Praktikum 4: Recurrent Neural Networks

Datenanalyse

Abbildung 1: Google Maps: Geographische Position von Canberra und Darwin

Wir beginen zunächst damit uns einen Überblick über die Daten zu machen, um weiteres Vorgehen zu evaluieren. In Abbildung 1 werden beide Städte geographisch dargestellt. Beide Datensätze beinhalten die selben Merkmale, weshalb wir diese nun zunächst allgemein erläutern.

In Tabelle 1 sehen wir welche Merkmale zu welchen Skalenniveau vorliegen. In gelb markiert sind all diejenigen Merkmale, welche wir noch kodieren müssen, da das rnn nur numerische Werte akzeptiert. Deshalb verwenden wir One-Hot-Encoding und nehmen die verschieden Ausprägungen als neue Features.

Überblick Temperatur

Wir sehen, dass es über das Jahr deutlich stärkere Temperaturschwankungen in Canberra als in Darwin gibt und, dass die durchschnittliche Temperatur in Darwin höher ist.

Merkmal	Beschreibung	Skalenniveau	Beispiel
X	ID	nominal	49232
Date	Datum	ordinal	2007-11-01
MinTemp	Minimum Temperatur des Tages	metrisch	8.0
MaxTemp	Maximum Temperatur des Tages	metrisch	24.3
Evaporation	Verdunstung	metrisch	3.4
Sunshine	Sonnenschein? STUNDEN?	metrisch	6.3
WindGustDir	Wind Richtung? VOM TAG?	nominal	NW
WindGustSpeed	Wind Geschwindigkeit	metrisch	30
WindGustDir9am	Wind Richtung morgens um 9	nominal	SW
WindDir3pm	Wind Richtung mittags um 15	nominal	NW
WindSpeed9am	Wind Geschwindigkeit morgens um 9	metrisch	6
WindSpeed3pm	Wind Geschwindigkeit mittags um 15	metrisch	20
Humidity9am	Luftfeuchtigkeit morgens um 9	metrisch	68
Humidity3pm	Luftfeuchtigkeit mitttags um 15	metrisch	29
Pressure9am	Luftdruck morgens um 9	metrisch	1019.7
Pressure3pm	Luftdruck mittags um 15	metrisch	1015.0
Cloud9am	Bewölkung morgens um 9	ordinal	7
Cloud3pm	Bewölkung mittags um 15	ordinal	7
Temp9am	Temperatur morgens um 9	metrisch	14.4
Temp3pm	Temperatur mittags um 15	metrisch	23.6
RainToday	Regentag?	nominal	No
RainTomorrow	War der nächste Tag ein Regentag?	nominal	Yes

Tabelle 1: Überblick der vorhanden Metrik

Überblick Luftfeuchtigkeit

Verschaffen wir uns nun einen Überblick über die Luftfeuchtigkeit. Hierzu haben wir die Daten logarithmiert, wodurch das Verhalten der Luftfeuchtigkeit besser ersichtlich ist. Es fällt besonders auf, dass in den Hochphasen von Canberra geringere Luftfeuchtigkeiten in Darwin gemessen werden und umgekehrt. Man erkennt somit ein anti-zyklisches Muster und, dass es in Canberra im Mittel über das Jahr feuchter als in Darwin ist.

Übersicht der Regentage

Schauen wir uns die aufsummierte Anzahl an Regentagen pro Monat an, so erkennen wir deutlich, dass es in Darwin offensichtlich Regenzeiten und Trockenzeiten gibt, wohin gegen der Regen in Canberra über das Jahr hin leichten, aber nicht auffälligen Schwankungen unterliegt.

Feature Engineering

Erstellung der Merkmale

Wie zuvor erwähnt müssen einige Spalten in numerische Werte kodiert werden, damit diese vom neuronalen Netz genutzt werden können. Hierzu wenden wir nun One-Hot-Encoding an, was jedoch zum Nachteil hat, dass sich die Dimension unserer Trainingsdaten massiv erweitert. Zunächst schauen wir uns jedoch einmal die Reinheit des Datensatz an, um gegebenfalls fehlende Werte herauszunehmen oder zu ersetzen.

Canberra - Test Data

Darwin – Training Data

Der Canberra Trainingsdatensatz hat beinhaltet ca. 10% fehlende Werte, welche es zu ersetzen gilt. Der Testdatensatz beinhaltet sogar noch mehr fehlende Werte (15%). Insbesondere fehlen Werte in den Spalten Sunshine und Evaporation komplett, weshalb wir diese Spalten komplett entfernen werden und die restlichen fehlenden Werte berechnen wird mittels Random Forest Regression. Hierzu nutzen wir das Package *missForest*.

Die Anzahl an Features ist durch das One-Hot-Encoding von 22 auf 63 gewachsen. Das kann man soweit für das Netz auch erst einmal lassen ohne Dimensionsreduktion durchzuführen.

Long Short-Term Memory (LSTM)

Das Long Short-Term Memory (LSTM) ist ein rekurrentes neuronales Netz. Wir haben zuvor die Wetterdaten betrachtet, welche als Sequenz interpretiert werden können. Wir wollen nun ein Modell erstellen, welches die Regenwahrscheinlichkeit für den Folgetag prognostizieren kann. Unser Ziel ist es den Folgetag als Regentag oder als Nicht-Regentag zu klassifizieren.

