Кватернионы

Определение и алгебраические свойства

Опредление

Кватернионом называют гиперкомплексное число следующего вида:

$$q = a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k}$$

где a,b,c,d — действительные числа, а i,j,k — кватернионные мнимые единицы, определяемые следующим соотношением:

$$i^2 = j^2 = k^2 = ijk = -1.$$

Множество кватернионов часто обозначают как $\mathbb H$ в честь ирландского математика У. Р. Гамильтона (1805–1865), разработавшего теорию кватернионов [32, 12, 28]. Термин кватернион происходит от латинского слова quaterni — по четыре.

С точки зрения общей алгебры

Кватернионы образуют множество, называемое в общей алгебре телом, то есть кольцом с обратным элементом и нейтралом по умножению, но без требования коммутативности умножения.

Говоря проще: кватернионы можно складывать, вычитать, умножать и делить, но умножение и деление не коммутируют, то есть при смене мест сомножителей произведение меняется.

Сопоставление с трехмерным пространством

В кватернионе $q = a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k}$ выделяют:

- векторную часть ${f q}=b{f i}+c{f j}+d{f k}$, называемую также чисто мнимой, чисто кватернионной или просто чистой;
- скалярную часть $q_0 = a$ (или вещественную часть).

Часто кватернион записывают в виде:

$$q = q_0 + \mathbf{q} = a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k}$$
.

Каждому чисто мнимому кватерниону можно взаимно-однозначно сопоставить вектор в трехмерном пространстве. Более строго: множество чистых кватернионов \mathbb{H}_0 изоморфно множеству \mathbb{R}^3 (евклидово пространство).

$$\mathbf{q} = \begin{pmatrix} b \\ c \\ d \end{pmatrix} \leftrightarrow b\mathbf{i} + c\mathbf{j} + d\mathbf{k} = \mathbf{q}.$$

Сопоставление настолько естественно, что и чистый кватернион и вектор ${f q}$ обозначают одинаково.

Сложение и вычитание

Свойства сложения определяется элементарно. Для двух кватернионов

$$q_1=a_1+b_1\mathbf{i}+c_1\mathbf{j}+d_1\mathbf{k},\quad q_2=a_2+b_2\mathbf{i}+c_2\mathbf{j}+d_2\mathbf{k}$$

сложение определяется как:

$$q_1 + q_2 = (a_1 + a_2) + (b_1 + b_2)\mathbf{i} + (c_1 + c_2)\mathbf{j} + (d_1 + d_2)\mathbf{k},$$

обратный элемент по сложению получается простым добавлением знака минус перед коэффициентами кватерниона:

$$-q = -a - b\mathbf{i} - c\mathbf{j} - d\mathbf{k},$$

а вычитание кватернионов определяется как сложение с обратным по сложению:

$$q_1 + (-q_2) = (a_1 - a_2) + (b_1 - b_2)\mathbf{i} + (c_1 - c_2)\mathbf{j} + (d_1 - d_2)\mathbf{k},$$

Умножение кватернионных единиц

Чтобы найти правило умножения кватернионов, необходимо сперва составить таблицу умножения для мнимых единиц i, j, k. Для этого достаточно использовать формулу $i^2 = j^2 = k^2 = ijk = -1$.

После получения таблицы умножения легко найти результат кватернионного умножения просто раскрывая скобки и пользуясь таблицей (1).

Умножение кватернионов

Для кватернионного умножения используется то же обозначение, что и для умножения действительных и комплексных чисел.

$$\begin{aligned} q_1 \cdot q_2 &= (a_1 + b_1 \mathbf{i} + c_1 \mathbf{j} + d_1 \mathbf{k}) \cdot (a_2 + b_2 \mathbf{i} + c_2 \mathbf{j} + d_2 \mathbf{k}) = a_1 a_2 + a_1 b_2 \mathbf{i} + a_1 c_2 \mathbf{j} + a_1 d_2 \mathbf{k} + b_1 a_2 \mathbf{i} + b_1 b_2 \underbrace{\mathbf{i}}_{\mathbf{i}} + b_1 c_2 \underbrace{\mathbf{i}}_{\mathbf{k}} + b_1 c_2 \underbrace{\mathbf{i}}_{\mathbf{k}} + b_1 d_2 \underbrace{\mathbf{i}}_{\mathbf{k}} + c_1 a_2 \mathbf{j} + c_1 d_2 \underbrace{\mathbf{j}}_{\mathbf{k}} + c_1 d_2 \underbrace{\mathbf{j}}_{\mathbf{k}} + d_1 a_2 \mathbf{k} + d_1 b_2 \underbrace{\mathbf{k}}_{\mathbf{i}} + d_1 c_2 \underbrace{\mathbf{k}}_{\mathbf{i}} + d_1 d_2 \underbrace{\mathbf{k}}_{\mathbf{k}} \underbrace{\mathbf{k}}_{\mathbf{i}}. \end{aligned}$$

В результате получим:

$$q_1q_2 = \overbrace{a_1a_2 - b_1b_2 - c_1c_2 - d_1d_2}^{\text{скалярная часть}} + (a_1b_2 + b_1a_2 + c_1d_2 - d_1c_2)\mathrm{i} + \\ + (a_1c_2 + c_1a_2 + d_1b_2 - b_1d_2)\mathrm{j} + \\ + (a_1d_2 + d_1a_2 + b_1c_2 - c_1b_2)\mathrm{k} \\ \end{cases} \text{векторная часть}$$

Однако данную формулу можно записать компактнее, если обратить внимание на части выделенные разными цветами.

