Applicant : Lin Zhi et al.

Serial No. : 10/684,229

Attorney's Docket No.: 18202-020001 / 1088

Amendment After Final

Filed : October 10, 2003

AMENDMENTS TO THE CLAIMS:

Claims 2-16, 18-27 and 44-47 are pending in this application. Claims 28 and 30-43 are cancelled herein without prejudice or disclaimer. Claims 9-11, 14, 15, 25-27 and 44-46 are amended herein. This listing of claims will replace all prior versions, and listings of claims, in the application.

LISTING OF CLAIMS:

- 1. (Cancelled).
- 2. (Previously presented) A compound according to any one of claims 44, 45 or 46, wherein R^1 is selected from the group of hydrogen, C_1 – C_4 alkyl, COR^{11} , SO_2R^{11} , and $CONR^{11}R^{12}$.
- 3. (Previously presented) A compound according to any one of claims 44, 45 or 46, wherein R^2 and R^3 each independently is selected from the group of C_1 – C_4 alkyl, and C_1 – C_4 haloalkyl.
- 4. (Previously presented) A compound according to any one of claims 44, 45 or 46, wherein:

R⁵ and R⁷ taken together form a bond;

 R^4 and R^6 each independently is selected from the group of hydrogen, F, Cl, Br, CN, OR^{11} , C_1 – C_4 alkyl, and C_1 – C_4 haloalkyl.

5. (Previously presented) A compound according to any one of claims 44, 45 or 46, wherein:

R⁶ and R⁷ taken together are selected from the group of methylidene, and carbonyl;

 R^4 and R^5 each independently is selected from the group of hydrogen, F, and C_1 – C_4 alkyl.

- 6. (Previously presented) A compound according to any one of claims 44, 45 or 46, wherein R^8 through R^{10} each independently is selected from the group of hydrogen, F, Cl, Br, NO₂, CN, OR¹¹, SR¹¹, C₁–C₆ alkyl, C₁–C₆ heteroalkyl, and C₁–C₆ haloalkyl.
- 7. (Original) A compound according to claim 6, wherein R⁸ through R¹⁰ each independently is selected from the group of hydrogen, F, and OR¹¹.

Serial No.: 10/684,229 : October 10, 2003 Filed

8. (Previously presented) A compound according to any one of claims 44, 45 or 46, wherein R¹¹ through R¹² each independently is selected from the group of hydrogen, and C₁-C₄ alkyl.

9. (Currently amended) A compound of the formula:

wherein:

 R^1 is selected from the group of hydrogen, C_1-C_4 alkyl, C_1-C_4 haloalkyl, C_1-C_4 C₄ heteroalkyl, COR¹¹, CO₂R¹¹, SO₂R¹¹, and CONR¹¹R¹²:

R² and R³ each independently is selected from the group of hydrogen, C₁–C₆ alkyl, and C₁–C₆ haloalkyl; or

R² and R³ taken together form a cycloalkyl ring of from three to twelve carbons;

R⁴ through R⁷ each independently is selected from the group of hydrogen, F, CI, Br, CN, OR^{11} , C_1 – C_4 alkyl, C_1 – C_4 haloalkyl, and C_1 – C_4 heteroalkyl; or

R⁵ and R⁷ taken together form a bond; or

R⁶ and R⁷ taken together are selected from the group of methylidene, monosubstituted methylidene, di-substituted methylidene and carbonyl;

R⁸ through R¹⁰ each independently is selected from the group of hydrogen, F, CI, Br, I, NO₂, CN, OR¹¹, NR¹¹R¹², SR¹¹, COR¹¹, CO₂R¹¹, CONR¹¹R¹², C₁-C₈ alkyl, C_1-C_8 heteroalkyl, C_1-C_8 haloalkyl, allyl, C_2-C_8 alkenyl and C_2-C_8 alkynyl;

 R^{11} and R^{12} each is independently selected from the group of hydrogen, C_{1} - C_4 alkyl, C_1-C_4 heteroalkyl, and C_1-C_4 haloalkyl;

R¹³ is hydrogen;

R¹⁴ and R¹⁶ taken together form a bond or "-O-" bridge:

R¹⁵, R¹⁷, R¹⁸, R¹⁹, R²⁰ each independently is selected from the group of hydrogen, F, Cl, C₁–C₄ alkyl, and C₁–C₄ haloalkyl.

R²¹ is hydrogen; and

Applicant: Lin Zhi et al. Serial No.: 10/684,229 **Amendment After Final**

Filed : October 10, 2003

n is 0, 1, 2, or 3;

or a pharmaceutically acceptable salt or prodrug thereof.

