1º Encontro de Data Science & Big Data · UFPR 28 de Junho de 2019 Centro Politécnico · UFPR · Curitiba/PR desbd.leg.ufpr.br

Nostradamus: plataforma de aprendizado de máquina como um serviço para tratamente, análise, visualização e previsão de sér ies temporais providas pelo usuário

Jayme T. Anchante¹, André R. A. Grégio²,

¹Aluno do programa de Especialização em Data Science & Big Data, *jayme.anchante@disroot.org*;

²Professor do Departamento de Informática - DINF/UFPR, gregio@ufpr.br;

Resumo

O presente trabalho apresenta uma proposta de sistema automatizado de previsão de séries temporais chamado Nostradamus. Inicia-se o trabalho apresentando os principais conceitos de séries temporais, suas principais características e formas de tratamento. Em seguida, expôs-se o que se chamou de abordagem da estatística inferencial e de abordagem da estatística preditiva e as formas de tratamento e previsão de séries temporais de cada uma. Posteriormente, propôs-se o sistema automatizado Nostradamus, discutindo a forma de otimização e as etapas que o sistema percorre para alcançar a previsão final. No benchmark em sete bases de dados de séries temporais, o sistema Nostradamus alcançou o melhor resultado em cinco delas.

Palavras chaves: aprendizado de máquina, automl, séries temporais.

Introdução

- ▶ Série temporal são dados pontuais ordenados temporalmente. Apesar do tempo ser contínuo, normalmente uma série temporal envolve dados discretos, tomados em sequência de períodos igualmente espaçados e sucessivos de tempo. Além da análise de séries temporais, ou seja, métodos para extrair estatísticas úteis e outras características dos dados, outro tema bastante relevante e objeto de estudos do presente trabalho é a predição de séries temporais, processo que envolve o uso de modelos que predigam valores futuros com base em valores passados observados.
- ▶ O objetivo do trabalho é a criação de um sistema automatizado de previsão de séries temporais que abstrai completamente questões técnicas como processamento dos dados, engenharia de características, modelagem, validação do resultado e realizar uma previsão que extrapole o período de amostra inicial.

Material e Métodos

▶ O sistema Nostradamus pode ser definido numa função objetivo tal que

$$\min \quad MAE = f(FE(p), Algo(HP))$$
 tal que
$$p <= n/20$$

$$Algo(HP) \rightarrow Data$$
 (1)

o objetivo é minimizar o erro absoluto médio (MAE em inglês) das previsões de acordo com uma função de FE que é a engenharia de características e de um Algo ou algoritmo que tem HP ou hiperparâmetros. A primeira restrição significa que a ordem p da engenharia de características não deve exceder a vigésima parte do número de dados da série temporal. A segunda restrição afirma que os hiperparâmetros deve estar de acordo com a distribuição dos dados.

- \blacktriangleright Como engenharia de características, é feita uma transformação da série temporal em um processo autorregressivo AR(p), em que p ou ordem máxima de defasagens da variável alvo utilizada
- ▶ Os algoritmos preditivos implementados pela plataforma são: regressão linear, *elasticnet* (uma regressão linear com regularização L1 e L2), florestas aleatórias, *k* vizinhos próximos, rede neural profunda, implementados pela biblioteca *scikit-learn*; um algoritmo de impulso de gradiente extremo baseado em árvore de decisão com *boosting* chamado de XGBoost.
- \blacktriangleright A forma de minimização é feita por meio de um processo iterativo em que a cada etapa um valor de p é escolhido para a engenharia de características, assim como um dos algoritmos mencionados anteriormente com uma configuração de hiperparâmetros amostrados de forma que faça sentido com os dados obedecendo a segunda restrição.
- ▶ Um algoritmo de busca Bayesiana é responsável pela otimização da função objetivo. Ele funciona da seguinte maneira: inicialmente são feita x iterações amostradas de forma totalmente aleatória para que o sistema gere dados, as amostragens de parâmetros são as características que serão inputadas e o erro absoluto médio é o alvo do algoritmo Bayesiano, assim após x iterações, o algoritmo começará a testar espaços amostrais mais promissores de forma mais consistente, mas mantendo a busca aleatória a cada y iterações para que o sistema não caia em um mínimo local.

Resultados e discussões

- ► As séries temporais utilizadas como *benchmark* são: *sunspots*, número de manchas solares por ano entre 1700 e 2008; *airpassengers*, número mensal de passageiros de vôos de avião; *austres*, dados residenciais trimestrais; *heartrate*, frequência cardíaca; *lynx*, número de linces capturados por ano no Canadá entre 1821 e 1934; *wineind*, vendas de vinho da indústria australiana; e *woolynrnq*, produção trimestral de lã na Austrália.
- ► Foram separados os dez por cento dos pontos mais recentes de cada conjunto de dados como base de teste e cada algoritmo recebeu os noventa por cento de dados restantes para treinamento.

Tabela 1: Erro absoluto médio nos 10% de cada série temporal utilizados para validação para a previsão de cada um dos três sistemas, Nostradamus, ARIMA e Prophet

Base	Nostradamus	ARIMA	Prophet
sunspots	18.93	44.41	45.50
airpassengers	88.74	39.35	57.93
austres	41.74	56.43	115.42
heartrate	1.64	2.01	2.16
lynx	198.49	652.95	967.96
wineind	5939.42	3817.89	3762.36
woolnrq	426.8	427.38	592.50

No gráfico abaixo podemos ver a forma como cada sistema fez as previsões. A série temporal analisada é sunspots. Enquanto o sistema Nostradamus tenta verdadeiramente ajustar o padrão das séries, os modelos ARIMA e Prophet optam por previsões mais "conservadoras"em torno da média dos dados. O sistema Nostradamus obtém uma performance melhor que os demais sistemas, pois possui um erro absoluto médio menor que os modelos ARIMA e Prophet.

Figura 1: Previsão de cada sistema na base sunspots nos 10% da base reservados para teste

Conclusões

Algumas conclusões preliminares alcançadas pelo trabalho são:

- ▶ É possível criar um sistema automatizado de previsão de séries temporais
- ► O sistema Nostradamus demonstrou razoável poder preditivo frente aos demais algoritmos, alcançando a melhor performance em 5 das 7 séries temporais diversas utilizadas para *benchmark*

Principais Referências

GUJARATI, D. N.; PORTER, D. *Basic Econometrics*. 5^a ed. Nova lorque: Mc Graw-Hill/Irwin, 2009. PEDREGOSA, F. et al. Scikit-learn: Machine Learning in Python. *Journal of Machine Learning Research*, v. 12, p. 2825-2830, 2011.

CHEN, T.; GUESTRIN, C. XGBoost: A Scalable Tree Boosting System. In: *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*. São Francisco, CA, USA: ACM, 13-17 Agosto de 2016. p. 785–794. arXiv:1603.02754.