

Task Analysis and Requirements Activities

Human Computer Interaction CSCI 4620U | SOFE 4850U | CSCI 5540G Dr. Christopher Collins

Acknowledgement: Parts of these lectures are based on material prepared by Ron Baecker, Ravin Balakrishnan, John Chattoe, Ilona Posner, Scott Klemmer, and Jeremy Bradbury.

UOIT Open House

- Seeking volunteers (CS Students)
- 10:30-2:30, Saturday Nov 1
- Meet prospective students, talk about your experiences (favourite courses, research experiences, co-op experiences)
- Email <u>ken.pu@uoit.ca</u> if you are available

Neilson's Usability Heuristics

- Visibility of system status
- Match between system and the real world
- User control and freedom
- Consistency and Standards
- Help users recognize, diagnose, and recover from errors
- Error prevention
- Recognition rather than recall
- Flexibility and efficiency of use
- Aesthetic and minimalist design
- Help and documentation

U of Toronto "MyLibrary"

UTL Home	Library Director	y General Information	Resources	Services	Catalogue
	Christop	her Collins			
		my.library	m y.utoronto	UTL Campuses	Contact Us
my.library					
create folder edit my.library	Edit the item: Communications of the ACM				
logout help		Save changes reset	1		
my.account my.alerts	Title:	Communications of the AC	M.		
Inbox	Add or edit note for this item:	QA75.5 .0564			
CL InfoVis KMDI					
Open Source	Change	Do not change			
Research Mehods	folder?	CL InfoVis			
Statistics Teaching	If you would like to create a folder dick here.				
		Save changes reset			
	Delete this item.				

Errors at Airports

Last Time

- Scenarios
 - Stories
 - Conceptual
 - Concrete
 - Use Cases
- Task Analysis
 - What we learn: people, work, technology
 - Hierarchical Task Analysis & Graphical HTA
- Styles of Interaction

Techniques for Design

REQUIREMENTS (REVIEW)

Requirements Categories

- stakeholder needs
- environmental requirements
- functional requirements
- technical requirements, and
- usability requirements

Stakeholder Needs

- Characteristics the user must possess (e.g. must know how to use a web browser)
 - Start from what users do, how they do it (field studies)
- High level needs
 - recall Maslow's Hierarchy
 - May need satisfaction, comfort, reliability, social connections, safety

Environmental Requirements

- Context of use
- Physical environment
- Social environment
 - e.g. requires login by three people who are friends
- Organizational environment
 - e.g. requires a professor and a student
 - e.g. requires approval of the manager to be activated

Functional Requirements

- What the new system is to do in general terms
- What specific capabilities are therefore required

Technical Requirements

- Technical requirements, constraints, assumptions
 - Price, size, weight, etc.
 - Compatibility with other technologies, adherence to standards
 - Data requirements

Usability Requirements

- Ease of learning
- Ease of use
- Protection against "errors"
- Specific heuristics which are important

Note: List *specifics* for the project/technology

Evaluating Requirements

- Measures of success
 - Absolute, objective, quantifiable, measurable,
 - "Productivity" improvement of 10% within 1 year
 - Error-free performance in 1 hour without use of manual
 - Subjective
 - Satisfaction expressed by 95% of operators after 6 months
 - Relative to current method, e.g., alternative or no technology

Evaluating Requirements

- Priorities, tradeoffs, & constraints
 - High-end vs. low-end
 - in functionality and price
 - General-purpose vs. special-purpose
 - Ease of use and ease of learning
 - Power and simplicity
 - High-speed and error-free performance

DESIGN ACTIVITIES

Topic Brainstorming

What problems do you have as students?

Topic Brainstorming

- Commute planning
- Stress management
- Communication and contact with distant family
- Time management
- Tracking learning goals
- Working with groups

Activity One: Persona

- In groups of three, develop a persona which describes a member of a primary stakeholder group for computer-based solutions to assist commute planning.
- Post your persona to Blackboard discussion Design Activities

Activity Two: Scenario

- Using your persona, write a *story scenario* about a task related to commute planning.
- Post your scenario as a reply to your persona posting

http://www.usabilitynet.org/tools/affinity.htm

Design Process

AFFINITY DIAGRAMS

Affinity Diagrams

- Goal: organize our ideas related to the project
 - these are things we learned during contextual inquiry and research

Affinity Diagrams

- Draw out common themes from a large amount of information
- Discover previously unseen connections between various ideas or information
- Brainstorm root causes and solutions to a problem

Affinity Diagrams

- Used mostly for brainstorming, can be useful in any problem where:
 - The solution is not readily apparent
 - You want to reach a consensus or decision and have a lot of variables to consider, concepts to discuss, ideas to connect, or opinions to incorporate
 - There is a large volume of information to sort through

(Source: http://www.mindtools.com/pages/article/newTMC_86.htm)

- 1. Write down the problem
- 2. Generate ideas
 - 1. Emphasize volume (more is better!)
 - 2. Suspend judgment
 - 3. Piggyback on other ideas

- 1. Sort ideas into themes
 - 1. Which ideas are similar?
 - 2. Is this idea connected to the others?

Ideally, work in groups of 3-4 people and use a consensus model Sort in silence to avoid bias Groupings can be hierarchical

Figure 1

- 4. Create consensus
 - 1. Discuss meanings of groupings
 - 2. Separate stand alone ideas
 - 3. Duplicate cards as needed
 - 4. Limit to 5-9 themes

- 5. Names the Themes
 - 1. Create short 3-5 word descriptions
 - 2. Write on a card and place atop the group
 - 3. Create super-headers when needed
- 6. Connect themes with lines
- 7. Record the results
 - 1. Use a camera or write it down

http://www.mindtools.com/pages/article/newTMC 86.htm

Why is customer service sub-standard?

http://www.mindtools.com/pages/article/newTMC 86.htm

Figure 5

Activity Three: Affinity Diagrams

 Split into N groups and follow the affinity diagram process for <our chosen problem>.

Activity Four: Requirements

- Back in your original groups of three
- Brainstorm using your own experiences, choose an aspect of <our chosen problem> that is not well supported by technology
- Write a sentence about the problem as an introduction
- Imagine a technology solution to that problem (such a technology may already exist – that's ok!)

Activity Four: Step Two

- Write a list of requirements for a technology solution to this problem, under the categories we have discussed:
 - stakeholder needs
 - environmental requirements
 - functional requirements
 - technical requirements, and
 - usability requirements
- Post your requirements list to our discussion board as a reply to your other postings

Where are we now?

STAGES OF DESIGN

The Design Process

(Source: Dix, Finley, Abowd, Beale, "Human-Computer Interaction")

Design Stages

 There are different levels of interaction within any user interface – we have to ensure that we design for all levels

Project Part 3a:

- Conceptual Design
- Functionality (match with requirements!)
- Scenarios
- Interaction design
- Interface ("screen") design

Summary

- Today we practiced creating personas, scenarios, and requirements
- We introduced Affinity Diagrams as a brainstorming activity

Your Action Items

- Group project part 3a is posted now
- New readings:
 - Chapter 7 (research methods review)
 - Section 11.1-11.3 (task analysis review)
 - Chapters 8 & 9 (envisionment & design new)
 - Chapter 12 (visual aspects new)
 - Sketching User Experiences Chapter 1

Ongoing Course Evaluation

 Please complete the Lecture 11 daily feedback form!