WEST Search History

Hide Items Restore Clear Cancel

DATE: Wednesday, December 07, 2005

Hide?	Set Nam	e Query	Hit Count
	DB=PC	GPB, USPT, USOC, EPAB, JPAB, DWPI; THES=ASSIGNEE; PLUR=YES,	; OP=ADJ
	L3	L2 and heat exchanger\$1	11
	L2	L1 and (synthesis gas or syngas or hydrogen near1 carbon monoxide)	12
	L1	microreactor same microchannel\$1 and fischer tropsch	21

END OF SEARCH HISTORY

Welcome to STN International! Enter x:x

LOGINID:ssspta1202jxp

PASSWORD:

TERMINAL (ENTER 1, 2, 3, OR ?):2

```
Welcome to STN International
 NEWS
       1
                  Web Page URLs for STN Seminar Schedule - N. America
                  "Ask CAS" for self-help around the clock
 NEWS
       2
 NEWS
      3
         SEP 09
                  ACD predicted properties enhanced in REGISTRY/ZREGISTRY
 NEWS
          OCT 03
      4
                  MATHDI removed from STN
 NEWS
          OCT 04
     5
                  CA/CAplus-Canadian Intellectual Property Office (CIPO) added
                  to core patent offices
          OCT 13
 NEWS
       6
                  New CAS Information Use Policies Effective October 17, 2005
 NEWS
       7
          OCT 17
                  STN(R) AnaVist(TM), Version 1.01, allows the export/download
                  of CAplus documents for use in third-party analysis and
                  visualization tools
 NEWS
      8
          OCT 27
                  Free KWIC format extended in full-text databases
 NEWS
      9
          OCT 27
                  DIOGENES content streamlined
          OCT 27
 NEWS 10
                  EPFULL enhanced with additional content
 NEWS 11 NOV 14
                  CA/CAplus - Expanded coverage of German academic research
 NEWS 12
         NOV 30
                  REGISTRY/ZREGISTRY on STN(R) enhanced with experimental
                  spectral property data
 NEWS 13 DEC 05
                 CASREACT(R) - Over 10 million reactions available
 NEWS EXPRESS DECEMBER 02 CURRENT VERSION FOR WINDOWS IS V8.01,
               CURRENT MACINTOSH VERSION IS V6.0c(ENG) AND V6.0Jc(JP),
               AND CURRENT DISCOVER FILE IS DATED 02 DECEMBER 2005.
               V8.0 USERS CAN OBTAIN THE UPGRADE TO V8.01 AT
               http://download.cas.org/express/v8.0-Discover/
 NEWS HOURS
               STN Operating Hours Plus Help Desk Availability
 NEWS INTER
               General Internet Information
 NEWS LOGIN
               Welcome Banner and News Items
 NEWS PHONE
               Direct Dial and Telecommunication Network Access to STN
 NEWS WWW
               CAS World Wide Web Site (general information)
Enter NEWS followed by the item number or name to see news on that
```

All use of STN is subject to the provisions of the STN Customer agreement. Please note that this agreement limits use to scientific research. Use for software development or design or implementation of commercial gateways or other similar uses is prohibited and may

result in loss of user privileges and other penalties.

FILE 'HOME' ENTERED AT 17:26:23 ON 07 DEC 2005

=> FIL STNGUIDE COST IN U.S. DOLLARS

SINCE FILE TOTAL ENTRY SESSION 0.21 0.21

FULL ESTIMATED COST

specific topic.

FILE 'STNGUIDE' ENTERED AT 17:26:31 ON 07 DEC 2005
USE IS SUBJECT TO THE TERMS OF YOUR CUSTOMER AGREEMENT
COPYRIGHT (C) 2005 AMERICAN CHEMICAL SOCIETY, JAPAN SCIENCE
AND TECHNOLOGY CORPORATION, AND FACHINFORMATIONSZENTRUM KARLSRUHE

FILE CONTAINS CURRENT INFORMATION.
LAST RELOADED: Dec 2, 2005 (20051202/UP).

=> FIL HOME

COST IN U.S. DOLLARS SINCE FILE TOTAL ENTRY SESSION

FULL ESTIMATED COST 0.06 0.27

FILE 'HOME' ENTERED AT 17:26:39 ON 07 DEC 2005

=> file caplus

COST IN U.S. DOLLARS SINCE FILE TOTAL

FULL ESTIMATED COST ENTRY SESSION 0.21 0.48

FILE 'CAPLUS' ENTERED AT 17:26:49 ON 07 DEC 2005 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS. COPYRIGHT (C) 2005 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 7 Dec 2005 VOL 143 ISS 24 FILE LAST UPDATED: 6 Dec 2005 (20051206/ED)

Effective October 17, 2005, revised CAS Information Use Policies apply. They are available for your review at:

http://www.cas.org/infopolicy.html

=> s microreactor and microchannel

3337 MICROREACTOR

1803 MICROREACTORS

4080 MICROREACTOR

(MICROREACTOR OR MICROREACTORS) .

4753 MICROCHANNEL

2264 MICROCHANNELS

5866 MICROCHANNEL

(MICROCHANNEL OR MICROCHANNELS)

L1 284 MICROREACTOR AND MICROCHANNEL

=> s l1 and fischer tropsch

L2

23202 FISCHER

15 FISCHERS.

23214 FISCHER

(FISCHER OR FISCHERS)

7791 TROPSCH

7690 FISCHER TROPSCH

(FISCHER (W) TROPSCH)

9 L1 AND FISCHER TROPSCH

=> d 12 ibib ab 1-9

L2 ANSWER 1 OF 9 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 2005:735342 CAPLUS

DOCUMENT NUMBER: 143:195591

TITLE: Process for conducting an equilibrium limited chemical

reaction using microchannel technology

INVENTOR(S): Tonkovich, Anna Lee; Paul, Jarosch Kai Tod; Mazanec,

Terry; Daly, Francis P.; Taha, Rachid; De Alba,

Enrique Aceves

PATENT ASSIGNEE(S): USA

SOURCE: U.S. Pat. Appl. Publ., 33 pp.

CODEN: USXXCO

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND DATE	APPLICATION NO.	DATE			
						
US 2005176832	A1 2005081	1 US 2004-777033	20040211			
WO 2005082519	A1 2005090	20050909 WO 2005-US623 20050107				
W: AE, AG, AL,	AM, AT, AU, AZ	, BA, BB, BG, BR, BW, I	BY, BZ, CA, CH,			
CN, CO, CR,	CU, CZ, DE, DK	, DM, DZ, EC, EE, EG, 1	ES, FI, GB, GD,			
GE, GH, GM,	HR, HU, ID, IL	, IN, IS, JP, KE, KG, I	KP, KR, KZ, LC,			
LK, LR, LS,	LT, LU, LV, MA	, MD, MG, MK, MN, MW, I	MX, MZ, NA, NI,			
		, RO, RU, SC, SD, SE, S				
		, UA, UG, US, UZ, VC, V				
RW: BW, GH, GM,	KE, LS, MW, MZ	, NA, SD, SL, SZ, TZ, T	JG, ZM, ZW, AM,			
AZ, BY, KG,	KZ, MD, RU, TJ	, TM, AT, BE, BG, CH, (CY, CZ, DE, DK,			
EE, ES, FI,	FR, GB, GR, HU	, IE, IS, IT, LT, LU, N	MC, NL, PL, PT,			
		, CF, CG, CI, CM, GA, C				
MR, NE, SN,			· · · · · · · · · · · · · · · · · · ·			

PRIORITY APPLN. INFO.: US 2004-777033 A 20040211

AB The invention relates to a process for conducting an equilibrium limited chemical

reaction in a microchannel reactor. The process involves the use of active heat exchange and is suitable for conducting exothermic and endothermic reactions. The process comprises: (A) determining the equilibrium conversion value for the primary reactant in the reactant composition at the first reaction temperature and at another reaction temperature; (B) passing the reaction composition through a first reaction zone in the reactor at the first reaction temperature in contact with a first catalyst to form an intermediate product composition so that the approach to conversion of the primary reactant is $\geq 5\%$; and (C) passing the intermediate product composition into another reaction zone in contact with another catalyst to form the desired product so that the approach to conversion conversion of the primary reactant is $\geq 5\%$. The process is particularly suitable for synthesizing methanol and di-Me ether.

L2 ANSWER 2 OF 9 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER:

2005:538848 CAPLUS

DOCUMENT NUMBER:

143:45768

TITLE:

Microreactors for Syngas Conversion to Higher Alkanes: Characterization of

Sol-Gel-Encapsulated Nanoscale Fe-Co Catalysts in the

Microchannels

AUTHOR(S):

Nagineni, Venkata S.; Zhao, Shihuai; Potluri, Avinash; Liang, Yu; Siriwardane, Upali; Seetala, Naidu V.;

Fang, Ji; Palmer, James; Kuila, Debasish

CORPORATE SOURCE:

Institute for Micromanufacturing (IfM), Louisiana Tech

University, Ruston, LA, 71272, USA

SOURCE:

Industrial & Engineering Chemistry Research (2005),

44(15), 5602-5607

CODEN: IECRED; ISSN: 0888-5885

PUBLISHER: American Chemical Society

DOCUMENT TYPE: Journal LANGUAGE: English

AB Silicon microreactors were coated with mixed-metal Fe-Co

Fischer-Tropsch catalysts in alumina sol-gel for conversion of syngas (CO + H2) to higher alkanes. Characterization of the

nanocatalysts using SEM, energy-dispersive x-ray, atomic force microscopy, and Brunauer-Emmett-Teller surface area measurements, packaging, and the reaction results from a mass spectrometer at controlled temps. (200-260°) and pressure (1 atm) with varying H2:CO ratios from 1:1 to 10:1 are described. The catalyst does not adequately infiltrate the 5- μ m channels; it coats nicely the 25- μ m channels. The initial

results are consistent with a lower conversion of CO (.apprx.32%) in a 5-µm-channel reactor and a higher conversion (.apprx.52%) in a

25-μm-channel reactor. The selectivity to propane (.apprx.80%) is not

affected by the width of the microchannels. The activity of the sol-gel-encapsulated catalyst before and after the reactions is estimated from

its magnetic properties using a vibrating sample magnetometer.

REFERENCE COUNT: 40 THERE ARE 40 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L2 ANSWER 3 OF 9 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 2005:213556 CAPLUS

DOCUMENT NUMBER: 143:268670

TITLE: Microprocess technology for Fischer-

Tropsch gas-to-liquids

AUTHOR(S): Wang, Yong; Hu, J.; Cao, C.; Mazanec, T. J.

CORPORATE SOURCE: Pacific Northwest National Laboratory, Richland, WA,

99352, USA

SOURCE: Preprints - American Chemical Society, Division of

Petroleum Chemistry (2005), 50(1), 69-70

CODEN: ACPCAT; ISSN: 0569-3799

PUBLISHER: American Chemical Society, Division of Petroleum

Chemistry

DOCUMENT TYPE: Journal LANGUAGE: English

AB Structured Co based-engineered catalysts exhibited high activity in Fischer-Tropsch synthesis, especially when integrated with a microchannel reactor, due to improved heat and mass transfer.

Higher CO conversion with lower methane selectivity was achieved even under unfavorable reaction conditions in conventional Fischer-Tropsch synthesis. With the use of the engineered catalyst in the

microchannel reactor, it was possible to operate Fischer
-Tropsch synthesis at temps. much higher than those at which

conventional packed bed or slurry reactors are operated while the reaction is still controlled in the nearly isothermal regime. Therefore, the productivity can be enhanced by a factor of three to twelve in comparison

with conventional Fischer-Tropsch reactors. The

unique microchannel reactor design and its integration with

engineered catalyst allow operation of the Fischer-

Tropsch reaction under a wide temperature range and flexibility to obtain different products.

REFERENCE COUNT:

THERE ARE 1 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L2 ANSWER 4 OF 9 CAPLUS COPYRIGHT 2005 ACS on STN

1

ACCESSION NUMBER: 2004:331557 CAPLUS

DOCUMENT NUMBER: 140:341237

TITLE: Catalysts, in microchannel apparatus,

concentration gradients, and reactions using same Manzanec, Terry J.; Wang, Yong; Silva, Laura J.;

INVENTOR(S): Manzanec, Terry J.; Wa
Vander Wiel, David P.

PATENT ASSIGNEE(S):

USA

SOURCE:

U.S. Pat. Appl. Publ., 22 pp.

