Problema de Roteamento de Veículos com Tempo de Bateria e Demandas Baseadas em Distância

Cauã Magalhães Pereira

Julho 2024

Abstract

O problema de roteamento de veículos (VRP) com restrição de tempo de operação é um desafio crescente em diversas áreas, como logística e inspeções com drones. Este trabalho propõe um modelo de Programação Linear Inteira Mista (MILP) para resolver essa variante do VRP, considerando a velocidade dos veículos e o tempo de bateria como restrições principais. Utilizamos duas estratégias de eliminação de subcircuitos para garantir a viabilidade das soluções. Ao minimizar o tempo máximo de operação, otimizamos a utilização da frota e melhoramos a eficiência operacional. Os resultados obtidos podem ser aplicados em diversos setores, contribuindo para a otimização de rotas e a redução de custos.

Introdução

O problema de roteamento de veículos (VRP) é um clássico da otimização, com aplicações em diversas áreas. Uma variante relevante é o VRP com restrição de tempo de operação, motivado pelo crescente uso de drones em inspeções e entregas. A limitação do tempo de voo dos drones torna fundamental a otimização das rotas para garantir a conclusão das tarefas dentro do tempo de bateria disponível.

Neste trabalho, propomos um modelo de Programação Linear Inteira Mista (MILP) para o VRP com restrição de tempo de operação, considerando a velocidade dos veículos e o tempo de bateria como restrições principais. O objetivo é minimizar o tempo máximo de operação, garantindo que todos os pontos sejam atendidos dentro do tempo de voo disponível. Além disso, exploramos duas estratégias de eliminação de subcircuitos para garantir a viabilidade das soluções.

A contribuição deste trabalho reside em apresentar uma abordagem mais realista para o problema de roteamento de drones, considerando as especificidades da tecnologia. Os resultados obtidos podem ser aplicados em diversas áreas, como inspeção de linhas de transmissão, monitoramento ambiental e entregas urbanas.

Modelagem Matemática

A modelagem matemática do problema de roteamento de veículos (VRP) com a capacidade definida pelo tempo de bateria e demandas baseadas na distância percorrida é apresentada a seguir. Utilizamos variáveis binárias para representar as decisões de roteamento e variáveis contínuas para o tempo de operação dos veículos.

1.1 Definições e Notações

- V: Conjunto de todos os pontos, incluindo o depósito.
- K: Conjunto de veículos.
- $d_{i,j}$: Distância entre os pontos $i \in j$.
- s_k : Velocidade do veículo k.
- b_k : Capacidade máxima do veículo k em termos de tempo de bateria.
- c_k : Capacidade de cobertura do veículo $k = b_k * s_k * 60$.
- \bullet S: Subconjunto de pontos visitados em V que formam um subcircuito.

1.2 Branch and Cut

1.2.1 Variáveis de Decisão

• Variáveis binárias $x_{i,j,k}$: Determinam se o veículo k viaja do ponto i ao ponto j.

$$x_{i,j,k} = \begin{cases} 1 & \text{se o veículo } k \text{ viaja do ponto } i \text{ ao ponto } j, \\ 0 & \text{caso contrário.} \end{cases}$$

• Variáveis binárias $y_{i,k}$: Determinam se o ponto i é visitado pelo veículo k.

$$y_{i,k} = \begin{cases} 1 & \text{se o ponto } i \text{ \'e visitado pelo ve\'iculo } k, \\ 0 & \text{caso contr\'ario.} \end{cases}$$

• Variável contínua max_time:

$$\max_{\text{time}} = \max \left(\sum_{i \in V} \sum_{j \in V, j \neq i} \frac{d_{i,j} \cdot x_{i,j,k}}{s_k} \right), \quad \forall k \in K$$

1.2.2 Função Objetivo

Minimizar o tempo máximo de cobertura de todos os pontos:

1.2.3 Restrições

• Cada ponto deve ser visitado exatamente uma vez por algum veículo, exceto o depósito:

$$\sum_{j \in V, j \neq i} \sum_{k \in K} x_{i,j,k} = \sum_{j \in V, j \neq i} \sum_{k \in K} x_{j,i,k} = \begin{cases} |K| & \text{se } i = 0, \\ 1 & \text{se } i \neq 0. \end{cases}$$

• Se um veículo visita um ponto, então ele deve sair desse ponto:

$$\sum_{j \in V, j \neq i} x_{i,j,k} = y_{i,k}, \quad \forall i \in V, \forall k \in K,$$
$$\sum_{j \in V, j \neq i} x_{j,i,k} = y_{i,k}, \quad \forall i \in V, \forall k \in K.$$

