INTELIGENŢĂ ARTIFICIALĂ

Sisteme inteligente

Învățare semi-supervizată-

Laura Dioşan

Sumar

A. Scurtă introducere în Inteligența Artificială (IA)

B. Rezolvarea problemelor prin căutare

- Definirea problemelor de căutare
- Strategii de căutare
 - Strategii de căutare neinformate
 - Strategii de căutare informate
 - Strategii de căutare locale (Hill Climbing, Simulated Annealing, Tabu Search, Algoritmi evolutivi, PSO, ACO)
 - Strategii de căutare adversială

c. Sisteme inteligente

- Sisteme care învaţă singure
 - Arbori de decizie
 - Rețele neuronale artificiale
 - Algoritmi evolutivi
 - Algoritmi de învățare semi-supervizată
- Sisteme bazate pe reguli
- Sisteme hibride

Materiale de citit și legături utile

- capitolul 15 din C. Groşan, A. Abraham, Intelligent Systems: A Modern Approach, Springer, 2011
- Capitolul 9 din T. M. Mitchell, Machine Learning, McGraw-Hill Science, 1997
- Documentele din directorul sym

Sisteme inteligente

- De ce?
- Problema învățării
- Algoritmi (câțiva)

- □ De ce?
 - Datele ne-adnotate sunt ieftine
 - Datele adnotate sunt greu de obţinut/creat
 - Adnotarea de către oameni este o activitate plictisitoare
 - Etichetarea necesită
 - profesioniști/experți în domeniul respectiv
 - Dispozitive speciale
 - Studentul este în vacanță :D
 - Exemple greu de etichetat
 - Analiza vorbirii
 - Transcrierea conversaţiilor (telefonice)
 - O oră de vorbit = 400 ore de adnotat
 - Parsarea limbajului natural
 - Exemple mai puţin dificile
 - Categorizare de imagini google image

Problema învățării

- Antrenarea unor modele utilizând atât date adnotate, cât și date ne-adnotate
- Date de antrenare:
 - Etichetate (adnotate) $(X_i, Y_i) = \{(x_{1:i}, y_{1:i})\}$
 - □ Ne-etichetate $X_{ij} = \{x_{i+1:n}\}$ cu i << n
- Model
 - $\Box f: X \rightarrow Y$
- Date de testare:
 - $X_t = \{ x_{n+1:...} \}$

Algoritmi

- Auto-antrenare
- Modele generative
- Maşini cu Suport Vectorial semi-supervizate
- Algoritmi bazați pe grafe

- Algoritmi: Auto-antrenare (self-training)
 - Ideea de bază
 - 1. Antrenarea modelului f pe datele (X_l, Y_l)
 - 2. Folosirea modelului pentru a eticheta un $x \in X_u$
 - Adăugarea (x, f(x)) la setul de date etichetate
 - 4. Repetarea paşilor 1-3

- Algoritmi: Auto-antrenare
 - Exemple
 - Clasificarea imaginilor
 - O imagine este împărțită în mai mul regiuni (normalizate)

 Se definește un dicționar de "cuvinte vizuale" (centroizi ai clusterizării)

 Se reprezintă fiecare regiune prin indexul celui mai apropiat "cuvânt vizual"

- Algoritmi: Auto-antrenare
 - Exemple Clasificarea imaginilor
 - Se antrenează un clasificator pe imagin adnotate

3. Cele mai reprezentative (de încredere) imagini (împreună cu etichetele lor) se adaugă în setul de imagini etichetate

4. Se repetă pașii 1-3

■ Algoritmi: Auto-antrenare

- Avantaje
 - Metodă simplă
 - Metodă de tip wrapper, aplicată unor clasificatori existenți
 - Folosită des în task-uri reale (NLP)

Dezavantaje

- Erorile timpurii pot fi consolidate şi propagate uşor
 - Eliminarea etichetei unui exemplu cu încrederea sub un anumit prag
- Puţine informaţii despre convergenţă
 - În unele cazuri, auto-antrenare = maximizarea așteptărilor

- Algoritmi: Modele generative
 - Ideea de bază
 - Date etichetate (X₁,Y₁)
 - Se presupune că datele dintr-o clasă respectă o distribuție Gaussiană
 - Clusterizarea datelor X_I şi X_u
 - Etichetarea datelor dintr-un cluster cu eticheta datelor etichetate majoritare

