<u>מד"ר 2 2019 – פתרון ממ"ן 12</u>

שאלה 1

לכל

א. נחשב פולינום אופייני ונקבל $(1-\lambda)$, כלומר הערכים העצמיים הם בריבוי 1 ו- 0 בריבוי

$$J = egin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
 אימה היא גיורדן המתאימה איא , 2

ולכן

$$J^n = egin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 מתקיים $n \ge 2$

$$P$$
 כאשר $e^{tA}=Pe^{tJ}P^{-1}$ מתקיים $e^{tJ}=\sum_{n=0}^{\infty}rac{t^nJ^n}{n!}=I+tJ+egin{pmatrix}\sum_{n=2}^{\infty}rac{t^n}{n!}&0&0\\0&0&0\\0&0&0\end{pmatrix}=egin{pmatrix}e^t&0&0\\0&1&t\\0&0&1\end{pmatrix}$

.
$$P = egin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & -1 \end{pmatrix}$$
 היא המטריצה כך ש- $J = P^{-1}AP$ - היא המטריצה כך ה

 $x(t)=e^{tA}x_0$ היא מטריצה יסודית עבור המערכת, ולכן הפתרון לבעיית ההתחלה הוא e^{tA} ב. e^{tA} אינה חסומה ב- $[0,\infty)$, ולכן יש לבדוק האם עבור ערכים מסוימים של e^{tA} אפשר לקבל פתרון חסום)

עבור
$$x\left(t
ight)=Pe^{tI}P^{-1}x_0=Pe^{tI}egin{pmatrix}0\\ eta+\gamma\\ \gamma\end{pmatrix}$$
 מתקיים $lpha=0$ -ש כך עבור $lpha=0$ כך שי $lpha=0$ מתקיים $lpha=0$

ואז
$$e^{tJ} \begin{pmatrix} 0 \\ \beta \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ \beta \\ 0 \end{pmatrix} \qquad \text{tight } \qquad \gamma = 0 \qquad \text{tight } \qquad e^{tJ} \begin{pmatrix} 0 \\ \beta + \gamma \\ \gamma \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & t \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ \beta + \gamma \\ \gamma \end{pmatrix}$$

המקיים
$$x_0 = \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}$$
 כלומר עבור חסום. כלומר קבוע ובפרט הפתרון קבוע הפתרון כלומר עבור $x(t) = P \begin{pmatrix} 0 \\ \beta \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ \beta \\ 0 \end{pmatrix}$

. t לכל חסום ההתחלה הפתרון לבעיית הפתרון לכל , $lpha=\gamma=0$

עבור
$$x(t) = \begin{pmatrix} e^t \\ -2-t \\ e^t+1 \end{pmatrix}$$
 נקבל $x_0 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ ועבור $x(t) = \begin{pmatrix} 0 \\ 2+t \\ -1 \end{pmatrix}$ ופתרונות אלו $x_0 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$

אינם חסומים. מלינאריות, עבור עבור $x_0 = \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}$ אינם מלינאריות, אינם מלינאריות, אינם מלינאריות,

.
$$t \geq 0$$
 באשר אינו חסום כאשר $\alpha \neq 0$ הרכיב הראשון אינו חסום כאשר . $x(t) = \alpha \begin{pmatrix} e^t \\ -2 - t \\ e^t + 1 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + \gamma \begin{pmatrix} 0 \\ 2 + t \\ -1 \end{pmatrix}$

כאשר $\gamma=\alpha$ אז הרכיב השני הוא $(\gamma-\alpha)t+const$ והוא אינו חסום אלא אם כן $\gamma\neq 0$ אולם משר $\gamma\neq 0$ אז בהכרח גם $\alpha\neq 0$ ולכן הרכיב הראשון אינו חסום.