Умножение кватернионов через скалярное и векторное произведения

• В части, выделенной зеленным цветом, прячется скалярное произведение векторной части кватернионов q_1 и q_2 :

$$(\mathbf{q}_1, \mathbf{q}_2) = b_1 b_2 + c_1 c_2 + d_1 d_2.$$

• В части, выделенной синим цветом, прячется векторное произведение векторных частей кватернионов q_1 и q_2 :

$$\mathbf{q}_1 \times \mathbf{q}_2 = \begin{vmatrix} \mathbf{i} & b_1 & b_2 \\ \mathbf{j} & c_1 & c_2 \\ \mathbf{k} & d_1 & d_2 \end{vmatrix} = (c_1 d_2 - c_2 d_1) \mathbf{i} + (d_1 b_2 - d_2 b_1) \mathbf{j} + (b_1 c_2 - b_2 c_1) \mathbf{k}.$$

- Красную часть можно записать как: $a_1b_2\mathbf{i} + a_1c_2\mathbf{j} + a_1d_2\mathbf{k} = a_1(b_2\mathbf{i} + c_2\mathbf{j} + d_2\mathbf{k}) = a_1\mathbf{q}_2$.
- ullet Фиолетовую часть можно записать как: $a_2b_2\mathbf{i} + a_2c_2\mathbf{j} + a_2d_2\mathbf{k} = a_2(b_2\mathbf{i} + c_2\mathbf{j} + d_2\mathbf{k}) = a_2\mathbf{q}_1$.

В результате:

$$q_1 \cdot q_2 = a_1 a_2 - (\mathbf{q}_1, \mathbf{q}_2) + a_2 \mathbf{q}_1 + a_1 \mathbf{q}_2 + \mathbf{q}_1 \times \mathbf{q}_2$$
 (2)

Сопряженный кватернион и модуль кватерниона

Кватернион q^* называется сопряженным к кватерниону $q=q_0+\mathbf{q}=q_0+q_1\mathbf{i}+q_2\mathbf{j}+q_3\mathbf{k}$, если

$$q^* = q_0 - \mathbf{q} = q_0 - q_1 \mathbf{i} - q_2 \mathbf{j} - q_3 \mathbf{k}.$$

Найдем произведение кватерниона q на его сопряженный q^* пользуясь формулой (2):

$$qq^* = q_0q_0 - (\mathbf{q}, -\mathbf{q}) + q_0\mathbf{q} - q_0\mathbf{q} + \underbrace{\mathbf{q} \times (-\mathbf{q})}_{=0} = q_0^2 + (\mathbf{q}, \mathbf{q}) = q_0^2 + \left\|\mathbf{q}\right\|^2 \Rightarrow \boxed{qq^* = q_0^2 + \left\|\mathbf{q}\right\|^2}$$

Норма векторной части кватерниона $\|\mathbf{q}\|$ совпадает с нормой вектора \mathbf{q} и вычисляется как:

$$\|\mathbf{q}\| = \sqrt{(\mathbf{q}, \mathbf{q})} = \sqrt{q_1^2 + q_2^2 + q_3^2}.$$

Модуль или абсолютное значение кватерниона определяется формулой:

$$|q| = \sqrt{qq^*} = \sqrt{q_0^2 + \|\mathbf{q}\|^2} = \sqrt{q_0^2 + q_1^2 + q_2^2 + q_3^2}.$$

Обратный кватернион. Деление кватернионов.

Сопряженный кватернион позволяет найти кватернион q^{-1} — обратный по умножению и, следовательно, определить операцию деления (все аналогично комплексным числам). Запишем:

$$q\frac{q^*}{qq^*} = \frac{qq^*}{qq^*} = \frac{q_0^2 + \|\mathbf{q}\|^2}{q_0^2 + \|\mathbf{q}\|^2} \equiv 1.$$

Так как при умножении на q кватернион $\frac{q^*}{qq^*}$ дает в результате 1, то по определению он является обратным для q:

$$q^{-1} = \frac{q^*}{qq^*} = \frac{q^*}{|q|^2}.$$

Операцию деления можно определить через умножение справа на обратный:

$$\frac{q_1}{q_2} = q_1 q_2^{-1} = \frac{q_1 q_2^*}{\left|q_2\right|^2}.$$

Важно, что умножение осуществляется справа, так как операция умножения для кватернионов не коммутативна!

