Modelling the Ridership data of Amtrak transportation Company- A Time Series Analysis

M.Sc Statistics (2019 - 2021) Department of Statistics, Kalyani University

NAME	REG. No.	Roll No.
Prateeti De	100647 of 2019-20	96/STA No. 190026
Sattwik Roy	100648 of 2019-20	96/STA No. 190036
Ayan Pal	100652 of 2019-20	96/STA No.190013

Supervised by Aniruddha Chatterjee & Daipayan Sinha Roy

INDEX

SI. No.	Contents	Page No.
1.	INTRODUCTION	4
2.	DATA DESCRIPTION	4-6
3.	OBJECTIVES	6
4.	ANALYSIS	7-13
4.1	PLOTS	7-8
4.2	TEST OF RANDOMNESS	9
4.3	TEST OF EXISTENCE OF TREND	9-10
4.4	ELIMINATION AND ESTIMATION OF TREND	10-11
4.5	TEST OF SEASONALITY	11-12
4.6	ELIMINATION AND ESTIMATION OF SEASONALITY	12-13
5.	FORECASTING MODELS	13-16
5.1.	SARIMA	13-15
5.2.	SARIMAX	15-16
6.	IDENTIFYING THE BEST MODEL	17
7.	FORECASTING	17-20
7.1	COMPARISON WITH TEST DATA	18-19
7.2	FORECASTED DATASET	20
8.	REFERENCES	20

ACKNOWLEDGEMENT:

A project is a golden opportunity for learning. We consider ourselves very lucky & honoured to be given a chance to carry out a project. We are highly indebted to Aniruddha Chatterjee(CU) and Daipayan Sinha Roy (KU), for helping us in every possible way & providing all the necessary information regarding the project. Our thanks and appreciations also go to our classmates in developing the project & to the people who have willingly helped us out with their abilities .

1. INTRODUCTION:

A Time Series data is a series of data points collected, observed or recorded in successive intervals or points of time where the values of the variable are observed chronologically over days, weeks, months, quarters or years. For Example,

- a. Population of a country over successive censuses
- b. Temperature of a place noted at different days of a week
- c. Number of passengers ride a train over last five years

Time Series are used in various fields such as, mathematical finance, manufacturing, event data, IoT data and generally in any domain of applied science and engineering which involves temporal measurements. This type of data generally has some deterministic components such as Trend component, Seasonal component, Cyclical component and a stochastic component consisting of random disturbances.

Time Series DBMS (database management system) are the fastest growing segment in the database industry and can testify to the growing need for Time Series forecasting in the industry.

In this project, our domain of interest is in **Analysing and Forecasting the Time Series**Data.

Time Series Analysis is a statistical technique that deals with Time Series data or Trend analysis. It is used to examine how the changes associated with the chosen data point compare to shifts in other variables over the same time period.

On the other hand, **Time Series Forecasting** uses information regarding historical values and associated patterns to predict future activity. Most often, this relates to Trend analysis, Cyclical fluctuation analysis and issues of Seasonality. To carry out the Analysis and Forecasting on the Time Series **R statistical software packages** are used.

2. DATA DESCRIPTION:

This project considers a secondary dataset abstracted from the **Amtrak Railway Transport Company,** which provides intercity passenger railway service in the contiguous United States and to nine Canadian cities. The following data represents Monthly Amtrak Train Ridership over the Canadian cities . There are a total of **159 data points** from **January 1991 to April 2003**. The columns involved in this dataset are as follows -

Table 1 : Table describing the columns in the dataset

Months	Represents month with the corresponding years			
Ridership	Number of Riders travelled			
t	Time period			
Seasons Shows only names of the months.				

To carry out Time Series analysis, we are considering the t is quite intuitive to split the data into training and test portions, so that the model created can be trained on first and then tested with the testing data. Training a single model is quite straightforward. We split it into 2 dataset -

- Training set for model fitting
- Testing data for estimation of model accuracy and forecasting.

Here, 80% of the data is taken as the training set and remaining data 20% is taken as test data. Hence, we now perform the entire analysis on the 127 time points. viz. from January 1991 to June 2001 and keep the rest of the data model accuracy and prediction purpose.

