形式语言与自动机理论

正则语言的性质

王春宇

计算机科学与技术学院 哈尔滨工业大学

正则语言的性质

- 证明语言的非正则性
 - 正则语言的泵引理
 - 泵引理的应用
 - · 泵引理只是必要条件
- 正则语言的封闭性
- 正则语言的判定性质
- 自动机的最小化

例 1. $L = \{0^m 1^n \mid m, n \ge 0\}$ 是否是正则语言?

例 2. $L = \{0^m 1^n \mid m \ge 2, n \ge 4\}$ 是否是正则语言?

例 3. $L_{01} = \{0^n 1^n | n \ge 0\}$ 是否是正则语言?

正则语言的泵引理

定理5(正则语言的泵引理)

如果语言 L 是正则的, 那么存在正整数 N, 对 $\forall w \in L$, 只要 $|w| \geq N$, 就可以将 w 分为三部分 w = xyz 满足:

- $\mathbf{1} \ y \neq \varepsilon \ (|y| > 0);$
- $2 |xy| \leq N;$
- $\exists \forall k \geq 0, \ xy^kz \in L.$

证明:

- ① 如果 L 正则, 那么存在有 n 个状态 DFA A 使 $\mathbf{L}(A) = L$;
- 取 $w = a_1 \dots a_m \in L \ (m \ge n),$ 定义 $q_i = \hat{\delta}(q_0, a_1 \dots a_i);$ start $\rightarrow q_0$ $\xrightarrow{a_1 a_2 \dots a_i} q_i$ $\xrightarrow{a_{i+1} \dots a_j} q_j$ $\xrightarrow{a_{j+1} \dots a_m} q_m$
- 3 由鸽巢原理, 必有两状态相同 $q_i = q_j$ (0 $\leq i < j \leq n$);
- 那么w = xyz如图,且有 $\forall k > 0, xy^kz \in L;$ $y = a_{i+1} \cdots a_j$

$$x = a_1 a_2 \cdots a_i$$

$$y = a_{j+1} \cdots a_m$$

$$y = a_1 a_2 \cdots a_i$$

$$y = a_{j+1} \cdots a_m$$

$$y = a_1 a_2 \cdots a_i$$

$$y = a_1 a_2 \cdots a_i$$

$$y = a_1 a_2 \cdots a_m$$

$$y = a_1 a_2 \cdots a_m$$

$$y = a_1 a_2 \cdots a_m$$

6 而因为i < j所以 $y \neq \varepsilon$ (即 |y| > 0), 因为 $j \le n$ 所以 $|xy| \le n$.

泵引理的应用

续例 3. 证明 $L_{01} = \{0^n 1^n | n \ge 0\}$ 不是正则语言. 证明:

- ① 假设 L_{01} 是正则的.
- ② 那么, 存在 $N \in \mathbb{Z}^+$, 对 $\forall w \in L_{01}(|w| \geq N)$ 满足泵引理.
- 3 从 L_{01} 中取 $w = 0^N 1^N$, 显然 $w \in L_{01}$ 且 $|w| = 2N \ge N$.
- 4 那么, w 可被分为 w = xyz, 且 $|xy| \le N$ 和 $y \ne \varepsilon$.
- 5 因此 y 只能是 0^m 且 m > 0.
- 6 那么 $xy^2z = 0^{N+m}1^N \notin L_{01}$, 而由泵引理 $xy^2z \in L_{01}$, 矛盾.
- Φ 所以假设不成立, L_{01} 不是正则的.

例 4. 证明 $L_{eq} = \{w \in \{0,1\}^* \mid w \text{ 由数量相等的 } 0 \text{ 和 } 1 \text{ 构成} \}$ 不是正则的.

思考题

刚刚已经证明了

$$L_{01} = \{0^n 1^n \mid n \ge 0\}$$

不是正则语言,那么能否使用

$$L_{01} \subseteq L_{eq}$$

来说明 L_{eq} 也不是正则的呢?

续例 4. 证明 $L_{eq} = \{w \in \{0,1\}^* \mid w \text{ 由数量相等的 } 0 \text{ 和 } 1 \text{ 构成} \}$ 不是正则的. 证明:

- ① 假设 L_{eq} 是正则的.
- ② 那么, 存在 $N \in \mathbb{Z}^+$, 对 $\forall w \in L_{eq}(|w| \geq N)$ 满足泵引理.
- 3 从 L_{eq} 中取 $w = 0^N 1^N$, 显然 $w \in L_{eq}$ 且 $|w| = 2N \ge N$.
- 4 那么, w 可被分为 w = xyz, 且 $|xy| \le N$ 和 $y \ne \varepsilon$.
- 5 因此 y 只能是 0^m 且 m > 0.
- 6 那么 $xy^2z = 0^{N+m}1^N \notin L_{eq}$, 而由泵引理 $xy^2z \in L_{eq}$, 矛盾.
- f 所以假设不成立, L_{eq} 不是正则的.

