

Przetwarzanie języka naturalnego/05

Statystyczne modele języka

1 Statystyczne modele języka

- Wprowadzenie do procesów Markowa
- Wprowadzenie do Ukrytych Model Markowa
- Ukryty Model Markowa
- Podstawowe zadania HMV
- Viterbi przykład

- 1 Statystyczne modele języka
 - Wprowadzenie do procesów Markowa
 - Wprowadzenie do Ukrytych Model Markowa
 - Ukryty Model Markowa
 - Podstawowe zadania HMM
 - Viterbi przykład

Rozważmy sygnalizację świetlną na skrzyżowaniu

Każdy stan jest zależny od poprzedniego. System jest deterministyczny. Możemy rozważać go jako proces Markowa.

Process Markowa

 $\verb|https://www.youtube.com/watch?v=EqUfuT3CC8s|$

Process Markowa

- Stan zależy wyłącznie od stanu poprzedniego
- Stan jest niezależny od czasu

Process Markowa

- Proces Markowa ciąg zdarzeń, w którym prawdopodobieństwo każdego zdarzenia zależy jedynie od wyniku poprzedniego. W ujęciu matematycznym, procesy Markowa to takie procesy stochastyczne, które spełniają własność Markowa.
- Łańcuchy Markowa to procesy Markowa z czasem dyskretnym.
- Łańcuch Markowa jest ciągiem X_1, X_2, X_3, \ldots zmiennych losowych. Dziedzinę tych zmiennych nazywamy przestrzenią stanów, a realizacje X_n to stany w czasie n. Jeśli rozkład warunkowy X_{n+1} jest funkcją wyłącznie zmiennej X_n :

$$P(X_{n+1} \leq y | X_0, X_1, X_2, \dots, X_n) = P(X_{n+1} \leq y | X_n)$$

to mówimy, że proces stochastyczny **posiada własność Markowa**.

- 1 Statystyczne modele języka
 - Wprowadzenie do procesów Markowa
 - Wprowadzenie do Ukrytych Model Markowa
 - Ukryty Model Markowa
 - Podstawowe zadania HMM
 - Viterbi przykład

Rozważmy system przewidywania pogody na postawie obserwacji wodorostów.

Rozważmy system przewidywania pogody na postawie obserwacji wodorostów.

- Folklore tells us that "soggy" seaweed means wet weather, while "dry" seaweed means sun.
- It the seaweed is in an intermediate state "damp", then we cannot be sure.

Słownictwo:

```
soggy - damp - dryish -dry
rozmoczony - wilgotny - suchawy - suchy
```

Rozważmy model pogodowy

Rozważmy model pogodowy

		Weather today			
		Sunny	Cloudy	Rainy	
	Sunny	0,5	0,2	0,3	
Weather yesterday	Cloudy	0,1	0,6	0,3	
	Rainy	0,2	0,4	0,4	

Macierz przejść (transition matrix/state transition matrix)

Wprowadzenie procesu Markowa

Wprowadzenie procesu Markowa

	Seaweed State Today			
	Dry	Dryish	Damp	Soggy
Sunny	0,6	0,2	0,15	0,05
Cloudy	0,25	0,25	0,25	0,25
Rainy	0,05	0,1	0,35	0,5
	Cloudy	Sunny 0,6 Cloudy 0,25	Sunny Dry Dryish Cloudy 0,6 0,2 0,25 0,25	Seaweed State To Dry Dryish Damp Sunny 0,6 0,2 0,15 Cloudy 0,25 0,25 0,25 Rainy 0,05 0,1 0,35

Macierz emisji (emission matrix/confusion matrix)

- Rozkład początkowy $\pi = [0.63, .017, 0.20]$
- Macierz przejść (transition matrix/state transition matrix)

$$T = \begin{array}{ccccc} Sunny & Cloudy & Rainy \\ Sunny & 0.5 & 0.2 & 0.3 \\ Cloudy & 0.1 & 0.6 & 0.3 \\ Rainy & 0.2 & 0.4 & 0.4 \end{array}$$

Macierz emisji (emission matrix/confusion matrix)

$$E = \begin{array}{ccccc} & Dry & Dryish & Damp & Soggy \\ Sunny & 0,6 & 0,2 & 0,15 & 0,05 \\ Cloudy & 0,25 & 0,25 & 0,25 & 0,25 \\ Rainy & 0,05 & 0,1 & 0,35 & 0,5 \end{array}$$

1 Statystyczne modele języka

- Wprowadzenie do procesów Markowa
- Wprowadzenie do Ukrytych Model Markowa
- Ukryty Model Markowa
- Podstawowe zadania HMM
- Viterbi przykład

Ukryty Model Markowa

Trójke (π, T, E) nazywamy **Ukrytym Modelem Markowa** (Hidden Markov Model, HMM), gdy π jest wektorem rozkładu prawdopodobieństwa rozmiaru n, T jest macierzą $n \times n$, której każdy rząd jest wektorem rozkładu prawdopodobieństwa a E jest macierzą $n \times m$ o tej samej własności.

