# الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: جوان 2012

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: علوم تجريبية

الماء: 03 ساعات ونصف

اختبار في مادة: العلوم الفيزيائية

# على المترشح أن يختار أحد الموضوعين التاليين: الموضوع الأول

التمرين الأول: ( 04 نقاط )

لدراسة تطور التفاعل الحادث بين محلول حمض الأوكساليك  $H_2C_2O_4(aq)$  ومحلول بيكرومات البوتاسيوم  $(2K^+(aq)+Cr_2O_7^{2-}(aq))$  بدلالة الزمن، حضر نا مزيجا تفاعليا يحتوي على البوتاسيوم  $(2K^+(aq)+Cr_2O_7^{2-}(aq))$  من محلول حمض الأوكساليك الذي تركيزه المولي  $V_1=100\,m$  من محلول بيكرومات البوتاسيوم الذي تركيزه المولي  $V_2=100\,m$  وحجم  $V_2=100\,m$  من محلول بيكرومات البوتاسيوم الذي تركيزه المولي من خلال معايرة شوارد وبضع قطرات من حمض الكبريت المركز. نتابع تطور المزيج التفاعلي من خلال معايرة شوارد الكروم  $(Cr^{3+}(aq))$  الذي يمثل تطور المزيز المولى لشوارد الكروم  $(Cr^{3+}(aq))$  بدلالة الزمن المنافق الزمن المولى لشوارد الكروم  $(Cr^{3+}(aq))$  بدلالة الزمن المنافق الزمن المولى الشوارد الكروم  $(Cr^{3+}(aq))$  بدلالة الزمن المولى الشوارد الكروم ال

1- كيف نصنف هذا التفاعل من حيث مدة استغراقه ؟

2- اعتمادا على المعطيات و المنحنى البياني أكمل جدول التقدم المميز لهذا التفاعل.

(انقل الجدول الآتي على ورقة الإجابة):

| 9 1. 1     | $3H_2C_2O_4(aq) + Cr_2O_7^{2-}(aq)$ | $+8H^+(aq) = 2$ | $2Cr^{3+}(aq) + 6CO_{2}(aq)$ | + 7H <sub>2</sub> O(ℓ) |
|------------|-------------------------------------|-----------------|------------------------------|------------------------|
| الحالة     | 60 1                                | مادة ( mmol )   |                              | 2 ( /                  |
| الابتدائية |                                     | بوفرة ا         |                              | بوفرة                  |
| الانتقالية |                                     | بوفرة           |                              | بوفرة                  |
| النهائية   |                                     | بوفرة           |                              | بوفرة                  |

هل التفاعل تام أم غير تام ؟ لماذا ؟

-3 عرِّف زمن نصف التفاعل  $t_{\chi}$  ، ثم قدّر قيمته بيانيا.

4- أ- عرّف السرعة الحجمية ٧ للتفاعل، ثم عبّر عنها

 $\cdot [Cr^{3+}(aq)]$  بدلالة النركيز المولى لشوارد الكروم

t=8sو t=0 و اللحظتين t=0 و و t=8

ج- فسر على المستوى المجهري تناقص هذه السرعة

مع مرور الزمن.



#### التمرين الثاني: ( 04 نقاط )

في يوم 2012/04/01 بمخبر الفيزياء، قرأنا من البطاقة التقنية المرفقة لمنبع مشع المعلومات الآتية:

- $\gamma$  و  $\beta^-$  : الإشعاعات :  $\beta^-$  و  $\beta^-$  الإشعاعات : 137
- .  $m_0 = 5,02 \times 10^{-2} g$  : الكتلة الابتدائية  $t_{1/2} = 30,15 \, ans$  نصف العمر -

بينما لاحظنا تاريخ صنع المنبع غائبا عن هذه البطاقة.

 $A = 14.97 \times 10^{10} Bq$  النشاط A للمنبع فنجد Geiger لإيجاد عمر هذا المنبع نقيس باستعمال عداد

- -1 اكتب معادلة تفكك نواة السيزيوم، ثم عرِّف الإشعاعين  $-\beta$  و  $\gamma$
- كانت موجودة بالمنبع لحظة صنعه.  $N_0$  لأنوية السيزيوم التي كانت موجودة بالمنبع لحظة صنعه.
  - -3 النشاط الإشعاعي  $\lambda$  بـ -3
- $A_0$  النشاط  $A_0$  النشاط  $A_0$  بعدد الأنوية المتبقية في المنبع، ثم احسب النشاط  $A_0$  المميز للعينة لحظة صنعها.
  - 5- استنتج بالحساب تاريخ صننع العيّنة.

 $N_A = 6.02 \times 10^{23} \, mol^{-1}$  عدد أيام السنة :  $N_A = 6.02 \times 10^{23} \, mol^{-1}$  عدد أيام السنة :  $\delta_{56}Ba$  ،  $\delta_{55}Cs$  ،  $\delta_{4}Xe$  ،  $\delta_{53}I$  ،  $\delta_{56}Ba$  ،  $\delta_{55}Cs$  ،  $\delta_{54}Xe$  ،  $\delta_{53}I$  ،  $\delta_{56}Ba$  ،  $\delta_{55}Cs$  ،  $\delta_{54}Xe$  ،  $\delta_{53}I$  ،  $\delta_{56}Ba$  ،  $\delta_{55}Cs$  ،  $\delta_{54}Xe$  ،  $\delta_{56}Ba$  ،  $\delta_{55}Cs$  ،  $\delta_{54}Xe$  ،  $\delta_{53}I$  ،  $\delta_{56}Ba$  ،  $\delta_{55}Cs$  ،  $\delta_{54}Xe$  ،  $\delta_{56}Ba$  ،  $\delta_{55}Cs$  ،  $\delta_{56}Ba$  ،  $\delta_{56}Ba$ 

# التمرين الثالث: ( 04 نقاط )

 $.25\,^{\circ}$ C قوخذ كل المحاليل في

نحضر محلولا S حجمه  $C_6H_5COOH$  بحل كتلة m من حمض البنزويك النقي  $C_6H_5COOH$  في الماء.

- -1 اكتب معادلة انحلال حمض البنزويك في الماء.
- . أعط عبارة ثابت الحموضة  $K_a$  للثنائية أساس/حمض.
- $V_a=20\,mL$  الصوديوم محلول حمض البنزويك بمحلول هيدروكسيد الصوديوم  $V_a=20\,mL$  الشكل -3 (الشكل -2) يعطي ( $Na^+(aq)+HO^-(aq)$ ) تركيزه المولي  $V_b=0.2\,mol\cdot L^{-1}$  يعطي تطور  $V_b=0.2\,mol\cdot L^{-1}$  الأساس المضاف  $V_b=0.2\,mol\cdot L^{-1}$ 
  - أ- اكتب معادلة تفاعل المعايرة.
  - ب- عين إحداثيات النقطيتين E' و E' من (الشكل-2). ما مدلولهما الكيميائي؟ جد التركيز المولى  $c_a$  لحمض البنزويك.
    - S البنزويك النقى المستعملة لتحضير المحلول S

