Evaluation of the Collision Stopping Power of Elements and Compounds for Electrons and Positrons

STEPHEN M. SELTZER and MARTIN J. BERGER

Center for Radiation Research, National Bureau of Standards, Washington, DC 20234, U.S.A.

(Received 15 May 1981)

This paper gives tables of material properties needed for the evaluation of the collision stopping power for electrons and positrons according to the Bethe theory. The key quantity is the mean excitation energy of the medium, which has been derived for many materials by a critical analysis of experimental data. Also given are the density-effect parameters of the theory of Sternheimer and Peierls. The material properties are given for the elements and for 180 compounds and mixtures, and the rules are described by which they could be obtained for other materials. Tables are also given of auxiliary quantities which depend only on the kinetic energy of the incident electron. These, together with the main tables, make possible the quick-and-easy evaluation of the collision stopping power.

1. Introduction

IN RADIATION DOSIMETRY it is important to have accurate information about the energy loss of charged particles in many different materials. The chief quantity of interest is the collision stopping power,* i.e. the average energy loss per unit pathlength, due to inelastic Coulomb collisions resulting in the ionization and excitation of atoms or molecules. Critical reviews of stopping power are required from time to time in order to take into account both the steady accumulation of new experimental stopping-power data and the continuing refinement of the methods for analyzing such data. Such reviews have led to the preparation of improved stopping-power and range tables for protons, (1) \(\alpha \)-particles (2) and heavy ions. (3)

At sufficiently high energies (above ~1 MeV for protons, above ~10 keV for electrons) the preferred method of evaluating the collision stopping power is to use Bethe's stopping-power theory.⁽⁴⁾ This theory contains a key parameter, the mean excitation energy of the stopping medium, which—in the present state of the art—cannot be calculated accurately on the basis of theory alone (except for simple atomic gases). It remains necessary to rely on a combination of ex-

As part of a general review of stopping power, we have recently used the Bethe theory, and the Sternheimer density-effect correction, (5.6) to prepare new tables of electron collision stopping powers for elements and for selected compounds of biomedical interest. (7)† In the present paper this work is extended to a large set of other materials of interest in various areas of radiation science. Because of limitations of space it is not feasible to give in this paper extensive stopping-power tables for all of the materials treated. Instead we present tables of mean excitation energies, and tables of auxiliary quantities (some of which depend on the material only, others on the electron energy only) from which the collision stopping power for electrons (and positrons) can be determined with only a minimal amount of computation.

2. Stopping-power Formulas

The mass collision stopping power of a charged particle, in units of MeV/(g cm⁻²), is given by

$$-\frac{1}{\rho} \left(\frac{\mathrm{d}E}{\mathrm{d}x} \right)_{\mathrm{coll}} = \frac{0.153536}{\beta^2} \frac{Z}{A} B(T), \tag{1}$$

where B(T) is the stopping number, T is the kinetic energy of the particle, β its velocity in units of the velocity of light, Z/A^{\ddagger} is the ratio of atomic number to atomic weight for the stopping medium, and ρ is the density of the medium. The expression for the stopping number depends on the type of charged par-

perimental input data and theoretical considerations. The required input data consist either of measured stopping powers or ranges, or of experimental dipole-oscillator-strength distributions or dielectric-response functions which characterize the medium. The determination of the mean excitation energy is the principal non-trivial task in the evaluation of the Bethe stopping-power formula.

^{*} For light particles, such as electrons or positrons, it is also of interest to know the radiation stopping power, i.e. the mean energy loss per unit pathlength due to the emission of bremsstrahlung quanta. A simple procedure for evaluating the radiation stopping power is given in an accompanying paper.

[†] The present paper uses the convenient universal fit of STERNHEIMER and PEIERLS⁽⁶⁾ for the density-effect correction. In Ref. 7 we use directly computed numerical values of slightly greater accuracy (see footnote at end of Section 5).

[‡] For molecular compounds, Z/A is replaced by $\langle Z/A \rangle$, which is the ratio of the number of electrons in the molecule to the molecular weight.

	Mean excitation energy	Density*		Percer	ntage decre	ease	_
Material	I (eV)	(g cm ⁻³)	T = 0.01	0.1	1	10	100 MeV
Air	85.7	1.205×10^{-3}	2.0	1.4	1.0	0.8	0.3
Xe	482	5.485×10^{-3}	3.1	1.8	1.3	0.9	0.5
Polystyrene	68.7	1.06	2.0	1.4	0.7	0.1	0.0
Water	75.0	1.00	2.0	1.4	0.7	0.1	0.0
Graphite	78.0	2.27	2.0	1.4	0.7	0.1	0.0
Al	166	2.70	2.4	1.6	0.9	0.2	0.0
Cu	322	8.96	2.8	1.7	0.9	0.2	0.0
Au	790	19.32	3.7	2.0	1.2	0.3	0.0

Table 1. Percentage decrease in the collision stopping power due to a 10% increase of the mean excitation energy. Results are given for electrons with kinetic energy T

ticle.§ For electrons and positrons it is given by

$$B(T) = B_0(T) - 2 \ln(I/mc^2) - \delta,$$
 (2)

where I is the mean excitation energy of the medium, δ is the density-effect correction and mc^2 is the electron rest mass (0.5110034 MeV). For electrons, $B_0(T)$ has the form⁽⁴⁾

$$B_0(T) = \ln \left[\tau^2 (\tau + 2)/2 \right] + \left[1 + \tau^2 / 8 - (2\tau + 1) \ln 2 \right] / (\tau + 1)^2.$$
 (3)

For positrons, it has the form(8)

$$B_0(T) = \ln [(\tau^2(\tau + 2)/2] + 2 \ln 2 - (\beta^2/12)]$$

$$\lceil 23 + 14/(\tau + 2) + 10/(\tau + 2)^2 + 4/(\tau + 2)^3 \rceil$$
, (4)

where $\tau = T/mc^2$ is the kinetic energy in units of the rest mass.

The density-effect correction, δ , represents the reduction of the collision stopping power due to the polarization of the medium caused by the passage of the incident charged particle. A comprehensive theory of this effect, applicable to all kinds of media, has been worked out by Sternheimer. (5.6) In the high-energy limit ($\beta \rightarrow 1$), the density-effect correction has the asymptotic form

$$\delta \rightarrow 2 \ln (\hbar \omega_n / I) + 2 \ln (\tau + 1) - 1, \tag{5}$$

where

$$\hbar\omega_{\rm p} = 28.816 (\rho \, \text{Z/A})^{\frac{1}{2}}$$
 (6)

is the plasma energy (in eV) with the density, ρ , in g cm⁻³. The stopping number, in the high-energy limit, then has the form

$$B(T) = B_0(T) - 2\ln(\hbar\omega_p/mc^2) - 2\ln(\tau + 1) + 1,$$

and thus no longer depends on the mean excitation energy but only on the density of atomic electrons through the plasma energy. The mean excitation energy can be calculated, for gases, from the expression

$$\ln I = \int_0^\infty \frac{\mathrm{d}f}{\mathrm{d}E} \ln E \, \mathrm{d}E / \int_0^\infty \frac{\mathrm{d}f}{\mathrm{d}E} \, \mathrm{d}E, \tag{8}$$

where df/dE is the density of optical dipole oscillator strength (f) per unit energy of excitation (E) above the ground state. For condensed media, the mean excitation energy can be evaluated from the expression

$$\ln I = 2/(\pi\omega_p^2) \int_0^\infty \omega \,d\omega \,\operatorname{Im}[-1/\epsilon(\omega)] \ln \hbar\omega, \quad (9)$$

where $\hbar\omega_p$ is the plasma energy defined by equation (6), and where $\epsilon(\omega)$ is the complex dielectric-response function at frequency $\omega = E/\hbar$ (\hbar is Plank's constant divided by 2π).

The relative uncertainty of the stopping power due to the uncertainty dI of the mean excitation energy is approximately equal to (dI/I)/B(T), and is usually several times smaller than dI/I. This is illustrated by Table 1 which gives, for representative materials and energies, the change of the electron collision stopping power corresponding to a 10% change of the mean excitation energy. The higher the electron energy, the less is the dependence of the stopping power on I. One reason for this is the increasing magnitude of the contribution $B_0(T)$ to B(T). The other reason is the tendency at high energies for the density effect to offset the I-dependence of the stopping power (see equations (5 and 7)).

3. Mean Excitation Energies for Elements

The value of the mean excitation energy, *I*, depends on the details of the electronic structure of the medium, and is especially sensitive to the arrangement of the valence electrons. Therefore it is influenced by molecular binding and by the physical state of aggregation of the medium. The accurate theoretical prediction of *I*-values is difficult, and reliance on experimental data is unavoidable.

Data in the form of experimental stopping-power and range data in the energy region where the Bethe

^{*} Densities for gases at a temperature of 20°C and pressure of 1 atm.

[§] For heavy charged particles whose velocity is not large compared to the velocities of the atomic electrons, the stopping number must include also a shell correction (to take into account the binding of the atomic electrons) and the so-called z^3 and z^4 corrections (where ze is the charge of the incident particle).

theory is applicable are rather abundant, especially for protons. (9) Of particular importance are measurements at high energies (≥300 MeV) where the extraction of I-values is simple and straightforward. The bulk of the data have been obtained at lower energies, between 1 and 20 MeV, where the application of shell corrections, and of z^3 and z^4 corrections, is necessary. These corrections are not always known with desirable accuracy, especially for materials of high atomic number, so additional uncertainties are introduced into the analysis. Such difficulties are absent when mean excitation energies are determined from moments of experimental dipole-oscillator-strength distributions or dielectric-response functions. Moreover, there are theoretical sum rules which provide valuable checks and constraints on such data, so that I-values derived in this manner tend to be rather accurate. However, such data are still relatively scarce and have become available in significant amounts only in recent years (see for example, DEHMER et al.(10) and INOKUTI and TURNER(11)).

Our choices of I-values are explained in some detail in Ref. 7. For 36 elemental substances, the selections were mainly based on stopping-power and range data, and were strongly influenced by (a) the data analysis of Andersen and Ziegler, (1) involving the use of empirical shell corrections; and (b) a new analysis by BICHSEL which involves the use of Walske's K- and L-shell corrections (extended to higher shells by scaling), (12) the z^3 correction of ASHLEY et al. (13) and the z4 correction from the theory of BLOCH.(14) For six gases, the chosen I-values were derived from experimental dipole-oscillator-strength distributions. The I-value for aluminum was taken from a particularly thorough analysis of the dielectric-response function, (15) and is also quite close to the value derived from many stopping-power experiments.

The elements for which *I*-values could be deduced from experimental data include the cases of greatest practical interest. Nevertheless, it was considered useful to estimate the *I*-values for other elements, especially with a view toward later application to com-

TABLE 2. Values of the mean excitation energy, I, for the elements (unless noted otherwise, the values are for the substance in the condensed phase)

Z	Element	Symbol	A* (g mol - 1)	I ^b (eV)
1	Hydrogen	Н	1.0079	19.2 ± 0.4 molecular gas
				21.8 ± 1.6 liquid
2	Helium	He	4.00260	$41.8 \pm 0.8 \text{ gas}$
3	Lithium	Li	6.941	40 ± 5
4	Beryllium	Be	9.01218	63.7 ± 3.0
5	Boron	В	10.81	76.0 ± 8.0
6	Carbon	C	12.011	78.0 ± 7.0 graphite
7	Nitrogen	N	14.0067	82.0 ± 2.0 molecular gas
8	Oxygen	Ō	15.9994	95.0 ± 2.0 molecular gas
9	Fluorine	F	18.998403	(115 ± 10) gas
10	Neon	Ne	20.179	$137 \pm 4 \text{ gas}$
11	Sodium	Na	22.98977	(149 ± 10)
12	Magnesium	Mg	24.305	(156 ± 10)
13	Aluminum	Al	26.98154	166 ± 2
14	Silicon	Si	28.0855	173 ± 3
15	Phosphorus	P	30.97376	(173 ± 15)
16	Sulfur	S	32.06	(180 ± 15)
17	Chlorine	Cl	35.453	(174 ± 15) gas
18	Argon	Ar	39.948	$188 \pm 10 \text{ gas}$
19	Potassium	K	39.0983	$(190 \pm 15)^{-}$
20	Calcium	Ca	40.08	191 ± 8
21	Scandium	Sc	44.9559	216 ± 8
22	Titanium	Ti	47.88	233 ± 5
23	Vanadium	V	50.9415	245 ± 7
24	Chromium	Cr	51.996	257 ± 10
25	Manganese	Mn	54.9380	272 ± 10
26	Iron	Fe	55.847	286 ± 9
27	Cobalt	Co	58.9332	297 ± 9
28	Nickel	Ni	58.69	311 ± 10
29	Copper	Cu	63.546	322 ± 10
30	Zinc	Zn	65.38	330 ± 10
31	Gallium	Ga	69.72	(334 ± 20)
32	Germanium	Ge	72.59	350 ± 11
33	Arsenic	As	74.9216	(347 ± 25)
34	Selenium	Se	78.96	(348 ± 30)
35	Bromine	Br	79.904	(343 ± 30) gas (357 ± 30) condensed
36	Krypton	Kr	83.80	$352 \pm 25 \text{ gas}$
37	Rubidium	Rb	85.4678	(363 ± 30)
38	Strontium	Sr	87.62	(366 ± 30)

TABLE—continued

Z	Element	Symbol	A* (g mol ⁻¹)	I ^b (eV)
39	Yttrium	Y	88.9059	(379 ± 30)
40	Zirconium	Zr	91.22	393 ± 15
41	Niobium	Nb	92.9064	417 ± 15
42	Molybdenum	Mo	95.94	424 ± 15
43	Technetium	98Tc	97.907	(428 ± 35)
44 45	Ruthenium	Ru	101.07	(441 ± 35)
45	Rhodium Palladium	Rh	102.9055	449 ± 20
40	Silver	Pd	106.42 107.868	470 ± 20
48	Cadmium	Ag Cd	112.41	470 ± 10 469 ± 20
49	Indium	In .	114.82	488 ± 20
50	Tin	Sn	118.69	488 ± 15
51	Antimony	Sb	121.75	(487 ± 40)
52	Tellurium	Te	127.60	(485 ± 40)
		-		(474 ± 40) gas
53	Iodine	I	126.9045	(491 ± 40) condensed
54	Xenon	Xe	131.29	$482 \pm 30 \text{ gas}$
55	Cesium	Cs	132.9054	(488 ± 40)
56	Barium	Ba	137.33	(491 ± 40)
57	Lanthanum	La	138.9055	(501 ± 40)
58	Cerium	Ce	140.12	(523 ± 40)
59	Praseodymium	Pr	140.9077	(535 ± 45)
60	Neodymium	Nd	144.24	(546 ± 45)
61	Promethium	145Pm	144.913	(560 ± 45)
62	Samarium	Sm	150.36	(574 ± 45)
63	Europium	Eu	151.96	(580 ± 50)
64	Gadolinium	Gd	157.25	591 ± 20
65	Terbium	Ть	158.9254	(614 ± 55)
66	Dysprosium	Dy	162.50	(628 ± 55)
67 68	Holmium	Ho	164.9304	(650 ± 60)
69	Erbium Thulium	Er T	167.26	(658 ± 60)
70	Ytterbium	Tm Yb	168.9342 173.04	(674 ± 60) (684 ± 65)
71	Lutetium	Lu	174.967	(694 ± 65)
72	Hafnium	Hf	174.907	(694 ± 65) (705 ± 65)
73	Tantalum	Ta	180.9479	718 ± 30
74	Tungsten	W	183.85	718 ± 30 727 ± 30
75	Rhenium	Re	186.207	(736 ± 70)
76	Osmium	Os	190.2	(746 ± 70)
77	Iridium	Ĭr .	192.22	757 ± 30
78	Platinum	Pt	195.08	790 ± 30
79	Gold	Au	196.9665	790 ± 30
80	Mercury	Hg	200.59	(800 ± 75)
81	Thallium	TĪ	204.383	(810 ± 75)
82	Lead	Pb	207.2	823 ± 30
83	Bismuth	Bi	208.9804	(823 ± 80)
84	Polonium	²⁰⁹ Po	208.982	(830 ± 80)
85	Astatine	²¹⁰ At	209.987	(825 ± 80)
86	Radon	²²² Rn	222.018	(794 ± 80) gas
87	Francium	²²³ Fr	223.020	(827 ± 80)
88	Radium	Ra	226.0254	(826 ± 80)
89	Actinium	Ac	227.0278	(841 ± 80)
90	Thorium	Th	232.0381	(847 ± 80)
91	Protactinium	Pa	231.0359	(878 ± 80)
92 93	Uranium	U	238.0289	890 ± 30
93 94	Neptunium	Np ²³⁹ Pu	237.0482	(902 ± 80)
94 95	Plutonium Americium	²⁴³ Am	239.052 243.061	(921 ± 85) (934 ± 85)
95 96		²⁴⁷ Cm	243.061 247.070	(934 ± 85) (939 ± 85)
90 97	Berkelium	²⁴⁷ Bk	247.070 247.070	(952 ± 85)
98	Californium	251Cf	247.070 251.080	(932 ± 83) (966 ± 90)
99		²⁵² Es	252.083	(980 ± 90)
100		²⁵⁷ Fm	257.095	(994 ± 90)

^aThe atomic weights (A) are those recommended by the Commission on Atomic Weights of the International Union of Pure and Applied Chemistry. ⁽¹⁹⁾ The values are for naturally occurring isotopic mixtures, unless a particular isotope is indicated.

^b Values in parentheses are estimated by interpolation of I/Z vs Z, or by extrapolation for

Z > 92.

