

In the claims:

Amend claims 1-16 where indicated.

1 1. (Currently Amended) A magnetic head assembly having an air bearing surface
2 (ABS) and comprising:

3 a write head including:

4 ferromagnetic first and second pole pieces layers that have a yoke portion located
5 between a pole tip portion and a back gap portion;

6 a nonmagnetic write gap layer located between the pole tip portions of the first and
7 second pole pieces layers;

8 an insulation stack with at least one coil layer embedded therein located between
9 the yoke portions of the first and second pole pieces layers;

10 the first and second pole pieces layers being connected at their back gap portions;

11 the pole tip portion of the first pole piece having non-overlapping first and second
12 components wherein the first component forms a portion of the ABS and the second
13 component is recessed from the ABS and is magnetically connected to the first component;
14 and

15 the second component having a width that is less than a width of the first
16 component wherein said widths are parallel to the ABS and parallel to a major thin film
17 planes plane of the layers of the sensor; write gap layer.

1 2. (Currently Amended) A magnetic head assembly as claimed in claim 1 further
2 comprising:

3 the first pole piece layer having a third component that is recessed from the ABS and that
4 has a width that is parallel to the ABS and the major thin film planes plane of the layers of the
5 sensor; write gap layer;

6 the second component interconnecting the first and third components; and

7 the width of the third component being greater than the width of the second component.

1 3. (Currently Amended). A magnetic head assembly as claimed in claim 1 further
2 comprising: A magnetic head assembly having an air bearing surface (ABS) and comprising:
3 a write head including:
4 ferromagnetic first and second pole piece layers that have a yoke portion located
5 between a pole tip portion and a back gap portion;
6 a nonmagnetic write gap layer located between the pole tip portions of the first and
7 second pole piece layers;
8 an insulation stack with at least one coil layer embedded therein located between
9 the yoke portions of the first and second pole piece layers;
10 the first and second pole piece layers being connected at their back gap portions;
11 the pole tip portion of the first pole piece layer having first and second components
12 wherein the first component forms a portion of the ABS and the second component is
13 recessed from the ABS and is magnetically connected to the first component;
14 the second component having a width that is less than a width of the first
15 component wherein said widths are parallel to the ABS and parallel to a major plane of the
16 write gap layer;
17 the first pole piece layer having a third component that is recessed from the ABS
18 and having a width that is parallel to the ABS and the major thin film plane of the write
19 gap layer;
20 the second component interconnecting the first and third components;
21 the width of the third component being greater than the width of the second
22 component;
23 the first pole piece layer having a base layer and a pedestal wherein the pedestal
24 forms a portion of the ABS; and
25 the pedestal interconnecting the base layer and the first component.

1 4. (Currently Amended) A magnetic head assembly as claimed in claim 1 further
2 comprising:

3 a read head including:

4 a read sensor;

5 nonmagnetic electrically nonconductive first and second read gap layers;

6 the read sensor being located between the first and second read gap layers;

7 a ferromagnetic first shield layer; and

8 the first and second read gap layers being located between the first shield layer and
9 the first pole piece layer.

1 5. (Currently Amended) A magnetic head assembly as claimed in claim 4 further
2 comprising:

3 the first pole piece layer having a third component that is recessed from the ABS and that
4 has a width that is parallel to the ABS and the major thin film planes planes of the layers of the
5 sensor, write gap layer;

6 the second component interconnecting the first and third components; and

7 the width of the third component being greater than the width of the second component.

1 6. (Currently Amended) A magnetic head assembly as claimed in claim 5 further
2 comprising: A magnetic head assembly having an air bearing surface (ABS) and comprising:

3 a write head including:

4 ferromagnetic first and second pole piece layers that have a yoke portion located
5 between a pole tip portion and a back gap portion:

6 a nonmagnetic write gap layer located between the pole tip portions of the first and
7 second pole piece layers:

8 an insulation stack with at least one coil layer embedded therein located between
9 the yoke portions of the first and second pole piece layers:

10 the first and second pole piece layers being connected at their back gap portions:

11 the pole tip portion of the first pole piece layer having first and second components
12 wherein the first component forms a portion of the ABS and the second component is
13 recessed from the ABS and is magnetically connected to the first component:

14 the second component having a width that is less than a width of the first
15 component wherein said widths are parallel to the ABS and parallel to a major plane of the
16 write gap layer;

17 the first pole piece layer having a third component that is recessed from the ABS
18 and having a width that is parallel to the ABS and the major thin film plane of the write
19 gap layer;

20 the second component interconnecting the first and third components;

21 the width of the third component being greater than the width of the second
22 component;

23 the first pole piece layer having a base layer and a pedestal wherein the pedestal
24 forms a portion of the ABS; and

25 the pedestal interconnecting the base layer and the first component;
26 a read head including:

27 a read sensor;

28 nonmagnetic electrically nonconductive first and second read gap layers;

29 the read sensor being located between the first and second read gap layers;

30 a ferromagnetic first shield layer; and

31 the first and second read gap layers being located between the first shield layer and
32 the first pole piece layer.

