Internship Project Report

1. INTRODUCTION

1.1 Project Overview

This project focuses on performing data analytics using Tableau on the Toy Craft dataset, a retail dataset that includes product sales, inventory, and customer demographics. The goal is to analyze patterns and create meaningful visualizations to support data-driven decisions.

1.2 Purpose

- To explore Tableau as a data visualization tool.
- To analyze Toy Craft's sales, customer behavior, and product performance.
- To derive insights and present them via interactive dashboards.

2. IDEATION PHASE

2.1 Problem Statement

What is a customer problem?

A Customer Problem Statement clearly explains the real challenges a customer faces, written from their point of view. It helps teams understand what the user is trying to do, "what's stopping them", and "how they feel" about it — leading to more user-focused solutions.

Why Do We Need a Problem Statement?

Think of it like a flashlight — it helps you see what matters most.

- It shows you the real issue instead of just surface-level problems.
- It helps you connect emotionally with the customer.
- It guides your team's ideas so you're solving the right thing.
- And most importantly, it saves time because you won't waste energycreating something nobody asked for.

How to Write One:>

- "I am" (who is facing the problem)
- "I'm trying to" (what they want to do)
- "But" (what's getting in the way)
- "Because" (why it's hard)
- "Which makes me feel" (how they feel about it)

Example:

Problem Statement	lam (Customer)	Im Trying to	But	Because	Which Makes me feel
ps-1	A gift buyer	choose the perfect toy for a child of a specific age	the website dosen't clearly categorize toys by age or interest	there's a lack of intuitive filters and guidance	confused and anxious about picking the wrong gift
ps-2	An enterpreneur	launch a new product	there's no structured customer feedback available	there are no channels for capturing early customer inputs	disconnected from my target audience

2.2 Empathy Map Canvas

In today's data-driven world, simply having data is not enough. The truepower lies in understanding the people behindthe data — their frustrations, needs, and aspirations. Our project,*"ToyCraft Tales: Tableau's Vision into Toy Manufacturer Data,"* revolvesaround transforming complex toy sales data into clear, actionable insightsthrough visualization. But before we could do that effectively, we had tostep into the shoes of our users — the toy manufacturers, analysts, anddecision-makers.

The "Empathy Map Canvas" became our guiding tool to understand thes users not just as stakeholders, but as humans. Through it, we explored wh they see, hear, think, and feel every day. We realized that behind ever delayed report or misjudged inventory decision is someone trying to their best with limited tools. They desire clarity, speed, and control — an our job was to deliver that.

2.3 Brainstorming

Brainstorming provides a free and open environment that encourages everyone within a team to participate in the creative thinking process that leads to problem solving. Prioritizing volume over value, out-of-the-box ideas are welcome and built upon, and all participants are encouraged to collaborate, helping each other develop a rich amount of creative solutions. Use this template in your own brainstorming sessions so your team can unleash their imagination and start shaping concepts even if you're not sitting in the same room. In this project, our team of five data analysts set out to explore how toy products perform—from factory to store shelf—using Tableau dashboards. In this project, our team of five data analysts set out to explore toy manufacturing and sales using Tableau. We focused on two key questions:

- 1. How do toy categories perform across different regions and time?
- 2. What patterns in sales and operations can help improve business decisions?

We worked with data that included product categories, sales numbers, customer types, branch locations, and income. To kick things off, we held a brainstorming session where each member shared ideas on analyzing trends, customer behavior, and inventory performance. We then grouped these ideas based on how complex they were, how much effort they'd take, and the impact they could make. This helped us prioritize the most valuable insights to build into our dashboards. Our final goal? To create simple, clear, and powerful Tableau dashboards that help toy manufacturers understand their data and make smarter choices.

Step-1: Team Gathering, Collaboration and Select the Problem Statement

Brainstorm

Write down anyideas that come to mind that address your problem statement.

3. REQUIREMENT ANALYSIS

3.1 Customer Journey Map

Stage	Action	Pain Point	Opportunity
Awareness	See dashboard	Data overload	Simple insights
Interest	Explore product sales	No filter options	Interactive filters
Decision	Choose top products	Unclear trends	Category-wise views

3.2 Solution Requirement

Functional Requirements:

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Registration	- Registration through Form - Registration via Gmail - Registration via LinkedIn
FR-2	User Confirmation	- Confirmation via Email - Confirmation via OTP
FR-3	Data Integration	- Connect Tableau to Manufacturer Database - Integrate with Excel, ERP Systems - API Support
FR-4	Data Cleaning & Preparation	- Handle missing/null values - Standardize dates and times - Categorize product data
FR-5	Dashboard Development	- Sales Performance Dashboard - Inventory Tracking Dashboard - Regional Performance Dashboard
FR-6	User Role Management	- Define Admin, Analyst, and Viewer roles - Control access to dashboards based on roles
FR-7	Export and Sharing Features	- Export dashboards as PDF/PNG - Share dashboards via secure links or email
FR-8	Feedback Collection	- User feedback forms for dashboard usability - Rating system for visualizations
FR-9	Real-Time Data Refresh	- Support scheduled refreshes - Allow manual data refresh options
FR-10	Security & Compliance	- Data encryption during transmission - Ensure GDPR/industry compliance

Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	The system should provide an intuitive and user- friendly interface that allows users (e.g., manufacturers, analysts) to navigate dashboards and retrieve insights without prior technical training.
NFR-2	Security	Data must be secured through role-based access controls, encryption in transit and at rest, and integration with secure authentication mechanisms (e.g., OAuth for Gmail/LinkedIn logins).
NFR-3	Reliability	The solution should ensure consistent performance with minimal errors or crashes, including error-handling and data recovery mechanisms.
NFR-4	Performance	Dashboards and visualizations should load within 3 seconds for optimal user experience, even with large datasets. Backend processes (ETL, data refresh) must complete within defined SLAs.
NFR-5	Availability	The application should be available at least 99.5% of the time, excluding planned maintenance, to ensure continuous access for stakeholders.
NFR-6	Scalability	The system must support growth in data volume, user traffic, and dashboard complexity without degradation in performance or reliability. It should be deployable in scalable environments (e.g., cloud-based Tableau Server).

3.3 Data Flow Diagram

Data Flow Diagrams:

Data Flow Diagram (DFD) is a methodology of graphical structural analysis and information systems design, which describes the sources external in respect to the system, recipients of data, logical functions, data flows and data stores that are accessed. DFDs allow to identify relationships between various system's components and are effectively used in business analysis and information systems analysis. They are useful for system's high-level details modeling, to show how the input data are transformed to output results via the sequence of functional transformations. For description of DFD diagrams are uses two notations — Yourdon and Gane-Sarson, which differ in syntax. Online Store DFD example illustrates the Data Flow Diagram for online store, the interactions between Customers, Visitors, Sellers, depicts User databases and the flows of Website Information. Concept Draw DIAGRAM enhanced with Data Flow Diagrams solution lets you to draw clear and simple example of DFD for Online Store using special libraries of predesigned DFD symbols.

Example: (Simplified)

User Stories

Use the below template to list all the user stories for the product.

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Data Analyst	Data Access	USN-1	As a data analyst, I can log into the Tableau dashboard using secure credentials	I can securely access dashboard data	High	Sprint-1

	Dashboard Filtering	USN-2	As a data analyst, I can filter sales data by product, region, or date.	Filters work correctly and update	High	Sprint-1
	Exporting Data	USN-3	As a data analyst, I can export dashboard data into CSV or Excel for further analysis	Data is exported accurately	Medium	Sprint-2
Business Manager	KPI Monitoring	USN-4	As a manager, I can view key performance indicators (KPIs) such as revenue, product performance, and regional sales.	KPIs are clearly displayed and updated regularly	High	Sprint-1
	Trend Analysis	USN-5	As a manager, I can analyze sales trends over different time periods using line and bar charts.	Charts respond to input and show correct trends	Medium	Sprint-2
	Alerts & Notifications	USN-6	As a manager, I can receive alerts when sales drop below a threshold in a particular region.	Notifications are triggered based on predefined rules	Medium	Sprint-3
Executive (C- Level)	Strategic Overview	USN-7	As an executive, I can access a high-level summary of company performance across branches.	Dashboard displays concise, clear summaries	High	Sprint-1
	Regional Comparison	USN-8	As an executive, I can compare performance across branches and cities.	I can view comparative charts and tables	Medium	Sprint-2
	Export to Presentation	USN-9	As an executive, I can export charts and graphs directly for board presentations.	Exported visuals maintain design and data accuracy	Low	Sprint-3
System Administrator		USN-10		Role changes reflect immediately and	High	Sprint-1
	User Role Management		As an admin, I can manage user roles and permissions for dashboard access.	restrict/allow access as expected		
	Data Source Integration	USN-11	As an admin, I can integrate new data sources (Excel, SQL, etc.) into Tableau.	New data is correctly reflected in dashboards	High	Sprint-2
	System Monitoring	USN-12	As an admin, I can monitor system performance and usage statistics of the Tableau server.	I can view uptime, load time, and user activity logs	Medium	Sprint-3
	+					

3.4 Technology Stack

Technical Architecture:

"ToyCraft Tales: Tableau's Vision into Toy Manufacturer Data"

Example: Data-Driven BI System for Toy Manufacturer using Tableau

Scenario: A toy manufacturing company wants to visualize its production efficiency, inventory turnover, and sales performance using Tableau dashboards. The system integrates data from ERP, CRM, and supply chain sources and delivers actionable insights to stakeholders.