 $C_6H_5COOH(aq)/C_6H_5COO^-(aq)$  للثنائية  $K_a$  قيمة  $K_a$  قيمة  $K_a$  قيمة و- ما النوع الكيميائي الذي يشكل الصفة الغالبة في المزيج التفاعلي عند  $E_6$ 9 و- ما النوع الكيميائي الذي يشكل الصفة الغالبة في المزيج التفاعلي عند  $E_6$ 9 و- ما النوع الكيميائي الذي يشكل الصفة الغالبة في المزيج التفاعلي عند  $E_6$ 9 و- ما النوع الكيميائي الذي يشكل الصفة الغالبة في المزيج التفاعلي عند  $E_6$ 9 و- ما النوع الكيميائي الذي يشكل الصفة الغالبة في المزيج التفاعلي عند  $E_6$ 9 و- ما النوع الكيميائي الذي يشكل الصفة الغالبة في المزيج التفاعلي عند  $E_6$ 9 و- ما النوع الكيميائي الذي يشكل الصفة الغالبة في المزيج التفاعلي عند  $E_6$ 9 و- ما النوع الكيميائي الذي يشكل الصفة الغالبة في المزيج التفاعلي عند  $E_6$ 9 و- ما النوع الكيميائي الذي يشكل الصفة الغالبة في المزيد التفاعلي عند  $E_6$ 9 و- ما النوع الكيميائي الذي يشكل الصفة الغالبة في المزيد التفاعلي عند  $E_6$ 9 و- ما النوع الكيميائي الذي يشكل الصفة الغالبة في المزيد التفاعلي التفاعلي عند  $E_6$ 9 و- ما النوع الكيميائي الذي يشكل الصفة الغالبة في المزيد التفاعلي المؤلد المؤلد المؤلد المؤلد التفاعلي المؤلد المؤلد



 $M(C) = 12 g \cdot mol^{-1}$   $M(H) = 1 g \cdot mol^{-1}$   $M(O) = 16 g \cdot mol^{-1}$ 

# التمرين الرابع: ( 04 نقاط )

ندرس في مرجع سطحي أرضي نعتبره غاليليا حركة سقوط كرية في الهواء. ( الشكل-3 ) يُمثّل تطور سرعة مركز عطالة الكرية v بدلالة الزمن t .

#### : من البيان -1

أ- حدِّد المجال الزمني لنظامي الحركة. ب- عيِّن قيمة السرعة الحدية ، v.

ج- احسب  $a_0$  تسارع مركز عطالة الكرية في اللحظة t = 0

ماذا تستنتج؟

د- ما هي قيمة التسارع لحظة وصول
 الكرية إلى سطح الأرض؟



t = 3s اللحظة t = 3s اللحظة الحركية للكرية في اللحظة الطاقة الحركية الحر

v(t) عطالة الكرية في الفراغ. v(t) مثل كيفيا مخطط السرعة v(t) لحركة السقوط الشاقولي لمركز عطالة الكرية في الفراغ.  $g = 9,80 \ m \cdot s^{-2}$ 

#### التمرين التجريبي: ( 04 نقاط )

لدراسة تطور شدة التيار الكهربائي i(t) المار في ثنائي القطب RL بدلالة الزمن، وتأثير المقدارين R و L على هذا التطور، نركب الدارة الكهربائية (الشكل-4).

1- نتابع تطور التوتر الكهربائي  $u_R$  بين طرفي الناقل الأومي R باستعمال راسم اهتزاز مهبطي ذي ذاكرة -1 أ- أعد رسم الدارة على ورقة الإجابة ثم بيّن عليها كيفية ربط راسم الاهتزاز المهبطي.



 $u_{R}(t)$  متابعة تطور التوتر الكهربائي  $u_{R}(t)$  مكنتنا من متابعة تطور الشدة i(t) للتيار الكهربائي المار في الدارة. فسرّ ذلك.

#### 2- نغلق القاطعة:

أ- جد المعادلة التفاضلية لشدة التيار الكهربائي i(t) المار في الدارة.

auب علما أن حل هذه المعادلة من الشكل:  $i(t) = A(1-e^{-\frac{t}{\tau}})$  جد عبارتي A و au

ماذا يمثلان ؟

-3 ننجز ثلاث تجارب مختلفة باستعمال وشيعة مقاومتها t ثابتة تقريبا وذاتيتها L قابلة للتغيير ونواقل أومية مختلفة. يبيِّن (الشكل-5) المنحنيات البيانية لتطور شدة التيار الكهربائي i(t) بدلالة الزمن t بالنسبة للتجارب الثلاث ويمثل الجدول المرفق قيم L وم المستعملة في كل تجربة:

|    | اِ       | _ |     |   | • |          | 177 |     |   |
|----|----------|---|-----|---|---|----------|-----|-----|---|
|    |          |   | ••• | 2 |   |          |     |     |   |
| _/ | 4        | - | _   |   | - | 3        |     |     |   |
| 15 | •        | - |     | + | - |          | -   | _   |   |
|    | $\vdash$ | - |     | + | + | $\vdash$ |     | t ( | m |

|             | التجربة 1 | التجربة 2 | التجربة 3 |
|-------------|-----------|-----------|-----------|
| L (mH)      | 30        | 20        | 40        |
| $R(\Omega)$ | 290       | 190       | 190       |

أ- أنسب كل تجربة بالمنحنى البياني الموافق لها. علِّل ذلك.

ب- جد قيمة المقاومة r.

#### الموضوع الثاني

# التمرين الأول: ( 04 نقاط )

 $.25\,^{\circ}$ ن في المحاليل في  $.25\,^{\circ}$ 

 $c_1=1,0\times 10^{-2}\ mol\cdot L^{-1}$  تركيزه المولي  $CH_3-COOH$  الإيثانويك  $S_1$  لحمض الإيثانويك PH=3,4 وله PH=3,4

أ- اكتب معادلة تفاعل حمض الإيثانويك مع الماء.

ب- أنشئ جدو لا لتقدم التفاعل الكيميائي.

ج- بيّن أن CH3-COOH لا يتفاعل كليا مع الماء.

د- أثبت أن  $K_1$  ثابت التوازن للتفاعل يعطى بالعلاقة:

. ثم احسب قيمته، حيث:  $au_{lf}$  نسبة التقدم النهائي للتفاعل.  $K_I = c_I \frac{ au_{lf}^2}{1- au_{lf}}$ 

ه- ما النوع الكيميائي الذي يشكل الصفة الغالبة في المحلول؟

 $c_2 = 1.0 \times 10^{-1} \, mol \cdot L^{-1}$  في تجربة ثانية حضرنا محلو  $S_2$  لحمض الإيثانويك تركيزه المولي -2 الناقلية النوعية له  $\sigma = 5.0 \times 10^{-2} \, mS \cdot m^{-1}$  الناقلية النوعية له

أ- احسب التراكيز المولية للأنواع الشاردية المتواجدة في المحلول.

 $\cdot K_2$  و  $\tau_{2f}$  ب- احسب

3- أ- ما تأثير التراكيز المولية الابتدائية على نسبة التقدم النهائي؟

ب- هل يتعلق ثابت التوازن K بالتراكيز المولية الابتدائية؟

 $\lambda_{H_3O^+} = 35,9 \text{ mS} \cdot m^2 \cdot mol^{-1}$  ;  $\lambda_{CH_3-COO^-} = 4,1 \text{ mS} \cdot m^2 \cdot mol^{-1}$ 

# التمرين الثاني: ( 04 نقاط )

يستخدم اليود 1 131 أساسا في معالجة سرطان الغدة الدرقية.

1- أعط تركيب نواة اليود <sup>131</sup>.

