POEL C10: Przesunięcie fazowe, wykresy wskazowe

Zadanie 1. Dane są obwody prądu sinusoidalnie zmiennego przedstawione na rysunku. Jaka jest wartość: (a) amplitudy E_m siły elektromotorycznej e źródła napięciowego i amplitudy U_m napięcia u, jeżeli dla napięć na elementach R, L, i C zmierzono amplitudy U_{Rm} , U_{Lm} i U_{Cm} ; (b) amplitudy J_m wydajności j źródła prądowego i amplitudy I_m prądu i, jeżeli dla prądów płynących przez elementy R, L, i C zmierzono amplitudy I_{Rm} , I_{Lm} i I_{Cm} ?

Dane: $U_{Rm} = 3 \text{ V}, U_{Lm} = 6 \text{ V}, U_{Cm} = 2 \text{ V}.$ (a)

Dane: $I_{Rm} = 1 \text{ A}$, $I_{Lm} = 1 \text{ A}$, $I_{Cm} = 2 \text{ A}$.

(b)

Zadanie 2. Dany jest obwód prądu sinusoidalnego przedstawiony na rysunku.

- a) Dobrać wartość pojemności C tak, aby amplituda prądu i_2 była dwa razy większa od amplitudy prądu i_1 ; ile wynosi przesunięcie fazowe między napięciem u a siłą elektromotoryczną e? Dane: $e(t) = 10\cos \omega t$ [V], $\omega = 10^3 \, \mathrm{rad/s}$, $R = 1 \, \mathrm{k}\Omega$.
- b) Dobrać wartość pojemności C tak, aby napięcie u było opóźnione w fazie o $\pi/4$ względem siły elektromotorycznej e; jaki jest wtedy przebieg napięcia u(t)? Dane: $e(t) = 2\cos(\omega t \pi/4)$ [V], $\omega = 10^6$ rad/s, R = 0.5 k Ω .

Zadanie 3. Wyznaczyć wartości elementów L i C, jeśli wiadomo, że napięcie u_L wyprzedza w fazie napięcie u_C o $\pi/2$ i amplitudy obu napięć są równe. Jaką postać ma wtedy przebieg napięcia u(t)? Dane: $j(t) = 2 \sin \omega t \, [\text{mA}], \, \omega = 10^3 \, \text{rad/s}, \, R = 2 \, \text{k}\Omega$.

Zadanie 4. Wiedząc, że przebieg prądu i_2 wyprzedza w fazie przebieg prądu i_1 o $3\pi/4$, oraz że wartość skuteczna prądu i_2 jest $\sqrt{2}$ większa od wartości skutecznej prądu i_1 , wyznaczyć wartości L i C. Narysować wykres wskazowy prądów J, I_1 i I_2 (założyć $j(t) = \sin \omega t \, [\text{mA}]$). Dane: $R = 1 \, \text{k}\Omega$, $\omega = 10^3 \, \text{rad/s}$.

Zadanie 5. Dobrać tak wartość pojemności C, aby amplituda prądu i_C była $\sqrt{2}$ razy większa od amplitudy prądu i_{RL} . Narysować wykres wskazowy prądów J, I_C i I_{RL} . Dane: $i(t) = 2\cos(\omega t + \pi/4)$ [mA] R = 1 k Ω , L = 1 H, $\omega = 10^3$ rad/s.

Zadanie 6. (*) W obwodzie liniowym prądu sinusoidalnie zmiennego, pokazanym na rysunku, amplitudy prądów i_1 i i_2 są jednakowe i równe $\sqrt{2}\,\mathrm{mA}$, a faza prądu i_2 jest równa $\varphi=\arctan\frac{3}{5}$. Wyznaczyć przebieg SEM e. Dane: $R=1\,\mathrm{k}\Omega,\ L=1\,\mathrm{mH},\ C=0.5\,\mathrm{nF}.$

Zadanie 7. (*) Jaką wartość ma opór R w obwodzie liniowym prądu sinusoidalnie zmiennego pokazanym na rysunku, jeżeli wskazanie amperomierza A jest jednakowe i równe 1 mA w trzech przypadkach: a) klucze K_1 i K_2 są rozwarte, b) klucz K_1 jest zwarty, a K_2 rozwarty, oraz c) oba klucze są zwarte. Nayrsować wykres wskazowy obwodu we wszystkich trzech przypadkach. Amperomierz jest idealnym miernikiem wartości skutecznej. Przyjąć $e(t) = 2\sqrt{6}\cos\omega t$ [V].

