7 Граф грана и комплемент графа

Преглед теорије

Нека је дат граф $G = (V, E), V = \{v_1, v_2, \dots, v_n\}, E = \{e_1, e_2, \dots, e_m\}.$

Дефиниција 1. Граф $\overline{G} = (V, \overline{E})$, је комплемент графа G при чему су два чвора $u, v \in V$, суседна у графу \overline{G} , $\{u, v\} \in \overline{E}$, ако и само ако нису суседна у графу G, $\{u, v\} \notin E$.

Дефиниција 2. Граф G је самокоплементирајући ако и само ако је изоморфан свом комплементу \overline{G} .

Дефиниција 3. Нека је дат граф G = (V, E). Граф $L(G) = (V_1, E_1)$, $V_1 = E$, при чему су два чвора суседна у L(G) ако и само ако су одговарајуће гране суседне у графу G, назива се граф грана или line graf графа G.

Решени задаци

Задатак 1. Задат је граф G преко своје визуелне репрезентације у виду следеће слике:

- а) Одредити граф грана L(G) графа G.
- б) Колико чворова и грана има граф G?
- в) Колико чворова и грана има граф грана L(G)?

Pешење. Граф грана L(G) графа G представља граф чији чворови чине гране графа G, при чему су нека два његова чвора суседна ако и само ако су одговарајуће две гране суседне у графу G. Уколико гране графа G означимо на следећи начин:

онда добијамо да граф грана L(G) изгледа као на наредној слици:

Граф G има седам чворова и осам грана, док граф L(G) има осам чворова и 13 грана.

Задатак 2. Да ли је граф чија је визуелна репрезентација дата на следећој слици изоморфан графу грана неког графа?

Решење. Нека се граф дат у задатку зове G_1 . Претпоставимо да граф G_1 јесте изоморфан графу грана неког графа G_2 .

У графу G_2 , грана која одговара чвору 1 мора да има заједнички крај са сваком од грана које одговарају чворовима 2, 3, 6. Такође, гране које одговарају чворовима 2, 3, 6 не смеју да имају заједничких крајева међусобно. Нека чвору 1 одговара грана $\{x_1, x_2\}$, где су x_1 и x_2 нека два међусобно различита чвора графа G_2 . Ако претпоставимо да чвору 2 одговара грана $\{x_1, x_3\}$, где је x_3 неки чвор графа G_2 различит од x_1 и x_2 , тада знамо да чвору 3 мора да одговара грана $\{x_2, x_4\}$, за неки чвор x_4 графа G_2 који је различит од x_1, x_2 и x_3 . Ово се директно добија из чињенице да гране које одговарају чворовима 2 и 3 нису суседне, на основу визуелне репрезентације графа G_1 , где чворови 2 и 3 нису суседни.

У графу G_2 , грана која одговара чвору 6 мора да има заједнички крај са граном која одговара чвору 1, а тај крај може бити или чвор x_1 или чвор x_2 . Међутим, одавде следи да у графу G_2 грана која одговара чвору 6 мора да буде суседна и са граном која одговара чвору 2 или граном која одговара чвору 3. Дакле, у графу G_1 чвор 6 мора бити суседан са чвором 2 или чвором 3. Како ово очигледно не важи, долазимо до контрадикције. Закључак јесте да задати граф G_1 не може бити изоморфан графу грана неког графа G_2 .

Задатак 3. Нека је задат произвољан граф G, заједно уз свој комплемент \overline{G} . Доказати да бар један од графова G и \overline{G} мора бити повезан.

Pешење. Тврђење у задатку ћемо доказати преко математичке индукције по броју чворова графа. Пре свега, тврђење јасно важи за граф G уколико он има само један чвор, јер су тада

сигурно и граф G и његов комплемент \overline{G} повезани. Претпоставимо да тврђење важи за сваки граф који има $k \in \mathbb{N}$ чворова и докажимо да онда мора да важи и за сваки граф који се састоји од k+1 чворова, где је k произвољан фиксиран природан број.

Нека је дат произвољан граф G који се састоји од k+1 чворова и нека v чини његов произвољно одабран фиксиран чвор. Ако је у графу G чвор v суседан са свим осталим чворовима, онда је граф G очигледно повезан, те следи тражено тврђење. Слично, уколико чвор v није суседан ни са једним другим чвором у графу G, онда је у графу G овај чвор суседан са свим другим чворовима, те је граф G повезан, па опет следи тражено тврђење. Дакле, једино је неопходно надаље испитати ситуацију када је чвор v у графу G истовремено и суседан са бар једним од преосталих чворова и несуседан са бар једним од преосталих чворова.

Уколико графу G скинемо чвор v, добијемо граф са тачно k чворова који ћемо да назовемо G_1 . По индуктивној претпоставци, бар један од графова G_1 и $\overline{G_1}$ мора бити повезан. Ако је граф G_1 повезан, онда знамо да и граф G такође мора бити повезан, пошто смо претпоставили да чвор v јесте суседан са бар једним од преосталих чворова. Слично, уколико је граф $\overline{G_1}$ повезан, онда добијемо да је граф \overline{G} такође повезан, јер би тада у графу \overline{G} чвор v био суседан са бар једним од преосталих чворова. У сваком случају, закључујемо да бар један од графова G и \overline{G} мора бити повезан, што завршава доказ по математичкој индукцији.

Задатак 4. Нека је дат граф од $n \in \mathbb{N}$ чворова који је самокомплементирајући. Доказати да мора да важи $n \equiv 0 \pmod 4$ или $n \equiv 1 \pmod 4$. Дати пример самокомплементирајућег графа који се састоји од

- а) четири чвора;
- б) пет чворова.

Решење. Уколико је неки граф самокомплементирајући, то значи да је он изоморфан свом комплементу. Дакле, и задати граф и његов комплемент морају да имају исти број грана. Како је збиг њихових грана сигурно једнак $\frac{n(n-1)}{2}$, закључујемо да самокомплементирајући граф мора да има $\frac{n(n-1)}{4}$ грана. Следи да $\frac{n(n-1)}{4}$ мора да чини цео број,односно мора да важи $4\mid n(n-1)$.

Ако испитамо све могуће остатке које број чворова n може да да по модулу 4, једноставно је уочити:

```
n \equiv 0 \pmod{4} \implies n(n-1) \equiv 0 \cdot (-1) \equiv 0 \pmod{4},

n \equiv 1 \pmod{4} \implies n(n-1) \equiv 1 \cdot 0 \equiv 0 \pmod{4},

n \equiv 2 \pmod{4} \implies n(n-1) \equiv 2 \cdot 1 \equiv 2 \pmod{4},

n \equiv 3 \pmod{4} \implies n(n-1) \equiv 3 \cdot 2 \equiv 2 \pmod{4}.
```

Дакле, јасно је да из услова $4 \mid n(n-1)$ директно добијамо да мора бити или $n \equiv 0 \pmod 4$ или $n \equiv 1 \pmod 4$.

Примери визуелних репрезентација самокомплементирајућих графова са четири, односно пет, чворова дати су на следећој слици:

Задаци за самосталан рад

Задатак 5. Нека је задат природан број $n \in \mathbb{N}$, $n \ge 3$. Израчунати колико укупно има по изоморфизму различитих графова који задовољавају следеће особине:

- граф нема изолованих чворова;
- граф грана датог графа је изоморфан простом циклусу дужине n.

Задатак 6. Доказати да за сваки природан број $n \in \mathbb{N}$ који испуњава услов

$$n \equiv 0 \pmod{4} \quad \lor \quad n \equiv 1 \pmod{4}$$

постоји самокомплементирајући граф који се састоји од n чворова.