Laboratorio de control automatico Criterio de Routh y lugar de las raices

Gabriel Barceló, Manuel leyes y Sebastian Lizarazo gabarcelo@uninorte.edu.co, mleyeslacouture@uninorte.edu.co, salizarazo@uninorte.edu.co

Abstract—Este reporte presenta el desarrollo de diversos algoritmos en los cuales se aplican el criterio de Routh y el lugar de las raices para determinar los valores que puede tomar un controlador proporcional K y el camino que tomaran los diversos polos del sistema.

Index Terms-Polos, Ceros, Estabilidad, Python.

I. INTRODUCCIÓN

DURANTE esta práctica se utilizó la libreria de Python 'Control', la cual nos provee de las funciones 'rlocus' y 'tf', que nos permiten graficar el lugar de las raices y analizxar el comportamiento de nuestra funcion de transferencia respectivamente.

Abril 11, 2023

II. DESARROLLO

A. Aplicación del criterio de estabilidad de Routh

En este punto se debia solucionar un sistema y obtener el area de estabilidad de este. Dicha area dependia de una variable a y otra variable k, para esto debia aplicar el cirterio de Routh.

$$\frac{(s+a)k}{s(s+1)(s+2)(s+5)}$$

$$= \frac{k(s+a)}{s^4 + 8s^3 + 17s^2 + (k+10)s + ak}$$

De este modo, al obtener el polinomio caracteristico, podemos aplicar el cirterio de routh, obteniendo la siguiente matriz:

De modo que al realizar las inecuaciones obtenemos que k < 126 y a > 0. Gracias a estos valores, podemos mostrar una grafica de k vs a.

Figure 1. (K vs a

Vease la Figura 1.

De este modo, podemos probar varios sistemas cuyos valores de k y a esten bajo esta curva, obteniendo asi un sistema estable como en la Figura 2 o uno inestable como la Figura 3.

Figure 2. sistema estable

Figure 3. (sistema inestable

B. Aplicación del análisis del lugar de las raíces

Para este punto, nos entregan un diagrama de bloques y nos piden hallar el lugar de las raices para dicho sistema:

$$G(s)H(s) = \frac{6k(s+1)}{s(s+4)(s^2+2s+5)}$$

De esta podemos hallar los polos y los ceros al igualar el denominador y el numerador a cero.

Ceros:
$$S=-1$$

Polos: $S=0, S=-4, S=-1-2i, S=-1+2i$
Ademas, con estos datos podemos graficar el lugar de las raices y ver como cambia dependiendo del k . Vease la Figura 4.

Figure 4. Lugar de las raíces