Table 3. Comparison of mean excitation energies for elements recommended in various publications

	H ₂ (gas)	C (graphite)	N ₂ (gas)	O ₂ (gas)	Aì	Cu	Ag	Pb
NCRP (1961) ⁽²⁰⁾		78.4			164	306	462	812
FANO (1963)(21)	18.3	81		_	163	315	478	820
NAS-NRC (1964) ⁽²²⁾	18.7	78	85	89	163	312	480	795
Janni (1966) ⁽²³⁾	18.3	77.3	87.5	88.9	163	318	459	779
BICHSEL (1968)(24)	18	78	78	100	164	322	475	820
TURNER et al. (1970)(25)	18.2	81.2	89.6	101	163	316	466	767
BICHSI:L (1972)(26)	19.2	78	78	93	166	319	475	813
Andersen and Ziegler (1977)(1)	18.8	77.3	86.7	97.7	162	322	466	759
AHLEN (1980)(27)	18.5	79.0	82	98.5	164	317	469	793
ZIEGLER (1980)(3)	19	79	86	99	162	330	470	761
JANNI (1980) ⁽²⁸⁾	20.4	73.8	97.8	116	160	321	462	788
Values adopted here	19.2	78.0	82.0	95.0	166	322	470	823

All values are given in units of eV.

pounds. For 57 elements, I-value estimates were obtained by interpolation with respect to atomic number Z. For $Z \gtrsim 20$, the ratio I/Z varies rather clowly with Z, and oscillates around the value $I/Z = 10 \,\text{eV}$. However, the interpolation is complicated by the fact that the Z-dependence is not smooth, due to the effects of atomic shell structure. Such a non-smooth dependence is predicted by the calculations of various authors(3.16) carried out on the basis of the local-plasma approximation of LINDHARD and SCHARFF, (17) and also by evaluations of I from theoretical oscillator-strength distributions. (10,18) We have followed ANDERSEN and ZIEGLER(1) in letting the interpolation of I/Z vs Z be guided by these theoretical results. We have also attempted to take the phase of the medium into account by basing the interpolation either on the neighboring gases or on the neighboring condensed materials for which experimental I-values were available. The complete list of adopted I-values (including estimated uncertainties) is given in Table 2. Values obtained by interpolation are enclosed in parentheses. Analyses leading to sets of recommended I-values have been made many times in the past. In Table 3, comparisons are made with recommendations from eleven previous papers.(1,3,20-28)

4. Mean Excitation Energies for Compounds

Although experimental data are available to determine mean excitation energies directly for a considerable number of compounds, there are many other compounds of interest for which one must rely on indirect determinations, usually through application of an additivity rule. It has been known since the

early work of BRAGG and KLEEMAN⁽²⁹⁾ that the stopping power of a compound can be closely approximated by a weighted sum of the stopping powers for the atomic constituents. Within the framework of the Bethe theory, this additivity assumption is equivalent to assigning to a compound a mean excitation energy

$$\langle I \rangle = \exp \left\{ \left[\sum_{j} w_{j} (Z_{j}/A_{j}) \ln I_{j} \right] / \langle Z/A \rangle \right\}, \quad (10)$$

where

$$\langle Z/A \rangle = \sum_{i} w_{j} Z_{j}/A_{j},$$
 (11)

and where w_j , Z_j , A_j and I_j are the fraction by weight, atomic number, atomic weight and mean excitation energy, respectively, of the *j*th constituent.*

In order to put the additivity rule into effect one must choose appropriate values of the mean excitation energies I_j for the atomic constituents. The simplest choice, which has been widely used in the past, is to use I-values for elemental substances, thereby disregarding molecular binding effects, and also disregarding the fact that input data, such as those for nitrogen and oxygen, may be for gases but must be applied to condensed materials.

A significant body of data pertaining to molecular binding effects was provided by the relative stoppingpower measurements of Thompson⁽³⁰⁾ for 33 materials, including 26 organic liquids and water. Thompson measured partial ranges, relative to those in copper, for protons slowing down from 340 to 200 MeV. These data can be interpreted as stoppingpower ratios at an intermediate energy (267.5 MeV). From his results, Thompson obtained relative stopping powers (and I-values) for the atomic constituents H, C, N, O and Cl which depend on the type of molecular bond involved. Thompson's results were interpreted by WESTERMARK(31) in terms of molecular polarizabilities, and this approach was further developed by BRANDT⁽³²⁾ into a theory for predicting I-values for compounds from molar refractivity data and the low-energy density effect. We have re-analyzed† the stopping-power ratios of Thompson,

^{*}The density-effect correction, δ , should always be evaluated directly for the compound, i.e. as a function of the appropriate density and mean excitation energy.

[†] The analysis was done both relative to copper $(I_{Cu} = 322 \text{ eV})$ and relative to water $(I_{H,O} = 75 \text{ eV})$. The two sets of *I*-values thus obtained differed by only 0.6%; therefore, the average was taken.

TABLE 4. Mean excitation energies from our analysis of THOMPSON's (30) experiment

Elemental S	lubstances
Element	I (eV)
H ₂ (liquid)	22.3 ± 1.6
C (graphite)	83.4 ± 3.6
N ₂ (liquid)	90.5 ± 2.6
O ₂ (liquid)	104.3 ± 3.4

Elemental Con	stituents of Condensed Orga Type of	anic Compounds
Element in compound	bonding/position in compound	I (eV)
Н	Saturated Unsaturated	19.0 ± 0.8 16.0 ± 0.8
С	Saturated Unsaturated Highly chlorinated	81.1 ± 2.5 79.8 ± 2.3 69.0 ± 3.7
N	Amines, nitrates etc. in ring	105.7 ± 10.6 81.9 ± 7.0
0	-0 0=	104.6 ± 9.2 94.4 ± 4.9
a	All	179.7 ± 11.9

The uncertainties given in this table attempt to combine both the measurement uncertainties quoted by Thompson, and the uncertainties inherent in our analysis.

applying small multiple-scattering and shell corrections in a procedure outlined by BICHSEL. (33) The resultant *I*-values for atomic constituents are given in Table 4.

In recent years, experimental I-values have become available for various other compounds through the analysis of stopping-power measurements, dipoleoscillator-strength distributions and dielectric-response functions. Table 5 lists experimental mean excitation energies for 54 compounds, including results derived by us from Thompson's earlier experiments and from the more recent work. We have found that the experimental I-values can be satisfactorily approximated by the additivity rule, equation (10), with the I-values for elemental constituents listed in Table 6. Different I-values are used depending on whether the compound is a gas or a condensed material. Thus no account is taken of possible differences between single and double bonds, between cyclic and non-cyclic structures, between covalent and ionic compounds, between monomers and polymers, between liquids and solids etc. In spite of these omissions, the assignment scheme provides good approximations to the experimental results, and is easier to apply to other materials than the more sophisticated assignments suggested by Thompson or Brandt. As shown in Table 5, for 52 compounds the direct experimental values of the mean excitation energies are in agreement (within the limits of experimental error) with the predictions of equation (10); only in 2 cases are there significant discrepancies.*

We have assumed that the additivity rule, equation (10), with I-values for atomic constituents from Table 6, can be used for predicting the mean excitation energies of other compounds. For low-Z gases and, particularly, for condensed organic compounds consisting of the constituents H, C, N, O, F or Cl, such predictions have a sound empirical basis. One would expect that the errors incurred thereby will have the same order of magnitude as the differences shown in Table 5 between direct experimental mean excitation energies and corresponding values from the additivity rule. The situation is less clear in regard to condensed compounds that contain also constituents other than H, C, N, O, F or Cl. The recommendation in Table 6 is to use I-values for these other constituents which are 13% larger than the corresponding I-values for condensed elemental substances in Table 2. This rule has been found to give a good fit to the direct experimental I-values for Al₂O₃, SiO₂, photographic emulsion, LiF and CaF₂. In the absence of better information, we have assumed that the 13% increase can be applied for other compounds as well.

There are some composite materials, e.g. tissue, glass and tissue-equivalent gas, which have constituent molecules whose *I*-values are known experimentally. In order to take advantage of this information, we have treated such composite materials via the additivity rule applied to the constituent molecules.

Table 7 lists mean excitation energies, as well as densities and elemental compositions, for 180 compounds and mixtures. In this Table, the symbol + indicates either *I*-values derived directly from experimental data or *I*-values for mixtures (such as air) all of whose constituents have experimentally determined *I*-values. The symbol + + indicates *I*-values derived by applying the additivity rule to molecular constituents, one or more of which have experimentally determined *I*-values. In all other cases, the *I*-values were obtained from the additivity rule, equation (10), with constituent *I*-values from Table 6.

A letter grade (A, B or C) is given next to each I-value in Table 7, to indicate the relative quality of these data. The assignment of these grades was based on the information contained in Table 5, but also involved some subjective judgements. For the most part the following guidelines were followed. Direct experimental I-values were given the grade A unless the experimental uncertainty was greater than 5%, in which case they were given the grade B. I-values for low-Z gas compounds were given the grade A. I-values for condensed compounds were given the grade B if the constituents consisted predominantly of the elements H, C, N, O, F or Cl. The grade C was given to I-values for condensed compounds which contain mainly other constituents whose I-values

^{*}A particularly large discrepancy occurs for paraffin wax. Because the experimental I-value for paraffin wax is inconsistent with those for other straight-chain hydrocarbons (n-pentane, n-hexane, n-heptane and polyethylene), the value from the additivity rule has been used in the stopping-power calculation.

Tables 5A-C. Approximation of experimental mean excitation energies for compounds by the additivity rule

A. Gas Compounds

		Experi	mental results*	Brag	g additivity
Compound	Footnote	I _{expt} (eV)	Uncertainty (%)	⟨ <i>I</i> ⟩ (eV)	⟨ <i>I</i> ⟩/ <i>I</i> _{expt} †
Ammonia, NH ₃	a	53.7	2	53.0	0.987
Butane, C ₄ H ₁₀	b	48.3	2	47.8	0.990
Carbon dioxide, CO ₂	c	85	2	88.7	1.044
Ethane, C ₂ H ₆	b	45.4	2	45.5	1.002
Heptane, C ₇ H ₁₆	b	49.2	2	49.0	0.996
Hexane, C ₆ H ₁₄	ь	49.1	2	48.7	0.992
Methane, CH ₄	d	41.7	2	41.7	1.000
Nitric oxide, NO	a	87.8	2	89.7	1.022
Nitrous oxide, N ₂ O	a	84.9	2	87.2	1.027
Octane, C ₈ H ₁₈	b	49.5	2	49.2	0.994
Pentane, C ₅ H ₁₂	b	48.2	2	48.4	1.004
Propane, C ₃ H ₈	b	47.1	2	47.0	0.998
Water, H ₂ O	a	71.6	2	70.2	0.980

^{*} Derived from semi-empirical dipole-oscillator-strength distributions, except for CO₂.

^d From Thomas and Meath. (36).

B. Liquid Compounds

	Eumonimontal magaites*	Bragg	g additivity
Compound	Experimental results* I expt (eV)	⟨ <i>I</i> ⟩ (eV)	$\langle I \rangle / I_{\text{expt}}$
Acetone, C ₃ H ₆ O	64.2	66.1	0.971
Aniline, C ₆ H ₅ NH ₂	66.2	66.3	1.002
Benzene, C ₆ H ₆	63.4	65.9	1.039
n-Butyl alcohol, C ₄ H ₉ OH	59.9	60.5	1.010
Carbon tetrachloride, CCl ₄	166.3	168.7	1.014
Chlorobenzene, C ₆ H ₅ Cl	89.1	90.4	1.015
Chloroform, CHCl ₃	156.0	159.5	1.022
Cyclohexane, C ₆ H ₁₂	56.4	56.5	1.002
1,2-Dichlorobenzene, C ₆ H ₄ Cl ₂	106.5	108.1	1.015
Dichlorodiethyl ether, C ₄ Cl ₂ H ₈ O	103.3	103.0	0.997
1,2-Dichloroethane, C ₂ Cl ₂ H ₄	111.9	124.2	1.110
Diethyl ether, (C, H ₅),O	60.0	60.5	1.008
Ethyl alcohol, C, H, OH	62.9	63.1	1.003
Glycerol, C ₃ H ₅ (OH) ₃	72.6	73.2	1.008
n-Heptane, C ₇ H ₁₀	54.4	54.5	1.002
n-Hexane, C ₆ H ₁₄	54.0	54.1	1.002
Methanol, CH ₃ OH	67.6	66.3	0.981
Nitrobenzene, C ₆ H ₅ NO ₂	75.8	77.5	1.022
n-Pentane, C ₅ H ₁₂	53.6	53.7	1.002
n-Propyl alcohol, C ₃ H ₇ OH	61.1	61.5	1.007
Pyridine, C ₅ H ₅ N	66.2	68.4	1.033
Styrene, C ₈ H ₈	64.0	65.9	1.030
Tetrachloroethylene, C ₂ Cl ₄	159.2	159.7	1.003
Toluene, C ₇ H ₈	62.5	64.3	1.029
Trichloroethylene, C2Cl3H	148.1	149.6	1.010
Water, H ₂ O	75.0 ^a	75.3	1.004
Xylene, C ₈ H ₁₀	61.8	63.2	1.023

^{*} Derived from our analysis of Thompson's $^{(30)}$ experimental partial ranges of protons. The uncertainties of these *I*-values are estimated to be 3-4%.

[†] I_{expt} is the experimental value, and $\langle I \rangle$ the value calculated from equation (10), using *I*-values from Table 6 for the elemental constituents.

From Zuss et al.(34)

From JHANWAR et al. (63)

From α-particle stopping-power measurements of BICHSEL and HILKO.⁽⁶⁴⁾ Note that the 300 400 keV stopping-power data of BADER et al.⁽³⁵⁾ lead to a value of 88.7 ± 7.1 kV.

^a A compromise among the following experimental results: $75.4 \pm 1.9 \,\text{eV}$ from our analysis of Thompson's ⁽¹⁰⁾ measurements relative to Cu, assuming $I_{Cu} = 322 \,\text{eV}$; $74.6 \pm 2.7 \,\text{eV}$ from an analysis of the 61-MeV pion stopping-power measurements of Nordin and Henkelman. ⁽³⁷⁾ 75 eV from RITCHII: et al. ⁽¹³⁸⁾ and 75.4 eV from Ashley. ⁽⁶⁵⁾ both values derived from empirically-based models of the dielectric-response function for liquid water.

C. Solid Compounds

		Experin	nental results	Bragg	additivity
Compound	Footnote	I _{expt} (eV)	Uncertainty (%)	⟨ <i>I</i> ⟩ (eV)	$\langle I \rangle / I_{\rm expl}$
A-150 tissue-equivalent plastic	a	65.1	16	64.0	0.983
Adenine, C ₅ H ₅ N ₅	b	71.4	5	73.5	1.029
Aluminum oxide, Al ₂ O ₃	c	145.2	3	142.6	0.982
Calcium fluoride, CaF ₂	d	166	8	158.2	0.953
Guanine, C ₅ H ₅ N ₅ O	ь	75.0	5	76.3	1.017
Lithium fluoride, LiF	d	94	8	89.3	0.950
Nylon, type 6, $(C_6H_{11}NO)_n$	а	63.9	6	65.0	1.017
Paraffin wax, C ₂₅ H ₅₂	а	48.3	7	55.9	1.157
Photographic emulsion	e	331	3	321.2	0.970
Polyethylene, (C ₂ H ₄),	f	57.4	8	56.5	0.984
Polymethyl methacrylate, (C ₅ H ₈ O ₂),	g	74.0	4	70.9	0.965
Polystyrene, (C ₈ H ₈),	ĥ	68.7	4	65.9	0.959
Polytetrafluoroethylene, "Teflon," (C ₂ F ₄) _n	a	99.1	6	103.3	1.042
Silicon dioxide, SiO ₂	c	139.2	3	141.0	1.013

^{*} From 61 MeV pion stopping-power measurements relative to H_2O of NORDIN and HENKEL-MAN, (37) assuming $I_{H_2O} = 75.0$ eV.

^b From dielectric-response function, J. Ashley (private communication).

^e From range measurements of Tschalär and Bichsel⁽³⁹⁾ with 3-30 MeV protons.

*From range measurements of BARKAS et al. (40) using various charged particles with equivalent proton energies up to 700 MeV.

⁸ Bichsel (private communication) has revised the Tschalär-Bichsel value for PMMA (see footnote c) from 74.2 to 73.5 eV by applying z^3 and z^4 corrections. Our analysis of the Nordin-Henkelman data (see footnote a) gives a value 74.4 \pm 4.7 eV. The adopted value, 74.0 eV, is an average.

were adjusted upward by the 13% rule. It is difficult to associate precise numerical values with these grades. A rather conservative estimate is to assign uncertainties of $\lesssim 5\%$ to grade A, 5–10% to grade B and 10–15% to grade C. Inspection of Table 5 suggests that the uncertainties may well be smaller.

In Table 8, *I*-values for selected materials from Table 7 are compared with values recommended or used in earlier publications. In some cases there are significant differences: for example, the value of 75 eV

TABLE 6. Adopted values of mean excitation energies for elemental constituents in gas and condensed compounds

Constituent	Gas compounds	Solid and liquid compounds
Н	19.2	19.2
С	70	81
N	82	82
0	97	106
F		112
Cl		180
Others		1.13 <i>I</i> *

^aI-value for elemental substance in condensed phase, from Table 2.

for water compared to the value of 65 eV used in Refs 22 and 59, or the value of 85.7 eV for air compared to the value of 93 eV given in Ref. 25. In many cases the present and earlier recommended values agree within the limits of the estimated uncertainties. However, the present recommendations have a broader empirical basis because they include experimental data that have become available in the last ten years. On the whole, Brandt's theoretical *I*-values for low-Z compounds are in reasonably good agreement with those adopted here; however, his *I*-values for compounds containing high-Z constituents tend to be too low, a fact already noted by BRANDT⁽³²⁾ with reference to photographic emulsion.

5. Sternheimer's Density-effect Correction

Following Fermi's original paper, (60) and the work of Wick (61) and Halpern and Hall, (62) Sternheimer (55) developed a rather accurate theory for predicting the density-effect correction in any material. The information which enters into Sternheimer's model of the dispersion properties of the medium in-

^d From stopping-power results of BADER et al.⁽³⁵⁾ for protons with energies between 300-400 keV.

