Rafael Lychowski

MAPA CONCEITUAL DA DISCIPLINA

PRIMEIRO DIA

SEGUNDO DIA

MANHÃ

- Revisão Modelagem Preditiva
- Estudo de Caso

SVM

- Estudo de Caso
- Redes Neurais
- Estudo de Caso

TARDE

- Combinação
- Estudo de Caso

- Algoritmos Genéticos
- Estudo de Caso
- Trabalho Final

MAPA CONCEITUAL DA DISCIPLINA

PRIMEIRO DIA

- Revisão Modelagem Preditiva
- Estudo de Caso

TERCEIRO DIA

- SVM
- Estudo de Caso
- Redes Neurais
- Estudo de Caso

SEGUNDO DIA

Combinação

Estudo de Caso

QUARTO DIA

- Algoritmos Genéticos
- Estudo de Caso

QUINTO DIA

Trabalho Final

CRISP – **DM** (Cross Industry Standard Process for Data Mining)

Método	Sub Método	Objetivo	Caso de Uso	Algoritmos
Supervisionados Para cada conjunto de entrada existe um valor alvo correspondente	Regressão	Estimar uma variável continua. Forecast, Time series	Forecast da demanda de comprasPredição da quantidade de chuva	Linear RegressionNeural networksDecision trees
	Classificação	Estimar uma variável discreta	 Prever a quebra de equipamentos Risco de crédito 	 Logistic Regression SVMs Neural Networks Decision Trees
Não Supervisionados Encontrar as relações entre diferentes entradas sem uma variável alvo definada	Clustering	Identificar objetos similares	 Segmentação de clientes (marketing) Análise de Redes Sociais 	K-MeansDBSCANHDBSCANHierarchical Clustering
	Redução de Dimensionalidade	Reduzir a complexidade dos dados	 Sistemas de Recomendação (Netflix, Amazon) Processamento de Linguagens Naturais 	 PCA, SVD, ALS Latent dirichlet allocation t-SNE, MDS

Regressão Linear

$$Y = \beta_0 + \beta_1 X + \epsilon.$$

Regressão Linear

- 1. Existe alguma relação entre a variável de input e de output ?
- 2. O quão essa relação é forte?
- 3. Qual variável contribui mais? (importância)
- 4. Com qual acurácia podemos estimar o efeito de cada variável de input na variável de output ?
- 5. Com qual acurácia podemos estimar a variável de output ?
- 6. A relação das variáveis é linear?
- 7. Existe sinergia entre as variáveis de input?

Regressão Linear

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

E se tivermos várias features?

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

Revisão

Bias x Variance

- Adicionar mais dados (base de treino)
- Diminuir variáveis (features)

- Adicionar variáveis (features)
- Aumentar complexidade do modelo

Revisão

Bias x Variance

Partições

Regressão Linear

- Parabéns! Você acaba de ser contratado como o mais novo Data Scientist de uma empresa global de Real Estate. Com o crescimento acelerado da cidade de Boston, devido sua proximidade a centros de excelência como Harvard e MIT, o mercado imobiliário da região apresenta uma oportunidade única. Para comprar os melhores imóveis aos melhores preços, você deve desenvolver um modelo capaz de receber os dados de um imóvel qualquer e dizer qual deve ser seu preço aproximado. Assim ao buscar por oportunidades na região poderá filtrar o que está caro demais e o que está barato.
- Para desenvolver seu modelo você irá realizar as seguintes tarefas:
 - 1) Importar o dataset em https://lirielly.github.io/Analise Preditiva Avancada/LinearRegression index.html
 - 2) Importar o dataset para o ambiente R.
 - 3) Fazer uma rápida exploração dos dados.
 - 4) Dividir a base em 70% para treino e 30% para teste do modelo.
 - 5) Treinar o modelo de regressão linear na base de treino.
 - 6) Validar a performance do modelo e determinar os principais preditores.
 - 7) Fazer o "scoring" do modelo para os dados na base de teste.
 - 8) Usar o modelo para determinar o preço de um imóvel com as informações no exercício 3

Feature	Descrição	Tipo
CRIM	Taxa de Crimes	Real
NROOMS	Número de Quartos	Real
AGE	Idade do Imóvel	Real
DISC	Distância do Centro	Real
BATH	Número de Banheiros	Real
TAX	Taxa de IPTU	Real
MEDV	Preço do Imóvel	Real

Classificação: por que não regressão?

