Fonctions convexes (rappels)

1 Définition

Définition 1.0.1.

Une fonction numérique, définie sur un intervalle I, est convexe sur I si et seulement si

$$\forall (x,y) \in I^2, \ \forall t \in [0,1], \ f(tx + (1-t)y) \le t f(x) + (1-t) f(y)$$

(f est concave sur I ssi -f est convexe sur I).

interprétation géométrique : position de la courbe relativement à ses cordes (voir graphe)

2 Caractérisation des fonctions convexes

Théorème 2.0.1.

Soit f une fonction à valeurs réelles définie sur un intervalle I d'intérieur $\stackrel{\circ}{(I)}$ non vide. Les propriétés suivantes sont équivalentes :

1. f est convexe sur I

2.
$$\forall (x, y, z) \in I^3, x < y < z \Longrightarrow \frac{f(y) - f(x)}{y - x} \leqslant \frac{f(z) - f(x)}{z - x} \leqslant \frac{f(y) - f(z)}{y - z}$$

3. $\forall a \in I$, la fonction h_a définie $sur\ I \setminus \{a\}$ par $h_a(x) = \frac{f(x) - f(a)}{x - a}$ est croissante

<u>Preuve</u>. $(1 \Longrightarrow 2 \Longrightarrow 3 \Longrightarrow 1)$

démonstration appuyée par le graphe : (voir programme de sup. .)

3 Convexité et dérivabilité

Théorème 3.0.2.

Soit f une fonction réelle, définie sur un intervalle I d'intérieur $\stackrel{\circ}{(I)}$ non vide.

Si f est convexe sur I, alors, en tout point a intérieur à I ($a \in \overset{\circ}{I}$), f admet un nombre dérivé à gauche et un nombre dérivé à droite.

 $\underline{\mathit{Preuve}}$. Utilisation du Théorème de "la limite monotone" : Soit $a \in \overset{\circ}{I}$ et $(\alpha,\beta) \in I^2$, tels que $\alpha < a < \beta$.

- 1. sur $[\alpha, a[$, l'application $h_a: x \longmapsto \frac{f(x) f(a)}{x a}$ est croissante, majorée par $\frac{f(\beta) f(a)}{\beta a}$ (très large) donc admet une limite en a. Ainsi f est dérivable à gauche en a, avec $f'_g(a) \leqslant \frac{f(\beta) f(a)}{\beta a}$
- 2. sur $]a,\beta]$, on a un même raisonnement (application croissante, minorée) Donc f est dérivable à droite en a, et de plus $f_d'(a) \geqslant \frac{f(\alpha) - f(a)}{\alpha - a}$
- 3. Comme les inégalités obtenues sont valables pour tout $a \in \overset{\circ}{I}$ et pour tout $(\alpha,\beta) \in I^2$ tel que $\alpha < a < \beta$, par passage à la limite sur l'une ou l'autre des inégalités obtenues, on en déduit (puisque $f'_g(a)$ et $f'_d(a)$ existent) que, pour tout $a \in \overset{\circ}{I}$, $f'_g(a) \leqslant f'_d(a)$.

Théorème 3.0.3. (Conséquence directe du précédent)

Une fonction réelle, convexe sur un intervalle, est continue sur l'intérieur de cet intervalle.

<u>Preuve</u>. Si $\frac{f(x) - f(a)}{x - a}$ a une limite finie en a^+ (resp. a^-) alors $f(x) - f(a) \xrightarrow[x \to a]{} 0$

4 Fonctions convexes de classe C^1, C^2

Théorème 4.0.4.

Soit f une fonction réelle, de classe C^1 sur l'intervalle I. f est convexe sur I si et seulement si f' est croissante sur I.

Preuve. (utilisation de la formule des accroissements finis)

1. Supposons f convexe sur I = [u, v]. En revenant à la preuve d'un théorème précédent, on a :

$$\forall (a,b) \in]u,v[^2,a < b \Longrightarrow f'(a) = f'_g(a) \leqslant \frac{f(b) - f(a)}{b-a} = \frac{f(a) - f(b)}{a-b} \leqslant f'_d(b) = f'(b)$$

2. réciproquement, par l'absurde : supposons f' croissante sur I et f non convexe sur I. Prenons x, y, z éléments de I tels que x < y < z et $\frac{f(y) - f(x)}{y - x} > \frac{f(y) - f(z)}{y - z}$.

Or, il existe
$$\beta$$
, $y < \beta < z$, tel que $\frac{f(y) - f(z)}{y - z} = f'(\beta)$
 α , $x < \alpha < y$, tel que $\frac{f(y) - f(x)}{y - x} = f'(\alpha)$.

On peut donc trouver α et β tels que $\alpha < \beta$ et $f'(\alpha) > f'(\beta)$, ce qui contredit la croissance de f'.

Théorème 4.0.5.

Soit f une fonction réelle, de classe C^2 sur l'intervalle I. f est convexe sur I si et seulement si f'' est positive (ou nulle) sur I.

Preuve. (conséquence immédiate du théorème précédent).

5 Convexité et barycentres

Théorème 5.0.6.

 $Une \ fonction \ f, \ r\'eelle, \ d\'efinie \ sur \ un \ intervalle \ I, \ est \ convexe \ sur \ I \ si \ et \ seulement \ si$

$$\forall n \in \mathbb{N}^*, \ \forall (x_1, x_2, \dots, x_n) \in I^n, \ \forall (\lambda_1, \lambda_2, \dots, \lambda_n) \in [0, 1]^n,$$

$$\sum_{k=1}^{n} \lambda_k = 1 \Longrightarrow f\left(\sum_{k=1}^{n} \lambda_k x_k\right) \leqslant \sum_{k=1}^{n} \lambda_k f(x_k)$$

Preuve. Par récurrence sur $n \dots$

Exemple 5.0.0.1. D'après la concavité et la monotonie de la fonction ln sur $]0, +\infty[$,

$$\forall n \in \mathbb{N}^*, \ \forall (x_1, x_2, \cdots, x_n) \in]0, +\infty[^n, \ \forall (\lambda_1, \lambda_2, \cdots, \lambda_n) \in [0, 1]^n$$

$$\sum_{k=1}^{n} \lambda_k = 1 \Longrightarrow \prod_{k=1}^{n} x_k^{\lambda_k} \leqslant \sum_{k=1}^{n} \lambda_k x_k$$

En particulier (avec $\lambda_1 = \lambda_2 = \cdots = \lambda_n = \frac{1}{n}$),

$$\forall (x_1, x_2, \cdots, x_n) \in]0, +\infty[^n , \underbrace{\sqrt[n]{x_1 x_2 \cdots x_n}}_{\text{moyenne géométrique}} \leqslant \underbrace{\frac{x_1 + x_2 + \cdots + x_n}{n}}_{\text{moyenne arithmétique}}$$

$$<$$
 \mathcal{FIN} $>$