FAINTER et al. (41) give a value 62.2 eV from their dielectric-response function measurements. Thompson's (30) 267.5 MeV proton stopping-power measurements lead to a value of 52.5 ± 1.5 eV. The adopted value 57.4 eV is an average.

^h The value 68.7 eV is from Ashley's⁽⁴²⁾ measurement of the dielectric-response function. This value is close to the average of 71 ± 2 eV derived by PORTER et al.⁽⁴³⁾ from proton stopping-power measurements at 2.2-5.9 MeV, and of 65.2 \pm 1.9 eV derived from Thompson's⁽³⁰⁾ measurements at 267.5 MeV.

TABLE 7. Mean excitation energies I and other properties of compounds and mixtures

Material	<y 2=""></y>	Density* (g/cm³)	I‡ Gr [§]	(con	Compositions 2: 1	aposition : fraction by we	weight)
A-150 TISSUE-EQUIVALENT PLASTIC ²²	0.549031	1.127E+00	65.1+B	1: 0.101327 9: 0.017422	6: 0.775501 20: 0.018378	7: 0.035057	8: 0.052316
ACETONE, C.H.O	0.550966	7.899E-01	64.2+ A	1: 0.104122	6: 0.620405	8: 0.275473	
ACETYLENE C.H.	0.537680	1.097E-03	58.2 A	1: 0.077418	6: 0.922582		
ADENINE CHIN	0.518027	1.350E+00	71.4 A	1: 0.037294	6: 0.444430	7: 0.518275	
ADIPOSE TISSUE (ICRP) b	0.558468	9.200E-01	63.2++B	1: 0.119477 11: 0.000500 17: 0.001190 30: 0.000020	6: 0.637240 12: 0.000020 19: 0.000320	7: 0.007970 15: 0.000160 20: 0.000020	8: 0.232333 16: 0.000730 26: 0.000020
AIR, DRY (NEAR SEA LEVEL)	0.499190	1.205E-03	85.7* A	6: 0.000124	7: 0.755267	8: 0.231781	18: 0.012827
ALANINE, C,H,NO,	0.538758	1.420E+00	71.9 B	1: 0.079190	6: 0.404439	7: 0.157213	8: 0.359159
ALUMINUM OXIDE, A8,0,	0.490382	3.970E+00	145.2+ A	8: 0.470749	13: 0.529251		
AMBER, C, CH, CO	0.551776	1.100E+00	63.2 B	1: 0.105930	6: 0.788973	8: 0.105096	
AMMONIA, NH,	0.587185	8.260E-04	53.7 + A	1: 0.177547	7: 0.822453		
ANILINE, C. HENH,	0.536895	1.024E+00	66.2+ A	1: 0.075759	6: 0.773838	7: 0.150403	
ANTHRACENE, C, LH,	0.527400	1.283E+00	69.5 B	1: 0.056550	6: 0.943450		
B-100 BONE-EQUIVALENT PLASTIC d	0.527397	1.450E+00	85.9++8	1: 0.065471 9: 0.167411	6: 0.536945 20: 0.176589	7: 0.021500	8: 0.032085
BAKELITE, (C, H, 0,)	0.527919	1.250E+00	72.4 B	1: 0.057441	6: 0.774591	8: 0.167968	
BARIUM FLUORIDE, BAF,	0.422069	4.890E+00	375.9 C	9: 0.216720	56: 0.783280		
BARIUM SULFATE, BaSO,	0.445611	4.500E+00	285.7 C	8: 0.274212	16: 0.137368	56: 0.588420	
BENZENE, C.H.	0.537680	8.787E-01	63.4+ A	1: 0.077418	6: 0.922582		
BERYLLIUM OXIDE, BeO	0.479778	3.010E+00	93.2 C	4: 0.360320	8: 0.639680		
BISMUTH GERMANIUM OXIDE, B1, Ge,O,	0.420652	7.130E+00	534.1 C	8: 0.154126	32: 0.174820	83: 0.671054	
• BLOOD (ICRP) b	0.549952	1.060E+00	75.2++A	1: 0.101866 11: 0.001850 16: 0.001850 26: 0.000460	6: 0.100020 12: 0.000040 17: 0.002780 30: 0.000010	7: 0.029640 14: 0.000030 19: 0.001630	8: 0.759414 15: 0.000350 20: 0.00060
BONE, COMPACT (ICRU)	0.530103	1.850E+00	91.9++8	1: 0.063984	6: 0.278000 15: 0.070000	7: 0.027000 16: 0.002000	8: 0.410016 20: 0.147000

TABLE 7—continued

Material	<8/2>	Density (g/cm ³)	I † Gr [§]	(consti	Compo tuent Z :	sition fraction by weight	ght)
: BONE, CORTICAL (ICRP) b	0.521299	1.850E+00	106.4++8	1: 0.047234 12: 0.002200 30: 0.000100	6: 0.144330 15: 0.104970	7: 0.041990 16: 0.003150	8: 0.446096 20: 0.209930
BORON CARBIDE, BAC	0.470580	2.520E+00	84.7 C	5: 0.782610	6: 0.217390		
BORON OXIDE, B ₂ O ₃	0.488378	1.812E+00	99.6 €	5: 0.310551	8: 0.689449		
BRAIN (ICRP) b	0.554227	1.030E+00	73.3+*A	1: 0.110667 11: 0.001840 17: 0.002360 30: 0.000010	6: 0.125420 12: 0.000150 19: 0.003100	7: 0.013280 15: 0.003540 20: 0.000090	8: 0.737723 16: 0.001770 26: 0.000050
BUTANE, C, H,	0.584966	2.493E-03	48.3+ A	1: 0.175408	6: 0.826592		
N-BUTYL ALCOHOL, C,HOOH	0.566630	8.098E-01	59.9+ A	1: 0.135978	6: 0.648171	8: 0.215851	
C-552 AIR-EQUIVALENT PLASTIC $^{\hat{\mathcal{F}}}$	0.499687	1.760E+00	86.8++B	1: 0.024680 14: 0.003973	6: 0.501610	8: 0.004527	9: 0.465209
CADMIUM TELLURIDE, CdTe	0.416649	6.200E+00	539.3 C	48: 0.468355	52: 0.531645		
CADMIUM TUNGSTATE, CAWOL	0.427472	7.900E+00	468.3 C	8: 0.177644	48: 0.312027	74: 0.510329	
CALCIUM CARBONATE, CACO,	0.499554	2.800E+00	136.4 C	6: 0.120003	8: 0.479554	20: 0.400443	
CALCIUM FLUORIDE, CaF,	0.486700	3.180E+00	166.0+ B	9: 0.486659	20: 0.513341		
CALCIUM OXIDE, CaO	0.499292	3.300E+00	176.1 C	8: 0.285299	20: 0.714701		
CALCIUM SULFATE, ${\sf CaSO}_{4}$	0.499495	2.960E+00	152.3 C	8: 0.470095	16: 0.235497	20: 0.294408	
CALCIUM TUNGSTATE, CAWOL	0.437610	6.062E+00	395.0 C	8: 0.222270	20: 0.139202	74: 0.638529	
CARBON DIOXIDE, CO,	0.499889	1.842E-03	85.0 * A	6: 0.272916	8: 0.727084		
CARBON TETRACHLORIDE, CC2,	0.481072	1.594E+00	166.3+ A	6: 0.078083	17: 0.921917		
CELLULOSE ACETATE, CELLOPHANE, (C,H1,Oc),	0.530399	1.420E+00	77.6 B	1: 0.062162	6: 0.444462	8: 0.493376	
CELLULOSE ACETATE BUTYRATE, (C15H, OQ),	0.532794	1.200E+00	74.6 B	1: 0.067125	6: 0.545403	8: 0.387472	
CELLULOSE NITRATE, C6H7,709,6N2,3	0.514237	1.490E+00	87.0 B	1: 0.029216	6: 0.271296	7: 0.121276	8: 0.578212
CERIC SULFATE DOSIMETER SOLUTION $^{\mathcal{G}}$	0.552785	1.030E+00	76.7**A	1: 0.107596 58: 0.002001	7: 0.000800	8: 0.874976	16: 0.014627
· CESIUM FLUORIDE, CSF	0.421319	4.115E+00	440.7 C	9: 0.125069	55: 0.874931		
CESIUM IODIDE, CSI	0.415689	4.510E+00	553.1 C	53: 0.488451	55: 0.511549		

•
-
~
-
0
- Ci
7
- 1
_ 1
-
-
ш
~
_
~
•
. ~
\blacksquare

CHLOROBENZENE, C ₆ H ₅ Cl	0.515288	1.106E+00	89.1+ A	=	0.044772	9	0.640254	17:	0.314974			
CHLOROFORM, CHC2,	0.485852	1.483E+00	156.0+ A	: -	0.008443	.9	0.100613	17:	0.890944			
; concrete, portland \hbar	0.502736	2.300E+00	135.2++A	12:: 20::	0.010000 0.002000 0.044000	6: 13: 26:	0.001000 0.033872 0.014000	∞ 4	0.529107	===	9.9	0.016000
CYCLOHEXANE, C ₆ H ₁₂	0.570337	7.790E-01	56.4+ A	-	0.143711	ë	0.856289					
1,2-DICHLOROBENZENE, C,H,CL,	0.503389	1.305E+00	106.5+ A	-	0.027425	.	0.490233	17:	0.482342			
DICHLORODIETHYL ETHER, CLCL2H80	0.517437	1.220E+00	103.3+ A	-	0.056381	9	0.335942	•0	0.111874	17:	0.49	0.495802
1,2-DICHLOROETHANE, $c_2 H_4 C \ell_2$	0.505257	1.235E+00	111.9+ A	<u>:</u>	0.040740	•	0.242746	17:	0.716515			
DIETHYL ETHER, $(c_2H_5)_2^0$	0.566630	7.138E-01	60.0+ A	-	0.135978	;	0.648171	ë	0.215851			
N.N-DIMETHYL FORMAMIDE, C3H, ONH	0.547238	9.487E-01	66.6 B	-	0.096523	;	0.492965	7:	0.191625	•	0.21	.218887
DIMETHYL SULFOXIDE, (CH ₃) ₂ SO	0.537574	1.101E+00	98.6 €	<u>:</u>	0.077403		0.307467	**	0.204782	16:	0.41	0.410348
ETHANE, C2H6	0.598615	1.253E-03	45.4+ A	-	0.201115	9	0.798885					
ETHYL ALCOHOL, C2H5OH	0.564373	7.893E-01	62.9+ A	"	0.131269	9	0.521438	•	0.347294			
ETHYL CELLULOSE, (C ₁₂ H ₂₂ O ₅),	0.544046	1.130E+00	69.3 B	-	0.090027	.9	0.585182	ö	0.324791			
ETHYLENE, C2H4	0.570337	1.175E-03	50.7 A	-	0.143711	.	0.856289					
EYE LENS (ICRP) b	0.548767	1.100E+00	73.3++A	-	0.099269	; 9	0.193710	7:	0.053270		0.65375	13751
FERRIC OXIDE, Fe ₂ O ₃	0.475916	5.200E+00	227.3 C	**	0.300567	26:	0.699433					
FERROBORIDE, FeB	0.465067	7.150E+00	261.0 C		0.162174	26:	0.837826					
FERROUS OXIDE, Peo	0.473232	5.700E+00	248.6 C	•0	0.222689	56:	0.777311					
FERROUS SULFATE DOSIMETER SOLUTION $^{ au}$	0.553282	1.024E+00	76.4+A	16:	0.108259 0.012968	17:	0.000027		0.878636	Ξ	0.0	0.000022
"FREON-12", $\mathrm{CF_2C}_2$	0.479681	1.120E+00	143.0 B	.	0.099335	ë	0.314247	17:	0.586418			
"FREON-1282", CF2Br2	0.448012	1.800E+00	284.9 €	9	0.057245	6	0.181096	35:	0.761659			
"FREON-13", CF3CL	0.478656	9.500E-01	126.6 B	9	0.114983	ë	0.545622	17:	0.339396			
"FREON-13B1", CF3Br	0.456651	1.500E+00	210.5 C	9	0.080659	ë	0.382749	35:	0.536592			
"FREON-1311", CF3I	0.438975	1.800E+00	293.5 C	9	0.061309	6	0.290924	53:	0.647767			
• GADOLINIUM OXYSULFIDE, $\mathrm{Gd}_2\mathrm{O}_2\mathrm{S}$	0.422656	7.440E+00	493.3 C	ë	0.084528	16:	0.084690	64:	0.830782			

TABLE 7—continued

Material	<4/7>	Density* (g/cm ³)	I Gr§	00)	Comp.	omposition Z : fraction by w	weigh	1
GALLIUM ARSENIDE, GAAS	0.442473	5.310E+00	384.9 C	31: 0.482019	33: 0.517981			
GEL IN PHOTOGRAPHIC EMULSION \hat{J}	0.539734	1.291E+00	74.8 B	1: 0.081180 16: 0.010880	6: 0.416060	7: 0.111240	ë	0.380640
GLASS, BOROSILICATE ("PYREX", CORNING 7740)	0.497070	2.230E+00	134.0 **A	5: 0.040061 14: 0.377220	8: 0.539564 19: 0.003321	11: 0.028191	13:	0.011644
GLASS, LEAD Z	0.421007	6.220E+00	526.4**	8: 0.156453 82: 0.751938	14: 0.080866	22: 0.008092	33:	0.002651
GLASS, PLATE"	0.497313	2.400E+00	145.4+A	8: 0.459800	11: 0.096441	14: 0.336553	20:	0.107205
GLUCOSE, DEXTROSE, c_{6112}^{0} 6 $^{\bullet}$ H_2^{0}	0.534888	1.540E+00	77.2++B	1: 0.071204	6: 0.363652	8: 0.565144		
GLUTAMINE, $c_{\mathrm{S}_{\mathrm{L}_{0}}}^{\mathrm{H}_{\mathrm{O}}}$	0.533714	1.460E+00	73.3 B	1: 0.068965	6: 0.410926	7: 0.191681	ö	0.328427
GLYCEROL, C ₃ H ₅ (OH) ₃	0.542921	1.261E+00	72.6+ A	1: 0.087554	6: 0.391262	8: 0.521185		
GUANINE, C ₅ H ₅ N ₅ O	0.516121	1.580E+00.	75.0+ A	1: 0.033346	6: 0.397380	7: 0.463407	**	0.105867
GYPSUM, PLASTER OF PARIS, ${ m CaSO}_4$ ${ m 2H}_2^{ m O}$	0.511128	2.320E+00	129.7++B	1: 0.023416	8: 0.557572	16: 0.186215	20:	0.232797
N-HEPTANE, c_{7} H ₁₆	0.578823	6.838E-01	54.4+ A	1: 0.160937	6: 0.839063			
N-HEXANE, C ₆ H ₁₄	0.580204	6.603E-01	54.0+ A	1: 0.163741	6: 0.836259			
"KAPTON" POLYIMIDE FILM, $(c_{22}{}^{\mathrm{H}_{10}}{}^{\mathrm{N}_{2}}{}^{\mathrm{O}_{5}})_{\mathrm{n}}$	0.512644	1.420E+00	79.6 B	1: 0.026362	6: 0.691133	7: 0.073270	**	0.209235
LANTHANUM OXYBROMIDE, LaOBr	0.425878	6.280E+00	439.7 C	8: 0.068138	35: 0.340294	57: 0.591568		
LANTHANUM OXYSULFIDE, La ₂ OS	0.423481	5.860E+00	456.2 C	8: 0.049097	16: 0.098383	57: 0.852520		
LEAD OXIDE, Pbo	0.403227	9.530E+00	766.7 C	8: 0.071682	82: 0.928318			
LITHIUM AMIDE, LINH ₂	0.522568	1.178E+00	55.5 B	1: 0.087783	3: 0.502262	7: 0.609955		
LITHIUM CARBONATE, L $_2^{ m CO}_3^{ m co}$	0.487203	2.110E+00	87.9 B	5: 0.187871	6: 0.162550	8: 0.649579		
LITHIUM FLUORIDE, LIF	0.462617	2.635E+00	94.0+B	3: 0.267585	9: 0.732415			
LITHIUM HYDRIDE, Lih	0.503214	8.200E-01	36.5 €	1: 0.126797	3: 0.873203			
LITHIUM IODIDE, Lii	0.418393	3.494E+00	485.1 C	3: 0.051858	53: 0.948142			
LITHIUM OXIDE, L120	0.468519	2.013E+00	73.6 C	3: 0.464570	8: 0.535430			
LITHIUM TETRABORATE, Li $_2$ B $_4$ O $_7$	0.484869	2.440E+00	94.6 €	3: 0.082085	5: 0.255680	8: 0.662235		
LUNG (ICRP)	0.549652	1.050E+00	75.3++A	1: 0.101278 11: 0.001840 17: 0.002660 30: 0.000010	6: 0.102310 12: 0.000730 19: 0.001940	7: 0.028650 15: 0.000800 20: 0.000090	26::	0.757072 0.002250 0.000370

a
- 5
~
•
- 2
~
2
_
- 1
- 1
-
ш
~
-
_
.~

XVM SH	0.555116	1.050E+00	67.9 B	20 ::	0.114318	9	0.655823	•	0.092183	12:	0.134792	~
MAGNESIUM CARBONATE, MgCO ₃	0.498137	2.958E+00	118.0 C	ë	0.142455	•	0.569278	12:	0.288267			
TAGNESIUM FLUORIDE, MgF2	0.481527	3.000E+00	134.3 C	<u></u>	0.609883	12:	0.390117					
MAGNESIUM OXIDE, MgO	0.496224	3.580E+00	143.8 C	•	0.396964	12:	0.603036					
MAGNESIUM TETRABORATE, ${ m MgB}_4{ m O}_7$	0.490139	2.530E+00	108.3 C	5.	0.240837	*	0.623790	12:	0.135373			
MERCURIC IODIDE, ${ m HgL}_2$	0.409332	6.360E+00	684.5 €	53:	0.558560	80	0.441440					
METHANE, CH_4	0.623340	6.672E-04	41.7+ A	-	0.251306	;	0.748694					
METHANOL, CH ₃ OH	0.561763	7.9145-01	67.6+ A	<u>:</u>	0.125822	.	0.374852	ë	0.499326			
MIX D WAX	0.564789	9.900E-01	60.9++B	22 ::	0.134040	ë	0.777960		0.035020		0.038594	
MS20 TISSUE SUBSTITUTE ^E	0.538856	1.000E+00	75.1 B	-2	0.081192	6: 17:	0.583442	7:	0.017798		0.186381	_
MUSCLE, SKELETAL (ICRP) D	0.549378	1.040E+00	75.3++A	11:02	0.100637 0.000750 0.000790	925	0.107830 0.000190 0.003020	7: 15:	0.027680 0.001800 0.000050	26::	0.754773 0.002410 0.000040	Mee
MUSCLE, STRIATED (ICRU) ⁰	0.550051	1.040E+00	74.7.4A		0.101997		0.123000 0.000200	15:	0.035000		0.729003	M O
MUSCLE-EQUIVALENT LIQUID, WITH SUCROSE q	0.548281	1.110E+00	74.3++A		0.098234	;	0.156214		0.035451		0.710100	_
MUSCLE-EQUIVALENT LIQUID, MITHOUT SUCROSE $^{\prime\prime}$	0.550136	1.070E+00	74.2++A	-	0.101969	;	0.120058	7:	0.035451		0.742522	
NAPTHALENE, C10H8	0.530532	1.145E+00	68.4 B	-	0.062909	; 9	0.937091					
NITROBENZENE, C ₆ H ₅ NO ₂	0.519856	1.199E+00	75.8+ A	<u>:</u>	0.040935	;	0.585374	7:	0.113773	*	0.259918	
NITROUS OXIDE, N ₂ O	0.499855	1.831E-03	84.9+ A	7:	0.636483		0.363517					
NYLON, DU PONT "ELVAMIDE 8062M"	0.550625	1.080E+00	64.3 18	<u>:</u>	0.103509	9	0.648415	:	0.099536		0.148539	_
NYLON, TYPE 6 AND TYPE 6/6, $(c_{6} +_{11} o_{N})_{n}$	0.547902	1.140E+00	63.9+ A	-	0.097976	;	0.636856	7:	0.123779		0.141389	_
MILUN, TYPE 6/10, (C ₈ H ₁₅ ON)	0.552359	1.140E+00	63.2 B	:	0.107062	;	0.680449	7:	0.099189		.113300	_
NILUN, IYPE 11 ("RILSAN"), $(c_{11}^{H} + c_{10}^{O})$	0.556486	1.425E+00	61.6 B	-	0.115476		0.720819	7: (0.076417		0.087289	_

