Distributed Tensorflow with Kubernetes

Jakob Karalus, @krallistic,

⊜ codecentric

Training Neural Networks

- First steps are quick and easy.
 - Single Node Neural Networks
- We want:
 - More Data!
 - Deeper Models!
 - Wider Model!
 - Higher Accuracy!
- (Single Node) Compute cant keep up
- Longer Trainingstime -> Longer Cycles -> Lower Productivity

Distributed & Parallel

- We need to distribute and train in parallel to be efficient
 - Data Parallelism
 - Model Parallelsim
 - Grid Search
 - Predict
 - -> Build in TF
- How can we deploy that to a cluster
 - Schedule TF onto Nodes
 - Service Discovery
 - GPUs
 - -> Kubernetes

Requirements & Content

- Basic Knowledge of Neural Networks
- Knowledge of Tensorflow
- Basic Docker/Kubernetes knowledge
 - (Docker) Containers: Mini VM (Wrong!)
 - Kubernetes: Schedulurer/Orchestration Tool for Containers
- Only focus on the task of parallel and/or distributed training
 - We will not look at architectures like CNN/LTSM etc

Tensorflow on a single node

- Build your Graph
- Define which Parts on each device
 - TF places data
 - DMA for coordination/communication
- Define loss, accuracy etc
- Create Session for training
 - Feed Data into Session
 - Retrieve results

```
with tf.device("/cpu:0"):
    W = tf.Variable()
    b = tf.Variable()
with tf.device("/gpu:0"):
    y = tf.matmul(input, W) + b
    train_op = optimze_loss(y, y_)
```

Client Code

Parameter Server & Worker Replicas

- Client: Code that builds the Graph, communicates with cluster, builds the session
- Cluster: Set of nodes which have jobs (roles)
- Jobs
 - Worker Replicas: compute intensive part
 - Parameter Servers(ps): Holds model state and reacts to updates
 - Each job can hold 0..* task
- Task
 - The actual server process
- Worker Task 0 is by default the chief worker
 - Responsible for checkpointing, initialising and health checking
- CPU O represents all CPUs on the Node

In Graph Replication

- Split up input into equal chunks,
- Loops over workers and assign a chunk
- collect results and optimise
- Not the recommended way
- Graph get big, lot of communication overhead
- Each device operates on all data

Client Code

Between Replication

- Recommend way of doing replication
- Similiar to MPI
- Each device operates on a partition
- Different Client Program on each worker
 - Assign itself to local resources
 - Small graph independently

Client Code

Client Code

Variable Placement

- How to place the Variable onto different devices
- Manual Way
 - Easy to start, full flexibility
 - Gets annoying soon
- Device setter
 - Automatic assign variables to ps and ops to workers
 - Simple round robin by default
 - Greedy Load Balancing Strategy
- Partitioned Values
 - Needed for really large variables (often used in text embeddings)
 - Splits variables between multiple Parameter Server

Training Modes

How to update the parameters between instances?

Syncronous Replication

Every Instances reads the same values for current parameters, computes the gradient in parallel and the app them together.

Asycronoues Replication

Independent training loop in every Instance, without coordination. Better performance but lower accuracy.

Synchronous Training

Asyncronous Training

1. Define the Cluster

- Define ClusterSpec
 - List Parameter Servers
 - List Workers
- PS & Worker are called **Jobs**
- Jobs can contain one ore more Tasks
- Create Server for every Task

2. Assign Operation to every Task

- Same on every Node for In-Graph
- Different Devices for Between-Graph
- Can also be used to set parts to GPU and parts to CPU

```
with tf.device("/jop:ps/task:0/cpu:0"):
    W_0 = tf.Variable()
    b_0 = tf.Variable()
with tf.device("/jop:ps/task:1/cpu:0"):
    W_1 = tf.Variable()
    b_1 = tf.Variable()
with tf.device("/job:worker/task:1/gpu:0"):
    y_1 = tf.matmul(input, W_0) + b_0
    #compute intesive Part
with tf.device("/job:worker/task:2/gpu:0"):
    y = tf.matmul(y_1, W_1) + b_1
    #compute intensive Part
    train_op = optimze_loss(y, y_)
```

3. Create a Training Session

- tf.train.MonitoredTrainingSession or tf.train.Supervisor for Asyncronous Training
 - Takes care of initialisation
 - Snapshotting
 - Closing if an error occurs
 - Hooks
 - Summary Ops, Init Ops

- tf.train.SyncReplicaOptimizer for synchronous training:
 - Also create a supervisor that takes over the role a a master between workers.

