PSPM 1 MODEL PHYSICS PAPER ANSWER SCHEME SF015

No.	Solution	Marks
1	$X = \frac{1}{2}\rho v^2$	
	2	
	$[X] = \left[\frac{1}{2}\right] [\rho] [v^2]$	
	$=(1)\left[\frac{m}{V}\right]\left[v\right]^2$	
	$= (ML^{-3})(LT^{-1})^2$	G1
	$=ML^{-3}L^2T^{-2}$	
	$= ML^{-1}T^{-2}$	J1
2	(a)(i) Given $u = 0$ m s ⁻¹ , $a = 2$ m s ⁻² , $t = 5$ s, $v = ?$	
	Using $v = u + at$	
	$v = 0 + (2)(5) = 10 \text{ m s}^{-1}$	GJU1
	(ii) Using	
	$a = \Delta v - v_f - v_i$	
	$a_{ave} = \frac{\Delta v}{\Delta t} = \frac{v_f - v_i}{t_f - t_i}$	
	$=\frac{10-0}{15-0}$	G1
	$=0.67 m s^{-2}$	JU1
	(b) No.	J1
	Given $u = 16 \text{ m s}^{-1}$, $v = 0 \text{ m s}^{-1}$, $a = -3.5 \text{ m s}^{-2}$, $s'=?$	
	Using	
	$v^2 = u^2 + 2as$	
	$0 = 16^2 + 2(-3.5)s'$	G1
	s' = 36.57 m (> 36 m)	
	$\Delta s = s' - s$	K1
	=36.57-36=0.57 m	GJU1
	The car does not manage to avoid the collision as it crashes into the lorry and moves for 0.57 m before it stops.	
	(c) The ball is thrown horizontally => $\mathbf{u}_y = 0 \mathbf{m} \mathbf{s}^{-1}$	К1
	The initial velocity, $u = 16.0 \text{ m s}^{-1} = u_x$	
	The vertical component of the velocity of the ball when it hits the ground,	

	$\theta = \tan^{-1}(\frac{v_y}{v_x})$	
	$60.0^{\circ} = \tan^{-1}(\frac{v_{y}}{16.0})$	G1
	$v_y = 27.7 m s^{-1}$	
	(downward)	
	Then using	
	$v_{y}^{2} = u_{y}^{2} - 2gs_{y}$	
	$(-27.7)^2 = 0 - 2(9.81)H$	
	H = -39.1 m	GJU1
	Therefore, the height of the building is 39.1 m.	
3	(a) Given m = 10.0×10^{-3} kg, u = 0 m s^{-1} , v = 4.43 m s^{-1} , $\Delta t = 0.02 \text{ s}$	
	Using impulse-momentum theorem $m(v-u) = F\Delta t$	К1
	$(10.0 \times 10^{-3})(-4.43 - 0) = F(0.02)$	G1
	F = -2.215 N	JU1
	(downward)	
	(b)	
	m₁= 75 kg	
	$v_1 = 5.50 \text{ m s}^{-1}$ $v_2 = 5.50 \text{ m s}^{-1}$	
	$m_2 = 75 \text{ kg}$	
	I - 1112- 75 kg	
	$\sum P_{ix} = \sum P_{fx}$	
	$m_1 u_{1x} + m_2 u_{2x} = (m_1 + m_2) v_x$	
	$75(5.50) + 75(-5.50\sin 30^{\circ}) = (75 + 75)v_{x}$	KG1
	$v_x = 1.375 m s^{-1}$	
	$\sum P_{iy} = \sum P_{fy}$	
	$m_1 u_{1y} + m_2 u_{2y} = (m_1 + m_2) v_y$	
	$0 + 75(5.50\cos 30^\circ) = (75 + 75)v_y$	KG1
	$v_y = 2.38 m s^{-1}$	
	Therefore, the magnitude of velocity after the collision is	
	$v = \sqrt{(v_x)^2 + (v_y)^2}$	
	$=\sqrt{(1.375)^2+(2.38)^2}$	KG1
	$= 2.75 m s^{-1}$	JU1

