

Александр Дьяконов

План

Проблема выбора модели (в широком смысле) Способы контроля

отложенный / скользящий / перекрёстный / бутстреп / по времени

Три золотых правила разбиения выборки

Моделируем реальность / нет утечкам / случайность

Где используется выбор CV-контроля

Проблема контроля качества

Ошибка на обучении (train error) и ошибка на контроле (test error) как правило очень различаются!

Как оценить качество / ошибку алгоритма? model performance / model error

Нужен способ оценить качество работы (в будущем) алгоритма

Контроль качества: базовая идея

Разбить выборку на две части: обучающую и тестовую (контрольную)

TRAIN

TEST

Отложенный контроль (held-out / validation data)

Выборку делим на две части:

- обучение здесь обучение алгоритма
- отложенный контроль здесь оценка качества / выбор алгоритма с наименьшей ошибкой

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.33, random_state=41)
```


X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.33, shuffle=False)

Отложенный контроль (held-out / validation data)

+ обычно делят 80% / 20%

больше тест – надёжнее оценка, больше обучение – алгоритм похож на финальный

- оценка ошибки зависит от конкретной выбранной отложенной выборки, часто сильно меняется при другом выборе
- если переобучить алгоритм для всех данных, то мы не знаем оценку его ошибки (в каком-то смысле, неустранимый недостаток)

Способы контроля

- отложенный контроль (held-out data, hold-out set)
- скользящий контроль (cross-validation) иногда так называют «всё»
- бутстреп (bootstrap)
- контроль по времени (out-of-time-контроль)

Дальше подробно расскажем про разные способы контроля...

Random Subsampling Cross-Validation

k раз случайно выбираем отложенный контроль, усредняем ошибки на всех отложенных выборках

Random Subsampling Cross-Validation: без разбиения групп

```
sklearn.model selection.GroupShuffleSplit(n splits=4,
                                         test size=0.3,
                                         train size=None,
                                         random state=None)
for t, (itrain, itest) in enumerate(cv.split(x, groups=g)):
    . . .
     train
                        группа=0
                                               группа=2
                                               группа=3
                        группа=1
```

Random Subsampling Cross-Validation: сохраняя пропорции классов

Бутстреп (Bootstrap)

с помощью выбора с возвращением формируется подвыборка полного объёма *т*, на которой производится обучение модели на остальных объектах (которые не попали в обучение) – контроль


```
i_train = [9, 16, 14, 9, 7, 12, 3, 12, 9, 8, 3, 2, 16, 12, 6, 16]
i_test = [1, 4, 5, 10, 11, 13, 15]
```

Бутстреп (Bootstrap)

В контроль попадает примерно

$$\left(1 - \frac{1}{m}\right)^m \approx e^{-1} \approx 0.37 = 37\%$$
 выборки.

+ модель учится на выборке того же объёма, что и итоговая

(которую мы обучим по всей выборке)

- использует не все данные
 - есть дубликаты
- + с точки зрения распределения бутстреп-выборка похожа на исходную

Перекрёстная проверка по фолдам (k-fold cross-validation)

- Разделить выборку на *k* примерно равных частей (обычно k=10)
- цикл по *i* = 1...*k*
 - і-я часть для теста, объединение остальных для обучения
- усреднить *k* ошибок, вычисленных на разных итерациях цикла на валидациях (можно использовать дисперсию для оценки доверия к полученному качеству)

Перекрёстная проверка по фолдам (k-fold cross-validation): с перемешиванием

sklearn.model_selection.KFold(n_splits=3, shuffle=True, random_state=None)

k-fold CV = k-fold cross-validation

Перекрёстная проверка по фолдам: иллюстрация

Перекрёстная проверка по фолдам: сохранение пропорций классов

перемешиваем: shuffle=True

Перекрёстная проверка по фолдам: не разбиваем группы

sklearn.model_selection.GroupKFold(n_splits='warn')

есть sklearn.model_selection.PredefinedSplit - разбиение индуцированное группами

Leave-one out cross-validation (LOOCV)

k-fold при *k*=*m*

sklearn.model selection.LeaveOneOut

показаны только первые 4 разбивки...

– может слишком долго вычисляться+ хорошая для теории

ещё есть sklearn.model_selection.LeavePOut - всевозможные Р-ки

Контроль по группам: LeaveOneGroupOut

LeaveOneGroupOut: Контроль по одной группе

from sklearn.model_selection import LeaveOneGroupOut

тонкость:

при оценки ошибки можно (нужно) учитывать мощность групп

$$e = \sum_{t=1}^{k} \frac{m_t}{m} e_t$$

Контроль по времени (Out-of-time-контроль)

TimeSeriesSplit: разбиения временных рядов (Time series cross-validation)

- часто не получится сделать много контролей (слишком маленькая предыстория) + можно организовать «под контекст» (на следующий день, неделю, месяц)

Схемы с повторениями: «сделать несколько раз»

