COMP 9602: Convex Optimization

Duality (III)

Dr. C. Wu

Department of Computer Science The University of Hong Kong

Next

- Optimality conditions
 - Complementary slackness
 - KKT conditions

Complementary slackness

assume strong duality holds, x^* is primal optimal, (λ^*, ν^*) is dual optimal

$$f_{0}(x^{*}) = g(\lambda^{*}, \nu^{*}) = \inf_{x} \left(f_{0}(x) + \sum_{i=1}^{m} \lambda_{i}^{*} f_{i}(x) + \sum_{i=1}^{p} \nu_{i}^{*} h_{i}(x) \right)$$

$$\leq f_{0}(x^{*}) + \sum_{i=1}^{m} \lambda_{i}^{*} f_{i}(x^{*}) + \sum_{i=1}^{p} \nu_{i}^{*} h_{i}(x^{*})$$

$$\leq f_{0}(x^{*})$$

hence, the two inequalities hold with equality

- x^* minimizes $L(x, \lambda^*, \nu^*)$
- $\lambda_i^\star f_i(x^\star) = 0$ for $i=1,\ldots,m$ (known as complementary slackness): $\lambda_i^\star > 0 \Longrightarrow f_i(x^\star) = 0, \qquad f_i(x^\star) < 0 \Longrightarrow \lambda_i^\star = 0$

$$\lambda_i^* > 0 \Longrightarrow f_i(x^*) = 0, \qquad f_i(x^*) < 0 \Longrightarrow \lambda_i^* = 0$$

Complementary slackness for LP

Primal and dual LPs $(x \in \mathbb{R}^n, y \in \mathbb{R}^m, A : m \times n)$

Primal:

$$\min c^T x$$

Dual: $\max b^T y$

subject to:

$$Ax \succ b$$

subject to:

$$A^T y \leq c$$

 $y \succeq 0$

Canonical form LP $x \succeq 0$

$$x \succeq 0$$

Complementary slackness theorem for LP

A pair of feasible solutions $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^m$ for primal and dual LP problems is optimal if and only if

$$y_i(b_i - (Ax)_i) = 0, \forall i = 1, ..., m$$

 $x_j(c_j - (A^T y)_j) = 0, \forall j = 1, ..., n$

$$(Ax)_i = b_i$$
, or $(Ax)_i > b_i \& y_i = 0, \forall i = 1, ..., m$
 $(A^Ty)_j = c_j$, or $(A^Ty)_j < c_j \& x_j = 0, \forall j = 1, ..., n$

Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with differentiable f_i , h_i):

minimize $f_0(x)$

minimize
$$f_0(x)$$
 subject to $f_i(x) \leq 0, \quad i=1,\ldots,m$ $h_i(x)=0, \quad i=1,\ldots,p$

- 1. primal constraints: $f_i(x) \leq 0$, $i = 1, \ldots, m$, $h_i(x) = 0$, $i = 1, \ldots, p$
- 2. dual constraints: $\lambda \succeq 0$
- 3. complementary slackness: $\lambda_i f_i(x) = 0$, $i = 1, \dots, m$
- 4. gradient of Lagrangian with respect to x vanishes:

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + \sum_{i=1}^p \nu_i \nabla h_i(x) = 0$$

For any optimization problem with differentiable objective and constraint functions, if strong duality holds, any pair of primal and dual optimal points x^*, λ^*, ν^* must satisfy the KKT conditions

KKT conditions for convex programs

 \Box For a convex program, any points $\tilde{x}, \tilde{\lambda}, \tilde{\nu}$ that satisfy the KKT conditions are primal and dual optimal, and have zero duality gap

=> If a convex program with differentiable objective and constraint functions satisfies Slater's conditions, then KKT condition is necessary and sufficient for optimality

recall that Slater implies strong duality.

Importance of KKT conditions

- □ KKT conditions are very important in optimization
 - possibly solve the KKT conditions to derive (analytical) solution for primal/dual problem
 - many algorithms for convex optimization can be interpreted as methods for solving the KKT conditions

A simple example

$$\min x_1^2 + 2x_2^2$$

subject to:

$$x_1 + x_2 \ge 3$$

To solve this, try to find (x^*, λ^*) that satisfy the KKT conditions

Water-filling examples

$$\min - \sum_{i=1}^k \log(1 + \frac{p_i}{N_i})$$
 subject to:
$$\sum_{i=1}^k p_i \leq P$$

$$p_i \geq 0, \forall i=1,\dots,k$$

Another: Example 5.2, pp. 245, textbook

Water-filling examples: generalization

$$\min f(p)$$

subject to:

$$\sum_{i=1}^{k} p_i \le P$$

$$p_i \ge 0, \forall i = 1, \dots, k$$

where f(p) is convex and twice differentiable ($\nabla^2 f(p) \succ 0$), $\frac{\partial f(\mathbf{p})}{\partial p_i} < 0$ and invertible, f(p) is separable in terms of each p_i , the same water-filling algorithm applies:

maximally allocate resource to pi with the current smallest marginal utility ($\frac{\partial f(\mathbf{p})}{\partial p_i}$, that increases with pi), until all resource is used up.

