

Relatório 06 Redes Neurais Artificiais Multi Layer Perceptron

Cristiano Lopes Moreira

Matrícula: 119103-0

Aluno		RA/Matrícula	Professor	Ti	ро
Cristiano Lopes Moreira		119103-0	Dr Reinaldo Bianchi	Relatório de implementação	
Data	Versão	Turma	Nome do arquivo		Página
12/12/2019	1	2º. Semestre de 2019	PEL_208_Relatório_06_Cristiano_Moreira.doc		1 (32)

Relatório 06

Sumário

1.	Introdução3
2.	Desenvolvimento teórico
3.	Proposta de implementação Algoritmo Multi Layer Perceptron 8
4.	Experimentação e Resultados
4.1.	Dados Porta Logica XOR
4.2.	Iris Fisher
4.3.	Seed
4.4.	Breast Cancer Wisconsin (Original) Data Set
5.	Conclusão
6.	Referências

Aluno		RA/Matrícula	Professor	Ti	ро
Cristiano Lopes Moreira		119103-0	Dr Reinaldo Bianchi	Relatório de implementação	
Data	Versão	Turma	Nome do arquivo		Página
12/12/2019	1	2º. Semestre de 2019	PEL_208_Relatório_06_Cristiano_Moreira.doc		2 (32)

1. Introdução

"Cybernetics and Romanticism

Perceptrons have been widely publicized as "pattern recognition" our "learning" machines and as such have been discussed in a large number of books, journal articles and voluminous "reports." Must of this writing (some exceptions are mentioned in our bibliography) is without scientific value and we will not usually refer by name to the works we criticize. The sciences of computation and cybernetics began, and it seems quite rightly so, with a certain flourish of romanticisms. They were laden with attractive and exiting new ideas which have already burned rich fruit. Heavy demands of rigor and cautions could have held this development to a much slower pace; only the future could tell which directions were to be the best. We feel, in fact, that the solemn experts who most complained about the "exaggerated claims" of the cybernetic enthusiast its were, in the balance much more in the wrong. But now the time has come for maturity, and this requires us to match our speculative enterprise with equality imaginative standards of criticismo." (MINSKY; PAPERT, 1988)

A busca, pela observação a neurociência, de um modelamento matemático das atividades sinápticas do cérebro humano, em especial das células chamadas neurônios, auxiliou na construção de técnicas voltadas à ideia de uma inteligência artificial (IA) inspirada em hipóteses de criar uma rede neural artificial (RNA) pela modelagem de um neurônio, o perceptron (ROSENBLATT 1958) como um classificador binário linear. Essa ideia foi classificada por Minsky e Papert (1988) como um romantismo cibernético, mesmo admitindo a evolução em várias áreas da ciência pelo uso de sistemas lineares "In fact, we feel that the critical advances in many branches of science and mathematics began with good formulations of the "linear" systems, and these machines are our candidate for beginning the study of "parallel machines" in general." (MINSKY; PAPERT, 1988);

O livro publicado por Minsky e Papert trouxe afirmações sobre a impossibilidade do modelo do perceptron de realizar aprendizado distinto de uma simples regressão linear por não ser possível, de acordo com os autores, transferir conhecimento para as camadas ocultas em uma rede de múltiplas camadas de perceptrons. Como afirmado por Minsky e Papert , o erro entre a saída esperada e a saída estimada é objetivo e observável na camada de saída da rede, porém, os erros nas camadas ocultas são desconhecidos uma vez que os dados de treinamento não

Aluno		RA/Matrícula	Professor	Tij	ро
Cristiano Lopes Moreira		119103-0	Dr Reinaldo Bianchi	Relatório de implementação	
Data	Versão	Turma	Nome do arquivo		Página
12/12/2019	1	2º. Semestre de 2019	PEL_208_Relatório_06_Cristiano_Moreira.doc		3 (32)

informam quais valores os elementos ocultos devem ter, o que gera uma incerteza sobre o modelo e um desafio científico sobre o tema.

O desenvolvimento do algoritmo Back-Propagation (RUMELHART, HILTON, E WILLIAMS, 1986), pela derivação do gradiente do erro total, propõem que para ser possível as camadas ocultas de uma rede neural artificial armazenarem conhecimento basta conhecer e propagar o erro da saída à entrada da RNA pelo gradiente do erro proporcional a cada peso e a cada elemento oculto do rede. "Os erros dos elementos processadores da camada de saída (conhecidos pelo treinamento supervisionado) são retro propagados para as camadas intermediárias."

A descoberta de Rumelart, Hilton e Williams proporcionou o retorno das pesquisas em aprendizado de máquina que culminaram em diversas aplicações nas áreas: reconhecimento e classificação de padrões de escrita e fala; reconhecimento de faces em visão computacional; controle e previsão de ações no mercado financeiro; identificação de anomalias em imagens médicas; entre outras.

O objetivo deste trabalho é implementar uma rede neural multi layer perceptron com back-propagation para classificação de elementos em uma base de dados conhecida e verificar a eficiência de reconhecimento e agrupamento do algoritmo.

2. Desenvolvimento teórico

A regressão linear é um dos algoritmos mais conhecidos e utilizados em estatística e em aprendizado de máquina, sua representação linear é uma equação matemática que melhor descreve uma reta que se encaixa entre os pontos amostrados de uma variável X com saída representando a descrição de um fenômeno.

$$y = f(X) = \alpha + \beta X \tag{1}$$

Aluno		RA/Matrícula	Professor	Ti	ро
Cristiano Lopes Moreira		119103-0	Dr Reinaldo Bianchi	Relatório de implementação	
Data	Versão	Turma	Nome do arquivo		Página
12/12/2019	1	2º. Semestre de 2019	PEL_208_Relatório_06_Cristiano_Moreira.doc		4 (32)

Fig1: regressão linear.

Suponha que Y seja conhecido até um número finito de pontos p dos parâmetros $\beta=(\beta_1,\ldots,\beta_p)$, ou seja, Y = X β . Estimamos β pelo valor de coeficiente $\hat{\beta}$ que melhor se ajusta aos dados.

A rede neural artificial perceptron, assim como o método de regressão linear, busca encontrar os coeficientes da reta que melhor representa este pontos, porém, distinto do método de regressão linear pelos mínimos quadrados, o coeficiente de estimativa calculado pela RNA preceptron é obtido através de diversas interações, chamadas de treinamento ou aprendizado, que minimizam o erro do coeficiente com base na confirmação do resultado esperado balizado por um coeficiente de aprendizado. Uma vez concluído o processo de treinamento, o perceptron pode ser utilizado para estimar casos, que não fazem parte do conjunto de dados do treinamento, através da somatória de todas as variáveis de entrada, balizadas pelos pesos sinápticos, e pela verificação pela função de ativação se as entradas alcançam seu nível de saturação para acionar a saída do perceptron com 1 ou -1 (classificação binária), que ao final é a estimativa de qual classe pertence o item pesquisado

Fig2: perceptron (HASTIE, 2008).

