	Numer indeksu:		$Grupa^1$:				
]		8–10 s.104	8–10 s.105	8–10 s.139		
Wersja: ${f B}$			8–10 s.140				
			10-12 s. 104	10–12 s.139	10–12 s.140		
	Logika dla	informa	atyków				
	Kolokwium nr czas pisani						
Zadanie 1 (2 punkty). Na zbiorze $\mathcal{P}(\mathbb{N})$ wszystkich podzbiorów zbioru \mathbb{N} definiujemy relację równoważności \sim w taki sposób, że $X\sim Y$ zachodzi wtedy i tylko wtedy, gdy zbiory X i Y są równoliczne. W prostokąty poniżej wpisz odpowiednio moc klasy abstrakcji $[\{42,17\}]_{\sim}$ oraz moc zbioru klas abstrakcji relacji \sim .							
$ [\{42,17\}]_{\sim} =$		1	$\mathcal{P}(\mathbb{N})/_{\sim} =$				
Zadanie 2 (2 punkty). Jeśli istnieje pięć różnych zbiorów równolicznych z $\mathbb R$ to w prostokąt poniżej wpisz dowolny przykład takich pięciu zbiorów. W przeciwnym przypadku wpisz słowa "NIE ISTNIEJE".							
Zadanie 3 (2 punkty). Rozważmy funkcję $F:\mathbb{N}^{\mathbb{N}}\to\mathbb{N}^{\mathbb{N}}$ daną wzorem							
	$F(f): \mathbb{N} \to \mathbb{N},$	(F(f))(n) = f(2n).				
	cję odwrotną, to w prostokąt wpisz uzasadnienie, dlaczego			-	. W przeciw-		

¹Proszę zakreślić właściwą grupę ćwiczeniową.

		kozważmy podział ej wpisz relację rów					
Zadanie 5 (2	punkty). Re	ozważmy funkcje					
		$(A \times B)^C \to (A \times C)^B$ $(B \to (A \times C)^B)$,	$g : C \rightarrow$	$A \times B$,		
dla każdej użyt dziedziny tej fu	tej w nim fur unkcji. Np. w okąty obok ty	B i $c \in C$. W tymakcji (i dla dowolny yrażenie $f(a)$ nie jech spośród podanyc \mathbb{E}^n .	ych zbioro est popra	fow A, B i C wne, bo $a \notin$) jej ar $(A \times A)$	gument nal $(B)^C$. Wpisz	leży do z słowo
(f(g))(b)				$(h(g(\epsilon)))$	(c)))(b)		
h(f(c))				(f(g)))(a,b)		

		Numer indeksu:	_	Grupa ¹ :		
				8–10 s.104	8 10 s. 105	8–10 s.139
Wersja:	$ \mathbf{B} $			8–10 s.140		
				10-12 s. 104	10–12 s.139	10–12 s.140

Zadanie 6 (5 punktów). Rozważmy dowolną funkcję $f:A\to B$ i dowolną relacją równoważności $R\subseteq B\times B$. Udowodnij, że relacja

$$\{\langle x,y\rangle \mid \langle f(x),f(y)\rangle \in R\}$$

jest relacją równoważności na zbiorze A.

Zadanie 7 (5 punktów). Na zbiorze $\mathbb{N}^{\mathbb{N}}$ wszystkich funkcji z \mathbb{N} w \mathbb{N} wprowadzamy relację binarną Rwzorem

$$R(f,g) \iff f(15) = g(15) \land f(1) = g(1) \land f(2016) = g(2016).$$

Łatwo zauważyć, że R jest relacją równoważności; w rozwiązaniu tego zadania nie trzeba tego dowodzić. Niech $f_0: \mathbb{N} \to \mathbb{N}$ oraz $f_1: \mathbb{N} \to \mathbb{N}$ bedą funkcjami zadanymi wzorami $f_0(n) = 0$ i $f_1(n) = n$. Konstruując odpowiednią bijekcję udowodnij, że klasy abstrakcji $[f_0]_R$ oraz $[f_1]_R$ są równoliczne.

Zadanie 8 (5 punktów). Mówimy, że funkcja $f: N \to \mathbb{N}$ jest ściśle rosnąca jeśli spełnia warunek $\forall n \in \mathbb{N}$ f(n) < f(n+1). Udowodnij, że zbiór

$$\{f \in \mathbb{N}^{\mathbb{N}} \mid f : \mathbb{N} \to \mathbb{N} \text{ jest ściśle rosnąca} \}$$

ma moc continuum.

¹Proszę zakreślić właściwą grupę ćwiczeniową.