1 7. (Currently Amended) A magnetic disk drive including at least one magnetic
2 head assembly that has an air bearing surface (ABS) and that includes a write head and a read
3 head, comprising:

4 the write head including:

5 ferromagnetic first and second pole pieces layers that have a yoke portion located
6 between a pole tip portion and a back gap portion;

7 a nonmagnetic write gap layer located between the pole tip portions of the first and
8 second pole pieces layers;

9 an insulation stack with at least one coil layer embedded therein located between
10 the yoke portions of the first and second pole pieces layers;

11 the first and second pole pieces layers being connected at their back gap portions;

12 the pole tip portion of the first pole piece having non-overlapping first and second
13 components wherein the first component forms a portion of the ABS and the second
14 component is recessed from the ABS and is magnetically connected to the first component;
15 and

16 the second component having a width that is less than a width of the first
17 component wherein said widths are parallel to the ABS and parallel to a major thin film
18 planes of the layers of the sensor; plane of the write gap layer;

19 a the read head including:

20 a read sensor;

21 nonmagnetic electrically nonconductive first and second read gap layers;

22 the read sensor being located between the first and second read gap layers;

23 a ferromagnetic first shield layer; and

24 the first and second read gap layers being located between the first shield layer and
25 the first pole piece; layer;

26 a housing;

27 a magnetic disk rotatably supported in the housing;

28 a support mounted in the housing for supporting the magnetic head assembly with said
29 ABS facing the magnetic disk so that the magnetic head assembly is in a transducing relationship
30 with the magnetic disk;

31 a spindle motor for rotating the magnetic disk;

32 an actuator positioning means connected to the support for moving the magnetic head
33 assembly to multiple positions with respect to said magnetic disk; and

34 a processor connected to the magnetic head assembly, to the spindle motor and to the
35 actuator positioning means for exchanging signals with the magnetic head assembly, for
36 controlling movement of the magnetic disk and for controlling the position of the magnetic head
37 assembly.

1 8. (Currently Amended) A magnetic disk drive as claimed in claim 7 further
2 comprising:

3 the first pole piece layer having a third component that is recessed from the ABS and has
4 a width that is parallel to the ABS and the major thin film planes plane of the layers of the sensor;
5 write gap layer;

6 the second component interconnecting the first and third components; and

7 the width of the third component being greater than the width of the second component.

1 9. (Currently Amended) ~~A magnetic disk drive as claimed in claim 7 further~~
2 ~~comprising:~~ A magnetic disk drive including at least one magnetic head assembly that has an air
3 bearing surface (ABS) and that includes a write head and a read head, comprising:

4 the write head including:

5 ferromagnetic first and second pole piece layers that have a yoke portion located
6 between a pole tip portion and a back gap portion;

7 a nonmagnetic write gap layer located between the pole tip portions of the first and
8 second pole piece layers;

9 an insulation stack with at least one coil layer embedded therein/located between
10 the yoke portions of the first and second pole piece layers;

11 the first and second pole piece layers being connected at their back gap portions;

12 the pole tip portion of the first pole piece layer having first and second components
13 wherein the first component forms a portion of the ABS and the second component is
14 recessed from the ABS and is magnetically connected to the first component;

15 the second component having a width that is less than a width of the first
16 component wherein said widths are parallel to the ABS and parallel to a major thin film
17 plane of the write gap layer;

18 the read head including:

19 a read sensor;

20 nonmagnetic electrically nonconductive first and second read gap layers;

21 the read sensor being located between the first and second read gap layers;

22 a ferromagnetic first shield layer;

23 the first and second read gap layers being located between the first shield layer and
24 the first pole piece layer;

25 the first pole piece layer having a base layer and a pedestal wherein the pedestal
26 forms a portion of the ABS; and

27 the pedestal interconnecting the base layer and the first component;

28 a housing;

29 a magnetic disk rotatably supported in the housing;

30 a support mounted in the housing for supporting the magnetic head assembly with said
31 ABS facing the magnetic disk so that the magnetic head assembly is in a transducing relationship
32 with the magnetic disk;

33 a spindle motor for rotating the magnetic disk;
34 an actuator positioning means connected to the support for moving the magnetic head
35 assembly to multiple positions with respect to said magnetic disk; and
36 a processor connected to the magnetic head assembly, to the spindle motor and to the
37 actuator positioning means for exchanging signals with the magnetic head assembly, for
38 controlling movement of the magnetic disk and for controlling the position of the magnetic head
39 assembly.

