CS 70 Spring 2019

Discrete Mathematics and Probability Theory Ayazifar and Rao

Final Exam

PRINT Your Name:	,	
(last)	,	(first)
SIGN Your Name:		_
PRINT Your Student ID: https://p	owcoder	c.com
PRINT Your Exam Room:		
Name of the person sitting to your left: ASSIGNMENT	Project I	Exam Help
Name of the person sitting to your right:		

- After the exam starts ple service by the two will remove the staple when starting your exam).
- We will not grade anything outside of the space provided for a problem.
- The questions valuation of the control of the con
- If there is a box provided put-your answer in it. If not, use the space provided for your proof or argument. Add We Chat powcoder
- You may consult only *three sides of notes*. Apart from that, you may not look at books, notes, etc. Calculators, phones, computers, and other electronic devices are NOT permitted.
- There are 21 single sided pages including the cover sheet on the exam. Notify a proctor immediately if a page is missing.
- You may, without proof, use theorems and lemmas that were proven in the notes and/or in lecture.
- You have 170 minutes: there are 12 questions (with 66 parts) on this exam worth a total of 222 points.
- Graphs are simple and undirected unless we say otherwise.

Do not turn this page until your instructor tells you to do so.

1. TRUE or FALSE? 2 points each part, 26 total.

For each of the questions below, answer TRUE or FALSE. No need to justify answer.

Please fill in the appropriate bubble!

1.
$$(P \Rightarrow (R \land \neg R)) \Rightarrow \neg P$$

O True

Palse

2. Let \mathbb{Z} be the integers, and $P(i)$ be a predicate on integers, $(P(0) \land ((\exists i \in \mathbb{Z}) P(i) \land P(i+1)) \Rightarrow (\forall i \in \mathbb{Z}) ((i \geq 0) \Rightarrow P(i)))$

O True

https://powcoder.com

ASS1gnment Project Exam Help

True

4. Let \mathbb{A} be the real numbers, $(\forall x, y \in \mathbb{R})((x \neq y) \Rightarrow ((\exists z \in \mathbb{R})(x < z < y))))$

True

False

4. Let \mathbb{A} be the real numbers of the real nu

10.	If one can write a program that solves a problem P using the halting problem as a subroutine problem P is undecidable.	e then the
		○ True
		○ False
11.	There is a bijection between the powerset of rational numbers and the real numbers. (The po set <i>S</i> is the set of all subsets of <i>S</i> .)	werset of
		○ True
		○ False
12.	If $Pr[A \cup B] = Pr[A] + Pr[B]$ then A and B are independent. Provided the provided HTML in t	○ True
10	Given n Lans Seria granting that the eren it established with the series of the series	○ False
13.	is empty" are independent.	
	Assignment/Peglet Exmontelp	○ True
	Assignment roject examment	○ False
	https://powcoder.com	
	Add WeChat powcoder	

2. Quick proof. 7 points.

Prove that
$$\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1}.$$

https://powcoder.com
Assignment Project Exam Help

Assignated type Glat Exmodelp

https://powcoder.com

3.	Shor	ort Answer: Discrete Math. 3 points each part, 48 points total.	
	1.	. What is the number of faces in a planar drawing of a planar graph with <i>n</i> vertices where ever has degree 3?	y vertex
	2.	Given a graph $G = (V, E)$ with k connected components, what is the minimum number of expected to add to ensure that the resulting graph is connected?	dges one
		https://powcoder.com	
	3.	. The hyperaube graph for dimension that Par Fulction tout when the month of the land of t	
	4	Assignated Project Equation As	length ℓ
		what is L/\ell? https://powcoder.com	
	5.	Add WeChat powcoder What is the minimum number of odd degree vertices in a connected acyclic graph?	
	6.	5. What is $2^{10} \pmod{11}$?	
	7.	7. For distinct primes p, q, r and $N = pqr$, how many elements of $\{0, 1, \dots, N-1\}$ are relatively N ?	prime to

