Clase 5 - Módulo 2: Introducción a la analítica

Mauricio Alejandro Mazo Lopera

Universidad Nacional de Colombia Facultad de Ciencias Escuela de Estadística Medellín

Métodos de contracción (Shrinkage)

Se busca principalmente reducir la varianza de las estimadores de los parámetros.

Métodos de contracción (Shrinkage)

Se busca principalmente reducir la varianza de las estimadores de los parámetros.

Recuerde que:

$$RSS = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$

Métodos de contracción (Shrinkage)

Se busca principalmente reducir la varianza de las estimadores de los parámetros.

Recuerde que:

$$RSS = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$

Los dos métodos de **contracción** o **regularización** son:

Ridge

<u>Lasso</u>

Ridge y Lasso

Ridge

Se busca minimizar

$$RSS + \frac{\lambda}{\lambda} \sum_{j=1}^{p} \beta_j^2$$

o lo que es equivalente:

$$\min_{\beta} \{RSS\}$$
 sujeto a

$$\sum_{i=1}^{p} \beta_j^2 \leq s$$

Lasso

Se busca minimizar

$$RSS + \frac{\lambda}{\lambda} \sum_{j=1}^{p} |\beta_j|$$

o lo que es equivalente:

 $\min_{\beta} \left\{ RSS \right\} \text{ sujeto a}$

$$\sum_{j=1}^{p} |\beta_j| \le s$$

• λ es conocido como parámetro de calibración y se puede obtener con validación cruzada, por ejemplo.

- λ es conocido como parámetro de calibración y se puede obtener con validación cruzada, por ejemplo.
- Denotemos por $\hat{\beta}$, $\hat{\beta}_R$ y $\hat{\beta}_L$ los vectores de parámetros estimados por mínimos cuadrados ordinarios, por Ridge y por Lasso, respectivamente.

<u>MLS</u>

Ridge

$$\hat{oldsymbol{eta}} = (oldsymbol{X}'oldsymbol{X})^{-1}oldsymbol{X}'oldsymbol{Y} \qquad \hat{eta}_R = (oldsymbol{X}'oldsymbol{X} + \lambda oldsymbol{I})^{-1}oldsymbol{X}'oldsymbol{Y}$$

• Cuando $\lambda \longrightarrow 0$ se tiene que

$$\hat{oldsymbol{eta}}_R \longrightarrow \hat{oldsymbol{eta}} \quad \ \mathsf{y} \quad \hat{oldsymbol{eta}}_L \longrightarrow \hat{oldsymbol{eta}}$$

MLS

Ridge

$$\hat{oldsymbol{eta}} = (oldsymbol{X}'oldsymbol{X})^{-1}oldsymbol{X}'oldsymbol{Y} \qquad \hat{eta}_R = (oldsymbol{X}'oldsymbol{X} + \lambda oldsymbol{I})^{-1}oldsymbol{X}'oldsymbol{Y}$$

ullet Cuando $\lambda \longrightarrow 0$ se tiene que

$$\hat{oldsymbol{eta}}_R \longrightarrow \hat{oldsymbol{eta}} \quad \ \mathsf{y} \quad \hat{oldsymbol{eta}}_L \longrightarrow \hat{oldsymbol{eta}}$$

• Cuando $\lambda \longrightarrow \infty$ se tiene que

$$\hat{oldsymbol{eta}}_R \longrightarrow \mathbf{0}$$
 y $\hat{oldsymbol{eta}}_L \longrightarrow \mathbf{0}$

 Dada la sensibilidad que tienen estos métodos con respecto a la escala de las covariables, se recomienda estandarizar antes de aplicarlos, es decir, definir

$$\tilde{x}_{ij} = \frac{x_{ij}}{\sqrt{\frac{1}{n}\sum_{i=1}^{n}(x_{ij} - \overline{x}_{j})^{2}}}$$

 Dada la sensibilidad que tienen estos métodos con respecto a la escala de las covariables, se recomienda estandarizar antes de aplicarlos, es decir, definir

$$\tilde{x}_{ij} = \frac{x_{ij}}{\sqrt{\frac{1}{n}\sum_{i=1}^{n}(x_{ij} - \overline{x}_{j})^{2}}}$$

• Cuando λ aumenta, la flexibilidad del modelo disminuye, lo cual lleva a que la varianza de los betas estimados disminuya, pero aumente el sesgo.

• Cuando $p \approx n$ o p > n, la varianza de los betas estimados aumenta considerablemente cuando se usa mínimos cuadrados. Por tanto, se recomendaría el uso del proceso de regularización.

- Cuando $p \approx n$ o p > n, la varianza de los betas estimados aumenta considerablemente cuando se usa mínimos cuadrados. Por tanto, se recomendaría el uso del proceso de regularización.
- A diferencia de Ridge, Lasso sí lleva a estimaciones de los parámetros exactamente iguales a cero, lo cual mejora las interpretaciones, ya que permite excluir variables no significativas.

- Cuando $p \approx n$ o p > n, la varianza de los betas estimados aumenta considerablemente cuando se usa mínimos cuadrados. Por tanto, se recomendaría el uso del proceso de regularización.
- A diferencia de Ridge, Lasso sí lleva a estimaciones de los parámetros exactamente iguales a cero, lo cual mejora las interpretaciones, ya que permite excluir variables no significativas.
- No hay una ventaja clara de un método sobre otro, esto depende de los datos y por tanto, es posible aplicar validación cruzada para seleccionar entre ambos.

