يسم الله الرحمن الرحيم

نظریه زبانها و ماشینها

جلسه ۱۷

مجتبی خلیلی دانشکده برق و کامپیوتر دانشگاه صنعتی اصفهان

Assume that we have a grammar G = (V, T, S, P) in Chomsky normal form and a string

$$w = a_1 a_2 \cdots a_n$$
.

We define substrings

$$w_{ij} = a_i \cdots a_j,$$

and subsets of V

$$V_{ij} = \left\{ A \in V : A \stackrel{*}{\Rightarrow} w_{ij} \right\}.$$

Clearly, $w \in L(G)$ if and only if $S \in V_{1n}$.

$$V_{ij} = \left\{ A \in V : A \stackrel{*}{\Rightarrow} w_{ij} \right\}.$$

- To compute V_{ij} , observe that $A \in V_{ii}$ if and only if G contains a production $A \to a_i$.
- for j > i, A derives w_{ij} if and only if there is a production $A \to BC$, with $B \stackrel{*}{\Rightarrow} w_{ik}$ and $C \stackrel{*}{\Rightarrow} w_{k+1j}$ for some k with $i \le k, k < j$. In other words,

$$V_{ij} = \bigcup_{k \in \{i, i+1, \dots, j-1\}} \{A : A \to BC, \text{ with } B \in V_{ik}, C \in V_{k+1, j}\}.$$
 (6.8)

$$V_{ij} = \left\{ A \in V : A \stackrel{*}{\Rightarrow} w_{ij} \right\}.$$

An inspection of the indices in (6.8) shows that it can be used to compute all the V_{ij} if we proceed in the sequence

- 1. Compute $V_{11}, V_{22}, ..., V_{nn}$,
- **2.** Compute $V_{12}, V_{23}, ..., V_{n-1,n},$

Dynamic programming

3. Compute $V_{13}, V_{24}, ..., V_{n-2,n}$

and so on.

$$w_{i,l} = w_i w_{i+1} \dots w_{i+l-1}$$

Mojtaba Khalili

$$w_{i,l} = w_i w_{i+1} \dots w_{i+l-1}$$

$$V_{ii} = \{A: A \rightarrow w_i\}$$

Mojtaba Khalili

)	11*
	ثال

Ł					مىال	
5	V15					
4	V14	V25				
3	V13	V24	V35			
2	V12	V23	V34	V45		
1	V11	V22	V33	V44	V55	
	1	2	3	4	5	

$$w_{i,l} = w_i w_{i+1} \dots w_{i+l-1}$$

$$V_{ij} = \bigcup_{k \in \{i, i+1, \dots, j-1\}} \{A : A \to BC, \text{ with } B \in V_{ik}, C \in V_{k+1, j}\}.$$

$$V_{ii} = \{A: A \rightarrow w_i\}$$

$$V_{ij} = \bigcup_{k \in \{i, i+1, \dots, j-1\}} \{A : A \to BC, \text{ with } B \in V_{ik}, C \in V_{k+1, j}\}.$$

مثال

T[2,4] راى •

5					
4					
3	-	В	В		
2	S A	В	$S \mid C$	S A	
1	В	$A \mid C$	$A \mid C$	В	A C
	1	2	3	4	5

b a a b a
$$\xrightarrow{A|C} \xrightarrow{B} \xrightarrow{S|A} \xrightarrow{A|C} \xrightarrow{B} \xrightarrow{A|C}$$

$$S
ightarrow AB \mid BC$$
 $A
ightarrow BA \mid$ a $B
ightarrow CC \mid$ b $C
ightarrow AB \mid$ a

$$T[2,4] = S|A|C$$

$$\ell$$
 5
 $S|A|C$
 4
 $S|A|C$
 3
 B
 B
 2
 $S|A$
 B
 $S|C$
 $S|A$

$$x = baaba$$

 $S \to AB \mid BC$

 $A \rightarrow BA \mid a$

 $B \rightarrow CC \mid b$

 $C \rightarrow AB \mid a$

$$w_{i,l} = w_i w_{i+1} \dots w_{i+l-1}$$

1	B	$A \mid C$	$A \mid C$	В	A C

را در V[i,l] ذخیره کن. V[i,l] (همه متغیرهای که آن را اشتقاق میکنند) را در V[i,l] ذخیره کن.

