2: Regression I: OLS, interaktioner

Videregående kvantitative metoder i studiet af politisk adfærd

Frederik Hjorth fh@ifs.ku.dk fghjorth.github.io @fghiorth

Institut for Statskundskab Københavns Universitet

12. september 2016

- 1 Formalia
- 2 Opsamling fra sidst
- 3 Motivation: er USA et oligarki?
- 4 OLS
- 5 Gilens & Page
- 6 Kig fremad

- To undervisningsgange flyttes pga. anden undervisning:
 - Gang 7 (24/10) finder sted kl. 16-18 i lokale 2.2.42.
 - Gang 4 finder sted 29/9 kl. 12-14, lokale tbd.
- Frivillig R-workshop tirsdag d. 11. oktober
- Midterm er bestået/ikke bestået
- Udleveres tirsdag d. 11. oktober kl. 18, frist 7 dage

Formalia •000

Uge	Dato	Tema	Litteratur	Case
1	5/9	Introduktion til R	lmai kap 1	
2	12/9	Regression I: OLS, interaktioner	GH kap 3, MM kap 2	Gilens & Page (2014)
3	26/9	Regression II: Panelmodeller	GH kap 11	Larsen et al. (2016)
4	29/9	Regression III: Multilevelmodeller	GH kap 12	Dinesen & Sønderskov (2012)
5	3/10	Introduktion til kausal inferens	Hariri (2012), Samii (2016)	, ,
6	10/10	Matching	Justesen & Klemmensen (2014)	Ladd & Lenz (2009)
	17/10	*Efterårsferie*	` '	, ,

Uge	Dato	Tema	Litteratur	Case
	17/10	*Efterårsferie*		
7	24/10	Eksperimenter I	MM kap 1, GG kap $1+2$	Bond et al. (2012)
8	31/10	Eksperimenter II	GG kap 3+4+5	Gerber & Green (2000
9	7/11	Instrumentvariable	MM kap 3	Arunachalam & Watso
10	14/11	Regressionsdiskontinuitetsdesigns	MM kap 4	Eggers & Hainmueller
11	21/11	Difference-in-difference designs	MM kap 5	Enos (2016)
12	28/11	'Big data' og maskinlæring	Grimmer (2015), Varian (2014)	` '
13	5/12	Scraping af data fra online-kilder	MRMN kap 9	
14	12/12	Tekst som data	Grimmer & Stewart (2013), Imai kap 5	

Formalia 0000

Spørgsmål?

Frederik Hjorth

Institut for Statskundskab Københavns Universitet

- Imai: 2 revolutioner i kvantitativ samfundsvidenskab.
- fordele og ulemper ved R
- objekter
- vektorer
- funktioner
- data frames
- import/export

Opsamles senere i dag:

subsetting af data frames

Ezra Klein om Gilens & Page

Galton, F. (1886). "Regression towards mediocrity in hereditary stature". The Journal of the Anthropological Institute of Great Britain and Ireland. 15: 246-263

OLS

•00000000000000

 formalia
 Opsamling
 Motivation
 OLS
 Gilens & Page
 Kig fremand

 0000
 0
 0
 0
 0
 0
 0
 0

Baggrund

Frederik Hjorth

Formalia Opsamling Motivation **OLS** Gilens & Page Kig tremad 0000 0 0 00**00**00000000 00 00 Intuition

• Total Sum of Squares (SST): $\sum_{i=1}^{n} (y_i - \bar{y})^2$

- SST består af to dele:
 - Explained Sum of Squares (SSE)
 - Residual Sum of Squares (SSR)
- SST = SSE + SSR
- OLS estimerer den linje der minimerer SSR

Intuition

Formalia Opsamling Motivation **OL5** Gilens & Page Kig fremad 0000 0 0 0000€00000000 00 00 Intuition

Regressionsmodel med treatment-variabel P_i og kontrolvariabel A_i :

$$Y_i = \alpha + \beta P_i + \gamma A_i + e_i \tag{1}$$

Alternativ notation: CEF (Conditional Expectation Function)

$$E[Y_i|P_i,A_i] \tag{2}$$

Koefficienter kan udtrykkes som forskelle mellem CE's:

$$E[Y_i|P_i = 1, A_i] - E[Y_i|P_i = 0, A_i] = \beta$$
 (3)

Formel form

Den fittede Y_i , \widehat{Y}_i , omfatter ikke fejlleddet:

$$\widehat{Y}_i = \alpha + \beta P_i + \gamma A_i \tag{4}$$

Dermed:

Formel form

$$e_i = Y_i - \widehat{Y}_i = Y_i - \alpha + \beta P_i + \gamma A_i$$
 (5)

Hvad forklarer e_i?

