# Pymaceuticals Inc.

#### **Analysis**

Add your analysis here.

```
In [1]: # Dependencies and Setup
        import matplotlib.pyplot as plt
        import pandas as pd
        import scipy.stats as st
        # Study data files
        #mouse_metadata_path = r'C:\Users\user\Downloads\starter_Code(3)\Starter_Code\Pymac
        #study_results_path = r'C:\Users\user\Downloads\starter_Code(3)\Starter_Code\Pymace
        # Study data files
        mouse_metadata_path = "data/Mouse_metadata.csv"
        study_results_path = "data/Study_results.csv"
        # Read the mouse data and the study results
        mouse_metadata = pd.read_csv(mouse_metadata_path)
        study_results = pd.read_csv(study_results_path)
        # Combine the data into a single DataFrame
        combined_data = pd.merge(mouse_metadata, study_results, on='Mouse ID')
        combined_data = combined_data.sort_values(by="Timepoint", ascending=True)
        # Display the data table for preview
        combined_data.head()
```

Out[1]:

|      | Mouse<br>ID | Drug<br>Regimen | Sex    | Age_months | Weight<br>(g) | Timepoint | Tumor<br>Volume<br>(mm3) | Metastatic<br>Sites |
|------|-------------|-----------------|--------|------------|---------------|-----------|--------------------------|---------------------|
| 0    | k403        | Ramicane        | Male   | 21         | 16            | 0         | 45.0                     | 0                   |
| 1529 | s619        | Stelasyn        | Male   | 22         | 30            | 0         | 45.0                     | 0                   |
| 558  | a818        | Naftisol        | Female | 12         | 28            | 0         | 45.0                     | 0                   |
| 1531 | t198        | Propriva        | Male   | 22         | 26            | 0         | 45.0                     | 0                   |
| 551  | a788        | Zoniferol       | Male   | 5          | 30            | 0         | 45.0                     | 0                   |

```
In [50]: # Checking the number of mice.
mouse_count = combined_data['Mouse ID'].unique().shape[0]
print(mouse_count)
249
```

In [4]: # Our data should be uniquely identified by Mouse ID and Timepoint
# Get the duplicate mice by ID number that shows up for Mouse ID and Timepoint.

duplicates=combined\_data[combined\_data.duplicated(["Mouse ID", "Timepoint"], False duplicates["Mouse ID"].unique()

Out[4]: array(['g989'], dtype=object)

In [6]: # Get all the data for the duplicate mouse IDs
 combined\_data[combined\_data["Mouse ID"]=="g989"]

Out[6]:

|     | Mouse<br>ID | Drug<br>Regimen | Sex    | Age_months | Weight<br>(g) | Timepoint | Tumor<br>Volume<br>(mm3) | Metastatic<br>Sites |
|-----|-------------|-----------------|--------|------------|---------------|-----------|--------------------------|---------------------|
| 909 | g989        | Propriva        | Female | 21         | 26            | 0         | 45.000000                | 0                   |
| 908 | g989        | Propriva        | Female | 21         | 26            | 0         | 45.000000                | 0                   |
| 911 | g989        | Propriva        | Female | 21         | 26            | 5         | 47.570392                | 0                   |
| 910 | g989        | Propriva        | Female | 21         | 26            | 5         | 48.786801                | 0                   |
| 912 | g989        | Propriva        | Female | 21         | 26            | 10        | 51.745156                | 0                   |
| 913 | g989        | Propriva        | Female | 21         | 26            | 10        | 49.880528                | 0                   |
| 914 | g989        | Propriva        | Female | 21         | 26            | 15        | 51.325852                | 1                   |
| 915 | g989        | Propriva        | Female | 21         | 26            | 15        | 53.442020                | 0                   |
| 916 | g989        | Propriva        | Female | 21         | 26            | 20        | 55.326122                | 1                   |
| 917 | g989        | Propriva        | Female | 21         | 26            | 20        | 54.657650                | 1                   |
| 918 | g989        | Propriva        | Female | 21         | 26            | 25        | 56.045564                | 1                   |
| 919 | g989        | Propriva        | Female | 21         | 26            | 30        | 59.082294                | 1                   |
| 920 | g989        | Propriva        | Female | 21         | 26            | 35        | 62.570880                | 2                   |

In [9]: # Create a clean DataFrame by dropping the duplicate mouse by its ID.
# Drop the duplicate rows based on the Mouse ID

clean\_df=combined\_data[combined\_data["Mouse ID"]!="g989"]

clean\_df.head()

