Задача А. Принадлежность точки отрезку

Имя входного файла: point.in Имя выходного файла: point.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Формат входных данных

Шесть чисел — координаты точки и координаты концов отрезка.

Формат выходных данных

Одна строка YES, если точка принадлежит отрезку, и NO в противном случае.

point.in	point.out
3 3 1 2 5 4	YES
4 2 4 2 4 5	YES

Задача В. Расстояние от точки до отрезка

Имя входного файла: distance.in Имя выходного файла: distance.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Найдите расстояние от заданной точки до заданного отрезка.

Формат входных данных

Шесть целых чисел — координаты точки и координаты концов отрезка.

Формат выходных данных

Одно число — расстояние от точки до отрезка с точностью не менее 10^{-6} .

distance.in	distance.out
0 4 2 3 2 5	2.0000000000000000000
4 0 0 0 4 0	0.000000000000000000

Задача С. Пусти козла в огород - 5

Имя входного файла: goat5.in
Имя выходного файла: goat5.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

В огород к Ивану Петровичу повадился чужой козел по ночам воровать капусту. Чтобы поймать наглеца, Иван Петрович установил на огороде прожектор, освещающий часть плоскости в форме некоторого угла. И когда очередной ночью Иван Петрович услышал хрумканье в своем огороде, он включил свой прожектор. Определите, увидит ли Иван Петрович чужого козла или нет.

Формат входных данных

Программа получает на вход координаты четырех точек A, O, B, P. Прожектор установлен в точке O, точки A и B лежат на границах освещенной прожектором области (на разных лучах), в точке P находится козел. Все числа во входном файле целые.

Формат выходных данных

Выведите слово «YES», если Иван Петрович увидит козла или слово «NO» в противном случае

goat5.in	goat5.out
0 1	YES
0 0	
1 0	
1 1	
1 0	NO
0 0	
0 1 -1 -1	
-1 -1	

Задача D. Расстояние между отрезками

 Имя входного файла:
 distance.in

 Имя выходного файла:
 distance.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 256 мегабайт

Найдите расстояние между двумя отрезками.

Формат входных данных

Восемь целых чисел — координаты четырёх концов двух отрезков.

Формат выходных данных

Одно число — расстояние между отрезками с точностью не менее 10^{-6} .

distance.in	distance.out
1 1 2 2	0.707106781
2 1 3 0	
1 1 2 2	0.00000000
1 2 2 1	

Задача Е. Расстояние от точки до прямой

Имя входного файла: distance.in Имя выходного файла: distance.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Найдите расстояние от заданной точки до заданной прямой.

Формат входных данных

Пять целых чисел — координаты точки и коэффициенты $A,\ B$ и C нормального уравнения прямой.

Формат выходных данных

Одно число — расстояние от точки до прямой с точностью не менее 10^{-6} .

distance.in	distance.out
1 1 1 1 -1	0.7071067812
1 5 -4 0 8	1.000000000

Задача F. Пусти козла в огород -7

Имя входного файла: goat7.in
Имя выходного файла: goat7.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Петр Васильевич всегда выгуливает своих козлов у себя в огороде, но ему не нравится, что они вытаптывают его грядки, поэтому он решил усовершенствовать привязь. Теперь ошейник у них прикреплен к веревке, натянутой между двумя деревьями, поэтому козлы могут ходить только по отрезку, их соединяющему.

Но козлам скучно ходить по огороду по одиночке, поэтому они хотят встретиться и пожевать траву вместе. Помогите им встретиться!

Формат входных данных

Программа получает на вход восемь целых чисел, по абсолютной величине не превосходящих 10^4 . Сначала указываются координаты двух деревьев, к которым привязан первый козел, а затем координаты деревьев, к которым привязан второй. Заметим, что для привязи могут служить одни и те же деревья (в том числе могут совпадать и концы одной привязи).

Формат выходных данных

Если козлам встретиться не суждено, выведите строку «Етру». Если они могут встретиться только в одной точке, то выведите два числа — координаты точки пересечения. Если пересечением является отрезок, то выведите четыре числа — координаты двух концов отрезка в лексикографическом порядке (то есть сначала нужно вывести ту точку, у которой меньше координата x, а если у них равны координаты x то ту, у которой меньше координата y). Все числа следует выводить с точностью не менее 6 знаков после запятой.

goat7.in	goat7.out
0 0	5.000000000 5.000000000
9 9	
9 5	
0 5	
0 0	7.000000000 7.000000000
9 9	9.000000000 9.000000000
15 15	
7 7	
0 0	Empty
9 9	
10 10	
10 10	

Задача G. Вписанная окружность

Имя входного файла: incircle.in Имя выходного файла: incircle.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Треугольник задан координатами своих вершин. Найдите центр вписанной в него окружности.