All Together - Server Init

```
# cluster specification
parameter_servers = ["pc-01:2222"]
workers = [ "pc-02:2222", "pc-03:2222", "pc-04:2222"]
cluster = tf.train.ClusterSpec({"ps":parameter_servers, "worker":workers})
tf.app.flags.DEFINE_string("job_name", "", "Either 'ps' or 'worker'")
tf.app.flags.DEFINE_integer("task_index", 0, "Index of task within the job")
FLAGS = tf.app.flags.FLAGS
# start a server for a specific task
server = tf.train.Server(cluster, job_name=FLAGS.job_name,
                          task_index=FLAGS.task_index)
# config
batch_size = 100
learning_rate = 0.001
training_epochs = 20
logs_path = "/mnist/1"
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
if FLAGS.job_name = "ps":
  server.join()
elif FLAGS.job_name == "worker":
  # Between-graph replication
```

All Together - Building Graph

```
# Between-graph replication
with tf.device(tf.train.replica_device_setter(
  worker_device="/job:worker/task:%d" % FLAGS.task_index,
  cluster=cluster)):
  global_step = tf.get_variable('global_step', [],
                              initializer = tf.constant_initializer(0),
                              trainable = False)
  x = tf.placeholder(tf.float32, shape=[None, 784], name="x-input")
  y_ = tf.placeholder(tf.float32, shape=[None, 10], name="y-input")
  W1 = tf.Variable(tf.random_normal([784, 100]))
  W2 = tf.Variable(tf.random_normal([100, 10]))
  b1 = tf.Variable(tf.zeros([100]))
  b2 = tf.Variable(tf.zeros([10]))
  #Softmax
  z2 = tf.add(tf.matmul(x,W1),b1)
  a2 = tf.nn.sigmoid(z2)
    = tf.add(tf.matmul(a2,W2),b2)
     = tf.nn.softmax(z3)
```

All Together - TrainingOP

```
y = tf.nn.softmax(z3)
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
grad_op = tf.train.GradientDescentOptimizer(learning_rate)
train_op = grad_op.minimize(cross_entropy, global_step=global_step)
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# create a summary for our cost and accuracy
tf.scalar_summary("cost", cross_entropy)
tf.scalar_summary("accuracy", accuracy)
summary_op = tf.merge_all_summaries()
init_op = tf.initialize_all_variables()
```

All Together - Session & Training

```
sv = tf.train.Supervisor(is_chief=(FLAGS.task_index == 0),
                          global_step=global_step,
                          init_op=init_op)
with sv.prepare_or_wait_for_session(server.target) as sess:
  writer = tf.train.SummaryWriter(logs_path, graph=tf.get_default_graph())
  for epoch in range(training_epochs):
    batch_count = int(mnist.train.num_examples/batch_size)
    for i in range(batch_count):
      batch_x, batch_y = mnist.train.next_batch(batch_size)
      _, cost, summary, step = sess.run(
                      [train_op, cross_entropy, summary_op, global_step],
                      feed_dict={x: batch_x, y_: batch_y})
      writer.add_summary(summary, step)
      print( " Epoch: %2d," % (epoch+1),
              " Batch: %3d of %3d," % (i+1, batch_count),
              " Cost: %.4f," % cost)
```


Packaging

- The Application (and all its) dependencies needs to be packaged into a deployable
- Wheels
 - Code into deployable Artefact with defined dependencies
 - Dependent on runtime
- Container
 - Build Image with runtime, dependencies and code
 - Additional Tooling for building and running required (Docker)

Kubernetes

Kubernetes is a the leading Container Orchestration.

