Copyright © 2024 Songbingzhi628 Email: 13012057210@163.com

This work is licensed under the terms of the CC BY-NC-SA 4.0 International License (https://creativecommons.org/licenses/by-nc-sa/4.0). This license requires that reusers give credit to the creator. It allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, for noncommercial purposes only. If others modify or adapt the material, they must license the modified material under identical terms. *All images except for `by-nc-sa.png' in this manual are licensed under CCO*.

简介

这是我个人用于复习的「Linear Algebra Done Right 3E/4E, by Sheldon Axler」笔记,一本习题选答与课文补注。范围覆盖所有第三版和第四版的课文和习题(除了第一章 A 节、极少数结合上下文太过显而易见的习题、没有任何日后反复推敲价值的当堂/′一遍过′习题和方法套路过于雷同的习题)。这份笔记尚处于缓慢的编撰进度中。

习题答案中,有我完全独立思考得出的,有抄 https://linearalgebras.com/的,有抄 https://math.stackexchange.com/的,有抄 LADR2eSolutions (By Axler).pdf , 有抄最新的 LADR4eSolutions 经典最全 (By Axler?).pdf , 还有请教别人,乃至请教 AI 得出来的。这些文档的许可证件,除 LADR4eSolutions 经典最全 (By Axler?).pdf 找不到/没有指明外,都允许复制/引用。

课文补注中,除了我独立思考总结出的易错误区和技巧、难点之外,还(因为我想要兼容那些使用 LADR 第三版纸质书的读者,包括我在内)把 LADR4e 中对课文定理等等的修改也(作了简化和提炼)摘录上去。部分课文内容因为比较简单,比如 3.E 节的积空间,所以我做了概念前置,这相当于更改了原书的内容顺序。

题目标为正常数字 N 的,为第三版某章某节第 N 题(有个别题是第四版又删去的,这里,或直接摘录,或合并简化,仍然作保留;还有个别题是第四版增添条件、设问的,也一并写在第 N 题下)。题目标为 '•'的,为第四版。因为要面向以第三版为主要教材的学习者,所以为了避免混淆,故而将题号(部分题目的实心黑点后有标注具体第四版的数字标号)、甚至章节略去(一些变动过大的章节除外)。题目顺序会有调换,在每章大标题处会交代清楚。除了原书第四版新加入的章节外,均使用原书第三版的索引。这也许对第四版的使用者很不友好,我在此欢迎有心人士将我的作品修改后在同样的 CC BY NC SA 条款下作为衍生作品发布。

D.1.1.1.

Songbingzhi628

Bilibili: H-U_O

Gitee/GitHub:

作者序

我目前还没有能力和资格评论原书好坏以及线性代数课程教材选用的问题。但作为原书的学习者,我可以说:

相较于(其他课程的)其他教材,以 LADR 作为**自学读本**的**精学**计划,往往在执行中出现一次又一次的时间误判/超时,比如我最开始计划 40×8h 完成 LADR 的精学,差不多是一天(8h)完成一节,还有额外的复习时间。但在实际学习中,(刨去笔记的功夫)完成到一半时,发现已经耗费了约 35×8h,于是我不得不重新估计 LADR 精学所需的总时间为 70×8h。这一点对于有学时/学期限制/应试要求的线性代数初学者来说很不安全。更主观地讲,这是因为 LADR 更像是一本参考手册,而不是一本细致人微的自学读本;如果把 LADR 作为初学线性代数第一教材和自学读本来学习,会面临不小的困难。