• Tempo de viagem não pode exceder a capacidade máxima do veículo e o tempo máximo:

$$\sum_{i \in V} \sum_{j \in V, j \neq i} d_{i,j} \cdot x_{i,j,k} \le c_k, \quad \forall k \in K,$$

$$\sum_{i \in V} \sum_{j \in V, j \neq i} \frac{d_{i,j} \cdot x_{i,j,k}}{s_k} \le \max_{\text{time}}, \quad \forall k \in K.$$

• Eliminação de subcircuito:

$$y_{hk} \le \sum_{i \in S} \sum_{j \in S^c} x_{ijk} \quad \forall h \in S, \forall k \in V$$
 (1)

1.2.4 Resolução

Para resolver o problema, diferente da solução direta (Branch and Bound), utilizamos um método iterativo. Essa técnica é utilizada para resolver problemas de roteamento de veículos (VRP) que garante que a solução final não contenha subcircuitos (caminhos fechados menores que o circuito principal que não passam pelo depósito). A seguir, apresentamos um resumo de como esse método funciona:

- Modelagem Inicial: Define-se um modelo de programação linear inteira mista (MILP) para o VRP, incluindo variáveis de decisão, função objetivo e restrições.
- Resolução Inicial: O modelo é resolvido utilizando um solver (por exemplo, GLPK). Nesta etapa, é possível que a solução contenha subcircuitos.
- Identificação de Subcircuitos: Após a resolução inicial, a solução é analisada para identificar subcircuitos. Isso é feito construindo-se um grafo direcionado a partir das variáveis de decisão que representam as rotas dos veículos e buscando componentes fortemente conectadas (subcircuitos).
- Eliminação de Subcircuitos: Para cada subcircuito identificado, adiciona-se uma nova restrição ao modelo, forçando que pelo menos uma aresta (rota) do subcircuito seja rompida. Essa restrição é chamada de restrição de eliminação de subtour.

- Iteração: O modelo com as novas restrições é resolvido novamente utilizando o solver. O processo de identificação e eliminação de subcircuitos é repetido até que não existam mais subcircuitos na solução.
- Convergência: O método iterativo termina quando uma solução válida, sem subcircuitos, é encontrada. Esta solução representa a rota otimizada para todos os veículos, respeitando as restrições de capacidade (tempo de bateria) e demandas (distância).

1.3 Formulação MTZ

1.3.1 Variáveis de Decisão

• Variáveis binárias $x_{i,j,k}$: Determinam se o veículo k viaja do ponto i ao ponto j.

$$x_{i,j,k} = \begin{cases} 1 & \text{se o veículo } k \text{ viaja do ponto } i \text{ ao ponto } j, \\ 0 & \text{caso contrário.} \end{cases}$$

• Variáveis binárias $y_{i,k}$: Determinam se o ponto i é visitado pelo veículo k.

$$y_{i,k} = \begin{cases} 1 & \text{se o ponto } i \text{ \'e visitado pelo ve\'iculo } k, \\ 0 & \text{caso contr\'ario.} \end{cases}$$

• Variável contínua max_time:

$$\text{max_time} = \max \left(\sum_{i \in V} \sum_{j \in V, j \neq i} \frac{d_{i,j} \cdot x_{i,j,k}}{s_k} \right), \quad \forall k \in K$$

• Variáveis contínuas u_i : Variáveis auxiliares para eliminação de subcircuitos.

1.3.2 Função Objetivo

Minimizar o tempo máximo de cobertura de todos os pontos:

1.3.3 Restrições

• Cada ponto deve ser visitado exatamente uma vez por algum veículo, exceto o depósito:

$$\sum_{j \in V, j \neq i} \sum_{k \in K} x_{i,j,k} = \sum_{j \in V, j \neq i} \sum_{k \in K} x_{j,i,k} = \begin{cases} |K| & \text{se } i = 0, \\ 1 & \text{se } i \neq 0. \end{cases}$$

• Se um veículo visita um ponto, então ele deve sair desse ponto:

$$\sum_{j \in V, j \neq i} x_{i,j,k} = y_{i,k}, \quad \forall i \in V, \forall k \in K,$$
$$\sum_{j \in V, j \neq i} x_{j,i,k} = y_{i,k}, \quad \forall i \in V, \forall k \in K.$$

• Tempo de viagem não pode exceder a capacidade máxima do veículo e o tempo máximo:

$$\sum_{i \in V} \sum_{j \in V, j \neq i} d_{i,j} \cdot x_{i,j,k} \le c_k, \quad \forall k \in K,$$

$$\sum_{i \in V} \sum_{j \in V, j \neq i} \frac{d_{i,j} \cdot x_{i,j,k}}{s_k} \le \text{max_time}, \quad \forall k \in K.$$

