PROYECTO AUTOMATAS

Juan Pablo Sibecas
juan.sibecas@gmail.com
Matias Gaviño
matias.linares.g@gmail.com
Autómatas y Control Discreto, Facultad de Ingeniería,
Universidad Nacional de Cuyo,
Mendoza, Argentina

Junio de 2024

Resumen

1. Introducción

2. Desarrollo

2.1. Modelo del Sistema Físico

2.1.1. Subsistema de Izaje

Segunda ley de Newton del lado tambor:

$$J_{hd+hEb}\frac{d\omega_{hd}}{dt} = T_{hd}(t) + T_{hEb}(t) - b_{hd}\omega_{hd}(t) - T_{hdl}(t)$$
(1)

Segunda ley de Newton del lado motor:

$$J_{hm+hb}\frac{d\omega_{hm}}{dt} = T_{hm}(t) + T_{hb}(t) - b_{hm}\omega_{hm}(t) - T_{hml}(t)$$
(2)

relacion de transmision

$$i_h = \frac{\omega_{hm}(t)}{\omega_{hd}(t)} = \frac{T_{hd}(t)}{T_{hml}(t)} \tag{3}$$

si reemplazo 3 en 2 y despejo $T_{hd}(t)$

$$T_{hd}(t) = J_{hm+hb} \frac{d\omega_{hd}}{dt} i_h^2 - b_{hm}\omega_{hd}(t) i_h^2 + i_h (T_{hm}(t) + T_{hb}(t))$$
(4)

reemplazando en 1 y operando se obtiene

$$(J_{hd+hEb} + J_{hm+hb}i_h^2)\frac{d\omega_{hd}}{dt} = -(b_{hd} + b_{hm}i_h^2)\omega_{hd}(t) + i_h(T_{hm}(t) + T_{hb}(t)) + T_{hEb}(t) - T_{hdl}(t)$$
como $T_{hdl}(t) = F_{hw}(t) * r_{hd}, \; 2V_h = r_{hd} * \omega_{hd}(t) \; \text{y} \; V_h = -\frac{dl_h(t)}{dt} \; \text{y} \; \text{dividiendo por } r_{hd}$:

$$2\frac{(J_{hd+hEb} + J_{hm+hb}i_h^2)}{r_{hd}^2}\frac{d^2l_h(t)}{dt^2} = -2\frac{(b_{hd} + b_{hm}i_h^2)}{r_{hd}^2}\frac{dl_h(t)}{dt} - \frac{i_h}{r_{hd}}(T_{hm}(t) + T_{hb}(t)) - \frac{T_{hEb}(t)}{r_{hd}} + F_{hw}(t)$$
(6)

Reemplazando por parametros equivalentes:

$$M_{Eh}\ddot{l}_{h}(t) = -b_{Eh}\dot{l}_{h}(t) - \frac{i_{h}}{r_{hd}}(T_{hm}(t) + T_{hb}(t)) - \frac{T_{hEb}(t)}{r_{hd}} + F_{hw}(t)$$
(7)

Donde

$$M_{Eh} = 2 \frac{(J_{hd+hEb} + J_{hm+hb}i_h^2)}{r_{hd}^2}$$
 (8)

$$b_{Eh} = 2\frac{(b_{hd} + b_{hm}i_h^2)}{r_{hd}^2} \tag{9}$$

(10)

2.1.2. Subsistema Carro

Segunda ley de Newton del lado tambor:

$$J_{td}\frac{d\omega_{td}(t)}{dt} = T_{td}(t) - b_{td}\omega_{td}(t) - T_{tdl}(t)$$
(11)

Segunda ley de Newton del lado motor:

$$J_{tm+tb}\frac{d\omega_{tm}(t)}{dt} = T_{tm}(t) + T_{tb}(t) - b_{tm}\omega_{tm}(t) - T_{tml}(t)$$
(12)

relacion de transmision

$$i_t = \frac{\omega_{tm}(t)}{\omega_{td}(t)} = \frac{T_{td}(t)}{T_{tml}(t)} \tag{13}$$

si reemplazo 13 en 12 y despejo $T_{td}(t)$

$$T_{td}(t) = J_{tm+tb} \frac{d\omega_{td}(t)}{dt} i_t^2 - b_{tm}\omega_{td}(t) i_t^2 + i_t (T_{tm}(t) + T_{tb}(t))$$
(14)