TABLE 7—continued

Material	<4/2>	Density* (g/cm ³)	I [‡] Gr [§]		Compc Constituent Z :	Composition Z : fraction by we	weight)
OCTANE, LIQUID, CAHIR	0.577781	7.026E-01	54.7 B	1: 0.158821	6: 0.841179		
- PARAFFIN MAX, C ₂₅ H ₅₂	0.572748	9.300E-01	55.9 B	1: 0.148605	6: 0.851395		
N-PENTANE, C ₅ H ₁	0.582122	6.262E-01	53.6 + A	1: 0.167635	6: 0.832365		
PHOTOGRAPHIC EMULSION	0.454532	3.815E+00	331.0 + A	1: 0.014100 16: 0.001890	6: 0.072261 35: 0.349103	7: 0.019320 47: 0.474105	8: 0.066101 53: 0.003120
PLASTIC SCINTILLATOR (VINYLTOLUENE BASED) $^{ au}$	0.541415	1.032E+00	64.7 B	1: 0.085000	6: 0.915000		
PLUTONIUM DIOXIDE, Puo ₂	0.405828	1.146E+01	746.5 C	8: 0.118055	94: 0.881945		
POLYACRYLONITRILE, (C2H2N),	0.527671	1.170E+00	69.6 B	1: 0.056983	6: 0.679056	7: 0.263962	
POLYCARBONATE," "MAKROLON", (C16H1603),	0.526968	1.200E+00	73.1 B	1: 0.055491	6: 0.755751	8: 0.188758	
POLYCHLOROSTYRENE, $(c_{17}H_{18}ck_{2})_{1}$	0.525176	1.300E+00	81.7 B	1: 0.061869	6: 0.696325	17: 0.241806	
POLYETHYLENE, (C ₂ H _L),	0.570337	9.400E-01	57.4+ B	1: 0.143711	6: 0.856289		
POLYETHYLENE TEREPTHALATE, "MYLAR" $(c_{10}^{ m H_R} O_L)_{ m H}$	0.520370	1.400E+00	78.7 B	1: 0.041959	6: 0.625017	8: 0.333025	
	0.539369	1.190E+00	74.0 A	1: 0.080538	6: 0.599848	8: 0.319614	
POLYOXYMETHYLENE, (CH ₂ O),	0.532868	1.425E+00	77.4 A	1: 0.067135	6: 0.400017	8: 0.532848	
POLYPROPYLENE, (C ₂ H _K),	0.559985	9.000E-01	59.2 B	1: 0.122698	6: 0.877302		
POLYSTYRENE, " (C ₂ H ₂)	0.537680	1.060E+00	68.7+ A	1: 0.077418	6: 0.922582		
POLYTETRAFLUOROETHYLENE," "TEFLON", $(C_2F_L)_L$	0.479925	2.200E+00	99.1 + A	6: 0.240183	9: 0.759817		
POLYTRIFLUOROCHLOROETHYLENE, (C,F,CL),	0.480810	2.100E+00	120.7 B	6: 0.206250	9: 0.489354	17: 0.304395	
POLYVINYL ACETATE, (C,H,O,),	0.534323	1.190E+00	73.7 B	1: 0.070245	6: 0.558066	8: 0.371689	
POLYVINYL ALCOHOL, (C,H,OH),	0.544798	1.300E+00	69.7 B	1: 0.091517	6: 0.545298	8: 0.363185	
POLYVINYL BUTYRAL, (CRH130,)	0.545366	1.120E+00	67.2 B	1: 0.092802	6: 0.680561	8: 0.226657	
POLYVINYL CHLORIDE, (C,H,CL)	0.512011	1.300E+00	108.2 B	1: 0.048380	6: 0.384360	17: 0.567260	
POLYVINYLIDENE CHLORIDE, SARAN, (C,H,Cl,)	0.495132	1.700E+00	134.3 B	1: 0.020793	6: 0.247793	17: 0.731413	
POLYVINYLIDENE FLUORIDE, (C,H,F,),	0.499730	1.760E+00	88.88	1: 0.031480	6: 0.375141	9: 0.593379	
POLYVINYL PYRROLIDONE, $(c_6H_9^{\rm MO})_{\rm n}$	0.539844	1.250E+00	67.7 B	1: 0.081616	6: 0.648407	7: 0.126024	8: 0.143953

pər
mtin
7—cc
BLE 7
₹

				: 0.266232	: 0.177073			: 0.400434				: 0.003357		0.046420 8: 0.619002 0.000330 16: 0.001590 0.000150 26: 0.000010	0.433815			0.270485		0.514151		0.019940 8: 0.773884 0.001250 16: 0.001460 0.000100 26: 0.000020
.764472	.830148	.817145	17145	99595 &	59217 7	856289	881629	542646 17	.467435	574463	752632	573748 53:	540542	228250 7: 100060 15: 100850 20:	52861 11:	46627	41857	64720 11:	932899	21070 8:	955457	192270 7: 100110 15: 102080 20:
53: 0.7	19: 0.8	6:0.8	6: 0.8	6: 0.5	6: 0.7	6:0.8	6:0.8	6: 0.5	14: 0.4	47: 0.5	47: 0.7	47: 0.5	53: 0.5	6: 0.2 12: 0.0 19: 0.0	8: 0.4	53: 0.8	11: 0.7	8: 0.56	6:0.9	6: 0.4	6:0:9	922.
9: 0.235528	8: 0.169852	1: 0.182855	1: 0.182855	1: 0.134173	1: 0.063710	1: 0.143711	1: 0.118371	1: 0.056920	8: 0.532565	5: 0.425537	17: 0.247368	35: 0.422895	47: 0.459458	1: 0.100588 1: 0.000070 7: 0.002670 0: 0.000010	6: 0.113323	1: 0.153373	8: 0.258143	7: 0.164795	1: 0.067101	1: 0.064779	1: 0.044543	1: 0.104166 1: 0.002260 7: 0.002440
431.9 C 1	189.9 C	47.1+ A	52.0 B	61.1+ A	66.2+ A	56.5 B	59.8 B	93.0 B	139.2+ A	486.6 B 3	398.4 € 1	487.1 B 3	543.5 C 4	72.7 ++B 1	125.0 C	452.0 C 1	148.8 C	114.6 B	67.7 B	77.5 B	71.7 B	75.0++A 11 17 17 17 30
3.130E+00	2.320E+00	1.879E-03	4.300E-01	8.035E-01	9.819E-01	9.200E-01	9.200E-01	1.230E+00	2.320E+00	6.473E+00	5.560E+00	6.470E+00	6.010E+00	1.100E+00	2.532E+00	3.667E+00	2.270E+00	2.261E+00	9.707E-01	1.580E+00	1.234E+00	1.040E+00
0.433728	0.488343	0.589620	0.589620	0.565765	0.530965	0.570337	0.557854	0.519560	0.499298	0.436700	0.446550	0.436633	0.425944	0.549325	0.490618	0.426968	0.484035	0.494149	0.532597	0.531699	0.521485	0.551083
POTASSIUM IODIDE, KI	POTASSIUM OXIDE, $_{ m K_2O}$	PROPANE, C ₃ H ₈	PROPANE, LIQUID, C3H8	N-PROPYL ALCOHOL, C ₃ H ₇ OH	PYRIDINE, C ₅ H ₅ N	RUBBER, BUTYL, $(c_4H_8)_n$	RUBBER, NATURAL, (C ₅ H ₈)	RUBBER, NEOPRENE, $(c_4^{}H_5^{}C\ell)_n^{}$	SILICON DIOXIDE, SiO ₂	SILVER BROMIDE, AgBr	SILVER CHLORIDE, AGCA	SILVER HALIDES IN PHOTOGRAPHIC EMULSION	SILVER IODIDE, AGI	SKIN (ICRP)	SODIUM CARBONATE, Na ₂ CO ₃	SODIUM IODIDE, NaI	SOBIUM MONOXIDE, Na ₂ O	SOBIUM NITRATE, NANO	STILBENE, C14H12	SUCROSE, C ₁₂ H ₂₂ O ₁₁	TERPHENYL, C18H10	TESTES (ICRP)

Table 7—continue

Material	<2/4>	Density* (g/cm ³)	I the Grδ	(con	Compos constituent Z : f	Caposition Z : fraction by wei	weight)
TETRACHLOROETHYLENE, C,C%,	0.482410	1.625E+00	159.2+ A	6: 0.144856	17: 0.855144		
THALLIUM CHLORIDE, TACA	0.408613	7.004E+00	690.3 C	17: 0.147822	81: 0.852178		
TISSUE, SOFT (ICRP) b	0.551210	1.000E+00	72.3++B	1: 0.104472 11: 0.001130 17: 0.001340 30: 0.000030	6: 0.232190 12: 0.000130 19: 0.001990	7: 0.024880 15: 0.001330 20: 0.000230	8: 0.630238 16: 0.001990 26: 0.000050
- TISSUE, SOFT (ICRU FOUR-COMPONENT)	0.549750	1.000E+00	74.9++B	1: 0.101172	6: 0.111000	7: 0.026000	8: 0.761828
TISSUE-EQUIVALENT GAS (METHANE BASED) bb	0.549927	1.064E-03	61.2⁴ ▲	1: 0.101869	6: 0.456179	7: 0.035172	8: 0.406780
TISSUE-EQUIVALENT GAS (PROPANE BASED) $^{\mathcal{CC}}$	0.550268	1.826E-03	89.5+*A	1: 0.102672	6: 0.568940	7: 0.035022	8: 0.293366
TITANIUM DIOXIDE, Tio,	0.475721	4.260E+00	179.5 C	8: 0.400592	22: 0.599408		
TOLUENE, C.H.	0.542651	8.669E-01	62.5+ A	1: 0.087510	6: 0.912490		
TRICHLORDETHYLENE, C2HC83	0.487104	1.460E+00	148.1+ A	1: 0.007671	6: 0.182831	17: 0.809498	
TRIETHYL PHOSPHATE, C.H. PO.	0.538001	1.070E+00	81.2 B	1: 0.082998	6: 0.395628	8: 0.351334	15: 0.170040
TUNGSTEN HEXAFLUORIDE, WF,	0.429760	2.400E+00	354.4 €	9: 0.382723	74: 0.617277		
URANIUM DICARBIDE, UC.	0.396869	1.128E+01	752.0 C	6: 0.091669	92: 0.908331		
URANIUM MONOCARBIDE, UC	0.391937	1.363E+01	862.0 C	6: 0.048036	92: 0.951964		
URANIUM OXIDE, UO.	0.399959	1.096E+01	720.6 C	8: 0.118502	92: 0.881498		
UREA CO(NH.)	0.532841	1.323E+00	72.8 B	1: 0.067131	6: 0.199999	7: 0.466459	8: 0.266411
VALINE CHIND	0.546320	1.230E+00	67.7 B	1: 0.094641	6: 0.512645	7: 0.119565	8: 0.273150
"VITON" FLUOROELASTOMER, (C.H.F.)	0.485850	1.800E+00	98.6 B	1: 0.009417	6: 0.280555	9: 0.710028	
WATER, LIQUID, H.O	0.555087	1.000E+00	75.0 + A	1: 0.111894	8: 0.888106		
WATER VAPOR, H.O	0.555087	7.562E-04	71.6+ A	1: 0.111894	8: 0.888106		
XYLENE, C8H10	0.546309	8.700E-01	61.8+ A	1: 0.094935	6: 0.905065		

* Gas densities are for a pressure of 1 atm and a temperature of 20°C. Values for densities are taken from Handhook of Chemistry and Physics, 144). The Condensed Chemical Dictionary (43) The Reactor Handbook (46) manufacturers and suppliers literature, or from reports of other authors. Due to computer preparation of the tables, the densities are given to four figures, even though in some cases the values are significant to only two or three (usually indicated by the presence of terminal zeros); the number following the "E" indicates the power of 10. In some cases, the value given is nominal, representing the mid-point of a range of densities. Density enters into the calculation of the mass collision stopping power only in the evaluation of the density-effect correction.

‡ Unless indicated otherwise, the adopted mean excitation energies were obtained by the application of the Bragg additivity rule, equation (10), using I-values for elemental constituents given in Table 6. A plus (+) indicates a direct experimental mean excitation energy for the compound, taken from Table 5. The mean excitation energies for air and methane-based TE gas are indicated as experimental, because these mixtures consist of constituents all of which have experimentally determined I-values. A double plus (++) ndicates that the material was treated as a mixture of compounds, of which some—but not all—have experimentally determined I-values.

The letter grade A. B or C following the I-value is a qualitative indication of the estimated uncertainty as discussed in the text.

SMATHERS et al. (47) and GOODMAN. (48) 45.14°, polyethylenc ((C2H4),, 35.32°, nylon (duPont Elvamide 8062M), 16.06°, carbon and 3.85°, calcium fluoride (CaF2), by weight.

^b From Tables 105 and 108 of ICRP. (49)

* Handbook of Chemistry and Physics. 144, 78.09%, N2, 20.95%, O2, 0.93%, Ar and 0.03%, CO2, by volume.

*ICRU Report 26.150, 30.0°, polyethylene ((C2H4),), 21.6°, nylon (duPont Elvamide 8062M), 14.0°, carbon and 34.4°, calcium fluoride (CaF2), by weight "ICRU Report 10b.11). Water content (15.0°, in bone and 78.6°, in muscle, by weight) and density taken from Table 105 of ICRP.149

ICRU Report 26.150) 78.4% polyvinylidine fluoride ((C2H2F2),,). 20.75%, carbon. and 0.85%, silicon dioxide (SiO2). by weight

*0015 molar ceric ammonium sulfate in 0.8 N sulfuric acid aqueous solution: 95.183°, H₂O, 3.914%, H₂SO₄, and 0.903°, Ce(SO₄)₂. 2(NH₄)₂SO₄·2H₂O, by weight.

*Composition from *The Reactor Handbook*. (46) It is assumed that Si and Al are present in the form of 72.1°, SiO₂ and 6.4°, Al₂O₃, by weight.

*0.001 M ferrous ammonium sulfate in 0.8 N sulfuric acid aqueous solution. According to GREENE et al. (452) 96.0°, H₂O₃. 3.9°, H₂SO₄, 0.039°, Fe(NH₄)₂(SO₄)₂·6H₂O and

0.006%, NaCl, by weight.

Standard nuclear research emulsion, as given in Table 3.5.1 of Barkas. (40)

^kHubbell. (53) 80.9%, SiO₂, 12.9%, B₂O₃, 3.8%, Na₂O, 2.2%, Al₂O₃ and 0.4%, K₂O, by weight.

'The Reactor Handbook: (46) 81.0%, PbO, 17.3%, SiO₂, 1.35°, TiO₂ and 0.35°, As₂O₃, by weight.

"The Reactor Handbook: (46) 72.0%, SiO₂, 15.0%, CaO and 13.0%, Na₂O, by weight.

" WHITE: 154) 60.8% paraffin wax (C25H31), 30.4% polyethylene ((C2H4),), 6.4% MgO and 2.4% TiO2, by weight. "WHITE: 154) 76.93% paraffin wax (C25H52), 22.35% MgO and 0.72% CaCO3, by weight.

P Composition from WHITE (54)

4 Rossi and FAILLA.(55) 56.9% H2O, 28.4% glycerol (C3H8O3), 7.6% urea (CO(NH2)2) and 7.1% sucrose (C12H22O11), by weight.

'GOODMAN. 156) 65.6% H2O, 26.8% glycerol (C3. H8O3) and 7.6% urea (CO(NH2)2), by weight.

