Deep Learning - Theory and Practice

IE 643 Lectures 7, 8 & 9

Aug 23, 27 & 30, 2024.

- Recap
 - MLP-Data Perspective
- Optimization Concepts
 - Gradient Descent
 - Stochastic Gradient Descent
 - Mini-batch SGD
- Sample-wise Gradient Computation
 - MLP for prediction tasks

- Input: Training Data $D = \{(x^s, y^s)\}_{s=1}^S$.
- For each sample x^s the prediction $\hat{y}^s = MLP(x^s)$.
- **Error:** $e^s = E(y^s, \hat{y}^s)$.
- Aim: To minimize $\sum_{s=1}^{S} e^{s}$.

Optimization perspective

• Given training data $D = \{(x^s, y^s)\}_{s=1}^S$,

$$\min \sum_{s=1}^{S} e^{s}$$

Optimization perspective

• Given training data $D = \{(x^s, y^s)\}_{s=1}^S$,

$$\min \sum_{s=1}^S e^s = \sum_{s=1}^S E(y^s, \hat{y}^s)$$

Optimization perspective

• Given training data $D = \{(x^s, y^s)\}_{s=1}^S$,

$$\min \sum_{s=1}^S e^s = \sum_{s=1}^S E(y^s, \hat{y}^s) = \sum_{s=1}^S E(y^s, \mathsf{MLP}(x^s))$$

Optimization perspective

• Given training data $D = \{(x^s, y^s)\}_{s=1}^S$,

$$\min \sum_{s=1}^{S} e^{s} = \sum_{s=1}^{S} E(y^{s}, \hat{y}^{s}) = \sum_{s=1}^{S} E(y^{s}, MLP(x^{s}))$$

• Note: The minimization is over the weights of the MLP W^1, \ldots, W^L , where L denotes number of layers in MLP.

$$\hat{y} = \sigma(w_{11}^1 x_1 + w_{12}^1 x_2) = \frac{1}{1 + \exp(-[w_{11}^1 x_1 + w_{12}^1 x_2])}$$

$$\hat{y} = \sigma(w_{11}^1 x_1 + w_{12}^1 x_2) = \frac{1}{1 + \exp(-[w_{11}^1 x_1 + w_{12}^1 x_2])}$$

Property of 0-1 sigmoid $\sigma: \mathbb{R} \to [0,1]$

- \bullet σ is continuous
- \bullet σ is monotonic

•
$$\sigma(z) \to \begin{cases} 0 & \text{if } z \to -\infty \\ 1 & \text{if } z \to +\infty \end{cases}$$

→□▶→□▶→□▶→□▶ □ 900

Let

$$D = \{(x^{1} = (-3, -3), y^{1} = 1),$$

$$(x^{2} = (-2, -2), y^{2} = 1),$$

$$(x^{3} = (4, 4), y^{3} = 0),$$

$$(x^{4} = (2, -5), y^{4} = 0)\}.$$

• **Assume:** $Err(y, \hat{y}) = (y - \hat{y})^2$.

- **Assume:** $Err(y, \hat{y}) = (y \hat{y})^2$.
- Popularly called the squared error.

Total error (or loss):

$$E = \sum_{i=1}^{4} e^{i} = \sum_{i=1}^{4} Err(y^{i}, \hat{y}^{i})$$

Total error (or loss):

$$E = \sum_{i=1}^{4} \left(y^{i} - \frac{1}{1 + \exp\left(-\left[w_{11}^{1} x_{1}^{i} + w_{12}^{1} x_{2}^{i}\right]\right)} \right)^{2}$$

• Aim: To minimize the total error (or loss), which is

$$\min_{w_{11}^1, w_{12}^1} E = \sum_{i=1}^4 \left(y^i - \frac{1}{1 + \exp\left(-\left[w_{11}^1 x_1^i + w_{12}^1 x_2^i\right]\right)} \right)^2$$

Visualizing the loss surface:

<i>x</i> ₁	<i>X</i> ₂	у	$\hat{y} = \sigma(w_{11}^1 x_1 + w_{12}^1 x_2)$
-3	-3	1	$\sigma(-3w_{11}^1-3w_{12}^1)$
-2	-2	1	$\sigma(-2w_{11}^1-2w_{12}^1)$
4	4	0	$\sigma(4w_{11}^1+4w_{12}^1)$
2	-5	0	$\sigma(2w_{11}^1-5w_{12}^1)$

$$E = \sum_{i=1}^{4} \left(y^i - \frac{1}{1 + \exp\left(-\left[w_{11}^1 x_1^i + w_{12}^1 x_2^i\right]\right)} \right)^2$$

Optimization Concepts

$$\min_{x \in \mathcal{C}} f(x)$$

$$\min_{x \in \mathcal{C}} f(x)$$

- f is called objective function and $\mathcal C$ is called feasible set.
- Let $f^* = \min_{x \in C} f(x)$ denote the **optimal objective function value**.
- Optimal Solution Set $S^* = \{x \in \mathcal{C} : f(x) = f^*\}.$
- Let us denote by x^* an optimal solution in S^* .

$$\min_{x \in \mathcal{C}} f(x) \tag{OP}$$

Local Optimal Solution

A solution z to (OP) is called local optimal solution if $f(z) \le f(\hat{z})$, $\forall \hat{z} \in \mathcal{N}(z, \epsilon)$ for some $\epsilon > 0$.

Note: $\mathcal{N}(z,\epsilon)$ denotes suitable ϵ -neighborhood of z.

$$\min_{x \in \mathcal{C}} f(x) \tag{OP}$$

Local Optimal Solution

A solution z to (OP) is called local optimal solution if $f(z) \le f(\hat{z})$, $\forall \hat{z} \in \mathcal{N}(z, \epsilon)$ for some $\epsilon > 0$.

Note: $\mathcal{N}(z,\epsilon)$ denotes suitable ϵ -neighborhood of z.

$$\min_{x \in \mathcal{C}} f(x) \tag{OP}$$

Local Optimal Solution

A solution z to (OP) is called local optimal solution if $f(z) \le f(\hat{z})$, $\forall \hat{z} \in \mathcal{N}(z, \epsilon)$ for some $\epsilon > 0$.

Note: $\mathcal{N}(z,\epsilon)$ denotes suitable ϵ -neighborhood of z.

ϵ — Neighborhood of $z \in \mathcal{C}$

$$\mathcal{N}(z,\epsilon) = \{u \in \mathcal{C} : \mathsf{dist}(z,u) \leq \epsilon\}.$$

$$\min_{x \in \mathcal{C}} f(x) \tag{OP}$$

Local Optimal Solution

A solution z to (OP) is called local optimal solution if $f(z) \le f(\hat{z})$, $\forall \hat{z} \in \mathcal{N}(z, \epsilon)$ for some $\epsilon > 0$.

Global Optimal Solution

A solution z to (OP) is called global optimal solution if $f(z) \leq f(\hat{z})$, $\forall \hat{z} \in C$.

$$\min_{x \in \mathcal{C}} f(x)$$

• General Assumption: $C \subseteq \mathbb{R}^d$.

High Dimensional Representation - Notations

• Gradient of a function $f: \mathbb{R}^d \to \mathbb{R}$ at a point x

$$\nabla f(x) = \begin{pmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \\ \vdots \\ \vdots \\ \frac{\partial f(x)}{\partial x_d} \end{pmatrix}$$

$$\min_{x \in \mathcal{C}} f(x)$$

- $C \subseteq \mathbb{R}^d$.
- $f: \mathcal{C} \longrightarrow \mathbb{R}$.

Let $f: \mathcal{C} \longrightarrow \mathbb{R}$ be a function defined over $\mathcal{C} \subseteq \mathbb{R}^d$. Let $x \in int(\mathcal{C})$. Let $\mathbf{0} \neq d \in \mathbb{R}^d$. If the limit

$$\lim_{\alpha \downarrow 0} \frac{f(x + \alpha d) - f(x)}{\alpha}$$

exists, then it is called the directional derivative of f at x along the direction d, and is denoted by f'(x; d).

