Sorular

1. Aşağıdaki şıklarda p sayısına p^* yaklaşımı için mutlak ve bağıl hatayı bulunuz.

a.
$$p = e, p^* = 2.718$$

a.
$$p = e, p^* = 2.718$$
 b. $p = \sqrt{2}, p^* = 1.414$

c.
$$p = e^{10}$$
, $p^* = 22000$ **d.** $p = 10^{\pi}$, $p^* = 1400$

d.
$$p = 10^{\pi}$$
, $p^* = 1400$

e.
$$p = 8!$$
, $p^* = 39900$

e.
$$p = 8!$$
, $p^* = 39900$ **f.** $p = 9!$, $p^* = \sqrt{18\pi} (9/e)^9$

2. p^* 'ın p 'ye en fazla 10^{-4} bağıl hata ile yaklaşacağı en geniş aralığı aşağıdaki p değerleri için bulunuz.

$$a. \sqrt{2}$$

a.
$$\sqrt{2}$$
 b. $\sqrt[3]{7}$

3. Farz edelim ki p^* , p'ye en fazla 10^{-3} bağıl hata ile yaklaşmak zorunda olsun. Aşağıdaki herbir p değeri için p^* 'ın olması gereken en geniş aralığı bulunuz.

4. Aşağıdaki hesaplamaları (i) tam olarak, (ii) 3-basamak kesme aritmetiği uygulayarak, (iii) 3basamak yuvarlama aritmetiği uygulayarak , yapınız. (iv) Bağıl hatayı (ii) ve (iii) şıkları için hesaplayınız.

a.
$$\left(\frac{1}{3} - \frac{3}{11}\right) + \frac{3}{20}$$
 b. $\left(\frac{4}{5} \times \frac{1}{3}\right)$

b.
$$\left(\frac{4}{5} \times \frac{1}{3}\right)$$

5. 3-basamak yuvarlama aritmetiği kullanarak aşağıdaki hesaplamaları yapınız. Gerçek değeri en azından 5-basamak alarak mutlak ve bağıl hataları hesaplayınız.

a.
$$-10\pi + 6e - 3/62$$
 b. $\frac{\frac{13}{14} - \frac{6}{7}}{2e - 5}$

b.
$$\frac{\frac{13}{14} - \frac{6}{7}}{2e - 5.4}$$

6. Arctan(x) fonksiyonunun Maclaurin serisinin sıfırdan farklı ilk üç terimi:

$$x - (1/3)x^3 + (1/5)x^5$$

olduğuna göre aşağıdaki π yaklaşımlarında yukarıdaki polinomdan faydalanarak mutlak ve bağıl hatayı hesaplayınız.

a.
$$4\left[\arctan\left(\frac{1}{2}\right) + \arctan\left(\frac{1}{3}\right)\right]$$

b.
$$\left[16 \arctan\left(\frac{1}{5}\right) - 4 \arctan\left(\frac{1}{239}\right)\right]$$

7. e sayısı aşağıdaki şekilde tanımlandığına göre,

$$e = \sum_{n=0}^{\infty} \frac{1}{n!}$$
 , $0! = 1$

Aşağıdaki e yaklaşımları için mutlak ve bağıl hataları hesaplayınız:

a.
$$\sum_{n=0}^{5} \frac{1}{n!}$$
 b. $\sum_{n=0}^{10} \frac{1}{n!}$

8.
$$f(x) = \frac{x\cos x - \sin x}{x - \sin x}$$
 olsun, bu halde

a.
$$\lim_{x \to 0} f(x) = ?$$

b. f(0.1)'i hesaplamak için 4-basamak yuvarlama aritmetiği kullanınız.

c. Herbir trigonometrik fonksiyon yerine onun üçüncü mertebeden Maclaurin polinomunu koyarak (b) şıkkını tekrar ediniz.

d. f(0.1) = -1.99899998 gerçek değer olduğuna gore (b) ve (c) şıklarında elde edilen değerler için bağıl hatayı bulunuz.

9.
$$f(x) = \frac{e^x - e^{-x}}{x}$$
 olsun, bu halde

a.
$$\lim_{x \to 0} f(x) = ?$$

b. f(0.1)'i hesaplamak için 3-basamak yuvarlama aritmetiği kullanınız.

c. Herbir eksponensiyel fonksiyon yerine onun üçüncü mertebeden Maclaurin polinomunu koyarak (b) şıkkını tekrar ediniz.

- $\mathbf{d} \cdot f(0.1) = 2.003335000 \, \text{gerçek değer olduğuna göre (b) ve (c) şıklarında elde edilen değerler için bağıl hatayı bulunuz.$
- **10.** 4-basamak yuvarlama aritmetiği kullanarak aşağıdaki kuadratik denklemlerin köklerini en doğru şekilde bulunuz. Mutlak ve bağıl hataları hesaplayınız.
- **a.** $1.002x^2 11.01x + 0.01265 = 0$
- **d.** $(1/3)x^2 + (123/4)x 1/6 = 0$
- 11. 64-bit bir sistem için aşağıdaki makine sayılarının ondalık eşdeğerlerini bulunuz.

- 12. Yukarıdaki makine sayılarının bir büyük ve bir küçüğünün ondalık biçimlerini bulunuz.

Not: Soruda gerçek değer verildi ve basamak sayısı belirsiz ise 10 basamak kesme ile tanımlayın.