Computer Architecture

Assignment 11

Gaurav Chauhan 2018CS50406

This assignment is about the flosting point arithmetic and the program implements the following algorithm in C++.

The code handles all the exceptions like underflow, overflow, zero inputs and also raises exception about the denormalised numbers.

Single precision		Double precision		Object represented
Exponent	Fraction	Exponent	Fraction	
0	0	0	0	0
0	Nonzero	0	Nonzero	± denormalized number
1–254	Anything	1–2046	Anything	± floating-point number
255	0	2047	0	± infinity
255	Nonzero	2047	Nonzero	NaN (Not a Number)

The input test file is

the output is

Infinites in input. No computations Infinites in input. No computations Infinites in input. No computations 101000000010101000000000000000110number of cycles: 4 **OVERFLOW** number of cycles: 3 1000000011001111111111111110000000

number of cycles: 4 **UNDERFLOW**

number of cycles: 3

number of cycles: 4

01001011010101010101010100000000

number of cycles: 4

000000011111111111111111111111100

number of cycles: 4

000000110010000000000000000000001

number of cycles: 4

00011010011111111111111111111111111

number of cycles: 3 UNDERFLOW number of cycles: 3

number of cycles: 4

111000110011111111111111111111111111

number of cycles: 4

001000111110111000100111111100000

number of cycles: 4