Interior of a set $\mathcal C$

Let $\mathcal{C} \subseteq \mathbb{R}^d$. Then $int(\mathcal{C})$ is defined by:

$$int(C) = \{x \in C : B(x, \epsilon) \subseteq C, \text{ for some } \epsilon > 0\},\$$

where $B(x, \epsilon)$ is the open ball centered at x with radius ϵ given by

$$B(x,\epsilon) = \{ y \in \mathcal{C} : ||x - y|| < \epsilon \}.$$

Let $f: \mathcal{C} \longrightarrow \mathbb{R}$ be a function defined over $\mathcal{C} \subseteq \mathbb{R}^d$. Let $x \in int(\mathcal{C})$. Let $d \neq \mathbf{0} \in \mathbb{R}^d$. If the limit

$$\lim_{\alpha \downarrow 0} \frac{f(x + \alpha d) - f(x)}{\alpha}$$

exists, then it is called the directional derivative of f at x along the direction d, and is denoted by f'(x; d).

Note: If all partial derivatives of f exist at x, then $f'(x; d) = \langle \nabla f(x), d \rangle$, where $\nabla f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} & \dots & \frac{\partial f(x)}{\partial x_d} \end{bmatrix}^\top$.

Let $f: \mathbb{R}^d \longrightarrow \mathbb{R}$ be a continuously differentiable function over \mathbb{R}^d . Then a vector $\mathbf{0} \neq d \in \mathbb{R}^d$ is called a descent direction of f at x if the directional derivative of f at x is negative; that is,

$$f'(x; d) = \langle \nabla f(x), d \rangle < 0.$$

Let $f: \mathbb{R}^d \longrightarrow \mathbb{R}$ be a continuously differentiable function over \mathbb{R}^d . Then a vector $\mathbf{0} \neq d \in \mathbb{R}^d$ is called a descent direction of f at x if the directional derivative derivative of f at x is negative; that is,

$$f'(x; d) = \langle \nabla f(x), d \rangle < 0.$$

Note: A natural candidate for a descent direction is $d = -\nabla f(x)$.

Proposition

Let $f: \mathbb{R}^d \longrightarrow \mathbb{R}$ be a continuously differentiable function over \mathbb{R}^d . Let $\mathbf{0} \neq d \in \mathbb{R}^d$ be a descent direction of f at x. Then there exists $\epsilon > 0$ such that $\forall \alpha \in (0, \epsilon]$ we have

$$f(x + \alpha d) < f(x)$$
.

Descent Direction

Proposition

Let $f: \mathbb{R}^d \longrightarrow \mathbb{R}$ be a continuously differentiable function over \mathbb{R}^d . Let $\mathbf{0} \neq d \in \mathbb{R}^d$ be a descent direction of f at x. Then there exists $\epsilon > 0$ such that $\forall \alpha \in (0, \epsilon]$ we have

$$f(x + \alpha d) < f(x).$$

Proof idea:

Descent Direction

Proposition

Let $f: \mathbb{R}^d \longrightarrow \mathbb{R}$ be a continuously differentiable function over \mathbb{R}^d . Let $\mathbf{0} \neq d \in \mathbb{R}^d$ be a descent direction of f at x. Then there exists $\epsilon > 0$ such that $\forall \alpha \in (0, \epsilon]$ we have

$$f(x + \alpha d) < f(x).$$

Proof idea: Since $\mathbf{0} \neq d \in \mathbb{R}^d$ is a descent direction, by definition of the directional derivative we have

$$f'(x;d) = \lim_{\alpha \downarrow 0} \frac{f(x + \alpha d) - f(x)}{\alpha} < 0$$

 $\implies \exists \epsilon > 0 \text{ such that } \forall \alpha \in (0, \epsilon], f(x + \alpha d) < f(x).$

Note: If we cannot find such ϵ , d is no longer a descent direction. Why?

Consider the general optimization problem:

$$\min_{x \in \mathbb{R}^d} f(x)$$
 (GEN-OPT)

where $f: \mathbb{R}^d \longrightarrow \mathbb{R}$

Algorithm to solve (GEN-OPT)

- Start with $x^0 \in \mathbb{R}^d$.
- For k = 0, 1, 2, ...
 - Find a descent direction d^k of f at x^k and $\alpha^k > 0$ such that $f(x^k + \alpha^k d^k) < f(x^k)$.
 - $x^{k+1} = x^k + \alpha^k d^k.$
 - Check for some stopping criterion and break from loop.

Characterization Of Local Optimum

Proposition

Let $f: \mathcal{C} \longrightarrow \mathbb{R}$ be a function over the set $\mathcal{C} \subseteq \mathbb{R}^d$. Let $x^* \in int(\mathcal{C})$ be a local optimum point of f. Let all partial derivatives of f exist at x^* . Then $\nabla f(x^*) = \mathbf{0}$.

Characterization Of Local Optimum

Proposition

Let $f: \mathcal{C} \longrightarrow \mathbb{R}$ be a function over the set $\mathcal{C} \subseteq \mathbb{R}^d$. Let $x^* \in int(\mathcal{C})$ be a local optimum point of f. Let all partial derivatives of f exist at x^* . Then $\nabla f(x^*) = \mathbf{0}$.

Proof idea:

Consider the general optimization problem:

$$\min_{x \in \mathbb{R}^d} f(x)$$
 (GEN-OPT)

where $f: \mathbb{R}^d \longrightarrow \mathbb{R}$.

Algorithm to solve (GEN-OPT)

- Start with $x^0 \in \mathbb{R}^d$.
- For k = 0, 1, 2, ...
 - Find a descent direction d^k of f at x^k and $\alpha^k > 0$ such that $f(x^k + \alpha^k d^k) < f(x^k)$.
 - $x^{k+1} = x^k + \alpha^k d^k.$
 - ▶ If $\|\nabla f(x^{k+1})\|_2 = 0$, set $x^* = x^{k+1}$, break from loop.
- Output x*.

Algorithm to solve (GEN-OPT)

- Start with $x^0 \in \mathbb{R}^d$.
- For k = 0, 1, 2, ...
 - Find a descent direction d^k of f at x^k and $\alpha^k > 0$ such that $f(x^k + \alpha^k d^k) < f(x^k)$.
 - $x^{k+1} = x^k + \alpha^k d^k.$
 - ▶ If $\|\nabla f(x^{k+1})\|_2 = 0$, set $x^* = x^{k+1}$, break from loop.
- Output x^* .

Homework: Compare the structure of this algorithm with the Perceptron training algorithm and try to understand the perceptron update rule from an optimization perspective.

Consider the general optimization problem:

$$\min_{x \in \mathbb{R}^d} f(x)$$
 (GEN-OPT)

where $f: \mathbb{R}^d \longrightarrow \mathbb{R}$.

Gradient Descent Algorithm to solve (GEN-OPT)

- Start with $x^0 \in \mathbb{R}^d$.
- For k = 0, 1, 2, ...
 - $d^k = -\nabla f(x^k).$
 - $\alpha^k = \operatorname{argmin}_{\alpha > 0} f(x^k + \alpha d^k).$
 - $x^{k+1} = x^k + \alpha^k d^k.$
 - ▶ If $\|\nabla f(x^{k+1})\|_2 = 0$, set $x^* = x^{k+1}$, break from loop.
- Output x*.

Recall: For MLP, the loss minimization problem is:

$$\min_{w = (w_{11}^1, w_{12}^1)} E(w) = \sum_{i=1}^4 e^i(w) = \sum_{i=1}^4 \left(y^i - \frac{1}{1 + \exp\left(-\left[w_{11}^1 x_1^i + w_{12}^1 x_2^i\right]\right)} \right)^2$$

where $E: \mathbb{R}^2 \longrightarrow \mathbb{R}$.

Gradient Descent Algorithm to solve MLP Loss Minimization Problem

- Start with $w^0 \in \mathbb{R}^d$.
- For $k = 0, 1, 2, \dots$
 - $d^k = -\nabla E(w^k).$

 - $w^{k+1} = w^k + \alpha^k d^k.$
 - ► If $\|\nabla E(w^{k+1})\|_2 = 0$, set $w^* = w^{k+1}$, break from loop.
- Output w*.

Recall: For MLP, the loss minimization problem is:

$$\min_{w = (w_{11}^1, w_{12}^1)} E(w) = \sum_{i=1}^4 e^i(w) = \sum_{i=1}^4 \left(y^i - \frac{1}{1 + \exp\left(-\left[w_{11}^1 x_1^i + w_{12}^1 x_2^i\right]\right)} \right)^2$$

Gradient Descent Algorithm to solve MLP Loss Minimization Problem

- Start with $w^0 \in \mathbb{R}^d$.
- For k = 0, 1, 2, ...
 - $d^k = -\nabla E(w^k).$
 - $\alpha^k = \operatorname{argmin}_{\alpha > 0} E(w^k + \alpha d^k).$
 - $w^{k+1} = w^k + \alpha^k d^k.$
 - ▶ If $\|\nabla E(w^{k+1})\|_2 = 0$, set $w^* = w^{k+1}$, break from loop.
- Output w*.

