Theory Exam Section I 2013

- 1). $(x_1, y_1), ..., (x_n, y_n)$ and $F(x,y;\alpha) = \alpha(\alpha+1)(1+x+y)^{-(\alpha+2)}[x,y>0, \alpha>0]$ -joint density of x + y
 - @ Show MLE of d (a) has the following properties
 - () à exists, is unique, + has form g-1(In)

 An = 1 = 109 (1+xi+yi)
 - g-1 = inverse of some function g. - give form of g + show g-1 exists.
 - l(d) = log x + log (d+1) (d+2) log (1+x+y) ln(d) = \(\subsection \) [log x + log(d+1) - (d+2) log (1+x+y) = \(\subsection \) l(x:1y: ; \(\alpha \))
 - 2 ln(d) = n + n \(\frac{2}{2}\)\log(1+x.+y.') \(\frac{2}{2}\)+ 0
 - $\Rightarrow n\left(\frac{(\alpha+1)+\alpha}{\alpha(\alpha+1)}\right) = \sum_{i=1}^{n} \log(1+x_i'+y_i')$
 - $\Rightarrow \frac{2\alpha+1}{\alpha(\alpha+1)} = \frac{1}{n} \sum_{i=1}^{n} \log(1+x_i+y_i^*)$
 - $\Rightarrow g(a) = \frac{1}{N} \sum_{i=1}^{N} \log(1 + x_i + y_i)$
 - => 2 = g-1(\frac{1}{2} \subseteq \s
 - $g(\alpha) = \frac{2\alpha+1}{\alpha(\alpha+1)} = b$
 - \Rightarrow d = 2b + 1 recovering a source for b b(b+1) to get inverse egn.

$$\frac{1}{2} b(0+1) = 2b+1$$

$$\frac{1}{2} b^{2} a + b a = 2b+1$$

$$\frac{1}{2} b^{2} + (\alpha-2)b-1 = 0$$

$$\frac{1}{2} b = (\alpha-2) \pm \sqrt{(\alpha-2)^{2} - 4\alpha(-1)}$$

$$= (\alpha-2) \pm \sqrt{\alpha^{2} - 4\alpha + 4 + 4\alpha^{2}}$$

$$= (\alpha-2) \pm \sqrt{\alpha^{2} + 4} \Rightarrow \hat{\alpha} = (b-2) \pm \sqrt{b^{2} + 4}$$

