1-11 Set Theory (IV): Infinity

魏恒峰

hfwei@nju.edu.cn

2019年12月17日

Georg Cantor (1845 - 1918)

David Hilbert (1862 – 1943)

Leopold Kronecker (1823 – 1891)

Henri Poincaré (1854 – 1912)

Ludwig Wittgenstein (1889 – 1951)

From his paradise that Cantor with us unfolded, we hold our breath in awe; knowing, we shall not be expelled.

— David Hilbert

"没有人能把我们从 Cantor 创造的乐园中驱逐出去"

"das wesen der mathematik liegt in ihrer freiheit"

"The essence of mathematics lies in its freedom"

Before Cantor

公理: "整体大于部分"

Galilei (1564 – 1642)

"关于两门新科学的对话" (1638)

"用我们有限的心智来讨论无限…"

$$S_1 = \{1, 2, 3, \dots, n, \dots\}$$

 $S_2 = \{1, 4, 9, \dots, n^2, \dots\}$

$$|S_1| = |S_2|$$
 $S_2 \subset S_1$ "部分等于全体"

说到底,"等于"、"大于"和"小于"诸性质不能用于无限,而只能用于有限的数量。——Galileo Galilei

无穷数是不可能的。

— Gottfried Wilhelm Leibniz

这些证明一开始就期望那些数要具有有穷数的一切性质,或者 甚至于把有穷数的性质强加于无穷。

相反,这些无穷数,如果它们能够以任何形式被理解的话,倒是由于它们与有穷数的对应,它们必须具有完全新的数量特征。

这些性质完全依赖于事物的本性, · · · 而并非来自我们的主观任意性或我们的偏见。

— Georg Cantor (1885)

Definition (Dedekind-infinite & Dedekind-finite (Dedekind, 1888))

A set A is $\underline{\textit{Dedekind-infinite}}$ if there is a bijective function from A onto some proper subset B of A.

A set is *Dedekind-finite* if it is not Dedekind-infinite.

This is a theorem in our theory of infinity.

We have not defined "finite" and "infinite"!

Comparing Sets

Function

Definition (
$$|A| = |B| (A \approx B) (1878)$$
)

A and B are equipotent if there exists a bijection from A to B.

$$\overline{\overline{A}}$$
 (two abstractions)

Abstract from elements: $\{1, 2, 3\}$ vs. $\{a, b, c\}$

Abstract from order: $\{1,2,3,\cdots\}$ vs. $\{1,3,5,\cdots,2,4,6,\cdots\}$

Definition (
$$|A| = |B| (A \approx B) (1878)$$
)

A and B are equipotent if there exists a bijection from A to B.

Q: Is " \approx " an equivalence relation?

Theorem (The "Equivalence Concept" of Equipotent)

For any sets A, B, C:

- (a) $A \approx B$
- (b) $A \approx B \implies B \approx A$
- (c) $A \approx B \wedge B \approx C \implies A \approx C$

Definition (Finite)

X is finite if

$$\exists n \in \mathbb{N} : |X| = \frac{n}{n}.$$

$$|X| = |\{0, 1, \cdots, n-1\}|$$

Theorem (UD Theorem 22.6)

Let A be a finite set. There is a unique $n \in \mathbb{N}$ such that $A \approx \{0, 1, \dots, n-1\}.$

Definition (Infinite)

X is infinite if it is not finite:

$$\forall n \in \mathbb{N} : |X| \neq n.$$

Theorem (UD Theorem 22.3)

 \mathbb{N} is infinite. (So are \mathbb{Z} , \mathbb{Q} , \mathbb{R} .)

$By\ Contradiction.$

$$\exists n \in \mathbb{N} : |\mathbb{N}| = n.$$

$$\exists f: \mathbb{N} \xrightarrow[onto]{1-1} \{0, 1, \cdots, n-1\}$$

$$g \triangleq f|_{\{0,1,\dots,n\}} : \{0,1,\dots,n\} \to \{0,1,\dots,n-1\}$$

 $g \text{ is not } 1\text{-}1 \implies f \text{ is not } 1\text{-}1$

Definition (Infinite)

For any set X,

Countably Infinite

Countable

Uncountable

$$|X| = |\mathbb{N}| \stackrel{\triangle}{=} \aleph_0$$

(finite \lor countably infinite)

 $(\neg \text{ countable})$

(infinite) \land (\neg (countably infinite))

Theorem (\mathbb{Z} is Countable.)