Reemplazo 14 en 11 y reordeno:

$$(J_{td} + J_{tm+tb} * i_t^2) \frac{d\omega_{td}(t)}{dt} = i_t (T_{tm}(t) + T_{tb}(t)) - (b_{td} + b_{tm}i_t^2)\omega_{td}(t) - T_{tdl}(t)$$
(15)

Como $\omega_{td}(t)r_{td} = V_{td}(t)$, $F_{tw}(t)r_{td} = T_{tdl}(t)$ y $V_{td}(t) = \frac{dx_{td}}{dt}$ y dividiendo por r_{td} :

$$\frac{(J_{td} + J_{tm+tb} * i_t^2)}{r_{td}^2} \frac{d^2 x_{td}(t)}{dt^2} = -\frac{(b_{td} + b_{tm} i_t^2)}{r_{td}^2} \frac{d x_{td}(t)}{dt} + \frac{i_t}{r_{td}} (T_{tm}(t) + T_{tb}(t)) - F_{tw}(t)$$
(16)

Reemplazando por parametros equivalentes se obtiene la ecuacion del tambor del subsistema carro:

$$M_{Etd}\ddot{x_{td}}(t) = -b_{Etd}\dot{x_{td}}(t) + \frac{i_t}{r_{td}}(T_{tm}(t) + T_{tb}(t)) - F_{tw}(t)$$
(17)

La ecuacion de movimiento del carro es:

$$M_t \ddot{x}_t(t) = -b_t \dot{x}_t(t) + F_{tw}(t) + 2F_{hw}(t) \sin \theta_l(t)$$
(18)

Y la fuerza transmitida por el cable del subsistema carro es:

$$F_{tw}(t) = K_{tw}(x_{td}(t) - x_t(t)) + b_{tw}(\dot{x_{td}}(t) - \dot{x_t}(t))$$
(19)

seria un sistema acoplado? preguntar si se resuelve asi

2.2. Diseño del controlador

$$T'_{m}(t) = b_{a}e_{\omega}(t) + K_{sa}e_{\theta}(t) + K_{sia} \int e_{\theta}(t)dt$$
(20)

Por lo tanto, por Laplace:

$$T_m(s) = G(s)[b_a E_{\omega}(s) + K_{sa} \frac{1}{s} + K_{sia} \frac{1}{s^2}]E_{\theta}(s)$$
(21)

Donde $G_T(s)$ es la función de transferencia del modulador de torque que, como se supone ideal, es igual a 1.

Para obtener la expresión que nos permita obtener las constante que definen al controlador se remplaza la ecuacion 20 en la ecuacion de movimiento del izaje y del carro, se obtiene: Para el izaje, reemplazando 20 en 7 y transformandola con Laplace, se obtiene:

$$M_{Eh}\ddot{L}_{h}(s) = -b_{Eh}sL_{h}(s) - \frac{i_{h}}{r_{hd}}[G(s)[b_{a}E_{\omega}(s) + K_{sa}\frac{1}{s} + K_{sia}\frac{1}{s^{2}}]E_{\theta}(s)] + F_{hw}(s)$$
 (22)

despejando

2.2.1. Control de balanceo

Se deducen las ecuaciones de movimiento del sistema carro-péndulo, se obtiene: Planteando el equilibrio dinámico de los torques en el anclaje del péndulo:

$$\sum \tau = I\ddot{\theta} \tag{23}$$

$$ml^2\ddot{\theta} = -mg\sin\theta + m\cos\theta\ddot{x}_t\tag{24}$$

despejando $\ddot{\theta}$:

$$\ddot{\theta} = \frac{\cos \theta \ddot{x}_t}{l} - \frac{g \sin \theta}{l} \tag{25}$$

También:

$$x_l = \sin(\theta)l + x_t \tag{26}$$

$$\dot{x}_l = \cos(\theta)\dot{\theta}l + \dot{x}_t \tag{27}$$

Se definen el vector de estado como:

$$x = \begin{bmatrix} \theta \\ \dot{\theta} \end{bmatrix} \tag{28}$$

$$u = \ddot{x}_t \tag{29}$$

$$y = \dot{x}_l \tag{30}$$

Por lo tanto se expresa el modelo del sistema en el espacio de estados no lineal:

$$\begin{cases} \dot{x} = f(x, u, t); x(0) = x_0 \\ y = h(x, u, t) \end{cases}$$
(31)

Donde:

$$f(x, u, t) = \begin{bmatrix} \dot{\theta} \\ \frac{\cos \theta u}{l} - \frac{g \sin \theta}{l} \end{bmatrix}$$
 (32)

$$h(x, u, t) = \cos \theta \dot{\theta} l \tag{33}$$

Se ignora \dot{x}_t dado que buscaremos el incremendo de velocidad que debemos aplicar al carro para que el péndulo se mantenga en equilibrio.