Некоммутативность умножения

Для того, чтобы проверить, что в общем случае

$$q_1q_2\neq q_2q_1,$$

достаточно привести хотя бы один пример двух кватернионов, для которых данное неравенство выполняется. Умножим два кватерниона:

$$q_1 = 1 + i + j - k$$
 и $q_2 = 1 - i + j + k$,

для упрощения запишем умножение в виде таблицы 4×4 пользуясь таблицей (1):

i j k			1	i	j	$-\mathbf{k}$			1	-i	j	k
		1	1	i	j	$-\mathbf{k}$	$q_2q_1 = $	1	1	—i	j	k
$ \begin{array}{c ccccc} i & -1 & k & -j \\ j & -k & -1 & i \end{array} $	$q_1q_2 =$	$q_1q_2=\mathrm{i}$	-i	1	$-\mathbf{k}$	$-\mathrm{j}$		i	i	1	+k	$-\mathrm{j}$
$\begin{vmatrix} \mathbf{j} & -\mathbf{k} & -\mathbf{i} & \mathbf{i} \\ \mathbf{k} & \mathbf{j} & -\mathbf{i} & -1 \end{vmatrix}$		j	j	$-\mathbf{k}$	-1	-i			j			
		k	k	j	-i	1		$-\mathbf{k}$	-k	j	i	1

$$(1+i+j-k)(1-i+j+k) = 1+1-1+1+i-i-i-i+j+j+j-j-k-k-k+k=2-2i+2j-2k, \\ (1-i+j+k)(1+i+j-k) = 1+1-1+1-i+i+i+j-j+j+j+k-k+k+k=2+2i+2j+2k.$$

Некоторые дополнительные свойства

Из некоммутативности умножения следует:

- $\bullet \ (q_1q_2)^* = q_2^*q_1^*,$
- $\bullet \ (q_1q_2)^{-1}=q_2^{-1}q_1^{-1}.$

Еще несколько свойств:

- $q + q^* = 2q_0$,
- $q_1q_2 q_2q_1 = -2\mathbf{q}_1 \times \mathbf{q}_2$,
- $\bullet \ |q_1q_2| = |q_1||q_2|.$

Последнее свойство выполняется, так как:

$$\left|q_{1}q_{2}\right|^{2}=q_{1}q_{2}(q_{1}q_{2})^{*}=q_{1}q_{2}q_{2}^{*}q_{1}^{*}=q_{1}\left|q_{2}\right|^{2}q_{1}^{*}=q_{1}q_{1}^{*}\left|q_{2}\right|^{2}=\left|q_{1}\right|^{2}\left|q_{2}\right|^{2}.$$

Произведение чистых кватернионов

Рассмотрим два чистых кватерниона $q_1=0+{f q}_1$ и $q_2=0+{f q}_2$ и перемножим их по формуле (2)

$$q_1 \cdot q_2 = a_1 a_2 - (\mathbf{q}_1, \mathbf{q}_2) + a_2 \mathbf{q}_1 + a_1 \mathbf{q}_2 + \mathbf{q}_1 \times \mathbf{q}_2.$$

В нашем случае $a_1=a_2=0$, следовательно

$$\begin{split} q_1\cdot q_2 &= 0 - (\mathbf{q}_1,\mathbf{q}_2) + 0\mathbf{q}_1 + 0\mathbf{q}_2 + \mathbf{q}_1 \times \mathbf{q}_2 = -(\mathbf{q}_1,\mathbf{q}_2) + \mathbf{q}_1 \times \mathbf{q}_2, \\ q_2\cdot q_1 &= 0 - (\mathbf{q}_2,\mathbf{q}_1) + 0\mathbf{q}_2 + 0\mathbf{q}_1 + \mathbf{q}_2 \times \mathbf{q}_1 = -(\mathbf{q}_1,\mathbf{q}_2) - \mathbf{q}_1 \times \mathbf{q}_2. \end{split}$$

$$q_1\cdot q_2=(0+\mathbf{q}_1)(0+\mathbf{q}_2)=-(\mathbf{q}_1,\mathbf{q}_2)+\mathbf{q}_1\times \mathbf{q}_2$$

$$\begin{aligned} q_1 \cdot q_2 + q_2 \cdot q_1 &= -2(\mathbf{q}_1, \mathbf{q}_2), \\ q_1 \cdot q_2 - q_2 \cdot q_1 &= +2\mathbf{q}_1 \times \mathbf{q}_2. \end{aligned} \Rightarrow \begin{aligned} (\mathbf{q}_1, \mathbf{q}_2) &= -\frac{1}{2}(q_1 \cdot q_2 + q_2 \cdot q_1), \\ \mathbf{q}_1 \times \mathbf{q}_2 &= \frac{1}{2}(q_1 \cdot q_2 - q_2 \cdot q_1). \end{aligned}$$

Получается, что в трехмерном пространстве можно скалярное и векторное произведения свести к кватернионному умножению чистых кватернионов.

(3)

Квадрат чистого кватерниона

Найдем кватернионное произведение чистого кватерниона самого на себя:

$$qq=q^2=(0+\mathbf{q})(0+\mathbf{q})=-(\mathbf{q},\mathbf{q})+\underbrace{\mathbf{q}\times\mathbf{q}}_{=\mathbf{0}}=-(\mathbf{q},\mathbf{q})=-\|\mathbf{q}\|^2.$$

Мы получили интересное свойство: квадрат чистого кватерниона в смысле кватернионного умножения равен отрицательному числу (так как $\|\mathbf{q}\|\geqslant 0$, то всегда $-\|\mathbf{q}\|\leqslant 0$).

Единичный кватернион

Единичным или нормированным называется кватернион с модулем равным единице:

$$|q| = q_0^2 + \|\mathbf{q}\|^2 = 1$$
, где $q = q_0 + q_1 \mathbf{i} + q_2 \mathbf{j} + q_3 \mathbf{k}$.

