EE 2000 SIGNALS AND SYSTEMS

Ch. 4 Fourier Series

OUTLINE

- Introduction
- Fourier series
- Properties of Fourier series
- Systems with periodic inputs

INTRODUCTION: MOTIVATION

Motivation of Fourier series

- Convolution is derived by decomposing the signal into the sum of a series of delta functions
 - Each delta function has its unique delay in time domain.
 - Time domain decomposition

$$x(t) = \int_{-\infty}^{+\infty} x(\tau)\delta(t-\tau)d\tau = \lim_{\Delta \to 0} \sum_{n=-\infty}^{+\infty} x(n\Delta)\delta(t-n\Delta)\Delta$$

INTRODUCTION: MOTIVATION

- Can we decompose the signal into the sum of other functions
 - Such that the calculation can be simplified?
 - Yes. We can decompose periodic signal as the sum of a sequence of complex exponential signals → Fourier series.

$$e^{j\Omega_0 t} = e^{j2\pi f_0 t}$$

$$f_0 = \frac{\Omega_0}{2\pi}$$

- Why complex exponential signal? (what makes complex exponential signal so special?)
 - 1. Each complex exponential signal has a unique frequency → frequency decomposition
 - 2. Complex exponential signals are periodic

INTRODUCTION: REVIEW

Complex exponential signal

$$e^{j2\pi ft} = \cos(2\pi ft) + j\sin(2\pi ft)$$

- Complex exponential function has a one-to-one relationship with sinusoidal functions.
- Each sinusoidal function has a unique frequency: f

What is frequency?

- Frequency is a measure of how fast the signal can change within a unit time.
 - Higher frequency \rightarrow signal changes faster

INTRODUCTION: ORTHONORMAL SIGNAL SET

Definition: orthogonal signal set

– A set of signals, $\{\phi_0(t), \phi_1(t), \phi_2(t), \cdots\}$, are said to be orthogonal over an interval (a, b) if

$$\int_{a}^{b} \phi_{l}(t)\phi_{k}^{*}(t)dt = \begin{cases} C, & l = k \\ 0, & l \neq k \end{cases}$$

Example:

- the signal set: $\phi_k(t) = e^{jk\Omega_0 t}$ $k = 0, \pm 1, \pm 2, \cdots$ are orthogonal over the interval $[0, T_0]$, where $\Omega_0 = \frac{2\pi}{T_0}$

OUTLINE

- Introduction
- Fourier series
- Properties of Fourier series
- Systems with periodic inputs

Definition:

- For any periodic signal with fundamental period T_0 , it can be decomposed as the sum of a set of complex exponential signals as

$$x(t) = \sum_{n=-\infty}^{+\infty} c_n e^{jn\Omega_0 t}$$

$$\Omega_0 = \frac{2\pi}{T_0}$$

• $c_n, n = 0, \pm 1, \pm 2, \cdots$, Fourier series coefficients

$$c_n = \frac{1}{T_0} \int_{\langle T_0 \rangle} x(t) e^{-jn\Omega_0 t} dt$$

• derivation of c_n :

Fourier series

$$x(t) = \sum_{n=-\infty}^{+\infty} c_n e^{jn\Omega_0 t}$$

- The periodic signal is decomposed into the weighted summation of a set of orthogonal complex exponential functions.
- The frequency of the n-th complex exponential function: $^{n\Omega_0}$
 - The periods of the n-th complex exponential function: $T_n = \frac{T_0}{n}$
- The values of coefficients, c_n , $n = 0, \pm 1, \pm 2, \cdots$, depend on x(t)
 - Different x(t) will result in different c_n
 - There is a one-to-one relationship between x(t) and c_n

$$s(t) \leftarrow - [\cdots, c_{-2}, c_{-1}, c_0, c_1, c_2, \cdots]$$

For a periodic signal, it can be either represented as s(t), or represented as c_n

Example

$$x(t) = \begin{cases} -K, & -1 < t < 0 \\ K, & 0 < t < 1 \end{cases}$$

Rectangle pulses

Amplitude and phase

The Fourier series coefficients are usually complex numbers

$$c_n = a_n + jb_n = |c_n|e^{j\theta_n}$$

– Amplitude line spectrum: amplitude as a function of $n\Omega_0$

$$\left|c_{n}\right| = \sqrt{a_{n}^{2} + b_{n}^{2}}$$

- Phase line spectrum: phase as a function of $n\Omega_0$

$$\theta_n = a \tan \frac{b_n}{a_n}$$

FOURIER SERIES: FREQUENCY DOMAIN

Signal represented in frequency domain: line spectrum

- Each c_n has its own frequency $n\Omega_0$
- The signal is decomposed in frequency domain.
- c_n is called the harmonic of signal s(t) at frequency $n\Omega_0$
- Each signal has many frequency components.
 - The power of the harmonics at different frequencies determines how fast the signal can change.

FOURIER SERIES: FREQUENCY DOMAIN

• Example: Piano Note

piano notes

E5: 659.25 Hz

E6: 1318.51 Hz

B6: 1975.53 Hz

E7: 2637.02 Hz

spectrum

All graphs in this page are created by using the open-source software Audacity.

- Example
 - Find the Fourier series of $s(t) = \exp(j\Omega_0 t)$

Example

- Find the Fourier series of $s(t) = B + A\cos(\Omega_0 t + \theta)$

$$y(t) = 1 + \sin(100t)$$

Time domain

Amplitude spectrum

Example

Find the Fourier series of

$$s(t) = \begin{cases} 0, & -T/2 < t < -\tau/2 \\ K, & -\tau/2 < t < \tau/2 \\ 0, & \tau/2 < t < T/2 \end{cases}$$

Time domain

$$c_n = \frac{K\tau}{T}\sin \, \mathrm{c}(\frac{n\,\tau}{T})$$

FOURIER SERIES: DIRICHLET CONDITIONS

- Can any periodic signal be decomposed into Fourier series?
 - Only signals satisfy Dirichlet conditions have Fourier series
- Dirichlet conditions
 - -1. x(t) is absolutely integrable within one period

$$\int_{} |x(t)| \, dt < \infty$$

- -2. x(t) has only a finite number of maxima and minima.
- 3. The number of discontinuities in x(t) must be finite.

OUTLINE

- Introduction
- Fourier series
- Properties of Fourier series
- Systems with periodic inputs

PROPERTIES: LINEARITY

Linearity

Two periodic signals with the same period $T_0 = \frac{2\pi}{\Omega_0}$

$$x(t) = \sum_{n = -\infty}^{+\infty} \alpha_n e^{jn\Omega_0 t} \qquad y(t) = \sum_{n = -\infty}^{+\infty} \beta_n e^{jn\Omega_0 t}$$

The Fourier series of the superposition of two signals is

$$k_1 x(t) + k_2 y(t) = \sum_{n=-\infty}^{+\infty} (k_1 \alpha_n + k_2 \beta_n) e^{jn\Omega_0 t}$$

- If
$$x(t) <=> \alpha_n \qquad y(t) <=> \beta_n$$

• then

$$k_1 x(t) + k_2 y(t) <=> (k_1 \alpha_n + k_2 \beta_n)$$

PROPERTIES: EFFECTS OF SYMMETRY

• Symmetric signals

- A signal is even symmetry if: x(t) = x(-t)
- A signal is odd symmetry if: x(t) = -x(-t)
- The existence of symmetries simplifies the computation of Fourier series coefficients.

PROPERTIES: EFFECTS OF SYMMETRY

- Fourier series of even symmetry signals
 - If a signal is even symmetry, then

$$x(t) = \sum_{n=-\infty}^{+\infty} a_n \cos(n\Omega_0 t)$$

$$x(t) = \sum_{n=-\infty}^{+\infty} a_n \cos(n\Omega_0 t)$$

$$a_n = \frac{2}{T_0} \int_0^{T_0/2} x(t) \cos(n\Omega_0 t) dt$$

- Fourier series of odd symmetry signals
 - If a signal is odd symmetry, then

$$x(t) = \sum_{n=1}^{+\infty} b_n \sin(n\Omega_0 t)$$

$$b_n = \frac{2}{T_0} \int_0^{T_0/2} x(t) \sin(n\Omega_0 t) dt$$

PROPERTIES: EFFECTS OF SYMMETRY

Example

$$x(t) = \begin{cases} A - \frac{4A}{T}t, & 0 < t < T/2 \\ \frac{4A}{T}t - 3A, & T/2 < t < T \end{cases}$$

PROPERTIES: SHIFT IN TIME

Shift in time

– If x(t) has Fourier series c_n , then $x(t-t_0)$ has Fourier series $c_n e^{-jn\Omega_0 t_0}$

if
$$x(t) \leftarrow c_n$$
, then $x(t-t_0) \leftarrow c_n e^{-jn\Omega_0 t_0}$

- Proof:

PROPERTIES: PARSEVAL'S THEOREM

Review: power of periodic signal

$$P = \frac{1}{T} \int_0^T |x(t)|^2 dt$$

Parseval's theorem

if
$$x(t) \longleftrightarrow \alpha_n$$

then $\frac{1}{T} \int_0^T |x(t)|^2 dt = \sum_{m=-\infty}^{+\infty} |\alpha_m|^2$

- Proof:

PROPERTIES: PARSEVAL'S THEOREM

- Example
 - Use Parseval's theorem find the power of $x(t) = A \sin(\Omega_0 t)$

OUTLINE

- Introduction
- Fourier series
- Properties of Fourier series
- Systems with periodic inputs

PERIODIC INPUTS: COMPLEX EXPONENTIAL INPUT

LTI system with complex exponential input

$$x(t) = e^{j\Omega t} \qquad y(t)$$

$$y(t) = x(t) \otimes h(t) = h(t) \otimes x(t)$$

$$= \int_{-\infty}^{+\infty} h(\tau) x(t - \tau) d\tau$$

$$= \exp(j\Omega t) \int_{-\infty}^{+\infty} h(\tau) \exp(-j\Omega \tau) d\tau$$

Transfer function

$$H(\Omega) = \int_{-\infty}^{+\infty} h(\tau) \exp(-j\Omega\tau) d\tau$$

For LTI system with complex exponential input, the output is

$$y(t) = H(\Omega) \exp(j\Omega t)$$

It tells us the system response at different frequencies

• Example:

- For a system with impulse response $h(t) = \delta(t - t_0)$ find the transfer function

Example

Find the transfer function of the system shown in figure.

RL circuit

- Example
 - Find the transfer function of the system shown in figure

RC circuit

PERIODIC INPUTS: TRANSFER FUNCTION

Transfer function

For system described by differential equations

$$\sum_{i=0}^{n} p_{i} y^{(i)}(t) = \sum_{i=0}^{m} q_{i} x^{(i)}(t)$$

$$H(\Omega) = \frac{\sum_{i=0}^{m} q_i (j\Omega)^i}{\sum_{i=0}^{n} p_i (j\Omega)^i}$$

LTI system with periodic inputs

- Periodic inputs:
$$x(t) = \sum_{n=-\infty}^{+\infty} c_n \exp(jn\Omega_0 t)$$
 $\omega_0 = \frac{2\pi}{T}$

linear:

$$x(t) \longrightarrow h(t) \xrightarrow{n=-\infty} c_n e^{jn\Omega_0 t} H(n\Omega_0)$$

For system with periodic inputs, the output is the weighted sum of the transfer function.

Procedures:

- To find the output of LTI system with periodic input
 - 1. Find the Fourier series coefficients of periodic input x(t).

$$\alpha_n = \frac{1}{T} \int_0^T x(t) e^{-jn\Omega_0 t} dt$$

$$\Omega_0 = 2\pi f_0 = \frac{2\pi}{T_{\infty}}$$

• 2. Find the transfer function of LTI system $H(\Omega)$

period of x(t)

• 3. The output of the system is

$$y(t) = \sum_{n=-\infty}^{+\infty} c_n e^{jn\Omega_0 t} H(n\Omega_0)$$

Example

Find the response of the system when the input is

$$x(t) = 4\cos(t) - 2\cos(2t)$$

Example

- Find the response of the system when the input is shown in figure.

PERIODIC INPUTS: GIBBS PHENOMENON

The Gibbs Phenomenon

Most Fourier series has infinite number of elements → unlimited bandwidth

$$x(t) = \sum_{n=-\infty}^{+\infty} c_n e^{jn\Omega_0 t}$$

• What if we truncate the infinite series to finite number of elements?

$$x_N(t) = \sum_{n=-N}^{+N} c_n e^{jn\Omega_0 t}$$

– The truncated signal, $x_N(t)$, is an approximation of the original signal x(t)

PERIODIC INPUTS: GIBBS PHENOMENON

$$c_n = \begin{cases} \frac{2K}{j\pi} \frac{1}{n}, & n \text{ odd,} \\ 0, & n \text{ even.} \end{cases}$$

$$x_N(t) = \sum_{n=-N}^{+N} c_n e^{jn\Omega_0 t}$$

 $x_3(t)$

 $x_5(t)$

 $x_{19}(t)$

- Analogy: Optical Prism
 - Each color is an Electromagnetic wave with a different frequency

Optical prism