

TABLE OF CONTENTS

00

Intro

18:15 - 18:30

03

BREAK

19:10 - 19:20

01

Network

18:30 - 17:50

04

Competition

18:20 - 18:55

02

Training

18:50 - 19:10

05

Final Words

19:55 - 20:00

01

What are Neural Networks and Deep Learning

Machine learning gives computers the ability to learn —Arthur Samuel (1959)

Save lives

Predicting protein structure

Deep Learning

Supervised Learning

Х1	Х2	Х3	Xn	Υ

Target

In supervised learning we have
The data X consisting of different
features and the label y what we want
to predict

Machine learning models tries to learn the function to transform X into y

The Math

PyTorch

- Is an industry standard library for deep learning
- Includes all you tools you need to build, train and run a deep learning model
- Alternatives: Tensorflow, JAX

Let's look at the code

Gradient Descent

- Used during training to find out how to adjust the network learnable parameters, AKA how it learns
- Minimize the loss function
- Change the weights

Gradient Descent

Repeat until converge {

$$\mathbf{w} = \mathbf{w} - \alpha \left[\frac{\partial Loss}{\partial w} \right]$$

$$b = b - \alpha \left[\frac{\partial Loss}{\partial b} \right]$$

Splitting the dataset

- Want to give the model much data
- Want the model to generalize

Overfitting and Underfitting

Summary

- Machine learning & Deep Learning
- Implementing Neural Networks
 - Design networks
 - Do predictions
 - Training
- Evaluating model performance
 - Underfitting and Overfitting
- Improving the performance

