Технически Университет - София Факултет по Приложна Математика и Информатика

ЗАДАНИЕ

за курсова работа по Количествени методи и статистика за студенти бакалаври по специалност Индустриален мениджмънт от Стопански факултет

С тудент:		
Факултетен №	Група № К	Сурс
ВАЛАЧА 1. Ла се реши следната задача в	на пинейното оптимиран	re:

min
$$z = 2x_1 + 2x_2 + x_3 + 3x_4$$

$$\begin{vmatrix} 3x_1 + x_2 + x_3 + x_4 &= 12 \\ 4x_1 - 4x_3 - x_4 &= 2 \\ -x_1 + 3x_3 + x_4 &\le 3 \end{vmatrix}$$

$$x_i \ge 0, (j = 1, 2, 3, 4)$$

ЗАДАЧА 2. Има пет работни места $R_1,...,R_5$ и четири кандидати $K_1,...,K_4$ с платежна матрица

$$C = \begin{pmatrix} 12 & 9 & 6 & 7 & 15 \\ 11 & 7 & 8 & 9 & 10 \\ 10 & 8 & 9 & 7 & 11 \\ 10 & 6 & 9 & 8 & 10 \end{pmatrix}.$$

Да се намери оптимално разпределение за минимално заплащане при условие, че работно място R_2 трябва да бъде задължително заето.

ЗАДАЧА 3. Случайната извадка от генералната съвкупност за случайната величина X е: 12, 11, 21, 19, 20, 15, 16, 12, 13, 16, 20, 18, 23, 21, 30, 19, 25, 31. Да се състави честотната таблица на групираните данни със стъпка 4. Да се построи графиката на статистическата функция на разпределение $F^*(x)$ на случайната величина X.

ТЕХНИЧЕСКИ УНИВЕРСИТЕТ - СОФИЯ Факултет по Приложна Математика и Информатика

ЗАДАНИЕ

за курсова работа по *Количествени методи и статистика* за студенти бакалаври по специалност *Индустриален мениджмънт* от *Стопански факултет*

<i>Студент</i> :	ена /
Факултетен №	Група № Курс
Задача 1. Да се реши транспортната за	адача

	B ₁		\mathbf{B}_2		B ₃		B ₄		
A_1	4	-		7		9		2	30
A_2	1	0		6		8		1	60
\mathbf{A}_3	4	-		5		2		11	120
	90		25		15		70		

Задача 2. Да се реши по графичния метод линейната оптимизационна задача

min
$$z = x_1 - x_2 + x_3$$

 $x_1 + 2x_2 - x_3 + x_4 = 3$,
 $x_1 - 4x_2 + x_3 = -2$,
 $x_1 ... x_4 \ge 0$.

Задача 3. За случайната величина X е направена случайна извадка от генералната съвкупност: 10, 11, 21, 19, 20, 15, 16, 12, 13, 18, 20, 18, 24, 21, 30, 19, 25, 32, 14, 17, 20. Да се състави честотната таблица на групираните данни със стъпка 4. Да се построи графиката на емпиричната (статистическата) функция на разпределение $F^*(x)$.

ТЕХНИЧЕСКИ УНИВЕРСИТЕТ - СОФИЯ Факултет по Приложна Математика и Информатика

ЗАДАНИЕ

за курсова работа по *Количествени методи и статистика* за студенти бакалаври по специалност *Индустриален мениджмънт* от *Стопански факултет*

Студент :		
Факултетен №	Група №	Курс

Задача 1. Да се реши дадената транспортна задача.

	B ₁		B ₂		B ₃		B ₄		
$\mathbf{A_1}$		1		4		4		7	230
\mathbf{A}_2		6		3		10		6	360
A ₃		12		8		4		5	120
	90		230		80		60		

Задача 2. Има три работни места P_1 , P_2 , P_3 и четири кандидати K_1 , K_2 , K_3 , K_4 , като заплатите c_{ii} са дадени в матрицата:

$$C = \begin{bmatrix} 18 & 15 & 14 \\ 12 & 16 & 12 \\ 19 & 11 & 15 \\ 20 & 19 & 12 \end{bmatrix}.$$

Да се намери оптималното разпределение: тах заплащане.

Задача 3. Провеждат се три независими опита, като вероятността за успех при всеки опит е равна на 0,4. Да се състави редът на разпределение на дискретна случайна величина успешните изходи от проведените опити. Да се построи функцията на разпределение $F^*(x)$ на случайната величина.

ТЕХНИЧЕСКИ УНИВЕРСИТЕТ - СОФИЯ Факултет по Приложна Математика и Информатика

ЗАДАНИЕ

за курсова работа по *Количествени методи и статистика* за студенти бакалаври по специалност *Индустриален мениджмънт* от *Стопански факултет*

Студент:		
/ три им	тена /	
Факултетен №	Course No Vune	

Задача 1. Да се реши дадената транспортна задача, като потребител B_2 бъде снабден задължително.

	$\mathbf{B_1}$	\mathbf{B}_2	B ₃	B ₄	
$\mathbf{A_1}$	1	4	4	7	230
$\mathbf{A_2}$	6	3	10	6	360
$\mathbf{A_3}$	12	8	4	5	120
	160	230	210	150	

Задача 2. Има три работни места P_1 , P_2 , P_3 и четири кандидати K_1 , K_2 , K_3 , K_4 като заплатите c_{ii} са дадени в матрицата:

$$C = \begin{bmatrix} 18 & 15 & 8 \\ 11 & 15 & 12 \\ 19 & 9 & 15 \\ 20 & 19 & 12 \end{bmatrix}.$$

Да се намери оптималното разпределение: **min заплащане** при условие, че кандидат K_1 трябва задължително да бъде назначен.

Задача 3. В три палета са поставени еднотипни изделия: в първия има 10, от които 3 нестандартни, във втория -15, от тях 5 са нестандартни, и в третия се намират 20 изделия, от които само 6 нестандартни. Случайно е взето едно изделие и то се оказало нестандартно. Да се определи вероятността това изделие да е взето от втория палет.