Recall: For MLP, the loss minimization problem is:

$$\min_{w = (w_{11}^1, w_{12}^1)} E(w) = \sum_{i=1}^4 e^i(w) = \sum_{i=1}^4 \left(y^i - \frac{1}{1 + \exp\left(-\left[w_{11}^1 x_1^i + w_{12}^1 x_2^i\right]\right)} \right)^2$$

Gradient Descent Algorithm to solve MLP Loss Minimization Problem

- Start with $w^0 \in \mathbb{R}^d$.
- For k = 0, 1, 2, ...

$$d^k = -\sum_{i=1}^4 \nabla e^i(w^k).$$

$$\qquad \alpha^k = \operatorname{argmin}_{\alpha > 0} E(w^k + \alpha d^k).$$

$$w^{k+1} = w^k + \alpha^k d^k.$$

▶ If
$$\|\nabla E(w^{k+1})\|_2 = 0$$
, set $w^* = w^{k+1}$, break from loop.

Output w*.

→ロト→部ト→ミト→ミトーミーのQで

Recall: For MLP, the loss minimization problem is:

$$\min_{w = (w_{11}^1, w_{12}^1)} E(w) = \sum_{i=1}^4 e^i(w) = \sum_{i=1}^4 \left(y^i - \frac{1}{1 + \exp\left(-\left[w_{11}^1 x_1^i + w_{12}^1 x_2^i\right]\right)} \right)^2$$

Gradient Descent:

- ▶ Function values $E(w^t)$ exhibit $O(1/\sqrt{k})$ convergence under minor assumptions and the assumption of existence of a local optimum.
- ▶ $O(1/k^2)$ convergence possible.
- Linear convergence also possible for strongly convex and smooth function E(w).
- ▶ Arbitrary accuracy possible $|W(w^{gd}) E(w^*)| \approx O(10^{-15})$.

Recall: For MLP, the loss minimization problem is:

$$\min_{w = (w_{11}^1, w_{12}^1)} E(w) = \sum_{i=1}^4 e^i(w) = \sum_{i=1}^4 \left(y^i - \frac{1}{1 + \exp\left(-\left[w_{11}^1 x_1^i + w_{12}^1 x_2^i\right]\right)} \right)^2$$

Gradient Descent:

- ▶ Blind to structure of E(w).
- Finding proper α^k at each k is computationally intensive takes at least O(Sd) time.
- ▶ Storage complexity: O(d)

Stochastic Gradient Descent for our MLP Problem

Recall: For MLP, the loss minimization problem is:

$$\min_{w = (w_{11}^1, w_{12}^1)} E(w) = \sum_{i=1}^4 e^i(w) = \sum_{i=1}^4 \left(y^i - \frac{1}{1 + \exp\left(-\left[w_{11}^1 x_1^i + w_{12}^1 x_2^i\right]\right)} \right)^2$$

Stochastic Gradient Descent Algorithm to solve MLP Loss Minimization Problem

- Start with $w^0 \in \mathbb{R}^d$.
- For $k = 0, 1, 2, \dots$
 - ► Choose a sample $j_k \in \{1, ..., 4\}$.
 - $w^{k+1} \leftarrow w^k \gamma_k \nabla_w e^{j_k} (w^k).$

4 D > 4 B > 4 B > 4 B > 6 C

Regularized Empirical Loss Minimization - Optimization Methods

Stochastic Gradient Descent Algorithm to solve MLP Loss Minimization Problem

- Start with $w^0 \in \mathbb{R}^d$.
- For k = 0, 1, 2, ...
 - ► Choose a sample $j_k \in \{1, ..., 4\}$.
 - $\qquad w^{k+1} \leftarrow w^k \gamma_k \nabla_w e^{j_k}(w^k).$

 $\nabla_w e^{j_k}(w^k)$: Gradient at point w^k , of e^{i_k} with respect to w. Takes only O(d) time.

Under suitable conditions on γ_k ($\sum_k \gamma_k^2 < \infty$, $\sum_k \gamma_k \to \infty$), this procedure converges **asymptotically**.

For smooth functions, O(1/k) convergence possible (in theory!).

Typical choice: $\gamma_k = \frac{1}{k+1}$.

4□▶ 4□▶ 4□▶ 4□▶ □ 900

Mini-Batch Stochastic Gradient Descent for our MLP Problem

Mini-batch SGD Algorithm to solve MLP Loss Minimization Problem

- Start with $w^0 \in \mathbb{R}^d$.
- For k = 0, 1, 2, ...
 - ▶ Choose a block of samples $B_k \subseteq \{1, ..., 4\}$.
 - $w^{k+1} \leftarrow w^k \gamma_k \sum_{i \in B_k} \nabla_w e^j(w^k).$

Mini-batch Stochastic Gradient Descent for our MLP Problem

Mini-batch SGD Algorithm to solve MLP Loss Minimization Problem

- Start with $w^0 \in \mathbb{R}^d$.
- For k = 0, 1, 2, ...
 - ▶ Choose a block of samples $B_k \subseteq \{1, ..., 4\}$.
 - $w^{k+1} \leftarrow w^k \gamma_k \sum_{j \in B_k} \nabla_w e^j(w^k).$
- Restrictions on γ_k similar to that in SGD.
- Asymptotic convergence !

GD/SGD: Crucial Step

Recall: For MLP, the loss minimization problem is:

$$\min_{w = (w_{11}^1, w_{12}^1)} E(w) = \sum_{i=1}^4 e^i(w) = \sum_{i=1}^4 \left(y^i - \frac{1}{1 + \exp\left(-\left[w_{11}^1 x_1^i + w_{12}^1 x_2^i\right]\right)} \right)^2$$

Crucial step in Gradient Descent Algorithm

$$w^{k+1} = w^k - \alpha^k \sum_{i=1}^4 \nabla e^i(w^k)$$

Crucial step in Stochastic Gradient Descent Algorithm

$$w^{k+1} \leftarrow w^k - \gamma_k \nabla_w e^{j_k}(w^k).$$

Crucial step in Mini-batch SGD Algorithm

$$w^{k+1} \leftarrow w^k - \gamma_k \sum_{i \in B_k} \nabla_w e^j(w^k).$$

GD/SGD for MLP: Crucial Step

Recall: For MLP, the loss minimization problem is:

$$\min_{w = (w_{11}^1, w_{12}^1)} E(w) = \sum_{i=1}^4 e^i(w) = \sum_{i=1}^4 \left(y^i - \frac{1}{1 + \exp\left(-\left[w_{11}^1 x_1^i + w_{12}^1 x_2^i\right]\right)} \right)^2$$

Crucial step in Gradient Descent Algorithm

$$w^{k+1} = w^k - \alpha^k \sum_{i=1}^4 \nabla e^i(w^k)$$

Crucial step in Stochastic Gradient Descent Algorithm

$$w^{k+1} \leftarrow w^k - \gamma_k \nabla_w e^{j_k} (w^k).$$

Crucial step in Mini-batch SGD Algorithm

$$w^{k+1} \leftarrow w^k - \gamma_k \sum_{j \in B_k} \nabla_w e^j(w^k).$$

Note: $\nabla e^{i}(w^{k})$, $\nabla_{w}e^{j_{k}}(w^{k})$, $\nabla e^{j}(w^{k})$ denote sample-wise gradient computation.

◆ロト ◆個ト ◆意ト ◆意ト · 意 · 夕久○

• Consider an arbitrary training sample $(x, y) \in D$.

- Consider an arbitrary training sample $(x, y) \in D$.
- At layer L_3 , $\hat{y} = a_1^3 = \phi(z_1^3) = \phi(w_{11}^3 a_1^2 + w_{12}^3 a_2^2)$.

- Consider an arbitrary training sample $(x, y) \in D$.
- At layer L_3 , $\hat{y} = a_1^3 = \phi(z_1^3) = \phi(w_{11}^3 a_1^2 + w_{12}^3 a_2^2)$.
- Sample-wise error: $e = (\hat{y} y)^2$.

