

# **Course Map**



# **Learning outcomes**

- Understand and able to use simple and multiple regression to estimate simple trends
- Able to interpret outputs of a regression model, including regression coefficients, confidence intervals, hypothesis testing about coefficients and goodness of fit statistics
- Understand and be able to use logistic regression to estimate categorical dependent variables

### **Predictive Analytics**



Stock price

#### Fitbit data could help predict real-time flu outbreaks



Researchers calculated the proportion of users falling above set thresholds for average heart rate and sleep duration and compared this data to weekly flu rates determined by the CDC to predict flu outbreaks in real time.

https://www.businessinsider.com/deidentified-fitbit-data-could-predict-fluoutbreaks-2020-1?IR=T



#### **Generic Statistical Model**



#### **Generic Linear Model**



#### **Simple Linear Regression Model**

Regression analyses: assumes values of Y are drawn from some unknown population from each value of X

Linear regression assumes X & Y have a linear relationship  $\rightarrow$  expected value of Y is  $\beta_0 + \beta_1$  X for each value of X.

# Simple Linear Regression Model





#### Fitted values

```
(population) "true" model: Y = \beta_0 + \beta_1 X + \varepsilon where \varepsilon \sim N(0, \sigma_{\varepsilon}) (sample) predicted model: \hat{Y} = b_0 + b_1 X + e_i
```

- Each line per sample after estimation
- $\hat{Y}$ : predicted value or fitted value of Y from the fitted line.
- b<sub>1</sub>: the slope estimator. It means that "by increasing one unit of variable X, Y increases (or decreases, depend on the sign of b<sub>1</sub>) by b<sub>1</sub> unit, on average".
- b<sub>0</sub>: the intercept estimator. It means that "when X is equal to 0, Y is equal to b<sub>0</sub>, on average".
- Residual/ Residual Error:  $e_i = Y_i \hat{Y}_i$  (sample version of  $\varepsilon$ )

### Regression as a Predictive Model

| Dependent Variable (Y) | Independent Variable (X) |  |  |
|------------------------|--------------------------|--|--|
| Graduate Income        | Degree program type      |  |  |
| Sales revenue          | Marketing Expenditure    |  |  |
| House value            | Floor area               |  |  |
| Purchase               | Time spent on website    |  |  |

- continuous: linear regression
- binary: logistic regression
- categorical: multinomial (not covered)

- continuous: e.g. marketing expenditure, floor area, time spent on website, price
- categorical: e.g. degree program type, gender, ethnicity

### How to run linear regression

Step 1: Write down the model about Y and X as a linear equation:  $Y = b_0 + b_1 X + \varepsilon$ 

- Be clear about
  - which is the dependent variable that you want to explain & predict
  - which is/are the independent variable(s).
- Typically, we use prior knowledge, i.e. theory, experience, conjecture, etc., to formulate the equation.

#### Examples

- Predict sale revenue given marketing expenditure: SaleRevenue ~ MktingExpenditure
- Predict whether to a customer would purchase the product based on time spent browsing the website and price: PurchaseDecision ~ Time Spent Browsing + Price
- Predict ozone levels given environmental characteristics:
   Ozone ~ Solar.Radiation + Wind + ...

#### Step 2: Structure the data (a.k.a data wrangling)

#### wide form

each row contains a unit of obs (eg 1 person, 1 daily measurement)

#### \$ spent on \$ spent on Person Income qather() \$122 Andy \$2,500 \$348 \$185 Bob \$3,000 \$521 Charlie \$2.875 \$379 \$99 spread()

#### long form

each row is a **key-value pair** each unit of observation appears across multiple rows

| Person | Category  | Amount  |
|--------|-----------|---------|
| Andy   | Income    | \$2,500 |
| Andy   | Food      | \$348   |
| Andy   | Transport | \$122   |
|        | ***       |         |
| Bob    | Income    | \$3,000 |
| Bob    | Food      | \$521   |
|        |           |         |

Shape of data depends on the analysis. For simple linear regression:

- cross-sectional data is in wide-form
- time-series data is in long-form

Step 3: Plot the data to get a first look of X-Y relationship and to identify potential issues like missing data or outliers



