MA-56B Ecuaciones en Derivadas Parciales Guía $N^{\circ}2$

12 de mayo de 2008

Prof.: Manuel del Pino.Aux.: Pablo Figueroa.

Problema 1. Sean $\Omega \subset \mathbb{R}^N$ abierto y $u \in L^p(\Omega)$ con 1 . Demuestre que las siguientes propiedades son equivalentes:

- $a) \ u \in W^{1,p}(\Omega).$
- b) Existe una constante C > 0 tal que para todo i = 1, ..., N se tiene

$$\left| \int_{\Omega} u \frac{\partial \phi}{\partial x_i} \right| \le C \|\phi\|_{L^{p'}}, \qquad \forall \phi \in C_0^{\infty}(\Omega),$$

donde $\frac{1}{p} + \frac{1}{p'} = 1$.

c) Existe una constante C>0 tal que para todo abierto $U\subset\subset\Omega$ y todo $h\in{\rm I\!R}^N$ con $|h|<{\rm dist}(U,\Omega^c)$ se tiene

$$\|\tau_h u - u\|_{L^p(U)} \le C|h|,$$

donde $\tau_h u$ esta dada por $\tau_h u(x) = u(x+h)$.

Además, se puede tomar $C = \|\nabla u\|_{L^p(\Omega)}$ en b) y c).

Problema 2.

a) Sea f una función continua en el intervalo [0, a]. Demuestre que

$$\int_0^a \left| \frac{1}{x} \int_0^x f(s) \, ds \right|^2 \, dx \le C \int_0^a |f(x)|^2 \, dx,$$

donde C es una constante independiente de f.

b) Sea $\Omega \subset \mathbb{R}^N$ un abierto acotado con $\partial\Omega$ de clase C^1 . Demuestre la **Desigualdad de Hardy**: Existe $C = C(\Omega) > 0$ tal que para todo $u \in H_0(\Omega)$ se tiene que

$$\int_{\Omega} \left| \frac{u(x)}{d(x)} \right|^2 dx \le C \int_{\Omega} |\nabla u(x)|^2 dx,$$

donde

$$d(x) = \operatorname{dist}(x, \partial \Omega) = \inf\{|x - y| \mid y \in \partial \Omega\}.$$

Problema 3. Sea $F: \mathbb{R} \to \mathbb{R}$ una función C^1 con F' acotada. Supongamos que $\Omega \subset \mathbb{R}^N$ acotado y $u \in W^{1,p}(\Omega)$ para $1 . Probar que <math>F(u) \in W^{1,p}(\Omega)$ y $F(u)_{x_i} = F'(u)u_{x_i}$, i = 1, ..., N. Si F(0) = 0 entonces Ω puede ser no acotado.

Problema 4. Sea $1 y <math>\Omega$ acotado

- a) Probar que si $u \in W^{1,p}(\Omega)$, entonces $|u| \in W^{1,p}(\Omega)$.
- b) Probar que si $u \in W^{1,p}(\Omega)$, entonces $u_+, u_- \in W^{1,p}(\Omega)$ y

$$\nabla u_{+} = \begin{cases} \nabla u & \text{a.e. en } \{u > 0\} \\ 0 & \text{a.e. en } \{u \leq 0\} \end{cases} \quad \text{y} \quad \nabla u_{-} = \begin{cases} 0 & \text{a.e. en } \{u \geq 0\} \\ -\nabla u & \text{a.e. en } \{u < 0\} \end{cases}.$$

Sugerencia: $u_+ = \lim_{\varepsilon \to 0} F_{\varepsilon}(u)$ para

$$F_{\varepsilon}(z) = \begin{cases} (z^2 + \varepsilon^2) - \varepsilon & \text{si } z \ge 0 \\ 0 & \text{si } z < 0 \end{cases}.$$

c) Probar que si $u \in W^{1,p}(\Omega)$, entonces $\nabla u = 0$ c.t.p. en $\{u = 0\}$.

