Visualization Analysis & Design

Tamara Munzner

Department of Computer Science University of British Columbia

NASA Goddard Information Science and Technology Colloquium December 14 2016, Greenbelt MD

http://www.cs.ubc.ca/~tmm/talks.html#vad16nasa

@tamaramunzner

Why analyze?

- imposes a structure on huge design space
 - -scaffold to help you think systematically about choices
 - -analyzing existing as stepping stone to designing new

SpaceTree

[SpaceTree: Supporting Exploration in Large Node Link Tree, Design Evolution and Empirical Evaluation. Grosjean, Plaisant, and Bederson. Proc. InfoVis 2002, p 57-64.]

TreeJuxtaposer

[Tree]uxtaposer: Scalable Tree Comparison Using Focus +Context With Guaranteed Visibility. ACM Trans. on Graphics (Proc. SIGGRAPH) 22:453-462, 2003.]

What?

Tree

Why?

Actions

→ Present → Locate → Identify

→ Path between two nodes

How?

→ SpaceTree

→ Encode → Navigate → Select → Filter

→ Encode → Navigate → Select → Arrange

Analysis framework: Four levels, three questions

- domain situation
 - -who are the target users?
- abstraction
 - -translate from specifics of domain to vocabulary of vis

[A Nested Model of Visualization Design and Validation. *Munzner. IEEETVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).*]

- what is shown? data abstraction
 - often don't just draw what you're given: transform to new form
- why is the user looking at it? task abstraction
- idiom
- how is it shown?
 - visual encoding idiom: how to draw
 - interaction idiom: how to manipulate
- algorithm
 - –efficient computation

domain

abstraction

algorithm

idiom

[A Multi-Level Typology of Abstract Visualization Tasks

Brehmer and Munzner. IEEETVCG 19(12):2376-2385, 2013 (Proc. InfoVis 2013).]

Why is validation difficult?

different ways to get it wrong at each level

What? Why? How?

Datasets

Attributes

- Data Types
 - → Items
- → Attributes
- → Links
- → Positions
- → Grids
- **Attribute Types**
 - → Categorical

- → Ordered
 - → Ordinal

→ Quantitative

Ordering Direction

→ Data and Dataset Types

- Dataset Types
 - → Tables

Items

(rows)

→ Networks

→ Diverging

→ Cyclic

→ Multidimensional Table

→ Trees

Attributes (columns)

Cell containing value

- Attributes
- → Geometry (Spatial)

→ Dataset Availability

→ Dynamic

Types: Datasets and data

- Dataset Types
 - → Tables

→ Networks

- Attribute Types
 - → Categorical

- → Ordered
 - → Ordinal

Why?

Targets

Analyze

→ Consume

- → Produce
 - → Annotate
- → Record
- → Derive

Search

• {action, target} pairs

- —discover distribution
- -compare trends
- -locate outliers
- browse topology

	Target known	Target unknown
Location known	·.••• Lookup	·.· Browse
Location unknown	< ˙ ૣ⊙.> Locate	< O.> Explore

Query

<u>•</u>

All Data

Attributes

Network Data

→ Topology

→ Paths

Spatial Data

→ Shape

Actions: Analyze, Query

Analyze

- analyze
 - -consume
 - discover vs present
 - -aka explore vs explain
 - enjoy
 - aka casual, social
 - -produce
 - annotate, record, derive
 - query
 - -how much data matters?
 - one, some, all
 - independent choices

→ Discover

→ Present

→ Enjoy

- → Produce
 - → Annotate

→ Record

d **€** → Derive

- Query
 - → Identify

→ Compare

→ Summarize

Derive: Crucial Design Choice

- don't just draw what you're given!
 - -decide what the right thing to show is
 - -create it with a series of transformations from the original dataset
 - -draw that
- one of the four major strategies for handling complexity

 $trade\ balance = exports - imports$

Derived Data

Targets

- **All Data**
 - → Trends
- → Outliers
- → Features

- **Attributes**
 - → One
 - → Distribution

 - → Extremes

- → Many
 - → Dependency → Correlation
- → Similarity

→ Topology

→ Paths

- **Spatial Data**
 - → Shape

How?

Encode

→ Express

→ Order

→ Use

Why? How? Map

from categorical and ordered attributes

→ Color

→ Size, Angle, Curvature, ...

→ Shape

→ Motion Direction, Rate, Frequency, ...

Manipulate

→ Juxtapose

Facet

Reduce

→ Select

→ Partition

Aggregate

→ Navigate

→ Superimpose

→ Embed

Encoding visually with marks and channels

- analyze idiom structure
 - -as combination of marks and channels

mark: line mark: point mark: point mark: point

size (area)

Channels: Rankings

Magnitude Channels: Ordered Attributes Position on common scale Position on unaligned scale Length (1D size) Tilt/angle Area (2D size) Depth (3D position) Color luminance Color saturation Curvature Volume (3D size)

- expressiveness principle
 - -match channel and data characteristics
- effectiveness principle
 - encode most important attributes with highest ranked channels

How?

Encode

→ Express

→ Order

→ Use

Why? How? Map

from categorical and ordered attributes

→ Color

→ Size, Angle, Curvature, ...

→ Motion Direction, Rate, Frequency, ...

Manipulate

Facet

Reduce

→ Change

→ Juxtapose

The Maria Station of the State of the State

→ Filter

→ Select

→ Partition

Aggregate

→ Navigate

→ Superimpose

→ Embed

ldiom: Linked highlighting

- see how regions contiguous in one view are distributed within another
 - -powerful and pervasive interaction idiom
- encoding: different
- data: all shared

System: **EDV**

[Visual Exploration of Large Structured Datasets.Wills. Proc. New Techniques and Trends in Statistics (NTTS), pp. 237–246. IOS Press, 1995.]

ldiom: bird's-eye maps

System: Google Maps

- encoding: same
- data: subset shared
- navigation: shared
 - -bidirectional linking
- differences
 - -viewpoint
 - -(size)
- overview-detail

[A Review of Overview+Detail, Zooming, and Focus+Context Interfaces. Cockburn, Karlson, and Bederson. ACM Computing Surveys 41:1 (2008), 1–31.]

Idiom: Small multiples

System: Cerebral

- encoding: same
- data: none shared
 - different attributesfor node colors
 - -(same network layout)
- navigation: shared

[Cerebral:Visualizing Multiple Experimental Conditions on a Graph with Biological Context. Barsky, Munzner, Gardy, and Kincaid. IEEE Trans. Visualization and Computer Graphics (Proc. InfoVis 2008) 14:6 (2008), 1253–1260.]

Idiom: boxplot

- static item aggregation
- task: find distribution
- data: table
- derived data
 - −5 quant attribs
 - median: central line
 - lower and upper quartile: boxes
 - lower upper fences: whiskers
 - values beyond which items are outliers
 - -outliers beyond fence cutoffs explicitly shown

[40 years of boxplots. Wickham and Stryjewski. 2012. had.co.nz]

More Information

<u>@tamaramunzner</u>

- this talk
 http://www.cs.ubc.ca/~tmm/talks.html#vad16nasa
- book page (including tutorial lecture slides)
 http://www.cs.ubc.ca/~tmm/vadbook
 - –20% promo code for book+ebook combo: HVN17
 - http://www.crcpress.com/product/isbn/9781466508910
 - illustrations: Eamonn Maguire
- papers, videos, software, talks, courses <u>http://www.cs.ubc.ca/group/infovis</u> <u>http://www.cs.ubc.ca/~tmm</u>

Visualization Analysis and Design.