

10/536978
PCT/IR 03/05414

05.01.04

INVESTOR IN PEOPLE

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

The Patent Office
Concept House
Cardiff Road
Newport
South Wales
NP10 8QQ

REC'D 15 JAN 2004

WIPO PCT

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

Dated 19 November 2003

1/77

The Patent Office

Cardiff Road
Newport
South Wales
NP10 8QQ

29 NOV 2002

02DEC02 E767560-5 D00073
P01/7700 0.00-0227928.9**Request for grant of a patent**

(See the notes on the back of this form. You can also get an explanatory leaflet from the Patent Office to help you fill in this form)

1. Your reference

6.70.1035 UK

2. Patent application number

(The Patent Office will fill in this part)

0227928.9

3. Full name, address and postcode of each applicant (underline all surnames)

INTERBREW S.A.
VARSTRAAT 94
B-3000 LEUVEN
BELGIUM

Patents ADP number (if you know it)

A BELGIAN CORPORATION

If the applicant is a corporate body, give the country/state of its incorporation

4. Title of the invention

7906530002

ALCOHOL BEVERAGE DISPENSER
COOLING SYSTEM WITH HEATER

5. Name of your agent (if you have one)

"Address for service" in the United Kingdom to which all correspondence should be sent (including the postcode)

G.F. REDFERN & CO.
LYNN HOUSE
IVY ARCH ROAD
WORTHING
WEST SUSSEX. BN14 8BX

Patents ADP number (if you know it)

1412002

8433856 001

6. If you are declaring priority from one or more earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and (if you know it) the or each application number

Country

Priority application number
(if you know it)Date of filing
(day / month / year)

7. If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application

Number of earlier application

Date of filing
(day / month / year)

8. Is a statement of inventorship and of right to grant of a patent required in support of this request? (Answer 'Yes' if:

YES

- a) any applicant named in part 3 is not an inventor, or
 - b) there is an inventor who is not named as an applicant, or
 - c) any named applicant is a corporate body.
- See note (d))

Patents Form 1/77

9. Enter the number of sheets for any of the following items you are filing with this form.
Do not count copies of the same document

Continuation sheets of this form

Description 11

Claim(s) 2

Abstract 1

Drawing(s) 4 x 4 SW

10. If you are also filing any of the following, state how many against each item.

Priority documents

Translations of priority documents

Statement of inventorship and right to grant of a patent (Patents Form 7/77)

Request for preliminary examination and search (Patents Form 9/77)

Request for substantive examination (Patents Form 10/77)

Any other documents
(Please specify)

11.

I/We request the grant of a patent on the basis of this application.

Signature

Date
29 November 2002

12. Name and daytime telephone number of person to contact in the United Kingdom

Mrs. S.M. Camp
01903 820466

Warning

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- a) If you need help to fill in this form or you have any questions, please contact the Patent Office on 08459 500505.
- b) Write your answers in capital letters using black ink or you may type them.
- c) If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- d) If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- e) Once you have filled in the form you must remember to sign and date it.
- f) For details of the fee and ways to pay please contact the Patent Office.

- 1 -

ALCOHOL BEVERAGE DISPENSER COOLING SYSTEM WITH HEATER

Field of the Invention

The present invention relates to a cooling system for use in an alcohol beverage dispensing apparatus and in particular, relates to a cooling system having a heater to prevent a beer beverage from freezing.

Background of the Invention

Beer dispensing apparatus are known in the art for dispensing of draft beer in taverns and the like. Typically, the beer is chilled prior to being dispensed by passing through a conical run of tube that passes through a chilled compartment containing ice and water. In some instances the compartment is refrigerated. Such draft beer dispensers are utilized in taverns where the large volumes of beer are dispensed everyday and the taverns have room to store such chillers. This is not the case for a domestic or home beer dispensing apparatus that is adapted to sit on a countertop in a kitchen where space is at a premium.

Further, due to limited countertop space requirements, there still is a need to chill or cool the beer in the dispensing apparatus to serving

temperatures in an optimal manner in spite of the limited space.

In a home beer dispenser, beer is typically drawn adjacent the bottom of the keg as this is usually the first region in the keg to chill. However, in the event the keg is left in the dispensing apparatus for a period of time greater than that necessary to bring the beer down to a serving temperature near the freezing temperature of the beer, the beer may freeze adjacent the bottom region of the keg preventing proper dispensing of the beer.

