Nonparametric Inference for Functional Data

Dominik Liebl

Theoretical Subject

Bivariate Nonparametric Regression Classical Data-Setup:

Bivariate Nonparametric Regression Functional Data-Setup:

Real Data

Data: Y

Data: Y

Data: Y and X

Merit-Order Model

Data: $\mathcal{P}_t(.)$

(Liebl, AOAS, 2013)

Data

Data

Data

Assumptions

Model &

$$Y_{it} = \mathcal{P}_t(X_{it}, Z_t) + \epsilon_{it}$$

- $t \in \{1, \dots, T\}$ (*T* Functions)
- $i \in \{1, ..., n\}$ (*n* Points per Function)
- $\mathcal{P}_t(\cdot, Z_t = z) \in L^2([a(z), b(z)]) \cap C([a(z), b(z)])$
- $[a(z), b(z)] \subset \mathbb{R}$ (Compact support)
- $\mu(x,z) = \mathbb{E}(\mathcal{P}_t(x,z)) = \mathbb{E}(Y_{it}|X_{it}=x,Z_t=z)$
- $\gamma(x_1, x_2, z) = \mathsf{Cov}(\mathcal{P}_t(x_1, z), \mathcal{P}_t(x_2, z))$

$$Y_{it} = \mathcal{P}_t(X_{it}, Z_t) + \epsilon_{it}$$

- $t \in \{1, \dots, T\}$ (*T* Functions)
- $i \in \{1, \dots, n\}$ (*n* Points per Function)
 - $\mathcal{P}_t(\cdot, Z_t = z) \in L^2([a(z), b(z)]) \cap C([a(z), b(z)])$
 - $[a(z), b(z)] \subset \mathbb{R}$ (Compact support)
- $\mu(x,z) = \mathbb{E}(\mathcal{P}_t(x,z)) = \mathbb{E}(Y_{it}|X_{it}=x,Z_t=z)$
- $\gamma(x_1, x_2, z) = \mathsf{Cov}(\mathcal{P}_t(x_1, z), \mathcal{P}_t(x_2, z))$

$$Y_{it} = \mathcal{P}_t(X_{it}, Z_t) + \epsilon_{it}$$

- $t \in \{1, \dots, T\}$ (*T* Functions)
- $i \in \{1, ..., n\}$ (*n* Points per Function)
- $\mathcal{P}_t(\cdot, Z_t = z) \in L^2([a(z), b(z)]) \cap C([a(z), b(z)])$
- $[a(z), b(z)] \subset \mathbb{R}$ (Compact support)
 - $\mu(x,z) = \mathbb{E}(\mathcal{P}_t(x,z)) = \mathbb{E}(Y_{it}|X_{it}=x,Z_t=z)$
 - $\gamma(x_1, x_2, z) = \mathsf{Cov}(\mathcal{P}_t(x_1, z), \mathcal{P}_t(x_2, z))$

$$Y_{it} = \mathcal{P}_t(X_{it}, Z_t) + \epsilon_{it}$$

- $(\mathcal{P}_t, X_{it}, Z_t, \epsilon_{it})_t$: weakly dependent and strictly stationary.
- $\mathbb{E}(\epsilon|X,Z,\mathcal{P}) = \mathbb{E}(\epsilon) = 0.$
- Y_{it} has finite fourth moments.

$$Y_{it} = \mathcal{P}_t(X_{it}, Z_t) + \epsilon_{it}$$

- $(\mathcal{P}_t, X_{it}, Z_t, \epsilon_{it})_t$: weakly dependent and strictly stationary.
 - $\mathbb{E}(\epsilon | X, Z, \mathcal{P}) = \mathbb{E}(\epsilon) = 0$.
 - \mathcal{P}_t and ϵ_{it} have finite fourth moments.

NP-Regression Model

Nonparametric Regression Model:

$$Y_{it} = \mathcal{P}_t(X_{it}, Z_t) + \epsilon_{it}$$

$$\Leftrightarrow Y_{it} = \mu(X_{it}, Z_t) + \underbrace{\mathcal{P}_t^c(X_{it}, Z_t)}_{=\mathcal{P}_t(X_{it}, Z_t) - \mu(X_{it}, Z_t)} + \epsilon_{it}$$

NP-Regression Model

Nonparametric Regression Model:

$$Y_{it} = \mu(X_{it}, Z_t) + \underbrace{\mathcal{P}_t^c(X_{it}, Z_t) + \epsilon_{it}}_{\text{Compound error structure}}$$