Step 3: use plot(x,y) function to plot the scatterplot using

airquality data

```
# plot scatterplot of Ozone vs Solar.R
plot(Y~X, xlab="Solar.R (X)", ylab="Ozone (Y)")
```



|    | Ozone <sup>‡</sup> | Solar.R <sup>‡</sup> | Wind <sup>‡</sup> |
|----|--------------------|----------------------|-------------------|
| 1  | 41.00000           | 190.0000             | 7.4               |
| 2  | 36.00000           | 118.0000             | 8.0               |
| 3  | 12.00000           | 149.0000             | 12.6              |
| 4  | 18.00000           | 313.0000             | 11.5              |
| 5  | 23.61538           | 181.2963             | 14.3              |
| 6  | 28.00000           | 181.2963             | 14.9              |
| 7  | 23.00000           | 299.0000             | 8.6               |
| 8  | 19.00000           | 99.0000              | 13.8              |
| 9  | 8.00000            | 19.0000              | 20.1              |
| 10 | 23.61538           | 194.0000             | 8.6               |
| 11 | 7.00000            | 181.2963             | 6.9               |
| 12 | 16.00000           | 256.0000             |                   |
| 13 | 11.00000           | 290.0000             | 9.2               |

Step 4: Fit/estimate the regression model

#### i: Call Im() to fit and estimate a linear model

```
# Running the regression model using OLS and assign the output to "model1"
model1<- lm(Y~X)

# Display regression output
summary(model1)</pre>
```

#### ii: Plot fitted line over previously plotted scatter plot

```
# add fitted line to the scatter plot
abline(model1, col="red", lwd=3)
```

#### iii: View and interpret outputs

X~Y scatterplot with fitted line

#### Fitted line of Ozone vs Solar.R



### **Best fitted line – Ordinary Least Squares (OLS)**

(population) "true" model:  $Y=\beta_0+\beta_1X+\varepsilon$  where  $\varepsilon\sim N(0,\sigma_\varepsilon)$ 

(sample) predicted model:  $\hat{Y} = b_0 + b_1 X + e_i$ 

- Residual/ Residual Error:  $e_i = Y_i \hat{Y}_i$
- One line fitted for one sample
- Find  $b_0 \& b_1$  that minimizes  $\sum_{i=1}^n e_i^2$  (or sum of squares of residuals)



summary(model1) displays the regression estimation output

```
Call:
lm(formula = Y \sim X)
Residuals:
   Min 1Q Median 3Q Max
-43.095 -20.021 -7.571 15.065 121.981
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 22.57801 5.37121 4.204 4.48e-05 ***
        0.09849 0.02617 3.763 0.00024 ***
Signif. codes: 0 (***, 0.001 (**, 0.01 (*, 0.05 (., 0.1 (), 1
Residual standard error: 28.39 on 151 degrees of freedom
Multiple R-squared: 0.08573, Adjusted R-squared: 0.07968
F-statistic: 14.16 on 1 and 151 DF, p-value: 0.0002398
```

#### **Best fitted line – Ordinary Least Squares (OLS)**

OLS solution states that:

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$$

$$\hat{\beta}_1 = \frac{\sum_i^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_i^n (X_i - \bar{X})^2} = \frac{Cov(X, Y)}{Var(X)}$$

# Checking the OLS solution

Let's check with our airquality example

```
> b1<-cov(X,Y)/var(X)
> b1
[1] 0.09848987
> b0<-mean(Y) -b1 * mean(X)
> b0
[1] 22.57801
```

Compare with the output b<sub>1</sub>

# Interpreting a Regression Model

How do we interpret the coefficients?

```
Coefficients:

b_0 \longrightarrow b_1 \longrightarrow \begin{array}{c} \text{Estimate Std. Error t value Pr(>|t|)} \\ \text{(Intercept) 22.57801} \\ \text{5.37121} \\ \text{0.09849} \\ \text{0.02617} \end{array} \begin{array}{c} \text{3.763} \\ \text{0.00024} \end{array} \begin{array}{c} \text{***} \\ \text{***} \\ \text{---} \end{array}
```

 $b_0$ : The mean value of Y when X =0

 $b_{
m 1}$  : According to model, a one-unit change in X results in a  $\,b_{
m 1}$ –unit change in Y

Our example:

Ozone = 22.57801 + 0.09849\*Solar.R

 $b_0$ : Ozone levels are 22.57801 parts per billion if there is no solar radiation  $b_1$ : With every unit increase in solar radiation, ozone levels increase by 0.09849

# Interpreting a Regression Model

How do we interpret the coefficients?



