```
import pandas as pd
In [1]:
        import numpy as np
        import seaborn as sns
        import matplotlib.pyplot as plt
In [2]: | df=pd.read_csv("air_quality index.csv")
                   DATE COUNTRY
Out[2]:
                                        CITY VALUE
            0 2019-01-01
                              US
                                 San Antonio
                                               42.0
            1 2019-01-01
                              US
                                     Saint Paul
                                                21.0
                              US
            2 2019-01-01
                                               42.0
                                       Denver
            3 2019-01-01
                              US San Francisco
                                                13.0
            4 2019-01-01
                              US
                                      Madison
                                                14.0
        68983 2021-05-31
                              US
                                       Detroit
                                               42.0
        68984 2021-05-31
                               US
                                      Jackson
                                                30.0
        68985 2021-05-31
                              US
                                    The Bronx
                                               12.0
        68986 2021-05-31
                               US
                                    Manhattan
                                                13.0
        68987 2021-05-31
                               IN
                                       Patna
                                               127.0
       68988 rows × 4 columns
In [3]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 68988 entries, 0 to 68987
        Data columns (total 4 columns):
         # Column Non-Null Count Dtype
        --- ----- -----
           DATE
                     68988 non-null object
         1 COUNTRY 68988 non-null object
         2 CITY 68988 non-null object
         3 VALUE 68988 non-null float64
        dtypes: float64(1), object(3)
        memory usage: 2.1+ MB
In [4]: df.describe()
Out[4]:
                   VALUE
        count 68988.000000
        mean
                 54.766032
          std
                 51.323430
          min
                  1.000000
                 23.000000
         25%
         50%
                 35.000000
         75%
                 63.000000
```

834.000000

max

In [5]: df.head()

Out[5]:

	DATE	COUNTRY	CITY	VALUE
0	2019-01-01	US	San Antonio	42.0
1	2019-01-01	US	Saint Paul	21.0
2	2019-01-01	US	Denver	42.0
3	2019-01-01	US	San Francisco	13.0
4	2019-01-01	US	Madison	14.0

In [6]: df.tail()

Out[6]:		DATE	COUNTRY	CITY	VALUE
	68983	2021-05-31	US	Detroit	42.0
	68984	2021-05-31	US	Jackson	30.0
	68985	2021-05-31	US	The Bronx	12.0
	68986	2021-05-31	US	Manhattan	13.0
	68987	2021-05-31	IN	Patna	127.0

In [3]: a=df[df.COUNTRY=="IN"]
a

Out[3]:

	DATE	COUNTRY	CITY	VALUE
9	2019-01-01	IN	New Delhi	314.0
10	2019-01-01	IN	Chennai	135.0
13	2019-01-01	IN	Nashik	160.0
19	2019-01-01	IN	Chandigarh	163.0
21	2019-01-01	IN	Bhopal	175.0
•••				
68975	2021-05-31	IN	Mysore	50.0
68977	2021-05-31	IN	Bengaluru	36.0
68980	2021-05-31	IN	Hyderabad	65.0
68982	2021-05-31	IN	Lucknow	118.0
68987	2021-05-31	IN	Patna	127.0

19179 rows × 4 columns

There is no empty values in the dataset so it is a good dataset for further analysis

Count plot shows the number of count related to air pollution of different countries. In this dataset US country data is higher than India. So the pollution is more compared to india . it is only the assumption, it may be right or wrong based on analysis we can get the correct answer.

Out	[13]	۰
out	[T Z]	۰

	DATE	COUNTRY	CITY	VALUE	YEAR	MONTH
9	2019-01-01	IN	New Delhi	314.0	2019	1
10	2019-01-01	IN	Chennai	135.0	2019	1
13	2019-01-01	IN	Nashik	160.0	2019	1
19	2019-01-01	IN	Chandigarh	163.0	2019	1
21	2019-01-01	IN	Bhopal	175.0	2019	1
•••						
68975	2021-05-31	IN	Mysore	50.0	2021	5
68977	2021-05-31	IN	Bengaluru	36.0	2021	5
68980	2021-05-31	IN	Hyderabad	65.0	2021	5
68982	2021-05-31	IN	Lucknow	118.0	2021	5

68987 2021-05-31 IN Patna 127.0 2021 5

19179 rows × 6 columns

```
In [19]: b=pd.DataFrame(df[df.COUNTRY=="US"])
```

Out[19]:		DATE	COUNTRY	CITY	VALUE	YEAR	MONTH
	0	2019-01-01	US	San Antonio	42.0	2019	1
	1	2019-01-01	US	Saint Paul	21.0	2019	1
	2	2019-01-01	US	Denver	42.0	2019	1
	3	2019-01-01	US	San Francisco	13.0	2019	1
	4	2019-01-01	US	Madison	14.0	2019	1
	•••						
	68981	2021-05-31	US	Phoenix	22.0	2021	5
	68983	2021-05-31	US	Detroit	42.0	2021	5
	68984	2021-05-31	US	Jackson	30.0	2021	5
	68985	2021-05-31	US	The Bronx	12.0	2021	5
	68986	2021-05-31	US	Manhattan	13.0	2021	5

49809 rows × 6 columns

In [11]: sns.boxplot(x="VALUE", data=a);


```
df['YEAR'] = pd.DatetimeIndex(df['DATE']).year
df['MONTH'] = pd.DatetimeIndex(df['DATE']).month
```

In [14]:

Out[14]:	DATE	COUNTRY	CITY	VALUE	YEAR	MONTH
	0 2019-01-01	US	San Antonio	42.0	2019	1
	1 2019-01-01	US	Saint Paul	21.0	2019	1
	2 2019-01-01	US	Denver	42.0	2019	1

3	2019-01-01	US	San Francisco	13.0	2019	1
4	2019-01-01	US	Madison	14.0	2019	1
•••						
68983	2021-05-31	US	Detroit	42.0	2021	5
68984	2021-05-31	US	Jackson	30.0	2021	5
68985	2021-05-31	US	The Bronx	12.0	2021	5
68986	2021-05-31	US	Manhattan	13.0	2021	5
68987	2021-05-31	IN	Patna	127.0	2021	5

68988 rows × 6 columns

```
In [26]: plt.figure(figsize=(20, 10))
    size=200
    sns.scatterplot(x="CITY", y="VALUE", hue="YEAR", data=a, s=size, palette="rainbow");
```


We can predict from the plot that air pollution in india is more in the year of 2019 and 2020 compared to 2021.

```
In [28]: plt.figure(figsize=(20, 10))
    size=200
    sns.scatterplot(x="CITY", y="VALUE", hue="YEAR", data=b, s=size, palette="rainbow");
```


In US air pollution is more in the year of 2020

From the visualization we can see that the air pollution is more in the year 2020. So this may be the reason for some disaster happened in the year 2020

```
In [33]: plt.figure(figsize=(20, 10))
    sns.countplot(x='COUNTRY', hue="CITY", data=a);
```


In [34]: plt.figure(figsize=(20, 10))
sns.countplot(x='CITY', hue="YEAR", data=a);


```
In [35]: plt.figure(figsize=(20, 10))
sns.countplot(x='MONTH', hue="YEAR", data=a);
```



```
a[a.YEAR==2020]["VALUE"].max()
In [41]:
         a[a.MONTH==3]["VALUE"].max()
         834.0
Out[41]:
         df[df.COUNTRY=="IN"]["VALUE"].max()
In [35]:
         834.0
Out[35]:
         df[df.CITY=="New Delhi"]["VALUE"].max()
In [7]:
         610.0
Out[7]:
         a[a.MONTH==3]["VALUE"].max()
In [37]:
         a[a.VALUE==610]
                   DATE COUNTRY
                                      CITY VALUE YEAR MONTH
Out[37]:
         5456 2019-03-11
                               IN New Delhi
                                            610.0
                                                  2019
                                                             3
In [23]:
         df[df.COUNTRY=="US"][["VALUE","CITY","MONTH"]].max()
                             507.0
         VALUE
Out[23]:
         CITY
                  Washington D.C.
         MONTH
         dtype: object
         plt.figure(figsize=(20, 10))
In [26]:
         sns.countplot(x='CITY', hue="YEAR", data=b);
```



```
df[df.COUNTRY=="US"]["CITY"]
In [28]:
                  San Antonio
Out[28]:
                   Saint Paul
        2
                       Denver
        3
                San Francisco
        4
                       Madison
        68981
                      Phoenix
        68983
                       Detroit
        68984
                       Jackson
        68985
                    The Bronx
        68986
                    Manhattan
        Name: CITY, Length: 49809, dtype: object
In [34]: b["VALUE"].min()
        c=b[b.VALUE==1]
```

