1 Extremaalproblemen zonder beperkingen

Bepaal de extremalen van f(x,y). In woorden uitgelegd: kijk naar de determinant van de Hessiaan van f, noem deze Δ .

$\Delta > 0$	lokaal extremum
$\Delta = 0$	GEEN BESLUIT
$\Delta < 0$	zadelpunt

2 Extremaalproblemen met gelijkheidsbeperkingen

Bepaal de extremalen van f(x,y) onderworpen aan de beperking g(x,y)=0.

2.1 Eliminatiemethode

In woorden: herschrijf g(x,y) = 0 en vul dit in in de uitdrukking voor f(x,y).

2.2 Lagrangevermenigvuldigers

- STELLING: niveaulijnen van f(x,y) en niveaulijnen van g(x,y) hebben een gemeenschappelijke raaklijn, wiskundig uitgedruk is dit $|\vec{\nabla} f(a,b) = \lambda \vec{\nabla} g(a,b)|$.
- Zoek de extrema van een nieuw probleem $\boxed{W(x,y,...,\lambda) = f(x,y,..) \sum_i \lambda_i g_i(x,y,...)}$

3 Extramaalproblemen met ongelijkheidsbeperkingen

Bepaal de extremalen van f(x,y) onderworpen aan de beperking $g(x,y) \leq 0$.

- Voeg eerst nog een extra variabele toe en pas daarna de methode van de Lagrangevermenigvuldigers toe. In het geval van één ongelijkheidsbeperking krijgen we $W(x,y,z,\lambda) = f(x,y) \sum_i \lambda_i [g(x,y) + z_i^2]$, waar geldt dat $z_k = 0$ voor de gelijkheidsbeperkingen $g_k = 0$.
 - De ongelijkheisbeperking is een gelijkheidsbeperking indien $\lambda \neq 0$
 - Anders geldt $\lambda = 0$

4 Variatierekening

Dit gedeelte komt niet terug in de oefenzitting, maar is wel interessant.

Bepaal $y(x)$ zodat $I = \int_a^b F(x, y(x), y'(x),) dx$ maximaal is		
Dirichlet	$y(a) = \alpha$ $y(b) = \beta$	
natuurlijk	$y(a) = \alpha$	
	eindpunt op lijn $x = b$	
transversaliteitsvoorwaarden	$y(a) = \alpha$	
	eindpunt op kromme $\psi(t)$	
nevenvoorwaarden	$L = \int_a^b \psi(x, y, y') dx$	
Euler-Lagrange differentiaalvergelijking	y is oplossing van $F_y - F_{y',x} - F_{y',y}y' - F_{y',y'}y''$	

Toepassingen		
korste weg		
brachistochroon	minimaliseer $T = \int_0^a \sqrt{\frac{1 + y'^2}{2gy}} dx$	
met randvoorwaarden		
Dirichlet	$\begin{cases} y(0) = 0 \\ y(a) = b \end{cases}$	
natuuurlijk	$\begin{cases} y(0) = 0 \\ y'(a) = 0 \end{cases}$	
transversaliteitsvoorwaarden	$\begin{cases} y(0) = 0 \\ y'(a) = -\frac{1}{m} \end{cases}$	
kettinglijn		

5 Enkele nuttige MUPAD commando's

- gradf:=gradient(f,[x,y])
- kritisch:=solve(gradf,[x,y])

Bij het opstellen van dit overzicht werd gebruik gemaakt van [1].

References

[1] Stefan Vandewalle and L Beernaert. Analyse II: Handboek. SVB Janssen, Leuven, 2018.