

En muchos experimentos interviene el estudio de los efectos de dos o más factores. En general, los diseños factoriales son los más eficientes para este tipo de experimentos. Por diseño factorial se entiende que en cada ensayo o réplica completa del experimento se investigan todas las combinaciones posibles de los niveles de los factores.

El efecto de un factor se define como el cambio en la respuesta producido por un cambio en el nivel del factor. Con frecuencia se le llama **efecto principal** porque se refiere a los factores de interés primario en el experimento. En algunos experimentos puede encontrarse que la diferencia en la respuesta entre los niveles de un factor no es la misma para todos los niveles de los otros factores, esto se llama **interacción**.

Figura 5-1 Experimento factorial de dos factores con la respuesta (y) indicada en los vértices.

Figura 5-2 Experimento factorial de dos factores con interacción.

Figura 5-3 Experimento factorial sin interacción.

Figura 5-4 Experimento factorial con interacción.

Ejemplo de diseño factorial con 2 factores:

Tabla 5-1 I	Datos de la vida ((en horas)	para el	ejemplo del	diseño de la batería
-------------	--------------------	------------	---------	-------------	----------------------

Tipo de material			Tempera	tura (°F)		
	15		70		125	
	130	155	34	40	20	70
	74	180	80	75	82	58
2	150	188	136	122	25	70
	159	126	106	115	58	45
3	138	110	174	120	96	104
	168	160	150	139	82	60

		Factor B		
	1	2	•••	b
1	y ₁₁₁ , y ₁₁₂ , , y _{11n}	y ₁₂₁ , y ₁₂₂ , , y _{12n}		y _{1b1} , y _{1b2} , , y _{1bn}
2	y ₂₁₁ , y ₂₁₂ , , y _{21п}	y ₂₂₁ , y ₂₂₂ , , y _{22n}		y ₂₆₁ , y ₂₆₂ , , y _{26n}
:	-			
а	$y_{a11}, y_{a12}, \dots, y_{a1n}$	$y_{a21}, y_{a22}, \dots, y_{a2n}$		$y_{ab1}, y_{ab2}, \dots, y_{abn}$

- 1. ¿Qué efectos tienen el tipo de material y la temperatura sobre la vida de la batería?
- 2. ¿Existe alguna elección del material que produzca de manera regular una vida larga de la batería independientemente de la temperatura?

Factor A

Modelo de los efectos

$$y_{ijk} = \mu + \tau_i + \beta_j + (\tau \beta)_{ij} + \varepsilon_{ijk} \begin{cases} i = 1, 2, ..., a \\ j = 1, 2, ..., b \\ k = 1, 2, ..., n \end{cases}$$

donde *miu* es el efecto promedio global, *tao_i* es el efecto del nivel i-ésimo del factor *A* de los renglones, *beta_j* es el efecto del nivel j-ésimo del factor *B* de las columnas, *(tao*beta)ij* es el efecto de la interacción entre *tao_i* y *beta_j*.

Pruebas de hipótesis

$$SS_T = SS_A + SS_B + SS_{AB} + SS_E$$

 $H_0: \tau_1 = \tau_2 = \dots = \tau_a = 0$

 H_1 : al menos una $\tau_i \neq 0$

Efectos filas (factor 1)

 $H_0: \beta_1 = \beta_2 = \dots = \beta_b = 0$ $H_1: \text{al menos una } \beta_j \neq 0$

Efectos columnas (factor 2)

 $H_0: (\tau \beta)_{ij} = 0$ para todas las i, j $H_1:$ al menos una $(\tau \beta)_{ij} \neq 0$

Efectos interacciones (factor 1 * factor 2)

Sumas de cuadrados

$$SS_T = SS_A + SS_B + SS_{AB} + SS_E$$

$$SS_T = \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n} y_{ijk}^2 - \frac{y_{...}^2}{abn}$$

$$SS_B = \frac{1}{an} \sum_{j=1}^{b} y_{.j.}^2 - \frac{y_{.j.}^2}{abn}$$

$$SS_A = \frac{1}{bn} \sum_{i=1}^{a} y_{i..}^2 - \frac{y_{...}^2}{abn}$$

$$SS_{AB} = SS_{\text{Subtotales}} - SS_A - SS_B$$

$$SS_E = SS_T - SS_{AB} - SS_A - SS_B$$

$$SS_{\text{Subtotales}} = \frac{1}{n} \sum_{i=1}^{a} \sum_{j=1}^{b} y_{ij.}^2 - \frac{y_{...}^2}{abn}$$

Modelo de 2 factores

Tabla 5-3 La tabla del análisis de varianza para el diseño factorial de dos factores, modelo con efectos fijos

