SMART INDIA HACKATHON 2024

TITLE PAGE

- Problem Statement ID 1692
- Problem Statement Title- Forecasting Future Water
 Requirements and Assessing Storage Capacities in
 Reservoirs
- Theme- Smart Education
- **PS Category-** Software
- **Team ID** DJ60
- Team Lock N Code

IDEA TITLE

ML Model Features:

Data Inputs & Predictive Capabilities:

- Data on Water usage, precipitation, temperature, extreme weather, sedimentation.
- Predict Future Demand of Water, and amount of urbanisation, deforestation and agricultural water usage.
- Storage simulation and subsequent assessment of infrastructure capacity.

Scenario Analysis:

- Identify Risks and Model Effects of extreme events like droughts, floods or infrastructure issues.
- Analyze impact of population growth and urbanization effects. Evaluate water management strategies.

Outputs:

- Risk Indicators: Highlight areas at risk.
- Infrastructure Needs: Identify gaps in storage.
- Optimization: Recommend strategies for water management.
- Future Prediction: Water Usage, Energy Usage, Water Evaporation Rates

Website Features:

Dashboard:

- Show usage, storage, and risks with graphs.
- Scenario Selection: Toggle between future scenarios.
- Risk Maps: Interactive maps of vulnerable areas.

Customization:

- Custom Scenarios: Users input parameters like growth rates.
- Real-time Monitoring: Updates on water levels and infrastructure.
- -Recommendations: Strategies for water management and assess effects of management strategies.

Education and Awareness:

- Resources: Info on sustainable practices.
- Stakeholder Engagement: Collaboration platform.
- Reports: Downloadable water projections. Access model details and assumptions

Unique Selling Point [USP]:

- Silt deposit detection/prediction and Eutrophication Analysis and remedies.
- Regular and timely data integration.
- Energy production prediction
- Field visit data updation by government officials: Eg- gangapur dam
- Predicting water lost to evaporation reduction.

The above image depicts water level based on storage percentage, maps real time data and can be changed to display different variables.

TECHNICAL APPROACH

FEASIBILITY AND VIABILITY

CHALLENGES

- 1. <u>Quantifying Data:</u> Accurately measuring and interpreting complex hydrological data is challenging.
- 2. <u>Access to Variety of Data in All Locations (Reservoirs/Dams)</u>: Gathering consistent and comprehensive data from multiple reservoirs and dams can be difficult due to geographic and infrastructural limitations.
- 3. <u>Unpredictable Climate Changes</u>: Sudden and extreme climate events can disrupt predictive models and reduce their reliability.
- 4. <u>Gaps in Data</u>: Incomplete or missing data points can lead to inaccuracies in model predictions and assessments.
- 5. <u>Continuously Varying Conditions/Parameters</u>: The dynamic nature of environmental and operational parameters can complicate model stability and accuracy.
- 6. <u>Scalability</u>: Scaling the model to handle large datasets and numerous scenarios while maintaining performance is a technical challenge.
- 7. <u>Integration of Diverse Data Sources</u>: Combining data from various sources like hydrological, meteorological, and demographic databases can introduce inconsistencies and complexities.
- 8. <u>Computational Demands</u>: Running sophisticated models like Monte Carlo simulations and neural networks can be computationally intensive, requiring significant resources.

SOLUTION

- 1. <u>Quantifying Data</u>: We will apply advanced data processing algorithms and machine learning techniques to enhance the accuracy of data interpretation.
- 2. <u>Access to Variety of Data in All Locations (Reservoirs/Dams)</u>: We will implement a centralized data repository with real-time data acquisition systems for consistent and accessible data.
- 3. <u>Unpredictable Climate Changes</u>: We will incorporate adaptive models that dynamically adjust to new climate data and emerging patterns.
- 4. <u>Gaps in Data</u>: We will use data imputation techniques and machine learning algorithms to fill in missing data points effectively.
- 5. <u>Continuously Varying Conditions/Parameters</u>: We will regularly update the models with the latest data and use real-time monitoring systems to account for variations.
- 6. <u>Scalability</u>: We will employ cloud computing and distributed processing to efficiently scale the model for larger datasets and scenarios.
- 7. <u>Integration of Diverse Data Sources</u>: We will develop a robust data integration framework that normalizes and harmonizes data from various sources.
- 8. <u>Computational Demands</u>: We will optimize algorithms and leverage high-performance computing (HPC) resources to manage the computational load effectively.

IMPACT AND BENEFITS

- Government and policymakers: Aids in informed decision making, disaster awareness, and efficient resource allocation.
- Water Resource Management Authorities: Enables better infrastructure planning and maintenance, and optimization of reservoir operations.
- Agriculture/Industrial sector: Ensures reliable & secure water supply, drought mitigation, water usage efficiency, and saving costs.
- Localities: Improved water access, flood/drought protection.
- Adaptive Model: The versatile nature of the model allows it to integrate new data and ensure that it stays relevant over time

A recent initiative by Jal Samruddhi Abhiyan freed **Silt Deposits** equivalent to **3 crore litres of water** inferring it would suffice the need for drinking water in a village of 3000 adults for a year as per WHO standards (Gangapur Dam).

This gave naturally fertile soil for 30000 acres of farmland and in turn manifold increase in crop production.

- Anomaly Detection: Detecting anomalies and handling it will help in making the model more accurate as the model will be habitual of dealing with anomalies and not just the normal trend.
- Storage Capacity Enhancement: Removal of silt accumulated in water bodies will free a lot of water storage space which was earlier occupied with silt.
- Economic Benefits: By making effective use of resources and pre-planning for water related disasters, a lot of money can be saved.
- Water Quality Assessment: By keeping a track of eutrophication, an early warning about potential decrease in water quality will be received.

RESEARCH AND REFERENCES

- https://irrigationap.cgg.gov.in/wrd/dashBoard District Wise Reservoirs Data Collection
- https://www.isro.gov.in/WaterResources.html Real Time Water Flow Direction
- https://damstats.amithv.xyz Real Time Data and Visualization of Dam Water Levels
- https://www.mdpi.com/2071-1050/14/22/14934 Model Research
- https://www.weap21.org/ Model Research
- https://www.nature.com/articles/s41598-022-17074-6 Miscellaneous
- https://www.sciencedirect.com/science/article/abs/pii/S0022169419308832 Research Paper
- https://appliedsciences.nasa.gov/what-we-do/water-resources/inside-water-resources-
 Miscellaneous
- https://timesofindia.indiatimes.com/city/nashik/mission-creates-more-storage-in-water-bodies/articleshow/110647913.cms Silt Deposition Data