Közgazdaságtani jelölés- és képletgyűjtemény (Mikroökonómia I. félév)

JELÖLÉSEK:

NPV - nettó jelenérték (Net Present Value)

```
L
       - munka (Labour)
       - ár (Prise)
p
       - egyensúlyi ár
p_{e}
       - a munka ára (= munkabér (w))
p_{L}
       - föld (mint termelési (természeti) tényező)
p_A
       - föld ára (földbérleti díj)
       - kamat
K
       - tőke (beruházás)
       - a tőke ára (kamat)
p_K
       - vállalkozó
       - idő
t.
П
       - profit (pi)
ТΠ
       - telies profit (Total Profit)
       - termelési mennyiség (kibocsájtás v. Output)
Q
       - keresleti-, kínálati mennyiség mennyiség (quantity)
S
       - kínálat (Supply)
D
       - kereslet (Demand)
dd
       - egyéni kereslet
DD
       - piaci kereslet
O^{S}
       - kínálati függvény
       - keresleti függvény
       - egyensúlyi termelési mennyiség
Qe
3
       - árrugalmasság
       - teljes bevétel (Total Revenue)
      - határbevétel (Marginal Revenue)
MR
AC
       - átlagköltség v. darabköltség (Average Cost)
TC
       - teljes költség (Total Cost)
FC
       - állandó költség (Fix Cost)
VC
       - változó költség (Variable Cost)
       - határköltség (Marginal Cost)
MC
AVC - átlagos változó költség (Average Variable Cost)

– egy termékegységre jutó változó költség.

AFC - átlagos állandó költség (Average Fix Cost)
                                                             - egy termékegységre jutó állandó (fix) költség.
       - fogyasztói többlet
TT
       - termelői többlet
\Delta
       - változás (delta)
I
       - jövedelem
U
       - közömbösségi görbe (függvény)
       - összhaszon (Total utility)
Tu
Mu
      - határhaszon (Marginal utility)
MP
       - határtermék (Marginal Product)
       - átlagtermék v. termelékenység (Average Product)
AP
MFC - termelési tényező határköltség (Marginal Factor Cost)
MFC<sub>L</sub> - a munka határköltsége (munka mint termelési tényező)
MRP - határtermék-bevétel (Marginal Revenue Product)
MRP<sub>L</sub> - a munka határtermék-bevétele (munka mint termelési tényező)
FV<sub>t</sub> - jövő érték (Future Value)
      - jelen érték (Present Value)
```

SZÁMÍTÁSOK:

KERESLET-KÍNÁLAT (keresleti függvény \mathbf{Q}^{D} - kínálati függvény \mathbf{Q}^{S} "Marschall kereszt")

Pl. Egy termék piaci keresleti függvénye: Q = 400-2*p, a kínálati függvénye: Q = p-20

Egyensúlyi ár számítás:

Az egyensúlyi árhoz tartozó keresett (**egyensúlyi) mennyiség számítás**:

$$\begin{array}{c} Q^D = Q^S \\ 400 - 2xp = p - 20 & / + 20 \\ 420 = 3p & / : 3 \\ 140 = p \\ p_e = 140 \ (egyensúlyi ár) \end{array} \qquad \begin{array}{c} Q^D = Q^S \\ Q^D = 400 - 2x \ 140 = 400 - 280 = 120 \\ Q^S = 140 - 20 = 120 \\ Qe = 120 \ (egyensúlyi mennyiség) \end{array}$$

Fogyasztói többlet számítás (FT):

A fogyasztói többlet (FT) az ár és a keresleti függvény ($Q^D = 400 - 2 \text{ x p}$) közé eső terület. A fogyasztói többlet számítása a területszámításának képletéből T = a x b/2 ahol "a" az egyik befogó, "b" a másik befogó , majd ennek a négyszög a területét elosztjuk 2-vel mivel a derékszögű háromszög területe ennek a fele lesz. A Q helyébe 0-t rendelünk. A keresleti ár 0 mennyiségnél: $Q^D = 0$, p = 200

A fogyasztó többlet:
$$FT = \frac{(200 - 140) \times 120}{2} = 3600$$

Termelői többlet számítás (TT):

A termelői többlet az ár és a keresleti függvény ($Q^S = p - 20$) közé eső terület a termelő többlet számítása a területszámításának képletéből $T = a \times b / 2$ ahol "a" az egyik befogó, "b" a másik befogó , majd ennek a négyszög a területét elosztjuk 2-vel mivel a derékszögű háromszög területe ennek a fele lesz.

