```
import datetime
import os
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import utils config
from sklearn.linear model import LogisticRegression
from sklearn.metrics import (RocCurveDisplay, accuracy score,
fl score,
                              precision score, recall score)
from sklearn.model selection import StratifiedKFold, train test split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
configs = utils config.load config("../config.json")
red = pd.read_csv(f'{configs.red}', sep=configs.sep)
white = pd.read csv(f'{configs.white}', sep=configs.sep)
red
      fixed acidity volatile acidity citric acid residual sugar
chlorides
                7.4
                                 0.700
                                                0.00
                                                                  1.9
0.076 \
                                 0.880
                                                0.00
                7.8
                                                                 2.6
0.098
                7.8
                                 0.760
                                                0.04
                                                                 2.3
2
0.092
               11.2
                                 0.280
                                                0.56
                                                                  1.9
3
0.075
                7.4
                                 0.700
                                                0.00
                                                                  1.9
4
0.076
. . .
                 . . .
                                   . . .
                                                 . . .
                                                                  . . .
                                 0.600
1594
                6.2
                                                0.08
                                                                 2.0
0.090
                5.9
                                 0.550
                                                0.10
                                                                 2.2
1595
0.062
                6.3
                                 0.510
                                                0.13
                                                                 2.3
1596
0.076
                5.9
                                 0.645
                                                                 2.0
1597
                                                0.12
0.075
                                                0.47
1598
                6.0
                                 0.310
                                                                 3.6
0.067
```

free sulfur dioxide total sulfur dioxide density pH

sulph	ates				
0 0.56	\	11.0	34.0	0.99780	3.51
1	\	25.0	67.0	0.99680	3.20
0.68		15.0	54.0	0.99700	3.26
0.65 3		17.0	60.0	0.99800	3.16
0.58 4 0.56		11.0	34.0	0.99780	3.51
1594		32.0	44.0	0.99490	3.45
0.58 1595		39.0	51.0	0.99512	3.52
0.76 1596		29.0	40.0	0.99574	3.42
0.75 1597		32.0	44.0	0.99547	3.57
0.71 1598 0.66		18.0	42.0	0.99549	3.39
0 1 2 3 4	alcohol 9.4 9.8 9.8 9.8 9.4	quality 5 5 5 6 5			
1594 1595 1596 1597 1598	10.5 11.2 11.0 10.2 11.0	5 6 6 5 6			

[1599 rows x 12 columns]

white

fixed	acidity	volatile acidity	citric acid	residual sugar
chlorides 0 0.045 \	7.0	0.27	0.36	20.7
1	6.3	0.30	0.34	1.6
0.049 2 0.050	8.1	0.28	0.40	6.9
3	7.2	0.23	0.32	8.5

0.058 4 0.058		7.2	0.23	0.	32		8.5
4893 0.039		6.2	0.21	0.	29		1.6
4894		6.6	0.32	0.	36		8.0
0.047 4895		6.5	0.24	0.	19		1.2
0.041 4896		5.5	0.29	Θ.	30		1.1
0.022 4897 0.020		6.0	0.21	0.	38		0.8
sulpha		fur dioxide	total sulfu	r dioxide	density	рН	
0		45.0		170.0	1.00100	3.00	
0.45 1	\	14.0		132.0	0.99400	3.30	
0.49		30.0		97.0	0.99510	3.26	
0.44		47.0		186.0	0.99560	3.19	
0.40 4		47.0		186.0	0.99560	3.19	
0.40							
4893		24.0		92.0	0.99114	3.27	
0.50 4894		57.0		168.0	0.99490	3.15	
0.46 4895		30.0		111.0	0.99254	2.99	
0.46 4896		20.0		110.0	0.98869	3.34	
0.38 4897 0.32		22.0		98.0	0.98941	3.26	
0 1 2 3 4 4893 4894	alcohol 8.8 9.5 10.1 9.9 9.9 11.2 9.6	quality 6 6 6 6 6 5					

4895	9.4	6
4896	12.8	7
4897	11.8	6

[4898 rows x 12 columns]