#### Goodness of Fit: "How good is our model?"

Goodness-of-fit statistics allows us to evaluate how well our model does

In linear regression model,  $y_i = \hat{y}_i + e_i = b_0 + b_1 x_i + e_i$ .

| Total Sum of Squares              | SST | $\sum_i (y_i - \bar{y})^2$             |
|-----------------------------------|-----|----------------------------------------|
| Sum of Squares explained by Model | SSM | $\sum_{i} (\hat{y}_{i} - \bar{y})^{2}$ |
| Sum of Squared Residuals          | SSR | $\sum_{i}(y_i-\hat{y}_i)^2$            |

 Total observed variation of Y can be decomposed into 2 parts: variation explained by our model (SSM) and variation left-over (SSR)

$$SST = SSM + SSR$$

• R-square R<sup>2</sup> is called the "goodness-of-fit" (or coefficient of determination) of the linear regression. It is exactly the proportion of total variation explained by the linear model. R<sup>2</sup> is unit-less and lies between 0 and 1. 1 indicates perfect fit (larger the R the better the fit)

$$R^2 = \frac{\text{SSM}}{\text{SST}}$$

> r.sq<-11414/(11414+121719) > r.sq [1] 0.08573382

#### Goodness of Fit: "How good is our model?"

Let's examine the "goodness of fit" statistics for our airquality data

```
Residual standard error: 28.39 on 151 degrees of freedom Multiple R-squared: 0.08573, Adjusted R-squared: 0.07968 F-statistic: 14.16 on 1 and 151 DF, p-value: 0.0002398
```

- Variance explained by our model is 0.08573 ( $R^2 = 0.08573$ )
- Adjusted R<sup>2</sup> is 0.07968 (As adding more variables will always increase R<sup>2</sup>, adjusted R<sup>2</sup> provides a penalty for number of variables in the model)
- Residual standard error (or the residuals mean square error) indicates the "overall" deviations of data point from the fitted line, and estimate of  $\sigma_{\varepsilon}$  in the assumption about error term  $\varepsilon$ . (is in units of Y)

$$R^2 = \frac{\mathsf{SSM}}{\mathsf{SST}}$$

```
> r.sq<-11414/(11414+121719)
> r.sq
[1] 0.08573382
```

#### Goodness of Fit: "How good is our model?"

· Let's examine the "goodness of fit" statistics for our airquality data

```
Residual standard error: 28.39 on 151 degrees of freedom
Multiple R-squared: 0.08573, Adjusted R-squared: 0.07968
F-statistic: 14.16 on 1 and 151 DF, p-value: 0.0002398
```

F-test examines whether our linear model has any predictive power.

 $H_0$ : All slope  $\beta$ 's are zero (except for intercept  $\beta_0$ ), i.e.  $\beta_1 = \beta_2 = \cdots = \beta_k = 0$ 

 $H_A$ : Not all slope  $\beta$ 's are zero, i.e. at least one of  $\beta_1$ ,  $\beta_2$ ,  $\cdots$ ,  $\beta_k$  is nonzero.

The "F-statistic" is from the ANOVA testing the null hypothesis that the model has no predictive power (i.e., "the model is useless"), against the alternative hypothesis that the model has predictive power (i.e., "the model is useful")

In our example, the F-statistic is large, and p-value is very small (< .05), so we can reject the null hypothesis that the model has no predictive power (i.e., we can conclude that the model is useful)

# **Checking Assumptions**

| Assumption                                          | Way to Check                                    |
|-----------------------------------------------------|-------------------------------------------------|
| Linearity (X&Y)                                     | Scatterplot of XY should be linear              |
| No outliers                                         | Check for outliers in scatterplots              |
| Normally-<br>distributed errors<br>Homoscedasticity | Residuals should be random                      |
| Errors are independent and not correlated           | e.g. autocorrelation *discussed in next lecture |
| Multicollinearity                                   | *discussed in next<br>lecture                   |