Для единичного кватерниона можно записать «тригонометрическую форму». Всегда существует такое число $\theta \in [0,\pi)$, что $q_0^2 = \cos^2 \theta$, $\|q\|^2 = \sin^2 \theta$

$$q_0^2 + \|\mathbf{q}\|^2 = \cos^2 \theta + \sin^2 \theta = 1.$$

Сам кватернион $q=q_0+\mathbf{q}$ можно записать через heta, если нормировать векторную часть \mathbf{q}

$$\mathbf{u} = \frac{\mathbf{q}}{\|\mathbf{q}\|} = \frac{\mathbf{q}}{\sin \theta} \Rightarrow \mathbf{q} = \mathbf{u} \sin \theta,$$

после чего единичный кватернион записывается в виде:

$$q = \cos \theta + \mathbf{u} \sin \theta = \cos \theta + \sin \theta u_1 \mathbf{i} + \sin \theta u_2 \mathbf{j} + \sin \theta u_3 \mathbf{k}.$$

Чистый кватернион $u=0+{f u}$ кроме того, что чисто мнимый, еще и по совместительству единичный.

Свойства единичного кватерниона

• Единичный кватернион, сопряженный к q получается простой заменой знака угла θ на противоположный:

$$q^* = q_0 - \mathbf{q} = \cos \theta - \mathbf{u} \sin \theta = \cos -\theta + \mathbf{u} \sin -\theta.$$

ullet Умножение двух единичных кватернионов с одинаковой векторной частью ${f u}$ упрощается:

$$q_1 = \cos\alpha + \mathbf{u}\sin\alpha, \ \ q_2 = \cos\beta + \mathbf{u}\sin\beta.$$

$$\begin{split} q_1 q_2 &= \cos\alpha\cos\beta - \sin\alpha\sin\beta\underbrace{(\mathbf{u},\mathbf{u})}_{=1} + \cos\alpha\sin\beta\mathbf{u} + \cos\beta\sin\alpha\mathbf{u} + \sin\alpha\sin\beta\underbrace{\mathbf{u}\times\mathbf{u}}_{=0} = \\ &= \cos\alpha\cos\beta - \sin\alpha\sin\beta + (\cos\alpha\sin\beta + \cos\beta\sin\alpha)\mathbf{u} = \cos(\alpha+\beta) + \mathbf{u}\sin(\alpha+\beta). \end{split}$$

В итоге мы снова получили нормированный кватернион:

$$q_1q_2 = \cos(\alpha + \beta) + \mathbf{u}\sin(\alpha + \beta).$$

Экспоненциальное представление единичного кватерниона

Представление единичного кватерниона через θ и ${\bf u}$ напоминают тригонометрическое представление комплексного числа. Сравните:

$$z = \cos \varphi + i \sin \varphi$$
 и $q = \cos \theta + \mathbf{u} \sin \theta$.

Вместо мнимой единицы i в формуле для кватерниона стоит единичный чистый кватернион $u=0+\mathbf{u}$. Вспомним, однако, следующее свойство чисто мнимого кватерниона, которое для единичного чистого кватерниона становится еще занимательнее:

$$uu=u^2=(0+\mathbf{u})(0+\mathbf{u})=-\underbrace{(\mathbf{u},\mathbf{u})}_{\|\mathbf{u}\|}+\underbrace{\mathbf{u}\times\mathbf{u}}_{0}=-\|\mathbf{u}\|^2=-1.$$

Получается, что относительно кватернионного умножения единичный чистый кватернион $u=0+{\bf u}$ обладает свойствами мнимой единицы комплексных чисел. Сравните: ${\bf i}^2=-1$ и $u^2=-1$. Это дает возможность определить экспоненту от единичного чистого кватерниона по аналогии с формулой Эйлера:

$$e^{\mathbf{u}\theta} = \cos\theta + \mathbf{u}\sin\theta.$$

Кватернионы

Кватернионы и вращения в \mathbb{R}^3

Вращение вектора в трехмерном пространстве вокруг перпендикулярной оси

Рассмотрим поворот вектора ${\bf v}$ на угол θ . Поворот происходит в некоторой плоскости α и в результате поворота получаем вектор ${\bf v}'$. Рассмотрим единичный вектор ${\bf u}$ перпендикулярный плоскости α .

$$\mathbf{u} \times \mathbf{v} \perp \mathbf{v} \mathbf{u} \times \mathbf{v} \perp \mathbf{u} \Rightarrow \mathbf{u} \times \mathbf{v} \in \alpha$$

Так как при вращении длина вектора сохраняется, то $\|\mathbf{v}\| = \|\mathbf{v}'\|$. Кроме того $\|\mathbf{u} \times \mathbf{v}\| = \|\mathbf{v}\|$ из-за единичности вектора \mathbf{u} так как:

$$\|\mathbf{u}\times\mathbf{v}\|=\|\mathbf{u}\|\|\mathbf{v}\|\sin(\angle\mathbf{u},\mathbf{v})=\|\mathbf{n}\|\|\mathbf{v}\|\sin\pi/2=\|\mathbf{v}\|,$$

следовательно:

$$\|\mathbf{v}\| = \|\mathbf{u} \times \mathbf{v}\| = \|\mathbf{v}'\|.$$

Вектор ${\bf u}$ задает направление оси вращения.