CODEN: USXXCO

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

	PAT	ENT	NO.			KIN	D	DATE			APPL	ICAT	ION	NO.		D	ATE			
	US	2004	0765	52		A1	-	2004	0422	1	US 2	002-	 2790	89		2	20021022			
	CA	2503	194			AA		2004	0506		CA 2	003-	2503	194		20	0031	017		
	WO	2004	0374	18		A2		2004	0506			003-					0031			
	WO 2004037418					A3		2004												
		W:	AE,	AG,	AL,	AM.	AT.	AU.	AZ.	BA.	BB.	BG,	BR.	BY.	BZ.	CA.	CH.	CN.		
												EE,								
												KE,								
												MN,								
												SE,								
												YU,				J.,	10,	111,		
		RW.										TZ,				AM.	7.7	DV		
		2000										CH,								
												NL,								
	nn.	3556										GW,								
EP 1556165											003-					0031				
		R:										IT,						PT,		
			ΙE,	SI,	LT,	LV,	FΙ,	RO,	MK,	CY,	AL,	TR,	BG,	CZ,	EE,	HU,	SK			
PRIO	PRIORITY APPLN. INFO.:				. :					1	US 2	002-	2790	89	1	A 20	0021	022		
										1	WO 2	003-1	US33	104	1	W 20	0031	017		
20	ml			·				.7					_							

AB The present invention provides new microreactor systems, catalysts, and chemical processes. Methods of making novel catalysts and reaction apparatus are also described.

```
ANSWER 5 OF 9 CAPLUS COPYRIGHT 2005 ACS on STN
```

ACCESSION NUMBER:

2004:224074 CAPLUS

TITLE:

Microreactors for catalysis using

nano-catalysts

AUTHOR (S):

Kuila, Debasish; Zhao, Shihuai; Nagineni, Venkata S.; Potluri, Avinash; Indukuri, H.; Liang, Yu; Cao, W.; Hu, J.; Fang, Ji; Varahramyan, K.; Nassar, Raja; Palmer, James; Siriwardane, Upali; Naidu, Seetala V. Institute for Micromanufacturing/Chemistry, Louisiana

CORPORATE SOURCE:

Tech University, Ruston, LA, 71272, USA

SOURCE:

Abstracts of Papers, 227th ACS National Meeting, Anaheim, CA, United States, March 28-April 1, 2004 (2004), COLL-473. American Chemical Society:

Washington, D. C. CODEN: 69FGKM

DOCUMENT TYPE:

Conference; Meeting Abstract

LANGUAGE: English

Microchannel microreactors based on Si $(5-100 \mu)$ have been used to study heterogeneous catalysis of three significant reactions: hydrogenation and dehydrogenation of cyclohexene, preferential oxidation for CO amelioration in feed for Proton Exchange Membrane (PEM) based fuel cells and Fischer-Tropsch synthesis to higher alkane fuels. For the prototype reaction, a 95 % conversion of cyclohexene has been achieved with sputtered and sol-gel coated platinum catalyst. Conversion of synthesis gas (CO:H2) to higher alkanes (.apprx. 75% with a selectivity to propane of 80%) and carbon monoxide to carbon dioxide (.apprx. 90% conversion with a selectivity of 90% to CO2) to process the feed gas have also been quite successful. The nano-catalysts for these processes have been characterized using SEM, EDX, AFM, VSM and BET surface area measurements. A parallel-array of reactors has been developed for multiple reaction studies and catalyst screening. Design of

ANSWER 6 OF 9 CAPLUS COPYRIGHT 2005 ACS on STN ACCESSION NUMBER: 2004:89738 CAPLUS DOCUMENT NUMBER: 141:108227 TITLE: Nanoscale platinum and iron-cobalt catalysts deposited in microchannel microreactors for use in hydrogenation and dehydrogenation of cyclohexene, selective oxidation of carbon monoxide and fischer-tropsch process to higher alkanes AUTHOR (S): Zhao, Shihuai CORPORATE SOURCE: Louisiana Tech. Univ., Ruston, LA, USA SOURCE: (2003) 142 pp. Avail.: UMI, Order No. DA3084550 From: Diss. Abstr. Int., B 2003, 64(3), 1376 Dissertation DOCUMENT TYPE: English LANGUAGE: AB Unavailable ANSWER 7 OF 9 CAPLUS COPYRIGHT 2005 ACS on STN L2 ACCESSION NUMBER: 2003:930877 CAPLUS DOCUMENT NUMBER: 139:397276 TITLE: Reactors with varying cross-section and their manufacture for reactions conducted under varying local contact time INVENTOR(S): Wang, Yong; Cao, Chunshe; Kimble, James B.; Silva, Laura J. PATENT ASSIGNEE(S): USA SOURCE: U.S. Pat. Appl. Publ., 13 pp. CODEN: USXXCO DOCUMENT TYPE: Patent LANGUAGE: English FAMILY ACC. NUM. COUNT: PATENT INFORMATION: PATENT NO. KIND DATE APPLICATION NO. DATE --------------------A1 US 2003219903 20031127 US 2002-153577 20020521 AA CA 2486379 20031204 CA 2003-2486379 20030521 WO 2003099429 A1 20031204 WO 2003-US16189 20030521 AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM; ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG 20050309 EP 2003-755442 **A1** 20030521 AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, SK PRIORITY APPLN. INFO.: US 2002-153577 A 20020521 WO 2003-US16189 W 20030521 Chemical reactions are conducted in a reaction microchannel that AB has a varying cross-sectional area such that a chemical reactant or reactants experience varying local contact time as the reactant(s) flow through the channel. The reactors have multiple reaction microchannels with varying cross-sectional areas. The reaction channel section has a

trapezoidal shape that becomes broader from the inlet toward the outlet.

L2 ANSWER 8 OF 9 CAPLUS COPYRIGHT 2005 ACS on STN ACCESSION NUMBER: 2003:632804 CAPLUS

TITLE:

Microreactors for catalysis

AUTHOR (S):

Kuila, D.; Nagineni, Venkata S.; Potluri, Avinash;
Zhao, Shihuai; Aithal, Rajendra K.; Liang, Yu; Fang,
Ji; Nassar, Raja; Siriwardane, Upali; Naidu, Seetala

V.; Palmer, James

CORPORATE SOURCE:

Institute for Micromanufacturing/Chemistry, Louisiana

Tech University, Ruston, LA, 71272, USA

SOURCE:

Abstracts of Papers, 226th ACS National Meeting, New York, NY, United States, September 7-11, 2003 (2003), INOR-022. American Chemical Society: Washington, D.

C.

CODEN: 69EKY9

DOCUMENT TYPE:

Conference; Meeting Abstract

LANGUAGE:

English

Microreactors provide distinct advantages to energy related projects on fuel cells and, in general, on production and processing of fuels. The first advantage of microreactors is the small phys. size of the overall device that allows rapid heat and mass transfer in contrast to conventional reactors. The second advantage is indeed one of the major thrusts of our research: the creation of parallel-array based reactors for rapid catalyst screening. The small catalyst and reactant requirements and fast thermal cycling yield an ideal environment for process development as evidenced by UOP joining the growing number of major companies conducting microreactor research. Microreactors provide the necessary link between the highly combinatorial titer plate approaches that provide no kinetic information and the detailed but time consuming industrial pilot scale packed bed reactors. Our current projects, supported by NSF-EPSCoR and DOE, are addressing the development and characterization of nano-scale metal catalysts using various technologies for conversion of synthesis gas to higher alkane fuels (Fischer-Tropsch process) that is not achievable using conventional fixed bed reactors due to the reaction's high exothermicity. The synthesis of higher alkanes using nano-catalysts of Fe/Co and their fabrication in the microchannels using sol-gel support and their characterization by techniques such as XPS, SEM, EDX, AFM, vibrating sample magnetometer (VSM) and surface area measurement (BET method) will be described. Our progress on modeling of this reaction to optimize the yield and selectivity will also be presented.

L2 ANSWER 9 OF 9 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER:

2003:630222 CAPLUS

TITLE:

Microchannel catalytic process for

converting biomass derived syngas to transportation

fuels

AUTHOR (S):

Cao, Chunshe; Wang, Yong; Elliott, Douglas C.; Hu,

John; Stevens, Don

CORPORATE SOURCE:

Pacific Northwest National Laboratory, Richland, WA,

99352, USA

SOURCE:

Abstracts of Papers, 226th ACS National Meeting, New York, NY, United States, September 7-11, 2003 (2003), CATL-013. American Chemical Society: Washington, D.

C.

CODEN: 69EKY9

DOCUMENT TYPE:

Conference; Meeting Abstract

LANGUAGE: English

AB Biomass gasification process provides feedstock for FischerTropsch synthesis to produce liquid transportation fuels and chems.
Compared to the conventional petroleum/natural gas based GTL technol.,
biomass-derived feedstock has the nature of small scale, and the use of
microchannel reactor technol. is potentially cost-competitive.
Battelle/PNNL has developed a catalytic microchannel reactor
integrated with highly efficient heat exchanger to provide isothermal
environment for the strongly exothermic FT synthesis reactions. It allows
the process be operated close to the kinetically controlled regime so that

the heat and mass transfer limitation be minimized in this three phase reaction system. In order to achieve high yield of naphtha and diesel range of hydrocarbons (C5-C19), we have developed a unique structured catalyst system suitable for the deployment in microchannel reactor applications. This engineered catalyst structures are based on metallic monolith supports and uniformly coated with improved catalyst formulation. The objective was to take advantage of the high thermal conductivity and reduced mass transfer resistance in an ordered structure. has been demonstrated that this engineered catalyst produces much narrower carbon distributions (mainly less than C25) than a conventional powder catalyst with the similar productivity and methane selectivity. In particular, majority of the synthesis products fall in to the slates of gasoline and diesel range. This unique product distribution, in turn, has a pos. impact on process economics since there is a strong possibility to eliminate a hydrocracker in downstream processing. In addnl. to the exptl. work, the finite element method (FEM) modeling that efficiently solves the reacting transport problems in complex geometries has been used to optimize the reactor and catalyst design. Numerical simulation in predicting the temperature and conversion profiles in the microreactor helps to design the reactor channel geometries. And the simulation of component concentration profile assists to tailor the coating thickness of structured catalyst in order to evaluate the diffusion effects on product selectivity. This optimization improves the performance of monolithic catalysts integrated with microchannel reactors for biomass-derived syngas conversion to fuels.

Ιt

Hit List

First Hit Clear Generate Collection Print **Fwd Refs Bkwd Refs** Generate OACS

Search Results - Record(s) 1 through 11 of 11 returned.

☐ 1. Document ID: US 20050239910 A1

Using default format because multiple data bases are involved.

L3: Entry 1 of 11

File: PGPB

Oct 27, 2005

Jan 13, 2005

PGPUB-DOCUMENT-NUMBER: 20050239910

PGPUB-FILING-TYPE: new

DOCUMENT-IDENTIFIER: US 20050239910 A1

TITLE: Fluidization and solids processing in microchannel devices

PUBLICATION-DATE: October 27, 2005

INVENTOR-INFORMATION:

NAME CITY STATE COUNTRY Jarosch, Kai Bexley OH US Tonkovich, Anna Lee Marysville OH US Hesse, David J. Columbus OH US Daymo, Eric Marysville OH US Perry, Steven T. Galloway OH US Silva, Laura J. Dublin OH US

US-CL-CURRENT: 518/726

Full	Titl∈	Citation	Front	Review	Classification	Date	Reference	Sequences	Attachments	Claims	15040	Erant Er
				i								
	2.	Docume	ent ID:	US 20	050009175	Al			•			
L3: E	ntry	2 of 1	L1			F	File: PG	PB		Jan	13.	2005

PGPUB-DOCUMENT-NUMBER: 20050009175

PGPUB-FILING-TYPE: new

DOCUMENT-IDENTIFIER: US 20050009175 A1

TITLE: Chemical processing microsystems comprising high-temperature parallel flow microreactors

PUBLICATION-DATE: January 13, 2005

INVENTOR - INFORMATION:

NAME CITY STATE COUNTRY Bergh, H. Sam Santa Clara CA US

Record List Display Page 2 of 32

Guan, Shenheng

Santa Clara

CA

US

ASSIGNEE-INFORMATION:

NAME

CITY STATE COUNTRY

TYPE CODE

Symyx Technologies, Inc.

