

P4X400 Chipset

VT8754

Single-Chip North Bridge for Pentium 4 CPUs with 533 / 400 MHz FSB and 8x / 4x / 2x AGP Bus plus Advanced ECC Memory Controller supporting DDR333, 266, and 200 (PC2700 / 2100 / 1600) DDR DRAM for Desktop PC Systems

> Revision 0.92 January 14, 2003

VIA TECHNOLOGIES, INC.

Copyright Notice:

Copyright © 2001, 2002, 2003, VIA Technologies Incorporated. All Rights Reserved. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise without the prior written permission of VIA Technologies Incorporated. The material in this document is for information only and is subject to change without notice. VIA Technologies Incorporated reserves the right to make changes in the product design without reservation and without notice to its users.

Trademark Notices:

VT8233, VT8233A, VT8233C, VT8235, VT8703, VT8751, VT8753, VT8754, P4M266, P4N266, P4X266, P4X266A, and P4X400 may only be used to identify products of VIA Technologies.

Intel™, Pentium™ and MMX™ are registered trademarks of Intel Corp.

VIA C3™ is a registered trademark of VIA Technologies

Athlon™ and AMD-K7™ are registered trademarks of Advanced Micro Devices Corp.

Windows XP™. Windows 2000™. Windows ME™, Windows 98™, and Plug and Play™ are registered trademarks of Microsoft Corp.

PCI™ is a registered trademark of the PCI Special Interest Group.

PS/2™ is a registered trademark of International Business Machines Corp.

All trademarks are the properties of their respective owners.

Disclaimer Notice:

No license is granted, implied or otherwise, under any patent or patent rights of VIA Technologies, Inc. VIA Technologies makes no warranties, implied or otherwise, in regard to this document and to the products described in this document. The information provided by this document is believed to be accurate and reliable to the publication date of this document. However, VIA Technologies assumes no responsibility for any errors in this document. Furthermore, VIA Technologies assumes no responsibility for the use or misuse of the information in this document and for any patent infringements that may arise from the use of this document. The information and product specifications within this document are subject to change at any time, without notice and without obligation to notify any person of such change.

Offices:

VIA Technologies Incorporated
USA Office:
940 Mission Court
Fremont, CA 94539
USA

Tel: (510) 683-3300

Fax: (510) 683-3301 or (510) 687-4654 Web: http://www.viatech.com VIA Technologies Incorporated

Taiwan Office: 8th Floor, No. 533

Chung-Cheng Road, Hsin-Tien

Taipei, Taiwan ROC Tel: (886-2) 2218-5452

Fax: (886-2) 2218-5453 Web: http://www.via.com.tw

REVISION HISTORY

Document Release	Date	Revision	Initials
0.1	12/18/01	Initial internal release based on P4X266A data sheet rev 1.0 published 12/5/01	DH
		Updated cover, block diagram and feature bullets to add AGP 8x and DDR 333	
		Updated pin diagram per project #3168 engg ballout rev 1.2 dated 12/7/01	
		Updated pin lists, updated AGP pin descriptions for AGP 8x mode	
		Added missing CPU, AGP, DRAM, V-Link and Miscellaneous pins	
		Replaced mechanical spec with HSBGA-859	
0.2	1/3/02	Fixed SDRAM feature bullets; Changed mechanical spec to HSBGA-858	DH
		Updated pinouts to match engineering ballout 1.5 (removed VCC25 ball at AA10)	
0.3	2/8/02	Fixed PC2700 notation; fixed various formatting and typographical errors	DH
		Fixed/updated ball count, AGP 8x, V-Link and DRAM feature bullets & overview	
		Updated block diagram, feature bullets & overview to use VT8235 south bridge	
		Updated strap definitions; Removed SDR support	
		Updated Device 0 Rx13-10, 41, 43-44, 47-49, 4B-4C, 4F-52, 54-55, 60, 63, 66-67,	
		6A-6E, 70, 80-83, A4-B0, B2, B4-B6, B8-BA, BC-BE, D0-D6, DA-DB, E0-E3,	
		E6, E8-EF, Device 1 Rx3-2, F, 48	
		Replaced mech spec with correct 858-ball diagram	
0.31	2/11/02	Regenerated pdf file to fix non-printing mechnical spec diagram	DH
0.4	2/27/02	Added P4X333 "product logo" to cover page and page headers	DH
		Fixed first main feature bullet to target high performance PC desktop systems	
		Fixed Figure 1 block diagram (bad diagram printout due to MS-Word bug)	
		Changed V-Link to 533 MB/sec in feature bullets and overview	
		Fixed errors and typos (package pin count, # of PCI slots, etc) in Overview text	
		Fixed mistakes in power/ground pin lists at bottom of pin list tables 1 and 2	
		Fixed part number and product name typos in pin descriptions	
		Fixed register references in memory pin descriptions and electrical specs	
		Fixed voltages in AGPVREF, VCCMEM, and VCCAGP pin descriptions	
0.5	2/28/02	Fixed AGPVREF and AGPVCC pin descriptions	DH
		Device 0 Fixed Rx3-2 default, 52[5], 53-54, A7-A4 default, 64[6-4], 69[6], B2[7]	
		Device 0 Removed Rx52[4], 67[7-6], B4 (8233 configuration only)	
0.6	3/11/02	Fixed P4X400 logo to print in color; changed max memory to 16GB	DH
		Added feature bullet to include support for both registered and unbuffered DIMMs	
		Changed pins AK7 and AJ16 to NC; Updated AGPVREF pin description	
		Added pin type and pin name to GCKE, HDP[3-0], AP[1-0], RSP#, NMI, GSERR#	
		Updated Table 7 MA Mapping to add 512Mb and 1Gb DRAMs; Updated Rx69[6]	
0.7	4/5/02	Fixed VIA USA address and VIA Taiwan fax # on legal page	DH
		Fixed VLVREF pin description; Fixed typographical error in mech spec drawing	
0.71	4/22/02	Corrected TW fax number; Corrected typo in pin diagram in VCCVL pin names	DH
		Updated block diagram to show six PCI slots for VT8235 south bridge	
0.72	5/29/02	Fixed feature bullet error (AGP 8x not 4x in first sub-bullet); Updated table 6	DH
0.8	6/25/02	Changed chip name from P4X333 to P4X400	DH
0.9	7/19/02	Updated Device 0 Rx0D[2-1], 47[7-6,1], 4D, 51[0], 60[7-6] (default), 69[6], A8[7-	DH
		6,3], B0[7] (& register name in sumary tables), B1 (register name), EE, EF[1-0]	
		Replaced Rx80-B3, F0-FF (AGP 2.0/3.0 regs) from KT400 data sheet rev 0.42	
0.91	7/19/02	Increased size of figure 1 block diagram; Fixed Rx13-10, 34	DH
0.92	1/14/03	Updated VIA logos on cover page and page headers to use new corporate logo	DH
		Updated DDR notation; Fixed VAD7 strap definition and updated Rx50[6]	
		Removed misleading "strap" label from VAD pins (straps are on south bridge)	

TABLE OF CONTENTS

REVISION HISTORY	I
TABLE OF CONTENTS	II
LIST OF FIGURES	IV
LIST OF TABLES	IV
PRODUCT FEATURES	1
OVERVIEW	_
OVERVIEW	3
PINOUTS	
PIN DESCRIPTIONS	8
REGISTERS	
REGISTER OVERVIEW	17
MISCELLANEOUS I/O	21
CONFIGURATION SPACE I/O	21
DEVICE 0 REGISTER DESCRIPTIONS	22
Device 0 Host Bridge Header Registers	22
Device 0 Host Bridge Device-Specific Registers	24
V-Link Control	
Host CPU Control	24
DRAM Control	
PCI Bus Control	25
GART / Graphics Aperture	
AGP 2.0 Registers	
CPU-to-Memory Access Control	
AGP 3.0 Registers	40
AGP 2.0 / 3.0 Registers	42
V-Link Compensation / Drive Control	
Power Management Control	45
Extended Power Management Control	
Error Control	46
Host CPU AGTL+ I/O Control	
DRAM Above 4G Control	
Host CPU P6 Interface DRDY Timing Control	
BIOS Scratch	
Miscellaneous Registers	
DEVICE 1 REGISTER DESCRIPTIONS	
Device 1 PCI-to-PCI Bridge Header Registers	
Device 1 PCI-to-PCI Bridge Device-Specific Registers	52
AGP Bus Control	
AGP Bus Control (continued)	54
Power Management	54
FUNCTIONAL DESCRIPTION	55
CONFIGURATION STRAPPING	55
ELECTRICAL SPECIFICATIONS	56
ABSOLUTE MAXIMUM RATINGS	

	DC CHARACTERISTICS	. 56
	Power Characteristics	. 57
	AC TIMING SPECIFICATIONS	. 58
M	ECHANICAL SPECIFICATIONS	. 59

LIST OF FIGURES

FIGURE 1. P4X400 CHIPSET SYSTEM BLOCK DIAGRAM	3
FIGURE 2. VT8754 / P4X400 BALL DIAGRAM (TOP VIEW)	5
FIGURE 3. GRAPHICS APERTURE ADDRESS TRANSLATION	
FIGURE 4. MECHANICAL SPECIFICATIONS – HSBGA-858 BALL GRID ARRAY PACKAGE WITH HEAT	
SPREADER	59

LIST OF TABLES

TABLE 1. PIN LIST (<u>NUMERICAL</u> ORDER)	6
TABLE 2. PIN LIST (ALPHABETICAL ORDER)	7
TABLE 3. VT8754 / P4X400 PIN DESCRIPTIONS	8
TABLE 4. VT8754 / P4X400 REGISTERS	17
TABLE 5. SYSTEM MEMORY MAP	29
TABLE 6. DEVICE 0 RX58 MA MAP TYPE ENCODING	30
TABLE 7. DDR DRAM MEMORY ADDRESS MAPPING TABLE	30
TABLE 8. DIMM MODULE CONFIGURATION	
TABLE 9. VGA/MDA MEMORY/IO REDIRECTION	52
TABLE 10. ABSOLUTE MAXIMUM RATINGS	56
TABLE 11. DC CHARACTERISTICS	56
TABLE 12. POWER CHARACTERISTICS – INTERNAL AND INTERFACE DIGITAL LOGIC	57
TABLE 13. POWER CHARACTERISTICS – ANALOG AND REFERENCE VOLTAGES	58
TABLE 14. AC TIMING MIN / MAX CONDITIONS	58

P4X400 CHIPSET

VT8754

Single-Chip North Bridge for Pentium 4 CPUs with 533 / 400 MHz Front Side Bus and 8x / 4x / 2x AGP Bus plus Advanced ECC Memory Controller supporting DDR333, 266, and 200 (PC2700 / 2100 / 1600) DDR SDRAM for Desktop PC Systems

PRODUCT FEATURES

• Defines Highly Integrated Solutions for Performance PC Desktop Designs

- High performance North Bridge with 533 MHz Front Side Bus for Pentium™ 4 plus AGP 8x external bus
- 64-bit Advanced ECC Memory controller supporting DDR333 / 266 / 200 DDR Synchronous DRAM
- Combines with VIA VT8235 V-Link South Bridge for integrated LAN, Audio, ATA133 IDE, and 6 USB 2.0 ports
- 2.5V Core and AGTL+ I/O
- 35 x 35mm HSBGA package (Ball Grid Array with Heat Spreader) with 858 balls and 1mm ball pitch

High Performance CPU Interface

- Support for Intel™ Pentium 4 processors with 533 MHz (4 x 133 MHz) CPU Front Side Bus (FSB)
- Built-in Phase Lock Loop circuitry for optimal skew control within and between clocking regions
- Thirteen outstanding transactions (twelve In-Order Queue (IOQ) plus one output latch)
- Dynamic deferred transaction support

• Full Featured Accelerated Graphics Port (AGP) Controller

- Supports 533 MHz 8x, 266 MHz 4x, and 133 MHz 2x transfer modes for AD and SBA signaling
- AGP v3.0 compliant with 8x transfer mode
- Pseudo-synchronous with the host CPU bus with optimal skew control
- Supports SideBand Addressing (SBA) mode (non-multiplexed address / data)
- AGP pipelined split-transaction long-burst transfers up to 1GB/sec
- Eight level read request queue
- Four level posted-write request queue
- Thirty-two level (quadwords) read data FIFO (256 bytes)
- Sixteen level (quadwords) write data FIFO (128 bytes)
- Intelligent request reordering for maximum AGP bus utilization
- Supports Flush/Fence commands
- Graphics Address Relocation Table (GART)
 - One level TLB structure
 - Sixteen entry fully associative page table
 - LRU replacement scheme
 - Independent GART lookup control for host / AGP / PCI master accesses
- Windows 95 OSR-2 VXD and integrated Windows 98 / Windows 2000 miniport driver support

• Advanced High-Performance DDR DRAM Controller

- Supports DDR333, DDR266, and DDR200 double-data-rate synchronous DRAM
- DRAM interface pseudo-synchronous with host CPU (166 / 133 / 100 MHz) for most flexible configuration
- DRAM interface may be faster or slower than CPU FSB by 33 MHz
- Concurrent CPU, AGP, and V-Link access
- Clock Enable (CKE) control for DRAM power reduction in high speed systems
- Mixed 1M / 2M / 4M / 8M / 16M / 32M / 64M / 128M x 8/16/32 DRAMs
- Supports 8 banks up to 16 GB DRAMs
- Allows use of either unbuffered or registered memory modules
- Flexible row and column addresses. 64-bit data width only
- 2.5V SSTL-2 DRAM interface
- Programmable I/O drive capability for MA, MD, and command signals
- Dual copies of MA and control signals for improved drive
- ECC (single-bit error correction and multi-bit error detection)
 or EC (error checking only) for DRAM integrity
- Two-bank interleaving for 16Mbit DRAM support
- Four bank interleaving for 64Mb, 128Mb, 256Mb, 512Mb, and 1Gb DRAM support
- Supports maximum 16-bank interleave (i.e., 16 pages open simultaneously); banks are allocated based on LRU
- Seamless DRAM command scheduling for maximum DRAM bus utilization
 - (e.g., precharge other banks while accessing the current bank)
- Four cache lines (16 quadwords) of CPU to DRAM write buffers
- Four cache lines of CPU to DRAM read prefetch buffers
- Read around write capability for non-stalled CPU read
- Speculative DRAM read before snoop result
- Burst read and write operation
- Burst length 4 and 8
- Supports CL 2/2.5 and 1T per command
- 1T and 2T command rate which can be specified bank by bank
- Decoupled and burst DRAM refresh with staggered RAS timing (CAS before RAS or self refresh)

High Bandwidth 533 MB / Sec 8-bit V-Link Host Controller

- Supports 66 MHz V-Link Host interface with peak bandwidth of 533 MB/sec
- Operates in 2x, 4x, and 8x modes
- Full duplex commands with separate command / strobe
- Request / Data split transaction
- Configurable outstanding transaction queue for Host to V-Link Client accesses
- Supports Defer / Defer-Reply transactions
- Transaction assurance for V-Link Host to Client access eliminates V-Link Host-Client Retry cycles
- Intelligent V-Link transaction protocol to eliminate data wait-state / throttle transfer latency
- All V-Link transactions for both Host and Client have a consistent view of transaction data depth and buffer size to avoid data overflow
- Highly efficient V-Link arbitration with minimum overhead
- All V-Link transactions have predictable cycle length with known command / data duration

Advanced System Power Management Support

- Dynamic power down of DRAM (CKE)
- VTT suspend power plane preserves memory data
- Suspend-to-DRAM and self-refresh power down
- Low-leakage I/O pads
- ACPI 1.0B and PCI Bus Power Management 1.1 compliant

OVERVIEW

The P4X400 (VT8754 North Bridge plus VT8235 South Bridge) is a high performance, cost-effective and energy efficient chip set for the implementation of desktop personal computer systems with 533 MHz (4x133 MHz) or 400 MHz (4x100 MHz) CPU host bus ("Front Side Bus") based on 64-bit Intel Pentium-4 super-scalar processors.

Figure 1. P4X400 Chipset System Block Diagram

The P4X400 chip set consists of the VT8754 North Bridge (858-pin BGA) and the VT8235 V-Link South Bridge (487 pin BGA). The VT8754 (sometimes also called a "Host System Controller") is an update of VIA's VT8753A (P4X266A) with a faster DDR memory interface and a new pinout enhanced to add AGP 8x functionality. The VT8754 provides superior performance between the CPU, DRAM, V-Link bus and AGP 8x graphics controller bus with pipelined, burst, and concurrent operation. The VT8235 (which may also be referred to as a "V-Link Client Controller") is a highly integrated PCI / LPC controller. Its internal bus structure is based on a 66 MHz PCI bus that provides 2x / 4x / 8x bandwidth compared to previous generation PCI bridge chips. The VT8235 also provides a 533 MB/sec bandwidth Host / Client V-Link interface with V-Link-PCI and V-Link-LPC controllers. It supports six PCI slots of arbitration and decoding for all integrated functions and LPC bus.

The VT8754 supports eight banks of DDR Synchronous DRAMs (SDRAMs) up to 16 GB. The DRAM controller supports DDR333, DDR266, and DDR200 (PC2700 / PC2100 / PC1600) Double-Data-Rate (DDR) SDRAM. The DDR DRAM interface allows zero wait state bursting between the DRAM and the data buffers at 166 / 133 / 100 MHz. The different banks of DRAM can be composed of an arbitrary mixture of 1M / 2M / 4M / 8M / 16M / 32M / 64M / 128M x 8/16/32 DRAMs. Both unbuffered and registered memory modules are supported. The DRAM controller also supports optional ECC (single-bit error correction and multi-bit detection) or EC (error checking) capability. The DRAM controller can run either synchronous or pseudo-synchronous with the host CPU bus.

The VT8754 supports a high speed 8-bit 8x 66 MHz Quad Data Transfer interconnect (V-Link) to the VT8235 South Bridge. The chip also contains a built-in bus-to-bus bridge to allow simultaneous concurrent operations on each bus. Five levels (doublewords) of post write buffers are included to allow for concurrent CPU and V-Link operation. For V-Link Host operation, forty-eight levels (doublewords) of post write buffers and sixteen levels (doublewords) of prefetch buffers are included for concurrent V-Link bus and DRAM/cache accesses. When combined, the V-Link Host / Client controllers realize a complete PCI sub-system and

support enhanced PCI bus commands such as "Memory-Read-Line", "Memory-Read-Multiple" and "Memory-Write-Invalid" commands to minimize snoop overhead. In addition, advanced features are supported such as snoop ahead, snoop filtering, L1 write-back forward to PCI master, and L1 write-back merged with PCI post write buffers to minimize PCI master read latency and DRAM utilization. Delay transaction and read caching mechanisms are also implemented for further improvement of overall system performance.

The 487-pin Ball Grid Array VT8235 Client V-Link PCI / LPC controller supports four levels (doublewords) of line buffers, type F DMA transfers and delay transaction to allow efficient PCI bus utilization and (PCI-2.1 compliant). The VT8235 integrated PCI controller and PCI arbitration for up to five PCI slots. One of the PCI REQ / GNT pairs can be configured as high-priority to better support a low latency PCI bus master device. The VT8235 integrated networking MAC controller with standard MII interface to an external PHY for 10/100Mb base-T Ethernet or 1/10Mb PNA home networking.

The VT8235 also includes an integrated keyboard controller with PS2 mouse support, integrated DS12885 style real time clock with extended 256 byte CMOS RAM, integrated master mode enhanced IDE controller with full scatter / gather capability and extension to UltraDMA-133/100/66/33 for 133/100/66/33 MB/sec transfer rate, integrated USB 2.0 interface with three root hubs and six functional ports with built-in physical layer transceivers, Distributed DMA support, and OnNow / ACPI compliant advanced configuration and power management interface.

For sophisticated power management, the P4X400 chipset provides independent clock stop controls for the CPU / SDRAM and AGP bus plus Dynamic CKE control for powerdown of the SDRAM. A separate suspend-well plane is implemented for the SDRAM control signals for Suspend-to-DRAM operation. Coupled with the VT8235 south bridge chip, a complete power conscious PC main board can be implemented with no external TTLs.

