Timepix3 in the AEgIS experiment

Helga Holmestad

University of Oslo

19/9-2018

AEgIS experiment

Measure the gravitational acceleration of antimatter

AEgIS experiment

Measure the gravitational acceleration of antimatter

The equivalence principle

- Gravitational field = accelerated frame of reference
- ▶ Predicts: $\bar{g} = g$
 - Never been tested before
- Building block of general relativity
 - Bending of light
 - ► Red shift
- Matter-antimatter assymetry

The equivalence principle

- Gravitational field = accelerated frame of reference
- ▶ Predicts: $\bar{g} = g$
 - Never been tested before
- Building block of general relativity
 - Bending of light
 - Red shift
- Matter-antimatter assymetry

The equivalence principle

- Gravitational field = accelerated frame of reference
- ▶ Predicts: $\bar{g} = g$
 - Never been tested before
- Building block of general relativity
 - Bending of light
 - Red shift
- Matter-antimatter assymetry

► Tag antihydrogen

▶ Fragments from annihilations outside the detector

► Measure time of flight

- ► Energy of antihydrogen beam will not be completely uniform
- ▶ Transit time through the moirè deflectometer is around 2ms

Reconstruct the annihilation point

- \blacktriangleright The periodicity of the moire deflectometer is around 50 μm
- \blacktriangleright Vertical fall around 10 μ m
- \blacktriangleright Around 10 μ m resolution needed to achieve 1% precision on \bar{g}
- ▶ Does a detector fullfilling these requirements already exist?

- ▶ Tag antihydrogen
 - ▶ Fragments from annihilations outside the detector
- ► Measure time of flight
 - ► Energy of antihydrogen beam will not be completely uniform
 - ▶ Transit time through the moirè deflectometer is around 2ms
- Reconstruct the annihilation point
 - \blacktriangleright The periodicity of the moire deflectometer is around 50 μm
 - \blacktriangleright Vertical fall around 10 μ m
 - \blacktriangleright Around 10 μ m resolution needed to achieve 1% precision on \bar{g}
- ▶ Does a detector fullfilling these requirements already exist?

- ▶ Tag antihydrogen
 - ▶ Fragments from annihilations outside the detector
- Measure time of flight
 - Energy of antihydrogen beam will not be completely uniform
 - ▶ Transit time through the moirè deflectometer is around 2ms
- Reconstruct the annihilation point
 - \blacktriangleright The periodicity of the moire deflectometer is around 50 μm
 - \blacktriangleright Vertical fall around 10 μ m
 - \blacktriangleright Around 10 μ m resolution needed to achieve 1% precision on \bar{g}
- ▶ Does a detector fullfilling these requirements already exist?

- ► Tag antihydrogen
 - ▶ Fragments from annihilations outside the detector
- Measure time of flight
 - Energy of antihydrogen beam will not be completely uniform
 - ► Transit time through the moirè deflectometer is around 2ms
- Reconstruct the annihilation point
 - \blacktriangleright The periodicity of the moire deflectometer is around 50 μ m
 - ▶ Vertical fall around 10 μ m
 - lacktriangle Around 10 μ m resolution needed to achieve 1% precision on $ar{g}$
- Does a detector fullfilling these requirements already exist?

- ► Tag antihydrogen
 - Fragments from annihilations outside the detector
- Measure time of flight
 - Energy of antihydrogen beam will not be completely uniform
 - ► Transit time through the moirè deflectometer is around 2ms
- Reconstruct the annihilation point
 - \blacktriangleright The periodicity of the moire deflectometer is around 50 μ m
 - ▶ Vertical fall around 10 μ m
 - lacktriangle Around 10 μ m resolution needed to achieve 1% precision on $ar{g}$
- Does a detector fullfilling these requirements already exist?

