Университет ИТМО

Факультет Программной Инженерии и Компьютерной техники

Математический анализ 1-й курс

Список вопросов по математическому анализу

(1-й семестр 2022-2023 учебного года)

Лектор: Абжандадзе З. Л. **Автор файла:** Барсуков М., Р3115

Дата сборки: 25 декабря 2022 г.

Санкт-Петербург 2022г.

Содержание

I	Множества. Некоторые действия с множествами	
	Объединение, пересечение, дополнение, разность, свойства	4
	1.1 Множества	4
	1.2 Операции над множествами	4
2	Действительные числа	
	Ограниченные (сверху, снизу) числовые множества	5
	2.1 Аксиомы поля	5
	2.2 Аксиомы порядка	5
	2.3 Аксиомы непрерывности	6
	2.4 Другие аксиомы	6
	2.5 Ограниченные числовые множества	6
3	Неограниченность множества натуральных чисел	
	Теорема о числах 2^n	6
4	Отношение эквивалентности	
_	Счётные и несчётные множества	7
	4.1 Эквивалентность	7
	4.2 Счётность	7
5	Модуль действительного числа	
J	Свойства	8
	5.1 Модуль	5
	5.2 Свойства	8
	0.2 Chonciba	
6	Комплексные числа	_
	Определение, арифм. действия, алгебраическая форма	8
7	Модуль и аргумент комплексного числа	
	Тригонометрическая форма записи	6
	7.1 Тригонометрическая форма комплексного числа	6
	7.2 Показательная форма комплексного числа	Ĝ
	7.3 Модуль и аргумент комплексного числа	Ĝ
8	Формула Муавра	
	Извлечение корней из комплексного числа	10
9	Линейное, Евклидовое пространство	
	Неравенство Коши-Буняковского	10
	9.1 Линейное пространство	10
	9.2 Евклидово пространство	10
	9.3 Неравенство Коши — Буняковского	11
10	Метрическое пространство, открытый замкнутый шар	
_ 3	Открытое, замкнутое множество	11
	10.1 Метрика и метрическое пространство	11
	10.2 Открытые шары	11

	10.3 Открытые множества	
11	Нормированное пространство	12
12	Определение предела числовой последовательности	12
13	Единственность предела числовой последовательности	12
14	Критерий Коши о существовании предела числовой последовательности	12
15	Теорема об ограниченности сходящихся последовательностей	12
16	Теорема о предельном переходе неравенства	12
17	Теорема о двух полицейских	12
18	Теорема Вайерштрасса (без доказательства) Число e	13
19	Бесконечно малые последовательности	13
20	Числовой ряд и его сумма Критерий Коши его существования	13

1 Множества. Некоторые действия с множествами

Объединение, пересечение, дополнение, разность, свойства

1.1 Множества

 ${\bf M}$ ножество — это множество набор, совокупность каких-либо (вообще говоря любых) объектов — элементов этого множества.

Множества обычно обозначаются большими латинскими буквами (например, A, B), его элементы — малыми (то есть a, b).

- Элементы в множестве не повторяются
- Два множества равны (A = B) тогда и только тогда, когда содержат в точности одинаковые элементы.
- Порядок элементов в множестве не имеет значения
- \varnothing **пустое множество**, не содержащее ни одного элемента

 $a \in A$ — означает, что элемент a принадлежит множеству A

 $a \notin A$ — что не принадлежит

 $A \subset B - A$ это **подмножество** B, то есть $\forall x \in A \Rightarrow x \in B$

 $A \subset A$ — всегда верно.

Пусть $a \in A, b \in B$. Упорядоченной парой (a, b) называется множество $\{\{a\}, \{a, b\}\},$ при этом a называется первым элементом упорядоченной пары, а b — вторым.

