Сложность доказательств

19 декабря 2018 г.

1 Abstract

Древовидная система доказательств-это система, в которой все предыдущие правила нужно выводить снова(если $(P_k,...P_{k+s})$ -набор строк, которые мы вывели на предыдущих шагах и P_{k+s+1} -строка выводимая из нашего набора, то для ее вывода нужно вывести каждый элемент набора с самой первой строчки)

Теорема 1 Для древовидных аналогов LS существует нижняя экспоненциальная оценка на длину доказательства.

Полуалгебраичные системы доказательств

Все системы доказательств оперируют с многочленами. Формула в киф записыается так: Для каждого клоза, содержащего переменные x_i и отрицания y_i , берется уравнение $(1-x_1)st$ $(1-x_2)*\cdots*(1-x_n)*y_1*y_2*\cdots*y_m=0$, так как переменные еа самом деле 0 или 1, fr;t добавляются уравнения x * x = x для всех переменных. Мы будем не доказывать наличие выполняющего набора, а добавлять ее отрицание в систему и доказывать противоречивость системы.

Системы доказательств

 $\mathbf{Nullstellensatz}(\mathbf{NS})$ - Изначально у нас есть система уравнений $f_i=0$, доказательство противоречивости -набор $g_i: \sum f_i * g_i = 1$, такие по тореме Гильберта о нулях существуют над алг. замкнутым полем.

Polynomial calculus (PC) - вывод док-ва в Nullstellensatz: из уравнения p=0,q=0 выводится p+q=0, из p=0 выводится pq=0. Доказательство противоречивости - вывод 1=0.

 $\mathbf{Pozitivestellensatz}(\mathbf{PSZ})$ - многочлены над R, есть система уравнений $f_i=0$, доказа-

тельство противоречивости - набор $g_i, h_i: g_i: \sum f_i * g_i = 1 + \sum h_i^2$.

Positivestellensatz calculus (PSZC) - вывод док-ва в Positivestellensatz, правила вывода те же, что и в PC, а док-во противоречивости - набор многочленов h_i и вывод $0 = +\sum h_i^2$ из правил вывода.

Lovasz-Schreier calculus (LS) - манипулируем не с равенствами, а с неравенствами, из $f_1 \geq 0, f_2 \geq 0, \ldots, f_n \geq 0$ выводится $\sum a_i f_i \geq 0$, где $a_i \geq 0$ - константы. Также из $f \geq 0$ следует $fx \geq 0, f(1-x) \geq 0$ для переменной х. Аксиомы - $x^2 - x \geq 0, x - x^2 \geq 0$ для всех переменных х. Вывод противоречия - вывод $-1 \ge 0$.

 LS_{+} - то же, но еще есть аксиома $l^{2} \geq 0$ для любого полинома l.

Булева степень многочлена - степень многочлена, взятого по модулю $x_i^2 - x_i$ для всех переменных в нем. Булева степень доказательства - максимальная из булевых степеней многочлена в процессе.

Мы доказываем несуществование решения задачи о рюкзаке (доказываем несуществование x_i , таких что $f = x_1 + x_2 + \ldots + x_n = m))$ при нецелом m, то есть добавляем f в систему и доказываем противоречивость. Пусть A(m) - ступенчатая функция, равная 0 вне [0, n], 2k+4на [k, k+1] и [n-k-1, n-k].

Th: Булева степень любого док-ва неразрешимости задачи о рюкзаке в PC не менее $\frac{(n-1)}{2}$, в PSCZ - не менее $min(\frac{n-1}{2}, A(m))$.

Th: Размер любого доказательства неразрешимости задачи о рюкзаке при $m = \frac{2n+1}{4}$ в NS и PSZ экспоненциален.

Статические доказательства

NS - статическая версия PC, PSZ - статическая версия PSZC.

Static LS: - пусть есть система неравенств $s_i \geq 0$. Доказательство ее противоречивости набор многочленов $w_{i,j}$, каждый из которых - произведение мономов $x_i, (1-x_i)$ и констант $a_{i,j} \geq 0$, такой что $\sum s_i \sum a_{i,j} w_{i,j} = -1$.

