LaPIS Diagnostic Test Workbook - Mathematics

Name : Vishal R

Class: 7

Section : B

School : AKV Public School

Login ID : AKV151

Vishal R's Performance Report

Score: 10/40 Percentage: 25.0%

Vishal R's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sign
		Teacher's Fe	edback to Student		
	Class Teacher S	Signature	Princi	pal Signature	

Basic arithmetic

Topics to be Improved				
Types of angles	Identification of types of angles			

Hi, here in this video you will learn Types of Angles

Question: 1

Find the angles.

Answer:

The angle ranges from ____° to ____°.

The angle perpendicular to 0° is ____°.

The straight line measures $__$ °.

Question: 2

The angle formed between the directions

(i) West and East is _____ angle.

•

Mensuration

Topics to be Improved				
Perimeter of triangle				
Area	Area of rectangle			

.....

Hi, here in this video you will learn **Perimeter**

Question: 4

Highlight the perimeter in the given image.

4				
4	n	271	101	r.
$\boldsymbol{\mathcal{I}}$		7 U.	/ (,)	

Perimeter is the _____ (outer / inner) boundary of the shape

Question: 5

Find the perimeter of the given figure.

Answer:

Sides of the given shape = _____

Perimeter of a shape is _____ (sum / difference) of _____ (all/ opposite) sides.

Perimeter of the given shape =
Question: 6
Find the length of the rectangular floor if its perimeter is 60 ft and breadth is 3 ft.
Answer:
$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array}$ Breadth =
Shape of the floor is and its perimeter formula is Given:
floor perimeter = $___$, and breadth = $___$. Perimeter of the floor = $2(___+ ___)$.
Therefore, length of the rectangular floor is
Hi, here in this video you will learn Area
Question: 7 Find which of the shaded portion in the given shape represent it's area.
I had which of the shaded portion in the given shape represent it's area.
Answer: Given figure is in shape. Area is the (inside/ outside/ boundary) of a shape. Question: 8

Find the area of a rectangular garden whose dimension is 25 ft in length and 20 ft in breadth.

The garden is in shape. Length of garden is and breadth of gardenter formula for area of the shape = The area of garden = x =	
Question: 9	area is $500 \ m^2$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\boxed{25 \ m \ \times \ 20 \ m}$

$\underline{Answer:}$

Door is _____ in shape. Area of the _____ shaped door is ____.

Dimensions	Length	Breadth	Area
$50 \text{m} \times 10 \text{m}$			
$25 \text{m} \times 25 \text{m}$			
$25 \text{m} \times 20 \text{m}$			
$30 \text{m} \times 20 \text{m}$			

Therefore, possible dimension of the door whose area is 500 m^2 is/are _____

Data handling

Topics to be Improved					
Chance of probability Basis of probability					
Arithmetic mean, mode and median	Mean, Median and Mode				
Range	Finding the range				

.....

Hi,	here	in	this	video	you	will	learn	Basics	of	proba	bility
-----	------	----	------	-------	-----	------	-------	--------	----	-------	--------

Question:	10

Identify the sure events and impossible events

- (i) The sun rises in the west.
- (ii) Water is colourless.
- (iii) Clock rotates in clock wise direction.
- (iv) Ball is square in shape.

Answer:

Events that always occur are called Events that cannot occur are called Here, The sun rises in the west is	(sure/ impossible) events.	
event.	event. Ball is square in shape is	
Question: 11		.

Probability of sure events is _____ (greater / smaller) than probability of impossible events.

Answer:

Probability of sure event = ____(0/ 1/ any number).

Probability of impossible event = _____ (0/1/any number).

Therefore, Probability of sure event _____ Probability of impossible event.

Question: 12

Raju has pencil, an eraser, a scale, sharpener, colour pencil and protractor in his box. What is the probability of getting a pen from his box.

Answer:						
Does Raju have	pen in his box, of getting pen from his	(Yes/No)		.)		D41"-1D
Hi, here in th	nis video you will le	earn Me a	an, Med	ian, Mo	de	
Question: 13						
Find the mode o	of the following data: 5,	15, 23, 5,	32, 44, 72,	55, 6, 3, 5	, 65, 45, 67	7, 24, 19 and 98.
Answer:						
Arranging the da	ata in ascending order: occurs most number of					
Question: 14						
Which shape con	ntains median of the given	ven data 3	, 5, 6, 2, 7,	9, 6, 4 and	l 1	
ascending or deservation Arrange the give	(first/cencending order.en data in ascending order the given data is	der :	and it is t	he	of	a data.
	Marks scored	100	90	80	70	
	Number of students	4	5	2	1	
Mean =	, Median = an	nd Mode =				
Answer:						
$Mean = \frac{1}{m}$	of all observation umber of observation					
	l observation =	· · · · · · · · · · · · · · · · · · ·	number of	observatio	n =	

