カニ模倣型ロボットの開発に向けた細径空圧筋の改良

Improvement of Thin Pneumatic Muscles for Development of Crab-type Robot

研究者 濱口 紘生 指導教員 中西 大輔 Keywords: McKibben Pneumatic Actuater, Exoskeleton, Biomimetic Robot

1. 緒言

代表的な人工筋肉として, 圧縮空気を印加すること により骨格筋のように収縮する McKibben 型人工筋肉 (MPA) があげられる. 従来は直径が数十 mm 程度のも のが多かったが、近年では数 mm 程度の MPA が注目 を集めている1). その細さを生かして小さい筋肉、ある いは集積によって複雑な筋肉を表現可能なことから、筋 骨格系ロボットに盛んに用いられている 1). 一方で, 甲 殻類のような外骨格を有する生物模倣ロボットについて は、アクチュエータの配置が困難なことからワイヤ駆動 や関節にサーボモータを配置したものが主流であった2). 細径 MPA であれば骨格内部にアクチュエータを配置す ることが可能であり、実際の生物に近い構成でロボット を作成することが可能である. そこで本研究では外骨格 生物のうち甲殻類の蟹をモデルに、実際の蟹の筋肉と関 節の構造を参考にして細径 MPA を使用した蟹の歩脚ロ ボットの開発に取り組む.

2. MPA および羽状筋について

従来の MPA と細径 MPA を図1に示す. 通常の MPA と比べて細径 MPA は細くて軽量のため限られた狭いス ペースでへの配置と集積が可能である. また複数の細径 MPA を集積することで羽状筋のような複雑な筋肉の再 現が可能である. 先行研究 3) で開発されたロボットに 搭載された細径 MPA を用いた羽状筋を図 2 に示す.羽 状筋とは、羽のように筋繊維が斜めに並び、筋全体が広 い面で収縮する筋肉である. 先行研究 3) ではこの羽状 筋を用いてカニの歩脚を模した外骨格型ロボットを開発 し、脚の開閉動作の実現に成功した. しかし羽状筋の構 成方法や細径 MPA の収縮性能などを原因として、実際 の蟹と比べて可動域が狭いという課題が残された. また 羽状筋は多数の細径 MPA から構成されるが、その制作 過程の煩雑さも課題であった. 本研究ではまずこれらの 課題を解決することで、より実際の蟹に近い構造や可動 域を有するロボットの開発を目指す.

3. 細径 MPA および羽状筋構造の改良

まず細径 MPA の制作方法の改良を行った. 先行研究 では図3上のように、MPAを構成するシリコンチュー ブとスリーブを端部で糸で縛り接着剤で固定する方式を 採用していたが、糸の締結に時間と練度を必要とするこ とや、度々空気漏れを生じるという難点があった. そこ で本研究では端部部品を改良し、ゴムと端部を接着剤で、 スリーブと端部を O リングと接着剤でそれぞれ固定す る方式へと変更した (図3下). これにより細径 MPA に

図 1: MPA の外径

図 2: 蟹模倣ロボット 3)

図 3: 細径 MPA

図 4: 細径 MPA 端部部品

練度が不要となり、作成時間も大幅に短縮された.

続いて細径 MPA の収縮性能向上に取り組んだ. 先行 研究において開発された細径 MPA においては、折癖の 影響からスリーブが多少膨らんだ状態で作成されていた ため, 圧力印加時の収縮量が減少してしまっていた. 本 研究ではメッシュの中に直径 2mm の丸棒を差し込んで ホットプレートで温めた. これによりスリーブの初期直 径を 2mm にまで小さくすることに成功し、収縮量を向 上させることができた.

最後に、細径 MPA を羽状配置するために端部の部品 の構造を改良した. 羽状筋は収縮した際に筋肉の角度が 変化するが、先行研究(図2)では根元の角度が固定され ており、腱の引き込みの妨げになっていた. そこで本研 究では図4の細径 MPA の端部の部品を作成した. 図4 の赤い斜線部の穴を回転の軸にして細径 MPA の角度を 自由に変化することができ、これにより細径 MPA 動作 時に端部の部品に干渉しないことが確認できた.

4. 結言

本稿では、外骨格生物模倣ロボットの開発をするにあ たって課題となる細径 MPA の作成方法と固定方法につ いて改良を行った. 今後は羽状筋の構築、およびカニの 歩脚を模したロボットの開発を行い、可動域などについ て検証を行う.

参考文献

- 脇本修一,細径 McKibben 型人工筋の開発と用途開拓,計測と
- 制御, 57 巻, 11 号, pp.812-815, 2018 CHEN, Xi, et al. Study on the Design and Experimental Research on a Bionic Crab Robot with Amphibious Multi-Modal Movement, Journal of Marine Science and Engineering, 10, 12, p.1804, 2022 3) 中西大輔,長谷川侑大,浪花啓右,杉本靖博,細径空圧筋を用い
- イロス神, RDI (17) パンマキョネ, 地口エエルルと イント 大羽状筋および外骨格生物模倣ロボットの開発, ロボティクス・メカトロニクス講演会 2024, 2A1-L08, 2024.