

CSE 6140/ CX 4140:

Computational Science and Engineering ALGORITHMS

Instructor: Anne Benoit

Visiting Associate Professor, CSE

Based on slides by Bistra Dilkina, Jennifer Welch, George Bebis, and Kevin Wayne

The class P

- Class P consists of (decision) problems that are solvable in polynomial time
- Beware of data size:
 - n encoded in unary if you need to enumerate n objects
 - W encoded in binary if weight or other integer part of the input of the problem
 - "The composition of two polynomials is a polynomial"
 - Graph: data in O(n) equivalent to O(n+m), equivalent to O(n^1000)
 in terms of data size

A first example: 2-partition

- 2-PARTITION: Given n positive integers a_1 , ..., a_n , is there a subset I of $\{1, ..., n\}$ such that $\sum_{i \in I} a_i = \sum_{i \notin I} a_i$?
 - $S = \sum_{1 \le i \le n} a_i$
 - Data of size n log(S), the a_i's are encoded in binary
 - Show that n is in the data size to avoid mistakes
 - Pseudo-polynomial: poly if data encoded in unary

A second example: bipartite graphs

- BIPARTITE: Given a graph G, is G a bipartite graph?
- How do we encode a graph? What is the size of data?
 - Remember: n vertices and m edges
- Which of these are correct?
 - 1. n + m
 - $_{2}$. n + log(m)
 - $\log(n) + \log(m)$
 - 4. **n**
- 1,2,4 are all correct, m is polynomial in n (at most n² edges) (for data size)
- Need to enumerate all vertices to describe the pb instance, so 3 is not correct
- Greedy algorithm polynomial in n (good practice problem!),
 BIPARTITE is in P

Tractable/Intractable Problems

- Problems in P are also called tractable
- Problems not in P are intractable

- Are non-polynomial algorithms always worst than polynomial algorithms?
 - $n^{1,000,000}$ is technically tractable, but really impossible
 - $n^{\log \log \log n}$ is *technically* intractable, but easy

Example: TSP

- For each two cities, an integer cost is given to travel from one of the two cities to the other. The salesperson wants to make a minimum cost circuit visiting each city exactly once.
- TSP: Given a complete graph G=(V,E), a cost function w:E->N, and an integer k, is there a cycle C going through each vertex once and only once, with $\sum_{e \in C} w(e) \le k$?

The class NP

 NP is the class of problems for which a candidate solution can be verified in polynomial time

- NP does not stand for not-P!!
- NP='nondeterministic polynomial'
- P is a subset of NP

Nondeterministic and NP Algorithms

Nondeterministic algorithm = two stage procedure:

- Nondeterministic ("guessing") stage: generate randomly an arbitrary candidate solution ("certificate")
- Deterministic ("verification") stage: take the certificate and the instance to the problem and returns YES if the certificate represents a solution

NP algorithms (Nondeterministic polynomial)

verification stage is polynomial

Verifying a Candidate Solution

- Difference between solving a problem and verifying a candidate solution:
- Solving a problem: is there a path in graph G from vertex u to vertex v with at most k edges?
- Verifying a candidate solution: is $v_0, v_1, ..., v_\ell$ a path in graph G from vertex u to vertex v with at most k edges?

Verifying a Candidate Solution

- A Hamiltonian cycle in an undirected graph is a cycle that visits every vertex exactly once.
- Solving a problem: is there a Hamiltonian cycle in graph G?
- Verifying a candidate solution: is v₀, v₁, ..., v_ℓ a Hamiltonian cycle of graph G?
- Certificate: A list of n nodes.
- Certifier: Check that the list contains each node in V exactly once, and that there is an edge between each pair of adjacent nodes in the permutation.
- Conclusion: HAM-CYCLE is in NP.

Verifying a Candidate Solution vs. Solving a Problem

- Intuitively it seems much harder (more time consuming) in some cases to solve a problem from scratch than to verify that a candidate solution actually solves the problem.
 - If there are many candidate solutions to check, then even if each individual one is quick to check, overall it can take a long time

Is P = NP?

Any problem in P is also in NP:

$$P \subseteq NP$$

- The big (and **open question**) is whether $NP \subseteq P$ or P = NP
 - i.e., if it is always easy to check a solution, should it also be easy to find a solution?
- Most computer scientists believe that this is false but we do not have a proof ...

Problems not in NP?

