

02910.000100

PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

O I P E
MAR 30 2004
PATENT & TRADEMARK OFFICE

In re Application of:
SHIGEKI YABU, ET AL.
Application No.: 10/716,664
Filed: November 20, 2003
For: DISPLAY DEVICE AND
DRIVING AND CONTROLLING
METHOD THEREFOR)
Examiner: Unassigned
Group Art Unit: 2674
March 30, 2004

Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

SUBMISSION OF PRIORITY DOCUMENT

Sir:

In support of Applicants' claim for priority under 35 U.S.C. § 119, enclosed is
a certified copy of the following foreign application:

2002-337943, filed November 21, 2002

Applicants' undersigned attorney may be reached in our Washington, D.C. office by telephone at (202) 530-1010. All correspondence should continue to be directed to our address given below.

Respectfully submitted,

Attorney for Applicants

Registration No. 32,078

FITZPATRICK, CELLA, HARPER & SCINTO
30 Rockefeller Plaza
New York, New York 10112-3800
Facsimile: (212) 218-2200

CPW\gmc

DC_MAIN 161549v1

CFQ 00100

日本国特許庁
JAPAN PATENT OFFICE

02910,000100 US
Appln. No. 10/716,664 CN
Filed - 11/20/03

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日
Date of Application: 2002年11月21日

出願番号
Application Number: 特願2002-337943

[ST. 10/C]: [JP 2002-337943]

出願人
Applicant(s): キヤノン株式会社

2003年12月 9日

特許庁長官
Commissioner,
Japan Patent Office

今井康

出証番号 出証特2003-3101682

【書類名】 特許願
【整理番号】 226789
【提出日】 平成14年11月21日
【あて先】 特許庁長官 太田 信一郎 殿
【国際特許分類】 G09G 3/30 301
H01J 1/30
H01J 31/12
H04N 5/68
【発明の名称】 表示装置及びその駆動制御方法
【請求項の数】 14
【発明者】
【住所又は居所】 東京都大田区下丸子3丁目30番2号 キヤノン株式会
社 内
【氏名】 藤 成樹
【発明者】
【住所又は居所】 東京都大田区下丸子3丁目30番2号 キヤノン株式会
社 内
【氏名】 塚本 健夫
【特許出願人】
【識別番号】 000001007
【氏名又は名称】 キヤノン株式会社
【代表者】 御手洗 富士夫
【代理人】
【識別番号】 100085006
【弁理士】
【氏名又は名称】 世良 和信
【電話番号】 03-5643-1611

【選任した代理人】

【識別番号】 100100549

【弁理士】

【氏名又は名称】 川口 嘉之

【選任した代理人】

【識別番号】 100106622

【弁理士】

【氏名又は名称】 和久田 純一

【手数料の表示】

【予納台帳番号】 066073

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 表示装置及びその駆動制御方法

【特許請求の範囲】

【請求項 1】

カソード、ゲート及びアノードを有し、前記カソードと前記ゲートとがマトリクス接続された表示パネルを備え、カソード・アノード間にのみ電圧を印加した状態において電子放出を行い得る電子放出体が前記カソードに設けられ、カソード・ゲート間に遮断電圧を印加して前記電子放出体から前記アノードに向かう電子放出を遮断することにより画素を暗状態として表示を行う表示装置において、

表示終了信号が発生した場合、前記カソード・ゲート間に前記遮断電圧又は特定の表示状態を呈し得る駆動電圧を印加した状態で前記アノードの電位が前記電子放出体からの電子放出を行い得る閾値電位より低くなつてから、所定時間経過した後に、前記遮断電圧又は前記特定の表示状態を呈し得る駆動電圧の印加を終了させるように表示パネル駆動回路の動作を制御する制御手段を備えることを特徴とする表示装置。

【請求項 2】

前記カソード・ゲート間への前記遮断電圧又は前記特定の表示状態を呈し得る駆動電圧の印加を、前記表示パネルの全画素について同時にを行うことを特徴とする請求項 1 に記載の表示装置。

【請求項 3】

前記表示パネルの少なくとも 1 行の走査配線に走査選択電位を供給し、残りの行の走査配線に走査非選択電位を供給し、前記走査選択電位の供給に同期して前記表示パネルの全列の変調信号配線に最暗状態を生成し得る変調電位又は所定の変調電位を供給することによって、

前記遮断電圧又は前記特定の表示状態を呈し得る駆動電圧を前記カソード・ゲート間へ印加することを特徴とする請求項 1 に記載の表示装置。

【請求項 4】

前記表示パネル駆動回路は、前記アノード電位を供給するためのアノード電源

回路と、前記カソードを駆動するためのカソード駆動回路と、前記ゲートを駆動するためのゲート駆動回路と、前記カソード駆動回路及び前記ゲート駆動回路に前記遮断電圧又は前記特定の表示状態を呈し得る駆動電圧を生成するための駆動用基準電位を供給する駆動電源回路と、を有することを特徴とする請求項1に記載の表示装置。

【請求項5】

前記カソード駆動回路及び前記ゲート駆動回路に論理回路用駆動電位が供給されている状態で、前記カソード駆動回路及び前記ゲート駆動回路は、前記遮断電圧又は前記特定の表示状態を呈し得る駆動電圧の印加を終了し、

その後、前記駆動電源回路は、前記駆動用基準電位の供給を終了することを特徴とする請求項4に記載の表示装置。

【請求項6】

前記遮断電圧又は前記特定の表示状態を呈し得る駆動電圧の印加を終了する期間において、

前記アノード電源回路は、前記アノード電源回路に論理回路用駆動電位が供給されている状態で、前記アノードを前記電子放出体から電子放出を行い得る閾値電位より十分に低い特定電位に保持することを特徴とする請求項4に記載の表示装置。

【請求項7】

前記カソード駆動回路及び前記ゲート駆動回路から前記表示パネルへの入力された表示画像データに基づいた表示用駆動電圧の印加を停止した後に、前記遮断電圧又は前記特定の表示状態を呈し得る駆動電圧の印加を終了することを特徴とする請求項4に記載の表示装置。

【請求項8】

前記遮断電圧又は前記特定の表示状態を呈し得る駆動電圧の印加を終了した後に、前記カソード・ゲート間の電圧を零に遷移させることを特徴とする請求項1に記載の表示装置。

【請求項9】

前記表示パネルの走査配線となるカソード配線又はゲート配線の何れか一方に

、変調信号配線となる他方の配線の電位にかかわらず、前記遮断電圧を印加し得る走査非選択電位を供給するか、

又は、変調信号配線となるカソード配線又はゲート配線の何れか一方で、走査配線となる他方の配線の電位にかかわらず、前記遮断電圧又は前記特定の表示状態を呈し得る駆動電圧を印加し得る変調電位を供給することによって、

前記遮断電圧又は前記特定の表示状態を呈し得る駆動電圧を前記カソード・ゲート間に印加することを特徴とする請求項1に記載の表示装置。

【請求項10】

前記表示パネルの変調信号配線となるカソード配線又はゲート配線の何れか一方で供給される変調電位は3以上の複数レベルから選択された電位であり、そのうち2以上は走査選択電位と同期して供給されることにより電子を放し得る駆動電圧を生成する電位であり、そのうち1つは前記遮断電圧を生成する電位であることを特徴とする請求項1に記載の表示装置。

【請求項11】

前記電子放出体が半導体若しくは導電体からなる纖維状のナノ構造体又は炭素を主成分とするナノ構造体であることを特徴とする請求項1に記載の表示装置。

【請求項12】

前記ナノ構造体は、カーボンナノチューブ、グラファイトナノファイバー、アモルファスカーボン、カーボンナノホーン、グラファイト、ダイヤモンドライカーボン、ダイヤモンド、フラーレンから選択される少なくとも一種を含むことを特徴とする請求項11に記載の表示装置。

【請求項13】

カソード、ゲート及びアノードを有し、前記カソードと前記ゲートとがマトリクス接続された表示パネルを備え、カソード・アノード間にのみ電圧を印加した状態において電子放出を行い得る電子放出体が前記カソードに設けられ、カソード・ゲート間に遮断電圧を印加して前記電子放出体から前記アノードに向かう電子放出を遮断することにより画素を暗状態として表示を行う表示装置の駆動制御方法において、

表示終了信号が発生した場合、前記カソード・ゲート間に前記遮断電圧又は特

定の表示状態を呈し得る駆動電圧を印加した状態で前記アノードの電位を前記電子放出体からの電子放出を行い得る閾値電位より低くするアノード電位供給停止工程、

前記アノード電位供給停止工程を行ってから所定時間経過した後に、前記遮断電圧又は前記特定の表示状態を呈し得る駆動電圧の印加を停止する印加停止工程と、

を含むことを特徴とする表示装置の駆動制御方法。

【請求項 14】

駆動電源回路は、前記アノードを前記電子放出体から電子放出を行い得る閾値電位より十分に高い電位に保持し、カソード駆動回路及びゲート駆動回路から前記表示パネルへの入力された表示画像データに基づいた表示用駆動電圧の印加を停止し、

その後、前記アノード電位供給停止工程を行うと共に、前記アノード電位供給停止工程の終了時期において、前記カソード駆動回路及び前記ゲート駆動回路は前記カソード駆動回路及び前記ゲート駆動回路に論理回路用駆動電位が供給されている状態で、前記カソード・ゲート間に前記遮断電圧又は前記特定の表示状態を呈し得る駆動電圧を印加し続け、