3) Descreva as variáveis:

type = Tipo do vinho cadatrado na base. White (branco) ou Red (Tinto) | Variável Contínua

fixed acidity = Quantidade de Ácido Tartárico (g/dm³) | Variável Contínua volatile acidity = Quantidade de Ácido Acético (g/dm³) | Variável Contínua citric acid = Quantidade de Ácido Cítrico (g/dm³) | Variável Contínua residual sugar = Quantidade de Açucar Residual (g/dm³) | Variável Contínua chlorides = Quantidade de Cloreto de Sódio (g/dm³) | Variável Contínua free sulfur dioxide = Quantidade de Dióxido de Enxofre livre (mg/dm³) | Variável Contínua total sulfur dioxide = Quantidade total de Dióxido de Enxofre (md/dm³) | Variável

Contínua

 $\label{eq:density} density = Densidade (g/cm^3) | Variável Contínua \\ ph = Ph | Variável Contínua \\ sulphates = Quantidade de Sulfato de Potássio (g/dm^3) | Variável Contínua \\ alcohol = Alcool (% vol.) | Variável Contínua \\ quality = Qualidade do vinho de 0 a 10 | Variável Categórica$

Média e Desvio Padrão - Vinhos Tinto

red.describe()

	fixed acidity	volatile acidity	citric acid	residual sugar	
count	1599.000000	,	1599.000000	1599.000000	\
mean	8.319637	0.527821	0.270976	2.538806	•
std	1.741096	0.179060	0.194801	1.409928	
min	4.600000	0.120000	0.000000	0.900000	
25%	7.100000	0.390000	0.090000	1.900000	
50%	7.900000	0.520000	0.260000	2.200000	
75%	9.200000	0.640000	0.420000	2.600000	
max	15.900000	1.580000	1.000000	15.500000	
		free sulfur dioxide	total sulfur	dioxide	
density					
	1599.000000	1599.000000	159	9.000000	
1599.00	•				
mean	0.087467	15.874922	4	6.467792	
0.99674	1 7				
std	0.047065	10.460157	3	2.895324	
0.00188	37				

min	0.012000	1.000000		6.000000
0.990070 25% 0.995600	0.070000	7.00000		22.000000
50% 0.996750	0.079000	14	.000000	38.000000
75% 0.997835	0.090000	21	.000000	62.000000
max 1.003690	0.611000	72.000000		289.000000
count 1 mean std min 25% 50% 75% max	pH 1599.000000 3.311113 0.154386 2.740000 3.210000 3.310000 3.400000 4.010000	sulphates 1599.000000 0.658149 0.169507 0.330000 0.550000 0.620000 0.730000 2.000000	alcohol 1599.000000 10.422983 1.065668 8.400000 9.500000 10.2000000 11.100000 14.900000	quality 1599.000000 5.636023 0.807569 3.000000 5.000000 6.000000 6.000000

Média e Desvio Padrão Vinhos Verde

white.describe()

count mean std min 25% 50% 75% max	fixed acidity 4898.000000 6.854788 0.843868 3.800000 6.300000 7.300000 14.200000	0.278241 0.100795	4898.000000 0.334192 0.121020 0.000000 0.270000 0.320000 0.390000	6.391415 5.072058 0.600000 1.700000 5.200000 9.900000	\
		free sulfur dioxide	total sulfu	r dioxide	
densit	y 4898.000000	4898.000000	400	98.000000	
4898.0		4090.000000	403	96.000000	
mean		35.308085	13	38.360657	
0.9940					
	0.021848	17.007137	4	42.498065	
0.0029		2 000000		0 000000	
min 0.9871		2.000000		9.000000	
25%		23.000000	10	98.000000	
0.9917					
50%		34.000000	13	34.000000	
0.9937	40				

75% 0.050000 0.996100		46	.000000	167.000000	
max 1.0389	0.346000	289.000000		440.000000	
count mean std min 25% 50% 75% max	pH 4898.000000 3.188267 0.151001 2.720000 3.090000 3.180000 3.280000 3.820000	sulphates 4898.000000 0.489847 0.114126 0.220000 0.410000 0.470000 0.550000 1.080000	alcohol 4898.000000 10.514267 1.230621 8.000000 9.500000 10.400000 11.400000 14.200000	quality 4898.000000 5.877909 0.885639 3.000000 5.000000 6.000000 9.000000	

Distribuição da variável "Quality" - Vinhos Verde Tintos

_ = red.quality.value_counts().sort_index().plot.bar(width=0.9)

Distribuição da variável "Quality" - Vinhos Verde Brancos

_ = white.quality.value_counts().sort_index().plot.bar(width=0.9)

