Stellen Sie sich vor, Sie wollen einen Prozess verbessern, in dem aus Eisenerz, das Fe₂O₃ enthält, Eisen gewonnen wird. Als Testexperiment führen sie folgende Reaktion durch:

$$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$$

Schreiben Sie für alle Atome die Oxidationszahlen an.

Wenn Sie mit 150 g Fe₂O₃ limitierendem Reaktanten beginnen, wie groß ist die theoretische Ausbeute an Fe?

Wie groß wäre die prozentuale Ausbeute, wenn Ihre tatsächliche Ausbeute an Fe 87.9 g wäre?

LIMITIERENDE REAKTANTEN - STÖCHIOME**™2**E

Fluorwasserstoffsäure kann nicht in Glasbehältern aufbewahrt werden, weil Silikate von HF angegriffen werden. Natriumsilikat reagiert z.B. wie folgt:

$$Na_2SiO_3 + 8HF \longrightarrow H_2SiF_6 + 2NaF + 3H_2O$$

Wie viel Mol HF werden benötigt, um mit 0.300 Mol Na₂SiO₃ zu reagieren?

Wieviel g NaF werden gebildet, wenn 10 g HF mit 85.4 g Na₂SiO₃ reagieren?

1 Antwort

- Oxidationszahlen: $\operatorname{Fe_2^{3+}O_3^{2-}} + 3\operatorname{C}^{2+}\operatorname{O^{2-}} \longrightarrow 2\operatorname{Fe}^0 + 3\operatorname{C}^{4+}\operatorname{O_2^{2-}}$
- theoretische Ausbeute:

Mol berechnen, Stoffmenge mit Atomgewicht multiplizieren theoretische Ausbeute= $xMol \cdot x \frac{g}{Mol}$

$$\begin{split} M_{\text{Fe}_2\text{O}_3} &= 2 \cdot 55, 8 + 3 \cdot 16 = 159, 6g/Mol \\ M_{3\text{CO}} &= 3 \cdot (12 + 16) = 84g/Mol \\ M_{2\text{Fe}} &= 2 \cdot 55, 8 = 111, 6g/Mol \\ M_{3\text{CO}_2} &= 3(12 + 2 \cdot 16) = 132g/Mol \\ \text{Mol bei } 150\text{g Fe}_2\text{O}_3 \colon x = \frac{150g}{159, 6\frac{g}{Mol}} = 0,94Mol \\ \text{Fe}_2\text{O}_3 &\longrightarrow 2\text{Fe} \\ 0,94Mol \cdot 111, 6\frac{g}{Mol} = 104,9g \end{split}$$

• prozentuale Ausbeute: $\frac{tatsaechlicheAusbeute}{theoretischeAusbeute} \cdot 100 = \frac{87,9g}{104,9g} \cdot 100 = 83,79\%$

2 Antwort

1.
$$n_{HF} = 0, 3 \cdot 8 = 2, 4Mol$$

2.
$$M_{\text{Na}_2\text{SiO}_3} = (2 \cdot 23) + 28 + (3 \cdot 16) = 122 \frac{g}{Mol}$$

 $n_{\text{Na}_2\text{SiO}_3} = \frac{85,4g}{122\frac{g}{Mol}} = 0,7Mol$

$$\begin{array}{l} M_{\rm HF}=1+19=20\frac{g}{Mol}\\ n_{\rm HF}=\frac{10g}{20\frac{g}{Mol}}=0, 5Mol<0, 7Mol\Rightarrow begrenzenter Teil \end{array}$$

$$M_{\text{NaF}} = 23 + 19 = 42 \frac{g}{Mol}$$

$$\frac{2\cdot42}{8\cdot20} = \frac{m_{\mathrm{NaF}}}{10g} \Rightarrow m_{\mathrm{NaF}} = 5,25g$$

Wenn ein Gemisch aus 10.0 g Acetylen $(H - C \equiv C - H)$ und 10 g Sauerstoff entzündet wird, entsteht bei der Verbrennungsreaktion CO_2 und H_2O .

