Сеть в UNIX

Методы сетевых соединений.

Дагделен 3. Р.

19 апреля 2024

Российский университет дружбы народов, Москва, Россия

Докладчик

- Дагделен Зейнап Реджеповна
- студентка из группы НКАбд-02-23
- Факультет физико-математических и естественных наук
- Российский университет дружбы народов
- · 1132236052@rudn.ru
- https:///zrdagdelen.github.io

Актуальность темы:

В связи с распространением сетевых технологий, исследование и разработка новых методов сетевых соединений в UNIX-системах остается актуальной темой.

Объект и предмет исследования:

Объектом исследования являются методы сетевых соединений в операционных системах семейства UNIX. Предметом исследования является анализ существующих методов и их сравнение.

Научная новизна и цель:

Научная новизна и цель заключается в анализе существующих методов и их сравнении с новыми разработками.

Практическая значимость работы:

Практическая значимость работы заключается в возможности применения разработанных методов сетевых соединений в реальных сетевых системах, что позволит улучшить эффективность взаимодействия между устройствами и программами в сети.

Основные методы сетевых соединений в Unix: 1. Сокеты (Sockets)

Сокет - это абстракция сетевого взаимодействия в операционной системе Linux. Каждому сокету соответствует пара IP-адрес + номер порта. Верное название этой имплементации - "Интернет сокет".

Основные методы сетевых соединений в Unix: 1. Сокеты (Sockets)

В ядре ОС Linux сокеты представлены тремя основными структурами:

- 1. struct socket представление сокета BSD, того вида сокета, который стал основой для современных "Интернет сокетов";
- 2. struct sock собственная оболочка, которая в Linux называется "INET socket";
- 3. struct sk_buff "хранилище" данных, которые передает или получает сокет;

Основные методы сетевых соединений в Unix: 2. Протоколы сетевого уровня

Протоколы предоставляют основу для передачи данных через сеть и определяют правила взаимодействия между устройствами.

	Распределение протоколов по уровням модели OSI					
	TCP/IP OSI					
7		Прикладной	Hanp., HTTP, SMTP, SNMP, FTP, Telnet, SSH, SCP, SMB, NFS, RTSP, BGP			
6	Прикладной	Представления	напр., XDR, AFP, TLS, SSL			
5		Сеансовый	Hanp., ISO 8327 / CCITT X.225, RPC, NetBIOS, PPTP, L2TP, ASP			
4	<i>Транспортный</i> Транспортный		напр., TCP, UDP, SCTP, SPX, ATP, DCCP, GRE			
3	Сетевой Сетевой		напр., IP, ICMP, IGMP, CLNP, OSPF, RIP, IPX, DDP			
2	Канальный	Канальный	напр., Ethernet, Token ring, HDLC, PPP, X.25, Frame relay, ISDN, ATM, SPB, MPLS, ARP			
1	Канальный	Физический	напр., электрические провода, радиосвязь, волоконно-оптические провода, инфракрасное излучение			

Рис. 1: Распределение протоколов по уровням модели OSI

Вот некоторые из наиболее распространенных протоколов сетевого уровня:

1. IPv4 (Internet Protocol version 4): Это один из основных протоколов сетевого уровня, используемый для маршрутизации пакетов данных в Интернете. IPv4 использует 32-битные адреса и является основой для большинства сетевых коммуникаций.

Как работает? Обмен информацией в рамках этого протокола происходит с помощью технологии TCP/IP. Это означает, что каждому устройству для доступа в сеть присваивается уникальный адрес. Это позволяет обеспечивать надежный обмен данными благодаря гарантированной идентификации каждого устройства³.

Минусы: Количество адресов, созданных с его помощью, не может превысить цифру 4 294 967 296 (минимальный адрес - 0.0.0.0, максимальный - 255.255.255.255). С учетом того, что население земного шара составляет более семи миллиардов человек, а количество всевозможных сетевых устройств растет ежедневно, предельный порог довольно близок⁴.