*Equivalent formula is C47.1H89.6O8.1N6.2.

'Composition (based on vinyltoluene, CoH10) and density characteristic of "NE 110"; "NE 111"; "NE 113"; "NE 114"; "Pilot B"; "Pilot F"; "Pilot U" and "Pilot Y" plastic scintillators produced by Nuclear Enterprises Inc.

"Also known as: "Lexan". ' Also known as "Melinex"

" Also known as: "Lucite", "Plexiglas", "Perspex", PMMA resist.

* Also known as: "Styrofoam", "Styron".

' Also known as: "Halon"

² Also known as: "Kel-F

a ICRU Report 33. p. 20.1571 Water content (64.5% by weight) taken from Table 105 of ICRP.1491

bb Rossi and Failla: 1551 64.4%, methane (CH4), 32.4%, CO2 and 3.2%, N2. by volume. cc SRDOC: (58) 55.0% propane (C₃H₈), 39.6% CO₂ and 5.4% N₂, by volume.

TABLE 8. Comparison of mean excitation energies for compounds recommended in various publications

Material	Formula	From Table 7	PAGES et al. (1972) ⁽⁵⁹⁾	DALTON and TURNER (1968) ⁽²⁵⁾	NAS-NRC (1964) ⁽²²⁾	Brandt (1968) ⁽³²⁾
Propane, liquid	C ₃ H ₈	52.0 ± 3.9	50.4	51.2	50.3	51.5
Polyethylene	$(C_2H_4)_n$	57.4* ± 4.6	54.7	55.8	54.6	59.6
Nylon, type 6/6	$(C_0H_{11}ON)_n$	$63.9* \pm 2.6$	62.3	_	_	62.0
Polystyrene	$(C_8H_8)_n$	$68.7* \pm 2.7$	63.7	65.5	63.6	65.1
PMMA	$(C_5H_8O_2)_n$	74.0* ± 1.5	65.7	69.2	65.6	69.0
Water, liquid	H₂O	$75.0* \pm 3.0$	65.3	71.3	65.1	72.5
Polyoxymethylene	(CH ₂ O) _n	77.4 ± 5.8	69.8	_	_	76.6
Air		85.7* ± 1.7	86.8	92.9	86.8	
Polyvinyl chloride	$(C_2H_3CI)_n$	108 ± 8	112.5	_	_	112.7
Saran	$(C_2H_2Cl_2)_n$	134 ± 10	_	_		145.6
"Freon-13B1"	CF ₃ Br	210 ± 25	_	_	204.7	171.6
Photographic emulsion	-	331* ± 10	_		320	263.1
Sodium iodide	Nal	452 + 50	433	411	433	_
Cesium iodide	CsI	553 + 65	523			

All values are given in units of eV.

cludes the plasma energy $\hbar\omega_p$ (see equation (6)), the mean excitation energy I and data on ionization potentials for electrons in various atomic shells. The immediate results of Sternheimer's calculations consist of numerical values of the density-effect correction for a particular material, as a function of the charged particle momentum. Sternheimer then represented his results in terms of the formula

$$\delta = \begin{cases} 0 & \text{for } X \le X_0 \\ (2 \ln 10) X - \overline{C} + a(X_1 - X)^k \\ & \text{for } X_0 < X < X_1 \\ (2 \ln 10) X - \overline{C} & \text{for } \overline{X} \ge X_1, \end{cases}$$
 (12a)

where δ is the density-effect correction in equation (2),

and where

$$X = \log_{10}(p/mc) = \frac{1}{2}\log_{10}[\tau(\tau + 2)], \tag{13}$$

$$\widetilde{C} = 1 + 2 \ln \left(I / \hbar \omega_{\rm p} \right), \tag{14}$$

$$a = [\overline{C} - (2 \ln 10) X_0] / (X_1 - X_0)^k. \tag{15}$$

In equation (13), p is the particle momentum and mc^2 its rest mass.

In his earlier papers, STERNHEIMER⁽⁵⁾ gave numerical values of the parameters in equation (12) for some 50 materials. From the information contained in the results of these calculations, STERNHEIMER and PEIERLS⁽⁶⁾ developed a prescription for specifying the parameters for any substance, using as input only the mean excitation energy I and the density ρ . First, the quantity \overline{C} is calculated from equation (14).* The quantities X_0 and X_1 are then evaluated as functions of I and \overline{C} according to the rules for gases, or for solids and liquids, summarized in Table 9. The expo-

TABLE 9. STERNHEIMER-PEIERLS⁽⁶⁾ prescription for evaluating parameters in equation (12) for the density-effect correction

Phase		Conditions	X_{0}	X 1
Solids	1 < 100 eV	<i>C</i> < 3.681	0.2	2.0
and		$\overline{C} \geqslant 3.681$	$0.326 \overline{C} - 1.0$	2.0
Liquids	$I \geqslant 100 \mathrm{eV}$	$\overline{C} < 5.215$	0.2	3.0
-		$\overline{C} \geqslant 5.215$	$0.326 \overline{C} - 1.5$	3.0
Gases		\overline{C} < 10.0	1.6	4.0
(NTP)		$10.0 \leqslant \overline{C} < 10.5$	1.7	4.0
`		$10.5 \leqslant \overline{C} < 11.0$	1.8	4.0
		$11.0 \leqslant \overline{C} < 11.5$	1.9	4.0
		$11.5 \leqslant \overline{C} < 12.25$	2.0	4.0
		$12.25 \leqslant \overline{C} < 13.804$	2.0	5.0
		$\overline{C} \geqslant 13.804$	$0.326 \overline{C} - 2.5$	5.0
Special cases		k	X _o	<i>X</i> ₁
H, (gas)		4.754	1.837	3.0
H ₂ (liquid)		5.949	0.425	2.0
He (gas)		3.297	2.191	3.0

^{*} An experimental value.

^{*} It should be noted that equation (12c) approaches the asymptotic result given by equation (5).

nent k in equations (12 and 15) is given the value 3, except for H and He as indicated in Table 9.

The prescription for gases pertains to a density corresponding to normal temperature (0° C) and pressure (1 atm). If results for another gas density ρ' is desired, X_0 and X_1 are chosen from Table 9 for normal temperature and pressure (NTP), but, when evaluating equation (12), \overline{C} is replaced by $\overline{C} - \ln{(\rho'/\rho)}$, X_0 by $X_0 - \ln{(\rho'/\rho)}/(2 \ln{10})$, and X_1 by $X_1 - \ln{(\rho'/\rho)}/(2 \ln{10})$.

The Sternheimer Peierls algorithm has been adopted in the present work because it can easily be applied to any material and because it permits the simple parameterization of the expression for the collision stopping power including the density-effect correction.*

6. Evaluation of the Collision Stopping Power from Pre-tabulated Quantities

6.1 Material constants and energy-dependent quantities

The evaluation of the collision stopping power with the use of pre-tabulated quantities is facilitated if one separates the various quantities into those which depend only on the kinetic energy of the particle (electron or positron), and those which depend only on the stopping properties of the medium (expressed in terms of the mean excitation energy, I, and the plasma energy, $\hbar\omega_{\rm p}$).

After inserting equation (12) for the density-effect into equation (2), one can combine terms and obtain the following equations:

$$B(T) = \begin{cases} B_0(T) + b_0 & \text{for } T \le T_0 \\ B_1(T) + b_1 - b_2 \{1 - [2 \ln (p/mc)]/b_3\}^k \\ \text{for } T_0 < T < T_1 \end{cases}$$
 (16b)
$$B_1(T) + b_1 & \text{for } T \ge T_1$$
 (16c)

k = 3 (except for H₂ and He; see Table 9).

The quantities $B_0(T)$ and $B_1(T)$ in equation (16) are functions only of the kinetic energy T of the electron (or positron) and are given, together with $\ln{(p/mc)}$ and β^2 , in Table 10 for a fine grid of energies. The quantities Z/A, h_0 , h_1 , h_2 , h_3 , T_0 and T_1 are material constants and are given in Table 11a for 95 elemental substances, and in Table 11b for 180 compounds and mixtures.

 $B_0(T)$ has been defined by equations (3) and (4). The defining equations for the remaining quantities in equation (16) are:

$$B_1(T) = B_0(T) + 1 - 2 \ln (p/mc),$$
 (17)

$$b_0 = -2\ln(I/mc^2). (18)$$

$$b_3 = -2\ln\left(\hbar\omega_{\rm p}/mc^2\right),\tag{19}$$

$$b_2 = [1 + 2 \ln (I/\hbar \omega_p) - 2 \ln (p_0/mc)] \times \{ [\ln (p_1/mc)] / [\ln (p_1/p_0)] \}^k,$$
 (20)

and

$$b_3 = 2 \ln (p_1/mc). (21)$$

The constants p_0 , T_0 , p_1 and T_1 are obtained from X_0 and X_1 according to equation (13).

6.2 Limitations and uncertainties

An error of $\sim 1\%$ is expected to result from approximations in the derivation of the Bethe stopping-power formula. Additional uncertainties in the evaluation of the collision stopping power arise at low energies (where the theory is no longer fully applicable) and because of uncertainties in the values of the mean excitation energy, I, and the density-effect correction δ .

The Bethe stopping-power formula is derived on the assumption that the velocity of the incident particle is large compared to the velocities of the atomic electrons with which it interacts. When this condition is not satisfied, shell corrections are needed which are available for heavy particles but not for electrons. We have attempted to make a rough estimate of the errors incurred through the use of the uncorrected Bethe formula for electrons at low energies, assuming that the error is twice as large as the shell corrections for protons of the same velocity. Such an error estimate is consistent with the limited evidence from the comparisons in Ref. 7 of other low-energy stoppingpower calculations with the results of the Bethe theory. At 100 keV, the error is estimated to be $\sim 0.3\%$ for H₂O, $\sim 0.7\%$ for Al, $\sim 1.3\%$ for Cu, $\sim 2\%$ for Ag and ~3% for Au. At 10 keV, these errors are $\sim 2\%$ for H₂O, $\sim 4\%$ for Al, $\sim 9\%$ for Cu, $\sim 12\%$ for Ag and $\sim 21\%$ for Au. The use of the uncorrected Bethe formula is not recommended at energies below 10 keV except for low-Z materials such as water, air or plastics, for which the error may reach $\sim 3\%$ at 5 keV, $\sim 7\%$ at 2 keV and 10-15% at 1 keV.

The uncertainties of the collision stopping power due to uncertainties of the mean excitation energy can be estimated by combining the information in Table 1 (relative change in stopping power due to 10% change in I) and the error estimates for the I-values given in Table 2 for elements and in Section 4 for compounds. At energies above 1 MeV, in condensed materials, the largest error comes from the evaluation of the density-effect correction. The Sternheimer model is only approximate, and the value of δ is also influenced by the choice of input data for the model.

^{*} Calculations of the density-effect correction using semiempirical dielectric-response functions have recently been made by INOKUTI and SMITH⁽⁶⁶⁾ for aluminum and by ASH-LEY⁽⁶⁷⁾ for water. These results agree to within 0.2% for aluminum and 0.4% for water with the new numerical results from STERNHEIMER's⁽⁵⁾ method used in Ref. 7. The fitting procedure of STERNHEIMER and PEIERLS⁽⁶⁾ introduces an additional error of 1-2%. While this manuscript was in press, new fits to the density-effect data have been made⁽⁶⁸⁾ for a limited number of materials which could be used in equation (12) instead of the Sternheimer-Peierls fit.

TABLE 10. Energy-dependent quantities for use in equation (16) to calculate the collision stopping power for electrons and positrons

	····		Elec	trons	Posi	trons
T (MeV)	β 2	2ln(p/mc)	B ₀ (T)	B ₁ (T)	B _O (T)	B1(T)
0.00100	3.90241D-03	-5.54225D+00	-1.21688D+01	-5.62657D+00	-1.10962D+01	-4.55396D+00
0.00125	4.87444D-03	-5.31886D+00	-1.17233D+01	-5.40440D+00	-1.06523D+01	-4.33348D+00
0.00150	5.84505D-03	-5.13630D+00	-1.13593D+01	-5.22304D+00	-1.02901D+01	-4.15383D+00
0.00175	6.81425D-03	-4.98190D+00	-1.10518D+01	-5.06986D+00	-9.98424D+00	-4.00234D+00
0.00200	7.78202D-03	-4.84813D+00	-1.07854D+01	-4.93729D+00	-9.71959D+00	-3.87147D+00
0.00250	9.71333D-03	-4.62450D+00	-1.03406D+01	-4.71607D+00	-9.27812D+00	-3.65362D+00
0.00300	1.16390D-02	-4.44169D+00	-9.97736D+00	-4.53567D+00	-8.91827D+00	-3.47659D+00
0.00350	1.35591D-02	-4.28705D+00	-9.67048D+00	-4.38343D+00	-8.61475D+00	-3.32770D+00
0.00400	1.54736D-02	-4.15303D+00 -4.03476D+00 -3.92891D+00 -3.83311D+00	-9.40483D+00	-4.25180D+00	-8.35245D+00	-3.19942D+00
0.00450	1.73825D-02		-9.17067D+00	-4.13591D+00	-8.12163D+00	-3.08687D+00
0.00500	1.92858D-02		-8.96135D+00	-4.03244D+00	-7.91563D+00	-2.98672D+00
0.00550	2.11837D-02		-8.77213D+00	-3.93901D+00	-7.72972D+00	-2.89661D+00
0.00600	2.30760D-02	-3.74562D+00	-8.59949D+00	-3.85388D+00	-7.56039D+00	-2.81478D+00
0.00700	2.68442D-02	-3.59049D+00	-8.29395D+00	-3.70346D+00	-7.26143D+00	-2.67094D+00
0.00800	3.05907D-02	-3.45599D+00	-8.02962D+00	-3.57363D+00	-7.00364D+00	-2.54765D+00
0.00900	3.43156D-02	-3.33724D+00	-7.79675D+00	-3.45952D+00	-6.77727D+00	-2.44004D+00
0.01000	3.80191D-02	-3.23091D+00	-7.58871D+00	-3.35780D+00	-6.57569D+00	-2.34478D+00
0.01250	4.71850D-02	-3.00534D+00	-7.14900D+00	+3.14366D+00	-6.15196D+00	-2.14662D+00
0.01500	5.62206D-02	-2.82061D+00	-6.79078D+00	-2.97018D+00	-5.80948D+00	-1.98887D+00
0.01750	6.51283D-02	-2.66405D+00	-6.48875D+00	-2.82470D+00	-5.52295D+00	-1.85890D+00
0.02000	7.39105D-02	-2.52812D+00	-6.22780D+00	-2.69969D+00	-5.27728D+00	-1.74916D+00
0.02500	9.11076D-02	-2.30019D+00	-5.79331D+00	-2.49312D+00	-4.87265D+00	-1.57247D+00
0.03000	1.07830D-01	-2.11310D+00	-5.43989D+00	-2.32679D+00	-4.54823D+00	-1.43513D+00
0.03500	1.24095D-01	-1.95421D+00	-5.14226D+00	-2.18806D+00	-4.27877D+00	-1.32457D+00
0.04000	1.39920D-01	-1.81596D+00	-4.88536D+00	-2.06940D+00	-4.04922D+00	-1.23327D+00
0.04500	1.55319D-01	-1.69348D+00	-4.65945D+00	-1.96597D+00	-3.84989D+00	-1.15642D+00
0.05000	1.70309D-01	-1.58344D+00	-4.45790D+00	-1.87446D+00	-3.67418D+00	-1.09074D+00
0.05500	1.84903D-01	-1.48348D+00	-4.27599D+00	-1.79251D+00	-3.51739D+00	-1.03391D+00
0.06000	1.99115D-01	-1.39184D+00	-4.11024D+00	-1.71841D+00	-3.37607D+00	-9.84232D-01
0.07000	2.26447D-01	-1.22848D+00	-3.81723D+00	-1.58875D+00	-3.12992D+00	-9.01440D-01
0.08000	2.52403D-01	-1.08584D+00	-3.56389D+00	-1.47806D+00	-2.92097D+00	-8.35136D-01
0.09006	2.77074D-01	-9.59021D-01	-3.34061D+00	-1.38159D+00	-2.73977D+00	-7.80744D-01
0.10000	3.00544D-01	-8.44708D-01	-3.14084D+00	-1.29613D+00	-2.57992D+00	-7.35208D-01
0.12500	3.54452D-01	-5.99528D-01	-2.71673D+00	-1.11721D+00	-2.24711D+00	-6.47585D-01
0.15000	4.02359D-01	-3.95644D-01	-2.36791D+00	-9.72263D-01	-1.97895D+00	-5.83310D-01
0.17500	4.45125D-01	-2.20387D-01	-2.07015D+00	-8.49768D-01	-1.75283D+00	-5.32440D-01
0.20000	4.83460D-01	-6.61854D-02	-1.80926D+00	-7.43077D-01	-1.55582D+00	-4.89638D-01
0.25000	5.49106D-01	1.97060D-01	-1.36496D+00	-5.62020D-01	-1.22024D+00	-4.17295D-01
0.30000	6.02989D-01	4.17936D-01	-9.91990D-01	-4.09926D-01	-9.35849D-01	-3.53785D-01
0.35000	6.47761D-01	6.09210D-01	-6.68094D-01	-2.77304D-01	-6.85131D-01	-2.94341D-01
0.40000	6.85365D-01	7.78536D-01	-3.80305D-01	-1.58842D-01	-4.58535D-01	-2.37072D-01
0.45000	7.17253D-01	9.30877D-01	-1.20406D-01	-5.12827D-02	-2.50364D-01	-1.81241D-01
0.50000	7.44529D-01	1.06964D+00	1.17158D-01	4.75177D-02	-5.69563D-02	-1.26597D-01
0.55000	7.68040D-01	1.19727D+00	3.36331D-01	1.39057D-01	1.24191D-01	-7.30831D-02
0.60000	7.88448D-01	1.31560D+00	5.40025D-01	2.24429D-01	2.94879D-01	-2.07178D-02
0.70000	8.21944D-01	1.52957D+00	9.09400D-01	3.79827D-01	6.09993D-01	8.04197D-02
0.80000	8.48071D-01	1.71955D+00	1.23807D+00	5.18522D-01	8.96146D-01	1.76593D-01
0.90000	8.68843D-01	1.89077D+00	1.53451D+00	6.43740D-01	1.15853D+00	2.67762D-01
1.00000	8.85629D-01	2.04685D+00	1.80465D+00	7.57800D-01	1.40090D+00	3.54050D-01
1.25000	9.15797D-01	2.38657D+00	2.39122D+00	1.00465D+00	1.93658D+00	5.50010D-01
1.50000	9.35431D-01	2.67328D+00	2.88358D+00	1.21030D+00	2.39464D+00	7.21361D-01
1.75000	9.48921D-01	2.92195D+00	3.30785D+00	1.38590D+00	2.79439D+00	8.72441D-01
2.00000	9.58585D-01	3.14183D+00	3.68051D+00	1.53868D+00	3.14872D+00	1.00689D+00
2.50000	9.71198D-01	3.51808D+00	4.31227D+00	1.79419D+00	3.75501D+00	1.23693D+00
3.00000	9.78817D-01	3.83315D+00	4.83536D+00	2.00221D+00	4.26130D+00	1.42815D+00
3.50000	9.83769D-01	4.10448D+00	5.28152D+00	2.17704D+00	4.69557D+00	1.59109D+00
4.00000	9.87168D-01	4.34288D+00	5.67038D+00	2.32750D+00	5.07558D+00	1.73270D+00
4.50000	9.89601D-01	4.55558D+00	6.01493D+00	2.45935D+00	5.41328D+00	1.85771D+00
5.00000	9.91402D-01	4.74762D+00	6.32419D+00	2.57658D+00	5.71709D+00	1.96948D+00
5.50000	9.92773D-01	4.92269D+00	6.60470D+00	2.68202D+00	5.99316D+00	2.07047D+00
6.00000	9.93840D-01	5.08357D+00	6.86134D+00	2.77777D+00	6.24610D+00	2.16253D+00
7.00000	9.95371D-01	5.37086D+00	7.31709D+00	2.94623D+00	6.69607D+00	2.32522D+00
8.00000	9.96395D-01	5.62187D+00	7.71285D+00	3.09098D+00	7.08751D+00	2.46564D+00
9.00000	9.97113D-01	5.84477D+00	8.06256D+00	3.21779D+00	7.43386D+00	2.58910D+00

