Exercise Sheet 4

Deadline: 14.11.22, 12:00pm

Exercise 1 (Morphological Operations).

In the lecture, we introduced the closing operation • and the opening operation o. We want to prove some properties of these two operations in this exercise.

- a) Let $A, B \subset \mathbb{R}^n$. Show that $A \circ B \subset A$ and $A \subset A \bullet B$.
- b) Prove the following statement: If $A_1 \subset A_2 \subset \mathbb{R}^n$, we have

$$A_1 \oplus B \subset A_2 \oplus B$$
 and $A_1 \ominus B \subset A_2 \ominus B$.

Use this property and part a) to verify the equations

$$(A \bullet B) \bullet B = A \bullet B$$
 and $(A \circ B) \circ B = A \circ B$.

Exercise 2 (Square Detection).

Suppose you are given a B/W image A which contains black squares on a white background (see figure below). Write a function

that counts the number of black squares in A. The output should be an row vector N and the entry N(s) should be the number of squares with size $s \times s$ for $s \in \mathbb{N}$. You can assume that all squares in the image have a side length which is less than or equal to 20 pixels. Moreover, you are allowed to use the following built-in Matlab / Octave functions: imerode, imdilate, imopen, imclose, strel

Exercise 3 (Discrete Convolution of Finite Sequences).

In this exercise, we want to take a look at the convolution of finite sequences. For infinite sequences from the space

$$\ell^{1}(\mathbb{Z}) = \left\{ x = (x_{n})_{n \in \mathbb{Z}} \left| ||x||_{1} = \sum_{n \in \mathbb{Z}} |x_{n}| < \infty \right. \right\},$$

the convolution $*:\ell^1(\mathbb{Z})\times\ell^1(\mathbb{Z})\to\ell^1(\mathbb{Z})$ is defined by the formula

$$(x * y)_n := \sum_{k \in \mathbb{Z}} x_k \cdot y_{n-k}$$
 for $n \in \mathbb{Z}$

for all $x, y \in \ell^1(\mathbb{Z})$. However, we will mostly deal with finite data in practical cases, so that we want to take a look at suitable convolution methods for finite sequences.

a) Given a finite sequence $x = (x_1, ... x_l)$ with $L \in \mathbb{N}$, we can define the zero-padded version $x^{(0)} \in \ell^1(\mathbb{Z})$ of x as

$$x_n^{(0)} = \begin{cases} x_n & \text{if } n \in \{1, ..., L\} \\ 0 & \text{if } n \in \mathbb{Z} \setminus \{1, ..., L\}. \end{cases}$$

For finite sequences $x = (x_1, ... x_L)$ and $y = (y_1, ... y_M)$, we can perform a convolution by computing the convolution $x^{(0)} * y^{(0)}$. Show that we have

$$(x^{(0)} * y^{(0)})_n = 0$$
 for all $n \in \mathbb{Z} \setminus \{2, ..., L + M\}.$

b) In the previous part, we saw that the support of the convolution $x^{(0)} * y^{(0)}$ is contained in the set $\{2,...,L+M\} \subset \mathbb{Z}$. Since we want the support of the convolution to be in $\{1,...,L+M-1\}$, we consider the **linear convolution** \star which is defined as

$$(x \star y)_n := \sum_{k=1}^{L} x_k \cdot y_{n-k+1}^{(0)}$$
 for all $n \in \{1, ..., L+M-1\}$.

Prove the following equation:

$$(x \star y)_n = (x^{(0)} * y^{(0)})_{n+1}$$
 for all $n \in \{1, ..., L + M - 1\}$.

c) Now assume that we have two finite sequences $\tilde{x}=(\tilde{x}_1,...\tilde{x}_N)$ and $y=(\tilde{y}_1,...\tilde{y}_N)$ with the same length. The **circular convolution** $\tilde{x}\otimes\tilde{y}$ of \tilde{x} and \tilde{y} is then defined as

$$(\tilde{x} \otimes \tilde{y})_n = \sum_{k=1}^N \tilde{x}_k \cdot \tilde{y}_{n-k+1}^{(p)},$$

where $\tilde{y}^{(p)}$ is the periodic continuation of \tilde{y} , i.e.

$$\tilde{y}_n^{(p)} = \tilde{y}_{(n-1)\%N+1}$$
 with $(n-1)\%N = (n-1) \bmod N$ for all $n \in \mathbb{Z}$.

For the sequences $x = (x_1, ... x_L)$ and $y = (y_1, ... y_M)$, where we might have $L \neq M$, we consider the zero-padded versions \tilde{x}, \tilde{y} of length L + M - 1 given by

$$\tilde{x}_n = \begin{cases} x_n & \text{if } n \in \{1, ..., L\} \\ 0 & \text{if } n \in \{L+1, ... L+M-1\} \end{cases} \text{ and } \tilde{y}_n = \begin{cases} y_n & \text{if } n \in \{1, ..., M\} \\ 0 & \text{if } n \in \{M+1, ... L+M-1\}. \end{cases}$$

Show that $x \star y = \tilde{x} \otimes \tilde{y}$ holds in this case, which means that we can compute the linear convolution of x and y by a circular convolution.