Static LS_+ : - пусть есть система неравенств $s_i \geq 0$. Доказательство ее противоречивости набор многочленов $w_{i,j}$, каждый из которых - произведение мономов $x_i, (1-x_i)$ или квадрат другого многочлена и констант $a_{i,j} \geq 0$, такой что $\sum s_i \sum a_{i,j} w_{i,j} = -1$.

Th: при $m=rac{2*n+1}{4}$ размер любого док-ва рюкзака в $Static\ LS$, $Static\ LS_+$ экспоненциален

В моих с Михаилом докладах были следующие системы доказательств:

- 1. Системы Фреге.
- 2. Игры Пудлака и Баса.

Системы Фреге определялись не нами.

Что такое игра Пудлака и Баса?

Есть два игрока: Павел и Сэм, у них есть тавтология ϕ . Сэм говорит, что знает набор значений переменных, при которм ϕ ложно. Павел пытается уличить Сэма и задаёт ему вопросы про значение произвольных формул от переменных формулы ϕ . Сэм отвечает. Павел уличает Сэма, если он получает непосредственное противоречие, это значит, например, он спрашивал ответы для формул $\phi \lor \psi$, ϕ , ψ , но ответы не сошлись. Деревом игры называется такое двоичное дерево, каждая внутреняя вершина которого помечена формулой, одно из рёбер которого помечено 0, другое 1. В каждом листе должно быть непосредственное противоречие (мы всегда считаем, что есть ответ 0 для исходной формулы ϕ).

Мы рассматриваем формулы, в которых используются только бинарные операции \vee и \wedge и унарная операция \neg .

Это две системы доказательств сводятся друг к другу:

Пемма 1. Система Фреге моделирует исчисление секвенций. Древовидная система Фреге моделирует древовидное исчисление секвенций.

Лемма 2. По доказательству формулы ϕ в системе Фреге размера s можно построить дерево игры Пудлака-Баса высоты O(logs) и размера poly(s), где константа зависит только от правил системы Фреге.

Пемма 3. По дереву игры Пудлака-Баса для формулы ϕ высоты h и размера s можно построить древовидный вывод секвенции $\vdash \phi$ высоты h + O(1) и размера poly(s).

Нижняя оценка для систем Фреге ограниченной глубины:

Теорема 1. Пусть F - система Фреге. Тогда для достаточно больших n для любой глубины d доказательство $\neg PHP_n^{n+1}$ в F имеет размер как минимум $2^{n^{\mu}}$ для любого $\mu < \frac{1}{2}(\frac{1}{5})^{d+c}$, где c - это константа, которая зависит только от систем Фреге.

Resolution proof system

Нам дали некоторую формулу Φ в КН Φ , и мы хотим ее опровергнуть. Для этого нам понадобятся все клозы из этой формулы (их называют аксиомами) и два правила вывода:

- 1. The Resolution Rule: $\frac{E \lor x \quad F \lor \neg x}{E \lor F}$
- 2. The Weakening Rule: $\frac{E}{E \vee F}$

Здесь E,F - дизъюнкты, а x - переменная. Такими операциями мы хотим получить пустой клоз. Вообще говоря, второе правило излишне, но его добавляют для удобства.

Мы только что определили систему доказательств в резолюциях (Resolution proof system?). У этой системы доказательств бывают разновидности, например, можно запретить переиспользовать выведенные клозы и получить систему доказательств tree-like Resolution (потому что вывод раньше был DAG, а теперь – дерево).

Определение 1. Размером доказательства называется количество вершин в графе вывода. Обозначается $S(\pi)$ для general Resolution и $S_T(\pi)$ для tree-like Resolution.

TL;DR. На самом деле все затевается только ради следствий [1], [2] и [3]. Можно читать только их, если не особо интересно что за формулы там внутри написаны.

Определение 2. Шириной клоза C называется количество литералов e нем. Шириной формулы называется максимальная ширина клоза e ней. Шириной резолюционного доказательства называется максимальная ширина клозов e нем. Обозначается $\omega(C)$, $\omega(\Phi)$ и $\omega(\pi)$ соответственно.