Aluno		RA/Matrícula	Professor	Ti	00
Cristiano Lopes Moreira		119103-0	Dr Reinaldo Bianchi	Relatório de implementação	
Data	Versão	Turma	Nome do arquivo		Página
12/12/2019	1	2º. Semestre de 2019	PEL_208_Relatório_06_Cristiano_Moreira.doc		5 (32)

Matematicamente os coeficientes da reta, ou pesos sinápticos, são vetorialmente representados por "w", com seu aprendizado/atualização, realizado pelas diversas interações nos ciclos de aprendizado (episódios ou épocas) com as equações abaixo:

$$w_i = w_i + \Delta w_i \tag{2}$$

Sendo:
$$\Delta w_i = \eta(t - o)x_i \tag{3}$$

Onde:
$$t \notin o \text{ valor desejado}$$
 (4)

o é a saída do perceptron

 x_i é a entrada do perceptron

η é a taxa de aprendizado

$$f(W^{T}X) = \begin{cases} 1 \text{ se } \sum_{i=0}^{n} w_{i}x_{i} > 0\\ -1 \text{ caso contrário} \end{cases}$$
 (5)

Parâmetro	Variável Representativa	Tipo Característico
Entradas	X _i (i-ésima entrada)	Reais ou binários
Pesos Sinápticos	w _i (associado a x _i)	Reais iniciados aleatoriamente
Saída	у	Binária
Função de Ativação	g(x)	Degrau bipolar
Processo de Treinamento		Supervisionado
Regra de Aprendizado		Regra de Hebb

Multi Layer Perceptron é uma rede de múltiplas camadas com conexões progressivas (feedfoward) sem realimentação, um arranjo de um conjunto de perceptrons em diversas camadas, com no mínimo uma camada oculta, que possibilita pelo agrupamento/soma de diversas redes lineares em um modelo computacional de classificação não linear.

Aluno		RA/Matrícula	Professor	Tij	ро
Cristiano Lopes Moreira		119103-0	Dr Reinaldo Bianchi	Relatório de implementação	
Data	Versão	Turma	Nome do arquivo		Página
12/12/2019	1	2º. Semestre de 2019	PEL_208_Relatório_06_Cristiano_Moreira.doc		6 (32)

Fig3: Schemantic of a single hidden layer, feed-forward neural network (HASTIE, 2008).

Sua atualização/aprendizado é realizada pelo algoritmo back-propagation, que propaga o erra da saída os elementos escondidos.

Fig4: back-propagation (HASTIE, 2008).

Sendo:
$$\Delta w_{ij} = \eta \left(\sum_{k} e_k w_{jk} \right) f'(net_j) s_i$$
 (6)

Onde:
$$t$$
 é o valor desejado (4) o é a saída do perceptron x_i é a entrada do perceptron η é a taxa de aprendizado

Aluno		RA/Matrícula	Professor	Tij	00
Cristiano Lopes Moreira		119103-0	Dr Reinaldo Bianchi	Relatório de implementação	
Data	Versão	Turma	Nome do arquivo		Página
12/12/2019	1	2º. Semestre de 2019	PEL_208_Relatório_06_Cristiano_Moreira.doc		7 (32)

Relatório 06

3. Proposta de implementação Algoritmo Multi Layer Perceptron

Pseudocódigos:

Treinamento

Obtém-se um conjunto de dados;

Associar a saída desejada para cada amostra obtida;

Iniciar um vetor w com valores aleatórios pequenos;

Especificar uma taxa de aprendizagem η aprend

Aplica-se um padrão de entrada x com respectivo vetor de saída t

Calcula-se as saídas dos processadores até a camada de saída

Calcula-se o erro para cada processador da camada de saída

Se erro ≤ tolerância para todos os processadores então volta ao passo aplicase um padrão de entrada x com respectivo vetor de saída t

Atualiza os pesos de cada processador começando pela camada de saída até a primeira camada escondida

Aluno		RA/Matrícula	Professor	Ti	ро
Cristiano Lopes Moreira		119103-0	Dr Reinaldo Bianchi	Relatório de implementação	
Data	Versão	Turma	Nome do arquivo		Página
12/12/2019	1	2º. Semestre de 2019	PEL_208_Relatório_06_Cristiano_Moreira.doc		8 (32)

4. Experimentação e Resultados

Para verificar o funcionamento do algoritmo do Multi Layer Perceptron, foi realizada a implementação em Python confrontando os resultados entre a classificação indicada na base de dados e o agrupamento proposto pelo algoritmo:

Ambiente:

PyCharm 2019.2.2 (Professional Edition) Build#PY-192.6603.34

Python 3.7.5 (tags/v3.7.5:5c02a39a0b, Oct 15 2019, 01:31:54) on win32

Bibliotecas:

xlrd-1.2.0 (leitura de arquivos do Excel - base de dados)

numpy-1.17.4 (gestão de matrizes)

Base de Dados:

dbTraining.xlsx	XOR	Porta logica XOR de 2 entradas
	íris	http://archive.ics.uci.edu/ml/datasets/Iris
	Seed	https://archive.ics.uci.edu/ml/datasets/seeds
	Breast Cancer Wisconsin	https://archive.ics.uci.edu/ml/datasets/Breas
		t+Cancer+Wisconsin+%28Original%29

Aluno		RA/Matrícula	Professor	Ti	ро
Cristiano Lopes Moreira		119103-0	Dr Reinaldo Bianchi	Relató implem	
Data	Versão	Turma	Nome do arquivo		Página
12/12/2019	1	2º. Semestre de 2019	PEL_208_Relatório_06_Cristiano_Moreira.doc		9 (32)

4.1. Dados Porta Logica XOR

Base de dados:

		Classificação		
X	Υ	Original	Perceptron	
0	0	0	0	
0	1	1	1	
1	0	1	1	
1	1	0	0	

Perceptron Porta XOR									
Função de ativação: $f(W^TX) = egin{cases} 1 \ se \sum_{i=0}^n w_i x_i \geq lpha \ -1 \ caso \ contrário \end{cases}$									
Dimensões	d	2							
Taxa de aprendizagem	η	0.01							
Coeficiente de saturação	α	0.5							
Episódios/eras	Ε	20.000							
Camadas e perceptrons	С	2 – [2, 1]							
Pesos Sinápticos	W	(0.5577 0.5796 -0.0855)							

Resultados:

		Classificaç		
		0	1	Acurácia
eptron	0	2	0	100%
Perce	1	0	2	100%
		Ac	urácia Total	100%

Os testes demostraram que com 3 perceptrons, 1 saída e 1 camada oculta com 2 perceptrons podem representar uma porta lógica do tipo XOR.

Aluno		Aluno RA/Matrícula		Ti	ро
Cristiano Lop	es Moreira	119103-0	Dr Reinaldo Bianchi	Relató implem	
Data	Versão	Turma	Nome do arquivo		Página
12/12/2019	1	2º. Semestre de 2019	PEL_208_Relatório_06_Cristiano_Moreira.doc		10 (32)

4.2. Iris Fisher

Base de dados:

Fig4: Distribuição Original 3 dimensões visão em 2D da base de dados Iris-Fisher

O conjunto de dados contém 3 classes de 50 instâncias cada, em que cada classe se refere a um tipo de planta de íris, mostrados na Figura 2.

