Causal Bayesian optimization

'Don't do everything, just do the right thing'

Javier González

July 8, 2020

Microsoft Research Cambridge

Causal Bayesian Optimization, AISTATS 2020

Virginia Aglietti

Xiaoyu Lu

Andrei Paleyes

Example in advertising:

(Bottou et al, 2013) The goal is to design advertising campaigns to maximize revenue.

Example in ecology:

(Courtney et al, 2017) The goal is to apply policies to *improve/maximise* coral calcification.

Example in healthcare:

(Murray et al, 2003) The goal is to define treatments to *minimize* the risk of coronary heart disease (CHD)

Example in biology:

(González, 2015; Maksimov, 2015) The goal is to target is to *maximize* the synthetic production of a protein of pharmacological interest.

Common elements in these problems

- A causal graph.
- Observational data from all (non hidden) nodes.
- Ability of running experiments (in reality or in simulation).
- Cost of experiments depends on the number and type of nodes in which we intervene.

Common goal

Find the system/process configuration that optimises the target node.

- System/process configuration \rightarrow actionable variables.
- ullet Target node o revenue, coral calcification, risk of desease, etc.

Take home messages:

- 1. Many systems/processes decompose in interconnected nodes.
- 2. Optimization requires 'intervening' in the actionable nodes.

Crash course in causal models and do-calculus (1 of 4)

Causal model: Directed acyclic graph \mathcal{G} + four-tuple $\langle \mathbf{U}, \mathbf{V}, F, P(\mathbf{U}) \rangle$

- U: independent exogenous background variables.
- $P(\mathbf{U})$ distribution of \mathbf{U} .
- V: endogenous variables (non-manipulative C, treatment X).
- $F = \{f_1, ..., f_{|\mathbf{V}|}\}$: functions $v_i = f_i(pa_i, u_i)$, pa_i are the parents of V_i .

$$C = f_c(U_c), U_c \sim \mathcal{N}(0, \sigma_c^2)$$

$$X = f_x(C, U_x), U_x \sim \mathcal{N}(0, \sigma_x^2)$$

$$Y = f_y(X, C, U_y), Y_c \sim \mathcal{N}(0, \sigma_y^2)$$

Crash course in causal models and do-calculus (2 of 4)

Intervention: Setting a manipulative variable X to a value x, do(X = x).

Observed universe

$$C = f_c(U_c)$$

$$X = f_x(C, U_x)$$

$$Y = f_v(X, C, U_v)$$

Post-interventional universe

$$C = f_c(U_c)$$

$$X = x$$

$$Y = f_y(x, C, U_y)$$

$$P^{do(X=x)}(C,Y)$$

$$P(Y|do(X=x)) := P^{do(X=x)}(Y|X=x)$$

Crash course in causal models and do-calculus (3 of 4)

Key question: How to do inference in the post-interventional universe with data from the observed universe.

Observing vs. doing:

- P(Y|do(X=x), C) requires change the way the universe works.
- P(Y|X = x, C) only requires 'observing' the universe.

do-calculus: algebra to emulate the post-intervention universe in terms of conditionals in the observed universe (experiments emulation).

$$P(\mathbf{V}) = \prod_{i=1}^{|\mathbf{V}|} p(V_i|pa_i)$$
 (Markov condition)

.

Crash course in causal models and do-calculus (4 of 4)

Do-calculus: back-door adjustment:

Take home messages:

- 1. Many real systems decompose in interconnected nodes.
- 2. Optimization requires 'intervening' in the actionable nodes.
- 3. Do-calculus: 'emulating' experiments with observational data.