• Eliminação de subcircuitos (MTZ):

$$\begin{aligned} u_j &\geq u_i + (n-1) \cdot x_{i,j,k} + (n-3) \cdot x_{j,i,k} - (n-2), \\ \forall i \in V, \ i \neq 0, \\ \forall j \in V, \ j \neq 0, \ i \neq j, \\ \forall k \in K \end{aligned}$$

$$\begin{aligned} u_i &\geq 1, \quad \forall i \in V, i \neq 0, \\ u_i &\leq n-1, \quad \forall i \in V, i \neq 0, \\ u_0 &= 0. \end{aligned}$$

1.3.4 Resolução

A resolução do problema utilizando a formulação MTZ é relativamente direta, uma vez que as restrições de Miller-Tucker-Zemlin são incorporadas diretamente ao modelo matemático. Assim, o solver pode aplicar um método de branch and bound tradicional para encontrar a solução ótima. Diferentemente do método de branch and cut 1.2.4, que envolve um processo iterativo de geração de planos de corte para eliminar subcircuitos, a formulação MTZ evita essa etapa, simplificando a resolução.

Resultados

A Tabela 1 apresenta os resultados obtidos ao comparar o método de planos de cortes com a formulação MTZ para resolver o problema de roteamento. Em termos de tempo de execução, os métodos se mostraram muito próximos apesar do MTZ aparentar ser mais consistente, mesmo com alguns outliers - ver teste 4_2 na tabela 1 -, com uma leve vantagem para o método de cortes em instancias menores.

Um ponto extremamente notável é que, quando o algoritmo de cortes é interrompido pelo tempo limite, as soluções obtidas por esse método podem ser inviáveis (figura 1), ou seja, podem conter subcircuitos que não incluem o ponto de partida. Isso ocorre porque as restrições que eliminam os subcircuitos são adicionadas dinamicamente durante o processo de resolução, e o tempo limite pode impedir que todas as restrições necessárias sejam geradas.

A formulação MTZ, por sua vez, garante a viabilidade da solução encontrada, mesmo que esta não seja a solução ótima. Isso se deve às restrições específicas da formulação, que impedem a formação de subcircuitos. Contudo, essa garantia de viabilidade pode resultar em um tempo de execução maior em comparação com o método de planos de cortes.

Em resumo, a escolha entre o método de planos de cortes e a formulação MTZ depende das características específicas da aplicação. Se a prioridade for obter uma solução rapidamente, mesmo que ela não seja a melhor possível, o método de planos de cortes pode ser uma boa opção. Por outro lado, se a viabilidade da solução for um requisito fundamental, a formulação MTZ é mais adequada.

