Formal Proofs in FOL (Section 7.3)

Getting started

All proof rules for propositional calculus extend to predicate calculus. *Example:*

$$k. \ \forall x \ p(x)$$
 P
 $k+1. \ \forall x \ p(x) \rightarrow \exists x \ p(x)$ P
 $k+2. \ \exists x \ p(x)$ 1,2,MP

. .

But we need additional proof rules to reason with most quantified wffs.

Free to Replace

- For a wff W(x) and a term t we say t is free to replace x in W(x) if W(t) has the same bound occurrences of variables as W(x).
- Example: Let $W(x) = \exists y \ p(x, y)$. Then:
 - $W(y) = \exists y \ p(y, y)$, so y is not free to replace x in W(x).
 - $W(f(x)) = \exists y \ p(f(x), y)$, so f(x) is free to replace x in W(x).
 - $W(c) = \exists y \ p(c, y)$, so c is free to replace x in W(x).
 - $W(x) = \exists y \ p(x, y)$, so x is free to replace x in W(x).

Universal Instantation

Universal Instantiation (UI)

- $\frac{\forall x \ W(x)}{W(t)}$ if t is free to replace x in W(x).
- Special cases that satisfy the restriction:
 - $\bullet \quad \frac{\forall x \ W(x)}{W(x)}$
 - $\frac{\forall x \ \dot{W}(x)}{W(c)}$

Existential Generalization (EG)

Existential Generalization (EG)

- $\frac{W(t)}{\exists x \ W(x)}$ if t is free to replace x in W(x).
- Special cases that satisfy the restriction:
 - $\frac{W(x)}{\exists x \ W(x)}$
 - $\frac{W(c)}{\exists x \ W(x)}$

Existential Instantiation (EI)

If $\exists x \ W(x)$ occurs on some line of a proof, then W(c) may be placed on any subsequent line of the proof, subject to the following restrictions:

• Choose c to be a new constant in the proof and such that c does not occur in the statement to be proven.

Universal Generalization (UG)

If W(x) occurs on some line of a proof, then $\forall x \ W(x)$ may be placed on any subsequent line of the proof, subject to the following restrictions:

• Among the wffs used to obtain W(x), x is not free in any premise and x is not free in any wff obtained by EI.

Broken proofs

- There are lots of ways that quantifier inference rules can be misused. The next several slides show broken proofs.
- Example: $\forall x \exists y \ p(x,y) \rightarrow \exists y \forall x \ p(x,y)$ is invalid. Here is an attempted proof.
- 1. $\forall x \exists y \ p(x,y)$ F
- 2. $\exists y \ p(x, y)$ 1,UI
- 3. p(x,c) 2,EI
- 4. $\forall x \ p(x,c)$ 3,UG No!

Broken proofs

- There are lots of ways that quantifier inference rules can be misused. The next several slides show broken proofs.
- Example: $\forall x \exists y \ p(x,y) \rightarrow \exists y \forall x \ p(x,y)$ is invalid. Here is an attempted proof.

```
1. \forall x \exists y \ p(x,y) P

2. \exists y \ p(x,y) 1,UI

3. p(x,c) 2,EI

4. \forall x \ p(x,c) 3,UG No! (x on (3) is free in wff obtained by EI)

5. \exists y \forall x \ p(x,y) 4,EG

NOT QED 1-5, CP
```

Second Broken Proof

Example: $\exists x \ p(x) \rightarrow \forall x \ p(x)$ is invalid. Here is an attempted proof.

- 1. $\exists p(x)$ P 2. p(x) 1,El No!

Second Broken Proof

Example: $\exists x \ p(x) \rightarrow \forall x \ p(x)$ is invalid. Here is an attempted proof.

- 1. $\exists p(x)$ P
- 2. p(x) 1,El No! (x is not a new constant)
- 3. $\forall x \ p(x)$ 2,UG No!

Second Broken Proof

Example: $\exists x \ p(x) \rightarrow \forall x \ p(x)$ is invalid. Here is an attempted proof.

- 1. $\exists p(x)$ P
- 2. p(x) 1,El No! (x is not a new constant)
- 3. $\forall x \ p(x)$ 2,UG No! (x on (2) is free in wff obtained by EI) NOT QED 1-3,CP

Third Broken Proof

Example: $\exists x \ p(x) \land \exists x \ q(x) \rightarrow \exists x \ (p(x) \land q(x))$ is invalid. Here is an *attempted* proof.

- 1. $\exists x \ p(x)$
- 2. $\exists x \ q(x)$
- 3. p(c) 1,EI
- 4. q(c) 2,El No!

Third Broken Proof

Example: $\exists x \ p(x) \land \exists x \ q(x) \rightarrow \exists x \ (p(x) \land q(x))$ is invalid. Here is an *attempted* proof.

```
1. \exists x \ p(x) P
2. \exists x \ q(x) P
3. p(c) 1,EI
4. q(c) 2,EI No! (c is not a new constant)
5. p(c) \land q(c) 3,4,Conj
6. \exists x \ (p(x) \land q(x)) 5,EG
NOT QED 1-6. CP
```

Broken Proof (4)

Example: $p(x) \rightarrow \forall x \ p(x)$ is invalid. Here is an *attempted* proof.

- 1. p(x) P 2. $\forall x \ p(x)$ 1,UG No!

Broken Proof (4)

Example: $p(x) \rightarrow \forall x \ p(x)$ is invalid. Here is an *attempted* proof.

- 1. p(x) P
- 2. $\forall x \ p(x)$ 1,UG No! (x is free in a premise)

NOT QED 1,2,CP

Broken Proof (5)

Example: $\forall x \exists y \ p(x,y) \rightarrow \exists y \ p(y,y)$ is invalid. Here is an attempted proof.

- 1. $\forall x \exists y \ p(x,y)$
- 2. $\exists y \ p(y,y)$

Ρ

1,UI No!

Broken Proof (5)

Example: $\forall x \exists y \ p(x,y) \rightarrow \exists y \ p(y,y)$ is invalid. Here is an attempted proof.

1.
$$\forall x \exists y \ p(x,y)$$
 P
2. $\exists y \ p(y,y)$ 1,UI No!
(y is not free to replace x in $\exists y \ p(x,y)$)
NOT QED 1.2.CP

Broken Proof (6)

Example: $\forall x \ p(x, f(x)) \rightarrow \exists x \ p(x, x)$ is invalid. Here is an attempted proof.

- 1. $\forall x \ p(x, f(x))$
- 2. p(x, f(x))
- 2. $\exists x \ p(x,x)$

- Ρ
- 1,UI
- 2,EG No!

Broken Proof (6)

Example: $\forall x \ p(x, f(x)) \rightarrow \exists x \ p(x, x)$ is invalid. Here is an attempted proof.

```
1. \forall x \ p(x, f(x)) P

2. p(x, f(x)) 1,UI

2. \exists x \ p(x, x) 2,EG No!

(p(x, f(x)) \neq p(x, x)(x/t) \text{ for any term } t)

NOT QED 1-3,CP
```

Broken Proof (7)

Example: $\forall x \ p(x, f(x)) \rightarrow \exists y \forall x \ p(x, y)$ is invalid. Here is an attempted proof.

- 1. $\forall x \ p(x, f(x))$
- 2. $\exists y \forall x \ p(x,y)$

Ρ

1,EG No!

Broken Proof (7)

Example: $\forall x \ p(x, f(x)) \rightarrow \exists y \forall x \ p(x, y)$ is invalid. Here is an attempted proof.

```
1. \forall x \ p(x, f(x)) P

2. \exists y \forall x \ p(x, y) 1,EG No! (f(x) \text{ is not free to replace } y \text{ in } \forall x \ p(x, y)) NOT QED 1,2,CP
```

Broken Proof (8)

Example: $\exists x \ p(x) \rightarrow p(c)$ is invalid. Here is an *attempted* proof.

1. $\exists x \ p(x)$

Ρ

2. p(c)

1,El No!