Gobal optimization vs. Causal optimization

Global optimization

$$\mathbf{x}^{\star} = \mathop{\arg\min}_{\mathbf{x} \in D(\mathbf{X})} \mathbb{E}_{P(\mathbf{Y}|\mathsf{do}(\mathbf{X}=\mathbf{x}),\mathbf{C})}[\mathbf{Y}]$$

Causal optimization

$$\begin{aligned} \boldsymbol{X}_{s}^{\star}, \boldsymbol{x}_{s}^{\star} &= \mathop{\text{arg min}}_{\substack{\boldsymbol{X}_{s} \in \mathcal{P}(\boldsymbol{X}) \\ \boldsymbol{x}_{s} \in D(\boldsymbol{X}_{s})}} \mathbb{E}_{P(\boldsymbol{Y}|\mathsf{do}(\boldsymbol{X}_{s} = \boldsymbol{x}_{s}), \boldsymbol{C})}[\boldsymbol{Y}] \end{aligned}$$

Assumptions

Global optimization

- f, the objective function, is explicitly unknown and multimodal.
- Evaluations of f may be perturbed by noise.
- Evaluations of f are expensive.

Standard method for this scenario o *Bayesian optimization*

- **Goal**: Collect data x_1, \ldots, x_n to find the optimum as fast as possible.
- **Model**: Gaussian process $f(x) \sim \mathcal{GP}(\mu(x), k_{\theta}(x, x'))$.
- Acquisition: $\alpha_{EI}(\mathbf{x}; \theta, \mathcal{D}) = \int_{V} \max(0, y_{best} y) p(y|\mathbf{x}; \theta, \mathcal{D}) dy$

- **Goal**: Collect data x_1, \ldots, x_n to find the optimum as fast as possible.
- **Model**: Gaussian process $f(x) \sim \mathcal{GP}(\mu(x), k_{\theta}(x, x'))$.
- Acquisition: $\alpha_{EI}(\mathbf{x}; \theta, \mathcal{D}) = \int_{V} \max(0, y_{best} y) p(y|\mathbf{x}; \theta, \mathcal{D}) dy$

- **Goal**: Collect data x_1, \ldots, x_n to find the optimum as fast as possible.
- **Model**: Gaussian process $f(x) \sim \mathcal{GP}(\mu(x), k_{\theta}(x, x'))$.
- Acquisition: $\alpha_{EI}(\mathbf{x}; \theta, \mathcal{D}) = \int_{V} \max(0, y_{best} y) p(y|\mathbf{x}; \theta, \mathcal{D}) dy$

- **Goal**: Collect data x_1, \ldots, x_n to find the optimum as fast as possible.
- **Model**: Gaussian process $f(x) \sim \mathcal{GP}(\mu(x), k_{\theta}(x, x'))$.
- Acquisition: $\alpha_{EI}(\mathbf{x}; \theta, \mathcal{D}) = \int_{V} \max(0, y_{best} y) p(y|\mathbf{x}; \theta, \mathcal{D}) dy$

- **Goal**: Collect data x_1, \ldots, x_n to find the optimum as fast as possible.
- **Model**: Gaussian process $f(x) \sim \mathcal{GP}(\mu(x), k_{\theta}(x, x'))$.
- Acquisition: $\alpha_{EI}(\mathbf{x}; \theta, \mathcal{D}) = \int_{V} \max(0, y_{best} y) p(y|\mathbf{x}; \theta, \mathcal{D}) dy$

Each point x_{n+1} is collected as $x_{n+1} = arg \max \alpha_{EI}(\mathbf{x}; \theta, \mathcal{D}_n)$

- **Goal**: Collect data x_1, \ldots, x_n to find the optimum as fast as possible.
- **Model**: Gaussian process $f(x) \sim \mathcal{GP}(\mu(x), k_{\theta}(x, x'))$.
- Acquisition: $\alpha_{EI}(\mathbf{x}; \theta, \mathcal{D}) = \int_{\mathbf{y}} \max(0, y_{best} y) p(y|\mathbf{x}; \theta, \mathcal{D}) dy$

Each point x_{n+1} is collected as $x_{n+1} = arg \max \alpha_{EI}(\mathbf{x}; \theta, \mathcal{D}_n)$

