Tarea 5

Profesor: Jesús Rodríguez Viorato IA & TC

AGOSTO-DICIEMBRE 2021

Problema 1

Sea

$$ALL_{DFA} = \{ \langle A \rangle \mid A \text{ es DFA y } L(A) = \Sigma^* \}$$

Muestra que ALL_{DFA} es decidible.

Solución: Construiremos una máquina de Turing que decida ALL_{DFA}.

En primer lugar recordemos que

$$E_{DFA} = \{ \langle A \rangle \mid A \text{ es DFA y } L(A) = \emptyset \},$$

es decidible y sea T_1 una máquina de Turing que decide este lenguaje.

Además notamos que dado un DFA A podemos construir B tal que

$$L(B) = L(A)^c$$
,

primero construyendo un DFA que acepte Σ^* y luego usando el autómata producto para hallar el autómata B que reconozca $L(A)^c = \Sigma^* \setminus L(A)$.

Sea T_2 la máquina de Turing definida de la siguiente forma:

 T_2 ="input $\langle A \rangle$ con A un DFA

- 1. Construimos *B* tal que $L(B) = L(A)^c$.
- 2. Simulamos T_1 con input $\langle B \rangle$.
- 3. Aceptamos si T_1 acepta en el paso 2. Rechazamos si T_1 rechaza en el paso 2."

Como E_{DFA} es dedicible por T_1 entonces T_2 siempre se detiene, por lo que $L(T_2)$ es decidible, además T_2 acepta A sólo si T_1 acepta B, es decir, si $L(B) = \emptyset$ que equivale a que $L(A) = \Sigma^*$.

Concluimos que

$$ALL_{DFA} = L(T_2),$$

y ALL_{DFA} es decidible.

Problema 2

Sea

$$A = \{\langle R, S \rangle \mid R \text{ y } S \text{ son expresiones regulares y } L(R) \subseteq L(S) \}.$$

Demuestra que A es decidible.

Solución: De manera análoga al problema anterior sea T_1 una máquina de Turing que decide E_{DFA} .

Observamos que

$$L(R) \subseteq L(S) \iff L(S)^c \cap L(R) = \emptyset.$$
 (1)

Definimos la siguiente máquina de Turing:

 T_2 ="input $\langle R, S \rangle$ con R y S expresiones regulares

1. Con el argumento del autómata producto construimos un DFA B tal que

$$L(B) = L(S)^c \cap L(R)$$

- 2. Simulamos T_1 con input $\langle B \rangle$.
- 3. Aceptamos si T_1 acepta en el paso 2. Rechazamos si T_1 rechaza en el paso 2."

Como T_1 decide E_{DFA} el algoritmo anterior siempre para por lo que $L(T_2)$ es decidible.

Ahora notamos que $\langle R, S \rangle$ es aceptada por T_2 si $\langle B \rangle$ es aceptada por T_1 , es decir, si

$$L(S)^c \cap L(R) = \emptyset$$
,

y por (1) esto equivale a que

$$L(R) \subseteq L(S)$$
.

Por lo tanto $A = L(T_2)$ y así A es decidible.

Problema 3

Probar que EQ_{DFA} es decidible ejecutando los dos DFA's en todas las cadenas de cierto tamaño. Calcular un tamaño que funcione.

Solución: Consideremos $A = (P, \Sigma, \delta, p_0, F)$ y $B = (Q, \Sigma, \gamma, q_0, G)$ dos DFA's.

Sea n = |P| y m = |Q|, denotemos por

$$SA_{nm} = \{ \omega \in \Sigma^* \mid \delta^*(p_0, \omega) \in F \mid y \mid |\omega| \leq nm \},$$

y

$$SB_{nm} = \{ \omega \in \Sigma^* \mid \gamma^*(q_0, \omega) \in G \mid y \mid |\omega| \leq nm \},$$

a las cadenas de caracteres aceptadas por A y B, respectivamente y que tienen longitud a lo más nm.

Vamos a probar que

$$L(A) = L(B) \iff SA_{nm} = SB_{nm} \tag{2}$$

Si L(A) = L(B) es claro que $SA_{nm} = SB_{nm}$ pues los autómatas A y B aceptan las mismas cadenas de caracteres.