Silicon pixel detector using the Timepix3 readout system

- ▶ 55 μ m×55 μ m pixels
- Measure both time of arrival and deposited energy
- ▶ Time resolution 1–2 ns
- ▶ 670 μ m thick
- Expose the Timepix3 detector to antiprotons as the annihilation process is the same

Silicon pixel detector using the Timepix3 readout system

- ▶ 55 μ m×55 μ m pixels
- Measure both time of arrival and deposited energy
- ▶ Time resolution 1–2 ns
- ▶ 670 μ m thick
- Expose the Timepix3 detector to antiprotons as the annihilation process is the same

GRACE beamline

GRACE in standard setting

GRACE for reference sample

Antiproton data

Antiproton data

Detector response model

- Raw energy depositions in small voxels (FLUKA)
- Parametrized model for charge sharing including the plasma effect
- ▶ Volcano effect
- Suppressed pixels in the experimental set-up
- ► Re-clustering

Detector response model

- Raw energy depositions in small voxels (FLUKA)
- Parametrized model for charge sharing including the plasma effect
- Volcano effect
- Suppressed pixels in the experimental set-up
- ► Re-clustering

Detector response model

- Raw energy depositions in small voxels (FLUKA)
- Parametrized model for charge sharing including the plasma effect
- Volcano effect.
- Suppressed pixels in the experimental set-up
- ► Re-clustering

Detector response model

- Raw energy depositions in small voxels (FLUKA)
- Parametrized model for charge sharing including the plasma effect
- Volcano effect
- Suppressed pixels in the experimental set-up
- ► Re-clustering

- ▶ Clustering in time and space
- ► Find center
- Estimate annihilation point (mass center method)
- ► Reomve center
- Hough transform to identify prongs
- ► Remove prong (star arms)
- ► Find more prongs
- ► Check for single tracks
- ► Fit lines to the prongs and find intersection (vertex fitting method)

- Clustering in time and space
- Find center
- Estimate annihilation point (mass center method)
- Reomve center
- Hough transform to identify prongs
- Remove prong (star arms)
- ► Find more prongs
- ► Check for single tracks
- Fit lines to the prongs and find intersection (vertex fitting method)

- ► Clustering in time and space
- Find center
- Estimate annihilation point (mass center method)
- ► Reomve center
- Hough transform to identify prongs
- ► Remove prong (star arms)
- ► Find more prongs
- ► Check for single tracks
- ► Fit lines to the prongs and find intersection (vertex fitting method)

- Clustering in time and space
- Find center
- Estimate annihilation point (mass center method)
- Reomye center
- Hough transform to identify prongs
- ► Remove prong (star arms)
- ► Find more prongs
- ► Check for single tracks
- ► Fit lines to the prongs and find intersection (vertex fitting method)

- Clustering in time and space
- Find center
- Estimate annihilation point (mass center method)
- Reomve center
- Hough transform to identify prongs
- Remove prong (star arms)
- ► Find more prongs
- ► Check for single tracks
- ► Fit lines to the prongs and find intersection (vertex fitting method)

- Clustering in time and space
- Find center
- Estimate annihilation point (mass center method)
- Reomve center
- Hough transform to identify prongs
- Remove prong (star arms)
- ► Find more prongs
- ► Check for single tracks
- ► Fit lines to the prongs and find intersection (vertex fitting method)

- Clustering in time and space
- Find center
- Estimate annihilation point (mass center method)
- Reomve center
- Hough transform to identify prongs
- Remove prong (star arms)
- Find more prongs
- ► Check for single tracks
- ► Fit lines to the prongs and find intersection (vertex fitting method)

- Clustering in time and space
- Find center
- Estimate annihilation point (mass center method)
- Reomve center
- Hough transform to identify prongs
- Remove prong (star arms)
- Find more prongs
- ► Check for single tracks
- Fit lines to the prongs and find intersection (vertex fitting method)

- Clustering in time and space
- Find center
- Estimate annihilation point (mass center method)
- Reomve center
- Hough transform to identify prongs
- Remove prong (star arms)
- Find more prongs
- ► Check for single tracks
- Fit lines to the prongs and find intersection (vertex fitting method)

