Turing Machines Part II

Friday Four Square! Today at 4:15PM, Outside Gates

Announcements

- Problem Set 6 due next Monday, February 25, at 12:50PM.
 - Email the staff list with questions! (cs103-win1213-staff@lists.stanford.edu)

The Turing Machine

- A Turing machine consists of three parts:
 - A finite-state control that issues commands,
 - an infinite tape for input and scratch space, and
 - a tape head that can read and write a single tape cell.
- At each step, the Turing machine
 - Writes a symbol to the tape cell under the tape head,
 - changes state, and
 - moves the tape head to the left or to the right.

$$\begin{array}{c} \square \rightarrow \square,\, R \\ \textbf{0} \rightarrow \textbf{0},\, R \end{array}$$

Key Idea: Subroutines

- A **subroutine** of a Turing machine is a small set of states in the TM such that performs a small computation.
- Usually, a single entry state and a single exit state.
- Many very complicated tasks can be performed by TMs by breaking those tasks into smaller subroutines.

Turing Machine Memory

- Turing machines often contain many seemingly replicated states in order to store a finite amount of extra information.
- A Turing machine can remember one of k different constants by copying its states k times, once for each possible value, and wiring those states appropriately.

The Power of Turing Machines

- Turing machines can
 - Perform standard arithmetic operations (addition, subtraction, multiplication, division, exponentiation, etc.)
 - Manipulate lists of elements (searching, sorting, reversing, etc.)
- What else can Turing machines do?

Outline for Today

Exhaustive Search

 A fundamentally different approach to designing Turing machines.

Nondeterministic Turing Machines

• What does a Turing machine with Magic Superpowers look like?

The Church-Turing Thesis

• Just how powerful *are* Turing machines?

The Hailstone Sequence

- Consider the following procedure, starting with some $n \in \mathbb{N}$, where n > 0:
 - If n = 1, you are done.
 - If n is even, set n = n / 2.
 - Otherwise, set n = 3n + 1.
 - · Repeat.
- Question: Given a number *n*, does this process terminate?

The Hailstone Sequence

- Let $\Sigma = \{1\}$ and consider the language $L = \{1^n \mid n > 0 \text{ and the hailstone sequence terminates for } n \}.$
- Could we build a TM for L?

- Intuitively, we can build a TM for the hailstone language as follows: the machine M does the following:
 - If the input is ε, reject.
 - While the input is not 1:
 - If the input has even length, halve the length of the string.
 - If the input has odd length, triple the length of the string and append a 1.
 - Accept.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even lend of the string.
- If the input has odd leng string and append a 1.

Accept.

Interesting problem:
Build a TM that, starting
with n 1s on its tape,
ends with 3n+1 1s on its
tape.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

If the input is ε , reject.

While the input is not 1:

- If the input has even length, halve the length of the string.
- If the input has odd length, triple the length of the string and append a 1.

The Collatz Conjecture

- It is *unknown* whether this process will terminate for all natural numbers.
- In other words, no one knows whether the TM described in the previous slides will always stop running!
- The conjecture (claim) that this always terminates is called the Collatz Conjecture.

An Important Observation

- Unlike the other automata we've seen so far, Turing machines choose for themselves whether to accept or reject.
- It is therefore possible for a TM to run forever without accepting or rejecting.

Some Important Terminology

- Let M be a Turing machine.
- M accepts a string w if it enters the accept state when run on w.
- *M* rejects a string *w* if it enters the reject state when run on *w*.
- M loops infinitely (or just loops) on a string w if when run on w it enters neither the accept or reject state.
- M does not accept w if it either rejects w or loops infinitely on w.
- M does not reject w w if it either accepts w or loops on w.
- M halts on w if it accepts w or rejects w.