Um único valor pode distorcer completamente o resultado

Classificação: por que não regressão?

$$Y = egin{cases} 1 & ext{if stroke}; \ 2 & ext{if drug overdose}; \ 3 & ext{if epileptic seizure}. \end{cases} \qquad Y = egin{cases} 0 & ext{if stroke}; \ 1 & ext{if drug overdose}. \end{cases}$$

Ordem e valores relativos não correspondem a realidade

"Regressão" Logística

Resultado da regressão pode exceder o intervalo (0 a 1)

"Regressão" Logística

Sigmoid Function ou **Logistics Function**

$$p(x) = \frac{e^{\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p}}{1 + e^{\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p}}.$$

 $0 \le h_{\theta}(x) \le 1$ Logistic Regression:

$$egin{aligned} h_{ heta}(x) &\geq 0.5
ightarrow y = 1 \ h_{ heta}(x) &< 0.5
ightarrow y = 0 \end{aligned} \qquad egin{aligned} g(z) &\geq 0.5 \ when \ z &\geq 0 \end{aligned}$$

$$g(z) \geq 0.5 \ when \ z \geq 0$$

"Regressão" Logística

$$egin{aligned} h_{ heta}(x) &\geq 0.5
ightarrow y = 1 \ h_{ heta}(x) &< 0.5
ightarrow y = 0 \end{aligned} \qquad egin{aligned} g(z) &\geq 0.5 \ when \ z \geq 0 \end{aligned}$$

$$g(z) \ge 0.5$$

when $z \ge 0$

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

$$00 = -3$$

$$01 = 1$$

$$02 = 1$$

Predict "
$$y = 1$$
" if $-3 + x_1 + x_2 \ge 0$

$$x_1 + x_2 >= 3$$

"Regressão" Logística

• Simples x Múltipla: uma mesma variável pode ter um efeito sozinha e outra quando combinada (sessão 4.3.3 página 148)

	Coefficient
Intercept	-3.5041
student[Yes]	0.4049

	Coefficient
Intercept	-10.8690
balance	0.0057
income	0.0030
student[Yes]	-0.6468

This is an important distinction for a credit card company that is trying to determine to whom they should offer credit. A student is riskier than a non-student if no information about the student's credit card balance is available. However, that student is less risky than a non-student with the same credit card balance!

Regressão Logística

- Mais um dia no MLBB (Machine Learning Bank of Boston) e devido ao aumento na demanda por imóveis na região o mercado de crédito está em alta e é preciso alocar seus empréstimos da melhor maneira possível. O problema é que os pedidos são tantos que estão sobrecarregando os analistas de crédito do banco. Para resolver essa situação você decide desenvolver um modelo para automatizar o processo de aprovação de crédito. Sua mais nova oportunidade de apresentar o modelo é no pedido de crédito feito por um grupo brasileiro de Real Estate que está se expandindo na região.
- Para desenvolver seu modelo você irá realizar as seguintes tarefas:
 - 1) Importar o dataset em https://lirielly.github.io/Analise Preditiva Avancada/LogisticRegression index.html
 - 2) Importar o dataset para o ambiente R.
 - 3) Fazer uma rápida exploração dos dados.
 - 4) Dividir a base em 70% para treino e 30% para teste do modelo.
 - 5) Treinar o modelo de regressão logística na base de treino.
 - 6) Validar a performance do modelo e determinar os principais preditores.
 - 7) Fazer o "scoring" do modelo para os dados na base de teste.
 - 8) Determinar a aprovação ou não de crédito para o cliente no exercício 3

