UNCLASSIFIED

AD NUMBER AD595287 **CLASSIFICATION CHANGES** TO: unclassified confidential FROM: LIMITATION CHANGES TO: Approved for public release, distribution unlimited FROM: Controlling DoD Organization: Picatinny Arsenal, Dover, NJ. **AUTHORITY** ARRADCOM ltr dtd 13 Feb 1980; ARRADCOM ltr dtd 13 Feb 1980

SECURITY MARKING

The classified or limited status of this report applies to each page, unless otherwise marked.

Separate page printouts MUST be marked accordingly.

THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 AND 794. THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSONALS PROHIBITED BY LAW.

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U.S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

UNANNOUNCED

8 **だ** め ග S

PICATINNY ARSENAL TECHNICAL DIVISION

TECHNICAL REPORT

STABILITY OF ROCKET PROPELLANTS

SUBJECT: Effect of Metals on Double-Base Propellants

PROJECT NO.

TU2-4C

REPORT NO. 1

P. A. SERIAL NO.

J.E. Abel PREPARED BY: A.S. Ribnick

E. McAbee

1822

COPY NO. 50

REGRADING DATA CANNOT THE DOTT

UNANNOUNCED

THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE PAYROLD OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, THE 18, U. S. C., SECTION 793 AND 794. ITS TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

DOWNGRADED AT 12 YEAR
LITERVALS; NOT AUTOMATICALLY
DECLASSIFIED. DOD DIR 5200.10

REGRADING DATA CANNOT BE PRIPRIET

CONFIDENTIAL 282 900

SECOND BUT SETION OF SETIO

1

,

,

•

1

Agency Performing Work: Picatinny Arsenal, Dover, New Jersey

Agency Authorizing Nork: ORDTU

Project No.: TU2-4C

DOA Priority Designation: 2A

Project Title: Stability of Rocket Propellants -

Effect of Metals on Double-Base Propellants

OBJECT

*To determine the effect of metals and plastics on the stability and physical characteristics of double-base propellent powders.

SUMMARY

Tests have been made to determine the degree of reactivity between the M2, M7, M13 and T7 Propellants and aluminum, magnesium, stainless steel, tin-plated steel, zinc-plated steel and phenol formaldehyde varnish-coated sheet steel. Two sets of test conditions were employed. First, ground mixtures of propellant and metal or phenol formaldehyde varnish were stored for six months at 50°C and ambient humidity. Second, grains of each propellant were stored in contact with each of the surfaces mentioned for six months at 32°C and 90% Relative Humidity.

Both 120°C Heat Test and 90°C Vacuum Stability Test results indicate that no decomposition occurred during storage of the ground mixtures.

Microscopic examination of the propellent grains indicates the following (1) the propellants, in order of decreasing compatibility, are: M7, M13, M2 and T7, and (1) the contact surfaces in order of decreasing compatibility are: stainless steel, phenol formaldehyde varnish, aluminum, tin, zinc and magnesium.

The standard JAN compression test did not show any significant difference for grains of any one propellant stored with any of the contact surfaces.

CONCLUSIONS

The degree of reactivity between propellent grains and contact surfaces was determined by microscopic examination.

On this basis, pluminum, stainless steel and this particular phenol formaldehyde coating are less reactive than tin, magnesium and zinc.

-1-

RECOMMENDATIONS

It is recommended that authorization be given for the use of aluminum or phenol formaldehyde varnish-coated steel as liners for containers for the storage of propellants.

2

Distribution for PA Technical Report No.1822 (Project No.TU2-4C)

	Copy No
Picatinny Arsenal Technical Library Dover, New Jersey	1 & 2
Chief of Ordnance Dept of the Army Washington 25, DC ATTN: ORDTU ORDTA ORDTS ORDIN	3 & 4 5 6 7
Commanding General Aberdeen Proving Ground, Md ATTENTION: Ballistic Res Lab	8 & 9
Commanding Officer Frankford Arsenal Philadelphia 37, Pa ATTENTION: Pitman-Dunn Lab	10, 11, 12 incl
Bureau of Ordnance Dept of the Navy Washington 25, DC ATTENTION: Section Re2a Section Re2d Section Ad3, Tech Library	13 14 15
Chief of Staff, USAF Washington 25, DC ATTENTION: Armament Div (AFDRD-AR) DCS/D (AFDRD-AV-3)(Mr. M. Lipnick)	16 17
Commander, U.S. Naval Proving Ground Dahlgren, Virginia ATTENTION: M.I. Section	18
Commander, U.S. Naval Ord Test Station PO China Lake, Inyokern, California ATTENTION: Technical Library Branch	19, 20, 21 incl

	Copy No
Commander, Naval Ordnance Laboratory White Oak, Silver Spring, Md ATTENTION: Library	22
Commanding General, AMC Wright-Patterson Air Force Base Dayton, Ohio ATTENTION: MCREXP-53	23 & 24
Commanding Officer Redstone Arsenal Huntsville, Alabama ATTENTION: ORDDW-R, Tech Library	25 & 26
Commanding Officer U.S. Naval Powder Factory Indian Head, Md ATTENTION: Res & Dev Dept	27 & 28
E. I. duPont de Nemours Wilmington, Delaware ATTENTION: Dr. W.F. Jackson	29
Hercules Experimental S ation Wilmington, Delaware ATTENTION: Dr. A. M. Ball	30
SPIA, Applied Physics Lab Johns Hopkins University Silver Spring, Md ATTENTION: Mr. R. H. Petty	31, 32, 33 incl
Commanding General Ordnance Ammunition Center Joliet, Illinois	34
Central Air Documents Office U. B. Building Dayton 2, Ohio ATTENTION: CADO-D	35 LYV
Wright Air Dev Center Weapons Components Division Dayton, Ohio ATTENTION: Armament Laboratory	36

INTRODUCTION:

- l. The Department of the Air Force has reported instances of physical deterioration of double-base propellants in contact with their storage containers (Ref A). Observations of reduction in tensile strength, decrease in stability and non-uniformity of the contact metal surfaces have been reported. The British have reported deterioration and embrittlement of double-base powder stored in zinc-coated containers (Ref B). Information was, therefore, desired on the type of metal or metal coating which would be most effective for use as containers or liners for containers for the storage of double-base propellent powders.
- 2. At the request of the Office, Chief of Ordnance (Ref C), all previous pertinent research was reviewed and an investigative program prepared which was designed to provide additional and more complete information on this subject. This research program comprised an investigation to study the effect produced on the M2, M7, M13 and T7 propellants when stored in contact with aluminum, magnesium, stainless steel, tin-plated steel, zinc-plated steel and phenol formal dehyde varnish-coated sheet steel under accelerated conditions of temperature and humidity.
- 3. The investigation reported herein was divided into two principal parts, as follows:
- a. Cylindrical grains of each propellent powder were stored in contact with each metal and plated or coated metal at 32° C (90° F) and 90% Relative Humidity. Control samples on glass under these conditions and also at desiccated humidity were studied for comparison.
- b. Ground mixtures of each of the four propellent powders with each of the five metals and the phenol formaldehyde varnish, as well as controls consisting of individual samples of each propellant, metal and varnish, were stored at 50° C and prevailing humidity.
- 4. This report gives the detailed results of stability and physical property tests made at the end of both three and six months' storage under the above conditions. Work on this project has been concluded and no further report is to be issued.

RESULTS:

5. The results of both the 120°C Heat Test and the 90°C Vacuum Stability Test indicated that no significant reaction occurred between ground, intimate mixtures of any of the propellants with any of the metals or the varnish luring storage for six months at 50°C and ambient humidity. Initial test values and those obtained at the end of three and six months' storage are given in Table II.

RESULTS: (contd)

- 6. Microscopic examination of the propellants and metals after storage for three months at 32°C and 90% Relative Humidity indicated the following:
- a. The propellants, in order of decreasing compatibility are: M7, M13, M2 and T7.
- b. The contact surfaces, in order of decreasing compatibility are: stainless steel, phenol formaldehyde varnish, aluminum, tin, zinc and magnesium.

The same relative order of propellants and contact surfaces were noted at the end of six months' storage at 32°C and 90% Relative Humidity. However, the adverse effects were all generally accentuated. The results of the microscopic examinations made of the propellent grains and contact surfaces stored under this condition are given in Tables III, IV, VI and VII.

- 7. Microscopic examination of the propellants and contact surfaces after three and six months' storage at 32°C and desiccation indicated very little reaction to occur. except the case of T7 propellant stored on zinc. This latter combination did appear to undergo some reaction. The results of all the microscopic examinations made for this storage condition are given in Tables V and VIII.
- 8. Photographs representative of the changes noted by microscopic examination are included, Figures 1, 2, 3, 4 and 5.
- 9. Standard JAN compression tests on samples stored at (a) 32° C and (b) 32° C and 90% Relative Humidity (Tables IX XII and Figures 6 13 incl) showed the following:
- a. No one contact surface showed a particularly deleterious effect on any propellant. Surface effect differences noted in microscopic examinations were not generally reflected in compression test values. One exception to this was the case of the T7 propellant. In this case, the values for the work to produce failure were somewhat lower for those grains which had been stored with magnesium, tin and zinc (Figure 13).
- b. Naither desiccated nor 90% Relative Humidity storage with any of the differ it contact surfaces had any apparent or uniform effect on the compressive properties of the M2 propellant.

DISCUSSION OF RESULTS:

10. As compared with previous investigations (Ref D) of this nature, the study reported herein had several different features. First, the use

DISCUSSION OF RESULTS: (contd)

of dynamic test conditions for the storage of the propellent grains. This was accomplished by employing a Tenney Temperature-Humidity Test Chamber to maintain the desired conditions of temperature and humidity within one per cent, with uniformity of chamber conditions assured by continuous air circulation. Previous studies have been conducted principally under static chamber conditions which have not proven uniform. Secondly, mixtures of ground propellant and ground metal were made on the basis of equal areas of surface contact as calculated from the respective particle sizes. Previous studies have been made principally on an equal weight basis which did not result in valid comparisons in cases where the densities and particle sizes of propellant and metal differed significantly.