Correlação das variáves - Vinhos Verde Tintos red.corr()

fixed acidity volatile acidity citric acid residual sugar chlorides free sulfur dioxide total sulfur dioxide density pH sulphates alcohol quality	1.000000 -0.256131 0.671703 0.114777 0.093705 -0.153794 -0.113181 0.668047 -0.682978 0.183006 -0.061668 0.124052	volatile acidity -0.256131 1.000000 -0.552496 0.001918 0.061298 -0.010504 0.076470 0.022026 0.234937 -0.260987 -0.202288 -0.390558 chlorides free	0.671703 \ -0.552496 \ 1.000000 \ 0.143577 \ 0.203823 \ -0.060978 \ 0.035533 \ 0.364947 \ -0.541904 \ 0.312770 \ 0.109903 \ 0.226373
<pre>fixed acidity 0.153794 \</pre>	0.114777	0.093705	-
volatile acidity	0.001918	0.061298	-0.010504

citric acid	0.143577	0.203823	-0.060978
residual sugar	1.000000	0.055610	0.187049
chlorides	0.055610	1.000000	0.005562
free sulfur dioxide	0.187049	0.005562	1.000000
total sulfur dioxide	0.203028	0.047400	0.667666
density	0.355283	0.200632	-0.021946
рН	-0.085652 -	0.265026	0.070377
sulphates	0.005527	0.371260	0.051658
alcohol	0.042075 -	0.221141	-0.069408
quality	0.013732 -	0.128907	-0.050656
sulphates fixed acidity 0.183006 \ volatile acidity 0.260987 citric acid	-0.113 0.076 0.035	3181 0.668047 3470 0.022026	pH -0.682978 0.2349370.541904
0.312770 residual sugar	0.203		-0.085652
0.005527 chlorides	0.047	400 0.200632	-0.265026
0.371260 free sulfur dioxide	0.667	7666 -0.021946	0.070377
0.051658 total sulfur dioxide 0.042947	1.000	0000 0.071269	-0.066495
density 0.148506	0.071	269 1.000000	-0.341699
pH 0.196648	-0.066	6495 -0.341699	1.000000 -
sulphates 1.000000	0.042	947 0.148506	-0.196648
alcohol 0.093595	-0.205	654 -0.496180	0.205633
quality 0.251397	-0.185	5100 -0.174919	-0.057731

alcohol quality

fixed acidity	-0.061668	0.124052
volatile acidity	-0.202288	-0.390558
citric acid	0.109903	0.226373
residual sugar	0.042075	0.013732
chlorides	-0.221141	-0.128907
free sulfur dioxide	-0.069408	-0.050656
total sulfur dioxide	-0.205654	-0.185100
density	-0.496180	-0.174919
рН	0.205633	-0.057731
sulphates	0.093595	0.251397
alcohol	1.000000	0.476166
quality	0.476166	1.000000

Correlação das variáves - Vinhos Verde Brancos white.corr()

fixed acidity volatile acidity citric acid residual sugar chlorides free sulfur dioxide total sulfur dioxide density pH sulphates alcohol quality	fixed acidity 1.000000 -0.022697 0.289181 0.089021 0.023086 -0.049396 0.091070 0.265331 -0.425858 -0.017143 -0.120881 -0.113663	volatile acidity -0.022697 1.000000 -0.149472 0.064286 0.070512 -0.097012 0.089261 0.027114 -0.031915 -0.035728 0.067718 -0.194723	0.289181 \ -0.149472 1.000000 0.094212 0.114364 0.094077 0.121131 0.149503 -0.163748 0.062331 -0.075729
	residual sugar	chlorides free	sulfur dioxide
fixed acidity 0.049396 \	0.089021	0.023086	-
volatile acidity	0.064286	0.070512	-0.097012
citric acid	0.094212	0.114364	0.094077
residual sugar	1.000000	0.088685	0.299098
chlorides	0.088685	1.000000	0.101392
free sulfur dioxide	0.299098	0.101392	1.000000
total sulfur dioxide	0.401439	0.198910	0.615501
density	0.838966	0.257211	0.294210

