Minimum Equitable Dominating Randić Energy of a Graph

Rajendra P.

(Bharathi College, PG and Research Centre, Bharathinagara, 571 422, India)

R.Rangarajan

(DOS in Mathematics, University of Mysore, Mysuru, 570 006, India)

prajumaths@gmail.com, rajra63@gmail.com

Abstract: Let G be a graph with vertex set V(G), edge set E(G) and d_i is the degree of its i-th vertex v_i , then the Randić matrix R(G) of G is the square matrix of order n, whose (i,j)-entry is equal to $\frac{1}{\sqrt{d_i d_j}}$ if the i-th vertex v_i and j-th vertex v_j of G are adjacent, and zero otherwise. The Randic energy [3] RE(G) of the graph G is defined as the sum of the absolute values of the eigenvalues of the Randić matrix R(G). A subset ED of V(G) is called an equitable dominating set [11], if for every $v_i \in V(G) - ED$ there exists a vertex $v_j \in ED$ such that $v_i v_j \in E(G)$ and $|d_i(v_i) - d_j(v_j)| \leq 1$. In the contrast, such a dominating set ED is Smarandachely if $|d_i(v_i) - d_j(v_j)| \geq 1$. Recently, Adiga, et.al. introduced, the minimum covering energy Ec(G) of a graph [1] and S. Burcu Bozkurt, et.al. introduced, Randić Matrix and Randić Energy of a graph [3]. Motivated by these papers, Minimum equitable dominating Randić energy of a graph $RE_{ED}(G)$ of some graphs are worked out and bounds on $RE_{ED}(G)$ are obtained.

Key Words: Randić matrix and its energy, minimum equitable dominating set and minimum equitable dominating Randić energy of a graph.

AMS(2010): 05C50.

§1. Introduction

Let G be a graph with vertex set V(G) and edge set E(G). The adjacency matrix A(G) of the graph G is a square matrix, whose (i, j)-entry is equal to 1 if the vertices v_i and v_j are adjacent, otherwise zero [12]. Since A(G) is symmetric, its eigenvalues are all real. Denote them by $\lambda_1, \lambda_2, \ldots, \lambda_n$, and as a whole, they are called the spectrum of G and denoted by $\operatorname{Spec}(G)$. The energy of graph [12] G is

$$\varepsilon(G) = \sum_{i=1}^{n} |\lambda_i|.$$

The literature on energy of a graph and its bounds can refer [4,8,9,10,12]. The Randić matrix $R(G) = (r_{ij})$ of G is the square matrix of order n, where

¹Received July 28, 2017, Accepted March 1, 2018.

$$(r_{ij}) = \begin{cases} \frac{1}{\sqrt{d_i d_j}}, & \text{if } v_i \text{ and } v_j \text{ are adjacent vertices in } G; \\ 0, & \text{otherwise.} \end{cases}$$

The Randic energy [3] RE(G) of the graph G is defined as the sum of the absolute values of the eigenvalues of the Randić matrix R(G). Let $\rho_1, \rho_2, \dots, \rho_n$ be the eigenvalues of the Randić matrix R(G). Since R(G) is symmetric matrix, these eigenvalues are real numbers and their sum is zero. Randić energy [3] can be defined as

$$RE(G) = \sum_{i=1}^{n} |\rho_i|$$

For details of Randić energy and its bounds, can refer [2, 3, 5, 6, 7].

Let G be a graph with vertex set $V(G) = \{v_1, v_2, \dots, v_n\}$ and ED is minimum equitable dominating set of G. Minimum equitable dominating Randić matrix of G is $n \times n$ matrix $R_{ED}(G) = (r_{ij})$, where

$$(r_{ij}) = \begin{cases} \frac{1}{\sqrt{d_i d_j}}, & \text{if } v_i \text{ and } v_j \text{ are adjacent vertices in } G; \\ 1, & \text{if } i = j \text{ and } v_i \in ED; \\ 0, & \text{otherwise.} \end{cases}$$