8.	Consider N and the set $S = \{x \in \{0,N - 1\} : gcd(x, N) = 1\}$ where $k = S $. For $a \in S$, we define $T = \{ax \pmod{N} : x \in S\}$. What is $ T $? Answer may include N and k .
9.	For a prime p , what is a positive integer x that guarantees $a^x = 1 \pmod{p^2}$ for all a relatively prime to p ? Answer may include p .
10.	https://powcoder.com For distinct primes p,q,r , what is $a^{(p-1)(q-1)(r-1)} \pmod{pqr}$, where a is relatively prime to pqr . Assignment Project Exam Help
11.	Jonathan wants o tell Emaan how many chicken nuggets he are today, which we will call c . He doesn't want the world to know, so he encrypts it with Emaan's public key (N,e) , which yields the ciphertex x . Jerry intercepts the message, and wants to make it look like Jonathan actually ate 5 times as many chicken nuggets which sent the man't have a problem of the problem of th
	Add WeChat powcoder
12.	For the following parts consider two non-zero polynomials $P(x)$ and $Q(x)$ of degree d over $GF(p)$ (modulo p), with r_p roots and r_q roots respectively. What is the maximum number of roots for the polynomial $P(x)Q(x)$? Answer may include d , r_p , and r_q . (Your answer should be achievable for any valid d , r_p and r_q .)
13.	What is the minimum number of roots for the polynomial $P(x)Q(x)$? Answer may include d , r_p , and r_q .

14.	Let $S = \{(x_1, y_1), \dots, (x_{n+2k}, y_{n+2k})\}$ be a set of $n+2k$ points where th	e x_i are distinct. If $P(x)$ and $Q(x)$
	are polynomials where $P(x_i) = y_i$ for at least $n + k$ points in S and $Q(x_i)$	$(y_j) = y_j$ for at least $n + k$ points in
	S, what is the minimum number of points that $P(x)$ and $Q(x)$ must again	ree on in S? Answer may include
	n and k .	

15. Working over GF(5), describe a degree exactly 2 polynomial where P(1) = 1 and P(2) = 2.

https://powcoder.com

16. Let P(x) be a degree d=n-1 polynomial over GF(p) (p is prime) that contains all but $\ell \le k$ of n+2k points which are given. In this situation, peal that the Berlekamp-Welsh procedure can reconstruct P(x) by assuming the existence of an error polynomial E(x) or degree exactly k and feating coefficient of 1, and a polynomial Q(x) = P(x)E(x). How many possible pairs of Q(x) and E(x) are consistent with the Berlekamp-Welsh procedure? Answer may include ℓ, k, d, n , and p.

Assignment/Project Exampletp

https://powcoder.com

4.	Short Answer: Counting. 3 points each. 12 points total.
	1. What is the number of ways to place n distinguishable balls into k distinguishable bins?
	2. What is the number of ways to place n distinguishable balls into k distinguishable bins where no two
	balls are placed in the same bin? You may assume that $n \le k$.
	https://powgodor.com
	https://powcoder.com
	3. What is the number of ways to divide d dollar bills among p people? Assume dollar bills are indisting
	guishable And people are distinguishable Project Exam Help
	A 11 TH C1
	Assignment/Peoplet Pawophelp
	4. How many $(x_1,,x_k,y_1,y_2,,y_k)$ are there such that all x_i , y_i are non-negative integers, $\sum_{i=1}^{k} x_i = n$, and
	;_1
	$y_i \le x_i \text{ for } 1 \le h the proverties of include and the province of the$

5.	Short Answer: Probability. 3 points each part, 18 points total.
	1. Given two tosses of a fair coin, what is Pr[heads on the second coin at least one heads in the two tosses
	2 C 11 1
	2. Consider two events, A and B with $\Pr[A \cup B] = \frac{3}{4}$, and $\Pr[A] = \frac{1}{2}$, and $\Pr[B] = \frac{4}{5}$, what is $\Pr[A \cap B]$?
	https://powcoder.com
	3. Alice and Bob both try to a climb a rope. Alice and Bob will get to the top of the rope with probability
	1/3 and 1/4 respectively. Given that exactly one person got to the top, what is the probability that the
	person is Air Signment Project Exam Help
	AssignAddtWeGbat Pawopletp
	4. Given $X \sim \text{Geom}(p)$, what is $\Pr[X = i X > j]$? Assume $i > j$.
	https://powcoder.com
	intps.//powcoder.com
	Add WaChat payraadan
	5. Given independent & C But n, white txpo wcoder
	6. Consider a random variable <i>X</i> where $E[X^4] = 5$, give as good upper bound on $Pr[X \ge 5]$ as you can.