Problema 5. Sea Ω un abierto conexo de \mathbb{R}^N y $u \in W^{1,p}(\Omega)$ satisfaciendo $\nabla u = 0$ c.t.p. en Ω . Demuestre que u es constante c.t.p. en Ω .

Problema 6. Dé una caracterización en términos de trazas del espacio $W_0^{2,p}(\Omega)$ en el caso en que Ω es acotado y suave.

Problema 7.

a) Sea $u: \mathbb{R}^2 \to \mathbb{R}$ definida como

$$u(x,y) = \begin{cases} 1 & \text{si } x > 0 \\ 0 & \text{si } x \le 0 \end{cases}.$$

Obviamente $u \in L^1_{loc}(\mathbb{R}^2)$. Demuestre que u no posee derivada débil con respecto a x. Indicación: Encuentre la derivada de u con respecto a x en el sentido de las distribuciones.

b) Sea $r: \mathbb{R} \to \mathbb{R}$ derivable y $M, N: \mathbb{R}^2 \to \mathbb{R}$ diferenciables. Definimos

$$u(x,y) = \begin{cases} M(x,y) & \text{si } x < r(y) \\ N(x,y) & \text{si } x \ge r(y) \end{cases}.$$

Dé condiciones para M, N y r para que u sea derivable con respecto a x en el sentido débil.

Problema 8. En este problema se quiere demostrar que las inclusiones de Sobolev son óptimas. Lo haremos en dos casos. Suponemos que Ω es un dominio de \mathbb{R}^N y que tiene frontera de clase C^1 .

- a) Sea p < n. Muestre que existe $u \in W^{1,p}(\Omega)$ tal que $u \notin L^q(\Omega)$ con q > np/(n-p). Indicación: Suponga que $0 \in \Omega$ y considere una función u tal que $u(x) = |x|^{\lambda}$ si $x \in B(0,R) \subset \Omega$ y elija λ adecuado.
- b) Sea kp < n. Muestre que $W^{k,p}(\Omega)$ no está contenido en $L^q(\Omega)$ si q > np/(n-kp).
- c) Sea p=n>1. Muestre que $W^{1,p}(\Omega)$ no está contenido en $L^{\infty}(\Omega)$. Indicación: Considere la función u dada por $u(x)=\log\left(\log\left(\frac{4R}{|x|}\right)\right)$ si $x\in B(0,R)\subset\Omega$.

Problema 9.

- a) Suponga que $\Omega \subset \mathbb{R}^N$ es un dominio acotado con frontera de clase C^1 . Sea $u \in H^1(\Omega)$ y definamos $\bar{u}: \mathbb{R}^N \to \mathbb{R}$ como $\bar{u}(x) = u(x)$ si $x \in \Omega$ y $\bar{u}(x) = 0$ si $x \in \mathbb{R}^N \setminus \Omega$. Pruebe que si $\bar{u} \in H^1(\mathbb{R}^N)$, entonces $u \in H^1(\Omega)$.
- b) Pruebe que $H_0^1(\mathbb{R}^N) = H^1(\mathbb{R}^N)$.

Problema 10. Mostrar que una función u es débilmente diferenciable en un dominio Ω si y sólo si es débilmente diferenciable en una vecindad de cada punto en Ω .

Problema 11. Sea Ω un dominio en \mathbb{R}^N con $0 \in \Omega$. Muestre que la función u dada por $u(x) = |x|^{-\alpha}$ es débilmente diferenciable hasta el orden k si $k + \alpha < n$. ¿Bajo que condiciones se tiene $u \in W^{k,p}(\Omega)$?

Problema 12. Sea Ω un dominio acotado en \mathbb{R}^N con $\partial\Omega$ de clase C^1 .

a) Demuestre que existe $C=C(\Omega)>0$ tal que para toda $u\in C^1(\bar{\Omega})$ se tiene

$$||u||_{L^2(\partial\Omega)}^2 \le C ||u||_{L^2(\Omega)} ||u||_{H^1(\Omega)}.$$

b) Demuestre que el operador traza $T: H^1(\Omega) \to L^2(\partial\Omega)$ es compacto.