ТЕХНИЧЕСКИ УНИВЕРСИТЕТ - СОФИЯ Факултет по Приложна Математика и Информатика

ЗАДАНИЕ

за курсова работа по *Количествени методи и статистика* за студенти бакалаври по специалност *Индустриален мениджмънт* от *Стопански факултет*

Студент:		
/ три им	мена /	
Факултетен №	Γηνηα Νο	Kync

Задача 1. Да се състави двойствената задача на дадената изходна задача. Да се определи коя от двете задачи ще бъде с по-малък брой променливи и за нея да се състави симплекс таблица, след което да се направят две стъпки по алгоритъма на симплекс- метода.

$$\max z = 3x_1 - 2x_2 + 5x_3$$
$$2x_1 + 5x_2 - x_3 \le 1$$
$$-x_1 + 3x_2 - x_3 = -6$$
$$x_1 \ge 0, x_3 \ge 0.$$

Задача 2. Има три работни места P_1 , P_2 , P_3 и четири кандидати K_1 , K_2 , K_3 , K_4 като заплатите c_{ij} са дадени в матрицата:

$$C = \begin{bmatrix} 8 & 15 & 9 \\ 16 & 17 & 12 \\ 14 & 9 & 15 \\ 20 & 19 & 7 \end{bmatrix}.$$

Да се намери оптималното разпределение: тах заплащане.

Задача 3. В три палета са поставени еднотипни изделия: в първия има **12**, от които **3** нестандартни, във втория – **15**, от тях **7** са нестандартни, и в третия се намират **20** изделия, от които само **2** нестандартни. Случайно е взето едно изделие и то се оказало нестандартно. Да се определи вероятността това изделие да е взето от третия палет.

ТЕХНИЧЕСКИ УНИВЕРСИТЕТ - СОФИЯ Факултет по Приложна Математика и Информатика

ЗАДАНИЕ

за курсова работа по *Количествени методи и статистика* за студенти бакалаври по специалност *Индустриален мениджмънт* от *Стопански факултет*

Студент:		
/ тј	и имена /	
-		
Д акултетен №	Γ pyna $\mathbb{N}_{\underline{0}}$ Kypc	

Задача 1. Да се състави двойствената задача на дадената линейна задача. Да се състави симплекс таблица за двойствената задача, след което да се пресметнат две стъпки по алгоритъма на симплекс- метода.

min
$$z = 15x_1 + 12x_2 + 10x_3$$

 $4x_1 + 3x_2 + 2x_3 \ge 28$
 $x_1 + x_2 + 3x_3 \ge 15$
 $2x_1 + x_2 + x_3 \ge 20$
 $x_1, x_2, x_3 \ge 0$

Задача 2. Има четири работни места P_1 , P_2 , P_3 и четири кандидати K_1 , K_2 , K_3 , K_4 като заплатите c_{ii} са дадени в матрицата:

$$C = \begin{bmatrix} 8 & 17 & 9 \\ 16 & 4 & 12 \\ 11 & 9 & 15 \\ 10 & 19 & 7 \end{bmatrix}.$$

Да се намери оптималното разпределение: **min заплащане** при условие, че кандидат K_1 не може да заема първото работно място.

Задача 3. В три палета са поставени еднотипни изделия: в първия има **32**, от които **12** нестандартни, във втория – **16**, от тях **5** са нестандартни, и в третия се намират **28** изделия, от които само **2** нестандартни. Случайно е взето едно изделие и то се оказало нестандартно. Да се определи вероятността това изделие да е взето от третия палет.

Технически Университет - София Факултет по Приложна Математика и Информатика

ЗАДАНИЕ

за курсова работа по *Количествени методи и статистика* за студенти бакалаври по специалност *Индустриален мениджмънт* от *Стопански факултет*

Студент:		
/ три им	ена /	
Ф акултетен №	Група № <i>Курс</i>	

Задача 1. Да се реши дадената транспортна задача при условие, че потребители B_2 и B_6 да бъдат снабдени задължително.

	\mathbf{B}_1	\mathbf{B}_2	\mathbf{B}_3	$\mathbf{B_4}$	\mathbf{B}_{5}	\mathbf{B}_{6}	
$\mathbf{A_1}$	1	4	4	7	11	2	240
$\mathbf{A_2}$	2	5	10	6	8	1	360
	170	230	80	50	150	120	

Задача 2. Да се реши по графичния метод линейната оптимизационна задача

$$\min z = x_1 + x_2 + x_3 + x_4$$

$$2x_1 + x_2 - x_3 + x_4 = 3$$

$$-2x_1 + x_2 + x_3 - x_4 = -1$$

$$x_1 \dots x_4 \ge 0.$$

 ${f 3}$ адача ${f 3}$. Функцията на разпределение на случайната величина ${f X}$ е

$$F(x) = \begin{cases} 0 & npu \quad x \le 1 \\ a(x-1)^2 & npu \quad 1 < x \le 3 \\ 1 & npu \quad x > 3 \end{cases}$$

Да се намери коефициентът a и да се построи графиката на F(x).

ТЕХНИЧЕСКИ УНИВЕРСИТЕТ - СОФИЯ Факултет по Приложна Математика и Информатика

ЗАДАНИЕ

за курсова работа по *Количествени методи и статистика* за студенти бакалаври по специалност *Индустриален мениджмънт* от *Стопански факултет*

Студент:		
/ три им	мена /	
Факултетен №	Γηνηα Νο	Kync

Задача 1. Да се реши транспортната задача при условия потребител B_3 да бъде снабден задължително.

	$\mathbf{B_1}$	\mathbf{B}_2	B ₃	B ₄	
$\mathbf{A_1}$	3	7	9	2	30
\mathbf{A}_2	12	5	8	1	60
$\mathbf{A_3}$	4	4	2	11	120
	90	25	15	100	

Задача 2. Да се реши по графичния метод линейната оптимизационна задача

$$\min z = x_1 + 2x_3 + x_5$$

$$x_1 + x_2 + x_3 + x_4 + x_5 = 5,$$

$$x_2 + x_3 + x_4 - x_5 = 2,$$

$$x_3 - x_4 + x_5 = 1,$$

$$x_1 \dots x_5 \ge 0.$$

Задача 3. За случайната величина X е направена случайна извадка от генералната съвкупност: 12, 11, 21, 19, 20, 15, 16, 12, 13, 16, 20, 18, 23, 21, 30, 19, 25, 32, 17, 20, 18, 25, 21, 41, 19, 25, 36, 28, 19, 44, 15, 16, 32, 38, 16, 29, 18, 43. Да се състави честотната таблица на групираните данни със стъпка 4. Да се построи графиката на емпиричната (статистическата) функция на разпределение $F^*(x)$.

Технически Университет - София Факултет по Приложна Математика и Информатика

ЗАДАНИЕ

за курсова работа по *Количествени методи и статистика* за студенти бакалаври по специалност *Индустриален мениджмънт* от *Стопански факултет*

Студент:	
/ т	ри имена /
Факултетен №	Група № Курс

Задача 1. Да се реши транспортната задача, при условие склад A_3 да бъде напълно освободен.

	\mathbf{B}_1	\mathbf{B}_2	\mathbf{B}_3	$\mathbf{B_4}$	
$\mathbf{A_1}$	4	7	9	3	150
$\mathbf{A_2}$	12	6	8	2	250
$\mathbf{A_3}$	4	5	2	12	320
	100	250	150	170	

Задача 2. Да се реши по графичния метод линейната оптимизационна задача

$$\max z = x_1 - x_2 - x_3$$
$$x_1 + x_2 + x_3 = 4,$$
$$x_1 - x_2 + x_3 \le 2,$$
$$x_1 \dots x_3 \ge 0.$$

Задача 3. Случайното събитие A се явява с вероятност 0,4 във всеки опит от направените 4 независими опита. Случайната величина X е брой появявания на A в четирите опита. Да се намерят F(x), EX, DX, σ_X на X.

ТЕХНИЧЕСКИ УНИВЕРСИТЕТ - СОФИЯ Факултет по Приложна Математика и Информатика

ЗАДАНИЕ

за курсова работа по *Количествени методи и статистика* за студенти бакалаври по специалност *Индустриален мениджмънт* от *Стопански факултет*

Студент:		• • • • • • • • • • • • • • • • • • • •
/ три име	ена /	
Ф акултетен №	Група №	. Курс

Задача 1. Да се реши транспортната задача, при условие склад A_2 да бъде напълно освободен.

	B ₁	$\mathbf{B_2}$	B ₃	B ₄	
$\mathbf{A_1}$	6	7	5	3	250
$\mathbf{A_2}$	10	8	6	2	150
A ₃	1	7	2	10	320
	150	250	120	170	

Задача 2. Има четири работни места P_1 , P_2 , P_3 , P_4 и три кандидати K_1 , K_2 , K_3 , като заплатата c_{ij} е дадена в платежната матрица ${\bf C}$

$$C = \begin{pmatrix} 30 & 35 & 90 & 20 \\ 60 & 65 & 80 & 15 \\ 90 & 70 & 40 & 19 \end{pmatrix}$$

Да се намери оптималното разпределение тах заплащане.

Задача 3. Функцията на разпределение на случайната величина X е зададена с:

$$F(x) = \begin{cases} 0 & npu \quad x \le 1 \\ a(x-1)^2 & npu \quad 1 < x \le 4 \\ 1 & npu \quad x > 4 \end{cases}$$

Да се намери коефициентът \boldsymbol{a} и да се построи графиката на. Да се пресметне вероятността за това, случайната величина \mathbf{X} в резултат на опит да приеме стойност в интервала (2;3).

Технически Университет - София Факултет по Приложна Математика и Информатика

ЗАДАНИЕ

за курсова работа по *Количествени методи и статистика* за студенти бакалаври по специалност *Индустриален мениджмънт* от *Стопански факултет*

Студент:	
/ _T	и имена /
$oldsymbol{arPhi}$ акvлтетен \mathbb{N}_{2}	. $\Gamma pvna \ \mathbb{N}_{2} \dots Kvpc \dots Kvpc \dots$

Задача 1. Да се реши транспортната задача, при условие, че няма връзка между склад A_3 и потребител B_3 .

	B ₁	$\mathbf{B_2}$	B ₃	B ₄	
$\mathbf{A_1}$	6	7	5	3	250
$\mathbf{A_2}$	10	8	6	2	150
A ₃	1	7	2	10	320
	150	250	120	170	

Задача 2. Има четири работни места P_1 , P_2 , P_3 , P_4 и три кандидати K_1 , K_2 , K_3 , като заплатата c_{ij} е дадена в платежната матрица ${\bf C}$

$$C = \begin{pmatrix} 30 & 35 & 90 & 20 \\ 60 & 65 & 80 & 15 \\ 90 & 70 & 40 & 19 \end{pmatrix}$$

Да се намери оптималното разпределение.

Задача 3. В група от 12 студента има 8 отличника. По списък са проверени случайно 9 студенти. Да се намери вероятността между проверените студенти да се окажат 5 или 6 отличника.