例 5. 证明 $L = \{0^i 1^j \mid i > j\}$ 不是正则的.

证明:

- 1 假设 L 是正则的.
- 2 那么, 存在 $N \in \mathbb{Z}^+$, 对 $\forall w \in L(|w| \geq N)$ 满足泵引理.
- **3** 从 L 中取 $w = 0^{N+1}1^N$, 则 $w \in L$ 且 $|w| = 2N+1 \ge N$.
- 4 由泵引理, w 可被分为 w = xyz, 且 $|xy| \le N$ 和 $y \ne \varepsilon$.
- 5 那么, y 只能是 0^m 且 $m \ge 1$.
- **6** 那么, $xz = xy^0z = 0^{N+1-m}1^N \notin L$, 因为 $N+1-m \le N$, 而由泵引理 $xy^0z \in L$, 矛盾.
- 6 所以假设不成立, L 不是正则的.

例 6. Prove $L = \{a^3b^nc^{n-3} \mid n \geq 3\}$ is not regular. 证明:

- 1 假设 L 是正则的.
- ② 那么, 存在 $N \in \mathbb{Z}^+$, 对 $\forall w \in L(|w| \geq N)$ 满足泵引理.
- 3 从 L 中取 $w = a^3b^Nc^{N-3}$, 则 $w \in L$ 且 $|w| = 2N \ge N$.
- 4 由泵引理, w 可被分为 w = xyz, 且 $|xy| \le N$ 和 $y \ne \varepsilon$.
- 5 那么,则y只可能有3种情况(m>0,r>0,s>0):
 - 1 $y = a^m$, M $xy^2z = a^{3+m}b^Nc^{N-3} \notin L$;
 - 2 $y = b^m$, $M xy^2z = a^3b^{N+m}c^{N-3} \notin L$;
 - **3** $y = a^r b^s$, $\mathbb{N} xy^2 z = a^3 b^s a^r b^N c^{N-3} \notin L$.
- 6 无论y为何种情况, xy^2z 都不可能在L中,与泵引理矛盾.
- 6 所以假设不成立, L 不是正则的.

思考题

- $L = \{0^n 1^n \mid 0 \le n \le 100\}$ 是否是正则语言?
- 有限的语言, 是否符合泵引理呢?

 - $\{\varepsilon\}$
 - {0,00}

泵引理只是必要条件

• 泵引理只是正则语言的必要条件

• 只能用来证明某个语言不是正则的

• 与正则语言等价的定理 — Myhill-Nerode Theorem

例7. 语言 L 不是正则的, 但每个串都可以应用泵引理

$$L = \{ca^nb^n \mid n \ge 1\} \cup \{c^kw \mid k \ne 1, w \in \{a, b\}^*\}$$

- 其中 $A = \{ca^nb^n \mid n \ge 1\}$ 部分不是正则的
- $m B = \{c^k w \mid k \neq 1, w \in \{a, b\}^*\}$ 部分是正则的
- 而 A 的任何串 $w = ca^i b^i$,都可应用泵引理,因为

$$w = (\varepsilon)(c)(a^i b^i)$$

重复字符 c 生成的新串都会落入 B 中

思考题

对任何正则语言 L, 在泵引理中, 与 L 相关联的正整数 N

- 与识别 L 的 DFA 的状态数 n 之间有何关系?
- 与识别 L 的 NFA 的状态数之间呢?

思考题

语言

$$L = \{0^n x 1^n \mid n \ge 1, x \in \{0, 1\}^*\}$$

是否是正则语言?

正则语言的性质

chunguahit.edu.cn

- 证明语言的非正则性
- 正则语言的封闭性
- 正则语言的判定性质
- 自动机的最小化

正则语言的封闭性

定义

正则语言经某些运算后得到的新语言仍保持正则,称为在这些运算下封闭. 正则语言 L 和 M, 在这些运算下封闭

- 并: $L \cup M$ $\bar{\chi}$: $L \cap M$
- 连接: LM 反转: $L^R = \{w^R \mid w \in L\}$
- 闭包: L^* 同态: $h(L) = \{h(w) \mid w \in L, 同态 h : \Sigma \to \Gamma^*\}$
- 补: <u>L</u> 逆同态:
- $\not E: L-M$ $h^{-1}(L)=\{w\in \Sigma^*\mid h(w)\in L\subseteq \Gamma^*, \exists \delta h: \Sigma\to \Gamma^*\}$

定理 6 (升/连接/闭包的封闭性)

正则语言在并, 连接和闭包运算下保持封闭.

