

STATISTICS FOR DATA SCIENCE POWER OF TEST AND SIMPLE LINEAR REGRESSION

SIVASANKARI V

Department of Science & Humanities

Unit 5: Power of test and Simple linear regression

Session: 2

Sub Topic : Power of test

SIVASANKARI V

Department of Science & Humanities

Contents

Calculating Power A Two-tailed Z test Example

Power of test - rECALL

Computing the power involves two steps:

- 1. Compute the rejection region.
- 2. Compute the probability that the test statistic falls in the rejection region if the alternate hypothesis is true.

This is the power.

Power of test

PES UNIVERSITY

Problem 1:

A pollster will conduct a survey of a random sample of voters in a community to estimate the proportion who support a measure on school bonds. Let p be the proportion of the population who support the measure. The pollster will test H_0 : $\mathbf{p} = \mathbf{0.50}$ versus H_1 : $\mathbf{p} \neq \mathbf{0.50}$ at the 5% level. If 200 voters are sampled, what is the power of the test if the true value of \mathbf{p} is 0.55? Solution:

Null distribution of \widehat{p} :

$$\hat{p} \sim N(p_0, \sigma_{\hat{p}}^2)$$
 where $\sigma_{\hat{p}} = \sqrt{\frac{p_0(1-p_0)}{n}}$

Power of test

Null distribution of
$$\hat{p}$$
: $\hat{p} \sim N\left(0.5, \frac{0.5(1-0.5)}{200}\right)$
 $\sim N(0.5, 0.00125)$

Power of test

PES UNIVERSITY ONLINE

Null distribution of \widehat{p} :

$$\hat{p} \sim N\left(0.5, \frac{0.5(1-0.5)}{200}\right)$$
$$\sim N(0.5, 0.00125)$$

Given $\alpha = 0.05$. Since its two-sided test, the critical value is

For
$$z \le -1.96$$

 $\widehat{p} \le 0.5 + (-1.96)\sqrt{0.00125}$
 $\widehat{p} \le 0.43$
For $z \ge -1.96$
 $\widehat{p} \ge 0.5 + (1.96)\sqrt{0.00125}$
 $\widehat{p} \ge 0.569$

Power of test

Alternate distribution of \widehat{p} :

$$\hat{p} \sim N(0.55, 0.00125)$$

Power of test

Alternate distribution of \widehat{p} :

$$\hat{p} \sim N(0.55, 0.00125)$$

$$z = \frac{0.43 - 0.55}{\sqrt{0.00125}}$$

$$z = -3.39$$

$$P(z < -3.39) = 0.0003$$

$$z = \frac{0.569 - 0.55}{\sqrt{0.00125}}$$
$$z = 0.54$$
$$P(z > 0.54) = 0.2946$$

Power = 0.0003 + 0.2946 = 0.2949

Power of test

Problem 2

A pollster will conduct a survey of a random sample of voters in a community to estimate the proportion who support a measure on school bonds.

Let p be the proportion of the population who support the measure. The pollster will test:

 H_0 : p = 0.50 versus H_1 : p \neq 0.50 at the 5% level. How many voters must be sampled so that the power will be 0.8 when the true value of p = 0.55?

Power of test

Let n represent the necessary sample size.

Null distribution of
$$\hat{p}$$
: $\hat{p} \sim N\left(0.5, \frac{0.5(1-0.5)}{n}\right)$
$$\sim N\left(0.5, \frac{0.25}{n}\right)$$

Power of test

We can generally ignore the miniscule region associated with one of the tails

Critical Value under Null Distribution

$$Z \leq -1.96$$

$$\hat{p} \le 0.5 - 1.96 \times \sqrt{\frac{0.25}{n}}$$
 $\hat{p} = 0.5 + 1.96 \times \sqrt{\frac{0.25}{n}}$

(Ignored)

$$Z = 1.96$$

$$\hat{p} = 0.5 + 1.96 \times \sqrt{\frac{0.25}{n}}$$

Power of test

PES UNIVERSITY ONLINE

We can generally ignore the miniscule region associated with one of the tails

Critical Value under Alternate Distribution

Since Power = 0.80

$$P(Z > z) = 0.80$$

 $=> z - score = -0.84$
 $\hat{p} = 0.55 - 0.84 \times \sqrt{\frac{0.25}{n}}$

Power of test

Setting the critical values equal

$$0.5 + 1.96 \times \sqrt{\frac{0.25}{n}} = 0.55 - 0.84 \times \sqrt{\frac{0.25}{n}}$$

$$n = 784$$

THANK YOU

SIVASANKARI V

Department of Science & Humanities

sivasankariv@pes.edu