Bestimmen sie die Oxidationsstufen aller beteiligten Atome.
Geben sie die ausgeglichene Gleichung dieser Reaktion an.
Welcher Reaktant begrenzt die Reaktion?
Wie viel Gramm jedes Reaktionspartners sind nach der Reaktion vorhanden?

LIMITIERENDE REAKTANTEN - STÖCHIOMETRÆE

Eine Probe von 70.5 mg K_3PO_4 wird zu 15.0 mL 0.4 molarer $AgNO_3$ -Lösung gegeben. Es fällt ein Niederschlag aus.

Wie lauten die Namen von K_3PO_4 und $AgNO_3$?

Geben sie die Gleichung für diese Reaktion an.

Berechnen Sie die theoretische Ausbeute des gebildeten Niederschlags in Gramm.

Schreiben Sie den allgemeinen Ausdruck für das Löslichkeitsprodukt des Niederschlags an.

3 Antwort

1.
$$2 H_2^{1+} C_2^{1-} + 5 O_2 \longrightarrow 4 C^{4+} O_2^{2-} + 2 H_2^{1+} O^{2-}$$

2.
$$M_{\frac{\text{H}_2\text{C}_2}{2}} = (2 \cdot 1) + 2 \cdot 12 = 26 \frac{g}{Mol}$$

 $n_{\frac{\text{H}_2\text{C}_2}{2}} = \frac{10g}{26 \frac{g}{Mol}} = 0,385 Mol$

$$M_{\frac{\text{O}_2}{2}}=(2\cdot 16)=32\frac{g}{Mol}$$

$$n_{\frac{\text{O}_2}{2}}=\frac{10g}{32\frac{g}{Mol}}=0,312Mol\Rightarrow \text{begrenzenter Teil}$$

$$\begin{array}{l} M_{\rm CO_2} = (12 + 2 \cdot 16) = 44 \frac{g}{Mol} \\ M_{\rm H_2O} = (2 \cdot 1 + 16) = 18 \frac{g}{Mol} \end{array}$$

3.
$$m_{\text{O}_2} = 0g \Leftarrow \text{wird komplett aufgebraucht}$$
 $m_{\text{H}_2\text{C}_2} = 10g - \frac{2\cdot 0,312}{5} \cdot 26 = 6,76g$
 $m_{\text{CO}_2} = \frac{4\cdot 0,312}{5} \cdot 44 = 10,98g$
 $m_{\text{H}_2\text{O}} = \frac{2\cdot 0,312}{5} \cdot 18 = 2,25g$

4 Antwort

- 1. K₃PO₄: Kaliumphosphat, AgNO₃: Silbernitrat
- $2. \ \ K_3^{1+}P^{5+}O_4^{2-} + 3\,Ag_3^{1+}N^{3+}O_3^{2-} \longrightarrow Ag_3^{1+}P^{5+}O_4^{2-} + 3\,K^{1+}N^{5+}O_3^{2-}$
- $\begin{array}{l} 3. \ \ M_{\rm K_3PO_4} = (3 \cdot 39) + 31 + (4 \cdot 16)) = 212 \frac{g}{Mol} \\ M_{\rm AgNO_3} = 108 + 14 + (3 \cdot 16) = 170 \frac{g}{Mol} \\ M_{\rm Ag_3PO_4} = (3 \cdot 108) + 31 + (4 \cdot 16) = 419 \frac{g}{Mol} \\ n_{\rm K_3PO_4} = \frac{70.5 \cdot 10^{-3}}{212} = 0,0003325 Mol \\ 0,4 \ \rm molare \ L\ddot{o}sung \Rightarrow 0,4 \ Mol \ pro \ Liter \\ n_{\rm AgNO_3} = 0,4 \cdot 15 \cdot 10^{-3} = 6 \cdot 10^{-3} Mol \\ m_{\rm Ag_3PO_4} = 6 \cdot 10^{-3} \cdot 419 = 2,5g \end{array}$

Eine Probe aus festem $Ca(OH)_2$ wird bei 30°C in Wasser gerührt, bis die Lösung mit $Ca(OH)_2$ gesättigt ist. 100 mL dieser Probe werden entnommen und mit 5,00 · 10⁻² Mol/L HBr-Lösung titriert. Zur Neutralisation der Probe werden 48.8 mL der Säurelösung benötigt. Welche Konzentration hat die $Ca(OH)_2$ -Lösung? Wie groß ist bei 30°C die Löslichkeit von $Ca(OH)_2$ in Wasser (Angabe in g $Ca(OH)_2$ pro Liter).

