REJECTION (KABUL-RED) METODU

- ▶ Dağılım fonksiyonun her zaman tersini bulabilmek mümkün değildir.
- ► Bu gibi durumlar için Rejection (Red) Metodu kullanılır.

RED METODU

- $a \le x < b$ ve $0 \le y \le c$
- f(x) yoğunluk fonksiyonudur.
- Kare kutuya hedef denir.
- Algoritma, hedef alanına rastgele düşen noktalar dizisini seçer.
- (x,y) koordinatları için;

$$x = a + (b - a)IND$$
$$y = c * RND$$

RED METODU ALGORITMA

[1]
$$x = a + (b - a) * RND$$

 $y = c * RND$
 $if y > f(x) then goto$ [1]
 $print x$

- ► A,D,E noktaları, hedefin içinde olmasına rağmen eğrinin dışında olduğundan önemsenmez.
- ▶ B ve C 'nin x_1 ve x_2 noktaları iki rastgele değişkendir.

ÖRNEK

▶ alfa = 4, beta = 3 ile Beta dağılımı için 100 rastgele değişken oluşturan red metodunu uygulayalım.

▶ Gerekli Beta fonksiyonu;

$$f(x) = \frac{\Gamma(7)}{\Gamma(4)\Gamma(3)} x^3 (1 - x)^2 = 60x^3 (1 - x)^2,$$
$$0 \le x \le 1$$

ÇERÇEVELERİ BULMA

- f(x) 'in alanı [0,1] olduğundan en iyi dikdörtgen x = 0 ve x = 1kenarlarına sahiptir.
- Tüm yoğunluk fonksiyonları non-negatif olduğundan en iyi dikdörtgen y=0 tabanına sahiptir.
- f(x) 'in maksimum değeri yüksekliktir.
- Optimum y aralığını bulabilmek için maksimum f(x) bulunmalıdır.

ightharpoonup Maksimum f(x) için;

$$f'(x) = 0$$

$$f'(x) = -120x^3(1-x) + 180x^2(1-x)^2$$

$$= 60x^2(1-x)(3-5x) = 0$$

Çözüm Kümesi: x = 0, x = 1, x = 0.6

 $\rightarrow x = 0 \ ve \ x = 1 \ uç \ noktalardır.$

$$f(0.6) = 60 * (0.6)^3 * (1 - 0.6)^2$$
$$= 2.0736$$

► Hedefin üst kenarı 2.0736'dır.

▶ Algoritma;

```
for i = 1 to 100
[1]x = RND
y = 2.1 * RND
if y > 60x^3 (1 - x)^2 then goto [1]
print x
next i
```

Algoritmanın geçerliliği Frekans Dağıtım Tablosu ile sınanabilir.

 \blacktriangleright $\Delta x = 0.05$ ve n = 1000 için değerler şu şekildedir.

FREKANS DAĞITIM TABLOSU

Frekans Dağıtım Tablosu		
Aralık	Deneysel frekans	Beklenilen frekans
[0.00, 0.05]	4	0.09
[0.05, 0.10]	5	1.15
[0.10, 0.15]	2	4.62
[0.15, 0.20]	5	11.07
[0.20 0.25]	23	20.64
[0.25 0.30]	38	32.87
[0.30 0.35]	46	46.95
[0.35 0.40]	64	61.78
[0.40 0.45]	69	76.06
[0.45 0.50]	86	88.49
[0.50 0.55]	110	97.77
[0.55 0.60]	111	102.81
[0.60 0.65]	94	102.77
[0.65 0.70]	81	97.22
[0.70 0.75]	78	86.26
[0.75 0.80]	85	70.55
[0.80 0.85]	44	51.54
[0.85 0.90]	52	31.49
[0.90 0.95]	5	13.62
[0.95 1.00]	6	2.23

RED YÖNTEMİ - NOTLAR

- ► Hedef bölgesinin dikdörtgen olmasına ihtiyaç yoktur. Amaç yoğunluk fonksiyonunu çevrelemektir.
- İterasyon sayısı arttıkça uygulama yavaşlayacaktır.
- Yoğunluk fonksiyonu karmaşıklaştıkça çevrelemek zorlaşır. Bu yüzden uç noktalar ihmal edilebilir.