- ll. Mixtures of ground propellant and metal were used in this investigation to establish, by the use of elevated temperature storage, whether any reaction would occur. Examination of the data given in Table II would indicate that under these storage conditions, no change took place. Further, these tests showed no decomposition that could be correlated with the results of visual and microscopic examination of the propellent grains.
- 12. The detailed microscopic examination of the propellent grains are given in Tables III through VIII and need little explanation. It should be noted that under the conditions of high humidity, corrosion of both propellant and metal was very evident even after only three months. Continued storage for an additional three months only served to accentuate the corrosion process. The T7 propellant was the most affected which may be due to its nitroguanidine content. Undoubtedly, under prolonged storage at these conditions, this propellant would have eventually deteriorated to the point of complete physical breakdown. This might ultimately happen to other propellants also, but in the case of the T7, the process would be more rapid. While the surface effects were not reflected by changes in the compressive properties, it is considered likely that this corrosion process would adversely effect the physical properties of the propellant, should the conditions of high temperature and humidity prevail for prolonged periods of time.
- 13. The physical property data, in a sense, were somewhat disappointing in that no correlation was found to exist between the surface effects noted by microscopic examination and the compressive properties of the grains. Only in one case, that of the T7 propellant, was there any evidence of a possible correlation (see Figure 13). Values for "work to produce failure" plotted against storage conditions gives some slight evidence of the deleterious effect of zinc, magnesium and tin, in that the values for this property are somewhat lower for the grains of T7 propellant stored in contact with these three metals. The values at 1% compression for all propellants are not graphically illustrated since the largest experimental

DISCUSSION OF RESULTS: (contd)

error would occur within the early stages of the compression. A study of the data obtained gives no complete correlation regarding the effect of storage materials on the compressive properties. Likewise, no rule can be made regarding the effect of desiccated and 90% Relative Humidity storage on the physical properties of the grains. However, in the cases of stress at 5% compression of the M7 and M13 and stress at rupture of the T7 propellants, there is a decided increase in stress after storage at 90% Relative Humidity. This would seem to indicate some effect of the high humidity on these propellants. This raising of stress is contrary to the results usually obtained, as water normally acts as a plasticizer and as such increases the deformation and lowers the strength of the materials. While visual examination of the grains revealed variable degrees of corrosion at the surface of the propellants, this had not penetrated deeply enough to have any appreciable effect on the compressive properties. It is probable that the compressive test will not indicate the effects of surface corrosion, but would be more indicative of the functioning of the grain as a unit.

- 14. Work similar to that reported herein has also been done at the Naval Powder Factory (Ref D). Part of this research embraced a study of the effect produced on the physical properties of propellent grains stored in contact with various metal surfaces. Specifically, it involved a study of grains of 3"/50 cal "NH" and Cordite N propellants stored for six months on steel, brass, zinc-coated steel, zinc-coated steel-chromate treated steel and steel coated with phenolic lacquer at three different conditions; namely, (a) 92°F and ambient humidity, (b) 150°F desiccated and (c) 150°F and 100% Relative Humidity. The last two conditions were much more severe than those used in the present study and any degradation would be more accentuated by these conditions than those used in this report. The grains of "N" and "NH" were severely affected, particularly under the conditions of high temperature and humidity and stored in contact with zinc and brass. The NPF used the side impact test for brittleness to establish effects on physical properties (Ref F). This is in contrast to the compressive test used in this program. The conclusion reached in the NPF report was that, of the contact surfaces tested, a phenol lacquered steel had the least effect on the propellants.
- 15. In view of all the above, it would seem advisable to use in practice those metals or protective coatings which show the least effect on propellants. From the observations made herein, stainless steel, aluminum and phenol formaldehyde varnish-coated steel are indicated to be less reactive than zinc, magnesium and tin. On the basis of both studies, it is recommended that consideration be given to the use of the three best materials as liners or protective coatings for containers where such are to be used for the storage of propellants for prolonged periods of time,

DISCUSSION OF RESULTS: (contd)

possibly under extreme climatic conditions. Stainless steel is now being employed as liner for propellent containers for small arms propellants.

EXPERIMENTAL PROCEDURE:

- 16. The propellent powders used (see Table I) in the mixtures were ground in a hand grinder to pass through a 12 mesh sieve. Magnesium, aluminum, zinc and tin were atomized to approximately the same size, 168 microns, 145 microns, 124 microns and 171 microns, respectively, as determined by the air permeability method (Ref E). The stainless steel was obtained in 75 micron size. The phenol formaldehyde varnish was prepared by painting this material on polyethylene sheets and scraping it off. A final drying of the varnish was made in vacuum. The mixtures of ground propellant and metal were made on an equal surface area basis according to the calculations of Gooden and Smith (Ref E).
- 17. The mixtures of ground propellant and metal, subjected to 50°C and ambient humidity, were stored in loosely cork-stoppered glass bottles in electrically heated, thermostated ovens, Model 1250, manufactured by the Precision Scientific Company.
- 18. The ground mixtures were subjected to 120°C Heat Tests and 90°C Vacuum Stability Tests in accordance with the procedures described in Picatinny Arsenal Technical Report No. 1401, Revision 1.
- 19. The storage of the propellent grains was made in a temperature-humidity test chamber, Model 36TR, manufactured by the Tenney Engineering Company, Incorporated, Newark, New Jersey. The grains subjected to 32°C and 90% Relative Humidity were placed end-wise on 6" x 6" squares of metal varnish-coated metal and glass (control) in the test chamber. The grains and test surfaces subjected to 32°C and desiccated humidity were placed in glass desiccators using "Desicchlora" as the drying agent and the desiccators were placed in the same test chamber.
 - 20. The following contact surfaces were used in this investigation:
 - a. Aluminum: 16 gauge, #2, half-hard
 - b. Magnesium: 0.156", U.S. Army Specification 57-157, Class 18, annealed
 - c. Stainless steel: 1/6", #5012, Type 18-8
 - d. Tin-plated steel: 0.0125 = 30 gauge, Type 2, Grade 2
 - . e. Zinc-plated steel: 16 gauge, Federal Specification QQ-L-696
 - f. Phenol Formaldehyde Varnish, "Bakelite" XV 1657, 12½ gallon tung oil, phenolformaldehyde, Navy Specification NAVORD No. 1433, Type A. This varnish was coated on: Sheet steel: 1/6", Federal Specification QQS-11A

9

EXPERIMENTAL FROCEDURE: (contd)

21. The method of compression testing employed was that given in Ref G. The samples were tested under standard conditions $(77^{\circ}F \neq 2^{\circ}F)$ and 50% Relative Humidity / 2% Relative Humidity) following temperature conditioning. Compression testing was done on an Instron Tester with an adjustable speed control so that the rate of crosshead travel could be varied among specimens to give the desired 0,100 inch per minute per inch of specimen height. A sub-press and compressometer in conjunction with a Baldwin stress-strain recorder were used to assure axial loading and accurate measurement of the amount of compression (Photograph M-38451). The outside diameters and heights were measured by micrometer. However, the perforations were so small that the only satisfactory method of measurement was to insert wires of known diameters and assume this diameter to be equal to the diameter of the perforation. Due to excessive amounts of corrosion found in some of the perforations, it was felt that a microscopic determination of the diameters would be extremely difficult. The above method was, therefore, used.

REFERENCES:

- A. Department of the Air Force 0.0. 471.86/129(c), 22 January 1948.
- B. British Ordnance Board Proceedings No 34585 (11 July 1947) No 35907 (13 September 1949).
- C. 0.0. 471.86/135(c), ORDBB 471.5/3387, 29 January 1948.
- D. Naval Powder Factory, Technical deport No. 32, dated 10 August 1950, "Compatibility of Zinc and Other Coatings for Steel with Double-Base Propellants."
- E. "Measuring Average Particle Diameter of Powders," by Gooden and Smith; Analytical Edition, Industrial and Engineering Chemistry, Volume 12, pages 479-482, 15 August 1940.
- F. OSRD Report No 5592.
- G. JAN Panel on Physical Properties of Solid Propellants Method for Determining the Compressive Properties of Solid Rocket Propellants -Approved 24 January 1950.

INCLOSURES:

Tables $I - \lambda II$ incl Figures 1 - 13 incl Photograph M-38451

10

REPORT BY: 9 = The

J. E. Abel

Chemist

Chemist

Em Mu

E. McAbee Materials Engineer

REVIEWED:

2. W. LeMaistre

Major, Ord Corps Mil Ch, Chemical Research Section

Chief, Plastics Research Section

D. D. Sager Asst Ch, Technical Division for Research and Chemistry

APPROVED:

C. R. DUTTON

Col, Ord Corps Chief, Technical Division

11

TABLE I

COMPOSITION AND GRAIN DIMENSIONS OF PROPELLANTS USED

<u>Type</u>	112	147	<u>1913</u>	<u>T7</u>
Lot Number	RAD-9713	RAD-51045	SUN-18577	DP-6285
Nitrocellulose, % Nitroglycerine /	76.26	54,29	57.04	<i>2</i> 0.78
Dinitrotoluene, % Potassium perchlorate, %	20.52	35 32 7.98	40.23	17.28
Barium Nitrate, %	1.54	-	_	_
Potassium Nitrate, % Potassium Sulfate, %	0.82	-	1.61	-
Graphite, % Carbon Black, %	0,26 -	1.31		_
Diphenylamine, % Ethyl Centralite, %	0.60	1.10	0.19 0.93	- 5.42
Nitroguanidine, % Cryolite, %	-	-	- -	54.93 0.25
Total Volatiles	1.85	0,39	0.88	0.17
Height of Grain, in Diameter of Grain, in Tolerance, in (as measured)	3/16 3/16 <u>⊬</u> 0.005	3/8 3/8 <u>/</u> 0.007	7/8 7/8 <u>/</u> 0.009	5/16 5/16 <u>≠</u> 0.004

REGRADING DATA CANNOT BE PRIDETTRING

CONFIDENTIAL

.

Section 200

** * (·

THE TOTAL STREET, AND ADDRESS OF A SERVICE.

