

INTRODUCTION TO QUANTUM ALGORITHMS

Jibran Rashid

Reversible Transformations

Reversible Transformations

Reversible Transformations

 $a \oplus a = 0$

Classical Gates Via Unitaries

$$f: \{0,1\} \longrightarrow \{0,1\}$$

x	7	хӨУ
0	0	0
0	•	(
ľ	0	(
l	l	0

Phase Kickback

Recall
$$|a\rangle = \frac{1}{\sqrt{2}} (10) - 11 > |a\rangle$$

$$|a\rangle = \frac{1}{\sqrt{2}} (10) - 11 > |a\rangle = \frac{1}{\sqrt{2}} (10) - 11 > |$$

Classical Gates Via Unitaries

Q WORLD

QUANTUM QUERY ALGORITHMS

Jibran Rashid

Hadamard on n Qubits

$$H(0) = |+\rangle$$
 $H(1) = |-\rangle$
 $H \otimes H(00) = |+\rangle |+\rangle$
 $= \frac{1}{2} (|00\rangle + |01\rangle + |10\rangle + |11\rangle$

f_{00}		
output		
1		
0		
0		
0		

f_{01}		
input	output	
00	0	
01	1	
10	0	
11	0	

J_{10}		
input	output	
00	0	
01	0	
10	1	
11	0	

J_{11}		
input	output	
00	0	
01	0	
10	0	
11	1	

$$f: \{0, 1\}^2 \longrightarrow \{0, 1\}$$

$$2^n, n = 2$$

$$2^4 = 16$$

$$|\psi_1\rangle = \frac{1}{2} (|00\rangle + |01\rangle + |10\rangle + |11\rangle \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)$$

Determine 142> via phase kickback

$$|\psi_1\rangle = \frac{1}{2} (|00\rangle + |01\rangle + |10\rangle + |11\rangle) \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)$$

Determine 142> via phase kickback

$$B_f: |a> |-> \longrightarrow (-1)^{f(a)} |a> |->$$

$$B_{f} | \psi_{i} \rangle = \frac{1}{2} \left(B_{f} | oo \rangle | - \rangle + B_{f} | o i \rangle | - \rangle + B_{f} | i o \rangle | - \rangle + B_{f} | i o \rangle | - \rangle + B_{f} | i o \rangle | - \rangle + B_{f} | o i \rangle | - \rangle | -$$

$$\frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}\right)^{f(00)}\left|00\right>+\frac{1}{2}\left(\frac{1}{2}\right)^{f(0)}\left|00\right>+\frac{1}{2}\left(\frac{1}{2}\right)^{f(0)}\left|10\right>+\frac{1}{2}\left(\frac{1}{2}\right)$$

$$f = f_{00} \Rightarrow \frac{1}{2} \left(-loo \rangle + loi \rangle + loo \rangle + loi \rangle + loo \rangle$$

$$f = f_{01} \Rightarrow \frac{1}{2} \left(+loo \rangle - loi \rangle + loo \rangle + loi \rangle + loi \rangle$$

$$f = f_{10} \Rightarrow \frac{1}{2} \left(+loo \rangle + loi \rangle - loo \rangle + loi \rangle + loo \rangle + loi \rangle$$

$$f = f_{10} \Rightarrow \frac{1}{2} \left(+loo \rangle + loi \rangle$$

$$f = f_{10} \Rightarrow \frac{1}{2} \left(+loo \rangle + loi \rangle$$

Hadamard on n Qubits

$$a \in \{0, 1\}$$

$$H(a) = \frac{1}{\sqrt{2}} \left(|0\rangle + (-1)^{a} |1\rangle \right)$$

$$H(H|a\rangle) = H\left(\frac{1}{\sqrt{2}}\left(10\rangle + (-1)^{\alpha}11\rangle\right)$$

$$H(H|a\rangle) = |a\rangle$$

Deutsch's Algorithm

Deutsch's Algorithm

$$H\left(\frac{1}{\sqrt{2}}(10) + (-1)^{a}(1)\right) = 10$$

$$|\Psi_{2}\rangle = \frac{(-1)^{f(0)}}{\sqrt{2}}\left(10) + (-1)^{f(0)}\oplus f(1) + (-1)^{a}(1)\right) - 1$$

$$|\Psi_{2}\rangle = \frac{(-1)^{f(0)}}{\sqrt{2}}\left(10) + (-1)^{a}(1)\right) - 1$$

$$|\Psi_{2}\rangle = \frac{(-1)^{f(0)}}{\sqrt{2}}\left(10\right) + (-1)^{a}(1)\right) - 1$$

Input

1 (43) =	H & 1 42> =	(a> (->
	=	(f(o) & f(1) > (->
		$f(o) \oplus f(i) = 0$
		$Bal \longrightarrow f(o) \oplus f(i) = 1$

	f_0	f_1	f_2	f_3
0	0	0	1	1
1	0	1	0	1