- **Goal**: Collect data x_1, \ldots, x_n to find the optimum as fast as possible.
- **Model**: Gaussian process $f(x) \sim \mathcal{GP}(\mu(x), k_{\theta}(x, x'))$.
- Acquisition: $\alpha_{EI}(\mathbf{x}; \theta, \mathcal{D}) = \int_{V} \max(0, y_{best} y) p(y|\mathbf{x}; \theta, \mathcal{D}) dy$

Each point x_{n+1} is collected as $x_{n+1} = arg \max \alpha_{EI}(\mathbf{x}; \theta, \mathcal{D}_n)$

- **Goal**: Collect data x_1, \ldots, x_n to find the optimum as fast as possible.
- **Model**: Gaussian process $f(x) \sim \mathcal{GP}(\mu(x), k_{\theta}(x, x'))$.
- Acquisition: $\alpha_{EI}(\mathbf{x}; \theta, \mathcal{D}) = \int_{V} \max(0, y_{best} y) p(y|\mathbf{x}; \theta, \mathcal{D}) dy$

Each point x_{n+1} is collected as $x_{n+1} = arg \max \alpha_{EI}(\mathbf{x}; \theta, \mathcal{D}_n)$

Assumptions

Causal optimization

- f is explicitly unknown and multimodal.
- Evaluations of f may be perturbed by noise.
- Evaluations of f are expensive.

+

- Causal graph
- Cost associate to experiment with each variable.

New method for this scenario \rightarrow *Causal Bayesian optimization*

Take home messages:

- 1. Many systems/processes decompose in interconnected nodes.
- 2. Optimization requires 'intervening' in the actionable nodes.
- 3. Do-calculus: 'emulating' experiments with observational data.
- 4. Standard Bayesian Optimization ignores causal assumptions.
- 5. Causal Optimization requires a new approach.

Goal for the new setup

- $X = \{B, E, D, F\}$: treatment variables
- $\mathcal{P}(\mathbf{X})$, all possible combinations of interventions.
- X_s , x_s , intervention set and its value.
- X_s^* , x_s^* , optimal intervention set and value.

Goal: Run interventions $(X_{s_1}, x_{s_1}), \ldots, (X_{s_n}, x_{s_n})$ to find the optimum as fast as possible.

Do we need to find X_s^* in the $2^{|X|}$ sets in $\mathcal{P}(X)$? NO!

Minimal Intervention Set (MIS, $\mathbb{M}_{\mathcal{G},Y}^{\mathsf{C}}$)

Given $\langle \mathcal{G}, \mathbf{Y}, \mathbf{X}, \mathbf{C} \rangle$, a set $\mathbf{X}_s \in \mathcal{P}(\mathbf{X})$ is said to be a MIS if there is no $\mathbf{X}_s' \subset \mathbf{X}_s$ such that $\mathbb{E}[Y|\text{do}(\mathbf{X}_s = \mathbf{x}_s), \mathbf{C}] = \mathbb{E}[Y|\text{do}(\mathbf{X}_s' = \mathbf{x}_s'), \mathbf{C}]$.

Possibly-Optimal Minimal Intervention set (POMIS, $\mathbb{P}_{\mathcal{G},Y}^{\mathbf{C}}$)

Let $\mathbf{X}_s \in \mathbb{M}^{\mathbf{C}}_{\mathcal{G}, \gamma}$. \mathbf{X}_s is a POMIS if there exists a sem conforming to \mathcal{G} such that $\mathbb{E}[Y|\text{do}(\mathbf{X}_s=\mathbf{x}_s^*), \mathbf{C}] > \forall_{\mathbf{W} \in \mathbb{M}^{\mathbf{C}}_{\mathcal{G}, \gamma} \setminus \mathbf{X}_s} \mathbb{E}[Y|\text{do}(\mathbf{W}=\mathbf{w}^*), \mathbf{C}]$ where \mathbf{x}^* and \mathbf{w}^* denote the optimal intervention values.

