

Multipath variants for congestion control in context of WebRTC

Student:

Ardelean Daniel-George

Coordinator: Sterca Ioan-Adrian

Motivation

- Increased demand for real-time communication [1]
- WebRTC dominant technology for video streaming [2]
- Single path limitations

Research goals

- Survey existing congestion control algorithms [3]
- Explore benefits of multipath transmission in WebRTC
- Evaluate the performance across various metrics

WebRTC & Congestion control

- Peer-to-peer communication over UDP
- No built-in congestion control in UDP
- Existing algorithms: GCC, SCReAM, NADA [5][6][7]
- Limitations: single-path assumptions

Why Multipath

- Send across multiple network routes at the same time [4]
- Advantages:
 - Increased resilience
 - Redundancy and fault tolerance
 - Efficient bandwidth use
 - Seamless mobility for mobile devices

Multipath in practice

MPTCP: Multipath TCP [8]

Built into the protocol

Multipath subflows

UDP lacks native congestion control support

Congestion control is not built into the protocol itself

Challenges

- Packet reordering
- Integration with existing architectures

• Path selection strategies

Methodology

- Create a realistic multipath simulation scenario
- Implement a custom multipath capable NADA that can switch between multiple path selection strategies
- Compare the behaviour of a classic NADA [7] and its multipath counterpart

System architecture

- Simulations realised using Network Simulator 3 (ns-3) [9]
- Extended existing UDP client classes
- Simulate realistic video streams by implementing custom video packets
- Simulate a receiver application to consume the video stream

Simulation topology

- Two paths: different bandwidth/latency
- Competing TCP flows to simulate real traffic and achieve statistical multiplexing over the network
- Wrapper classes over Source/Destination connections
- Custom video buffer and receiver app to simulate a video player

80

Path selection strategies

- Dynamic Weights
- Best Path
- Round Robin

- Frame-Aware
- Buffer-Aware

Congestion signals

Evaluated metrics

Throughput	Measures the effective data rate at the receiver, calculated as total received bytes divided by simulation time (in Mbps)
<u>Delay</u>	The average time taken by packets to travel from sender to receiver, including all transmission, propagation, and queuing delays
Packet loss	The percentage of packets that were sent but never received at the destination
<u>Jitter</u>	Measures the variability in packet arrival times, indicating how uneven the delivery intervals are
Buffer length	Indicates how much video content (in seconds) is currently preloaded in the receiver's playback buffer
Buffer underruns	Counts the number of times the playback buffer is empty and causes a video freeze or rebuffering
MOS (Mean Opinion Score)	An estimated user experience score (0 to 5) derived from received video bitrate using a logistic mapping
Stability	Reflects the consistency of throughput over time; large deviations indicate unstable performance
Efficiency	Represents how many of the transmitted bytes actually reached the destination, indicating delivery effectiveness

Results

60.8% - 219.4%

Throughput increase

88.9%-99.9%

reduction

Packet loss

Up to 86.7% lower

Jitter on stable networks

84.3 - 218.5%

Variability in throughput

0.01% - 0.88%

Improvement in MOS score

84.8 - 414.6%

In buffer length (ms)

Trade-offs

- Increased throughput variability
- Adaptive strategies have increased jitter
- Path selection adds complex overhead

Future work

- Adaptive filtering and congestion prediction
- Real deploys on real networks and evaluating real user experience
- Testing on 5G/6G, IoT, edge computing scenarios
- Machine learning for strategy selection

Conclusions

- The Multipath NADA approach improves real-time performance
- Modularity of the proposed architecture can easily be extended for future research
- Best for hybrid topologies
- Buffer-aware / Frame-aware are the most stable

Bibliographical

- [1]. H. Schulzrinne, S. Casne **Teffer Cos**on, "Rtp: A transport protocol for real-time applications," Tech. Rep., 2003.
- [2]. B. Jansen, T. Goodwin, V. Gupta, F. Kuipers, and G. Zussman, "Performance evaluation of webrtc-based video conferencing," ACM SIGMETRICS performance evaluation review, vol. 45, no. 3, pp. 56–68, 2018.
- [3]. L. De Cicco, G. Carlucci, and S. Mascolo, "Congestion control for webrtc: Standardization status and open issues," IEEE Communications Standards Magazine, vol. 1, no. 2, pp. 22–27, 2017
- [4].M. Li, A. Lukyanenko, Z. Ou, A. Yl"a-J"a"aski, S. Tarkoma, M. Coudron, and S. Secci, "Multipath transmission for the internet: A survey," IEEE Communications Surveys & Tutorials, vol. 18, no. 4, pp. 2887–2925, 2016.
- [5]. S. Holmer, H. Lundin, G. Carlucci, L. D. Cicco, and S. Mascolo, "A Google Congestion Control Algorithm for Real-Time Communication," Internet Engineering Task Force, Internet-Draft draft-ietf-rmcat-gcc-02, Jul. 2016, work in Progress. [Online]. Available: https://datatracker.ietf.org/doc/draft-ietf-rmcat-gcc/02/

- **[6]**. Johansson and Z. Sarker, "Self-Clocked Rate Adaptation for Multimedia," RFC 8298, Dec. 2017. [Online]. Available: https://www.rfc-editor.org/info/rfc8298
- [7].X. Zhu, R. P. *, M. A. Ramalho, and S. M. de la Cruz, "Network-Assisted Dynamic Adaptation (NADA): A Unified Congestion Control Scheme for Real-Time Media," RFC 8698, Feb. 2020. [Online]. Available:
- https://www.rfc-editor.org/info/rfc8698
- [8].S. Barr´e, C. Paasch, and O. Bonaventure, "Multipath tcp: from theory to practice," in NETWORKING 2011: 10th International IFIP TC 6
- Networking Conference, Valencia, Spain, May 9-13, 2011, Proceedings,
- Part I 10. Springer, 2011, pp. 444-457.
- [9].A. B. Massimo Antonio Tozzato, Fabio Cazzin. (2025) Network simulator 3. [Online]. Available: https://www.nsnam.org/

