Special Random Variables

Mahbub Latif, PhD

January 2024

Plan

- The binomial distribution
- The Poisson distribution
- Hypergeometric distribution

The Binomial Random Variable

The Bernoulli Random Variable

- Suppose that a trial has only two outcomes, which are classified as either a "success" or as a "failure", such trial is known as Bernoulli trial
 - \circ Define a random variable X as

$$X = egin{cases} 1 & \textit{if the outcome is a success} \ 0 & \textit{if the outcome is a failure} \end{cases}$$

The Bernoulli Random Variable

ullet X follows a Bernoulli distribution with parameter p and the probability mass function

$$P(X = 1) = p$$

 $P(X = 0) = 1 - p$

The probability mass function

$$P(X=x)=p^x(1-p)^{1-x}, ~~x=0,1; ~~0 \leq p \leq 1$$

$$\circ$$
 $E(X)=p$ and $Var(X)=p(1-p)$

The binomial random variable

- ullet Binomial random variable deals with the distribution of the number of successes in n independent Bernoulli trials
- ullet The probability success p remain constant from trial to trial
- Let X_1, \ldots, X_n are independent and each follow a Bernoulli distribution with parameter p, and define

$$X = X_1 + \cdots + X_n$$

ullet X represents the number of success in n Bernoulli trials and X follows a binomial distribution with parameters n and p, i.e. $X\sim B(n,p)$

The binomial random variable

ullet The probability mass function of X

$$P(X=x)=inom{n}{x}p^x(1-p)^{n-x},\;\;x=0,1,\ldots,n$$

 $\circ \binom{n}{r} o$ number of ways x success can be obtained in n Bernoulli trials

Example 5.1a

- It is known that disks produced by a certain company will be defective with probability .01 independently of each other.
- The company sells the disks in packages of 10 and offers a money-back guarantee that at most 1 of the 10 disks is defective.
- What proportion of packages is returned?
- If someone buys three packages, what is the probability that exactly one of them will be returned?

Expectation of binomial distribution

$$egin{align} E(X) &= \sum_{x=0}^n x inom{n}{x} p^x (1-p)^{n-x} \ &= \sum_{x=1}^n x rac{n!}{x!(n-x)!} p^x (1-p)^{n-x} \ &= \sum_{x=1}^n rac{n!}{(x-1)!(n-x)!} p^k (1-p)^{n-x} \ &= np \sum_{x=1}^n rac{(n-1)!}{(x-1)!(n-x)!} p^{x-1} (1-p)^{n-x} = np \end{array}$$

Variance of binomial distribution

$$egin{aligned} Eig[X(X-1)ig] &= \sum_{x=0}^n x(x-1)inom{n}{x}p^k(1-p)^{n-x} \ &= \sum_{x=2}^n x(x-1)inom{n}{x}p^x(1-p)^{n-x} = n(n-1)p^2 \ Var(X) &= E(X^2) - [E(X)]^2 \ &= Eig[X(X-1)ig] + E(X) - [E(X)]^2 \ &= n(n-1)p^2 + np - n^2p^2 \ &= np(1-p) \end{aligned}$$

Binomial cumulative distribution function

ullet The cumulative distribution function of $X \sim B(n,p)$

$$P(X \leq a) = \sum_{x=a}^n inom{n}{x} p^x (1-p)^{n-x}$$

 Following relationship is helpful to calculate cumulative distribution of binomial distribution

$$P(X=x+1) = \frac{p}{1-p} \frac{n-x}{x+1} P(X=x)$$

Problems

• 1, 3, 5, 6, 7, 9

The Poisson Random Variable

The Poisson Random Variable

ullet A random variable X is said to be a Poisson random variable with parameter $\lambda>0$, if its probability mass function is given by

$$P(X=x)=rac{e^{-\lambda}\lambda^x}{x!}, \;\; x=0,1,2,\ldots$$

- Using the relationship $e^\lambda=\sum_{x=0}^\infty \lambda^x/x!$, it can be shown that $\sum_{x=0}^\infty P(X=x)=1$ for a Poisson distribution
- ullet For $X \sim Po(\lambda)$

$$E(X) = V(X) = \lambda$$

Examples of Poisson random variables

- The number of misprints on a page of a book
- The number of people in a community living to 100 year of age
- The number of wrong telephone numbers that are dialed in a day
- The number of transistors that fail on their first day of use
- The number of customers entering a post office on a given day