The characteristic polynomial of $R_{ED}(G)$ is denoted by $det(\rho I - R_{ED}(G)) = |\rho I - R_{ED}(G)|$. Since $R_{ED}(G)$ is symmetric, its eigenvalues are real numbers. If the distinct eigenvalues of $R_{ED}(G)$ are $\rho_1 > \rho_2 > \cdots > \rho_r$ with their multiplicities are m_1, m_2, \cdots, m_r then spectrum of $R_{ED}(G)$ is denoted by

$$SpecR_{ED}(G) = \begin{pmatrix} \rho_1 & \rho_2 & \cdots & \rho_r \\ m_1 & m_2 & \cdots & m_r \end{pmatrix}.$$

The minimum equitable dominating Randić energy of G is defined as

$$RE_{ED}(G) = \sum_{i=1}^{n} |\rho_i|.$$

Example 1.1 Let W_5 be a wheel graph, with vertex set $V(G) = \{v_1, v_2, v_3, v_4, v_5\}$, and let its minimum equitable dominating set be $ED = \{v_1\}$. Then minimum equitable dominating Randić matrix $R_{ED}(W_5)$ is

$$R_{ED}(W_5) = \begin{bmatrix} 1 & \frac{1}{\sqrt{12}} & \frac{1}{\sqrt{12}} & \frac{1}{\sqrt{12}} & \frac{1}{\sqrt{12}} \\ \frac{1}{\sqrt{12}} & 0 & \frac{1}{3} & 0 & \frac{1}{3} \\ \frac{1}{\sqrt{12}} & \frac{1}{3} & 0 & \frac{1}{3} & 0 \\ \frac{1}{\sqrt{12}} & 0 & \frac{1}{3} & 0 & \frac{1}{3} \\ \frac{1}{\sqrt{12}} & \frac{1}{3} & 0 & \frac{1}{3} & 0 \end{bmatrix}$$

$$SpecR_{ED}(W_5) = \begin{pmatrix} -0.6666 & 0 & 0.2324 & 1.4342 \\ 1 & 2 & 1 & 1 \end{pmatrix}.$$

The minimum equitable dominating Randić energy of W_5 is $RE_{ED}(W_5) = 2.3332$.

$\S 2$. Bounds for the Minimum Equitable Dominating Randić Energy of a Graph

Lemma 2.1 If $\rho_1, \rho_2, \dots, \rho_n$ are the eigenvalues of $R_{ED}(G)$. Then

$$\sum_{i=1}^{n} \rho_i = |ED|$$

and

$$\sum_{i=1}^{n} \rho_i^2 = |ED| + 2\sum_{i < j} \frac{1}{d_i d_j},$$

where ED is minimum equitable dominating set.

Proof (i) The sum of eigenvalues of $R_{ED}(G)$ is

$$\sum_{i=1}^{n} \rho_i = \sum_{i=1}^{n} r_{ii} = |ED|.$$

(ii) Consider, the sum of squares of $\rho_1, \rho_2, \ldots, \rho_n$ is,

$$\sum_{i=1}^{n} \rho_i^2 = \sum_{i=1}^{n} \sum_{j=1}^{n} r_{ij} \ r_{ji} = \sum_{i=1}^{n} (r_{ii})^2 + \sum_{i \neq j} r_{ij} \ r_{ji}$$

$$= \sum_{i=1}^{n} (r_{ii})^2 + 2 \sum_{i < j} (r_{ij})^2$$

$$\sum_{i=1}^{n} \rho_i^2 = |ED| + 2 \sum_{i < j} \frac{1}{d_i d_j}.$$

Upper and lower bounds for $RE_{ED}(G)$ is similar proof to McClelland's inequalities [10], are given below

Theorem 2.2(Upper Bound) Let G be a graph with ED is minimum equitable dominating set. Then

$$RE_{ED}(G) \leq \sqrt{n\left[|ED| + 2\sum_{i < j} \frac{1}{d_i d_j}\right]}.$$

Proof Let $\rho_1, \rho_2, \dots, \rho_n$ be the eigenvalues of $R_{ED}(G)$. By Cauchy-Schwartz inequality, we have

$$\left(\sum_{i=1}^n a_i b_i\right)^2 \le \left(\sum_{i=1}^n a_i^2\right) \left(\sum_{i=1}^n b_i^2\right),\tag{1}$$

where a and b are any real numbers.