- □ Algoritmi: Maşini cu Suport Vectorial semisupervizate (S3VMs = Transductive SVMs)
 - Ideea de bază
 - Maximizarea marginilor datelor ne-etichetate
 - Se enumeră toate cele k^u posibilități de a eticheta datele X_u
 - Se construiește un SVM clasic pentru fiecare posibilitate
 - Se alege SVM cu cea mai largă margine

- Algoritmi: Algoritmi bazați pe grafe
 - Ideea de bază
 - Noduri: X_I U X_u
 - Muchii: ponderi pentru similaritatea diferitelor atribute ale nodurilor
 - K-cel mai apropiat vecin (ponderi booleene)
 - Grafe complete (ponderi invers proporționale cu distanța între noduri)
 - Stabilirea similarității pe toate căile

- Algoritmi
 Mincut
 Harmonic functions
 Transductive learning
 Inductive learning
 - Consitență locală și globală
 Regularizare manifold
 - Regularizare manifold

- Algoritmi: Algoritmi bazați pe grafe Mincut
 - Pp că exemplele similare trebuie să fie adnotate (etichetate) similar

- Algoritmi: Algoritmi bazați pe grafe Mincut
 - Plecăm de la un set de date ((X_I, Y_I), X₊)

- Algoritmi: Algoritmi bazați pe grafe Mincut
 - Plecăm de la un set de date ((X_I, Y_I), X_U)
 - Construim un graf (ponderat/neponderat)

- Algoritmi: Algoritmi bazați pe grafe Mincut
 - Plecăm de la un set de date ((X_I, Y_I), X_U)
 - Construim un graf (ponderat/neponderat)
 - Adăugăm super-noduri auxiliare

- Algoritmi: Algoritmi bazați pe grafe Mincut
 - Plecăm de la un set de date ((X_I, Y_I), X_u)
 - Construim un graf (ponderat/neponderat)
 - Adăugăm super-noduri auxiliare
 - Obţinem o tăietură minimă

- Algoritmi: Algoritmi bazați pe grafe Mincut
 - Plecăm de la un set de date ((X_I, Y_I), X_u)
 - Construim un graf (ponderat/neponderat)
 - Adăugăm super-noduri auxiliare
 - Obţinem o tăietură minimă
 - Clasificăm

- Algoritmi: Algoritmi bazați pe grafe Mincut
 - Construcția grafului metode
 - □ k-NN
 - Graful poate să nu aibă tăieturi echilibrate
 - Cum se învață k?
 - Conectarea tuturor punctelor sub o distanță prag δ
 - Pot apărea componente de-conectate
 - Cum se învață pragul δ?
 - Arbore de acoperire minimă
 - Fără parametri
 - Rezultă grafe conectate și rare
 - Funcționează bine pe multe dintre date

Recapitulare

- Sisteme care învaţă singure (SIS)
 - Învățare semi-supervizată
 - Auto-antrenare
 - Modele generative
 - Maşini cu Suport Vectorial semi-supervizate
 - Algoritmi bazaţi pe grafe

Cursul următor

- A. Scurtă introducere în Inteligența Artificială (IA)
- B. Rezolvarea problemelor prin căutare
 - Definirea problemelor de căutare
 - Strategii de căutare
 - Strategii de căutare neinformate
 - Strategii de căutare informate
 - Strategii de căutare locale (Hill Climbing, Simulated Annealing, Tabu Search, Algoritmi evolutivi, PSO, ACO)
 - Strategii de căutare adversială
- c. Sisteme inteligente
 - Sisteme care învaţă singure
 - Arbori de decizie
 - Retele neuronale artificiale
 - Maşini cu suport vectorial
 - Algoritmi evolutivi
 - Sisteme bazate pe reguli
 - Sisteme hibride

- Informaţiile prezentate au fost colectate din diferite surse de pe internet, precum şi din cursurile de inteligenţă artificială ţinute în anii anteriori de către:
 - Conf. Dr. Mihai Oltean www.cs.ubbcluj.ro/~moltean
 - Lect. Dr. Crina Groşan www.cs.ubbcluj.ro/~cgrosan
 - Prof. Dr. Horia F. Pop www.cs.ubbcluj.ro/~hfpop