

BATANGAS STATE UNIVERSITY

The National Engineering University Alangilan Campus

College of Engineering Department of Electronics Engineering

MECHATRONICS ENGINEERING - 3201

Second Semester, A.Y. 2023-2024

Midterm Project in Robotics 2

Presented to

Engr. Mikko De Torres

Instructor

In Partial Fulfillment of the Requirements for the course MExE 409 - Robotics 2

By:

Ada, Lemuel J. Cometa, Steven Shaine M. Eje, Ken Christian D. Umali, Felicity D.

+63 43 425 - 0139 loc. 2121

GRUBLER'S CRITERION

MOBILITY / DOF OF SPATIAL MANIPULATOR

C1: CONNECTIVITY OF I-TH JOINT; 1, 2, 3..., m

NO. OF CONSTRAINT PUT BY I-TH JOINT = (6-Ci)

TOTAL NO. OF CONSTRAINTS = $\sum_{i=1}^{m} (6 - C_i)$

MOBILITY OF THE MANIPULATOR: $M = 6n - \sum_{i=1}^{m} (6 - C_i)$

MOBILITY / DOF OF PLANAR MANIPULATOR

CI: CONNECTIVITY OF I-TH JOINT; 1, 2, 3..., m

NO. OF CONSTRAINT PUT BY I TH JOINT = (3-C)

TOTAL NO. OF CONSTRAINTS = $\sum_{i=1}^{m} (3 - C_i)$

MOBILITY OF THE MANIPULATOR: $M = 3n - \sum_{i=1}^{m} (3 - C_i)$

KINEMATIC DIAGRAM AND D-H FRAME ASSIGNMENT OF SCARA MANIPULATOR

D-H FRAME PRELIMINARY RULES

RULE I: DECIDE FIRST THE 3 VIEWS YOU WANT TO PROJECT ON YOUR ISOMETRIC DRAWING.

RULE 2: IDENTIFY THE CENTER OF YOUR FRAMES.

RULE 3: DRAW THE COLOR-CODED ARROWS BASED ON YOUR DECIDED THREE (3) VIEWS.

(BLUE FOR Z-AXIS, GREEN FOR Y-AXIS, AND RED FOR X-AXIS)

RULE 4: REMEMBER TO MAKE THE ARROWS OF Z AND X AXES EASY TO SEE FOR

THE FUTURE COMPUTATIONS.

D-H FRAME RULES

RULE I: THE Z AXIS MUST BE THE AXIS OF ROTATION FOR A REVOLUTE/TWISTING, OR THE DIRECTION OF TRANSLATION FOR A PRISMATIC JOINT.

RULE 2: THE X AXIS MUST BE PERPENDICULAR BOTH TO ITS OWN Z AXIS, AND THE Z AXIS OF THE FRAME BEFORE IT.

RULE 3: EACH X AXIS MUST INTERSECT THE Z AXIS OF THE FRAME BEFORE IT.

IF THIS THIRD RULE WAS NOT FOLLOWED, THERE ARE RULES FOR COMPLYING IT:

- ROTATE THE AXIS UNTIL IT HITS THE OTHER.
- OR TRANSLATE THE AXIS UNTIL IT HITS THE OTHER.

RULE 4: ALL FRAMES MUST FOLLOW THE RIGHT-HAND RULE.

SCARA RRP VARIANT

D-H PARAMETRIC TABLE OF SCARA MANIPULATOR

8 - THIS IS THE ROTATION AROUND ZN-I THAT IS REQUIRED TO GET THE XN

WITH THE JOINT VARIABLE 8 IF THE JOINT IS REVOLUTE OR TWISTING.

 α – THIS IS THE ROTATION AROUND XN THAT IS REQUIRED TO MATCH ZN-I TO ZN.

r - THE DISTANCE BETWEEN THE ORIGINS OF N-1 AND N FRAMES ALONG THE XN DIRECTION.

d - THE DISTANCE BETWEEN THE ORIGINS OF N-I AND N FRAMES ALONG THE ZN-I DIRECTION, WITH JOINT VARIABLES IF JOINT IS PRISMATIC.

PARAMETRIC TABLE

n	θ	α	r	d	
٩H	θ,	0°	a ₂	aı	
¹ H	01	180°	a 4	аз	
² ₃ H	0°	0°	0	as	

INVERSE KINEMATICS SOLUTION USING GRAPHICAL METHOD OF SCARA MANIPULATOR

DEGREES OF FREEDOM CALCULATION

GIVEN:

FORMULA:

$$m = 3$$

$$M = 6n - \sum_{i=1}^{m} (6 - C_i)$$

$$n = 3$$

$$M = 6(3) - [5+5+5]$$

$$M = 18 - 15$$

$$M = 3$$

SOLUTION:

$$R_1 = (6 - 1) = 5$$

$$R_2 = (6 - 1) = 5$$

.. THIS IS AN UNDER-ACTUATED SPATIAL

$$R_3 = (6 - 1) = 5$$

MANIPULATOR 3-DOF

DEGREES OF FREEDOM (DOF) OF SCARA MANIPULATOR

		CONSTRAINT C	CONSTRAINT O BETWEEN TWO PLANAR RIGID	
JOINT TYPE	DEGREES OF	BETWEEN TWO		
	FREEDOM	PLANAR RIGID		
		BODIES	BODIES	
REVOLUTE (R)		2	5	
PRISMATIC (P)	ı	2	5	
HELICAL (H)	ı	N/A	5	
CYLINDRICAL (C)	2	N/A	4	
UNIVERSAL (U)	2	N/A	4	
CYLINDRICAL (C)	3	N/A	3	

HOMOGENEOUS TRANSFORMATION MATRIX (HTM) OF SCARA MANIPULATOR

STANDARD FORMULA	cos(θ _n)	$-\sin(\theta_n)\cos(\alpha_n)$	$sin(\theta_n)sin(\alpha_n)$	$r_n(0+\theta_l)$
n-l n-l	sin(θ _n)	$\cos(\theta_n)\cos(\alpha_n)$	$-\cos(\theta_n)\sin(\alpha_n)$	$r_n(0+\theta_1)$
ⁿ⁻¹ T= ⁿ⁻¹ Ḥ=	0	sin(α _n)	$\cos(\alpha_n)$	d _n
	0	0	0	1

¹ H =	$cos(0+\theta_2)$	$-\sin(0+\theta_2)\cos(180)$	$\sin(0+\theta_2)\sin(180)$	$a_4\cos(0+\theta_2)$		10	0	0	a 4
	sin (0 + θ ₂)	$cos(0+\theta_1)cos(180)$	$-\cos(0+\theta_2)\sin(180)$	a ₄ sin(0+θ ₂)	111	0	ľ	0	0
П=	0	sin(1800)	cos(180)	a 4	1 H =	0	0	-1	a ₄
	0	0	0	1		0	0	0	1
² H=	cos(0)	-sin(0)cos(0)	sin(0)sin(0)	0cos(0)		1	0	0	0
	sin(0)	cos(0)cos(0)	-cos(0)sin(0)	0sin(0)	² H=	0	1	0	0
	0	sin(0)	cos(0)	a ₅ + d ₃		0	0	1	a ₅ +d ₃
	0	0	0	1		0	0	0	ī

Inverse Kinematics solution using Graphical Method of SCARA Manipulator

