APMA 2110 - Homework 3

Milan Capoor

1. An algebra \mathcal{A} is a σ -algebra iff $\{E_j\}_1^{\infty} \in \mathcal{A}$ and $E_1 \subseteq E_2 \subseteq \ldots$, then $\bigcup_{j=1}^{\infty} E_j \in \mathcal{A}$.

Suppose \mathcal{A} is a σ -algebra. Then by definition, \mathcal{A} is closed under countable unions. Trivially, $\bigcup_{j=1}^{\infty} E_j \in \mathcal{A}$ since $E_j \in \mathcal{A}$ for countably many j.

Conversely, suppose $\{E_j\}_1^{\infty} \in \mathcal{A}$ and $E_1 \subseteq E_2 \subseteq \ldots$, then $\bigcup_{j=1}^{\infty} E_j \in \mathcal{A}$. We want to show that \mathcal{A} is a σ -algebra. Clearly, \mathcal{A} is closed under countable unions. So it suffices to show that \mathcal{A} is closed under complements.

Take $E_1 \in \mathcal{A}$. Then $E_1^c = (E_1^c \cap E_2) \cup E_2^c$. Certainly $E_1^c \cap E_2 \in \mathcal{A}$. Further, $E_2^c \in \mathcal{A}$ since \mathcal{A} is an algebra and closed under complements for finitely many elements. Since \mathcal{A} is closed under finite disjoint unions, $E_1^c \in \mathcal{A}$.

Suppose $E_1^c, \ldots, E_n^c \in \S$. Let $E_n \in \mathcal{A}$. We want to show that $E_n^c \in \mathcal{A}$. Notice that

$$E_{n}^{c} = E_{n-1}^{c} \setminus (E_{n} \cap E_{n-1}^{c})$$

$$= E_{n-1}^{c} \cap (E_{n} \cap E_{n-1}^{c})^{c}$$

$$= (E_{n-1}^{c} \cap E_{n}^{c}) \cup (E_{n-1}^{c} \cap E_{n-1}^{c})$$

$$= (E_{n-1}^{c} \cap E_{n}^{c}) \cup E_{n-1}^{c}$$

$$\subseteq E_{n-1}^{c} \cup E_{n-1}^{c}$$

$$= E_{n-1}^{c}$$

but by assumption, $E_{n-1}^c \in \mathcal{A}$ so $E_n^c \in \mathcal{A}$.

- 2. Prove the Borel set of \mathbb{R} , $\mathcal{B}_{\mathbb{R}}$ is generated by each of the following:
 - the half-open intervals $\{(a,b]: a < b\}$ or $\{[a,b): a < b\}$.

Lemma: $\mathcal{E} \subseteq \mathcal{M}(\mathcal{F}) \implies \mathcal{M}(\mathcal{E}) \subseteq \mathcal{M}(\mathcal{F})$

Proof: By definition,

$$\mathcal{M}(\mathcal{E}) = \bigcap_{\mathcal{E} \in \mathcal{A}} \mathcal{A}$$

where \mathcal{A} is a σ -algebra containing \mathcal{E} .

By assumption, $\mathcal{M}(\mathcal{F})$ is a σ -algebra containing \mathcal{E} . Hence, $\mathcal{M}(\mathcal{F}) = \mathcal{A}$ for some \mathcal{A} and $\mathcal{M}(\mathcal{E})$ is the intersection of all \mathcal{A} , so $\mathcal{M}(\mathcal{E}) \subseteq \mathcal{M}(\mathcal{F})$.

Let $\mathcal{E} = \{(a, b] : a < b\}$. We want to show that $\mathcal{B}_{\mathbb{R}}$ is generated by \mathcal{E} , i.e.

$$\mathcal{B}_{\mathbb{R}} = \mathcal{M}(\mathcal{E}) = \bigcap_{\mathcal{E} \subseteq \mathcal{A}} \mathcal{A}$$

Certainly $\mathcal{B}_{\mathbb{R}} \subseteq \mathcal{M}(\mathcal{E})$ by the Lemma above because for any open set $O \subseteq \mathcal{B}_{\mathbb{R}}$,

$$O = \bigcup_{i=1}^{\infty} (a_i, b_i) \subseteq \bigcup_{i=1}^{\infty} (a_i, b_i]$$

which is a countable union so $\mathcal{B}_{\mathbb{R}} \subseteq \mathcal{M}(\mathcal{E})$.

It remains to show that $\mathcal{M}(\mathcal{E}) \subseteq \mathcal{B}_{\mathbb{R}}$.

We claim

$$(a,b] = \bigcap_{n=1}^{\infty} (a,b + \frac{1}{n})$$

Proof: Let $(a,b] = (a,b) \cup \{b\}$. Certainly $(a,b) \in \bigcap_{n=1}^{\infty} (a,b+\frac{1}{n})$. Further,

$$\lim_{n \to \infty} b + \frac{1}{n} = b \implies b \in (a, b + \frac{1}{n})$$

for sufficiently large n. Hence $b \in \bigcap_{n=1}^{\infty} (a, b + \frac{1}{n})$ and $(a, b] \subseteq \bigcap_{n=1}^{\infty} (a, b + \frac{1}{n})$.

Conversely, $b \leq b + \frac{1}{n}$ for all $n \in \mathbb{N}$ so $(a, b + \frac{1}{n}) \subseteq (a, b]$ for all $n \in \mathbb{N}$. Hence $\bigcap_{n=1}^{\infty} (a, b + \frac{1}{n}) \subseteq (a, b]$.

Then, any $X \in \mathcal{M}(\mathcal{E})$ is a countable intersection of open sets in \mathbb{R} , so $X \in \mathcal{B}_{\mathbb{R}} \implies \mathcal{M}(\mathcal{E}) \subseteq \mathcal{B}_{\mathbb{R}}$.

The argument for $\{[a,b): a < b\}$ is similar with

$$[a,b) = \bigcap_{n=1}^{\infty} (a - \frac{1}{n}, b)$$

• the closed rays $\{[a, \infty) : a \in \mathbb{R}\}$ or $\{(-\infty, a] : a \in \mathbb{R}\}$. Let $\mathcal{E} = \{[a, \infty) : a \in \mathbb{R}\}$. Because \mathcal{E} is generated by closed sets in \mathbb{R} , $\mathcal{M}(\mathcal{E}) \subseteq \mathcal{B}_{\mathbb{R}}$.

For the reverse inclusion, we want to show that $\mathcal{B}_{\mathbb{R}} \subseteq \mathcal{M}(\mathcal{E})$.

We claim

$$(a,b) = \bigcap_{n=1}^{\infty} \left[a - \frac{1}{n}, b\right)$$

Proof: If a < x < b, certainly $a - \frac{1}{n} \le x < b$ for all $n \in \mathbb{N}$. Hence $(a,b) \subseteq \bigcap_{n=1}^{\infty} [a - \frac{1}{n},b)$. Conversely, if $x \in \bigcap_{n=1}^{\infty} [a - \frac{1}{n},b)$, then $a - \frac{1}{n} \le x < b$ for all $n \in \mathbb{N}$. But $a - \frac{1}{n} \to a$ as $n \to \infty$ so $a \le x < b \implies x \in (a,b)$. Therefore, $\bigcap_{n=1}^{\infty} [a - \frac{1}{n},b) = (a,b)$.

But we can write any interval [a, b) by

$$[a,b) = [a,\infty) \cup [b,\infty)^c$$

So any open set in \mathbb{R} is a countable union of sets in \mathcal{E} (and their complements).

Hence, $\mathcal{B}_{\mathbb{R}} \subseteq \mathcal{M}(\mathcal{E})$.

The argument for $(-\infty, a]$ is similar with

$$(a,b) = \bigcap_{n=1}^{\infty} (a,b + \frac{1}{n}]$$

3. If (X, \mathcal{M}, μ) is a measure space and $E, F \in \mathcal{M}$, then

$$\mu(E) + \mu(F) = \mu(E \cup F) + \mu(E \cap F)$$

First notice that

$$E = (E \setminus F) \cup (E \cap F)$$
$$F = (F \setminus E) \cup (E \cap F)$$

which are each disjoint unions.

So

$$\mu(E) + \mu(F) = \mu((E \setminus F) \cup (E \cap F)) + \mu((F \setminus E) \cup (E \cap F))$$
$$= \mu(E \setminus F) + \mu(E \cap F) + \mu(F \setminus E) + \mu(E \cap F)$$
$$= \mu(E \cap F) + \mu((E \setminus F) \cup (F \setminus E) \cup (E \cap F))$$

But

$$(E \setminus F) \cup (F \setminus E) = (E \cap F^c) \cup (F \cap E^c)$$

$$= [(E \cup F) \cap (E \cup E^c)] \cap [(E \cup E^c) \cap (F^c \cup E^c)]$$

$$= (E \cup F) \cap (F^c \cup E^c)$$

$$= (E \cup F) \cap (E \cap F)^c$$

So

$$\mu((E \setminus F) \cup (F \setminus E) \cup (E \cap F)) = \mu((E \cup F) \cap (E \cap F)^c \cup (E \cap F))$$
$$= \mu((E \cup F) \cap X)$$
$$= \mu(E \cup F)$$

Therefore,

$$\mu(E) + \mu(F) = \mu(E \cap F) + \mu(E \cup F) \quad \blacksquare$$

4. Let (X, \mathcal{M}, μ) be a measure space and $\{E_j\}_{j=1}^{\infty} \subseteq \mathcal{M}$, then

$$\mu(\liminf E_j) \le \liminf \mu(E_j)$$

Also, if $\mu(\bigcup_{j=1}^{\infty} E_j) < \infty$, then

$$\mu(\limsup E_j) \ge \limsup \mu(E_j)$$

Consider $\mu(\liminf E_i)$. By definition,

$$\mu(\liminf E_j) = \mu\left(\bigcup_{k=1}^{\infty} \bigcap_{j=k}^{\infty} E_j\right)$$

