

3^{ème} année

Traitement du signal Contrôle continu n°1

NOM: Prénom: Groupe: Il ou HF (entourer)	Place :	Sans document - sans Calculatrice Téléphone portable interdit La taille des cadres est suffisante pour répondre. Aucune réponse sur feuille annexe. [Barème sur 40, entre crochets au début de chaque question]
Questions de cours :		
1) [1,5] Donner la valeur des inté	grales suivantes :	
$\int_{-\infty}^{+\infty} \delta(t)dt = \int_{-\infty}^{+\infty} f$	$(t) \cdot \delta(t)dt =$	$\int_{-\infty}^{+\infty} f(t) \cdot \delta(t - t_0) dt =$
Soit un signal périodique x(t). On nor Fourier de x(t). 2) [1] Donner l'expression de c _n e		ents complexes de la décomposition en séries de
3) [2] Montrer que si x(t) est réel	, alors $oldsymbol{c_{-n}} = oldsymbol{c_n^*}$	
4) [1] Donner la définition <u>du c</u> échantillonné à une fréquence Fe=1/T		ormée de Fourier Discrète X(k) d'un signal x[n],
5) [1] Donner la définition du sign	nal x[n] à partir de l	a Transformée de Fourier Discrète Inverse de X(k).
6) [1] Donner la définition du pro	duit de convolution	y(t) * x(t)

Exercice 1:

On considère un signal sinusoïdal de période T qui traverse une diode. Le signal redressé simple alternance qui en résulte a pour expression : $x(t) = A \sin\left(\frac{2\pi}{T}t\right)$ sur l'intervalle $\left[0\,;\,\frac{T}{2}\right]$ et x(t) = 0 sur l'intervalle $\left[\frac{T}{2}\,;\,T\right]$.

- 7) [1] Quelle est la valeur de l'énergie du signal ? (Justifier!)
- 8) [2,5] Calculer la puissance moyenne du signal ($rappel : \sin^2(\theta) = \frac{1-\cos(2\theta)}{2}$)
- 9) [2] Calculer le coefficient complexe c_0 de la décomposition en séries de Fourier de x(t)
- 10) [3] Calculer le coefficient complexe c₁ (décomposer le sinus à l'aide d'une formule d'Euler)

11) [1] En utilisant une propriété que l'on citera, et sans faire de calculs, donner la valeur de c.1.

Exercice 2:

12) [3,5] Soit le signal défini par : x(t)=1 si $0 \le t \le T$ et x(t)=0 sinon. Exprimer sa transformée de Fourier X(f) en faisant apparaître un sinus cardinal.

Exercice 3:

Soit un signal $x(t) = 2\cos\left(2\pi 10^3 t + \frac{\pi}{6}\right) + 3\cos\left(2\pi \ 3 \ 10^3 t - \frac{\pi}{4}\right)$

13) [1] Afin d'effectuer un traitement numérique de ce signal, indiquez quels peuvent être les choix de la fréquence d'échantillonnage. (Justifier!)

14) [1,5] Représenter graphiquement le module du spectre du signal x(t) lorsque la fréquence d'échantillonnage est de 8 kHz. On représentera ce spectre entre -5kHz et +16kHz.(On ne précisera pas l'échelle des ordonnées).

15) [1,5] Même question lorsque la fréquence d'échantillonnage est de 5 kHz.

- 16) [1,5] Commenter le spectre obtenu à la question précédente (Fe=5kHz).
- 17) [1,5] Dans ce cas précis, quelle fonction électronique faudrait-il ajouter afin d'éviter ce phénomène ? Préciser également sa position dans la chaîne de traitement.

Exercice 4:

On considère le signal réel x[n] suivant, acquis à la fréquence $F_e = 2$ Hz et défini sur 8 points (n = 0 à 7): x[0] = x[1] = 1, x[2] = x[3] = x[4] = x[5] = 0, x[6] = x[7] = 1.

19)	[1,5] Calculer dans le domaine	e temporel, la	puissance du signal Pt
-----	--------------------------------	----------------	------------------------

On calcule à présent la TFD de x[n] sur ces 8 points, que l'on note X(k).

20)	[1,5]	Calculer	X(0)
-----	-------	----------	------

21) [2,5] Calculer X(2)
-----------------------	---	---

22) [3] Compléter le tableau suivant, sans effectuer aucun nouveau calcul.

k	0	1	2	3	4	5	6	7
Re(X[k])		1,207		-0,207	0			
Im(X[k])		0,5		-0,5	0			
X[k]		1,307		0,541	0			

23) [3] En intégrant la densité spectrale de puissance du signal, définie comme $S(f) = \frac{|X(f)|^2}{T}$, où T est la durée d'acquisition du signal, calculer la puissance P_f dans le domaine fréquence.