

DCA0305 ivanovitch.silva@ufrn.br

Machine Learning Based Systems Design

Visualizing Gradient Descent Regression Problem

Deep Learning with PyTorch Stepby-Step: A Beginner's Guide

Table of Contents

Preface

Acknowledgements

About the Author

- Frequently Asked Questions (FAQ)
- Setup Guide
- Part I: Fundamentals
- Chapter 0: Visualizing Gradient Descent
- Chapter 1: A Simple Regression Problem

https://github.com/dvgodoy/ PyTorchStepByStep

Part I: Fundamentals (gradient descent, training linear and logistic regressions in PyTorch)

Part II: Computer Vision (deeper models and activation functions, convolutions, transfer learning, initialization schemes)

Part III: Sequences (RNN, GRU, LSTM, seq2seq models, attention, self-attention, transformers)

Part IV: Natural Language Processing (tokenization, embeddings, contextual word embeddings, ELMo, BERT, GPT-2)

Visualizing Gradient Descent

Preamble

$$y = 1x^2 + 2x + 3$$

$$y = w_1 x^2 + w_2 x + w_3$$

Preamble

```
import numpy as np # Import the NumPy library
# Define a 2nd degree polynomial: 1*x^2 + 2*x + 3
polynomial = np.poly1d([1, 2, 3])
# Print the polynomial
print(polynomial)
# Set the number of samples
n = 20
# Generate 'n' random samples from a normal distribution and scale by 5
x = np.random.randn(n, 1) * 5
# Apply the polynomial to the values of x to get corresponding y values
y = polynomial(x)
```

Preamble

```
# Assume samples X and Y are prepared elsewhere
xx = np.hstack([x*x, x, np.ones like(x)])
w = torch.randn(3, 1, requires grad=True) # the 3 coefficients
x = torch.tensor(xx, dtype=torch.float32) # input sample
y = torch.tensor(y, dtype=torch.float32) # output sample
optimizer = torch.optim.NAdam([w], lr=0.01)
# Run optimizer
for in range(1000):
    optimizer.zero grad()
    y \text{ pred} = x @ w
    mse = torch.mean(torch.square(y - y pred))
    mse.backward()
                             tensor([[1.0050],
    optimizer.step()
                                     [1.9969],
print(w)
                                     [2.6778]], requires_grad=True)
```

$$y = w_1 x^2 + w_2 x + w_3$$

A linear regression model

$$y = b + wx + \epsilon$$

Synthetic Data Generation and Train-Validation-Test Split

80 Step

Initializes parameters

$$y = b + wx$$

```
np.random.seed(42)
# Generates a single random number from a standard normal distribution for the bias 'b'
b = np.random.randn(1)
w = np.random.randn(1)
print(b, w)
[0.49671415] [-0.1382643]
```

91Step

Compute predictions

Step 1 - Computes our model's
predicted output - forward pass
yhat = b + w * x_train

02

Step

Compute the loss

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} \operatorname{error}_{i}^{2}$$

= $\frac{1}{n} \sum_{i=1}^{n} (\hat{y}_{i} - y_{i})^{2}$
= $\frac{1}{n} \sum_{i=1}^{n} (b + wx_{i} - y_{i})^{2}$

```
# Step 2 - Computing the loss
# We are using ALL data points, so this is BATCH
gradient
# descent. How wrong is our model? That's the
error!
error = (yhat - y_train)

# It is a regression, so it computes mean squared
error (MSE)
loss = (error ** 2).mean()
print(loss)

2.7421577700550976
```


Step Compute the gradients

Gradient = how much the loss changes if ONE parameter changes a little bit!

A derivative tells you how much a given quantity changes when you slightly vary some other quantity. In our case, how much does our MSE loss change when we vary each of our two parameters separately?

