Jason Hansel

Page 1

Hello world $|S| A \cong B A \equiv B A \times B A$ (3)

This is verbatim \b code.

Test

"Indent" `Quotes'

End

- A
- B
- C

theorem ``theorem"

$$\mathcal{ABCA}|A||B||C|$$
 (1)

$$\begin{cases} a & \text{if A} \\ a+b & \text{if B} \end{cases}$$

Matrixes:

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

Part

Chapter

Section

Subsection

$$1/2 \mathcal{K}_1 \ a \rightarrow b$$

Test

Test

Jason Hansel

 λ

 $\alpha\lambda\lambda\varphi$

 $\cdots + \cdots +$

 $\circ f^{-1}\overline{f}$

 ${\tt defabc}$

 $\prec \succ \asymp$

$$f^{-1}g^{-2}M^{t}$$

such that is is not

VELASFKG

 $\triangle \otimes \times \oplus \times <: \; \coloneqq$

||

 $\langle A \rangle$ (B)

1/21/2 $1/23/4\pi$

such that QED.

 $\lceil 2 \rceil$ span

 $\phi\phi(2)$

Page 2