7/2/25, 11:55 PM **USACO**

USA Computing Olympiad

OVERVIEW

DETAILS / FAQ

TRAINING

HISTORY RESOURCES

USACO 2016 FEBRUARY CONTEST, BRONZE PROBLEM 2. CIRCULAR BARN

Return to Problem List

Contest has ended.

Log in to allow submissions in analysis mode

Enalish (en)

Being a fan of contemporary architecture, Farmer John has built a new barn in the shape of a perfect circle. Inside, the barn consists of a ring of n rooms, numbered clockwise from $1 \dots n$ around the perimeter of the barn (3 < n < 1,000). Each room has doors to its two neighboring rooms, and also a door opening to the exterior of the barn.

Farmer John wants exactly r_i cows to end up in each room i ($1 \le r_i \le 100$). To herd the cows into the barn in an orderly fashion, he plans to unlock the exterior door of a single room, allowing the cows to enter through that door. Each cow then walks clockwise through the rooms until she reaches a suitable destination. Farmer John wants to unlock the exterior door that will cause his cows to collectively walk a minimum total amount of distance. Please determine the minimum total distance his cows will need to walk, if he chooses the best such door to unlock. The distance walked by a single cow is the number of interior doors through which she passes.

INPUT FORMAT (file cbarn.in):

The first line of input contains n. Each of the remaining n lines contain $r_1 \dots r_n$.

OUTPUT FORMAT (file cbarn.out):

Please write out the minimum total amount of distance the cows collectively need to travel.

SAMPLE INPUT:

4

8

6

SAMPLE OUTPUT:

48

In this example, the best solution is to let the cows enter through the door of the room that requires 7 cows.

Problem credits: Brian Dean

Contest has ended. No further submissions allowed.