Let

$$F_k = \bigcap_{j=k}^{\infty} E_j$$

so $F_1 \subseteq F_2 \subseteq \dots$

By continuity from below,

$$\mu(\liminf E_j) = \mu\left(\bigcup_{k=1}^{\infty} F_k\right) = \lim_{k \to \infty} \mu(F_k) = \lim_{k \to \infty} \mu\left(\bigcap_{j=k}^{\infty} E_j\right)$$

But for any $n \geq k$, $\bigcap_{j=n}^{\infty} E_j \subseteq E_n$ so by monotonicity,

$$\mu\left(\bigcap_{j=n}^{\infty} E_n\right) \le \mu(E_n)$$

And indeed it suffices to choose the smallest:

$$\mu\left(\bigcap_{j=k}^{\infty} E_j\right) \le \inf_{j \ge k} \mu(E_j)$$

Therefore,

$$\mu(\liminf E_j) \le \lim_{k \to \infty} \inf_{j > k} \mu(E_k) = \liminf \mu(E_j)$$

Now suppose $\mu(\bigcup_{j=1}^{\infty} E_j) < \infty$. As before,

$$\mu(\limsup E_j) = \mu\left(\bigcap_{k=1}^{\infty} \bigcup_{j=k}^{\infty} E_j\right)$$

$$= \mu\left(\bigcap_{k=1}^{\infty} F_k\right)$$

$$= \lim_{k \to \infty} \mu(F_k) \qquad \text{(Continuity from above since } \mu(F_1) < \infty\text{)}$$

$$= \lim_{k \to \infty} \mu\left(\bigcup_{j=k}^{\infty} E_j\right)$$

$$\geq \lim_{k \to \infty} \sup_{j \ge k} \mu(E_j) \qquad \text{(Monotonicity)}$$

$$= \lim \sup_{k \to \infty} \mu(E_j) \qquad \blacksquare$$

5. Let μ^* be an outer measure. Let $\{E_k\}_{k=1}^{\infty}$ be a sequence of sets such that

$$\sum_{k=1}^{\infty} \mu^*(E_k) < \infty$$

show that $\mu^*(\limsup E_k) = 0$

Certainly $\mu^*(\limsup E_k) \geq 0$. We will seek to further show that $\mu^*(\limsup E_k) \leq 0$.

On the contrary, suppose $\mu^*(\limsup E_k) = m > 0$.

By definition of \limsup ,

$$\mu^*(\limsup E_k) = \mu^* \left(\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k\right)$$

For notational convenience, let $F_n = \bigcup_{k=n}^{\infty} E_k$. Then $F_1 \supseteq F_2 \supseteq \dots$

Then

$$\mu^*(\limsup E_k) = \mu^* \left(\bigcap_{n=1}^{\infty} F_n\right) = m$$

Note however, that any element $x \in \bigcap_{n=1}^{\infty} F_n$ is in $\bigcup_{k=n}^{\infty} E_k$ for infinitely many n by definition of F_n . Hence,

$$\bigcap_{n=1}^{\infty} F_n \subseteq \bigcup_{k=n}^{\infty} E_k$$

so by monotonicity,

$$\mu^* \left(\bigcap_{n=1}^{\infty} F_n\right) = m \le \mu^* \left(\bigcup_{k=n}^{\infty} E_k\right)$$

Lemma: If μ^* is an outer measure and $\{E_k\}_1^{\infty}$ a sequence of sets,

$$\mu^*(\bigcup_{k=n}^{\infty} E_k) \le \sum_{k=n+1}^{\infty} \mu^*(E_k)$$

Proof: Define the sequence of sets $\{F_k\}_1^{\infty}$ by $F_k = E_{n+k}$. This is still a countably infinite sequence of sets in \mathcal{M} so by subadditivity,

$$\mu^* \left(\bigcup_{k=n+1}^{\infty} E_k \right) = \mu^* \left(\bigcup_{k=1}^{\infty} F_k \right) \le \sum_{k=1}^{\infty} \mu^*(F_k) = \sum_{k=n+1}^{\infty} \mu^*(E_k)$$

By assumption, $\sum_{k=1}^{\infty} \mu^*(E_k) < \infty$ so it must converge to a finite value, say S. Let S_n be its sequence of partial sums. By definition of series convergence, $\forall \varepsilon > 0, \exists N \in \mathbb{N}$ such that $n \geq N$ implies

$$|S - S_n| < \varepsilon$$

Choose $\varepsilon = \frac{m}{2}$. Then $\exists N \in \mathbb{N}$ such that $n \geq N$ implies

$$|S - S_n| = \sum_{k=1}^{\infty} \mu^*(E_k) - \sum_{k=1}^{n} \mu^*(E_k) = \sum_{k=n+1}^{\infty} \mu^*(E_k) < \frac{m}{2}$$

But by the Lemma,

$$\mu^*(\limsup E_k) = m \le \mu^* \left(\bigcup_{k=n+1}^{\infty} E_k\right) \le \sum_{k=n+1}^{\infty} \mu^*(E_k) < \frac{m}{2}$$

And $0 < m < \frac{m}{2}$ is a contradiction, so $\mu^*(\limsup E_k) = 0$,