Table 2 : A Monthly Amtrak train Ridership Data

Month	Ridership	t	Season	Month	Ridership	t	Season	Month	Ridership	t	Season
01-01-1991	1709	1	Jan	01-03-1993	1837	27	Mar	01-05-1995	1772	53	May
01-02-1991	1621	2	Feb	01-04-1993	1957	28	Apr	01-06-1995	1761	54	Jun
01-03-1991	1973	3	Mar	01-05-1993	1917	29	May	01-07-1995	1792	55	Jul
01-04-1991	1812	4	Apr	01-06-1993	1882	30	Jun	01-08-1995	1875	56	Aug
01-05-1991	1975	5	May	01-07-1993	1933	31	Jul	01-09-1995	1571	57	Sep
01-06-1991	1862	6	Jun	01-08-1993	1996	32	Aug	01-10-1995	1647	58	Oct
01-07-1991	1940	7	Jul	01-09-1993	1673	33	Sep	01-11-1995	1673	59	Nov
01-08-1991	2013	8	Aug	01-10-1993	1753	34	Oct	01-12-1995	1657	60	Dec
01-09-1991	1596	9	Sep	01-11-1993	1720	35	Nov	01-01-1996	1382	61	Jan
01-10-1991	1725	10	Oct	01-12-1993	1734	36	Dec	01-02-1996	1361	62	Feb
01-11-1991	1676	11	Nov	01-01-1994	1563	37	Jan	01-03-1996	1559	63	Mar
01-12-1991	1814	12	Dec	01-02-1994	1574	38	Feb	01-04-1996	1608	64	Apr
01-01-1992	1615	13	Jan	01-03-1994	1903	39	Mar	01-05-1996	1697	65	May
01-02-1992	1557	14	Feb	01-04-1994	1834	40	Apr	01-06-1996	1693	66	Jun
01-03-1992	1891	15	Mar	01-05-1994	1831	41	May	01-07-1996	1836	67	Jul
01-04-1992	1956	16	Apr	01-06-1994	1776	42	Jun	01-08-1996	1943	68	Aug
01-05-1992	1885	17	May	01-07-1994	1868	43	Jul	01-09-1996	1551	69	Sep
01-06-1992	1623	18	Jun	01-08-1994	1907	44	Aug	01-10-1996	1687	70	Oct
01-07-1992	1903	19	Jul	01-09-1994	1686	45	Sep	01-11-1996	1576	71	Nov
01-08-1992	1997	20	Aug	01-10-1994	1779	46	Oct	01-12-1996	1700	72	Dec
01-09-1992	1704	21	Sep	01-11-1994	1776	47	Nov	01-01-1997	1397	73	Jan
01-10-1992	1810	22	Oct	01-12-1994	1783	48	Dec	01-02-1997	1372	74	Feb
01-11-1992	1862	23	Nov	01-01-1995	1548	49	Jan	01-03-1997	1708	75	Mar
01-12-1992	1875	24	Dec	01-02-1995	1497	50	Feb	01-04-1997	1655	76	Apr
01-01-1993	1705	25	Jan	01-03-1995	1798	51	Mar	01-05-1997	1763	77	May
01-02-1993	1619	26	Feb	01-04-1995	1733	52	Apr	01-06-1997	1776	78	Jun

Month	Ridership	t	Season	Month	Ridership	t	Season	Month
Jul	01-10-1999	1804	106	Oct	01-01-2002	1760	133	Jan
Aug	01-11-1999	1850	107	Nov	01-02-2002	1771	134	Feb
Sep	01-12-1999	1836	108	Dec	01-03-2002	2020	135	Mar
Oct	01-01-2000	1542	109	Jan	01-04-2002	2048	136	Apr
Nov	01-02-2000	1617	110	Feb	01-05-2002	2069	137	May
Dec	01-03-2000	1920	111	Mar	01-06-2002	1994	138	Jun
Jan	01-04-2000	1971	112	Apr	01-07-2002	2075	139	Jul
Feb	01-05-2000	1992	113	May	01-08-2002	2027	140	Aug
Mar	01-06-2000	2010	114	Jun	01-09-2002	1734	141	Sep
Apr	01-07-2000	2054	115	Jul	01-10-2002	1917	142	Oct
May	01-08-2000	2097	116	Aug	01-11-2002	1858	143	Nov
Jun	01-09-2000	1824	117	Sep	01-12-2002	1996	144	Dec
Jul	01-10-2000	1977	118	Oct	01-01-2003	1778	145	Jan
Aug	01-11-2000	1981	119	Nov	01-02-2003	1749	146	Feb
Sep	01-12-2000	2000	120	Dec	01-03-2003	2066	147	Mar
Oct	01-01-2001	1683	121	Jan	01-04-2003	2099	148	Apr
Nov	01-02-2001	1663	122	Feb	01-05-2003	2105	149	May
Dec	01-03-2001	2008	123	Mar	01-06-2003	2130	150	Jun
Jan	01-04-2001	2024	124	Apr	01-07-2003	2223	151	Jul
Feb	01-05-2001	2047	125	May	01-08-2003	2174	152	Aug
Mar	01-06-2001	2073	126	Jun	01-09-2003	1931	153	Sep
Apr	01-07-2001	2127	127	Jul	01-10-2003	2121	154	Oct
May	01-08-2001	2203	128	Aug	01-11-2003	2076	155	Nov
Jun	01-09-2001	1708	129	Sep	01-12-2003	2141	156	Dec
Jul	01-10-2001	1951	130	Oct	01-01-2004	1832	157	Jan
Aug	01-11-2001	1974	131	Nov	01-02-2004	1838	158	Feb
Sep	01-12-2001	1985	132	Dec	01-03-2004	2132	159	Mar

Link of the dataset : Amtrak Raw Dataset

3. OBJECTIVES:

The main objective of this project is to build a time series model that can depict the deterministic components and then using that model we need to *forecast for the next 12 months of the ridership*.

Route Map:

4. ANALYSIS:

"In our view, the first step in any time series investigation always involves careful scrutiny of the recorded data plotted over time. This scrutiny often suggests the method of analysis as well as statistics that will be of use in summarizing the information in the data."

--- Shumay and Stoffer

This part extracts meaningful statistics and other characteristics of the dataset in order to understand it. Time Series analysis can help to make better predictions, but this is not necessarily the main goal of the analysis. In practice a suitable model is fitted to a given Time Series and the corresponding parameters are estimated using the known data values. The Time Series analysis process comprises methods that attempt to understand the nature of the series and is often useful for future forecasting and simulation. This field of study seeks the "why" behind a Time Series dataset.

4.1 PLOTS:

Comment: The Scatter Plot of the data is showing a **slightly upward trend**. To study such characteristics of the data with more details, we will carry out the following Analysis.

Graph 2:

fig 2

Comment: To further analyze trends in the data, we can decompose the data into seasonal, and trend components. **Decomposition** is the foundation for building the ARIMA model by providing insight towards the changes in the number of riders.

- The observed data section is a reproduction of the data to understand the comparison.
- The trend component describes the overall pattern of the series over the entire range
 of time, taking into account increases and decreases in riderships. From the plot above,
 the trend is overall increasing.
- The seasonal component describes the fluctuations in the number of Riders based on the calendar From the plot above, the peak in the number of Riders occurs every year at Q4 (July and August) and the trough in the number of Riders occurs every year at Q2 (January and February), with clear oscillating functions in between.
- The **random section** describes the trends that cannot be explained by trend or seasonal components. Statistically, Random error is particularly important for this project because a statistical model can only be fit if the residuals are independent and independently distributed.

4.2 TEST OF RANDOMNESS:

Now we check if our data is purely random or some deterministic part is present in it. For this purpose, we here perform the **Turning Point Test**.

The **Turning Point Test** helps us to understand whether a set of random variables are **independently and identically distributed or not**.