Here, $median = \underline{\hspace{1cm}}$, $mode = \underline{\hspace{1cm}}$.	
Hi, here in this video you will learn Range	
Question: 16	
Range of the data =	
Answer:	
The difference between highest value and lowest value is Example: Find the range of 10, 5, 30, 23, 54, 39 and 16 Highest value = , Lowest value = Range = =	
Question: 17	
Circle the correct range for the following data 31, -20, 35, -38, 29	
$-20+51$ $\frac{-38-51}{2}$ $51+38$	$\frac{51+20}{2}$
$-20 + 51$ $\frac{-38 - 51}{2}$ $51 + 38$ <i>Answer:</i>	$\frac{51+20}{2}$
Answer:	$\frac{51+20}{2}$
Answer: Range = Arranging the data in ascending order,	-
Answer: Range = Arranging the data in ascending order, In the given data,	
Answer: Range = Arranging the data in ascending order,	
Answer: Range = Arranging the data in ascending order, In the given data,	
Answer: Range = Arranging the data in ascending order, In the given data, Highest value =, Lowest value =, Range =	
Answer: Range =	

Geometry

Topics to be Improved			
Criteria for congruence of triangle	Idenfication of criteria of congruence of triangles		
Types of triangle	Basics of types of triangle (sides)		
Sum of lengths of two sides of a triangle	Sum of two sides of a triangle		
Related angles	Basic of angles, Complementary angles		

Hi, here in this video you will learn Criteria of congruence
<u>Question: 19</u>
Circle the groups that contain congruent images.
Answer:
Two geometrical shapes are said to be congruent if they are (identical/non-identical) in shapes and size. Example: Square and Rectangle are (congruent/not congruent).
<u>Question: 20</u>
If the three sides of the triangle are equal to the corresponding sides of the other triangle, then two triangles are congruent under $___$ (SSS/ASA/SAS) criteria .
Answer:
Two triangle are (congruent/not congruent) if they are identical in shapes and size. Criteria for congruence of triangles are SSS, and
1. In SSS Congruence criteria - $(2/3/5)$ sides of the triangle are (equal/not equal) to the three corresponding sides of the other triangle.
2. In SAS Congruence criteria(2/3/5) sides and (one/two) angle between them are equal to the corresponding sides and the included angle of the other triangle.
3. In ASA Congruence criteria (2/ 3/ 5) angles and (one/two) side between them are equal to the corresponding angles and the included side of the other triangle.

SSS	sides and angles are equal
SAS	sides and angles are equal
ASA	sides and angles are equal

Question: 21	
--------------	--

The triangles LNM and PRQ are congruent by SAS criteria. Then find the side PR

Answer:

The given two triangles satisfy criteria of c	congruence.
By SAS congruence criteria, $MN = \underline{\hspace{1cm}}$, $\underline{\hspace{1cm}}$ and	$\angle N = \underline{\hspace{1cm}}$
The side MN=8 cm in ΔLNM is equal to the side	in $\triangle PRQ$
The common included angle in \triangle LNM and $\triangle PRQ$ are $_$	
The side PR is equal to the side in $___ \Delta LNM$.	
Therefore, length of side $PR = $	

Hi, here in this video you will learn ${\bf Types}$ of ${\bf triangle}$

Polygon with three sides is called as _____.

$\underline{Answer:}$

A polygon is a simple (open /	closed)) curve made	up c	of only	line	segments
Polygon with three sides is called						
Draw a diagram of polygon with three	sides:					

Question: 23		
--------------	--	--

Identify the types of triangles.

Triangle has _____ sides.

- Triangle with all sides are equal is called _____ triangle.
- Triangle with two sides of equal length is called _____ triangle.
- Triangle with three sides of different length is called _____ triangle.

Question: 24

A park is in the shape of an isosceles triangle. If side length of the park is 30ft and 60ft. then the possible length of third side of park can be ______.

.....

.....

Answer:

The shape of the park is ______.

The shapes has ______ sides and this shape has _____ sides of equal length.

Given: length of sides of park is _____.

The possible length of third side is _____.

Hi, here in this video you will learn Sum of the length of sides of the triangle

Question: 25

Find the greatest distance to reach C from A in the given diagram.

