Санкт-Петербургский политехнический университет Петра Великого

Физико-механический институт

Высшая школа прикладной математики и вычислительной физики

Отчет по лабораторной работе №2 "Интервальный анализ"

Выполнили студент группы 5030102/10201: Скворцов Владимир Сергеевич

Преподаватель: Баженов Александр Николаевич

 ${
m Cahkt-} \Pi$ етербург 2024

Содержание

1	Постановка задачи	2
2	Необходимая теория 2.1 Допусковое множество 2.2 <i>b</i> -коррекция ИСЛАУ 2.3 <i>A</i> -коррекция ИСЛАУ	2 2 3 3
3	Реализаця	3
4	Обсуждение	4
5	Выводы	4

1 Постановка задачи

Дан набор ИСЛАУ 1

$$\mathbf{A}x = \mathbf{b}, \ x = (x_1, x_2) \tag{1}$$

с матрицей 2 и вектором правой части 3

$$\mathbf{A} = \begin{pmatrix} [0.65, 1.25] & [0.70, 1.3] \\ [0.75, 1.35] & [0.70, 1.3] \end{pmatrix}, \ \mathbf{A} = \begin{pmatrix} [0.65, 1.25] & [0.70, 1.3] \\ [0.75, 1.35] & [0.70, 1.3] \\ [0.8, 1.4] & [0.70, 1.3] \end{pmatrix}, \ \mathbf{A} = \begin{pmatrix} [0.65, 1.25] & [0.70, 1.3] \\ [0.75, 1.35] & [0.70, 1.3] \\ [0.8, 1.4] & [0.70, 1.3] \\ [-0.3, 0.3] & [0.70, 1.3] \end{pmatrix},$$

$$(2)$$

$$\mathbf{b} = \begin{pmatrix} [2.75, 3.15] \\ [2.85, 3.25] \end{pmatrix}, \ \mathbf{b} = \begin{pmatrix} [2.75, 3.15] \\ [2.85, 3.25] \\ [2.90, 3.3] \end{pmatrix}, \ \mathbf{b} = \begin{pmatrix} [2.75, 3.15] \\ [2.85, 3.25] \\ [2.90, 3.3] \\ [1.8, 2.2] \end{pmatrix}. \tag{3}$$

Необходимо:

- Проверить непустоту допускового множества ИСЛАУ 1,
- построить график функционала Tol(x) для 1,
- построить допусковое множество ИСЛАУ 1,
- найти argmax Tol и образующие допускового функционала.

Для достижения непустого допускового множества провести коррекцию ИСЛАУ 1:

- \bullet правой части ИСЛАУ 2 b-коррекция,
- матрицы ИСЛАУ 2 A-коррекция,
- ullet комбинацией предыдущих методов с одновременным изменением правой части и матрицы ИСЛАУ Ab-коррекция.

Для всех видов коррекции построить график функционала Tol(x), допускового множества, отобразить argmax Tol и найденные ранее частные решения набора CЛAУ.

2 Необходимая теория

2.1 Допусковое множество

Пусть даны интервальная $m \times n$ матрица ${\bf A}$ и интервальный аетор правой части ${\bf b}$.

Допусковым множесством решений ИСЛАУ называется множетсво

$$\Xi_{\text{tol}}(\mathbf{A}, \mathbf{b}) \stackrel{\text{def}}{=} \left\{ x \in \mathbb{R}^n \mid \forall A \in \mathbf{A} \ \exists b \in \mathbf{b} : \ Ax = b \right\}. \tag{4}$$

Функционалом $\mathrm{Tol}(x): \mathbb{R}^n \times \mathbb{IR}^{m \times n} \times \mathbb{IR}^m \to \mathbb{R}$ называется выражение

$$\operatorname{Tol}(x, \mathbf{A}, \mathbf{b}) \stackrel{\text{def}}{=} \min_{1 \le i \le m} \left\{ \operatorname{rad} \mathbf{b}_i - \left| \operatorname{mid} \mathbf{b}_i - \sum_{j=1}^n \mathbf{a}_{ij} x_j \right| \right\}.$$
 (5)

Тогда принадлежность $x \in \Xi_{\rm tol}({\bf A},{\bf b})$ равносильна ${\rm Tol}(x,{\bf A},{\bf b}) \geq 0$, то есть допусковое множество решений интервальной линейной системы ${\bf A}x={\bf b}$ есть множество уровня

$$\{x \in \mathbb{R}^n \mid \text{Tol}(x, \mathbf{A}, \mathbf{b}) \ge 0\}$$

функционала Tol.

2.2 *b*-коррекция ИСЛАУ

Пусть матрица **A** ИСЛАУ неизменна, и значения $\mathrm{mid}\mathbf{b}_i, i \in \overline{1,m}$ зафиксированы. Тогда расширение вектора **b** путем его замены на вектор

$$\mathbf{b} + K\mathbf{e}, \ K \ge 0, \ \mathbf{e} = ([-1, 1], \dots, [-1, 1])^T$$
 (6)

приведет к тому, что значение абсолютного максимума T распознаю- щего функционала ${\rm Tol}(x,{\bf A},{\bf b})$ возрастет на постоянную K:

$$\max_{x \in \mathbb{R}^n} \operatorname{Tol}(x, \mathbf{A}, \mathbf{b} + K\mathbf{e}) = \max_{x \in \mathbb{R}^n} \operatorname{Tol}(x, \mathbf{A}, \mathbf{b}) + K = T + K$$

прием $\operatorname{argmax} \operatorname{Tol}$ — положение точки T — не изменится.

2.3 А-коррекция ИСЛАУ

A-коррекцией ИСЛАУ $\mathbf{A}x=\mathbf{b}$ заключается в замене матрицы \mathbf{A} ее интервальной матрицей $\mathbf{A}\ominus\mathbf{E}$ такой, что

$$rad(\mathbf{A} \ominus \mathbf{E}) < rad\mathbf{A}, \ mid(\mathbf{A} \ominus \mathbf{E}) = mid\mathbf{A}, \ \mathbf{e}_{ij} = [-e_{ij}, e_{ij}].$$

3 Реализаця

Лабораторная работа выполнена на языке программирования Python. В ходе работы были также использованы библиотеки numpy и matplotlib.

Ссылка на GitHub репозиторий: https://github.com/vladimir-skvortsov/spbstu-interval-anylysis

- 4 Обсуждение
- 5 Выводы