Household Debt and the Effects of Fiscal Policy

Sami Alpanda¹ Melissa Song² Sarah Zubairy²

¹University of Central Florida

²Texas A&M University

November 22, 2021

Motivation

- 1. Household debt and fiscal policy after the Great recession
 - ▶ Household debt in the transmission of macroeconomic shocks
 - Importance of the fiscal policy to stabilize the economy
- 2. Empirical link between consumption, income, and debt
 - ▶ Debtors are more likely to face different constraints
 - Adjust consumption in response to exogenous income changes (Eggertsson and Krugman 2012; Kaplan and Violante 2014)
 - Not net wealth *per se* that determines the consumption response to fiscal policy (Cloyne and Surico 2016)
- This paper: how the transmission of government spending shocks depend on the households' balance-sheet position

Motivation

- 1. Household debt and fiscal policy after the Great recession
 - ▶ Household debt in the transmission of macroeconomic shocks
 - Importance of the fiscal policy to stabilize the economy
- 2. Empirical link between consumption, income, and debt
 - Debtors are more likely to face different constraints
 - Adjust consumption in response to exogenous income changes (Eggertsson and Krugman 2012; Kaplan and Violante 2014)
 - Not net wealth *per se* that determines the consumption response to fiscal policy (Cloyne and Surico 2016)
- 3. **This paper**: how the transmission of government spending shocks depend on the households' balance-sheet position

What we do

- 1. Empirical analysis
 - Basic idea: Housing tenure status as a proxy
 - Mortgagors, Outright homeowners, Renters
 - Q: Does the effect of fiscal shocks on key macroeconomic variables vary across household's debt position? Yes
- Theoretical analysis
 - ► Three agent New-Keynesian model with housing
 - ▶ Q: What is the transmission mechanism behind the heterogeneity? Liquidity constraints, Wealth effects

What we do

- 1. Empirical analysis
 - Basic idea: Housing tenure status as a proxy
 - Mortgagors, Outright homeowners, Renters
 - Q: Does the effect of fiscal shocks on key macroeconomic variables vary across household's debt position? Yes
- 2. Theoretical analysis
 - Three agent New-Keynesian model with housing
 - Q: What is the transmission mechanism behind the heterogeneity? Liquidity constraints, Wealth effects

Related literature

- Understanding consumption dynamics
 - ► Two types of households: Gali, Lopez-Salido and valles (2007)
 - ► Heterogeneous effects based on income, age/demographics: Ma (2019), Basso and Rachedii (2021)
 - ► Wealthy hand-to-mouth households: Kaplan and Violante (2014)
- ► Time and space variation in household indebtedness
 - ► Higher fiscal multipliers iwith higher consumer indebtedness: Demyanyk et al. (2016), Bernardini and Peersman (2018)

Empirical analysis

Econometric framework

- 1. Government spending shock identification
 - ► SPF (Survey of Professional Forecasters) approach
- 2. Vector auto-regression (VAR) approach VAR specification
 - Sample period: 1981:Q4 to 2007:Q1
 - SPF shock, GOV, GDP, CON & group-specific variables
 - Household Survey data for the U.S.
- Analyze the effects of govt spending shocks
 - CASE 1: Aggregate macroeconomic variables
 - ► CASE 2: Disaggregate results by housing tenure group
 - Mortgagors, Outright homeowners, Renters
 - Control for demographic features
 - No compositional changes

Empirical estimation results

CASE 1: Aggregate effects

Figure 1: IRFs to a positive SPF shock (agg)

- Govt spending, GDP, and Consumption all rise
- Real house prices increase on impact

Estimation results

CASE 2.1: Consumption responses by housing tenure groups

Figure 2: IRFs to a positive SPF shock (three housing tenure groups)

Estimation results

CASE 2.2: Income responses by housing tenure groups

Figure 3: IRFs to a positive SPF shock (three housing tenure groups)

Estimation results

CASE 2: Key stylized findings

Expenditure responses

- Larger and statistically significant expenditure responses for Mortgagors
- 2. Renters behave similar to mortgagors
- 3. Outright home-owners have insignificant responses

Income responses

- Net and Gross income rise for all housing tenure groups at a similar magnitude
- 2. Majority of movement in net income is driven by gross income, *not* by taxes
- 3. Not net wealth *per se* affecting consumption responses (i.e. mortgagors own sizable illiquid assets)

