

Analytic Computing

Fachpraktikum Artificial Intelligence

Billiard Motion Prediction

Motivation & Problem Statement

Motivation

- Use Artificial Intelligence by learning from data
- Implement whole data mining cycle
- Application: Motion Prediction of multiple objects

Problem Statement

- Billiard balls motion prediction
- Input: Short video starting with strike
- Output: Ball positions and velocities over time
- Regression Goal: Minimize difference between predicted and ground truth trajectory

Methodology & Setup

Methodology

- CRISP-DM Model
- Requirements analyisis

Setup

- Tracking of tasks with Trello
- Communication via Discord
- Scrum with weekly sprint review
- Git as collaborative version control system
- Modular software architecture
- Formal documentation with UML

https://statistik-dresden.de/archives/1128

University of Stuttgart

Table of contents

- Data Preparation
- Modeling
- Evaluation
- Conclusion

Data Preparation

Overview

- Video Recording
- 2. Clips Generation
- 3. Camera Calibration
- 4. Distortion Correction
- 5. Data Augmentation
- 6. Alignment
- Preprocessing
- 8. Dataset Cleaning

University of Stuttgart 03/25/2021

6

Video Recording

- No occlusions
- Uniform lighting
- Table centered
 - borders equidistant from image edges
 - corners equidistant from image corners

Clips Generation

- Timestamps noted manually
- Automated video clip generation using python script that accepts timestamps

Camera Calibration

- Moving chessboard pattern in different angles
- Snapshots (10-20) as source
- Finding the chessboard pattern positions
- Calculating intrinsic of camera: camera matrix & distortion matrix

Chessboard pattern (via opency.org)

Chessboard patterns images (cut from video)

Found corners

Distortion Correction

Using these two matrices to un-distort the source images

original

Based on 14 images • Based on 21 images

10

→ Increasing number of images improves result

Data Augmentation

original

horizontal

vertical

vertical & horizontal

11

Alignment

Different angle

Test video

Alignment result

Correction result

Feature matching

- Calculating the homograph matrix
- Applying it on the source image

12

Preprocessing – Overview

- Inputs : Clips, Configuration File
- Image Processing
 - Image preprocessing & transformation
 - Circle detection + Color classification
- Bidirectional temporal tracking
- Outputs : CSV Files

Preprocessing – Inputs

Configuration File Parsing

- YAML file containing clip names as entries
- Each entry is marked with at-least one:
 - Start frame
 - Frame where the strike/s occurs
 - Valid flag
 - True: Balls are tracked successfully during the corresponding strike duration, hence csv file can be generated
 - · False: Unsuccessful tracking
- Parser extracts the clip name and its metadata
- Feeds it to image processing pipeline

Preprocessing – Pipeline

Preprocess Image:

- Camera calibration and distortion correction
- Parameterization
 - Shadow removal
 - Morphological transformations
 - Dilation, Blurring, Erosion, Opening
 - Real time trackbar for adjustment of values
- Gamma Correction
 - Adjustment of contrast in different lightning condition

16

- Find affine transformation matrix to table dimension.
- Project from image coordinate system to table coordinate system

Circle detection:

- Three strategies :
 - 1. Red-Green-Blue (RGB)
 - 2. Hue
 - 3. Hue-Saturation-Value (HSV)
 - Combine to get noise free frame
- Apply 3*3 kernel for blurring
- Hough Circle transformation
 - Parameter tuning
- Detect circles
 - Return centroids and radii

18

Color classification:

- Mark detected circles as region of interests (ROI)
- For each ROI in a frame :
 - Determine pixels per color using defined Hue, Saturation, Value (HSV) color ranges
 - Find dominant color and compute color-towhite ratio
 - 3. Use (2) to classify ball as ball-type
- Store ball positions with corresponding balltype for each frame in a sequence

Orange	Blue	White	Black	Green	Dominant color	Color to White ratio	Ball
80	0	15	5	0	Orange	5	Orange Solid
60	0	25	0	0	Orange	2	Orange Stripe
0	75	15	5	3	Blue	5	Blue Solid
0	2	5	2	85	Green	17	Green Solid
0	0	5	95	0	Black	19	Black Solid

19

Preprocessing – Bidirectional Temporal Tracking

Need:

 To avoid color flickering due to nonrobustness of color classification in some of the frames

Steps:

- Search across input sequence for best detection frame t_k
- 2. Initiate backward tracking
 - Store sequence t₀ to t_{k-1}
- 3. Initiate forward tracking
 - Store sequence t_k to t_n
- 4. Combine both sequences to form entire strike sequence

Tracker used: Channel and Spatial Reliability Tracking (CSRT)

All detected balls are uniquely color-classified

Perfectly detected frame

Tracking triggered

Tracking continues in subsequent frames

Dataset Cleaning

Problems with the generated dataset:

Hand occlusions (resulting in false positives)

Workaround : Avoid hand occlusions during data collection

Lost trackers (fast movement of balls)

Workaround : Data collected at a higher frame rate

No white ball (White ball misclassified as yellow)

Workaround: Python script which eliminates data with absent white ball

Balls disappearing & reappearing (coming out of holes)

