Дискретная математика. Коллоквиум.

Лекторий ПМИ ФКН 2015-2016 Доказательства 1 - 11, 19, 21, 35, 36, 40 — Гринберг Вадим 16-21~марта~2016

Доказательства

1. Доказательство формулы включений и исключений.

Формула включений и исключений. Пусть у нас есть множества A_1, A_2, \ldots, A_n . Через S будем обозначать подмножество множества $\{1, \ldots, n\}$, каждое такое подмножество выделяет некоторое семейство подмножеств $\{A_i : i \in S\}$. Через A_S обозначим пересечение всех множеств, входящих в семейство S:

$$A_{(S)} = \bigcap_{i \in S} A_i$$

Мощность множества, являющегося объединением этих множеств, находится по формуле:

$$|A_1 \cup A_2 \cup \ldots \cup A_n| = \sum_{S \neq \emptyset} (-1)^{|S|+1} |A_{(S)}|.$$

Доказательство. Индукция по числу множеств. База индукции – одно множество, формула очевидна: $|A| = (-1)^{1+1}|A|$.

Индуктивный переход использует формулу для количества элементов в объединении двух множеств:

$$|(A_1 \cup \ldots \cup A_{n-1}) \cup A_n| = |A_1 \cup \ldots \cup A_{n-1}| + |A_n| - |A_n \cap (A_1 \cup \ldots \cup A_{n-1})| =$$
$$= |A_1 \cup \ldots \cup A_{n-1}| + |A_n| - |(A_n \cap A_1) \cup \ldots \cup (A_n \cap A_{n-1})|.$$

Для первого и третьего слагаемых по предположению индукции справедлива формула включений и исключений для n-1 множества. Поэтому первое слагаемое дает вклад в сумму формулы для n множеств вида

$$\sum_{\substack{S\neq\varnothing\\S\subseteq\{1,\dots,n-1\}}}(-1)^{|S|+1}|A_S|$$

Второе слагаемое – это в точности $(-1)^{1+1}A_{\{n\}}$.

Рассмотрим теперь последнее слагаемое. По индуктивному предположению оно равно

$$\sum_{\substack{S \neq \emptyset \\ S \subseteq \{1, \dots, n-1\}}} (-1)^{|S|+1} |B_S|$$

где вместо множеств A_i в формулу включений-исключений для n-1 множества подставлены множества $B_i = A_n \cap A_i$.

Для любого $S\subseteq\{1,\;\ldots,\;n-1\}$ выполняется равенство

$$B_S = \bigcap_{i \in S} (A_n \cap A_i) = A_n \cap A_S = A_{S \cup \{n\}}.$$

Получается, что мощность объединения $|(A_1 \cup \ldots \cup A_{n-1}) \cup A_n|$ представлена в виде суммы таких же слагаемых, что и в сумме формулы включений-исключений: первое слагаемое отвечает семействам, не содержащим A_n , второе и третье — семействам, содержащим A_n . Нужно ещё проверить, что эти слагаемые входят с правильными знаками. Для первых двух слагаемых это ясно из самих формул. Для третьего заметим, что мощность S отличается от мощности $S \cup \{n\}$ на 1, так как $S \subseteq \{1, \ldots, n-1\}$. Это даёт лишний знак минус. Но в формулу для объединения двух множеств это слагаемое также входит со знаком минус. Поэтому окончательный знак будет правильным:

$$-(-1)^{|S|+1} = (-1)^{|S \cup \{i\}|+1}.$$

Q.E.D.

2. Критерий существования функции, обратной к данной.

Теорема. Если для отображений $f: A \to B$ и $g: B \to A$ выполнены два равенства $g \circ f = id_A$ и $f \circ g = id_B$, то функция f является биекцией и g обратна κ f.

Доказательство. Пусть $f(x_1) = f(x_2)$. Тогда из первого условия на композиции получаем:

$$x_1 = (g \circ f)(x_1) = g(f(x_1)) = g(f(x_2)) = (g \circ f)(x_2) = x_2.$$

Значит, функция f инъективна.

Для любого $y \in B$ из второго условия на композиции следует, что y = f(g(y)), то есть y принадлежит множеству значений f. Значит, функция f сюръективна.

Итак, f биекция.

Если y = f(x), то из первого условия на композиции получаем g(y) = g(f(x)) = x. Значит, g обратна к f.

Q.E.D.

3. Количество функций из n-элементного множества в kэлементное.

Положим $f:A\to B,\ |A|=n,\ |B|=k.$ Для каждого элемента $x\in A$ есть k+1 возможных значений для f(x) (это значение может быть любым элементом множества B или же не определено). Они выбираются независимо, так что всего есть $(k+1)^n$ функций.

4. Количество всюду определенных функций из n-элементного множества в k-элементное.

Положим $f: A \to B, |A| = n, |B| = k$. Для каждого элемента $x \in A$ есть k возможных значений для f(x) (это значение может быть любым элементом множества B). Они выбираются независимо, так что всего есть k^n функций.

5. Количество инъективных отображений n-элементного множества в k-элементное.

Положим $f: A \to B$, |A| = n, |B| = k. Если n > k, то их нет (большее множество не может быть инъективно отображено в меньшее).

Если $n \le k$, то будем выбирать значения по очереди, расположив все n элементов A в каком-то порядке. Для первого элемента допустимы все k значений, для второго — все, кроме одного (уже использованного раньше), для третьего — (k-2) и так далее, всего получается $k(k-1)(k-2)\cdot\ldots\cdot(k-n+1)=k!/(k-n)!$.

6. Количество сюръективных отображений n-элементного множества в k-элементное.

Теорема. Положим $f:A\to B,\ |A|=n,\ |B|=k.$ Количество сюръекций из A в B при $n\ge k$ равно

$$\sum_{i=0}^{k} (-1)^{i} \binom{k}{i} (k-i)^{n}$$

u равно 0 npu n < k. Сюръекции должны быть определены на всех элементах.

Доказательство. Надо воспользоваться формулой включений и исключений. Пусть B состоит из k элементов b_1, \ldots, b_k . Не-сюръекции $A \to B$ — это те функции, область значений которых не содержит одного из элементов b_1, \ldots, b_k , то есть объединение множеств

$$A(b_1) \cup A(b_2) \cup \ldots \cup A(b_k),$$

где через A(b) обозначается множество тех функций, которые не принимают значения b. Легко понять, что все множества A(b) имеют размер $(k-1)^n$ (мы просто выбросили одно значение). Более того, столь же легко посчитать размер их пересечений: если $b \neq b'$, то $A(b) \cap A(b')$ — это функции, не принимающие значений b и b', их будет $(k-2)^n$. Остаётся воспользоваться формулой включений и исключений: из всех функций (k^n) надо вычесть n множеств вида $A(b_i)$, то есть $k(k-1)^n$, затем вернуть обратно $\binom{k}{2}$ их попарных пересечений, всего $\binom{k}{2}(k-2)^n$, затем снова вычесть тройные пересечения, которых $\binom{k}{3}$ и каждое из которых имеет размер $(k-3)^n$, и так далее.

Q.E.D.

7. Формулировка и доказательство формулы включений и исключений для вероятностей.