1 Statystyczne modele języka

- Wprowadzenie do procesów Markowa
- Wprowadzenie do Ukrytych Model Markowa
- Ukryty Model Markowa
- Podstawowe zadania HMM
- Viterbi przykład

- II Dla zadanego HMM i zadanego ciągu obserwacji (O_1, \ldots, O_k) oceń jak jest to prawdopodobne zdarzenie
- Dla zadanego HMM i zadanego ciągu obserwacji (O_1, \ldots, O_k) znajdź najbardziej prawdopodobny ciąg stanów ukrytych (H_1, \ldots, H_k)
- 3 Dla zbioru obserwacji $\{(O_1,\ldots,O_{k_i})\}_{i=1}^N=1$ znajdź najbardziej prawdopodobny HMM o określonej strukturze (n,m)
- Ila zadanego zbioru HMM i zadanego ciagu obserwacji (O_1, \ldots, O_k) wskaz najbardziej prawdopodobny HMM

Statystyczne modele języka

- Wprowadzenie do procesów Markowa
- Wprowadzenie do Ukrytych Model Markowa
- Ukryty Model Markowa

- Zadanie 1
- Zadanie 1 Podejście naiwne
- Zadanie 1 Forward algorithm
- Zadanie 4
- Zadanie 2
- Zadanie 2 Tagging
- Zadanie 2 Tagging naiwne podejście
- Zadanie 2 Tagging jako HMN
- Zadanie 2
- Zadanie 2 Viterb
- Viterbi przykład

Dla zadanego HMM i zadanego ciągu obserwacji (O_1, \ldots, O_k) oceń **jak jest to prawdopodobne zdarzenie**

$$O=(O_1,O_2,O_3)=(dry,damp,soggy)$$
 $P(O|HMM)=?$

$$O=(O_1,O_2,O_3)=(dry,damp,soggy)$$
 $P(O|HMM)=?$

$$O = (O_1, O_2, O_3) = (dry, damp, soggy)$$

$$P(O|HMM) = P(O|(sunny, sunny, sunny)) + \\ +P(O|(sunny, sunny, cloudy)) + \\ + \dots + \\ +P(O|(rain, rain, rain))$$

$$= \sum_{(H_1, H_2, H_3) \in \{sunny, cloudy, rain\}^3} P(O|(H_1, H_2, H_3))$$

Statystyczne modele języka

- Wprowadzenie do procesów Markowa
- Wprowadzenie do Ukrytych Model Markowa
- Ukryty Model Markowa

- Zadanie 1
- Zadanie 1 Podejście naiwne
- Zadanie 1 Forward algorithm
- 7 adanie 4
- Zadanie 2
- Zadanie 2 Tagging
- Zadanie 2 Tagging naiwne podejście
- Zadanie 2 Tagging jako HMN
- Zadanie 2
- Zadanie 2 Viterb
- Viterbi przykład

Podejscie naiwne

- Zwraca poprawny wynik
- Wymaga policzenia $n^{|O|}$ prawdopodobieństw, gdzie n to liczba stanów ukrytych a O to ciąg obserwacji, dla naszego przypadku $3^3=27$
- Nie korzysta z własności Markowa

Rozważmy obliczanie prawdopodobieństw wystąpienia sekwencji stanów zadanych przez HMM

Statystyczne modele języka

- Wprowadzenie do procesów Markowa
- Wprowadzenie do Ukrytych Model Markowa
- Ukryty Model Markowa

