Question 1 [15 marks]

a) Let u and v be vectors in \mathbb{R}^n , we will start by assuming that $(u \bullet v) = 0$, it thus follows that:

$$(u \bullet v) = 0$$
$$(u \bullet v) + (u \bullet v) = 0 + 0$$
$$(u \bullet v) + (v \bullet u) = 0$$

We will now add $(u \bullet u)$ and $(v \bullet v)$ to both sides:

$$(u \bullet u) + (u \bullet v) + (v \bullet u) + (v \bullet v) = (u \bullet u) + 0 + (v \bullet v)$$
$$(u \bullet u) + (u \bullet v) + (v \bullet u) + (v \bullet v) = (u \bullet u) + (v \bullet v)$$

We know from the properties of the dot product that $(u \bullet u) = ||u||^2$, so our equation becomes:

$$(u \bullet u) + (u \bullet v) + (v \bullet u) + (v \bullet v) = ||u||^2 + (v \bullet v)$$
$$(u \bullet u) + (u \bullet v) + (v \bullet u) + (v \bullet v) = ||u||^2 + ||v||^2$$

We know from the proprieties of the dot product that $(u \bullet v) + (u \bullet u) = u \bullet (u + v)$, so we will distrabute out u and then v to get:

$$u \bullet (u \bullet v) + (v \bullet u) + (v \bullet v) = ||u||^2 + ||v||^2$$

 $u \bullet (u + v) + v \bullet (u + v) = ||u||^2 + ||v||^2$

As well since $(u+v) \bullet (u+v) = u \bullet (u+v) + v \bullet (u+v)$, it implies that our equation will become:

$$(u+v) \bullet (u+v) = ||u||^2 + ||v||^2$$

 $||u+v||^2 = ||u||^2 + ||v||^2$

b) The converse of this statement would be (for vectors u and v in \mathbb{R}^n)

if
$$||u+v||^2 = ||u||^2 + ||v||^2$$
 then $(u \bullet v) = 0$

c) To start we will assume the hypothesis (for vectors u and v in \mathbb{R}^n):

let
$$||u + v||^2 = ||u||^2 + ||v||^2$$

By the definition of length for a vector, it imples that the equation becomes:

$$||u+v||^{2} = ||u||^{2} + ||v||^{2}$$

$$(\sqrt{(u+v) \bullet (u+v)})^{2} = (\sqrt{(u \bullet u)})^{2} + (\sqrt{(v \bullet v)})^{2}$$

$$(u+v) \bullet (u+v) = (\sqrt{(u \bullet u)})^{2} + (\sqrt{(v \bullet v)})^{2}$$

$$(u+v) \bullet (u+v) = (u \bullet u) + (v \bullet v)$$

We know by definition that $(u+v) \bullet (u+v) = u \bullet (u+v) + v \bullet (u+v)$, thus:

$$(u+v) \bullet (u+v) = (u \bullet u) + (v \bullet v)$$
$$u \bullet (u+v) + v \bullet (u+v) = (u \bullet u) + (v \bullet v)$$

Furthermore we know that $(u \bullet v) + (u \bullet u) = u \bullet (u + v)$, which thus implies:

$$\begin{split} u \bullet (u+v) + v \bullet (u+v) &= (u \bullet u) + (v \bullet v) \\ (u \bullet u) + (u \bullet v) + (v \bullet u) + (v \bullet v) &= (u \bullet u) + (v \bullet v) \\ (u \bullet v) + (v \bullet u) &= (u \bullet u) + (v \bullet v) - (v \bullet v) - (u \bullet u) \\ (u \bullet v) + (v \bullet u) &= 0 \end{split}$$

From the properties of dot product we know this can simplify to:

$$(u \bullet v) + (v \bullet u) = 0$$
$$(u \bullet v) + (u \bullet v) = 0$$
$$2(u \bullet v) = 0$$
$$(u \bullet v) = 0$$

Therefore proving that for all vectors u, v in \mathbb{R}^n , that if $||u+v||^2 = ||u||^2 + ||v||^2$ then $(u \bullet v) = 0$

d)