Вращение вектора в трехмерном пространстве вокруг перпендикулярной оси

Проекция \mathbf{v}' на вектор \mathbf{v} :

$$\mathbf{v}'_{\parallel \mathbf{v}} = \|\mathbf{v}'\| \cos \theta \frac{\mathbf{v}}{\|\mathbf{v}\|} = \|\mathbf{v}\| \cos \theta \frac{\mathbf{v}}{\|\mathbf{v}\|} = \cos(\theta)\mathbf{v}.$$

Перпендикулярная вектору \mathbf{v} компонента вектора \mathbf{v}' равна проекции \mathbf{v}' на вектор $\mathbf{u} \times \mathbf{v}$:

$$\mathbf{v}'_{\perp \mathbf{v}} = \|\mathbf{v}'\| \sin(\theta) \frac{\mathbf{u} \times \mathbf{v}}{\|\mathbf{u} \times \mathbf{v}\|} = \|\mathbf{v}'\| \sin(\theta) \frac{\mathbf{u} \times \mathbf{v}}{\|\mathbf{v}'\|} = \sin(\theta) \mathbf{u} \times \mathbf{v}.$$

Таким образом по правилу параллелограмма можно записать вектор \mathbf{v}' как сумму перпендикулярной и параллельной составляющих:

$$\mathbf{v}' = \cos(\theta)\mathbf{v} + \sin(\theta)\mathbf{u} \times \mathbf{v}. \tag{4}$$

Формула (4) позволяет вычислить поворот вектора, зная ось вращения \mathbf{u} и угол вращения θ .

Пример вращения вокруг перпендикулярной оси

Рассмотрим конкретный пример. Пусть вектор $\mathbf{v}=(1,-1,0)^T$ и ось вращения $\mathbf{a}=(1,1,1)^T$. Повернем вектор \mathbf{v} вокруг оси \mathbf{a} на угол $\theta=\frac{\pi}{3}$. Проверим, что $\mathbf{v}\perp\mathbf{a}$:

$$(\mathbf{v}, \mathbf{a}) = 1 \cdot 1 - 1 \cdot 1 + 1 \cdot 0 = 0 \Rightarrow \mathbf{a} \perp \mathbf{v}.$$

Найдем единичный направляющий вектор оси вращения, для чего нормируем вектор а:

$$\mathbf{u} = \frac{\mathbf{a}}{\|\mathbf{a}\|} = \frac{1}{\sqrt{3}} (1, 1, 1)^T.$$

Теперь можно применить полученную формулу:

$$\mathbf{v}' = \cos\frac{\pi}{3}\mathbf{v} + \sin\frac{\pi}{3}\mathbf{u} \times \mathbf{v} = \frac{1}{2}\mathbf{v} + \frac{\sqrt{3}}{2}\mathbf{u} \times \mathbf{v}.$$

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{e}_1 & \frac{1}{\sqrt{3}} & 1\\ \mathbf{e}_2 & \frac{1}{\sqrt{3}} & -1\\ \mathbf{e}_3 & \frac{1}{\sqrt{3}} & 0 \end{vmatrix} = \begin{pmatrix} 1/\sqrt{3}\\ 1/\sqrt{3}\\ -2/\sqrt{3} \end{pmatrix}$$

$$\mathbf{v}' = \frac{1}{2}\begin{pmatrix} 1/2\\ -1/2\\ 0 \end{pmatrix} + \frac{\sqrt{3}}{2}\begin{pmatrix} 1/\sqrt{3}\\ 1/\sqrt{3}\\ 0 \end{pmatrix} = \begin{pmatrix} 1\\ 0\\ 1 \end{pmatrix}$$

Формулировка на языке кватернионов

Формулу для поворота вектора ${f v}$ вокруг оси ${f u}$

$$\mathbf{v}' = \cos(\theta)\mathbf{v} + \sin(\theta)\mathbf{u} \times \mathbf{v}$$

можно переписать в терминах кватернионов. Заменим векторы ${\bf v}$ и ${\bf u}$ на чистые кватернионы $v=0+{\bf v}$ и $u=0+{\bf u}$. Кватернион $u=0+{\bf u}$ является вдобавок единичным. Перемножим кватернионы v и u:

$$u \cdot v = -(\mathbf{u}, \mathbf{v}) + \mathbf{u} \times \mathbf{v} = \mathbf{u} \times \mathbf{v}$$
 так как $\mathbf{u} \perp \mathbf{v} \Rightarrow (\mathbf{u}, \mathbf{v}) = 0 \Rightarrow u \cdot v = \mathbf{u} \times \mathbf{v}$.

Если заменить \mathbf{v}' на чистый кватернион $v' = 0 + \mathbf{v}'$, то формулу можно записать так:

$$v' = \cos \theta v + \sin \theta u \cdot v = (\cos \theta + \sin \theta u)v$$
, где $u = 0 + \mathbf{u}, v = 0 + \mathbf{v}$.

Вспомним также экспоненциальное представление единичного кватерниона: $\exp\{\theta \mathbf{u}\} = \cos\theta + \sin\theta \mathbf{u}$, следовательно:

$$v' = \exp\left(\theta \mathbf{u}\right) v.$$

Получили экспоненциальную запись формулы поворота, которая перекликается с такой же формулой для двухмерного поворота с помощью комплексных чисел.

