KEY CONCEPTS MATRICES

1. **Definition:** Rectangular array of mn numbers. Unlike determinants it has no value.

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \qquad \text{or} \qquad \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

Abbreviated as: $A = [a_{ij}] 1 \le i \le m$; $1 \le j \le n$, i denotes the row and j denotes the column is called a matrix of order $m \times n$.

2. Special Type Of Matrices:

(a) Row Matrix: $A = [a_{11}, a_{12}, \dots, a_{1n}]$ having one row. $(1 \times n)$ matrix. (or row vectors)

(b) Column Matrix: $A = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{ml} \end{bmatrix}$ having one column. $(m \times 1)$ matrix

(c) Zero or Null Matrix: $A = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{ml} \end{bmatrix}$

(c) Zero or Null Matrix: $(A = O_{m \times n})$ An $m \times n$ matrix all whose entries are zero.

 $\mathbf{A} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \text{ is a } 3 \times 2 \text{ null matrix } & \mathbf{\&} \mathbf{B} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \text{ is } 3 \times 3 \text{ null matrix}$

(d) Horizontal Matrix: A matrix of order $m \times n$ is a horizontal matrix if n > m.

 $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 1 & 1 \end{bmatrix}$

(e) Verical Matrix: A matrix of order $m \times n$ is a vertical matrix if m > n. $\begin{vmatrix}
2 & 3 \\
1 & 1 \\
3 & 6 \\
2 & 4
\end{vmatrix}$

(f) Square Matrix: (Order n)

If number of row = number of column \Rightarrow a square matrix.

Note (i) In a square matrix the pair of elements a_{ij} & a_{ji} are called **Conjugate Elements**.

e.g. $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$

(ii) The elements a_{11} , a_{22} , a_{33} , a_{nn} are called **Diagonal Elements**. The line along which the diagonal elements lie is called **"Principal or Leading"** diagonal.

The qty $\sum a_{i,i} = \text{trace of the matrice written as}$, i.e. $t_r A$

Square Matrix

 $\begin{array}{ll} \text{Upper Triangular} & \quad & \text{Lower Triangular} \\ a_{i\,j} = 0 \;\; \forall \;\; i > j & \quad & a_{i\,j} = 0 \;\; \forall \;\; i < j \end{array}$

Minimum number of zeros in Note that: a triangular matrix of order n = n(n-1)/2

Diagonal Matrix denote as $d_{dia}(d_1, d_2,, d_n)$ all elements except the leading diagonal are zero diagonal Matrix $\begin{bmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{bmatrix}$ Unit or Identity Matrix $\begin{bmatrix} 1 & if & i = j \\ 0 & if & i \neq j \end{bmatrix}$

Note: (1) If $d_1 = d_2 = d_3 = a$ Scalar Matrix (2) If $d_1 = d_2 = d_3 = 1$ Unit Matrix

Note: Min. number of zeros in a diagonal matrix of order n = n(n-1)

"It is to be noted that with square matrix there is a corresponding determinant formed by the elements of A in the same order."

3. **Equality Of Matrices:**

A = $[a_{ij}]$ & B = $[b_{ij}]$ are equal if, both have the same order. (ii) $a_{ij} = b_{ij}$ for each pair of i & j.

4. Algebra Of Matrices:

 $A + B = [a_{ij} + b_{ij}]$ where A & B are of the same type. (same order) **Addition:**

Addition of matrices is commutative. (a)

> i.e. A + B = B + A

 $A = m \times n$; $B = m \times n$

Matrix addition is associative. **(b)**

(A+B)+C = A+(B+C) Note: A, B & C are of the same type.

Additive inverse. (c)

If A + B = O = B + A

 $A = m \times n$

5. Multiplication Of A Matrix By A Scalar:

$$\text{If} \quad A = \begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix} \qquad ; \qquad kA = \begin{bmatrix} ka & kb & kc \\ kb & kc & ka \\ kc & ka & kb \end{bmatrix}$$

Multiplication Of Matrices: (Row by Column) 6.