1 10. (Original) A magnetic disk drive as claimed in claim 9 further comprising:
2 the first pole piece layer having a third component that is recessed from the ABS and has
3 a width that is parallel to the ABS and the major thin film planes of the layers of the sensor;
4 the second component interconnecting the first and third components; and
5 the width of the third component being greater than the width of the second component.

1 11. (Currently Amended) A method of making a magnetic head assembly having an
2 air bearing surface (ABS) and comprising the steps of:
3 making a write head including the steps of:
4 forming ferromagnetic first and second pole pieces layers that have a yoke portion
5 located between a pole tip portion and a back gap portion;
6 forming a nonmagnetic write gap layer between the pole tip portions of the first and
7 second pole pieces layers;
8 forming an insulation stack with at least one coil layer embedded therein between
9 the yoke portions of the first and second pole pieces layers;
10 connecting the first and second pole pieces layers at their back gap portions;
11 forming the pole tip portion of the first pole piece with non-overlapping first and
12 second components wherein the first component forms a portion of the ABS and the
13 second component is recessed from the ABS and is magnetically connected to the first
14 component; and
15 forming the second component with a width that is less than a width of the first
16 component wherein said widths are parallel to the ABS and parallel to a major thin film
17 planes of the layers of the sensor. plane of the write gap layer.

1 12. (Currently Amended) A method of making a magnetic head assembly as
2 claimed in claim 11 further comprising the steps of:

3 forming the first pole piece layer with a third component that is recessed from the ABS and
4 with a width that is parallel to the ABS and the major ~~thin film planes of the layers of the sensor~~
5 ~~plane of the write gap layer;~~

6 forming the second component interconnecting the first and third components; and
7 forming the width of the third component greater than the width of the second component.

1 13. (Currently Amended) ~~A method of making a magnetic head assembly as~~
2 ~~claimed in claim 11 further comprising the steps of:~~ A method of making a magnetic head
3 assembly having an air bearing surface (ABS) and comprising the steps of:

4 making a write head including the steps of:

5 forming ferromagnetic first and second pole piece layers that have a yoke portion
6 located between a pole tip portion and a back gap portion;

7 forming a nonmagnetic write gap layer between the pole tip portions of the first and
8 second pole piece layers;

9 forming an insulation stack with at least one coil layer embedded therein between
10 the yoke portions of the first and second pole piece layers;

11 connecting the first and second pole piece layers at their back gap portions;

12 forming the pole tip portion of the first pole piece layer with first and second
13 components wherein the first component forms a portion of the ABS and the second
14 component is recessed from the ABS and is magnetically connected to the first component;
15 and

16 forming the second component with a width that is less than a width of the first
17 component wherein said widths are parallel to the ABS and parallel to a major thin film
18 plane of the write gap layer;

19 forming the first pole piece layer with a third component that is recessed from the
20 ABS and with a width that is parallel to the ABS and the major thin film plane of the write
21 gap layer;

22 forming the second component interconnecting the first and third components;

23 forming the width of the third component greater than the width of the second
24 component;

25 forming the first pole piece layer with a base layer and a pedestal wherein the
26 pedestal forms a portion of the ABS; and
27 forming the pedestal interconnecting the base layer and the first component.

1 14. (Currently Amended) A method of making a magnetic head assembly as claimed
2 in claim 11 further comprising the steps of:

3 making a read head including the steps of:

4 forming a read sensor;

5 forming nonmagnetic electrically nonconductive first and second read gap layers
6 with the read sensor located between the first and second read gap layers; and

7 forming a ferromagnetic first shield layer with the first and second read gap layers
8 located between the first shield layer and the first pole piece layer.

1 15. (Currently Amended) A method of making a magnetic head assembly as
2 claimed in claim 14 further comprising the steps of:

3 forming the first pole piece layer with a third component that is recessed from the ABS and
4 with a width that is parallel to the ABS and the major thin film planes of the layers of the sensor,
5 plane of the write gap layer;

6 forming the second component interconnecting the first and third components; and

7 forming the width of the third component greater than the width of the second component.

