Unconventional Government Debt Purchases as a Supplement to Conventional Monetary Policy (2014)

Martin Ellison e Andreas Tischbirek - Journal of Economic Dynamics & Control

Presented by Marcelo Alonso, Ricardo Semião São Paulo School of Economics, November 2024

Contents

Introdução

Modelo

Calibração

Mecanismos de Transmissão

Extensão - RRP

Conclusão

Introdução

Motivação do Paper

Grande Crise Financeira (2007-2008):

- Emergência levou à adoção de instrumentos monetários não convencionais.
- Ferramentas novas, com pouca experiência prévia e alta incerteza sobre impactos.

· Objetivo Inicial:

 Políticas não convencionais vistas como respostas emergenciais, temporárias pós-crise.

Investigação Principal:

 Avaliar se a compra de dívida pública de longo prazo pode ser útil mesmo após a crise.

Contribuições do Artigo

Modelo Utilizado:

- Modelo New Keynesian DSGE com setor financeiro estilizado.
- Regra de política tipo Taylor para compras de ativos pelo banco central.

Mecanismo de Ação:

- Canal de "preferred habitat": investidores veem títulos de diferentes maturidades como substitutos imperfeitos.
- Compras do banco central reduzem a oferta de títulos de longo prazo, aumentando preço e diminuindo rendimento.
- · Impactos: redução na poupança, aumento no produto e inflação.

Modelo

Households – Preferências

Função de Utilidade:

$$U_0 = E_0 \sum_{t=0}^{\infty} \beta^t \left(\chi_t^C \frac{C_t^{1-\delta}}{1-\delta} - \chi_t^L \frac{L_t^{1+\psi}}{1+\psi} \right)$$
$$C_t := \left(\int_0^1 C_t(i)^{\frac{\theta_t-1}{\theta_t}} di \right)^{\frac{\theta_t}{\theta_t-1}}$$

Preferências Exógenas:

$$\ln(\chi_t^C) = \rho_C \ln(\chi_{t-1}^C) + \varepsilon_t^C, \qquad \qquad \varepsilon_t^C \sim N(0, \sigma_C^2)$$

$$\ln(\chi_t^L) = \rho_L \ln(\chi_{t-1}^L) + \varepsilon_t^L, \qquad \qquad \varepsilon_t^L \sim N(0, \sigma_L^2)$$
(2)

$$\ln\left(\frac{\theta_t}{\theta}\right) = \rho_\theta \ln\left(\frac{\theta_{t-1}}{\theta}\right) + \varepsilon_t^\theta, \qquad \varepsilon_t^\theta \sim N(0, \sigma_\theta^2) \tag{10}$$

Households – Problema e Condições de Equilíbrio

Problema do Consumidor:

$$P_{t}C_{t} + T_{t} + P_{t}^{S}S_{t,t+1} = S_{t-1,t} + W_{t}L_{t} + (1 - t_{\pi})(P_{t}Y_{t} - W_{t}L_{t})$$
(3)
$$P_{t} := \left(\int_{0}^{1} P_{t}(i)^{\frac{\theta_{t}-1}{\theta_{t}}} di\right)^{\frac{\theta_{t}}{\theta_{t}-1}}$$

· Condições de Primeira Ordem:

$$1 = \beta \left[\frac{\chi_{t+1}^C}{\chi_t^C} \left(\frac{C_{t+1}}{C_t} \right)^{-\delta} \frac{1}{\Pi_{t+1}} \right] \frac{1}{P_t^S}$$
 (4)

$$\frac{W_t}{P_t} = \frac{\chi_t^L L_t^{\psi}}{\chi_t^C C_t^{-\delta}} = \frac{\chi_t^L}{\chi_t^C} L_t^{\psi} C_t^{\delta}$$
 (5)

• Eq. de Euler consumo-poupança e relação ótima consumo-trabalho.

