- **4.56** Define $\Phi: [0, \infty] \to [0, 1]$ by $\Phi(t) = t/(t+1)$ for $t \in [0, \infty)$ and $\Phi(\infty) = 1$.
 - a. Φ is strictly increasing and $\Phi(t+s) \leq \Phi(t) + \Phi(s)$.
 - b. If (Y, ρ) is a metric space, then $\Phi \circ \rho$ is a bounded metric on Y that defines the same topology as ρ .
 - c. If X is a topological space, the function $\rho(f,g) = \Phi(\sup_{x \in X} |f(x) g(x)|)$ is a metric on \mathbb{C}^X whose associated topology is the topology of uniform convergence.
 - d. Let $X = \mathbb{R}^d$ and $U_n = B(0, n)$. Then the function

$$\rho(f,g) = \sum_{n=1}^{\infty} 2^{-n} \Phi\left(\sup_{x \in \overline{U_n}} |f(x) - g(x)|\right)$$

is a metric on \mathbb{C}^X whose associated topology is the uniform topology of uniform convergence on compact sets.

Solution a. Notice that

$$\Phi(t) = 1 - \frac{1}{t+1}.$$

Since t+1 is a strictly increasing function, 1/(t+1) is strictly decreasing, so -1/(t+1) is strictly increasing. It follows that Φ is strictly increasing on $[0, \infty)$. Lastly, $\Phi(t) < 1 = \Phi(\infty)$, so it's strictly increasing on $[0, \infty]$.

Notice that since $t, s \geq 0$,

$$\frac{1}{t+1} + \frac{1}{s+1} = \frac{t+s+2}{ts+t+s+1} \le \frac{t+s+2}{t+s+1} = 1 + \frac{1}{t+s+1}.$$

Thus, by rearranging the terms,

$$1 - \frac{1}{t+s+1} \le \left(1 - \frac{1}{t+1}\right) + \left(1 - \frac{1}{s+1}\right) \iff \Phi(t+s) \le \Phi(t) + \Phi(s).$$

b. $\Phi \circ \rho$ is bounded by 1, and it's 0 if and only if $\rho(x,y) = 0$ if and only if x = y, since ρ is a metric. It's also non-negative and satisfies the triangle inequality, by part (a). Lastly, it's symmetrical since ρ is symmetric, so $\Phi \circ \rho$ is a bounded metric.

Let $B_{\rho}(x,r)$ be an open ball in the ρ metric. Then $B_{\Phi \circ \rho}(x,r') \subseteq B_{\rho}(x,r)$, where r' < r/(1+r): If $y \in B_{\Phi \circ \rho}(x,r')$, we have

$$(\Phi \circ \rho)(x,y) = \frac{\rho(x,y)}{1 + \rho(x,y)} < \frac{r}{1+r} = \Phi(r) \implies \rho(x,y) < r,$$

since Φ is strictly increasing.

Now let $B_{\Phi \circ \rho}(x,r)$ be an open ball in the new metric. Assume r < 1 (if $r \ge 1$, then the ball is the whole space). Let r' < r/(1-r). Then $B_{\rho}(x,r') \subseteq B_{\Phi \circ \rho}(x,r)$:

$$y \in B_{\rho}(x, r') \implies (\Phi \circ \rho)(x, y) = \frac{\rho(x, y)}{1 + \rho(x, y)} < \frac{r'}{1 + r'} < r.$$

So the two metrics define the same topology on Y.

c. We need to prove that $f_n \xrightarrow{n \to \infty} g$ uniformly if and only if f_n converges to g in the given metric. This is easy to see as $\Phi(\sup_{x \in X} |f(x) - g(x)|)$ gives the same topology as $\sup_{x \in X} |f(x) - g(x)|$ which generates the uniform convergence topology. d. We need to show that $f_n \to f$ uniformly on compact sets if and only if $f_n \to f$ is the given topology. " \Longrightarrow "

Let $f_k \to f$ uniformly on compact sets. In particular, $f_k \to f$ uniformly on $\overline{U_n}$, which is compact. Let $\varepsilon > 0$. Let $N \in \mathbb{N}$ be so that

$$\sum_{n=N+1}^{\infty} 2^{-n} < \frac{\varepsilon}{2}.$$

Since $f_k \to f$ uniformly on each $\overline{U_n}$, there exists k_n so that if $k \ge k_n$, $\sup_{x \in \overline{U_n}} |f_k(x) - f(x)| < \varepsilon/2$. Take k_0 to be the largest among k_1, \ldots, k_N .

Then if $k \geq k_0$, we have

$$\rho(f_k, f) = \sum_{n=1}^{N} 2^{-n} \Phi\left(\sup_{x \in \overline{U_n}} |f_k(x) - f(x)|\right) + \sum_{n=N+1}^{\infty} 2^{-n} \Phi\left(\sup_{x \in \overline{U_n}} |f_k(x) - f(x)|\right)$$

$$\leq \frac{\varepsilon}{2} \sum_{n=1}^{N} 2^{-n} + \sum_{n=N+1}^{\infty} 2^{-n}$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon,$$

so $f_k \to f$ in the given metric.

