Last updated August 31, 2025

Jason D. Chadwick

jchadwick@uchicago.edu | jason-chadwick.com

Summary

Ph.D. Candidate in Computer Science with a proven track record of research and industry experience in quantum computer systems and architecture. Specialized in developing and implementing low-level software optimizations for large-scale, fault-tolerant quantum computation, with direct experience in implementing and decoding error correction codes, compiling quantum programs, and optimizing control pulses. Proven ability to make impactful contributions to industrial software, including integrating novel pulse-level optimizations and crosstalk modeling into Intel's core C++ compiler and Python hardware interface.

Education

Ph.D. Candidate, Computer Science, University of Chicago

2022-present

Studying quantum computer systems and architecture, advised by Fred Chong.

My research focuses on co-design optimizations that narrow the gap between existing hardware and fault-tolerant quantum computation. I have worked on research in the areas of hardware implementation of LDPC codes, low-latency surface code decoding, mitigating burst errors, control pulse engineering, device calibration, circuit compilation, and high-radix computation.

B.S. Physics, Carnegie Mellon University Minor in Computer Science GPA 3.95

2018-2022

Professional Experience

Quantum Computing Intern, Intel

Summer 2025

Implemented accurate simulation of capacitive crosstalk in quantum dots into the company's C++ compilation and simulation infrastructure. Implemented and explored several novel ideas for more efficient crosstalk mitigation. My analysis of hardware cost versus compensation effectiveness directly informed the design of next-generation hardware, leading to insights projected to reduce crosstalk compensation hardware complexity by more than 50%.

Quantum Computing Intern, Intel

Summer 2024

Discovered new pulse schedules for two-qubit operations in silicon spin qubits, resulting in up to 54% reduction in errors and spurring the exploration of novel chip designs to take advantage of these gains. Incorporated this work into existing Python hardware interface and C++ compiler stack, creating an internal pulse library interface that is now a core part of Intel's software stack. Created compilation and simulation software for hardware-informed exploration of the QEC code design space, providing guidance for Intel's quantum roadmap. First-author paper published in *Physical Review A* based on this work.

Undergraduate Researcher, University of Chicago

Spring 2021–Summer 2022

Optimized short-duration control pulses for high-radix quantum logic gates, motivating a new compiler design that takes advantage of mixed-radix operations. Presented research at QCE 2022 and contributed key results to papers at ASPLOS 2023 and ISCA 2023.

Undergraduate Intern, Princeton Plasma Physics Laboratory

Summer 2020

As part of the Department of Energy SULI program, designed a neural network to predict fusion plasma cross-sectional density and pressure using only data available in real time during plasma operation, for use in real-time feedback control systems. Work published in *Nuclear Fusion*.

Skills

QEC concepts: Low-latency/windowed decoding, syndrome extraction circuits, distillation &

compilation, circuit-level simulation, noise modeling, qLDPC codes

Programming languages: Python, Julia, C/C++

Python libraries: Stim/Sinter, Qiskit, Cirq, QuTiP, Idpc

Awards and Honors

Best Poster, Honorable Mention, QCE25	2025
QSYS Best Paper 1st place, IEEE QCE 2024	2024
QTEM Best Paper 3rd place, IEEE QCE 2023	2023
Crerar Fellowship, University of Chicago University Honors, Carnegie Mellon University	2022 2022
College Honors, Mellon College of Science, Carnegie Mellon University	2022
Dean's List, High Honors, Mellon College of Science, Carnegie Mellon University	2018-2022

Service

Teaching Assistant, CMSC 22200 Computer Architecture Developed autograder and taught lab sessions.

Winter 2025

Workshop organizer, QCE 2024

September 2024

Organized second edition of "Novel Applications of Optimal Control and Calibration for Quantum Technology" at QCE 2024, featuring invited talks and guided discussions.

Workshop organizer, QCE 2023

September 2023

Organized a day-long workshop "Advances in Numerical Quantum Optimal Control and Characterization Methods" at QCE 2023, featuring invited talks and guided discussions.

Physics Steering Committee, CMU Physics Department

2019-2021

Collaborated with physics department leadership to guide programs and policy.