рН	-0.194133 -0	.090439	-0.000618
sulphates	-0.026664 0	.016763	0.059217
alcohol	-0.450631 -0	.360189	-0.250104
quality	-0.097577 -0	.209934	0.008158
sulphates fixed acidity 0.017143 \ volatile acidity 0.035728 citric acid 0.062331 residual sugar 0.026664 chlorides 0.016763 free sulfur dioxide 0.059217 total sulfur dioxide 0.134562 density 0.074493 pH 0.155951 sulphates 1.000000 alcohol 0.017433 quality 0.053678 fixed acidity volatile acidity citric acid	-0.097577 -0 total sulfur dioxi	.209934 de density 70 0.265331 61 0.027114 31 0.149503 39 0.838966 10 0.257211 01 0.294210 00 0.529881 81 1.000000 21 -0.093591	pH -0.4258580.0319150.163748 -0.1941330.090439 -0.000618 0.002321 -0.093591 1.000000 0.155951 0.121432 -
residual sugar chlorides free sulfur dioxide total sulfur dioxide density	-0.450631 -0.097577 -0.360189 -0.209934 -0.250104 0.008158 -0.448892 -0.174737 -0.780138 -0.307123		
pH sulphates alcohol quality	0.121432 0.099427 -0.017433 0.053678 1.000000 0.435575 0.435575 1.000000		

Etapas para criação de um modelo de classificação eficiente:

- Análise exploratória dos dados para saber como é o comportamento da base, escolher variáveis e ter uma ideia em que tipo de modelo ela melhor se encaixa;
- Escolha do modelo e treinamento com configurações diversas para testar as métricas de acurácia, recall, precisão e f1;
- Análise das métricas para saber eficiência do modelo.

```
Models
vars = [
        'fixed acidity',
        'volatile acidity',
        'citric acid'.
        'residual sugar',
        'chlorides',
        'free sulfur dioxide',
        'total sulfur dioxide',
        'density',
        'pH',
        'sulphates',
        'alcohol',
            1
def base(base, vars):
    list_arq = os.listdir(path='../data/')
    for name in list arg:
        if base in name:
            wines = pd.read csv(f'../data/{name}', sep=configs.sep)
            wines["category"] = (wines['quality'] >
configs.bad wine upper bound).astype(float)
            X = wines[vars]
            y = wines['category']
            return X, y
        elif base in name:
            white = pd.read csv(f'../data/{name}', sep=configs.sep)
            white["category"] = (white['quality'] >
configs.bad wine upper bound).astype(float)
            X = white[vars]
            y = white['category']
            return X, y
        elif base in name:
            red = pd.read csv(f'../data/{name}', sep=configs.sep)
            red["category"] = (red['quality'] >
configs.bad wine upper bound).astype(float)
            X = red[vars]
            y = red['category']
            return X, y
```

```
confiq = [
    (SVC, {'kernel': 'rbf'}),
    (SVC, {'kernel': 'rbf', 'gamma': 2}),
    (SVC, {'degree': 3, 'kernel': 'poly'}),
    (SVC, {'degree': 5, 'kernel': 'poly'} ),
    (SVC, {'degree': 10, 'kernel': 'poly'}),
    (LogisticRegression, {}),
    (DecisionTreeClassifier, {'min samples leaf': 50})
var = 'white'
X, y = base(var, vars)
y.value counts().sort values()
category
0.0
       1640
       3258
1.0
Name: count, dtype: int64
test size = 0.2
random state = 42
stratify = y
X train cv, X test, y train cv, y test = train test split(X.values,
                                                            y.values,
test size=test size,
random state=random state,
stratify=stratify)
def interpolation(fpr, tpr):
    interp fpr = np.linspace(0, 1, 100)
    interp_tpr = np.interp(interp fpr, fpr, tpr)
    interp tpr[0] = 0.
    return interp fpr, interp tpr
def train_cv(base, X, y, X_test, y_test, model_klass, model_kwargs =
{}):
    day hour = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
    cv = StratifiedKFold(n splits=configs.k folds)
    fig, ax = plt.subplots(1, 1, figsize=(8, 8))
    fprs list = []
    tprs list = []
    auc \overline{l}ist = []
    scaler list = []
    model \overline{list} = []
    f1 score val list = []
    fl_score_train_list = []
```

```
acc train = []
    acc val = []
    recall train = []
    recall val = []
    prec train = []
    prec val = []
    # usar model klass. name para pegar o nome
    train model = None
    if "SVC" in str(model klass):
        train_model = "SVC"
    if "Tree" in str(model klass):
        train model = "DecisionTree"
    if "Logistic" in str(model klass):
        train model = "LogisticRegression"
    with
open(f"{configs.results}/{train model} {day hour} {base}.txt", "a") as
file:
            file.write(f"""Configs: {model kwargs}\n""")
    for fold, (train idx, val idx) in enumerate(cv.split(X, y)):
        X \text{ train} = X[\text{train idx, :}]
        y train = y[train idx]
        X \text{ val} = X[\text{val idx, :}]
        y val = y[val idx]
        scaler = StandardScaler()
        X train scaled = scaler.fit transform(X train)
        X val scaled = scaler.transform(X val)
        scaler list.append(scaler)
        model = model klass(**model kwargs)
        model.fit(X train scaled, y train)
        y_pred = model.predict(X_train_scaled)
        y pred val = model.predict(X val scaled)
        with
open(f"{configs.results}/{train model} {day hour} {base}.txt", "a") as
file:
            file.write(f"""========== FOLD {fold}
        O Resultado da ACURÁCIA em TREINO é: {100 *
accuracy_score(y_train, y_pred):.2f}%
        O Resultado da ACURÁCIA na VALIDAÇÃO é: {100 *
accuracy_score(y_val, y_pred_val):.2f}%
        O Resultado da SENSIBILIDADE em TREINO é: {100 *
recall score(y train, y pred):.2f}%
        O Resultado da SENSIBILIDADE na VALIDAÇÃO é: {100 *
```

```
recall_score(y_val, y_pred_val):.2f}%
        O Resultado da PRECISÃO em TREINO é: {100*
precision_score(y_train, y_pred):.2f}%
        O Resultado da PRECISÃO na VALIDAÇÃO é: {100*
precision_score(y_val, y_pred_val):.2f}%
        O Resultado da de F1-Score em TREINO é: {f1 score(y train,
y pred):.2}
        O Resultado da de F1-Score na VALIDAÇÃO: {f1 score(y val,
y pred val):.2}\n\n""")
        acc_train.append(accuracy_score(y_train, y_pred))
        acc_val.append(accuracy_score(y_val, y_pred_val))
        recall_train.append(recall_score(y_train, y_pred))
        recall val.append(recall score(y val, y pred val))
        prec_train.append(precision_score(y_train, y_pred))
        prec val.append(precision score(y val, y pred val))
        f1_score_train_list.append(f1_score(y_train, y_pred))
        f1_score_val_list.append(f1_score(y_val, y_pred_val))
        model list.append(model)
        viz = RocCurveDisplay.from estimator(
            model,
            X val scaled,
            y val,
            ax = ax,
            alpha=0.3,
            lw=1
        interp_fpr, interp_tpr = interpolation(viz.fpr, viz.tpr)
        fprs list.append(interp fpr)
        tprs list.append(interp tpr)
        auc list.append(viz.roc auc)
open(f"{configs.results}/{train model} {day hour} {base}.txt", "a") as
file:
            file.write(f"""========== Resultado Médio
        O resultado Médio da ACURÁCIA em TREINO é:
{np.mean(acc train): .2} +- {np.std(acc train): .2}
        O resultado Médio da ACURÁCIA em VALIDAÇÃO é:
{np.mean(acc val): .2} +- {np.std(acc val): .2}
        O resultado Médio da SENSIBILIDADE em TREINO é:
{np.mean(recall train): .2} +- {np.std(recall train): .2}
        O resultado Médio da SENSIBILIDADE em VALIDAÇÃO é:
{np.mean(recall val): .2} +- {np.std(recall val): .2}
        O resultado Médio da PRECISÃO em TREINO é:
{np.mean(prec train): .2} +- {np.std(prec train): .2}
        O resultado Médio da PRECISÃO em VALIDAÇÃO é:
{np.mean(prec val): .2} +- {np.std(prec val): .2}
```

```
O resultado Médio da F1-Score em TREINO é
{np.mean(f1 score train list): .2} +-
{np.std(f1_score_train_list): .2}
       O resultado Médio da F1-Score em VALIDAÇÃO é:
{np.mean(f1 score val list): .2} +- {np.std(f1 score val list): .2}\n
   best model idx = np.argmax(f1 score val list)
open(f"{configs.results}/{train model} {day hour} {base}.txt", "a") as
file:
           file.write(f"""Meu melhor fold é: {best model idx}\n""")
   best model = model list[best model idx]
   best scaler = scaler list[best model idx]
   X test scaled = best scaler.transform(X test)
   y pred test = model.predict(X test scaled)
   with
open(f"{configs.results}/{train model} {day hour} {base}.txt", "a") as
file:
           file.write(f"""Meu resultado de F1-Score para o conjunto
de TESTE é: {f1_score(y_test, y_pred_test):.2}
O resultado Médio da ACURÁCIA em TESTE é: {100 *
accuracy_score(y_test, y_pred_test):.2f}%
O resultado Médio da SENSIBILIDADE em TESTE é: {100 *
recall score(y test, y pred test):.2f}%
O resultado Médio da PRECISÃO em TESTE é: {100 *
precision_score(y_test, y_pred_test):.2f}%
===========\n
   mean fpr = np.mean(fprs list, axis=0)
   mean tpr = np.mean(tprs list, axis=0)
   mean auc = np.mean(auc \overline{list})
   std auc = np.std(auc list)
   ax.plot(
       mean fpr,
       mean_tpr,
       color='blue',
       label=r"Mean ROC (AUC = %.2f \text{ }\pm$ %.2f)" %(mean auc, std auc)
   ax.plot(np.linspace(0, 1, 100),
           np.linspace(0, 1, 100),
           color='q',
           ls=":",
           lw=0.5)
   ax.legend()
```