```
model_selection.RepeatedKFold(n_splits=2, n_repeats=2, random_state=0)
model selection.RepeatedStratifiedKFold(n splits=2, n_repeats=2, random_state=0)
               import numpy as np
               from sklearn.model selection import RepeatedStratifiedKFold
               X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
               y = np.array([0, 0, 1, 1])
               rskf = RepeatedStratifiedKFold(n splits=2, n_repeats=2,
                                              random state=36851234)
               for train index, test index in rskf.split(X, y):
                   print("TRAIN:", train index, "TEST:", test index)
                   X train, X test = X[train index], X[test index]
                   y train, y test = y[train index], y[test index]
               TRAIN: [1 2] TEST: [0 3]
               TRAIN: [0 3] TEST: [1 2]
               TRAIN: [1 3] TEST: [0 2]
               TRAIN: [0 2] TEST: [1 3]
```

Модификация основной идея для выбора и тестирования

Обучающая выборка – Training Set

обучение модели (настройка её параметров)

Валидационная выборка – Validation Set

выбор пайплайна (модели / гиперпараметров / признаков) иногда: локальный контроль

Тестовая выборка – Test Set

оценка качества алгоритма иногда: итоговая оценка

TRAIN

VAL

TEST

Минутка кода: оценка модели с помощью выбранного контроля

Есть аналогичная функция, которая сохраняет ещё время обучения и работы:

sklearn.model selection.cross validate

Перестановочный тест для оценки неслучайности результата:

sklearn.model_selection.permutation_test_score

Кривые обучения (Learning Curves)

Делим данные на обучение и контроль (м.б. очень много раз) Обучаемся на k% от обучающей выборки для разных k Строим графики ошибок/качества на train/CV от k

Есть зазор между обучением и CV

Тонкость: 100% - вся выборка, но здесь test_size=0.2

Качество от параметров

Валидационная кривая (Validation Curve) показывает зависимость качества / ошибки при выбранной схеме контроля от значений гиперпараметров.

sklearn.model selection.validation curve

Перебор значений гиперпараметров

Делим данные на обучение и контроль (м.б. очень много раз) При разных значениях параметров обучаемся и проверяем качество

