Genome Annotation

Introduction to Markov Chains

Outline

- Motivation for Markov models
- Markov chain definition
- Example application to CpG islands

Motivation for Markov Models in Computational Biology

- there are many cases in which we would like to represent the statistical regularities of some class of sequences
 - genes
 - various regulatory sites in DNA (e.g., where RNA polymerase and transcription factors bind)
 - proteins in a given family
- Markov models are well suited to this type of task
 - They allow for the modeling of *dependencies* between nearby positions

Markov models have wide applications

- Genome annotation
 - Given a genome sequence find functional units of the genome
 - Genes, CpG islands, promoters..
- Sequence classification
 - represent a family of proteins or DNA/RNA sequences
- Sequence alignment
- Time series analysis
 - e.g., analysis of gene expression over time

Applications outside of molecular biology

- Any sort of time series or one-dimensional positional data
- Important in natural language processing
 - speech recognition
 - parsing and understanding of written text

Markov Chain Models

- a Markov chain model is defined by
 - a set of states
 - we'll think of a traversal through the states as *generating* a sequence
 - each state adds to the sequence (except for *begin* and *end*)
 - a set of transitions with associated probabilities
 - the transitions emanating from a given state define a distribution over the possible next states

A Markov Chain Model for DNA

transition probabilities

$$Pr(X_i = a \mid X_{i-1} = g) = 0.16$$

$$Pr(X_i = c \mid X_{i-1} = g) = 0.34$$

$$Pr(X_i = g \mid X_{i-1} = g) = 0.38$$

$$Pr(X_i = t \mid X_{i-1} = g) = 0.12$$

Markov Chain Models

- can also have an *end* state; allows the model to represent
 - a distribution over sequences of different lengths
 - preferences for ending sequences with certain symbols

Markov Chain Models

- Let X be a sequence of L random variables $X_1...X_L$ representing a biological sequence generated through some process
- We can ask how probable the sequence is given our model
- for any probabilistic model of sequences, we can write this probability as (recall the "Chain Rule of Probability")

$$Pr(X) = Pr(X_L, X_{L-1}, ..., X_1)$$

$$= Pr(X_L | X_{L-1}, ..., X_1) Pr(X_{L-1} | X_{L-2}, ..., X_1) ... Pr(X_1)$$

• key property of a (1st order) Markov chain: X_i is conditionally independent of $X_1, X_2, ..., X_{i-2}$ given X_{i-1}

$$Pr(X) = Pr(X_L/X_{L-1})Pr(X_{L-1} | X_{L-2})...Pr(X_2 | X_1)Pr(X_1)$$

$$= \Pr(X_1) \prod_{i=1}^{L} \Pr(X_i \mid X_{i-1})$$

The Probability of a Sequence for a Given Markov Chain Model

 $Pr(cggt) = Pr(c \mid begin)Pr(g \mid c)Pr(g \mid g)Pr(t \mid g)Pr(end \mid t)$

Markov Chain Notation

• the transition parameters will be denoted by $a_{s,t}$ where

$$a_{s,t} = \Pr(X_i = t | X_{i-1} = s)$$

• similarly we can denote the probability of a sequence x as

$$a_{Bx_1} \prod_{i=2}^{L} a_{x_{i-1}x_i} = \Pr(x_1) \prod_{i=2}^{L} \Pr(x_i \mid x_{i-1})$$

where a_{Bx_1} represents the transition from the *begin* state

 This gives a probability distribution over sequences of length L

Example Application

- CpG islands
 - CG dinucleotides are rarer in eukaryotic genomes than expected given the marginal probabilities of C and G
 - but the regions upstream of genes are richer in CG dinucleotides than elsewhere – CpG islands
 - useful evidence for finding genes
- could predict CpG islands with Markov chains
 - one to represent CpG islands
 - one to represent the rest of the genome

- suppose we want to distinguish CpG islands from other sequence regions
- given sequences from CpG islands, and sequences from other regions, we can construct
 - a model to represent CpG islands
 - a *null model* to represent the other regions
- can then score a test sequence by:

$$score(x) = log \frac{Pr(x | CpG model)}{Pr(x | null model)}$$

- parameters estimated for CpG and null models
 - human sequences containing 48 CpG islands
 - 60,000 nucleotides

		P	$r(c \mid a)$						
+	a	c	<u></u>	t	_	a	С	g	t
a	.18	.27	.43	.12	a	.30	.21	.28	.21
C	.17	.37	.27	.19	c	.32	.30	.08	.30
g	.16	.34	.38	.12	g	.25	.24	.30	.21
t	.08	.36	.38	.18	t	.18	.24	.29	.29

CpG

null

- light bars represent negative sequences
- dark bars represent positive sequences
- the actual figure here is not from a CpG island discrimination task, however

Figure from A. Krogh, "An Introduction to Hidden Markov Models for Biological Sequences" in Computational Methods in Molecular Biology, Salzberg et al. editors, 1998.

• why use $score(x) = \log \frac{\Pr(x \mid CpG)}{\Pr(x \mid null)}$

• Bayes' rule tells us

$$Pr(CpG \mid x) = \frac{Pr(x \mid CpG) Pr(CpG)}{Pr(x)}$$

$$Pr(null \mid x) = \frac{Pr(x \mid null) Pr(null)}{Pr(x)}$$

• if we're not taking into account prior probabilities of two classes (Pr(CpG)) and Pr(null) then we just need to compare $Pr(x \mid CpG)$ and $Pr(x \mid null)$

Summary

- Markov chains are natural models for sequence-like data
- Markov chains are defined by two components
 - A set of states
 - Transition probabilities between states
- A Markov chain defines a probability distribution over sequences
- Markov chains can be used to discriminate between classes of sequences