TABLE 10-continued

			Elec	ctrons	Posi	trons
T (MeV)	β²	21n(p/mc)	Bo(T)	B ₁ (T)	B ₀ (T)	B ₁ (T)
10.00000	9.97636D-01	6.04524D+00	8.37580D+00	3.33056D+00	7.74443D+00	2.69919D+00
12.50000	9.98457D-01	6.47281D+00	9.04031D+00	3.56750D+00	8.40412D+00	2.93132D+00
15.00000	9.98915D-01	6.82477D+00	9.58412D+00	3.75935D+00	8.94473D+00	3.11996D+00
17.50000	9.99195D-01	7.12392D+00	1.00444D+01	3.92047D+00	9.40272D+00	3.27880D+00
20.00000	9.99379D-01	7.38406D+00	1.04434D+01	4.05933D+00	9.80000D+00	3.41594D+00
25.00000	9.99599D-01	7.82058D+00	1.11106D+01	4.29006D+00	1.04649D+01	3.64428D+00
30.00000	9.99719D-01	8.17865D+00	1.16562D+01	4.47753D+00	1.10088D+01	3.83015D+00
35.00000	9.99793D-01	8.48224D+00	1.21176D+01	4.63541D+00	1.14691D+01	3.98689D+00
40.00000	9.99841D-01	8.74575D+00	1.25175D+01	4.77176D+00	1.18681D+01	4.12238D+00
45.00000	9.99874D-01	8.97854D+00	1.28703D+01	4.89175D+00	1.22202D+01	4.24171D+00
50.00000	9.99898D-01	9.18704D+00	1.31859D+01	4.99889D+00	1.25353D+01	4.34831D+00
55.00000	9.99915D-01	9.37584D+00	1.34715D+01	5.09566D+00	1.28205D+01	4.44464D+00
60.00000 70.00000 80.00000 90.00000	9.99929D-01 9.99947D-01 9.99960D-01 9.99968D-01 9.99974D-01	9.54834D+00 9.85424D+00 1.01195D+01 1.03537D+01 1.05633D+01	1.37322D+01 1.41942D+01 1.45945D+01 1.45945D+01 1.52634D+01	5.18389D+00 5.33996D+00 5.47495D+00 5.59386D+00 5.70013D+00	1.30809D+01 1.35423D+01 1.35421D+01 1.39421D+01 1.42948D+01	4.53251D+00 4.68802D+00 4.82257D+00 4.94115D+00 5.04716D+00
100.00000 125.00000 150.00000 175.00000	9.99983D-01 9.99988D-01 9.99992D-01	1.10075D+01 1.13708D+01 1.16782D+01	1.59324D+01 1.64792D+01 1.69414D+01	5.92491D+00 6.10833D+00 6.26327D+00	1.52790D+01 1.58254D+01 1.62874D+01	5.27146D+00 5.45456D+00 5.60927D+00 5.74322D+00
200.00000 250.00000 300.00000 350.00000	9.99994D-01 9.99996D-01 9.99997D-01 9.99998D-01	1.19445D+01 1.23898D+01 1.27537D+01 1.30615D+01	1.73419D+01 1.80111D+01 1.85580D+01 1.90203D+01	6.39739D+00 6.62136D+00 6.80424D+00 6.95878D+00	1.66877D+01 1.73567D+01 1.79034D+01 1.83656D+01	5.96695D+00 6.14966D+00 6.30410D+00
400.00000	9.99998D-01	1.33282D+01	1.94209D+01	7.09261D+00	1.87661D+01	6.43784D+00
450.00000	9.99999D-01	1.35635D+01	1.97741D+01	7.21063D+00	1.91193D+01	6.55579D+00
500.00000	9.99999D-01	1.37740D+01	2.00902D+01	7.31617D+00	1.94353D+01	6.66128D+00
550.00000	9.99999D-01	1.39645D+01	2.03761D+01	7.41163D+00	1.97211D+01	6.75670D+00
600.00000	9.99999D-01	1.41383D+01	2.06371D+01	7.49877D+00	1.99821D+01	6.84380D+00
700.00000	9.99999D-01	1.44464D+01	2.10995D+01	7.65312D+00	2.04445D+01	6.99809D+00
800.00000	1.00000D+00	1.47133D+01	2.15001D+01	7.78680D+00	2.08450D+01	7.13173D+00
900.00000	1.00000D+00	1.49487D+01	2.18534D+01	7.90470D+00	2.11983D+01	7.24959D+00
1000.00000	1.00000D+00	1.51593D+01	2.21694D+01	8.01015D+00	2.15143D+01	7.35502D+00
1250.00000	1.00000D+00	1.56054D+01	2.28388D+01	8.23346D+00	2.21837D+01	7.57828D+00
1500.00000	1.00000D+00	1.59699D+01	2.33858D+01	8.41590D+00	2.27306D+01	7.76068D+00
1750.00000	1.00000D+00	1.62781D+01	2.38482D+01	8.57013D+00	2.31930D+01	7.91489D+00
2000.00000	1.00000D+00	1.65451D+01	2.42488D+01	8.70372D+00	2.35935D+01	8.04846D+00
2500.00000	1.00000D+00	1.69913D+01	2.49182D+01	8.92694D+00	2.42629D+01	8.27167D+00
3000.00000	1.00000D+00	1.73558D+01	2.54652D+01	9.10932D+00	2.48099D+01	8.45403D+00
3500.00000	1.00000D+00	1.76641D+01	2.59276D+01	9.26351D+00	2.52723D+01	8.60821D+00
4000.00000 4500.00000 5000.00000	1.00000D+00 1.00000D+00 1.00000D+00 1.00000D+00	1.79311D+01 1.81667D+01 1.83773D+01 1.85680D+01	2.63282D+01 2.66815D+01 2.69976D+01 2.72835D+01	9.39707D+00 9.51488D+00 9.62026D+00 9.71558D+00	2.56729D+01 2.60262D+01 2.63423D+01 2.66282D+01	8.74176D+00 8.85956D+00 8.96493D+00 9.06025D+00
6000.00000	1.00000D+00	1.87420D+01	2.75446D+01	9.80261D+00	2.68892D+01	9.14727D+00
7000.06000	1.00000D+00	1.90502D+01	2.80070D+01	9.95678D+00	2.73517D+01	9.30144D+00
8000.00000	1.00000D+00	1.93173D+01	2.84076D+01	1.00903D+01	2.77523D+01	9.43498D+00
9000.00000	1.00000D+00	1.95528D+01	2.87610D+01	1.02081D+01	2.81056D+01	9.55277D+00
0000.00000	1.00000D+00	1.976350+01	2.90770D+01	1.03135D+01	2.84217D+01	9.65814D+00

Furthermore, the Sternheimer-Peierls global fit for all materials introduces some additional error. Sternheimer⁽⁶⁾ estimates that the overall effect of these errors will introduce an uncertainty of no more than 1-2% into the collision stopping power.

6.3. Use of tabulated data

As an example of the use of equation (16) and the data in Tables 10 and 11, we consider the evaluation

of the collision stopping power in polystyrene for electrons with kinetic energy T = 5 MeV.

- 1. From Table 11b, $T_0 = 0.447 \,\text{MeV}$ and $T_1 = 50.6 \,\text{MeV}$; these values indicate that equation (16b) must be used.
- 2. From Table 11b, $b_1 = 20.1286$, $b_2 = 3.2631$, $b_3 = 9.2103$.
 - 3. From Table 10, B_1 (5 MeV) = 2.57658.
- 4. From equation (12b) with k = 3, the stopping number is calculated to be B = 22.3340.

I ABLE 11a. Material Colis		idilis ioi use	iii equation (10) i	10 carculate	ic the collision	inddois	ior iomod e				
Element	N	V/2	Density* (g/cm ³)	I (eV)	ħωp (eV)	T ₀ (MeV)	T1 (MeV)	рo	þı	p 2	e q
HYDROGEN HYDROGEN, LIQUID HYDROGEN, LIQUID LITHIUM BERYLLIUM	284	0.992162 0.992162 0.499675 0.432214 0.443844	8.375E-05 6.250E-02 1.663E-04 5.340E-01 1.848E+00	19.5 21.8 40.0 40.0	0.263 7.176 0.263 13.844 26.098	35.865 0.941 81.671 0.447	528.9 50.6 528.9 50.6	20.3784 20.1244 18.8225 18.9105 17.9799	28.9620 22.3469 28.9618 21.0326 19.7646	97.6113 5.2405 74.9081 3.0193 2.5565	13.8862 13.8862 13.8862 9.2103 9.2103
BORON CARBON (GRAPHITE) CARBON (GRAPHITE) NITROGEN OXYGEN	N00V®	0.462535 0.499542 0.499542 0.499761 0.500019	2.370E+00 2.265E+00 1.700E+00 1.165E-03	78.0 78.0 82.0 95.0	30.170 26.552 0.695 0.744	0.447 0.447 0.447 26.026 32.895	50.6 50.6 5293.3 5293.3	17.5268 17.5748 17.5748 17.4748	19.475 19.4429 19.7298 27.0148 26.8810	2.6430 2.6708 3.0644 14.0501	9.2103 9.2103 9.2103 18.4913 18.4913
FLUORINE NEON SODIUM MAGNESIUM ALUMINUM	00-2n	0.473724 0.495565 0.478474 0.493726	1.580E-03 3.85E-04 9.710E-01 1.740E+00 2.699E+00	115.0 137.0 149.0 156.0	0.788 0.587 19.641 26.708 32.860	322. 822. 00.4440 0.4447	82893 82933 8510 8510 8510 8510 8510	16.7984 16.4483 16.2804 16.1886	26.7637 27.3524 20.3330 19.7183	21.2268 21.2268 5.02268 4.4386 4.0815	13.0.491 13.
SILICON PHOSPHORUS SULFUR CHLORINE ARGON	42278	0.498478 0.484281 0.499064 0.479508 0.450586	2.200E+00 2.200E+00 2.000E+00 2.995E-03 1.662E-03	173.0 173.0 180.0 174.0	21.055 28.743 1.092 0.789	0.447 0.447 0.447 41.542 52.430	5293.35 6293.55 6293.55 63.55	15.9817 15.9817 15.9023 15.9702	19.4167 19.5030 19.5683 26.1123 26.7633	4.3221 4.4282 4.6061 16.2297 21.5822	13.00 13.00 13.00 13.00 18.00
POTASSIUM CALCIUM SCANDIUM TITANIUM VANABIUM	22222	0.485955 0.499002 0.467124 0.459482 0.451498	8.620E-01 1.550E+00 2.989E+00 4.540E+00 6.110E+00	190.0 191.0 216.0 233.0 245.0	18.650 25.342 34.050 41.619 47.861	00.7447 00.0447 00.4447 00.4447	000000 00000 00000 00000	15.7942 15.7837 15.5377 15.3862 15.2857	20.4365 19.8233 19.2326 18.8311 18.5517	5.8481 5.0656 4.6417 4.3343	21.00.00.00.00.00.00.00.00.00.00.00.00.00
CHROMIUM MANGANESE IRON COBALT NICKEL	87654	0.461574 0.455058 0.465558 0.458146 0.477083	7.180E+00 7.440E+00 7.874E+00 8.900E+00	257.0 272.0 286.0 297.0 311.0	52.458 55.172 55.172 58.1388	0000 4444 77444 77444	00000 0000 0000 0000 0000	15.0767 14.9763 14.908 14.8087	18.3682 13.3469 18.2674 18.1609	4.1193 4.1193 4.1450 4.1069	13. 13. 13. 13. 13. 13. 13. 13. 13. 13.
COPPER ZINC GALLIUM GERMANIUM ARSENIC	80-88 80-88	0.456362 0.458856 0.446636 0.440832 0.440832	8.960E+00 7.133E+00 5.904E+00 5.323E+00 5.730E+00	3322 3336.0 3450.0 470.0	58.270 52.132 46.688 44.141 45.779	0000 4444 77444 77444	200000 00000 20000 20000	14.7392 14.6901 14.6660 14.5724 14.5896	18.1581 18.3807 18.6013 18.7135	4.5023 4.6364 4.9374 5.1904 5.0797	13. 13. 13. 13. 13. 13. 13. 13. 13. 13.
SELENIUM BROMINE KRYPTON RUBIDIUM STRONTIUM	4896 8466	0.430598 0.438026 0.429594 0.432912 0.433691	4.500E+00 7.072E-03 3.478E-03 1.532E+00 2.540E+00	3448 3452 363 363 363 363 363 363 363 363 363 36	40.112 1.604 1.114 23.467 30.244	52.430 52.430 1.640	5293.3 52933.4 510.5 510.5	14.5839 14.6128 14.5610 14.4895	18.9049 25.3435 26.0725 19.9771	5.4141 19.8237 15.0942 7.2552 6.3738	13.8155 23.0953 13.8155 13.8155
YTTRIUM ZIRCONIUM NIOBIUM MOLYBDENUM TECHNETIUM	W4444 W0-5W	0.438666 0.438500 0.441304 0.437774 0.439192	4.469E+00 6.506E+00 8.570E+00 1.022E+01	379.0 393.0 417.0 428.0	40.346 48.671 56.039 60.951 64.760	0.602 0.447 0.447 0.447	000000 00000 0000 00000 0000	14.4132 14.3406 14.2221 14.1588 14.1700	18.8933 18.5181 18.2362 17.9469	445326 445326 4654326 5264326 5264326 5264326 5264326	22.22.22.22.22.22.22.22.22.22.22.22.22.