AB exists if,

$$A = m \times n \qquad \& \qquad B = n \times p$$
$$2 \times 3 \qquad 3 \times 3$$

AB exists, but BA does not \Rightarrow AB \neq BA

Note: In the product AB,

$$A = (a_1, a_2, a_n)$$

$$A = (a_1, a_2, \dots, a_n)$$
 &
$$B = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

 $1 \times n$ $AB = [a_1 b_1 + a_2 b_2 + \dots + a_n b_n]$

If $A = [a_{ij}] m \times n \& B = [b_{ij}] n \times p$ matrix, then

$$(AB)_{ij} = \sum_{r=1}^{n} a_{ir} \cdot b_{rj}$$

Properties Of Matrix Multiplication:

1. Matrix multiplication is not commutative.

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} ; \qquad B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} ; AB = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} ; \qquad BA = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$
$$\Rightarrow AB \neq BA \text{ (in general)}$$

2.
$$AB = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \implies AB = \mathbf{O} \implies A = \mathbf{O} \text{ or } B = \mathbf{O}$$

Note: If A and B are two non-zero matrices such that $AB = \mathbf{O}$ then A and B are called the divisors of zero. Also if $[AB] = \mathbf{O} \Rightarrow |AB| \Rightarrow |A| |B| = 0 \Rightarrow |A| = 0$ or |B| = 0 but not the converse.

If A and B are two matrices such that

- (i) $AB = BA \implies A \text{ and } B \text{ commute each other}$
- (ii) $AB = -BA \Rightarrow A$ and B anti commute each other
- 3. Matrix Multiplication Is Associative:

If A, B & C are conformable for the product AB & BC, then

$$(A . B) . C = A . (B . C)$$

4. Distributivity:

$$A (B + C) = AB + AC$$

 $(A + B) C = AC + BC$ Provided A, B & C are conformable for respective products

5. Positive Integral Powers Of A Square Matrix:

For a square matrix A, $A^2 A = (A A) A = A (A A) = A^3$.

Note that for a unit matrix I of any order, $I^m = I$ for all $m \in N$.

6. MATRIX POLYNOMIAL:

If
$$f(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n x^0$$
 then we define a matrix polynomial $f(A) = a_0 A^n + a_1 A^{n-1} + a_2 A^{n-2} + \dots + a_n I^n$

where A is the given square matrix. If f(A) is the null matrix then A is called the zero or root of the polynomial f(x).

DEFINITIONS:

(a) **Idempotent Matrix**: A square matrix is idempotent provided $A^2 = A$.

Note that $A^n = A \forall n \geq 2, n \in \mathbb{N}$.

- (b) Nilpotent Matrix: A square matrix is said to be nilpotent matrix of order m, $m \in N$, if $A^m = \mathbf{O}$, $A^{m-1} \neq \mathbf{O}$.
- (c) **Periodic Matrix :** A square matrix is which satisfies the relation A^{K+1} = A, for some positive integer K, is a periodic matrix. The period of the matrix is the least value of K for which this holds true. **Note that period of an idempotent matrix is 1.**
- (d) **Involutary Matrix:** If $A^2 = I$, the matrix is said to be an involutary matrix. **Note that** $A = A^{-1}$ **for an involutary matrix.**
- 7. The Transpose Of A Matrix: (Changing rows & columns)

Let A be any matrix . Then, $A = a_{ij}$ of order $m \times n$

$$\Rightarrow$$
 A^T or A' = [a_{ji}] for $1 \le i \le n$ & $1 \le j \le m$ of order $n \times m$

Properties of Transpose : If $A^T & B^T$ denote the transpose of A and B,

- (a) $(A \pm B)^T = A^T \pm B^T$; note that A & B have the same order.
- **IMP.** (b) $(AB)^T = B^T A^T$ A & B are conformable for matrix product AB.
 - (c) $(A^T)^T = A$
 - (d) $(kA)^T = kA^T$ k is a scalar.

General: $(A_1, A_2, A_n)^T = A_n^T,, A_2^T, A_1^T$ (reversal law for transpose)

8. Symmetric & Skew Symmetric Matrix:

A square matrix $A = [a_{ij}]$ is said to be, symmetric if,

$$a_{ij} = a_{ji} \quad \forall \quad i \& j$$
 (conjugate elements are equal) (Note $A = A^T$)

Note: Max. number of distinct entries in a symmetric matrix of order n is $\frac{n(n+1)}{2}$.

and skew symmetric if,

$$a_{ij} = -a_{ji} \quad \forall \quad i \& j \text{ (the pair of conjugate elements are additive inverse of each other)}$$
(Note $A = -A^T$)

Hence If A is skew symmetric, then

$$a_{ij} = -a_{ij} \implies a_{ij} = 0 \quad \forall \quad i$$

 $a_{i\,i} = -\,a_{i\,i} \quad \Rightarrow \quad a_{i\,i} = 0 \qquad \forall \quad i$ Thus the digaonal elements of a skew symmetric matrix are all zero , but not the converse .

