第 14 次作业题

1. 将下列函数展成指定周期的 Fourier 级数并求其和函数:

(1)
$$T = 2\pi$$
, $f(x) = \begin{cases} x + \pi, & \stackrel{\text{Z}}{\pi} x \in [-\pi, 0) \\ \pi - x, & \stackrel{\text{Z}}{\pi} x \in [0, \pi] \end{cases}$;

(2) $T = 2\pi$, $f(x) = |\sin x|$, $x \in [0, 2\pi]$;

(3)
$$T=2$$
, f 为奇函数且 $f(x)=x(1-x)$, $x\in(0,1)$, 并求级数 $\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{(2n-3)^3}$;

(4) 将
$$f(x) = \begin{cases} 1-x, & \text{若 } x \in [0,1] \\ 0, & \text{苦 } x \in (1,2] \end{cases}$$
 展成以 4 为周期的正弦级数.

解: (1) 由于 $\forall x \in [-\pi, \pi]$, 均有 $f(x) = \pi - |x|$, 故 f 为偶函数, 从而 $\forall n \ge 1$, 均有 $b_n = 0$. 又 $a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} (\pi - |x|) dx = 2\pi - \frac{2}{\pi} \int_{0}^{\pi} x dx = \pi$, 而 $\forall n \ge 1$, 则有

$$a_n = \frac{2}{\pi} \int_0^{\pi} (\pi - x) \cos(nx) dx = \frac{2}{n\pi} \int_0^{\pi} \sin(nx) dx = \frac{2(1 - (-1)^n)}{n^2 \pi}.$$

注意到 f 连续且分段可导,则由 Dirichlet-Jordan 定理知, $\forall x \in [0, 2\pi]$,均有

$$f(x) = \frac{\pi}{2} + \sum_{n=1}^{\infty} \frac{4}{(2n-1)^2 \pi} \cos(2n-1)x.$$

(2) 由于 f 为偶函数, 故 $\forall n \geq 1$, 均有 $b_n = 0$. 又 $a_0 = \frac{2}{\pi} \int_0^{\pi} \sin x \, \mathrm{d}x = \frac{4}{\pi}$, 而 $\forall n \geq 1$, 均有 $a_n = \frac{2}{\pi} \int_0^{\pi} (\sin x) \cos(nx) \, \mathrm{d}x = -\frac{2(1+(-1)^n)}{\pi(n^2-1)}$. 但 f 在 $[-\pi,\pi]$ 上为连续且分段可导,于是由 Dirichlet-Jordan 定理可知 $\forall x \in \mathbb{R}$, 我们有

$$|\sin x| = \frac{2}{\pi} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos(2nx)}{4n^2 - 1}$$

(3) 由于 f 为奇函数, 则 $\forall n \geq 0$, 均有 $a_n = 0$. 又 $\forall n \geq 1$, 我们有

$$b_n = 2 \int_0^1 x(1-x)\sin(n\pi x) dx$$

$$= -\frac{2}{n\pi}x(1-x)\cos(n\pi x)\Big|_0^1 + \frac{2}{n\pi}\int_0^1 (1-2x)\cos(n\pi x) dx$$

$$= \frac{2}{(n\pi)^2}(1-2x)\sin(n\pi x)\Big|_0^1 + \frac{4}{(n\pi)^2}\int_0^1 \sin(n\pi x) dx = \frac{4(1-(-1)^n)}{(n\pi)^3},$$

而 f 在 [-1,1] 上连续, 分段可导且 f(-1) = f(1), 于是 $\forall x \in [-1,1]$, 均有

$$f(x) = \sum_{n=1}^{\infty} \frac{8}{(2n-1)^3 \pi^3} \sin(2n-1)\pi x.$$

特別地,当 $x=\frac{1}{2}$ 时,我们有 $\frac{1}{4}=\sum\limits_{n=1}^{\infty}\frac{8}{(2n-1)^3\pi^3}\sin(\frac{\pi(2n-1)}{2})=\sum\limits_{n=1}^{\infty}\frac{8(-1)^{n-1}}{(2n-1)^3\pi^3}.$ 由此可得 $\sum\limits_{n=1}^{\infty}\frac{(-1)^{n-1}}{(2n-3)^3}=-1+\sum\limits_{n=2}^{\infty}\frac{(-1)^{n-1}}{(2n-3)^3}=-1+\sum\limits_{k=1}^{\infty}\frac{(-1)^k}{(2k-1)^3}=-\frac{32+\pi^3}{32}.$