PINOU'	TS]	Figur	e 2.	VT8	754 /	P4X4	400 B	all D	iagra	ım (T															
Key 1	2	3 G	4	5	6	7 G	8		10 SBA	11 SBA	12 G	13 G	14 AGP	VCC	VCC	VCC	18 CPU			21	•			25 HDBI	26 HDS	27	28 HD	29		31			34
A STOP#	1		GD18	GD17	GD19	BE3#	GD23	GD28	5 SBA	3 SBA	RBF#	GNT#	8XDT#	25 VCC	25 VCC	25 VCC	RST#	HD62#	HD63#		HD51#	1	HD43#	2#	2# HDS	HD37#	P0 HD	HD26#		HD30# HDS	ſ		HD20#
AGP VCC	GND	GND	BE2#	GD16	GND	GD21	GD26 GDS1	GND	7 SBA	1 SBS#	GND SBA	ST1	GND G	25 VCC	25 VCC	25 VCC	GND	HD60#		GND HDS	HD54#		GND	HD42#	2	GND	P2	HD31#	GND HDBI	1# HDS	HD16#		HD21#
D VCC	AGP VCC	GND	IRDY#	FRM#	GD25	GD22	GDS1F GDS1#	GD29	6	SBSS	2 SBA	PIPE#	REQ#	25 VCC	25 VCC	25 VCC	GND	HD61#		3 HDS			HD44#			ı		1	1#	1	r	HD17# H	
D AGP	AGP	VCC AGP	GND	GND	GD20	GD27	GDS18	GD30	GDBIL	SBSF	0	WBF#	ST0	25	25	25	GND	HD58#	HD59#	3#		HD47#	HD45#	HD34#	HD33#		HD P3		HD24#	HD7#			HD15#
E AGP	VCC AGP	VCC AGP	VCC AGP	GND	GND	GD24	GD31	GND	GDBIH GPIPE#	SBA 4	GND	ST2	VCC 25	VCC 25	VCC 25	VCC 25	GND	GND	GND	GND	HDBI 3#	HD46#	GND	HD40#	HD36#	GND	HD P1	HD27#	GND	HD10#	0#	HD13# F	HD12#
F G SERR#	VCC AGP	VCC AGP	VCC AGP	VCC AGP	GND	GND	GND	GND	AGP VREF	GND	GND	GND	VCC 25	VCC 25	VCC 25	VCC 25	GND	HD VREF	GŃD	GND	GND	GND	HD VREF	GND TT	GND	GND	HD VREF	GND	HD11#	GND	HDS 0	GND	HD9#
G GD14	G BE1#	VCC AGP	VCC AGP	VCC AGP	VCC AGP	F7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	G28	GND	HDBI 0#		HD8#	HD2#	HD6#
H GD12	GND	GND	VCC AGP	VCC AGP	VCC AGP	Н		AGP	Pins									Ċ	. '								H	GND	HCMP VREF	HR COMP	HD5#	HD4#	HD1#
J GD8	GD10	G PAR	GND	VCC AGP	VCC AGP	J				_	J12	13	J14	_			J18	19	20	21	J22						J	HD VREF	GND	GND	GND	GND	HD0#
$\mathbf{K} = \frac{G}{BE0\#}$	GD7	GDS0 GDS0F	GDS0# GDS0S	GND	VCC AGP	K				K11	VCC 25	VCC 25	VCC 25	K15	16	K17	VCC 25	VCC 25	VCC 25	VCC 25	VCC 25	K23	_				K	VTT	VTT	VTT	VTT	VTT	VTT
L GD6	GND	GD5	GD11	GD15	GND	L			_	L11	VCC AGP	VCC AGP	VCC AGP	VCC AGP	VCC AGP	VCC AGP	VTT	VTT	VTT	VTT	VTT	VTT	L24	_	_		L	VTT	VTT	VTT	VTT	VTT	VTT
M GD2	GD4	GD0	GND	GD13	AGP VREF	M			M10	VCC AGP	VCC AGP	VCC AGP	VCC AGP	VCC AGP	VCC AGP	VCC AGP	VTT	VTT	VTT	VTT	VTT	VTT	VTT	M25		CPU	M	VTT	VTT	VTT	VTT	VTT	VTT
N GD1	VAD 4	GD3	GD9	G CLK	VCC QQ	N			N10	VCC AGP	VCC AGP	N13	14	15	16	17	18	19	20	21	N22	VTT	VTT	N		Pins	N	VTT	VTT	VTT	VTT	VTT	VTT
P VAD 5	GND	V PAR	GND OO	AGP COMP	GND	P		Р9	VCC 25	VCC AGP	VCC AGP	P	GND	GND	GND	GND	GND	GND	GND	GND	P	VTT	VTT	P	=		P	VTT	VTT	VTT	VTT	VTT	NMI
R V BE#	VAD 1	VAD 0	GND	GND	GND	R		R	VCC 25	VCC AGP	VCC AGP	R	GND	GND	GND	GND	GND	GND	GND	GND	R	VTT	VTT	R25			R	GND	GND	GND	GND	GND I	BPRI#
T UP STB#	UP STB	DN STB#	DN STB	DN CMD	GND	Т	V-	Т9	VCC 25	VCC VL	VCC VL	Т	GND	GND	GND	GND	GND	GND	GND	GND	T	VTT	VTT	VCC 25	T26		Т	H CLK#	VCC HCK1	GND HCK1	DE FER#	GND H	HITM#
U VAD	GND	VAD	VAD 3	VAD	VL COMP	U	Link		U10	VCC VL	VCC VL	U	GND	GND	GND	GND	GND	GND	GND	GND	U	VTT	VTT	VCC 25	U		U	H	VCC HCK2	GND HCK2	RS 2#	RS 0#	HIT#
V SUS ST#	UP CMD	VL VREF	GND	VSUS 25	GND	v	Pins		V10	VCC VL	VCC MEM	\mathbf{v}	GND	GND	GND	GND	GND	GND	GND	GND	\mathbf{v}	VTT	VTT	VCC 25	v		\mathbf{v}	GTL VREF	RS1#	BNR#	D	н	ADS#
W RE SET#	GND	PWR OK#	GND	GND	VCC VL	w	<u> </u>	w9	VCC 25	VCC MEM	VCC MEM	w	GND	GND	GND	GND	GND	GND	GND	GND	w	VTT	VTT	VCC 25	w		w	GND	GND	HT RDY#	B REQ#	CND	D RDY#
Y VCC VL	VCC VL	VCC VL	VCC VL	VCC VL	VCC VL	Y			Y10	VCC MEM	VCC MEM	Y	GND	GND	GND	GND	GND	GND	GND	GND	Y	VTT	VTT	VCC 25	Y		Y	GND	HA4	HREQ	HA3	_	HREQ
AA VCC VL	VCC VL	VCC VL	VCC VL	VCC VL	VCC VL	AA			AA10	VCC MEM	VCC MEM	AA	GND	GND	GND	GND	GND	GND	GND	GND	AA	VTT	VTT	VCC 25	AA		AA	HA VREF	HAS 0#	HREQ 3#	HA9		HA6
AB VCC MEM	VCC MEM	VCC	VCC	VCC	VCC MEM	AB		AB9	VCC 25	VCC MEM	VCC	AB13	14	15	16	17	18	19	20	21	AB22	GND	VCC MEM	VCC	AB26		AB	GND TT	GND	HA5	HREQ	GND	HA11
AC VCC	VCC	MEM VCC	MEM VCC	MEM VCC	VCC	AC		1123	AC10	vcc	MEM VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC	25 AC25	11020		AC	GND	HA16	HA8	1# HA14	HA13 1	HA10
AD VCC	MEM VCC	MEM VCC	MEM VCC	MEM VCC	MEM VCC	AD	,	\	ACTO	MEM AD11	MEM VCC	MEM VCC	MEM VCC	MEM VCC	WEM	MEM VCC	MEM VCC	MEM VCC	MEM VCC	MEM VCC	MEM VCC	VCC	MEM AD24	AC23			AD	HA	HA24	HA20			HA12
AE MD63	MEM	MEM MD59	MEM GND	MEM GND	MEM GND	AE				AE11	MEM VCC	MEM VCC	MEM VCC	MEM VCC	WEM VCC	MEM VCC	MEM VCC	MEM VCC	MEM VCC	MEM VCC	MEM AE22	MEM	ADZT				AE	VREF GND	GND		HA21		HA17
AF MD62	<u> </u>	DQS	SCAS	SCAS	MEM	AF				ALII	25 AF12	13	25 14	25 15	16	25 17	18	25 19	25	25 AF21	ALZZ	ALZ					AF	GND	HA28	HAS	HA25		HA22
	MD61	7# DQM	B# SWE	A# SWE	UREF GND	AG					AF 12	13	14	13	10	Mem		19	20	AFZI							AG	GND	HA26	1# HA30	HA33		HA32
AH MD56	GND	7 MD60	A# MD51	GND	GND	AH7	8	9	10	11	12	13	14	15	16	17	18	<u> </u> 19	20	21	22	23	24	25	26	27	AH28	GND	GND	RSP#	HAP		HA29
AJ MD55	MD50	MD54	GND	SRAS	MAA	MAB	GND	GND	GND	MEM VREF	VCC MDLL	GND	GND	GND	NC	MEM	GND	GND	GND	GND	GND	MEM	GND	-	VCC	VCC	VCC	VCC	VCC	HAP	1 HA35		HA34
ATZ DOS	DOM	MAB	SRAS	A# MAA	10 MAA	10	1 1	MAB	1 '		MAA	MDLL		MAB	MAA	VREF	MAB	MAA		MAA	MAA	VREF	MAB	GND	MEM VCC	MEM VCC	MEM VCC	MEM VCC	MEM VCC	0 VCC	VCC	GND ,	
AL MD53	6 GND	11 MD52	B# MD49	11 GND	12 MAB	NC MD45	GND MAB	1 MAA	GND MAA	GND MAB	3 MECC	GND MECC	GND MAA	6 MD27	5 MAA	GND MAA	8 MD24	7 MAB	GND MAA	14 MAB	15 MAB	GND MD20	15 DQS	GCKE GND	MEM VCC	MEM VCC	MEM VCC	MEM VCC	MEM VCC	MEM VCC	MCK VCC	VCC N	MCLK MCLK
					12		0 MAA	1	2 MD34	MAB 3	6	2 MECC	4 MAB		6 MAB	8 DQS	ł	7	MAA 9	13 MAB	14		1# DQM		MEM MD2	MEM	MEM	MEM VCC	MEM VCC	MEM VCC	MEM VCC	MEM VCC	TEST
AM MD48		MD46	CS5# DQS	MD42	CS2#	MD40	0	MD38 DQS	1 1		MD32 MECC	1 DQS	4	MD31 MECC	5	3#	MD28	MD22		9 DQM		MD11	1	MD8	MD3	MD2	MD1 DQS	MEM	MEM	MEM VCC	MEM VCC	MEM	IN# VCC
AN MD43	GND	CS4#	5# DQM	GND	CS0#	MD35	GND	4# DQM	MD37	GND	7 MECC	8# DQM	GND MECC	5 MECC	MD26	GND DQM	MD29	MD19	GND	DQS DQS	MD17	GND	MD15	MD12	GND	MD6	0# DQM	GND	MD4	MEM VCC	MEM VCC		MEM VCC
AP CS7#	CS6#	CS3#	5	CS1#	MD41	MD44	MD39	4	MD33	MD36	3	8 8	0	4	MD30	3	MD25	MD23	MD18	2#	MD16	MD10	MD14	MD13	MD9	MD7	0	MD5	MD0	MEM	MEM	MEM !	MEM

Table 1. Pin List (Numerical Order)

Pin#		Pin Name	<u>Pin #</u>		Pin Name	Pin#		Pin Name	Pin#		Pin Name	Pin#		Pin Names	Pin#		Pin Name
A01	IO	GSTOP#	C26	Ю	HD38#	H32	Ю	HD05#	W01	I	RESET#	AJ06	О	MAA10	AM13	IO	MECC1 / CKE1
A02	Ю	GDEVSEL#	C27	Ю	HD39#	H33	Ю	HD04#	W03	I	PWROK	AJ07	О	MAB10	AM14	О	MAB04
A03	IO	GTRDY#	C28	IO	HD35#	H34	IO	HD01#	W31	IO	HTRDY#	AJ11	P	MEMVREF	AM15	IO	MD31
A04	IO	GD18	C29	IO	HD29#	J01	IO	GD8	W32	0	BREQ#	AJ12	P	VCCMDLL	AM16	O	MAB05
A05	IO	GD17	C30	IO	HDBI1#	J02	IO	GD10	W34	IO	DRDY#	AJ13	P	GNDMDLL	AM17	IO	DQS3# / CKE3
A06 A07	IO IO	GD19 GBE3#	C31 C32	IO	HDS1 HD23#	J03 J29	IO P	GPAR HDVREF	Y30 Y31	IO	HA04 HREQ2#	AJ16 AJ17	P	NC MEMVREF	AM18 AM19	IO IO	MD28 MD22
A07 A08	IO	GD23	C32	IO	HD17#	J34	IO	HD00#	Y32	IO	HA03	AJ17 AJ23	P	MEMVREF	AM21	0	MAB09
A09	IO	GD28	C34	Ю	HD18#	K01	IO	GBE0#	Y33	IO	HREQ0#	AJ31	Ю	HAP0	AM22	Ю	MD21
A10	I	SBA5	D06	IO	GD20	K02	Ю	GD7	Y34	IO	HREQ4#	AJ32	IO	HA35	AM23	IO	MD11
A11	I	SBA3	D07	Ю	GD27	K03	Ю	GDS0 / GDS0F	AA29	P	HAVREF	AJ33	Ю	HA31	AM24	О	DQM1 / CKE1
A12	I	GRBF#	D08	Ю	GDS1# / GDS1S	K04	Ю	GDS0# / GDS0S	AA30	IO	HAS0#	AJ34	IO	HA34	AM25	IO	MD08
A13	O	GGNT#	D09	IO	GD30	L01	IO	GD6	AA31	IO	HREQ3#	AK01	IO	DQS6# / CKE6	AM26	IO	MD03
A14	I	AGP8XDT#	D10	IO	GDBIL CDC / CDCC	L03	IO	GD5	AA32	IO	HA09	AK02	0	DQM6 / CKE6	AM27	IO	MD02
A18	O IO	CPURST# HD62#	D11 D12	I I	SBS / SBSF SBA0	L04 L05	IO IO	GD11 GD15	AA33 AA34	IO IO	HA07 HA06	AK03 AK04	0	MAB11 SRASB#	AM28 AM30	IO O	MD01
A19 A20	IO	HD62# HD63#	D12	I	GWBF#	M01	IO	GD13	AB29	P	GNDTT	AK04 AK05	o	MAA11	AM34	I	MAA09 TESTIN#
A21	IO	HD55#	D13	Ó	ST0	M02	Ю	GD4	AB31	IO	HA05	AK06	0	MAA12	AN01	IO	MD43
A22	IO	HD51#	D19	IO	HD58#	M03	IO	GD0	AB32	IO	HREQ1#	AK07	_	NC	AN03	o	CS4#
A23	Ю	HD48#	D20	Ю	HD59#	M05	Ю	GD13	AB34	Ю	HA11	AK09	О	MAB01	AN04	Ю	DQS5# / CKE5
A24	Ю	HD43#	D21	Ю	HDS3#	M06	P	AGPVREF	AC30	Ю	HA16	AK12	О	MAA03	AN06	О	CS0#
A25	IO	HDBI2#	D22	IO	HD52#	N01	IO	GD1	AC31	IO	HA08	AK15	O	MAB06	AN07	IO	MD35
A26	IO	HDS2#	D23	IO	HD47#	N02	IO	VAD4	AC32	IO	HA14	AK16	0	MAA05	AN09	IO	DQS4# / CKE4
A27 A28	IO IO	HD37# HDP0	D24 D25	IO	HD45# HD34#	N03 N04	IO	GD3 GD9	AC33 AC34	IO IO	HA13 HA10	AK18 AK19	0	MAB08 MAA07	AN10 AN12	IO IO	MD37 MECC7 / CKE7
A29	IO	HD26#	D25	IO	HD33#	N04	I	GCLK	AD29	P		AK19	O	MAA14	AN13	IO	DQS8#
A30	IO	HD28#	D27	Ю	HD32#	N06	P	VCCQQ	AD30	IO	HA24	AK22	ŏ	MAA15	AN15	IO	MECC5 / CKE5
A31	IO	HD30#	D28	Ю	HDP3	P01	IO	VAD5	AD31	IO	HA20	AK24	Ŏ	MAB15	AN16	IO	MD26
A32	Ю	HD22#	D29	Ю	HD25#	P03	Ю	VPAR	AD32	Ю	HA18	AK25	О	GCKE	AN18	Ю	MD29
A33	Ю	HD19#	D30	Ю	HD24#	P04	P	GNDQQ	AD33	Ю	HA15	AK32	P	VCCMCK	AN19	IO	MD19
A34	IO	HD20#	D31	IO	HD07#	P05	ΑI	AGPCOMP	AD34	IO	HA12	AK33	P	GNDMCK	AN21	O	DQM2 / CKE2
B04	IO	GBE2#	D32	IO	HD14#	P34	0	NMI VDF#	AE01	IO	MD63	AK34	0	MCLK	AN22	IO	MD17
B05 B07	IO IO	GD16 GD21	D34 E07	IO	HD15# GD24	R01 R02	IO IO	VBE# VAD1	AE03 AE31	IO IO	MD59 HA19	AL01 AL03	IO IO	MD53 MD52	AN24 AN25	IO IO	MD15 MD12
B08	IO	GD21 GD26	E08	IO	GD24 GD31	R03	Ю	VAD0	AE32	IO	HA21	AL04	IO	MD49	AN27	IO	MD06
B10	I	SBA7	E10	IO	GDBIH / GPIPE#	R34	Ю	BPRI#	AE34	IO	HA17	AL06	o	MAB12	AN28	IO	DQS0# / CKE0
B11	I	SBA1	E11	I	SBA4	T01	I	UPSTB#	AF01	IO	MD62	AL07	IO	MD45	AN30	Ю	MD04
B13	О	ST1	E13	O	ST2	T02	I	UPSTB	AF02	IO	MD58	AL08	О	MAB00	AP01	О	CS7#
B19	IO	HD60#	E22	IO	HDBI3#	T03	0	DNSTB#	AF03	Ю		AL09	O	MAA01	AP02	O	CS6#
B20	IO	HD56#	E23	IO	HD46#	T04	0	DNSTB	AF04	O	SCASB#	AL10	0	MAA02	AP03	O	CS3#
B22 B23	IO IO	HD54# HD49#	E25 E26	IO	HD40# HD36#	T05 T29	O	DNCMD HCLK#	AF05 AF06	O P	SCASA# MEMVREF	AL11 AL12	O IO	MAB02 MECC6 / CKE6	AP04 AP05	0	DQM5 / CKE5 CS1#
B25	IO	HD49# HD42#	E28	IO	HDP1	T30	I P	VCCHCK1	AF30	IO	HA28	AL12	IO	MECC9 / CKE9	AP05 AP06	Ю	MD41
B26	IO	HDS2	E29	Ю	HD27#	T31	P	GNDHCK1	AF31	IO	HAS1#	AL14	0	MAA04	AP07	IO	MD41 MD44
B28	IO	HDP2	E31	Ю	HD10#	T32	Ю	DEFER#	AF32	IO	HA25	AL15	IO	MD27	AP08	IO	MD39
B29	Ю	HD31#	E32	Ю	HDS0#	T34	I 4	HITM#	AF33	IO	HA23	AL16	О	MAA06	AP09	О	DQM4 / CKE4
B31	Ю	HDS1#	E33	Ю	HD13#	U01	Ю		AF34	IO	HA22	AL17	О	MAA08	AP10	Ю	MD33
B32	IO	HD16#	E34	IO	HD12#	U03	IO	VAD7	AG01	IO	MD57	AL18	IO	MD24	AP11	IO	MD36
B34	IO	HD21#	F01	IO	GSERR#	U04	10	VAD3	AG02	IO	MD61	AL19	0	MAB07	AP12	IO	MECC3 / CKE3
C04 C05	IO IO	GIRDY# GFRM#	F10 F19	P	AGPVREF HDVREF	U05 U06	IO AI	VAD2 VLCOMP	AG03 AG04	0	DQM7 / CKE7 SWEA#	AL20 AL21	0	MAA13 MAB13	AP13 AP14	O	DQM8 MECC0 / CKE0
C05	IO	GD25	F24	P	HDVREF	U29	I	HCLK	AG05	o	SWEB#	AL21	o	MAB14	AP15	IO	MECC4 / CKE4
C07	IO	GD23 GD22	F25	P	GNDTT	U30	P	VCCHCK2	AG30	Ю	HA26	AL23	Ю	MD20	AP16	IO	MD30
C08	Ю	GDS1 / GDS1F	F28	P	HDVREF	U31	P	GNDHCK2	AG31	Ю	HA30	AL24	Ю	DQS1# / CKE1	AP17	О	DQM3 / CKE3
C09	Ю	GD29	F30	Ю	HD11#	U32	Ю	RS2#	AG32	Ю	HA33	AL34	I	MČLKF	AP18	IO	MD25
C10	I	SBA6	F32		HDS0	U33	IO	RS0#	AG33	IO		AM01		MD48	AP19	IO	MD23
C11		SBS# / SBSS	F34		HD09#	U34		HIT#	AG34			AM02					MD18
C12 C13		SBA2 GPIPE#	G01 G02	IO	GD14 GBE1#	V01 V02	I	SUSST# UPCMD	AH01 AH03	IO	MD56 MD60	AM03 AM04		MD46 CS5#	AP21 AP22		DQS2# / CKE2 MD16
C13	I	GREQ#	G30		HDBI0#	V02 V03	P	VLVREF	AH04	IO	MD51	AM05			AP22 AP23		MD10
C14		HD61#	G30		HD03#	V05	P	VSUS25	AH31	0	RSP#	AM06		CS2#	AP24		MD10 MD14
C20		HD57#	G32		HD08#	V29	P	GTLVREF	AH32		HAP1			MD40	AP25		MD13
C21		HDS3	G33	Ю	HD02#	V30	Ю	RS1#	AH34	Ю	HA29	AM08		MAA00	AP26		MD09
C22	Ю	HD53#	G34	Ю	HD06#	V31		BNR#	AJ01	Ю	MD55	AM09	IO	MD38	AP27		MD07
C23		HD50#	H01	IO	GD12	V32		DBSY#	AJ02		MD50			MD34	AP28	O	DQM0 / CKE0
C24		HD44#	H30		HCMPVREF	V33		HLOCK#	AJ03		MD54	AM11		MAB03	AP29		MD05
C25	Ю	HD41#	H31	ΑÍ	HRCOMP	V34	Ю	ADS#	AJ05	О	SRASA#	AM12	Ю	MD32	AP30	Ю	MD00

A15-17, B15-17, C15-17, D15-17, E14-17, F14-17, K12-14,18-22, P10, R10, T10,25, U25, V25, W10,25, Y25, AA25, AB10,25, AE12-21 VCC25 (50 pins):

VCCMEM (86 pins): V12, W11-12, Y11-12, AA11-12, AB1-6,11-12,24, AC1-6,11-24, AD1-6,12-23, AJ26-30, AK26-31, AL26-33, AM29-33, AN31-34, AP31-34

VCCAGP (43 pins): B1, C1-2, D1-3, E1-4, F2-5, G3-6, H4-6, J5-6, K6, L12-17, M11-17, N11-12, P11-12, R11-12

VCCVL (18 pins): T11-12, U11-12, V11, W6, Y1-6, AA1-6

K29-34, L18-23,29-34, M18-24,29-34, N23-24,29-34, P23-24,29-33, R23-24, T23-24, U23-24, V23-24, W23-24, Y23-24, AA23-24 VTT (60 pins):

GND (199 pins): P2,6,14-21, R4-6,14-21,29-33, T6,14-21,33, U2,14-21, V4,6,14-21, W2,4-5,14-21,29-30,33, Y14-21,29, AA14-21, AB23,30,33, AC29, AE2,4-6,29-30,33,

Table 2. Pin List (Alphabetical Order)