2. IPv6 (Internet Protocol version 6): IPv6 разработан как следующее поколение протокола IPv4. Он использует 128-битные адреса, что позволяет создавать значительно больше уникальных адресов и решает проблему исчерпания адресного пространства IPv4.

About IPv4 and IPv6

IP version	IPv4	IPv6
Deployed	1981	1999
Address Size	32-bit number	128-bit number
Address Format	Dotted Decimal Notation: 192.0.2.76	Hexadecimal Notation: 2001:0DB8:0234:AB00: 0123:4567:8901:ABCD
Number of Addresses	2 ³² = 4,294,967,296	2 ¹²⁸ = 340,282,366,920,938,463, 463,374,607,431,768,211,456
Examples of Prefix Notation	192.0.2.0/24 10/8 (a "/8" block = 1/256 th of total IPv4 address space = 2 ²⁴ = 16,777,216 addresses)	2001:0DB8:0234::/48 2600:0000::/12

Дополнительные преимущества протокола $IPV6^{5}$: По сравнению с четвертой версией, в протоколе TCP/IPV6 реализован ряд дополнительных функциональных возможностей:

- используется более простой заголовок, из него исключены несущественные параметры, что снижает нагрузку на маршрутизаторы при обработке сетевых запросов;
- более высокий уровень обеспечения безопасности, аутентификации и конфиденциальности, которые положены в основу данной технологии;
- в протоколе реализована функция Quality of Service (QoS), позволяющая определять чувствительные к задержке пакеты;

2. Протоколы сетевого уровня: ІСМР

3. ICMP (Internet Control Message Protocol): Этот протокол используется для передачи сообщений об ошибках и управления сетью. ICMP используется для проверки доступности узлов в сети с помощью утилиты ping, а также для обнаружения ошибок при передаче данных.

 ${\it Muhycbi}^6$: На самом деле, с помощью ICMP можно провести атаки на сеть.

2.	П	ротоколы	сетевого	у	ровня:	TCP
----	---	----------	----------	---	--------	------------

4. TCP (Transmission Control Protocol): TCP является протоколом, обеспечивающим надежную и упорядоченную передачу данных между узлами в сети. Он обеспечивает управление потоком данных, контроль ошибок и механизмы восстановления после сбоев.

5. UDP (User Datagram Protocol): В отличие от TCP, UDP является протоколом без установления соединения, что делает его более быстрым и менее надежным. Он широко используется для передачи потоковых данных и приложений, где скорость важнее надежности.

UDP и TCP				
UDP	тср			
Без соединения	Основан на соединении			
Быстрее чем ТСР	Медленнее чем ТСР			
Не распознает сегменты	Распознавание сегментов обязательно			
Не имеет надежных механизмов проверки ошибок	Имеет всесторонние механизмы проверки ошибок			
Размер заголовка 8 байт	Размер заголовка 20-80 байт			
Не надежен, так как имеет много потерь пакетов	Надежен, и пакеты гарантированно доходят до места назначения			

Заключение

Заключение

Методы сетевых соединений в Unix играют ключевую роль в современных сетевых средах, обеспечивая надежную и эффективную передачу данных между узлами. Понимание этих методов является важным для администраторов систем и разработчиков, работающих в Unix-среде.

- 1. Сеть: Настройка и администрирование системы 0
- 2. Unix. Сетевые возможности¹
- 3. Сокеты в OC Linux²
- 4. Ipv4 адрес что это³
- 5. Протокол IPv4: что это такое и как он работает 4

- 6. Протокол IPv6: что это такое и как он работает 5
- 7. Протокол интернет-управляющих сообщений $(ICMP)^6$
- 8. TCP⁷
- 9. UDP⁸
- 10. ARP⁹

Итоговый слайд			
_			٠.

Благодаря этой презентации мы разобрались, какие существуют методы сетевых соединений!