A kínálati függvény értéke az egyensúlyi árnál: $Q^S = p - 20 = 140 - 20 = 120$

A termelői többlet:
$$TT = \frac{(140 - 20) \times 120}{2} = 7200$$

Az adott piac jellemzése:

Ha $Q^D < Q^S = túlkínálat,$ az ár csökkenni fog $Q^D > Q^S = túlkereslet,$ hiány, az ár nővekedni fog piaci egyensúlyi árnál (p_e) $Q^D = Q^S$

Ez Adam Smith a "láthatatlan kéz" elve.

ÁRRUGALMASSÁG

A kereslet árrugalmassága:
$$\varepsilon_{Q\ P} = \frac{\Delta Q\ \%}{\Delta p\ \%} = \frac{Q_2 - Q_1}{p_2 - p_1} \times \frac{p_1 + p_2}{Q_1 + Q_2}$$

$$\Delta Q \% = \frac{Q_2 - Q_1}{(Q_1 + Q_2)/2} \times 100\%$$
$$\Delta p \% = \frac{p_2 - p_1}{(p_1 + p_2)/2} \times 100\%$$

 $\varepsilon_{OP} |\langle 1|$ = rugalmatlan kereslet, (ha az ár nő, akkor a TR (összbevétel) nő)

 $\varepsilon_{OP} = 0$ = tökéletesen rugalmatlan kereslet,

 $\mathcal{E}_{QP} | \rangle 1 |$ = rugalmas kereslet, (ha az ár nő a bevétel csökken)

 $\mathcal{E}_{Q|P} = 1$ = egységnyi rugalmasság (maximális a bevétel TR_{max}),

 $|\mathcal{E}_{QP}| \rangle 0$ = paradox árhatás (nő az ár, de mégis többet vesznek belőle = paradox árhatás)

A kereslet keresztár rugalmassága: $\varepsilon_{Qx\,Py} = \frac{\Delta Q \%}{\Delta p \%} = \frac{Qx_2 - Qx_1}{py_2 - py_1} \times \frac{py_1 + py_2}{Qx_1 + Qx_2}$

A kereslet - jövedelem rugalmassága: $\varepsilon_{QI} = \frac{\Delta Q \%}{\Delta I \%} = \frac{Q_2 - Q_1}{I_2 - I_1} \times \frac{I_1 + I_2}{Q_1 + Q_2}$

HASZNOSSÁG

Hasznosság (haszon): =
$$\frac{Mu_{\acute{a}ru}}{p_{\acute{a}ru}}$$

A határhaszon (Marginal Utility):
$$Mu = \frac{\Delta TU}{\Delta Q}$$

Gossen II. törvénye:
$$\frac{Mu_{\acute{a}ru1}}{p_{\acute{a}ru1}} = \frac{Mu_{\acute{a}ru2}}{p_{\acute{a}ru2}} = \frac{Mu_{\acute{a}ru3}}{p_{\acute{a}ru3}} = \dots = \text{az egy pénzegységnyi jövedelem határhaszna}$$

azaz
$$\frac{Mu_{x}}{p_{x}} = \frac{Mu_{y}}{p_{y}}$$

Pl. két termék esetén, határhaszon számítás:
$$Mu = \frac{\Delta TU}{\Delta Q}$$
, $MU_X = \frac{\Delta Tu_X}{\Delta Q} \Rightarrow \Delta Tu_X = \frac{Mu_X}{\Delta Q}$, $MU_Y = \frac{\Delta Tu_Y}{\Delta Q} \Rightarrow \Delta Tu_Y = \frac{Mu_Y}{\Delta Q}$

Az x termék haszna = $\frac{Mu_X}{p_X}$, az y termék haszna = $\frac{Mu_Y}{p_Y}$

Összhaszon számítás: $\sum Tu = TU_x + TU_y$

Példa feladat

Egy fogyasztó 450 Ft-os jövedelemét x és y termékre költi. A két termék határhasznai függetlenek egymás és más termékek elfogyasztott mennyiségétől. Mennyit vásároljon a racionális fogyasztó x-ből és y-ból, ha a határhasznok és az egységárak a következők Px=100; Py=50.