Properties Of Symmetric & Skew Matrix:

$$P-1$$
 A is symmetric if

$$A^{T} = A$$

A is skew symmetric if $A^{T} = -A$

P-2 A + A^T is a symmetric matrix

$$A + A^{T}$$
 is a symmetric matrix $A - A^{T}$ is a skew symmetric matrix .

Consider $(A + A^{T})^{T} = A^{T} + (A^{T})^{T} = A^{T} + A = A + A^{T}$
 $A + A^{T}$ is symmetric .

Similarly we can prove that $A = A^{T}$ is skew symmetric.

Similarly we can prove that $A - A^{T}$ is skew symmetric.

P-3 The sum of two symmetric matrix is a symmetric matrix and

the sum of two skew symmetric matrix is a skew symmetric matrix.

Let
$$A^T = A$$
; $B^T = B$ where $A \& B$ have the same order.

$$(\mathbf{A} + \mathbf{B})^{\mathrm{T}} = \mathbf{A} + \mathbf{B}$$

Similarly we can prove the other

If A&B are symmetric matrices then,

- AB + BA is a symmetric matrix
- **(b)** AB – BA is a skew symmetric matrix.
- P-5 Every square matrix can be uniquely expressed as a sum of a symmetric and a skew symmetric matrix.

$$A = \frac{1}{2} (A + A^{T}) + \frac{1}{2} (A - A^{T})$$

$$P$$

$$Q$$
Symmetric Skew Symmetric

9. Adjoint Of A Square Matrix:

Let
$$A = \begin{bmatrix} a_{1j} \end{bmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
 be a square matrix and let the matrix formed by the

cofactors of
$$[a_{ij}]$$
 in determinant $|A|$ is $= \begin{pmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{pmatrix}$.

Then (adj A) =
$$\begin{pmatrix} C_{11} & C_{21} & C_{31} \\ C_{12} & C_{22} & C_{32} \\ C_{13} & C_{23} & C_{33} \end{pmatrix}$$

V. Imp. Theorem : $A(adj. A) = (adj. A).A = |A|I_n$, If A be a square matrix of order n.

Note: If A and B are non singular square matrices of same order, then

- (i) $| adj A | = | A |^{n-1}$
- (ii) adj(AB) = (adj B) (adj A)
- (iii) $adj(KA) = K^{n-1}(adj A), K is a scalar$

Inverse Of A Matrix (Reciprocal Matrix):

A square matrix A said to be invertible (non singular) if there exists a matrix B such that,

$$AB = I = BA$$

B is called the inverse (reciprocal) of A and is denoted by A^{-1} . Thus

$$\begin{array}{ll} A^{-1} = B \Leftrightarrow AB = I = B\,A\,. \\ We \ have \ , \qquad A \cdot (adj\,A) = \left|A\right| \ I_n \\ A^{-1} \ A \ (adj\,A) = A^{-1} \ I_n \ \left|A\right| \\ I_n \ (adj\,A) = A^{-1} \ \left|A\right| \ I_n \\ \therefore \qquad A^{-1} = \frac{(adj\,A)}{\left|A\right|} \end{array}$$

Note: The necessary and sufficient condition for a square matrix A to be invertible is that $|A| \neq 0$.

Imp. Theorem : If A & B are invertible matrices of the same order, then $(AB)^{-1} = B^{-1} A^{-1}$. This is reversal law for inverse.

Note:

- (i) If A be an invertible matrix, then A^T is also invertible & $(A^T)^{-1} = (A^{-1})^T$.
- (ii) If A is invertible, (a) $(A^{-1})^{-1} = A$; (b) $(A^k)^{-1} = (A^{-1})^k = A^{-k}$, $k \in N$
- (iii) If A is an Orthogonal Matrix. $AA^T = I = A^TA$
- (iv) A square matrix is said to be **orthogonal** if, $A^{-1} = A^{T}$.
- (v) $|A^{-1}| = \frac{1}{|A|}$

1. If
$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, $J = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ = and $B = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$

$$\begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \text{ then B is equal to}$$

- (A) I $\cos \theta + J \sin \theta$
- (B) $I \cos\theta J\sin\theta$
- (C) $I \sin\theta + J\cos\theta$
- (D) $-I \cos\theta + J\sin\theta$
- 2. The number of different orders of a matrix having 12elements is
 - (A) 3
- (B) 1
- (C) 6
- (D) None of these

