THREE-DIMENSIONAL CONCEPTS (Chapter 9 in *Computer Graphics*)

- Three-dimensional Concepts
 - · three-dimensional coordinate systems
 - · three-dimensional display techniques
 - · three-dimensional graphics packages

POLYGON SURFACES (Section 10-1 in *Computer Graphics*)

- Polygon Surfaces
 - polygon tables
 - polygon equations

introduction

- two varieties of graphics applications
 - analytic: achieve approximate descriptions of existing objects using
 - straight line segments
 - flat surfaces
 - · curved lines segments
 - curved surfaces
 - · quad trees
 - octrees
 - synthetic: create new objects by constructing and manipulating patterns
- objects are defined in three dimensions and presented in two dimensions

three-dimensional coordinate systems

three-dimensional right-handed system

three-dimensional left-handed system

other coordinate systems

- spherical coordinates
- cylindrical coordinates
- parallel axes

displaying three-dimensions

- three-dimensional world-coordinate descriptions must be converted to normalized device coordinates
- a three-dimensional world can be viewed in many ways

three-dimensional display techniques

- parallel projection
- perspective projection
- intensity cuing
- hidden-line removal
- hidden-surface removal and shading
- exploded and cutaway views
- three-dimensional and stereoscopic views

three-dimensional display techniques

• are intended to restore depth information

parallel projection

- project along parallel lines to a plane viewing surface
- parallel lines on the object project to parallel lines on the viewing surface
- relative proportions are maintained

perspective projection

- far away objects appear smaller than near objects
- parallel lines on the object tend to converge on the viewing surface
- the eye and a camera lens produce perspective projections
- see figure 9-7 on page 184

intensity cuing

 vary the intensity of lines according to their distance from the viewing position

 extreme intensity cuing effectively performs hidden-line elimination

hidden-line removal

- useful for line-drawn images
- hidden lines may be removed entirely
 - see figure 9-2 on page 182
- alternatively, hidden lines may be replaced by lines of a different color or texture

hidden-surface removal and shading

- used to remove back surfaces hidden by front surfaces
 - see figure 9-1 on page 182
- adds to realism, especially when accompanied by
 - perspective projection
 - shadows
 - surface texture
- see figure 9-10 on page 185

exploded and cutaway views

- exploded views show the structure of component parts
 - see figure 9-11 on page 186
- cutaway views remove external surfaces to show internal structure
 - see figure 9-12 on page 187

three-dimensional and stereoscopic views

- video monitors can be adapted to present threedimensional and stereoscopic views
 - varifocal mirrors
 - two simultaneous displays

three-dimensional graphics packages

- much in common with two-dimensional graphics packages
 - world coordinate input/output routines
 - polyline_3 (n, x, y, z)
 - fill_area _3 (n, x, y, z)
 - text_3 (x, y, z, string)
 - get_locator_3 (x, y, z)
 - attribute functions
 - colors
 - line styles
 - marker attributes
 - text fonts
 - segments

three-dimensional graphics packages, --continued

- some enhanced aspects
 - transformation of three-dimensional objects
 - adapting input devices to three-dimensions
 - functions for orienting character strings
- some new aspects
 - mapping three-dimensional descriptions onto two-dimensional display surfaces
 - modeling solid objects
 - removing hidden lines and hidden surfaces
 - orientation of the fill-area plane and the pattern plane

Polygon Surfaces

- introduction to three-dimensional representations
- polygon surfaces
- polygon tables
- plane equations

introduction to three-dimensional representations

- several alternatives
 - precise description
 - cube
 - cylinder
 - sphere
 - polygonal approximation
 - parametric curves
 - fractal representations
 - construction methods (building from simpler shapes)
 - sweeping a two-dimensional pattern through space
 - combining basic objects

polygon surfaces

- sometimes exact
- sometimes an approximation
 - see figure 10-1 on page 190
- line or fill_area commands specify vertices which define polygons
- vertices can be specified interactively

polygon tables

- the graphics package organizes the polygon surface data into tables
- the table may contain geometric, topological and attribute properties
- the tables are organized to facilitate processing

VERTEX TABLE		
<i>V</i> ₁ :	x_{1}, y_{1}, z_{1}	
V_2 :	x_2, y_2, z_2	
V ₃ :	x_3, y_3, z_3	
V_4 :	x_4, y_4, z_4	
V ₅ :	x_5, y_5, z_5	
L		

EDGE TABLE	
E ₁ : E ₂ : E ₃ : E ₄ : E ₅ : E ₆ :	V_1, V_2 V_2, V_3 V_3, V_1 V_3, V_4 V_4, V_5 V_5, V_2

- the vertex table prevents redundant storing and transformation of vertices
- the edge table prevents redundant storage and drawing of common edges
- the surface table prevents redundant storage and drawing of common surfaces

plane equations

- used in
 - viewing transformations
 - shading models
 - hidden-line and hidden-surface algorithms
- parameters are obtained from the coordinates of vertices defining each polygon
- planar equations are of the form
 Ax + By + Cz + D = 0

$$A = \begin{vmatrix} 1 & y_1 & z_1 \\ 1 & y_2 & z_2 \\ 1 & y_3 & z_3 \end{vmatrix} \qquad C = \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$$

$$B = \begin{vmatrix} x_1 & 1 & z_1 \\ x_2 & 1 & z_2 \\ x_3 & 1 & z_3 \end{vmatrix} \qquad D = - \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}$$

or, expanding

$$A = y_1 (z_2 - z_3) + y_2 (z_3 - z_1) + y_3 (z_1 - z_2)$$

$$B = z_1 (x_2 - x_3) + z_2 (x_3 - x_1) + z_3 (x_1 - x_2)$$

$$C = x_1 (y_2 - y_3) + x_2 (y_3 - y_1) + x_3 (y_1 - y_2)$$

$$D = -x_1 (y_2 z_3 - y_3 z_2) - x_2 (y_3 z_1 - y_1 z_3) - x_3 (y_1 z_2 - y_2 z_1)$$

plane equations, continued

 the orientation of a planar surface is specified by a normal vector

- planes have two sides
 - the side facing the object is the "inside"
 - the side facing away from the object is the "outside"
- if vertices are specified in a counterclockwise fashion (looking at the plane from the outside), the normal vector points out
 - points outside a plane satisfy
 Ax + By + Cz + D > 0
 - points inside a plane satisfy
 Ax + By + Cz + D < 0
 - points on a plane satisfy
 Ax + By + Cz + D = 0

THREE-DIMENSIONAL CONCEPTS POLYGON SURFACES

- Three-dimensional Concepts
 - three-dimensional coordinate systems
 - three-dimensional display techniques
 - three-dimensional graphics packages
- Polygon Surfaces
 - polygon tables
 - polygon equations