	Pin#		Pin Name	<u>Pin #</u>		Pin Name	Pin#		Pin Name	Pin#		Pin Name	Pin#		Pin Names	Pin#		Pin Name
POS A ACCOMP FF P A ACCOMP FF P ACCOMP ACCOM	V34	IO	ADS#	D06	IO	GD20	AG34	IO	HA32	B22	Ю	HD54#	AK03	О	MAB11	AH03	IO	MD60
Fig. ACFWREF Mos. 10 G023	A14	I	AGP8XDT#	B07	Ю	GD21	AG32	Ю	HA33	A21	Ю	HD55#	AL06	O	MAB12	AG02	Ю	MD61
Mode PA ACPVREF E97 10 GD24																		
Vision V				1									1					
R34 O BPRIN BOR BOR O GD26 AP31 O HASDIN BOR O CD26 AP31 O GD27 AP31 O MBCGC/ CKE		_														-11		
Marging Marg																		
ABIS 0 C CRUENTY AND 10 GD28																		
ANOS O CSG		-																
AMOS O CS2# E0S D GD31 T29		0																MECC5 / CKE5
APOS O CS49		-																MECC6 / CKE6
ANOS O CS4# DIO		-											1					
ADM O CSS# K03 IO GDS07 (GDS07 GDS07 G		-		1														
APOL O CS6#		-									_							
APOL O CS7# CS8 O GDS17/GDS1F G31 O HD03# B28 O HDP2 AP26 O MD10 AK07 NC		-											1					
1732 10 DBSY# DOB 10 GDSI# / GDSIS H33 10 HD04# DDS 10 HDD5# DDS DDS 10 HDD5# DDS 10 HDD5# DDS 10 HDD5# DDS 10 HDD5# DDS DDS 10 HDD5# DDS DD		-															_	
Total O DNCMD	V32	IO	DBSY#	D08	Ю		H33	Ю		D28	Ю		AP23	IO		AJ16	_	NC
Total O DNSTB				1													О	
To Do Don't Care Co I GIRDY# G32 IO HD08# B31 IO HD08# AP24 IO MD15 V33 IO RS0#																	I	
AP28 O DQMO CKED		-															I	
AM21 O DOMY CKEE M33 P GNDHCK E31 O HDI0# A20 IO HDIS2# AP22 O MDI6 MD17 AB13 O RS2# AP71 O DOMY CKE2 AB13 P GNDMCK E34 O HDI2# D21 IO HDS3# AP20 IO MD17 AB13 O RS2# AP70 O DOMY CKE4 AB13 P GNDMCK E34 O HDI2# D21 IO HDS3# AP20 IO MD18 D12 I SBA0 AP70 O DOMY CKE5 AB20 P GNDTT D32 IO HDI3# F19 P HDVREF AL23 IO MD19 B11 I SBA1 AB20 P GNDTT D32 IO HDI4# F24 P HDVREF AL23 IO MD20 C12 I SBA2 AB20 O DOMY CKE7 AB20 P GNDTT D32 IO HDI6# AB20 P HDVREF AL23 IO MD21 AB11 I SBA3 AB20 IO GNDW CKE7 AB20 IO GNDW AB20																		
AP21 O DOM2 / CKE2 AK33 P GNDWEL F30 O HD1 HD1 HD1 HD1 HD1 HD2		-																
APP O DOM CKE5 APP O DOM O DOM CKE5 ARO O		-																
APO4 O DOM6 CKE5 ARO2 O DOM6 CKE5 ARO2 O DOM6 CKE6 AGO3 O DOM6 CKE6 AGO3 O DOM6 CKE6 AGO3 O DOM8 CKE7 AGO3 O DOM9 AGO3 O AGO3		-															I	
AGO O O O O O O O O O		O		P04	P	GNDQQ	E33	Ю	HD13#	F19	P ₁		AN19	Ю	MD19	B11	I	
AG03 DQM7 / CKE7 D03 O GPAR B32 IO HD16# J29 P HDVREF AM19 IO MD22 AB10 I SBA5		-															-	
API3 O DÓMS CIS T GPIPE# C33 I GHD17# T34 I HITM# API9 IO MD23 AI0 I SBA5		-															-	
ANZ8 O D\script{OSOB_TCKEO} A12 I GRBF# C34 IO HD18#, A34 IO HD19#, A34 IO HD19#, A34 IO HD19#, A34 IO HD19#, A34 IO HD2#, A35 IO GRDF##		-															-	
AL24 O DOS1# / CKE1 C14 I GREO# A33 IO HD19# M33 I HLOCK# API8 IO MD25 BI0 I SBA7		_															-	
AP21 OD OS OS CKE2 FOI OD GSER# A34 OD HD20# HD20# HD20# HD20# HD20# AB16 IO MD20# AB1																		
ANO- O DOS-84 CKE-4 CKE-5 A03 O GTRDY# DO O DOS-84 CKE-5 A03 O GTRDY# DO O DOS-84 CKE-5 A03 O GTRDY# DO O DOS-84 CKE-5 DOS-84 DOS-		-												- 70			Ī	
ANOA 10 D\text{QSSF} / CKE5 AO3 10 GTRDY# C32 10 HD23# Y31 10 HREQ3# AA31 10 MD30 AI05 O SCASB# AA31 10 DQSF# / CKE7 Y32 10 HA03 D29 10 HD25# Y34 10 HREQ4# AM15 10 MD30 AI05 O SRASA# AR31 10 DQSF# / CKE7 Y32 10 HA03 D29 10 HD25# Y34 10 HREQ4# AM15 10 MD31 AKO4 O SRASAB# AN13 10 DQSF# / CKE7 Y32 10 HA03 D29 10 HD25# Y34 10 HREQ4# AM15 10 MD31 AKO4 O SRASAB# AN13 10 DQSF# / CKE7 AB31 10 HA06 A29 10 HD25# AM30 O MAA00 AP10 10 MD33 B13 O STI AM30 DEST AM30 DEST AM30 DEST AM30 DEST AM30 DEST AM30 DEST D	AM17	IO	DQS3# / CKE3	A01	Ю	GSTOP#	B34	Ю	HD21#	Y33	Ю	HREQ0#	AL15	IO	MD27	C11	I	SBS# / SBSS
AKO 10 DOSG# / CKE6 AKO 10 BOSG# / CKE6 V32 10 HA03 DOS 10 HD2## AKO 10 H																		
AFO3 IO DÓS7# / CKE7 Y32 IO HA03 A29 IO HD25# Y34 IO HREQ## AMI5 IO MD31 AKO4 O SRASB# AMI3 IO DÓS8# Y30 IO HA04 A29 IO HD25# AMI5 IO HTRDY# AMI2 IO MD32 D14 O STO				1														
AN13 IO DOSS# Y30 IO HA04 A29 IO HD26# A34 IO HD26# A35 IO HD28# AL09 O MAA01 AM10 IO MD33 B13 O ST1																		
NA								7										
RO1 IO GBEO# AA34 IO HA06 A30 IO HD28# AL09 O MAA01 AM10 IO MD34 E13 O ST2																H		
GOZ IO GBE1# AA33 IO HA07 C29 IO HD29# AL10 O MAA02 AN07 IO MD35 AG04 O SWEA# AA71 IO HA08 A31 IO HD30# AL10 O MAA03 AP11 IO MD36 AG04 O SWEA# AG71 IO MD36 AG04 O SWEA# AG71 IO MD36 AG04 O SWEA# AG71 IO MD36 AG05 O SWEA# AR15 O MAA04 AN10 IO MD37 AG05 O SWEA# AR15 O MAA04 AN10 IO MD37 AG05 O SWEA# AR15 O MAA04 AN10 IO MD37 AG05 O SWEA# AR16 O MAA05 AM09 IO MD38 AM34 I TESTIN# AR16 O MAA06 AP08 IO MD38 AM34 I TESTIN# AR16 O MAA06 AP08 IO MD38 AM34 I TESTIN# AR19 O MAA07 AM07 IO MD38 AM34 I TESTIN# AR19 O MAA07 AM07 IO MD38 AM34 I TESTIN# AR19 O MAA07 AM07 IO MD39 AR19 A				1									1					
A7	G02	IO	GBE1#		Ю	HA07		Ю			O			Ю	MD35	V01	I	SUSST#
AK25 O GCKE																		
NOS I GCLK				1													Ō	
M03 IO GD0																	1	
NO1 IO GD1				1									1					
M01 IO GD2		-															-	
M02 IO GD4 AC30 IO HA16 C26 IO HD38# AK05 O MAA11 AP07 IO MD44 U05 IO VAD2	II I				IO				HD36#				1			R03	Ю	
L03 IO GD5 AE34 IO HA17 C27 IO HD39# AK06 O MAA12 AL07 IO MD45 MD45 MD46 NO2 IO VAD3													1					
L01 IO GD6 AB32 IO HA18 E25 IO HD40# AK21 O MAA13 AM03 IO MD46 N02 IO VAD4																		
K02 IO GD7 AE31 IO HA19 C25 IO HD41# AK21 O MAA14 AM02 IO MD47 P01 IO VAD5 J01 IO GD8 AD31 IO HA20 B25 IO HD42# AK22 O MAA15 AM01 IO MD49 U01 IO VAD6 N04 IO GD9 AE32 IO HA21 A24 IO HD43# AL08 O MAB00 AL04 IO MD49 U03 IO VAD7 J02 IO GD10 AF34 IO HA22 C24 IO HD44# AK09 O MAB01 AJ02 IO MD50 R01 IO VBE# L04 IO GD11 AF33 IO HA23 D24 IO HD45# AL11 O MAB01 AL03 IO MD51 T30 P VCCHCK1 H01 IO													1					
J01 IO GD8 AB31 IO HA20 B25 IO HD42# AK22 O MAA15 AM01 IO MD48 U01 IO VAD6																		
N04 IO GD9 AE32 IO HA21 A24 IO HD43# AL08 O MAB00 AL04 IO MD49 R01 IO VAD7				1														
J02 IO GD10	II I			1							_		1					
H01 IO GD12 AD30 IO HA24 E23 IO HD46# AM11 O MAB03 AL03 IO MD52 U30 P VCCHCK2		IO	GD10															
M05 IO GD13 AF32 IO HA25 D23 IO HD47# AM14 O MAB04 AL01 IO MD53 AK32 P VCCMCK																		
G01 IO GD14 AG30 IO HA26 A23 IO HD48# AM16 O MAB05 AJ03 IO MD54 AJ12 P VCCMDLL L05 IO GD15 AG33 IO HA27 B23 IO HD49# AK15 O MAB06 AJ01 IO MD55 N06 P VCCQQ B05 IO GD16 AF30 IO HA28 C23 IO HD50# AL19 O MAB07 AH01 IO MD56 U06 AV VLCOMP A05 IO GD17 AH34 IO HA29 A22 IO HD51# AK18 O MAB08 AG01 IO MD57 VO3 P VLVREF A04 IO GD18 AG31 IO HA30 D22 IO HD52# AM21 O MAB09 AF02 IO MD58 P03 IO VPAR																		
L05 IO GD15 AG33 IO HA27 B23 IO HD49# AK15 O MAB06 AJ01 IO MD55 N06 P VCCQQ B05 IO GD16 AF30 IO HA28 C23 IO HD50# AL19 O MAB07 AH01 IO MD56 U06 AI VLCOMP A05 IO GD17 AH34 IO HA29 A22 IO HD51# AK18 O MAB08 AG01 IO MD57 V03 P VLVREF A04 IO GD18 AG31 IO HA30 D22 IO HD52# AM21 O MAB09 AF02 IO MD58 P03 IO VPAR															MD53			
B05 IO GD16																		
A05 IO GD17																		
A04 IO GD18																		

A15-17, B15-17, C15-17, D15-17, E14-17, F14-17, K12-14,18-22, P10, R10, T10,25, U25, V25, W10,25, Y25, AA25, AB10,25, AE12-21 VCC25 (50 pins):

VCCMEM (86 pins): V12, W11-12, Y11-12, AA11-12, AB1-6,11-12,24, AC1-6,11-24, AD1-6,12-23, AJ26-30, AK26-31, AL26-33, AM29-33, AN31-34, AP31-34

VCCAGP (43 pins): B1, C1-2, D1-3, E1-4, F2-5, G3-6, H4-6, J5-6, K6, L12-17, M11-17, N11-12, P11-12, R11-12

VCCVL (18 pins): T11-12, U11-12, V11, W6, Y1-6, AA1-6

K29-34, L18-23,29-34, M18-24,29-34, N23-24,29-34, P23-24,29-33, R23-24, T23-24, U23-24, V23-24, W23-24, Y23-24, AA23-24 VTT (60 pins):

GND (199 pins): P2,6,14-21, R4-6,14-21,29-33, T6,14-21,33, U2,14-21, V4,6,14-21, W2,4-5,14-21,29-30,33, Y14-21,29, AA14-21, AB23,30,33, AC29, AE2,4-6,29-30,33,

Pin Descriptions

Table 3. VT8754 / P4X400 Pin Descriptions

CPU Interface											
Signal Name	Pin #	I/O	Signal Description								
HA[35:3]#	(see pinout tables)	Ю	Host CPU Address Bus. Connect to the address bus of the host CPU. Inputs during CPU cycles and driven by the VT8754 during cache snooping operations. Address signals up through HA[35] allow support of a 64 Gbyte memory space.								
HAP[1:0]	AH32, AJ31	IO	Host CPU Addres Parity.								
HAS[1:0]#	AF31, AA30	IO	Host CPU Address Strobe. Source synchronous strobes used to transfer HA[31:3]# and HREQ[4:0]# at a 2x transfer rate. HAS1# is the strobe for HA[31:17]# and HAS0# is the strobe for HA[16:3] and HREQ[4:0]#.								
HD[63:0]#	(see pinout tables)	IO	Host CPU Data. These signals are connected to the CPU data bus.								
HDP[3:0]	D28, B28, E28, A28	IO	Host Data Parity.								
HDBI[3:0]#	E22, A25, C30, G30	IO	Host CPU Dynamic Bus Inversion. Driven along with HD[63:0]# to indicate if the associated signals are inverted or not. Used to limit the number of simultaneously switching signals to 8 for the associated 16-bit data pin group (HDBI3# for HD[63:48]#, HDBI2# for HD[47:32]#, HDBI1# for HD[31:16]#, and HDBI0# for HD[15:0]#). HDBIn# is asserted such that the number of data bits driven low for the corresponding group does not exceed 8.								
HDS[3:0] HDS[3:0]#	C21, B26, C31, F32 D21, A26, B31, E32	Ю	Host CPU Differential Data Strobes. Source synchronous strobes used to transfer HD[63:0]# and HDBI[3:0]# at a 4x transfer rate. HDS3 / HDS3# are the strobes for HD[63:48]# and HDBI3#; HDS2 / HDS2# are the strobes for HD[47:32]# and HDBI2#; HDS1 / HDS1# are the strobes for HD[31:16]# and HDBI1#; and HDS0 / HDS0# are the strobes for HD[15:0]# and HDBI0#.								
ADS#	V34	IO	Address Strobe. The CPU asserts ADS# in T1 of the CPU bus cycle.								
DBSY#	V34 V32	IO	Data Bus Busy . Used by the data bus owner to hold the data bus for transfers requiring more than one cycle.								
DRDY#	W34	IO	Data Ready. Asserted for each cycle that data is transferred.								
HIT#	U34	IO	Hit. Indicates that a caching agent holds an unmodified version of the requested line. Also driven in conjunction with HITM# by the target to extend the snoop window.								
HITM#	T34	I	Hit Modified . Asserted by the CPU to indicate that the address is modified in the L1 cache and needs to be written back.								
HLOCK#	V33	I	Host Lock . All CPU cycles sampled with the assertion of HLOCK# and ADS# until the negation of HLOCK# must be atomic.								
HREQ[4:0]#	Y34, AA31, Y31, AB32, Y33	IO	Request Command . Asserted during both clocks of the request phase. In the first clock, the signals define the transaction type to a level of detail that is sufficient to begin a snoop request. In the second clock, the signals carry additional information to define the complete transaction type.								
HTRDY#	W31	IO	Host Target Ready . Indicates that the target of the processor transaction is able to enter the data transfer phase.								

Note: Clocking of the CPU interface is performed with HCLK and HCLK# (see clock pin description group).

Note: Internal pullup resistors are provided on all AGTL+ interface pins. If the CPU does not have internal pullups, these north bridge internal pullups may be enabled to allow the interface to meet AGTL+ bus interface specifications (see VAD3 strap).

			CPU	J Interface (cont	tinued)						
Signal Name	Pin #	I/O	Signal Descr	ription							
RS[2:0]#	U32, V30,	IO	Response Sig	gnals. Indicates the	type of respons	se per the table below:					
	U33		RS[2:0]#	Response type	RS[2:0]#	Response type					
			000	Idle State	100	Hard Failure					
			001	Retry Response	101	Normal Without Data					
			010	Defer Response	110	Implicit Writeback					
			011	Reserved	111	Normal With Data					
RSP#	AH31	0	Response Pa	rity.							
BREQ#	W32	0	Bus Request	Bus Request. Bus request output to CPU.							
BPRI#	R34	IO	owner. This symmetric ov	s signal has priority	over symmetr new transaction	this signal will always be the next bus rice bus requests and causes the current as unless the HLOCK# signal is asserted. The processor bus.					
BNR#	V31	IO				ent request bus owner from issuing new trol the processor bus pipeline depth.					
DEFER#	T32	Ю		Defer. The VT8754 uses a dynamic deferring policy to optimize system performance. Γhe VT8754 also uses the DEFER# signal to indicate a processor retry response.							
CPURST#	A18	О		Reset output to CPU per CPU manufactur		lup and filter capacitor to ground should dations.					

The pinouts were defined assuming the ATX PCB layout model shown below (and general pin layout shown) as a guide for PCB component placement. Other PCB layouts (AT, LPX, and NLX) were also considered and can typically follow the same general component placement.

	DR	AM I	nterface
Signal Name	Pin#	I/O	Signal Description
MD[63:0]	(see pin lists)	IO	Memory Data. These signals are connected to the DRAM data bus. Output drive strength may be set by Device 0 RxE8.
MECC[7:0] / CKE[7:0]	AN12, AL12, AN15, AP15, AP12, AL13, AM13, AP14	Ю	DRAM ECC or EC Data: when ECC is enabled. Clock Enables: For each DRAM bank for powering down the SDRAMs in notebook applications. Also used in desktop systems for clock control to reduce power usage and for reducing heat/temperature in high-speed memory systems.
MAA[15:0]	(see pin lists)	О	Memory Address A. DRAM address lines (two sets for better drive). Output drive strength may be set by Device 0 RxEA.
MAB[15:0]	(see pin lists)	О	Memory Address B. DRAM address lines (two sets for better drive). Output drive strength may be set by Device 0 RxEB.
SRASA#, SCASA#, SWEA#	AJ5, AF5, AG4	0	Row Address, Column Address and Write Enable Command Indicator Set A. (two sets for better drive). Output drive strength may be set by Device 0 RxEA.
SRASB#, SCASB#, SWEB#	AK4, AF4, AG5	0	Row Address, Column Address and Write Enable Command Indicator Set B. (two sets for better drive). Output drive strength may be set by Device 0 RxEB.
CS[7:0]#	AP1, AP2, AM4, AN3, AP3, AM6, AP5, AN6	О	Chip Select. Chip select of each bank. Output drive strength may be set by Device 0 RxE9.
DQM[8], DQM[7:0] / CKE[7:0]	AP13, AG3, AK2, AP4, AP9, AP17, AN21, AM24, AP28	0	Data Mask. Data mask of each byte lane plus DQM8 for ECC byte. Output drive strength may be set by Device 0 RxE8.
DQS[8], DQS[7:0]# / CKE[7:0]	AN13, AF3, AK1, AN4, AN9, AM17, AP21, AL24, AN28	Ю	DDR Data Strobe. Data strobe of each byte lane plus DQS8# for ECC byte. Output drive strength may be set by Device 0 RxE8.
CKE[7:0] / MECC[7:0] -or- CKE[7:0] / DQM[7:0] -or- CKE[7:0] / DQS[7:0]#	(see above)	0	Clock Enables. Clock enables for each DRAM bank for powering down the SDRAM or clock control for reducing power usage and for reducing heat / temperature in high-speed memory systems. See Device 0 RxBD[6] for CKE function enable.
GCKE	AK25	О	Global Clock Enable.
NC	AJ16, AK7	_	No Connect. Reserved for future use.

			AGP Bus Interface
Signal Name	Pin #	I/O	Signal Description
GD[31:0]	(see	IO	Address / Data Bus. Address is driven with GDS assertion for AGP-style transfers and
	pin list)		with GFRM# assertion for PCI-style transfers.
GBE[3:0]#	A7,	IO	Command / Byte Enable. (Interpreted as C/BE# for AGP 2x/4x and C#/BE for 8x)
	В4,		AGP: These pins provide command information (different commands than for PCI)
(GBE[3:0]	G2,		driven by the master (graphics controller) when requests are being enqueued using
for 8x mode)	K1		GPIPE# (2x/4x only as GPIPE# isn't used in 8x mode). These pins provide valid byte
			information during AGP write transactions and are driven by the master. The target (this
			chip) drives these lines to "0000" during the return of AGP read data.
			PCI: Commands are driven with GFRM# assertion. Byte enables corresponding to supplied or requested data are driven on following clocks.
GPAR	J3	IO	AGP Parity. A single parity bit is provided over GD[31:0] and GBE[3:0].
GDBIH / GPIPE#,	E10	IO	Dynamic Bus Inversion High / Low. AGP 8x transfer mode only. Driven by the source
GDBIL / GPIPE#,	D10	10	to indicate whether the corresponding data bit group (GDBIH for GD[31:16] and GDBIL
GDDIL	D10		for GD[15:0]) needs to be inverted on the receiving end (1 on GDBIx indicates that the
			corresponding data bit group should be inverted). Used to limit the number of
			simultaneously switching outputs to 8 for each 16-pin group.
GDS0	K3	Ю	Bus Strobe 0. Source synchronous strobes for GD[15:0] (the agent that is providing the
(GDS0F for 8x),			data drives these signals). GDS0 provides timing for 2x data transfer mode; GDS0 and
GDS0#	K4		GDS0# provide timing for 4x transfer mode. For 8x transfer mode, GDS0 is interpreted
(GDS0S for 8x)			as GDS0F ("First" strobe) and GDS0# as GDS0S ("Second" strobe).
GDS1	C8	IO	Bus Strobe 1. Source synchronous strobes for GD[31:16] (i.e., the agent that is providing
(GDS1F for 8x),			the data drives these signals). GDS1 provides timing for 2x data transfer mode; GDS1
GDS1#	D8		and GDS1# provide timing for 4x transfer mode. For 8x transfer mode, GDS1 is
(GDS1S for 8x)			interpreted as GDS1F ("First" strobe) and GDS1# as GDS1S ("Second" strobe).
GFRM#	C5	IO	Frame. Assertion indicates the address phase of a PCI transfer. Negation indicates that
(GFRM for 8x)	C4	(IO	one more data transfer is desired by the cycle initiator. Interpreted as active high for 8x.
GIRDY# (GIRDY for 8x)	C4	IO	Initiator Ready. (Interpreted as active low for PCI/AGP2x/4x and high for AGP 8x) AGP: For write operations, the assertion of this pin indicates that the master is ready to
(GIRD1 101 6X)			provide <i>all</i> write data for the current transaction. Once this pin is asserted, the master is
			not allowed to insert wait states. For read operations, the assertion of this pin indicates
A A	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		that the master is ready to transfer a subsequent block of read data. The master is <i>never</i>
			allowed to insert a wait state during the initial block of a read transaction. However, it
			may insert wait states after each block transfers.
			PCI: Asserted when the initiator is ready for data transfer.
GTRDY#	A3	IO	Target Ready. (Interpreted as active low for PCI/AGP2x/4x and high for AGP 8x)
(GTRDY for 8x)			AGP: Indicates that the target is ready to provide read data for the entire transaction
			(when the transaction can complete within four clocks) or is ready to transfer a (initial or
			subsequent) block of data when the transfer requires more than four clocks to complete.
			The target is allowed to insert wait states after each block transfer for both read and write transactions.
			PCI: Asserted when the target is ready for data transfer.
GSTOP#	A1	IO	Stop (PCI transactions only). Asserted by the target to request the master to stop the
(GSTOP for 8x)	711	10	current transaction. Interpreted as active high for AGP 8x.
GDEVSEL#	A2	IO	Device Select (PCI transactions only). This signal is driven by the VT8754 when a PCI
(GDEVSEL			initiator is attempting to access main memory. It is an input when the VT8754 is acting as
for 8x mode)			PCI initiator. Not used for AGP cycles. Interpreted as active high for AGP 8x.
GPIPE#	C13	I	Pipelined Request. Asserted by the master (the external graphics controller) to indicate
(GPIPE for 8x)			that a full-width request is to be enqueued by the target VT8754. The master enqueues
			one request each rising edge of GCLK while GPIPE# is asserted. When GPIPE# is
			deasserted no new requests are enqueued across the AD bus. Not used by AGP 8x.

	AGP Bus Interface (continued)				
Signal Name	Pin #	I/O	Signal Description		
AGP8DT#	A14	I	AGP 8x Transfer Mode Detect. Low indicates that the external graphics card can support 8x transfer mode		
GRBF# (GRBF for 8x)	A12	I	Read Buffer Full. Indicates if the master (graphics controller) is ready to accept previously requested low priority read data. When GRBF# is asserted, the VT8754 will not return low priority read data to the graphics controller.		
GWBF# (GWBF for 8x)	D13	I	Write Buffer Full.		
SBA[7:0] (SBA[7:0]# for 8x)	B10, C10, A10, E11, A11, C12, B11, D12	I	SideBand Address. Provides an additional bus to pass address and command information from the master (graphics controller) to the target (VT8754 north bridge logic). These pins are ignored until enabled.		
SBS (SBSF for 8x), SBS# (SBSS for 8x)	D11 C11	I	Sideband Strobe. Driven by the master to provide timing for SBA[7:0]. SBS is used for AGP 2x while SBS and SBS# are used together for AGP 4x. For 8x mode, the strobe mechanism works differently with SBS interpreted as SBSF ("First" strobe) and SBS# as SBSS ("Second" strobe).		
ST[2:0]	E13, B13, D14	0	 Status (AGP only). Provides information from the arbiter to a master to indicate what it may do. Only valid while GGNT# is asserted. 000 Indicates that previously requested low priority read or flush data is being returned to the master (graphics controller). 001 Indicates that previously requested high priority read data is being returned to the master. 010 Indicates that the master is to provide low priority write data for a previously enqueued write command. 011 Indicates that the master is to provide high priority write data for a previously enqueued write command. 100 Reserved. (arbiter must not issue, may be defined in the future). 101 Reserved. (arbiter must not issue, may be defined in the future). 110 Reserved. (arbiter must not issue, may be defined in the future). 111 Indicates that the master (graphics controller) has been given permission to start a bus transaction. The master may enqueue AGP requests by asserting PIPE# or start a PCI transaction by asserting GFRM#. ST[2:0] are always outputs from the target (north bridge logic) and inputs to the master (graphics controller). 		
GREQ# (GREQ for 8x)	C14	I	Request. Master (graphics controller) request for use of the AGP bus.		
GGNT# (GGNT for 8x)	A13	О	Grant. Permission is given to the master (graphics controller) to use the AGP bus.		
GSERR#	F1	IO	AGP System Error.		

Note: For PCI operation on the AGP bus, the following pins are not required:

- PERR# (parity and error reporting not required on transient data devices such as graphics controllers)
- LOCK# (no lock requirement on AGP)
- IDSEL (internally connected to AD16 on AGP-compliant masters)

Note: Separate system interrupts are not provided for AGP. The AGP connector provides interrupts via PCI bus INTA-B#.

Note: The AGP bus supports only one master directly (REQ[3:0]# and GNT[3:0]# are not provided). External logic is required to implement additional master capability. Note that the arbitration mechanism on the AGP bus is different from the PCI bus.

Note: A separate reset is not required for the AGP bus (RESET# resets both PCI and AGP buses)

Note: Two mechanisms are provided by the AGP bus to enqueue master requests: GPIPE# (to send addresses multiplexed on the AD lines) and the SBA port (to send addresses unmultiplexed). AGP masters implement one or the other or select one at initialization time (they are not allowed to change during runtime). Only one of the two will be used; the signals associated with the other will not be used. GRBF# has an internal pullup to maintain it in the deasserted state in case it is not implemented on the master device. AGP 8x mode allows only SBA (GPIPE# isn't used in 8x mode).

Note: AGP 8x signal levels are 0V and 0.8V. AGP 8x mode maintains most signals at a low level when inactive resulting in no current flow.