- Zadanie 3
 - Zadanie 1 Podejście naiwne
- Zadanie 1 Forward algorithm
- Zadanie 4
- Zadanie 2
- Zadanie 2 Tagging
- Zadanie 2 Tagging naiwne podejście
- Zadanie 2 Tagging jako HMN
- Zadanie 2
- Zadanie 2 Viterb
- Viterbi przykład

$$\alpha_t(x) = P(O_t|H_t = x)P(\text{all paths to } x \text{ before } t)$$

$$\alpha_1(x) = P(O_1|H_1 = x)\pi_x = E_{x,O_1}\pi_x$$

$$\alpha_{t+1}(x) = P(O_{t+1}|H_{t+1} = x) \sum_{i=1}^{n} \alpha_t(i) T_{i,x} = E_{x,O_{t+1}} \sum_{i=1}^{n} \alpha_t(i) T_{i,x}$$

$$P(O|HMM) = \sum_{i=1}^{n} \alpha_{|O|}(i)$$

- Policz $\alpha_1(x)$ dla każdego stanu ukrytego x, dla pierwszej obserwacji O_1
- 2 Dla każdej obserwacji O_t (t>1) i każdego stanu ukrytego x policz $\alpha_t(x)$ używając $\alpha_{t-1}(y)$
- \blacksquare Zwróć sumę $\alpha_{|O|}(x)$ po wszystkich stanach ukrytych x

- Zwraca poprawny wynik
- Ma złożoność |O|n (zamiast $n^{|O|}$) (przy ewaluacji od lewej do prawej)
- Korzysta z własności Markowa

Statystyczne modele języka

- Wprowadzenie do procesów Markowa
- Wprowadzenie do Ukrytych Model Markowa
- Ukryty Model Markowa

- Zadanie 3
- Zadanie 1 Podejście naiwne
- Zadanie 1 Forward algorithm
- Zadanie 4
- Zadanie 2
- Zadanie 2 Tagging
- Zadanie 2 Tagging naiwne podejście
- Zadanie 2 Tagging jako HMN
- Zadanie 2
- Zadanie 2 Viterb
- Viterbi przykład

Dla zadanego zbioru HMM i zadanego ciagu obserwacji (O_1, \ldots, O_k) wskaz najbardziej prawdopodobny HMM

Przykład - Pogoda

Załóżmy, ze mamy wymodelowane poszczególne pory roku jako Ukryte Modele Markowa.

Mając dany ciąg obserwacji naszej rośliny z kilku dni - w jaki sposób odpowiedzieć na pytanie "Jaka mamy porę roku?"

Przykład - NLP

Załóżmy, ze mamy wymodelowane wypowiedzi różnych osób jako Ukryte Modele Markowa.

Mając dany ciąg słów (zdanie) - w jaki sposób odpowiedzieć na pytanie "Kto jest autorem tych słów?"

Problem

Dane:

$$HMMMs = \{HMM_1, \dots, HMM_l\}$$
 O

Szukamy:

$$\underset{HMM \in HMMs}{\operatorname{max}} P(HMM)P(O|HMM)$$

bo

$$P(HMM|O) = P(O|HMM)P(HMM)\frac{1}{P(O)}$$

HMM a NB

W tym konkretnym zastosowaniu - bardzo podobne do Naive Bayesa, tylko poziom abstrakcji wyżej

$$\operatorname{argmax}_{HMM \in HMMs} P(HMM) P(O|HMM)$$

wygląda analogicznie jak

$$\underset{c \in C}{\operatorname{argmax}} P(c)P(d|c)$$

Spis treści

Statystyczne modele języka

- Wprowadzenie do procesów Markowa
- Wprowadzenie do Ukrytych Model Markowa
- Ukryty Model Markowa

Podstawowe zadania HMM

- Zadanie 1
- Zadanie 1 Podejście naiwne
- Zadanie 1 Forward algorithm
- Zadanie 4
- Zadanie 2
- Zadanie 2 Tagging
- Zadanie 2 Tagging naiwne podejście
- Zadanie 2 Tagging jako HMN
- Zadanie 2
- Zadanie 2 Viterb
- Viterbi przykład

Podstawowe zadania HMM

Dla zadanego HMM i zadanego ciągu obserwacji (O_1, \ldots, O_k) znajdź najbardziej prawdopodobny ciąg stanów ukrytych (H_1, \ldots, H_k)

Spis treści

Statystyczne modele języka

- Wprowadzenie do procesów Markowa
- Wprowadzenie do Ukrytych Model Markowa
- Ukryty Model Markowa

Podstawowe zadania HMM

- Zadanie :
- Zadanie 1 Podejście naiwne
- Zadanie 1 Forward algorithm
- Zadanie 4
- Zadanie 2
- Zadanie 2 Tagging
- Zadanie 2 Tagging naiwne podejście
- Zadanie 2 Tagging jako HMN
- Zadanie 2
- Zadanie 2 Viterb
- Viterbi przykład

Tagging

Tagowanie tekstu

Mając dany tekst w formie ciągu słów $d = word_1, \ldots, word_k$ oraz ciągu tagów $t_d = tag_1, \ldots, tag_k$ celem tagowania jest zbudowanie funkcji $f : words \rightarrow tags$, która dobrze odwzorowuje to tagowanie, tj. minimalizuje jakąś funkcje błędu $E(f(d), t_d)$.

