What is p-hacking?

Excellent example found here:

http://fivethirtyeight.com/features/science-isntbroken/

- Remember that there is (somewhat unconscious) bias present in many experiments:
 - Collect data until a statistically significant result is obtained.
 - If initial results aren't statistically significant, keep collecting the data. ← Ad Hoc Sequential Sample Size Determination (SSSD)

Data Dredging:

When you use multiple tests on a data set, the probability of making at least one type I error, α , is larger than the significance level suggests each hypothesis test has some probability of error and these errors compound as more tests are conducted

P(No type I errors) =
$$(1 - \alpha)^N$$
, where N = independent tests
P(≥ 1 type I error) = 1-P(No Type I Errors)
= $1 - (1 - \alpha)^N$

Bonferroni

- If your goal is to determine which variable really did respond to treatment rather than just preliminary data exploration
- Only reject H_0 if the ${\bf P}$ value is less than the bonferroniadjusted α^*
- P(≥ 1 Type I error) = α
- lose power ← penalized for 'asking too many questions of the data"

$$\alpha^* = \frac{\alpha}{Num_tests}$$

Interleaf

Data Dredging:

α	Test Number	P(No type I errors)	α*
0.05	10	0.60	0.005
	100	0.006	0.0005
0.01	10	0.90	0.001
	100	0.37	0.0001

Clinical test can have 10+ tests
Gene location can have 100+ tests

False discovery Rate

- Carry out multiple tests at fixed significance level
- Gather all tests that yield statistically significant result (discoveries)
- Estimate the false discovery proportion from the total discoveries

 $P(Reject|H_0 true)/\{P(reject|H_0 true) + P(reject|H_\Delta true)\}$