Лабораторная Работа №2

- 1)Детерминированные циклические вычислительные процессы с управлением по аргументу;
- 2)Организовать Детерминированные циклические вычислительные процессы средствами Free Pascal или Lazarus;
- 3)Персональный компьютер, Lazarus;
- 4.1) Вычислить n!, где n вводится с клавиатуры.
- 5.1)n! = 1 * 2 * 3 * ... * n;

Имя	Смысл	Тип
n	Вводимое число	Integer
i	Переменная, по которой ведётся расчёт	Integer
P	Произведение, равное n!	Integer

8.1)

```
*project1.lpr

1     program Zadanie1;
     var P,n,i:integer;
3     begin
     P:=1;
     writeln('Vvedite chislo n');
     readln(n);
     for i:=1 to n do

BEGIN
     P:=P*i;
     end;
     WrIteln('n! ravno ',P);
     readln;
     end.

14
```

9.1)

- 10.1) Для решения задачи, введём переменную P, равную произведению всех чисел от нуля до n. Числа, на которые мы будем последовательно умножать P, зададим переменной i.
- 4.2) Рассчитать значения для построения диаграммы направленности антенны в вертикальной плоскости:

$$f(Q) = \frac{(1 + \sin(Q)) \cdot \cos\left(\frac{\pi \cdot a}{\lambda} \cdot \cos(Q)\right)}{\left(\frac{\pi}{2}\right)^2 - \left(\frac{\pi \cdot a}{\lambda} \cdot \cos(Q)\right)^2}$$

Q меняются в диапазоне от 0 до 90 градусов с шагом 1градус, а = 13.5,

 $\lambda = 3$ cm;

5.2)

$$f(Q) = \frac{(1 + \sin(Q)) \cdot \cos\left(\frac{\pi \cdot a}{\lambda} \cdot \cos(Q)\right)}{\left(\frac{\pi}{2}\right)^2 - \left(\frac{\pi \cdot a}{\lambda} \cdot \cos(Q)\right)^2}$$

Имя	Смысл	Тип
1	Постоянная λ	Integer
pi	Постоянная π	Real
q	Переменная Q	Real
j	Конечное значение Qкон (в радианах)	Real
a	Постоянная а	Real
h	Шаг (в радианах)	Real
Z	Промежуточная переменная	Real
e	Значение функции	Real

8.2)

```
*project1.lpr
   program Zadanie2;
   . var l:integer;
      a, h, q, j, pi, z, e :real;
   . □begin
   5 1:=3;
   . pi:=3.14;
      q:=0;
      j:=1.5708;
      a:=13.5;
  10 h:=0.0174533;
   . z:=(pi*a)/l * cos(q);
   . while (q<=j) do
   . BeGiN
      e:=((1+\sin(q))*\cos(z))/(((pi/2)*(pi/2))-(z*z));
  15
      WrItElN(e,q);
       q:=q+h;
      end;
   read:
      readln;
  20
       - 1
```

10.2) — Для упрощения вычислений, введём промежуточную переменную z, равную $\frac{\pi*a}{1}*\cos(Q);$

4.3)

12. Вычислить значение выражения:

выражение	n	x
$y = 4x + \frac{2}{3} \sum_{k=1}^{n} \frac{1}{(2k-1)9^{k-1}}$	15	0,4

5.3)

$$y = 4x + \frac{2}{3} \sum_{k=1}^{n} \frac{1}{(2k-1)9^{k-1}}$$

Имя	Смысл	Тип
n	Постоянная п	Integer
S	Сумма	Real
X	Постоянная х	Real
k	Переменная, по которой проходит расчёт	Integer
Z	Промежуточная переменная (числитель)	Real
e	Промежуточная переменная 1/z	Real
y	Значение функции	Real

8.3)

```
*project1.lpr
   program Zadanie3;
      var k, n:integer;
        y, x, s, z, e:real;
   . □begin
      n:=15;
   5
      s:=0;
      x:=0.4;
      for k:=1 to n do
   . 🖯 begin
  10
       z := ((2*k) - 1) * (exp((k-1)*ln(9)));
        e:=1/z;
        s:=s+e;
        end;
      y:=4*x+(2/3)*s;
      writeln('Funkcia ravna ', y);
  15
      readln;
  17
       end.
```

9.3)

10.3) — Для упрощения вычислений, разделим сумму $\sum_{k=1}^{n} \frac{1}{(2k-1)*9^{k-1}}$ на три выражения:

1)
$$z = (2k - 1) * 9^{k-1}$$
;

2)
$$e = \frac{1}{z}$$
;

3)
$$S_k = S_{k-1} + e$$
.

4.4) Вычислить:

$$y = \frac{3 \cdot \sum_{i=2}^{n} i^2 + \prod_{i=2}^{n} \frac{i}{i+2}}{\prod_{i=2}^{n} i^2 + 2 \cdot \sum_{i=2}^{n} \frac{i}{i+2}}$$

5.4)

$$y = \frac{3 \cdot \sum_{i=2}^{n} i^2 + \prod_{i=2}^{n} \frac{i}{i+2}}{\prod_{i=2}^{n} i^2 + 2 \cdot \sum_{i=2}^{n} \frac{i}{i+2}}$$

7.4)

Имя	Смысл	Тип
S 1	Промежуточная переменная (первая сумма)	Integer
S2	Промежуточная переменная (первое произведение)	Real
S 3	Промежуточная переменная (второе произведение)	Real
S4	Промежуточная переменная (вторая сумма)	Real
i	Переменная, по которой проходит расчёт	Integer
n	Вводимое число	Integer
y	Значение функции	Real

8.4)

```
*project1.lpr
      program Zadanie4;
       var S1, i, n:integer;
         y, S2, S4, S3:real;
        begin
   5
           S1:=0;
           S2:=1;
           S3:=1;
           S4:=0;
           writeln('Vvedite n ');
  10
         readln(n);
        for i:=2 to n do begin
          S1:=S1+(i*i);
           S2:=S2*(i/(i+2));
          S3:=S3*(i*i);
          S4:=S4+(i/(i+2));
  15
         end;
         y := (3*S1 + S2) / (S3+2*S4);
         Writeln('Funkcia ravna ',y);
         Readln;
                                               I
  20
         end.
```


10.4) — Для упрощения вычислений, выделим из основной функции все выражения, зависящие от аргумента, и обозначим их как отдельные переменные. Таким образом, получим:

1)
$$S1 = \sum_{i=2}^{n} i^2$$

2) S2=
$$\prod_{i=2}^{n} \frac{i}{i+2}$$

3) S3=
$$\prod_{i=2}^{n} i^2$$

4) S4=
$$\sum_{i=2}^{n} \frac{i}{i+2}$$

11)В этой Лабораторной работе, мы:

- Научились организовать Детерминированные циклические вычислительные процессы средствами Free Pascal или Lazarus;
- Разобрали примеры задач, связанных с Детерминированными вычислительными процессами с управлением по аргументу;
- Научились организовывать блок-схемы для Детремиированных вычислительных процессов.