If $a_i = 1$, $b_i = |\rho_i|$ in (1), we get

$$\left(\sum_{i=1}^{n} |\rho_i|\right)^2 \le \left(\sum_{i=1}^{n} 1^2\right) \left(\sum_{i=1}^{n} |\rho_i|^2\right), \quad [RE_{ED}(G)]^2 \le n \left[|ED| + 2\sum_{i < j} \frac{1}{d_i d_j}\right]$$

by Lemma 2.1,

$$RE_{ED}(G) \le \sqrt{n\left[|ED| + 2\sum_{i < j} \frac{1}{d_i d_j}\right]}.$$

Theorem 2.3(Lower Bound) Let G be a graph with |ED| is minimum equitable dominating set and d_i is degree of v_i . Then

$$RE_{ED}(G) \ge \sqrt{|ED| + 2\sum_{i < j} \frac{1}{d_i d_j} + n(n-1)D^{\frac{2}{n}}},$$

where $D = \prod_{i=1}^{n} |\rho_i|$.

Proof Consider

$$[RE_{ED}(G)]^2 = \left[\sum_{i=1}^n |\rho_i|\right]^2 = \sum_{i=1}^n |\rho_i|^2 + \sum_{i \neq j} |\rho_i| |\rho_j|.$$
 (2)

By using arithmetic and geometric mean inequality, we have

$$\frac{1}{n(n-1)} \sum_{i \neq j} |\rho_i| |\rho_j| \geq \left(\prod_{i \neq j} |\rho_i| |\rho_j| \right)^{\frac{1}{n(n-1)}}$$

$$\sum_{i \neq j} |\rho_i| |\rho_j| \geq n(n-1) \left(\prod_{i=1}^n |\rho_i|^{2(n-1)} \right)^{\frac{1}{n(n-1)}}$$

$$\sum_{i \neq j} |\rho_i| |\rho_j| \geq n(n-1) \left(\prod_{i=1}^n |\rho_i| \right)^{2/n}.$$
(3)

Now using (3) in (2), we get

$$[RE_{ED}(G)]^{2} \geq \sum_{i=1}^{n} |\rho_{i}|^{2} + n(n-1) \left(\prod_{i=1}^{n} |\rho_{i}| \right)^{2/n},$$

$$[RE_{ED}(G)]^{2} \geq |ED| + 2 \sum_{i < j} \frac{1}{d_{i}d_{j}} + n(n-1)D^{\frac{2}{n}}, \text{ where } D = \prod_{i=1}^{n} |\rho_{i}|,$$

$$RE_{ED}(G) \geq \sqrt{|ED| + 2 \sum_{i < j} \frac{1}{d_{i}d_{j}} + n(n-1)D^{\frac{2}{n}}}.$$

§3. Bounds for Largest Eigenvalue of $R_{ED}(G)$ and its Energy

Proposition 3.1 Let G be a graph and $\rho_1(G) = \max_{1 \leq i \leq n} \{|\rho_i|\}$ be the largest eigenvalue of $R_{ED}(G)$. Then

$$\sqrt{\frac{1}{n}\left[|ED| + 2\sum_{i < j} \frac{1}{d_i d_j}\right]} \le \rho_1(G) \le \sqrt{|ED| + 2\sum_{i < j} \frac{1}{d_i d_j}}.$$

Proof Consider,

$$\rho_1^2(G) = \max_{1 \le i \le n} \{|\rho_i|^2\} \le \sum_{i=1}^n |\rho_i|^2 = |ED| + 2\sum_{i < j} \frac{1}{d_i d_j}$$

$$\rho_1(G) \le \sqrt{|ED| + 2\sum_{i < j} \frac{1}{d_i d_j}}$$

Next,

$$n \rho_1^2(G) \ge \sum_{i=1}^n \rho_i^2 = |ED| + 2\sum_{i < j} \frac{1}{d_i d_j}$$

$$\rho_1^2(G) \ge \frac{1}{n} \left[|ED| + 2\sum_{i < j} \frac{1}{d_i d_j} \right]$$

$$\rho_1(G) \ge \sqrt{\frac{1}{n} \left[|ED| + 2\sum_{i < j} \frac{1}{d_i d_j} \right]}$$

Therefore,

$$\sqrt{\frac{1}{n}\left||ED|+2\sum_{i< j}\frac{1}{d_id_j}\right|} \leq \rho_1(G) \leq \sqrt{|ED|+2\sum_{i< j}\frac{1}{d_id_j}}.$$

