Lab7 多光谱数据的贝叶斯分类

实验编号: PB21020685 王润泽

1. 实验内容

本实验旨在使用 Python 实现多光谱数据的贝叶斯分类。

2. 实验原理

2. 实验原理

2.1 贝叶斯分类器的基本理论

贝叶斯分类器是一种基于贝叶斯定理的统计分类方法,公式为:

$$P(C_k \mid x) = \frac{P(C_k) \cdot P(x \mid C_k)}{P(x)}$$

其中:

- $P(C_k \mid x)$ 为后验概率,即给定样本 x 属于类别 C_k 的概率;
- $P(C_k)$ 为先验概率,表示类别 C_k 在总体样本中的分布;
- $P(x \mid C_k)$ 为似然函数,表示样本 x 在类别 C_k 条件下的概率;
- P(x) 为边际概率,可通过归一化后验概率忽略。

2.2 高斯朴素贝叶斯模型

在高斯朴素贝叶斯模型中,假设特征服从正态分布,则条件概率 $P(x_i \mid C_k)$ 表达为:

$$P(x_i \mid C_k) = rac{1}{\sqrt{2\pi\sigma_k^2}} \mathrm{exp}\left(-rac{(x_i - \mu_k)^2}{2\sigma_k^2}
ight)$$

其中:

• μ_k 和 σ_k^2 分别是类别 C_k 下第 i 个特征的均值和方差。

2.3 模型训练与预测

- 1. 训练:
 - 对每个类别计算其先验概率 $P(C_k)$;
 - 计算每个类别下各特征的均值 μ_k 和方差 σ_k^2 .
- 2. 预测:
 - \circ 对于待分类样本 x, 计算其在每个类别 C_k 的后验概率;
 - 。 选择后验概率最大的类别作为预测结果。

2.4 多光谱数据分类

多光谱数据由多个波段组成,每个波段表示同一场景在不同光谱下的反射值。分类过程如下:

- 1. 将多光谱图像的每个像素的多个波段值视为一个特征向量;
- 2. 利用标签掩膜 (mask) 生成训练样本;

- 3. 使用贝叶斯分类器进行分类,得到每个像素的类别预测;
- 4. 将预测结果重塑为图像形状, 生成分类图。

2.5 数据处理流程

1. 数据组织:

- 。 读取多光谱图像数据和掩膜标签;
- 。 将每个像素的光谱信息重塑为二维特征矩阵。

2. 模型训练:

- 。 过滤背景类 (类别 0) , 仅使用有效样本进行训练;
- 计算各类别的统计特性(均值、方差)。

3. 模型预测:

- 。 利用贝叶斯分类器预测每个像素的类别;
- 。 将预测类别重新组织为分类结果图。

2.6 性能评估

通过计算混淆矩阵,评估分类器对各类别的预测性能,并将预测错误的像素可视化以分析模型的分类效果。

3 实验结果

对测试图像进行贝叶斯分类,结果如下:

训练数据的预测结果如下,黑点代表预测错误:

4. 实验结论

本实验成功地实现了多光谱数据的贝叶斯分类,和课本上的结果相近,对于训练数据实现了较好的分类。