Broken Proof (8)

Example: $\exists x \ p(x) \rightarrow p(c)$ is invalid. Here is an *attempted* proof.

```
1. \exists x \ p(x) P
2. p(c) 1,El No!
(c occurs in statement to be proved)
NOT QED 1,2,CP
```

Some Valid wffs

Example: $\forall x \forall y \ p(x,y) \rightarrow \forall y \ p(y,y)$ is valid. Here is an attempted proof.

1.
$$\forall x \forall y \ p(x,y)$$

Ρ

2.
$$\forall y \ p(y,y)$$

1,UI No!

Some Valid wffs

Example: $\forall x \forall y \ p(x,y) \rightarrow \forall y \ p(y,y)$ is valid. Here is an attempted proof.

1.
$$\forall x \forall y \ p(x,y)$$
 P
2. $\forall y \ p(y,y)$ 1,UI No!
(y is not free to replace x in $\forall y \ p(x,y)$)
NOT QED 1,2,CP

But here is a correct proof:

1.
$$\forall x \forall y \ p(x,y)$$
 P
2. $\forall y \ p(x,y)$ 1,UI
3. $p(x,x)$ 2,UI
4. $\forall x \ p(x,x)$ 3,UG
5. $p(y,y)$ 4,UI
6. $\forall y \ p(y,y)$ 5,UG
QED 1-6,CP.

Another Valid wff

Example: $\forall x (A(x) \rightarrow B(x)) \rightarrow (\forall x A(x) \rightarrow \forall x B(x))$ is valid. Here is a proof.

1.
$$\forall x \ (A(x) \rightarrow B(x))$$
 P
2. $\forall x \ A(x)$ P [for $\forall x \ A(x) \rightarrow \forall x \ B(x)$]
3. $A(x)$ 2,UI
4. $A(x) \rightarrow B(x)$ 1,UI
5. $B(x)$ 3,4,MP
6. $\forall x \ B(x)$ 5,UG
7. $\forall x \ A(x) \rightarrow \forall x \ B(x)$ 2-6, CP.
QED 1.7.CP.

Multiple proofs

Prove the following wff is valid using IP. Example:

$$\forall x \neg p(x,x) \land \forall x \forall y \forall z \ (p(x,y) \land p(y,z) \rightarrow p(x,z)) \rightarrow \forall x \forall y \neg (p(x,y) \land p(y,x)).$$

1.
$$\forall x \neg p(x,x)$$
 P
2. $\forall x \forall y \forall z \ (p(x,y) \land p(y,z) \rightarrow p(x,z))$ P
3. $\exists x \exists y \ (p(x,y) \land p(y,x))$ P [for $\forall x \forall y \neg (p(x,y) \land p(y,x))$] 4. $p(a,b) \land p(b,a)$ 3,EI,EI
5. $p(a,b) \land p(b,a) \rightarrow p(a,a)$ 2,UI,UI,UI
6. $p(a,a)$ 4,5,MP
7. $\neg p(a,a)$ 1,UI
8. False 6,7,Contr
9. $\forall x \forall y \neg (p(x,y) \land p(y,x))$ 3-8,IP
QED 1,2,9,CP.

Multiple proofs

Prove the same wff is valid using CP. Example:

$$\forall x \neg p(x,x) \land \forall x \forall y \forall z \ (p(x,y) \land p(y,z) \rightarrow p(x,z)) \rightarrow \forall x \forall y \ \neg (p(x,y) \land p(y,x)).$$

1.
$$\forall x \neg p(x,x)$$
 P
2. $\forall x \forall y \forall z \ (p(x,y) \land p(y,z) \rightarrow p(x,z))$ P
3. $\neg p(x,x)$ 1,UI
4. $p(x,y) \land p(y,x) \rightarrow p(x,x)$ 2,UI,UI,UI
5. $\neg (p(x,y) \land p(y,x))$ 3,4,MT
6. $\forall x \forall y \ \neg (p(x,y) \land p(y,x))$ 5,UG,UG
QED 1-6,CP.