Workaround: Python script which eliminates such data

No movement till 1 sec (30 to 60 frames)

Workaround: Python script which eliminates initial rows with no movement

Modeling

Overview

BaseNet serves as template

Baseline: Naive Model

Baseline: Linear Model

LSTM Recurrent Neural Network Model

Model Inputs & Outputs

- Inputs:
 - Position [5x32]: 5 timesteps, absolute position in x and y for 16 balls
- Outputs:
 - Position [1x32]: 1 timestep, difference in x and y for 16 balls
 - Is_Moving [1x16]: 1 timestep, moving probability for 16 balls
- Prediction "in the loop" → Output used as new input

BaseNet

- Template for NN implementation → shared across models
- Realize preparation of input
- Realize transformation of output

Baseline: Naive Model

- In billiard most balls are steady during strike
- Constant position is good prior
- Naive model gives input as output
- Used as reference to quantify

Baseline: Linear Model

- Simple linear layer without activation function
- Learns extrapolation of position
- Underestimates position difference in linear motion case
- Disregards non-linearities (collisions, boundaries)

LSTM Model

- Recurrent cell to capture non-linearities across time series
- Linear layers before and after LSTM to prepare and inter-combine features
- No activation function applied to position output to learn linear mapping
- Output includes is_moving per ball as probabilistic estimate

Loss Function

- Evaluation metric: Avg. Euclidean position error
 - Position: RMSE
- Training loss: Joint loss accumulated over N training steps and K balls
 - Position: Mean Squared Error
 - Moving: Binary Cross Entropy
 - Physical constraints: Potential map

$$\begin{split} loss_{train} &= \sum_{n \in steps}^{N} \sum_{i \in balls}^{K} loss_{pos_{n,i}} + loss_{move_{n,i}} + loss_{physics_{n,i}} \\ &= \sum_{n \in steps}^{N} \sum_{i \in balls}^{K} MSE(pos_{d_{n,i}}, pos_{p_{n,i}}) + BCE(mov_{d_{n,i}}, mov_{p_{n,i}}) + Potential(pos_{p_{n,i}}) \end{split}$$

Evaluation

Overview

- Model performance is evaluated:
 - Quantitatively: Compare evaluation metric to baselines
 - Qualitatively: Subjective plausibility of predicted videos
- Predicted videos instrumental to figure out current state and weaknesses of the model
 - Rendering toolbox developed to compare model to ground truth
 - Easily visible:
 - Linear movement
 - Collisions with boundaries/balls
 - Stationary balls
 - Prediction flaws in video guide adjustments of training

Rendering

Multi-step prediction

- Two prediction modes for evaluation:
 - "In-the-loop" prediction of entire strike after initializing with the first 5 frames:

Multi-step prediction

- Two prediction modes for evaluation:
 - N-step prediction with ground truth as initialization for each predicted frame:

Modeling-Validation Cycle

- Multiple cycles in CRISP-DM model:
 - Initially not enough data
 - Modeling of non-existing balls with large position
 - → set very small position
 - Inconsistencies in data found
 - → clean data with scripts
 - Insufficient performance of tracker
 - → use higher recording framerate
 - Model instable
 - → predict relative instead of absolute positions
 - Disregards non-linearities
 - → extend loss function with physical regularization

https://statistik-dresden.de/archives/1128

Comparison to Baseline

- Baseline naive→ steady state, actually good
- Baseline linear → learns linear motion
- LSTM recurrent → learns non-linear collisions

- No detailed quantitative analysis available yet due to:
 - Delayed/restricted data collection (COVID)
 - Complex data preparation
 - Build generic model pipeline
 - Limited dataset size
 - → We created starting point for future work

Conclusion

Conclusion

Lessons learned

- Pandemic adds difficulty (delayed data collection, pure virtual collaboration)
- Data creation and preparation takes time
- Lack of data is limitation for sophisticated NN architectures

Future work

- Incorporate more physical constraints (e.g., conservation of momentum)
- Further DL architectures: Transformer, Graph Neural Network

Thank you!

Demo

Backup

Demo

- Show data preparation pipeline
 - Code walkthrough
 - Recorded videos
 - Preprocessing -> Ashish to prepare
- Show Rendering
- Show video of early model
- Show LSTM with nonlinearity
- Show constant baseline
- Show Linear baseline

Data Preparation - Video Recording

Camera Device: GoXtreme Black Hawk 4k+

• Software: OBS Studio

• Table measurements: 194cm x 97cm

• Ball diameter: 5.7 cm

- Several games were played with 600+ strikes
- Camera orientation: Points that were considered while video recording:
 - Table should be free of occlusions
 - Uniform lighting conditions all over the table
 - Table placed at the center of the field of camera vision
 - All 4 table borders should be equidistant from 4 edges of the camera field of vision.
- Frame rate: Initially videos were recorded at 30fps, which wasn't suitable for preprocessing so later videos were recorded in 60 fps

• Video Resolution: 1280 x 720

Data Preparation – Lens Distortion

- Distortion is one of the 5 basic optical aberrations.
- The camera we used causes Barrel Distortion.