Step

Compute the gradients

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} \text{error}_{i}^{2}$$

= $\frac{1}{n} \sum_{i=1}^{n} (\hat{y}_{i} - y_{i})^{2}$
= $\frac{1}{n} \sum_{i=1}^{n} (b + wx_{i} - y_{i})^{2}$

$$\frac{\partial \text{MSE}}{\partial b} = \frac{\partial \text{MSE}}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial b} = \frac{1}{n} \sum_{i=1}^n 2(b + wx_i - y_i)$$

$$= 2\frac{1}{n} \sum_{i=1}^n (\hat{y}_i - y_i)$$

$$\frac{\partial \text{MSE}}{\partial w} = \frac{\partial \text{MSE}}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial w} = \frac{1}{n} \sum_{i=1}^n 2(b + wx_i - y_i)x_i$$

$$= 2\frac{1}{n} \sum_{i=1}^n x_i(\hat{y}_i - y_i)$$

```
# Step 3 - Computes gradients for both "b" and "w" parameters
b_grad = 2 * error.mean()
w_grad = 2 * (x_train * error).mean()
print(b_grad, w_grad)
-3.044811379650508 -1.8337537171510832
```

04

Step

Update the parameters

```
# Sets learning rate - this is "eta" ~ the "n" like Greek letter
lr = 0.1
print(b, w)

# Step 4 - Updates parameters using gradients and the
# learning rate
b = b - lr * b_grad
w = w - lr * w_grad

print(b, w)
[0.49671415] [-0.1382643]
[0.80119529] [0.04511107]
```


$$b = b - \eta \frac{\partial \text{MSE}}{\partial b}$$
$$w = w - \eta \frac{\partial \text{MSE}}{\partial w}$$

What is the influence of the X scale on the results?

The red curve got <u>much steeper</u> (larger gradient), and thus we must use a <u>lower</u> <u>learning rate</u> to safely descend along it.

How can we fix it?

$$\overline{X} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$\sigma(X) = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \overline{X})^2}$$
scaled $x_i = \frac{x_i - \overline{X}}{\sigma(X)}$

Now we use the updated parameters to go back to Step 1 and restart the process.

Definition of Epoch

An epoch is complete whenever every point in the training set(N) has already been used in all steps: forward pass, computing loss, computing gradients, and updating parameters.

Batch gradient descent

This is trivial, as it uses all points for computing the loss – one epoch is the same as one update.

Stochastic gradient descent

One epoch means N updates, since every individual data point is used to perform an update.

Mini-batch gradient descent

One epoch has N/n updates since a mini-batch of n data points is used to perform an update.

100 epochs using either 80 data points (<u>batch</u>), 16 data points (<u>mini-batch</u>), or a single data point (<u>stochastic</u>) for computing the loss, as shown in the figure below.


```
# Step 0 - Initializes parameters
"b" and "w" randomly
np.random.seed(42)
b = np.random.randn(1)
w = np.random.randn(1)

print(b, w)

# Sets learning rate - this is
"eta" ~ the "n"-like Greek letter
lr = 0.1
# Defines number of epochs
n_epochs = 1000
```



```
for epoch in range(n epochs):
   # Step 1 - Computes model's predicted output - forward pass
   yhat = b + w * x train
   # We are using ALL data points, so this is BATCH gradient
   # descent. How wrong is our model? That's the error!
   error = (yhat - y train)
   # It is a regression, so it computes mean squared error (MSE)
   loss = (error ** 2).mean()
   # Step 3 - Computes gradients for both "b" and "w" parameters
   b grad = 2 * error.mean()
   w \text{ grad} = 2 * (x \text{ train} * \text{error}).\text{mean}()
   # Step 4 - Updates parameters using gradients and
   # the learning rate
   b = b - lr * b grad
   w = w - lr * w grad
print(b, w)
[0.49671415] [-0.1382643]
[1.02354094] [1.96896411]
```


Tom Yeh (He/Him) • Following

Associate Professor of Computer Science at University of Colorado...

2d • 🔇

-- Previous Workbooks --

1: Dot Product https://lnkd.in/g8TNrpfN

2: Matrix Multiplication https://lnkd.in/g6DnVySK

-- Workbook --

Each workbook is comprised of 25 exercises.

Every exercise features a "missing" value, highlighted in a soft shade of red.

Can you calculate this missing value by hand? \angle

For each exercise, the solution can be found in the bottom-right corner of the page. Do your best to avoid looking ahead. \odot

-- Share --

#linear #aibyhand #ai #neuralnetwork

[Repost 🚱] Please help me share this workbook with more people!

Time to TORCH it!

Pytorch Kickoff

Pytorch is more pythonic? TensorFlow excels in large-scale and production environments?

