Série 5a

Segmentation

Exercice 1

Soit I'image f(i)

9	8	3	2	8	8
8	9	3	3	2	2
2	2	8	8	2	2
4	2	9	7	1	2

a) Donner l'histogramme de f et choisir un seuil s propice pour un seuillage de l'image

b) Dessiner l'image binaire g(i,j) obtenue par seuillage

c) Dessiner les régions connexes pour le 4 cas suivants

Régions V4-connexe

Régions V8-connexe

Série 5a 2.12.2009 FRT

Exercice 2

a) Partitionner f(i) en régions V4-connexes avec le critère d'homogénéité de niveau de gris absolu

$$H_1(R) = \begin{cases} vrai & \text{si} \left| f(\vec{i}) - f(\vec{j}) \right| < 2 & \text{pour toute paire de pixels } (\vec{i}, \vec{j}) \in R \\ faux & \text{sinon} \end{cases}$$

9	8	3	2	8	8
8	9	3	3	2	2
2	2	8	8	2	2
4	2	9	7	1	2

9	8	3	2	8	8
8	9	3	3	2	2
2	2	8	8	2	2
4	2	9	7	1	2

b) La partition est elle unique?

Exercice 3

a) Partitionner f(i) en régions V4-connexes avec le critère d'homogénéité de niveau de gris différentiel.

$$H_1(R) = \begin{cases} vrai & \text{si} \left| f(\vec{i}) - f(\vec{j}) \right| < 2 & \text{pour toute paire de pixels voisins } (\vec{i}, \vec{j}) \in \mathbb{R} \\ faux & \text{sinon} \end{cases}$$

9	8	3	2	8	8
8	9	3	3	2	2
2	2	8	8	2	2
4	2	9	7	1	2

9	8	3	2	8	8
8	9	3	3	2	2
2	2	8	8	2	2
4	2	9	7	1	2

c) La partition est elle unique?

Série 5a 2.12.2009 FRT