New York City Taxi Trip Duration Project

Qin Zhang
Chongqing Technology and Business University

2022/8/21

Overview

Project Description

Data Description

Feature Engineering

Model introduction

Evaluation Results and Analysis

Conclusion

Project Description

Project Description

Data Description

Data Description

Feature Engineering

Data Preprocessing

Feature Filtering

Model introduction

Model introduction

Evaluation Results and Analysis

Experimental result

Conclusion

Project Description

Data Description

Feature Engineering

Model introduction

Evaluation Results and Analysis

Conclusion

Project Description

Project Description

Project Description

Data Description

Feature Engineering

Model introduction

Evaluation Results and Analysis

- The competition dataset is based on the 2016 NYC Yellow Cab trip record data made available in Big Query on Google Cloud Platform. The data was originally published by the NYC Taxi and Limousine Commission (TLC). The data was sampled and cleaned for the purposes of this playground competition. Based on individual trip attributes, participants should predict the duration of each trip in the test set.
- The project provided 1458644 pieces of effective data for the construction of machine learning model. The purpose of the project is to predict the trip-duration time of passengers through "characteristics" such as pickup-datetime and dropoff-datetime.

Data Description

Data Description

Feature Engineering

Model introduction

Evaluation Results and Analysis

Conclusion

Data Description

Data Description

Project Description

Data Description

Data Description

Feature Engineering

Model introduction

Evaluation Results and Analysis

Conclusion

■ Data fields:

- id: a unique identifier for each trip
- vendor-id: a code indicating the provider associated with the trip record
- pickup-datetime: date and time when the meter was engaged
- dropoff-datetime: date and time when the meter was disengaged
- passenger-count : the number of passengers in the vehicle (driver entered value)
- pickup-longitude: the longitude where the meter was engaged
- pickup-latitude: the latitude where the meter was engaged
- dropoff-longitude: the longitude where the meter was disengaged
- dropoff-latitude: the latitude where the meter was disengaged
- ◆ store-and-fwd-flag: This flag indicates whether the trip record was held in vehicle memory before sending to the vendor because the vehicle did not have a connection to the server Y=store and forward; N=not a store and forward trip
- trip-duration : duration of the trip in seconds

Data Description

Project Description

Data Description

Data Description

Feature Engineering

Model introduction

Evaluation Results and Analysis

Table 1: Dataset description

	id	vendor_id	pickup_datetime	dropoff_datetime	passenger_count	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude	store_and_fwd_flag	trip_duration
0	id2875421	2	2016-03-14 17:24:55	2016-03-14 17:32:30	1	-73.982155	40.767937	-73.964630	40.765602	N	455
1	id2377394	1	2016-06-12 00:43:35	2016-06-12 00:54:38	1	-73.980415	40.738564	-73.999481	40.731152	N	663
2	id3858529	2	2016-01-19 11:35:24	2016-01-19 12:10:48	1	-73.979027	40.763939	-74.005333	40.710087	N	2124
3	id3504673	2	2016-04-06 19:32:31	2016-04-06 19:39:40	1	-74.010040	40.719971	-74.012268	40.706718	N	429
4	id2181028	2	2016-03-26 13:30:55	2016-03-26 13:38:10	1	-73.973053	40.793209	-73.972923	40.782520	N	435

- 1458644 rows × 11 columns.
- 10 features, and trip-duration is the prediction target.

Data Description

Project Description

Data Description

Data Description

Feature Engineering

Model introduction

Evaluation Results and Analysis

Conclusion

■ Visualize the distribution of trip-duration values.

Figure 1: Trip-duration

Data Description

Feature Engineering

Data Preprocessing

Feature Filtering

Model introduction

Evaluation Results and Analysis

Conclusion

Feature Engineering

Project Description

Data Description

Feature Engineering

Data Preprocessing

Feature Filtering

Model introduction

Evaluation Results and Analysis

Table 2: Number of non empty samples and field type of each feature

	Column	Non-Null Count	Dtype
0	id	1458644 non-null	object
1	vendor_id	1458644 non-null	int64
2	pickup_datetime	1458644 non-null	object
3	dropoff_datetime	1458644 non-null	object
4	passenger_count	1458644 non-null	int64
5	pickup_longitude	1458644 non-null	float64
6	pickup_latitude	1458644 non-null	float64
7	dropoff_longitude	1458644 non-null	float64
8	dropoff_latitude	1458644 non-null	float64
9	store_and_fwd_flag	1458644 non-null	object
10	trip_duration	1458644 non-null	int64

Project Description

Data Description

Feature Engineering

Data Preprocessing

Feature Filtering

Model introduction

Evaluation Results and Analysis

- Analyze outliers:
 - Select an appropriate trip-duration range according to longitude and latitude, and delete the interference data.
 - ◆ According to the analysis, select the data with trip-duration less than 1 million, and delete the remaining data.

Project Description

Data Description

Feature Engineering

Data Preprocessing

Feature Filtering

Model introduction

Evaluation Results and Analysis

- Analyze outliers:
 - Delete data with passenger-count of 0.