Технически Университет - София Факултет по Приложна Математика и Информатика

ЗАДАНИЕ

за курсова работа по *Количествени методи и статистика* за студенти бакалаври по специалност *Индустриален мениджмънт* от *Стаписки факултет*

Студент:	/ три имен		
Факултетен	<i>i</i> №	Група №	Курс
Задача 1.	Да се реши следната задача п min	на линейното оптимира $z = x_1 + x_2$	пне:
	$\begin{vmatrix} x_1 \\ x_1 \end{vmatrix}$	$+2x_2 \ge 20$ $-3x_3 \le 8$	
	$x_j \ge$	0, (j=1,2)	

Задача 2. Като се построи графично мрежа да се определи минималното време T_{\min} , критичният път и критичните операции за извършването от процеса, даден на таблицата.

a_{i}	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a_9	a_{10}
предходни операции	-	-	-	$\begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$	$\begin{bmatrix} a_2 \\ a_3 \end{bmatrix}$	a_4	a_5 a_6	$\begin{bmatrix} a_3 \\ a_5 \\ a_6 \end{bmatrix}$	a_7	a_5 a_8
t_i	10	5	15	18	19	18	8	25	30	8

Задача 3. При установен технологичен процес 96% от цялата продукция от изработените изделия не показва дефекти. Да се намери най-вероятният брой бездефектни изделия в партида от 350 изделия.

Технически Университет - София Факултет по Приложна Математика и Информатика

ЗАДАНИЕ

за курсова работа по *Количествени методи и статистика* за студенти бакалаври по специалност *Индустриален мениджмънт* от *Стопански факултет*

Студент:	
/ _T	и имена /
д М.	
Ф акултетен №	. $\Gamma pyna \ N_{\underline{0}} \dots Kypc \dots Kypc \dots$

Задача 1. Да се състави двойствената задача на дадената изходна задача. Да се намерят оптималните решения на двете взаимно двойствени задачи.

$$\max z = 12x_1 + 18x_2 - 5x_3$$

$$\begin{vmatrix} 4x_1 + 2x_2 - 2x_3 \le 18 \\ 2x_1 - 5x_2 - 3x_3 = -21 \end{vmatrix}$$

$$x_j \ge 0, j = 1,...,3$$

Задача 2. Има три вида машини, които могат да извършват четири вида работа. Всяка машина може да извърши съответната работа за време c_{ii} , дадено с матрицата

$$C = \begin{vmatrix} 3 & 5 & 12 & 6 \\ 2 & 3 & 4 & 5 \\ 10 & 2 & 6 & 5 \end{vmatrix}.$$

Да се направи назначение, което осигурява минимално сумарно времетраене на работата.

Задача 3. При установен технологичен процес 96% от цялата продукция от изработените изделия не показва дефекти. Да се намери броят на изделията, за които с вероятност P = 0,913 да се твърди, че ще се появи поне едно бездефектно изделие.

Технически Университет - София Факултет по Приложна Математика и Информатика

ЗАДАНИЕ

за курсова работа по *Количествени методи и статистика* за студенти бакалаври по специалност *Индустриален мениджмънт* от *Стопански факултет*

Студент:		
/ три и	мена /	
Ф акултетен №	Fnvna No	Kvnc

Задача 1. Да се реши транспортната задача по метода на потенциалите, при условие, че потребител B_3 изцяло задоволи потребностите си.

A_i	B_1	B_2	B_3	B_4	a_{i}
$A_{\rm l}$	4	7	9	3	150
A_2	15	6	8	7	100
A_3	3	11	2	5	50
b_{j}	100	50	200	50	

Задача 2. Има три вида машини, които могат да извършват четири вида работа. Всяка машина може да извърши съответната работа за време c_{ii} , дадено с матрицата

$$C = \begin{vmatrix} 3 & 5 & 12 & 6 \\ 2 & 3 & 4 & 5 \\ 10 & 2 & 6 & 5 \end{vmatrix}.$$

Да се направи назначение, което осигурява максимална ефективност на машините.

Задача 3. Случайното събитие A се явява с вероятност 0,25 във всеки опит от направените 6 независими опита. Случайната величина X е брой появявания на A в четирите опита. Да се намерят F(x), EX, DX, σ_X на X.

Технически Университет - София Факултет по Приложна Математика и Информатика

ЗАДАНИЕ

за курсова работа по *Количествени методи и статистика* за студенти бакалаври по специалност *Индустриален мениджмънт* от *Стопански факултет*

Студент:	
/ T	и имена /
Ф акултетен №	Γρνηα № Kvpc

Задача 1. Да се реши транспортната задача по метода на потенциалите, при условие, че потребител B_1 изцяло задоволи потребностите си и връзката между склад A_1 и потребител B_1 е блокирана.

A_i	B_{1}	B_2	B_3	B_4	a_{i}
$A_{\rm l}$	4	7	9	3	150
A_2	15	6	8	7	100
A_3	3	11	2	5	50
b_{j}	100	50	200	50	

Задача 2. Като се построи графично мрежа да се определи минималното време T_{\min} , както и критичния път и критичните операции за извършването на дадения процес.

a_i	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a_9	a_{10}
предходни операции	-	-	-	a_1 a_2	a_2 a_3	a_4	a_5 a_6	a_3 a_5 a_6	a_7	a_5 a_8
t_i	10	5	15	18	19	18	8	25	30	8

Задача 3. Вероятността за изготвяне на нестандартен детайл е равна на 0,05. Колко детайли трябва да има в партидата, така че най-вероятният брой нестандартни детайли в нея да бъде равен на 55.

ТЕХНИЧЕСКИ УНИВЕРСИТЕТ - СОФИЯ Факултет по Приложна Математика и Информатика

ЗАДАНИЕ

за курсова работа по *Количествени методи и статистика* за студенти бакалаври по специалност *Индустриален мениджмънт* от *Стопански факултет*

Студент:		
/ 5	и имена /	
Φ акултетен $N_{\underline{0}}$	Γργηα № Kypc	

Задача 1. Да се реши по графичния метод дадената задача на линейното оптимиране:

$$\min z = 2x_2 + x_3 + x_4 + x_5$$

$$\begin{vmatrix} 2x_1 + x_2 + x_3 &= 10 \\ -2x_1 + 3x_2 + x_4 &= 6 \\ 2x_1 + 4x_2 - x_5 &= 8 \end{vmatrix}$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0$$

Задача 2. Има три вида машини, които могат да извършват четири вида работа. Всяка машина може да извърши съответната работа за време c_{ii} , дадено с матрицата

$$C = \begin{vmatrix} 3 & 5 & 12 & 6 \\ 2 & 3 & 4 & 5 \\ 10 & 2 & 6 & 5 \end{vmatrix}.$$

Да се направи назначение, при което четвъртият вид работа задължително да се извърши.