Uma classe é linearmente separável da outras duas 2 e as demais não são linearmente separáveis.

Atributo previsto: classe da planta íris.

Informações da base:

- comprimento da sépala em cm
- largura da sépala em cm
- comprimento da pétala em cm
- largura da pétala em cm
- 3 classes: (Setosa, Versicolour e Virginica)

Aluno		RA/Matrícula	Professor	Ti _l	00
Cristiano Lop	es Moreira	119103-0	Dr Reinaldo Bianchi	Relató implemo	
Data	Versão	Turma	Nome do arquivo		Página
12/12/2019	1	2º. Semestre de 2019	PEL_208_Relatório_06_Cristiano_Moreira.doc		11 (32)

MLP Base de Dados Iris										
Função de ativação: $f(W^TX) = egin{cases} 1 \ se \sum_{i=0}^n w_i x_i \geq lpha \ -1 \ caso \ contrário \end{cases}$										
Dimens	sões d						4			
Taxa de aprendizag	gem η						0.1			
Coeficiente de satura	ıção α						0.5			
Episódios/e	eras E					20	0000			
Camadas e perceptr	ons C	;				2 –	[8, 3]			
				Pesos :	Sináptico		., .			
Camada 0 (oculta)										
(000.00)			w0	w1	w2	w3	w4			
		s1	-1.031	-0.777	-0.254	0.2736	-0.338			
		s2	1.1677	-3.927	1.8786	1.8931	-5.674			
		s3	-0.394	-1.273	-0.303	-0.788	-0.865	_		
		s4	0.0229	-2.113	-0.095	5.4231	-5.825	_		
		s5	-0.249	-0.61	-0.96	-0.657	-0.178	_		
		s6	-1.19	-0.964	-0.019	0.5845	-0.446	_		
		s7	0.1001	1.8105	-2.563	0.2854	-0.412	_		
		s8	-3.15	1.5346	4.0888	0.7443	-2.921			
Camada 1 (Saída)	Camada 1 (Saída)									
	w0	w1	w2	w3	w4	w5	w6	w7	w8	
s1	-0.3128	-0.1943	-0.0146	-0.1404	1.0325	0.6996	0.1579	0.1473	-0.1173	
s2	-0.7481	-0.2028	0.4779	-0.9876	-0.4585	0.1817	-0.9338	-0.4434	0.6369	
s3	-0.8037	0.2650	-0.0339	1.1614	-0.4568	0.9623	-0.2987	0.4679	-0.6952	

Resultados:

Para escolha da arquitetura da rede neural foram realizados 37 cenários alterando-se o número de camadas escondidas e o número de perceptrons dentro de cada camada, respeitando a regra de Hecht Nielsen com número de neurônios na camada escondida menor ou igual a 2 vezes a quantidade de variáveis acrescido de 1. Cada cenário foi executado com 2000 episódios/eras, com o resultado sendo a média de 10 repetições.

Pela metodologia apresentada o cenário com melhor resultado foi de 2 camadas, sendo 1 camada oculta com 8 perceptrons e uma cada de saída com 3 perceptrons ([8,3]). A essa arquitetura foram realizadas, para validação, 10 repetições dos 20.000 episódios para obter o cenário de melhor acerto dos itens da base de dados íris. A base foi dividida em tbTraining e tbValid, sendo a primeira 60 amostras aleatórias utilizadas para o treinamento, e a segunda a base para validação da classificação.

Aluno		Aluno RA/Matrícula		Ti	ро
Cristiano Lop	es Moreira	119103-0	Dr Reinaldo Bianchi	Relató implem	
Data	Versão	Turma	Nome do arquivo		Página
12/12/2019	1	2º. Semestre de 2019	PEL_208_Relatório_06_Cristiano_Moreira.doc		12 (32)

			Class	Classificação Correta				
Camada2	Camada1	Saida	0	1	2	Acurácia		
0	0	3	49.8	09.2	46.2	70%		
0	1	3	24.8	0.00	49.4	49%		
0	2	3	38.6	04.6	48.5	61%		
0	3	3	39.8	20.4	48.3	72%		
0	4	3	49.1	13.9	48.2	74%		
0	5	3	50.0	18.2	46.9	77%		
0	6	3	44.4	27.9	46.3	79%		
0	7	3	45.0	26.1	50.0	81%		
0	8	3	42.5	30.8	50.0	82%		
1	1	3	10.2	00.5	49.8	40%		
1	2	3	24.6	00.7	50.0	50%		
1	3	3	16.0	01.7	49.1	45%		
1	4	3	21.2	12.4	49.7	56%		
1	5	3	19.0	03.9	49.9	49%		
1	6	3	06.0	05.1	48.6	40%		
1	7	3	18.7	07.4	49.1	50%		
2	1	3	10.0	00.9	49.1	40%		
2	2	3	24.1	05.5	49.5	53%		
2	3	3	14.9	15.1	49.3	53%		
2	4	3	28.7	14.4	48.4	61%		
2	5	3	29.8	17.4	48.9	64%		
2	6	3	17.5	11.4	49.2	52%		
3	1	3	24.7	07.3	49.8	55%		
3	2	3	38.9	10.4	47.6	65%		
3	3	3	34.1	13.6	49.1	65%		
3	4	3	39.6	14.0	48.5	68%		
3	5	3	33.1	23.0	47.9	69%		
4	1	3	24.4	04.1	49.7	52%		
4	2	3	34.9	04.5	49.4	59%		
4	3	3	44.3	29.2	48.7	81%		
4	4	3	39.7	18.9	47.5	71%		
5	1	3	33.9	05.1	49.5	59%		
5	2	3	47.3	08.4	47.6	69%		
5	3	3	42.5	06.2	48.0	64%		
6	1	3	31.4	09.4	49.0	60%		
6	2	3	40.9	08.8	49.4	66%		
7	1	3	44.7	07.5	47.7	67%		

Aluno		RA/Matrícula	Professor	Ti	00
Cristiano Lop	es Moreira	119103-0	Dr Reinaldo Bianchi	Relató implem	
Data	Versão	Turma	Nome do arquivo	o arquivo	
12/12/2019	1	2º. Semestre de 2019	PEL_208_Relatório_06_Cristiano_Moreira.doc		13 (32)

Acurácia x Quantidade de pesos "w" na rede neural

Fig5: Regressão logarítmica da interação de pesos e acurácia da RNA iris

Decomposição da acurácia em armonicas por inseção de camadas

Fig6: Decomposição da curva de pesos x acurácia da RNA íris

Aluno		RA/Matrícula	Professor	Tij	00
Cristiano Lop	es Moreira	119103-0	Dr Reinaldo Bianchi	Relató implem	
Data	Versão	Turma	Nome do arquivo		Página
12/12/2019	1	2º. Semestre de 2019	PEL_208_Relatório_06_Cristiano_Moreira.doc		14 (32)

Fig7: MLP 3D visão em 2D da base de dados Iris

Pela tabela de confusão observar-se que o MLP é eficiente para classificação dos dados, apresentou 97% de acerto na classificação dos grupos da Iris: 0 Setosa, 1 Versicolour e 2 Virginica; em comparação com a classificação real informada pela base de dados.