Ahora para demostrar la otra dirección procederemos por contrapositiva. Supongamos que $L(A) \neq L(B)$ queremos probar que

$$SA_{nm}\Delta SB_{nm}\neq\emptyset$$
.

Como $L(A) \neq L(B)$ entonces $L(A)\Delta L(B) \neq \emptyset$. Por el principio del Buen Orden existe $t \in L(A)\Delta L(B)$ tal que

$$|t| = \min\{|\omega| \mid \omega \in L(A)\Delta L(B)\}. \tag{3}$$

Si $|t| \le nm$ entonces $t \in SA_{nm}\Delta SB_{nm}$ y hemos terminado.

Ahora supongamos que k := |t| > nm.

Sea

 p_0, p_1, \ldots, p_k los estados que se visitan en A al leer t,

y

 q_0, q_1, \dots, q_k los estados que se visitan en B al leer t.

Observamos que

$$|\{(p_i,q_i) \mid i=0,1,\ldots,k\}| = k+1 > nm,$$

y como |P| = n y |Q| = m entonces solo hay nm parejas ordenadas (p,q) distintas con $p \in P$ y $q \in Q$.

Por el principio de las Casillas existe $i, j \in \{0, 1, ..., k\}$, que sin pérdida de generalidad podemos suponer i < j, tal que

$$(p_i,q_i)=(p_i,q_i).$$

Con esto podemos recuperar una cadena $t' \in \Sigma^*$ que ignore las transiciones por los estados p_{i+1} a p_{j-1} en A y las transiciones por los estados q_{i+1} a q_{j-1} en B.

Por lo tanto al leer la cadena t' se pasa por los estados

$$p_0, \ldots, p_i, p_{i+1}, \ldots, p_k$$
 en A,

y

$$q_0, \ldots, q_i, q_{i+1}, \ldots, q_k$$
 en B,

y t' es aceptada o rechazada como lo es t en A y en B, es decir, $t' \in L(A)\Delta L(B)$, pero

$$|t'| = k + i - j < k = |t|,$$

que es una contradicción a la definición de t en (3).

Por lo tanto $|t| \le nm$ y se cumple $SA_{nm}\Delta SB_{nm} \ne \emptyset$ si $L(A) \ne L(B)$ y así tenemos el hecho en (2).

Por lo tanto para decidir si L(A) = L(B) basta con simular A y B en todas las cadenas $\omega \in \Sigma^*$ con $|\omega| \le nm$.

La máquina de Turing que simulará este algoritmo es:

T =" input $\langle A, B \rangle$ con A y B DFA's

- 1. Contar el número de estados de *A* y *B*, que serán *n* y *m*.
- 2. Iterar sobre todas las cadenas $\omega \in \Sigma^*$ con $|\omega| \leq nm$.
 - Simular A con entrada ω .
 - Simular B con entrada ω .
- 3. Si el resultado de A y B es diferente rechazar, de lo contrario volver el paso 2.
- 4. Si se termina el ciclo en el paso 2 significa que $SA_{nm} = SB_{nm}$ entonces aceptar $\langle A, B \rangle$."

Notamos que T siempre se detiene porque existe un número finito de cadenas de longitud a lo más nm, por lo que L(T) es decidible, además T acepta $\langle A, B \rangle$ sólo si llega al paso 4 y esto pasa si $SA_{nm} = SB_{nm}$ que por (2) equivale a L(A) = L(B), por lo que

$$L(T) = EQ_{DFA}$$

de lo que concluimos que EQ_{DFA} es decidible y el tamaño apropiado de las cadenas en las que basta simular los autómatas es nm.

Problema 4

Probar que la clase de lenguajes decidibles no es cerrada bajo homomorfismos.

Solución: Recordemos que

$$HALT_{TM} = \{ \langle M, \omega \rangle \mid M \text{ es TM y se detiene al leer} \omega \},$$

es indecidible por el Teorema 5.1 de Sipser, 2012).

Usaremos la definición de función de condificación que aparece en la *Definición 7.33* de Martin, 2010, esto nos permite codificar $\langle M, \omega \rangle$ con elementos de $\{0,1\}^*$.

Lo anterior nos permite definir

 $D = \{xy \mid x \in \{0,1\}^*, x = \langle M, \omega \rangle, y \in \{a,b\}^* \text{ codifica a un natural } n \text{ tal que } M \text{ se detiene al leer } \omega \text{ en } n \text{ pasos} \},$

entonces D codifica en un lenguaje la acción de M con input ω que se para en n pasos para cada $n \in \mathbb{N}$.

Notamos que D es decidible ya que para cada $n \in \mathbb{N}$, n codificado por una cadena y en $\{a,b\}^*$, se simula M con entrada ω y la máquina se detiene en a lo más n pasos. Si se llegó al estado aceptor o de rechazo durante esos n pasos la correspondiente máquina aceptará xy sino lo rechazará.

Sea $h: \{0,1,a,b\} \rightarrow \{0,1,\epsilon\}$ definida por

$$h(0) = 0$$

$$h(1) = 1$$

$$h(a) = h(b) = \varepsilon$$
.

Como *h* es una función en los caracteres entonces es un homomorfismo que se extiende como en el *Problema* 1.66 de Sipser, 2012 a cadenas de caracteres.

Aplicamos el homomorfismo a lenguajes como en el Problema 1.66 de Sipser, 2012 y obtenemos que

$$h(D) = \{h(xy) \mid xy \in D\}$$

Si $xy \in D$ entonces x codifica $\langle M, \omega \rangle$ tal que M se para con entrada ω y lo hace en n pasos para alguna $n \in \mathbb{N}$, donde el número de pasos necesarios para detenerse es la parte codificada por y.

Como h(xy) = x entonces al aplicar h obtenemos x que codifican $\langle M, \omega \rangle$ tal que M se detiene al leer ω , es decir,

$$h(D) = \{x \mid x \in \{0,1\}^*, x = \langle M, \omega \rangle \text{ tal que } M \text{ se detiene al leer } \omega \} = HALT_{TM}$$

y al ser $HALT_{TM}$ indecidible se tiene que h(D) es indecidible.

Por lo tanto los lenguajes decidibles no son cerrados bajo homomorfismos.

Tarea 5

Problema 5

Encuentra un emparejamiento en la siguiente colección de dominos del PCP

$$\left\{ \left[\frac{ab}{abab} \right], \left[\frac{b}{a} \right], \left[\frac{aba}{b} \right], \left[\frac{aa}{a} \right] \right\}$$

Solución: La colección de dominos que proporciona un emparejamiento es la siguiente

$$\left\{ \left[\frac{ab}{abab}\right], \left[\frac{ab}{abab}\right], \left[\frac{aba}{b}\right], \left[\frac{b}{a}\right], \left[\frac{b}{a}\right], \left[\frac{aa}{a}\right], \left[\frac{aa}{a}\right] \right\},$$

y la cadena de caracteres que está arriba y abajo en el emparejamiento es

ababababbaaaa

Problema 6

Sea

$$T = \{ \langle M \rangle \mid M \text{ es TM que acepta } \omega^R \text{ si acepta } \omega \}.$$

Demuestra que T es indecidible.

Solución: Sea Σ es el alfabeto de las máquinas de Turing, si $|\Sigma|=1$, entonces para toda máquina de Turing M con dicho alfabeto se cumple

$$L(M) = L(M)^R,$$

por lo que en este caso tenemos que

$$T = \{ \langle M \rangle \mid M \text{ es TM} \}$$

es decidible por la forma es que se considera la codificación $\langle M \rangle$ (Ver Sipser, 2012, pp. 185).

Por lo tanto consideramos $|\Sigma| \ge 2$, sean $a, b \in \Sigma$ tal que $a \ne b$.

Por otro lado, decimos que un lenguaje $L\subseteq \Sigma^*$ es cerrado bajo la operación reversa si para todo $\omega\in L$ se tiene $\omega^R\in L$.

Por el Teorema 4.22 de Sipser, 2012 para ver que T es indecidible basta ver que T^c , que es

 $T^c = \{ \langle M \rangle \mid \langle M \rangle \text{ no condifica a una TM o es una TM tal que } L(M) \text{ no es cerrado bajo la operación reversa} \}$

es indecidible.

