## 线性代数 作业 11

## 2025年4月1日

## 题 1. 计算下列行列式:

1.

2.

3.

$$\begin{vmatrix} 3 & 2 & 0 & \cdots & 0 \\ 1 & 3 & 2 & \cdots & 0 \\ 0 & 1 & 3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 3 \end{vmatrix}_{n \times n}$$

4. 因式分解

$$\begin{vmatrix} 0 & a & b & c \\ -a & 0 & d & e \\ -b & -d & 0 & f \\ -c & -e & -f & 0 \end{vmatrix}$$

5. Vandermonde 行列式

$$\begin{vmatrix} 1 & 1 & \cdots & 1 \\ X_1 & X_2 & \cdots & X_n \\ \vdots & \vdots & \ddots & \vdots \\ X_1^{n-1} & X_2^{n-1} & \cdots & X_n^{n-1} \end{vmatrix}$$

6.

$$\begin{vmatrix} s_0 & s_1 & s_2 & \cdots & s_{n-1} \\ s_1 & s_2 & s_3 & \cdots & s_n \\ s_2 & s_3 & s_4 & \cdots & s_{n+1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ s_{n-1} & s_n & s_{n+1} & \cdots & s_{2n-2} \end{vmatrix}$$

其中  $s_k = X_1^k + X_2^k + \cdots X_n^k$ .

7. 在复数域  $\mathbb{C}$  上, 将关于 n 个变量  $a_1, a_2, \cdots, a_n$  的多项式

$$\begin{vmatrix} a_1 & a_2 & a_3 & \cdots & a_n \\ a_n & a_1 & a_2 & \cdots & a_{n-1} \\ a_{n-1} & a_n & a_1 & \cdots & a_{n-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_2 & a_3 & a_4 & \cdots & a_1 \end{vmatrix}$$

分解为不可约因子乘积.

- 8.  $det(A^*)$ , 其中  $A^*$  是方阵 A 的伴随.
- 9.  $(n+1) \times (n+2)$  的矩阵

$$A = (a_{ij}) = \left( \binom{j-1}{i-1} \right), 1 \le i \le n+1, 1 \le j \le n+2,$$

 $A_k$  为 A 去掉第 k 列得到的矩阵, 计算  $\det(A_k)$ .

题 2. 设  $A \neq m \times n$  矩阵,  $B \neq n \times m$  矩阵, 证明

$$\det(I_m + AB) = \det(I_n + BA).$$

题 3.  $M_n(\mathbb{R})$  是实数域上的 n 阶方阵的集合.  $\Phi: M_n(\mathbb{R}) \to \mathbb{R}$  是一个映射,满足以下条件

- (a)  $\Phi(AB) = \Phi(A)\Phi(B), \forall A, B \in M_n(\mathbb{R});$
- (b) 对任意上三角矩阵  $A \in M_n(\mathbb{R}), \Phi(A)$  等于 A 的主对角线元素之积;
- (c) 对任意下三角矩阵  $A \in M_n(\mathbb{R}), \Phi(A)$  等于 A 的主对角线元素之积.
- 1. 证明:  $\Phi(A) = |A|, \forall A \in M_n(\mathbb{R}).$
- 2. 如果  $\Phi$  只满足条件 (a) 和 (b), 结论是否成立?请证明.

## 题 4. 考虑一串线性映射

$$\cdots \xrightarrow{d_{n+1}} V_n \xrightarrow{d_n} V_{n-1} \xrightarrow{d_{n-1}} V_{n-2} \xrightarrow{d_{n-2}} \cdots$$

其中  $V_k$  都是有限维  $\mathbb{R}$ -向量空间, 并且对任何  $k \in \mathbb{Z}$ ,  $d_{k-1} \circ d_k = 0$ .

- 记  $Z_k = \ker d_k, B_k = \operatorname{im} d_{k+1}$ , 证明  $B_k$  是  $Z_k$  的子空间, 由此定义商空间  $H_k = Z_k/B_k$ .
- 设  $\{f_n\colon V_n\to V_n\}_{n\in\mathbb{Z}}$  是一串线性映射,满足对任何  $n,\ d_n\circ f_n=f_{n-1}\circ d_n,\ 则\ f_n(Z_n)\subset Z_n, f_n(B_n)\subset B_n.$
- 利用商空间的性质说明,  $f_n$  诱导了线性映射  $f_{n_*}\colon H_n\to H_n$ , 使得如下图表交换:

$$Z_n \xrightarrow{f_n} Z_n$$

$$\downarrow^{\pi_n} \qquad \downarrow^{\pi_n}$$

$$H_n \xrightarrow{f_{n_*}} H_n$$

其中  $\pi_n: Z_n \to H_n = Z_n/B_n$  是商空间的投影映射.

• (Hopf 迹公式) 设对某个  $N \in \mathbb{Z}_+$ , 当 |n| > N 时,  $V_n = 0$ . 证明

$$\sum_{n\in\mathbb{Z}} (-1)^n \operatorname{tr}(f_n \colon V_n \to V_n) = \sum_{n\in\mathbb{Z}} (-1)^n \operatorname{tr}(f_{n_*} \colon H_n \to H_n).$$

注意这里操作的实际上是有限和, 不涉及级数收敛问题.

• 假设所有的  $f_n$  都可逆, 且对某个  $N \in \mathbb{Z}_+$ , 当 |n| > N 时,  $V_n = 0$ . 请证明

$$\Pi_{n\in\mathbb{Z}}(\det(f_n\colon V_n\to V_n))^{(-1)^n}=\Pi_{n\in\mathbb{Z}}(\det(f_{n_*}\colon H_n\to H_n))^{(-1)^n}.$$

注意这里零维向量空间的线性变换的 det 定义为 1, 以上操作的实际上是有限乘积, 不涉及级数收敛问题.

题 5. 记  $w=e^{-\frac{2\pi i}{N}}$ . 证明矩阵

$$W = \frac{1}{\sqrt{N}} \begin{bmatrix} 1 & 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega & \omega^2 & \omega^3 & \cdots & \omega^{N-1} \\ 1 & \omega^2 & \omega^4 & \omega^6 & \cdots & \omega^{2(N-1)} \\ 1 & \omega^3 & \omega^6 & \omega^9 & \cdots & \omega^{3(N-1)} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{N-1} & \omega^{2(N-1)} & \omega^{3(N-1)} & \cdots & \omega^{(N-1)(N-1)} \end{bmatrix}$$

可逆, 并求  $W^{-1}$ .