Out[9]:

|      | Mouse<br>ID | Drug<br>Regimen | Sex    | Age_months | Weight<br>(g) | Timepoint | Tumor<br>Volume<br>(mm3) | Metastatic<br>Sites |
|------|-------------|-----------------|--------|------------|---------------|-----------|--------------------------|---------------------|
| 0    | k403        | Ramicane        | Male   | 21         | 16            | 0         | 45.0                     | 0                   |
| 1529 | s619        | Stelasyn        | Male   | 22         | 30            | 0         | 45.0                     | 0                   |
| 558  | a818        | Naftisol        | Female | 12         | 28            | 0         | 45.0                     | 0                   |
| 1531 | t198        | Propriva        | Male   | 22         | 26            | 0         | 45.0                     | 0                   |
| 551  | a788        | Zoniferol       | Male   | 5          | 30            | 0         | 45.0                     | 0                   |

In [10]: # Checking the number of mice in the clean DataFrame.
Micecount= len(clean\_df["Mouse ID"].unique())
Micecount

Out[10]: 248

```
In [11]: # Generate a summary statistics table of mean, median, variance, standard deviation
         # Use groupby and summary statistical methods to calculate the following properties
         # mean, median, variance, standard deviation, and SEM of the tumor volume.
         # Assemble the resulting series into a single summary DataFrame.
         summary2=clean_df.groupby(["Drug Regimen"])
         meanvolume=summary2["Tumor Volume (mm3)"].mean()
         medianvolume=summary2["Tumor Volume (mm3)"].median()
         varvolume=summary2["Tumor Volume (mm3)"].var()
         stdvolume=summary2["Tumor Volume (mm3)"].std()
         semvolume=summary2["Tumor Volume (mm3)"].sem()
         summary_df=pd.DataFrame({"Mean Tumor Volume": meanvolume,
                                  "Median Tumor Volume": medianvolume,
                                  "Tumor Volume Variance":varvolume,
                                  "Tumore Volume Std. Dev.":stdvolume,
                                  "Tumor Volume Std. Err.":semvolume})
         summary_df
```

| ()     | 1.11 | + |   | 7 | 7 | - 1 | 0 |
|--------|------|---|---|---|---|-----|---|
| $\cup$ | u    | L |   | _ | _ | - 1 | ۰ |
|        |      |   | - |   |   | -   |   |
|        |      |   |   |   |   |     |   |
|        |      |   |   |   |   |     |   |
|        |      |   |   |   |   |     |   |

|                 | Mean Tumor<br>Volume | Median Tumor<br>Volume | Tumor Volume<br>Variance | Tumore Volume<br>Std. Dev. | Tumor Volume<br>Std. Err. |
|-----------------|----------------------|------------------------|--------------------------|----------------------------|---------------------------|
| Drug<br>Regimen |                      |                        |                          |                            |                           |
| Capomulin       | 40.675741            | 41.557809              | 24.947764                | 4.994774                   | 0.329346                  |
| Ceftamin        | 52.591172            | 51.776157              | 39.290177                | 6.268188                   | 0.469821                  |
| Infubinol       | 52.884795            | 51.820584              | 43.128684                | 6.567243                   | 0.492236                  |
| Ketapril        | 55.235638            | 53.698743              | 68.553577                | 8.279709                   | 0.603860                  |
| Naftisol        | 54.331565            | 52.509285              | 66.173479                | 8.134708                   | 0.596466                  |
| Placebo         | 54.033581            | 52.288934              | 61.168083                | 7.821003                   | 0.581331                  |
| Propriva        | 52.320930            | 50.446266              | 43.852013                | 6.622085                   | 0.544332                  |
| Ramicane        | 40.216745            | 40.673236              | 23.486704                | 4.846308                   | 0.320955                  |
| Stelasyn        | 54.233149            | 52.431737              | 59.450562                | 7.710419                   | 0.573111                  |
| Zoniferol       | 53.236507            | 51.818479              | 48.533355                | 6.966589                   | 0.516398                  |

In [8]: # A more advanced method to generate a summary statistics table of mean, median, vo # and SEM of the tumor volume for each regimen (only one method is required in the

