第3节代数式的恒等变形(★★★)

强化训练

- 1. (2022•山东滨州模拟•★★) 在 $\triangle ABC$ 中,若 $\cos C = \frac{b}{2a}$,则此三角形一定是()

- (A) 等腰三角形 (B) 直角三角形 (C) 等腰直角三角形 (D) 既非等腰也非直角三角形

答案: A

解法 1: 所给等式右侧有边的齐次分式,可边化角,

因为
$$\cos C = \frac{b}{2a}$$
,所以 $\cos C = \frac{\sin B}{2\sin A}$,故 $2\sin A\cos C = \sin B$ ①,

左侧有 $\sin A\cos C$,可拆右侧的 $\sin B$,进一步化简,

因为 $\sin B = \sin[\pi - (A+C)] = \sin(A+C) = \sin A \cos C + \cos A \sin C$,

代入式①得: $2\sin A\cos C = \sin A\cos C + \cos A\sin C$,所以 $\sin A\cos C - \cos A\sin C = 0$,故 $\sin(A-C) = 0$,

因为 $A,C \in (0,\pi)$,所以 $A-C \in (-\pi,\pi)$,从而A-C=0,故A=C,所以 ΔABC 一定是等腰三角形.

解法 2: 也可用余弦定理推论将所给等式左侧的 cos C 角化边,

由余弦定理推论,
$$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$$
,又由题意, $\cos C = \frac{b}{2a}$,所以 $\frac{a^2 + b^2 - c^2}{2ab} = \frac{b}{2a}$,

化简得: $a^2-c^2=0$,所以a=c,故 ΔABC 一定是等腰三角形.

2. (2022 • 河南安阳模拟 • ★★) 在 △ABC 中,角 A,B,C 的对边分别为 a,b,c,且 $2b^2 - 3c^2 - ac = 0$, $\sin C = 2\sin A$, $\iint \cos C =$.

答案: $\frac{2\sqrt{7}}{7}$

解析: 若将 $\sin C = 2 \sin A$ 角化边,则结合 $2b^2 - 3c^2 - ac = 0$ 可将边统一起来,由余弦定理推论求 $\cos C$,

因为 $\sin C = 2\sin A$, 所以 c = 2a, 代入 $2b^2 - 3c^2 - ac = 0$ 可得: $2b^2 - 3\cdot(2a)^2 - a\cdot 2a = 0$, 所以 $b = \sqrt{7}a$,

由余弦定理推论,
$$\cos C = \frac{a^2 + b^2 - c^2}{2ab} = \frac{a^2 + 7a^2 - 4a^2}{2a \cdot \sqrt{7}a} = \frac{2\sqrt{7}}{7}$$
.

- 3.(2022 •河南濮阳模拟 •★★★)设 △ABC 的内角 A,B,C 的对边分别为 a,b,c,且 (a+b+c)(a+b-c)=3ab, $2\cos A\sin B = \sin C$,则 ΔABC 是()

- (A) 直角三角形 (B) 等边三角形 (C) 钝角三角形 (D) 等腰直角三角形

答案: B

解法 1: 因为(a+b+c)(a+b-c)=3ab,所以 $(a+b)^2-c^2=3ab$,整理得: $a^2+b^2-c^2=ab$,

故
$$\cos C = \frac{a^2 + b^2 - c^2}{2ab} = \frac{ab}{2ab} = \frac{1}{2}$$
, 结合 $0 < C < \pi$ 可得 $C = \frac{\pi}{3}$;

等式 $2\cos A\sin B = \sin C$ 左侧有 $\cos A\sin B$,故可拆右侧的 $\sin C$,进一步化简,

因为 $\sin C = \sin[\pi - (A+B)] = \sin(A+B) = \sin A \cos B + \cos A \sin B$,

代入 $2\cos A\sin B = \sin C$ 可得: $2\cos A\sin B = \sin A\cos B + \cos A\sin B$,

所以 $\sin A \cos B - \cos A \sin B = 0$,故 $\sin(A-B) = 0$,又 $A, B \in (0,\pi)$,所以 $A-B \in (-\pi,\pi)$,故 A-B = 0,

从而 A = B,结合 $C = \frac{\pi}{3}$ 可得 ΔABC 是等边三角形.

解法 2: 得到 $C = \frac{\pi}{3}$ 的过程同解法 1, $2\cos A\sin B = \sin C$ 这个式子左右分别有 $\sin B$ 和 $\sin C$,可用正弦定理

角化边,而cos A 这部分可用余弦定理推论角化边,故也可尝试角化边分析,

因为
$$2\cos A\sin B = \sin C$$
,所以 $2 \cdot \frac{b^2 + c^2 - a^2}{2bc} \cdot b = c$,整理得: $b^2 - a^2 = 0$,故 $b = a$,

结合 $C = \frac{\pi}{3}$ 可得 $\triangle ABC$ 是等边三角形.

4.
$$($$
★★★★ $)$ 在 ΔABC 中,角 A , B , C 的对边分别为 a , b , c , 已知 $ac = \frac{3\sqrt{2}}{4}$, $\sin A\sin C = \frac{\sqrt{2}}{3}$, $\sin B = \frac{1}{3}$,

则 $b = ____$.