The Language of a TM

• The language of a Turing machine M, denoted $\mathcal{L}(M)$, is the set of all strings that M accepts:

$$\mathscr{L}(M) = \{ w \in \Sigma^* \mid M \text{ accepts } w \}$$

- For any $w \in \mathcal{L}(M)$, M accepts w.
- For any $w \notin \mathcal{L}(M)$, M does not accept w.
 - It might loop forever, or it might explicitly reject.
- A language is called **recognizable** iff it is the language of some TM.
- Notation: **RE** is the set of all recognizable languages.

 $L \in \mathbf{RE}$ iff L is recognizable

- A) Double the contents of the string after **M**.
- B) Replace III with U.
- C) Remove uu
- D) Append **u** if the string ends in **I**.

MI

- A) Double the contents of the string after **M**.
- B) Replace III with U.
- C) Remove uu
- D) Append **u** if the string ends in **I**.

- A) Double the contents of the string after **M**.
- B) Replace III with U.
- C) Remove uu
- D) Append **u** if the string ends in **I**.

- A) Double the contents of the string after **M**.
- B) Replace III with U.
- C) Remove uu
- D) Append **u** if the string ends in **I**.

- A) Double the contents of the string after **M**.
- B) Replace III with U.
- C) Remove uu
- D) Append **u** if the string ends in **I**.

- A) Double the contents of the string after **M**.
- B) Replace III with U.
- C) Remove uu
- D) Append **u** if the string ends in **I**.

- A) Double the contents of the string after **M**.
- B) Replace III with U.
- C) Remove uu
- D) Append **u** if the string ends in **I**.

- A) Double the contents of the string after **M**.
- B) Replace III with U.
- C) Remove uu
- D) Append **u** if the string ends in **I**.

A Recognizable Language

- Let $\Sigma = \{ \mathbf{M}, \mathbf{I}, \mathbf{U} \}$ and consider the language $L = \{ w \in \Sigma^* \mid \text{Using the four provided rules, it is possible to convert } w \text{ into } \mathbf{MU} \}$
- Some strings are in this language (for example, $\mathbf{MU} \in L$, $\mathbf{MIII} \in L$, $\mathbf{MUUU} \in L$).
- Some strings are not in this language (for example, $I \notin L \bowtie L \bowtie U \notin L$).
- Could we build a Turing machine for L?

TM Design Trick: Worklists

- It is possible to design TMs that search over an infinite space using a worklist.
- Conceptually, the TM
 - Finds all possible options one step away from the original input,
 - Appends each of them to the end of the worklist,
 - Clears the current option, then
 - Grabs the next element from the worklist to process.
- This Turing machine is not guaranteed to halt.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string \mathbf{MU} :
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string \mathbf{MU} :
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string \mathbf{MU} :
 - M grabs the next string from the worklist.
 - For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - *M* grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - *M* grabs the next string from the worklist.
 - For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string \mathbf{MU} :
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string \mathbf{MU} :
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string \mathbf{MU} :
 - M grabs the next string from the worklist.
 - For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string \mathbf{MU} :
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - *M* grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string \mathbf{MU} :
 - *M* grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - *M* grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - *M* grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - *M* grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - *M* grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string \mathbf{MU} :
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string \mathbf{MU} :
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - *M* grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - *M* grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - *M* grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - *M* grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - *M* grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - \cdot *M* grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string \mathbf{MU} :
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string \mathbf{MU} :
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - \cdot *M* grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string \mathbf{MU} :
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - *M* grabs the next string from the worklist.
 - For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - *M* grabs the next string from the worklist.
 - For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - *M* grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - *M* grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - *M* grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - *M* grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - \cdot *M* grabs the next string from the worklist.
 - For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - *M* grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - *M* grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - *M* grabs the next string from the worklist.
 - For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - *M* grabs the next string from the worklist.
 - For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - *M* grabs the next string from the worklist.
 - For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - *M* grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - *M* grabs the next string from the worklist.
 - For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

A Sketch of the Turing Machine

To recognize L, our TM M does the following:

- While M has not found the string MU:
 - M grabs the next string from the worklist.
 - \cdot For each possible single step, M performs that step and appends the result to the worklist.