- Udeladte variable (omitted variables)
- Målefejl
- Fundamental tilfældig variation (MM: 'serendipitous variation')

Kontroller kan også være kategoriske (fx. specifikke kombinationer af skoler) eller intervalskalerede (fx. SAT)

$$ln(Y_i) = \alpha + \beta P_i + \sum_{j=1}^{150} \gamma_j GROUP_{ji} + \delta_1 SAT_i + \delta_2 PI_i + e_i$$
 (6)

Standard fejl i model med K koefficienter:

$$Y_i = \alpha + \sum_{k=1}^K \beta_k X_{ki} + \gamma A_i + e_i$$
 (7)

$$SE(\widehat{\beta}_k) = \frac{\sigma_e}{\sqrt{n}} \times \frac{1}{\sigma_{\tilde{X}_k}}$$
 (8)

Implikation: små fejlled (det er godt!) kræver

- $\downarrow \sigma_e$ og/eller
- ↑ *n* og/eller
- $\uparrow \tilde{X}_k$

Formel form

Kort vs. lang form:

$$Y_i = \alpha' + \beta' P_i + \gamma A_i + e_i' \tag{9}$$

$$Y_i = \alpha^s + \beta^s P_i + e_i^s \tag{10}$$

 \rightarrow hvor forskellige er β^I og β^I ?

Omitted variable bias

$$\beta^{s} - \beta' = \pi_1 \times \gamma \tag{11}$$

hvor π_1 er koefficienten af P_i på A_i :

$$A_i = \pi_0 + \pi_1 P_i + u_i \tag{12}$$

63 Regression

TABLE 2.2 Private school effects: Barron's matches

	No selection controls			Selection controls		
	(1)	(2)	(3)	(4)	(5)	(6)
Private school	.135 (.055)	.095 (.052)	.086 (.034)	.007 (.038)	.003 (.039)	.013 (.025)
Own SAT score ÷ 100		.048 (.009)	.016 (.007)		.033 (.007)	.001 (.007)
Log parental income			.219 (.022)			.190 (.023)

Faldgruber v. regression

Typiske faldgruber v. regression:

- omitted variable bias (jf. ovenfor)
- kontrol for post-treatment (jf. Samii uge 5)
- outliers
- 4 multikollinearitet
- 5 ikke-lineær funktionel form

Ad 3-5: jf. Anscombe's Quartet

 \rightarrow kig altid på data først!

Fire demokratiteoretiske traditioner:

- Majoritarian Electoral Democracy
- 2 Economic-Elite Domination
- Majoritarian Pluralism
- Biased Pluralism

Table 1
Theoretical predictions concerning the independent influence of sets of actors upon policy outcomes

	Sets of Actors				
Theory (ideal type)	Average Citizens	Economic Elites	All Interest Groups	Mass Interest Groups	Business Interest Groups
Majoritarian Electoral Democracy	Υ	n	n	n	n
Dominance by Economic Elites	У	Y	У	n	У
Majoritarian Pluralism	у	n	Υ	Y	Υ
Biased Pluralism	n	n	у	у	Y

n = little or no independent influence

y =some independent influence

 $Y = {\hbox{substantial independent influence}}$

Næste gang:

- regression II: paneldata
- opsamling på interaktioner (GH kap 3)
- GH kap 11: fokus på non-nestede strukturer (afsnit 11.3)
- case: helt nyt working paper fokus på aggregate-level analyse

Kig fremad

Tak for i dag!

Frederik Hjorth

Institut for Statskundskab Københavns Universitet

Kig fremad