b.	Concepts through balls in bins. 3 points each part, 18 points total. Consider throwing <i>n</i> balls into <i>n</i> bins uniformly at random. Let <i>X</i> be the number of balls in the first bin.
	1. What is the expected value of <i>X</i> ?
	2. Use Markov's inequality to give an upper bound on $Pr[X \ge k]$.
	https://powcoder.com
	3. What is the variance of X?
	Assignment Project Exam Help
	Assis Add WaChat Bayyoodat.
	4. Use Chebyshe Sinequality to give an upper bound on $X \ge k$.
	https://powcoder.com
	nttps.//powcodcr.com
	5. Now let Y be the number of balls in the second bin. What the joint distribution of X, Y , i.e., what if

7.	Lots of chicken	nuggets, 5	points each	part, 15	points total.

We will model the number of customers going into Emaan's and Jonathan's favorite McDonalds within an hour as a random Poisson variable, i.e., $X \sim \text{Poisson}(\lambda)$.

1. Given that $\lambda = 5$, what is the probability that 5 people come in during the hour that Emaan and Jonathan are eating chicken nuggets?

If λ is unknown but is definitely at most 10, how many hours do Emaan and Jonathan need to be at McDonalds to be ab to the tension of the tens

Assignment Project Exam Help

3. Solve the previous problem but now assume you can use the Central Limit Theorem. (Hint: You may want to set the Children in the Central Limit Theorem.)

https://powcoder.com

Chebyshev's inequality here. Recall for $X \sim \text{Poisson}(\lambda)$ that $Var(X) = \lambda$

8. I	Not so dens	se density	functions. 5	points each	(sub)pa	rt, 15	points to	otal
-------------	-------------	------------	--------------	-------------	---------	--------	-----------	------

1. Consider a continuous random variable whose probability density function is cx^{-3} for $x \ge 1$, and 0 outside this range. What is c?

- 2. Consider random variables X, Y with joint density function f(x, y) = cxy for $x, y \in [0, 1]$, and 0 outside that range.
 - (a) What is c?

https://powcoder.com

(b) What is Signment Project Exam Help

Assign And the Paulo Help

https://powcoder.com

9. This is Absolutely Not Normal! 6 points each part, 12 points total.

Consider a standard Gaussian random variable Z whose PDF is

$$\forall z \in \mathbb{R}, \quad f_Z(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}.$$

Define another random variable *X* such that X = |Z|.

(a) Determine a reasonably simple expression for $f_X(x)$, the PDF of X. It may be helpful to draw a plot. Place your final expression in the box below.

> https://powcoder.com Assignment Project Exam Help

(b) Determine a reasonably simple expression for E(X), the mean of X. Place your final answer in the box

beloassignated types jeat pawing Help

https://powcoder.com

10. Joint Distributions with Kyle and Lara. 6 points each part, 18 points total.

Kyle and Lara arrive in Saint Petersburg randomly and independently, on any one of the first five (5) days of May 2019. Let K be the day that Kyle arrives, and let L be the day that Lara arrives. (Note that K and L will both be in $\{1,2,3,4,5\}$).

Whoever arrives first must wait for the other to arrive before going on any kind of excursion in the city.

(a) Determine E[|K-L|], the expected wait time in days.

https://powcoder.com

Assignment Project Exam Help

Assign And the Spanning Assign And Assign An

https://powcoder.com

(b) Given that Kyle arrives at least a day later than La	
(i) Determine the conditional probability mass fu	unction for Kyle's arrival day, $p_{K \mid (K > L)}(k)$
(ii) Provide a well-tabeled plot of $p(k)$.	roder com
nups.//powe	
Accionment Pro	act Evam Haln
Assignment Proj	ect Exam Help
A 11 W. Cl.	4
Assign And West be	H PRIMOHOIP
https://powcod	der.com

11. Markov Chains 3 points for each part, 18 points total.

Consider the two Markov Chains represented by the following state transition diagrams.

(a) For Markov Cham Jgnment Project Exam Help

(i) Do the *n*-step transition probabilities—defined by $r_{ij}(n) = \Pr(X_n = j | X_0 = i)$ —converge as $n \to \infty$

Assignateat Prancottelp oc

O Does not converge

(ii) If so, determine the corresponding limit to which each transition probability converges, and explain whether and why the limit depends on the mittal state itel, the state at which the walker was stationed initially). If you assert that the transitional probabilities do not converge, explain why no limit exists.