- Consider an arbitrary training sample $(x, y) \in D$.
- At layer L_3 , $\hat{y} = a_1^3 = \phi(z_1^3) = \phi(w_{11}^3 a_1^2 + w_{12}^3 a_2^2)$.
- Sample-wise error: $e = (\hat{y} y)^2$.
- **Aim:** To find $\nabla_w e = [\nabla_{w_{11}}^1 e \ \nabla_{w_{12}}^1 e \ \dots \ \nabla_{w_{12}}^3 e]^\top$.

- Consider an arbitrary training sample $(x, y) \in D$.
- At layer L_3 , $\hat{y} = a_1^3 = \phi\left(z_1^3\right) = \phi\left(w_{11}^3 a_1^2 + w_{12}^3 a_2^2\right)$.
- Sample-wise error: $e = (\hat{y} y)^2$.
- Note: $\nabla_{w_{11}^3} e = \frac{\partial e}{\partial z_1^3} \frac{\partial z_1^3}{\partial w_{11}^3}$.

- Consider an arbitrary training sample $(x, y) \in D$.
- At layer L_3 , $\hat{y} = a_1^3 = \phi\left(z_1^3\right) = \phi\left(w_{11}^3 a_1^2 + w_{12}^3 a_2^2\right)$.
- Sample-wise error: $e = (\hat{y} y)^2$.
- Note: $\nabla_{w_{11}^3} e = \frac{\partial e}{\partial z_1^3} \frac{\partial z_1^3}{\partial w_{11}^3} = \frac{\partial e}{\partial z_1^3} a_1^2$.

- Consider an arbitrary training sample $(x, y) \in D$.
- At layer L_3 , $\hat{y} = a_1^3 = \phi\left(z_1^3\right) = \phi\left(w_{11}^3 a_1^2 + w_{12}^3 a_2^2\right)$.
- Sample-wise error: $e = (\hat{y} y)^2$.
- Note: $\nabla_{w_{11}^3}e = \frac{\partial e}{\partial z_1^3} \frac{\partial z_1^3}{\partial w_{11}^3} = \frac{\partial e}{\partial a_1^3} \frac{\partial a_1^3}{\partial z_1^3} a_1^2$.

- Consider an arbitrary training sample $(x, y) \in D$.
- At layer L_3 , $\hat{y} = a_1^3 = \phi(z_1^3) = \phi(w_{11}^3 a_1^2 + w_{12}^3 a_2^2)$.
- Sample-wise error: $e = (\hat{y} y)^2$.
- Note: $\nabla_{\mathbf{w}_{11}^3} e = \frac{\partial e}{\partial z_1^3} \frac{\partial z_1^3}{\partial \mathbf{w}_{11}^3} = \frac{\partial e}{\partial a_1^3} \frac{\partial a_1^3}{\partial z_1^3} a_1^2 = \frac{\partial e}{\partial \hat{y}} \phi'(z_1^3) a_1^2$.

- Consider an arbitrary training sample $(x, y) \in D$.
- At layer L_3 , $\hat{y} = a_1^3 = \phi(z_1^3) = \phi(w_{11}^3 a_1^2 + w_{12}^3 a_2^2)$.
- Sample-wise error: $e = (\hat{y} y)^2$.
- $\bullet \ \, \text{Note:} \ \, \nabla_{w_{11}^3} \, e = \tfrac{\partial e}{\partial z_1^3} \tfrac{\partial z_1^3}{\partial w_{11}^3} = \tfrac{\partial e}{\partial a_1^3} \tfrac{\partial a_1^3}{\partial z_1^3} a_1^2 = \tfrac{\partial e}{\partial \hat{y}} \phi'(z_1^3) a_1^2.$
- Similarly, $\nabla_{w_{12}^3} e = \frac{\partial e}{\partial \hat{y}} \phi'(z_1^3) a_2^2$.

• We have at layer L_2 : $a_1^2 = \phi\left(z_1^2\right) = \phi\left(w_{11}^2 a_1^1 + w_{12}^2 a_2^1\right)$.

- We have at layer L_2 : $a_1^2 = \phi\left(z_1^2\right) = \phi\left(w_{11}^2 a_1^1 + w_{12}^2 a_2^1\right)$.
- $\bullet \ \ \text{Hence,} \ \nabla_{w_{11}^2} e = \tfrac{\partial e}{\partial z_1^2} \tfrac{\partial z_1^2}{\partial w_{11}^2} = \tfrac{\partial e}{\partial z_1^2} a_1^1.$

- We have at layer L_2 : $a_1^2 = \phi\left(z_1^2\right) = \phi\left(w_{11}^2 a_1^1 + w_{12}^2 a_2^1\right)$.
- $\bullet \ \ \text{Hence,} \ \nabla_{w_{11}^2} e = \tfrac{\partial e}{\partial z_1^2} \tfrac{\partial z_1^2}{\partial w_{11}^2} = \tfrac{\partial e}{\partial z_1^2} a_1^1.$

- We have at layer L_2 : $a_1^2 = \phi\left(z_1^2\right) = \phi\left(w_{11}^2 a_1^1 + w_{12}^2 a_2^1\right)$.
- $\bullet \ \ \text{Hence,} \ \ \nabla_{w_{11}^2} e = \tfrac{\partial e}{\partial z_1^2} \tfrac{\partial z_1^2}{\partial w_{11}^2} = \tfrac{\partial e}{\partial z_1^2} a_1^1 = \tfrac{\partial e}{\partial a_1^2} \tfrac{\partial a_1^2}{\partial z_1^2} a_1^1 = \tfrac{\partial e}{\partial a_1^2} \phi'(z_1^2) a_1^1.$

- We have at layer L_2 : $a_1^2 = \phi\left(z_1^2\right) = \phi\left(w_{11}^2 a_1^1 + w_{12}^2 a_2^1\right)$.
- $\bullet \ \ \text{Hence,} \ \ \nabla_{w_{11}^2} e = \tfrac{\partial e}{\partial z_1^2} \tfrac{\partial z_1^2}{\partial w_{11}^2} = \tfrac{\partial e}{\partial z_1^2} a_1^1 = \tfrac{\partial e}{\partial a_1^2} \tfrac{\partial a_1^2}{\partial z_1^2} a_1^1 = \tfrac{\partial e}{\partial a_1^2} \phi'(z_1^2) a_1^1.$
- Now recall that $z_1^3 = (w_{11}^3 a_1^2 + w_{12}^3 a_2^2)$.

- We have at layer L_2 : $a_1^2 = \phi\left(z_1^2\right) = \phi\left(w_{11}^2 a_1^1 + w_{12}^2 a_2^1\right)$.
- $\bullet \ \ \text{Hence,} \ \ \nabla_{w_{11}^2} e = \tfrac{\partial e}{\partial z_1^2} \tfrac{\partial z_1^2}{\partial w_{11}^2} = \tfrac{\partial e}{\partial z_1^2} a_1^1 = \tfrac{\partial e}{\partial a_1^2} \tfrac{\partial a_1^2}{\partial z_1^2} a_1^1 = \tfrac{\partial e}{\partial a_1^2} \phi'(z_1^2) a_1^1.$
- Now recall that $z_1^3 = (w_{11}^3 a_1^2 + w_{12}^3 a_2^2)$.
- Hence $\frac{\partial e}{\partial a_1^2} = \frac{\partial e}{\partial z_1^3} \frac{\partial z_1^3}{\partial a_1^2} = \frac{\partial e}{\partial z_1^3} w_{11}^3$.

- We have at layer L_2 : $a_1^2 = \phi(z_1^2) = \phi(w_{11}^2 a_1^1 + w_{12}^2 a_2^1)$.
- $\bullet \text{ Hence, } \nabla_{w_{11}^2}e = \tfrac{\partial e}{\partial z_1^2}\tfrac{\partial z_1^2}{\partial w_{11}^2} = \tfrac{\partial e}{\partial z_1^2}a_1^1 = \tfrac{\partial e}{\partial a_1^2}\tfrac{\partial a_1^2}{\partial z_1^2}a_1^1 = \tfrac{\partial e}{\partial a_1^2}\phi'(z_1^2)a_1^1.$
- Now recall that $z_1^3 = (w_{11}^3 a_1^2 + w_{12}^3 a_2^2)$.
- Hence $\frac{\partial e}{\partial a_1^2} = \frac{\partial e}{\partial z_1^3} \frac{\partial z_1^3}{\partial a_1^2} = \frac{\partial e}{\partial z_1^3} w_{11}^3$.
- Recall: We have already computed $\frac{\partial e}{\partial z_1^3} = \frac{\partial e}{\partial \hat{y}} \phi'(z_1^3)$.