Задача 3. Един от трима стрелци заема позиция по заповед и произвежда два изстрела. Вероятността за точно попадение при първият стрелец е равна на 0,3, за втория е 0,5 и за третия – 0,8. Ако в мишената няма попадение, да се определи вероятността изстрелите да са произведени от първия стрелец.

ТЕХНИЧЕСКИ УНИВЕРСИТЕТ - СОФИЯ Факултет по Приложна Математика и Информатика

ЗАДАНИЕ

за курсова работа по *Количествени методи и статистика* за студенти бакалаври по специалност *Индустриален мениджмънт* от *Стопански факултет*

Студент : / три имена	a /	
Факултетен №	Група № Курс	

Задача 1. Да се реши следната задача на линейното оптимиране:

$$\max z = 6x_1 - 5x_2$$

$$\begin{vmatrix} x_1 \ge 4 \\ x_2 - x_1 \ge 1 \\ x_1 + x_2 \le 1 \end{vmatrix}$$

$$x_1 \ge 0, x_2 \ge 0$$

Задача 2. Има три вида машини M_1 , M_2 и M_3 , които могат да извършват пет вида работа P_1 , P_2 , P_3 , P_4 и P_5 . Всяка машина може да извърши съответната

работа за време
$$c_{ij}$$
 , дадено с матрицата $C = \begin{bmatrix} 16 & 10 & 9 & 6 & 5 \\ 13 & 14 & 11 & 13 & 10 \\ 12 & 11 & 10 & 12 & 6 \end{bmatrix}$.

Да се направи такова назначение, което осигурява минимално времетраене на работата при условие, че четвъртият вид работа P_4 задължително трябва да се извърши и машина M_1 в момента не може да извършва работи P_2 и P_3 .

Задача 3. В кръг с радиус R произволно е попаднала точка. Да се намери вероятността, точката да е вътре във вписания в триъгълника квадрат.

Технически Университет - София Факултет по Приложна Математика и Информатика

ЗАДАНИЕ

за курсова работа по *Количествени методи и статистика* за студенти бакалаври по специалност *Индустриален мениджмънт* от *Стопански факултет*

Студент:	
/ тј	и имена /
Факултетен №	

Задача 1. Да се реши транспортната задача по метода на потенциалите. Началното базисно решение да се намери по метода на северозападния ъгъл.

	omenine de c		0 1:1010 A 11	1	100,21111111 21
A_i	B_1	B_2	B_3	B_4	a_{i}
$A_{\rm l}$	4	6	12	9	60
A_2	3	3	4	5	80
A_3	1	10	1	2	100
A_4	5	11	8	6	150
b_{j}	50	70	90	140	

Задача 2. Има три вида машини M_1 , M_2 и M_3 , които могат да извършват пет вида работа P_1 , P_2 , P_3 , P_4 и P_5 . Всяка машина може да извърши съответната

работа за време
$$\,c_{ij}\,,\,$$
 дадено с матрицата $\,C=\begin{bmatrix} 16 & 10 & 9 & 6 & 5 \\ 13 & 15 & 11 & 14 & 10 \\ 12 & 11 & 10 & 11 & 6 \end{bmatrix}\,.$

Да се направи такова назначение, което осигурява минимално времетраене на работата при условие, че машина M_3 не може да извърши работа P_5 .

Задача 3. В кръг с радиус R произволно е попаднала точка. Да се намери вероятността, точката да е вътре във вписания в кръга равностранен триъгълник.

Технически Университет - София Факултет по Приложна Математика и Информатика

ЗАДАНИЕ

за курсова работа по *Количествени методи и статистика* за студенти бакалаври по специалност *Индустриален мениджмънт* от *Стопански факултет*

Студент :	
Ф акултетен №	Група № <i>Курс</i>

Задача 1. Да се състави двойствената задача на дадената изходна задача. Да се намерят оптималните решения на двете взаимно двойствени задачи.

$$\min z = 6x_1 - x_2 + 8x_3$$

$$\begin{vmatrix} 3x_1 - x_2 - x_3 \ge 2 \\ 2x_1 + x_2 - 4x_3 \le -3 \end{vmatrix}$$

$$x_j \ge 0, (j = 1, 2, 3).$$

Задача 2. Като се построи графично мрежа да се определи минималното време T_{\min} , както и критичния път и критичните операции за извършването на дадения процес.

a_{i}	a_{1}	a_2	a_3	a_4	a_{5}	a_6	a_7	a_8	a_9	a_{10}
предходни операции	-	-	a_1 a_2	-	a_2 a_3	a_4	a_5 a_6	a_7	a_3 a_5 a_6	a_5 a_8
t_i	10	5	18	15	10	18	10	30	25	10

Задача 3. Да се реши уравнението $\frac{C_x^2 + C_x^3}{x-1} = 22$, където $x \in \{2,3,...,n\}$.

Технически Университет - София Факултет по Приложна Математика и Информатика

ЗАДАНИЕ

за курсова работа по *Количествени методи и статистика* за студенти бакалаври по специалност *Индустриален мениджмънт* от *Стопански факултет*

Студент:	
	/ три имена /
Факултетен	No <i>Γργηα</i> No <i>Kypc</i>
	Да се състави двойствената задача на дадената изходна задача. Да се намерят оптималните решения на двете взаимно двойствени задачи. $\min z = 2x_1 + 5x_2 + 6x_3 \\ 2x_1 - x_2 + 4x_3 \ge 7 \\ x_j \ge 0, (j=1,2,3).$

Задача 2. Има три вида машини M_1 , M_2 и M_3 , които могат да извършват пет вида работа P_1 , P_2 , P_3 , P_4 и P_5 . Всяка машина може да извърши съответната

работа за време
$$\,c_{ij}\,,\,$$
 дадено с матрицата $\,C = \begin{vmatrix} 15 & 10 & 9 & 6 & 5 \\ 12 & 15 & 11 & 14 & 10 \\ 13 & 11 & 10 & 11 & 6 \end{vmatrix}\,.$

Да се направи такова назначение, което осигурява максимална ефективност на работата при условие, че четвъртият вид работа P_4 задължително трябва да се извърши и машина M_1 в момента не може да извършва работи P_2 и P_3 .

