Quick Reference

8

Truth Functional Operators (Ch. 3)

φ	Ψ	$\neg \phi$	$\varphi \wedge \psi$	$\varphi \lor \psi$	$\phi \rightarrow \psi$	$\phi \leftrightarrow \psi$
T	T	F	T	T	T	T
T	F	F	F	T	F	F
F	T	T	F	T	T	F
F	F	T	F	F	T	T

Deduction Rules for TFL (Ch. 4)

Conjunction Introduction

$$\begin{array}{c|ccc}
m & \varphi \\
n & \psi \\
\varphi \wedge \psi & \wedge I m, n
\end{array}$$

Conditional Elimination

$$\begin{array}{c|ccc}
m & \varphi \to \psi \\
n & \varphi \\
& \psi & \to \to m, n
\end{array}$$

Conjunction Elimination

$$m \mid \varphi \wedge \psi$$
 $\varphi \quad \wedge \to m$
 $m \mid \varphi \wedge \psi$
 $\psi \quad \wedge \to m$

Biconditional Introduction

$$\begin{array}{c|c} i & \phi & \text{Assumption} \\ \hline j & \psi & \\ k & \psi & \text{Assumption} \\ l & \phi & \\ \hline \phi & & & \\ \hline \phi & & & \\ \hline \phi & & & \\ \hline \end{array}$$

Conditional Introduction

$$\begin{array}{c|ccc}
i & & \varphi & & \text{Assumption} \\
j & & \psi & & \\
\hline
\varphi \to \psi & & \to I i-j
\end{array}$$

Biconditional Elimination

$$\begin{array}{c|ccc}
m & \varphi \leftrightarrow \psi \\
n & \varphi \\
& \psi & \leftrightarrow E m, n
\end{array}$$

163

$$\begin{array}{c|ccc}
m & \varphi \leftrightarrow \psi \\
n & \psi \\
\varphi & \leftrightarrow \to E m, n
\end{array}$$

Negation Introduction

$$m$$
 n
 ϕ
Assumption
 ϕ
 ϕ
 ϕ
 ϕ
 ϕ
 ϕ
 ϕ
 ϕ
 ϕ

Absurdity Introduction

$$m \mid \varphi$$
 $n \mid \neg \varphi$
 $\perp \qquad \perp \text{I } m, n$

Indirect Proof

$$m$$
 n
 $\neg \varphi$
Assumption
 \bot
 φ
IP m — n

Disjunction Introduction

$$m \mid \varphi$$
 $\varphi \lor \psi \lor I m$

 $\vee I m$

$$\begin{array}{c|ccc}
m & \varphi \lor \psi \\
i & \varphi & \text{Assumption} \\
j & \chi & \\
k & \psi & \text{Assumption} \\
l & \chi & \vee E m, i-j, k-1
\end{array}$$

Derived Rules for TFL (§4.11)

Sequent	Derived Rule
$\overline{\hspace{1.5cm} \phi ightarrow \psi, eg \psi \vdash eg \phi}$	MT
$arphi \lor \psi, eg \psi dash arphi$	DS
$oldsymbol{arphi}ee\psi, egoldsymbol{arphi}ee\psi$	DS
$arphi dash \psi o arphi$	PMI
$ eg \phi dash \phi o \psi$	PMI
$\phi ightarrow \psi \dashv \vdash eg \phi \lor \psi$	Imp
$ eg(\phi o \psi) \dashv \!\!\! \vdash \phi \wedge eg \psi$	NegImp
$\neg(\phi \land \psi) \dashv \vdash \neg \phi \lor \neg \psi$	DeM
$ eg(\phi \lor \psi) \dashv \vdash eg \phi \land eg \psi$	DeM
$\phi\dashv\vdash\lnot\lnot\phi$	DN
$(\varphi \# \psi) \dashv \vdash (\neg \neg \varphi \# \neg \neg \psi) \dashv \vdash (\neg \neg \varphi \# \psi) \dashv \vdash (\varphi \# \neg \neg \psi)$	SDN
$\neg(\phi \# \psi) \dashv \vdash \neg(\neg\neg\phi \# \neg\neg\psi) \dashv \vdash \neg(\neg\neg\phi \# \psi) \dashv \vdash \neg(\phi \# \neg\neg\psi)$	SDN
$\varphi @ \psi \vdash \psi @ \varphi$	Com
$ot \vdash arphi$	EX
dash arphi ee arphi ee - arphi	LEM

164

Deduction Rules for FOL (Ch. 6)

Universal Elimination

$$\begin{array}{c|c}
m & \forall v \varphi(\dots v \dots) \\
\varphi(\dots c \dots) & \forall E m
\end{array}$$

Universal Introduction

$$\begin{array}{c|c}
m & c & \text{Flag} \\
n & \varphi(\dots c \dots) & \\
\forall v \varphi(\dots v \dots) & \forall I \ \textit{m-re}
\end{array}$$

The Flag-ed name $\,c\,$ may not occur outside the subproof.

Identity Elimination

$$\begin{array}{c|cccc}
m & \alpha = \theta \\
n & \varphi(\dots \alpha \dots \alpha \dots) \\
& \varphi(\dots \theta \dots \alpha \dots) & =E m, n
\end{array}$$

$$\begin{array}{c|cccc}
m & \alpha = \theta \\
n & \varphi(\dots \theta \dots \theta \dots) \\
& \varphi(\dots \alpha \dots \theta \dots) & =E m, n
\end{array}$$

Existential Introduction

$$m \mid \varphi(\ldots c \ldots)$$

$$\exists v \varphi(\ldots v \ldots) \qquad \exists I m$$

Existential Elimination

$$\begin{array}{c|c} m & \exists v \varphi(\dots v \dots) \\ i & & \varphi(\dots c \dots) \\ j & & \psi & \exists E \ m, i-j \end{array}$$
 Assumption (flag c)

The Flag-ed name c may not occur outside the subproof.

Identity Introduction

$$c=c$$
 =I