数字逻辑设计

高翠芸

School of Computer Science

gaocuiyun@hit.edu.cn

同步时序逻辑设计

- 状态机基础
- 原始状态图和状态表
- 状态表化简
- 状态分配

状态机基础

时序电路的状态(state)

- 是一个状态变量(state variable)集合
- 状态变量的值包含决定电路的未来行为的所有信息

状态机

- 具有n位二进制状态变量的电路有2ⁿ种可能的状态
- 因为时序电路的状态是有限的,所以可将其称为有限状态机(Finite State Machine),简称为状态机(state machine)

状态机基础

状态变化

- · 大多数时序电路状态发生变化的时间由时钟信号CLOCK决定
 - 状态在时钟信号上升沿变化,称时钟信号高电平有效
 - 状态在时钟信号下降沿变化,称时钟信号低电平有效

触发器

大多时序电路和几乎所有的状态机都会使用边沿触发的D触发器 存储状态变量

(b)

D	CLK	Q	QN
0		0	1
1		1	0
X	0	last Q	last QN
X	1	last Q	last QN

Mealy状态机 vs Moore状态机

状态机结构

- 状态存储器 (state memory) 是存储状态机现态的一组触发器
- 状态机的次态,由次态逻辑(next-state logic)F确定
- 状态机的输出,由输出逻辑(output logic)G确定

Mealy状态机

次态 = F(现态,输入)

输出 = G(现态,输入)

Moore状态机

输出 = G(现态)

同步时序逻辑设计

- 状态机基础
- 原始状态图和状态表
- 状态表化简
- 状态分配

同步时序逻辑电路设计方法

利用触发器设计同步时序逻辑的方法

- (1) 根据需求 → 获得原始状态图、状态表
- (2) 最小化状态图、状态表
- (3) 状态编码 (分配)→ 获得状态转移表
- (4) 状态转移表 触发器特征 触发器激励(<mark>状态转移真值表</mark>)
- (6) 电路实现 (7) 检查无关项

示例:110序列检测器

例:利用JK触发器设计110序列检测器

1. 获得原始状态图和原始状态表

(1) 状态设定

 S_0 初始状态,表示收到1位数据: "0"

S₁──表示收到1位数据: "1"

S₂——表示收到2位数据: "11"

S₃——表示收到3位数据: "110",此时输出标志 Z=1.

示例:110序列检测器

(2) 分析状态转换情况

(3)原始状态图(Mealy型)

(4) 原始状态表

现态	Q ⁿ⁺¹ / Z		
Q ⁿ	X=0	X=1	
S ₀	S ₀ / 0	S ₁ / 0	
S ₁	S ₀ / 0	S ₂ / 0	
S ₂	S ₃ / 1	S ₂ / 0	
S_3	S ₀ / 0	S ₁ / 0	

示例: 110序列检测器

2. 状态化简

现态	Q ⁿ⁺¹ / Z		
Qn	X=0	X=1	
S ₀	S ₀ / 0	S ₁ / 0	\
S ₁	S ₀ / 0	S ₂ / 0	
S ₂	S ₃ / 1	S ₂ / 0	
S ₃	S ₀ / 0	S ₁ / 0] ~

现态	Qn+1/Z		
Q ⁿ	X=0	X=1	
S ₀	S ₀ / 0	S ₁ / 0	
S ₁	S ₀ / 0	S ₂ / 0	
S ₂	S ₀ / 1	S ₂ / 0	

3. 状态分配

使用 2个JK触发器

 y_2y_1 $S_0 - 00$ $S_1 - 10$ $S_2 - 11$

4. 状态转换真值表

输入	现	态	次	态		触发	法器	ļ	输出
X	Y ₂ ⁿ	Y ₁ ⁿ	Y ₂ n+1	Y ₁ n+1	J ₂	K ₂	J ₁	K ₁	Z
0	0	0	0	0	0	X	0	X	0
0	1	0	0	0	X	1	0	X	0
0	1	1	0	0	X	1	X	1	1
1	0	0	1	0	1	X	0	X	0
1	1	0	1	1	X	0	1	X	0
11	1	1	1	1	Х	0	Χ	0	0
0	0	1	Х	X	X	X	X	X	Х
1	0	1	Х	X	X	X	X	X	X

