Généralités sur le langage R

Alison PATOU

Patou.alison@gmail.com

Programme

- Présentation du langage R
- Les types de données
- Importer Exporter des données
- Les techniques pour tracer des courbes et créer des graphiques

A savoir

- Tout est sur mon GitHub : https://github.com/apatou
- (L'essentiel à retenir du cours, les dataset, exercices, ...)

- Merci de m'envoyer à chaque fin de séance vos TPs : patou.alison@gmail.com
- 1 projet final à rendre à la fin.

1

Introduction

Introduction

Présentation du logiciel R et de ses fonctionnalités

Avantages et Inconvénients

Accès au site de téléchargement de l'outil et installation

Utilisation de la console

- Le langage S a été créé dans les années 70 pour « programmer avec des données ». Il a été développé chez *Bell Laboratories* par une équipe de chercheurs menée par John M. Chambers.
- Dès la fin des années 1980 et pendant près de vingt ans, le S a principalement été popularisé par une mise en œuvre commerciale nommée S-PLUS.
- Inspirés à la fois par le S et par Scheme (un dérivé du Lisp), Ross Ihaka et Robert Gentleman proposent un langage pour l'analyse de données et les graphiques qu'ils nomment R. Le langage a été intégré, en 1997, au projet GNU, faisant de R un logiciel libre.

✓ Le langage R est un langage interprété. Cela signifie que l'on peut écrire seulement une ligne de code, la valider et en voir le résultat. Il n'y a donc pas besoin d'une étape préalable de compilation du code, celui ci est interprété à la volée.

	Avantage	Inconvénient
Langage interprété	portabilité	Lenteur
Langage compilé	rapidité	Portabilité

✓ Pour écrire du code en R on peut donc simplement lancer ce que l'on appelle la console et taper du code.

- ✓ « vrai » langage de programmation
 - types de données
 - branchements conditionnels
 - boucles
 - ...
- ✓ Mode d'exécution : transmettre à R le fichier script « .r »
- ✓ Il est extensible (quasiment) à l'infini *via* le système des packages.

R est un langage particulièrement utilisé en Data Science mais il permet d'intervenir à plusieurs étapes du processus de traitement de la donnée :

Data engineering Data Preparation Data Analysis Data Science Data visualization

Ingestion des données Intégration des données Préparation des données Data Visualization

Exploration des données Statistiques inférentielles Modélisation Reporting

R est généralement à travers un environnement de développement intégré (IDE) dont :

R est généralement à travers un environnement de développement intégré (IDE) dont :

	Open Source Edition	RStudio Desktop Pro
Overview	 Access RStudio locally Syntax highlighting, code completion, and smart indentation Execute R code directly from the source editor Quickly jump to function definitions Easily manage multiple working directories using projects Integrated R help and documentation Interactive debugger to diagnose and fix errors quickly Extensive package development tools 	All of the features of open source; plus: • A commercial license for organizations not able to use AGPL software • Access to priority support • RStudio Professional Drivers
Support	Community forums only	Priority Email Support8 hour response during business hours (ET)
License	AGPL v3	RStudio License Agreement
Pricing	Free	\$995/year
	DOWNLOAD RSTUDIO DESKTOP	DOWNLOAD FREE RSTUDIO DESKTOP PRO TRIAL

R Studio Server

	Open Source Edition	RStudio Server Pro
Overview	 Access via a web browser Move computation closer to the data Scale compute and RAM centrally 	 All of the features of open source; plus: Administrative Tools Enhanced Security and Authentication Metrics and Monitoring Advanced Resource Management Use RStudio, Python, and Jupyter
Documentation	Getting Started with RStudio Server	RStudio Server Professional Admin Guide
Support	Community forums only	Priority Email Support8 hour response during business hours (ET)
License	AGPL v3	RStudio License Agreement
Pricing	Free	Starting at \$4,975 / 5 named users per year Academic and Small Business discounts available
	DOWNLOAD SERVER	DOWNLOAD FREE RSTUDIO SERVER PRO TRAIL