3.
$$\begin{bmatrix} x^2 + x & x \\ 3 & 2 \end{bmatrix} + \begin{bmatrix} 0 & -1 \\ -x + 1 & x \end{bmatrix} = \begin{bmatrix} 0 & -2 \\ 5 & 1 \end{bmatrix}$$
 then x is equal to

- (A) -1
- (B) 2
- (C) 1
- (D) No value of x

4. If
$$A = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} -5 & 4 & 0 \\ 0 & 2 & -1 \\ 1 & -3 & 2 \end{bmatrix}$, then

(A)
$$AB = \begin{bmatrix} -5 & 8 & 0 \\ 0 & 4 & -2 \\ 3 & -9 & 6 \end{bmatrix}$$

(B)
$$AB = [-2 - 1 \ 4]$$

(C)
$$AB = \begin{bmatrix} -1\\1\\1 \end{bmatrix}$$

(D) AB does not exist

5. If
$$\begin{bmatrix} 1 & 3 & 2 \\ 0 & 5 & 1 \\ 0 & 3 & 2 \end{bmatrix} \begin{bmatrix} x \\ 1 \\ -2 \end{bmatrix} = [0]$$
 then x is

- (A) $-\frac{1}{2}$
- (B) $\frac{1}{2}$
- (C) 1
- (D) -1

6. If
$$AB = A$$
 and $BA = B$, then B^2 is equal to

- (A) B
- (B) A
- (C) I
- (D) 0

7. If
$$A = diag(2, -1, 3)$$
, $B = diag(-1, 3, 2)$, then

A² B equal to

- (A) diag (5, 4, 11)
- (B) diag (-4, 3, 18)
- (C) diag (3, 1, 8)
- (D) B
- **8**. If the matrix AB is a zero matrix, then
 - (A) A = O or B = O
 - (B) A = O and B = O
 - (C) It is not necessary that either A = O or B = O
 - (D) All the above statements are wrong
- 9. Which relation true for $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$

$$\begin{bmatrix} 1 & 4 \\ -1 & 1 \end{bmatrix}$$

- (A) $(A + B)^2 = A^2 + 2AB + B^2$
- (B) $(A B)^2 = A^2 2AB + B^2$
- (C) AB = BA
- (D) None of these

10. If A and B are square matrices of size $n \times n$ such

that $A^2 - B^2 = (A - B) (A + B)$, then which of the

following will be always true?

- (A) AB = BA
- (B) either of A or B is a zero matrix
- (C) either of A or B is an identity matrix
- (D) A = B

11.
$$A = \begin{bmatrix} 2 & -1 \\ -7 & 4 \end{bmatrix}$$
 & $B = \begin{bmatrix} 4 & 1 \\ 7 & 2 \end{bmatrix}$ then $B^T A^T$ is

- (A) a null matrix
 - (B) an identity matrix
 - (C) scalar, but not an identity matrix
 - (D) such that $T_r(B^TA^T) = 4$

- **12**. If A is a non–singular matrix and A^T denotes the transporse of A, then
 - $(A) |A| \neq |A^T|$
- (B) $|A.A|^T \neq |A|^2$
- (C) $|A^T, A| \neq |A^T|^2$ (D) $|A| + |A^T| \neq 0$
- If A is a skew symmetric matrix and n is **13**. an even positive integer, then Aⁿ is
 - (A) a symmetric matrix
 - (B) a skew–symmetric matrix
 - (C) a diagonal matrix
 - (D) None of these
- **14**. Which one of the following is wrong?
 - (A) The elements on the main diagonal of a symmetric matrix are all zero
 - (B) The elements on the main diagonal of a skew – symmetric matrix are all zero
 - (C) For any square matrix A, 1/2 (A+A') is symmetric
 - (D) For any square matrix, 1/2 (A A') is skew – symmetric
- If $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$, then adj equal to 15.
 - $(A)\begin{bmatrix} 1 & -2 \\ -2 & 1 \end{bmatrix} \qquad (B)\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$
 - (C) $\begin{bmatrix} 1 & -2 \\ -2 & -1 \end{bmatrix}$ (D) $\begin{bmatrix} -1 & 2 \\ 2 & -1 \end{bmatrix}$
- If $A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$, then value of A^{-1} is equal **16**.