Se linealiza el sistema en torno a un punto de trabajo x(t), u(t) y se obtiene:

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \tag{34}$$

Donde:

$$A_{ij} = \frac{\partial f_i}{\partial x_j} \bigg|_{x(t), u(t)} \tag{35}$$

$$B_{ij} = \frac{\partial f_i}{\partial u_j} \bigg|_{x(t), u(t)} \tag{36}$$

$$C_{ij} = \frac{\partial h_i}{\partial x_j} \bigg|_{x(t), u(t)} \tag{37}$$

$$D_{ij} = \frac{\partial h_i}{\partial u_j} \bigg|_{x(t), u(t)} \tag{38}$$

Se obtiene:

$$A = \begin{bmatrix} 0 & 1\\ -\cos\theta \frac{g}{l^2} - \sin\theta \frac{\ddot{x}_t}{l^2} & 0 \end{bmatrix} \tag{39}$$

$$B = \begin{bmatrix} 0\\ \frac{\cos\theta}{l^2} \end{bmatrix} \tag{40}$$

$$C = \left[-\sin\theta \dot{\theta}l \quad \cos\theta l \right] \tag{41}$$

$$D = 0 (42)$$

Se propone un controlador PD para el sistema:

$$u = K_p(y^* - y) + K_d \frac{d}{dt}(y^* - y)$$
(43)

$$\dot{x} = Ax + B(K_p(y^* - y) + K_d \frac{d}{dt}(y^* - y))$$
(44)

$$\dot{x} = Ax + B(K_p(y^* - Cx) + K_d \frac{d}{dt}(y^* - Cx))$$
(45)

$$\ddot{\theta} = A_{21}\dot{\theta} + B_2(K_p(\dot{x}_l^* - C_1\theta - C_2\dot{\theta}) + K_d\frac{d}{dt}(\dot{x}_l^* - C_1\theta - C_2\dot{\theta}))$$
(46)

$$\ddot{\theta} = A_{21}\theta + B_2K_p\dot{x}_l^* - B_2K_pC_1\theta - B_2K_pC_2\dot{\theta} + \frac{d}{dt}\left(B_2K_d\dot{x}_l^* - B_2K_dC_1\theta - B_2K_dC_2\dot{\theta}\right)$$
(47)

Utilizando la transformada de Laplace:

$$s^{2}\Theta = A_{21}\Theta + B_{2}K_{p}\dot{X}_{l}^{*} - B_{2}K_{p}C_{1}\Theta - B_{2}K_{p}C_{2}s\Theta + B_{2}K_{d}\dot{X}_{l}^{*}s - B_{2}K_{d}C_{1}\Theta s - B_{2}K_{d}C_{2}\Theta s^{2}$$
(48)

Despejando θ/\dot{X}_{l}^{*} :

$$\Theta(s^{2}(B_{2}K_{d}C_{2}) + s(B_{2}K_{p}C_{2} - B_{2}K_{d}C_{1}) - A_{21} + B_{2}K_{p}C_{1}) = \dot{X}_{l}^{*}(B_{2}K_{p} + B_{2}K_{d}s)$$
(49)

$$\frac{\theta}{\dot{X}_{t}^{*}} = \frac{B_{2}K_{p} + B_{2}K_{d}s}{s^{2}(B_{2}K_{d}C_{2}) + s(B_{2}K_{p}C_{2} - B_{2}K_{d}C_{1}) - A_{21} + B_{2}K_{p}C_{1}}$$
(50)

