The pollination trade-off

Supplementary information

Fernando Cagua, Hugo Marrero, Jason Tylianakis, Daniel Stouffer

Figure S1: Distribution of stigmatic pollen density plotted in (A) a linear scale, and (B) a logarithmic scale (zero values not shown).

Figure S2: Distribution of the difference on stigmatic pollen density between open and closed flowers for one of the bootstrap replicates used in the model sets. When (A) using directly the gain in pollen density and (B) when pollen density is log transormed prior to calculating the gain.

Figure S3: Distribution of plant abundance as (A) raw counts of floral units across communities, and (B) after applying a data transformation in which the counts have been log transformed and scaled to have a mean of zero and a standard deviation of one.

Table S1: Results of testing the alternative hypothesis that the conspecific pollen density in open flowers is greater than the density in bagged flowers. Tests were performed at the species level (across communities).

plant species	difference	statistic	p value
Aloysia gratissima	31.6666177	9.0	0.0382613
Baccharis pingraea	2.9999531	156.0	0.0000308
$Carduus\ a can thoides$	0.0000386	1077.0	0.4953884
$Cirsium\ vulgare$	-109.7728636	82.0	0.9969050
$Condalia\ microphylla$	-8.9004993	20.0	0.7499117
$Cypella\ herbertii$	2428.2500000	20.0	0.0151515
Descurania argentina	21.5000000	61.0	0.0599151
Diplotaxis tenuifolia	198.7500000	217.0	0.1661275
$Dipsacus\ sp.$	6.7177679	28.5	0.0085552
$Gaillardia\ megapotamica$	-411.7500000	9.0	0.9999504
$Glandularia\ hookeriana$	-68.5833333	5.0	0.8690476
$Hirschfeldia\ incana$	29.5000848	9510.0	0.1014593
$Lycium\ chilense$	394.1666667	24.0	0.1969697
$Mentha\ pulegium$	1.0104167	34.0	0.2205997
$Nierembergia\ aristata$	769.7500000	70.0	0.0000514
$Nothoscordum\ euosimum$	199.4166667	44.0	0.0247752
$Physalis\ viscosa$	1074.0000000	15.0	0.0178571
$Prosopidastrum\ globosum$	3.3096971	20.0	0.2051239
$Senecio\ pulcher$	-25.0000000	6.0	0.7142857
$Sisyrinchium\ platense$	-22.2500000	49.0	0.6918285
$Solanum\ sisymbrii folium$	2195.0000000	3.0	0.2500000
$Sphaeralcea\ crispa$	5.7000000	15.0	0.0178571
$Stemodia\ lanceolata$	1261.0000000	25.0	0.0039683
$The lesperma\ megapotamicum$	-23.3333333	4.0	0.6500000
$Turnera\ sidioides$	151.0000205	327.0	0.0000224
$Verbena\ intermedia$	87.0833333	367.0	0.0062368

Figure S4: Relationship between the model's independent variables calculated at the community level and at the study-wide level.

Table S2: Results of testing the alternative hypothesis that the conspecific pollen density in open flowers is greater than the density in bagged flowers. Tests were performed at the community level. Only species present in more than one community are shown.