$$\frac{1}{2} a \Rightarrow \hat{\alpha} = (b-2) \pm \sqrt{b^{2} + 4}$$

$$\frac{1}{2} a \Rightarrow \hat{\alpha} = (b-2) \pm \sqrt{b^{2} + 4}$$

$$\frac{1}{2} a \Rightarrow \hat{\alpha} = (b-2) \pm \sqrt{b^{2} + 4}$$

$$\frac{1}{2} a \Rightarrow \hat{\alpha} = (b-2) \pm \sqrt{b^{2} + 4}$$

$$\frac{1}{2} a \Rightarrow \hat{\alpha} = (b-2) \pm \sqrt{b^{2} + 4}$$

$$\frac{1}{2} a \Rightarrow \hat{\alpha} = (b-2) \pm \sqrt{b^{2} + 4}$$

$$\frac{1}{2} a \Rightarrow \hat{\alpha} = (b-2) \pm \sqrt{b^{2} + 4}$$

$$\frac{1}{2} a \Rightarrow \hat{\alpha} = (b-2) \pm \sqrt{b^{2} + 4}$$

$$\frac{1}{2} a \Rightarrow \hat{\alpha} = (b-2) \pm \sqrt{b^{2} + 4}$$

$$\frac{1}{2} a \Rightarrow \hat{\alpha} = (b-2) \pm \sqrt{b^{2} + 4}$$

$$\frac{1}{2} a \Rightarrow \hat{\alpha} = (b-2) \pm \sqrt{b^{2} + 4}$$

$$\frac{1}{2} a \Rightarrow \hat{\alpha} = (b-2) \pm \sqrt{b^{2} + 4}$$

$$\frac{1}{2} a \Rightarrow \hat{\alpha} = (b-2) \pm \sqrt{b^{2} + 4}$$

$$\frac{1}{2} a \Rightarrow \hat{\alpha} = (b-2) \pm \sqrt{b^{2} + 4}$$

$$\frac{1}{2} a \Rightarrow \hat{\alpha} = (b-2) \pm \sqrt{b^{2} + 4}$$

$$\frac{1}{2} a \Rightarrow \hat{\alpha} = (b-2) \pm \sqrt{b^{2} + 4}$$

$$\frac{1}{2} a \Rightarrow \hat{\alpha} = (b-2) \pm \sqrt{b^{2} + 4}$$

$$\frac{1}{2} a \Rightarrow \hat{\alpha} = (b-2) \pm \sqrt{b^{2} + 4}$$

$$\frac{1}{2} a \Rightarrow \hat{\alpha} = (b-2) \pm \sqrt{b^{2} + 4}$$

$$\frac{1}{2} a \Rightarrow \hat{\alpha} = (b-2) \pm \sqrt{b^{2} + 4}$$

$$\frac{1}{2} a \Rightarrow \hat{\alpha} = (b-2) \pm \sqrt{b^{2} + 4}$$

$$\frac{1}{2} a \Rightarrow \hat{\alpha} = (b-2) \pm \sqrt{b^{2} + 4}$$

$$\frac{1}{2} a \Rightarrow \hat{\alpha} = (b-2) \pm \sqrt{b^{2} + 4}$$

$$\frac{1}{2} a \Rightarrow \hat{\alpha} = (b-2) \pm \sqrt{b^{2} + 4}$$

$$\frac{1}{2} a \Rightarrow \hat{\alpha} = (b-2) \pm \sqrt{b^{2} + 4}$$

$$\frac{1}{2} a \Rightarrow \hat{\alpha} = (b-2) \pm \sqrt{b^{2} + 4}$$

$$\frac{1}{2} a \Rightarrow \hat{\alpha} = (b-2) \pm \sqrt{b^{2} + 4}$$

$$\frac{1}{2} a \Rightarrow \hat{\alpha} = (b-2) \pm \sqrt{b^{2} + 4}$$

$$\frac{1}{2} a \Rightarrow \hat{\alpha} = (b-2) \pm \sqrt{b^{2} + 4}$$

$$\frac{1}{2} a \Rightarrow \hat{\alpha} = (b-2) \pm \sqrt{b^{2} + 4}$$

$$\frac{1}{2} a \Rightarrow \hat{\alpha} = (b-2) \pm \sqrt{b^{2} + 4}$$

$$\frac{1}{2} a \Rightarrow \hat{\alpha} = (b-2) \pm \sqrt{b^{2} + 4}$$

$$\frac{1}{2} a \Rightarrow \hat{\alpha} = (b-2) \pm \sqrt{b^{2} + 4}$$

$$\frac{1}{2} a \Rightarrow \hat{\alpha} = (b-2) \pm \sqrt{b^{2} + 4}$$

$$\frac{1}{2} a \Rightarrow \hat{\alpha} = (b-2) \pm \sqrt{b^{2} + 4}$$

$$\frac{1}{2} a \Rightarrow \hat{\alpha} = (b-2) \pm \sqrt{b^{2} + 4}$$

$$\frac{1}{2} a \Rightarrow \hat{\alpha} = (b-2) \pm \sqrt{b^{2} + 4}$$

$$\frac{1}{2} a \Rightarrow \hat{\alpha} = (b-2) \pm \sqrt{b^{2} + 4}$$

$$\frac{1}{2} a \Rightarrow \hat{\alpha} = (b-2) \pm \sqrt{b^{2} + 4}$$

$$\frac{1}{2} a \Rightarrow \hat{\alpha} = (b-2) \pm \sqrt{b^{2} + 4}$$

$$\frac{1}{2} a \Rightarrow \hat{\alpha} = (b-2) \pm \sqrt{b^{2} + 4}$$

$$\frac{1}{2} a \Rightarrow \hat{\alpha} = (b-2) \pm \sqrt{b^{2} + 4}$$

$$\frac{1}{2} a \Rightarrow \hat{\alpha} = (b-2) \pm \sqrt{b^{2} + 4}$$

$$\frac{1}{2} a \Rightarrow \hat{$$

Uniqueness: $\frac{\partial^2 \ln(d)}{\partial t^2} = -n - n < 0$ for all d + n = 1/..., d0 $\frac{\partial^2 \ln(d)}{\partial t^2} = \frac{1}{4} \cdot \frac{1}{4}$

\overrightarrow{G} \overrightarrow{A} \overrightarrow{A}

Then by the continuous mapping than

By the strong law of large #5,

1 5 10g (14x0+y) 915.) E[10g(1+x0+y)]

 $E[\log(1+x'+y')] = \int_{0}^{\infty} \int_{0}^{\infty} \alpha(\alpha+1) \log(1+x+y) (1+x+y)^{-(\alpha+2)} dxdy$ $u = \log(1+x+y)^{\alpha+1}$