- We have at layer L_2 : $a_1^2 = \phi\left(z_1^2\right) = \phi\left(w_{11}^2 a_1^1 + w_{12}^2 a_2^1\right)$.
- $\bullet \ \ \text{Hence,} \ \nabla_{w_{11}^2} e = \tfrac{\partial e}{\partial z_1^2} \tfrac{\partial z_1^2}{\partial w_{11}^2} = \tfrac{\partial e}{\partial z_1^2} a_1^1 = \tfrac{\partial e}{\partial a_1^2} \tfrac{\partial a_1^2}{\partial z_1^2} a_1^1 = \tfrac{\partial e}{\partial a_1^2} \phi'(z_1^2) a_1^1.$
- Now recall that $z_1^3 = (w_{11}^3 a_1^2 + w_{12}^3 a_2^2)$.
- Hence $\frac{\partial e}{\partial z_1^2} = \frac{\partial e}{\partial z_1^3} \frac{\partial z_1^3}{\partial z_1^2} = \frac{\partial e}{\partial z_1^3} w_{11}^3 = \frac{\partial e}{\partial \hat{y}} \phi'(z_1^3) w_{11}^3$.

- We have at layer L_2 : $a_1^2 = \phi(z_1^2) = \phi(w_{11}^2 a_1^1 + w_{12}^2 a_2^1)$.
- $\bullet \ \ \text{Hence, } \nabla_{w_{11}^2} e = \tfrac{\partial e}{\partial z_1^2} \tfrac{\partial z_1^2}{\partial w_{11}^2} = \tfrac{\partial e}{\partial z_1^2} a_1^1 = \tfrac{\partial e}{\partial a_1^2} \tfrac{\partial a_1^2}{\partial z_1^2} a_1^1 = \tfrac{\partial e}{\partial a_1^2} \phi'(z_1^2) a_1^1.$
- Now recall that $z_1^3 = (w_{11}^3 a_1^2 + w_{12}^3 a_2^2)$.
- Hence $\frac{\partial e}{\partial z_1^2} = \frac{\partial e}{\partial z_1^3} \frac{\partial z_1^3}{\partial z_1^2} = \frac{\partial e}{\partial z_1^3} w_{11}^3 = \frac{\partial e}{\partial \hat{y}} \phi'(z_1^3) w_{11}^3$.
- Combining, we have $\nabla_{w_{11}^2}e=\frac{\partial e}{\partial \hat{y}}\phi'(z_1^3)w_{11}^3\phi'(z_1^2)a_1^1$.

- Thus, $\nabla_{w_{11}^2} e = \frac{\partial e}{\partial \hat{v}} \phi'(z_1^3) w_{11}^3 \phi'(z_1^2) a_1^1$.
- Similarly, $\nabla_{w_{12}^2}e=rac{\partial e}{\partial \hat{y}}\phi'(z_1^3)w_{11}^3\phi'(z_1^2)a_2^1.$

- Also, we have at layer L_2 : $a_2^2 = \phi\left(z_2^2\right) = \phi\left(w_{21}^2 a_1^1 + w_{22}^2 a_2^1\right)$.
- Hence, $\nabla_{w_{21}^2}e=?$, $\nabla_{w_{22}^2}e=?$

• We have at layer L_1 : $a_1^1 = \phi\left(z_1^1\right) = \phi\left(w_{11}^1 x_1 + w_{12}^1 x_2\right)$.

76 / 113

- We have at layer L_1 : $a_1^1 = \phi(z_1^1) = \phi(w_{11}^1 x_1 + w_{12}^1 x_2)$.
- Note: $\nabla_{w_{11}^1} e = \frac{\partial e}{\partial z_1^1} \frac{\partial z_1^1}{\partial w_{11}^1} = \frac{\partial e}{\partial z_1^1} x_1$.

- We have at layer L_1 : $a_1^1 = \phi(z_1^1) = \phi(w_{11}^1 x_1 + w_{12}^1 x_2)$.
- Note: $\nabla_{w_{11}^1}e = \frac{\partial e}{\partial z_1^1}x_1 = \frac{\partial e}{\partial a_1^1}\phi'(z_1^1)x_1$.

- We have at layer L_1 : $a_1^1 = \phi(z_1^1) = \phi(w_{11}^1 x_1 + w_{12}^1 x_2)$.
- Note: $\nabla_{w_{11}^1} e = \frac{\partial e}{\partial z_1^1} x_1 = \frac{\partial e}{\partial a_1^1} \phi'(z_1^1) x_1$.
- Now we see that a_1^1 contributes to both z_1^2 and z_2^2 .

- We have at layer L_1 : $a_1^1 = \phi(z_1^1) = \phi(w_{11}^1 x_1 + w_{12}^1 x_2)$.
- Note: $\nabla_{w_{11}^1} e = \frac{\partial e}{\partial z_1^1} x_1 = \frac{\partial e}{\partial a_1^1} \phi'(z_1^1) x_1$.
- Now we see that a_1^1 contributes to both z_1^2 and z_2^2 .
- **Recall:** $z_1^2 = w_{11}^2 a_1^1 + w_{12}^2 a_2^1$ and $z_2^2 = w_{21}^2 a_1^1 + w_{22}^2 a_2^1$.

- We have at layer L_1 : $a_1^1 = \phi(z_1^1) = \phi(w_{11}^1 x_1 + w_{12}^1 x_2)$.
- Note: $\nabla_{w_{11}^1} e = \frac{\partial e}{\partial z_1^1} x_1 = \frac{\partial e}{\partial z_1^1} \phi'(z_1^1) x_1$.
- Now we see that a_1^1 contributes to both z_1^2 and z_2^2 .
- **Recall:** $z_1^2 = w_{11}^2 a_1^1 + w_{12}^2 a_2^1$ and $z_2^2 = w_{21}^2 a_1^1 + w_{22}^2 a_2^1$.
- Hence $\frac{\partial e}{\partial a_1^1} = \sum_{i=1}^2 \frac{\partial e}{\partial z_i^2} \frac{\partial z_i^2}{\partial a_1^1}$.

- We have at layer L_1 : $a_1^1 = \phi(z_1^1) = \phi(w_{11}^1 x_1 + w_{12}^1 x_2)$.
- Note: $\nabla_{w_{11}^1} e = \frac{\partial e}{\partial z_1^1} x_1 = \frac{\partial e}{\partial a_1^1} \phi'(z_1^1) x_1$.
- Now we see that a_1^1 contributes to both z_1^2 and z_2^2 .
- Recall: $z_1^2 = w_{11}^2 a_1^1 + w_{12}^2 a_2^1$ and $z_2^2 = w_{21}^2 a_1^1 + w_{22}^2 a_2^1$.
- Hence $\frac{\partial e}{\partial a_1^1} = \sum_{i=1}^2 \frac{\partial e}{\partial z_i^2} \frac{\partial z_i^2}{\partial a_1^1} = \sum_{i=1}^2 \frac{\partial e}{\partial z_i^2} w_{i1}^2$.

- We have at layer L_1 : $a_1^1 = \phi(z_1^1) = \phi(w_{11}^1 x_1 + w_{12}^1 x_2)$.
- Note: $\nabla_{w_{11}^1}e = \frac{\partial e}{\partial z_1^1}x_1 = \frac{\partial e}{\partial z_1^1}\phi'(z_1^1)x_1$.
- Now we see that a_1^1 contributes to both z_1^2 and z_2^2 .
- **Recall:** $z_1^2 = w_{11}^2 a_1^1 + w_{12}^2 a_2^1$ and $z_2^2 = w_{21}^2 a_1^1 + w_{22}^2 a_2^1$.
- Hence $\frac{\partial e}{\partial a_1^1} = \sum_{i=1}^2 \frac{\partial e}{\partial z_i^2} \frac{\partial z_i^2}{\partial a_1^1} = \sum_{i=1}^2 \frac{\partial e}{\partial z_i^2} w_{i1}^2$.
- Recall: We have already computed $\frac{\partial e}{\partial z_i^2}$, i = 1, 2.

- We have at layer L_1 : $a_1^1 = \phi(z_1^1) = \phi(w_{11}^1 x_1 + w_{12}^1 x_2)$.
- Note: $\nabla_{w_{11}^1} e = \frac{\partial e}{\partial z_1^1} x_1 = \frac{\partial e}{\partial z_1^1} \phi'(z_1^1) x_1$.
- Now we see that a_1^1 contributes to both z_1^2 and z_2^2 .
- **Recall:** $z_1^2 = w_{11}^2 a_1^1 + w_{12}^2 a_2^1$ and $z_2^2 = w_{21}^2 a_1^1 + w_{22}^2 a_2^1$.
- Hence $\frac{\partial e}{\partial a_1^1} = \sum_{i=1}^2 \frac{\partial e}{\partial z_i^2} \frac{\partial z_i^2}{\partial a_1^1} = \sum_{i=1}^2 \frac{\partial e}{\partial z^2} w_{i1}^2$.
- Recall: We have already computed $\frac{\partial e}{\partial z^2} = \frac{\partial e}{\partial z^2} \phi'(z_i^2), i = 1, 2.$

$$\frac{\partial e}{\partial w_{ij}^{\ell}} = \frac{\partial e}{\partial z_{i}^{\ell}} a_{j}^{\ell-1}$$

$$\frac{\partial e}{\partial w_{ij}^{\ell}} = \frac{\partial e}{\partial z_{i}^{\ell}} a_{j}^{\ell-1}$$

$$\frac{\partial e}{\partial z_{i}^{\ell}} = \frac{\partial e}{\partial a_{i}^{\ell}} \phi'(z_{i}^{\ell}$$

$$\begin{aligned} \frac{\partial e}{\partial w_{ij}^{\ell}} &= \frac{\partial e}{\partial z_{i}^{\ell}} a_{j}^{\ell-1} \\ \frac{\partial e}{\partial z_{i}^{\ell}} &= \frac{\partial e}{\partial a_{i}^{\ell}} \phi'(z_{i}^{\ell}) \\ \frac{\partial e}{\partial a_{i}^{\ell}} &= \sum_{r=1}^{N_{\ell+1}} \frac{\partial e}{\partial z_{m+1}^{\ell+1}} w_{mi}^{\ell+1} \end{aligned}$$

$$\begin{split} \frac{\partial e}{\partial w_{ij}^{\ell}} &= \frac{\partial e}{\partial z_{i}^{\ell}} a_{j}^{\ell-1} \\ \frac{\partial e}{\partial z_{i}^{\ell}} &= \frac{\partial e}{\partial a_{i}^{\ell}} \phi'(z_{i}^{\ell}) \\ \frac{\partial e}{\partial a_{i}^{\ell}} &= \sum_{m=1}^{N_{\ell+1}} \frac{\partial e}{\partial z_{m}^{\ell+1}} w_{mi}^{\ell+1} \\ &= \sum_{i=1}^{N_{\ell+1}} \frac{\partial e}{\partial a_{\ell+1}^{\ell+1}} \phi'(z_{m}^{\ell+1}) w_{mi}^{\ell+1} \end{split}$$

$$\begin{split} \frac{\partial e}{\partial w_{ij}^{\ell}} &= \frac{\partial e}{\partial z_{i}^{\ell}} a_{j}^{\ell-1} \\ \frac{\partial e}{\partial z_{i}^{\ell}} &= \frac{\partial e}{\partial a_{i}^{\ell}} \phi'(z_{i}^{\ell}) \\ \frac{\partial e}{\partial a_{i}^{\ell}} &= \sum_{m=1}^{N_{\ell+1}} \frac{\partial e}{\partial z_{m}^{\ell+1}} w_{mi}^{\ell+1} \\ &= \sum_{m=1}^{N_{\ell+1}} \frac{\partial e}{\partial a_{m}^{\ell+1}} \phi'(z_{m}^{\ell+1}) w_{mi}^{\ell+1} \\ &= \left[\phi'(z_{1}^{\ell+1}) w_{11}^{\ell+1} \dots \phi'(z_{N_{\ell+1}}^{\ell+1}) w_{N_{\ell+1}}^{\ell+1} \right] \begin{bmatrix} \frac{\partial e}{\partial a_{1}^{\ell+1}} \\ \vdots \\ \frac{\partial e}{\partial a_{\ell+1}^{\ell+1}} \end{bmatrix} \end{split}$$

$$\begin{split} \frac{\partial e}{\partial w_{ij}^{\ell}} &= \frac{\partial e}{\partial z_{i}^{\ell}} a_{j}^{\ell-1} \\ \frac{\partial e}{\partial z_{i}^{\ell}} &= \frac{\partial e}{\partial a_{i}^{\ell}} \phi'(z_{i}^{\ell}) \\ \begin{bmatrix} \frac{\partial e}{\partial a_{1}^{\ell}} \\ \vdots \\ \frac{\partial e}{\partial a_{N_{\ell}}^{\ell}} \end{bmatrix} &= \begin{bmatrix} \phi'(z_{1}^{\ell+1}) w_{11}^{\ell+1} & \dots & \phi'(z_{N_{\ell+1}}^{\ell+1}) w_{N_{\ell+1}1}^{\ell+1} \\ \vdots & \dots & \vdots \\ \phi'(z_{1}^{\ell+1}) w_{1N_{\ell}}^{\ell+1} & \dots & \phi'(z_{N_{\ell+1}}^{\ell+1}) w_{N_{\ell+1}N_{\ell}}^{\ell+1} \end{bmatrix} \begin{bmatrix} \frac{\partial e}{\partial a_{1}^{\ell+1}} \\ \vdots \\ \frac{\partial e}{\partial a_{N_{\ell+1}}^{\ell+1}} \end{bmatrix} \\ \vdots \\ \frac{\partial e}{\partial a_{N_{\ell+1}}^{\ell+1}} \end{split}$$

$$\begin{split} \frac{\partial e}{\partial w_{ij}^{\ell}} &= \frac{\partial e}{\partial z_{i}^{\ell}} a_{i}^{\ell-1} \\ \frac{\partial e}{\partial z_{i}^{\ell}} &= \frac{\partial e}{\partial a_{i}^{\ell}} \phi'(z_{i}^{\ell}) \\ \begin{bmatrix} \frac{\partial e}{\partial z_{i}^{\ell}} \end{bmatrix} &= \begin{bmatrix} \phi'(z_{1}^{\ell+1}) w_{11}^{\ell+1} & \dots & \phi'(z_{N\ell+1}^{\ell+1}) w_{N\ell+1}^{\ell+1} \\ \vdots & & \vdots \\ \phi'(z_{1}^{\ell+1}) w_{1N\ell}^{\ell+1} & \dots & \phi'(z_{N\ell+1}^{\ell+1}) w_{N\ell+1}^{\ell+1} \end{bmatrix} \begin{bmatrix} \frac{\partial e}{\partial z_{1}^{\ell+1}} \\ \vdots \\ \frac{\partial e}{\partial z_{N\ell}^{\ell}} \end{bmatrix} \\ \Rightarrow \begin{bmatrix} \frac{\partial e}{\partial z_{1}^{\ell}} \\ \vdots \\ \frac{\partial e}{\partial z_{N\ell}^{\ell}} \end{bmatrix} &= \begin{bmatrix} w_{11}^{\ell+1} & \dots & w_{N\ell+1}^{\ell+1} \\ \vdots & \dots & \vdots \\ w_{1N\ell}^{\ell+1} & \dots & w_{N\ell+1}^{\ell+1} \end{bmatrix} \begin{bmatrix} \phi'(z_{1}^{\ell+1}) & & & \\ \vdots & \ddots & & \\ \phi'(z_{N\ell+1}^{\ell+1}) \end{bmatrix} \begin{bmatrix} \frac{\partial e}{\partial z_{1}^{\ell+1}} \\ \vdots \\ \frac{\partial e}{\partial z_{N\ell+1}^{\ell+1}} \end{bmatrix} \end{split}$$