Przykłady

- Wykrywanie czy kropka jest końcem zdania czy użyto jej w innej formie
- Określanie czy dane słowo jest nazwa własna
- Określanie części mowy

Określanie części mowy - Part of speech

- **Noun**: a part of speech inflected for case, signifying a concrete or abstract entity
- **Verb**: a part of speech without case inflection, but inflected for tense, person and number, signifying an activity or process performed or undergone
- Participle: a part of speech sharing the features of the verb and the noun
- Interjection: a part of speech expressing emotion alone
- **Pronoun**: a part of speech substitutable for a noun and marked for a person
- Preposition: a part of speech placed before other words in composition and in syntax
- Adverb: a part of speech without inflection, in modification of or in addition to a verb, adjective, clause, sentence, or other adverb

Spis treści

Statystyczne modele języka

- Wprowadzenie do procesów Markowa
- Wprowadzenie do Ukrytych Model Markowa
- Ukryty Model Markowa

■ Podstawowe zadania HMM

- Zadanie 1
- Zadanie 1 Podejście naiwne
- Zadanie 1 Forward algorithm
- Zadanie 4
- Zadanie 2
- Zadanie 2 Tagging
- Zadanie 2 Tagging naiwne podejście
- Zadanie 2 Tagging jako HMN
- Zadanie 2
- Zadanie 2 Viterb
- Viterbi przykład

Dla danego słowa w

- Jeśli w nie ma w zbiorze uczącym to zwróć tag, który występuje najczęściej w tym zbiorze
- 2 W przeciwnym razie zwróć tag, który występuje w zbiorze uczącym najczęściej dla słowa w

Jak skuteczne jest tego typu podejście?

Jak skuteczne jest tego typu podejście?

ok. 90% dla języka angielskiego (dla podstawowej wersji V/Adj/N/Det)

Spis treści

Statystyczne modele języka

- Wprowadzenie do procesów Markowa
- Wprowadzenie do Ukrytych Model Markowa
- Ukryty Model Markowa

Podstawowe zadania HMM

- Zadanie 3
- Zadanie 1 Podejście naiwne
- Zadanie 1 Forward algorithm
- Zadanie 4
- Zadanie 2
- Zadanie 2 Tagging
- Zadanie 2 Tagging naiwne podejście
- Zadanie 2 Tagging jako HMM
- Zadanie 2
- Zadanie 2 Viterb
- Viterbi przykład

POS jako HMM

Założenia:

- Tag (cześć mowy) słowa w_i zależy wyłącznie od tagu (części mowy) poprzedniego słowa w_{i-1}
- Tag jest niezależny od czasu
- Słowo jest "generowane" przez swój tag (cześć mowy), czyli jest zależne tylko od niego

Od strony matematycznej:

- Założenie Markowa
- Stacjonarność procesu

POS jako HMM

- Rozwiązujemy problem POS używając HMM:
 - Stany ukryte to możliwe części mowy
 - Stany widzialne (obserwacje) to słowa z języka

Spis treści

Statystyczne modele języka

- Wprowadzenie do procesów Markowa
- Wprowadzenie do Ukrytych Model Markowa
- Ukryty Model Markowa

Podstawowe zadania HMM

- Zadanie 1
- Zadanie 1 Podejście naiwne
- Zadanie 1 Forward algorithm
- Zadanie 4
- Zadanie 2
- Zadanie 2 Tagging
- Zadanie 2 Tagging naiwne podejście
- Zadanie 2 Tagging jako HMN
- Zadanie 2
- Zadanie 2 Viterb
- Viterbi przykład

Podstawowe zadania HMM – wracamy

Dla zadanego HMM i zadanego ciągu obserwacji (O_1, \ldots, O_k) znajdź najbardziej prawdopodobny ciąg stanów ukrytych (H_1, \ldots, H_k)

$$O = (dry, damp, soggy)$$

$$arg \max_{(H_1, H_2, H_3) \in H} P(O|H_1, H_2, H_3)$$

$$O = (\textit{dry}, \textit{damp}, \textit{soggy})$$

$$\operatorname*{arg} \max_{(H_1, H_2, H_2) \in H} P(O|H_1, H_2, H_3)$$

= $argmax\{P(O|(sunny, sunny, sunny)), P(O|(sunny, sunny, cloudy)), \dots, P(O|(cloudy, cloudy, cloudy))\}$