THERMOCHEMIE

6

Methylhydrazin, ein Raketentreibstoff, verbrennt nach der Gleichung: $2\, {\rm C_6N_{2(l)}} + 5\, {\rm O_{2(g)}} \longrightarrow 2\, {\rm N_{2(g)}} + 2\, {\rm CO_{2(g)}} + 6\, {\rm H_2O_{(l)}}$ Wenn 4 g Methylhydrazin verbrannt werden, steigt die Temperatur eines Bombenkalorimeters von 25.00°C auf 39.50°C an. Für das Kalorimeter wurde eine Wärmekapazität von 7.794 kJ/°C bestimmt.

Wie groß ist die Reaktionswärme von einem Mol CH₆N₂?

5 Antwort

- 1. $\text{Ca(OH)}_2 + 2 \text{ HBr} \longrightarrow \text{CaBr}_2 + 2 \text{ H}_2\text{O}$ $n_{\text{HBr}} = 5,00 \cdot 10^{-2} \frac{Mol}{L} \cdot 48,8 \cdot 10^{-3} L = 0,00244 Mol$ $n_{\text{Ca(OH)}_2} = \frac{n_{\text{HBr}}}{2} = \frac{0,00244 Mol}{2} = 0,00122 Mol$ $\text{Ca(OH)}_2 = \frac{0,00122 Mol}{100 \cdot 10^{-3} L} = 0,0122 \frac{Mol}{L}$
- 2. $M_{\text{Ca(OH)}_2} = 40 + 2 \cdot (16 + 1) = 74 \frac{g}{Mol}$ $\text{Ca(OH)}_2 = 0,0122 \frac{Mol}{L} \cdot 74 \frac{g}{Mol} = 0,903 \frac{g}{L}$

6 Antwort

1.
$$E_{4g} = 7,794 \frac{kJ}{^{\circ}C} \cdot (39,50^{\circ}C - 25,00^{\circ}C) = 113,013kJ$$

 $M_{\text{CH}_6\text{N}_2} = 12 + (6 \cdot 1) + (2 \cdot 14) = 46 \frac{g}{Mol}$
 $E_{Mol} = \frac{E_{4g}}{4} \cdot M_{\text{CH}_6\text{N}_2} = \frac{113kJ}{4} \cdot 46 = 1300kJ$

Berechnen sie die Standardenthalpie
änderung der Verbrennung von 1 Mol Benzol zu ${\rm CO_2}$ und ${\rm H_2O}$ und formulieren Sie die Reaktionsgleichung.

Wie viel Energie wird beim Verbrennen von 1.00 g Benzol frei?

$$\begin{split} &\Delta H^{\circ}{}_f(\text{CO}_2) = -393.5kJ;\\ &\Delta H^{\circ}{}_f(\text{H}_2\text{O}) = -285.8kJ;\\ &\Delta H^{\circ}{}_f(\text{Benzol}) = 49.0kJ. \end{split}$$

THERMOCHEMIE

8

Berechnen sie die Standardenthalpie
änderung der Verbrennung von 1 Mol Methan zu ${\rm CO_2}$ und ${\rm H_2O}$ und formulieren Sie die Reaktionsgleichung.