V-Link Interface						
Signal Name	Pin#	I/O	Signal Description			
			Address / Data Bus. Also used to p	bass strap information at reset tim	e to the no	rth bridge
VAD7,	U3	IO	from the south bridge (the actual strap	ps are not on the north bridge VA	D pin but i	nstead are
VAD6,	U1	IO	on the indicated south bridge pin).			
VAD5,	P1	IO		Connection	Register	SB Pin
VAD4,	N2	IO	VAD7 – reserved (do not use)	Must be strapped L	Rx50[6]	SDCS3#
VAD3,	U4	IO	VAD6 – Auto-Configure	L=Disable, H=Enable	Rx54[5]	SDA2
VAD2,	U5	IO	VAD5 – AGTL+ Drive Strength 4x	L=1x, H=4x		SDA1
VAD1,	R2	IO	VAD4 – AGTL+ Drive Strength 2x	L=1x, H=2x		SDA0
VAD0	R3	IO	VAD3 – Internal AGTL+ Pullups	L=Enable, H=Disable	Rx52[5]	SA19
			VAD2 – IOQ Depth	L=1-level, H=12-level	Rx50[7]	SA18
			VAD1 – -reserved-			SA17
			VAD0 – CPU FSB Frequency	L=100 MHz, H=133 MHz	Rx54[6]	SA16
VPAR	P3	IO	Parity.			
VBE#	R1	IO	Byte Enable.	6		
UPCMD	V2	I	Command from Client (South Bridg	ge) to Host (North Bridge).		
UPSTB	T2	I	Strobe from Client to Host.			
UPSTB#	T1	I	Complement Strobe from Client to l	Host.		
DNCMD	T5	О	Command from Host (North Bridge	e) to Client (South Bridge).		
DNSTB	T4	О	Strobe from Host to Client.			
DNSTB#	T3	О	Complement Strobe from Host to C	lient.		
			Complement Strobe from Host to C			

	Clocks, Resets, Power Control, General Purpose I/O, Interrupts and Test			
Signal Name	Pin #	I/O	Signal Description	
HCLK	U29	I	Host Clock. This pin receives the host CPU clock (100 / 133 MHz). This clock is used by all P4X400 logic that is in the host CPU domain.	
HCLK#	T29	I	Host Clock Complement. Used for Quad Data Transfer on host CPU bus.	
MCLK	AK34	О	Memory (SDRAM) Clock. Output from internal clock generator to the external clock buffer.	
MCLKF	AL34	I	Memory (SDRAM) Clock Feedback. Input from the external clock buffer.	
GCLK	N5	I	AGP Clock. Clock for AGP logic.	
RESET#	W1	I	Reset. Input from the South Bridge chip. When asserted, this signal resets P4X400 and sets all register bits to the default value. The rising edge of this signal is used to sample all power-up strap options	
PWROK	W3	I	Power OK. Connect to South Bridge and Power Good circuitry.	
SUSST#	V1	I	Suspend Status. For implementation of the Suspend-to-DRAM feature. Connect to an external pull-up to disable.	
NMI	P34	0	Non Maskable Interrupt. Connect to South Bridge NMI input.	
TESTIN#	AM34	I	Test In. This pin is used for testing and must be left unconnected or tied high on all board designs.	
			board designs.	

	Reference Voltages				
Signal Name	Pin #	I/O	Signal Description		
GTLVREF	V29	P	Host CPU Interface AGTL+ Voltage Reference. 2/3 VTT ±2% typically derived using a resistive voltage divider. See P4X400 Design Guide.		
HDVREF	F19, F24, F28, J29	P	Host CPU Data Voltage Reference. 2/3 VTT ±2% typically derived using a resistive voltage divider. See P4X400 Design Guide.		
HAVREF	AA29, AD29	P	Lost CPU Address Voltage Reference. 2/3 VTT ±2% typically derived using a esistive voltage divider. See P4X400 Design Guide.		
HCMPVREF	H30	P	Host CPU Compensation Voltage Reference. 1/3 VTT ±2% typically derived using resistive voltage divider. See P4X400 Design Guide.		
MEMVREF	AF6, AJ11, AJ17, AJ23	P	1/2 VCC25 ±2% typically derived using a resistive oltage divider. See P4X400 Design Guide.		
VLVREF	V3	P	F-Link Voltage Reference. 0.625V ±2% derived using a resistive voltage divider. see P4X400 Design Guide.		
AGPVREF	F10, M6	P	AGP Voltage Reference. 0.5 VCCQQ (0.75V) for AGP 2.0 (4x transfer mode) and 0.23 VCCQQ (0.35V) for AGP 3.0 (8x transfer mode). See the P4X400 Design Guide for additional information and circuit implementation details		

Compensation					
Pin #	I/O	Signal Description			
H31	AI	Host CPU Compensation. Connect 20.5Ω 1% resistor to ground. Used for Host CPU interface I/O buffer calibration.			
116	ΛĪ	Vlink Compensation. Connect 70Ω 1% resistor to ground.			
P5	AI	AGP Compensation.			
	H31	H31 AI U6 AI			

Analog Power / Ground				
Signal Name	Pin #	I/O	Signal Description	
VCCHCK1	T30	P	Power for Host CPU Clock PLL 1 (2.5V ±5%)	
GNDHCK1	T31	P	Ground for Host CPU Clock 1 Circuitry. Connect to main ground plane through a ferrite bead.	
VCCHCK2	U30	P	Power for Host CPU Clock PLL 2 (2.5V ±5%)	
GNDHCK2	U31	P	Ground for Host CPU Clock 2 Circuitry. Connect to main ground plane through a ferrite bead.	
VCCMCK	AK32	P	Power for Memory Clock PLL (2.5V ±5%)	
GNDMCK	AK33	P	Ground for Memory Clock Circuitry. Connect to main ground plane through a ferrite bead.	
VCCMDLL	AJ12	P	Power for Memory Strobe DLL (2.5V ±5%)	
GNDMDLL	AJ13	P	Ground for Memory Strobe DLL Circuitry. Connect to main ground plane through a ferrite bead.	

	Digital Power / Ground			
Signal Name	Pin #	I/O	Signal Description	
VTT	(see pin lists)	P	Power for CPU I/O Interface Logic (60 Pins). Voltage is CPU dependent.	
GNDTT	F25, AB29	P	Ground for CPU I/O Interface Logic (2 Pins).	
VCCMEM	(see pin lists)	P	Power for Memory I/O Interface Logic (86 Pins). 2.5V ±5%.	
VCCVL	(see pin lists)	P	Power for V-Link I/O Interface Logic (18 Pins). 2.5V ±5%	
VCCAGP	(see pin lists)	P	Power for AGP Bus I/O Interface Logic (43 Pins). 1.5V ±5%	
VCCQQ	N6	P	AGP Quiet Power. Connect to main AGP power (VCCAGP) through a ferrite bead.	
GNDQQ	P4	P	Ground for AGP Quiet Power. Connect to main ground plane.	
VCC25	(see pin lists)	P	Power for Internal Logic (50 Pins). 2.5V ±5%	
VSUS25	V5	P	Suspend Power. 2.5V ±5%	
GND	(see pin lists)	P	Digital Ground (199 Pins). Connect to main ground plane.	
			echinologies dilined	

REGISTERS

Register Overview

The following tables summarize the configuration and I/O registers of the P4X400. These tables also document the power-on default value ("Default") and access type ("Acc") for each register. Access type definitions used are RW (Read/Write), RO (Read/Only), "-" for reserved / used (essentially the same as RO), RWC (or just WC) (Read / Write 1's to Clear individual bits), and W1 (Write Once then Read / Only after that). Registers indicated as RW may have some read/only bits that always read back a fixed value (usually 0 if unused); registers designated as RWC or WC may have some read-only or read write bits (see individual register descriptions following these tables for details). All offset and default values are shown in hexadecimal unless otherwise indicated.

Table 4. VT8754 / P4X400 Registers

P4X400 I/O Ports

read-only or read write bits (see individual register descriptions following these tables for details). All offset and default values are shown in hexadecimal unless otherwise indicated.								
The graphics registers are described in a separate document.								
Table 4. VT8754 / P4X400 Reg	gisters							
P4X400 I/O Ports	10,30, 9							
Port # I/O Port	Default Acc							
22 PCI / AGP Arbiter Disable	00 RW							
CFB-8 Configuration Address	0000 0000 RW							
CFF-C Configuration Data	0000 0000 RW							

P4X400 Device 0 Registers - Host Bridge

Header Registers

Offset	Configuration Space Heade	<u>er</u>	Default	Acc
1-0	Vendor ID		1106	RO
3-2	Device ID		3168	RO
5-4	Command		0006	RW
7-6	Status		0210	WC
8	Revision ID		0n	RO
9	Program Interface		00	RO
A	Sub Class Code		00	RO
В	Base Class Code		06	RO
С	-reserved-		00	
D	Latency Timer		00	RW
Е	Header Type		00	RO
F	Built In Self Test (BIST)		00	RO
13-10	Graphics Aperture Base		0000 0008	RW
14-2B	-reserved-		00	
2D-2C	Subsystem Vendor ID		0000	W1
2F-2E	Subsystem ID		0000	W 1
30-33	-reserved-		00	
34	Capability Pointer	AGP 2.0:	A0	RO
	(CAPPTR)	AGP 3.0:	80	RO
35-3F	-reserved-		00	7

Device-Specific Registers

Offset	V-Link Control	<u>Default</u>	Acc
40	V-Link Revision ID	00	RO
41	V-Link NB Capability	19	WC
42	V-Link NB Downlink Command	88	RW
43	V-Link NB Uplink Max Req Depth	80	RW
44	V-Link NB Uplink Buffer Size	82	RW
45	V-Link NB Bus Timer) 44	RW
46	V-Link NB Misc Control	00	RW
47	V-Link Control	00	RW
48	V-Link NB/SB Configuration	18	RW
49	V-Link SB Capability	19	WC
4A	V-Link SB Downlink Status	88	RO
4B	V-Link SB Uplink Max Req Depth	80	RW
4C	V-Link SB Uplink Buffer Size	82	RW
4D	V-Link SB Bus Timer	44	RW
4E	CCA Master High Priority	00	RW
4F	V-Link SB Miscellaneous Control	00	RW

Offset	Host CPU Protocol Control	<u>Default</u>	Acc
50	CPU Interface Request Phase Control	00	RW
51	CPU Interface Basic Control	00	RW
52	CPU Interface Advanced Control	00	RW
53	CPU Interface Arbitration Control	00	RW
54	CPU Frequency	00	RW

Device-Specific Registers (continued)

Offset	DRAM Control	Default	Acc
55	DRAM Control	00	RW
56-57	(see below)		
59-58	MA Map Type	2222	RW
5F-5A	DRAM Row Ending Address:		
5A	Bank 0 Ending (HA[31:24])	01	RW
5B	Bank 1 Ending (HA[31:24])	01	RW
5C	Bank 2 Ending (HA[31:24])	01	RW
5D	Bank 3 Ending (HA[31:24])	01	RW
5E	Bank 4 Ending (HA[31:24])	01	RW
5F	Bank 5 Ending (HA[31:24])	01	RW
56	Bank 6 Ending (HA[31:24])	01	RW
57	Bank 7 Ending (HA[31:24])	01	RW
60	DRAM Type	80	RW
61	ROM Shadow Control C0000-CFFFF	00	RW
62	ROM Shadow Control D0000-DFFFF	00	RW
63	ROM Shadow Control E0000-FFFFF	00	RW
64	DRAM Timing for All Banks	E4	RW
65	DRAM Arbitration Timer	00	RW
66	DRAM Arbitration Control	00	RW
67	DRAM Strobe Input Delay	00	RW
68	DRAM Strobe Output Delay	00	RW
69	DRAM Clock Select	00	RW
6A	DRAM Refresh Counter	00	RW
6B	DRAM Arbitration Control	10	RW
6C	DRAM Clock Control	00	RW
6D	-reserved-	00	
6E	ECC Control	00	RW
6F	ECC Status	00	WC

Offset	PCI Bus Control	<u>Default</u>	Acc
70	PCI Buffer Control	00	RW
71	CPU to PCI Flow Control	48	WC
72	-reserved-	00	_
73	PCI Master Control	00	RW
74	-reserved-	00	_
75	PCI Arbitration 1	00	RW
76	PCI Arbitration 2	00	RW
77-7F	-reserved-	00	_

Device 0 Device-Specific Registers (continued)

Offset	AGP 2.0 Control (RxFD[1]=1)	Default	Acc
83-80	AGP 2.0 GART/TLB Control	0000 0000	RW
84	AGP 2.0 Graphics Aperture Size	00	RW
85	AGP 2.0 Write Policy	00	RW
86	CPU / DRAM Bandwidth Timer Ctrl	00	RW
87	CPU / DRAM Bandwidth Limit	00	RW
8B-88	AGP 2.0 GART Table Base	0000 0000	RW
8C-9F	-reserved-	00	
A3-A0	AGP 2.0 Capabilities	0020 C002	RO
A7-A4	AGP 2.0 Status	1F00 0201	RO
AB-A8	AGP 2.0 Command	0000 0000	RW

Registers A0-AB in the AGP 2.0 register group in the table above are actually offsets from CAPPTR (Rx34) which (with Rx34 = A0h for AGP 2.0) result in the offsets listed above.

Offset	AGP 3.0 Control (RxFD[1]=0)	<u>Default</u>	Acc
83-80	AGP 3.0 Capabilities	0030 C002	RO
87-84	AGP 3.0 Status	1F00 0A03	RO
8B-88	AGP 3.0 Command	1F00 0000	RW
8F-8C	-reserved-	0000 0000	
93-90	AGP 3.0 GART / TLB Control	0000 0000	RW
97-94	AGP 3.0 Graphics Aperture Size	0001 0F00	RW
9B-98	AGP 3.0 GART Table Base	0000 0000	RW
9C-AB	-reserved-	00	

Registers 80-AB in the AGP 3.0 register group in the table above are actually offsets from CAPPTR (Rx34) which (with Rx34 = 80h for AGP 3.0) result in the offsets listed above.

Offset	AGP 2.0 / 3.0 Control	<u>Default</u>	Acc
AC	AGP Control	00	RW
AD	AGP Latency Timer	02	RW
AE	AGP Miscellaneous Control	00	RW
AF	AGP 3.0 Control	00	RW
В0	AGP Pad Control / Status	8x	RW
B1	AGP Drive Strength	63	RW
B2	AGP Pad Drive / Delay Control	08	RW
В3	AGP Strobe Output Drive Control	00	RW

Offset	V-Link Compenation / Drive Ctrl	Default	Acc
B4	V-Link NB Compensation Control	00	RW
B5	V-Link NB Strobe Drive Control	00	RW
В6	V-Link NB Data Drive Control	00	RW
В7	-reserved-	00	
В8	V-Link SB Compensation Control	00	RW
B9	V-Link SB Strobe Drive Control	00	RW
BA	V-Link SB Data Drive Control	00	RW
BB	-reserved-	00	_

Offset	Power Management Control	<u>Default</u>	Acc
BC	Power Management Mode	00	RW
BD	DRAM Power Management	00	RW
BE	Dynamic Clock Stop	00	RW
BF	MA / SCMD Pad Toggle Reduction	00	RW

Device 0 Device-Specific Registers (continued)

Offset	Extended Power Management Ctrl	Default	Acc
C0	Power Management Capability	01	RO
C1	Power Management Next Pointer	00	RO
C2	Power Management Capabilities I	02	RO
C3	Power Management Capabilities II	00	RO
C4	Power Management Control/Status	00	RW
C5	Power Management Status	00	RO
C6	PCI-to-PCI Bridge Support Extension	00	RO
C7	Power Management Data	00	RO
C8-CF	-reserved-	00	

Offset	Error Control	Default	Acc
D3-D0	DRAM ECC Error Address	XX	RO
D4	DRAM ECC Error Syndrome Bit	XX	RO
D5	Host CPU Parity Status	00	WC
D6	Host CPU Parity Enable	00	RW
D7	-reserved-	00	

Offset	Host CPU AGTL+ I/O Control	Default	Acc
D8	Host Address (2x) Pullup Drive	00	RW
D9	Host Address (2x) Pulldown Drive	00	RW
DA	Host Data (4x) Pullup Drive	00	RW
DB	Host Data (4x) Pulldown Drive	00	RW
DC	AGTL+ Output Delay / Stagger Ctrl	00	RW
DD	AGTL+ I/O Control	00	RW
DE	AGTL+ Compensation Status	00	RW
DF	AGTL+ AutoCompensation Offset	00	RW

	Offset	DRAM Control	<u>Default</u>	Acc
	E0-E3	-reserved-	00	
	E4	Low Top Address Low	00	RW
	E5	Low Top Address High	FF	RW
,	E6	SMM / APIC Decoding	01	RW
	E7	-reserved-	00	
	E8	DRAM DQ Drive	00	RW
	E9	DRAM CS Drive	00	RW
	EA	DRAM MAA Drive	00	RW
	EB	DRAM MAB Drive	00	RW
	EC-ED	-reserved-	00	

Offset	P6 Interface DRDY Timing Control	Default	Acc
EE	DRDY Timing 1	00	RW
EF	DRDY Timing 2	00	RW

Offset	<u>Miscellaneous</u>	<u>Default</u>	Acc
F0-FC	-reserved- (Do Not Program)	00	_
FD	AGP 2.0 / 3.0 Select	00	RW
FE-FF	-reserved- (Do Not Program)	00	

P4X400 Device 1 Registers - PCI-to-PCI Bridge

Header Registers

Offset	Configuration Space Header	<u>Default</u>	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	B168	RO
5-4	Command	0007	RW
7-6	Status	0230	WC
8	Revision ID	nn	RO
9	Program Interface	00	RO
A	Sub Class Code	04	RO
В	Base Class Code	06	RO
С	-reserved-	00	
D	Latency Timer	00	RO
Е	Header Type	01	RO
F	-reserved- (Built In Self Test)	00	
10-17	-reserved-	00	
18	Primary Bus Number	00	RW
19	Secondary Bus Number	00	RW
1A	Subordinate Bus Number	00	RW
1B	Secondary Latency Timer	00	RO
1C	I/O Base	F0	RW
1D	I/O Limit	00	RW
1F-1E	Secondary Status	0000	RO
21-20	Memory Base	FFF0	RW
23-22	Memory Limit (Inclusive)	0000	RW
25-24	Prefetchable Memory Base	FFF0	RW
27-26	Prefetchable Memory Limit	0000	RW
28-33	-reserved-	00	
34	Capability Pointer	80	RO
35-3D	-reserved-	00	_
3F-3E	PCI-to-PCI Bridge Control	00	RW

Device-Specific Registers

Offset	AGP Bus Control	Default	Acc
40	CPU-to-AGP Flow Control 1	00	RW
41	CPU-to-AGP Flow Control 2	08	RW
42	AGP Master Control	00	RW
43	AGP Master Latency Timer	22	RW
44	Reserved (Do Not Program)	00	RW
45	Fast Write Control	72	RW
47-46	PCI-to-PCI Bridge Device ID	0000	RW
48	AGP / PCI2 Error Reporting	00	WC
49-7F	-reserved-	00	_

Offset	Power Management	<u>Default</u>	Acc
80	Capability ID	01	RO
81	Next Pointer	00	RO
82	Power Management Capabilities 1	02	RO
83	Power Management Capabilities 2	00	RO
84	Power Management Control / Status	00	RW
85	Power Management Status	00	RO
86	PCI-PCI Bridge Support Extensions	00	RO
87	Power Management Data	00	RO
88-FF	-reserved-	00	

Miscellaneous I/O

One I/O port is defined in the P4X400: Port 22.

of Device 0 Configuration Register 78.

Port 22	- PCI / AGP Arbiter DisableRW
7-2	Reserved always reads 0
1	AGP Arbiter Disable
	0 Respond to GREQ# signaldefault
	1 Do not respond to GREQ# signal
0	PCI Arbiter Disable
	0 Respond to all REQ# signalsdefault
	1 Do not respond to any REQ# signals,
	including PREQ#
This po	t can be enabled for read/write access by setting bit-7

Configuration Space I/O

All registers in the P4X400 (listed above) are addressed via the following configuration mechanism:

Mechanism #1

These ports respond only to double-word accesses. Byte or word accesses will be passed on unchanged.

Do not respond to GREQ# signal		ı C
Arbiter Disable	7	
Respond to all REQ# signals	default Port C	FB-CF8 - Configuration AddressRW
Do not respond to any REQ#		Configuration Space Enable
including PREQ#	<i>5</i> ,	0 Disableddefault
be enabled for read/write access by setti	ng bit-7	1 Convert configuration data port writes to
Configuration Register 78.		configuration cycles on the PCI bus
somigaration register 70.	30-24	Reservedalways reads 0
	23-16	PCI Bus Number
	6	Used to choose a specific PCI bus in the system
	15-11	Device Number
		Used to choose a specific device in the system
		(devices 0 and 1 are defined for the P4X400)
	10-8	Function Number
	10-3	Used to choose a specific function if the selected
		device supports multiple functions (only function 0 is
		defined for the P4X400).
		Register Number (also called the "Offset")
	1-2	` '
	40	Used to select a specific DWORD in the P4X400
	1.0	configuration space
	1-0	Fixed always reads 0
	Port C	FF-CFC - Configuration DataRW
	Ture.	or e configuration Butumminimm It is
	7	
	D. C	POLD of Consideration Washing 2.2 for first laterille
		o PCI Bus Specification Version 2.2 for further details
	on oper	ration of the above configuration registers.
	<i>y</i>	
Y		

Device 0 Register Descriptions

Device 0 Host Bridge Header Registers

All registers are located in PCI configuration space. They should be programmed using PCI configuration mechanism 1 through CF8 / CFC with bus number, function number, and <u>device number</u> equal to <u>zero</u>.

Device (0 Offs	et 1-0 - Vendor ID (1106h)RO				
15-0	1 ID Code (reads 1106h to identify VIA Technologies)					
Device 0 Offset 3-2 - Device ID (3168h)RO						
15-0		ode (reads 3168h to identify the P4X400)				
Device (0 Offs	et 5-4 -Command (0006h)RW				
15-10	Rese	rvedalways reads 0				
9	Fast	Back-to-Back Cycle EnableRO				
	0	Fast back-to-back transactions only allowed to				
		the same agentdefault				
	1	Fast back-to-back transactions allowed to				
		different agents				
8		R# EnableRO				
	0	SERR# driver disableddefault				
	1	SERR# driver enabled				
_		R# is used to report ECC errors).				
7		ress / Data SteppingRO				
	0	Device never does steppingdefault				
_	1	Device always does stepping y Error ResponseRW				
6						
	0	Ignore parity errors & continuedefault				
_	1	Take normal action on detected parity errors				
5		Palette SnoopRO				
	0	Treat palette accesses normallydefault				
4	1	Don't respond to palette accesses on PCI bus				
4		ory Write and Invalidate Command RO				
	0	Bus masters must use Mem Writedefault				
2	1	Bus masters may generate Mem Write & Inval				
3	-	ial Cycle MonitoringRO				
	0	Does not monitor special cyclesdefault				
2	1 PCL	Monitors special cycles Bus Master RO				
2	0	Never behaves as a bus master				
	1	Can behave as a bus masterdefault				
1	-	tory SpaceRO				
1	0	Does not respond to memory space				
	1	Responds to memory spacedefault				
0	_	space RO				
U	0	Does not respond to I/O spacedefault				
	1	Responds to I/O space				
	1	responds to 1/0 space				

Device	0 Offset 7-6 – Status (0210h)RWC
15	Detected Parity Error
	0 No parity error detecteddefault
	1 Error detected in either address or data phase.
	This bit is set even if error response is disabled
	(command register bit-6)write one to clear
14	Signaled System Error (SERR# Asserted)
	always reads 0
13	Signaled Master Abort
	0 No abort received default
	1 Transaction aborted by the master
	write one to clear
12	Received Target Abort
	0 No abort received default
	1 Transaction aborted by the target
	write one to clear
11	Signaled Target Abortalways reads 0
	0 Target Abort never signaled
10-9	DEVSEL# Timing
	00 Fast
)	01 Mediumalways reads 01
0	10 Slow
	11 Reserved
8	Data Parity Error Detected
	0 No data parity error detected default
	1 Error detected in data phase. Set only if error
	response enabled via command bit- $6 = 1$ and
7	P4X400 was initiator of the operation in which
_	the error occurredwrite one to clear
7	Fast Back-to-Back Capablealways reads 0
6	User Definable Featuresalways reads 0
5	66MHz Capable always reads 0
4	Supports New Capability listalways reads 1
3-0	Reserved always reads 0
Device	0 Offset 8 - Revision ID (0nh)RO
7-0	Chip Revision Codealways reads 0nh
, 0	Chip revision codeurways reads onn
Device	0 Offset 9 - Programming Interface (00h)RO
7-0	Interface Identifieralways reads 00h
Davias	0 Offset A. Sub Class Code (00b)
	0 Offset A - Sub Class Code (00h)RO
7-0	Sub Class Codereads 00 to indicate Host Bridge
Device	0 Offset B - Base Class Code (06h)RO
7-0	Base Class Code reads 06 to indicate Bridge Device
, 0	Dase Class Code reads to to maleure Bridge Bevice
Device	0 Offset D - Latency Timer (00h)RW
Specifie	es the latency timer value in PCI bus clocks.
7-3	Guaranteed Time Slice for CPUdefault=0
2-0	Reserved (fixed granularity of 8 clks) always read 0
	Bits 2-1 are writeable but read 0 for PCI specification
	compatibility. The programmed value may be read
	back in Rx75[6-4] (PCI Arbitration 1).