Se obtinen las constantes K_p y K_d de forma que el denominado de 50 cumpla $s^2 + s2\eta\omega + \omega^2 = 0$

$$\begin{cases}
2\eta\omega = \frac{B_2K_pC_2 - B_2K_dC_1}{B_2K_dC_2} \\
\omega^2 = \frac{A_{21} - B_2K_pC_1}{B_2K_dC_2}
\end{cases}$$
(51)

$$\begin{cases} 2\eta\omega = \frac{K_p}{K_d} - \frac{C_1}{C_2} \\ \omega^2 = \frac{A_{21}}{B_2K_dC_2} - \frac{K_pC_1}{K_dC_2} \end{cases}$$
 (52)

$$\begin{cases} 2\eta\omega K_d = K_p - K_d \frac{C_1}{C_2} \\ \omega^2 K_d = \frac{A_{21}}{B_2C_2} - K_p \frac{C_1}{C_2} \end{cases}$$
 (53)

$$\begin{cases} K_p + K_d(-\frac{C_1}{C_2} - 2\eta\omega) = 0\\ K_p \frac{C_1}{C_2} + K_d\omega^2 = \frac{A_{21}}{B_2 C_2} \end{cases}$$
 (54)

$$\begin{cases}
K_p = \frac{\frac{A_{21}}{B_2 C_2}}{\omega^2 - (-\frac{C_1}{C_2} - 2\eta\omega)\frac{C_1}{C_2}} \\
K_d = \frac{\frac{A_{21}}{B_2 C_2} (-\frac{C_1}{C_2} - 2\eta\omega)}{\omega^2 - (-\frac{C_1}{C_2} - 2\eta\omega)\frac{C_1}{C_2}}
\end{cases}$$
(55)

$$\begin{cases}
K_p = \frac{\frac{A_{21}}{B_2 C_2}}{\omega^2 + (\frac{C_1}{C_2} + 2\eta\omega) \frac{C_1}{C_2}} \\
K_d = \frac{\frac{A_{21}}{B_2 C_2} (\frac{C_1}{C_2} + 2\eta\omega)}{\omega^2 + (\frac{C_1}{C_2} + 2\eta\omega) \frac{C_1}{C_2}}
\end{cases}$$
(56)

2.2.2. Control de balanceo

A continuación se derivan las ecuaciones que modelan el sistema carro-pendulo. Se utilizará el metodo de Lagrange definiendo las cordenadas generalizadas x_t y θ . Donde x_t es la posición del carro y θ es el angulo del pendulo respecto a la vertical. A modo de simplificaion se toma l como un parametro y no como una funcion del tiempo. El sistema se modela siguiento el modelo físico de la figura 3 del enunciado.

Figura 1: Modelo físico simplificado del subsistema Carro – Cable – Carga y Perfil de Obstáculos

$$K = K_t + K_{lx} + K_{ly} \tag{57}$$

$$x_l = x_t + l\sin\theta \tag{58}$$

$$\dot{x_l} = \dot{x_t} + l\cos\theta\dot{\theta} \tag{59}$$

$$y_l = Y_{t0} - l\cos\theta \tag{60}$$

$$\dot{y}_l = -l\sin\theta\dot{\theta}\tag{61}$$

$$K = \frac{1}{2}m_t \dot{x_t}^2 + \frac{1}{2}m_l \dot{x_l}^2 + \frac{1}{2}m_l \dot{y_l}^2$$
(62)

$$K = \frac{1}{2}m_t \dot{x_t}^2 + \frac{1}{2}m_l(\dot{x_t} + l\cos\theta\dot{\theta})^2 + \frac{1}{2}m_l(-l\sin\theta\dot{\theta})^2$$
(63)

$$K = \frac{1}{2}m_t \dot{x_t}^2 + \frac{1}{2}m_l(\dot{x_t}^2 + l^2\cos^2\theta\dot{\theta}^2 + 2l\dot{x_t}\cos\theta\dot{\theta}) + \frac{1}{2}m_l l^2\sin^2\theta\dot{\theta}^2$$
 (64)

$$U = -m_l g l \cos \theta \tag{65}$$

$$L = K - U \tag{66}$$

$$L = \frac{1}{2}m_t \dot{x_t}^2 + \frac{1}{2}m_l (\dot{x_t}^2 + l^2 \cos^2 \theta \dot{\theta}^2 + 2l\dot{x_t} \cos \theta \dot{\theta}) + \frac{1}{2}m_l l^2 \sin^2 \theta \dot{\theta}^2 + m_l g l \cos \theta$$
 (67)

$$L = \frac{1}{2}m_t \dot{x_t}^2 + \frac{1}{2}m_l \dot{x_t}^2 + \frac{1}{2}m_l l^2 \dot{\theta}^2 + m_l \dot{x_t} l \cos \theta \dot{\theta} + m_l g l \cos \theta$$
 (68)