Expectation and variance of a Poisson random variable

$$E(X) = \sum_{x=0}^\infty x rac{e^{-\lambda} \lambda^x}{x!} = \sum_{x=1}^\infty x rac{e^{-\lambda} \lambda^x}{x!} = \sum_{x=1}^\infty rac{e^{-\lambda} \lambda^x}{(x-1)!} = \lambda$$

Similarly

$$Eig[X(X-1)ig] = \sum_{x=0}^{\infty} x(x-1) rac{e^{-\lambda}\lambda^x}{x!} = \lambda^2$$

$$Var(X) = E[X(X-1)] + E(X) - [E(X)]^2 = \lambda$$

Poisson approximation of binomial distribution

ullet Suppose $X \sim B(n,p)$, for a large n and small p

$$P(X=x)=inom{n}{x}p^x(1-p)^{n-x}\simeqrac{e^{-\lambda}\lambda^x}{x!}$$

$$\circ \ \lambda = np$$

ullet Examples: $X \sim B(70,.1)$

Example 5.2a

- Suppose that the average number of accidents occurring weekly on a particular stretch of a highway equals 3.
- Calculate the probability that there is at least one accident this week.

Example 5.2b

- Suppose the probability that an item produced by a certain machine will be defective is .1.
- Find the probability that a sample of 10 items will contain at most one defective item.
- Assume that the quality of successive items is independent.

Example 5.2d

- If the average number of claims handled daily by an insurance company is 5, what proportion of days have less than 3 claims?
- What is the probability that there will be 4 claims in exactly 3 of the next 5 days?
- Assume that the number of claims on different days is independent.

Distribution of sum of two independent Poisson random variables

ullet If $X_1 \sim Po(\lambda_1)$ and $X_2 \sim Po(\lambda_2)$, then

$$Y=X_1+X_2\sim Po(\lambda_1+\lambda_2)$$

ullet Moment generating function of X_1

$$M_{X_1}(t) = Eig[e^{tX}ig] = \expig[\lambda_1(e^t-1)ig]$$

ullet Moment generating function of $Y=X_1+X_2$

$$M_Y(t)=M_{X_1}(t)M_{X_2}(t)=\exp\left[(\lambda_1+\lambda_2)(e^t-1)
ight]$$

Example 5.2f

- It has been established that the number of defective stereos produced daily at a certain plant is Poisson distributed with mean 4.
- Over a 2-day span, what is the probability that the number of defective stereos does not exceed 3?

Problems

• 13, 14, 18

Hypergeometric Distribution

Hypergeometric Distribution

- ullet A bin contains N+M batteries, of which N are of acceptable quality and M are defective
- ullet A sample of size n is randomly chosen (without replacement) and all possible sampled subsets are equally likely
- ullet The X denotes the number of acceptable batteries in the sample of size n and its probability mass function

$$P(X=x)=rac{inom{N}{x}inom{M}{n-x}}{inom{N+M}{n}},\; k=0,1,\ldots,\min(n,N)$$

 $\circ~X$ follows a hypergeometric distribution with parameters N, M, and n

Example 5.3a

- The components of a 6-component system are to be randomly chosen from a bin of 20 used components.
- The resulting system will be functional if at least 4 of its 6 components are in working condition.
- If 15 of the 20 components in the bin are in working condition, what is the probability that the resulting system will be functional?
- X, the number of components with working condition out of six selected components, follows a hypergeometric distribution with parameters $N=15,\,M=5$, and n=6

