

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 08

MARIE: Barramentos.

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 08

Um barramento (*Bus*) é um conjunto de linhas compartilhadas por vários dispositivos (Caminhos que permitem o transporte de dados entre os vários elementos)

Cada barramento obedece a um conjunto de regras (*Bus Protocol*) que é caracterizado por um conjunto de especificações elétricas e mecânicas.

Existem vários tipos de barramentos

Barramento interno ao processador Barramento de sistema Barramento de expansão

Barramento de 8 linhas → 1 Byte

Barramento de 32 linhas → 4 Bytes

Barramento de 64 linhas → 8 Bytes

Barramento de 128 linhas → 16 Bytes

Exemplo de barramentos num computador

ECM 245

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 08

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 08

Arquitetura e Organização de Computadores

5ª-feira 07h40-09h20

Sala: H204

AULA 08

Noção de **Master** e **Slave** de um barramento

Master – dispositivo que requisita o barramento tomando a iniciativa na transferência de dados

Slave – dispositivo que serve o pedido

A maioria dos dispositivos tanto pode ser *master* como ser *slave*, exceto a memória que é sempre *slave*

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 08

Ligação de vários dispositivos periféricos

Vários dispositivos periféricos podem compartilhar o mesmo barramento

Arbitragem do barramento:

Centralizada – existe um dispositivo – árbitro – ao qual estão ligados todos os periféricos **Descentralizada** – cada periférico verifica primeiro se já existe um outro periférico que seja *master* do barramento

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 08

Buffers tri-state

Um Buffer tri-state permitem a geração de valores 0, 1 ou Z. Uma saída Z pode ser considerada como uma saída desconectada do resto do circuito, pois se apresenta em um estado de alta impedância.

Symbol	Truth Table		
	Enable	IN	OUT
Data IN Output Tri-state Buffer	0	0	Hi-Z
	0	1	Hi-Z
	1	0	0
	1	1	1
Read as Output = Input if Enable is equal to "1"			

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 08

Interrupção

Designa-se por **interrupção** algum evento que faça com o CPU interrompa (temporariamente) a normal execução de um programa

Exemplos:

Pedido de um periférico que não pode esperar

Existência de um erro num programa

Quando ocorre uma **interrupção**, o CPU terá que manter o conteúdo de todos os seus registos

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 08

Existem vários tipos de interrupções

Hardware

Pedidos de dispositivos periféricos, relógio do sistema, circuitos de monitorização de energia.

Software

Uma interrupção causada por um programa.

Excepção

Ocorrem devido a utilizações indevidas de instruções ou de dados (e.g., divisão por 0, acesso a uma posição de memória protegida etc.)

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 08

Interrupt requests (IRQ)

Canais para requisição de interrupções – um canal por periférico

Interrupt controller (PIC)

Um controlador de interrupções é responsável pelo encaminhamento das interrupções dos periféricos para o processador

Estabelece um protocolo com o processador, trocando dados necessários para servir a interrupção