Санкт-Петербургский политехнический университет Петра Великого Институт машиностроения, материалов и транспорта Высшая школа автоматизации и робототехники

Отчёт

по лабораторной работе №2

Дисциплина: Программирование микроконтроллеров для управления
роботами
Тема: Вторичный источник питания

Студент гр. 3331506/70401 Кондратченко О.О. Преподаватель Капустин Д. А. « »_____2021 г.

> Санкт-Петербург 2021

Оглавление

1. Oп	исание микросхемы TPS55162-Q1	4
1.1.	Конфигурация контактов и их описание	5
1.2.	Режимы работы	7
2. Pac	счет и выбор компонентов	7
2.1.	Выбор компонентов	7
2.2.	Расчет резисторов делителя напряжения	9
3. Pac	счет стоимости производства платы	9
3.1.	Стоимость текстолита	9
3.2.	Стоимость компонентов	10
ЗАКЛІ	ЮЧЕНИЕ	11
СПИС	ОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	12

ЗАДАНИЕ

Разработать понижающий-повышающий преобразователь напряжения на основе микросхемы TPS55162-Q1 DC/DC 24B/9B. Мощность преобразователя 5Вт. Преобразователь должен обеспечивать работу в диапазоне входных напряжений от 5В до 24В. В устройстве должна присутствовать индикация напряжения питания на выходе. Устройство должно быть защищено от КЗ на выходе источника.

1. Описание микросхемы TPS55162-Q1

Микросхема TPS55162-Q1 [1] является понижающим-повышающим DC/DC преобразователем напряжения с четырьмя встроенными МОП-транзисторами. Данный тип преобразователя имеет возможность работать как на повышение, так и на понижение напряжения. Устройство обеспечивает стабильное питание от широкого диапазона источников питания, таких как автомобильный аккумулятор с напряжением 12 В, где напряжение может меняться от 10 В до 15 В в зависимости от ситуации.

Система переключения между повышающим режимом и понижающим происходит автоматически с оптимальной эффективностью.

Выходное напряжение микросхемы TPS55162-Q1 имеет настраиваемое выходное напряжение в диапазоне от 5,7 В до 9 В, которое устанавливается внешним резистивным делителем.

Выходные токи могут достигать 1 A для нормального входного напряжения и могут поддерживаться на уровне 0,4 A для более низкого входного напряжения.

Преобразователь основан на широтно-импульсной модуляции (ШИМ) с фиксированной частотой. Частота переключения — 2 МГц (типичная), что позволяет использовать небольшой индуктор, который занимает меньше места на плате.

Основные характеристики микросхемы TPS55162-Q1 представлены в таблице 1.

Таблица 1 – Параметры микросхемы микросхемы TPS55162-Q1

Характеристика	Значение
Частота переключения, МГц	2
Входное напряжение, В	От 3,6 до 36
Выходное напряжение, В	От 5,7 до 9
Номинальный ток, А	До 0,8

1.1. Конфигурация контактов и их описание

Используется конфигурация микросхемы TPS55162-Q1 с 20 контактами и термопадом (см. рисунок 1), который необходим для более быстрого охлаждения преобразователя.

Рисунок 1 – УГО микросхемы TPS55162-Q1

Ниже приведено краткое описание каждого контакта [1, стр. 3-4]:

- 1-PGND, 13-GND, 18-GND заземляемые контакты;
- 2-L1, 20-L2, 3-BST1, 19-BST2 отвечают за переключение в понижающий и повышающий режим работы, между выходами BST1 и L1, BST 2 и L2 подключаются накопительные конденсаторы емкостью Ф, которые повышают напряжение на транзисторах до необходимого для их включения. Между контактами L1 и L2 подключается индуктивность.
- 4-VINP, 5-VINL входное напряжение от источника питания, для контакта VINL питание для внутренней логики преобразователя напряжения.
- 6-IGN включение/выключение микросхемы, включение при высоком уровне, выключение при низком уровне;
 - 7-PS управление режимом пониженного энергопотребления,

активно – высокий уровень, преобразователь переходит в режим пониженного энергопотребления с частотно-импульсной модуляцией, неактивно – низкий уровень, работает в нормальном режиме с постоянной фиксированной частотой переключения 2 МГц (контакт подтягивается к земле ввиду отсутствия данной функции у преобразователя данной серии).

- 8-IGN_PWRL блокировка питания, позволяет поддерживать устройство включенным даже после того, как на контакте IGN будет установлен низкий уровень. Активно при высоком уровне, неактивно при низком уровне.
- 9-SS_EN режим расширенного спектра частоты. Если контакт SS_EN не подключен, функция расширения спектра включена, при подключении контакта SS_EN к земле происходит отключение функции расширения спектра (контакт подтягивается к земле ввиду отсутствия данной функции у преобразователя данной серии).
- 15-PG состояние выходного напряжения, если высокий уровень на контакте, то напряжение достигает определенного порогового значения. При снижении напряжения на контакте устанавливается низкий уровень.
- 10-PG_DLY управление временем задержки для 15-PG. При соединении с резистором номиналом от 10 до 100 кОм, то время задержки составит 0,5-40 мс, если заземлить, то время задержки составит 2 мс;
- 11-VREG_Q, 12-VREG контакт, отвечающий за обратную связь и питания преобразователя соответственно, заземляется через развязывающий конденсатор $4,7~{\rm Mk}\Phi;$
- 14-VOS_FB устанавливает значение выходного напряжения, подключается к цепи внешней обратной связи. Общее сопротивление этой цепи должно быть менее 1 Мом. Усилитель ошибки напряжения получает сигнал обратной связи от вывода VOS_FB, напряжение обратной связи сравнивается с внутренним опорным напряжением для получения стабильного и точного выходного напряжения.
 - 16-VOUT_SENSE, 17-VOUT первый контакт подключается ко

второму, который в свою очередь подключается к выходному напряжению.

1.2. Режимы работы

Если входное напряжение ниже выходного, устройство работает в повышающем режиме. Если входное напряжение равно или близко к выходному напряжению, устройство работает между понижающим и повышающим режимами. Контроль перекрытия понижающего повышения обеспечивает автоматический и плавный переход между понижающим и повышающим режимами с оптимальной эффективностью. Выходное напряжение устройства TPS55162-Q1 варьируется от 5,7 В до 9 В. [1, стр 27]

2. Расчет и выбор компонентов

2.1. Выбор компонентов

В таблице 2 представлены рекомендуемые значения некоторых компонентов схемы. [1, стр. 31].

Компонент	Значение
$C_{in, \text{ MK}}\Phi$	От 8,2 и более
$C_{out, \ m MK}\Phi$	От 18 до 47
$\it L$, мк Γ н	От 3,3 до 6,2
C _{VREG} , мкФ	От 3,9 до 5,6

Таблица 2 – Рекомендации производителя

Микросхема TPS55162-Q1 переключается на частоте 2 МГц, поэтому следует использовать экранированный индуктор и керамические конденсаторы типа X5R или X7R. [1, стр. 32].

Для входного конденсатора C_{in} напряжение должно превышать максимальное входное напряжение U_{in} [1, стр. 32], поэтому выбираем два конденсатора емкостью 10 мкФ, рассчитанный на напряжение 50 В [1, стр. 32].

Также для лучшей фильтрации шумов рекомендуется параллельно со входным конденсатором поставить конденсатор емкостью 0,470 мкФ [1, стр. 32].

Для фильтрации шумов на выводе VOUT_SENSE рекомендуется добавить высокочастотный развязывающий конденсатор емкостью 0,1 мк Φ ,

рассчитанный на 25 В и более [1, стр. 34].

Выходной конденсатор подключается к напряжению 9 В, в соответствии с рекомендациями производителя необходимо установить два конденсатора емкостью 22 мкФ, которые рассчитаны на 10 В и более. [1, стр. 32].

Аналогично со входной емкостью, на выходе параллельно выходным конденсаторам необходимо поставить конденсатор емкостью 2,2 мкФ [1, стр. 32].

Между контактами L1 и BST1, L2 и BST2 необходим конденсатор емкостью 0,1 мк Φ [1, стр. 3-4].

Микросхема TPS55162-Q1 имеет внутренний предел пикового тока 4,5 A. Силовой индуктор не должен насыщаться во время работы, поэтому между контактами L1 и L2 необходим индуктор с номиналом 4,7 мкГн, током насыщения свыше 4,5 A и активным сопротивлением менее 40 мОм [1, стр. 33].

Контакты VREG_Q и VREG необходимо заземлить через конденсатор емкостью 4,7 мкФ, рассчитанный на 25 В и более [1, стр. 34].

PG является open-drain выводом, то его необходимо подтянуть к питанию при помощи резистора сопротивлением 100 кОм. Данный контакт так же используется для индикации питания при помощи светодиода.

Для управлениями функциями микросхемы используют 2 двухпозиционных переключателей типа jumper (выводы IGN_PWRL, IGN). Остальные же контакты подтягиваются к земле.

2.2. Расчет резисторов делителя напряжения

Для регулирования выходного напряжения используется резистивный делитель. Расчет сопротивления резисторов определяется по формуле [1, c.28]:

$$V_{OUT} = \frac{R_1 + R_2}{R_2} \times V_{FB} \tag{1}$$

где V_{OUT} — выходное напряжение 9B, V_{FB} — напряжение обратной связи со значением 0,8 B.

Таким образом, опираясь на формулу (1), резисторы имеют следующее значения: $R_1=205~{\rm kOm}$ и $R_2=20~{\rm kOm}$.

- 3. Расчет стоимости производства платы
- 3.1. Стоимость текстолита

Спроектированная двухслойная плата имеет размеры $55\times30\times1,5$ мм и толщину проводящих слоев 0,035 мм. Минимальная ширина проводников равна 0,3 мм, минимальный диаметр отверстий также равен 0,3 мм. Расчет стоимости текстолита производился с помощью калькулятора на сайте pcbway.com [2]. Без учета доставки примерная стоимость текстолита составляет 24\$.

3.2. Стоимость компонентов

Расчет стоимости компонентов производился на сайте mouser.com [3]. Список компонентов и их стоимость представлена в таблице 3.

Таблица 3 – Стоимость компонентов

№	Наименование	Производитель	Количество	Стоимость, \$
1	DS1069-2MRW6XB	Connfly Electronic Co., Ltd.	1	0,06
2	SD24C-01FTG	Littelfuse, Inc.	1	0,83
3	CC1210KKX7R9BB106	YAGEO Corp.	2	2,82
4	CC0603KRX5R9BB474	YAGEO Corp.	1	0,73
5	CC0603JRX7R9BB104	YAGEO Corp.	2	0,36
6	SRP7028A-4R7M	Bourns, Inc.	1	1,72
7	CC0603KRX5R8BB475	YAGEO Corp.	1	0,41
8	CC0603JRX7R9BB104	YAGEO Corp.	1	0,18
9	RC0603FR-07205KL	YAGEO Corp.	1	0,16
10	RC0603FR-0720KL	YAGEO Corp.	1	0,16
11	RC0603FR-07100KL	YAGEO Corp.	1	0,16
12	TLMG1100-GS08	Vishay Intertechnology, Inc.	1	0,71
13	CC1210KKX7R8BB226	YAGEO Corp.	2	3,34
14	CC0603KRX7R6BB225	YAGEO Corp.	1	0,31
15	1776275-2	TE Connectivity	1	1,14
16	TDD01H0SB1R	C&K	2	2,15

Стоимость компонентов составила 15,24 \$. Общая стоимость текстолита и компонентов составляет 39,24 \$.

ЗАКЛЮЧЕНИЕ

Был разработан понижающий-повышающий преобразователь напряжения DC/DC 24B/9B на основе микросхемы TPS55162-Q1. Процесс разработки включал в себя этапы изучения, описания микросхемы TPS55162-Q1, подпор внешних электронных компонентов, создание принципиальной электрической схемы преобразователя, компоновка элементов и трассировка. Результат выполнения лабораторной работы является принципиальная электрическая схема, файлы проекта Altium Designer, файлы производства, перечень электронных компонентов и стоимость производства платы.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. TPS5516X-Q1 datasheet. [Электронный ресурс]. Режим доступа: https://www.ti.com/product/TPS55162-Q1?dcmp=dsproject&hqs=pf, свободный (01.05.2021)
- 2. PCB price calculator. [Электронный ресурс]. Режим доступа: https://www.pcbway.com/orderonline.aspx , свободный (01.05.2021)
- 3. Mouser Electronics. [Электронный ресурс]. Режим доступа: https://eu.mouser.com/ , свободный (01.05.2021)