Firmas – Produção e Formação de Preços

• Função de Produção para a firma i:

$$Y_t(i) = A_t L_t(i)^{\frac{1}{\phi}}$$

$$\ln(A_t) = \rho_A \ln(A_{t-1}) + \varepsilon_t^A, \quad \varepsilon_t^A \sim N(0, \sigma_A^2), \quad |\rho_A < 1|$$
(6)

Ajuste de Preços a-la Calvo:

$$P_t = \left((1 - \alpha) P_t^*(i)^{1 - \theta_t} + \alpha P_{t-1}^{1 - \theta_t} \right)^{\frac{1}{1 - \theta_t}}$$

7

Firmas – Problema e Condições de Equilíbrio

Maximização de Lucros:

$$E_{t} \sum_{T=t} \alpha^{T-t} M_{t,T} [P_{t}(i) Y_{T}(i) - W_{T} L_{T}(i)]$$

$$Y_{t}(i) = \left(\frac{P_{t}(i)}{P_{t}}\right)^{-\theta_{t}} Y_{t}, \quad M_{t,T} \equiv \beta^{T-t} \frac{\chi_{T}^{C} C_{T}^{-\delta} P_{t}}{\chi_{C}^{C} C_{\bullet}^{-\delta} P_{T}}$$

Condições de Primeira Ordem:

$$\left(\frac{1 - \alpha \Pi_t^{\theta_t - 1}}{1 - \alpha}\right)^{\frac{1}{1 - \theta_t}} = \left(\frac{K_t}{F_t}\right)^{\frac{1}{\theta_t (1 - \phi) + 1}}$$
$$F_t \equiv \chi_t^C C_t^{-\delta} + \alpha \beta E_t Y_t \Pi_{t+1}^{\theta_t - 1} F_{t+1}$$

$$K_t \equiv \frac{\theta_t \phi}{\theta_t - 1} \chi_t^L L_t^{\psi} \left(\frac{Y_t}{A_t} \right)^{\phi} + \alpha \beta E_t \Pi_{t+1}^{\theta_t \phi} K_{t+1}$$

(7)

(8)

(9)

Bancos - Objetivo e Restrição Orçamentária

- Objetivo do Banco Representativo:
 - Oferece dispositivos de poupança aos lares.
 - Decide alocação de depósitos em títulos públicos de curto e longo prazo.
- Restrição de Fluxo e Orçamentária do Banco:

$$P_t^S S_{t,t+1} = P_t^B B_{t,t+1} + P_t^Q Q_{t,t+\tau}$$
 (11)

$$S_{t-1,t} = B_{t-1,t} + \frac{1}{\tau} \sum_{j=1}^{\tau} Q_{t-j,t+\tau-j}$$
 (14)

Bancos – Problema e Condições de Equilíbrio

• Função Valor:

$$\max_{B_{t,t+1},Q_{t,t+\tau}} V\left(\frac{B_{t,t+1}}{P_t}, \frac{Q_{t,t+\tau}}{P_t}\right), \ \, s.t. \ \, (11)$$

Demandas por Ativos (Modelo GTL):

$$\frac{B_{t,t+1}}{P_t} = g^B + \frac{P_t^S s_t - P_t^B g^B - P_t^Q g^Q}{P_t^B} \left[a_1 + a_2 \log \left(\frac{P_t^B}{P_t^Q} \right) \right]$$
(12)

$$\frac{Q_{t,t+\tau}}{P_t} = g^Q + \frac{P_t^S s_t - P_t^B g^B - P_t^Q g^Q}{P_t^Q} \left[1 - a_1 - a_2 \log \left(\frac{P_t^B}{P_t^Q} \right) \right]$$
(13)

Bancos - Taxas de Juros

Taxas de Juros:

$$1 + i_{t} = \frac{1}{P_{t}^{B}}$$

$$P_{t}^{Q} = \frac{\frac{1}{\tau}}{1 + i_{t}^{Q}} + \frac{\frac{1}{\tau}}{\left(1 + i_{t}^{Q}\right)^{2}} + \frac{\frac{1}{\tau}}{\left(1 + i_{t}^{Q}\right)^{3}} + \dots + \frac{\frac{1}{\tau}}{\left(1 + i_{t}^{Q}\right)^{\tau}} =$$

$$= \frac{1}{\tau} \frac{1}{1 + i_{t}^{Q}} \frac{1 - \left(\frac{1}{1 + i_{t}^{Q}}\right)^{\tau}}{1 - \frac{1}{1 + i_{t}^{Q}}}$$

$$(15)$$

Governo – Emissão de Dívida e Política Fiscal

Emissão de Dívida Pública:

- Emissão de títulos de curto e longo prazo pelo tesouro.
- Títulos de longo prazo emitidos de acordo com a regra:

$$rac{ar{Q}_{t,t+ au}}{P_t}=fY$$

onde f é uma constante e Y é o output de estado estacionário.

