Final exam of IT3191E in Course > semester 2022-2

- > Exam on August 04, 2023 > Exam Questions
- This section is a prerequisite. You must complete this 0 section in order to unlock additional content.

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25
26	27	28	29	30
31	32	33	34	35
36	37	38	39	40
41	42	43	44	45

Exam Questions

Final Exam due Aug 4, 2023 11:00 +07

Question #6fef7a

1.0 point possible (graded, results hidden)

Choose the most appropriate statement about overfitting

- A function is said to overfit relative to another one if it is less accurate in fitting known data, but more accurate in predicting unseen data
- A function is said to overfit relative to another one if it is less accurate in both fitting known data and predicting unseen data
- A function is said to overfit relative to another one if it is more accurate in fitting known data, but less accurate in predicting unseen data
- All the above mentioned statements are wrong

Submit

Question #2fbde8

1.0 point possible (graded, results hidden)

Where is the difference between supervised learning and unsupervised learning?

- From the way we train a model, supervised learning means that we have to provide detailed steps for a machine to learn
- From the training data for which supervised learning often requires labels/responses for the training phase
- From the aim of the algorithm, unsupervised learning often does not do prediction
- From the type of the output which is often a real number in supervised learning

Submit

Question #0c26ac

1.0 point possible (graded, results hidden)

Choose the most appropriate statement about underfitting

Δ learning algorithm is said to underfit relative to another one if it is less accurate in

fitting known data, but less accurate in predicting unseen data
Submit
Question #949251
1.0 point possible (graded, results hidden)
Knowledge discovery is
the process of creating knowledge from a dataset
the process of grouping objects in such a way that objects in the same group are more similar than those in the other groups
the process of converting data from one format (or structure) into a different type of format (or structure)
the process of finding in a dataset those data points that do not have values for the input variables
Submit
Question #b1b2bc
1.0 point possible (graded, results hidden)
Which of the following is a solution to cleaning noise data?
Binning
Outlier detection
Normalization
Aggregation
Submit
Question #c96b71
1.0 point possible (graded, results hidden)
Data discretization is
to convert discrete attributes to continuous ones
o to find outliers
to convert continuous attributes to discrete ones
o to scale up data

1.0 point possible (graded, results hidden)	
Data preprocessing may refer to	
deciding the data format and collecting data then	
process of transforming a raw dataset into a suitable form for analysis	
analyzing some main properties of the dataset	
Submit	
Question #5255e8	
1.0 point possible (graded, results hidden)	
What does "mode" mean?	
○ Variation	
Repeats the most	
Middle	
○ Average	
Submit	
Question #e22c51	
1.0 point possible (graded, results hidden)	
Normalization is the process of	
replacing missing values	
removing outliers	
transforming the data from one vector space to another one	
transforming the data to fall within a common range	
Submit	
Question #532c0d	
1.0 point possible (graded, results hidden)	
What is the role of an loss/error function in machine learning?	
No role in the machine learning process	
To measure the error in some senses and to often play as the objective function for training a model	
To measure the loss/error when making future prediction	

Question #e6aa98
1.0 point possible (graded, results hidden)
What is the wrong statement in the followings?
Model assessment and model selection in machine learning are independent
 Model selection is a must when comparing different machine learning models/methods
Model assessment often requires model selection as an internal step
Submit
Question #b2a230
1.0 point possible (graded, results hidden)
What is the drawback of Hold-out, but can be overcome by stratified sampling for evaluation?
The bad effect of randomness on evaluation results, due to small data size
The bad effect of the imbalance between classes
The bad effect of evaluation time
Submit
Question #89a2ec
1.0 point possible (graded, results hidden)
Is Hold-out a method for data pre-processing and understanding?
No, it is a strategy for model assessment and selection
Yes, of course
No, it is a method for training a model from a given dataset
Submit
Question #4f3e62
1.0 point possible (graded, results hidden)
Your work needs to build a classifier that can classify a given email to be spam or normal. However you can only collect a dataset with severe imbalance, that is, 99.9% of the emails are spam. What measure should you use to evaluate the performance of your classifier?
Accuracy

Submit
Question #9f0a3e
1.0 point possible (graded, results hidden)
The ordinary least squares (OLS) method learns a function $f(x)=w_0+w_1x_1+\cdots+w_nx_n$ from a dataset of size M by minimizing the loss $L=\sum_{i=1}^M \left(y_i-w_0-w_1x_{i1}-\cdots-w_nx_{in}\right)^2$. Consider the regularized loss $L_\lambda=\sum_{i=1}^M \left(y_i-w_0-w_1x_{i1}-\cdots-w_nx_{in}\right)^2+\lambda\ \mathbf{w}\ _2^2$, where λ is a non-negative constant. Which of the following statement is WRONG?
\bigcirc λ can preserve the goodness of the solution of OLS
\bigcirc λ can help to reducing overfitting
$\bigcirc \ \lambda$ plays as the central role on the generalization of $f(x)$
Submit
Question #a9c1ae
1.0 point possible (graded, results hidden)
What kind of models does the following regression model belong to? $f(x)=w_0+w_1x_1+\cdots+w_nx_n \text{ where } w_0,w_1,\ldots,w_n \text{ are the regression coefficients}$
A non-linear model
A non-parametric model
A linear model
Submit
Question #f4bde8
1.0 point possible (graded, results hidden)
The least-square linear regression method is applicable only in situations where the estimated regression line has a positive slope/bias.
○ No
○ Yes
Submit
Question #4193c1