Figure 1: Comparação soluções intermediarias

17_2 15 2 1800.297 (tle) 18.18392 18_1 10 4 34.95760 89.14834 18_2 10 3 2.149441 5.563742 19_1 5 3 0.0493305 0.0455136 19_2 5 2 0.0468450 0.1323206	ID	NumVertices	NumCarros	MTZ Time(s)	CUTS Time(s)
2.1 14 4 1800.350 (tle) 1970.222 (tle) 2.2 14 3 1800.214 (tle) 1258.299 3.1 5 4 0.023806 0.0223908 3.2 5 3 0.0226922 0.0214853 4.1 15 3 1800.325 1926.184 (optimal) 4.2 15 2 244.6456 14.81131 5.1 14 4 4189.309 (tle) 4650.953 (tle) 5.2 14 3 3211.422 (tle) 3220.653 (tle) 6.1 12 5 601.8521 3990.829 (tle) 6.1 12 5 601.8521 3990.829 (tle) 6.2 12 4 261.3638 157.5534 7.1 14 3 3730.173 (tle) 3828.658 (tle) 7.2 14 2 20.72704 7.789416 8.1 4 3 0.0344952 0.0200565 8.2 4 2 0.0206747 0.0185368	1_1	11	5	503.8197	950.6443
2.2 14 3 1800.214 (tle) 1258.299 3.1 5 4 0.023806 0.0223908 3.2 5 3 0.0226922 0.0214853 4.1 15 3 1800.325 1926.184 (optimal) 4.2 15 2 244.6456 14.81131 5.1 14 4 4189.309 (tle) 4650.953 (tle) 5.2 14 3 3211.422 (tle) 3220.653 (tle) 6.1 12 5 601.8521 3990.829 (tle) 6.2 12 4 261.3638 157.5534 7.1 14 3 3730.173 (tle) 3828.658 (tle) 7.2 14 2 20.72704 7.789416 8.1 4 3 0.0341952 0.0200565 8.2 4 2 0.026747 0.0185368 9.1 5 2 0.0224858 0.0696850 10.1 8 4 0.326361 1.986708 <	1_2	11	4	4.563338	10.94854
3.1 5 4 0.023806 0.0223908 3.2 5 3 0.0226922 0.0214853 4.1 15 3 1800.325 1926.184 (optimal) 4.2 15 2 244.6456 14.81131 5.1 14 4 4189.309 (tle) 4650.953 (tle) 5.2 14 3 3211.422 (tle) 3220.653 (tle) 6.1 12 5 601.8521 3990.829 (tle) 6.2 12 4 261.3638 157.5534 7.1 14 3 3730.173 (tle) 3828.658 (tle) 7.2 14 2 20.72704 7.789416 8.1 4 3 0.0341952 0.0200565 8.2 4 2 0.026747 0.0185368 9.1 5 2 0.0225112 0.0428286 9.2 5 2 0.0244858 0.0696850 10.1 8 4 0.326361 1.986708 10	2_1	14	4	1800.350 (tle)	1970.222 (tle)
3.2 5 3 0.0226922 0.0214853 4.1 15 3 1800.325 1926.184 (optimal) 4.2 15 2 244.6456 14.81131 5.1 14 4 4189.309 (tle) 4650.953 (tle) 5.2 14 3 3211.422 (tle) 3220.653 (tle) 6.1 12 5 601.8521 3990.829 (tle) 6.2 12 4 261.3638 157.5534 7.1 14 3 3730.173 (tle) 3828.658 (tle) 7.2 14 2 20.72704 7.789416 8.1 4 3 0.0341952 0.0200565 8.2 4 2 0.026747 0.0185368 9.1 5 2 0.0225112 0.0428286 9.2 5 2 0.0244858 0.0696850 10.1 8 4 0.326361 1.986708 10.2 8 3 0.325610 1.263551 11	2_2	14	3	1800.214 (tle)	1258.299
4.1 15 3 1800.325 1926.184 (optimal) 4.2 15 2 244.6456 14.81131 5.1 14 4 4189.309 (tle) 4650.953 (tle) 5.2 14 3 3211.422 (tle) 3220.653 (tle) 6.1 12 5 601.8521 3990.829 (tle) 6.2 12 4 261.3638 157.5534 7.1 14 3 3730.173 (tle) 3828.658 (tle) 7.2 14 2 20.72704 7.789416 8.1 4 3 0.0341952 0.0200565 8.2 4 2 0.0206747 0.0185368 9.1 5 2 0.0225112 0.0428286 9.2 5 2 0.0244858 0.0696850 10.1 8 4 0.326361 1.986708 10.2 8 3 0.329739 0.4811406 11.2 8 2 0.0646813 0.2284524 <td< td=""><td>3_1</td><td>5</td><td>4</td><td>0.023806</td><td>0.0223908</td></td<>	3_1	5	4	0.023806	0.0223908
