TD de traitement d'images

1. Représentation des images

Représentez l'évolution des niveaux de gris le long de la ligne rouge

2. Histogramme et histogramme cumulé

Représenter l'allure de l'histogramme et de l'histogramme cumulé de l'image ci-dessous

3. Histogramme et histogramme cumulé

Quels sont les histogrammes des deux images 8x8 ci-dessus?

4. Système RVB

Quel espace est décrit par l'ensemble des couleurs dans le système RVB ?

5. Système couleur HSV

Pourquoi cette forme en cône?

6. Système couleur HSV

Où sont les points correspondant aux couleurs (R,G,B):

(210, 0, 0)

(50, 0, 0)

(210, 50, 50)

7. Notions de topologie

Combien y a-t-il de régions dans l'image ci-dessous où les pixels de contours sont représentés en noir ?

8. Correction d'exposition

Donner la nouvelle image obtenue par la transformation par LUT ci-dessous :

0 ->

1 -> 9

9. Correction d'exposition

Donner la nouvelle image obtenue par la transformation par LUT ci-dessous :

10. Correction d'exposition

Quelle table de correspondance permettra de mieux voir les détails sur les personnes ?

11. Renforcement de contraste

On souhaite réaliser un renforcement de contraste par laplacien en utilisant le laplacien le plus simple vu en cours et K=1. Pour cela, on souhaite réaliser une seule convolution. Donner les coefficients du filtre permettant de réaliser cette opération.

12. Réduction du bruit

- a. Quel sera le résultat d'un filtre moyenneur 3x3 au pixel central de l'image ci-contre ?
- b. Même chose avec un filtre médian
- c. Même chose avec un filtre bilatéral 3x3 avec $K_1(x)=max(0,(2-x)/2)$ et $K_2(x)=max(0,(30-x)/30))$ où x>=0;

50	50	90	90	90
50	50	90	90	90
50	50	90	90	90
50	50	90	90	90
50	50	90	90	90

13. Estimation des dérivées

On souhaite estimer la dérivée en x d'une image en utilisant un opérateur dérivée de gaussienne avec sigma=1. Donner les coefficients du filtre correspondant.

Reprendre la même question pour une dérivée en y.

14. Recherche de contours.

On considère l'image figure 1 dont on se propose d'extraire les contours.

a. Dans un premier temps, on estime le gradient avec les dérivées obtenues avec [-1 0 1] et [-1 0 1]^T. Que vaut le gradient au pixel (y,x)=(3,4) ? Quel seuil utiliser sur le gradient pour détecter les contours ?

figure 1

b. Dans un second temps, on utilise une approche laplacien. Celui-ci est représenté figure 3. Quelles sont les opérations à faire sur le laplacien pour obtenir les contours ?

15. Transformée de Hough

On considère l'image ci-dessous composée de 4 droites. On décide de discrétiser les orientations en utilisant 4 valeurs et les distances par pas de 1. Où sont les cases correspondant à ces 4 droites dans l'espace des paramètres ?

16. Transformée de Hough pour des cercles

- d. Proposer un algorithme permettant de détecter des cercles de rayon R connu dans les images.
- e. Etendez la méthode en utilisant l'orientation du gradient
- f. Reprendre la question 1 si on ne connaît pas le rayon R

17. Détecteur de points d'intérêt

On souhaite détecter les points d'intérêt sur l'image de la figure 1 de l'exercice précédent. Pour cela, on utilisera les filtres $[-1\ 0\ 1]$ et $[-1\ 0\ 1]^T$ pour le calcul des dérivées puis un filtrage par un moyenneur 3x3. Quelle sera la valeur de la fonction de Harris (H) en (y,x)=(7,7)?

18. Etiquetage en composantes connexes

19. Réaliser l'étiquetage de l'image cicontre

Ь	Ь	Ь	Ь	Ь	Ь
	C		d	d	
h		f			g
h	h	h	h		g
h	h	h	h	h	h

20. Binarisation

On considère l'image ci-dessous codée sur 4 bits.

Appliquer la méthode d'Otsu pour binariser cette image et déterminer le seuil qui sera automatiquement utilisé.

0	1	2	3	4	5	6	7	8	9
14	13	13	12	12	11	11	11	10	11
13	13	13	12	12	12	11	11	11	10
13	13	12	12	12	11	11	11	10	10
13	12	12	8	7	6	5	10	10	10
12	12	12	7	6	5	4	10	10	9
12	12	11	6	5	4	3	10	9	9
12	11	11	5	4	3	2	9	9	9
11	11	11	10	10	10	9	9	9	8
11	11	10	10	10	9	9	9	8	8
10	10	10	10	9	9	9	8	8	8

21. Dilatation morphologique

Dilater l'image ci-contre avec les éléments structurants suivants :

22. Erosion morphologique

Eroder l'image ci-contre avec les éléments structurants suivants :

23. Algorithme de Chamfer

Représenter les deux passes de l'algorithme de Chamfer permettant d'estimer la distance entre chaque point de l'objet et le fond

