Objectives

1 Find the inverse of a function

2 State the Domain and Range of an Inverse Function

Inverse of an Ordered Pair

The inverse of the ordered pair (x, y) is (y, x).

(a)
$$(2, -7)$$

(a)
$$(2,-7)$$
 $(-7,2)$

(a)
$$(2,-7)$$
 $(-7,2)$

(b)
$$(0,3)$$

(a)
$$(2,-7)$$
 $(-7,2)$

(b)
$$(0,3)$$
 $(3,0)$

Recall that a function is nothing more than a machine that

Accepts an input, x

Recall that a function is nothing more than a machine that

- Accepts an input, x
- Performs some operation(s)

Recall that a function is nothing more than a machine that

- Accepts an input, x
- Performs some operation(s)
- Gives an output, y

Recall that a function is nothing more than a machine that

- Accepts an input, x
- Performs some operation(s)
- Gives an output, y

The inverse function is somewhat of an "undo" function.

Recall that a function is nothing more than a machine that

- Accepts an input, x
- Performs some operation(s)
- Gives an output, y

The inverse function is somewhat of an "undo" function.

It allows us to take the output of a function, put it into our inverse function, and get our original input value back.

Visualization

Suppose we put a value of 10 into the function

$$f(x) = x^2$$

Visualization

Suppose we put a value of 10 into the function

$$f(x) = x^2$$

If we put the output (100) into the inverse, we get our 10 back.

Visualization

Suppose we put a value of 10 into the function

$$f(x) = x^2$$

If we put the output (100) into the inverse, we get our 10 back.

Inverse Notation

We use the notation

$$f^{-1}(x)$$

to denote the inverse of f(x).

Inverse Notation

We use the notation

$$f^{-1}(x)$$

to denote the inverse of f(x).

Note: The notation does not mean raise the function to the -1 power.

Steps in Finding the Inverse of a Function

• Rewrite f(x) = as y =

Steps in Finding the Inverse of a Function

- Rewrite f(x) = as y =
- 2 Switch your x and y variables.

Steps in Finding the Inverse of a Function

- Rewrite f(x) = as y =
- 2 Switch your x and y variables.
- **3** Solve this result for *y* and rewrite using inverse notation.

