Příklad 1 - maximální chyba odrazivosti

Excimerový KrF laser vyzařuje ultrafialové záření o vlnové délce 248 nm. Pro zvolený časový úsek (tzv. integrační doba) jsme naměřili intenzitu dopadajícího záření rovnu $I_0 = 39827$ (= počet detekovaných událostí). Po odrazu od zrcátka klesla intenzita na hodnotu $I_1 = 35799$. Odrazivost zrcátka definujeme jako $R = I_1/I_0$.

- (a) Jaké rozdělení mají náhodné proměnné I_0 a I_1 ? Jaké jsou jejich odchylky σ_0 a σ_1 ?
- (b) Vypočítejte očekávanou hodnotu a odchylku odrazivosti R. Výsledek zapište ve správném tvaru.
- (c) Jaká by musela být minimální intenzita dopadajícího záření I_0 , abychom mohli určit odrazivost zrcátka s přesností na desetitisíciny?

Poznámka: Předpokládejte, že intenzitu I_0 můžeme libovolně měnit zkrácením nebo prodloužením integrační doby, přičemž odrazivost zrcátka se (přirozeně) nezmění. Pro výpočet bodu (c) použijte hodnotu R vypočítanou v bodě (b).

(10 bodů)

Příklad 2 - 2σ kritérium

Náhodná proměnná x má normální rozdělení $N(\mu,\sigma)$. Skutečnost, že v intervalu $\pm 2\sigma$, neboli $x \in [\mu - 2\sigma, \mu + 2\sigma]$, se nachází 95.5 % všech hodnot, označujeme jako tzv. 2σ kritérium. Uvažujme, že náhodnou proměnnou x měříme 50krát.

- (a) Jaký je průměrný (očekávaný) počet výsledků, které splní 2σ kritérium?
- (b) Jaká je pravděpodobnost, že interval $\pm 2\sigma$ bude obsahovat více hodnot než je tento průměrný počet?

Poznámka: Jaký typ náhodné proměnné je počet výsledků, které padly do intervalu $\pm 2\sigma?$

(5 bodů)