## Fyzikálne základy počítačových hier (pre FIIT)

(dokument ku prednáškam; na konci dokumentu je obsah)

### Martin Konôpka

Oddelenie fyziky, ÚJFI, FEI STU v Bratislave, martin.konopka@stuba.sk

posledná aktualizácia: 19. februára 2022

#### Prednáška v 1. týždni (18. 2. 2022)

V mnohých počítačových hrách sú napodobňované fyzické javy, aké sa môžu diať

aj v skutočnom svete. Napr. sa zobrazuje pohyb odhodenej lopty. V bojovnjšie poňatých hrách napr. let vrhnutého kameňa alebo vystreleného projektilu. Vo fantastickjšie navrhnutých zasa pristávanie kozmickej lode na Mesiaci alebo na niektorej planéte. A nemusí zostať pri jednom pohybujúcom sa telese. Obľúbenou hrou je biliard, kde sa na biliardovom stole pohybujú gule, ktoré sa môžu jednak odrážať od obruby hracej plochy a aj sa zrážať medzi sebou, odrážať sa od seba. Táto hra ako aj vyššie spomenuté pohyby aj javy môže prebiehať tak v skutočnom svete ako aj v počítačovej hre. Je celkom prirodzené, že hráč počítačovej hry očakáva, že tie pohyby a vôbec zobrazenie scény budú na obrazovke vyzerať dostatočne podobne ako v skutočnosti. Preto môžeme povedať, že počítačovou hrou obsahujúcou dynamické prvky sa snažíme *napo*dobňovať, cudzím slovom simulovať, vzhľad, dynamiku a aj zvuky istej scény, ktorá by povedzme mohla prebiehať aj v skutočnom svete. Ak by napr. let lopty odkopnutej do výšky vo počítačovej hre vyzeral tak, že smerom do výšky by loptka zrýchľovala, asi by sme z takej hry mali pokazený dojem. Očakávame totiž, že lopta bude spomaľovať. Tak to máme už v oku, teda aspoň ak sme v mladosti strávali nejaký čas aj pri loptových hrách, prípadne ich videli v televízii. A podobne, ak by bilardová guľa v hre

1

môžu byť aj situáciami z reálneho sveta).

po veľmi šikmom náraze na okraj plochy sa odrazila presne tam, skade priletela, tiež by sme na takú hru pozerali udivene. Ak sa autor hry chce vyhnúť takejto nepodarenej dynamike v hre a chce, aby vyzerala realisticky, musí pre výpočet pohybu objektov v hre použiť fyzikálne zákony, aké platia pre obdobné situácie aj v skutočnom svete. Tak sa dostávame k obsahu nášho predmetu: na prednáškach sa budeme učiť čosi z fyziky – to, čo je podstatné pre správny popis *dynamiky* herných situácií (ktoré pravda

zákonov nebudú dynamiku skutočných objektov popisovať dokonale presne. To sa takmer nikdy nedá, nielen v počítačovej hre, ale vôbec. Skutočné situácie zahŕňajú aj veľké množstvo rôznych drobných vplyvov a ich zahrnutie do simulácie by bolo prakticky nemožné z viacerých dôvodov. A dokonca aj keby bolo možné, tak pre účel počítačovej hry by to mohlo byť zbytočné. Ak by sme v hre chceli simulovať a zobraziť napr.

Hneď na začiatok však musíme upozorniť, že naše výpočty na základe fyzikálnych

zrážku biliardových gúľ, v zásade by sme mali brať do úvahy aj ich pružnú deformáciu, ktorá na veľmi krátky okamih pri zrážke nastane. Zo skúsenosti však vieme, že biliardové gule sa vyrábajú z tvrdého materiálu a ich deformáciu pri zrážke ani nepostrehneme. A aj samotná dynamika takej zrážky sa dá dosť dobre napodobniť, i keď deformáciu nebudeme uvažovať. Takémuto prístupu hovoríme, že sme vytvorili ne-

jaký zjednodušený *model* zložitej reálnej situácie. A namiesto pôvodnej zložitej úlohy (napr. popísať zrážku biliardových gúľ aj s ich deformáciami) potom riešime len ten zjednodušený model, kde si biliardové gule predstavujeme ako dokonale tuhé (nedeformovateľné) telesá. Takýto prístup sa používa nielen pri simuláciách dejov v hrách, ale aj v technických a vedeckých úlohách. Je to užitočný prístup, lebo pri ňom zaned-

