Работа 3.3.4 Эффект Холла в полупроводниках

Шарапов Денис, Зелёный Николай, Б05-005

Содержание

1	Ан		 	 			2
2	Tec	еоретические сведения	 	 		. :	2
	2.1	Эффект Холла	 	 		. :	2
	2.2	Экспериментальная установка	 	 		. ;	3
	2.3	Формулы для расчёта	 	 			4
3	Xo	од работы	 	 		. !	5
4	Pes	езультаты измерений и обработка данных	 	 		. !	5
5	Вы	ывод	 	 		. '	7

1 Аннотация

Цель работы: измерение подвижности и концентрации носителей заряда в полупроводниках.

В работе используются: электромагнит с регулируемым источником питания; вольтметр; амперметр; миллиамперметр; милливеберметр или миллитесламетр; источник (1, 5 В), образцы легированного германия.

2 Теоретические сведения

2.1 Эффект Холла

Суть эффекта Холла состоит в следующем. Пусть через однородную пластину металла вдоль оси x течет ток I (рис. 1).

Рис. 1: Образец с током в магнитном поле

Если эту пластину поместить в магнитное поле, направленное по оси у, то между гранями А и Б появляется разность потенциалов.

В самом деле, на электрон (для простоты рассматриваем один тип носителей), движущийся со средней скоростью $\langle \vec{v} \rangle$ в электромагнитном поле, действует сила Лоренца:

$$\vec{F}_{\text{\tiny JI}} = -e\vec{E} - e\langle \vec{v} \rangle \times \vec{B},$$

где e — абсолютный заряд электрона, \vec{E} — напряженность электрического поля, \vec{B} — индукция магнитного поля.

В проекции на ось z получаем

$$F_B = e|\langle v_x \rangle|B.$$

Под действием этой силы электроны отклоняются к грани В, заряжая ее отрицательно. На грани А накапливаются нескомпенсированные положительные заряды. Это приводит к возникновению электрического поля E_z , направленного от А к Б, которое действует на электроны с силой $F_E=eE_z$. В установившемся режиме $F_E=F_B$, поэтому накопление электрических зарядов на боковых гранях пластины прекращается. Отсюда

$$E_z = |\langle v_x \rangle| B.$$

С этим полем связана разность потенциалов

$$U_{AB} = E_z l = |\langle v_x \rangle| B l.$$

В этом и состоит эффект Холла.

Замечая, что сила тока равна

$$I = ne|\langle v_x \rangle| la,$$

найдем ЭДС Холла:

$$\mathscr{E}_X = U_{AB} = \frac{IB}{nea} = R_X \frac{IB}{a}.$$

Константа $R_X = \frac{1}{ne}$ называется постоянной Холла.

В полупроводниках, когда вклад в проводимость обусловлен и электронами и дырками, выражение для постоянной Холла имеет более сложный вид:

$$R_X = \frac{nb_e^2 - pb_p^2}{e(nb_e + pb_p)^2},$$

где n и p — концентрации электронов и дырок, b_e b_p — их подвижности.

2.2 Экспериментальная установка.

Схема экспериментальной установки показана на рис. 2.

Рис. 2: Схема установки для исследования эффекта Холла в полупроводниках

В зазоре электромагнита (рис. 1a) создаётся постоянное магнитное поле, величину которого можно менять с помощью регуляторов источника питания. Ток измеряется амперметром источника питания A_1 . Разъем K_1 позволяет менять направление тока в обмотках электромагнита.

Образец из легированного германия, смонтированный в специальном держателе (рис. 1б), подключается к батарее. При замыкании ключа K_2 вдоль длинной стороны образца течет ток, величина которого регулируется реостатом R и измеряется милли-амперметром A_2 .

В образце с током, помещённом в зазор электромагнита, между контактами 3 и 4 возникает разность потенциалов U_{34} , которая измеряется с помощью цифрового вольтметра.