10. (Currently amended) A compound of the formula:

$$\begin{array}{c}
R^{19} \\
R^{20} \\
R^{15} \\
R^{15} \\
R^{14} \\
R^{10}
\end{array}$$

$$\begin{array}{c}
R^{9} \\
R^{21} \\
R^{10}
\end{array}$$

$$\begin{array}{c}
R^{18} \\
R^{15} \\
R^{15} \\
R^{14} \\
R^{13} \\
R^{14} \\
R^{13} \\
R^{14} \\
R^{15} \\
R^{14} \\
R^{15} \\
R^{15} \\
R^{16} \\
R^{17} \\
R^{16} \\
R^{17} \\
R^{16} \\
R^{17} \\
R^{17$$

wherein:

 R^1 is selected from the group of hydrogen, C_1-C_4 alkyl, C_1-C_4 haloalkyl, C_1-C_4 C₄ heteroalkyl, COR¹¹, CO₂R¹¹, SO₂R¹¹, and CONR¹¹R¹²;

R² and R³ each independently is selected from the group of hydrogen, C₁-C₆ alkyl, and C₁–C₆ haloalkyl; or

R² and R³ taken together form a cycloalkyl ring of from three to twelve carbons;

R⁴ through R⁷ each independently is selected from the group of hydrogen, F,

CI, Br, CN, OR¹¹, C₁-C₄ alkyl, C₁-C₄ haloalkyl, and C₁-C₄ heteroalkyl; or

R⁵ and R⁷ taken together form a bond; or

R⁶ and R⁷ taken together are selected from the group of methylidene, monosubstituted methylidene, di-substituted methylidene and carbonyl;

R⁸ through R¹⁰ each independently is selected from the group of hydrogen, F, CI, Br, I, NO₂, CN, OR¹¹, NR¹¹R¹², SR¹¹, COR¹¹, CO₂R¹¹, CONR¹¹R¹², C₁–C₈ alkyl, C₁–C₈ heteroalkyl, C₁–C₈ haloalkyl, allyl, C₂–C₈ alkenyl and C₂–C₈ alkynyl;

R¹¹ and R¹² each is independently selected from the group of hydrogen, C₁-C₄ alkyl, C₁–C₄ heteroalkyl, and C₁–C₄ haloalkyl;

R¹³ is hydrogen:

 R^{14} , R^{15} , R^{18} , R^{19} , R^{20} each independently is selected from the group of hydrogen, F, Cl, C_1 – C_4 alkyl, and C_1 – C_4 haloalkyl.

R¹⁶ and R¹⁷ taken together are selected from the group of methylidene, monosubstituted methylidene, and di-substituted methylidene;

R²¹ is hydrogen; or

Applicant: Lin Zhi et al. Serial No.: 10/684,229 **Amendment After Final** Filed : October 10, 2003

R²¹ and R²⁰ taken together form a bond:

n is 0, 1, 2, or 3;

or a pharmaceutically acceptable salt or prodrug thereof.

11. (Currently amended) A compound of the formula:

wherein:

R¹ is selected from the group of hydrogen, C₁–C₄ alkyl, C₁–C₄ haloalkyl, C₁– C₄ heteroalkyl, COR¹¹, CO₂R¹¹, SO₂R¹¹, and CONR¹¹R¹²;

R² and R³ each independently is selected from the group of hydrogen, C₁–C₆ alkyl, and C₁-C₆ haloalkyl; or

R² and R³ taken together form a cycloalkyl ring of from three to twelve carbons;

R⁴ through R⁷ each independently is selected from the group of hydrogen, F, CI, Br, CN, OR¹¹, C₁–C₄ alkyl, C₁–C₄ haloalkyl, and C₁–C₄ heteroalkyl; or

R⁵ and R⁷ taken together form a bond; or

R⁶ and R⁷ taken together are selected from the group of methylidene, monosubstituted methylidene, di-substituted methylidene and carbonyl:

R⁸ through R¹⁰ each independently is selected from the group of hydrogen, F, Cl, Br, I, NO₂, CN, OR¹¹, NR¹¹R¹², SR¹¹, COR¹¹, CO₂R¹¹, CONR¹¹R¹², C₁–C₈ alkyl, C_1-C_8 heteroalkyl, C_1-C_8 haloalkyl, allyl, C_2-C_8 alkenyl and C_2-C_8 alkynyl;

 R^{11} and R^{12} each is independently selected from the group of hydrogen, C_{1} - C_4 alkyl, C_1-C_4 heteroalkyl, and C_1-C_4 haloalkyl;

R¹³ is hydrogen;

R¹⁴, R¹⁵, R¹⁷, R²⁰ each independently is selected from the group of hydrogen, F, Cl, C₁–C₄ alkyl, and C₁–C₄ haloalkyl R¹⁶ and R¹⁸ taken together form a bond when n is 1;

R¹⁶ and R¹⁹ taken together form a bond when n is 0:

Applicant: Lin Zhi et al. Serial No.: 10/684,229

Filed: October 10, 2003

Attorney's Docket No.: 18202-020001 / 1088
Amendment After Final

R²¹ is hydrogen; and

n is 0, 1, 2, or 3;

or a pharmaceutically acceptable salt or prodrug thereof.

