INGENIEURHYDROLOGIE

ORGANISATION UND THEMENAUSWAHL

PROF. DR. C. KÜLLS

LABOR FÜR HYDROLOGIE UND INTERNATIONALE WASSERWIRTSCHAFT

EINFÜHRUNG

ISOLINIEN METHODE

$$N_m = \frac{\sum (N_i \cdot A_i)}{\sum A_i}$$

- subjektiv, kann durch trianguläre Interpolation verbessert werden
- Annahme linearer Veränderungen
- analoge & digitale Verfahren

•

ISOLINIEN METHODE KONSTRUKTIONSVERFAHREN

USDA (United States Department of Agriculture, Stormwater in Urban Basins

ISOLINIEN METHODE BEISPIEL

THIESSEN POLYGONE

- objektive Methode
 - ı Flächengewicht
- analog & digital

$$\overline{N} = \sum_{i=1}^{n} g_{i} \cdot N_{i}$$

Prinzipielle Methode für Gebiets-N-Berechnung entscheidend ist die Art der Polygonbestimmung

FLÄCHENANTEIL

mit: Gebietsniederschlag (mm) N:

> Niederschlagssumme N;: der Stationen i (mm)

> n: Anzahl der Teilflächen

Flächengewichte der g_i : i-ten Station

Inverse Distanzen

METHODE

Abbildung: Karte des Beispiels

$$N_x = \frac{1}{\sum g_i} * \sum_{i=1}^n (N_i * g_i)$$

Methode

- Vorhanden sind Werte an A bis F, gesucht X
- Erst Distanz *D* rechnen mit $D = \sqrt[2]{x^2 + y^2}$
- Dann Gewicht g_i als 1/D oder als $1/D^2$
- Niederschlag N_i mit Gewicht g_i gewichten
- Die Formel mit dem Kehrwert der Summe der Gewichte $\frac{1}{\sum (g_i)}$ ausgleichen

INVERSE DISTANZEN

BEISPIEL

Niederschlagsstationen

Namen	Niederschla	ag Höhe	x-Koordinate	y-Koordinate	Entfernung zu X	ID	ID2	NxID	NxID2
	mm	m	km	km	km	-	-	mm	mm
Α	650	150	20	120	70.7	0.0141	0.00020	9.1924	0.1300
В	700	200	60	80	42.4	0.0236	0.00056	16.4992	0.3889
С	800	50	0	40	31.6	0.0316	0.00100	25.2982	0.8000
D	820	75	90	40	60.8	0.0164	0.00027	13.4807	0.2216
E	725	100	60	10	50.0	0.0200	0.00040	14.5000	0.2900
F	690	125	100	120	99.0	0.0101	0.00010	6.9701	0.0704
Х	741.7		30	50	0.0				
					Summe	0.1159	0.00253	85.9405	1.9009

Grau = Eingabewerte

Gelb = Ergebnis für X bzw. Werte von X (Koordinaten)
741.7 = errechnete Zielgröße Niederschlag in mm an X

blau = Berechnete Werte

ID inverse Distanz

ID2=Inverse quadrierte Distanz

NxID=Niederschlag mal inverse Distanz zu X

NxID2=Niederschlag mal inverse quadrierte Distanz zu X

Die Summen sind die Summen der Gewichte und von NxID, NxID2 Der Kehrwert von ID und ID2 wird zum Ausgleich der Gewichte

genommen.

EXTREMWERTE UND STATISTIK DES NIEDERSCHLAGS

EXTREMSTE NIEDERSCHLÄGE WELTWEIT

- x-Achse und y-Achse logarithmisch
- 425 mm pro Stunde mal Wurzel(Stunden)

MAXIMUM WERTE NIEDERSCHLAG

Der größtmögliche Niederschlag kann mit der Formel:

$$P_{max} = 425 * D[h]^{0.47}[mm]$$

beschrieben werden. Die Dauer wird in Stunden angegeben. Die Menge steigt ungefähr mit der Wurzel der Dauer an.

