

AEROSPACE ENGINEER

Milan · Italy

□ (+39) 3426310876 | Mantonio.pucc@gmail.com | Mantoniopucciarelli.github.io | Dantoniopucciarelli

Summary_

Five years ago, I moved from Salerno to Milano with the intent of building my career in the aerospace field. I started the MSc pointing to have a good comprehension of internal and external flows, so I decided to create a personalized learning track based on CFD, turbomachinery design and flows modeling. Over the next few years, I intend to develop as aerospace engineer in the field of turbulence modeling and turbomachinery analysis, modeling and optimization. I am also interested in external aerodynamics, its modeling and the study of aeroelastic effects. Currently I am working at my master thesis based on machine learning adapted to turbomachinery at von Karman Institute for fluid dynamics. This project is allowing me to study a very important subject in the turbomachinery field and it is shaping me for the work/research abroad.

Education

von Karman Institute for Fluid Dynamics

SHORT TRAINING PROGRAM · TURBOMACHINERY & MACHINE LEARNING

Politecnico di Milano

MASTER DEGREE IN AERONAUTICAL ENGINEERING · AERODYNAMICS & PROPULSION TRACK

2021 - present

Bacherlor Degree in Aerospace Engineering

2017 - 2020

Projects

Machine Learning for Turbomachinery · Master Thesis

SHORT TRAINING PROGRAM · VON KARMAN INSTITUTE FOR FLUID DYNAMICS

- von Karman Institute in-house program (developed from scratch)

- 2D/3D airfoil database generation
- Machine learning adapted to the database
- GUI generation for the application

Aerospace Control Systems

https://github.com/antoniopucciarelli/controlPRJ

CONTROL DYNAMICS

- System dynamics study
- Stability analysis
- System uncertainties analysis
- Controllers design

Liquid Rocket Engine: Design, Analysis and Simulation

https://antoniopucciarelli.github.io/assets/pdf/spacePropulsionPRJ.pdf

Spacecraft Propulsion

- Tanks, combustion chamber and nozzle design

Unsteady firing simulation with NASA CEA wrapping
 Monte Carlo analysis of the thrust with respect to the uncertainties related to the manufacturing process

Solid Rocket Motor: Firing Test Data Analysis and Simulation

https://github.com/antoniopucciarelli/spacePropulsionFlipped

SPACECRAFT PROPULSION

- Vieille's law computation from firing test pressure traces
- Ballistic simulation of a solid rocket engine with different nozzles
- Monte Carlo analysis of the firing time with respect to the uncertainties on the Vieille's law

Axial Compressor Preliminary Design

https://github.com/antoniopucciarelli/turboLIB

Turbomachinery

- Mean line design
- Pressure losses modeling
- Non isentropic radial equilibrium study
- 3D blade shape design
- Python library turboLIB

Brussels, Belgium

Brussels, Belgium

2022 - 2023

Milano, Italy

Oct 2022 - Nov 2022

Feb 2023 - Mar 2023

Milano, Italy

May 2022 - Jun 2022

Milano, Italy

May 2022 - May 2022

Salerno, Italy

Salerrio, really

Apr 2022 - May 2022

Salerno, Italy

Mar 2022 - May 2022

Combustion Chamber Modeling

https://github.com/antoniopucciarelli/CFDprj

CFD · FLUID DYNAMICS & COMBUSTION MODELING

Oct 2021 - Jan 2022

Milano, Italy

- 2D & 3D analysis of an hydrocarbon combustion in a combustion chamber using the finite volume method
 - Unsteady compressible reactive simulation in OpenFOAM
 - Finite volume method analysis of the problem: topology, solution procedure and solvers
 - Spray modeling in a finite volume method code
 - Wall surface analysis in a finite volume method code
 - Turbulence modeling

EnelX Value Proposition: Sketch, Analysis and Validation

https://antoniopucciarelli.github.io/assets/pdf/HTSprj.pdf

Sep 2021 - Jan 2022

Milano, Italy

Milano, Italy

Milano, Italy

HIGH-TECH STARTUP

- Value proposition generation

- Validation of the value proposition and business model

Injector Study and Liquid Jet Break Up in Liquid Rocket Engines

https://antoniopucciarelli.github.io/assets/pdf/LRE.pdf

May 2021 - Jun 2021

COMBUSTION

- Liquid rocket engine analysis

- Liquid jet break-up qualitative analysis and implication in the combustion chamber

Weissinger Method: Study, Analysis and Coding

https://github.com/antoniopucciarelli/aeroWEISS

AERODYNAMICS Dec 2020 - Jan 2021

- Incompressible study of the flow over 3D wings using a horseshoe vortex based method
- Analysis of the 3D drag on a wing for a potential flow
- Ground effect study
- Matlab program aeroWEISS