Robustness

- 1. Alternative econometric identification Appendix C.1
 - Role of Moving average
 - Trend specification: quadratic trend
 - Different sample periods
- 2. Validity of econometric analysis Appendix C.2
 - Compositional changes
 - Housing tenure share responses
 - Selection issue in grouping
 - Controlling for demographic features: mid-age group responses

Theoretical analysis

From empirics to theory

Empirical findings:

- Most empirical literature find increase in consumption following a positive government spending shock
- ► This paper: true at an aggregate level but ∃ heterogeneity across households with different balance sheet positions

Theoretical explanation:

- ▶ **RBC** model: G shock \rightarrow Forward looking agents expect higher taxes \rightarrow Negative WE \Rightarrow Consume less & work more \Rightarrow $Y_t \uparrow$
- NK model: Seeks to explain increase in consumption (e.g. rule of thumb consumers)
- ► This paper: adds household debt position into a Three Agent New Keysian (ThANK) model with housing

From empirics to theory

Empirical findings:

- Most empirical literature find increase in consumption following a positive government spending shock
- ► This paper: true at an aggregate level but ∃ heterogeneity across households with different balance sheet positions

Theoretical explanation:

- ▶ **RBC** model: G shock \rightarrow Forward looking agents expect higher taxes \rightarrow Negative WE \Rightarrow Consume less & work more \Rightarrow Y_t \uparrow
- ► NK model: Seeks to explain increase in consumption (e.g. rule of thumb consumers)
- ► This paper: adds household debt position into a Three Agent New Keysian (ThANK) model with housing

A Three Agent New-Keynesian (ThANK) Model

1. Households:

- Savers (P patient households)
- Borrowers (I impatient households)
- Renters (R)
- 2. **Firms**: intermediate and final goods
 - Non-residential & Residential investment
 - Rental services and non-housing producers
 - Rotemberg type with quadratic adjustment costs
- 3. Government: fiscal and monetary authorities
 - Fiscal: government spending financed by debt and taxes
 - Monetary: Taylor rule

Households

Each household $H \in \{P, I, R\}$ indexed by i maximizes utility

$$\max E_0 \sum_{t=0}^{\infty} \beta_{H}^{t} v_t \left[\log x_{H,t}(i) + \xi_h \log h_{H,t}(i) - \xi_n \frac{n_{H,t}(i)^{1+\vartheta}}{1+\vartheta} \right]$$
(1)

where v_t : preference shock following AR(1), x_t : consumption, h_t : housing, n_t : labor, ξ_h , ξ_n determine the relative importance of housing and labor in the utility, and ν is the inverse of the Frisch-elasticity of labor supply

- Three types of households
 - ► Savers (*P*) own capital and housing, lend long-term/fixed-rate to borrowers, and rent some housing to renters Constraints
 - Borrowers (1) own housing and are subject to a LTV constraint on borrowing Constraints
 - **b** Borrowing constraints: $\frac{L_t(i)}{P_t} = \phi q_{h,t} \tilde{i}_{hl,t} (i)$
- Taxes: consumption, capital and interest income, property

Calibration

Table 1: Key Calibrated Structural Parameters

Description	Symbol	value
Discount factor	$\beta_P, \beta_I, \beta_R$	0.9916, 0.9852, 0.9852
LTV ratio on new regular mortgages	ϕ	0.85
Labor shares in production	Ψ_P, Ψ_I, Ψ_R	0.26, 0.47, 0.27
Tax rates		
Consumption tax rate	$ au_{ extsf{c}}$	0.05
Capital income tax rate	$ au_{\kappa}$	0.40
Interest income tax rate	$ au_{b}$	0.15
Property tax rate	$ au_p$	0.0035
Income tax rate	$\tau_{vP}, \tau_{vI}, \tau_{vR}$	0.30, 0.30, 0.20
AR(1) Government spending shock	$ ho_{\sf g}$	0.85
Taylor rule for inflation response	a_{π}	1.50
Taylor rule for output gap	a_y	0.01

- Matching the key statistics in the U.S. macroeconomic and financial data
- ▶ Following Alpanda and Zubairy 2014, 2017; Gali et al 2007; Guerrieri and lacoviello 2017; lacoviello 2005; Mertens and Ravn 2011