Device 0 Host Bridge Header Registers (continued)

Device	0 Offset E - Header Type (00h)RO
7-0	Header Type Code reads 00: single function
Device	0 Offset F - Built In Self Test (BIST) (00h)RO
7	BIST Supportedreads 0: no supported functions
6-0	Reserved always reads 0

<u>Device 0 Offset 13-10 - Graphics Aperture Base (AGP 2.0)</u> (00000008h)RW

This register is interpreted per the following definition if RxFD[1]=1 (AGP 2.0 registers enabled).

31-28 Upper Programmable Base Address Bits def=0
27-20 Lower Programmable Base Address Bits def=0
These bits behave as if hardwired to 0 if the corresponding AGP 2.0 Graphics Aperture Size register bit (Device 0 Offset 84h) is 0.

27 26 25 24 23 22 21 20 (Base) <u>7 6 5 4 3 2 1</u> (Size) RW RW RW RW RW RW RW 1M RW RW RW RW RW RW 0 2MRWRWRWRWRW 0 4M RWRWRWRW 0 8M RWRWRWRW 0 16M RWRWRW 0 0 0 0 32M 0 0 64M RWRW 0 0 0 0 128M RW = 00 0 0 0 0 0 0 0 0 256M

- 19-4 Reserved always reads 0
- 3 Prefetchablealways reads 1
 Indicates that the locations in the address range defined by this register are prefetchable.
- **2-1 Type**always reads 0 Indicates the address range in the 32-bit address space.

This register is interpreted per the following definition if RxFD[1]=0 (AGP 3.0 registers enabled). This register may only be read if AGP 3.0 register Rx90[8] = 1.

31	30	29	28	-	-	27	26	25	24	23	22	(Base)	
11	10	9	8	<u>7</u>	6	<u>5</u>	<u>4</u>	3	2	1	0	(Size)	
RW	RW	RW	RW	0	0	RW	RW	RW	RW	RW	RW	4M	
RW	RW	RW	RW	0	0	RW	RW	RW	RW	RW	0	8M	
RW	RW	RW	RW	0	0	RW	RW	RW	RW	0	0	16M	
RW	RW	RW	RW	0	0	RW	RW	RW	0	0	0	32M	
RW	RW	RW	RW	0	0	RW	RW	0	0	0	0	64M	
RW	RW	RW	RW	0	0	RW	0	0	0	0	0	128M	
RW	RW	RW	RW	0	0	0	0	0	0	0	0	256M	
RW	RW	RW	0	0	0	0	0	0	0	0	0	512M	
RW	RW	0 <	0	0	0	0	0	0	0	0	0	1G	
RW	0	0	0	0	0	0	0	0	0	0	0	2G-max	
0	0	0	0	0	0 ^	0	0	0	0	0	0	4G	
	. 4						7						

- **21-4 Reserved**always reads 0
- 3 Prefetchablealways reads 1
 Indicates that the locations in the address range defined by this register are prefetchable.
- **2-1 Type**always reads 0 Indicates the address range in the 32-bit address space.
- **Memory Space**always reads 0 Indicates the address range in the memory address space.

Device 0 Offset 2D-2C - Subsystem Vendor ID (0000h)R/W1

15-0 Subsystem Vendor IDdefault = 0 This register may be written once and is then read only.

<u>Device 0 Offset 2F-2E – Subsystem ID (0000h)............ R/W1</u>

15-0 Subsystem IDdefault = 0 This register may be written once and is then read only.

Device 0 Offset 34 - Capability Pointer (CAPPTR)...... RO

Contains an offset from the start of configuration space.

7-0 AGP Capability List Pointer always reads A0h

Device 0 Host Bridge Device-Specific Registers

These registers are normally programmed once at system initialization time.

V-Link Control

Device	0 Offset 40 – V-Link Specification ID (00h)RO	Device 0 Offset 45 -NB V-Link Bus Timer (44h) RW
7-0	Specification Revision always reads 00	7-4 Timer for Normal Priority Requests from SB
		0000 Immediate
ъ.	0.000 441 ND VII 1 C 1224 (101) N/C	0001 1*4 VCLKs
	0 Offset 41 – NB V-Link Capability (19h) WC	0010 2*4 VCLKs
7	V-Link Parity Error Detected by NBWC	0011 3*4 VCLKs
	0 No V-Link Parity Error Detecteddefault	0100 4*4 VCLKsdefault
	1 V-Link Parity Error Detected (write 1 to clear)	0101 5*4 VCLKs
6	Reserved	0110 6*4 VCLKs
5	16-bit Bus Width Supported by NBRO	0111 7*4 VCLKs
	0 Not Supporteddefault	1000 8*4 VCLKs
	1 Supported	1001 16*4 VCLKs
4	8-Bit Bus Width Supported by NBRO	1010 32*4 VCLKs
	0 Not Supported	1011 64*4 VCLKs
_	1 Supporteddefault	11xx Own the bus for as long as there is a request
3	4x Rate Supported by NBRO	3-0 Timer for High Priority Requests from SB
	0 Not Supported	0000 Immediate
_	1 Supporteddefault	0001 1*2 VCLKs
2	2x Rate Supported by NBRO	0010 2*2 VCLKs
	0 Not Supporteddefault	0011 3*2 VCLKs
	1 Supported	0100 4*2 VCLKsdefault
1	Reservedalways reads 0	0101 5*2 VCLKs
0	8x Rate Supported by NBRO	0110 6*2 VCLKs
	0 Not Supported	0111 7*2 VCLKs
	1 Supporteddefault	1000 8*2 VCLKs
	\(\text{\tint{\text{\tin}\text{\ti}\\\ \text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\text{\text{\text{\text{\text{\text{\text{\text{\text{\tex{\tex	1001 16*2 VCLKs
Device	0 Offset 42 – NB Downlink Command (88h) RW	1010 32*2 VCLKs
	DnCmd Max Request Depth (0=1 DnCmd) . def = 8	1011 64*2 VCLKs
7-4	DnCmd Write Buffer Size (doublewords) def = 8	11xx Own the bus for as long as there is a request
3-0	Diffilia Write Buller Size (doublewords) del – 8	
Device	0 Offset 43 – NB Uplink Max Req Depth (80h)RO	
7-4	UpCmd Max Request Depth (0=1 UpCmd) . def = 8	
, -	Indicates the maximum allowable number of	
	outstanding UPCMD requests	
3-0	Reservedalways reads 0	
	·	
Device	0 Offset 44 – NB Uplink Buffer Size (82h)RO	
7-4	UpCmd P2C Write Buffer Size (max lines) def = 8	
3-0	UpCmd P2P Write Buffer Size (max lines) $def = 2$	

Device	0 Offset 46 - NB V-Link Misc Control (00h)RW	Device	0 Offset 48 – NB/SB V-Link Configuration (18h)RW
7	Downstream High Priority	7	V-Link Parity Check
	0 Disable High Priority Down Commandsdef		0 Disabledefault
	1 Enable High Priority Down Commands		1 Enable
6	Downlink Priority	6	Rest Bus Width Supported
	0 Treat Downlink Cycles as Normal Priority.def		0 Not Supporteddefault
	1 Treat Downlink Cycles as High Priority		1 Supported
5-4	Combine Multiple STPGNT Cycles Into One V-	5	16-bit Bus Width Supported
	Link Command		0 Not Supporteddefault
	00 Compatible, 1 command per V-Link cmddef		1 Supported
	01 2 commands per V-Link command	4	8-Bit Bus Width Supported
	10 3 commands per V-Link command		0 Not Supported
	11 4 commands per V-Link command		1 Supported default
3-2	V-Link Master Access Ordering Rules	3	4x Rate Supported
	00 High priority read, pass normal read (not pass		0 Not Supported
	write)default		1 Supported default
	01 Read (high/normal) pass write (HR>LR>W)	2	2x Rate Supported
	1x Read / write in order	_	0 Not Supporteddefault
1-0	Reserved always reads 0		1 Supported
	•	1	Reservedalways reads 0
Device	0 Offset 47 – V-Link Control (00h)RW	0	8x Rate Supported
7	Parity Error or SERR# Reported via NMI	40	0 Not Supporteddefault
	0 Disabledefault		1 Supported
	1 Enable		
6	Parity Error or SERR# Reported to SB via Vlink	Device	0 Offset 49 – SB V-Link Capability (19h) WC
	0 Disabledefault	7	V-Link Parity Error Detected by SB WC
	1 Enable		0 No parity error detecteddefault
5	C2P Read L1 Ready Return Timing		1 Parity error detected
	0 V-Link bus decodes C2P Read Ack cmddef	6	Reservedalways reads 0
	1 Wait till previous P2C write cycles all flushed	5	16-bit Bus Width Supported by SBRO
4	Reserved always reads 0		0 Not Supporteddefault
3	Down Strobe Dynamic Stop	45	1 Supported
	0 Disabledefault	4	8-Bit Bus Width Supported by SBRO
	1 Enable		0 Not Supported
2	Auto-Disconnect		1 Supporteddefault
	0 Disabledefault	3	4x Rate Supported by SBRO
	1 Enable		0 Not Supported
1	V-Link Disconnect Cycle for HALT Cycle		1 Supported default
	0 Disabledefault	2	2x Rate Supported by SBRO
	1 Enable		0 Not Supporteddefault
0	V-Link Disconnect Cycle for STPGNT Cycle		1 Supported
	0 Disabledefault	1	Reservedalways reads 0
	1 Enable	0	8x Rate Supported by SBRO
			0 Not Supported
			1 Supported default
			······································

Device	0 Offset 4A – SB Downlink Status (88h)RO	Device	0 Offset 4E – CCA Master Priority (
7-4	DnCmd Max Request Depth (0=1 DnCmd) . def = 8	7	1394 High Priority
3-0	DnCmd Write Buffer Size (doublewords) def = 8		0 Low priority
ъ.	A OCC (AB CD VI V I C I (AAI) DVV		1 High priority
	0 Offset 4B – SB Uplink Command (80h)RW	6	LAN / NIC High Priority
7-4	UpCmd Max Request Depth $(0=1 \text{ UpCmd})$. $def = 8$		0 Low priority
	Indicates the maximum allowable number of		1 High priority
	outstanding UPCMD requests	5	Reserved
3-0	Reserved always reads 0	4	USB High Priority
Device	0 Offset 4C – SB Uplink Command (82h)RW		0 Low priority
7-4	UpCmd P2C Write Buffer Size (max lines) def = 8		1 High priority
3-0	UpCmd P2P Write Buffer Size (max lines) $def = 0$	3	Reserved
3-0	Opcina F2F write butter size (max mies) dei – 2	2	IDE High Priority
Device	0 Offset 4D – SB V-Link Bus Timer (44h)RW		0 Low priority
7-4	Timer for Normal Priority Requests from NB		1 High priority
, -	0000 Immediate	1	AC97-ISA High Priority
	0001 1*4 VCLKs		0 Low priority
	0010 2*4 VCLKs		1 High priority
	0011 3*4 VCLKs	0	PCI High Priority
	0100 4*4 VCLKsdefault		0 Low priority
	0101 5*4 VCLKs	90	1 High priority
	0110 6*4 VCLKs	Device	0 Offset 4F - SB V-Link Misc Contro
	0111 7*4 VCLKs	7	Upstream Command High Priority
	1000 8*4 VCLKs	1	0 Disable high priority up comma
	1001 16*4 VCLKs		1 Enable high priority up comma
	1010 32*4 VCLKs	6-4	Reserved
	1011 64*4 VCLKs	3	Up Strobe Dynamic Stop
	11xx Own the bus for as long as there is a request		0 Disable
3-0	Timer for High Priority Requests from NB		1 Enable
	0000 Immediate	2-1	Reserved
	0001 1*2 VCLKs	0	Down Cycle Wait for Up Cycle
	0010 2*2 VCLKs		(Except Down Cycle Post Write)
	0011 3*2 VCLKs	,	0 Disable
	0100 4*2 VCLKsdefault		1 Enable
	0101 5*2 VCLKs		
	0110 6*2 VCLKs		
	0111 7*2 VCLKs		
	1000 8*2 VCLKs 1001 16*2 VCLKs		
	1001 16*2 VCLKs 1010 32*2 VCLKs		
	1010 32*2 VCLKs 1011 64*2 VCLKs		
	11xx Own the bus for as long as there is a request		

evice	0 Offset 4E – CCA Master Priority (00h) RW
7	1394 High Priority
	0 Low prioritydefault
	1 High priority
6	LAN / NIC High Priority
	0 Low prioritydefault
	1 High priority
5	Reserved always reads 0
4	USB High Priority
	0 Low prioritydefault
_	1 High priority
3	Reservedalways reads 0
2	IDE High Priority
	0 Low prioritydefault
	1 High priority
1	AC97-ISA High Priority 0 Low prioritydefault
	1 High priority
0	PCI High Priority
U	0 Low prioritydefault
	1 High priority
	1 Trigil priority
evice	0 Offset 4F – SB V-Link Misc Control (00h) RW
7	Upstream Command High Priority
	0 Disable high priority up commands default
	1 Enable high priority up commands
6-4	Reservedalways reads 0
3	Up Strobe Dynamic Stop
	0 Disabledefault
	1 Enable
2-1	Reserved always reads 0
0	Down Cycle Wait for Up Cycle Write Flush
	(Except Down Cycle Post Write)
	0 Disable default
	1 Enable

Host CPU Control

Device 0 Offset 50 - Request Phase Control (00h)RW <u>Device 0 Offset 51 – CPU Interface Basic Control (00h)RW</u> **CPU Hardwired IOQ (In Order Queue) Size CPU Read DRAM Fast Ready** Default set from the inverse of the VAD2 strap. This 0 Wait until all 8 QWs are received before register can be written 0 to restrict the chip to one DRDY is returned......default level of IOQ. See RxEE/EF for DRDY timing 0 1-Level (strap pulled high) **Read Around Write** 0 Disable......default 1 12-Level (strap pulled low) Reserved (Do Not Program) 1 Enable Default set from the VAD7 strap (South Bridge 5 **DRQ** Control SDCS3# pin) or ROMSIP. 0 Non pipelined similar to VT8633...... default Pipelined 0 South Bridge strap pin pulled low.... must be 0 1 South Bridge strap pin pulled high CPU to PCI Read Defer Disable.....default **Fast DRAM Access** 0 Disabledefault 1 Enable 1 Enable **Two Defer / Retry Entries** 0 Disable default 4-0 Dynamic Defer Snoop Stall Count 1 Enable (granularity = 2T, normally set to 01000b)Two Defer / Retry Entries Shared 0 Each entry is dedicated to 1 CPU default 1 Each entry is shared by 2 CPUs **PCI Master Pipelined Access** Disable......default Enable 4 Fast DRDY# Synchronize DMRRDY to DRDY# default DMRRDY to DRDY# fall-through

Device	0 Offset 52 – CPU Interface Advanced Ctrl (00h)RW	Device	0 Offset 54 – CPU Frequency (00h)RW
7	CPU RW DRAM 0WS for Back-to-Back Pipeline	7-6	CPU FSB FrequencySet from VAD1-0 Straps
	Access		00 100 MHz (both straps pulled low)
	0 Disabledefault		01 133 MHz (VAD1 pulled low, VAD0 pulled hi)
	1 Enable		1x 166 MHz (VAD1 pulled high, VAD0 ignored)
6	HREQ High Priority		(166 MHz capability is new in the VT8754; the
	0 Disabledefault		VT8753 was fixed at 100 MHz FSB and the
	1 Enable		VT8753A allowed 100 and 133 MHz)
5	AGTL+ Pullups	5	Auto Configure Set from VAD6 Strap
	Default set from the inverse of the VAD3 strap.		0 Disable (strap pulled low)
	0 Disable (strap pulled high)		1 Enable (strap pulled high). AGTL+ Drive
	1 Enable (strap pulled low)		settings and other chip configuration settings
4	Reserved always reads 0		are stored in ROM, transferred from the south
3	Write Retire Policy After 2 Writes		bridge (via the V-Link bus), and loaded into
	0 Disabledefault		the VT8754 automatically after system reset.
	1 Enable		Refer to the VT8754 BIOS Porting Guide for
2	2-Level Defer Queue with Lock		layout of the AutoConfigure settings in ROM
	0 Normal Operationdefault		and for recommended bit settings.
	1 Enhanced Operation (this bit should always be	4	SDRAM Burst Length of 8
	set to 1)		0 Disabledefault
1	Consecutive Speculative Read		1 Enable
	0 Disabledefault	3	Rx85, 86, and 87 Writeable
_	1 Enable		0 Disabledefault
0	Speculative Read	, K	1 Enable
	0 Disabledefault	2	PCI Master 8QW Operation
	1 Enable		0 Disabledefault
Device	0 Offset 53 - CPU Arbitration Control (00h)RW		1 Enable
7-4	Host Timer	1	Reservedalways reads 0
3-0	BPRI Timer (units of 4 HCLKs) default = 0	0	VPX Mode
3-0	DI RI TIMEI (units of 4 Hearts) default o		0 Disable (AGP Mode)default
			1 Enable (VPX Mode)
		7	
	>		

DRAM Control

These registers are normally set at system initialization time and not accessed after that during normal system operation. Some of these registers, however, may need to be programmed using specific sequences during power-up initialization to properly detect the type and size of installed memory (refer to the VIA Technologies VT8754 BIOS porting guide for details).

Table 5. System Memory Map

			0 Disac
	Size Address Range 540K 00000000-0009FFFF	<u>Comment</u> Cacheable	1 Enabl 4 DQS Outpu
VGA 640K 1	28K 000A0000-000BFFFF	Used for SMM	0 Disab
BIOS 768K BIOS 784K BIOS 800K BIOS 816K BIOS 832K BIOS 848K BIOS 864K BIOS 880K BIOS 896K 6	16K 000C0000-000C3FFF 16K 000C4000-000C7FFF 16K 000C8000-000CBFFF 16K 000CC000-000CFFFF 16K 000D0000-000D3FFF 16K 000D4000-000D7FFF 16K 000D8000-000DBFFF 16K 000DC000-000DFFFF 64K 000E0000-000EFFFF	Shadow Ctrl 1 Shadow Ctrl 1 Shadow Ctrl 1 Shadow Ctrl 1 Shadow Ctrl 2 Shadow Ctrl 3	1 Enabl 3 DQM Remo 0 Disab 1 Enabl 2 DQS Outpu 0 Disab 1 Enabl 1 Auto Prech 0 Disab 1 Enabl
	64K 000F0000-000FFFFF	Shadow Ctrl 3	0 Write Reco
Sys 1MB Bus D Top Init 4G-64K	— 00100000-DRAM Top DRAM Top-FFFEFFF 64K FFFEFFF-FFFFFFF	Can have hole 000Fxxxx alias	0 2T (fo 1 3T (fo

Device	0 Offset 55 – DRAM Control (00h)RW
7	0WS Back-to-Back Write to Different DDR Bank
	0 Disabledefault
	1 Enable
6	Fast Read to Read Turnaround
	0 Disabledefault
	1 Enable (DQS postamble overlap with
	preamble)
5	DQS Input DLL Adjust
	0 Disabledefault
	1 Enable
4	DQS Output DLL Adjust
	0 Disabledefault
	1 Enable
3	DQM Removal (Always Perform 4-Burst RW)
	0 Disabledefault
. 0	1 Enable
2	DQS Output
7	0 Disabledefault
	1 Enable
1	Auto Precharge for TLB Read or CPU WriteBack
<u>}</u>	0 Disabledefault
	1 Enable
0	Write Recovery Time
	0 2T (for DDR 266)default
,	1 3T (for DDR 333)

Device 0 Offset 59-58 - DRAM MA Map Type (2222h).RW 15-13 Bank 5/4 MA Map Type (see table below) 12 Bank 5/4 1T Command Rate 0 2T Commanddefault 1 1T Command 11-9 Bank 7/6 MA Map Type (see table below) **Bank 7/6 1T Command Rate** 0 2T Commanddefault 1 1T Command 7-5 Bank 1/0 MA Map Type (see table below) Bank 1/0 1T Command Rate 0 2T Commanddefault 1 1T Command 3-1 Bank 3/2 MA Map Type (see table below) Bank 3/2 1T Command Rate 0 2T Commanddefault 1 1T Command

Table 6. Device 0 Rx58 MA Map Type Encoding

000	<u>16Mb</u>	8 / 9 / 10-bit Column Address
001	64/128Mb	8 / 9-bit Column Addressdefault
010	64/128Mb	9 / 10-bit Column Address
011	64/128Mb	10 / 11-bit Column Address
100	<u>1Gb</u>	10 / 11 / 12-bit Column Address
101	256/512Mb	8-bit Column Address
110	256/512Mb	9-bit Column Address
111	256/512Mb	10 / 11 / 12-bit Column Address

Device 0 Offset 5F-5A – DRAM Row Ending Address:

Offset 5A – Bank 0 Ending (HA[31:24]) (01h) RV	V
Offset 5B - Bank 1 Ending (HA[31:24]) (01h) RV	V
Offset 5C - Bank 2 Ending (HA[31:24]) (01h) RV	V
Offset 5D - Bank 3 Ending (HA[31:24]) (01h) RV	V
Offset 5E – Bank 4 Ending (HA[31:24]) (01h) RV	V
Offset 5F - Bank 5 Ending (HA[31:24]) (01h) RV	V
Offset 56 - Bank 6 Ending (HA[31:24]) (01h) RV	V
Offset 57 – Bank 7 Ending (HA[31:24]) (01h) RV	V

Note: BIOS is required to fill the ending address registers for all banks even if no memory is populated. The endings have to be in incremental order.