APPL-NO: 10/913049 [PALM]

DATE FILED: August 5, 2004

RELATED-US-APPL-DATA:

child 10913049 A1 20040805

parent continuation-of 09728732 20001128 US PENDING

child 09728732 20001128 US

parent division-of 09518794 20000303 US GRANTED

parent-patent 6749814 US

non-provisional-of-provisional 60122704 19990303 US

INT-CL: [07] C12 M 1/34

US-CL-PUBLISHED: 435/287.2 US-CL-CURRENT: 435/287.2

REPRESENTATIVE-FIGURES: NONE

ABSTRACT:

A chemical processing microsystem useful for identifying and optimizing materials (e.g., catalysts) that enhance chemical processes or for characterizing and/or optimizing chemical processes is disclosed. The chemical processing microsystem comprises a plurality of microreactors 600 and, in a preferred embodiment, a plurality of microseparators 900 integral with the chemical processing microsystem 10. The microreactors 600 are preferably diffusion-mixed microreactors formed in a plurality of laminae that include a modular, interchangeable candidate-material array 100. The material array 100 comprises a plurality of different candidate materials (e.g., catalysts), preferably arranged at separate, individually addressable portions of a substrate (e.g., wafer). The microseparators 900 are similarly formed in a plurality of laminae that include a modular, interchangeable adsorbent array 700. The adsorbent array 700 comprises one or more adsorbents, preferably arranged at separate, individually addressable portions of a substrate to spatially correspond to the plurality of different candidate materials. Modular microfluidic distribution systems are also disclosed. The chemical processing microsystem can be integrated into a material evaluation system that enables a comprehensive combinatorial material science research program.

[0001] This application claims priority to commonly owned, co-pending U.S. patent application Ser. No. 60/122,704 filed Mar. 3, 1999 entitled "Chemical Processing Microsystems, Diffusion-Mixed Microreactors and Methods for Preparing and Using Same", which is hereby incorporated by reference for all purposes.

Full Title Citation Front Review Classification Date Reference Sequences Attachments Claims KindC Draw De

☐ 3. Document ID: US 20040033455 A1

L3: Entry 3 of 11

File: PGPB

Feb 19, 2004

Record List Display Page 3 of 32

PGPUB-DOCUMENT-NUMBER: 20040033455

PGPUB-FILING-TYPE: new

DOCUMENT-IDENTIFIER: US 20040033455 A1

TITLE: Integrated combustion reactors and methods of conducting simultaneous

endothermic and exothermic reactions

PUBLICATION-DATE: February 19, 2004

INVENTOR-INFORMATION:

NAME .	CITY	STATE	COUNTRY
Tonkovich, Anna Lee	Marysville	OH	US
Roberts, Gary	West Richland	WA	US
Fitzgerald, Sean P.	Columbus	OH	US
Neagle, Paul W.	Westerville	OH	US
Qiu, Dongming	Dublin	OH	US .
Schmidt, Matthew B.	Columbus	OH	US
Perry, Steven T.	Galloway	OH	US
Hesse, David J.	Columbus	OH	US.
Luzenski, Robert J.	Marysville	OH	US
Chadwell, G. Bradley	Reynoldsburg	OH	US
Peng, Ying	Columbus	OH	US
Mathias, James A.	Columbus	ОН	US
Gano, Nathan P.	Dublin	ОН	US
Long, Richard Q.	Columbus	ОН	US
Roger, Wm. Allen	Marysville	OH	US
Arora, Ravi	Dublin	ОН	US
Simmons, Wayne W.	Dublin	OH	US
Yang, Barry L.	Dublin	ОH	US
Kuhlmann, David J.	Powell	ОН	US
Wang, Yong	Richland	WA	US
Yuschak, Thomas D.	Dublin	ОН	US
Forte, Thomas	Columbus	OH	US
Monahan, John Arthur	Westerville	ОН	US
Jetter, Robert	Pebble Beach	CA	US

APPL-NO: 10/222196 [PALM]
DATE FILED: August 15, 2002

INT-CL: [07] <u>F23</u> <u>D</u> <u>3/40</u>

US-CL-PUBLISHED: 431/7; 431/10, 431/326, 431/170 US-CL-CURRENT: $\underline{431/7}$; $\underline{431/10}$, $\underline{431/170}$, $\underline{431/326}$

REPRESENTATIVE-FIGURES: 1

ABSTRACT:

Integrated Combustion Reactors (ICRS) and methods of making ICRs are described in

Record List Display Page 4 of 32

which combustion chambers (or channels) are in direct thermal contact to reaction chambers for an endothermic reaction. Particular reactor designs are also described. Processes of conducting reactions in integrated combustion reactors are described and results presented. Some of these processes are characterized by unexpected and superior results, and/or results that can not be achieved with any prior art devices.

OTHER APPLICATIONS

[0001] The invention may be further understood by reference to U.S. patent applications Ser. Nos. ______ (Title: Multistream Microchannel Device; Attorney Docket No. 02-001), _____ (Title: Process for Cooling a Product in a Heat Exchanger Employing Microchannels for the Flow of Refrigerant and Product, Attorney Docket No. 01-002), and _____ (Title Process for Conducting an Equilibrium Limited Chemical Reaction in a Single Stage Process Channel; Attorney Docket No. 02-051), all of which were filed on Aug. 15, 2002, all of which are incorporated herein by reference.

L OIL	nue	Citation	Fiont	Menterin	Classification	Date	Reference	pedacunes	Attachments	Ulaims	KARIC	Fitabil Fie
		······································										

☑ 4. Document ID: US 20040031592 A1

L3: Entry 4 of 11

File: PGPB

Feb 19, 2004

PGPUB-DOCUMENT-NUMBER: 20040031592

PGPUB-FILING-TYPE: new

DOCUMENT-IDENTIFIER: US 20040031592 A1

TITLE: Multi-stream microchannel device

PUBLICATION-DATE: February 19, 2004

INVENTOR-INFORMATION:

NAME	CITY	STATE	COUNTRY
Mathias, James Allen	Columbus	OH .	US
Chadwell, G. Bradley	Reynoldsburg	ОН	US
Qiu, Dongming	Dublin	ОН	US
Tonkovich, Anna Lee Y.	Marysville	ОН	US
Perry, Steven T.	Galloway	ОН	US
Schmidt, Matthew B.	Columbus	OH	US

APPL-NO: 10/222604 [PALM]
DATE FILED: August 15, 2002

INT-CL: [07] <u>F28</u> <u>D</u> <u>15/00</u>

US-CL-PUBLISHED: 165/104.19 US-CL-CURRENT: 165/104.19

REPRESENTATIVE-FIGURES: 1A

ABSTRACT:

Record List Display Page 5 of 32

The invention is a process and device for exchanging heat energy between three or more streams in a microchannel <u>heat exchanger</u> which can be integrated with a microchannel reactor to form an integrated microchannel processing unit. The invention enables the combining of a plurality of integrated microchannel devices to provide the benefits of large-scale operation. In particular, the microchannel <u>heat exchanger</u> of the present invention enables flexible heat transfer between multiple streams and total heat transfer rates of about 1 Watt or more per core unit volume expressed as W/cc.

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] The present application is related to the following commonly-assigned applications filed concurrently herewith on Aug. 15, 2002: "Integrated Combustion Reactors and Methods of Conducting Simultaneous Endothermic and Exothermic Reactions", Attorney Docket No. 02-052 and "Process for Cooling a Product in a <u>Heat Exchanger</u> Employing Microchannels for the Flow of Refrigerant and Product", Attorney Docket No. 01-002 which applications are incorporated herein by reference.

Full	Title	Citation	Front	Review	Classification	Date	Reference	Sequences	Attachments	Claims	10000	Cyramic Co
•	······································						······································					
	5.	Docume	nt ID:	US 20	030072699	A1						
T.3 - F	Entry	5 of 1	1			1	File. DC	מסו		Anr	17	2002

PGPUB-DOCUMENT-NUMBER: 20030072699

PGPUB-FILING-TYPE: new

DOCUMENT-IDENTIFIER: US 20030072699 A1

TITLE: Integrated reactors, methods of making same, and methods of conducting simultaneous exothermic and endothermic reactions

PUBLICATION-DATE: April 17, 2003

INVENTOR-INFORMATION:

NAME	CITY	STATE	COUNTRY
Tonkovich, Anna Lee	Marysville	ОН	US
Roberts, Gary	West Richland	WA	us
Perry, Steven T.	Galloway	ОН	US
Fitzgerald, Sean P.	Columbus	ОН	US

APPL-NO: 10/076875 [PALM]
DATE FILED: February 14, 2002

RELATED-US-APPL-DATA:
child 10076875 Al 20020214
parent continuation-in-part-of 09375614 19990817 US PENDING
child 10076875 Al 20020214
parent continuation-in-part-of 09640930 20000817 US GRANTED
parent-patent 6378278 US

non-provisional-of-provisional 60269628 20010216 US

INT-CL: [07] <u>B01</u> <u>J</u> <u>8/02</u>, <u>B01</u> <u>J</u> <u>8/04</u>

Record List Display Page 6 of 32

US-CL-PUBLISHED: 422/190; 422/188, 422/211, 422/240 US-CL-CURRENT: 422/190; 422/188, 422/211, 422/240

REPRESENTATIVE-FIGURES: NONE

ABSTRACT:

Integrated Combustion Reactors (ICRs) and methods of making ICRs are described in which combustion chambers (or channels) are in direct thermal contact to reaction chambers for an endothermic reaction. Superior results were achieved for combustion chambers which contained a gap for free flow through the chamber. Particular reactor designs are also described. Processes of conducting reactions in integrated combustion reactors are described and results presented. Some of these processes are characterized by unexpected and superior results.

RELATED APPLICATIONS

[0001] This application is a continuation-in-part of U.S. patent application Ser. Nos. 09/375,614 and 09/640,930, which are incorporated herein as if reproduced in full below. In accordance with 35 U.S.C. sect. 119(e), this application claims priority to U.S. Provisional Application No. 60/269,628, filed Feb. 16, 2001.

Full Title	: Citation	Front	Review	Classification	Date	Reference	Sequences	Attachments	Claims	1300C	Draw D
□ 6.	Documer	nt ID:	US 69	69506 B2				•			
L3: Entr				0,000 22	I	File: US	PT ·		Nov	29,	2005

US-PAT-NO: 6969506

DOCUMENT-IDENTIFIER: US 6969506 B2

TITLE: Methods of conducting simultaneous exothermic and endothermic reactions

DATE-ISSUED: November 29, 2005

INVENTOR-INFORMATION:

NAME	CITY	STATE	ZIP CODE	COUNTRY
Tonkovich; Anna Lee	Marysville	OH		
Roberts; Gary L.	West Richland	WA		
Perry; Steven T.	Galloway	ОН		
Fitzgerald; Sean P.	Columbus	ОН		

ASSIGNEE-INFORMATION:

NAME .	CITY	STATE 2	ZIP CODE	COUNTRY	TYPE CODE
Battelle Memorial Institute	Richland	WA			02

APPL-NO: 10/076875 [PALM]
DATE FILED: February 14, 2002

PARENT-CASE:

RELATED APPLICATIONS This application is a continuation-in-part of U.S. patent application Ser. No. 09/375,614 filed Aug. 17, 1999, now U.S. Pat. No. 6,488,838

Record List Display Page 7 of 32

and Ser. No. 09/640,903, filed Aug. 17, 2000 now U.S. Pat. No. 6,680,044, which are incorporated herein as if reproduced in full below. In accordance with 35 U.S.C. sect. 119(e), this application claims priority to U.S. Provisional Application No. 60/269,628, filed Feb. 16, 2001.

INT-CL: [07] CO1 B 3/26

US-CL-ISSUED: 423/652; 252/373, 423/418.2, 423/656, 423/659 US-CL-CURRENT: 423/652; 252/373, 423/418.2, 423/656, 423/659

FIELD-OF-SEARCH: 252/373, 423/418.2, 423/652, 423/656, 423/659

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
		Laumen	
4795618	January 1989		422/202
5047381	September 1991	Beebe	502/304
5270127	December 1993	Koga et al.	429/17
5366719	November 1994	van Wingerden et al.	423/659
<u>5403184</u>	April 1995	Hosaka et al.	431/170
5518697	May 1996	Dalla Betta et al.	422/173
5565009	October 1996	Ruhl et al.	48/197
5609834	March 1997	Hamada et al.	422/196
5811062	September 1998	Wegeng et al.	422/129
5858314	January 1999	Hsu et al.	422/211
6040266	March 2000	Fay et al.	502/439
6056932	May 2000	von Hippel et al.	423/376
6117578	September 2000	Lesieur	429/19
6159358	December 2000	Mulvaney et al.	208/46
6165633	December 2000	Negishi	429/17
6168765	January 2001	Romatier et al.	422/200
6180846	January 2001	Dandekar et al.	585/443
6190624	February 2001	Romatier	422/200
<u>6193501</u>	February 2001	Masel et al.	431/170
<u>6200536</u>	March 2001	Tonkovich et al.	422/177
6228341	May 2001	Hebert et al.	423/352
6241875	June 2001	Gough	208/106
6274101	August 2001	Sechrist	422/198
6488838	December 2002	Tonkovich et al.	208/108
6616909	September 2003	Tonkovich et al.	423/648.1
2002/0106596	August 2002	Hermann et al.	431/12
2002/0168308	November 2002	Loffler et al.	422/211

FOREIGN PATENT DOCUMENTS

FOREIGN-PAT-NO

PUBN-DATE

COUNTRY

CLASS

•		
19841993	March 2000	DE
0848990	June 1998	EP
0885653	December 1998	EP
1031375	February 2000	EP
1123735	February 2001	EP
1123734	August 2001	EP
0869842	October 2001	EP
2353801	March 2001	GB
6111838	April 1994	JP
WO 96/32188	October 1996	WO
WO 00/06295	February 2000	WO
WO 01/10773	February 2001	WO
WO 01/12312	February 2001	WO
WO 01/54804	August 2001	WO
WO 01/54805	August 2001	WO
WO 01/54806	August 2001	WO
WO 01/89681	November 2001	WO

OTHER PUBLICATIONS

Twigg et al., "Metal and Coated-Metal Catalysts," Chapter 3, pp. 59-89. Kusakabe et al. "Development of a Microchannel Catalytic Reactor System," Korean J. Chem. Eng. 18(3), 271-276 (2001).

