Memo pour l'année

LAURENT Thomas

Master 2 informatique 2018

Contents

1	Fou	Fouille de donnée 1							
	1.1	Pré traitement des données	2						
		1.1.1 Nettoyage des données	2						
			2						
	1.2		3						
			3						
	1.3		4						
			4						
2	App	rentissage par le pratique	9						
	2.1	Rappel)						
		2.1.1 Matrices et calcules sur les Matrices)						
	2.2	Algorithms Learn a Mapping From Input to Output 1	1						
		2.2.1 linear ML algorithms	1						
		2.2.2 Supervised machine learning	1						
		2.2.3 Unsupervised machine learning	1						
		2.2.4 semi-supervised machine leaning	1						
		2.2.5 Overview of dias and variance	2						
	2.3	Overfitting and Underfitting	3						
	2.4	Linear Algorithms	4						
		2.4.1 Régression linéaire	4						
		2.4.2 Least squares linear regression	ŏ						
		2.4.3 Gradient Descent	3						
	2.5	Logistic Regression	7						
		2.5.1 Logistic function	7						
		2.5.2 Logistic regression predicts probabolities 1	7						

3	Outils formel						
	3.1 Logique classique des propositions						
		3.1.1	Vocabulaire	19			
		3.1.2	Propriétés de l'opérateur Models	19			
		3.1.3	Ensemble de connecteurs fonctionnement complet	20			
		3.1.4	Décomposition de Shannon	20			
		3.1.5	Arbre de Shannon, ROBDD	20			
		3.1.6	Notion de impliquant premier	21			
		3.1.7	Système de Hilbertein	21			
4	Rep	orésent	ation des connaissances et raisonnement	22			
5	Rec	herche	e Opérationnel	24			
6	XM	\mathbf{L}		26			

Chapter 1 Fouille de donnée

1.1 Pré traitement des données

1.1.1 Nettoyage des données

Caractéristiques descriptives

Objectifs: Résumer, décrire certains aspects (tendances, variation, dispersion...) des données en utilisant certaines mesures :

Moyenne (espérance) : $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$

Ecart moyen : $\frac{1}{n} \sum_{i=1}^{n} |x_i - \overline{x}|$

Variance: $v = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$

Ecart type : $\alpha x := \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2} = \sqrt{\frac{1}{n} (\sum_{i=1}^{n} x_i^2) - \bar{x}^2}$

Médiane : Valeur se trouvant au milieu d'une série de données ordonnées

Mode :Valeur la plus fréquente

 $\mathbf{Amplitude}\ :\! \min,\ \max$

1.1.2 Normalisation

 $\mathbf{Min\text{-}max} : v_n = \frac{v - v_{min}}{v_{max} - v_{min}}$

Min-max dans l'intervalle [A,B]: $v_n = \frac{v - v_{min}}{v_{max} - v_{min}} * (B - A) + A$

Z-Score: $v_n = \frac{v - moyenne}{ecart_t y p e}$

Decimal scaling: $v_n = \frac{v}{100^j}$

1.2 Classification

1.2.1 Évaluation des classifieurs

Matrice de confusion

Percent of correct classification:

$$PCC(\%) := \frac{N_c}{N_t} * 100$$

 ${\cal N}_c$: nombre d'instances correctement classées

 N_t : nombre d'instances testées $(N_t = |D_{test}|)$

Exemple:

$$: \begin{pmatrix} - & c1 & c2 & c3 & c4 \\ c1 & 0 & 1 & 0 & 0 \\ c2 & 1 & 60 & 0 & 1 \\ c3 & 0 & 1 & 23 & 0 \\ c4 & 1 & 0 & 7 & 5 \end{pmatrix}$$

Taux d'erreurs : 100-PCC

$$\mathbf{PCC}(\%) = \frac{0+60+23+5}{100} * 100 = 88\%$$

1.3 Arbre de décision

1.3.1 critères de sélection C4.5

Construction d'un arbre de décision C4.5 La construction d'un arbre de décision avec C4.5 passe par deux phases:

Phase d'expansion: La construction se fait selon l'approche descendante et laisse croître l'arbre jusqu'à sa taille maximale.

Phase d'élagage: Pour optimiser la taille l'arbre et son pouvoir de généralisation, C4.5 procède à l'élagage (pour supprimer les sous-arbres qui ne minimisent pas le taux d'erreurs)

Approche de construction d'un AD : Partitionner récursivement les données en sous-ensembles plus homogènes . . . jusqu'à obtenir des partitions qui contiennent des objets qui appartiennent majoritairement à la même classe.

=> Théorie de l'information pour caractériser le degré de mélange, homogénéité, impureté, incertitude...