Теорема. Для всякой вероятностной модели и для произвольных множеств $A_1, \ldots, A_n \subseteq U$ верно

$$Pr[A_1 \cup A_2 \cup \ldots \cup A_n] = \sum_{i} Pr[A_i] - \sum_{i < j} Pr[A_i \cap A_j] + \ldots = \sum_{\emptyset \neq I \subset \{1, 2, \ldots, n\}} (-1)^{|I|+1} Pr \left[\bigcap_{i \in I} A_i\right]$$

Доказательство. Индуктивное доказательство принципа включений и исключений для множеств.

База для двух:

$$Pr[A_1 \cup A_2] = Pr[(A_1 \setminus A_2) \cup (A_1 \cap A_2) \cup (A_2 \setminus A_1)] =$$

$$= Pr[A_1 \setminus A_2] + Pr[A_1 \cap A_2] + Pr[A_2 \setminus A_1] =$$

$$= Pr[A_1 \setminus A_2] + 2Pr[A_1 \cap A_2] + Pr[A_2 \setminus A_1] - Pr[A_1 \cap A_2] =$$

$$= Pr[A_1] + Pr[A_2] - Pr[A_1 \cap A_2],$$

Для доказательства шага индукции заметим, что

$$Pr[(A_1 \cup \ldots \cup A_{n-1}) \cup A_n] = Pr[A_1 \cup \ldots \cup A_{n-1}] + Pr[A_n] - Pr[A_n \cap (A_1 \cup \ldots \cup A_n)] =$$

$$= Pr[A_1 \cup \ldots \cup A_{n-1}] + Pr[A_n] - Pr[(A_n \cap A_1) \cup \ldots \cup (A_n \cap A_{n-1})].$$

Здесь мы воспользовались принципом включений и исключений для двух множеств. Осталось для каждого из объединений $A_1 \cup \ldots \cup A_{n-1}, \ (A_n \cap A_1) \cup \ldots \cup (A_n \cap A_{n-1})$ воспользоваться предположением индукции.

Q.E.D.

8. Формула Байеса.

Формула Байеса. Если вероятность событий А и В положительна, то

$$Pr[A|B] = Pr[A] \cdot \frac{Pr[B|A]}{Pr[B]}$$

Доказательство. Запишем вероятность события $A \cap B$ через условные вероятности двумя способами:

$$Pr[A \cap B] = Pr[B] \cdot Pr[A|B] = Pr[A] \cdot Pr[B|A].$$

Теперь второе равенство даёт формулу Байеса.

Q.E.D.

9. Формула полной вероятности.

Пусть B_1, \ldots, B_n — разбиение вероятностного пространства U, то есть $U = B_1 \cup \ldots \cup B_n$, где $B_i \cap B_j = \emptyset$ при $i \neq j$. Пусть также $Pr[B_i] > 0$ для всякого i. Тогда для всякого события A из вероятностного пространства U

$$Pr[A] = \sum_{i=1}^{n} Pr[A|B_i] \cdot Pr[B_i].$$

Доказательство.

$$Pr[A] = \sum_{i=1}^{n} Pr[A \cap B_i] = \sum_{i=1}^{n} Pr[A|B_i] \cdot Pr[B_i].$$

Первое равенство получается по формуле сложения вероятностей непересекающихся событий (вероятность объединения независимых событий равна сумме вероятностей), а второе равенство – по определению условной вероятности.

Q.E.D.

10. Линейность математического ожидания случайных величин.

Пусть $f:U\to R$ и $g:U\to R$ – две случайные величины на одном и том же вероятностном пространстве. Тогда

$$E[f+g] = E[f] + E[g].$$

Другими словами, математическое ожидание линейно.

Доказательство. Пусть вероятностное пространство U состоит из исходов u_1, \ldots, u_k с вероятностями p_1, \ldots, p_k соответственно. Тогда по определению математического ожидания:

$$E[f+g] = \sum_{i=1}^{k} (f(u_i) + g(u_i))p_i = \sum_{i=1}^{k} (f(u_i))p_i + \sum_{i=1}^{k} (g(u_i))p_i = E[f] + E[g].$$

Q.E.D.

11. Формулировка и доказательство неравенства Маркова.

Неравенство Маркова. Пусть f- случайная величина, принимающая только неотрицательные значения. Тогда для всякого $\alpha>0$ верно

$$Pr[f \ge \alpha] \le \frac{E[f]}{\alpha}.$$

 $To\ ecmь,\ вероятность\ moго,\ что\ случайная\ величина\ f\ сильно\ больше\ своего\ математического\ ожидания,\ не\ слишком\ велика.$

Доказательство. По сути нужно доказать, что

$$E[f] \geq \alpha \cdot Pr[f \geq \alpha].$$

Пусть случайная величина f принимает значения a_1, \ldots, a_k с вероятностями p_1, \ldots, p_k . Запишем, чему равно её математическое ожидание по определению:

$$E[f] = a_1 p_1 + a_2 p_2 + \ldots + a_k p_k.$$

Посмотрим отдельно на те a_i , которые меньше α , и отдельно на те a_i , которые не меньше α . Если первые заменить на ноль, то сумма может только уменьшиться. Если вторые заменить на α , то сумма также может только уменьшиться. После таких замен, у нас остаётся сумма нескольких слагаемых, каждое из которых есть αp_i , где p_i – вероятность некоторого значения случайной величины, не меньшего α . Нетрудно видеть, что такая сумма как раз равна $\alpha \cdot Pr[f \geq \alpha]$, и теорема доказана.

Q.E.D.

12. Полнота стандартного базиса.

Теорема о стандартном базисе. Стандартный базис (базис, состоящий из операций отрицания, контонкции и дизтонкции: $\{\neg, \lor, \land\}$) — полный.

Доказательство. Вспомним, что ДНФ - это дизъюнкция конъюнктов литералов. Построим схему ДНФ.

 $x_1, \ldots, x_n, \neg x_1, \ldots, \neg x_n, c_1, \ldots, c_n, D$, где c_j — конъюнкция литералов, D — дизъюнкция. Данный порядок действий соответствует определению ДНФ, следовательно ДНФ представима в виде схемы и любая функция представима в виде ДНФ, что доказано ранее. (Note: $0 = x \land \neg x, 1 = x \lor \neg x$)

13. Существование булевых функций от ${\bf n}$ переменных схемной сложности $\Omega(2n/n)$.

Теорема. Существует функция $f:\{0,1\}^n \to \{0,1\}$ такая, что $C(f) \geqslant \frac{2^n}{10n}$ (в точности то жее самое, что $C(f) = \Omega(\frac{2^n}{n})$).

Доказательство. Воспоьзуемся мощностным методом. Всего булевых функций от n аргументов 2^{2^n} .

Теперь узнаем, сколько булевых схем размера меньше либо равных некоторого фиксированного числа L. Для этого будем кодировать схемы двоичными словами. Посмотрим на какое-то присваивание в схеме S: $g_k = g(g_i, g_j)$. Для кодирования самой функции g нужно 2 бита (так как в стандартном базисе всего три функции). Для кодирования номеров аргументов i и j нужно битов не более, чем log_2L . А значит для всего присваивания g_k нужно не более $2 \cdot (1 + log_2L)$ бит.

Итого размер одной схемы в битах: $L \cdot 2 \cdot (1 + log_2 L)$. Каждая схема кодирует ровно одну функцию. А значит каждое двоичное слово кодирует не более одной функции (так как некоторые двоичные слова ни одну схему не задают).

