6/1/24, 1:46 PM VC_NPC

Il problema VC è NP-completo

Sia G = (V, E) un grafo non orientato e sia $V' \subseteq V$;

V' è un vertex cover per G se ogni arco in E ha un estremo in V'.

Il problema $VERTEX\ COVER$ consiste nel decidere, dati un grafo G=(V,E) e un intero k, se G contiene un vertex cover di cardinalità $\leq k$. Il problema $VERTEX\ COVER\ (VC)$ pu'o essere formalizzato nella maniera seguente:

- $\mathcal{I}_{VC} = \{ \langle G = (V, E), k \rangle : G \text{ è un grafo non orientato e } k \text{ un intero positivo } \}.$
- $\mathcal{S}_{VC}(G,k) = \{ V' \subset V \}.$
- $\pi_{VC}(G,k,\mathcal{S}_{VC}(G,k)) = \exists V' \in \mathcal{S}_{VC}(G,k) : |V'| \leq k \land \forall (u,v) \in E[v \in V' \lor u \in V'].$

Un certificato per una istanza $x = \langle G = (V, E), k \rangle$ di $VERTEX\ COVER$ è un sottoinsieme V' dei nodi di G. Poichè è possibile verificare se un certificato V' soddisfa il predicato $\rho_{VC} = |V'| \leq k \land \forall (u, v) \in E[u \in V' \lor v \in V']$ in tempo O(|E||V|), questo prova che $VC \in \mathbf{NP}$

Per dimostrarne la completezza, mostriamo una riduzione polinomiale da 3SAT, ossia, una funzione $f:\mathcal{I}_{3SAT}\to\mathcal{I}_{VC}$, contenuta in \mathbf{FP} , tale che, per ogni $\phi\in\mathcal{I}_{3SAT}$, $\phi\in3SAT$ se e solo se $f(\phi)\in VC$.

Per individuare f utilizzeremo, una tecnica cui faremo spesso riferimento anche in seguito quando vogliamo ridurre un problema A ad un problema B: ad ogni struttura dell'istanza di A faremo corrispondere una struttura dell'istanza di B, in modo che strutture dello stesso genere presenti nell'istanza di A corrispondano a strutture dello stesso genere dell'istanza di B.

A tali strutture daremo il nome di gadget.

Le strutture che compongono un'istanza $\langle X,g \rangle$ di 3SAT sono di due tipi:

- Variabili
- Clausole

Trasformiamo ciascuna variabile in X in un arco (gadget variabile):

- Il gadget-variabile della variabile x_i è l'arco $(u_i, \neg u_i)$
- · gadget-variabile associati a variabili diverse non hanno nodi in comune

Scegliendo un nodo in ogni gadget-variabile otteniamo un VC di questa porzione del grafo che stiamo costruendo:

- Se in un gadget-variabile non scegliamo alcun nodo, non copriamo quell'arco!
- ullet Allora, un VC minimo di questa porzione di grafo ha cardinalità |X|
- ullet ossia, |X| nodi sono sufficienti, ma con meno di |X| nodi qualche arco rimane scoperto

Trasformiamo ciascuna clausola in g in un ciclo di 3 nodi – ossia, il

gadget-clausola è C_3 :

6/1/24, 1:46 PM VC NPC

- Il gadget-clausola della clausola c_j è la terna di archi $(v_{j1},v_{j2}),(v_{j2},v_{j3}),(v_{j3},v_{j1})$
- Gadget-clausola associati a clausole diverse non hanno nodi in comune
- Gadget-clausola e gadget-variabile non hanno nodi in comune

Scegliendo due nodi in ogni gadget-clausola otteniamo un VC di questa porzione del grafo che stiamo costruendo:

- Se in un gadget-clausola scegliamo meno di due nodi, non copriamo quel gadget!
- ullet Allora, un Vertex Cover minimo di questa porzione di grafo ha cardinalità 2|g|=2m
- ullet Ossia, 2m nodi sono sufficienti, ma con meno di 2m nodi qualche arco rimane scoperto

Ora dobbiamo collegare i gadget-clausola con i gadget-variabile. Per farlo utilizziamo il modo in cui sono composte le clausole: colleghiamo ciascun nodo in ciascun gadget-clausola al nodo-variabile che gli corrisponde (ad esempio, se $c_j=(x_1\vee \neg x_2\vee x_3)$ creiamo gli archi "**obliqui**" $(v_{j1},u_1),(v_{j2},\neg u_2),(v_{j3},u_3)$)

E così, abbiamo costruito il grafo G corrispondente a $\langle X, g \rangle$.