$$\begin{split} \frac{\partial e}{\partial w_{ij}^{\ell}} &= \frac{\partial e}{\partial z_{i}^{\ell}} a_{j}^{\ell-1} \\ \frac{\partial e}{\partial z_{i}^{\ell}} &= \frac{\partial e}{\partial a_{i}^{\ell}} \phi'(z_{i}^{\ell}) \\ \begin{bmatrix} \frac{\partial e}{\partial z_{N_{\ell}}^{\ell}} \end{bmatrix} &= \begin{bmatrix} \phi'(z_{1}^{\ell+1})w_{11}^{\ell+1} & \dots & \phi'(z_{N_{\ell+1}}^{\ell+1})w_{N_{\ell+1}}^{\ell+1} \\ \vdots & \dots & \vdots \\ \phi'(z_{1}^{\ell+1})w_{1N_{\ell}}^{\ell+1} & \dots & \phi'(z_{N_{\ell+1}}^{\ell+1})w_{N_{\ell+1}N_{\ell}}^{\ell+1} \end{bmatrix} \begin{bmatrix} \frac{\partial e}{\partial a_{1}^{\ell+1}} \\ \vdots & \vdots & \vdots \\ \frac{\partial e}{\partial a_{N_{\ell}}^{\ell}} \end{bmatrix} \\ \Rightarrow \begin{bmatrix} \frac{\partial e}{\partial a_{N_{\ell}}^{\ell}} \\ \vdots \\ \frac{\partial e}{\partial a_{N_{\ell}}^{\ell}} \end{bmatrix} &= \begin{bmatrix} w_{11}^{\ell+1} & \dots & w_{N_{\ell+1}1}^{\ell+1} \\ \vdots & \dots & \vdots \\ w_{1N_{\ell}}^{\ell+1} & \dots & w_{N_{\ell+1}N_{\ell}}^{\ell+1} \end{bmatrix} \begin{bmatrix} \phi'(z_{1}^{\ell+1}) & & & \\ \vdots & \ddots & & \\ & \ddots & & \\ & & & \phi'(z_{N_{\ell+1}}^{\ell+1}) \end{bmatrix} \begin{bmatrix} \frac{\partial e}{\partial a_{1}^{\ell+1}} \\ \vdots & \ddots & & \\ & \frac{\partial e}{\partial a_{N_{\ell+1}}^{\ell+1}} \end{bmatrix} \\ \delta^{\ell} &= (W^{\ell+1})^{\top} \operatorname{Diag}(\phi^{\ell+1'}) \delta^{\ell+1} = V^{\ell+1} \delta^{\ell+1} \end{split}$$

Now the error gradient with respect to W^{ℓ} can be written as:

Generalized setting:

$$\nabla_{W^\ell} e = \mathsf{Diag}(\phi^{\ell'}) \delta^\ell(a^{\ell-1})^\top = \mathsf{Diag}(\phi^{\ell'}) V^{\ell+1} \dots V^L \delta^L(a^{\ell-1})^\top$$

Homework: Derive this expression from the previous discussions.

Now the error gradient with respect to W^{ℓ} can be written as:

Generalized setting:

$$\nabla_{W^\ell} e = \mathsf{Diag}(\phi^{\ell'}) \delta^\ell(\mathsf{a}^{\ell-1})^\top = \mathsf{Diag}(\phi^{\ell'}) V^{\ell+1} \dots V^L \delta^L(\mathsf{a}^{\ell-1})^\top$$

Homework: Derive this expression from the previous discussions. Homework: Assume each neuron with a bias term and compute the gradients of loss with respect to bias terms.

$$\nabla_{W^\ell} \mathbf{e} = \mathsf{Diag}(\phi^{\ell'}) \delta^\ell(\mathbf{a}^{\ell-1})^\top = \mathsf{Diag}(\phi^{\ell'}) V^{\ell+1} \dots V^L \delta^L(\mathbf{a}^{\ell-1})^\top$$

- **Recall:** W^{ℓ} represents the matrix of weights connecting layer $\ell-1$ to layer ℓ .
- **Recall:** δ^L represents the error gradients with respect to the activations at the last layer.

$$\nabla_{W^\ell} \mathbf{e} = \mathsf{Diag}(\phi^{\ell'}) \delta^\ell (\mathbf{a}^{\ell-1})^\top = \mathsf{Diag}(\phi^{\ell'}) V^\ell \dots V^L \delta^L (\mathbf{a}^{\ell-1})^\top$$

- **Recall:** W^{ℓ} represents the matrix of weights connecting layer $\ell-1$ to layer ℓ .
- **Recall:** δ^L represents the error gradients with respect to the activations at the last layer.
- Hence, the error gradients with respect to weights W^{ℓ} depend on the error gradients δ^L at the last layer.

$$\nabla_{W^\ell} \mathbf{e} = \mathsf{Diag}(\phi^{\ell'}) \delta^\ell(\mathbf{a}^{\ell-1})^\top = \mathsf{Diag}(\phi^{\ell'}) V^{\ell+1} \dots V^L \delta^L(\mathbf{a}^{\ell-1})^\top$$

- **Recall:** W^{ℓ} represents the matrix of weights connecting layer $\ell-1$ to layer ℓ .
- Recall: δ^L represents the error gradients with respect to the activations at the last layer.
- Hence, the error gradients with respect to weights W^{ℓ} depend on the error gradients δ^L at the last layer.
- **Or** the error gradients at the last layer flow back into the previous layers.

Generalized setting:

$$\nabla_{W^{\ell}} e = \mathsf{Diag}(\phi^{\ell'}) \delta^{\ell}(a^{\ell-1})^{\top} = \mathsf{Diag}(\phi^{\ell'}) V^{\ell+1} \dots V^{L} \delta^{L}(a^{\ell-1})^{\top}$$

- Recall: W^ℓ represents the matrix of weights connecting layer $\ell-1$ to layer ℓ .
- **Recall:** δ^L represents the error gradients with respect to the activations at the last layer.
- Hence, the error gradients with respect to weights W^ℓ depend on the error gradients δ^L at the last layer.
- **Or** the error gradients at the last layer flow back into the previous layers.

This error gradient flow back is called Backpropagation!

Generalized setting:

$$\nabla_{W^{\ell}} \mathbf{e} = \mathsf{Diag}(\phi^{\ell'}) \delta^{\ell}(a^{\ell-1})^{\top} = \mathsf{Diag}(\phi^{\ell'}) \mathbf{V}^{\ell+1} \dots \mathbf{V}^{L} \delta^{L}(a^{\ell-1})^{\top}$$

• If $V^{\ell+1} \dots V^L \delta^L$ leads to large values (in magnitude), then $\nabla_{W^\ell} e$ gradients can also become large (in magnitude).

$$\nabla_{W^\ell} \mathbf{e} = \mathsf{Diag}(\phi^{\ell'}) \delta^\ell(\mathbf{a}^{\ell-1})^\top = \mathsf{Diag}(\phi^{\ell'}) \textcolor{red}{V^{\ell+1}} \dots \textcolor{blue}{V^L} \delta^L(\mathbf{a}^{\ell-1})^\top$$

- If $V^{\ell+1} \dots V^L \delta^L$ leads to large values (in magnitude), then $\nabla_{W^\ell} e$ gradients can also become large (in magnitude).
- Similarly, if $V^{\ell+1} \dots V^L \delta^L$ leads to small values (in magnitude), then $\nabla_{W^\ell} e$ gradients can also approach zero (in magnitude).

$$\nabla_{W^\ell} \mathbf{e} = \mathsf{Diag}(\phi^{\ell'}) \delta^\ell(\mathbf{a}^{\ell-1})^\top = \mathsf{Diag}(\phi^{\ell'}) \textcolor{red}{\mathbf{V}^{\ell+1}} \dots \textcolor{red}{\mathbf{V}^L} \textcolor{black}{\delta^L}(\mathbf{a}^{\ell-1})^\top$$

- If $V^{\ell+1} \dots V^L \delta^L$ leads to large values (in magnitude), then $\nabla_{W^\ell} e$ gradients can also become large (in magnitude). This problem is called exploding gradient problem.
- Similarly, if $V^{\ell+1} \dots V^L \delta^L$ leads to small values (in magnitude), then $\nabla_{W^\ell} e$ gradients can also approach zero (in magnitude). This problem is called vanishing gradient problem.