Comprova-se também a regra de Hecht-Nielsen, que ter mais camadas neurais não é necessariamente o critério que irá gerar aumento significativo na acurácia. A arquitetura de maior acurácia foi de 1 camada oculta, e 7 neurônios, com resultados melhores que outras arquiteturas validadas com mais camadas e mais neurônios.

É possível observar, pelos gráficos da figura 5 e 6, que existe uma relação logarítmica entre a quantidade de pesos sinápticos e a acurácia máxima da RNA.

Aluno		RA/Matrícula	Professor	Ti	ро
Cristiano Lop	es Moreira	119103-0	Dr Reinaldo Bianchi	Relató implem	
Data	Versão	Turma	Nome do arquivo		Página
12/12/2019	1	2º. Semestre de 2019	PEL_208_Relatório_06_Cristiano_Moreira.doc		15 (32)

4.3. Seed

Base de dados:

Fig8: Distribuição Original 6 dimensões visão em 2D da base de dados Seed

Base de dados do Instituto de Agrofísica da Academia Polonesa de Ciências de Lublin contendo amostras de grãos pertencentes a três variedades diferentes de trigo: Kama, Rosa e Canadense, com 70 elementos cada, selecionados aleatoriamente.

Informações dos atributos da base:

- Área
- Perímetro
- Compacidade C = 4*pi*A/P^2
- Comprimento do núcleo da semente
- Largura do núcleo da semente
- Coeficiente de assimetria
- Comprimento do sulco do núcleo da semente
- 3 classes: 1 para Kama, 2 para Rosa e 3 para Canadense

Aluno		RA/Matrícula	Professor	Ti	ро
Cristiano Lop	es Moreira	119103-0	Dr Reinaldo Bianchi	Relató implem	
Data	Versão	Turma	Nome do arquivo		Página
12/12/2019	1	2º. Semestre de 2019	PEL_208_Relatório_06_Cristiano_Moreira.doc		16 (32)

MLP Base de Dados Seed																	
				Fu	nção d	e ativa	ação:	: f((W^TX)) =	$\begin{cases} 1 s \\ -1 \end{cases}$	e∑ ca	$\sum_{i=0}^{n} W_i$ SO CO1	$x_i \ge \alpha$ ntrário			
		Dime	ensõ	es (d								7				
T	axa de a	prendi	zage	m ₁	1							0	0.01				
Coe	eficiente	de satı	uraçã		α							(0.5				
		pisódio			 ਯ								0000				
Ca	- ımadas e				2						_						
Ca	iiiiauas e	perce	ptioi	15 (J				<u> </u>			<u>'</u> – l	[12, 3]				
								Peso	os Siná	ptic	os						
Can	nada 0 (d	oculta)															
				w0		w1	w2		w3		w4		w5	w6	w7		
		-	s1	-1.23 0.72		.9222	0.97		1.5241		.2782		.7813	-0.7917	-0.2313		
		-	s2 s3	-0.87		.3115	-0.32		-0.082		.4655 0.583		.0312	0.1364 0.2026	-0.9728 0.6181		
		-	s4	-0.87		.3199	-0.3		0.9772		.5294		.3886	-0.6248	-0.2121		
		-	s5	-0.89		.8446	0.39		-0.0856		.0104		.9989	0.5088	-0.6116		
		-	s6	-0.83		.2307	-0.95		0.1822		.5769		.6305	0.0042	0.4073		
		-	s7	0.69		9166	0.96		-0.8359		9166		.5949	-0.5811	-0.235		
		=	s8	-0.89		0.145	0.82		-0.3517		0.752		.8844	-0.8983	-0.2379		
		=	s9	-0.72	268 -0	.2619	-0.91	109	0.1781	0	.8256	-0.	.2996	-0.0176	-0.6575		
		_	s10	2.39	999 -2	.3851	0.63	133	0.1904	-0	.9176	1.	.8601	-1.7094	0.5029		
		_	s11	0.25	517 0.	3121	0.74	417	0.7759	-0	.0851	0.	.3027	-0.5393	-0.8723		
			s12	-0.96	591 0	0.1802 -0.1828 0.8398 0.5261 1.164 -0.7012 0.4764											
Can	nada 1 (S	Saída)															
	w0	w1	_	w2	w3	W		w5	W		w7		w8	w9	w10	w11	w12
s1	0.0639	-0.9081		9605	-0.7115	0.88		-0.905			-0.580		0.3691		0.8168	-0.0485	-0.0592
s2	-0.162	0.0294		9134	0.9862	0.7		-0.903			-0.912		-0.1907		0.2481	-0.0639	0.2913
s3	0.0758	-0.4038	0.	9839	-0.0967	-0.4	46/	-0.588	2 0.95	89	0.247	/3	0.5242	-0.0029	-0.305	0.1411	-0.3251

Resultados:

Para escolha da arquitetura da rede neural foram realizados 106 cenários alterando-se o número de camadas escondidas e o número de perceptrons dentro de cada camada, respeitando a regra de Hecht Nielsen com número de neurônios na camada escondida menor ou igual a 2 vezes a quantidade de variáveis acrescido de 1. Cada cenário foi executado com 2000 episódios/eras.

Pela metodologia apresentada o cenário com melhor resultado foi de 2 camadas, sendo 1 camada oculta com 12 perceptrons e uma cada de saída com 3 perceptrons ([12,3]). A essa arquitetura foram realizadas10 repetições dos 20.000 episódios para obter o cenário de melhor acerto dos itens da base de dados seed. A base foi dividida em tbTraining e tbValid, sendo a primeira 60% das amostras aleatórias utilizadas para o treinamento, e a segunda a base para validação.

Aluno		RA/Matrícula	Professor	Tij	ро
Cristiano Lopes Moreira		119103-0	Dr Reinaldo Bianchi	Relató implem	
Data	Versão	Turma	Nome do arquivo		Página
12/12/2019 1		2º. Semestre de 2019	PEL_208_Relatório_06_Cristiano_Me	oreira.doc	17 (32)

