Modelowanie i analiza systemów informatycznych

Sieci Petriego - konstrukcja uogólnionych stochastycznych sieci Petriego

Zadanie 1.

Przekształcenie sieci - tramwaje

Rysunek 1: Semafory naprzemienne. Nie można przełączyć automatycznie z p_{11} na p_{10} semafora prawego, kiedy w p_2 pojawi się tramwaj.

Zadanie 2.

Przebudowa sieci

Rysunek 2: Sieć symulująca sygnalizację świetlną.

Pierwotnie w tej sieci do odpalenia na raz było możliwe tylko jedno przejście, więc wartości prawdopodbieństwa wynikają bezpośrednio z λ przejść(r).

Intensywności odpalania	$\Lambda = \{\frac{1}{3}, \frac{1}{12}, \frac{1}{3}, \frac{1}{60}\}$
Prawdopodobieństwo odpalenia czaso-	${Pr_i: i \in [0, 1, 2, 3]} = {\frac{1}{3}, \frac{1}{12}, \frac{1}{3}, \frac{1}{60}}$
wego przejścia	
Średni czas odpalenia czasowego przej-	${T(t_i): i \in [0, 1, 2, 3]} = {3, 12, 3, 60}$
ścia	
Średni czas przebywania w oznakowaniu	${T(M_j): i \in [0, 1, 2, 3]} = {3, 12, 3, 60}$