

SOFTWARE PROJECT MANAGEMENT

STEFAN HALLESTEDE CARL SCHULTZ

SOFTWARE AND SYSTEMS

- Software Engineering is considered one of the specialty engineering disciplines (like mechanical engineering or electrical engineering)
- > Systems Engineering means "thinking big"
- Some concerns and techniques of Systems Engineering are shared with Software Engineering
- In Software Engineering one often needs to be aware of the "bigger picture"

WHAT IS MANAGEMENT?

> Planning deciding what is to be done

> Organising making arrangements

> Staffing selecting (the right) people

> Directing giving instructions

> Monitoring checking on progress

> Controlling taking action to remedy delays

> Representing liaising with stakeholders

PROBLEMS OF SOFTWARE PROJECTS

- > Poor estimates and plans
- > Lack of quality standards and measures
- > Lack of techniques to make progress visible
- > Poor role definition who does what?
- > Incorrect success criteria

MAIN STEPS FOR A NEW PROJECT

CONTENTS OF THE FEASIBILITY STUDY

- Description of current situation and problem description
- > Proposed development
 - > Business and financial aspects
 - > Technical aspects
 - › Organisational aspects
- > Estimated costs
 - > Development costs
 - > Operational costs
- > Envisaged benefits
- > Recommendation: should project go ahead or not?

MAKING A BUSINESS CASE

- Cost-benefit analysis
 - > Itemize and quantify costs and benefits
- Create a business model
 - > Explain how the claimed benefits are generated
- > Project plan must keep business case intact
 - > Development costs must not exceed value of benefits
 - > Features must be maintained to achieve benefits
 - > Avoid delays that cause unacceptable loss of benefits

PLANNING ON ONE SLIDE

- > Implement methods and methodologies to
 - > realise products and
 - > achieve objectives
- Select method to carry out activity and identify
 - > its start and end dates
 - > who will carry it out
 - > what tools and materials will be used

A PROJECT MAY AIM AT OBJECTIVES OR PRODUCTS

> Product: e.g. New software feature

> Objective: e.g. Improve service to customers

- Often a project
 - > starts objective-driven
 - > specifies new software requirements
 - > continues product-driven

RISK CATEGORIES

- > Project risks
 - > affect project schedule or resources
 - > e.g. loss of an experienced designer
- > Product risks
 - > affect quality and performance of the product
 - > e.g. under-performing purchased component
- > Business risks
 - > affect the organisation developing or procuring the product
 - > e.g. a competitor introducing a new product

ANALYSE PROJECT CHARACTERISTICS

- > Analyse characteristics, e.g., safety critical
- > Identify high-level project risks
- > Consider user requirements concerning implementation
- > Select development methodology and software process
- > Review overall resource estimates

IDENTIFY PRODUCTS AND ACTIVITIES

- Identify and describe project products (or deliverables)
- > Document generic product flows
- > Produce ideal activity network

PRODUCT BREAKDOWN STRUCTURE

WORK BREAKDOWN STRUCTURE

PRODUCT FLOW DIAGRAM

IDEAL ACTIVITY NETWORK

ESTIMATE EFFORT FOR EACH ACTIVITY

- Carry out bottom-up estimates
- > Problems with estimates:
 - > Parkinson's law:work expands to fill the time available
 - Brook's law:
 putting more people on a late project makes it later
 - Weinberg's law:
 if a system does not have to be reliable,
 it can meet any other objective
- > Revise plan to create controllable activities

ACTIVITY PLANNING (ACTIVITY NETWORK)

> Activity Network (AN) Node Syntax:

Activity label		Duration	
Earliest start	Activity description		Earliest finish
Latest start			Latest finish
Activity span		Float	

18

EXECUTE PLAN

- > Visualise progress
- > E.g. Gantt Charts
- > Set Milestones

GANTT CHART

GANTT CHART

GANTT CHART