Fundamentals

Tensors, Loading Data, Devices and CUDA, Creating Parameters

Autograd

Backward, Update Parameters, Dynamic Computational Graph

Putting It All Together

Optimizer, Loss, Models, Training

import torch

import torch.optim as optim

from torchviz import make_dot

import torch.nn as nn

In the world of PyTorch, every data point, image, or signal takes shape as a tensor


```
scalar = torch.tensor(3.14159)
vector = torch.tensor([1, 2, 3])
                                                                                        Scalar
matrix = torch.ones((2, 3), dtype=torch.float)
tensor = torch.randn((2, 3, 4), dtype=torch.float)
print(scalar)
                                                                                        Vector
print(vector)
print(matrix)
print(tensor)
                                                                                        Matrix
tensor(3.1416)
tensor([1, 2, 3])
tensor([[1., 1., 1.],
       [1., 1., 1.]
tensor([[[ 0.9755, -0.8582, -1.5437, 0.8710],
         [2.2040, 0.2876, 1.4933, -1.6427],
         [0.6846, 0.2353, -0.9709, -1.3681]],
                                                                                        Tensor
        [[4.4695, 0.0782, -0.6045, 1.0868],
         [1.1322, -0.4760, 0.6845, -0.4704],
         [1.5749, -0.3304, -0.7718, 0.6357]]
```

```
device = 'cuda' if torch.cuda.is_available() else 'cpu'

# Our data was in Numpy arrays, but we need to transform them
# into PyTorch's Tensors and then we send them to the
# chosen device
x_train_tensor = torch.as_tensor(x_train).float().to(device)
y_train_tensor = torch.as_tensor(y_train).float().to(device)
```


Loading Data & Devices

```
# We can specify the device at the moment of creation
# RECOMMENDED!
# Step 0 - Initializes parameters "b" and "w" randomly
torch.manual seed(42)
b = torch.randn(1, requires_grad=True, \
               dtype=torch.float, device=device)
w = torch.randn(1, requires grad=True, \
               dtype=torch.float, device=device)
print(b, w)
tensor([0.1940], device='cuda:0', requires grad=True)
tensor([0.1391], device='cuda:0', requires grad=True)
```


Best-Practices

```
# Step 1 - Computes our model's predicted output - forward pass
yhat = b + w * x train tensor
# Step 2 - Computes the loss
# We are using ALL data points, so this is BATCH gradient
descent
# How wrong is our model? That's the error!
error = (yhat - y train tensor)
# It is a regression, so it computes mean squared error (MSE)
loss = (error ** 2).mean()
# Step 3 - Computes gradients for both "b" and "w" parameters
# No more manual computation of gradients!
# b grad = 2 * error.mean()
# w grad = 2 * (x tensor * error).mean()
loss.backward()
```

Autograd

Dynamic Computational Graph

```
# Defines number of epochs
n = 1000
for epoch in range(n epochs):
   # Step 1 - Computes model's predicted output - forward pass
   yhat = b + w * x train tensor
   # We are using ALL data points, so this is BATCH gradient
   # descent. How wrong is our model? That's the error!
   error = (yhat - y train tensor)
   # It is a regression, so it computes mean squared error (MSE)
   loss = (error ** 2).mean()
   # Step 3 - Computes gradients for both "b" and "w" parameters
   # b grad = 2 * error.mean()
   \# w grad = 2 * (x tensor * error).mean()
   # We just tell PyTorch to work its way BACKWARDS
   # from the specified loss!
   loss.backward()
```

Autograd

Updating Parameters

```
# Step 4 - Updates parameters using gradients and
   # the learning rate.
   # the gradient computation. Why is that? It boils
   # down to the DYNAMIC GRAPH that PyTorch uses...
  with torch.no grad():
       b -= lr * b.grad
       w -= lr * w.grad
   # PyTorch is "clingy" to its computed gradients,
  # we need to tell it to let it go...
  b.grad.zero ()
  w.grad.zero ()
print(b, w)
tensor([1.0235], device='cuda:0', requires grad=True)
tensor([1.9690], device='cuda:0', requires grad=True)
```