以上或许能劝退相当一部分打算入门的线性代数初学者。S.Axler 说这本书作为第二遍学习线性代数的教材更合适。我认为理由就是,在校的科班生第二遍学习线性代数时,也已经学习过了离散数学、抽象代数、数论、数学分析等课程,这些学习经验统统会化作一个叫"mathematical maturity"的东西,让他们面对 LADR 的课文和习题不再少见多怪、茫然无措。据此,我进一步认为,对于完全的初学者,想要完成 LADR 的精学,要么有很好的天赋,要么有与之相匹配的"mathematical maturity",再要么,拿出足够的耐心和毅力。幸运的是,在坚持学习 LADR 的过程中,这三样会一同增益。就我个人来说:课文一次看不懂,就多看几遍,一天看不懂,就分三天看;习题一个小时做不出来,就隔六个小时再尝试,一天做不出来,就隔天再尝试。这确实让我收获了独特的学习体验和能力,我迄今也无法在别处得到,因此我很珍视 LADR,我愿意为此编撰一份电子辅助书并免费公开于网络中。这本身并不花费什么,因为实际的时间开销包括了很多不相干的额外项目:初学 LATEX、调整代码架构、了解许可证选用,诸如此类的各种波折,也不乏戏剧性——时间花销主要在:早期的学习态度还不够主动,导致太多'一遍过'的习题被摘录到这里;没有独立编撰大型文档的经验和模板,可能会强迫症似地纠结散乱的格式和对齐。

ABBREVIATION TABLE

AΒ

abs	absolute
add	addi(tion)(tive)
adj	adjoint
algo	algorithm
arb	arbitrary
assoc	associa(tive)(tivity)
asum	assum(e)(ption)
becs	because
bss	basis
bses	bases
B_V	basis of V

E

-		
-ec	-ec(t)(tor)(tion)(tive)	
eig-	eigen-	
elem	element(s)	
ent	entr(y)(ies)	
equa	equality	
equiv	equivalen(t)(ce)	
exa	example	
exe	exercise	
exis	exist(s)(ing)	
existns	existence	
expo	exponent	
expr	expression	

${f L}$	
liney	linear(ly)
linity	linearity
len	length
low-	lower-

R

recurly	recursively
repeti	repetition(s)
repres	represent(s)(ation(s))
req	require(s)(d)/requiring
respectly	respectively
restr	restrict(ion)(ive)(ing)
rev	revers(e(s))(ed)(ing)
rotat	rotation

\mathbf{C}

ch	characteristic	
closd	closed under	
coeff	coefficient	
col	column	
combina	combination	
commu	commut(es)(ing)(ativity)	
cond	condition	
conjug	conjugat(e)(ing)(ion)	
corres	correspond(s)(ing)	
conveni	convenience	
convly	conversely	
count-	counter-	
ctradic	contradict(s)(ion)	
ctrapos	constrapositive	

FGH

factoriz	factorizaion
fini	finite
finide	finite-
	dimensional
g-eig-	generalized eig-
G disk	Gershgorin disk
homo	homogeneity
hypo	hypothesis

MN

max	maxi(mal(ity))(mum)	
min	mini(mal(ity))(mum)	
multi	multipl(e)(icati-on/ve)	
multy	multiplicity	
nilp	nilpotent	
non0	nonzero	
nonC	nonconst	
notat	notation(al)	

	D
seq	sequence
simlr	similar(ly)
singval	singular
	value
solus	solution
sp	space
stmt	statement
std	standard
supp	suppose
surj	surjectiv(e)(ity)
suth	such that
symm	symmetry

D

def	definition
deg	degree
dep	dependen(t)(ce)
deri	derivative(s)
diag	diagonal(iza-ble/ility/tion)
diff	differentia(l)(ting)(tion)
diffce	difference
dim	dimension(al)
disti	distinct
distr	distributive propert(ies)(ty)
div	div(ide)(ision)

Ι

id	identity
immed	immediately
induc	induct(ion)(ive)
infily	infinitely
inje	injectiv(e)(ity)
inv	inver(se)(tib-le/ility)
invar	invariant
invard	invariant under
invarsp	invariant subspace
invarspd	invariant subspace under
iso	isomorph(ism)(ic)
isomet	isometry

O P Q

optor	operator
othws	otherwise
orthog	orthogonal
orthon	orthonormal
poly	polynomial
posi	positive
prod	product
quad	quadratic
quotient	quot

$T\ U\ V\ W\ X\ Y\ Z$

1 0	, ,, ,, ,
trig	triangular
trslate	translate
trspose	transpose
uniq	unique
uniqnes	uniqueness
unit	unitary
up-	upper-
val	value
-wd	-ward
-ws	-wise
wrto	with respect to

1.B

• Note For Fields:	Many choices.	[Req Multi Inv	Uniq]
Exa: $\mathbf{Z}_{m} = \{K_{0}, K_{1}\}$	$\{\ldots,K_{m-1}\}$ is a	field \iff $m \in$	N^+ is a prime.

