

서울시 스마트 쉘터 최적 입지 선정

: 교통약자를 중심으로

목차

- 1 필요성 및 목적
- 2) 분석 과정 및 방법
- 3
 자 치 구
 선 정
- (4) 정류장 최적 입지 선정
- (5) **활용방안 및 보완점**

필요성

1. 필요성 및 목적

서울시 교통약자 인구대비 비율 26.9% 향후 5년 후까지 교통약자는 1.93% 증가할 것으로 전망됨

교통약자와 비교통약자의 지역 내 주 이용 교통수단은 '버스'

하지만 교통약자를 포함한 시민들이 버스정류장 이용에 불편함을 느낌

가장 개선이 시급한 여객시설 '버스정류장' 49.1%로 1위

교통약자 이동편의 증진을 위해 우선적으로 추진하여야 할 정책 버스, 지하철에 편의시설을 설치하여 대중교통 이용 편리 도모 29% 응답

> 여객시설 '교통약자 적합률' 평균 74% 하지만 버스정류장은 34.6%

<자료: 국토교통부, 2019년 교통약자 이동편의 실태조사 연구>

필요성

1. 필요성 및 목적

「교통약자의 이동편의 증진법」 제 14조(노선버스의 이용 보장 등)에 따라 교통약자를 포함한 시민들의 이용 편의성을 높이는 버스정류장 설치 및 정비가 필요!

스마트쉘터 디자인

<자료: 서울시 홈페이지 / 서울시 공식 블로그>

현재 숭례문에서 시범운영 중인 스마트쉘터

\Rightarrow

미래형 버스정류장 스마트쉘터 설치

① 안전시설 CCTV, 지능형 영상 시스템, 비상벨 시스템

② 공기 정화 대기질 측정, 공기질 정화 살균기, 에어 나이프, 대기질 전광판

> ③ 버스 정보 편의시설 버스 도착 BIT, 냉난방 완비, 스크린 도어

④ 효율적 에너지 사용 친환경 에너지를 직접 생산하는 태양광 패널 장착 전력량 상시 모니터링, 저전력 loT 기기 설치

⑤ 교통약자를 위한 편리함, 안정성 강화 및 교통약자인 장애인이 승차대기를 누르면 저상버스 도착예정시간 안내 운전기사에게도 스마트쉘터에 장애인이 기다리고 있음을 알림 자동 정차 시스템

외국어 안내, 시각장애인을 위한 음성안내서비스 제공

목적

1. 필요성 및 목적

강남구 - 미세먼지 프리존 셸터

<자료: 성동구 홈페이지>

강남구	성동구
미세먼지 저감 장치	UV 공기 살균기
UV LED를 이용한 살균 시스템	열화상 카메라
버스 정보 안내 시스템	버스 정보 안내 시스템
비상벨 시스템	CCTV 설치
휴대폰 무선 충전	휴대폰 무선 충전

강남구와 성동구에 비슷한 기능이 탑재된 스마트 버스정류장이 설치되어 있으나 교통약자를 위한 기능이 훨씬 다양한 '스마트쉘터'

스마트쉘터는 2년간 시범 운영 후 추가 설치 예정 스마트쉘터 개소당 약 2.5억 ~ 6억 설치 비용 발생 현재 50억의 예산 확보

따라서 예산 안에서 효율적인 설치가 필요

스마트쉘터가 설치 될 최적의 버스정류장 입지 선정을 위한 분석 진행

2. 분석 과정 및 방법

최적입지행

데이터 수집 및 가공

스마트쉘터 관련 데이터 및 사례조사

구 선정을 위한 데이터 수집 및 정제

정류장 선정을 위한 데이터 수집 및 정제

군집분석(clustering)