Вращение вокруг произвольной оси

Рассмотрим общий случай, когда ось вращения ${\bf u}$ не перпендикулярна вращаемому вектору ${\bf v}$. Воспользуемся разложением вектора ${\bf v}$ на два компонента:

- ullet параллельная оси ${f u}$ часть, обозначаемая как ${f v}_{\parallel {f u}}$;
- ullet перпендикулярная оси ${f u}$ часть, обозначаемая как ${f v}_{\perp {f u}}.$

$$\mathbf{v} = \mathbf{v}_{\parallel \mathbf{u}} + \mathbf{v}_{\perp \mathbf{u}}.$$

При вращении вокруг оси ${\bf u}$ на угол θ компонента ${\bf v}_{\parallel {\bf u}}$ не изменяется, а компонента ${\bf v}_{\perp {\bf u}}$ меняется по формуле (4), следовательно, в общем случае:

$$\mathbf{v}' = \mathbf{v}_{\parallel \mathbf{u}} + \mathbf{v}'_{\perp \mathbf{u}} = \mathbf{v}_{\parallel \mathbf{u}} + \cos \theta \mathbf{v}_{\perp \mathbf{u}} + \sin \theta \mathbf{u} \times \mathbf{v}_{\perp \mathbf{u}},$$

или в кватернионной форме:

$$v' = v_{\parallel} + (\cos \theta + \sin \theta u)v_{\perp} = v_{\parallel} + \exp(\theta \mathbf{u})v_{\perp},$$

где $v_\perp=0+\mathbf{v}_{\perp\mathbf{u}}$, $v'=0+\mathbf{v}'$, $v_\parallel=0+\mathbf{v}_{\parallel\mathbf{u}}$ — чистые кватернионы.

Два вспомогательных утверждения: первое

Докажем первое утверждение, которое заключается в следующем:

$$\exp(\theta \mathbf{u})v_{\perp} = v_{\perp} \exp(-\theta \mathbf{u}).$$

По определению кватернионной экспоненты:

$$(\cos\theta+\sin\theta\mathbf{u})(0+\mathbf{v}_\perp)=(0+\mathbf{v}_\perp)(\cos\theta-\sin\theta\mathbf{u}).$$

Левая часть:

$$0 \cdot \cos \theta + 0 \cdot \sin \theta \mathbf{u} + \cos \theta \mathbf{v}_{\perp} \underbrace{-\sin \theta \underbrace{(\mathbf{u}, \mathbf{v}_{\perp})}_{\text{умножение чистых кватернионов (3)}}^{=0} = \cos \theta \mathbf{v}_{\perp} + \sin \theta \mathbf{u} \times \mathbf{v}_{\perp}.$$

Правая часть:

$$0\cdot\cos\theta+0\cdot(-\sin\theta)\mathbf{u}+\cos\theta\mathbf{v}_{\perp}+\sin\theta(\mathbf{v}_{\perp},\mathbf{u})-\sin\theta\mathbf{v}_{\perp}\times\mathbf{u}=\cos\theta\mathbf{v}_{\perp}-\sin\theta\mathbf{v}_{\perp}\times\mathbf{u}=\cos\theta\mathbf{v}_{\perp}+\sin\theta\mathbf{u}\times\mathbf{v}_{\perp}.$$

Что и требовалось доказать.

Два вспомогательных утверждения: второе

Докажем второе утверждение, которое заключается в следующем:

$$\exp(\theta \mathbf{u})v_{\parallel} = v_{\parallel} \exp(\theta \mathbf{u}).$$

Используем формулу

$$\frac{1}{2}(q_1\cdot q_2 - q_2\cdot q_1) = \mathbf{q}_1\times \mathbf{q}_2.$$

В нашем случае $q_1 = \exp(\theta \mathbf{u}) = \cos \theta + \sin \theta \mathbf{u}$, следовательно векторная часть $\mathbf{q}_1 = \sin \theta \mathbf{u}$. А кватернион $q_1 = v_{\parallel} = 0 + \mathbf{v}_{\parallel}$ — чисто мнимый. В результате:

$$\exp(\theta \mathbf{u})v_{\parallel} - v_{\parallel} \exp(\theta \mathbf{u}) = 2(\sin\theta \underbrace{\mathbf{u} \times \mathbf{v}_{\parallel}}_{=0}) = 0.$$

Таким образом равенство $\exp(\theta \mathbf{u})v_{\parallel} = v_{\parallel} \exp(\theta \mathbf{u})$ доказано.

«Сендвич»-формула

Преобразуем формулу $v'=v_{\parallel}+\exp{(\theta \mathbf{u})}v_{\perp}$ с помощью двух вышедоказанных тождеств. Так как

$$1 = \exp\left(\frac{\theta}{2}\mathbf{u}\right) \exp\left(-\frac{\theta}{2}\mathbf{u}\right) \Rightarrow$$

$$\begin{split} v' &= \exp\left(\frac{\theta}{2}\mathbf{u}\right) \exp\left(-\frac{\theta}{2}\mathbf{u}\right) v_{\parallel} + \exp\left(\frac{\theta}{2}\mathbf{u}\right) \exp\left(\frac{\theta}{2}\mathbf{u}\right) v_{\perp} = \exp\left(\frac{\theta}{2}\mathbf{u}\right) v_{\parallel} \exp\left(-\frac{\theta}{2}\mathbf{u}\right) + \\ &= \exp\left(\frac{\theta}{2}\mathbf{u}\right) v_{\perp} \exp\left(-\frac{\theta}{2}\mathbf{u}\right) = \exp\left(\frac{\theta}{2}\mathbf{u}\right) (v_{\parallel} + v_{\perp}) \exp\left(-\frac{\theta}{2}\mathbf{u}\right) = \exp\left(\frac{\theta}{2}\mathbf{u}\right) v \exp\left(-\frac{\theta}{2}\mathbf{u}\right), \end{split}$$