Cunha et al., "Modeling the integration of compact plate steam reformer in a fuel cell system," J Power Sources 86 (2000) 515-522.

Ismagilov et al., "Development and Study of metal foam heat-exchanging tubular reactor: Catalytic combustion of methane combined with methane steam reforming," Studies in Surface Science and Catalysis, pp. 2759-2764 (2000).

Polman et al., "Novel Compact steam reformer for fuel cells with heat generation by catalytic combustion augmented by induction heating," Catalysis Today pp. 347-351 (1999).

Arakawa et al., "Nonadiabatic developments lower process temperatures while improving reaction rates," Hydrocarbon Processing, (Mar. 1998).

Leonov et al., "Monolithic Catalyst Supports With Foam Structure," React. Kinet. Catal. Lett., 259-267 (1997).

Franz et al., "New Operating Regimes and Applications Feasible with Microreactors," in Process Mini: Second International Conf. On Microtechnology, 33-38 (1998). Mulder et al., "Catalytic Combustion in a Sintered Metal Reactor with Integrated Heat Exchanger," Applied Thermal Engineering, 825-836 (1997).

Adris et al., "On the Reported Attempts to Radically Improve the Performance of the Steam Methane Reforming Reactor," Can. J. Of Chem Eng., 177-185 (1996). Charlesworth, "Combustion and steam reforming of methane on thin layer catalysts for use in catlytic plate reactors," IMechE, 85-89 (1995).

ART-UNIT: 1754

PRIMARY-EXAMINER: Silverman; Stanley S.

ASSISTANT-EXAMINER: Medina; Maribel

ATTY-AGENT-FIRM: Rosenberg; Frank Harrington; Todd J.

ABSTRACT:

Record List Display Page 9 of 32

Integrated Combustion Reactors (ICRs) and methods of making ICRs are described in which combustion chambers (or channels) are in direct thermal contact to reaction chambers for an endothermic reaction. Superior results were achieved for combustion chambers which contained a gap for free flow through the chamber. Particular reactor designs are also described. Processes of conducting reactions in integrated combustion reactors are described and results presented. Some of these processes are characterized by unexpected and superior results.

30 Claims, 33 Drawing figures

Full Title Citation Front Review Classification Date Reference Claims Numb Drame Communication To Document ID: US 6902934 B1

L3: Entry 7 of 11 File: USPT Jun 7, 2005

US-PAT-NO: 6902934

DOCUMENT-IDENTIFIER: US 6902934 B1

** See image for Certificate of Correction **

TITLE: Methods for identifying optimizing catalysts in parallel-flow microreactors

DATE-ISSUED: June 7, 2005

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Bergh; H. Sam San Francisco CA

Guan; Shenheng San Jose CA

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Symyx Technologies, Inc. Santa Clara CA 02

APPL-NO: 09/728732 [PALM]
DATE FILED: November 28, 2000

PARENT-CASE:

This application is a divisional of Ser. No. 09/518,794, filed Mar. 3, 2000, now U.S. Pat. No. 6,749,814 which claims priority to commonly owned, co-pending U.S. patent application Ser. No. 60/122,704 filed Mar. 3, 1999 entitled "Chemical Processing Microsystems, Diffusion-Mixed Microreactors and Methods for Preparing and Using Same", which is hereby incorporated by reference for all purposes.

INT-CL: [07] $\underline{G01}$ \underline{N} $\underline{31}/\underline{10}$

US-CL-ISSUED: 436/37; 422/130, 422/99, 422/100, 422/129 US-CL-CURRENT: 436/37; 422/100, 422/129, 422/130, 422/99

FIELD-OF-SEARCH: 422/99-104, 422/129-131, 436/43, 436/37

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
3431077	March 1969	Danforth	23/253
3797202	March 1974	Neulander et al.	55/158
4099923	July 1978	Milberger	23/254
4386505	June 1983	Little	62/514R
4392362	July 1983	Little	62/514R
4516632	May 1985	Swift et al.	165/167
4537217	August 1985	Allen, Jr.	137/561A
4636315	January 1987	Allen, Jr.	210/656
4832914	May 1989	Tam et al.	422/130
4999102	March 1991	Cox et al.	210/137
5016707	May 1991	Nguyen	165/167
5089232	February 1992	May	422/83
5145579	September 1992	Eguchi et al.	210/198.2
5209906	May 1993	Watkins et al.	422/200
5230866	July 1993	Shartle et al.	422/103
5296375	March 1994	Kricka et al.	435/291
<u>5296775</u>	March 1994	Cronin et al.	310/309
5304354	April 1994	Finley et al.	422/196
5354460	October 1994	Kearney et al.	210/198.2
<u>5356756</u>	October 1994	Cavicchi et al.	430/315
5385712	January 1995	Sprunk	422/190
5388635	February 1995	Gruber et al.	165/80.4
5534328	July 1996	Ashmead et al.	428/166
5580523	December 1996	Bard	422/50
5587128	December 1996	Wilding et al.	422/50
5593642	January 1997	DeWitt et al.	422/131
5603351	February 1997	Cherukuri et al.	137/597
5611214	March 1997	Wegeng et al.	62/498
5639423	June 1997	Northrup et al.	122/50
5658413	August 1997	Kaltenbach et al.	156/272.8
5658537	August 1997	Dugan	422/191
<u>5690763</u>	November 1997	Ashmead et al.	156/60
5699157	December 1997	Parce	356/344
5776359	July 1998	Schultz et al.	252/62.51
<u>5811062</u>	September 1998	Wegeng et al.	422/129
5842787	December 1998	Kopf-Sill et al.	366/340
<u>5843385</u>	December 1998	Dugan	422/191
<u>5846396</u>	December 1998	Zanzucchi et al.	204/601
<u>5852495</u>	December 1998	Parce .	356/344
<u>5858195</u>	January 1999	Ramsey	204/601
5869004	February 1999	Parce et al.	422/100
5872010	February 1999	Karger et al.	436/173
5908552	June 1999	Dittmann et al.	210/198.2
5938333	August 1999	Kearney .	366/336

Record List Display Page 11 of 32

•			
5942443	August 1999	Parce et al.	436/514
5948227	September 1999	Dubrow	204/455
5955028	September 1999	Chow	422/63
5957579	September 1999	Kopf-Sill et al.	366/340
5965001	October 1999	Chow et al.	204/600
5965410	October 1999	Chow et al.	435/91.2
<u>5976336</u>	November 1999	Dubrow et al.	204/453
5989402	November 1999	Chow et al.	204/601
6001229	December 1999	Ramsey	204/451
6004515	December 1999	Parce et al.	422/100
6010607	January 2000	Ramsey	204/435
6010608	January 2000	Ramsey	204/453
6042709	March 2000	Parce et al.	204/453
6042710	March 2000	Dubrow	204/454
6046056	April 2000	Parce et al.	436/514
6068684	May 2000	Overton	96/104
6068752	May 2000	Dubrow et al.	204/604
6071478	June 2000	Chow	422/81
6074725	June 2000	Kennedy	428/188
6087180	July 2000	Gleaves	436/37
6100541	August 2000	Nagle et al.	250/573
6123798	September 2000	Gandhi et al.	156/292
6132685	October 2000	Kercso et al.	422/104
6190624	February 2001	Romatier	422/200
6319719	November 2001	Bhullar et al.	436/70
6333019	December 2001	Coppens	423/659
6409072	June 2002	Breuer et al.	228/111.5

FOREIGN PATENT DOCUMENTS

FOREIGN-PAT-NO	PUBN-DATE	COUNTRY	CLASS
196 32 779	February 1998	DE	
198 05 719	August 1999	DE	
198 06 848	August 1999	DE	
198 09 477	September 1999	DE	
0 870 541	October 1998	EP	
971 225	January 2000	EP	
0 870 541	November 2001	ËР	•
2 327 754	February 1999	GB .	
WO 96/15576	May 1996	WO	
WO 96/35810	November 1996	Μ̈́O	
WO 97/32208	September 1997	WO	
WO 98/07206	February 1998	WO	
WO 98/14268	April 1998	WO	
WO 98/16949	April 1998	WO	
WO 98/56956	December 1998	WO	•

WO	99/10221	January 1999	OW.
WO	99/19724	April 1999	WO
WO	99/30817	June 1999	WO
WO	99/34205	July 1999	WO
WO	99/41005	August 1999	WO
WO	99/43432	September 1999	WO
WO	99/48599	September 1999	WO
WO	99/59716	November 1999	WO
WO	98/64160	December 1999	WO
WO	99/64836	December 1999	WO
WO	00/07026	February 2000	WO
WO	00/14529	March 2000	WO
WO	00/21666	April 2000	WO
WO	00/22424	April 2000	WO
WO	00/32308	June 2000	WO
WO	00/32512	June 2000	WO
WO	0042212	July 2000	WO
WO	00/43766	July 2000	WO
WO	00/45172	August 2000	WO
WO	00/46594	August 2000	WO .
WO	00/50172	August 2000	WO
WO	01/12327	February 2001	WO

OTHER PUBLICATIONS

Nauman, E. Bruce. Chemical Reactor Design, Optimization, and Scaleup.

Jackel, K.P., "Microtechnology: Application Opportunities in the Chemical Industry"

DECHEMA Monographs, vol. 132, VCH Verlagsgesellschaft 1996, pp. 29-50.

Ackelid, Ulf, et al. "Kinetic Studies of Diffusion Limited Gas-Surface Reactions By

Spatially Resolved Gas Sampling: Reaction Rates and Sticking Coefficients in the

H.sub.2 +O.sub.2 Reaction on Pt" Linkoping Studies in Science and Technology,

Dissertations No. 392, 1995, pp. 122-133.

Zech et al., "Simultaneous Screening of Catalysts in Microchannels: Methodology and

Experimental Setup" 00-00-1998, pp. 260-266 (XP-001006374).

Randhava, Ravi et al. "Advanced Configurations For Catalyst Research" Chemical

Engineering Progress, vol. 70, No. 11 Nov. 1983, pp. 52-58.

Sie, S.T. "Reducing the Scale in Catalytic Process Research: Cost Savings" I 2 Procestechnologie v. 7(3) 1991 IPRTEZ (Transaction).

Rodemerck, Uwe, et al. "Parallel Synthesis and Testing Systems of Heterogeneous Catalysts".

Mirth, Gabriele et al. "Design and Application of a New Reactor for in Situ Infrared Spectroscopid Investigations of Heterogeneously Catalyzed Reactions" 1369 Applied Spectroscopy, 48(1994) Feb., No. 2, pp. 194-197.

G.M. Greenway, S.J. Haswell, D.O. Morgan, et al., "The Use of a Novel Microreactor for High Throughtput Continuous Flow Organic Synthesis," Sensors and Actuators B-Chemical, 2000, 63, p. 153.

Burns et al., "Development of a Microreactor for Chemical Production," AIChE 2.sup.nd International Conference on Microreaction Technology, pp. 39-44 (1998). Cooke, "Decreasing Gas Chromatography Analysis Times using a Multicapillary Column," Abs. 403P, Book of Abstracts, PittCon" '96 (1996).

Ehrfeld et al., "Potentials and Realizations of Microreactors," DECHEMA Monographs vol. 132, pp. 1-28 (1995).

Hanak et al., "Optimization Studies of Materials in Hydrogenated Amorphous Silicon

Solar Cells, "Photovoltaic Solar Energy Conference, Berlin (1979). Honicke et al., "Heterogeneously Catalyzed Reactions in a Microreactor," DECHEMA Monographs vol. 132, pp. 93-107 (1995).

Johansson et al., "Nanofabrication of Model Catalysts and Simulations of their Reaction Kinetics," J. Vac. Sci. Technol., 17:1 (Jan./Feb. 1999).