4.2 15 2 244.6456 14.81131 5.1 14 4 4189.309 (tle) 4650.953 (tle) 5.2 14 3 3211.422 (tle) 3220.653 (tle) 6.1 12 5 601.8521 3990.829 (tle) 6.2 12 4 261.3638 157.5534 7.1 14 3 3730.173 (tle) 3828.658 (tle) 7.2 14 2 20.72704 7.789416 8.1 4 3 0.0341952 0.0200565 8.2 4 2 0.0206747 0.0185368 9.1 5 2 0.0225112 0.0428286 9.2 5 2 0.0244858 0.0696850 10.1 8 4 0.326361 1.986708 10.2 8 3 0.329739 0.4811406 11.2 8 2 0.0646813 0.2284524 12.1 10 5 11.88957 26.55118 12.2 <td>3_2</td> <td>5</td> <td>3</td> <td>0.0226922</td> <td>0.0214853</td>	3_2	5	3	0.0226922	0.0214853
4.2 15 2 244.6456 14.81131 5.1 14 4 4189.309 (tle) 4650.953 (tle) 5.2 14 3 3211.422 (tle) 3220.653 (tle) 6.1 12 5 601.8521 3990.829 (tle) 6.2 12 4 261.3638 157.5534 7.1 14 3 3730.173 (tle) 3828.658 (tle) 7.2 14 2 20.72704 7.789416 8.1 4 3 0.0341952 0.0200565 8.2 4 2 0.0206747 0.0185368 9.1 5 2 0.0225112 0.0428286 9.2 5 2 0.0244858 0.0696850 10.1 8 4 0.326361 1.986708 10.2 8 3 0.329739 0.4811406 11.2 8 2 0.0646813 0.2284524 12.1 10 5 11.88957 26.55118 12.2 <td>4_1</td> <td>15</td> <td>3</td> <td>1800.325</td> <td>1926.184 (optimal)</td>	4_1	15	3	1800.325	1926.184 (optimal)
5.2 14 3 3211.422 (tle) 3220.653 (tle) 6.1 12 5 601.8521 3990.829 (tle) 6.2 12 4 261.3638 157.5534 7.1 14 3 3730.173 (tle) 3828.658 (tle) 7.2 14 2 20.72704 7.789416 8.1 4 3 0.0341952 0.0200565 8.2 4 2 0.0206747 0.0185368 9.1 5 2 0.0225112 0.0428286 9.2 5 2 0.0244858 0.0696850 10.1 8 4 0.326361 1.986708 10.2 8 3 0.325610 1.263551 11.1 8 3 0.329739 0.4811406 11.2 8 2 0.0646813 0.2284524 12.1 10 5 11.88957 26.55118 12.2 10 4 27.96690 39.86329 13.1 <	4_2	15	2	244.6456	
6.1 12 5 601.8521 3990.829 (tle) 6.2 12 4 261.3638 157.5534 7.1 14 3 3730.173 (tle) 3828.658 (tle) 7.2 14 2 20.72704 7.789416 8.1 4 3 0.0341952 0.020565 8.2 4 2 0.0206747 0.0185368 9.1 5 2 0.0225112 0.0428286 9.2 5 2 0.0244858 0.0696850 10.1 8 4 0.326361 1.986708 10.2 8 3 0.325610 1.263551 11.1 8 3 0.329739 0.4811406 11.2 8 2 0.0646813 0.2284524 12.1 10 5 11.88957 26.55118 12.2 10 4 27.96690 39.86329 13.1 11 2 0.631650 1.984571 14.1 8	5_1	14	4	4189.309 (tle)	4650.953 (tle)
6.2 12 4 261.3638 157.5534 7.1 14 3 3730.173 (tle) 3828.658 (tle) 7.2 14 2 20.72704 7.789416 8.1 4 3 0.0341952 0.020565 8.2 4 2 0.0206747 0.0185368 9.1 5 2 0.0225112 0.0428286 9.2 5 2 0.0244858 0.0696850 10.1 8 4 0.326361 1.986708 10.2 8 3 0.325610 1.263551 11.1 8 3 0.329739 0.4811406 11.2 8 2 0.0646813 0.2284524 12.1 10 5 11.88957 26.55118 12.2 10 4 27.96690 39.86329 13.1 11 2 0.631650 1.984571 14.1 8 4 1.431984 5.315332 14.2 8	5_2	14	3	3211.422 (tle)	3220.653 (tle)
7.1 14 3 3730.173 (tle) 3828.658 (tle) 7.2 14 2 20.72704 7.789416 8.1 4 3 0.0341952 0.0200565 8.2 4 2 0.0206747 0.0185368 9.1 5 2 0.0225112 0.0428286 9.2 5 2 0.0244858 0.0696850 10.1 8 4 0.326361 1.986708 10.2 8 3 0.325610 1.263551 11.1 8 3 0.329739 0.4811406 11.2 8 2 0.0646813 0.2284524 12.1 10 5 11.88957 26.55118 12.2 10 4 27.96690 39.86329 13.1 11 2 0.631650 1.984571 14.1 8 4 1.431984 5.315332 14.2 8 3 0.324672 0.8963320 15.1 7	6_1	12	5	601.8521	3990.829 (tle)
7.2 14 2 20.72704 7.789416 8.1 4 3 0.0341952 0.0200565 8.2 4 2 0.0206747 0.0185368 9.1 5 2 0.0225112 0.0428286 9.2 5 2 0.0244858 0.0696850 10.1 8 4 0.326361 1.986708 10.2 8 3 0.325610 1.263551 11.1 8 3 0.329739 0.4811406 11.2 8 2 0.0646813 0.2284524 12.1 10 5 11.88957 26.55118 12.2 10 4 27.96690 39.86329 13.1 11 2 0.631650 1.984571 14.1 8 4 1.431984 5.315332 14.2 8 3 0.324672 0.8963320 15.1 7 4 0.0651164 0.0440297 15.2 7 3 <td>6_2</td> <td>12</td> <td>4</td> <td>261.3638</td> <td>157.5534</td>	6_2	12	4	261.3638	157.5534
