A view of the EM algorithm that justifies incremental, sparse, and other variants

R. M. Neal, G. E. Hinton presented by Silvia Zuffi

#### Introduction

- Context: y observed, z hidden  $P(y, z|\theta)$
- Goal: ML parameter learning with hidden variables given observed data
- ML estimate: maximize log likelihood

$$\hat{\theta}_{ML} = \arg\max_{\theta} L(\theta)$$

$$L(\theta) = \log \sum_{z} P(y, z | \theta)$$

#### Expectation-Maximization

- Initialization: assign parameter estimate
- E-STEP: computes the probability distribution of the hidden variables conditioned on observed data and actual parameters

$$\tilde{P}^{(t)}(z) = P(z|\mathbf{y}, \theta^{(t-1)})$$

M-STEP maximizes

$$\theta^{(t)} = \arg\max_{\theta} E_{\tilde{P}^{(t)}}[logP(y, z | \theta)]$$

# Expected complete log likelihood

 It is assumed that this maximization is easier

$$\hat{\theta}_{ML} = \arg\max_{\theta} \sum_{z} \left[ \left( \log \prod_{i} P(y_i, z | \theta^{(t)}) P(z | \mathbf{y}, \theta^{(t-1)}) \right) \right]$$

$$Q(\tilde{P}, \theta^{(t)}) = \sum_{z} \left[ (\log \prod_{i} P(y_i, z | \theta^{(t)}) \tilde{P}(z)) \right]$$

$$\tilde{P}(z) = P(z|\mathbf{y}, \theta^{(t-1)})$$

#### Alternative solutions

- If M-step cannot be solved in closed form:
  - partial M-step: increase likelihood instead of maximize (GEM algorithms, Dempster 1977)
- Speed-up convergence:
  - incremental (partial) E-step

#### a different view of EM

- See the algorithm as an optimization problem over a function of the parameters and distribution of the hidden variables
- Both the steps optimize this function

$$F(\tilde{P},\theta) = E_{\tilde{P}}[logP(y,z|\theta)] + H(\tilde{P})$$

$$H(\tilde{P}) = -E_{\tilde{P}}[\tilde{P}]$$

$$F(\tilde{P}, \theta) = Q(\tilde{P}, \theta) + H(\tilde{P})$$

$$\tilde{P}(z) = P(z|\mathbf{y}, \theta^{(t-1)})$$

#### Observation

 Jensen's inequality applied to the log function implies:

$$L(\theta) \ge Q(\tilde{P}, \theta) + H(\tilde{P})$$

$$L(\theta) = Q(\tilde{P}, \theta) + H(\tilde{P}) + KL(\tilde{P}, P_{\theta}) = F(\tilde{P}, \theta) + KL(\tilde{P}, P_{\theta})$$

$$P_{\theta}(z) = P(z|\mathbf{y}, \theta)$$

# Key point

**Theorem 2** If  $F(\tilde{P}, \theta)$  has a local maximum at  $\tilde{P}^*$  and  $\theta^*$ , then  $L(\theta)$  has a local maximum at  $\theta^*$  as well. Similarly, if F has a global maximum at  $\tilde{P}^*$  and  $\theta^*$ , then L has a global maximum at  $\theta^*$ .

## EM Algorithm

- Initialize  $\theta^{(0)}$
- E-step

$$\tilde{P}^{(t)} = \arg\max_{\tilde{P}} F(\tilde{P}, \theta^{(t-1)})$$

M-step

$$\theta^{(t)} = \arg\max_{\theta} F(\tilde{P}^{(t)}, \theta)$$

$$\theta^{(t)} = \arg\max_{\theta} E_{\tilde{P}^{(t)}}[logP(y, z|\theta)]$$

#### Different versions

This view of the EM algorithm justifies different algorithms that have been proposed:

- Incremental
- Sparse
- "Winner take all"

