Examenul de bacalaureat 2011 Proba E. d)

Proba scrisă la FIZICĂ

Filiera teorețică – profilul real, Filiera tehnologică – profilul tehnic și profilul resurse naturale și protecția mediului, Filiera vocațională – profilul militar

Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,
 B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ

 Se acordă 10 puncte din oficiu. • Timpul efectiv de lucru este de 3 ore.

B. ELEMENTE DE TERMODINAMICA

Se consideră: numărul lui Avogadro $N_A = 6.02 \cdot 10^{23} \, \text{mol}^{-1}$, constanta gazelor ideale $R = 8.31 \frac{\text{J}}{\text{mol} \cdot}$

de stare ai gazului ideal într-o stare dată există relatia: $p \cdot V = vRT$.

I. Pentru itemii 1-5 scrieti pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

1. O cantitate de gaz ideal se destinde, din aceeași stare inițială A până la același volum final, prin patru procese reprezentate în figura alăturată. Gazul efectuează cel mai mare lucru mecanic în procesul:

b. $A \rightarrow 3$

c. $A \rightarrow 2$

2. Simbolurile mărimilor fizice fiind cele utilizate în manualele de fizică, mărimea fizică definită prin raportul reprezintă:

a. căldură molară

b. capacitate calorică **c.** căldură specifică

d. energie internă

(3p)

3. Simbolurile mărimilor fizice fiind cele utilizate în manualele de fizică, unitatea de măsură în S.I a mărimii fizice exprimată prin raportul $\frac{\Delta U}{\Lambda T}$ este:

b. $J \cdot mol^{-1} \cdot K^{-1}$

c. $J \cdot kg^{-1} \cdot K^{-1}$

d. J·mol⁻¹

4. O cantitate de gaz ideal închisă într-un vas cu pereți rigizi primește căldura Q. În timpul încălzirii, mărimea fizică a cărei valoare creste este:

a. numărul de molecule

b. presiunea

c. densitatea gazului

d. distanța medie dintre molecule

(3p)

5. O cantitate de gaz ideal se destinde adiabatic astfel încât lucrul mecanic efectuat este egal cu 150 J. Variația energiei interne a gazului este egală cu:

b. 150 J

c. -150 J

d. -250 J

II. Rezolvați următoarea problemă:

(15 puncte)

Într-o butelie de volum $V=30\,\mathrm{L}$ se află o cantitate de oxigen ($\mu_{\mathrm{O}_2}=32\,\mathrm{g/mol}$; $\mathrm{C_V}=2.5R$) considerat gaz ideal.

Oxigenul se află la presiunea $p_1 = 3.10^5$ Pa şi temperatura $t_1 = 27^{\circ}$ C. Butelia este prevăzută cu o supapă de evacuare a gazului care se deschide în momentul în care presiunea gazului din interior este cu $\Delta p = 4 \cdot 10^5 \, \text{Pa}$ mai mare față de presiunea atmosferică exterioară $p_0 = 10^5 \text{ Pa}$. Determinați:

a. densitatea oxigenului din butelie la temperatura t_1 ;

 ${f b.}$ valoarea temperaturii maxime $T_{
m max}$ până la care poate fi încălzită butelia astfel încât supapa să nu se deschidă;

c. masa de oxigen care trebuie evacuată astfel încât presiunea gazului din butelie să revină la valoarea inițială p_1 , temperatura rămânând constantă la valoarea T_{max} ;

d. variația energiei interne a gazului din butelie în procesul descris la punctul c.

III. Rezolvați următoarea problemă:

(15 puncte)

Un mol de gaz ideal monoatomic având căldura molară la volum constant $C_V = 1,5R$ se află într-o stare inițială 1 la temperatura $T_1 = 300 \, \text{K}$. Din această stare gazul se destinde izobar până într-o stare 2 apoi printr-o transformare izocoră ajunge într-o stare 3 din care revine în starea inițială printr-o transformare izotermă. Căldura totală schimbată de gaz cu exteriorul în transformările 1-2 și 2-3 este $Q_{123} = 831 \, J$.

a. Reprezentați grafic transformarea cicilică în coordonate p-V.

b. Calculati valoarea temperaturii gazului în starea 2.

c. Determinați valoarea raportului dintre volumul maxim și volumul minim atinse în cursul transformărilor.

d. Calculați lucrul mecanic schimbat de gaz cu exteriorul în transformarea 3-1 (Se utilizează $\ln \frac{4}{3} \approx 0,28$).