SABANCI UNIVERSITY Faculty of Engineering and Natural Sciences CS 302 Automata Theory

Remote Final Examination

Closed (Book+Notes+All Electronic Devices)

Duration: 180 minutes

Question 1 (25 points)

- (a) (5 pts) State the full definition of a Nondeterministic Finite Automaton (NFA); in particular the domain and range of the transition function δ and the extended transition function δE and the condition for an NFA to accept a string $u \in \Sigma^*$ in terms of δE and the set of final states F.
- (b) (3 pts) State whether the NFA A below is a DFA with your reasons. 1 and 4 are the final states.

- (c) (12 pts) Compute a minimal state DFA C that is equivalent to the NFA A in part (b).
- (d) (5 pts) Try to express the language accepted by A above in simple natural language.

Question 2 (25 points)

Consider the CFG, G = (V, T, R, S) where

 $V = \{A, B, S\}$, $T = \{a,b\}$ and R is given by the following productions:

 $S \rightarrow AB$

 $A \rightarrow aaAb \mid e$

 $B \rightarrow bbBa | a$

- (a) (7 pts) Write down the CFL L_G generated by G above.
- (b) (8 pts) Can the strings: (i) $u_1 = a^4b^2a$ and (ii) $u_2 = a^4b^4a^2$ be generated by **G**? If so draw the corresponding **parse tree** for these strings.
- (c) (10 pts) Construct a PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ that accepts the language L_G .

Question 3 (25 points)

(a) (15 pts) For the languages:

$$L_1 = \{a^n b^{n+k} c^n; n, k \ge 0\}$$
 and $L_2 = \{a^n b^k c^n; n, k \ge 0\}$

prove whether each is a CFL or not by using either the **pumping lemma** or a CFG in **Chomsky**Normal Form that generates the language in question.

(b) (10 pts) For the right linear CFG $G = \{A,B,S\}, \{0,1\}, R, S\}$ where R is given by :

$$S \rightarrow 0A \mid 1B ; A \rightarrow 0B \mid 1A \mid e ; B \rightarrow 1S \mid 1$$

draw an NFA X that accepts the language L_G generated by G and then convert your X to a minimal state DFA Y.

Question 4 (25 points)

- (a) (10 pts) State the definition of a **Deterministic Turing Machine** (DTM) to: (i) **decide** a language; (ii) **semidecide** a language; and (iii) **compute** a function $f: \Sigma_0^* \to \Sigma_0^*$.
- (b) (7 pts) Construct a single tape DTM M either in graphical or tabular form that decides the language $L = \{0^n 1^n ; n \ge 0\}$. Assume initial configuration as (s, # w)
- (c) (8 pts) Repeat part (b) when $L = \{0^n 1^{2n}; n \ge 0\}$.