

ToprowDB 高可用性、灾备、数据复制 技术及应用

华胜信泰 李俊旗 2016年4月

ToprowDB的由来

主要交流内容

- ▶ HDR、RSS、SDS的使用场景、基本原理、差异比较、创建和故障恢复
- > 正确的选择数据库高可用性解决方案、灾备方案和数据复制方案

ToprowDB高可用性、灾备和复制解决方案

- 1992年 Informix 6 提供了 HDR 技术
- 1994年 Informix 7 提供了 ER 技术
- 2006年 Informix 11 提供了 SDS、RSS、CLR 技术
- 2008年 Informix 11.5
 - ▶ HDR、SDS、RSS 备机都支持读写能力,提供了更强大的负载均衡
 - ➤ CM(Connection Manager)功能部件
 - ✓ SLA(Service Level Agreement) 功能, 更好地实现负载均衡能力
 - ✓ FOC(Fail Over Connection) 功能,实现透明故障接管能力
- 所有这些对客户端应用来说都是是透明的
- HDR (High availability Data Replication, 高可用性数据复制)
- ER (Enterprise Replication 企业复制)
- RSS(Remote Standalone Secondary,远程独立辅节点)
- SDS(Shared Disk Secondary,共享存储设备的集群)
- CLR(Continuous Log Restore,连续日志恢复)

HDR图示

服务器1和服务器2分别运行数据库实例

HDR高可用性数据复制

- HDR 是Informix 数据库管理系统中历史最悠久的高可用性解决方案,自IDS 6以来就包含在产品中,1992年
- HDR 早在 Informix 7.3 时就被广泛使用在电信业、银行业,已有二十几年的使用历史
- HDR双机互备已经成为7*24系统的基本平台,当任一主机发生故障时,可在 8秒内切换至备机,企业的业务不受影响
- 大中华区的主要客户
 - ▶ 电信业
 - > 银行业
 - ▶ 保险业
 - ▶ 政府部门

HDR特点

- 主节点和辅节点互为热备份
- 一个集群中最多只能有一个HDR辅节点
- 主节点和辅节点间需要传输逻辑日志,所以主节点和辅节点之间的网络的带宽需要足够大
- HDR辅节点可读写
- 容易配置,无需重大配置改变
- 可以承受硬件和软件故障
- 提供自动接管能力
 - ▶ 设置DRAUTO后,发生故障时可自动切换

HDR配置要求

- 相同的数据库/硬件/操作系统
- 可设置为同步或异步通信方式
- 复制整个实例结构
- 仅带日志的数据库能被复制
- Primary (Read/Write)/ Secondary (Read/Write)
- Ontape或OnBar 工具恢复(支持管道方式)
- 故障切换: 自动 (DRAUTO, or CM) 或 手动
- 加密通信

HDR工作原理

同步和异步模式

轻松配置HDR

步骤	主节点	辅节点
1	onmode -d primary sec_name	onmode -ky
2	在主节点进行备份 ontape -s -L 0	
3		将备份文件拷贝到辅节点,在辅节点进 行恢复 ontape -p
4		onmode -d secondary pri_name

HDR功能: 故障切换与HDR自动重建

ONCONFIG参数DRAUTO

- 0: off
 - ▶ 主服务器发生故障时,不自动进行故障切换
- 1: RETAIN_TYPE
 - ▶ 主服务器发生故障时,自动进行故障切换
 - ▶ 主服务器恢复以后,主服务器仍为主服务器
- 2: REVERSE_TYPE
 - ▶ 主服务器发生故障时,自动进行故障切换
 - ▶ 主服务器恢复以后,主服务器退为辅服务器
- 3: Connection Manager
 - ▶ 由连接管理器决定如何进行故障切换

HDR故障场景2: 主节点发生故障

服务器1发生故障后,数据库实例2被提升为主节点,原先位于数据库实例1上的负载被自动转移到数据库实例2

DRAUTO=2时的故障切换与HDR自动重建

DRAUTO=2: REVERSE_TYPE

- 主服务器发生故障时,自动进行故障切换
- 主服务器恢复以后,主服务器退为辅服务器

Primary IDS_A	Second IDS_B
status: On-Line (Prim)	status: Updatable (Sec)
onmode -ky (关闭IDS_A)	
	status: On-Line (Prim) (IDS_B成为primary)
oninit -vy (启动IDS_A)	
status: Updatable (Sec) (IDS_A退为secondary)	status: On-Line (Prim)

