

인공신경망과딥러닝심화

Lecture 12. 다중 분류 문제 해결하기

동덕여자대학교 데이터사이언스 전공 권 범

목차

- ❖ 01. 다중 분류 문제
- ❖ 02. 상관도 그래프
- ❖ 03. 원-핫 인코딩
- ❖ 04. 소프트맥스
- ❖ 05. 아이리스 품종 예측의 실행

- 02. 상관도 그래프
- 03. 원-핫 인코딩
- 04. 소프트맥스
- 05. 아이리스 품종 예측의 실행

❖ 아이리스 품종 분류 문제 (1/3)

- 아이리스는 "그 꽃봉오리가 마치 먹물을 머금은 붓과 같다"하여 우리나라에서는 '붓꽃'이라고 부르는 아름다운 꽃
- 아이리스는 꽃잎의 모양과 길이에 따라 여러 가지 품종으로 나뉨
- 사진을 보면 품종마다 비슷해 보이는데, 과연 딥러닝을 사용해서 이들을 구별해 낼 수 있을까?

아이리스의 품종

Iris-virginica

Iris-setosa

Iris-versicolor

- ❖ 아이리스 품종 분류 문제 (2/3)
 - 아이리스 품종 데이터: iris3.csv
 - 데이터의 구조는 다음과 같음

아이리스 데이터의 샘플, 속성, 클래스 구분

	Γ	속성				클래스	
		정보 /	정보 2	정보 3	정보 4	풍송	
	1번째 아이리스	5.1	3.5	4.0	۲.0	Iris-setosà	
생플 —	고번째 아이리스	4.9	3.0	1.4	۷.2	Iris-setosa	
	3번째 아이리스	4.1	3,2	1.3	0,3	Iris-setosà	
	150번째 아이리스	5.9	3.0	5.1	1.8	Iris-virginica	

- 샘플 수: 150
- 속성수: 4
 - 정보 1: 꽃받침 길이(sepal length, 단위: cm)
 - 정보 2: 꽃받침 너비(sepal width, 단위: cm)
 - 정보 3: 꽃잎 길이(petal length, 단위: cm)
 - 정보 4: 꽃잎 너비(petal width, 단위: cm)
- 클래스: Iris-setosa, Iris-versicolor, Iris-virginica

- ❖ 아이리스 품종 분류 문제 (3/3)
 - 속성을 보니 우리가 앞서 다루었던 것과 중요한 차이가 있음
 바로 클래스가 두 개가 아니라 세 개
 - 즉, 참(1)과 거짓(0)으로 해결하는 것이 아니라, 여러 개 중에 어떤 것이 답인지 예측하는 문제
 - 이렇게 여러 개의 답 중 하나를 고르는 분류 문제를 다중 분류(Multiclass Classification)라고 함
 - 다중 분류 문제는 둘 중에 하나를 고르는 이항 분류(Binary Classification)와는 접근 방식이 조금 다름

지금부터 아이리스 품종을 예측하는 실습을 통해 다중 분류 문제를 해결해 보자

- 01. 다중 분류 문제
- 03. 원-핫 인코딩
- 04. 소프트맥스
- 05. 아이리스 품종 예측의 실행

❖ 아이리스 데이터 살펴보기 (1/3)

● 먼저 데이터의 일부를 불러와 내용을 보자

```
import pandas as pd
# 아이리스 데이터를 불러옵니다.
df = pd.read_csv("./data/iris3.csv")
df.head(5) # 첫 다섯 개의 샘플을 살펴봅니다.
```

실행결과

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

❖ 아이리스 데이터 살펴보기 (2/3)

● 이번에는 시본(seaborn) 라이브러리에 있는 pairplot() 함수를 써서 전체 상관도를 볼 수 있는 그래프를 출력해 보자

```
import seaborn as sns
import matplotlib.pyplot as plt

sns.pairplot(df, hue="species")
plt.show()
```

pairplot() 함수 설정 중 hue 옵션은 주어진 데이터 중 어떤 카테고리를 중심으로 그래프를 그릴지 정해 주게 되는데, 여기서는 품종(① species)에 따라 보여지게 지정

9

❖ 아이리스 데이터 살펴보기 (3/3)

pairplot 함수로 데이터 한번에 보기

- ✓ 이 그림을 상관도 그래프라고 함
- ✓ 이를 통해 각 속성별 데이터 분포와 속성 간의 관계를 한눈에 볼 수 있음
- ✓ 그래프의 가로축과 세로축은 서로 다른 속성을 나타내며, 이러한 속성에 따라 품종이 어떻게 분포되는지 알 수 있음
- ✓ 가운데 대각선 위치에 있는 그림은 가로축과 세로축이 같으므로 단순히 해당 속성에 따라 각 품종들이 어떻게 분포하는지 보여 줌
- ✓ 이러한 분석을 통해 사진상으로 비슷해 보이던 꽃잎과 꽃받침의 크기와 너비가 품종별로 어떤 차이가 있는지 알 수 있음