Out[34]:

	DATE	COUNTRY	CITY	VALUE	YEAR	MONTH
223	2019-01-03	US	The Bronx	1.0	2019	1
235	2019-01-04	US	The Bronx	1.0	2019	1
2586	2019-02-03	US	The Bronx	1.0	2019	2
2752	2019-02-05	US	The Bronx	1.0	2019	2
3791	2019-02-18	US	The Bronx	1.0	2019	2
4950	2019-03-06	US	The Bronx	1.0	2019	3
5752	2019-03-15	US	The Bronx	1.0	2019	3
5776	2019-03-16	US	The Bronx	1.0	2019	3
6071	2019-03-20	US	The Bronx	1.0	2019	3
6298	2019-03-23	US	The Bronx	1.0	2019	3
6799	2019-03-30	US	The Bronx	1.0	2019	3
6935	2019-03-31	US	The Bronx	1.0	2019	3
7255	2019-04-05	US	The Bronx	1.0	2019	4

7345	2019-04-06	US	The Bronx	1.0	2019	4
7960	2019-04-13	US	The Bronx	1.0	2019	4
8003	2019-04-14	US	The Bronx	1.0	2019	4
8388	2019-04-19	US	The Bronx	1.0	2019	4
8480	2019-04-20	US	The Bronx	1.0	2019	4
8571	2019-04-21	US	The Bronx	1.0	2019	4
8799	2019-04-24	US	The Bronx	1.0	2019	4
8873	2019-04-25	US	The Bronx	1.0	2019	4
8934	2019-04-26	US	The Bronx	1.0	2019	4
8976	2019-04-27	US	The Bronx	1.0	2019	4
9041	2019-04-28	US	The Bronx	1.0	2019	4
9605	2019-05-05	US	The Bronx	1.0	2019	5
10307	2019-05-14	US	The Bronx	1.0	2019	5
10414	2019-05-15	US	The Bronx	1.0	2019	5
10495	2019-05-16	US	The Bronx	1.0	2019	5
10553	2019-05-17	US	The Bronx	1.0	2019	5
10631	2019-05-18	US	The Bronx	1.0	2019	5
10768	2019-05-20	US	Boise	1.0	2019	5
10798	2019-05-20	US	The Bronx	1.0	2019	5
10877	2019-05-21	US	The Bronx	1.0	2019	5
11048	2019-05-23	US	The Bronx	1.0	2019	5
12018	2019-06-05	US	The Bronx	1.0	2019	6
14086	2019-07-02	US	The Bronx	1.0	2019	7
16506	2019-08-02	US	The Bronx	1.0	2019	8
16706	2019-08-05	US	The Bronx	1.0	2019	8
18843	2019-09-02	US	The Bronx	1.0	2019	9
18987	2019-09-04	US	The Bronx	1.0	2019	9
21419	2019-10-05	US	The Bronx	1.0	2019	10
23779	2019-11-05	US	The Bronx	1.0	2019	11
25918	2019-12-04	US	The Bronx	1.0	2019	12

```
In [18]: a["VALUE"].min()
a[a.VALUE==5]
```

```
Out[18]: DATE COUNTRY CITY VALUE YEAR MONTH
49699 2020-09-08 IN Thrissur 5.0 2020 9
```

```
In [15]: a["VALUE"].max()
a[a.VALUE==834]
```

 Out[15]:
 DATE
 COUNTRY
 CITY
 VALUE
 YEAR
 MONTH

 56581
 2020-12-01
 IN
 Nagpur
 834.0
 2020
 12

In []: CONCLUSION:

The maximum polluted city in india is Nagpur and minimum polluted city is Thirssur i