- (4E 1.B.7) Supp $V \neq \emptyset$ and W is a vecsp. Let $W^V = \{f : V \rightarrow W\}$.
 - (a) Define a natural add and scalar multi on W^V . (b) Prove W^V is a vecsp with these defs.

Solus:

- (a) $W^V \ni f + g : x \to f(x) + g(x)$; where f(x) + g(x) is the vec add on W. $W^V \ni \lambda f : x \to \lambda f(x)$; where $\lambda f(x)$ is the scalar multi on W.
- (b) Commu, Assoc, Distr are omitted.

Add Inv:
$$(f+g)(x) = f(x) + g(x) = f(x) + (-f(x)) = 0 = 0(x)$$
.

Multi Id: (1f)(x) = 1f(x) = f(x).

We must have used the same properties in W. [If W^V is a vecsp, then W must be a vecsp.]

- **1. C** 注意: 这里我将 3.E 积空间的定义前置; 仅涉及概念。
- Note For Exe (5): $C = R \oplus \{ci : c \in R\} = \{a + bi : a, b \in R\}$ if we let F = R and $i^2 = -1$.
- Note For Exe (6): Supp V is a vecsp over \mathbb{R} . Then V is not a vecsp over \mathbb{C} .
- Supp U, W, V_1, V_2, V_3 are subsps of V.

15
$$U + U \ni u + w \in U$$
. **16** $U + W \ni u + w = w + u \in W + U$.

17
$$(V_1 + V_2) + V_3 \ni (v_1 + v_2) + v_3 = v_1 + (v_2 + v_3) \in V_1 + (V_2 + V_3).$$

•
$$(U+W)_{\mathcal{C}} \ni (u_1+w_1) + \mathrm{i}(u_2+w_2) = (u_1+\mathrm{i}u_2) + (w_1+\mathrm{i}w_2) \in U_{\mathcal{C}} + W_{\mathcal{C}}.$$

- $(U \cap W)_{\mathcal{C}} \ni u_1 + iu_2 = w_1 + iw_2 \in U_{\mathcal{C}} \cap W_{\mathcal{C}}.$
- $U_C = W_C \iff U = W$. Supp $U_C \ni u + iv \in W_C$. Then $U \ni u, v \in W$.
- $V_{1C} \times \cdots \times V_{mC} = (V_1 \times \cdots \times V_m)_C$.

18 Does the add on the subsps of V have an add id? Which subsps have add invs? **Solus**: Supp Ω is the uniq add id.

- (a) For any subsp U of V, $\Omega \subseteq U + \Omega = U \Rightarrow \Omega \subseteq U$. Let $U = \{0\}$, then $\Omega = \{0\}$.
- (b) Supp $U + W = \Omega$. Becs $U + W \supseteq U, W \Rightarrow \Omega \supseteq U, W \Rightarrow U = W = \Omega = \{0\}$.
- Note For [1.45]: Another proof: Supp $\forall v \in V, \exists ! (u, w) \in U \times W, v = u + w$. Asum non0 $v \in U \cap W$. Then the (u, w) can be (v, 0) or (0, v), ctradic the uniques.
- Note For " $C_V U \cup \{0\}$ ": " $C_V U \cup \{0\}$ " is supposed to be a subsp W suth $V = U \oplus W$.

But if we let $u \in U \setminus \{0\}$ and $w \in W \setminus \{0\}$, then $\begin{cases} w \in C_V U \cup \{0\} \\ u \pm w \in C_V U \cup \{0\} \end{cases} \Rightarrow u \in C_V U \cup \{0\}$. Ctradic.

To fix this, denote the set $\{W_1, W_2, \dots\}$ by $S_V U$, where each $W_i \oplus U = V$.

