NATIONAL UNIVERSITY OF SINGAPORE MATHEMATICS SOCIETY

PAST YEAR PAPER SOLUTIONS with credits to Teo Wei Hao, Yang Cheng

$\begin{array}{ccc} \textbf{MA2108} & \textbf{Mathematical Analysis I} \\ & \textbf{AY } 2007/2008 \ \text{Sem 2} \end{array}$

SECTION A

Question 1

When $x \ge 1$, we have |2x+1| - |x-1| - 1 = (2x+1) - (x-1) - 1 = x+1. In this case, |2x+1| < |x-1| - 1 when x+1 < 0, which yield no answer for x.

When $\frac{-1}{2} \le x < 1$, we have |2x+1| - |x-1| - 1 = (2x+1) + (x-1) - 1 = 3x - 1. Thus |2x+1| < |x-1| - 1 when 3x - 1 < 0, which give us $\frac{-1}{2} \le x < \frac{1}{3}$.

When $x < \frac{-1}{2}$, we have |2x+1| - |x-1| - 1 = -(2x+1) + (x-1) - 1 = -x - 3. Thus |2x+1| < |x-1| - 1 when -x - 3 < 0, which give us $= 3 < x < \frac{-1}{2}$.

Therefore $S = \left\{ x \in \mathbb{R} \mid -3 < x < \frac{1}{3} \right\}$, and so inf S = -3, $\sup S = \frac{1}{3}$.

Question 2

(a) (i) The series converges. We have $0 \le \frac{1}{n} - \frac{1}{n+1} = \frac{1}{n(n+1)} \le \frac{1}{n^2}$. Since $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges, we have $\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{1+n}\right)$ to converges by Comparison Test.

(ii) The series converges.

Let
$$a_n = n \left(\frac{3n}{1+3n} \right)^{n^2}$$
. Then we have,

$$\lim_{n \to \infty} |a_n|^{\frac{1}{n}} = \left(n \left(\frac{3n}{1+3n} \right)^{n^2} \right)^{\frac{1}{n}} = \lim_{n \to \infty} n^{\frac{1}{n}} \frac{1}{\left[\left(1 + \frac{1}{3n} \right)^{3n} \right]^{\frac{1}{3}}}$$

$$= \left(\lim_{n \to \infty} n^{\frac{1}{n}} \right) \left(\lim_{n \to \infty} \frac{1}{\left[\left(1 + \frac{1}{3n} \right)^{3n} \right]^{\frac{1}{3}}} \right)$$

$$= 1 \cdot \frac{1}{e^{\frac{1}{3}}} < 1.$$

Therefore the series is convergent by Root Test.

(b) (i) Since $c_n = \max\{a_n, b_n\}$, $a_n \ge 0$ and $b_n \ge 0$, we have $0 \le c_n \le a_n + b_n$ for all $n \in \mathbb{Z}^+$. Since $\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$ converges, we have $\sum_{n=1}^{\infty} c_n$ to converges by Comparison Test.

Page: 1 of 5

(ii) The series $\sum_{n=1}^{\infty} c_n$ need not necessarily converge without the assumptions.

Let
$$a_n = (-1)^n \frac{1}{n}$$
 and $b_n = (-1)^{n+1} \frac{1}{n}$ for all $n \in \mathbb{Z}^+$. $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are convergent.

However this give us $c_n = \frac{1}{n}$ for all $n \in \mathbb{Z}^+$, and so $\sum_{n=1}^{\infty} c_n$ is not convergent.

Question 3

(a) We have $a_i \geq 1$ for all $i \in \mathbb{Z}^+$. Thus we have,

$$|a_{n+2} - a_{n+1}| = \left| \sqrt{5a_{n+1} + 6} - \sqrt{5a_n + 6} \right| = \left| \frac{(5a_{n+1} + 6) - (5a_n + 6)}{\sqrt{5a_{n+1} + 6} + \sqrt{5a_n + 6}} \right|$$

$$= \frac{5}{\sqrt{5a_{n+1} + 6} + \sqrt{5a_n + 6}} |a_{n+1} - a_n|$$

$$\leq \frac{5}{2\sqrt{5 + 6}} |a_{n+1} - a_n|.$$

Since $\frac{5}{2\sqrt{5+6}} < 1$, (a_n) is a contractive sequence, which is a Cauchy sequence.

Therefore by Cauchy criterion, (a_n) converges.

