

CST Análise e Desenvolvimento de Sistemas AOC786201 - Fundamentos de Arquitetura e Organização de Computadores

Codificadores, Decodificadores e Displays de 7 segmentos

Codificação e Decodificação

- Codificar: geração de código a partir de uma informação
- Decodificar: obtenção da informação a partir de um código

Códigos alfanuméricos

São códigos utilizados para escrever textos, com letras, números e símbolos.

- EBCDIC (https://www.lookuptables.com/text/ebcdic) (não usar)
- ASCII (<u>https://www.lookuptables.com/text/ascii-table</u>)
- ASCII extendido
 (https://www.lookuptables.com/text/extended-ascii-table) (não usar)
- UNICODE (UTF-8)
 (<u>https://www.lookuptables.com/text/unicode-characters</u>)
- Base64

Dec	Chr								
0	NUL	26	SUB	52	4	78	N	104	h
1	SOH	27	ESC	53	5	79	0	105	i
2	STX	28	FS	54	6	80	P	106	j
3	ETX	29	GS	55	7	81	Q	107	k
4	EOT	30	RS	56	8	82	R	108	1
5	ENQ	31	US	57	9	83	S	109	m
6	ACK	32		58		84	Т	110	n
7	BEL	33	!	59	;	85	U	111	0
8	BS	34	"	60	<	86	V	112	p
9	HT	35	#	61	=	87	W	113	q
10	LF	36	\$	62	>	88	X	114	r
11	VT	37	%	63	?	89	Y	115	S
12	FF	38	&	64	@	90	Z	116	t
13	CR	39		65	A	91	1	117	u
14	so	40	(66	В	92	١	118	V
15	SI	41)	67	C	93]	119	w
16	DLE	42	*	68	D	94	٨	120	x
17	DC1	43	+	69	E	95	_	121	У
18	DC2	44	,	70	F	96	*	122	Z
19	DC3	45	4	71	G	97	a	123	{
20	DC4	46		72	H	98	b	124	1
21	NAK	47	1	73	1	99	C	125	}
22	SYN	48	0	74	J	100	d	126	~
23	ETB	49	1	75	K	101	е	127	DEL
24	CAN	50	2	76	L	102	f		

ASCII - American Standard Code for Information Interchange **UTF-8** - Unicode Transformation Format — 8-bit

UNICODE - Universal Coded Character Set

- ASCII foi criado para enviar texto por linhas telefônicas com teleimpressores em 1963.
- Consiste em 128 caracteres (7 bits).
- Os primeiros 32 caracteres ASCII (0-31) e 127 (DEL) são caracteres de controle, usados para controlar o teleimpressor. Por exemplo: Retorno de carro (13) e alimentação de linha (10).
- Os demais 95 caracteres ASCII são visíveis/imprimíveis incluem letras maiúsculas, minúsculas, números e pontuação básica.
- Os primeiros 128 caracteres do UNICODE UTF-8 são iguais ao ASCII (https://www.utf8-chartable.de/unicode-utf8-table.pl)
- Hoje em dia o UTF-8 é usado em 97.8% de todos os websites conhecidos. (https://w3techs.com/technologies/cross/character_encoding/ranking) (https://www.w3.org/International/questions/qa-choosing-encodings.pt-br)

FONTE: https://en.wikipedia.org/wiki/UTF-8

Base64

- Codificação de dados para transferência na Internet (codificação MIME para transferência de conteúdo).
- Utilizado para transmitir dados binários na forma de texto (ex.: anexos de e-mail)
- Constituído por 64 caracteres ([A-Z],[a-z],[0-9], "/" e "+")
- O carácter "=" é utilizado como um sufixo especial
- o símbolo "*" pode ser utilizado para delimitar dados convertidos, mas não criptografados, em um stream.

Tabela Base64 e exemplo

Index	Binary	Char	Index	Binary	Char	Index	Binary	Char	Index	Binary	Chai
0	000000	А	16	010000	Q	32	100000	g	48	110000	W
1	000001	В	17	010001	R	33	100001	h	49	110001	x
2	000010	С	18	010010	S	34	100010	i	50	110010	у
3	000011	D	19	010011	T	35	100011	j	51	110011	z
4	000100	E	20	010100	U	36	100100	k	52	110100	0
5	000101	F	21	010101	V	37	100101	1	53	110101	1
6	000110	G	22	010110	W	38	100110	m	54	110110	2
7	000111	Н	23	010111	х	39	100111	n	55	110111	3
8	001000	I	24	011000	Υ	40	101000	0	56	111000	4
9	001001	J	25	011001	Z	41	101001	р	57	111001	5
10	001010	K	26	011010	а	42	101010	q	58	111010	6
11	001011	L	27	011011	b	43	101011	r	59	111011	7
12	001100	М	28	011100	С	44	101100	s	60	111100	8
13	001101	N	29	011101	d	45	101101	t	61	111101	9
14	001110	0	30	011110	e	46	101110	u	62	111110	+
15	001111	Р	31	011111	f	47	101111	ν	63	111111	1

FONTE: https://www.geeksforgeeks.org/encoding-and-decoding-base64-strings-in-python/

Brincando com códigos para texto

 CURIOSIDADE: Veja qual o tipo de codificação utilizado em qualquer página web, digite: CTRL+SHIFT+I e CTRL+F e digite "charset".