K-means Agglomerative Spectral Gaussian Mixture

4가지 알고리즘으로 군집분석 실시

자치구 & 정류장 선정

군집분석에 따른 자치구 선정

정류장 최적입지 선정을 위한 데이터 분석 및 시각화

결과 및 해석

분석결과 해석

활용방안

한계점 및 보완점

주요 분석 프로세스

2. 분석 과정 및 방법

자치구 선정

데이터 가공 및 시각화

생활인구

버스 이용객 수

교통약자 구별 인구

이상치 확인 후 대체

IQR

정규화

MinMaxScaler

군집분석 실행 후 결과 시각화 및 해석

K-means

Agglomerative

Spectral

Gaussian Mixture

자치구 선정

강남구

송파구

버스정류장 선정

버스정류장 위치정보

교통약자 동별 인구

초등학교 위치 정보

노인복지시설 위치 정보

병의원 위치정보

지하철역 위치정보

장애인콜택시 목적지 Best 100

정류장 총 노선 수

정류장 저상버스 노선 수

Geocoding

버퍼 생성 후 포함되는

좌표 개수 카운트

API로 데이터 추출

정류장 총 노선수 8개 기준으로 데이터 제거

저상버스 노선수와 교통약자 동별 인구의 중앙값을 기준으로 데이터 제거

각 구의 구역별로 최적입지 정류장 선정

데이터 선정

3. 자치구 선정

데이터 목록

데이터 선택

버스 이용객 수

생활인구

서울시 버스노선별 정류장별 승하차 인원 정보

자치구단위 서울생활인구 일별 집계표

서울시 주민등록인구 통계

서울시 고령자현황 통계

서울시 장애인현황 통계

서울시 출생, 사망 통계

교통약자

#1.434

교통약자란 장애인, 고령자, 임산부, 영유아를 동반한 사람, 어린이 등 일상생활에서 이동에 불편을 느끼는 사람을 말합니다

<생활인구 버스이용객 선택이유>

구는 지난 7월 말까지 행당역, 성동구민체육센터 앞 등 7개의 스마트쉼터를 추가 설치하면서 현재 총 28개의 스마트쉼터를 운영하고 있다. 이번에 추가한 7곳은 구전체 버스 이용 빅데이터와 유동인구 분석, 동별 스마트쉼터 설치 현황 등을 종합적으로 고려해 선정했다.

성동형 스마트쉼터 설치 시 버스 이용 빅데이터와 유동인구를 고려하였고 좋은 반응을 얻고 있음 >> 한정적인 재정안에서 효율적인 설치를 위해 최대한 많은 승객들이 이용하도록 버스 이용객 수와 생활인구를 고려함

<기사 출처: 장진복, '성동형 스마트쉼터' 1년… 이용자 100만명 돌파, 서울신문, 2021.08.09>

<교통약자의 구분>

구분	상세 내용
장애인	 「장애인복지법」에서는 장애인을 신체적, 정신적 장애로 인하여 장기간에 걸쳐일상생활 또는 사회생활에 상당한 제약을 받는 사람으로 정의 장애 유형별(지체, 자폐 등 16개 분류), 정도별(장애의 정도가 심한 장애인, 장애의 정도가 심하지 않은 장애인의 2개 분류) 구분
고령자	・ 만 나이가 65세 이상인 사람
임산부	• 임부(妊婦)와 산부(産婦)
영유아동반자	• 영유아(0~4세)와 함께 이동하는 보호자
어린이	• 영유아(0~4세)와 및 어린이(5~9세)

*자료와 동일하게 협의의 교통약자와 '이동편의 증진법'에서 정의한 교통약자로 다룸

<자료: 서울연구원, 서울시 대중교통시설교통약자 접근성 평가지표 개발 도시철도와 역사 중심으로>

데이터 정제

3. 정류소 최적 입지 선정

버스 이용객 → 서울시 버스노선별 정류장별 시간대별 승하차 인원 정보

1. 2018년 1월 ~ 2020년 12월까지 월별 승하차 데이터

						_							_	_			_						•												
	사용년 월	노선번호	노선명	표준버스 정류장ID	버스 정류 장 ARS 변호	গ ন	미시승차총승객수	OD 시하차총승객수	1 시승차총승객수	1 시하차총승객수	2 시승차총승객수	2 시하차총승객수	3 시승차총승객수	3 시하차총승객수	4시승차총승객수	4시 하 차 총 승객 수	5人合於密合符수	5시 하 차 총 승객 수	6 시승차총승객수	5시 하 차 총 승 격 수	7시 승차총승객수	7시 하 차 총 승객 수	BA 승차총승객수	8시 하 차 총 승객 수	9시 승차 총 승격 수	9시 하 차 총 승객 수	10 人 合 木 총 合 객 수	10 시하차총승객수	11 人会大善会符수	11 人 市 大 巻 合 객 수	12 시 승차 총 승객 수	12 시 하 차 총 승객 수	13 시 승차 총 승객 수	13 시하 차 총 승객 수	14 시승차총승객수
0	201801	100	100 번하계통 ~ 용산구청)	100000002	1002	창정당성을대학교병원	0	0	0	0	0	0	0	0	90	178	188	299	51	255	223	522	493	840	329	527	173	335	154	267	131	204	94	248	103
1	201801	100	100 번하계동 ~ 용산구청)	100000003	1003	명륜 3가성대입구	0	0	0	0	0	0	0	0	226	223	183	251	93	321	239	368	319	577	207	521	117	427	140	388	145	347	190	499	167

2. 월별 각 정류장 총 승차승객 수 = 시간별 승차인원 합계

df2['총승차승객수'] = 0	사용년월	버스정류장ARS번호	역명	총승차승객수
-	201801	1002	창경궁.서울대학교병원	2758
start_array = [] for i in df.columns:	201801	1003	명륜3가.성대입구	3746
if "승차" in i :	201801	1005	혜화동로터리	1907
df2['총승차승객수'] += df2[i]	201801	1198	원남동	3531
	201801	1204	종로5가.효제동	1049

3. 차고지 정류장 및 경기도 정류장 제거

차고지 정류장: 버스정류장ARS번호 = '~'

경기도 정류장: 버스정류장ARS번호 >= 26000

index_null = df3[df3['버스정류장ARS번호'] == '~'].index df3_drop_null = df3.drop(index_null)

index_null = df3_drop_null[df3_drop_null['버스정류장ARS번호'] >= 26000].index df3_drop_all = df3_drop_null.drop(index_null)

