

# Non-linear Equations: Roots Finding



Dr. Himanshu Pathak

himanshu@iitmandi.ac.in

# Roots/Zeros of Equations

Recall that a second order polynomial may be written in the general form

$$ax^2 + bx + c = 0$$

where a, b, c, are real numbers.

Root of this equation can b directly found as:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- Find roots for equation  $f(x) = e^{-x} x$  Tedious!!!
  - → Objective is to find a solution of f(x) = 0"f(x)" is a polynomial or a transcendental function, given explicitly.

## **Graphical Method**

- $\rightarrow$  Estimate of the root of the equation f(x) = 0.
  - 1. Make a plot of the function and observe where it crosses the x axis.
  - 2. The x value for which f(x) = 0, provides a rough approximation of the root.

Example 1: Get the root for the given equation by Graphical method using the parameters t = 10, g = 9.81, v = 40, and m = 68.1

$$f(c) = \frac{gm}{c} \left( 1 - e^{-(c/m)t} \right) - v$$





#### **Bisection Method**

- A successive approximation method that narrows down an interval that contains a root of the function f(x).
- Cuts the interval into 2 halves and check which half interval contains a root of the function



#### **Bisection Method**

- Step 1: Choose lower  $x_l$  and upper  $x_u$  guesses for the root such that the function changes sign over the interval.  $f(x_l)f(x_u) < 0.$
- Step 2: An estimate of the root  $x_m$  as  $x_m = (x_l + x_u)/2$
- Step 3: Make the following evaluations to determine in which subinterval the root lies:
  - (a) If  $f(x_l)f(x_m) < 0$ , the root lies in the lower subinterval. Set  $x_u = x_m$  and return to step 2.
  - (b) If  $f(x_l)f(x_m) > 0$ , the root lies in the upper subinterval. Set  $x_l = x_m$  and return to step 2.
  - (c) If  $f(x_l)f(x_m) = 0$ , the root equals  $x_m$ ; Terminate the computation.

#### **Bisection Method**

Example 1: find the root of 
$$f(x) = x^2 - 5$$

Initial Range 
$$x_l = 0$$
;  $f(x_l) = -5$   
 $x_u = 4$ ;  $f(x_u) = 11$ 

Iteration 1: 
$$x_m = (x_l + x_u)/2 = (0+4)/2 = 2$$
,  $f(x_m) = -1$ ,

As  $f(x_l)f(x_m) > 0$ ; Set  $x_l = x_m = 2$ 

Iteration 2: 
$$x_m = (x_l + x_u)/2 = (2+4)/2 = 3$$
,  $f(x_m) = 4$ ,  
As  $f(x_l)f(x_m) < 0$ ; Set  $x_u = x_m = 3$ 

Iteration 3: 
$$x_m = (x_l + x_u)/2 = (2+3)/2 = 2.5$$
,  $f(x_m) = 1.25$ , As  $f(x_l)f(x_m) < 0$ ; Set  $x_u = x_m = 2.5$ 

Iteration 4: 
$$x_m = (x_l + x_u)/2 = (2+2.5)/2 = 2.25$$
,  $f(x_m) = 0.0625$ , As  $f(x_l)f(x_m) < 0$ ; Set  $x_u = x_m = 2.25$ 

Iteration 5: 
$$x_m = (x_l + x_u)/2 = (2+2.25)/2 = 2.125$$
,  $f(x_m) = -0.484$ , As  $f(x_l)f(x_m) > 0$ ; Set  $x_l = x_m = 2.125$ 

Iteration 6: 
$$x_m = (x_l + x_u)/2 = (2.125 + 2.25)/2 = 2.187$$
,  $f(x_m) = -0.217$ , As  $f(x_l)f(x_m) > 0$ ; Set  $x_l = x_m = 2.187$ 

# MATLAB® Script

#### MATLAB Program for Bisection Method

```
%Define function file
function y =bifun(x)
```

```
y = exp(x) - 15*x - 10;
```

```
% Bisection computation
tol = 1e-4;
xl = 0; % lower limit
xu = 11; % upper limit
i = 1;
maxitr =1000;
while (xu - xl) > 2*tol
    xm = (xu+xl)/2;
    fl = bifun(xl);
    fm = bifun(xm);
    prod = fl*fm;
```

```
if prod>0
   xl = xm;
else
   xu=xm;
end
if i<maxitr
Root(i) = (xl+xu)/2;
i = i+1;
else
disp('Max iteration
reached without root')
return
end
end
```

## Newton Raphson Method

- A faster alternative is to use a numerical rootfinder.
- Only one Guess point is needed.
- Initial guess at the root is  $x_i$ , a tangent can be extended from the point  $[x_i, f(x_i)]$ .
- → The point where this tangent crosses the x axis usually represents an improved estimate of the root.



