = 1;
 else if(pc1 = 1 \&\&
                     )){
   pc1 = 2:
 else\ if(pc1 = 2)
   pc1 = 0:
 if (pc1==2 &&
   ERROR;
```

```
while (true) {
     if(
                          &&
     }else if(
                            )){
     }else if(
                         ){
10
11
12
13
     if (pc1==2 &&
                            ){
14
       ERROR:
15
16
```

Third iteration

```
\begin{aligned} & \text{predicates: } & \text{pc1} = 0, \text{ pc1} = 1 \\ & \text{initial state: } & \text{pc1} = 0 \end{aligned}
```

```
while (true) {
   (pc1 = 0){
   pc1 = 1;
   lse if (pc1 == 1 &&
                      )){
   Ise if (pc1 = 2){
   pc1 = 0;
```

```
while (true) {
     if(
     }else if(
                          &&
                           )){
     }else if(
10
11
12
13
     if (pc1==2 &&
                           ){
14
       ERROR;
15
16
```

Third counterexample

$$pc_1 = 0 \land x_1 = 0 \land pc_2 = 0 \land x_2 = 0$$

 $pc_1 = 0$
 $x'_1 = x_2 + 1$
 $pc'_1 = 1$
 $pc'_1 = 1 \land (x_2 = 0 \lor x'_1 < x_2)$
 $pc''_1 = 2$
 $pc''_1 = 2 \land pc_2 = 2$

Third counterexample

$$pc_1 = 0 \land x_1 = 0 \land pc_2 = 0 \land x_2 = 0$$
 $pc_1 = 0$
 $x'_1 = x_2 + 1$
 $pc'_1 = 1$
 $pc'_1 = 1 \land (x_2 = 0 \lor x'_1 < x_2)$
 $pc''_1 = 2$
 $pc''_1 = 2 \land pc_2 = 2$

```
predicates: pc1 = 0, pc1 = 1, pc2 = 0, pc2 = 1 initial state: pc1 = 0, pc2 = 0
```

```
while (true) {
     if(pc1 = 0){
       pc1 = 1:
5
     else if(pc1 = 1 \&\&
6
                          )){
8
       pc1 = 2:
9
     else if(pc1 = 2)
10
       pc1 = 0:
11
12
13
     if (pc1==2 \&\& pc2==2){
14
       ERROR:
15
16|}
```

```
while (true) {
     if(pc2 == 0){
       pc2 = 1;
    else if(pc2 = 1 \&\&
                          )){
       pc2 = 2:
    else if(pc2 = 2)
       pc2 = 0:
10
11
12
13
     if (pc1==2 \&\& pc2==2){
14
       ERROR:
15
16
```

```
predicates: pc1 = 0, pc1 = 1, pc2 = 0, pc2 = 1 initial state: pc1 = 0, pc2 = 0
```

```
while (true) {
 f(pc1 == 0){
  pc1 = 1:
 else if(pc1 = 1 \&\&
                      )){
   pc1 = 2:
 else if(pc1 = 2)
   pc1 = 0:
  if (pc1==2 \&\& pc2==2){
   ERROR:
```

```
while (true) {
     if(pc2 == 0){
       pc2 = 1;
    else if(pc2 = 1 \&\&
                          )){
       pc2 = 2:
    else if(pc2 = 2)
10
       pc2 = 0:
11
12
13
     if (pc1==2 \&\& pc2==2){
14
       ERROR:
15
16
```

```
predicates: pc1 = 0, pc1 = 1, pc2 = 0, pc2 = 1 initial state: pc1 = 0, pc2 = 0
```

```
while (true) {
   (pc1 = 0){}
   pc1 = 1:
   lse if (pc1 == 1 &&
                      )){
   lse if(pc1 == 2){
   pc1 = 0:
    (pc1==2 \&\& pc2==2){
   ERROR:
```

```
while (true) {
     if(pc2 == 0){
       pc2 = 1;
    else\ if(pc2 = 1 \&\&
                          )){
       pc2 = 2:
    else if(pc2 = 2)
10
       pc2 = 0:
11
12
13
    if (pc1==2 \&\& pc2==2){
14
       ERROR:
15
16
```

```
predicates: pc1 = 0, pc1 = 1, pc2 = 0, pc2 = 1 initial state: pc1 = 0, pc2 = 0
```

```
while (true) {
   (pc1 = 0){}
   pc1 = 1:
   lse if (pc1 == 1 &&
                      )){
   Ise if (pc1 == 2){
   pc1 = 0:
    (pc1==2 \&\& pc2==2){
   ERROR:
```