Training Models

```
Dentre os modelos testados a seguir:

(SVC, {'kernel': 'rbf'}),

(SVC, {'kernel': 'rbf', 'gamma': 2}),

(SVC, {'degree': 3, 'kernel': 'poly'}),

(SVC, {'degree': 5, 'kernel': 'poly'}),

(SVC, {'degree': 10, 'kernel': 'poly'}),

(LogisticRegression, {}),

(DecisionTreeClassifier, {'min_samples_leaf': 50})

O melhor resultado foi obtido com o modelo SVC, com kernel = rbf e gamma = 2, com uma AUC = 0.84 +- 0.02 de desvio padrão. As médias de Curva Roc podem ser vistas abaixo, e os arquivos de log podem ser conferidos na pasta "Results"

train_cv(var, X_train_cv, y_train_cv, X_test, y_test, config[0][0], config[0][1])

(SVC(), StandardScaler())
```


Melhor modelo

best_model, best_scaler = train_cv(var, X_train_cv, y_train_cv, X_test, y_test, config[1][0], config[1][1])

Predição e distribuição das categorias encontradas pelo modelo

X_scaled = best_scaler.transform(X)

c:\Users\claud\OneDrive\Documentos\Python\Coded\wine-predict\.venv\
lib\site-packages\sklearn\base.py:432: UserWarning: X has feature
names, but StandardScaler was fitted without feature names
 warnings.warn(

y_pred = best_model.predict(X_scaled)
white["pred"] = y_pred
white

fixed acidity volatile acidity citric acid residual sugar chlorides

0 0.045		7.0		0.27	0.	36	2	20.7
0.043 1 0.049		6.3		0.30	0.	34		1.6
2		8.1		0.28	0.	40		6.9
0.050 3 0.058		7.2		0.23	0.	32		8.5
4 0.058		7.2		0.23	0.	32		8.5
4893 0.039		6.2		0.21	0.	29		1.6
4894 0.047		6.6		0.32	0.	36		8.0
4895 0.041		6.5		0.24	0.	19		1.2
4896 0.022		5.5		0.29	0.	30		1.1
4897 0.020		6.0		0.21	0.	38		0.8
sulph 0 0.45 1 0.49 2 0.44 3 0.40 4 0.40 4893 0.50 4894 0.46 4895 0.46 4896 0.38 4897 0.32	ates	fur dioxide 45.0 14.0 30.0 47.0 47.0 57.0 30.0 20.0		sulfur	dioxide 170.0 132.0 97.0 186.0 186.0 92.0 168.0 111.0 110.0 98.0	1.00100 0.99400 0.99510 0.99560	3.00 3.30 3.26 3.19	
	al cohol	quality n	red					

alcohol quality pred 8.8 6 1.0

```
1
2
           9.5
                            1.0
          10.1
                        6
                            1.0
3
           9.9
                        6
                            1.0
4
           9.9
                        6
                            1.0
          11.2
                            1.0
4893
                        6
4894
           9.6
                        5
                            0.0
4895
           9.4
                       6
                            1.0
4896
          12.8
                        7
                            1.0
4897
          11.8
                        6
                            1.0
```