证明: 由正则表达式的定义得证.

$$RUS = L(r+s) = r+s$$

$$RS = rs$$

$$R + = rt$$

定理7(补运算封闭性)

如果 L 是 Σ 上的正则语言, 那么 $\overline{L} = \Sigma^* - L$ 也是正则的.

证明:

设接受语言 L 的 DFA

$$A = (Q, \Sigma, \delta, q_0, F)$$

即 L(A) = L. 构造 DFA

$$B = (Q, \Sigma, \delta, q_0, Q - F)$$

则有 $\overline{L} = \mathbf{L}(B)$, 因为 $\forall w \in \Sigma^*$

$$w \in \overline{L} \iff \hat{\delta}(q_0, w) \notin F \iff \hat{\delta}(q_0, w) \in Q - F \iff w \in \mathbf{L}(B).$$

注意

使用这种方法求正则语言的补时, DFA 不能有缺失状态.

例 8. 若 $\Sigma = \{0,1\}$, $L = \{\varepsilon\}$ 的 DFA 如图, 请给出 \overline{L} 的 DFA.

$$start \longrightarrow q_0$$

$$\phi = \{\epsilon\} = \Sigma^* - (\epsilon) = \Sigma^*$$

应使用完整的 DFA 去求补:

start
$$\longrightarrow q_0$$
 q_1 q_1 q_1 q_1

$$\frac{1}{2} = \frac{1}{2}$$

思考题

如何求正则表达式的补?

例 9. 证明 $L_{neq} = \{w \mid w \text{ 由数量不相等的 } 0 \text{ 和 } 1 \text{ 构成} \}$ 不是正则的. 证明:

- 由泵引理不易直接证明 L_{neq} 不是正则的;
- 因为无论如何取w,将其分为w=xyz时,都不易产生 L_{neq} 之外的串;
- 而证明 $L_{eq} = \overline{L_{neq}}$ 非正则很容易;
- 由补运算的封闭性, 所以 L_{neq} 也不是正则的.

定理 8

若 DFA A_L , A_M 和 A 的定义如下

$$A_L = (Q_L, \Sigma, \delta_L, q_L, F_L)$$

$$A_M = (Q_M, \Sigma, \delta_M, q_M, F_M)$$

$$A = (Q_L \times Q_M, \Sigma, \delta, (q_L, q_M), F_L \times F_M)$$

其中

$$\delta: (Q_L \times Q_M) \times \Sigma \to Q_L \times Q_M$$
$$\delta((p,q), a) = (\delta_L(p,a), \delta_M(q,a)).$$

则对任意 $w \in \Sigma^*$,

$$\hat{\delta}((q_L, q_M), w) = (\hat{\delta}(q_L, w), \hat{\delta}(q_M, w)).$$

$$\hat{\delta}((q_L, q_M), w) = (\hat{\delta}(q_L, w), \hat{\delta}(q_M, w))$$

证明:对w的结构归纳.

归纳基础: 当 $w = \varepsilon$ 时

$$\hat{\delta}((q_L, q_M), \varepsilon) = (q_L, q_M)$$
 $\hat{\delta}$ 的定义
= $(\hat{\delta}_L(q_L, \varepsilon), \hat{\delta}_M(q_M, \varepsilon))$ 同理

归纳递推: 当 w = xa 时

$$\hat{\delta}((q_L, q_M), xa) = \delta(\hat{\delta}((q_L, q_M), x), a)$$
 $\hat{\delta}$ 的定义
$$= \delta((\hat{\delta}(q_L, x), \hat{\delta}(q_M, x)), a)$$
 归纳假设
$$= (\delta_L(\hat{\delta}_L(q_L, x), a), \delta_M(\hat{\delta}_M(q_M, x), a))$$
 δ 的构造
$$= (\hat{\delta}_L(q_L, xa), \hat{\delta}_M(q_M, xa))$$
 $\hat{\delta}$ 的定义

定理9(交运算封闭性)

如果 L 和 M 是正则语言, 那么 $L \cap M$ 也是正则语言.

证明 1: 由 $L \cap M = \overline{L} \cup \overline{M}$ 得证.

证明 2: 由定理 8 构造识别 $L \cap M$ 的 DFA A, 则 $\forall w \in \Sigma^*$,

 $w \in L \cap M \iff \hat{\delta}_L(q_L, w) \in F_L \land \hat{\delta}_M(q_M, w) \in F_M$

 $\iff (\hat{\delta}_L(q_L, w), \hat{\delta}_M(q_M, w)) \in F_L \times F_M$

 $\iff \hat{\delta}((q_L, q_M), w) \in F_L \times F_M$

 $\iff w \in \mathbf{L}(A).$

因此 $L(A) = L \cap M$, 所以 $L \cap M$ 也是正则的.