The Power of TMs

- The worklist approach makes that all of the following languages are recognizable:
 - Any context-free language: simulate all possible production rules and see if the target string can be derived.
 - Solving a maze use the worklist to explore all paths of length 0, 1, 2, ... until a solution is found.
 - Determining whether a polynomial has an integer zeros: try 0, -1, +1, -2, +2, -3, +3, ... until a result is found.

Searching and Guessing

Nondeterminism Revisited

- Recall: One intuition for nondeterminism is perfect guessing.
 - The machine has many options, and somehow magically knows which guess to make.
- With regular languages, we could *simulate* perfect guessing by building an enormous DFA to try out each option in parallel.
 - Only finitely many possible options.
- With context-free languages, some NPDAs do not have corresponding DPDAs.
 - Cannot simulate all possible stacks with just one stack.

Nondeterministic TMs

- A nondeterministic Turing machine (or NTM) is a variant on a Turing machine where there can be any number of transitions for a given state/tape symbol combination.
 - Notation: "Turing machine" or "TM" refers to a deterministic Turing machine unless specified otherwise. The term **DTM** specifically represents a deterministic TM.
- The NTM accepts iff there is *some possible series of choices* it can make such that it accepts.

Questions for Now

- How can we build an intuition for nondeterministic Turing machines?
- What sorts of problems can we solve with NTMs?
- What is the relative power of NTMs and DTMs?

Designing NTMs

- When designing NTMs, it is often useful to use the approach of guess and check:
 - Nondeterministically guess some object that can "prove" that $w \in L$.
 - **Deterministically** verify that you have guessed the right object.
- If $w \in L$, there will be some guess that causes the machine to accept.
- If $w \notin L$, then no guess will ever cause the machine to accept.

Composite Numbers

- A natural number $n \ge 2$ is called **composite** iff it has a factor other than 1 and n.
- Equivalently: there are two natural numbers $r \ge 2$ and $s \ge 2$ such that rs = n.
- Let $\Sigma = \{1\}$ and consider the language $L = \{1^n \mid n \text{ is composite }\}$
- How might we design an NTM for *L*?

- We saw how to build a TM that checks for correct multiplication.
- Have our NTM
 - Nondeterministically guess two factors, then
 - **Deterministically** run the multiplication TM.

- We saw how to build a TM that checks for correct multiplication.
- Have our NTM
 - Nondeterministically guess two factors, then
 - **Deterministically** run the multiplication TM.

- We saw how to build a TM that checks for correct multiplication.
- Have our NTM
 - Nondeterministically guess two factors, then
 - **Deterministically** run the multiplication TM.

- We saw how to build a TM that checks for correct multiplication.
- Have our NTM
 - Nondeterministically guess two factors, then
 - **Deterministically** run the multiplication TM.

- We saw how to build a TM that checks for correct multiplication.
- Have our NTM
 - Nondeterministically guess two factors, then
 - **Deterministically** run the multiplication TM.

- We saw how to build a TM that checks for correct multiplication.
- Have our NTM
 - Nondeterministically guess two factors, then
 - **Deterministically** run the multiplication TM.

- We saw how to build a TM that checks for correct multiplication.
- Have our NTM
 - Nondeterministically guess two factors, then
 - **Deterministically** run the multiplication TM.

- We saw how to build a TM that checks for correct multiplication.
- Have our NTM
 - Nondeterministically guess two factors, then
 - **Deterministically** run the multiplication TM.

- We saw how to build a TM that checks for correct multiplication.
- Have our NTM
 - Nondeterministically guess two factors, then
 - **Deterministically** run the multiplication TM.

- We saw how to build a TM that checks for correct multiplication.
- Have our NTM
 - Nondeterministically guess two factors, then
 - **Deterministically** run the multiplication TM.

- We saw how to build a TM that checks for correct multiplication.
- Have our NTM
 - Nondeterministically guess two factors, then
 - **Deterministically** run the multiplication TM.

