MAT 115B Number Theory

Winter 2025

January 15, 2025

Lecture 5

Lecturer: Elena Fuchs Scribe: Avery Li

Theorem 5.1 (Gauss). $\sum_{d|n} \varphi(d) = n$.

Proof. For every d|n, define $S_d = \{m|1 \le m \le n \text{ s.t. } (m,n) = d\}$. Then $\bigcup_{d|n} S_d = \{1 \dots n\}$ and the set of S_d 's partition $\{1 \dots n\}$. Note that $(m,n) = d \iff (m/d,n/d) = 1 \Rightarrow S_d = \{kd|1 \le k \le n/d \text{ s.t. } (k,n/d) = 1\}$. By definition, $|S_d| = \varphi(n)$. Thus,

$$n = \sum_{d|n} |S_d|$$

$$= \sum_{d|n} \varphi(n/d)$$

$$n = \sum_{d|n} \varphi(d)$$

Convolution of Functions

The convolution of functions defined over arithmetic functions is as follows:

Definition 5.2 (Convolution of arithmetic functions). Let f, g be arithmetic functions. The convolution of f and g is defined as

$$(f*g)(n) = \sum_{d|n} f(d)g\left(\frac{n}{d}\right) = \sum_{d|n} f\left(\frac{n}{d}\right)g(d) = (g*f)(n)$$