Anagana ng ay shindhi kandan luju u

TABLE II

THERMAL STABILITY DATA OF MIXTURES OF GROUND PROPELLANT AND METAL

				c)						90°C	Vac St	ab
				120°	C He			,,,			cc g	as/40	hrs
_			ial Va			3 mont			month		0	3	
Pro-		SP	RF	EXPL	SP	RF	EXPL	SP	RF	EXPL			
pellit	Metal	min	min	min	min	min	min	min	min	min	nos	mos	i.os
т7	Tin	95	300 <i>f</i>	300/	120	300/	300 <i>f</i>	08	300≠	300≠	0.62	0.55	0.45
11 3	11	70	300/	3W/	100	240	300/	90	250	300/		1.03	0.90
117		100	300/	300/	110	300/	30U/	80	275	300/	0.86	0.62	0.54
112	II.	95	300≠	300/	90	250	300∤	100	260	300∤	0.16	0.40	1.32
т7	Zinc	95	250	300 <i>/</i>	150	485	300 <i>F</i>	105	280	300≠	0.64	Ú.81	0 6t
<u>и</u> 3	11	60	200	30u/	105	<i>≥</i> 75	300/	85	200	30U/		1.00	ر0.83
117	11	85	210	300/	105	280	300∤		275	300/		0.51	0.66
M 2	11	100	300∱	300/	110	285	300≠	85	290	300/	0.55	0.69	0.45
Т7	Aluminum	70	140	300 /	95	240	300 <i>F</i>	80	180	300 <i>F</i>	1.09	0.93	0.96
M 13	11	65	210	300/	60	150	300/	65	125		1.04	1.19	1.23
м7	11 	70	220	300/	80	210	300/	75	150	300/	1.14	0.61	0.80
<u>¥2</u>	11	85	220	30ù /	65	150	300≠	70	105	30∪/	 	1.23	1.77
Т7	Magnesium	100	300/	300/	90	175	300/	85	250	300∱	1.38	1.28	1.19
M 3	11	55	120	300/	55	125	300/	70	200	300/	1.41	1.45	1,41
M7 M2	,,	65	180	300/	95 100	250	300/	80 70	175 250	300/	1.27	1.31	1.14
		90	110	300 <i>/</i>		210	300≠			300/	1.14	1.58	1.89
T 7	Bakelite	65	150	300/	65	140	300/	70	100	300/	3.32	1.08	1.27
M13	11	50 70	150 180	300≠ 300≠	60. 65	130 130	300≠ 300≠	60 65	80 110	300≠ 300≠	3.24 2.71	1.43	1,39
M7 M2	11	65	180	300/	65	145	300/	75	155	300/		1.03	1.19
								 					
T7	Stainless Steel	75 50	300≠ 210	300,∕ 300,∕	120 65	.300∱ 210	300≠ 300≠	100 70	290 110	300≠ 300≠	0.69 0.88	0.64 0.76	0.56 0.87
M13 M7		90	300/	300 /	90	210	300/		175	300 <i>F</i>		0.70	0,60
112	II .	80	300/	300/	95	250	300/		250	300/	0.68	0.91	1.05
T7		40	90	300/	55	105	300/		100	300/	2.95	3.01	3.2C
M13	-	40	65	300/	55	90	300/		60	300/	2.99	3.87	3.95
M7	-	40	80	300/		90	300/		65	300/	2.60	2.27	2,62
. M2	-	45	85	300/	50	90	300/	50	55	300/	2.67	3.79	4.06
_	Tin	-	ea Y	-	-	-	-	=	-	-	0.22	0.15	
-	Zinc	-	-	-	-	-	-	-	-		0.31	0.57	
-	Aluminum	-	-	-	-	-	-	-	-	-	0.34	0.17	-
	Magnesium Bakelite	_	_	1 1	_	_	_		_	-	0.24 3.80	0.20	_
_	Stainless Steel		_	_			_		_	_	0.17	0.18	-
	Doggange Cocca		l]					0021	3,20	

IVET III

EVALUATION OF PROPELLENT GRAINS BY MICHOSCOPIC INSPECTION AFTER THREE MONTHS' STORAGE

10+51	Storage	Relative		-		Propel	lant			
Месат	Temperature	Humidity	15		M7		M13		T7	
Zinc	32°C	%06	CJ - 3	D	>	<u>.</u>	* B	년 4	Ħ	ti
Zinc	32°C	Desiccated	>	:	₩	ဂ	≯> ⊦	}>> ►	≯ 4	υ 4
Stainless Steel	32°C	%0¢	င္း	w	> -	₩	A	m 1	হৈ ; '	ດ
Stainless Steel	32°C	Desiccated	≯ - (æ	₽.	£	A	₩	A H	A (
Tin	32°C	%0% %0%	D ₃	ם	W	ш.	ဂ	ကႋ	본) N	চা ;
Tin	32°C	Desiccated	≯	2 -	2-	Þ	>	A	≯ (>
Magnesium	32°C	%0 <i>%</i>	D ₁ .3	ਲ -	,	ט	ָ ֭ ֪	년	년) N	ট
Magnesium	3200	Desiccated	A	>	2 - 1	➣	A :	≯	A 6	₽ µ
cll uminum	32°C	% % %	D3.7	G	> -	₩	A	₩,	D.	ָם נ
Al uminum	32°C	Desiccated	≯ > (<i>\$</i>	➣	A	~	2-	Aryo	> -
Bakelite	32°C	%0%	Dα	င	¥	æ	A	➤ .	म ्	ם ; ז
Bakelite	32°C	Desiccated	A	Æ	>	<u>.</u>	➣	₽.	≯ (A
Class	32°C	%0%	Dia	-1 ≯>	B	A	9	>	D.	▶ ;
Jlass	32°C	Desiccated	<u>ئ</u> ب	} -	₽,	Þ	A	A	A :	> ;
Ų.			Pro-	Metal	Pro-	Metal	Pro-		,	Metal
			pellant	surface	pellant	surface	pellant	·ю		surface
			surtace		suriace		surlace		surface	

CONFIDENTIAL

= Medium corrosion, pitting, some decomposition
= Severe corrosion, cracking of grain

Rating Code

- Unchanged from original appearance

Staining, incipient corrosion

Slight corrosion

Heavy crystal formation on surface

Liquid exudate
Perforations filled with yellow crystalline deposit Deposit of amorphous yellow-brown substance

Base of grain is dark, red-brown, soft, expoliated

Radial cracking of grain

Numerous filaments on surface

Numerous long needle-like crystals

White crystals in the form of clusters

Metal Surface

(×)

M13 - Zinc

T7 - Zinc T7 - Tin T7 - Magne

Magnesium

Ø ט G 2 TABULAR EVALUATION BY MICROSCOPIC INSPECTION OF PROPELLENT GRAINS STURED FOR PHREE MONTHS AT 32°C AND 90% RELATIVE HUMIDITY M7 - S. Steel
M7 - Aluminum
M13 - S. Steel
M13 - Aluminum M7 - Bakelite M13 - Bakelite **117** ı Zinc M7 - Glass M13 - Glass ا ا 117 1 Tin Zinc В Propellant Surface 3 M7 - Magnesium M13 - Tin 1 S. Steel M2 - Glass T7 - Glass M2 -17 -M2 - Magnesium M13 - Magnesium శ్ల శ్ల 2 - Aluminum 2 - Bakelite - Tin - Aluminum

b

甴

TABLE IV

* Same Ratings Used as Given in Table III

CONFIDENTIAL

T7

ı

S. Steel

1

Bakelite

TABLE V

TABULAR EVALUATION BY MICHOSCOPIC EXAMINATION OF PROPELLENT GRAINS STORED FOR THREE MONTHS AT 32°C UNDER DESICCATION

		Propel	lant Su	rfaces *	
	A	В	С	D	E
i	All Others				
ж ж	M13 - S. Steel T7 - Zinc				
Surfaces		M7 - Zinc			
Metal Su					
Me					

* Same Ratings Used as Given in Table ${\tt III}$

CONFIDENTIAL

.

. ,

and the second s

Manager (Manager) - 1 January (Marie Land

EVALUATION OF PROPELLENT CRAINS BY MICROSCOPIC INSPECTION AFTER SIX MONTHS STORAGE

CONFIDENTIAL

Rating Code: A - Unchanged from or B = Staining, incipies C = Slight corrosion D = Medium corrosion, decomposition E = Severe corrosion;	Zinc Zinc Zinc Zinc Zinc Stainless Steel Stainless Steel Tin Tin Magnesium Magnesium Aluminum Aluminum Aluminum Bakelite Bakelite Glass Glass
iginal nt corr pittin cracki	Storage Temperature 3200 3200 3200 3200 3200 3200 3200 320
appearance osion g, some	relative Humidity 90% Desiccated
Propellant- contact surface	A D A D A B A D A C
metal interface	M2 D D A A D D A A A A A A A A A A A A A
Propellant- exterior	A A A D A C A D A E A A A C
Propellant contact surface	A C A B A B A B A B B B B
metal interface	A A B C C B D A A A A C C B D A A A A C C B D A A A A C C B D A A A A A C C B D A A A A A C C B D A A A A A A C C B D A A A A A C C B D A A A A A C C B D A A A A A C C B D A A A A A C C B D A A A A A C C B D A A A A A C C B D A A A A A C C B D A A A A A C C B D A A A A C C B D A A A A C C B D A A A A C C B D A A A A C C B D A A A A C C B D A A A A C C B D A A A A C C B D A A A A C C B D A A A A C C B D A A A A C C B D A A A A C C B D A A A A C C B D A A A A C C B D A A A C C B D A A A A C C B D A A A A C C B D A A A A C C B D A A A A C C B D A A A A C C B D A A A A C C B D A A A A C C B D A A A A C C B D A A A A C C B D A A A A C C B D A A A A C C B D A A A A C C B D A A A A C C B D A A A A C C B D A A A A C C B D A A A A C C B D A A A C C B D A A A C C B D A A A C C B D A A A C C B D A A A A C C B D A A A C C B D A A C C B D A A A C C B D A A A C C B D A A A C C B D A A A C C B D A A A C C B D A A A C C B D A A A C C B D A A A C C B D A A A C C B D A A A C C B D A A C C B D A A A C C B D A A C C B D A A C C B D A A A C C B D A C
Propellant exterior	Propel A A B B B B B B B B B B B B B B B B B B
	Llant
Propellant contact surface	# O A O A O A O A O A O A O A O A O A O
metal interface	А А В В В В В В В В В В В В В В В В В В
Propellant exterior	
Propellant contact surface	T T A H A H A H A H A H A
metal interface Propellant	BB04B4B4C44
exterior	OO 445 45 45 45 45 45 45 45 45 45 45 45 45

Metal Surfaces (Interface) *

TABULAR EVALUATION BY MICHOSCOPIC INSPECTION OF PROPELLEVY GRAINS STORED FOR SIX MONTHS AT 32°C AND 90% RELATIVE HUMIDITY

변	ם	0	B	*		
					A	
	M7 - Zinc	M7 - Aluminum	M7 - S. Steel M7 - Bakelite M13 - Aluminum M13 - Bakelite		8	
M13 - Zinc M13 - Tin	M2 - Zinc	M13 - S. Steel		M7 - Glass M13 - Glass	C	Propellant Surfaces
Ml3 – Magnesium	M2 - Tin M2 - Aluminun M2 - Bakelite M7 - Tin M7 - Magnesium		M2 - S. Steel	M2 − Glass	ם	Surfaces *
M2 - Magnesium T7 - Zinc T7 - Tin T7 - Magnesium	T7 - Aluminum T7 - Bakelite	T7 - S. Steel	•	T7 - Class	म	

* Same Ratings Used as Given in Table VI

Metal Surface* (Interface)

TABULAR EVALUATION BY MICROSCOPIC INSPECTION OF PROPELLENT GRAINS STORED FOR SIX MONTHS AT 32°C UNDER DESICCATION

TABLE VIII

M13-S. Steel
M13 - Magnesium
T7-Zinc M7-Aluminum All others 117-Zine B Propellent Surface * 떰