Answer:

The sides of the given triangle are _____

The possible way to reach point C from point A are _____ and AB then to

 $\overline{\text{Side AC}} = \underline{\hspace{1cm}}$

Side $AB + BC = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$ Therefore, the greatest distance to reach C from A in the given diagram is $\underline{\hspace{1cm}}$.
Question: 26
(Sum of / Difference between) the length of any two sides of a triangle is smaller than the length of the third side.
Answer:
There are sides in a triangle. The sum of the two sides of a triangle is than the other side of the triangle. The difference of the two sides of a triangle is than the other side of the triangle. Example: In triangle XYZ,
XY + YZ XZ (<,>,=) 30m YZ - XY XZ (<,>,=) Y 60m Z
Question: 27
The lengths of two sides of a triangle are $7~\mathrm{cm}$ and $10~\mathrm{cm}$. Between which two numbers can length of the third side fall?
Answer:
1. The sum of the two sides of a triangle is than the third side of the triangle. Therefore, the third side should be(less/ greater) than sum of other two sides.

	Therefore, the third side should be	_(less/ greater) than sum of other two sides.
	Here, sum of the two sides $=$ $\underline{\hspace{1cm}}$ $+$ $\underline{\hspace{1cm}}$	=
	Therefore, the length of the third side is less than	1
2.	The difference of the two sides of a triangle is triangle.	than the third side of the
	Therefore, the third side should be	_(less/ greater) than sum of other two sides.
	Here, difference of the two sides =	=
	Therefore, the length of the third side is greater t	han
Ther	efore, length of the third side is greater than	but less than

Question: 28

Hi, here in this video you will learn **Related Angles**

- (i) When two rays of an angle are perpendicular, then the angle formed between them is a _____ angle .
- (ii) When two rays of an angle are in opposite sides, then the angle formed between them is a _____ angle .

A ______ (line segment /ray) begins from one point and travels endlessly in a direction.

- (i) The angle formed between two perpendicular rays is ____° and it is called _____ angle.
- (ii) If two rays starting at same point moves in opposite direction, they form a ______ (straight / perpendicular) line. The measure of the angle formed is _____ and it is called _____ angles.

Question: 29

Find the angle of $\angle DBE$

Answer:

BA and BC are _____ (parallel / perpendicular) rays. The angle formed between this rays is ____, $\angle ABC$ = ____.

$$\angle ABC = \angle ABE + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= 30^{\circ} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= \underline{\hspace{1cm}}$$
 Therefore,
$$\angle DBE = \underline{\hspace{1cm}}$$

Question: 30

Find the complementary angles in the given diagram.

Answer.	
Two angles are said be complementary if sum of their angles is equal to	
$\angle AOB = \underline{\hspace{1cm}}$, and its complement angle is $\underline{\hspace{1cm}}$.	
$\angle BOC = \underline{\hspace{1cm}}$, and its complement angle is $\underline{\hspace{1cm}}$.	
$\angle COD = \underline{\hspace{1cm}}$, and its complement angle is $\underline{\hspace{1cm}}$.	
$\angle DOE = \underline{\hspace{1cm}}$, and its complement angle is $\underline{\hspace{1cm}}$.	
Therefore, in the given figure the complementary angles are $\angle AOB$, and $\angle BOC$,	
	_
]
Hi, here in this video you will learn Related Angles	<u> </u>
	į
Question: 31	

Question: 31

- 1. Two angles are complementary if their sum is equal to _____.
- 2. Two angles are supplementary if their sum is equal to _____.

Answer:

- 1. When sum of the two angles is equal to 90°, they are called as _____ angle. Example: 45° and 45°, _____, and ____.
- 2. When sum of the two angles is equal to 180°, they are called as _____ angle. Example: 90° and 90°, _____, and ____.

......

Question: 32

Shade the complementary angles.

Answer:

Two angles are said be complementary if the sum of their angles are equal to _____.

90°, 90°

$85^{\circ} + 95^{\circ} = $	and this is	(a / not a) complementary	angles.
$45^{\circ} + 45^{\circ} = $	and this is	angles.	
$6^{\circ} + 84^{\circ} = \underline{\hspace{1cm}}$	and this is	angles.	
$73^{\circ} + 107^{\circ} = $	and this is	angles.	
$36^{\circ} + 64^{\circ} = $	and this is	angles.	
$90^{\circ} + 90^{\circ} = $	and this is	angles.	

Question: 33	
Question. Ou	

Find the complement and supplement of 15° and 90°

Answer:

One angle is ______ (complements / supplements) to other angle, when sum of the two angles is equal to 90° . One angle is _____ (complements / supplements) to other angle, when sum of the two angles is equal to 180° .

Complement of
$$15^{\circ} = \underline{\hspace{1cm}}$$
, Complement of $90^{\circ} = \underline{\hspace{1cm}}$. Supplement of $90^{\circ} = \underline{\hspace{1cm}}$.

Number system

Topics to be Improved					
Operations on rational numbers	Division of rational numbers, Subtraction of rational numbers				
Introduction to rational numbers	Basics of rational numbers				
Positive and negative rational numbers	Identification of positive rational numbers				
Decimals	Multiplication and division of decimals				
Fractions	Multiplication of fractions				
Law of Exponents	Law of Exponents				
Integers	Basics of integers				
Exponents	Solving exponents				

Hi, here in this video you will learn **Operation on rational numbers**

Question: 34

Fill in the boxes to make the given expression correct.