(4) 由题设可知延拓后的函数为奇函数且 T=4, 故 $\ell=2$. 于是 $\forall n\geqslant 0$, 均有 $a_n=0$, 而 $\forall n\geqslant 1$, 我们则有

$$b_n = \int_0^2 f(x) \sin(\frac{1}{2}n\pi x) dx = \int_0^1 (1-x) \sin(\frac{1}{2}n\pi x) dx$$

$$= -\frac{1}{\frac{1}{2}n\pi} (1-x) \cos(\frac{1}{2}n\pi x) \Big|_0^1 + \int_0^1 \frac{1}{\frac{1}{2}n\pi} \cos(\frac{1}{2}n\pi x) d(1-x)$$

$$= \frac{2}{n\pi} - \frac{2}{n\pi} \int_0^1 \cos(\frac{1}{2}n\pi x) dx = \frac{2}{n\pi} - \frac{4}{(n\pi)^2} \sin(\frac{1}{2}n\pi x) \Big|_0^1$$

$$= \frac{2}{n\pi} - \frac{4}{(n\pi)^2} \sin(\frac{1}{2}n\pi).$$

由于 f 在 [0,2] 上连续且分段可微, 则 $\forall x \in (0,2)$, 我们有

$$f(x) = \sum_{n=1}^{\infty} \left(\frac{2}{n\pi} - \frac{4}{(n\pi)^2} \sin(\frac{1}{2}n\pi) \right) \sin(\frac{1}{2}n\pi x),$$

而在点 x = 0,2 处, 上述 Fourier 级数均收敛到 0.

- **2.** $\c y f(x) = x 1.$
- (1) 将 f 在 $(0,2\pi)$ 上展成以 2π 为周期的 Fourier 级数并求其和函数;
- (2) 将 f 在 $(0,\pi)$ 上展成以 2π 为周期的正弦级数并求其和函数;
- (3) 将 f 在 (0,1) 上展成以 4 为周期的余弦级数并求其和函数: 如何展开, 展法是否唯一?

$$f(x) = x - 1 = \pi - 1 - \sum_{n=0}^{\infty} \frac{2}{n} \sin(nx).$$

由于 f 在 $(0,2\pi)$ 上连续可导, 则由 Dirichlet-Jordan 定理可知, $\forall x \in (0,2\pi)$,

(2) 由题知应将 f 进行奇延拓, 于是 $\forall n \ge 0$, 均有 $a_n = 0$, 而 $\forall n \ge 1$,

$$b_n = \frac{2}{\pi} \int_0^{\pi} (x-1)\sin(nx) dx = -\frac{2}{n\pi} (x-1)\cos(nx) \Big|_0^{\pi} + \frac{2}{n\pi} \int_0^{\pi} \cos(nx) dx$$
$$= -\frac{2}{n\pi} ((-1)^n (\pi - 1) + 1) + \frac{2}{n^2 \pi} \sin(nx) \Big|_0^{\pi} = -\frac{2}{n\pi} ((-1)^n (\pi - 1) + 1).$$

又 f 在 $(0,\pi)$ 上连续可导, 于是由 Dirichlet-Jordan 定理知, $\forall x \in (0,\pi)$, 均有

$$f(x) = x - 1 = -\sum_{n=1}^{\infty} \frac{2}{n\pi} ((-1)^n (\pi - 1) + 1) \sin(nx).$$

(3) 由题知应将 f 奇延拓成周期为 4 的周期函数, 为此首先须将 f 延拓到 (0,2) 上, 此时由于延拓方式不唯一, 故展法也不唯一. 下面我们取零延拓. 则 $a_0 = \int_0^1 (x-1) \, \mathrm{d}x = \frac{1}{2} (x-1)^2 \Big|_0^1 = -\frac{1}{2}$, 而 $\forall n \geq 1$, 我们有

$$a_n = \int_0^1 (x-1)\cos(\frac{1}{2}n\pi x) dx = \frac{2}{n\pi}(x-1)\sin(\frac{1}{2}n\pi x)\Big|_0^1 - \frac{2}{n\pi}\int_0^1 \sin(\frac{1}{2}n\pi x) dx$$
$$= \frac{4}{(n\pi)^2}\cos(\frac{1}{2}n\pi x)\Big|_0^1 = \frac{4}{(n\pi)^2}(\cos(\frac{1}{2}n\pi) - 1),$$

又 f 在 $(0,\pi)$ 上连续可导,于是由 Dirichlet-Jordan 定理知, $\forall x \in (0,1),$ 均有

$$f(x) = x - 1 = -\frac{1}{4} + \sum_{n=1}^{\infty} \frac{4}{(n\pi)^2} \left(\cos(\frac{1}{2}n\pi) - 1\right) \cos(\frac{1}{2}n\pi x)$$
$$= -\frac{1}{4} + \sum_{n=1}^{\infty} \frac{4}{(n\pi)^2} \left(\cos(\frac{1}{2}n\pi) - 1\right) \cos(\frac{1}{2}n\pi x).$$

3. 证明下列等式:

(1)
$$\sum_{n=1}^{\infty} \frac{\sin(nx)}{n} = \frac{\pi - x}{2} \ (0 < x < 2\pi);$$

$$(2)\ \, \sum_{n=1}^{\infty} \tfrac{1}{n^2} = \tfrac{\pi^2}{6}, \,\, \text{\#\,fi} \,\, \text{\#\,} \sum_{n=0}^{\infty} \tfrac{1}{(2n+1)^2}, \,\, \sum_{n=1}^{\infty} \tfrac{(-1)^n}{n^2};$$

(3)
$$\sum_{n=1}^{\infty} \frac{\sin(2nx)}{2n} = \frac{\pi}{4} - \frac{x}{2} \ (0 < x < \pi);$$

(4)
$$\sum_{n=1}^{\infty} \frac{\sin(2n-1)x}{2n-1} = \frac{\pi}{4} \ (0 < x < \pi);$$

(5)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \sin(nx) = \frac{x}{2} (|x| < \pi).$$

证明: $(1) \ \forall x \in [0, 2\pi]$, 定义 $f(x) = \frac{\pi - x}{2}$, 则 f 的 Fourier 级数的系数满足:

$$a_0 = \frac{1}{\pi} \int_0^{2\pi} \frac{\pi - x}{2} dx = -\frac{1}{4\pi} (\pi - x)^2 \Big|_0^{2\pi} = 0.$$

而 $\forall n \geq 1$, 我们则有

$$a_n = \frac{1}{\pi} \int_0^{2\pi} \frac{\pi - x}{2} \cos(nx) \, dx = \frac{1}{2n\pi} (\pi - x) \sin(nx) \Big|_0^{2\pi} + \frac{1}{2n\pi} \int_0^{2\pi} \sin(nx) \, dx = 0,$$

$$b_n = \frac{1}{\pi} \int_0^{2\pi} \frac{\pi - x}{2} \sin(nx) \, dx = -\frac{1}{2n\pi} (\pi - x) \cos(nx) \Big|_0^{2\pi} - \frac{1}{2n\pi} \int_0^{2\pi} \cos(nx) \, dx = \frac{1}{n}.$$

由于 f 在 $[0,2\pi]$ 上可导, 则由 Dirichlet-Jordan 定理知, $\forall x \in (0,2\pi)$, 我们有

$$\frac{\pi - x}{2} = \sum_{n=1}^{\infty} \frac{\sin(nx)}{n}.$$

(2) 由 (1) 以及 Parseval 等式可得

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{1}{\pi} \int_0^{2\pi} \left(\frac{\pi - x}{2} \right)^2 dx = \frac{1}{12\pi} (x - \pi)^3 \Big|_0^{2\pi} = \frac{\pi^2}{6}.$$

进而可得 $\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} = \sum_{n=1}^{\infty} \frac{1}{n^2} - \sum_{n=1}^{\infty} \frac{1}{(2n)^2} = \frac{\pi^2}{6} - \frac{1}{4} \cdot \frac{\pi^2}{6} = \frac{\pi^2}{8}$,

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} = \sum_{n=1}^{\infty} \frac{1}{(2n)^2} - \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} = \frac{1}{4} \cdot \frac{\pi^2}{6} - \frac{\pi^2}{8} = -\frac{\pi^2}{12}.$$

(3)
$$\forall x \in (0,\pi)$$
, $\dot{\mathbf{B}}$ (1) $\ddot{\mathbf{T}} \ddot{\mathbf{F}} \sum_{n=1}^{\infty} \frac{\sin(2nx)}{2n} = \frac{1}{2} \sum_{n=1}^{\infty} \frac{\sin(n\cdot 2x)}{n} = \frac{1}{2} \cdot \frac{\pi - 2x}{2} = \frac{\pi}{4} - \frac{x}{2}$.

 $(4) \ \forall x \in (0,\pi), \ \text{借助} \ (1), \ (3) \ \text{可得} \ \sum_{n=1}^{\infty} \frac{\sin(nx)}{n} = \frac{\pi-x}{2}, \ \sum_{n=1}^{\infty} \frac{\sin(2nx)}{2n} = \frac{\pi}{4} - \frac{x}{2}.$ 由第一式减去第二式立刻可得 $\sum_{n=1}^{\infty} \frac{\sin(2n-1)x}{2n-1} = \frac{\pi}{4}.$

(5) $\forall x \in (0,\pi)$, 由 (1), (4) 可得 $\sum_{n=1}^{\infty} \frac{\sin(2nx)}{2n} = \frac{\pi}{4} - \frac{x}{2}$, $\sum_{n=1}^{\infty} \frac{\sin(2n-1)x}{2n-1} = \frac{\pi}{4}$. 由第二式减去第一式可得 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \sin(nx) = \frac{x}{2}$, 该等式两边均为奇函数, 因此所证结论对任意 $x \in (-\pi,\pi)$ 均成立.