Feature	Deserieño	Tino
reature	Descrição	Tipo
GENDER	Gênero	Flag
AGE	Idade	Real
DEBT	Dívidas	Real
MARRIED	Estado Civil	Flag
NK_CUSTOMER	Cliente do Banco	Flag
CATION_LEVEL	Nível de Educação (Médio, Superior, etc)	Categorical
ETHNICITY	Etnia	Categorical
RS_EMPLOYED	Anos de Trabalho	Real
RIOR_DEFAULT	Histórico de Calote/Atraso	Flag
EMPLOYED	Situação Empregatícia	Flag
CITIZEN	Cidadão USA	Flag
ZIPCODE	Localidade	Categorical
INCOME	Renda	Real
APPROVED	Crédito Aprovado ou Não	Target

Resampling

- Aumenta confiabilidade do modelo
- Exige maior poder computacional
- Cross validation

Amostras diferentes geram resultados bem diferentes !!

Cross Validation

Árvore de Decisão

- Fácil interpretação, fácil visualização
- Não precisa de variável *dummy* para preditores qualitativos
- Critério de divisão: Ganho de informação IG (Shannon, 1948)
- Baseado em Entropia como uma medida de desordem
- Desordem: quanto mais mesclado, maior a entropia

$$entropy = -p_1 \log (p_1) - p_2 \log (p_2) - \cdots$$

$$IG(parent, children) = entropy(parent) -$$

$$[p(c_1) \times entropy(c_1) + p(c_2) \times entropy(c_2) + \cdots]$$

Árvore de Decisão

 Algoritmo: Se a divisão reduzir a entropia (ou aumenta o ganho de informação) então siga com a divisão


```
entropy(Balance < 50K) = -[p(•) \times \log_2 p(•) + p(★) \times \log_2 p(★)] entropy(Balance \ge 50K) = -[p(•) \times \log_2 p(•) + p(★) \times \log_2 p(★)]

= -[0.92 \times (-0.12) + 0.08 \times (-3.7)] = -[0.24 \times (-2.1) + 0.76 \times (-0.39)]

= 0.39
```


Árvore de Decisão

 Algoritmo: Se a divisão reduzir a entropia (ou aumenta o ganho de informação) então siga com a divisão

entropy(parent) ≈ 0.99 entropy(Residence=OWN) ≈ 0.54 entropy(Residence=RENT) ≈ 0.97 ttropy(Residence=OTHER) ≈ 0.98 $IG \approx 0.13$

Árvore de Decisão x Modelo Linear

Árvore de Decisão

- Não costumam ter alta acurácia
- Muito voláteis -> uma mudança simples no dado pode mudar completamente a árvore

Solução: Combinação

"Set of weak learners are combined to create a strong learner"

Boosting -> cria 1 árvore por vez, vai melhorando a próxima utilizando os erros da árvore anterior

Bagging (Bootstrap **AGG**regat**ING**) -> utiliza n amostras aleatórias de treinamento. Considera a média das árvores

Random Forest -> igual Bagging, mas varia a quantidade de features

Combinação

Combinação

Variações: AdaBoost, LPBoost, XGBoost, GradientBoost, BrownBoost.