Model simulation Results (Aggregate)

Figure 4: Effects of a positive govt spending shock (agg)

Model simulation Results (Disaggregate)

Figure 5: Effects of a positive govt spending shock (three agents)

Model simulation Results

Key findings

1. Qualitatively matching the empirical findings

- Aggregate responses output, consumption, house price, household debt (both stock, flow) all increase
- Heterogeneous expenditure responses across households
 - ▶ Borrowers (1) respond the most
 - Savers (P) likely to have negative expenditure responses
 - Renters (R) behave similar to borrowers
- Labor income increase and are relatively similar across households

2. All agents face negative wealth effects from a positive government spending shock

- All agents work more & earn more labor income
- Expenditure responses are heterogeneous (possible role of borrowing constraints for borrowers, hand-to-mouth renters)

Role of borrowing constraints

- ► Change LTV ratio (ϕ : 0.85 to 0.50; lower borrowing limit)
- As borrowing constraints assumption is relaxed, positive effects on consumption for Borrowers (1) go away

Shock persistence and negative wealth effects

- Change shock persistence (ρ_g : 0.85 to 0.65 & 0.9)
- ► Larger and more persistent impact on expenditures for Borrowers (I) and renters (R) as shocks become more persistent → ⟨⟨⟨⟨⟨⟩⟩⟩ ⟨⟨⟨⟨⟨⟩⟩⟩ ⟨⟨⟨⟨⟩⟩⟩ ⟨⟨⟨⟨⟩⟩⟩

Extensions

- 1. Model with durable goods and habit formation Model simulation
- 2. Robustness checks with alternative parameters Robustness checks
- 3. ZLB effects ▶ Impulse responses for ZLB

- With ZLB, output and consumption responses are amplified by more
- ▶ Patient households are better off during ZLB compared to normal times

Concluding remark

- Investigate how household indebtedness amplifies the transmission of fiscal shocks
- Using aggregate variables constructed by micro data, this paper finds heterogeneous consumption responses across households with different financial positions
 - Mortgagors have significantly large consumption responses while outright home-owners have insignificant responses
- A Three Agent New Keynesian (ThANK) model with borrowing constraints suggests the importance of borrowing constraints and wealth effects as potential transmission mechanisms

Appendix A.1

Government spending shock identification

Figure A.1: SPF (Survey of professional forecasters) Shocks

Appendix A.2

VAR specification

- 1. VAR specification with aggregate macroeconomic variables
 - $ightharpoonup X_t \equiv [SPFshock_t, log(rGOV_t), log(rGDP_t), log(rCON_t)]$
 - $\blacktriangleright \ [\ X_t,\ log(rdbt_t^{flow}),\ log(rdbt_t^{stock}),\ log(hpi_t^{mdsales}),\ FFR\]'$
 - Robustness check: i) Quadratic trend, ii) No moving average,
 iii) Different sample periods: 1985:Q1-2005:Q1
- 2. VAR specification for different housing tenure groups

$$y_{t} = \begin{pmatrix} SPF \ Shock_{t} \\ log \ rGOV_{t} \\ log \ rGDP_{t} \\ log \ rCON_{t}^{i} \end{pmatrix}$$
 (2)

where $i = \{\text{mort, outright owners, renters}\}\$

Note: For net and gross income, $rCON_t^i$ is replaced with rNI_t^i or rGI_t^i

Appendix B.1

Data source

Table B.2: Data description

Data	Description	Source
NGDP	Nominal GDP	BEA
PGDP	GDP deflator	BEA
GOV	Nominal government purchases	BEA
NCONS	Nominal personal consumptoin expenditure	BEA
NCDUR	Personal consumption expenditures: Durable goods	BEA
NCDC	Personal consumption expenditures: Nondurable goods	BEA
NCSV	Personal consumption expenditures: Service goods	BEA
Population	Population, thousands (POPTHM)	FRED
Hours	Total hours worked	BLS
PBUS	Nonfarm business Sector: Implicit price deflator	BLS
Wages	Nonfarm business sector: Compensation per hour	BLS
Tbill3	3-month Treasury bill (TB3MS)	FRED
HHDEBT	Households and nonprofit organizations;	FRED
	debt securities and loans; liability (CMDEBT)	
HPI	House price index;	FRED
	Median sales price for new houses sold (MSPNHSUS)	
Recession	NBER recession periods	FRED
SPF shock	Survey of Professional Forecasters forecast error shock	Ramey (2011)