- Sem Mercado Secundário:
 - Títulos de longo prazo devem ser mantidos até o vencimento.
 - Evita que títulos de diferentes maturidades sejam substitutos perfeitos.
- Consumo do Governo:

Consumo do Governo.
$$G_t \coloneqq \left(\int_0^1 G_t(i)^{\frac{\theta_t-1}{\theta_t}} di\right)^{\frac{\theta_t}{\theta_t-1}}$$

$$\ln\left(\frac{G_t}{G}\right) = \rho_G \ln\left(\frac{G_{t-1}}{G}\right) + \varepsilon_t^G, \ \ \varepsilon_t^G \sim \textit{N}(0,\sigma_G^2)$$

 $T_t = P_t G_t$

(18)

(17)

Governo – Regra de Política do Banco Central

Regra de Taxa de Juros de Curto Prazo:

$$\frac{1+i_t}{1+i} = \left(\frac{\Pi_t}{\Pi}\right)^{\gamma_\Pi} \left(\frac{Y_t}{Y}\right)^{\gamma_Y} \nu_t \tag{19}$$

$$\ln(\nu_t) = \rho_{\nu} \ln(\nu_{t-1}) + \varepsilon_t^{\nu}, \quad \varepsilon_t^{\nu} \sim N(0, \sigma_{\nu}^2)$$
 (20)

Regra de Compras de Ativos do Banco Central:

$$\frac{\bar{Q}_{t,t+\tau} - Q_{t,t+\tau}^{CB}}{\bar{Q}_{t,t+\tau}} = \left(\frac{\Pi_t}{\Pi}\right)^{\gamma_{\Pi}^{QE}} \left(\frac{Y_t}{Y}\right)^{\gamma_{Y}^{QE}} \xi_t \tag{21}$$

$$\ln(\xi_t) = \rho_{\nu} \ln(\xi_{t-1}) + \varepsilon_t^{\xi}, \quad \varepsilon_t^{\xi} \sim N(0, \sigma_{\xi}^2)$$
 (22)

- ν_t é um choque de taxa de juros e ξ_t é um choque de política monetária.
- $\gamma_\Pi, \gamma_Y, \gamma_\Pi^{QE}, \gamma_Y^{QE} > 0$ são parâmetros da política.

Equilíbrio nos Mercados

Restrição Orçamentária do Governo:

$$P_{t}^{B}B_{t,t+1} + P_{t}^{Q}\bar{Q}_{t,t+\tau} + T_{t} + t_{\pi}(P_{t}Y_{t} - W_{t}L_{t}) + \pi_{t}^{CB} = P_{t}G_{t} + B_{t-1,t} + \frac{1}{\tau} \sum_{j=1}^{\tau} \bar{Q}_{t-j,t+\tau-j}$$

$$\pi_{t}^{CB} = \frac{1}{\tau} \sum_{j=1}^{\tau} Q_{t-j,t+\tau-j}^{CB} - P_{t}^{Q}Q_{t,t+\tau}^{CB}$$

Mercado de Títulos de Longo Prazo:

$$\bar{Q}_{t,t+\tau} = Q_{t,t+\tau} + Q_{t,t+\tau}^{CB}$$
 (23)

Mercado de Bens:

$$Y_t = C_t + G_t \tag{24}$$

Equilíbrio nos Mercados

Mercado de Trabalho:

$$L_{t} = \int_{0}^{1} L_{t}(i) di$$

$$Y_{t} = A_{T} \left(\frac{L_{T}}{D_{t}}\right)^{\frac{1}{\phi}}$$
(25)

Dinâmica da Dispersion de Preços:

$$D_t = (1 - \alpha) \left(\frac{1 - \alpha \Pi_t^{\theta_t - 1}}{1 - \alpha} \right)^{\frac{\sigma_{t^{\varphi}}}{\theta_t - 1}} + \alpha \Pi_t^{\theta_t \phi} D_{t - 1}$$
 (26)

 (1)-(26) definem o modelo. Se Π > 0, variáveis nominais tem tendência, de modo que é feita uma aproximação de primeira ordem em torno do estado estacionário.

Parameter	Value	Description
β	0.99	Household discount factor
δ	2	Elasticity of intertemporal substitution in consumption
ψ	0.5	Inverse Frisch elasticity of labour supply
θ	6	Steady-state of intratemporal elasticity of substitution
ϕ	1.1	Inverse of returns to scale in production
α	0.85	Degree of price rigidity
П	1.005	Steady-state inflation
au	20	Horizon of long-term bond
$ar{g}$	0.4	Steady-state ratio of government spending to GDP
$t_{\mathcal{P}}$	0.5	Share of firm profits received by the government
f	0.66	Parameter in long-term bond supply rule

Parameter	Value	Description
a ₁	0.95	Asset demand
a_2	0	Asset demand
g^{B}	10.21	Asset demand (subsistence level of B)
$g^{\scriptscriptstyle Q}$	0.59	Asset demand (subsistence level of Q)
$ ho_{ u}$	0.1	Persistence of shock to interest rate rule
ρ_{ξ}	0.1	Persistence of shock to asset purchase rule
$\rho_{\mathcal{C}}$	0.1	Persistence of consumption preference shock
$ ho_{L}$	0.7	Persistence of labour supply preference shock
$ ho_{G}$	0.1	Persistence of government spending
$ ho_{A}$	0.7	Persistence of technology shock
$ ho_{ heta}$	0.95	Persistence of shock to elasticity of substitution

Parameter	Value	Description
σ_{ν}	0.0025	Standard deviation of shock to interest rate rule
σ_{ξ}	0.0025	Standard deviation of shock to asset purchase rule
$\sigma_{\mathcal{C}}$	0.0025	Standard deviation of consumption preference shock
σ_{L}	0.0025	Standard deviation of labour supply preference shock
$\sigma_{m{G}}$	0.005	Standard deviation of government spending shock
σ_{A}	0.01	Standard deviation of technology shock
σ_{θ}	0.06	Standard deviation of shock to elasticity of substitution

Mecanismos de Transmissão

Interpretação dos parâmetros

- Os parâmetros γ_{Π} , γ_{Y} , γ_{Π}^{QE} e γ_{Y}^{QE} regulam a intensidade da resposta do banco central a desvios do estado estacionário:
 - γ_Π = 1.01: reage de forma mais do que proporcional a um aumento na inflação acima da meta (política convencional).
 - $\gamma_Y = 0.3$: resposta a desvios do produto (política convencional).
 - $\gamma_\Pi^{QE}=$ 0: sem resposta direta da política de compras de títulos de longo prazo à inflação.
 - $\gamma_{\rm Y}^{\it QE}=$ 60: forte resposta a desvios do produto (política não convencional).
- · Interpretação econômica:
 - $\gamma_{Y}^{QE}=$ 60 implica que, no estado estacionário, uma queda de 1% no produto leva o banco central a comprar cerca de 45% dos novos títulos de longo prazo emitidos. Esse volume de compras representa menos de 5% da dívida total de longo prazo em circulação.

Resposta ao Choque na Taxa de Juros de Curto Prazo

- Choque expansionista reduz a taxa de juros nominal de curto prazo:
 - Representado na equação (19) do paper:

$$1 + i_t = (1 + i) \left(\frac{\Pi_t}{\Pi}\right)^{\gamma_\Pi} \left(\frac{Y_t}{Y}\right)^{\gamma_Y} \nu_t$$

• ν_t é um termo de choque exógeno, com processo AR(1):

$$\ln(\nu_t) = \rho_{\nu} \ln(\nu_{t-1}) - \epsilon_{\nu}$$

onde $\epsilon_{\nu} \sim \textit{N}(0, \sigma_{\nu}^2)$ e $\sigma_{\nu} = 0.0025$.