- 12. (Previously presented) A compound selected from the group of:
- (±)-(5l,1'l)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **24**);
- (\pm) -(5l, 1'u)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-f]quinoline (compound **25**);
- (+)-(5l,1'l)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **27**);
- (–)-(5l,1'l)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **28**);
- (±)-(5*l*,1'*l*)-5-(3-methyl-2-cyclohexenyl)-9-hydroxy-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **29**);
- (\pm) -(5l,1'u)-5-(3-methyl-2-cyclohexenyl)-9-hydroxy-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-f]quinoline (compound **30**);
- (+)-(5l,1'l)-5-(3-methyl-2-cyclohexenyl)-9-hydroxy-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **32**);
- (-)-(5l,1'l)-5-(3-methyl-2-cyclohexenyl)-9-hydroxy-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **33**);
- (\pm) -(5l, 1'l)-5-(3-methyl-2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound **34**);
- (\pm) -(5l,1'u)-5-(3-methyl-2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound **35**);
- (+)-(5*l*, 1'*l*)-5-(3-methyl-2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **37**);
- (-)-(5*l*, 1'*l*)-5-(3-methyl-2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **38**);
- (±)-(5l,1'l)-5-(3-methyl-2-cyclohexenyl)-9-methoxy-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **39**);
- (\pm)-(5I, 1'I)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2-dimethyl-5H-chromeno[3,4-I]quinoline (compound 41);

Applicant: Lin Zhi et al. Serial No.: 10/684,229

Filed: October 10, 2003

Attorney's Docket No.: 18202-020001 / 1088
Amendment After Final

 (\pm) -(5l,1'u)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2-dimethyl-5H-chromeno[3,4-f]quinoline (compound 42);

- (±)-(5*l*,1'*l*)-5-(3-methyl-2-cyclopentenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 44);
- (\pm) -(5l,1'u)-5-(3-methyl-2-cyclopentenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-f]quinoline (compound 45);
- (±)-(5/,1'/)-5-(3,5,5-trimethyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 47);
- (\pm) -(5l,1'u)-5-(3,5,5-trimethyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-f]quinoline (compound 48);
- (\pm) -(5l,1'l)-5-(3-methyl-2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound **50**);
- (\pm) -(5l, 1'u)-5-(3-methyl-2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-f]quinoline (compound **51**);
- (±)-5-(3-methyl-3-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **52**);
- (±)-5-(2-cyclopenta-1,3-dienyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-f]quinoline (compound **53**);
- (\pm) -(5l,1'l)-5-(3-ethyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound 55);
- (\pm) -(5l,1'u)-5-(3-ethyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound **56**);
- (±)-(5*l*,1'*l*)-5-(3-methyl-2-cyclohexenyl)-7-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **58**);
- (±)-(5*l*,1'*u*)-5-(3-methyl-2-cyclohexenyl)-7-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **59**);
- (±)-(5l,1'l)-5-(3-ethyl-2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **61**);
- (±)-(5l,1'l)-5-(3-ethylidenecyclohexyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **62**);
- (\pm) -(5l,1'l)-5-(3-methyl-3-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound **63**);

Applicant: Lin Zhi et al.

Serial No.: 10/684,229

Attorney's Docket No.: 18202-020001 / 1088

Amendment After Final

Filed: October 10, 2003

(±)-(5/,1'/)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-8-methoxy-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **64**);

- (\pm) -(5l,1'u)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-8-methoxy-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound **65**);
- (\pm) -(5l,1'l)-5-(2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound 67);
- (\pm) -(5l,1'u)-5-(2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound **68**);
- (±)-5-(1-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-f]quinoline (compound **69**);
- (\pm)-(5I, 1'I)-5-(2,3-dimethyl-2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound **71**);
- (+)-(5*l*,1'*l*)-5-(2,3-dimethyl-2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **73**);
- (-)-(5*l*,1'*l*)-5-(2,3-dimethyl-2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **74**);
- (\pm)-(5I, 1'I)-5-(2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-I]quinoline (compound **75**);
- (\pm) -(5l, 1'u)-5-(2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound **76**);
- (\pm) -(5l,1'l)-5-(2-cyclohexenyl)-7,9-difluoro-1,2,3,4-tetrahydro-2,2-dimethyl-4-methylidene-5H-chromeno[3,4-f]quinoline (compound **77**);
- (±)-(5l,1'l)-5-(2-methylidenecyclohexyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **79**);
- (\pm)-(5l, 1'u)-5-(2-methylidenecyclohexyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-f]quinoline (compound **80**);
- (±)-(5/,1'/)-5-(2-oxocyclohexyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-f]quinoline (compound **81**);
- (\pm) -(5l,1'u)-5-(2-oxocyclohexyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-f]quinoline (compound **82**);
- (\pm) -(5l,1'l)-5-(3-methyl-2-cyclohexenyl)-9-methoxy-1,2-dihydro-1,2,2,4-tetramethyl-5H-chromeno[3,4-f]quinoline (compound 83);

Applicant: Lin Zhi et al.