plant species	community	difference	statistic	p value
Carduus acanthoides Carduus acanthoides Carduus acanthoides Carduus acanthoides Carduus acanthoides	Anquilóo - agricultural - 2	33.000	15.0	0.018
	San Claudio - agricultural - 1	11.500	96.0	0.253
	San Claudio - agricultural - 2	-13.175	52.0	0.990
	San Claudio - reserve - 1	-1.885	19.5	0.828
	San Claudio - reserve - 2	8.751	38.5	0.123
Cirsium vulgare	Anquilóo - agricultural - 2	-38.250	12.0	0.732
Cirsium vulgare	Las Chilcas - reserve - 1	-36.750	12.0	0.732
Cirsium vulgare	San Claudio - reserve - 1	-138.833	0.0	1.000
Hirschfeldia incana	Anquilóo - agricultural - 1	100.500	263.0	0.033
Hirschfeldia incana	Anquilóo - agricultural - 2	677.000	17.0	0.024
Hirschfeldia incana	San Claudio - agricultural - 1	-176.789	165.0	0.993
Hirschfeldia incana	San Claudio - agricultural - 2	51.000	658.5	0.126
Hirschfeldia incana	San Claudio - reserve - 1	-23.250	266.0	0.691
Hirschfeldia incana	San Claudio - reserve - 2	143.000	435.5	0.016
Mentha pulegium Mentha pulegium	Las Chilcas - agricultural - 2 Las Chilcas - reserve - 1	1.667 1.667	13.0 6.0	$0.182 \\ 0.350$
Nierembergia aristata	Anquilóo - agricultural - 1	721.000	1.0	$0.500 \\ 0.050 \\ 0.012$
Nierembergia aristata	Anquilóo - reserve - 1	846.000	9.0	
Nierembergia aristata	Anquilóo - reserve - 2	881.500	18.0	
Nothoscordum euosimum Nothoscordum euosimum	Las Chilcas - agricultural - 1 Las Chilcas - agricultural - 2	$305.750 \\ 38.500$	18.0 5.0	$0.012 \\ 0.500$
Sisyrinchium platense Sisyrinchium platense	Las Chilcas - agricultural - 1 Las Chilcas - reserve - 1	54.000 -134.000	$25.0 \\ 0.0$	$0.155 \\ 1.000$
Turnera sidioides	Anquilóo - agricultural - 1	135.250	113.0	0.001
Turnera sidioides	Anquilóo - agricultural - 2	3.000	9.0	0.036
Turnera sidioides	Anquilóo - reserve - 2	153.206	18.0	0.014
Verbena intermedia	Anquilóo - reserve - 2	35.000	13.0	0.190
Verbena intermedia	San Claudio - agricultural - 2	18.750	65.0	0.104
Verbena intermedia	San Claudio - reserve - 2	213.250	70.0	0.000

Table S3: Comparison of the different random structures we considered. The table shows median delta AIC values of 99 bootsrap resamples of the data. The 5th and 95th percentile are shown inside square brackets. Communities are defined by individual fragments but ignore the hierarchical arrangement of sampling sites.

pollen type	random structure	delta_AIC
conspecific	1 community / plant sp. 1 locality / land use / fragment / plant sp. 1 locality / land use / plant sp. 1 locality / plant sp. 1 plant sp.	0 [0, 4.9] 4 [3.3, 7.9] 4.8 [0, 13.5] 3.9 [0, 17.8] 7.8 [0, 25.9]
conspecific_abs	1 community / plant sp. 1 locality / land use / fragment / plant sp. 1 locality / land use / plant sp. 1 locality / plant sp. 1 plant sp.	14.8 [3.5, 25.1] 18.7 [7.5, 29.1] 8.1 [0, 16.5] 0 [0, 8.8] 28 [15, 41.5]
heterospecific	1 community / plant sp. 1 locality / land use / fragment / plant sp. 1 locality / land use / plant sp. 1 locality / plant sp. 1 plant sp.	0 [0, 7.9] 4 [4, 11.3] 5.8 [2.2, 12.8] 16 [5.2, 51.5] 12.7 [0, 44.2]
heterospecific_abs	1 community / plant sp. 1 locality / land use / fragment / plant sp. 1 locality / land use / plant sp. 1 locality / plant sp. 1 plant sp.	0 [0, 7.9] 4 [4, 11.3] 5.8 [2.2, 12.8] 16 [5.2, 51.5] 12.7 [0, 44.2]

Figure S5: Corelation between the explanatory variables included in the statistical models.