Optical axis

Barrel distortion(source:wiki)

	dataset_clip1_7_strike_1																														
0.075	0.179	0.778	0.865	1.398	0.864	0.459	0.546	0.259	0.48	-0.1	-0.1	0.226	0.941	0.146	0.904	1.438	0.665	0.257	0.278	1.39	0.919	0.839	0.901	1.268	0.602	0.413	0.719	0.795	0.811	0.276	0.097
0.072	0.179	0.779	0.866	1.395	0.865	0.459	0.545	0.258	0.48	-0.1	-0.1	0.221	0.941	0.147	0.903	1.438	0.664	0.259	0.279	1.391	0.919	0.84	0.901	1.267	0.602	0.413	0.719	0.796	0.811	0.275	0.097
0.073	0.178	0.778	0.865	1.396	0.864	0.459	0.544	0.256	0.48	-0.1	-0.1	0.226	0.941	0.146	0.902	1.439	0.665	0.258	0.279	1.39	0.918	0.839	0.9	1.267	0.602	0.414	0.72	0.796	0.81	0.276	0.097
0.072	0.178	0.779	0.865	1.395	0.864	0.459	0.545	0.258	0.479	-0.1	-0.1	0.226	0.94	0.146	0.903	1.438	0.664	0.26	0.279	1.391	0.919	0.84	0.901	1.267	0.602	0.413	0.72	0.796	0.811	0.276	0.098
0.071	0.177	0.779	0.866	1.395	0.863	0.46	0.546	0.258	0.48	-0.1	-0.1	0.224	0.942	0.147	0.902	1.439	0.664	0.26	0.279	1.39	0.917	0.839	0.901	1.267	0.602	0.413	0.72	0.796	0.811	0.275	0.098
0.077	0.178	0.778	0.866	1.399	0.864	0.458	0.545	0.26	0.479	-0.1	-0.1	0.224	0.94	0.147	0.903	1.439	0.665	0.259	0.279	1.391	0.919	0.84	0.901	1.268	0.603	0.413	0.72	0.795	0.811	0.275	0.097
0.072	0.182	0.779	0.865	1.398	0.865	0.459	0.545	0.259	0.48	-0.1	-0.1	0.223	0.94	0.146	0.903	1.438	0.664	0.261	0.279	1.39	0.919	0.839	0.901	1.267	0.602	0.414	0.72	0.796	0.811	0.275	0.097
0.072	0.178	0.778	0.866	1.398	0.865	0.459	0.545	0.258	0.479	-0.1	-0.1	0.223	0.94	0.146	0.902	1.439	0.664	0.261	0.279	1.39	0.919	0.84	0.9	1.267	0.602	0.412	0.72	0.795	0.811	0.275	0.097
0.072	0.177	0.778	0.865	1.397	0.865	0.46	0.545	0.258	0.479	-0.1	-0.1	0.227	0.94	0.147	0.902	1.439	0.665	0.26	0.279	1.39	0.918	0.839	0.901	1.268	0.603	0.412	0.721	0.796	0.81	0.276	0.097
0.078	0.182	0.778	0.866	1.396	0.864	0.459	0.545	0.259	0.48	-0.1	-0.1	0.228	0.939	0.146	0.902	1.438	0.664	0.259	0.28	1.39	0.919	0.84	0.9	1.267	0.602	0.413	0.719	0.796	0.811	0.275	0.097

CSV Generation

- Traverse through entire strike sequence obtained from tracking
- Each csv row corresponds to a point/frame in the strike sequence
- Row consists of 16*2 coordinates of balls ordered in a predefined way
- Mirror/Augment data (see next slides)

Modeling

Synthetic Dataset

- Obvious bottleneck for model early into development: training data
- Create intermediary synthetic dataset:
 - · Balls at random positions on table
 - Random linear motion direction of balls
 - · No collisions, but learn linear motion
 - · Keep improving the model until more real data is available
- Later in development switch back to real (and augmented) data

Evaluation

Rendering

- Object plotting on layers using Matplotlib
- Frame Generation
- Video generation using OpenCV
- Comparison view

Rendering

Features

- Dimensions are an exact scaled version of the original. Colours are as close as possible to the original table.
- Solid balls represented as solid circles and striped balls are represented as a solid circle with a white inner circle.
- Comparison view of real data and predicted output
- Option for video generation as well as on screen display
- Support for different representation of different model outputs
- Video generation at the rate of 30 frames/s

Rendering

Idea

- Prediction output of the model is in the form of a row of 32 float values corresponding to the (x,y) coordinate of each ball with respect to the table.
- Difficult to have a cohesive and coherent understanding of the model behavior through plain numeric values.
- To get a better idea of the behaviour of the model, with respect to real life ball movement on a billiards table, a visual representation of the numeric values was needed which was close to the original imagery.
- Matplotib library was used for frame generation and OpenCV was used for video generation.

Evaluation

Multi-step prediction

- N-step prediction easier than full prediction
 - Can be as simple as singlestep prediction with n=1
 - Shows short-term mistakes, but no cumulative long-term inaccuracies
 - Useful to spot mistakes in earlier models
- Later switch to full prediction for more advanced models