Mennyi a fogyasztó összhaszna a két termék fogyasztásából ?

$$I = 450,$$
 $Px=100,$ $Py=50.$

Q	MUx	Muy
1	2500	1900
2	2000	1600
3	1600	1350
4	1300	1150
5	1100	1000
6	1000	855
7	920	810
8	900	795

Q	Tux	Mux	Mux / px	Tuy	Muy	Muy / py
0	0	-	-	0	-	-
1	2 500	2 500	25	2 500	1 900	50
2	4 500	2 000	20	4 100	1 600	32
3	6 100	1 600	16	5 400	1 350	27
4	7 400	1 300	13	6 600	1 150	23
5	8 500	1 100	11	7 600	1 000	20
6	9 500	1 000	10	8 455	855	17,1
7	10 420	920	9,2	9 265	810	16,2
8	11 320	900	9	10 060	795	15,9

I = 450, Px=100, Py=50.

Megoldás: A fogyasztó először, másodszor és harmadszor is y-t (50,32,27)majd x-et választ (25). Az ötödik alkalomra ismét y-t vesz (23), a hatodik és hetedik termék kiválasztási sorrendje mindegy, mivel egyforma a haszonnövekedés (20). A fogyasztó akkor választ optimálisan, ha 5 db y-t és 2 db x-et választ. 5* 50 = 250 Ft

2*100 = 200 Ft

250 Ft + 200 Ft = 450 Ft (I) A fogyasztó összhaszna: $\Sigma TU = TUx + TUy = 4500 + 7000 = 11500$

Költségek, amortizáció, profit:

Implicit költség = Amortizáció + Normál profit, másképpen: = Gazdasági költség - Explicit költség
Számviteli költség = Explicit költség + Amortizáció
= Implicit költség - Amortizáció
= Árbevétel - Számviteli költség
Gazdasági profit = Árbevétel - Gazdasági költség

Rövidtávú vagy Parciális termelési függvényhez kapcsolodó számítások:

Határtermék

A munka határterméke: $MP_L = \frac{\Delta q}{\Delta L}$ diszkrét függvény esetében pontokból áll

folytonos függvénye: $MP_L = (qI'L)$ a q L szerinti deriváltja

 $\text{pl. } q = 20 \times \sqrt{2} = 20 \times \frac{1}{2} \qquad \qquad MP_L = (20 \times L^{\frac{1}{2}})_L' = 10 \times L^{-\frac{1}{2}} = \frac{10}{\sqrt{L}}$

A tőke határterméke:

 $MP_K = \frac{\Delta q}{\Delta K}$ diszkrét függvény esetében pontokból áll

folytonos függvénye: $MP_K = (q \ I' \ K)$ a q K szerinti deriváltja (folytonos függvény) rövid távon nem értelmezhető!

Átlagtermék (termelékenység)

A munka átlagterméke: $AP_L = \frac{q}{L}$

A tőke átlagterméke: $AP_K = \frac{q}{K}$

A parciális termelési függvény, táblázatos formában:

A parcians termetesi ruggveny, tabiazatos formaban.				
L (munkaerő)	Q (termelési mennyiség)	MPL = q/L	APL = q/K	
0	0	-	-	
1	10	10	10	
2	40	30	20	
3	78	38	26	
4	110	32	27,5	
5	140	30	28	
6	156	16	26	
7	161	5	23	
8	152	-9	19	

Költségek, költségfüggvények:

Állandó költség:
$$FC = K \times p_K$$
 $K = tőke,$ $p_K = r$ (kamat)

Változó költség:
$$VC = L \times p_L = f(q) = az adott termelési függvénnyel$$

$$L = munka$$
, $p_L = munka$ ára = munkabér

ha nincs termelés tehát
$$q = 0$$
 akkor $TC = FC$, vagy $TC_{(0)} = FC$

Határköltség:
$$MC = \frac{\Delta TC}{\Delta q} = \frac{\Delta VC + \Delta FC}{\Delta q}$$