功能表

输入	次态 Q _{n+1}	
J	K	Q _{n+1}
0	0	\mathbf{Q}_{n}
0	1	0
1	0	1
1	1	$\overline{\mathbf{Q}}_{n}$

驱动表

Qn	\rightarrow	Q_{n+1}	J	K
0	\rightarrow	0	0	Х
0	\rightarrow	1	1	X
1	\rightarrow	0	X	1
1	\rightarrow	1	Х	0

示例: 110序列检测器

4. 状态转换真值表

输入	现	态	次	态		触》) 器	ŗ	输出
X	Y_2^n	Y_1^n	Y ₂ n+1	Y ₁ n+1	J ₂	K_2	J_1	\mathbf{k}_1	Z
0	0	0	0	0	0	Χ	0	Χ	0
0	1	0	0	0	X	1	0	X	0
0	1	1	0	0	X	1	X	1	1
1	0	0	1	0	1	X	0	X	0
1	1	0	1	1	X	0	1	X	0
1	1	1	1	1	X	0	Χ	0	0
0	0	1	X	X	Х	X	X	X	Х
1	0	1	X	X	X	X	X	X	X

5. 卡诺图化简

$$K_1 = \overline{X}$$

$$Z = \overline{X}Y_1^n$$

6. 电路实现

示例:110序列检测器

7. 检查无关项

$$\begin{cases} J_1 = XY_2^n \\ K_1 = \overline{X} \\ J_2 = X \\ K_2 = \overline{X} \end{cases} \Rightarrow \begin{cases} Y_1^{n+1} = XY_2^n \overline{Y_1}^n + XY_1^n \\ = X(Y_1^n + Y_2^n) \\ Y_2^{n+1} = X\overline{Y_2}^n + XY_2^n \\ = X \end{cases}$$

电路可以自启动

同步时序逻辑电路设计方法

利用触发器设计同步时序逻辑的方法

- (1) 根据需求 → 获得原始状态图、状态表
- (2) 最小化状态图、状态表
- (3) 状态编码(分配)→ 获得状态转移表
- (4) 状态转移表 触发器特征 触发器物质
- (6) 电路实现 (7) 检查无关项

直接构图法

直接构图法

- 1)根据文字描述的设计要求,先假定一个初态;
- 2) 从这个初态开始,<mark>每加入一个输入取值</mark>,就可 确定其次态和输出;
- 3) 该次态可能是现态本身,也可能是已有的另一个状态,或是新增加的一个状态。
- 4)这个过程持续下去,直至每一个现态向其次态 的转换都已被考虑,并且不再构成新的状态。

例1: 给出同步模5可逆计数器的状态表

X=0: 加计数

X=1: 减计数

Z: 进位、借位输出标志

现态	Q ⁿ⁺¹ / Z		
Qn	X=0	X=1	
а	b/0	e / 1	
b	c/0	a / 0	
С	d/ <mark>0</mark>	b/0	
d	e/ 0	c/0	
е	a / 1	d / 0	

直接构图法

例2: 给出同步二进制串行加法器的状态表

- 1)根据文字描述的设计要求,先假定一个初态;
- 2) 从这个初态开始,<mark>每加入一个输入取值</mark>,就可 确定其次态和输出;
- 3) 该次态可能是现态本身,也可能是已有的另一个状态,或是新增加的一个状态。
- 4) 这个过程持续下去,直至每一个现态向其次态 、 的转换都已被考虑,并且不再构成新的状态。

序列检测—101序列检测器

例3: 序列检测——给出同步Mealy型101序列检测器的状态表

X: 0 1 0 1 0 1 1 0 1

X: 0 1 0 1 0 1 0 1 1 < Z: 0 0 0 1 0 0 0 1 0

兴趣的子

(1) 状态设定

 S_0 —初始状态,表示收到1位数据:

−表示收到1位数据:

-表示收到2位数据: "10"

S₃——表示收到3位数据: "101", 此时输出标志 Z=1.