NP-Regression Model

Nonparametric Regression Model:

$$Y_{it} = \mu(X_{it}, Z_t) + \underbrace{\mathcal{P}_t^c(X_{it}, Z_t) + \epsilon_{it}}_{\text{Compound error structure}}$$

Within-function correlations:

$$\overline{\mathsf{Corr}(Y_{it},Y_{jt}|\mathbf{X},\mathbf{Z})} = \underbrace{\mathsf{Corr}(\mathcal{P}^c_t(X_{it},Z_t),\mathcal{P}^c_t(X_{jt},Z_t)|\mathbf{X},\mathbf{Z})}_{\approx 1}$$

if
$$|X_{it} - X_{jt}| \approx 0$$
, $i \neq j$.

Estimation of

$$\mu(x,z) =$$

$$\mathbb{E}(Y_{it}|X_{it}=x,Z_t=z)$$

$$egin{pmatrix} \hat{oldsymbol{lpha}} \\ \hat{oldsymbol{eta}} \end{pmatrix} = ig([\mathbf{1}, \mathbf{X}]^T [\mathbf{1}, \mathbf{X}] ig)^{-1} [\mathbf{1}, \mathbf{X}]^T \mathbf{Y}$$

$$\begin{pmatrix} \hat{\alpha}(x) \\ \hat{\beta}(x) \end{pmatrix} = \left([\mathbf{1}, \mathbf{X} - x]^T W_x [\mathbf{1}, \mathbf{X} - x] \right)^{-1} [\mathbf{1}, \mathbf{X} - x]^T W_x \mathbf{Y}$$

$$\hat{\alpha}(x; h_X) = u_1^T ([\mathbf{1}, X - x]^T W_x [\mathbf{1}, X - x])^{-1} [\mathbf{1}, X - x]^T W_x Y$$

Estimator of the mean function:

$$\begin{split} \hat{\mu}(x,z;h_{\mu,X},h_{\mu,Z}) &= \\ u_1^\top \left([\mathbf{1},\mathbf{X}_x,\mathbf{Z}_z]^\top \mathbf{W}_{\mu,xz} [\mathbf{1},\mathbf{X}_x,\mathbf{Z}_z] \right)^{-1} [\mathbf{1},\mathbf{X}_x,\mathbf{Z}_z]^\top \mathbf{W}_{\mu,xz} \mathbf{Y} \end{split}$$

Problems

• How to choose the bandwidths $h_{\mu,X}$ and $h_{\mu,Z}$?

· How to do inference?

$$H_0$$
: $\mu_{A}(x,z) = \mu_{B}(x,z)$

$$H_1$$
: $\mu_A(x,z) \neq \mu_B(x,z)$

Theoretical Results

Asymptotic Setup

Double asymptotic:

- $nT \to \infty$ such that:
 - $T \to \infty$
 - $n \sim T^{\theta}$, with $0 \le \theta < \infty$.

θ -Cases:

 $n \sim T^{\theta}$ with $\theta = 0$: T large and n small $n \sim T^{\theta}$ with $\theta > 0$: T large and n small-to-large

Further Assumptions

Bandwidths:

- $h_X, h_Z \to 0$ as $Tn \to \infty$
- $(Tn)h_X h_Z \to \infty$ as $Tn \to \infty$

Kernel function:

• $K(u,v) = \kappa(u)\kappa(v)$, where κ is a symmetric pdf.

Smoothness:

• Usual smoothness assumptions on $\mu(x,z)$, $f_{XZ}(x,z)$, and $f_{Z}(z)$.

Asymptotic Bias

Theorem (Bias of $\hat{\mu}$):

$$\overbrace{\operatorname{Bias}\left(\hat{\mu}(x,z;h_{\mu,X},h_{\mu,Z})\right)}^{\mathbb{E}(\hat{\mu}(x,z)-\mu(x,z)} = B_{\hat{\mu}}(x,z)\left(1+o_p(1)\right)$$

with

$$B_{\hat{\mu}}(x,z) = \frac{\nu_2(K_{\mu})}{2} \left[h_{\mu,X}^2 \, \mu^{(2,0)}(x,z) + h_{\mu,Z}^2 \, \mu^{(0,2)}(x,z) \right]$$