Теорема 1.
$$\omega(\Phi \vdash 0) \leq \omega(\Phi) + \log S_T(\Phi)$$

Теорема 2.
$$\omega(\Phi \vdash 0) \leq \omega(\Phi) + O(\sqrt{n \log S(\Phi)})$$

Запоминать формулировки теорем выше не нужно, они призваны показать, что из того, что разность $\omega(\Phi \vdash 0) - \omega(\Phi)$ большая, следует экспоненциальная нижняя оценка на размер доказательства в резолюциях.

¹Осторожно, все русские названия являются не особо интеллектуальной собственностью воспаленного сознания человека, писавшего этот файл.

²Но копипастить я умею.

Определение 3 (PHP_n^m) . PHP_n^m - контонкция следущих клозов:

- $P_i := \bigvee_{1 \le i \le n} x_{ij}, 1 \le i \le m$
- $H_{i,i'}^j := \neg x_{ij} \lor \neg x_{i'j}, 1 \le i, i' \le m, 1 \le j \le n$

Это обычный принцип Дирихле. Про него ничего доказать не получится, потому что он имеет широкие клозы P_i , а $\omega(PHP_n^m\vdash 0)\leq n$, поэтому мы модифицировали формулу двумя разными способами и для них все доказывали.

Определение 4 $(EPHP_n^m)$. Заменим все P_i на EP_i

$$EP_i = \neg y_{i0} \wedge \bigwedge_{j=1}^n (y_{ij-1} \vee x_{ij} \vee \neg y_{ij}) \wedge y_{in}$$

Теорема 3. Если m > n, то $\omega(EPHP_n^m \vdash 0) \ge n/3$.

Следствие 1. Если m > n, то $S_T(EPHP_n^m \vdash 0) = 2^{\Omega(n)}$

Это один из двух основных результатов.

Еще мы рассматривали другой способ модифицировать формулу. Можно брать не все условия, а только те, которые есть в некотором двудольном графе (Если взять $K_{m,n}$, получится обычный PHP_n^m). Это называется G-PHP, причем, здесь G- граф. Конечно, G будет экспандером.

Лемма 1. Пусть G, G' - графы на одном и том же множестве вершин, причем $E(G) \subset E(G')$, где E - множество ребер графа. Тогда S(G-PHP) < S(G'-PHP).

Теорема 4.
$$\omega(G - PHP \vdash 0) \geq \frac{re}{2}$$

Где r, e - параметры экспандера (если все еще не понятно, забудьте про эту теорему).

Следствие 2. $S(PHP_n^{n+1}) = 2^{\Omega(n)}$

Следствие 3. $S(PHP_n^m) = 2^{\Omega(\frac{n^2}{m\log m})}$

А это второй основной результат.

1 Polynomial calculus proofs

Опр: Дано поле K и множество переменных. Polynomial calculus refutation множества аксиом P, это последовательность полиномов такие что последняя строчка это 1 и каждая строчка это либо аксиома, либо получается из предедущих строчек использованием правил вывода: $\frac{f-g}{\alpha f + \beta g}$ и $\frac{f}{x \cdot f}$. Где α , β из K это скаляры а x любая переменная.

Опр: Степень опровержения равна d если степени все полиномов в опровержении степени не больше d.

Мы считаем, что полиномы x^2-x входят в аксиомы для всех переменных x. Это означает, что аксиомы $f_1, ..., f_k$ опровержимы тогда и только тогда когда $f_1 = f_2 = ... = f_k = 0$ не имеет 0-1 решений.

Обозн: Для полинома f пусть \bar{f} это единственный полилинейный полином равный f по модулю идеала порожденного всеми полиномами x^2-x .

Обозн: Множество из чисел от 1 до i будем обозначать как [i]

Обозн: $x_{ij} = 1$ означает, что голубь i стоит в клетке j.

Пусть $Q_i = 1 - \sum_{j \in [n]} x_{ij}$. Тогда ¬ PHP_n^m

это следующие полиномы:

1) Q_i для $i \in [m]$ 2) $x_{ij}x_{ij'}$ для $i \in [m], j, j' \in [n], j \neq j'$ 3) $x_{ij}x_{i'j}$ для $i, i' \in [m], j \in [n], i \neq i'$

Опр: Пусть T это множество всех мономов $x_{i_1j_1}...x_{i_kj_k}$ таких что все i_l различны и все j_l различны и пусть T_d будет множество всех мономов степени не более d.

