The Role of C_e^2 in VAM Dynamics

Omar Iskandarani

Independent Researcher, Groningen, The Netherlands ORCID: 0009-0006-1686-3961 DOI: 10.5281/zenodo.15566319

June 13, 2025

Abstract

Abstracts are not typically included in appendices, but for standalone it is needed.

The Role of C_e^2 in VAM Dynamics

In the Vortex Æther Model (VAM), the constant C_e — the core tangential swirl velocity — plays a role analogous to the speed of light c in relativity. It governs the scale at which internal vortex motion couples to inertial effects, mass, and time evolution. Its square, C_e^2 , appears throughout the theory as a natural denominator wherever kinetic, energetic, or gravitational effects emerge.

1. Interpretation of C_e^2

- Inertia Coupling: Swirl-induced mass depends on energy-like terms normalized by C_e^2 , mirroring $E = mc^2$ in special relativity.
- Time Dilation: Local time is modified by swirl velocity as:

$$d\tau = dt \cdot \sqrt{1 - \frac{\omega^2 r^2}{C_e^2}}$$

- **Swirl Mass Generation:** Energy per unit volume from vortex motion ($\sim \frac{1}{2}\rho v^2$) is converted to mass via C_e^2 .
- **Gravitational Coupling:** Appears in the VAM expression for *G*, derived from vortex coupling:

$$G \sim \frac{C_e c^5 t_p^2}{2F_{\text{max}} r_c^2}$$

Thus, C_e^2 is fundamental to scaling rotational energy into inertial and gravitational analogues in the VAM framework.

2. Table of Expressions Involving C_e^2

3. Symbolic Equivalence $C_e^2 \leftrightarrow c^2$

VAM exhibits a direct analogue to relativistic dynamics where C_e^2 plays the same role as c^2 :

Time Dilation Analogy:

Special Relativity:
$$d\tau = dt \cdot \sqrt{1 - \frac{v^2}{c^2}}$$

VAM Swirl Clock: $d\tau = dt \cdot \sqrt{1 - \frac{v_{\rm swirl}^2}{C_e^2}}$, $v_{\rm swirl} = \omega r$

Mass-Energy Equivalence:

Relativity:
$$E=mc^2$$

$$VAM: E=mC_e^2 \Rightarrow m=\frac{\frac{1}{2}\rho v^2}{C_e^2}$$

1

Gravitational Redshift Analogy:

GR:
$$g_{tt} \approx 1 + \frac{2\Phi}{c^2}$$

VAM: $g_{tt}^{\text{eff}} \approx 1 - \frac{v^2}{C_e^2}$

Summary Equivalence Table: We conclude that:

$$C_e^2 \longleftrightarrow c^2$$

This symbolic equivalence formalizes the deep analogy between relativistic spacetime curvature and the VAM framework of swirl-induced gravitational behavior.

References

Expression	Physical Meaning	VAM Role
$\frac{r_c}{C_e^2}$	Core radius over swirl velocity squared	Temporal inertia scaling
$\frac{\frac{r_c}{C_e^2}}{\frac{F_{\text{max}}}{C_e^2}}$	Max force per swirl energy unit	Force-mass-energy coupling
$\frac{1}{2}\rho v^2/C_e^2$	Energy density to mass conversion	Inertial mass from kinetic field
$\frac{\frac{1}{2}\rho v^2/C_e^2}{\frac{\omega^2 r^2}{C_e^2}}$ $\frac{8\pi \rho_{xr_c^3}}{2\pi c^2}$	Time dilation correction	Vortex-clock slowdown
$\frac{8\pi\rho_{\text{æ}r_c^3}}{C_e}$	VAM prefactor	Total mass contribution per vortex

Table 1: Representative appearances of C_e^2 in core VAM expressions.

Quantity	Relativistic (GR)	VAM Equivalent
Limiting speed	c	C_e
Mass-energy conversion	$E = mc^2$	$E = mC_e^2$
Time dilation	$\sqrt{1-v^2/c^2}$	$\sqrt{1-v^2/C_e^2}$
Gravitational potential scaling	Φ/c^2	v^{2}/C_{e}^{2}

Table 2: Mapping of relativistic quantities to their vortex-based analogues in VAM.