			Class	ificação Co	rreta	
Camada2	Camada1	Saida	0	1	2	Acurácia
0	0	3	38.2	54.2	52.4	69%
0	1	3	2.2	69.2	23.6	45%
0	2	3	0	70	0	33%
0	3	3	15	68.4	1.6	40%
0	4	3	12	65.8	36.2	54%
0	5	3	6	64.6	15	41%
0	6	3	14.2	63.6	39	56%
0	7	3	40.4	56	47	68%
0	8	3	41	60.4	51.8	73%
0	9	3	40.2	66.6	13	57%
0	10	3	34	65.6	48.6	71%
0	11	3	33	60.6	51.8	69%
0	12	3	41.8	68.2	61.2	82%
0	13	3	29	63.8	50.4	68%
0	14	3	37.2	66	49.8	73%
1	1	3	0	70	0.4	34%
1	2	3	5.2	65.6	14.8	41%
1	3	3	1	70	0	34%
1	4	3	0.2	67	36.6	49%
1	5	3	2.4	67.4	10.8	38%
1	6	3	13.8	68.2	12.6	45%
1	7	3	1.2	70	0	34%
1	8	3	4	68	0	34%
1	9	3	0	70	12.4	39%
1	10	3	0	67.6	14.2	39%
1	11	3	3	63.6	0	32%
1	12	3	13	65.8	49.2	61%
1	13	3	0	69.2	19	42%
2	1	3	5	69.8	0	36%
2	2	3	1.4	65.8	17.2	40%
2	3	3	17.8	68.6	3.4	43%
2	4	3	0	68.2	25.2	44%
2	5	3	22.8	58.8	40.2	58%
2	6	3	9	66	26.6	48%
2	7	3	16.4	64	38.8	57%
2	8	3	10.4	68.8	14	44%

Aluno		RA/Matrícula	Professor	Tij	00
Cristiano Lopes Moreira		119103-0	Dr Reinaldo Bianchi	Relató implemo	
Data	Versão	Turma	Nome do arquivo		Página
12/12/2019 1		2º. Semestre de 2019	PEL_208_Relatório_06_Cristiano_Me	oreira.doc	18 (32)

			Classi	ificação Co	rreta	
Camada2	Camada1	Saida	0	1	2	Acurácia
2	9	3	23	67.6	19	52%
2	10	3	3.8	68.4	22.8	45%
2	11	3	16.6	63.6	26.8	51%
2	12	3	2.2	70	0	34%
3	1	3	0.2	69	37.8	51%
3	2	3	17.8	69.4	1.4	42%
3	3	3	0	68	26.4	45%
3	4	3	0	60.6	37.4	47%
3	5	3	16.8	62	27	50%
3	6	3	19.2	66.4	33.6	57%
3	7	3	6.2	61.2	11	37%
3	8	3	13.4	62.2	15.8	44%
3	9	3	11	53.2	61.8	60%
3	10	3	18.8	65	27.2	53%
3	11	3	10.6	69.6	24	50%
4	1	3	15.6	65.2	10	43%
4	2	3	9.2	69	36.4	55%
4	3	3	0.4	70	24.6	45%
4	4	3	10.6	69	26.2	50%
4	5	3	10.4	66.8	53	62%
4	6	3	15.8	67.2	48.2	62%
4	7	3	10.6	59.8	15.4	41%
4	8	3	5.8	69.6	44.4	57%
4	9	3	11.4	63.2	27.2	48%
4	10	3	16.4	68.2	14	47%
5	1	3	20.4	66.6	19.6	51%
5	2	3	25.8	65.8	29.2	58%
5	3	3	18.4	56	51.8	60%
5	4	3	12	65.8	28.4	51%
5	5	3	14.8	64.2	52.2	62%
5	6	3	3.8	62.6	36	49%
5	7	3	38	68	41.4	70%
5	8	3	38.8	62.2	61.4	77%
5	9	3	19.6	65.8	52.2	66%
6	1	3	0	63.4	45.4	52%
6	2	3	12.6	58.8	40	53%

Aluno		RA/Matrícula	Professor	Tipo	
Cristiano Lopes Moreira		119103-0	Dr Reinaldo Bianchi	Relatório de implementação	
Data	Versão	Turma	Nome do arquivo		Página
12/12/2019 1		2º. Semestre de 2019	PEL_208_Relatório_06_Cristiano_Me	oreira.doc	19 (32)

			Class	ificação Co	rreta	
Camada2	Camada1	Saida	0	1	2	Acurácia
6	3	3	0	65.6	26	44%
6	4	3	14	66.4	32.8	54%
6	5	3	37.6	65.8	14	56%
6	6	3	16.4	63	43.2	58%
6	7	3	26.6	59.4	58.6	69%
6	8	3	1	69.6	38.2	52%
7	1	3	2.2	64	25.2	44%
7	2	3	10.4	63.2	36.4	52%
7	3	3	0.4	65.4	28.4	45%
7	4	3	9.4	68.2	38	55%
7	5	3	13.8	66	46.4	60%
7	6	3	37	67.2	47.8	72%
7	7	3	23.6	67.6	50.6	68%
8	1	3	4	70	25.6	47%
8	2	3	17.6	62.2	47.6	61%
8	3	3	20	64.2	60	69%
8	4	3	18.8	68.4	46.4	64%
8	5	3	32.8	59.4	49.4	67%
8	6	3	22.2	64.2	54.6	67%
9	1	3	8.6	64	27	47%
9	2	3	12.8	59	51.6	59%
9	3	3	26.4	62	53	67%
9	4	3	19	63	40.8	58%
9	5	3	25.6	64.8	48.8	66%
10	1	3	0	69.2	38	51%
10	2	3	33.8	61.2	40.6	65%
10	3	3	31.6	69.2	43.8	69%
10	4	3	23.2	60.8	56	67%
11	1	3	2.2	63.6	26.4	44%
11	2	3	25.8	66.6	41.2	64%
11	3	3	16.2	68.4	35	57%
12	1	3	1	64.4	47.6	54%
12	2	3	10.2	56.4	38.2	50%
13	1	3	4.4	65.4	1.6	34%

Aluno		RA/Matrícula	Professor	Tipo	
Cristiano Lopes Moreira		119103-0	Dr Reinaldo Bianchi	Relatório de implementação	
Data	Versão	Turma	Nome do arquivo		Página
12/12/2019 1		2º. Semestre de 2019	PEL_208_Relatório_06_Cristiano_M	oreira.doc	20 (32)

Acurácia x Quantidade de pesos "w" na rede neural

Fig9: Regressão logarítmica da interação de pesos e acurácia da RNA Seed

Decomposição da acurácia em armonicas por inseção de camadas

Fig10: Decomposição da curva de pesos x acurácia da RNA Seed

Aluno		RA/Matrícula	Professor	Tij	00
Cristiano Lopes Moreira		119103-0	Dr Reinaldo Bianchi	Relató implemo	
Data	Versão	Turma	Nome do arquivo		Página
12/12/2019 1		2º. Semestre de 2019	PEL_208_Relatório_06_Cristiano_Me	oreira.doc	21 (32)

Fig11: MLP 9D visão em 2D da base de dados Seed

Pela tabela de confusão observar-se que o MLP é eficiente para classificação dos dados, apresentou 88.1% de acerto na classificação entre os grãos de trigo do tipo1 Kama, 2 para Rosa e 3 para Canadense; em comparação com a classificação real informada pela base de dados.

Comprova-se também a regra de Hecht-Nielsen, que ter mais camadas neurais não é necessariamente o critério que irá gerar maior acurácia. A arquitetura de maior acurácia foi de 1 camada oculta, e 12 neurônios, com resultados melhores que outras arquiteturas validadas com mais camadas e mais neurônios.