```
from sklearn.model selection import GridSearchCV
parameters = {'metric':('euclidean', 'manhattan', 'chebyshev'),
               'n neighbors': [1, 3, 5, 7, 9, 11], scoring='roc auc'}
clf = GridSearchCV(estimator, parameters, cv=5)
clf.fit(X, y)
clf.cv_results_['mean_test_score']
                       k = 1 k = 3 k = 5 k = 7 k = 9 k = 11
                euclidean
                         76.0
                              77.0 79.0 78.5 80.5
                                                   82.5
                         74.0
                              74.0
                                   79.0
                                        79.5
                                             80.5
                                                   81.0
                manhattan
                chebyshev
                         76.5
                              78.5
                                   80.0
                                        80.0
                                             81.0
                                                   81.5
```

Ecth также случайный поиск model_selection.RandomizedSearchCV (тут есть «число итераций», можно передавать распределения параметров)

Перебор параметров: случайный поиск считают предпочтительным

Итог

Правильная организация контроля – важная часть решения задачи

Кривые качества

- validation curves (от значений)
- learning curves (от объёма выборки)

Задача регрессии

Средний модуль отклонения – Mean Absolute Error (MAE), Mean Absolute Deviation (MAD)

MAE =
$$\frac{1}{m} \sum_{i=1}^{m} |a_i - y_i|$$

$$MSE = \frac{1}{m} \sum_{i=1}^{m} |a_i - y_i|^2$$

Root Mean Squared Error (RMSE) / Root Mean Square Deviation (RMSD)

RMSE =
$$\sqrt{\frac{1}{m} \sum_{i=1}^{m} |a_i - y_i|^2}$$

Нормированная версия: коэффициент детерминации R² (Coefficient of Determination)

$$R^{2} = 1 - \frac{\sum_{i=1}^{m} |a_{i} - y_{i}|^{2}}{\sum_{i=1}^{m} |\overline{y} - y_{i}|^{2}}$$
$$\overline{y} = \frac{1}{m} \sum_{i=1}^{m} y_{i}$$

Различия MSE и MAE

Устойчивость к выбросам...

Минимизируемая функция

Symmetric mean absolute percentage error (SMAPE or sMAPE)

SMAPE =
$$\frac{2}{m} \sum_{i=1}^{m} \frac{|y_i - a_i|}{y_i + a_i} = 100\% \cdot \frac{1}{m} \sum_{i=1}^{m} \frac{|y_i - a_i|}{(y_i + a_i)/2}$$

MAPE =
$$\frac{1}{m} \sum_{i=1}^{m} \frac{|y_i - a_i|}{|y_i|}$$

$$PMAD = \frac{\sum_{i=1}^{m} |y_i - a_i|}{\sum_{i=1}^{m} |y_i|}$$

Несимметричные функции потерь

$$\frac{1}{m} \sum_{i=1}^{m} \begin{cases} g(|y_i - a_i|), & y_i < a_i, \\ h(|y_i - a_i|), & y_i \ge a_i, \end{cases}$$

Зачем нужны такие функции?

Метрики в регрессии: минутка кода