- 01. 다중 분류 문제
- 02. 상관도 그래프
- 04. 소프트맥스
- 05. 아이리스 품종 예측의 실행

❖ 데이터 전처리하기 (1/4)

- 이번 실습에서 우리는 케라스를 이용해 아이리스의 품종을 예측할 예정
- 그런데, Iris-setosa, Iris-virginica 등 데이터 안에 문자열이 포함되어 있음 데이터 전처리가 필요한 이유
- 먼저 조금 전 불러온 데이터 프레임을 x와 y로 나누겠음

```
x = df.iloc[:, 0:4]
y = df.iloc[:, 4]
```

❖ 데이터 전처리하기 (2/4)

• x와 y의 첫 다섯 줄을 출력해 보자

```
print(x[0:5])
print(y[0:5])
```

실행결과

```
sepal_length sepal_width petal_length petal_width
          5.1
                      3.5
                                   1.4
                                                0.2
0
          4.9
                      3.0
                                   1.4
                                               0.2
          4.7
                      3.2
                                   1.3
                                               0.2
          4.6
                      3.1
                                   1.5
                                               0.2
          5.0
                      3.6
                                1.4
                                               0.2
   Iris-setosa
```

클래스가 문자로 되어 있음

l Iris-setosa

Iris-setosa

Iris-setosa

Iris-setosa

Name: species, dtype: object

❖ 데이터 전처리하기 (3/4)

- 우리가 저장한 y의 값이 숫자가 아닌 문자 딥러닝에서는 계산을 위해 문자를 모두 숫자형으로 바꾸어 주어야 함
- 이를 위해서는 다음과 같이 처리
- 먼저 아이리스 꽃의 종류는 ①처럼 세 종류
- ②처럼 각각의 이름으로 세 개의 열을 만든 후
 - ③처럼 자신의 이름이 일치하는 경우 1로, 나머지는 0으로 바꾸어 줌

			2	
	species	setosa	versicolor	virginica
	setosa —	→ (1) /	0	0
0	versicolor	0	1	0
	virginica	0	0	1
	versicolor	0	1	0

원-핫 인코딩

❖ 데이터 전처리하기 (4/4)

- 여러 개의 값으로 된 문자열을 0과 1로만 이루어진 형태로 만들어 주는 과정을 원-핫 인코딩(One-Hot Encoding)이라고 함
- 원-핫 인코딩은 판다스가 제공하는 get_dummies() 함수를 사용하면 간단하게 해낼 수 있음

```
# 원-핫 인코딩 처리를 합니다.
y = pd.get_dummies(y)

# 원-핫 인코딩 결과를 확인합니다.
print(y[0:5])
```

실행결과

Iris	s-setosa Iris-ve	rsicolor Iris-v	irginica	
0	1	0	0	
1	1	0	0	
2	1	0	0	
3	1	0	0	
4	1	0	0	

- 01. 다중 분류 문제
- 02. 상관도 그래프
- 03. 원-핫 인코딩
- 05. 아이리스 품종 예측의 실행

- ❖ 딥러닝 모델 만들기 (1/4)
 - 이제 모델을 만들어 줄 차례
 - 다음 코드를 보면서 이전에 실행했던 피마 인디언의 당뇨병 예측과 무엇이 달라졌는지 찾아보기 바람

```
# 모델 설정
model = Sequential()
model.add(Input(shape=(4,)))
model.add(Dense(12, activation="relu"))
                                                달라진 세 가지
model.add(Dense(8, activation="relu"))
model.add(Dense(3, activation="softmax"))
model.summary()
# 모델 컴파일
model.compile(loss="categorical_crossentropy",
             optimizer="adam",
             metrics=["accuracy"])
```

- 출력층의 노드 수: 3으로 바뀜
- ② 활성화 함수: softmax로 바뀜
- ③ 손실 함수: categorical_crossentropy로 바뀜

❖ 딥러닝 모델 만들기 (2/4)

- 먼저 출력 부분에 대해 알아보자
- 이전까지 살펴본 문제에서는 출력이 0, 1 중 하나의 값으로 나왔음
- 예를 들어, 당뇨인지 아닌지에 대한 예측 값이 시그모이드 함수를 거치며 0~1 사이의 값 중 하나로 변환되어 0.5 이상이면 당뇨, 0.5 이하이면 정상으로 판단
- 즉, 이항 분류의 경우 출력 값이 하나면 됨

❖ 딥러닝 모델 만들기 (3/4)

- 이번 아이리스 품종 예측 문제에서는 예측해야 할 값이 세 가지로 늘었음
- 즉, 샘플마다 품종이 setosa일 확률, versicolor일 확률, virginica일 확률을 따로따로 구해야 한다는 것
- 예를 들어, 예측 결과는 아래 그림과 같은 형태로 나타남