```
while (true) {
    if(pc2 == 0){
      pc2 = 1;
    else\ if(pc2 = 1 \&\&
                          )){
       pc2 = 2:
    else if(pc2 = 2)
10
       pc2 = 0:
11
12
13
     if (pc1==2 \&\& pc2==2){
       ERROR:
```

```
predicates: pc1=0, pc1=1, pc2=0, pc2=1 initial state: pc1=0, pc2=0
```

```
while (true) {
   (pc1 = 0){}
   pc1 = 1:
   lse if (pc1 == 1 &&
                      )){
   pc1 = 2:
   Ise if (pc1 == 2){
   pc1 = 0;
    (pc1==2 && pc2==2){
   ERROR:
```

```
wille (true) {
      f(pc2 == 0){
       pc2 = 1:
      else if (pc2 = 1 \&\&
                           )){
      pc2 = 2:
      else if (pc2 = 2){
10
       pc2 = 0:
11
12
13
      (pc1==2 \&\& pc2==2){
```

$$pc_{1} = 0 \land x_{1} = 0 \land pc_{2} = 0 \land x_{2} = 0$$

$$pc_{1} = 0 \land x'_{1} = x_{2} + 1 \land pc'_{1} = 1$$

$$pc'_{1} = 1 \land (x_{2} = 0 \lor x'_{1} < x_{2}) \land pc''_{1} = 2$$

$$pc_{2} = 0 \land x'_{2} = x'_{1} + 1 \land pc'_{2} = 1$$

$$pc'_{2} = 1 \land (x'_{1} = 0 \lor x'_{2} < x'_{1}) \land pc''_{2} = 2$$

$$pc''_{1} = 2 \land pc''_{2} = 2$$

$$pc_{1} = 0 \land x_{1} = 0 \land pc_{2} = 0 \land x_{2} = 0$$

$$pc_{1} = 0 \land x'_{1} = x_{2} + 1 \land pc'_{1} = 1$$

$$pc'_{1} = 1 \land (x_{2} = 0 \lor x'_{1} < x_{2}) \land pc''_{1} = 2$$

$$pc_{2} = 0 \land x'_{2} = x'_{1} + 1 \land pc'_{2} = 1$$

$$pc'_{2} = 1 \land (x'_{1} = 0 \lor x'_{2} < x'_{1}) \land pc''_{2} = 2$$

$$pc''_{1} = 2 \land pc''_{2} = 2$$

$$pc_{1} = 0 \land x_{1} = 0 \land pc_{2} = 0 \land x_{2} = 0$$

$$pc_{1} = 0 \land x'_{1} = x_{2} + 1 \land pc'_{1} = 1$$

$$pc'_{1} = 1 \land (x_{2} = 0 \lor x'_{1} < x_{2}) \land pc''_{1} = 2$$

$$pc_{2} = 0 \land x'_{2} = x'_{1} + 1 \land pc'_{2} = 1$$

$$pc'_{2} = 1 \land (x'_{1} = 0 \lor x'_{2} < x'_{1}) \land pc''_{2} = 2$$

$$pc''_{1} = 2 \land pc''_{2} = 2$$

$$pc_1 = 0 \land x_1 = 0 \land pc_2 = 0 \land x_2 = 0$$
 $x_2 = 0$
 $pc_1 = 0 \land x_1' = x_2 + 1 \land pc_1' = 1$
 $x_1' = 1 \land x_2 = 0$
 $pc_1' = 1 \land (x_2 = 0 \lor x_1' < x_2) \land pc_1'' = 2$
 $x_1' = 1$
 $pc_2 = 0 \land x_2' = x_1' + 1 \land pc_2' = 1$
 $pc_2' = 1 \land (x_1' = 0 \lor x_2' < x_1') \land pc_2'' = 2$
 $pc_1'' = 2 \land pc_2'' = 2$

$$pc_1 = 0 \land x_1 = 0 \land pc_2 = 0 \land x_2 = 0$$
 $pc_1 = 0 \land x_1' = x_2 + 1 \land pc_1' = 1$
 $pc_1' = 1 \land (x_2 = 0 \lor x_1' < x_2) \land pc_1'' = 2$
 $pc_2' = 0 \land x_2' = x_1' + 1 \land pc_2' = 1$
 $pc_2' = 1 \land (x_1' = 0 \lor x_2' < x_1') \land pc_2'' = 2$
 $pc_1'' = 2 \land pc_2'' = 2$

$$pc_1 = 0 \land x_1 = 0 \land pc_2 = 0 \land x_2 = 0$$
 $x_2 = 0$ $x_2 = 0$ $x_2 = 0$ $pc_1 = 0 \land x_1' = x_2 + 1 \land pc_1' = 1$ $x_1' = 1 \land x_2 = 0$ $pc_1' = 1 \land (x_2 = 0 \lor x_1' < x_2) \land pc_1'' = 2$ $x_1' = 1$ $x_1' = 1$ $x_1' = 1$ $x_1' = 1 \land x_2' = 2$ $pc_2' = 1 \land (x_1' = 0 \lor x_2' < x_1') \land pc_2'' = 2$ $pc_1'' = 2 \land pc_2'' = 2$

