$\begin{cases}
A_n(i=0;i\in n;i+t) & n \leq n \\
A_n(j=0;j\in n;j+t) & u \leq n^2
\end{cases}$ $\begin{cases}
C(i,j=0;k\leq n;k+t) & u \leq n \leq n
\end{cases}$ $\begin{cases}
A_n(i=0;i\in n;i+t) & u \leq n \leq n
\end{cases}$

$$\int_{a}^{b} (\kappa = 0; \kappa < n; \kappa + t) = \frac{n^{3}}{\left[\int_{a}^{b} C[i,j] = C[i,j] + A[i,j] + B[k,j] - n + n + n - n^{3}\right]}$$

SOME RECOGNIZABLE PATTERNS

for (i=0; i\rightarrow N

for (i=n; i>0; i--)

// simple statements

for (i=1; in/2
$$o(u)$$

	E	j	CODE	
for (i= 0; i < n; i+t)	0	0	no exec	
for (j=0, j <i,j++)< td=""><td>4</td><td>0</td><td>exec</td><td>(</td></i,j++)<>	4	0	exec	(
Y LONE GOES KERE	1	L	noere	
	2	0	exec	1
y .	2	· F	exec	2
(n) = L+2+3+4+n	2	2	no exec	
$= \Lambda (n+1) = (n^2 + n)$	3	0	exec	
$=\frac{1}{2}$ $=\left(\frac{1}{2}\right)$	5	1	exec	3
0(.3)	3	2	exec	

will execute for 2^{n} , i > n & $i = 2^{k}$ $2^{k} > n \implies k = \log_{2} n \implies 0 (\log n)$