◀ Go Back

Appendix B.2

Constructing the aggregate variables from CEX

- Define cohorts (including housing, age, etc) and use the short panel dimension to drop household who change tenure within 5 quarters
- Exclude households i) that do not report income, ii) report negative net income, iii) top or bottom 1% of consumption expenditure, iv) whose head is <25 or >74
- Expenditure for non-durable and durable goods
 - Non-durable gds and services: food, alcohol, tobacco, fuel, light and power, clothing, personal gds and services, fares, leisure services, household services
 - Durable gds: durable household gds, motor vehicles, durable leisure gds
- Labor-related earnings and total disposable income
 - Wages and salaries, income from farm and non-farm business, self-employment
 - ► State and local income taxes, federal income tax, state/federal refunds

◆ Go Back

Appendix B.3 Summary Statistics

Non-durable cons. Housing tenure group Durable cons. Gross inc. Net inc. Share (%) Mortgagors 2.860 480 3.412 3.052 46.4% Outright owners 2.799 394 2.617 2.454 19.8% Renters 2,324 301 2,394 2,149 33.8%

Table B.3: Consumption, income, and share by housing tenure group

◆ Go Back

Appendix B.4

Share of housing tenure groups and wealthy HtM

Table B.4: Share of each housing tenure group and wealthy HtM

DANIELA CL. C. L.L							
PANEL A: Share of each housing tenure group							
	1995	1998	2001	2004	2007		
Number of observation							
Mortgagors	9,359	9,112	9,535	10,026	10,278		
Outright homeowners	5,600	5,146	5,583	5,589	5,197		
Renters	5,355	5,795	5,797	5,770	5,130		
Total	20,314	20,053	20,915	21,385	20,605		
Share of each group							
Mortgagors	0.46	0.45	0.46	0.47	0.50		
Outright homeowners	0.28	0.26	0.27	0.26	0.25		
Renters	0.26	0.29	0.28	0.27	0.25		

PANEL B: Wealthy Hand-to-Mouth households

	1995	1998	2001	2004	2007
Wealthy HtM (Total)					
Mortgagors	0.16	0.12	0.11	0.13	0.15
Outright homeowners	0.04	0.03	0.03	0.03	0.03
Renters	0.06	0.06	0.06	0.05	0.05
Total	0.26	0.21	0.20	0.21	0.23

Appendix C.1

Alternative econometric identification

Figure C.1: Robustness checks

Appendix C.2

Figure C.2: Robustness checks

Appendix D.1

Saver (P)'s budget constraints

$$\begin{aligned} x_{P,t}\left(i\right) + q_{h,t}\left[\tilde{i}_{hP,t}\left(i\right) + \tilde{i}_{hR,t}\left(i\right)\right] + q_{k,t}\tilde{i}_{k,t}\left(i\right) + \frac{B_{t}\left(i\right)}{P_{t}} + \frac{L_{t}\left(i\right)}{P_{t}} \\ &\leq \frac{W_{P,t}\left(i\right)}{P_{t}}n_{P,t}\left(i\right) + r_{h,t}h_{R,t}\left(i\right) + r_{k,t}k_{t-1}\left(i\right) + \left(1 + R_{t-1}\right)\frac{B_{t-1}\left(i\right)}{P_{t}} \\ &+ \left[R_{t-1}^{M}\left(i\right) + \kappa\right]\frac{D_{t-1}\left(i\right)}{P_{t}} + \frac{\Pi_{t}}{P_{t}} + tr_{P,t} - tax_{P,t} - adj. \ costs \end{aligned}$$

$$n_{P,t}\left(i\right) = \left(\frac{W_{P,t}\left(i\right)}{W_{D,t}}\right)^{-\eta_{W}} n_{P,t} \tag{P.2}$$

$$h_{P,t}(i) = (1 - \delta_h) h_{P,t-1}(i) + \tilde{i}_{hP,t}(i)$$
 (P.3)

$$h_{R,t}(i) = (1 - \delta_h) h_{R,t-1}(i) + \tilde{i}_{hR,t}(i)$$
 (P.4)

$$k_t(i) = (1 - \delta_k) k_{t-1}(i) + \tilde{i}_{k,t}(i)$$
 (P.5)