Получается и схем размера L не более, чем двоичных слов для схем такой длины, то есть: $2^{2L(1+log_2L)}$.

Пусть $L=\frac{2^n}{10n}$. Размер схемы в битах тогда будет равен:

$$L_2 = \frac{2^n}{10n} \cdot 2 \cdot \left(1 + \log_2\left(\frac{2^n}{10n}\right)\right) = \frac{2^n}{5n} \left(1 + n - \log_2(10n)\right), 1 - \log(10n) \leqslant 0 \implies L_2 \leqslant \frac{2^n}{5n} \cdot n = \frac{2^n}{5n} \cdot n$$

А значит функций, задающейся схемой такой длины не более чем $2^{\frac{2^n}{5}}$. Нетрудно заметить, что это число значительно меньше числа функций от n аргументов.

$$2^{\frac{2^n}{5}} < 2^{2^n}$$

А значит существует функция, задающаяся схемой длины больше, чем L.

Q.E.D.

14. Верхняя оценка $O(n2^n)$ схемной сложности булевой функции от n переменных.

Теорема. $C(f) = O(n \cdot 2^n)$

Доказательство. Повторим предыдущие рассуждения при доказательстве того, что в стандартном базисе любая функция вычислима. Для этого вспомним сокращенную ДНФ:

$$f(x) = \bigvee_{\substack{a:f(a)=1\\a\in\{0,1\}^n}} x^a, \ x^a = \bigwedge_{i=1}^n x_i^{a_i}$$

Нетрудно посчитать, что схема для вычисления x^a имеет размер $L_a = O(n)$. Тогда итоговый размер схемы $L \leqslant 2^n \cdot O(n) \iff L = O(n \cdot 2^n)$. Q.E.D.

15. Схема сложения n-битовых чисел сложности O(n).

Вспомним схему для сложения по модулю (2 из определений). На каждом шаге добавлялось 5 присваиваний, значит, справедливо рекуррентное соотношение для количества операций $S_n = S_{n-1} + 5$. Из такого соотношения нетрудно сделать два вывода:

- S_n вычисляется за O(n).
- Из того, что S_1 константа, следует, что S_n также константа.

Пусть у нас есть 2 двоичных числа $x:\{x_0,x_1,\ldots,x_{n-1}\},y:\{y_0,y_1,\ldots,y_{n-1}\}$, где $x_0,x_1,\ldots,x_{n-1},y_0,y_1,\ldots,y_{n-1}$ — двоичные разряды. Нужно выполнить схему $f:\{0,1\}^{2n}\to\{0,1\}^{n+1}$, результатом которой является $z:z_0,z_1,\ldots,z_n-1$.

Вспомним привычный нам алгоритм сложения двоичных чисел поразрядно в столбик.

$$\begin{array}{c|ccccc}
C_n & C_{n-1} & \dots & C_0 \\
\hline
0 & x_{n-1} & \dots & x_0 \\
0 & y_{n-1} & \dots & y_0 \\
\hline
z_n & z_{n-1} & \dots & z_0
\end{array}$$

Обратим внимание на присутствие C_0, \ldots, C_n . Они являются тем числами (0 или 1) которые мы "запоминаем" при сложении и переносим на следующий разряд. Теперь рассмотрим отдельно некоторый i-й разряд сложения.

$$\begin{array}{c}
C_i \\
x_i \\
y_i \\
z_i = x_i \oplus y_i \oplus c_i
\end{array}$$

Нетрудно догадаться, что z_i является суммой по модулю 2 i-х разрядов 2 слагаемых и "запомненного" числа от предыдущих разрядов. Возникает вопрос, как схемно выразить c_{i+1} через предыдущие разряды? Оказывается, это также нетрудно сделать, воспользовавшись функцией МАЈ: $c_{i+1} = MAJ(x_i, y_i, c_i)$.

Теперь поговорим о размере такой схемы. Как мы знаем из предыдущей лекции, сложение по модулю 2 и функцию большинства можно выполнить за константное число присваиваний. Получается, для операций S_n, S_{n-1} справедливо рекуррентное соотношение $S_n = S_{n-1} + C$, где C — некая константа. Из этого можно сделать вывод, что S_n вычисляется за O(n).

16. Схема умножения n-битовых чисел сложности $O(n^2)$.

Вспомним "школьную" схему умножения столбик. Как мы помним, нужно сначала посчитать результаты поочередного умножения разрядов y на все разряды x:

$$u_i = y_i(x_0, x_1, \dots, x_n)$$

Операция выполняется за $n \cdot O(n) = O(n^2)$.

Далее мы складываем получившиеся произведения $u_0 + u_1 + \ldots + u_n$. Операция выполнится за $O(n) \cdot O(2n) = O(n^2)$. Итого получаем выполнимость операции за $O(n^2)$.

17. Схема проверки связности графа на n вершинах полиномиального размера.

Проверка неориентированного графа на связность: $Conn: \{0,1\}^{\binom{n}{2}} \to \{0,1\}.$

Пусть булева переменная $x_{ij}, \{i,j\} \in F(G)$ принимает заначение 1 в том случае, если между вершинами i и j есть ребро. Рассмотрим функцию от таких булевых переменных.

Зададим матрицу смежности графа. Это матрица $A \in 0, 1^{n \times n}$, в которой на пересечении строки i со столбцом j стоит 1 тогда и только тогда, когда данные вершины связаны ребром. Такую матрицу и подадим на вход функции Conn. Заметим, что матрица смежности симметрична и на диагонали у нее обязательно стоят нули (мы запрещали петли — ребра, ведущие из вершины в нее же саму).

$$A = \begin{pmatrix} 0 & \dots & x_{1n} \\ x_{21} & \dots & x_{2n} \\ \vdots & \ddots & \vdots \\ x_{n1} & \dots & 0 \end{pmatrix}$$

Рассмотрим матрицу A', которая отличается от матрицы A тем, что у нее на главной диагонали стоят единицы, а не нули (в остальном матрицы совпадают).В терминах графов это означает, что к каждой вершине мы добавляем петлю. В модели простых неориентированных графов мы этого не допускали, но ничего не мешает нам рассмотреть графы с петлями. Идея состоит в том, что теперь, если между двумя вершинами есть путь длины меньше n-1, то есть и путь длины ровно n-1 (достаточно добавить к пути нужное количество петель). Нам достаточно взглянуть на $(A')^{n-1}$. Если в ячейках этой матрицы нет нулей, то граф связен, иначе не связен.

$$A' = \begin{pmatrix} 1 & \dots & x_{1n} \\ x_{21} & \dots & x_{2n} \\ \vdots & \ddots & \vdots \\ x_{n1} & \dots & 1 \end{pmatrix}$$

Также упрощение можно провести со способом возведения матрицы в степень. В данный момент мы это делаем над действительными числами, что заставляет нас складывать и умножать целые числа. Чтобы делать это с помощью схем, нам придется использовать описанные выше схемы для сложения и умножения, а чтобы оценить размер получившейся схемы придется оценивать величину возникающих в процессе вычислений целых чисел. Все это не очень хочется делать. Решение состоит в том, чтобы вместо умножения матриц над целыми числами воспользоваться так называемым булевым умножением матриц. В нем формулы для умножения матриц такие же, как и в обычном умножении, только вместо операции умножения используется конъюнкция, а вместо сложения — дизъюнкция. Тогда можно по индукции доказать, что в (булевой) матрице A'^k на пересечении строки i и столбца j стоит 1 тогда и только тогда, когда в графе есть путь из вершины i в вершину j длины не больше k. Теперь мы готовы описать схему для проверки графа на связность. На вход схема (по существу) получает матрицу смежности A'. Схема последовательно вычисляет булевы степени этой матрицы A'^2 , . . . A'^{m-1} . Затем схема вычисляет конъюнкцию всех ячеек матрицы A'^{n-1} и подает ее на выход.