Markov Chain I

Markov Chain II

(b) For Markov Chain Lhttps://powcoder.com

(i) Do the *n*-step transition probabilities—defined by $r_{ij}(n) = \Pr(X_n = j | X_0 = i)$ —converge as $n \to \infty$?

Assignment Project Exam Help converges

O Does not converge

(ii) If so, determine the corresponding limit to which puch transition are ability converges, and expansioned initially). If you assert that the transitional probabilities do not converge, explain why no limit exists.

https://powcoder.com

(c) (Points) Consider Markov Chain I above. Determine t_0^* , the *mean recurrence time* for State 0. The mean recurrence time for a state s is the expected number of steps up to the first return to state s, starting from state s. In other words,

$$t_s^* = E\left[\min(n \ge 1 \text{ such that } X_n = s) \mid X_0 = s\right].$$

In particular,

$$t_s^* = 1 + \sum_i p_{si} t_i,$$

where t_i , which denotes the mean first passage time from State i to State s, is given by

$$t_i = E \left[\min(n \ge 0 \text{ such that } X_n = s) \mid X_0 = i \right].$$

(i) Write the system of the s

Assignment Project Exam Help

Assign And the Specific Example 19

(ii) Set p to 1/2 and write your final answer for the value of t_0^* in the box below.

https://powcoder.com

12. Derive Magic from a Uniform PDF. 5 points per part. 15 points.

A random-number generator produces sample values of a continuous random variable U that is uniformly distributed between 0 and 1.

In this problem you'll explore a method that uses the generated values of U to produce another random variable X that follows a desired probability law distinct from the uniform.

(a) Let $g : \mathbb{R} \to [0,1]$ be a function that satisfies all the properties of a CDF. Furthermore, assume that g is invertible, i.e. for every $y \in (0,1)$ there exists a unique $x \in \mathbb{R}$ such that g(x) = y.

Let random variable X be given by $X = g^{-1}(U)$, where g^{-1} denotes the inverse of g. Prove that the CDF of X is $F_X(x) = g(x)$.

https://powcoder.com

Assignment Project Exam Help

Assign And the Spanning Assign And Assign An

https://powcoder.com

(b) A random variable X follows a double-exponential PDF given by

$$\forall x \in \mathbb{R}, \qquad f_X(x) = \frac{\lambda}{2} e^{-\lambda|x|},$$

where $\lambda > 0$ is a fixed parameter.

Using the random-number generator described above (which samples U), we want to generate sample values of X. Derive the explicit function that expresses X in terms of U. In other words, determine the expression on the right-hand side of

 $X = g^{-1}(U).$

To do this, you must first determine the function g. From part (a) you know that $g(x) = F_X(x)$, so you must first determine $F_X(x)$. It might help you to sketch the PDF of X first. Place your expression for g^{-1} in the box below $\frac{1}{poweder.com}$

Assignment Project Exam Help

Assign And the Spanning Property

https://powcoder.com

Introduction to Probability, 2nd Ed, by D. Bertsekas and J. Tsitsiklis, Athena Scientific, 2008

	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.1910	17839	/ /7967	7995	~80 ¹ 3⊃	18051	.8978	.8106	.8133
0.9	.8159	.8186	8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	∆8643	.8665	8686	2708	11/11/1	8749	.8770	.8790	.8810	8830
1.2	.8849	88 69	.8888	.8907	.8925	.8944	-8962	.8980	.8997	9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	9251	.9265	.9279	.9292	.9306	.9319
$\mid \mathbf{A} \S$	S12	Dang!	E4P5TV	9570	480	t.9. 9 45	LAMP	OEK	11/120	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	19649	.9656	9664	9671	9678	.9686	.9693	.9699	.9706
1.9	.9713	1.9H9	•.9 7 2	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	T9830	9864	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	49875	.9878	1886	.0884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998

The standard normal table. The entries in this table provide the numerical values of $\Phi(y) = \mathbf{P}(Y \leq y)$, where Y is a standard normal random variable, for y between 0 and 3.49. For example, to find $\Phi(1.71)$, we look at the row corresponding to 1.7 and the column corresponding to 0.01, so that $\Phi(1.71) = .9564$. When y is negative, the value of $\Phi(y)$ can be found using the formula $\Phi(y) = 1 - \Phi(-y)$.