Selección del parámetro de calibración λ

Para poder aplicar Ridge o Lasso es necesario encontrar el valor de penalización λ (también conocido como parámetro de calibración). El método más utilizado consiste en:

- Seleccionar un conjunto de valores de λ en un intervalo abierto (generalmente cero es el límite inferior).
- Usar validación cruzada para cada valor de λ y estimar el error de validación cruzada.
- Escoger el λ que produzca el menor error.

```
require(ISLR)
require(glmnet)
Hitters<-na.omit(Hitters)</pre>
x<-model.matrix(Salary~.,Hitters)[,-1]
y<-Hitters$Salary
gridz < -10^seq(-2,10, length=100)
ridge.mod<-glmnet(x,y,alpha=0, lambda=gridz)
dim(coef(ridge.mod))
```

plot(ridge.mod, xvar="lambda", label=TRUE)


```
cedula<-1
set.seed(cedula)
train<-sample(1: nrow(x), nrow(x)/2)
test<- -train
y.test<-y[test]
cv.out<-cv.glmnet(x[train,],y[train],alpha=0)</pre>
```

plot(cv.out)

bestlam<-cv.out\$lambda.min
bestlam</pre>

[1] 431.0623

```
ridge.pred<-predict(ridge.mod, s=bestlam,newx=x[test,])
mean((ridge.pred-y.test)^2)
##
    [1] 120779.4
out<-glmnet (x,y,alpha=0)</pre>
predict(out,type="coefficients",s=bestlam)[1:20,]
    (Intercept)
                                   Hits
                                              HmR.11n
                                                            Runs
##
                     At.Bat.
                                                                         R.B
##
   24.88203059
                 0.09571573
                             0.77893014
                                         0.85488975
                                                      1.02412478
                                                                  0.8757581
         Walks
                     Years
                                              CHits
                                                          CHmRiin
                                                                       CRun
##
                                 CAtBat
    1.51400163
                 1.93680145
                             0.01128321
                                         0.05331300
                                                      0.38052103
                                                                  0.1065181
##
##
          CRBI
                    CWalks
                                LeagueN
                                          DivisionW
                                                         PutOuts
                                                                     Assist
    0.11215778
                 0.06298811
                            18.94995828 -70.27086691
                                                      0.14893846
                                                                  0.0232910
##
```

NewLeagueN

9.45875165

Errors

-1.09701572

##

##

```
require(ISLR)
require(glmnet)
Hitters<-na.omit(Hitters)</pre>
x<-model.matrix(Salary~.,Hitters)[,-1]
y<-Hitters$Salary
gridz < -10^seq(-2,10, length=100)
lasso.mod<-glmnet(x,y,alpha=1, lambda=gridz)</pre>
dim(coef(lasso.mod))
```

[1] 20 100

plot(lasso.mod, xvar="lambda", label=TRUE)


```
cedula<-1
set.seed(cedula)
train<-sample(1: nrow(x), nrow(x)/2)
test<- -train
y.test<-y[test]
cv.out<-cv.glmnet(x[train,],y[train],alpha=1)</pre>
```

plot(cv.out)

bestlam<-cv.out\$lambda.min
bestlam</pre>

[1] 9.286955

```
lasso.pred<-predict(lasso.mod, s=bestlam,newx=x[test,])</pre>
mean((lasso.pred-y.test)^2)
   [1] 111754.2
##
out <-glmnet (x,y,alpha=1)
lasso.coef<-predict(out,type="coefficients",s=bestlam)[1:20,]
lasso.coef
##
    (Intercept)
                        AtBat
                                      Hits
                                                   HmRun
                                                                  Runs
##
    -3.04787648
                   0.00000000
                                 2.02551572
                                              0.00000000
                                                            0.00000000
##
            R.B.T
                        Walks
                                     Years
                                                  CAt.Bat.
                                                                 CHits
##
     0.00000000
                   2.26853781
                                 0.00000000
                                              0.00000000
                                                            0.00000000
         CHmRiin
                        CRuns
                                      CRBT
                                                  CWalks
                                                               LeagueN
##
##
     0.01647106
                   0.21177390
                                0.41944632
                                              0.00000000
                                                           20.48456543
##
      DivisionW
                      PutOuts
                                    Assists
                                                            NewLeagueN
                                                  Errors
## -116.59062078
                   0.23718459
                                0.00000000
                                             -0.94739923
                                                            0.00000000
```

lasso.coef[lasso.coef!=0]

```
##
     (Intercept)
                          Hits
                                        Walks
                                                     CHmRun
                                                                     CRuns
     -3.04787648
                    2.02551572
                                   2.26853781
                                                 0.01647106
                                                                0.21177390
##
##
            CRBI
                       LeagueN
                                    DivisionW
                                                    PutOuts
                                                                    Errors
##
      0.41944632
                   20.48456543 -116.59062078
                                                 0.23718459
                                                               -0.94739923
```

Actividad:

Utilice las técnicas ridge y lasso para regularizar las bases de datos **BASE_DATOS_1** y **BA-SE_DATOS_2**. Según estas técnicas, ¿cuáles variables aparentemente muestran no ser relevantes para explicar la variable aleatoria *Y*?