	(ii)	
	$P_{motor} = Fv \cos \theta$ $= Tv \cos 0^{\circ}$ $= (mg \sin \theta) v$ $= (70)(9.81)\sin 30^{\circ} (2.0)$ $= 686.7W$ $P_{motor} = \frac{W_{motor}}{t}$ $= \frac{20.6 \times 10^{3}}{30}$ $= 686W$	G1 JU1
5	(a) At the lowest point,	
	using my ²	
	$F_C = \frac{mv^2}{r}$ $T - mg = \frac{mv^2}{l}$	
	$T - ma = \frac{mv^2}{r}$	
		K1
	$T = \frac{mv^2}{I} + mg$	J1
	(b) $x = 0.65 - 0.50$	K1
	= 0.15 m	
	$F_C = \frac{mv^2}{r}$	
	$T = \frac{m(r\omega)^2}{}$	
	r	
	$kx = mr\omega^2$	K1
	$40(0.15) = (0.020)(0.65)\omega^2$	
6	$\omega = 21.5 \ rad \ s^{-1}$ (a) Given m = 0.50 kg, A = 0.20 m, T = 1.6 s	GJU1
	(i) For spring-mass system, the period	
	$T = 2\pi \sqrt{\frac{m}{k}}$	
	$T^2 = 4\pi^2(\frac{m}{k})$	
	$(1.6)^2 = 4\pi^2 \left(\frac{0.50}{k}\right)$	
	$k = 7.71 \ N \ m^{-1}$	GJU1
	(ii) When $y = 0$ m, $v = ?$	
	Using $v = \omega \sqrt{A^2 - y^2} and \omega = \frac{2\pi}{T}$	
	$v = \frac{2\pi}{T} \sqrt{A^2 - y^2}$	К1
	$= \frac{2\pi}{1.6} \sqrt{0.20^2 - 0}$	
	$ \begin{array}{c} 1.6 \\ = 0.785 m s^{-1} \end{array} $	GJU1
	- 0.703 III S	

(iii) At the lowest point, $y = -A$, $a = ?$	
$a = -\omega^2 y$	
$(2\pi)^2$	
$=-(\frac{2\pi}{T})^2 y$	
$=-(\frac{2\pi}{1.6})^2(-0.20)$	
$= 3.08 m s^{-2}$	GJU1
(upward and towards the equilibrium position)	J1
(iv)	
s(m)	
ا ا ا	
0 0-8 1-6 2-4/3-2 t(s)	
-0.20	
	D2
Correct label of x and y axes: D1 Correct shape: D1	
(v) The period of oscillation will beome shorter.	J1
$T \propto \sqrt{m}$	K1
When m is reduced, the period T will be reduced as well.	K1
(b) Given $L_0 = 60.0 \text{ cm} = 0.600 \text{ m}$, $m = 10.0 \text{ g} = 0.0100 \text{ kg}$, $v = 210 \text{ m s}^{-1}$	
(i) A A A	
$\lambda = \frac{2l}{3}$	K1
	GJU1
$= \frac{2(0.600)}{3} = 0.400 m$	0,01
(ii)	
ANANA	
N X YN	D2
All maritimes of Nilahallad as weather DA	
All positions of N labelled correctly: D1 All positions of AN labelled correctly: D1	
7 m. positions of 7 m. nationed contrast, 7 = 2	
(iii)	
$f = \frac{v}{\lambda}$	
$=\frac{210}{0.400}=525\ Hz$	GJU1
0.400	

