PLEASE HAND IN

University of Toronto Faculty of Arts and Science

Final Examinations MAT301H1F – Groups and Symmetry Tuesday, December 14, 2010

Instructor: Prof. J. W. Lorimer

Duration – 3 hours

NO AIDS ALLOWED		
LAST NAME:		
FISRT NAME:		
STUDENT NUMBER:	 	

INSTRUCTIONS:

- 1. DO THREE questions out of FOUR from PART A and the TWO questions from PART B.
- 2. Write the final solutions in the pages provided.
- 3. There are 16 pages and 6 questions in this examination paper.

FOR 1	EXAMINER (ONLY
Question	Value	Mark
	PART A	
1.	20	
2.	20	
3.	20	
4.	20	
	PART B	
5.	20	
6.	20	
TOTAL	100	

PART A

Do any THREE QUESTIONS.

[20] 1	. D	EFINE	the	following	terms
--------	-----	--------------	-----	-----------	-------

1. (a) The order of an element in a group G.

1. (b) An epimorphism.

1. (c) The alternating group.

1. (d) The centralizer of an element of a group G.

CONT'D...

1. (e) The length of an orbit of a permutation

[20] 2. Let
$$\varphi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 4 & 5 & 1 & 8 & 7 & 9 & 3 & 6 \end{pmatrix}$$
 be an element of S_{9} .

(a) Write φ as a product of disjoint cycles.

00	N TO	7	$\overline{}$		
w	NΊ		U		

2. (b) Prove that φ is an element of the alternating group.

2. (c) Determine the order of φ .

[20] 3. STATE and PROVE the first Isomorphism theorem for groups.

CONT'D...

[20] 4. Let A_4 be the alternating group on $\{1,2,3,4\}$ and $K_4=\{1,(12)(34),(13)(24),(14)(23)\}$ the Klein-4-subgroup of A_4 .

4. (a) Show that $A_4 = K_4 < (123) >$

4. (b) Prove that K_4 is a normal subgroup of A_4 .

(c) Prove that A_4 is NOT the internal direct product of K_4 and $<$ (123) $>$.							

4. (d) Prove that A_4/K_4 is isomorphic to Z_3 .

PART B

DO BOTH QUESTIONS.

[20] 5. (a) STATE and PROVE the product Isomorphism theorem for groups.

ran'	1	T -4	C 1			c	·		1		_		
1201	0.	Let	Gt	oe a	group	oi	oraer	pq	wnere	p and	q	are distinct primes	

(a) Prove that G is abelian if and only if $Z_G \neq \{e\}$.

6. (b) Give an example of a group of order pq for distinct primes p and q that is not abelian.
CONT'D

6. (c) If G is abelian, prove that G is cyclic.