RINGS WITH COMMUTATORS AND THE SQUARE OF EVERY ELEMENT IS IN THE NUCLEUS

DR. C. JAYA SUBBA REDDY, D. PRABHAKARA REDDY.

Abstract: In this paper, we prove that (x,y,z) + (y,z,x) + (z,x,y) is in the nucleus N for all elements x,y,z of the ring R. Using this, we prove that a prime ring of char. $\neq 2$ is either associative or a Lie ring.

Keywords: Nonassociative ring, Prime ring, Nucleus, Center, Characteristic and Associator.

Introduction: Kleinfeld [2] considered rings in which the square of every element is in the nucleus, a property that is shared by both associative and Lie rings. Under the additional assumptions of primeness and char. $\neq 2$ it was shown that such rings are either associative or have the property that $x^2 = 0$, for every element x of the ring. In this paper we prove that (x,y,z) + (y,z,x) + (z,x,y) is in the nucleus for all elements x,y,z of the ring R. Using this, it is proved that if R is a prime ring of char. $\neq 2$, then it is either associative or a Lie ring. At the end of this section we give an example in which char. $\neq 2$ is necessary in theorem 1.

Priliminaries: Let R be a nonassociative ring. We shall denote the commutator and the associator by (x,y) = xy-yx and (x,y,z) = (xy)z-x(yz) for all x,y,z in R respectively. The nucleus N of a ring R is defined as N = $\{n \in R \mid (n,R,R) = (R,n,R) = (R,R,n) = 0\}$ [1]. The center C of R is defined as C = $\{c \in N \mid (c,R) = 0\}$. A ring R is said to be of characteristic $\mathbb D$ n if nx = 0 implies x = 0, for all $x \in R$ and n is a natural number. A ring R is of characteristic $\mathbb D$ n is simply denoted by char. $\mathbb D$ n. A ring R is said to be prime if whenever A and B are ideals of R such that AB = 0, then either A = 0 or B = 0. A Lie ring is a ring in which the nultiplication is anticommutative, i.e., $x^2 = 0$ and the Jacobi identity (xy)z + (yz)x + (zx)y = 0, for all x,y,z in R is satisfied.

Main Results: Throughout this paper we consider a ring R with commutators and square of every element is in the nucleus.

i.e.,
$$(R,R) \subset N$$
 ... (1)
and $x^2 \in N$, for all $x \in R$ (2)

If S(x,y,z) = (x,y,z) + (y,z,x) + (z,x,y), we have the identity

$$(xy,z) + (yz,x) + (zx,y) = S(x,y,z).$$

...(3)

Using (1) in the above identity, we have $S(x,y,z) \subset N$.

i.e.,
$$(x,y,z) + (y,z,x) + (z,x,y) \in N$$
,

for all x, y, z in R.

Now we prove the following lemma.

Lemma 1: Let R be a prime ring satisfying $x^2 \in N$ for every $x \in R$ and of char. $\neq 2$. Then either R is

associative or $N^2 = 0$. Proof: For all $r,s \in R$,

 $rs + sr = (r + s)^{2} - r^{2} - s^{2}$ must be in N.

Select $n,n' \in N$, and $x, y, z, \in R$.

Then using the above equation

(n(n'x + xn'), y, z) = 0. So that

 $(nn'x,y,z) = -(n \times n',y,z).$ Similarly (nyn'y,z) = -(ynn'y,z) and

Similarly (nxn',y,z) = -(xnn',y,z) and (xnn',y,z) = -(nn'x,y,z).

By combining the above three equalities it follows that 2 (nn'x,y,z) = 0. Since R is of char. $\neq 2$, we get

$$\begin{array}{ll} (n \; n'x,y,z) = o. & ... \; (5) \\ \text{Now} & (nx,y,z) = ((nx)y)z - (nx) \; (yz) \\ & = (n(xy))z - n(x(yz)) \\ & = n((xy)z) - n(x(yz)) \\ & = n(x,y,z). \end{array}$$

By replacing n by n n' in the above equation, we get (n n'x,y,z) = n n'(x,y,z). ... (6)

The combination of (5) and (6) yields $n \ n'(x,y,z) = o$. So that

$$N^{2}(R,R,R) = 0.$$
 ... (7)

Let A be the ideal generated by N^2 , and I the ideal generated by all associators (R,R,R). We have $n \ n'x = n \ (n'x + x \ n') - (nx + xn)n' + xnn'$. So that $N^2R \subset RN^2 + N^2$. Consequently

 $A = R N^2 + N^2.$

In an arbitrary ring

I = (R,R,R) + (R,R,R)R. It follows from (7), that AI = o. Since R is prime either

A = o, or I = o. If A = o, then $N^2 = o$. On the other hand if I = o, then R is associative. This completes the proof of the lemma.