Suppose we have 'n' number of Time Series data points, then consider three consecutive numbers among these 'n' points. If the middle one is or less than the other two points, then we can say that it is a **Turning Point**, i.e. y_i is defined to be a Turning Point if

$$\label{eq:y_i} y_{_{i}} \, > \, y_{_{i-1}} \, \text{and} \, y_{_{i}} \, > \, y_{_{i+1}} \, \text{or} \, y_{_{i}} \, < \, y_{_{i-1}} \, \text{and} \, y_{_{i}} \, < \, y_{_{i+1}}.$$

On the other hand, if in a set of observations every observation is little greater than the next, then it would fail to have any Turning Points.

Here our Null Hypothesis and Alternative Hypothesis are:

$$H_0$$
: The data is purely random against H_1 : Not H_0

Here the appropriate Test Statistic for testing H_0 is given by,

$$Z = \frac{(U - E(U))}{SD(U)}$$
 follows N(0,1) under H_0

where U is the total number of Turning Points with $E(U) = \frac{(2n-4)}{3}$ and $V(U) = \frac{(16n-29)}{90}$.

Critical Region : In case of two-tailed test, we will reject the null hypothesis H_0 iff $|Z|>Z_{\frac{\alpha}{2}}$, at level of significance α .

Findings from dataset:

We see our observed |Z|=2.61>1.96, which is the tabulated Standard Normal value at $\alpha=0.05$. Hence we reject H_0 at 5% level of significance and conclude that **the data is not purely random**, i.e. it has deterministic components.

4.3 TEST OF EXISTENCE OF TREND:

From **graph 2**, we can see that the Trend component is present. So, now we aim to estimate and eliminate the deterministic components.

First, we perform the **Relative Ordering Test** to check for the existence of Trend.

It is a non-parametric measure of a relationship between columns of sequential data and the Time-Series is sequential. Hence we can use τ to check the relationship between time and

the dependent variable. For our dataset, the dependent variable is Monthly number of riders travelled and time, here, is months for different years.

If they are **highly correlated**, then we can say a Trend exists, as the timestamps are always increasing. Consequently, if they are **positively correlated**, an **increasing Trend exists**. Whereas, if they are **negatively correlated**, a **decreasing Trend exists**.

Here our Null Hypothesis and Alternative Hypothesis are:

$$H_0$$
: There is no presence of Trend against H_1 : Not H_0

Here the appropriate Test Statistic for testing H_0 is given by,

$$Z = \frac{(\tau - E(\tau))}{SD(\tau)}$$
 follows N(0,1) under H_0

where, 'T' is **Kendall's Rank Correlation Coefficient**, which is related to 'Q' (the number of discordances).

$$\tau = 1 - \frac{4Q}{n(n-1)}$$

Critical Region : In case of two-tailed test, we will reject the null hypothesis H_0 if $|Z|>Z_{\frac{\alpha}{2}}$, at level of significance α .

Findings from dataset:

We see our observed |Z|=1.98>1.96, which is tabulated standard normal value at $\alpha=0.05$. Hence we reject H_0 at 5% level of significance and conclude that the **Trend** component is present in our data.

4.4 ELIMINATION AND ESTIMATION OF TREND:

First we obtain a rough estimate of the trend component using **Moving Average Method** of period equal to the period of seasonality, so that the effect of seasonality can be avoided. The estimate of trend is given by:

$$\widehat{m}_{t} = \frac{1}{2q} (0.5y_{t-q} + y_{t-q+1} + \dots + y_{t} + \dots + 0.5y_{t+q})$$

Where 2q=12 is the period of seasonality, $m_{_t}$ is the trend component corresponding to t^{th} time point.

Now, we subtract the estimated trend values from the original data. Thus the trend component is eliminated and we are left with the **detrended data**.

fig 4

4.5 TEST OF SEASONALITY:

Since trend is present, we detrended the data and now we check for seasonality using **Friedman's Test**.

F-test or **Friedman's Test** is a test for the presence of seasonality based on a one-way analysis of variance of SI ratios. Thus the test is performed on the detrended time series adjusted for prior factors.