Задача 3. Един от трима стрелци заема позиция по заповед и произвежда два изстрела. Вероятността за точно попадение при първият стрелец е равна на 0.6, за втория е 0.5 и за третия -0.8. Ако в мишената няма попадение, да се определи вероятността изстрелите да са произведени от втория стрелец.

Технически Университет - София Факултет по Приложна Математика и Информатика

ЗАДАНИЕ

за курсова работа по *Количествени методи и статистика* за студенти бакалаври по специалност *Индустриален мениджмънт* от *Стопански факултет*

Студент:	на /
Факултетен №	Група № Kypc

Задача 1. Да се реши следната задача на линейното оптимиране:

$$\min z = 20x_1 + 35x_2 + 28x_3$$

$$\begin{vmatrix} 2x_1 + x_2 + 3x_3 \ge 16 \\ x_1 + 3x_2 + 2x_3 \ge 19 \\ 2x_1 + 3x_2 + 4x_3 \ge 26 \\ x_j \ge 0, (j = 1, 2, 3). \end{vmatrix}$$

Задача 2. Има три вида машини M_1 , M_2 и M_3 , които могат да извършват пет вида работа P_1 , P_2 , P_3 , P_4 и P_5 . Всяка машина може да извърши съответната

работа за време
$$\,c_{ij}\,,\,$$
 дадено с матрицата $\,C = \begin{vmatrix} 14 & 15 & 9 & 6 & 5 \\ 13 & 10 & 11 & 14 & 10 \\ 12 & 13 & 12 & 11 & 6 \end{vmatrix}\,.$

Да се направи такова назначение, което осигурява максимална ефективност на работата при условие, че машина $M_{_3}$ не може да извършва работа $P_{_5}$.

Задача 3. Строителна предприемаческа фирма участва в търгове за изграждане на пет обекта. Фирмата оценява своите шансове да спечели търг за всеки от обектите като еднакви и равни на 0,2. Да се намери вероятността фирмата да спечели поне два търга.

Технически Университет - София Факултет по Приложна Математика и Информатика

ЗАДАНИЕ

за курсова работа по *Количествени методи и статистика* за студенти бакалаври по специалност *Индустриален мениджмънт* от *Стопански факултет*

Студент:		
/ три	имена /	
$oldsymbol{\Phi}$ акvлтетен $N_{}^{\!\scriptscriptstyle 0}$ \ldots \ldots \ldots	Група №	

Задача 1. Да се реши по графичния метод следната задача на линейното оптимиране:

$$\min z = 2x_1 + 6x_2 - 5x_3 + x_4 + 4x_5$$

$$\begin{vmatrix} x_1 - 4x_2 + 2x_3 - 5x_4 + 9x_5 = 3 \\ x_2 - 3x_3 + 4x_4 - 5x_5 = 6 \\ x_2 - x_3 + x_4 - x_5 = 1 \end{vmatrix}$$

$$x_i \ge 0, (j = 1, ..., 5).$$

Задача 2. Да се намери най-рационалното разпределение на пет багера от различен тип между пет обекта, ако са дадени времената, необходими за съответните изкопни работи в следната таблица:

B_i	O_1	O_2	O_3	O_4	O_5
B_1	47	13	71	23	39
B_2	66	33	7	63	63
B_3	85	70	86	20	4
B_4	92	71	17	97	87
B_5	13	26	59	97	45

Задача 3. Случайната величина X има нормално разпределение $N(a,\sigma)$ с параметри a=2 и $\sigma=1$. Да се определят вероятностите p(0 < X < 3) и p(X > 3).

ТЕХНИЧЕСКИ УНИВЕРСИТЕТ - СОФИЯ Факултет по Приложна Математика и Информатика

ЗАДАНИЕ

за курсова работа по *Количествени методи и статистика* за студенти бакалаври по специалност *Индустриален мениджмънт* от *Стопански факултет*

Студент:	
/ три	имена /
a. V	
Ф акултетен №	Γpvna № Kvpc

Задача 1. Да се реши транспортната задача по метода на потенциалите при условие, че складове A_1 и. A_4 напълно се освободят от продукцията си. Началното базисно решение да се намери по метода на двупосочното предпочитане..

asheno pe	тепне да с	e mameph m	о метода п	и двушосо т	noro npe,
A_i	B_1	B_2	B_3	B_4	a_{i}
$A_{\rm l}$	4	6	12	9	60
A_2	3	3	4	5	80
A_3	1	10	1	2	100
A_{4}	5	11	8	6	150
b_{j}	50	70	90	140	

Задача 2. Да се реши по графичния метод следната задача на линейното оптимиране:

$$\min z = 3x_1 - 15x_2
-x_1 + 3x_2 \le 9
2x_1 + x_2 \ge 10
-x_1 + 4x_2 \ge 0
x_j \ge 0, (j = 1, 2)$$

Задача 3. Дадени са две кутии. В първата кутия са поставени 2 бели и 3 черни топки, във втората — 3 бели и 5 черни. От първата и втората кутия са взети по една топка и без да бъдат гледани са поставени в трета кутия. След разбъркване от третата кутия е извадена една от топките. Да се намери вероятността тази топка да е бяла.

