GDOI Warmup

Trisolaris HD

April 17, 2019

题目名称	rank	route	railway	random	
源程序文件名	rank.cpp	route.cpp	railway.cpp	random.cpp	
输入文件名	rank.in	route.in	railway.in	random.in	
输出文件名	rank.out	route.out	railway.out	random.out	
时间限制	1s	1s	1s	1s	
内存限制	512MB	512MB	512MB	512MB	
是否捆绑测试	是	是	是	是	
题目类型	传统	传统	传统	传统	
编译开关	-O2 -std=c++11				

Notice:

- 1. 选手的源程序应当直接放在选手提交的文件夹下,否则当作未提交处理。
- 2. 评测环境: Intel(R) Core(TM) m3-7Y32 CPU @ 1.10GHz RAM 8.00G x64 macOS
- 3. 因为评测机很辣鸡, 所以各题时限均为标程运行时间的两倍上取整。
- 4. 题目顺序与难度无关。
- 5. 请各位同学 AK 之后不要大声喧哗, 防止影响他人 AK。

GDOI Warmup 1 RANK

1 rank

1.1 Description

给定一棵 n 个点的树,现对其进行一次删边,每条边都有 50% 的可能被删去。对于一个图,定义其权值为其邻接矩阵的秩。求对给定的树删边后其权值的期望乘上 2^{n-1} 的值。答案对 998244353 取模。

1.2 Input Format

第一行一个整数 n。 接下来 n-1 行,每行两个整数 u,v,表示树上有一条连接 u 与 v 的边。

1.3 Output Format

输出一行一个整数,表示答案对998244353取模后的值。

1.4 Sample

1.4.1 Sample Input

5

1 3

2 3

4 2

5 3

1.4.2 Sample Output

42

1.5 Constraints

子任务编号	分值	$n \leqslant$	特殊性质
1	16	10	无 .
2	24	10^{3}	
3	9		每个点度数均不超过2
4	23	5×10^{5}	存在一个度数为 n-1 的点
5	28		无

GDOI Warmup 2 ROUTE

2 route

2.1 Description

给定一棵 n 个节点的完全二叉树(树边无向),其中节点 i 父亲的编号为 $\left[\frac{i}{2}\right]$ 。现于这棵树上加 m 条额外的无向边,求本质不同的简单路径条数。答案对 10^9+7 取模。

2.2 Input Format

第一行两个整数 n 和 m 。 接下来 m 行, 每行两个整数 u_i, v_i , 表示第 i 条额外的边连接点 u_i 和点 v_i 。

2.3 Output Format

输出一行一个整数, 为答案对 109+7 取模后的值。

2.4 Sample

2.4.1 Sample Input

7 6

1 2

6 3

7 2

3 4

2 5

1 4

2.4.2 Sample Output

435

2.5 Constraints

子任务编号	分值	$n \leqslant$	$m \leqslant$	特殊性质
1	4	10^{9}	0	
2	16	100	6	无
3	19	10^{5}		
4	25	10^{9}	5	m 条额外边有一个公共端点
5	36	10		无

GDOI Warmup 3 RAILWAY

3 railway

3.1 Description

给定一棵 n 个点的树, 点 u 有点权 w_u , 树边带权。 定义 $f\left(u,v\right)=\mathrm{dis}\left(u,v\right)^{\frac{3}{2}}, g\left(u\right)=\sum_{1\leqslant v\leqslant n}w_vf\left(u,v\right)$ 。 求 $\operatorname*{arg\,min}_{1\leqslant u\leqslant n}g\left(u\right)$ 与 $\operatorname*{min}_{1\leqslant u\leqslant n}g\left(u\right)$ 。

若有多解,则输出任意一个即可。

3.2 Input Format

第一行一个整数 n。 第二行 n 个整数,第 i 个整数为 w_i 。 接下来 n-1 行每行三个整数 u,v,l,表示一条连接点 u 与点 v,边权为 l 的边。

3.3 Output Format

輸出两个数,表示 $\operatorname*{arg\,min}_{1\leqslant u\leqslant n}g\left(u\right)$ 与 $\operatorname*{min}_{1\leqslant u\leqslant n}g\left(u\right)$ 。 $\operatorname*{min}_{1\leqslant u\leqslant n}g\left(u\right)$ 与标准答案相差不超过 10^{-6} 时认为正确。

3.4 Sample

3.4.1 Sample Input

4

6 2 3 1

1 4 2

1 3 3

2 3 1

3.4.2 Sample Output

1 34.416884392866088

3.5 Constraints

子任务编号	分值	$n \leqslant$	$w_i \leqslant$	$l \leqslant$	特殊性质
1	7	10^{3}	10^{8}	10^{3}	
2	17		10	10	无
3	18		10^{3}		
4	8	2×10^{5}		10^{3}	所有 w_i 均相等
5	23		10^{8}	10	所有点度数均不超过2
6	27				无

GDOI Warmup 4 RANDOM

4 random

4.1 Description

有一个初值以 p_i 概率取值为 $i(0 \le i \le n)$ 的离散随机变量 x, 定义对其的一次操作为将其等概率随机赋值为 [0,x] 中的一个整数。

现给出 n, m, p_i , 要求对于 [0, n] 中的每个 i 求出对 x 进行 m 次操作后其取值 为 i 的概率。

答案对 998244353 取模。

4.2 Input Format

第一行两个整数 n 和 m。

第二行 n+1 个整数, 第 i 个数为 p_i 对 998244353 取模后的值。

4.3 Output Format

输出一行 n+1 个整数,第 i+1 个整数表示对 x 进行 m 次操作后其取值为 i 的概率对 998244353 取模后的值。

4.4 Sample

4.4.1 Sample Input

4 10

687014914 825791939 752441104 210081678 519403425

4.4.2 Sample Output

353908766 740029357 761555571 93600554 47394459

4.5 Constraints

保证 $\sum_{i=1}^{n} p_i \equiv 1 \pmod{998244353}$ 。

子白	·务编号	分值	$n \leqslant$	$m \leqslant$	特殊性质
	1	9	10^{4}	10^{4}	
	2	14	10	10^{18}	无
	3	29		10^{5}	
	4	13	2.5×10^{5}	10^{18}	有且仅有一个 p _i 非零
	5	35		10	无