1.2 Операции над множествами

- Объединение $A \cup B = \{x : x \in A \lor x \in B\}$
- Пересечение $A \cap B = \{x : x \in A \land x \in B\}$
- Разность $A \setminus B = \{x : x \in A \land x \notin B\}$
- \bullet Симметрическая разность $A \bigtriangleup B = (A \setminus B) \cup (B \setminus A)$
- Дополнение $A^C = \{x \in U : x \notin A\} = U \setminus A$
- $A \cup \varnothing = A$
- $A \cap \emptyset = \emptyset$
- $\bullet \ (A \cup B) \cap C = (A \cap C) \cup (B \cap C)$
- $\bullet \ (A\cap B) \cup C = (A\cup C) \cap (B\cup C)$
- \bullet $A \cup B = B \cup A$
- $A \cap B = B \cap A$
- $A \triangle B = B \triangle A$
- $(A \cup B)^C = A^C \cap B^C$
- $A \cup A^C = U$
- $A \cap A^C = \emptyset$
- $\bullet \ \left(A^C\right)^C = A$
- $\bullet \ A^C \setminus B^C = B \setminus A$
- $\bullet \varnothing^C = U$
- Декартово произведение $A \times B = \{(a,b) : a \in A \land b \in B\}$

2 Действительные числа

Ограниченные (сверху, снизу) числовые множества

Действительное число (вещественное число) — математический объект, возникший из потребности измерения геометрических и физических величин окружающего мира, а также проведения таких вычислительных операций, как извлечение корня, вычисление логарифмов, решение алгебраических уравнений, исследование поведения функций.

Вещественные числа предназначены для измерения непрерывных величин.

Множество вещественных чисел имеет стандартное обозначение — \mathbb{R} .

2.1 Аксиомы поля

На множестве \mathbb{R} определено отображение (операция сложения) $+: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ со-поставляющее каждой упорядоченной паре элементов a,b из \mathbb{R} некоторый элемент c из того же множества \mathbb{R} , называемый **суммой** a и b (a+b эквивалентная запись элемента c множества \mathbb{R}).

Также, на множестве \mathbb{R} определено отображение (операция умножения) $\cdot : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ сопоставляющее каждой упорядоченной паре элементов a,b из \mathbb{R} некоторый элемент $a \cdot b$, называемый **произведением** a и b.

При этом имеют место следующие свойства:

- I_1 . Коммутативность сложения. Для любых $a, b \in \mathbb{R}$: a + b = b + a
- I_2 . Ассоциативность сложения. Для любых $a,b,\in\mathbb{R}$: a+(b+c)=(a+b)+c
- I_3 . Существование нуля. Существует элемент $0 \in \mathbb{R}$, называемый **нулём**, такой, что для любого $a \in \mathbb{R}$, a+0=a
- I_4 . Существование противоположного элемента. Для любого $a \in \mathbb{R}$, существует элемент $-a \in \mathbb{R}$ называемый **противополжным** к a, такой, что a + (-a) = 0
- I_5 . Коммутативность умножения. Для любых $a,b \in \mathbb{R}$: $a \cdot b = b \cdot a$
- I_6 . Ассоциативность сложения. Для любых $a,b,\in\mathbb{R}$: $a\cdot(b\cdot c)=(a\cdot b)\cdot c$
- I_7 . Существование единицы. Существует элемент $1 \in \mathbb{R}$, называемый единицей, такой, что для любого $a \in \mathbb{R}$, $a \cdot 1 = a$
- I_8 . Существование обратного элемента. Для любого $a \in \mathbb{R}, a \neq 0$, существует элемент $a^{-1} \in \mathbb{R}$ называемый **обратным** к a, такой, что $a \cdot a^{-1} = 1$
- I_9 . Дистрибутивный закон умножения относительно сложения. Для любых $a,b,\in\mathbb{R}$: $a\cdot (b+c)=a\cdot b+a\cdot c$
- I_{10} ?. Hempusuaльность поля. Единица и ноль различные элементы \mathbb{R} : $1 \neq 0$

2.2 Аксиомы порядка

- II_1 . Рефлексивность: $a \leqslant a$
- II_2 . Антисимметричность: $(a \leq b) \land (b \leq a) \Rightarrow (a = b)$
- II_3 . Транзитивность: $(a \leq b) \land (b \leq c) \Rightarrow (a \leq c)$
- II_4 . Линейная упорядоченность: $(a \leq b) \vee (b \leq a)$
- II_5 . Связь сложения и порядка: $(a \leqslant b) \Rightarrow (a+c \leqslant b+c)$
- II_6 . Связь умножения и порядка: $(0 \le a) \land (0 \le b) \Rightarrow (0 \le a \cdot b)$

2.3 Аксиомы непрерывности

• III_1 . Аксиома полноты. Каковы бы ни были непустые множества $A \subset \mathbb{R}$ и $B \subset \mathbb{R}$, такие, что для любых двух элементов $a \in A$ и $b \in B$ выполняется неравенство $a \leqslant b$, существует такое число $\xi \in \mathbb{R}$, что для всех $a \in A$ и $b \in B$ имеет место соотношение $a \leqslant \xi \leqslant b$

2.4 Другие аксиомы

• IV_1 . Аксиома Архимеда: $\forall a, b: a \ll b, \exists n: na > b$

Этих аксиом достаточно, чтобы строго вывести все известные свойства вещественных чисел. Множеством вещественных чисел называется непрерывное упорядоченное поле.

2.5 Ограниченные числовые множества

Числовое множество $E \subset \mathbb{R}$ называется **ограниченным сверху**,

если $\exists b \in \mathbb{R} : \forall x \in E \Rightarrow x \leqslant b$

Числовое множество $E \subset \mathbb{R}$ называется ограниченным снизу,

если $\exists a \in \mathbb{R} : \forall x \in E \Rightarrow a \leqslant x$

Множество натуральных чисел $\mathbb N$ является примером ограниченного снизу множества. Если a принадлежит $\mathbb R$ и b принадлежит $\mathbb R$, то отрезок [a,b] представляет собой ограниченное множество. Множества рациональных чисел $\mathbb Q$, иррациональных чисел $\mathbb I$ и $\mathbb R$ — примеры неограниченных множеств.

3 Неограниченность множества натуральных чисел

Теорема о числах 2^n

Предположим, что $\mathbb N$ ограничено выше. Тогда самая низкая верхняя граница s существует для каждого $n \in \mathbb N$. Рассмотрим, что k является наибольшим натуральным числом, которое меньше s. Тогда k+1>s, и s не является верхней границей $\mathbb N$, потому что k+1 остаётся натуральным числом. В результате этого противоречия мы можем сделать вывод, что $\mathbb N$ не ограничено сверху. Снизу $\mathbb N$ ограничено $min(\mathbb N)=1$.

$$(a+\alpha)^n > 1 + n\alpha, \alpha \geqslant -1$$

Теорема о числах 2^n : Среди чисел вида 2^n встречаются сколько угодно большие.

 $(1+1)^n>1+n,\, 2^n>1+n,\,$ т.к. $n\in N$ и $\mathbb N$ - неограниченное $\Rightarrow 2^n$ — неограниченное

4 Отношение эквивалентности

Счётные и несчётные множества

4.1 Эквивалентность

Бинарное отношение R на множестве X называется отношением эквивалентности, если оно обладает следующими свойствами:

- Рефлексивность: $\forall x \in X : xRx$.
- Симметричность: $\forall x, y \in X : xRy \Rightarrow yRx$.
- Транзитивность: $\forall x, y, z \in X : xRy \land yRz \Rightarrow xRz$.

Отношение эквивалентности обозначают символом \sim . Запись вида $a \sim b$ читают как "a эквивалентно b".

Два множества называются **эквивалентными** (или **равномощными**), если между ними можно установить *взаимно однозначное соответствие*.

Примеры: отношение *равенства* в любом множестве, *параллельности* прямых на плоскости, *быть одного роста* на множестве людей.

4.2 Счётность

Множества, состоящие из конечного числа элементов, называются **конечными**, а состоящие из бесконечного числа — **бесконечными**.

Множество, эквивалентное множеству № натуральных чисел, называется **счетным**.

Теорема: Множество \mathbb{Z} целых чисел счетно.

Док-во: Можно поставить в соответствие каждому натуральному числу n число $z_n = \frac{n}{2}$, если n — четное, и $z_n = -\frac{n-1}{2}$, если n — нечетное. Данное соответствие сопоставляет каждому натуральному числу n целое число z_n , причем каждое из целых чисел получается по этой формуле ровно один раз.