- We have seen several problems in NP: all problems in P, 2-PARTITION, TSP...
- Problems not in NP are rarely encountered but they exist!
 - Negation of TSP: Given a problem instance of TSP, is it true that there is no cycle in the graph of length n/2?
 - (BTW, what is the input data size for TSP? TSP: Given a complete graph G=(V,E), a cost function w:E->N, and an integer k, is there a cycle C going through each vertex once and only once, with $\sum_{e \in C} w(e) \le k$?)
 - Difficult to think of a certificate... Open problem whether in NP or not

NP-Complete Problems

- NP-complete problems is class of "hardest" problems in NP.
- If you can solve an NP-complete problem, then you can solve all NP problems (show later).
- Hence, if any NP-complete problem can be solved in poly time,
 then all problems in NP can be, and thus P = NP.
- Precise definition coming later...

NPC = NP-complete

Reductions

- Reduction from A to B is showing that we can solve A using the algorithm that solves B
- We say that <u>problem A is easier than problem B</u>, (i.e., we write "A ≤ B")

Reductions

- "A ≤ B": Reduction from A to B is showing that we can solve A using the algorithm that solves B
- If we have an oracle for solving B, then we can solve A by making polynomial number of computations and polynomial number of calls to the oracle for B (Cook)
- Idea: transform the inputs of A to inputs of B (single call to oracle)
 (Karp)

Have we already done reductions in class?

- All-pairs-shortest-paths:
 multiple calls to single-source-shortest-paths
- K-clustering: use of MST
- We can do reductions on poly time algorithms

Polynomial Reductions

- Given two problems A, B, we say that A is polynomially reducible to B (A \leq_p B) if:
 - There exists a function f that converts the input of A to inputs of B in polynomial time
 - 2. $A(i) = YES \Leftrightarrow B(f(i)) = YES$

Proving Polynomial Time

- Use a polynomial time reduction algorithm to transform A into B
- 2. Run a known **polynomial time** algorithm for B
- 3. Use the answer for B as the answer for A

(e.g. k-Clustering problem was reduced to MST)

Implications of Polynomial-Time Reductions

Purpose. Classify problems according to relative difficulty.

Design algorithms. If $X \leq_P Y$ and Y can be solved in polynomial-time, then X can also be solved in polynomial time.

Establish intractability. If $X \le_P Y$ and X cannot be solved in polynomial-time, then Y cannot be solved in polynomial time.

Establish equivalence. If $X \le_P Y$ and $Y \le_P X$, we use notation $X \equiv_P Y$.

up to cost of reduction

Transitivity: if $X \leq_p Y$ and $Y \leq_p Z$, then $X \leq_p Z$

Reduction By Simple Equivalence

Basic reduction strategies.

- Reduction by simple equivalence.
- Reduction from special case to general case.
- Reduction by encoding with gadgets.

Vertex Cover

MINIMUM VERTEX COVER: Given a graph G = (V, E), find the smallest subset of vertices $S \subseteq V$ such that for each edge at least one of its endpoints is in S?

VERTEX COVER: Given a graph G = (V, E) and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \le k$, and for each edge, at least one of its endpoints is in S?

Ex. Is there a vertex cover of size \leq 4? Yes.

Ex. Is there a vertex cover of size \leq 3? No.

Set Cover

SET COVER: Given a set U of elements, a collection S_1, S_2, \ldots, S_m of subsets of U, and an integer k, does there exist a collection of \leq k of these sets whose union is equal to U?

Sample application.

- m available pieces of software.
- Set U of n capabilities that we would like our system to have.
- The ith piece of software provides the set $S_i \subseteq U$ of capabilities.
- Goal: achieve all n capabilities using fewest pieces of software.

Ex:

$$U = \{1, 2, 3, 4, 5, 6, 7\}$$

$$k = 2$$

$$S_1 = \{3, 7\} \qquad S_4 = \{2, 4\}$$

$$S_2 = \{3, 4, 5, 6\} \qquad S_5 = \{5\}$$

$$S_3 = \{1\} \qquad S_6 = \{1, 2, 6, 7\}$$

Vertex Cover Reduces to Set Cover (KT 8.1)

Claim. VERTEX-COVER ≤ P SET-COVER.

Pf. Given a VERTEX-COVER instance $\{G = (V, E), k\}$, we construct a SET-COVER instance $\{U, \{S\}, k'\}$ whose size equals the size of the vertex cover instance.

Construction. (Proof of correctness to be done next class on paper)

- Create SET-COVER instance:
 - U = E, $S_v = \{e \in E : e \text{ incident to } v \}$, k' = k
- Prove that Set-cover of size \leq k iff vertex cover of size \leq k.

