Unit 5:- Other Alternate Sources

Ocean Thermal Energy Conversion

Syllabus...Unit 5

• Other Alternate Sources: Ocean Thermal Energy Conversion, Geothermal, Tidal, Wave Energy, MHD, Fuel Cells, environmental issues of energy services.

Books ...

• Gilbert M. Masters, Renewable and Efficient Electrical Power Systems, Wiley - IEEE

Press, August 2004.

- Godfrey Boyle, Renewable Energy, Third edition, Oxford University Press, 2012.
- Chetan Singh Solanki, *Solar Photovoltaics-Fundamentals, Technologies and Applications*, PHI Third Edition, 2015.

Supplementary Reading:

• D.P.Kothari, K.C.Singal, Rakesh Rajan, *Renewable Energy Sources and Emerging Technologies*, PHI Second Edition, 2011.

Lecture 1 Ocean Thermal Energy Conversion (OTEC)

- Ocean Thermal Energy Conversion
- O T E C Characteristics
- Ocean Thermal Temperature
- OTEC History
- OTEC Plants
- OTEC Advantages
- OTEC Disadvantages
- OTEC Plant Theory
- OTEC Plant Classification
- Closed Cycle
- Open Cycle
- Land based OTEC Plant
- Off shore OTEC Plant
- Other Uses, Benefits
- Limitations

Ocean Thermal Energy Conversion

- The oceans cover a around 71 percent of the Earth's surface. Hence, world's largest solar energy collector and energy storage system.
- Ocean thermal energy conversion (OTEC) is a way to generate electricity using the temperature difference of sea water at different depth to run heat engines and produce useful work.
- Since OTEC exploits renewable solar energy, recurring costs to generate electrical power are minimal.
- OTEC utilizes the world's largest solar radiation collector The ocean. The ocean contains enough energy power all of the world's electrical needs.

OTE C Characteristics

• It uses the ocean's naturally available temperature gradient (thermocline), or thermal energy.

- It is completely Green Renewable Energy
- Unlike Solar or wind, available continuously as a base load. Thus eliminating the need to store energy.
- Up to 88,000 TWh/yr of power could be generated from OTEC without affecting the ocean's thermal structure.

5 L1 Unit 5

Energy

Ocean Thermal Temperature

- A heat engine efficiency is greater for large temperature difference.
- In the oceans the temperature difference is greatest in the tropics, although still a modest 20 to 25 °C.
- OTEC has the potential to offer global amounts of energy that are 10 to 100 times greater than other ocean energy options such as wave power

OTEC History

- In 1881, Jacques Arsene d'Arsonval, a French physicist, proposed tapping the thermal energy of the ocean
 - . D'Arsonval's student, Georges Claude, built the first OTEC plant, in Matanzas, Cuba in 1930, The plant was later destroyed in a storm
- In 1935, Claude constructed a plant aboard a 10,000-ton cargo vessel moored off the coast of Brazil. Weather and waves destroyed it before it could generate net power
- In 1962, J. Hilbert Anderson and James H. Anderson, Jr. focused on increasing component efficiency. They patented their new "closed cycle" design in 1967.

OTEC History

Japan is a major contributor to the development of OTEC technology. Beginning in 1970 the Tokyo Electric Power Company successfully built and deployed a 100 kW closed-cycle OTEC plant on the island of Nauru

- OTEC test facility at Keahole Point, Kona, Hawaii (estd. 1974)
- In 2002, India tested a 1 MW floating OTEC pilot plant near Tamil Nadu.

OTEC Plants

Country	Power output	Purpose	Year
Saga, Japan	30 kW	Research and development	1980
Gosung, Korea	20 kW	Research and development	2012
Reunion Island, France	15 kW	Research and development	2012
Kumejima, Japan	100 kW	Research and development, electricity production	2013
Hawaii, USA	105 kW	Electricity production	2015

OTEC Advantages

OTEC Disadvantages

OTEC Plant Theory

Thermodynamic efficiency:

The main technical challenge of OTEC is to generate significant amounts of power efficiently from small temperature differences. It is still considered an emerging technology. Early OTEC systems were 1 to 3 percent thermally efficient, well below the theoretical maximum 6 and 7 percent for this temperature difference. Modern designs allow performance approaching the theoretical maximum Carnot efficiency.

OTEC Plant Classification

OTEC Closed Cycle

Closed-cycle systems use fluid with a low boiling point, such as ammonia (having a boiling point around -33 °C at atmospheric pressure), to power a turbine to generate electricity. Warm surface seawater is pumped through a heat exchanger to vaporize the fluid. The expanding vapor turns the turbogenerator.

OTEC Closed Cycle

Cold water, pumped through a second heat exchanger, condenses the vapor into a liquid, which is then recycled through the system.

L1 Unit 5

OTEC Open Cycle

Open-cycle OTEC uses warm surface water directly to make electricity. The warm seawater is first pumped into a low-pressure container, which causes it to boil. In some schemes, the expanding vapor drives a low-pressure turbine attached to an electrical generator.

OTEC Open Cycle

The vapor, which has left its salt and other contaminants in the low-pressure container, is pure fresh water.

Land based OTEC Plant

Notice how it can be used for irrigation and refrigeration besides power generation.

OFFSHORE OTEC Plant

OTEC Other Uses

OTEC Benifits

Direct Benefits

- No Fuel
- Abundant Supply
- Fresh Water
- Renewable

Indirect Benefits

- Predictable CostAgriculturePotable Water
- Independence of Fossil Fuels
- Reduced Carbon Footprint

OTEC Limitations

Thank You