bávame menej podstatné črty a vplyvy a berieme do úvahy len tie podstatnejšie. Vo vedecko-technických úlohách vďaka tomu lepšie porozumieme skúmanému javu alebo

zariadeniu (lebo nebudeme zahltení množsvom menej dôležitých detailov). V počítačovej hre (a nielen v nej) nám zasa zjednodušený model umožní robiť simuláciu dostatočne rýchlo, čiže procesor a grafická karta budú "stíhať". A drobné odchýlky od úplne realistického správania sa si ani nevšimneme. Niekedy si ich aj všimneme, ale s tým sa musíme zmieriť, lebo príliš realistický popis by bol nesmierne výpočtovo náročný. Skúsme si predstaviť, že na scéne je napr. strom s listami a fúka nejaký nepravidelný vietor. Listy na skutočnom strome (a sú ich tam tisíce) sa rôzne trepocú. Realistická

simulácia takejto scény by vyžadovala jednak do počítača naprogramovať štruktúru rozloženia konárov a listov stromu, vytvoriť modely popisujúce ich pružnosť a aj popisovať (nesmierne výpočtovo náročne) turbulentné prúdenie vzduchu pomedzi konáre a listy. Aspoň v súčasnosti je nepredstaviteľné, že by niekto takto detailne programoval hry. Vo vede a technike sa výpočty prúdenia okolo objektov zložitého tvaru robia na superpočítačoch, aké hráč nemá k diskpozícii. Takže v prípade scén náročných na výpočtový čas sa robia aj hrubé zjednodušenia. Okrem spomenutých listov na strome

výpočtový čas sa robia aj hrubé zjednodušenia. Okrem spomenutých listov na strome je veľmi zložité modelovať a výpočtovo náročné aj plameň a dym, aký vznikne pri výstrele zo zbrane. Tak sa tiež robia hrubé zjednodušenia a proste sa to len nejako "namaľuje", namiesto toho, aby sa na základe fyzikálnych zákonov počítala dynamika alebo dokonca elektrodynamika polí, ktoré súvisia s časticami letiacimi z hlavne.

Spomenuli sme elektrodynamiku. Fyziku teda netvoria len javy, ktoré sa dajú popísať pomocou pohybu telies alebo častíc, ale aj elektrické a magnetické javy. Tie sú však pre dynamiku typických herných situácií nedôležité alebo málo dôležité. V našom

-

do počítačovej grafiky než do fyzikálneho modelovania. Pravda, niekto by mohol namietať, že veď svetlo a tiene sú vyslovene fyzikálne (povedzme optické) javy. Áno, je tomu tak, ale v našom predmete nemáme čas na všetko a tieto veci radšej prenecháme tým, ktorí sa špecializujú na počítačovú grafiku. My v našom predmete sa budeme

predmete sa nimi nebudeme zaoberať. Nebudeme sa zaoberať ani realistickým zobrazením objektov na scéne, i keď to je, aspoň do istej miery, pre hry dôležité. Bude pre nás síce dôležité, aby sme dynamiku objektov na scéne zobrazovali v súlade s tým, ako je na základe fyzikálnych zákonov počítaná, ale samotnú vizualizáciu budeme robiť len v hrubých rysoch, schematicky. Nebudeme teda pracovať s textúrami, so svetlom, s tieňmi a pod. Niežeby to pre hry nebolo dôležité, ale sú to témy, ktoré už viac patria

viť ako body

Kinematika pohybu bodov a telies, ktoré si vieme účelovo predsta-

Keď len popisujeme, ako sa poloha, rýchlosť a prípadne aj zrýchlenie telesa či bodu mení, ale neskúmame to pomocou síl, tak povieme, že skúmame kinematiku pohybu.

#### Hmotný bod 1.1

1

zameriavať na *dynamiku* objektov na scéne.

