

NPTEL ONLINE CERTIFICATION COURSES

Course Name: Deep Learning

Faculty Name: Prof. P. K. Biswas

Department: E & ECE, IIT Kharagpur

Topic

Lecture 21: Multilayer Perceptron

CONCEPTS COVERED

Concepts Covered:

- ☐ Neural Network
 - ☐ AND Logic
 - ☐ OR Logic
 - ☐ XOR Logic
- ☐ Feed Forward NN
- Back Propagation Learning

AND/ OR/ XOR

Neural Network Function

$$f^{(K)}(f^{(K-1)}.....(f^{(i)}....(f^{(2)}(f^{(1)}(X)))))$$

Multilayer

Perceptron

 $M_k \to \text{No. of nodes in } k^{th} \text{ layer}$

Back Propagation Learning

Single Layer Network- Single Output without nonlinearity

$$E = \frac{1}{2} \sum_{i=1}^{N} (W^{t} X_{i} - y_{i})^{2} = \frac{1}{2} \sum_{i=1}^{N} (\hat{y}_{i} - y_{i})^{2}$$

$$\nabla_W E = \sum_{i=1}^N (\hat{y}_i - y_i) X_i$$

Weight updation rule

$$W \leftarrow W - \eta \sum_{i=1}^{N} (\hat{y}_i - y_i) X_i$$

NPTEL ONLINE CERTIFICATION COURSES

Thank you