# **Plotting the residuals**

- > #plotting the residuals
- > #recall earlier model1<-lm(X~Y)</pre>
- > airquality\$residuals<-residuals(model1)</pre>
- > airquality\$predicted<-predict(model1)</pre>

|   | Ozone <sup>‡</sup> | Solar.R <sup>‡</sup> | Wind <sup>‡</sup> | Temp <sup>‡</sup> | Month <sup>‡</sup> | Day <sup>‡</sup> | residuals <sup>‡</sup> | predicted |
|---|--------------------|----------------------|-------------------|-------------------|--------------------|------------------|------------------------|-----------|
| 1 | 41.00000           | 190.0000             | 7.4               | 67                | 5                  | 1                | -0.2910830             | 41.29108  |
| 2 | 36.00000           | 118.0000             | 8.0               | 72                | 5                  | 2                | 1.8001875              | 34.19981  |
| 3 | 12.00000           | 149.0000             | 12.6              | 74                | 5                  | 3                | -25.2529984            | 37.25300  |
| 4 | 18.00000           | 313.0000             | 11.5              | 62                | 5                  | 4                | -35.4053367            | 53.40534  |
| 5 | 23.61538           | 181.2963             | 14.3              | 56                | 5                  | 5                | -16.8184718            | 40.43386  |
| 6 | 28.00000           | 181.2963             | 14.9              | 66                | 5                  | 6                | -12.4338564            | 40.43386  |
| 7 | 23.00000           | 299.0000             | 8.6               | 65                | 5                  | 7                | -29.0264785            | 52.02648  |

> plot(X,airquality\$residuals,xlab="Solar.R",
ylab="residuals")
> abline(h=0)

Fitted line of Ozone vs Solar.R



### **Multiple Regression**

- Multiple regression involves two or more independent variables
- For k variables in the multiple regression model (population)

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k + \epsilon$$

Fitted line using OLS:

$$\widehat{Y}_{i} = b_{0} + b_{1}X_{1} + b_{2}X_{2} + \dots + b_{k}X_{k} + e_{i}$$

Our example Im(Y~X1+X2)

Ozone = 66.27943 + 0.08963 \* Solar.R - 4.22375 \* Wind

measured in parts per billion

measured in Langley

miles per hour

 $b_0$ : Ozone levels are 66.27943 parts per billion if there is no solar radiation and no wind.  $b_1$ : Holding wind constant, every 1 Langley increase in solar radiation, ozone levels increases by 0.08963 parts per billion

 $b_2$ : Holding solar radiation constant, every unit increase in wind speed, ozone levels decreases by 4.22375 parts per billion

#### **Standardized Coefficients**

- Interpreting the coefficients requires keeping track of the units of the variables
- Standardized coefficients can be interpreted without the unit of the variables
- Standardized coefficients can be obtained by first standardizing each variable by subtracting its mean and dividing by its standard deviation, then running a regression:

$$\left[\frac{Y-\bar{Y}}{\sigma_Y}\right] = \beta_0 + \beta_1 \left[\frac{X_1 - \bar{X}_1}{\sigma_{X_1}}\right] + \beta_2 \left[\frac{X_2 - \bar{X}_2}{\sigma_{X_2}}\right] + \dots$$

 standardized coefficients are in "standardized units" in terms of standard deviations

<sup>\*</sup> We can choose to standardise only the IVs, or only some of the IVs. Usual convention is that all the IVs and sometimes the DV are standardised

<sup>\*\*</sup> Note that although we are using standardised coefficients, it is the variables that get standardised, not the coefficients

#### **Standardized Coefficients**

$$\left[\frac{Y-\bar{Y}}{\sigma_Y}\right] = \beta_0 + \beta_1 \left[\frac{X_1 - \bar{X}_1}{\sigma_{X_1}}\right] + \beta_2 \left[\frac{X_2 - \bar{X}_2}{\sigma_{X_2}}\right] + \dots$$

