FICHE DE COURS 17

Généralités sur la lumière Bases de l'Optique Géométrique

Ce que je dois être capable de faire après avoir appris mon cours

Ц	Rappeler rapidement l'évolution historique des théories de l'optique
	Définir et distinguer optique géométrique et optique physique
	Décrire la lumière comme une onde électromagnétique progressive
	Donner la relation de Planck-Einstein
	Définir un MHTI et citer des exemples de MHTI
	Définir l'indice de réfraction et donner les valeurs de l'indice pour quelques MHTI
	Démontrer la relation liant la longueur d'onde dans un MHTI à celle dans le vide
	Donner les limites, en fréquence et en longueur d'onde dans le vide, du domaine visible.
	Définir un milieu dispersif et donner la loi de Cauchy
	Définir et distinguer sources primaires et secondaires. Citer des exemples
	Caractériser une source par son spectre : continu ou de raies. Donner un exemple pour chaque type de sources
	Indiquer les éléments constitutifs essentiels d'un laser et décrire rapidement son fonctionnement
	Donner les hypothèses de l'approximation de l'optique géométrique ainsi que les limites de son utilisation
	Préciser les propriétés des rayons lumineux dans le cadre de cette approximation.
	Définir, dans le cas où un rayon lumineux rencontre un dioptre, les notions de rayons incident, réfléchi et transmis de point d'incidence et de plan d'incidence, de normale.
	Énoncer les trois lois de Snell-Descartes.
	Établir les conditions d'observation des phénomènes de réflexion totale et de réfraction limite.
	Présenter le principe de fonctionnement d'une fibre à saut d'indice en vous appuyant sur un schéma.
	Présenter le principe de fonctionnement d'une fibre à gradient d'indice en vous appuyant sur un schéma.
	Interpréter le phénomène de mirages grâce aux lois de l'optique géométrique.

Les relations sur lesquelles je m'appuie pour développer mes calculs

☐ Célérité de la lumière dans le vide :

$$c \simeq 3.00 \times 10^8 \, \mathrm{ms}^{-1}$$

□ Relation de Planck-Einstein :

$$E = h\nu$$
 avec $h \simeq 6.63 \times 10^{-34} \,\mathrm{J}\,\mathrm{s}$

 $\hfill \square$ Indice de réfraction et longueur d'onde dans un MHTI :

$$\boxed{ n = \frac{c}{v} } \quad \text{et} \quad \boxed{ \lambda = \frac{\lambda_0}{n} }$$

 $\hfill \square$ Loi de Cauchy simplifiée :

$$n(\lambda_0) = A + \frac{B}{\lambda_0^2}$$

- $\hfill \Box$ Lois de Snell-Descartes :
 - ① Le rayon réfléchi et le rayon réfracté, s'il existe, sont dans le plan d'incidence.
 - ② Les angles algébriques d'incidence i_1 et de réflexion i_1' sont opposés :

Loi de la réflexion
$$i'_1 = -i_1$$

 $\ \, \ \, \ \,$ Les angles algébriques d'incidence i_1 et de réfraction i_2 sont liés par :

Loi de la réfraction
$$n_1 \sin i_1 = n_2 \sin i_2$$

☐ Angle de réflexion totale :

$$|i_{1,\text{lim}}| = \arcsin\left(\frac{n_2}{n_1}\right)$$

☐ Angle de réfraction limite :

$$|i_{2,\lim}| = \arcsin\left(\frac{n_1}{n_2}\right)$$

☐ Propagation d'un un milieu d'indice continûment variable :

$$n(z)\sin i(z) = Cte$$