Chceli by sme v hre napodobniť (modelovať, simulovať) pohyb auta; neskôr sa dostaneme aj ku iným telesám: kamene, projektily, lietadlá a pod. V tomto úvode však treba začať s niečím jednoduchým, takže si predstavme auto, ktoré sa pohne a ide po

dlhej priamej ceste stálou rýchlosťou, povedzme 60 km/h. Naša prvá otázka je, kde sa

Aj samotná táto oblasť *mechaniky hmotného bodu* sa nazýva Kinematika.

bude auto nachádzať po minúte takého pohybu, po dvoch minútach atď. Ale dá sa to jednoznačne povedať? Veď auto nie je bodka, ale objekt dlhý niekoľko metrov a má aj nejakú šírku a výšku. Dáte mi však za pravdu, že obťažovať sa takýmito črtami auta by pre náš účel v tejto chvíli bolo nepraktické až kontraproduktívne. Keď by sme na

to auto pozerali z veľkej výšky, napr. z lietadla, videli by sme ho len ako nejakú bodku pohybujúcu sa po ceste. A plne by nám to stačilo k tomu, aby sme vedeli povedať, kde

sa auto nachádza napr. po minúte jazdy. Vidíme, že pre daný účel je praktické namiesto auta ako rozmerného telesa uvažovať bodku, ktorá môže predstavovať napr. stred auta (alebo ešte vhodnejšie jeho ťažisko, čo je pojem, ktorý si bližšie vysvetlíme neskôr). Tak prichádzame k užitočnému pojmu *hmotný bod*. Je to akási veľmi praktická abstrakcia

telesa, ktorá nám umožňuje odhliadnuť od jeho nenulových rozmerov, ak sú pre daný účel nepodstatné. Stačilo by povedať aj bod, ale keďže ide o teleso, ktoré má nenulovú hmotnosť, častejšie budeme hovoriť o hmotnom bode.

### 1.2 Poloha, súradnica

1.3 Čas

zodpovedajúci tej tabuľke.

2300 metrov od štartovnej čiary. Tak prichádzame ku pojmu vzdialenosť. A môžeme

použiť aj pojem *dĺžka* (tu cesty, ktorú auto prebehlo). Dĺžka patrí medzi základné *fy*zikálne veličiny. Udávame ju najčastejšie buď v metroch (m) alebo v ich násobkoch či

dieloch: kilometer (km = 1000 m), centimeter (cm = 0.01 m) atď. Označujeme ju najčas-

tejšie písmenami  $\ell$ , L, alebo aj d, D; tieto d-čka sa hodia najmä keď používame pojem vzdialenosť (distantia, distance). Čo však, ak by auto cúvalo alebo šlo opačným smerom, povedzme 100 m? Dostalo by sa na iné miesto na ceste než keby šlo 100 m dopredu. Vyjadrenie toho, na ktorú stranu auto šlo, môžeme teda urobiť slovne (dozadu, dopredu). Ale to nemusí byť praktické, keď potrebujeme túto informáciu sprostredkovať alebo zobraziť číselne. Pre taký účel je vhodnejšie polohu smerom dozadu vyjadrovať zápornými číslami a smerom dopredu samozrejme kladnými. A prichádzme ku pojmu súradnica. Tiež ju môžeme vyjadrovať v metroch, ale na rozdiel od vzdialenosti alebo dĺžky môže byť aj záporná. Miesto, skadiaľ auto štartuje, má teda značku 0. Môžeme si to aj nakresliť. Tá čiara sa nazýva súradnicová os alebo vzťažná os. Ak potrebujeme súradnicu označiť aj nejakým písmenom, zoberme zaužívané x. A môžeme napísať, že napr. po desiatich sekundách cúvania sa auto nachádza v mieste  $x=-50\,\mathrm{m}$ . Polohu auta (a aj iného objektu, napr. projektilu) teda vyjadrujeme pomocou jeho súradnice.

Zatiaľ sme vystačili s jednou súradnicou (značenou x), lebo sme uvažovali rovnú

Ak sa auto pohybuje, jeho poloha (súradnica) sa mení. V každom okamihu nadobúda novú hodnotu. Povieme aj, že poloha auta sa mení s časom. Bola uvedená tabuľka ako príklad. A vôbec, všetky zmeny, ktoré sa vo fyzickom svete dejú, prebiehajú v čase. Čas je tiež jednou zo základných fyzikálnych veličín a zvykne sa označovať písmenkom t, čo je odvodené od slov *tempus*, *time*. Základnou jednotkou pre čas je sekunda (s). Napíšeme napr., že jazda auta trvá už t=27 s. Môžu sa používať aj iné jednotky času, ak je to praktické; napr. vyššie sme spomenuli minúty. Ak sa poloha alebo teda súradnica auta s časom mení, z hľadiska matematiky môžeme súradicu považovať za funkciu závislú na čase. Symbolicky to zapíšeme takto: x = x(t). Bol nakreslený graf

4

cestu. V zložitejších prípadoch budeme potrebovať viac súradníc.