Se define el sistema de ecuaciones de Euler-Lagrange:

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} = Q_i \tag{69}$$

Para $q_i = x_t$:

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{x}_t}\right) - \frac{\partial L}{\partial x_t} = Q_t \tag{70}$$

$$\frac{\partial L}{\partial \dot{x}_t} = (m_t + m_l)\dot{x}_t + m_l l\cos\theta\dot{\theta}$$
(71)

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{x}_t}\right) = (m_t + m_l)\ddot{x}_t + m_l l\cos\theta\ddot{\theta} - m_l l\sin\theta\dot{\theta}^2$$
(72)

$$\frac{\partial L}{\partial x_t} = 0 \tag{73}$$

Entonces:

$$(m_t + m_l)\ddot{x}_t + m_l l\cos\theta \ddot{\theta} - m_l l\sin\theta \dot{\theta}^2 = F_t(t) - b_{eqt}\dot{x}_t$$
(74)

Para $q_i = \theta$:

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}} \right) - \frac{\partial L}{\partial \theta} = Q_{\theta} \tag{75}$$

$$\frac{\partial L}{\partial \dot{\theta}} = m_l \dot{x}_t l \cos \theta + m_l l^2 \dot{\theta} \tag{76}$$

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\theta}}\right) = m_l \ddot{x}_t l \cos \theta - m_l \dot{x}_t l \sin \theta \dot{\theta} + m_l l^2 \ddot{\theta}$$
(77)

$$\frac{\partial L}{\partial \theta} = -m_l \dot{x}_t l \sin \theta \dot{\theta} - m_l g l \sin \theta \tag{78}$$

Entonces:

$$m_l \ddot{x_t} l \cos \theta - m_l \dot{x_t} l \sin \theta \dot{\theta} + m_l l^2 \ddot{\theta} + m_l \dot{x_t} l \sin \theta \dot{\theta} + m_l g l \sin \theta = 0$$
 (79)

Finalmente, el sistema de ecuaciones que define el modelo del sistema carro-pendulo es:

$$\begin{cases} (m_t + m_l)\ddot{x}_t + m_l l\cos\theta\ddot{\theta} - m_l l\sin\theta\dot{\theta}^2 = F_t(t) - b_{eqt}\dot{x}_t \\ m_l\ddot{x}_t l\cos\theta - m_l\dot{x}_t l\sin\theta\dot{\theta} + m_l l^2\ddot{\theta} + m_l\dot{x}_t l\sin\theta\dot{\theta} + m_l g l\sin\theta = 0 \end{cases}$$
(80)

$$\begin{cases} (m_t + m_l)\ddot{x}_t + m_l l\cos\theta \ddot{\theta} - m_l l\sin\theta \dot{\theta}^2 = 0\\ \ddot{x}_t\cos\theta + l\ddot{\theta} + g\sin\theta = 0 \end{cases}$$
(81)

Para representar lo en el espacio de estados se definen las siguientes variables de estado x y entradas u:

$$x = \begin{bmatrix} \theta \\ \dot{\theta} \end{bmatrix} \tag{82}$$

$$u = \ddot{x}_l \tag{83}$$

Entonces, se obtiene el siguiente modelo en el espacio de estados no lineal:

$$\begin{cases} \dot{x} = f(x, u, t); x(0) = x_0 \\ y = h(x, u, t) \end{cases}$$
(84)

2.2.3. Control de balanceo

$$U = \ddot{X}_t = (b_a s + k_{sa}) (X_l^* - X_l)$$
(85)

$$(X_l^* - X_l) = \frac{1}{s} \left(\dot{X}_l^* - \dot{X}_l \right) \tag{86}$$

$$U = \ddot{X}_t = \left(b_a + k_{sa} \frac{1}{s}\right) \left(\dot{X}_l^* - \dot{X}_l\right) \tag{87}$$

$$s^{2}\Theta = A_{21}\Theta + B_{2}\left(\left(b_{a} + k_{sa}\frac{1}{s}\right)\left(\dot{X}_{l}^{*} - C_{1}\Theta - C_{2}\Theta s - \dot{X}_{t}\right)\right)$$
(88)

$$s^{2}\Theta = A_{21}\Theta + B_{2}\left(b_{a}\left(\dot{X}_{l}^{*} - C_{1}\Theta - C_{2}\Theta s + \dot{X}_{t}\right) + k_{sa}\frac{1}{s}\left(\dot{X}_{l}^{*} - C_{1}\Theta - C_{2}\Theta s - \dot{X}_{t}\right)\right)$$
(89)