CONFIDENTIAL

* Same Ratings Used as Given in Table VI

	Range	Average	Range	98c1011	Range	Average	Range	werage	Tin	Range	werage	am go	ogeneav.	Runge	Average	Range	Average	Steel	Stainless	Range	Average	Range	Average	Range	Average	Range Averuge	<u>Line</u>	Range	Average	Control		Material	5	
						0		ω •				-			6		 Ⴠ	•	_						6				0	70% RH		Period, m	G+)	
(Figu		6	,	w							6	,	w								6		w						0	cated	Desic-	E e		
Figures in paren		2350 (7)		1700 (7)	3270-1540	1950		2970 (7)		2770-1900	2560 (7)	2560-1090	1450 (7)	3920-2000	3090 (7)	1,290-2220	3120 (7)			2770-1900	3	-1130	$\overline{2}$	1000		1,020-151,0	_	4130-2790	3640 (5)	T% Comp	ž			COMPRESSIVE
parenthesis are	Ö		-5020	6000 (7)	7320-6230	6740	-5940	6950 (7)		8130-6970	7030 (7)	,		7940-6760	7390 (7)	v.	6760 (7)			8130-6970	7540 (7)	6160-5540	5840 (7)	7030-5670	6550 (7)	0420-5660		6730-6410	6540 (5)	5% Comp		Stress in psi	,	PROPERTIESOOF M-2
the number of	17300-14800	16100 (7)	. 1	_	17600 - 16100	16700	17300-15800	17000 (7)		19700-16800	17900 (7)	٠.	16100 (7)	ı	18000 (7)	•	16100 (7)			446-388	17900 (7)	20100-	16600 (7	18600-	77000 (7)	1830-1850		17400-16800	17100 (5)	50% Comp Ru	1	i at		50°C M−2 PROPELLANT
observations																_							_	_			•			Rupture				LLANT
iions)	1 386-329	7	i	7	1	,	415-368	7		446-388	412			435-404		Մ,	$\overline{}$			1,5	412 (7)	u.	~ ı	ر!	~ 'ı	30		385-358	73	50% Comp	O	Work ft lbs/in3		

TABLE IX

Varnish Average Range Average Average Range Average Range	Magnesium Average Range Average Range Average Range Range	Atuminum Average Range Average Range Average Range Range Range	Storage Material
δ ω	ο ω	ο ω	Storage Period, m 0 90% RH c
ο ω	σ ω	ο ω	mos Desic-
3800 (7) 2980-4110 1880 (7) 2440-1110 1750 (7) 2030-1390 2680 (7) 4550-1170	2800 (7) 3760-2030 2320 (7) 3960-1570 1870 (7) 2490-1110 2840 (7) 4410-1600	25.20 (7) 3930-1160 2270 (7) 3800-1580 2980 (7) 3830-1223 2780 (7) 4420-1470	1% Comp
6620 (7) 6870-6480 6640 (7) 7310-5330 5740 (7) 6080-5460 6610 (7) 6960-5850	6970 (7) 7210-6670 6680 (7) 7460-6090 6280 (7) 6600-5830 6530 (7) 6960-5850	6760 (7) 7230-5480 6780 (7) 7170-6400 5970 (7) 6600-5210 6510 (7) 6840-6030	Stress in p
17000 (7) 17900-15900 17100 (7) 18300-16200 16100 (7) 17600-15000 16800 (7) 18500-15200	17800 (7) 18700-16900 16800 (7) 19900-15400 16500 (7) 17200-16000 16500 (7) 18200-15100	17400 (7) 19700-16200 17300 (7) 18600-16200 15900 (7) 17600-14100 16500 (7) 18200-15400	psi at 50% Comp
			Rupture
378 (7) 366-394 386 (7) 412-358 341 (7) 355-330 374 (7) 390-354	396 (7) 409-376 376 (7) 398-352 361 (7) 375-342 369 (7) 393-350	376 (7) 407-345 385 (7) 404-366 351 (7) 390-327 365 (7) 381-345	Work ft lbs/in ³ to Produce 50% Comp

TABLE IX (contd)

(Figures in parenthesis are the number of observations)

TABLE IX (contd)

Storage	Storage	0		•	•		
Material	Period, mos	mos Desic-		Stress in psi at	psi at		Work ft lbs/in3
	90% RH	cated	1% Comp	5% Comp	, 50% Comp	Rupture	50% Com
Hass					•		
Average	w		2940 (7)	6580 (7)	17200 (7)		377 (7)
aange			$\overline{}$	6990-5980	0 6990-5980 18100-16600		399-351
Average	6		2580 (7)	6830 (7)	17800 (7)		391 (7)
Range			4050-1.500	7650-5700	7650-5700 19000-16000	-	435-336
Average		w	3430 (7)	6370 (7)	17200 (7)		370 (7)
Range			4270-3200	6730-6180	4270-3200 6730-6180 17900-16300		393-358
Average	K	0	2700 (7)	6750 (7)	17600 (7)		389 (7)
Range	\$		4580-1370	7250-6040	4580-1370 7250-6040 20200-15700		444-350
	(Figu	ogin pa	renthesis	are the n	(Figuresin purenthesis are the number of observations	rvations)	
					1	, , , ,	

	Tin Average Range Range Average Average Range Range Average	Stainless Steel Average Range Average tange Average Hange Average Range	Range Average Average Average Average Average Range Range Range	Storage Material Control
	ο ω	ο ω	ο ω o	Storage Period, m 0 0 0 0 0 0 0 0 0 0 0 0 0
	ο ω	ο ω	6 W 0	25 68
(Figures	1450 (7) 1950-1150 1110 (7) 1510-738 1260 (7) 1490-1100 1030 (7) 1340-569	1290 (7) 1710-1190 1170 (7) 1700-694 1090 (7) 1390-692 1230 (7) 1530-660	1170-926 1280 (7) 1410-1030 1400-914 1040 (7) 1320-428 960 (7) 1280-505	Stress 1% Comp 5
in parenthesis	2370 (7) 2460-2260 2820 (7) 2850-2790 1690 (7) 1940-1600 1710 (7) 1860-1620	2280 (7) 2380-2170 2950 (7) 3020-2860 1640 (7) 1730-1550 1720 (7) 1820-1630	1680-1580 2170 (7) 2250-2120 2740 (7) 2810-2670 1610 (7) 1650-1560 1760 (7) 1840-1660	in psi % Comp
esis are the	7580 (3) 7770-7220 6520 (5) 6800-5890 6290 (7) 6760-5690	6590 (1) 6590-6590 8240 (1) 8240-8240 6170 (3) 6480-5790 6650 (7) 6950-6390	6470-5530 6580 (1) 6580-6580 7380-7380 6110 (6) 6300-5570 6550 (7) 6920-6390	50% Comp
number of	6560 (7) 6950-6020 7240 (4) 7560-6550 6520 (2) 6660-6370	6500 (6) 6960-5890 7360 (5) 7940-6670 6160 (4) 6410-5960	6380 (6) 6570-6230 7520 (6) 7830-7170 6040 (1) 6040-6040	Rupture
observations)	47.7 (7) 48.3-46.8 48.2 (4) 49.5-47.0 49.2 (2) 49.6-48.7	47.8 (6) 48.1-47.2 47.6 (5) 49.4-45.9 48.9 (4) 49.5-48.6	48.4 (6) 49.8-47.7 49.3 (6) 49.8-48.0 49.5 (1) 49.5-49.5	Compression at Rupture, %
	174 (3) 178-170 135 (4) 144-128 125 (7) 133-118	152 (1) 152-152 180 (2) 180-179 128 (3) 131-125 133 (7) 137-128	127-119 145 (1) 145-145 171 (1) 171-171 124 (6) 130-118 131 (7) 137-126	ે કો જે ે ફો
	143 (7) 146-139 167 (4) 173-160 131 (2) 134-127	141 (6) 151-135 173 (5) 180-166 121 (4) 126-116 133 (7) 137-128	138 (6) 144-132 171 (6) 178-164 118 (1) 118-118	1bs/in ³ Produce Rupture

COMPRESSIVE PROPERTIES OF M-7 PROPELLANT AT 32°C

TABLE X

	CONFIDENTIAL								
	Virnish Average Range Range Range Average Average Average	Magnesium Average Range Average Range Average Average Average	Atuminum Average Average Range Average Average Average	Storage Material					
_	ο ω	ο ω	0 W	Storage Period, m					
_	ο ω	ο ω	ο ω	mos Desic-					
_	1280 (7) 1680-1030 1520 (7) 1720-1410 866 (7) 1110-554 1350 (7) 2150-822	1450 (7) 1680-1330 1100 (7) 1600-656 1030 (7) 1220-639 1180 (7) 1450-426	1160 (7) 1420-1040 1150 (7) 1620-762 978 (7) 1200-747 1050 (7) 1240-807	1% Comp					
	2280 (7) 2340-2240 2780 (7) 2830-2740 1650 (7) 1720-1610 2110 (7) 2270-1940	2400 (7) 2440-2370 2880 (7) 2940-2780 1640 (7) 1660-1600 1700 (7) 1810-1610	2320 (7) 2410-2220 2780 (7) 2910-2680 1590 (7) 1700-1510 1730 (7) 1800-1700	Stress in 5% Comp					
_	6003 (4) 6110-5600 6960 (5) 7230-6810	6140 (7) 6630-5540 6360 (7) 6690-5920	5960 (6) 6240-5620 6520 (7) 6810-574	psi at 50% Comp					
	6310 (7) 6780-5770 7310 (7) 7620-7190 6120 (3) 6230-6030 6980 (2) 7180-6770	6710 (7) 6900-6530 7740 (3) 7940-7600	6360 (7) 6730-5590 7370 (7) 7600-7210 6000 (1) 6000-6000	Rupture					
_	46.8 (7) 49.2-45.6 48.3 (7) 49.1-47.5 48.7 (3) 49.1-48.1 48.2 (2) 48.8-47.5	46.8 (7) 47.7-45.3 48.7 (3) 49.7-47.4	47.7 (7) 49.0-46.0 48.5 (7) 49.5-47.4 48.2 (1) 48.2 (1) 48.2-48.2 131 (7) 136-126	Compression at Rupture, %					
<u>, </u>	129 (4) 134-122 148 (5) 153-141	180 (4) 185-177 126 (7) 133-116 128 (7) 134-121	125 (6) 131-118	Nork ft los/in to Produce					
	136 (7) 148-125 167 (7) 171-162 125 (3) 125-124 147 (2) 155-138	143 (7) 146-141 173 (3) 174-173	140 (7) 150-128 164 (7) 168-162 117 (1) 117-117	los/in ³ Produce Produce					