Théorie de l'information : Théorie mathématique ayant pour objet l'étude du contenu informationnel d'un message.

Applications en codage, compression, sécurité...

Entropie : Mesure la quantité d'incertitude dans une distribution de probabilités.

Rappel sur les probabilisées

Quelques rappels de probabilités : Soient X et Y deux variables aléatoires discrètes prenant leurs valeurs dans DX=x1,...,xn et DY=y1,...,ym respectivement.

$$P(x_i) = \frac{|x_i|}{\sum_{j=1}^n |x_j|}$$

$$\sum_{i=1}^n P(x_i) = 1$$

$$P(x_i|y_i) = \frac{P(x_i,y_i)}{p(y_i)}$$

$$P(x_i,y_i) = p(x_i) * p(y_i) \text{ Si X et Y sont indépendantes}$$

Exemple:

Entropie

Entropie: Mesure la quantité d'incertitude (manque d'information) dans une distribution de probabilités. Soit X une variable aléatoire discrète prenant ses valeurs dans DX = x1, ..., xn. Soit P la distribution de probabilités associée à X.

$$H(X) = -\sum_{i=1}^{n} p(x_i) * log_2(p(x_i))$$

Par convention, quand p(x) = 0, 0 * log(0) = 0

Exemple:

$$\begin{array}{|c|c|c|} X & P(X) \\ \hline x_1 & 1/3 \\ x_2 & 1/3 \\ x_3 & 1/3 \\ \end{array}$$

$$H(X) = -p(x_1) * log_2(p(x_1)) - p(x_2) * log_2(p(x_2)) - p(x_3) * log_2(p(x_3))$$

$$H(X) = -3(\frac{1}{3} * log_2(\frac{1}{3})) = log_2(3) = 1.58$$

Autre exemples:

$$\left[\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\right] : H(X) = 1.5$$

$$[1,0,0]: H(X) = 0$$

$$[\frac{1}{2}, \frac{1}{2}] : H(X) = 1$$

Propriétés:

$$H(X) >= 0$$

H(X) est maximale pour une distribution uniforme (toutes les valeurs sont équiprobables).

Entropie conjointe : L'entropie conjointe de deux variables aléatoires X et Y est l'incertitude relative à ces deux variables conjointement.

$$H(X,Y) = -\sum_{i,j=1}^{n} p(x_i, y_i) * log_2(p(x_i, y_i))$$

Exemple: [0.2, 0.1, 0.3, 0.4] : H(X, Y) = 1.85

Critère de sélection: Gain d'information:

$$GAIN(T, A) = Info(T) - Info(T|A)$$

Avec Info(T): Entropie au niveau de T (avant de partitionner)

$$Info(T) = -\sum_{c_i} freq(c_i, T) * log_2(freq(c_i, T))$$

Avec
$$freq(c_i, T) = p(c_i) = \frac{|c_i|}{|T|}$$

Avec Info(T|A) l'entropie conditionnelle de T une fois partitionné selon les valeurs de l'attribut A.

$$Info(T|A) = \sum_{a_{j \in A}} freq(a_j, T) * Info(T|a_j)$$

Critère de sélection: Gain Ration:

Le gain d'information favorise les attributs ayant de larges domaines.

Le ratio de gain utilise le gain d'information avec un facteur pénalisant les attributs ayant des domaines trop larges.

$$GainRatio(T, A) = \frac{Gain(T, A)}{Split_Info(T, A)}$$

Avec $Split_Info(T,A) = -\sum_{a_{j\in A}} freq(a_j,T)*log_2(freq(a_j,T)) = EntropiedeA$

Chapter 2

Apprentissage par le pratique

2.1 Rappel

2.1.1 Matrices et calcules sur les Matrices

Addition

$$\begin{pmatrix} 1 & 3 \\ 1 & 0 \\ 1 & 2 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 7 & 5 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 1+0 & 3+0 \\ 1+7 & 0+5 \\ 1+2 & 2+1 \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ 8 & 5 \\ 3 & 3 \end{pmatrix}$$

Multiplication

$$\begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 19 & 22 \\ 43 & 50 \end{pmatrix}$$

$$(1*5) + (2*7) = 19$$

Transposer

$$\left(\begin{array}{ccc}1&3&5\\2&4&6\end{array}\right)=\left(\begin{array}{ccc}1&2\\3&4\\5&6\end{array}\right)$$

Inverse

Soit une matrice 2x2 comme : $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$

Soit Determinant D = ad - bc

Si D != 0 alors il existe une matrice inverse égal à : $\frac{1}{D} \left(\begin{array}{cc} d & -b \\ -c & a \end{array} \right)$

2.2 Algorithms Learn a Mapping From Input to Output

2.2.1 linear ML algorithms

Simplifier les processus d'apprentissage et réduire la fonction sur ce qu'on connait

Soit : B0 + B1X1 + B2X2 + B3X3 = 0

Où B0,B1,B2,B3 sont les coefficients présent sur l'axe des ordonnées.