. $\alpha = \gamma = 0$ אםם $t \ge 0$ כלומר בסכייה קיבלנו כי הפתרון חסום בתחום

$$x(t) = \alpha \begin{pmatrix} e^t \\ -2-t \\ e^t+1 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + \gamma \begin{pmatrix} 0 \\ 2+t \\ -1 \end{pmatrix}$$
 חסום. לכן הפתרון הפתרון $t \leq 0$ חסום $t \leq 0$

. $\alpha = \gamma$ אםם הרכיב השני שלו חסום, כלומר אםם

ולכן הפתרון לבעיית ,
$$\left(e^{tA}\right)^{-1}=e^{-tA}$$
 נזכור כי $g\left(t\right)=egin{pmatrix}t\\0\\t\end{pmatrix}$ ולכן הפתרון לבעיית . $g\left(t\right)=a$

נחשב ונקבל . $x(t) = \int\limits_0^t e^{tA} e^{-sA} g\left(s\right) ds = \int\limits_0^t e^{sA} g\left(t-s\right) ds$ נחשב ההתחלה

$$x(t) = \left(\int_{0}^{t} e^{s}(t-s)ds\right) \begin{pmatrix} 1\\0\\1 \end{pmatrix} = \left(e^{t}-t-1\right) \begin{pmatrix} 1\\0\\1 \end{pmatrix}$$

שאלה 2

א. x'=Ax מטריצה יסודית של המערכת x'=Ax לכן מווריאציה של פרמטרים נקבל כי הפתרון הכללי $x(t)=e^{tA}x(0)+\int\limits_0^t e^{tA}e^{-sA}g\left(s\right)ds=e^{tA}x(0)+\int\limits_0^t e^{sA}g\left(t-s\right)ds$ הוא $x'=Ax+g\left(t\right)$

ב. נשים לב שאפשר להתייחס לפונקציה הקבועה A כפונקציה מחזורית עם מחזור T. לכן לפי האלטרנטיבה של פרדהולם, למערכת $x' = Ax + g\left(t\right)$ אםם מתקיים

.
$$y'=-A^*y$$
 המערכת הצמודה של פתרון מחזורי פתרון לכל פתרון $\int\limits_0^T y^*ig(tig)gig(tig)dt=0$

.(כאשר $\xi\in\mathbb{R}^n$ כאשר) אבל פתרונות המערכת הצמודה הם $e^{-A^*t}\xi$

הערכים העצמיים של A^* הם הצמודים של הערכים העצמיים של A^* הם הצמיים של הערכים העצמיים של A^* הם הצמיים של שלילי. לכן לכל ערכים העצמיים של $-A^*$ יש חלק ממשי חיובי. כמסקנה ממשפט 3.3.6, הפתרון שלילי. לכן לכל ערכים העצמיים של $y(t)=\sum_j p_j(t)e^{\lambda_jt}$ הוא מהצורה $y'=-A^*y$ כאשר הסכום הוא על הע"ע הכללי של $y'=-A^*y$

וקטור שרכיביו פולינומים. כיוון שהחלק הממשי של כל λ_j חיובי, פתרונות אלו אינם $p_j(t)$ מחזוריים.

כלומר התנאי של האלטרנטיבה של פרדהולם מתקיים באופן ריק, לכן קיים פתרון מחזורי, אותו כלומר התנאי של האלטרנטיבה של פרדהולם $.\, \phi^*$ נסמן

נוכיח כי לכל שני פתרונות φ,ψ של המערכת מתקיים 0=0 של המערכת פתרונות φ,ψ של הפרונות הדרוש עבור המקרה ש- $\psi=\varphi^*$ וכן ינבע שהפתרון המחזורי הוא יחיד (כי אם ההפרש בין פתרונות מחזוריים הוא $\varepsilon>0$ בנקודה כלשהי t, אז הוא שווה ל- $\varepsilon>0$ לכל t+n ולכן לא מתכנס לאפס באינסוף).

. $\varphi(t)-\psi(t)=e^{At}\left(\varphi(0)-\psi(0)\right)$ פיים מתקיים בסעיף א, מתקיים הכללי שמצאנו הכללי שמצאנו בסעיף א. $\lim_{t\to\infty}e^{tA}=0$ בעלי חלק ממשי שלילי, מתקיים A בעלי הערכים העצמיים של

שאלה 3

פתרונות המשוואה
$$egin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix}$$
 בתרונות המשוואה $c_1 \begin{pmatrix} x_1(t) \\ x_2(t) \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} 0 \\ 0 \\ x_3(t) \\ x_4(t) \end{pmatrix}$ פתרונות המשוואה $x' = Ax$ הם מהצורה $x' = Ax$

$$x' = \begin{pmatrix} 2 & -5 \\ 1 & -2 \end{pmatrix}$$
 בתרון של $\begin{pmatrix} x_3(t) \\ x_4(t) \end{pmatrix}$ -ו $x' = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$

נשתמש במה שידוע לנו על צורה של פתרונות של מערכות הומוגניות במקדמים קבועים במישור. במה שידוע לנו על צורה של פתרונות של $x'=\begin{pmatrix} 2 & -5 \\ 1 & -2 \end{pmatrix}$ הם הערכים העצמיים של המערכת $x'=\begin{pmatrix} 2 & -5 \\ 1 & -2 \end{pmatrix}$ הם הערכים העצמיים של המערכת של הפתרון חסום.

