- (2 points each) Circle the best answer:
 - (i) Which of the following conditions is true in a triaxial extension test for principle stresses, S_1 , S_2 , S_3
 - (a) $S_1 > S_2 = S_3$
 - (b) $S_1 < S_2 = S_3$
 - (c) $S_1 = S_2 = S_3$
- (ii) Which of the following is not a standard assumption of poroelasticity.
 - (a) There is an interconnected pore system uniformly saturated with fluid.
 - (b) The pore pressure, the total stress acting on the rock externally, and the stresses acting on the grains are statistically defined.
 - (c) The total volume of the pore system is large compared to the volume of the rock.
- (iii) True or False? The elastic behavior of an isotropic solid is fully characterized by three independent constants.
 - (a) True
 - (b) False
- (iv) The Mohr-failure envelope for a rock as a distinct parabolic curve, which failure model would provide the best capability to predict the failure of the rock.
 - (a) Hoek-Brown
 - (b) von Mises
 - (c) Mohr-Coulomb
- (v) True or False? A typical range for Poisson ratio in rocks is between $0.2 < \nu < 0.6$
 - (a) True
 - (b) False
- (vi) So-called cap failure models provide the ability to model
 - (a) inelastic effects occurring for increasing hydrostatic pressure
 - (b) failure in pure shear.
 - (c) inelastic effects due to slip on crystallographic planes.
- (vii) In a vertical wellbore, we expect breakouts to occur along the direction of
 - (a) S_v .
 - (b) S_{Hmax} .
 - (c) S_{hmin}
- (viii) True or False? A stable wellbore is defined as one that is absent from any breakouts.
 - (a) True
 - (b) False

- (ix) In a vertical wellbore, we expect drilling induced tensile fractures to occur along the direction of
 - (a) S_v
 - (b) S_{Hmax} .
 - (c) S_{hmin} .
- (x) True or False? In a lower hemispherical projection plot associated with drilling deviated wells, the outermost concentric ring, i.e. the edge of the plot, represents a vertical well.
 - (a) True
 - (b) False

(5 points each) Short answer:

(i) Sketch a Mohr-Coulomb failure surface in the π -plane on the figure.

- (ii) List two reasons why tensile strength is relatively unimportant in reservoir geomechanics.
- 1. Entire crust of the Earth is under compressive stress
- Z. Rocks have negligible tensile strength.

(iii) On the figure below that schematically represents an extended leakoff-test

Label the formation breakdown pressure and the fracture propagation pressure.

(20 points)

Given the following figure created with triaxial tests on a rock material:

Give the unconfined compressive strength of the material.

From problem geometry:

(20 points) Lab strength tests on dry rock samples, i.e. no pore fluid, with peak shear strength values have been fit to the linear relationship $S_1 = 22.8 \text{ MPa} + 4.12 \text{ MPa} S_3$. What is the unconfined compressive strength C_0 and internal friction coefficient μ_I for this rock.

$$L_0 = 22.8 \text{ MPs}$$

$$N = 4.12$$

$$\mu = \frac{n-1}{2\sqrt{n}} = 0.769$$

(25 points) Given the geographical stress,

$$\mathbf{S}_G = \begin{bmatrix} 47.5 & -12.5 & 0 \\ -12.5 & 47.5 & 0 \\ 0 & 0 & 40 \end{bmatrix} \text{ MPa}$$

For a wellbore deviated 30° from vertical along an azimuth oriented directly to the north, find the wellbore stress tensor, S_B . S = 0°

$$56^{\circ}$$
 -10.825 -10.825 3.248
 3.248 -6.25 41.875