GRADUATION THESIS

A social login solution for Web3 using Shamir's secret sharing and verified DKG

NGUYEN TUAN MINH

minh.nt184294@sis.hust.edu.vn

Major: ICT Global

Specialization: Information Technology

Supervisor: Ph.D. Thanh-Chung Dao

Signature

Department: Computer Engineering

School: Information and Communications Technology

Requirements for the thesis

Student information

Student name: Nguyen Tuan Minh

Tel: 0915871399 Email: minh.nt184294@sis.hust.edu.vn

Class: ICT02.K63 Program: Global ICT

This thesis is performed at: BKC Labs

Goal of the thesis

This thesis focus on addressing the challlenges associated with decentralized identity and authentication in blockchain applications, providing developers with a convenient and standardized way to implement secure and user-friendly authentication

mechanism.

Main tasks

In this thesis, I will disscuss blockchain, smart contracts, and social login for Web3 Application. Next, I will describe in detail the architecture and design of the Social login system using Shamir's secret sharing and verified DKG. Lastly, i will conduct

some experiments to evaluate and querying the efficacy of the solution.

Declaration of student

Nguyen Tuan Minh - hereby attests that the work and presentation in this thesis were carried out by myself under the direction of Ph.D. Thanh-Chung Dao. All results presented in this thesis are authentic and have not been plagiarized. All references in this thesis, including images, tables, figures, and quotations, are cited in the bibliography in a plain and comprehensive manner. I will assume full responsibility for any copy that violates school regulations, even if it is only one.

Advisor's confirmation of the completion and defense permission

Hanoi, Ngày 3 tháng 8 năm 2023 Advisor's signature

Ph.D. Thanh-Chung Dao

i

ACKNOWLEDGMENTS

I would like to express my profound appreciation to my family, friends and significant other for their unwavering support and patince throughout the process of writing my thesis. Their love, encouragement, and confidence in my abilities have been an inexhaustible source of fortitude and inspiration for me.

Thank you for always being there for me, providing me with a nurturing enviroment, and teaching me the importance of perserverance and diligence. Your unconditional affection and encouragement have inspried me to pursue my academic objectives.

Thank you for solid friendship and for being an unending source of motivation. During the difficult times of thesis writing, your presence, laughter, and words of encouragement have brought me pleasure and helped me maintain a healthy worklife balance.

Lastly, i would like to express my sincerest gratitude to my supervisor, Ph.D. Thanh-Chung Dao. Your direction, expertise and commitment have been indispensable to my research and academic development. Your guidance has not only increased my expertise in the field, but has also inspired me to achieve new heights of intellectual inquiry. Even when the research appeared daunting, your perseverance, encouragement, and unwavering faith in my ability propelled me forward. I am extremely appreciative of the opportunities you have afforded me and the invalueable lessons I have gained under your direction. Thank you for being an outstanding mentor and for your unwavering support throughout the process of writing my thesis.

ABSTRACT

The blockchain has emerged as a revolutionary technology with the potential to transform numerous industries by providing a decentralized and transparent platform for recording transactions and data securely. The administration of identities and authentication remains a significant challenge within the blockchain ecosystem, despite its many benefits. In order to resolve this issue, it is necessary to create software that bridges the gap between conventional web authentication methods and blockchain-based systems. This bridge software would facilitate a more user-friendly and accessible blockchain ecosystem, ensuring that users can access blockchain-based services and applications with seamless identity verification. Blockchain is renowned for its rigorous security features, and any software implementation must maintain this level of security while integrating with standard web authentication protocols. A failure to adequately resolve security concerns could undermine the trustworthiness of blockchain technology. Innovative approaches, such as Shamir's Secret Sharing (SSS) and Distributed Key Generation (DKG), have considerable potential for addressing these issues. SSS is a cryptographic technique that divides a secret into multiple portions before distributing them to participants. This strategy ensures that no single entity has complete access to the secret, thereby enhancing security and reducing the likelihood of unauthorized access. DKG enables the collaborative generation of cryptographic keys without requiring a singular trusted party. This distributed method adds another layer of security and decentralization to the authentication procedure. I intend to develop a social authentication solution for decentralized applications (DApps) using SSS and DKG techniques. This solution would allow users to authenticate using their social network accounts while assuring their privacy and security through the use of secure and distributed authentication protocols. I will design the system architecture, implement the required software components, and assess the solution's performance and efficacy.

Students (Sign and full name)

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION	1
1.1 Motivation	1
1.2 Contributions	2
1.3 Thesis structure	2
CHAPTER 2. BACKGROUND	4
2.1 Blockchain	4
2.1.1 Transactions	5
2.1.2 Blocks	6
2.1.3 Wallet	6
2.1.4 Consensus	7
2.2 Shamir's secret sharing	8
2.3 Distributed Key Generation	9
2.4 Smart contract	11
2.4.1 History and defination	11
2.4.2 Practical use cases	11
2.5 Executor for DApps	12
2.6 Social login for Web3	13
2.6.1 Web3 and Dapps	13
2.6.2 Social login and OAuth	14
2.6.3 Social login benefits DApps	14
CHAPTER 3. SOLUTION	16
3.1 System's characteristics	16
3.2 Overall of system	18
3.2.1 Auth0 connection	19