Device 0 Offset 60 – DRAM Type (80h)...... RW

7-6 DRAM Type for All Banks

- 00 -reserved- (do not program)
- 01 -reserved- (do not program)
- 10 DDR SDRAM default
- 11 -reserved-
- Different DRAM types cannot be mixed.
- 5-0 Reservedalways reads 0

Table 7. DDR DRAM Memory Address Mapping Table

									$\overline{}$								
MA:	<u>15</u>	<u>14</u>	<u>13</u>	<u>12</u>	<u>11</u>	<u>10</u>	9	8	<u>7</u>	6	<u>5</u>	<u>4</u>	<u>3</u>	<u>2</u>	1	0	
16Mb (000)			24		13	12	11	14	22	21	20	19	18	17	16	15	12 row
				d	13	PC	24	23	10	9	8	7	6	5	4	3	10,9,8 col
64/128Mb																	x16 (14,8)
2K page		14	24	14	13	12	11	23	22	21	20	19	18	17	16	15	x32 (14,8)
001			27	14	13	PC	26	25	10	9	8	7	6	5	4	3	x8 (14,9)
4K page		14	25	14	13	12	24	23	22	21	20	19	18	17	16	15	x16 (14,9)
010			27	14	131	PC	26	11	10	9	8	7	6	5	4	3	x4 (14,10)
8K page		14	26	14	3	25	24	23	22	21	20	19	18	17	16	15	x8 (14,10)
011			27	14	13	PC	12	11	10	9	8	7	6	5	4	3	x4 (14,11)
256/512Mb																	
2K page		25	24	14	13	12	11	23	22	21	20	19	18	17	16	15	x32 (15,8)
101			27	14	13	PC	26	25	10	9	8	7	6	5	4	3	
4K page		26	25	14	13	12	24	23	22	21	20	19	18	17	16	15	x16 (15,9)
110			27	14	131	PC	26	11	10	9	8	7	6	5	4	3	x32 (15,9)
8K page		27	26	14	3	25	24	23	22	21	20	19	18	17	16	15	x8 (15,10)
111			28	14	13	PC	12	11	10	9	8	7	6	5	4	3	x16 (15,10)
																	x8 (15,11)
																	x4 (15,11)
																	x4 (15,12)
<u>1Gb</u>																	
8K page	28	27	26	14	13	25	24	23	22	21	20	19	18	17	16	15	x16 (16,10)
100	31	30	29	14	13	PC	12	11	10	9	8	7	6	5	4	3	x8 (16,11)
																	x4 (16,12)

Device	0 Offs	et 61 - Shadow RAM Control 1 (00h)RW	Device	0 Offs	et 63 - Shadow RAM	Control 3 (00h)
7-6	CC00	00h-CFFFFh	7-6	E000	0h-EFFFFh	
	00	Read/write disabledefault			Read/write disable	d
	01	Write enable		01	Write enable	
	10	Read enable		10	Read enable	
	11	Read/write enable		11	Read/write enable	
5-4		0h-CBFFFh	5-4	F000	0h-FFFFFh	
		Read/write disabledefault		00	Read/write disable	d
	01	Write enable		01	Write enable	
		Read enable		10	Read enable	
		Read/write enable		11	Read/write enable	
3-2		0h-C7FFFh	3-2	Mem	ory Hole	
		Read/write disabledefault		00	None	d
		Write enable		01	512K-640K	
	10	Read enable		10	15M-16M (1M)	
		Read/write enable		11	14M-16M (2M)	
1-0		0h-C3FFFh	1	Disab	ole A,BK SMRAM D	irect Access
		Read/write disabledefault	0	Enab	le A,BK DRAM Acc	ess
		Write enable		CMI	M	
		Read enable		SWII .	Mapping Control:	
	11	Read/write enable		Bits	<u>SMM</u>	Non-SMM
Device	0 Offs	et 62 - Shadow RAM Control 2 (00h)RW	90	<u>1-0</u>	Code Data	Code Data
7-6		00h-DFFFFh		00	DRAM DRAM	PCI PCI
7-0		Read/write disabledefault	<u> </u>	01	DRAM DRAM	DRAM DRAM
		Write enable		10	DRAM PCI	PCI PCI
		Read enable		. 11	DRAM DRAM	DRAM DRAM
		Read/write enable				
5-4		0h-DBFFFh				
		Read/write disabledefault			0"	
		Write enable				
	10	Read enable		ا (ک		
		Read/write enable				
3-2		0h-D7FFFh				
	00	Read/write disabledefault	,			
	01	Write enable				
	10	Read enable				
	11	Read/write enable				
1-0	D 000	0h-D3FFFh				
	00	Read/write disabledefault				
		Write enable				
	1.0	D 1 11				

evice	0 Offse	et 63 - Shadow RAM Control 3 (00h) RW
7-6		Oh-EFFFFh
	00	Read/write disable default
	01	Write enable
	10	Read enable
	11	Read/write enable
5-4	F000	Oh-FFFFFh
	00	Read/write disable default
	01	Write enable
	10	Read enable
	11	Read/write enable
3-2	Mem	ory Hole
	00	Nonedefault
	01	512K-640K
	10	15M-16M (1M)
	11	14M-16M (2M)
1	Disab	ole A,BK SMRAM Direct Access
0	Enab	le A,BK DRAM Access
	SMI]	Mapping Control:
	Bits	SMM Non-SMM
,	<u>1-0</u>	<u>Code</u> <u>Data</u> <u>Code</u> <u>Data</u>
7	00	DRAM DRAM PCI PCI
	01	DRAM DRAM DRAM

10 Read enable 11 Read/write enable

Device	0 Offset 64 - DRAM Timing for All Banks (E4h)RW	Device	0 Offset 69 – DRAM Clock Select (00h) RW
7	Precharge Command to Active Command Period	7	Host CPU 100 MHz, DRAM 166 MHz
	$0 T_{RP} = 2T$	•	0 Disabledefault
	1 $T_{RP} = 3T$ default		1 Enable
6	Active Command to Precharge Command Period	6	DRAM Operating Frequency Faster Than CPU
	$0 T_{RAS} = 6T$		0 DRAM Same As or Equal to CPU default
	1 $T_{RAS} = 7T$ default		1 DRAM Faster Than CPU
5-4	CAS Latency		
	00 1.5T		<u>CPU / DRAM</u> <u>Rx54[7-6]</u> <u>Rx69[7]</u>
	01 2T		0 100 / 100 (DDR-200) 00 0 def
	10 2.5Tdefault		0 133 / 133 (DDR-266) 01 0
	11 3T		0 166 / 166 (DDR-333) 1x 0
3	Reserved always reads 0		,
2	ACTIVE to CMD		1 100 / 133 (DDR-266) 00 0
	0 2T		1 133 / 166 (DDR-333) 01 0
	1 3Tdefault		1 100 / 166 (DDR-333) 00 1
1-0	Bank Interleave		
	00 No Interleavedefault		All other combinations are reserved.
	01 2-way		
	10 4-way	5	DRAM Ctrlr Queue Greater Than 2
	11 Reserved		0 Disabledefault
	For 16Mb DRAMs bank interleave is always 2-way		1 Enable
		4	DRAM Ctrlr Queue Not Equal To 4
		k	0 Disabledefault
Device	0 Offset 65 - DRAM Arbitration Timer (00h) RW		1 Enable
7-4	AGP Timer (units of 4 DRAM clocks) default = 0	3	DRAM 8K Page Enable
3-0	CPU Timer (units of 4 DRAM clocks) default = 0		0 Disabledefault
3-0	CT C Timer (units of 4 Divini clocks) default 0		1 Enable
Device	0 Offset 66 - DRAM Arbitration Control (00h)RW	2	DRAM 4K Page Enable
7	DQS Input Delay Setting		0 Disabledefault
	0 Auto (Rx67 reads DLL calibration result)def		1 Enable
	1 Manual (Rx67 reads DQS input delay)		DIMM Type
6	DRAM Access Timing		0 Unbuffereddefault
	0 2Tdefault	,	1 Registered
	1 3T (set this bit for 133 MHz DRAM clock)	0	Multiple Page Mode
5-4	Arbitration Parking Policy		0 Disabledefault
	00 Park at last bus ownerdefault		1 Enable
	01 Park at CPU		
	10 Park at AGP		
	11 -reserved-		
3-0	AGP / CPU Priority (units of 4 DRAM clocks)		
Device	0 Offset 67 – Strobe Input Delay (00h)RW		
7-6	Reservedalways reads 0		
5-0	DQS Input Delay default = 0		
	(if Rx66[7]=0, read DLL calibration result)		
	, , , , , , , , , , , , , , , , , , , ,		
	0 Offset 68 – Strobe Output Delay (00h)RW		
7-0	DQS Output Delay default = 0		

Device	Offset 6A - R	efresh Counter (00h)RW	Device 0 Offset 6C - DRAM Clock (
7-0	Refresh Coun	ter (in units of 16 DRAM clocks)	7-6 Early Clock Select for CS,
		Refresh Disableddefault	00 Latest
		M clocks	01
	02 48 DRA		10
		M clocks	11 Earliest
	04 80 DRA		5-4 Early Clock Select for SCM
	05 96 DRA		00 Latest
	05 70 B101	THE CLOCKS	01
	TT1	1 1 1 1 1 1 1 616	10
		ed value is the desired number of 16-	11 Earliest
	DRAM clock t	units minus one.	3-0 Reserved
Device	Offset 6B - D	RAM Arbitration Control (10h). RW	
7		Write Turn-around	Note: Refer to the VT8754 BIOS Po
,		default	configuration algorithms and recomm
	1 Enable	derauit	bits for typical memory system config
6		tive When Cross Bank	
U		default	Ġ ′
	1 Enable	uciauit	
5	Burst Refresh		• •
3		default	6 Y
	1 Enable	defauit	
4		Not Program) default = 1	
3	HA14 / HA22	9 ,	K
3		default	
		improve performance	
2-0	•	ration Mode Select	
2-0		SDRAM Modedefault	
		ommand Enable	O
		ks-Precharge Command Enable	
		o-DRAM cycles are converted	
	*	anks-Precharge commands).	
	011 MSR Er		
		DRAM cycles are converted to	/
		ads and the commands are driven on	
		0]. The BIOS selects an appropriate	
		lress for each row of memory such that	
	the rig	•	
	MA[14:		
	_	ycle Enable (if this code is selected,	
	•	fore-RAS refresh is used; if it is not	
		, RAS-Only refresh is used)	
	101 Reserve		

Device	0 Offset 6C -	- DRAM Clock Control (00h) RW
7-6	Early Clock	Select for CS, CKE
	00 Lates	tdefault
	01	
	10	
	11 Earlie	est
5-4	Early Clock	Select for SCMD, MA
	00 Lates	tdefault
	01	
	10	
	11 Earlie	est
3-0	Reserved	always reads 0

Note: Refer to the VT8754 BIOS Porting Guide for SDRAM configuration algorithms and recommended settings for these bits for typical memory system configurations.

11x Reserved

Device 0 Offset 6E - ECC Control (00h)RW ECC / EC Mode Select ECC Checking and Reporting.....default ECC Checking, Reporting, and Correcting 6 always reads 0 Reserved **Enable SERR# on ECC / EC Multi-Bit Error** Don't assert SERR# for multi-bit errorsdef Assert SERR# for multi-bit errors **Enable SERR# on ECC / EC Single-Bit Error**

- 0 Don't assert SERR# for single-bit errorsdef
 - Assert SERR# for single-bit errors
- 3 ECC / EC Enable - Bank 7/6 (DIMM 3)
 - 0 Disable (no ECC or EC for banks 7/6)...default
 - 1 Enable (ECC or EC per bit-7)
- ECC / EC Enable Bank 5/4 (DIMM 2)
 - 0 Disable (no ECC or EC for banks 5/4)...default
 - 1 Enable (ECC or EC per bit-7)
- ECC / EC Enable Bank 3/2 (DIMM 1)
 - 0 Disable (no ECC or EC for banks 3/2)...default
 - 1 Enable (ECC or EC per bit-7)
- ECC / EC Enable Bank 1/0 (DIMM 0)
 - 0 Disable (no ECC or EC for banks 1/0)...default
 - 1 Enable (ECC or EC per bit-7)

Error checking / correction may be enabled bank-pair by bankpair (DIMM by DIMM) by using bits 0-3 above. Bank pairs must be populated with 72-bit memory to enable for EC or ECC since the additional data bits must be present in either case. For this reason, if 64-bit memory is populated in a particular bank pair, the corresponding bit 0-3 should be set to 0 to disable both EC and ECC for that bank pair. For those bank pairs that have 72-bit memory available (and have the corresponding bit 0-3 set), either EC or ECC may be selected via bit-7 above (i.e., all enabled bank pairs will use EC or all will use ECC).

If error checking / reporting only (EC) is selected, all read and write cycles will use normal timing. Partial writes (with EC or ECC enabled) will use read-modify-write cycles to maintain correct error correction codes in the additional 8 data bits. If EC and ECC are disabled for a particular bank pair, partial writes to that bank pair will use the byte enables to write only the selected bytes (using normal write cycles and cycle timing). If error correction (ECC) is selected, the first read of a transaction will always have one additional cycle of latency.

<u>Bit-7</u>	Bits 3-0	$\underline{\mathbf{RMW}}$	Error Checking	Error Correction
0/1	0	No	No	No
0	1	Yes	Yes	No
1	1	Yes	Yes	Yes

Device	<u> U Offset of - ECC Status (UUn)</u>	<u>RWC</u>
7	Multi-bit Error Detected	write of '1' resets
6-4	Multi-bit Error DRAM Bank	default=0
	Encoded value of the bank with th	e multi-bit error.
3	Single-bit Error Detected	write of '1' resets
2-0	Single-bit Error DRAM Bank	default=0
	Encoded value of the bank with th	e single-bit error.

(see RxD0-4 for ECC Error Address and Error Syndrome)

Table 8. DIMM Module Configuration

Rx6E	Rx55				
[3-0]	[3]	DIMM	MECC	DQM	DQS#
ECC	No	Module	[7-0]	[8-0]	[8-0]
<u>Ena</u>	<u>DQM</u>	Configuration	<u>Pins</u>	<u>Pins</u>	<u>Pins</u>
1	1	DDR x8 with ECC	MECC[7-0]	CKE[7-0]	DQS[8-0]#
0	0	DDR x8 no ECC	CKE[7-0]	DQM[7-0]	DQS[7-0]#

PCI Bus Control

These registers are normally programmed once at system initialization time.

Device	0 Offs	et 70 - PCI Buffer Control (00h)RW	Device	0 Offs	set 73 - PCI Maste
7	CPU	to PCI Post-Write	7	Rese	rved
	0	Disabledefault	6	PCI	Master 1-Wait-St
	1	Enable		0	Zero wait state T
6	Rese	rvedalways reads 0		1	One wait state T
5-4	PCI I	Master to DRAM Prefetch	5	PCI	Master 1-Wait-St
	00	Always prefetchdefault		0	Zero wait state T
	x1	Never prefetch		1	One wait state T
	10	Prefetch only for Enhance command	4	WSC	C#
3	Rese	rvedalways reads 0		0	Disable
2	PCI I	Master Read Buffering		1	Enable
	0	Disabledefault	3-1	Rese	rved
	1	Enable	0	PCI	Master Broken T
1	Delay	Transaction		> 0	Disable
	0	Disabledefault		1	Enable. Force in
	1	Enable	OY		FRAME# 16 PC
0	Rese	rvedalways reads 0	70		
Device	0 Offs	et 71 - CPU to PCI Flow Control (48h) RWC			9
7	Retry	y StatusRWC			
	0	No retry occurreddefault			
	1	Retry occurred			
6	Retry	Timeout Action			
	0	Retry forever (record status only)			
	1	Flush buffer or return FFFFFFFh for reads			
		default			7
5-4	Retry	Count and Retry Backoff			
	00	Retry 2 times, backoff CPUdefault			
		Retry 16 times	<i>y</i>		
		Retry 4 times			
		Retry 64 times			
3	PCI 1	Burst			
	0	Disable			
	1	Enabledefault			
2	Rese	· · · · · · · · · · · · · · · · · · ·			
1	Com	patible Type#1 Configuration Cycles			
	0	Disable (fixed AD31)default			
	1	Enable			
0		CL Control			
	0	AD11, AD12default			
	1	AD30, AD31			

Device	Offset 73 - PCI Master Control (00h)	<u> RW</u>
7	Reservedalways re	eads 0
6	PCI Master 1-Wait-State Write	
	0 Zero wait state TRDY# responsed	lefault
	1 One wait state TRDY# response	
5	PCI Master 1-Wait-State Read	
	0 Zero wait state TRDY# response	lefault
	1 One wait state TRDY# response	
4	WSC#	
	0 Disabled	lefault
	1 Enable	
3-1	Reservedalways re	eads 0
0	PCI Master Broken Timer Enable	
	♥ 0 Disabled	lefault
	1 Enable. Force into arbitration when there	e is no
	▲ FR ΔMF# 16 PCICLK's after the grant	

Device	0 Offset 75 - PCI Arbitration 1 (00h)RW	Device	0 Offset 76 - PCI Arbitration 2 (00h)RW		
7	Arbitration Mode	7	I/O Port 22 Access		
	0 REQ-based (arbitrate at end of REQ#)default		0 CPU access to I/O address 22h is passed on to		
	1 Frame-based (arbitrate at FRAME# assertion)		the PCI bus default		
6-4 3	Latency Timer read only, reads Rx0D bits 2:0 Reserved always reads 0		1 CPU access to I/O address 22h is processed internally		
2-0	PCI Master Bus Time-Out	6	Reservedalways reads 0		
2-0	(force into arbitration after a period of time)	5-4	Master Priority Rotation Control		
	000 Disabledefault	3-4	00 Disabledefault		
	001 1x16 PCICLKs		01 Grant to CPU after every PCI master grant		
	010 2x16 PCICLKs		10 Grant to CPU after every 2 PCI master grants		
	010 2x10 FCICLKS 011 3x16 PCICLKs		11 Grant to CPU after every 2 PCI master grants		
	100 4x16 PCICLKs		Setting 01: the CPU will always be granted access		
			after the current bus master completes, no matter how		
	 111 7x16 PCICLKs		many PCI masters are requesting.		
	TTT /XTOT CICLICS		Setting 10: if other PCI masters are requesting during		
			the current PCI master grant, the highest priority		
			master will get the bus after the current master		
			completes, but the CPU will be guaranteed to get the		
			bus after that master completes.		
			Setting 11: if other PCI masters are requesting, the		
		3	highest priority will get the bus next, then the next		
			highest priority will get the bus, then the CPU will		
		get the bus.			
			In other words, with the above settings, even if		
			multiple PCI masters are continuously requesting the		
			bus, the CPU is guaranteed to get access after every		
			master grant (01), after every other master grant (10)		
		7	or after every third master grant (11).		
		3-2	Select REQn# to REQ4# mapping		
			00 REQ4#default		
			01 REQ0#		
			10 REQ1#		
			11 REQ2#		
		1	Reservedalways reads 0		
		0	REQ4# is High Priority Master		
			0 Disabledefault		
			1 Enable		
	Y				

GART / Graphics Aperture

The function of the Graphics Address Relocation Table (GART) is to translate virtual 32-bit addresses issued by an AGP device into 4K-page based physical addresses for system memory access. In this translation, the upper 20 bits (A31-A12) are remapped, while the lower 12 address bits (A11-A0) are used unchanged.

A one-level fully associative lookup scheme is used to implement the address translation. In this scheme, the upper 20 bits of the virtual address are used to point to an entry in a page table located in system memory. Each page table entry contains the upper 20 bits of a physical address (a "physical page" address). For simplicity, each page table entry is 4 bytes. The total size of the page table depends on the GART range (called the "aperture size") which is programmable in the VT8377.

This scheme is shown in the figure below.

Figure 3. Graphics Aperture Address Translation

Since address translation using the above scheme requires an access to system memory, an on-chip cache (called a "Translation Lookaside Buffer" or TLB) is utilized to enhance performance. The TLB in the VT8377 contains 16 entries. Address "misses" in the TLB require an access of system memory to retrieve translation data. Entries in the TLB are replaced using an LRU (Least Recently Used) algorithm.

Addresses are translated only for accesses within the "Graphics Aperture" (GA). The Graphics Aperture can be any power of two in size from 1MB to 256MB (i.e., 1MB, 2MB, 4MB, 8MB, etc) for AGP 2.0 and 4MB to 2GB for AGP 3.0. The base of the Graphics Aperture can be anywhere in the system virtual address space on an address boundary determined by the aperture size (e.g., if the aperture size is 4MB, the base must be on a 4MB address boundary). The Graphics Aperture Base is defined in register offset 10 of device 0. The Graphics Aperture Size and TLB Table Base are defined in the following register groups (Rx84 and 88 respectively for AGP 2.0 and Rx94 and 98 for AGP 3.0) along with various control bits.

AGP 2.0 Registers

AGP 2.0 registers Rx80-AB are enabled if RxFD[1] = 1 and AGP 3.0 registers Rx80-AB are enabled if RxFD[1] = 0.

Device	Offset 83-80 - AGP 2.0 GART/TLB ControlRW
31-16	Reserved always reads 0
15-8	Reserved (test mode status)RO
7	Flush Page TLB
	0 Disabledefault
	1 Enable
6-0	Reserved (always program to 0)RW

Note: For any master access to the Graphics Aperture range, snoop will not be performed.

Device 0 Offset 84 – AGP 2.0 Graphics Aperture Size .. RW

7-0 Graphics Aperture Size

11111111 1M 11111110 2M 11111000 4M 1111000 16M 11100000 32M 11000000 128M 00000000 256M

CPU-to-Memory Access Control

Offset 8	<u>85 – AGP 2.0 CPU-to-Me</u>	m Write Policy. RO / RW†
7-4	Write Request Limit	default = 0
3-0	Write Request Base	\dots default = 0
When t	he number of outstanding	write requests is eqaul to the
"limit"	the DAVAGO will put a	ariarity on degracing write

When the number of outstanding write requests is equal to the "limit", the P4X400 will put a priority on decreasing write requests until the number pending is equal to the "base".

<u>Offset</u>	<u>86 – CPU-to-Memory Bandwi</u>	dth Timer RO / RW†
7-4	Host Bandwidth Timer	default = 0
3-0	DRAM Bandwidth Timer	default = 0

Offset 87 – CPU-to-	Memory Bandwidth Limit RO / RW†
7-3 Reserved	always reads 0

2-1 Bandwidth Limit

00	Disabledefault
----	----------------

- 01 Fixed DRAM bandwidth limit
- 10 Fixed CPU bandwidth limit
- DRAM bandwidth limits (two timers Rx86[7-4] and Rx86[3-0] are used)

0 CPU Access DRAM Read After Write

- 0 Normal default
- 1 Improved

Rx85, 86 and 87 should be programmed to optimum values recommended by VIA to increase system performance.

† Rx85, 86 and 87 are Write Enabled via Rx54[3]

Offset 8	<u> 8B-88 – AGP 2.0 GART Table BaseRW</u>
31-12	Graphics Aperture Translation Table Base.
	Pointer to the base of the translation table in system
	memory used to map addresses in the aperture range
	(the pointer to the base of the "Directory" table).
11-2	Reserved always reads 0
1	Graphics Aperture
	0 Disabledefault
	1 Enable
	Note: To disable the Graphics Aperture, set this bit
	to 0 and set all bits of the Graphics Aperture Size to
	0. To enable the Graphics Aperture, set this bit to 1
	and program the Graphics Aperture Size to the
	desired aperture size.
0 1	Reserved always reads 0
Device (O Offset A3-A0 - AGP 2.0 Capabilities (0020C002h)
20,100	RO
31-24	Reservedalways reads 00
-	Major Specification Revision always reads 0010b
23 20	Major rev # of AGP spec that device conforms to
19-16	Minor Specification Revision always reads 0000b
1, 10	Minor rev # of AGP spec that device conforms to
15-8	Pointer to Next Item always reads C0 (last item)
7-0	AGP Capability ID
, 0	(always reads 02 to indicate it is AGP)
Device (O Offset A7-A4 - AGP 2.0 Status (1F000201h)RO
	Maximum AGP Requestsalways reads 1Fh
31-24	Max # of AGP requests the device can manage (32)
23-10	Reservedalways reads 0s
9	Supports SideBand Addressing always reads 1
8-6	Reservedalways reads 0s
5	Addresses Above 4G Supported always reads 0†
4	Fast Write Supportedalways reads 0†
3	Reservedalways reads 0s
2	4X Rate Supported always reads 0†
1	2X Rate Supported always reads 0†
0	1X Rate Supportedalways reads 1
ŭ	le if RxFD[0] = 1.

<u>W</u>	<u>Device</u> (DOffset AB-A8 - AGP 2.0 Command RW
e.	31-24	Request Depth (reserved for target) always reads 0s
m	23-10	Reserved always reads 0s
ge	9	SideBand Addressing Enable
		0 Disabledefault
0		1 Enable
	8	AGP Enable
ılt		0 Disabledefault
		1 Enable
it	7-6	Reserved always reads 0s
to	5	4G Enable
1		0 Disabledefault
ne		1 Enable
	4	Fast Write Enable
0		0 Disabledefault
		1 Enable
<u>)</u>	3	Reserved always reads 0s
<u>)</u> <u>O</u>)0	2	4X Mode Enable
		0 Disabledefault
)b		1 Enable
	1	2X Mode Enable
)b	70	0 Disabledefault
		1 Enable
n)	0	1X Mode Enable
		0 Disabledefault
		1 Enable
0		
h		
5		
)s		
1		
)s		
†		
)†		
)s		

AGP 3.0 Registers

AGP 3.0 registers Rx80-AB are enabled if RxFD[1] = 0 and AGP 2.0 registers Rx80-AB are enabled if RxFD[1] = 1.

