Aula 3: Classificação de Gramáticas

Prof. Lucio A. Rocha

Engenharia de Computação Universidade Tecnológica Federal do Paraná, UTFPR Campus Apucarana, Brasil

 2^{o} semestre / 2023

Sumário

- Classificação de Gramáticas
- 2 Expressões Regulares
- Aplicações de Linguagens

Seção 1

- Gramáticas podem ter produções com diferentes graus de complexidade em seu formato:
 - Quantos símbolos no lado esquerdo?
 - Como os símbolos que aparecem no lado esquerdo podem aparecer no lado direito (recursividade)?
- Quanto menor for a restrição no formato das produções, maior o poder de expressão da gramática
 - Podem representar gramáticas mais complexas
 - Mais complexo o método de reconhecimento de sentencas

Classificação de Gramáticas / Reconhecimento de sentenças:

Figura: Classificação de Gramáticas / Reconhecimento de Sentenças.

Tipo	Gramática	Regras de Produção
Tipo 0	Recursivamente enumerável	$\alpha \to \beta$
Tipo 1	Sensível ao Contexto	$\alpha \to \beta$, $ \alpha \le \beta $
Tipo 2	Livre de Contexto	$\alpha \to \beta$, $ \alpha = 1$
Tipo 3	Regular	A o A eta ou $A o eta A$

- Tipo 0: Gramática Recursivamente Enumerável
 - Inclui todas as formas de gramáticas.
 - Sentenças reconhecidas por Máquina de Turing.
 - Muito genéricas para descrever linguagens de programação.
 - Pelo menos uma das gramáticas pode ter a forma:

$$\alpha \to \beta$$
, $|\alpha| \ge |\beta|$

- Uma derivação pode reduzir a quantidade de símbolos na forma sentencial.
- α contém símbolos não-terminais e β contém símbolos não-terminais e terminais.

- Tipo 0: Gramática Recursivamente Enumerável
 - Ex.:
 - $AB \rightarrow Ab$
 - $AB \rightarrow CB$
 - *CB* → *A* (reduz a quantidade de símbolos da produção anterior)
 - $S \rightarrow b$
 - a → AB (Não)
 - a → aB (Não)

- Tipo 1: Gramática Sensível ao Contexto
 - As produções $\alpha \to \beta$ devem obedecer à restrição:

$$|\alpha| \le |\beta|$$

- Nenhuma derivação pode reduzir a quantidade de símbolos da forma sentencial. (Exceto para gerar a palavra vazia $S \to \varepsilon$)
- Sentenças reconhecidas por Autômato Linear Limitado.

- Tipo 1: Gramática Sensível ao Contexto
 - Ex.: $\alpha \rightarrow \beta$
 - $Aa \rightarrow aA$
 - \bullet $X \rightarrow XaA$
 - $aAb \rightarrow bb$ (Não, pois $|\alpha| \leq |\beta|$)

- Tipo 2: Gramática Livre de Contexto
 - As produções $\alpha \to \beta$ devem obedecer à restrição:

$$|\alpha| = 1$$

- O lado esquerdo da produção tem um único símbolo não-terminal.
- Poder de expressão suficiente para tratar os principais comandos de linguagens de programação.
- Pode ter auto-incorporação de símbolos não-terminais.
- Reconhecidas por um Autômato de Pilha Não-Determinístico.

- Tipo 2: Gramática Livre de Contexto
 - Ex.: $\alpha \rightarrow \beta$, $|\alpha| = 1$
 - $A \rightarrow BCD$
 - B → aBC (auto-incorporação)
 - a → AbC (Não)

- Tipo 3: Gramática Regular
 - Apenas um símbolo no lado esquerdo da produção.
 - Se a produção é recursiva, não contém auto-incorporação (i.e., a recursão aparece no início ou no fim da produção).
 - As produção recursivas devem ser:

$$A \rightarrow A\beta$$
 ou $A \rightarrow \beta A$

- ...Tipo 3: Gramática Regular
 - Reconhecidas por um Autômato Finito.
 - Utilizadas para definir <u>padrões de busca</u> em linguagens de programação.
 - Pode ser classificada em:
 - Linear à Direita: repetição de símbolos não-terminais do lado direito da produção:

$$S \rightarrow aS|a$$

 Linear à Esquerda: repetição de símbolos não-terminais do lado esquerdo da produção:

$$S \rightarrow Sa|a$$

- ...Tipo 3: Gramática Regular
 - Exemplo:
 - $S \rightarrow aS \mid a$
 - $S \rightarrow Sa \mid b$
 - \circ $S \rightarrow A$
 - $A \rightarrow ba$
 - A → bAa (Não)

- ...Tipo 3: Gramática Regular
 - Exemplo:
 - $N \rightarrow aR$
 - ullet R o aR
 - $R \rightarrow bR$
 - $\bullet \ R \to \varepsilon$

Seção 2

- Formalismo Denotacional.
- Uma Expressão Regular (ER) é definida pelas seguintes regras:
 - A string vazia ε é uma ER.
 - Dado um alfabeto A, então um elemento de A é uma ER em A.
 - Se P é uma ER em A, então a repetição de 0 ou mais símbolos de A, denotado P*, também é uma ER em A.
 - Se P e Q são ER em A, então a sequência de P e Q, denotada PQ, também é uma ER em A.
 - Se $P \in Q$ são ER em A, então a alternativa entre $P \in Q$, denotada P|Q, também é uma ER em A.

- Exemplos:
 - Para o alfabeto $A = \{a, b\}$, são ER:

ER	Palavras	
aa*	а, аа, ааааааа	
(aa)*	arepsilon, aa, aaaaa, aaaaaa	
a(a b)*b	ab,aab,abb,aabb,abab	
(ba) (a*b)	ba, b, aaaab	

- Relação entre ER e Gramáticas Regulares:
 - Concatenação: mesma representação, ou seja, um símbolo após o outro.
 - Alternativa: na gramática indica produções alternativas para um mesmo símbolo não-terminal.
 - Repetição: na gramática indica uma produção recursiva. Se a expressão tem zero ocorrências do padrão, então a regra que leva ao fim da recursão leva à string vazia.

- Exemplos:
 - aa* equivale a uma gramática com produções P:
 - $S \rightarrow aA$
 - A o aA
 - $A \rightarrow \varepsilon$
 - - S o aS
 - $S \rightarrow a$
 - a(a|b)*b equivale a uma gramática com produções P:
 - $S \rightarrow aAb$
 - $A \rightarrow aA$
 - $A \rightarrow Ab$
 - $A \rightarrow \varepsilon$

Seção 3

Aplicações de Linguagens

Aplicações de Linguagens

- Tipo 0 (Recursivamente enumerável): linguagem que possui a gramática mais genérica, sem restrições quanto ao tipo de produções.
- Tipo 1 (Sensível ao Contexto): Linguagens reconhecidas por Máquina de Turing não-determinística linearmente limitada (ou autômato linearmente limitado). Toda linguagem formal que pode ser decidida por esta máquina é sensível ao contexto.
- Tipo 2 (Livre de Contexto): Análise Sintática. Reconhecimento de palavras com autômato de pilha.
- Tipo 3 (Regular): Análise Léxica. Reconhecimento de palavras com autômato finito.