• Supp V_1, V_2, U_1, U_2 are vecsps, $V_1 \oplus U_1 = V_2 \oplus U_2, V_1 \subseteq V_2, U_2 \subseteq U_1$. Give a countexa: $V_1 = V_2, U_1 = U_2$. Let $U_2 = \{0\} \Rightarrow V_2 = V_1 \oplus U_1$.


```
Supp W is suth V_2 = V_1 \oplus W. Now V_2 \oplus U = (V_1 \oplus W) \oplus U = (V_1 \oplus U) \oplus W = V_1 \oplus U.
          If W \neq \{0\}, then V_1 \oplus U \subsetneq (V_1 \oplus U) \oplus W, ctradic. Hence W = \{0\}, V_1 = V_2.
                                                                                                                                 • Tips 2: Supp V = X \oplus Y, and Z is a subsp of V. Show X \subseteq Z \Rightarrow Z = X \oplus (Y \cap Z).
Solus: \forall z \in Z, \exists ! (x,y) \in X \times Y, z = x + y.
          Becs x \in Z \Rightarrow z - x = y \in Z \Rightarrow z \in X + (Y \cap Z). X \cap (Y \cap Z) \subseteq X \cap Y.
                                                                                                                                 • Tips 3: Let V = U + W, I = U \cap W, U = I \oplus X, W = I \oplus Y. Prove V = I \oplus (X \oplus Y).
Solus: We show X \cap Y = U \cap Y = W \cap X = \{0\} by ctradic.
          X \cap Y = \Delta \neq \{0\} \Rightarrow I = U \cap W \supseteq \Delta \Rightarrow I \cap X \neq \{0\}, I \cap Y \neq \{0\}.
          U \cap Y = \Delta \neq \{0\} \Rightarrow I = U \cap W \supseteq \Delta \Rightarrow I \cap Y \neq \{0\}. Simler for W \cap X.
          Thus I + (X + Y) = (I \oplus X) \oplus Y = I \oplus (X \oplus Y).
          Now we show V = I + (X + Y). \forall v \in V, v = u + w, \exists (u, w) \in U \times W
          \Rightarrow \exists (i_u, x_u) \in I \times X, (i_w, y_w) \in I \times Y, v = (i_u + i_w) + x_u + y_w \in I + (X + Y).
                                                                                                                                 12 Supp U, W are subsps of V. Prove U \cup W is a subsp of V \iff U \subseteq W or W \subseteq U.
Solus: (a) Supp U \subseteq W. Then U \cup W = W is a subsp of V.
           (b) Supp U \cup W is a subsp of V. Asum U \subseteq W, U \supseteq W ( U \cup W \neq U and W ).
               Then \forall a \in U \land a \notin W, \forall b \in W \land b \notin U, we have a + b \in U \cup W.
                a + b \in U \Rightarrow b = (a + b) + (-a) \in U, ctradic \Rightarrow W \subseteq U.
                                                                                             Ctradic asum.
                a + b \in W \Rightarrow a = (a + b) + (-b) \in W, ctradic \Rightarrow U \subseteq W.
                                                                                                                                 13 Supp U_1, U_2, U_3 are subsps of V, and the union U_1 \cup U_2 \cup U_3 = \mathcal{U} is a subsp of V.
    Prove one of the subsps contains the other two.
    This exe is not true if we replace F with a field containing only two elems.
Solus: Exa: Let F = \mathbb{Z}_2. U_1 = \{u, 0\}, U_2 = \{v, 0\}, U_3 = \{v + u, 0\}. While \mathcal{U} = \{0, u, v, v + u\} is a subsp.
   Notice that, U \cup W = V is vecsp \neq U, W are subsps of V.
   This trick is invalid: (A \cup B) \cup (B \cup C) = (A \cup C) \cup (B \cup C) = (A \cup B) \cup (A \cup C).
   (I) If any U_i is contained in the union of the other two, say U_1 \subseteq U_2 \cup U_3, then \mathcal{U} = U_2 \cup U_3.
       By applying Exe (12) we conclude that one U_i contains the other two. Thus done.
   (II) Asum no one is contained in the union of other two, and no one contains the other two.
        Say U_1 \not\subseteq U_2 \cup U_3 and U_1 \not\supseteq U_2 \cup U_3.
  \exists u \in U_1 \land u \notin U_2 \cup U_3; \ v \in U_2 \cup U_3 \land v \notin U_1. \text{ Let } W = \{v + \lambda u : \lambda \in \mathbf{F}\} \subseteq \mathcal{U}.
  Note that W \cap U_1 = \emptyset, for if any v + \lambda u \in W \cap U_1 then v + \lambda u - \lambda u = v \in U_1.
  Now W \subseteq U_1 \cup U_2 \cup U_3 \Rightarrow W \subseteq U_2 \cup U_3. \forall v + \lambda u \in W, v + \lambda u \in U_i, i = 2, 3.
  If U_2 \subseteq U_3 or U_2 \supseteq U_3, then \mathcal{U} = U_1 \cup U_i, i = 2, 3. By Exe (12) done.
  Othws, both U_2, U_3 \neq \{0\}. Becs W \subseteq U_2 \cup U_3 has at least three disti elems.
  There must be some U_i that contains at least two disti elems of W.
```