Оценим размер получившийся схемы. Для булева умножения двух булевых матриц размер $n \times n$ достаточно $n^2 \cdots O(n) = O(n^3)$ операций (каждая ячейка произведения матриц вычисляется за линейное число операций, всего ячеек n^2). Всего нам нужно (n-1) умножение матриц, так что для вычисления матрицы A'^{n-1} достаточно $O(n^4)$ операций. На последний этап (конъюнкция ячеек A'^{n-1} нужно $O(n^2)$ операций, итого получается $O(n^4) + O(n^2) = O(n^4)$ операций.

18. Подмножество счетного множества конечно или счетно.

A – счётное множество. Тогда $A' \subseteq A$ счётно или конечно.

Доказательство. $A = \{a_0, a_1, \dots, a_n, \dots\}$. Вычеркнем все элементы, в A' не входящие. $A' = \{a_{j_0}, a_{j_1}, \dots, a_{j_n}, \dots\}.$

Если последовательность $\{a_{j_n}\}$ конечна, то и A' конечно. Если она бесконечна, то A'очевидно счётно.

19. Любое бесонечное множество содержит счетное подмножество.

Утверждение: Любое бесконечное множество содержит счетное подмножество.

Доказательство. Пусть A – бесконечное множество. Тогда $M \neq \emptyset$. Выберем какой-нибудь из его элементов и обозначим его через a_1 . Допустим в A уже выбраны n попарно различных элементов a_1, a_2, \ldots, a_n . Так как M бесконечно, то

$$A \setminus \{a_1, a_2, \ldots, a_n\} \neq \emptyset$$

и можно выбрать $a_{n+1} \in A \setminus \{a_1, a_2, \dots, a_n\}$.

Он отличен от всех ранее выбранных элементов.

Таким образом, по индукции доказывается, что для любого n существует в A подмножество $A_n = \{a_1, a_2, \ldots, a_n\}$ из n элементов, причем множество A_{n+1} получается из A_n присоединением одного нового элемента a_{n+1} . Ясно, что объединение

$$B = \bigcup_{n=1}^{\infty} A_n = \{a_1, a_2, \dots, a_n, \dots \}$$

является счетным подмножеством A.

Q.E.D.

20. Счетное объединение конечных или счетных множеств конечно или счетно.

 $\{A_0,A_1,\ldots,A_n,\ldots\}=\mathfrak{F}\sim\mathbb{N}.$ A_i — множество. \mathfrak{F} называется семейством множеств. $A = \bigcup_{i=0}^{\infty} A_i$. Утв<u>ерждение:</u> A – счётно.

Доказательство.

$$A_0 = (a_{00}, a_{01}, \dots, a_{0n}, \dots)$$

$$A_1 = (a_{10}, a_{11}, \dots, a_{1n}, \dots)$$

Некоторые из множеств могут быть конечны. Дополним их до счётных пустым символом $\lambda \notin A$.

Построим последовательность: $a_{00}, a_{01}, a_{10}, a_{02}, a_{11}, a_{20}, \dots$ (то есть проходим последовательно все значения сумм индексов от 0 до ∞).

Теперь исключим из последовательности повторения и символы λ . Получим требуемую последовательность $(a'_0, a'_1, \dots, a'_n, \dots)$.

Теперь получим функцию $f:[n] \to A$ или $f:\mathbb{N} \to A$. f – биекция. В первом случае множество конечно, во втором счётно.

Можно было бы и не вводить λ , а исключать эти элементы сразу, но так проще (нет никаких условий). Q.E.D.

21. Счетность декартова произведения счетных множеств.

Декартово произведение счётных множеств счётно. Напомним, что

$$A \times B = \{(a; b) \mid a \in A, b \in B\}$$

Доказательство. По определению декартово произведение есть множество всех упорядоченных пар вида $\langle a,b\rangle$, в которых $a\in A$ и $b\in B$. Разделим пары на группы, объединив пары с одинаковой первой компонентой (каждая группа имеетвид $\{a\}\times B$ для какого-то $a\in A$). Тогда каждая группа счётна, поскольку находится во взаимно однозначном соответствии с B (пара определяется своим вторым элементом), и групп столько же, сколько элементов в A, то есть счётное число. Q.Е.D.

22. Счетность множества слов в конечном или счетном непустом алфавите.

Что такое слова длины n в алфавите A? Это в точности декартова степень A^n .

Каждая такая степень либо счётна (если А счётно), либо конечна (если А конечно).

Что такое тогда множество всех слов в алфавите? Это в точности объединение всех слов длины $0,1,2,\ldots,n,\ldots$:

$$A^* = \bigcup_{i \in \mathbb{N}} A^i$$

Получили счётное объединение счётных или конечных множеств (а оно счётно или конечно).

Доказательство этих фактов есть в свойствах счётных множеств (документ с определениями). Странно? Ну ладно, чёрт его знает как так получилось :).

23. Несчетность множества мощности континуум.

Определим действительные числа следующим образом: сопоставим каждому $x \in \mathbb{R}$

двоичное число: $\pm \underbrace{10110\dots 1011}_{\text{целая часть}}$. $\underbrace{110001\dots 00110}_{\text{селая часть}}$. Считаем известным, что ряд из каких-то

степеней двоек сходится, причём запрещаем в числах данного вида "хвосты из единиц".

Множество имеет мощность континуум, если оно равномощно \mathbb{R} .

Множество счётно, если оно равномощно №.

Теорема Кантора. $\mathbb{N} \sim \mathbb{R}$

Доказательство. Воспользуемся тем, что $\mathbb{R} \sim 2^{\mathbb{N}}$, и докажем $\mathbb{N} \sim 2^{\mathbb{N}}$ для получения требуемого.

Диагональное рассудение:

Пусть $F = \{f_0, f_1, \dots, f_n, \dots\}$ – множество последовательностей $f \in 2^{\mathbb{N}}$. Покажем, что $\exists x \in 2^{\mathbb{N}} : x \notin F$, тем самым доказав, что отображение $\mathbb{N} \to 2^{\mathbb{N}}$ не сюръективно.

Запишем элементы F в квадратную таблицу по правилу $f_i = \{f_{i0} \ f_{i1} \dots f_{in}\}$:

$$f_0 = f_{00} \quad f_{01} \quad \dots \quad f_{0n}$$
 $f_1 = f_{10} \quad f_{11} \quad \dots \quad f_{1n}$
 $\vdots \quad \vdots \quad \vdots \quad \ddots \quad \vdots$
 $f_n = f_{n0} \quad f_{n1} \quad \dots \quad f_{nn}$

Выпишем последовательность по диагонали: $f_* = \{f_{00} \ f_{11} \ f_{22} \dots f_{nn}\}$. Тогда пусть $x = \{\overline{f_{00}} \ \overline{f_{11}} \dots \overline{f_{nn}}\}$. Тогда $x \neq f_i \ \forall i \in [0,n]$, так как $x_j = \overline{f_{jj}} \neq f_{jj} \ \forall j$. Значит, отображение не сюръективно.