Árvore de Decisão

- Com o crescimento urbano acelerado da cidade de Boston e o aquecimento da economia local os serviços públicos estão sobrecarregados. O hospital Boston D'Or decidiu investir em automatizar o processo de direcionamento de pacientes para os especialistas corretos, para isso será desenvolvido um modelo de árvore de decisão baseado em um formulário padrão preenchido pelos paciente.
- Para desenvolver seu modelo você irá realizar as seguintes tarefas:
 - 1) Importar o dataset BostonHospital disponível em https://lirielly.github.io/Analise_Preditiva_Avancada/DecisionTree_index.html
 - 2) Importar o dataset para o ambiente R.
 - 3) Fazer uma rápida exploração dos dados.
 - 4) Dividir a base em 70% para treino e 30% para teste do modelo.
 - 5) Treinar 3 árvores de decisão (boosting, bagging, random forest) na base de treino.
 - 6) Validar a performance dos modelos e determinar os principais preditores.
 - 7) Fazer o "scoring" do modelo para os dados na base de teste.
 - 8) Determinar o tipode de patologia do invíduo do exercício 3

SVM – Máquina de Vetores de Suporte

Hiperplano

figura geométrica de curvatura nula em um espaço euclidiano n-dimensional e cuja equação em coordenadas cartesianas é linear.

O hiperplano depende diretamente dos vetores de suporte, mas não das outras observações: um movimento para qualquer uma das outras observações não afetaria o hiperplano de separação, desde que o movimento da observação não o faça cruzar o limite definido pela margem.

 X_1

SVM – Máquina de Vetores de Suporte

Modelo mais robusto

Tenta separar os conjuntos o máximo possível através da margem

SVM – Máquina de Vetores de Suporte

SVM – Máquina de Vetores de Suporte

SVM

- O fundo de investimento Bettinas está investindo em uma nova solução baseada em machine learning para automatizar e aperfeiçoar a classificação do "credit rating" de companhias públicas baseado em um conjunto de métricas. Assim o fundo pretende assumir o mínimo risco necessário para bater os fundos concorrentes e seu benchmark o CDI.
- Para desenvolver seu modelo você irá realizar as seguintes tarefas:
 - 1) Importar o dataset em https://lirielly.github.io/Analise_Preditiva_Avancada/SVM_index.html
 - 2) Importar o dataset para o ambiente R.
 - 3) Fazer uma rápida exploração dos dados.
 - 4) Dividir a base em 70% para treino e 30% para teste do modelo.
 - 5) Treinar o modelo de regressão linear na base de treino.
 - 6) Validar a performance do modelo e determinar os principais preditores.
 - 7) Fazer o "scoring" do modelo para os dados na base de teste.
 - 8) Usar o modelo para determinar o credit rating com as informações no exercício 3

Redes Neurais – Por que usar?

Non-linear Classification

Regressão Logística multi polinomial

$$g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1 x_2 + \theta_4 x_1^2 x_2 + \theta_5 x_1^3 x_2 + \theta_6 x_1 x_2^2 + \dots)$$

E se tivermos mais do que somente X1 e X2 ? (mundo real)

Para 100 deles, chegaríamos a mais de 5000 termos !!!

Redes Neurais – Por que usar ?

You see this:

Redes Neurais – Por que usar ?

50 x 50 pixel images \rightarrow 2500 pixels n=2500 (7500 if RGB)

$$x = \begin{bmatrix} \text{pixel 1 intensity} \\ \text{pixel 2 intensity} \\ \vdots \\ \text{pixel 2500 intensity} \end{bmatrix}$$

Quadratic features ($x_i \times x_j$): \approx 3 million features

Redes Neurais

 x_1 , x_2 are binary (0 or 1)

x1 XNOR x2

$$y = x1 \text{ AND } x2$$

$$h(x) = g(-30 + 20*x1 + 20*x2)$$

x1	x2	h(x)
0	0	g(-30) -> 0
0	1	g(-10) -> 0
1	0	g(-30) -> 0 g(-10) -> 0 g(-10) -> 0
1	1	g(10) -> 1

$$h(x) = x1 \text{ AND } x2$$

$$y = x1 OR x2$$

$$h(x) = g(-10 + 20*x1 + 20*x2)$$

x1	x2	h(x)
0	0	g(-10) -> 0
0	1	g(10) -> 1
1	0	g(-10) -> 0 g(10) -> 1 g(10) -> 1
1	1	g(30) -> 1

$$h(x) = x1 OR x2$$

Redes Neurais

NOT X1

x 1	h(x)
0	g(10) -> 1
1	g(-10) -> 0

$$h(x) = NOT x1$$

0

Redes Neurais

1

1

0

1

h(x) = X1 XNOR X2

a2

20

Redes Neurais

E se objetivo da predição for uma classe multi-variada?