その後更に、前記アノードを前記電子放出体から電子放出を行い得る閾値電位より十分に低い特定電位に保持した状態で、前記カソード・ゲート間に前記遮断電圧又は前記特定の表示状態を呈し得る駆動電圧の印加を停止することを特徴とする請求項 13 に記載の表示装置の駆動制御方法。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

本発明は、コンピュータのモニター、テレビジョン装置などに用いられる表示装置に関し、特に、アノード、カソード及びゲートの3端子を有し、カソードとゲートとがマトリクス接続された表示パネルを有する表示装置に関する。

【0002】

【従来の技術】

近年、電子放出素子を用いた平面型表示装置が注目されている。

【0003】

電子放出素子としては、熱陰極型と冷陰極型とがあるが、平面型表示装置の表示パネルにおいては主として冷陰極型が用いられており、電界放出型（以下F E型という）、金属／絶縁層／金属型（以下M I M型という）や表面伝導型（以下S C型という）等が知られている。

【0004】

F E型の例としては、C.A.Spindt、“Physical properties of thin-film field emission cathodes with molybdenum cones”、J.Appl.Phys.、47、5248（1976）に開示されたものが有名である。M I M型の例としては、C.A.Mead、“Operation of Tunnel-Emission Devices”、J.Appl.Phys.、32、646（1961）に開示されたものが知られている。またS C型としては、M.I.Elinson、Radio Eng. Electron Phys.、10、1290（1965）に開示されているものが知られている。

【0005】

これらの電子放出素子を電子源として用いて表示パネルを実現するためには、XYマトリクス状に接続されたカソード及びゲートが形成された基板と、それに対向して配置される蛍光体を有するアノードを設け、カソードの電子放出体から放出された電子をアノード側の蛍光体に照射して蛍光体を発光させる構成としている。

【0006】

こうした電子放出素子として、電子放出のための仕事関数が小さく閾値電圧が低い炭素系の材料や繊維状の電子放出体が注目されており、それらの電子放出素子を用いた例が、特許文献1～3に開示されている。

【0007】

これらはいずれも、フラーレン、ダイヤモンド、ダイヤモンドライカーボン（D L C）、カーボンナノチューブ（C N T）、繊維状カーボン等を電子放出体として用いたものである。

【0008】

このように、閾値電圧の低い電子放出体では、3端子の場合、カソード・ゲー

ト間に電圧を印加することなく、単にアノード・カソード間に通常の高電圧（アノード電圧という）を印加するだけで、カソードに付設された電子放出体から電界電子放出により電子が放出される。よって、放出時にはカソード・ゲート間に電圧を印加せずに電子放出を行い、非放出時にはカソード・ゲート間に遮断電圧を印加することによって電子放出の抑制を行うように構成することができる。こうした動作をノーマリーオン型ということにする。

【0009】

以下、炭素纖維の電子放出体を用いたノーマリーオン型の单一の電子放出素子を例に挙げて説明する。

【0010】

図11は单一の電子放出素子の電位分布を示す模式図であり、電子を放出している駆動状態（図11（a））と、電子放出を停止している遮断状態（図11（b））との電位分布を示している。

【0011】

図11（a）に示す状態では、カソード2上の電子放出体5に電子放出が開始される閾値電界より大きな電界がカソード2・アノード6間の電圧のみによって生成され、電子放出が起こる駆動状態であることを示しており、これをノーマリーオン状態と呼ぶことにする。

【0012】

例えば、電子放出体5の閾値電界が $3\text{ V}/\mu\text{m}$ であるとすると、アノード6をカソード2から2mmの距離を隔てた位置に設けた場合、カソード2を0Vとしカソード2・アノード6間のアノード電圧6kVとなるように印加すると電子放出が開始される。

【0013】

なお、好適なノーマリーオン状態にするためにはさらに高いアノード電圧を印加してもよく、アノード電圧は電子放出素子の電圧一電流特性により必要な電流密度の得られる電界強度によって決めればよい。

【0014】

例えば、 $5\text{ V}/\mu\text{m}$ の電界強度で必要な電流密度が得られるのであれば、アノ

ード6をカソード2から2mmの距離を隔てた位置に設けた場合、アノード電圧として10kVを印加するようにすればよい。

【0015】

図11(a)には、この時の等電位面の様子を図示してある。図11(a)では、アノード6と電子放出体5の間にほぼ均等に等電位面が存在し、電子放出体5近傍の電界強度も約5V/ μ mとなり電子放出が起こる。

【0016】

また、電子放出のためにカソード2・ゲート4間に印加する電圧は、アノード電圧による電界強度に影響を与えない電位であればよいが、上記ノーマリーオン状態では0Vに設定した例を示している。

【0017】

一方、図11(b)に示す状態では、カソード2に対してゲート4に負の電位を供給すると、電子放出体5近傍においてアノード6から受ける電界強度が小さくなり電子放出に必要な閾値電界以下となり、電子放出が停止する。この時のカソード2・ゲート4間の電圧を遮断電圧と呼ぶ。

【0018】

カソード2・ゲート4間に遮断電圧を印加した時の等電位面は、図11(b)に示したようにカソード2及び電子放出体5は0Vで、ゲート4が負電位となるために電子放出体5近傍の等電位面の間隔が広くなり、電界強度が小さくなることがわかる。

【0019】

なお、この時のカソード2・ゲート4間に印加する遮断電圧は、電子放出体5の閾値電界及びノーマリーオン状態のアノード電圧による電界強度によって必要な電界強度が決まり、電子放出体5の寸法及びカソード・ゲート間距離、ゲート寸法等の設計によって適宜決定される。

【0020】

以上のように、ノーマリーオン型の電子放出素子においては、カソード・アノード間の電圧のみによって電子放出が行われ、カソード・ゲート間に遮断電圧を印加して電子放出を遮断することにより電子放出を制御するようにしてい

るので、カソード・ゲート間の電圧を電子放出に必要な閾値以上にする必要がないため、より低電圧で安定した駆動制御が可能となる。

【0021】

【特許文献1】

特開2000-251783号公報

【特許文献2】

特開2000-268706号公報

【特許文献3】

特開2002-100279号公報

【0022】

【発明が解決しようとする課題】

ところで、こうしたノーマリーオン型の電子放出素子をXYマトリクス型の平面型表示装置に応用することが考えられている。このような平面型表示装置の場合には、カソード・アノード間に電子放出の閾値以上の電界強度を与えるような電圧が印加されていて、且つ、カソード・ゲート間に遮断電圧が印加されていない時には、表示画面の全面にわたって最高輝度で全白表示が行われる。

【0023】

よって、テレビジョン装置やコンピュータ用のモニターとしてこの平面型表示装置を使用する場合、たとえ短時間であっても全白表示が行われるとユーザーが装置の故障と誤認したり、不快感を覚えたりすることがある。

【0024】

特に、表示装置本体の電源オフ時や、表示モードから省電力のための非表示モードに移行する時や、停電により電源が遮断された時などの表示終了時には、アノード電位を急に遮断してもアノード上には電荷が蓄積されているために、すぐにアノード電位は下がらない。そして、この時には遮断電圧の印加も停止されているので、アノード電位が閾値以下になるまで装置は電子放出を続けてしまう。このため、表示装置は、表示終了時にアノード電位が閾値以下になるまで最高輝度で全面全白表示を行ってしまう。

【0025】

本発明の目的は、表示終了信号の発生に応じてアノード電位を供給状態から遮断状態に遷移させる場合における、不本意な表示状態の発生や不本意な発光を抑制することができる表示装置及びその駆動制御方法を提供することにある。

【0026】

【課題を解決するための手段】

本発明においては、上記課題を解決するために、カソード・アノード間にアノード電圧を印加した状態において電子放出を行うような閾値を持つ電子源をカソードとして用いて、カソード近傍に設けられたゲートとのカソード・ゲート間に遮断電圧を印加して電子放出を遮断することにより表示を制御するXYマトリクス型の平面型ディスプレイのような表示装置において、例えば電源切断時のように表示終了信号が発生してから、少なくともアノード電圧によって生じる平均電界強度が電子源の閾値より小となるアノード電圧を印加した後に、カソード・ゲート間に所定の制御電圧の印加を停止するように制御する制御手段を設けるものである。

【0027】

本発明の骨子は以下のとおりである。

【0028】

(1) カソード、ゲート及びアノードを有し、前記カソードと前記ゲートとがマトリクス接続された表示パネルを備え、カソード・アノード間にのみ電圧を印加した状態において電子放出を行い得る電子放出体が前記カソードに設けられ、カソード・ゲート間に遮断電圧を印加して前記電子放出体から前記アノードに向かう電子放出を遮断することにより画素を暗状態として表示を行う表示装置において、

表示終了信号が発生した場合、前記カソード・ゲート間に前記遮断電圧又は特定の表示状態を呈し得る駆動電圧を印加した状態で前記アノードの電位が前記電子放出体からの電子放出を行い得る閾値電位より低くなつてから、所定時間経過した後に、前記遮断電圧又は前記特定の表示状態を呈し得る駆動電圧の印加を終了させるように表示パネル駆動回路の動作を制御する制御手段を備えることを特徴とする表示装置。

【0029】

これにより、表示終了信号の発生に応じてアノードの電位を供給状態から遮断状態に遷移させる場合における、不本意な表示状態の発生や不本意な発光を抑制することができる。

【0030】

(2) 前記カソード・ゲート間への前記遮断電圧又は前記特定の表示状態を呈し得る駆動電圧の印加を、前記表示パネルの全画素について同時にを行うことを特徴とする(1)に記載の表示装置。

【0031】

これにより、アノードの電位を供給状態から遮断状態に遷移させて全白(明)相当のアノード電位が残っていても、直ちに、画面全体を最低輝度レベルの全黒(暗)状態又は特定の表示状態に保持することができる。

【0032】

(3) 前記表示パネルの少なくとも1行の走査配線に走査選択電位を供給し、残りの行の走査配線に走査非選択電位を供給し、前記走査選択電位の供給に同期して前記表示パネルの全列の変調信号配線に最暗状態を生成し得る変調電位又は所定の変調電位を供給することによって、

前記遮断電圧又は前記特定の表示状態を呈し得る駆動電圧を前記カソード・ゲート間へ印加することを特徴とする(1)に記載の表示装置。

【0033】

これにより、通常の表示終了動作と同じ動作により、アノードの電位を供給状態から遮断状態に遷移させて全白(明)相当のアノード電位が残っていても、画面を最低輝度レベルの全黒(暗)状態又は特定の表示状態に保持することができる。

【0034】

(4) 前記表示パネル駆動回路は、前記アノード電位を供給するためのアノード電源回路と、前記カソードを駆動するためのカソード駆動回路と、前記ゲートを駆動するためのゲート駆動回路と、前記カソード駆動回路及び前記ゲート駆動回路に前記遮断電圧又は前記特定の表示状態を呈し得る駆動電圧を生成するため

の駆動用基準電位を供給する駆動電源回路と、を有することを特徴とする（1）に記載の表示装置。

【0035】

これにより、各回路への給電状態が細やかに制御可能となる。

【0036】

（5）前記カソード駆動回路及び前記ゲート駆動回路に論理回路用駆動電位が供給されている状態で、前記カソード駆動回路及び前記ゲート駆動回路は、前記遮断電圧又は前記特定の表示状態を呈し得る駆動電圧の印加を終了し、

その後、前記駆動電源回路は、前記駆動用基準電位の供給を終了することを特徴とする（4）に記載の表示装置。

【0037】

これにより、装置には高電圧印加終了後に低電圧が印加終了されることになり、また、各回路に順次電圧が印加終了されるので、回路の誤動作や破壊を抑止できる。

【0038】

（6）前記遮断電圧又は前記特定の表示状態を呈し得る駆動電圧の印加を終了する期間において、

前記アノード電源回路は、前記アノード電源回路に論理回路用駆動電位が供給されている状態で、前記アノードを前記電子放出体から電子放出を行い得る閾値電位より十分に低い特定電位に保持することを特徴とする（4）に記載の表示装置。

【0039】

これにより、アノードの帯電を防止し、アノード電位が閾値より下がるタイミングの制御をし易くする。

【0040】

（7）前記カソード駆動回路及び前記ゲート駆動回路から前記表示パネルへの入力された表示画像データに基づいた表示用駆動電圧の印加を停止した後に、前記遮断電圧又は前記特定の表示状態を呈し得る駆動電圧の印加を終了することを特徴とする（4）に記載の表示装置。

【0041】

これにより、表示不良を抑止し、入力表示画像データに基づく表示からスムーズに終了することができる。

【0042】

(8) 前記遮断電圧又は前記特定の表示状態を呈し得る駆動電圧の印加を終了した後に、前記カソード・ゲート間の電圧を零に遷移させることを特徴とする(1)に記載の表示装置。

【0043】

これにより、カソード・ゲート間が短絡するので、放出電子又は2次電子などによる帯電を防止することができる。

【0044】

(9) 前記表示パネルの走査配線となるカソード配線又はゲート配線の何れか一方で、変調信号配線となる他方の配線の電位にかかわらず、前記遮断電圧を印加し得る走査非選択電位を供給するか、

又は、変調信号配線となるカソード配線又はゲート配線の何れか一方で、走査配線となる他方の配線の電位にかかわらず、前記遮断電圧又は前記特定の表示状態を呈し得る駆動電圧を印加し得る変調電位を供給することによって、

前記遮断電圧又は前記特定の表示状態を呈し得る駆動電圧を前記カソード・ゲート間へ印加することを特徴とする(1)に記載の表示装置。

【0045】

これにより、走査側又は変調信号側の駆動回路の制御のみで、不本意な画面の発光を抑制することができる。

【0046】

(10) 前記表示パネルの変調信号配線となるカソード配線又はゲート配線の何れか一方で供給される変調電位は3以上の複数レベルから選択された電位であり、そのうち2以上は走査選択電位と同期して供給されることにより電子を放出し得る駆動電圧を生成する電位であり、そのうち1つは前記遮断電圧を生成する電位であることを特徴とする(1)に記載の表示装置。

【0047】

これにより、変調電位により幾つかの階調レベルを表示しようとした場合に、それに用いられる電位と遮断電圧を生成する電位を兼用できるので、基準電位レベルの数を抑えることができる。

【0048】

(11) 前記電子放出体が半導体若しくは導電体からなる繊維状のナノ構造体又は炭素を主成分とするナノ構造体であることを特徴とする(1)に記載の表示装置。

【0049】

(12) 前記ナノ構造体は、カーボンナノチューブ、グラファイトナノファイバー、アモルファスカーボン、カーボンナノホーン、グラファイト、ダイヤモンドライクカーボン、ダイヤモンド、フラーレンから選択される少なくとも一種を含むことを特徴とする(11)に記載の表示装置。

【0050】

(13) カソード、ゲート及びアノードを有し、前記カソードと前記ゲートとがマトリクス接続された表示パネルを備え、カソード・アノード間にのみ電圧を印加した状態において電子放出を行い得る電子放出体が前記カソードに設けられ、カソード・ゲート間に遮断電圧を印加して前記電子放出体から前記アノードに向かう電子放出を遮断することにより画素を暗状態として表示を行う表示装置の駆動制御方法において、

表示終了信号が発生した場合、前記カソード・ゲート間に前記遮断電圧又は特定の表示状態を呈し得る駆動電圧を印加した状態で前記アノードの電位を前記電子放出体からの電子放出を行い得る閾値電位より低くするアノード電位供給停止工程、

前記アノード電位供給停止工程を行ってから所定時間経過した後に、前記遮断電圧又は前記特定の表示状態を呈し得る駆動電圧の印加を停止する印加停止工程と、

を含むことを特徴とする表示装置の駆動制御方法。

【0051】

(14) 駆動電源回路は、前記アノードを前記電子放出体から電子放出を行い

得る閾値電位より十分に高い電位に保持し、カソード駆動回路及びゲート駆動回路から前記表示パネルへの入力された表示画像データに基づいた表示用駆動電圧の印加を停止し、

その後、前記アノード電位供給停止工程を行うと共に、前記アノード電位供給停止工程の終了時期において、前記カソード駆動回路及び前記ゲート駆動回路は前記カソード駆動回路及び前記ゲート駆動回路に論理回路用駆動電位が供給されている状態で、前記カソード・ゲート間に前記遮断電圧又は前記特定の表示状態を呈し得る駆動電圧を印加し続け、

その後更に、前記アノードを前記電子放出体から電子放出を行い得る閾値電位より十分に低い特定電位に保持した状態で、前記カソード・ゲート間に前記遮断電圧又は前記特定の表示状態を呈し得る駆動電圧の印加を停止することを特徴とする（13）に記載の表示装置の駆動制御方法。

【0052】

【発明の実施の形態】

以下に図面を参照して、本発明の好適な実施の形態を例示的に詳しく説明する。ただし、この実施の形態に記載されている構成部品の寸法、材質、形状、配置等については、特に特定的な記載なき限りは、本発明の範囲をそれらのみに限定する趣旨のものではない。

【0053】

（第1実施形態）

図1は本発明の第1実施形態による表示装置の駆動制御方法を説明するためのタイミングチャートを示す。図2は本発明の第1実施形態に用いられる表示パネルの構成を示す。図3は本発明の第1実施形態による表示装置の駆動制御系のブロックを示す。

【0054】

本実施形態に係る平面型ディスプレイである表示装置は、マトリクス接続された複数の電子放出素子を行列状に配置して得られるものである。

【0055】

図2において、201は電子源基板であり、206はフェースプレートであり

、214は外枠であり、211は行方向配線であり、212は列方向配線であり、200はノーマリーオン型の電子放出素子である。

【0056】

単純マトリクスの電子源基板201に対向して、電子放出素子200の上部に対応するフェースプレート206上に画像形成部材として設けられた蛍光体208を位置合わせして配置している。

【0057】

蛍光体208上には、高電圧印加用の導体として蒸着等によってアルミニウム系配線材料をメタルバック209として設けてある。メタルバック209には、高電位を供給するための高圧端子213が電気的に接続されている。

【0058】

また、メタルバック209を設けた側とは反対側の蛍光体208表面には、アノード基板207が設けられている。

【0059】

図2において、行方向配線211はC1、C2…Cmのm本の配線からなり、ストライプ状に配列され、各々がカソード202を形成している。行方向配線211は蒸着法等にて形成されたアルミニウム、銀等の導電性材料で構成されている。なお、配線の材料、膜厚、線巾は、適宜設計されるものであり、また製造法も適宜選択されるものである。

【0060】

このストライプ状に配列されたカソード202上の電子放出素子200の位置に電子放出体205が形成されている。なお、電子放出体205としては、前述のように電子放出閾値が低い炭素系又は炭素系以外の半導体や導電体からなる繊維状のナノ構造体を用いるとよい。

【0061】

列方向配線212はG1、G2…Gnのn本の配線からなり、行方向配線211と直交するストライプ状に配列され、各々がゲート204を形成している。列方向配線212は行方向配線211と同様に構成されている。

