MATH H104: Homework 12

William Guss 26793499 wguss@berkeley.edu

November 24, 2015

4 Function Spaces

25. Prove the following.

Theorem 1. If $f: M \to M$ be a contraction and M a metric space, then f is uniformly continuous.

Proof. If f is a contraction, then we have that there exists a k < 1 such that for every $x, y \in M$ $d(fx, fy) \le kd(x, y)$. We wish to show that for every $\epsilon > 0$ there exists a δ such that $d(x, t) < \delta$ implies $d(fx, ft) < \epsilon$. Taking delta to be ϵ/k we have that $d(x, t) < \epsilon/k$ implies that

$$d(fx, ft) \le kd(x, y) < k\delta = \epsilon.$$

Therefore f is uniformly continuous.

Theorem 2. The extension of f to the completion of M, denoted M^* , say $g: M^* \to M^*$ is a unique contraction.

Proof. Recall that the completion of a metric space (M,d) is specifically, a pair consisting of the completed metric space (M^*,d^*) and an isometry $\phi:M\to M^*$ such that $\phi[M]$ is dense in the completed metric point set M^* . The extension of f on the compelted metric space (M^*,d) must therefore have the following property: $\phi[f(M)]$ is dense in $f^*(M^*)$.

First we show that an extension of a uniformly continuous function f must therefore be uniformly continuous. For every $\epsilon > 0$ there exists a $\delta > 0$ such that $x,y \in M$ and $0 < d(x,y) < \delta$ implies that $d(fx,fy) = d(f^*x,f^*y) < \epsilon$. Take $x^*,y^* \in M$ with $d(x^*,y^*) < \delta(\epsilon)$. Let

$$\theta(\epsilon) = \frac{\delta - d(x, y)}{4}.$$

Observe that $d(x,y) + 2\theta(\epsilon) < \delta$. Then take $x_n, y_n \in M$ such that $d(x_n, x^*) < \theta(\epsilon)/n$ and $d(y_n, y^*) < \theta(\epsilon)/n$. Then for all $n \in \mathbb{N}$

$$d(x_n, y_n) < d(x_n, x^*) + d(x^*, y^*) + d(y^*, y_n) < d(x^*, y^*) + 2\theta(\epsilon) < \delta.$$

So we have that $d(f^*x_n, f^*y_n) < \epsilon$. Finally observe that $x_n \to x^*$ and $y_n \to y^*$ as far as convergence is concerned in M^* . Since for all n we have that the functional composition of the sequence is less than ϵ , sureley we must have that the extension composed with x^*, y^* is less than ϵ .

In particular such satisfying $\delta = \epsilon/k$ and so $d(f^*x^*, f^*y^*) \leq kd(x^*, y^*) < \epsilon$ is a contraction. Uniqueness follows from exercise 54(b) of Homework 4.

- 26. Consider the following example. Let $M = (-1,0) \cup (0,1)$. Then let $f: M \to M$ such that $x \mapsto \frac{1}{2}x$. Then $f^n(M) = (-(\frac{1}{2})^n, 0) \cup (0, (\frac{1}{2})^n)$. Suppose that there were a fixed point in M, say x. Since $x \neq 0$, |x| > 0 and there exists an N such that for all n > N $|x| > \frac{1}{2}^n$, so x does not exist past the Nth iterate of the contraction f. There cannot be a fixed point.
- 27. We now conjecture about weak contractions.

Theorem 3. Not all weak contractions are contractions.

Proof. Consider the following example. Let M = [0, 1] be a metric space and $f: M \to M$ such that $x \to \tanh(x-1) + 1$ be a weak contraction on M. We show that f is not a contraction. Suppose for the sake of contradiction that there were a k such that $|f(x) - f(y)| \le k|x - y|$ for k < 1. Then let y = 1, and take $y_n \to y$ such that $y_n = \frac{n-1}{n}$. By f a contraction we have that

$$\frac{|f(x) - f(y)|}{|x - y|} = \frac{1 - \left(\tanh\left(-\frac{1}{n}\right) + 1\right)}{1 - \frac{n - 1}{n}} = n \tanh\left(\frac{1}{n}\right) = -n + \frac{2n}{1 + e^{-2/n}} \le k < 1$$

However, since $n \tanh(1/n) \to 1$ as $n \to \infty$ we have a contradiction since there must be an N for which all n > N, $n \tanh(1/n) > k$.

