

# Armauer Hansen Research Institute

Department of Malaria and Neglected Tropical Disease (MINTD)

Project Title: AI-Based Data Anomaly Detection System.

Submitted to DSWB-AHRI Hackathon-2025 Team: requirement of to develop accurate, reusable and scalable solutions that can serve to solve real time problems the institute is engaged in.

Submitted By: Mihret Ebabu

Armauer Hansen Research Institute

Addis Ababa, Ethiopia

May-13-2025

# **Contents**

| Introduction                                            | 3 |
|---------------------------------------------------------|---|
| Background                                              | 3 |
| Objectives                                              | 3 |
| Proposed Solution                                       | 3 |
| Detailed Methodology                                    |   |
| Proposed Models                                         |   |
| Programming Language & Tools                            |   |
| Evaluation and Testing                                  | 4 |
| Expected Outcomes                                       | 5 |
| Selected Milestone Functionality                        | 5 |
| Building the AE model architecture                      | 5 |
| Data Handling & Preparation Functions                   | 5 |
| Anomaly Scoring & Thresholding Functions                | 5 |
| Anomaly Detection Functions                             |   |
| Interpretation & Visualization Functions                | 5 |
| Project Summary: AI-Based Data Anomaly Detection System |   |

#### Introduction

Ensuring the integrity of health data is critical to accurate clinical decision-making and effective public health interventions, especially in low- and middle-income countries (LMICs) where data systems are often fragmented and manually managed. This project addresses the pressing need for automated, scalable, and interpretable anomaly detection by developing an AI-driven framework capable of identifying missing, inconsistent, and contextually implausible data in real-world healthcare datasets. By leveraging a hybrid approach—combining deep learning models, time-series analysis, and rule-based logic—the proposed system aims to enhance data reliability, reduce error rates, and support the trustworthiness of digital health ecosystems under constrained computing environments.

## **Background**

In many low- and middle-income countries (LMICs), health data is often collected manually, stored in fragmented systems, and prone to errors. Data anomalies—such as missing entries, outliers, and inconsistencies—pose serious risks to healthcare decision-making, clinical outcomes, and research accuracy. Common examples include illogical timestamps, medically implausible values (e.g., adult weight 5kg), and device-generated artifacts. Identifying these anomalies accurately and efficiently is essential to improve data quality, reliability, and trust in digital health ecosystems.

# **Objectives**

The primary objective of this project is to design a **robust**, **AI-driven anomaly detection** system capable of automatically identifying missing data, point anomalies, and contextual or collective inconsistencies in real-world health datasets.

The system will be interpretable, scalable, and deployable in environments with limited computing infrastructure, and demonstrate high precision and recall for clinically relevant anomalies.

# **Proposed Solution**

We propose to develop a **hybrid anomaly detection framework** using unsupervised deep learning (**Autoencoders**) for point anomalies and Long and Short-Term Memory (LSTM)-based time-series models to capture contextual and temporal inconsistencies. We will also implement **rule-based** checks for obvious logical violations. The system will be designed to **generate interpretable alerts** and can be generalized across datasets with **minimal reconfiguration**.

# **Detailed Methodology**

#### **Data Preparation Pipeline**

- Analyze schema and completeness of the dataset.
- Handle missing values using imputation or marking for detection.
- Normalize date/time formats and categorical values.
- Generate statistical summaries for outlier detection.

### **Proposed Models**

- Autoencoder (AE): For unsupervised detection of point anomalies based on reconstruction error.
- **LSTM-based sequence model**: for detecting temporal anomalies in time-series data such as patient vitals.
- **Rule-Based Logic**: E.g., Discharge date before admission, male with pregnancy, zero pulse for extended duration.

## **Programming Language & Tools**

- Python 3.9+: Libraries: `Pandas`, `NumPy`, `Scikit-learn`, `TensorFlow/Keras`, `Matplotlib`, `Seaborn`, `PyOD`.
- Development in JupyterLab environment.

#### **Evaluation and Testing**

- Use synthetic datasets and real health data samples with embedded anomalies.
- Evaluation Metrics: Precision, Recall, F1-score, Confusion Matrix, ROC-AUC (where applicable)
- Cross-validation withheld-out anomaly-labeled datasets

### **Data Quality Dashboards**

- Visualize anomalies by site, time, or user.
- Track trends in anomalies to identify training or system issues.

### **Audit Trail & Logs**

- Track who entered or edited which data and when.
- Helps trace the source of anomalies and prevent recurring errors.

## **Expected Outcomes**

This project is expected to produce a **modular**, **interpretable** anomaly detection system capable of handling real-world healthcare datasets. Deliverables will include a Python-based toolset for **preprocessing**, **anomaly detection**, **visualization**, and **reporting**, along with a documented Jupyter Notebook and demo-ready output for evaluation.

# **Selected Milestone Functionality**

The key milestone selected for submission is the implementation of an Autoencoderbased anomaly detection module.

Includes:

# **Building the AE model architecture**

 Designing the structure of the Autoencoder (encoder-decoder layers, activation functions, etc.).

### **Data Handling & Preparation Functions**

Training on normalized clinical data

Feeding preprocessed, scaled data into the Autoencoder model to learn normal patterns.

# **Anomaly Scoring & Thresholding Functions**

Generating reconstruction loss threshold

Calculating reconstruction errors and determining the cutoff point to classify anomalies.

#### **Anomaly Detection Functions**

Identifying and flagging high-loss anomalies

Detecting data points with errors above the threshold and marking them as potential anomalies.

#### **Interpretation & Visualization Functions**

Visualizing results with interpretability support

Creating interpretable plots (e.g., loss distributions, anomaly scores, feature contributions) to explain why data was flagged.

# **Project Summary: Al-Based Data Anomaly Detection System**

Submitted by: Mihret Ebabu

Institution: Armauer Hansen Research Institute (AHRI), Department of Malaria and

Neglected Tropical Diseases

**Event:** DSWB-AHRI Hackathon 2025

This project proposes the development of an **AI-driven anomaly detection system** to improve the integrity and reliability of healthcare data, especially in low- and middle-income countries where data is often fragmented and manually collected. The system combines **Autoencoders**, **LSTM-based time-series models**, and **rule-based logic** to detect various anomalies, including missing values, outliers, and contextual inconsistencies.

#### The framework will be:

- Scalable, for use across different datasets and sites
- **Interpretable**, offering clear anomaly explanations
- **Lightweight**, suitable for low-resource settings

#### Key features include:

- A data preparation pipeline (cleaning, normalization, imputation)
- Autoencoder-based detection for point anomalies
- LSTM for sequence-based anomaly detection
- Rule checks for logical violations (e.g., male with pregnancy)
- Visual dashboards to track anomaly trends
- Audit trails to trace data issues back to their source

**Tools & Environment:** Python 3.9+, TensorFlow/Keras, PyOD, Pandas, NumPy, Scikit-learn, JupyterLab

**Evaluation Metrics:** Precision, Recall, F1-score, ROC-AUC, confusion matrix

**Milestone Delivered:** An Autoencoder module that preprocesses health data, learns normal patterns, flags anomalies based on reconstruction loss, and visualizes the results for interpretability.