Формат входных данных

Шесть чисел — координаты вершин треугольника.

Формат выходных данных

Координаты центра вписанной в данный треугольник окружности.

incircle.in	incircle.out
0 0 0 15 20 0	5 5
1 0 0 1 0 0	0.29289321881345248277
	0.29289321881345248277

Летняя ШОП 2017, параллель C+, день 9, Геометрия Россия, Иннополис, 12 июля 2017

Задача Н. Площадь пересечения двух окружностей

 Имя входного файла:
 area.in

 Имя выходного файла:
 area.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 256 мегабайт

Требуется найти площадь пересечения двух окружностей с точностью **не менее** 10^{-6} .

Формат входных данных

В единственной строке заданы 6 целых чисел $x_1, y_1, r_1, x_2, y_2, r_2$ — координаты центров и радиусы окружностей соотвественно.

Координаты неотрицательны и по абсолютному значению не превышают 1000.

Формат выходных данных

Требуется вывести единственное неотрицательное число — площадь пересечения двух окружностей.

area.in	area.out
20.0 30.0 15.0 40.0 30.0 30.0	608.36593219089013000000
100 100 50 200 100 10	0.000000000000000000

Задача І. Касательные к окружности

Имя входного файла: tangent.in Имя выходного файла: tangent.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Вам задана окружность и точка. Точка может лежать вне окружности, на ее границе, а также внутри окружности. Необходимо провести касательные к окружности (если это возможно) и найти точки касания.

Формат входных данных

В первой строке входного файла находятся два целых числа — координаты центра окружности P_0 . Во второй строке записано целое число r — радиус окружности. В третьей строке находятся два целых числа — координаты точки P_1 .

Формат выходных данных

В первой строке выходного файла выведите количество точек касания (0, 1 или 2). В случае одной точки касания выведете во второй строке координаты этой точки. В случае двух точек касания выведите во второй строке координаты точки P_3 , в третьей длины векторов $\overrightarrow{P_1P_3}$ и $\overrightarrow{P_3P_2}$, в следующих двух строках должны находиться координаты точек касания.

Абсолютная или относительная погрешность чисел в выходных данных не должна превышать 10^{-7} .

tangent.in	tangent.out
2 2	2
2	2.000000000 3.3333333333
2 5	1.6666666667 1.4907119850
	0.5092880150 3.3333333333
	3.4907119850 3.3333333333

Задача Ј. Точка в многоугольнике

Имя входного файла: point.in
Имя выходного файла: point.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Формат входных данных

В первой строке три числа — N ($3 \le N \le 100\,000$) и координаты точки. Далее в N строках по паре чисел — координаты очередной вершины простого многоугольника в порядке обхода по или против часовой стрелки.

Формат выходных данных

Одна строка «YES», если заданная точка содержится в приведённом многоугольнике или на его границе, и «NO» в противном случае.

point.in	point.out
3 0 0 1 0	NO
1 0	
0 1	
1 1	

Задача К. Площадь многоугольника

 Имя входного файла:
 area.in

 Имя выходного файла:
 area.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 256 мегабайт

Формат входных данных

В первой строке одно число N ($3 \le N \le 100\,000$). Далее в N строках по паре чисел — координаты очередной вершины простого многоугольника в порядке обхода по или против часовой стрелки. Все координаты — целые числа, по модулю не превосходящие 10^4 .

Формат выходных данных

Одно число — величина площади приведённого многоугольника.

area.in	area.out
3	0.5
1 0	
0 1	
1 1	

Задача L. Выпуклый многоугольник

Имя входного файла: polygon.in Имя выходного файла: polygon.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Формат входных данных

В первой строке одно число N ($3 \le N \le 100\,000$). Далее в N строках по паре целых чисел — координаты очередной вершины простого многоугольника в порядке обхода по или против часовой стрелки.

Формат выходных данных

Одна строка «YES», если приведённый многоугольник является выпуклым, и «NO» в противном случае.

polygon.in	polygon.out
3	YES
0 0	
0 1	
1 0	