The other part follows from this since $\omega(A) = \omega(m^{-1} \cdot m \cdot A)$ $\leq \|m^{-1}\|_{\infty} \omega(m \cdot A)$.

In the following lemma a condition (P') is introduced which is dual to the positive minimum principle.

<u>Lemma</u> 1.21. Let A be the generator of a strongly continuous positive semigroup on C(K). Then for $f \in C(K)_{\perp}$, $0 \le \mu \in D(A')$

(P') $\langle f, \mu \rangle = 0$ implies $\langle f, A' \mu \rangle \ge 0$.

Proof.
$$\langle f, A' \mu \rangle = \lim_{t \to 0} \frac{1}{t} \langle T(t) f - f, \mu \rangle = \lim_{t \to 0} \frac{1}{t} \langle T(t) f, \mu \rangle \ge 0$$
.

Example 1.22. Let K = [-1,0]. Let $\alpha \in \mathbb{R}$ and μ be a measure on [-1,0] such that $\mu(\{0\}) = 0$. Define the operator A on C[-1,0] by Af = f' with domain $D(A) = \{f \in C^1[-1,0] : f'(0) = \alpha f(0) + \langle f,\mu \rangle \}$.

Claim: A is the generator of a positive semigroup if and only if $\mu \, \geqq \, 0$.

Proof of the claim. Assume that A generates a positive semigroup. By the definition of A one has $\delta_O \in D(A')$ and $A'\delta_O = \alpha\delta_O + \mu$. So it follows from (P') that $\langle f, \mu \rangle = \langle f, A'\delta_O \rangle \geq 0$ for all $f \in C[-1, 0]_+$ such that f(0) = 0. By Lemma 1.2 this implies that $\mu \geq 0$.

In order to show the converse assume that $~\mu~\geqq~0$.

- a) We show that A is densely defined. Consider the normed space $F=C^1[-1,0]$ with the supremum norm. Then $\psi:F\to\mathbb{R}$ given by $\psi(f)=f'(0)-\alpha f(0)-\langle f,\mu\rangle$ is a discontinuous linear form on F . Consequently $D(A)=\ker\psi$ is dense in F . Since F is dense in C[-1,0], D(A) is dense in C[-1,0] as well.
- b) A satisfies (P) (see Def. 1.5). In fact, let $f \in D(A)_+$ and $x \in [-1,0]$ such that f(x)=0. It is clear that $Af(x)=f'(x) \ge 0$ if x<0. But if f(0)=0, then $Af(0)=f'(0)=\langle f,\mu\rangle \ge 0$ since $f \in D(A)$.
- c) We show that $(\lambda-A)$ is bijective for $\lambda>\alpha+\|\mu\|$. Let $g\in C[-1,0]$. The solutions of the equation $\lambda f-f'=g$ $(f\in C[-1,0])$ are given by $f(x)=e^{\lambda x}[\int_X^0e^{-\lambda y}g(y)\,dy+c]$ where $c\in \mathbb{R}$. Moreover, $f\in D(A)$ if and only if
- (2.8) $c(\lambda \alpha \int_{-1}^{0} e^{\lambda x} d\mu(x) = g(0) + \int_{-1}^{0} e^{\lambda x} \int_{x}^{0} e^{-\lambda y} g(y) dy d\mu(x)$.