 - (A)A
- $(C) A^3$
- (D) A⁴
- Let $A = \begin{bmatrix} 1 & 2 \\ 3 & -5 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$ and X be a **17.** matrix such that A = BX is equal to

 - (A) $\frac{1}{2} \begin{bmatrix} 2 & 4 \\ 3 & -5 \end{bmatrix}$ (B) $\frac{1}{2} \begin{bmatrix} -2 & 4 \\ 3 & -5 \end{bmatrix}$

- (C) $\begin{bmatrix} 2 & 4 \\ 3 & -5 \end{bmatrix}$ (D) None of these
- Given $A = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix}$; $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. If $A \lambda I$ is a 18. singular matrix then
 - (A) $\lambda \in \phi$
- (B) $\lambda^2 3\lambda 4 = 0$
- (A) $\lambda \in \phi$ (B) $\lambda^2 3\lambda 4 = 0$ (C) $\lambda^2 + 3\lambda + 4 = 0$ (D) $\lambda^2 3\lambda 6 = 0$
- 19. From the matrix equation AB = AC, we conclude
 - B = C provided
 - (A) A is singular
 - (B) A is non-singular
 - (C) A is symmetric
 - (D) A is a square
- **20**. If $A^2 - A + I = 0$, then the inverse of A is
 - (A)I-A
- (B) A-I
- (C) A
- (D) A + I

21. Let
$$A = \begin{bmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$$
. The only correct

statement about the matrix A is

- (A) A is a zero matrix
- (B) A = (-1) I, where I is a unit matrix
- (C) A⁻¹ does not exist
- (D) $A^2 = I$
- 22. A and B be 3×3 matrices. Then AB = 0 implies
 - (A) A = 0 and B = 0
 - (B) 0
 - (C) |A| = 0 and |B| = 0
 - (D) A = 0 or B = 0
- Which of the following statements is incor-23. rect for a square matrix A. $(|A| \neq 0)$
 - (A) If A is a diagonal matrix, A⁻¹ will also be a diagonal matrix
 - (B) If A is symmetric matrix, A-1will also be a symmetric matrix

- (C) If $A^{-1} = A \Rightarrow A$ is an idempotent matrix
- (D) If $A^{-1} = A \Rightarrow A$ an involutary matrix
- 24. If $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$. I is the unit matrix of order 2 and a ,b are arbitrary constants, then $(aI + bA)^2$ is equal to
 - (A) $a^2 I + b^2 A$
- (B) $a^2I = abA$
- (C) $a^2I + 2abA$
- (D) None of these
- 25. If $A = \begin{bmatrix} 1 & 3 \\ 3 & 4 \end{bmatrix}$ and $A^2 kA 5I_2 = 0$, then the value of k is
 - (A) 3
- (B) 5
- (C) 7
- (D) -7
- 26. If a matrix A is such that $3A^3 + 2A^2 + 5A + I = 0$, then A^{-1} is equal to-
 - $(A) (3A^2 + 2A + 5)$
 - (B) $(3A^2+2A+5)$
 - $(C) (3A^2-2A-5)$
 - (D) none of these
- 27. If $A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & a & 1 \end{bmatrix}$, $A^{-1} = \begin{bmatrix} 1/2 & -1/2 & 1/2 \\ -4 & 3 & c \\ 5/2 & -3/2 & 1/2 \end{bmatrix}$,

then

- (A) a = 1, c = -1 (B) a = 2, $c = -\frac{1}{2}$
- (C) a = -1, c = 1 (D) $a = \frac{1}{2}$, $c = \frac{1}{2}$
- **28.** Let $A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}$ and 10 $B = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}$
 - $\begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & a \\ 1 & -2 & 3 \end{bmatrix}$. If B is the inverse of matrix

A, then α is

- (A) -2
- (B) -1
- (C) 2
- (D) 5

- **29.** If $A^2 A + I = 0$, then the inverse of A is [AIEEE-2005]
 - (A) A + I
- (B) A
- (C)A-I
- (D) I A
- **30.** If $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then which one of the following holds for all $n \ge 1$, by the principle of mathematical induction -

[AIEEE-2005]

- (A) Aⁿ = nA (n-1) I
- (B) $A^n = 2^{n-1} A (n-1) I$
- (C) $A^n = nA + (n-1)I$
- (D) $A^n = 2^{n-1}A + (n-1)I$
- 31. If A and B are square matrices of size $n \times n$ such that $A^2 B^2 = (A B) (A + B)$, then which of the following will be always true