Device (0 Offset 83-80 - AGP 3.0 Capabilities (0030C002h)
	RO
31-24	Reserved always reads 00
23-20	Major Specification Revision always reads 0011b
	Major rev # of AGP spec that device conforms to
19-16	Minor Specification Revision always reads 0000b
	Minor rev # of AGP spec that device conforms to
15-8	Pointer to Next Item always reads C0 (last item)
7-0	AGP Capability ID
	(always reads 02 to indicate it is AGP)
Device (Offset 87-84 - AGP 3.0 Status (1F000201h)RO
31-24	Maximum AGP Requests always reads 1Fh
	Max # of AGP requests the device can manage (32)
23-16	Reserved always reads 0s†
15-13	Optimum Async Request Sizealways reads 0s†
	Suggested setting is 010b or 2 ⁽²⁺⁴⁾ =64 Bytes for
	8QW access
12-10	Calibration Cycle Setting
	000 4 ms
	001 16 ms
	010 64 msdefault†
	011 256 ms
9	Supports SideBand Addressingalways reads 1
8	Reserved always reads 0†
7	64-Bit GART Entries always reads 0
6	CPU GART Translation Supported . always reads 0
5	Addresses Above 4G Supported always reads 0
4	Fast Write Supported always reads 0
3	AGP 8x DetectedSet from AGP8XDT# pin
2	4X Rate Supported Reads 0 if bit-3 = 1
	Reads 1 if bit- $3 = 0$
1	2X Rate Supportedalways reads 1
0	1X Rate Supportedalways reads 1
†Writab	le if $RxFD[0] = 1$.

Device (Offset 8B-88 - AGP 3.0 CommandRW
31-24	Request Depth (reserved for target) always reads 0s
23-13	Reserved always reads 0s
12-10	Calibration Cycle Select default = 0
9	SideBand Addressing
	0 Disabledefault
	1 Enable
8	AGP
	0 Disabledefault
	1 Enable
7-6	Reserved always reads 0s
5	Addresses Over 4G
	0 Disabledefault
	1 Enable
4	Fast Write
2	0 Disabledefault
	1 Enable
3	Reserved always reads 0s
2-0	Transfer Mode Select default = 000b
4	Rx84[3] = 0 (8x mode not detected via AGP8XDT#)
	001 1x data transfer rate
	010 2x data transfer rate
	100 4x data transfer rate
	Rx84[3] = 1 (8x mode detected via AGP8XDT#)
	000 -reserved
	001 4x data transfer rate
	010 8x data transfer rate
7	

		0 - AGP 3.0 GART / TLB Control .RW
31-10	Reserved	always reads 0s
9	Calibration	Cycle
	0 Disab	ledefault
	1 Enable	e
8	Graphics Ap	perture Base Register (Rx13-10) Read
	0 Disab	ledefault
	1 Enable	e
7	GART TLB	
	0 Disab	le (TLB entries are invalidated)default
	1 Enable	e
6-0	Reserved	always reads 0s
		•

Device (0 Offset 97-94 - AG	SP 3.0 Graphics Aperture SizeRW
31-28	Aperture Page Siz	ze Select default = 0000b
	Only 4K pages are	allowed
27	Reserved	always reads 0s
26-16	Page Size Support	teddefault = 001h
	If bit-n of this	field is 1, indicates support of
	2^(n+12) page size	e. Must be set to 001h (field bit-0
	set) to indicate only	y 4K pages allowed.
15-12	Reserved	always reads 0s
11-0	Aperture Size	$\dots default = 0$
	111100111111	4MB
	111100111110	8MB
	111100111100	16MB
	111100111000	32MB
	111100110000	64MB
	111100100000	128MB
ı	111100000000	256MB
	111000000000	512MB
	110000000000	1GB
	100000000000	2GB <= Max supported
) Y	000000000000	4GB <= Do not program

AGP 2.0 / 3.0 Registers

Device	U Offset AC - AGP Control (UUII)KW	Device	U Oliset AE – AGP Wilse Control (UUII) RW
7	AGPRO per strap on MAB9	7-3	Reservedalways reads 0
	0 Disabledefault	2	AGP Performance Improvement
	1 Enable		0 Disabledefault
6	AGP Read Synchronization		1 Enable
	0 Disabledefault	1	DBI / PIPE Mux Function
	1 Enable		0 From DBIH (0.95)default
5	AGP Read Snoop DRAM Post-Write Buffer		1 From PIPE (0.9)
	0 Disabledefault	0	CPU GART Read, AGP GART Write Coherency
	1 Enable		0 Disabledefault
4	GREQ# Priority Becomes Higher When Arbiter is		1 Enable
	Parked at AGP Master		
	0 Disabledefault		
	1 Enable	Dovino	0 Officer AE ACD 2 0 Control (00h) DW
3-2	Reservedalways reads 0s		0 Offset AF – AGP 3.0 Control (00h)RW
1	AGP Arbitration Parking	7	CPU / PCI Master GART Access
	0 Disabledefault	0, 0	0 Disabledefault
	1 Enable (GGNT# remains asserted until either		1 Enable
	GREQ# de-asserts or data phase ready)	6	AGP Calibration
0	AGP to PCI Master or CPU to PCI Turnaround		0 Disabledefault
	Cycle	-1	1 Enable
	0 2T or 3T Timingdefault	5	Mix Coherent / Non-coherent Accesses
	1 1T Timing		0 Disabledefault
			1 Enable
		4	Reservedalways reads 0
Davida	0 Offset AD ACD Latency Times (02h) DW	3	DBI Function
	0 Offset AD – AGP Latency Timer (02h)RW		0 Disable (DBI input masked and all outputs
7	AGP Performance Improvement		assume DBI=0)default
	0 Disabledefault		1 Enable
	1 Enable	2	DBI Output for AGP Transactions
6	Pipe Mode Performance Improvement		0 Disabledefault
	0 Disabledefault	·	1 Enable
_	1 Enable	1	DBI Output for Frame Transactions Including
5	AGP Data Input Enable (for Power Saving)		Fast-Write
	0 AGP data input always enableddefault		0 Disabledefault
	1 AGP data input only enabled when necessary		1 Enable
4	to avoid redundant transitions	0	DBI Output from Frame Transactions
4	AGP Performance Improvement		0 Disabledefault
	0 Disabledefault		1 Enable
• •	1 Enable		
3-0	AGP Data Phase Latency Timer default = 02h		

7	AGP 4x Strobe VREF Control	7	GD/0	GBE/GDS, SBA/SBS Control
	0 STB VREF is STB# and vice versa		0	SBA/SBS = no capdefault
	1 STB VREF is AGPREFdefault			GD/GBE/GDS = no cap
6	AGP 4x Strobe & GD Pad Drive Strength		1	SBA/SBS = cap
	0 Drive strength set to compensation circuit			GD/GBE/GDS = cap
	defaultdefault	6-5		GBE Receive Strobe Delay
	1 Drive strength controlled by RxB1[7-0]			Nonedefault
5-3	AGP Compensation Circuit N Control Output.RO			Delay by 1.5 ns
2-0	AGP Compensation Circuit P Control Output.RO			Delay by 3.0 ns
lote: N	V = low drive, P = high drive			Delay by 4.5 ns
Novice (0 Offset B1 – AGP Drive Strength (63h)RW	4		31-16] Staggered Delay
				Nonedefault
7-4	AGP Output Buffer Low Drive Strength def=6		1	GD[31:16] delayed by 1 ns
3-0	AGP Output Buffer High Drive Strength def=3	3		Slew Rate Control
				Disable
		- /		Enabledefault
		2		Receive Strobe Delay
		0, (2)		None default
				Delay by 1.5 ns
		1-0		Output Delay
				None default
				Delay by 1.5 ns
				Delay by 3.0 ns
				Delay by 4.5 ns
				S1 & GDS1# will be delayed an additional 1ns if
			D11-4	= 1)
		Device	0 Offs	et B3 - AGP Strobe Drive Strength RW
				Strobe Output Low Drive Strengthdef=0
				Strobe Output High Drive Strength def=0
			,,,,,	or one output high brive oriength doi: 0
	, , , , , , , , , , , , , , , , , , ,			
	A Y 7			

V-Link Compensation / Drive Control

VT8235 South Bridge: **VT8235 South Bridge:** Device 0 Offset B4 – V-Link NB Compensation Ctrl (00h)RW Device 0 Offset B8 – V-Link SB Compensation Ctrl (00h)RW V-Link Autocomp Output Value – High Drive. RO V-Link Autocomp Output Value – High Drive .RO 4always reads 0 4 Reservedalways reads 0 3-1 3-1 V-Link Autocomp Output Value – Low Drive.. RO V-Link Autocomp Output Value – Low Drive .. RO **Compensation Select Compensation Select** 0 Auto Comp (use values in bits 7-5, 3-1) default 0 Auto Comp (use values in bits 7-5, 3-1) default 1 Manual Comp (use values in RxB5, B6) 1 Manual Comp (use values in RxB9, BA) Device 0 Offset B5 – V-Link NB Strobe Drive Ctrl (00h)RW Device 0 Offset B9 = V-Link SB Strobe Drive Ctrl (00h)RW V-Link Strobe Pullup Manual Setting (High) V-Link Strobe Pullup Manual Setting (High) always reads 0 **Reserved**always reads 0 4 4 3-1 V-Link Strobe Pulldown Manual Setting (Low) 3-1 V-Link Strobe Pulldown Manual Setting (Low) Reserved always reads 0 Reservedalways reads 0 Device 0 Offset B6 - V-Link NB Data Drive Ctrl (00h).RW Device 0 Offset BA – V-Link SB Data Drive Ctrl (00h) RW 7-5 V-Link Data Pullup Manual Setting (High) 7-5 V-Link Data Pullup Manual Setting (High) always reads 0always reads 0 4 Reserved Reserved 3-1 V-Link Data Pulldown Manual Setting (Low) 3-1 V-Link Data Pulldown Manual Setting (Low) 0 0 Reservedalways reads 0 Reservedalways reads 0 VT82<u>33 South Bridge (VT8233, 8233C, 8233A):</u> VT8233 South Bridge (VT8233, 8233C, 8233 Device 0 Offset B8 – V-Link SB Compensation Ctrl (00h)RW V-Link Autocomp Output Value always reads 0 **Pullup Compensation Selection** 5 Auto Comp (use values in bits 7-6)...... default Manual Comp (use values in bits 3-2) **Pulldown Compensation Selection** 0 Auto Comp (use values in bits 7-6)...... default Manual Comp (use values in bits 1-0) 1 Pullup Compensation Manual Setting.......def = 0**Pulldown Compensation Manual Setting....** def = 0Device 0 Offset B5 – V-Link NB Drive Control (00h)....RW Device 0 Offset B9 – V-Link SB Drive Control (00h).... RW 7-6 NB V-Link Strobe Pullup Manual Setting SB V-Link Strobe Pullup Manual Setting 7-6 5-4 NB V-Link Strobe Pulldown Manual Setting 5-4 SB V-Link Strobe Pulldown Manual Setting 3-1 **Reserved** always reads 0 3-1 Reservedalways reads 0

0

NB V-Link Slew Rate Control

Enable

1

0 Disabledefault

SB V-Link Slew Rate Control

1

Enable

0 Disable......default

Power Management Control

Device	0 Offset	BC - Power Management Mode (00h)	RW Dev
7	Dynan	nic Power Management	
	0	Disablede	fault
	1	Enable	
6	Halt /	Shutdown Power Management	
	0	Disablede	fault
		Enable	
5		lock Power Management	
		Disablede	fault
_		Enable	
4	_	nd Status Power Management	
		Disablede	fault
2.0		Enable	1.0
3-0	Reserv	redalways rea	ids U
Device	0 Offset	BD – DRAM Power Management (00h)	RW
7	DRAM	I Self-Refresh in PM Mode	• (
	0	Disablede	fault
	1	Enable	
6		nic CKE when DRAM Idle	00
	0	Disablede	fault
		Enable	
5	•	nic DRAM I/O Pad Power Down (Float)	
		Disablede	fault
		Enable	D
4-0	Reserv	redalways rea	nds 0 Dev
			Y
			7.
			Y
	4		7
			,

Device	Offset BE – Dynamic Clock Stop Control (00h)RW
7	Host Interface Power Management
	0 Disabledefault
	1 Enable
6	DRAM Interface Power Management
	0 Disabledefault
	1 Enable
5	V-Link Interface Power Management
	0 Disabledefault
	1 Enable
4	AGP Interface Power Management
	0 Disabledefault
	1 Enable
3	PCI #2 Interface Power Management
	0 Disabledefault
	1 Enable
2	Graphics Interface Power Management
	0 Disabledefault
2	1 Enable
1	Reserved always reads 0
0	Host Fast Power Management (DADS Fast
	Timing) 0 Disabledefault
47	
	1 Enable
Device	Offset BF - DRAM Pad Toggle Reduction (00h)RV
7	MA / SCMD Pin Toggle Reduction
	0 Disable default
9 4	1 Enable (MA and S command pins won't
	toggle if not accessed)
6-4	Reserved always reads 0
3	DIMM #3 MAA / MAB Select
	0 MAAdefault
	1 MAB
2	DIMM #2 MAA / MAB Select
	0 MAAdefault
	1 MAB
1	DIMM #1 MAA / MAB Select
	0 MAAdefault
	1 MAB
0	DIMM #0 MAA / MAB Select
	0 MAAdefault

MAB

Extende	ed Power Management Control	Error (Control
	0 Offset C0 – Power Management Capability IDRO	Device	0 Offset D3-D0 - DRAM ECC Error Address RO
7-0	Capability IDalways reads 01h	Device	0 Offset D4 – DRAM ECC Error Syndrome RO
Device	0 Offset C1 – Power Management Next Pointer . RO		<u>.</u>
7-0	Next Pointeralways reads 00h ("Null" Pointer)		
Device	0 Offset C2 – Power Mgmt Capabilities IRO	Device	0 Offset D5 – Host CPU Parity Status WC
7-0	Power Management Capabilities always reads 02h	7	Host CPU Address Parity Error Detected WC
Device	0 Offset C3 – Power Mgmt Capabilities IIRO		0 No Address Parity Error Detected default
7-0	Power Management Capabilities always reads 00h	6	1 Addr Parity Error Detected (write 1 to clear) Host CPU Data Parity Error Detected
Device	0 Offset C4 – Power Mgmt Control / StatusRW	U	0 No Data Parity Error Detected default
7-2	Reservedalways reads 0		1 Data Parity Error Detected (write 1 to clear)
1-0	Power State	5	AGP Access Above 4G DetectedWC
	00 D0default		0 No Access Detecteddefault
	01 -reserved-		1 Access Detected (write 1 to clear)
	10 -reserved-	4	Host CPU Lock Cycle to PCI Detected WC
	11 D3 Hot		0 No Lock Cycle Detected default
		20	1 Lock Cycle Detected (write 1 to clear)
	0 Offset C5 – Power Management StatusRO	3-0	Reserved always reads 0
7-0	Power Management Status always reads 00h	Dovice	0 Offset D6 – Host CPU Parity EnableRW
Device	0 Offset C6 – PCI-to-PCI Bridge Support ExtRO	7	
7-0	P2P Bridge Support Extensions always reads 00h		Checking (AP[1:0]#)
			0 Disabledefault
	0 Offset C7 – Power Management DataRO		1 Enable
7-0	Power Management Data always reads 00h	6	Host CPU Data Parity Generation and Checking
			(DP[3:0]#)
			0 Disabledefault
			1 Enable
		5	Host CPU Response Parity Generation (RSP#)
			0 Disabledefault
		7	1 Enable
		4	Parity Error Generates SERR# / NMI
			0 Disabledefault
			1 Enable (either SERR# or NMI generated
	>		depending on Rx47[7-6])
		3	Parity Test Mode
			0 Normal Parity Bitdefault
			1 Invert Parity Bit for Generation and Checking
		2-0	Reserved always reads 0

Host CPU AGTL+ I/O Control

Device	0 Offset D8 – Host Address (2x) Pullup DriveRW	Device	0 Offset DD – AGTL+ I/O Control (00h) RW
7	Reserved always reads 0	7	AGTL+ 4x Input Increase Delay to Filter Noise
6-4	Strobe Pullup Drive (HAS#) default = 0		0 Disabledefault
3	Reserved always reads 0		1 Enable
2-0	Address Pullup Drive (HA,HREQ#) default = 0	6	AGTL+ 2x Input Increase Delay to Filter Noise
			0 Disabledefault
Device	0 Offset D9 – Host Address (2x) Pulldown DriveRW		1 Enable
7	Reserved always reads 0	5	AGTL+ Slew Rate Control
6-4	Strobe Pulldown Drive (HAS#) default = 0		0 Disabledefault
3	Reserved always reads 0		1 Enable
2-0	Address Pulldown Drive (HA,HREQ#) . default = 0	4	Reserved always reads 0
	0.000 + D.4 - W. + D.4 - (4.) D.W D.4 - D.W.	3	Input Pullup
<u>Device</u>	0 Offset DA – Host Data (4x) Pullup DriveRW		0 Disabledefault
7	Reserved always reads 0		1 Enable
6-4	Strobe Pullup Drive (HDS,HDS#) default = 0	2	AGTL+ Strobe Internal Termination Pullups
3	Reserved always reads 0	_	0 Disabledefault
2-0	Data Pullup Drive (HD,HDBI#) default = 0	0, (2)	1 Enable
ъ.	A OCC 4 DD HI 4 D 4 (4) D HI D 1 DW	4 1	AGTL+ Data Internal Termination Pullups
Device	0 Offset DB – Host Data (4x) Pulldown DriveRW		0 Disabledefault
7	Reserved always reads 0		1 Enable
6-4	Strobe Pulldown Drive (HDS,HDS#) default = 0	0.	AGTL+ Dynamic Compensation
3	Reserved always reads 0		0 Disabledefault
2-0	Data Pulldown Drive (HD,HDBI#) default = 0		1 Enable
Note:	Refer to the VT8754 BIOS Porting Guide for		1 Eliable
		Davica	A OFF A DE A CTU I Como Chatas (AAL)
	nended settings for these bits for typical system	Device	0 Offset DE – AGTL+ Comp Status (00h) RW
	nended settings for these bits for typical system	7	
	rations.		Select AutoCompensation Drive 0 Disable
configu			Select AutoCompensation Drive 0 Disabledefault
configu	urations.		Select AutoCompensation Drive
configu Device	o Offset DC – Output Delay / Stagger ControlRW		Select AutoCompensation Drive 0 Disable
configu Device	Data / Strobe Relative Delay / Stagger ControlRW Data / Strobe Relative Delay O Data delay = strobe delay + 150 psecdefault	7	Select AutoCompensation Drive 0 Disable
configu Device	Data / Strobe Relative Delay O Data delay = strobe delay + 150 psecdefault Data delay = strobe delay	7	Select AutoCompensation Drive 0 Disable
configu Device	Data / Strobe Relative Delay / Stagger ControlRW Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay - 150 psec	7	Select AutoCompensation Drive 0 Disable
configu Device	Data delay = strobe delay - 150 psecdefault Data delay = strobe delay - 150 psecdefault Data delay = strobe delay - 150 psec Data delay = strobe delay - 300 psec	7	Select AutoCompensation Drive 0 Disable
Device 7-6	Data / Strobe Relative Delay / Stagger ControlRW Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger	6-4	Select AutoCompensation Drive 0 Disable
Device 7-6	Data / Strobe Relative Delay / Stagger ControlRW Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger 0 No delaydefault	6-4	Select AutoCompensation Drive 0 Disable
Device 7-6	Data / Strobe Relative Delay / Stagger ControlRW Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger 0 No delay	6-4	Select AutoCompensation Drive 0 Disable
Device 7-6	Data / Strobe Relative Delay / Stagger ControlRW Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger 0 No delay	6-4	Select AutoCompensation Drive 0 Disable
Device 7-6	Data / Strobe Relative Delay / Stagger ControlRW Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger 0 No delay	6-4	Select AutoCompensation Drive 0 Disable
Device 7-6 5	Data / Strobe Relative Delay / Stagger ControlRW Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger 0 No delay	6-4	Select AutoCompensation Drive 0 Disable
Device 7-6	Data / Strobe Relative Delay / Stagger ControlRW Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger 0 No delay	7 6-4 3 2 1 0	Select AutoCompensation Drive 0 Disable
Device 7-6 5	Data / Strobe Relative Delay / Stagger ControlRW Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger 0 No delay	7 6-4 3 2 1 0	Select AutoCompensation Drive 0 Disable
Device 7-6 5	Data / Strobe Relative Delay / Stagger ControlRW Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger 0 No delay	7 6-4 3 2 1 0	Select AutoCompensation Drive O Disable
Device 7-6 5	Data / Strobe Relative Delay / Stagger ControlRW Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger 0 No delay default 1 Insec delay HA[31:17] Output Stagger 0 No delay default 1 Insec delay HDS / HDS# Output Extra Delay 00 No delay default 01 150 psec delay 10 300 psec delay	7 6-4 3 2 1 0 Device	Select AutoCompensation Drive 0 Disable
5 4 3-2	Data / Strobe Relative Delay / Stagger ControlRW Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger 0 No delay default 1 1 nsec delay HA[31:17] Output Stagger 0 No delay default 1 1 nsec delay HDS / HDS# Output Extra Delay 00 No delay default 01 150 psec delay 10 300 psec delay 11 450 psec delay	7 6-4 3 2 1 0 Device	Select AutoCompensation Drive O Disable
Device 7-6 5	Data / Strobe Relative Delay / Stagger ControlRW Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger 0 No delay	7 6-4 3 2 1 0 Device 7-4	Select AutoCompensation Drive O Disable
5 4 3-2	Data / Strobe Relative Delay / Stagger ControlRW Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger 0 No delay	7 6-4 3 2 1 0 Device 7-4	Select AutoCompensation Drive O Disable
5 4 3-2	Data / Strobe Relative Delay O Data / Strobe Relative Delay O Data delay = strobe delay + 150 psecdefault O Data delay = strobe delay O Data delay = strobe delay Data delay = strobe delay - 150 psec Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger No delay	7 6-4 3 2 1 0 Device 7-4	Select AutoCompensation Drive O Disable
5 4 3-2	Data / Strobe Relative Delay / Stagger ControlRW Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger 0 No delay	7 6-4 3 2 1 0 Device 7-4	Select AutoCompensation Drive O Disable

DRAM Above 4G Control

Device	0 Offset E4 – Low Top Address Low (00h)RW	<u>Device 0 Offset E8 – DQ Drive (MD,MECC,DQS,DQM)RW</u>
7-4	Low Top Address Low default = 0	7-4 High Drive
3-0	DRAM Granularity	0000 Lowest default
	0 16M Total DRAM less than 4Gdefault	
	1 32M Total DRAM less than 8G	1111 Highest
	2 64M Total DRAM less than 16G	3-0 Low Drive
	3 128M Total DRAM less than 32G	0000 Lowest default
	4 256M Total DRAM less than 64G	
	5-7 -reserved-	1111 Highest
Device	0 Offset E5 – Low Top Address High (FFh)RW	Device 0 Offset E9 – CS Drive (CS, CKE)RW
7-0	Low Top Address High default = FFh	7-4 High Drive
Davis	0 Officed E(CMM / A DIC Deceding (01h) DW	0000 Lowest default
	0 Offset E6 – SMM / APIC Decoding (01h)RW	,
7-6	Reserved always reads 0	1111 Highest
5	APIC Lowest Interrupt Arbitration	3-0 Low Drive
	0 Disabledefault	0000 Lowest default
	1 Enable	,
4	I/O APIC Decoding	1111 Highest
	0 FECxxxxx accesses go to PCIdefault	V
	1 FEC00000 to FEC7FFFF accesses go to PCI	Device 0 Offset EA – MAA Drive (MAA, ScmdA) RW
	FEC80000 to FECFFFFF accesses go to AGP	7-4 High Drive
3	MSI (Processor Message) Support	0000 Lowest default
	0 Disable (master access to FEExxxxx will go to	
	PCI)default	1111 Highest
	1 Enable (master access to FEExxxxx will be	3-0 Low Drive
	passed to host side to do snoop)	0000 Lowest default
2	Top SMM	, y
	0 Disabledefault	1111 Highest
	1 Enable	
1	Reserved always reads 0	Device 0 Offset EB – MAB Drive (MAB, ScmdB) RW
0	Compatible SMM	7-4 High Drive
	0 Disable	0000 Lowest
	1 Enabledefault	
		1111 Highest
		3-0 Low Drive
		0000 Lowestdefault
	Y	
		1111 Highest

Host CPU P6 Interface DRDY Timing Control

Device	<u>0 Offset EE – DRDY Timing (</u>	<u> Control 1 (00h)RW</u>
7-6	Phase 4 Wait States	default = 00b
5-4	Phase 3 Wait States	default = 00b
3-2	Phase 2 Wait States	default = 00b
1-0	Phase 1 Wait States	default = 00b
Device	0 Offset EF – DRDY Timing 0	Control 2 (00h)RW
7	Burst DRDY Wait States	
	0 0 ws DRDY Burst	default
	1 1 ws DRDY Burst	
6-2	Reserved	always reads 0
1-0	Phase 5 Wait States	default = 0.0b

BIOS Scratch

<u>Device</u>	<u> 0 Offset F3-F4 – BIOS Scra</u>	tch Registers RW
7-0	No hardware function	default = 0

Miscellaneous Registers

0 ws DRDY Burstdefault	Device	0 Offset FD – AGP 2.0 / 3.0 Select	RW
1 ws DRDY Burst	7-3	Reserved	
		AGP Capability Pointer (Rx34) Value	•
ved always reads 0 e 5 Wait States default = 00b	2	0 Rx34 = A0h (AGP 2.0)	
e 3 wait States defauit – 000		1 Rx34 = A0h (AGP 2.0) $1 Rx34 = 80h (AGP 3.0)$	deraun
	1	Compatible Rx80-AF	
	1	0 AGP 3.0 registers at Rx80-B3	default
		1 AGP 2.0 registers at Rx80-B3	derauit
	0	AGP Status Register Write	
		0 Disable (AGP 3.0 Rx84 is RO)	default
	O	1 Enable (AGP 3.0 Rx84 is RW)	delauit
	70	T Endote (1101 3.0 Text 115 ICW)	
		, 670 ·	
	X		
		•.4	
	y		
1			
>			

Device 1 Register Descriptions

Device 1 PCI-to-PCI Bridge Header Registers

All registers are located in PCI configuration space. They should be programmed using PCI configuration mechanism 1 through CF8 / CFC with bus number of 0 and function number equal to 0 and <u>device number</u> equal to <u>one</u>.