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \boxed{\square}$$

Answer:

When any fraction is divided by a fraction, we multiply the dividend by the ______(same/reciprocal) of the divisor.

Here, dividend = _____ and divisor = ____

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \square = \square$$

Question: 35

Solve: $\frac{18}{7} \div 0.6$

Answer:

Fraction form of $0.6 = \underline{\hspace{1cm}}$, when any fraction is divided by a fraction, we multiply the dividend by the $\underline{\hspace{1cm}}$ (same/reciprocal) of the divisor. Here, dividend = $\underline{\hspace{1cm}}$ and divisor = $\underline{\hspace{1cm}}$.

$$\frac{18}{7} \div \boxed{ } = \frac{18}{7} \times \boxed{ } = \boxed{ }$$

Question: 36

Find the missing number in the expression $\frac{8}{3} \div \frac{16}{\Box} = 2$

Answer:

$$\frac{8}{3} \div \frac{16}{\Box} = 2$$

$$\frac{8}{3} \times \frac{\square}{16} = 2$$

Transposing 8/3 to RHS,

$$\frac{\square}{16} = 2 \square \frac{8}{3}$$

$$\frac{\square}{16} = 2 \times \boxed{\square}$$

$$\frac{\square}{16} = \frac{\square}{\square}$$

......

Transposing 16 to other side, the result is _____.

Hi, here in this video you will learn Basics of rational numbers

Question: 37

The numbers in the diagram represents_____.

0, 4,5,2,3,1 are _____ numbers.

-1,-2, -3, -4 are _____ numbers.

The combination of these circles are called ______.

 $\frac{1}{49}$, $\frac{1}{2}$, $\frac{8}{27}$, $\frac{11}{5}$, $\frac{13}{75}$ are ______.

Combination of all three circles are called as _____ numbers.

Question: 38

Shade the correct form of rational numbers.

Answer:

Rational number can be expressed as ______, where both numerator and denominator are _____ (integer/ not a integer),

......

denominator is equal to _____(zero/ one/ any integer other than zero).

Circle the number which is not a rational number.

$$\frac{-5}{-8}$$
 $\frac{-3}{2}$ $\frac{12}{-6}$ $\frac{0}{-9}$ 256 $\frac{4}{0}$

Answer:

Question: 39

Rational number can be expressed as ______, where both numerator and denominator are ______(integer/ not a integer), denominator is equal to ______ (zero/ one/ any integer other than zero).

Here, $___$ is/are rational number and $___$ is/are not a rational number.

Hi, here in this video you will learn Positive and Negative rational numbers

Question: 40

Segregate positive and negative rational number.

Answer:

•	If both the numerator and the denominator of a rational number are
	(positive/negative), then it is positive rational number.

• If either the numerator and the denominator of a rational number are negative, then it is _____ (positive/negative) rational number.

In the given circle, positive rational numbers are _____ and negative rational numbers are

.....

.....

 $\frac{-3}{-4}$ is a _____ (positive /negative / neither positive nor negative) rational number.

Answer:

-3 is a _____ number, -4 is a _____ number. Division of $\frac{-3}{-4} = \Box$ and this ____ rational number.

(Positive / Negative / Neither positive nor negative rational number)

Question: 42

The product of a positive rational number and a negative rational number is _____ rational number. (Positive/ Negative/ neither positive nor negative)

Answer:

Examples for positive rational numbers: Examples for negative rational numbers:

Positive rational number × Negative rational number = × = rational number	and this is
Hi, here in this video you will learn Basics of decimals	
Question: 43	
Shade 0.4 part of the given shape.	
Answer:	
There are boxes. 0.4 can be expressed as in fraction This fraction represents parts out ofequal parts. So, we need to shade boxes out ofboxes.	
Question: 44	
Solve the following.	
(i) 0.4×1.2	
(ii) 0.48×1.2	
Answer:	
(i) 0.4×1.2 : Multiplication of 0.4×1.2 assuming there is no decimal point is The number of digits after decimal point in 0.4 is and 1.2 is Total digits after decimal point in the product of two numbers is Count that digits from the right towards left and place the decimal point,	
(ii) 0.48 × 1.2: Multiplication of 0.48 × 1.2 assuming there is no decimal point is The number of digits after decimal point in 0.48 is and 1.2 is Total digits after decimal point in the product of two numbers is Count that digits from the right towards left and place the decimal point,	·
Question: 45	
One box of chocolate costs Rs.20.10. What is the cost of 15 chocolates, if a box chocolates?	