SMX (Server Multiplexer)

远程独立备份(RSS) 的特点

- Informix RSS在2006年就已推出(IDS 11)
- 类似于HDR
- 不同与 HDR
 - ▶ 可以建立多个 RSS 实例
 - ▶ 使用多道全双工通讯 (SMX) 在低速网络上有更大吞吐
 - ▶ RSS对带宽的要求较低,主节点和辅节点之间可相距几百至几千公里
 - > 只支持异步模式,不支持同步模式甚至对checkpoints
 - ▶ RSS辅节点可读写,承担部分业务,并和主节点相互备份;在某个节点发生故障时,该节点上的业务被转移到其它节点
 - ➤ 不能被升级为'主'(primary) 但可以被升级为HDR '备'
 - ✔ 专注在灾备而非 HA, 可以承受火灾、地震、海啸等
- 大中华区的主要客户: 电信业、银行业、保险

RSS Primary怎样工作

RSS secondary 怎样工作

RSS: 接管

● 规则

- ➤ DRAUTO 对 RSS不起作用
- > RSS 不能直接与'主'相互接管
- ➤ RSS 节点可转化成HDR '备'
- ► HDR '备'可转化成 RSS
- ➤ RSS节点可转化成标准的独立实例

轻松配置RSS

步骤	主节点	辅节点
1	onmode -d add RSS rss_name	onmode -ky
2	在主节点进行备份 ontape -s -L 0	
3		将备份文件拷贝到辅节点,在辅 节点进行恢复 ontape -p
4		onmode -d RSS pri_name

RSS故障场景: 主节点发生故障

SDS单一主节点(Primary)架构 - 多节点共享磁盘

SDS共享磁盘辅节点的集群

- Informix SDS在2006年就已推出(IDS 11)
- 一个集群中可以有多个SDS辅节点
- 所有的节点共享一个存储设备
- SDS辅节点可读
- 高可用性,可以承受软硬件故障、当某一节点出现故障时,其他节点将自动、快速接管;在实际系统峰值负载情况下,经过各种可能的异常故障场景测试,SDS数据库均可以在预期时间内(<1分钟)完成切换,应用程序可在<2分钟内完成切换
- 高可扩展性,当集群中有4个SDS辅节点时,增加 新的SDS辅节点后,集群的性能仍会得到较大的提 升;企业可根据数据增长的需要,往集群中添加 新的SDS辅节点
- SDS无需特殊硬件支持,安装配置简单、快速
- 应用透明性,无需调整您的应用程序
- 在中国,已有银行等核心系统使用SDS

SDS工作原理

- 主节点和 SDS 辅节点共享磁盘
- 主节点仅需向辅节点发送日志号(LSN),主节点无需向辅节点发送日志

1. Primary: 写逻辑日志

2. Primary: 将Log Sequence Number (LSN) 发送到 secondary servers

3. SDS_1,2,3: 根据接收到的LSN从磁盘读取相应的log并在buffer中重做,但不写回到磁盘

4. SDS_1,2,3: 重做后发送ACK回primary server

5. Primary: 确认ACK

SDS工作原理(续)

Temporary Dbspaces

- Secondary 上一些特定的SQL执行时需要TempDBS , 如 物化视图、hash join、排序等操作
- Secondary 不能共享使用Primary定义的 TempDBS 需要定义本地的 TempDBS

Page Files

- Secondary 把从逻辑日志收到的数据变化在Buffer上 重做
- 将Buffer的内容写入本地文件(Page Files)
- 当发生Checkpoint时, Page Files内容将被清空
- 需要定义2个Page Files

轻松配置SDS

步骤	主节点	SDS辅节点			
1	设置onconfig参数SDS_TIMEOUT	SDS_ENABLE设为1 SDS_PAGING SDS_TEMPDBS			
2	oninit -ivy				
3	设置 SDS主节点: onmode -d set SDS primary pri_name				
4		oninit -vy			

SDS故障场景: 主节点发生故障

服务器1发生故障后,数据库实例2被提升为主节点,原先位于数据库实例1上的负载被自动转移到数据库实例2和数据库实例3

SDS网络故障的处理

- 若主服务器和SDS节点的网络连接不可用,则有另一种通过共享磁盘交换数据的方法:
 - ➤ SDS_ALTERNATE 设置为一个专用的BLOB space的名字