Asymptotic Variance

Theorem (Variance of $\hat{\mu}$):

$$V(\hat{\mu}(x, z; h_{\mu, X}, h_{\mu, Z})) =$$

$$= \left(V_1^{\hat{\mu}}(x, z) + V_2^{\hat{\mu}}(x, z)\right) (1 + o_p(1))$$

with

$$V_1^{\hat{\mu}}(x,z) = (Tn)^{-1} \left[h_{\mu,X}^{-1} h_{\mu,Z}^{-1} R(K_{\mu}) \frac{\gamma(x,x,z) + \sigma_{\epsilon}^2}{f_{XZ}(x,z)} \right]$$

$$V_2^{\hat{\mu}}(x,z) = T^{-1} \left[h_{\mu,Z}^{-1} \quad R(\kappa) \quad \frac{\gamma(x,x,z)}{f_Z(z)} \right]$$

AMISE-Scenario I: $0 \le \theta \le 1/5$

$$\begin{split} \mathsf{AMISE}_{\hat{\mu}} \left(h_{\mu,X}, h_{\mu,Z} \right) = \\ &\underbrace{ \left(Tn \right)^{-1} \, \frac{\int V_1^{\hat{\mu}}}{h_{\mu,X}^{-1}} \, \frac{\int V_2^{\hat{\mu}}}{R(K_{\mu}) \, Q_{\mu,1}} + \underbrace{T^{-1} \, \frac{h_{\mu,Z}^{-1}}{h_{\mu,Z}^{-1}} \, R(\kappa) \, Q_{\mu,2}}_{2 \, \mathrm{nd} \, \mathrm{Order}} + \\ &\underbrace{ \left(\nu_2(K_{\mu}) \right)^2}_{4} \, \left[\underbrace{2 \, \frac{h_{\mu,X}^2}{h_{\mu,Z}^2} \, \mathcal{I}_{\mu,XZ}}_{1 \, \mathrm{st} \, \mathrm{Order}} + \underbrace{\frac{h_{\mu,Z}^4}{2 \, \mathrm{nd} \, \mathrm{Order}}}_{2 \, \mathrm{nd} \, \mathrm{Order}} \right] \end{split}$$

AMISE-Scenario I: $0 \le \theta \le 1/5$

$$0 \le \theta \le 1/5$$

Classical Results in Bivariate NP-Regression:

Bandwidth Rates:

$$h_{\mu,X,\mathsf{AMISE-I}} \sim h_{\mu,Z,\mathsf{AMISE-I}} \sim (Tn)^{-1/6}$$

Convergence Rate for $\hat{\mu}$:

$$\mathsf{AMISE}(\hat{\mu}) = \frac{\mathcal{O}_p((Tn)^{-2/3})}{}$$

AMISE-Scenario II: $1/5 < \theta < \infty$

$$\begin{split} \mathsf{AMISE}_{\hat{\mu}} \left(h_{\mu,X}, h_{\mu,Z} \right) = \\ &\underbrace{ \begin{pmatrix} \int V_1^{\mu} & \int V_2^{\mu} \\ (Tn)^{-1} & h_{\mu,X}^{-1} & h_{\mu,Z}^{-1} & R(K_{\mu}) \, Q_{\mu,1} \\ 2 \, \mathsf{nd} \, \mathsf{Order} \end{pmatrix}}_{\mathsf{2nd} \, \mathsf{Order}} + \underbrace{ \begin{pmatrix} \int V_2^{\mu} \\ h_{\mu,Z}^{-1} & R(\kappa) \, Q_{\mu,2} \\ 1 \, \mathsf{st} \, \mathsf{Order} \end{pmatrix}}_{\mathsf{2nd} \, \mathsf{Order}} + \underbrace{ \begin{pmatrix} \int V_2^{\mu} \\ h_{\mu,Z}^{-1} & R(\kappa) \, Q_{\mu,2} \\ 1 \, \mathsf{st} \, \mathsf{Order} \end{pmatrix}}_{\mathsf{2nd} \, \mathsf{Order}} + \underbrace{ \begin{pmatrix} \int V_2^{\mu} \\ h_{\mu,Z}^{-1} & R(\kappa) \, Q_{\mu,2} \\ 1 \, \mathsf{st} \, \mathsf{Order} \end{pmatrix}}_{\mathsf{2nd} \, \mathsf{Order}} + \underbrace{ \begin{pmatrix} V_2(K_{\mu}) \\ h_{\mu,Z} \end{pmatrix} \mathcal{I}_{\mu,ZZ}}_{\mathsf{2nd} \, \mathsf{Order}} + \underbrace{ \begin{pmatrix} V_2(K_{\mu}) \\ h_{\mu,Z} \end{pmatrix} \mathcal{I}_{\mu,ZZ}}_{\mathsf{2nd} \, \mathsf{Order}} + \underbrace{ \begin{pmatrix} V_2(K_{\mu}) \\ h_{\mu,Z} \end{pmatrix} \mathcal{I}_{\mu,ZZ}}_{\mathsf{2nd} \, \mathsf{Order}} + \underbrace{ \begin{pmatrix} V_2(K_{\mu}) \\ h_{\mu,Z} \end{pmatrix} \mathcal{I}_{\mu,ZZ}}_{\mathsf{2nd} \, \mathsf{Order}} + \underbrace{ \begin{pmatrix} V_2(K_{\mu}) \\ h_{\mu,Z} \end{pmatrix} \mathcal{I}_{\mu,ZZ}}_{\mathsf{2nd} \, \mathsf{Order}} + \underbrace{ \begin{pmatrix} V_2(K_{\mu}) \\ h_{\mu,Z} \end{pmatrix} \mathcal{I}_{\mu,ZZ}}_{\mathsf{2nd} \, \mathsf{Order}} + \underbrace{ \begin{pmatrix} V_2(K_{\mu}) \\ h_{\mu,Z} \end{pmatrix} \mathcal{I}_{\mu,ZZ}}_{\mathsf{2nd} \, \mathsf{Order}} + \underbrace{ \begin{pmatrix} V_2(K_{\mu}) \\ h_{\mu,Z} \end{pmatrix} \mathcal{I}_{\mu,ZZ}}_{\mathsf{2nd} \, \mathsf{Order}} + \underbrace{ \begin{pmatrix} V_2(K_{\mu}) \\ h_{\mu,Z} \end{pmatrix} \mathcal{I}_{\mu,ZZ}}_{\mathsf{2nd} \, \mathsf{Order}} + \underbrace{ \begin{pmatrix} V_2(K_{\mu}) \\ h_{\mu,Z} \end{pmatrix} \mathcal{I}_{\mu,ZZ}}_{\mathsf{2nd} \, \mathsf{Order}} + \underbrace{ \begin{pmatrix} V_2(K_{\mu}) \\ h_{\mu,Z} \end{pmatrix} \mathcal{I}_{\mu,ZZ}}_{\mathsf{2nd} \, \mathsf{Order}} + \underbrace{ \begin{pmatrix} V_2(K_{\mu}) \\ h_{\mu,Z} \end{pmatrix} \mathcal{I}_{\mu,ZZ}}_{\mathsf{2nd} \, \mathsf{Order}} + \underbrace{ \begin{pmatrix} V_2(K_{\mu}) \\ h_{\mu,Z} \end{pmatrix} \mathcal{I}_{\mu,ZZ}}_{\mathsf{2nd} \, \mathsf{Order}} + \underbrace{ \begin{pmatrix} V_2(K_{\mu}) \\ h_{\mu,Z} \end{pmatrix} \mathcal{I}_{\mu,ZZ}}_{\mathsf{2nd} \, \mathsf{Order}} + \underbrace{ \begin{pmatrix} V_2(K_{\mu}) \\ h_{\mu,Z} \end{pmatrix} \mathcal{I}_{\mu,ZZ}}_{\mathsf{2nd} \, \mathsf{Order}} + \underbrace{ \begin{pmatrix} V_2(K_{\mu}) \\ h_{\mu,Z} \end{pmatrix} \mathcal{I}_{\mu,ZZ}}_{\mathsf{2nd} \, \mathsf{2nd} \, \mathsf{2nd}} + \underbrace{ \begin{pmatrix} V_2(K_{\mu}) \\ h_{\mu,Z} \end{pmatrix} \mathcal{I}_{\mu,ZZ}}_{\mathsf{2nd} \, \mathsf{2nd}} + \underbrace{ \begin{pmatrix} V_2(K_{\mu}) \\ h_{\mu,Z} \end{pmatrix} \mathcal{I}_{\mu,ZZ}}_{\mathsf{2nd} \, \mathsf{2nd}} + \underbrace{ \begin{pmatrix} V_2(K_{\mu}) \\ h_{\mu,Z} \end{pmatrix} \mathcal{I}_{\mu,ZZ}}_{\mathsf{2nd} \, \mathsf{2nd}} + \underbrace{ \begin{pmatrix} V_2(K_{\mu}) \\ h_{\mu,Z} \end{pmatrix} \mathcal{I}_{\mu,ZZ}}_{\mathsf{2nd}} + \underbrace{ \begin{pmatrix} V_2(K_{\mu$$