```
from sklearn.metrics import r2 score
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean squared error
from sklearn.metrics import mean squared log error
from sklearn.metrics import median absolute error
from sklearn.metrics import explained_variance_score
# R^2
print (r2 score(y, a),
       1 - np.mean((y - a) ** 2) / np.mean((y - np.mean(y)) ** 2))
# MAE
print (mean absolute error(y, a),
      np.mean(np.abs(y - a)))
# MSE
print (mean squared error(y, a),
      np.mean((y - a) ** 2))
# MSLp1E
print (mean squared log error(y, a),
      np.mean((np.log1p(y) - np.log1p(a)) ** 2))
# MedAE
print (median_absolute_error(y, a),
      np.median(np.abs(y - a)))
```

Итоги в регрессии

средний модуль отклонения МАЕ (МАD)

средний квадрат отклонения **MSE**

Иногда попадаются обобщения MAE и RMSE

Несимметричные ошибки

Задача бинарной классификации

сначала – чёткая классификация

«Confusion Matrix» в задаче классификации с двумя классами

$$a = 0$$
 $a = 1$
 $y = 0$ 13599 2600
 $y = 1$ 898 903

в scikit-learn-е такая ориентация! Иногда: наоборот!

from sklearn.metrics import confusion_matrix
confusion_matrix(y_test, a_test)

Задача классификации с двумя классами

tn, fp, fn, tp = confusion matrix(y, a).ravel() # вычисление tn, ...

Как запомнить названия ошибок

1 рода – не учил, но сдал (= знает по мнению экзаменатора) 2 рода – учил, но не сдал (= не знает по мнению экзаменатора)

Ошибка 1 рода

Ошибка 2 рода

FP/m

FN/m

Точность Accuracy

$$a = 0$$
 $a = 1$
 $y = 0$ 13599 2600
 $y = 1$ 898 903

$$Accuracy = \frac{TN+TP}{TN+FN+TP+FP}$$

Полнота (Sensitivity, True Positive Rate, Recall, Hit Rate)

$$a = 0$$
 $a = 1$
 $y = 0$ 13599 2600
 $y = 1$ 898 903

$$TPR = R = \frac{TP}{TP + FN}$$

какой процент объектов положительного класса мы правильно классифицировали

Точность (Precision, Positive Predictive Value)

$$a = 0$$
 $a = 1$
 $y = 0$ 13599 2600
 $y = 1$ 898 903

$$PPV = P = \frac{TP}{TP + FP}$$

какой процент положительных объектов (т.е. тех, что мы считаем положительными) правильно классифицирован

Специфичность (Specificity, True Negative Rate)

$$a = 0$$
 $a = 1$
 $y = 0$ 13599 2600
 $y = 1$ 898 903

TNR = Specificity =
$$R_0 = \frac{\text{TN}}{\text{TN} + \text{FP}}$$

процент правильно классифицированных объектов негативного класса

«полнота для негативного класса»!

Negative Predictive Value (Inverse Precision)

$$a = 0$$
 $a = 1$
 $y = 0$ 13599 2600
 $y = 1$ 898 903

$$NPV = P_0 = \frac{TN}{TN + FN}$$

точность для нулевого класса

False Positive Rate (FPR, fall-out, false alarm rate)

$$a = 0$$
 $a = 1$
 $y = 0$ 13599 2600
 $y = 1$ 898 903

$$FPR = \frac{FP}{TN+FP} = 1 - TNR = 1 - Specificity$$

доля объектов негативного класса, которых мы ошибочно отнесли к положительному

F₁ score

$$\frac{2}{\frac{1}{P} + \frac{1}{R}} = \frac{2}{\frac{1}{TP/(TP + FP)} + \frac{1}{TP/(TP + FN)}} = \frac{2TP}{2TP + FP + FN}$$

F_{β} score

$$F_{\beta} = \frac{1}{\frac{\alpha}{P} + \frac{1 - \alpha}{R}} = \frac{1}{\alpha} \frac{P \cdot R}{R + \left(\frac{1}{\alpha} - 1\right)P} = (1 + \beta^2) \frac{P \cdot R}{R + \beta^2 P}$$

$$\beta^2 = \left(\frac{1}{\alpha} - 1\right)$$

Почему используется F-мера

$$(P + R) / 2$$

Почему используется F-мера

$$2/(1/P+1/R)$$

$$1/(0.9/P+0.1/R)$$

Можно сколь угодно улучшать один из показателей (R), если второй не увеличивается (P), то качество ограничено

Минутка кода

from sklearn.metrics import classification_report
print (classification_report(y_test, a_test)) # нужен print

precision recall f1-score support

		brecipion	recarr	11 20016	Support
	0.0	0.94 0.26	0.84	0.89	16199 1801
micro	avg	0.81	0.81	0.81	18000
macro	avg	0.60	0.67	0.61	18000
weighted	ava	0.87	0.81	0.83	18000

```
from sklearn.metrics import cohen_kappa_score
from sklearn.metrics import accuracy_score
from sklearn.metrics import matthews_corrcoef
from sklearn.metrics import f1_score
from sklearn.metrics import roc_auc_score
from sklearn.metrics import balanced_accuracy_score
```

	score
cohen_kappa_score	0.24
accuracy_score	0.81
matthews_corrcoef	0.26
f1_score	0.34
roc_auc_score	0.67
balanced_accuracy_score	0.67

Итог по классификации

В задаче чёткой бинарной классификации вся информация об ошибках в 2×2-матрице несоответствий

Много разных функционалов качества

- естественные
- из информационного поиска
 - для учёта дисбаланса

Задача нечёткой бинарной классификации

Теперь выдаём оценку принадлежности к классу 1

$$y \in \{0, 1\}$$

$$a \in [0, 1]$$

кроме меток {0, 1} возможны промежуточные значения

Log Loss

В задаче классификации с двумя непересекающимися классами (0, 1), когда ответ – вероятность (?) принадлежности к классу 1

logloss =
$$-\frac{1}{m} \sum_{i=1}^{m} (y_i \log a_i + (1 - y_i) \log(1 - a_i))$$

Раздельная форма понятнее...

$$-\begin{cases} \log a_i, & y_i = 1, \\ \log(1 - a_i), & y_i = 0. \end{cases}$$

Нельзя ошибаться!

Log Loss: Оптимальная константа для конечной выборки

$$-\frac{1}{m}\sum_{i=1}^{m} (y_i \log a + (1 - y_i) \log(1 - a)) \to \min_{a}$$

$$-\frac{m_1}{m} \log a - \frac{m_0}{m} \log(1 - a) \to \min_{a}$$

$$a = \frac{m_1}{m}$$

ROC M AUC ROC

ROC = receiver operating characteristic Функционал зависит не от конкретных значений, а от их порядка

	оценка	класс
0	0.5	0
1	0.1	0
2	0.2	0
3	0.6	1
4	0.2	1
5	0.3	1
6	0.0	0

	оценка	класс	ответ
3	0.6	1	1
0	0.5	0	1
5	0.3	1	1
2	0.2	0	0
4	0.2	1	0
1	0.1	0	0
6	0.0	0	0