Hypergeometric Distribution

ullet Let $X \sim B(n,p)$ and $Y \sim B(m,p)$ then

$$Pig(X=i\,|\,X+Y=kig)=rac{inom{n}{i}inom{m}{k-i}}{inom{n+m}{k}}$$

The Uniform Random Variable

The Uniform Random Variable

ullet A random variable X is said to be uniformly distributed over the interval [lpha,eta] if its pdf is given by

$$f(x) = egin{cases} rac{1}{eta-lpha} & ext{if } lpha \leq x \leq eta \ 0 & ext{otherwise} \end{cases}$$

Show that

$$E(X) = rac{lpha + eta}{2} \; \; and \; \; Var(X) = rac{(eta - lpha)^2}{12}$$

The Normal Random Variable

The Normal Random Variable

- A random variable X is said to be normally distributed random variable with parameters μ and σ^2 ,
 - \circ i.e. $X \sim N(\mu, \sigma^2)$, if its density is

$$f(x) = rac{1}{\sqrt{2\pi\sigma^2}} \; e^{-rac{1}{2\sigma^2}(x-\mu)^2}, \;\; -\infty < x < \infty$$

- ullet The normal density function is bell-shaped and symmetric about its mean μ
- The maximum value of the density function is $(\sigma\sqrt{2\pi})^{-1}\simeq 0.399/\sigma$ attains at $x=\mu$

Parameters of normal distribution and its density function

The normal random variable

The expected value

$$E(X-\mu)=\int_{-\infty}^{\infty}(x-\mu)rac{1}{\sqrt{2\pi\sigma^2}}\;e^{-rac{1}{2\sigma^2}(x-\mu)^2}dx=0$$
 $E(X)=\mu$

• The variance

$$egin{align} Var(X) &= E(X-\mu)^2 \ &= \int_{-\infty}^{\infty} (x-\mu)^2 rac{1}{\sqrt{2\pi\sigma^2}} \; e^{-rac{1}{2\sigma^2}(x-\mu)^2} dx = \sigma^2 \end{split}$$

Distribution of a linear combination of a normal distribution

- If $X \sim N(\mu, \sigma^2)$, what is the distribution of Y = a + bX, where a and b are constants?
- ullet If M(t) is the moment generating function (mgf) of X, the mgf of Y=a+bX

$$M_Y(t) = \int e^{ty} f(x) dx = \int e^{t(a+bx)} f(x) \, dx = e^{ta} M_X(tb)$$

Distribution of a linear combination of a normal distribution

ullet The mgf of $X \sim N(\mu, \sigma^2)$

$$M_X(t)=e^{t\mu+(t^2\sigma^2/2)}$$

ullet The mgf of Y=a+bX

$$egin{align} M_Y(t) &= e^{ta} M_X(tb) \ &= e^{ta} e^{t\mu b + (t^2b^2\sigma^2/2)} \ &= e^{t(b\mu + a) + (t^2b^2\sigma^2/2)} \ \end{aligned}$$

$$\circ$$
 So, $Y \sim Nig(a+b\mu,\sigma^2b^2ig)$

Standard normal distribution

ullet A normal distribution with mean 0 and variance 1 is known as the standard normal distribution, which is denoted by Z

$$Z \sim N(0,1)$$

- ullet The mgf of standard normal distribution: $M_Z(t)=e^{t^2/2}$
- The probability density function of a standard normal distribution

$$\phi(x) = rac{1}{\sqrt{2\pi}}e^{-x^2/2}, \;\; -\infty < x < \infty$$

Standard normal distribution

ullet If $X \sim N(\mu, \sigma^2)$ then

$$Z = rac{X - \mu}{\sigma} \sim N(0,1)$$

- Proof this relationship!
- It can be shown that

$$E(Z) = Eigg[rac{X-\mu}{\sigma}igg] = 0 \;\; and \;\; Var(Z) = Varigg[rac{X-\mu}{\sigma}igg] = 1$$

Cumulative distribution of the standard normal distribution

The cdf of the standard normal distribution

$$\Phi(x) = P(Z < x) = rac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-y^2/2} dy$$