17

101序列检测器

构造原始状态图和状态表

现态	Q ⁿ⁺¹ / Z		
Q ⁿ	X=0	X=1	
S ₀	S ₀ / 0	S ₁ / 0	
S ₁	S ₂ / 0	S ₁ / 0	
S ₂	S ₀ / 0	S ₃ / 1	
S ₃	S ₀ / 0	S ₁ / 0	

现态	Q ⁿ⁺¹ / Z		
Qn	X=0	X=1	
S ₀	S ₀ / 0	S ₁ / 0	
S ₁	S ₂ / 0	S ₁ / 0	
S ₂	S ₀ / 0	S ₃ / 1	
S ₃	S ₂ / 0	S ₁ / 0	

序列检测电路设计

序列检测的原始状态图构造方法总

结

- (1) 检测器输入端收到1位数据时,有两种可能: 0或1,分别用 S_0 和 S_1 标记这两个状态,通常用 S_0 表示初始状态。
- (2) 收到2位数据时,只标记我们<mark>感兴趣的子串</mark>,用S₂表示(例如 10)
- (3) 同理,收到3位数据时,只标记我们感兴趣的子串,用S₃表示(例如 101)……,直到把我们感兴趣的<mark>完整子串也已标记为止。</mark>
- (4) 从初始状态开始,采用直接构图法,将每一个当前状态在 所有取值下的次态转换及输出情况已都考虑到,并且没有 遗漏为止。

码制检测电路设计

例4: 码制检测——建立一个余3码误码检测器的原始状态图和原始状态表。要求:

- 余3码高位在前、低位在后串行地加到检测器的输入端。
- 电路每接收一组代码(即在收到第4位代码时)判断。若是错误代码, 则输出为1,否则输出为0,电路又回到初始状态并开始接收下一组代码

原始状态图和状态表

原始状态图

现态	Q ⁿ⁺¹ / Z		
Q ⁿ	X=0	X=1	
S ₀	S ₁ / 0	S ₂ / 0	
S ₁	S ₃ / 0	S ₄ / 0	
S ₂	S ₉ / 0	S ₁₀ / 0	
S ₃	S ₅ / 0	S ₆ / 0	
S ₄	S ₇ / 0	S ₈ / 0	
S ₅	S ₀ / 1	S ₀ / 1	
S ₆	S ₀ / 1	S ₀ / 0	
S ₇	S ₀ / 0	S ₀ / 0	
S ₈	S ₀ / 0	S ₀ / 0	
S ₉	S ₁₁ / 0	S ₁₂ / 0	
S ₁₀	S ₁₃ / 0	S ₁₄ / 0	
S ₁₁	S ₀ / 0	S ₀ / 0	
S ₁₂	S ₀ / 0	S ₀ / 0	
S ₁₃	S ₀ / 0	S ₀ / 1	
S ₁₄	S ₀ / 1	S ₀ / 1	

码制检测电路设计

N位码制检测电路的原始状态图构造方法总

- (2) 状态图由上至下分为N层:第一层代表起点;第二层代表检测器收到1位数据时,电路的状态情况;第三层代表检测器收到2位数据时,电路的状态情况……;直到第N层,代表检测器收到 N-1位数据时,电路的状态情况。再来一位输入数据,则构成了N位待检测码制。此时,检测器可以给出判读,该码制正确还是错误。
- (3)一轮检测结束,回到初始状态. 等待下一组输入。

