ASSIGNMENT 4

- (1) Let $\{w_1, w_2, ..., w_n\}$ be a basis of a finite dimensional vector space V. Let v be a non zero vector in V. Show that there exists w_i such that if we replace w_i by v in the basis it still remains a basis of V.
- (2) Find the dimension of the following vector spaces:
 - (i) $\{A : A \text{ is } n \times n \text{ real upper triangular matrices}\},$
 - (ii) $\{A : A \text{ is } n \times n \text{ real symmetric matrices}\},$
 - (iii) $\{A: A \text{ is } n \times n \text{ real skew symmetric matrices}\},$
 - (iv) $\{A: A \text{ is } n \times n \text{ real matrices with } Tr(A) = 0\}$
- (3) Let $\mathcal{P}(X,\mathbb{R})$ be vector space of all single variable polynomials with real coeffecients and $\mathcal{P}_n(X,\mathbb{R})$ be the subspace of all poynomials with degree less or equal to n. Find a basis of $\mathcal{P}_n(X,\mathbb{R})$. Prove that $S = \{X+1, X^2-X+1, X^2+X-1\}$ is a basis of $\mathcal{P}_2(X,\mathbb{R})$. Hence, determine the coordinates of following elements: $2X-1, 1+X^2, X^2+5X-1$.
- (4) Let W be a subspace of a finite dimensional vector space V
 - (i) Show that there is a subspace U of V such that V = W + U and $W \cap U = \{0\}$,
 - (ii) Show that there is no subspace U of V such that $W \cap U = \{0\}$ and dim(W) + dim(U) > dim(V).
- (5) Let $W_1 = L(\{(1,0,-1),(1,0,1)\})$ and $W_2 = L(\{(0,1,2),(0,1,-1)\})$ be two subspaces of \mathbb{R}^3 . Prove that $W_1 + W_2 = \mathbb{R}^3$. Given an example $v \in \mathbb{R}^3$ such that v can be written in two different ways of the form $v = w_1 + w_2$ where $w_1 \in W_1, w_2 \in W_2$.
- (6) *** Decide which of the followings are linear transformation:
 - (i) $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x, y, z) = (x + 2y, z, |x|),
 - (ii) Let $M_n(\mathbb{R})$ be set of all $n \times n$ real matrices. $T: M_n(\mathbb{R}) \to M_n(\mathbb{R})$ defined by
 - (a) $T(A) = A^T$,
 - (b) T(A) = I + A, where I is identity matrix of order n,
 - (c) $T(A) = BAB^{-1}$, where $B \in M_n(\mathbb{R})$ is an invertible matrix.
- (7) *** Let $T: \mathbb{C} \to \mathbb{C}$ defined by $T(z) = \overline{z}$, is \mathbb{R} -linear but not \mathbb{C} -linear.
- (8) *** Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation such that T(1,0,0) = (1,0,0), T(1,1,0) = (1,1,1), T(1,1,1) = (1,1,0). Find T(x,y,z), Ker(T), R(T) (Range of T). Prove that $T^3 = T$.
- (9) *** Find all linear transformations from \mathbb{R}^n to \mathbb{R} .
- (10) *** Let V and W be two finite dimensional vector spaces over k, where $k = \mathbb{R}$ or \mathbb{C} . Prove that set L(V, W) of all linear transformations from V to W is a vector space over k of dimension dim(V).dim(W).