3.2.2	Requesting encKey for Executors	21
3.2.3	Generating and Storing Shares in Metadata	22
3.3 Asynch	nronous create encKey process	24
СНАРТЕ	R 4. TECHNICAL ISSUES AND DESIGN	26
4.1 Require	ement analysis	26
4.1.1	General usecases diagram	26
4.1.2	Usecase specifications and activity diagrams	27
4.2 Technol	logies	37
4.2.1	Backend	37
4.2.2	Database	39
4.2.3	Frontend	40
4.2.4	Virtualization	41
4.2.5	Rust, wasm and cosmwasm	41
4.3 Diagrar	m design	43
4.3.1	Sequence diagram	43
4.3.2	Package diagram	48
4.3.3	Entity diagram	49
4.4 Messag	ge design	52
4.4.1	Smart contract message	52
4.4.2	JRPC message	55
4.4.3	HTTPS request	60
СНАРТЕ	R 5. THESIS EXPERIMENT & EVALUATION	62
5.1 Testing		62
5.1.1	CommitmentRequest	63
5.1.2	ShareRequest	65
5.1.3	AssignKeyCommitmentRequest	68

5.1.4 AssignKey	71
5.2 Discussion	73
CHAPTER 6. CONCLUSION AND FUTURE WORK	75
6.1 Conclusion	75
6.2 Future work	76
REFERENCE	78

LIST OF FIGURES

Figure 3.1	Overall the system	18
Figure 3.2	Auth0 connection	19
Figure 3.3	Request assign the share	21
Figure 3.4	Generate Reconstruct shares	22
Figure 3.5	Asynchronous create encKey	24
Figure 4.1	General usecases diagram	26
Figure 4.2	Signing up activity	29
Figure 4.3	Signing in activity	31
Figure 4.4	View private key and shares description activity	33
Figure 4.5	Executor contributes in the DKG protocol activity diagram .	35
Figure 4.6	View private key and shares description activity	37
Figure 4.7	Register sequence diagram	43
Figure 4.8	Login sequence diagram	44
Figure 4.9	View share description sequence diagram	45
Figure 4.10	Create encKey sequence diagram	46
Figure 4.11	Assign encKey for user sequence diagram	47
Figure 4.12	Package diagram	48
Figure 4.13	Entity diagram	50
Figure 5.1	Commitment request latency and throughput line chart	64
Figure 5.2	Share request latency and throughput line chart	67
Figure 5.3	AssignKeyCommitment request latency and throughput line	
chart		69
Figure 5.4	AssignKey request latency and throughput line chart	72

LIST OF TABLES

Bảng 4.1	User's usecase description	27
Bảng 4.2	Executor's usecase description	27
Bảng 4.3	Sign up specification	28
Bảng 4.4	Sign in specification	30
Bảng 4.5	View private key and shares description	32
Bảng 4.6	Executor contributes in the DKG protocol	34
Bảng 4.7	Executor assigns key	36
Bảng 4.8	Member entity detail	50
Bảng 4.9	Config entity detail	51
Bảng 4.10	Membershare entity detail	51
Bảng 4.11	RoundInfo entity detail	51
Bảng 4.12	Instantiate message detail	52
Bảng 4.13	ShareDealerMsg detail	53
Bảng 4.14	ShareRowMsg detail	53
Bảng 4.15	UpdateConfigMsg detail	53
Bảng 4.16	AssignKeyMsg detail	54
Bảng 4.17	UpdateVerifierMsg detail	54
Bảng 4.18	RoundInfoResponse detail	54
Bảng 4.19	ConfigResponse detail	55
Bảng 4.20	ListVerifierIdMsg detail	55
Bảng 4.21	ListVerifierIdResponse detail	55
Bảng 4.22	VerifyMemberMsg detail	55
Bảng 4.23	General JPRC request detail	56
Bảng 4.24	General JPRC response detail	57
Bảng 4.25	CommitmentRequest parameters detail	57
Bảng 4.26	CommitmentRequest response value detail	58
Bảng 4.27	ShareResponseRequest parameters detail	58
Bảng 4.28	ShareRespone result value detail	58
Bảng 4.29	AssignKeyCommitmentRequest parameters detail	59
Bảng 4.30	AssignKeyCommitmentResponse value detail	59
Bảng 4.31	AssignKeyRequest parameter detail	59
Bảng 4.32	AssignKeyResponse value detail	50
Bảng 4.33	The https request detail	51
Bảng 4.34	The https response detail	51

Bảng 5.1	10 connections performance	63
Bảng 5.2	100 connections performance	63
Bảng 5.3	1000 connections performance	63
Bảng 5.4	2000 connections performance	64
Bảng 5.5	4000 connections performance	64
Bảng 5.6	8000 connections performance	64
Bảng 5.7	10 connections performance	65
Bảng 5.8	100 connections performance	66
Bảng 5.9	1000 connections performance	66
Bảng 5.10	2000 connections performance	66
Bảng 5.11	4000 connections performance	66
Bảng 5.12	Latency, Request Rate, and Throughput (Continued)	66
Bảng 5.13	8000 connections performance	66
Bảng 5.14	10 connections performance	68
Bảng 5.15	100 connections performance	68
Bảng 5.16	1000 connections performance	68
Bảng 5.17	2000 connections performance	69
Bảng 5.18	4000 connections	69
Bảng 5.19	8000-connections-performance	69
Bảng 5.20	10 connections performance	71
Bảng 5.21	100 connections performance	71
Bảng 5.22	1000 connections performance	71
Bảng 5.23	2000 connections performance	71
Bảng 5.24	4000 connections performance	71
Bảng 5.25	8000 connections performance	71