 ${\bf Утв}$: Любой полином это линейная комбинация термов из T без увеличения степени.

Мы хотим построить базис B_d от векторного пространтсва порожденного T_d так чтобы элементами базиса были произведения неких переменных и неких аксиом Q, например $x_{3,1}x_{5,3}Q_2Q_4$. Если мы справимся все строчки доказательства выписать в этом базисе то 1 нельзя будет вывести из аксиом. Определение B_d использует понятие "pigeon dance" которое мы сейчас определим

Опр: Пусть $A = \{a | a \text{ функция из } [m] \text{ в}$

$$\{0, 1, ..., n\}$$

такая что

$$\forall i, a(i) = a(i')$$

означает что i = i'

$$\mathbf{Onp}: A_d = \{a \in A | |a| \le d\}$$

Для $a=\{(i_1,j_1),...,(i_k,j_k),(i_1',0),...,(i_l',0)$ где j_m ненулевые, определяем $x_a=x_{i_1,j_1}...x_{i_k,j_k}Q_{i_1'}..Q_{i_l'}$ и

$$\hat{a} = \{(i_1, j_1), ..., (i_k, j_k)\}$$

Опр: Интуитивно, pigeon dance это когда у нас есть расстановка голубей по клеткам (те которые не в какой то клетке считаем в клетке 0), и мы передвигаем первого голубя до какой то незабитой клетки большей по номеру чем в той который он сидит. И так с каждем голубем.

Опр: Минимальный pigeon dance это когда передвигаем голубей до **минимальной** незабитой клетки большей по номеру.

Теорема 1. Если существует pigeon dance то существует минимальный pigeon dance.

 $Onp \ B_d = \{x_a | a \in A_d \ u \ cyществует \ pigeon \ dance \ на \ mex \ голубях которые не в клетке <math>0\}$

Утв Если $d \leq \lceil n/2 \rceil$ и $a \in A_d$ то существует pigeon dance на а тогда и только тогда когда существует на \hat{a}

Утв Минимальный pigeon dance это биекция

Утв B_d это базис

Теорема 2. PHP_m^n не имеет polynomial calculus refutation степени $\leq \lceil n/2 \rceil$

Секущие плоскости

Используем пропозициональные переменные \bar{p} с интерпретацией 0=false и 1=true. Строка доказательства - это

$$\sum_{k} c_k p_k \ge C,$$

где c_k и C - целые.

Аксиомы: $p_k \ge 0$ и $-p_k \ge -1$ (т.е. $0 \le p_k \le 1$) для каждой пропозициональной переменной p_k .

Парвила:

- 1. Сложение. Из $\sum_{k} c_{k} p_{k} \geq C$ и $\sum_{k} d_{k} p_{k} \geq D$ получаем $\sum_{k} (c_{k} + d_{k}) p_{k} \geq C + D;$
- 2. Деление. Из $\sum_{k} c_{k} p_{k} \geq C$ получаем $\sum_{k} \frac{c_{k}}{d} p_{k} \geq \left\lceil \frac{C}{d} \right\rceil$, d > 0 целое, которое делит каждое c_{k} ;
- 3. Умножение. Из $\sum_k c_k p_k \geq C$ получаем $\sum_k dc_k p_k \geq dC$, где d произвольное положительное целое.

Для опровержения множества неравенств надо получить противоречие $0 \ge 1$.

Statement. По невыполнимой формуле в $KH\Phi$ можно построить доказательство в секущих плоскостях.

Statement. Секущие плоскости моделируют резолюцию.

Нижняя оценка

Идея: Извлечь из доказательства монотонную булеву схему и применить оценку (теорему Разборова) на монотонную схемную сложность.

Theorem 0.1. (Пудлак) Если формула A(x,y) такая, что все вхождения x положительны (т.е. без отрицания), или формула B(x,y) такая, что все вхождения x отрицательны, то по доказательству $A(x,y) \wedge B(x,y)$ в секущих плоскостях размера s можно построить вещественную монотонную схему C размера $\leq s$ такую, что $C(x) = 1 \quad \forall x \in U \ u \ C(x) = 0 \quad \forall x \in V$, где $U = \{x \mid \exists y : A(x,y) = 1\}$, $V = \{x \mid \exists z : A(x,z) = 1\}$.

