Relations

1. Fill in the following table.

Let \mathcal{L} be the set of lines in the coordinate plane; let \mathcal{S} be the set of nonempty sets.

Set	Relation	Reflexive	Symmetric	Transitive	Equivalence Relation?
\mathbb{R}	x = y				
Q	x < y				
\mathbb{Z}	$x \ge y$				
\mathcal{S}	$A \subset B$				
\mathcal{S}	$A \cap B \neq \emptyset$				
\mathcal{L}	$\ell_1 \ell_2$				
\mathcal{L}	$\ell_1 \bot \ell_2$				
\mathbb{Z}	a-b is a mult. of 3				

- 2. For which integers $x \in [-10, 10]$ is x 0 a multiple of 3?
- 3. For which integers $x \in [-10, 10]$ is x 1 a multiple of 3?
- 4. For which integers $x \in [-10, 10]$ is x 2 a multiple of 3?

The congruence modulus n relation is defined by $x \equiv a \mod n$ if and only if x - a is a multiple of n. The equivalence class for the class representative $a \in \mathbb{Z}$ for this relation is the set

$$[a] = \{x \in \mathbb{Z} \mid x \equiv a \bmod n\} = \{x \in \mathbb{Z} \mid x - a \text{ is a multiple of } n\}.$$

- 5. Write at least 7 elements in each equivalence class; these sets are infinite, so only test integers x where $-10 \le x \le 10$. Which equivalence classes seem to be equal? What do you notice about their class representatives?
 - (a) $[0] = \{x \in \mathbb{Z} \mid x \equiv 0 \text{ mod } 3\}$:
 - (b) $[1] = \{x \in \mathbb{Z} \mid x \equiv 1 \mod 3\}$:
 - (c) [2]:
 - (d) [3]:
 - (e) [4]: