Statistica Bayesiana

Christian Mancini

21 febbraio 2023

Indice

1 Richiami di statistica

1

1 Richiami di statistica

Definition 1.1 (Partizione di un insieme). Una partizione dell'insieme H è una famiglia di sottoinsiemi $\{H_1, H_2, \cdots H_k\}$ che soddisfa le seguenti proprietà:

- 1. $H_i \cap H_j = \emptyset$ per ogni $i \neq j$;
- 2. $\bigcup_{i=1}^{k} H_i = H$.

In altre parole abbiamo detto che:

- La famiglia $\{H_1, H_2, \cdots H_k\}$ è detta **disgiunta** se $H_i \cap H_j = \emptyset$ per ogni $i \neq j$.
- La famiglia $\{H_1, H_2, \cdots H_k\}$ è detta **completa** se $\bigcup_{i=1}^k H_i = H$.
- La famiglia $\{H_1, H_2, \cdots H_k\}$ è detta **partizione di H** se è disgiunta e completa.

Sia $\{H_1, H_2, \dots H_k\}$ un partizione di H, P(H) = 1 e sia E un evento specifico. Allora gli assiomi di probabilità ci dicono che:

$$\sum_{i=1}^{k} P(H_i) = 1. (1)$$

$$P(E) = \sum_{i=1}^{k} P(E \cap H_i) = \sum_{i=1}^{k} P(E|H_i)P(H_i).$$
 (2)

Dove 1 è detta Regola di probabilità totale e 2 è detta Regola di probabilità marginale.

Definition 1.2 (Formula di Bayes).

$$P(H_j|E) = \frac{P(E|H_j)P(H_j)}{P(E)} \stackrel{2}{=} \frac{P(E|H_j)P(H_j)}{\sum_{i=1}^k P(E|H_i)P(H_i)}.$$
 (3)