4. 구 코드 컬럼 추가 후 구 이름으로 변환

df3_drop_all['구코드'] = df3_drop_all['버스정류장ARS번호']//1000

df3_drop_all['구코드'] = df3_drop_all['버스정류장ARS번호']//1000
seoul_gu = ['종로구', '중구', '용산구', '성동구', '광진구', '동대문구', '중랑구', '성북구', '강북구',
'도봉구', '노원구', '은평구', '서대문구', '마포구', '양천구', '강서구', '구로구', '금천구', '영등포구', '동작구',
'관악구', '서초구', '강남구', '송파구', '강동구']
bus_people['구이름'] = bus_people['구코드'] - 1
bus_people['구이름'] = bus_people['구이름'].apply(lambda x :seoul_gu[x])

5. 각 연도의 구별 총 승차승객 수 합을 계산

구코드	사용년월	총승차승객수	구이름
1	201801	6060225	종로구
1	201802	5309709	종로구
1	201803	6854486	종로구
1	201804	6622065	종로구
1	201805	6877726	종로구

지역	2018년	2019년	2020년		
강남구	115901770	116037613	89705390		
강동구	40456149	41301193	32725221		
강북구	72151870	71577051	56174257		
강서구	70256459	70019715	54394208		
관악구	110149285	108200601	82296307		

6. 코로나로 인해 2018, 2019년에 비해 2020년의 승차승객 수가 감소, 따라서 각 연도 별 전체 버스 이용객 대비 구별 버스 이용객 수를 구한 후 평균을 내주고 10000을 곱함

전체 버스 이용객 대비 구별 버스 이용객 수 = (구별 총 승차승객 수) /(총 승차승객 수 합)

지역	2018년 대비	2019년 대비	2020년 대비
강남구	0.064251989	0.06448576	0.06550568
강동구	0.022427509	0.022952375	0.02389698
강북구	0.039998536	0.039777624	0.0410202
강서구	0.038947785	0.038912163	0.03972035
관악구	0.061063008	0.060130485	0.06009534

행의 평균 * 10000

버스이용객 647.4781041 230.9228824 402.6545338 391.9343358 604.2961029

3. 정류소 최적 입지 선정

총 생활인구 수 →

자치구단위 서울생활인구 일별 집계표

- 1. 자치구단위 서울생활인구 일별집계 데이터
- 2018년 4월 1일 ~ 2021년 9월 22일의 생활인구 데이터를 가져온다.

	기준일ID	시군 구코 드	시군구멍	총생활인구 수	내국인생 활인구수	장기제류 외국인인 구수	단기체 류외국 인인구 수	일최대인구 수	일최소인 구수	주간인구수 (09~18)	야간인구수 (19-08)	일최대이 동인구수	서울외유 입인구수	동일자치 구행정동 간이동인 구수
0	20210922	11000	서울시	10053896.0	9578063.0	380045.0	95788.0	10394118.0	9809069.0	10060284.0	10049333.0	4283040.0	866725.0	2021260.
1	20210922	11110	参与ア	230387.0	210296.0	14198.0	5892.0	287413.0	200874.0	259000.0	209948.0	156471.0	37944.0	28983.
2	20210922	11140	97	183521.0	159096.0	14737.0	9688.0	220714.0	157758.0	206775.0	166910.0	123144.0	27693.0	27783.0

2. 구별 월별 평균

df["기준일ID"]=df["기준일ID"].astype(str) df["기준일ID"]=pd.to_datetime(df["기준일ID"]) df["year"]= pd.DatetimeIndex(df["기준일ID"]).year df["month"] = pd.DatetimeIndex(df["기준일ID"]).month

#구별.월별 인구수평균

result_month = df.groupby(['시군구코드','시군구명',"year","month"], as_index=False).mean().round(0) result_month = result_month[["시군구코드","시군구명","year","month","총생활인구수"]] result_month

	시군구코드	시군구명	year	month	총생활인구수
0	11000	서울시	2018	4	11595715.0
1	11000	서울시	2018	5	11523133.0
2	11000	서울시	2018	6	11525362.0
3	11000	서울시	2018	7	11491372.0
4	11000	서울시	2018	8	11383371.0
				***	***
1087	11740	강동구	2021	5	510938.0
1088	11740	강동구	2021	6	512369.0

3. 구별 연도별 평균

#구별 년도별 인구수평균

result_year = df.groupby(['시군구코드','시군구명',"year"], as_index=False).mean().round(0) result_year[["시군구코드","시군구명","year","총생활인구수"]]

	시군구코드	시군구명	year	총생활인구수
0	11000	서울시	2018	11519392.0
1	11000	서울시	2019	11286995.0
2	11000	서울시	2020	11060399.0
3	11000	서울시	2021	10766167.0
4	11110	종로구	2018	357385.0
	222			222
99	11710	송파구	2021	751705.0
100	11740	강동구	2018	495728.0
101	11740	강동구	2019	487604.0
102	11740	강동구	2020	515266.0

4. 각 연도별 자치구별 평균(2018~2021)

result_year_2018 = result_year[result_year["year"] == 2018] result_year_2018["rank"]= result_year_2018["출생활인구수"].rank(method = "max", ascending = False)
result_year_2018 = result_year_2018[["시군구명", "rank", "출생활인구수"]] result_year_2018 = result_year_2018.sort_values(by = ["rank"], axis=0)