- We saw how to build a TM that checks for correct multiplication.
- Have our NTM
 - Nondeterministically guess two factors, then
 - **Deterministically** run the multiplication TM.

Designing NTMs

- Suppose that we have a CFG *G*.
- Can we build a TM M where $\mathcal{L}(M) = \mathcal{L}(G)$?
- **Idea:** Nondeterministically guess which productions ought to be applied.
 - Keep the original string on the input tape.
 - Keep guessing productions until no nonterminals remain.
 - Accept if the resulting string matches.

$$S \rightarrow SS \mid (S) \mid \epsilon$$

$$S \rightarrow SS \mid (S) \mid \epsilon$$

$$S \rightarrow SS \mid (S) \mid \epsilon$$

$$S \rightarrow SS \mid (S) \mid \epsilon$$

$$S \rightarrow SS \mid (S) \mid \epsilon$$

$$S \rightarrow SS \mid (S) \mid \epsilon$$

$$S \rightarrow SS \mid (S) \mid \epsilon$$

$$S \rightarrow SS \mid (S) \mid \epsilon$$

$$S \rightarrow SS \mid (S) \mid \epsilon$$

$$S \rightarrow SS \mid (S) \mid \epsilon$$

$$S \rightarrow SS \mid (S) \mid \epsilon$$

$$S \rightarrow SS \mid (S) \mid \epsilon$$

$$S \rightarrow SS \mid (S) \mid \epsilon$$

$$S \rightarrow SS \mid (S) \mid \epsilon$$

$$S \rightarrow SS \mid (S) \mid \epsilon$$

$$S \rightarrow SS \mid (S) \mid \epsilon$$

$$S \rightarrow SS \mid (S) \mid \epsilon$$

$$S \rightarrow SS \mid (S) \mid \epsilon$$

$$S \rightarrow SS \mid (S) \mid \epsilon$$

$$S \rightarrow SS \mid (S) \mid \epsilon$$

$$S \rightarrow SS \mid (S) \mid \epsilon$$

$$S \rightarrow SS \mid (S) \mid \epsilon$$

$$S \rightarrow SS \mid (S) \mid \epsilon$$

$$S \rightarrow SS \mid (S) \mid \epsilon$$

$$S \rightarrow SS \mid (S) \mid \epsilon$$

$$S \rightarrow SS \mid (S) \mid \epsilon$$

$$S \rightarrow SS \mid (S) \mid \epsilon$$

$$S \rightarrow SS \mid (S) \mid \epsilon$$

$$S \rightarrow SS \mid (S) \mid \epsilon$$

$$S \rightarrow SS \mid (S) \mid \epsilon$$

$$S \rightarrow SS \mid (S) \mid \epsilon$$

$$S \rightarrow SS \mid (S) \mid \epsilon$$

$$S \rightarrow SS \mid (S) \mid \epsilon$$

$$S \rightarrow SS \mid (S) \mid \epsilon$$

$$S \rightarrow SS \mid (S) \mid \epsilon$$

$$S \rightarrow SS \mid (S) \mid \epsilon$$

$$S \rightarrow SS \mid (S) \mid \epsilon$$

$$S \rightarrow SS \mid (S) \mid \epsilon$$

A Sketch of the Construction

$$S \rightarrow SS \mid (S) \mid \epsilon$$

A Sketch of the Construction

$$S \rightarrow SS \mid (S) \mid \epsilon$$

The Story So Far

- We now have two different models of solving search problems:
 - Build a worklist and explicitly step through all options.
 - Use a nondeterministic Turing machine.
- Are these two approaches equivalent?
- That is, are NTMs and DTMs equal in power?

Review: Tree Computation

- One interpretation of nondeterminism is as a tree computation.
- Each node in the tree has children corresponding to each possible choice for the computation.
- The computation accepts if any node in tree enters an accepting state.

