Question Bank 4

Question 1

Let X have distribution function

$$F(x) = \begin{cases} 0 & \text{if } x < 0\\ \frac{1}{2}x & \text{if } 0 \le x \le 2\\ 1 & \text{if } x > 2 \end{cases}$$

and let $Y=X^2$. Find (a) $P(\frac{1}{2} \le X \le \frac{3}{2})$; (b) $P(1 \le X < 2)$; (c) $P(Y \le X)$; (d) $P(X \le 2Y)$; (e) $P(X+Y \le \frac{3}{4})$; (f) the distribution function of $Z=\sqrt{X}$.

Question 2

Let X be a non-negative random variable with density function f. Show that

$$E[X^r] = \int_0^\infty rx^{r-1} P(X > x) dx$$

for any $r \geq 1$ for which the expectation is finite.

Question 3

Find the density function of Y = aX, where a > 0, in terms of the density function of X. Show that the continuous random variable X and -X have the same distribution function if and only if $f_X(x) = f_X(-x)$ for all $x \in R$.

Question 4

Let X be a positive random variable with density function f and distribution function F. Define the hazard function $H(x) = -\log[1 - F(x)]$ and the hazard rate

$$r(x) = \lim_{h \to 0} \frac{1}{h} P(X \le x + h | X > x), x \ge 0.$$

Show that:

- (a) $r(x) = H'(x) = \frac{f(x)}{1 F(x)}$
- (b) If r(x) increases with x then $\frac{H(x)}{x}$ increases with x,
- (c) $\frac{H(x)}{x}$ increases with x if and only if $[1 F(x)]^{\alpha} \le 1 F(\alpha x)$ for all $a \le \alpha \le 1$,
- (d) If $\frac{H(x)}{x}$ increases with x, then $H(x+y) \ge H(x) + H(y)$ for all $x, y \ge 0$.

Find the hazard rate when:

- (e) X has the Weibull distribution, $P(X > x) \exp(-\alpha x^{\beta-1}), x \ge 0$,
- (f) X has the exponential distribution with parameter λ ,
- (g) X has density function $\alpha f + (1 \alpha)g$, where $0 < \alpha < 1$ and f and g are the densities of exponential variables with respective parameters λ and μ . What happens to this last hazard rate r(x) in the limit as $x \to \infty$.