CONVOLUTION (KONVOLÜSYON) METODU

- ▶ Bağımsız ve özdeş dağıtılan (independent andidentically disributed IID) $X_1, X_2, ... X_n$ rasgele değişkenlerinin toplamı olan X değişkenidir.
- ▶ Eğer X_i , i = 1, 2, ..., n için aynı yoğunluk fonksiyonu $f_i(x)$ 'e sahip ise X'in yoğunluk fonksiyonu f(x), n tabanlı yoğunluk fonksiyonlarının her biri için konvolüsyondur.

KONVOLÜSYON METODU

▶ Yani;

$$X = \sum_{k=1}^{n} X_k \text{ ise, } f(x) = f_1(x) \otimes f_2(x) \otimes ... \otimes f_n(x)$$

 $f_i(x)$, X'in yoğunluk fonksiyonu

⊗ , konvolüsyon ifadesidir.

KONVOLÜSYON METODU

$$f_1(x) \otimes f_2(x) = \int_{-\infty}^{\infty} f_1(\lambda) f_2(x - \lambda) d\lambda$$

- ▶ Rasgele değişken kendini, $X = \sum_{k=1}^{n} X_k n$ tane IID değişkenine ekleyerek bulur.
- ightharpoonup Konvolüsyon metodu için özel bir durum, m —Erlang dağıtımıdır.

m - ERLANG DAĞILIMI

- \blacktriangleright m adet IID exponansiyel rasgele değişkenin toplamı olarak tanımlanır.
- ▶ Bu dağılımın ortalaması;

$$\mu = E\left[\sum_{k=1}^{m} X_k\right] = \sum_{k=1}^{m} E[X_k] = \frac{m}{\lambda}.$$

 λ , exponansiyel dağılımın ortalamasının matematiksel karşıtıdır.

$$f(x,k,lambda) = \frac{lambda^k * x^{k-1} * e^{-lambda*x}}{(k-1)!}$$

$$F(x, k, lambda) = 1 - \sum_{k=0}^{n-1} \frac{1}{n!} * e^{-lambda * x} * (lambda * x)^{n}$$

m –ERLANG DAĞILIMI

 Rasgele bir m – Erlang değişkeni oluşturma algoritması;

$$x = 0$$

$$for k = 1 to m$$

$$x = x - \mu \ln(RND)/m$$

$$next k$$

$$print x$$

ÖRNEK

- ▶ Ortalaması 5 olan 1000 elemanlı 2 —Erlang dizisi oluşturalım ve Ki-Kare testi ile kıyaslama yapalım.
- ▶ Çözüm:
- 2 Erlang dağılımı $\alpha=2$ ile Gama dağılımının özel bir durumudur.

2-ERLANG DAĞILIM ÖRNEĞİ

▶ Ortalama 5 ise,

$$\frac{2}{\lambda} = 5$$
, $\lambda = 0.4$ olur.

2 – Erlang dağıtımı için yoğunluk fonksiyonu;

$$f(x) = \frac{4}{25}xe^{-2x/5}$$
 , $x \ge 0$ olur.

2-ERLANG ÖRNEĞİ

- ▶ Konvolüsyon metoduna göre, bir Erlang rasgele değişkeni $-2.5\ln(RND)$ ve $-2.5\ln(RND)$ 'nin toplamıdır.
- ► Cebirsel karşılığı –2.5ln(RND * RND)
- Sonuçların doğrulanması için gerekli n=1000 rasgele değişken frekans dağıtım tablosunda özetlemiştir.

2-ERLANG ÖRNEĞİ

► Her bir aralıktaki beklenilen frekans;

$$E_{[a,b]} = n \int_{a}^{b} f(x) dx = \frac{4n}{25} \int_{a}^{b} x e^{-2x/5} dx$$
$$= n \left[e^{-2x/5} \left(1 - \frac{2x}{5} \right) \right]_{a}^{b}$$
$$= n \left[\left(e^{-2b/5} - e^{-2/5} \right) + \frac{2}{5} \left(a e^{-2a/5} - b e^{-2/5} \right) \right].$$