- Любое бесконечное множество содержит счетное подмножество.
- Любое бесконечное подмножество счетного множества счетно.
- Объединение конечного и счетного множеств, объединение двух счетных множеств счетные.
- Множество Q рациональных чисел счетно.
- Декартово произведение конечного числа не более чем счётных множеств не более чем счётно.
- Множество, не являющееся ни конечным, ни счетным, называется **несчетным** множеством.
- Множество $\mathbb R$ действительных чисел несчетно.
- Мощность множества действительных чисел также называют **континуумом**, и по сравнению со счётными множествами это «более бесконечное» множество.

5 Модуль действительного числа

Свойства

5.1 Модуль

Модулем, или абсолютной величиной, числа $a \in \mathbb{R}$ называется число $|a| \in \mathbb{R}$, равное самому a, если a неотрицательно, и равное -a, если a отрицательно:

$$|a| = \begin{cases} a & a \geqslant 0, \\ -a & a < 0. \end{cases}$$

Из определения модуля a ясно, что |a| — неотрицательное число.

5.2 Свойства

- \bullet |x| = |-x|
- $|x| \leqslant a \Leftrightarrow -a \leqslant x \leqslant a$
- $|x+y| \leqslant |x| + |y|$
- $||x| |y|| \le |x y|$
- $\bullet ||x y| = |y x|$

6 Комплексные числа

Определение, арифм. действия, алгебраическая форма

Комплексные числа — это расширение поля действительных чисел. Обозначается $\mathbb C$. Комплексные числа образуют алгебраически замкнутое поле, то есть многочлен степени n с комплексными коэффициентами имеет ровно n комплексных корней. Это **основная теорема алгебры**.

Формально, комплексное число z — это упорядоченная пара вещественных чисел (x,y) с введёнными на них операциями сложения и умножения вида:

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$
$$(x_1, y_1) \cdot (x_2, y_2) = (x_1 x_2 - y_1 y_2, x_1 y_2 + x_2 y_1)$$

Арифметическая модель комплексных чисел как пар действительных чисел, предложенная У. Р. Гамильтоном, хотя и непротиворечива, но не удобна в вычислениях, поэтому для манипуляций с ними используют различные их представления.

В рамках гамильтоновского определения действительные числа имеют вид (x,0). Эта пара обозначается также просто x. В частности, (0,0)=0. Пара (0,1) имеет особый статус и называется **мнимой единицей**. Она обозначается как i.

$$i^2 = i \cdot i = (0,1) \cdot (0,1) = (0-1,0+0) = -1$$

Алгебраическая форма комплексного числа: $(x, y) = x + i \cdot y$.

Сложение двух комплексных чисел в алгебраической $z_1=x_1+y_1i$ и $z_2=x_2+y_2i$ выполняется по следующему правилу: $z_1+z_2=(x_1+x_2)+(y_1+y_2)i$, произведение аналогично $z_1\cdot z_2=(x_1x_2-y1_y2)+(x_1y_2+x_2y_1)i$

7 Модуль и аргумент комплексного числа

Тригонометрическая форма записи

7.1 Тригонометрическая форма комплексного числа

Каждому комплексному числу z = x + iy геометрически соответствует точка M(x,y) на плоскости Oxy. Но положение точки на плоскости, кроме декартовых координат (x,y), можно зафиксировать другой парой — ее полярных координат (r,φ) в полярной системе.

Используя связь декартовых и полярных координат точки M: $\begin{cases} x = r\cos\varphi, \\ y = r\sin\varphi \end{cases}$, из алгебраической формы записи комплексного числа z = x + iy получаем **тригонометрическую форму**:

$$z = r(\cos\varphi + i\sin\varphi)$$

Умножение комплексных чисел в тригонометрической форме:

$$z_1 \cdot z_2 = r_1 \cdot r_2 \cdot (\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2)).$$

Возведение в степень: $z^n = r^n(\cos n\varphi + i\sin n\varphi)$

7.2 Показательная форма комплексного числа

Если обозначить комплексное число z, у которого $\operatorname{Re} z = \cos \varphi$, а $\operatorname{Im} z = \sin \varphi$, через $e^{i\,\varphi}$, то есть $\cos \varphi + i \sin \varphi = e^{i\,\varphi}$, то получим **показательную форму** записи комплексного числа:

$$z = r \cdot e^{i\,\varphi}$$

Равенство $e^{i\varphi} = \cos \varphi + i \sin \varphi$ называется формулой Эйлера.