Таким образом, $\mathbb{N} \nsim 2^{\mathbb{N}}$, и так как $\mathbb{R} \sim 2^{\mathbb{N}}$, то $\mathbb{N} \nsim \mathbb{R}$.

Q.E.D.

24. Теорема Кантора-Бернштейна: формулировка и доказательство.

Теорема Кантора-Бернштейна. Если множеество A равномощно некоторому подмножееству множеества B, а B равномощно некоторому подмножееству множеества A, то множеества A и B равномощны.

Доказательство. Пусть А равномощно подмножеству B_1 множества B, а B равномощно подмножеству A_1 множества A (см. рис. 1). При взаимно однозначном соответствии между B и A_1 подмножество $B_1 \subset B$ переходит в некоторое подмножество $A_2 \subset A_1$. При этом все три множества A, B_1 и A_2 равномощны, — и нужно доказать, что они равномощны множеству B, или, что то же самое, A_1 .

Рис. 1: Взаимные соответсвия между множествами

Теперь мы можем забыть про множество B и его подмножества и доказывать такой факт:

Eсли $A_2 \subset A_1 \subset A_0$ и $A_2 \sim A_0$, то все три множества равномощны.

(Для единообразия мы пишем A_0 вместо A.)

Пусть f — функция, осуществляющая взаимно однозначное соответствие $A_0 \to A_2$ (элемент $x \in A_0$ соответствует элементу $f(x) \in A_2$). Когда A_0 переходит в A_2 , меньшее множество A_1 переходит в какое-то множество $A_3 \subset A_2$ (см. рис. 2). Аналогичным образом само A_2 переходит в некоторое множество $A_4 \subset A_2$. При этом $A_4 \subset A_3$, так как $A_1 \subset A_2$.

Продолжая эту конструкцию, мы получаем убывающую последовательность множеств

$$A_0 \supset A_1 \supset A_2 \supset A_3 \supset A_4 \supset \dots$$

и взаимно однозначное соответствие $f:A_0\to A_2$, при котором A_i соответствует A_{i+2} (иногда это записывают так: $f(A_i)=A_{i+2}$). Формально можно описать A_{2n} как множество тех элементов, которые получаются из какого-то элемента множества A_0 после n-кратного применения функции f. Аналогичным образом A_{2n+1} состоит из тех и только тех элементов, которые получаются из какого-то элемента множества A_1 после n-кратного применения функции f.

Рис. 2: Последовательные вхождения множеств

Заметим, что пересечение всех множеств A_i вполне может быть непусто: оно состоит из тех элементов, у которых можно сколько угодно раз брать f-прообраз. Теперь можно сказать так: множество A_0 мы разбили на непересекающиеся слои $C_i = A_i/A_{i+1}$ и на сердцевину $C = \bigcap_i A_i$.

Слои C_0, C_2, C_4, \ldots равномощны (функция f осуществляет взаимно однозначное соответствие между C_0 и C_2 , между C_2 и C_4 и т.д.):

$$C_0 \xrightarrow{f} C_2 \xrightarrow{f} C_4 \xrightarrow{f} \dots$$

То же самое можно сказать про слои с нечётными номерами:

$$C_1 \xrightarrow{f} C_3 \xrightarrow{f} C_5 \xrightarrow{f} \dots$$

Можно ещё отметить (что, впрочем, не понадобится), что функция f на множестве C осуществляет его перестановку.

Теперь легко понять, как построить взаимно однозначное соответствие g между A_0 и A_1 . Пусть $x \in A_0$. Тогда соответствующий ему элемент g(x) строится так: g(x) = f(x) при $x \in C_{2k}$ и g(x) = x при $x \in C_{2k+1}$ или $x \in C$ (см. рис. 3)

Рис. 3: Построение взаимнооднозначного соответствия

Q.E.D.

25. Теорема Поста: формулировка и доказательство.

Теорема Поста. Если множества A и \overline{A} перечислимы, то множество A разрешимо.

Доказательство. Алгоритм разрешения множества A устроен так. Он исполняет модифицированные алгоритмы перечисления множеств A и \overline{A} параллельно: один шаг работы алгоритма перечисления множества A, затем один шаг работы алгоритма перечисления \overline{A} и так далее.

Вместо того, чтобы печатать очередной элемент, модифицированный алгоритм перечисления запоминает его в списке элементов множества. (В любой момент исполнения алгоритма такой список конечен.)

Когда один из списков увеличивается, добавленный элемент сравнивается со входом x. Если обнаружено вхождение x в список элементов множества A, то алгоритм разрешения останавливается и выдаёт результат 1. Если обнаружено вхождение x в список элементов множества \overline{A} , то алгоритм разрешения останавливается и выдаёт результат 0. В остальных случаях продолжается работа алгоритмов перечисления.

Докажем корректность алгоритма. Пусть $x \in A$. Тогда x заведомо не входит в список элементов \overline{A} и результат 0 невозможен. С другой стороны, рано или поздно x появится в списке элементов A, поэтому алгоритм выдаст результат 1.

Аналогично рассуждаем в случае $x \notin A$.

Q.E.D.

26. Разрешимые множества перечислимы.

Утверждение: Если множество S разрешимо, то оно перечислимо.

Доказательство. Алгоритм перечисления множества S использует алгоритм раз- решения множества S. Он перебирает все числа, начиная с 0; для каждого числа n вычисляет индикаторную функцию $\chi S(n)$ и печатает число n, если полученное значение равно 1.

Algorithm 1 Алгоритм перечисления множества S

```
1: function PRINT(S(n))

2: for n := 0 ... \infty do

3: if \chi_S(n) = 1 then

4: print n

5: end if

6: end for

7: end function
```

Корректность такого алгоритма ясна из определений.

Q.E.D.

27. Перечислимые множества являются множествами значений вычислимых функций.

Обозначения:

Сотр – клас вычислимых функций.

Dom Comp – класс областей определения вычислимых функций.

Range Comp – класс областей значения вычислимых функций.

 $Range^t\ Comp$ — класс областей значения всюду определённых вычислимых функций.

 Σ_1 – класс перечисоимых множеств.

Утверждение: $\Sigma_1 \subseteq Range\ Comp$

Доказательство. По определению перечислимого множества, множество S – перечислимо, если существует такая вычислимая функция:

$$f:\mathbb{N} \to \mathbb{N} \ \begin{cases} f(\mathbb{N}) = S \\ \text{Область определения } f \text{ равна либо } \mathbb{N},$$
 либо $[n].$

Тогда очевидно, что перечислимые множества есть множества значений вычислимых функций. Q.E.D.

28. Перечислимые множества являются множествами значений всюду определенных вычислимых функций.

Следствие Доказательств 27, 29 и 32: $Range^t Comp \subseteq \Sigma_1 \subseteq Range Comp \subseteq Range^t Comp$. 29 и 32 приведены ниже.

29. Множества значений всюду определенных функций перечислимы.

Утверждение: $Range^t \ Comp \subseteq \Sigma_1$

Доказательство. Пусть f(n) – всюду определённая вычислимая функция. Построим алгоритм, перечисляющий множество её значений:

Algorithm 2 Алгоритм перечисления множества значений вычислимой функции

- 1: **function** PrintSet(f(n))
- 2: **for** $n := 0 \dots \infty$ **do**
- $\mathbf{grint} \ \mathbf{f}(\mathbf{n})$
- 4: end for
- 5: end function

Поскольку у множества значений вычислимой функции существует алгритм, его перечисляющий, то это множество перечилимо.

Q.E.D.

30. Множество значений всюду определенной вычислимой функции является областью определения вычислимой функции.

<u>Утверждение:</u> $Range^t \ Comp \subseteq Dom \ Comp$

Доказательство. Пусть S=f(n) для некоторой всюду определённой функции f. Опишем алгоритм вычисления функции g, который получает на вход x: перебираем все числа, начиная с 0; для каждого числа n вычисляем f(n) и сравниваем с x; в случае равенства выдаём результат 1.

$$g(x) = \begin{cases} 1, \text{если } x \in Rangef \\ \text{иначе не определена, так как для любого n выполняется } x \neq f(n). \end{cases}$$

Заметим, что мы доказали, что g — константна.

Q.E.D.

31. Область определения вычислимой функции является множеством значений вычислимой функции.

Утверждение: $Dom\ Comp \subseteq Range\ Comp$

Доказательство. Пусть S — область определения некоторой вычислимой функции f, а p — номер программы, вычисляющей f.

Опишем алгоритм вычисления функции g из $\mathbb{N} \times \mathbb{N}$ в \mathbb{N} на входе (x,t): вычисляем F(p,x,t) и сравниваем с 1; если F(p,x,t)=1, то выдаём результат x, иначе не выдаём никакого результата.

Если $x \in S$, то x = g(x,t) для некоторого t. И обратно, если x = g(x,t) для некоторого t, то U(p,x) определена, а значит, определена и f(x).

Мы представили S как множество значений функции от двух натуральных аргументов. Чтобы перейти к функциям одного аргумента, используем вычислимую биекцию $c: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ и выразим S как $S = g \circ c^{-1}(N)$.

32. Непустое множество значений вычислимой функции является множеством значений всюду определенной вычислимой функции.

Утверждение: $Range\ Comp \subseteq Range^t\ Comp$

Доказательство. Пусть $S = f(\mathbb{N})$ для некоторой вычислимой функции f. Зафиксируем некоторое $a \in S$ (мы предполагаем, что множество S непусто).

 Φ ункция f не всюду определена и может не иметь вычислимого всюду определённого продолжения. Поэтому используем отладочную функцию.

Пусть f(x)=U(p,x), где U — некоторая универсальная вычислимая функция, для которой существует отладочная функция. Опишем алгоритм вычисления всюду определённой функции $g: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$. На входе (x,t) алгоритм вычисляет F(p,x,t) и сравнивает результат с 1. Если F(p,x,t)=1, то алгоритм выдаёт U(p,x). В противном случае результат равен a.

По определению отладочной функции из F(p,x,t)=1 следует, что U(p,x) определена. Поэтому функция g всюду определена. Её множество значений совпадает с S. В одну сторону: если y=g(x,t), то $y=a\in S$ или $y=U(p,x)=f(x)\in S$. В другую: пусть y=f(x)=U(p,x). На паре (p,x) функция U определена, поэтому для некоторого t значение отладочной функции F(p,x,t)=1. Но тогда y=g(x,t). Мы представили S как множество значений всюду определённой функции от двух натуральных аргументов. Чтобы перейти к функциям одного аргумента, используем вычислимую биекцию $c:\mathbb{N}\times\mathbb{N}\to\mathbb{N}$ и выразим S как $S=g\circ c^{-1}(\mathbb{N})$.

Q.E.D.

33. Пример перечислимого неразрешимого множества

Теорема. Существует перечислимое неразрешимое множество.

$$g(x) = \begin{cases} f(x), \text{если } x \in F \\ 0, \text{если } x \notin F. \end{cases}$$

была бы вычислимым всюду определённым продолжением функции f (при вычислении g(x) мы сначала проверяем, лежит ли x в F, если лежит, то вычисляем f(x)). Q.E.D.

$${x: U(x, x) \text{ определена}}.$$

Утверждение: Н перечислимо, но неразрешимо

Доказательство. Множество H является областью определения вычислимой функции $x \to U(x, x)$. Поэтому оно перечислимо.

Неразрешимость доказывается диагональным методом. Предположим, что H разрешимо. Рассмотрим такой алгоритм вычисления функции f: на входе x он вызывает алгоритм разрешения множества H для x. Если $x \in H$, то алгоритм не даёт никакого результата, а если $x \notin H$, то выдаёт результат 1.

Пусть p — номер функции f в универсальной нумерации, то есть f(x) = U(p, x).

Предположим, что $p \in H$. Тогда алгоритм вычисления f, описанный выше, не выдаёт никакого результата, то есть f(p) = U(p, p) не определено. По определению множества H это означает, что $p \notin H$.

Если $p \notin H$, то алгоритм вычисления f даёт результат 1, то есть 1 = f(p) = U(p, p). Следовательно, $p \in H$.

Пришли к противоречию. Значит, множество H неразрешимо.

Q.E.D.

34. Невозможность универсальной нумерации всюду определенных вычислимых функций: формулировка и доказательство.

Были введены универсальные нумерации вычислимых функций. А может быть можно ввести аналогичную нумерацию для всюдуопределённых функций?

Вопрос: существует ли такая всюдуопределённая функция V(p,x), что для любой всюдуопределённой функции f(x) существует номер p такой, что $\forall x \in N f(x) = V(p,x)$?

Теорема. Не существует универсальной нумерации всюду определённых вычислимых функций.

Доказательство. Расмотрим функции вида V(p,x), всюду определённые (как раз наша потенциальная нумерация).

Воспользуемся диагональным методом, построив (мысленно) таблицу таких функций. Возьмём f(x) = V(x,x) + 1. f(x) вычислима? Да. Так как V(x,x) всюдуопределена, то f(x) тоже всюдуопределена.

Однако (как ни странно!) такой функции в нумерации гарантированно нет. Почему? Пусть f(x) имеет в такой нумерации номер p. Тогда посмотрим, чему равно f(p):

$$f(p) = V(p, p)$$

и с другой стороны:

$$f(p) = V(p, p) + 1$$

$$V(p,p) = V(p,p) + 1$$
. Противоречие!

Q.E.D.

35. Функция вычислима тогда и только тогда, когда ее график перечислим.

Теорема. Функция вычислима тогда и только тогда, когда её график перечислим.

Algorithm 3 Алгоритм перечисления графика функции

```
function COUNT_GRAPH(x) for i:=0..\infty do (x,t)=\pi(i) # запустить f(x) на t тактов if f(x) остановилась then print (x,f(x)) end if end for end function
```

Доказательство. Пусть f(x) вычислима. Перечислим его график алгоритмом:

Пусть теперь $x \in Dom(f)$ тогда f(x) останавливается на каком-то t, а значит точка (x, f(x)) будет перечислена. Если $x \notin Dom(f)$ тогда f(x) не останавливается при любом t, а значит эта точка перечислена не будет.

 $\pi:\mathbb{N}\to\mathbb{N}\times\mathbb{N}$ – вычислимая биекция (сущетвование доказывалось ранее).