$$\frac{D_{t}(i)}{P_{t}} = (1 - \kappa) \frac{D_{t-1}(i)}{P_{t}} + \frac{L_{t}(i)}{P_{t}}$$
(P.6)

$$R_{t}^{M}(i) = \left(1 - \frac{L_{t}(i)}{D_{t}(i)}\right) R_{t-1}^{M}(i) + \frac{L_{t}(i)}{D_{t}(i)} R_{t}^{F}$$
(P.7)

$$tax_{P,t} = \tau_{c}x_{P,t}\left(i\right) + \tau_{yP}\left[\frac{W_{P,t}\left(i\right)}{P_{t}}n_{P,t}\left(i\right) + r_{h,t}h_{R,t}\left(i\right) - \delta_{h}h_{R,t-1}\left(i\right) - \tau_{P}q_{h,t}\left[h_{P,t}\left(i\right) + h_{R,t}\left(i\right)\right]\right]$$

$$+ \tau_{k} \left(r_{k,t} - \delta_{k} \right) k_{t-1} \left(i \right) + \tau_{b} \left(R_{t-1} \frac{B_{t-1} \left(i \right)}{P_{t}} + R_{t-1}^{M} \left(i \right) \frac{D_{t-1} \left(i \right)}{P_{t}} \right) + \tau_{p} q_{h,t} \left[h_{P,t} \left(i \right) + h_{R,t} \left(i \right) \right]$$

(P.2)

Appendix D.2

Borrower (I)'s budget constraints

$$(1 + \tau_{c})x_{l,t}(i) + q_{h,t}\tilde{l}_{hl,t}(i) + \left[R_{t-1}^{M}(i) + \kappa\right] \frac{D_{t-1}(i)}{P_{t}}$$

$$\leq \frac{W_{l,t}(i)}{P_{t}}n_{l,t}(i) + \frac{L_{t}(i)}{P_{t}} + tr_{l,t} - \tau_{yl}\left[\frac{W_{l,t}(i)}{P_{t}}n_{l,t}(i) - \tau_{p}q_{h,t}h_{l,t}(i) - R_{t-1}^{M}(i)\frac{D_{t-1}(i)}{P_{t}}\right]$$

$$- \tau_{p}q_{h,t}h_{l,t}(i) - adj. costs$$
(1.1)

$$n_{l,t}(i) = \left(\frac{W_{l,t}(i)}{W_{l,t}}\right)^{-\eta_W} n_{l,t}$$
 (1.2)

$$h_{l,t}(i) = (1 - \delta_h) h_{l,t-1}(i) + \tilde{i}_{hl,t}(i)$$
 (1.3)

$$\frac{L_t(i)}{P_t} = \phi q_{h,t} \tilde{i}_{hl,t}(i) \tag{1.4}$$

$$\frac{D_{t}(i)}{P_{t}} = (1 - \kappa) \frac{D_{t-1}(i)}{P_{t}} + \frac{L_{t}(i)}{P_{t}}$$
(1.5)

$$R_{t}^{M}(i) = \left(1 - \frac{L_{t}(i)}{D_{t}(i)}\right) R_{t-1}^{M}(i) + \frac{L_{t}(i)}{D_{t}(i)} R_{t}^{F}$$
(1.6)

Appendix D.3

Renter (R)'s budget constraints

$$(1+\tau_c)\mathbf{x}_{R,t}\left(i\right)+\frac{P_{h,t}}{P_t}\,h_{R,t}\left(i\right)\leq \left(1-\tau_{yR}\right)\,\frac{W_{R,t}\left(i\right)}{P_t}\,n_{R,t}\left(i\right)+tr_{R,t}-\mathit{adj.costs}\tag{R.1}$$

$$n_{R,t}(i) = \left(\frac{W_{R,t}(i)}{W_{R,t}}\right)^{-\eta_W} n_{R,t}$$
 (R.2)