Proposition 3.2 If G is a graph and $n \leq |ED| + 2\sum_{i < j} \frac{1}{d_i d_j}$, then

$$RE_{ED}(G) \leq \frac{|ED| + 2\sum_{i < j} \frac{1}{d_i d_j}}{n} + \sqrt{(n-1)\left[|ED| + 2\sum_{i < j} \frac{1}{d_i d_j} - \left(\frac{|ED| + 2\sum_{i < j} \frac{1}{d_i d_j}}{n}\right)^2\right]}.$$

Proof We know that,

$$\sum_{i=1}^{n} \rho_i^2 = |ED| + 2\sum_{i < j} \frac{1}{d_i d_j}, \qquad \sum_{i=2}^{n} \rho_i^2 = |ED| + 2\sum_{i < j} \frac{1}{d_i d_j} - \rho_1^2$$
(4)

By Cauchy-Schwarz inequality, we have

$$\left(\sum_{i=2}^n a_i b_i\right)^2 \le \left(\sum_{i=2}^n a_i^2\right) \left(\sum_{i=2}^n b_i^2\right).$$

If $a_i = 1$ and $b_i = |\rho_i|$, we have

$$\left(\sum_{i=2}^{n} |\rho_{i}|\right)^{2} \leq (n-1) \sum_{i=2}^{n} |\rho_{i}|^{2}$$

$$[RE_{ED}(G) - |\rho_{1}|]^{2} \leq (n-1) \left[|ED| + 2 \sum_{i < j} \frac{1}{d_{i}d_{j}} - \rho_{1}^{2}\right]$$

$$RE_{ED}(G) \leq \rho_{1} + \sqrt{(n-1) \left[|ED| + 2 \sum_{i < j} \frac{1}{d_{i}d_{j}} - \rho_{1}^{2}\right]}$$
(5)

Consider the function,

$$F(x) = x + \sqrt{(n-1)\left[|ED| + 2\sum_{i < j} \frac{1}{d_i d_j} - x^2\right]}.$$

Then,

$$F'(x) = 1 - \frac{x\sqrt{(n-1)}}{\sqrt{|ED| + 2\sum_{i < j} \frac{1}{d_i d_j} - x^2}}.$$

Here F(x) is decreasing in

$$\left(\frac{1}{n}\left[|ED| + 2\sum_{i < j} \frac{1}{d_i d_j}\right], |ED| + 2\sum_{i < j} \frac{1}{d_i d_j}\right).$$

We know that $F'(x) \leq 0$,

$$1 - \frac{x\sqrt{(n-1)}}{\sqrt{|ED| + 2\sum_{i < j} \frac{1}{d_i d_j} - x^2}} \le 0.$$

We have

$$x \ge \sqrt{\frac{|ED| + 2\sum_{i < j} \frac{1}{d_i d_j}}{n}}.$$

Since,

$$n \le |ED| + 2\sum_{i < j} \frac{1}{d_i d_j}$$
 and $\frac{|ED| + 2\sum_{i < j} \frac{1}{d_i d_j}}{n} \le \rho_1$,

we have

$$\sqrt{\frac{|ED| + 2\sum_{i < j} \frac{1}{d_i d_j}}{n}} \le \frac{|ED| + 2\sum_{i < j} \frac{1}{d_i d_j}}{n} \le \rho_1 \le |ED| + 2\sum_{i < j} \frac{1}{d_i d_j}.$$

Then, equation (5) become

$$RE_{ED}(G) \le \frac{|ED| + 2\sum_{i < j} \frac{1}{d_i d_j}}{n} + \sqrt{(n-1)\left[|ED| + 2\sum_{i < j} \frac{1}{d_i d_j} - \left(\frac{|ED| + 2\sum_{i < j} \frac{1}{d_i d_j}}{n}\right)^2\right]}.$$

§4. Minimum Equitable Dominating Randić Energy of Some Graphs

Theorem 4.1 If K_n is complete graph with n vertices, then minimum equitable dominating Randić energy of K_n is

$$RE_{ED}(K_n) = \frac{3n-5}{n-1}.$$

Proof Let K_n be the complete graph with vertex set $V(G) = \{v_1, v_2, \dots, v_n\}$ and minimum equitable dominating set is $ED = \{v_1\}$, we have characteristic polynomial of $R_{ED}(K_n)$ is