MAXIMALER NIEDERSCHLAG FORMEL MIT R

Abbildung: Maximaler Niederschlag

MAXIMALER NIEDERSCHLAG REGIONAL

Kurven für die Welt und für Grossbritannien

- Regionale Unterschiede
- Unterschiede je nach Niederschlagstyp

STARKREGEN

Landregen: Niederschlag > 6 h

Starkregen: Mindestergiebigkeit (nach WUSSOW)

- > 5 mm Niederschlag in 5 min > 10 mm Niederschlag in 20 min
- > 17,3 mm Niederschlag in 60 min

 $h = \sqrt{5t - \left(\frac{t}{24}\right)^2}$ $h = \sqrt{5t} \quad \text{(assistant)}$

wobei: h = N in mm

Dauer III Milliuter

VORFEUCHTE DES EINZUGSGEBIETES ABHÄNGIG VON ZEIT SEIT LETZTEM NIEDERSCHLAG

Abflussbildung positiv

- Kann aus dem gleitenden Mittel Niederschlag gerechnet werden
- Nimmt mit zunehmender Dauer seit letztem Niederschlag exponentiell ab

HYETOGRAPH ZEIT-MENGEN-KURVE

Savenje, 1992

- Intensitätsverlauf
- Wichtig für Abflussbildung

HYETOGRAPH ZEITFUNKTION

- Intensität vs. Zeit
- Hängt von Region und Regenart ab

MASSENKURVE DES NIEDERSCHLAGES

- Wird von Niederschlagsschreibern aufgezeichnet
- Ableitung ist die Intensität (Änderung der Menge pro Zeit)

FLÄCHENREDUKTION

WICHTIG ZUR KORREKTEN BERECHNUNG DES FLÄCHENNIEDERSCHLAGES

- Menge und Intensität nehmen mit zunehmender Beregnungsfläche ab
- Abnahme ist deutlicher ausgeprägt für kürzere Dauern

STATISTIK

Die Überschreitungs-Wahrscheinlichkeit eines Ereignisses P(x > X) kann einfach aus dem Rang von absteigend sortierten Ereignissen ermittelt werden:

$$P(X > X) = \frac{m}{N+1}$$

$$T = \frac{1}{P(X > X)}$$

Dabei ist *m* der Rang einer sortierten Reihe und *N* die gesamte Anzahl aller Ereignisse. Das Wiederkehrintervall ist dann definiert als:

$$T = 1 - P(x > X) = 1 - \frac{m}{N+1}$$

NIEDERSCHLAGSWAHRSCHEINLICHKEIT

Dauer-Menge und Dauer-Intensität

DAUER VS. MENGE

Unterschiedliche Wiederkehrintervalle

Dyck & Peschke, 1995

- Menge steigt mit Wiederkehrdauer
- Grundlage für Berechnung ist log-log Diagramm

FÜR DEUTSCHLAND

Geltungsbereich

Die Regenreihen gelten für die Bemessung

- Oberirdischer Gewässer
- Öffentlicher Abwasseranlagen.

Die Regenreihen haben <u>keine Gültigkeit</u> für die Bemessung von Grundstücksentwässerungsanlagen. Hier gilt der KOSTRA – Atlas 1997¹ in Verbindung mit der DIN 1986 – 100² und den europäischen Normenwerken.

Dyck & Peschke, 1995

- erstellt an Hand von DWD Niederschlagsschreiberdaten
- TH Hamburg-Harburg, lieferbar als DVD
- Anpassung an Klimawandel

FÜR DEUTSCHLAND

doppeltlogarithmische Beziehung

$$\ln u = a_u + b_u \cdot \ln D \quad \text{bzw.} \quad u = e^{a_u + b_w \cdot \ln D}$$

$$\ln w = a_w + b_w \cdot \ln D \quad \text{bzw.} \quad w = e^{a_w + b_w \cdot \ln D}$$

einfachlogarithmische Beziehung

$$u = a_u + b_u \cdot \ln D$$
$$w = a_w + b_w \cdot \ln D$$

Doppelt- und einfach-logarithmische Beziehungen zur Bestimmung der empirischen Koeffizienten u(D) und w(D), mit denen die Regenreihen an die Stichproben (Niederschlagsmessungen) angepasst werden.