$$\begin{split} \nabla_{W^{\ell}} e &= \mathsf{Diag}(\phi^{\ell'}) \delta^{\ell}(a^{\ell-1})^{\top} = \mathsf{Diag}(\phi^{\ell'}) \textcolor{red}{V^{\ell+1} \dots V^{L}} \delta^{L}(a^{\ell-1})^{\top} \\ \Longrightarrow \|\nabla_{W^{\ell}} e\|_{2} &\leq \|\mathsf{Diag}(\phi^{\ell'})\|_{2} \|\textcolor{red}{V^{\ell+1} \dots V^{L}} \delta^{L}\|_{2} \|(a^{\ell-1})^{\top}\|_{2} \end{split}$$

- If $V^\ell+1\ldots V^L\delta^L$ leads to large values (in magnitude), then $\nabla_{W^\ell}e$ gradients can also become large (in magnitude). This problem is called exploding gradient problem.
- Similarly, if $V^{\ell+1} \dots V^L \delta^L$ leads to small values (in magnitude), then $\nabla_{W^\ell} e$ gradients can also approach zero (in magnitude). This problem is called vanishing gradient problem.

$$\begin{split} \nabla_{W^{\ell}}e &= \mathsf{Diag}(\phi^{\ell'})\delta^{\ell}(a^{\ell-1})^{\top} = \mathsf{Diag}(\phi^{\ell'}) \textcolor{red}{V^{\ell+1} \dots V^{L}} \delta^{L}(a^{\ell-1})^{\top} \\ \mathsf{recall:} \delta^{L} &= \begin{bmatrix} \frac{\partial e}{\partial a_{1}^{L}} \\ \vdots \\ \frac{\partial e}{\partial a_{N_{L}}^{L}} \end{bmatrix} \end{split}$$

- $\frac{\partial e}{\partial a_i^L} =: \frac{\partial e}{\partial \hat{y}_i}$ denotes the gradient term with respect to a *i*-th neuron in the last (*L*-th) layer.
- So far we have considered squared error function.
- We will see more examples of constructing appropriate error functions and the corresponding gradient computation.

- Input: Training Data $D = \{(x^i, y^i)\}_{i=1}^S$, $x^i \in \mathcal{X} \subseteq \mathbb{R}^d$, $y \in \mathcal{Y}, \ \forall i \in \{1, \dots, S\}$ and MLP architecture parametrized by weights w.
- Aim of training MLP: To learn a parametrized map $h_w: \mathcal{X} \to \mathcal{Y}$ such that for the training data D, we have $y^i = h_w(x^i), \ \forall i \in \{1, \dots, S\}.$
- Aim of using the trained MLP model: For an unseen sample $\hat{x} \in \mathcal{X}$, predict $\hat{y} = h_w(\hat{x}) = MLP(\hat{x}; w)$.

- 4日 > 4日 > 4目 > 4目 > 1目 - 990

Methodology for training MLP

- Design a suitable loss (or error) function $e: \mathcal{Y} \times \mathcal{Y} \to [0, +\infty)$ to compare the actual label y^i and the prediction \hat{y}^i made by MLP using $e(y^i, \hat{y}^i)$, $\forall i\{1, \dots, S\}$.
- Usually the error is parametrized by the weights w of the MLP and is denoted by $e(\hat{y}^i, y^i; w)$.
- Use Gradient descent/SGD/mini-batch SGD to minimize the total error:

$$E = \sum_{i=1}^{S} e(\hat{y}^{i}, y^{i}; w) =: \sum_{i=1}^{S} e^{i}(w).$$

P. Balamurugan

Deep Learning - Theory and Practic

Stochastic Gradient Descent for training MLP

SGD Algorithm to train MLP

- Input: Training Data $D = \{(x^i, y^i)\}_{i=1}^S$, $x^i \in \mathcal{X} \subseteq \mathbb{R}^d$, $y^i \in \mathcal{Y}$, $\forall i$; MLP architecture, max epochs K, learning rates γ_k , $\forall k \in \{1, \ldots, K\}$.
- Start with $w^0 \in \mathbb{R}^d$.
- For $k = 0, 1, 2, \dots, K$
 - ► Choose a sample $j_k \in \{1, ..., S\}$.
 - Find $\hat{y}^{j_k} = MLP(x^{j_k}; w^k)$. (forward pass)
 - Compute error $e^{j_k}(w^k)$.
 - Compute error gradient $\nabla_w e^{j_k}(w^k)$ using backpropagation.
 - ▶ Update: $w^{k+1} \leftarrow w^k \gamma_k \nabla_w e^{j_k} (w^k)$.
- **Output:** $w^* = w^{K+1}$.

4□▶ 4□▶ 4 □ ▶ 4 □ ▶ 3□ ♥ 9 0 0

Recall forward pass: For an arbitrary sample (x, y) from training data D, and the MLP with weights $w = (W^1, W^2, \dots, W^L)$, the prediction \hat{y} is computed using forward pass as:

$$\hat{y} = \mathsf{MLP}(x; w) = \phi(W^{L}\phi(W^{L-1}\dots\phi(W^{1}x)\dots)).$$

4日 → 4日 → 4 目 → 4 目 → 9 Q ○

Recall backpropagation: For an arbitrary sample (x,y) from training data D, and the MLP with weights $w=(W^1,W^2\ldots,W^L)$, the error gradient with respect to weights at ℓ -th layer is computed as:

$$abla_{W^\ell} e = \mathsf{Diag}(\phi^{\ell'}) \delta^\ell (a^{\ell-1})^{ op}$$

Recall backpropagation: For an arbitrary sample (x,y) from training data D, and the MLP with weights $w=(W^1,W^2\ldots,W^L)$, the error gradient with respect to weights at ℓ -th layer is computed as:

$$\nabla_{W^\ell} e = \mathsf{Diag}(\phi^{\ell'}) \delta^\ell (a^{\ell-1})^\top$$
 where $\mathsf{Diag}(\phi^{\ell'}) = \begin{bmatrix} \phi'(z_1^\ell) & & & \\ & \ddots & & \\ & & \phi'(z_{N_\ell}^\ell) \end{bmatrix}$, $\delta^\ell = \begin{bmatrix} \frac{\partial e}{\partial z_1^\ell} \\ \vdots \\ \frac{\partial e}{\partial z_\ell^\ell} \end{bmatrix}$ and $a^{\ell-1} = \begin{bmatrix} a_1^{\ell-1} \\ \vdots \\ a_{N_\ell-1}^\ell \end{bmatrix}$.

Recall backpropagation: For an arbitrary sample (x,y) from training data D, and the MLP with weights $w=(W^1,W^2\ldots,W^L)$, the error gradient with respect to weights at ℓ -th layer is computed as:

$$abla_{W^\ell} e = \mathsf{Diag}(\phi^{\ell'}) \delta^\ell (a^{\ell-1})^\top = \mathsf{Diag}(\phi^{\ell'}) V^{\ell+1} V^{\ell+2} \dots V^L \delta^L (a^{\ell-1})^\top$$
where $V^{\ell+1} = (W^{\ell+1})^\top \mathsf{Diag}(\phi^{\ell+1'})$.

(ロト (個) (量) (量) 量 めの()

P. Balamurugan

- Task considered so far: Y = {+1, −1}.
- Corresponds to two-class (or binary) classification.
- Usually a single neuron at the last (L-th) layer of MLP, with logistic sigmoid function $\sigma: \mathbb{R} \to (0,1)$ with $\sigma(z) = \frac{1}{1+e^{-z}}$, for some $z \in \mathbb{R}$.
- **Prediction:** $MLP(\hat{x}; w) = \sigma(W^L a^{L-1})$, followed by a thresholding function.

- 4 ロ ト 4 週 ト 4 差 ト 4 差 ト - 差 - 夕 Q C

References

Gradient Descent introduced in:

 Cauchy, A.: Méthode générale pour la résolution des systèmes d'équations simultanées. Comptes rendus des séances de l'Académie des sciences de Paris 25, 536–538, 1847.

Idea of SGD introduced in:

H. Robbins, and S. Monro: A stochastic approximation method.
 Annals of Mathematical Statistics. Vol. 22(3), pp. 400-407, 1951.

Backpropagation introduced in:

- P. J. Werbos: Beyond regression: new tools for prediction and analysis in the behavioral sciences. PhD Thesis. Harvard University, 1974.
- D. E. Rumelhart, G. E. Hinton, R. J. Williams: Learning internal representations by error propagation. Chapter in Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Vol I: Foundation, MIT Press, 1986.

Acknowledgments:

CalcPlot3D website for plotting.

