# **PICAP**

Design review

Brendan Bickford

### <u>Outline</u>

- Advisors
- Background
- Design specifications
- Concept Instrumentation
- Design Assemblies



### <u>Advisors</u>

#### Advisors:

- Dr. May-Win Thein
- Dr. James Connell
- Dr. Clifford Lopate

**Grad student:** 

Dan Tran

### **Background**

# Positron Identification by Coincidental Annihilation Photons

- New design for detecting and distinguishing energetic particles (positrons & negatrons)
- Project goal: Build and test a proof of principle prototype telescope

### Design Criteria and constrains

- Minimize mass within design constraints
- Specific placement and size for solid state detectors and scintillation material
- Provide efficient particle detection (structure limitations)
- Provide a working proof of principle prototype for this new detection method

- This means
- Faraday cage required
- Eliminate cross talk between scintillators
- Exclude light
- Purge ports for solid state detectors

### Flight vs. Prototype

- Conductive epoxy simple pieces rather then machine complex pieces from stock
- Custom off the self parts
- Minimize weight within budget, knowing this could be reproduced with less weight but at higher cost

### Instrument concept



Cross section view of proposed design

- C- Plastic scintillation material
- G- Heavy scintillation material
- D- Solid state detectors
- S- Plastic scintillation material

### Instrument concept



#### Top view proposed design

- C- Plastic scintillation material
- G- Heavy scintillation material
- D- Solid state detectors
- S- Plastic scintillation material

### Concept vs. Design

1 cm



#### Cross section view

- C- Plastic scintillation material
- G- Heavy scintillation material
- D- Solid state detectors
- S- Plastic scintillation material



### Concept vs. Final design



- C- Plastic scintillation material
- G- Heavy scintillation material
- D- Solid state detectors
- S- Plastic scintillation material

### **Dimensions**

| Total Height | 16.78 cm  |
|--------------|-----------|
| Total width  | 22.47 cm  |
| Total mass   | 3.3 kg    |
|              |           |
| Total Volume | 1985 cm^3 |



### Photomultiplier tube assembly





Red- Active components

Blue-Teflon

Black- Other

### Scintillator assembly





Scintillator assembly - top view cross section



Scintillator assembly - center cross section

### Top Anti coincidence shield





Anti coincidence shield – center cross section



Anti coincidence shield - top view

# Cover assembly





Cover and brass foil



Cover and brass foil - side view



Cover - exploded view



Solid state detector column assembly

**Center Cross section** 

# Base Assembly





Base Assembly - center cross section

# Cylinder assembly





26

# Photomultiplier tube support assembly





Photomultiplier tube support assembly – Center cross section

# Final assembly