(a)
$$f(x) = 5x$$

(a)
$$f(x) = 5x$$

$$y = 5x$$

(a)
$$f(x) = 5x$$

$$y = 5x$$
$$x = 5y$$

$$x = 5y$$

(a)
$$f(x) = 5x$$

$$y = 5x$$
$$x = 5y$$

$$x = 5y$$

$$\frac{x}{5} = y$$

(a)
$$f(x) = 5x$$

$$y = 5x$$

$$x = 5y$$

$$\frac{x}{5} = y$$

$$f^{-1}(x) = \frac{x}{5}$$

(b)
$$f(x) = 3x + 2$$

(b)
$$f(x) = 3x + 2$$

$$y = 3x + 2$$

(b)
$$f(x) = 3x + 2$$

$$y = 3x + 2$$

$$x=3y+2$$

(b)
$$f(x) = 3x + 2$$

$$y = 3x + 2$$

$$x = 3y + 2$$

$$x - 2 = 3y$$

(b)
$$f(x) = 3x + 2$$

$$y = 3x + 2$$

$$x = 3y + 2$$

$$x - 2 = 3y$$

$$\frac{x - 2}{3} = y$$

(b)
$$f(x) = 3x + 2$$

$$y = 3x + 2$$

$$x = 3y + 2$$

$$x - 2 = 3y$$

$$\frac{x - 2}{3} = y$$

$$f^{-1}(x) = \frac{x - 2}{3}$$

$$(c) f(x) = \frac{x+5}{7}$$

$$(c) f(x) = \frac{x+5}{7}$$

$$y = \frac{x+5}{7}$$

$$(c) \quad f(x) = \frac{x+5}{7}$$

$$y = \frac{x+5}{7}$$

$$x = \frac{y+5}{7}$$

$$(c) \quad f(x) = \frac{x+5}{7}$$

$$y = \frac{x+5}{7}$$

$$x = \frac{y+5}{7}$$

$$7x = y + 5$$

$$(c) \quad f(x) = \frac{x+5}{7}$$

$$y = \frac{x+5}{7}$$

$$x = \frac{y+5}{7}$$

$$7x = y + 5$$

$$7x - 5 = \mathbf{y}$$

$$(c) \quad f(x) = \frac{x+5}{7}$$

$$y = \frac{x+5}{7}$$

$$x = \frac{y+5}{7}$$

$$7x = y+5$$

$$7x-5 = y$$

$$f^{-1}(x) = 7x-5$$

$$(d) \quad g(x) = x^3 + 1$$

$$(d) \quad g(x) = x^3 + 1$$

$$y = x^3 + 1$$

$$(d) \quad g(x) = x^3 + 1$$

$$y = x^3 + 1$$

$$x = y^3 + 1$$

(d)
$$g(x) = x^3 + 1$$

$$y = x^3 + 1$$

$$x = y^3 + 1$$

$$x - 1 = y^3$$

(d)
$$g(x) = x^3 + 1$$

$$y = x^3 + 1$$

$$x = y^3 + 1$$

$$x - 1 = y^3$$

$$\sqrt[3]{x - 1} = y$$

(d)
$$g(x) = x^3 + 1$$

$$y = x^3 + 1$$

$$x = y^3 + 1$$

$$x - 1 = y^3$$

$$\sqrt[3]{x - 1} = y$$

$$g^{-1}(x) = \sqrt[3]{x - 1}$$

(e)
$$h(x) = 4x^5 - 1$$

(e)
$$h(x) = 4x^5 - 1$$

$$y=4x^5-1$$

(e)
$$h(x) = 4x^5 - 1$$

$$y=4x^5-1$$

$$x = 4y^5 - 1$$

(e)
$$h(x) = 4x^5 - 1$$

$$y = 4x^5 - 1$$

$$x = 4y^5 - 1$$

$$x + 1 = 4y^5$$

(e)
$$h(x) = 4x^5 - 1$$
$$y = 4x^5 - 1$$
$$x = 4y^5 - 1$$
$$x + 1 = 4y^5$$
$$\frac{x + 1}{4} = y^5$$

(e)
$$h(x) = 4x^5 - 1$$
$$y = 4x^5 - 1$$
$$x = 4y^5 - 1$$
$$x + 1 = 4y^5$$
$$\frac{x+1}{4} = y^5$$
$$\sqrt[5]{\frac{x+1}{4}} = y$$

(e)
$$h(x) = 4x^5 - 1$$

 $y = 4x^5 - 1$
 $x = 4y^5 - 1$
 $x + 1 = 4y^5$
 $\frac{x+1}{4} = y^5$
 $\sqrt[5]{\frac{x+1}{4}} = y$
 $h^{-1}(x) = \sqrt[5]{\frac{x+1}{4}}$

(f)
$$f(x) = \sqrt{x+3}$$

(f)
$$f(x) = \sqrt{x+3}$$

$$y = \sqrt{x+3}$$

(f)
$$f(x) = \sqrt{x+3}$$

$$y = \sqrt{x+3}$$

$$y = \sqrt{x+3}$$
$$x = \sqrt{y+3}$$

(f)
$$f(x) = \sqrt{x+3}$$

$$y = \sqrt{x+3}$$
$$x = \sqrt{y+3}$$

$$x^2 = y + 3$$

(f)
$$f(x) = \sqrt{x+3}$$
$$y = \sqrt{x+3}$$
$$x = \sqrt{y+3}$$
$$x^2 = y+3$$
$$x^2 - 3 = y$$

(f)
$$f(x) = \sqrt{x+3}$$
$$y = \sqrt{x+3}$$
$$x = \sqrt{y+3}$$
$$x^2 = y+3$$
$$x^2 - 3 = y$$
$$f^{-1}(x) = x^2 - 3$$