5. 전체 연도별 평균

```
result_year2 = pd.merge(result_year_2018, result_year_2019, how = "outer")
result_year3 = pd.merge(result_year_2020, result_year_2021, how = "outer")
result_year4 = pd.merge(result_year2, result_year3, how = "outer")
result_year4 = result_year4.groupby(['시군구명'], as_index=False).mean().round(0)
result_year4.drop([result_year4.columns[1]],axis =1)
result_year4["rank"] = result_year4["총생활인구수"].rank(method = "max", ascending = False)
result_year4 = result_year4.sort_values(by = ["rank"], axis=0)
result_year4
```

최종 데이터 칼럼

지역	총생활인구수
강남구	838565
강동구	502954
강북구	306907
강서구	558060
관악구	511668
광진구	398306
구로구	425616
금천구	240796
노원구	527482
도봉구	287469
동대문구	387571
동작구	414896
마포구	492854
서대문구	398155
서초구	602192
성동구	362262
성북구	447055
송파구	769594
양천구	401071
영등포구	510810
용산구	315728
은평구	450749
종로구	319264
중구	323501
중랑구	364713

데이터 정제

3. 자치구 선정

지역

금천구

교통약자 → 영유아 및 어린이, 고령자, 장애인, 등록 임산부로 정제된 칼럼의 합계

		_,
칼럼	데이터	정제 방법
영유아 어린이	서울시 주민등록인구 통계	→ 0~4세 5~9세 인구 합계 구별 통계
고령자	서울시 고령자현황 통계	→ 65세 이상 인구 합계 구별 통계
장애인	서울시 장애인현황 통계	→ 장애인 인구 합계 구별 통계
임산부	서울시 출생, 사망 통계	→ 출생데이터 남/여 출생 합계 구별 통계
		경복구 97787명

지역	고령자	장애인	영유아	어린이	임산부
강남구	75096	15200	13675	23210	2356
강동구	70019	18307	15408	19549	2535
강북구	63422	17441	6706	9169	1049
강서구	88984	28727	17688	22220	3345
관악구	78875	20265	10314	12801	1905
광진구	50560	12353	8719	11536	1532
구로구	70198	18280	13947	16162	2269
금천구	39842	11390	6470	7310	1092

66104

교통약자 총생활인구수 버스이용객

240796

< 교통약자 10단계 구분 >

이상치 처리

이상치 데이터(Outlier)는 모델의 성능을 떨어뜨리는 불필요한 요소이므로 제거/대체해주어야 합니다.

IQR(Inter Quantile Range)을 통해 이상치가 최솟값보다 작으면 최솟값으로 최댓값보다 크면 최댓값으로 수정하였습니다.

IQR(Inter Quantile Range)

= 75% 지점의 값 _ 25% 지점의 값

최솟값 = IQR * 1.5 + 75% 지점의 값 최댓값 = IQR * 1.5 – 25% 지점의 값

정규화

정규화는 서로 다른 데이터의 크기를 통일하여 모든 데이터의 특성을 같게 만들어주는 방법입니다.

MinMaxScaler 개별 데이터의 크기를 최소 0 ~ 최대 1의 값으로 변경하는 것

MinMaxScaler

$$Y = \frac{\left(X - X_{\min}\right)}{\left(X_{\max} - X_{\min}\right)}$$

최종 데이터

이상치 처리 후 MinMaxScaler로 정규화 진행한 최종 데이터

지역	교통약자	총생활인구수	버스이용기
강남구	129537	838565	647.478
강동구	125818	502954	230.923
강북구	97787	306907	402.655
강서구	160964	558060	391.934
관악구	124160	511668	604.296
광진구	84700	398306	222.07
구로구	120856	425616	444.77
금천구	66104	240796	309.835
노원구	148364	527482	354.896
도봉구	97578	287469	281.167
동대문구	100341	387571	433.147
동작구	106762	414896	452.731
마포구	94530	492854	413.321
서대문구	88730	398155	488.98
서초구	107101	602192	600.729
성동구	79660	362262	224.482
성북구	122444	447055	499.302
송파구	168640	769594	450.921
양천구	116827	401071	329.22
영등포구	106251	510810	458.329
용산구	64261	315728	323.993
은평구	139018	450749	408.331
종로구	42844	319264	433.778
중구	38252	323501	299.928
중랑구	115117	364713	292.783

지역	교통약자	총생활인구수	버스이용객
강남구	0.7001	1	
강동구	0.67158	0.531937602	0.0208101
강북구	0.4566	0.134144015	0.42449706
강서구	0.94113	0.643751674	0.39929726
관악구	0.65886	0.54961894	0.89849274
광진구	0.35623	0.319599218	
구로구	0.63352	0.375013189	0.52349791
금천구	0.21361	0	0.20630785
노원구	0.84449	0.581706694	0.31223154
도봉구	0.455	0.094702903	0.13891717
동대문구	0.47619	0.297817124	0.49617583
동작구	0.52543	0.353261531	0.54221008
마포구	0.43162	0.511443969	0.4495711
서대문구	0.38714	0.319292828	0.62742112
서초구	0.52803	0.733298704	0.89010792
성동구	0.31758	0.246463327	0.00566962
성북구	0.6457	0.418514475	0.651685
송파구	1	1	0.53795641
양천구	0.60262	0.325209603	0.25187615
영등포구	0.52151	0.547877996	0.55537016
용산구	0.19947	0.152042464	0.23958812
은평구	0.77282	0.426009869	0.43784124
종로구	0.03522	0.159217265	0.49765901
중구	0	0.167814445	0.18301994
중랑구	0.58951	0.251436583	0.16622347

군집 분석

3. 자치구 선정

군집분석을 통해 집단간의 특성을 분석하여 구를 선택 및 심층분석에 활용

군집분석(clustering)이란?

