Regression and Gradient Descent

Version 1.0, August 2024

1 Regression

1.1 Linear regression

• We can augment the feature vector to incorporate offset:

$$X^T = [1, x_1, x_2, x_3, \dots, x_n]$$

• The linear mapping as scalar product:

$$\hat{Y} = \sum_{i=1}^{n} w_i x_i = W^T X$$

1.1.1 Evaluating predictions

- The loss function can be expressed as absolute $\log |Y \hat{Y}|$ or square $\log (Y \hat{Y})^2$
- The aim is to minimize square loss over training points:

$$min(g(w_i)) = \sum_{i=1}^{n} (w_i x_i - y_i)^2 = (W^T X - Y)^T (W^T X - Y)$$

• The closed form solution:

$$W = (X^T X)^{-1} X^T Y$$

Note 1.

$$g(W) = (W^T X - Y)^T (W^T X - Y) = W X^T W^T X - W X^T Y - Y^T W^T X - Y^T Y$$

$$\nabla_W g(W) = 2W X^T X - 2W X^T Y = 0$$

$$\Rightarrow W = (X^T X)^{-1} X^T Y$$

However, for some cases, such as when the data contains auto-correlation, we consider more complex GLS and HLS regression. In this case, even if W satisfies the least squares, it is not necessarily the optimal solution.

1.1.2 Computational complexity

- Computational bottlenecks:
 - Matrix multiply of X^TX is $O(nk^2)$ operations, where X is a $n \times k$ matrix
 - Matrix inverse of X^TX is $O(k^3)$ operations
 - The storage requirement is O(nk) floats

1.2 Linear classification

Idea: threshold by sign

$$\hat{Y} = \sum_{i=1}^{n} w_i x_i = W^T X \Rightarrow \hat{Y} = sign(W^T X)$$

Let's interpret this rule:

• $\hat{Y} = 1 : W^T X > 0$

 $\bullet \ \hat{Y} = -1: W^T X < 0$

• decision boundary: $W^T X = 0$

So, we use logistic (or sigmoid) function: $P[Y = 1|X] = \sigma(W^TX)$.

If we give $\sigma(z) = \frac{1}{1 + exp(-z)}$, then in the Logistic regression,

$$P[Y = 1|X] = \sigma(W^T X)$$

$$P[Y = 0|X] = -\sigma(W^T X)$$

W can be obtained by minimizing the log-likelihood or cross-entropy error. Log-likelihood of the whole training data D is

$$log P(D) = \sum_{i=1}^{n} y_{i} log \sigma(w^{T} x_{i}) + (1 - y_{i}) log [1 - \sigma(w^{T} x_{i})]$$

It is convenient to work with its negation, which is called cross-entropy error function, and we can get the first derivation as

$$\nabla_w f(w) = \sum_{i=1}^n \sigma(w^T x_i) - y_i x_i$$

2 Gradient descent

2.1 Batch gradient descent

Algorithm 1: Batch Gradient descent Algorithm **Data:** Optimization function: f(w)**Result:** the best w_k s.t. $f(w_k)$ is the minimum 1 Randomly select a data in the domain: w_0 s.t. $w_k = w_0$ and learning rate: η_0 ; while $i \leq 10000 \ or \ \nabla_w f(w_i) < 10^{-6} \ do$ 3 Computing the gradient $\nabla_w f(w)|_{w_i}$; Judge: 4 if $\nabla_w f(w)|_{w_i} > 0$ then 5 $f(w_{i+1}) < f(w_i)$ as $w_{i+1} < w_i$ 6 7 end if $\nabla_w f(w)|_{w_i} < 0$ then 8 $f(w_{i+1}) < f(w_i) \text{ as } w_{i+1} > w_i$ 9 10 Update model parameters: $w_{i+1} = w_i - \eta_i * \nabla_w f(w)|_{w_i}$ and $\eta_{i+1} = \frac{\eta}{n\sqrt{i}}$ 11 12 end

2.2 Stochastic gradient descent

In batch gradient descent, the Loss of all samples needs to be calculated, while SGD only calculates the Loss of one sample and then performs gradient descent.

- In batch gradient descent we update $w_{i+1} = w_i \eta_i * \nabla_w f(w)|_{w_i}$.
- While in stochastic Gradient descent we update $w_{i+1} = w_i \eta_i * \nabla_w f_i(w)|_{w_i}$.

Here are some pros and cons of Stochastic Gradient descent:

- Pros:
 - Less computation
 - -n times cheaper that gradient descent at each iteration
 - This faster pre-iteration cost might lead to faster overall convergence
- Cons:
 - Less stable convergence than gradient descent
 - In terms of iterations: slower convergence than batch gradient descent
 - More iterations

2.3 Mini - batch SGD

In the Mini - batch SGD, we update as $w_{i+1} = w_i - \eta_i * \nabla_w f_{B_i}(w)|_{w_i}$, where $B_i \subseteq i, \ldots, n$ sampled at random. The essence of this algorithm is to transform the previous random single into a random combination. We can think that when $B_j = 1$, it is Stochastic gradient descent. Also, here are some pros and cons:

• Pros:

- More computation than SGD
- Less computation that GD (might lead to faster overall convergence)
- Can tune computation v.s. communication depending on batch size

• Cons:

- In terms of iterations: slower convergence than gradient descent
- In terms of iterations: Another parameter to tune(batch size)
- Still might be too much communication