Сжатие с учётом контекста. Словарные методы с отдельным словарём (дерево/таблица) — семейство LZ78

Александра Игоревна Кононова

ТЕИМ

24 ноября 2023 г. — актуальную версию можно найти на https://gitlab.com/illinc/otik

В норме для кодов семейства LZ78, как и для любого кода, алфавит — набор байтов, исходный текст — последовательность байтов.

Рассмотрим сообщение «Обороноспособность» (18 символов всего, 8 разных) в 8-символьном алфавите из 3-битных байтов (в сообщении встречаются все 8 возможных символов):

значение	0	1	2	3	4	5	6	7
глиф	б	Н	0	П	р	С	Т	Ь

1978 г., Якоб Зив (Jacob Ziv) и Абрахам Лемпель (Abraham Lempel):

- Скользящее окно не используем кодируем в один проход вперёд ⇒ высокая скорость кодирования-декодирования.
- 2 Словарь = дерево, узел номер и символ (n,c), корень — (0, пустая строка), слово читается от корня.
- Вначале словарь пуст (только корень).
- 4 На каждом шаге
 - к словарю добавляется узел (лист);
 - в выходной поток номер родителя и символ нового листа (P,c).
- Когда кончается ёмкость номера листа, дерево:
 - либо уничтожается и растится заново;
 - либо ветви уничтожаются выборочно (сложно);
 - либо фиксируется и не растёт (нет прикорневого узла ⇒ сбои);
 - либо увеличивается разрядность номера.
- При необходимости вх-й поток дополняется (либо конец обр-ся особо).

- Вначале словарь = корень (пустая строка), n=1 (№ добавляемого узла, с 1), i=0 (№ символа во вх. потоке, с 0).
- **2** P = 0 (текущий узел корень), c_i (текущий символ входного потока);
- **3** Если c_i дочерний P, $P = c_i$ и читаем c_{i+1} (++i)
- \bigcirc Если c_i нет в дочерних узлах P:
 - добавляем P дочерний узел (n, c_i) , ++n и читаем c_{i+1} (++i);
 - в выходной поток пишем (P, c_i) .

Код Зива-Лемпеля, LZ78/LZ2 (концепция) — Минимально возможная длина кода

В коде сообщения $n_{\text{max}} = 10$ пар (P, c):

- разрядность |c| символа постоянна и равна разрядности символа в исходном тексте;
- разрядность |P| номера узла-родителя не равна |c|:
 - может быть постоянной: $|P| \ge \log_2(n_{\max} 1)$, здесь $|P| \ge 4$ бита, обычно |P| >> |c|;
 - может быть разной для разных пар: минимальная длина кода достигается при побитовом увеличении |P| (тогда поток пар (P,c) — битовый, а не байтовый).

Рассчитаем эту минимальную длину |code|.

N∘	Возможные	$P \min(P)$, бит	
1	только 0	0 (не сохр.)	Суммарная длина (в символах) полей c во всех 10 парах постоянна
2	0 или 1	1	и равна 10 символов (байтов).
3	0, 1, 2	2	Минимальная суммарная длина (в битах) полей P во всех 10 парах:
4	0, 1, 2, 3	2	$ P _{\sum} = 1 + 2 \cdot 2 + 3 \cdot 4 + 4 \cdot 2 = 25$ бит.
5	0, 1, 4	3	Минимальная общая длина $ code $ (в символах=байтах) кода при
6	0, 1, 5	3	$ c =3$ (3-битный байт): $ code =10+rac{25}{3}=10+8+rac{1}{3}\cong 19;$
7	0, 1, 6	3	(для записи «лишнего» бита необходим целый байт).
8	0, 1, 7	3	(i) ,
9	0, 1, 8	4	Длина исходного текста — 18 символов $=$ байтов.
10	0, 1, 9	4	

1984 г., Терри Велч (Terry Welch) по концепции LZ78:

- **1** Вначале словарь = первый уровень (все одиночные символы, 2^k штук для k-битного символа=байта). Тогда корень можно не нумеровать (прикорневые нумеруем с нуля).
- $oldsymbol{2}$ Кодирование: при добавлении узлу P дочернего узла с номером m и символом c_i :
 - ullet оставляем c_i во входном потоке (c_i последний текущего слова и первый следующего);
 - ullet в выходной поток пишем P.
- ③ Декодирование: перед любым шагом, кроме первого, последний узел (с номером m-1) пустой (с неизвестным символом c_j); читаем $P \in \{0,1,...,m-1\} \implies$ пишем в выходной поток слово = ветвь P и одновременно заполняем пустой узел:
 - ullet символ c_j , соответствующий первому (прикорневому \Longrightarrow всегда заполненному) узлу ветви P пишем и в выходной поток, и в пустой узел m-1 (первый слова = последний предыдущего);
 - ullet [теперь нет пустых узлов] прочие символы ветви P, включая сам P только в выходной поток;
 - ullet добавляем узлу P пустой (с неизвестным c_i) дочерний с номером m.

Первый шаг $(m=2^k)$ отдельно: $P\in\{0,1,...,2^k-1\}$, пустого нет.

- |m| >> |c|, во многих реализациях увеличивается по битам.
- Дерево часто разворачивается в таблицу.
- Вх-й поток всегда дополняется как минимум одним незначащим символом.

«Обороноспособность» (18, алфавит из 8)

В коде сообщения $m_{\text{max}} - m_{\text{min}} + 1 = 22 - 8 + 1 = 15$ значений P; рассчитаем минимально возможную их длину:

- 1 размером 3 бита $(m = 8: P \in \{0, 1, ...7\})$;
- 8 размером 4 бита (от m = 9: $P \in \{0, 1, ..., 7, 8\}$ до m = 16: $P \in \{0, 1, ..., 15\}$);
- 6 размером 5 бит (от m = 17: $P \in \{0, 1, ...16\}$ до m = 22: $P \in \{0, 1, ...22\}$); потенциально 5 бит хватило бы на 16 значений (до m = 32: $P \in \{0, 1, ...31\}$), но сообщение закончилось раньше.

Суммарная длина (в битах) $3 + 4 \cdot 8 + 5 \cdot 6 = 65$ бит.

Символ=байт при таком дереве может занимать только 3 бита (алфавит из 8 символов).

Суммарная длина (в символах) $\frac{65}{2} = 21\frac{2}{2} \cong 22$ байта.

Декодирование (обороноспособность)

б 8 (2, 6)9 (0, 0)(2, p)10 (4, 0)11 12 (2, H)13

14

(5, c)oc 16 (3, 0)οб 17 (14, o)18 (8, н) но 5 (13, c)19 6 20 (5, T)(6, ь) 21

Закодируйте/декодируйте различными алгоритмами семейства LZ78 (концептом и LZW) сообщение

 $m = 7770\,0000\,0123\,4567\,7770\,7770\,0000\,0000$

Сравните длину кода с кодом семейства LZ77 с односимвольным префиксом.

ТЕИМ

www.miet.ru

Александра Игоревна Кононова illinc@mail.ru gitlab.com/illinc/raspisanie