Linear Algebra

▶

•

Normal Distributions

- ▶ Univariate Normal: $X \sim \mathcal{N}(\mu, \sigma^2)$ has density $f_X(x; \mu, \sigma^2) = (2\pi\sigma^2)^{-1/2} \exp(-\frac{(x-\mu)^2}{2\sigma^2})$
 - $\triangleright X \sim \mathcal{N}(\mu, \sigma^2) \implies \mathbb{E}[X] = \mu$
 - $\triangleright X \sim \mathcal{N}(\mu, \sigma^2) \implies \operatorname{Var}[X] = \sigma^2$
 - \triangleright Any linear combination of **independent** Normal random variables is also Normal. Example: $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2), X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2) \implies aX_1 + bX_2 \sim \mathcal{N}(a\mu_1 + b\mu_2, a^2\sigma_1^2 + b^2\sigma_2^2)$
- ▶ Multivariate Normal: $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where $\boldsymbol{\mu} \in \mathbb{R}^D$ and $\boldsymbol{\Sigma} \in \mathbb{R}^{D \times D}$ is positive definite has density $f_X(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = (2\pi)^{-D/2} \det(\boldsymbol{\Sigma})^{-1/2} \exp\left(-\frac{1}{2}(\mathbf{x} \boldsymbol{\mu})^\top \boldsymbol{\Sigma}^{-1}(\mathbf{x} \boldsymbol{\mu})\right)$
 - $riangleright \mathbf{X} \sim \mathcal{N}(oldsymbol{\mu}, oldsymbol{\Sigma}) \implies \mathbb{E}[\mathbf{X}] = oldsymbol{\mu}$
 - $riangleright \ \mathbf{X} \sim \mathcal{N}(oldsymbol{\mu}, oldsymbol{\Sigma}) \implies \mathrm{Var}[\mathbf{X}] = oldsymbol{\Sigma}$
 - \triangleright If **X** follows a multivariate Normal distribution, then any linear transformation of **X** also follows a multivariate Normal. Example: $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \implies A\mathbf{X} \sim \mathcal{N}(A\boldsymbol{\mu}, A\boldsymbol{\Sigma}A^{\top})$

Gaussian Processes

Bayesian Optimization