8.1 4 3 0.0341952 0.0200565 8.2 4 2 0.0206747 0.0185368 9.1 5 2 0.0225112 0.0428286 9.2 5 2 0.0244858 0.0696850 10.1 8 4 0.326361 1.986708 10.2 8 3 0.325610 1.263551 11.1 8 3 0.329739 0.4811406 11.2 8 2 0.0646813 0.2284524 12.1 10 5 11.88957 26.55118 12.2 10 4 27.96690 39.86329 13.1 11 2 0.631650 1.984571 14.1 8 4 1.431984 5.315332 14.2 8 3 0.324672 0.8963320 15.1 7 4 0.0651164 0.0440297 15.2 7 3 0.107201 0.3346004 16.1 12 5<	7_1	14	3	3730.173 (tle)	3828.658 (tle)
8.2 4 2 0.0206747 0.0185368 9.1 5 2 0.0225112 0.0428286 9.2 5 2 0.0244858 0.0696850 10.1 8 4 0.326361 1.986708 10.2 8 3 0.325610 1.263551 11.1 8 3 0.329739 0.4811406 11.2 8 2 0.0646813 0.2284524 12.1 10 5 11.88957 26.55118 12.2 10 4 27.96690 39.86329 13.1 11 2 0.325404 0.2538640 13.2 11 2 0.631650 1.984571 14.1 8 4 1.431984 5.315332 14.2 8 3 0.324672 0.8963320 15.1 7 4 0.0651164 0.0440297 15.2 7 3 0.107201 0.3346004 16.1 12 5	7_{-2}	14	2	20.72704	7.789416
9.1 5 2 0.0225112 0.0428286 9.2 5 2 0.0244858 0.0696850 10.1 8 4 0.326361 1.986708 10.2 8 3 0.325610 1.263551 11.1 8 3 0.329739 0.4811406 11.2 8 2 0.0646813 0.2284524 12.1 10 5 11.88957 26.55118 12.2 10 4 27.96690 39.86329 13.1 11 2 0.325404 0.2538640 13.2 11 2 0.631650 1.984571 14.1 8 4 1.431984 5.315332 14.2 8 3 0.324672 0.8963320 15.1 7 4 0.0651164 0.0440297 15.2 7 3 0.107201 0.3346004 16.1 12 5 458.7638 2027.072 (tle) 16.2 12	8_1	4	3	0.0341952	0.0200565
9.2 5 2 0.0244858 0.0696850 10.1 8 4 0.326361 1.986708 10.2 8 3 0.325610 1.263551 11.1 8 3 0.329739 0.4811406 11.2 8 2 0.0646813 0.2284524 12.1 10 5 11.88957 26.55118 12.2 10 4 27.96690 39.86329 13.1 11 2 0.325404 0.2538640 13.2 11 2 0.631650 1.984571 14.1 8 4 1.431984 5.315332 14.2 8 3 0.324672 0.8963320 15.1 7 4 0.0651164 0.0440297 15.2 7 3 0.107201 0.3346004 16.1 12 5 458.7638 2027.072 (tle) 16.2 12 4 255.3510 321.9270 17.1 15	8_2	4	2	0.0206747	0.0185368
10.1 8 4 0.326361 1.986708 10.2 8 3 0.325610 1.263551 11.1 8 3 0.329739 0.4811406 11.2 8 2 0.0646813 0.2284524 12.1 10 5 11.88957 26.55118 12.2 10 4 27.96690 39.86329 13.1 11 2 0.325404 0.2538640 13.2 11 2 0.631650 1.984571 14.1 8 4 1.431984 5.315332 14.2 8 3 0.324672 0.8963320 15.1 7 4 0.0651164 0.0440297 15.2 7 3 0.107201 0.3346004 16.1 12 5 458.7638 2027.072 (tle) 16.2 12 4 255.3510 321.9270 17.1 15 3 1800.297 (tle) 18.18392 18.1 10	9_1	5	2	0.0225112	0.0428286
10.2 8 3 0.325610 1.263551 11.1 8 3 0.329739 0.4811406 11.2 8 2 0.0646813 0.2284524 12.1 10 5 11.88957 26.55118 12.2 10 4 27.96690 39.86329 13.1 11 2 0.325404 0.2538640 13.2 11 2 0.631650 1.984571 14.1 8 4 1.431984 5.315332 14.2 8 3 0.324672 0.8963320 15.1 7 4 0.0651164 0.0440297 15.2 7 3 0.107201 0.3346004 16.1 12 5 458.7638 2027.072 (tle) 16.2 12 4 255.3510 321.9270 17.1 15 3 1800.276 (tle) 1898.929 (optimal) 17.2 15 2 1800.297 (tle) 18.18392 18.1	9_2	5	2	0.0244858	0.0696850
