Papers written by Australian Maths Software

SEMESTER ONE

REVISION 3

MATHEMATICS METHODS UNIT 3

2016

SOLUTIONS

SECTION ONE

- 1. (5 marks)
 - (a) $f'(x) = x^2 3$ and f(1) = 2 $f(x) = \int (x^2 - 3) dx$ $f(x) = \frac{x^3}{3} - 3x + c$ $f(1) = 2 \Rightarrow 2 = \frac{1^3}{3} - 3(1) + c$ $c = \frac{14}{3}$ $\therefore f(x) = \frac{x^3}{3} - 3x + \frac{14}{3}$ $\therefore f(1) = \frac{1}{3} - 3 + \frac{14}{3} = 2$

(3)

(b)
$$f''(x) = 2x$$

 $f''(3) = 6$
(1)

(c) f''(x) = 0 at x = 0 $f(0) = \frac{14}{3}$

(1)

2. (9 marks)

(a) (i)
$$x = (t-2)(t-3) = t^2 - 5t + 6$$

 $v = \frac{dx}{dt} = 2t - 5$
When $v = 0$, $t = 2.5$ ms

(3)

(ii)
$$a = \frac{dv}{dt} = 2 \, m \, s^{-2}$$

The acceleration is always constant as the velocity is linear and the acceleration is the gradient function of the velocity. The gradient of the x- t graph is always increasing so the acceleration is always positive.

(3)

- (b) Where v = 0 there is a turning point in the displacement graph. \checkmark As the acceleration graph is positive (a = 2) at that point, \checkmark the turning point in the displacement graph is a minimum. \checkmark (3)
- 3. (8 marks)

(a) (i)
$$f(x) = e^{x} \left(\sin(\pi x) \right)$$
$$f'(x) = e^{x} \left(\sin(\pi x) \right) + \pi \left(\cos(\pi x) \right) e^{x} \qquad \checkmark \qquad \checkmark$$
$$f'(x) = e^{x} \left(\sin(\pi x) + \pi \left(\cos(\pi x) \right) \right) \tag{2}$$

(ii)
$$g(x) = \frac{x^2}{\tan(x)}$$
$$g'(x) = \frac{2x(\tan(x)) - x^2 \left(\frac{1}{\cos^2(x)}\right)}{\tan^2(x)}$$
$$g'(x) = \frac{x}{\tan^2(x)} \times \left[2\tan(x) - \frac{x}{\cos^2(x)}\right]$$

(2)

(b) ((i)
$$f'(1) = e^{1} \left(\sin(\pi) + \pi (\cos(\pi)) \right)$$

 $f'(1) = -e\pi$ (2)

(ii)
$$g'\left(\frac{\pi}{4}\right) = \frac{2 \times \frac{\pi}{4} \times 1 - \left(\frac{\pi}{4}\right)^2 \times (2)}{1}$$
$$g'\left(\frac{\pi}{4}\right) = \frac{\pi}{2} - \frac{\pi^2}{8}$$
 (2)

4. (6 marks)

(a)
$$\int (3x^2 + 4x^3 - 2)dx = x^3 + x^4 - 2x + c$$
 (1)

(b) (i)
$$\frac{dy}{dx} = 1 \times \sin(x) + x(\cos(x)) = \sin(x) + x(\cos(x)) \quad \checkmark \quad \checkmark$$
 (1)

5. (7 marks)

(a)
$$\int_{0}^{1} \sqrt{x} \, dx = \frac{2}{3} \left[x^{\frac{3}{2}} \right]_{0}^{1} = \frac{2}{3} (1 - 0) = \frac{2}{3}$$