Bereich 1	bis 60 min	(D in min)					
	$u(D) = -0.7672 + 3.60674 \cdot lnD$						
	$w(D) = -0.3332 + 1.56639 \cdot lnD$						
Bereich 2	60 bis 720 min	(D in min)					
	$u(D) = exp(1,569 + 0,2613 \cdot lnD)$						
	$w(D) = exp(1,091 + 0,17451 \cdot lnD)$						
Bereich 3	12 h bis 24 h	(D in h)					
$u(D) = 22.0 + 0.3750 \cdot D$							
	$w(D) = 7,9042 + 0,12305 \cdot D$						

Bereich 4	24 h bis 72 h	(D in h)				
$u(D) = 23,0 + 0,33333 \cdot D$						
$w(D) = 9,772 + 0,04524 \cdot D$						

Bereich 5	3 d bis 7 d	(D in d)
	$u(D) = 33,5 + 4,5 \cdot D$	
7	v(D) = 11,4 + 0,54287	D

50-JÄHRLICHER NIEDERSCHLAG UNTERSCHIEDLICHER DAUERN

GRAPHIK UND TABELLE

		Bemess	ungs - h	liedersc	hlagshö	hen (mr	n)			
	ir	Abhäng	gigkeit v	on Wied	erkehrze	it und D	auer			
Dauer-		Wiederkehrzeit in a								
stufe	0,5	1	2	5	10	20	30	50	100	
5 min	3,5	5,0	6,6	8,6	10,1	11,6	12,5	13,6	15,1	
6 min	4.0	5,7	7,4	9,7	11,4	13,1	14.1	15,4	17,	
7 min	4,4	6,3	8,1	10,6	12,5	14,4	15,5	16,9	18,	
8 min	4,7	6,7	8,8	11,4	13,5	15,5	16,7	18,2	20,	
9 min	5,0	7,2	9,3	12,2	14,3	16,5	17,7	19,3	21,	
10 min	5,3	7,5	9,8	12,8	15,1	17,3	18,7	20,3	22,	
11 min	5,5	7,9	10,3	13,4	15,8	18,1	19,5	21,3	23,	
12 min	5,7	8,2	10,7	13,9	16,4	18,9	20,3	22,1	24,6	
13 min	5,9	8,5	11,0	14,4	17,0	19,5	21,0	22,9	25,5	
14 min	6,1	8,8	11,4	14,9	17,5	20,1	21,7	23,6	26,	
15 min	6,3	9,0	11,7	15,3	18,0	20,7	22,3	24,3	27,	
16 min	6,5	9,2	12,0	15,7	18,5	21,2	22,9	24,9	27,	
17 min	6,6	9,5	12,3	16,1	18,9	21,7	23,4	25,5	28,	
18 min	6,8	9,7	12,6	16,4	19,3	22,2	23,9	26,1	29,	
19 min	6.9	9,9	12,8	16,7	19,7	22,7	24.4	26,6	29,	
20 min	7,0	10,0	13,1	17,1	20,1	23,1	24.9	27,1	30,	
21 min	7,1	10,2	13,3	17,4	20,4	23,5	25,3	27,6	30,	
22 min	7.3	10.4	13,5	17.6	20.8	23.9	25.7	28,0	31.	
23 min	7.4	10,5	13,7	17,9	21,1	24,3	26.1	28,5	31,	
24 min	7,5	10,7	13,9	18,2	21,4	24,6	26,5	28,9	32,	
25 min	7,6	10,8	14,1	18,4	21,7	24,9	26,9	29,3	32,	
26 min	7,7	11.0	14,3	18,7	22,0	25,3	27,2	29,6	33,	
27 min	7,8	11,1	14,5	18,9	22,2	25,6	27,5	30,0	33,	
28 min	7,9	11,3	14,6	19,1	22,5	25,9	27,9	30,4	33,	
29 min	8.0	11,4	14,8	19,3	22,8	26,2	28,2	30,7	34.	
30 min	8.0	11,5	15,0	19,5	23,0	26,5	28,5	31,0	34,	
35 min	8,4	12,1	15,7	20,5	24,1	27,7	29,9	32,5	36,	
40 min	8,8	12,5	16,3	21,3	25,1	28,8	31,1	33,8	37,	
45 min	9,1	13,0	16,9	22,0	25,9	29,8	32,1	35,0	38,	
50 min	9,3	13,3	17,4	22,7	26,7	30,7	33,1	36,0	40,	
55 min	9,6	13,7	17,8	23,3	27,4	31,5	33,9	36,9	41,1	
60 min	9.8	14.0	18.2	23.8	28.0	32.2	34.7	37.8	42.0	