아이리스 품종 예측 결과

샘플		setosa일 확률	versicolor일 확률	virginica일 확률
1번 샘플	예측 실행	0.2	0.7	0.1
2번 샘플		0.8	0.1	0.1
3번 샘플		0.2	0.2	0.6

❖ 딥러닝 모델 만들기 (4/4)

- 세 가지의 확률을 모두 구해야 하므로 시그모이드 함수가 아닌 다른 함수가 필요함 이때 사용되는 함수가 바로 소프트맥스 함수
- 소프트맥스 함수는 클래스마다 예측 확률을 0과 1 사이의 값으로 나타내 주는데, 이때 샘플마다 예측 확률의 총합이 1인 형태로 바꾸어 주게 됨
 (예를 들어, 1번 샘플의 경우 0.2 + 0.7 + 0.1 = 1이 됨)

- activation란에 "softmax"라고 적어 주는 것으로 소프트맥스 함수를 바로 적용할 수 있음
- 마찬가지로 손실 함수도 이전과는 달라져야 함
- 이항 분류에서 binary_crossentropy를 썼다면,

다항 분류에서는 categorical_crossentropy를 쓰면 됨

- 01. 다중 분류 문제
- 02. 상관도 그래프
- 03. 원-핫 인코딩
- 04. 소프트맥스

- ❖ 아이리스 품종 예측하기 (1/4)
 - 이제 모든 소스 코드를 모아 보면 다음과 같음

```
import pandas as pd
  import seaborn as sns
 3 import matplotlib.pyplot as plt
4 | from tensorflow import keras
5 | from keras import Sequential, Input
   from keras.layers import Dense
   # 아이리스 데이터를 불러옵니다.
   df = pd.read csv("./data/iris3.csv")
10
11 \mid # 속성을 x, 클래스를 y에 저장합니다.
12 | x = df.iloc[:, 0:4]
   y = df.iloc[:, 4]
14
15 # 원-핫 인코딩 처리를 합니다.
16
   y = pd.get dummies(y)
17
```

❖ 아이리스 품종 예측하기 (2/4)

```
18 # 모델 설정
19 | model = Sequential()
20 | model.add(Input(shape=(4,)))
21 model.add(Dense(12, activation="relu"))
22 model.add(Dense(8, activation="relu"))
23 | model.add(Dense(3, activation="softmax"))
   model.summary()
24
25
26 # 모델 컴파일
   model.compile(loss="categorical_crossentropy",
28
                 optimizer="adam",
                 metrics=["accuracy"])
29
30
   # 모델 실행
31
   history = model.fit(x, y, epochs=50, batch_size=5, verbose=2)
```

❖ 아이리스 품종 예측하기 (3/4)

● model.summary()를 사용해 딥러닝 모델의 구조를 확인하자

실행결과

Model: "sequential"				
Layer (type)	Output	Shape	Param #	
dense (Dense)	None,	======================================	60	
dense_1 (Dense)	(None,	8)	104	
dense_2 (Dense)	(None,	3)	27	
Total params: 191	======			
Trainable params: 191 Non-trainable params: 0		딥러닝 모델	의 구조	
			에 각각 12개, 8개의 노드기 = 3개임을 확인할 수 있음	만들어졌

❖ 아이리스 품종 예측하기 (4/4)

실행결과

```
Epoch 1/50
30/30 - 1s - loss: 0.8600 - accuracy: 0.6533 - 775ms/epoch - 26ms/step
Epoch 2/50
30/30 - 0s - loss: 0.7089 - accuracy: 0.6667 - 47ms/epoch - 2ms/step
... (중략) ...
Epoch 49/50
30/30 - 0s - loss: 0.1089 - accuracy: 0.9733 - 48ms/epoch - 2ms/step
Epoch 50/50
30/30 - 0s - loss: 0.1060 - accuracy: 0.9733 - 55ms/epoch - 2ms/step
```

아이리스 품종 예측 결과 해석

- ✓ 결과는 50번째 Epoch 일 때, 정확도 97.33%를 달성
- ✓ 꽃의 너비와 길이를 담은 150개의 데이터 중 146개의 꽃 종류를 정확히 맞추었다는 의미
- ✓ 이제부터는 이렇게 측정된 정확도를 어떻게 신뢰할 수 있는지, 예측 결과의 신뢰도를 높이는 방법에 대해 알아보자

끝맺음

- ❖ 01. 다중 분류 문제
- ❖ 02. 상관도 그래프
- ❖ 03. 원-핫 인코딩
- ❖ 04. 소프트맥스
- ❖ 05. 아이리스 품종 예측의 실행

THANK YOU! Q & A

■ Name: 권범

■ Office: 동덕여자대학교 인문관 B821호

Phone: 02-940-4752

■ E-mail: <u>bkwon@dongduk.ac.kr</u>