Para probar que T^c es indecidible procederemos por contradicción. Supongamos que T^c es decidible y sea D_{T^c} una TM que lo decide.

En primer lugar, para $\omega \in \Sigma^*$ y M TM construimos la TM que denotaremos por $M'(M,\omega)$ y definimos de la siguiente forma

 $M' := M'(M, \omega) =$ " input $x \text{ con } x \in \Sigma^*$

- 1. Si x = ab
 - \blacksquare Simular M en ω
 - Si M acepta ω , aceptar.
 - Si M rechaza ω , rechazar.
- 2. Si $x \neq ab$
 - Rechazar"

Vamos a probar que

$$\langle M, \omega \rangle \in A_{TM} \iff \langle M' \rangle \in T^c.$$
 (4)

Si $\langle M, \omega \rangle \in A_{TM}$ entonces ω es aceptado por M, luego $L(M') = \{ab\}$, por lo que M' es una TM y

$$ba = (ab)^R \notin L(M'),$$

por lo que $\langle M' \rangle \in T^c$.

Para probar la otra dirección procedemos por contrapositiva. Si $\langle M, \omega \rangle \notin A_{TM}$ entonces ω es rechazada por M o bien M itera indefinidamente al ingresar ω , en cualquier caso $L(M') = \emptyset$, por lo que $\langle M' \rangle \notin T^c$, se tiene así que se cumple la proposición en (4).

En este punto tenemos D_{T^c} la TM que decide T^c , construimos a partir de esta máquina la siguiente TM

 $D_{A_{TM}}$ =" input $\langle M, \omega \rangle$ con M una TM

- 1. Construir M' como antes usando $\langle M, \omega \rangle$.
- 2. Aceptar si D_{T^c} acepta $\langle M' \rangle$. Rechazar si D_{T^c} rechaza $\langle M' \rangle$."

Como D_{T^c} decide T^c entonces $D_{A_{TM}}$ siempre se detiene por lo que $L(D_{A_{TM}})$ es decidible, y de (4) se tiene que

$$A_{TM} = L(D_{A_{TM}}),$$

lo que implica que A_{TM} es decidible lo que es una contradicción.

Concluimos así que T^c es indecidible, por lo que T es indecidible que es lo que queríamos probar.

Problema 7

Un estado *useless* en una máquina de Turing es un estado que nunca es visitado para cualquier cadena de entrada. Considera el problema de determinar si una máquina de Turing tiene estados *useless*. Formula este problema como un lenguaje y demuestra que es indecidible.

Solución: Así como codificamos cadenas de caracteres y máquinas de Turing codificamos estados de unas máquina de Turing.

Por lo tanto formulamos el lenguaje de todas las máquinas de Turing con estados *useless* de la siguiente forma

$$UL_{TM} = \{ \langle M, q \rangle \mid M \text{ es TM y } q \text{ es estado } useless \text{ de } M \}.$$

Para demostrar que UL_{TM} es indecidible procederemos por contradicción.

Supongamos que UL_{TM} es decidible y sea $D_{UL_{TM}}$ una TM que lo decide. Definimos $D_{E_{TM}}$ de la siguiente forma

 $D_{E_{TM}}$ =" input $\langle M \rangle$ con M una TM

- 1. Simular $D_{UL_{TM}}$ con entrada $\langle M, q_{accept} \rangle$ donde q_{accept} es el estado aceptor de M.
- 2. Aceptar si $D_{UL_{TM}}$ acepta $\langle M, q_{\text{accept}} \rangle$. Rechazar si $D_{UL_{TM}}$ rechaza $\langle M, q_{\text{accept}} \rangle$."

Observamos que $D_{E_{TM}}$ siempre se detiene pues $D_{UL_{TM}}$ lo hace, luego $L(D_{E_{TM}})$ es decidible.

Notamos que $D_{E_{TM}}$ acepta $\langle M \rangle$ sólo si $D_{UL_{TM}}$ acepta $\langle M, q_{\text{accept}} \rangle$, es decir, si M nunca visita el estado aceptor, luego $L(M) = \emptyset$.