【0062】

このストライプ状に配列されたゲート 204 には、カソード 202 の電子放出体 205 の上部に対応する部分に開孔したホール部 210 が設けられている。

【0063】

なお、ストライプ状に配列されたゲート 204 及びホール部 210 は、図面を見易くするために一番手前側のカソード 202 (C1) 上については図示していない。

【0064】

また、行方向配線 211 にカソード 202 を設け、列方向配線 212 にゲート 204 を設けるようにしたが、この接続配置は逆でもよい。

【0065】

これら m 本の行方向配線 211 と n 本の列方向配線 212 との間には、図面を見易くするために不図示とした層間絶縁層が設けられており、両者を電気的に分離している（以上 m、n は、共に正の整数）。なお、層間絶縁層は、電子放出体 205 とホール部 210 に対応する部分には設けられていない。

【0066】

不図示の層間絶縁層は、スパッタ法等を用いて形成された絶縁層である。例えば、行方向配線 211 を形成した電子源基板 201 の全面或は一部に所望の形状で形成され、特に、行方向配線 211 と列方向配線 212 の交差部の電位差に耐え得るように、膜厚、材料、製法等が適宜選択されるものである。

【0067】

行方向配線 211 と列方向配線 212 は、それぞれ外部端子として引き出されている。

【0068】

本実施形態においては、電子放出素子 200 を構成する一対の電極の層自体が、m 本の行方向配線 211 と n 本の列方向配線 212 としての機能も果たしているが、素子毎に配線とは独立したカソード 202 及びゲート 204 を設け、Y 方向の複数の独立ゲート 204 を列方向配線で共通に接続し、X 方向の複数の独立カソード 202 を列方向配線で共通に接続するように、ゲート電極とゲート配線、カソード電極とカソード配線とに分けて形成することも好ましいものである。

【0069】

図3に示すように、行方向配線211には、X方向に配列した電子放出素子200の行を選択するための走査選択信号を印加する走査信号印加手段301が接続される。

【0070】

一方、列方向配線212には、Y方向に配列した電子放出素子200の各列を入力信号に応じて変調するための変調信号印加手段302が接続される。

【0071】

各電子放出素子200に印加されるカソード202・ゲート204間の遮断電圧は、当該素子に印加される走査信号と変調信号の差電圧として供給される。なお、本実施形態においては、行方向配線211をカソード202とし、そこに走査信号として零電位又は正電位を供給し、列方向配線212をゲート204とし、そこに変調信号として零電位又は負電位を供給するように構成されている。

【0072】

各画素を構成する電子放出素子200の駆動は次のように行われる。

【0073】

メタルバック209（以後アノードという）に高電位を供給し、カソード・ゲート間の電圧に依存してアノード電位を電子放出体205から電子放出をせしめるに十分な値に保持しておく。

【0074】

この状態において、非選択の走査行にあたる行方向配線211のカソード202に走査非選択電位として正電位を供給する。また、選択走査行にあたる行方向配線211のカソード202には走査選択電位として零電位を供給する。これと同時に、列方向配線212のゲート204には、変調信号として零電位又は負電位が与えられる。

【0075】

非選択の行においては変調信号の電位（零電位又は負電位）に因らずに、カソード・アノード間の電圧は電子放出体205からの電子放出を生起しない値に設定されているので、非選択行上にある電子放出体205からは電子が放出されず

、その行の画素は発光しない。

【0076】

一方、選択行において零電位の変調信号が与えられた素子では、カソード・ゲート間の電圧は零となり、カソード202・アノード間の電圧は電子放出の閾値電圧を超えており、当該素子から電子が放出され、画素は発光する。

【0077】

また、選択行において負電位の変調信号が与えられた素子では、カソード・ゲート間の電圧は遮断電圧となり、カソード・アノード間の電圧は電子放出の閾値電圧を超えているにもかかわらず、ゲート電位の影響により、実際の電子放出体205における電界強度は電子放出の閾値を越えないで、当該素子からは電子が放出されず、画素は発光しない。

【0078】

このような走査を少なくとも1行を順次選択しながら行うことによって、一画面走査が完了し、入力された表示画像データに応じて画像を表示することになる。

【0079】

ここで、図1、図3を用いて表示終了シーケンスの説明をする。

【0080】

図3に示すように、走査信号印加手段301と変調信号印加手段302には、それぞれ走査信号と変調信号を生成するために必要な信号が制御手段としてのコントロール回路303から供給される。また、コントロール回路303からはアノード電源回路304の動作を制御するための制御信号も供給される。

【0081】

また、これらのコントロール回路303やアノード電源回路304の動作に必要な電圧を供給するために給電上流側には本体電源305が設けられている。

【0082】

なお、ここで、画像表示に必要な他の信号処理用回路、あるいは走査信号印加手段301及び変調信号印加手段302の構成等の詳述は省く。

【0083】

さて、図1に示すように、上流側の電源スイッチがオフとなり電源オフとなつた場合、本体電源305からの電源供給遮断によりコントロール回路303において、時刻 t_0 においてローレベルの表示信号DSが発生する（図1においてはH→L）。または、本体電源305自身から表示信号DSをコントロール回路303に供給してもよい。

【0084】

表示信号DSが発生してからアノード電源回路304を停止するのに必要な所定期間経過した後、時刻 t_1 において、アノード電源回路304から高圧端子213へのアノード電位 V_a の供給を停止する。供給停止後、アノード上に電荷が蓄積されているために、アノード電位 V_a はすぐに下がらずに徐々に低下していく。

【0085】

表示信号DSが発生してから、アノード電位 V_a が0Vになるまでの間、アノード電位 V_a が電子放出体の閾値電界以上の電界強度が得られる電位 V_{th} を越えていると、電子を放出し続けてしまう。よって、時刻 t_1 以後も、カソード・ゲート間に遮断電圧を供給するように、行方向配線211又は列方向配線212のうち少なくともどちらか一方の電位を素子に遮断電圧を印加し得る電位にしておく。

【0086】

具体的に本実施の形態では、時刻 t_1 以後も、走査非選択信号（ V_x ）には正電位を印加し続け、変調信号（ V_y ）には負電位を印加し続ける。すなわち、時刻 t_1 以後も、走査信号印加手段301からカソード202への正電位の供給を行い続け、同時に、変調信号印加手段302からゲート204に負電位の供給を行い続ける。

【0087】

そして、アノード電位 V_a が電子放出体の閾値電界以上の電界強度が得られる電位 V_{th} よりも下がった時点から所定の遅延時間 T_d 2経過後の時刻 t_2 において、遮断電圧の印加を停止する。

【0088】

遮断電圧の印加を停止した直後に、カソード202やゲート204の電位が不定であるとそれらが帶電する可能性がある。よって、必要に応じて、所定時間カソード202及びゲート204は同電位に保持することが望ましい。通常は $V_x = V_y = 0V$ とすればよい。

【0089】

前述のように本実施形態においては、カソード202を行方向配線211とし、ゲート204を列方向配線212としているので、列方向配線212側の変調信号を、全て遮断電圧を生成し得る負電位となるように、すなわち表示画像データとして全黒表示を行うデータをコントロール回路303より変調信号印加手段302に与えるように制御すればよい。この場合の走査信号は走査選択電位（零電位）であってもよく、また、それより高い電位であってもよい。

【0090】

あるいは、行方向配線211の走査信号を、全て遮断電圧を生成し得る正電位としてもよい。この場合の変調信号は、零電位又はそれより低い電位であればよいので、黒表示データ（負電位）であろうが白表示データ（零電位）であろうが構わない。

【0091】

図1のシーケンスでは、全ての行方向配線211の走査信号を正電位、全ての列方向配線212の変調信号を負電位として、カソード・ゲート間に印加される遮断電圧を大きくして、確実に電子放出を抑止する例を示しているが、前述したとおり、カソード202又はゲート204の何れか一方の電位を、遮断電圧を生成し得る電位とすればよい。

【0092】

各電位の遷移タイミングは、コントロール回路303の制御によって実現できる。

【0093】

なお、構成部品のばらつき等による供給電位 V_x , V_y , V_a 等の立ち下がり時間のばらつきや、複数の電子放出素子間の閾値電界のばらつき、あるいは電子放出素子の電圧一電流特性がヒステリシスを持っている場合等を考慮すると、 V

a が電子放出体 205 の閾値電界を生ずる電位 V_{th} 以下になってから V_x 及び V_y が所定の電位に到達する時間 T_d は、13ms 程度以上又は 26ms 以上に設定した方が望ましい。

【0094】

このようなシーケンスにより、電源オフ時や表示停止時などのローレベルの表示信号 DS の発生時に最高輝度で全面が全白点灯するという現象を防止することができる。

【0095】

なお、アノード電位 V_a が 0V まで下がるよりも前にカソード・ゲート間の所定の遮断電圧の印加を停止し、アノード電位 V_a が閾値電位 V_{th} よりも下がった直後にカソード・ゲート間の遮断電圧を印加停止するように、タイミングを決めることが可能である。しかしながら、アノード電位 V_a を供給停止後の過渡的な容量電圧によってカソード 202・アノード間の電界強度が閾値電界を越え電子放出する可能性が皆無とはいえないため、アノード電位 V_a を 0V まで下げた後からカソード 202・ゲート 204 間の遮断電圧を印加停止することがより望ましいものである。

【0096】

(第2実施形態)