 H_0 : No stable seasonality against H_1 : there is a stable seasonality

From the plot of the data the period of seasonality is guessed to be 12 and hence the **test statistic** is the following:

$$S = \frac{12\sum_{i=1}^{12} \left(M_i - \frac{c(r+1)}{2}\right)^2}{(cr(r+1))}$$

Where c is the number of years, r is the number of months, i.e, 12, M_i is the i^{th} monthly total. *Critical Region*: In this Chi-Sq test we reject our null hypothesis if $S > \chi^2_{r-1,\alpha}$ at α level of significance.

Findings from dataset:

This statistic follows a Chi-square distribution with (r-1) = 11 degrees of freedom under H_0 . The value of our **test statistic is 106.90** greater than the **tabulated chi-square value 19.67** at 5% level of significance, so we conclude that **our data shows presence of seasonality.**

4.6 ELIMINATION AND ESTIMATION OF SEASONALITY:

The seasonal component of the data is estimated by **method of differencing**. We apply backward differencing of order same as the period of seasonality on the data. Then applying the test for seasonality as before we see that the data has been deseasonalized. So it is also indicated by the plot.

fig 5

Seasonal effects can be eliminated by a simple linear filter called **Seasonal Differencing**. For example, in case of monthly data one can use the operator:

$$y_t = \nabla_{12} X_t = X_t - X_{t-12}$$

Now, after elimination of seasonal components, we again check the presence of trend in the data by the relative ordering test as mentioned above. We hereby see that the null hypothesis of no trend is being accepted. **Thus now we have a detrend and deseasonalized data.**

From the above pictures we can definitely say that **desesnlizd_detrndd_dt** is a **stationary data**.

5. FORECASTING MODELS:

5.1. SARIMA:

The SARIMA model provides an approach to time series forecasting. This model may possibly include AR terms, MA terms and differencing operations with seasonal AR, MA and differencing components with a period of seasonality.

We can evaluate the orders of AR, MA and differencing by plotting the ACF and PACF.

fig 7

fig 8

Comment: After inspecting the ACF and PACF plots properly we can conclude that the orders must be (6,1,6) with seasonality. And the order of the seasonal component is (1,0,1). The period of the seasonal component can be derived from the PACF plot. As we can see from that plot there is a cyclical nature after each three lags so the period is 3.

Finally, our model looks like **Seasonal ARIMA** (6,1,6)*(1,0,1)S=3.

Coefficients of SARIMA:

ar1	ar2	ar3	ar4	ar5	ar6
-0.0080	-0.0022	0.0187	0.0199	0.0030	-0.9776
ma1	ma2	ma3	ma4	ma5	ma6
-0.2613	0.079	-0.1209	-0.2437	0.0829	0.6819
sar1	sma1				
-0.9923	0.9182				

Fitting of SARIMA model on train and test data:

fig 9

Comment: In the above plot, though the model fits well for the train dataset but it does not predict satisfactorily for the test dataset. Hence we are considering a further advance model for better prediction and forecasting.

5.2. SARIMAX:

Seasonal Auto-Regressive Integrated Moving Average with eXogenous factors, or SARIMAX, is an extension of the ARIMA class of models. Intuitively, ARIMA models compose 2

parts: the autoregressive term (AR) and the moving-average term (MA). The former views the value at one time just as a weighted sum of past values. The latter model has the same value also as a weighted sum but of past residuals. There is also an integrated term (I) to differentiate the time series.

SARIMAX extends on this framework just by adding the capability to handle exogenous variables. Here we take *Season as an exogenous variable*. Season consists of twelve months. We create dummy columns for each month except April. By doing this we achieve the interpretability of these dummies.

• Here we encoded the season column with dummies. That means we create 12 dummies for each month starting from January to December, and then drop one column that is the column for April to regain the interpretability of the dummies.

Coefficients of SARIMAX:

ar1	ar2	ar3	ar4	ar5	ar6
0.2004	0.0725	0.0831	0.4538	-0.6486	-0.1788
ma1	ma2	ma3	ma4	ma5	ma6
-0.5800	-0.0727	-0.1524	-0.4950	1.0024	-0.1623
sar1	sma1	SeasonAug	SeasonDec	SeasonFeb	SeasonJan

-0.0651	0.1193	146.2292	-21.4393	-295.9179	-253.3127
SeasonJul	SeasonJun	SeasonMar	SeasonMay	SeasonNov	SeasonOct
95.6581	-10.2331	1.1095	34.0913	-63.5591	-49.0934
SeasonSep					
-174.5044					

6. IDENTIFYING THE BEST MODEL:

Now we compare our forecasts using the Root Mean Square Error metric.

