

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

CKE 2013	UZUP	EŁNIA ZDAJĄCY	miejsce
υy © (KOD	PESEL	miejsce na naklejkę
l graficzı			
Układ			

EGZAMIN MATURALNY Z MATEMATYKI

POZIOM ROZSZERZONY

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 20 stron (zadania 1–11). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 3. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 4. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 5. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 6. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 7. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego.
- 8. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

UZUPEŁNIA ZESPÓŁ
NADZORUJACY

Uprawnienia zdającego do:

dostosowania kryteriów oceniania
nieprzenoszenia zaznaczeń na kartę

9 MAJA 2017

Godzina rozpoczęcia: 9:00

Czas pracy: 180 minut

Liczba punktów do uzyskania: 50

MMA-R1 **1**P-172

Zadanie 1. (4 pkt)

Rozwiąż nierówność $|x-1|+|x-5| \le 10-2x$.

Strona 2 z 20 MMA_1R

	Nr zadania	1.
Wypełnia	Maks. liczba pkt	4
egzaminator	Uzyskana liczba pkt	

MMA_1R Strona 3 z 20

Zadanie 2. (5 pkt)

Dany jest wielomian $W(x) = 2x^3 + ax^2 - 13x + b$. Liczba 3 jest jednym z pierwiastków tego wielomianu. Reszta z dzielenia wielomianu W(x) przez (x+2) jest równa 20. Oblicz współczynniki a i b oraz pozostałe pierwiastki wielomianu W(x).

Strona 4 z 20 MMA_1R

	Nr zadania	2.
Wypełnia egzaminator	Maks. liczba pkt	5
	Uzyskana liczba pkt	

MMA_1R Strona 5 z 20

Zadanie 3. (5 pkt)

Wyznacz wszystkie wartości parametru m, dla których równanie $4x^2 - 6mx + (2m+3)(m-3) = 0$

$$4x^2-6mx+(2m+3)(m-3)=0$$

ma dwa różne rozwiązania rzeczywiste x_1 i x_2 , przy czym $x_1 < x_2$, spełniające warunek

$$(4x_1-4x_2-1)(4x_1-4x_2+1)<0.$$

Strona 6 z 20 MMA_1R

	Nr zadania	3.
Wypełnia	Maks. liczba pkt	5
egzaminator	Uzyskana liczba pkt	

MMA_1R Strona 7 z 20

Zadanie 4. (6 pkt)

Liczby a, b, c są – odpowiednio – pierwszym, drugim i trzecim wyrazem ciągu arytmetycznego. Suma tych liczb jest równa 27. Ciąg (a-2, b, 2c+1) jest geometryczny. Wyznacz liczby a, b, c.

Strona 8 z 20 MMA_1R

	Nr zadania	4.
Wypełnia	Maks. liczba pkt	6
egzaminator	Uzyskana liczba pkt	

MMA_1R Strona 9 z 20

Zadanie 5. *(3 pkt)*Udowodnij, że dla dowolnych różnych liczb rzeczywistych x, y prawdziwa jest nierówność $x^2y^2 + 2x^2 + 2y^2 - 8xy + 4 > 0.$

Zadanie 6. (3 pkt)

W trójkącie ostrokątnym ABC bok AB ma długość c, długość boku BC jest równa a oraz $| \not \prec ABC | = \beta$. Dwusieczna kąta ABC przecina bok AC trójkąta w punkcie E.

Wykaż, że długość odcinka
$$BE$$
 jest równa $\frac{2ac \cdot \cos \frac{\beta}{2}}{a+c}$.

Ī		Nr zadania	5.	6.
	Wypełnia	Maks. liczba pkt	3	3
	egzaminator	Uzyskana liczba pkt		

Zadanie 7. (4 pkt)

Oblicz, ile jest liczb sześciocyfrowych, w których zapisie nie występuje zero, natomiast występują dwie dziewiątki, jedna szóstka i suma wszystkich cyfr jest równa 30.

Odpowiedź:

Zadanie 8. (3 pkt)

W dwóch pudełkach umieszczono po pięć kul, przy czym w pierwszym pudełku: 2 kule białe i 3 kule czerwone, a w drugim pudełku: 1 kulę białą i 4 kule czerwone. Z pierwszego pudełka losujemy jedną kulę i bez oglądania wkładamy ją do drugiego pudełka. Następnie losujemy jedną kulę z drugiego pudełka. Oblicz prawdopodobieństwo wylosowania kuli białej z drugiego pudełka.

Odpowiedź:

	Nr zadania	7.	8.
Wypełnia	Maks. liczba pkt	4	3
egzaminator	Uzyskana liczba pkt		

MMA_1R Strona 13 z 20

Zadanie 9. *(6 pkt)*

W trójkącie równoramiennym wysokość opuszczona na podstawę jest równa 36, a promień okręgu wpisanego w ten trójkąt jest równy 10. Oblicz długości boków tego trójkąta i promień okręgu opisanego na tym trójkącie.

Odpowiedź:

	Nr zadania	9.
Wypełnia	Maks. liczba pkt	6
egzaminator	Uzyskana liczba pkt	

Zadanie 10. *(6 pkt)*Przekątne sąsiednich ścian bocznych prostopadłościanu wychodzące z jednego wierzchołka tworzą z jego podstawą kąty o miarach $\frac{\pi}{3}$ i α . Cosinus kąta między tymi przekątnymi jest równy $\frac{\sqrt{6}}{4}$. Wyznacz miarę kąta α .

	Nr zadania	10.
Wypełnia	Maks. liczba pkt	6
egzaminator	Uzyskana liczba pkt	

Zadanie 11. *(5 pkt)*

Wyznacz równanie okręgu przechodzącego przez punkty A = (-5, 3) i B = (0, 6), którego środek leży na prostej o równaniu x - 3y + 1 = 0.

Wypełnia egzaminator	Nr zadania	11.
	Maks. liczba pkt	5
	Uzyskana liczba pkt	

BRUDNOPIS (nie podlega ocenie)