図4には、第2実施形態が示されている。本実施形態では、第1実施形態の表示装置の制御系に遮断接地回路 306 をさらに加えたものである。

【0097】

第1実施形態では、アノード電位 V_a が供給停止されてもアノード上には電荷が蓄積されているために、すぐにはアノード電位 V_a が供給停止後に 0V に下がり難い。特に、大型の平面型表示装置の場合等は表示面積が大きく、すなわちアノード面積が大きく、蓄積電荷量も大きくなり、よりアノード電位 V_a が供給停止後に 0V へ下がり難くなる。

【0098】

よって、本実施形態では、例えば停電等によって電源電圧が遮断された場合のように、できる限り速やかに表示終了シーケンスを実行したいときに、アノード

電位 V_a が閾値電位 V_{th} 以下に低下するまでの時間を短縮するために、図 4 に示すようにアノード電源回路 304 と表示パネル 300 の高圧端子 213 との間に遮断接地回路 306 を接続する。

【0099】

これにより、コントロール回路 303において表示信号 DS がローレベルへと発生するのに伴って、遮断接地回路 306 において、アノード電源回路 304 からの高電位供給を遮断して停止させた後、高圧端子 213 を接地してアノードに蓄積した電荷を GND に放電させ、アノード電位 V_a をできる限り速やかに電位 V_{th} 以下とする。

【0100】

なお、アノード電位 V_a の供給遮断は、アノード電源回路 304 の出力をオフすることによって行っててもよく、その場合はコントロール回路 303 によってアノード電源回路 304 の出力をオフした後、遮断接地回路 306 において高圧端子 213 を接地させればよい。

【0101】

(第3実施形態)

図 5～図 11 には、第3実施形態が示されている。本実施形態では、第1実施形態よりも詳しく各種回路を用いた本発明の構成を説明する。

【0102】

図 5 は本発明の第3実施形態による表示装置の駆動制御系のブロックを示す。図 6、図 7 は本発明の第3実施形態による表示装置の駆動制御方法を説明するためのタイミングチャートを示す。

【0103】

300 は、カソード、ゲート及びアノードを有し、カソードとゲートとがマトリクス接続された表示パネルであり、図 5 では 1 つの電子放出素子 200 しか描かれていながら、現実には素子がマトリクス状に多数配列されている。表示パネル 300 の例としては、第1実施形態に挙げたものがあるので、本実施形態ではその詳しい説明は省略する。

【0104】

そして、この表示パネル300には、カソード・アノード間にのみ電圧を印加した状態において電子放出を行い得る電子放出体がカソードに設けられ、カソード・ゲート間に遮断電圧を印加して電子放出体からアノードに向かう電子放出を遮断することにより画素を暗状態とし、カソード・ゲート間に駆動電圧を印加して電子放出体からアノードに向かう電子放出を生起させることにより画素を明状態として表示を行う。

【0105】

表示パネル300を駆動するための表示パネル駆動回路は、アノードにアノード電位 V_a を供給するためのアノード電源回路314と、カソードを駆動するためのカソード駆動回路21と、ゲートを駆動するためのゲート駆動回路22と、カソード駆動回路21及びゲート駆動回路22に遮断電圧又は特定の表示状態を呈し得る駆動電圧を生成するための駆動用基準電位 V_s , V_i を供給する駆動電源回路24と、を有する。

【0106】

駆動用基準電位 V_i は、例えば、階調表示用の電圧振幅変調（P H M）駆動のために、3つ以上の駆動基準電位からなることが好ましいものである。

【0107】

図8は駆動電源回路の回路構成図である。図9は行駆動回路（ここではカソード駆動回路21）の回路構成図である。図10は列駆動回路（ここではゲート駆動回路22）の回路構成図である。図11はアノード電源回路314の回路構成図である。これらのいずれの回路も5V又は3.3Vのような論理回路用駆動電位 V_{cc} が動作電源となる何らかの論理回路を備えている。

【0108】

図8に示す駆動電源回路24は、本体電源305からの電力供給、即ち、+50V, -50Vのような電位 V_{DD} , V_{EE} の供給を制御信号R C O N Tに応じてオン／オフするスイッチ31, 32と、ボルテージホロワのオペアンプ33と、複数の抵抗器34と、を有する。そして、駆動電源回路24は、列駆動回路に3つの負電位（ V_{i1} 、 V_{i2} 、 V_{i3} ）を供給すると共に、行駆動回路に走査選択電位 V_s を供給するマルチ電源である。

【0109】

図9に示す行駆動回路（ここではカソード駆動回路21）は、クロックYCLKに同期して一行毎に出力レベルがシフトする垂直シフトレジスタSR35と、走査非選択電位の供給をイネーブル信号YENで制御するためのアンドゲート36と、出力電圧を論理回路用低電圧（Vcc—0V）から駆動用高電圧（Vs—0V）に昇圧するためのレベルシフト回路37と、走査選択電位又は走査非選択電位を与える走査信号が出力される出力段の高電圧CMOSインバータ38と、を有する。なお、ここでは1チャンネルのみ示している。

【0110】

図10に示す列駆動回路（ここではゲート駆動回路22）は、駆動制御回路23から入力されるデジタル表示画像データを変調電位に変調するためのパルス変調器PM39と、3つの変調電位Vi1、Vi2、Vi3を選択的に出力するための3つの選択回路40、41、42と、を有している。また、各選択回路40、41、42は、変調電位の供給をイネーブル信号XENで制御するためのアンドゲート43と、レベルシフト回路44と、出力段の高電圧CMOSインバータ45と、をそれぞれ有する。なお、ここでは1チャンネルのみ示している。

【0111】

図11に示すアノード電源回路314は、制御信号PCONTに応答して高圧出力トランス47の動作を制御するフィードバック制御型のトランス制御回路46と、高圧に変換された交流を整流する整流回路48と、アノード電位VaをGNDへ接地するために制御信号PCONT2に応じてオン／オフするスイッチ49と、を有している。アノード電源回路314は、制御信号PCONTに応答して、本体電源305から供給された電位Va'aをアノードに供給する高電位のアノード電位Vaに変換して出力する。なお、本体電源305とアノード電源回路314は1つの回路ブロックで構成されていてもよい。

【0112】

図5に戻り、電源オン時のシーケンスを説明すると、本体電源305は、電源プラグ26が商用電源に接続され、給電上流側にある本体電源スイッチ25がオンになると、各回路21～24、314の中の論理回路に論理回路用駆動電位V

c c を供給する。この本体電源スイッチ25のオン状態を検知して、これと同時に若干遅れて、図6に示す時刻t10に、表示信号D Sは表示開始を行うハイレベルのスタート信号を発生させる。また、本体電源スイッチ25がオンになると、本体電源305はアノード電源回路314と駆動電源回路24にアノード電位V_aや駆動用基準電位V_s、V_iを発生させるための源になる動作電圧を供給する。

【0113】

駆動制御回路23は、通常MPUのような中央演算処理部を有する制御手段である。この駆動制御回路23が、アノード電源回路314に制御信号P C O N T、P C O N T 2を供給し、駆動電源回路24に制御信号R C O N Tを供給し、カソード駆動回路21に垂直走査用のクロックY C L K、イネーブル信号Y E N、制御信号Y C O N Tを供給し、ゲート駆動回路22に水平走査用のクロックX C L K、イネーブル信号X E N、制御信号X C O N T、表示画像データD A T Aを供給するように構成されている。

【0114】

アノード電源回路314は、制御信号P C O N T 2がオフ（ローレベル）の時、スイッチ49が導通し、電子放出体からの電子放出を行い得る閾値電位V_{t h}より十分に低い零電位のような特定電位に、アノードの電位を保持している。

【0115】

駆動電源回路24は、通常、零電位を出力しているが、論理回路用駆動電位V_{c c}が供給されている状態で、図6に示す時刻t11に、入力される制御信号R C O N Tがオンになると、駆動用基準電位V_s、V_iをカソード駆動回路21及びゲート駆動回路22に供給し始める。この時、カソード駆動回路21やゲート駆動回路22の出力は、ハイインピーダンスの電位不定状態から零電位に遷移し、カソード・ゲート間は同電位に保たれる。

【0116】

時刻t12に、イネーブル信号X E N、Y E Nがハイレベルになると、カソード駆動回路21から全てのカソード（行方向配線211）への高電位の非選択電位の供給が開始され、それとほぼ同時に、ゲート駆動回路22から全てのゲート

(列方向配線212)への低電位の非選択電位の供給が開始される。これにより、電子放出素子200のカソード・ゲート間には遮断電圧が印加されることになる。

【0117】

時刻t12から遅れた時刻t13に、入力される制御信号P_{CONT}, P_{CONT}2がオン（ハイレベル）になり、アノード電源回路314からアノードへ高いアノード電位V_aの供給が開始される。

【0118】

アノード電源回路314の出力側の時定数に因り一定のアノード電位V_aに到達した後の時刻t14において、制御信号X_{CONT}, Y_{CONT}により、マトリクス交点の電子放出素子200へ表示用駆動電圧の印加が許可される。即ち、カソード駆動回路21が走査を開始し、ゲート駆動回路22から表示パネル300への表示画像データDATAに基づいた変調電位の供給が開始される。

【0119】

こうして、1水平走査期間（1H）に少なくとも1行の行方向配線211が選択されて零電位が供給され、これに同期して多数の列方向配線212に表示画像データに基づいた変調電位が供給される。この走査を垂直方向に順次行う線順次駆動によって1フレームの画像表示が行われる。この時、走査非選択行の画素と、走査選択行であって黒表示データの変調電位が与えられた画素とのカソード・ゲート間には遮断電圧が印加され、当該画素は暗状態となる。