RMSEs for test data:

Here we are comparing the RMSEs to find the best model among these two. The data we are using to calculate this metric is the test data.

SARIMA Projection	SARIMAX Projection	
76.45000	75.68301	

As we can clearly see that the **SARIMAX model has the minimum RMSE**, we can conclude that this is the best model for forecasting the Rider's data.

RMSEs for train data:

For more convenience we even checked the RMSEs for train sets.

SARIMA Projection	SARIMAX Projection	
60.89841	52.33472	

Here we also find that the **SARIMAX** model gives the **minimum RMSE**.

 As we found that SARIMAX is the best model therefore we use this model to forecast as well as for the comparison with the test-data.

7. FORECASTING:

Forecasting time series data, the aim is to estimate how the sequence of observations will continue into the future. Here we forecast 12 observations i.e. **April 2001 to March 2002.**We use our Sarimax model to forecast these time points as it is the best model.

SARIMAX Forecasts:

fig 10

Comment : Here we consider an **exogenous variable (Season)** along with the seasonal components that's why we get the best forecast.

7.1. COMPARISON WITH TEST DATA:

MONTH	RIDERSHIP	SARIMAX_PREDICTIONS
1/1/2001	1683	1789.172929
2/1/2001	1663	1765.369591
3/1/2001	2008	2068.808612
4/1/2001	2024	2041.096347
5/1/2001	2047	2101.42751
6/1/2001	2073	2060.23361
7/1/2001	2127	2153.301656
8/1/2001	2203	2184.419595
9/1/2001	1708	1886.95629

10/1/2001	1951	2003.719844
11/1/2001	1974	1975.030682
12/1/2001	1985	2014.547312
1/2/2001	1760	1805.871945
2/2/2001	1771	1751.008274
3/2/2001	2020	2042.037016
4/2/2001	2048	2050.354258
5/2/2001	2069	2099.640047
6/2/2001	1994	2038.402836
7/2/2001	2075	2143.869762
8/2/2001	2027	2204.752522
9/2/2001	1734	1886.50312
10/2/2001	1917	1993.908948
11/2/2001	1858	1984.931492
12/2/2001	1996	2035.030799
1/3/2001	1778	1798.173731
2/3/2001	1749	1743.978605
3/3/2001	2066	2052.70911
4/3/2001	2099	2055.97168
5/3/2001	2105	2082.406436
6/3/2001	2130	2034.38313
7/3/2001	2223	2153.060057
8/3/2001	2174	2201.75528
9/3/2001	1931	1872.862599
10/3/2001	2121	2000.070393
11/3/2001	2076	1994.78751
12/3/2001	2141	2029.717451
1/4/2001	1832	1792.446176
2/4/2001	1838	1755.443466
3/4/2001	2132	2057.065563

7.2. FORECASTED DATASET:

Here we are forecasting next 12 months Ridership data of AMTRAK COMPANY i.e., from **April 2001** to **March 2002**.

Month	Sarimax_forecasting
04-04-2001	2047.294792
05-04-2001	2081.020608
06-04-2001	2043.705778
07-04-2001	2149.672113
08-04-2001	2192.82395
09-04-2001	1875.821412
10-04-2001	2006.415183
11-04-2001	1988.195362
12-04-2001	2025.579575
01-04-2002	1799.407344
02-04-2002	1758.548046
03-04-2002	2050.213024

10. References:

Forecasting: Principles and Practice

Rob J Hyndman and George Athanasopoulos Monash University, Australia https://otexts.com/fpp2/

This book gives a good overview of different components of a time series analysis using practical examples and R codes.

RDocumentation

https://www.rdocumentation.org/packages/forecast/versions/8.15/topics/Arima

This online RDocumentation is very handy to know the nitty-gritty details of different R packages.