- Idea: Simulate an NTM with a DTM by exhaustively searching the computation tree!
- Start at the root node and go layer by layer.
- If an accepting path is found, accept.
- If all paths reject, reject.
- Otherwise, keep looking.

- Idea: Simulate an NTM with a DTM by exhaustively searching the computation tree!
- Start at the root node and go layer by layer.
- If an accepting path is found, accept.
- If all paths reject, reject.
- Otherwise, keep looking.

- Idea: Simulate an NTM with a DTM by exhaustively searching the computation tree!
- Start at the root node and go layer by layer.
- If an accepting path is found, accept.
- If all paths reject, reject.
- Otherwise, keep looking.

- Idea: Simulate an NTM with a DTM by exhaustively searching the computation tree!
- Start at the root node and go layer by layer.
- If an accepting path is found, accept.
- If all paths reject, reject.
- Otherwise, keep looking.

- Idea: Simulate an NTM with a DTM by exhaustively searching the computation tree!
- Start at the root node and go layer by layer.
- If an accepting path is found, accept.
- If all paths reject, reject.
- Otherwise, keep looking.

- Idea: Simulate an NTM with a DTM by exhaustively searching the computation tree!
- Start at the root node and go layer by layer.
- If an accepting path is found, accept.
- If all paths reject, reject.
- Otherwise, keep looking.

- Idea: Simulate an NTM with a DTM by exhaustively searching the computation tree!
- Start at the root node and go layer by layer.
- If an accepting path is found, accept.
- If all paths reject, reject.
- Otherwise, keep looking.

- Idea: Simulate an NTM with a DTM by exhaustively searching the computation tree!
- Start at the root node and go layer by layer.
- If an accepting path is found, accept.
- If all paths reject, reject.
- Otherwise, keep looking.

- Idea: Simulate an NTM with a DTM by exhaustively searching the computation tree!
- Start at the root node and go layer by layer.
- If an accepting path is found, accept.
- If all paths reject, reject.
- Otherwise, keep looking.

- Idea: Simulate an NTM with a DTM by exhaustively searching the computation tree!
- Start at the root node and go layer by layer.
- If an accepting path is found, accept.
- If all paths reject, reject.
- Otherwise, keep looking.

- Idea: Simulate an NTM with a DTM by exhaustively searching the computation tree!
- Start at the root node and go layer by layer.
- If an accepting path is found, accept.
- If all paths reject, reject.
- Otherwise, keep looking.

- Idea: Simulate an NTM with a DTM by exhaustively searching the computation tree!
- Start at the root node and go layer by layer.
- If an accepting path is found, accept.
- If all paths reject, reject.
- Otherwise, keep looking.

Exploring the Tree

- Each node in this tree consists of one possible configuration that the NTM might be in at any time.
- What does this consist of?
 - The contents of the tape.
 - The position of the tape head.
 - The current state.

Exploring the Tree

Each node in this tree consists of one possible configuration that the NTM might be in at any time.

What does this consist of?

• The contents of the tape.

The position of the tape head.

The current state.

The tape is infinite!

Instantaneous Descriptions

- At any instant in time, only finitely many cells on the TM's tape may be non-blank.
- An instantaneous description (ID) of a Turing machine is a string representation of the TM's tape, state, and tape head location.
 - Only store the "interesting" part of the tape.
- There are many ways to encode an ID; we'll see one in a second.

0

• Start with the contents of the tape.

0 0 1 1 1

- Start with the contents of the tape.
- Trim "uninteresting" blank symbols from the ends of the tape (though remember blanks under the tape head).

- Start with the contents of the tape.
- Trim "uninteresting" blank symbols from the ends of the tape (though remember blanks under the tape head).

- Start with the contents of the tape.
- Trim "uninteresting" blank symbols from the ends of the tape (though remember blanks under the tape head).
- Insert a marker for the tape head position that encodes the current state.

- Start with the contents of the tape.
- Trim "uninteresting" blank symbols from the ends of the tape (though remember blanks under the tape head).
- Insert a marker for the tape head position that encodes the current state.

