2 Módulo 1

- -Realización de trabajo colaborativo en simulación de procesos dinámicos mediante Colaboratory y GitHub.
- -Funciones de control básicas para cómputo numérico en Matlab/Octave.
- -Aunque se sugiere el uso de Octave, esto no es mandatorio y si se prefiere otro de los programas como Python, R o Scilab, puede emplearse en su lugar.

Ejercicios del Módulo 1 Parte 2

Se debe redactar un informe que debe realizarse de manera individual por cada estudiante. Dicho informe debe contener:

- 1- todos los resultados correctos de las consignas dadas que pueden generarse en grupo.
- 2- un resumen de las lecciones aprendidas
- 3- detalles de problemas que aparecieron, las fuentes de datos, enlace al GitHub donde quede expuesto al dominio público y generar así Recomendaciones finales o Conclusiones parciales de la actividad.

Una vez finalizado, titular el archivo del informe del modo Apellido_Nombre_M1_2.pdf y subir un único archivo en la solapa correspondiente con los ejercicios resueltos.

Ejercicio 1. Actividad de simulación de un proceso lineal

Sabiendo que un sistema lineal en variables de estado tiene la representación

$$\dot{\mathbf{x}}_{t} = \mathbf{A}\mathbf{x}_{t} + \mathbf{B}\mathbf{u}_{t}$$

$$\mathbf{y}_{t} = \mathbf{C}\mathbf{x}_{t} + \mathbf{D}\mathbf{u}_{t}$$
(2-1)

donde $\mathbf{x} \in \Re^n$, $\mathbf{u} \in \Re^e$, $\mathbf{y} \in \Re^s$, con $\mathbf{x}_0 = \mathbf{x}(0)$, donde A, B, C y D son las matrices de estados, entrada, salida y acople directo respectivamente, se propone escribir en ésta forma al siguiente sistema de ecuaciones lineales (2-2).

Fig. 2-1. Modelo de sistema de altitud en un avión, extraído de [1].

Para el caso de la Fig. 2-1, modelo válido sólo para pequeños ángulos, se tiene

$$\begin{cases} \dot{\alpha} = a(\phi - \alpha) \\ \ddot{\phi} = -\omega^{2}(\phi - \alpha - b \cdot u) \\ \dot{h} = c\alpha \end{cases}$$
 (2-2)

donde ω >0 representa la frecuencia natural, y los coeficientes *a b* son constantes positivas, *u* es la variable manipulada y es proporcional a la posición de los elevadores, ϕ (ángulo de cabeceo) en radianes, vuela a *c* metros por segundo, su trayectoria de vuelo forma un ángulo α con la horizontal (si α >0 sube, si α <0 desciende) Elegir x_1 = α , x_2 = ϕ , x_3 = $\dot{\phi}$ y x_4 =h. Se pide,

- 1- Obtener el sistema lineal en variables de estado para el equilibrio $x = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T$.
- 2- Obtener la solución numérica del sistema lineal para evaluar cuantitativamente el comportamiento con intención de verificar el correcto planteo. Para hacerlo, se le asignan los valores siguientes a los parámetros, son ω=0,2; a=0,01; b=2; c=100 m/s, (es decir, 360Km/h), Δt=10⁻³; y el tiempo de simulación de 5 segundos.
- 3- Obtener la solución numérica del sistema lineal para c=50 m/s, (es decir, 180Km/h), $\Delta t=10^{-3}$; y el tiempo de simulación de 20 segundos.

[1] Sontag. Mathematical control theory 1998. Pag 104. http://www.sontaglab.org.