Relatório Exp.03: Aspectos Quantitativos da Reação de Metais com Ácidos

Orientação para os Cálculos:

Neste experimento são utilizados metais que ao reagir com ácido liberam gás hidrogênio (H₂) que é recolhido em uma proveta invertida em uma cuba contendo água. A partir da pressão de hidrogênio e a equação geral dos gases se calcula a quantidade de hidrogênio e pela estequiometria o número de mols do metal que participa da reação.

O esquema abaixo representa o dispositivo utilizado no experimento:

Pelo esquema acima vemos que a pressão atmosférica que é exercida sobre a superfície da água da cuba equilibra a coluna de líquido na proveta acima da superfície da água assim como a pressão do hidrogênio gerado na reação e a pressão de vapor d'água, uma vez que o gás foi recolhido sob água.

Temos então a relação:

$$P_{atm} = P_{Coluna} + (P_{i} \downarrow H_{2} O + P_{H_{2}}) \downarrow$$

A pressão exercida pela coluna de líquido (P_{Coluna}) é dada pela Lei de Stevin:

 $P_{Column} = d.g.h$

Onde:

d= densidade do líquido (kg.m⁻³)

g= aceleração da gravidade (9,8 m.s⁻²)

h= altura coluna (m)

Considerando unidades no sistema SI usadas acima a pressão resulta em Pascal (Pa).

$$P = \frac{N}{m^2} = Pa(Pascal)$$

Onde N= Newton.

Normalmente, se utilizam soluções de ácido diluídas ou dependendo do tipo de reação e do dispositivo experimental o gás é recolhido sob água pura, nestes casos se considera nos cálculos a densidade da água.

Neste experimento utilizamos uma solução \approx 3M de HCl, e para uma melhor precisão nos cálculos usaremos a densidade desta solução que é de 1,050 g/cm³ ou 1050 kg/m³ (https://pt.wikipedia.org/wiki/%C3%81cido_clor%C3%ADdrico).

Obs: apesar de parte do HCl_(aq) reagir com o metal a concentração da solução não sofre diferenças significativas devido ao grande excesso do ácido em relação ao metal.

Para o cálculo da pressão da coluna use o valor de densidade $d=1050 \text{ kg/m}^3 \text{ e}$ a altura da coluna de líquido em metros (m) desta forma a pressão obtida terá unidades de Pa.

A pressão de vapor d'água é função da temperatura e se encontra tabelada (vide Tabela abaixo) e a pressão atmosférica é fornecida (medida em barômetro no IQ).

Portanto a pressão de H₂ pode ser calculada segundo:

$$P_{H_2} \! = \! P_{atm} \! - \! \left(P_{Co \, luna} \! + \! P_{H_2O} \right)$$

Obs: Usar todas as pressões em atm. (Vide Tabela conversão abaixo).

Uma vez obtida a $P_{\rm H_2}$ se obtém o número de mols de ${\rm H_2}$ pela equação geral dos gases:

$$PV = nRT$$

$$n = \frac{PV}{RT}$$

Onde:

P= Pressão (atm)	V= Volume (L)	
n= Número de mols	T= Temperatura ambiente (graus	
	Kelvin, K)	
R= Constante geral dos gases (0,082 atm.L.mol ⁻¹ K ⁻¹)		

Tab.I Correlação entre Unidades de		
Pressão		
1 atm	101325 Pa	
1 atm	760 mmHg	

Tab.II Pressão de Va	por da Água em Função da	
Temperatura		
Temperatura (ºC)	Pressão (mmHg)	
21	18,5	
22	19,8	
23	21,1	
24	22,4	
25	23,8	
Dados obtidos da Referência 4 do Roteiro		

Cálculo do número de mols do metal:

A relação entre o número de mols de H₂ formado e do metal depende da estequiometria da reação redox:

i)
$$M^{0}_{(s)} + 2H^{+}_{(aq)} \rightarrow M^{2+}_{(aq)} + H_{2(g)}$$
 (ion do metal divalente)

ii)
$$2M^0_{(s)} + 6H^+_{(aq)} \rightarrow 2M^{3+}_{(aq)} + 3H_{2(g)}$$
 (íon do metal trivalente)

I) Reação com Magnésio Metálico:

Dados da Reação de Mg com Ácido		
Massa Mg ⁰	0,056 g*	
Temperatura da	24 ºC (297 K)	
Ambiente		
Temperatura da Água	22,5 ºC	
Altura da Coluna de	7 cm (7x10 ⁻² m)	
Líquido		
Volume Coletado	63,5 mL (63,5x10 ⁻³	
	L)**	
Pressão Atmosférica	703 mmHg	
*Pesado em balança semi-analítica		
**Volume corrigido para bolha ar ≈ 0,5 mL		

☐ Escreva a reação balanceada entre Mg e HCl.

$$M_{g(s)} + 2HCl_{(qq)} \longrightarrow M_{g}Cl_{2(qq)} + H_{2(g)}$$

☐ Calcule o número de mols de Mg metálico e a pureza do metal empregado.