$$f'(x_i) = \frac{f(x_i) - 0}{x_i - x_{i+1}} \implies x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

## Newton Raphson Method

- Step 1: Evaluate f'(x) symbolically and guess initial root  $x_i$ .
- Step 2: Calculate new value of the root,  $x_{i+1} = x_i \frac{f(x_i)}{f'(x_i)}$

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

Step 3: Find the absolute relative approximate error as:

$$|\epsilon_a| = \left| \frac{x_{i+1} - x_i}{x_{i+1}} \right| \times 100$$

- Step 4: Compare the absolute relative approximate error with the pre-specified tolerance | E<sub>s</sub>|
  - (a) If  $|\varepsilon_a| > |\varepsilon_s|$ , return to step 2 and calculate new value of root.
  - (b) If  $|\varepsilon_a| < |\varepsilon_s|$ , Terminate the computation.

# Newton Raphson Method

Example 1: find the root of 
$$f(x) = e^{-x} - x$$
  
Initial Guess  $x_0 = 0$ ;  $f(x_0) = 1$ ,  
 $f'(x) = -e^{-x} - 1$ ,  $f'(x_0) = -2$ 

Iterations: 
$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

$$x_1 = x_0 - (f(x_0) / (f'(x_0)) = 0 - (-1/2) = 0.5$$
  
 $x_2 = x_1 - (f(x_1) / (f'(x_1)) = 0.5 - (-0.1/1.6) = 0.566$ 

| i | $\boldsymbol{x}_i$ | $\varepsilon_t$ (%) |
|---|--------------------|---------------------|
| 0 | 0                  | 100                 |
| 1 | 0.500000000        | 11.8                |
| 2 | 0.566311003        | 0.147               |
| 3 | 0.567143165        | 0.0000220           |
| 4 | 0.567143290        | < 10 <sup>-8</sup>  |

# MATLAB<sup>©</sup> Script

#### MATLAB Program for Newton Raphson Method

```
while i < maxitr
                                                        disp('Root calculated')
clear all
                           fx = subs(fun,z,xold);
clc
tol = 1e-5;
                            Fx = vpa(fx);
                                                               return
x0 = 0; % Guess
                            fx1 = subs(fx\_diff, z, xold); end
i=1;
                            Fx1 = vpa(fx1);
                                                            end
maxitr =1000;
                            x = xold - Fx/Fx1;
xold = x0;
                            if abs(x-xold) > tol
syms z
                              xold = x;
fun=exp(z) +15*z -10;
                              i = i + 1;
fx_diff=diff(fun,z);
                            else
```

#### **Secant Method**

- **♦** A faster alternative is to use a numerical rootfinder.
- **→** Two initial point is needed.
- No need of function derivative calculation.
- Root is predicted by extrapolating tangent of function to x-axis.
- Modified form of Newton-Raphson to avoid function derivative calculation.
- Function derivative approximated by backward finite divided difference.  $f'(x_i) \cong \frac{f(x_{i-1}) f}{f'(x_i)}$



$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

$$x_{i+1} = x_i - \frac{f(x_i)(x_{i-1} - x_i)}{f(x_{i-1}) - f(x_i)}$$

#### **Secant Method**

- Step 1: Guess initial root  $x_{i,j}$  and  $x_i$ .

Step 2: Calculate new value of the root, 
$$x_{i+1} = x_i - \frac{f(x_i)(x_{i-1} - x_i)}{f(x_{i-1}) - f(x_i)}$$

Step 3: Find the absolute relative approximate error as:  $|\epsilon_a| = \left| \frac{x_{i+1} - x_i}{x_{i+1}} \right| \times 100$ 

Step 4: Compare the absolute relative approximate error with the pre-specified tolerance 
$$|\epsilon_s|$$

- (a) If  $|\varepsilon_a| > |\varepsilon_s|$ , return to step 2 and calculate new value of root.
- (b) If  $|\varepsilon_a| < |\varepsilon_s|$ , Terminate the computation.

#### MATLAB® Script

#### <u>MATLAB Program for Secant Method</u>

```
if abs(x(i)-x(i-1)) < tol
%Define function file
                           clear all
                                                                       disp('Root calculated')
                           clc
                                                                       x(i)
function y = secfun(x)
                          tol = 1e-5;
y = exp(x) - 15*x - 10;
                          x = [1 5]; \% Guess
                                                                       return
                          i = 3;
                                                                     else
                          maxitr =1000;
                                                                      i=\overline{i+1};
                           while i < maxitr
                                                                     end
                             f1 = secfun(x(i-2));
                                                                  end
                             f2 = secfun(x(i-1));
                             fact = (f2*(x(i-2)-x(i-1)))/(f1-f2);
                             x(i) = x(i-1) - fact;
```

# Convergence



# THANK YOU





Questions??