FPGA Routing

Outline

- Constraints and objectives
- Routing resource graph
- Global routing and detailed routing
- VPR router
- Timing-driven routing

Introduction

■ FPGA routing must make use of prefabricated routing resources.

- #1 objective: 100% routing completion.
- Can be performed in two phases (global routing, detailed routing) or combined.

3

•

Routing in FPGA

Must consider switch-module architectural constraints.

Each channel has a capacity of 2 tracks.

- For *performance-driven* routing,
 - **Minimize # of switches passed.**
 - ☐ Minimize the maximum wire length.
 - ☐ Minimize the maximum path length.

Routing-Resource Graph

- A *graph model* for routing
 - \square Wire/pin \rightarrow node
 - \square Unidirectional switch \rightarrow a directed edge
 - \square Bidirectional switch \rightarrow two directed edges

5

Global Routing

- Find a *routing tree* for each net.
- Select a set of channels, but not specific routing tracks.
- Subject to *channel capacity*.

Coarse Routing Resource Graph

- A graph model for global routing
 - ☐ Associate a capacity to a node
 - □ Capacity of a node = corresponding channel capacity

Detailed Routing

■ Find a track assignment for each net under its given global routing configuration.

Detailed Routing via SAT

- Formulate a routing instance as a *Boolean* satisfiability problem in conjunctive normal form.
- Consider all nets simultaneously, and can prove unroutability.
- Connectivity constraints: each net must be connected.
- Exclusivity constraints: each track must be used by ≤ 1 net.
- Rely on efficient SAT-solver (SAT is NP-hard).

9

Detailed Routing via SAT

$$Conn(A) = [(AV \equiv 0) \lor (AV \equiv 1) \lor (AV \equiv 2)] \land$$
 // Vertical channel 1
 $[AV = AH] \land$ // S-block(1,3)
 $[(AH \equiv 0) \lor (AH \equiv 1) \lor (AH \equiv 2)]$ // Horizontal channel 3

$$Excl(V1) = (AV \neq BV) \land (AV \neq CV)$$

VPR Router

- Combined global and detailed routing.
- Routing algorithm based on PathFinder.
- Use maze expansion to construct routing tree from a signal's driver to its loads in the routing graph.
- Congestion component is used to gradually resolve congestion by encouraging nets to take detours around congested resources.

11

Details of VPR Router

- VPR router is based on PathFinder which is an *iterative negotiation-based* routing approach.
- In each iteration, route all nets independently w/ minimum cost (nets may share same routing resource)
- Costs of over-congested routing resources will be increased.
- Nets that can use lower congestion alternatives are forced to do so in subsequent iterations.

Negotiated Congestion Routing Flow

13

Details of VPR Router

- Cost of using a resource is based on its *current* & historical congestion.
- \blacksquare Cost of resource n is

$$c_n = (b_n + h_n) * p_n$$

where b_n is the base cost for delay of using n, p_n is #nets presently using n,

 h_n is historical congestion of n (at i-th iteration, $h_n^i = h_n^{i-1} + 1$ if n has an overflow, or h_n^{i-1} otherwise)

Routing Two-Terminal Nets in VPR

■ Use maze expansion to route two-terminal net:

Labelling (breadth-first traversal)

Connection after labelling

15

Routing Multi-Terminal Nets in VPR

■ Use an *incremental* technique for faster multiterminal net routing.

(a) Expansion reaches a sink

(b) Traditional method: restart wavefront

(c) VPR method: maintain wavefront and expand around new wire

Timing-Driven VPR Router

- Take delay into account
- Use *Elmore delay* model
- Initially, route all nets in minimum delay independently.
- Subsequently, use a weighted sum of *congestion* and *delay* as cost.

17

Timing-Driven VPR Router

- At the end of each routing iteration, *timing* analysis is performed.
- From timing analysis, the timing *criticality* $Crit_{ij}$ of every connection (i,j) is computed as follows:

$$Crit_{ij} = 1 - Slack_{ij} / CriticalPathDelay$$

■ Cost of using resource *n* for routing net *i* to its sink *j*:

$$Cost_n(i,j) = Crit_{i,j} * delay_cost(n) + [1 - Crit_{i,j}] * cong_cost_n$$

Timing-Driven Routing

- Common techniques:
 - □ Route timing *critical nets first* for sequential routing
 - □ Routing tree *topology optimization* (e.g. shortest-path tree, bounded-delay minimum-cost Steiner tree)
 - □ *Delay penalty* (e.g. VPR)
 - □ Static slack distribution given the path delay constraints
 - □ Dynamic net weighting (e.g. VPR)

19

Placement Evaluation

- One often needs to evaluate a placement e.g. SA will generate many placement solutions.
- Interested to *estimate routability and/or performance* quickly.

References

- "PathFinder: A Negotiation-Based Performance-Driven Router for FPGAs", in FPGA'95.
- "VPR: A New Packing, Placement and Routing Tool for FPGA Research," in FPL'97
- "A Fast Routability-Driven Router for FPGAs", in FPGA'98
- "A Comparative Study of Two Boolean Formulations of FPGA Detailed Routing", IEEE Trans. on Computers, June 2004.

21