One box contains _____ chocolates. The cost of one box is _____ Then cost of one chocolate = ____ ÷ ___ = ___

- (i) Total digits after decimal point in decimal number = _____
- (ii) Divide the two numbers assuming there is no decimal point.

$$\frac{2010}{15} = \underline{\hspace{1cm}}$$

(iii) Place the decimal point after _____ digits counting from the right in the quotient after division.

Then the cost of one chocolate is ______.

The cost of 15 chocolates = cost of one chocolate \times ____ = __ x ___ = ___

Hi, here in this video you will learn Multiplication on fractions

Question: 46

Fill the boxes

$$2+4+\frac{6}{2} = \frac{2}{\Box} + \frac{4}{\Box} + \frac{3}{\Box} = \frac{\Box}{\Box} = 9$$

.....

.....

Answer:

The whole number can be expressed in fraction with denominator equal to _____ (zero/one). Therefore, 2 can be written as ____ in fraction.

4 can be written as _____ in fraction.

$$2+4+\frac{6}{2} = \frac{2}{1} + \frac{4}{\square} + \dots = \frac{2}{1} + \frac{4}{\square} + \frac{3}{\square} = \frac{\square}{\square} = 9$$

Question: 47

There are 400 students in a school. Find the number of girls, if three sixteenth of the students are girls.

Answer:

Total number of students = _____

Fraction of students who are girls = _____

Question: 48

Solve: $2\frac{7}{4} \times \frac{2}{3}$

Answer:

 $2\frac{7}{4}$ is a _____ (proper / mixed) fraction. Here, 2 is _____, 7 is ____ and 4 is ____.

To convert mixed fraction into improper fraction, $\frac{\text{(Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{\text{Denominator}}$ Improper fraction of $2\frac{7}{4} = \underline{\hspace{1cm}}$

$$2\frac{7}{4} \times \frac{2}{3} = \boxed{ } \times \frac{2}{3} = \boxed{ }$$

 Hi , here in this video you will learn $\operatorname{\mathbf{Law}}$ of $\operatorname{\mathbf{exponents}}$

Question: 49

 $(x)^0$ is equal to ______.

Answer:

_____ (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.

In
$$(x)^0$$
 base = _____
Power = ____

Any number or variable with power zero is equal to _____. Therefore, $(x)^0$ equal to _____.

Question: 50

i.
$$a^m \times a^n = \underline{\hspace{1cm}}$$

ii. $a^m \div a^n = \underline{\hspace{1cm}}$

Answer:

Multiplication of two numbers with same base with different power, their exponents are _____ (added/ subtracted)

Division of two numbers with same base with different power, their exponents are ______(added/ subtracted).

Question: 51

Circle the result of the expression $(a^0 \times b^1) + (m^1 \times n^0) + (x^0 \times y^1)$

$$a+n+x$$
 bmy 1 $ab+mn+xy$ 0 anx $b+m+y$

Any number with power zero is equal to______ (One/ Zero).

Any number with power one is equal to ______ (same/ different) number.

$$(a^{0} \times b^{1}) + (m^{1} \times n^{0}) + (x^{0} \times y^{1}) = (\underline{\hspace{1cm}}) + (\underline{\hspace{1cm}} \ddot{O} \underline{\hspace{1cm}}) + (\underline{\hspace{1cm}})$$

$$= \underline{\hspace{1cm}} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= \underline{\hspace{1cm}}$$

Hi, here in this video you will learn **Operation on rational numbers**

Question: 52

Solve: $\frac{-3}{3} + \frac{1}{3}$

Answer:

Fractions with same denominators are called ______ (like/ unlike) fractions. Fraction can be added only if they are _____ (like/ unlike) fractions.

$$\frac{-3}{3} + \frac{1}{3} = \frac{-3}{3} = \frac{1}{3}$$

......

Question: 53

Find the addition of shaded part of box A and shaded part of box B.

Answer:

Total number of square in box $A = \underline{\hspace{1cm}}$.

Number of shaded square in box $A = \underline{\hspace{1cm}}$

Shaded part of box \hat{A} in fraction = $\underline{\hspace{1cm}}$

Total number of square in box $B = \underline{\hspace{1cm}}$.

Number of shaded square in box $B = \underline{\hspace{1cm}}$.

Shaded part of box B in fraction = _____.

Shaded part of box A + Shaded part of box B = $___$ + $___$ = $___$

Question: 54

Find the missing values in the given figure.

$$= \begin{array}{c} \\ \\ \\ \\ \\ \end{array}$$

Answer:

One litre =
$$\underline{\hspace{1cm}}$$
 ml $\frac{7}{10}$ of one liter = $\frac{7}{10}$ x $\underline{\hspace{1cm}}$ ml = $\underline{\hspace{1cm}}$ ml

Given:
$$1 = \frac{7}{10} +$$
 ____ Transposing $\frac{7}{10}$ to other sides, 1 ____ $\frac{7}{10} =$ ____ Therefore, result is _____.