```
predicates: pc1 = 0, pc1 = 1, pc2 = 0, pc2 = 1, x1=1, x2=0, x2=2 initial state: pc1 = 0, x1 = 0, pc2 = 0, x2 = 0
```

```
while (true) {
     if(pc1 = 0){
     x1 = x2 + 1:
       pc1 = 1:
5
     else if(pc1 = 1 \&\&
6
7
               (x2 = 0 | |
                x1 < x2 )){
8
       pc1 = 2:
9
     else if(pc1 = 2)
10
     pc1 = 0;
11
      x1 = 0:
12
13
     if (pc1==2 \&\& pc2==2){
14
       ERROR:
15
16|}
```

```
while (true) {
     if(pc2 == 0){
      x2 = x1 + 1:
       pc2 = 1:
    else\ if(pc2 = 1 \&\&
               (x1 = 0 | |
                x2 < x1 )){
       pc2 = 2:
    else if(pc2 = 2)
      pc2 = 0;
10
11
      x^2 = 0:
12
13
     if (pc1==2 \&\& pc2==2){
14
      ERROR:
15
16
```

```
predicates: pc1 = 0, pc1 = 1, pc2 = 0, pc2 = 1, x1=1, x2=0, x2=2 initial state: pc1 = 0, x1 = 0, pc2 = 0, x2 = 0
```

```
while (true) {
  f(pc1 = 0)
   x1 = x2 + 1:
  pc1 = 1:
 else if(pc1 = 1 \&\&
            (x2 = 0 | |
             x1 < x2 )){
   pc1 = 2:
 else if(pc1 = 2)
   pc1 = 0:
   x1 = 0:
 if (pc1==2 \&\& pc2==2){
   ERROR:
```

```
while (true) {
     if(pc2 == 0){
      x2 = x1 + 1:
       pc2 = 1:
    else\ if(pc2 = 1 \&\&
               (x1 = 0 | |
                x2 < x1 )){
       pc2 = 2:
    else if(pc2 = 2)
10
      pc2 = 0:
11
      x^2 = 0:
12
13
     if (pc1==2 \&\& pc2==2){
14
      ERROR:
15
16
```

```
predicates: pc1 = 0, pc1 = 1, pc2 = 0, pc2 = 1, x1=1, x2=0, x2=2 initial state: pc1 = 0, x1 = 0, pc2 = 0, x2 = 0
```

```
while (true) {
   (pc1 = 0){}
   x1 = x2 + 1:
   pc1 = 1:
    Ise if (pc1 = 1 \&\&
           (x2 = 0 | |
            x1 < x2 )){
   pc1 = 2:
   Ise if (pc1 = 2){
   pc1 = 0:
   x1 = 0:
   (pc1==2 && pc2==2){
   ERROR:
```

```
while (true) {
    if(pc2 = 0){
    x2 = x1 + 1:
      pc2 = 1:
    else if(pc2 = 1 \&\&
               (x1 = 0 | |
               x2 < x1 )){
      pc2 = 2:
    else if(pc2 = 2)
    pc2 = 0;
10
11
     x^2 = 0:
12
13
    if (pc1==2 && pc2==2){
14
      ERROR:
15
16
```

```
predicates: pc1 = 0, pc1 = 1, pc2 = 0, pc2 = 1, x1=1, x2=0, x2=2 initial state: pc1 = 0, x1 = 0, pc2 = 0, x2 = 0
```

```
while (true) {
   (pc1 = 0){}
   x1 = x2 + 1:
   pc1 = 1:
   Ise if (pc1 = 1 \&\&
           (x2 = 0 | |
            x1 < x2 )){
   pc1 = 2:
   Ise if (pc1 == 2){
   pc1 = 0:
   x1 = 0:
   (pc1==2 && pc2==2){
   ERROR:
```