实例设计

例5:设计一个引爆装置的原始状态表。装置不引爆时,输入总为0; 装置引爆时,则一定连续输入四个1,其间肯定不再输入0。

只标记感

兴趣的子

现态	Q ⁿ⁺¹ / Z		
Q ⁿ	X=0	X=1	
S ₀	S ₀ / 0	S ₁ / 0	
S ₁	X/X	S ₂ / 0	
S ₂	X/X	S ₃ / 0	
S_3	X/X	X / 1	

(1) 状态设定

"0" -初始状态,表示收到1位数据:

-表示收到1位数据:

"11" -表示收到2位数据:

-表示收到3位数据: "111"

此时再收到一个"1",输出标志 Z=1.

不完全定义状态 表:包含任意项

完全定义状态表

状态表

不完全定义状态表

原始状态图的构造规律

●直接构图法

• 序列检测器

N位码制检测电路

直接构图法

直接构图法

- 1)根据文字描述的设计要求,先假定一个初态;
- 2) 从这个初态开始,<mark>每加入一个输入取值</mark>,就可 确定其次态和输出;
- 3) 该次态可能是现态本身,也可能是已有的另一个状态,或是新增加的一个状态。
- 4)这个过程持续下去,直至每一个现态向其次态 的转换都已被考虑,并且不再构成新的状态。

例1: 给出同步模5可逆计数器的状态表

X=0: 加计数

X=1: 减计数

Z: 进位、借位输出标志

现态	Q ⁿ⁺¹ / Z	
Qn	X=0	X=1
а	b/0	e / 1
b	c/0	a / 0
С	d/ <mark>0</mark>	b/0
d	e/ 0	c/0
е	a / 1	d / 0

序列检测电路设计

序列检测的原始状态图构造方法总

结

- (1) 检测器输入端收到1位数据时,有两种可能: 0或1,分别用 S_0 和 S_1 标记这两个状态,通常用 S_0 表示初始状态。
- (2) 收到2位数据时,只标记我们感兴趣的子串,用 S_2 表示(例如 10)
- (3) 同理,收到3位数据时,只标记我们感兴趣的子串,用S₃表示(例如 101)·····,直到把我们感兴趣的<mark>完整子串也已标记为止。</mark>
- (4) 从初始状态开始,采用直接构图法,将每一个当前状态在 所有取值下的次态转换及输出情况已都考虑到,并且没有 遗漏为止。

码制检测电路设计

N位码制检测电路的原始状态图构造方法总

- (1) 从初始状态。_{0/1 对}(应 1 对对心心<mark>及有致冰点之</mark>,反反心炎(1 应点),每来一个输入,次态总是分成左右两种情况。
- (2) 状态图由上至下分为N层:第一层代表起点;第二层代表检测器收到1位数据时,电路的状态情况;第三层代表检测器收到2位数据时,电路的状态情况……;直到第N层,代表检测器收到 N-1位数据时,电路的状态情况。再来一位输入数据,则构成了N位待检测码制。此时,检测器可以给出判读,该码制正确还是错误。
- (3)一轮检测结束,回到初始状态. 等待下一组输入。

同步时序逻辑设计

- 状态机基础
- 原始状态图和状态表
- 状态表化简
- 状态分配

同步时序逻辑电路设计方法

利用触发器设计时序逻辑的方法

- (1) 根据需求 → 获得原始状态图、状态表
- (2) 最小化状态表
- (3) 状态编码(分配)→ 获得状态转移表
- (4) 状态转移表 触发器特征 → 触发器激励表
- (5) 卡诺图化简 → ∫ 激励(输入)函数表达式 输出函数表达式
- (6) 电路实现 (7) 检查无关项