#### Interpretation:

- When Xi increases by one standard deviation, there is a change in Y of  $\beta_1$  standard deviations
- Airquality eg: if  $\beta_1$  = 0.005, this is holding wind levels constant, every standard deviation increase in solar radiation, there is an average increase in ozone levels by 0.005 standard deviation.
- By convention, b is used to refer to unstandardized coefficients and  $\beta$  is used to refer to standardized coefficients

- So far we have been dealing with continuous independent variables (X), eg. wind levels, amount of radiation
- Now, let's consider categorical independent variables (e.g. Gender, ethnicity, Marital Status, etc.)
- Categorical variables usually take on a small set of fixed values

#### Example:

UmbrellaSales =  $b_0 + b_1$  \* Weather

Let's assume Weather is "Sunny" or Rainy"

Then we can create a new variable: "Rainy" that is 1 if "Weather==Rainy", and 0 if "Weather==Sunny"

"Rainy" is called a dummy variable

#### UmbrellaSales = $b_0 + b_1 * Rainy$

This breaks down into two equations:

```
If "Sunny", UmbrellaSales = b_0 + b_1 * (0) = b_0
If "Rainy", UmbrellaSales = b_0 + b_1 * (1) = b_0 + b_1
```

#### Interpretation:

- b<sub>0</sub>: Average umbrella sales when it is Sunny
- b₀+b₁: Average umbrella sales when it is Rainy
- b<sub>1</sub>: Average difference in umbrella sales when it is Rainy, compared to when it is Sunny (Sales when Rainy – Sales when Sunny) [because Sunny was coded as '0' or the reference group]

- What if Weather has three values: Sunny, Rainy and Cloudy
- Then we can create two dummy variables, Rainy and Cloudy

```
"Rainy" = 1 if "Weather==Rainy", 0 otherwise
"Cloudy" = 1 if "Weather==Cloudy", 0 otherwise
So "Sunny" is now the reference group for the categorical variable, Weather
```

#### UmbrellaSales = $b_0 + b_1 * Rainy + b_2 * Cloudy$

```
If "Sunny", UmbrellaSales = b_0 + b_1(0) + b_2(0) = b_0

If "Rainy", UmbrellaSales = b_0 + b_1(1) + b_2(0) = b_0 + b_1

If "Cloudy", UmbrellaSales = b_0 + b_1(0) + b_2(1) = b_0 + b_2
```

More generally, a categorical variable with n levels will have (n-1) dummy variables b<sub>0</sub>: Average value of Y for the reference group

b<sub>i</sub>: Average difference in Y for dummy group i compared to the reference group

Choosing the reference group

Ask which reference group would make your analyses more convenient and interpretable?

For example:

Weather has 3 possible values "Sunny", "Rainy", and "Cloudy", which do you think is a good reference good? and why?

• In R

Reference group is chosen by alphabetical order. nlevels() can be used to check which level is the first level (assigned as reference). To change levels, you use relevel()

#### **Logistic Regression – Binary Dependent Variable**

- So far, we have focused on the independent variables. What do we do if our dependent variable is a categorical or binary dummy variable?
- For example:

| Customer | Previous<br>Spending | Marital<br>Status | #Ads<br>displayed | Purchased |
|----------|----------------------|-------------------|-------------------|-----------|
| Ashlee   | \$476                | Married           | 10                | Yes       |
| Mega     | \$238                | Single            | 5                 | No        |
| Joshua   | \$65                 | Single            | 3                 | No        |

 How can we build a regression model to predict a customer's online purchase decision based on the data collected?

purchased 
$$\sim$$
 spending  $+$  marital  $+$  ads  $+\cdots$ 

 Observe that the DV, purchased ∈ {0,1} while the right hand side has both continuous and categorical variables (ranges typically in real values).

