Exercise 1. Who was Pierre de Fermat and when did he live?

Exercise 2. State Fermat's Little Theorem.

Exercise 3. Let p be prime and let k be an integer strictly between 0 and p. Prove $\binom{p}{k}$ is divisible by p.

Exercise 4. Let p be prime. Prove $2^p - 2$ is divisible by p.

Exercise 5. Define the multinomial coefficient $\binom{n}{k_1, k_2, \dots, k_m}$.

Exercise 6 (5.9.1). Use the result $2^p = (1+1)^p = 2 + terms divisible by p, and its method of proof, to show that$

$$3^p = (2+1)^p = 3 + terms divisible by p.$$

Exercise 7 (5.9.2). Build on the idea of Exercise 5.9.1 to show that $n^p - n$ is divisible by p for any positive integer n.

Exercise 8 (5.9.3). Observe the terms divisible by p in the first few rows of Pascal's triangle, computed in the previous section.