AMISE-Scenario II: $1/5 < \theta < \infty$

Non-Classical Results in Bivariate NP-Regression:

$$h_{\mu,Z,\mathsf{AMISE}} = \left(rac{R(\kappa)\,Q_{\mu,2}}{(
u_2(K_\mu))^2\,\mathcal{I}_{\mu,ZZ}}
ight)^{1/5}\, T^{-1/5}$$

$$h_{\mu,X,\mathsf{AMISE}} = \left(rac{R(K_\mu)\,Q_{\mu,1}}{Tn\left(
u_2(K_\mu)
ight)^2\mathcal{I}_{\mu,XZ}}
ight)^{1/3}h_{\mu,Z,\mathsf{AMISE}}^{}$$

Functional Data:

 $h_{\mu,Z,\mathsf{AMISE}} \sim T^{-1/5}$ Uni -variate rate:

 $h_{\mu,X,\mathsf{AMISE}} \sim h_{\mu,Z,\mathsf{AMISE}}^{-1}$ Anti -proportional:

AMISE-Scenario II $1/5 < \theta < \infty$

Non-Classical Results in Bivariate NP-Regression:

$$h_{\mu,Z,\mathsf{AMISE}} = \left(rac{R(\kappa)\,Q_{\mu,2}}{\left(
u_2(K_\mu)
ight)^2\mathcal{I}_{\mu,ZZ}}
ight)^{1/5} T^{-1/5}$$

$$h_{\mu,X,\mathsf{AMISE}} = \left(\frac{R(K_\mu)\,Q_{\mu,1}}{Tn\left(\nu_2(K_\mu)\right)^2\mathcal{I}_{\mu,XZ}}\right)^{1/3}\left(h_{\mu,Z,\mathsf{AMISE}}\right)^{-1}$$

Uni -variate Convergence Rate

$$\mathsf{AMISE}(\hat{\mu}) = \frac{\mathcal{O}_p(T^{-4/5})}{}$$

Robust Two-Sample Test Statistic

$$Z_{x,z} = \left(\frac{\left(\hat{\mu}_A(x,z) - B_{\hat{\mu}_A}(x,z)\right) - \left(\hat{\mu}_B(x,z) - B_{\hat{\mu}_B}(x,z)\right)}{\sqrt{\left(V_1^{\hat{\mu}_A}(x,z) + V_2^{\hat{\mu}_A}(x,z)\right) + \left(V_1^{\hat{\mu}_B}(x,z) + V_2^{\hat{\mu}_B}(x,z)\right)}}\right)$$

Under
$$H_0$$
: $\mu_A(x,z) = \mu_B(x,z)$

$$Z_{x,z} \rightarrow_d N(0,1)$$
 as $nT \rightarrow \infty$

Robust Inference under both scenarios:

"Sparse": $n \sim T^{\theta}$ with $0 \le \theta \le 1/5$, T large, n small **"Dense":** $n \sim T^{\theta}$ with $1/5 < \theta < \infty$, T large, n small-to-large

Simulation Results

DGP 1: Theoretical Bandwidths

DGP 2: Theoretical Bandwidths

March 11, 2011

March 15, 2011

Literature

- Grossi, L., Heim, S. and Waterson, M. (2017). The impact of the German response to the Fukushima earthquake. Energy Economics, 66, 450–465
- Zhang, X., & Wang, J. L. (2016). From sparse to dense functional data and beyond. The Annals of Statistics, 44(5), 2281–2321
- Jiang, C.-R. and Wang, J.-L. (2010). Covariate adjusted functional principal components analysis for longitudinal data. The Annals of Statistics, 38(2), 1194–1226
- Liebl, D. (2013). Modeling and forecasting electricity prices: A functional data perspective. The Annals of Applied Statistics, 7(3), 1562-1592
- Liebl, D. (2019). Inference for sparse and dense functional data with covariate adjustments. Journal of Multivariate Analysis, 170, 315-335
- **Liebl, D.** (2019). Nonparametric testing for differences in electricity prices: The case of the Fukushima nuclear accident. The Annals of Applied Statistics, 13(2), 1128-1146

Thank you!

- www.dliebl.com
- @domliebl