Let
$$a = \lim_{n \to \infty} a_n$$
. Then we have $a = \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \sqrt{5a_n + 6} = \sqrt{5a + 6}$. This give us $a^2 = 5a + 6$, i.e. $(a - 6)(a + 1) = 0$. Since $a \ge 1$, we have $a = 6$.

(b) (i) Let the set of all cluster points of (x_n) be C.

We have
$$\frac{-2n}{3n+1} \le \frac{2n\cos(\frac{n\pi}{2})}{3n+1} \le \frac{2n}{3n+1}$$
 for all $n \in \mathbb{Z}^+$. This give us $\lim_{n\to\infty} \frac{2n}{3n+1} = \frac{2}{3}$ to be an upper bound of C , and similarly, $\lim_{n\to\infty} \frac{-2n}{3n+1} = \frac{-2}{3}$ is a lower bound of C .

Since
$$(x_{4k})$$
 is a subsequence of (x_n) , and $\lim_{k\to\infty} x_{4k} = \frac{2}{3}$, we have $\frac{2}{3} \in C$.

This give us
$$\limsup x_n = \sup C = \frac{2}{3}$$

Similarly the subsequence
$$(x_{4k+2})$$
 of (x_n) have $\lim_{k\to\infty} x_{4k+2} = \frac{-2}{3}$, which give us $\frac{-2}{3} \in C$.

Thus
$$\liminf x_n = \inf C = \frac{-2}{3}$$
.

(ii) Since $\liminf x_n \neq \limsup x_n$, we have (x_n) to be not convergent.

Question 4

(a) Let $\varepsilon \in \mathbb{R}^+$. Then we can let $\delta = \min \left\{ \frac{1}{4}, \frac{2\varepsilon}{21} \right\}$.

Thus for all $x \in \mathbb{R}$ such that $0 < |x - 1| < \delta$, we have $\frac{-1}{4} < x - 1 < \frac{1}{4}$.

This give us $\frac{19}{4} < x + 4 < \frac{21}{4}$ and $\frac{-3}{2} < 2x - 3 < \frac{-1}{2}$, i.e. $|x + 4| < \frac{4}{21}$ and $|2x - 3| > \frac{1}{2}$. Thus,

$$\left| \frac{x^2 + 1}{2x - 3} - (-2) \right| = \left| \frac{(x - 1)(x + 4)}{2x - 3} \right|$$
$$= \frac{1}{|2x - 3|} |x + 4| |x - 1|$$
$$< (2) \left(\frac{21}{4} \right) \left(\frac{2\varepsilon}{21} \right) = \varepsilon,$$

i.e.
$$\lim_{x \to 1} \frac{x^2 + 1}{2x - 3} = -2$$
.

(b) (i)
$$\lim_{x\to a} \frac{f(x)}{g(x)} = \infty$$
 give us $\lim_{x\to a} \frac{g(x)}{f(x)} = 0 \in \mathbb{R}$. If $L > 0$, then $\lim_{x\to a} \frac{1}{g(x)} = \frac{1}{L} \in \mathbb{R}$. Thus we can obtain $\lim_{x\to a} \frac{1}{f(x)} = \lim_{x\to a} \frac{g(x)}{f(x)} \frac{1}{g(x)} = \left(\lim_{x\to a} \frac{g(x)}{f(x)}\right) \left(\lim_{x\to a} \frac{1}{g(x)}\right) = (0) \left(\frac{1}{L}\right) = 0$. This implies that $\lim_{x\to a} \left|\frac{1}{f(x)}\right| = 0$, i.e. $\lim_{x\to a} |f(x)| = \infty$. Since $f(x) > 0$ for all $x \in \mathbb{R}$, we have $\lim_{x\to a} f(x) = \lim_{x\to a} |f(x)| = \infty$.

(ii) The conclusion does not hold.

Let
$$f(x) = 1$$
 and $g(x) = x$ for all $x \in \mathbb{R} - \{0\}$, and $a = 0$.
This give us $\lim_{x \to a} \frac{f(x)}{g(x)} = \infty$ and $L = 0$.

However,
$$\lim_{x \to a} f(x) = 1$$
.

Question 5

(i) Let us denote $\frac{1}{2}\mathbb{Z} = \{\frac{k}{2} \mid k \in \mathbb{Z}\}.$

x is continuous on \mathbb{R} , and [x] is continuous on $\mathbb{R} - \mathbb{Z}$.

Therefore f is continuous on $\mathbb{R} - \frac{1}{2}\mathbb{Z}$.