状态表化简

状态表的化简

时序电路的两个状态 S_i 和 S_j ,如果它们对每一个输入所产生的输出完全相同,且它们的次态等价,则这两个状态是等价的(可以合并为一个状态)——状态化简

(一)完全定义状态表的化简方法——隐含(蕴含)表法

- 俩俩比较原始状态表中的所有状态,找出能合并、不能合并、能 否合并待定的状态对。
- 追踪能否合并待定的状态对,直至确定它们能合并或不能合并, 从而找到原始状态表中的所有等价状态对。
- 基于这些等价状态对确定最大等价状态类,获得原始状态表的最 小覆盖集,建立最简状态表

状态表化简

等价状态的判定条

状态表中的任意两个状态 S_i 和 S_j 同的满足下列两个条件,它们可以合并为一个状态

的必要条

- 1. <u>在所有不同的现输入下<mark>,现输</mark>出分别相同</u>⁄
- 2. 在所有不同的现输入下,次态分别为下列情况之一
 - (1)两个次态完全相同
 - (2) 两个次态为其现态本身或交错
 - (3)两个次态为状态对封闭链中的一个状态对
 - (4) 两个次态的某一后续状态对可以合并

隐含表法化简状态表

隐含表(蕴含)法

等价状态的判定条件

状态表中的任意两个状态 S_i 和 S_i 同时满足下列两个条件,它们可以合并为一个状态

1. 在所有不同的现输入下,现输出分别相同

状态合并的 必要条件

- 2. 在所有不同的现输入下, 次态分别为下列情况之一
 - (1) 两个次态完全相同
 - (2) 两个次态为其现态本身或交错
 - (3) 两个次态为状态对封闭链中的一个状态对
 - (4) 两个次态的某一后续状态对可以合并
- ① 建立隐含表
- ② 比较
- ③ 追踪

例1: 化简如下状态表

现态	Q ⁿ⁺¹ / Z	
Qn	X=0	X=1
а	c/0	b / 1
b	f / 0	a/1
С	d/0	g / 0
d	d/1	e/0
е	c/0	e / 1
f	d / 0	g/0
g	c/1	d/0

等价状态对

$$\{b,e\}, \{c,f_{33}\}$$

隐含表法化简状态表

④ 获得最大等价状态类

等价状态类的定义——

If: $S_i \equiv S_j$, $S_j \equiv S_m$

Then: $S_i \equiv S_j \equiv S_m$, 即 { S_i , S_j , S_m }

最大等价状态类——

某一等价状态类不属于其他任何 等价状态类

等价状态对:

{a,b}, {a,e}

{ b ,e }、 { c ,f }

最大等价状态类:

{ a , b ,e }, { c ,f }

Let
$$\begin{cases} q_1 = \{ a, b, e \} \\ q_2 = \{ c, f \} \\ q_3 = d \\ q_4 = g \end{cases}$$

现态	Q ⁿ⁺¹ / Z		
Qn	X=0	X=1	
а	c/0	b / 1	
b	f / 0	a / 1	
С	d/0	g / 0	
d	d/1	e/0	
е	c/0	e / 1	
f	d / 0	g/0	
g	c/1	d/0	

现态	Qn+1/ Z		
Qn	X=0	X=1	
q_1	$q_2/0$	q ₁ / 1	
q_1	$q_2/0$	q ₁ / 1	
$q_{\scriptscriptstyle 2}$	$q_3/0$	q ₄ / 0	
q_3	q ₃ / 1	q ₁ / 0	
q_1	$q_2/0$	q ₁ / 1	
$q_{\scriptscriptstyle 2}$	$q_3 / 0$	q ₄ / 0	
$q_{\scriptscriptstyle{4}}$	$q_2/1$	$q_3/0$	

化简后的状态表

现态	Q ⁿ⁺¹ / Z		
Qn	X=0 X=1		
\mathbf{q}_1	$q_2/0$	q ₁ / 1	
q_{2}	$q_3/0$	q ₄ / 0	
$q_{\scriptscriptstyle 3}$	q ₃ / 1	q ₁ / 0	
$q_{\scriptscriptstyle{4}}$	q ₂ / 1	$q_3/0$	