 $dx = \log(1 + x + y)^{\alpha + 1}$ $dx = \frac{1}{(1 + x + y)^{\alpha + 1}} (1 + x + y)^{\alpha}$ $(1 + x + y)^{\alpha + 1}$

 $\begin{cases} Z = \log(1+x+y) \\ W = x \end{cases}$ $\Rightarrow \begin{cases} X = W \\ Y = e^{Z} - 1 - W \end{cases}$

 $f(z_1\omega)(z_1\omega) = f_{x,y}(x=\omega, y=e^2-1-\omega)|J|$ $J = |\partial x/\partial z| |\partial x/\partial \omega| = |O| |J| = -e^2$ $|\partial y/\partial z| |\partial y/\partial \omega| |e^2-1|$

```
f_{2,\omega}(z,\omega) = \alpha(\alpha+1)(\sqrt{+}\omega+e^{2}-\sqrt{-}\omega)^{-(\alpha+2)}(e^{2})
= \alpha(\alpha+1)e^{2(-(\alpha+2)+1)}, -\alpha-2+1 = -\alpha-1 = -(\alpha+1)
= \alpha(\alpha+1)\exp(-2(\alpha+1))
      fz(+) = ( fz, w(7, w) dw
       = ( d(d+1) exp(-Z(d+1))dw
              Y=e2-1-W = w=e2-1-Y
           log(1+x+y) = 2 \implies e^2 = 1+x+y

\implies x+y = e^2-1
             → max(x) = x+y (fy=0) = e=-1
             = range of w: 0 to et-1
      = (et-1 d(d+1)exp(-z(d+1))dw
        = d(d+1) exp(- = (d+1)) (e2-1)
         = d(a+1) [exp(- Zx) - exp(-Z(a+1))]
      E[2] =(E[103(1+x+y)])
       = ( = = x(a+1)[exp(-fa)-exp(-f(a+1))]df
               Note: == 105(1+x+y)
                    if x=y=0 = = = log(1)=0
                     if x + y -100 =) = = 109(00) -100
d_{z} = du/a \quad du = zdz \quad dv = (a+1)z \quad dz = v/(a+1)
d_{z} = du/a \quad du = zdz \quad dv = (a+1)dz \quad dz = dv/(1+a)
```

$$= \int_{0}^{\infty} u(\alpha+1) \exp(-u) du - \int_{0}^{\infty} v d \exp(-v) dv$$

$$= (\alpha+1)!! - (\alpha)!!$$

$$= (\alpha+1)(\alpha+1) - \alpha^{2}$$

$$= (\alpha+1)(\alpha+1) - \alpha^{2}$$

$$= (\alpha+1) + 2\alpha + 2 - \alpha^{2}$$

$$= (\alpha+1)$$

$$= 2\alpha + 2$$

$$= (\alpha+1)$$

$$= 3(\alpha)$$

By the continuous mapping thm

= g-1 (\frac{1}{n} \subseteq \tilde{\gamma} \langle (1+x'+y')) \frac{\alpha_1 \subseteq \langle}{2} \alpha_0 \rangle

$$Q_{3} = Q_{0} + (70+1)_{3}$$

$$Q_{3} = Q_{0} + (70+1)_{3}$$

$$Q_{3} = Q_{0} + (70+1)_{3}$$

By Mc = theory, M (2-20) D) N(0, I-1(a))

$$T(\lambda) = E(-\frac{\partial^2}{\partial \lambda^2} l(\lambda))$$

$$= E\left[-\frac{\partial}{\partial \lambda} \left(\frac{1}{\lambda} + \frac{1}{\lambda^2} - \log(1 + x_1 + y_2)\right)\right]$$

$$= E\left[-\frac{1}{\lambda^2} \left(\frac{1}{\lambda^2} + \frac{1}{\lambda^2}\right)\right]$$

$$= \left(\frac{1}{\lambda^2} + \frac{1}{\lambda^2} + \frac{1}{\lambda^2}\right)$$

$$= (\frac{1}{\lambda^2} + \frac{1}{\lambda^2})$$

$$= (\frac{1}{\lambda^2} + \frac{1}{\lambda^2})$$

$$= (\frac{1}{\lambda^2} + \frac{1}{\lambda^2})$$

$$= (\frac{1}{\lambda^2} + \frac{1}{\lambda^2})$$

$$= |T^{-1}(20)| = |do^{2}(do+1)^{2}$$

$$(do+1)^{2} + do^{2}$$

(6)
$$x_{1,m}, x_{1n}$$
 known x fixed $x_{1,m}, x_{1n}$ indep semple $x_{1,m}, x_{1n}$ independent of $x_{1,m}, x_{1n}$ in part (a) Show dist of $x_{1,m}, x_{1,m}$ in part (a) $x_{1,m},$