Fuente de variación	Suma de cuadrados	Grados de libertad	Cuadrado medio	F_0	
Tratamientos A	SS_A	a-1	$MS_A = \frac{SS_A}{a-1}$	$F_0 = \frac{MS_A}{MS_E}$	1
Tratamientos B	SS_B	<i>b</i> −1	$MS_{B} = \frac{SS_{B}}{b-1}$	$F_0 = \frac{MS_B}{MS_E}$	2
Interacción	SS_{AB}	(a-1)(b-1)	$MS_{AB} = \frac{SS_{AB}}{(a-1)(b-1)}$	$F_0 = \frac{MS_{AB}}{MS_E}$	3
Error	SS_E	ab(n-1)	$MS_E = \frac{SS_E}{ab(n-1)}$		
Total	SS_T	abn-1			

Modelo de 3 factores

Tabla 5-12 La tabla del análisis de varianza del modelo de tres factores con efectos fijos

Fuente de variación	Suma de cuadrados	Grados de libertad	Cuadrado medio	Cuadrado medio esperado	F_0
A	SS_A	a-1	MS_A	$\sigma + \frac{bcn\sum_{i}\tau_{i}^{2}}{a-1}$	$F_0 = \frac{MS_A}{MS_E}$
В	SS_B	b-1	MS_B	$\sigma^2 + \frac{acn \sum_{j} \beta_j^2}{b-1}$	$F_0 = \frac{MS_B}{MS_E}$
С	SS _c	c-1	MS_c	$\sigma^2 + \frac{abn \sum_{k} \gamma_k^2}{c-1}$	$F_0 = \frac{MS_C}{MS_E}$
AB	SS_{AB}	(a-1)(b-1)	MS_{AB}	$\sigma^2 + \frac{cn\sum\sum_{(\tau\beta)_{ij}^2} (\tau\beta)_{ij}^2}{(a-1)(b-1)}$	$F_0 = \frac{MS_{AB}}{MS_E}$
AC	SS_{AC}	(a-1)(c-1)	MS_{AC}	$\sigma^2 + \frac{bn\sum\sum_{(\tau\gamma)_{ik}^2} (\tau\gamma)_{ik}^2}{(a-1)(c-1)}$	$F_0 = \frac{MS_{AC}}{MS_E}$
ВС	SS_{BC}	(b-1)(c-1)	$MS_{{\scriptscriptstyle BC}}$	$\sigma^2 + \frac{an\sum\sum (\beta\gamma)_{jk}^2}{(b-1)(c-1)}$	$F_0 = \frac{MS_{BC}}{MS_E}$
ABC	SS_{ABC}	(a-1)(b-1)(c-1)	MS_{ABC}	$\sigma^2 + \frac{n \sum \sum \sum (\tau \beta \gamma)_{ijk}^2}{(a-1)(b-1)(c-1)}$	$F_0 = \frac{MS_{ABC}}{MS_E}$
Error	SS_E	abc(n-1)	MS_E	σ^2	
Total	SS_T	abcn-1			*

Ejercicio 1

Se estudia el rendimiento de un proceso químico. Se piensa que las dos variables más importantes son la presión y la temperatura. Se seleccionan tres niveles de cada factor y se lleva a cabo un experimento factorial con dos réplicas. Los datos del rendimiento son:

	Presión (psig)			
Temperatura (°C)	200	215	230	
150	90.4	90.7	90.2	
	90.2	90.6	90.4	
160	90.1	90.5	89.9	
	90.3	90.6	90.1	
170	90.5	90.8	90.4	
	90.7	90.9	90.1	

Analizar los datos y sacar conclusiones. Utilizar a = 0.05.

Ejercicio 2

En un artículo de Industrial Quality Control se describe un experimento para investigar el efecto del tipo de cristal y del tipo de fósforo sobre la brillantez de un cinescopio. La variable de respuesta es la corriente (en microamperes) necesaria para obtener un nivel de brillantez específico. Los datos son los siguientes:

Tipo de	Tipo de fósforo			
cristal	1	2	. 3	
1	280	300	290	
	290	310	285	
	285	295	290	
2	230	260	220	
	235	240	225	
	240	235	230	

- a) ¿Existe algún indicio de que alguno de los dos factores influye en la brillantez? Utilizar a = 0.05.
- b) ¿Los dos factores interactúan? Utilizar a = 0.05.
- c) Analizar los residuales de este experimento.

Bibliografía

Gutierrez, H. Análisis y diseño de experimentos. México: Mc Graw Hill, 2004.

Montgomery. Diseño y análisis de Experimentos. 2 Edición. John Wiley and sons, 2002.