Serial No.: 10/684,229

Attorney's Docket No.: 18202-020001 / 1088

Amendment After Final

Filed: October 10, 2003

(±)-5-(2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]-quinoline (compound **84**);

- (\pm) -(5l,1'l)-5-(2,3-dimethyl-2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-f]quinoline (compound **85**);
- (±)-5-(3-methylidene-cyclohexyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **87**);
- (±)-(5*l*,1'*u*)-5-(3-ethylidenecyclohexyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **88**);
- (±)-(5l,1'l)- 5-(2-cycloheptenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (Compound **89**);
- (±)-(5l,1'l)- 5-(2-cyclooctenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-f]quinoline (Compound **91**);
- (\pm) -(5l,1'u)- 5-(2-cyclooctenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (Compound **92**);
- (\pm)-(5l, 1'l)- 5-(2,3-epoxy-3-methylcyclohexyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (Compound 94);
- (±)-(5l,1'l)- 5-(3-methyl-2-cyclohexenyl)-7,9-difluoro-1,2,3,4-tetrahydro-2,2-dimethyl-4-methylene-5*H*-chromeno[3,4-*f*]quinolin-3-ol (Compound **95**);
- (\pm) -(5l,1'l)- 5-(2,3-epoxy-2,3-dimethylcyclopentyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (Compound **96**);
- (±)-(5l,1'u)- 5-(2,3-epoxy-3-methylcyclohexyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-f]quinoline (Compound **97**); and
- (\pm)-(5l,1'l)- 5-(3-methyl-2-cyclohexenyl)-7,9-difluoro-1,2,3,4-tetrahydro-2,2-dimethyl-5*H*-chromeno[3,4-*f*]quinolin-4-one (Compound **98**).
 - 13. (Previously presented) A compound selected from the group of:
- (\pm) -(5l,1'l)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-f]quinoline (compound **2**4);
- (-)-(5l,1'l)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **28**);
- (-)-(5*l*,1'*l*)-5-(3-methyl-2-cyclohexenyl)-9-hydroxy-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **33**);

Amendment After Final

Applicant: Lin Zhi et al. Serial No.: 10/684,229 Filed : October 10, 2003

(±)-(51,11)-5-(3-methyl-2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **34**);

- (±)-(51,1'u)-5-(3-methyl-2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **35**);
- (-)-(51,11)-5-(3-methyl-2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4trimethyl-5*H*-chromeno[3,4-*f*]guinoline (compound **38**);
- (±)-(5/,11/)-5-(3-methyl-2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **50**);
- (±)-(5/,1'u)-5-(3-methyl-2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **51**);
- (±)-(5/,11/)-5-(2,3-dimethyl-2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 71);
- (-)-(5/, 1'/)-5-(2,3-dimethyl-2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4trimethyl-5H-chromeno[3,4-f]quinoline (compound 74); and
- (±)-(51,1'1)- 5-(3-methyl-2-cyclohexenyl)-7,9-difluoro-1,2,3,4-tetrahydro-2,2dimethyl-5*H*-chromeno[3,4-*f*]quinolin-4-one (Compound **98**).
 - 14. (Currently amended) A compound of the formula:

wherein:

R² and R³ each independently is selected from the group of hydrogen, C₁–C₄ alkyl, and C₁–C₄ haloalkyl;

R⁶ is selected from the group of hydrogen, F, Cl, Br, CN, OR¹¹, C₁–C₄ alkyl, and C1-C4 haloalkyl;

R⁸ and R¹⁰ each independently is selected from the group consisting of hydrogen, F, Cl, Br, CN, OR¹¹, NR¹¹R¹², SR¹¹, COR¹¹, C₁-C₄ alkyl, C₁-C₄ heteroalkyl, C₁–C₄ haloalkyl, allyl, and C₂–C₄ alkenyl;

Applicant: Lin Zhi et al.

Attorney's Docket No.: 18202-020001 / 1088
Serial No.: 10/684,229

Amendment After Final

Filed: October 10, 2003

 R^{11} and R^{12} each is independently selected from the group of hydrogen, C_1 – C_4 alkyl, C_1 – C_4 heteroalkyl, and C_1 – C_4 haloalkyl;

R¹⁴, R¹⁵, R¹⁸, R²², R²³, R²⁴ each independently is selected from the group of hydrogen, F, Cl, OR¹¹, C₁–C₄ alkyl, C₁–C₄ haloalkyl, and C₁–C₄ heteroalkyl;

R²², R²³, R²⁴ together consists of not more than 3 carbon atoms;

R¹⁶ taken together with one of R¹⁴, R¹⁸, and R²² form a bond or "–O–" bridge; n is 0, 1, 2, or 3;

or a pharmaceutically acceptable salt or prodrug thereof.

15. (Currently amended) A compound of the formula:

wherein:

 R^2 and R^3 each independently is selected from the group of C_1 – C_4 alkyl;

R⁶ is selected from the group of F, Cl, Br, C₁–C₄ alkyl, and C₁–C₄ haloalkyl;

 R^8 and R^{10} each independently is selected from the group of hydrogen, F, Cl, Br, CN, OR^{11} , C_1 – C_4 alkyl, and C_1 – C_4 haloalkyl;

 R^{11} and R^{12} each is independently selected from the group of hydrogen, C_{1-} C_{4} alkyl;

R¹⁴, R¹⁵, R¹⁸, R²², R²³, R²⁴ each independently is selected from the group of hydrogen, F, C₁–C₄ alkyl;

R¹⁶ taken together with one of R¹⁴, R¹⁸, and R²² form a bond or "–O–" bridge; R²², R²³, R²⁴ together consists of not more than 3 carbon atoms; and n is 0, 1, or 2;

or a pharmaceutically acceptable salt or prodrug thereof.