```
while (true) {
     if(pc2 == 0){
      x2 = x1 + 1;
       pc2 = 1:
    else\ if(pc2 = 1 \&\&
               (x1 = 0 | |
                x2 < x1 )){
       pc2 = 2:
    else if(pc2 = 2)
10
      pc2 = 0:
      x^2 = 0:
12
13
     if (pc1==2 \&\& pc2==2){
      ERROR:
```

```
predicates: pc1 = 0, pc1 = 1, pc2 = 0, pc2 = 1, x1=1, x2=0, x2=2 initial state: pc1 = 0, x1 = 0, pc2 = 0, x2 = 0
```

```
while (tille) {
    (pc1 = 0){
        f(pc1 == 1 \&\&
           (x2 = 0 | |
             x1 < x2 )){
        f(pc1 == 2){
   pc1 =
         =2 && pc2==2){
   ERRO
```

```
while (true) {
    if(pc2 == 0){
      x2 = x1 + 1;
      pc2 = 1:
    else\ if(pc2 = 1 \&\&
               (x1 = 0 | |
                x2 < x1 )){
      pc2 = 2:
    else if(pc2 = 2)
      pc2 = 0:
10
      x^2 = 0:
12
13
    if (pc1==2 \&\& pc2==2){
      ERROR:
```

```
predicates: pc1 = 0, pc1 = 1, pc2 = 0, pc2 = 1, x1=1, x2=0, x2=2 initial state: pc1 = 0, x1 = 0, pc2 = 0, x2 = 0
```

```
pc1
             < x2 )){}
pc1
      2 && pc2==2){
ERRO
```

```
while (true) {
    if(pc2 == 0){
      x2 = x1 + 1:
      pc2 = 1;
    else\ if(pc2 = 1 \&\&
               (x1 = 0 | |
                x2 < x1 )){
      pc2 = 2:
    else if(pc2 = 2)
      pc2 = 0:
10
      x^2 = 0:
12
13
    if (pc1==2 \&\& pc2==2){
      ERROR:
```

```
predicates: pc1 = 0, pc1 = 1, pc2 = 0, pc2 = 1, x1=1, x2=0, x2=2 initial state: pc1 = 0, x1 = 0, pc2 = 0, x2 = 0
```

```
(pc1
            < x2)
pc1
      =2 && pc2==2){
ERRO
```

```
wllile (true) {
     f(pc2 == 0){
       x2 = x1 + 1;
       pc2 = 1;
      else if (pc2 = 1 &&
                (x1 = 0 | |
                x2 < x1 )){
      pc2 = 2;
      else if (pc2 = 2){
10
      pc2 = 0;
11
      x2 = 0:
12
13
14
      f(pc1==2 \&\& pc2==2){
       ERROR:
```

```
predicates: pc1 = 0, pc1 = 1, pc2 = 0, pc2 = 1, x1=1, x2=0, x2=2 initial state: pc1 = 0, x1 = 0, pc2 = 0, x2 = 0
```



```
predicates: pc1 = 0, pc1 = 1, pc2 = 0, pc2 = 1, x1=1, x2=0, x2=2 initial state: pc1 = 0, x1 = 0, pc2 = 0, x2 = 0
```



```
predicates: pc1 = 0, pc1 = 1, pc2 = 0, pc2 = 1, x1=1, x2=0, x2=2 initial state: pc1 = 0, x1 = 0, pc2 = 0, x2 = 0
```