- Converta de texto para UTF-8 (e vice-versa)
 - utf8 to decimal converter (utf8 to hexadecimal converter)
 - decimal to utf8 converter (hexadecimal to utf8 converter)

Códigos de cores

- Há diversos códigos de cores, um dos mais comuns é o de cores aditivas RGB (Red, Green, Blue)
- O código RGB é uma representação dos valores que somam intensidades de três cores primárias
- Ele pode ser representado em hexadecimal #FFFFFF) ou decimal nas cores (255,255,255)
- Outro código muito usado é o de cores subtrativas (CMYK) (Cyan, Magenta, Yellow and blacK)

Com 2 dígitos hexadecimais conseguimos valores de 00 a FF, então conseguimos representar valores de 0 a 255 da base decimal.

Exemplo: Cor branca = #FFFFFF = (255, 255, 255)

Qual o código RGB para a cor AMARELA?

Cores aditivas

- Um exemplo de como a aplicação de cada canal de luz, vermelho, verde e azul, a uma fotografia colorida altera sua aparência colorida.
- O modelo RGB é usado principalmente para exibições de tela.

FONTE: https://pavilion.dinfos.edu/Article/Article/2355687/additive-subtractive-color-models/

Cores subtrativas

- Um exemplo de como a aplicação de cada pigmento de tinta ciano, magenta, amarelo e preto - a uma fotografia colorida altera sua aparência colorida.
- O modelo CMYK é usado principalmente para impressão ou outros processos semelhantes.

FONTE: https://pavilion.dinfos.edu/Article/Article/2355687/additive-subtractive-color-models/

Brincando com código de cores

- Gere qualquer cor, usando o código rgb em decimal ou hexadecimal.
 - Hex Calculator
 - RGB Calculator

- Descubra o código de cor em uma imagem.
- Pegue qualquer imagem na internet e veja como as cores dos pixels são codificadas.
 - ipg color picker

Código BCD

- A codificação BCD (Binary-Coded Decimal) é usada com frequência em sistemas binários quando o resultado numérico deve ser mostrado no sistema decimal.
- Exemplos de uso são mostrar o valor numérico em um mostrador para a visualização por humanos.
- Apesar de existirem diferentes tipos de códigos BCD, o mais utilizado é o BCD8421 que atribui os pesos binários normais aos bits.
- Assim o valor decimal do código BCD de um dígito pode ser obtido fazendo a operação a mesma operação para obter o valor de um número binário de 4 bits:

$$b_3b_2b_1b_0$$

$$b_3 * 2^3 + b_2 * 2^2 + b_1 * 2^1 + b_0 * 2^0$$

Decimal	binário (4 bits)	BCD
0	0000	0000
1	0001	0001
2	0010	0010
3	0011	0011
4	0100	0100
5	0101	0101
6	0110	0110
7	0111	0111
8	1000	1000
9	1001	1001

Código BCD

 No caso de valores representados com mais de um dígito BCD cada dígito corresponde a um valor do sistema decimal (0 a 9) conforme tabela anterior, e o valor é obtido considerando a ordem normal de leitura dos números decimais (Milhar, Centena, Dezena, Unidade).

Decimal	binário (8 bits)	dezena BCD	unidade BCD		
0	0000000	0000	0000		
2	00000020	0000	0010		
9	00001001	0000	1001		
10	00001010	0001	0000		
11	00001011	0001	0001		
19	00010011	0001	1001		
62	00111110	0110	0010		
90	01011010	1001	0000		
99	01100011	1001	1001		

FONTE: https://wiki.sj.ifsc.edu.br/index.php/BCD - Binary-coded decimal

Código GRAY

O código Gray é uma codificação no qual números adjacentes diferem de apenas um único bit.

Por exemplo:

- Em código binário sequencial seria 0111 (7) e depois 1000 (8), ocorre a mudança nos 4 bits.
- Em código Gray seria: 0100 (7) e depois 1100 (8), apenas 1 bit muda.

FONTE: https://wiki.sj.ifsc.edu.br/index.php/C%C3%B3digo_Gray

Decimal ♦	Binário +	Gray ♦
0	0000	0000
1	0001	0001
2	0010	0011
3	0011	0010
4	0100	0110
5	0101	0111
6	0110	0101
7	0111	0100
8	1000	1100
9	1001	1101
10	1010	1111
11	1011	1110
12	1100	1010
13	1101	1011
14	1110	1001
15	1111	1000

Display de 7 segmentos

- O display de 7 segmentos é constituído por um conjunto de LEDs dispostos de maneira que conforme acesos ou apagados, vemos desenhos que representam símbolos que reconhecemos
- Com eles podemos escrever os números de 0 a 9 de nosso sistema decimal, tornando as informações gravadas nos aparelhos mais inteligíveis ao ser humano
- Para acender um determinado número decimal (0 a 9) é necessário ativar o referido segmento com nível lógico 0 ou 1 (dependendo se o display é ânodo comum ou cátodo comum).
- O display de 7 segmentos possui um oitavo LED que representa um ponto (podendo ser usado como divisor de casa decimal)
- Além de números, também é possível representar algumas letras com esses displays