 [AIEEE 2006]
 - (A) AB = BA
 - (B) Either of A or B is a zero matrix
 - (C) Either of A or B is an identity matrix
 - (D) A = B
 - Let $A = \begin{bmatrix} 5 & 5\alpha & \alpha \\ 0 & \alpha & 5\alpha \\ 0 & 0 & 5 \end{bmatrix}$ If $|A^2| = 25$, then $|\alpha|$

equals-

[AIEEE 2007]

- (A) 5^2
- (B) 1
- (C) $\frac{1}{5}$
- (D) 5
- If $w \ne 1$ is the complex cube root of unity
 - and matrix $H=0\begin{bmatrix}\omega & 0\\ 0 & \omega\end{bmatrix}$, then H^{70} is equal
 - to

[AIEEE 2011]

- (A) H
- (B) 0
- (C) -H
- (D) H^2

- Let $A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix}$. If u_1 and u_2 are column 39. If $A = \begin{bmatrix} 5a & -b \\ 3 & 2 \end{bmatrix}$ and A adj $A = AA^T$, then 5a 34.
 - matrices such that $Au_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ and $Au_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,

then $u_1 + u_2$ is equal to [AIEEE 2012]

- $(A)\begin{vmatrix} -1\\1\\0 \end{vmatrix} \qquad (B)\begin{vmatrix} -1\\1\\1 \end{vmatrix}$
- $(C)\begin{vmatrix} -1\\-1\\0 \end{vmatrix} \qquad (D)\begin{vmatrix} 1\\-1\\-1 \end{vmatrix}$
- **35.** Let P and Q be 3×3 matrices with $P \neq Q$. If $P^3 = Q^3$ and $P^2Q = Q^2P$, then determinant of 41. $(P^2 + Q^2)$ is equal to: [AIEEE 2012]
 - (A) 0
- (B) -1
- (C) -2
- (D) 1
- If $P = \begin{bmatrix} 1 & \alpha & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4 \end{bmatrix}$ is the adjoint of a 3 × 3 **36.**

matrix A and |A| = 4, then α is equal to :

[AIEEE 2013]

- (A) 5
- (B) 0
- (C)4
- (D) 11
- 37. If A is a 3×3 non-singular matrix such that $AA^{T} = A^{T}A$ and $B = A^{-1}A^{T}$, then BB^{T} is equal [AIEEE 2014]
 - (A) I + B
- (B) I
- (C) B-1
- (D) (B-1)T
- If $A = \begin{vmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ a & 2 & b \end{vmatrix}$ is a matrix satisfying the 38.

equation $AA^T = 9I$, where I is 3×3 identity matrix, then the ordered pair (a, b) is equal [AIEEE 2015]

- (A) (2, 1) (B) (-2, -1)
- (C)(2,-1) (D)(-2,1)

+ b is equal to: [AIEEE 2016]

- (A) 5
- (B)4
- (C) 13
- (D) -1

If $A = \begin{bmatrix} 2 & -3 \\ -4 & 1 \end{bmatrix}$, then $adj(3A^2 + 12A)$ is equal to: [AIEEE 2017]

- (A) $\begin{bmatrix} 72 & -84 \\ -63 & 51 \end{bmatrix}$ (B) $\begin{bmatrix} 51 & 63 \\ 84 & 72 \end{bmatrix}$
- (C) $\begin{bmatrix} 51 & 84 \\ 63 & 72 \end{bmatrix}$ (D) $\begin{bmatrix} 72 & -63 \\ -84 & 51 \end{bmatrix}$

[JEE 2005 (Scr.)]

If $P = \begin{bmatrix} \sqrt{3}/2 & 1/2 \\ -1/2 & \sqrt{3}/2 \end{bmatrix}$ and $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and $Q = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ PAP^{T} and $x = P^{T}Q^{2005}$ then x is equal to

- $(A)\begin{bmatrix} 1 & 2005 \\ 0 & 1 \end{bmatrix}$
- (B) $\begin{bmatrix} 4+2005\sqrt{3} & 6015 \\ 2005 & 4-200\sqrt{3} \end{bmatrix}$
- (C) $\frac{1}{4}\begin{bmatrix} 2+\sqrt{3} & 1\\ -1 & 2-\sqrt{3} \end{bmatrix}$
- (D) $\frac{1}{4} \begin{bmatrix} 2005 & 2 \sqrt{3} \\ 2 + \sqrt{3} & 2005 \end{bmatrix}$

Let $P = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 16 & 4 & 1 \end{bmatrix}$ and I be the identity matrix of order 3. IF $Q = [q_{ij}]$ is a matrix

