

HISTORICAL SIDEBAR arithmetic of U-1 is as old as the Italian cubic-wranglers (Bombelli et al) Here is a fascinating attempt to draw P due to Wallis 1673: $\chi^2 + 2b\chi + c^2 = 0 \implies \chi = -b \pm \sqrt{b^2 - c^2}$ (b, c ≥0) $-b \pm (\sqrt{-1}) \sqrt{c^2-b^2}$ (b=c) (e>b walls) (b>c) (C>b, JC2-1 = Wallist movie, fixed b - Modern movie, {(-b= + \frac{1}{t} \frac{1^2-6^2}{t})} fixed b

de Moivres Formula

branch of fon: fon

sivele valued the

sivele valued the

Easy to see that z=reio = zn=(rn)eino.

Powers + Roots.

(so can derive double, triple angle formules painlessly!)

How about not roots?

If zn=w (z=relo, w=seld) then ro=s

So win is multivalued: and no = or up to 2TTL

r = 15 well-def, but $\theta = \frac{\alpha}{n} + \frac{2\pi k}{n}$ keZ ($n\theta - \alpha \in 2\pi Z$)
(positive real) are all valid arguments.

Abuse of notation: w'h denoks this set. { Vs. e (+ 2R)

In particular, e = wh ket?

are the ROOTS OF UNITY. Win called

PRINCIPAL ROOT.

Duality of position and motion:
notational symmetries of regular n-gon
form a regular n-gon

So for arbitrary w'n find principal root, Then draw circle of that modulus and inscribe 11-gon.

in recap from last time:

- equality for rect. coords. is equality of x, y

-equality for polar coords, is seguality of r

term PRINCIPAL ARGUMENT of 2

-π< ← ± π

(multival.)

arg (2,21) = arg 2, + arg 22

[7, ₹2] = |z, |·|22]

Visualizing Functions, Part 1 of Many Example 0 Fix a 206 C consider 2 -> 202 Complex multiplication by 80 = 100 180. ways of visualizmy f: C-C effect: dilaton by ro, (A) graph living in IR4 base 2, tip 2,+22 (difference 22) (B) modulus graph in IR3 (c) argument graph in IR3 H) base 202, tip 20(2,+22)
(difference 2022) (B) pair of planes: input + output curves (E) pair of planes: input + output do mains so vectors in arbitrary locations of arbitrary lengths are also stretched by to, rotated by to (ie, argument incremented by to) (F) homotopy/sliding image This is a globally uniform similarity. (G) vector field In fact, if 20 = a+bi, then 1+0: +> a+bi ie (a-b) H) colormap $E\times 1$ $2\mapsto 2^2$. Put $w = 2^2$ (det = r^2) Then | u=x2-y2 , |v=2xy ...

Next: basi - topology notions; Stereographic Projection basic n6hd BE(20) = {260 | 12-20128} punchered B*(30) = { 200 | 0 < 12-20 | E } interior, open closed bounded domain region

S=5° 5° open contandin (not nec. open)

(Scorters all accompts) So = { 265 | 3 600 st & (2) C 5} [nonampty path-coun.] Steveographic projection from) ips.

that is (= bijedire

(= preserves conresponce,

maps open to open

this is called a HOMEDMORPHISI gires a map
from S2 \ {N3 -> R2 we if we add one extra point to BAC, called 00, then $\hat{C} := C \cup 5003$ corresponds bijectucly to S^2 setuise. How about convagance? His easy to see that $p_n \rightarrow N$ on s^2 iff p_n eventually enter every $B_E(N)$ let p_n eventually leave every $B_F(S)$.