A akým spôsobom vyjadríme, kde sa auto na tej ceste nachádza? Povieme, že napr.

# 1.4 Kinematika priamočiareho pohybu

rozmernom priestore, stručne v 1D), lebo taký pohyb sa dá pri vhodnej voľbe súradnicových osí popísať pomocou jedinej súradnice; budeme používať, ako sme už aj začali, x. Treba si však uvedomiť, že aj na popis priamočiareho pohybu môžeme niekedy potrebovať i viac súradníc – vtedy, keď sa teleso nepohybuje rovnobežne s niektorou zo súradnicových osí.

Niekedy pre stručnosť povieme, že pôjde o pohyb v jednom rozmere (t. j. v jedno-

### 1.4.1 Rýchlosť

vedzme 65 km, tak povieme, že sme cestovali rýchlosťou 130 km/h. Presne tak to môžeme povedať vtedy, ak sme šli rovnomernou rýchlosťou. Pri dlhších úsekoch sa však nestáva, že by sme celý čas mohli mohli ísť rovnomernou rýchlosťou; občas treba zabrzdiť, inokedy zrýchliť. Tých 65 km za polhodinu jazdy však povedzme že spravíme aj napriek kolísavému tempu jazdy, aj keď na to už občas porušíme maximálnu povolenú

Ak cestujeme autom po dobrej diaľnici a za polhodinu prejdeme vzdialenosť po-

rýchlosť. A v iných chvíľach zasa ideme pomalšie než je maximálna povolená stotridsiatka. Povieme potom, že počas cesty sme mali **priemernú rýchlosť**  $130 \, \mathrm{km/h}$ . Tieto úvahy nás však zároveň privádzajú k tomu, že pre rýchlosť auta v nejakom zvolenom okamžiku (napr. keď nás zameriava policajný radar) nevystačíme s pojmom priemerná rýchlosť. Ak nás radar zameral v okamžiku, keď sme šli  $145 \, \mathrm{km/h}$ , tak nám nepomôže, že v priemere sme šli len  $130 \, \mathrm{km/h}$ ; dôležitá je okamžitá hodnota rýchlosti. Tá je dôležitá napr. aj v prípade nárazu; nepomôže nám, že na nejakej ceste sme doteraz šli v priemere štyridsiatkou, ak narazíme v okamihu, keď sme sa hnali osemdesiatkou.

Ako sa dá dopracovať ku nejakému spôsobu výpočtu okamžitej rýchlosti, alebo aspoň ku jej približnému určeniu? Tak, že na určenie si nezoberieme celý 65-kilometrový úsek, ale nejaký kratší. Na diaľnici bývajú každých 500 m tabuľky s označením, na koľkom kilometri diaľnice sa nachádzame. (To sú vlastne súradnice.) Ak si odstopujeme

čas, za aký prejdeme od jednej tabuľky ku druhej, môžeme pomocou neho určiť rýchlosť, akou sme šli medzi tými dvomi tabuľkami. Ak napr. tú vzdialenosť prejdeme za čas  $15\,\mathrm{s}$ , tak rýchlosť budeme počítať takto:

rýchlosť = 
$$\frac{500 \text{ m}}{15 \text{ s}} = \frac{0.5 \text{ km}}{0.0041\overline{6} \text{ hod}} = 120 \text{ km/h}$$

Stále je to len priemerná rýchlosť, tentoraz však už len na tom jednom úseku. Na nasledujúcom úseku môže vyjsť napr.  $132,3 \, \text{km/h}$ . Na ďalšom povedzme  $134,7 \, \text{km/h}$ . Tak potom dostávame predsa len istú informáciu o tom, ako sa rýchlosť nášho auta menila

kami alebo akokoľvek inak zmeriame, že sme ten úsek prešli za čas, ktorý označíme  $\Delta t$ ; povedzme že by to bolo 0,1 s. Aj pre rýchlosť si zavedieme nejaký písmenkový symbol; už od dávna sa zvykne používať v (od slov velocitas, velocity). My tam teraz pridáme aj index x preto, aby sme zvýraznili, že ide o pohyb v smere osi x. Rýchlosť

s časom, i keď je to len taká "hrubozrnná" informácia. Hrubozrnná preto, že nezachytáva zmeny rýchlosti vnútri tých jednotlivých polkilometrových úsekov. Ak chceme menej hrubozrnnú informáciu, musíme úseky, na ktorých meriame časy, ešte skrátiť. Tak si zoberme naozaj kratučký úsek cesty, ktorého dĺžku označíme  $\Delta x$ ; napr. by to mohlo byť 5 m. V rámci tohto kratučkého úseku už môžeme predpokladať, že zmena rýchlosti na ňom nenastane, alebo ak nastane, tak len nepatrná, zanedbateľná. Stop-

na tom úseku teda bude  $v_x = \frac{\Delta x}{\Delta t}$ (1)

