CSE 311: Data Communication

Instructor:

Dr. Md. Monirul Islam

Messages/Signals: Definition

- A signal is a set of information or data.
- A signal is a function of independent variables that carry some information.
- A signal is a physical quantity that varies with time, space or any other independent variable by which information can be conveyed.

Example of Signals

- Voice signal
- Telephone or television signal
- Monthly sales figure
- Opening or closing stock prices
- Charge density over a surface
- In this course we deal with signals that are functions of time.

Signal representation: Time Domain

Classification of Signals

- Based on continuity in time axis
 - Continuous time
 - Discrete time
- Based on continuity in amplitude axis
 - Continuous amplitude
 - Discrete amplitude

Classification of Signals

Discrete amplitude

Analog and Digital Signal

Analog Signal

- Continuous amplitude, i.e., takes any value in a continuous range.
- May be both continuous and discrete time.

Digital Signal

- <u>Discrete amplitude</u>, i.e., amplitude can take only a finite number of values.
- Values need not be always integer.
- Not necessarily always binary, rather M-ary.
- May be both continuous and discrete time.

Analog and Digital Signal: Examples

Analog

Digital

Thermometer

Clock

Blood Pressure Monitor

Components of Communication systems

Perion

Main challenges

Challenges of Communication systems

Perien

1. Distortion

- -systematic undesirable changes in signals
- -Linear or non-linear

Noise

- Unwanted signal that interfere with the transmitted signal
- Random signals from internal or external sources

- 1. Quality, e.g., enhanced noise immunity
- 2. Economics

1. noise immunity

Represented by binary or M-ary pulses

1. noise immunity

Represented by binary or M-ary pulses

1. noise immunity

Represented by binary or M-ary pulses

1. noise immunity

Recovered despite small distortion and noises

Repeater's Role in Digital Message/Signal

- Distortion and noise are unavoidable in channel
- Repeaters and nodes regenerates digital pulses

Repeater's Role in Digital Message/Signal

- Distortion and noise are unavoidable in channel
- Repeaters and nodes regenerates digital pulses

Repeater's Role in Digital Message/Signal

- Distortion and noise are unavoidable in channel
- Repeaters and nodes regenerates digital pulses

Repeater's Role in Analog Message/Signal

- Distortion and noise are unavoidable in channel
- Repeaters are filters and amplifiers in analog signals
- Amplifier amplifies both signal and noise

Repeater's Role in Analog Message/Signal

- Distortion and noise are unavoidable in channel
- Repeaters are filters and amplifiers in analog signals
- Amplifier amplifies both signal and noise

Repeater's Role in Analog Message/Signal

- Distortion and noise are unavoidable in channel
- Repeaters are filters and amplifiers in analog signals
- Amplifier amplifies both signal and noise

Noise accumulates along the path! No improvement at all !!

 A/D conversion enables digital communication to convey analog signals

- A/D conversion enables digital communication to convey analog signals
- Analog signal characteristics
 - values are continuous
 - defined over continuous/discrete time

- A/D conversion enables digital communication to convey analog signals
- Digital signal characteristic's
 - values are a finite discrete set
 - defined over preferably discrete time x[t]

- 2 major steps
 - Sampling
 - Quantization

Sampling

- Governed by Nyquist 's Sampling theory
- Selects points for sampling

Sampling

- Governed by Nyquist 's Sampling theory
- Selects points for sampling

Sampling

- Governed by Nyquist 's Sampling theory
- Selects points for sampling

Quantization

- Values replaced by a set of L distinct values
- Usually $L = 2^k$

Quantization

- Values replaced by a set of L distinct values
- Usually $L = 2^k$

Increasing sampling rate retains original shape

Increasing sampling rate retains original shape

Remember Nyquist's theorem!

- Increasing Quantization level L
 - increases accuracy
 - more noise immunity
 - but requires higher channel bandwidth

Recall this figure

Recall this figure

- Detection is easy when A >> noise
- Usually A >> 5-10 times of noise

Problem: quantization error is unavoidable

Problem: quantization error is unavoidable

Quantization error can be minimized increasing *L*

• Assume, No. of quantization level, L = 2

- Assume, No. of quantization level, L = 2
 - Easy to represent or transmit

If No. of quantization level, L >> 2

If No. of quantization level, L >> 2

Each sample is represented by one of *L* levels

- If No. of quantization level, L >> 2
 - Solution is PCM
 - Each quantized value is represented by a sequence of binary pulses.

• Assume, L = 16

- Assume, L = 16
 - Each quantized value is represented by a sequence of FOUR binary pulses.

Digit	Binary equivalent	Pulse code waveform
0	0000	200
- 1	0001	HI 100 100
2	0010	H H H
3	0011	88 NO.
4	0100	W 20 W
5	0101	N ST
6	0110	12 M
7	0111	- N N N
8	1000	_38L_
9	1001	<u>88 88 88.</u>
10	1010	<u> </u>
. 11	1011	-5 - 3 - 5
. 12	1100	_N N N
13	1101	<u> </u>
14	1110	06 18 18 ₃₈
15	1111	_10 M 10 M