Заметим, что геометрически задание комплексного числа $z=(r,\varphi)$ равносильно заданию вектора \overrightarrow{OM} , длина которого равна r, то есть $\left|\overrightarrow{OM}\right|=r$, а направление — под углом φ к оси Ox.

7.3 Модуль и аргумент комплексного числа

Число r — длина радиуса-вектора точки M(x,y) называется **модулем** комплексного числа z=x+iy. Обозначение: |z|=r.

$$|z| = \sqrt{x^2 + y^2}$$

Геометрический смысл модуля комплексного числа Очевидно, что $|z|\geqslant 0$ и |z|=0 только для числа z=0 ($x=0,\,y=0$). Число $|z_1-z_2|$ есть расстояние между точками z_1 и z_2 на комплексной плоскости.

Полярный угол φ точки M(x,y) называется **аргументом** комплексного числа z=x+iy. Обозначение: $\varphi=\arg z$.

В дальнейшем, если нет специальных оговорок, под arg z будем понимать значение φ , удовлетворяющее условию $-\pi < \varphi \leqslant \pi$. Так, для точки z=-1-i arg $z=-\frac{3\pi}{4}$.

Аргумент числа z = 0 — величина неопределенная.

Для пары сопряженных комплексных чисел z и \overline{z} справедливы следующие равенства: $|\overline{z}|=|z|, \qquad \arg \overline{z}=-\arg z$

8 Формула Муавра

Извлечение корней из комплексного числа

Формула Муавра для комплексных чисел $z = r(\cos \varphi + i \sin \varphi)$ утверждает, что

$$z^{n} = r^{n}(\cos\varphi + i\sin\varphi)^{n} = r^{n}(\cos n\varphi + i\sin n\varphi)$$

для любого $n \in \mathbb{N}$.

Исторически формула Муавра была доказана ранее формулы Эйлера: $e^{ix} = \cos x + i \sin x$, однако немедленно следует из неё.

Аналогичная формула применима также и при вычислении корней n-й степени из ненулевого комплексного числа:

$$z^{1/n} = \left[r\left(\cos(\varphi + 2\pi k) + i\sin(\varphi + 2\pi k)\right)\right]^{1/n} = r^{1/n}\left(\cos\frac{\varphi + 2\pi k}{n} + i\sin\frac{\varphi + 2\pi k}{n}\right),$$

где
$$k = 0, 1, \dots, n-1$$

Из этой формулы следует, что корни n-й степени из ненулевого комплексного числа всегда существуют, и их количество равно n. На комплексной плоскости, как видно из той же формулы, все эти корни являются вершинами правильного n-угольника, вписанного в окружность радиуса $\sqrt[n]{r}$ с центром в нуле.

9 Линейное, Евклидовое пространство

Неравенство Коши-Буняковского

9.1 Линейное пространство

Линейным (векторным) пространством называется множество V произвольных элементов, называемых векторами, в котором определены операции сложения векторов и умножения вектора на число, т.е. любым двум векторам \mathbf{u} и \mathbf{v} поставлен в соответствие вектор $\mathbf{u} + \mathbf{v}$, называемый суммой векторов \mathbf{u} и \mathbf{v} , любому вектору \mathbf{v} и любому числу λ из поля действительных чисел \mathbb{R} поставлен в соответствие вектор $\lambda \cdot \mathbf{v}$, называемый произведением вектора \mathbf{v} на число λ ; так что выполняются 8 аксиом линейного пространства: коммутативность и ассоциативность сложения, существование нулевого вектора, существование противоположного вектора, унитарность, ассоциативность умножения, дистрибутивность относительно сложения векторов и скаляров.

- Линейное пространство это непустое множество, так как обязательно содержит единственный нулевой вектор.
- Векторное пространство является абелевой группой по сложению.

Скалярное произведение: $(\mathbf{a}, \mathbf{b}) = |\mathbf{a}| |\mathbf{b}| \cos(\theta)$.