$$|\mathbb{Z}| = |\mathbb{N}|$$

$$0 \ 1 \ -1 \ 2 \ -2 \ \cdots$$

Theorem (\mathbb{Q} is Countable. (Cantor 1873-11; Published in 1874))

$$|\mathbb{Q}| = |\mathbb{N}|$$

 $|\mathbb{Q}| = |\mathbb{N}|$ (UD Problem 23.12)

$$q \in \mathbb{Q}^+ : a/b \ (a, b \in \mathbb{N}^+)$$

Theorem $(\mathbb{N} \times \mathbb{N} \text{ is Countable.})$

$$|\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$$

$$\pi: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$$

$$\pi(k_1, k_2) = \frac{1}{2}(k_1 + k_2)(k_1 + k_2 + 1) + k_2$$

Cantor Pairing Function

Theorem (\mathbb{N}^n is Countable.)

$$|\mathbb{N}^n| = |\mathbb{N}|$$

Theorem

The Cartesian product of finitely many countable sets is countable.

$$\mathbb{N}^n$$
 vs. $\mathbb{N}^{\mathbb{N}}$

$$\pi^{(n)}: \mathbb{N}^n \to \mathbb{N}$$

$$\pi^{(n)}(k_1,\ldots,k_{n-1},k_n)=\pi(\pi^{(n-1)}(k_1,\ldots,k_{n-1}),k_n)$$

Theorem

Any finite union of countable sets is countable.

$$A = \{a_n \mid n \in \mathbb{N}\} \quad B = \{b_n \mid n \in \mathbb{N}\} \quad C = \{c_n \mid n \in \mathbb{N}\}$$

$$a_0 \quad b_0 \quad c_0 \quad a_1 \quad b_1 \quad c_1 \cdots$$

Theorem

The union of countably many countable sets is countable.

Counting by Diagonals.

We need Axiom of (Countable) Choice!

Beyond

Theorem (\mathbb{R} is Uncountable. (Cantor 1873-12; Published in 1874))

 $|\mathbb{R}| \neq |\mathbb{N}|$

Different "Sizes" of Infinity

Cantor's Diagonal Argument (1890)

Theorem (\mathbb{R} is Uncountable. (Cantor 1873-12; Published in 1874))

$$|\mathbb{R}| \neq |\mathbb{N}|$$

By Contradiction.

By Diagonal Argument.

Theorem ($|\mathbb{R}|$ (Cantor 1877))

$$|(0,1)| = |\mathbb{R}| = |\mathbb{R} \times \mathbb{R}| = |\mathbb{R}^{n \in \mathbb{N}}|$$

Proof.

$$f(x) = \tan \frac{(2x-1)\pi}{2}$$
$$|(0,1)| = |(-\frac{\pi}{2}, \frac{\pi}{2})| = |\mathbb{R}|$$

$$(x = 0.a_1a_2a_3\cdots, y = 0.b_1b_2b_3\cdots) \mapsto 0.a_1b_1a_2b_2a_3b_3\cdots$$

Theorem ($|\mathbb{R}|$ (Cantor 1877))

$$|(0,1)| = |\mathbb{R}| = |\mathbb{R} \times \mathbb{R}| = |\mathbb{R}^n|$$

"Je le vois, mais je ne le crois pas!"

"I see it, but I don't believe it!"

— Cantor's letter to Dedekind (1877).

Q: Then, what is "dimension"?

Theorem (Brouwer (Topological Invariance of Dimension))

There is no continuous bijections between \mathbb{R}^m and \mathbb{R}^n for $m \neq n$.

Beyond

Theorem (Cantor's Theorem (1891))

$$|A| \neq |\mathcal{P}(A)|$$

Theorem (Cantor Theorem (ES Theorem 24.4))

If $f: A \to \mathcal{P}(A)$, then f is not onto.

Proof. Let A be a set and let $f: A \to 2^A$. To show that f is not onto, we must find a $B \in 2^A$ (i.e., $B \subseteq A$) for which there is no $a \in A$ with f(a) = B. In other words, B is a set that f "misses." To this end, let

$$B = \{x \in A : x \notin f(x)\}.$$

We claim there is no $a \in A$ with f(a) = B.

Suppose, for the sake of contradiction, there is an $a \in A$ such that f(a) = B. We ponder: Is $a \in B$?

- If a ∈ B, then, since B = f(a), we have a ∈ f(a). So, by definition of B, a ∉ f(a); that is, a ∉ B.⇒ ←
- If $a \notin B = f(a)$, then, by definition of $B, a \in B. \Rightarrow \Leftarrow$

Both $a \in B$ and $a \notin B$ lead to contradictions, and hence our supposition [there is an $a \in A$ with f(a) = B] is false, and therefore f is not onto.

Theorem (Cantor Theorem)

If $f: A \to \mathcal{P}(A)$, then f is not onto.