-2 احسب اليود  $E_{r}$  اليود -2

-3 إن اليود 131 يصدر -3

اكتب معادلة التفكك الحاصلة لنواة اليود 131، علما أن نواة البنت الناتجة  $^{A}_{Z}X$  تكون واحدة من الأنوية التالية:  $^{127}_{51}Sb$  ;  $^{131}_{52}Te$  ;  $^{131}_{54}Xe$  تكون واحدة من



 $m_0 = 0,696 g$  عينة من اليود 131 كتلتها -4

أ- اكتب قانون التناقص الإشعاعي.

 $\mu$ ب يمثل (الشكل-1) منحنى تطور  $\mu$  بدلالة الزمن  $\mu$  استنتج منه قيمة  $\mu$  ثابت التفكك

و  $t_{\frac{1}{2}}$  نصف العمر لليود 131.

ج- ما كتلة اليود 131 المتفككة بعد 16 jours ؟

الشكل-1

#### <u>المعطيات:</u>

 $m({}_{1}^{1}H)=1,00728\,u$  ;  $m({}_{53}^{131}I)=130,97851\,u$  ;  $m(n)=1,00866\,u$  ;  $1u=931,5\,MeV/c^{2}$ 

# التمرين الثالث: ( 04 نقاط )

تتكون دارة كهربائية (الشكل-2) من:





- وشيعة ذاتيتها L ومقاومتها r

- قاطعة X.

نوصل مدخلي راسم الاهتزاز المهبطي ذي ذاكرة (الشكل-2)، في اللحظة t=0 نغلق القاطعة K فنشاهد على الشاشة المنحنيين البيانيين (1) و (2) (الشكل-3).

1اً حدِّد لكل مدخل المنحنى البياني الموافق له. علِّل. - بتطبيق قانون جمع التوترات الكهربائية جد المعادلة التفاضلية لشدة التيار الكهربائي i(t).

 $E^{-1}$  ما قيمة التوتر الكهربائي  $E^{-1}$ 

 $I_0$  جد قيمة شدة التيار الكهربائي الأعظمي

ج- احسب قيمة r مقاومة الوشيعة.



3-أ- جد بيانيا قيمة ت ثابت الزمن. وبيِّن بالتحليل البُعدي أنه متجانس مع الزمن.

- احسب L ذاتية الوشيعة.

4- احسب الطاقة الأعظمية المخزنة في الوشيعة.

# التمرين الرابع: ( 04 نقاط )

خلال منافسة رمي الجلة في الألعاب الأولمبية ببكين، حقق الرياضي الذي فاز بهذه المنافسة النتيجة  $d = 21,51 \, m$ 

اعتمادا على الفيلم المسجل لعملية الرمي ولأجل معرفة قيمة السرعة  $v_0$  التي قذفت بها الجلة، تَمَّ استخراج بعض المعطيات أثناء لحظة الرمي:

 $h_A = 2,00 \, m$  ويقد على ارتفاع A النصبة الخلة من النقطة A النصبة لسطح الأرض وبالسرعة  $\overline{v_0}$  التي تصنع الزاوية  $\alpha = 45^\circ$  مع الخط الأفقى (الشكل-4).

ندرس حركة الجلة في المعلم المتعامد والمتجانس

 $(O; \vec{i}, \vec{k})$  ونختار اللحظة الابتدائية t=0 هي اللحظة التي يتم فيها قذف الجلة من النقطة O. نهمل احتكاكات الجلة مع الهواء ودافعة أرخميدس بالنسبة لقوة ثقل الجلة.

 $d = x_C = 21.51 \, m$ 

المختار، ثم z=h(t) المحلم المختار ، ثم x=f(t) المحلم المختار ، ثم z=h(t) المختار ، ثم المختار ، ثم المختار ، ثم z=g(x) المختار ، ثم عادلة مسار الجلة z=g(x) بدلالة المقادير z=g(x) ،

و من أم احسب قيمتها، و g ،  $\alpha$  ،  $h_A$  بدلالة  $v_0$  بدلالة السرعة الابتدائية و  $v_0$  بدلالة السرعة الابتدائية و  $v_0$ 

3- جد المدة الزمنية التي تستغرقها الجلة في الهواء.

 $g = 9.8 \, m \cdot s^{-2}$ 

### التمرين التجريبي: ( 04 نقاط )

لأجل الدراسة الحركية لتفاعل محلول يود البوتاسيوم مع الماء الأكسجيني، نحضر في بيسشر في اللحظة t=0 المزيج التفاعلي t=0 المشكل من الحجم  $V_1=368\,m$  من محلول يود البوتاسيوم الدي تركيزه المولي  $c_1=0.05mol\cdot L^{-1}$  والحجم  $v_2=32\,m$  من الماء الأكسجيني الدي تركيزه المولي تركيزه المولي  $v_2=32\,m$  والحجم الكبريت المركز، فيتم إرجاع الماء الأكسجيني بواسطة شوارد اليود  $v_2=0.10\,m$  وفق تفاعل بطيء ينتج عنه ثنائي اليود.

ننمذج التفاعل الكيميائي الحادث بالمعادلة الآتية :

$$H_2O_2(aq) + 2I^-(aq) + 2H^+(aq) = 2H_2O(\ell) + I_2(aq)$$

نتابع التطور الحركي للتفاعل من خلال قياس التركيز المولي لثنائي اليود المتشكل في لحظات زمنية متعاقبة، وذلك باستعمال طريقة المعايرة اللونية الآتية:

نأخذ في اللحظة t عينة حجمها V=40,0~mL من المزيج التفاعلي s ونسكبها في بيشر يحتوي الجليد المنصهر والنشاء، فيتلون المزيج بالأزرق، بعد ذلك نضيف تدريجيا إلى هذه العينة محلولا مائيسا لثيوكبريتات الصوديوم ( $2Na^+(aq)+S_2O_3^{2-}(aq)$ ) الذي تركيزه المولي  $c_3=0,10~mol\cdot L^{-1}$  المعايرة الختفاء اللون الأزرق. باستغلال الحجم  $V_E$  لثيوكبريتات الصوديوم المُضاف ومعادلة تفاعل المعايرة نستنتج التركيز المولى لثنائي اليود في اللحظة t.

نعيد العملية في لحظات متعاقبة، ثم نرسم تطور التركيز المولي لثنائي اليود  $[I_2(aq)]$  المتشكل بدلالة الزمن t فنحصل على المنحنى البياني (الشكل-5).

1- أ- ارسم بشكل تخطيطي عملية المعايرة.

ب- ما هي الوسيلة التي نستعملها لأخذ 40mL من المزيج التفاعلي؟

ج- اكتب معادلة تفاعل المعايرة.