11_1 8 3 0.329739 0.4811406 11_2 8 2 0.0646813 0.2284524 12_1 10 5 11.88957 26.55118 12_2 10 4 27.96690 39.86329 13_1 11 2 0.325404 0.2538640 13_2 11 2 0.631650 1.984571 14_1 8 4 1.431984 5.315332 14_2 8 3 0.324672 0.8963320 15_1 7 4 0.0651164 0.0440297 15_2 7 3 0.107201 0.3346004 16_1 12 5 458.7638 2027.072 (tle) 16_2 12 4 255.3510 321.9270 17_1 15 3 1800.276 (tle) 1898.929 (optimal) 17_2 15 2 1800.297 (tle) 18.18392 18_1 10 4 34.95760 89.14834 18_2	10_1	8	4	0.326361	1.986708
11_2 8 2 0.0646813 0.2284524 12_1 10 5 11.88957 26.55118 12_2 10 4 27.96690 39.86329 13_1 11 2 0.325404 0.2538640 13_2 11 2 0.631650 1.984571 14_1 8 4 1.431984 5.315332 14_2 8 3 0.324672 0.8963320 15_1 7 4 0.0651164 0.0440297 15_2 7 3 0.107201 0.3346004 16_1 12 5 458.7638 2027.072 (tle) 16_2 12 4 255.3510 321.9270 17_1 15 3 1800.276 (tle) 1898.929 (optimal) 17_2 15 2 1800.297 (tle) 18.18392 18_1 10 4 34.95760 89.14834 18_2 10 3 2.149441 5.563742 19_1	10_2	8	3	0.325610	1.263551
12.1 10 5 11.88957 26.55118 12.2 10 4 27.96690 39.86329 13.1 11 2 0.325404 0.2538640 13.2 11 2 0.631650 1.984571 14.1 8 4 1.431984 5.315332 14.2 8 3 0.324672 0.8963320 15.1 7 4 0.0651164 0.0440297 15.2 7 3 0.107201 0.3346004 16.1 12 5 458.7638 2027.072 (tle) 16.2 12 4 255.3510 321.9270 17.1 15 3 1800.276 (tle) 1898.929 (optimal) 17.2 15 2 1800.297 (tle) 18.18392 18.1 10 4 34.95760 89.14834 18.2 10 3 2.149441 5.563742 19.1 5 3 0.0493305 0.0455136 19.2	11_1	8	3	0.329739	0.4811406
12.2 10 4 27.96690 39.86329 13.1 11 2 0.325404 0.2538640 13.2 11 2 0.631650 1.984571 14.1 8 4 1.431984 5.315332 14.2 8 3 0.324672 0.8963320 15.1 7 4 0.0651164 0.0440297 15.2 7 3 0.107201 0.3346004 16.1 12 5 458.7638 2027.072 (tle) 16.2 12 4 255.3510 321.9270 17.1 15 3 1800.276 (tle) 1898.929 (optimal) 17.2 15 2 1800.297 (tle) 18.18392 18.1 10 4 34.95760 89.14834 18.2 10 3 2.149441 5.563742 19.1 5 3 0.0468450 0.1323206	11_2	8	2	0.0646813	0.2284524
13.1 11 2 0.325404 0.2538640 13.2 11 2 0.631650 1.984571 14.1 8 4 1.431984 5.315332 14.2 8 3 0.324672 0.8963320 15.1 7 4 0.0651164 0.0440297 15.2 7 3 0.107201 0.3346004 16.1 12 5 458.7638 2027.072 (tle) 16.2 12 4 255.3510 321.9270 17.1 15 3 1800.276 (tle) 1898.929 (optimal) 17.2 15 2 1800.297 (tle) 18.18392 18.1 10 4 34.95760 89.14834 18.2 10 3 2.149441 5.563742 19.1 5 3 0.0493305 0.0455136 19.2 5 2 0.0468450 0.1323206	12_1	10	5	11.88957	26.55118
13.2 11 2 0.631650 1.984571 14.1 8 4 1.431984 5.315332 14.2 8 3 0.324672 0.8963320 15.1 7 4 0.0651164 0.0440297 15.2 7 3 0.107201 0.3346004 16.1 12 5 458.7638 2027.072 (tle) 16.2 12 4 255.3510 321.9270 17.1 15 3 1800.276 (tle) 1898.929 (optimal) 17.2 15 2 1800.297 (tle) 18.18392 18.1 10 4 34.95760 89.14834 18.2 10 3 2.149441 5.563742 19.1 5 3 0.0493305 0.0455136 19.2 5 2 0.0468450 0.1323206	12_2	10	4	27.96690	39.86329
14.1 8 4 1.431984 5.315332 14.2 8 3 0.324672 0.8963320 15.1 7 4 0.0651164 0.0440297 15.2 7 3 0.107201 0.3346004 16.1 12 5 458.7638 2027.072 (tle) 16.2 12 4 255.3510 321.9270 17.1 15 3 1800.276 (tle) 1898.929 (optimal) 17.2 15 2 1800.297 (tle) 18.18392 18.1 10 4 34.95760 89.14834 18.2 10 3 2.149441 5.563742 19.1 5 3 0.0493305 0.0455136 19.2 5 2 0.0468450 0.1323206	13_1	11	2	0.325404	0.2538640