In fact $B_E(N) = B_F(S)$ for some r = r(E). So neighborhoods of as in Remannisphere Care extensors of Br(0). lines in a marches through N on 32

			Limits and Continuity	Lectus 4
Limit example tronexample				
(is)		(10)	2->20	ns for any seg 2n > 20, f(2n) - w-
(\$		3		
UM -	1	um =	the	ne converging means enterny all nahaso.
271		240		$70 \exists N \text{ st } n > N \Rightarrow Z_n \in B_{\epsilon}(Z_n)$
let p be small	C number	blc & C).e. f(z) tw means	¥ ∈ ∃ σ ← + + + + + + + + + + + + + + + + + +
				26 By (20) ⇒ f(2) 6 Be(w).
7/12	<u>-</u>)	but angle depends		
1+0 1-3	======================================	but angle depends	tary Obs: set conv.	n C Re, Im perts conv. n R.
	half the length of		limit laws carry over; ne	
	P 1		0 lm f(z) = 00 =>	lm f(2) =0. (5) f(2) -> 00
			2300	Con f(\frac{1}{2})=w suggest nothing's special about as
				and to the males it
			Continuity:	worth/Looks just like o
			$\lim_{z\to 0} f(z) = f(z_0).$	
			2-> 20	
			- y	open condition:
				f(20) \$0 front => 3 E>0 st
				2 € B _€ (20)
			Ev 31 7 12	0 00 f(2)+0
		= -e-i0		
			== 1=12 so 1= ==	o orientation—preserving!
			, 5 35	
			= multiplies le	yt by 1312 scholing prenon
				legte to recipocal.
			Swa PC IN	side of
			M D for a	side of land as anut to regard.
			4	
			V L	
			unit crele	

let's see that $2 \mapsto \frac{1}{2}$, $2 \mapsto \frac{1}{2}$ preserves)

General form: (circles + bros). A (x2+y2) + Bx+Cy + D = 0 , AB,C, D = R, B2+c2>4AD $A |z|^2 + B \cdot Re(z) + C \cdot Im(z) + D = 0$ A == + B'(=+=)+C'(2-=)+ D =0 $A z \overline{z} + B' z + C'' \overline{z} + D = 0$ if $w = \frac{1}{z}$, then $w \overline{w} = \overline{z} \overline{\overline{z}}$ A + B" + c" + D = A + B" + C" + D w = 0 Note: same clearly true of affine maps 2 +> 202 +wo (these also present so) [MOBIUS TRANSFORMATIONS] $f(z) = \frac{az+b}{cz+d}$, $a,b,c,d\in \mathbb{C}$ if ad=bc, $thois f(z) = \frac{a}{c}$. · a topic (a, b, c, d) and (ba, bb, bc, kd) gree the same map.

· by factoring out \(\sum_{ad-bc} \); can assume who g

(then there's |-1 cor by """ mips and tuples) $W = \frac{a+b}{c+d} \implies c+ dw - a+b=0$ $A+v+B+C+D=0 \quad \text{suggestive}.$ · w= 9 + bc-ad 1 so f= aff_ o mv o aff, So preserves C-circles.

i.e., continuous m Ĉ · uell-def n 00: f(00) = a , f(-d) = 00 p preserves R if a,b,c,delR · composition is nice! note identity u 12+0 02+1 note w= a= 16 => C=w+dw = a=+6 $\Rightarrow (cw-a) = b-dw \Rightarrow = -dw+b$ cw-aone easily verifies that matix mult is "faithful" > very nice subgroup w/ R-coeffs, det=0] called $PSL_2IR = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a,c,d \in \mathbb{R}, ad-bc=1 \right\}$ These preserve iR, IH, and contain dilators, rotations, axial translations. generally can identify Möb with PSL2C = SL2C/ · transitivity = SL2 C/+I - PSL2C is triply - transitive on C - PSLIR is triply -transitive or IR 9 -20 Proof $Of(z) = [z, q, r, s] := \frac{(z-z)(r-s)}{(z-s)(r-q)}$ (h->) 5 00 So (2, a', b', c') o (2, a, b, c] does the trich. (2) Fixing 0,1,00 => ld. straightforward algebraically. geometricals, any z is on 3 civelo (w/o,1; o,0; 1,0) So Coops-needs ande-preservis