最小覆盖集: {q₁, q₂, q₃, q₄}

隐含表法化简状态表

例2: 化简如下状态表

现态	Q n+1/ Z			
Qn	X ₁ X ₂ =00	X ₁ X ₂ =01	X ₁ X ₂ =10	X ₁ X ₂ =11
а	b/0	c/0	b/1	a / 0
b	e/ 0	c/0	b/ 1	d / 1
С	a/0	b/0	c/1	d / 1
d	c/1	d / 0	a/1	b/0
е	c/0	c/0	c/1	e/0

现态	Q ⁿ⁺¹ / Z			
Qn	$X_1X_2 = 00$	X ₁ X ₂ =01	$X_1X_2=10$	$X_1X_2=11$
q₁	$q_2/0$	$q_2 / 0$	q ₂ / 1	q ₁ / 0
q_2	q ₁ / 0	q ₂ / 0	q ₂ / 1	$q_3/1$
q_2	q ₁ / 0	q ₂ / 0	q ₂ / 1	q ₃ / 1
q_3	q ₂ / 1	q ₃ / 0	q ₁ / 1	$q_2/0$
q ₁	$q_2/0$	$q_2/0$	q ₂ / 1	q ₁ / 0

等价状态对:

{a,e}, {b,c}

Let
$$\begin{cases} q_1 = \{ a, e \} \\ q_2 = \{ b, c \} \\ q_3 = d \end{cases}$$

现态	Q ⁿ⁺¹ / Z			
Q ⁿ	$X_1X_2 = 00$	$X_1X_2=01$	$X_1X_2=10$	$X_1X_2=11$
q_1	$q_2/0$	$q_2/0$	q ₂ / 1	q ₁ / 0
q_2	q ₁ / 0	$q_2/0$	q ₂ / 1	q ₃ / 1
q_3	$q_2/1$	q ₃ / 0	q ₁ / 1	$q_2/0$

同步时序逻辑设计

- 状态机基础
- 原始状态图和状态表
- 状态表化简
- 状态分配

利用触发器设计时序逻辑的方法

- (1) 根据需求 → 获得原始状态图、状态表
- (2) 最小化状态图、状态表
- (3) 状态编码(分配)→ 获得状态转移表
- (4) 状态转移表 触发器特征 → 触发器激励表
- (6) 电路实现 (7) 检查无关状态

化简110 序列检测器的原始状态表

现态	Q ⁿ⁺¹ / Z			
Q n	X=0	X=1		
S ₀	S ₀ / 0	S ₁ / 0	√	
S₁	S ₀ / 0	S ₂ / 0		
S ₂	S ₃ / 1	S ₂ / 0		
S ₃	S ₀ / 0	S ₁ / 0]√	

现态	Q ⁿ⁺¹ / Z					
Q n	X=0	X=1				
S ₀	S ₀ / 0	S ₁ / 0				
S₁	S ₀ / 0	S ₂ / 0				
S ₂	S ₀ / 1	S ₂ / 0				

状态分配:

Y ₂ ¹	nY ₁ n				Y21	nY ₁ n				\ -	nY ₁ n			
x/_	00	01	11	10	x \	00	01	11	10	_ X \	00	01	11_	10
0	0	Х	Х	0	0	X	Х	1	X	0	0	X	1	0
1	0	Х	X	1	1	Х	Х	0	х	1	0	Χ	0	0
!	J	1 =)	XY_2	n	•	$K_1 = \overline{X}$				Z	= X	Y ₁ n		

 $K_2 = \overline{X}$

输入	现	态	次	态		触发	2器	•	输出
Х	Y_2^n	Y ₁ ⁿ	Y ₂ n+1	Y ₁ ⁿ⁺¹	J ₂	K_2	J_1	\mathbf{k}_{1}	Z
0	0	0	0	0	0	X	0	X	0
0	1	0	0	0	X	1	X	1	1
0	1	0	0	1	X	1	0	X	0
1	0	1	0	1	1	X	0	X	0
1	1	1	1	0	X	0	X	0	0
1	1	1	1	0	X	0	1	X	0
0	0	X	X	X	X	X	X	X	X
1	0	X	X	X	X	X	X	X	X