- Bardzo podobna sytuacja do poprzedniej
- Złożoność wykładnicza ze względu na długość obserwacji
- ... ale zwraca dobry wynik

Spis treści

Statystyczne modele języka

- Wprowadzenie do procesów Markowa
- Wprowadzenie do Ukrytych Model Markowa
- Ukryty Model Markowa

Podstawowe zadania HMM

- Zadanie
- Zadanie 1 Podejście naiwne
- Zadanie 1 Forward algorithm
- Zadanie 4
- Zadanie 2
- Zadanie 2 Tagging
- Zadanie 2 Tagging naiwne podejście
- Zadanie 2 Tagging jako HMN
- Zadanie 2
- Zadanie 2 Viterbi
- Viterbi przykład

https://www.youtube.com/watch?v=6JVqutwtzmo&t=1s

Viterbi - podejście trellis

$$P_{best,t}(X) = ?$$

Najlepsza ścieżka do x musi mieć postać:

- ... A X
- ... C X

Najlepsza ścieżka do x musi mieć postać:

$$\begin{array}{c} \blacksquare \ \dots \ \mathsf{A} \ \mathsf{X} & P_{best,t}(X) = P_{best,t-1}(A)P(A \to X)P(O_t|X) \\ \blacksquare \ \dots \ \mathsf{B} \ \mathsf{X} & P_{best,t}(X) = P_{best,t-1}(B)P(B \to X)P(O_t|X) \\ \blacksquare \ \dots \ \mathsf{C} \ \mathsf{X} & P_{best,t}(X) = P_{best,t-1}(C)P(C \to X)P(O_t|X) \\ & P_{best,t}(X) = \max_i P_{best,t-1}(i)P(i \to X)P(O_t|X) \\ \end{array}$$

$$P_{best,t}(X) = \pi_X P(O_1|X)$$

Mamy prawdopodobieństwo ścieżki, trzeba ja tylko odzyskać

$$\delta_t(X) = \max_i \delta_{t-1}(i) T_{i,X} E_{X,O_t}$$

$$\phi_t(x) = \underset{i}{\operatorname{argmax}} \, \delta_{t-1}(j) P(i \to x) = \underset{i}{\operatorname{argmax}} \, \delta_{t-1}(j) T_{i,x}$$

- Mając dane *O*,*HMM*
- Obliczamy δ , ϕ
- Odpowiadamy $H = (H_{a_1}, \ldots, H_{a_{|O|}})$, gdzie :

 - $\square \ a_t = \phi_{t+1}(a_{t+1})$

Spis treści

1 Statystyczne modele języka

- Wprowadzenie do procesów Markowa
- Wprowadzenie do Ukrytych Model Markowa
- Ukryty Model Markowa
- Podstawowe zadania HMM
- Viterbi przykład

Części zdania

- NN singular or mass noun
- **VB** verb, base form
- TO infinitive marker to
- PPSS other nominative personal pronoun (I, we, they, you)

Części zdania

- NN singular or mass noun
- **VB** verb, base form
- TO infinitive marker to
- PPSS other nominative personal pronoun (I, we, they, you)

Jakie jest tagowanie dla zdania?

I want to race

Viterbi – przykład

Macierz przejść (transition matrix/state transition matrix)

	VB	TO	NN	PPPS
< <i>s</i> >	.019	.0043	.041	.67
VB	.0038	.035	.047	.0070
TO	.83	0	.00047	0
NN	.0040	.016	.087	.0045
PPPS	.23	.00079	.001	.00014

■ Macierz emisji (emission matrix/confusion matrix)

	I	want	to	race
VB	0	.0093	0	.00012
TO	0	0	.99	0
NN	0	.000054	0	.00057
PPSS	.37	0	0	0

q_4	NN	0				
q_3	TO	0				
q_2	VB	0				
q_1	PPSS	0				
q_0	start	1.0				
		$\langle s \rangle$	I	want	to	race
			w_1	w_2	W ₃	W ₄

- Utwórz macierz prawdopodobieństw z kolumną dla każdej obserwacji (np. word token), i jednym wierszem dla każdego stanu (np. POS tag)
- Wypełniamy komórki kolumna po kolumnie
- Wpisz w i-tą kolumnę oraz j-ty wiersz prawdopodobieństwo najbardziej prawdopodobnej ścieżki do stanu q_j , który wyemitował w_1, \ldots, w_i

q_4	NN	0	$1.0 \times .041 \times 0$			
q ₃	ТО	0	$1.0 \times .0043 \times 0$			
q_2	VB	0	$1.0 \times .19 \times 0$			
$\overline{q_1}$	PPSS	0	$1.0 \times .67 \times .37$			
q_0	start	1.0				
		$\langle s \rangle$	1	want	to	race
			w_1	w ₂	<i>W</i> 3	W4

 \blacksquare Dla każdego stanu q_j w czasie i, wyznacz

$$v_i(j) = \max_{k=1}^n v_{i-1}(k) \cdot a_{kj} \cdot b_j(w_i)$$

q_4	NN	0	0	$.025 \times .0012 \times .000054 $		
q 3	TO	0	0	$.025 \times .00079 \times 0$		
q_2	VB	0	0	$.025 \times .23 \times .0093$		
q_1	PPSS	0	.025	$.025 \times .00014 \times 0$		
q_0	start	1.0				
		$\langle s \rangle$	1	want	to	race
			w_1	W_2	<i>W</i> 3	W ₄

 \blacksquare Dla każdego stanu q_j w czasie i, wyznacz

$$v_i(j) = \max_{k=1}^n v_{i-1}(k) \cdot a_{kj} \cdot b_j(w_i)$$

q_4	NN	0	0	.000000002	$0.000053 \times .047 \times 0$	
q_3	TO	0	0	0	$.000053 \times .035 \times .99$	
q_2	VB	0	0	.00053	$.000053 \times .0038 \times 0$	
$\overline{q_1}$	PPSS	0	.025	0	$.000053 \times .0070 \times 0$	
q_0	start	1.0				
		$\langle s \rangle$	I	want	to	race
			$ w_1 $	w_2	W ₃	<i>W</i> ₄

 \blacksquare Dla każdego stanu q_i w czasie i, wyznacz

$$v_i(j) = \max_{k=1}^n v_{i-1}(k) \cdot a_{kj} \cdot b_j(w_i)$$

q_4	NN	0	0	.000000002	0	$.0000018 \times .00047 \times .00057$
q ₃	TO	0	0	0	.0000018	$.0000018\times0\times0$
q_2	VB	0	0	.00053	0	$.0000018 \times .83 \times .00012$
$\overline{q_1}$	PPSS	0	.025	0	0	$.0000018 \times 0 \times 0$
q_0	start	1.0				
		$\langle s \rangle$	ı	want	to	race
			W ₁	W ₂	W/a	W ₄

Dla każdego stanu q_i w czasie i, wyznacz

$$v_i(j) = \max_{k=1}^n v_{i-1}(k) \cdot a_{kj} \cdot b_j(w_i)$$

q_4	NN	0	0	.000000002	0	4.8222e-13
q_3	TO	0	0	0	.0000018	0
q_2	VB	0	0	.00053	0	1.7928e-10
q_1	PPSS	0	.025	0	0	0
q_0	start	1.0				
		$\langle s \rangle$	1	want	to	race
			$ w_1 $	w ₂	w ₃	$ w_4 $

 \blacksquare Dla każdego stanu q_j w czasie i, wyznacz

$$v_i(j) = \max_{k=1}^n v_{i-1}(k) \cdot a_{kj} \cdot b_j(w_i)$$

Viterbi – przykład 2

Jakie jest tagowanie dla zdania?

deal talks fail

Macierz przejść (transition matrix/state transition matrix)

	to N	to V
from start	.8	.2
from N	.4	.6
from V	.8	.2

Macierz emisji (emission matrix/confusion matrix)

	deal	fail	talks
N	.2	.05	.2
V	.3	.3	.3

	deal	talks	fail
N	$.8 \times .2 = .16$	$\leftarrow .16 \times .4 \times .2 = .0128$	\angle .0288 \times .8 \times .05 = .001152
		(bo $.16 \times .4 > .06 \times .8$)	(bo $.0128 \times .4 < .0288 \times .8$)
V		$^{^{\!$	$^{\sim}$.0128 \times .6 \times .3 = .002304
		(bo $.16 \times .6 > .06 \times .2$)	(bo $.0128 \times .6 > .0288 \times .2$)

Dziękuję za uwagę.