15. Integration von Treppenfunktionen

Definition

(1) $\mathfrak{M} := \{I : I \text{ ist ein } beschränktes \text{ Intervall in } \mathbb{R}\}$. Also: $I \in \mathfrak{M} : \iff \exists a, b \in \mathbb{R} \text{ mit } a < b : I = [a, b] \text{ oder } I = (a, b) \text{ oder } I = [a, b] \text{ oder } I = \{a\}.$

In den ersten 4 Fällen setzt man |I| := b - a und $|\{a\}| := 0$ (Intervalllänge).

(2) Sei $n \in \mathbb{R}$ und es seien $I_1, I_2, \dots, I_n \in \mathfrak{M}$. Dann heißt $Q := I_1 \times I_2 \times \dots \times I_n$ ein **Quader** im \mathbb{R}^n und $v_n(Q) := |I_1| \cdot |I_2| \cdot \dots \cdot |I_n|$ das (n-dim.) Volumen von Q.

Beispiel

(n=2)

- (i) $Q = [a_1, b_1) \times [a_2, b_2], \ v_2(Q) = (b_1 a_1)(b_2 a_2).$
- (ii) $Q = [a_1, b_1) \times \{a\}, \ v_2(Q) = 0.$
- (3) Eine Funktion $\varphi : \mathbb{R}^n \to \mathbb{R}$ heißt eine **Treppenfunktion** im $\mathbb{R}^n : \iff \exists$ Quader Q_1, \ldots, Q_m im \mathbb{R}^n mit:
 - (i) $Q_i \cap Q_k = \emptyset \ (j \neq k)$
 - (ii) φ ist auf jedem Q_j konstant
 - (iii) $\varphi = 0$ auf $\mathbb{R}^n \setminus (Q_1 \cup \ldots \cup Q_m)$

 $\mathscr{T}_n = \text{Menge aller Treppenfunktionen in } \mathbb{R}^n.$

Der nächste Satz wird hier nicht bewiesen:

Satz 15.1 (Disjunkte Quaderzerlegung und Treppenfunktionsraum)

(1) Es seien Q'_1, Q'_2, \ldots, Q'_k Quader im \mathbb{R}^n . Dann ex. Quader Q_1, Q_2, \ldots, Q_m im \mathbb{R}^n : $Q'_1 \cup Q'_2 \cup \ldots \cup Q'_k = Q_1 \cup Q_2 \cup \ldots \cup Q_m$ und $Q_j \cap Q_k = \emptyset$ $(j \neq k)$.

Beachte: Q_1, \ldots, Q_m sind nicht eindeutig bestimmt.

- (2) \mathscr{T}_n ist ein reeller Vektorraum.
- (3) Aus $\varphi, \psi \in \mathscr{T}_n$ folgt: $|\varphi|, \varphi \cdot \psi \in \mathscr{T}_n$.

Definition

Sei $A \subseteq \mathbb{R}^n$.

$$1_A(x) := \begin{cases} 1 & \text{, falls } x \in A \\ 0 & \text{, sonst} \end{cases}$$

 1_A heißt die charakteristische Funktion von A.

Aus 15.1 folgt:

Ist $\varphi : \mathbb{R}^n \to \mathbb{R}$ eine Funktion, dann gilt: $\varphi \in \mathscr{T}_n \iff \exists \text{ Quader } Q_1, \dots, Q_m \text{ in } \mathbb{R}^n \text{ und } c_1, \dots, c_m \in \mathbb{R}$:

$$\varphi = \sum_{j=1}^{m} c_j 1_{Q_j} \ (*)$$

Beachte:

- (1) Die Darstellung von φ in (*) ist i.A. *nicht* eindeutig.
- (2) In (*) wird *nicht* gefordert, dass $Q_j \cap Q_k = \emptyset$ $(j \neq k)$.

Beispiel

FIXME: Bild

 $\varphi = 2 \cdot 1_{Q_1} + 3 \cdot 1_{Q_2}.$

Satz 15.2 (Integral über Treppenfunktion (mit Definition))

Sei $\varphi \in \mathscr{T}_n$ wie in (*).

$$\int \varphi dx := \int \varphi(x) dx := \int_{\mathbb{R}^n} \varphi(x) dx := \int_{\mathbb{R}^n} \varphi dx := \sum_{j=1}^m c_j v_n(Q_j)$$

Behauptung: $\int \varphi dx$ ist wohldefiniert, d.h. obige Def. ist unabhängig von der Darstellung von φ in (*).

Vorbemerkung: Sei $Q = I_1 \times \ldots \times I_n$ Quader im \mathbb{R}^n $(I_j \in \mathfrak{M})$. Sei $p \in \{1, \ldots, n-1\}$. $P := I_j \times \ldots \times I_p$, $R := I_{p+1} \times \ldots \times I_n$. P ist ein Quader im \mathbb{R}^p . R ist ein Quader im \mathbb{R}^{n-p} . $Q = P \times R$. $v_n(Q) = v_p(P) \cdot v_{n-p}(R)$. Ist $z = (x, y) \in \mathbb{R}^n$, $x \in \mathbb{R}^p$, $y \in \mathbb{R}^{n-p} \implies 1_Q(z) = 1_P(x) \cdot 1_R(y)$.

