Question: 1

Which of the following sets are rings with respect to the usual operations of addition and multiplication? If the set is a ring, is it also a field?

- a. $7\mathbb{Z}$
- b. \mathbb{Z}_{18}
- c. $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}\$
- d. $\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \{a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6} : a, b, c, d \in \mathbb{Q}\}\$
- e. $\mathbb{Z}[\sqrt{3}] = \{a + b\sqrt{3} : a, b \in \mathbb{Z}\}\$
- f. $R = \{a + b\sqrt[3]{3} : a, b \in \mathbb{Q}\}$
- g. $\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z} \text{ and } i^2 = -1\}$
- h. $\mathbb{Q}(\sqrt[3]{3}) = \{a + b\sqrt[3]{3} + c\sqrt[3]{9} : a, b, c \in \mathbb{Q}\}$

Solution:

- a. $7\mathbb{Z}$ is a ring since it is a subring of \mathbb{Z} . This is not hard to show. However, it lacks an identity, so it is a field.
- b. \mathbb{Z}_{18} is a ring because addition and mulitplication in modulo 18 are well-defined. However, we can see that it is not a field. $2 \cdot 9 = 0$ in \mathbb{Z}_{18} , so we have a pair of zero divisors.
- c. $\mathbb{Q}(\sqrt{2})$ is a subfield of \mathbb{R} so it is therefore a ring and a field. The fact that it is a subring is not hard to show.
- d. Like the last part, $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ is a subfield of \mathbb{R} and is therfore a ring and a field.
- e. $\mathbb{Z}^{\sqrt{3}}$ is a subring of \mathbb{R} and is therefore a ring. Now let's analyze $\sqrt{3} \in \mathbb{Z}^{\sqrt{3}}$. Calculating the inverse of $\sqrt{3}$ gives us $\frac{1}{\sqrt{3}} \notin \mathbb{Z}^{\sqrt{3}}$. Therefore, $\mathbb{Z}^{\sqrt{3}}$ is not a field.
- f. If a=0 and b=1, we have that $\sqrt[3]{3} \in R$. However, $\sqrt[3]{3} \cdot \sqrt[3]{3} = \sqrt[3]{9} \notin R$. Therefore, R is not closed under multiplication and is therefore not a ring.
- g. \mathbb{Z}^i is a field because it is a subfield of \mathbb{C} . By definition, it is also a ring.
- h. $\mathbb{Q}(\sqrt[3]{3})$ is a subfield of \mathbb{R} and is therefore a ring and a field.

Question: 12

Prove that $\mathbb{Z}[\sqrt{3}\,i]=\{a+b\sqrt{3}\,i:a,b\in\mathbb{Z}\}$ is an integral domain.

Solution: A common rule of complex numbers is that for any $z, w \in \mathbb{C}$, |z||w| = |zw|. Also, $\mathbb{Z}^{\sqrt{3}i} \in \mathbb{C}$, so we have that $|zw| = |z||w| \forall z, w \in \mathbb{Z}^{\sqrt{3}i}$. This means that if $z, w \neq 0$, then $|z|, |w| \neq 0$, and therefore $|z||w| = |zw| \neq 0$. So, $\mathbb{Z}^{\sqrt{3}i}$ has no zero divisors and is therefore an integral domain.

Question: 24

Let R be a ring with a collection of subrings $\{R_{\alpha}\}$. Prove that $\bigcap R_{\alpha}$ is a subring of R. Give an example to show that the union of two subrings is not necessarily a subring.

Solution: Let $r, s \in \bigcap R_{\alpha}$. This means that $r, s \in R_{\alpha}$, so $rs, (r - s) \in R_{\alpha}$. Thus, $rs, (r - s) \in \bigcap R_{\alpha}$. So $\bigcap R_{\alpha}$ is a subring of R.

An example of the union of two subrings not being a subring is how $2\mathbb{Z}$ and $3\mathbb{Z}$ are both subrings of \mathbb{Z} , but $2\mathbb{Z} \cup 3\mathbb{Z}$ is not a subring of \mathbb{Z} . We can see this because $2, 3 \in 2\mathbb{Z} \cup 3\mathbb{Z}$, but $2+3=5 \notin 2\mathbb{Z} \cup 3\mathbb{Z}$.

Question: 30

Let R be a ring with the identity 1_R and S a subring of R with identity 1_S . Prove or disprove that $1_R = 1_S$.

Solution: I will disprove this. Let $R = \mathbb{Z}_6$ and $S = \{0,3\}$. S is a subring of R. S is a ring because a + b and ab are both in S for all four combinations of a and b. However, we know that $1_R = 1$. But in S, we can see that $3 \times 0 = 0$ and that $3 \times 3 = 3$. So, $3 = 1_S \neq 1_R$. Θ

Question: 32

Let R be a ring. Define the center of R to be

$$Z(R) = \{a \in R : ar = ra \text{ for all } r \in R\}.$$

Prove that Z(R) is a commutative subring of R.

Solution: Let $a,b \in Z(R)$. We have that $abr = arb = rab \forall r \in R$. We also have that $(a-b)r = ar - br = ra - rb = r(a-b) \forall r \in R$. Therefore, $ab, (a-b) \in Z(R)$. So, Z(R) is a subring of R. By definition, the center if a ring is commutative. Therefore, Z(R) is a commutative subring of R. Θ

Question: 35

Let R be a ring with identity.