#### **Logistic Regression – Binary Dependent Variable**

- A general linear model (GLM) is a more generalized linear model where a link function is used to map the dependent variable to a linear combination of independent variables.
- In particular, a logistic regression or logit regression with a logit link function maps the probability of a successful event, e.g.
   p≡Pr(purchased=1), into a linear combination of predictors X's.

$$\operatorname{logit}(p) = \log \frac{p}{1-p} = \beta_0 + \beta_1 X_1 + \dots + \beta_k X_k$$

 instead of predicting continuous variable Y directly, we predict the log-odds of an event occurring

og 
$$\frac{p}{1-p}$$
 (sometimes called the "odds" (of successful event) or "odds ratio")

# **Logistic Regression**

Let's try to run a logistic regression using the titanic.csv datafile

```
> read the data file
> titanic = read.csv("titanic.csv", header = TRUE)
> # use 'glm()' with specified parameter 'family = binomial' for logistic regression.
> fit_surv = glm(survived ~ sex + age + sibsp + parch + fare + embarked, family = binomial, data = titanic)
> # display the output of logistic regression
> summary(fit_surv)
```

We use glm(..., family ="binomial") as our outcome is binary variable.

# **Logistic Regression**

Let's try to run a logistic regression using the titanic.csv datafile

```
> read the data file
> titanic = read.csv('titanic.csv', header = TRUE)
> # use 'glm()' with specified parameter 'family = binomial' for logistic regression.
> fit_surv = glm(survived ~ sex + age + sibsp + parch + fare + embarked, family = binomial, data = titanic)
> # display the output of logistic regression
> summary(fit_surv)
```

We use glm(..., family ="binomial") as our outcome is binary variable.

Most of the summary output will be similar to an Im()

We will focus on the coefficient table

# Logistic regression: output

```
Call:
glm(formula = survived ~ sex + age + sibsp + parch + fare + embarked,
   family = binomial, data = titanic)
Deviance Residuals:
            1Q Median 3Q
   Min
                                    Max
-2.4061 -0.6454 -0.5270 0.7382 2.3798
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.991142 0.335272 5.939 2.87e-09 ***
sexmale -2.635345 0.190231 -13.853 < 2e-16 ***
age -0.020467 0.007201 -2.842 0.004482 **
sibsp -0.394275 0.103822 -3.798 0.000146 ***
parch -0.222958 0.114051 -1.955 0.050595 .
fare 0.014730 0.002849 5.170 2.34e-07 ***
embarkedQ -0.679104 0.362057 -1.876 0.060699 .
embarkedS -0.504620 0.226659 -2.226 0.025992 *
Signif. codes: 0 (***, 0.001 (**, 0.05 (., 0.1 ( , 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 1182.82 on 888 degrees of freedom
Residual deviance: 844.15 on 881 degrees of freedom
  (2 observations deleted due to missingness)
AIC: 860.15
Number of Fisher Scoring iterations: 5
```

# **Logistic Regression**

$$logit(p) \equiv log \frac{p}{1-p} = b_0 + b_1 sex + b_2 age + \cdots$$
 where  $p = Pr(survived=1)$ .

z test is used instead of t test

#### Interpretation

- $b_0$ : Log-odds when all X's are zero. Baseline odds of survival is exp(1:991) = 7:32.
- b<sub>1</sub>: Being a male decreases the log-odds of survival by |b1|, holding all other constant. Or, being a male multiplies the odds by exp(-2.635) = 0.072, i.e. the odds of survival decreases by 92.8%!
- $b_2$ : Being each year older decreases the log-odds of survival by |b2|, holding all other constant. Or, it multiplies the odds by exp(-0.0205) = 0.9797, i.e. the odds of survival decreases by 2.03%.
- In general,  $b_k$  is the marginal effect of  $X_k$  on log-odds of event Y = 1 (e.g. survival). Or,  $exp(b_k) 1$  is the marginal change of  $X_k$  on odds of survival, not probability of survival!

# **Summary**

- Regression analysis is the most commonly used tool in business analytics to predict or classify (e.g. logistic regression) the outcome of dependent variable using a new data point in terms of independent variables.
- You should be able to write out the linear regression model, plot the data, interpret the results (e.g. meaning of coefficients for continuous or categorical predictor, hypothesis testing, ANOVA and goodness of fit, etc.), and verify the assumptions.
- Do note: a significant coefficient before X does NOT necessarily mean X causes Y. Regression alone only implies correlation.