

CLAIMS

We claim:

- 1 1. A method comprising:
 - 2 commencing execution of a first set of one or more write instructions,
 - 3 wherein the write instructions of the first set are the width of a
 - 4 processor data bus;
 - 5 aborting the execution of the first set of write instructions;
 - 6 creating a second set of one or more write instructions, in response to the
 - 7 aborting, wherein the write instructions of the second set are the
 - 8 width of an expansion bus; and
 - 9 executing the second set of write instructions.
- 1 2. The method of claim 1, wherein the width of the processor bus is 32 bits.
- 1 3. The method of claim 1, wherein the width of the expansion bus is 16 bits.
- 1 4. The method of claim 1, wherein the second set of write instructions are
2 suitable for transmission over the expansion bus.
- 1 5. A method comprising:
 - 2 executing a write instruction that writes to a virtual memory address;
 - 3 translating the virtual memory address, wherein translating includes
 - 4 determining whether the virtual memory address maps to an
 - 5 inaccessible physical memory address;
 - 6 generating an abort indication after determining that the virtual memory
 - 7 address maps to an inaccessible physical memory address;
 - 8 performing the following in response to the abort indication,
 - 9 creating multiple write instructions suited for transmission over an
 - 10 expansion bus; and
- 11 executing the multiple write instructions.

1 6. The method of claim 5, wherein the expansion bus is 16 bits wide.

1 7. The method of claim 6, wherein the write instruction is a 32-bit write
2 instruction.

1 8. The method of claim 6, wherein the write instruction is wider than the
2 expansion bus.

1 9. An apparatus comprising:

2 a memory management unit to receive a virtual address, the memory
3 management unit to determine whether the virtual address maps to an
4 inaccessible physical address and to transmit an abort indication if
5 the virtual address maps to an inaccessible address; and

6 a processor core to receive the abort indication from the memory management unit
7 and to execute instructions, the processor core including an abort handler to create
8 new instructions in response to receipt of the abort indication, wherein the new
9 instructions are the width of an expansion bus.

1 10. The apparatus of claim 9, wherein a physical address is inaccessible if it is
2 write-protected.

1 11. The apparatus of claim 9 further comprising:

2 an external expansion device communicatively coupled to the processor core, the
3 external expansion device to receive the new instructions over the expansion bus.

1 12. The apparatus of claim 11, wherein the expansion bus is 16 bits wide.

1 13. The apparatus of claim 9, wherein instructions are 32-bit instructions.

1 14. A system comprising:

2 a processor, the processor including,

3 a processor core to receive an abort indication, wherein the processor
4 core includes an abort handler to create new write instructions
5 suited for transmission over an expansion bus; and
6 a memory management unit (MMU) coupled to the processor core by
7 a processor data bus, the MMU to determine whether a virtual
8 memory address maps to an accessible physical memory
9 address, the MMU to transmit the abort indication to the
10 processor core if the virtual memory address does not map to
11 an accessible physical memory address;
12 an external expansion device to receive the new write instructions from the
13 processor over the expansion bus; and
14 a dynamic random access memory (DRAM) unit coupled to the processor, wherein
15 the DRAM unit is to store data accessible by the processor.

1 15. The system of claim 14, wherein the expansion bus is half the width of the
2 processor data bus.

1 16. The system of claim 14, wherein the abort indication includes the virtual
2 memory address.

1 17. The system of claim 14, wherein the external expansion device is a flash
2 memory device.

1 18. A machine-readable medium that provides instructions, which when
2 executed by a machine, cause the machine to perform operations comprising:
3 commencing execution of a first set of one or more write instructions,
4 wherein the write instructions of the first set are the width of a
5 processor data bus;
6 aborting the execution of the first set of write instructions;

7 in response to the aborting, creating a second set of one or more write
8 instructions, wherein the write instructions of the second set are the
9 width of an expansion bus;

10 executing the second set of write instructions.

1 19. The machine-readable medium of claim 18, wherein the width of the
2 processor bus is 32 bits.

1 20. The machine-readable medium of claim 18, wherein the width of the
2 expansion bus is 16 bits.

1 21. The machine-readable medium of claim 18, wherein the second set of write
2 instructions are suitable for transmission over the expansion bus.

1 22. A machine-readable medium that provides instructions, which when
2 executed by a machine, cause the machine to perform operations comprising:

3 executing a write instruction that writes to a virtual memory address;
4 translating the virtual memory address, wherein translating includes
5 determining whether the virtual memory address maps to an
6 inaccessible physical memory address;

7 after determining whether the virtual memory address maps to an
8 inaccessible physical memory address, generating an abort
9 indication;

10 receiving the abort indication, and

11 creating multiple write instructions suited for transmission over an
12 expansion bus; and

13 executing the multiple write instructions.

1 23. The machine-readable medium of claim 22, wherein the expansion bus is 16
2 bits wide.

1 24. The machine-readable medium of claim 22, wherein the write instruction is a
2 32-bit instruction.

1 25. The machine-readable medium of claim 22, wherein the write instruction is
2 wider than the expansion bus.