- BO, $\mathbb{B}_{G,Y}^{\mathbf{C}}$: all treatment variables
- MIS, $\mathbb{M}_{\mathcal{C},Y}^{\mathbf{C}}$: set of variables 'worth' intervening.
- POMIS, $\mathbb{P}_{\mathcal{G},Y}^{\mathbf{C}}$: set of variables in MIS that always improve Y.

Take home messages:

- 1. Many systems/processes decompose in interconnected nodes.
- 2. Optimization requires 'intervening' in the actionable nodes.
- 3. Do-calculus: 'emulating' experiments with observational data.
- 4. Standard Bayesian Optimization ignores causal assumptions.
- 5. Causal Optimization requires a new approach.
- 6. No need to explore $\mathcal{P}(\mathbf{X})$ to solve Causal Optimization problems.

Toy example

Modelling $\mathbb{E}_{P(Y|do(X_s=x_s))}[Y]$ for each X_s

Standard Gaussian process

where

•
$$k_{RBF}(\mathbf{x}_s, \mathbf{x}'_s) := \exp(-\frac{||\mathbf{x}_s - \mathbf{x}'_s||^2}{2l^2})$$

Modelling $\mathbb{E}_{P(Y|do(X_s=x_s))}[Y]$ for each X_s

Causal Gaussian process

where

- $k_{RBF}(\mathbf{x}_s, \mathbf{x}_s') := \exp(-\frac{||\mathbf{x}_s \mathbf{x}_s'||^2}{2l^2})$
- $\sigma(\mathbf{x}_s) = \sqrt{\hat{\mathbb{V}}(Y|\text{do}(\mathbf{X}_s = \mathbf{x}_s))}$ with $\hat{\mathbb{V}}$ is the variance of the causal estimated from observational data.

Take home messages:

- 1. Many systems/processes decompose in interconnected nodes.
- 2. Optimization requires 'intervening' in the actionable nodes.
- 3. Do-calculus: 'emulating' experiments with observational data.
- 4. Standard Bayesian Optimization ignores causal assumptions.
- 5. Causal Optimization requires a new approach.
- 6. No need to explore $\mathcal{P}(\mathbf{X})$ to solve Causal Optimization problems.
- 7. Causal GPs to merge observational and interventional data.

Causal Expected Improvement (CEI)

Expected improvement in the intervention set:

- $y_s = \mathbb{E}[Y|do(\mathbf{X}_s = \mathbf{x}_s), \mathbf{C}]$
- $\bullet \ \ y^{\star} = \mathsf{max}_{\mathbf{X}_s \in \mathsf{es}, \mathbf{x} \in D(\mathbf{X}_s)} \, \mathbb{E}[Y | \mathbf{X}_s = \mathbf{x}_s, \mathbf{C}],$

$$EI^s(\mathbf{x}) = \mathbb{E}_{p(y_s)}[\max(y_s - y^*, 0)]/Co(\mathbf{x}).$$

• $\alpha_1, \ldots, \alpha_{|\mathbf{e}\mathbf{s}|}$: solutions of optimizing $El^s(\mathbf{x})$ for each set in $\mathbf{e}\mathbf{s}$ and

New intervention set and value

$$\alpha^{\star} := \max\{\alpha_1, \dots, \alpha_{|\mathbf{es}|}\}$$

.

$$s^* = \underset{s \in \{1, \dots, |\mathbf{es}|\}}{\operatorname{argmax}} \alpha_s.$$

Intervention-observation trade off

 ϵ -greedy criteria to balance interventions and observations

$$\epsilon = \frac{\operatorname{Vol}(\mathcal{C}(\mathcal{D}^O))}{\operatorname{Vol}(\times_{X \in \mathbf{X}}(D(X)))} \times \frac{N}{N_{\max}},$$

- $Vol(\mathcal{C}(\mathcal{D}^O))$: volume of the convex hull for observational data
- Vol($\times_{X \in X}(D(X))$): volume of the interventional domain.

