Uegentige Integraler:

Sammenligningskriteriet:

La $f, g: [a:\infty) \to \mathbb{R}$, kontinuerlig og positiv. Anta $f(x) \ge (x)$

- 1. Hvis $\int_a^\infty f(x) dx$ Konvergerer $\Rightarrow \int_a^\infty g(x) dx$ Konvergerer
- 2. Hvis $\int_a^\infty g(x)dx$ Divergerer $\Rightarrow \int_a^\infty f(x)dx$ Divergerer

Grensesammenligningskriteriet:

La $f, g: [a:\infty) \to \mathbb{R}$, kontinuerlig og positiv.

- 1. $\int_a^\infty f(x)dx$ Konvergerer og $\lim_{x\to\infty} \frac{g(x)}{f(x)} < \infty \Rightarrow \int_a^\infty g(x)$
- 2. $\int_a^\infty f(x) dx$ Divergerer og $\lim_{x\to\infty} \frac{g(x)}{f(x)}>0 \Rightarrow \int_a^\infty g(x)$ Divergerer

Viktige Integraler:

 $\int_0^1 \frac{dx}{x^p}$ Konvergerer for p<1, divergerer for $p\geq 1$ $\int_1^\infty \frac{dx}{x^p}$ Konvergerer for p>1, divergerer for $p\leq 1$

Taylorpolynom:

Taylors formel med restledd:

Anta f og den n+1 første deriverte er kont på [a,b]: $f(b) = T_n f(b) + \frac{1}{n!} \int_a^b f^{n+1}(t) (b-t)^n dt$

Anta f of dens n+1 første deriverte er kont på [a, b]

$$R_n f(x) = \frac{f^{n+1}(c)}{(n+1)!} (x-a)^{n+1}$$

Funksjonsfølger:

Punktvis og uniform konvergens:

Definisjon av punktvis konvergens:

La $\{f_n\}$ være en følge som er definert på en mengde A, og la f være en funksjon definert på samme mengde A. f_n Konvergerer punktvis mot f på A, Hvis: $\lim_{n\to\infty} f_n(x) = f(x)$ for alle x i A Definisjon av avstand mellom to funksjoner over A:

f og g er definert på samme mengde A. avstanden blir da: $d_A(f,g) = \sup\{|f(x) - g(x) : x \in A|\}\$

Definisjon av uniform kovergens:

En funksjonsfølge $\{f_n\}$, definert på A, konvergerer uniformt mot f(Også definert på A) hvis: $\lim_{n\to\infty} d_A(f, f_n) = 0$

Anta at $\{f_n\}$ er en voksende følge av kont. funksjoner som konvergerer punktvis mot en kont. funksjon f på et lukket, begrenset intervall [a,b]. Da konvergerer $\{f_n\}$ uniformt mot f på [a,b]

Integrasjon og derivasjon av funksjonsfølger

Integrasjon av funksjonsfølger

 $\{f_n\}$ er en føge av funksjoner som konvergerer uniformt mot f på [a,b], da er $\lim_{n\to\infty} \int_c^x f_n(t)dt = \int_c^x \lim_{n\to\infty} f_n(t)dt = \int_c^x f(t)dt$ for $c \in [a,b]$ dette gjelder også for $\lim_{n\to\infty} \int_a^\infty f_n(t)dt = \int_a^\infty \lim_{n\to\infty} f_n(t)dt = \int_c^x f(t)dt$

Derivasjon av funksjonsfølger

 $\{f_n\}$ er en funksjonsfølge på [a,b], og de deriverte f'_n konvergerer uniformt mot en funksjon h. Anta at $\{f_n(d)\}$ konvergerer for et tall $d \in [a, b]$. Da konvergerer $\{f_n\}$ mot en deriverbar funksjon f

 $\lim_{n\to\infty} f'_n(x) = [\lim_{n\to\infty} f_n(x)]'$

Rekker

Egenskaper ved rekker:

- La $\sum_{n=0}^{\infty} a_n$ og $\sum_{n=0}^{\infty} b_n$ være konvergente rekker: 1. $\sum_{n=0}^{\infty} (a_n \pm b_n) = \sum_{n=0}^{\infty} a_n \pm \sum_{n=0}^{\infty} b_n$
 - $2. \sum_{n=0}^{\infty} ca_n = c \sum_{n=0}^{\infty} a_n$

Absolutt og betinget konvergens

Vi sier at rekken $\sum a_n$ konvergerer absolutt dersom $\sum |a_n|$ konvergerer.