Pela decomposição da acurácia x quantidade de pesos sinápticos w em harmônicas, figuras 9 e 10, observa-se um padrão logaritmo e, sobre este padrão logaritmo, uma variação senoidal com decréscimo de acurácia para os casos de quantidade positiva de neurônios nas camadas ocultas. Observa-se também que acima de 120 pesos sinápticos a acurácia é regida majoritariamente pela primeira camada oculta (Onda0 e Onda1)

Aluno		RA/Matrícula	Professor	Tipo	
Cristiano Lopes Moreira		119103-0	Dr Reinaldo Bianchi	Relató implem	
Data	Versão	Turma	Nome do arquivo		Página
12/12/2019 1		2º. Semestre de 2019	PEL_208_Relatório_06_Cristiano_Me	oreira.doc	22 (32)

4.4. Breast Cancer Wisconsin (Original) Data Set

Base de dados:

Fig12: Distribuição Original 9 dimensões visão em 2D da base de dados Breast Cancer Wisconsin

A base de dados das amostras do Dr. Wolberg, W.H. & Mangasarian, O.L. (1990) para criação de um método multi-superfície de separação de padrões para diagnóstico médico aplicado à citologia mamária; contém 699 casos clínicos de suspeitas de câncer de mama, sendo 15 sem a informação de núcleos nus (bare nuclei), e por isto removidas desta análise.

Informações dos atributos da base:

- Espessura do grupo
- Uniformidade do tamanho da célula
- Uniformidade da forma da célula
- Adesão marginal
- Tamanho único de célula epitelial
- Núcleos Nus
- Cromatina Branda
- Núcleos normais
- Mitoses
- 2 classes: 1 para benignos, 2 para malignos

Aluno		RA/Matrícula	Professor	Ti	ро
Cristiano Lopes Moreira		119103-0	Dr Reinaldo Bianchi	Relatório de implementação	
Data	Versão	Turma	Nome do arquivo		Página
12/12/2019 1		2º. Semestre de 2019	PEL_208_Relatório_06_Cristiano_Me	oreira.doc	23 (32)

Relatório 06

					MLP Bas	e de Dad	dos Breas	st-Cance	r-Wiscon	sin		
				Função	de ativa	ncão: 1	$f(W^TX)$	$=$ $\begin{cases} 1 \text{ s} \end{cases}$	$se\sum_{i=0}^n 1$	$v_i x_i \geq a$	χ	
	Função de ativação: $f(W^TX) = egin{cases} 1 \ se \sum_{i=0}^n w_i x_i \geq lpha \ -1 \ caso \ contrário \end{cases}$											
		Dimens	sões	d					9			
Tava d												
raxa u	e apr	endizag	gem	η					0.1			
Coeficier	nte de	satura	ıção	α					0.5			
	Epis	ódios/e	eras	Ε					20000			
Camada	as e p	erceptr	ons	С					2 – [7, 7,	31		
	- 1					D.	sas Cirá		_ [/, /,	J]		
						PE	esos Siná _l	Jucos				
Camada :	2 (ocı	ulta)										
		w0		w1	w2	w3	w4	w5	w6	w7	w8	w9
	s1	0.5826		2.0981	0.898	0.502	-1.2732	1.3147	-2.5564	1.2216	1.7634	-4.2543
	s2	-1.7447		2.2264	-0.0934	-0.8276	1.1359	2.3703	0.7592	0.2083	1.0817	-3.0484
	s3	1.3116		0.4157	-0.3501	1.3079	0.0157	0.1409	0.3807	0.1364	0.3166	-6.1047
	s4	2.0556		3.3217	1.8641	0.4558	-2.8666	0.504	2.0026	-3.7872	2.557	-7.7306
	s5	-0.2064		0.523	0.2522	-0.1758	0.7546	1.2555	0.123	0.2905	-0.0582	-4.4795
	s6	2.5837	_	2.1551	0.9225	-0.6503	-0.9054	-3.7182	6.4885	1.0579	-3.302	0.2999
	s7	0.3415		-1.651	0.5354	0.0672	0.369	0.0963	2.06	1.2628	1.5129	-5.5938
Camada :	1 (ocı	ulta)			ا م	- a - I	ا د		le	l c		
			_	w0	w1	w2	w3	w4	w5	w6	w7	_
		s1		0.3543	-0.7807	-0.8545	-0.241	-0.7215	-0.4166	-0.688 -0.7818	-0.3443	-
		s2 s3		0.4269	-0.7416 -0.6319	-0.8551 -0.8523	-0.2584 -0.2417	-0.617 -0.6924	-0.4244 -0.5683	-0.7818	-0.3809 -0.4384	-
				0.5012	-0.6319	-0.8337	-0.2417	-0.6481	-0.5348	-0.6433	-0.4384	-
	s4 s5			0.5012	-0.6219	-0.8333	-0.3491	-0.6845	-0.5348	-0.6433	-0.3929	=
				0.3002	-0.6628	-0.7698	-0.410	-0.7343	-0.4323	-0.7817	-0.3929	-
		s7	_	0.3596	-0.6788	-0.9506	-0.2719	-0.656	-0.4082	-0.7817	-0.3103	-
Camada 0 (Saída)												
				w0	w1	w2	w3	w4	w5	w6	w7	
			s1	-0.4829	-0.317	-0.2246	-0.3691	-0.3677	-0.4408	-0.173	0.0398	

Resultados:

Para escolha da arquitetura da rede neural foram realizados 158 cenários alterando-se o número de camadas escondidas e o número de perceptrons dentro de cada camada, respeitando a regra de Hecht Nielsen com número de neurônios na camada escondida menor ou igual a 2 vezes a quantidade de variáveis acrescido de 1. Cada cenário foi executado com 2000 episódios/eras.

Pela metodologia apresentada o cenário com melhor resultado foi o [11,7,1], porém, pela diferença de ganho da acurácia ser muito pequena, 0,06%, e o custo em tempo em tempo superior, foi escolhido [7,71] sendo 2 camada oculta com 7 perceptrons e uma cada de saída com 1 perceptrons. A essa arquitetura foram

Aluno		Aluno RA/Matrícula		Tij	ро
Cristiano Lop	es Moreira	119103-0	Dr Reinaldo Bianchi Relatório implement		
Data	Versão	Turma	Nome do arquivo		Página
12/12/2019	1	2º. Semestre de 2019	PEL_208_Relatório_06_Cristiano_Moreira.doc 24		

realizadas, para validação, 10 repetições dos 20.000 episódios para obter o cenário de melhor acerto dos itens da base de dados breast_cancer. A base foi dividida em tbTraining e tbValid, sendo a primeira 50% das amostras aleatórias utilizadas para o treinamento, e a segunda a base para validação.