Ex: definir se a imagem é um cachorro, gato, macaco ou girafa?

https://playground.tensorflow.org/

- Com o recente sucesso do Machine Learning Bank of Boston no setor de crédito, o seu velho concorrente Goldman Data decide focar em captar novos clientes para se capitalizar. Para isso é preciso que o processo de abertura de conta seja o mais breve possível, assim surge a idéia de que o cadastramento de todos os dados seja feito baseado apenas no envio de uma foto do RG. Para isso você recebe a responsabilidade de desenvolver um OCR (Optical Character Recognition) para reconhecer dígitos e adicioná-los no formulário de cadastro do cliente.
- Para desenvolver seu modelo você irá realizar as seguintes tarefas:
 - 1) Importar o dataset BostonGoldman disponível em https://lirielly.github.io/Analise_Preditiva_Avancada/NeuralNetworks_index.html
 - 2) Importar o dataset para o ambiente R.
 - 3) Fazer uma rápida exploração dos dados.
 - 4) Dividir a base em 70% para treino e 30% para teste do modelo.
 - 5) Treinar uma rede neural reconhecimento de dígitos.
 - 6) Validar a performance dos modelos.
 - 7) Fazer o "scoring" do modelo para os dados na base de teste.
 - 8) Determinar o dígito dado no exercício 3 e verificar se o modelo acertou.

Algoritmo Genético (GA)

Algoritmos Genéticos (GAs) são algoritmos de busca estocástica inspirados por princípios básicos da evolução e seleção natural.

A busca pela solução ótima é tratado como um problema de competição em uma população evolutiva: a cada passo candidatos novos são gerados através da *reprodução sexuada* de indivíduos da população, estes candidatos são avaliados através de uma *função de aptidão*, finalmente o algoritmo escolhe quais indivídios da população devem *sobreviver* para rodada seguinte.

Algoritmo Genético (GA)

Algumas definições:

- População: coleção de possíveis soluções do problema.
- Espaço de busca: espaço onde estão as possíveis soluções do problema.
- Cromossomo: codificação de um indivíduo no espaço de busca. O cromossomo é formado de genes.

 Função de aptidão: função do cromossomo que se deseja otimizar.

Algoritmo Genético (GA)

- Fitness (ajuste): avalia a aptidão do indivíduo.
- Selection (seleção): este operador seleciona indivíduos da população para reprodução. Melhor o ajuste do indivíduo, mais vezes ele será selecionado.
- Crossover (recombinação): este operador gera um novo candidato a partir da reprodução sexuada dos pais, selecionados do passo anterior;
- Mutation (mutação): alteração aleatória em genes do novo candidato;
- Elitism (elitismo): os melhores candidatos dentre pais e filhos sobrevivem para nova geração.

Algoritmo Genético (GA)

Algoritmo Genético (GA) - Crossover

Gera dois novos indivíduos combinando os cromossomos dos pais. A *Taxa de crossover* determina se os filhos serão cópias dos pais ou haverá de fato troca de material genético.

Algoritmo Genético (GA) - Mutação

Altera aleatóriamente os genes. A *Taxa de mutação* determina a probabilidade de haver mutação no gene.

Algoritmo Genético (GA)

Os critérios mais comuns de parada são:

- número de gerações;
- perda de diversidade os indivíduos são muito parecidos, o que quer dizer que o máximo da função deve ter sido atingido;
- convergência não é observada uma melhora na aptidão média, mediana ou máxima da população.