FREKANS DAĞITIM TABLOSU

Frekans Dağıtım Tablosu

Aralık	Deneysel frekans	Beklenilen frekans
[0.0, 0.5]	8	17.52
[0.5, 1.0]	37	44.03
[1.0, 1.5]	56	60.35
[1.5, 2.0]	64	
[2.0, 2.5]	76	73.03
[2.5, 3.0]	64	
[3.0, 3.5]	77	70.79
[3.5, 4.0]	78	66.90
[4.0, 4.5]	64	62.09
[4.5, 5.0]	49	56.83
[5.0, 5.5]	53	51.44
[5.5, 6.0]	46	46.13
[6.0, 6.5]	50	41.06
[6.5, 7.0]	35	36.31
[7.0, 7.5]	27	31.93
[7.5, 8.0]	29	27.95
[8.0, 8.5]	21	24.36
[8.5, 9.0]	22	21.15
[9.0, 9.5]	9	18.31
[9.5, 10.0]	25	15.80
[10.0, 10.5]	21	13.60
[10.5, 11.0]		11.68
[11.0, 11.5]	4	10.01
[11.5, 12.0]		8.56
[12.0, 12.5]	3	7.30
[12.5, 13.0]	5	6.22
[13.0, 13.5]	10	5.30
[13.5, 14.0]	10	4.50
[14.0, 14.5]	5	3.82
[14.5, 15.0]	5	3.24

GENERATION OF ARBITRARY RANDOM VARIATES

KEYFİ RASGELE DEĞİŞKENLERİN ÜRETİMİ

KEYFİ RASGELE DEĞİŞKENLERİN ÜRETİMİ

- ► Net bir yoğunluk fonksiyonunun bulunamadığı durumlar için kullanılır.
- Bunun yerine deneysel değişkenler kümesi kullanılır.
- Sistem için, tarihsel kayıtlar tespit edilir ve bu değerle ile aynı istatistiklere sahip rasgele değişkenler oluşturulur.

KEYFİ RASGELE DEĞİŞKENLERİN ÜRETİMİ

- ► Süreç iki aşamalıdır.
- ▶ Artan şekilde sıralanmış $\{x_1, x_2, x_3, ..., x_n\}$ veri kümesini ele alalım.
- ▶ Birinci adım, parçalı-lineer ve sürekli yoğunluk fonksiyonunu elde etmektir.

$$F(x) = \begin{cases} 0, & x < x_1, \\ \frac{i-1}{n-1} + \frac{x - x_i}{(n-1)(x_{i+1} - x_i)}, & x_i \le x < x_{i+1}, i = 1, \dots n-1 \text{ için} \\ 1, & x \ge x_n \end{cases}$$

KEYFİ RASGELE DEĞİŞKENLERİN ÜRETİMİ

▶ İkinci adım, $F^{-1}(x)$ 'i bulmaktır.

F(x) lineer olduğundan;

$$X = F^{-1}(x)$$

ÖRNEK

▶ Bilinmeyen bir süreçten alınan sıralı rasgele değişkenler kümesi:

{1,2,4,5,7,7,9} olsun.

Dağılım fonksiyonunu ve tersini inceleyelim.

ÇÖZÜM

Problem 7 adet veri noktasına sahiptir.

$$x < 1$$
 için $f(x) = 0$,

$$1 \le x < 2$$
 için $i = 1$,

$$f(x) = \frac{1-1}{7-1} + \frac{(x-1)}{(7-1)(2-1)} = \frac{1}{6}(x-1)$$

$$2 \le x < 4$$
 için $i = 2$,

$$f(x) = \frac{2-1}{7-1} + \frac{(x-2)}{(7-1)(4-2)} = \frac{1}{12}x$$

ÖRNEK - ÇÖZÜMÜ

Benzer şekilde diğer değerler için,

$$f(x) = \begin{cases} 0, & x < 1, \\ \frac{1}{6}(x-1), & 1 \le x < 2, \\ \frac{1}{12}x, & 2 \le x < 4, \\ \frac{1}{6}(x-2), & 4 \le x < 5, \\ \frac{1}{12}(x+1), & 5 \le x < 7, \\ \frac{1}{12}(x+3), & 7 \le x < 9, \\ 1, & x \ge 9. \end{cases}$$

f(x) deneysel dağılım fonksiyonu

F^{-1} FONKSİYONLARI

$$F^{-1}(x) = \begin{cases} tanımsız, & x < 1, \\ 6x + 1, & 0 \le x < \frac{1}{6}, \\ 12x, & \frac{1}{6} \le x < \frac{1}{3}, \\ 6x + 2, & \frac{1}{3} \le x < \frac{1}{2}, \\ 12x + 1, & \frac{1}{2} \le x < \frac{2}{3}, \\ 7, & \frac{2}{3} \le x < \frac{5}{6}, \\ 12x - 3, & \frac{5}{6} \le x < 9, \\ tanımsız, & x > 1 \end{cases}$$

 $F^{-1}(x)$ deneysel dağıtım fonksiyonu

1000 veri için oluşturulmuş dağılım fonksiyonu

1000 rasgele değişken ve $\Delta x = 0.2$ için dağıtım fonksiyonu