	(iv)	
	$v = \sqrt{\frac{T}{\mu}}$ and $\mu = \frac{m}{l}$	
	,	
	$v = \sqrt{\frac{Tl}{m}}$	K1
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	$v^2 = \frac{Tl}{T}$	
	m Tr(0, co)	
	$(210)^2 = \frac{T(0.60)}{10.0 \times 10^{-3}}$	G1
	T = 735 N	JU1
	T = 755 IV (c)(i)	701
	$y = 5\sin[2(3)]\cos[3(1.0)]$	
	=1.38 m	GJU1
	(ii)	
	$A' = 5\cos 3x$	
	5[2/ ^T)] 500 ···	GJU1
	$=5\cos[3(\frac{\pi}{3})] = -5.00 m$	
	(iii)	
	$x = \frac{1}{2}\lambda$ and $k = \frac{2\pi}{\lambda} = 3$	
	2 1	
	$x = \frac{1}{2}(\frac{2\pi}{k})$	K1
	$=\frac{1}{2}(\frac{2\pi}{3})$	
	=1.05 m	GJU1
7	(a) (i)	
	$Y = \frac{FL_o}{}$	
	$A\Delta L$	
	$=\frac{(100)(2.0)}{}$	G1
	$=\frac{(2.0\times10^{-3})(1.0\times10^{-6})}{(2.0\times10^{-3})(1.0\times10^{-6})}$	GI
	$=1.00\times10^{11} Pa$	JU1
	(ii)	
	$U = \frac{1}{2}F\Delta L$	
	$=\frac{1}{2}(100)(2.0\times10^{-3})$	
	= 0.100 J	GJU1
	(b) Given $A_0 = 1.0 \text{ cm}^3$, $T_0 = 150^{\circ}\text{C}$, $T = 30^{\circ}\text{C}$, $\beta = 2\alpha = 2(1.1 \times 10^{-5}) = 2.2 \times 10^{-5} \text{ K}^{-1}$	
	Using	
	$A = A_o[1 + \beta(T - T_o)]$	
	$= (1.0)[1 + (2.2 \times 10^{-5})(30 - 150)]$	G1
	$=0.997 cm^2$	JU1
	(c) Given $L_X = L_Y$, $A_X = A_Y$, , , ,

	$\left(\frac{Q}{t}\right)_{X} = \left(\frac{Q}{t}\right)_{Y}$	K1
	$-k_1 A_X \left(\frac{\Delta T_X}{L_Y}\right) = -k_2 A_Y \left(\frac{\Delta T_Y}{L_Y}\right)$	
	$-k_1 A_X \left(\frac{80-100}{L_Y}\right) = -k_2 A_Y \left(\frac{20-80}{L_Y}\right)$	G 1
	$k_1(-20) = k_2(-60)$	
	$\frac{k_1}{k_2} = \frac{60}{20} = 3$	J1
8	(a) Given n= 0.25 mol, T = 27 + 273.15 = 300.15 K (i)	
	$\langle K_{tr} \rangle = \frac{3}{2}kT$	
	$= \frac{3}{2}(1.38 \times 10^{-23})(300.15) = 6.21 \times 10^{-21} J$	GJU1
	(ii) f = 5	K1
	$U = \frac{f}{2} nRT$	
	$= \frac{5}{2}(0.25)(8.31)(300.15)$	
	$= \frac{1.56 \times 10^3}{2} $	GJU1
	(b) (i)	
	$P_1V_1 = P_2V_2$ $(1.0 \times 10^5)(0.12) = P_2(0.24)$	
	$P_2 = 0.5 \times 10^5 \ Pa$	GJU1
	(ii)	
	$\frac{P_2}{T_2} = \frac{P_3}{T_3}$	
	_ *	
	$\frac{0.5 \times 10^5}{300} = \frac{1.0 \times 10^5}{T_3}$	
	$T_3 = 600 K$	GJU1
	(iii)	
	$W = nRT \ln(\frac{V_2}{V_1}) and PV = nRT$	
	$W = P_1 V_1 \ln(\frac{V_2}{V_1}) or P_2 V_2 \ln(\frac{V_2}{V_1})$	К1
	$= (1.0 \times 10^{5})(0.12 \times 10^{-6}) \ln(\frac{0.24}{0.12})$	G1
	$=8.32\times10^{-3} J$	JU1

