Quizzes for STA371G, Spring 2016

Quiz 1. Consider the model:

MPGfit= lm(mpg~weight+horsepower+displacement+acceleration+cylinders)

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.626e+01 2.669e+00 17.331 <2e-16 ***
weight -5.187e-03 8.167e-04 -6.351 6e-10 ***
horsepower -4.526e-02 1.666e-02 -2.716 0.0069 **
displacement -8.313e-05 9.072e-03 -0.009 0.9927
acceleration -2.910e-02 1.258e-01 -0.231 0.8171
cylinders -3.979e-01 4.105e-01 -0.969 0.3330

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.247 on 386 degrees of freedom Multiple R-squared: 0.7077, Adjusted R-squared: 0.7039

F-statistic: 186.9 on 5 and 386 DF, p-value: < 2.2e-16

- 1. Explain the relationship between MPG and Horsepower
- 2. Should we reject the Null Hypothesis that $\beta_1 = \beta_2 = ... = 0$?
- 3. Provide a suggestion to reduce the standard error of the regression coefficient for Horsepower

Quiz 2. Consider the model:

MidCity = lm(Price~dn2+dn3+SqFt+Brick+Bedrooms+Bathrooms)

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	17919.446	10474.046	1.711	0.08967.
dn2TRUE	4865.694	2721.805	1.788	0.07633.
dn3TRUE	34083.719	3168.987	10.755	< 2e-16 ***
SqFt	35.930	6.404	5.610	1.30e-07 ***
BrickYes	18507.779	2396.302	7.723	3.65e-12 ***
Bedrooms	1902.169	1902.270	1.000	0.31933
Bathrooms	6826.925	2562.812	2.664	0.00878 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 12150 on 121 degrees of freedom Multiple R-squared: 0.805, Adjusted R-squared: 0.7954 F-statistic: 83.27 on 6 and 121 DF, p-value: < 2.2e-16

- 1 Is there sufficient evidence to conclude that Brick Houses are sold at a premium?
- 2 Why not include "dn1" into the regression model?
- 3 Explain the relationship between "Price" and "SqFt".
- 4 Why not include "offers" into the regression model?

Quiz 3. Consider the model: $lm(formula = log(mpg) \sim log(horsepower) + log(weight))$

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	10.10954	0.28614	35.330	< 2e-16 ***
log(horsepower)	-0.35985	0.04667	-7.711	1.05e-13 ***
log(weight)	-0.67347	0.05698	-11.818	< 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1

Residual standard error: 0.154 on 389 degrees of freedom Multiple R-squared: 0.796, Adjusted R-squared: 0.7949 F-statistic: 758.7 on 2 and 389 DF, p-value: < 2.2e-16

1. Explain the relationship between "mpg" and "horsepower."

Quiz 4. Describe the time series for monthly liquor sales:

- 1. What kind of patterns could you observe from this time series?
- 2. If you forecast future liquor sales based on this time series, what would be your underlying assumption?
- 3. Propose a model that can be used to describe the data and forecast future liquor sales.

Payoff Table:

Probability:	0.3	0.14	0.28	0.21	0.07	
Competitor:	No bid	<115	(115,120)	(120, 125)	>125	ER
No bid	0	0	0	0	0	0
Bid 115	15	-5	15	15	15	12.2
Bid 120	20	-5	-5	20	20	9.5
Bid 125	25	-5	-5	-5	25	6.1

- (1) Find the best action according to the maximin rule
- (2) Find the best action according to the maximax rule
- (3) Find the best action according to the minmax loss rule
- (4) Find the action that has the smallest expected loss

Answers:

- (1) No bid
- (2) Bid 125
- (3) Bid 115
- (4) Bid 115

Quiz 6:

Using at least two different ways to find the expected value of perfect information (EVPI) for the following payoff table:

	Deck A	Deck B
Guess Deck A	4	2
Guess Deck B	1	6