الثنائيتان مرجع/مؤكسد المساهمتان في هذا التحول هما:  $I_2(aq)/I^-(aq)$ 

 $S_4O_6^{2-}(aq)/S_2O_3^{2-}(aq)$  و



- يد التكافؤ، ثم جد العبارة الحرفية الموافقة للتركيز المولي لثنائي اليود  $I_2(aq)$  بدلالة الحجم V والحجم V والتركيز المولي  $C_3$  لثيوكبريتات الصوديوم،
- 3- أنشئ جدو لا للتقدم المميز لتفاعل يود البوتاسيوم والماء الأكسجيني وبيِّن أن الماء الأكسجيني هو المتفاعل المحد.
  - t = 100s السرعة الحجمية للتفاعل، ثم احسب قيمتها في اللحظة -4
    - $t_{\frac{1}{2}}$  جد بیانیا زمن نصف التفاعل -5

| بة    | العلا        | عناصر الإجابة * الموضوع الأول *                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                                |                                           |                                 |                          |  |
|-------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------|-------------------------------------------|---------------------------------|--------------------------|--|
| مجموع | مجزأة        |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>             | الموصوع ادو                                    | حصر ،بب                                   | (1.00.04                        | X 150 ab                 |  |
|       |              | <u> أول</u> : ( 04 نقاط)                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                                |                                           |                                 |                          |  |
|       | 0.25         |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                                |                                           | ••                              | 1- تفاعل بطي.<br>2-      |  |
|       |              |                                                                                                                                            | $3H_{2}C_{2}O_{4}(aa)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $+ Cr_2O_7^{2-}(aq)$ | $+8H^{+}(aa)$                                  | $= 2Cr^{3+}(aa)+$                         | 6CO <sub>2</sub> (aq)           |                          |  |
|       |              | 1                                                                                                                                          | 2-2-4(-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 227 (41)             | ے mmol                                         |                                           | 2(1)                            | 2                        |  |
|       | 3×0.25       | t <sub>0</sub>                                                                                                                             | 3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,8                  | بوفرة                                          | 0                                         | 0                               | بوفرة                    |  |
|       |              | t                                                                                                                                          | 3,0 - 3x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,8 - x              | بوفرة                                          | 2x                                        | 6x                              | بوفرة                    |  |
|       | 2×0.25       | $t_{\rm f}$                                                                                                                                | 0,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                    | بوفرة                                          | 1,6                                       | 4,8                             | بوفرة                    |  |
|       | 2^0.23       |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                                | متفاعل محد                                |                                 |                          |  |
|       | 0.25<br>0.25 | . ه.                                                                                                                                       | ب قيمته الاعظم                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | عل مساويا نصف        | ليصبح تقدم التفا                               |                                           |                                 |                          |  |
|       | 0.23         | 1-12                                                                                                                                       | $. \ t_{1/2} = 4 \ s$ من البيان نجد : $. \ t_{1/2} = 4 \ s$ من البيان نجد : $. \ t_{1/2} = 4 \ s$ من البيان نجد : $. \ t_{1/2} = 4 \ s$ من البيان نجد : $. \ t_{1/2} = 4 \ s$ من البيان نجد : $. \ t_{1/2} = 4 \ s$ من البيان نجد : $. \ t_{1/2} = 4 \ s$ من البيان نجد : $. \ t_{1/2} = 4 \ s$ من البيان نجد : $. \ t_{1/2} = 4 \ s$ من البيان نجد : $. \ t_{1/2} = 4 \ s$ من البيان نجد : $. \ t_{1/2} = 4 \ s$ من البيان نجد : $. \ t_{1/2} = 4 \ s$ من البيان نجد : $. \ t_{1/2} = 4 \ s$ من البيان نجد : $. \ t_{1/2} = 4 \ s$ من البيان نجد : $. \ t_{1/2} = 4 \ s$ من البيان نجد : $. \ t_{1/2} = 4 \ s$ من البيان نجد : $. \ t_{1/2} = 4 \ s$ من البيان نجد : $. \ t_{1/2} = 4 \ s$ من البيان نجد : $. \ t_{1/2} = 4 \ s$ من البيان نجد : $. \ t_{1/2} = 4 \ s$ من البيان نجد : $. \ t_{1/2} = 4 \ s$ من البيان نجد : $. \ t_{1/2} = 4 \ s$ من البيان نجد : $. \ t_{1/2} = 4 \ s$ من البيان نجد : $. \ t_{1/2} = 4 \ s$ من البيان نجد : $. \ t_{1/2} = 4 \ s$ من البيان نجد : $. \ t_{1/2} = 4 \ s$ من البيان نجد : $. \ t_{1/2} = 4 \ s$ من البيان نجد : $. \ t_{1/2} = 4 \ s$ من البيان نجد : $. \ t_{1/2} = 4 \ s$ من البيان نجد : $. \ t_{1/2} = 4 \ s$ من البيان نجد : $. \ t_{1/2} = 4 \ s$ من البيان نجد : $. \ t_{1/2} = 4 \ s$ من البيان نجد : $. \ t_{1/2} = 4 \ s$ من البيان نجد : $. \ t_{1/2} = 4 \ s$ من البيان نجد : $. \ t_{1/2} = 4 \ s$ من البيان نجد : $. \ t_{1/2} = 4 \ s$ من البيان نجد : $. \ t_{1/2} = 4 \ s$ من البيان نجد : $. \ t_{1/2} = 4 \ s$ من البيان نجد : $. \ t_{1/2} = 4 \ s$ من البيان نجد : $. \ t_{1/2} = 4 \ s$ من البيان نجد : $. \ t_{1/2} = 4 \ s$ من البيان نجد : $. \ t_{1/2} = 4 \ s$ من البيان نجد : $. \ t_{1/2} = 4 \ s$ من البيان نجد : $. \ t_{1/2} = 4 \ s$ من البيان نجد : $. \ t_{1/2} = 4 \ s$ من البيان نجد : $. \ t_{1/2} = 4 \ s$ من البيان نجد : $. \ t_{1/2} = 4 \ s$ من البيان نجد : $. \ t_{1/2} = 4 \ s$ من البيان نجد : $. \ t_{1/2} = 4 \ s$ من البيان نجد : $. \ t_{1/2} = 4 \ s$ من البيان نجد : $. \ t_{1/2} = 4 \ s$ من البيان نجد : $. \ t_{1/2} = 4 \ s$ من البيان نجد : $. \ t_{1/2} = 4 \ s$ من البيان نجد : $. \ t_{1/2} = 4 \ s$ من البيا |                      |                                                |                                           |                                 |                          |  |
| 04    | 0.25         |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                                |                                           |                                 | 4- ا <sup>س</sup> السرعة |  |
|       | 0.25         |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | $v = \frac{1}{V}$                              | dt                                        |                                 |                          |  |
|       | 2×0.25       | $n(Cr^{3+}) = [Cr^{3+}] \cdot V = 2x \implies x = \frac{1}{2} \cdot V \cdot [Cr^{3+}]$                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                                |                                           |                                 |                          |  |
|       |              | 2                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                                |                                           |                                 |                          |  |
|       | 0.25         | $v = \frac{1}{V} \frac{dx}{dt} = \frac{1}{2} \frac{d[Cr^{3+}]}{dt}$                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                                |                                           |                                 |                          |  |
|       | -            | $v$ at $v = \frac{1}{2} \frac{\Delta \left[Cr^{3+}\right]}{\Delta A}$ : ب- من البيان :                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                                |                                           |                                 |                          |  |
|       | =            | $v = \frac{1}{2} \frac{1}{\Delta t}$ : $v = \frac{1}{2} \frac{1}{\Delta t}$                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                                |                                           |                                 |                          |  |
|       | 2×0.25       | $v = \frac{1}{2} \frac{6-3}{8-0} = 0.187 \text{ mmol.s}^{-1}. L^{-1}, \ v_0 = \frac{1}{2} \frac{8}{6} = 0.667 \text{ mmol.s}^{-1}. L^{-1}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                                |                                           |                                 |                          |  |
|       | 0.25         |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | لتصادمات الف         |                                                |                                           |                                 |                          |  |
|       |              |                                                                                                                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . · · N              |                                                | ( <del>7</del> .21. )<br>( <u>7.21. )</u> |                                 | سرعة التفاء              |  |
|       |              |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                                |                                           | 1930                            | التمرين الثاتي: ( 4      |  |
|       | 0.50         |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | -                                              | $^{17}_{5}Cs \rightarrow ^{137}_{56}Bc$   |                                 |                          |  |
|       | 0.25         | 55                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100 B 20 TO 400      |                                                | بعاث إلكترونات                            | •                               | C                        |  |
|       | 0.25         |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | النواة المشعة.       | ومغناطيسية من                                  |                                           |                                 |                          |  |
|       | 0.50         |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | Λ                                              | $V_0 = \frac{m_0}{M} N_A =$               | $2,2\times10^{20}$ n            | oyaux -2                 |  |
|       | 0.50         |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                                | $a = \frac{\ln n}{2}$                     | $\frac{12}{2} - 7.28 \times 1$  | 0-10 c-1 -3              |  |
| 04    |              |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                                | $\lambda - \frac{1}{t_1}$                 | $\frac{12}{12} = 7,28 \times 1$ | 0 3 3                    |  |
|       | 3×0.25       |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                                | $A_0 = \lambda \times$                    |                                 |                          |  |
|       |              |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                                | 4                                         | ln                              | $\frac{A}{A}$            |  |
|       | 3×0.25       |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $A = A_0 \times$     | $e^{-\lambda t} \Rightarrow \operatorname{lr}$ | $\frac{A}{A0} = -\lambda \times t$        | $\Rightarrow t =$               | $\frac{A_0}{\lambda}$ -5 |  |
|       | 0.25         |                                                                                                                                            | t = 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 01401818 s           |                                                |                                           |                                 |                          |  |
|       | 0.25         |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                                | 2009/05/10                                |                                 |                          |  |
|       |              |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                                |                                           |                                 |                          |  |

| Ā     | العلام       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| مجنوع | مجزاة        | عناصر الإجابة                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       | 0.25         | (44) التمرين الثالث: $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ $(47)$ |
|       | 0.25         | $K_a = \frac{\left[H_3O^+\right]_f \left[C_6H_5COO^-\right]_f}{\left[C_6H_5COOH\right]_c} -2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       | 0.50         | $C_6H_5COOH(aq) + HO^-(aq) = C_6H_5COO^-(aq) + H_2O(\ell)$ -1-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 04    | 0.50<br>0.50 | $E(V_{bE} = 10  mL, pH = 8)$ $E'(V_{bE'} = 5  mL, pH = 4, 2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       | 2×0.25       | المدلول: E: نقطة التكافؤ ، E: نقطة نصف التكافؤ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | 0.25         | $c_{a}V_{a}=c_{b}V_{bE}$ $\Rightarrow c_{a}=0,1mol\cdot l^{-1}$ جـ عند نقطة التكافؤ:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       | 2×0.25       | $c_a = \frac{m_0}{MV} \implies m_0 = 6.1g - 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | 2×0.25       | $K_a = 6.3 \times 10^{-5}$ : ومنه $pk_a = pH = 4.2$ : لكن $K_a = 10^{-pK_a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | 0.25         | $C_6H_5COO^-$ النوع الغالب هو صفة الأساس $pH=6>pK_a$ - و                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       |              | التمرین الرابع : ( $04$ نقاط ) $0 \le t \le 9s$ النظام الانتقالی : $0 \le t \le 9s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       | 0.25<br>0.25 | النظام الدائم: $9s = 0$ النظام الدائم: $9s = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       | 0.50         | $v_{i}=19,6m\cdot s^{-1}$ بـ السرعة الحدية: $v_{i}=19,6m\cdot s^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       | 0.50         | $a_0 = \frac{dv}{dt} = 9.8  m \cdot s^{-2}$ :فإن $t = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       | 0.50         | نستنتج أن دافعة أرخميدس مهملة $a_0 = g$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 04    | 0.50         | $v = C^{te} \Leftrightarrow a = \frac{dv}{dt} = 0$ : د- في النظام الدائم                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       | 0.75         | $E_C = \frac{1}{2}mv^2 = \frac{1}{2}30 \times 10^{-3} \times (14,6)^2  -4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       |              | $E_c = 3,2J$ ومنه: $v(m/s)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       | 0.75         | 2- سقوط حر                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       |              | t(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| á.    | العلام | عناصر الإجابة                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| مجموع | مجزاة  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       | 0.50   | التمرين التجريبي: ( 04 نقاط)  - 1-1  R  - 1-1  R  - 1-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 04    | 0.50   | $u_R$ ب $u_R = R \times i$ و منه تغیرات $u_R = R \times i$ $\Rightarrow$ $i = \frac{1}{R} u_R$ ب                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | 0.25   | $u_R + u_R = E \implies L \times \frac{di}{dt} + (R + r) = E  -1 - 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | 0.25   | $rac{di}{dt} + rac{(R+r)}{L}i(t) = rac{E}{L}$ : ومنه $-$ نعوض الحل في المعادلة $-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | 0.25   | $A \times e^{-\frac{t}{\tau}} \left( \frac{L}{\tau} - (R+r) \right) + (R+r)A = E  \Rightarrow  (R+r)A = E  \Rightarrow  \frac{L}{\tau} - (R+r) = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | 0.25   | $A=I_0$ و منه : $A=rac{E}{R+r}$ و يمثل الشدة العظمى للتيار                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       | 0.25   | $	au = \frac{L}{R+r}$ و يمثل ثابت الزمن المميز للدارة.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       | 3×0.25 | $I_{02}=I_{03}$ التعليل التجربة $I_{02}=I_{03}$ التعليل $I_{02}=I_{03}$ الأن: $\tau_2 < \tau_3$ و $\tau_3$ $\tau_2 < \tau_3$ الأن: $\tau_3$ $\tau_3$ $\tau_4$ $\tau_5$ $\tau_5$ $\tau_5$ $\tau_5$ $\tau_5$ $\tau_5$ $\tau_5$ $\tau_6$ $\tau_7$ $\tau$ |
|       | 2×0.25 | $	au_3=0,20~\mathrm{ms}$ : ب $	au_3=rac{L}{R+r}$ و من البيان نجد أن                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       | 2×0.25 | $r=rac{L}{	au_3}-R$ . $r=10\Omega$ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| بكالوريا دورة: جوان 2012 | الشعبة: علوم تجريبية | مادة: العلوم الفيزيائية | التنقيط | تابع الإجابة النموذجية وسلم |  |
|--------------------------|----------------------|-------------------------|---------|-----------------------------|--|
|--------------------------|----------------------|-------------------------|---------|-----------------------------|--|

