EE 527: Machine Learning Laboratory

Assignment 6

Due date: 24 Feb 2023

1. PCA & Eigen Faces

Consider the faces dataset, which consists of 15 subjects with 11 faces per subject. Set aside any 1 face per identity for testing and treat the rest of the 150 faces as the training set.

Perform PCA on the training data and visualize the top-K eigen faces. Transform the data (train & test) by projecting the mean centered samples onto these K vectors obtained using training set.

Find the best match for each of the test sample based on Euclidean distance criterion to the training vectors in the transformed K-dimensional space. Display both the true query face and the predicted face. Experiment with different values of K.

2. Linear Discriminant Analysis (LDA)

Generate **n** points each in two hyper-spheres in **d**-dimensional space. The hyperspheres have a radius of **r** and are centered at C_1 and C_2 . Collect these points into arrays S_1 and S_2 respectively. (Take **n**=1000, **d**=20)

- (a) Compute centroids $(\mathbf{m}_1, \mathbf{m}_2)$ and covariance matrices $(\mathbf{C}_1, \mathbf{C}_2)$ of both arrays.
- (b) Compute the optimal direction vector $\hat{\boldsymbol{w}}$ (unit vector) for LDA.
- (c) Project the vector data in arrays S_1 and S_2 to generate the respective array of scalars zS_1 and zS_2 .
- (d) Plot the normalized histograms of zS_1 and zS_2 in two different colours (red & blue).

Carry out the above steps for each of the following cases by choosing r, C_1 & C_2 appropriately and report observations.

Case 1:
$$|| \mathbf{C_1} - \mathbf{C_2}||_2 > 2\mathbf{r}$$
.

Case 2:
$$|| \mathbf{C_1} - \mathbf{C_2}||_2 = 2\mathbf{r} - \mathbf{\epsilon}$$
.

Case 3:
$$r < || C_1 - C_2 ||_2 < 2r$$
.

Case 4:
$$|| \mathbf{C_1} - \mathbf{C_2}||_2 < \mathbf{r}$$
.