$$s^{2}\Theta = A_{21}\Theta + B_{2}\left(b_{a}\dot{X}_{l}^{*} - b_{a}C_{1}\Theta - b_{a}C_{2}\Theta s + k_{sa}\dot{X}_{l}^{*}\frac{1}{s} - k_{sa}C_{1}\Theta\frac{1}{s} - k_{sa}C_{2}\Theta\right) - \dot{X}_{t}\left(b_{a} + k_{sa}\frac{1}{s}\right)$$
(90)

$$s^{2}\Theta = A_{21}\Theta + B_{2}b_{a}\dot{X}_{l}^{*} - B_{2}b_{a}C_{1}\Theta - B_{2}b_{a}C_{2}\Theta s + B_{2}k_{sa}\dot{X}_{l}^{*}\frac{1}{s} - B_{2}k_{sa}C_{1}\Theta\frac{1}{s} - B_{2}k_{sa}C_{2}\Theta$$

$$-B_{2}\dot{X}_{t}\left(b_{a} + k_{sa}\frac{1}{s}\right)$$
(91)

$$\Theta s^{3} = A_{21}\Theta s + B_{2}b_{a}\dot{X}_{l}^{*}s - B_{2}b_{a}C_{1}\Theta s - B_{2}b_{a}C_{2}\Theta s^{2} + B_{2}k_{sa}\dot{X}_{l}^{*} - B_{2}k_{sa}C_{1}\Theta - B_{2}k_{sa}C_{2}\Theta s - B_{2}\dot{X}_{t}(b_{a}s + k_{sa})$$
(92)

$$0 = \Theta \left(s^3 + s^2 \left(B_2 b_a C_2 \right) + s \left(-A_{21} + B_2 b_a C_1 + B_2 k_{sa} C_2 \right) + \left(B_2 k_{sa} C_1 \right) \right) - \dot{X}_l^* \left(B_2 b_a s + B_2 k_{sa} \right) + \dot{X}_l \left(B_2 b_a s + B_2 k_{sa} \right)$$

$$(93)$$

$$\Theta = \frac{B_{2}b_{a}s + B_{2}k_{sa}}{s^{3} + s^{2}(B_{2}b_{a}C_{2}) + s(-A_{21} + B_{2}b_{a}C_{1} + B_{2}k_{sa}C_{2}) + (B_{2}k_{sa}C_{1})}\dot{X}_{l}^{*} - \frac{B_{2}b_{a}s + B_{2}k_{sa}}{s^{3} + s^{2}(B_{2}b_{a}C_{2}) + s(-A_{21} + B_{2}b_{a}C_{1} + B_{2}k_{sa}C_{2}) + (B_{2}k_{sa}C_{1})}\dot{X}_{t}$$

$$(94)$$

$$p_r(s) = (s + \omega_n)(s^2 + 2\zeta\omega_n s + \omega_n^2) \tag{95}$$

$$p_r(s) = s^3 + \omega_n (2\zeta + 1)s^2 + \omega_n^2 (2\zeta + 1)s + \omega_n^3$$
(96)

$$p_r(s) = s^3 + \omega_n \eta s^2 + \omega_n^2 \eta s + \omega_n^3 \tag{97}$$

$$\begin{cases} \omega_n^3 = B_2 k_{sa} C_1 \\ \omega_n^2 \eta = -A_{21} + B_2 b_a C_1 + B_2 k_{sa} C_2 \\ \omega_n \eta = B_2 b_a C_2 \end{cases}$$
(98)

SI $C_1 = 0$.

$$\Theta = \frac{B_2 b_a s + B_2 k_{sa}}{s \left(s^2 + s \left(B_2 b_a C_2\right) + \left(-A_{21} + B_2 k_{sa} C_2\right)\right)} \dot{X}_l^* - \frac{B_2 b_a s + B_2 k_{sa}}{s \left(s^2 + s \left(B_2 b_a C_2\right) + \left(-A_{21} + B_2 k_{sa} C_2\right)\right)} \dot{X}_t$$

$$(99)$$

2.2.4. Control de balanceo

$$U = \ddot{X}_t = (b_a s + k_{sa}) \left(\dot{X}_l^* - \dot{X}_l \right)$$
 (100)