Theorem 0.2. (Разборов) Пусть C - монотонная вещественная схема, принимающая на вход векторы из 0 и 1 длины $\binom{n}{2}$, кодирующие граф на п вершинах. Пусть C выдает 1, если граф содержит клику размера m, и выдает 0, если вершины графа можно раскрасить в m-1 цвет, где $m=\left\lfloor \frac{1}{8} \left(\frac{n}{\log n}\right)^{\frac{2}{3}} \right\rfloor$. Тогда размер схемы хотя бы $2^{\Omega((\frac{n}{\log n})^{\frac{1}{3}})}$.

Запишем формулой, что граф одновременно имеет клику размера т и правильным образом красится в m-1 цвет. Причем сделаем это так, чтобы попасть в условие теоремы Пудлака (это можно сделать). Тогда из двух предыдущих теорем получим нажнюю оценку.

Theorem 0.3. При $m = \left\lfloor \frac{1}{8} \left(\frac{n}{\log n} \right)^{\frac{2}{3}} \right\rfloor$ размер доказательства в секущих плоскостях формулы Clique \wedge Coloring есть $2^{\Omega((\frac{n}{\log n})^{\frac{1}{3}})}$.

Мы смотрим на доказательства корректности метода резолюций Res. Корректность любой системы доказательств можно записать в виде формулы (для фиксированных r, n, m), так называемой Reflection Principle:

$$SAT_r^n(x,z) \wedge REF_{r,m}^n(x,y),$$

где r — количество клозов в формуле, n — количество переменных в ней, m — длина опровержения y для x. x здесь длины $r \times n \times 2$ кодирует саму формулу — $x_{i,v,b}=1$ тогда и только тогда, когда переменная v (если b=1, то с отрицанием, иначе положительно) входит в i-й клоз формулы. z кодирует выполняющий набор, но он не длины n, а длины n+2rn — там еще для каждого клоза хранится, какой литерал его выполняет. $SAT_r^n(x,z)$ просто проверяет, что z правда кодирует выполняющий набор формулы, которую, в свою очередь, кодирует x.

y же кодирует доказательство невыполнимости формулы в резолюциях — там так же кодируются клозы, плюс информация, из резолюции каких клозов очередной клоз был получен, и по какой переменной резолюция происходила. $REF^n_{r,m}(x,y)$ проверяет, что y кодирует опровержение x в Res. Получается, что если Res корректна, то Reflection Principle невыполнима — ведь если фиксировать формулу, то есть x, то нельзя одновременно выполнить и SAT, и REF, то есть подобрать и выполняющий набор z, и опровержение y.

Получается, чтобы доказать, что в Res нельзя опровергнуть выполнимые формулы, можно доказать невыполнимость Reflection Principle. Это и будет наш способ доказательство корректности. Вообще говоря, есть всякие теоремы о том, что из существования короткого опровержения Reflection Principle для системы доказательств А в системе доказательств В следуют всякие связи автоматизируемости этих систем, но это не то, о чем речь шла на семинаре.

Сначала мы доказали, что Reflection Principle для Res имеет короткое доказательство в Res[2]. Res[k] — это те же Res, только есть дополнительные переменные, которые соответствуют конъюнкциям не более, чем k исходных литералов. Другими словами, в Res[k] можно клозы делать не просто дизъюнкцией литералов (то есть формулами в 1-CNF), а формулами в k-CNF. Правила там самые естественные — если мы вывели $l_i \lor C$ и $l_j \lor C$, то выводим $(l_i \land l_j) \lor C$, и наоборот, из последнего можно вывести $l_i \lor C$ и $l_j \lor C$. Все правила для Res сохраняются. Это и есть, на пальцах, определение Res[2]. Как проходило доказательство писать не буду, там просто много-много техники.

Потом мы доказали, что Reflection Principle для Res в Res коротко не опровергается. Для этого мы пользуемся тем, что графы, содержащие клики размера 2k не отделяются короткими монотонными схемами от k-раскрашиваемых графов. Кроме того, по опровержению в резолюциях формулы вида $A(x,y) \wedge B(x,z)$ можно построить монотонную схему, которая по данному x говорит, что невыполнимо - A(x,y) или B(x,z). Теперь мы от противного строим схему для отделения графов с кликами от k-раскрашиваемых графов, подставив в Reflection Principle формулу $COL_k(G,q)$, которая проверяет, является ли q правильной раскраской G в k цветов.