 $R_k' = R_k - R_2, \ k = 3, 4, \dots, n-1, n.$ Then, we get $\left(\rho + \frac{1}{n-1}\right)$ common from R_3 to R_n and we have

$$|\rho I - R_{ED}(K_n)| = \left(\rho + \frac{1}{n-1}\right)^{n-2} \begin{vmatrix} \rho - 1 & \frac{-1}{n-1} & \frac{-1}{n-1} & \cdots & \frac{-1}{n-1} & \frac{-1}{n-1} & \frac{-1}{n-1} \\ \frac{-1}{n-1} & \rho & \frac{-1}{n-1} & \cdots & \frac{-1}{n-1} & \frac{-1}{n-1} & \frac{-1}{n-1} \\ 0 & -1 & 1 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & -1 & 0 & \cdots & 1 & 0 & 0 \\ 0 & -1 & 0 & \cdots & 0 & 1 & 0 \\ 0 & -1 & 0 & \cdots & 0 & 0 & 1 \end{vmatrix}_{n \times n}$$

 $C_2' = C_2 + C_3 + \cdots + C_n$, we get the characteristic polynomial

$$|\rho I - R_{ED}(K_n)| = \left(\rho + \frac{1}{n-1}\right)^{n-2} \left[\rho^2 - \left(\frac{2n-3}{n-1}\right)\rho + \left(\frac{n-3}{n-1}\right)\right],$$

$$SpecR_{ED}(K_n) = \left(\frac{-1}{n-1} \quad \frac{(2n-3)-\sqrt{4n-3}}{2(n-1)} \quad \frac{(2n-3)+\sqrt{4n-3}}{2(n-1)}\right).$$

The minimum equitable dominating Randić energy of K_n is

$$RE_{ED}(K_n) = \frac{3n-5}{n-1}.$$

Theorem 4.2 If S_n , $(n \ge 4)$ is star graph with n vertices, then minimum equitable dominating Randić energy of S_n is

$$RE_{ED}(S_n) = n.$$

Proof Let $S_n, (n \geq 4)$ be the star graph with vertex set $V(G) = \{v_1, v_2, \cdots, v_n\}$ and minimum equitable dominating set is $ED = \{v_1, v_2, \dots, v_n\}$, we have characteristic polynomial of $R_{ED}(S_n)$ is

$$|\rho I - R_{ED}(S_n)| = \begin{vmatrix} \rho - 1 & \frac{-1}{\sqrt{n-1}} & \frac{-1}{\sqrt{n-1}} & \cdots & \frac{-1}{\sqrt{n-1}} & \frac{-1}{\sqrt{n-1}} & \frac{-1}{\sqrt{n-1}} \\ \frac{-1}{\sqrt{n-1}} & \rho - 1 & 0 & \cdots & 0 & 0 & 0 \\ \frac{-1}{\sqrt{n-1}} & 0 & \rho - 1 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ \frac{-1}{\sqrt{n-1}} & 0 & 0 & \cdots & \rho - 1 & 0 & 0 \\ \frac{-1}{\sqrt{n-1}} & 0 & 0 & \cdots & 0 & \rho - 1 & 0 \\ \frac{-1}{\sqrt{n-1}} & 0 & 0 & \cdots & 0 & 0 & \rho - 1 \end{vmatrix}_{n \times n}$$

 $R'_k = R_k - R_2, \ k = 3, 4, \dots, n.$ Then taking $(\rho - 1)$ common from R_3 to R_n , we get

$$|\rho I - R_{ED}(S_n)| = (\rho - 1)^{n-2} \begin{vmatrix} \rho - 1 & \frac{-1}{\sqrt{n-1}} & \frac{-1}{\sqrt{n-1}} & \frac{-1}{\sqrt{n-1}} & \frac{-1}{\sqrt{n-1}} & \frac{-1}{\sqrt{n-1}} \\ \frac{-1}{\sqrt{n-1}} & \rho - 1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & -1 & 1 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & -1 & 0 & \cdots & 1 & 0 & 0 \\ 0 & -1 & 0 & \cdots & 0 & 1 & 0 \\ 0 & -1 & 0 & \cdots & 0 & 0 & 1 \end{vmatrix}_{n \times n}$$

 $C_2' = C_2 + C_3 + \cdots + C_n$. Then, the characteristic polynomial

$$|\rho I - R_{ED}(S_n)| = \rho(\rho - 1)^{n-2}(\rho - 2),$$

$$SpecR_{ED}(S_n) = \begin{pmatrix} 0 & 1 & 2 \\ & & \\ 1 & n-2 & 1 \end{pmatrix}.$$

The minimum equitable dominating Randić energy of S_n is $RE_{ED}(S_n) = n$.