Hi, here in this video you will learn **Basics of integers**

Question: 55

Highlight the ring that contains whole numbers.

.....

Answer:

The numbers inside the inner ring $(1, 2, 3, \ldots)$ are _____ numbers.

The numbers inside the middle ring are _____ numbers.

The numbers inside the outer ring are negative numbers, positive numbers and zero and they are called as ______.

 $\underline{\textit{Question: } 56}$

Colour the frame of the box which contains the number 1, 4 and -10

Whole numbers

Negative numbers

Integers

Naturals numbers

Answer:
Whole number consists of $0,1,2,3,4,$. Negative number consists of
Natural numbers consists of Integers consists of
Now, 1, 4, -10 are in
Question: 57
State whether the statement is true or false. Every positive number is an integer.
Answer:
Positive numbers are Integers consists of
Therefore, positive numbers are (in/not in) integers.
Hi, here in this video you will learn Exponents and power
Question: 58
Find the exponential form of 1000.
Answer:
(Exponents/Base) tells us how many times a number should be multiplied by itself
to get the desired result.
Exponents is also called as (Base / Power).
1000 can be written as = $10 \times $ $\times $
10 is raised to the power of $\underline{} = (10)^{\underline{}}$
Question: 59
Find the value of $(-2)^3$.
Answer:
(Exponents/Base) tells us how many times a number should be multiplied by itself
to get the desired result.
In this exponential form $(-2)^3$, base =, power =

Question: 60				 	
(i) Tenth power of	of 100 is	$((10)^{100} \text{ or } (100)$	¹⁰).		

(ii) k is raised to the power of 5 is $((k)^5)$ or $(5)^k$.

Answer:

Exponential form = (Base)—

- (i) Tenth power of 100: Base = ____, Power/Exponents = ____, exponential form = ____.
- (ii) k is raised to the power of 5 : Base = ____, Power/Exponent = ____, exponential form = ____.

Comparing Quantities

Topics to be Improved					
Percentage	Basic of percentage				
Simple interest	Calculation of simple interest				
Equivalent ratios Basic of proportion					
Profit and loss	Prediction of loss and profit				

Hi,	here in	this	video	you	will	learn	Basics	\mathbf{of}	percentage
-----	---------	------	-------	-----	------	------------------------	--------	---------------	------------

$Question \colon \ heta$	1
---------------------------	---

2% can be written as

Answer:

Percentages are numerators of fractions with denominator_____

$$2\% = \frac{\square}{\square}$$

.....

Question: 62

Arun attended the LaPIS test for 100 marks and got 75% marks. What is the mark scored by Arun?

Answer:

Arun attended LaPIS test for _____ marks. He got ____ marks.

75 % can be written in fraction form

Then the mark scored by Arun = Total mark \times 75% = ____ \times ___ = ____

Question: 63

There are 25 apples in a basket in which 10 of them are rotten. Find the percentage of rotten apples.

Answer:

		apples in a basket.			
		n of rotten apples in a basket		_	
Convert	it int	o a percent= x	% =	=	
Hi, her	re in	this video you will learn	ı Simp	le Interest	
Questio	n: 6	4			
Match th					
	_	Column A		Column B	
	i	Principle(P)	a	Interest calculated based on	this
	iii	Amount (A) Rate (R)	b	Total sum you borrow Number of years	
	iv	Time period (T)	$\frac{c}{d}$	Total sum with interest	
Total sur	n you of yea	ated based ona borrow is known asars is Total :	sum witl	n interest is	
		_		s, she received Rs.1320. Find t	the interest she
\underline{Answer}	· <u>:</u>				
If Amour	nt and		nula for o	, Time period =ealculating interest is	
Questio	n: 6	6			
		terest on Rs.5000 for 3 years			
Answer		J			
		, Time period =	=	, Principal =	
Rate of i	intere	$st = \frac{\underline{\qquad} x \ 100}{Principal \ x \underline{\qquad}}$			

Substituting values in the formula,	
Rate of interest $= \frac{\underline{\qquad} x \ 100}{\text{Principal } x \ \underline{\qquad}}$	
Rate of interest = Therefore, the rate of interest is %	
Hi, here in this video you will learn Basics of proportion	
Question: 67	
If a:b and c:d are equivalent ratio, then it can be expressed as	
Answer:	
A (proportion / ratio) is used to express (one/two) equivalent ratios. Standard form to express proportion is	
Question: 68	
Find the ratio of shaded part to unshaded part of A and B. Are the two ratios equivalent?	
A	
В	
Answer:	
Shaded part of $A = \underline{\hspace{1cm}}$, Unshaded part of $A = \underline{\hspace{1cm}}$. Ratio of shaded to unshaded parts of A is $\underline{\hspace{1cm}}$. Fractional form $= \underline{\hspace{1cm}}$. Shaded part of $B = \underline{\hspace{1cm}}$, Unshaded part of $B = \underline{\hspace{1cm}}$.	
Ratio of shaded to unshaded parts of B is	
Fractional form = Fraction form of A (equal/ not equal) to Fraction form of B.	
Question: 69	