01 11 10

 $J_2 = X$

43

分配方案(1)

$$S_0 - 00$$

$$S_1$$
—— 10

 S_2 —— 11

分配方案(2)

$$S_0 - 00$$

 S_2 — 10

简单 $\begin{cases} J_1 = XY_2^n \\ K_1 = \overline{X} \end{cases}$

$$K_1 = X$$
 $J_2 = X$

$$K_2 = \overline{X}$$

 $Z = \overline{X}Y_1^n$

$\int J_1 = X\overline{Y}_2^n$

$$K_1 = 1$$

$$J_2 = X$$

$$K_2 = \overline{X} + \overline{Y}_1^n$$

$$Z = \overline{X} Y_2^n \overline{Y}_1^n$$

状态分配

需要解决两个问题:

①确定需要的触发器数量K

$$2^{K-1} \leq N \leq 2^K$$

K —— 触发器数量

N —— 最简状态数量

② 为状态表中的每一个状态分配二进制编码

力图获得一个最小代价的实现方案

电路实现代价与状态分配密切相

状态分配

一种 经验法 规则

- 1.同一输入下,相同的次态所对应的<mark>现态</mark>应该给予相邻编码
- 2.同一现态在不同输入下所对应的次态应给予相邻编码
- 3.给定输入下,输出完全相同,现态编码应相邻

目的: 尽量使卡 诺图中更多的 "1"(或"0") 相邻

注意:

- 初始状态一般可以放在卡诺图的 0号单元格里
- 优先满足规则1和规则2
- 状态编码尽量按照相邻原则给予
- 对于多输出函数,规则3可以适当调高优先级

状态分配规则

规则1:次态相同,现态编码应相邻

▶ 规则2: 同一现态对应的次态应给予相邻编码

现态 次态
$$a \rightarrow (c,d)$$
 $b \rightarrow (c,a)$ $c \rightarrow (b,d)$ $d \rightarrow (a,b)$ $b \rightarrow (a,b)$

现态	Q ⁿ⁺¹ / Z				
Q ⁿ	X=0	X=1			
а	c/0	d / 0			
b	c/0	a/ <mark>0</mark>			
С	b/0	d / 0			
d	a/1	b/1			

▶ 规则3:输出相同,现态编码应相邻

现态 输出 a ,b ,c 0 <u>ab,ac,</u>bc应相邻

(a,b), (a,c) 应相邻, 满足规则1,2,3

2.同一现态在不同输入下所对应的<mark>次态</mark>应给予相邻编码 3.给定输入下,输出完全相同,现态编码应相邻

1.同一输入下,相同的次态所对应的现态应该给予相邻编码

很难找到一个 最佳的状态分 配方案

a —	-00,	b	01
c	- 10,	d ——	1

同步时序逻辑电路设计方法

利用触发器设计时序逻辑的方法

- (1) 根据需求 → 获得原始状态图、状态表
- (2) 最小化状态图、状态表
- (3) 状态编码(分配)→ 获得状态转移表
- (4) 状态转移表 → 触发器激励表 触发器特征 → 無发器激励表
- (6) 电路实现 (7) 检查无关状态

完整电路设计过程示例

例:利用JK触发器设计110序列检测器

1. 获得原始状态图和原始状态表

(1) 状态设定

(2) 分析状态转换情

(3) 原始状态图(Mealy型)

(4) 原始状态表

现态	Q ⁿ⁺¹ / Z					
Qn	X=0	X=1				
S ₀	S ₀ / 0	S ₁ / 0				
S ₁	S ₀ / 0	S ₂ / 0				
S ₂	S ₃ / 1	S ₂ / 0				
S_3	S ₀ / 0	S ₁ / 0				

