Examenul de bacalaureat național 2020 Proba E. c)

Matematică *M_şt-nat*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 6

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$a_3 = a_1 + 2r = 2 + 2 \cdot 3 =$	3n
1.		3 p
	=8	2 p
2.	$2x^2 + 1 = 9 \Leftrightarrow x^2 = 4$	3 p
	x = -2 sau $x = 2$	2 p
3.	$3^{2x}\left(3^2-1\right) = 8 \Leftrightarrow 3^{2x} = 1$	3p
	x = 0	2p
4.	Mulțimea A are 9 elemente, deci sunt 9 cazuri posibile	2p
	Divizorii din mulțimea A ai numărului 100 sunt 1, 2, 4 și 5, deci sunt 4 cazuri favorabile	2 p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{4}{9}$	1p
5.	$ABCD$ este paralelogram și pentru $\{O\} = AC \cap BD$, obținem $\overrightarrow{PO} = \frac{1}{2} (\overrightarrow{PA} + \overrightarrow{PC})$	3p
	$\overrightarrow{PO} = \frac{1}{2} (\overrightarrow{PB} + \overrightarrow{PD})$, deci $\overrightarrow{PA} + \overrightarrow{PC} = \overrightarrow{PB} + \overrightarrow{PD}$	2p
6.	$\sin\left(x - \frac{\pi}{4}\right) + \cos\left(x + \frac{\pi}{4}\right) = \sin x \cos\frac{\pi}{4} - \sin\frac{\pi}{4}\cos x + \cos x \cos\frac{\pi}{4} - \sin x \sin\frac{\pi}{4} =$	2p
	$= \frac{\sqrt{2}}{2}\sin x - \frac{\sqrt{2}}{2}\cos x + \frac{\sqrt{2}}{2}\cos x - \frac{\sqrt{2}}{2}\sin x = 0, \text{ pentru orice număr real } x$	3p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(0) = \begin{pmatrix} 12 & 0 \\ 1 & 3 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 12 & 0 \\ 1 & 3 \end{vmatrix} = 12 \cdot 3 - 0 \cdot 1 =$	3p
	=36-0=36	2p
b)	$A(a) - (12+a)I_2 = \begin{pmatrix} 0 & a \\ 1+a & -9 \end{pmatrix} \Rightarrow \det(A(a) - (12+a)I_2) = \begin{vmatrix} 0 & a \\ 1+a & -9 \end{vmatrix} = -a(1+a)$	3 p
	a(1+a)=0, de unde obţinem $a=0$ sau $a=-1$	2p
c)	$X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \text{ deci } X \cdot X = A(0) \Leftrightarrow \begin{pmatrix} a^2 + bc & b(a+d) \\ c(a+d) & d^2 + bc \end{pmatrix} = \begin{pmatrix} 12 & 0 \\ 1 & 3 \end{pmatrix}$	2p
	Din $b(a+d)=0$ şi $c(a+d)=1$, rezultă $a+d\neq 0$ şi $b=0$ şi, cum $d^2+bc=3$, obţinem $d^2=3$, deci d este număr iraţional	3р
2.a)	$1 \circ 1 = 1 + \sqrt[3]{1 - 2} =$	3 p
	=1+1-2=0	2p
b)	$x + \sqrt[3]{a} - 2 = x$, pentru orice număr real x	2p
	$\sqrt[3]{a} = 2 \Leftrightarrow a = 8$	3 p

Ī	c)	$x + \sqrt[3]{x^6} - 2 = 4$, deci $x^2 + x - 6 = 0$	3p
		x = -3 sau $x = 2$	2p

SUBIECTUL al III-lea (30 de puncte)

5021	SODIECTOL al III-lea (50 de pun	
1.a)	$f'(x) = (x^2)' - (2\sqrt{x^2 - 1})' = 2x - 2 \cdot \frac{2x}{2\sqrt{x^2 - 1}} =$	3p
	$=2x - \frac{2x}{\sqrt{x^2 - 1}} = 2x \left(1 - \frac{1}{\sqrt{x^2 - 1}}\right), \ x \in (1, +\infty)$	2p
b)	$\lim_{x \to +\infty} \frac{x^2 - f(x)}{x} = \lim_{x \to +\infty} \frac{2\sqrt{x^2 - 1}}{x} = \lim_{x \to +\infty} \frac{2x\sqrt{1 - \frac{1}{x^2}}}{x} =$	3 p
	$= 2 \lim_{x \to +\infty} \sqrt{1 - \frac{1}{x^2}} = 2$	2p
c)	$f(x) = 0 \Leftrightarrow x^2 = 2\sqrt{x^2 - 1} \Leftrightarrow x^4 = 4(x^2 - 1) \Leftrightarrow (x^2 - 2)^2 = 0 \Leftrightarrow x^2 = 2$ şi, cum $x > 1$,	2 p
	obţinem $x = \sqrt{2}$	
	$A(\sqrt{2},0)$ este punctul de intersecție a graficului funcției f cu axa Ox și, cum panta	
	tangentei la graficul funcției f în punctul A este $f'(\sqrt{2}) = 0$, obținem că axa Ox este	3 p
	tangentă la graficul funcției f	
2.a)	$\int_{0}^{1} (x^{2} + 2x + 2) f(x) dx = \int_{0}^{1} (x^{2} + 2x + 2) \frac{x}{x^{2} + 2x + 2} dx = \int_{0}^{1} x dx =$	2p
	$=\frac{x^2}{2}\Big _0^1=\frac{1}{2}$	3 p
b)	$\int_{0}^{2} \left(f(x) + \frac{1}{x^{2} + 2x + 2} \right) dx = \int_{0}^{2} \frac{x + 1}{x^{2} + 2x + 2} dx = \frac{1}{2} \int_{0}^{2} \frac{\left(x^{2} + 2x + 2\right)'}{x^{2} + 2x + 2} dx =$	2p
	$= \frac{1}{2} \ln \left(x^2 + 2x + 2 \right) \Big _0^2 = \frac{1}{2} \ln 5$	3 p
c)	$\int_{1}^{e} \left(\frac{1}{f(x)} - 2 \right) \ln x dx = \int_{1}^{e} \left(x + \frac{2}{x} \right) \ln x dx = \int_{1}^{e} x \ln x dx + 2 \int_{1}^{e} \frac{1}{x} \ln x dx = \int_{1}^{e} \left(\frac{x^{2}}{2} \right) \ln x dx + 2 \int_{1}^{e} (\ln x) \ln x dx = \int_{1}^{e} \left(\frac{x^{2}}{2} \right) \ln x dx = \int_{1}^{e$	3р
	$= \frac{x^2}{2} \ln x \Big _{1}^{e} - \int_{1}^{e} \frac{x^2}{2} \cdot \frac{1}{x} dx + 2 \cdot \frac{1}{2} \ln^2 x \Big _{1}^{e} = \frac{e^2}{2} - \frac{x^2}{4} \Big _{1}^{e} + \ln^2 e - \ln^2 1 = \frac{e^2}{2} - \frac{e^2}{4} + \frac{1}{4} + 1 = \frac{e^2 + 5}{4}$	2p