Is There Value in Reasoning about Security at the Architectural Level: a Comparative Evaluation

Ebrahim Khalaj

Radu Vanciu

Marwan Abi-Antoun

Department of Computer Science, Wayne State University

Finding security vulnerabilities that are closer to **architectural flaws** is harder

Architectural flaw

e.g., missing authentication

Coding bug

e.g., hard-coded password

Approaches make tradeoffs

- Sound and possibly less precise
- Analyst-assisted approach
- Special purpose constraints
- Separate extraction and constraints
- High-level representation of the system
- ...

- Unsound and possibly more precise
- More automated approach;
- General purpose constraints
- Combined extraction and constraints
- Code-oriented view of the system
- ...

Comparing approaches that find architectural flaws using a benchmark

- Some Common Weakness Enumerations (CWE) related to architectural flaws without corresponding testcases*
 - CWE-325: Missing Required Cryptographic Step (34 testcases)
 - CWE-311: Missing Encryption of Sensitive Data (no testcases)
- ScoriaBench
 - 43 hand-selected testcases
 - Android and Java applications
 - 13 different equivalence classes
- Selected test cases from
 - DroidBench(DB)
 - SAMATE Reference Dataset (SRD)
 - CERT rules examples
 - Designed by us (US)

^{*}in SRD Juliet Test Suite for Java

Exploitable FindFriend Service

- No transitive information flow from Contacts to Client
- Brute force attack

Scoria process [Vanciu and Abi-Antoun, ASE'2013]

Add and typecheck annotations

 Annotations express design intent

Extract high-level representation

 Sound over-approximation of runtime structure

Refine annotation

Write constraints to find vulnerabilities

Enriched representation with security properties and queries

Constraint:

Annotated code:

Main

SHARED

313-577-:

Results

- Compare in terms of precision and recall
 - Scoria
 - FlowDroid [Arzt et al., PLDI'2014]

Precision = (TP)/(TP+FP) Recall = (TP)/(TP+FN)

