R 学习

目录

第一章	准备	5
1.1	R 语言介绍	5
1.2	R 命令介绍	5
1.3	关于包的安装与使用	5
	1.3.1 安装对应的包	5
	1.3.2 包的使用	6
1.4	查看帮助	6
第二章	基础语法	7
第二章 2.1	基础语法	7 7
	— 	•
2.1	算术操作和向量运算	7
2.1 2.2	算术操作和向量运算	7 8
2.1 2.2 2.3 2.4	算术操作和向量运算	7 8 8

第一章 准备

1.1 R 语言介绍

R 语言和其他的语言之间提供了非常好的接口。

- R 语言对大小写敏感。
- 基本的命令是表达式或者赋值。
- 命令可以被;隔开。
- 注释符号用#

R 的缺点:

- 耗内存, 所以要用 rm 命令来删除对象, 以释放内存, 如:rm(x,y,z)。
- 精度有问题

1.2 R 命令介绍

在 linux 下面使用 R 的时候, 我们一般用到的命令是:

R --vanilla <plot.R > a.out

这里的 -vanilla 是参数,当然还有别的很多参数,具体有兴趣可以用 man 命令查看。 <plot.R 的意思是将 plot-R 这个文件作为一个输入。既然有输入,那自然有输出,>a.out 的意思就是将显示的内容输出到 a.out 这个文件中。

1.3 关于包的安装与使用

1.3.1 安装对应的包

R 语言中, 有多种方式可以导入数据包, 如下, 一目了然:

library(Hmisc)

source("plotter.R")

如果没有对应的包,就要安装,其中 source("plotter.R"),这个 plotter.R 文件是在当前的目录下的。在 linux 下,进入 R 之后,用如下命令:

install.packages("ggplot2")
install.packages("Hmisc")

1.3.2 包的使用

用 source 命令导入包,如:>source("plot.R")

1.4 查看帮助

如查看 solve 的帮助:

- >help(solve)
- >?solve

对于一些特殊的字符串可以加上双引号,如: >help("[[")

第二章 基础语法

mode(X)# 可以查看变量的类型

2.1 算术操作和向量运算

创建含有 5 个值的向量 x:

- x < -c(10, 2.5, 3.4, 2, 6, 1)
- x=c(10,2.5,3.4,2,6,1)
- assign("x",c(10,2.5,3.4,2,6,1))
- $c(10,2.5,3.4,2,6,1) \rightarrow x$

下面是一些简单的应用:

- 1\x# 显示 x 的倒数。
- y<-c(x,0,x)# 创建 y 向量。
- v<-2*x+y+1#

接下来是一些常用的数学函数:

log(X) log 函数

exp(X) 以 e 为底的指数函数

sin(X) sin

 $\cos(X) \cos$

tan(X) tan

sqrt(X) 对里面的数开根号

max(X)

 $\min(X)$

length(X)

sum(X)

prod(X) 得到向量中所有数的乘积

mean(X) 得到均值

var(X) 得到方差

sort(X) 对 X 进行排序

rev(X) 颠倒向量

sd(X) 得到标准差

2.2 向量的组合

X1=c(1,2,3,4)

X2=c(5,6,7,8)

rbind(X1,X2)# 得到一个排列的矩阵

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{bmatrix}$$

cbind(X1,X2)# 另一种排列方式

$$\begin{bmatrix} 1 & 5 \\ 2 & 6 \\ 3 & 7 \\ 4 & 8 \end{bmatrix}$$

2.3 字符和字符向量

字符向量既可以用双引号也可以使用单引号。

\n# 换行 \t# 制表符 \b# 退格

c() 可以将几个字符向量链接成一个字符向量。

paste() 可以进行任意的链接。

letters, 这是一个特殊的向量, 里面包含 26 个字母。例如 letters[2]='b'

2.4 关于正则序列

1:30 等价于 c(1,2,...,29,30)# 请注意,冒号: 的优先级别是最高的。 30:1 也是同样的道理,可以产生逆向序列。

seq(2,100,by=2)# 指定公差,表示 (2,4,...,98,100), by 就公差的意思。

seq(5,121,length=10)# 指定长度。

a[i] 表示 a 向量中的第 i 个元素。

a[2,3,4] 无法显示,报错如下:Error in a[2,4] : incorrect number of dimensions a[2:4] 表示 a 向量中第二和到第四个元素,返回的是一个 3 个数值的向量。

a[-1] 表示第一个不显示。

a[-(1:3)] 表示第一个到第三个不显示。

2.5 一些奇怪的函数

函数 is.na(X1) 表示返回一个和 X1 长度相同的向量, 里面的值为 FALSE。 which.max(a)#显示 a 向量中最大值的下标, 不可以用对字符向量进行该操作。 which.min(a)

2.6 矩阵的操作

a1=c(1:12)
matrix(a1,nrow=3,ncol=4),
matrix(a1,nrow=3,ncol=4,byrow=T) 显示如下:

> a1<-c(1:12)

> a1

[1] 1 2 3 4 5 6 7 8 9 10 11 12

> matrix(a1,nrow=3,ncol=4)

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

> matrix(a1,nrow=3,ncol=4,byrow=T)

[,1] [,2] [,3] [,4]

[1,] 1 2 3 4

[2,] 5 6 7 8

[3,] 9 10 11 12

2.6.1 矩阵乘法

a%*%b 注意,中间没有空格。

> a1%*%a1

[,1]

[1,] 650

> a1%*%t(a1)

[,1]	[,2]	[,3]	[,4]	[,5]	[,6]	[,7]	[,8]	[,9]	[,10]	[,11]	[,12]	
[1,]	1	2	3	4	5	6	7	8	9	10	11	12
[2,]	2	4	6	8	10	12	14	16	18	20	22	24
[3,]	3	6	9	12	15	18	21	24	27	30	33	36
[4,]	4	8	12	16	20	24	28	32	36	40	44	48
[5,]	5	10	15	20	25	30	35	40	45	50	55	60
[6,]	6	12	18	24	30	36	42	48	54	60	66	72
[7,]	7	14	21	28	35	42	49	56	63	70	77	84
[8,]	8	16	24	32	40	48	56	64	72	80	88	96
[9,]	9	18	27	36	45	54	63	72	81	90	99	108
[10,]] 10) 20) 30) 40) 50) 60	70) 80	90	100	110	120
[11,]] 1:	1 22	2 33	3 44	1 55	5 66	5 77	7 88	3 99	110	121	132
[12,]] 12	2 24	4 36	5 48	3 60	72	2 84	1 96	5 108	120	132	144