- Quadratic adjustment costs for capital investment: $rac{\kappa_k}{2}\left(rac{k_t(i)}{k_{t-1}(i)}-1
 ight)^2q_{k,t}k_t$
- Quadratic adjustment costs for housing investment: $\frac{\kappa_h}{2}\left(\frac{h_{P,t}(i)}{h_{P,t-1}(i)}-1\right)^2q_{h,t}h_{P,t}$
- $\qquad \qquad \textbf{Quadratic adjustment costs for rental housing: } \frac{\kappa_h}{2} \left(\frac{h_{R,t}(i)}{h_{R,t-1}(i)} 1 \right)^2 q_{h,t} h_{R,t}$
- $\blacktriangleright \text{ Wage adjustment costs: } \frac{\kappa_{\text{\tiny W}}}{2} \left(\pi^{-1} \frac{W_{P,t}(i)}{W_{P,t-1}(i)} 1 \right)^2 \frac{W_{P,t}}{P_t} n_{P,t}$

Go Back

Appendix E

Producers' problem

Non-residential investment producers

$$\max E_0 \sum_{t=0}^{\infty} \beta_P^t \frac{\lambda_{P,t}}{\lambda_{P,0}} \left[q_{k,t} \tilde{i}_{k,t} - q_{k,t} \frac{\kappa_{ik}}{2} \left(\frac{i_{k,t}}{i_{k,t-1}} - 1 \right)^2 \tilde{i}_{k,t} - i_{k,t} \right]$$
 (E.1)

Residential investment producers

$$\max E_0 \sum_{t=0}^{\infty} \beta_P^t \frac{\lambda_{P,t}}{\lambda_{P,0}} \left[q_{h,t} z_{h,t} i_{h,t} - q_{h,t} \frac{\kappa_{ih}}{2} \left(\frac{i_{h,t}}{i_{h,t-1}} - 1 \right)^2 \tilde{i}_{h,t} - i_{h,t} \right]$$
 (E.2)

Rental services producers

$$\max E_0 \sum_{t=0}^{\infty} \beta_P^t \frac{\lambda_{P,t}}{\lambda_{P,0}} \frac{\Pi_{h,t}(i)}{P_t}$$
 (E.3)

$$\begin{aligned} &\text{s.t. } \frac{\Pi_{h,t}(i)}{P_t} = \frac{P_{h,t}(i)}{P_t} h_{R,t}\left(i\right) - r_{h,t} h_{R,t}\left(i\right) - \frac{\kappa_{ph}}{2} \left(\pi^{-1} \frac{P_{h,t}(i)}{P_{h,t-1}(i)} - 1\right)^2 \frac{P_{h,t}}{P_t} h_{R,t} \\ &\text{s.t. } h_{R,t}\left(i\right) = \left(\frac{P_{h,t}(i)}{P_{h,t}}\right)^{-\eta_h} h_{R,t} \end{aligned}$$

Appendix E

Producers' problem

Non-housing goods producers

$$\max E_0 \sum_{t=0}^{\infty} \beta_P^t \frac{\lambda_{P,t}}{\lambda_{P,0}} \frac{\Pi_{n,t}(j)}{P_t}$$
 (E.4)

s.t.

$$\begin{split} \frac{\Pi_{n,t}(j)}{P_t} &= \frac{P_t(j)}{P_t} y_{n,t}(j) - w_{P,t} n_{P,t}(j) - w_{I,t} n_{I,t}(j) - w_{R,t} n_{R,t}(j) - r_{k,t} k_{t-1}(j) \\ &- \frac{\kappa_u}{1+\varpi} \left[u_t(j)^{1+\varpi} - 1 \right] k_{t-1}(j) - \frac{\kappa_{pn}}{2} \left(\pi^{-1} \frac{P_t(j)}{P_{t-1}(j)} - 1 \right)^2 y_{n,t} \end{split}$$

s.t.

s.t.

$$y_{n,t}(j) = z_t \left[u_t(j) k_{t-1}(j) \right]^{\alpha} \left[n_{P,t}(j)^{\psi_P} n_{I,t}(j)^{\psi_I} n_{R,t}(j)^{\psi_R} \right]^{1-\alpha} - f_n$$

where $f_n = (heta_n - 1) \, y_n$ and $\psi_P + \psi_I + \psi_R = 1$

$$y_{n,t}(j) = \left(\frac{P_t(j)}{P_t}\right)^{-\eta_n} y_{n,t}$$

◆ Go Back

Appendix F.1

Figure F.1: Model simulation results with durable goods and habit formation

Appendix F.2

Figure F.2: Model simulation results with alternative parameters

Appendix F.3

Figure F.3: Impulse responses with ZLB periods

