ME 410 - Week 3

Christopher Luey

(a) Text Description (400 words max)

We implemented joystick mapping for thrust and pitch, then built full PID control for pitch. Joystick vertical axis mapped linearly to both desired thrust (thrust_neutral \pm thrust_amplitude) and desired pitch (\pm pitch amplitude = 10°).

In each control loop we computed:

```
pitch_error = pitch_desired - pitch_measured  // from complementary filter

integral_error += pitch_error  // I-term accumulation

pitch_speed = gyro_pitch_rate  // from IMU gyroscope

Controller terms were:

P_term = Pgain × pitch_error  (Pgain = 10)

I_term = Igain × integral_error  (Igain = 0.1)
```

Motor commands updated as:

• Front motors (1 & 3): command = thrust + P_term + I_term - D_term

D term = Dgain \times pitch speed (Dgain = 1; sign reversed after initial inversion)

• Rear motors (2 & 4): command = thrust -P term -I term +D term

Outputs clamped to [0,2000]. Safety checks remained: button "B" kill, gyro > 300° /s, |pitch| > 45° , timeout > 0.35 s. For Milestone 1, we logged and plotted thrust, desired pitch, measured pitch, and motor speeds (pitch × 10, desired_pitch × 10) during thrust-only changes, pitch-only changes, and hands-off scenarios—confirming stable attitude, zero steady-state error, and proper damping after correcting the D-term sign.

We progressed through four milestones, first validating the P controller by executing thrust-only and pitch-only commands, observing motor speed, thrust, desired pitch, and measured pitch responses. Next, we implemented the D controller and plotted motor speeds, measured pitch, and gyro-derived pitch velocity under hands-off and joystick thrust tests. We then integrated the I controller, adding integral saturation at ± 100 and testing with incremental pitch setpoints until saturation. Finally, we combined P, I, and D into a full PID controller, verifying performance during rapid $\pm 5^{\circ}$ back-and-forth pitch oscillations,

slow pitch setpoint changes, slow thrust changes, and hands-off scenarios, all while ensuring safety kills were triggered correctly.

(b) Task Assessment Task Assessment

What went well:

- P, I, and D terms integrated seamlessly, yielding stable pitch control.
- Logged data produced clear plots showing improved damping and elimination of steady-state error.
- Safety interrupts operated correctly throughout all tests.

What did not go well:

- Initial PID fusion applied D_term with incorrect sign, causing incorrect overshoot until reversed.
- Occasional IMU input errors triggered unexpected kill timeouts.

What will you change for next class:

• Modularize PID logic into a separate module with unit tests for sign conventions.

(c) Team Member Effort Report

• Jason & Christopher (each 50%): Collaboratively designed and implemented P/I/D terms, debugged sign conventions, integrated motor command logic, logged and plotted data, and performed hardware testing and report compilation.

Milestone 1 - Proportional Controller

Milestone 2 - Derivative Controller

Milestone 3 - Integral Controller

Milestone 4 - Full PID Controller