(g)
$$g(x) = \frac{5}{x}$$

$$(g) \quad g(x) = \frac{5}{x}$$

$$y = \frac{5}{x}$$

(g)
$$g(x) = \frac{5}{x}$$

$$y = \frac{5}{x}$$

$$x=rac{5}{y}$$

(g)
$$g(x) = \frac{5}{x}$$

$$y = \frac{5}{x}$$

$$x=\frac{5}{y}$$

$$xy = 5$$

(g)
$$g(x) = \frac{5}{x}$$

$$y = \frac{5}{x}$$

$$x = \frac{5}{y}$$

$$xy = 5$$

$$y = \frac{5}{x}$$

(g)
$$g(x) = \frac{5}{x}$$

$$y = \frac{5}{x}$$

$$x = \frac{5}{y}$$

$$xy = 5$$

$$y = \frac{5}{x}$$

$$g^{-1}(x) = \frac{5}{x}$$

Visual Interpretation of Inverse Functions

Visually, when finding the inverse of a function, you are **reflecting** that function across the line y = x.

Visual Interpretation of Inverse Functions

Below are the graphs of $f(x) = 3x^3 - 1$ and $f^{-1}(x) = \sqrt[3]{\frac{x+1}{3}}$ as well as the line y = x:

Objectives

Find the inverse of a function

2 State the Domain and Range of an Inverse Function

Domain and Range of Inverse Functions

When switching the x and y in finding the inverse function, you also switch the domain and range of the function and its inverse.

Domain and Range of Inverse Functions

When switching the x and y in finding the inverse function, you also switch the domain and range of the function and its inverse.

When you graph a function and its inverse, you'll want to make sure that they are reflections across the line y = x. This is VERY IMPORTANT for a function such as $y = x^2$.

Domain and Range of Inverse Functions

When switching the x and y in finding the inverse function, you also switch the domain and range of the function and its inverse.

When you graph a function and its inverse, you'll want to make sure that they are reflections across the line y = x. This is VERY IMPORTANT for a function such as $y = x^2$.

This might mean we need to restrict the domain and/or range of our original function.

Relationship Between Domain and Range

```
Domain of f = \text{Range of } f^{-1}
and
Range of f = \text{Domain of } f^{-1}
```

(a)
$$f(x) = 5x$$

	Domain (x)	Range (y)
f(x)		
$f^{-1}(x)$		

(a)
$$f(x) = 5x$$
 $f^{-1}(x) = \frac{x}{5}$

	Domain (x)	Range (y)
f(x)		
$f^{-1}(x)$		

(a)
$$f(x) = 5x$$
 $f^{-1}(x) = \frac{x}{5}$

	Domain (x)	Range (y)
f(x)	\mathbb{R}	
$f^{-1}(x)$		

(a)
$$f(x) = 5x$$
 $f^{-1}(x) = \frac{x}{5}$

	Domain (x)	Range (y)
f(x)	\mathbb{R}	
$f^{-1}(x)$		\mathbb{R}

Find the domain and range of both the function and its inverse.

(a)
$$f(x) = 5x$$
 $f^{-1}(x) = \frac{x}{5}$

	Domain (x)	Range (y)
f(x)	\mathbb{R}	
$f^{-1}(x)$	\mathbb{R}	\mathbb{R}

Find the domain and range of both the function and its inverse.

(a)
$$f(x) = 5x$$
 $f^{-1}(x) = \frac{x}{5}$

	Domain (x)	Range (y)
f(x)	\mathbb{R}	\mathbb{R}
$f^{-1}(x)$	\mathbb{R}	\mathbb{R}

(b)
$$f(x) = 3x + 2$$

	Domain (x)	Range (y)
f(x)		
$f^{-1}(x)$		

(b)
$$f(x) = 3x + 2$$
 $f^{-1}(x) = \frac{x-2}{3}$

	Domain (x)	Range (y)
f(x)		
$f^{-1}(x)$		

(b)
$$f(x) = 3x + 2$$
 $f^{-1}(x) = \frac{x-2}{3}$

	Domain (x)	Range (y)
f(x)	\mathbb{R}	
$f^{-1}(x)$		

(b)
$$f(x) = 3x + 2$$
 $f^{-1}(x) = \frac{x-2}{3}$

	Domain (x)	Range (y)
f(x)	\mathbb{R}	
$f^{-1}(x)$		\mathbb{R}

(b)
$$f(x) = 3x + 2$$
 $f^{-1}(x) = \frac{x-2}{3}$

	Domain (x)	Range (y)
f(x)	\mathbb{R}	
$f^{-1}(x)$	\mathbb{R}	\mathbb{R}

(b)
$$f(x) = 3x + 2$$
 $f^{-1}(x) = \frac{x-2}{3}$

	Domain (x)	Range (y)
f(x)	\mathbb{R}	\mathbb{R}
$f^{-1}(x)$	\mathbb{R}	\mathbb{R}

(c)
$$g(x) = \sqrt{x+3}$$

	Domain (x)	Range (y)
g(x)		
$g^{-1}(x)$		

(c)
$$g(x) = \sqrt{x+3}$$
 $g^{-1}(x) = x^2 - 3$

	Domain (x)	Range (y)
g(x)		
$g^{-1}(x)$		

(c)
$$g(x) = \sqrt{x+3}$$
 $g^{-1}(x) = x^2 - 3$

	Domain (x)	Range (y)
g(x)	$x \ge -3$	
$g^{-1}(x)$		

(c)
$$g(x) = \sqrt{x+3}$$
 $g^{-1}(x) = x^2 - 3$

	Domain (x)	Range (y)
g(x)	$x \ge -3$	
$g^{-1}(x)$		<i>y</i> ≥ −3

(c)
$$g(x) = \sqrt{x+3}$$
 $g^{-1}(x) = x^2 - 3$

	Domain (x)	Range (y)
g(x)	$x \ge -3$	$y \ge 0$
$g^{-1}(x)$		<i>y</i> ≥ −3

(c)
$$g(x) = \sqrt{x+3}$$
 $g^{-1}(x) = x^2 - 3$

	Domain (x)	Range (y)
g(x)	$x \ge -3$	$y \ge 0$
$g^{-1}(x)$	$x \ge 0$	$y \ge -3$

(d)
$$f(x) = -\sqrt{x-4} + 2$$

(d)
$$f(x) = -\sqrt{x-4} + 2$$
 $y = -\sqrt{x-4} + 2$

(d)
$$f(x) = -\sqrt{x-4} + 2$$

 $y = -\sqrt{x-4} + 2$
 $x = -\sqrt{y-4} + 2$

(d)
$$f(x) = -\sqrt{x-4} + 2$$

 $y = -\sqrt{x-4} + 2$
 $x = -\sqrt{y-4} + 2$
 $x - 2 = -\sqrt{y-4}$

(d)
$$f(x) = -\sqrt{x-4} + 2$$

 $y = -\sqrt{x-4} + 2$
 $x = -\sqrt{y-4} + 2$
 $x - 2 = -\sqrt{y-4}$
 $-x + 2 = \sqrt{y-4}$

(d)
$$f(x) = -\sqrt{x-4} + 2$$

 $y = -\sqrt{x-4} + 2$
 $x = -\sqrt{y-4} + 2$
 $x - 2 = -\sqrt{y-4}$
 $-x + 2 = \sqrt{y-4}$
 $(-x+2)^2 = y-4$

(d)
$$f(x) = -\sqrt{x-4} + 2$$

 $y = -\sqrt{x-4} + 2$
 $x = -\sqrt{y-4} + 2$
 $x - 2 = -\sqrt{y-4}$
 $-x + 2 = \sqrt{y-4}$
 $(-x+2)^2 = y-4$
 $(-x+2)^2 + 4 = y$