Lowe et al., "Microreactor Concepts for Heterogeneous Gas Phase Reactions," AIChE 2.sup.nd International Conference on Microreaction Technology, pp. 63-73 (1998). Matiosz et al., "Microsectioned Electrochemical Reactors for Selective Partial Oxidation," AIChE 2.sup.nd International Conference on Microreaction Technology, pp. 54-59 (1998).

S.M. Sze, "Semiconductor Sensors," Chap. 2, pp. 17-96, John Wiley & Sons, Inc. (1994).

Srinivasan et al., "Micromachined Reactors for Catalytic Partial Oxidation Reactions," AIChE Journal, vol. 43, No. 11, pp. 3059-3069 (1997).

Tonkovich et al., "The Catalytic Partial Oxidation of Methane in a Microchemical Reactor," AIChE 2 .sup.nd International Conference on Microreaction Technology, pp. 45-53 (1998).

van Dover et al., "Discovery of a Useful Thin-Film Dielectric Using a Composition-Spread Approach," Nature, vol. 392, No. 12, pp. 162-164 (1998).
Bunshah, "Handbook of Deposition Technologies for Films and Coatings," 2.sup.nd Ed., Noyes Publications (1994).

ART-UNIT: 1743

PRIMARY-EXAMINER: Alexander; Lyle A.

ABSTRACT:

A chemical processing microsystem useful for identifying and optimizing, materials (e.g., catalysts) that enhance chemical processes or for characterizing and/or optimizing chemical processes is disclosed. The chemical processing microsystem comprises a plurality of microreactors 600 and, in a preferred embodiment, a plurality of microseparators 900 integral with the chemical processing microsystem 10. The microreactors 600 are preferably diffusion-mixed microreactors formed in a plurality of laminae that include a modular, interchangeable candidate-material array 100. The material array 100 comprises a plurality of different candidate materials (e.g., catalysts), preferably arranged at separate, individually addressable portions of a substrate (e.g., wafer). The microseparators 900 are similarly formed in a plurality of laminae that include a modular, interchangeable adsorbent array 700.

54 Claims, 88 Drawing figures

Full Title Citation Front Review Classification Date Reference Classification Date Reference

□ 8. Document ID: US 6890493 B1

L3: Entry 8 of 11

File: USPT

May 10, 2005

US-PAT-NO: 6890493

DOCUMENT-IDENTIFIER: US 6890493 B1

TITLE: Methods and apparatus for fluid distribution in microfluidic systems

Record List Display Page 14 of 32

DATE-ISSUED: May 10, 2005

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Bergh; H. Sam San Francisco CA Guan; Shenheng San Jose CA

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Symyx Technologies, Inc. Santa Clara CA 02

APPL-NO: 09/728263 [PALM]
DATE FILED: November 28, 2000

PARENT-CASE:

This application is a divisional application of co-pending U.S. patent application Ser. No. 09/518,794 filed Mar. 3, 2000, which itself claims priority to commonly owned, co-pending U.S. patent application Ser. No. 60/122,704 filed Mar. 3, 1999 entitled "Chemical Processing Microsystems, Diffusion-Mixed Microreactors and Methods for Preparing and Using Same", which is hereby incorporated by reference for all purposes.

INT-CL: [07] <u>B01</u> <u>J</u> <u>19/00</u>

US-CL-ISSUED: 422/130; 422/129, 422/99, 422/102, 436/52, 436/53, 436/180, 436/37,

137/884

US-CL-CURRENT: $\underline{422}/\underline{130}$; $\underline{137}/\underline{884}$, $\underline{422}/\underline{102}$, $\underline{422}/\underline{129}$, $\underline{422}/\underline{99}$, $\underline{436}/\underline{180}$, $\underline{436}/\underline{37}$, $\underline{436}/\underline{52}$,

<u>436/53</u>

FIELD-OF-SEARCH: 422/99-104, 422/129-131, 436/180, 436/52, 436/53, 436/37, 137/884

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
3431077	March 1969	Danforth	23/253
3797202	March 1974	Neulander et al.	55/158
3966420	June 1976	Pegels et al.	23/288R
4099923	July 1978	Milberger	23/254
4386505	June 1983	Little	62/514R
4392362	July 1983	Little	62/514R
<u>4516632</u>	May 1985	Swift et al.	165/167
4537217	August 1985	Allen, Jr.	137/561A
4636315	January 1987	Allen, Jr.	210/656
4820495	April 1989	Vu et al.	422/148
4832914	May 1989	Tam et al.	422/130
4921919	May 1990	Lin et al.	526/88
4999102	March 1991	Cox et al.	210/137
5016707	May 1991	Nguyen	165/167
5079205	January 1992	Canich	502/117

•			
5089232	February 1992	May	422/83
<u>5145579</u>	September 1992	Eguchi et al.	210/198.2
5209906	May 1993	Watkins et al.	422/200
<u>5230866</u>	July 1993	Shartle et al.	422/103
<u>5288644</u>	February 1994	Beavis et al.	436/94
<u>5296375</u>	March 1994	Kricka et al.	435/2
<u>5296775</u>	March 1994	Cronin et al.	310/309
5304354	April 1994	Finley et al.	422/196
5354460	October 1994	Kearney et al.	210/198.2
<u>5356756</u>	October 1994	Cavicchi et al.	430/315
<u>5385712</u>	January 1995	Sprunk	422/190
<u>5388635</u>	February 1995	Gruber et al.	165/80.4
5498545	March 1996	Vestal	436/47
5534328	July 1996	Ashmead et al.	428/166
<u>5580523</u>	December 1996	Bard	422/50
<u>5587128</u>	December 1996	Wilding et al.	422/50.
5593642	January 1997 .	DeWitt et al.	422/131
<u>5603351</u>	February 1997	Cherukuri et al.	137/597
5611214	March 1997	Wegeng et al.	62/498
5639423	June 1997	Northrup et al.	122/50
5658413	August 1997	Kaltenbach et al.	156/272.8
<u>5658537</u>	August 1997	Dugan	422/191
<u>5690763</u>	November 1997	Ashmead et al.	156/60
<u>5699157</u>	December 1997	Parce	356/344
<u>5770860</u>	June 1998	Franzen	250/288
<u>5776359</u>	July 1998	Schultz et al.	252/62.51
5811062	September 1998	Wegeng et al.	422/129
5842787	December 1998	Kopf-Sill et al.	366/340
<u>5843385</u>	December 1998	Dugan	422/191
<u>5846396</u>	December 1998	Zanzucchi et al.	204/601
<u>5852495</u>	December 1998	Parce	356/344
5858195	January 1999	Ramsey	204/601
5869004	February 1999	Parce et al.	422/100
5872010	February 1999	Karger et al.	436/173
<u>5908552</u>	June 1999	Dittmann et al.	210/198.2
5935277	August 1999	Autenrieth et al.	48/127.9
5938333	August 1999	Kearney	366/336
5942443	August 1999	Parce et al.	436/514
5948227	September 1999	Dubrow	204/455
5955028	September 1999	Chow	422/63
. <u>5957579</u>	September 1999	Kopf-Sill et al.	366/,340
5959297	September 1999	Weinberg et al.	250/288
<u>5965001</u>	October 1999	Chow et al.	204/600
5965410	October 1999	Chow et al.	435/91.2
<u>5976336</u>	November 1999	Dubrow et al.	204/453
5989402	November 1999	Chow et al.	204/601
6001229	December 1999	Ramsey	204/451

Record List Display Page 16 of 32

6004515	December 1999	Parce et al.	422/100
6010607	January 2000	Ramsey	204/435.
<u>6010608</u>	January 2000	Ramsey	204/453
6042709	March 2000	Parce et al.	204/453
6042710	March 2000	Dubrow	204/454
6046056	April 2000	Parce et al.	436/514
6068684	May 2000 .	Overton	96/104
6068752	May 2000	Dubrow et al.	204/604
6071478	June 2000	Chow ·	422/81
6074725	June 2000	Kennedy	428/188
6087180	July 2000	Gleaves	436/37
<u>6087181</u>	July 2000	Cong	436/37
6100541	August 2000	Nagle et al.	250/573
6103199	August 2000	Bjornson et al.	422/100
6123798	September 2000	Gandhi et al.	156/292
<u>6132685</u>	October 2000	Kercso et al.	422/104
<u>6143152</u>	November 2000	Simpson et al.	204/451
6149882	November 2000	Guan et al.	422/211
6221654	April 2001	Quake et al.	435/287.3
6287872	September 2001	Schurenberg et al.	436/181
6319719	November 2001	Bhullar et al.	436/70
<u>6333019</u>	December 2001	Coppens	423/659
<u>6350617</u>	February 2002	Hindsgaul et al.	436/173
6409072	June 2002	Breuer et al.	228/111.5
6426226	July 2002	Senkan	436/37
6485692	November 2002	Freitag et al.	422/130
2002/0042140	April 2002	Hagemeyer et al.	436/34

FOREIGN PATENT DOCUMENTS

FOREIGN-PAT-NO	PUBN-DATE	COUNTRY	CLASS
196 32 779	August 1996	DE	
198 05 719	February 1998	DE	
198 06 848	February 1998	DE	
198 55 894	December 1998	DE	
198 09 477	September 1999	DE	
0 870 541	October 1998	EP	
971 225	January 2000	EP	
2 327 754	February 1999	GB	
WO 96/15576	May 1996	WO	
WO 96/35810	November 1996	WO	
WO 97/32208	September 1997	WO	
WO 98/07206	February 1998	МО	
WO 98/16949	April 1998	WO .	
WO 98/56956	December 1998	WO	
WO 99/10221	January 1999	WO	

	· ·		
WO	99/19724	April 1999	WO
WO	99/30817	June 1999	WO
WO	99/34205	July 1999	WO
WO	99/41005	August 1999	WO
WO	99/43432	September 1999	WO
WO	99/48599	September 1999	WO
WO	99/59716	November 1999	WO
WO	99/64160	December 1999	WO
WO	99/64836	December 1999	WO
WO	00/07026	February 2000	WO
WO	00/14529	March 2000	WO
WO	00/21666	April 2000 .	WO
WO	00/22424	April 2000	WO
WO	00/32308	June 2000	WO
WO	00/32512	June 2000	WO
WO	0042212	July 2000	WO
WO	00/43766	July 2000	WO
WO	00/45172	August 2000	WO
WO	00/46594	August 2000	wо
WO	00/50172	August 2000	WO
WO	01/12327	February 2001	WO

OTHER PUBLICATIONS

G.M. Greenway, S.J. Haswell, D.O. Morgan, et al., "The Use of a Novel Microreactor for High Throughput Continuous Flow Organic Synthesis," Sensors and Actuators B-Chemical, 2000, 63, p. 153.

Burns et al., "Development of a Microreactor for Chemical Production," AlChE 2.sup.nd International Conference on Microreaction Technology, pp. 39-44 (1998). Cooke, "Decreasing Gas Chromatography Analysis Times using a Multicapillary Column," Abs. 403P, Book of Abstracts, PittCon' '96 (1996).

Ehrfeld et al., "Potentials and Realizations of Microreactors," DECHEMA Monographs vol. 132, pp. 1-28 (1995).

Hanak et al., "Optimization Studies of Materials in Hydrogenated Amorphous Silicon Solar Cells," Photovoltaic Solar Energy Conference, Berlin (1979).

Honicke et al., "Heterogeneously Catalyzed Reactions in a Microreactor," DECHEMA Monographs vol. 132, pp. 93-107 (1995).

Johansson et al., "Nanofabrication of Model Catalysts and Simulations of their Reaction Kinetics," J. Vac. Sci. Technol., 17:1 (Jan./Feb. 1999).

Lowe et al., "Microreactor Concepts for Heterogeneous Gas Phase Reactions," AlChE 2.sup.nd International Conference on Microreaction Technology, pp. 63-73 (1998). Matlosz et al., "Microsectioned Electrochemical Reactors for Selective Partial Oxidation," AlChE 2.sup.nd International Conference on Microreaction Technology, pp. 54-59 (1998).

S.M. Sze, "Semiconductor Sensors," Chap. 2, pp. 17-96, John Wiley & Sons, Inc. (1994).

Srinivasan et al., "Micromachined Reactors for Catalytic Partial Oxidation Reactions," AlChE Journal, vol. 43, No. 11, pp. 3059-3069 (1997).

Tonkovich et al., "The Catalytic Partial Oxidation of Methane in a Microchemical Reactor," AlChE 2.sup.nd International Conference on Microreaction Technology, pp. 45-53 (1998).

van Dover et al., "Discovery of a Useful Thin-Film Dielectric Using a Composition-Spread Approach," Nature, vol. 392, No. 12, pp. 162-164 (1998).
Bunshah, "Handbook of Deposition Technologies for Films and Coatings," 2.sup.nd

Record List Display Page 18 of 32

Ed., Noyes Publications (1994).