2. Avantages et inconvénients

- R est un langage puissant pour les applications mathématiques et statistiques puisque développé dans ce but
- Il possède de nombreux avantages mais aussi quelques inconvénients

Avantages

langage basé sur la notion de vecteur (= simplification les calculs mathématiques)

Langage interprété : portabilité du code

Programmes courts ...

communauté importante en ligne ...

pas de typage ni de déclaration obligatoire des variables

Extensible *via* les packages

les variables passées comme arguments sont dupliquées en mémoire

Non compilable: performances pouvant être limitées

... Temps de calcul parfois long

... mais pas de support

Gestion du parallélisme

Gestion de la concurrence

4. Accès au site et téléchargement

1. Télécharger R : https://www.r-project.org/

- . useR! 2018 (July 10 13 in Brisbane) is open for registration at https://user2018.r-project.org
- . The R Journal Volume 9/2 is available.
- R version 3.3.3 (Another Canoe) has been released on Monday 2017-03-06.
- useR! 2017 took place July 4 7 in Brussels https://user2017.brussels
- . The R Logo is available for download in high-resolution PNG or SVG formats.

2. Télécharger Rstudio : https://www.rstudio.com/products/RStudio/

Environnement de base

IDE RStudio : environnement de développement gratuit, libre et multiplateforme pour R

Utilisation de la console

Calcul simple directement dans la ligne de commande : instruction -> résultat

Console ~/ 🙈

R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.

Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help.

Type 'q()' to quit R.

> 2+5 [1] 7

Le résultat ne sera pas enregistré en mémoire

Création d'un script

Solution 1:

Solution 2:

Création d'un script

Ecriture dans le script (calcul, fonction, algorithme, ...)

Affichage du résultat dans la console

```
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> f <- function(x) x^2
> ## Evaluation de la fonction
> f(2)
[1] 4
```


Création d'un script

Enregistrer votre script R avec un .R

Ex : vous souhaitez appeler votre fichier exemple_1 vous l'enregistrer directement en « exemple_1.R »

Exécution du code

Pour exécuter votre commande, il suffit de sélectionner ce que vous souhaitez exécuter puis **appuyer sur 'Run' ou avec les touches CTRL+ENTER**

Le Répertoire sous r

Gestion des chemins:

```
> getwd()
[1] "C:/Users/alison.patou/Documents"
```

La fonction getwd() affiche la localisation du répertoire de travail sous la forme d'un chemin absolu.

Modification des chemins :

```
> setwd("C:/Users/alison.patou/Pictures"); getwd()
[1] "C:/Users/alison.patou/Pictures"
```

On peut modifier la localisation du répertoire de travail avec la fonction setwd()

Lorsque l'on souhaite accéder à l'aide intégrée de R sur une fonction :

Ces deux commandes affichent une page (en anglais) décrivant la fonction, ses paramètres, son résultat, le tout accompagné de diverses notes, références et <u>exemples</u>.

Les commentaires sont essentiels dans un script : il s'agit d'un texte libre, commençant par un ou plusieurs # et ignoré par R.

Ils décrivent les étapes d'un script, permettent de documenter, d'expliciter ce que l'on fait afin de faciliter la compréhension du code :

```
Source on Save | Note |
```

Les packages

- >
- R étant un logiciel libre, il bénéficie d'un développement communautaire riche et dynamique.
- L'installation de base de R permet de faire énormément de choses, mais le langage dispose en plus d'un système d'extensions permettant d'ajouter facilement de nouvelles fonctionnalités grâce à des packages.
- Installation d'un package :

Une fois le package installé, il faut le "charger" avant de pouvoir utiliser les fonctions qu'il propose. Ceci se fait avec la fonction **library**(nomdupackage)

2.