(c) (Setting of (b))

Verify the MCE \tilde{a}_n has following properties:

(d) \tilde{a}_n exists, unique, or can be expressed in closed form $\ln(\alpha|x) = \sum_{i=1}^{n} \left[\log(\alpha+i) - \log(1+x) - (\alpha+2)\log(1+3/4x)\right]$ $\frac{\partial}{\partial a} \ln(\alpha|x) = \frac{\partial}{\partial a+1} - \frac{\partial}{\partial a} \log(1+3/4x) = 0$ $\frac{\partial}{\partial a} \ln(\alpha|x) = \frac{\partial}{\partial a+1} \log(1+3/4x) = 0$ $\frac{\partial}{\partial a} \ln(\alpha|x) = \frac{\partial}{\partial a+1} \log(1+3/4x) = 0$ $\frac{\partial}{\partial a} \ln(\alpha|x) = \frac{\partial}{\partial a+1} \log(1+3/4x) = 0$ $\frac{\partial}{\partial a} \ln(\alpha|x) = \frac{\partial}{\partial a+1} \log(1+3/4x) = 0$ $\frac{\partial}{\partial a} \ln(\alpha|x) = \frac{\partial}{\partial a+1} \log(1+3/4x) = 0$ $\frac{\partial}{\partial a} \ln(\alpha|x) = \frac{\partial}{\partial a+1} \log(1+3/4x) = 0$ $\frac{\partial}{\partial a} \ln(\alpha|x) = \frac{\partial}{\partial a+1} \log(1+3/4x) = 0$ $\frac{\partial}{\partial a} \ln(\alpha|x) = \frac{\partial}{\partial a+1} \log(1+3/4x) = 0$ $\frac{\partial}{\partial a} \ln(\alpha|x) = \frac{\partial}{\partial a+1} \log(1+3/4x) = 0$ $\frac{\partial}{\partial a} \ln(\alpha|x) = \frac{\partial}{\partial a+1} \log(1+3/4x) = 0$ $\frac{\partial}{\partial a} \ln(\alpha|x) = \frac{\partial}{\partial a+1} \log(1+3/4x) = 0$ $\frac{\partial}{\partial a+1} \ln(\alpha|x) = \frac{\partial}{\partial a+1} \log(1+3/4x) = 0$ $\frac{\partial}{\partial a+1} \ln(\alpha|x) = \frac{\partial}{\partial a+1} \log(1+3/4x) = 0$ $\frac{\partial}{\partial a+1} \ln(\alpha|x) = \frac{\partial}{\partial a+1} \log(1+3/4x) = 0$ $\frac{\partial}{\partial a+1} \ln(\alpha|x) = \frac{\partial}{\partial a+1} \log(1+3/4x) = 0$ $\frac{\partial}{\partial a+1} \ln(\alpha|x) = \frac{\partial}{\partial a+1} \log(1+3/4x) = 0$ $\frac{\partial}{\partial a+1} \ln(\alpha|x) = \frac{\partial}{\partial a+1} \log(1+3/4x) = 0$ $\frac{\partial}{\partial a+1} \ln(\alpha|x) = \frac{\partial}{\partial a+1} \log(1+3/4x) = 0$ $\frac{\partial}{\partial a+1} \ln(\alpha|x) = 0$

Uniqueness: $\frac{\partial^2 \ln(a|x)}{\partial a^2} = -n < 0 + a + n$ $\frac{\partial^2 \ln(a|x)}{\partial a^2} = \frac{(a+1)^2}{a^2}$ $\frac{\partial^2 \ln(a|x)}{\partial a^2} = \frac{\partial^2 \ln(a|x)}{\partial$ (i) Show 2, 9.5 90 If we can show in ais. => (ûn) -1 a.s. a+1 by continuous mapping thm (ûn >0 +x1y) A 201.5) a By the strong law of large #s, 1 5 log (1+xi+yi) = E[log(1+xi+yo)] - Expectation wit Yil Xi dist fz,w(z)=fx,y(x=w, y=ez-1-w) 1] $= (d+1)(1+x)^{-1}(1+x+y)^{-(d+2)}|_{J}|_{X=W, Y=e^{2}-1-W}$ $= (d+1)(1+w)^{-1}(e^{2})^{-(d+2)}e^{2}$ $= (a+i)(1+w)^{\alpha+1} \exp(-2(a+i))$ $f_{z(z)} = \int_{z}^{e^{z}-1} f_{z,w}(z,w) dz$ = (d+1)exp(-Z(d+1))(e2-1(1+w)d+1)dw