Et X1,X2,X3 sont les valeurs en Input.

2.2.2 Supervised machine learning

L'apprentissage supervisé peut se diviser en 2 partis

Classification: Quand les variables en sortie sont des Classe (Vert, Carr, Homme)

Regression: Quand les variables en sortie sont des valeur numérique (euro, poids, quantits)

2.2.3 Unsupervised machine learning

Les problèmes de l'apprentissage non supervisé sont:

Clustering: L'art de faire des paquet d'éléments qui ont des points commun, comme regrouper les clients par paquet de choses qu'ils ont le plus en commun.

Association: Associer des règles d'apprentissage pour décrire une portion du data, comme une personne qui a acheté un item A et qui est aussi tenté par acheter un item B

2.2.4 semi-supervised machine leaning

L'apprentissage semi supervisé c'est avoir un bonne quantité de données en input X, et un peu de data avec le label Y.

2.2.5 Overview of dias and variance

La prédiction des erreurs pour les algorithmes sont regroupé en 3 points:

Bias Error : Simplifier l'hypothèse fait par le modèls pour faire une fonction d'apprentissage plus facile.

Variance Error : Et la quantité estimé par la fonction visé qui changera via un différent ensemble de data utilisé.

Irreductible Error : Ne peut pas être réduit

2.3 Overfitting and Underfitting

dddddddd

2.4 Linear Algorithms

Soit X l'ensemble des variables indépendantes sur l'axe des l'abscisse et Y l'ensemble des variable dépendantes sur l'axe des ordonnée.

2.4.1 Régression linéaire

Étant donné un plan à deux dimensions où l'abscisse contient les point d'entrée X et l'ordonnée contient les points de sortie Y, et un nouage de points précédaient acquitté de tout point éloigné du nuage.

 $Figure ap-linear-regression_1$

Avec: $y = \beta_0 + \beta_1 x$

Pour un hyperPlan (3d) : $y = \beta_0 + \beta_1 x_1 + ... \beta_n x_n$

Exemple:

$$5 = \beta_0 + 2 * \beta_1$$

$$\mathbf{2} = \beta_0 + 1 * \beta_1$$

2.4.2 Least squares linear regression

Calculer la régression linéaire avec la méthode Least squares: Soit:

 $\mathbf{X} = [1, 2, 3, 4, 5]$ les variables indépendantes d'axe abscisse

 $\mathbf{Y} = [2,4,5,4,5]$ les variables dépendantes d'axe ordonnée

Calculons $y = \beta_0 + \beta_1 x$

Calcule de la moyenne de X et Y:

$$\mathbf{Xm} = \sum x_i \in X = 3$$

$$\mathbf{Ym} = \sum y_i \in Y = 4$$

Toutes ligne de régression doivent passer par le point (Xm,Ym). Calculer tout les écarts des $x_i \in X$ par rapport à Xm (resp Y):

X	Y	X - Xm	Y-Ym	$(X - Xm)^2$	(X - Xm)(Y - Ym)
1	2	-2	-2	4	4
2	4	-1	0	1	0
3	5	0	1	0	0
4	4	1	0	1	0
5	5	2	1	4	

 $Calculer\beta_1$:

$$\beta_1 = \frac{\sum (X - Xm)(Y - Ym)}{\sum (X - Xm)^2} = \frac{6}{10} = .6$$

$$\beta_0 : Ym = \beta_0 + \beta_1 * Xm : 4 = \beta_0 + .6 * 3 : 4 = \beta_0 + 1.8 : \beta_0 = 2.2$$

2.4.3 Gradient Descent

Soit:

$$\mathbf{X} = [1, 2, 4, 3, 5]$$

$$\mathbf{Y} = [1, 3, 3, 2, 5]$$

 ${f i}=$ une variable qui itère les éléments de X et Y en bouclant à l'infini.