Határköltség tökéletes verseny esetén:
$$MC = \frac{\Delta TC}{\Delta q} = \frac{\Delta VC + \Delta FC}{\Delta q} = \frac{\Delta VC}{\Delta q}$$
 $MC = p$ (ár)

$$MC = \frac{\Delta VC}{\Delta q} = \frac{\Delta L \times p_L}{\Delta q} = \frac{1}{Mp_L} \times p_L = \frac{p_L}{Mp_L}$$

$$q = \frac{1}{Mp_L}$$

Változó függvénye:
$$MC = (TC)'q = (VC)'q$$
 (VC= 0)

Átlagköltség:
$$AC = \frac{TC}{q} = \frac{FC + VC}{q} = AFC + AVC$$

Átlagos változó költség:
$$AVC = \frac{VC}{q} = \frac{L \times p_L}{q} = \frac{1}{Ap_L} \times p_L = \frac{p_L}{Ap_L}$$

$$q = \frac{1}{Ap_L}$$

Átlagos fix költség:
$$AFC = \frac{FC}{q}$$

Bevételek, profit:

Határbevétel számítás tökéletes versenynél : MR = p

Profit számítás:
$$T\Pi = TR - TC$$
 egy vállalkozás megéri, ha $T\Pi > 0$

Tökéletes versenynél: $TR = p \times q$; $FC + VC_{(q)}$

Profit maximum akkor van tökéletes versenynél ha teljesül az MR = MC feltétel

A vállalatok száma az adott iparágban: n = $\frac{Q}{q}$

Példa

Egy tökéletesen versenyző vállalat költségfüggvénye: $TC = 0.25 * q^2 + 100 * q$

A keresleti függvény: Q = 16000 – 10p. A termék ára: 120

Mennyit termel, és mekkora a profitja a tökéletesen versenyző vállalatnak?

Hány vállalat van az iparágban, ha a többi vállalat termelése is az adott költségfüggvénnyel értelmezhető?

Megoldás:

$$MC = (TC)'q = (VC)'q$$
 (VC=0)

$$MC = (0.25*q2 + 100*q)' = 0.5q + 100$$

$$p = 120$$

Tökéletes verseny esetén p (ár) = MC (határköltség)

$$p = MC$$

$$120 = 0.5q + 100 \qquad /-100$$

$$20 = 0.5q$$
 /: 0.5

$$40 = q$$

$$q = 40$$

,tehát a vállalat által termelt mennyiség az adott termékből: 40

TR (összbevétel) = p*q (tökéletes versenynél)

$$TR = 120*40 = 4800$$
 , tehát a vállalat összes bevétele: **4800**

TC (gazdasági költség) =
$$0.25*q^2 + 100*q = 0.25*(40)^2 + (100*40) = (0.25*1600) + 4000 = 400 + 4000 = 4400$$
, tehát a vállalat összes gazdasági költsége: **4400**

$$T\Pi \text{ (profit)} = TR - TC = 4800 - 4400 = 400$$

,tehát a vállalat profitja: 400

Vállalatok száma az adott iparágban:

$$n = \frac{Q}{a}$$

ebből q = 40 és Q = 16000 - 10p = 16000 - (10*120) = 16000 - 1200 = 14800 mennyiség adható el összesen a termékből.

$$n = \frac{Q}{q} = \frac{14800}{40} = 370$$

,tehát az adott piacon 370 vállalat van jelen.

Példa

Egy monopólium keresleti görbéje Q = 100 – 2*P. A teljes költség képlete TC = 20*Q. Mennyi a vállalat optimális termelése? Milyen áron kínálja a terméket? Mennyi a vállalat profitja? Megoldás:

$$\begin{array}{ll} Q & = 100 - 2*P & /*0,5 \\ 0,5*Q & = 50 - P & /+P; -(-0,5*Q) \\ 0,5*Q + P & = 50 & \end{array}$$

=50-0.5*Q \implies MR (határbevétel) =50-Q ,mert ez a függvény kétszer meredekebb

$$MC = MR$$

 $20 = 50 - Q$ /+Q
 $20 + Q = 50$ /-20
 $Q^* = 30$

,tehát a vállalat optimális termelése: 30

$$Q = 100 - 2*P$$

 $P^* = 50 - 0.5*Q = 50 - 0.5*30 = 50 - 15 = 35$

, tehát a vállalat optimális kínálati ára: 35

 $T \Pi (profit) = TR - TC = (P*Q) - TC = 30*35 - (20*30) = 1050 - 600 = 450$, tehát a vállalat profitja: **450**