例10. 如果已知语言

$$L_{01} = \{0^n 1^n \mid n \ge 0\}$$

不是正则的,请用封闭性证明语言

 $L_{\text{eq}} = \{w \in \{0,1\}^* \mid w \text{ 由数量相等的 } 0 \text{ 和 } 1 \text{ 构成}\}$ 也不是正则的.

证明:

- 1 首先, 因为 0*1* 是正则语言;
- 2 f $L_{01} = \mathbf{L}(\mathbf{0}^*\mathbf{1}^*) \cap L_{eq};$
- 3 如果 L_{eq} 是正则的, L_{01} 必然也是正则的;
- 4 因为已知 L_{01} 不是正则的, 所以 L_{eq} 一定不是正则的.

思考题

为什么又能用 L_{eq} 的子集 L_{01} 是非正则的,来证明 L_{eq} 是非正则的呢?

例 11. 如果 L_1 和 L_2 都不是正则的, 那么 $L_1 \cap L_2$ 一定不是正则的吗?

不一定. 因为, 如果令

$$L_1 = \{0^n 1^n \mid n \ge 0\}$$

$$L_2 = \{a^n b^n \mid n \ge 0\}$$

显然两者都不是正则语言,但

$$L_1 \cap L_2 = \{\varepsilon\}$$

是正则语言.

定理 10 (差运算封闭性)

如果 L 和 M 都是正则语言, 那么 L-M 也是正则的.

证明: $L-M=L\cap \overline{M}$.

例12. 证明正则语言在以下运算下封闭

 $\min(L) = \{w \mid w \text{ is in } L, \text{but no proper prefix of } w \text{ is in } L\}$

证明 1: 设 L 的 DFA 为 $M = (Q, \Sigma, \delta, q_0, F)$, 构造 $\min(L)$ 的 DFA $M' = (Q, \Sigma, \delta', q_0, F)$ 其中 δ' 如下, 往证 $L(M') = \min(L)$:

$$\delta'(q, a) = \begin{cases} \delta(q, a) & \text{if } q \notin F \\ \varnothing & \text{if } q \in F \end{cases}$$

- ① $\forall w \in L(M')$, 存在转移序列 $q_0q_1 \cdots q_n \in F$ 使 M' 接受 w, 其中 $q_i \notin F$ (0 ≤ $i \le n-1$). ∴ $w \in \min(L)$.
- ② $\forall w \in \min(L)$, 有 $w \in L$, M 接受 w 的状态序列为如果 $q_0q_1 \cdots q_n \in F$, 则显然 $q_i \notin F$ ($0 \le i \le n-1$), 否则 w 会有 L 可接受的前缀. $\therefore w \in L(M')$

例12. 证明正则语言在以下运算下封闭

 $\min(L) = \{ w \mid w \text{ is in } L, \text{but no proper prefix of } w \text{ is in } L \}$

证明 2:

由封闭性

得证.

ahed el ahe el

 $\min(L) = L - L\Sigma^+,$

定义

字符串 $w = a_1 a_2 \dots a_n$ 的反转, 记为 w^R , 定义为

$$w^R = a_n a_{n-1} \dots a_1.$$

定义

语言 L 的反转, 记为 L^R , 定义为

$$L^R = \{ w^R \in \Sigma^* \mid w \in L \}.$$

定理 11 (反转的封闭性)

如果 L 是正则语言, 那么 L^R 也是正则的.

两种证明方法:

• 对正则表达式 E 的结构归纳, 往证

$$\mathbf{L}(E^R) = (\mathbf{L}(E))^R.$$

- 构造识别 L 的 NFA $A=(Q,\Sigma,\delta_A,q_0,F)$, 将其转换为识别 L^R 的 NFA $B=(Q,\Sigma,\delta_B,q_s,\{q_0\})$
 - 1 将 A 的边调转方向;
 - 2 将 A 的初始状态 q_0 , 改为唯一的接受状态;
 - 3 新增初始状态 q_s , 且令 $\delta_B(q_s,\varepsilon) = F$.

例 13. 语言 L 及其反转 L^R 分别为

$$L = \{w \in \{0, 1\}^* \mid w \text{ ends in } 01.\}$$

 $L^R = \{w \in \{0, 1\}^* \mid w \text{ starts with } 10.\}$

正则表达式分别为

$$L = (\mathbf{0} + \mathbf{1})^* \mathbf{0} \mathbf{1}$$

 $L^R = \mathbf{10}(\mathbf{0} + \mathbf{1})^*.$

$$L \qquad E \qquad = (4E)^{R}$$

自动机分别为

证明: 往证如果有正则表达式 E, 则存在正则表达式 E^R 使

$$\mathbf{L}(E^R) = (\mathbf{L}(E))^R.$$

归纳基础:

- ① 当 $E = \emptyset$ 时,有 $\emptyset^R = \emptyset$;
- 2 当 $E = \varepsilon$ 时,有 $\varepsilon^R = \varepsilon$;
- $\forall a \in \Sigma,$ 当 E = a 时,有 $a^R = a$;

都满足 $\mathbf{L}(E^R) = (\mathbf{L}(E))^R$, 因此命题成立.

归纳递推:

$$E_{1} L(E_{1}^{R}) = (4E_{1})^{R} E_{2} L(E_{2}^{R}) = (L(E_{2}))^{R}$$

$$E_{1} L(E_{1}^{R}) = (L(E_{2}))^{R} E_{2} L(E_{2}^{R}) = (L(E_{2}))^{R}$$

① 当 $E = E_1 + E_2$ 时,有 $(E_1 + E_2)^R = E_1^R + E_2^R$

$$L((E_1 + E_2)) = L(E_1 + E_2) =$$

$$= L(E_1)L(L(E_2))$$

$$= L(E_1)L(E_2)$$

$$= L(E_1)L(E_2)$$

$$= L(E_1)L(E_2)$$

$$= (L(E_1)L(E_2))^R$$

$$= (L(E_1 + E_2))^R$$

归纳递推:

①
$$E = E_1 + E_2$$
 时,有 $(E_1 + E_2)^R = E_1^R + E_2^R$

② 当
$$E = E_1 E_2$$
 时,有 $(E_1 E_2)^R = E_2^R E_1^R$ $(\mathbf{L}(E_1 E_2))^R = (\mathbf{L}(E_1)\mathbf{L}(E_2))^R$

$$= \{ w_1 w_2 \mid w_1 \in \mathbf{L}(E_1), w_2 \in \mathbf{L}(E_2) \}^R$$

$$= \{ (w_1 w_2)^R \mid w_1 \in \mathbf{L}(E_1), w_2 \in \mathbf{L}(E_2) \}$$

$$= \{ w_2^R w_1^R \mid w_1 \in \mathbf{L}(E_1), w_2 \in \mathbf{L}(E_2) \}$$

$$= \{ w_2^R \mid w_2 \in \mathbf{L}(E_2) \} \{ w_1^R \mid w_1 \in \mathbf{L}(E_1) \}$$

$$= (\mathbf{L}(E_2))^R (\mathbf{L}(E_1))^R$$

=
$$\mathbf{L}(E_2^R)\mathbf{L}(E_1^R)$$
 = $\mathbf{L}(E_2^RE_1^R)$

正则表达式的连接

语言的连接

语言的反转

字符串的反转

语言的连接

语言的反转

正则表达式的连接

归纳递推:

① 当
$$E = E_1 + E_2$$
 时,有 $(E_1 + E_2)^R = E_1^R + E_2^R$

② 当
$$E = E_1 E_2$$
 时,有 $(E_1 E_2)^R = E_2^R E_1^R$

3 当
$$E = E_1^*$$
 时,有 $(E_1^*)^R = (E_1^R)^*$ $(\mathbf{L}(E_1^*))^R$

$$= \{w_1 w_2 \dots w_n \mid n \geq 0, w_i \in \mathbf{L}(E_1)\}^R$$

$$= \{ (w_1 w_2 \dots w_n)^R \mid n \ge 0, w_i \in \mathbf{L}(E_1) \}$$

$$= \{ w_n^R w_{n-1}^R \dots w_1^R \mid n \ge 0, w_i \in \mathbf{L}(E_1) \}$$

$$= \{ w_n^R w_{n-1}^R \dots w_1^R \mid n \ge 0, w_i^R \in \mathbf{L}(E_1^R) \}$$

$$= \{w_1 w_2 \dots w_n \mid n \geq 0, w_i \in \mathbf{L}(E_1^R)\}$$

$$= \mathbf{L}((E_1^R)^*)$$

正则表达式的闭包

语言的反转

字符串的反转

归纳假设

变量重命名

正则表达式的闭包

都满足 $(\mathbf{L}(E))^R = \mathbf{L}(E^R)$, 因此命题成立, 所以 L^R 也是正则语言.