Theorem 4.3 If $K_{m,n}$, where m < n and $|m-n| \ge 2$ is complete bipartite graph with m+n vertices, then minimum equitable dominating Randić energy of $K_{m,n}$ is $RE_{ED}(K_{m,n}) = m+n$.

Proof Let $K_{m,n}$, where m < n and $|m-n| \ge 2$ be the complete bipartite graph with vertex set $V(G) = \{v_1, v_2, \dots, v_m, u_1, u_2, \dots, u_n\}$ and minimum equitable dominating set is ED = V(G), we have characteristic polynomial of $R_{ED}(K_{m,n})$ is

 $R'_k = R_k - R_m, \ k = 1, 2, 3, \dots, m-1 \text{ and } R'_d = R_d - R_{m+1}, \ d = m+2, m+3, \dots, m+n.$ Then, taking $(\rho - 1)$ common from R_1 to R_{m-1} and R_{m+2} to R_{m+n} , we get

$$(\rho-1)^{m+n-2} = \begin{pmatrix} 1 & 0 & \cdots & 0 & -1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & -1 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & \rho-1 & \frac{-1}{\sqrt{mn}} & \frac{-1}{\sqrt{mn}} & \cdots & \frac{-1}{\sqrt{mn}} & \frac{-1}{\sqrt{mn}} \\ \frac{-1}{\sqrt{mn}} & \frac{-1}{\sqrt{mn}} & \cdots & \frac{-1}{\sqrt{mn}} & \frac{-1}{\sqrt{mn}} & \rho-1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 & -1 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & -1 & 0 & \cdots & 1 & 0 \\ 0 & 0 & \cdots & 0 & 0 & -1 & 0 & \cdots & 0 & 1 \end{pmatrix}$$

$$C'_{m+1} = C_{m+1} + C_{m+2} + \dots + C_{m+n},$$

$$(\rho-1)^{m+n-2} \begin{vmatrix} 1 & 0 & \cdots & 0 & -1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & -1 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & \rho-1 & \frac{-n}{\sqrt{mn}} & \frac{-1}{\sqrt{mn}} & \cdots & \frac{-1}{\sqrt{mn}} & \frac{-1}{\sqrt{mn}} \\ \frac{-1}{\sqrt{mn}} & \frac{-1}{\sqrt{mn}} & \cdots & \frac{-1}{\sqrt{mn}} & \frac{-1}{\sqrt{mn}} & \rho-1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 & 1 \\ \end{vmatrix}$$

The characteristic polynomial $|\rho I - R_{ED}(K_{m,n})| = \rho (\rho - 1)^{m+n-2} (\rho - 2),$

$$SpecR_{ED}(K_{m,n}) = \begin{pmatrix} 0 & 1 & 2 \\ 1 & m+n-2 & 1 \end{pmatrix}.$$

The minimum equitable dominating Randić energy of $K_{m,n}$ is $RE_{ED}(K_{m,n}) = m + n$. \square

Theorem 4.4 If $K_{n\times 2}$, $(n \ge 3)$ is cocktail party graph with 2n vertices, then minimum equitable dominating Randić energy of $K_{n\times 2}$ is $\frac{4n-6}{n-1}$.

Proof Let $K_{n\times 2}$, $(n \ge 3)$ be the cocktail party graph with vertex set $V(G) = \{v_1, v_2, \dots, v_n, u_1, u_2, \dots, u_n\}$ and minimum equitable dominating set is $ED = \{v_1, u_1\}$, we have characteristic polynomial of $R_{ED}(K_{n\times 2})$ is