Hess-Smith Method: Study, Analysis and Coding

https://github.com/antoniopucciarelli/aeroHS

Milano, Italy

Jun 2020 - Jan 2021

AERODYNAMICS

- Potential flow study using the Hess-Smith model based on vortex/sources/sinks distribution over an airfoil
- Analysis of the interaction between two airfoils in tandem
- Ground effect analysis
- Fortran program aeroHS

Satellite Orbital Transfer Analysis

https://antoniopucciarelli.github.io/assets/pdf/IAMSprj.pdf

May 2020 - Jun 2020

Milano, Italy

ORBITAL DYNAMICS

- Study and generation of three orbital transfers for a satellite
- Comparison the three sketched orbital maneuver

Canard Wing: Modeling and Analysis

Milano, Italy May 2020 - Jun 2020

STRUCTURAL DYNAMICS

- Canard wing mesh generation and load application in FEMAP
- Results computation using NASTRAN
- Static analysis under loading
- Free modes analysis

RL10-A33A: Modeling, Study and Analysis

https://antoniopucciarelli.github.io/assets/pdf/RL10.pdf

Milano, Italy

https://github.com/antoniopucciarelli/NHE

AEROSPACE PROPULSION

Nov 2019 - Jun 2020

- Analysis and reverse engineering design of the Pratt & Whitney liquid rocket engine
- 1D heat exchange simulation of the nozzle in Matlab NHE

Skills_

Programming Python, Fortran, C/C++, Matlab, ET_EX, CMake, GNUplot, Solidity

Programs OpenFOAM, NASTRAN, openscad, xFOIL, NASA CEA, xflr5, Femap, SolidWorks, SolidEdge, Inventor

Marks____

Master degree • Aeronautical engineering	120 CFU	27.55 / 30
• Aerodynamics	10 CFU	27/30
Aerospace control systems	6 CFU	30 / 30
• Aerospace structures	10 CFU	27 / 30
• Aircraft engines	6 CFU	-/30
• Airplane performace and dynamics	10 CFU	-/30
• Combustion in thermochemical propulsion	8 CFU	28 / 30
Computational techniques for thermochemical propulsion	8 CFU	30 / 30
• High-tech startups: creating and scaling up I	6 CFU	26 / 30
Numerical modeling of differential problems	6 CFU	30L / 30
∘ Turbomachinery B	8 CFU	28 / 30
• Turbulence: physics and modeling	8 CFU	26/30
∘ Structural dynamics and aeroelasticity	10 CFU	25 / 30
∘ Space propulsion B	6 CFU	-/30
Bachelor degree • Aerospace engineering	180 CFU	27.54 / 30
∘ Analisi e geometria 1	10 CFU	27 / 30
∘ Analisi e geometria 2	10 CFU	29 / 30
∘ Calcolo numerico ed elementi di analisi	10 CFU	27 / 30
o Dinamica di sistemi aerospaziali	8 CFU	27 / 30
∘ Elettrotecnica e elettronica applicata	10 CFU	27 / 30
∘ Fisica tecnica	10 CFU	27 / 30
∘ Fluidodinamica	10 CFU	21/30
∘ Fondamenti di automatica	8 CFU	28 / 30
∘ Fondamenti di chimica	7 CFU	24 / 30
∘ Fondamenti di fisica sperimentale	12 CFU	27 / 30
∘ Fondamenti di meccanica del volo atmosferico	5 CFU	28 / 30
∘ Fondamenti di meccanica strutturale	10 CFU	26 / 30
• Fondamenti di sperimentazione aerospaziale	6 CFU	20/30
∘ Impianti e sistemi aerospaziali	8 CFU	25 / 30
∘ Informatica	6 CFU	25 / 30
o Introduzione all'analisi di missioni aerospaziali	2 CFU	30 / 30
∘ Istituzioni di ingegneria aerospaziale	8 CFU	26 / 30
∘ Meccanica aerospaziale	10 CFU	27 / 30
∘ Metodi di rappresentazione tecnica	7 CFU	29 / 30
∘ Modellazione di strutture aerospaziali	6 CFU	22 / 30
∘ Propulsione aerospaziale	7 CFU	23 / 30
o Tecnologie e materiali aerospaziali	7 CFU	24 / 30
 Prova finale di analisi di missioni aerospaziali 	1 CFU	30 / 30
 Prova finale di propulsione aerospaziale 	1 CFU	30L / 30
 Prova finale di tecnologie e material aerospaziali 	1 CFU	24 / 30

3