Определение 1. Система Фреге содержит (1) правильно сформулированные формулы над каким-то пропозициональным языком L; (2) конечное множество аксиом; (3) конечное множество правил вывода.

Теорема 1. Пусть F_1 и F_2 две системы Фреге над каким-то языком L. Тогда существует константа c>0 такая, что для любой формулы φ и любого n, если φ выводится в F_1 за n шагов, то φ выводится в F_2 за cn шагов.

Определение 2. Размер доказательства — символьная длина доказательства, т.е. $\sum_{i=1}^{m} |\psi_i|$, где ψ_i —шаги доказательства.

Теорема 2. Формула PHP_n имеет полиномиальный размер доказательства Фреге.

NP-pairs & Co.

A **disjoint NP-pair** is a pair (A, B) of nonempty sets A and B such that A, B \in NP and A \cap B = \emptyset . A **separator** is a set S such that $A \subseteq S$ and $B \subseteq \overline{S}$.

(A, B) is **many-one reducible** in polynomial-time to (C, D) $((A, B) \le_m^{pp} (C, D))$, if there exists a polynomial-time computable function f such that $f(A) \subseteq C$ and $f(B) \subseteq D$.

(A, B) is **Turing reducible** in polynomial-time to (C, D) $((A, B) \leq_T^{pp} (C, D))$, if there exists a polynomial-time oracle Turing machine M such that for every separator S of (C, D), L(M,S) is a separator of (A, B).

 $\mathrm{SAT}^* = \{(x,0^n) \, \big| \, x \in \mathrm{SAT} \}$ The **canonical pair** of f is the disjoint NP-pair (SAT^*, REF_f) : $\mathrm{REF}_f = \{(x,0^n) \, \big| \, \neg x \in \mathrm{TAUT} \text{ and } \exists y [|y| \leq n \text{ and } f(y) = \neg x] \}.$

Theorem 1. For every disjoint NP-pair (A, B) there exists a proof system f such that $(SAT^*, REF_f) \equiv_m^{pp} (A, B)$.

One proof system Π_w is **simulated** by another one Π_s if the shortest proof for every tautology in Π_s is at most polynomially longer than its shortest proof in Π_w .

The notion of **p-simulation** is similar, but requires also a polynomial-time computable function for translating the proofs from Π_w to Π_s .

A (p-)optimal propositional proof system is one that (p-)simulates all other propositional proof systems.

An **acceptor** for a language L is an algorithm that answers 1 for $x \in L$ and does not stop otherwise.

An **acceptor O is optimal** if for any other (correct) acceptor A, for every $x \in L$, the acceptor O stops on x in time bounded by a polynomial in |x| and the time taken by A(x).

Theorem 1. Optimal acceptors for TAUT exist <=> p-optimal proof systems for TAUT exist. (TAUT - language of all propositional tautologies)

Семинар по сложности доказательств Ограниченная арифметика: основные определения Золотов Б.

1.

Язык ограниченной арифметики — =, \leq ; 0, S, +, \cdot , $\lfloor \frac{x}{2} \rfloor$, |x|, #, \leq . $x \# y = 2^{|x| \cdot |y|}$.

Ограниченный квантор — вида $(Qx \le t)$. Остро ограниченный — вида $(Qx \le |t|)$. Ограниченная формула — логическая формула только с такими кванторами.

Иерархия ограниченных формул Σ_k^b , Π_k^b — определяется чередованием ограниченных кванторов, на строго ограниченные забиваем. Предикат лежит в классе Σ_k^p полиномиальной иерархии, если и только если определяется Σ_k^b —формулой.

2.

 T_2^i — первопорядковая теория в языке ограниченной арифметики, задающаяся аксиомами: (а) BASIC, описывающими свойства арифметических операций (б) аксиомой индукции для каждой формулы из Σ_i^b с одной свободной переменной.