1 16. (Currently Amended) A method of making a magnetic head assembly as claimed
2 in claim 15 further comprising the steps of: A method of making a magnetic head assembly
3 having an air bearing surface (ABS) and comprising the steps of:

4 making a write head including the steps of:

5 forming ferromagnetic first and second pole piece layers that have a yoke portion
6 located between a pole tip portion and a back gap portion;

7 forming a nonmagnetic write gap layer between the pole tip portions of the first and
8 second pole piece layers;

9 forming an insulation stack with at least one coil layer embedded therein between
10 the yoke portions of the first and second pole piece layers;

11 connecting the first and second pole piece layers at their back gap portions;

12 forming the pole tip portion of the first pole piece layer with first and second
13 components wherein the first component forms a portion of the ABS and the second
14 component is recessed from the ABS and is magnetically connected to the first component;
15 and

16 forming the second component with a width that is less than a width of the first
17 component wherein said widths are parallel to the ABS and parallel to a major thin film
18 plane of the write gap layer;

19 forming the first pole piece layer with a third component that is recessed from the
20 ABS and with a width that is parallel to the ABS and the major thin film plane of the write
21 gap layer;

22 forming the second component interconnecting the first and third components;

23 forming the width of the third component greater than the width of the second
24 component;

25 forming the first pole piece layer with a base layer and a pedestal wherein the
26 pedestal forms a portion of the ABS; and

27 forming the pedestal interconnecting the base layer and the first component;
28 making a read head including the steps of:

29 forming a read sensor;

30 forming nonmagnetic electrically nonconductive first and second read gap layers
31 with the read sensor located between the first and second read gap layers; and

32 forming a ferromagnetic first shield layer with the first and second read gap layers
33 located between the first shield layer and the first pole piece layer.

Add new claims 17-20.

1 17. (New) A magnetic head assembly having a head surface and comprising:
2 a write head including:

3 ferromagnetic first and second pole pieces that have a yoke portion located between
4 a pole tip portion and a back gap portion;

5 a nonmagnetic write gap layer located between said pole tip portions;

6 an insulation stack with at least one coil layer embedded therein located between
7 said yoke portions;

8 the first and second pole pieces being connected at their back gap portions; and

9 the pole tip portion having a reduced cross-section portion wherein the reduced
10 cross-section portion is located entirely within a region which is recessed from said head
11 surface.

1 18. (New) A magnetic head assembly as claimed in claim 17 further comprising:
2 a read head including:

3 a read sensor;

4 nonmagnetic electrically nonconductive first and second read gap layers;

5 the read sensor being located between the first and second read gap layers;

6 a ferromagnetic first shield layer; and

7 the first and second read gap layers being located between the first shield layer and
8 the first pole piece.

1 19. (New) A magnetic disk drive including at least one magnetic head assembly that
2 has a head surface and that includes a write head and a read head, comprising:

3 a write head including:

4 ferromagnetic first and second pole pieces that have a yoke portion located between
5 a pole tip portion and a back gap portion;

6 a nonmagnetic write gap layer located between said pole tip portions;

7 an insulation stack with at least one coil layer embedded therein located between
8 said yoke portions;

9 the first and second pole pieces being connected at their back gap portions; and

10 the pole tip portion having a reduced cross-section portion wherein the reduced
11 cross-section portion is located entirely within a region which is recessed from said head
12 surface;

13 the read head including:

14 a read sensor;

15 nonmagnetic electrically nonconductive first and second read gap layers;

16 the read sensor being located between the first and second read gap layers;

17 a ferromagnetic first shield layer; and

18 the first and second read gap layers being located between the first shield layer and
19 the first pole piece layer;

20 a housing;

21 a magnetic medium supported in the housing;

22 a support mounted in the housing for supporting the magnetic head assembly with said
23 head surface facing the magnetic medium so that the magnetic head assembly is in a transducing
24 relationship with the magnetic medium; and

25 a processor connected to the magnetic head assembly for exchanging signals with the
26 magnetic head assembly.

1 20. (New) A method of making a magnetic head assembly having an air bearing
2 surface (ABS) and comprising the steps of:

3 making a write head including the steps of:

4 forming ferromagnetic first and second pole pieces with a yoke portion located
5 between a pole tip portion and a back gap portion;

6 forming a nonmagnetic write gap layer between said pole tip portions;

7 forming an insulation stack with at least one coil layer embedded therein between
8 said yoke portions;

9 connecting the first and second pole pieces at their back gap portions; and

10 forming the pole tip portion with a reduced cross-section portion wherein the
11 reduced cross-section portion is located entirely within a region which is recessed from
12 said head surface.