군집 분석(clustering)은 각 개체의 유사성을 측정하여 높은 대상 집단을 분류하고, 군집에 속한 개체들의 유사성과 서로 다른 군집에 속한 개체 간의 상이성을 규명하는 통계 분석 방법

사용 알고리즘

- 1. K-means clustering
- 2. Agglomerative clustering
- 3. Spectral clustering
- 4. Gaussian Mixture clustering

군집분석 결과

3. 자치구 선정

군집(Cluster)의 개수: 4개

군집의 개수가 4개일 때 Distortion 값이 1이 넘고 그래프의 모양도 4개 이후로 점점 완만해지기에 군집의 개수를 4개로 선택하였습니다.

K-means clustering

군집 3: 관악구 강남구 서초구 송파구

	교통약자	버스이용객	생활인구
◎ 군집 1	용	중하	중
○ 군집 2	하	하	하
◎ 군집 3	중상	상	중상
◎ 군집 4	중상	중	하

Spectral clustering

군집 4: 송파구 강남구 서초구

	교통약자	버스이용객	생활인구
◎ 군집 1	하	하	중하
○군집 2	상	중하	상
◎ 군집 3	중	중	중하
◎ 군집 4	중상	상	상

Agglomerative clustering

군집 2: 강서구 노원구 송파구

군집 4: 송파구 강남구 서초구

	교통약자	버스이용객	생활인구
◎ 군집 1	하	하	하
○ 군집 2	상	중상	중하
◎ 군집 3	중	중	중
◎ 군집 4	중	상	상

Gaussian Mixture clustering 군집 1: 관악구 강남구 서초구 송파구

	교통약자	버스이용객	생활인구
◎ 군집 1	중상	창	중상
○ 군집 2	중	중	중
◎ 군집 3	중	하	중하
◎ 군집 4	하	중하	하

교통약자와 버스이용객 중심으로 본 알고리즘 별 군집분포

x = 버스 이용객

구 선정 결과

3. 자치구 선정

송파구, 강남구, 서초구, 관악구의 생활인구, 버스 이용객, 교통약자가 평균적으로 높기 때문에 교통약자가 높은 군집과 버스이용객이 높은 군집에 나눠서 포함되는 경향을 보이고 있음

각 요인의 1위가 포함 되어있는 강남구와 송파구♥ 를 선정

	교통약자	버스이용객	생활인구
송파구	1위	4위	2위
강남구	4위	1위	1위
서초구	6위	3위	3위
관악구	5위	2위	6위

합집합 송파구, 강서구, 노원구, 강남구, 관악구, 서초구

Agglomerative clustering

	교통약자	버스이용객	생활인구
강남구	129537	647.2367	838565
관악구	124160	604.521	511668
서초구	107101	600.4458	602192

	교통약자	버스이용객	생활인구
송파구	168640	451.0002	769594
강서구	160964	392.1084	558060
노원구	148364	354.7087	527482
	·		

노원구	148364 354.7087		527482
	교통약자	버스이용객	생활인구
강남구	129537	647.2367	838565
송파구	168640	451.0002	769594
서초구	107101	600.4458	602192
강서구	160964	392.1084	558060
노원구	148364	354.7087	527482
관악구	124160	604.521	511668