```
predicates: pc1 = 0, pc1 = 1, pc2 = 0, pc2 = 1, x1=1, x2=0, x2=2 initial state: pc1 = 0, x1 = 0, pc2 = 0, x2 = 0
```


$$pc_1 = 0 \land x_1 = 0 \land pc_2 = 0 \land x_2 = 0$$
 $pc_1 = 0 \land x'_1 = x_2 + 1 \land pc'_1 = 1$
 $pc'_1 = 1 \land (x_2 = 0 \lor x'_1 < x_2) \land pc''_1 = 2$
 $pc_2 = 0 \land x'_2 = x'_1 + 1 \land pc'_2 = 1$
 $pc'_2 = 1 \land (x'_1 = 0 \lor x'_2 < x'_1) \land pc''_2 = 2$
 $pc''_1 = 2 \land pc''_2 = 2$

$$pc_1 = 0 \land x_1 = 0 \land pc_2 = 0 \land x_2 = 0$$
 $pc_1 = 0 \land x_1' = x_2 + 1 \land pc_1' = 1$
 $pc_1' = 1 \land (x_2 = 0 \lor x_1' < x_2) \land pc_1'' = 2$
 $pc_2 = 0 \land x_2' = x_1' + 1 \land pc_2' = 1$
 $pc_2' = 1 \land (x_1' = 0 \lor x_2' < x_1') \land pc_2'' = 2$
 $pc_1'' = 2 \land pc_2'' = 2$

$$pc_{1} = 0 \land x_{1} = 0 \land pc_{2} = 0 \land x_{2} = 0$$

$$pc_{1} = 0 \land x'_{1} = x_{2} + 1 \land pc'_{1} = 1$$

$$x'_{1} > x_{2} \land x_{2} = 0$$

$$pc'_{1} = 1 \land (x_{2} = 0 \lor x'_{1} < x_{2}) \land pc''_{1} = 2$$

$$pc_{2} = 0 \land x'_{2} = x'_{1} + 1 \land pc'_{2} = 1$$

$$pc'_{2} = 1 \land (x'_{1} = 0 \lor x'_{2} < x'_{1}) \land pc''_{2} = 2$$

$$pc''_{1} = 2 \land pc''_{2} = 2$$

$$pc_1 = 0 \land x_1 = 0 \land pc_2 = 0 \land x_2 = 0$$

$$pc_1 = 0 \land x'_1 = x_2 + 1 \land pc'_1 = 1$$

$$pc'_1 = 1 \land (x_2 = 0 \lor x'_1 < x_2) \land pc''_1 = 2$$

$$pc_2 = 0 \land x'_2 = x'_1 + 1 \land pc'_2 = 1$$

$$pc'_2 = 1 \land (x'_1 = 0 \lor x'_2 < x'_1) \land pc''_2 = 2$$

$$pc''_1 = 2 \land pc''_1 = 2$$

$$\begin{aligned} \rho c_1 &= 0 \land x_1 = 0 \land \rho c_2 = 0 \land x_2 = 0 \\ \rho c_1 &= 0 \land x_1' = x_2 + 1 \land \rho c_1' = 1 \\ \rho c_1' &= 1 \land (x_2 = 0 \lor x_1' < x_2) \land \rho c_1'' = 2 \\ \rho c_2 &= 0 \land x_2' = x_1' + 1 \land \rho c_2' = 1 \\ \rho c_2' &= 1 \land (x_1' = 0 \lor x_2' < x_1') \land \rho c_2'' = 2 \end{aligned}$$

$$\begin{aligned} x_2 &= 0 \\ x_1' &> x_2 \land x_2 = 0 \\ x_1' &> 0 \\ x_1' &> 0 \\ x_1' &> 0 \land x_2' > x_1' \end{aligned}$$

$$\begin{array}{c} \rho c_{1} = 0 \wedge x_{1} = 0 \wedge \rho c_{2} = 0 \wedge x_{2} = 0 \\ \\ \rho c_{1} = 0 \wedge x_{1}' = x_{2} + 1 \wedge \rho c_{1}' = 1 \\ \\ \rho c_{1}' = 1 \wedge (x_{2} = 0 \vee x_{1}' < x_{2}) \wedge \rho c_{1}'' = 2 \\ \\ \rho c_{2}' = 0 \wedge x_{2}' = x_{1}' + 1 \wedge \rho c_{2}' = 1 \\ \\ \rho c_{2}' = 1 \wedge (x_{1}' = 0 \vee x_{2}' < x_{1}') \wedge \rho c_{2}'' = 2 \\ \\ \rho c_{1}'' = 2 \wedge \rho c_{2}'' = 2 \end{array}$$

Final version

```
predicates: pc1=0, pc1=1, pc2=0, pc2=1, x1=0, x2=0, x1<x2, x1>x2 initial state: pc1 = 0, x1 = 0, pc2 = 0, x2 = 0
```

```
while (true) {
     if(pc1 = 0){
     x1 = x2 + 1:
       pc1 = 1:
5
     else if(pc1 = 1 \&\&
6
7
               (x2 = 0 | |
                x1 < x2 )){
8
       pc1 = 2;
9
     else if(pc1 = 2)
10
     pc1 = 0:
11
      x1 = 0:
12
13
     if (pc1==2 \&\& pc2==2){
14
       ERROR:
15
16|}
```

```
while (true) {
     if(pc2 = 0){
      x2 = x1 + 1:
      pc2 = 1;
    else\ if(pc2 = 1 \&\&
               (x1 = 0 | |
                x2 < x1 )){
8
       pc2 = 2;
    else if(pc2 = 2)
10
      pc2 = 0:
      x^2 = 0:
11
12
13
     if (pc1==2 \&\& pc2==2){
      ERROR:
14
15
16
```

Questions?