Por lo tanto $D_{E_{TM}}$ acepta $\langle M \rangle$ si $L(M) = \emptyset$, en otro caso rechaza $\langle M \rangle$, de esto se sigue que

$$E_{TM} = L(D_{E_{TM}}),$$

luego E_{TM} es decidible lo que es una contradicción pues por el *Teorema 5.2* de Sipser, 2012 tenemos que E_{TM} es indecidible.

Concluimos así que UL_{TM} es indecidible que es lo que queríamos probar.

Problema 8

¿Cuales de las siguientes parejas de números son primos relativos?. Muestra los cálculos que te permiten dar las conclusiones

- a) 1274 y 10505
- b) 7289 y 8029

Solución: Para determinar si las parejas proporcionadas son de números primos relativos o no recurrimos al algoritmo presentado en el *Teorema 7.15* de Sipser, 2012.

- a) Para la pareja (10505, 1274) la rutina es la siguiente
 - 1. $313 \equiv 10505 \mod 1274$
 - 2. $22 \equiv 1274 \mod 313$
 - 3. $5 \equiv 313 \mod 22$
 - $4. \ 2 \equiv 22 \bmod 5$
 - 5. $1 \equiv 5 \mod 2$
 - 6. $0 \equiv 2 \mod 1$

y en este último paso según la notación en la prueba del *Teorema 7.15* de Sipser, 2012 se tiene que y=0 y x=1, por lo que $\gcd(10505,1274)=1$, entonces la pareja de números (10505,1274) es una pareja de números primos relativos.

- b) Para la pareja (8029, 7289) el resultado del algoritmo de Euclides es el siguiente
 - 1. $740 \equiv 8029 \mod 7289$
 - 2. $629 \equiv 7289 \mod 740$
 - 3. $111 \equiv 740 \mod 629$
 - 4. $74 \equiv 629 \mod 111$
 - 5. $37 \equiv 111 \mod 74$
 - 6. $0 \equiv 74 \mod 37$

Por lo tanto y=0 y x=37 en el último paso del algoritmo, luego $\gcd(8029,7289)=37$ entonces en este caso la pareja de números no son primos relativos entre sí.

Tarea 5

Problema 9

Demuestra que *P* es cerrado bajo unión, concatenación y complemento.

Solución:

■ *Unión:* Primero probaremos la cerradura de P respecto a la unión. Sean $L_1, L_2 \in P$ y M_1, M_2 las TM que deciden en tiempo polinomial a L_1 y L_2 respectivamente.

Construimos la siguiente TM

$$M$$
 ="input $\omega \in \Sigma^*$

- 1. Simular M_1 en ω , si se acepta, aceptar.
- 2. Simular M_2 en ω , si se acepta, aceptar, en otro caso rechazar."

Notamos que M acepta ω si y sólo si M_1 o M_2 acepta ω , por lo que $L(M) = L_1 \cup L_2$, además M es una máquina determinística de Turing porque M_1 y M_2 lo son.

Como M_1 y M_2 deciden en tiempo polinomial entonces las fases 1 y 2 del algoritmo anterior toman un tiempo polinomial, por lo que M decide $L_1 \cup L_2$ en tiempo polinomial y así $L_1 \cup L_2 \in P$, que es lo que queríamos ver.

■ Concatenación: De manera análoga al apartado anterior sean $L_1, L_2 \in P$ y M_1, M_2 máquinas determinísticas que deciden L_1 y L_2 , respectivamente.

En este caso construimos la siguiente TM

$$M$$
 ="input $\omega \in \Sigma^*$

- 1. Iterar sobre cada descomposición en dos strings de ω de la forma $\omega = \omega_1 \omega_2$.
 - Simular $\omega_1 \in M_1$ y $\omega_2 \in M_2$. Si se acepta a ambos, aceptar.
- 2. Si ω no se acepta al intentar las posibles descomposiciones en dos strings, rechazar."

Notamos que M acepta ω si y sólo si existe una descomposición $\omega = \omega_1 \omega_2$ tal que $\omega_1 \in L_1$ y $\omega_2 \in L_2$, por lo que $L(M) = L_1 L_2$, es decir, M decide la concatenación de L_1 y L_2 .