同态

定义

若 Σ 和 Γ 是两个字母表,同态定义为函数 $h: \Sigma \to \Gamma^*$

 $\forall a \in \Sigma, \ h(a) \in \Gamma^*.$

扩展 h 的定义到字符串,

$$(2) \quad h(xa) = h(x)h(a)$$

再扩展 h 到语言, 对 $\forall L \subseteq \Sigma^*$,

$$h(L) = \{h(w) \mid w \in L\}.$$

2 + 51

例 14. 若由 $\Sigma = \{0,1\}$ 到 $\Gamma = \{a,b\}$ 的同态函数 h 为

$$h(0) = ab, \quad h(1) = \varepsilon.$$

则 Σ上的字符串 0011, 在 h 的作用下

$$h(0011) = h(\varepsilon)h(0)h(0)h(1)h(1)$$
$$= \varepsilon \cdot ab \cdot ab \cdot \varepsilon \cdot \varepsilon$$
$$= abab.$$

语言 L = 1*0 + 0*1, 在 h 的作用下, h(L) 为:

$$h(\mathbf{1}^*\mathbf{0} + \mathbf{0}^*\mathbf{1}) = (h(\mathbf{1}))^*h(\mathbf{0}) + (h(\mathbf{0}))^*h(\mathbf{1})$$
$$= (\varepsilon)^*(ab) + (ab)^*(\varepsilon)$$
$$= (ab)^*$$

定理 12 (同态的封闭性)

若 L 是字母表 Σ 上的正则语言, h 是 Σ 上的同态, 则 h(L) 也是正则的.

• 若 L 的正则表达式为 E, 即 $L = \mathbf{L}(E)$, 按如下规则构造表达式 h(E)

$$h(\varnothing) = \varnothing$$
 $h(\mathbf{r} + \mathbf{s}) = h(\mathbf{r}) + h(\mathbf{s})$
 $h(\varepsilon) = \varepsilon$ $h(\mathbf{rs}) = h(\mathbf{r})h(\mathbf{s})$
 $\forall a \in \Sigma, \ h(\mathbf{a}) = h(a)$ $h(\mathbf{r}^*) = (h(\mathbf{r}))^*$

• 往证 $\mathbf{L}(h(E)) = h(\mathbf{L}(E))$, 而 h(E) 显然也是正则表达式, 因此 h(L) 正则

证明: 对 E 的结构归纳, 往证 $\mathbf{L}(h(E)) = h(\mathbf{L}(E))$. 归纳基础:

• 当 $E = \varepsilon$ 时

$$h(\mathbf{L}(\boldsymbol{\varepsilon})) = h(\{\varepsilon\}) = \{\varepsilon\} = \mathbf{L}(\boldsymbol{\varepsilon}) = \mathbf{L}(h(\boldsymbol{\varepsilon}))$$

• 当 $E = \emptyset$ 时

$$h(\mathbf{L}(\varnothing)) = h(\varnothing) = \varnothing = \mathbf{L}(\varnothing) = \mathbf{L}(h(\varnothing))$$

• $\forall a \in \Sigma$, $\exists E = \mathbf{a}$ 时

$$h(\mathbf{L}(\mathbf{a})) = h(\{a\}) = \{h(a)\} = \mathbf{L}(h(a)) = \mathbf{L}(h(a))$$

所以命题成立.

归纳递推: 假设对正则表达式 F, G 分别有

$$\mathbf{L}(h(F)) = h(\mathbf{L}(F)), \quad \mathbf{L}(h(G)) = h(\mathbf{L}(G))$$

• 当 E = F + G 时:

- 当 E = FG 时: 略
- 当 $E = F^*$ 时: 略

逆同态

定义

若 h 是字母表 Σ 到 Γ 的同态, 且 L 是 Γ 上的语言, 那么使 $h(w) \in L$ 的 w $(w \in \Sigma^*)$ 的集合, 称为语言 L 的 h 逆, 记为 $h^{-1}(L)$, 即

$$h^{-1}(L) = \{ w \in \Sigma^* \mid h(w) \in L \}.$$

定理 13 (逆同态的封闭性)

如果 h 是字母表 Σ 到 Γ 的同态, L 是 Γ 上的正则语言, 那么 $h^{-1}(L)$ 也是正则语言.

证明: 由 L 的 DFA $A=(Q,\Gamma,\delta,q_0,F)$, 构造识别 $h^{-1}(L)$ 的 DFA

为证明
$$L(B) = h^{-1}(L)$$
,共享明 $\delta(\Xi w) = \delta(\alpha h(w))$.
$$\delta'(9, a) = \delta(9, h(a))$$

证明: 由 L 的 DFA $A=(Q,\Gamma,\delta,q_0,F)$, 构造识别 $h^{-1}(L)$ 的 DFA

$$B = (Q, \Sigma, \delta', q_0, F),$$

其中

$$\delta'(q, a) = \hat{\delta}(q, h(a)).$$

为证明 $\mathbf{L}(B) = h^{-1}(L)$, 先证明 $\hat{\delta}'(q, w) = \hat{\delta}(q, h(w))$.