- Huge Community
 One of the fastest
 growing community
- Open Source
 Open Sourced by Google, now
 member of Cloud Computing
 Foundation.
- Auto Scaling
 Build in Auto Scaling Feature
 based on Ultitisation
- Bin Packing
 Efficient resource utilisation

Kubernetes in 30 Seconds

The Basic you need to know for the Rest of the Talk

Pods

Pods can be 1 or more Container grouped together, smallest scheduling Unit..

API First

Everything is a Object inside the Rest API.

Declarative

Configuration with YAML files.

Deployments

Higher Level
Abstraction to say
run Pod X Times.

Service Discovery

Services are used to make Pods discovery each other.

How to enable GPU in your K8S cluster?

Install Docker, nvidia-docker-bridge, cuda

Out of Scope for a Data Conference

Single Worker Instance

Prepare our Docker Image

```
FROM gcr.io/tensorflow/tensorflow:1.2.0-gpu

#Add additional requirements/data

ADD mnist_cnn.py /

ENTRYPOINT ["python", "/mnist_cnn.py"]
```

- Use prebuild Tensorflow image and add additional Libraries & Custom Code (gcr.io/tensorflow/tensorflow)
- special images form cpu/gpu builds, see docker hub tags
- Build & Push to a Registry

Name	Tags	Virtual size	Uploaded 🗸
[#] 3b85732dfed7	1.3.0-devel-gpu-py3 latest-devel-gpu-py3	1.9 GB	Aug 17, 2017
f506fa8b8dcc	1.3.0-devel-py3 latest-devel-py3	838.8 MB	Aug 17, 2017
∷ a04d9a0e180a	1.3.0-gpu-py3 latest-gpu-py3	1.4 GB	Aug 17, 2017
图 8570e2031528	1.3.0-py3 latest-py3	365.4 MB	Aug 17, 2017
[#] 351d3cc2e06c	1.3.0-devel-gpu latest-devel-gpu	1.8 GB	Aug 17, 2017
聞 ea77357aa5d8	1.3.0-devel latest-devel	793.2 MB	Aug 17, 2017

Write Kubernetes Pod Deployment

• Tell kubernetes to use GPU Resource

```
resources:
requests: #Optional
alpha.kubernetes.io/nvidia-gpu: 1
limits:
alpha.kubernetes.io/nvidia-gpu: 1
```

Mount NVIDIA Libraries from Host

```
volumes:
    name: nvidia-driver-375-26
    hostPath:
        path: /var/lib/nvidia-docker/volumes/nvidia_driver/375.26
- name: libcuda-so
    hostPath:
        path: /usr/lib/x86_64-linux-gnu/libcuda.so
- name: libcuda-so-1
    hostPath:
        path: /usr/lib/x86_64-linux-gnu/libcuda.so.1
- name: libcuda-so-375-26
    hostPath:
        path: /usr/lib/x86_64-linux-gnu/libcuda.so.375.26
```

```
volumeMounts:
    name: nvidia-driver-375-26
    mountPath: /usr/local/nvidia
    readOnly: true
    name: libcuda-so
    mountPath: /usr/lib/x86_64-linux-gnu/libcuda.so
    name: libcuda-so-1
    mountPath: /usr/lib/x86_64-linux-gnu/libcuda.so.1
    name: libcuda-so-375-26
    mountPath: /usr/lib/x86_64-linux-gnu/libcuda.so.375.26
```