CONFIDENTIAL

TABLE X (contd)

(Figures in parenthesis are the number of observations)

TABLE X (contd)

Average Range	Average Range	Average	Range	Average	Glass	Material	Storage
		6	 -	w	90% RH	Period, mos	Storage
6	w				cated cated	mos	9,0
724 (7) 914-381	1040 (7)	1460 (7)	1440-1040	1170 (7)	1% Comp		
1860-1630	1560 (7)	2640 (7)	2300-2210	2250 (7)	5% Comp	Stress in psi	
6970 (7) 7410-6160	5970 (6)	7390 (1)			50% Comp	psi at	
7660-7860	5880 (1) 5880 (500)	7330 (6)	6510-5770	6280 (7)	Rupture		
136 (7) 138-129	49.7-46.7 48.8 (1)	46.9 (6)	48.8-44.9	47.2 (7)	at Rupture, %	Compression	
T27-72T	169-169	169 (1)			50% Comp	Work ft	
115-115	169-147	162 (6)	148-129	137 (7)	Rupture	Work ft lbs/in3	1

(Figures in parenthesis are the number of observations)

CONFIDENTIAL

W

	Range Average Range Average Rango Average	Ranje Averaje Range Range	Strinless Steel Average Average	Zinc Average Range Average Range Range Average Range Range	Control Average Range	Storage Material
	6	W	ο ω	ο ω	0	Storage Period, m D 90% RH c
	δ ω	ο ω		ο ω	0	mos Desic- cated
(Figures	1050-548 945 (6) 1020-737 643 (7) 721-583 656 (6) 855-589	905-640 810 (7) 969-685 702 (7) 784-661	788 (7) 1010-582 804 (6)	843 (6) 978-613 791 (6) 981-650 791 (7) 940-697 574 (7)	804 (5) 948-725	1% Comp
in parenthesis	1590-1210 1770 (6) 1830-1710 1110 (7) 1240-946 1050 (6) 1160-949		1500 (7) 1720-1340 1830 (6)	1,40 (6) 1620-1310 1790 (6) 1920-1570 1150 (7) 1240-1050 1020 (7) 1170-916	001	Stress in psi
sis are the	3880-3750 4320 (4) 4440-4190 3500 (4) 3790-3140 3720 (6) 4510-3310		1	4530 (3) 4710-4370 3550 (5) 3720-3260 3300 (6) 3600-2990		50% Comp
number of o	401.0-3410 4290 (2) 4580-4000 3570 (3) 3780-3460	4360-4060 3520 (5) 3540-3220 3760 (1) 3760-3760	3730 (6) 4300-3470 4220 (4)	3530 (6) 3820-3250 4150 (3) 4380-3900 3790 (2) 3960-3620	3610 (3) 3700-3530	Rupture
observations)	48.2-36.3 47.7 (2) 48.1-47.2 49.9 (3) 50.1-49.8	\$ 66466 K	47.9 (6) 49.4-46.3 48.4 (4)	47.8 (6) 48.7-46.8 48.8 (3) 49.7-48.3 48.9 (2) 49.0-48.7	9	Compression at Rupture, %
444	\$9.7-94.4 109 (4) 113-107 80.7 (4) 87.9-72.0 72.8 (6) 84.3-60.2		91.9 (1) 91.9-91.9 113 (2)	113 (3) 117-110 80.5 (5) 85.6-74.8 73.3 (6) 83.1-66.4		Work ft lbs/in ³ To Produce 50% Comp Runt
	96.4-76.0 96.4-76.0 99.5 (2) 102-969 80.2 (3) 87.4-72.2	104-101 79.3 (5) 85.3-73.9 73.6 (1) 73.6-73.6	93.5 (6) 102–86.4 103 (4)	87.2 (6) 92.7-78.8 100 (3) 80.2 (2) 81.5-78.8	78.9 (3) 82.0-76.4	ft lbs/in ³ To Produce
	•		CONF	IDENHAL		

CUMPRESSIVE PROPERTIES OF M-13 PROPELLANT

רא קרק אין

· #*	CONFIDENTIAL	•	•
Varnish Average Range Average Range Average Range Range Range Range	Magnesium Average Range Range Average Range Range Range	Aluminum Average Range Average Range Average Average Range Range Average	Storage Material
<u>6 6 6 6</u>	<u>δ 6 6 6</u> 6 ω	6 6 6 6 ω	Storage Period, m
ο ω	ο ω	6 3	mos Desic-
814 (7)	980 (7)	705 (7)	1% Comp
1020-652	1050-868	820–508	
815 (7)	885 (6)	717 (7)	
1060-596	1040-699	982–526	
790 (7)	747 (7)	749 (7)	
856-726	819-662	870–676	
607 (7)	645 (7)	573 (7)	
700-469	708-580	680–537	
1280 (7)	1470 (7)	1410 (7)	Stress 111 5% Comp
1350-1140	1550-1450	1470-1320	
1640 (7)	1790 (6)	1640 (7)	
1840-1460	1870-1740	1780-1560	
1050 (7)	1110 (7)	1110 (7)	
1130-966	1240-946	1220-1070	
1010 (7)	990 (7)	917 (7)	
1090-950	1030-929	1040-812	
3400 (1)	3660 (2)	3640 (5)	50% Comp
3400-3400	3710-3600	3850-3290	
3740 (2)	4270 (2)	4280 (6)	
3850-3630	4310-4220	4970-3950	
3350 (5)	3410 (4)	3550 (5)	
3510-3180	3670-3150	4160-3260	
3430 (7)	3440 (7)	3250 (7)	
3740-3100	3860-3000	3730-2880	
3590 (6)	3610 (5)	3520 (2)	Rupture
4670-3130	3860-3350	3710-3320	
4170 (5)	4250 (4)	4320 (1)	
4580-3710	4500-4220	3220-4320	
3630 (2)	3420 (3)	3560 (20)	
3810-3450	3620-3270	3810-3310	
47.6 (6)	47.8 (5)	48.2 (2)	Compression at Rupture, %
48.3-46.7	49.3-45.7	48.3-48.1	
48.2 (5)	48.8 (4)	49.5 (1)	
48.7-47.5	49.3-48.5	49.5-49.5	
48.8 (2)	49.0 (3)	49.7 (2)	
48.8-48.7	49.3-48.8	49.9-49.5	
83.1 (1)	92.7 (2)	91.1 (5)	Jork ft lbs/in To Produce 50% Comp Run
83.1-83.1	97.6-87.7	96.3-82.0	
92.1 (2)	107.5 (2)	97.7 (6)	
96.0-88.2	109-106	104-81.8	
74.7 (5)	78.4 (4)	78.9 (5)	
77.6-71.1	84.5-70.9	91.6-73.4	
72.8 (7)	72.9 (7)	67.4 (7)	
76.6-66.3	77.4-66.7	75.6-59.3	
78.2 (6) 83.9-71.1 98.4 104-89.8 77.6 (2) 79.8-75.3	88.1 (5) 103-78.5 105 (4) 106-104 76.4 (3) 81.0-73.9	84.4 (2) 85.8-83.0 101 (1) 101-101 79.1 (2) 81.2-76.9	/in ³ uce Rupture

TABLE XI (contd)

CONFIDENTIAL

(Figures in parenthesis are the number of observations)

TABLE XI (contd)

Average Aunge Average Average Average Average Average Range	•	Storage Luterial
6 ω	90, 3H	Storage Period, mos
ο ω	pearc-	ge mos
751 (7) 1000-557 849 (7) 1070-666 714 (7) 817-662 777 (7) 998-692	1% Comp	
1310 (7) 1416-1150 1670 (7) 1750-1610 1140 (7) 1230-1040 1280 (7) 1370-1150	5% Comp	Stress
3610 (3) 3760-3470 3710 (1) 3710-3710 3830 (7) 3980-3570 4260 (7) 4560-4070	50% Comp	Stress in psi at
3450 (4) 48.8 (3700-3190 49.5-4 3810 (6) 47.7 (4160-3660 49.3-4	Rupture .	
48.8 (4) 49.5-48.3 47.7 (5) 49.3-45.1	at Rupture, %	Compression
0, 0, 0	To Proc 50% Comp	Work ft lbs/in3
80.5 (4) 91.4-73.7 93.9 (6) 96,6-91.8	duce Rupture	s/in ³

(Figures in parenthesis are the number of observations)

Average Range Average Range Average Range Average Range Average Range Average	Storage Period, m D 90% RH c
σω σω σο	T= 15.3
ο ω ο ω ο ο ο ·	mos Desic- cated
2720 (5) 3130-1930 2110 (7) 3040-1830 1930 (7) 2550-1390 1570 (7) 1860-1250 2160 (7) 2160 (7) 3300-1360 3160 (7) 4090-2280 1710 (7) 2440-1180 1450 (7) 1810-1190 2720 (7) 3230-2190 3060 (7) 1640 (7) 2160 (7) 2160-1260 1680 (7) 2730-1020 (Figures	1% Comp
4780 (5) 5510-4410 5880 (2) 6270-5490 4520 (7) 4870-4090 .4570 (7) 5180-4300. 5910 (3) 6290-5340 7080 (3) 7340-6690 4470 (7) 4650-4320 6120 (3) 6310-5920 4480 (7) 4480 (7) 4470-4270 4570 (7) 4590-4290 s in parenthesis	Stress in pa
are	psi at 50% Comp
4890 (5) 5630-4530 5970 (7) 6300-5510 6980 (7) 7300-6680 4700 (7) 5110-4330 4820 (7) 5280-4530 7230 (7) 7560-6720 4630 (7) 7560-6720 4730 (7) 7540-6490 4720 (7) 5100-4360 4790 (7) 5100-4360 4790 (7) 5100-4360 4790 (7) 5100-4360 4790 (7) 5100-4360 4790 (7) 5100-4360 4790 (7) 5100-4360 4790 (7) 5100-4360 4790 (7) 5100-4360	Rupture
6.04 (5) 6.28-5.31 4.81 (7) 5.20-4.60 4.34 (7) 4.87-3.85 6.13 (7) 6.41-5.55 6.55 (7) 7.61-5.80 5.33-4.75 4.64 (7) 5.41-3.82 6.02 (7) 6.49-5.74 6.59 (7) 7.11-5.87 7.11-5.87 7.11-5.87 7.11-5.87 6.25 (7) 6.25 (7) 6.27 (7) 6.28 (7)	Compression at Rupture, %
	Work ft To Pr 50% Comp
19.0 (5) 22.6-16.9 15.8 (7) 18.4-14.5 16.0 (7) 18.9-13.9 17.0 (7) 19.8-15.6 19.2 (7) 22.1-16.9 16.3 (7) 17.0-15.1 18.2 (7) 21.5-14.9 16.9 (7) 15.9 (7) 16.9 (7) 18.6-14.6 18.2 (7) 18.6-14.6 18.2 (7) 21.7-16.4	k ft lbs/in ³ To Produce Comp Rupture

