

Segmentation-Based Masked Sampling for text-to-animated image synthesis in disaster scenarios

Rubin Won
UST-ETRI
MS Student
rubrub@etri.re.kr
December 20th, 2023

Contents

- Recap
- More Background Knowledge
- Proposed Method
- Results

Recap

- > Text-to-Image (T2I) synthesis leverages Generative AI to produce images based on textual descriptions.
 - Text-to-Image models use **a textual description to control** the image generation process in order to generate images that correspond to the description.

- Component 1.
 - A **textual encoder** that maps the text to a vector which captures the meaning of the text
- Component 2.
 - A **decoder model** that decodes this "meaning vector" into an image

➤ Current emergency disaster alerts we receive during disaster scenarios are text-based and must be comprehended solely through text understanding.

visual information for vulnerable populations

➤ The ongoing Text-To-Video research is focused on generating **high-quality**, **long** videos that include dazzling animation effects.

Method	Parameters (Billion)							Speed (s)
	T2V Core	Auto Encoder	Text Encoder	Prior Model	Super Resolution	Frame Interpolation	Overall	Speed (s)
CogVideo [15]	7.7	0.10	_	_	_	7.7	15.5	434.53
Make-A-Video [31]	3.1	_	0.12	1.3	1.4 + 0.7	3.1	9.72	_
Imagen Video [11]	5.6	_	4.6	_	1.2 + 1.4 + 0.34	1.7 + 0.78 + 0.63	16.25	_

→ However, this approach results in **high spatial and temporal complexity.**

More Background Knowledge

What is CLIPScore?

- > Unique, reference-independent metric for image captioning.
- > Aligns closely with human evaluations.

Contrast with Traditional Methods

- > No need for collecting reference captions.
- > Utilizes the CLIP model for assessing similarity.

$CLIP - S(\mathbf{I}, \mathbf{C}) = w * \max(\cos(\mathbf{E}i, \mathbf{E}c), 0)$

Metric Calculation

- Measures cosine similarity.
- ➢ Between image's visual CLIP embedding (Ei) and caption's textual CLIP embedding (Ec).

Scoring

- > Range: 0 to 100.
- ➤ Closer to 100 indicates optimal performance.

What is CLIPSeg?

- > Enhances the segmentation abilities of the CLIP transformer.
- > Suitable for both zero-shot and one-shot tasks.
- > [Functionality] CLIPSeg is capable of segmenting images via text query or reference image.
- > [Output] Produces a binary mask from input text and images.

My Experiment

- > Introduced the term "segmentation-based mask" for masks derived from CLIPSeg.
- Combined with a 15% randomized mask for preserving crucial areas and adding variability.
- > This approach, named "Segmentation-Based Masked Sampling," aids in generating image samples.

hamburger

CLIPSeg model example

randomized mask

Vision Transformer (ViT) Overview

- > Transformer architecture for image feature extraction.
- > Divides images into 2D patches for processing.
- > Uses an NLP-inspired encoder, differing from traditional CNNs.

The Selected ViT Variant: vit-base-patch16-224

- > Chosen for its efficiency and simpler design.
- ➤ Comprises 12 transformer layers and 768-dimensional hidden states.

ViT's Advantage in Image Similarity Detection

- Offers a holistic view of images.
- ➤ Enables global image understanding for context-rich feature extraction.
- Provides deeper semantic insights, surpassing basic pixel comparisons.
- > Enhances accuracy in image similarity detection.

Proposed Method

Proposed Method - Overview

Fig. 1. Proposed Method for Process Steps in the Model

Step1.

Image Generation via Text-to-Image Generative Model

Step2.

Selection of the Image with the highest CLIPScore

Step3.

Segmentation-Based Masked Sampling

Step4.

Leveraging ViT feature extraction to dynamically select and merge the images

Text-to-Image Generation

- ➤ Utilizes Text-to-Image (T2I) generative model.
- Input: Disaster scenario text.
- > [Output] Produces a set of images based on the input text.
- [Output] Minimum of 10 images found effective in representing the text.
- [Used Models] Stable Diffusion and DALL E models were used for testing.

- > Importance in Disaster Scenarios: Essential for visuals to closely match textual descriptions.
- > CLIPScore is used for Accuracy Measurement.
- > Image Selection: Chooses the image with the highest CLIPScore from the generated set.
- High CLIPScore indicates a close match to the text description.

Comparative Results

- > Example: For the scenario "A fire has broken out in the building":
 - DALL E images achieved a CLIPScore of 25.5%.
 - Stable Diffusion images scored slightly higher at 25.6%.

Proposed Method - Segmentation-Based Masked Sampling

- Utilizing Top-Rated Images Selects the image with the highest CLIPScore.
- Primary Subject Identification Identifies and highlights the main subject from the text.
 - Example: "fire" in the scenario "A fire has broken out in the building".
- Masking Secondary Components Uses
 CLIPSeg to mask out less important elements.
 - Renders static elements like buildings opaque.
- Blending with Randomized Mask Combines the primary mask with a 15% randomized mask.

Segmentation-Based Masked Sampling Strategy

- Focuses on segmentation for sampling.
- Creates diverse image variants that emphasize key features.
- Masks static or less relevant elements for clarity.

Proposed Method - Leveraging ViT feature extraction to dynamically select and merge the most analogous images

- Segmentation-Based Masked Sampling -Generates diverse image samples.
- ➤ **Grouping Similar Images for Animation** to group the most similar images for fluid animation.
- Adapting ViT-B for Feature Extraction & Computing Image Similarity
 - Similarity measured by pairwise Euclidean distances between features.
- > Dynamic Programming for Image Selection -
 - Evaluates image combinations for cumulative distances. & Chooses most analogous images based on ViT-B features.
- Creating Animated Representation Uses linear interpolation to craft a seamless animation.

Results

Image Created by T2I model

CLIPSeg Model Generated Mask

Combined Mask (CLIPSeg + Randomized Mask)

Results - Final Animated Image

+

Image

Combined Mask

Image created by Masked Sampling

Input text description:

"A fire has broken out in the building."

Final Result

Thank You!

Q&A

References

- [1] S. Yin, C. Wu, H. Yang, J. Wang, X. Wang, M. Ni, et al., "Nuwa-XL: Diffusion over diffusion for extremely long video generation," Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2023. doi:10.18653/v1/2023.acl-long.73.
- [2] R. Yang, P. Srivastava, and S. Mandt, "Diffusion Probabilistic Modeling for Video Generation," arXiv preprint arXiv:2203.09481, 2022.
- [3] T. Luddecke and A. Ecker, "Image segmentation using text and image prompts," 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr52688.2022.00695
- [4] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, et al., "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale," arXiv preprint arXiv:2010.11929, 2020.
- [5] J. Hessel, A. Holtzman, M. Forbes, R. Le Bras, and Y. Choi, "CLIPScore: A reference-free evaluation metric for image captioning," Proceedings of
- the 2021 Conference on Empirical Methods in Natural Language Processing, 2021. doi:10.18653/v1/2021.emnlp-main.595
- [6] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, "Highresolution image synthesis with Latent Diffusion Models," 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr52688.2022.01042
- [7] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, et al. "ZeroShot Text-to-Image Generation," arXiv preprint arXiv:2102.12092, 2021.