 $a\pm ib$ הם $x'=egin{pmatrix} a & -b \\ b & a \end{pmatrix}$ המערכת של המערכת העצמיים של המערכת

עבור a=0,b=0 כל הפתרונות קבועים ובפרט חסומים.

עבור $a=0,b\neq 0$ הפתרונות הם מהצורה "מרכזי".

עבור $a \neq 0, b \neq 0$ הפתרונות הם מהצורה "ספירלה", ואינם חסומים.

עבור הם מהצורות הם לכן הפתרונות בריבוב 2, לכן הפתרונות הם מהצורה היא סקלרית – ערך עצמי אחד בריבוב 2, לכן הפתרונות הם מהצורה עבור $a \neq 0, b = 0$ "צומת" ואינם חסומים.

a=0 סיכום, הפתרונות חסומים על כל הישר אםם

שאלה 4

הם המעריכים הפתרון הכללי של המערכת הוא מהצורה $\rho_1, ..., \rho_s$ כאשר כא $x(t) = \sum_{j=1}^s p_j\left(t\right)e^{\rho_j t}$ הם המערכת הוא הפתרון הכללי המערכת הוא מהצורה

ייפולינומים של המערכת שרכיביה וקטורית פונקציה ו $p_{j}\left(t\right)$ ו- ($s\leq2$ זה במקרה הם ייפולינומים של המערכת במקדמים מחזוריים.

הפתרון הכללי, בהכרח הפתרון לנומר כדי להתאים כדי להתאים, $\binom{\cos t - \sin t}{\cos t + \sin t}e^t$ אוח הפתרון הנתון הנתון הוא

 e^{π} המעריכים האופייניים הוא 1, והכופל האופייני המתאים הוא

נמצא את שאר המעריכים האופייניים (אם יש). תהי $\Phi(t)$ מטריצה יסודית של המערכת ונניח $\Phi(t)\Phi^{-1}(0)$ אתם זה אינו המצב נתבונן במטריצה $\Phi(t)\Phi^{-1}(0)$ שגם היא מטריצה יסודית). אנו יודעים כי במצב זה, הכופלים האופייניים של המערכת הם הערכים העצמיים של $\Phi(t)=\det\Phi(t)$. הדטרמינטה של $\Phi(t)=\det\Phi(t)$ היא מכפלת הערכים העצמיים שלה. נסמן $\Phi(t)=\det\Phi(t)$ זהו הוורנסקיאן של המערכת.

עבור מטריצה יסודית של מערכת לינארית אינארית מערכת של $\Phi(t)$ של יסודית עבור עבור עבור אנו של של $\Phi(t)$

(נוסחת ליוביל).
$$W(t) = W(0) \exp \left(\int\limits_0^t \mathrm{tr} A(s) ds\right)$$
 (נוסחת ליוביל).

בפרט
$$W\left(t\right)$$
 ולכן $\operatorname{tr}\left(A(t)\right)\equiv 0$ כלומר הפרט , $A(t)=\begin{pmatrix} -\sin 2t & \cos 2t-1 \\ \cos 2t+1 & \sin 2t \end{pmatrix}$ - במערכת שלנו - $W\left(\pi\right)=W\left(0\right)=\det I=1$

לסיכום ידוע לנו כי e^π הוא כופל אופייני, כי שלכל היותר שני כופלים אופייניים שונים, וכי הסיכום ידוע לנו כי e^π , לכן הכופלים האופייניים של המערכת הם e^π , לכן הכופלים האופייניים של המערכת הם

, ליוביל, עוסחת לפי נוסחת אפי ונסמן . $W(t) = \det \Phi(t)$ נוסחת של המערכת, יסודית של מטריצה של מטריצה ליוביל,