окончательно:

$$\boxed{v' = \exp\left(\frac{\theta}{2}\mathbf{u}\right)v\exp\left(-\frac{\theta}{2}\mathbf{u}\right) = qvq^*}$$

Напомним, что $\exp\left(\frac{\theta}{2}\mathbf{u}\right)$ по определению является некоторым единичным кватернионом следующего вида:

$$q = \exp\left(\frac{\theta}{2}\mathbf{u}\right) = \cos\frac{\theta}{2} + \sin\frac{\theta}{2}\mathbf{u} \text{ in } q^* = \exp\left(-\frac{\theta}{2}\mathbf{u}\right) = \cos\frac{\theta}{2} - \sin\frac{\theta}{2}\mathbf{u}.$$

Вращение с помощью кватернионов

Сформулируем полученные результаты в виде задачи.

Задача

В трехмерном пространстве \mathbb{R}^3 дан вектор ${\bf v}$. Необходимо повернуть его на угол θ вокруг оси вращения, заданной нормированным вектором ${\bf u}$. В результате вращения вектор ${\bf v}$ переходит в вектор ${\bf w}$.

Как решить данную задачу с помощью кватернионов? Сделаем следующие сопоставления:

- вектору v чисто мнимый кватернион;
- ullet вектору ${f u}$ векторную часть единичного кватерниона q;
- ullet углу поворота heta половинный угол $rac{v}{2}$ единичного кватерниона q.

Вращение с помощью кватернионов

Запишем вышеперечисленные кватернионы в явном виде:

- единичный кватернион $q=q_0+{f q}=\sin{\theta\over 2}+{f u}\cos{\theta\over 2}$, где $u=0+{f u}$ чисто мнимый кватернион, которому соответствует направляющий вектор оси вращения ${f u}$;
- ullet чисто мнимый кватернион $v=0+{f v}$, которому в соответствует вектор ${f v}$,
- чисто мнимый кватернион $w=0+{f w}$, который соответствуют результату вращения.

Выше мы доказали (см. также [16, с. 21]), что поворот задается формулой:

$$w = qvq^*$$
 или $w = q^*vq$, (5)

где подразумевается кватернионное умножение. Обратите внимание, что угол поворота в формуле участвует в половинном виде $\frac{\theta}{2}$. Формула часто называется сэндвич оператором.

Пример использования кватернионной формулы поворота

Пример

Осуществим поворот вектора ${f v}=(1,0,0)^T$ на угол $\frac{\pi}{3}$ вокруг оси Oz [18, с. 123].

Вектор ${f v}=1{f e}_x$, ось вращения задает базисный вектор ${f e}_z$. Составим необходимые кватернионы и умножим их.

- Основной кватернион $q = \sin \frac{\pi}{6} + \mathbf{u} \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2} + \frac{1}{2}\mathbf{u}$.
- ullet Векторная часть q чистый кватернион, задающий ось вращения: $u=0+\mathbf{e}_z=0\mathrm{i}+0\mathrm{j}+1\mathrm{k}=\mathrm{k}$ т.е.

$$u={
m k}.$$
 Следовательно $q=rac{\sqrt{3}}{2}+rac{1}{2}{
m k}$, а сопряженный $q^*=rac{\sqrt{3}}{2}-rac{1}{2}{
m k}.$

• Кватернион $v = 0 + \mathbf{v} = 1\mathbf{i} = \mathbf{i}$.

Формула $w=qvq^*$ для данного примера имеет вид:

$$\left(\frac{\sqrt{3}}{2} + \frac{1}{2}\mathbf{k}\right)(\mathbf{i})\left(\frac{\sqrt{3}}{2} - \frac{1}{2}\mathbf{k}\right) = \left(\frac{\sqrt{3}}{2}\mathbf{i} + \frac{1}{2}\mathbf{k}\mathbf{i}\right)\left(\frac{\sqrt{3}}{2} - \frac{1}{2}\mathbf{k}\right) = \left(\frac{\sqrt{3}}{2}\mathbf{i} + \frac{1}{2}\mathbf{j}\right)\left(\frac{\sqrt{3}}{2} - \frac{1}{2}\mathbf{k}\right) =$$

$$= \frac{3}{4}\mathbf{i} + \frac{\sqrt{3}}{4}\mathbf{j} - \frac{\sqrt{3}}{4}\mathbf{i}\mathbf{k} - \frac{1}{4}\mathbf{j}\mathbf{k} = \frac{3}{4}\mathbf{i} + \frac{\sqrt{3}}{4}\mathbf{j} + \frac{\sqrt{3}}{4}\mathbf{j} - \frac{1}{4}\mathbf{i} = \frac{1}{2}\mathbf{i} + \frac{\sqrt{3}}{2}\mathbf{j} \quad \Rightarrow w = \frac{1}{2}\mathbf{i} + \frac{\sqrt{3}}{2}\mathbf{j}.$$