Summary of the Invention

It is an object of the present invention to provide an alcohol beverage or beer dispensing apparatus having a cooling system prevents the beverage from freezing in the dispensing apparatus.

The present invention relates to a cooling system for use with a alcohol beverage dispensing apparatus where a heater is located adjacent the bottom portion of the keg in thermal conducting relation therewith to prevent the beverage from freezing adjacent the bottom portion of the keg.

In accordance with an aspect of the present invention there is provided a cooling system for cooling a keg containing an alcohol beverage. The cooling system comprises a cooling plate adapted to receive a bottom portion of the keg in heat transfer relation therewith. The system further comprises a heater mounted with the cooling plate adapted to maintain the temperature of beverage in the keg adjacent the bottom portion of the keg above the freezing temperature of the beverage.

Preferably, the heater conducts sufficient heat energy into the base of the keg to provide an insulated layer of beer adjacent the bottom of the keg where the beer is dispensed from the keg. The heater is preferably an

electrical resistance heating element located in the cooling plate of the cooling system. Additionally, a temperature controller may be adapted to sense the temperature adjacent the bottom region of the keg and when the sensed temperature falls below a predetermined temperature where the beer may freeze, the temperature controller energizes the heater to warm the beer until the sensed temperature rises above the predetermined temperature.

Preferably the alcohol beverage is beer and the cooling system is utilized in a home beer dispensing apparatus.

Brief Description of The Drawings

For a better understanding of the nature and objects of the present invention reference may be had to the accompanying diagrammatic drawings in which:

Figure 1 is a front elevation view of a home beer dispensing apparatus in accordance with the present invention;

Figure 2 is a side elevation view of the home beer dispensing apparatus;

Figure 3 is an enlarged perspective view of the cooling system for the beer keg housed in the home beer dispensing apparatus illustrating the thermal bridge and its cavity;

Figure 4, is a perspective view of the top portion of the thermal bridge;

Figure 5 is a perspective view of the base portion of the thermal bridge showing the orientation of the base portion reversed relative to the orientation of the top portion shown in Figure 4;

Figure 6, is a cross sectional view of the cavity of the thermal bridge taken along section line VI-VI of Figure 3; and,

Figure 7 is a plan view of the heat sink and fan showing the horizontal air flow across the heat exchanger.

Detailed Description Of The Invention

Referring to Figures 1 and 2 there is shown a home beer dispensing apparatus, appliance or unit 10. The dispensing apparatus 10 is primarily intended for use in domestic kitchens but may also be used in utility rooms, garages, domestic bars, caravans etc. While the preferred embodiment relates to dispensing beer, alternatively carbonated solutions or other alcohol beverages may be dispensed by apparatus 10.

The home beer dispensing apparatus 10 has a front wall 12 and a dispensing tap 14 protruding forward of the front wall 12. A drip tray 16 also protrudes forward of the front wall 12 and is adapted to support an open glass container 18 below the dispensing tap 14. The home beer dispensing apparatus 10 further has a base 21 adapted to rest on a counter top. The front wall 12 is an extension of two pivoting side walls 20 which may be moved between closed and open positions to allow the keg 22 (see Figure 2 in broken lines) to be inserted into the housing of the home beer dispensing apparatus 10.

The housing of the home beer dispensing apparatus 10 further includes a top wall 24 and a rear wall 26. The rear wall 26 has a grill 30 that permits for air circulation within the home beer dispensing apparatus 10. An electrical cord 32 extends through the rear wall 26 of the apparatus 10 to provide a connection into a main electrical supply to supply electrical power to the electrical components housed within the unit 10. Alternatively, a 12 Volt DC supply input may be used.

The dispensing apparatus 10 has a cooling system 34 located behind and below keg 22 that is adapted to cool beer 70 in keg 22 when

keg 22 is placed into dispensing apparatus 10. The dispensing apparatus 10 also dispenses the beer by providing a pressurised air supply (not shown).

Referring to Figure 3, the cooling system 34 is utilized to keep the beer in keg 22 at an ideal serving temperature for drinking.

The cooling system 34 has a Peltier thermoelectric device 36 that produces the necessary cooling effect. When a voltage is applied to the Peltier device 36 across leads 38 a thermal differential is generated across the Peltier device 36 which is used to cool a mediate thermal bridge 40. The Peltier thermoelectric device 36 provides a low continuous cooling rate along its cold side portion 60 to aluminum block 42 mounted to rear wall 70 of the thermal bridge 40.

