TalkingData原子立方体借力Druid加速海量数据的统计分析

- 支持20种主流移动平台
- 40万款智能移动系统
- 每天2.5亿活跃智能设备
- 每天处理34亿会话,400亿事件
- 每天14TB数据流分发
- 支持实时统计分析与查询,部分指标需要精准统计

- ◆ 大数据量查询速度慢
- ◆ 大集群构建成本高昂
- ◆ 多维交叉计算能力低效
- ◆ 流式计算无法回朔

OLAP-Cube: multi-dimensional array of data

Atom OLAP Cube:

Calculation:

	U	Λ	\oplus
交换	$A \cup B = B \cup A$	$A \cap B = B \cap A$	$A \oplus B = B \oplus A$
结合	$(A \cup B) \cup C =$	$(A \cap B) \cap C =$	$(A \oplus B) \oplus C =$
	$A \cup (B \cup C)$	$A\cap (B\cap C)$	$A \oplus (B \oplus C)$
幂等	$A \cup A = A$	$A \cap A = A$	

Fact table:

Time	Deviceid	Province	Mobile	Арр	Event
	euffice	A subseque	edific		auf
2015-12-22 1:00	036ca36f9c971906a9 7e2321ae0aeff8a	北京	Nexus S	全面枪战	充值
2015-12-22 1:30	06bd68dc66029f975 c86d30e3e296d658	北京	Nexus S	全面枪战	充值
2015-12-22 2:00	02e2b5bac7ec1f9f99 3d48484b9fbf333	天津	iPhone 5s	滴滴打车	支付

id	Deviceid	
0	036ca36f9c971906a 97e2321ae0aeff8a	
1	06bd68dc66029f97 5c86d30e3e296d65 8	
2	02e2b5bac7ec1f9f9 93d48484b9fbf333	

Time	id	Province	Mobile	Арр	Event
2015- 12-22 1:00	0	北京	Nexus S	全面枪战	充值
2015- 12-22 1:30	1 全球	北京	Nexus S	全面枪战	充值
2015- 12-22 2:00	2	天津	iPhone 5s	滴滴打车	支付

>

Fact table:

id	Deviceid
0	036ca36f9c971906a97e 2321ae0aeff8a
1	06bd68dc66029f975c8 6d30e3e296d658
2	02e2b5bac7ec1f9f993d 48484b9fbf333

Time	id	Province	Mobile	Арр	Event
2015- 12-22 1:00	0	北京	Nexus S	全面枪战	充值
2015- 12-22 1:30		北京	iPhone 5s	全面枪战	充值
2015- 12-22 2:00	2	天津	Nexus S	滴滴打车	支付

TD atom cube:

Time	Арр	Bitmap
2015-12-22	全面枪战	0、1
2015-12-22	滴滴打车	2

Mobile	Bitmap
Nexus S	0、2
iPhone 5s	1
	Nexus S

Time	Dimension	Metric
Time	Provice	Bitmap
2015-12-22	北京	0、1
2015-12-22	天津	2

Time	Event	Bitmap
2015-12-22	充值	0、1
2015-12-22	支付	2

TD atom cube:

Time	Арр	Bitmap
2015-12-22	全面枪战	0、1 (bitmap1)
2015-12-22	滴滴打车	2 (bitmap2)

Time	Mobile	Bitmap
2015-12-22	Nexus S	0、2 (bitmap3)
2015-12-22	iPhone 5s	1 (bitmap4)

Time	Province	Bitmap
2015-12-22	北京	0、1 (bitmap5)
2015-12-22	天津	2 (bitmap6)

Time	Event	Bitmap
2015-12-22	充值	0、1 (bitmap7)
2015-12-22	支付	2 (bitmap8)

基数计算:

SELECT Distinct(Device) Where App =全面枪战 and province=北京 and time= 2015-12-22

运算转变成: Bitmap1 and bitmap5

优势:

- 1. 存储减少
- 2. 计算快
- 3. 支持join(这个能够很好的解决留存类型的分析)

TD atom cube:

Bitmap+ Concise=ConciseSet

ConciseSet: https://github.com/metamx/extendedset

RoaringBitmap

- Storage
 Central Storage, IO exhaust.
- ComputationOOM

Stream/Batch ingestion

Indexing

Query

Group by
Top N
Timeseries
Search
Time boundary
Metadata query

High Availability and Load Balance

Druid's Limitation we concerned:

- Exactly cardinality calculate
 - Estimation approach by HyperUnique/Cardinality/Sketch estimat
- Join
 - limited support through "lookups", replace one dimension value with another value

Idea:

Makes an unique id as metric, saved in Atomcube(bitmap) for each row.

Main Points:

aggregation:

the atomcube naturally support.(UNION), so this feature can be applied in Rollup, QueryAggregation, and postAggregation processes.

Exactly cardinality:

the size of the atomcube after aggregation.

Join:

The atomcube in query result can do intersect if they have same means.

More:

Can do union and not operation

The Benefits:

- The huge bitmap stored separately and loaded in clustered nodes(Druid's historical).
- The computation can be accomplished in distributed environment (rollup, aggregation and historical).
- Avoid Data skewed(Druid's load balance)

Nonintrusive

- Did not touch any existence Druid code.
- Just added an extension druid-atomcube-0.9.0.jar
- Install
 - Put the druid-atomcube-0.9.0.jar under /druid-0.9.0/extensions/druid-atom-cube
 - add druid.extensions.loadList=["druid-atom-cube"] in common.runtime.properties file
 - startup all nodes

Implementation glance

- new DruidModule
- Aggregator and AggregatorFactory deserialize, metric, aggregate
- Query
 - Defined new query url:/druid/v2/atomcube
 - Defined new query structure.
 - Parallel running multiple queries on difference tables.

Schema Definition: define atomcube metric

```
"dataSchema":{
 "dataSource": "wikiticker",
  "granularitySpec":{
  "parser":{
 "metricsSpec":[
     "name":"count",
     "type": "count"
     "name":"user unique",
     "type": "hyperUnique",
     "fieldName": "hyperUser"
     "name":"user atomcube",
     "type":"atomCube",
     "fieldName":"uuid"
```


Query: new structure

```
"queryType": "atomCube",
"queries": {
 "query1":{...}, // each query must include atomcube aggregation
 "query2":{...},
 "query3":{...},
"postAggregations":[
 "type": "atomCubeSet",
 "name": "test set",
 "func": "INTERSECT",
 "fields": ["query1", "query2", "query3"]
 "type": "atomCubeSize",
 "name": "test size",
 "field": "test set"
 "type": "atomCubeRaw",
 "name": "test raw",
 "format": "LIST",
 "field": "test set"
```

```
query3
query2
query2
query3
Historical
Historical
RealTime
```

Query Result:

>

Based on Calcite Druid Adapter

Refactor the Rules and QueryNode to Support Atomcube Query with standard SQL, like:

```
sql1 = "select distinct "uuid" from "wiki2" where "namespace " =
'Wikipedia'";
sql2 = "select distinct "uuid" from "wiki1" where "countryName"
= 'France'";
sql = "select distinct count(*) from (" + sql1 + " union " + sql2 +
")";
```


官网 / www.talkingdata.net 微博 / @TalkingData 微信 / TalkingData 服务支持 / support@tendcloud.com