If a: b:: c: d is proportion, shade the correct expression

 $a = \frac{bc}{d}$

$\underline{Answer:}$
Two equivalent ratio which are proportion, it can be written as a : b :: c : d or = (in fraction) . First and fourth term are called and second and third term are called
In proportion, product of extreme terms is (equal to/ not equal to) product of middle
terms.
Therefore, $a \times d = \underline{\hspace{1cm}}$,
then $a = \underline{\hspace{1cm}}$ and $c = \underline{\hspace{1cm}}$
Hi, here in this video you will learn Profit and Loss
Question: 70
Anu bought a book for ₹100 and sold it for ₹150 . Here, cost price of a book is and selling price of a book is
$\underline{Answer:}$
The price that is paid to buy or purchase a goods is price and the price at which goods are sold is called price. Therefore, cost price of a book =, selling price of a book =
Question: 71
You bought a bat for ₹50 to play cricket. After one week, you sold that bat for ₹150. Is that a profit or loss for you?
$\underline{Answer:}$
In profit, selling price cost price. $(<,>,=)$ In loss, selling price cost price. $(<,>,=)$ Cost price of a bat = selling price of a bat = Cost price is (greater / smaller) than selling price. Then it is
Question: 72
Janu bought a smart phone for Rs.19,499 and after one week she sold her phone at a loss of Rs.2500 . Find the selling price of the phone.
$\underline{Answer:}$
Cost price of a smart phone =, loss = Loss = =
Janu bought a smart phone for Rs.19,499 and after one week she sold her phone at a loss of Rs.2500 . Find the selling price of the phone. Answer: Cost price of a smart phone =, loss =

Algebra

Topics to be Improved		
subtraction of algebraic expressions	subtraction of algebraic expressions	
Basics of simple equation	Formating of simple equation, Solving of simple equation	
Terms of an expression Identification of terms in an expression		
Monomials, binomials, trinomials and polynomials	Types of algebraic expression	
Addition and subtraction of algebraic expressions	Like terms and Unlike terms	

Hi, here in this video you will learn Subtraction on expression

Question: 73
Find the sum of two expressions $a + b + c$ and $b + c + d$
Answer:
The given two expressions are and
The two terms will get added only if they are(Like/ Unlike) terms.
The sum of two expressions $=$ $\underline{\hspace{1cm}}$ $+$ $\underline{\hspace{1cm}}$.

Question: 74

	School A	School B
Number of boys	100b	250b
Number of girls	150g	200g
Number of teachers	25t	45t

- (i) Total number of boys in school A and B is _____
- (ii) Total number of students in school B is _____

The answer is _____

(iii) How many more teachers are there in school B than school A? _____

(i) Number of boys in school $A = \underline{\hspace{1cm}}$,

Number of boys in school $B = \underline{\hspace{1cm}}$

Total number of boys in school A and school B is _____ + ___ = ____.

(ii) Number of boys in school $B = \underline{\hspace{1cm}}$,

Number of girls in school $B = \underline{\hspace{1cm}}$.

Total number of students in school B is $___$ + $___$ = $___$.

(iii) Number of teachers more in school B than school A = Teachers in school B - Teachers in school A = $_$

Question: 75

Solve the following:

$$\begin{array}{c|c}
3a - 5b \\
\hline
 (-) & 5a - 7b \\
\hline
 -2a - \underline{\hspace{1cm}}
\end{array}$$

Answer:

The two terms will get added only if they are _____ (like/unlike) terms.

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

$$\begin{array}{r}
 3a - 5b \\
 \hline
 (-) \quad 5a - 7b \\
 \hline
 -2a - \underline{\hspace{1cm}}
 \end{array}$$

 $\operatorname{Hi},$ here in this video you will learn $\operatorname{\bf Solving}$ an equation using application

Question: 76

Box B contains _____ times the number of chocolates in Box A

Answer:

Box A contains _____ chocolates.

Box B contains _____ chocolates.