Une initialisation comme:

$$\beta_0 = 0$$

$$\beta_1 = 0$$

 $\alpha = {\rm donn\acute{e}e}$ en énoncé (pour l'exemple égal à 0.01)

Et des fonctions définit tel que:

$$\mathbf{error} \, = (\beta_0 + \beta_1 * X[i]) - Y[i]$$

$$\beta_{0+1} = \beta_0 - \alpha * error$$

$$\beta_{1_{+1}} = \beta_1 - \alpha * error * X[i]$$

En appliquant l'algorithme des calcules des β_i :

i	X[i]	Y[i]	error	β_0	β_1
0	1	1	-1	0.01	0.01
1	2	3	-2.97	0.06	0.03
2	4	3	-1.77	0.18	0.06
3	3	2	-1.61	0.22	0.08
4	5	5	-4.35	0.44	0.12
0	1	1	-0.42	0.45	0.13
1	2	3	-2.28	0.49	0.49

2.5 Logistic Regression

2.5.1 Logistic function

Soit:

$$\mathbf{t} \ \in \Re[0,1]$$
égal à $\beta_0 + \beta_2 * x$

La fonction de logique de régression, les valeur d'entrée X sont combiné en utilisant les coefficient de valeur pour prédire une sortie Y. Cette sortie sera une valeur binaire.

$$p(x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 * x})}$$

Note : p(x) peut être interprété comme une fonction de probabilité P(X) = P[Y=1|X).

$$\beta_0 + \beta_1 * x \, = \ln(\frac{P(x)}{1 - P(x)})$$
aussi appelé odds.

2.5.2 Logistic regression predicts probabolities

Chapter 3

Outils formel

3.1 Logique classique des propositions

3.1.1 Vocabulaire

DAG: Un graphe dirigé acyclique

Interprétation : ω de $PROP_{ps}$ est une application de PS dans 0.1

Sémantique : $[|\phi|](\omega)$ d'une formule ϕ de $PROP_{ps}$ dans l'interprétation ω est une élément de 0.1 définit inductive ment par:

$$si\phi \in PS$$
 alors $[|\phi|](\omega) = \omega(\phi)$
 $si\phi = cX_1...X_n$ alors $[|\phi|](\omega) = C_F([|x_1|](\omega)...[|x_n|](\omega))$

$$\omega$$
 satisfait ϕ noté $\omega \models \phi ssi[|\phi|](\omega) = 1$

Lorsque $\omega \models \phi$ on dit que ω est un modèle de ϕ

on note $\eta(\phi)$ l'ensemble des modèles de ϕ

 $\omega \in PROP_{ps}$ est valide noté $\models \phi$, ssi toute interprétation $\omega de PROP_{ps}$ satisfait ϕ

 $phi \equiv \psi$ sont logiquement équivalents $ssiphi \models \psi$ et $psi \models \phi$

3.1.2 Propriétés de l'opérateur Models

Réflexivité : $\phi \models \phi$

Équivalence à gauche : si $\phi \equiv \theta et \phi \models \psi alors \theta \models \psi$

Affaiblissement à droite (transitivité) : $si\phi \models \psi et\psi \models \theta alors\phi \models \theta$

Coupure : $si\phi \wedge \psi \models \theta et\phi \models \psi alors\phi \models \theta$

 $\mathbf{Ou} \,:\, \phi \vee \psi \models \theta \mathrm{ssi} \phi \models \theta \mathrm{et} \psi \models \theta$

Monotonie : si $\phi \models \theta \text{alors} \phi \land \psi \models \theta$

3.1.3 Ensemble de connecteurs fonctionnement complet

On dit qu'un ensemble est fonctionnellement complet si avec que les connecteurs de cette ensemble on peut exprimer toutes les formules d'un monde.

 $\{\neg, \land\}$ est fonctionnellement complet pour la logique propositionnel classique

Il en va de même pour $\{\neg,\vee\}, \{vrai,\wedge,\bigoplus\}, \{\neg,\Rightarrow\}ou\{NAND\}$

3.1.4 Décomposition de Shannon

On note $\phi[x \leftarrow 0)$ la formule obtenue en substituant dans ϕ la constante faux à toutes les occurrences du symbole propositionnel x.

On note $\phi[x \leftarrow 1)$ la formule obtenue en substituant dans ϕ la constante vrai à toutes les occurrences du symbole propositionnel x.

La décomposition de Shannon de ϕ suivant x est la formule:

$$(\neg x \land \phi[x \leftarrow 0]) \lor (x \land \phi[x \leftarrow 1])$$

3.1.5 Arbre de Shannon, ROBDD

Étant donnée un ordre strict total $x_1 < x_2 < x_3$ sur $Var(\phi) = \{x_1, X_n\}$ Et une formule $\phi = (\neg x_1 \land x_2) \lor (\neg x_2 \land x_3)$

L'ensemble des modèles de ϕ sont toutes les interprétation où la feuille vaut la valeur T.

3.1.6 Notion de impliquant premier

ggg

3.1.7 Système de Hilbertein

ggg

Chapter 4

Représentation des connaissances et raisonnement

ggggg

Chapter 5 Recherche Opérationnel gggg

Chapter 6

XML

uuuuu