exercises.md 8/31/2023

Exercises week 2

1. Under the free-space path loss model, find the transmit power required to obtain a received power of 1 dBm for a wireless system with isotropic antennas ($G_t = G_r = 1$) and a carrier frequency $f_c = 5$ GHz, assuming a distance d = 10 m. Repeat for d = 100 m.

- 2. For the two-ray model with transmitter–receiver separation $d = 100 \,\mathrm{m}$, $h_t = 10 \,\mathrm{m}$, and $h_r = 2 \,\mathrm{m}$, find the delay spread between the two signals.
- **2-5.** Find the critical distance d_c under the two-ray model for a large macrocell in a suburban area with the base station mounted on a tower or building ($h_t = 20$ m), the receivers at height $h_r = 3$ m, and $f_c = 2$ GHz. Is this a good size for cell radius in a suburban macrocell? Why or why not?
- 10. Consider a receiver with noise power –160 dBm within the signal bandwidth of interest. Assume a single-slope path loss model with d₀ = 1 m, K obtained from the free-space path loss formula with isotropic antennas and f_c = 1 GHz, and γ = 4. For a transmit power of P_t = 10 mW, find the maximum distance between the transmitter and receiver such that the received signal-to-noise power ratio is 20 dB.
- 15. Table 2.7 lists a set of empirical path loss measurements. Assume a carrier frequency $f_c = 2$ GHz.
 - (a) Find the parameters of a single-slope path loss model plus log-normal shadowing that best fit this data assuming K is calculated from free-space path loss at the reference distance $d_r=1$ m.
 - (b) Find the path loss at 2 km based on this model.

64

Table 2.7: path loss measurements for Problem 2-14

(c) Find the outage probability at a distance d assuming the received power at d due to path loss alone is 10 dB above the required power for non-outage.