答案: $\frac{1}{2}$

解析: 题干涉及两边与三内角正弦,要求第三边,考虑正弦定理.若不知道怎么求,就都写出来再看,

由正弦定理,
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
,

为了凑出条件的形式,我们想到把 $\frac{a}{\sin A}$ 与 $\frac{c}{\sin C}$ 相乘,

所以
$$\frac{a}{\sin A} \cdot \frac{c}{\sin C} = \frac{b^2}{\sin^2 B}$$
, 从而 $b^2 = \frac{ac\sin^2 B}{\sin A\sin C} = \frac{\frac{3\sqrt{2}}{4} \times (\frac{1}{3})^2}{\frac{\sqrt{2}}{3}} = \frac{1}{4}$, 故 $b = \frac{1}{2}$.

- 5. $(2022 \cdot 江西模拟 \cdot \star \star \star \star)$ 在 ΔABC 中,角 A, B, C 的对边分别为 a, b, c,且 $\sin A + \sin C = \sqrt{3} \sin A \sin C + \sin^2 B$.
- (1) 证明: A+C=2B;
- (2) 记 $\triangle ABC$ 的面积为 S,若 $S = \sqrt{3}b = 4\sqrt{3}$,求 a + c 的值.

解: (1) (所给等式带根号, 先将其平方去根号) 因为 $\sin A + \sin C = \sqrt{3}\sin A\sin C + \sin^2 B$,

所以 $(\sin A + \sin C)^2 = 3\sin A\sin C + \sin^2 B$,整理得: $\sin^2 A + \sin^2 C - \sin^2 B = \sin A\sin C$,

(上式中每项都有齐次的内角正弦值,可用正弦定理角化边分析)

故
$$a^2 + c^2 - b^2 = ac$$
, 所以 $\cos B = \frac{a^2 + c^2 - b^2}{2ac} = \frac{ac}{2ac} = \frac{1}{2}$, 结合 $0 < B < \pi$ 可得 $B = \frac{\pi}{3}$,

所以
$$A+C=\pi-B=\frac{2\pi}{3}=2B$$
.

(2) (第1问求出了B, 于是用B来算面积)由(1)可得 $S = \frac{1}{2}ac\sin B = \frac{\sqrt{3}}{4}ac$,

由题意,
$$S = 4\sqrt{3}$$
,所以 $\frac{\sqrt{3}}{4}ac = 4\sqrt{3}$,故 $ac = 16$,

(从题干可求得边b,又已知角B,可用余弦定理沟通a+c和ac,求出a+c)

因为 $\sqrt{3}b=4\sqrt{3}$,所以b=4,由余弦定理, $b^2=a^2+c^2-2ac\cos B$,所以 $16=a^2+c^2-ac=(a+c)^2-3ac$,将ac=16代入上式可得: $16=(a+c)^2-48$,故a+c=8.

- 6. (2022 河南模拟 ★★★) 在 △ABC 中,角 A,B,C 的对边分别为 a,b,c,已知 $A = \frac{\pi}{3}$.
- (1) 若 $a = \sqrt{13}$, $\sin A = \sqrt{13}(\sin B \sin C)$, 求 ΔABC 的面积;
- (2) 若 $a = \sqrt{21}$, 且 $\sin(\pi A) + \sin(B C) = 5\sin 2C$, 求 b, c.

解: (1) 因为 $\sin A = \sqrt{13}(\sin B - \sin C)$,所以 $a = \sqrt{13}(b-c)$,又 $a = \sqrt{13}$,所以 b-c=1,

(求得了b-c,可对角A用余弦定理,配方沟通b-c和bc,求得bc,再求面积)

由余弦定理, $a^2 = b^2 + c^2 - 2bc\cos A$,将 $a = \sqrt{13}$ 和 $A = \frac{\pi}{3}$ 代入可得: $13 = b^2 + c^2 - bc = (b - c)^2 + bc$,

将 b-c=1代入可得: $13=1^2+bc$, 所以 bc=12, 故 $S_{\Delta ABC}=\frac{1}{2}bc\sin A=\frac{1}{2}\times 12\times \sin\frac{\pi}{3}=3\sqrt{3}$.

(2) 因为 $\sin(\pi - A) + \sin(B - C) = 5\sin 2C$,所以 $\sin A + \sin(B - C) = 5\sin 2C$ ①,

(要进一步化简,可先减少变量个数,显然将 $\sin A$ 换成 $\sin(B+C)$ 最方便实现消元,然后将左侧全展开)

因为 $\sin A = \sin[\pi - (B+C)] = \sin(B+C)$,代入式①可得: $\sin(B+C) + \sin(B-C) = 5\sin 2C$,

所以 $\sin B \cos C + \cos B \sin C + \sin B \cos C - \cos B \sin C = 10 \sin C \cos C$,整理得: $(\sin B - 5 \sin C) \cos C = 0$,故 $\sin B - 5 \sin C = 0$ 或 $\cos C = 0$,

当 $\sin B - 5\sin C = 0$ 时, $\sin B = 5\sin C$, 所以 b = 5c ,

(接下来只需由余弦定理再建立一个关于边的方程,就能求出<math>b,c)

由余弦定理, $a^2 = b^2 + c^2 - 2bc\cos A$,将 $a = \sqrt{21}$ 和 $A = \frac{\pi}{3}$ 代入可得 $21 = b^2 + c^2 - bc$,

结合b=5c可解得: c=1, b=5;

当 $\cos C = 0$ 时,结合 $0 < C < \pi$ 可得 $C = \frac{\pi}{2}$,所以 $B = \pi - A - C = \frac{\pi}{6}$,如图,

由图可知, $c = \frac{a}{\cos B} = 2\sqrt{7}$, $b = c\sin B = \sqrt{7}$.

【反思】可以发现,余弦定理不仅能沟通b+c与bc,还可沟通b-c与bc.

《一数•高考数学核心方法》