Building an ID

 $\mathbf{q}_{_{1}}$

- Start with the contents of the tape.
- Trim "uninteresting" blank symbols from the ends of the tape (though remember blanks under the tape head).
- Insert a marker for the tape head position that encodes the current state.

Building an ID

- Start with the contents of the tape.
- Trim "uninteresting" blank symbols from the ends of the tape (though remember blanks under the tape head).
- Insert a marker for the tape head position that encodes the current state.

0 0 q₁ 1 1 1

$$1 | 1 | \times | 1 | 1 | 1 | = | 1 | q_3 | 1 | 1 | 1 | 1$$

$$q_3$$
 $1 \mid 1 \mid \times \mid 1 \mid 1 \mid 1 \mid = \mid 1 \mid 1 \mid 1 \mid 1 \mid 1$

Theorem: For any TM M, it is possible to build a second TM Sim_M that, given a a tape containing an ID of M, simulates one step of M's computation.

Proof sketch:

Theorem: For any TM M, it is possible to build a second TM Sim_M that, given a a tape containing an ID of M, simulates one step of M's computation.

At this point, Sim_{M} can remember that it's seen state q_{3} . There are only finitely many possible states.

Theorem: For any TM M, it is possible to build a second TM Sim_M that, given a a tape containing an ID of M, simulates one step of M's computation.

 Sim_{M} now knows that M is in state q_{3} and reading 1.

Theorem: For any TM M, it is possible to build a second TM Sim_M that, given a a tape containing an ID of M, simulates one step of M's computation.

 Sim_{M} now knows that M is in state q_{3} and reading 1.

$$0 \rightarrow 1, L$$
 $1 \rightarrow 0, L$

Theorem: For any TM M, it is possible to build a second TM Sim_M that, given a a tape containing an ID of M, simulates one step of M's computation.

 Sim_{M} now knows that M is in state q_{3} and reading 1.

$$\begin{array}{c} \textbf{0} \rightarrow \textbf{1}, \, \textbf{L} \\ \textbf{1} \rightarrow \textbf{0}, \, \textbf{L} \end{array}$$

(Hypothetically, suppose that this is the state q_3 in the machine M)

Theorem: For any TM M, it is possible to build a second TM Sim_M that, given a a tape containing an ID of M, simulates one step of M's computation.

 Sim_{M} now knows that M is in state q_{3} and reading 1.

$$0 \rightarrow 1, L$$
 $1 \rightarrow 0, L$

Theorem: For any TM M, it is possible to build a second TM Sim_M that, given a a tape containing an ID of M, simulates one step of M's computation.

 Sim_{M} now knows that M is in state q_{3} and reading 1.

$$\begin{array}{c} 0 \rightarrow 1, \, L \\ 1 \rightarrow 0, \, L \end{array}$$

Theorem: For any TM M, it is possible to build a second TM Sim_M that, given a a tape containing an ID of M, simulates one step of M's computation.

 Sim_{M} now knows that M is in state q_{3} and reading 1.

$$0 \rightarrow 1, L$$

$$1 \rightarrow 0, L$$

Theorem: For any TM M, it is possible to build a second TM Sim_M that, given a a tape containing an ID of M, simulates one step of M's computation.

 Sim_{M} now knows that M is in state q_{3} and reading 1.

$$\begin{array}{c} 0 \rightarrow 1, \, L \\ 1 \rightarrow 0, \, L \end{array}$$

Theorem: For any TM M, it is possible to build a second TM Sim_M that, given a a tape containing an ID of M, simulates one step of M's computation.

 Sim_{M} now knows that M is in state q_{3} and reading 1.

 $0 \rightarrow 1, L$ $1 \rightarrow 0, L$

Theorem: For any TM M, it is possible to build a second TM Sim_M that, given a a tape containing an ID of M, simulates one step of M's computation.