2. 状态化简

现态	Q ⁿ⁺¹ / Z					
Qn	X=0	X=1				
S ₀	S ₀ / 0	S ₁ / 0				
S ₁	S ₀ / 0	S ₂ / 0				
S_2	S ₃ / 1	S ₂ / 0				
S ₃	S ₀ / 0	S ₁ / 0				

ĺ	现态	Q ⁿ⁺¹ / Z						
	Qn	X=0	X=1					
	So	S ₀ / 0	S ₁ / 0					
	S ₁	S ₀ / 0	S ₂ / 0					
	S ₂	S ₀ / 1	S ₂ / 0					

3. 状态分配

使用2个JK触发器

	y 2 y 1
S_0	— 00
S ₁ —	— 10
S ₂ —	— 11

JK触发器驱动表

Q _n	\rightarrow	Q _{n+1}	J	K
0	\rightarrow	0	0	X
0	\rightarrow	1	1	X
1	\rightarrow	0	X	1
1	\rightarrow	1	X	0

4. 状态转换真值表

输入	现	现态		现态		触发器	输出
X	Y ₂ n	Y ₁ ⁿ	Y_2^{n+1}	Y ₁ n+1	$J_2 K_2 J_1 k_1$	Ζ	
0	0	0	0	0	0 X 0 X	0	
0	1	0	0	0	X 1 0 X	0	
0	1	1	0	0	X 1 X 1	1	
1	0	0	1	0	1 X 0 X	0	
1	1	0	1	1	X 0 1 X	0	
1	1	1	1	1	X 0 X 0	0	
0	0	1	X	X	X X X X	Χ	
1	0	1	X	X	XXXX	X	

 $J_2 K_2$: 看 $Q_2^{n \rightarrow Q_2^{n+1}}$

规 则

- 1.同一输入下,相同的次态所对应的<mark>现态</mark>应该给予相邻编码
- 2.同一现态在不同输入下所对应的次态应给予相邻编码
- 3.给定输入下,输出完全相同,现态编码应相邻50

4. 状态转换真值表

输入	现态		次态		触发器	输出
X	Y ₂ n	Y ₁ ⁿ	Y ₂ n+1	Y ₁ n+1	$J_2 K_2 J_1 k_1$	Z
0	0	0	0	0	0 X 0 X	0
0	1	0	0	0	X 1 0 X	0
0	1	1	0	0	X 1 X 1	1
1	0	0	1	0	1 X 0 X	0
1	1	0	1	1	X 0 1 X	0
1	1	1	1	1	X 0 X 0	0
0	0	1	Χ	Χ	X X X X	X
1	0	1	X	Χ	XXXX	X

5. 卡诺图化简

$$J_2 = X$$

$$K_2 = \overline{X}$$

$$Z = \overline{X}Y_1^n$$

6. 电路实现

7. 检查无关项

$$\begin{cases} J_1 = XY_2^n \\ K_1 = \overline{X} \\ J_2 = X \\ K_2 = \overline{X} \end{cases} \Rightarrow \begin{cases} Y_1^{n+1} = XY_2^n \overline{Y_1}^n + XY_1^n \\ = X(Y_1^n + Y_2^n) \\ Y_2^{n+1} = X\overline{Y_2}^n + XY_2^n \\ = X \end{cases}$$

电路可以自启动

同步时序逻辑电路设计方法

利用触发器设计时序逻辑的方法

- (1) 根据需求 → 获得原始状态图、状态表
- (2) 最小化状态图、状态表
- (3) 状态编码(分配)→ 获得状态转移表
- (4) 状态转移表 → 触发器激励表 触发器特征 →
- (6) 电路实现 (7) 检查无关状态

时序逻辑电路设计

- 状态机基础
- 原始状态图和状态表
- 状态表化简
- ▶状态分配