# Home Automation Case Study

IoT



### **Purpose & Requirements**

Define Purpose & Requirements of IoT system

### **Process Model Specification**

Define the use cases

#### Domain Model Specification

Define Physical Entities, Virtual Entities, Devices, Resources and Services in the IoT system

#### Information Model Specification

Define the structure (e.g. relations, attributes) of all the information in the IoT system

#### **Service Specifications**

Map Process and Information Model to services and define service specifications

#### **IoT Level Specification**

Define the IoT level for the system

#### **Functional View Specification**

Map IoT Level to functional groups

#### **Operational View Specification**

Define communication options, service hosting options, storage options, device options

#### **Device & Component Integration**

Integrate devices, develop and integrate the components

### **Application Development**

**Develop Applications** 



### Purpose:

 A home automation system that allows controlling of the lights in a home remotely using a web application.



### Behaviour:

- The home automation system should have auto and manual modes.
- In auto mode, the system measures the light level in the room and switches on the light when it gets dark.
- In manual mode, the system provides the option of manually and remotely <u>switching on/off the light</u>.

T



### System Management Requirement:

The system should provide remote monitoring and control functions.

### Data Analysis Requirement:

The system should perform local analysis of the data.



### **Application Deployment Requirement:**

 The application should be deployed locally on the device, but should be accessible remotely.

### Security Requirement:

The system should have basic user authentication capability.

)T

## Step 2: Process Specification





## Step 3: Domain Model Specification

- Physical entity
- Virtual entity
- Device
- Resource
- Service





## Step 4: Information Model Specification

### Information model adds details to the virtual entities



## Step 5: Service Specifications



From process
specifications and info
model, we identify states.
Then we define service
for each state

and switches the light on/off and updates the status in the status database. In manual mode, the controller service, retrieves the current state from the database and switches the light on/off.

## Step 5: Service Specifications



## Step 6: IOT Level Specifications



Cloud



## Step 7: Functional View Specification

### Local



- IoT device maps to the Device FG (sensors, actuators devices, computing devices) and the Management FG (device management)
- Web Services map to Services FG (web services)

- Resources map to the Device FG (on-device resource) and Communication FG (communication APIs and protocols)
- Database maps to the Management FG (database management) and Security FG (database security)
- Controller service maps to the Services FG (native service). Web Services map to Services FG (web services)
- 6. Application maps to the Application FG (web application, application and database servers), Management FG (app management) and Security FG (app security)



## Step 8: Operational View Specification



## Step 9: Device & Component Integration



## Step

## Step 10: Application Development

### Auto

 Controls the light appliance automatically based on the lighting conditions in the room

### • Light

- When Auto mode is off, it is used for manually controlling the light appliance.
- When Auto mode is on, it reflects the current state of the light appliance.