Контакты 3 и 4 вследствие неточности подпайки не всегда лежат на одной эквипотенциали, и тогда напряжение между ними связано не только с эффектом Холла, но и с омическим падением напряжения, вызванным протеканием основного тока через образец.

Измеряемая разность потенциалов при одном направлении магнитного поля равна сумме ЭДС Холла и омического падения напряжения, а при другом их разности. В этом случае ЭДС Холла \mathscr{E}_X может быть определена как половина алгебраической разности показаний вольтметра, полученных для двух противоположных направлений магнитного поля в зазоре.

Можно исключить влияние омического падения напряжения иначе, если при каждом токе через образец измерять напряжение между точками 3 и 4 в отсутствие магнитного поля. При фиксированном токе через образец это дополнительное к ЭДС Холла напряжение U_0 остается неизменным. От него следует (с учетом знака) отсчитывать величину ЭДС Холла:

$$\mathscr{E}_X = U_{34} \pm U_0.$$

При таком способе измерения нет необходимости проводить повторные измерения с противоположным направлением магнитного поля.

По знаку \mathscr{E}_X можно определить характер проводимости - электронный или дырочный. Для этого необходимо знать направление тока в образце и направление магнитного поля.

Измерив ток I в образце и напряжение U_{35} между контактами 3 и 5 в отсутствие магнитного поля, можно, зная параметры образца, рассчитать проводимость материала образца по формуле:

$$\sigma = \frac{IL_{35}}{U_{35}al}$$

где L_{35} — расстояние между контактами 3 и 5, a - толщина образца, l - его ширина.

2.3 Формулы для расчёта

• ЭДС Холла:

$$\mathscr{E}_{\mathbf{x}} = U_{34} - U_0; \tag{1}$$

• Постоянная Холла:

$$R_{\rm x} = -\frac{\mathscr{E}_{\rm x}}{B} \cdot \frac{a}{I};\tag{2}$$

• Концентрация носителей тока в образце:

$$n = \frac{1}{R_{\rm x}e} \tag{3}$$

• Удельная проводимость материала образца:

$$\sigma = \frac{IL_{35}}{U_{35}al} \tag{4}$$

• Подвижность носителей тока:

$$b = \frac{\sigma}{en} \tag{5}$$

3 Ход работы

- 1. Построим калибровочный график зависимости $B(I_M)$.
- 2. Рассчитаем ЭДС Холла и построим семейство характеристик $U_{\perp}(B)$ при разных значениях тока I через образец. Убедимся в линейности зависимостей и определим угловые коэффициенты $k=dU_{\perp}/dB$ полученных прямых.
- 3. Построим график k(I). Рассчитаем угловой коэффициент прямой и определим величину постоянной Холла.
- 4. Рассчитаем концентрацию n носителей тока в образце и удельную проводимость σ_0 материала.
- 5. Используя найденные значения концентрации и удельной проводимости, вычислим подвижность b носителей тока.

4 Результаты измерений и обработка данных

Исследуем зависимость потока Φ магнитного поля в зазоре электромагнита от тока через обмотки магнита. Данные занесём в таблицу 1.

По этим данным построим график зависимости $B = B(I_M)$.

Рис. 3: График зависимости $B(I_M)$

Таблица 1

I_M , A	Ф, мВБ	B, T
0,17	1	0,13
0,35	2	0,27
0,59	3,2	0,43
0,80	4,4	0,59
1,01	5,1	0,68
1,20	5,8	0,77
1,40	6,2	0,83
1,61	6,6	0,88

Рассчитаем ЭДС Холла (таблица 3) и построим семейство характеристик U(B) при разных значениях тока I (рисунок 4).

Рис. 4: График зависимости U(B)

Теперь по таблице 2 построим график зависимости k(I).