버스이용객 상위 3개

군집 2: 관악구 강남구 서초구

교통약자 상위 3개

군집 4 : 강서구 노원구 송파구

생활인구 상위 6개 군집 2&4

생활인구 상위 3개 Agglomerative clustering을 제외한 모든 군집에서 포함됨

Gaussian Mixture clustering 군집 1 : 관악구 강남구 서초구 송파구

각 알고리즘에서 선택된 군집

군집 3: 관악구 강남구 서초구 송파구

K-means clustering

Spectral clustering

Agglomerative clustering 군집 2 : 관악구 강남구 서초구 군집 4 : 강서구 노원구 송파구

군집 4: 송파구 강남구 서초구

데이터 선정

4. 정류장 최적 입지 선정

교통약자의 버스 정류장 접근성을 기준으로 데이터 선정

칼럼	데이터	접근성	선정 이유			
교통약자 동별 인구 수	구 선정을 위해 사용한 교통약자 동별 인구 데이터	모두	최대한 많은 교통약자가 사용할 수 있도록 인구 수 고려		: 고려	
장애인콜택시	장애인콜택시 목적지 BEST 100	장애인	교통약자를 위한 특별교통수단 중 하나인 장애인 콜택시의 실제 인기 목적지를 반영하여 버스정류장 이용률 증가에 도움을 줄 수 있도록 선정			
초등학교	서울시 초등학교 기본정보	어린이	교통약자 인구 중 어린이 비율이 19.8%로 두번째로 많기 때문에 초등학교 정보 선정			로 많기 때문에 초등학교 정보 선정
노인	서울시 노인복지시설 위치 정보	고령자			구분	교통약자
복지시설	11211 TC-11112 IIII 0T	201	오른쪽 표를		외출목적	직업 또는 업무상 외출(33.6%) 복지관/경로당(19.2%)
병원	서울시 병의원 위치 정보	모두	바탕으로 선정	지역 내		병원(16.4%)
역세권	서울교통공사 지하철역 주소 정보	모두	이동		주 이용 교통수단	버스(42.1%) 지하철(28.2%) 걸어서/휠체어(13.1%)

<자료 : 국토교통부, 2019년 교통약자 이동편의 실태조사 연구>

접근성 이외 추가적으로 선정한 칼럼

버스정류장 총 버스 노선 수

> 저상버스 노선 수

서울특별시 정류소 정보조회 서비스

getRouteByStationList API 사용

스마트쉘터 설치 가능성이 높은 정류장 선정을 위해 현재 시범 설치되고 있는 8곳의 총 버스 노선수 중 최소 노선인 독립문공원 기준으로 8개 노선 이상인 정류장만 남기기 위해 사용

교통약자의 버스 이용의 편리를 고려

장애인콜택시 목적지 BEST 100 API

- : 장애인콜택시 BEST100 동별 승차건수
- 2020년 1월 1일 ~ 12월 31일의 목적지 BEST 100의 데이터를 가져온다.

fina	l_data.head()				
	승차일자	시/도	시/군/구	동/읍/면	승차건수
0	2020-01-01	서울특별시	영등포구	여의동	17
1	2020-01-01	서울특별시	강남구	수서동	14
2	2020-01-01	서울특별시	강서구	등촌제3동	14
3	2020-01-01	서울특별시	은평구	역촌동	14
4	2020-01-01	서울특별시	마포구	성산제2동	13

- 주소 칼럼에 해당하는 것들이 같은 데이터의 승차건수를 합해준다.

final_sum = final.groupby(['시/도', '시/군/구', '동/읍/면'], as_index=False).sum()

- 이 중 강남구와 송파구 데이터만 추출해서 사용

시/도	시/군/구	동/읍/면	승차건수
서울특별시	송파구	가락1동	3
서울특별시	송파구	가락2동	5
서울특별시	송파구	가락본동	2569
서울특별시	강남구	개포1동	0
서울특별시	강남구	개포2동	4

서울특별시 정류소 정보조회 서비스 API

: 버스정류장 총 노선 수와 저상버스 노선 수

- 강남구와 송파구의 정류장 고유번호를 가져와서 버스 노선 정보를 받아온 후 노선의 개수를 합하여 저장

ran = len(dict1["ServiceResult"]['msgBody']['itemList'])

- 동시에 '금일저상첫차시간'(firstBusTmLow)에 None이 아닌 노선을 더하여 저상버스 노선 개수를 구한다.

if dict1["ServiceResult"]['msgBody']['itemList'][i]['firstBusTmLow'] != None
 LowBus += 1

정류장고유번호	버스노선수	저상버스노선수
22006	35	7
22008	36	7
22010	28	7
22012	32	8
22014	38	8
22016	24	8

데이터 정제

4. 정류장 최적 입지 선정

위치 정보를 포함하는 노인복지시설, 병의원, 초등학교, 지하철역 데이터에서 강남구와 송파구에 해당하는 데이터를 추출

Geocoding이 가능하도록 주소 수정 후 Geocoding을 통해 좌표 추출 추출한 좌표를 QGIS를 통해 시각화

버스정류장의 버퍼 생성 후 각 좌표가 포함되는 개수 카운트

각 데이터 버퍼와 선정기준

서울시 노인복지시설 위치 정보

189M

서울시 병의원 위치 정보

189M

교통약자와 데이터 좌표 간의 공간적 서비스 권역(범위)은 아래의 식에 의해서 189 m 이내로 결정

*Walking speed(m/sec) × *Walking time(sec)

 $= 0.63 (m/sec) \times 300 (sec) = 189 (m) M$

서울시 초등학교 기본정보

300M

*어린이 보호구역의 정의에 따라 300m로 결정 서울교통공사 지하철역 주소 정보

500M

*역세권 정의에 따라 500m로 결정

*역세권: 철도(지하철)를 중심으로 500m 반경 내외의 지역을 의미

*어린이 보호구역 : 제3조 (보호구역의 지정) ③지방경찰청장 또는 경찰서장이 제1항의 규정에 의한 보호구역지정신청을 받은 때에는 다음 각호의 사항을 조사하여야 하며, 조사결과 보호구역으로 지정ㆍ관리하는 것이 필요하다고 인정하는 경우에는 당해 국민학교 등의 주 출입문을 중심으로 반경 300미터 이내의 도로 중 일정구간을 보호구역으로 지정한다.

*Walking speed : 동행인이 있을 경우의 보행속도와 휠체어 사용자의 이동속도를 고려한 0.63m/sec

*Walking time : 교통약자의 특성을 고려한 최소 이동시간 5분

<자료 : 박재국, 교통약자 이동지원센터의 이용정보를 활용한 저상버스 정류장 입지선정에 관한 연구>

최종 데이터

4. 정류장 최적 입지 선정

ARS-ID	정류장명	초등한교 300M	노인복지시설_189M	변원개수 189M	역 500M	교통약자연구	장애인콜택시승차건수	버스노선수	저상버스
	행방사거리			3 E-1 1 _105/VI	1_300141	24367			70 1—
22000	0 554714	U	2	13	- 1	24307	3207	33	/
22008	레미안아파트.파이낸셜뉴스	1	0	8	0	38514	3065	36	7
22010) 신분당선강남역	0	0	37	1	38514	3065	28	7
22012	지하철2호선강남역	0	0	38	2	38514	3065	32	8
22014	L 논현역	0	0	41	1	24947	82	38	8
22016	신사역	0	0	30	2	24947	82	24	8
22270	양재역.양재1동민원분소	1	0	19	1	24367	3267	19	5
22303	구룡사앞	0	0	0	0	24890	23	4	C
23101	신사중학교	0	0	8	0	18196	107	7	5
23102	인 신사중학교	1	0	15	0	18196	107	7	4

시범설치정류장	합경	경역	홍대인	l구역	숭례문	건대입구	구파발역	독립문공원
버스 노선 수	13	13	20	16	19	11	9	8

후보 정류장이 많기 때문에 교통약자의 접근성과 편리성에서 중요한 '교통약자 인구'와 ' 저상버스 노선수'의 각 중앙값보다 작은 값을 가진 데이터는 제거

< 중앙값 >

	교통약자 인구	저상버스
강남	37172	4
송파	27124	4

현재 스마트쉘터 시범 설치되고 있는 8곳의 총 버스 노선수 중 최소 노선인 독립문공원 기준으로 8개 노선 이상인 정류장만 남기고 제거

최종 데이터 목록

두 칼럼은 행정동 기준으로 나누어져 있음

ARS-ID 및 정류장당	병	초등학교_300M	노인복지시설_189M	병원개수_189M	역_500M	교통약자인구	장애인콜택시승차건수	버스노선수	저상버스	행정동
22008 래미안여	h파트.파이낸셜뉴스	1	0	8	0	38514	3065	36	7	역삼1동
22010 신분당선	선강남역	0	0	37	1	38514	3065	28	7	역삼1동
22012 지하철2	호선강남역	0	0	38	2	38514	3065	32	8	역삼1동
23148 현대아I	나트	0	1	42	1	30004	42	11	5	압구정동
23149 현대아I	나트 -	0	1	41	1	30004	42	11	6	압구정동

강남구 정류장 선정

4. 정류장 최적 입지 선정

한양아파트 압구정로데오역

논현1동

지하철2호선강남역

2구역

각 구역별로 하나의 정류장 선정

삼성1동

대치고동 은마아파트

개포2동

일원1동

일원본동

수서동

래미안포레아파트

세곡동 4구역

삼성2동

역 남2동

23159 한양아파트.압구정로데오역 (압구정동)

초등학교	노인복지시설	병원	역	교통약자	승차건수	버스 노선 수	저상버스
0	0	27	1	30004	42	10	8

1구역의 정류장들과 모든 값이 비슷하지만 저상버스 노선 수가 가장 많음

☆ 22012 지하철2호선강남역 (역삼1동)

2구역에서 병원 개수가 압도적으로 많고 지하철 9호선 신논현역과 2호선, 신분당선 강남역 사이에 위치 또한 중앙버스전용차로의 중앙정류장으로 가장 설치 가능성이 높음

초등학교	노인복지시설	병원	역	교통약자	승차건수	버스 노선 수	저상버스
0	0	38	2	38514	3065	32	8

3구역에서 유일하게 초등학교, 노인복지시설, 병원, 역이 고루 분포

23424 래미안포레아파트 (세곡동)

4구역에서 초등학교와 병원 개수가 가장 많음

초등학교	노인복지시설	병원	멱	교통약자	승차건수	버스 노선 수	저상버스
1	0	2	0	50420	6180	13	4

<이미지 출처: 네이버 지도 로드뷰>

송파구 정류장 선정

4. 정류장 최적 입지 선정

24142 잠실엘스아파트앞 (잠실2동)

각 구역별로 하나의 정류장 선정

풍납2동

잠실4동

가락1동

방이2동

풍납1동

24250 오금공원앞 (오금동)

교통약자 승차건수 버스 노선 수 저상버스

초등학교	노인복지시설	병원	ਲਾ	교통약자	승차건수	버스 노선 수	저상버스
0	0	87	1	40891	312	23	9

1구역에서 병원개수가 압도적으로 많고 버스 노선 수와 저상버스 노선 수가 가장 많음

	100
1 Ca	
	1
	잠실7

문정2동

문정1동 4구역

오륜동

3구역

마천2동

초등학교 노인복지시설 병원

☆ 24006 석촌역 (석촌동)