### 1. Incremental algorithms

Independent data allow factorization

$$P(\mathbf{y}, \mathbf{z}|\theta) = \prod_{i} P(y_i, z_i|\theta)$$
$$P(z_i|\mathbf{y}, \theta) = \tilde{P}_i(z_i) \qquad \tilde{P}(\mathbf{z}) = P(\mathbf{z}|\mathbf{y}, \theta) = \prod_{i} \tilde{P}_i(z_i)$$

$$F(\tilde{P},\theta) = \sum_{i} F_i(\tilde{P},\theta)$$

$$Q(\tilde{P}, \theta) = E_{\tilde{P}}[logP(\mathbf{y}, \mathbf{z}|\theta)] = E_{\tilde{P}}[log\prod_{i} P(y_{i}, z_{i}|\theta)] = E_{\tilde{P}}[\sum_{i} logP(y_{i}, z_{i}|\theta)] = \sum_{i} E_{\tilde{P}_{i}}[logP(y_{i}, z_{i}|\theta)] = \sum_{i} Q_{i}(\tilde{P}_{i}, \theta)$$

#### Incremental EM

- Initialize  $(\theta^{(0)}, \tilde{P}^{(0)})$
- E-step: choose some data item i to update;
   set

$$\tilde{P}_i^{(t)} = \arg\max_{\tilde{P}_i} F_i(\tilde{P}_i, \theta^{(t-1)})$$

M-step: set

$$\theta^{(t)} = \arg\max_{\theta} Q(\tilde{P}^{(t)}, \theta)$$

# Incremental EM Sufficient Statistics

- If the model probability distribution is in the exponential family, E- and M- steps can be implemented in terms of sufficient statistics
- E-step: compute expectations of sufficient statistics
- M-step: compute ML parameters from sufficient statistics

# Incremental EM Sufficient Statistics

$$s(y,z) = \sum_{i} s_i(y_i,z_i)$$
 Vector of s.s. for N data items

E-step: update s.s. for data item i

$$\tilde{s}_{i}^{(t)} = E_{\tilde{P}_{i}}[s_{i}(y_{i}, z_{i})]$$

$$\tilde{s}^{(t)} = \tilde{s}^{(t-1)} - \tilde{s}_{i}^{(t-1)} + \tilde{s}_{i}^{(t)}$$

 M-step: compute ML parameters from sufficient statistics

# Incremental EM Approximate Sufficient Statistics

Nowlan, 1991

- GOAL: faster convergence
- E-step: update s.s. for data item i

$$\tilde{s}_i^{(t)} = E_{\tilde{P}_i}[s_i(y_i, z_i)]$$

$$\tilde{s}^{(t)} = \gamma \tilde{s}^{(t-1)} + \tilde{s}_i^{(t)} \qquad 0 < \gamma < 1$$

 M-step: compute ML parameters from sufficient statistics

## Comparison

Between Incremental EM and Incremental EM with decay



Figure 2. Convergence rates of the algorithm using exponentially decayed statistics with  $\gamma = 0.99$  (dashed line) and  $\gamma = 0.95$  (dotted line). For comparison, the performance of the incremental algorithm (solid line) is reproduced as well (as in Figure 1).

# Comparison

#### Between EM and Incremental EM



Figure 1. Comparison of convergence rates for the standard EM algorithm (solid line) and the incremental algorithm (dotted line). The log likelihood is shown on the vertical axis, the number of passes of the algorithm on the horizontal axis.