Рис. 5: График зависимости U(B)

Таблица 2

I_M , мА	K, м B/T
0,12	0,0769
0,3	0,1542
0,4	0,2040
0,5	0,2574
0,6	0,2917
0,7	0,3676
-1,34	-0,6548

Откуда можно найти постоянную Холла по формуле (2):

$$R_X \approx (7, 3 \pm 0, 2) \cdot 10^{-4} \frac{\text{M}^3}{\text{K}_{\pi}}.$$

Рассчитаем концентрацию n носителей тока в образце и удельную проводимость σ_0 материала по формулам (3) и (4):

$$n \approx (8, 11 \pm 0, 2) \cdot 10^{21} \frac{1}{\text{M}^3}$$

$$\sigma \approx 79.8 \pm 0.6 \ (\text{Om} \cdot \text{m})^{-1}.$$

Теперь по формуле (5) рассчитаем подвижность носителей:

$$b \approx 615 \pm 12 \frac{\text{cm}^2}{\text{B} \cdot \text{c}}.$$

Таблица 3

U_0 = 0,008 mB I_M = 0,12 mA		U_0 = 0,024 mB I_M = 0,3 mA		U_0 = 0,029 ME	В I_M = 0,4 мА	U_0 = 0,034 MI	= 0,034 mB I_M = 0,5 mA	
B, T	U ε, мВ	B, T	U ε мВ	B, T	U ε, мВ	B, T	Uε, мВ	
0,308	0,024	0,313	0,046	0,313	0,062	0,313	0,078	
0,424	0,036	0,434	0,074	0,445	0,101	0,445	0,127	
0,630	0,054	0,577	0,104	0,609	0,144	0,635	0,188	
0,836	0,065	0,789	0,132	0,810	0,177	0,789	0,218	
0,947	0,07	0,942	0,143	0,937	0,189	0,937	0,237	
k = 0,0769		k = 0	,1542	k = 0,2040		k = 0,2574		

U_0 = 0,039 MI	В I_M = 0,6 мА	U_0 = 0,045 м	В І_М = 0,7 мА	U_0 = 0,043 mB I_M = -1,34 mA		
В, Т	U ε, мВ	В, Т	U ε, мВ	B, T	U ε, мВ	
0,329	0,1	0,313	0,108	0,276	-0,175	
0,508	0,175	0,625	0,258	0,471	-0,352	
0,635	0,222	0,741	0,293	0,651	-0,491	
0,789	0,25	0,857	0,319	0,810	-0,563	
0,937	0,28	0,926	0,33	0,931	-0,601	
k = 0,2917		k = 0	,3676	k = -1	0,6548	

5 Вывод

В ходе лабораторной работы был исследовали эффект Холла в полупроводнике — германии. Удалось определить постоянную Холла, которая в данных диапазонах токов и значений магнитной индукции магнитного поля оказалась постоянной и равной $R_{\rm x}=730~{\rm cm}^3/{\rm K}$ л. После чего была вычислилена концентрация носителей тока в образце при том предположении, что количество носителей одного типа намного больше другого: $n=811\cdot 10^{19}~{\rm m}^3$.

Зная направление тока в проводнике, полярность вольтметра, направление тока в катушках, можно определить тип проводимости. В нашей работе тип проводимости в германии оказался дырочным.

Более того, была вычислена подвижность дырок в исследуемом образце германия: $b=615~{
m \frac{cm^2}{B\cdot c}}$. Полученный результат отличается от табличного для носителей в области собственной проводимости $b_0=1800~{
m \frac{cm^2}{B\cdot c}}$ (при температуре $T=293~{
m K}$), из чего можно сделать вывод, что образец содержит примеси.

Дополнительная ошибка измерений может быть связана с сильной зависимостью концентрации основных носителей токов от температуры. Действительно, для отрыва электрона от атома полупроводника и превращения его в электрон проводимости

необходимо сообщить ему некоторое колличество энергии. Естественно, что такая энергия поставляется тепловыми колебаниями атомов решетки. При выполнении работы температура образца была комнатной ($\approx 298~{\rm K}$) и как могла повыситься вследствие протекающего через образец постоянного тока.