ТЕХНИЧЕСКИ УНИВЕРСИТЕТ - СОФИЯ Факултет по Приложна Математика и Информатика

ЗАДАНИЕ

за курсова работа по *Количествени методи и статистика* за студенти бакалаври по специалност *Индустриален мениджмънт* от *Стопански факултет*

Студент:	
/ T	имена /
$oldsymbol{\Phi}$ акултетен $\mathbb{N}\!_{2}$. Γργηα № Kvpc

Задача 1. Да се състави двойствената задача на дадената изходна задача. Да се определи коя от двете задачи ще бъде с по-малък брой променливи и за нея да се състави симплекс таблица, след което да се направят две стъпки по алгоритъма на симплекс- метода.

$$\min z = -2x_1 + 3x_2 + 2x_3$$

$$\begin{vmatrix} 2x_1 + 2x_2 + x_3 \le 7 \\ -3x_1 + x_2 + 2x_3 = -1 \\ x_1 + 2x_2 + 2x_3 \ge 5 \end{vmatrix}$$

$$x_j \ge 0, j = 1,...,3.$$

Задача 2. Да се реши по графичния метод следната задача на линейното оптимиране:

$$\min z = 3x_1 + x_2 + 10$$

$$|x_1 + x_2| \ge 2$$

$$|x_1 - x_2| \le 0$$

$$|x_1| \ge \frac{1}{2}$$

$$|0| \le x_2 \le 4$$

Задача 3. Плътността на вероятностите на случайната величина X е

$$f(x) = \begin{cases} ax^2, & npu \ 0 \le x \le 2\\ 0, & npu \ 0 < x \ unu \ x > 2. \end{cases}$$

Да се определи стойността на a и вероятността за това, че $\frac{1}{2} \le x \le \frac{3}{4}$.

ТЕХНИЧЕСКИ УНИВЕРСИТЕТ - СОФИЯ Факултет по Приложна Математика и Информатика

ЗАДАНИЕ

за курсова работа по *Количествени методи и статистика* за студенти бакалаври по специалност *Индустриален мениджмънт* от *Стопански факултет*

Студент:		
/ три им	ена /	
Факултетен №	Γnvna №	Kvpc

Задача 1. Да се състави двойствената задача на дадената изходна задача. Да се определи коя от двете задачи ще бъде с по-малък брой променливи и за нея да се състави симплекс таблица, след което да се направят две стъпки по алгоритъма на симплекс- метода.

$$\min z = -2x_1 + 3x_2 + 2x_3$$

$$\begin{vmatrix} 2x_1 + 2x_2 + x_3 \le 7 \\ -3x_1 + x_2 + 2x_3 = -1 \\ x_1 + 2x_2 + 2x_3 \ge 5 \end{vmatrix}$$

$$x_j \ge 0, (j = 1, 2, 3).$$

Задача 2. Да се реши по графичния метод следната задача на линейното оптимиране:

$$\max z = 2x_2 + x_3 + x_4 + x_5$$

$$\begin{vmatrix} 2x_1 + x_2 + x_3 &= 10 \\ -2x_1 + 3x_2 + x_4 &= 6 \\ 2x_1 + 4x_2 - x_5 &= 8 \end{vmatrix}$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0$$

Задача 3. Случайната величина X има плътност на вероятностите, зададена с формулата на Коши

$$f(x) = \frac{a}{1+x^2}.$$

Да се намерят коефициентът a, функцията на разпределение F(x) за случайната величина X и вероятността случайната величина X да попадане в интервала $\left(\sqrt{3};\infty\right)$, т.е. $p\left(x>\sqrt{3}\right)$.

ТЕХНИЧЕСКИ УНИВЕРСИТЕТ - СОФИЯ Факултет по Приложна Математика и Информатика

ЗАДАНИЕ

за курсова работа по *Количествени методи и статистика* за студенти бакалаври по специалност *Индустриален мениджмънт* от *Стопански факултет*

Студент:	
/ т	ри имена /
Факултетен №	Група № Курс

Задача 1. Да се състави двойствената задача на дадената изходна задача. Да се намерят оптималните решения на двете взаимно двойствени задачи.

$$\min z = 4x_1 + 2x_2 + x_3$$

$$\begin{vmatrix} 2x_1 - x_2 + x_3 = 6 \\ 4x_1 + x_2 + x_3 = 18 \end{vmatrix}$$

$$x_j \ge 0, (j = 1, 2, 3).$$

Задача 2. Да се намери най-рационалното разпределение на пет багера от различен тип между пет обекта, ако са дадени времената, необходими за съответните изкопни работи в следната таблица, при условие, че багер B_2 не може да работи на обект O_1 и багер B_4 не може да работи на обект B_4 :

	- 1	1 4	, ,	1	
B_i	O_1	O_2	O_3	B_4	O_5
B_1	47	13	71	23	39
B_2	66	33	7	63	63
B_3	85	70	86	20	4
B_4	92	71	17	97	87
B_5	13	26	59	97	45

Задача 3. В една работилница има десет мотора. При съществуващия режим на работа, вероятността за това един мотор да работи в даден момент на пълно натоварване е равна на 0,8. Да се пресметне вероятността за това, в даден момент на пълно натоварване да работят не повече от 8 мотора.

Технически Университет - София Факултет по Приложна Математика и Информатика

ЗАДАНИЕ

за курсова работа по *Количествени методи и статистика* за студенти бакалаври по специалност *Индустриален мениджмънт* от *Стопански факултет*

Ф акултетен №	Група №	Курс
Студент:		

Задача 1. Да се състави двойствената задача на дадената изходна задача. Да се намерят оптималните решения на двете взаимно двойствени задачи.

$$\max z = 2x_1 + 3x_2$$

$$\begin{vmatrix} x_1 - 3x_2 \le 6 \\ -2x_1 + x_2 \le 4 \end{vmatrix}$$

$$x_j \ge 0, (j = 1, 2).$$

Задача 2. Като се построи графично мрежа да се определи минималното време T_{\min} , както и критичния път и критичните операции за извършването на дадения процес.

a_{i}	a_1	a_2	a_3	a_4	$a_{\scriptscriptstyle 5}$	a_6	a_7	a_8	a_9
предходни операции	-	a_1	1	$\begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$	a_3	a_4	a_5 a_6	a_3 a_5 a_6	a_7
t_i	10	5	15	20	10	15	10	25	10

Задача 3. В цех на фирма са монтирани три типа автоматични машини, които произвеждат едни и същи детайли. Производителността им е еднаква, но качеството на изделията е различно. Известно е, че машините от първи вид дават 97% качествени изделия, от втория- 92%, а машините от третия вид осигуряват качество за 83% от произведените детайли. Всички произведени за една смяна детайли без да бъдат сортирани са поставени в склада. Да се определи вероятността произволно взет от склада детайл да е качествен, ако машините от първи вид са 19 на брой, от втори вид- 12 на брой и машините от последния вид са общо 8 броя.