When $k \in \frac{1}{2}\mathbb{Z}$, we have $\lim_{x \to k^{-}} x - [2x] = k - (2k - 1) = -k + 1$. However, $\lim_{x \to k^{+}} x - [2x] = k - (2k) = -k$.

However,
$$\lim_{x \to k^+} x - [2x] = k - (2k) = -k$$

Therefore f is not continuous on $\frac{1}{2}\mathbb{Z}$.

This give us all the points where f is continuous to be $\mathbb{R} - \frac{1}{2}\mathbb{Z}$.

(ii) Assume on the contrary there exists $a \in \mathbb{R}$ such that g is continuous at a.

Then since \mathbb{Q} and $\mathbb{R} - \mathbb{Q}$ are dense in \mathbb{R} , there exists (y_n) in \mathbb{Q} and (z_n) in $\mathbb{R} - \mathbb{Q}$ such that $\lim(y_n) = \lim(z_n) = a.$

This give us $\lim_{n\to\infty} g(y_n) = g(a) = \lim_{n\to\infty} g(z_n)$. Now $g(y_n) = y_n^2 + 1 \ge 1$ for all $n \in \mathbb{Z}^+$, and so $g(a) \ge 1$.

At the same time, $g(z_n) = -|z_n| \le 0$ for all $n \in \mathbb{Z}^+$, and so $g(a) \le 0$.

This is a contradiction, and hence g is not continuous anywhere in \mathbb{R} .

SECTION B

Question 6

(i) We shall use the established fact that for all sequence (y_n) and (z_n) , we have

$$\limsup (y_n + z_n) \le \limsup y_n + \limsup z_n.$$

Since $\ln x$ is continuous increasing on \mathbb{R} , $\limsup \ln x_n = \lim \limsup x_n$ for all sequence (x_n) . Since $a_n, b_n \ge 0$ for all $n \in \mathbb{Z}^+$, we can let $y_n = \ln a_n$ and $z_n = \ln b_n$ for all $n \in \mathbb{Z}^+$. This give us,

$$\ln \lim \sup a_n b_n = \lim \sup \ln(a_n b_n) = \lim \sup (\ln a_n + \ln b_n)
\leq \lim \sup \ln a_n + \lim \sup \ln b_n
= \ln \lim \sup a_n + \ln \lim \sup b_n = \ln (\lim \sup a_n) (\lim \sup b_n).$$

Thus, $\limsup a_n b_n = (\limsup a_n) (\limsup b_n)$.

(ii) Let
$$\limsup a_n^{\frac{1}{n}} = \alpha$$
, $\limsup \frac{a_{n+1}}{a_n} = \beta$, and $\alpha_k = \sup \left\{ \frac{a_{n+1}}{a_n} \mid n \ge k \right\}$ for all $k \in \mathbb{Z}^+$. Then we have $\lim_{k \to \infty} \alpha_k = \alpha$ and $\lim_{k \to \infty} \beta_k = \beta$.

Assume on the contrary that $\alpha < \beta$. Let $\varepsilon = \frac{\beta - \alpha}{2}$.

Since
$$\varepsilon > 0$$
, there exists $K \in \mathbb{Z}^+$ such that $\alpha_K < \alpha + \varepsilon = \frac{\alpha + \beta}{2}$.

Thus for all
$$n \geq K$$
, we have $\frac{a_{n+1}}{a_n} \leq \alpha_K < \frac{\alpha + \beta}{2}$, i.e. $a_{n+1} < \left(\frac{\alpha + \beta}{2}\right) a_n$.

This give us
$$a_{K+m} < \left(\frac{\alpha+\beta}{2}\right)^m a_K$$
, for $m \in \mathbb{Z}^+$, and so $a_{K+m}^{\frac{1}{K+m}} < \left(\frac{\alpha+\beta}{2}\right)^{\frac{m}{K+m}} a_K^{\frac{1}{K+m}}$.

Therefore
$$\beta = \limsup \left(a_{K+m}^{\frac{1}{K+m}}\right) \leq \limsup \left(\left(\frac{\alpha+\beta}{2}\right)^{\frac{m}{K+m}} a_K^{\frac{1}{K+m}}\right)$$
.

Since
$$\lim \left(\left(\frac{\alpha + \beta}{2} \right)^{\frac{m}{K+m}} a_K^{\frac{1}{K+m}} \right) = \frac{\alpha + \beta}{2}$$
, we get $\beta \leq \frac{\alpha + \beta}{2}$, i.e. $\beta \leq \alpha$, a contradiction.

Question 7

(i) Let $\varepsilon \in \mathbb{R}^+$.

