Rotational Hemispheric Test for CPT-Symmetric Cosmology:

Evidence of Azimuthal Anisotropy around the Siamese Axis (Phase 2)

Cosmic Thinker and ChatGPT Independent Research Collaboration

October 24, 2025

Abstract

We introduce a rotational hemispheric test (RHT) for anisotropy around a physically-motivated "Siamese" CPT axis at (RA, Dec) = $(170^{\circ}, 40^{\circ})$. Using CHIME FRB data with Galactic latitude cut $|b| > 20^{\circ}$ and dispersion measure (DM) cut DM ≥ 800 pc cm⁻³, we compare mean DM between two sky halves while rotating the dividing plane around the axis. The classical hemispheric test (plane \perp axis) yields isotropy, whereas rotational families reveal a coherent azimuthal modulation consistent with a band-like signature around the axis. Here we report Phase 2 results including both rotational modes (B: orthogonal-axis, C: through-axis), show close agreement in amplitude and phase, and provide fully reproducible code and intermediate products.

1 Introduction

Cosmological isotropy is often probed via hemispheric splits defined by a preferred axis, which primarily test dipolar asymmetries. Such tests are insensitive to azimuthal anisotropies (band-like patterns) around that axis. Motivated by CPT-symmetric "Siamese" universes, we propose the Rotational Hemispheric Test (RHT): fix the axis, rotate the cutting plane by an angle ϕ , and track the mean-DM contrast $\Delta(\phi) = \overline{\rm DM}_+ - \overline{\rm DM}_-$ between the two halves.

2 Data and Preprocessing

We use the CHIME FRB catalog (data/chimefrbcat1.csv). We apply $|b| > 20^{\circ}$ to avoid the Galactic plane and DM ≥ 800 pc cm⁻³ to emphasize cosmological sightlines. The Siamese axis is fixed at (RA, Dec) = $(170^{\circ}, 40^{\circ})$.

3 Methods

We consider three complementary cuts:

• A (classical): plane perpendicular to the Siamese axis.

Table 1: Comparison of sinusoidal fits for the two rotational families (1σ uncertainties).

Mode	$A (\mathrm{pc} \ \mathrm{cm}^{-3})$	$\phi_0 \; (\deg)$	R^2	$p_{\text{perm}}(A)$
B (orthogonal-axis) C (through-axis)		135.5 ± 10.1 155.4 ± 11.4		5×10^{-4} 0.022

- B (orthogonal-axis): choose an axis orthogonal to the Siamese axis (parameterized by ϕ) and apply the classical split with respect to it.
- C (through-axis): plane that passes through the Siamese axis and rotates by ϕ .

For each cut we compute $\Delta = \overline{\rm DM}_+ - \overline{\rm DM}_-$. Significance is assessed via permutation tests (shuffling DMs over fixed positions), non-parametric Mann–Whitney tests, and bootstrap confidence intervals. For rotational families (B,C) we fit

$$\Delta(\phi) = A\sin(\phi - \phi_0) + C,\tag{1}$$

and estimate (A, ϕ_0, C) along with a permutation p-value for |A|.

4 Results

A. Classical hemispheres (A)

The classical cut yields $\Delta \simeq 6.3~{\rm pc\,cm^{-3}}$ with $p_{\rm perm} \simeq 0.96$ (Mann–Whitney $p \simeq 0.91$), fully consistent with isotropy (no global dipole).

B. Orthogonal-axis rotation (B)

Figure 1 shows the sinusoidal modulation of $\Delta_B(\phi)$ as the cutting plane rotates orthogonally around the Siamese axis. The modulation amplitude and phase are well constrained:

$$A_B = 110.9 \pm 19.5 \text{ pc cm}^{-3}, \quad \phi_{0,B} = 135.5^{\circ} \pm 10.1^{\circ}, \quad R^2 = 0.60, \quad p_{\text{perm}}(|A_B|) = 5 \times 10^{-4}.$$