【0120】

次に、図7を用い、電源オフ時のシーケンスを説明すると、本体電源305では、ユーザにより給電上流側にある本体電源スイッチ25がオフされる。この本体電源スイッチ25のオフ状態を検知して、これと同時か若干遅れて、表示信号DSは表示終了を行うローレベルのエンド信号を発生させる。また、本体電源スイッチ25がオフになると、図7の時刻t20において、アノード電源回路314へ入力される制御信号P_{CONT}がオフになり、アノード電源回路314にアノード電位V_aを発生させるための源になる動作電圧を供給停止する制御を行う。

【0121】

よって、時刻 t_{20} からアノード電位 V_a は下がり始めるが、アノード上に電荷が蓄積されているために、アノード電位 V_a はすぐに下がらずに徐々に低下していく。

【0122】

そして、時刻 t_{20} から若干の時間経過後の時刻 t_{21} において、アノード電源回路314へ駆動制御回路23から供給される制御信号PCONT2がオフになり、制御信号PCONT2に応じるアノード電源回路314のスイッチ49がオンとなり、アノード電位 V_a はGNDへ接地される。このため、時刻 t_{21} からアノード電位 V_a は急激に低下し、0Vへ向かう。

【0123】

この時刻 t_{21} までに、制御信号XCONT, YCONTによるマトリクス交点の電子放出素子200への表示用駆動電圧の印加を終了しておく。即ち、カソード駆動回路21が走査を終了し、ゲート駆動回路22から表示パネル300への表示画像データDATAに基づいた変調電位の供給が停止される。

【0124】

しかし、時刻 t_{21} 以後も、イネーブル信号XEN, YENはハイレベルに保たれ、カソード駆動回路21から全てのカソード（行方向配線211）への高電位の非選択電位の供給が行われ、同時に、ゲート駆動回路22から全てのゲート（列方向配線212）への低電位の非選択電位の供給が行われる。これにより、電子放出素子200のカソード・ゲート間には遮断電圧が未だ印加され続けることになる。

【0125】

この遮断電圧によって、アノード電位 V_a が電子放出体の閾値電界以上の電界強度が得られる電位 V_{th} を越えている場合の電子放出を防止する。

【0126】

そして、アノード電位 V_a が電子放出体からの電子放出を行い得る閾値電位 V_{th} よりも下がった時点から所定の遅延時間 T_d2 経過後のアノード電位 V_a が0Vとなって充分経過した時刻 t_{22} に、イネーブル信号XEN, YENをローレベルに落とし、カソード駆動回路21から全てのカソード（行方向配線211）

への高電位の非選択電位の供給を停止し、同時に、ゲート駆動回路22から全てのゲート（列方向配線212）への低電位の非選択電位の供給を停止する。これにより、電子放出素子200のカソード・ゲート間の遮断電圧が印加終了される。

【0127】

時刻t22から遅れた時刻t23に、駆動電源回路24は、制御信号R C O N Tがオフになり、駆動用基準電位V_s、V_iをカソード駆動回路21及びゲート駆動回路22から供給停止する。この時、カソード駆動回路21やゲート駆動回路22の出力は、零電位からハイインピーダンスの電位不定状態に遷移し、カソード・ゲート間が同電位から解除される。もちろん、電位不定状態とすることは必須ではない。

【0128】

そして、時刻t23後の時刻t24以降に、本体電源305から供給される電位V_{a a}、V_{D D}、V_{E E}が必要な動作電位以下になるように、本体電源305は蓄電コンデンサを有しているとよい。

【0129】

さらに、時刻t24から遅れた時刻t25において、論理回路用駆動電位V_{c c}が必要な動作電位以下になり、最終的な電源オフ状態となる。また、これら電位V_{a a}、V_{D D}、V_{E E}、V_{c c}の遮断制御を本体電源305内の蓄電池と遮断スイッチによって制御してもよい。

【0130】

（第4実施形態）

図12～図14には、第4実施形態が示されている。本実施形態では、第3実施形態と同様に第1実施形態よりも詳しく各種回路を用いた本発明の構成を説明する。

【0131】

図12は本発明の第4実施形態による表示装置の駆動制御系のブロックを示す。図13、図14は本発明の第4実施形態による表示装置の駆動制御方法を説明するためのタイミングチャートを示す。本実施形態では図5～図7と同じ構成、

動作については詳述を省く。

【0132】

図12において図5と異なる点は、カソード駆動回路21'が列方向配線212に接続され、ゲート駆動回路22'が行方向配線211に接続されている点である。そして、ゲート駆動回路22'に垂直走査用のクロックYCLK、イネーブル信号YEN、制御信号YCONTを供給し、カソード駆動回路21'に水平走査用のクロックXCLK、イネーブル信号XEN、制御信号XCONT及び表示画像データDATAを供給する点である。更に、無線又は有線で駆動制御回路23を制御し表示装置を操作するための遠隔操作器27から表示信号DSを発生させている点である。特に、回路21'，22'，24'の詳細は、前述した第3実施形態と異なる構成となることに注意されたい。

【0133】

ここではまず、電源プラグ26が商用電源に接続され、給電上流側にある本体電源スイッチ25がオン状態にあり、各回路の論理回路に論理回路用駆動電位Vccが供給されている省電力の非表示モードから表示モードに遷移するシーケンスについて図13を用いて説明する。

【0134】

この非表示モードの状態で、時刻t10に、遠隔操作器27の操作により、表示再開信号DS1が2システムクロックの期間ハイレベルとなって発生し、駆動制御回路23に供給される。

【0135】

駆動電源回路24'は、通常、零電位を出力しているが、時刻t11に、入力される制御信号RCONTがオンになると、駆動用基準電位Vs, Vi1をカソード駆動回路21'及びゲート駆動回路22'に供給し始める。この時、カソード駆動回路21'やゲート駆動回路22'の出力は、ハイインピーダンスの電位不定状態から零電位に遷移し、カソード・ゲート間は同電位に保たれる。

【0136】

時刻t12に、イネーブル信号XEN, YENがハイレベルになると、ゲート駆動回路22'から全てのゲート（行方向配線211）への低電位の非選択電位の

供給が開始され、それとほぼ同時刻に、カソード駆動回路21'から全てのカソード（列方向配線212）への高電位の非選択電位の供給が開始される。これにより、全画素のカソード・ゲート間には同時に遮断電圧が印加される。

【0137】

時刻t12から遅れた時刻t13に、入力される制御信号P C O N Tがオンになり、アノード電源回路314からの出力は、電子放出体からの電子放出を行い得る閾値電位V_{t h}より十分に低い零電位のような特定電位から高電位への遷移を開始する。

【0138】

アノード電源回路314の出力側の時定数に因り一定のアノード電位V_aに到達した後の時刻t14において、制御信号X C O N T, Y C O N Tにより、マトリクス交点の電子放出素子へ表示用駆動電圧の印加が許可される。即ち、ゲート駆動回路22'が走査を開始し、カソード駆動回路21'から表示パネル300への表示画像データD A T Aに基づいてパルス幅変調された低電位の供給が開始される。

【0139】

こうして、ゲートの線順次走査により1水平走査期間（1H）に少なくとも1行の行方向配線211が選択されて選択電位（零電位）が供給され、残りの行方向配線211には非選択電位（負電位）が供給され、これに同期して多数の列方向配線212に表示画像データに基づいてパルス幅変調（P W M）された低電位の変調電位が供給される。この時、走査非選択行の画素と、走査選択行であって黒表示データの変調電位（正電位）が与えられた画素とのカソード・ゲート間には遮断電圧が印加され、当該画素は暗状態となる。

【0140】

次に、電源プラグ26が商用電源に接続され、給電上流側にある本体電源スイッチ25がオン状態にあり、表示モードから各回路の論理回路に論理回路用駆動電位V_{c c}が供給されている省電力の非表示モードに遷移するシーケンスについて図14を用いて説明する。

【0141】

表示モードの状態で、遠隔操作器27の操作により、表示終了信号の一つである表示一時停止信号D S 2が5システムクロックの期間ハイレベルとなって発生し、駆動制御回路23に供給される。すると、時刻t20に、駆動制御回路23によりアノード電源回路314へ入力される制御信号P C O N Tがオフになり、アノード電源回路314にアノード電位V aを発生させるための源になる動作電圧を供給停止する制御を行う。

【0142】

よって、時刻t20からアノード電位V aは下がり始めるが、アノード上に電荷が蓄積されているために、アノード電位V aはすぐに下がらずに徐々に低下していく。

【0143】

そして、時刻t20から若干の時間経過後の時刻t21において、アノード電源回路314へ駆動制御回路23から供給される制御信号P C O N T 2がオフになり、制御信号P C O N T 2に応じるアノード電源回路314のスイッチ49がオンとなり、アノード電位V aはG N Dへ接地される。このため、時刻t21からアノード電位V aは急激に低下し、0 Vへ向かう。

【0144】

この時刻t21までに、制御信号X C O N T, Y C O N Tによるマトリクス交点の電子放出素子200への表示用駆動電圧の印加を終了しておく。即ち、ゲート駆動回路22'が走査を終了し、カソード駆動回路21'から表示パネル300への表示画像データD A T Aに基づいた変調電位の供給が停止される。

【0145】

しかし、時刻t21以後も、イネーブル信号X E N, Y E Nはハイレベルに保たれ、ゲート駆動回路22'から全てのカソード（行方向配線211）への低電位の非選択電位の供給が行われ、同時に、カソード駆動回路21'から全てのゲート（列方向配線212）への高電位の非選択電位の供給が行われる。これにより、電子放出素子200のカソード・ゲート間には遮断電圧が未だ印加され続けることになる。

