Sekolah Teknik Elektro dan Informatika ITB

Nama:

Prodi Teknik Elektro Ujian Tengah Semester I-2023, EL 2007 Sinyal Dan Sistem

NIM:

Waktu: Dua Jam, Semi Open Book

Petunjuk: Lembar soal ini adalah sekaligus lembar jawaban . Kerjakan penurunan jawaban pada kertas terpisa, isiiah jawaban tiap pertanyaan di lembar ini . Kumpulkan juga lembar penurunan bersama lembar jawaban. Kerjakan apa adanya dan gunakan asumsi seperlunya. Soal tersedia enam BAGIAN. Bobot setiap BAGIAN adalaha 20% jadi anda tidAk harus mengerjakan semua soal untuk mendapat skor penuhSelamat bekerja. Sumber: (Oppenheim & Willsky, 1997) dan MIT Opencourseware 2003. .

BAGIAN I:

Diketahui sebuah sistem linear-time-invariant bila dimasuki sinyal step u(t) ternyata menghasilkan sinyal $s(t) = e^{-t}u(t)$.

1. Sketsa s(t-1) - s(t-3)

- 2. Cari impulse response h(t)
- 3. Bila sistem dimasuki v(t) = u(t-1) u(t-3), cari output w(t)
- 4. Bila sinyal output $w(t) = 2e^{-t}u(t) + 2e^{-2t}u(t)$, maka input v(t) adalah

BAGIAN II:

Sebuah keluarga sinyal (k bilangan bulat, A_k, ω_k, θ_k bilangan real) berbentuk

$$x_k(t) = A_k \cos(\omega_k t + \theta_k)$$

yang digunakan membentuk superposisi

$$y(t) = \sum_{k=-\infty}^{\infty} A_k \cos(\omega_k t + \theta_k)$$

- 5. Apakah $x_k(t)$ perodik?:_____
- 6. Bila $x_k(t)$ periodik, berapa periode?
- 7. Berapa daya sinyal $x_k(t)$ ini?
- 8. Apa saja deret Fourier c_i dari $x_k(t)$?
- 9. Bila ω_i real, apakah superposisi y(t) ini periodik?_____
- 10. Bila $\omega_k = 0.25\pi k$, apakah superposisi y(t) ini periodik?_____
- 11. Bila $\omega_k = 0.25\pi k,$ berapa daya y(t)

BAGIAN III.

Sinyal misteriusx(t) bisa memenuhi semua peryataan sekaligus berikut ini. Apa arti dari setiap pernyataan ini terhadap penyingkapan?

- 12. x(t) periodik dengan T=4, dengan deret Fourier a_k , berarti x(t)=
- 13. x(t) sinyal real, berarti x(t) =

14. $a_k = 0$ untuk |k| > 1,, berarti x(t) =.

15. sinyal y(t) yang dibentuk menggunakan deret $b_k=e^{-j\frac{\pi}{2}k}a_{-k}$ adalah sinyal real periodik bersimetri ganjil, berarti x(t)=

16.
$$\frac{1}{4} \int_4 |x(t)|^2 \, dt = \frac{1}{2}$$
, berarti $x(t) =$

BAGIAN IV:

Perhatikan rangkaian berikut ini. Tetapkan input $x(t) = V_i(t)$ dan output tegangan di resisstor $y(t) = V_R(t)$. Sistem relaks denagan respons impuls h(t).

Bil didefinisikan fungsi bilangan kompleks $s = \sigma + j\omega = re^{j\theta}$,

$$H(s) = \int_{-\infty}^{\infty} h(t)e^{-st}dt$$

17. Cari persamaan diferensial rangkaian ini:

18. Tentukan respons dari input $x(t) = 2\cos{(0.5t)}$

19. Tentukan respons impuls h(t) =_____

20. Tentukan respons unit step $s(t) = $
BAGIAN V:
Kepada sistem BAGIAN IV di atas ini diberikan input $V_i(t) = 2\cos(t)u(t)$. Bila diketahui sistem memiliki kondisi mula $V_o(0) = 1$ Volt. Carilah
21. Natural response:
22. Forced response:
23. Zero state response:
24. Zero input response:
25. Transient response:
26. Steady state response:
Selamat Bekerja