(b)
$$\int_{-\infty}^{2} \left(\frac{1}{x^{2}} + 2x^{3} - 4 \right) dx = \int_{-\infty}^{2} \left(x^{-2} + 2x^{3} - 4 \right) dx$$

$$= \left[-\frac{1}{x} + \frac{x^{4}}{2} - 4x \right]_{-1}^{2}$$

$$= \left(-\frac{1}{2} + 8 - 8 \right) - \left(-1 + \frac{1}{2} - 4 \right)$$

$$= 4$$

$$(3)$$

(c)
$$\int_{\frac{\pi}{4}}^{3\pi/4} 2\cos 2z \, dz = \frac{2}{2} \times \left[\sin 2z \right]_{\frac{\pi}{4}}^{3\pi/4} = 1 \left[\sin \left(\frac{3\pi}{2} \right) - \sin \left(\frac{\pi}{2} \right) \right] = -2$$

6. (7 marks)

(a) (i)
$$y = f(h(x)) = f(\sin(x)) = \sin^2(x)$$
 (1)

(ii)
$$\frac{dy}{dx} = 2(\sin(x)\cos(x))$$
 \checkmark

At
$$x = \frac{\pi}{4} \frac{dy}{dx} = 2 \left(\sin\left(\frac{\pi}{4}\right) \cos\left(\frac{\pi}{4}\right) \right) = 2 \times \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} = 1$$
 (2)

(b) (i)
$$y = g(f(x)) = g(x^2) = e^{x^2}$$
 (2)

(ii)
$$\frac{dy}{dx} = 2x \times e^{x^2} \quad \checkmark$$
At $x = \frac{1}{\sqrt{2}}$, $\frac{dy}{dx} = \frac{2}{\sqrt{2}} \times e^{\frac{1}{2}} = \sqrt{2}e$ \checkmark (2)

7. (7 marks)

(a)
$$\int_{1}^{x} \cos(3t) dt = \left[\frac{\sin(3t)}{3}\right]_{1}^{x} \checkmark$$
$$= \frac{\sin(3x) - \sin(3)}{3} \checkmark$$
 (2)

(b)
$$\frac{d}{dx} \left(\int_{-\infty}^{x} \cos(3t) dt \right) = \cos(3x) \quad \checkmark \checkmark$$
 (2)

(c)
$$\frac{d}{dx} \left(\int_{0}^{x} \cos(3t) dt \right) = -1$$

$$\cos(3x) = -1 \text{ for } 0 \le x \le \pi$$

$$3x = \pi, 3\pi$$

$$x = \frac{\pi}{3}, \pi$$
(3)

END OF SECTION ONE

SECTION TWO

8. (6 marks)

(a)
$$x = t^3 - 12t$$

 $0 = t(t^2 - 12)$
 $t = 0 \text{ or } t = \pm \sqrt{12}$
But $t > 0$, $t = 2\sqrt{3}$

(2)

(b)
$$v = \frac{dv}{dt} = 3t^2 - 12$$

Changed direction when

$$v = 0$$
 i.e. at $t = \pm 2$

but t > 0, t = 2

(2)

$$(c) \qquad a = \frac{d^2v}{dt^2} = 6t$$

If
$$12 = 6t \Rightarrow t = 2$$

$$x = 8 - 24 \Rightarrow x = -16 m \qquad \checkmark \tag{2}$$

9. (9 marks)

(a) (i)
$$a+0.1+a+0.5=1$$

 $2a=0.4$
 $a=0.2$ (1)

(iii)
$$E(X) = \sum xp(x)$$

 $E(X) = 10 \times 0.2 + 20 \times 0.1 + 30 \times 0.2 + 40 \times 0.5$
 $E(X) = 30 \checkmark$

$$Var(X) = E(X^{2}) - \mu^{2}$$

$$Var(X) = 10^{2} \times 0.2 + 20^{2} \times 0.1 + 30^{2} \times 0.2 + 40^{2} \times 0.5 - 30^{2}$$

$$Var(X) = 140$$

$$Sd(X) = \sqrt{140} \approx 11.83$$

$$\checkmark$$

$$(4)$$

(b) (i) Variance
$$=3.5^2 = 12.25$$
 (1)