- a. Let u be a unit in R. Define a map $i_u : R \to R$ by $r \mapsto uru^{-1}$. Prove that i_u is an automorphism of R. Such an automorphism of R is called an inner automorphism of R. Denote the set of all inner automorphisms of R by Inn(R).
- b. Denote the set of all automorphisms of R as $\operatorname{Aut}(R)$. Prove that $\operatorname{Inn}(R)$ is a normal subgroup of $\operatorname{Aut}(R)$.
- c. Let U(R) be the group of units in R. Prove that the map

$$\phi: U(R) \to \operatorname{Inn}(R)$$

defined by $u \mapsto i_u$ is a homomorphism. Determine the kernel of ϕ .

d. Compute Aut(\mathbb{Z}), Inn(\mathbb{Z}), and $U(\mathbb{Z})$.

Solution:

a. $\forall a, b \in R$, we have that

$$i_{u}(a)i_{u}(b) = (uau^{-1})(ubu^{-1})$$

$$= ua(u^{-1}u)bu^{-1}$$

$$= uabu^{-1}$$

$$= i_{u}(ab)$$

Also,

$$i_u(a) + i_u(b) = (uau^{-1}) + (ubu^{-1})$$

= $u(a+b)u^{-1}$
= $i_u(a+b)$

Now, for injectivity,

$$i_u(a) = i_u(b)$$

 $uau^{-1} = ubu^{-1}$
 $a = b$ by cancellation laws.

For surjectivity,

$$\forall a \in R, i_u(u^{-1}au) = uu^{-1}auu^{-1}$$

= $(uu^{-1})a(uu^{-1})$
= a

So, i_u is a bijective homomorphism and is therefore an automorphism of R.

b. We know that $e = i_e \in \text{Inn}(R)$. For closure and inverse, let $i_u, i_v \in \text{Inn}(R)$ and $r \in R$. Starting with inverse, we can see that

$$i_u^{-1}(r) = u^{-1}ru$$

= $i_{u^{-1}}(r)$

Then for closure, we have that

$$i_u \circ i_v(r) = i_u(vrv^{-1})$$

$$= uvrv^{-1}u^{-1}$$

$$= uvr(uv)^{-1}$$

$$= i_{uv}(r) \in Inn(R)$$

To show that Inn(R) is normal in Aut(R), we have to show that $i_u \circ i_v \circ i_u^{-1}(x) \in \text{Inn}(R)$ for all $u, v \in U(R)$ and $x \in R$.

$$i_u \circ i_v \circ i_u^{-1}(x) = i_u \circ i_v(u^{-1}xu)$$

= $i_u(vu^{-1}xuv^{-1})$
= $uvu^{-1}xuv^{-1}u^{-1}$
= $i_{uvu^{-1}}(x) \in \text{Inn}(R)$

c. Let $u, v \in U(R)$. We have that

$$\begin{split} \phi(u) \circ \phi(v)(r) &= i_u \circ i_v(r) \\ &= i_u (vrv^{-1}) \\ &= uvrv^{-1}u^{-1} \\ &= i_{uv}(r) \\ &= \phi(uv)(r) \end{split}$$

$$\ker(\phi) = \{ u \in U(R) : \phi(u) = i_u = e \}$$

$$= \{ u \in U(R) : uru^{-1} = r \forall r \in R \}$$

$$= \{ u \in U(R) : ur = ru \forall r \in R \}$$

$$= U(R) \cap Z(R)$$

d. \mathbb{Z} is generated by 1 and -1. Therefore, $\operatorname{Aut}(\mathbb{Z}) = \{x \mapsto x, x \mapsto -x\}$.

Analyzing both automorphisms, we see that their inner automorphisms are the same. As such, $\text{Inn}(\mathbb{Z}) = \{x \mapsto x\}$. Trivially, $U(\mathbb{Z}) = \{1, -1\}$.

Question: 36

Let R and S be arbitrary rings. Show that their Cartesian product is a ring if we define addition and multiplication in $R \times S$ by

a.
$$(r,s) + (r',s') = (r+r',s+s')$$

b.
$$(r,s)(r',s') = (rr',ss')$$

Solution: Let $T = R \times S$ and let $(a, b), (c, d), (e, f) \in T$. To start, we know that $a + c \in R$ and $b + d \in S$. So we can demonstrate cloure.

$$(a,b) + (c,d) = (a+c,b+d) \in T$$
,

Now we should show associativity with addition:

$$(a,b) + [(c,d) + (e,f)] = (a,b) + (c+e,d+f)$$

$$= (a+c+e,b+d+f)$$

$$= (a+c,b+d) + (e,f)$$

$$= [(a,b) + (c,d)] + (e,f)$$

If $0_R \in R$ and $0_S \in S$ and they are the identities, then we have the following:

$$(a,b) + (0_R, 0_S) = (a + 0_R, b + 0_S)$$
$$= (a,b)$$
$$(0_R, 0_S) + (a,b) = (0_R + a, 0_S + b)$$
$$= (a,b)$$

Now, we will show that addition is commutative.

$$(a,b) + (c,d) = (a+c,b+d)$$

= $(c+a,d+b)$
= $(c,d) + (a,b)$

Next, we will show that multiplication is closed.

$$(a,b)(c,d) = (ac,bd) \in T$$

Next, we will show that multiplication is associative.

$$(a,b)[(c,d)(e,f)] = (a,b)(ce,df) = (a[ce],b[df]) = ([ac]e,[bd]f) = [(a,b)(c,d)](e,f)$$

Now we just need to prove left and right distributivity of multiplication over addition.

$$(a,b)[(c,d) + (e,f)] = (a,b)(c+e,d+f)$$

$$= (a[c+e],b[d+f])$$

$$= ([ac] + [ae],[bd] + [bf])$$

$$= (a,b)(e,f) + (c,d)(e,f)$$

$$[(a,b) + (c,d)](e,f) = (a+c,b+d)(e,f)$$

$$= ([a+c]e,[b+d]f)$$

$$= ([ae] + [ce],[bf] + [df])$$

$$= (a,b)(e,f) + (c,d)(e,f)$$