MATH 2301

* Recap: Matrix representation

Let (P,3) be a poset. Fix an ordering (P,,..., Pn) of P.

Given fex(P), we have M, an nxn matrix.

** Key points:

$$-(M_f)_{(i,j)} = \begin{cases} f(C_{Pi}, P_j) & \text{if } [P_i, P_j] \neq \emptyset \\ 0 & \text{otherwise} \end{cases}$$

- If $(p_1, ..., p_n)$ is a topological sort, then M_f is upper-triangular. $\begin{bmatrix} \times \\ 0 \end{bmatrix}$
- $-M_{f+g} = M_f + M_g$ $M_{f \times g} = M_f \cdot M_g$
- M(f) = (Mf) if f is invertible as an element of M(P).
- Theorem: f is invertible if and only if all diagonal entries of M_f are non-zero Equivalently, if and only if $f((x,x)) \neq 0$ for every $x \in P$.

** The Möbius function μ . Let (P, 3) be a finite poset.

Def: The Möbius Function μ is the inverse of $S \in A(P)$. *** Computing m. $b = \begin{cases} -e \\ \mu \times 3 = \delta \end{cases}$ $(\mu \times 3)([x,y]) = \delta([x,y]) = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{else} \end{cases}$ (1) Case 1: $\mu([x,x]) = ?$ (x some element of P) $(\mu \times 5)([x,x]) = \mu([x,x]) \cdot 5([x,x]) = \delta([x,x]) = 1$ from formula $\Rightarrow \mu((x,x)) = 1$ b ° c (2) Case 2: $\mu([x,y])$ for $y \neq z$. E.g. M((a,c)) $(\mu * \zeta)([a,c]) = \sum_{\alpha \geq z \leq E} \mu([a,z]) \zeta([z,c]) = \delta([a,c]) = 0$ = $\mu([a,a]) + \mu([a,c]) = 0. \Rightarrow \mu([a,c]) = -1.$ Similarly, we have an equation (from $\mu((a,e))$): $\mu([a,a]) + \mu([a,c]) + \mu([a,e]) = 0 \Rightarrow \mu([a,e]) = 0.$

$$\mu([a,d])$$
?

Equation:

$$\mu((a,a)) + \mu((a,b)) + \mu((a,c)) + \mu((a,d)) = 0$$

$$\rightarrow \mu([a,d]) = 2-1 = 1.$$

$$(\mu \times 3)([x,y]) = \delta([x,y]) = 0$$

$$\sum_{x=2}^{n} \mu((x,z)) 3((z,y)) = 0.$$

$$\Rightarrow \mu([x,y]) + \sum_{\chi \neq Z} \mu([x,Z]) = 0.$$

$$\Rightarrow \mu((x,y)) = -\sum_{x \ge x \ne y} \mu((x,z)) \qquad \text{formula}.$$

** Example · Subset poset $S = \{1,2,3\}$, $P(s) = \{A \leq S\}$ $\{1,2,3\}$ Again, let's compute

(3) $\{1,2\}$ (1) $\{1,3\}$ $\{2,3\}$ (1) $\{1,4\}$ Blue values indicate this

(4) $\{1,3\}$ $\{2,3\}$ (1) Blue values indicate this

(5) $\{4,6\}$ by $\{4,6\}$ in this case

* Proposition: In a subset poset,

(1) $\mu([\phi, A]) = (-1)^{|A|}$ number of elements in A

(2) $\mu([A,B]) = (-1)$ the set difference.

** Products of posets

Det: Let (P1, 2) and (P2, 3) be posets.

The product poset is the set $P_1 \times P_2$, with the order relation being

 $(a,b) \preceq (c,d)$ if $a \preceq c$ and $b \preceq d$

** Examples

 $P_1 \times P_2$; (b,y). (b,y). (a,y)

(a, x)