Результат использования формулы

В результате применения формулы, мы получили из кватерниона $v=\mathrm{i}$ кватернион

$$w = \frac{1}{2}i + \frac{\sqrt{3}}{2}j,$$

которому соответствует вектор

$$\mathbf{w} = \begin{pmatrix} 1/2 \\ \sqrt{3}/2 \\ 0 \end{pmatrix}$$

Можно проверить, что кватернион w единичный:

$$|w| = \sqrt{\frac{1}{4} + \frac{3}{4}} = 1.$$

Вывод формулы Родрига с помощью кватернионов I/II

Применим формулу для кватернионного умножения $q_1\cdot q_2=a_1a_2-(\mathbf{q}_1,\mathbf{q}_2)+a_2\mathbf{q}_1+a_1\mathbf{q}_2+\mathbf{q}_1\times \mathbf{q}_2$ к сэндвич-операции qvq^* :

$$\begin{split} qvq^* &= (q_0 + \mathbf{q})(0 + \mathbf{v})(q_0 - \mathbf{q}) = \left(-(\mathbf{q}, \mathbf{v}) + q_0 \mathbf{v} + \mathbf{q} \times \mathbf{v} \right)(q_0 - \mathbf{q}) = -q_0(\mathbf{q}, \mathbf{v}) - (q_0 \mathbf{v} + \mathbf{q} \times \mathbf{v}, -\mathbf{q}) + q_0(q_0 \mathbf{v} + \mathbf{q} \times \mathbf{v}) - \\ -(\mathbf{q}, \mathbf{v})(-\mathbf{q}) + (q_0 \mathbf{v} + \mathbf{q} \times \mathbf{v}) \times (-\mathbf{q}) &= -q_0(\mathbf{q}, \mathbf{v}) + \underline{q_0}(\mathbf{v}, \mathbf{q}) + \underline{q_0}(\mathbf{v}, \mathbf{q}) + \underline{q_0}(\mathbf{v}, \mathbf{q}) + q_0^2 \mathbf{v} + q_0 \mathbf{q} \times \mathbf{v} + (\mathbf{q}, \mathbf{v}) \mathbf{q} - q_0 \mathbf{v} \times \mathbf{q} - (\mathbf{q} \times \mathbf{v}) \times \mathbf{q} \\ &= q_0^2 \mathbf{v} + 2q_0 \mathbf{q} \times \mathbf{v} + (\mathbf{q}, \mathbf{v}) \mathbf{q} - (\mathbf{q} \times \mathbf{v}) \times \mathbf{q} \end{split}$$

Слагаемое $(\mathbf{q} \times \mathbf{v}) \times \mathbf{q}$ упрощается, если воспользоваться формулой:

$$\begin{split} (\mathbf{a}\times\mathbf{b})\times\mathbf{c} &= \mathbf{b}(\mathbf{a},\mathbf{c}) - \mathbf{c}(\mathbf{a},\mathbf{b}) \Rightarrow (\mathbf{q}\times\mathbf{v})\times\mathbf{q} = \mathbf{v}(\mathbf{q},\mathbf{q}) - \mathbf{q}(\mathbf{q},\mathbf{v}) \\ qvq^* &= q_0^2\mathbf{v} + 2q_0\mathbf{q}\times\mathbf{v} + (\mathbf{q},\mathbf{v})\mathbf{q} - \mathbf{v}\underbrace{(\mathbf{q},\mathbf{q})}_{\|\mathbf{q}\|^2} + \mathbf{q}(\mathbf{q},\mathbf{v}) = (q_0^2 - \|\mathbf{q}\|^2)\mathbf{v} + 2(\mathbf{q},\mathbf{v})\mathbf{q} + 2q_0\mathbf{q}\times\mathbf{v}. \end{split}$$

В результате получили:

$$qvq^* = (q_0^2 - \|\mathbf{q}\|^2)\mathbf{v} + 2(\mathbf{q}, \mathbf{v})\mathbf{q} + 2q_0\mathbf{q} \times \mathbf{v}.$$

Вывод формулы Родрига с помощью кватернионов II/II

Слагаемое $(q_0^2 - \|\mathbf{q}\|^2)\mathbf{v}$ можно преобразовать, если воспользоваться единичность кватерниона q:

$$\left|q\right| = q_0^2 + \left\|\mathbf{q}\right\|^2 = 1 \Rightarrow \left\|\mathbf{q}\right\|^2 = 1 - q_0^2 \Rightarrow q_0^2 - \left\|\mathbf{q}\right\|^2 = q_0^2 - 1 + q_0^2 = 2q_0^2 - 1.$$

В результате получаем два варианта формулы Родрига

$$\mathbf{w} = (q_0^2 - \|\mathbf{q}\|^2)\mathbf{v} + 2(\mathbf{q}, \mathbf{v})\mathbf{q} + 2q_0\mathbf{q} \times \mathbf{v} = (2q_0^2 - 1)\mathbf{v} + 2(\mathbf{q}, \mathbf{v})\mathbf{q} + 2q_0\mathbf{q} \times \mathbf{v}$$
(6)

Данная формула была известна еще до открытия кватернионов и была записана (в компонентном виде) в 1840 году французским математиком Бенджамином Олиндом Родригом (1795–1851) [16, с. 24]. Формулу можно получить и использовать не привлекая понятия кватерниона.

Вывод формулы Родрига без помощи кватернионов