To maximize the cooling power of the Peltier device 36, the hot side portion 44 of the Peltier device 36 is cooled by an active heat sink 46 coupled to the hot side portion 44. The heat sink 46, as seen in Figures 3 and 7, has a series of spaced apart horizontally extending fins or ribs 48 which extend along corresponding horizontal planes and across which air flows to cool the heat sink 46. The heat sink has a supporting wall 47 from which the heat exchange fins 48 extend to define two opposing lateral open sides 51, 53 and an open front 55.

A fan 50 is coupled to heat sink 46 against the open front 55 to blow ambient air passing through the grill 30 over the fins 48, out open sides 51, 53 and thereby make the heat sink 46 active. The fan 48 is positioned such that air is blown directly onto the face of the heat sink 46 as indicated by arrows 52 so as to maximize the turbulent air flow and the resultant heat dissipation from the heat sink occurs as the air flows horizontally out of the heat sink 46 between and across fins 48 as

exemplified by air flow arrows 54. In Figure 7, a plan view of the heat sink 46 and fan 50 further illustrates the air flow 52 and 54 entering open front 55 and exiting opposing open sides 51, 53.

While vertical air flow across fins of a heat sink is considered a usual air flow path that takes advantage of the chimney effect of rising heat, the area within the dispensing apparatus 10 is filled with other component parts for the unit such as, for example, air pressure devices, the dispense tap, and possibly electronic hardware that should be kept at ambient temperature to operate effectively. In this environment, the chimney effect of a heat sink is detrimental to the operation and fitting of component parts in the fixed housing space of apparatus 10 and the operation of the horizontal air flow across heat sink 48 is beneficial.

As shown in Figure 1, the dispensing apparatus 10 has the grill 30 located in it's rear wall 26 through which air flow 52 into the apparatus 10 is drawn in by fan 50 and air flow out at 54 is achieved by horizontal extending fins 48 of the heat sink. The exit air flow 54 from grill 30 is shown to be above and below intake air flow 52 in Figure 1; however, in practice, the exiting air flow 54 is more to the side of input air flow 52. Hence the horizontal orientation of fins 48 of heat sink 46 result in an air flow in a direction away from component parts located above the heat sink 46 within dispensing apparatus 10.

As mentioned, the cold side wall portion 60 of the Peltier device 36 is attached to the thermal bridge 40 through aluminum block 42. In the preferred embodiment, the thermal bridge 40 is aluminum and has an internal reservoir cavity 62 formed therein. The cavity 62 contains a cooling solution 66 (see Figure 6) of water and, preferably 5%, glycol. The cavity 62 provides a cooling bank and is cooled by Peltier device 36.

The bridge 40 has a cooling plate 64 upon which the keg 22 is located within the dispensing apparatus 10. The cooling plate 64 is located underneath the keg 22 so that the weight of the keg 22 is applied to the interface between the keg 22 and the cooling plate 64 thereby improving conductivity. The cooling at the bottom portion 68 of the keg 22 also ensures that beer to be drawn first, from the bottom of the keg, is cooled first. Cooling at the bottom portion 68 also permits insulation (not shown) around the top of the keg 22 to be thinner and less effective to allow cold air created inside the dispensing apparatus 10 to sink to the bottom portion 68.

It should be understood that the rate of cooling across the interface between keg 22 and cooling plate 64 is proportional to both the effectiveness of the interface contact between the two and the temperature differential between beer 70 housed in keg 22 and cooling plate 64.

Referring to Figures 4, 5 and 6, the assembly for the mediated thermal bridge 40 is shown. The mediated thermal bridge comprises cavity 62 filled with the cooling solution 66 (Figure 6) comprising a mixture of water and 5% glycol. This mixture improves cooling rate, whilst ensuring that the beer does not actually freeze. The freezing point of the water in the ice store is reduced by a couple of degrees by the addition of the small amount of antifreeze or glycol. The cooling plate is now at 0°C rather than 2°C and the cooling rate of the beer increased. The cooling solution 66 effectively provides a bank of latent cooling capacity through cooling plate 64 to keg 22.

The ice store cavity 62 of the thermal bridge 40 preferably contains 1.5 liters of water and glycol mixture (5% glycol) and is permanently sealed. The 5% glycol allows freezing at -2°C. The glycol water

mixture effectively increases the differential temperature between the beer and the cooling plate. The ice store mixture may also contain corrosion inhibitors.