【0146】

この遮断電圧によって、アノード電位 V_a が電子放出体の閾値電界以上の電界強度が得られる電位 V_{th} を越えている場合の電子放出を防止する。

【0147】

そして、アノード電位 V_a が電子放出体からの電子放出を行い得る閾値電位 V_{th} よりも下がった時点から所定の遅延時間 T_d2 経過後のアノード電位 V_a が $0V$ となって充分経過した時刻 t_{22} に、イネーブル信号 XEN, YEN をローレベルに落とし、ゲート駆動回路 $22'$ から全てのカソード（行方向配線 211 ）への低電位の非選択電位の供給を停止し、同時に、カソード駆動回路 $21'$ から全てのゲート（列方向配線 212 ）への高電位の非選択電位の供給を停止する。これにより、電子放出素子 200 のカソード・ゲート間の遮断電圧が印加終了される。

【0148】

時刻 t_{22} から遅れた時刻 t_{23} に、駆動電源回路 $24'$ は、制御信号 RCONT がオフになり、駆動用基準電位 V_{i1}, V_s をカソード駆動回路 $21'$ 及びゲート駆動回路 $22'$ から供給停止する。この時、カソード駆動回路 $21'$ やゲート駆動回路 $22'$ の出力は、零電位からハイインピーダンスの電位不定状態に遷移し、カソード・ゲート間が同電位から解除される。これにより、非表示モードとなる。もちろん、電位不定状態とすることは必須ではない。

【0149】

前述した実施形態においては、遮断電圧は、全黒表示データに基づく変調電位をゲート又はカソードに与え続けておいて、カソード又はゲートを垂直走査してもよいし、走査線の選択・非選択にかかわらず、全黒表示データに基づく変調電位をゲート又はカソードに与え続けることによって実現することも可能である。或いは、変調電位にかかわらず、全走査線に非選択電圧を与え続けてもよい。また、遮断電圧は、走査選択電位や走査非選択電位或いは変調電位等の表示動作に用いられる電位とは別の電位から生成されてもよい。

【0150】

また、時刻 t_{23} まで、遮断電圧を印加し続ける代わりに、全面灰色表示や終期画像のような特定の表示状態を呈し得る駆動電圧の印加を行うことも可能である

。この場合、カソード又はゲートを垂直走査し、表示画像データに基づく変調電位をゲート又はカソードに与える。

【0151】

さらには、時刻 t_{21} の後、アノードの電位が電子放出体からの電子放出を行い得る閾値より下となってから、線順次で行を選択しながら、表示パネル300の全列に最暗状態を呈し得る変調電位を供給することによって遮断電圧を印加する状態を経て、表示終了を行ってもよい。または、アノード電位 V_a が当該閾値より下となってから、線順次で行を選択しながら、表示パネル300の複数の列に所定の変調電位を供給することによって特定の表示状態を呈し得る駆動電圧を印加する状態を経て、表示終了を行ってもよい。

【0152】

本発明に用いられる変調電位としては、表示画像データの表示階調レベルに応じて、3以上の複数の電位から変調電位を選択する電圧振幅変調（P HM）や、3以上の複数のパルス幅から変調電位のパルス幅を選択するパルス幅変調（P WM）や、P HMとPWMの組み合わせによる変調方式を採用することができる。特に、変調信号配線となるカソード配線又はゲート配線の何れか一方に供給される変調電位が3以上の複数レベルの電位から選択される場合には、そのうち1つを、遮断電圧を生成する電位に設定することが望ましい。

【0153】

また、本発明に用いられる遮断電圧は、走査選択電位や走査非選択電位或いは変調電位などの表示動作に用いられる電位とは、別の電位から生成されてもよい。

【0154】

表示信号DSとしては、前述したように、表示装置の最も上流にある本体電源スイッチのオンやオフを示す信号や、表示装置を無線又は有線で操作する遠隔操作器からの出力信号に限らず、中央演算処理部からの出力信号や、表示装置に接続されたコンピュータからの出力信号などのうち、少なくとも何れか1つであってもよい。また、これらの表示信号DSは、アノード電源回路、カソード駆動回路、ゲート駆動回路に少なくとも論理回路用駆動電位 V_{cc} が供給されている状

態で発生した、非表示モードから表示モードへの復帰信号や表示モードから非表示モードへの終了信号であるとよい。

【0155】

或いは、カソード駆動回路及びゲート駆動回路に少なくとも駆動用基準電位V_s、V_iが供給されている状態で、発生した非表示モードから表示モードへの復帰信号や表示モードから非表示モードへの終了信号（表示信号）をトリガとして、この復帰信号や終了信号に応答して、イネーブル信号XEN、YENを発生させ、カソード駆動回路及びゲート駆動回路をイネーブルとして遮断電圧などを与えてもよい。

【0156】

また、スイッチオンの後の非表示モードにおいては、Vccの供給を維持しているが、アノード電源回路、カソード駆動回路及びゲート駆動回路へはVccの供給をも遮断しておいて、表示信号DSが発生した後に、Vccの供給を復帰してもよい。

【0157】

本発明に用いられる、画素を構成するための電子放出素子としては、図示したようなカソードよりアノード側にゲートが配されている上ゲート構造であってもよいが、ゲートよりアノード側にカソードが配されている下ゲート構造や基板の同一平面上にカソードとゲートが配されている水平ゲート構造であってもよい（特開2002-170483号公報、US公開20020475139号公報、特開2002-150925号公報、US公開2002074947号公報等を参照）。

【0158】

また、本発明に用いられる電子放出閾値の低い電子放出体は、半導体若しくは導電体からなる繊維状のナノ構造体又は炭素を主成分とするナノ構造体であることが望ましい。ナノ構造体は、具体的には、カーボンナノチューブ、グラファイトナノファイバー、アモルファスカーボン、カーボンナノホーン、グラファイト、ダイヤモンドライクカーボン、ダイヤモンド、フラーレンから選択される少なくとも一種を含む。

【0159】

このように、各実施形態によれば、駆動制御回路23により、終了又は一時停止信号(DS)が発生した場合、カソード・ゲート間に、遮断電圧又は特定の表示状態を呈し得る駆動電圧の印加した状態でアノードの電位が電子放出体からの電子放出を行い得る閾値電位V_{t h}より低くなつてから、所定時間T_{d 2}経過した後に、遮断電圧又は特定の表示状態を呈し得る駆動電圧の印加を終了させるよう表示パネル駆動回路の動作を制御することにより、不本意な表示状態の発生や不本意な発光を抑制することができる。

【0160】

また、本発明は電子放出閾値の近い材料を用いた場合には、ノーマリーオン型に限らず、ノーマリーオフ型にも適用できる。

【0161】**【実施例】**

以下に、上記実施の形態に基づいた具体的な実施例について説明する。なお電子放出素子および平面型ディスプレイの実施例については、例えば特開2002-100279号公報に記載されている実施例とほぼ同様であるためここでの詳述は割愛し、簡単に構成を述べるにとどめる。

【0162】**(実施例1)**

図2に示したような表示パネルを以下のようにして作製した。

【0163】

電子源基板201としてPD200(旭硝子製)を用い、十分に洗浄を行って基板表面を清浄とした後、基板にアルミニウム系配線材料を用いてスパッタ法およびフォトリソグラフィー法を用いて、カソード202を、厚さ約1μm、幅300μmの連続した平行ストライプ状の配列に形成した。

【0164】

さらにカソード202上には、電子放出体205となる部分に、密着層としてTiNを、この上に触媒層としてPd/Co(各50重量%)をいずれもスパッタ法およびフォトリソグラフィー法を用いて、φ10μmとなるように形成した

。なお触媒層としては他にFe, Ni及びこれらと前述のPd, Co等の混合物を用いることもできる。

【0165】

この上に電子放出体205を除く部分に、層間絶縁層としてSiO₂をスパッタ法およびフォトリソグラフィー法を用いて、厚さ約2μmにて形成した。

【0166】

さらに層間絶縁層上にカソード202と同様に、ゲート204を、厚さ約0.5μm、幅200μmで、カソード202と直交するように連続した平行ストライプ状の配列に形成した。

【0167】

さらにゲート204には、電子放出体205の真上に対応する位置に、ホール部210を開口径φ10μmとなるように形成した。

【0168】

なお、上記電子放出体205及びホール部210については各電子放出素子200について1個のみ図示しているが、複数個設けることもできる。

【0169】

この後、この電子源基板201を大気中で熱処理を行いPd/Coをそれぞれ酸化させた後、CVD装置中に入れ、水素を流入させながら熱処理を行い、酸化パラジウム及び酸化コバルトを水素還元し、微粒子化した。

【0170】

この後、エチレンを流入させながら550℃にて1時間熱処理した。即ち、熱CVDにより、電子放出体205として多数のグラフェンが繊維の長手方向に積層された構造のグラファイトナノファイバー(GNF)を、触媒の作用によりTiNの密着層上に形成した。なお、エチレンに替えてアセチレン、メタン等の炭化水素ガスを用いることもでき、ガス流量、温度、時間等を適宜選択することにより、同様のGNFを形成することができる。

【0171】

こうして作成した電子源基板201とあらかじめ同一のPD200を使用して形成したフェースプレート206及び外枠214とを、10⁻⁷Pa以下の圧力

まで排気した真空チャンバー中にてガラスフリットを用いて400℃に加熱することにより外囲器を形成した。

【0172】

なおこの時、図示していないスペーサーを電子源基板201上のX方向に配置して大気圧支持構造を形成し、外枠214及びスペーサーによって電子源基板201及びフェースプレート206のアノード（メタルバック209）が2mmの間隔をもって対向し保持されるようにした。