(ii)
$$E(X) = 5$$
 \checkmark $Sd(X) = 1.75 \checkmark (2)$

$$A = \pi r^{2}$$

$$\frac{dA}{dr} = 2\pi r$$

$$\delta A \approx \frac{dA}{dr} \times \delta r$$

$$\delta A \approx 2\pi r \times \delta r$$

$$At \delta r = 0.5m, \quad r = 100m$$

$$\delta A \approx 2\pi \times 100 \times 0.5 = 100\pi$$

$$\delta A \approx 314.2 m^{2}$$

11. (8 marks)

(a)
$$A = xy \Rightarrow A = x\sqrt{100 - x^2}$$
 (2)
(b) Maximum area when $\frac{dA}{dx} = 0$

$$\frac{dA}{dx} = -\frac{2x^2 - 100}{\left(-x^2 + 100\right)^{0.5}}$$

$$At \ \frac{dA}{dx} = 0,$$

$$2x^2 = 100$$

$$x = \pm \sqrt{50} \quad \text{but } x > 0$$

$$x = \sqrt{50}$$

max or min?

Therefore max at $\chi = \sqrt{50}$

$$At \quad x = \sqrt{50}$$
$$y^2 = 100 - 50$$
$$y = \sqrt{50} \quad as \quad y > 0$$

Therefore the maximum area occurs when x = y.

12. (7 marks)

(b)

(2)

(c)
$$a = e = (=2.7)$$

(1)

13. (5 marks)

(a)
$$\int_{0}^{5} \sqrt{1+2x^3} dx = 28.61$$
 (2 dp) $\checkmark\checkmark$

(b) (i)
$$\int \frac{\cos(3x)}{2} dx = \frac{\sin(3x)}{6} + c$$

$$\frac{5}{6} = \frac{\sin(3\pi)}{6} + c \Rightarrow c = \frac{5}{6}$$
$$\therefore f(x) = \frac{\sin(3x)}{6} + \frac{5}{6}$$

(2)

(1)

(iii)
$$f\left(\frac{\pi}{2}\right) = \frac{2}{3} \quad \checkmark$$

14. (14 marks

(a) (i)
$$(-1.31,4)$$
 and $(3.14,4)$ \checkmark (2)

(ii) Area =
$$\int_{131}^{3.14} (4 - x(x - 1)(x - 3)(x + 1)) dx$$
 $\checkmark \checkmark$ (2)

(iii) Area = 25.53 units²
$$\checkmark\checkmark$$
 (2)

(b) (i) From below Area $\approx 1 \times 0.5 + 1.875 \times 0.5 + 2 \times 0.5 = 2.4375$

(2)

(ii) From above

Area
$$\approx 1.875 \times 0.5 + 2 \times 0.5 + 2.125 \times 0.5$$

=3 (2)

(iii) The area calculated from below is an underestimate.

The area calculated from above is overestimate.

The average combines both the underestimate and the overestimate and should be more accurate. \checkmark

Average is 2.71875

Area
$$\approx 2.72 \,\mathrm{units}^2$$
 \checkmark (2)

(iv)
$$\int_{0.5}^{1.5} ((x-1)^3 + 2) dx = 2.765625$$

Difference from estimate is $0.046875 \approx 0.05 (2dp)$ \checkmark (2)

15. (9 marks)

(a)
$$v = \sqrt{1+t}$$

$$a = \frac{1}{2}(1+t)^{-1/2} = \frac{1}{2\sqrt{1+t}} \quad \checkmark$$
As $t \ge 0, \sqrt{1+t} \ge 1$ so $a > 0$ i.e. a is always positive. \checkmark (2)