Publications

† indicates equal contribution

Year	Title and Authors	Publisher	Category
2025	Erasure Minesweeper: exploring hybrid-erasure surface code architectures for efficient quantum error correction J. D. Chadwick [†] , M. H. Teo [†] , J. Viszlai [†] , W. Yang [†] , and F. T. Chong arxiv.org/abs/2505.00066	QCE 2025	Refereed conference paper
2025	Operating two exchange-only qubits in parallel M. T. Mądzik, F. Luthi, G. G. Guerreschi, F. A. Mohiyaddin, F. Borjans, J. D. Chadwick, M. J. Curry, J. Ziegler, S. Atanasov, P. L. Bavdaz, E. J. Connors, J. Corrigan, H. Ekmel Ercan, R. Flory, H. C. George, B. Harpt, E. Henry, M. M. Islam, N. Khammassi, D. Keith, L. F. Lampert, T. M. Mladenov, R. W. Morris, A. Nethwewala, S. Neyens, R. Otten, L. P. O. Ibarra, B. Patra, R. Pillarisetty, S. Premaratne, M. Ramsey, A. Risinger, J. Rooney, R. Savytskyy, T. F. Watson, O. K. Zietz, A. Y. Matsuura, S. Pellerano, N. C. Bishop, J. Roberts, and J. S. Clarke	Under review	Journal article

2025	Short two-qubit pulse sequences for exchange-only spin qubits in 2D J. D. Chadwick, G. G. Guerreschi, F. Luthi, M. T. Mądzik, F. A. Mohiyaddin, P. Prabhu, A. T. Schmitz, A. Litteken, S. Premaratne, N. C. Bishop, A. Y. Matsuura, and J. S. Clarke doi.org/10.1103/PhysRevA.111.052616	Physical Review A 111 , 052616	Journal article
2025	SWIPER: Minimizing Fault-Tolerant Quantum Program Latency via Speculative Window Decoding J. Viszai [†] , J. D. Chadwick [†] , S. Joshi, G. S. Ravi, Y. Li, and F. T. Chong doi.org/10.1145/3695053.3731022	52nd International Symposium on Computer Architecture (ISCA)	Refereed conference paper
2024	Averting multi-qubit burst errors in surface code magic state factories J. D. Chadwick, C. Kang, J. Viszlai, S. F. Lin, and F. T. Chong doi.org/10.1109/QCE60285.2024.00128 QSYS Best Paper 1st place	2024 IEEE International Conference on Quantum Computing and Engineering (QCE)	Refereed conference paper
2023	Efficient control pulses for continuous quantum gate families through coordinated re-optimization J. D. Chadwick and F. T. Chong doi.org/10.1109/QCE57702.2023.00145 QTEM Best Paper 3rd place	2023 IEEE International Conference on Quantum Computing and Engineering (QCE)	Refereed conference paper
2023	Dancing the Quantum Waltz: Compiling Three-Qubit Gates on Four Level Architectures A. Litteken, L. M. Seifert, J. D. Chadwick, N. Nottingham, J. M. Baker, and F. T. Chong doi.org/10.1145/3579371.3589106	50th International Symposium on Computer Architecture (ISCA)	Refereed conference paper
2023	Qompress: Efficient Compilation for Ququarts Exploiting Partial and Mixed Radix Operations for Communication Reduction A. Litteken, L. M. Seifert, J. D. Chadwick , N. Nottingham, J. M. Baker, and F. T. Chong doi.org/10.1145/3575693.3575726	28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS)	Refereed conference paper
2022	Time-Efficient Qudit Gates through Incremental Pulse Reseeding L. M. Seifert [†] , J. D. Chadwick [†] , A. Litteken, F. T. Chong, and J. M. Baker doi.org/10.1109/QCE53715.2022.00051	2022 IEEE International Conference on Quantum Computing and Engineering (QCE)	Refereed conference paper
2021	Prediction of electron density and pressure profile shapes on NSTX-U using neural networks M. D. Boyer and J. D. Chadwick doi.org/10.1088/1741-4326/abe08b	Nuclear Fusion 61 046024	Journal article

Talks

Year 2025	Title Erasure Minesweeper: exploring hybrid-erasure surface code architectures for efficient quantum error correction	Venue 2025 IEEE International Confer- ence on Quantum Computing and Engineering (QCE)	Category Conference talk
2025	Short two-qubit pulse sequences for exchange-only spin qubits in 2D	APS March Meeting 2025	Conference talk
2024	Averting multi-qubit burst errors in surface code magic state factories	2024 IEEE International Conference on Quantum Computing and Engineering (QCE)	Conference paper talk
2024	Dynamic mitigation of time-varying noise in surface code magic state factories	APS March Meeting 2024	Conference talk
2023	Efficient control pulses for continuous quantum gate families through coordinated re-optimization	2023 IEEE International Conference on Quantum Computing and Engineering (QCE)	Conference paper talk

Patents

Year	Title	Description
2023	SYSTEMS AND METHODS FOR OPTIMIZED PULSES FOR CONTINUOUS QUANTUM GATE FAMILIES THROUGH PARAMETER SPACE INTERPOLATION	Methods related to those described in "Efficient control pulses for continuous quantum gate families through coordinated reoptimization", <i>QCE 2023</i> .