Impactos no Consumo, Produto e Inflação

- Aumento no preço dos títulos de curto prazo reduz sua demanda.
- Elevação no preço do dispositivo composto de poupança (P_S) :
 - Redução na poupança das famílias.
 - Aumento no consumo, estimulando a demanda agregada.
 - Expansão no produto, refletindo maior atividade econômica.
- Inflação acima do estado estacionário:
 - Crescimento na inflação devido ao aumento da demanda agregada.
 - Distorções de preços relativos reduzem a eficiência da alocação de recursos, mitigando o crescimento do produto.
- Impacto menos persistente no produto do que na inflação:
 - A inflação prolonga-se devido a ajustes mais lentos nos preços relativos.
 - O produto retorna mais rapidamente ao estado estacionário, uma vez que os estímulos ao consumo se dissipam.

Resposta ao Choque na Taxa de Juros de Curto Prazo

Fig. 1. Response to an expansionary short-term nominal interest rate shock.

Resposta ao Choque nas Compras de Títulos de Longo Prazo

- Choque expansionista nas compras de títulos de longo prazo pelo banco central:
 - · Representado na equação (21) do paper:

$$\frac{Q_t - Q_t^{CB}}{Q_t} = \left(\frac{\Pi_t}{\Pi}\right)^{\gamma_\Pi^{QE}} \left(\frac{Y_t}{Y}\right)^{\gamma_Y^{QE}} \xi_t$$

• ξ_t é um termo de choque exógeno com processo AR(1):

$$\ln(\xi_t) = \rho_{\xi} \ln(\xi_{t-1}) - \epsilon_{\xi}$$

onde $\epsilon_{\xi} \sim \textit{N}(0, \sigma_{\xi}^2)$ e $\sigma_{\xi} = 0.0025$.

Impactos da Redução na Oferta de Títulos de Longo Prazo

- Redução na oferta de títulos de longo prazo para o setor privado:
 - Aumento no preço dos títulos de longo prazo (P_Q) .
 - Redução nos rendimentos de longo prazo (i_Q) ("achatamento da curva de juros").
- Elevação no preço do dispositivo composto de poupança (P_S) :
 - Redução na poupança das famílias.
 - Aumento no consumo e na oferta de trabalho.
- Aumento do produto e da inflação:
 - Inflação cresce a uma taxa mais rápida devido ao aumento da demanda.
- Demanda por títulos de curto prazo também diminui:
 - Banco central segue a regra da taxa de juros, elevando i_t , o que estabiliza parcialmente a demanda.
- Ajuste gradual:
 - Poupança e oferta de trabalho retornam ao estado estacionário, mitigando os efeitos negativos da inflação sobre o produto.

Resposta ao Choque na compra de títulos de LP

Central Bank Loss Function

A função de perda do banco central é especificada como:

$$\Omega = \omega_{\Pi} \operatorname{Var}(\Pi_{t} - \Pi) + \omega_{Y} \operatorname{Var}(Y_{t} - Y) + \omega_{i} \operatorname{Var}(i_{t} - \overline{i}) + \omega_{Q} \operatorname{Var}(i_{t}^{Q} - \overline{i}^{Q})$$

- $\omega_{\Pi}, \omega_{Y}, \omega_{i}, \omega_{Q}$: pesos positivos atribuídos a cada componente.
- Componentes:
 - Inflação: Var(∏_t − ∏)
 - Produto: Var(*Y_t* − *Y*)
 - Taxa de juros de curto prazo: $Var(i_t \bar{i})$
 - Taxa de juros de longo prazo: $Var(i_t^Q \bar{i}^Q)$

Optimised policy rules without interest rate stabilisation

- Melhor combinação: Regras otimizadas conjuntamente:
 - Taxas de juros reagem à inflação.
 - · Compras de ativos reagem ao produto.
- Impacto no bem-estar: Perdas evitadas equivalem a 1,64 p.p. a menos na inflação estacionária.