Wie viel Energie wird beim Verbrennen von 19.00 g Methan frei?

$$\begin{split} \Delta H^{\circ}{}_f(\text{CO}_{\textbf{2}}) &= -393.5kJ;\\ \Delta H^{\circ}{}_f(\text{H}_{\textbf{2}}\text{O}) &= -285.8kJ;\\ \Delta H^{\circ}{}_f(Methan) &= -74.80kJ. \end{split}$$

7 Antwort

1. Benzol:
$$C_6H_6$$

 $2 C_6H_6 + 15 O_2 \longrightarrow 12 CO_2 + 6 H_2O$

- $\begin{array}{l} 2. \;\; \Delta H = \sum \Delta H^{\circ}{}_{f}(Produkte) \sum \Delta H^{\circ}{}_{f}(Edukte) \\ \;\; \Delta H_{{\bf ^{2}C_{6}H_{6}}} = 12 \cdot (-393,5) + 6 \cdot (-285,8) (2 \cdot 49,0) = -6535kJ \\ \;\; \Delta H_{{\bf ^{C_{6}H_{6}}}} = \frac{-6535}{2} = -3268 \frac{kJ}{Mol} \end{array}$
- $\begin{array}{c} 3. \ \ M_{{\color{blue}\mathbf{C_6H_6}}} = 6 \cdot 12 + 6 \cdot 1 = 78 \frac{g}{Mol} \\ E_{{\color{blue}\mathbf{C_6H_6}}} = \frac{-3268}{78} = -41, 9 \frac{kJ}{g} \end{array}$

8 Antwort

- 1. Methan: CH_4 $CH_4 + 2 O_2 \longrightarrow CO_2 + 2 H_2 O$
- 2. $\Delta H = \sum \Delta H^{\circ}_{f}(Produkte) \sum \Delta H^{\circ}_{f}(Edukte)$ $\Delta H_{\mathbf{CH_{4}}} = -393, 5 + 2 \cdot (-285, 8) - (-74, 8) = -890, 3kJ$
- 3. $M_{\text{CH}_4} = 12 + 4 \cdot 1 = 16 \frac{g}{Mol}$ $E_{\text{CH}_4} = \frac{-890,3}{16} = -55, 6 \frac{kJ}{g}$ $E = -55, 6 \frac{kJ}{g} \cdot 19g = 1057kJ$

Berechnen sie die Standardenthalpieänderung der Verbrennung von 1 Mol Graphit zu CO_2 und formulieren Sie die Reaktionsgleichung. Wie viel Energie wird beim Verbrennen von 13 kg Graphit frei? $\Delta H^{\circ}_{f}(CO_2) = -393.5kJ;$

THERMOCHEMIE

10

Die Standardenthalpieänderung der Ethanol-Verbrennung beträgt -1367 kJ. Formulieren Sie die Reaktionsgleichung und berechnen Sie die Standardbildungsenthalpie von Ethanol.

$$\Delta H^{\circ}_{f}(\text{CO}_{2}) = -393.5kJ;$$

 $\Delta H^{\circ}_{f}(\text{H}_{2}\text{O}) = -285.8kJ$

9 Antwort

1. Graphit: C ;-)
$$C + O_2 \longrightarrow CO_2$$

2.
$$\Delta H = \sum \Delta H^{\circ}_{f}(Produkte) - \sum \Delta H^{\circ}_{f}(Edukte)$$

 $\Delta H_{\mathbf{C}} = -393, 5kJ$

$$\begin{aligned} 3. \ \ M_{\mathbf{C}} &= 12 \frac{g}{Mol} \\ E_{\mathbf{C}} &= \frac{-393.5}{12} = -32, 8 \frac{kJ}{g} \\ E &= -32, 8 \frac{kJ}{g} \cdot 13000 g = -426291, 7kJ \end{aligned}$$

10 Antwort

- 1. Ethanol: C_2H_6O $C_2H_6O + 3O_2 \longrightarrow 2CO_2 + 3H_2O$
- $\begin{array}{l} 2. \;\; \Delta H = \sum \Delta H^{\circ}{}_{f}(Produkte) \sum \Delta H^{\circ}{}_{f}(Edukte) \\ \Rightarrow \sum \Delta H^{\circ}{}_{f}(Edukte) = \sum \Delta H^{\circ}{}_{f}(Produkte) \Delta H \\ \Delta H^{\circ}{}_{f}(\textcolor{red}{\textbf{C}_{2}\textbf{H}_{6}\textbf{O}}) = 2 \cdot (-393, 5kJ) + 3 \cdot (-285, 8kJ) (-1367kJ) = -277, 4kJ \end{array}$