The thermal bridge 40 comprises a top portion 72 (see Figure 4) comprising a top wall 74 and the cooling plate 64 beveled to receive the beveled bottom 68 of the keg 22. The top wall 74 has a series of spaced apart elongated fins 76 extending along and outwardly therefrom and interstitially into the cavity 62. The top portion 72 is adapted to sealingly engage side walls 78 of cavity bottom portion 80 (see Figure 5). Bottom portion 80 has a base wall 82 and a series of spaced apart elongated fins 84 that extend along and outwardly from base wall 82 and interstitially into cavity 62. Part 80 is filled with cooling solution 66 (Figure 6) and part 72 is sealed to part 80 to form cavity 62. Fins 76 of top portion 72 are inter spaced with and between fins 84 of lower portion 80 to provide an interleaved relationship when the thermal bridge 40 is assembled. The cooling solution 66 is positioned within cavity 62 located between fins 76 and 80 (see Figure 6). The cooling solution 66 boosts the cooling effect in cavity 62 between fins 76 and 84 due to additional latent heat capacity because water in the solution is frozen when sufficient cooling is provided by the Peltier device 36. The frozen water is a thermal bank. When the keg 22 is put on cooling plate 64, the latent cooling, or thermal bank provides ability to draw heat out of the keg 22 more readily. The latency is built in to the cooling cycle in course of operating the dispensing apparatus 10.

The utilization of the ice storage cavity 62 of the thermal bridge 40 in the cooling system 34 boosts the ability of the cooling system 34 to lower the temperature of the beer 70 in the keg 22. The bridge 40

decreases the cooling time for the beer to a desired serving temperature offering benefits to the user. This is achieved by means of an ice store located in the aluminum block cavity 62. The ice is frozen by the Peltier device 36 once a keg 22 of beer is cooled in preparation for the next keg. The latent energy required in the phase change from water to ice is considerable. About 2kg of water, when frozen, has the capacity to absorb enough energy to cool 6kg of water by 20°C. When a new keg 22 is inserted into the dispensing apparatus 10, the new keg cools much quicker than by the use of a Peltier device and cooling fan alone.

Further, a good thermal contacting relation between the cooling solution 66 and the aluminum block cavity 62 provided by interleaved fins 76 and 84 ensures both rapid freezing of the ice and rapid thawing when cooling beer. This is achieved by using the elongated finned internal surfaces of the fins 76 and 84 in a manner similar to a heat sink.

An ice store of cooling solution 66 is preferably at 0°C when cooling the beer. However, there is a temperature gradient through the aluminum block cavity 62 and the ice store or cooling solution 66, when cooling, is colder than the cooling plate 64 by as much as 2 or 3°C. The differential between beer and cooling plate 64 temperatures is less than it could be if the cooling plate were at 0°C and cooling would be slower.

The Peltier unit 36 preferably is a 50W or 72W rated device. The Peltier unit 36 is preferably clamped between the heat sink 46 and thermal bridge 40 by using two stainless steel bolts (not shown).

Referring to Figure 3, the cooling plate 64 has mounted therein an electrical resistance heater or heating element 45. Heating element 45 is connected to a source of electrical supply (not shown). Heating element 45 is mounted in heat transfer relation with the keg 22 and maintains the

- 10 -

temperature of beer 70 adjacent the bottom portion 68 of the keg 22 above freezing temperature of the beer 70. The cooling system 34 further includes a temperature sensor 63 adapted to contact the keg 22 adjacent the bottom portion 68 for sensing temperature related to the temperature of the beer 70 in the keg 22. The cooling system 34 has a temperature controller 65 responsive to the temperature sensed by the temperature sensor 63 to energize the heater 45 to transfer heat into the bottom portion 68 of the keg 22 to maintain the temperature of the beer 70 above its freezing temperature. The temperature sensor and controller may comprise a bi-metal thermostat in circuit with the heating element 45 which cycles the heating element 45 on and off. Alternatively, the temperature sensor may comprise a thermistor connected with a control circuit to cycle the heating element on and off.