A hosszútávú költség függvényhez kapcsolodó számítások:

$$\begin{split} TC &= VC \\ TC &= p_L \; x \; L + p_K \; x \; K \end{split}$$

ahol TC, p_L , p_K = konstans (állandó)

$$\mathbf{K} = \frac{TC}{p_K} - \frac{p_L}{p_K} \times L$$

Termelési tényezők piaca

Optimális tényező (input) felhasználás:

MRP = MFC

,azaz a tényező határtermék bevétele = a tényező határköltségével

Optimális tényező (input) felhasználás tökéletes versenynél:

 p_x (termékár) = állandó (konstans), p_L (munkaára, munkabér) = állandó (konstans)

Munka piaci optimalizálás:

$$\begin{aligned} \text{MRP}_{\text{L}} &= \frac{\Delta TR}{\Delta L} = \frac{\Delta q \times p_x}{\Delta L} \quad \Rightarrow \quad MRP_L = MP_L \times p_x \\ \text{MFC}_{\text{L}} &= \frac{\Delta TC}{\Delta L} = \frac{\Delta VC}{\Delta L} = \frac{\Delta L \times p_L}{\Delta L} = p_L \end{aligned} \quad \text{,mert hosszú távon csak változó költség van TC = VC (FC = 0)}$$

 $\downarrow \\
MP_L \times p_x = p_L$

Tökéletes verseny esetében: $MP_L \times p_x = MRP_L (VMP_L)$ és $p_L = MFC_L$

<u>Példa</u>

L	Q	MPL	$MRP_L (MP_L x p_x)$	MFC _L (p _L)
0.	0	-	-	-
1.	10	10	500	400
2.	18	8	400	400
3.	24	6	300	400
4.	28	4	200	400
5.	30	2	100	400

itt optimális a tényező felhasználás (MRP $_L$ = MFC $_L$)

Példa

$$\overline{p_x = 150} \qquad p_L = 400$$

$$q = 8 \sqrt{L}$$
 \Rightarrow $MP_L = (q)' L = \frac{4}{\sqrt{L}}$
 $L = ?$
 $q = ?$
 $T\Pi = ?$

$$MP_L \times p_x = p_L$$

$$\frac{4}{\sqrt{L}} \times 150 = 400$$

$$\frac{3}{2} = \sqrt{L}$$

$$L = 2.25$$

$$q = 8 \times \sqrt{2,25} = 12$$

$$T\Pi = (p_x \times q) - (p_L \times L) = (150 \times 12) - (400 \times 2,25) = 900$$

Példa

Egy termék piacán a kereslet és a kínálat a következő: p = 3775-5*Q, p = Q-725.

A termék termeléséhez szükséges input piacán a keresleti függvény: Q = 1800-3*p_i, a kínálati függvény Q = p_i -200.

A termék egyik előállítójának a termelési függvénye: $q=-0.5*i^2+36*i$, míg határtermék függvénye: MP(i) = 36-i.

Hány terméket készítsen a vállalkozó és mennyi az optimális inputfelhasználás ?

$$3775 - 5Q = Q - 725$$
 $1800 - 3p_i = p_i - 200$
 $4500 = 6Q$ $2000 = 4p_i$
 $Q = 750$ $p = Q - 725 = 750 - 725 = 25$ $p_i = 500$
 $Q = p_i - 200 = 500 - 200 = 300$

$$MP_i \times p = p_i$$

 $36 - i \times 25 = 500$
 $25i = 400$
 $i = 16$
 $q = -0.5i^2 + 36i = -0.5 \times 256 + 576 = 448$

Optimális tényező (input) felhasználás monopólium esetében:

 p_x (termékár) = nem állandó , p_L (munkaára, munkabér) = állandó (konstans) ,azaz tiszta monopólium a termékpiacon és tökéletes verseny a munkaerő piacon.

MRP_L	=	MFC_L
$MP_L x MR$	=	$p_{\rm L}$

Ebben az esetben a termelési függvény kétszeres meredekségű!