 $\exists \lambda_1 \neq \lambda_2, v + \lambda_1 u \text{ and } v + \lambda_2 u \text{ both in } U_2 \text{ or } U_3 \Rightarrow u \in U_2 \cap U_3, \text{ ctradic.}$

• Tips 1: Supp $V_1 \subseteq V_2$ and $V_1 \oplus U = V_2 \oplus U$. Prove $V_1 = V_2$.

Solus: Becs the subset V_1 of vecsp V_2 is closed add and scalar multi, V_1 is a subspace of V_2 .

```
1 Prove [P] (v_1, v_2, v_3, v_4) spans V \iff (v_1 - v_2, v_2 - v_3, v_3 - v_4, v_4) also spans V [Q].
Solus: Note that V = \operatorname{span}(v_1, \dots, v_n) \iff \forall v \in V, \exists a_1, \dots, a_n \in F, v = a_1v_1 + \dots + a_nv_n.
   Asum \forall v \in V, \exists a_1, \dots, a_4, b_1, \dots, b_4 \in F, (that is, if \exists a_i, then we are to find b_i, vice versa)
   v = a_1 v_1 + a_2 v_2 + a_3 v_3 + a_4 v_4 = b_1 (v_1 - v_2) + b_2 (v_2 - v_3) + b_3 (v_3 - v_4) + b_4 v_4
     = b_1v_1 + (b_2 - b_1)v_2 + (b_3 - b_2)v_3 + (b_4 - b_3)v_4
     = a_1(v_1 - v_2) + (a_1 + a_2)(v_2 - v_3) + (a_1 + a_2 + a_3)(v_3 - v_4) + (a_1 + \dots + a_4)v_4.
                                                                                                                                       • (4E 3, 14) Supp (v_1, \dots, v_m) is a list in V. For each k, let w_k = v_1 + \dots + v_k.
  (a) Show span(v_1, \ldots, v_m) = \text{span}(w_1, \ldots, w_m).
  (b) Show [P](v_1, ..., v_m) is liney indep \iff (w_1, ..., w_m) is liney indep [Q].
Solus:
   (a) Asum a_1v_1 + \dots + a_mv_m = b_1w_1 + \dots + b_mw_m = b_1v_1 + \dots + b_k(v_1 + \dots + v_k) + \dots + b_m(v_1 + \dots + v_m).
        Then a_k = b_k + \dots + b_m; a_{k+1} = b_{k+1} + \dots + b_m \Rightarrow b_k = a_k - a_{k+1}; b_m = a_m. Simly to Exe (1).
   (b) P \Rightarrow Q: b_1w_1 + \dots + b_mw_m = 0 = a_1v_1 + \dots + a_mv_m, where 0 = a_k = b_k + \dots + b_m.
        Q \Rightarrow P: a_1v_1 + \dots + a_mv_m = 0 = b_1w_1 + \dots + b_mw_m = 0, where 0 = b_m = a_m, 0 = b_k = a_k - a_{k+1}.
        Or. By (a), let W = \operatorname{span}(v_1, \dots, v_m) = \operatorname{span}(w_1, \dots, w_m). Supp (v_1, \dots, v_m) is liney dep.
        By [2.21](b), a list of len (m-1) spans W. X By [2.23], (w_1, ..., w_m) liney indep \Rightarrow m \leq m-1.
        Thus (w_1, ..., w_m) is liney dep. Now rev the roles of v and w.
                                                                                                                                       [Q]
2 (a) [P]
                   A list (v) of len 1 in V is liney indep \iff v \neq 0.
   (b) [P] A list (v, w) of len 2 in V is liney indep \iff \forall \lambda, \mu \in F, v \neq \lambda w, w \neq \mu v.
                                                                                                                                    [Q]
Solus: (a) Q \Rightarrow P : v \neq 0 \Rightarrow \text{ if } av = 0 \text{ then } a = 0 \Rightarrow (v) \text{ liney indep.}
                P \Rightarrow Q : (v) liney indep \Rightarrow v \neq 0, for if v = 0, then av = 0 \Rightarrow a = 0.