Por otra parte, M es una máquina determinística de Turing pues M_1 y M_2 lo son, además el ciclo en el paso 1 es del orden O(n) pues hay n+1 descomposiciones de ω distintas. Como la subrutina del ciclo en 1 toma tiempo polinomial pues M_1 y M_2 deciden en tiempo polinomial entonces M decide en tiempo polinomial, luego $L_1L_2 \in P$ que es lo que queríamos probar.

■ *Complemento:* Sea $L \in P$ y M una TM determinística tal que L = L(M) y M decide en tiempo polinomial.

Construimos la siguiente TM

$$M' =$$
" input $\omega \in \Sigma^*$

- 1. Simular M en ω .
- 2. Si M acepta ω rechazar. Si M rechaza ω aceptar."

Observamos que $\omega \in L(M')$ si ω es rechazada por M, es decir, $\omega \notin L(M)$ lo que equivale a $\omega \in L(M)^c$, de manera similar si $\omega \notin L(M')$ entonces ω es rechazada por M', luego $\omega \in L(M)$ que es equivalente a $\omega \notin L(M)^c$.

Por lo tanto

$$L(M') = L^c$$
.

Como en la construcción de M' sólo simulamos M que corre en tiempo polinomial entonces M' decide en tiempo polinomial, concluimos así que $L^c \in P$, que es lo que queríamos verificar.

Problema 10

Demuestra que si P = NP, entonces todo lenguaje $A \in P$, excepto $A = \emptyset$ y $A = \Sigma^*$, es NP-completo.

Solución: Vamos a demostrar que todo lenguaje $A \in P$, excepto $A = \emptyset$ y $A = \Sigma^*$, es tal que

- (i) $A \in NP$
- (ii) Para todo B ∈ NP se cumple $B ≤_P A$.

La condición (i) es clara pues $A \in P$ y por hipótesis P = NP.

Para demostrar la condición (ii) consideremos $x, y \in \Sigma^*$ tales que

$$x \in A$$
 y $y \notin A$,

esto lo podemos hacer pues $A \neq \emptyset$ y $A \neq \Sigma^*$.

Como P = NP entonces para todo $B \in NP$ existe M_B una máquina determinística de Turing tal que $L(M_B) = B$ y M_B lo hace en tiempo polinomial.

Construimos la siguiente TM

M = " input $\omega \in \Sigma^*$

- 1. Simular M_B con entrada ω
- 2. Si M_B acepta ω , escribir x en la cinta y aceptar.
- 3. Si M_B rechaza ω , escribit y en la cinta y rechazar."

Como M_B decide B en tiempo polinomial entonces M decide B también en tiempo polinomial y termina con x o y en la cinta, según si la cadena de entrada está o no en B.

Por lo tanto la función $f: \Sigma^* \to \Sigma^*$ definida como

$$f(\omega) = \begin{cases} x & \text{si } \omega \in B \\ y & \text{si } \omega \notin B \end{cases}$$

es una función calculable en tiempo polinomial (Ver Sipser, 2012, Definición 7.28), además notamos que para todo $\omega \in B$ se tiene que M acepta ω y $f(\omega) = x \in A$, por lo que

$$\omega \in B \implies f(\omega) = x \in A.$$

Por otro lado, si $\omega \notin B$ entonces M rechaza ω y escribe y en la cita, esto es $f(\omega) = y \notin A$, luego

$$\omega \notin B \Rightarrow f(\omega) = y \notin A$$
,

que al tomar contrapositiva es equivalente a

$$f(\omega) \in A \implies \omega \in B$$
.

Se sigue de lo anterior que para todo $\omega \in \Sigma^*$

$$\omega \in B \iff f(\omega) \in A$$
,

por lo que $B \leq_P A$.

Concluimos que todo $B \in NP$ es reducible en tiempo polinomial a A, por lo que todo lenguaje $A \in P$ es NP-completo si $A \neq \emptyset$ y $A \neq \Sigma^*$, que es precisamente lo que queríamos probar.

Referencias

Martin, J. (2010). *Introduction to Languages and the Theory of Computation* (4.ª ed.). McGraw-Hill Science/Engineering/Math.

Sipser, M. (2012). *Introduction to the Theory of Computation* (3.^a ed.). Thomson South-Western.