## 2. Sparse EM

- GOAL: faster convergence
- Context: small set of "plausible" values for the hidden variables (given observed data and parameter estimate)
- **Idea**: "freeze" the probabilities of the implausible values for many iterations
- Needs some heuristics

#### 3. "Winner-take-all"

- Idea: at each E-step, all hidden variables but one take zero probability
- Does not find a maximum for the likelihood
- May be useful at the first stages (?)
- K-means (hard clustering)

#### Conclusion

- Seeing EM as a maximization-maximization algorithm allows to perform E-step and Mstep in different ways
- Convergence to the maximum of the likelihood is not guarantee

# A tutorial on learning with Bayesian networks Part 3-6

D. Heckerman

## Bayesian networks (DAG)



#### Characterized by:

©L. Sigal

- Structure
- Local probabilities

$$p(\mathbf{x}) = \prod_{i} p(x_i | \mathbf{pa}_i)$$

joint distribution n variables

## Bayesian networks (DAG)

- Learning model structure (model selection)
- <u>Learning model local probabilities</u>
   (parameter learning), given the structure and data
- <u>Inference</u>: find the value or distribution of hidden variables given the observations (param. learning can be seen as inference)

#### Structure

 Draw arcs from cause variables to their immediate effects



©S.Johnson

# Learn Probabilities



- Context:  $p(\mathbf{x}|\theta_S, S^h) = \prod_i p(x_i|\mathbf{pa}_i, \theta_i, S^h)$  $\theta_S = (\theta_1, ..., \theta_n)$
- Goal: given a random sample D, compute the posterior  $p(\theta_S|D,S^h)$
- From complete data
- From incomplete data

# Learn Probabilities from complete data

• Example: multinomials, discrete variables:

$$p(x_i^k|pa_i^j,\theta_i,S^h) = \theta_{ijk}$$

*i* index of variable  $k = \text{value of variable } [1....r_i]$   $j = \text{value of } pa_i \ [1....q_i]$ 

Prior

$$\theta_{ij} \sim Dir(\theta_{ij}|\alpha_{ij1},...\alpha_{ijr_i})$$

$$q_i = \prod_{X_i \in Pa_i} r_i$$

Posterior

$$p(\theta_{ij}|D, S^h) = Dir(\theta_{ij}|\alpha_{ij1} + N_{ij1}, ...\alpha_{ijr_i} + N_{ijr_i})$$

# Learn Probabilities from incomplete data

- Complex posterior, intractable to compute, approximations are required
  - Gibbs sampling
  - Gaussian approximation
  - EM

### Gibbs sampling

 GOAL: compute the expectation of a function given a joint probability

$$p(\mathbf{x})$$
 
$$E[f(\mathbf{x})] = \int f(\mathbf{x})p(\mathbf{x})$$

Idea: sample each variable from the conditional

$$p(x_i|x_1,...x_{i-1},x_{i+1},...x_n)$$

• then compute the value for f() and take the mean

$$E_{p(\mathbf{x})}[f(\mathbf{x})] = \frac{1}{N} \sum_{k} f(\mathbf{x}_k)$$

## Gibbs sampling

$$p(\theta_{ij}|D, S^h) = Dir(\theta_{ij}|\alpha_{ij1} + N_{ij1}, ...\alpha_{ijr_i} + N_{ijr_i})$$

- Example: use Gibbs sampling to compute the posterior for the multinomial example
- Idea: assign values to the unobserved variables according to some distribution
   →get a complete dataset
- Compute posterior
- Iterate and take the mean

#### Gaussian Approximation

- Large sample size
- Posterior approximate to a multivariate
   Gaussian with mean value = MAP

$$g(\theta_S) \equiv \log(p(D|\theta_S)p(\theta_S)) = \log(p(\theta_S|D) + k$$
$$\tilde{\theta}_S = \arg\max_{\theta_S} g(\theta_S) = \arg\max_{\theta_S} p(\theta_S|D)$$

$$\frac{\partial g(\theta_S)}{\partial \theta_S}|_{\tilde{\theta}_S} = 0$$

$$p(\theta_S|D, S^h) \approx p(D|\tilde{\theta}_S, S^h)p(\tilde{\theta}_S|S^h)exp(-\frac{1}{2}(\theta_S - \tilde{\theta}_S)A(\theta_S - \tilde{\theta}_S))$$

#### **EM**

- For large datasets, can use MAP or ML
- Use EM to find local MAP or ML estimates