$$|\rho I - R_{ED}(K_{n \times 2})| = \begin{vmatrix} \lambda - 1 & 0 & \frac{-1}{2n-2} & \frac{-1}{2n-2} & \cdots & \frac{-1}{2n-2} & \frac{-1}{2n-2} & \cdots & \frac{-1}{2n-2} & \frac{-1}{2n-2} \\ 0 & \lambda - 1 & \frac{-1}{2n-2} & \frac{-1}{2n-2} & \cdots & \frac{-1}{2n-2} & \frac{-1}{2n-2} & \cdots & \frac{-1}{2n-2} & \frac{-1}{2n-2} \\ \frac{-1}{2n-2} & \frac{-1}{2n-2} & \lambda & \frac{-1}{2n-2} & \cdots & \frac{-1}{2n-2} & 0 & \cdots & \frac{-1}{2n-2} & \frac{-1}{2n-2} \\ \frac{-1}{2n-2} & \frac{-1}{2n-2} & \frac{-1}{2n-2} & \lambda & \cdots & \frac{-1}{2n-2} & \frac{-1}{2n-2} & \cdots & \frac{-1}{2n-2} & \frac{-1}{2n-2} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \frac{-1}{2n-2} & \frac{-1}{2n-2} & \frac{-1}{2n-2} & \frac{-1}{2n-2} & \cdots & \lambda & \frac{-1}{2n-2} & \cdots & \frac{-1}{2n-2} & 0 \\ \frac{-1}{2n-2} & \frac{-1}{2n-2} & 0 & \frac{-1}{2n-2} & \cdots & \frac{-1}{2n-2} & \lambda & \cdots & \frac{-1}{2n-2} & \frac{-1}{2n-2} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \frac{-1}{2n-2} & \frac{-1}{2n-2} & \frac{-1}{2n-2} & \frac{-1}{2n-2} & \cdots & \frac{-1}{2n-2} & \frac{-1}{2n-2} & \cdots & \lambda & \frac{-1}{2n-2} \\ \frac{-1}{2n-2} & \frac{-1}{2n-2} & \frac{-1}{2n-2} & \frac{-1}{2n-2} & \cdots & \frac{-1}{2n-2} & \frac{-1}{2n-2} & \lambda \end{vmatrix}$$

$$R'_k = R_k - R_3, \ k = 4, 5, \dots, n \text{ and } R'_{n+k} = R_{n+k} - R_{k+1}, \ k = 2, 3, \dots, n, \text{ we get}$$

$$|\rho I - R_{ED}(K_{n \times 2})| = \begin{vmatrix} \lambda - 1 & 0 & \frac{-1}{2n-2} & \frac{-1}{2n-2} & \cdots & \frac{-1}{2n-2} & \frac{-1}{2n-2} & \cdots & \frac{-1}{2n-2} & \frac{-1}{2n-2} \\ 0 & \lambda - 1 & \frac{-1}{2n-2} & \frac{-1}{2n-2} & \cdots & \frac{-1}{2n-2} & \frac{-1}{2n-2} & \cdots & \frac{-1}{2n-2} & \frac{-1}{2n-2} \\ \frac{-1}{2n-2} & \frac{-1}{2n-2} & \lambda & \frac{-1}{2n-2} & \cdots & \frac{-1}{2n-2} & 0 & \cdots & \frac{-1}{2n-2} & \frac{-1}{2n-2} \\ 0 & 0 & \frac{-1}{2n-2} - \lambda & \lambda + \frac{1}{2n-2} & \cdots & 0 & \frac{-1}{2n-2} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \frac{-1}{2n-2} - \lambda & 0 & \cdots & \lambda + \frac{1}{2n-2} & \frac{-1}{2n-2} & \cdots & 0 & \frac{1}{2n-2} \\ 0 & 0 & -\lambda & 0 & \cdots & \lambda + \frac{1}{2n-2} & \frac{-1}{2n-2} & \cdots & 0 & \frac{1}{2n-2} \\ 0 & 0 & 0 & 0 & \cdots & \lambda + \frac{1}{2n-2} & \frac{-1}{2n-2} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 & \lambda & \cdots & 0 & \lambda \\ 0 & 0 & 0 & 0 & \cdots & -\lambda & 0 & \cdots & \lambda & 0 \\ 0 & 0 & 0 & 0 & \cdots & -\lambda & 0 & \cdots & 0 & \lambda \end{vmatrix}$$

 $C_3' = C_3 + C_4 + \dots + C_n + C_{n+1} + \dots + C_{2n}$ and $C_k' = C_k + C_{n+(k-1)}, \ k = 4, 5, \dots, n+1$. We get

