

Infinity gauntlet

Diogo Ribeiro – 108217 Magner Gusse – 110180

Assuntos a apresentar

Objetivos da missão

Mission statement e requesitos a cumprir no projeto

Conceito escolhido

Apresentação do CAD do braço e dos seus varios componentes

Fase conceptual

Apresentação de conceitos criados

Next steps

Objetivos a cumprir na fase de prototipagem

Mission statement

Introdução a Titã

Titã é um planeta extraordinário. Entre as mais de 150 luas conhecidas no nosso sistema solar, é a única que apresenta uma atmosfera substancial.

Além da Terra, Titã é o único lugar onde podemos encontrar líquidos na forma de rios, lagos e mares para além da sua superfície.

Mission statement – Principais caracteristicas de Titã

Habitabilidade

Estudos indicam que Titã é dos planetas mais habitáveis do Sistema Solar.

Condições atmosfericas e climatericas

A atmosfera desta lua é tão densa que um fato de pressão não seria necessário. No entanto é necessário ter atenção às temperaturas extremamente baixas.

Mission statement – Assuntos a estudar numa missão a Titã

Constituição quimica Mapear a superficie

Estudo dos elemento que fazem parte da composição de Titã

Existência de vida

Estudar se já existe vida em Titã

Project Timeline

Fase 1

Desenhos iniciais

Fase 3

Criar primeiro designs do braço robotico

Fase 2

Escolha do conceito a expandir

Fase 4

Criacção de um modelo CAD com todos os elementos

Geração de conceitos-benchmarking

Desenhos iniciais

Antes de fazer qualquer desenho é necessário saber quais requisitos o braço deve ser capaz de cumprir.

Acoplamento simples

Acoplamento feito em 30 minutos

Controlo remoto

Controlado pela ground station na Terra

Resistencia às condições

Temperaturas entre 89,5 K e 94,5K e substancias ácidas

Adaptação à gravidade

Aceleração gravítica com um valor de 1,352 m/s²

Desenhos iniciais

1º desenho

Braço robótico com um gripper para recolha de amostras de gelo

Porém tivemos de largar esta ideia pois um gripper e recolha de amostras de gelo saõ incompativeis.

Escolha de um conceito

Após reconsideração foi decidido usar um braço robótico com uma broca oca na sua ponta para uma recolha de amostras.

O conceito escolhido apresentaria 5 graus de liberdade.

Primeiros designs

Tendo em conta o conceito selecionado foi iniciado o primeiro design.

Este design foi feito para um braço com 1200 mm de comprimento. O braço usaria motores servos para o seu movimento exceto na broca onde se usaria um brushless motor.

Componentes e modelo

B

Motor servo

O motor servo escolhido foi o Dynamixel-P PH54-200-S500-R

Base

Brushless motor

O brushless motor escolhido foi o Brushless-D2BLD5030S

Elos de movimento

Broca Oca

Elos de ligação

Motor servo

O motor servo escolhido foi o Dynamixel-P PH54-200-S500-R. Este apresenta as seguinte características e dimensões:

- -Torque control
- -Velocity control
- -Position control
- -Extended position control
- -PWM control (voltage control)
- -Peso: 0,855 kg
- -Dimensões: 54 x 126 x 54 mm

Ligação motor-braço

Para transmitir o movimento do motor servo para o braço robótico foi usado uma peça circular com 80 mm de diâmetro. Material: Liga de alumínio 6061-T6

Brushless motor

O brushless motor escolhido foi o Brushless-D2BLD5030S Este apresenta as seguintes características e dimensões:

-Velocidade de rotação: 3000 rpm

-Peso do motor: 2 Kg

-Potência requerida: 0,05 kW

-Dimensão A: 50 mm -Dimensão B: 50 mm

A broca oca escolhida apresenta as seguintes dimensões:

D Base

A base para o nosso braço robótico é composta por 3 componentes que são ligados entre si por soldadura. Esses 3 componente são:

- -A parte inferior circular com 200 mm de diâmetro, sendo esta feita a partir de um processo de maquinagem
- -A parte cilíndrica com 87 mm de diâmetro, que seria feita a partir de um processo de extrusão
- -As "ribs", que também são feitas a partir de um processo de maquinagem

D-1 Componete inferior circular da base

-A parte inferior circular com 200 mm de diâmetro, sendo esta feita a partir de um processo de maquinagem

(D-2) Componente cilindrica da base

-A parte cilíndrica com 87 mm de diâmetro, que seria feita a partir de um processo de extrusão

P-3 Ribs de ligção

-As "ribs", que também são feitas a partir de um processo de maquinagem

Material: Liga de Titânio Ti-6Al-4V Processo de fabrico: Flexão por indução a calor

Material: Liga de Titânio Ti-6Al-4V Processo de fabrico: Extrusão

Primeiro motor

Segundo Motor

Terceiro Motor

Elo 1 e quarto motor

Elo 2 e quinto motor

Motor 6 e 7 e Broca oca