                \neg Q \Rightarrow \neg P : v = 0 \Rightarrow av = 0 while we can let a \neq 0 \Rightarrow (v) is liney dep.
                \neg P \Rightarrow \neg Q : (v) \text{ liney dep} \Rightarrow av = 0 \text{ while } a \neq 0 \Rightarrow v = 0.
           (b) P \Rightarrow Q : (v, w) liney indep \Rightarrow if av + bw = 0, then a = b = 0 \Rightarrow no scalar multi.
                Q \Rightarrow P: no scalar multi \Rightarrow if av + bw = 0, then a = b = 0 \Rightarrow (v, w) liney indep.
                \neg P \Rightarrow \neg Q : (v, w) liney dep \Rightarrow if av + bw = 0, then a or b \neq 0 \Rightarrow scalar multi.
                \neg Q \Rightarrow \neg P: scalar multi \Rightarrow if av + bw = 0, then a or b \neq 0 \Rightarrow liney dep.
                                                                                                                                       10 Supp (v_1, ..., v_m) is liney indep in V and w \in V.
    Prove if (v_1 + w, ..., v_m + w) is liney dep, then w \in \text{span}(v_1, ..., v_m).
Solus:
   Note that a_1(v_1 + w) + \cdots + a_m(v_m + w) = 0 \Rightarrow a_1v_1 + \cdots + a_mv_m = -(a_1 + \cdots + a_m)w.
   Then a_1 + \cdots + a_m \neq 0, for if not, a_1v_1 + \cdots + a_mv_m = 0 while a_i \neq 0 for some i, ctradic.
   OR. We prove the ctrapos: Supp w \notin \text{span}(v_1, \dots, v_m). Then a_1 + \dots + a_m = 0.
   Thus a_1v_1 + \cdots + a_mv_m = 0 \Rightarrow a_1 = \cdots = a_m = 0. Hence (v_1 + w, \dots, v_m + w) is liney indep.
                                                                                                                                       Or. \exists j \in \{1, ..., m\}, v_j + w \in \text{span}(v_1 + w, ..., v_{j-1} + w). If j = 1 then v_1 + w = 0 and done.
   If j \ge 2, then \exists a_i \in \mathbf{F}, v_i + w = a_1(v_1 + w) + \dots + a_{j-1}(v_{j-1} + w) \iff v_i + \lambda w = a_1v_1 + \dots + a_{j-1}v_{j-1}.
   Where \lambda = 1 - (a_1 + \dots + a_{j-1}). Note that \lambda \neq 0, for if not, v_j + \lambda w = v_j \in \text{span}(v_1, \dots, v_{j-1}), ctradic.
   Now w = \lambda^{-1}(a_1v_1 + \dots + a_{j-1}v_{j-1} - v_j) \Rightarrow w \in \text{span}(v_1, \dots, v_m).
```

```
11 Supp (v_1, ..., v_m) is liney indep in V and w \in V.
    Show [P](v_1, ..., v_m, w) is liney indep \iff w \notin \text{span}(v_1, ..., v_m)[Q].
Solus: Equiv to (v_1, ..., v_m, w) liney dep \iff w \in \text{span}(v_1, ..., v_m). Using [2.21]. Obviously.
                                                                                                                          Note: (a) Supp (v_1, ..., v_m, w) is liney indep. Then (v_1, ..., v_m) liney indep \iff w \notin \text{span}(v_1, ..., v_m).
         (b) Supp (v_1, ..., v_m, w) is liney dep. Then (v_1, ..., v_m) liney indep \iff w \in \text{span}(v_1, ..., v_m).
14 Prove [P] V is infinide \iff \exists seq(v_1, v_2, ...) in V suth each (v_1, ..., v_m) liney indep. [Q]
Solus: P \Rightarrow Q: Supp V is infinide, so that no list spans V. Define the desired seq recurly via:
                     Step 1 Pick a v_1 \neq 0, (v_1) liney indep.
                     Step m Pick a v_m \notin \text{span}(v_1, \dots, v_{m-1}), by Exe (11), (v_1, \dots, v_m) is liney indep.
          \neg P \Rightarrow \neg Q: Supp V is finide and V = \text{span}(w_1, ..., w_m).
                        Let (v_1, v_2, \dots) be a seq in V, then (v_1, v_2, \dots, v_{m+1}) must be liney dep.
          OR. Q \Rightarrow P: Supp there is such a seq.
                           Choose an m. Supp a liney indep list (v_1, ..., v_m) spans V.
                           Simlr to [2.16]. \exists v_{m+1} \in V \setminus \text{span}(v_1, \dots, v_m). Hence no list spans V.
                                                                                                                          17 Prove (p_0, p_1, ..., p_m) cannot be liney indep in \mathcal{P}_m(\mathbf{F}) with each p_k(2) = 0.
SOLUS:
  Supp (p_0, p_1, ..., p_m) is liney indep. Define p \in \mathcal{P}_m(\mathbf{F}) by p(z) = z.
  NOTICE that \forall a_i \in \mathbf{F}, z \neq a_0 p_0(z) + \dots + a_m p_m(z), for if not, let z = 2. Thus z \notin \text{span}(p_0, p_1, \dots, p_m).
  Then span(p_0, p_1, ..., p_m) \subseteq \mathcal{P}_m(\mathbf{F}) while the list (p_0, p_1, ..., p_m) has len (m + 1).
  Hence (p_0, p_1, ..., p_m) is liney dep. For if not, then becs (1, z, ..., z^m) of len (m + 1) spans \mathcal{P}_m(\mathbf{F}),
  by the steps in [2.23] trivially, (p_0, p_1, ..., p_m) of len (m + 1) spans \mathcal{P}_m(\mathbf{F}). Ctradic.
                                                                                                                          OR. Becs (1, z, ..., z^m) of len (m + 1) spans \mathcal{P}_m(\mathbf{F}). Then (p_0, p_1, ..., p_m, z) of len (m + 2) is liney dep.
  As shown above, z \notin \text{span}(p_0, p_1, \dots, p_m). And hence by [2.21](a), (p_0, p_1, \dots, p_m) is liney dep.
                                                                                                                   ENDED
2.B
• Note For liney indep seq and [2.34]: "V = \text{span}(v_1, ..., v_n, ...)" is an invalid expr.
 If we allow using "infini list", then we must assure that (v_1, \dots, v_n, \dots) is a spanning "list"
 suth \forall v \in V, \exists smallest n \in \mathbb{N}^+, v = a_1v_1 + \cdots + a_nv_n. Moreover, given a list (w_1, \cdots, w_n, \cdots) in W,
 we can prove \exists ! T \in \mathcal{L}(V, W) with each Tv_k = w_k, which has less restr than [3.5].
  But the key point is, how can we assure that such a "list" exis? [See higher courses]
1 Find all vecsps on whatever F that have exactly one bss.
Solus: The trivial vecsp \{0\} will do. Indeed, the only bss of \{0\} is the empty list ( ).
          Now consider the field \{0,1\} containing only the add id and multi id,
          with 1 + 1 = 0. Then the list (1) is the uniq bss. Now the vecsp \{0, 1\} will do.
          COMMENT: All vecsp on such F of dim 1 will do.
```