9.2 Евклидово пространство

Вещественное линейное пространство \mathbb{E} называется евклидовым, если каждой паре элементов \mathbf{u} , \mathbf{v} этого пространства поставлено в соответствие действительное число $\langle \mathbf{u}, \mathbf{v} \rangle$, называемое скалярным произведением, причем это соответствие удовлетворяет следующим условиям:

- 1. $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle \quad \forall \mathbf{u}, \mathbf{v} \in \mathbb{E};$
- 2. $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle \quad \forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{E};$
- 3. $\langle \lambda \cdot \mathbf{u}, \mathbf{v} \rangle = \lambda \cdot \langle \mathbf{u}, \mathbf{v} \rangle \quad \forall \mathbf{u}, \mathbf{v} \in \mathbb{E}, \quad \forall \lambda \in \mathbb{R};$
- 4. $\langle \mathbf{v}, \mathbf{v} \rangle > 0 \quad \forall \mathbf{v} \neq \mathbf{o} \land \langle \mathbf{v}, \mathbf{v} \rangle = 0 \Rightarrow \mathbf{v} = \mathbf{o}$.

9.3 Неравенство Коши — Буняковского

Пусть дано линейное пространство L со скалярным произведением $\langle x, y \rangle$. Пусть ||x|| — норма, порождённая скалярным произведением, то есть $||x|| \equiv \sqrt{\langle x, x \rangle}$, $\forall x \in L$. Тогда для любых $x, y \in L$ имеем:

$$|\langle x, y \rangle| \leq ||x|| \cdot ||y||$$

, причём равенство достигается тогда и только тогда, когда векторы x и y линейно зависимы (коллинеарны, или среди них есть нулевой).

10 Метрическое пространство, открытый замкнутый шар

Открытое, замкнутое множество

10.1 Метрика и метрическое пространство

Пусть X — абстрактное множество.

 $X \times X = \{(x_1, x_2) : x_i \in X\}$ — прямое произведение множества X на себя

Отображение $\rho: X \times XR^+$ — называется **метрикой** на X, если выполняются аксиомы

- 1. $\rho(x,y) \geqslant 0; \rho(x,y) = 0 \Leftrightarrow x = y$
- 2. $\rho(x, y) = \rho(y, x)$
- 3. $\rho(x,y) \le \rho(x,z) + \rho(z,y)$ неравенство треугольника

Если на X определена метрика, то пара (X, ρ) называется **метрическим пространством**.

10.2 Открытые шары

Для метрических пространств основное значение имеют открытые шары.

Пусть (X, ρ) — метрическое пространство, пусть $r \in \mathbb{R}, r > 0, a \in X$, тогда открытый шар радиуса r в точке a — это множество $V_r(a) = \{x \in X : \rho(x, a) < r\}$

Пример открытого шара. На числовой оси: $X = \mathbb{R} : V_r(a) = (ar; a+r)$

Множество $M \subset X$ ограничено, если существуют $a \in X$ и $r \in (0; +\inf)$, такие, что $M \subset V_r(a)$. Иначе говоря, множество ограничено, если его можено поместить в открытый шар конечного радиуса.

10.3 Открытые множества

Множество $G \subset X$ называется открытым в метрическом пространстве, если его можно записать как некоторое объединение открытых шаров (в общем случае объединение может состоять из несчетного числа шаров).

```
	au — класс открытых множеств. 	au = G^-открытые в МП(X, 
ho)
```

10.4 Замкнутые множества

Множество F называется замкнутым в МП (X, ρ) , если $\overline{F} = X \setminus F$ — открыто. Свойства замкнутых множеств:

- 1. X, \varnothing замкнуты
- 2. Если F_{α} замкнуто $\forall \alpha \in A$, то $\cap_{\alpha \in A} F_{\alpha}$ замкнуто
- 3. Если $F_1 \dots F_n$ замкнуты, то $\bigcup_{i=1}^n F_i$ замкнуто

11 Нормированное пространство

- 12 Определение предела числовой последовательности
- 13 Единственность предела числовой последовательности
- 14 Критерий Коши о существовании предела числовой последовательности
- 15 Теорема об ограниченности сходящихся последовательностей
- 16 Теорема о предельном переходе неравенства
- 17 Теорема о двух полицейских

18 Теорема Вайерштрасса (без доказательства) $\mathsf{Y}_{\mathsf{ИСЛО}}\ e$

19 Бесконечно малые последовательности

20 Числовой ряд и его сумма

Критерий Коши его существования