- This integration cannot be evaluated agebraically
- \circ Most of the matematical statistics book has Z table, which provides $\Phi(x)$ values for different x (see page 642 of the textbook for the Z table)
- An important relationship

$$\Phi(x) + \Phi(-x) = 1$$

Probability calculation related to $Z \sim N(0,1)$

$$P(Z < 1.12) = \Phi(1.12) = 0.8686$$

$$P(Z > .73) = 1 - P(Z \le .73)$$

= $1 - \Phi(.73)$
= $1 - 0.7673$
= 0.2327

Probability calculation related to $Z \sim N(0,1)$

$$P(Z < -1.22) = \Phi(-1.22)$$

= $1 - \Phi(1.22)$
= $1 - 0.8686$
= 0.1112

$$P(Z > -1.13) = 1 - P(Z \le -1.13)$$

= $1 - \Phi(-1.13)$
= $\Phi(1.13)$
= 0.8708

Probability calculation related to $Z \sim N(0,1)$

$$P(1.1 < Z < 2.2) = \Phi(2.2) - \Phi(1.1)$$

= 0.9861 - 0.8643
= 0.1218

$$P(-1.31 < Z < 1.92)$$
 $= \Phi(1.92) - \Phi(-1.31)$
 $= \Phi(1.92) - 1 + \Phi(1.31)$
 $= 0.9726 - 1 + 0.9049$
 $= 0.8775$

Probability calculation related to $X \sim N(\mu, \sigma^2)$

ullet For any a < b

$$P(a < X < b) = P\left(\frac{a - \mu}{\sigma} < \frac{X - \mu}{\sigma} < \frac{b - \mu}{\sigma}\right)$$

$$= P\left(\frac{a - \mu}{\sigma} < Z < \frac{b - \mu}{\sigma}\right)$$

$$= \Phi\left(\frac{b - \mu}{\sigma}\right) - \Phi\left(\frac{a - \mu}{\sigma}\right)$$

Probability calculation related to $X \sim N(\mu, \sigma^2)$

ullet For $X \sim N(3,16)$

$$P(X < 11) = \Phi\left(rac{11 - 3}{4}
ight)$$
 $= \Phi(2)$
 $= 0.9772$

Calculate

$$P(X>-1)$$
 $P(2 < X < 7)$

Sum of several independent normal variables

• Let X_1, \ldots, X_n be n independent normal random variables, where

$$X_i \sim N(\mu_i, \sigma_i^2)$$

ullet The distribution of $Y=\sum_{i=1}^n X_i$ follows a normal distribution with

$$mean = \sum_{i=1}^n \mu_i ~~ and ~~ variance = \sum_{i=1}^n \sigma_i^2$$

Exammple 5.5d

- Data from National Oceanic and Atmospheric Administration indicate that the yearly precipitation in Los Angles is a normal random variable with a mean of 12.08 inches and standard deviation of 3.1 inches.
- Find the probability that total precipitation during the next two years will exceed 25 inches.

Quantiles/percentiles of standard normal distribution

• $z_{lpha}
ightarrow$ the 100(1-lpha) percentile of standard normal distribution, i.e.,

$$P(Z < z_{\alpha}) = 1 - \alpha$$

From the table, we can find

$$z_{.05} = 1.645$$

$$z_{.025} = 1.96$$

$$z_{.01} = 2.33$$

Exponential random variables

Exponential random variables

 \bullet An exponential random variable with parameter $\lambda>0$ has the following probability density function

$$f(x) = \lambda e^{-\lambda x}, \;\; x \geq 0$$

The moment generating function of a exponential random variable

$$M_X(t) = \lambda/(\lambda-t)$$

Show that

$$E(X) = 1/\lambda \ \ and \ \ Var(X) = 1/\lambda^2$$

The cumulative distribution function

$$F(x) = \int_0^x \lambda e^{-\lambda y} dy = 1 - e^{-\lambda x}$$

•
$$P(a < X < b) = F(b) - F(a) = e^{-\lambda a} - e^{-\lambda b}$$

Memoryless property of exponential random variable

ullet If X follows an exponential distribution with parameter λ

$$P(X > s + t \,|\, X > t) = P(X > s)$$

Problems

• 1, 3, 5, 6, 7, 8, 10, 11, 13, 14, 23, 24, 25, 26, 33, 34, 35, 26, 37, 38