# Using the aggregation method, produce the same summary statistics in a single lin

| () i i ± | 1 2 |  |
|----------|-----|--|
| Ou L     | 0   |  |

#### Tumor Volume (mm3)

|              | mean      | median    | var       | std      | sem      |
|--------------|-----------|-----------|-----------|----------|----------|
| Drug Regimen |           |           |           |          |          |
| Capomulin    | 40.675741 | 41.557809 | 24.947764 | 4.994774 | 0.329346 |
| Ceftamin     | 52.591172 | 51.776157 | 39.290177 | 6.268188 | 0.469821 |
| Infubinol    | 52.884795 | 51.820584 | 43.128684 | 6.567243 | 0.492236 |
| Ketapril     | 55.235638 | 53.698743 | 68.553577 | 8.279709 | 0.603860 |
| Naftisol     | 54.331565 | 52.509285 | 66.173479 | 8.134708 | 0.596466 |
| Placebo      | 54.033581 | 52.288934 | 61.168083 | 7.821003 | 0.581331 |
| Propriva     | 52.320930 | 50.446266 | 43.852013 | 6.622085 | 0.544332 |
| Ramicane     | 40.216745 | 40.673236 | 23.486704 | 4.846308 | 0.320955 |
| Stelasyn     | 54.233149 | 52.431737 | 59.450562 | 7.710419 | 0.573111 |
| Zoniferol    | 53.236507 | 51.818479 | 48.533355 | 6.966589 | 0.516398 |

## **Bar and Pie Charts**

In [21]: # Generate a bar plot showing the total number of rows (Mouse ID/Timepoints) for ed
plt.figure(1)
clean\_df['Drug Regimen'].value\_counts().plot(kind='bar')

Out[21]: <AxesSubplot:>



```
In [18]: # Generate a bar plot showing the total number of rows (Mouse ID/Timepoints) for ea
x_axis1=clean_df["Drug Regimen"].value_counts()

x_axis1.plot(kind="bar", figsize=(6,5))
#plt.title
plt.xlabel("Drug Regimen")
plt.ylabel("Number of Data Points")
plt.tight_layout()
plt.show()
```



```
In [14]: # Generate a pie plot showing the distribution of female versus male mice using Par
sex=clean_df["Sex"].value_counts()
sex.plot(kind="pie", autopct='%.1f%%')
#plt.savefig("Piechart1")
plt.show()
```



Sex



## **Quartiles, Outliers and Boxplots**

```
In [36]: # Calculate the final tumor volume of each mouse across four of the treatment regin
# Capomulin, Ramicane, Infubinol, and Ceftamin

# Start by getting the Last (greatest) timepoint for each mouse

# Merge this group df with the original DataFrame to get the tumor volume at the Low
mouse_id = clean_df.groupby(["Mouse ID", "Drug Regimen"])
mouse_id.head()
max_timepoint = mouse_id["Timepoint"].max()
max_timepoint

df_1 = pd.DataFrame({"Timepoint": max_timepoint})
df_1

df_1 = df_1.reset_index()
df_1

last_tumor = pd.merge(df_1, clean_df, on= ("Mouse ID", "Timepoint", "Drug Regimen"
last_tumor.head()
```

Out[36]: **Tumor** Mouse Drug Weight Metastatic Volume **Timepoint** Sex Age\_months ID Regimen (g) Sites (mm3) 0 a203 45 Female 20 23 67.973419 2 Infubinol a251 Infubinol 45 Female 21 25 65.525743 a262 2 Placebo 45 Female 17 29 70.717621 4 3 a275 Ceftamin 45 Female 20 28 62.999356 3

30 Female

In [40]: only\_Capomulin = clean\_df.loc[combined\_data['Drug Regimen'] == "Capomulin", :]
 only\_Capomulin
 Capomulin = only\_Capomulin['Tumor Volume (mm3)']
 only\_Capomulin.head()

16

29

63.440686

1

Out[40]:

a366

Stelasyn

|     | Mouse<br>ID   | Drug<br>Regimen | Sex    | Age_months | Weight<br>(g) | Timepoint | Tumor<br>Volume<br>(mm3) | Metastatic<br>Sites |
|-----|---------------|-----------------|--------|------------|---------------|-----------|--------------------------|---------------------|
| 145 | <b>2</b> r157 | Capomulin       | Male   | 22         | 25            | 0         | 45.0                     | 0                   |
| 32  | <b>3</b> j119 | Capomulin       | Female | 7          | 23            | 0         | 45.0                     | 0                   |
| 31  | <b>j</b> 246  | Capomulin       | Female | 21         | 21            | 0         | 45.0                     | 0                   |
| 30  | <b>b</b> 128  | Capomulin       | Female | 9          | 22            | 0         | 45.0                     | 0                   |
| 29  | <b>b</b> 742  | Capomulin       | Male   | 7          | 21            | 0         | 45.0                     | 0                   |

```
In [43]: # Put treatments into a list for for loop (and later for plot labels)
    treatment_list = ["Capomulin", "Ramicane", "Infubinol", "Ceftamin"]

# Create empty list to fill with tumor vol data (for plotting)
    tumor_vol_list = []
```

```
# Calculate the IQR and quantitatively determine if there are any potential outlier
    # Locate the rows which contain mice on each drug and get the tumor volumes
    # add subset
   # Determine outliers using upper and lower bounds
for drug in treatment_list:
   only_drug = clean_df.loc[combined_data['Drug Regimen'] == drug, :]
    drug_name = only_drug["Tumor Volume (mm3)"]
    quartiles = drug_name.quantile([.25,.5,.75])
   lowerq = quartiles[0.25]
    upperq = quartiles[0.75]
   iqr = upperq-lowerq
    print(f"The lower quartile of tumor sizes is: {lowerq}")
   print(f"The upper quartile of tumor sizes is: {upperq}")
   print(f"The interquartile range of tumor sizes is: {iqr}")
    print(f"The the median of tumor sizes is: {quartiles[0.5]} ")
   lower_bound = lowerq - (1.5*iqr)
    upper_bound = upperq + (1.5*iqr)
    print(f"{drug}: Values below {lower_bound} could be outliers.")
    print(f"{drug}: Values above {upper_bound} could be outliers.")
   tumor df = pd.DataFrame({"Tumor Volume (mm3)": drug name})
   tumor_df
   tumor = pd.DataFrame({"Tumor Volume (mm3)": drug_name})
    outliers = tumor.loc[(tumor["Tumor Volume (mm3)"] > upper_bound) | (tumor["Tumor")
    print(f" Outliers: {outliers['Tumor Volume (mm3)']}")
    print("\n")
```

```
The upper quartile of tumor sizes is: 45.0
         The interquartile range of tumor sizes is: 7.314067135000002
         The the median of tumor sizes is: 41.557808879999996
         Capomulin: Values below 26.714832162499995 could be outliers.
         Capomulin: Values above 55.9711007025 could be outliers.
          Outliers: 18
                          25.472143
         19
               23.343598
         Name: Tumor Volume (mm3), dtype: float64
         The lower quartile of tumor sizes is: 36.674634585
         The upper quartile of tumor sizes is: 45.0
         The interquartile range of tumor sizes is: 8.325365415
         The the median of tumor sizes is: 40.67323554
         Ramicane: Values below 24.1865864625 could be outliers.
         Ramicane: Values above 57.488048122500004 could be outliers.
                         22.050126
          Outliers: 9
         Name: Tumor Volume (mm3), dtype: float64
         The lower quartile of tumor sizes is: 47.3123533
         The upper quartile of tumor sizes is: 57.314443967500004
         The interquartile range of tumor sizes is: 10.002090667500006
         The the median of tumor sizes is: 51.82058438
         Infubinol: Values below 32.309217298749985 could be outliers.
         Infubinol: Values above 72.31757996875001 could be outliers.
          Outliers: Series([], Name: Tumor Volume (mm3), dtype: float64)
         The lower quartile of tumor sizes is: 47.2084271125
         The upper quartile of tumor sizes is: 56.801437570000004
         The interquartile range of tumor sizes is: 9.593010457500007
         The the median of tumor sizes is: 51.77615728
         Ceftamin: Values below 32.81891142624998 could be outliers.
         Ceftamin: Values above 71.19095325625001 could be outliers.
          Outliers: Series([], Name: Tumor Volume (mm3), dtype: float64)
In [46]: only_drug = clean_df.loc[combined_data['Drug Regimen'] == "Infubinol", :]
         drug_name = only_drug["Tumor Volume (mm3)"]
         tumor df = pd.DataFrame({"Tumor Volume (mm3)": drug name})
         tumor df
         outliers = tumor_df.loc[(tumor_df["Tumor Volume (mm3)"] > 72.31757996875001 ) | (te
         outliers
Out[46]: Tumor Volume (mm3)
In [ ]:
In [47]: # Generate a box plot that shows the distrubution of the tumor volume for each tree
         tumors1 = last_tumor.loc[last_tumor['Drug Regimen'] == "Capomulin", :]
         tumors_1 = tumors1["Tumor Volume (mm3)"]
         tumors2 = last_tumor.loc[last_tumor['Drug Regimen'] == "Ramicane", :]
         tumors_2 = tumors2["Tumor Volume (mm3)"]
         tumors3 = last_tumor.loc[last_tumor['Drug Regimen'] == "Infubinol", :]
         tumors_3 = tumors3["Tumor Volume (mm3)"]
         tumors4 = last tumor.loc[last tumor['Drug Regimen'] == "Ceftamin", :]
         tumors 4 = tumors4["Tumor Volume (mm3)"]
         data_to_plot = [tumors_1, tumors_2, tumors_3, tumors_4]
```