לא $W\left(t
ight)$ אם האינטגרל בתוך הסוגריים אינו חסום, אז אם או $W\left(t
ight)=W\left(1
ight)\exp\left(\int\limits_{1}^{t}\mathrm{tr}A\left(s
ight)ds
ight)$

פתרונות של המשוואה הוא מהצורה $x(t) = \Phi(t) \xi$ כאשר ξ וקטור קבוע. אם כל הפתרונות חסומים ב $[1,\infty)$, אז בפרט כל עמודות המטריצה חסומות ב $[1,\infty)$ ולכן כל קואורדינטה של המטריצה חסומה שם. אולם אז גם W(t) חסומה (סכום סופי של מכפלות סופיות של הקואורדינטות). לכן בהנחות השאלה, יש פתרון שאינו חסום.

שאלה 5

נוכיח כי פונקציה זו מקיימת את בעיית ההתחלה $f\left(0\right)=I$, f'=Af התחלה את בעיית את מקיימת את מקיימת פונקציה זו מקיימת את בעיית ההתחלה $e^{A}=f\left(1\right)$ ובפרט ובפרט $f\left(t\right)=e^{tA}$ סיים מה שצריך להוכיח.

$$f'(t) = e^{at} \left[af(t) + \Delta \sinh(\Delta t)I + \cosh(\Delta t) \begin{pmatrix} d & b \\ c & -d \end{pmatrix} \right]$$
 : נחשב

$$. Af(t) = e^{at} \left[\cosh(\Delta t) \begin{pmatrix} a+d & b \\ c & a-d \end{pmatrix} + \frac{\sinh(\Delta t)}{\Delta} \begin{pmatrix} \Delta^2 + ad & ab \\ ac & \Delta^2 - ad \end{pmatrix} \right]$$

פתיחת סוגריים והשוואה מראה כי אכן מתקיימת המשוואה , $f'\!=\!A\!f$ וכן מתקיים תנאי ההתחלה.

. בינ אפשר להציב אפשר להציב מלומר
$$\Delta=2\sqrt{2}$$
 כלומר $a=3, d=-1$, $A=\begin{pmatrix} 2 & 1 \\ 7 & 4 \end{pmatrix}$ עבור להציב ולחשב.

$$\begin{pmatrix}\lambda&1\\0&\lambda\end{pmatrix}$$
 או מהצורה או $\begin{pmatrix}\lambda_1&0\\0&\lambda_2\end{pmatrix}$ או היא מטריצת ג'ורדן אז היא מהצורה איז מהצורה ל.

נעיב ונקבל . $\Delta=\frac{1}{2}\left|\lambda_1-\lambda_2\right|=\left|d\right|$ ולכן ולכך $d=\frac{1}{2}\left(\lambda_1-\lambda_2\right)$ נציב ונקבל

$$e^{A} = e^{a} \left[\cosh\left(\left|d\right|\right) I + \frac{\sinh\left(\left|d\right|\right)}{\left|d\right|} \begin{pmatrix} d & 0 \\ 0 & -d \end{pmatrix} \right] = e^{a} \begin{pmatrix} \cosh\left(d\right) + \sinh\left(d\right) & 0 \\ 0 & \cosh\left(d\right) - \sinh\left(d\right) \end{pmatrix} = e^{a} \begin{pmatrix} e^{d} & 0 \\ 0 & e^{-d} \end{pmatrix}$$

נשים לב שקיבלנו (עשינו כאן שימוש בעובדה ש- cosh פונקציה פונקציה אי-זוגית). נשים לב שקיבלנו (עשינו כאן שימוש בעובדה ש- לבא פונקציה אוגית אוגית , $\begin{pmatrix} e^{\lambda_1} & 0 \\ 0 & e^{\lambda_2} \end{pmatrix}$ או התוצאה הצפויה עבור מטריצה אלכסונית.

