

Factorizations Ex 7.4 Q6

Answer:

$$x^2 + xy + xz + yz$$

= $(x^2 + xy) + (xz + yz)$ [Grouping the expressions]
= $x(x+y) + z(x+y)$
= $(x+z)(x+y)$ [Taking $(x+y)$ as the common factor]
= $(x+y)(x+z)$

Factorizations Ex 7.4 Q7

Answer:

$$2ax + bx + 2ay + by$$

= $(2ax + bx) + (2ay + by)$ [Grouping the expressions]
= $x(2a + b) + y(2a + b)$
= $(x + y)(2a + b)$ [Taking $(2a + b)$ as the common factor]

Factorizations Ex 7.4 Q8

Answer:

$$\begin{array}{ll} ab-by-ay+y^2\\ = (ab-ay)+(y^2-by) & [Grouping \ the \ expressions]\\ = a(b-y)+y(y-b)\\ = a(b-y)-y(b-y) & [\because (y-b)=-(b-y)]\\ = (a-y)(b-y) & [Taking \ (b-y) \ as \ the \ common \ factor] \end{array}$$

Factorizations Ex 7.4 Q9

Answer:

$$egin{aligned} &axy+bcxy-az-bcz\ &=(axy+bcxy)-(az+bcz) & [Grouping\ the\ expressions]\ &=xy(a+bc)-z(a+bc)\ &=(xy-z)(a+bc) & [Taking\ (a+bc)\ as\ the\ common\ factor] \end{aligned}$$

Factorizations Ex 7.4 Q10

Answer:

$$egin{aligned} lm^2 - mn^2 - lm + n^2 &= ig(lm^2 - lm ig) + ig(n^2 - mn^2 ig) & [Regrouping \ the \ expressions ig] \ &= lm ig(m-1 ig) + n^2 ig(1-m ig) \ &= lm ig(m-1 ig) - n^2 ig(m-1 ig) & [\because ig(1-m ig) = - ig(m-1 ig) ig] \ &= ig(lm - n^2 ig) ig(m-1 ig) \end{aligned}$$

[Taking (m-1) as the common factor]

********** END *******