Causal Bayesian Optimization (CBO)

Algorithm 1: Causal Bayesian Optimization-CBO

```
Data: \mathcal{D}^{O}, \mathcal{D}^{I}, \mathcal{G}, ES, number of steps T
Result: \mathbf{X}_{s}^{\star}, \mathbf{x}_{s}^{\star}, \hat{\mathbb{E}}[\mathbf{Y}^{\star}|do(\mathbf{X}_{s}^{*} = \mathbf{x}_{s}^{\star}), \mathbf{C}]
Initialise: Set \mathcal{D}_0^{\mathrm{I}} = \mathcal{D}^{\mathrm{I}} and \mathcal{D}_0^{\mathrm{O}} = \mathcal{D}^{\mathrm{O}}
for t=1, \ldots, T do
      Compute \epsilon and sample u \sim \mathcal{U}(0,1)
      if \epsilon > u then
            (Observe)
            1. Observe new observations (\mathbf{x}_t, c_t, \mathbf{y}_t).
            2. Augment \mathcal{D}^{O} = \mathcal{D}^{O} \cup \{(\mathbf{x}_t, c_t, \mathbf{y}_t,)\}.
            3. Update prior of the causal GP (Eq. (2)).
      end
      else
            (Intervene)
            1. Compute EI^{s}(\mathbf{x})/Co(\mathbf{x}) for each element
             s \in \mathbf{ES} ( Eq. (5)).
            2. Obtain the optimal interventional
            set-value pair (s^*, \alpha^*).
            3. Intervene on the system.
            4. Update posterior of the interventional
              GP.
      end
end
Return the optimal value \hat{\mathbb{E}}[\mathbf{Y}^{\star}|do(\mathbf{X}_{s}^{\star}=\mathbf{x}_{s}^{\star}),\mathbf{C}]
  in \mathcal{D}_{T}^{I} and the corresponding \mathbf{X}_{s}^{\star}, \mathbf{x}_{s}^{\star}.
```

Take home messages:

- 1. Many systems/processes decompose in interconnected nodes.
- 2. Optimization requires 'intervening' in the actionable nodes.
- 3. Do-calculus: 'emulating' experiments with observational data.
- 4. Standard Bayesian Optimization ignores causal assumptions.
- 5. Causal Optimization requires a new approach.
- 6. No need to explore $\mathcal{P}(\mathbf{X})$ to solve Causal Optimization problems.
- 7. Causal GPs to merge observational and interventional data.
- 8. CBO optimizes systems/processes with interconnected nodes.

Toy example - simulation analysis

- Equal cost of intervening each variable.
- Results are consistent with what is expected.
- Better results that BO: propagation of effect beyond default domain.

CBO in Ecology

- Goal: maximising the net coral ecosystem calcification (NEC).
- Five manipulative variables: cardinality of MIS is 25.
- Fast convergence to the optimum.

CBO in Healthcare

- Goal is minimize prostate specific antigen (PSA) providing aspiring and/or statin (domain [0,1]).
- Optimal found solution is to only provide statin.
- This agrees with the general practice in medicine.

Take home messages:

- 1. Many systems/processes decompose in interconnected nodes.
- 2. Optimization requires 'intervening' in the actionable nodes.
- 3. Do-calculus: 'emulating' experiments with observational data.
- 4. Standard Bayesian Optimization ignores causal assumptions.
- 5. Causal Optimization requires a new approach.
- 6. No need to explore $\mathcal{P}(X)$ to solve Causal Optimization problems.
- 7. Causal GPs to merge observational and interventional data.
- 8. CBO optimizes systems/processes with interconnected nodes.
- 9. CBO improves BO when causal information is available.

Discussion

'Causal decision making' takes the best of two worlds:

		Obs. data + Causal assumptions	
		No	Yes
	No	Mechanical models	Causal inference
Int.	INO	(OR, control, etc.)	(PO, do-calculus etc.)
data	Yes	Sequential decision making	Causal Decision Making
		(AL, BayesOpt, etc.)	(This work!)

Causal Bayesian Optimization. Virginia Aglietti, Xiaoyu Lu, Andrei Paleyes and Javier González. AISTATS 2020.