Пусть график $G = \{(x, y): y = f(x)\}$ перечислим. Тогда следующий алгоритм вычисляет f: на входе x запускаем перечисление элементов графика, когда найден очередной элемент (y, z), проверяем x = y, в случае равенства выдаём результат z.

Из определения графика ясно, что на входе x такой алгоритм может выдать лишь результат f(x). С другой стороны, если x принадлежит области определения f, то пара (x, f(x)) рано или поздно будет перечислена. В этот момент алгоритм и выдаст результат f(x).

Q.E.D.

36. Перечислимые множества — это в точности проекции разрешимых.

Теорема. Перечислимые множества — это в точности проекции разрешимых.

Доказательство. Проекция пустого множества пуста. Дальше рассматриваем только непустые множества.

Пусть $D\subseteq \mathbb{N}\times \mathbb{N}$ разрешимо, $(a,b)\in D.$ По определению, индикаторная функция χ_D вычислима. Но тогда вычислима и функция

$$f:(x, y) = \begin{cases} x, \, \text{если}\chi_D(x, y) = 1 \\ a, \, \text{в противном случае} \end{cases}$$

для которой $f(\mathbb{N} \times \mathbb{N}) = Pr \ D$. Поэтому $Pr \ D$ перечислимо.

Пусть S — перечислимо. Тогда S — область определения некоторой вычислимой функции f, которая имеет номер p в универсальной нумерации. Построим такое множество:

$$D = \{(x, t): F(p, x, t) = 1\}.$$

Докажем, что Pr D=S. Пусть $x\in S$. Это значит, что на x функция f определена, тем самым определена и функция U(p,x). Но тогда по определению отладочной функции F(p,x,t)=1 для некоторого t, то есть $x\in Pr$ D.

В обратную сторону аналогично: если $x \in Pr$ D, то для некоторого t выполняется F(p, x, t) = 1, то есть U(p, x) = f(x) определена. Таким образом, $x \in S$.

Q.E.D.

37. Пример вычислимой функции без всюду определенного вычислимого продолжения.

Определим $\overline{h_U}$ как

$$\overline{h_U}(x) = \begin{cases} 1, \text{если } U(x,x) = 0 \\ 0, \text{если } U(x,x) \text{ определена и } U(x,x) \neq 0 \ . \end{cases}$$

Эта функция вычислима: подадим на вход алгоритма, вычисляющего U, пару аргументов (x,x); после остановки этого алгоритма выдадим 1, если результат вычисления U равен 0, и 0 в противном случае. Если U(x,x) не определена, то данный алгоритм также не выдаёт никакого результата.

Теорема. У $\overline{h_U}$ нет всюду определённого вычислимого продолжения (нет функции, доопределяющей $\overline{h_U}$ на всей области определения).

Доказательство. Доказываем от противного. Пусть g(x) — всюду определённое вычислимое продолжение функции $\overline{h_U}$. Выберем такое p, что g(x) = U(p,x) и придём к противоречию аналогично доказательству теоремы о невычислимости H. Так как g(x) всюдуопределённая, то и в точке p она определена. А значит U(p,p) определена, при этом $g(p) = \overline{h_U}(p)$ (так как q — продолжение $\overline{h_U}$). Возможны два случая:

- 1. $U(p,p)=0 \implies g(p)=0, g(p)=\overline{h_U}(p) \implies \overline{h_U}(p)=0 \implies U(p,p)\neq 0.$ Противоречие
- 2. $U(p,p) \neq 0 \implies g(p) \neq \underline{0}, g(p) = \overline{h_U}(p) \implies \overline{h_U}(p) \neq 0 \implies \overline{h_U}(p) = 1$ (так как никаких других значений $\overline{h_U}$, кроме 0 и 1 не принимает). А это значит, что U(p,p) = 0. Противоречие.

В обоих случаях получили противоречие, а значит и такого дополнения нет.

Q.E.D.

38. Доказательство теоремы Успенского-Райса.

Следствие из теоремы о неподвижной точке:

Свойство рекурсии. Для любой вычислимой функции V(n, x) и главной универсальной функции U(n, x) существует q такое, что:

$$V(q, x) = U(q, x).$$

Доказательство. Найдем s(n):V(n,x)=U(s(n),x). s(n) – всюдуопределённая. Тогда (по теореме о неподвижной точке) $\exists q:V(q,x)=U(s(q),x)=U(q,x).$ Q.E.D.

Пусть есть некоторое свойство, которое мы хотим проверить для некоторой функции. Формально: Пусть $\{f: \mathbb{N} \to \mathbb{N}\}$ — множество вычислимых функций. Разделим его на два непересеающихся подмножества A и \overline{A} .

$$\{f\mid f:\mathbb{N}\to\mathbb{N}\}=A\cup\overline{A}$$

A — множество тех функций, для которых выполняется некое свойство, \overline{A} — множество тех функций, для которых это свойство не выполняется.

Возьмём некоторую универсальню функцию U(p, x).

Обозначим за P_A множество всех p таких, что $U(p, x) \in A$.

$$P_A = \{ p \mid U(p, x) \in A \}$$

Тогда вопрос можно поставить так: разрешимо ли множество программ, удовлетворяющих нашему свойству? На этот вопрос и отвечает теорема Успенского-Райса:

Теорема Успенского-Райса. Если A – нетривиально $(A \neq \varnothing, \overline{A} \neq \varnothing)$, а U(q, x) – главная универсальная функция, то множество P_A неразрешимо.

Введём для удобства ещё функции $\varepsilon \in \overline{A}$ (нигде не определённая) и $\xi \in A$ (какая-то функция, удовлетворяющая условию). Сделать это можно по аксиоме выбора.

Если A – это множество нигде не определённых функций, то поменяем их местами так как P_A разрешимо тогда и только тогда, когда его дополнение разрешимо.

Доказательство 1. Пусть P_A разрешимо. Тогда существует всюдуопределённая характеристическая функция χ_{P_A} . Построим алгоритм на странице 19 (алгоритм 4).

Algorithm 4 Алгоритм, создающий противоречие для разрешимости P_A в док-ве 1

```
function PROBLEM(x)

if \chi_{P_A} = 0 then

return \xi(x)

else

return \varepsilon(x).

end if

end function
```

Он имеет некоторый номер p (который использован в программе) в U.

- $p \in P_A$. Тогда $U_p(x) = \varepsilon(x)$, но $\varepsilon(x) \in \overline{A} \implies p \notin P_A$. Противоречие.
- $p \notin P_A$. Тогда $U_p(x) = \xi(x)$, но $\xi(x) \in A \implies p \in P_A$. Противоречие.

Значит алгоритма разрешения не существует.

Может показаться, что использование номера программы в ней самой недопустимо, однако по свойству рекурсии это делать абсолютно законно. Q.E.D.

Доказательство 2. Пусть есть алгоритм, который строит алгоритм по номеру из шаблона (функция $\varphi: n \mapsto p_n$). Алгоритм выглядит так, как показано на странице 19 (алгоритм 5).

Algorithm 5 Шаблон алгоритма p_n для функции φ в док-ве 2

```
function PROBLEM(x)
U(n,n)
return \xi(x)
end function
```

Пусть $H = \{n \mid U(n, n) \text{ останавливается} \}$. Рассмотрим два случая:

```
1. n \in H \implies U(p_n, x) = \xi(x).
```

2.
$$n \notin H \implies U(p_n, x) = \varepsilon(x)$$
.