Duality and problem reformulations

- equivalent formulations of a problem can lead to very different duals
- reformulating the primal problem can be useful when the dual is difficult to derive, or uninteresting

common reformulations

- introduce new variables and equality constraints
- make explicit constraints implicit or vice-versa
- transform objective or constraint functions
 - e.g., replace $f_0(x)$ by $\phi(f_0(x))$ with ϕ convex, increasing

Example I

Introducing new variables and equality constraints

minimize $f_0(Ax+b)$

- ullet dual function is constant: $g=\inf_x L(x)=\inf_x f_0(Ax+b)=p^\star$
- we have strong duality, but dual is quite useless

reformulated problem and its dual

$$\begin{array}{ll} \text{minimize} & f_0(y) & \text{maximize} & b^T \nu - f_0^*(\nu) \\ \text{subject to} & Ax + b - y = 0 & \text{subject to} & A^T \nu = 0 \end{array}$$

Example:

$$\begin{array}{lll} \text{minimize} & \|Ax-b\| & <=> & \begin{array}{ll} \text{minimize} & \|y\| \\ \text{subject to} & y=Ax-b \end{array} \end{array}$$

conjugate of norm on page 93, textbook

Example II

Making explicit constraints implicit

LP with box constraints: primal and dual problem

$$\begin{array}{lll} \text{minimize} & c^Tx & \text{maximize} & -b^T\nu - \mathbf{1}^T\lambda_1 - \mathbf{1}^T\lambda_2 \\ \text{subject to} & Ax = b & \text{subject to} & c + A^T\nu + \lambda_1 - \lambda_2 = 0 \\ & -\mathbf{1} \preceq x \preceq \mathbf{1} & \lambda_1 \succeq 0, \quad \lambda_2 \succeq 0 \end{array}$$

reformulation with box constraints made implicit

minimize
$$f_0(x) = \left\{ \begin{array}{ll} c^T x & -\mathbf{1} \preceq x \preceq \mathbf{1} \\ \infty & \text{otherwise} \end{array} \right.$$
 subject to $Ax = b$

dual function

$$g(\nu) = \inf_{-1 \le x \le 1} (c^T x + \nu^T (Ax - b))$$
$$= -b^T \nu - ||A^T \nu + c||_1$$

dual problem: maximize $-b^T \nu - \|A^T \nu + c\|_1$

Partial Lagrangian relaxation

One can take Lagrangian with respect to only a subset of the constraints

e.g.,
$$\min f_0(x)$$

s.t.:
$$f_i(x) \le 0, i = 1, 2$$

Lagrangian
$$L(x,\lambda_1,\lambda_2)=f_0(x)+\lambda_1f_1(x)+\lambda_2f_2(x)$$
 Lagrange dual
$$g(\lambda_1,\lambda_2)=\min_x L(x,\lambda_1,\lambda_2)$$

Or

(partial) Lagrangian
$$\tilde{L}(x,\lambda)=f_0(x)+\lambda f_1(x)$$
 (partial) Lagrange dual $\tilde{g}(\lambda)=\min_x \tilde{L}(x,\lambda)$ s.t. $f_2(x)\leq 0$

If convex problem and Slater's condition is satisfied:

$$\max_{\lambda \succeq 0} \tilde{g}(\lambda) = \min_{f_i(x) \le 0} f_0(x)$$

The above property extensible to general case, when the partial lagrangian is derived by relaxing any subset of the constraints of a convex program

Partial Lagrangian relaxation (cont'd)