Ef log (14
$$\sqrt[3]{4x}$$
) given x:

$$\int_{0}^{\infty} \frac{(a+1)}{1+x} \log_{1}(1+\sqrt[3]{4x}) \left(1+\frac{1}{4x}\right)^{-(a+2)} dy$$

$$U = \log_{1}(1+\sqrt[3]{4x})$$

$$\Rightarrow e^{M} = 1 + \sqrt[3]{4x}$$

$$= \frac{1}{1+\sqrt[3]{4x}} \left(\frac{1}{1+x}\right)^{-(a+2)} dy$$

$$= \frac{1}{1+\sqrt[3]{4x}} dy \Rightarrow e^{M}(1+x) dy = d$$

By MCE theory,

$$\sqrt{n}(\vec{a}-\alpha_0) \stackrel{d}{\to} N(0, I^{-1}(\alpha))$$

$$I(a) = E \left[-\frac{\partial^2}{\partial a^2} l(a|x) \right]$$

$$-\left(\alpha+1\right)^{2}$$

@ Asymptotic relative efficiency and in to an:

 $= (dot1)^{2} \left(\frac{do^{3} + (do+1)^{2}}{do^{2}(dot1)^{2}} \right)$

 $= do^{2} + (do+1)^{2}$ $= 1 + (1 + 1/do)^{2}$

=) In has greater asymptotic var =) In is more efficient (smaller asymptotic var).

@ Suppose XIIII Xn 20 N (MIOZ)

Note: random sample = iid

03 = 8m2 -00 < m < 00, 870

&, M both unknown, M + O

Using part @, derive a confidence set for & w/ confidence wefficient 1-d by inverting the acceptance region of the likelihood ratio test for testing Ho: 8=80 US. HA: 8 = 80

 $F(X) = \frac{1}{11} \frac{1}{12m(X_{1}x_{2})} \left(\frac{2}{2} \frac{x_{1}x_{2}}{x_{2}} \right)$

 $\log f(x) = \sum_{i=1}^{n} \left[-\frac{1}{2} \log 2\pi - \frac{1}{2} \log x^2 - \frac{1}{2} \log x^2 - \frac{1}{2} (x^2 - x^2)^2 \right]$

= - 1 /0 34 - 1 /03 / - 1 / 1 / 5 (x1-11)2

@ MLE under general case:

 $\frac{\partial}{\partial x} \log f(x) = -\frac{n}{2} \left(\frac{1}{x}\right) - \frac{1}{2} \left(\frac{1}{x^2}\right) \left(\frac{1}{x^2}\right) \sum_{i=1}^{\infty} (x_i - x_i)^2 \stackrel{\text{set}}{=} 0$

= -U8+T EB (x1-m)3 = 0

JN3 -) 1 5/2 (x,-n) = 8

Find MLE of u (û) and $\delta = 1 \sum_{i=1}^{n} (x_i - x_i)^2$

```
\frac{\partial}{\partial n} \log f(x) = -\frac{n}{N} - \frac{1}{N} \left( \sum_{i=1}^{N} (x_i - n_i)^2 \right) \right) \right) \right)}
=> -NM2+T [ S:3(x:-m)2+ m S:2(x:-m) =0
 => -NM2+ 1 [E:E:Xi3-2ME:EXi+ NM2+ME:EXi-NM2]=0
  3-UW3+TE(3/X1,3-1) E(3/X1) = 0
  => -NM2 X + 513 x13 - M 513 x1 = 0
 > M2(-NX) +M(-E:AX) + EAX: = 0
     = -(-E:5/x) = J(E:5/x)2-4(-NX)(E:5/x)
    M = \sum_{i=1}^{n} x_i \pm \sqrt{(\sum_{i=1}^{n} x_i)^2 + 4n8\sum_{i=1}^{n} x_i^2}
```