16. (Original) A compound according to claim 15, wherein R² and R³ each independently is CH₃;

R⁶ is selected from the group of F, Cl, Br, CH₃, CH₂CH₃, and CF₃;

Applicant: Lin Zhi et al. Serial No.: 10/684,229

Filed : October 10, 2003

Attorney's Docket No.: 18202-020001 / 1088

Amendment After Final

R⁸ is hydrogen or F;

R¹⁰ is selected from the group of hydrogen, F, Cl, Br, CN, OH, OCH₃, CH₃, CH₂CH₃, and CF₃;

R¹⁴ and R¹⁶ taken together form a bond or "-O-" bridge;

R¹⁵, R¹⁸, R²², R²³, and R²⁴ each independently is hydrogen or CH₃.

- 17. (Cancelled).
- 18. (Previously presented) A pharmaceutical composition according to any one of claims 47, 48 or 49, wherein R^1 is selected from the group of hydrogen, C_1 – C_4 alkyl, COR^{11} , SO_2R^{11} , and $CONR^{11}R^{12}$.
- 19. (Previously presented) A pharmaceutical composition according to any one of claims 47, 48 or 49, wherein R^2 and R^3 each independently is selected from the group of C_1 – C_4 alkyl, and C_1 – C_4 haloalkyl.
- 20. (Previously presented) A pharmaceutical composition according to any one of claims 47, 48 or 49, wherein

R⁵ and R⁷ taken together form a bond;

 R^4 and R^6 each independently is selected from the group of hydrogen, F, Cl, Br, CN, OR^{11} , C_1 – C_4 alkyl, and C_1 – C_4 haloalkyl.

21. (Previously presented) A pharmaceutical composition according to any one of claims 47, 48 or 49, wherein

R⁶ and R⁷ taken together are selected from the group of methylidene, and carbonyl;

 R^4 and R^5 each independently is selected from the group of hydrogen, F, and $\mathsf{C}_1\text{--}\mathsf{C}_4$ alkyl.

- 22. (Previously presented) A pharmaceutical composition according to any one of claims 47, 48 or 49, wherein R^8 through R^{10} each independently is selected from the group of hydrogen, F, Cl, Br, NO₂, CN, OR¹¹, SR¹¹, C₁–C₆ alkyl, C₁–C₆ heteroalkyl, and C₁–C₆ haloalkyl.
- 23. (Original) A pharmaceutical composition according to claim 22, wherein R^8 through R^{10} each independently is selected from the group of hydrogen, F, and OR^{11} .

Applicant: Lin Zhi et al.

Attorney's Docket No.: 18202-020001 / 1088
Serial No.: 10/684,229

Amendment After Final

Filed : October 10, 2003

24 (Proviously presented). A sharmon subject some saiting a security of the same

24. (Previously presented) A pharmaceutical composition according to any one of claims 47, 48 or 49, wherein R^{11} through R^{12} each independently is selected from the group of hydrogen, and C_1 – C_4 alkyl.

25. (Currently amended) A pharmaceutical composition, comprising a pharmaceutically acceptable carrier and a compound of formula:

$$\begin{array}{c}
R^{19} \stackrel{R^{18}}{R^{17}} \stackrel{R^{16}}{R^{15}} \\
R^{20} \stackrel{R^{15}}{n} \stackrel{R^{15}}{R^{15}} \\
R^{8} \stackrel{R^{21}}{R^{14}} \stackrel{R^{14}}{R^{14}} \\
R^{9} \stackrel{R^{21}}{R^{14}} \stackrel{R^{15}}{R^{15}} \\
R^{10} \stackrel{R^{21}}{R^{16}} \stackrel{R^{15}}{R^{15}} \\
R^{10} \stackrel{R^{21}}{R^{15}} \stackrel{R^{16}}{R^{15}} \\
R^{10} \stackrel{R^{15}}{R^{15}} \stackrel{R^{16}}{R^{15}} \\
R^{10} \stackrel{R^{10}}{R^{15}} \stackrel{R^{16}}{R^{15}} \\
R^{10} \stackrel{R^{16}}{R^{15}} \stackrel{R^{16}}{R^{15}} \\
R^{10} \stackrel{R^{10}}{R^{15}} \stackrel{R^{16}}{R^{15}} \\
R^{10} \stackrel{R^{16}}{R^{15}} \stackrel{R^{16}}{R^{15}} \\
R^{10} \stackrel{R^{16}}{R^{$$

wherein:

R¹ is selected from the group of hydrogen, C₁–C₄ alkyl, C₁–C₄ haloalkyl, C₁–C₄ heteroalkyl, COR¹¹, CO₂R¹¹, SO₂R¹¹, and CONR¹¹R¹²;

 R^2 and R^3 each independently is selected from the group of hydrogen, C_1 – C_6 alkyl, and C_1 – C_6 haloalkyl; or

R² and R³ taken together form a cycloalkyl ring of from three to twelve carbons;

 R^4 through R^7 each independently is selected from the group of hydrogen, F, CI, Br, CN, OR^{11} , C_1 – C_4 alkyl, C_1 – C_4 haloalkyl, and C_1 – C_4 heteroalkyl; or

R⁵ and R⁷ taken together form a bond; or

R⁶ and R⁷ taken together are selected from the group of methylidene, monosubstituted methylidene, di-substituted methylidene and carbonyl;