对 |w| 归纳, 往证 $\hat{\delta}'(q,w) = \hat{\delta}(q,h(w))$.

1 归纳基础: 若 $w = \varepsilon$

$$\hat{\delta}(q, h(\varepsilon)) = \hat{\delta}(q, \varepsilon) = q = \hat{\delta}'(q, \varepsilon),$$

2 归纳递推: 若 w = xa

$$\hat{\delta}'(q,xa) = \delta'(\hat{\delta}'(q,x),a)$$
 $\hat{\delta}'$ 定义
$$= \delta'(\hat{\delta}(q,h(x)),a)$$
 归纳假设
$$= \hat{\delta}(\hat{\delta}(q,h(x)),h(a))$$
 δ' 构造
$$= \hat{\delta}(q,h(x)h(a))$$
 DFA 节例 5
$$= \hat{\delta}(q,h(xa)).$$

所以 $\forall w \in \Sigma^*$, $\hat{\delta}'(q_0, w) = \hat{\delta}(q_0, h(w)) \in F$, 即 w 被 B 接受当且仅当 h(w) 被 A 接受, B 是识别 $h^{-1}(L)$ 的 DFA, 因此 $h^{-1}(L)$ 是正则的.

例 15. Prove that $L = \{0^n 1^{2n} \mid n \ge 0\}$ is a language not regular.

证明: 设同态 $h: \{0,1\} \rightarrow \{0,1\}^*$ 为

$$h(0) = 0,$$

$$h(1) = 11,$$

那么

$$h^{-1}(L) = \{0^n 1^n \mid n \ge 0\} = L_{01},$$

我们已知 L_{01} 非正则, 由封闭性, L 不是正则的.

例 16. 若语言 $L = (\mathbf{00} + \mathbf{1})^*$, 同态 $h: \{a, b\} \rightarrow \{0, 1\}^*$ 为

$$h(a) = 01, h(b) = 10,$$

请证明 $h^{-1}(L) = (\mathbf{ba})^*$.

证明: 往证 $h(w) \in L \iff w = (ba)^n$.

- (⇐) 若 $w = (ba)^n$, 而 h(ba) = 1001, 因此 $h(w) = (1001)^n \in L$.
- (⇒) 若 $h(w) \in L$, 假设 $w \notin (ba)^*$, 则只能有四种情况:
 - ① w 以 a 开头,则 h(w) 以 01 开头,显然 $h(w) \notin (\mathbf{00} + \mathbf{1})^*$;
 - ② w 以 b 结尾,则 h(w) 以 10 结尾,显然 $h(w) \notin (00+1)^*$;
 - ③ w 有连续的 a, 即 w = xaay, 则 h(w) = z1010v, 则显然 $h(w) \notin (\mathbf{00} + \mathbf{1})^*$;
 - **4** w 有连续的 b, 即 w = xbby, 则 h(w) = z0101v, 则显然 $h(w) \notin (\mathbf{00} + \mathbf{1})^*$;

因此 w 只能是 $(ba)^n, n \geq 0$ 的形式.

例 17. For a language L, define head(L) to be the set of all prefixes of strings in L. Prove that if L is regular, so is head(L).

证明. 设 L 是 Σ 上的正则语言且 $\Sigma = \{0,1\}, \Gamma = \{0,1,a,b\}.$ 定义同态 $h:\Gamma \to \Sigma^*$ 和 $g:\Sigma \to \Gamma^*$ 分别为: $\Gamma \to \Sigma^*$

$$h(0) = 0$$
 $h(a) = 0$ $g(0) = 0$ $g(a) = \varepsilon$
 $h(1) = 1$ $h(b) = 1$ $g(1) = 1$ $g(b) = \varepsilon$

则因为 $(0+1)^*(a+b)^*$ 是 Γ 上的正则语言, 所以

$$(\mathbf{0} + \mathbf{1})^* (\mathbf{a} + \mathbf{b})^* \cap h^{-1}(L)$$

是 Г上的正则语言, 所以

head(L) =
$$g((\mathbf{0} + \mathbf{1})^*(\mathbf{a} + \mathbf{b})^* \cap h^{-1}(L))$$

是 Σ 上的正则语言, 因此 head(L) 是正则的.

