Anticipez les besoins en consommation électrique de bâtiments

Seattle

CONTEXTE

- Capitale de l'état de Washington
- + grande ville de l'État

CONTEXTE

Census	Pop.	%±
1860	188	
1870	1,107	488.8%
1880	3,533	219.2%
1890	42,837	1,112.5%
1900	80,671	88.3%
1910	237,194	194.0%
1920	315,312	32.9%
1930	365,583	15.9%
1940	368,302	0.7%
1950	467,591	27.0%
1960	557,087	19.1%
1970	530,831	-4.7%
1980	493,846	-7.0%
1990	516,259	4.5%
2000	563,374	9.1%
2010	608,660	8.0%
2019 (est.)	753,675 ^[3]	23.8%

Objectif de ville neutre en émissions de carbone en 2050

Données bâtiments non destinés à l'habitation

Données déclaratives du permis d'exploitation commerciale (taille et usage des bâtiments, mention de travaux récents, date de construction..)

Prévision

Consommation électrique (ktbu)

Émissions carbone (ghg)

QUESTIONS

- 1. Quelle est la meilleure modélisation pour une prédiction de la consommation électrique et des émissions carbones de ces bâtiments non destinés à l'habitation ?
- Quel est l'intérêt de l'Energy Star Score ?

DONNÉES

DONNÉES

Données:

- 2015 (1000 obs / 47 variables)
- 2016 (1000 obs / 45 variables)

Qualitatives:

étiquettes (type d'activitées)

Quantitatives:

- surfaces
- consommation électrique
- émission carbone

NETTOYAGE

Conservation bâtiments non résidentiels uniquement. Conservation variables d'intérêt (type activité, surface, cibles). Uniformisation des variables : localisation, id, ghg, use type. Merge + suppression doublon (id), conservation ghg supérieur. Imputation valeurs aberrantes (ex: 0 floors/building) à partir de sources externes ou par médiane au m² pour ce type de bâtiments (K-12 schools) Imputation valeurs manquantes (Nan) pour type d'activités et surface à partir de profils similaires et/ou sources externes, ou logique (parking). Imputation surface = 0 quand pas d'activité. Nettoyage texte variables qualitatives types d'activités

NETTOYAGE

- Total = parking + bâtiments: ok
- Largest + second + third > total : 86% des observations

Outliers variable

NETTOYAGE

ANALYSE EXPLORATOIRE

Observations

746 obs

Observations

TENDANCES CENTRALES

÷	yearbuilt	numberofbuildings	numberoffloors	propertygfatotal
coul	nt 746.000000	746.000000	746.000000	7.460000e+02
mea	n 1963.733244	1.057641	6.080429	1.788734e+05
sto	33.207784	0.497674	8.398879	2.419935e+05
mir	1900.000000	1.000000	1.000000	2.002800e+04
259	6 1930.000000	1.000000	2.000000	5.848300e+04
509	6 1969.000000	1.000000	4.000000	9.842250e+04
759	6 1994.000000	1.000000	6.000000	1.907350e+05
ma	x 2012.000000	7.000000	76.000000	1.952220e+06

Distribution

Distribution

Distribution

-> 4 hôpitaux dans top 5

-> 5 hôpitaux dans top 10

CORRELATIONS

CORRELATIONS

CATÉGORIES: kbtu & ghg per primary property types

CATÉGORIES: kbtu

CATÉGORIES: ghg

CATÉGORIES: district code

CATÉGORIES: number of building?

13 bâtiments de +1 étages. 30% hospital.

CATÉGORIES: year built?

FEATURES ENGINEERING

VARIABLES CATÉGORIELLES

Truncated SVD (Singular Value Decomposition)

- 'buildingtype',
- 'primarypropertytype',
- 'councildistrictcode',
- 'largestpropertyusetype',
- 'secondlargestpropertyusetype',
- 'thirdlargestpropertyusetype',
- "numberofbuildings",
- "yearbuilt"

-> pandas get_dummies (256 variables)

	buildingtype_NonResidential	buildingtype_Nonresidential cos	buildingtype_SPS- District K-12	primarypropertytype_College/University	primarypropertytype_Distribution Center
0	1	0	0	0	0
1	1	0	0	0	0
2	1	0	0	0	0
3	1	0	0	0	0
4	1	0	0	0	0
5 -	owe v 256 columns				

VARIABLES QUANTITATIVES

large st property use type g fa

numberoffloors

SVD 1-12

- log10
- Polynomial 2 à 3, + interactions

Consommation électrique (ktbu)

Émissions carbone (ghg)

• log10

MODÉLISATION

Méthode

Train, test split (0.33), stratification = primarytype Pipeline (preprocessing, scaling, gridsearchCV) Sans polynomial Polynomial (2-3) **Standardisation** GridsearchCV **Modèles Paramètres** CV 10 fold CV Sans log10 log10

- Linear
- Ridge
- Lasso
- MLP
- Random forest
- Adaboost

43 Modèles

Scores: KTBU

Scores: KTBU

Ridge a sélectionné 152 variables et rejeté 1

Hôpitaux ? 0.8% des bâtiments / 13% KBTU

Scores: GHG

Scores: GHG

AdaBoost a sélectionné 16 variables et rejeté 0

ENERGY STAR score

ENERGY STAR score

191 valeurs manquantes -> 555 obs.

	SANS Energy Star Score	Energy Star Score
R2	0.82	0.81
RMSE	413	435

ENERGY STAR score:

- 5% des variables retenues
- 2 % du poids

Intérêt relativement limité de l'Energy Star Score. Évaluation de son ROI.

CONCLUSION

Données bâtiments non destinés à l'habitation

Consommation électrique (ktbu)

Ridge polynomial 2

R2 = 0.74

Émissions carbone (ghg)

AdaBoost regressor

R2 = 0.84

AdaBoost regressor

MERCI!

@xavbarbier

https://www.linkedin.com/in/barbierxavier/

https://github.com/xavierbarbier/

contact@xavierbarbier.com