| $CH_{3}COOH + H_{2}O = CH_{3}COO^{-} + H_{3}O^{+} - A_{CH_{2}COO} + A_{3}O^{-} + A_{3}O^{+} + A_{CH_{2}COO} + A_{3}O^{-} + A_{3}O^{+} + A_{CH_{2}COO} + A_{3}O^{-} +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | غ     | العلام                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | البع الإجابة المودجية وسنم المتقبط المادة. المقوم القيرياتية المنتب الحرم البريبي المودجية والم                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $CH_3COOH + H_2O = CH_3COO^- + H_3O^+$ جدول تقدم القاعاطي $[H_3O^+] < c_1$ : فالمنطقط خوا المنطقط $[H_3O^+] = 10^{-pH} = 3.98 \times 10^{-2} \Rightarrow \tau_V < 1$ $[H_3O^+]_r = 3.98 \times 10^{-2} \Rightarrow \tau_V < 1$ $[H_3O^+]_r = 3.98 \times 10^{-2} \Rightarrow \tau_V < 1$ $[H_3O^+]_r = [CH_3COO^-]_r$ $[CH_3COOH]_r = \tau_V < 1$ $[H_3O^+]_r = [CH_3COO^-]_r$ $[CH_3COOH]_r = \tau_V - [H_3O^+]_r = \tau_V - [H_3O^+]_r$ $[H_3O^+]_r = \tau_V - [H_3O^+]_r = \tau_V - \tau_V$ $[H_3O^+]_r = \tau_V - \tau_$ | مجموع | مجزاة                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | عناصر الإجابة * الموضوع الثاني *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $CH_{3}COOH + H_{2}O = CH_{3}COO^{-} + H_{3}O^{+} - E_{4}O^{-} - E_{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | التمرين الأول: ( 04 نقاط )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $ [H_3O^+] < c_1 : \text{ided} i $                                                            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $CH_3COOH + H_2O = CH_3COO^- + H_3O^+ - 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ومنه : حمض الإيثانويك لا يتغاعل كليا مع الماء $(\tau_{iy} = \frac{[H_3O_+]_r}{c_1} = 3,98 \times 10^{-2} \Rightarrow \tau_{iy} < 1$ 0.25 $K_1 = \frac{[H_3O^+]_r}{[CH_3COO^-]_r} = \frac{[H_3O^+]_r}{[CH_3COO^+]_r} = \frac{\hbar_3O^+}{[CH_3COO^+]_r}$ 2×0.25 $[H_3O^+]_r = [CH_5COO^-]_r$ , $[CH_3COOH]_r = c_1 - [H_3O^+]$ 04  025 $K_1 = c_1 \frac{\tau_{if}}{1 - \tau_{if}} = \frac{\tau_{io}}{1 - \tau_{if}} = \frac{\tau_{io}}{1 - \tau_{if}}$ 025 $pH < pK_{a1} = 4,78$ $k_1 = 1,6 \times 10^{-3}$ 025 $pH < pK_{a1} = 4,78$ $k_1 = 1,6 \times 10^{-3}$ $pK_{a1} = 4,78$ $k_1 = 1,6 \times 10^{-3}$ $k_1 = 1,6 \times 10^{-3}$ $k_2 = c_2 \frac{\tau_{if}}{1 - \tau_{if}} = 1,25 \times 10^{-3}$ 025 $k_2 = c_2 \frac{\tau_{if}}{1 - \tau_{if}} = 1,6 \times 10^{-5}$ 025 $k_2 = c_2 \frac{\tau_{if}}{1 - \tau_{if}} = 1,6 \times 10^{-5}$ 026 $k_1 = \frac{t_1}{t_1} = \frac{t_1}{t_2} = t_1$ 027  028 $k_2 = c_2 \frac{\tau_{if}}{1 - \tau_{if}} = 1,6 \times 10^{-5}$ $k_1 = t_1 = t_1$ $k_2 = t_1 = t_2 = t_1$ $k_3 = t_1 = t_1$ $k_4 = t_1 = t_2$ $k_5 = t_1 = t_2$ $k_5 = t_1 = t_3$ $k_5 = t_1 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | 2×0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ب- جدول تقدم التفاعل.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ومنه : حمض الإيثانويك لا يتغاعل كليا مع الماء $(\tau_{iy} = \frac{[H_3O_+]_r}{c_1} = 3,98 \times 10^{-2} \Rightarrow \tau_{iy} < 1$ 0.25 $K_1 = \frac{[H_3O^+]_r}{[CH_3COO^-]_r} = \frac{[H_3O^+]_r}{[CH_3COO^+]_r} = \frac{\hbar_3O^+}{[CH_3COO^+]_r}$ 2×0.25 $[H_3O^+]_r = [CH_5COO^-]_r$ , $[CH_3COOH]_r = c_1 - [H_3O^+]$ 04  025 $K_1 = c_1 \frac{\tau_{if}}{1 - \tau_{if}} = \frac{\tau_{io}}{1 - \tau_{if}} = \frac{\tau_{io}}{1 - \tau_{if}}$ 025 $pH < pK_{a1} = 4,78$ $k_1 = 1,6 \times 10^{-3}$ 025 $pH < pK_{a1} = 4,78$ $k_1 = 1,6 \times 10^{-3}$ $pK_{a1} = 4,78$ $k_1 = 1,6 \times 10^{-3}$ $k_1 = 1,6 \times 10^{-3}$ $k_2 = c_2 \frac{\tau_{if}}{1 - \tau_{if}} = 1,25 \times 10^{-3}$ 025 $k_2 = c_2 \frac{\tau_{if}}{1 - \tau_{if}} = 1,6 \times 10^{-5}$ 025 $k_2 = c_2 \frac{\tau_{if}}{1 - \tau_{if}} = 1,6 \times 10^{-5}$ 026 $k_1 = \frac{t_1}{t_1} = \frac{t_1}{t_2} = t_1$ 027  028 $k_2 = c_2 \frac{\tau_{if}}{1 - \tau_{if}} = 1,6 \times 10^{-5}$ $k_1 = t_1 = t_1$ $k_2 = t_1 = t_2 = t_1$ $k_3 = t_1 = t_1$ $k_4 = t_1 = t_2$ $k_5 = t_1 = t_2$ $k_5 = t_1 = t_3$ $k_5 = t_1 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | 2×0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $[H_3O^+]$ < $c_1$ : نلاحظ أن $[H_3O^+] = 10^{-pH} = 3,98 \times 10^{-4} \ mol \cdot L^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $(\tau_{V} = \frac{[H_3O_+]_r}{c_1} = 3,98 \times 10^{-2} \Rightarrow \tau_{V} < 1$ $K_1 = \frac{[H_3O^+]_r}{[CH \times COOH]_r} = \frac{[H_3O^+]_r}{[CH \times COOH]_r} = \frac{[H_3O^+]_r}{[CH \times COOH]_r}$ $[H_3O^+]_r = [CH_3COO^-]_r,  [CH_5COOH]_r = c_1 - [H_5O^+]$ $K_1 = c_1 \frac{\tau_{If}^2}{1 - \tau_{If}} = \frac{\tau_{If}^2}{1 - \tau_{If}^2} $               |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ومنه: حمض الايثانويك لا يتفاعل كليا مع الماء                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $K_{1} = \frac{\left[H_{3}O^{+}\right]_{r}\left[CH_{3}COO^{-}\right]_{r}}{\left[CH_{3}COOH\right]_{r}} : 2\times 0.25$ $\left[H_{3}O^{+}\right]_{r} = \left[CH_{3}COO^{-}\right]_{r}, : \left[CH_{3}COOH\right]_{r} : c_{1} - \left[H_{3}O^{+}\right]$ $K_{1} = c_{1} \frac{\tau_{1f}^{2}}{I - \tau_{1f}} : \lambda_{10} : \left[H_{3}O^{+}\right]_{r} = c_{1} \cdot \tau_{1f}$ $K_{1} = l_{1} \cdot \delta \times 10^{-3} : \left[H_{3}O^{+}\right]_{r} = c_{1} \cdot \tau_{1f}$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $\left[CH_{3}COO^{-}\right]_{r} = \left[H_{3}O^{+}\right]_{r} = \frac{c_{1}}{\lambda_{H,O^{+}} + \lambda_{CH,COO^{-}}} = 1,25 \times 10^{-3}  mol \cdot L^{-1}$ $\tau_{2f} = \frac{\left[H_{3}O^{+}\right]_{r}}{c_{2}} = 1,25 \times 10^{-3}  mol \cdot L^{-1}$ $0.25$ $K_{2} = c_{2} \frac{\tau_{2f}^{2}}{1 - \tau_{2f}} = 1,6 \times 10^{-5}$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.26$ $0.27$ $0.27$ $0.27$ $0.28$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{bmatrix} H_3O^+ \end{bmatrix}_f = \begin{bmatrix} CH_3COO^- \end{bmatrix}_f, \ [CH_3COOH]_f = c_1 - [H_3O^+]_f \end{bmatrix}$ $K_1 = c_1 \frac{\tau_{1f}^2}{1 - \tau_{1f}}$ : $A_1 = c_1 \cdot \tau_{1f}$ : $A_2 = c_1 \cdot \tau_{1f}$ : $A_3O^+ \end{bmatrix}_f = c_1 \cdot \tau_{1f}$ : $A_4 = c_1 \cdot \tau_{1f}$ : $A_5O^+ = c_1 \cdot \tau_{1f}$ : $A_5O^+ = c_1 \cdot \tau_{1f}$ : $A_1 = 1, 6 \times 10^{-5}$ : $A_1 = 1, 6 \times 10^{-5}$ : $A_1 = 1, 6 \times 10^{-5}$ : $A_2OOH : A_3O^+ = A_3OOH : A_3OOH :$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\left(\begin{array}{c} t_{iy} = \frac{1}{c_1} = 3,98 \times 10  \Rightarrow  t_{iy} < 1  .91 \end{array}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\begin{bmatrix} H_3O^+ \end{bmatrix}_f = \begin{bmatrix} CH_3COO^- \end{bmatrix}_f, \ [CH_3COOH]_f = c_1 - [H_3O^+]_f \end{bmatrix}$ $K_1 = c_1 \frac{\tau_{1f}^2}{1 - \tau_{1f}}$ : $A_1 = c_1 \cdot \tau_{1f}$ : $A_2 = c_1 \cdot \tau_{1f}$ : $A_3O^+ \end{bmatrix}_f = c_1 \cdot \tau_{1f}$ : $A_4 = c_1 \cdot \tau_{1f}$ : $A_5O^+ = c_1 \cdot \tau_{1f}$ : $A_5O^+ = c_1 \cdot \tau_{1f}$ : $A_1 = 1, 6 \times 10^{-5}$ : $A_1 = 1, 6 \times 10^{-5}$ : $A_1 = 1, 6 \times 10^{-5}$ : $A_2OOH : A_3O^+ = A_3OOH : A_3OOH :$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $[H_3O^+]$ , $[CH_3COO^-]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $K_{I} = c_{I} \frac{\tau_{If}^{2}}{I - \tau_{If}}  : \text{ea.i.}  [H_{3}O^{+}]_{f} = c_{I} \cdot \tau_{If}$ $K_{I} = 1,6 \times 10^{-5}$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.26$ $0.26$ $0.27$ $0.27$ $0.27$ $0.28$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $K_1 = \frac{\frac{1}{2} \left[ CH 3COOH \right]_f}{\left[ CH 3COOH \right]_f}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $K_1 = 1,6 \times 10^{-5}$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.26$ $0.25$ $0.26$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.26$ $0.26$ $0.26$ $0.27$ $0.27$ $0.28$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | 2×0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $[H_3O^+]_f = [CH_3COO^-]_f$ , $[CH_3COOH]_f = c_1 - [H_3O^+]_f$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $K_1 = 1,6 \times 10^{-5}$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.26$ $0.26$ $0.26$ $0.27$ $0.27$ $0.28$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.29$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 04    | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $K_I = c_I \frac{\tau_{If}^2}{1 - c_1 \cdot \tau_{If}}$ ومنه: $H_3O^+ = c_1 \cdot \tau_{If}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\begin{array}{c} 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ \end{array} \qquad \begin{array}{c} pH < pK_{a1} \text{ i.i.}  pK_{a1} = 4,78  K_{1} = 1,6 \times 10^{-5} \\                                   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | **    | 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $ \begin{array}{c} 0.25 \\ 0.25 \\ 0.25 \\ \hline                                  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The state of the s |