(b)
$$x = \int \sqrt{1+t} \ dt = \frac{2\sqrt{(1+t)^3}}{3} + c$$

At $t = 0$, $x = \frac{1}{3}$

$$\frac{1}{3} = \frac{2\sqrt{(1)^3}}{3} + c \Rightarrow c = -\frac{1}{3}$$

$$\therefore x = \frac{2\sqrt{(1+t)^3}}{3} - \frac{1}{3}$$

(2)

(c) At
$$v = 4 \text{ ms}^{-1}$$
, $4 = \sqrt{1+t} \Rightarrow 16 = 1+t \Rightarrow t = 15$
At $t = 15$,
$$a = \frac{1}{2\sqrt{1+15}}$$

$$a = \frac{1}{8} \text{ m s}^{-2}$$

(2)

(d) $v > 0 \ \forall t > 0$ so toy does not change direction.

At
$$t = 0$$
, $x = \frac{1}{3}m$ At $t = 3$, $x = \frac{2\sqrt{(1+3)^3}}{3} - \frac{1}{3} = \frac{16}{3} - \frac{1}{3} = 5$

Therefore distance travelled is $4\frac{2}{3}m \quad \checkmark$ (3)

16. (8 marks)

1972 100 grams

(a) 1987 50 grams using the half-life 2002 25 grams

In 2002 there will be 25 grams of DDT left so it will take 30 years. ✓ (1)

(b)
$$A = 100(a)^t$$

At $t = 15$, $50 = 100(a)^{15}$ \checkmark
 $a = 0.9548416039$ \checkmark (2)

(c)
$$t = ? 25 = 100(0.9548416039)^t \Rightarrow t = 30 \text{ years}$$
 (1)

(d)
$$t = ? 1 = 100 (0.9548416039)^t \Rightarrow t = 99.6578 \text{ years} \checkmark \checkmark$$
 (2) $t \approx 100 \text{ years} \checkmark$

(e)
$$2016 - 1972 = 44 \text{ years} \checkmark$$

 $A = ? A = 100 (0.9548416039)^{44} \Rightarrow A = 13.09 \text{ grams} \checkmark$ (2)

17. (8 marks)

(a)

X	0	1	2	3	4
P(X=x)	$\frac{1}{16}$	$\frac{4}{16}$	$\frac{6}{16}$	$\frac{4}{16}$	$\frac{1}{16}$

(2)

(b)
$$\frac{4}{16} \times \frac{4}{16} = \frac{1}{16} \quad \checkmark \checkmark$$
 (2)

(c) (i)
$$n = 10, P(X = 0) = \frac{1}{16}$$

$$E(x) = np = 10 \times \frac{1}{16} = \frac{5}{8}$$

i.e. expect one family to have no boys. ✓ (3)

(ii) You cannot have a fraction of a family, so no, you would never get exactly that number.(1)

18. (9 marks)

(a)
$$0.25 \checkmark \checkmark$$

(b)
$$P(x=2) = 0.263671875 \approx 0.26 \quad \checkmark \checkmark$$
 (2)

(c)
$$P(x=0) = 0.2373046875 \approx 0.24 \quad \checkmark \checkmark$$
 (2)

(d)
$$P(x \ge 2) = 0.3671875 \approx 0.37 \quad \checkmark \checkmark$$
 (2)

(e)
$$E(x) = np = 5 \times 0.25 = 1.25 \approx 1$$
 \checkmark

19. (8 marks)

(a)	X	1	2	3	4
	P(X=x)	0.1	0.2	0.4	0.3

(2)

(b)
$$P(X = 2 \text{ or } X > 3) = 0.2 + 0.3 = 0.5$$
 (2)

(c) Yes, as the relative proportions could be estimated. \checkmark (2)

- 20. (6 marks)
 - (a) $0.6 \times 20 = 12$ Peter will have to guess 8 questions. \checkmark (1)
 - (b) 80% of 20 =16 Needs to get 16 or more correct to get 80% \checkmark

Peter knows 12, so needs to get at least 4 more correct out of the 8 he has to guess. ✓

END OF SECTION TWO