Jackel, K.P., "Microtechnology: Application Opportunities in the Chemical Industry" DECHEMA Monographs, vol. 132 VCH Verlagsgesellschaft 1996, pp. 29-50.

Ackelid, Ulf, et al. "Kinetic Studies of Diffusion Limited Gas-Surface Reactions by Spatially Resolved Gas Sampling: Reaction Rates and Sticking Coefficients in the H.sub.2 +O.sub.2 Reaction on Pt" Linkoping Studies in Science and Technology, Dissertations No. 392, 1995, pp. 122-133.

Zech et al., "Simultaneous Screening of Catalysts in Microchannels: Methodology and Experimental Setup" 00-00-1998, pp. 260-266 (XP-001006374).

Randhava, Ravi et al. "Advanced Configurations for Catalyst Research" Chemical Engineering Progress, vol. 70, No. 11 Nov. 1983, pp. 52-58.

Sie, S.T. "Reducing the Scale in Catalytic Process Research: Cost Savings"I 2 Procestechnologie v. 7(3) 1991 IPRTEZ (Translation).

Rodemerck, Uwe, et al., "Parallel Synthesis and Testing Systems of Heterogeneous Catalysts".

Mirth, Gabriele et al. "Design and Application of a New Reactor for in Situ Infrared Spectroscopic Investigations of Heterogeneously Catalyzed Reactions" 1369 Applied Spectroscopy, 48(1994) Feb., No. 2, pp. 194-197.

ART-UNIT: 1743

PRIMARY-EXAMINER: Warden; Jill

ASSISTANT-EXAMINER: Quan; Elizabeth

ABSTRACT:

A chemical processing microsystem useful for identifying and optimizing materials (e.g., catalysts) that enhance chemical processes or for characterizing and/or optimizing chemical processes is disclosed. The chemical processing microsystem comprises a plurality of microreactors 600 and, in a preferred embodiment, a plurality of microseparators 900 integral with the chemical processing microsystem 10. The microreactors 600 are preferably diffusion-mixed microreactors formed in a plurality of laminae that include a modular, interchangeable candidate-material array 100. The material array 100 comprises a plurality of different candidate materials (e.g., catalysts), preferably arranged at separate, individually addressable portions of a substrate (e.g., wafer). The microseparators 900 are similarly formed in a plurality of laminae that include a modular, interchangeable adsorbent array 700. The adsorbent array 700 comprises one or more adsorbents, preferably arranged at separate, individually addressable portions of a substrate to spatially correspond to the plurality of different candidate materials. Modular microfluidic distribution systems are also disclosed. The chemical processing microsystem can be integrated into a material evaluation system that enables a comprehensive combinatorial material science research program.

15 Claims, 72 Drawing figures

Full Title Citation Front Review Classification Date Reference 2007 A Claims NMC Eraw Cr

☐ 9. Document ID: US 6749814 B1

L3: Entry 9 of 11

File: USPT

Jun 15, 2004

US-PAT-NO: 6749814

DOCUMENT-IDENTIFIER: US 6749814 B1

Record List Display Page 19 of 32

** See image for Certificate of Correction **

TITLE: Chemical processing microsystems comprising parallel flow microreactors and methods for using same

DATE-ISSUED: June 15, 2004

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Bergh; H. Sam San Francisco CA Guan; Shenheng San Jose CA

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Symyx Technologies, Inc. Santa Clara CA 02

APPL-NO: 09/518794 [PALM]
DATE FILED: March 3, 2000

PARENT-CASE:

This application claims priority to commonly owned, co-pending U.S. patent application Ser. No. 60/122,704 filed Mar. 3, 1999 entitled "Chemical Processing Microsystems, Diffusion-Mixed Microreactors and Methods for Preparing and Using same", which is hereby incorporated by reference for all purposes.

INT-CL: [07] $\underline{B01}$ \underline{J} $\underline{19/00}$, $\underline{G01}$ \underline{N} $\underline{31/00}$

US-CL-ISSUED: 422/130; 422/99, 422/100, 422/102, 422/129, 436/37 US-CL-CURRENT: 422/130; 422/100, 422/102, 422/129, 422/99, 436/37

FIELD-OF-SEARCH: 422/99-104, 422/129-131

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

	•		
PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
3431077	March 1969	Danforth	23/253
3797202	March 1974	Neulander et al.	96/5
3966420	June 1976	Pegels et al.	23/288R
4099923	July 1978	Milberger	23/254
<u>4386505</u>	June 1983	Little	62/514R
4392362	July 1983	Little	62/514R
<u>4516632</u>	May 1985	Swift et al.	165/167
4537217	August 1985	Allen, Jr.	137/561
4636315	January 1987	Allen, Jr.	210/656
4832914	May 1989	Tam et al.	422/130
4921919	May 1990	Lin et al.	526/88
<u>5016707</u>	May 1991	· Nguyen	165/167
5079205	January 1992	Canich	502/117
5089232	February 1992	May	422/83

•			
5145579	September 1992	Eguchi et al.	210/198.2
<u>5209906</u>	May 1993	Watkins et al.	422/200
<u>5230866</u>	July 1993	Shartle et al.	422/103
<u>5288644</u>	February 1994	Beavis et al.	436/94
<u>5296375</u>	March 1994	Kricka et al.	435/291
<u>5296775</u>	March 1994	Cronin et al.	310/309
5304354	April 1994	Finley et al.	422/196
5354460	October 1994	Kearney et al.	210/198.2
<u>5356756</u>	October 1994	Cavicchi et al.	430/315
5385712	January 1995	Sprunk	422/190
<u>5388635</u>	February 1995	Gruber et al.	165/80.4
<u>5498545</u>	March 1996	Vestal	436/47
5534328	July 1996	Ashmead et al.	428/166
<u>5580523</u>	December 1996	Bard	422/50
<u>5587128</u>	December 1996	Wilding et al.	422/50
<u>5593642</u>	January 1997	DeWitt et al.	422/131 ·
<u>5603351</u>	February 1997	Cherukuri et al.	137/597
<u>5611214</u>	March 1997	Wegeng et al.	62/498
5639423	June 1997	Northrup et al.	122/50·
<u>5658413</u>	August 1997	Kaltenbach et al.	156/272.8
<u>5658537</u>	August 1997	Dugan	422/191
<u>5690763</u>	November 1997	Ashmead et al.	156/60
<u>5699157</u>	December 1997	Parce	356/344
<u>5770860</u>	June 1998	Franzen	250/288
<u>5776359</u>	July 1998	Schultz et al.	252/62.51
<u>5811062</u>	September 1998	Wegeng et al.	422/129
<u>5842787</u>	December 1998	Kopf-Sill et al.	366/340
<u>5843385</u>	December 1998	Dugan	422/191
<u>5846396</u>	December 1998	Zanzucchi et al.	204/601
<u>5852495</u>	December 1998	Parce	356/344
<u>5858195</u>	January 1999	Ramsey	204/601
<u>5869004</u>	February 1999	Parce et al.	422/100
<u>5872010</u>	February 1999	Karger et al.	436/173
<u>5908552</u>	June 1999	Dittmann et al.	210/198.2
<u>5935277</u>	August 1999	Autenrieth et al.	48/127.9
<u>5938333</u>	August 1999	Kearney	366/336
5942443	August 1999	Parce et al.	436/514
<u>5948227</u>	September 1999	Dubrow	204/455
<u>5955028</u>	September 1999	Chow .	422/63
<u>5957579</u>	September 1999	Kopf-Sill et al.	366/340
<u>5959297</u>	September 1999	Weinberg et al.	250/288
5965001	October 1999	Chow et al.	204/600
<u>5965410</u>	October 1999	Chow et al.	435/91.2
<u>5976336</u>	November 1999	Dubrow et al.	204/453
5989402	November 1999	Chow et al.	204/601
6001229	December 1999	Ramsey	204/451
6004515	December 1999	Parce et al.	422/100

Page 21 of 32 Record List Display

•			
6010607	January 2000	Ramsey	204/435
6010608	January 2000	Ramsey	204/453
6042709	March 2000	Parce et al.	204/453
6042710	March 2000	Dubrow	204/454
6046056	April 2000	Parce et al.	436/514
6068684	May 2000	Overton	96/104
6068752	May 2000	Dubrow et al.	204/604
6071478	June 2000	Chow	422/81
6074725	June 2000	Kennedy	428/188
6086740	July 2000	Kennedy	204/601
6087180	July 2000	Gleaves	436/37
6087181	July 2000	Cong	436/37
6100541	August 2000	Nagle et al.	250/573
6103199	August 2000	Bjornson et al.	422/100
6123798	September 2000	Gandhi et al.	156/292
6132685	October 2000	Kercso et al.	422/104
6149882	November 2000	Guan et al.	422/211
6287872	September 2001	Schurenberg et al.	436/181
6319719	November 2001	Bhullar et al.	436/70
6333019	December 2001	Coppens	423/659
6350617	February 2002	Hindsgaul et al.	436/173
6409072	June 2002	Breuer et al.	228/111.5
6426226	July 2002	Senkan	436/37
6485692	November 2002	Frietag et al.	422/130
2002/0042140	April 2002	Hagemeyer et al.	436/34

FOREIGN PATENT DOCUMENTS

FOREIGN-PAT-NO	PUBN-DATE	COUNTRY	CLASS
27 14 939	October 1978	DE	
234 941·	February 1985	DE	
196 32 779	February 1998	DE	
198 05 719	August 1999	DE	
198 06 848	August 1999	DE	
198 09 477	September 1999	DE	
198 55 894	June 2000	DE	
0 870 541	October 1998	EP	
971 225	January 2000	EP	
2 327 754	February 1999	GB	
WO 96/15576	May 1996	WO	
WO 96/35810	November 1996	WO	
WO 97/32208	September 1997	WO	
WO 98/07206	February 1998	WO	
WO 98/14268	April 1998	MO .	
WO 98/16949	April 1998	WO	
WO 98/56956	December 1998	WO	

	•		
WO	99/10221	January 1999	WO
WO	99/19724	April 1999	WO
WO	99/30817	June 1999	WO
WO	99/34205	July 1999	WO
WO	99/41005	August 1999	WO
WO	99/43432	September 1999	WO
WO	99/48599	September 1999	WO
WO	99/59716	November 1999	WO
WO	99/64160	December 1999	WO
WO	99/64836	December 1999	WO
WO	00/07026	February 2000	WO
WO	00/14529	March 2000	WO
WO	00/21666	April 2000	WO
WO	00/22424	April 2000	WO
WO	00/32308	June 2000	WO
WO	00/32512	June 2000	WO
WO	0042212	July 2000	WO
WO	00/43766	July 2000	WO
WO	00/45172	August 2000	WO
WO	00/46594	August 2000	WO
WO	00/50172	August 2000	WO
WO	01/12327	February 2001	WO
	•		

OTHER PUBLICATIONS

G.M. Greenway, S.J. Haswell, D.O. Morgan, et al., "The Use of a Novel Microreactor for High Throughput Continuous Flow Organic Synthesis," Sensors and Actuators B-Chemical, 2000, 63, p. 153.

Burns et al., "Development of a Microreactor for Chemical Production," AlChE 2.sup.nd International Conference on Microreaction Technology, pp. 39-44 (1998). Cooke, "Decreasing Gas Chromatography Analysis Times Using a Multicapillary Column," Abs. 403P, Book of Abstracts, PittCon' '96 (1996).

Ehrfeld et al., "Potentials and Realizations of Microreactors," DECHEMA Monographs vol. 132, pp. 1-28 (1995).

Hanak et al., "Optimization Studies of Materials in Hydrogenated Amorphous Silicon Solar Cells," Photovoltaic Solar Energy Conference, Berlin (1979).

Honicke et al., "Heterogeneously Catalyzed Reactions in a Microreactor," DECHEMA Monographs vol. 132, pp. 93-107 (1995).

Johansson et al., "Nanofabrication of Model Catalysts and Simulations of their Reaction Kinetics," J. Vac. Sci. Technol., 17:1 (Jan./Feb. 1999).

Lowe et al., "Microreactor Concepts for Heterogeneous Gas Phase Reactions," AlChE 2.sup.nd International Conference on Microreaction Technology, pp. 63-73 (1998). Matlosz et al., "Microsectioned Electrochemical Reactors for Selective Partial Oxidation," AlChE 2.sup.nd International Conference on Microreaction Technology, pp. 54-59 (1998).

S.M. Sze, "Semiconductor Sensors," Chap. 2, pp. 17-96, John Wiley & Sons, Inc. (1994).