Číselne by nám pre vyššie uvedené hodnoty vyšlo 
$$5/0.1 \text{ m/s} = 50 \text{ m/s} = 180 \text{ km/h}$$
, za še by sme tode dostoli už poriedny pokuty. Skýrme si formylky vyžšie zapíceť trochy

čo by sme teda dostali už poriadnu pokutu. Skúsme si formulku vyššie zapísať trochu podrobnejšie. Pri našom meraní si volíme istý časový okamih t; to je moment, kedy spustíme stopky. Auto sa vtedy nachádza v mieste so súradnicou, ktorú si označíme x(t). Súradnicu tu teda rozumieme ako funkciu času. Stopky zastavíme v čase o  $\Delta t$ 

$$x(t + \Delta t) = x + \Delta x$$

neskôr, teda v čase  $t + \Delta t$ . Vtedy sa už auto nachádza o  $\Delta x$  ďalej, teda v mieste

Formulu (1) vyššie preto môžeme zapísať

$$v_x = \frac{x(t + \Delta t) - x(t)}{\Delta t} \tag{2}$$

čo považujeme za priemernú rýchlosť na tom úseku dlžky  $\Delta x$ . Ak chceme definovať naozaj presne, čo *okamžitá* rýchlosť je, treba časový úsek  $\Delta t$  použiť limitne krátky,

a (2) len návodom na to, ako vypočítať priemernú rýchlosť; je to vlastne definícia toho,

teda nekonečne krátky; tým pádom aj  $\Delta x$  bude nekonečne malý úsek cesty. Naozaj okamžitá rýchlosť v čase t je teda toto:

okamzita rychiost v case 
$$t$$
 je teda toto: 
$$x(t \perp \Delta t) = x(t)$$

$$v_x(t) = \lim_{\Delta t \to 0} \frac{x(t + \Delta t) - x(t)}{\Delta t} \tag{3}$$

Ako už z matematiky iste viete, takýto zápis pomocou limity sa nazýva derivácia. Tu

konkrétne je to derivácia funkcie x podľa t. Okamžitá rýchlosť bodu je teda deriváciou jeho súradnice podľa času. Hodnota takejto rýchlosti môže byť tak kladná ako aj záporná (popr. aj nulová), podľa toho, či sa auto (alebo čokoľvek iné) pohybuje Bol nakreslený obrázok rovnej cesty a pozdĺž nej os x, ktorá mala niekde nulovú súradnicu. Auto mohlo ísť doľava alebo doprava.

v kladnom smere súradnicovej osi alebo v zápornom smere.

lebo čiarka sa nám zvyčajne zíde na označenie iných vecí. Vo fyzike a aj v našom predmete použijeme pre deriváciu podľa času buď bodku nad x, alebo použijeme zlomkový zápis vyjadrujúci podiel diferenciálov (nekonečne malých veličín):

Veľkosť rýchlosti  $|v_x(t)|$  je samozrejme vždy nezáporná. Preto najmä ak by malo dôjsť ku zmätkom, treba pri vyjadrovaní sa rozlišovať pojmy rýchlosť (ktorá môže byť aj záporná) a veľkosť rýchlosti. Matematici zvyknú deriváciu značiť čiarkou, čiže stručne by sme mali  $v_x(t) = x'(t)$ , ale takýto spôsob sa vo fyzikálnych disciplínach nepoužíva,

$$v_x(t) = \dot{x}(t) \equiv \frac{\mathrm{d}x}{\mathrm{d}t}$$
 (4) Ten druhý zápis nápadne pripomína formulku (1) a naozaj je to to samé, ak vo formulke (1) použijeme nekonečne malé (*infinitezimálne*) veličiny. Argumenty  $t$  vo funk-

ciách nie je nutné vždy písať; závisí to od konkrétnych okolností. Zatiaľ sme hovorili len o prípade, keď sa auto alebo bod, ktorým ho reprezentujeme, pohybuje jedným smerom, teda pozdĺž nejakej priamky (ale môže pritom aj zastať a cúvať, znova sa rozbiehať dopredu atď.) To nazývame *priamočiary pohyb*. Ak sa pritom navyše auto či bod pohybuje stálou rýchlosťou, tak hovoríme, že koná rovnomerný priamočiary pohyb. O ňom si teraz trochu podrobnejšie niečo povieme.

