I IDF 1

10 HIGH-RADIX MULTIPLIERS

Chapter Goals

Study techniques that allow us to handlemore than one multiplier bit in each cycle(two bits in radix 4, three in radix 8, . . .)

Chapter Highlights

High radix gives rise to "difficult" multiples Recoding (change of digit set) as remedy Carry-Save addition reduces cycle time Implementation and optimization methods

IDE 2

HIGH-RADIX MULTIPLIERS: TOPICS

Topics in This Chapter

- 10.1 Radix-4 Multiplication
- 10.2 Modified Booth's Recoding
- 10.3 Using Carry-Save Adders
- 10.4 Radix-8 and Radix-16 Multipliers

10.1 RADIX-4 MULTIPLICATION

a Multiplicandx Multiplier

 $\begin{bmatrix}
 x_0 & a & 20 \\
 x_1 & a & 21 \\
 x_2 & a & 22 \\
 x_3 & a & 23
 \end{bmatrix}$ Partial products bit-matrix

Product

Fig. 9.1

p

Fig. 10.1 Radix-4, or two-bit-at-a-time, multiplication in dot notation

Number of cycles is halved, but now the "difficult" multiple 3a must be dealt with

a x $(x_1x_0)_{two}a 4^0$ $(x_3x_2)_{two}a 4^1$

Multiplier

Multiplicand

p

Product

A POSSIBLE DESIGN FOR A RADIX-4 MULTIPLIER

Precomputed via shift-and-add (3a = 2a + a)

Multiplier

k/2 + 1 cycles, rather than k

One extra cycle over k/2 not too bad, but we would like to avoid it if possible

Solving this problem for radix 4 may also help when dealing with even higher radices

Fig. 10.2 The multiple generation part of a radix-4 multiplier with precomputation of 3*a*.

10.2 MODIFIED BOOTH'S RECODING

Table 10.1 Radix-4 Booth's recoding yielding $(z_{k/2} \dots z_1 z_0)_{\text{four}}$

X _{i+1}	Xi	Xi-1	<i>y</i> _{i+1}	y _i	Z _{i/2}	Explanation
0 0 0 0 1 1 1	0 0 1 1 0 0 1	0 1 0 1 0 1	0 0 0 1 -1 -1 0	0 1 1 0 0 1 -1	0 1 1 2 -2 -1 -1 0	No string of 1s in sight End of string of 1s Isolated 1 End of string of 1s Beginning of string of 1s End a string, begin new one Beginning of string of 1s Continuation of string of 1s
	Cont	Recoded ntext radix-2 digits Ra				adix-4 digit

Example

Apr. 2012

EXAMPLE MULTIPLICATION VIA MODIFIED BOOTH'S RECODING

Fig. 10.5 Example of radix-4 multiplication with modified Booth's recoding of the 2's-complement multiplier.

10.3 USING CARRY-SAVE ADDERS

Fig. 10.7 Radix-4 multiplication with a carry-save adder used to combine the cumulative partial product, $x_i a$, and $2x_{i+1}a$ into two numbers.

א חווה

CARRY-SAVE MULTIPLIER WITH RADIX-4 BOOTH'S RECODING

Fig. 10.9 Radix-4 multiplication with a CSA used to combine the stored-carry cumulative partial product and $z_{i/2}a$ into two numbers.

9 HOI 18

YET ANOTHER DESIGN FOR RADIX-4 MULTIPLICATION

10.4 RADIX-8 AND RADIX-16 MULTIPLIERS

extension bits to accommodate the ±φB

SI IDF 1

10.4 RADIX-8 AND RADIX-16 MULTIPLIERS

Fig. 10.12 Radix-16 multiplication with the upper half of the cumulative partial product in carry-save form.

SLIDE 12

A SPECTRUM OF MULTIPLIER DESIGN CHOICES

Fig. 10.13 High-radix multipliers as intermediate between sequential radix-2 and full-tree multipliers.

PROBLEMAS

Problema 10.1. Para uma multiplicação de dois operandos $A \times B$ de 24 bits, aplique o método e Radix-4, 8 e 16 determine o custo e caminho critico dos blocos considerando A_{FA} e T_{FA} como a área e atraso por Full-Adder, e $0.5 \times A_{FA}$ e $0.5 \times T_{FA}$, para o Half-Adder, (a/2) $\times A_{FA}$ e (a/2) $\times T_{FA}$ para o ($2^a:1$) MUX.

Observação: Considere que a multiplicações $3\times A$, $5\times A$, $14\times A$, $15\times A$, $18\times A$, $26\times A$, e $44\times A$ estão previamente computadas.

12.6 MODULAR MULTIPLIERS

Fig. 12.14 Modulo- $(2^b - 1)$ carry-save adder.

Fig. 12.15 Design of a

4 × 4 modulo-15 multiplier.

Apr. 2012

SLIDE 15

OTHER EXAMPLES OF MODULAR MULTIPLICATION

Fig. 12.16 One way to design of a 4 × 4 modulo-13 multiplier.

Fig. 12.17 A method for modular multioperand addition.

PROBLEMAS

Problema 10.2. Projete a estrutura do multiplicador RNS para os seguintes módulos:

- a) 29;
- b) 31;
- c) 13.