 R^8 through R^{10} each independently is selected from the group of hydrogen, F, Cl, Br, I, NO₂, CN, OR¹¹, NR¹¹R¹², SR¹¹, COR¹¹, CO₂R¹¹, CONR¹¹R¹², C₁–C₈ alkyl, C₁–C₈ heteroalkyl, C₁–C₈ haloalkyl, allyl, C₂–C₈ alkenyl and C₂–C₈ alkynyl;

 R^{11} and R^{12} each is independently selected from the group of hydrogen, C_1 – C_4 alkyl, C_1 – C_4 heteroalkyl, and C_1 – C_4 haloalkyl;

R¹³ is hydrogen;

R¹⁴ and R¹⁶ taken together form a bond or "-O-" bridge;

 R^{15} , R^{17} , R^{18} , R^{19} , R^{20} each independently is selected from the group of hydrogen, F, Cl, C_1 – C_4 alkyl, and C_1 – C_4 haloalkyl;

Serial No.: 10/684,229 Filed : October 10, 2003

R²¹ is hydrogen; or

R²¹ and R²⁰ taken together form a bond; and

n is 0, 1, 2, or 3;

or a pharmaceutically acceptable salt or prodrug thereof.

26. (Currently amended) A pharmaceutical composition, comprising a pharmaceutically acceptable carrier and a compound of formula:

$$\begin{array}{c}
R^{19} \\
R^{20} \\
R^{15} \\
R^{15} \\
R^{14} \\
R^{13} \\
R^{10}
\end{array}$$

$$\begin{array}{c}
R^{9} \\
R^{21} \\
R^{13} \\
R^{13} \\
R^{13} \\
R^{14} \\
R^{13} \\
R^{14} \\
R^{15} \\
R^{14} \\
R^{15} \\
R^{15} \\
R^{16} \\
R^{15} \\
R^{15} \\
R^{16} \\
R^{15} \\
R^{16} \\
R^{15} \\
R^{15} \\
R^{16} \\
R^{13} \\
R^{10} \\
R^{10$$

wherein:

 R^1 is selected from the group of hydrogen, C_1-C_4 alkyl, C_1-C_4 haloalkyl, C_1 C₄ heteroalkyl, COR¹¹, CO₂R¹¹, SO₂R¹¹, and CONR¹¹R¹²;

R² and R³ each independently is selected from the group of hydrogen, C₁–C₆ alkyl, and C₁–C₆ haloalkyl; or

R² and R³ taken together form a cycloalkyl ring of from three to twelve carbons:

R⁴ through R⁷ each independently is selected from the group of hydrogen, F, Cl, Br, CN, OR¹¹, C₁–C₄ alkyl, C₁–C₄ haloalkyl, and C₁–C₄ heteroalkyl; or

R⁵ and R⁷ taken together form a bond; or

R⁶ and R⁷ taken together are selected from the group of methylidene, monosubstituted methylidene, di-substituted methylidene and carbonyl;

 R^8 through R^{10} each independently is selected from the group of hydrogen, F, CI, Br, I, NO₂, CN, OR¹¹, NR¹¹R¹², SR¹¹, COR¹¹, CO₂R¹¹, CONR¹¹R¹², C₁–C₈ alkyl, C₁–C₈ heteroalkyl, C₁–C₈ haloalkyl, allyl, C₂–C₈ alkenyl and C₂–C₈ alkynyl;

R¹¹ and R¹² each is independently selected from the group of hydrogen, C₁- C_4 alkyl, C_1 – C_4 heteroalkyl, and C_1 – C_4 haloalkyl;

R¹³ is hydrogen;

R¹⁴, R¹⁵, R¹⁸, R¹⁹, R²⁰ each independently is selected from the group of hydrogen, F, Cl, C₁–C₄ alkyl, and C₁–C₄ haloalkyl;

Applicant: Lin Zhi et al. Serial No.: 10/684,229 Amendment After Final

R¹⁶ and R¹⁷ taken together are selected from the group of methylidene, monosubstituted methylidene, and di-substituted methylidene:

R²¹ is hydrogen; or

: October 10, 2003

R²¹ and R²⁰ taken together form a bond; and

n is 0, 1, 2, or 3;

or a pharmaceutically acceptable salt or prodrug thereof.

27. (Currently amended) A pharmaceutical composition, comprising a pharmaceutically acceptable carrier and a compound of formula:

$$\begin{array}{c}
R^{19} \\
R^{20} \\
R^{15} \\
R^{15} \\
R^{14} \\
R^{10}
\end{array}$$

$$\begin{array}{c}
R^{9} \\
R^{21} \\
R^{10}
\end{array}$$

$$\begin{array}{c}
R^{18} \\
R^{15} \\
R^{14} \\
R^{13} \\
R^{14} \\
R^{13} \\
R^{4} \\
R^{3} \\
R^{1} \\
R^{2}
\end{array}$$

$$\begin{array}{c}
R^{19} \\
R^{15} \\
R^{15} \\
R^{14} \\
R^{14} \\
R^{15} \\
R^{15} \\
R^{16} \\
R^{15} \\
R^{16} \\
R^{15} \\
R^{16} \\$$

wherein:

Filed

 R^1 is selected from the group of hydrogen, C_1-C_4 alkyl, C_1-C_4 haloalkyl, C_1-C_4 C₄ heteroalkyl, COR¹¹, CO₂R¹¹, SO₂R¹¹, and CONR¹¹R¹²:

R² and R³ each independently is selected from the group of hydrogen, C₁-C₆ alkyl, and C₁–C₆ haloalkyl; or

R² and R³ taken together form a cycloalkyl ring of from three to twelve carbons;

R⁴ through R⁷ each independently is selected from the group of hydrogen, F,

Cl, Br, CN, OR¹¹, C₁–C₄ alkyl, C₁–C₄ haloalkyl, and C₁–C₄ heteroalkyl; or

R⁵ and R⁷ taken together form a bond; or

R⁶ and R⁷ taken together are selected from the group of methylidene, monosubstituted methylidene, di-substituted methylidene and carbonyl:

R⁸ through R¹⁰ each independently is selected from the group of hydrogen, F, CI, Br, I, NO₂, CN, OR¹¹, NR¹¹R¹², SR¹¹, COR¹¹, CO₂R¹¹, CONR¹¹R¹², C₁–C₈ alkyl, C_1-C_8 heteroalkyl, C_1-C_8 haloalkyl, allyl, C_2-C_8 alkenyl and C_2-C_8 alkynyl;

R¹¹ and R¹² each is independently selected from the group of hydrogen, C₁- C_4 alkyl, C_1 – C_4 heteroalkyl, and C_1 – C_4 haloalkyl;

R¹³ is hydrogen;

Applicant: Lin Zhi et al.

Attorney's Docket No.: 18202-020001 / 1088

Serial No.: 10/684,229

Filed: October 10, 2003

Amendment After Final

 R^{14} , R^{15} , R^{17} , R^{20} each independently is selected from the group of hydrogen, F, Cl, C_1 – C_4 alkyl, and C_1 – C_4 haloalkyl;

R¹⁶ and R¹⁸ taken together form a bond when n is 1; or

R¹⁶ and R¹⁹ taken together form a bond when n is 0;

R²¹ is hydrogen; and

n is 0, 1, 2, or 3;

or a pharmaceutically acceptable salt or prodrug thereof.

- 28. (Cancelled)
- 29. (Cancelled)
- 30. through 43. (Cancelled)
- 44. (Currently amended) A compound of the formula:

wherein:

R¹ is selected from the group of hydrogen, C₁–C₄ alkyl, C₁–C₄ haloalkyl, C₁–C₄ heteroalkyl, COR¹¹, CO₂R¹¹, SO₂R¹¹, and CONR¹¹R¹²;

 R^2 and R^3 each independently is selected from the group of hydrogen, C_1 – C_6 alkyl, and C_1 – C_6 haloalkyl; or

R² and R³ taken together form a cycloalkyl ring of from three to twelve carbons;

 R^4 through R^7 each independently is selected from the group of hydrogen, F, Cl, Br, CN, OR^{11} , C_1 – C_4 alkyl, C_1 – C_4 haloalkyl, and C_1 – C_4 heteroalkyl; or

R⁵ and R⁷ taken together form a bond; or

R⁶ and R⁷ taken together are selected from the group of methylidene, monosubstituted methylidene, di-substituted methylidene and carbonyl;

 R^8 through R^{10} each independently is selected from the group of hydrogen, F, CI, Br, I, NO₂, CN, OR¹¹, NR¹¹R¹², SR¹¹, COR¹¹, CO₂R¹¹, CONR¹¹R¹², C₁–C₈ alkyl, C₁–C₈ heteroalkyl, C₁–C₈ haloalkyl, allyl, C₂–C₈ alkenyl and C₂–C₈ alkynyl;

Serial No.: 10/684,229 : October 10, 2003

Filed

R¹¹ and R¹² each is independently selected from the group of hydrogen, C₁-C₄ alkyl, C₁-C₄ heteroalkyl, and C₁-C₄ haloalkyl;

R¹³ is hydrogen;

R¹⁴ through R²⁰ each independently is selected from the group of hydrogen,

F, Cl, Br, OR¹¹, C₁–C₄ alkyl, C₁–C₄ haloalkyl, and C₁–C₄ heteroalkyl; or

R¹⁴ and R¹⁵ taken together are selected from the group of methylidene. carbonyl and thiocarbonyl; or

R¹⁶ and R¹⁷ taken together are selected from the group of methylidene, monosubstituted methylidene, di-substituted methylidene, carbonyl and thiocarbonyl; or

R¹⁴ and R¹⁶ taken together form a bond or "-O-" bridge; or

R¹⁶ and R¹⁸ taken together form a bond when n is 1: or

R¹⁶ and R¹⁹ taken together form a bond when n is 0;

R²¹ is hydrogen; or

R²¹ and R²⁰ taken together form a bond:

n is 0, 1, 2, or 3;

or a pharmaceutically acceptable salt or prodrug thereof.