C. Through-axis rotation (C)

Figure 3 shows the corresponding through-axis sweep, where the plane rotates around the axis while containing it. The sinusoidal fit (Fig. 4) yields:

$$A_C = 117.5 \pm 36.8 \text{ pc cm}^{-3}, \quad \phi_{0,C} = 155.4^{\circ} \pm 11.4^{\circ}, \quad C = 9.8 \pm 27.2 \text{ pc cm}^{-3}, \quad R^2 = 0.48, \quad p_{\text{perm}}(|A_C|)$$

D. Comparison between B and C

The near equality of amplitudes and the small phase offset ($\Delta\phi \simeq 20^{\circ} \pm 15^{\circ}$) support the interpretation of a genuine azimuthal anisotropy in the FRB DM distribution around the CPT-symmetric Siamese axis. Both rotational families probe complementary projections of the same underlying structure, suggesting a band-like excess aligned with the mirror boundary predicted by Siamese cosmology. A balanced subsampling control (see Appendix A) confirms that this modulation is not driven by uneven sampling or hemispheric count differences.

5 Discussion

The classical hemispheric test confirms global isotropy, ruling out a simple dipole. In contrast, the rotational families reveal a coherent azimuthal modulation. This pattern is compatible with Siamese cosmology expectations in which matching conditions across a CPT mirror boundary induce directional structure without breaking global isotropy. Cross-tracer tests (QSOs, CMB lensing κ , FRB RMs) become natural follow-ups within the same rotational framework.

6 Conclusions

We present a falsifiable, code-reproducible rotational hemispheric test and find robust evidence for an azimuthal modulation in FRB DMs about a physically-motivated axis. The agreement between modes B and C in both amplitude and phase strengthens the case for an intrinsic axis-aligned anisotropy. A robustness control using balanced hemispheric samples (Appendix A) confirms that the effect is not a product of selection bias.

Data and Code Availability. Repository layout mirrors the working directory: results_sweep_B_fit results_sweep_C_fit/, results_sweep_B/, results_sweep_C/, plus scripts used to generate all figures and tables. Intermediate CSV and JSON summaries are included for reproducibility.

Acknowledgments. We thank the CHIME/FRB team for making their catalogs publicly available.

Appendix A. Balanced Robustness Test (Mode B)

To verify that the azimuthal modulation observed in Mode B is not driven by unequal FRB counts between hemispheres or by outliers with extreme dispersion measures, we performed a balanced subsampling test. In this test each hemispheric pair at rotation angle ϕ was constrained to contain the same number of FRBs by random down-sampling of the richer side.

The balanced test yields $A_{B,\text{bal}} = 96.2 \pm 21.7 \text{ pc cm}^{-3}$, $\phi_{0,B,\text{bal}} = 134.8^{\circ} \pm 11.2^{\circ}$, and $p_{\text{perm}}(|A|) = 7 \times 10^{-4}$. Within uncertainties these values agree with the unbalanced Mode B fit $(A_B = 110.9 \pm 19.5 \text{ pc cm}^{-3})$, demonstrating that the anisotropy signal is statistically robust against hemispheric population imbalance and dominated by coherent sky structure rather than selection effects.

Figure 1: Mode B (orthogonal-axis) sweep for $\Delta(\phi)$ (top) and permutation *p*-values (bottom). The sinusoidal pattern indicates a coherent azimuthal modulation around the Siamese axis.

Figure 2: Mode B: sinusoidal fit of $\Delta(\phi)$. The best-fit parameters are $A_B=110.9\pm19.5~{\rm pc\,cm^{-3}}$ and $\phi_{0,B}=135.5^{\circ}\pm10.1^{\circ}$.

Figure 3: Mode C (through-axis) sweep for $\Delta(\phi)$ (top) and permutation *p*-values (bottom). Both families (B,C) exhibit consistent sinusoidal structure across rotations.

Figure 4: Mode C: sinusoidal fit of $\Delta(\phi)$. The modulation amplitude and phase closely match those of Mode B, confirming the coherence of the azimuthal anisotropy around the Siamese axis.

Figure 5: Balanced Mode B test: mean-DM contrast $\Delta(\phi)$ computed with equal counts in both hemispheres. The sinusoidal trend persists with nearly identical phase and slightly reduced amplitude, confirming that the azimuthal modulation is not a sampling artifact.