פתרון שאלות נבחרות בממ"ן 11 - סמסטר 2006ג

שאלה 2

אלגוריתם לחישוב מספר השלשות הפיתגוריות של מספרים בתחום 1..N

- count $\leftarrow 0$ (1)
- :צע: N-2 עד $i \leftarrow 1$ בצע: (2)
- : צצע: N-1 עד $j \leftarrow i+1$ בצע (2.1)

$$k \leftarrow \sqrt{i^2 + j^2} \quad (2.1.1)$$

 $count \leftarrow count + 1$ אז $k \leq N$ או מספר שלם וגם (3.1.2)

.count את החזר (3)

שאלה 3

:T אלגוריתם רקורסיבי לחישוב מספר הצמתים שעומקם

- $; S \leftarrow 0$ (1)
- \mathbf{X} עם הפרמטרים \mathbf{K} ו-T (2) קרא לשגרה מספר-צמתים שעומקם עו אומקם
 - .S החזר את (3)

השגרה הרקורסיבית מוגדרת באופן הבא:

מספר צמתים שעומקם D בעץ

- $S \leftarrow S + 1$ אם D = 0 אז (1)
- :X אחרת בצע לכל בן Y של (2)
- \mathbf{Y} יו D–1 עם הפרמטרים \mathbf{X} עם **בעץ א** עם מספר-צמתים שעומקם (2.1)
 - . חזור (3)

שאלה 4

א. השלבים בריצת האלגוריתם למציאת המסלול הקצר ביותר בגרף מאיור 4.6:

v של השכנים של λ של השינוי בערכי	מינימלי λ(v) שעבורו v הצומת	מספר איטרציה
$\lambda(C) \leftarrow 5, \lambda(D) \leftarrow 3, \lambda(G) \leftarrow 14$	A $\lambda(A) = 0$	1
$\lambda(E) \leftarrow 10, \lambda(G) \leftarrow 9$	D $\lambda(D) = 3$	2
$\lambda(F) \leftarrow 7, \lambda(E) \leftarrow 8$	C $\lambda(C) = 5$	3
$\lambda(B) \leftarrow 14$	$F \lambda(F) = 7$	4
$\lambda(B) \leftarrow 13$	E $\lambda(E) = 8$	5
_	G $\lambda(G) = 9$	6
_	B $\lambda(B) = 13$	7

ב. כדי שיהיה אפשר לשחזר את המסלול הקצר ביותר מהצומת A לכל שאר הצמתים בגרף, נוסיף ב. כדי שיהיה אפשר לשחזר את המסלול הקצר ביותר. לכל צומת ν במסלול הקצר ביותר. π , ובו נשמור את הצומת שנמצא לפני במסלול הקצר ביותר. השינוי היחידי שצריך לעשות באלגוריתם הוא בשורה (4.3.1):

$$l(u) = 1$$
 אז בצע: $\lambda(v) + l(e) < \lambda(u)$ אז בצע (4.3.1)

$$\lambda(u) \leftarrow \lambda(v) + l(e)$$
 (4.3.1.1)

$$\pi(u) \leftarrow v (4.3.1.2)$$