A Comparison of Antenna Placement Algorithms

Abhinav Jauhri

April 4, 2015

Contributions

- ► Formulation of the antenna placement problem
- Evaluation of standard stochastic algorithms on a real-world problem
- Able to achieve global optimum with as low as 25% evaluations of search space

Minimize Difference in Radiation Pattern

Pattern defines the ratio of energy radiated and input energy in a particular direction. For each antenna A_i :

$$F_{RP} = \sum_{i=1}^{n} \sum_{\theta=0}^{\pi} \sum_{\phi=0}^{2\pi} \left(FSG_i(\theta, \phi) - ISG_i(\theta, \phi) \right)^2, \qquad (1)$$

where

- θ, ϕ spherical coordinates
- ► $FSG(\cdot)$ returns free-space gain pattern
- ▶ $ISG(\cdot)$ returns in-situ gain pattern

Radiation Pattern

Free-space pattern without platform or other antennas

Random in-situ pattern with platform and antennas

Radiation Pattern

Free-space pattern without platform or other antennas

Random in-situ pattern with platform and antennas

Best in-situ pattern with platform and antennas similar to free-space pattern

GA with different mutation rates

Equivalence of fitness to efficiency

For a particular test case, fitness change of 0.01 is equivalent to either the corresponding value under expected gain (\mathbb{E}_g) column, or difference in coupling (Δ_c) .

ID	\mathbb{E}_{g}	Δ_c (dB)
tc1	872.277	0.5474
tc2	862.082	1.3034
tc3	861.845	1.5180
tc4	871.049	0.5693

$$\mathbb{E}_g = \frac{1}{N \cdot m} \sum_{i}^{m} F_{RP}(A_i), \text{ where } N = |\theta| \cdot |\phi|$$