正则语言的性质

- 证明语言的非正则性
- 正则语言的封闭性
- 正则语言的判定性质
 - 空性, 有穷性和无穷性
 - 等价性
- 自动机的最小化

正则语言的判定性质

正则语言, 或任何语言, 典型的3个判定问题:

- 1 以某种形式化模型描述的语言是否为空?是否无穷?
- 2 某个特定的串 w 是否属于所描述的语言?
- 3 以两种方式描述的语言,是否是相同的?—语言的等价性

我们想知道, 要回答这类问题的具体算法, 是否存在.

空性,有穷性和无穷性

定理 14

具有n个状态的有穷自动机M接受的集合S:

- 1 S 是非空的, 当且仅当 M 接受某个长度小于 n 的串;
- ② S 是无穷的, 当且仅当 M 接受某个长度为 m 的串, $n \leq m < 2n$.

所以,对于正则语言:

- 存在算法, 判断其是否为空, 只需检查全部长度小于 n 的串;
- 存在算法,判断其是否无穷,只需检查全部长度由n到2n-1的串.

证明: 设接受正则语言 S 的 DFA 为 M.

- 1) 必要性: 显然成立. 充分性:
 - ① 如果 S 非空, 设 w 是 M 接受的串中长度最小者之一;
 - ⑪必然 |w| < n, 否则由泵引理 w = xyz, 接受 xz 更短.
- 2 必要性: 由泵引理, 显然成立. 充分性:
 - ① 如果 S 无穷,假设没有长度 n 到 2n-1 之间的串;
 - ⑪ 那么取 $w \in \mathbf{L}(M)$ 是长度 $\geq 2n$ 中最小者之一;
 - 曲 由泵引理 w = xyz, 且 M 会接受更短的串 xz;
 - 于是,或者 w 不是长度最小的,或者长度 n 到 2n-1 之间有被接受的串,因此假设不成立.

正则语言的等价性

定理 15

存在算法,判定两个有穷自动机是否等价(接受语言相同).证明:

- ① 设 M_1 和 M_2 是分别接受 L_1 和 L_2 的有穷自动机;
- ②则 $(L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2)$ 是正则的,所以可被某个有穷自动机 M_3 接受;
- 3 而 M_3 接受某个串, 当且仅当 $L_1 \neq L_2$;
- 4 由于存在算法判断 $L(M_3)$ 是否为空, 因此得证.

正则语言的性质

- 证明语言的非正则性
- 正则语言的封闭性
- 正则语言的判定性质
- 自动机的最小化
 - 状态的等价性
 - · 填表算法与 DFA 最小化

状态的等价性

定义

 $DFAA = (Q, \Sigma, \delta, q_0, F)$ 中两个状态 p 和 q, 对 $\forall w \in \Sigma^*$:

$$\hat{\delta}(p, w) \in F \Leftrightarrow \hat{\delta}(q, w) \in F,$$

则称这两个状态是等价的,否则称为可区分的.

• 等价性只要求 $\hat{\delta}(p,w)$ 和 $\hat{\delta}(q,w)$ 同时在或不在 F 中, 而不必是相同状态.

填表算法

递归寻找 DFA 中全部的可区分状态对:

- ① 如果 $p \in F$ 而 $q \notin F$, 则 [p,q] 是可区分的;
- 2 $\exists a \in \Sigma, 如果$

$$[r = \delta(p, a), s = \delta(q, a)]$$

是可区分的,则[p,q]是可区分的.

定理 16

如果填表算法不能区分两个状态,则这两个状态是等价的.

1 直接标记终态和非终态之间的状态对:

 $\{C\} \times \{A, B, D, E, F, G, H\}.$

2 标记所有经过字符 0 到达终态和非终态的状态对:

 $\{D, F\} \times \{A, B, C, E, G, H\}.$

3标记所有经过字符1到达终态和非终态的状态对:

 $\{B, H\} \times \{A, C, D, E, F, G\}.$

4 此时还有 [A,E], [A,G], [B,H], [D,F], [E,G] 未标记, 只需逐个检查.

- 4 此时还有 [A,E], [A,G], [B,H], [D,F], [E,G] 未标记, 只需逐个检查.
 - × [A,G] 是可区分的, 因为经串 01 到可区分的 [C,E];
 - × [E,G] 是可区分的, 因为经串 10 到可区分的 [C,H].

例18. 用填表算法找到如图 DFA 中全部可区分状态对.

5 而 [A,E], [B,H] 和 [D,F] 在经过很短的字符串后, 都会到达相同状态, 因此都是等价的.

DFA 最小化

根据等价状态,将状态集划分成块,构造等价的最小化 DFA. 续例 18. 构造其最小化的 DFA.

思考题

NFA 能否最小化?