CM连接管理器

- CM (Connection Manager,连接管理器)
 - ▶ 将客户端请求分发给各个数据库服务器节点
 - ▶ 基于服务层协议--Service Level Agreements (SLA)
 - ▶ 管理负载均衡
 - ➤ CM监测集群里各数据库服务器节点的心跳
 - ➤ 提供故障转移的功能,对发生故障时的节点切换顺序进行管理 (FOC)

SLA 路由实例

- · 使用如下 SLAs进行连接:
 - SLA oltp=primary
 - SLA payroll=HDR+primary
 - SLA report=SDS+HDR

CM 仲裁功能

- 实现在高可用性集群环境中节点故障 自动切换逻辑
- 也被称作故障切换仲裁者
- 为了主节点的故障切换监控所有节点
- 当确认主节点故障时,运行故障切换 (比如,转换备节点为主节点)
- 支持故障切换到一个RSS节点

用CM 做数据库集群中的故障转换

- CM 配置文件中FOC 配置是一个或多个 Primary, SDS, HDR, RSS, 或一组由加号分开并在括号中的服务器类型
- FOC 定义故障切换的顺序

```
FOC RSS_node1+RSS_node2, 60
FOC node1+(SDS+node2+HDR+node3)+node4+RSS, 0
```

- 如果 Primary 失败, CM 首先试图转换 RSS_nodel 为 Primary
- 如果不能转换,将转换 RSS_node2 为 Primary
- 在括号中的节点或服务器,命名的节点或服务器有较高的优先,其次服务器类型类,依次为SDS,HDR和RSS.

一个复杂集群方案

当建筑A发生水管破裂

当城市New Orleans遭受飓风

当城市Memphis发生地震

总结

- 每一种类型的辅节点都有它自己的特点,我们需要根据实际情况选择合适类型的辅节点
 - ▶ 如果要建立本地双机互备,那么选择HDR辅节点
 - ▶ 如果要建立远程热备份节点,那么选择RSS或HDR辅节点
 - ▶ 如果要建立可扩展性强的集群,那么选择SDS辅节点
- 在一个集群里包含多种类型的辅节点,从而聚合各种类型辅节点的优点,更 好的为业务服务
 - ▶ HDR + RSS : 既有本地备份,又有远程备份
 - ▶ SDS + RSS : 既有很强的可扩展性,又有很强的容灾能力
- ToprowDB提供了极好的高可用性,可以确保您的业务不间断的运行

不同类型辅节点的对比

	HDR	RSS	SDS
网络连接	光纤连接	互联网或专线	光纤连接
节点间 的距离	百公里内	数千公里	数米内, 同一个机房
对带宽 的要求	高	低	高
辅节点 的最大数目	1个	多个	多个
存储设备	独立存储设备	独立存储设备	共享存储设备
承受服务器 的软硬件故障	是	是	是
承受天灾	否	是	否

2地3中心部署方案一(Primary+SDS+HDR+RSS)

异地灾备

2地3中心部署方案二 (Primary + HDR + 2个RSS)

负载分区

EUR

347

Asia/Pacific				USA			Europe			
CODE AP AP AP AP AP AP	key 100 22 102 341 535	data abcdef abcdef abcdef abcdef abcdef		AP AP AP AP AP	key 100 22 102 341 535	data abcdef abcdef abcdef abcdef abcdef	•	CODE AP AP AP AP AP	key 100 22 102 341 535	data abodef abodef abodef abodef abodef
USA USA USA USA USA USA	435 58 73 465 795 23	abodef abodef abodef abodef abodef abodef		USA USA USA USA USA USA	435 58 73 465 795 23	abodef abodef abodef abodef abodef abodef		USA USA USA USA USA USA	435 58 73 465 795 23	abodef abodef abodef abodef abodef abodef
EUR EUR EUR EUR EUR	69 85 864 346 72	abcdef abcdef abcdef abcdef abcdef	•	EUR EUR EUR EUR EUR	69 85 864 346 72	abodef abodef abodef abodef abodef		EUR EUR EUR EUR EUR	69 85 864 346 72	abodef abodef abodef abodef abodef

347

abcdef

Fragment owner (read/write)

abcdef

EUR

Read-only privileges

347

abcdef

EUR

数据发布

数据整合

源服务器数据流

目标服务器数据流

感谢观赏 THANK YOU