Device 1	1 Offs	et 1-0 - Vendor ID (1106h)RO
15-0	ID C	ode (reads 1106h to identify VIA Technologies)
Device 1	1 Offs	et 3-2 - Device ID (B168h)RO
15-0		ode (reads B168h to identify the P4X400 PCI-
	to-PC	CI Bridge device)
Device 1	1 Offs	et 5-4 – Command (0007h)RW
15-10		
9	Fast	Back-to-Back Cycle EnableRO
	0	Fast back-to-back transactions only allowed to
		the same agentdefault
	1	Fast back-to-back transactions allowed to
		different agents
8	SER	R# EnableRO
	0	SERR# driver disableddefault
	1	SERR# driver enabled
	(SER	R# is used to report ECC errors).
7		ress / Data SteppingRO
	0	Device never does steppingdefault
	1	Device always does stepping
6		y Error ResponseRW
	0	Ignore parity errors & continuedefault
_	1	Take normal action on detected parity errors
5	Rese	
4		ory Write and Invalidate CommandRO
	0	Bus masters must use Mem Writedefault
2	1	Bus masters may generate Mem Write & Inval
3	-	ial Cycle MonitoringRO
	0	Does not monitor special cyclesdefault Monitors special cycles
2	_	MasterRW
2	Dus 1	Never behaves as a bus master
	1	Enable to operate as a bus master on the
	1	primary interface on behalf of a master on the
		secondary interfacedefault
1	Mem	ory SpaceRW
•	0	Does not respond to memory space
	1	Enable memory space accessdefault
0	I/O S	* *
v	0	Does not respond to I/O space
	1	Enable I/O space accessdefault
		1

Device	1 Offset 7-6 - Status (Primary Bus) (0230h)RWC
15	Detected Parity Error always reads 0
14	Signaled System Error (SERR#) always reads 0
13	Signaled Master Abort
	0 No abort received default
	1 Transaction aborted by the master with
	Master-Abort (except Special Cycles)
	write 1 to clear
12	Received Target Abort
	0 No abort received
	1 Transaction aborted by the target with Target-
	Abort write 1 to clear
11	Signaled Target Abortalways reads 0
10-9	DEVSEL# Timing
	00 Fast
	01 Mediumalways reads 01
20	10 Slow 11 Reserved
8	11 110001,00
7	Data Parity Error Detected always reads 0 Fast Back-to-Back Capable always reads 0
6	User Definable Featuresalways reads 0
5	66MHz Capable always reads 1
4	Supports New Capability listalways reads 1
3-0	Reserved always reads 0
3-0	in always reads o
Device	1 Offset 8 - Revision ID (00h)RO
7-0	P4X400 Chip Revision Code (00=First Silicon)
Device	1 Offset 9 - Programming Interface (00h)RO
	gister is defined in different ways for each Base/Sub-
	ode value and is undefined for this type of device.
7	• •
7-0	Interface Identifieralways reads 00
Device	1 Offset A - Sub Class Code (04h)RO
7-0	Sub Class Code.reads 04 to indicate PCI-PCI Bridge
Device	1 Offset B - Base Class Code (06h)RO
	Base Class Code reads 06 to indicate Bridge Device
Device	1 Offset D - Latency Timer (00h)RO
7-0	Reservedalways reads 0
Device	1 Offset E - Header Type (01h)RO
7-0	Header Type Codereads 01: PCI-PCI Bridge

Device 1 Offset 18 - Primary Bus Number (00h)RW	Device 1 Offset 3F-3E - PCI-to-PCI Bridge Control
7-0 Primary Bus Number default = 0	(0000h)RW
This register is read write, but internally the chip always uses	15-4 Reserved always reads 0
bus 0 as the primary.	3 VGA-Present on AGP
Davies 1 Offset 10 Coses dave Due Number (00h) DW	0 Forward VGA accesses to PCI Bus default
Device 1 Offset 19 - Secondary Bus Number (00h)RW	1 Forward VGA accesses to AGP Bus Note: VGA addresses are memory A0000-BFFFFh
7-0 Secondary Bus Number	and I/O addresses 3B0-3BBh, 3C0-3CFh and 3D0-
Note: AGP must use these bits to convert Type 1 to Type 0.	3DFh (10-bit decode). "Mono" text mode uses
Device 1 Offset 1A - Subordinate Bus Number (00h) RW	B0000-B7FFFh and "Color" Text Mode uses B8000-
7-0 Primary Bus Number default = 0	BFFFFh. Graphics modes use Axxxxh. Mono VGA
Note: AGP must use these bits to decide if Type 1 to Type 1	uses I/O addresses 3Bx-3Cxh and Color VGA uses
command passing is allowed.	3Cx-3Dxh. If an MDA is present, a VGA will not
7	use the 3Bxh I/O addresses and B0000-B7FFFh
Device 1 Offset 1B - Secondary Latency Timer (00h)RO	memory space; if not, the VGA will use those
7-0 Reserved always reads 0	addresses to emulate MDA modes.
·	2 Block / Forward ISA I/O Addresses
Device 1 Offset 1C - I/O Base (F0h)RW	0 Forward all I/O accesses to the AGP bus if they are in the range defined by the I/O Base
7-4 I/O Base AD[15:12] default = 1111b	and I/O Limit registers (device 1 offset 1C-
3-0 I/O Addressing Capability default = 0	1D)
Device 1 Offset 1D - I/O Limit (00h)RW	default
7-4 I/O Limit AD[15:12] default = 0	1 Do not forward I/O accesses to the AGP bus
3-0 I/O Addressing Capability default = 0	that are in the 100-3FFh address range even if
	they are in the range defined by the I/O Base
Device 1 Offset 1F-1E - Secondary StatusRO	and I/O Limit registers.
15-0 Secondary Status	1-0 Reservedalways reads 0
Rx44[4] = 0: these bits read back 0000h	
Rx44[4] = 1: these bits read back same as $Rx7-6$	
Device 1 Offset 21-20 - Memory Base (FFF0h)RW	
15-4 Memory Base AD[31:20] default = FFFh	
3-0 Reserved always reads 0	
Davies 1 Offset 22 22 Memory Limit (Inclusive) (0000h) DW	7
Device 1 Offset 23-22 - Memory Limit (Inclusive) (0000h) RW	y .
15-4 Memory Limit AD[31:20] default = 0 3-0 Reserved	
3-0 Reserved always reads 0	
Device 1 Offset 25-24 - Prefetchable Mem Base (FFF0h) RW	
15-4 Prefetchable Memory Base AD[31:20]default = FFFh	
3-0 Reserved always reads 0	
Device 1 Offset 27-26 - Prefetchable Memory Limit	
(0000h)RW	
15-4 Prefetchable Memory Limit AD[31:20]. default = 0	
3-0 Reservedalways reads 0	
·	
Device 1 Offset 34 - Capability Pointer (80h)RO	
Contains an offset from the start of configuration space.	
-	
7-0 AGP Capability List Pointer always reads 80h	

Device 1 PCI-to-PCI Bridge Device-Specific Registers

AGP Bus Control

<u>Device</u>	1 Offset 40 - CPU-to-AGP Flow Control 1 (00h) RW
7	CPU-AGP Post Write
	0 Disabledefault
	1 Enable
6	Reserved always reads 0
5	CPU-AGP One Wait State Burst Write
	0 Disabledefault
	1 Enable
4-3	Read Prefetch Control
	00 Always prefetchdefault
	x1 Never prefetch
	10 Prefetch only for Enhance command
2	MDA Present on AGP
	0 Forward MDA accesses to AGPdefault
	1 Forward MDA accesses to PCI
	Note: Forward despite IO / Memory Base / Limit
	Note: MDA (Monochrome Display Adapter)
	addresses are memory addresses B0000h-B7FFFh
	and I/O addresses 3B4-3B5h, 3B8-3BAh, and 3BFh
	(10-bit decode). 3BC-3BE are reserved for printers.
	Note: If Rx3E bit-3 is 0, this bit is a don't care (MDA
	accesses are forwarded to the PCI bus).
1	AGP Master Read Caching
	0 Disabledefault
_	1 Enable
0	AGP Delay Transaction
	0 Disabledefault
	1 Enable
Ta	ble 9. VGA/MDA Memory/IO Redirection

Table 9. VGA/MDA Memory/IO Redirection

3E[3]	40[2]	VGA	MDA	Axxxx,	<u>B0000</u>	3Cx,	
<u>VGA</u>	MDA ^e	<u>is</u>	is	B8xxx	-B7FFF	3Dx	<u>3Bx</u>
Pres.	Pres.	<u>on</u>	<u>on</u>	Access	Access	<u>I/O</u>	<u>I/O</u>
0	-	PCI	PCI	PCI	PCI	PCI	PCI
1	0	AGP	AGP	AGP	AGP	AGP	AGP
1	1	AGP	PCI	AGP	PCI	AGP	PCI

Device	1 Offset 41 - CPU-to-AGP Flow Control 2 (08h) RW
7	Retry Status
	0 No retry occurreddefault
	1 Retry Occurredwrite 1 to clear
6	Retry Timeout Action
	0 No action taken except to record status def
	1 Flush buffer for write or return all 1s for read
5-4	Retry Count
	00 Retry 2, backoff CPU default
	01 Retry 4, backoff CPU
	10 Retry 16, backoff CPU
	11 Retry 64, backoff CPU
3	CPU-to-AGP Bursting Timeout
	0 Disable
	1 Enabledefault
2	Reservedalways reads 0
2	CPU-to-PCI/AGP Cycles Invalidate PCI/AGP
	Buffered Read Data
K	0 Disabledefault
	1 Enable
0	Reservedalways reads 0
Device	1 Offset 42 - AGP Master Control (00h)RW
7	Reserved (Must Be Programmed to 1) $def = 0$
	When this bit is set, the P4X400 will automatically
O	resolve the problem of AGP master cycles being
	blocked by PCI Master Cycles.
6	AGP Master One Wait State Write
	0 Disabledefault
	1 Enable
5	AGP Master One Wait State Read
	0 Disabledefault
	1 Enable
4	Break Consecutive PCI Master Accesses
	0 Disabledefault
	1 Enable
3	Reserved always reads 0
2	Claim I/O R/W and Memory Read Cycles
	0 Disabledefault
	1 Enable
1	Claim Local APIC FEEx xxxx Cycles
	0 Disabledefault
	1 Enable
0	Snoop Write Enable 2T Rate, Support Host Side
	Snoop Cycles at 2T Rate
	0 Disabledefault
	1 Enable

Device	1 Offs	et 43 - AGP Master Latency Timer (22h) RW	Device	1 Offset 45 – Fast Write Control (72)
7-4	Host	to AGP Time slot	7	Force Fast Write Cycle to be QW A
	0	Disable (no timer)		(if Rx45[6] = 0)
	1	16 GCLKs		0 Disable
	2	32 GCLKsdefault		1 Enable
			6	Merge Multiple CPU Transactions
	F	128 GCLKs		Write Burst Transaction
3-0	AGP	Master Time Slot		0 Disable
	0	Disable (no timer)		1 Enable
	1	16 GCLKs	5	Merge Multiple CPU Write Cycl
	2	32 GCLKsdefault		Offset 23-20 Into Fast Write Burst
				(if Rx45[6] = 0)
	F	128 GCLKs		0 Disable
				1 Enable
			4	Merge Multiple CPU Write
				Prefetchable Memory Offset 27
				Write Burst Cycles (if $Rx45[6] = 0$)
				0 Disable
				1 Enable

evice 1	1 Offse	et 45 – Fast Write Control (72h)RW
7	Force	e Fast Write Cycle to be QW Aligned
	(if Rx	445[6] = 0
	0	Disabledefault
	1	Enable
6	_	e Multiple CPU Transactions Into One Fast
		e Burst Transaction
	0	Disable
	1	Enabledefault
5	_	ge Multiple CPU Write Cycles To Memory
		t 23-20 Into Fast Write Burst Cycles
	,	(45[6] = 0)
		Disable
		Enabledefault
4		ge Multiple CPU Write Cycles To
		tchable Memory Offset 27-24 Into Fast
		e Burst Cycles (if $Rx45[6] = 0$)
	0	2 154616
		Enabledefault
3 2		always reads 0
2	7	Write Burst 4T Max (No Slave Flow Control)
_		Disabledefault
110	a w	Enable
1)		Write Fast Back to Back
V.	0	Disable
0	1	Enabledefault
0		Write Initial Block 1 Wait State
		Disable
		Enable
D 45	CDLLV	Vuita CDI I Wuita

		1 Ena	ble	default
	3	Reserved		always reads 0
	2	Fast Writ	e Burst 4T I	Max (No Slave Flow Control)
	0	0 Disa	able	default
		1 Ena	ble	
	1)	Fast Writ	e Fast Back	to Back
		0 Disa	able	
		1 Ena	ble	default
	0	Fast Writ	e Initial Blo	ck 1 Wait State
		0 Disa	able	default
		1 Ena	ble	
	Rx45	CPU Write	CPU Write	
	Bits	Address	Address	
	7-4	in Mem1	in Mem2	Fast Write Cycle Alignment
	x1xx	-	-	QW aligned, burstable
	0000	-	-	DW aligned, nonburstable
	x010	0	0	n/a
	0010	0	1	DW aligned, non-burstable
	x010	1	-	QW aligned, burstable
	x001	0	0	n/a
Y	x001	-	1	QW aligned, burstable
	0001	1	0	DW aligned, non-burstable
	x011	0	0	n/a
	x011	1	-	QW aligned, burstable
	x011	0	1	QW aligned, burstable
	1000	-	-	QW aligned, non-burstable
	1010	0	1	QW aligned, non-burstable
	1001	1	0	QW aligned, non-burstable

AGP Bus Control (continued)

Device	1 Offset 47-46 – PCI-to-PCI Bridge Device IDRW
15-0	PCI-to-PCI Bridge Device ID default = 0000
	G
Device	1 Offset 48 – AGP / PCI2 Error ReportingRW
7	AGP Cycle Data Parity ErrorWC
	0 Parity Error did not occurdefault
	1 Parity error occurredwrite 1 to clear
6	PCI #2 GSERR ErrorWC
	0 Parity Error did not occurdefault
	1 Parity error occurredwrite 1 to clear
5	Reserved always reads 0
4	Generate Parity Error on AGP Data Parity Error
	0 Disabledefault
	1 Enable
3-2	Reserved always reads 0
1	Generate Parity Error on PCI #2 Data Parity
	Error
	0 Disabledefault
	1 Enable

Generate Parity Error on PCI #2 Address Parity

Power Management

247-46 – PCI-to-PCI Bridge Device IDRW D-PCI Bridge Device ID default = 0000	Device 1 Offset 80 – Capability ID (01h) RO 7-0 Capability ID always reads 01h
2 48 – AGP / PCI2 Error ReportingRW Cycle Data Parity ErrorWC	7-0 Next Pointer: Nullalways reads 00h
Parity Error did not occurdefault Parity error occurredwrite 1 to clear 2 GSERR ErrorWC Parity Error did not occurdefault	Device 1 Offset 82 – Power Mgmt Capabilities 1 (02h) RO 7-0 Power Mgmt Capabilitiesalways reads 02h Device 1 Offset 83 – Power Mgmt Capabilities 2 (00h) RO
Parity error occurred	7-0 Power Mgmt Capabilitiesalways reads 00h Device 1 Offset 84 – Power Mgmt Ctrl/Status (00h) RW
Disable	7-2 Reserved always reads 0 1-0 Power State 00 D0 default 01 -reserved- 10 -reserved-
Enable ate Parity Error on PCI #2 Address Parity	11 D3 Hot Device 1 Offset 85 – Power Mgmt Status (00h)RO 7-0 Power Mgmt Status
c clareta	Device 1 Offset 86 – P2P Br. Support Extensions (00h). RO 7-0 P2P Bridge Support Extensions default = 00 Device 1 Offset 87 – Power Management Data (00h) RO
	7-0 Power Management Data default = 00

FUNCTIONAL DESCRIPTION

Configuration Strapping

TBD

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings

Table 10. Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit	Notes
$T_{\rm C}$	Case Operating Temperature	0	85	oC	1
T_{S}	Storage Temperature	-55	125	oC	1
V_{IN}	Input Voltage	-0.5	$V_{RAIL} + 10\%$	Volts	1, 2
V _{OUT}	Output Voltage	-0.5	$V_{RAIL} + 10\%$	Volts	1, 2

Note 1. Stress above the conditions listed may cause permanent damage to the device. Functional operation of this device should be restricted to the conditions described under operating conditions.

Note 2. V_{RAIL} is defined as the V_{CC} level of the respective rail. The CPU interface is 2.5V. Memory is 2.5V. AGP can be 1.5V (4x transfer mode) or 0.8V (8x transfer mode).

DC Characteristics

 $T_{C} = 0-85^{\circ}C$, $V_{RAIL} = V_{CC} \pm 5\%$, $V_{CORE} = 2.5V \pm 5\%$, GND = 0V

Table 11. DC Characteristics

Symbol	Parameter	Min	Max	Unit	Condition
$ m V_{IL}$	Input Low Voltage	-0.50	0.8	V	
V_{IH}	Input High Voltage	2.0	$V_{\rm CC}$ + 0.5	V	
V_{OL}	Output Low Voltage		0.55	V	$I_{OL} = 4.0 \text{ mA}$
V_{OH}	Output High Voltage	2.4	-	V	$I_{OH} = -1.0 \text{ mA}$
${ m I}_{ m IL}$	Input Leakage Current	-0	±10	uА	$0 < V_{\rm IN} < V_{\rm CC}$
I_{OZ}	Tristate Leakage Current	- 1	±20	uA	$0.55 < V_{OUT} < V_{CC}$

Drive strength for selected output pins is programmable. See Device 0 RxB0[6], B1, B3, B5, B6, B9, BA, D8-DB, E8-EB and straps VAD4-5 for details.

Power Characteristics

 $T_C = 0-85^{\circ}C, V_{RAIL} = V_{CC} \pm 5\%, V_{CORE} = 2.5V \pm 5\%, GND=0V$

Table 12. Power Characteristics – Internal and Interface Digital Logic

Symbol	Parameter	Тур	Max	Unit	Condition
I_{TT}	Power Supply Current – VTT			mA	Full-On Operation
I _{TTPOS}	Power Supply Current – VTT			mA	POS
I _{TTSTR}	Power Supply Current – VTT			mA	STR
I_{TTSOF}	Power Supply Current – VTT			mA	Soft-Off
I_{CCG}	Power Supply Current – VCCAGP			mA	Full-On Operation
I _{CCGPOS}	Power Supply Current – VCCAGP			mA	POS
I_{CCGSTR}	Power Supply Current – VCCAGP			mA	STR
I_{CCGSOF}	Power Supply Current – VCCAGP			mA	Soft-Off
I_{CCV}	Power Supply Current – VCCVL		Y	mA	Full-On Operation
I _{CCVPOS}	Power Supply Current – VCCVL		7	mA	POS
I _{CCVSTR}	Power Supply Current – VCCVL			mA	STR
I_{CCVSOF}	Power Supply Current – VCCVL			mA	Soft-Off
I_{CCM}	Power Supply Current – VCCMEM		. 5	mA	Full-On Operation
I _{CCMPOS}	Power Supply Current – VCCMEM	K		mA	POS
I _{CCMSTR}	Power Supply Current – VCCMEM			mA	STR
I_{CCMSOF}	Power Supply Current – VCCMEM			mA	Soft-Off
I_{CC25}	Power Supply Current – VCC25			mA	Full-On Operation
I _{CC25POS}	Power Supply Current – VCC25	V		mA	POS
I _{CC25STR}	Power Supply Current – VCC25		,	mA	STR
I _{CC25SOF}	Power Supply Current – VCC25			mA	Soft-Off
I_{SUS25}	Power Supply Current – VSUS25			mA	Full-On Operation
I _{SUS25POS}	Power Supply Current – VSUS25			mA	POS
I _{SUS25STR}	Power Supply Current – VSUS25			mA	STR
I _{SUS25SOF}	Power Supply Current – VSUS25			mA	Soft-Off
I_{CCQQ}	Power Supply Current – VCCQQ			mA	Max operating frequency
P_{D}	Power Dissipation			W	Max operating frequency

Table 13. Power Characteristics – Analog and Reference Voltages

Symbol	Parameter	Тур	Max	Unit	Condition
I_{CCGTL}	Power Supply Current – GTLVREF			mA	Max operating frequency
I _{CCHAREF}	Power Supply Current – HAVREF			mA	Max operating frequency
I _{CCHDREF}	Power Supply Current – HDVREF			mA	Max operating frequency
I _{CCHCREF}	Power Supply Current – HCMPVREF			mA	Max operating frequency
I _{CCMREF}	Power Supply Current – MEMVREF			mA	Max operating frequency
I _{CCGREF}	Power Supply Current – AGPVREF			mA	Max operating frequency
I _{CCVLREF}	Power Supply Current – VLVREF			mA	Max operating frequency
I_{CCHCK}	Power Supply Current – VCCHCK			mA	Max operating frequency
I _{CCMCK}	Power Supply Current – VCCMCK		.0	mA	Max operating frequency
I _{CCMDLL}	Power Supply Current – VCCMDLL			mA	Max operating frequency

AC Timing Specifications

AC timing specifications provided are based on external zero-pf capacitance load. Min/max cases are based on the following table:

Table 14. AC Timing Min / Max Conditions

Parameter	Min	Max	Unit
2.5V Power (Internal Logic)	2.375	2.625	Volts
1.5V Power (VCCQQ for 4x transfer mode)	1.425	1.575	Volts
0.8V Power (VCCQQ for 8x transfer mode)	0.76	0.84	Volts
Case Temperature	0	85	oС

Drive strength for selected output pins is programmable and may effect AC timing specifications. See Device 0 RxB0[6], B1, B3, B5, B6, B9, BA, D8-DB, E8-EB and straps VAD4-5 for details.

MECHANICAL SPECIFICATIONS

Figure 4. Mechanical Specifications – HSBGA-858 Ball Grid Array Package with Heat Spreader