Table S4: Comparison of the different fixed structures we considered. The table shows median delta AIC values of 99 bootsrap resamples of the data. The 5th and 95th percentile are shown inside square brackets.

pollen type	fixed structure	delta_AIC
conspecific	~ share pollen + func. originality ~ abundance + share pollen + func. originality ~ share pollen + degree + func. originality ~ abundance + share pollen + degree + func. originality ~ abundance + share pollen ~ abundance + share pollen + degree ~ share pollen ~ share pollen + degree ~ abundance + func. originality ~ func. originality ~ degree + func. originality ~ abundance + degree + func. originality ~ abundance ~ abundance ~ abundance + degree ~ degree ~ degree ~ 1	0 [0 ,1.1] 0.3 [0 ,1.4] 1.2 [0.1 ,2.2] 1.8 [0.9 ,2.8] 20.2 [17.1 ,22.4] 21.8 [18.7 ,23.9] 94.4 [81.9 ,113.3] 95.6 [83.6 ,114.3] 160.1 [145.2 ,178] 159.6 [145.6 ,177.9] 160.5 [145.7 ,178.4] 161.7 [146.7 ,179.4] 188.2 [171.8 ,208] 189.5 [172.3 ,209] 331 [303.5 ,352] 332.3 [305.1 ,353.3]
conspecific_abs	~ abundance + share pollen + func. originality ~ share pollen + func. originality ~ abundance + share pollen + degree + func. originality ~ share pollen + degree + func. originality ~ abundance + share pollen ~ abundance + share pollen + degree ~ share pollen ~ share pollen + degree ~ abundance + func. originality ~ func. originality ~ degree + func. originality ~ abundance + degree + func. originality ~ abundance ~ abundance ~ abundance + degree ~ degree ~ degree ~ 1	0 [0,0] 1.2 [0.3,2.1] 1.4 [1,1.7] 1.9 [1.3,2.8] 21.7 [15.5,28.9] 23.4 [17,30.6] 114.7 [84.6,142.5] 115.2 [85.2,143] 147.1 [122.9,169.3] 147.8 [122.7,169.7] 149.1 [124,170.9] 149 [124.8,171.2] 176.3 [148.8,203.1] 178.3 [150.7,204.9] 311.4 [272.8,346.4] 311.6 [273.3,347.5]
heterospecific	~ abundance + share pollen + func. originality ~ abundance + share pollen + degree + func. originality ~ share pollen + func. originality ~ share pollen + degree + func. originality ~ abundance + share pollen ~ abundance + share pollen + degree ~ share pollen ~ share pollen + degree ~ abundance + degree + func. originality ~ abundance + func. originality ~ func. originality ~ degree + func. originality ~ abundance + degree ~ abundance ~ abundance ~ 1 ~ degree	0 [0 ,0] 1.4 [0.8 ,1.9] 9.6 [6.9 ,11.8] 11.6 [8.9 ,13.7] 15.6 [13 ,18.8] 17.1 [14.4 ,20.2] 70 [63.6 ,76] 71.9 [65.6 ,77.9] 148.6 [129.1 ,170.5] 150.8 [130.7 ,172.8] 155.3 [135.4 ,178.2] 157.3 [137.4 ,180.2] 172.5 [148.6 ,195.8] 173.6 [150.4 ,197.5] 285.5 [266 ,313.5] 285 [267.2 ,314.5]
heterospecific_abs	~ abundance + share pollen + func. originality ~ abundance + share pollen + degree + func. originality ~ share pollen + func. originality ~ share pollen + degree + func. originality ~ abundance + share pollen ~ abundance + share pollen + degree ~ share pollen ~ share pollen + degree ~ abundance + degree + func. originality ~ abundance + func. originality ~ func. originality ~ degree + func. originality ~ abundance + degree ~ abundance ~ 1 ~ degree	0 [0 ,0] 1.4 [0.8 ,1.9] 9.6 [6.9 ,11.8] 11.6 [8.9 ,13.7] 15.6 [13 ,18.8] 17.1 [14.4 ,20.2] 70 [63.6 ,76] 71.9 [65.6 ,77.9] 148.6 [129.1 ,170.5] 150.8 [130.7 ,172.8] 155.3 [135.4 ,178.2] 157.3 [137.4 ,180.2] 172.5 [148.6 ,195.8] 173.6 [150.4 ,197.5] 285.5 [266 ,313.5] 285 [267.2 ,314.5]

Figure S6: Distribution of effect estimates for models of conspecific and heterospecific pollen density gain. Only results for the models with the most parsimonous fixed effects.

Α

В

Figure S7: (#fig:fig_effect_quant_qual)asd

term

Chapter 1

References