Full Pod Yaml

```
kind: Pod
apiVersion: v1
metadata:
 name: gpu-pod
spec:
 containers:
  - name: gpu-container
    image: gcr.io/tensorflow/tensorflow:1.2.0-gpu
    imagePullPolicy: Always
    command: ["python"]
    args: ["-u", "-c", "import tensorflow"]
    resources:
      requests: #Optional
        alpha.kubernetes.io/nvidia-gpu: 1
      limits:
        alpha.kubernetes.io/nvidia-gpu: 1
    volumeMounts:
    - name: nvidia-driver-375-66
      mountPath: /usr/local/nvidia
     readOnly: true
    - name: libcuda-so
      mountPath: /usr/lib/x86_64-linux-gnu/libcuda.so
    - name: libcuda-so-1
      mountPath: /usr/lib/x86_64-linux-gnu/libcuda.so.1
    - name: libcuda-so-375-66
      mountPath: /usr/lib/x86_64-linux-gnu/libcuda.so.375.66
  restartPolicy: Never
```

```
volumes:
    name: nvidia-driver-375-66
    hostPath:
    path: /var/lib/nvidia-docker/volumes/nvidia_driver/375.66
    name: libcuda-so
    hostPath:
    path: /usr/lib/x86_64-linux-gnu/libcuda.so
    name: libcuda-so-1
    hostPath:
    path: /usr/lib/x86_64-linux-gnu/libcuda.so.1
    name: libcuda-so-375-66
    hostPath:
    path: /usr/lib/x86_64-linux-gnu/libcuda.so.375.66
```

Distributed Tensorflow - Python Code

- Add clusterSpec and server information to code
 - Use Flags/Envirmoent Variable to inject dynamically this information

- Write your TF Graph
 - Either Manual Placement or automatic
- Dockerfile stays same/similiar

Distributed Tensorflow - Kubernetes Deployment

- Slightly different deployments for worker and ps nodes
- Service for each woker/ps task
- Job Name/worker index by flags

```
kind: Service
apiVersion: v1
metadata:
   name: mnist-worker-0
spec:
   selector:
   name: mnist
   job: worker
   task: "0"
   ports:
   - port: 2222
```

```
name: worker-0
  labels:
    name: mnist
    job: worker
    task: "0"
spec:
  containers:
  - name: gpu-container
    image: krallistic/mnist-between:latest
    imagePullPolicy: Always
    command:
      - "python"
      - "/mnist.py"
    args:
      - "--job_name=worker"
      - "--task_index=0"
      - "--worker_hosts=mnist-worker-0:2222"
      - "--ps_hosts=mnist-ps-0:2222"
    ports:
      - containerPort: 2222
```

Distributed Kubernetes - Parameter Server

```
kind: ReplicaSet
apiVersion: extensions/v1beta1
metadata:
 name: mnist-ps-0
spec:
 replicas: 1
 template:
   metadata:
     name: ps-0
     labels:
       name: mnist
       job: ps
       task: "0"
   spec:
     containers:
     - name: ps-container
        image: krallistic/mnist-between-ps:latest
        imagePullPolicy: Always
       command:
         - "python"
         - "/mnist.py"
        args:
          - "--job_name=ps"
          - "--task_index=0"
          - "--worker_hosts=mnist-worker-0:2222"
          - "--ps_hosts=mnist-ps-0:2222"
        ports:
          - containerPort: 2222
        volumeMounts:
```

```
kind: Service
apiVersion: v1
metadata:
  name: mnist-ps-0
spec:
  selector:
    name: mnist
    job: ps
    task: "0"
  ports:
  - port: 2222
```

Automation - Tensorflow Operator

- Boilerplate code for larger cluster
- Official Documentation: Jinja Templating
- Tensorflow Operator:
 - Higher level description, creates lower level objects.
 - Still in the Kubernetes API (though CustomResourceDefinition)
 - kubectl get tensorflow
 - Comping Soon: https://github.com/krallistic/tensorflow-operator

```
apiVersion: "krallistic.github.com/v1"
kind: "Tensorflow"
metadata:
   name: test-mnist-1
spec:
   image: krallistic/mnist-between:v1
   ps_count: 2
   worker_count: 3
   gpu_worker: true
   tensorboard:
    active: true
   folder: "/summary"
```

Additional Stuff

- Tensorboard:
 - Needs a global shared filesystem
 - Instances write into subfolder
 - Tensorboard Instances reads full folder
- Performance
 - Scales amount of Parameter Servers
 - Many CPU nodes can be more cost efficient

Questions?

Address

codecentric AG Gartenstraße 69a 76135 Karlsruhe

Cor

Contact Info

E-Mail: jakob.karalus@codecentric.de

Twitter: @krallistic
Github: krallistic
www.codecentric.de