IP Proof

Use IP to prove that: $\forall x \exists y \ (p(x) \rightarrow p(y))$ is valid.

```
1. \exists x \forall y \ (p(x) \land \neg p(y)) P [for IP]

2. \forall y \ (p(c) \land \neg p(y)) 1,EI

3. p(c) \land \neg p(c) 2,UI

4. p(c) 3,Simp

5. \neg p(c) 3,Simp

6. False 4,5,Contr

QED 1-6,IP.
```

Group Practice

Break into six groups. I will assign each group one of these proofs.

- 1. $\forall x (A(x) \rightarrow C) \rightarrow (\exists x A(x) \rightarrow C)$.
- 2. $(\exists x \ A(x) \rightarrow C) \rightarrow \forall x \ (A(x) \rightarrow C)$.
- 3. $(C \rightarrow \forall x \ A(x)) \rightarrow \forall x \ (C \rightarrow A(x))$.
- 4. $(C \rightarrow \exists x \ A(x)) \rightarrow \exists x \ (C \rightarrow A(x))$.
- 5. $\exists x (C \rightarrow A(x)) \rightarrow (C \rightarrow \exists x A(x)).$
- 6. $\exists x (A(x) \rightarrow C) \rightarrow (\forall x A(x) \rightarrow C)$.

1,6,CP.

1.
$$\forall x (A(x) \rightarrow C) \rightarrow (\exists x A(x) \rightarrow C)$$
.
1. $\forall x (A(x) \rightarrow C)$ P
2. $\exists x A(x)$ P [for $\exists x A(x) \rightarrow C$]
3. $A(d)$ 2,EI
4. $A(d) \rightarrow C$ 1,UI
5. C 3,4,MP
6. $\exists x A(x) \rightarrow C$ 2-5,CP

QED

2.
$$(\exists x \ A(x) \to C) \to \forall x \ (A(x) \to C)$$
.
1. $\exists x \ A(x) \to C$ P
2. $A(x)$ P [for $A(x) \to C$]
3. $\exists x \ A(x)$ 2,EG
4. C 1,3,MP
5. $A(x) \to C$ 2-4,CP.
6. $\forall x \ (A(x) \to C)$ 5, UG
QED 1,5-6,CP.

3.
$$(C \rightarrow \forall x \ A(x)) \rightarrow \forall x \ (C \rightarrow A(x))$$
.
1. $C \rightarrow \forall x \ A(x)$ P
2. C P [for $C \rightarrow A(x)$]
3. $\forall x \ A(x)$ 1,2,MP
4. $A(x)$ 3,UI
5. $C \rightarrow A(x)$ 2-4,CP
6. $\forall x \ (C \rightarrow A(x))$ 5,UG
QED 1,5-6, CP.

4.
$$(C \rightarrow \exists x \ A(x)) \rightarrow \exists x \ (C \rightarrow A(x))$$
.
1. $C \rightarrow \exists x \ A(x)$ P
2. C P [for $C \rightarrow A(?)$]
3. $\exists x \ A(x)$ 1,2,MP
4. $A(d)$ 3,UI
5. $C \rightarrow A(d)$ 2-4,CP
6. $\exists x \ (C \rightarrow A(x))$ 5,UG
QED 1,5-6, CP.

5.
$$\exists x \ (C \to A(x)) \to (C \to \exists x \ A(x))$$
.
1. $C \to \exists x \ A(x)$ P
2. C P [for $C \to \exists x \ A(x)$]
3. $C \to A(d)$ 1,EI
4. $A(d)$ 2,3,MP
5. $\exists x \ A(x)$ 4,EG
6. $C \to \exists x \ A(x)$ 2-5,CP
QED 1,6,CP.

6.
$$\exists x \ (A(x) \to C) \to (\forall x \ A(x) \to C)$$
.
1. $\exists x \ (A(x) \to C)$ P
2. $\forall x \ A(x)$ P [for $\forall x \ A(x) \to C$]
3. $A(d) \to C$ 1,EI
4. $A(d)$ 2,UI
5. C 3,4,MP
6. $\forall x \ A(x) \to C$ 2-5,CP.
QED 1.6,CP.