Что это значит? Это значит, что мы выразили (по факту) одну характеристическую функцию через другую:

$$\chi_H(n) = (\chi_{P_A} \circ \varphi)(n)$$

 $n \in H \iff p_n \in P_A$

Если χ_{P_A} вычислима, то вычислима и χ_H , однако это не так.

Так как функция U – главная, то φ представима в виде функции от двух аргументов V(n,x) (номера шаблона и аргумента).

$$U(p_n, x) = V(n, x) = U(s(n), x)$$

Значит χ_{P_A} не является вычислимой.

Q.E.D.

39. Доказательство теоремы о неподвижной точке.

Теорема о неподвижной точке. Пусть U – главная универсальная функция, h(n) – любая всюду определённая вычислимая функция. Тогда:

$$\exists q : U(q, x) = U(h(q), x).$$

Честно сказать, не все учёные понимают эту теорему, однако её можно объяснить неформально так: для любой программы на любом универсальном языке существует ещё одна программа, которая делает то же самое (то есть программы совпадают).

Доказательство. Для начала найдем такую функцию $f(p): \forall g(p)$ — вычислимой $\exists p: f(p) = g(p)$. В действительности, она существует, вот например: f(p) = U(p,p). Тогда g(p) тоже имеет какой-то номер q и тогда g(q) = U(q,q) = f(q).

Рассмотрим функцию V(p,x)=U(f(p),x). Тогда V(p,x) – универсальная, ведь если была функция φ с номером k, тогда в некоторой точке f(p) принимает значение k и $\varphi(x)=U(f(p),x)=V(p,x)$.

По определению главной универсальной функции V(p,x) = U(s(p),x).

Соберём все вместе и получим: U(f(p), x) = V(p, x) = U(s(p), x). Заметим, что f(p) не обязана быть всюдуопределённой, а s(p) уже всюдуопределена.

Тогда вспомним про нашу функцию h(n) из условия и введём функцию g(p) = h(s(p)). Тогда (по построению функции f): $\exists p : g(p) = f(p)$.

Опять же, собираем всё вместе:

$$\exists p : U(s(p), x) = V(p, x) = U(f(p), x) = U(g(p), x) = U(h(s(p)), x)$$

Пусть q = s(p). Тогда:

$$\exists q: U(q,x) = U(h(q),x)$$

Q.E.D.

40. Композиция функций, вычислимых на машине Тьюринга, вычислима на машине Тьюринга.

Теорема. Пусть $f: B^* \to B^*, g: B^* \to B^*$ вычислимы МТ. Тогда $f \circ g$ также вычислима МТ.

Доказательство. Результат работы одного алгоритма можно подать на вход другого алгоритма.

Пусть M_1 вычисляет g, а M_2 вычисляет f. Тогда МТ, которая состоит из последовательного соединения блоков M_1 и M_2 вычисляет $f \circ g$.

Если первая машина M_1 заканчивает работу, оставляя на ленте только полезный результат и ничего больше, то тогда определён результат вычисления МТ, так как на ленте не останется M_1 изменяющего работу машины.

Докажем тогда лемму об уборке мусора

Лемма. Пусть машина M вычисляет функцию f. Тогда существует такая машина M', которая вычисляет ту же функцию, но финальная конфигурация которой на любом входе w из области определения f имеет вид $q_f f(w)$.

1. Первая машина M_1 преобразует начальную конфигурацию $q_0'w$ в конфигурацию $\triangleleft q_0w$, где q_0 — начальное состояние машины M.

- 2. Вторая машина M_2 работает так же, как исходная машина M, но сохраняет окаймление конфигурации символами \triangleleft , \triangleright .
- 3. Третья машина M_3 стирает символы слева от положения головки в финальной конфигурации машины M_2 .
- 4. Четвёртая машина M_4 стирает символы справа от последнего символа результата работы M_2 и возвращает головку в ту ячейку, в которой она была при остановке машины M_2 .

Как ясно из этого описания, при корректной реализации каждой из этих четырёх машин их соединение M' удовлетворяет искомому свойству.

Опишем реализации этих четырёх машин.

Машина M_1 последовательно выполняет следующие шаги:

- 1. сдвинуться на одну ячейку влево, записать в неё символ ⊲
- 2. сдвинуться до первого пустого символа справа
- 3. записать символ ⊳
- 4. сдвинуться до символа ⊲ слева

Таблица переходов машины M_2 совпадает с таблицей переходов исходной машины M за исключением работы на добавленных символах \triangleleft , \triangleright . На символе \triangleleft машина выполняет следующие такты работы:

- 1. записать пустой символ, сдвинуться влево и перейти в состояние \overline{q}
- 2. записать символ \triangleleft , сдвинуться вправо перейти в состояние q

Работа M_2 на символе \triangleright устроена аналогично (разумеется, символ переносится вправо).

Рис. 4: Сдвиг левого ограничителя рабочей зоны

Как видно из описания, количество состояний у машины M_2 в два раза больше, чем у исходной машины M, а работа при чтении добавленных символов окаймления устроена так, что машина переносит символ окаймления на одну ячейку вне рабочей зоны, возвращается назад и продолжает работу как исходная машина M. Поэтому машина M_2 закончит работу, имея слева и справа от рабочей зоны символы \triangleleft , \triangleright .

Опишем теперь устройство машины M_3 . Она начинает работу в одном из финальных состояний q_f исходной машины M. Работа машины M_3 разбивается на следующие шаги:

- 1. пометить текущую ячейку, сдвинуться влево и перейти в состояние q_l
- 2. идти влево до символа ⊲, заменяя символ в каждой ячейке на пустой символ
- 3. на символе \triangleleft записать пустой символ и перейти в финальное состояние q_r

Второй шаг реализуется такой таблицей переходов:

$$\delta(a, q_l) = (\Lambda, q_l, -1), a \neq \triangleleft$$

Ясно, что в результате работы машины M_3 все символы слева от результата работы исходной машины M будут заменены на пустые.

Последняя машина M_4 должна убирать мусор справа от результата работы исходной машины. Она начинает работу в состоянии q_r (финальном состоянии предыдущей машины) и исполняет следующие шаги:

- 1. сдвинуться вправо до помеченной ячейки
- 2. сдвинуться вправо до пустого символа (быть может, помеченного)
- 3. идти вправо до символа ⊳, заменяя символ в каждой ячейке на пустой символ
- 4. на символе ⊳ записать пустой символ
- 5. идти влево до помеченной ячейки
- 6. убрать пометку и остановиться

По завершении последовательной работы машин $\{M_1, M_2, M_3, M_4\} = M'$ финальная конфигурация на входе w из области определения f как раз будет иметь вид $q_f f(w)$.

Q.E.D.

По лемме об уборке мусора каждая вычислимая на МТ функция вычислима машиной, которая в конце работы оставляет на ленте только результат работы.

Машину M_1 , вычисляющую g, заменяем на "усовершенствованную" машину M_1' , вычисляющую ту же функцию g, но при этом не оставляющую "мусора". Также заменим M_2 на аналогичную M_2' . Последовательно соединяем M_1' и M_2' , вычисляющую f, и получаем композицию машин $M_2' \circ M_1'$, вычисляющую композицию функций $f \circ g$.

Тогда ясно, что последовательное соединение любого количества таких "усовершенствованных"машин вычисляет композицию функций, вычислимых этими машинами.

Q.E.D.