Targetowanie reklam z machine learning

Czyli słowa kluczowe i trochę Adtechu

Spis treści

- 1. Analiza danych
- 2. Parsowanie danych
- 3. Zdanie jako wektor
- 4. TFIDF
- 5. LSA
- 6. Clustering + k-means
- 7. Wynik + co dalej

Uwaga - dużo nerdbełkotu!

Ten nudny slajd ze mną

- 1. Jestem programistą Pythona
- 2. Należę do Hackerspace Silesia
- 3. W pracy zajmuję się Adtech-em
- Zajmuję się zliczaniem wejść i zakupów na stronę oraz raportowaniem

Geneza problemu

- Klient zajmuje się reklamą wielu sklepów
- Klient bardzo chciał machine learning
- Jedynie jakie mamy dane to z logi tracker-ów
- Dane muszą zostać przerobione do postaci linia słowa kluczowe

Analiza danych

- Jakie to są dane?
- Jak one wyglądają?
- (dokąd zmierzamy?)
- Czy wszystkie słowa są nam potrzebne?

Parsowanie danych

- Mamy tylko logi z NGINX
- 2. Interesuje nas tylko adres (bez host-a)
- 3. Pozbywamy się stron typu admin / login
- 4. Pozbywamy się liczb (nic nie mówiące ID)
- 5. Pozbywamy się niepotrzebnych słów oraz znaków specjalnych
- 6. Słowa kluczowe grupujemy po IP/cookieID
- 7. Dokument = słowa kluczowe per IP/cookieID

Uczenie Maszynowe

- Dane musimy przerobić tak, by stały się "przeliczalne"
- Jeżeli uda nam się zamienić na macierz liczb możemy stworzyć model dla uczenia maszynowego

Zdanie jako wektor

- Dokument = 1 linijka zgrupowanych słów (per IP/cookie)
- Dokument zawiera "Term-y"
- Term-em może być znak, słowo, para słów, link etc.
- Dokument możemy przedstawić jako wektor częstotliwości słów
- Wiele dokumentów = wiele wektorów = macierz ^_^

- 1. Ala ma kota
- 2. Kot ma Alę
- 3. Basia ma kota

Wiersz	Ala	ma	kota	kot	Alę	Basia
1	1	1	1	0	0	0
2	0	1	0	1	1	0
3	0	1	1	0	0	1

Ala ma kota Basia ma kota

Wiersz	Ala	Ala ma	ma kota	kota	Basia	Basia ma
1	1	1	1	1	0	0
2	0	0	1	1	1	1

TFIDF

- TF = **T**erm **F**requency
- (częstotliwość term-u w dokumencie)
- IDF = Inverse Document Frequency
- (im rzadziej się term pojawia w dokumentach tym bardziej ma wyższy ranking)

```
TFIDF(term, doc) = TF(term, doc) \times IDF(term)

TF = count(term) / count(terms in doc)

IDF = \log_{10}( count(docs) / count(docs with term) )
```

term	TF	IFD	TFIFD
Ala	0.33	log(3/1) ≈ 1.1	0.363
ma	0.33	log(3/3) = 0	0
kota	0.33	log(3/2) ≈ 0.4	0.132

1.	Ala ma kota
2.	Kot ma Alę
3.	Basia ma kota

term	TF	IFD	TFIFD
Kot	0.33	log(3/1) ≈ 1.1	0.363
ma	0.33	log(3/3) = 0	0
Alę	0.33	log(3/1) ≈ 1.1	0.363

term	TF	IFD	TFIFD
Basia	0.33	log(3/1) ≈ 1.1	0.363
ma	0.33	log(3/3) = 0	0
kota	0.33	log(3/2) ≈ 0.4	0.132

LSA

- LSA Latent semantic analysis
- Grupuje wektory na podstawie wagi (np. TFIDF) term-ów
- Grupuje term-y na podstawie podobnych wag
- Na podstawie grup jesteśmy w stanie określić relację termów
- Animacja bo ja tego nie wytłumaczę :)

Clustering

- Nie wiemy nic co możemy uzyskać z danych
- Musimy użyć z uczenia nienadzorowanego
- Clustering; Klasteryzacja na podstawie wartości wektorów jesteśmy w stanie sklasyfikować grupy term-ów

Clustering

- Każdy jeden wiersz w macierzy możemy potraktować jako wektor w przestrzeni N wymiarowej
- Algorytm k-means: szukanie N najbliższych wektorów tworząc grupę

Klasyfikacja

- Na podstawie stworzonych grup możemy zbudować klasyfikator
- Zbudowany klasyfikator będzie w stanie ocenić 'grupę' na podstawie wejścia (w naszym przypadku, zawartości stron po których się porusza)

Wynik + co dalej

- Dzięki klasteryzacji słów jesteśmy w stanie stworzyć odpowiednie kampanie reklamowe czy zmienić kategorię produktów na stronie
- Na podstawie cookieID oraz słów kluczowych których używa gość na stronie mogę wyświetlić potencjalne reklamy lub zaproponować odpowiedni produkt
- WIĘCEJ DANYCH z wielu dni + inne dane o klientach

Źródło

- 1. https://en.wikipedia.org/wiki/Latent semantic analysis
- 2. http://scikit-learn.org/stable/auto_examples/text/document_clustering.html
- 3. http://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html
- 4. http://scikit-learn.org/stable/auto-examples/cluster/plot-cluster-comparison.html
- 5. https://pandas.pydata.org/
- 6. https://github.com/firemark/word-analyser