COMPRESSIVE PROPERTIES OF T-7 PROPELLANT

TABLE XII

	Range Range	Average	Range	Average Average	Average	Varnish	Range	Average	Range	Average	Range	Average	Range	Average	Laguesium	Range	Average	ange	Average	Range	Average	han ge	Aluminum		Storage Material	
_				<u> </u>	w			(D			,	6	•	w			w				6		w	90% RH	Storage Period, mos	
_	6	w						6		w							6		w					cated	mos	
	1670 (7) 3230-740	1970 (7)	. 1	4100 (7)			2450-1050	1590 (7)	.1 .	1900 (7)	١.	2830 (7)	2860-1510	2020 (7)		2260-916	1420 (7)	2040-1500		Į,		Ϊ.	3540 (7)	1% Comp		
_	5020 (7) 5400-4660			0640-0450	6530 (2)		5490-4390	4810 (7)		4650 (7)	. •		6390-5150	5740 (4)		5280-4140		4390-3920	4060 (7)			6550-6400	6480 (2)	5% Comp	Stress in	
								•																50% Comp	psi at	
	5290-4910 5290-4910	(7)	7120	7860 (7)	(Ξ)		5620-4720	(7)	-4410	7	-6570	2:	6480-5470	7			(7)	4280	(7)	-7580	(7)	-6290		Rupture		
_	6.96-5.41	6.35 (7)	4.34-3.68	3.97 (7)	4.69 (7)		6.99-6.09	6.47 (7)	6.64-5.58	6.13 (7)	4.38-3.83	4.05 (7)	7.03-4.41	5.22 (7)		7.62-5.50	6.48	7.56-6.00	6.68	4,32-3,86	3.99 (7)	5,18-3,99	4.65 (7)	Rupture, %	Compression	
																								50% Comp	g c*	
-	19.0 (7)	18.6 (7)	21.0-15.4	18.5 (7)	18.7 (7)		22.1-16.2	19.0 (7)	18.4-16.6	17.3 (7)	18.1-13.5	16.2 (7)	23.1-14.4	17,8 (7)			$\overline{}$	ريار	17.2 (7)	Ľ,	18.9 (7)	20.7-16.3	18.7 (7)	mp Rupture	lbs/in ³	

TABLE XII (contd)

CONFIDENTIAL

(Figures in parenthesis are the number of observations)

	Class Average Range Average Range Average Average Average Average	Storage Material
_	ο ω	Storage Period, mos Des
_	ο ω	mos Desic- cated
(Figures in	2590 (7) 6190 (7) 3100-1420 6390-5890 3600 (7) 4190-2770 4720 (7) 2560 (7) 2990-2090 5250-4530 2930 (7) 5170 (7) 3410-2550 5750-4800	Sta
par ent hesi	6190 (7) 6390-5890 4720 (7) 5250-4530 5170 (7) 5750-4800	Stress in psi at
is are the		i at 50% Comp
Figures in parenthesis are the number of observations)	6250 (7) 6420-5890 7690 (7) 8020-7330 4880 (7) 5310-4670 5250 (7) 5780-4890	Rupture
servations)	6.06 (7) 6.51-5.48 5.86 (7) 6.54-5.34	Compression at Rupture, %
•	5.34 (7) 6.11-4.98	Work ft Lbs/in To Produce 50% Comp Rupture
	19.7 (7) 22.5-17.8 20.3 (7) 24.9-16.8 18.8 (7) 21.1-16.0 19.1 (7) 21.8-17.7	s/in ³ ce Rupture

TABLE XII (contd)

OKDNANCE CORPS July 1951 FIGATINNY ARSENAL Fig. 1 Grains of T7 Propellant Stored In Contact With Magnesium For Six Months At 32°C And 90% Helative Humidity. July 1951 11-39352

ORDNANCE CORPS July 1951 PICATINNY ARSENAL Fig. 2 Grains of T7 Propellant Stored In Contact With Phenol Formaldehyde -Coated Steel For Six Months At 32°C and 90% Relative Humidity. July 1951

ORDRANCE CORP. July 1951 Franthy ARSERAL Fig. 3
Grains of 17 Propellant Stored in Contact With Stainless Steel For Six Months At 32°C And 90% Relative Humaticy:

ORDNANCE . URP. Fig. 4 Grains of T7 Propellant Stored L. Contact With 2 inc Plated Steel For Six Months at 32^{9}C and 90% Relative aidity. PICATIMNY ARSENAL July 1951 M-39362/3

ORDNANCE CORPS July 1951

Fig. 5

Grains of T7 Propellant Stored In Contact With Aluminum For Six Months at 32°C And 90% Relative Hunidity. M-39362/4

!	<u></u>	1_				Ĺ.			<u> </u>	ļ.,							L	Ļ				.	- ' -	
ŧ	1		ţ					57	بروا	55-	م ا	5/		Ì						١.	1			
		Τ			N.	Π	2		2	Ī	1		5		2/		00							
		T		8	-2000		3000		8	1	5000	\vdash	6000	 	7000	_	8000	_				\neg		1
1	 	f	+			 	Т	-	<u> </u>	╫	<u> </u>	-	٣		7	-	0_		-			-	- -	+
'	-N	-	6.4	os.	_90	K.Z	<i>H</i> _			!	-	-	-	-								-+		
1	ZINC	-	3/4	25	90	1/2	H		-	-		 	┦	<u> </u>										
			34	as_	_ DE	5/2	PA2	50	_	<u> </u>			<u> </u>	<u>}</u>								_		
t		1_	61	25	DE	3/0	AZ	ED			l			ξ		1					į	_	i	
	<u>د</u>	T			T		Γ		Π	T			Π	2										
	1 3							1	Τ	Ī		Ī		ļ.					一				-	
	1	╅	1	205	1	1	4.5	t	┼	\dagger	1	┢	1	İΤ		_	 	-	\vdash			+	-	-
	1-3	- -		105	_ 90	2%1	P.H.	-	╫	 	┼-	-	╌		-	—	 							
	1 8	-	3/	705	DE	\$ 2	dc.	ZZ	10	 -			 	<u>:</u>		_	<u> </u>					-	- -	
	STAMLESS STEEL	_	61	ar	DE	5//	LA:	EL	 	<u> </u>		<u>_</u>	<u> </u>	1		! 								
	7.57		·			1		ì		ļ		!		Ľ			L							
		T	'S M	os	lan	2	7.H.	+		!		1		H							1	T	1	
		-		1	t		H	,	1	,	1						<u> </u>			i		7	. —	
	1 2	+	•	0.5	1	Ī	1	ŧ	╁	,	┼	-	1	;	-	<u> </u>	\vdash	 	-	•	1	-		+-
		- -	_3.11	25		*	AZ		1		-	1	 		-		-	<u> </u>	 -		·'-			-
	<u> </u>	-	64	25	DE:	<i>څ</i> اک	dâz	ED.	-	÷	╀	-	\coprod	1	<u> </u>		<u> </u>	!	<u> </u>			-		-
	S			<u> </u>		<u>.</u>	1_	. ــــ ئـ	L		<u> </u>	<u>.</u>	<u> </u>	<u> </u>	<u> </u>		L							
	DENG.	1	61	105	90	Z A	d N						<u> </u>		_	'							4	
	3			05	1	*	H	:	Π	1		1		IT						,			97	
	1 7			1	- 1		1		j		1		i	<u> </u>	1	ļ	1					1	97RE	1
	33	- -		105	1		CA	7	1	-;	+-	,	-	ţ-	 	 	├		-		-	-	<u> </u>	+
	77.5	-	_62	225:	DE	5/6	20	TE.	<u>q</u> _		╫	: —	╀	<u> </u>	╂─	·	 		-		-	نا د		
	Ю	- -	 -	 	<u>-</u> į		╀-	 -	!	-	╀—	; 	 	-	 	!	-	!	<u> </u>				<u>_</u> <u>(</u>	
	MAGKES!		_62	05	_,00	781	ZH.		1_		<u> </u>		<u> </u>		1						L	-3	96	
	7.4%	1	20	25	90	12: /	d H							; .		i) ;				101	2	į
	15/	\top		205	1	_	CCA		\int_{0}^{∞}	7	Π	t	П				\mathbf{I}^-	ţ		,	ŀ	3	-2	5/2
	1014	-		t	3		1			,		1	1	1	†	+ !		1		,		CONTRA	COMPRESS	- 43.
		+	<u>. p.</u> /	25	_ JE	<i>\$11</i>	ra	12	4	-	+-	 	+	-	╁		 		-			4-4	 	
		-	<u></u> -	+-+		<u>.</u>		!	┿	<u> </u>	╫	!	+-	11	╂	ا ساد	ļ				i		-	
	1 3	_	_6,	405			ďЖ.		╀-	-;	 _	!	 		<u> </u>	· 	<u> </u>	!			<u> </u>		-6	
	\$		_3/	205.	90	Ż. J.		! !	1_			-	1		1_	h	1	j			L'.		J	İ
	1 2			105		1	CAZ			;				1		i				1		_5	3	
	#JARBUSTE	7	1	105:	•	,	CATA	1	Τ	T	T		Π	1	Π		1			!		1	-10	
	-† <i></i>			7/3:	1	-1//-/	1	1	†		1	 	\top	-	1	1	1-	1			-		J.K	1
				 	+	i -	+	+	+-	+	+	 	+	ţ٦	+		 	 	-			CHROW WATERWAY	<u>'''</u>	+-
·			_6/	105			9.H.	+		-	-	-		늙	-		-		-	-		E	43.	; j
	GLAS	_ _	_;3.6	ebs!	_92	غرنج	2 4.	 	-	1_	 	-	ļ.,	1_	 	<u> </u>	 	<u> </u>	<u> </u>			-		
	15		3/	nos	1		211	TEL	<u></u>			L	$oxed{oxed}$	Ĺ,				<u> </u>					; -	i +
,	7		Į.	725	ı	7	A	1	1				$\prod_{i=1}^{n}$!	
	1	1	1	TT		T	T	T	T	1	Τ	Γ	T	;	Γ	Π							i	T
+-		- -		+		╫	-	+-		+	+	+		ļ	1	 		ļ	 	†	┢╌┼			+ -