Example:

$$\min \sum_{(i,j)\in E} c_{ij} x_{ij}$$

subject to:

$$\sum_{j:(i,j)\in E} x_{ij} - \sum_{j:(j,i)\in E} x_{ji} = \begin{cases} v, \text{ for } i = s, \\ 0, \text{ for all } i \in V - \{s,t\}, \\ -v, \text{ for } i = t, \end{cases}$$
 (1)

$$0 \le x_{ij} \le u_{ij}, \forall (i,j) \in E \tag{2}$$

$$\sum_{j:(i,j)\in E} x_{ij} \le O_i, \forall i \in V$$

$$\sum_{j:(j,i)\in E} x_{ji} \le I_i, \forall i \in V$$

partial Lagrangian

$$\widetilde{L}(\mathbf{x}, \lambda, \mu) = \sum_{(i,j)\in E} c_{ij} x_{ij} + \sum_{i\in V} \lambda_i (\sum_{j:(i,j)\in E} x_{ij} - O_i) + \sum_{i\in V} \mu_i (\sum_{j:(j,i)\in E} x_{ji} - I_i)$$

Partial Lagrangian relaxation (cont'd)

partial Lagrange dual:

$$\widetilde{g}(\lambda,\mu) = \min_{\mathbf{x}} \widetilde{L}(x,\lambda,\mu)$$
 s.t.: (1) (2)

dual problem:

max
$$\widetilde{g}(\lambda, \mu)$$

s.t.: $\lambda \succeq 0$
 $\mu \succeq 0$

Example III

Transform objective function

minimize
$$||Ax - b||$$

reformulation

minimize
$$\frac{1}{2} \parallel y \parallel^2$$

subject to
$$y = Ax - b$$

dual problem on page 257, textbook

Generalized inequality

minimize
$$f_0(x)$$
 subject to $f_i(x) \preceq_{K_i} 0, \quad i=1,\ldots,m$ $h_i(x)=0, \quad i=1,\ldots,p$

where $K_i \subseteq R^{k_i}$ are proper cones

Definitions for Lagrange dual are parallel to scalar case:

- Lagrange multiplier for $f_i(x) \leq_{K_i} 0$ is vector $\lambda_i \in \mathbf{R}^{k_i}$
- Lagrangian $L: \mathbb{R}^n \times \mathbb{R}^{k_1} \times \cdots \times \mathbb{R}^{k_m} \times \mathbb{R}^p \to \mathbb{R}$, is defined as

$$L(x, \lambda_1, \dots, \lambda_m, \nu) = f_0(x) + \sum_{i=1}^m \lambda_i^T f_i(x) + \sum_{i=1}^p \nu_i h_i(x)$$

• dual function $g: \mathbf{R}^{k_1} \times \cdots \times \mathbf{R}^{k_m} \times \mathbf{R}^p \to \mathbf{R}$, is defined as

$$g(\lambda_1,\ldots,\lambda_m,\nu)=\inf_{x\in\mathcal{D}}L(x,\lambda_1,\cdots,\lambda_m,\nu)$$

Generalized inequality

dual problem

maximize
$$g(\lambda_1,\ldots,\lambda_m,\nu)$$
 subject to $\lambda_i\succeq_{K_i^*} 0, \quad i=1,\ldots,m$

Properties:

- lower bound property: if $\lambda_i \succeq_{K_i^*} 0$, then $g(\lambda_1, \ldots, \lambda_m, \nu) \leq p^*$
- weak duality: $p^* \ge d^*$ always
- strong duality: $p^* = d^*$ for convex problem with constraint qualification (for example, Slater's: primal problem is strictly feasible)
- similarly complementary slackness, KKT conditions also hold. (pp. 267, textbook)

Example

Semidefinite program

primal SDP $(F_i, G \in S^k)$

minimize
$$c^T x$$
 subject to $x_1 F_1 + \cdots + x_n F_n \preceq G$

- ullet Lagrange multiplier is matrix $Z \in \mathbf{S}^k$, define $< A, B> = \mathbf{tr}(AB)$
- Lagrangian $L(x,Z) = c^T x + \mathbf{tr} \left(Z(x_1 F_1 + \cdots + x_n F_n G) \right)$
- dual function

$$g(Z) = \inf_x L(x, Z) = \begin{cases} -\mathbf{tr}(GZ) & \mathbf{tr}(F_iZ) + c_i = 0, \quad i = 1, \dots, n \\ -\infty & \text{otherwise} \end{cases}$$

dual problem

maximize
$$-\mathbf{tr}(GZ)$$

subject to $Z \succeq 0$, $\mathbf{tr}(F_iZ) + c_i = 0$, $i = 1, \dots, n$

 $p^* = d^*$ if primal SDP is strictly feasible ($\exists x \text{ with } x_1F_1 + \cdots + x_nF_n \prec G$)

- Reference
 - Chapter 5.5, 5.7, 5.9, Convex Optimization.
- Acknowledgement
 - Some materials are extracted from the slides created by Prof. Stephen Boyd for the textbook
 - Some materials are extracted from the lecture notes of Convex Optimization by Prof. Wei Yu at the University of Toronto