(d)
$$f(x) = -\sqrt{x-4} + 2$$
$$y = -\sqrt{x-4} + 2$$
$$x = -\sqrt{y-4} + 2$$
$$x - 2 = -\sqrt{y-4}$$
$$-x + 2 = \sqrt{y-4}$$
$$(-x+2)^2 = y - 4$$
$$(-x+2)^2 + 4 = y$$
$$f^{-1}(x) = (-x+2)^2 + 4$$

$$f(x) = -\sqrt{x-4} + 2$$
 $f^{-1}(x) = (-x+2)^2 + 4$

	Domain (x)	Range (y)
g(x)		
$g^{-1}(x)$		

$$f(x) = -\sqrt{x-4} + 2$$
 $f^{-1}(x) = (-x+2)^2 + 4$

	Domain (x)	Range (y)
g(x)	$x \ge 4$	
$g^{-1}(x)$		

$$f(x) = -\sqrt{x-4} + 2$$
 $f^{-1}(x) = (-x+2)^2 + 4$

	Domain (x)	Range (y)
g(x)	$x \ge 4$	
$g^{-1}(x)$		y ≥ 4

$$f(x) = -\sqrt{x-4} + 2$$
 $f^{-1}(x) = (-x+2)^2 + 4$

	Domain (x)	Range (y)
g(x)	$x \ge 4$	y ≤ 2
$g^{-1}(x)$		y ≥ 4

$$f(x) = -\sqrt{x-4} + 2$$
 $f^{-1}(x) = (-x+2)^2 + 4$

	Domain (x)	Range (y)
g(x)	$x \ge 4$	y ≤ 2
$g^{-1}(x)$	<i>x</i> ≤ 2	y ≥ 4

(e)
$$f(x) = x^2$$
 with $x \ge 0$

(e)
$$f(x) = x^2$$
 with $x \ge 0$

$$y = x^2$$

(e)
$$f(x) = x^2$$
 with $x \ge 0$

$$y = x^2$$
$$x = y^2$$

$$x = y^2$$

(e)
$$f(x) = x^2$$
 with $x \ge 0$
$$y = x^2$$

$$x = y^2$$

$$\pm \sqrt{x} = y$$

(e)
$$f(x) = x^2$$
 with $x \ge 0$
$$y = x^2$$

$$x = y^2$$

$$\pm \sqrt{x} = y$$

$$f^{-1}(x) = \pm \sqrt{x}$$

(e)
$$f(x) = x^2$$
 with $x \ge 0$
$$y = x^2$$

$$x = y^2$$

$$\pm \sqrt{x} = y$$

$$f^{-1}(x) = \pm \sqrt{x}$$

Note: It can NOT be both \sqrt{x} and $-\sqrt{x}$ because it would fail the **vertical line test**.

$$f(x) = x^2$$
 with $x \ge 0$ $f^{-1}(x) = \pm \sqrt{x}$

	Domain (x)	Range (y)
g(x)		
$g^{-1}(x)$		

$$f(x) = x^2$$
 with $x \ge 0$ $f^{-1}(x) = \pm \sqrt{x}$

	Domain (x)	Range (y)
g(x)	$x \ge 0$	
$g^{-1}(x)$		

$$f(x) = x^2$$
 with $x \ge 0$ $f^{-1}(x) = \pm \sqrt{x}$

	Domain (x)	Range (y)
g(x)	$x \ge 0$	
$g^{-1}(x)$		$y \ge 0$

$$f(x) = x^2$$
 with $x \ge 0$ $f^{-1}(x) = \pm \sqrt{x}$

	Domain (x)	Range (y)
g(x)	$x \ge 0$	$y \ge 0$
$g^{-1}(x)$		$y \ge 0$

$$f(x) = x^2$$
 with $x \ge 0$ $f^{-1}(x) = \pm \sqrt{x}$

	Domain (x)	Range (y)
g(x)	$x \ge 0$	$y \ge 0$
$g^{-1}(x)$	$x \ge 0$	$y \ge 0$

$$f(x) = x^2$$
 with $x \ge 0$ $f^{-1}(x) = \pm \sqrt{x}$

	Domain (x)	Range (y)
g(x)	$x \ge 0$	$y \ge 0$
$g^{-1}(x)$	$x \ge 0$	$y \ge 0$

$$f^{-1}(x) = \sqrt{x}$$