				-		+	+	+-																_
					-	t	•	<u> 55 -</u>	<u>.ps/</u>	-							1							_
			}	4000	6000		BOO	╢	0000	-	12000		1 span		16000		18000						7	_
	<u> </u>	- -	5	8		4	-13	+-	- 2	+	8	-	0		2		 						-	-
		6.00	35	90	SAL	_ _	- -	-	-	┼─		-		-		-		-				一		-
	\$	3/4	5	905	RA.			- -	4_	┼	_	_	<u> </u>			-	-	-	-			-	+	-
	B	3,40	5	DE.	11:00	ITE I	2	_ _	_ _	<u> </u>	_		<u> </u>			-	_		-			-		
1		SM	25	NE:	Sec	AZE		\perp	\perp	<u> </u>	<u> </u>	L	ļ					 			-	\vdash	\dashv	_
	3						\perp			上						_	_	<u> </u>		-				
1	STAINLESS	6 M	25	GO!	R	,			_l_	<u> </u>	<u>L</u>							<u> </u>	<u> </u>	<u> </u>		\square		_
		3.Mc	1		Rh	1		\top	\top					_		_			_	1_				_
1	1-8-1	3,4		i	Sico	i	.,		\top	1	Τ	Π								1	<u> </u>			_
- ;	। हैं	1			SICC	1	- 1	Ť	$\neg \neg$		T	Π	Τ			П				1				
	57722	6.4	25	- 1	3//-14	arés	4	-i-	十	1	\top	T	T	T		Γ	1			!				
,		- ;	-			_	十	寸	十	†	+-	1	+	1	\sqcap	Γ	Γ	1	Π	Ţ	Π	,		_
		::.¡EM	1 1	1	Z P		+		1		+-	1-	1	1		1	1		1			,		_
<u></u>	77/	1	25		X R	1	+		十	+	╁	十	十	+-	T	1	1	1	T	\top	T			_
		3/9	25		\$100		t				-	-	+-		۲	- -	╢	-	†-	!	1-		<u> </u>	_
		60	25	_ pr	:VCC	łZĘ,	2	-	-	+	┿	┿	╬	+	\vdash	十	+	+	+	+	十	_		_
	H									+	+	+	+-	+	┼╌	十	+-	+	╁		+-	-	-	-
	STORAGE.	6/	05	90	28.8	H	_		- -	-	_	_	-	+	╀	+	╁	+-	╀	+	╫	<u>ia</u>	-	٢
'	M 2	3/	25	90	X.R.	4				<u> </u>		-	- -		╁-	4	-			!	300	2-		` -
	3 %	34	25	2	5/00	ATE				 		╀	- -	4	ļ.,	1	-		╬	+		뜮_	 	1
;	752	6.0	205 .	2	5///	ATE	2		\perp		\bot	1		_ _	Ц	-}	- -		4-	- -	STORAG	\$1.9ESS.@59	 	~
	1		Ti	1_	<u> </u>				\perp	\bot	\perp	\perp			1	1	4	- -	_	- 	<u>\$</u>	200	 	7
, , , , , , , , , , , , , , , , , , , 	3	5.4	PDS_	9	OX R.	ų i				\perp					_	1	_ _				<u> </u>	•	-	1
	MAGNAS/IEM	e A	1 ;	· 1	2X.R.	1 :							\perp				1			<u> </u>	7	3	Ļ	
	1 8	94	1 1	1	ES/CC	1 1	-2			\Box	T						\perp		Ĺ	8	MITH	12	516	1
	3	1 1	1	t	E 5161	1 1	1 1			\top									$oldsymbol{\perp}$	CONTRO	K.	COMPRESSIO	1	-1
		6/	125	-/"		AZ.	1		-	\top	T	T	Т	T	T					B	MA	100		
		H	+						一	\neg	\top	\top			T	1					STONE	8	L	
		1 1	905		OXA	1 1		\Box	-	一	十	十	_		\top		\mathbb{T}		T	\top				
	3-	- 3/	YD5_		OXA	1			-			十	_	_	1	1	-			1	-27	10		_
	HE //KOM	3/	125		ESIC	1	1	1 1		十		\dashv	+	-	1	7	7	十	7	\top	7	*		•
- 4-	75	6/	725		ESIC	KAZ	FΩ	┝╌┤	-+	+	+	+	+	+	+	4}-	十		+	十	MATERIALS	AFTE!	1	
		 	4	- 17		-	-	┝╌┤			+	+	+	: -	+	+	1	+	+	+	-1	<u>, 4</u>	+	-
		5/	Mos.	9	المنبك	P. W				-		+		-		- 1	-4		\dashv	+	-	+	+-	-
1	GZ #55	1 1	105		معده	74	 			_	-	+			╬		4	 -	+			+	+	_
K	55.6		705		KE SIC	ca	EL				_ _	_ .	-	-	4	_	4.		-		-	- -	- -	_
5		-1 1	425		ESIC		1					لبت			4	_	1						+	_
5		171			7	T	1	1								1								

j

.

.

.

-1⁴

-

. .

 		+				-	-				-	-						 					-	┼	+	+
,	-	┥		-		-	 	-	SZ	RE.	<u>cc</u>	P	/ _	, –	-	-		-		-	-		-	╫	╁╌	┼
!	╂╼┼	\dashv		-	-	LOCAL TOTAL		2		200		250		300		350		3		7			-	-	╁	┼
ļ	╀┼	- [.	<u> </u>	8		1	1980		8	<u> </u>	2		26	-	89		8	-	150		-	 	╀	┼-	╀
1		-		61	25	_90	R	H_			_						-	_	_		_		_	 —	-	
 	2/2/2	-		3/1	8	_90	K R	4_			_				_		Щ.	-	-				_	├	<u> </u>	┼
!		_		34	25	_00	VCC	97.2	0_		<u> </u>		_					<u> </u>					_	-	-	
!		_		60	05	_\QE	5/0	زم	EL	_		_						Ш					L	<u> </u>	ـــــ	╀
-	<u> </u>			<u> </u>	<u> </u>	_ _	<u> </u>			ļ	_	<u> </u>			_			ļ					_	<u> </u>	_	ــــ
<u>:</u>	0/0////6200			01	105	90	4 1	11			_	_						止	_				<u> </u>	_	<u> </u>	
				21	25	90	X. FI	<i>Y</i>			_												_	_	<u> </u>	_
	1 6			9/	bs!	DE.	SICI	AZ	ED		!	<u> </u>													1	上
	0/661			64	25	DE	5/C	AZ	EL	_	-												_	<u> </u>	<u> </u>	_
	'	;			<u> </u>		!		· :		1			<u> </u>			-		_				<u>i</u>			上
				6M	DS.	90	K.F.	N					1												1	1
	5 3			3.4	1 .	- 1	X.R.	t															1		;	
	STOR			311	1 .	1	•	CAI	EL		î															
	•			61	i	- 1		1 2 <i>AZ</i>		:	;	Ī			1	\prod	* *		!					1	!	Γ
	3.3	•		+			Wee deal	1			;····	Π	1		,							Γ		\vdash	;	Г
	13			OM	105	90	% F	1,4			******			Γ	,		!		!				•	Γ		
	MERIA	5		- •	0:	†	K.R.	1		1			•		:	Г	Γ-		-					Г	WOR.	Г
	200		• -	319 3M	ì			AZ	ر سر	į					•		5	-				-		325	X	1
	3				05	ŧ		AZ		-					!	П	}					Г		Ł,	9	T
		İ		.147.7	1		4114			<u> </u>		Ī	******		· · · · ·	Γ	-		l					STORAGE	1990	1 -
	; 3				ans.	00	Z A	Ju .	;			T	;		1		Γ		+		_			306	PRODUCE	T
	1 761				05.	- 1	ъл. Х.С.	1							1	1	:]	-	;			Ĺ		7	33	1
	7			3M 3M	•	1		\$				-					,	-		_			5			E
	MINUNE SIUT				•	•		PA7		1		İ		-		17				-				112/1	50%	16-
		-		62		- DE	2//	ra	4.6.1		,	-	;	-			<u> </u>	-		_		 	\$ - 	140	3	*
	1 .				1	1.		<u> </u>		-		 			!		7	-				-	`	1011	200	1-
		-			103	1	21	İ		-		-			1	-	7-					-		<u> </u>	Navss 7861	1-
	100	3			105		%/	ŧ	 .	į				-	T	\vdash	1.	İ	· -				1 . 1	797	12	
	WALLEY OF	<u>i-</u>			0.5	•	,	4.41		•		-			 	\vdash	 		1	-		 	-	8-	P	-
	1	:		61	ios:	_/ <i>YE</i>	5/C	¢az	EL		}	-	 		 -	\vdash		-					;	CLANG TIME SHOW	3	-
		-			 	+	1	-		-		+-	;	-	 -	 	त	 	 	-				3	10-11	
	8	,			205	1	12 /2	1					٠.				۔لم	-					l	-	15	-
					05_		* A	7		-			-		! !		<u> </u>				-	-	-	-	N. S.	┼
	20	;			05.			AZ.		1						J .L	1	-	ļ _		I . !	-	-	-	-	-
	<u> </u>			10/	125	_pr	\$/C	402	EΔ	4-	<u> </u>	-	 	-	-	-	┨.	_	-			_	-	-	-	-
	İ				1	!	. !						į		1	1		1	l I		١.	1		1.	1	1 -

•

90XRH 90 R.H DESCUATED 902 R.H. 3HDS BOXAN 6M05 80% RH 3 MOS GONRH SMOS DESILOATED 5 MOS 90 RH STRESS & 5 % COMPRESSION OF 3MOS 90% R.H. 6M05 90% R.H. CONTROL 3MOS DESICOATED PMS 903 H.H. 3/405 90% A.H. 6MOS . 909 A.N. 2000 2MOS 008 AN W 39 362/6 3/105 DE KATER