[**JEEAdv.2016**]

- (A) 52
- (B) 103

such that $P^{50} - Q = I$, then $\frac{q_{31} + q_{32}}{q_{31}}$ equals

- (C) 201
- (D) 205

- If $A 2B = \begin{bmatrix} 1 & 5 \\ 3 & 7 \end{bmatrix}$ and $2A 3B = \begin{bmatrix} -2 & 5 \\ 0 & 7 \end{bmatrix}$, 43. then matrix B is equal to -
 - (A) $\begin{bmatrix} -4 & -5 \\ -6 & -7 \end{bmatrix}$ (B) $\begin{bmatrix} 0 & 6 \\ -3 & 7 \end{bmatrix}$
 - (C) $\begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix}$ (D) $\begin{bmatrix} 6 & -1 \\ 0 & 1 \end{bmatrix}$
- If $A_{\alpha} = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$, then $A_{\alpha}A_{\beta}$ is equal 51. to -
 - $(A) A_{\alpha+\beta}$
- (B) $A_{\alpha\beta}$
- (C) $A_{\alpha-\beta}$
- (D) none of these
- If number of elements in a matrix is 60 then 45. how many different order of matrix are possible -
 - (A) 12
- (B) 6
- (C) 24
- (D) none of these
- 46. Matrix A has x rows and x + 5 columns. Matrix B has y rows and 11 - y columns. Both AB and BA exist, then -
 - (A) x = 3, y = 4 (B) x = 4, y = 3
- - (C) x = 3, y = 8 (D) x = 8, y = 3
- If $A^2 = A$, then $(I + A)^4$ is equal to -47.
 - (A) I + A
- (B) I + 4A
- (C) I + 15A
- (D) none of these
- 48. If the product of n matrices $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \dots \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}$ is equal to

the matrix $\begin{bmatrix} 1 & 378 \\ 0 & 1 \end{bmatrix}$ then the value of n is **53.**

- equal to -(A) 26
- (B) 27
- (C) 377
- (D) 378
- 49. If A is a skew symmetric matrix such that $A^{T}A = I$, then A^{4n-1} ($n \in N$) is equal to -
 - $(A) A^{T}$
- (B) I
- (C) I
- (D) A^T

- If $AA^T = I$ and det(A) = 1, then -
 - (A) Every element of A is equal to it's cofactor.
 - (B) Every element of A and it's co-factor are additive inverse of each other.
 - (C) Every element of A and it's co-factor are multiplicative inverse of each other.
 - (D) None of these
- Which of the following is an orthogonal matrix -

(A)
$$\begin{bmatrix} 6/7 & 2/7 & -3/7 \\ 2/7 & 3/7 & 6/7 \\ 3/7 & -6/7 & 2/7 \end{bmatrix}$$

(B)
$$\begin{bmatrix} 6/7 & 2/7 & 3/7 \\ 2/7 & -3/7 & 6/7 \\ 3/7 & 6/7 & -2/7 \end{bmatrix}$$

(C)
$$\begin{bmatrix} -6/7 & -2/7 & -3/7 \\ 2/7 & 3/7 & 6/7 \\ -3/7 & 6/7 & 2/7 \end{bmatrix}$$

(D)
$$\begin{bmatrix} 6/7 & -2/7 & 3/7 \\ 2/7 & 2/7 & -3/7 \\ -6/7 & 2/7 & 3/7 \end{bmatrix}$$

Let the matrix A and B be defined as A = **52.**

$$\begin{bmatrix} 3 & 2 \\ 2 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 3 & 1 \\ 7 & 3 \end{bmatrix} \text{ then the value of}$$

$$Det.(2A^9B^{-1}), \text{ is } -$$

- (A) 2
- (B) 1
- (C) -1
- (D) -2

If
$$\begin{bmatrix} 2 & 1 \\ 7 & 4 \end{bmatrix} A \begin{bmatrix} -3 & 2 \\ 5 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, then matrix A equals -

(A)
$$\begin{bmatrix} 7 & 5 \\ -11 & -8 \end{bmatrix}$$
 (B) $\begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix}$

(B)
$$\begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix}$$

(C)
$$\begin{bmatrix} 7 & 1 \\ 34 & 5 \end{bmatrix}$$
 (D) $\begin{bmatrix} 5 & 3 \\ 13 & 8 \end{bmatrix}$