```
df['ответ'] = (df['оценка'] > 0.25).astype(int)
df.sort values('оценка', ascending=False)
```

ROC M AUC ROC

наилучший (AUC=1), случайный (AUC~0.5) и наихудший (AUC=0) алгоритм

AUC = area under curve

```
from sklearn.metrics import roc_curve
fpr, tpr, thresholds = roc_curve(y_test, a)
plt.plot(fpr, tpr, lw=3, c='#000099')
```

Смысл AUC

AUC ~ число правильно отсортированных пар (на рис. «кирпичики»)

Это сложно объяснить заказчику!

$$AUC = \frac{\sum_{i=1}^{m} \sum_{j=1}^{m} I[y_i < y_j] I[a_i < a_j]}{\sum_{i=1}^{m} \sum_{j=1}^{m} I[y_i < y_j]}$$

	оценка	класс	ответ
3	0.6	1	1
0	0.5	0	1
5	0.3	1	1
2	0.2	0	0
4	0.2	1	0
1	0.1	0	0
6	0.0	0	0

Чем хороша эта запись?

Что неправильно (требует пояснения) в формуле?

Смысл AUC

Чем хороша запись?

$$AUC = \frac{\sum_{i=1}^{m} \sum_{j=1}^{m} I[y_i < y_j] I[a_i < a_j]}{\sum_{i=1}^{m} \sum_{j=1}^{m} I[y_i < y_j]}$$

Можно обобщить, например, на регрессию.

Что неправильно (требует пояснения) в формуле?

$$I[a_i < a_j] = \begin{cases} 1, & a_i < a_j, \\ 1/2, & a_i = a_j, \\ 0, & a_i > a_j. \end{cases}$$

AUC ROC

- + в задачах, где важен порядок
- + учитывает разную мощность классов (не зависит от пропорций)
- + не важны значения, важен порядок
- + можно использовать для оценки признаков
- «завышает» качество
- оценивает не конкретный классификатор, а регрессию
- сложно объяснить заказчику
- не путать классификацию и регрессию

Ещё примеры кривых... «полнота-точность»

Площадь под кривой.. «Average Precision» (есть и другой смысл)

	оценка	класс
0	0.5	0
1	0.1	0
2	0.2	0
3	0.6	1
4	0.2	1
5	0.3	1
6	0.0	0

	оценка	класс	ответ
3	0.6	1	1
0	0.5	0	1
5	0.3	1	1
2	0.2	0	0
4	0.2	1	0
1	0.1	0	0
6	0.0	0	0


```
from sklearn.metrics import precision_recall_curve
precision, recall, thresholds = precision_recall_curve(y_test, a)
plt.plot(recall, precision)
# вычисление площади методом трапеций
from sklearn.metrics import auc
auc(recall, precision)
# или готовую функцию использовать
from sklearn.metrics import average precision score
```

Сравнение метрик в задачах классификации

Модельные задачи

Сравнение метрик в задачах классификации

Итог по нечёткой бинарной классификации

LogLoss ~ вероятность

ROC AUC / GINI ~ порядок

Есть обобщения ROC AUC

Есть другие кривые, например PR

Только ослы выбирают до смерти

https://raw.githubusercontent.com/Dyakonov/IML/master/2020/IML2020_06scikitlearn_01.pdf

- есть код для различных организаций контроля