			Classificaç	ão Correta	
Camada1	Camada2	Saida	0	1	Precisão
0	0	1	437.1	218.4	95.97%
0	1	1	431.6	233.7	97.41%
0	2	1	433.9	228.4	96.97%
0	3	1	435.3	225.4	96.73%
0	4	1	433.8	232.6	97.57%
0	5	1	434.7	227.5	96.95%
0	6	1	431.1	234.9	97.51%
0	7	1	432.2	232.8	97.36%
0	8	1	434.2	233.2	97.72%
0	9	1	435.1	228.8	97.20%
0	10	1	432	232.5	97.29%
0	11	1	431.4	235.6	97.66%
0	12	1	436	228.3	97.26%
0	13	1	434.1	230.4	97.29%
0	14	1	435.2	233	97.83%
0	15	1	433.9	232.4	97.55%
0	16	1	434.4	231.8	97.54%
0	17	1	434.3	233.6	97.79%
0	18	1	435.3	230.3	97.45%
1	1	1	431.2	232.4	97.16%
1	2	1	430.9	236.4	97.70%
1	3	1	433.2	230.1	97.12%
1	4	1	429.4	229.9	96.53%
1	5	1	433.6	224.4	96.34%
1	6	1	435.2	222.4	96.28%
1	7	1	431.4	227.4	96.46%
1	8	1	434.2	224.2	96.40%
1	9	1	433.7	226.6	96.68%
1	10	1	434	226.2	96.66%
1	11	1	433.5	226.9	96.69%

Aluno		Aluno RA/Matrícula		Tij	00
Cristiano Lop	es Moreira	119103-0	Dr Reinaldo Bianchi Relatório implemen		
Data	Versão	Turma	Nome do arquivo		Página
12/12/2019	1	2º. Semestre de 2019	PEL_208_Relatório_06_Cristiano_Moreira.doc 25		

			Classificaç	ão Correta	
Camada1	Camada2	Saida	0	1	Precisão
1	12	1	433.5	227.8	96.82%
1	13	1	432.9	229.6	97.00%
1	14	1	432.7	231.1	97.19%
1	15	1	432.8	231.6	97.28%
1	16	1	432.9	230	97.06%
1	17	1	432.5	232.5	97.36%
2	1	1	432.9	232	97.35%
2	2	1	434.2	227.3	96.85%
2	3	1	432.4	233.8	97.54%
2	4	1	429.9	235.6	97.44%
2	5	1	429.5	234.7	97.25%
2	6	1	428.3	237	97.41%
2	7	1	428.4	236.2	97.31%
2	8	1	432.2	230.9	97.09%
2	9	1	431.1	232.9	97.22%
2	10	1	432.6	230.4	97.07%
2	11	1	429.4	232.1	96.85%
2	12	1	430.9	234	97.35%
2	13	1	433.3	230.1	97.13%
2	14	1	433.8	229.4	97.10%
2	15	1	432	230.6	97.01%
2	16	1	429.8	234.9	97.32%
3	1	1	430.9	232.3	97.10%
3	2	1	430.1	235.2	97.41%
3	3	1	432.6	234.7	97.70%
3	4	1	434.7	227.7	96.98%
3	5	1	432	236.2	97.83%
3	6	1	433.4	232.2	97.45%
3	7	1	432.5	232.7	97.39%
3	8	1	432.9	230.5	97.13%
3	9	1	432.4	232.1	97.29%
3	10	1	431.6	232.4	97.22%
3	11	1	433.2	233	97.54%
3	12	1	430.2	235.5	97.47%
3	13	1	434.8	231.4	97.54%
3	14	1	433.8	231.1	97.35%

Aluno		RA/Matrícula	Professor	Tij	00
Cristiano Lop	es Moreira	119103-0	Dr Reinaldo Bianchi	ni Relatório de implementação	
Data	Versão	Turma	Nome do arquivo		Página
12/12/2019	1	2º. Semestre de 2019	PEL_208_Relatório_06_Cristiano_Moreira.doc		26 (32)

			Classificaç	ão Correta	
Camada1	Camada2	Saida	0	1	Precisão
3	15	1	432.5	232.4	97.35%
4	1	1	434.3	228.4	97.03%
4	2	1	427.7	234.7	96.98%
4	3	1	432.3	236.2	97.88%
4	4	1	431.9	234.9	97.63%
4	5	1	431.2	237.6	97.92%
4	6	1	433.1	234.2	97.70%
4	7	1	435.9	232	97.79%
4	8	1	430.8	236.7	97.73%
4	9	1	429.4	237.7	97.67%
4	10	1	434.2	232.6	97.63%
4	11	1	436.4	228.5	97.35%
4	12	1	434.9	231.3	97.54%
4	13	1	434.2	231.5	97.47%
4	14	1	433.6	233.3	97.64%
5	1	1	431.5	230.9	96.98%
5	2	1	430.8	235.5	97.55%
5	3	1	431.3	236	97.70%
5	4	1	432.8	235.7	97.88%
5	5	1	433.2	235.7	97.94%
5	6	1	431.3	235.8	97.67%
5	7	1	433.5	234.6	97.82%
5	8	1	430.6	234.8	97.42%
5	9	1	437.1	228.8	97.50%
5	10	1	434.2	231.8	97.51%
5	11	1	435.9	231.2	97.67%
5	12	1	437.8	224.7	97.00%
5	13	1	439.1	224.9	97.22%
6	1	1	430.1	234	97.23%
6	2	1	431.8	235.4	97.69%
6	3	1	429.9	235.5	97.42%
6	4	1	430	234.6	97.31%
6	5	1	434.1	232	97.53%
6	6	1	435.2	232.3	97.73%
6	7	1	434.6	229.9	97.29%
6	8	1	435.2	232.1	97.70%

Aluno		Aluno RA/Matrícula		Tij	00
Cristiano Lop	es Moreira	119103-0	Dr Reinaldo Bianchi Relatório implemen		
Data	Versão	Turma	Nome do arquivo		Página
12/12/2019	1	2º. Semestre de 2019	PEL_208_Relatório_06_Cristiano_Moreira.doc 23		

			Classificaç	ão Correta	
Camada1	Camada2	Saida	0	1	Precisão
6	9	1	432.9	235.7	97.89%
6	10	1	436.7	229.1	97.48%
6	11	1	435.4	233	97.86%
6	12	1	435.6	230	97.45%
7	1	1	433.7	228.6	96.97%
7	2	1	426.9	236.8	97.17%
7	3	1	430.5	234.4	97.35%
7	4	1	431.7	235.4	97.67%
7	5	1	429.8	235.1	97.35%
7	6	1	433.9	235	97.94%
7	7	1	436.4	232.7	97.96%
7	8	1	432.2	236.2	97.86%
7	9	1	435.4	231.8	97.69%
7	10	1	435.8	229.5	97.41%
7	11	1	434.9	233.1	97.80%
8	1	1	428.7	232.7	96.84%
8	2	1	433.3	233.3	97.60%
8	3	1	432.1	233.8	97.50%
8	4	1	432	234.1	97.53%
8	5	1	435.4	231.9	97.70%
8	6	1	435.3	230.8	97.53%
8	7	1	434.5	233.8	97.85%
8	8	1	434.9	231	97.50%
8	9	1	432.6	233	97.45%
8	10	1	436.2	231.1	97.70%
9	1	1	430	233.3	97.12%
9	2	1	429.1	234.8	97.20%
9	3	1	431.6	231.3	97.06%
9	4	1	433.1	234.3	97.72%
9	5	1	431.3	237	97.85%
9	6	1	433.8	234.4	97.83%
9	7	1	435.8	231.6	97.72%
9	8	1	436.5	230.9	97.72%
9	9	1	434.7	232.8	97.73%
10	1	1	431.2	233.3	97.29%
10	2	1	432.3	233.7	97.51%