[4898 rows x 13 columns]

white['pred'].value_counts().sort_values()

pred 0.0 1361 1.0 3537

Name: count, dtype: int64

_ = white.pred.value_counts().sort_index().plot.bar(width=0.9)

fazer função

```
print(f"""O resultado Médio da ACURÁCIA na Predição é: {100 *
accuracy_score(y, y_pred):.2f}%
O resultado Médio da SENSIBILIDADE na Predição é: {100 *
recall_score(y, y_pred):.2f}%
O resultado Médio da PRECISÃO na Predição é: {100 * precision_score(y, y_pred):.2f}%
O Resultado da de F1-Score na Predição: {f1_score(y, y_pred):.2}""")
O resultado Médio da ACURÁCIA na Predição é: 93.24%
O resultado Médio da SENSIBILIDADE na Predição é: 99.20%
O resultado Médio da PRECISÃO na Predição é: 91.38%
O Resultado da de F1-Score na Predição: 0.95

train_cv(var, X_train_cv, y_train_cv, X_test, y_test, config[2][0],
config[2][1])
(SVC(kernel='poly'), StandardScaler())
```


train_cv(var, X_train_cv, y_train_cv, X_test, y_test, config[3][0],
config[3][1])
(SVC(degree=5, kernel='poly'), StandardScaler())

train_cv(var, X_train_cv, y_train_cv, X_test, y_test, config[4][0],
config[4][1])

(SVC(degree=10, kernel='poly'), StandardScaler())

train_cv(var, X_train_cv, y_train_cv, X_test, y_test, config[5][0],
config[5][1])

(LogisticRegression(), StandardScaler())

train_cv(var, X_train_cv, y_train_cv, X_test, y_test, config[6][0],
config[6][1])

(DecisionTreeClassifier(min_samples_leaf=50), StandardScaler())

Usar o modelo e scaler do base RED para a base WHITE

var2 = 'red'
X_red, y_red = base(var2, vars)

X_red

fixed chlorides	acidity	volatile acidity	citric acid	residual sugar
0 0.076 \	7.4	0.700	0.00	1.9
1 0.098	7.8	0.880	0.00	2.6
0.098 2 0.092	7.8	0.760	0.04	2.3
შ. შ9∠ 3	11.2	0.280	0.56	1.9

0.075 4 0.076	7.4	0.700 0	.00	1.9
1594 0.090 1595 0.062 1596	6.2	0.600 0	.08	2.0
	5.9	0.550 0	.10	2.2
	6.3	0.510 0	.13	2.3
0.076 1597	5.9	0.645 0	.12	2.0
0.075 1598 0.067	6.0	0.310 0	. 47	3.6
sulph		total sulfur dioxide	density	рН
0	11.0	34.0	0.99780	3.51
0.56 1 0.68	25.0	67.0	0.99680	3.20
2	15.0	54.0	0.99700	3.26
0.65 3	17.0	60.0	0.99800	3.16
0.58 4 0.56	11.0	34.0	0.99780	3.51
1594 0.58	32.0	44.0	0.99490	3.45
1595	39.0	51.0	0.99512	3.52
0.76 1596 0.75	29.0	40.0	0.99574	3.42
1597	32.0	44.0	0.99547	3.57
0.71 1598 0.66	18.0	42.0	0.99549	3.39
0 1 2 3 4 1594 1595	alcohol 9.4 9.8 9.8 9.8 9.4 10.5 11.2			

```
1596
         11.0
1597
         10.2
         11.0
1598
[1599 rows x 11 columns]
X scaled red = best scaler.transform(X red)
c:\Users\claud\OneDrive\Documentos\Python\Coded\wine-predict\.venv\
lib\site-packages\sklearn\base.py:432: UserWarning: X has feature
names, but StandardScaler was fitted without feature names
 warnings.warn(
y pred red = best model.predict(X scaled red)
red["pred"] = y_pred_red
red['pred'].value counts().sort values()
pred
1.0
       1599
Name: count, dtype: int64
_ = red.pred.value_counts().sort_index().plot.bar(width=0.9)
  1600
  1400
```


Não é possível usar o mesmo modelo para diferentes tipos de vinhos pois os dois tem caracteristicas diferentes. Justamente pq um é branco, e outro tinto, se não, seriam todos a mesma coisa.