Furthermore, it follows that even the compactness of M does not give that all weak contractions are contractions by the previous theorem. However, fixed point theorems hold for weak contractions as is demonstrated by the following theorem.

Theorem 4. If $f: M \to M$ is a weak contraction on a compact metric space M, then f has a unique fixed point.

Proof. By M compact and f a weak contraction, we have that f continuous. Therefore f(M) is closed up to iteration of f. Observe that since f is a weak contraction we have that $f^{n+1}(M) \subset f^n(M)$. So it follows that

$$\bigcap_{n=1}^{k} f^n(M) = f^k(M).$$

Then since the kth iterate of f on M is closed we have that the infinite intersection is closed and non empty; that is,

$$\bigcap_{n=1}^{\infty} f^n(M) = F \neq \emptyset.$$

Figure 1: A graph of $f: \mathbb{R} \to \mathbb{R}$ a weak contraction (but not a contraction) with |f'(x)| < 1 against the identity function, showing the asymtotic properties of the f(x).

We claim that if $p \in F$, p is a fixed point of f. Suppose for the sake of contradiction that $p \notin f(F)$, then $f(F) \subset F$ which contradicts the fact that $\bigcap_{n=1}^{\infty} f^n(M) = F$.

Lastly we claim that p is unique. Suppose there were another fixed point $q \in F$. Then since $q \neq f$, d(p,q) = d(fq,fp) < d(p,q), which is a contraction, so p is unique.

28. Weak contractions can be brought about by limiting the derivative of real valued functions. We propose the following theorem.

Theorem 5. If $f : \mathbb{R} \to \mathbb{R}$ is differentiable and is derivative satisfies |f'(x)| < 1 flor all $x \in \mathbb{R}$, then f is a weak contraction.

Proof. For any $x, y \in \mathbb{R}$ such that $x \neq y$, assume that x < y without loss of generality. Then differentiability of f implies that for some θ between x and y,

$$d(fx, fy) = f(\theta)d(x, y),$$

and since $f(\theta) < 1$ it is clear that d(fx, fy) < d(x, y). So it follows that at least, f is a weak contraction.

Although this property of the derivative guarentees that f is a weak contraction, it does not necisarrily follow that f is a contraction nor that it has fixed points. Consider the following example.

Let $f: \mathbb{R} \to \mathbb{R}$ such that f'(x) has the property that |f'(x)| < 1. In particular let $f'(x) = 1 - e^{-x^2}$. This furthermore gives f the property that $f'(x) \to 1, x \to \infty$.

Clearly f is a weak contraction by the theorem above, but it does not have the property of contraction by the following logic. Suppose that there were a k < 1 such that $d(fx, fy) \leq kd(x, y)$. Observe that by f differentiable, we have that for x, y different $d(fx, fy) = f'(\theta)d(x, y)$ where θ is a real number between x and y. Since however as $x, y \to \infty$, $f'(\theta) \to 1$ we may choose x, y large enough that $f'(\theta) > k$, and we have contradicted the relationship given by contraction.

Furthermore since there are infiniteley many such f satisfying the above properties, take

$$f(x) = x - \int_0^x e^{-t^2} dt + 420.$$

In this case, there does not exist an x such that f(x) = x, since f(x) - x > 0 for all x. That is,

$$\inf_{x \in \mathbb{R}} \left(420 - \int_0^x e^{-t^2} dt \right) = 419 > 0.$$

So f has no fixed points even though |f'(x)| < 1 for all x.

29. We find an interesting counter example to the uniqueness of fixed points in Bruowers Fixed-Point Theorem.

Theorem 6. Suppose that $f: B^m \to B^m$ is continuous where B^m is the closed unit ball in \mathbb{R}^m . Then although f has a fixed point, this point need not be unique.

Proof. We give a simple proof by example! Take f as above such that $x \mapsto x$. Then for every $x \in B^m$, f(x) = x is a fixed point. Therefore $f^n(x) = x$ for all n and $f^n(x) \to x$ as $n \to \infty$. So there is no unique fixed point.