-2n80

(from work in part @ O, but plug in

reject to when NKK

$$M, G^2 = \int_{0}^{2} \frac{1}{2} (x_i - \mu)^2$$

302 = 1 E (xi-40)2

$$-2\log N = -2 \left[-\frac{1}{2} \log G^2 - \frac{1}{2} \frac{1}{62} \sum_{i=1}^{2} (x_i - u_i)^2 + \right]$$

$$- \left(-\frac{1}{2} \log G^2 - \frac{1}{2} \frac{1}{62} \sum_{i=1}^{2} (x_i - u_i)^2 \right)$$

$$= \log G^2 + 1 \sum_{i=1}^{2} (x_i - u_i)^2 = \log G^2 - 1 \sum_{i=1}^{2} (x_i - x_i)^2$$

$$= \log G^2 + 1 \sum_{i=1}^{2} (x_i - u_i)^2 = \log G^2 - 1 \sum_{i=1}^{2} (x_i - x_i)^2$$

$$= \log \left(\frac{\sum_{i=1}^{\infty} (x_i - x_i)^2}{\sum_{i=1}^{\infty} (x_i - \bar{x})^2} \right)$$

$$= \log \left(\frac{\sum_{i=1}^{\infty} (x_i - \overline{x})^2 + n(x_i - \overline{x})^2}{\sum_{i=1}^{\infty} (x_i - \overline{x})^2} \right)$$

=
$$\log(1 + n(M-\bar{x})^2)$$

 $\sum_{i=1}^{\infty} (x_i - \bar{x})^2$

$$\left\{M: \log\left(1+\frac{n(m-x)^{2}}{\sum_{i}\sum_{i}(x_{i}-\bar{x})^{2}}\right) \leq \chi^{2}(1,1-\alpha)\right\}$$

$$W_{n} = \frac{(\hat{M} - M_{0})^{T} I_{n}(\hat{M})(\hat{M} - M_{0})}{(\hat{R} - M_{0})^{T} I_{n}(\hat{M})(\hat{M} - M_{0})} \xrightarrow{d} \chi^{2}(1)$$

$$= (\hat{R} - \hat{Q} - \hat{R} + \hat{Q} - \hat{Q})^{T} (\hat{R} - \hat{Q} - \hat{Q} - \hat{Q}) \xrightarrow{d} \chi^{2}(1)$$

$$\hat{R} = [10] \hat{Q} = [M]$$

$$[\alpha^{2}]$$

i = x like before (MLF under general case)

$$\frac{\partial}{\partial n} l(x) = -\frac{1}{2} \frac{\partial}{\partial x} \left(\frac{1}{2} \left(\frac{1$$

$$\frac{\partial^2}{\partial n \partial \sigma^2} \ln(x) = \left(\frac{-1}{\sigma^2}\right) \frac{\hat{\Sigma}}{\hat{\Sigma}} (x_i - n_i)$$

$$= (X - M_0)^2 \left(\frac{M}{6^2}\right)$$

$$= (X - M_0)^2 \left(\frac{M}{2^2}\right)$$

1-2 level CR:

$$\left\{ u: (\overline{x} - u)^2 \left(\frac{n}{\sqrt{\Sigma_i \Sigma_i} (x_i - \overline{x})^2} \right) \leq \chi^2(1, 1 - 2) \right\}$$

- Could rearrange if time

$$Se_n = \hat{\ell}(\tilde{\omega}, \tilde{\sigma}^2)^T I_n^{-1}(\tilde{\omega}, \tilde{\sigma}^2) \hat{\ell}(\tilde{\omega}, \tilde{\sigma}^2)$$

$$\frac{1}{2} \ln(x) = -n \cdot 1 - 1 \left(-1 \cdot \sum_{i=1}^{n} (x_i - u_i)^2\right)$$

$$\frac{\partial^2 \left(\sigma_2 \right)^2}{\partial (\sigma_2)^2} = -\frac{1}{\mu(-1)} \frac{1}{1} + \frac{1}{1} \left(-\frac{\chi}{\chi} \right) \frac{\sum_{i=1}^{\infty} \left(\chi_i - \mu_i \right)^2}{\sum_{i=1}^{\infty} \left(\chi_i - \mu_i \right)^2}$$

 $\frac{1}{1} \int_{1}^{\infty} \int_{1}^{\infty} \frac{1}{1} \int_{1}^{\infty}$

 $\frac{\hat{l}(m, \tilde{\sigma}^2)^T \operatorname{In}(m, \tilde{\sigma}^2)^{-1} \hat{l}(m, \tilde{\sigma}^2)}{= \left(\frac{L}{\tilde{\sigma}^2} \sum_{i=1}^{2} (x_i - m)\right)^2 \left(\frac{\tilde{\sigma}^2}{n}\right)}$ $= \left(\sum_{i=1}^{2} (x_i - m)\right)^2$ $= \frac{m(\sum_{i=1}^{2} (x_i - m))^2}{\sum_{i=1}^{2} (x_i - m)^2}$

