The optimization problem can be formulated as

$$\min_{\substack{\lambda_0 \\ \lambda_k \ge 0, 1 \le k \le K}} \left[\max_{\pi} \mathbf{E} \sum_{t=0}^{T-1} \gamma^t \hat{\mathcal{R}}_{\lambda_0, \dots, \lambda_K}(s_t, \tilde{a}_t) + \sum_{k=1}^K \lambda_k \gamma^T \delta_k \right], \tag{0.1}$$

where the penalized reward function

$$\hat{\mathcal{R}}_{\lambda_0,\dots,\lambda_K}(s_t,\tilde{a}_t) = \mathcal{R}(s_t,a_t) - \lambda_0 \sum_{j=1}^J \mathcal{H}_j(s_t) - \sum_{k=1}^K \lambda_k \mathbf{1}(\mathcal{C}_{k,t}(\tilde{a}_t) = 1). \tag{0.2}$$

The parameters we need to choose before running:

- (i) hard-constraints (step-wise): h_j , $1 \le j \le J$
- (ii) soft-constraint (episode-wise) : c_k , $1 \le k \le K$
- (iii) soft-constraint-tolerance (optional): t_k , $1 \le k \le K$
- (iv) soft-violation-risk-threshold : r_k , $1 \le k \le K$
- (v) hard-lambda-learning- $rate: <math>\alpha$
- (vi) soft-lambda-learning-rate: β_k , $1 \le k \le K$
- (vii) number of policy exploitation (outer loop) : n_p
- (viii) number of updates on lambda (inner loop) n_{λ}
- (ix) $exploitation-steps: s_e$
- (x) lambda-update-steps : s_{λ}
- (xi) last-training-steps: s_l
- (xii) lambda-sample-size : m_{λ}

Algorithm 1: PPO algorithm on updating policy with fixed $\lambda = (\lambda_0, ..., \lambda_K)$

Input: h_j , $1 \le j \le J$; c_k , t_k , r_k , $1 \le k \le K$; number of steps s; policy parameter θ ; value function parameter ϕ .

for
$$k = 0, 1, ..., s - 1$$
 do

Generate a random environment (task) parameter σ .

Collect set of episode(s) D by sampling using policy π_{θ} in environment \mathcal{E}_{σ} .

Compute penalized rewards-to-go \mathcal{R}_t w.r.t. λ_k , $0 \le k \le K$.

Compute advantage estimates A_t based on the current value function V_{ϕ} .

Update the policy parameter by maximizing the PPO-Clip objective:

$$\theta \leftarrow \arg\max_{\theta'} \frac{1}{|D|T} \sum_{\tau \in D} \sum_{t=0}^{T-1} \min\left(\frac{\pi_{\theta'}(a_t|s_t)}{\pi_{\theta}(a_t|s_t)} A_t, g(\varepsilon, A_t)\right), \tag{0.3}$$

using MLP.

Update the value function parameter ϕ by minimizing the mean square error:

$$\phi \leftarrow \arg\min_{\phi'} \frac{1}{|D|T} \sum_{\tau \in D} \sum_{t=0}^{T-1} \min\left(V_{\phi'}(s_t) - \tilde{\mathcal{R}}_t\right)^2, \tag{0.4}$$

using MLP.

end for

Algorithm 2: Algorithm on updating on $\lambda = (\lambda_0, ..., \lambda_K)$

Input: Numbers of steps, sample size, and constraints.

Initialize $\lambda = 0$, policy parameter θ , and value function parameter ϕ .

for $i = 0, 1, ..., n_p - 1$ do

Apply Algorithm 1 with θ, ϕ, λ , and $s = s_e$.

for $n = 0, 1, ..., n_{\lambda} - 1$ do

Apply Algorithm 1 with θ , ϕ , λ , and $s = s_{\lambda}$.

for $m = 0, 1, ..., m_{\lambda} - 1$ do

Generate a random environment (task) parameter σ .

Collect an episode by sampling using policy π_{θ} in environment \mathcal{E}_{σ} .

Compute the number of hard violations H^m and the indicator C_k^m of soft violations, $1 \le k \le K$.

end for

Compute the gradient w.r.t. λ_k , $0 \le k \le K$:

$$\nabla_{\lambda} \leftarrow -\frac{1}{m_{\lambda}} \sum_{m=0}^{m_{\lambda}-1} (H^{m}, C_{1}^{m} - \delta_{1}, ..., C_{K}^{m} - \delta_{K}). \tag{0.5}$$

 $\lambda \leftarrow \lambda - \operatorname{diag}(\alpha, \beta_1, ..., \beta_K) \nabla_{\lambda}.$

end for

end for

Apply Algorithm 1 with θ, ϕ, λ , and $s = s_l$.