Zum Verständnis schauen wir uns im Detail an, wie die LSTM Zelle aufgebaut ist.

$$f^{(t)} = (W_f h^{(t1)} + U_f x^{(t)} + V_f c^{(t1)})$$
(1)

$$i^{(t)} = (W_i h^{(t1)} + U_i x^{(t)} + V_i c^{(t1)})$$
 (2)

$$c^{(t)} = \tanh(W_c h^{(t1)} + U_c x^{(t)})$$
(3)

$$c^{(t)} = f^{(t)}c^{(t1)} + i^{(t)}c^{(t)}$$
(4)

$$o^{(t)} = (W_o h^{(t1)} + U_o x^t + V_o c^{(t)})$$
(5)

$$h^{(t)} = o^{(t)} \tanh(c^{(t)})$$

$$(6)$$

Rekurrente Netze sind in der Lage Sequenzen zu erlernen, da die Eingabe der Beobachtungen jeweils zu einem gegeben Zeitpunkt t geschehen. Wichtig ist hierbei, dass das Modell weiSS, welche Beobachtungen bisher erfolgt sind, wodurch eine Art Gedächtnis benötigt wird. Im Gegensatz zum herkömmlichen neuronalen Netz haben rekurrente Netze einen inneren Zustand, welche als Gedächtnis gesehen werden kann. Dieses Gedächtnis wird über die Gewichte U,W und V gewährleistet und über das gesamte Netz geteilt. Während U die Gewichte des Input repräsentieren, stellen die Gewichte W die Gewichte des Hidden-Layer dar. V hingegen bildet die Gewichte zum Ausgangslayer ab.

Gl.1-6 zeigen die Berechnungen der LSTM Zelle. Dabei stellt Gl.1 das Forget-Gate dar. Gate im Sinne von Schleusen oder Toren steuern den Wissenszustand des Netzes. Das Forget-Gate (zu deutsch vergessen) entfernt Informationen aus dem Gedächtnis. Der Werte Bereich der Sigmoid Funktion beläuft sich auf [0,1] wodurch Werte nahe 0 als vergessen interpretiert werden können. Weiterhin fällt aber auch auf, dass das Forget-Gate eigene Gewichtsmatrizen U_f, W_f und V_f besitzt, welche es zu optimieren gilt. Das Pendant zum Vergessen ist das Erlernen, welches durch das Input-Gate in Gl.2 dargestellt wird. Neue Beobachtungen werden hierüber gewichtet, wie stark deren Einfluss Faktor ist und berücksichtigt dabei aber auch erlerntes. Wir erkennen das auch hier wieder eigene Gewichtsmatrizen U_i, W_i und V_i vorliegen.

Abbildung 2: LSTM - Zell Aufbau

Quelle: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

In Abb.2 sehen wir den Aufbau der LSTM Zelle. Die Gewichtsmatrize sind an den jeweiligen neuronalen Schichten platziert. Gl.4 zeigt den Kontrollfluss des Gedächtnis auf, sowohl das Forget-Gate als auch das Input-Gate beeinflussen es. Ein weiteren Einfluss nimmt das Output-Gate auf den Kontroll-Fluss. Die Besonderheit hierbei ist, dass c^t der Zelle einen aktuellen Zustand des Gedächtnis wiedergibt, während h^t die tatsächliche Ausprägung repräsentiert (vgl. Gl.6). Übertragen wir dies einmal auf einen Menschen, speziell einen Student. Während der Klausurphase wird, dass Input-Gate massiv mit neuen Informationen belastet, gleichzeitig aber auch das Forget-Gate, welches gerade irrelevantes Wissen verdrängt, um Platz für Neues zu schaffen. HeiSSt jedoch nicht, dass dieses Wissen endgültig verloren ist, es wird einfach temporär verdrängt (bspw. der Sommerurlaub des letztes Jahres). Die schöne Erinnerungen sind jedoch weiterhin beständig in c, jedoch nicht in h. Nach der Klausurphase lässt sich jedoch oft beobachten, dass das Forget-Gate gegen 0 konvergiert und so alles neu erlernte erstmal verdrängt, um Platz für neue Eindrücke und Erfahrungen für die Semesterferien zu schaffen. Diese neuen Eindrücke werden dann als c^t (vgl. Gl.3)erfasst und rufen zudem Erinnerungen aus vergangenen Semesterferien in c^t hoch.

Wir werden nachfolgend jeweils ein LSTM für Canberra und Darwin erzeugen. Hierbei ziehen wir jeweils ein Klassifikationsproblem heran, als auch ein Regressionsproblem. Bei dem Klassifikationsproblem handelt es sich um binäres Problem, weshalb wir als finale Aktivierungsfunktion die Sigmoid-Funktion nutzen werden. Das Regressionsproblem werden wir jeweils mit der ReLu-Funktion ausstatten. Für das binäre Klassifikationsproblem nehmen wir die Kreuzentropie als FehlermaSS, wobei das MSE auf unser Regressionproblem angewedet wird. Es sei noch angemerkt, dass rekurrente neuronale ähnlich zu normalen neuronalen Netzen lernen. Der Lernprozess (Backpropagation) wird ebenfalls bestimmt durch das zurück propagieren der Gradienten der Fehlerfunktion, welches über ein Minimierungsproblem quantifiziert wird. Wichtig ist jedoch hervorzuheben, dass das zurückpropagieren im zeitlichen Verlauf rückwärts geschieht, wodurch dieses Verfahren auch den Namen *Backpropagation Through Time* (BPTT) erhält.

PRAKTIKUM 4: RECURRENT NEURAL NETWORKS

Ziel dieses Praktikum wird insbesondere sein, in wie weit sich die Modellgüte dieser Modell unter scheidet. Wir haben gesehen, dass die Daten unterschiedliche Varianzen im zeitlichen Verlauf aufzeiger Insbesondere die Stadt Darwin, welche durch Regen - und Trockenzeit geprägt ist.