| $CH_{3}COOH$ : ڪفه الدوع العاب : $CH_{3}COOH$ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | Section and the section of the secti | 2040 2514 Artisted 2004 3005427 3040 - 485 00 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\tau_{2f} = \frac{\left[H_{3}O^{+}\right]_{f}}{c_{2}} = 1,25 \times 10^{-2}$ $0.25$ $K_{2} = c_{2} \frac{\tau_{2f}^{2}}{1 - \tau_{2f}} \approx 1,6 \times 10^{-5}$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.26$ $0.26$ $0.27$ $0.27$ $0.28$ $0.29$ $0.29$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | 1990/11/1990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\tau_{2f} = \frac{\left[H_{3}O^{+}\right]_{f}}{c_{2}} = 1,25 \times 10^{-2}$ $0.25$ $K_{2} = c_{2} \frac{\tau_{2f}^{2}}{1 - \tau_{2f}} \approx 1,6 \times 10^{-5}$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.25$ $0.26$ $0.26$ $0.27$ $0.27$ $0.28$ $0.29$ $0.29$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$ $0.20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $[CH_3COO^-]_f = [H_3O^+]_f = \frac{\sigma}{\lambda + \lambda} = 1,25 \times 10^{-3} \text{ mol} \cdot L^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $K_{2} = c_{2} \frac{\tau_{2f}^{2}}{1 - \tau_{2f}} \approx 1.6 \times 10^{-5}$ 0.25 0.25 0.25 0.25 0.25 0.25 0.26 0.26 $N = 78  Z = 53  \frac{131}{53}I$ 0.50 $E_{t} = \left[Zm_{p} + (A - Z)m_{n} - m(\frac{131}{53}I)\right]c^{2} = 1009 MeV$ 0.50 0.50 $N(t) = N_{0} \cdot e^{-\lambda t} - \frac{131}{53}I \rightarrow \frac{131}{53}Xe + \frac{0}{16}e$ 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AN - 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $K_{2} = c_{2} \frac{\tau_{2f}^{2}}{1 - \tau_{2f}} \approx 1.6 \times 10^{-5}$ 0.25 0.25 0.25 0.25 0.25 0.25 0.26 0.26 $N = 78  Z = 53  \frac{131}{53}I$ 0.50 $E_{t} = \left[Zm_{p} + (A - Z)m_{n} - m(\frac{131}{53}I)\right]c^{2} = 1009 MeV$ 0.50 0.50 $N(t) = N_{0} \cdot e^{-\lambda t} - \frac{131}{53}I \rightarrow \frac{131}{53}Xe + \frac{0}{16}e$ 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\tau_{2f} = \frac{\left[H_3O^+\right]_f}{c_2} = 1,25 \times 10^{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.25 0.25 0.25 - thin lie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.25 0.25 0.25 - thin lie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $K_2 = c_2 \frac{\tau_{2f}^2}{1} \approx 1.6 \times 10^{-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $1-	au_{2f}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $(2\times0.25)$ $N = 78, Z = 53$ $0.50$ $E_{t} = \left[Zm_{p} + (A-Z)m_{n} - m\binom{131}{53}I\right]c^{2} = 1009 MeV$ $0.50$ $0.50$ $N(t) = N_{0} \cdot e^{-\lambda t}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $E_{t} = \left[ Zm_{p} + (A - Z)m_{n} - m\binom{131}{53}I \right] c^{2} = 1009 MeV$ $0.50$ $0.50$ $0.50$ $N(t) = N_{0} \cdot e^{-\lambda t}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | 2×0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $0.50 \qquad N(t) = N_0 \cdot e^{-\lambda t} - \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $u_{1}v_{2}+u_{1}+v_{2}v_{3}+v_{4}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}+v_{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00 Marie 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\ln N = -\lambda t + \ln N_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | #####################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $t_{\frac{1}{2}} = \frac{\ln 2}{\lambda} = 8 \text{ jours}$ ومنه: $\lambda = -a = 8,7 \times 10^{-2} \text{ jours}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $m = m_0 \left( 1 - e^{-\lambda t} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $m = m_0 \left( 1 - e^{-\lambda t} \right) \qquad - =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| ۽ ا   | العلاه | المرجب المعربية وسم المعيد المدن العول العرب المعاد عوم عبريبية المعاد الإجابة                        |
|-------|--------|-------------------------------------------------------------------------------------------------------|
| مجموع | مجزأة  | التمرين الثالث: ( 04 نقاط )                                                                           |
| ×     | 2×0.25 | $u_R = R \cdot i$ يو افق المنحنى (2) لأن: $Y_1$ يو افق المنحنى (2) الأن:                              |
|       | 2×0.25 | $u_{\overline{z}}E$ المدخل $Y_2$ يوافق المنحنى (1) لأن: المدخل $Y_2$                                  |
| để    | 0.25   | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                 |
|       | 0.25   | $\frac{di(t)}{dt} + \frac{(R+r)}{L}i(t) = \frac{E}{L}$                                                |
| 04    | 0.25   | $E = 12 V$ -1-2 $I_0 = \frac{U_{R \max}}{R} = 0,1A$ الشكل-1                                           |
|       | 0.25   | $I_0 = \frac{R_{\text{max}}}{R} = 0, 1A - \frac{1}{2}$                                                |
|       | 2×0.25 | $I_0 = \frac{E}{R+r}  \Rightarrow  r = 20 \ \Omega  \rightarrow $                                     |
|       | 0.25   | $t = \tau = 10  ms$ توافق $u_R = 0,63  U_{R  \text{max}} = 6,3  V$ -1-3                               |
|       | 0.25   | $	au = \frac{L}{R+r} \Rightarrow [\tau] = \frac{[U][T][I]^{-1}}{[U][I]^{-1}} = [T] \equiv s$          |
|       | 2×0.25 | $L = \tau(R+r) = 1,2H$                                                                                |
|       | 2×0.25 | $E(L) = \frac{1}{2}L \cdot I_0^2 = 6,0 \times 10^{-3} J \implies$                                     |
|       |        | التمرين الرابع: ( 04 نقاط)                                                                            |
|       | 7×0.25 | $Z = -\frac{1}{2}g \times t^2 + v_0 \sin \alpha \times t + h_A  g  x = v_0 \cos \alpha \times t  -1$  |
|       | 0.50   | $Z = -\frac{g}{2v_0^2 \times \cos^2 \alpha} x^2 + \tan \alpha \times x + h_A$                         |
| 04    | 0.25   | $Z_c=0$ و $x_c=d$ : عند النقطة (C) لدينا $-2$                                                         |
|       | 0.25   | $0 = -\frac{g}{2v_0^2 \times \cos^2 \alpha} d^2 + \tan \alpha \times d + h_A$ : نعوض في معادلة المسار |
| Ķ.    | 2×0.25 | $d \qquad g \qquad -13.80 \text{m.s}^{-1} \qquad \text{3.5}$                                          |
|       | 2×0.25 | $v_0 = \frac{d}{\cos \alpha} \sqrt{\frac{g}{2(\tan \alpha d + h_A)}} = 13,89m \cdot s^{-1}  : $       |
|       | 0.25   | $x_{c} = d = v_{0} \cos \alpha \times t  \Rightarrow  t = \frac{d}{v_{0} \cos \alpha} - 3$            |
|       |        | $t \simeq 2, 2s$                                                                                      |

| مة    | العلا  | عناصر الإجابة                                                                                                                                                                               |
|-------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| مجموع | مجزأة  | الأفيات                                                                                                                                                                                     |
|       | 0.50   | التمرين التجريبي: ( 04 نقطة) 1-أ-يحتوي الرسم على الأقل: سحاحة ، بيشر ، حامل ، خلاط مغناطيسي.                                                                                                |
|       | 0.25   | ب- الوسيلة هي : ماصة معيرة بحجم 20 mL .                                                                                                                                                     |
| 2     | 0.50   | $I_2(aq) + 2S_2O_8^{2-}(aq) = 2I^-(aq) + S_4O_6^{2-}(aq) -$                                                                                                                                 |
|       | 0.25   | التكافؤ هو النقطة التي يتم فيها التفاعل الكلي للمحلول المعيَّر وفق المعاملات الستوكيومترية. $ \frac{[I_2]V}{1} = \frac{C_3 \times V_E}{2}  \Rightarrow  [I_2] = \frac{C_3 \times V_E}{2V} $ |
|       | 0.25   | -4                                                                                                                                                                                          |
|       |        | $H_2O_2(aq) + 2I^-(aq) + 2H^+(aq) = 2H_2O(\ell) + I_2(aq)$                                                                                                                                  |
| 04    | 3×0.25 | عدد المولات mmol                                                                                                                                                                            |
|       | 370.23 | 0 بوفرة بوفرة 18,4 0                                                                                                                                                                        |
|       |        | t 3,2-x 18,4-2x بوفرة بوفرة x                                                                                                                                                               |
|       |        | 3,2 بوفرة بوفرة 12,0 t <sub>f</sub> 0                                                                                                                                                       |
|       | 0.25   | 4- السرعة الحجمية: هي مقدار تغير تقدم النفاعل بالنسبة للزمن في 1 لتر من الوسط التفاعلي.                                                                                                     |
|       | 0.25   | $v = \frac{1}{V} \frac{dx}{dt}$                                                                                                                                                             |
|       | 2×0.25 | $v = \frac{d[I_2]}{dt} = \frac{\Delta[I_2]}{\Delta t} = 2 \times 10^{-2} mmol \cdot L^{-1} \cdot s^{-1}$ : i.e. $t = 100 \text{ s}$                                                         |
|       | 2×0.25 | $t_{\frac{1}{2}} \simeq 50s$ : من البیان نجد $t_{\frac{1}{2}} \simeq 50s$                                                                                                                   |
|       |        |                                                                                                                                                                                             |
|       |        |                                                                                                                                                                                             |
| 8     |        |                                                                                                                                                                                             |
|       |        |                                                                                                                                                                                             |
| -     |        |                                                                                                                                                                                             |
|       |        |                                                                                                                                                                                             |
|       |        | e e e e e e e e e e e e e e e e e e e                                                                                                                                                       |
|       |        |                                                                                                                                                                                             |