•	٠
•	٠
۰	Ŀ
	=
	3
٠	ü
•	٠,
••	٠
•	٠
	×
	۰
•	3
- 2	•
٠,	-
	г
	,
	u
	ŧ.
- 0	d
•	٠
-	
_	
-	-
4	٠
	٠
	-
- 5	2
- 2	Ľ
-	2
•	ĸ
	1

55 0.411503 5.485E-03 45.376 13.395
411303 5.485E-03 462.0 413.492 0.984 510.5 13.0924 18.0424 6.327 13.092 417.0527 75.0027 13.092 417.0527 75.0027 13.092 417.052 19.002
7. 4.200E+00 492.0 1.348 52.430 510.5 13.8974 510.5 13.8974 510.5 13.8974 61.063 23.00 23.00 23.00
485E-03 482 1348 0.984 510.5 13.924 18.932 5.320 18.932 6.332 13.815
E-100 491.0 4 1.345
482.0 25.370 9.84 510.5 13.8954 18.8421 5.327 13.815 18.8421 5.327 13.815 18.8421 5.327 13.815 18.8421 5.327 13.815 18.8421 5.327 13.815 18.8421 5.327 13.815 18.8421 5.327 13.815 18.8421 5.327 13.815 18.8421 5.327 13.815 18.8421 5.327 13.815 18.8421 5.328 6.0558 13.815 18.8421 5.328 6.0558 13.815 18.8421 5.328 6.0558 13.815 18.8421 5.328 6.0558 13.815 18.8421 5.328 6.0558 13.815 18.8421 5.328 6.0558 13.815 18.8421 5.328 6.0558 13.815 18.815 6.0558 13.815 18.815 6.0558 13.815 18.815 6.0558 13.815 18.815 6.0558 13.815 6.0558 13.815 6.0558 13.815 6.0558 13.815 6.0558 13.815 6.0558 13.815 6.0558 13.815 6.0558 13.815 6.0558 13.815 6.0588 13.81
91.0 41.3492 0.984 510.5 13.8954 18.8452 5.327 13.815 91.0 25.370 2.433 510.5 13.8954 18.8452 6.3127 13.815 91.0 25.370 2.433 510.5 13.8954 18.85528 6.0974 13.815 91.0 54.425 1.833 510.5 13.8954 18.5528 6.0974 13.815 25.0 48.304 0.854 510.5 13.8954 18.5528 6.0974 13.815 25.0 48.304 0.865 510.5 13.625 18.5288 6.0974 13.815 26.0 50.246 1.295 510.5 13.5830 18.5528 6.0954 13.815 27.0 50.246 1.295 510.5 13.5830 18.5528 6.0954 13.815 28.0 56.0 1.295 510.5 13.5830 18.5528 6.0954 13.815 28.0 59.0 1.295 510.5 13.522 18.5284 6.095
1.348 0.984 510.5 13.8954 18.842 6.3527 13.8954 18.842 6.3527 13.8954 18.842 6.3527 13.8954 18.852 6.9546 13.8954 18.852 6.9546 13.8954 18.852 6.9546 13.8954 18.852 6.9546 13.895 4.882 18.852 6.9546 13.895 4.882 6.9546 13.895 6.954 18.852 6.954 18.852 6.954 13.895 6.954 18.852 6.954 18.855 6.954 18.855
1.348 0.984 13.895
25 25<
2.433 2.
88.4 5.8
2937.6 13.8954 19.8212 19.8213 19.8919
10.5 12.8626 19.8659
12.28624 13.5824 13.
3. 89.954 3. 90.954 3. 90.954
224 25.5660 2 10.00 1 13.00 1
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
25.25.25.25.25.25.25.25.25.25.25.25.25.2
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 00400 801-08 6482 4680 80404 804000 600 600 600 600 600 600 600 600 60
០០០ ០១០១០០ សមាល់១០ ១០១០០០ ១០០០០០ ១០០០០០ ១០០០០០០០០០០០០០
សារ សារបាន សារបាន មាន សារបាន មាន សារបាន មាន សារបាន មាន សារបាន មាន

TABLE 11a-continued

Element	7	Z/A	Density* (g/cm ³)	I (eV)	d⊗ (A)	T ₀ (MeV)	T1 (MeV)	pq	b 1	b 2	рз
PROTACTINIUM URANIUM NEPTUNIUM PLUTONIUM AMERICIUM	29999 12899	0.395878 0.386508 0.392325 0.393220 0.396280	1.537E+01 1.895E+01 2.025E+01 1.984E+01 1.367E+01	878.0 890.0 902.0 921.0	70.901 77.986 81.221 80.486	1.070 0.908 0.859 1.364	200000 00000 20000	12.7330 12.7058 12.6790 12.6373	17.7657 17.5752 17.4939 17.5121	6.4495 6.1871 6.1031 6.1954 6.8821	13.8155 13.8155 13.8155 13.8155 13.8155
CURIUM Berkelium	96	0.388554	1.351E+01 1.400E+01	939.0 952.0	66.022 67.557	1.401	510.5	12.5986	17.9083	6.9342	13.8155

* Gas densities are for a pressure of 1 atm and a temperature of 20°C. See also footnotes pertaining to density in Table 7.

*Graphite is comprised of crystallite regions (with a density of 2.265 g cm⁻³) and pores (voids). The density 1.7 g cm⁻³ is a typical bulk density for reactor-grade graphite. The best choice for the density value is not known to us.

TABLE 11b. Material constants for use in equation (16) to calculate the collision stopping power for electrons and positrons: compounds and mixtures

Material	<y 2=""></y>	16	hwp (eV)	To (MeV)	T ₁ (MeV)	po	b1	b ₂	Ъз	i
		1 23	22 667		50.6	17.9364	20.0464	3.0027	9.2103	
A-150 TISSUE-EQUIVALENT PLASTIC		26.7	19.010		50.6	17.9643	20.3983	3.4473	9.2103	
ACETONE ACETONE	0.537680	58.2	0.700	20.570	5293.3	18.1609	27.0023	11.2514	18.4913	
		71.4	24.098		20.0	17.7517	19.9240	2007	2.6103	
ADIPOSE TISSUE (ICRP)		63.2	20.655		20.6	17.9953	20.2323	2.1.5	7.6103	
AND	0.499190	85.7			5293.3	17.3873		13.5906	18.4913	
AIK, UKI CREAR JEA BEVEL/ Alantne	0.538758	71.9			50.6	17.7363	•	2.9861	9.2105	
ALUMINUM OXIDE	0.490382	145.2			0 0 0 0 0 0	17,9965	20.0657	2.9467	9.2103	
AMBER	0.587185	53.7	0.635	20.570	5293.3	18.3214	27.1977	11.4143	18.4913	
		;			4		20, 1651	a /1	9.2103	
ANILINE	0.536895	7.5	23, 704	0.447	, e	17.8056	19.9570	3.0594	9.2103	
ANTHRACENE B-100 RONE-FOIITUALENT PLASTIC	0.527397	85.9		•	50.6	•	19.8346	n,	9.2103	
BAKELITE	0.527919	72.4	•	•	500.0	•	19.3621	, R	18.8155	
BARIUM FLUORIDE	0.422069	375.9	•	•	0.0	•	9	i		
BARIUM SULFATE	0.445611	285.7		0.447	510.5	14.9783	18.8706	•	13.8155	
BENZENE	0.537680	63.4		0.447	50.6	17.9893	20.3163	'n	9.2103	
BERYLLIUM OXIDE	0.479778	93.2	•	0.447	50.6	17.2192	19.1989	તં	9.2103	
BISMUTH GERMANIUM OXIDE	0.420652	534.1	49.904	0.795	510.5	13.7270	18.4680	5.9920	13.8155	
BLOOD (ICRP)	0.549952	75.2	•	744.0	50.0	17.6492	20.1061	'n	9.2103	

0
- 2
- 5
-
-
_
٠.
- 7
- 1
- 1
- 1
^
_
_
_
_
ш
~
_
m
-
-
ᄼ

28.536 0.447 50.6 17.2465 19.5859 3.3174 9.2103 28.298 0.447 510.5 16.9536 19.6027 3.3554 13.8155 31.380 0.447 50.6 17.4090 19.3959 2.8359 9.2103 27.107 0.447 50.6 17.0851 19.6886 3.6798 9.2103 21.772 0.447 50.6 17.6983 20.1270 3.4399 9.2103	1.101 20.570 5293.3 18.5334 26.0967 5.2655 18.4913 19.520 0.447 50.6 18.1029 20.3454 3.1845 9.2103 27.023 0.447 50.6 17.3611 19.6949 3.3097 9.2103 46.314 0.946 510.5 13.7077 18.6174 6.2502 13.8155 52.954 0.526 510.5 13.9902 18.3494 5.4630 13.8155	34.080 0.447 510.5 16.4571 19.2308 3.5087 13.8155 35.849 0.447 510.5 16.0643 19.1296 3.8674 13.8155 36.988 0.447 510.5 15.9456 19.0670 3.9364 13.8155 35.038 0.447 510.5 16.2364 19.1754 3.7119 13.8155 46.934 0.471 510.5 14.3304 18.5908 5.3376 13.8155	0.874 26.026 5293.3 17.4030 26.5566 11.9944 18.4913 25.234 0.447 510.5 16.0607 19.8319 4.7356 13.8155 25.008 0.447 50.6 17.5839 19.8499 3.2166 9.2103 23.041 0.447 50.6 17.6636 20.0137 3.3320 9.2103 25.224 0.447 50.6 17.3563 19.8327 3.5053 9.2103	21.743 0.447 50.6 17.6074 20.1296 3.5682 9.2103 37.942 0.941 510.5 14.1115 19.0161 6.2423 13.8155 39.455 1.363 510.5 13.6572 18.9379 6.8811 13.8155 21.752 0.523 50.6 17.3087 20.1289 3.9839 9.2103 24.462 0.447 510.5 16.1886 19.8941 4.6547 13.8155	30.986 0.447 510.5 16.4750 19.4212 3.7208 13.8155 19.207 0.447 50.6 18.2253 20.3777 3.0655 9.2103 23.354 0.447 510.5 16.9520 19.9867 3.8298 13.8155 22.894 0.447 510.5 17.0150 20.0265 3.8036 13.8155 22.764 0.447 510.5 16.8531 20.0379 4.0144 13.8155	18.326 0.447 50.6 18.0996 20.4716 3.3622 9.2103 20.763 0.447 50.6 17.8913 20.2219 3.3053 9.2103 22.173 0.627 50.6 17.1067 20.0905 4.2374 9.2103 0.789 20.570 5293.3 18.6572 26.7616 7.7992 18.4913 19.233 0.447 50.6 18.0052 20.3751 3.3592 9.2103	22.594 0.447 50.6 17.8115 20.0529 3.1830 9.2103 0.746 20.570 5293.3 18.4381 26.8744 9.3543 18.4913 22.388 0.447 50.6 17.7002 20.0712 3.3606 9.2103 45.331 0.447 510.5 15.459 18.6603 4.0629 13.8155 52.546 0.447 510.5 15.1593 18.5649 4.0399 13.8155
530103 91.9 521299 106.4 570580 84.7 688378 99.6 554227 73.3	584966 48.3 566630 59.9 199687 86.8 116649 539.3 127472 468.3	199554 136.4 186700 166.0 199292 176.1 199495 152.3 137610 395.0	199889 85.0 181072 166.3 530399 77.6 532794 74.6 514237 87.0	552785 76.7 5121319 440.7 515689 553.1 515288 89.1 585852 156.0	502736 135.2 570337 56.4 503389 106.5 517437 103.3	566630 60.0 547238 66.6 537574 98.6 598615 45.4 564373 62.9	546046 69.3 570337 50.7 548767 73.3 775916 227.3 165067 261.0
BONE, COMPACT (ICRU) BONE, CORTICAL (ICRP) BORON CARBIDE BORON OXIDE BRAIN (ICRP) 0.5	BUTANE N-BUTYL ALCOHOL 0.5 C-552 AIR-EQUIVALENT PLASTIC CADMIUM TELLURIDE CADMIUM TUNGSTATE 0.4	CALCIUM CARBONATE 0.4 CALCIUM FLUORIDE 0.4 CALCIUM OXIDE 0.4 CALCIUM SULFATE 0.4 CALCIUM TUNGSTATE 0.4	CARBON DIOXIDE CARBON TETRACHLORIDE CELLULOSE ACETATE, CELLOPHANE CELLULOSE ACETATE BUTYRATE CELLULOSE AITRATE 0.5	CERIC SULFATE DOSIMETER SOLUTION 0.5 CESIUM FLUORIDE 0.4 CESIUM IODIDE 0.4 CHLOROBENZENE 0.5 CHLOROFORM 0.5	CONCRETE, PORTLAND CYCLOHEXANE 1,2-DICHLOROBENZENE 0.5 DICHLORODIETHYL ETHER 0.5 1,2-DICHLOROETHANE	DIETHYL ETHER N.N-DIMETHYL FORMAMIDE 0.5 DIMETHYL SULFOXIDE ETHANE 0.5 ETHYL ALCOHOL	ETHYL CELLULOSE ETHYLENE EYE LENS (ICRP) FERRIC OXIDE FERROBORIDE 0.5

TABLE 11b—continued

Material	<4/Z>	I (eV)	ψφ d ₍ OO)	To (MeV)	T1 (MeV)	po	P1	p2	p3
FERROUS OXIDE FERROUS SULFATE DOSIMETER SOLUTION "FREON-12" "FREON-1282"	0.473232 0.553282 0.479681 0.448012 0.478656	248.6 76.4 143.0 284.9	47.327 21.690 21.121 25.877	0 4.0 4.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4	N N N N N N N N N N N N N N N N N N N	15.2564 17.6175 16.3621 14.9841 16.6064	18.5741 20.1346 20.1877 19.7816 20.3545	4.1777 3.5610 4.8625 6.0766 4.7071	13.5.5.5 8.6.5.2.3 8.6.6.2.3 8.6.6.3 8.6.3
"FREON-13B1" "FREON-13I1" GADOLINIUM OXYSULFIDE GALLIUM ARSENIDE GEL IN PHOTOGRAPHIC EMULSION	0.456651 0.428975 0.422656 0.542473 0.539734	222 284 284 284 24 24 26 26 26 26 26 26 26 26 26 26 26 26 26	23.84 25.64 51.099 24.170 26.058	0000 0000 0000 0000 0000 0000 0000	2000 2000 2000 2000 2000 2000	15.5593 14.9242 14.3822 17.6583	19.9448 19.8019 18.4207 18.7122 19.9274	6.255 6.200 7.66970 2.225 2.255 8.655 8.655 8.655	13.00 13.00 13.00 13.00 10.00 10.00 10.00 10.00
GLASS, BOROSILICATE ("PYREX", CORNING 7740) GLASS, LEAD GLASS, PLATE GLUCOSE, DEXTROSE GLUTAMINE	0.497070 0.421007 0.497313 0.534888 0.533714	134.0 526.4 145.4 77.2 73.3	30.339 46.631 31.481 26.153 25.437	0000 0000 0000 0000 0000 0000 0000 0000 0000	2000 0000 2000 2000 2000 2000	16.4920 13.7561 16.3286 17.5962 17.6985	19.4634 18.6037 19.3895 19.7603	3.7519 6.1533 3.8618 3.0769	13.8155 15.8155 15.8155 9.2103 9.2103
GLYCEROL GUANINE GYPSUM, PLASTER OF PARIS N-HEPTANE N-HEXANE	0.542921 0.516121 0.518123 0.578823 0.58823	72.6 75.0 129.7 54.4	25.846 26.022 31.379 17.836	00000 44444 74444 74444	00000 00000 00000 00000	17.7183 17.6533 16.5584 18.2955 18.3103	19.9451 19.7704 19.3960 20.4933 20.5258	3.1628 3.0125 3.5872 3.1231	9.2103 9.2103 9.2103 9.2103 9.2103
"KAPTON" POLYIMIDE FILM LANTHANUM OXYSULFIDE LANTHANUM OXYSULFIDE LEAD OXIDE LITHIUM AMIDE	0.512644 0.425878 0.423481 0.403227 0.522568	459.7 456.2 766.7 55.7	24.586 47.125 45.394 56.488	0.593 0.593 0.696 0.447	2000 0000 0000 0000 0000	17.5347 14.1159 14.0422 13.0040	19.8839 18.5826 18.6575 18.2202 20.0516	5.400 5.400 5.400 5.7667 5.706	9.2103 13.8155 13.8155 15.8155 9.2103
LITHIUM CARBONATE LITHIUM FLUORIDE LITHIUM HYDRIDE LITHIUM OXIDE	0.487203 0.462617 0.503214 0.4683193 0.4683193	\$ 286.0 \$ 26.0 \$ 26.0 \$ 26.0 \$ 36.0 \$	29.217 31.815 18.510 34.841 27.984	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000 00000 00000 00000	17.3352 17.2017 19.0942 13.9196 17.6920	19.5388 19.3684 20.4516 19.1867	3.1311 3.0805 1.9704 6.8562 2.7599	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
LITHIUM TETRABORATE LUNG (ICRP) M3 WAX MAGNESIUM CARBONATE MAGNESIUM FLUORIDE	0.484869 0.555116 0.498137 0.48137	94.6 75.3 67.9 118.0	31.343 21.891 22.000 34.979 34.634	0000	NN	17.1887 17.6448 17.8514 16.7476	19.3983 20.1161 20.1062 19.1788	3.2013 3.2013 3.2013 5.405	9.2103 9.2103 9.2103 13.815 8.315 8.
MAGNESIUM OXIDE MAGNESIUM TETRABORATE MERCURIC IODIDE METHANDL	0.496224 0.490139 0.409332 0.623340 0.561763	684 684 67 67 67	38.407 32.089 46.494 0.588	0.447 0.447 20.570 0.447	2000 2000 2000 2000 2000 2000 2000	16.3510 16.9182 13.2310 18.8273 17.8610	18.9918 19.3513 18.6096 27.3516 20.3770	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	13.6155 13.6155 13.6155 10.64 10.65