(D)
$$\begin{bmatrix} 5 & 3 \\ 13 & 8 \end{bmatrix}$$

- **54.** If $A = \begin{bmatrix} 0 & 5 \\ 0 & 0 \end{bmatrix}$ and $f(x) = 1 + x + x^2 + \dots + 60$. x^{16} , then f(A) =
 - (A) 0
- (B) $\begin{bmatrix} 1 & 5 \\ 0 & 1 \end{bmatrix}$

- If $M = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$ and $M^2 \lambda M I_2 = O$, then 55.
 - λ equals -
 - (A) -2
- (B) 2
- (C) -4
- (D)4
- If $A = \begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix}$, then |A| |AdjA| is equal **56.**

 - (A) a^{25}
- (B) a^{27}
- (C) a^{81}
- (D) none of these
- If A and B are square matrices of same order 57. and $AA^{T} = I$ then $(A^{T}BA)^{10}$ is equal to -(A) $AB^{10}A^{T}$ (B) $A^{T}B^{10}A$
- (C) $A^{10}B^{10}(A^T)^{10}(D) 10A^TBA$
- **58.** If A is a invertible idempotent matrix of order n, then adj A is equal to -
 - $(A) (adj A)^2$
- (B) I
- (C) A^{-1}
- (D) none of these
- Matrix A = $\begin{bmatrix} x & 3 & 2 \\ 1 & y & 4 \\ 2 & 2 & z \end{bmatrix}$, if xyz = 60 and 8x + **59.**

4y + 3z = 20, then A (adj A) is equal to -

$$(A) \begin{bmatrix} 64 & 0 & 0 \\ 0 & 64 & 0 \\ 0 & 0 & 64 \end{bmatrix} (B) \begin{bmatrix} 88 & 0 & 0 \\ 0 & 88 & 0 \\ 0 & 0 & 88 \end{bmatrix}$$

(C)
$$\begin{bmatrix} 68 & 0 & 0 \\ 0 & 68 & 0 \\ 0 & 0 & 68 \end{bmatrix}$$
 (D)
$$\begin{bmatrix} 34 & 0 & 0 \\ 0 & 34 & 0 \\ 0 & 0 & 34 \end{bmatrix}$$

Let three matrices A =

$$\begin{bmatrix} 2 & 1 \\ 4 & 1 \end{bmatrix}; B = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix} \text{ and } C = \begin{bmatrix} 3 & -4 \\ -2 & 3 \end{bmatrix} \text{ then}$$

$$t_r(A) + t_r\left(\frac{ABC}{2}\right) + t_r\left(\frac{A(BC)^2}{4}\right) + t_r$$

$$\left(\frac{A(BC)^3}{8}\right) + \dots + \infty =$$

- (A) 6
- (B) 9
- (C) 12
- (D) none of these

If
$$A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & a & 1 \end{bmatrix}$$
, $A^{-1} = \begin{bmatrix} 1/2 & -1/2 & 1/2 \\ -4 & 3 & c \\ 5/2 & -3/2 & 1/2 \end{bmatrix}$,

61.

(A)
$$a = 1$$
, $c = -1(B)$ $a = 2$, $c = -\frac{1}{2}$

(C)
$$a = -1$$
, $c = 1(D)$ $a = \frac{1}{2}$, $c = \frac{1}{2}$

Let
$$\Delta_0 = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$
 (where $\Delta_0 \neq 0$)

and let Δ_1 denote the determinant formed by the cofactors of elements of Δ_0 and Δ_2 denote the determinant formed by the cofactor at Δ_1 and so on Δ_n denotes the determinant formed by the cofactors at Δ_{n-} ₁ then the determinant value of Δ_n is -

- (A) Δ_0^{2n}
- (B) $\Delta_0^{2^n}$
- (C) $\Delta_0^{n^2}$ (D) Δ_0^2

ANSWER KEY

1. A 2. C 3. A 4. D 5. B 6. A 7. A 8. C 9. D 10. A 11. B 12. B 13. A 14. A 15. A 16. C 17. A 18. B 19. B 20. A 21. D 22. C 23. D 24. C 25. B 26. C 27. A 28. D 29. D 30. A 31. A 32. C 33. A 34. D 35. A 36. D 37. B 38. B 39. A 40. B 41. A 42. B 43. A 44. A 45. A 46. C 47. C 48. B 49. D 50. A 51. A 52. D 53. A 54. B 55. D 56. D 57. B 58. ABC59. C 60. A 61. A 62. B