Rovnomerný priamočiary pohyb. Pri rovnomernom pohybe (dokonca by nemusel byť ani priamočiary) auto (alebo iné teleso alebo len bod) za každú sekundu prejde rovnakú vzdialenosť. Poriadnejšie povedané, za každý časový úsek nejakej zvolenej dĺžky  $\Delta t$  (nemusí to byť sekunda) prejde rovnakú vzdialenosť

$$|\Delta x| = |v_x| \, \Delta t \tag{5}$$

sme zápis práve napísanej formulky zjednodušili, ešte dáme preč znak  $\Delta$  od času a pre veľkosť rýchlosti zavedieme bezindexové označenie (tak to býva často zvykom):

 $v = |v_x|$ (6) Zápis priamej úmery (5) sa potom zjednoduší na známy stredoškolský (alebo dokonca

základoškolský) tvar

(7)

s = vt

| 5 s, tak by za ten čas prešlo dráhu                                                                                                                                                                                                                                                                                                |                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| $s = 25 \frac{\text{m}}{\text{s}}  5  \text{s} = 125  \text{s}$                                                                                                                                                                                                                                                                    | m                                                                                                                                                        |
| Mimochodom, aká je táto rýchlosť, keď ju vyjadrí. $90 \mathrm{km/h}$ . Trochu neskôr si povieme aj o prípadoch, bod, sa pohybuje zložitejším spôsobom.<br>Príklad: Auto z predošlého príkladu sa pohybovalo nia stopiek (to je okamih $t=0$ ) malo súradnicu $x_0=0$ 0 doprava (teda v smere osi $x$ ). Akú súradnicu má pohydo to | kedy auto, alebo vo všeobecnosti rovnomerne tak, že v čase spuste- $-30\mathrm{m}$ a jazdilo po ceste smerom                                             |
| bude to $x = -30 \text{m} + v t = -30 \text{m} + 25 \cdot$                                                                                                                                                                                                                                                                         | $8.3 \mathrm{m} = 177.5 \mathrm{m}$                                                                                                                      |
| $x = -30\mathrm{m} + \underbrace{v_x t}_{S} = -30\mathrm{m} + 25\cdot$                                                                                                                                                                                                                                                             | 5,5 m 111,5 m                                                                                                                                            |
| Všeobecné formuly pre rovnomerný priamočiary po                                                                                                                                                                                                                                                                                    | ohyb zapíšeme                                                                                                                                            |
| $v_x(t) = v_x = 	ext{konš} \ x(t) = x_0 + v_x t$                                                                                                                                                                                                                                                                                   | (8a)<br>(8b)                                                                                                                                             |
| To druhé je dobre známa formula závislosti súradnio močiarom pohybe. Na ľavej strane je funkcia $x(t)$ , čo som mení. Na pravej sa o. i. vyskytuje konštanta $x_0$ 0. Vystupuje tam aj ďalšia konštanta – rýchlosť $v$ . N proti smeru zvolenej osi je táto rýchlosť záporná. Ro                                                   | o je nejaká hodnota, ktorá sa s ča-<br>= $x(0)$ , teda poloha bodu v čase<br>ezabudnime, že v prípade pohybu<br>ovnice (8) nazveme <b>rovnice kine</b> - |
| matiky pre rovnomerný priamočiary pohyb pozd                                                                                                                                                                                                                                                                                       | Ilž osi x. Samozrejme, tú priamku,                                                                                                                       |

ktorý nám hovorí, že dráha rovnomerného pohybu je priamoúmerná času.

Príklad: Ak by sa auto pohybovalo rovnomerne rýchlosťou veľkosti 25 m/s počas doby

## Obsah

#### Kinematika pohybu bodov a telies, ktoré si vieme účelovo predstaviť ako body 3 3 1.1

pozdĺž ktorej sa daný pohyb uskutočňuje, sme si mohli označiť aj inak ako x, napr. y

alebo z a potom by sme v (8) zodpovedajúco prispôsobili označovanie.

1.2 Poloha, súradnica

4

4

5

5

1.3

1.4

1.4.1