Team Shireto

Make the future

BLDC MOTOR CONTROLLER

-By Power Electronics Team

BLDC Motor

- Brushless DC motor
- Durable and efficient
- Higher torque-to-weight ratio
- Popular in EV industry.

Working of BLDC Motor-[1]

- Permanent magnets are on rotor
- Electromagnets are on stator
- Rotating magnetic is generated
- that rotates rotor

Working of BLDC Motor-[2]

Generating Rotating Magnetic Field

MOTOR ROTATION: CW

(As Viewed Facing Shaft End)

Electrical Degrees	0° 60° 120° 180° 240° 300°	Hl	H2	H 3	PHA	PH B	PHC
		0	1	0	HI	LO	X
		0	1	1	HI	X	LO
		0	0	1	X	HI	LO
		1	0	1	LO	HI	X
		1	0	0	LO	X	HI
		1	1	0	X	LO	HI

MOTOR ROTATION: CCW

(As Viewed Facing Shaft End)

Electrical Degrees	0° 60° 120° 180° 240° 300°	Hl	H2	H3	PH A	PH B	PH C
		0	1	0	LO	HI	X
		0	1	1	LO	X	HI
		0	0	1	X	LO	HI
		1	0	1	HI	LO	X
		1	0	0	HI	X	LO
		1	1	0	X	HI	LO

Key: HI Tur

I Turn on source side 1 High voltage

O Turn on sink side 0 Low voltage

X Both off

LOW SIDE SWITCHING

Source of mosfet is directly connected to ground.

- Vgs>Vth
- Vg-Vs>Vth
- Vg-0>4 ;for irf3205Vg>4

HIGH SIDE SWITCHING

Load is connected at the source side.

- Vs=(Vcc*RI)/(RI+Rds)
- As Rds is very small. Vs=Vcc
- Now, Vgs>Vth
- Vg-Vs>Vth
- Vg-12>4 ;for irf3205
- Vg>16

Bootstrapping

- when n-channel mosfet is used for high side switching.
- only adds one diode and one capacitor in the circuit.
- Increases gate voltage w.r.t load voltage.

GATE DRIVERS

Why we need gate drivers

- Current drawn by mosfet during turn on.
- Discharge by gate capacitances during turn off.
- Ease of bootstrapping.

IR2110

- 14 Pin DIP IC.
- Half bridge drivers i.e can drive high side and low side.
- Can bootstrap.
- Widely used in inverters.

14 Lead PDIP IR2110/IR2113

IR2110

IR2110

Features

- Schmitt trigger
- UV detection
- Two Independent totem pole configuration for high side and low side.

IR2110(Bootstrapping)

- Low side on
- Boot cap charges
- Low side off
- Boot cap discharges

IR2110(Bootstrapping)