Les types de données

Les types de données sous R

Il existe 3 grandes classes de données :

- Vecteurs simples: Ce sont des simples listes ordonnées de valeurs simples
- Données composites (listes, data frames, etc.)
- Données "spéciales" pour programmeurs

Il existe 6 types de valeurs simples:

"logical", "integer", "double", "complex", "character", "raw"

✓ Typeof(AAA) : renvoie le type de AAA

Qu'est-ce qu'une variable sous R?

- ✓ Permettent de stocker une valeur (un chiffre, du texte, ...) ou un objet (une fonction, une matrice, un vecteur, ...)
- ✓ L'affectation d'une valeur à une variable se fait à l'aide de l'opérateur <- ou =
- ✓ On retrouve les opérateurs mathématiques

```
# Assigner la valeur 4 à my_var
my_var <- 4

# Afficher la valeur de la variable my_var
my_var

# Assigner la valeur 6 à la variable my_muffins
my_muffins <- 6

# Assigner la valeur 4 à la variable my_cupcakes
my_cupcakes <- 4

# La variable my_cakes contiendra le nombre total de gâteaux que vous avez
my_cakes <- my_muffins + my_cupcakes

# Affiche 10
my_cakes</pre>
```

Les objets

Tout dans le langage R est un objet : les variables contenant des données, les fonctions, les opérateurs, ...

Les objets possèdent au minimum :

- une longueur : length()

- un mode : mode()

```
# Création vecteur
> v <- c(4,2,1,3)

# Afficher le mode de l'objet v
> mode(v)
[1] « numeric »

# Afficher la longueur de l'objet v
> Length(v)
[1] 4
```

Les objets

```
# Construction de deux vecteurs
> Vector_A <- c(1,2,3)
> Vector_B <- c(4,5,6)

# Faire la somme de ces deux vecteurs
> total_vector = Vector_A + Vector_B

# Afficher cette somme
> total_vector
[1] 5 7 9
```

```
c(a=,b=,...)
vector()
```

```
# Initialisation de vecteurs :
> vector(« character », 5)
[1] «» «» «» «» «»
> vector(« logical », 3)
[1] FALSE FALSE FALSE
> vector(« numeric », 10)
[1] 0 0 0 0 0 0 0 0 0
```

Array : tableau à n dimensions de valeurs de même type

- ✓ Nommer les lignes et les colonnes **rownames**(matrice) et **colnames**(matrice) ou **dimnames** = list(vecteur1, vecteur2)
- ✓ Cbind / Rbind permet de combiner plusieurs matrices ou vecteurs (soit ajout de colonnes, soit ajout de lignes).
- ✓ ColSums / RowSums pour sommer sur les colonnes ou sur les lignes
- ✓ Sélection avec [1,2], possibilité avec des plages de données [1:2,6], possibilité de seulement des lignes ou des colonnes [,1] ou [2,]
- ✓ Possibilité de multiplier toutes les valeurs par un chiffre ou par une autre matrice

```
# Création d'une matrice
> matrix(1:9, nrow=3)
     [,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9
```

Array : tableau à n dimensions de valeurs de même type

array()

Matrice : collection d'éléments de même types de données = tableau à 2 dimensions

- ✓ Nommer les lignes et les colonnes rownames(matrice) et colnames(matrice) ou dimnames = list(vecteur1, vecteur2)
- ✓ Fonction rowSums pour sommer les lignes
- ✓ Cbind / Rbind permet de combiner plusieurs matrices ou vecteurs (soit ajout de colonnes, soit ajout de lignes).
- ✓ ColSums / RowSums pour sommer sur les colonnes ou sur les lignes
- ✓ Sélection avec [1,2], possibilité avec des plages de données [1:2,6], possibilité de seulement des lignes ou des colonnes [,1] ou [2,]
- ✓ Possibilité de multiplier toutes les valeurs par un chiffre ou par une autre matrice

```
# Création d'une matrice
> matrix(1:9, nrow=3)
     [,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9
```

factor()