1

			 			-	$\left \cdot \right $	-		-		- -	
			 	STAE	51-2	5/_	 -				-		
	200	400	600	800	-100	 	1200	1400	1600		124	2000	
		6	8	1 9	12	┞	õ,	<u> </u>	ŏ	1 1	3	8	
	61405	909 R	<i>#</i>	 	_								
21/1/2	3405	90× R	W			<u> .</u>							
2	3 MOS	DESKE	ATED			<u> </u>							
	GMOS	DESIC	ATED				1						
<u>c.</u>	_ '					Π	:						
STAIMLESS	BMOS	928 P	Li		\top	Π	!				1		
153	3/105	90 % R	1 1		\top						•		
1 6	SMOS	1 1	1 :	1 :	_	\top				+-1		1	
TEE	GNUS	DES/CI	1 1		十	; '	;;†		 	+-		++	
1-1-1-1	07705	DESIC	CHIED	+		 	-;			-		+-}-	
			 	+++	+-	1	++			┼┤	- -		
	6.MOS	90%	1			<u></u>							
77.14	3/905_	90% A	İ	-	-	'n	+ -	_ _ _					_
	3/105	DES/C	ATED	 		J				` .		-	
	6 MOS	DESIC	ACEC		Щ.			_					
ALLIM. STORAGE			<u> </u>				1		<u> </u>				
22	_6MOS_	90%	<i>H</i>				<u>:</u>						
ALLANIAUA PAGE MAIA	SMOS	908 A	H.	į			<u>;</u>		' <u> </u>				STRES
200	3,405	DESIG	ATED										23.53
WANTELBIRE	EMOS_	DESIA	1			1							0
7.87		i						1				1.	© 5%.
3	6MOS	20%	D N									 	1, 8
WALSENEWW	3M05	Jox	I	İ	1		•	TT			~	1	7/2
\$	EMOS.	[•	 								$\frac{1}{3}$	- R-13-5
N. S.		DESIL	1	i i		ر.	•		İ			CONTR	COMPRESSION
	BAUS	CE:	CALL	<i>p</i>			a '	-	-			70%	
		20%	 	 	+	:	- ;	╅	-			1	OF)
	_GMOS	1	•	 	-		i					 	12 /2
	3/105	20%	t	1			الـــا	-	1			1	13.AEJ
UNRKISA	3/905	DESI	•	1	-\-			-					MERIAIS
' 	6MOS	WES/	CALE	<u> </u>	4		i	- 1	-	.		1	6.
	!			 	+		:		 -		 		
	61.05	20% 1	1	-			ír				l .	'	
GLHSS	21108	2091	<i>k</i>	 	-			_				-	- -
83	3/105	PESIC	ATED	4		Ц			.	1	-	1	
	ONOS	DESIG	MEL	<u></u>	-		ᅫ.	_		1	<u> </u>		
							•]						

-1⁴ a)-

90 K P.K GOX.RX DESICENTED STAMLES j I 90 X RH. 31105 90% A.N. DESIGNATED 6/905 90% RK 90% F.W DESICEATED. DESICOATED 5.00S 30% P.W COMPRESSION @ PURTURE 3/305 90% R.N. 3*2*105. OESKBATEU. DESICÉATED MAGNESIUM 61905 90% A.H. 5,405 CONTROL 3/105 DESICONTED DESICRATEL WARNISH **6**2463 901 RA 90 % RH DESICCATEL IN SICCATEL 6 MCS. SOX RH. BORRY DESICCATED K-39362/10

_

SOX PH EMOS. 20/5/2 NESULATED עום אותב 5.005 308 AN VESICOATETA 13,905 DESICONED 6/90S_ 90% R.H. SUS AN 31105 DESICOATED. DESICOATED. STORAGE MATERIA 6/105 DOX AV STRESS @ RUP. 3/9/05 90% R.W DESICOATED DESICOATE SOXAN .6A05... DESICENTER 3 MGS. 8 EMOS. DESICEATED 6 M/S 92 X R.V. 3M05_ 30% R.M. JES CEATED DESKERTED 328 no. CHOS. GL ASS *5/1*05. 00% Ri. TESICO ATED £305 CERCLATED

1

	¦			+-	<u>. </u>	\vdash	-			-	 	_	-	5	1	-	-	-	\vdash	╁╴	╁	+	†	t
	<u>!</u>	•			<u>!</u>		_	WOR	<u>'H</u>	E	Z.Z.	BS		-	1	77 -	 	-	! 	╁	 -	╁	<u> </u>	┼
	 		-	-	<u> </u>			 -			<u> </u>	 	<u> </u>		 	_	┞	-	-	Ļ	<u> </u>	-	+	+
	2	:	N	*	<u>; </u>	0, 1		bo I		8		3		<u> </u>		<u>a</u>	<u> </u>	8	1	20	<u> </u>	<u> </u>	<u> </u>	1
		ÜМ	os!	200	9	W.	`		`									1	-	_	-		;	
ZINC		3M	25	gris	†	1. 1				1	 	ŀ	l;	_	1 :	~	1		١.				•	İ
1 8	Π	34	1 1	- 1	1	CATE	-7.			-				-^`	Ţ.;				1-	Τ	-	Π	1	Ī
I	-		1	1 .	1	1 ' 1		\Box				┪		1.			1-	-	1	1	1	T	1	Ť
رئ ا	+-	ρØ	<u>)5</u>	OŁ.	<i>111:1</i>	ATZ	11.	1	٠	├	1 7	-	.	İ	i i	-	i	1	1	H	Ť	╁╌	!	÷
7	 	, -		+	1 -	1	-	1		<u> </u>	I		1	<u> </u>	<u> </u>		1	-	\vdash	\vdash	1	╀		+
TAIMLESS		<u>:</u> 6M	7 5	100	1.1	<i>H</i>		1 1		<u> </u>	1		<u> </u>	,	1	<u> </u>	1	+=		ļ	-! -	╀-	1	÷
<u> </u>	<u>. </u>	3/	105_	_ 30	20	LH.				_		<u> </u>	_	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	1_		_	<u>:</u>	ļ
· lez		برج	e:	DE	SICI	ATE	<u> </u>	1		1.			l		<u> </u>	II.	Ι,		L		1			1
7.E.E.Z		بزرر	1	1	1	CATA	-	1 1		İ	,					1~~	1					1	:	
13	Γ			T						I	; ,		1	1	1	ľ	1	Ī		Ī.		Ī	_	***
	1		1		<u> </u>]		Ī		İ	3		I	i -			•	i	Ţ	İ	,	i		-
	- -		105	i i	X. A	1		 		╂		 -		1	<u></u>	-	Ì	十一	·{	i-		†-		÷
\$ -	-	-/-	1 05	_90	X.F.	<u>H</u>		1 .		 	-	<u>:</u>	1	<u> </u>	1]	 	╁	†- -	<u>:</u>	*	+		÷
	.	3.4	es	DE	SIC	LATE.	0_	<u> </u>		 	·	ļ	·	!	!	╄	<u> </u>	- -	<u> </u>	<u> </u>		-		+
· }~		EM	<u>. 23</u>	T.C.	3/01	ETE	<u>o</u>	<u> </u>		<u> </u>	10		ŧ	<u>!</u>	<u>!</u>	<u> </u>	1	<u>!</u> _	<u> </u>	Ļ	:	<u>!</u>		ļ
77.	_				<u>, </u>			!		<u>:</u>	<u> </u>	<u> </u>	ĺ	1	<u>:</u>	1	Ì	1_	<u> </u>	L]		Ì
M. UMIN		.6M	ا درج	100	X.F.	l V		1		•		İ	1 × 1			-	1	!	ζ	į		ł	~	İ
113.00 M	1	.5M	š	7	z.	2		1			\$ =	į.	!		ì	Π	÷		1	Ī	;	32	WARK	1
7 8	-		ŧ	ì		# .	· 	1		1		i-	<u>;</u>	†-	- 4	1	1	T	·	1	·		3	S. Year
— 2 —-x-	╢	الم تُ	;	7	:	ATE		:		╬╌	· · ·	!	*	╁		÷	# 7	<u> </u>	 	╬		22	-9-	fair.
5		<u>م</u> عـ	<u> </u>	<i>DE</i>	Sic	ĊĄŹ	<u> </u>			<u>: .</u>	· .	1 -	ŧ	1	·	<u>;</u>	+	1	·	╁-	. N i	\$	\$	No. of street
}	- -	.	1	- i -	-	• •				<u>!</u>		<u>!</u>	*	!		 -	:	!	1	<u>!</u> _	<u> :</u>	<u>~</u>	<u></u>	÷
3	.].	.5/.	ics		* j	ŤH		<u>Ļ</u>		<u>ļ </u>		_	<u></u>	<u>!</u>	<u>.</u>	<u>!</u> _		<u>, </u>	<u> </u>	ļ.		. .	<u>.</u> ?.	-
MICHARINA		20	65_	_ 50	9. ř.	<u> </u>		<u> </u>		L	} -	<u> </u>	1	<u> </u>	-	!	<u>i </u>	<u> </u>	!	<u>i_</u>	1	Ŝ.	2	-
. (§		34	105	DE	511	CAZ	- 	j :			•	İ	\$ }	Ì	1	i	1		i		COL	7	2	2
. 3	1		V.5	1		AZZ		1			* -		į	1		1.	1 .	Ī	7_	Ī	-₹-	3	34	7
- 	1		-	1	-4		-12	i 		İ		-	;	1	**	-	÷	Ī	†	1	5	0/2	0	
	1-		<u> </u>	Ť	×	•		í i		i		i	?	1	7	i	* .	Ħ	. L		×	3	J.	A STATE OF
**************************************	- -		cs	3	22	7		1 :		 	*	!	-	+		1	1	╬	-	÷		*	Ž.	+
- [*] • \$ *•	.	.31	ics.	1	% Æ	1 .	·	-	-	· !	ž	-		+		<u> </u>	<u> </u>	÷ř	į	<u>‡</u> -		-3.	4.	
<u>`````````</u> ```	_ _	3.2	igs	_0	SIL	CAI	0	<u> </u>		<u> </u>	÷	Ļ	1	<u>i </u>	i E	<u> </u>	+	<u>ļl</u>	<u>i</u>	<u> </u>	,	- &-	20	ļ
ે.	1_		105_		5/2	CAZ	E/2			<u> </u>	<u>. </u>	<u> </u>	!	<u> </u>	ļ	<u>l</u> .	1	1	1_	1	*	Ŗ.	₹ *	-
·		_	•	-				,			Ĭ.,	<u>l</u>	Ĺ	<u> </u>				<u> </u>	L	L		Ľ		1
	Τ	~ ^	105.	3	X A	براه			~		** *	1	1		*	-		1	1		****	i		
	1			1	1	1		1		1	ţ	Τ	i	1	.	T	į	T	T	i	;	T		Ť
5:87	- -		1 05		14.2			1		1	;	 	!	 	÷	T	Ť	i		Ť	-	 	ţ	Ť
.			ics	- 1		CAT				╂	1	+-	<u>.</u>	-		-	i	+-	<u> </u>	1-	 -	+	,	+
	<u> </u>	60	ics:		يجي	CAL	El	2	-	-	1 .	<u> </u>	1	!	1 7 4	1	Į.	1	1	ļ-	-	 -	3	÷
-				1_					· · · · · ·		* -A	1_	1		į	1_	,	<u>ļ</u>	. Į.	1	;	-	<u>.</u>	1

TO A CONTROL OF THE PROPERTY O

* · · ·

16-38451

PICATIVEY ARSINAL

January 1951 PICATIVEY ARSINAL SADULTING ON COMPRESSION TABLE Sub-Press and Compression Mounting on Compression Table