 Sim_{M} now knows that M is in state q_{3} and reading 1.

$$0 \rightarrow 1, L$$
 $1 \rightarrow 0, L$

$$\begin{array}{l} \textbf{0} \rightarrow \textbf{1}, \, \textbf{L} \\ \textbf{1} \rightarrow \textbf{0}, \, \textbf{L} \end{array}$$

$$\begin{array}{l} \textbf{0} \rightarrow \textbf{1}, \, \textbf{L} \\ \textbf{1} \rightarrow \textbf{0}, \, \textbf{L} \end{array}$$

Theorem: For any TM M, it is possible to build a second TM Sim_M that, given a a tape containing an ID of M, simulates one step of M's computation.

$$0 \rightarrow 1, L$$

$$1 \rightarrow 0, L$$

Theorem: For any TM M, it is possible to build a second TM Sim_M that, given a a tape containing an ID of M, simulates one step of M's computation.

$$\begin{array}{c} 0 \rightarrow 1, \ L \\ 1 \rightarrow 0, \ L \end{array}$$

Theorem: For any TM M, it is possible to build a second TM Sim_M that, given a a tape containing an ID of M, simulates one step of M's computation.

$$\begin{array}{c} 0 \rightarrow 1, \ L \\ 1 \rightarrow 0, \ L \end{array}$$

Theorem: For any TM M, it is possible to build a second TM Sim_M that, given a a tape containing an ID of M, simulates one step of M's computation.

$$\begin{array}{c} \textbf{0} \rightarrow \textbf{1}, \ \textbf{L} \\ \textbf{1} \rightarrow \textbf{0}, \ \textbf{L} \end{array}$$

Theorem: For any TM M, it is possible to build a second TM Sim_M that, given a a tape containing an ID of M, simulates one step of M's computation.

$$\begin{array}{c} 0 \rightarrow 1, \ L \\ 1 \rightarrow 0, \ L \end{array}$$

Theorem: For any TM M, it is possible to build a second TM Sim_M that, given a a tape containing an ID of M, simulates one step of M's computation.

$$\begin{array}{c} 0 \rightarrow 1, \ L \\ 1 \rightarrow 0, \ L \end{array}$$

Manipulating IDs

Theorem: For any TM M, it is possible to build a second TM Sim_M that, given a a tape containing an ID of M, simulates one step of M's computation.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

(I'll omit the animation.)

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

- **Theorem:** For any NTM N, there exists a DTM D such that $\mathcal{L}(N) = \mathcal{L}(D)$.
- **Proof sketch:** D uses a worklist to exhaustively search over N's computation tree.

Schematically

Workspace

Worklist of IDs

To simulate the NTM N with a DTM D, we construct D as follows:

- On input w, D converts w into an initial ID for N starting on w.
- While *D* has not yet found an accepting state:
 - D finds the next ID for N from the worklist.
 - *D* copies this ID once for each possible transition.
 - *D* simulates one step of the computation for each of these IDs.
 - D copies these IDs to the back of the worklist.

Why All This Matters

- The equivalence of NTMs and DTMs should be absolutely astounding!
 - Nondeterministic TMs can magically guess a single correct option out of infinitely many options.
 - Deterministic TMs can just zip back and forth across the tape.
- This suggests that Turing machines are extremely powerful.

Effective Computation

- An effective method of computation is a form of computation with the following properties:
 - The computation consists of a set of steps.
 - There are fixed rules governing how one step leads to the next.
 - Any computation that yields an answer does so in finitely many steps.
 - Any computation that yields an answer always yields the correct answer.

The Church-Turing Thesis states that

Every effective method of computation is either equivalent to or weaker than a Turing machine.

This is not a mathematical fact – it's a hypothesis about the nature of computation.

Problems
Solvable by
Any Feasible
Computing
Machine

Next Time

- Encodings
 - How do we compute over arbitrary objects?
- The Universal Turing Machine
 - Can TMs compute over themselves?
- The Limits of Turing Machines
 - A language not in **RE**.