Binomial Theorem - Class XI

Past Year JEE Questions

Questions

Quetion: 01

If the coefficient of x' in $\left[ax^2 + \left(\frac{1}{bx}\right)\right]^{11}$ equals the coefficient of x' in $\left[ax - \left(\frac{1}{bx^2}\right)\right]^{11}$, then a and b satisfy the relation

A.
$$a - b = 1$$

B.
$$a + b = 1$$

C.
$$\frac{a}{b} = 1$$

$$D. ab = 1$$

Solutions

Solution: 01

Explanation

General term of $\left[ax^2 + \left(\frac{1}{Dx}\right)\right]^{11}$ is T_{r+1} .

$$T_{r+1} = {}^{11}C_r(ax^2)^{11-r}(\frac{1}{bx})^r$$

$$= {}^{11}C_r(a){}^{11} - (b)^{-r}(x){}^{22-5r}$$

For the coefficient of x^7 ,

$$\Rightarrow$$
 22 - 3r = 7

$$\Rightarrow$$
 r = 5

So coefficient of $x^7 = {}^{11}C_5(a)^6(b)^{-5}.....(1)$

Now General term of $\left[ax - \left(\frac{1}{Dx^2}\right)\right]^{11}$ is T_{r+1} .

$$T_{r+1} = {}^{1}{}^{1}C_{r}(ax)^{1}{}^{1} - (-\frac{1}{bx})^{r}$$

$$= {}^{1}{}^{1}C_{r}(a){}^{1}{}^{1}-(-1)^{r}(b){}^{-r}(x){}^{1}{}^{1}-(x){}^{-2r}$$

For the coefficient of x^{-7} ,

$$11 - 3r = -7$$

$$\Rightarrow$$
 r = 6

:. Coefficient of
$$x^{-7} = {}^{1}{}^{1}C_{6}(a)^{5}(-1)^{6}(b)^{-6}$$

According to question,

Coefficient of x^7 = Coefficient of x^{-7}

$$\Rightarrow {}^{11}C5(a)^{6}(b)^{-5} = {}^{11}C6(a)^{5}(-1)^{6}(b)^{-6}$$

$$\Rightarrow ab = 1$$