 S_2^i — то же самое, но вместо аксиомы индукции для каждой формулы A включаем аксиому PIND, где переход от $\lfloor \frac{x}{2} \rfloor$ к x. $S_2^1 \subseteq T_2^1 \subseteq S_2^2 \subseteq T_2^2 \subseteq \dots$

 $f{:}~\mathbb{N} \longrightarrow \mathbb{N} \longrightarrow \Sigma_i^b$ – определяется теорией R,если существует формула $A(\vec{x},y) \in \Sigma_i^b$ такая, что

- (1) Всегда верно $A(\vec{n}, f(\vec{n}))$;
- (2) Из R можно вывести, что для любого \vec{n} существует ровно один y, такой что $A(\vec{n}, y)$.

Предикат $P \subseteq \mathbb{N}$ — Δ_i^b —определяется теорией R, если существуют Σ_i^b —формула A и Π_i^b формула B такие, что они обе задают P, и в R можно доказать их эквивалентность.

3.

Теорема: Пусть $A \in \Sigma_i^b$ — тогда существуют $B \in \Sigma_i^b, f \in \square_i^p$ и терм t такие, что:

- (1) $S_2^i \vdash B$ верна только если верна A;
- (2) Для всякого \vec{x} существует единственный y, т. ч. $B(\vec{x}, y)$,
- (3) И этот y не превосходит t;
- (4) Для всякого \vec{n} верно $\mathbb{N} \models B(\vec{n}, f(\vec{n}))$, то есть, формула B задаёт функцию f.

Теорема: Если $f \in \square_i^p$, то существует задающая её формула B, такая что (2)–(4).

Теорема: Функции, Σ_i^b —определяющиеся теорией S_2^i , — в точности \square_i^p .

Теорема: Предикаты, Δ_i^b —определяющиеся теорией S_2^i , — в точности Δ_i^p из полиномиальной иерархии.

4.

Cut:

$$\begin{array}{ccc} \Gamma \longrightarrow \Delta, A & A, \Pi \longrightarrow X \\ \hline \Gamma, \Pi & \longrightarrow & \Delta, X \end{array}$$

Обычно стараемся от них избавиться (хотя бы от некоторых), чтобы было *subformula property*.

5.

Definition Fix $i \geq 1$. Let $B(\vec{a})$ be a Σ_i^b -formula with all free variables indicated. Then $Witness_B^{i,\vec{a}}(w,\vec{a})$ is a formula defined inductively by:

- $(1) \ \ \text{If} \ \ B \in \Sigma_{i-1}^b \cup \Pi_{i-1}^b \ \ \text{then} \ \ \textit{Witness}_B^{i,\vec{a}}(w,\vec{a}) \ \Leftrightarrow \ B(\vec{a}).$
- (2) If $B = C \vee D$ then $Witness^{i,\vec{a}}_{B}(w,\vec{a}) \Leftrightarrow Witness^{i,\vec{a}}_{C}(\beta(1,w),\vec{a}) \vee Witness^{i,\vec{a}}_{D}(\beta(2,w),\vec{a}).$
- (3) If $B = C \wedge D$ then $Witness_{D}^{i,\vec{a}}(w,\vec{a}) \Leftrightarrow Witness_{C}^{i,\vec{a}}(\beta(1,w),\vec{a}) \wedge Witness_{D}^{i,\vec{a}}(\beta(2,w),\vec{a}).$
- (4) If $B = (\exists x \leq t)C(\vec{a}, x)$ then $Witness_B^{i,\vec{a}}(w, \vec{a}) \Leftrightarrow \beta(1, w) \leq t \wedge Witness_{C(\vec{a}, b)}^{i,\vec{a}, b}(\beta(2, w), \vec{a}, \beta(1, w)).$
- (5) If $B = (\forall x \leq |t|)C(\vec{a}, x)$ then $Witness_B^{i,\vec{a}}(w, \vec{a}) \Leftrightarrow (\forall x \leq |t|) Witness_{C(\vec{a},b)}^{i,\vec{a},b}(\beta(x+1,w), \vec{a}, x).$
- (6) If $B = \neg C$ use prenex operations to push the negation sign inside.

6.

- 1. По доказательству в теории $S_2^{\rm l}$ можно построить extended Frege-доказательство полиномиального размера.
- 2. По доказательству в теории $S_2 = \bigcup S_2^i = T_2$ можно построить Frege-доказательство полиномиального размера и фиксированной глубины.