" 🚐 "

Let $\varepsilon > 0$ and let K be a compact set in \mathbb{R} . Since compact sets are bounded, there exists $N \geq 1$ so that $K \subseteq U_N$.

Suppose $f_k \to f$ in the topology, i.e., $\rho(f_k, f) \xrightarrow{k \to \infty} 0$. In particular, there exists $k_0 \in \mathbb{N}$ so that

$$k \ge k_0 \implies \rho(f_k, f) = \rho(f, g) = \sum_{n=1}^{\infty} 2^{-n} \Phi\left(\sup_{x \in \overline{U_n}} |f_k(x) - f(x)|\right) < 2^{-N} \frac{\varepsilon}{1 + \varepsilon}$$

$$\implies 2^{-N} \Phi\left(\sup_{x \in \overline{U_n}} |f_k(x) - f(x)|\right) < 2^{-N} \Phi(\varepsilon)$$

$$\implies \sup_{x \in \overline{U_n}} |f_k(x) - f(x)| < \varepsilon$$

$$\implies \sup_{x \in K} |f_k(x) - f(x)| < \varepsilon.$$

Hence, $f_k \to f$ uniformly on compact sets.

- **4.61** Theorem 4.43 remains valid for maps from a compact Hausdorff space X into a complete metric space Y provided the hypothesis of pointwise boundedness is replaced by pointwise total boundedness. (Make this statement precise and then prove it.)
- **Solution** The theorem can be restated as follows:

Theorem. Let X be a compact Hausdorff space. If \mathcal{F} is an equicontinuous, pointwise totally bounded subset of C(X,Y), then \mathcal{F} is totally bounded in the uniform metric, and the closure of \mathcal{F} in C(X) is compact.

So, we just need to show that \mathcal{F} is totally bounded.

Let $\varepsilon > 0$.

By equicontinuity, for every $x \in X$, there exists an open neighborhood $U_x \ni x$ so that $\rho(f(x), f(y)) < \varepsilon/4$ whenever $y \in U_x$, for any $f \in \mathcal{F}$. Thus, $X = \bigcup_x U_x$, so by compactness, there exist x_1, \ldots, x_n so that $X = \bigcup_i U_{x_i}$.

Since $\{f(x) \mid f \in \mathcal{F}\}\$ is totally bounded, there exists $z_1, \ldots, z_m \in \{f(x) \mid f \in \mathcal{F}\} := F$ so that $\{B(z_i, \varepsilon/4)\}_{i=1}^m$ cover F.

Then the rest of the proof follows exactly as it does in Folland.

4.63 Let $K \in C([0,1] \times [0,1])$. For $f \in C([0,1])$, let $Tf(x) = \int_0^1 K(x,y)f(y) \, dy$. Then $Tf \in C([0,1])$, and $\{Tf \mid ||f||_u \leq 1\}$ is precompact in C([0,1]).

Solution By Arzelà-Ascoli, it's enough to prove that the family is equicontinuous and pointwise bounded.

Let
$$\mathcal{F} = \{ Tf \mid ||f||_u \le 1 \}.$$

Equicontinuity:

Let $\varepsilon > 0$.

Since K is continuous in x, there exists $\delta > 0$ so that $|K(x,y) - K(z,y)| < \varepsilon$ whenever $|x-z| < \delta$. Then if $Tf \in \mathcal{F}$, using the fact that $||f||_u \le 1$, we have

$$|Tf(x) - Tf(z)| \le \int_0^1 |K(x, y) - K(z, y)||f(y)| \, \mathrm{d}y < \int_0^1 \varepsilon \, \mathrm{d}y = \varepsilon$$

whenever $|x-z| < \delta$, so \mathcal{F} is equicontinuous.

Pointwise Boundedness:

Notice that $[0,1]^2$ is compact and |K| is continuous, so it attains its maximum $M < \infty$ on $[0,1]^2$.

Let $Tf \in \mathcal{F}$. Because $||K||_u = M$ and $||f||_u \leq 1$,

$$|Tf(x)| \le \int_0^1 |K(x,y)| |f(y)| \, \mathrm{d}y \le \int_0^1 M \, \mathrm{d}y = M,$$

so \mathcal{F} is pointwise bounded.

Thus, \mathcal{F} is precompact.

4.64 Let (X, ρ) be a metric space. A function $f \in C(X)$ is called **Hölder continuous of exponent** α $(\alpha > 0)$ if the quantity

$$N_{\alpha}(f) = \sup_{x \neq y} \frac{|f(x) - f(y)|}{\rho(x, y)^{\alpha}}$$

is finite. If X is compact, $\{f \in C(X) \mid ||f||_u \le 1 \text{ and } N_\alpha(f) \le 1\}$ is compact in C(X).

Solution Notice that because X is a metric space, it's Hausdorff, so we wish to apply Arzelà-Ascoli here.

Let
$$\mathcal{F} = \{ f \in C(X) \mid ||f||_u \le 1 \text{ and } N_{\alpha}(f) \le 1 \}.$$

It's clear that \mathcal{F} is pointwise bounded. We just now need to show equicontinuity.

Let $\varepsilon > 0$, and choose $\delta < \varepsilon^{1/\alpha}$.

Notice that

$$N_{\alpha}(f) \le 1 \implies \sup_{x \ne y} \frac{|f(x) - f(y)|}{\rho(x, y)^{\alpha}} \le 1.$$

In particular, if $0 < \rho(x, y) < \delta$, the upper bound still holds, so

$$\frac{|f(x) - f(y)|}{\rho(x, y)^{\alpha}} \le 1 \implies |f(x) - f(y)| \le \rho(x, y)^{\alpha} < \delta^{\alpha} < \varepsilon,$$

for any $f \in \mathcal{F}$, so \mathcal{F} is equicontinuous.

Thus, by Arzelà-Ascoli, \mathcal{F} is precompact.

We now need to show that \mathcal{F} is closed with respect to the uniform norm. Let $f_n \xrightarrow{n \to \infty} f$ uniformly, where $f_n \in \mathcal{F}$. We need to show that $f \in \mathcal{F}$.

It's clear that $f \in C(X)$ and that $||f||_u \le 1$, since the uniform metric is a metric. We just need to show that it's Hölder continuous of exponent α .

Notice that for any $\varepsilon > 0$, there exist $x \neq y \in X$ so that

$$\frac{|f(x) - f(y)|}{\rho(x, y)^{\alpha}} > N_{\alpha}(f) - \varepsilon.$$

Since $f_n \xrightarrow{n \to \infty} f$ uniformly, it follows that

$$N_{\alpha}(f) - \varepsilon < \frac{|f(x) - f(y)|}{\rho(x, y)^{\alpha}} \le 1.$$

Since ε was arbitrary, it follows that $N_{\alpha}(f) \leq 1$, so $f \in \mathcal{F}$. Hence \mathcal{F} is compact.

4.68 Let X and Y be compact Hausdorff spaces. The algebra generated by functions of the form f(x,y) = g(x)h(y), where $g \in C(X)$ and $h \in C(Y)$ is dense in $C(X \times Y)$.

Solution Let

$$\mathcal{A} := \left\{ \sum_{i=1}^{n} g_i(x) h_i(y) \mid n \in \mathbb{N}, \ g_i \in C(X), \ h_i \in C(y) \right\}.$$

Now let

$$f(x,y) = \sum_{i=1}^{n} g_i(x)h_i(y)$$
 and $\tilde{f}(x,y) = \sum_{j=1}^{m} \tilde{g}_j(x)\tilde{h}_j(y)$.

It's clear that $f + \tilde{f} \in \mathcal{A}$ since their sum is still of the correct form.

As for the product, we have

$$f\tilde{f} = \sum_{i=1}^{n} \sum_{j=1}^{m} g_i(x) h_i(y) \tilde{g}_j(x) \tilde{h}_j(y) = \sum_{i=1}^{n} \sum_{j=1}^{m} \left[g_i(x) \tilde{g}_j(x) \right] \left[h_i(y) \tilde{h}_j(y) \right],$$

and be reindexing, we can write the product as a single sum. Hence A is an algebra.

We now need to show that A separates points and vanishes nowhere.

Let $(x,y), (x_0,y_0) \in X \times Y$. Since X and Y are compact Hausdorff spaces, Urysohn's lemma gives continuous functions $g,h \colon X \to [0,1]$ so that g(x) = h(y) = 0 and $g(x_0) = h(y_0) = 1$. Then $g(x)h(y) \in \mathcal{A}$ and separates the two points: $g(x)h(y) = 0 \neq 1 = g(x_0)h(y_0)$.

Lastly, A vanishes nowhere: take the constant function 1.

Thus, \mathcal{A} is dense in $C(X \times Y)$.

4.69 Let A be a nonempty set, and let $X = [0,1]^A$. The algebra generated by the coordinate maps $\pi_{\alpha} \colon X \to [0,1]$ $(\alpha \in A)$ and the constant function 1 is dense in C(X).

Solution Notice that by Tychonoff's theorem, X is compact, so X is compact Hausdorff.

We now need to show that the algebra \mathcal{A} separates points and vanishes nowhere.

It clearly vanishes nowhere since $1 \in \mathcal{A}$.

Now let $\mathbf{x} := \{x_{\alpha}\}_{{\alpha} \in A} \neq \{y_{\alpha}\}_{{\alpha} \in A} := \mathbf{y} \in X$. In particular, there must exist some ${\alpha} \in A$ so that $x_{\alpha} \neq y_{\alpha}$. Then $\pi_{\alpha}(\mathbf{x}) = x_{\alpha} \neq y_{\alpha} = \pi_{\alpha}(\mathbf{y})$, so \mathcal{A} separates points.

Thus, \mathcal{A} is dense in C(X).