Álgebra II. Doble grado Informática-Matemáticas.

Curso 2019-2020.

Ejercicio 1 (10 puntos). En el grupo simétrico S_8 se consideran los elementos $\pi = (145)(283)(67)$ y $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 5 & 1 & 7 & 8 & 4 & 6 & 2 \end{pmatrix}$

- (a) [1 punto] Descomponed β como producto de ciclos disjuntos y como producto de transposiciones. ¿Cual es el orden de β ? ¿Cual es la signatura de β ?
- (b) [1 punto] Hallad un elemento $\alpha \in S_8$ tal que $\beta = \alpha \pi \alpha^{-1}$.
- (c) [5 puntos] Si calculamos el producto $\alpha\pi\alpha^{-1}$ para todas las permutaciones $\alpha \in S_8$ ¿cómo podemos caracterizar las permutaciones obtenidas? ¿Cuántos resultados diferentes obtenemos?.
- (d) [3 puntos] ¿Es el subgrupo generado por β un subgrupo normal de S_8 ?

Ejercicio 2 (10 puntos). .

- (a) [2'5 puntos]Describid los subgrupos de orden 2 y de orden 4 del grupo diédrico D_8 . ¿Contiene D_8 algún subgrupo isomorfo a Q_2 , el grupo de los cuaternios?
- (b) [2'5 puntos]Describid el retículo de subgrupos del grupo \mathbb{Z}_{600} .
- (c) [2.5 puntos] Consideremos las permutaciones de S_9 , $\sigma = (26)(132859)(263)$ y $\tau = (6734)(46)(37)$. Demostrad que el grupo generado por ellas, $\langle \sigma, \tau \rangle$, es cíclico. Determinar su orden y uno de sus generadores.
- (d) [2.5 puntos] Sea $n \ge 2$ y $p \le n$ un número primo. Demostrad que en S_n los únicos elementos de orden p son los productos de ciclos disjuntos de longitud p. ¿Cuántos elementos de orden 2 tiene S_5 ?

Ejercicio 3 (10 puntos). .

(a) [2'5 puntos] Sean

$$G = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} / a, b \in \mathbb{R} \right\}, \text{ y } H = \left\{ \begin{pmatrix} 1 & 0 & a \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} / a \in \mathbb{R} \right\}$$

Estas matrices se llaman mátrices de Heisenberg.

Demostrad que G es un grupo (con el producto de matrices). ¿Es abeliano? ¿Es cíclico?

¿Es H un subgrupo de G?. En caso afirmativo, ¿Es normal en G?

Sea $f: G \to \mathbb{R}$ la aplicación que asocia a cada elemento $A = \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}$

de G, el elemento f(A) = a + c. Probad que f es un homomorfismo de grupos y calculad el núcleo y la imagen. ¿Es f monomomorfismo? ¿Es f epimorfismo?

(b) [2'5 puntos] Sea $f: S_4 \to S_6$ la aplicación dada por $f(\sigma) = \overline{\sigma}$, donde $\overline{\sigma}$ es el elemento de S_6 que actúa igual que σ sobre los elementos $\{1,2,3,4\}$ y sobre los elementos $\{5,6\}$ los fija si σ es par, o los intercambia si σ es impar.

Demostrad que f es un homomorfismo inyectivo de grupos y que su imagen está contenida en A_6 .

(c) [5 puntos] Sea K un cuerpo y $SL_n(K) = \{A \in GL_n(K)/det(A) = 1\}$, $n \ge 2$. Demostrad que $SL_n(K)$ es un subgrupo normal de $GL_n(K)$. ¿Quién es el grupo cociente $GL_n(K)/SL_n(K)$?.

Si K es un cuerpo finito con q elementos, determinad los órdenes de estos dos grupos, esto es, $|GL_n(K)|$ y $|SL_n(K)|$ (Pista: Recuérdese que una matriz es regular si, y sólo si, sus vectores fila son linealmente indempendientes).

Ejercicio 4 (10 puntos). .

(a) [5 puntos] Sean A, B, C subgrupos de un grupo G con $B \subseteq A$. Demostrad que $B \cap C \subseteq A \cap C$ y que

2

$$\frac{A\cap C}{B\cap C}\cong \frac{B(A\cap C)}{B}.$$

Si además $C \subseteq G$, demostrad que $BC \subseteq AC$ y

$$\frac{AC}{BC} \cong \frac{A}{A \cap (BC)}.$$

- (b) [5 puntos] Sea G un grupo, Un subgrupo $H \le G$ se dice un *subgrupo de Hall* de G si su índice en G es primo relativo con su orden.
 - Sea $N \unlhd G$ un subgrupo normal de G. Demostrad que si H es un subgrupo de Hall de G, entonces $H \cap N$ es un subgrupo de Hall de N y HN/N es un subgrupo de Hall de G/N.