- Clustering in time and space
- Find center
- Estimate annihilation point (mass center method)
- Reomve center
- Hough transform to identify prongs
- Remove prong (star arms)
- Find more prongs
- ► Check for single tracks
- Fit lines to the prongs and find intersection (vertex fitting method)

- Clustering in time and space
- Find center
- Estimate annihilation point (mass center method)
- Reomve center
- Hough transform to identify prongs
- Remove prong (star arms)
- ► Find more prongs
- ► Check for single tracks
- Fit lines to the prongs and find intersection (vertex fitting method)

Cluster energy

Cluster energy in center

Cluster size

Number of prongs

Tagging efficiency

- Anninhilation clusters are larger and have prongs
- ► Trade off between tagging efficency and false positive rate
- ▶ A good compromise: At least 70 pixels and at least 1 prong
 - ▶ Tagging efficency $50 \pm 10\%$
 - ▶ Positive false rate below 1.1%

Tagging efficiency

- Anninhilation clusters are larger and have prongs
- ► Trade off between tagging efficency and false positive rate
- ▶ A good compromise: At least 70 pixels and at least 1 prong
 - ▶ Tagging efficency $50 \pm 10\%$
 - ▶ Positive false rate below 1.1%

Tagging efficiency

- Anninhilation clusters are larger and have prongs
- ► Trade off between tagging efficency and false positive rate
- ▶ A good compromise: At least 70 pixels and at least 1 prong
 - ▶ Tagging efficency $50 \pm 10\%$
 - ▶ Positive false rate below 1.1%

- Mass center method
 - All clusters
 - ▶ 93 μm resolution
- ► Vertex fitting method
 - ▶ 45% of all clusters
 - ▶ 48 μm resolution
- Vertex fitting method exluding bad fits
 - 22% of all clusters
 - \blacktriangleright 22 μm resolution
- ► Change of annihilation fragments shown to have small effect on position resolution $\approx \pm 1 \mu m$

- Mass center method
 - All clusters
 - ▶ 93 μm resolution
- Vertex fitting method
 - ▶ 45% of all clusters
 - ▶ 48 μ m resolution
- Vertex fitting method exluding bad fits
 - ▶ 22% of all clusters
 - ▶ 22 μm resolution
- ► Change of annihilation fragments shown to have small effect on position resolution $\approx \pm 1 \mu m$

- Mass center method
 - All clusters
 - ▶ 93 μ m resolution
- Vertex fitting method
 - ▶ 45% of all clusters
 - ▶ 48 μ m resolution
- Vertex fitting method exluding bad fits
 - 22% of all clusters
 - 22 μm resolution
- ► Change of annihilation fragments shown to have small effect on position resolution $\approx \pm 1 \mu m$

- Mass center method
 - All clusters
 - ▶ 93 μ m resolution
- Vertex fitting method
 - ▶ 45% of all clusters
 - ▶ 48 μ m resolution
- Vertex fitting method exluding bad fits
 - 22% of all clusters
 - 22 μm resolution
- ► Change of annihilation fragments shown to have small effect on position resolution $\approx \pm 1 \mu m$

Conclusion

- ▶ We can clearly see the annihilation clusters in the Timepix3
- Better understanding of annihilations in material
- Better understanding of for large energy depositions in the Timepix3 detector
- Detector response model taking into account th Developed a detector response model, and a full simulation of the GRACE beamline
- ▶ Tagging efficiency of $50 \pm 10\%$
- ► False positive rate < 1.0%
- ▶ Position resolution of 22 μ m

For more information

Find all the details here

Antiproton tagging and vertex fitting in a Timepix3 detector" S. Aghion et al 2018 JINST 13 P06004 link.

https://github.com/helgaholmestad/finalTimepix.

Thank you and goodbye!!

- ▶ Jerome Alozy
- Xavi Cudie