במקרה השני, $e^A=e^{\lambda}igg[I+igg(0 & 1 \ 0 & 0 igg)igg]=e^{\lambda}igg(1 & 1 \ 0 & 1 igg)$ וגם זו התוצאה הצפויה $d=\Delta=0 \quad ,$ עבור בלוק גוירדן 2×2

ד. נבדוק האם יתכן $e^A=\begin{pmatrix} -\alpha & 0 \\ 0 & \beta \end{pmatrix}$ עבור $e^A=\begin{pmatrix} -\alpha & 0 \\ 0 & \beta \end{pmatrix}$ עבור האם יתכן $e^A=\frac{\sinh\left(\Delta\right)}{\Delta}$ אולכן היא מתאפסת אםם $e^A=\frac{\sinh\left(\Delta\right)}{\Delta}$ באופן דומה הקואורדינטה ה- $e^A=\frac{\sinh\left(\Delta\right)}{\Delta}$ אולכסונית אםם $e^A=\frac{\sinh\left(\Delta\right)}{\Delta}$ עצמה אלכסונית. אבל אז כפי שראינו בסעיף ג'י, $e^A=\frac{e^A}{\Delta}$ כלומר על האלכסון מופיעים מספרים חיוביים בלבד. לכן לא קיימת מטריצה $e^A=\begin{pmatrix} e^{a+d} & 0 \\ 0 & e^{a-d} \end{pmatrix}$ ממשית $e^A=\frac{e^{a+d}}{\Delta}$ המקיימת את הדרוש.

שאלה 6

א. השיוויון הראשון שמתבקשים להוכיח הוא פשוט שימוש בכלל שרשרת ובמשפט היסודי של א. השיוויון הראשון שמתבקשים להוכיח הוא פשוט שימוש בכלל שרשרת נקבל על המשו הנייל, בשל החדוייא. אם נסמן $\Phi(t) = \exp\left(A\int\limits_0^t a(s)ds\right)$ וזה בדיוק אומר שהמטריצה שומר שהמטריצה של היא פתרון מטריציוני של המשוואה $\frac{d}{dt}\Phi(t) = a(t)A\Phi(t)$ זה בדיוק אומר שהמטריצה יסודית מספיק להוכיח כי היא הפיכה לכל t. אבל זה בעון לכל מטריצה מהצורה t

 $a(t)=\cos t$ עבור . $T=2\pi$ עבור . $A=\begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$ נקבל הערכים העצמיים של $a(t)=3+\cos t$. המחזור הוא $a(t)=3+\cos t$. עבור $a(t)=3+\cos t$ נקבל $a(t)=3+\cos t$ ולכן הכופל האופייני היחיד הוא 1 (ומעריך מתאים הוא $a(t)=3+\cos t$. עבור $a(t)=3+\cos t$ ולכן המעריכים האופייניים הם $a(t)=3+\cos t$ והכופלים האופייניים הם a(t)=a(t)=a(t)

P(t) כאשר P(t) מחזורית ו- R קבועה, אז אנו יודעים כי $\Phi(t) = P(t)e^{tR}$ קבועה, אז אנו יודעים כי $\Phi(T) = \exp(\alpha A)$ ו- $\Phi(0) = I$ שלנו $R = \frac{1}{T}\log\left(\Phi^{-1}(0)\Phi(T)\right)$. $R = \frac{\alpha}{T}A = 3A$

במקרה הזה יש שני מעריכים אופייניים שונים והמערכת היא ממד 2, לכן נקבל כי הפתרון הכללי במקרה הזה יש שני מעריכים אופייניים שונים q_1,q_2 כאשר באפר $P(t)\Big[c_1q_1+c_2q_2e^{12t}\Big]$ המתאימים הוא מהצורה $q_1=\begin{pmatrix}1\\-1\end{pmatrix},q_2=\begin{pmatrix}1\\1\end{pmatrix}$ בהתאמה. כלומר, $q_1=\begin{pmatrix}1\\1\end{pmatrix}$

-ב באת תנאי ההתחלה $egin{pmatrix} 0 \\ 1 \end{pmatrix} = xig(0ig) = Pig(0ig) ig[c_1q_1+c_2q_2ig] = c_1igg(1 \\ -1 ig) + c_2igg(1 \\ 1 ig) + c_2igg(1 \\ 1 ig)$ (השתמשנו כאן ב- $c_1 = -\frac{1}{2}, c_2 = \frac{1}{2} \text{ (if } = \Phiig(0) = Pig(0)$

 $A(2\pi n) = -rac{1}{2}inom{1}{1} + rac{1}{2}inom{1}{-1}e^{24\pi n}$ עבור $A(2\pi n) = -rac{1}{2}inom{1}{1} + rac{1}{2}inom{1}{-1}e^{24\pi n}$ כלומר נקבל , P(t) = P(0) = I מתקיים A(t) = -1