1-d level CR:

(M: M(\(\Si\Si\(\xi\)^2 \in \x^2(1, 1-2)\)

Are these sets always intervals? - LRT & World test I -d level CR's can easily be made into intervals - Score test I-2 CR would be difficult to convert into a CI & Should just be lest as a region. Weld? $(x - x)_{3} \Rightarrow x_{3}(1) + (x - x)_{3} = x - x = 0 x_{3}(1) - x_{3}$ $(x - x)_{3} \Rightarrow x_{3}(1) + (x - x)_{3} = x_{3}(1) - x_{3}$ $(x - x)_{3} \Rightarrow x_{3}(1) + (x - x)_{3} = x_{3}(1) - x_{3}$ $(x - x)_{3} \Rightarrow x_{3}(1) + (x - x)_{3} = x_{3}(1) - x_{3}$ () x - (5/50) √x2(1/1-2) ≤ 2 5 X+(5/50)/X2(11-2)

(a)
$$X_{1,...}X_{N}$$
 iid $E(X_{1}) = M_{1}$

Therested in CI for $\Theta = M/G$

By Multhanate CLT,

$$\left(\frac{1}{N}\sum_{i}\sum_{i}X_{i}^{-1}\right) - \left(\frac{1}{N}(X_{1})\right) \xrightarrow{d} N\left(Q, \left(\frac{1}{N}(X_{1})X_{1}^{-2}\right)\right)$$

$$\left(\frac{1}{N}\sum_{i}\sum_{i}X_{i}^{-2}\right) - \left(\frac{1}{N}(X_{1})X_{1}^{-2}\right) \xrightarrow{d} N\left(Q, \left(\frac{1}{N}(X_{1})X_{1}^{-2}\right)\right)$$

$$E[X_{1}] = M = A$$

$$E[X_{1}] = M = A$$

$$E[X_{1}] = V_{0}(X_{1}) + \left(\frac{1}{N}(X_{1})\right)^{2}$$

$$= G^{2} + M^{2} = B$$

Cov $(X_{1}, X_{1}^{-2}) = E(X_{1}^{-2}) - E(X_{1}^{-2})E(X_{1}^{-2})$

$$= X$$

$$Var $(X_{1}^{-2}) = E(X_{1}^{-2}) - (E(X_{1}^{-2}))^{2}$

$$= E(X_{1}^{-2}) - (G^{2} + M^{2})^{2}$$

$$= S$$
Since Y^{+1} moment is finite,

$$\Rightarrow E(X_{1}^{-1}) + E(X_{1}^{-2}) + F_{1}^{-1} + P_{2}^{-1}$$
Since Y^{+1} moment is finite,

$$\Rightarrow E(X_{1}^{-1}) + E(X_{1}^{-2}) + F_{1}^{-1} + P_{2}^{-1}$$

$$\Rightarrow Cov (X_{1}, X_{1}^{-2}) + F_{1}^{-1} + P_{2}^{-1}$$

$$\Rightarrow Cov (X_{1}, X_{2}^{-2}) + F_{2}^{-1}$$

$$\Rightarrow Cov (X_{1$$$$

$$\frac{d}{dA}g(A_{1}B) = (1) \frac{1}{\sqrt{B-A^{2}}} + A(-\frac{\pi}{2})(B-A^{2})^{-3/2}(-3A)$$

$$= \frac{1}{\sqrt{B-A^{2}}} + \frac{A^{2}}{(B-A^{2})^{3/2}} \Big|_{A=M}, B=\sigma^{2}+M^{2}$$

$$= \frac{1}{\sigma} + \frac{M^{2}}{\sigma^{3}}$$

$$= \frac{1}{\sigma} + \frac{M^{2}}{\sigma^{3}}$$

$$= \frac{1}{\sigma} + \frac{M^{2}}{\sigma^{3}}$$

$$= -\frac{1}{\sigma} + \frac{A}{\sigma^{3}} + \frac{1}{\sigma^{3}} + \frac{1}{\sigma^{3}}$$

$$N(0, [1+u^2, -u][62 \times 3][76+u^2/3])$$

where
$$S = E(xi^3) - \mu(\sigma^2 + \mu^2)^2$$

$$S = E(xi^4) - (\sigma^2 + \mu^2)^2$$

Then I-d level CI:

 $\sqrt{N}(Y-O) \stackrel{d}{\to} N(O, \alpha)$ (Y defined below, $O=\frac{M}{O^2}$) $\frac{d}{d}$ $\frac{d}{d}$ $\frac{d}{d}$ $\frac{d}{d}$ $\frac{d}{d}$ $\frac{d}{d}$

Replace $M + \sigma^2$ terms in α with a consistent estimate for $M + \sigma^2$ $- \hat{M} = \bar{X} = MUE \text{ of } M$ $- \hat{\sigma}^2 = \frac{1}{h} \sum_{i=1}^{n} (x_i - \bar{x})^2 = MUE \text{ of } \sigma^2$

Denote d = 2

Then by Slutsky's thm, since $\hat{L} + \hat{\sigma}^2$ consistent for α by

the continuous mapping thm ($\alpha = h(L_1, o^2)$) $(= \hat{L} + \hat{L} + \hat{L})$ $(= \hat{L} + \hat{L} + \hat{L})$ $(= \hat{L} + \hat{L})$

=> 1-d level CI for O: (asymptotic)

(Y-Jam =1-d/2 = M = Y+Jam =1-d/2)

where Y = \frac{1}{2}\frac{1}{2

3). r-sided win

side i w/ prob Pi such that E, E, Pi=1
Positive integers N, N2, ..., Nr (given)

Ni = # flips required until side i was appeared for the ni time

N=min (Ni)

- N = # of flips required until some side i has
appeared no times

- a) Derive the marginal dut of Ni i=1,...,r
 - Total = No
 - in No-1 flips, have ni-1 successes
 - in Nith Ship, have success

F(Ni) = (Ni-1) Poni (1-Pi) Ni-ni

(B) Prove whether or not N: = indep. RV's.
A & B indep = P(A)P(B) = P(A)B)

Find joint dist of Ni - is this TP(Ni)?

Logie approach:

Suppose who that in the first N. flips, there are n, successes in choosing side 1.

If this is the case, then in the first Ni flips, there can be at most Ni-ni successes in any other side.

Suppose for side 2 our given no > the resulting	N-0,	
Is n2> N1-N1, then N, # N2 even if all other	~	
flips in first N1 flips are on side 2.		_
Since there is this restriction of Ni not inde	φ.	-
		-
		_
		-
		-
		_
		_
		-
		_
		-
	,	-

Now suppose flips performed at random times

generated by a Poisson process w/ rate $\chi=1$ Ti = time until side i has appeared for the notime

<math>i=1,...,r T = min(Ti)

@ Marginal dist of Ti

If flips occur by Pois $(\chi=1)$ process, then time between f(x): $ps \sim Exp(\chi=1) = 1$ $f(t_j-t_{j-1}) = \frac{1}{\chi} \exp(-(t_j-t_{j-1})/\chi)$ $= \exp(-(t_j-t_{j-1}))$

Let Dj = tj-tj-1 j=1,..., r => f(Dj) = exp(-Dj)

 $T_{k} = \sum_{j=1}^{K} (t_{j} - t_{j-1}) = \sum_{j=1}^{K} D_{j}$

=> if Dj ~ Exp(1) = Gamma (1,1)

=> TK ~ Gamma (K, 1)

Til Ni ~ Gamma (Ni, 1)

 $P(T_{c}, N_{c}) = P(T_{c}|N_{c}) P(N_{c})$ $\Rightarrow P(T_{c}) = \int P(T_{c}|N_{c}) P(N_{c}) dN_{c}$

```
P(Tiln) P(Ni)
          = \frac{1}{\Gamma(N_i)} \frac{1}{\exp(-T_i)} \cdot \frac{1}{(N_i-1)} \cdot \frac{1}{\Pr(N_i)} \cdot \frac{1}{(N_i-1)} \cdot \frac{1}{\Pr(N_i)} \cdot \frac{1}{(N_i-1)} \cdot
                                                                                                  = T: N:-1 exp(-T:) P:0: (1-P0) No-Ni
                                                                                                                                                                               (n=1)! (N=-n)!
     2 Lini-1 6x6 (-Li) 620: (1-6:) Wi-NI
     = Tino-1 exp(-Ti) Pino & Tino-no (1-p) Mi-no
           = Tini-1 exp(-Ti) Pini exp(Ti(1-pi))
                                    (Note: \sum_{x=0}^{\infty} \frac{x^x}{x!} = \exp(x))
         = Pine Tine exp(-TiPe)
  = Tin Gamma (ni, /pi)
@ Ti indep?
```