ТЕХНИЧЕСКИ УНИВЕРСИТЕТ - СОФИЯ Факултет по Приложна Математика и Информатика

ЗАДАНИЕ

за курсова работа по *Количествени методи и статистика* за студенти бакалаври по специалност *Индустриален мениджмънт* от *Стопански факултет*

Студент:	
/ три име	ена /
Ф акултетен №	Fnyna № Kync

Задача 1. Да се реши по метода на потенциалите дадената транспортна задача. Началното базисно решение да се намери по метода на минималния елемент.

	B_1	B_2	B ₃	B_4	
A_1	4	7	9	2	30
A_2	9	5	8	1	60
A_3	4	1	3	11	120
	90	25	35	80	

Задача 2. Да се реши по графичния метод линейната оптимизационна задача:

$$\max z = 2x_1 + x_2 + x_3,$$

$$x_1 + x_2 + x_3 = 4,$$

$$x_1 - x_2 + x_3 \le 2,$$

$$x_1 \cdot x_3 \ge 0.$$

Задача 3. За случайната величина **X** е направена случайна извадка от генералната съвкупност: **2**, **11**, **21**, **19**, **20**, **15**, **6**, **12**, **3**, **16**, **20**, **8**, **23**, **21**, **20**, **19**, **28**, **32**, **19**, **20**, **15**, **6**, **12**, **3**, **16**, **2**, **8**, **23**, **21**, **25**, **19**, **28**, **32**.Да се състави честотната таблица на групираните данни със стъпка 3. Да се построи графиката на емпиричната (статистическата) функция на разпределение $F^*(x)$.

Технически Университет - София Факултет по Приложна Математика и Информатика

ЗАДАНИЕ

за курсова работа по *Количествени методи и статистика* за студенти бакалаври по специалност *Индустриален мениджмънт* от *Стопански факултет*

Студент:		
/ три име	ена /	
Ф акултетен №	<i>Γργηα</i> №	<i>Kvpc</i>

Задача 1. Да се реши по метода на потенциалите транспортната задача при условие, че потребители \mathbf{B}_2 и \mathbf{B}_4 да бъдат снабдени задължително.

	B ₁	\mathbf{B}_2	B ₃	B ₄	
$\mathbf{A_1}$	1	7	9	2	70
\mathbf{A}_2	2	5	6	1	80
A ₃	4	4	2	12	110
	95	25	105	120	

Задача 2. Да се реши по графичния метод линейната оптимизационна задача:

$$\min z = x_1 - x_2$$

$$x_1 + x_2 \le 1$$

$$x_1 - 2x_2 \le 1$$

$$2x_1 + 3x_2 \le 2$$

$$3x_1 + 2x_2 \le 3$$

$$x_1 + x_2 \ge 1/2$$

$$x_1, x_2 \ge 0$$

Задача 3. Две автоматични машини произвеждат детайли, които след това постъпват в общия конвейер. Вероятността за получаване на нестандартен детайл на първия автомат е равна на 0,075, а за втория е 0,09. Производителността на втория автомат два пъти превишава тази на първия. Да се определи вероятността случайно взет от конвейера детайл да се окаже нестандартен.

ТЕХНИЧЕСКИ УНИВЕРСИТЕТ - СОФИЯ Факултет по Приложна Математика и Информатика

ЗАДАНИЕ

за курсова работа по *Количествени методи и статистика* за студенти бакалаври по специалност *Индустриален мениджмънт* от *Стопански факултет*

Студент:		
/ три им	ена /	
Факултетен №	$\Gamma pyna \ \mathbb{N}_{2} \dots Kypc \dots Kypc \dots$	
Залача 1. Във всеки от лвата спучая да	а се направи една стъпка по мето:	ла на

Задача 1. Във всеки от двата случая да се направи една стъпка по метода на потенциалите за дадената транспортна задача.

- а) между склад A_1 и потребител B_3 няма връзка. Началният опорен план да се състави по метода на северозападния ъгъл;
- **б**) потребители ${\bf B_1}$ и ${\bf B_5}$ да бъдат снабдени задължително. Началният опорен план да се състави по метода на двупосочното предпочитане.

	B ₁	$\mathbf{B_2}$	B ₃	B ₄	B ₅	B ₆	
$\mathbf{A_1}$	1	4	3	7	11	4	240
$\mathbf{A_2}$	3	5	12	7	6	1	360
$\mathbf{A_3}$	11	8	4	5	1	12	150
	170	220	80	70	150	120	

Задача 2. Има три работни места и четири кандидати, като заплатата c_{ij} за работно P_i място заето от кандидат K_j е дадена в платежната матрица C. Да се намери оптималното разпределение - **min** заплащане при условие, че кандидат K_2 трябва задължително да бъде назначен.

$$C = \begin{pmatrix} 32 & 60 & 95 \\ 31 & 63 & 73 \\ 92 & 82 & 42 \\ 20 & 15 & 29 \end{pmatrix}$$

Задача 3. Плътността на вероятностите на случайната величина X е

$$f(x) = \begin{cases} (a+1)x^2, & npu \ 0 \le x \le 2\\ 0, & npu \ 0 < x \ unu \ x > 2. \end{cases}$$

Да се определи стойността на a и вероятността за това, че $1 \le x \le 1,5$.