Lemma:

Dersom $\sum a_n$ er betinget konvergent, divergerer både $\sum a_n^+$ og

Divergenstesten:

 $\sum_{n=0}^{\infty} a_n \text{Konvergerer} \Leftrightarrow \lim_{n \to \infty} a_n = 0$

Integraltesten:

Anta $f:[1,\infty)\to\mathbb{R}$] er en pos., kont. og avtagende funksjon. Da konvergerer rekken $\sum_{n=1}^{\infty} f(n)$ hviss integralet $\int_{1}^{\infty} f(x) dx$ konveregerer.

Sammenligningstesten: La $\sum_{n=1}^{\infty} a_n$ og $\sum_{n=1}^{\infty} b_n$ være to positive rekker

- 1. Anta at $\sum_{n=1}^{\infty} a_n$ konvergerer og at det finnes et tall c slik at $b_n \leq c \cdot a_n$ for alle n. Da konveregerer $\sum_{n=1}^{\infty} b_n$.
- 2. Anta at $\sum_{n=1}^{\infty} a_n$ divergerer og at det finnes et positivt tall d slik at $b_n \geq d \cdot a_n$ for alle n. Da divergerer $\sum_{n=1}^{\infty} b_n$

Grensesammenligningstesten:

La $\sum_{n=1}^{\infty} a_n$ og $\sum_{n=1}^{\infty} b_n$ være to positive rekker:

- 1. Anta at $\sum_{n=1}^{\infty} a_n$ konvergerer og at $\lim_{n\to\infty} \frac{b_n}{a_n} < \infty$. Da konvergerer også $\sum_{n=1}^{\infty} b_n$.
- 2. Anta at $\sum_{n=1}^{\infty} a_n$ divergerer og at $\lim_{n\to\infty} > 0$. Da divergerer også $\sum_{n=1}^{\infty} b_n$

Forholdstesten:

La $\sum_{n=0}^{\infty}a_n$ være en rekke og anta at grensen $\lim_{n\to\infty}|\frac{a_{n+1}}{a_n}|=a$ eksisterer(Den kan være ∞ !). Da gjelder:

- 1. Dersom a < 1, Konveregerer rekken absolutt.
- 2. Dersom a > 1, Divergerer rekken.
- 3. Dersom a = 1, gir testen ingen konklusjon.

Rottesten:

La $\sum_{n=0}^{\infty}a_n$ være en rekke og anta at grensen $\lim_{n\to\infty}\sqrt[n]{|a_n|}=a$ eksisterer(den kan være ∞ !). Da gjelder:

- 1. Dersom a < 1, konvergerer rekken absolutt.
- 2. Dersom a > 1, divergerer rekken
- 3. Dersom a = 1, gir testen ingen konklusjon

Viktige rekker:

1. Rekken $\sum_{n=1}^{\infty} \frac{1}{n^p}$ konvergerer hviss p > 1

Rekker av funksjoner:

Weierstrass' M-test:

La $\sum_{n=0}^{\infty} v_n(x)$ være en rekke av funksjoner definert på en mengde A. Anta det finnes en konvergent rekke (av tall) $\sum M_n$ slik at $|v_n(a)| \le M_n$ for alle n og alle alle $a \in A$. Da konvergerer rekken $\sum_{n=0}^{\infty} v_n(x)$ uniformt og absolutt på A.