TABLE 11b-continued

9 21.547 0.447 50.6 18.0710 20.1478 2.9 1 21.153 0.447 50.6 17.6494 20.1847 3.5 .3 21.781 0.447 50.6 17.6445 20.1262 3.5 .7 21.795 0.447 50.6 17.6606 20.1249 3.4 .3 22.480 0.447 50.6 17.6715 20.0630 3.3	.4 22.459 0.447 50.6 17.6750 20.0963 3.4 22.459 0.447 50.6 17.8381 20.0649 3.1 8 22.747 0.447 50.6 17.6321 20.0394 3.4 9 0.872 26.026 5293.3 17.4053 26.5628 12.0 3 22.221 0.447 50.6 17.9616 20.0861 3.0	.9 22.774 0.447 50.6 17.9736 20.0370 2.9 2.8 22.866 0.447 50.6 17.9957 20.0289 2.8 .6 25.661 0.447 50.6 18.0482 19.7983 2.5 .7 18.360 0.447 50.6 18.2846 20.4679 3.1 .9 21.031 0.447 50.6 18.2405 20.1963 2.7	6 17.398 0.447 50.6 18.3252 20.5756 3.1 .0 37.946 0.510 510.5 14.6840 19.0160 5.4 .7 21.540 0.447 50.6 17.9478 20.1485 3.1 .5 62.143 1.007 510.5 13.0574 18.0294 6.3 .6 22.642 0.447 50.6 17.8017 20.0487 3.1	.1 22.915 0.447 50.6 17.7038 20.0247 3.2 23.810 0.447 50.6 17.4833 19.9481 3.4 21.099 0.447 50.6 18.1882 20.1898 2.8 7 24.595 0.447 50.6 17.5575 19.8831 3.2 0.23.086 0.447 50.6 17.6801 20.0098 3.3	.4 25.110 0.447 50.6 17.5903 19.8417 3.1 .2 20.457 0.447 50.6 18.1253 20.2516 3.0 .7 21.754 0.447 50.6 17.8288 20.1286 3.2 .1 29.609 0.447 50.6 17.0960 19.5121 3.4 .7 28.955 0.447 510.5 16.7021 19.5568 3.6	7 22.978 0.447 50.6 17.6878 20.0192 3.3 .7 24.251 0.447 50.6 17.7999 19.9114 3.0 .2 22.521 0.447 50.6 17.8737 20.0594 3.1 .2 23.510 0.447 510.5 16.9209 19.9735 3.8 .3 26.437 0.447 510.5 16.4881 19.7387 4.0	8 27.024 0.447 50.6 17.3148 19.6948 5.3 23.671 0.447 50.6 17.8566 19.9597 2.9 33.575 1.154 510.5 14.1520 19.2607 6.5 3 30.672 0.447 510.5 15.7953 19.4416 4.5 1 0.959 20.570 5293.3 18.5837 26.3715 6.3	.0 14.509 0.447 50.6 18.3852 20.9387 3.6 .1 19.429 0.447 50.6 18.0632 20.3548 3.2 .2 20.807 0.447 50.6 17.9029 20.2177 3.2 .5 20.873 0.447 50.6 18.2191 20.2113 2.8 .8 20.644 0.447 50.6 18.1055 20.2334 3.0
0.564789 60. 0.538856 75. 0.549378 75. 0.550051 74.	0.550136 74. 0.519838 68. 0.519856 75. 0.499858 84. 0.550625 64.	0.547902 0.556436 0.577731 0.572748 0.572748	0.582122 53. 0.454532 331. 0.541415 64. 0.405828 746. 0.527671 69.	0.526968 73. 0.525176 81. 0.570337 57. 0.520370 78. 0.539369 74.	0.532868 77. 0.559985 59. 0.537680 68. 0.479925 99. 0.480810 120.	0.554523 73. 0.544798 69. 0.545366 67. 0.512011 108. 0.495132 134.	0.499730 88. 0.539844 67. 0.433728 431. 0.488343 189. 0.589620 47.	0.589620 0.565765 0.530965 0.570337 0.57854 56.
MIX D WAX MS20 TISSUE SUBSTITUTE MUSCLE, SKELETAL (ICRP) MUSCLE, STRIATED (ICRU) MUSCLE-EQUIVALENT LIQUID, MITH SUCROSE	MUSCLE-EQUIVALENT LIQUID, MITHOUT SUCROSE NATHALENE NITROBENZENE NITROUS OXIDE NITROUS, DU PONT "ELVAMIDE 8062M"	NYLON, TYPE 6 AND TYPE 6/6 NYLON, TYPE 6/10 NYLON, TYPE 11 ("RILSAN") OCTANE, LIQUID PARAFFIN WAX	N-PENTANE PHOTOGRAPHIC EMULSION PLASTIC SCINTILLATOR (VINYLTOLUENE BASED) PLUTONIUM DIOXIDE POLYACRYLONITRILE	POLYCARBONATE, "MAKROLON" POLYCHLOROSTYRENE POLYETHYLENE POLYETHYLENE TEREPTHALATE, "MYLAR" POLYMETHYL METHACRYLATE	POLYOXYMETHYLENE POLYPROPYLENE POLYSTYRENE POLYTETRAFLUOROETHYLENE, "TEFLON" POLYTRIFLUOROCHLOROETHYLENE	POLYVINYL ACETATE POLYVINYL ALCOHOL POLYVINYL BUTYRAL POLYVINYL CHLORIDE POLYVINYLLIDENE CHLORIPE, SARAN	POLYVINYLIDENE FLUORIDE POLYVINYL PYRROLIDONE POTASSIUM IODIDE POTASSIUM OXIDE PROPANE	PROPANE, LIQUID N-PROPYL ALCOHOL PYRIDINE RUBBER, BUTYL RUBBER, NATURAL

-continued
횬
_
BLE

TABLE 11b—continued									
Material	<y 2=""></y>	I (6V)	hωp (eV)	T ₀ (MeV)	T1 (MeV)	•q	P1	p.2	c q
RUBBER, NEOPRENE SILICON DIOXIDE SILVEN BROMIDE SILVER CHLORIDE SILVER HALIDES IN PHOTOGRAPHIC EMULSION	0.519560 0.499298 0.456700 0.46550	93.0 139.2 486.6 398.4 487.1	23.036 48.448 45.448 45.405	000 000 000 000 000 000 000 000 000	NNNN 00000 00000	17.2221 16.4164 13.9132 14.3132 13.9115	20.0142 19.4194 18.5273 18.6570	5.7457 5.78076 5.4678 5.4632 5.111	13.2 13.8 13.8 15.8 15.8 15.8 15.8 15.8 15.8 15.8 15
SILVER IODIDE SKIN (ICRP) SODIUM CARBONATE SODIUM IODIDE SODIUM MONOXIDE	0.425944 0.549325 0.4269618 0.426968 0.485968	543 725.7 4525.0 1482.0	22.400 32.117 36.057 30.205	0.00 0.447 0.047 0.447	N NNN COCCO N NNNN	13.6920 17.7147 16.6519 14.0609	18.6264 20.0702 19.3495 19.1181	6.2896 6.4896 6.4896 6.4896 8.0000 8.0000	13.00 10.00 10.00
SODIUM NITRATE STILBENE SUCROSE TERPHENYL TESTES (ICRP)	0.494149 0.532597 0.531699 0.551485	114.6 67.7 77.5 71.7	20.459 26.719 25.416 21.16 21.816	00000 44444 7777	N C C C C C C C C C C C C C C C C C C C	16.8046 17.8592 17.5873 17.7434 17.6533	19.4555 20.2261 19.7403 20.0072 20.1231	3.3577 3.3557 3.0618 3.2138 3.4962	2.50 2.210.2.0 2.210.2.0 2.010.2.0 2.010.2.0
TETRACHLOROETHYLENE THALLIUM CHLORIDE TISSUE, SOFT (ICRP) TISSUE, SOFT (ICRU FOUR-COMPONENT) TISSUE-EQUIVALENT GAS (METHANE BASED)	0.482410 0.408613 0.551210 0.549750 0.549927	159.2 690.3 72.3 74.9 62.1	25.513 48.749 21.394 0.697	0.447 0.447 0.447 20.570	22 22 22 23 20 20 20 20 20 20 30 30 30 30 30 30 30 30 30 30 30 30 30	16.1479 13.2140 17.7253 17.6572 18.0597	19.8099 18.5149 20.1620 20.1647 27.0100	4.6011 6.9181 3.4509 3.5479	13.8155 13.8155 9.2103 9.2103 18.4913
TISSUE-EQUIVALENT GAS (PROPANE BASED) TITANIUM DIOXIDE TOLUENE TRICHLOROETHYLENE TRICHLOROETHYLENE	0.550268 0.475721 0.542651 0.487104 0.538001	59.5 162.5 8.5.5 2.2.5	0.913 41.022 19.764 24.301 21.863	20 00 00 00 00 00 00 00 00 00 00 00 00 0	80 80 80 80 80 80 80 80 80 80 80 80 80 8	18.1178 15.9079 18.0179 16.2925 17.4947	26.4692 18.8601 20.3205 19.9072 20.1186	8.9563 X.7281 X.2669 4.5669 4.76441	18.4913 13.8155 13.8155 13.8155 2.2103
TUNGSTEN HEXAFLUORIDE URANIUM DICARBIDE URANIUM OXIDE	0.429760 0.396869 0.391937 0.399959 0.532841	354.4 752.0 862.0 720.6	29.26 60.965 66.602 60.332 24.1342	1.024 1.062 1.168 0.996	20000 00000 20000 20000	14.5473 13.0427 12.7698 13.1281 17.7140	19.5355 17.8908 18.0885 19.9160	6.3768 6.59864 6.5983 1.28983	13.08155 13.08155 13.08155 10.08155 10.08155
VALINE "VITON" FLUOROELASTOMER WATER, LIQUID WATER VAPOR	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7.25.0 7.5.0 7.1.6 8.1.6	223 26.05 21.06 20.05 20	00.444 00.444 00.444 00.0000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.0000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.0000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.0000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.0000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.0000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.0000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.0000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.0000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.0000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.0000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.0000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.0000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.0000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.0000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.0000 00.000	500.6 500.6 500.6 500.6	17.8570 17.1060 17.6533 17.7461 18.0405	19.9639 19.7005 20.1550 27.3423 20.3102	2.9985 3.6672 3.5672 13.5961 3.2219	9.2103 9.2103 9.2103 18.4913 9.2103

- 5. From Table 11b, Z/A = 0.537680, and from Table 10, $\beta^2 = 0.991402$.
- 6. From equation (1), the stopping power is calculated to be

$$-\frac{1}{\rho} \left(\frac{\mathrm{d}E}{\mathrm{d}x} \right)_{\text{coll}} = 1.860 \,\mathrm{MeV/(g \, cm^{-2})}.$$

Acknowledgements---We gratefully acknowledge the advice and help received from many colleagues, especially H. H. ANDERSEN, J. ASHLEY, H. BICHSEL, M. INOKUTI and R. M. STERNHEIMER. We also thank H. BICHSEL for making available to us his computer program for the analysis of proton and α-particle stopping-power data.

This work was carried out with support from the Department of Energy, the Office of Naval Research and the National Standard Reference Data System.

References

- 1. ANDERSEN H. H. and ZIEGLER J. F. Hydrogen: Stopping Powers and Ranges in All Elements (Pergamon Press, New York, 1977).
- 2. ZIEGLER J. F. Helium: Stopping Powers and Ranges in All Elemental Matter (Pergamon Press, New York,
- 3. Zuegler J. F. Handbook of Stopping Cross-Sections of Energetic Ions in All Elements, Vol. 5 (Pergamon Press, New York, 1980).
- 4. BETHE H. A. Ann. Phys. 5, 325 (1930); Handbuch der Physik, Vol. 24 (Eds Geiger H. and Scheel K.), p. 523 (Springer, Berlin, 1933); see also BETHE H. A. and ASH-KIN J. Experimental Nuclear Physics (Ed. SEGRE E.) Vol. 1, p. 166 (Wiley, New York, 1953).
- 5. STERNHEIMER R. M. Phys. Rev. 88, 851 (1952); Phys. Rev. 93, 351 (1953); Phys. Rev. 103, 511 (1956); Phys. Rev. 145, 247 (1966); and Phys. Rev. 164, 349 (1967).
- 6. STERNHEIMER R. M. and PEIERLS R. F. Phys. Rev. B3, 3681 (1971).
- 7. BERGER M. J. and SELTZER S. M. NBS Publication NBSIR 82-2550 (1982).
- 8. ROHRLICH F. and CARLSON B. C. Phys. Rev. 93, 38 (1953).
- 9. ANDERSEN H. H. Bibliography and Index of Experimental Range and Stopping Power Data (Pergamon Press, New York, 1977).
- 10. DEHMER J. L., INOKUTI M. and SAXON R. P. Phys. Rev. A12, 102 (1975).
- 11. INOKUTI M. and TURNER J. E. Proc. Sixth Symposium on Microdosimetry, Vol. I, p. 675 (Harwood Academic,
- 12. BICHSEL H. Univ. of South California Report No. 3 (1961); Nat. Acad. Sci.-Nat. Res. Council Publ. 1133. p. 17 (1964); Report UCRL-17538 (1967).
- 13. ASHLEY J. C., RITCHIE R. H. and BRANDT W. Phys. Rev. B5, 2393 (1972); Phys. Rev. A8, 2402 (1973).
- BLOCH F. Ann. Phys. 16, 285 (1933).
 SHILES E., SASAKI T., INOKUTI M. and SMITH D. Y. Phys. Rev. B22, 1612 (1980).
- 16. CHU W. K. and Powers D. Phys. Lett. 40A, 23 (1972).
- 17. LINDHARD J. and SCHARFF M. Mat. Fys. Medd. Dan. Vid. Selsk. 34, No. 15 (1953); Nat. Acad. Sci.-Nat. Res. Council Publ. 752, p. 49 (1960).
- 18. INOKUTI M., DEHMER J. L., BAER T. and HANSON J. D. Phys. Rev. A23, 95 (1981).
- 19. HOLDEN N. E. -For the Commission on Atomic Weights, IUPAC-Pure Appl. Chem. 51, 405 (1979); News Release to Editors of Inorganic Chemistry Journals (Sept. 1979).
- 20. National Committee on Radiation Protection and Measurements, Handbook 79 (1961).

- 21. FANO U. Annu. Rev. Nucl. Sci. 13, 1 (1963).
- 22. BERGER M. J. and SELTZER S. M. Nat. Acad. Sci.-Nat. Res. Council Publ. 1133, p. 205 (1964); also National Aeronautics and Space Administration Publications SP-3012 (1964) and SP-3036 (1966).
- 23. JANNI J. F. Technical Report No. AFWL-TR-65-150 (1966).
- 24. BICHSEL H. Radiation Dosimetry, 2nd edn (Eds ATTIX F. H. and ROESCH W. C.), Vol. 1, p. 157 (Academic Press, New York, 1968).
- 25. TURNER J. E., ROECKLEIN P. D. and VORA R. B. Health Phys. 18, 159 (1970); see also Dalton P. and Turner J. E. Health Phys. 15, 257 (1968).
- 26. BICHSEL H. American Institute of Physics Handbook, 3rd edn (Ed. Gray D. E.) Chapter VIII D (McGraw-Hill, New York, 1972).
- AHLEN S. P. Rev. Modern Phys. 52, 121 (1980).
- 28. JANNI J. F. Trans. Am. Nucl. Soc. 34, 653 (1980).
- 29. BRAGG W. H. and KLEEMAN R. Philos. Mag. 10, 318
- 30. THOMPSON T. J. Report UCRL-1910 (1952).
- 31. WESTERMARK T. Phys. Rev. 93, 835 (1954).
- 32. Brandt W. Research Report Energy Loss and Range of Charged Particles in Compounds, Radiation Physics Laboratory, E. l. du Pont and Co., Wilmington, Delaware (1960); see also Phys. Rev. 104, 691 (1956); Health Phys. 1, 11 (1958).
- 33. BICHSEL H. Physical Data Used in Charged Particle Dosimetry, AAPM Charged Particle Beam Task Group Workshop, Los Alamos Scientific Laboratory (March, 1978).
- 34. ZEISS G. D., MEATH W. J., MACDONALD J. C. F. and DAWSON D. J. Can. J. Phys. 55, 2080 (1977); Radiat. Res. 70, 284 (1977).
- 35. BADER M., PIXLEY R. E., MOSER F. J. and WHALING W. Phys. Rev. 103, 32 (1956).
- 36. THOMAS G. F. and MEATH W. J. Mol. Phys. 34, 113 (1977).
- 37. NORDIN J. A. and HENKELMAN R. M. Phys. Med. Biol. 24, 781 (1979).
- 38. RITCHIE R. H., HAMM R. N., TURNER J. E. and WRIGHT H. A. Proc. Sixth Symposium on Microdosimetry, Vol. I, p. 345 (Harwood Academic, 1978).
- 39. TSCHALÄR C. and BICHSEL H. Phys. Rev. 175, 476 (1968).
- 40. BARKAS W. H. Nuclear Research Emulsions, Vol. 1 (Academic Press, New York, 1963); see also BARKAS W. H., BARRETT P. H., CUER P., HECKMAN H., SMITH F. M. and Ticho H. K. Nuovo Cimento 8, 186 (1958).
- 41. PAINTER L. R., ARAKAWA E. T., WILLIAMS W. and ASHLEY J. C. Radiat. Res. 83, 1 (1980).
- 42. ASHLEY J. C. Phys. Rev. B19, 5429 (1979).
- 43. PORTER L. E., NAYLOR H. and DUDER J. C. Nucl. Instrum. Methods 155, 25 (1978); PORTER L. E. Phys. Rev. B22, 2221 (1980).
- 44. Handbook of Chemistry and Physics, 60th edn (Ed. WEAST R. C.) (CRC Press, Florida, 1979).
- 45. The Condensed Chemical Dictionary, 9th edn (Ed. HAWLEY G. G.) (Van Nostrand Reinhold, New York, 1977).
- 46. The Reactor Handbook, 2nd edn (Ed. TIPTON C. R.) Vol. I (Interscience, New York, 1960).
- 47. SMATHERS J. B., OTTE V. A., SMITH A. R., ALMOND P. R., ATTIX F. H., SPOKAS J. J., QUAM W. M. and GOODMAN L. J. Med. Phys. 4, 74 (1977).
- 48. GOODMAN L. J. Phys. Med. Biol. 23, 753 (1978).
- 49. ICRP Publ. 23 (Pergamon Press, Oxford, 1975).
- 50. ICRU Report 26, Washington, DC (1977).
- ICRU Report 10b, NBS Handbook 85 (1964).
- 52. Greene D., Major J. and Law J. Phys. Med. Biol. 18, 369 (1973).
- 53. HUBBILL J. H. NBS Publ. NSRDS-NBS 29 (1969).
- 54. WHITE D. R. Med. Phys. 5, 467 (1978).

- ROSSI H. H. and FAILLA G. Nucleonics 14(2), 32 (1956).
 GOODMAN L. J. Health Phys. 16, 763 (1969).

- ICRU Report 33, Washington, DC (1980).
 SRDOČ D. Radiat. Res. 43, 302 (1970).
 PAGES L., BETTEL E., JOFFRE H. and SKLAVENITIS L. At. Data 4, 1 (1972).
- 60. FERMI E. Phys. Rev. 57, 485 (1940).
- 61. WICK G. C. Nuovo Cimento 1, 302 (1943). 62. HALPERN O. and HALL H. Phys. Rev. 73, 477 (1948).
- 63. JHANWAR B. L., MEATH W. J. and MACDONALD J. C. F. Can. J. Phys. 59, 185 (1981).
- 64. BICHSEL H. and HILKO R. H. Helv. Phys. Acta 53, 655 (1980).
- 65. ASHLEY J. C. Radiat. Res. 89, 25 (1982).
- 66. INOKUTI M. and SMITH D. Y. Phys. Rev. B25, 61 (1982).
- 67. ASHLEY J. C. Radiat. Res. 89, 32 (1982).
 68. STERNHEIMER R. M., SELTZER S. M. and BERGER M. J. Phys. Rev. (submitted).