1.0 point possible (graded, results hidden)

O They are the same
They are overlapping
It is inappropriate to say that they are overlapping or disjoint
They are disjoint
Submit
Question #c6c360
1.0 point possible (graded, results hidden)
What can happen when we use an extremely large number of nearest neighbors for prediction in k-NN?
The prediction will be prone to trivial
The prediction will tend to be more accurate
k-NN will tend to get under-fitting
k-NN will tend to get over-fitting
Submit
Question #96339b
Question # 503350
1.0 point possible (graded, results hidden)
1.0 point possible (graded, results hidden) Which of the following options is true about Nearest Neighbor-based Learning (k-NN)
1.0 point possible (graded, results hidden) Which of the following options is true about Nearest Neighbor-based Learning (k-NN) algorithm?
1.0 point possible (graded, results hidden) Which of the following options is true about Nearest Neighbor-based Learning (k-NN) algorithm? It can be used for both classification and regression
1.0 point possible (graded, results hidden) Which of the following options is true about Nearest Neighbor-based Learning (k-NN) algorithm? It can be used for both classification and regression It can be used for regression only
1.0 point possible (graded, results hidden) Which of the following options is true about Nearest Neighbor-based Learning (k-NN) algorithm? It can be used for both classification and regression It can be used for regression only It can be used for classification only
1.0 point possible (graded, results hidden) Which of the following options is true about Nearest Neighbor-based Learning (k-NN) algorithm? It can be used for both classification and regression It can be used for regression only
1.0 point possible (graded, results hidden) Which of the following options is true about Nearest Neighbor-based Learning (k-NN) algorithm? It can be used for both classification and regression It can be used for regression only It can be used for classification only
1.0 point possible (graded, results hidden) Which of the following options is true about Nearest Neighbor-based Learning (k-NN) algorithm? It can be used for both classification and regression It can be used for regression only It can be used for classification only Submit
1.0 point possible (graded, results hidden) Which of the following options is true about Nearest Neighbor-based Learning (k-NN) algorithm? It can be used for both classification and regression It can be used for regression only It can be used for classification only Submit
1.0 point possible (graded, results hidden) Which of the following options is true about Nearest Neighbor-based Learning (k-NN) algorithm? It can be used for both classification and regression It can be used for regression only It can be used for classification only Submit Question #0a4211 1.0 point possible (graded, results hidden)
1.0 point possible (graded, results hidden) Which of the following options is true about Nearest Neighbor-based Learning (k-NN) algorithm? It can be used for both classification and regression It can be used for regression only It can be used for classification only Submit Question #0a4211 1.0 point possible (graded, results hidden) Which of the following statements is true for Manhattan distance function?
1.0 point possible (graded, results hidden) Which of the following options is true about Nearest Neighbor-based Learning (k-NN) algorithm? It can be used for both classification and regression It can be used for regression only It can be used for classification only Submit Question #0a4211 1.0 point possible (graded, results hidden) Which of the following statements is true for Manhattan distance function? It can be used for continuous variables

1.0 point possible (graded, results hidden)
Which of the follow and Y(4,3)?	ving values is the Euclidean distance between the two data points X(1,7)
3	
<u> </u>	
9	
7	
<u> </u>	
Submit	
Question #bc8	473
1.0 point possible (graded, results hidden)
NN) algorithm? A. In case of very loneighborhood.	ving statements are true about the Nearest Neighbor-based Learning (k- arge value of k, it may include data points from other classes into the nall value of k, it is very sensitive to noise.
○ A and B	
○ A	
Neither A nor E	3
ОВ	
Submit	
Question #b9a	ede
10 point possible	graded, results hidden)

x_2	Class
1	c_2
1	c_1
2	c_2
-1	c_2
0	c_1
2	c_1
2	c_2
3	c_1
	1 1 2 -1 0 2

Using the Nearest Neighbor-based Learning (k-NN) algorithm and Euclidean distance and 7 nearest neighbors, which class does the data point ($x_1=1$, $x_2=1$) belong to? \bigcirc c_2 Undefined \bigcirc c_1 Submit Question #fc7a08 1.0 point possible (graded, results hidden) Maximum likelihood estimation can be used to make inference/prediction for a new example/observation explore the knowledge in a learned model estimate the maximum likelihood of a model learn a model from a given training dataset infer the correctness of a given model Submit Question #265f13 1.0 point possible (graded, results hidden) Posterior probability may refer to \bigcirc the knowledge of our model probability of an observation given a model/hypothesis probability of a model/hypothesis given observed data

1.0 point possible (graded, results hidden)
What are wrong about Maximum A Posteriori (MAP) estimation?
MAP needs not to know any knowledge about the parameters of a model
MAP needs to know some knowledge about the parameters of a model
MAP can estimate the full posterior distribution from a training dataset
MAP can be used to learn a model from a training dataset
MAP can make inference or prediction for new examples
Submit
Question #04be97
1.0 point possible (graded, results hidden)
The ID3 decision tree learning algorithm can be used for
regression
oboth classification and regression
neither classification nor regression
classification
Submit
Question #a23c56
1.0 point possible (graded, results hidden)
Decision tree is algorithm.
a supervised learning
oboth a supervised and an unsupervised learning
neither a supervised nor an unsupervised learning
an unsupervised learning
Submit
Question #27df10
Question #27df10 1.0 point possible (graded, results hidden)
1.0 point possible (graded, results hidden)

Submit
Question #dc8ba6
1.0 point possible (graded, results hidden)
Over-fitting in Decision Tree can be handled by
Reducing the number of input attributes
Reducing the number of training examples
Stopping the growing of the decision tree earlier
Translating to a set of rules and pruning the rules
Growing a complete tree
Submit
Question #16ad1d
1.0 point possible (graded, results hidden)
Which of the following are true about decision trees?
They can be used only for regression.
Pruning usually achieves better test accuracy than stopping early.
All data instances in each leaf must have the same class.
Submit
Question #3a5111
1.0 point possible (graded, results hidden)
Which of the following are true of neural networks?
Optimize a linear objective function
Can only be trained with stochastic gradient descent
Can use a mix of different activation functions
Can be made to perform well even when the number of parameters/weights is much greater than the number of data points
Submit
Question #c42a8e

1.0 point possible (graded, results hidden)

Submit
Question #54d929
1.0 point possible (graded, results hidden)
What is activation function?
It computes the output of the neural network
It computes weighted sum of a neuron's input signals
It computes the output of a neuron given its net input
It computes the output of a neuron given its input signals
Submit
Question #59f1a9
1.0 point possible (graded, results hidden)
A neural network can be seen as a non-linear function. Which is/are that function non-linear in?
igcup Both input signal x and weights
○ The weights
igcirc Input signal x
Outros to
Submit
Question #3aa9b4
1.0 point possible (graded, results hidden)
When training a neural network, we are trying to search for
A function in the function family, which maps from an example to an output
The best weights from the weight space
The hyper-parameter(s) that give best performance
An estimate of the testing error
A configuration of the network architecture
Submit

always converges to a clustering that minimizes the mean-square vector-representative distance
can converge to different final clustering, depending on initial choice of clusters' centroids
is sensitive to outliers
Submit
Question #ab0712
1.0 point possible (graded, results hidden)
A cluster is
A group of similar objects that differ significantly from other objects in a different group
 Symbolic representation of facts or ideas from which information can potentially be extracted
A group of similar or different objects
Operation on a database to transform or simplify data in order to prepare it for a machine learning or data mining algorithm
Submit
Question #8d15ad
1.0 point possible (graded, results hidden)
Consider the following dataset: $A=(0;2)$, $B=(0;1)$ and $C=(1;0)$. The K-means algorithm (with the Euclidean distance) is initialized with centers at A and B. Upon convergence, the two centers will be at
\bigcirc C and the midpoint of AB
\bigcirc A and B
\bigcirc A and C
\bigcirc A and the midpoint of BC
Submit
Question #41dbd9
1.0 point possible (graded, results hidden)
The K-means algorithm
requires the dimension of the feature space to be no bigger than the number of samples

THE HELL COST CONTROL OF CHARGE OF A STATE OF CHARGE OF
Submit
Question #31c916
1.0 point possible (graded, results hidden)
You want to cluster 7 points into 3 clusters using the k-Means clustering algorithm (with the Euclidean distance). Suppose after the first iteration, clusters C1, C2 and C3 contain the following two-dimensional points: C1 contains the 2 points {(0,6), (6,0)}, C2 contains the 3 points {(2,2), (4,4), (6,6)}, and C3 contains the 2 points {(5,5), (7,7)} What are the cluster centers computed for these 3 clusters?
C1: (3,3), C2: (4,4), C3: (6,6)
C1: (6,6), C2: (12,12), C3: (12,12)
C1: (0,0), C2: (48,48), C3: (35,35)
C1: (3,3), C2: (6,6), C3: (12,12)
Submit
Question #9bc723
1.0 point possible (graded, results hidden)
What does the Apriori algorithm do?
prune rules whose support are lower than minimum support (minsup)
prune rules whose sup are higher than minimum support (minsup)
generate rules whose confidence are lower than minimum confidence (minconf)
generate rules whose confidence are higher than minimum confidence (minconf)
Submit
Question #10315e
1.0 point possible (graded, results hidden)
What does it mean by support count of itemset A?
Total number of transactions not containing A
Number of transactions not containing A / Total number of transactions
Number of transactions containing A / Total number of transactions
Total number of transactions containing A

1.0 point possible (graded, results hidden)

Consider a set of 6 transactions as shown in the following table.

Transaction I	on ID Bought items
771	{A, B, E}