Beweis (von 15.2)

Induktion nach n.

IA: n = 1: Übung

IV: Die Beh. sei gezeigt für jedes $q \in \{1, ..., n-1\}$.

IS: Sei $p \in \{1, ..., n-1\}$. Vorbemerkung $\Longrightarrow \exists$ Quader $P_1, ..., P_m$ im \mathbb{R}^p und Quader $R_1, ..., R_m$ im $\mathbb{R}^{n-p} : Q_j = P_j \times R_j$ (j = 1, ..., m). Für $z \in \mathbb{R}^n$ schreiben wir $z = (x, y), x \in \mathbb{R}^p, y \in \mathbb{R}^{n-p}$.

Sei $y \in \mathbb{R}^{n-p}$ fest. $\varphi_y(x) := \varphi(x,y) \ (x \in \mathbb{R}^p)$.

$$\varphi_{y}(x) = \varphi(x,y) \overset{\text{(*)}}{=} \sum_{j=1}^{m} c_{j} 1_{Q_{j}}(x,y) \overset{\text{Vorbem.}}{=} \sum_{j=1}^{m} c_{j} 1_{P_{j}}(x) \cdot 1_{R_{j}}(y) = \sum_{j=1}^{m} \underbrace{c_{j} 1_{R_{j}}(y)}_{=:d_{j} = d_{j}(y)} \cdot 1_{P_{j}}(x) = \underbrace{\sum_{j=1}^{m} c_{j} 1_{Q_{j}}(x,y)}_{=:d_{j} = d_{j}(y)} \cdot 1_{Q_{j}}(x) = \underbrace{\sum_{j=1}^{m} c_{j} 1_{Q_{j}}(x,y)}_{=:d_{j} = d_{j}(y)}}_{=:d_{j} = d_{j}(y)} \cdot 1_{Q_{j}}(x) = \underbrace{\sum_{j=1}^{m} c_{j} 1_{Q_{j}}(x,y)}_{=:d_{j} = d_{j}(y)}}_{=:d_{j} = d_{j}(y)}$$

$$\sum_{j=1}^{m} d_j 1_{P_j}(x)$$

$$\implies \varphi_y = \sum_{j=1}^m d_j 1_{P_j} \implies \varphi_y \in \mathscr{T}_p$$

IV $\Longrightarrow \sum_{j=1}^m d_j v_p(P_j) = \int_{\mathbb{R}^p} \varphi_y(x) dx$ ist unabhängig von der Darstellung von φ_y (und damit auch von φ).

Def.
$$\phi : \mathbb{R}^{n-p} \to \mathbb{R}$$
 durch $\phi(y) := \int_{\mathbb{R}^p} \varphi_y(x) dx = \sum_{j=1}^m d_j(y) v_p(P_j) = \sum_{j=1}^m c_j 1_{R_j}(y) v_p(P_j) = \sum_{j=1}^m c_j v_p(P_j) 1_{R_j}(y)$

$$\implies \phi = \sum_{j=1}^{m} e_j \cdot 1_{R_j} \implies \phi \in \mathscr{T}_{n-p}.$$

IV
$$\Longrightarrow \int_{\mathbb{R}^{n-p}} \phi(y) dy = \sum_{j=1}^m e_j v_{n-p}(R_j) = \sum_{j=1}^m c_j v_p(P_j) v_{n-p}(R_j) = \sum_{j=1}^m c_j v_n(Q_j)$$
 ist unabhängig von der Darstellung von φ .

Aus dem Beweis von 15.2 folgt:

Satz 15.3 (Satz von Fubini für Treppenfunktionen)

Ist $\varphi \in \mathscr{T}_n$ und $p \in \{1, \dots, n-1\}$ so gilt:

$$\int_{\mathbb{R}^n} \varphi(z)dz = \int_{\mathbb{R}^{n-p}} \left(\int_{\mathbb{R}^p} \varphi(x,y)dx \right) dy = \int_{\mathbb{R}^p} \left(\int_{\mathbb{R}^{n-p}} \varphi(x,y)dy \right) dx$$

Satz 15.4 (Eigenschaften des Integrals über Treppenfunktionen)

Es seien $\varphi, \psi \in \mathcal{T}_n$ und $\alpha, \beta \in \mathbb{R}$.

(1)
$$\int (\alpha \varphi + \beta \psi) dx = \alpha \int \varphi dx + \beta \int \psi dx$$

$$(2) \left| \int \varphi dx \right| \le \int |\varphi| dx$$

(3) Aus
$$\varphi \leq \psi$$
 auf \mathbb{R}^n folgt $\int \varphi dx \leq \int \psi dx$

Beweis

- (1) Übung
- (2) Sei $\varphi = \sum_{j=1}^m c_j 1_{Q_j}$ wie in (*). Wegen 15.1: O.B.d.A: $Q_j \cap Q_k = \emptyset$ $(j \neq k)$. Dann: $|\varphi| = \sum_{j=1}^m |c_j| 1_{Q_j}$.

$$\implies |\int \varphi dx| = |\sum_{j=1}^m c_j v_n(Q_j)| \le \sum_{j=1}^m |c_j| v_n(Q_j) = \int |\varphi| dx.$$