Weights (in %) $(\omega_{II}, \omega_{Y}, \omega_{i}, \omega_{Q})$	Interest rate rule $(\gamma_{\Pi}, \gamma_{Y})$	Asset purchase rule $(\gamma_{II}^{QE}, \gamma_{Y}^{QE})$	$Var(\Pi_t)$ $\times 10^{-5}$	$Var(Y_t) \times 10^{-5}$	$Var(i_t)$ $\times 10^{-4}$	$Var(i_t^Q) \times 10^{-4}$	Loss	Δπ* equ.(%)
70, 30, 0, 0	1.48, 2.22	0(f), 0(f)	9.33	1.43	1.59	0.85	6.96	
	1.48(f), 2.22(f)	0.05, 1.87	9.36	1.16	1.62	0.60	6.90	
	1.66, 0.00	0.00, 18.59	7.71	1.35	2.16	1.16	5.80	1.64
80, 20, 0, 0	1.49, 2.16	0(f), 0(f)	9.30	1.53	1.58	0.88	7.75	
	1.49(f), 2.16(f)	0.04, 1.78	9.29	1.23	1.61	0.62	7.68	
	1.67, 0.00	0.00, 18.22	7.68	1.42	2.18	1.14	6.43	1.63
90, 10, 0, 0	1.49, 2.11	0(f), 0(f)	9.28	1.62	1.58	0.91	8.52	
	1.49(f), 2.11(f)	0.04, 1.70	9.24	1.30	1.60	0.64	8.44	
	1.67, 0.00	0.00, 17.92	7.67	1.48	2.20	1.13	7.05	1.63

Optimised policy rules with interest rate stabilisation

- Política não convencional: Mais eficaz quando a volatilidade das taxas de juros é considerada.
- Substituição de política convencional: Compras de ativos reduzem custos associados à volatilidade da taxa de juros de curto prazo.

Weights (in %) $(\omega_{II}, \omega_{Y}, \omega_{i}, \omega_{Q})$	Interest rate rule $(\gamma_{\Pi}, \gamma_{Y})$	Asset purchase rule $(\gamma_{II}^{QE}, \gamma_{Y}^{QE})$	$Var(\Pi_t)$ $\times 10^{-5}$	$Var(Y_t) \times 10^{-5}$	$Var(i_t)$ $\times 10^{-4}$	$Var(i_t^Q) \times 10^{-4}$	Loss	$\Delta \pi^*$ equ. (%)
70, 20, 10, 0	1.55, 2.26 1.55(f), 2.26(f) 1.00, 0.00	0(f), 0(f) 1.78, 4.33 4.34, 16.14	9.31 9.50 8.45	1.58 1.60 1.31	1.55 1.18 0.89	0.91 1.07 1.53	8.38 8.15 7.07	1.74
70, 10, 10, 10	1.51, 2.27 1.51(f), 2.27(f) 1.36, 0.40	0(f), 0(f) 0.69, 4.07 1.10, 11.66	9.34 9.46 8.24	1.43 1.10 1.50	1.58 1.48 1.46	0.86 0.61 0.54	9.12 8.82 7.91	1.67

Losses by type of shock

- Configuração analisada: Pesos da função de perda: $(\omega_{\Pi}, \omega_{Y}, \omega_{i}, \omega_{Q}) = (80, 20, 0, 0)$, focando na inflação e no produto.
- Efetividade combinada: Políticas convencionais e não convencionais são mais eficazes contra choques de gastos do governo e elasticidade de substituição.
- Redução da volatilidade: Menor volatilidade do produto e inflação na maioria dos choques.
- Impacto menor: Políticas não convencionais têm efeito limitado contra choques de oferta de trabalho e compras de títulos.