【0173】

このようにして作成した表示パネルのカソード202を0V、ゲート204を0Vとし、アノードに電位 V_a を印加して、アノード電位を徐々に上昇させたところ、 $V_a = 7 \text{ kV}$ （これがカソード202・アノード間の電子放出閾値電圧）より電子放出が行われフェースプレート206の蛍光体208が発光することが確認され、電子放出素子200の閾値電界強度が約 $3.5 \text{ V}/\mu\text{m}$ であることがわかった。さらに $V_a = 10 \text{ kV}$ まで供給することにより、カソード202・アノード間の電界強度を $5 \text{ V}/\mu\text{m}$ としてノーマリーオン型の電子放出素子200として確実に動作するようにした。

【0174】

こうして作製した、電子放出素子200のカソード202・ゲート204間の遮断電圧を調べるために、カソード202である行方向配線211に供給される電位 V_x を0Vのままとし、ゲート204である列方向配線212に供給される電位 V_y を徐々に供給したところ、 $V_y = -50 \text{ V}$ にて、 $V_a = 10 \text{ kV}$ の時に電子放出を遮断できた。すなわち、カソード202・ゲート204間の遮断電圧が -50 V （カソード側を0Vとした場合のゲート電圧）であることがわかった。

【0175】

さて前述の表示パネル300に、X方向配線211には走査信号印加手段301として、走査信号印加回路を集積化したドライバICをプリント基板上に搭載し、X方向配線211との間をフレキシブルプリント基板で接続した。同様に変調信号印加手段302をY方向配線212に接続した。

【0176】

さらに走査信号印加手段301と変調信号印加手段302には、それぞれ走査信号と変調信号を生成するために必要な信号をコントロール回路303より接続し、またコントロール回路303からはアノード電源回路304の動作を制御するための信号線も接続した。

【0177】

また、これらのコントロール回路303やアノード電源回路304の動作に必要な電圧を供給するための本体電源305をそれぞれに接続した。

【0178】

なお、上記以外の図示しない画像表示に必要な信号処理用回路や周辺回路についても同様に接続した。

【0179】

コントロール回路303にはマイコンICを搭載し、電源オフシーケンスおよびその他画像表示に必要な各種信号処理や、あるいはテレビジョン装置として必要な機能（例えばリモコン操作等）の制御に使用した。

【0180】

図1の電源オフシーケンスのタイミングチャートに示すように、電源オフと共にコントロール回路303において表示信号DSがローレベルとなり、マイコンICにて不図示の必要な信号処理および電源電圧制御等が行われ、その後コントロール回路303よりアノード電源回路304に制御信号を送り、 $V_a = 10\text{ kV}$ をオフするようにした。

【0181】

なお、本実施例においては、前述のように $V_{th} = 7\text{ kV}$ であるためアノード電位 V_a が 7 kV 以下となった後、本実施例においては $t_{Td2} = 50\text{ ms}$ となるように、 V_x および V_y がそれぞれオフされるようにコントロール回路303より走査信号印加手段301および変調信号印加手段302にそれぞれ制御信号を送り、ドライバICよりそれぞれ V_x 、 V_y が印加されなくなるようにした。

なお、このときの V_x 、 V_y は通常の表示信号として V_x は走査信号、 V_y は変調信号を印加し続けた。

【0182】

以上のように電源オフシーケンスにおいて、ノーマリーオン型の電子放出素子のアノード電位 V_a を供給停止し、アノード電位 V_a が電子放出素子の閾値電位 V_{th} 以下に低下した後、カソード202・ゲート204間電圧をオフするよう構成したので、電源オフ時や停電時に全面白表示により不快感を与えることなく表示を終了することができた。

【0183】

(実施例2)

実施例1で作成したノーマリーオン型の表示パネル300を用いて、図4に示す構成図にて表示装置を構成した。

【0184】

本実施例においては、アノード電源回路304と表示パネル300の高圧端子213の間に、遮断接地回路306を設けた。

【0185】

上記構成において、電源電圧の低下を検知してコントロール回路303において表示信号DSをローレベルにすると共に、遮断接地回路306に信号を送り高電位供給を遮断した後、高圧端子213を接地してGNDにアノードの蓄積電荷を放電させアノード電位 V_a を閾値電位 V_{th} 以下にした。

【0186】

その後、図1に示す電源オフシーケンスに従い V_x , V_y を $T_d = 50\text{ ms}$ でオフするようにした。

【0187】

本実施例においては、アノード電位 V_a を速やかに閾値電位 V_{th} 以下にすることができるよう構成したので、電源オフシーケンスをより速やかに実行することができた。

【0188】

(実施例3)

実施例1と同様にして、触媒層および熱CVDの条件を適宜選択することにより、電子放出体205として周知の方法でグラフェンが円筒状となっている構造

のカーボンナノチューブ（C N T）を形成し、同様に閾値電界強度約3.5 V/ μ mの電子放出素子を得た。

【0189】

実施例1と同様にV_a=10 kV印加によりノーマリーオン型の電子放出素子が得られ、その時のカソード・ゲート間の遮断電圧はほぼ-50 Vであることが確認された。

【0190】

この実施例3においても、電源オフシーケンスにおいて、電源オフ時に全面白表示となることを防止できた。

【0191】

【発明の効果】

以上説明したように、本発明は、例えば電源オフ時等の表示終了信号の発生に応じてアノード電位を供給状態から遮断状態に遷移させる場合に、全面白のような不本意な表示となることを防止できる。つまり、たとえ短時間であってもユーザーが装置の故障と誤認したり、不快感を覚えたりするような現象を防止することができる。

【図面の簡単な説明】

【図1】

本発明の第1実施形態による表示装置の駆動制御方法のタイミングチャートを示す図である。

【図2】

本発明の第1実施形態に用いられる表示パネルの一部破断模式図である。

【図3】

本発明の第1実施形態による表示装置の駆動制御系のブロック図である。

【図4】

本発明の第2実施形態による表示装置の駆動制御系のブロック図である。

【図5】

本発明の第3実施形態による表示装置の駆動制御系のブロック図である。

【図6】

本発明の第3実施形態による表示装置の駆動制御方法のタイミングチャートを示す図である。

【図7】

本発明の第3実施形態による表示装置の駆動制御方法のタイミングチャートを示す図である。

【図8】

本発明の第3実施形態に用いられる駆動電源回路の一例を示す回路構成図である。

【図9】

本発明の第3実施形態に用いられる行駆動回路の一例を示す回路構成図である。

【図10】

本発明の第3実施形態に用いられる列駆動回路の一例を示す回路構成図である。

【図11】

本発明の第3実施形態に用いられるアノード電源回路の一例を示す回路構成図である。

【図12】

本発明の第4実施形態による表示装置の駆動制御系のブロック図である。

【図13】

本発明の第4実施形態による表示装置の駆動制御方法のタイミングチャートを示す図である。

【図14】

本発明の第4実施形態による表示装置の駆動制御方法のタイミングチャートを示す図である。

【図15】

電子放出素子の動作を説明するための模式図である。

【符号の説明】

2 カソード

- 4 ゲート
- 5 電子放出体
- 6 アノード
- 2 1 カソード駆動回路
- 2 2 ゲート駆動回路
- 2 3 駆動制御回路
- 2 4 駆動電源回路
- 2 5 本体電源スイッチ
- 2 6 電源プラグ
- 2 7 遠隔操作器
- 3 1, 3 2 スイッチ
- 3 3 オペアンプ
- 3 4 抵抗器
- 3 6 アンドゲート
- 3 7 レベルシフト回路
- 3 8 インバータ
- 4 0, 4 1, 4 2 選択回路
- 4 3 アンドゲート
- 4 4 レベルシフト回路
- 4 5 インバータ
- 4 6 トランス制御回路
- 4 7 高圧出力トランス
- 4 8 整流回路
- 4 9 スイッチ
- 2 0 0 電子放出素子
- 2 0 1 電子源基板
- 2 0 2 カソード
- 2 0 4 ゲート
- 2 0 5 電子放出体

- 206 フェースプレート
- 207 アノード基板
- 208 蛍光体
- 209 メタルバック
- 210 ホール部
- 211 行方向配線
- 212 列方向配線
- 213 高圧端子
- 214 外枠
- 300 表示パネル
- 301 走査信号印加手段
- 302 変調信号印加手段
- 303 コントロール回路
- 304 アノード電源回路
- 305 本体電源
- 306 遮断接地回路
- 314 アノード電源回路

【書類名】

図面

【図 1】

【図2】

【図3】

【図4】

【図 5】

【図 6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

【図 14】

【図15】

(a)

(b)

【書類名】 要約書

【要約】

【課題】 表示終了信号の発生に応じてアノード電位を供給状態から遮断状態に遷移させる場合における、不本意な表示状態の発生や不本意な発光を抑制することができる表示装置及びその駆動制御方法を提供する。

【解決手段】 時刻 t_0 で表示終了信号 D_S が発生した場合、時刻 t_1 でアノード電位 V_a を立ち下げ、カソード・ゲート間に遮断電圧を印加した状態でアノード電位 V_a が閾値電位 V_{th} より低くなつてから所定時間 T_d 経過した後の時刻 t_2 で、遮断電圧の印加を終了させる。

【選択図】 図 1

特願2002-337943

出願人履歴情報

識別番号 [000001007]

1. 変更年月日 1990年 8月30日
[変更理由] 新規登録
住 所 東京都大田区下丸子3丁目30番2号
氏 名 キヤノン株式会社