> Le facteur contient la liste + indication des valeurs distinctes

- ✓ **Levels** permet de changer le nom des éléments d'un facteur. Attention, l'ordre d'un facteur, s'il n'est pas spécifié est l'ordre alphabétique.
- ✓ **Summary** compte le nombre d'éléments d'un facteur. Attention, à faire sur un facteur et non sur un vecteur
- ✓ Lors de la création d'un facteur, il est possible de l'ordonner avec les mots clés **ordered = TRUE** et levels = liste ordonnée

Liste : Liste de données qui peut contenir D'autres types de données complexes

list()

- ✓ La fonction List permet de créer une liste
- ✓ Fonction Names pour renommer (ou list(name1=objet1, name2=objet2,...))
- ✓ Afficher un élément entre double crochets. On peut récupérer un élément d'un objet listé en rajoutant la sélection
- ✓ Pour rajouter un élément, utiliser c(list, élément)
- ✓ Pour sélectionner un élément : List[[1]]

```
# Regardons les éléments de la liste
> Actor <- list(«Jack Nicholson», «Shelley Duvall»,
«Danny Lloyd», «Barry Nelson», «Scatman Crothers»)
[[1]]
[1] «Jack Nicholson»

[[2]]
[1] «Shelley Duvall»

[[3]]
[1] «Danny Lloyd»

[[4]]
[1] «Barry Nelson»

[[5]]
[1] «Scatman Crothers»</pre>
```

DataFrame : Tableau composé de type de données différentes

data.frame()

- ✓ Fonctions head() et tail() pour récupérer les premières et les dernières lignes d'un data frame.
- √ str() permet de voir la structure d'un data frame
- ✓ Fonction data.frame() avec une liste de vecteurs de la même tailler Chaque vecteur sera une colonne du data frame/
- ✓ On peut utiliser le raccourci \$ pour appeler toute une colonne

ex : Clients\$Noms affiche la colonne Noms du data frame Clients

- ✓ La fonction Subset permet de ne récupérer qu'une partie des données, par rapport à un filtre
- ✓ On peut sélectionner une colonne en tapant Clients[numéro ou nom de colonne]

```
# Structure de la table Clients
> str(Clients)
'data.frame': 312 obs. of 4 variables
$ Noms : char DUPONT BESSE CARBONE CESAR ...
$ Prenoms : num Marc Antoine Luc Marie ...
$ Age : num 12 35 38 75 25 43 61 8 96 55 ...
$ Dep : num 69 38 13 75 92 18 37 74 58 21 ...
```

3.

Importer – Exporter des données

Lecture des données

✓ Les fonctions **read.table**() et **read.csv**() permettent de lire et importer des fichiers .txt et .csv. Le résultat va se trouver dans une structure de type "data frame".

```
# Le fichier data.txt est lu est stocké dans un nouveau objet R nommé Database

Database <- read.table("data.txt", header = TRUE)

# Fichier de type CSV depuis un serveur web (ce fichier contient des stats de google webmaster tools pour edutechwiki ...)

Database_webmaster <- read.csv("http://tecfa.unige.ch/guides/R/data/edutechwiki-fr-gw-oct-6-2014.csv", header = TRUE, sep= ",")
```

✓ Les fonctions **fread()** du package data.table permet de lire les fichiers avec un délimiteur régulier, similaire à read.table() la fonction est bien plus rapide.

Visualiser les tableaux que vous avez importé ou créé :

Visualiser les données

- Dans RStudio, cliquer sur le variable (par ex.
 "Database" ci-dessus) dans le panneau Environment
- Utilisez : summary(DB), dim(Database), etc.
- Pour afficher une colonne ou d'autres détails utilisez la syntaxe "\$" ou "[..]"