A toy manufacturing company wants to track and visualize:

- Production Efficiency
- Inventory Turnover
- Sales Performance

using **Tableau dashboards**. The system integrates data from multiple business systems (ERP, CRM, SCM) and delivers **real-time**, **actionable insights** to managers and analysts

Based on IBM Reference:

https://developer.ibm.com/patterns/ai-powered-backend-system-for-order-processing-during-pandemics/

Here are the required guideline headlines:

- 1. Define Core Objectives
- 2. Use Clean, Structured Data
- 3. Design Scalable Architecture
- 4. Build Interactive Tableau Dashboards
- 5. Implement Security and Access Control

Table 1:Components and Technologies

S.no	Component	Description	Technology
			3
1	User Interface	interactive dashboards for Sales, Inventory, and Production Analytics	Server/Online
2.	Application Logic-1	Python logic to clean, transform and enrich toy manufacturing data	Python (Pandas, NumPy)
3.	Application Logic-2	(Optional) STT for voice-enabled dashboard access	IBM Watson STT API
4.	Application Logic-3	(Optional) Chatbot to assist users in querying data in natural language	IBM Watson Assistant
5.	Database	Structured operational DB for internal use	PostgreSQL / MySQL
6.	Cloud Database	Scalable cloud data warehouse for analytics and dashboard feeding	Snowflake / Amazon Redshift
7.	File Storage	Storage for Excel/CSV raw files from sales or supplier feeds	AWS S3 / Google Cloud Storage
8.	External API-1	Weather data to correlate toy sales trends with climate	IBM Weather API / OpenWeatherMap
9.	External API-2	Verify vendor or distributor details through national ID integration	Aadhar API (or simulated)
10.	Machine Learning Model	Predict toy demand, seasonal patterns, and return risk	Scikit-learn / TensorFlow.
11	Infrastructure	Tableau and data pipeline deployment on cloud	AWS EC2, Docker, Kubernetes, Tableau Online

Table-2: Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-Source Frameworks	Used for ETL, ML, and data ingestion	Python, Flask, Apache Airflow, DBT
2.	Security Implementations	IAM roles, RLS in Tableau, encryption for data	SHA-258, SSL, OAuth 2.0, Tableau Security
3.	Scalable Architecture	Microservices and 3-tier model used for modular deployment	Docker, REST APIs, Snowflake, Tableau Online
4.	Availability	Load-balanced cloud deployment ensures high uptime)	AWS Load Balancer, Multi-zone Tableau Server
5	performance	Tableau extracts, in-memory caching, optimized queries, and CDN usage	Tableau Hyper Extracts, Redis, AWS CloudFront

References:

- IBM Architecture Reference: https://developer.ibm.com/patterns/online-order-processing-system-during-pandemic/
- C4 Architecture: https://c4model.com/
- AWS Architecture: https://aws.amazon.com/architecture

4. PROJECT DESIGN

4.1 Problem Solution Fit

Problem – Solution Fit Template:

The Problem-Solution Fit simply means that you have found a problem with your customer and that the solution you have realized for it actually solves the customer's problem. It helps entrepreneurs, marketers and corporate innovators identify behavioral patterns and recognize what would work and why

Purpose:

- Solve complex problems in a way that fits the state of your customers.
- Succeed faster and increase your solution adoption by tapping into existing mediums and channels of behavior.
- Sharpen your communication and marketing strategy with the right triggers and messaging.
- Increase touch-points with your company by finding the right problem-behavior fit and building trust by solving frequent annoyances, or urgent or costly problems.
- Understand the existing situation in order to improve it for your target group.

References:

- 1. https://www.ideahackers.network/problem-solution-fit-canvas/
- 2. https://medium.com/@epicantus/problem-solution-fit-canvas-aa3dd59cb4fe

4.2 Proposed Solution

Proposed Solution Template:

Project team shall fill the following information in the proposed solution template.

S.No.	Parameter	Description
1.	Problem Statement (Problem to be solved)	Toy manufacturers often struggle to make timely decisions due to scattered, non-visual, and hard-to-understand sales and inventory data. This leads to overstocking, missed trends, and poor planning.
2.	Idea / Solution description	Our solution is an interactive Tableau dashboard that visually presents toy sales, inventory, and trends. It helps teams quickly understand what's happening and make smart business decisions — all in one place.
3.	Novelty / Uniqueness	Unlike traditional Excel reports or generic dashboards, our solution combines visual storytelling with real-time data insights tailored specifically for toy businesses — making data not just available, but actionable.