$$P_{column} = d \cdot g \cdot h \qquad \left(d = 1050 \text{ kg/m}^3 \right) \quad d = 9.8 \text{ m/s}^2 \quad h = 7.10^2 \text{ m}$$

$$= 1050 \cdot 9.8 \cdot 7 \cdot 10^2$$

$$= 72030 \cdot 10^2 = 720.3 \text{ Pa} = \frac{720.3}{101325} \text{ arm} = 7.1 \cdot 10^{-3} \text{ arm}$$

Agora, devemos calular a pressão atmosférica e prevão da água:

$$P_{atm} = 103 \text{ mmHg} = \frac{703}{760} \text{ orm} = 0.925 \text{ arm}$$

$$P_{H_{20}}$$
 (22,5 %) \approx 20 mmHg = $\frac{20}{760}$ atm = 2,6 · 10⁻² atm

Logo, a pressão do gás é de

$$P_{H_2} = P_{arm} - (P_{column} + P_{H_20}) = 0.925 - (7.1 \cdot 10^{-3} + 2.6 \cdot 10^{-2}) = 0.89 \text{ arm}$$

Aplicando na lei dos gases, obremos a quantidade de mols de H2:

Comp na reason a proporção entre Mg e Hz é de 1 pana 1, entano o número de mols de Mg é de 2,3 · 10⁻³ mols

como a marra molar de Ma é de 24,3 almol então a massa de Ma era

1 mal — 24,3 g
$$\Rightarrow x = 0.05589 \text{ g}$$

Portanto, a pureza da bavia de magnésio metálico (de 0,056g) é de $\frac{0,05589}{0,056} = 99.8\%$

☐ Comente sobre possíveis fontes de erro e analise seu resultado.

Algumas possíveis fontes de erro podem estar relacionadas à precisão das medições, realizadas com a balança, proneta, termômetro e requa.

Além disso, alguns erros poderiam surgir do escape de Hz pana fora da proneta (se ponte da gase ficou pana fora) e da densidade do HCL (ag) que pode alterar após a reasão com o magnésio

Apesar disso, a pureza encontrada de quase 100% indica que essas fontes não causaram erros significativos.

II) Identificação do Metal Desconhecido

Dados da Reação do Metal com Ácido		
Massa Metal (g)	0,0353 g*	
Temperatura da	25 ºC (298 K)	
Ambiente		
Temperatura da Água	23 ºC	
Altura da Coluna de	10,5 cm (10,5x10 ⁻²	
Líquido	m)	
Volume coletado	55 mL (55x10 ⁻³ L)**	
Pressão Atmosférica	703 mmHg	
*Pesado em balança analítica para maior		
precisão		
**Sem correção bolha de ar como		
compensação H₂ retido na proveta.		

☐ Calcule o número de mols do metal levando em consideração que a reação redox resulta em um íon metálico trivalente.

Semelhante ao exercício anterior, vamos calcular O número de mols de Hz. Liberados na reasão:

$$P_{coluna} = d \cdot q \cdot h$$

$$= 1085 \cdot 9.8 \cdot 10.5 \cdot 10^{-2} = 1116,465 P_{a}$$

$$= 1.1 \cdot 10^{-2} \text{ atm}$$

 $P_{atm} = 0.925 \text{ arm}$ $Q = (a.23 °C) = 21.1 \text{ mmHa} = 2.78 \cdot 10^{-2} \text{ atm}$

 P_{H_2O} (a 23°C) = 21.1 mmHg = 2.78 · 10^{-2} atm

Então a prussão do gás é de

 $P_{H2} = P_{atm} - (P_{cdwna} + P_{H20})$ $= 0.925 - (1.1 \cdot 10^{-2} + 2.78 \cdot 10^{-2}) = 0.8862 \text{ atm}$

Aplicando na lei geral dos gases, obtemos

$$n = PV = 0.8862 \cdot 55.10^{-3} = 1.9 \cdot 10^{-3} \text{ mols}$$

Porém, como foram gerados ions trivalentes, temos que a proporção entre o metal e H2 é de 2 para 3.

Portanto, como há 1,9.10-3 mols de Hz, então haviam

$$19.10^{-3}$$
. $\frac{2}{3} = 1.27 \cdot 10^{-3}$ mols de metal

 \square Calcule a massa molar (MM) do metal empregando a massa da amostra e o número de mols obtido:

$$MM(g.mol^{-1}) = \frac{m(g)}{n(mol)} \qquad m = 0.0353 g$$

$$n = 1.27 \cdot 10^{-3} mols$$

$$MM = \frac{0.0353}{0.00127} = \frac{27.79}{91} \frac{91}{100}$$

□ Identifique o metal utilizado no experimento consultando na Tabela Periódica que elemento metálico apresenta a massa atômica que corresponde à massa molar obtida nos cálculos.

Consultando a tabela periódica, vemos que 6 metal com massa molar mais semelhante à encontrada é o Alumínio.

☐ Comente sobre possíveis fontes de erro e analise seu resultado.

Nesse experimento, os possíveis erros de precisão de medição foram amenizados, a exemplo do uso da balanca analítica.

Assim como no experimento anterior, o resultado obtido condiz com o esperado. O metal de Alumínio corresponde tanto à marra molar calculada quanto ao fato de terem sido obtidos ions trivalentes (Al3+).