	Numer indeksu:	Grupa ¹ :		
		8–10 s.104	8-10 s. 105	8–10 s.139
Wersja: C		8–10 s.140		
		10-12 s. 104	10-12 s. 139	10–12 s.140
	Logika dla infor	matyków		
	17.1.1 9 15			
	Kolokwium nr 3, 15 czas pisania: 30+	•		
•	unkty). Rozważmy podział $\{\{n \in \mathbb{R} w \text{ prostokąt poniżej wpisz related} \}$		•	
` -	unkty). Jeśli istnieje pięć różnych wolny przykład takich pięciu zbior '.		-	-
Zadanie 3 (2 pr	unkty). Rozważmy funkcje			
	$f: A^{B \times C} \to (A \times B)^C,$ $h: A \times B \to (A \times B)^C$	$g : B \times C$	$C \to A$,	
każdej użytej w n tej funkcji. Np. w	$\in A, b \in B$ i $c \in C$. W tym zadan im funkcji (i dla dowolnych zbioróv vyrażenie $f(a)$ nie jest poprawne, n spośród podanych niżej wyrażeń, E".	w $A, B i C$) jej arg bo $a \notin A^{B \times C}$. W	ument należy pisz słowo "T	do dziedziny TAK" w pro-
(f(g))(c)		h(g(b,c),b)		
h(f(g))		$\Big(h(g(b,c),b)\Big)(c)$		

¹Proszę zakreślić właściwą grupę ćwiczeniową.

Zadanie 4 (2 punkty). Na zbiorze $\mathbb{N}^{\mathbb{N}}$ wszyskich funkcji z \mathbb{N} w \mathbb{N} definiujemy relację równoważności \approx w taki sposób, że dwie funkcje uznajemy za równoważne gdy przeciwobraz zbioru $\{2016\}$ przez obie funkcje jest taki sam, czyli wzorem

$$f \approx g \iff f^{-1}[\{2016\}] = g^{-1}[\{2016\}].$$

W prostokąty poniżej wpisz odpowiednio moc klasy abstrakcji $[\chi_{\mathbb{P}}]_{\approx}$ oraz moc zbioru klas abstrakcji relacji \approx , gdzie $\chi_{\mathbb{P}}$ jest funkcją charakterystyczną zbioru liczb parzystych zdefiniowaną wzorem $\chi_{\mathbb{P}}(n) = \begin{cases} 1, & \text{gdy } n \text{ jest parzyste,} \\ 0, & \text{wpp.} \end{cases}$

$$|[\chi_{\mathbb{P}}]_{pprox}| =$$
 $|\mathbb{N}^{\mathbb{N}}/_{pprox}| =$

Zadanie 5 (2 punkty). Rozważmy funkcję $f: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ daną wzorem $f(X) = \{2n \mid n \in X\}$. Jeśli f ma funkcję odwrotną, to w prostokąt poniżej wpisz funkcję odwrotną do f. W przeciwnym przypadku wpisz uzasadnienie, dlaczego funkcja odwrotna nie istnieje.

		Numer indeksu:	Grupa ¹ :		
			8-10 s. 104	8-10 s. 105	8-10 s. 139
Wersja:	$ \mathbf{C} $		8–10 s.140		
			10–12 s.104	10–12 s.139	10–12 s.140

Zadanie 6 (5 punktów). Udowodnij, że zbiór

$$\{f \in \mathbb{N}^{\mathbb{N}} \mid f : \mathbb{N} \to \mathbb{N} \text{ jest bijekcją}\}\$$

ma moc continuum.

Zadanie 7 (5 punktów). Niech $f:A\to B$ będzie bijekcją i niech $R\subseteq A\times A$ będzie relacją równoważności. Udowodnij, że relacja

$$\{\langle f(x), f(y) \rangle \mid \langle x, y \rangle \in R\}$$

jest relacją równoważności na zbiorze B.

Zadanie 8 (5 punktów). Na zbiorze $\mathcal{P}(\mathbb{N})$ wszystkich podzbiorów zbioru liczb naturalnych wprowadzamy relację binarną R wzorem

$$R(X,Y) \iff (15 \in X \Leftrightarrow 15 \in Y) \land (1 \in X \Leftrightarrow 1 \in Y) \land (2016 \in X \Leftrightarrow 2016 \in Y).$$

Łatwo zauważyć, że R jest relacją równoważności; w rozwiązaniu tego zadania nie trzeba tego dowodzić. Konstruując odpowiednią bijekcję udowodnij, że klasy abstrakcji $[\emptyset]_R$ oraz $[\mathbb{N}]_R$ są równoliczne.

¹Proszę zakreślić właściwą grupę ćwiczeniową.