2구역에서 초등학교, 병원, 역이 고루 분포되어 있고 지하철 8호선 석촌역과 9호선 송파역 사이에 위치 또한 중앙버스전용차로의 중앙정류장으로 가장 설치 가능성이 높음

초등학교	노인복지시설	병원	역	교통약자	승차건수	버스 노선 수	저상버스
1	2	20	1	35661	88	35	7

로드뷰 확인 결과 버스 차고지로 설치 불가능

3구역의 유일한 정류장으로 교통약자 인구가 송파구에서 가장 많음

<이미지 출처: 네이버 지도 로드뷰>

장지동

- 1. 스마트쉘터 사업을 우선순위 기반으로 추진 가능
 - 버스 이용객 및 교통약자 데이터로 우선순위를 산출하여 효율적인 사업진행 가능
 - 스마트쉘터 표준 모델 개발 시 참고자료로 활용되기를 기대
- 2. 저상버스 노선 증설이 우선적으로 필요한 정류장을 찾을 수 있음
 - 스마트쉘터 우선설치 정류장을 지나는 버스 노선을 기준으로 저상버스 노선 증설을 통해 교통약자의 편의성을 높일 수 있음
- 3. 스마트쉘터와 연관된 사업에 활용하는 자료로 참고 가능
 - 스마트쉘터 사업구역을 산출하여 사업 예산 책정 자료로 활용가능
 - 교통약자의 스마트쉘터 이용에 대한 편의성 평가 및 만족도조사 시 기초 자료로 활용가능
- 4. 교통약자를 위한 버스관련사업으로 발전시킬 수 있음
 - 교통약자가 활용하기 쉬운 정류장을 기준으로 교통약자 버스 승차 지원시스템 등 버스관련 시설 설치
 - 사회적 약자와 일반시민들의 버스 이용 만족도 격차를 해소할 수 있음

5. 활용방안 및 보완점

1. 교통약자에 치중된 선택기준일 수 있음

- 버스이용객 데이터를 사용하였지만 교통약자 데이터에 좀 더 치중하여 우선순위를 설정했기 때문에 실제 버스이용객과 차이가 있을 수 있음

2. 데이터 수집의 어려움

- 정류장별로 구분된 데이터와 교통약자관련 논문자료 및 평가기준이 되는 자료를 찾기 어려움

3. 데이터 간 시점을 맞추기 어려움

- 데이터 수집 기간이 각 데이터마다 다름
- 다른 연도의 데이터를 활용하여 스마트쉘터 위치를 분석하게 되면 설치지역의 위치가 바뀔 수 있음

4. 스마트쉘터의 사용목적의 다양화가 필요함

- 스마트쉘터의 화면과 전광판에 지역복지사업 또는 지역광고 정보전달
- 버스카드충전기 마련 및 버스관련 복지시스템 마련

5. 데이터 목록 / 분석 도구 / 참고문헌

참고문헌

- 국토교통부, 2019년 교통약자 이동편의 실태조사 연구, 2020.6
- 도시교통실, 2020년 서울 교통이용 통계보고서, 2021. 1
- 서울특별시, 데이터에 담긴 서울교통 2020, 2021. 4
- 서울특별시, 시내버스 2020 서비스 만족도 조사 결과 보고서, 2021. 3
- 서울연구원, 서울시 대중교통시설교통약자 접근성 평가지표 개발 도시철도와 역사 중심으로, 2020.6
- 박재국, 교통약자 이동지원센터의 이용정보를 활용한 저상버스 정류장 입지선정에 관한 연구, 산업융합연구 제18권 제1호 pp. 25-33, 2020

분석도구

사용데이터

	데이터셋 목록	기준년도	활용 목적	출처
1	서울시 노인복지시설 위치정보	2018.08	교통약자 정류장 접근성	빅데이터 캠퍼스
2	서울특별시 초등학교 기본정보	2021	교통약자 정류장 접근성	서울 열린데이터 광장
3	서울특별시 병의원 위치정보	2021	교통약자 정류장 접근성	서울 열린데이터 광장
4	장애인 콜택시 목적지 BEST100 (API)	2020	교통약자 정류장 접근성	서울시설공단
5	서울특별시 정류소정보조회 서비스 (API)	2021	정류장 노선 수	공공데이터 포털
6	서울시 주민등록인구(연령별/동별) 통계	2020	교통약자 인구	서울 열린데이터 광장
7	서울시 고령자현황(구별, 동별) 통계	2020	교통약자 인구	서울 열린데이터 광장
8	서울시 장애인 현황(장애유형별, 연령별/동별) 통계	2020	교통약자 인구	서울 열린데이터 광장
9	서울시 출생,사망(구별, 동별) 통계	2020	교통약자 인구	서울 열린데이터 광장
10	자치구단위 서울생활인구 일별 집계표	2018~2020	생활인구	서울 열린데이터 광장
11	서울시 버스노선별 정류장별 시간대별 승하차 인원 정보	2020	버스이용객	서울 열린데이터 광장
12	서울특별시 버스정류소 위치정보	2021.01.14	버스정류소	서울 열린데이터 광장
13	서울시 공간 SHP파일	2021.01	시각화	GIS DEVELOPER