$$s^{2}\Theta = A_{21}\Theta + B_{2}\left((b_{a}s + k_{sa})\left(\dot{X}_{l}^{*} - C_{1}\Theta - C_{2}\Theta s - \dot{X}_{t}\right)\right)$$
(101)

$$s^{2}\Theta = A_{21}\Theta + B_{2}\left(b_{a}s\left(\dot{X}_{l}^{*} - C_{1}\Theta - C_{2}\Theta s + \dot{X}_{t}\right) + k_{sa}\left(\dot{X}_{l}^{*} - C_{1}\Theta - C_{2}\Theta s - \dot{X}_{t}\right)\right)$$
(102)

$$s^{2}\Theta = A_{21}\Theta + B_{2}\left(b_{a}\dot{X}_{l}^{*}s - b_{a}C_{1}\Theta s - b_{a}C_{2}\Theta s^{2} + k_{sa}\dot{X}_{l}^{*} - k_{sa}C_{1}\Theta - k_{sa}C_{2}\Theta s - \dot{X}_{t}\left(b_{a}s + k_{sa}\right)\right)$$

$$(103)$$

$$s^{2}\Theta = A_{21}\Theta + B_{2}b_{a}\dot{X}_{l}^{*}s - B_{2}b_{a}C_{1}\Theta s - B_{2}b_{a}C_{2}\Theta s^{2} + B_{2}k_{sa}\dot{X}_{l}^{*} - B_{2}k_{sa}C_{1}\Theta - B_{2}k_{sa}C_{2}\Theta s - B_{2}\dot{X}_{t}\left(b_{a} + k_{sa}\frac{1}{s}\right)$$

$$(104)$$

$$0 = \Theta \left(s^2 \left(1 + B_2 b_a C_2 \right) + s \left(B_2 b_a C_1 + B_2 k_{sa} C_2 \right) + \left(B_2 k_{sa} C_1 \right) \right) - \dot{X}_l^* \left(B_2 b_a s + B_2 k_{sa} \right) + \dot{X}_t \left(B_2 b_a s + B_2 k_{sa} \right)$$

$$(105)$$

$$\Theta = \frac{B_{2}b_{a}s + B_{2}k_{sa}}{s^{2}(1 + B_{2}b_{a}C_{2}) + s(B_{2}b_{a}C_{1} + B_{2}k_{sa}C_{2}) + (B_{2}k_{sa}C_{1})}\dot{X}_{l}^{*}$$

$$-\frac{B_{2}b_{a}s + B_{2}k_{sa}}{s^{2}(1 + B_{2}b_{a}C_{2}) + s(B_{2}b_{a}C_{1} + B_{2}k_{sa}C_{2}\Theta) + (B_{2}k_{sa}C_{1})}\dot{X}_{t}$$
(106)

$$p_r(s) = s^2 + s \frac{B_2 b_a C_1 + B_2 k_{sa} C_2}{1 + B_2 b_a C_2} + \frac{B_2 k_{sa} C_1}{1 + B_2 b_a C_2}$$

$$(107)$$

$$p_r(s) = (s^2 + 2\zeta\omega_n s + \omega_n^2) \tag{108}$$

$$\begin{cases}
2\zeta\omega_n = \frac{B_2b_aC_1 + B_2k_{sa}C_2}{1 + B_2b_aC_2} \\
\omega_n^2 = \frac{B_2k_{sa}C_1}{1 + B_2b_aC_2}
\end{cases}$$
(109)

$$\begin{cases} (1 + B_2 b_a C_2) 2\zeta \omega_n = B_2 b_a C_1 + B_2 k_{sa} C_2 \\ (1 + B_2 b_a C_2) \omega_n^2 = B_2 k_{sa} C_1 \end{cases}$$
(110)

$$\begin{cases} 2\zeta\omega_n + 2\zeta\omega_n B_2 b_a C_2 = B_2 b_a C_1 + B_2 k_{sa} C_2 \\ \omega_n^2 + B_2 b_a C_2 \omega_n^2 = B_2 k_{sa} C_1 \end{cases}$$
(111)

$$\begin{cases} b_a(2\zeta\omega_n B_2 C_2 - B_2 C_1) & +k_{sa}(-B_2 C_2) = -2\zeta\omega_n \\ b_a(\omega_n^2 B_2 C_2) & +k_{sa}(-B_2 C_1) = -\omega_n^2 \end{cases}$$
(112)

3. Resultados

4. Conclusión