AI Theory Homework Week4

Hong Pengfei 1002949

June 2020

1 Standard search problems and constraint satisfaction problem

Similarities

- 1. They are both search problems, and CSP is a special subset of standard search problems and can be framed as a standard search problem.
- 2. They both have state. for Standard search problems it is values from its defined state space, and for CSPs, it is defined as its variables X_i that can take on values from domain D_i
- 3. They both have an initial state. For CSPs it always starts from an empty assignment {}
- 4. They both have actions, for goal search it can be seen as filling a variable with a specific value in its domain.
- 5. They all have a Goal test. For Standard search problems is to test whether the state is the goal state, for CSPs, it is testing if the current assignment is complete and consistent.

Differences

- 1. Standard search problems interested in sequence of actions leading to the goal state, whereas CSP interested in the goal state itself.
- 2. Standard search problems all path have various costs and depths, whereas for CSP all path have the same depth (the depth where all variables are filled).
- 3. In a standard search problem, state is a 'black box' that can be arbitrary data structure. In CSP, state is defined by variables Xi with values from a domain Di (sometimes D depends on i)

2 Cryptarithmetic Problem

Variable. B, E, A, D, C, X_1, X_2

Domains. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Constraints.

- 1. $alldiff\{B, E, A, D, C\}$
- 2. $B + B = E + 10 * X_1$
- 3. $A + A + X1 = D + 10 * X_2$
- 4. $X_2 = C$

Constraint Graph.

3 Pure backtracking.

procedure see 1. Final Assignment: V1:G,V2:B,V3:R,V4:G

4 Backtracking with forward checking

See 2 Final Assignment: V1:G,V2:B,V3:R,V4:G

Vertices	color
V1	R
V2	G
V3	R
V3	G
V4	G
V2	В
V3	R
V3	G
V4	G
V1	G
V2	G
V2	В
V3	R
V4	G

Table 1: Procedure with only backtracking

Vertices	Color
V1	R
V2	G
V2	В
V3	G
V1	G
V2	В
V3	R
V4	G

Table 2: Procedure with foward-checking

5 Arc consistency

Assuming the arc queue initialized with the following order: [V1-V2, V4-V2, V1-V3, V4-V3, V2-V1, V2-V4, V3-V1, V3-V4]. Final Assignment: V1:G,V2:B,V3:R,V4:G Results see: 3

Arc	Domain	Domain	comment
V1 - V2	D1=RGB	D2=GB	
V4 - V2	D4=G	D2=GB	
V1 - V3	D1=RGB	D3=RG	
V4 - V3	D4=G	D3=RG	
V2 - V1	D2=GB	D1=RGB	
V2 - V4	D2=B	D4=G	D2 = G deleted adding V1 - V2, V4 - V2 to the queue
V3 - V1	D3=RG	D1=RGB	
V3 - V4	D3=R	D4=G	D3 = G deleted adding V1 - V3, V4 - V3 to the queue
V1 - V2	D1=GR	D2=B	
V4 - V2	D4=G	D2=B	
V1 - V3	D1=G	D3=R	D1 = R deleted adding $V2 - V1$, $V3 - V1$ to the queue
V4 - V3	D4=G	D3=R	
V2 - V1	D2=B	D1=G	
V3 - V1	D3=R	D1=G	

Table 3: