Project Report: Fine-Tuning a Language Model for Sentiment Analysis

Project Idea

This project aligns with the United Nations Sustainable Development Goal (SDG) 13: Climate Action. The objective is to analyze sentiments expressed in climate-related discussions or articles. This analysis can help understand public perception and trends in climate discourse. By fine-tuning a pre-trained language model, I aim to enhance its ability to accurately classify sentiments in this specific context.

Project Explanation

The primary goal of this project was to improve the performance of a pre-trained language model on a specific sentiment analysis task. I achieved this through the following steps:

- 1. **Fine-Tuning a Pre-Trained Model** I adapted a language model, which was previously trained on a general corpus, to handle sentiment classification more effectively for climate-related texts.
- 2. **Evaluation and Comparison** I assessed the model's performance before and after fine-tuning to measure the improvements obtained.

Detailed Explanation

1. Installation of Necessary Libraries and Tools

I installed essential libraries for the task:

- ✓ datasets and transformers for managing datasets and pre-trained models.
- ✓ pandas, torch, and matplotlib for data manipulation, machine learning operations, and visualization.
- 2. Exploratory Data Analysis (EDA)
- ✓ Loading and Inspecting the Dataset I loaded a dataset from a CSV file containing climate-related texts with associated sentiment labels.

✓ **Visualization** I visualized the sentiment distribution in the dataset to understand the balance between different sentiment categories. This step helped identify if the dataset was imbalanced and might need adjustment.

3. Dataset Preparation

- ✓ **Tokenization**: I tokenized the textual data using the DistilBertTokenizer to convert text into a format suitable for model input.
- ✓ **Dataset Conversion**: I converted the pandas DataFrame into a Hugging Face Dataset for compatibility with the transformers library.
- ✓ Custom Dataset Class: I defined a custom `ClimateDataset` class to handle data loading and preparation for the model.

4. Model Selection

✓ **Pre-Trained Model**: I chose `distilbert-base-uncased-finetuned-sst-2-english`, a model pre-trained for sentiment analysis. This model was selected for its efficiency and suitability for our task.

5. Fine-Tuning Process

- ✓ **Training Arguments**: I configured training parameters such as batch size, learning rate, and number of epochs. The model was fine-tuned for one epoch.
- ✓ **Training**: I trained the model on the prepared dataset using the `Trainer` API from the transformers library.

6. Evaluation

- ✓ **Before Fine-Tuning**: I evaluated the pre-trained model on the test set. The evaluation metrics were:
- ✓ Loss: 5.0199
- ✓ Evaluation runtime: 22.589 seconds
- ✓ Samples per second: 0.531
- ✓ Steps per second: 0.089
- ✓ **After Fine-Tuning**: I evaluated the fine-tuned model on the same test set. The evaluation metrics showed significant improvement:
- ✓ Loss: 0.0002
- ✓ Evaluation runtime: 11.9065 seconds
- ✓ Samples per second: 1.008
- ✓ Steps per second: 0.168

7. Performance Comparison

Before Fine-Tuning:

✓ Evaluation Loss: 5.0199

Runtime: 22.589 seconds

After Fine-Tuning:

✓ Evaluation Loss: 0.0002

✓ Runtime: 11.9065 second

The fine-tuned model demonstrated a dramatic reduction in loss and improved runtime efficiency, indicating a substantial enhancement in performance.

Conclusion

The fine-tuning process significantly improved the model's accuracy and efficiency for sentiment analysis of climate-related texts. This improvement aligns with our goal of effectively analyzing and understanding climate discourse, contributing to better insights and actions aligned with SDG 13: Climate Action.