Theorems. Let R be a prime ring of

char. $\neq 2$ satisfying $r^2 \in N$ for all $r \in R$. Then either R is associative or $r^2 = o$, for all $r \in R$.

Proof : By considering the case $N\neq R$, from the lemma 1 we have $N^2=0$.

Let
$$K = N + NR$$
.

Since $rn = (rn + nr) - nr \in K$ and

snr = (sn + ns)r- $nsr \in K$, for all $n \in N$ and $r,s \in R$, K must be an ideal of R.

Moreover if

 $n' \in N$, nrn' = n (rn' + n'r) - nn'r = o, since $N^2 = o$. Therefore $K^2 = o$. But R is prime and so K = o. But then N = o, whence $r^2 = o$, for all $r \in R$. This completes

RINGS WITH COMMUTATORS AND THE SQUARE OF EVERY ELEMENT

the proof of the theorem.

Theorem 2: Let R be a prime ring of char. $\neq 2$ satisfying (i) $x^2 \in N$ for all $x \in R$, and (ii) $(x,y,z) + (y,z,x) + (z,x,y) \in N$ for all $x,y,z \in R$. Then R is either associative or a Lie ring.

Proof: Assume that R satisfies (i) and (ii).

By considering the case $N \neq R$, from Theorem 1 we have $x^2 = o$, for all $x \in R$. Consequently R is anticommutative. i.e., xy = -yx.

For any $n \in N$, n(xy) = (nx)y = (-xn)y = -x(ny) = x(yn) = (xy)n,

And also n(xy) = (-xy)n.

Using the above two equations, we get 2n(xy) = 0. Since R is of char. $\neq 2$, we have n(xy) = 0. Thus $NR^2 = 0$. The set T of all $t \in R$ such that tR = 0, forms an ideal of R which must be zero since R is prime. Since $NR \subset T$, we obtain NR = 0 and subsequently N = 0.

In any anti-commutative ring (x,y,z) + (y,z,x) + (z,x,y) = (xy)z - x(yz) + (yz)x - y(zx) + (zx)y - z(xy) = 2((xy)z + (yz)x + (zx)y) which equals twice the

Jacobian of x, y, z. Then because of (ii), we have $2((xy)z + (yz)x + (zx)y) \in N$. Since R is of char. $\neq 2$, we have $((xy)z + (yz)x + (zx)y) \in N$. Since N = 0, we conclde that the well known Jacobi identity holds and thus R is a Lie ring.

Now we give an example in which char. $\neq 2$ is necessary in theorem 1.

Example 1: Let 1, x, y be basis elements of the algebra R over an arbitrary field F, where xy = 1, $yx = x^2 = y^2 = 0$.

For any α , β , $\gamma \in F$,

 $(\alpha + \beta x + \gamma y)^2 = \alpha^2 + 2\alpha\beta x + 2\alpha\gamma y + \beta\gamma$

= $2\alpha (\alpha + \beta x + \gamma y) + \beta \gamma - \alpha^2$.

Thus R is quadratic over F. Clearly R is simple, power associative, and that all commutators of R are contained in F. R is not associative since (x,y,y) = y. Also $(x+y)^2 = 1 \neq 0$. If F happens to be a field of char. = 2 then $r^2 \in F$ for every $r \in R$. Therefore Theorem 1 fails to hold for rings of char. = 2.

References:

 Boers A.H., "The nucleus in a non-associative ring", Proc. Kon. Ned. Akad.V.Wetensch. A74, Indag.Math.33, 465-466 (1971).

 Kleinfeld, E "Quasi-Nil rings", Proc. Amer. Math. Soc. Vol.10, 477-479(1959).] Schafer, R.D., "An introduction to Non-associative Algebra", Pure and Appl.Math.Academic Press, New York, (1966).

Assistant Professor, e-mail: cjsreddysvu@gmail.com Research Scholar, e-mail: <u>prabhakarassreddyd@gmail.com</u> Department of Mathematics, S.V.University, Tirupati.