Then there exists $\delta \in \mathbb{R}^+$ such that for all $a_1, a_2 \in \mathbb{R}$ with $0 < |a_i - a| < \delta$, i = 1, 2, we have $|f(a_1) - f(a_2)| < \varepsilon$.

Since (x_n) converges, there exists $N \in \mathbb{Z}^+$ such that for all $k \in \mathbb{Z}_{\geq N}$, we have $|x_k - a| < \delta$.

As $x_n \in D_f$, we have $|x_k - a| \neq 0$.

Thus for all $i, j \in \mathbb{Z}_{\geq N}$, we have $0 < |x_i - a| < \delta$ and $0 < |x_j - a| < \delta$.

This give us $|f(x_i) - f(x_i)| < \varepsilon$, i.e. $(f(x_n))$ is a Cauchy sequence.

(ii) Let (y_n) and (z_n) be in domain of f with $\lim(y_n) = \lim(z_n) = a$.

Then $(f(y_n))$ and $(f(z_n))$ are Cauchy, and thus convergent by Cauchy criterion.

Let $y = \lim(f(y_n))$ and $z = \lim(f(z_n))$, and $\varepsilon \in \mathbb{R}^+$.

Then there exists $N_1 \in \mathbb{Z}^+$ such that for all $k \in \mathbb{Z}_{\geq N_1}$, we have $|f(y_k) - y| < \frac{\varepsilon}{3}$.

Similarly there exists $N_2 \in \mathbb{Z}^+$ such that for all $k \in \mathbb{Z}_{\geq N_2}$, we have $|f(z_k) - z| < \frac{\varepsilon}{3}$.

Also, we have (a_n) where $a_{2n-1} = y_n$ and $a_{2n} = z_n$ to be a sequence in domain of f with $\lim_{n \to \infty} (a_n) = a$.

Thus there exists $N_3 \in \mathbb{Z}^+$ such that for all $i, j \in \mathbb{Z}_{>N_3}$, we have $|f(a_i) - f(a_j)| < \frac{\varepsilon}{3}$.

This implies that for all $k \in \mathbb{Z}_{>N_3}$, we have $|f(y_k) - f(z_k)| < \frac{\varepsilon}{3}$.

This give us by Triangle inequality,

$$|y-z| \le |f(y_k)-y| + |f(z_k)-z| + |f(y_k)-f(z_k)| < \varepsilon,$$

i.e. y = z.

Therefore all (x_n) converging to a give the same limit for $(f(x_n))$, i.e. $\lim_{x\to a} f(x)$ exists.

Question 8

(a) Since f is a continuous function on a closed bounded set, by Extreme Value Theorem, there exists $c \in [0,1]$ such that $f(c) \leq f(x)$ for all $x \in [0,1]$.

Since $c \in [0, 1]$, we have f(c) > 0, and thus we can let $\alpha = f(c)$.

This give us $\alpha > 0$ and $f(x) \ge \alpha$ for all $x \in [0, 1]$.

(b) Assume on the contrary that g is not strictly increasing. Then there exists $a, b \in (0, 1)$, with a < b, such that $g(a) \ge g(b)$. Since g is injective on [0,1], we have g(a) > g(b). There are 2 cases.

If $g(a) \ge g(0)$, then g(a) > g(0). Let $\beta_1 = \max\{g(0), g(b)\}$.

Since g is continuous on [0, a], and $g(0) \leq \beta_1 < g(a)$, there exists $c_1 \in [0, a)$ such that $g(c_1) = \beta_1$. Similarly g is continuous on [a, b] and $g(b) \leq \beta_1 < g(b)$, thus there exists $c_2 \in (a, b]$ such that $g(c_2) = \beta_1$. This is a contradiction as $c_1, c_2 \in [0, 1]$ with $c_1 \neq c_2$ but $g(c_1) = g(c_2)$.

Else g(a) < g(0). This give us g(b) < g(a) < g(0) < g(1). Let $\beta_2 = \min\{g(1), g(a)\}$. Since g is continuous on [a, b], and $g(b) < \beta_2 \le g(a)$, there exists $d_1 \in [a, b)$ such that $g(d_1) = \beta_2$. Similarly g is continuous on [b, 1] and $g(b) < \beta_2 \le g(1)$, thus there exists $d_2 \in [b, 1]$ such that $g(d_2) = \beta_2$. This is a contradiction as $d_1, d_2 \in [0, 1]$ with $d_1 \ne d_2$ but $g(d_1) = g(d_2)$.

Page: 5 of 5

Therefore g is strictly increasing.