45. (Currently amended) A compound of the formula:

(I)

wherein:

R¹ is selected from the group of hydrogen, C₁–C₄ alkyl, C₁–C₄ haloalkyl, C₁– C₄ heteroalkyl, COR¹¹, CO₂R¹¹, SO₂R¹¹, and CONR¹¹R¹²;

R² and R³ each independently is selected from the group of hydrogen, C₁–C₆ alkyl, and C₁-C₆ haloalkyl; or

R² and R³ taken together form a cycloalkyl ring of from three to twelve carbons;

R⁴ through R⁷ each independently is selected from the group of hydrogen, F, Cl, Br, CN, OR¹¹, C₁–C₄ alkyl, C₁–C₄ haloalkyl, and C₁–C₄ heteroalkyl; or

Applicant: Lin Zhi et al.

Attorney's Docket No.: 18202-020001 / 1088
Serial No.: 10/684.229

Amendment After Final

Serial No.: 10/684,229 Filed: October 10, 2003

R⁵ and R⁷ taken together form a bond; or

R⁶ and R⁷ taken together are selected from the group of methylidene, monosubstituted methylidene, di-substituted methylidene and carbonyl;

 R^8 through R^{10} each independently is selected from the group of hydrogen, F, CI, Br, I, NO₂, CN, OR¹¹, NR¹¹R¹², SR¹¹, COR¹¹, CO₂R¹¹, CONR¹¹R¹², C₁–C₈ alkyl, C₁–C₈ heteroalkyl, C₁–C₈ haloalkyl, allyl, C₂–C₈ alkenyl and C₂–C₈ alkynyl;

 R^{11} and R^{12} each is independently selected from the group of hydrogen, C_1 – C_4 alkyl, C_1 – C_4 heteroalkyl, and C_1 – C_4 haloalkyl;

R¹³ is hydrogen; or

R¹³ and R¹⁴ taken together form a bond;

R¹⁴ through R²⁰ each independently is selected from the group of hydrogen,

F, Cl, Br, OR^{11} , C_1 – C_4 alkyl, C_1 – C_4 haloalkyl, and C_1 – C_4 heteroalkyl; or

R¹⁴ and R¹⁵ taken together are selected from the group of methylidene, carbonyl and thiocarbonyl; or

R¹⁶ and R¹⁷ taken together are selected from the group of methylidene, monosubstituted methylidene, di-substituted methylidene, carbonyl and thiocarbonyl; or

R¹⁴ and R¹⁶ taken together form a bond or "-O-" bridge;

R¹⁶ and R¹⁹ taken together form a bond when n is 0;

R²¹ is hydrogen; or

R²¹ and R²⁰ taken together form a bond;

n is 0, 1, 2, or 3;

or a pharmaceutically acceptable salt or prodrug thereof.

46. (Currently amended) A compound of the formula:

wherein:

(I)

Serial No.: 10/684,229 Filed : October 10, 2003

R¹ is selected from the group of hydrogen, C₁–C₄ alkyl, C₁–C₄ haloalkyl, C₁– C₄ heteroalkyl, COR¹¹, CO₂R¹¹, SO₂R¹¹, and CONR¹¹R¹²;

R² and R³ each independently is selected from the group of hydrogen, C₁--C₆ alkyl, and C₁–C₆ haloalkyl; or

R² and R³ taken together form a cycloalkyl ring of from three to twelve carbons;

R⁴ through R⁷ each independently is selected from the group of hydrogen. F.

Cl, Br, CN, OR¹¹, C₁–C₄ alkyl, C₁–C₄ haloalkyl, and C₁–C₄ heteroalkyl; or

R⁵ and R⁷ taken together form a bond; or

R⁶ and R⁷ taken together are selected from the group of methylidene, monosubstituted methylidene, di-substituted methylidene and carbonyl;

R⁸ through R¹⁰ each independently is selected from the group of hydrogen, F, CI, Br, I, NO₂, CN, OR¹¹, NR¹¹R¹², SR¹¹, COR¹¹, CO₂R¹¹, CONR¹¹R¹², C₁–C₈ alkyl,

C₁–C₈ heteroalkyl, C₁–C₈ haloalkyl, allyl, C₂–C₈ alkenyl and C₂–C₈ alkynyl;

 R^{11} and R^{12} each is independently selected from the group of hydrogen, C_1 C_4 alkyl, C_1 – C_4 heteroalkyl, and C_1 – C_4 haloalkyl;

R¹³ is hydrogen; or

R¹³ and R¹⁴ taken together form a bond:

R¹⁴ through R²⁰ each independently is selected from the group of hydrogen,

F, Cl, Br, OR¹¹, C₁–C₄ alkyl, C₁–C₄ haloalkyl, and C₁–C₄ heteroalkyl; or

R¹⁴ and R¹⁵ taken together are selected from the group of methylidene. carbonyl and thiocarbonyl; or

R¹⁶ and R¹⁷ taken together are selected from the group of methylidene, monosubstituted methylidene, di-substituted methylidene, carbonyl and thiocarbonyl; or

R¹⁴ and R¹⁶ taken together form a bond or "-O-" bridge; or

R¹⁶ and R¹⁸ taken together form a bond when n is 1: or

R¹⁶ and R¹⁹ taken together form a bond when n is 0:

R²¹ is hydrogen;

n is 0, 1, 2, or 3;

or a pharmaceutically acceptable salt or prodrug thereof.

47. (Previously presented) A pharmaceutical composition, comprising a pharmaceutically acceptable carrier and a compound of any one of claims 44-46.