Algoritmo Genético (GA)

- O grupo de e-commerce Amazonia está investido em soluções de data-driven marketing para customizar a experiência dos usuários em seu site. Para ser o mais eficiente possível o grupo de Data Scientist's da Amazonia decide desenvolver um modelo junto com a equipe de marketing para classificar a faixa de renda de um usuário qualquer. Assim na página inicial irão aparecer produtos de uma natureza mais premium ou genéricos.
- Para desenvolver seu modelo você irá realizar as seguintes tarefas:
 - Importar o dataset AmazonGA disponível em https://lirielly.github.io/Analise_Preditiva_Avancada/GA_index.html
 - 2) Importar o dataset para o ambiente R.
 - 3) Fazer uma rápida exploração dos dados.
 - 4) Dividir a base em 70% para treino e 30% para teste do modelo.
 - 5) Utilizar a técnica de algoritmo genético para reduzir o número de features do modelo
 - 6) Validar e comparar a performance dos modelos.
 - 7) Fazer o "scoring" do melhor para os dados nas bases de teste.

Case 1 - Individual

- A multinacional de varejo Waldata está querendo expandir a sua presença na américa latina e por isso decide firmar uma parceria com a FGV para desenvolver um modelo preditivo do valor de vendas.
- Para desenvolver seu modelo você irá realizar as seguintes tarefas:
 - 1) Importar o dataset VAREJO (*Retail.csv*) disponíveis em https://lirielly.github.io/Analise_Preditiva_Avancada/TCC_index.html
 - 2) Importar o dataset para o ambiente R.
 - 3) Fazer uma exploração detalhada dos dados. (Distribuições, valores faltantes, gráficos que melhor represente os dados, comentários e explicação da sua linha de raciocínio, etc.)
 - 4) Realizar o tratamento dos dados se julgar necessário.
 - 5) Dividir as bases em 70% para treino e 30% para teste do modelo. (Utilize sempre seed(314))
 - 6) Testar modelos de regressão para o valor de vendas das lojas:
 - Regressão Linear, Árvore de Decisão, Redes Neurais, etc.
 - 7) Validar a performance dos modelos (R² & Erros)
 - 8) Fazer o "scoring" dos modelos para os dados nas respectivas bases de teste, apontar qual foi o modelo que melhor performou e justificar a sua escolha do modelo por meio de uma das métricas de analise de performance dos modelos.

Case 2 – Grupo

- A multinacional de varejo Waldata está querendo expandir a sua presença na américa latina e por isso decide firmar uma parceria com a FGV para desenvolver um modelo preditivo que ajude a empresa decidir se ela irá investir em uma solução de "Targeted Advertising" que utilizará um modelo de "Machine Learning" para dizer se um cliente irá aderir ou não ao serviço premium.
- Para desenvolver seu modelo você irá realizar as seguintes tarefas:
 - 1) Importar o dataset MARKETING (*Marketing.zip*) disponíveis em https://lirielly.github.io/Analise_Preditiva_Avancada/TCC_index.html
 - 2) Importar o dataset para o ambiente R.
 - 3) Fazer uma exploração detalhada dos dados. (Distribuições, valores faltantes, gráficos que melhor represente os dados, comentários e explicação da sua linha de raciocínio, etc.)
 - 4) Realizar o tratamento dos dados se julgar necessário.
 - 5) Dividir as bases em 70% para treino e 30% para teste do modelo. (Utilize sempre seed(314))
 - 6) Testar modelos de classificação para verificar se o cliente irá aderir ao serviço:
 - Regressão Logística, Árvores de Decisão, SVM, Redes Neurais, etc.
 - 7) Validar a performance dos modelos (Matriz de Confusão, Acuracia, Recall, Precision, F1 Score, etc.)
 - 8) Fazer o "scoring" dos modelos para os dados nas respectivas bases de teste, apontar qual foi o modelo que melhor performou e justificar a sua escolha do modelo por meio de uma das métricas de analise de performance dos modelos.