14.2 8 3 0.324672 0.8963320 15.1 7 4 0.0651164 0.0440297 15.2 7 3 0.107201 0.3346004 16.1 12 5 458.7638 2027.072 (tle) 16.2 12 4 255.3510 321.9270 17.1 15 3 1800.276 (tle) 1898.929 (optimal) 17.2 15 2 1800.297 (tle) 18.18392 18.1 10 4 34.95760 89.14834 18.2 10 3 2.149441 5.563742 19.1 5 3 0.0493305 0.0455136 19.2 5 2 0.0468450 0.1323206	13_2	11	2	0.631650	1.984571
15.1 7 4 0.0651164 0.0440297 15.2 7 3 0.107201 0.3346004 16.1 12 5 458.7638 2027.072 (tle) 16.2 12 4 255.3510 321.9270 17.1 15 3 1800.276 (tle) 1898.929 (optimal) 17.2 15 2 1800.297 (tle) 18.18392 18.1 10 4 34.95760 89.14834 18.2 10 3 2.149441 5.563742 19.1 5 3 0.0493305 0.0455136 19.2 5 2 0.0468450 0.1323206	14_1	8	4	1.431984	5.315332
15.2 7 3 0.107201 0.3346004 16.1 12 5 458.7638 2027.072 (tle) 16.2 12 4 255.3510 321.9270 17.1 15 3 1800.276 (tle) 1898.929 (optimal) 17.2 15 2 1800.297 (tle) 18.18392 18.1 10 4 34.95760 89.14834 18.2 10 3 2.149441 5.563742 19.1 5 3 0.0493305 0.0455136 19.2 5 2 0.0468450 0.1323206	14_2		3	0.324672	0.8963320
16.1 12 5 458.7638 2027.072 (tle) 16.2 12 4 255.3510 321.9270 17.1 15 3 1800.276 (tle) 1898.929 (optimal) 17.2 15 2 1800.297 (tle) 18.18392 18.1 10 4 34.95760 89.14834 18.2 10 3 2.149441 5.563742 19.1 5 3 0.0493305 0.0455136 19.2 5 2 0.0468450 0.1323206	15_1	7	4	0.0651164	0.0440297
16.2 12 4 255.3510 321.9270 17.1 15 3 1800.276 (tle) 1898.929 (optimal) 17.2 15 2 1800.297 (tle) 18.18392 18.1 10 4 34.95760 89.14834 18.2 10 3 2.149441 5.563742 19.1 5 3 0.0493305 0.0455136 19.2 5 2 0.0468450 0.1323206	15_2	7	3	0.107201	0.3346004
17.1 15 3 1800.276 (tle) 1898.929 (optimal) 17.2 15 2 1800.297 (tle) 18.18392 18.1 10 4 34.95760 89.14834 18.2 10 3 2.149441 5.563742 19.1 5 3 0.0493305 0.0455136 19.2 5 2 0.0468450 0.1323206	16_1	12	5	458.7638	2027.072 (tle)
17.2 15 2 1800.297 (tle) 18.18392 18.1 10 4 34.95760 89.14834 18.2 10 3 2.149441 5.563742 19.1 5 3 0.0493305 0.0455136 19.2 5 2 0.0468450 0.1323206	16_2	12	4	255.3510	321.9270
18_1 10 4 34.95760 89.14834 18_2 10 3 2.149441 5.563742 19_1 5 3 0.0493305 0.0455136 19_2 5 2 0.0468450 0.1323206	17_1	15		(/	1898.929 (optimal)
18.2 10 3 2.149441 5.563742 19.1 5 3 0.0493305 0.0455136 19.2 5 2 0.0468450 0.1323206	17_{-2}	15	2	1800.297 (tle)	18.18392
19_1 5 3 0.0493305 0.0455136 19_2 5 2 0.0468450 0.1323206	18_1	10		34.95760	89.14834
19_2 5 2 0.0468450 0.1323206	18_2	10	3	2.149441	5.563742
	19_1	5	3	0.0493305	0.0455136
20.1 6 2 0.0000006 0.1020022	19_2	5	2	0.0468450	0.1323206
$\begin{vmatrix} 20_{-1} \end{vmatrix} = 0 = \begin{vmatrix} 5 \end{vmatrix} = 0.0820900 = 0.1032033$	20_1	6	3	0.0820906	0.1032033
20_2 6 2 0.0495598 0.1188879	20_2	6	2	0.0495598	0.1188879

Table 1: Tabela de Resultados

Referências Bibliográficas

- [1] Towards Data Science. (2020). The Vehicle Routing Problem: Exact and Heuristic Solutions. *Towards Data Science*. Disponível em: https://towardsdatascience.com/the-vehicle-routing-problem-exact-and-heuristic-solutions-c411c0f4d734.
- [2] L. Bertazzi, B. Golden, X. Wang. (2014). Min-Max vs. Min-Sum Vehicle Routing: A worst-case analysis. European Journal of Operational Research, 236(3), 822-830. Available at: https://www.sciencedirect.com/science/article/pii/S0377221714005918.