Aluno		Aluno RA/Matrícula		Tij	00
Cristiano Lop	es Moreira	119103-0	Dr Reinaldo Bianchi Relatório implement		
Data	Versão	Turma	Nome do arquivo		Página
12/12/2019	1	2º. Semestre de 2019	PEL_208_Relatório_06_Cristiano_Moreira.doc 28		

			Classificaç	ão Correta	
Camada1	Camada2	Saida	0	1	Precisão
10	3	1	434	232	97.51%
10	4	1	434.9	232.7	97.75%
10	5	1	433.7	233.4	97.67%
10	6	1	432.8	233	97.48%
10	7	1	434.3	233.7	97.80%
10	8	1	433	236.3	97.99%
11	1	1	429.5	233.1	97.01%
11	2	1	431.7	234.3	97.51%
11	3	1	433.1	235.4	97.88%
11	4	1	436.1	234.2	98.14%
11	5	1	431.9	235.5	97.72%
11	6	1	433.6	233.9	97.73%
11	7	1	435.5	234	98.02%
12	1	1	431	234	97.36%
12	2	1	428.4	236.4	97.34%
12	3	1	431.5	236.6	97.82%
12	4	1	433.8	234	97.77%
12	5	1	434.7	233.7	97.86%
12	6	1	434.8	233.5	97.85%

Aluno		RA/Matrícula	Professor	Ti _l	00
Cristiano Lop	es Moreira	119103-0	Dr Reinaldo Bianchi	Relatório de implementação	
Data	Versão	Turma	Nome do arquivo		Página
12/12/2019	1	2º. Semestre de 2019	PEL_208_Relatório_06_Cristiano_Moreira.doc		29 (32)

Acurácia x Quantidade de pesos "w" na rede neural

Fig13: Regressão logarítmica da interação de pesos e acurácia da RNA Breast-Cancer-Wisconsin

Decomposição da acurácia em armonicas por inseção de camadas

Fig14: Decomposição da curva de pesos x acurácia da RNA Breast-Cancer-Wisconsin

Aluno		Aluno RA/Matrícula		Ti	ро
Cristiano Lop	es Moreira	119103-0	Dr Reinaldo Bianchi Relatón impleme		
Data	Versão	Turma	Nome do arquivo		Página
12/12/2019	1	2º. Semestre de 2019	PEL_208_Relatório_06_Cristiano_Moreira.doc		30 (32)

		Classificação Correta		
		0	1	Acurácia
Perceptron	0	436	2	98.20%
	1	8	237	99.16%
Acurácia Total			98.54%	

Fig13: MLP 9D visão em 2D da db Breast Cancer

Pela tabela de confusão observar-se que o MLP é eficiente para classificação dos dados com acurácia geral da identificação entre os dois grupos pelo modelo da RNA MLP foi de 98.54%, superior ao índice alvo de 95% (alvo de experimentos médicos), sendo maior nos acertos do grupo 1, tumor maligno, com 99.16% de acerto, dentro das expectativas para possibilitar diagnósticos precisos e rápidos.

Comprova-se também a regra de Hecht-Nielsen, que ter mais camadas neurais não é necessariamente o critério que irá gerar maior acurácia significativa. A arquitetura com muitas camadas e muitos acréscimos de perceptrons apresentaram acréscimos poucos significantes na ordem de 0.06%, 0.03%, [11,7,1] e [10.8,1], respectivamente.

Pela decomposição da acurácia x quantidade de pesos sinápticos w em harmônicas, figuras 13 e 14, assim como nas verificações das outras bases, observase um padrão logaritmo e, sobre este padrão logaritmo, uma variação senoidal com decréscimo de acurácia para os casos de quantidade positiva de neurônios nas camadas ocultas. Observa-se também que acima de 120 pesos sinápticos a acurácia é regida majoritariamente pela primeira camada oculta (Onda0 e Onda1)

Aluno		RA/Matrícula	Professor	Tipo	
Cristiano Lopes Moreira		119103-0	Dr Reinaldo Bianchi	Relatório de implementação	
Data	Versão	Turma	Nome do arquivo	arquivo Pá	
12/12/2019	1	2º. Semestre de 2019	PEL_208_Relatório_06_Cristiano_Me	L_208_Relatório_06_Cristiano_Moreira.doc 31 (

5. Conclusão

Conclui-se que o MLP Perceptron é um algoritmo de redes neurais supervisionado de camada múltipla pertencente a arquitetura conectada de forma direta, não circular, feedfoward, que utiliza a técnica de aprendizado pela propagação dos erros da saída aos elementos das camadas ocultas, back-propagation, que tem por objetivo classificar grupos sejam eles linearmente separáveis ou não.

O algoritmo comprova que a propagação dos erros para as camadas ocultas de uma rede neural artificial proposta por Rumelart, Hilton e Williams, possibilita o aprendizado nessas camadas e que as regras para a quantidade máxima de camadas ocultas e neurônios propostas por Hecht-Nielsen são coerentes com os experimentos realizados, porém, mesmo observando-se um comportamento logaritmo, com componentes de um "ruído" senoidal, na relação entre a quantidade de pesos sinápticos e a acurácia da RNA, ainda é um desafio acertar a quantidade ideal de camadas neurais, a quantidade ideal de neurônios e os ajustes finos de seus hiperparâmetros (taxa de aprendizado, número de épocas, função de ativação, quantidade de padrões...); sendo ainda os métodos de obtenção destes parâmetros a intuição e/ou uso de força bruta com diversas verificações, o que mostra a necessidade de pesquisas futuras sobre este tema.

6. Referências

- [1] MINSKY, Marvin Lee; PAPERT, Seymour A. **Perceptrons: an introduction to computational geometry**. Cambridge, Massachussets: Mit Press, 1988.
- [2] RUSSELL, Stuart; NORVING, Peter. Artificial Intelligence: A Modern Approach.3. ed. River, Nj, Usa: Pearson, 2010.
- [3] HASTIE, Trevor; TIBSHIRANI, Robert; FRIEDMAN, Jerome. **The Elements of Statistical Learning**: Data Mining, Inference, and Prediction. 2. ed. Stanford: Springer, 2008.
- [4] HAYKIN, Simon. **Redes Neurais: princípios e práticas**. 2. ed. Ontario Canada: Bookman, 2008.

Aluno		RA/Matrícula	Professor	Tipo	
Cristiano Lopes Moreira		119103-0	Dr Reinaldo Bianchi	Relatório de implementação	
Data	Versão	Turma	Nome do arquivo	Págin	
12/12/2019	1	2º. Semestre de 2019	PEL_208_Relatório_06_Cristiano_M	EL_208_Relatório_06_Cristiano_Moreira.doc 32 (3	