Optimizer and Loss

```
# Sets learning rate - this is "eta" ~ the "n"-like
# Greek letter
1r = 0.1
# Step 0 - Initializes parameters "b" and "w"
randomly
torch.manual seed(42)
b = torch.randn(1, requires grad=True, \
              dtype=torch.float, device=device)
w = torch.randn(1, requires grad=True, \
              dtype=torch.float, device=device)
# Defines a SGD optimizer to update the parameters
optimizer = optim.SGD([b, w], lr=lr)
# Defines a MSE loss function
loss fn = nn.MSELoss(reduction='mean')
# Defines number of epochs
n = 1000
```

```
for epoch in range(n epochs):
   # Step 1 - Computes model's predicted output - forward pass
   yhat = b + w * x train tensor
   # Step 2 - Computes the loss
   # No more manual loss!
   # error = (yhat - y train tensor)
   loss = loss fn(yhat, y train tensor)
   # Step 3 - Computes gradients for both "b" and "w"
   loss.backward()
   # Step 4 - Updates parameters using gradients and
   # the learning rate
   optimizer.step()
  optimizer.zero grad()
print(b, w)
tensor([1.0235], device='cuda:0', requires grad=True)
tensor([1.9690], device='cuda:0', requires grad=True)
```

```
class ManualLinearRegression(nn.Module):
   def __init__(self):
       super().__init__()
       # To make "b" and "w" real parameters of the model,
       # we need to wrap them with nn.Parameter
       self.b = nn.Parameter(torch.randn(1,
                                         requires grad=True,
                                         dtype=torch.float))
       self.w = nn.Parameter(torch.randn(1,
                                         requires grad=True,
                                         dtype=torch.float))
   def forward(self, x):
       # Computes the outputs / predictions
       return self.b + self.w * x
```

Models

A model is represented by a regular Python class that inherits from the Module class

Forward Pass

It is the moment when the model makes predictions

```
# Greek letter
1r = 0.1
# Step 0 - Initializes parameters "b" and "w" randomly
torch.manual seed(42)
# Now we can create a model and send it at once to the
model = ManualLinearRegression().to(device)
# Defines a SGD optimizer to update the parameters
# (now retrieved directly from the model)
optimizer = optim.SGD(model.parameters(), lr=lr)
# Defines a MSE loss function
loss fn = nn.MSELoss(reduction='mean')
n epochs = 1000
```

```
for epoch in range(n_epochs):
   model.train() # What is this?!?
   # Step 1 - Computes model's predicted output - forward pass
   # No more manual prediction!
   yhat = model(x train tensor)
   # Step 2 - Computes the loss
   loss = loss fn(yhat, y train tensor)
   # Step 3 - Computes gradients for both "b" and "w"parameters
   loss.backward()
   # Step 4 - Updates parameters using gradients and
   # the learning rate
   optimizer.step()
   optimizer.zero_grad()
print(model.state_dict())
OrderedDict([('b', tensor([1.0235], device='cuda:0')),
             ('w', tensor([1.9690], device='cuda:0'))])
```

Sequential Models

Our model was simple enough. You may be thinking: "Why even bother to build a class for it?!" Well, you have a point...


```
device = 'cuda' if torch.cuda.is_available() else 'cpu'

# Our data was in Numpy arrays, but we need to transform them
# into PyTorch's Tensors and then we send them to the
# chosen device
x_train_tensor = torch.as_tensor(x_train).float().to(device)
y_train_tensor = torch.as_tensor(y_train).float().to(device)
```

Data Preparation

```
# Sets learning rate - this is "eta" ~ the "n"-like Greek letter
lr = 0.1

torch.manual_seed(42)
# Now we can create a model and send it at once to the device
model = nn.Sequential(nn.Linear(1, 1)).to(device)

# Defines a SGD optimizer to update the parameters
# (now retrieved directly from the model)
optimizer = optim.SGD(model.parameters(), lr=lr)

# Defines a MSE loss function
loss_fn = nn.MSELoss(reduction='mean')
```

Model Configuration

```
n = pochs = 1000
for epoch in range(n_epochs):
   # Sets model to TRAIN mode
   model.train()
   yhat = model(x train tensor)
   loss = loss fn(yhat, y train tensor)
   # Step 3 - Computes gradients for both "b" and "w" parameters
   loss.backward()
   # Step 4 - Updates parameters using gradients and
   optimizer.step()
   optimizer.zero grad()
print(model.state dict())
OrderedDict([('0.weight', tensor([[1.9690]], device='cuda:0')),
             ('0.bias', tensor([1.0235], device='cuda:0'))])
```

Training