$$S \to AB \mid BC$$

 ℓ

$$A o BA \mid$$
 a

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

$$x = baaba$$

مثال

S-	<i>→ AB AC AA,</i>
A –	→ CB a,
	4 011

 $B \rightarrow AC/b$, $C \rightarrow CC/b$.

w=bbabb

5	S A B					
4	S A	S A B				
3	S	А	S B			
2	A C	-	S B	A C		
1	В С	В С	Α	В С	В С	
	1	2	3	4	5	
	b	b	а	b	b	

مثال

 $S \rightarrow AB|AC|AA$,

 $A \rightarrow CB|a$,

 $B \rightarrow AC/b$,

 $C \rightarrow CC/b$.

w=bbabb

The CYK algorithm, as described here, determines membership for any language generated by a grammar in Chomsky normal form. With some additions to keep track of how the elements of V_{ij} are derived, it can be converted into a parsing method. To see that the CYK membership algorithm requires $O(n^3)$ steps, notice that exactly n(n+1)/2 sets of V_{ij} have to be computed. Each involves the evaluation of at most n terms in (6.8), so the claimed result follows.

$$V_{ij} = \{A : A \to BC, \text{ with } B \in V_{ik}, C \in V_{k+1,j}\}.$$

Another useful grammatical form is the **Greibach normal form**. Here we put restrictions not on the length of the right sides of a production, but on the positions in which terminals and variables can appear. Arguments justifying Greibach normal form are a little complicated and not very transparent. Similarly, constructing a grammar in Greibach normal form equivalent to a given context-free grammar is tedious. We therefore deal with this matter very briefly. Nevertheless, Greibach normal form has many theoretical and practical consequences.

DEFINITION 6.5

A context-free grammar is said to be in Greibach normal form if all productions have the form

$$A \rightarrow ax$$

where $a \in T$ and $x \in V^*$.

EXAMPLE 6.9

The grammar

$$S \to AB,$$

 $A \to aA |bB| b,$
 $B \to b$

is not in Greibach normal form. However, using the substitution given by Theorem 6.1, we immediately get the equivalent grammar

$$S \rightarrow aAB |bBB| bB,$$

 $A \rightarrow aA |bB| b,$
 $B \rightarrow b,$

which is in Greibach normal form.

THEOREM 6.7

For every context-free grammar G with $\lambda \notin L(G)$, there exists an equivalent grammar \widehat{G} in Greibach normal form.

- تاکنون با اتوماتای متناهی آشنا شدهایم (متناظر با زبان منظم).
- همانطور که بیان کردیم بسیاری از زبانها نیاز به حافظه نامحدود دارند. مانند زبان زیر که یک CFL است:

$$\{a^nb^n \mid n \ge 0\}$$

- اکنون قصد داریم اتوموتنی معرفی کنیم که CFL را تشخیص دهد.
- بنابراین به همان NFA یک stack با حافظه نامحدود اضافه میکنیم.

$$\{\mathtt{a}^n\mathtt{b}^n\mid n\geq 0\}$$

Pushdown automata are equivalent in power to context-free grammars. This equivalence is useful because it gives us two options for proving that a language is context free. We can give either a context-free grammar generating it or a pushdown automaton recognizing it. Certain languages are more easily described in terms of generators, whereas others are more easily described by recognizers.

○ پشته از اصل LIFO پیروی کرده و دو عملگر اصلی push و pop دارد.

در هر گام، معمولا یک سمبل از ورودی و یک سمبل از پشته خوانده میشود، سپس ضمن بروزرسانی
 حالت اتوماتا، معمولا یک سمبل هم در پشته نوشته میشود یا بروز میشود یا ...

- قصد داریم مانند FA، برای PDA نیز دیاگرام رسم کنیم.
- برای همین منظور، هر فلش شامل یک سه تایی است: سمبل ورودی، سمبل پاپ شده/ سمبل پوش شده.
 - مثال:

0x/1

readSymbol , poppedSymbol / pushedSymbol