Per completare l'istanza $\langle G,k \rangle$ di VC corrispondente a $\langle X,g \rangle$ scegliamo k=|X|+2|g|=n+2m. Banalmente, costruire $\langle G,k \rangle$ da $\langle X,g \rangle$ richiede tempo polinomiale in $|\langle X,g \rangle|$.

Resta da mostrare che g è soddisfacibile se e soltanto se G ha un vertex cover di al più k=n+2m nodi.

Prima di procedere con questa dimostrazione, ricordiamo che, n nodi sono necessari per coprire gli archi di tutti i gadget-variabile e 2m nodi sono necessari per coprire gli archi di tutti i gadget-clausole perciò, almeno k=n+2m nodi sono necessari per coprire gli archi di G. Resta da far vedere che k=n+2m nodi sono sufficienti a coprire gli archi di G se e soltanto se g è soddisfacibile

Se q è soddisfacibile

Costruiamo l'insieme V^\prime nel modo seguente:

- Sia $a: X \rightarrow \{vero, falso\}$ una assegnazione di verità che soddisfa g:
 - i. Inseriamo in V' n nodi dei gadget-variabile: per $i=1,\ldots,n=|X|$, inseriamo in V' il nodo u_i se $a(x_i)=vero$, il nodo $\neg ui$ se $a(x_i)=falso$
 - ii. per ogni $j=1,\ldots,m$, scegliamo un letterale $\ell_{jh}(h=1,\ o\ h=2,\ o\ h=3)$ nella clausola c_j al quale è stato assegnato valore vero da a e inseriamo in V' i due nodi del gadget-clausola associato a c_j che non sono v_{jh}
 - \circ ad esempio, se $a(x3)=vero\ e\ c_1=(x_1\vee
 eg x_2\vee x_3)$ e scegliamo ℓ_{j3} , allora inseriamo in V' i nodi $v_{11}\ e\ v_{12}$
- Ogni arco nei gadget-variabile ha un estremo in V^\prime
- per ogni $j=1,\ldots,m,V'$ contiene due nodi del gadget-clausola associato a c_i : pertanto, tutti gli archi nei gadget-clausola sono coperti
- per ogni $j=1,\ldots,m$, non abbiamo inserito in V' un solo nodo che è collegato ad un nodo-variabile che appartiene a V': perciò, tutti gli archi obliqui sono coperti

Quindi i nodi in V' coprono tutti gli archi di G:

in figura è mostrato un ${\it VC}$ (i nodi colorati) corrispondente all'assegnazione

6/1/24, 1:46 PM VC NPC

$$a(x_1)=a(x_2)=a(x_3)=a(x_4)=vero$$
 e la corrispondente copertura degli archi

$$|V'| = n + 2m$$

Quindi: se g è soddisfacibile, allora G contiene un VC di k=(n+2m) nodi

Se G contiene un $VC\ V'$ di k=(n+2m) nodi

- ullet V^\prime contiene esattamente un nodo per ogni gadget-variabile
- ullet V' contiene esattamente due nodi per ogni gadget-clausola
- ullet Poiché V' contiene esattamente un nodo per ogni gadget-variabile, consideriamo la seguente assegnazione di verità a per le variabili in X:
 - $\circ \ a(x_i) = vero \ se \ u_i \in V'$
 - $\circ \ a(x_i) = falso \ se \ \neg u_i \in V'$
- Poiché V' contiene esattamente due nodi per ogni gadget-clausola, allora un arco "obliquo" in ogni gadget clausola non è coperto dai nodi in V' del gadget-clausola
- Allora, per ogni gadget clausola un arco "obliquo" è coperto da un nodo di un gadget-variabile contenuto in V^\prime
 - $\circ \,$ ossia, da un nodo u_i e quindi quella clausola contiene x_i come letterale e $a(x_i)=vero$
 - \circ oppure da un nodo $\neg u_i$ e quindi quella clausola contiene $\neg x_i$ come letterale e $a(x_i) = falso$
- Questo significa che ogni clausola contiene un letterale al quale a assegna valore vero

Quindi g è soddisfacibile!