Példa

$$\begin{aligned} Q^S &= 2000 - 4p & \text{(kínálati függvény)} \\ p_L &= 225 & \text{(munkabér)} \end{aligned}$$

(keresleti függvény)

$$Q^D = 10 \times \sqrt{L}$$

"mert a termelési (kínálati) függvény kétszeres meredekségű!

$$MP_L = \frac{5}{\sqrt{L}}$$

$$L = ?$$

$$Q = ?$$

$$p_x = ?$$

$$Q = 2000 - 4p \quad \Rightarrow p = 500 - 0.25Q$$

$$\downarrow \downarrow$$

kétszeres meredekség!

$$p_{x} = \frac{p_{L}}{MP_{L}} = \frac{225}{\frac{5}{\sqrt{L}}} = 45\sqrt{L}$$

$$\frac{5}{\sqrt{I}} \times (500 - 05, Q) = 225$$

MR = 500 - 0.5Q

$$\frac{5}{\sqrt{L}} \times (500 - 0.5 \times 10\sqrt{L}) = 225$$

$$\frac{2500}{\sqrt{L}} = 250$$

$$\sqrt{L}$$
 - 10

$$L = 100$$

$$Q = 10 \times \sqrt{100} = 10x10 = 100$$

$$p_x = 500 - (0.25 \times 100) = 475$$

$$T\Pi = (p \times Q) - (L \times p_L) = (475 \times 100) - (100 \times 225) = 25.000$$

Jövő érték számítás:

$$FV_t = PV_0 \times (1+r)^t$$

számolásnál: r (kamat) 20% = 0.2

r (kamat) 5% = 0.05

Példa

$$\begin{array}{ll} PV_0 & = 50.000 \ Ft \\ r & = 10\% \\ t & = 3 \ \text{\'ev} \end{array}$$

$FV_3 = 50.000 \text{ x} (1 + 0.1)^3 = 66.500$

Jelen érték számítás (diszkontálás):

$$PV_0 = \frac{FV_t}{(1+r)^3}$$

Nettó jelen érték számítás (Beruházási döntés) :

nettó jelenérték
$$NP_V = \sum PV_0 - K_0$$

<u>Példa</u>

$$r = 20\%$$

 $K_0 = 10 \text{ Milli\'o (indul\'o beruh\'az\'as)}$

K₁ = 4 Millió (1. évi beruházás)

K₂ = 4 Millió (2. évi beruházás)

K₃ = 4 Millió (3. évi beruházás)

$$NP_V = \sum PV_0 - K_0 = \frac{4M}{\left(1+0,2\right)^1} + \frac{4M}{\left(1+0,2\right)^2} + \frac{4M}{\left(1+0,2\right)^3} - 10M = \frac{4}{1,2} + \frac{4}{1,44} + \frac{4}{1,728} = 3,333 + 2,777 + 2,3148 - 10 = -1,5752$$

a beruházás nettó jelenértéke negatív, azaz a beruházás 3 év alatt nem megtérülő mert a hozama kisebb mintha a bankban tartanák az erre fordított pénzünket.

Példa

Megéri-e az a beruházás, amely 30 millióba kerül és az első két évben évi 5 milliót, majd további négy évig évi 13 milliót hoz. A kamatláb az első három évben évente 25 %, majd a továbbiakban évi 12 %-ra csökken?

$$r_{1,2,3} = 25 \% ; r_{4,5,6} = 12 \%$$
 NPv =
$$\sum PV_0 - K_0 (\text{ nettó jelenérték} = \text{jővőbeli hozamok jelenértéke} - \text{beruházás})$$

$$NPv = \frac{5}{1,25} + \frac{5}{1,25^2} + \frac{13}{1,25^3} + \frac{13}{1,25^3 \times 1,12} + \frac{13}{1,25^3 \times 1,12^2} + \frac{13}{1,25^3 \times 1,12^3} - 30 = \frac{13}{1,25^3 \times 1,12^3} + \frac{13}{1,25^3 \times 1,12^3} - \frac{13}{1,25^3 \times 1,12^3} + \frac{13}{1,25^3 \times 1$$

$$= \frac{5}{1,25} + \frac{5}{1,5625} + \frac{13}{1,953125} + \frac{13}{2,1875} + \frac{13}{2,45} + \frac{13}{2,744} - 30 =$$

$$= 4 + 3.2 + 6.656 + 5.9428571 + 5.3061224 + 4.7376093 - 30 =$$

$$= 29,842588 - 30 = -0,157412 \approx -0,16$$

A beruházás nem éri meg mivel NPv (nettó jelenérték) negatív.