Srinivasan et al., "Micromachined Reactors for Catalytic Partial Oxidation Reactions," AlChE Journal, vol. 43, No. 11, pp. 3059-3069 (1997).

Tonkovich et al., "The Catalytic Partial Oxidation of Methane in a Microchemical Reactor," AlChE 2.sup.nd International Conference on Microreaction Technology, pp. 45-53 (1998).

van Dover et al., "Discovery of a Useful Thin-Film Dielectric Using a Composition-

Spread Approach, "Nature, vol. 392, No. 12, pp. 162-164 (1998).

Bunghah "Handbook of Deposition Technologies for Films and Coation

Bunshah, "Handbook of Deposition Technologies for Films and Coatings," 2.sup.nd Ed., Noyes Publications (1994).

Jackel, K.P., "Microtechnology: Application Opportunities in the Chemical Industry" DECHEMA Monographs, vol. 132, VCH Verlagsgesellschaft 1996, pp. 29-50.

Ackelid, Ulf, et al. "Kinetic Studies of Diffusion Limited Gas-Surface Reactions By Spatially Resolved Gas Sampling: Reaction Rates and Sticking Coefficients in the H.sub.2 +O.sub.2 Reaction on Pt" Linkoping Studies In Science and Technology, Dissertations No. 392, 1995, pp. 122-133.

Zech et al., "Simultaneous Screening of Catalysts in Microchannels: Methodology and Experimental Setup" 00-00-1998, pp. 260-266 (XP-001006374).

Randhava, Ravi et al. "Advanced Configurations For Catalyst Research" Chemical Engineering Progress, vol. 70, No. 11 Nov. 1983, pp. 52-58.

Sie, S.T. "Reducing the Scale in Catalytic Process Research: Cost Savings" I 2 Procestechnologie v. 7(3) 1991 Iprtez (Translation).

Rodemerck, Uwe, et al. "Parallel Synthesis and Testing Systems of Heterogeneous Catalysts".

Mirth, Gabriele et al. "Design and Application of a New Reactor for in Situ Infrared Spectroscopic Investigations of Heterogeneously Catalyzed Reactions" 1369 Applied Spectroscopy, 48(1994) Feb., No. 2, pp. 194-197.

Van den Berg et al., "Modular Concept for Miniature Chemical Systems," DECHEMA Monographs vol. 132 (1995), pp. 109-123.

ART-UNIT: 1743

PRIMARY-EXAMINER: Warden; Jill

ASSISTANT-EXAMINER: Quan; Elizabeth

ABSTRACT:

A chemical processing microsystem useful for identifying and optimizing materials (e.g., catalysts) that enhance chemical processes or for characterizing and/or optimizing chemical processes is disclosed. The chemical processing microsystem comprises a plurality of microreactors 600 and, in a preferred embodiment, a plurality of microseparators 900 integral with the chemical processing microsystem 10. The microreactors 600 are preferably diffusion-mixed microreactors formed in a plurality of laminae that include a modular, interchangeable candidate-material array 100. The material array 100 comprises a plurality of different candidate materials (e.g., catalysts), preferably arranged at separate, individually addressable portions of a substrate (e.g., wafer). The microseparators 900 are similarly formed in a plurality of laminae that include a modular, interchangeable adsorbent array 700. The adsorbent array 700 comprises one or more adsorbents, preferably arranged at separate, individually, addressable portions of a substrate to spatially correspond to the plurality of different candidate materials. Modular microfluidic distribution systems are also disclosed. The chemical processing microsystem can be integrated into a material evaluation system that enables a comprehensive combinatorial material science research program.

142 Claims, 88 Drawing figures

Full Title Citation Front Review Classification Date Reference Claims Claims DinC Drang December 10. Document ID: US 6737026 B1

Record List Display Page 24 of 32

L3: Entry 10 of 11

File: USPT

May 18, 2004

US-PAT-NO: 6737026

DOCUMENT-IDENTIFIER: US 6737026 B1

** See image for Certificate of Correction **

TITLE: Methods for identifying and optimizing materials in microfluidic systems

DATE-ISSUED: May 18, 2004

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Bergh; H. Sam San Francisco CA Guan; Shenheng San Jose CA

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Symyx Technologies, Inc. Santa Clara CA 02

APPL-NO: 09/728209 [PALM]
DATE FILED: November 28, 2000

PARENT-CASE:

This application claims is a divisional application of copending U.S. patent application Ser. No. 09/518,794 filed Mar. 3, 2000, which itself priority to commonly owned, co-pending U.S. patent application Ser. No. 60/122,704 filed Mar. 3, 1999 entitled "Chemical Processing Microsystems, Diffusion-Mixed Microreactors and Methods for Preparing and Using Same", which is hereby incorporated by reference for all purposes.

INT-CL: [07] $\underline{B01}$ \underline{J} $\underline{19/00}$, $\underline{G01}$ \underline{N} $\underline{31/10}$

US-CL-ISSUED: 422/130; 422/129, 422/99, 422/102, 422/100, 436/37 US-CL-CURRENT: 422/130; 422/100, 422/102, 422/129, 422/99, 436/37

FIELD-OF-SEARCH: 422/99-104, 422/129-131, 436/37

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
3431077	March 1969	Danforth	23/253
3797202	March 1974	Neulander et al.	55/158
3966420	June 1976	Pegels et al.	422/191
4099923	July 1978	Milberger	23/254
4386505	June 1983	Little	62/514R
4392362	July 1983	Little	62/514R
4516632	May 1985	Swift et al.	165/167
4537217	August 1985	Allen, Jr.	137/561A
4636315	January 1987	Allen, Jr.	210/656

•			
<u>4832914</u>	May 1989	Tam et al.	422/130
<u>4921919</u>	May 1990	Lin et al.	526/88
<u>4999102</u>	March 1991	Cox et al.	210/137
5016707	May 1991	Nguyen	165/167
<u>5079205</u>	January 1992	Canich	502/117
5089232	February 1992	May	422/83
<u>5145579</u>	September 1992	Eguchi et al.	210/198.2
<u>5209906</u>	May 1993	Watkins et al.	422/200
<u>5230866</u>	July 1993	Shartle et al.	422/103
5288644	February 1994	Beavis et al.	436/94
5296375	March 1994	Kricka et al.	435/2
5296775	March 1994	Cronin et al.	310/309
<u>5304354</u>	April 1994	Finley et al.	422/196
5354460	October 1994	Kearney et al.	210/198.2
5356756	October 1994	Cavicchi et al.	430/315
5385712	January 1995	Sprunk	422/190
5388635	February 1995	Gruber et al.	165/80.4
<u>5498545</u>	March 1996	Vestal	436/47
5534328	July 1996	Ashmead et al.	428/166
5580523	December 1996	Bard	422/50
<u>5587128</u>	December 1996	Wilding et al.	422/50
5593642	January 1997	DeWitt et al.	422/131
<u>5603351</u>	February 1997	Cherukuri et al.	137/597
5611214	March 1997	Wegeng et al.	62/498
5639423	June 1997	Northrup et al.	122/50
5658413	August 1997	Kaltenbach et al.	156/272.8
<u>5690763</u>	November 1997	Ashmead et al.	156/60
<u>5699157</u>	December 1997	Parce	356/344
<u>5770860</u>	June 1998	Franzen	250/288
<u>5776359</u>	July 1998	Schultz et al.	252/62.51
5811062	September 1998	Wegeng et al.	422/129
<u>5842787</u>	December 1998	Kopf-Sill et al.	366/340
<u>5843385</u>	December 1998	Dugan	422/191
<u>5846396</u>	December 1998	Zanzucchi et al.	204/601
<u>5852495</u>	December 1998	Parce	356/344
<u>5858195</u>	January 1999	Ramsey	204/601
<u>5869004</u>	February 1999	Parce et al.	422/100
<u>5872010</u>	February 1999	Karger et al.	436/173
5908552	June 1999	Dittmann et al.	210/198.2
5935277	August 1999	Autenreith et al.	48/127.9
5938333	August 1999	Kearney	366/336
5942443	August 1999	Parce et al.	436/514
5948227	September 1999	Dubrow	204/455
5955028	September 1999	Chow	422/63
5957579	September 1999	Kopf-Sill et al.	366/340
5959297	September 1999	Weinberg et al.	250/288
<u>5965001</u>	October 1999	Chow et al.	204/600
		• • • • • • • • • • • • • • • • • • • •	

Record List Display Page 26 of 32

•			
5965410	October 1999	Chow et al.	435/91.2
<u>5976336</u>	November 1999	Dubrow et al.	204/453
5989402	November 1999	Chow et al.	204/601
6001229	December 1999	Ramsey	204/451
6004515	December 1999	Parce et al.	422/100
6010607	January 2000	Ramsey	204/435
6010608	January 2000	Ramsey	204/453
6042709	March 2000	Parce et al.	204/453
6042710	March 2000	Dubrow	204/454
6046056	April 2000	Parce et al.	436/514
6068684	May 2000	Overton	96/104
6068752	May 2000	Dubrow et al.	204/604
6071478	June 2000	Chow	422/81
6074725	June 2000	Kennedy	428/188
6086740	July 2000	Kennedy	204/601
6087180	July 2000	Gleaves	436/37
6087181	July 2000	Cong	436/37
6100541	August 2000	Nagle et al.	250/573
6103199	August 2000	Bjornson et al.	422/100.
6123798	September 2000	Gandhi et al.	156/292
6132685	October 2000	Kercso et al.	422/104
6149882	November 2000	Guan et al.	422/211
6287872	September 2001	Schurenberg et al.	436/181
6319719	November 2001	Bhullar et al.	436/70
6333019	December 2001	Coppens	423/659
6350617	February 2002	Hindsgaul et al.	436/173
6426226	July 2002	Senkan	436/37
6485692	November 2002	Freitag et al.	422/130
2002/0042140	April 2002	Hagemeyer et al.	436/34
•			

FOREIGN PATENT DOCUMENTS

FOREIGN-PAT-NO	PUBN-DATE	COUNTRY	CLASS
27 14 939	October 1978	DE	
234 941	February 1985	DE	
196 32 779	February 1998	DE	
198 05 719	August 1999	DE	
198 06 848	August 1999	DE	
198 09 477	September 1999	DE	
198 55 894	June 2000	DE	•
971 225	January 2000	EP	
0 870 541	November 2001	EP	
2 327 754	February 1999	GB .	
WO 96/15576	May 1996	WO	
WO 96/35810	November 1996	WO	
WO 97/32208	September 1997	WO	

WO	98/07206	February 1998	WO
WO	98/14268	April 1998	WO
WO	98/16949	April 1998	WO
WO	98/56956	December 1998	WO
WO	99/10221	January 1999	WO
WO	99/19724	April 1999	WO
WO	99/30817	June 1999	WO
WO	99/34205	July 1999	WO
WO	99/41005	August 1999	WO
WO	99/43432	September 1999	WO
WO	99/48599	September 1999	WO
WO	99/59716	November 1999	WO
WO	99/64160	December 1999	WO
WO	99/64836	December 1999	WO
WO	00/07026	February 2000	WO
WO	00/14529	March 2000	WO
WO	00/21666	April 2000	WO
WO	00/22424	April 2000	WO
WO	00/32308	June 2000	WO
WO	00/32512	June 2000	WO
WO	0042212	July 2000	WO
WO	00/43766	July 2000	WO
WO	00/45172	August 2000	WO
WO	00/46594	August 2000	WO
WO	00/50172	August 2000	WO
WO	01/12327	February 2001	WO

OTHER PUBLICATIONS

Jackel, K.P., "Microtechnology: Application Opportunities in the Chemical Industry" DECHEMA Monographs, vol. 132, VCH Verlagsgesellschaft 1996, pp. 29-50. Ackelid, Ulf, et al. "Kinetic Studies of Diffusion LImited Gas-Surface Reactions By Spatially Resolved Gas Sampling: Reaction Rates and Sticking Coefficients in the H.sub.2 +O.sub.2 Reaction on Pt" Linkoping Studies In Science and Technology, Dissertations No. 392, 1995, pp. 122-133.

Zech et al., "Simultaneous Screening of Catalysts in Microchannels: Methodology and Experimental Setup" 00-00-1998, pp. 260-266 (XP-001006374).

Randhava, Ravi et al. "Advanced Configurations For Catalyst Research" Chemical Engineering Progress, vol. 70, No. 11 Nov. 1983, pp. 52-58.

Sie, S.T. "Reducing the Scale in Catalytic Process Research: Cost Savings" I 2 Procestechnologie v. 7(3) 1991 IPRTEZ (Translation).

Rodemerck, Uwe, et al. "Parallel Synthesis and Testing Systems of Heterogeneous Catalysts".