The lower quartile of tumor sizes is: 37.685932865

```
plt.figure(5)
fig1, ax1 = plt.subplots()
ax1.set_title('Tumors')
ax1.set_ylabel('Final Tumor Volume (mm3)')
ax1.set_xlabel('Drug Regimen')

ax1.boxplot(data_to_plot, labels=["Capomulin","Ramicane","Infubinol","Ceftamin",])
plt.savefig('boxplot')
plt.show()
```

<Figure size 640x480 with 0 Axes>



## **Line and Scatter Plots**

```
In [50]: # Generate a line plot of tumor volume vs. time point for a single mouse treated wr
    capo1_df=clean_df.loc[clean_df["Drug Regimen"]=="Capomulin"]
    capo1_df=capo1_df.reset_index()
#loc mouse I509
cap_tumor_df=capo1_df.loc[capo1_df["Mouse ID"]== "1509"]

#Define Variables and axis
    x_axis_capo=cap_tumor_df["Timepoint"]
    y_axis_capo=cap_tumor_df["Tumor Volume (mm3)"]
    plt.title("Capomulin treatment of mouse I509")
    plt.xlabel("Timepoint (days)")
    plt.ylabel("Tumor Volume (mm3)")

#Plot using plt.plot(x,y,line,marker, color)
    plt.plot(x_axis_capo, y_axis_capo)
plt.show()
```

#### Capomulin treatment of mouse I509



```
In [52]: # Generate a scatter plot of mouse weight vs. the average observed tumor volume for
    average1=capo1_df.groupby(["Mouse ID"]).mean()
    #average1
    plt.scatter(average1["Weight (g)"], average1["Tumor Volume (mm3)"])
    #x_values=subset["Capomulin"]
    #y_values=subset["Tumor Volume(mm3)"].mean()
    plt.xlabel("Weight(g)")
    plt.ylabel("Tumor Volume(mm3)")
    plt.show()
```



# **Correlation and Regression**

```
In [58]:
         # Calculate the correlation coefficient and a linear regression model
         Capomulin = clean_df.loc[clean_df['Drug Regimen'] == "Capomulin", :]
         avg = Capomulin.groupby(['Mouse ID']).mean()
         correlation =round(st.pearsonr(avg['Weight (g)'],avg['Tumor Volume (mm3)'])[0],2)
         print(f"correlation: {correlation}")
         correlation: 0.84
         # for mouse weight and average observed tumor volume for the entire Capomulin regin
In [59]:
         model=st.linregress(avg['Weight (g)'],avg['Tumor Volume (mm3)'])
         model
         LinregressResult(slope=0.9544396890241049, intercept=21.552160532685008, rvalue=0.
Out[59]:
         8419363424694721, pvalue=1.3225722434712404e-07, stderr=0.12754359033201323, inter
         cept_stderr=2.5909876867683455)
In [61]:
         slope1=0.9544396890241045
         intercept1=21.552160532685015
         # for mouse weight and average tumor volume for the Capomulin regimen
         #x axis corr=average1["Weight (q)"]
         #y_axis_corr=average1["Tumor Volume (mm3)"]
         #lineregress(x_axis_corr, y_axis_corr)
         #assign slope and intercepts to identify r
         y_axis_corr = average1['Weight (g)']*slope1+intercept1
         #create secondary scatter plot
         plt.scatter(average1['Weight (g)'],average1['Tumor Volume (mm3)'])
         #plotline
         plt.plot(average1['Weight (g)'],y_axis_corr,color="red") #marker=o
         plt.xlabel('Weight (g)')
         plt.ylabel('Average Tumor Volume (mm3)')
         plt.show()
```