Export des données

✓ Les fonctions write_csv, write_delim, write_tsv permettent d'enregistrer un data frame ou un tibble dans un fichier au format texte délimité

Le fichier est enregistré sous nomFichier.csv et le numéro des lignes n'est pas conservé

write.csv(nomFichier,file="nomFichier.csv",row.names = FALSE)

4.

Les graphiques

1. Courbes et nuages de point

1. Scatter plot

Tracer un nuage de point (scatter plot) illustrant toutes les valeurs de x dans l'ordre et à intervalles réguliers

```
# Tracer un graphique d'un vecteur x = c(1:10) plot(x)
```


Tracer un graphique du dataset iris
Plot(iris\$Petal.Length, iris\$Petal.Width)

1. Scatter plot

Les options de mise en forme des graphiques

```
# main pour le titre
plot(iris$Petal.Length, iris$Petal.Width, main="Edgar Anderson's Iris Data")

# col pour changer la couleur
plot(iris$Petal.Length, iris$Petal.Width,col="red")

# type pour changer le type de point ('I' pour ligne, 'p' pour point, 'b' point-ligne, ...)
plot(iris$Petal.Length, iris$Petal.Width,type="b")

# xlab, ylab pour renommer les axes
plot(iris$Petal.Length, iris$Petal.Width,xlab = "titre de l'axe x",ylab = "axe y")

# xlim et ylim pour paramétrer les limites
plot(iris$Petal.Length, iris$Petal.Width,xlim=c(0,10),ylim=c(2,5))
```

Edgar Anderson's Iris Data

2. Diagrammes en barre

2. Diagramme en barre

La fonction barplot() est la plus commune pour les diagrammes en barre

```
# Tracer un graphique d'un vecteur
x = c(1,2,5,2)
barplot(x)
```


2. Diagramme en barre

Diagrammes à barres regroupées

```
# Tracer un graphique d'un vecteur

x = c(1,2,3)
y = c(2,4,2)
type = c("test a","test b","test c") moyennes =
c(x,y)
moyennes = matrix(moyennes,nc=3, nr=2, byrow=T) #
nc : nombre de tests - nr : nombre de barres
accolées (ici par paire) colnames(moyennes) = type
barplot(moyennes,beside=T)
```


2. Diagramme en barre

Diagrammes à barres empilées

```
x = c(1,2,3,3)
y = c(2,4,2,4)
z = c(1,1,1,1)
type = c("test a","test b","test c","test d")
moyennes = c(x,y,z)
moyennes = matrix(moyennes,nc=4, nr=3, byrow=T) # nc : nombre de
tests - nr : nombre de barres accolées (ici par 3)
colnames(moyennes) = type
barplot(moyennes,beside=F,col=c("red","orange","yellow","pink"),ylim=
c(0,9)); box()
```


3. Exemple de cas d'usage

Utilisation de R dans la brique analytique d'une architecture Big Data

3. Exemple de cas d'usage

Microsoft avec Science ata

Pour la gestion de la volumétrie

Côté Azure

- Azure HDFS
- Azure DataLake
- Azure SQL Datawarehouse

Côté SQL Server

- Base OLTP / OLAP / InMemory
- Polybase

Pour la visualisation des données

Power BI

Pour la puissance de calcul

- Azure Machine Learning
- SQL Server R Services

Pourquoi un serveur R?

- Pour alléger le travail à réaliser côté client
- Parce qu'un serveur aura plus de ressources qu'un poste client
- Pour automatiser, centraliser, partager son travail

Exemple sur d'autres technos Infrastructure Enedis

Données

- Oracle
- Hadoop

Calcul

Serveur R

Visualisation des données

Tableau

Client

RStudio

Microsoft a racheté la société **Revolution Analytics** et intégré son moteur dans SQL Server. Ce moteur permet d'exploiter la puissance d'un serveur centralisé et de faciliter la manipulation de données avec R depuis SQL Server

3. Exemple de cas d'usage

Visualisation dynamique avec RShiny – étude de la qualité de l'eau sur les 6 dernières années