Mirth, Gabriele et al. "Design and Application of a New Reactor for in Situ Infrared Spectroscopic Investigations of Heterogeneously Catalyzed Reactions" 1369 Applied Spectroscopy, 48(1994) Feb., No. 2, pp. 194-197.

G.M. Greenway, S.J. Haswell, D.O. Morgan, et al., "The Use of a Novel Microreactor for High Throughput Continuous Flow Organic Synthesis," Sensors and Actuators B-Chemical, 2000, 63, p. 153.

Burns et al., "Development of a Microreactor for Chemical Production," ALChE 2.sup.nd International Conference on Microreaction Technology; pp. 39-44 (1998). Cooke, "Decreasing Gas Chromatography Analysis Times using a Multicapillary

Column, "Abs. 403P, Book of Abstracts, PittCon''96 (1996).

Ehrfeld et al., "Potentials and Realizations of Microreactors," DECHEMA Monographs vol. 132, pp. 1-28 (1995).

Hanak et al., "Optimization Studies of Materials in Hydrogenated Amorphous Silicon Solar Cells," Photovoltaic Solar Energy Conference, Berlin (1979).

Honicke et al., "Heterogeneously Catalyzed Reactions in a Microreactor," DECHEMA Monographs vol. 132, pp. 93-107 (1995).

Johansson et al., "Nanofabrication of Model Catalysts and Simulations of their Reaction Kinetics," J. Vac. Sci. Technol., 17:1 (Jan./Feb. 1999).

Lowe et al., "Microreactor Concepts for Heterogeneous Gas Phase Reactions," AlChE 2.sup.nd International Conference on Microreaction Technology, pp. 63-73 (1998). Matlosz et al., "Microsectioned Electrochemical Reactors for Selective Partial Oxidation," AIChE 2.sup.nd International Conference on Microreaction Technology, pp. 54-59 (1998).

S.M. Sze, "Semiconductor Sensors," Chap. 2, pp. 17-96, John Wiley & Sons, Inc. (1994).

Srinivasan et al., "Micromachined Reactors for Catalytic Partial Oxidation Reactions," AlChE Journal, vol. 43, No. 11, pp. 3059-3069 (1997).

Tonkovich et al., "The Catalytic Partial Oxidation of Methane in a Microchemical Reactor," AlChE 2.sup.nd International Conference on Microreaction Technology, pp. 45-53 (1998).

van Dover et al., "Discovery of a Useful Thin-Film Dielectric Using a Composition-Spread Approach," Nature, vol. 392, No. 12, pp. 162-164 (1998).

Bunshah, "Handbook of Deposition Technologies for Films and Coatings," 2.sup.nd Ed., Noyes Publications (1994).

Van den Berg et al., "Module Concept for Miniature Chemical Systems, "DECHEMA Monographs vol. 132 (1995), pp. 109-123.

ART-UNIT: 1743

PRIMARY-EXAMINER: Warden; Jill

ASSISTANT-EXAMINER: Quan; Elizabeth

ABSTRACT:

A chemical processing microsystem useful for identifying and optimizing materials (e.g., catalysts) that enhance chemical processes or for characterizing and/or optimizing chemical processes is disclosed. The chemical processing microsystem comprises a plurality of microreactors 600 and, in a preferred embodiment, a plurality of microseparators 900 integral with the chemical processing microsystem 10. The microreactors 600 are preferably diffusion-mixed microreactors formed in a plurality of laminae that include a modular, interchangeable candidate-material array 100. The material array 100 comprises a plurality of different candidate materials (e.g., catalysts), preferably arranged at separate, individually addressable portions of a substrate (e.g., wafer). The microseparators 900 are similarly formed in a plurality of laminae that include a modular, interchangeable adsorbent array 700. The adsorbent array 700 comprises one or more adsorbents, preferably arranged at separate, individually addressable portions of a substrate to spatially correspond to the plurality of different candidate materials. Modular microfluidic distribution systems are also disclosed. The chemical processing microsystem can be integrated into a material evaluation system that enables a comprehensive combinatorial material science research program.

24 Claims, 88 Drawing figures

Record List Display Page 29 of 32

Full Title Citation Front Review Classification Date Reference

Claims 1500C Drave De

☐ 11. Document ID: US 6680044 B1

L3: Entry 11 of 11

File: USPT

Jan 20, 2004

US-PAT-NO: 6680044

DOCUMENT-IDENTIFIER: US 6680044 B1

TITLE: Method for gas phase reactant catalytic reactions

DATE-ISSUED: January 20, 2004

INVENTOR-INFORMATION:

CITY STATE ZIP CODE COUNTRY Tonkovich; Anna Lee Y. Marysville OH Wang; Yong Richland WA Fitzgerald; Sean P. Hilliard OH Marco; Jennifer L. South Charleston OH Roberts; Gary L. West Richland WA VanderWiel; David P. Hilliard OH Wegeng; Robert S. Richland WA

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Battelle Memorial Institute Richland WA 02

APPL-NO: 09/640903 [PALM]
DATE FILED: August 16, 2000

PARENT-CASE:

RELATED APPLICATIONS This application is a Continuation-In-Part of U.S. patent application Ser. No. 09/375,614, now U.S. Pat. No. 6,488,838, filed Aug. 17, 1999, which is incorporated herein in full, as if reproduced below.

INT-CL: [07] CO1 B 3/26

US-CL-ISSUED: 423/652; 423/418.2, 423/437.2, 252/373 US-CL-CURRENT: 423/652; 252/373, 423/418.2, 423/437.2

FIELD-OF-SEARCH: 208/108, 208/143, 208/209, 252/373, 423/418.2, 423/437.2, 423/648.1, 423/651, 423/652, 423/656, 423/659, 568/924, 570/101, 570/123, 585/250, 585/654, 431/7

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO ISSUE-DATE

4062808 December 1977

PATENTEE-NAME Gandhi et al.

US-CL 252/454

4268279	May 1981	Shindo et al.	55/16
4340501	July 1982	Davidson	252/373
4795618	January 1989	Laumen	422/202
4975406	December 1990	Frestad et al.	502/302
5015444	May 1991	Koga et al.	422/195
5021388	June 1991	Fridez	502/261
5047381	September 1991	Beebe	502/304
5051241	September 1991	Pfefferle	422/180
5270127	December 1993	Koga et al.	429/17
5366719	November 1994	van Wingerden et al.	423/659
5387398	February 1995	Mueggenburg et al.	422/186
5397656	March 1995	Morimoto et al.	429/17
5417938	May 1995	Shelden et al.	422/196
5422331	June 1995	Galligan et al.	502/333
5426442	June 1995	Haas	343/778
5440872	August 1995	Pfefferle	60/39.06
5512250	April 1996	Betta et al.	422/173
5518697	May 1996	Dalla Betta et al.	422/173
5533890	July 1996	Holst et al.	431/5
5534328	July 1996	Ashmead et al.	428/166
<u>5565009</u> .	October 1996	Ruhl et al.	48/197R
5609834	March 1997	Hamada et al.	422/196
5611214	March 1997	Wegeng et al.	62/498
5674301	October 1997	Sakai et al.	48/61
5733347	March 1998	Lesieur	48/61
5811062	September 1998	Wegeng et al.	422/129
5858314	January 1999	Hsu et al.	422/211
5866734	February 1999	Flick et al.	585/260
5976472	November 1999	Chatterjee et al.	422/130
6036927	March 2000	Chatterjee et al.	422/211
6040266	March 2000	Fay et al.	502/439
6048194	April 2000	Pfefferle et al.	431/115
6056932	May 2000	von Hippel et al.	423/376
6117578	September 2000	Lesieur	429/19
6129973	October 2000	Martin et al.	428/166
6140266	October 2000	Corrigan et al.	502/439
6159358	December 2000	Mulvaney, III et al.	208/46
6159434	December 2000	Gonjo et al.	422/191
6165633	December 2000	Negishi	429/17
<u>6168765</u>	January 2001	Romatier et al.	422/200
6190624	February 2001	Romatier	422/200
<u>6192596</u>	February 2001	Bennett et al.	34/76
<u>6200536</u>	March 2001	Tonkovich et al.	422/177
6228341	May 2001	Hebert et al.	423/352
6274101	August 2001	Sechrist	422/198
6488838	December 2002	Tonkovich et al.	208/108
	•		

FOREIGN PATENT DOCUMENTS

FOREIGN-PAT-NO	PUBN-DATE	COUNTRY	CLASS
0 547 012	June 1993	EP	
0 869 842	October 2001	EP	
05-105405	April 1993	JP	
WO 96/32188	October 1996	WO	
WO 97/39490	October 1997	WO	
WO 00/06295	February 2000	WO	
WO 00/32512	June 2000	WO	
WO 00/45940	August 2000	WO	

OTHER PUBLICATIONS

"Development of Reformer for Fuel Cell System," Watanabe et al., Ishikawajima-Harima Engineering Review, UDC 621.352:66.045 (1988). Includes english translation. AN Pestryakov et al., "Foam Metal Catalysis With Intermediate Support For Deep Oxidation of Hydrocarbons", p. 347-352. 1994.

AN Pestryakov et a., "Metal-Foam Catalysts With Supported Active Phase For Deep Oxidation of Hydrocarbons", p. 167-172. 1995.

AY Tonkovich et al., "The Catalytic Partial Oxidation of Methane in A Microchannel Chemical Reactor", p. 1-11. PNNL.

AY Tonkovich et al., "Microchannel Reactors for Fuel Processing Applications. I. Water Gas Shift Reactor", p. 2947-2951. 1999.

- G. Wiessmeier et al., "Microreaction Technology: Development of a Micro Channel Reactor and Its Application in Heterogeneously Catalyzed Hydrogenations", p. 152-153. 1998.
- G. Weissmeier et al., Strategy for the Development of Micro Channel Reactors for Heterogeneously Catalyzed Reactions, p. 24-32. 1998.

"Catalytic Combustion In A Sintered Metal Reactor With Integrated <u>Heat Exchanger</u>," Mulder et al., Applied Thermal Engineering, pp. 825-836 (1997).

"Technology And Applications Of Microengineered Reactors," Gavrilidis et al., Trans. IchemE, vol. 80, Part A, pp. 3-30, Jan. 2002.

"Development and study of metal foam heat-exchanging tubular reactor: Catalytic combustion of methane combined with methane steam reforming," Corma et al., Studies in Surface Science and Catalysis, 130, pp. 2759-2764 (2000).

"Microreactor Concepts for Heterogeneous Gas Phase Reactions," Lowe et al., Process Mini: 2nd International Conf. On Micro Tech., pp. 63-74 (1998).

"New Operating Regimes and Applications Feasible with Microreactors," Franz et al., Process Mini: 2nd International Conf. On Micro Tech., pp. 33-38 (1998).

"Monolithic Catalyst Supports with Foam Structure," Leonov et al., React. Kinet. Catal. Lett., pp. 259-267 (1997).

"On the Reported Attempts to Radically Improve the Performance of the Steam Methane reforming Reactor," Adris et al., Can. J. Of Chem. Eng., vol. 74, pp. 177-185, 1996.

"Catalytic combustion of natural gas as the role of on-site heat supply in rapid catalytic CO.sub.2 -H.sub.2 O reforming of methane," Inui et al., Catalysis Today, 26, pp. 295-302 (1995).

"A Novel Fixed Bed Catalyst for the Direct Combination of H.sub.2 and O.sub.2 to H.sub.2 O.sub.2," Kosak, Catalysis and, pp. 115-124 (1995).

"Metal and Coated-Metal Catalysts," Twigg et al., Chapter 3, pp. 59-89.

ART-UNIT: 1754

PRIMARY-EXAMINER: Silverman; Stanley S.

ASSISTANT-EXAMINER: Medina; Maribel

ATTY-AGENT-FIRM: May; Stephen R. Rosenberg; Frank S.

ABSTRACT:

The present invention provides chemical reactors and reaction chambers and methods for conducting catalytic chemical reactions having gas phase reactants. In preferred embodiments, these reaction chambers and methods include at least one porous catalyst material that has pore sizes large enough to permit molecular diffusion within the porous catalyst material.

92 Claims, 28 Drawing figures

Generate Collection Print Fwd Refs	Bkwd Refs Generate
Term	Documents
HEAT .	3423803
HEATS	129036
EXCHANGER\$1	0
EXCHANGER	325980
EXCHANGERA	11
EXCHANGERB	2
EXCHANGERC	1
EXCHANGERE .	14
EXCHANGERF	2
EXCHANGERG	23
EXCHANGERI	35
(L2 AND HEAT EXCHANGER\$1).PGPB,USPT,USOC,EPAB,JPAE	3,DWPI. 11

Display Format: - Change Format

<u>Previous Page</u> <u>Next Page</u> <u>Go to Doc#</u>