4.	Social Impact / Customer Satisfaction	By making data clear and easy to use, our solution improves decision-making, reduces waste (like unsold stock), and boosts customer satisfaction by helping companies produce what's truly in demand.
5.	Business Model (Revenue Model)	This solution can be offered as a subscriptionbased dashboard service or licensed per company, with potential for add-ons like predictive analytics and custom KPIs for each client.
6.	Scalability of the Solution	The dashboard is scalable to handle data from small toy startups to large manufacturers. It can be easily adapted to different product lines, regions, or time periods, and can integrate with most existing data systems.

4.3 Solution Architecture

Solution Architecture:

Solution architecture is a complex process – with many sub-processes – that bridges the gap between business problems and technology solutions. Its goals are to:

Find the best tech solution to solve existing business problems.

Describe the structure, characteristics, behavior, and other aspects of the software to project stakeholders.

Define features, development phases, and solution requirements.

Provide specifications according to which the solution is defined, managed, and delivered.

Example - Solution Architecture Diagram:

ToyCraft Tales: Tableau's Vision into Toy Manufacture Data

Figure 1: Architecture and Data Flow of the ToyCraft Tales Tableau-Based Analytics System

Reference: https://aws.amazon.com/blogs/industries/voice-applications-in-clinical-researchpowered-by-ai-on-aws-part-1-architecture-and-design-considerations/

5. PROJECT PLANNING & SCHEDULING

5.1 Project Planning

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Use the below template to create product backlog and sprint schedule

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Data Collection	USN-1	As a user, I want to collect toy manufacturer data from MySQL	2	High	Reshma
Sprint-1		USN-2	As a user, I want to load data into Tableau for analysis	1	High	Bindusree
Sprint-2	Data Preprocessing	USN-3	As a user, I want to clean and handle missing values in the dataset	3	Medium	Dinesh
Sprint-2		USN-4	As a user, I want to group Index values using binning technique	2	Medium	Charan
Sprint-1	Dashboard Design	USN-5	As a user, I want to create charts like pie, bar, map, and line using Tableau	5	High	Charan
Sprint-1		USN-6	As a user, I want to create an interactive dashboard combining multiple charts	3	High	Dinesh

Sprint-2	Story Design	USN-7	As a user, I want to build a Tableau story that walks through key insights	3	Medium	Bindusree
Sprint-2	Deployment	USN-8	As a user, I want to export dashboards & charts as a report in Word/PDF format	5	High	Reshma

Project Tracker, Velocity & Burndown Chart: (4 Marks)

1 Toject Hacker, verocity a particount chart. (4 marks)							
Sp	orint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sp	print-1	11	6 Days	15 June 2025	20 June 2025	11	20 June 2025
Sp	rint-2	13	6 Days	22 June 2025	27 June 2025	13	27 June 2025 Activ

Go to Settings

Velocity:

- Total Story Points = 24
- Number of Sprints = 2
- Velocity = 24 / 2 = 12 Story Points per Sprint
- Velocity per Day = 12 / 6 = 2 Story Points/Day

Burndown Chart:

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.

6. FUNCTIONAL AND PERFORMANCE TESTING

6.1 Performance Testing

- Tested responsiveness of dashboards on Tableau Public.
- Filters were tested for lag and correctness.
- Dashboard loading time: ~2 seconds on average.

Public link of dashboard:

https://public.tableau.com/views/toycraftmanufacturersDashboard/Dashboard1?:language=en-US&:sid=&:redirect=auth&:display_count=n&:origin=viz_share_link

Public link of story:

https://public.tableau.com/views/tableaudatapreparation/Story1?:language=en-US&:sid=&:redirect=auth&:display_count=n&:origin=viz_share_link

7. RESULTS

7.1 Output Screenshots

8. ADVANTAGES & DISADVANTAGES

Advantages:

- Interactive dashboards allow user-level exploration.
- Visualizations are more intuitive than spreadsheets.
- Faster decision-making through visual KPIs.

Disadvantages:

- Tableau Public has limited data storage.
- Requires good internet for publishing online.
- Not suitable for very large datasets (without optimization).

9. CONCLUSION

This project enabled the application of theoretical knowledge in a real-world context. By analyzing the Toy Craft dataset using Tableau, we successfully created dashboards that offer valuable business insights. The project developed skills in data analytics, visualization, and communication of results effectively.

10. FUTURE SCOPE

- Integrate predictive analytics using Python or R.
- Build real-time dashboards using live data sources.
- Add alerting systems for inventory restocking.
- Connect Tableau to databases (e.g., MySQL) for automation.

11. APPENDIX

Dataset Link:

https://www.kaggle.com/datasets/thedevastator/toy-manufacturers-in-us-states?select=Week+39+-+US+Toy+Manufacturers+-+2005+to+2016.hyper

GitHub & Project Demo Link:

GitHub: https://github.com/your-username/toy-craft-dashboard

Demo:https://drive.google.com/file/d/1u8XKQPwXdIkCxTWG6nnCz-TSA_KT0-o1/view?usp=drivesdk