FÜR DEUTSCHLAND

$$R(D,T) = \frac{h(D,T) \cdot F}{D}$$

R(D,T): Regenspende $[l/(s \cdot ha)]$

h(D,T): Niederschlagshöhe [mm]

F: Flächefaktor $[mm^2/ha]$

D: Dauerstufe [s]

FÜR DEUTSCHLAND

Mit D = 5 [min] sind die Berechnungsvorschriften des **Bereichs 1** (0 bis 60 min) für die Koeffizienten u (D) und w (D) anzuwenden:

Daraus bestimmt sich die **Niederschlagshöhe** h(D,T) [mm] mit D = 5 [min] und T = 0.5 [a] zu:

Mit h(D,T) kann die **Regenspende** R(D,T) mit D=5 [min] und T=0,5 [a] berechnet werden. Zu beachten sind die **Einheiten**: D [s], h [mm], $F=10^{10}$ [mm²/ha]

Die Regenspende eines Niederschlagsereignisses von 5 Minuten, das zwei Mal im Jahr eintritt, beträgt damit in Hamburg: $\mathbf{r}_{5,0.5} = 117.4 \ [l/(s\cdot ha)]$.

$$\begin{array}{ll} u(D) & = -0.7672 + 3.60674 \cdot lnD \\ & = -0.7672 + 3.60674 \cdot ln5 \\ & = 5.03756 \\ w(D) & = -0.3332 + 1.56639 \cdot lnD \\ & = -0.3332 + 1.56639 \cdot ln5 \\ & = 2.18781 \end{array}$$

$$\begin{split} h(D,T) &= u(D) + w(D) \cdot \ln T \\ &= 5,03756 + 2,18781 \cdot \ln 0,5 \\ &= 3,521 \lceil mm \rceil \end{split}$$

$$R(D,T) = \frac{h(D,T) \cdot F}{D}$$

$$= \frac{3,521 [\text{mm}] \cdot 1 \cdot 10^{10} [\text{mm}^2/\text{ha}]}{300}$$

$$= 117,4 \cdot 10^6 [\text{mm}^3/(\text{s· ha})]$$

$$= 117,4[1/(\text{s· ha})]$$

SCHLUSSWORT

Danke für die Aufmerksamkeit und Mitarbeit!

LITERATUR

AN INFILTRATION EQUATION WITH PHYSICAL SIGNIFICANCE. *Soil Sci.*, 77:153–157, 1954.

M. TH. VAN GENUCHTEN.

A CLOSED FORM EQUATION FOR PREDICTING THE HYDRAULIC CONDUCTIVITY OF UNSATURATED SOILS.

Soil Sci. Soc. Am., (44):892-898, 1980.

L. H. Allen, D. Y. Pan, K. J. Boote, N. B. Pickering, and J. W. Jones. Carbon dioxide and temperature effects on evapotranspiration and water use efficiency of soybean.

Agronomy Journal, 95(4):1071–1081, 2003.