No. of chocolates in Box $B = \underline{\hspace{1cm}} \times (No. of chocolates in Box A)$

Question: 77

Write the equation for the following statement. Subtracting four times of m from 4 is n
Answer:
Four times of m
Subtracting four times of m from 4

Four times of $m = \underline{\hspace{1cm}}$
Subtracting four times of m from $4 = \underline{\hspace{1cm}}$
The equation is $__$
Question: 78
Compare the given two statements $(<,>,=)$ Sum of $2a$ and 9 Add 9 to the product of a and 2
Answer:
Sum of $2a$ and $9 = \underline{\hspace{1cm}}$
Product of a and $2 = \underline{\hspace{1cm}}$
Add 9 to the product of a and $2 = \underline{\hspace{1cm}}$
Therefore, sum of $2a$ and 9 Add 9 to the product of a and 2
Hi, here in this video you will learn Terms of an expression

Question: 79

Separate the variables and constants for all the terms given in the box

\underline{Answe}	er:

In algebraic expression, variables are represented by _____ and Constant is a

Terms	Constants	Variables

Question: 80
Mark the expression that contains two terms. $3x + 5 12a 4xy 12a + b + 1 7m + 0$
Answer:
The terms in the expression $3x + 5$ is/are The terms in the expression $12a$ is/are The terms in the expression $4xy$ is/are The terms in the expression $12a + b + 1$ is/are The terms in the expression $7m + 0$ is/are
Question: 81
Shade the outline of circle that contains the term of the given expression.
$6m^2 - 7mn + nl$
(m^2) $(7mn)$ $(6m^2)$ $(-7mn)$ (mn) (mn) $(-mn)$
Answer:
In algebraic expression, (variables/ terms) are connected together with operations of addition. Here,,, are the terms of the given expression.
Hi, here in this video you will learn Types of expression
Question: 82
There are terms in the expression $7x + 3y + m + 5$.
Answer:
In algebraic expression, (variables/ terms) are connected together with operations of addition. The terms in the expression are,, and Therefore, there are terms in the expression.

Classify the following expression into monomial, binomial and polynomial.

- 1. 7m + n + 2
- 2. $8x^2 + 0$

 $Question:\ 83$

3. 7xy + 4m

Answer:

1.	The terms in expression	$8x^2 + 0$ are	
	Here expression has	term and it is a	

- 2. The terms in expression 7xy + 4m are _____. Here, expression has _____ term and it is a _____.
- 3. The terms in expression 7m + n + 2 are _____. Here, expression has ____ term and it is a _____.

Question:	81
Question.	04

 $5m^2 + m + 0$ is a ______ expression. (Monomial/ Binomial/ Trinomial)

Answer:

The terms in expression $5m^2 + m + 0$ are _____. Here, the expression has _____ terms and it is called a _____ expression.

......

Hi, here in this video you will learn Addition on expression

Question: 85

Shade the like terms.

Answer:

Given terms are _____

Two or more term have _____ (same/ different) variables is called like terms.

Here, like terms are _____

Question: 86

Complete the expression $7r^2 + r \Box - 2 \Box = \underline{} r^2$

Answer:

_____ (Like / Unlike) terms can be added or subtracted.

			,	
$7r^2 + r \square -$	2	= $($ 7	+ 2	$)_{r^2} = $

Question: 87

Sam have 3a chocolates and 9y icecream. Ram have 7a chocolates and 5y icecream.

- (i) Total chocolates Ram and Sam have: _____.
- (ii) How many icecreams Sam have more than Ram:

Answer:

	Chocolates	Icecream
Sam		
Ram		

(i) Total chocolates Ram and Sam have:

Ram's chocolate + Sam's chocolates = _____ + ____ = ___

(ii) How many icecreams Sam have more than Ram:

_____ icecream - ____ icecream = ____ - __ = ____

......

Hi, here in this video you will learn Solving an equation

Question: 88

If ©=5, then 5 © +5 =

Answer:

The value of the given smiley © is _____.

Substituting the value in the expression $= 5(\underline{\hspace{1cm}}) + 5 = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$.

Question: 89

Which of the following number can be placed in the box to make the equation correct (-2, -1, 0, 1, 2)

$$7 \square + 3 = -4$$

Answer:

The given equation is 7 = -4 Substitute the values (-2, -1, 0, 1, 2) in the circle,

$$7 \times$$
 _____+ $3 =$ _____

–	
13 —	
1 A T,) —	

Therefore, _____ is the number that can be placed in a box to make the equation correct.

Question: 90

Arrange the terms in the descending order when the value of x is 2.

Answer:

The given expression are _____.

The value of x is _____.

substituting value of x

$$2x = 2 \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}} 2x - 4 = 2 \times \underline{\hspace{1cm}} - 4 = \underline{\hspace{1cm}}$$
 $x + 3 = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$
 $5x \times 1 = 5 \times \underline{\hspace{1cm}} \times 1 = \underline{\hspace{1cm}}$

Arranging in descending order: ____, ____, ____, ____.

Their respective algebraic terms are ____, ____, ____, ____, ____.