Losses by type of shock

Shock	Interest rate rule $(\gamma_{II}, \gamma_{Y})$	Asset purchase rule $(\gamma_{II}^{QE}, \gamma_{Y}^{QE})$	$Var(\Pi_t)$ $\times 10^{-5}$	$Var(Y_t) \times 10^{-5}$	$Var(i_t)$ $\times 10^{-4}$	$Var(i_t^Q)$ $\times 10^{-4}$	Loss
ν	1.49, 2.16	0, 0	0.511	0.057	0.065	0.050	0.420
	1.49, 2.16	0.04, 1.78	0.485	0.047	0.067	0.039	0.397
	1.67, 0.00	0.00, 18.22	0.433	0.065	0.145	0.047	0.359
5	1.49, 2.16	0, 0	0.005	0.000	0.001	0.005	0.004
	1.49, 2.16	0.04, 1.78	0.005	0.000	0.001	0.005	0.004
	1.67, 0.00	0.00, 18.22	0.005	0.000	0.001	0.003	0.004
ϵ^{C}	1.49, 2.16	0, 0	0.218	0.077	0.028	0.021	0.190
	1.49, 2.16	0.04, 1.78	0.243	0.071	0.032	0.018	0.209
	1.67, 0.00	0.00, 18.22	0.144	0.075	0.041	0.095	0.130
ϵ^{L}	1.49, 2.16	0, 0	0.015	0.002	0.002	0.002	0.012
	1.49, 2.16	0.04, 1.78	0.015	0.001	0.002	0.001	0.012
	1.67, 0.00	0.00, 18.22	0.014	0.002	0.004	0.001	0.012
€G	1.49, 2.16	0, 0	1.551	0.544	0.196	0.152	1.350
	1.49, 2.16	0.04, 1.78	1.729	0.502	0.226	0.128	1.484
	1.67, 0.00	0.00, 18.22	1.026	0.532	0.288	0.678	0.927
ϵ^A	1.49, 2.16	0, 0	0.663	0.068	0.070	0.072	0.544
	1.49, 2.16	0.04, 1.78	0.642	0.052	0.075	0.054	0.524
	1.67, 0.00	0.00, 18.22	0.615	0.077	0.173	0.023	0.508
θ	1.49, 2.16	0, 0	6.337	0.781	1.222	0.578	5.226
-	1.49, 2.16	0.04, 1.78	6.170	0.561	1.209	0.374	5.048
	1.67, 0.00	0.00, 18.22	5.445	0.668	1.529	0.293	4.489

Shock to the elasticity of substitution for conventional (dashed) and mixed policy (solid).

Shock to the elasticity of substitution

- Impactos sobre a inflação: Reação menos intensa quando o banco central compra títulos governamentais.
- Impactos sobre o produto: Maior reação inicial, mas menor volatilidade no longo prazo.

Extensão – RRP

QT esterilizado

Monetary Plumbing - Summarized

	Impact on "Liquidity" (Bank Reserves)	Impact on Real-Economy Money	Impact on Risk Appetite	Potentially Inflationary?
Quantitative Easing (QE) alone	1		1	
Fiscal Deficits alone		1		1
QE + Fiscal together	1	1	1	1
Quantitative Tightening (QT) - standard	1		1	
Sterilized QT (MMFs drain RRP)				
TGA refill via bond issuance	1		1	
TGA drain	1	1	1	1
Bank Term Funding Program (BTFP)	1		1	

Money Market Funds

Manutenção das reservas

Modelagem Inicial - Money Funds

Restrição orçamentária ajustada do banco representativo:

$$P_t^S S_{t,t+1} = P_t^B B_{t,t+1} + P_t^Q Q_{t,t+\tau} + P_t^{RRP} RRP_{t,t+1}$$

- Ter uma oferta de RRP vinda do CB., de modo que o CB pode alterar exogenamente a atratividade das RRPs.
- Ter uma demanda de RRP vinda dos Money Funds, que escolhem a proporção de $B_{t,t+1}$ vs. $RRP_{t,t+1}$ que segura, de acordo com preferências intrínsecas e seus preços P_T^{RRP} , P_t^B .
- Se no momento que o CB decide vender títulos (QT), a proporção entre RRP_{t,t+1} e ativos totais dos MMF é alta, então menor o efeito na redução de liquidez.
- Isso pode ser traduzido em manutenção no preço da poupança, de forma que não impacta o consumo das famílias.

Conclusão

Conclusão

- Políticas não convencionais ampliam o ferramental do banco central, mesmo fora de crises.
- Coordenação entre política convencional e não convencional reduz perdas de bem-estar.
- Exemplo prático: Programa de Extensão de Maturidade (2011) do Federal Reserve.