Figure 2: Impact of Embarked on Survival

Project Description

Data Description

Feature Engineering

Data Preprocessing

Feature Filtering

Model introduction

Evaluation Results and Analysis

Conclusion

store-and-fwd-flag column: string to numeric

Figure 3: Store-and-fwd-flag

Project Description

Data Description

Feature Engineering

Data Preprocessing

Feature Filtering

Model introduction

Evaluation Results and Analysis

Conclusion

■ Datetime: object->datetime-> hour, day of week, month

Table 3: Data after time processing

	pickup_datetime	day_of_week	hour_of_the_day	month
0	2016-03-14 17:24:55	1	17	3
1	2016-06-12 00:43:35	7	0	6
2	2016-01-19 11:35:24	2	11	1
3	2016-04-06 19:32:31	3	19	4
4	2016-03-26 13:30:55	6	13	3

Project Description

Data Description

Feature Engineering

Data Preprocessing

Feature Filtering

Model introduction

Evaluation Results and Analysis

Conclusion

■ Lat-long to distance by haversine function.

Table 4: Data after distance processing

	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude	distance
0	-73.982155	40.767937	-73.964630	40.765602	1.498521
1	-73.980415	40.738564	-73.999481	40.731152	1.805507
2	-73.979027	40.763939	-74.005333	40.710087	6.385098
3	-74.010040	40.719971	-74.012268	40.706718	1.485498
4	-73.973053	40.793209	-73.972923	40.782520	1.188588

Project Description

Data Description

Feature Engineering

Data Preprocessing

Feature Filtering

Model introduction

Evaluation Results and Analysis

Conclusion

■ Normalization: trip-duration -> log(trip-duration)

Figure 4: Trip-duration

Project Description

Data Description

Feature Engineering

Data Preprocessing

Feature Filtering

Model introduction

Evaluation Results and Analysis

Conclusion

The final data result after deleting invalid data

Table 5: Dataset description

	vendor_id	passenger_count	store_and_fwd_flag	day_of_week	hour_of_the_day	month	distance
0	2	1	0	1	17	3	1.498521
1	1	1	0	7	0	6	1.805507
2	2	1	0	2	11	1	6.385098
3	2	1	0	3	19	4	1.485498
4	2	1	0	6	13	3	1.188588

Project Description

Data Description

Feature Engineering

Data Preprocessing

Feature Filtering

Model introduction

Evaluation Results and Analysis

Conclusion

Feature relationship heatmap

Figure 5: Feature relationship diagram

Project Description

Data Description

Feature Engineering

Data Preprocessing

Feature Filtering

Model introduction

Evaluation Results and Analysis

Conclusion

Visual analysis of important features

Figure 6: Feature analysis

Project Description

Data Description

Feature Engineering

Data Preprocessing

Feature Filtering

Model introduction

Evaluation Results and Analysis

Conclusion

Visual analysis of important features

(b) month

Figure 7: Feature analysis

Data Description

Feature Engineering

Model introduction

Model introduction

Evaluation Results and Analysis

Conclusion

Model introduction

Model introduction

Project Description

Data Description

Feature Engineering

Model introduction

Model introduction

Evaluation Results and Analysis

- Five models were selected in this experiment: LGBMRegressor, LinearRegression, DecisionTreeRegressor.
- The division ratio of training set and test set is set to 0.3.

Data Description

Feature Engineering

Model introduction

Evaluation Results and Analysis

Experimental result

Conclusion

Evaluation Results and Analysis

Experimental result

Project Description

Data Description

Feature Engineering

Model introduction

Evaluation Results and Analysis

Experimental result

$$MSE = \frac{1}{m} \sum_{i=1}^{m} (f(x_i) - y_i)^2$$

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - f(x_i)|$$

■
$$MSE = \frac{1}{m} \sum_{i=1}^{m} (f(x_i) - y_i)^2$$

■ $MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - f(x_i)|$
■ $RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - f(x_i))^2}$

Experimental result

Project Description

Data Description

Feature Engineering

Model introduction

Evaluation Results and Analysis

Experimental result

Table 6: The experiment result on synthetic dataset

Model	LGBMRegressor	LinearRegression	DecisionTreeRegressor
R2_score	0.66	0.35	0.3
MSE	0.22	0.42	0.45
MAE	0.32	0.46	0.46
RMSE	0.47	0.65	0.67

Data Description

Feature Engineering

Model introduction

Evaluation Results and Analysis

Conclusion

Conclusion

Conclusion

Project Description

Data Description

Feature Engineering

Model introduction

Evaluation Results and Analysis

Conclusion

- The competition dataset is based on the 2016 NYC Yellow Cab trip record data made available in Big Query on Google Cloud Platform. The real data set is helpful to verify the authenticity and reliability of the test results;
- In this project, the effects of 3 baseline models on 4 evaluation indexes are compared. Finally, it is found that the prediction effect of LGBMRegressor model is the best as a whole;
- By analyzing this data set, we can not only predict the travel time of passengers, but also mine more detailed information about urban travel behavior. For example, you can analyze which areas in which periods of time are more prone to orders, and where people generally go from. This is an effective data for rental scheduling. It can be inferred from the abnormal value brought by the blizzard that the weather is closely related to the order quantity. According to the weather data corresponding to the date, the impact of the weather and the order quantity can be further analyzed. Combined with the location data, it can also analyze which areas are greatly affected by the weather, etc.

Questions?

Project Description

Data Description

Feature Engineering

Model introduction

Evaluation Results and Analysis

Conclusion

Contact Information

Qin Zhang
School of Artificial Intelligence
Chongqing Technology and Business University, China

TEAM FOR UNIVERSAL LEARNING AND INTELLIGENT PROCESSING