The Peltier device 36 and fan 50 supply voltages are controlled so that when the beer is finally cooled to the desired serving temperature a lower rate of energy extraction is provided to avoid freezing the beer and to reduce energy consumption and noise. The use of Peltier device 36 and fan 50 preferably limits the cooling power to, at most, 50W and more typically 30W. The cooling of a 6 liter keg of beer from 23°C to 3°C by the Peltier device 36 and fan 50 alone typically takes 8 to 20 hours. The material of the keg 22 has an effect on this cooling time.

The rating of the heat sink 46 and fan 50 is better than 0.25°C/W. At an ambient temperature of 22°C, the heat sink 46 temperature measured adjacent to the hot side 44 of the Peltier device 36 is preferably not be above 35°C. The heat sink 46 is preferably made from extruded Aluminum. It need not be coated. The fan 50 preferably provides 29cfm (cubic feet per minute) at 12V supply. The fan is capable of starting at

6V.

The mediate thermal bridge 40 connects the Peltier device 36 cold side wall portion 60 to the cooler plate 64 underneath the keg 22. The temperature gradient between these two points preferably does not exceed 3°C at 40W flow.

The mediate thermal bridge 40 is preferably manufactured from cast aluminum alloy LM 20. This material has been chosen for its thermal conductive properties.

The cooling plate 64 to keg 22 interface is preferably matched to the form of a keg pressurised at 1.5 bar. The temperature differential between cooling plate 64 and the keg bottom surface 64 (which is at 3°) shall be <3°C (i.e. the cooler plate 64 should be at a temperature of 0°C under these conditions).

While the preferred embodiments described in relation to the drawings are for a thermal bridge having a cavity located in heat transfer relation with the keg below the bottom portion of the keg, it should be understood that the thermal bridge may be located in other locations in heat transfer relation with the keg. One such other location, for example, is to locate the thermal bridge beside the keg in heat transfer relation to the side wall of the keg.

WHAT IS CLAIMED IS:

1. A cooling system for cooling a keg containing an alcohol beverage, the cooling system comprising:
 - a cooling plate adapted to receive a bottom portion of the keg in heat transfer relation therewith; and
 - a heater mounted with the cooling plate adapted to maintain the temperature of beverage in the keg adjacent the bottom portion of the keg above freezing temperature of the beverage.
2. The cooling system of claim 1 wherein the heater comprises an electrical resistance heater mounted in the cooling plate.
3. The cooling system of claim 2 further including a temperature sensor adapted to contact the keg adjacent the bottom portion of the keg for sensing temperature related to the temperature of the beverage in the keg, and a temperature controller responsive to the temperature sensed by the temperature sensor to energize the heater to transfer heat into the bottom portion of the keg and the beverage so as to maintain the temperature of the beverage above its freezing temperature.
4. The cooling system of claim 2 further including a Peltier thermoelectric cooling unit mounted in heat transfer relation with the cooling plate for enhancing the extraction of heat from the beer contained in the keg.
5. A home beer dispensing apparatus having a cooling system for cooling a keg containing beer, the cooling system comprising:
 - a cooling plate adapted to receive a bottom portion of the keg in heat transfer relation therewith; and
 - a heater mounted with the cooling plate adapted to maintain the temperature of beer in the keg adjacent the bottom portion of the keg

above freezing temperature of the beer.

6. The apparatus of claim 5 wherein the heater comprises an electrical resistance heater mounted in the cooling plate.

7. The apparatus of claim 6 further including a temperature sensor adapted to contact the keg adjacent the bottom portion of the keg for sensing temperature related to the temperature of the beer in the keg, and a temperature controller responsive to the temperature sensed by the temperature sensor to energize the heater to transfer heat into the bottom portion of the keg and the beer so as to maintain the temperature of the beer above its freezing temperature.

8. The apparatus of claim 6 further including a Peltier thermoelectric cooling unit mounted in heat transfer relation with the cooling plate for enhancing the extraction of heat from the beer contained in the keg.

ALCOHOL BEVERAGE DISPENSER COOLING SYSTEM WITH
HEATER ABSTRACT

A home beer dispensing apparatus has a cooling system for cooling a keg containing beer. The cooling system has a cooling plate for extracting heat from the keg to cool the beer. The cooling plate has an electrical resistance heater mounted therein. The heater is mounted in heat transfer relation with the keg to maintain the temperature of beer in the keg adjacent a bottom portion thereof above the freezing temperature of the beer.

FIG. 1

FIG. 4.

FIG. 5.

FIG. 7.

FIG. 6