Theorem (Cantor Theorem)

If $f: A \to \mathcal{P}(A)$, then f is not onto.

Understanding this problem:

$$A = \{1, 2, 3\}$$

$$\mathcal{P}(A) = \left\{ \emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\} \right\}$$

Onto

$$\forall B \in 2^A : \left(\exists a \in A : f(a) = B\right)$$

Not Onto

$$\exists B \in 2^A : (\forall a \in A : f(a) \neq B)$$

Theorem (Cantor Theorem)

If $f: A \to \mathcal{P}(A)$, then f is not onto.

$$\exists B \in \mathcal{P}(A) : (\forall a \in A : f(a) \neq B)$$

ightharpoonup Constructive proof (\exists):

$$B = \{a \in A \mid a \notin f(a)\}$$

▶ By contradiction (\forall) :

$$\exists a \in A : f(a) = B.$$

 $Q: a \in B$?

 $a \in B \iff a \notin B$

Theorem (Cantor Theorem)

If $f: A \to \mathcal{P}(A)$, then f is not onto.

Diagonal Argument (以下仅适用于可数集合 A).

a	f(a)					
	1	2	3	4	5	• • •
1	1	1	0	0	1	
2	0	0	0	0	0	• • •
3	1	0	0	1	0	• • •
4	1	1	1	1	1	• • •
5	0	1	0	1	0	• • •
:	:	:	:	:	:	

$$B = \{0, 1, 1, 0, 1\}$$

Theorem (Cantor Theorem)

$$|A| < |\mathcal{P}(A)|$$

$$A \qquad \mathcal{P}(A) \qquad \mathcal{P}(\mathcal{P}(A)) \qquad \dots$$

There is no largest infinity.

Definition
$$(|A| \leq |B|)$$

 $|A| \leq |B|$ if there exists an *one-to-one* function f from A into B.

Q: What about onto function $f:A \rightarrow B$?

 $|B| \le |A|$ (Axiom of Choice)

Definition (|A| < |B|)

$$|A| < |B| \iff |A| \le |B| \land |A| \ne |B|$$

$$|\mathbb{N}| < |\mathbb{R}|$$

$$|X| < |2^X|$$

$$|\mathbb{N}| < |2^{\mathbb{N}}|$$

Definition (Countable Revisited)

X is countable:

$$(\exists n \in \mathbb{N} : |X| = n) \lor |X| = |\mathbb{N}|$$

Theorem (Proof for Countable)

X is countable iff

$$|X| \leq |\mathbb{N}|.$$

X is countable iff there exists a one-to-one function

$$f:X\to\mathbb{N}$$
.

Subsets of Countable Set (UD Corollary 23.4)

Every subset B of a countable set A is countable.

$$f: A \xrightarrow{1-1} \mathbb{N} \qquad g = f|_B$$

Slope (UD Problem 23.3(a))

(a) The set of all lines with rational slopes

$$(\mathbb{Q}, \mathbb{R})$$

$$|\mathbb{R}| \le |\mathbb{Q} \times \mathbb{R}| \le |\mathbb{R} \times \mathbb{R}| = |\mathbb{R}|$$

$Q: Is \leq "a partial order?"$

Theorem (Cantor-Schröder-Bernstein (1887))

$$|X| \leq |Y| \wedge |Y| \leq |X| \implies |X| = |Y|$$

 $\exists one\text{-}to\text{-}one \ f: A \to B \land g: B \to A \implies \exists bijection \ h: A \to B$

Schröder-Bernstein theorem @ wiki

 $Q: Is "\leq " a total order?$

Theorem (PCC)

 $Principle \ of \ Cardinal \ Comparability \ (PCC) \iff Axiom \ of \ Choice$

Theorem (UD Theorem 24.11)

$$|\mathbb{R}| = |\mathcal{P}(\mathbb{N})|$$

$$|\mathbb{R}| \le |\mathcal{P}(\mathbb{N})| \qquad |\mathcal{P}(\mathbb{N})| \le |\mathbb{R}|$$

$$\mathfrak{c} \triangleq |\mathbb{R}| = |\mathcal{P}(\mathbb{N})| = |2^{\mathbb{N}}| \triangleq 2^{\aleph_0}$$

$$\mathfrak{c}=2^{\aleph_0}$$

Continuum Hypothesis (CH)

$$\exists A: \aleph_0 < |A| < \mathfrak{c}$$

Dangerous Knowledge (22:20; BBC 2007)

Independence from ZFC:

Kurt Gödel (1940) CH cannot be disproved from ZF.

Paul Cohen (1964) CH cannot be proven from the ZFC axioms.

Thank You!

Office 302

Mailbox: H016

hfwei@nju.edu.cn