We get
$$|\rho I - R_{ED}(K_{n \times 2})| = \begin{vmatrix} \lambda - 1 & 0 & -1 & \frac{-1}{n-1} & \cdots & \frac{-1}{n-1} & \frac{-1}{2n-2} & \cdots & \frac{-1}{2n-2} & \frac{-1}{2n-2} \\ 0 & \lambda - 1 & -1 & \frac{-1}{n-1} & \cdots & \frac{-1}{n-1} & \frac{-1}{2n-2} & \cdots & \frac{-1}{2n-2} & \frac{-1}{2n-2} \\ \frac{-1}{2n-2} & \frac{-1}{2n-2} & \lambda - \frac{(2n-4)}{(2n-2)} & \frac{-1}{n-1} & \cdots & \frac{-1}{n-1} & 0 & \cdots & \frac{-1}{2n-2} & \frac{-1}{2n-2} \\ 0 & 0 & 0 & \lambda + \frac{1}{n-1} & \cdots & 0 & \frac{-1}{2n-2} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & \lambda + \frac{1}{n-1} & \frac{-1}{2n-2} & \cdots & 0 & \frac{1}{2n-2} \\ 0 & 0 & 0 & 0 & \cdots & \lambda + \frac{1}{n-1} & \frac{-1}{2n-2} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 & \lambda & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & \lambda & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & \lambda & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & \lambda & 0 \\ \end{pmatrix}$$

The characteristic polynomial

$$|\rho I - R_{ED}(K_{n \times 2})| = \rho^{n-1}(\rho - 1) \left(\rho + \frac{1}{n-1}\right)^{n-2} \left[\rho^2 - \left(\frac{2n-3}{n-1}\right)\rho + \left(\frac{n-3}{n-1}\right)\right],$$

$$SpecR_{ED}(K_{n \times 2}) = \begin{pmatrix} \frac{-1}{n-1} & 0 & 1 & \frac{(2n-3)-\sqrt{4n-3}}{2(n-1)} & \frac{(2n-3)+\sqrt{4n-3}}{2(n-1)} \\ n-2 & n-1 & 1 & 1 & 1 \end{pmatrix}.$$

The minimum equitable dominating Randić energy of $K_{n\times 2}$ is

$$RE_{ED}(K_{n\times 2}) = \frac{4n-6}{n-1},$$

where $n \geq 3$.

References

- [1] C. Adiga, A. Bayad, I. Gutman and Shrikanth A. S, The minimum covering energy of a graph, *Krag. J. Sci.*, 34 (2012), 39-56.
- [2] Ş. Burcu Bozkurt, A. Dilek Güngör and Ivan Gutman, Randić, Spectral radius and Randić energy, MATCH Commun. Math. Comput. Chem., 64 (2010), 321-334.
- [3] Ş. Burcu Bozkurt, A. Dilek Güngör, Ivan Gutman and A. Sinan Çevik, Randić matrix and Randić energy, MATCH Commun. Math. Comput. Chem., 64 (2010), 239-250.
- [4] D. M. Cvetkovic, M. Doob and H. Sachs, Spectra of Graphs, Theory and Application, Academic Press, New York, USA, 1980.
- [5] K. C. Das and S. Sorgun: On Randić energy of graphs, MATCH Commun. Math. Comput. Chem., 72 (2014), 227-238.
- [6] A. Dilek Maden, New bounds on the incidence Eenergy, Randić energy and Randić Estrada index, MATCH Commun. Math. Comput. Chem., 74, (2015), 367-387.
- [7] B. Furtula and I. Gutman, Comparing energy and Randić energy, *Macedonian Journal of Chemistry and Chemical Engineering*, 32(1), (2013), 117-123.
- [8] J.H. Koolen and V. Moulton, Maximal energy graphs. Advances in Applied Mathematics, 26, (2001), 47-52.
- [9] I. Gutman, The energy of a graph, Ber. Math-Statist. Sekt. Forschungsz. Graz, 103 (1978), 1-22.
- [10] B. J. McClelland, Properties of the latent roots of a matrix: The estimation of π -electron energies, J. Chem. Phys., 54 (1971), 640-643.
- [11] V. Swaminathan and K. M. Dharmalingam, Degree equitable domination on graphs, Krag. J. of Math., 35 (1) (2011), 191-197.
- [12] X. Li, Y. Shi and I. Gutman, Graph Energy, Springer New York, 2012.