Consider other F. Note that this F contains at least and strictly more than 0 and 1. Failed.

```
• (4E9) Supp (v_1, ..., v_m) is a list in V. For k \in \{1, ..., m\}, let w_k = v_1 + \cdots + v_k.
            Show [P] B_V = (v_1, ..., v_m) \iff B_V = (w_1, ..., w_m). [Q]
Solus: Notice that B_U = (u_1, ..., u_n) \iff \forall u \in U, \exists ! a_i \in F, u = a_1u_1 + \cdots + a_nu_n.
   P \Rightarrow Q: \forall v \in V, \exists ! a_i \in \mathbf{F}, \ v = a_1v_1 + \dots + a_mv_m \Rightarrow v = b_1w_1 + \dots + b_mw_m, \exists ! b_k = a_k - a_{k+1}, b_m = a_m.
   Q \Rightarrow P: \forall v \in V, \exists ! b_i \in \mathbf{F}, \ v = b_1 w_1 + \dots + b_m w_m \Rightarrow v = a_1 v_1 + \dots + a_m v_m, \exists ! a_k = \sum_{j=k}^m b_j.
                                                                                                                                                                COMMENT: OR. Using [3.C \text{ Note For } [3.30, 32](a)].
8 Supp B_{II} = (u_1, ..., u_m), B_W = (w_1, ..., w_n).
   Prove V = U \oplus W \iff B_V = (u_1, \dots, u_m, w_1, \dots, w_n).
Solus: \forall v \in V, \exists ! u \in U, w \in W \Rightarrow \exists ! a_i, b_i \in F, v = u + w = \sum_{i=1}^m a_i u_i + \sum_{i=1}^n b_i w_i.
             Or. V = \text{span}(u_1, ..., u_m) \oplus \text{span}(w_1, ..., w_n) = \text{span}(u_1, ..., u_m, w_1, ..., w_n).
                    Note that \sum_{i=1}^{m} a_i u_i + \sum_{i=1}^{n} b_i w_i = 0 \Rightarrow \sum_{i=1}^{m} a_i u_i = -\sum_{i=1}^{n} b_i w_i \in U \cap W = \{0\}.
                                                                                                                                                                • (9.A.3,4 Or 4E 11) Supp V is on R, and v_1, ..., v_n \in V. Let B = (v_1, ..., v_n).
  (a) Show [P] B is liney indep in V \iff B is liney indep in V_C. [Q]
  (b) Show [P] B spans V \iff B spans V_C. [Q]
Solus:
   (a) P \Rightarrow Q: Note that each v_k \in V_C. Supp \lambda_1 v_1 + \cdots + \lambda_n v_n = 0 with F = C.
                      Then (\text{Re}\lambda_1)v_1 + \cdots + (\text{Re}\lambda_n)v_n = 0 \Rightarrow \text{each Re}\lambda_i = 0, siml for \text{Im}\lambda_i.
         Q \Rightarrow P: If \lambda_k \in \mathbb{R} with \lambda_1 v_1 + \dots + \lambda_n v_n = 0, then each \operatorname{Re} \lambda_k = \lambda_k = 0.
         \neg P \Rightarrow \neg Q : \exists v_i = a_{i-1}v_{i-1} + \dots + a_1v_1 \in V_C.
         \neg Q \Rightarrow \neg P: \ \exists \ v_i = \lambda_{i-1}v_{i-1} + \dots + \lambda_1v_1 \in V \Rightarrow v_i = (\operatorname{Re}\lambda_{i-1})v_{i-1} + \dots + (\operatorname{Re}\lambda_1)v_1 \in V.
   (b) P \Rightarrow Q: \forall u + iv \in V_C, u, v \in V \Rightarrow \exists a_i, b_i \in \mathbb{R}, u + iv = \sum_{i=1}^n (a_i + ib_i)v_i.
         Q \Rightarrow P: \ \forall v \in V, \exists a_i + ib_i \in C, \ v + i0 = \left(\sum_{i=1}^n a_i v_i\right) + i\left(\sum_{i=1}^n b_i v_i\right) \Rightarrow v \in \operatorname{span}(v_1, \dots, v_m).
         \neg P \Rightarrow \neg Q : \exists v \in V, v \notin \operatorname{span} B \text{ with } \mathbf{F} = \mathbf{R} \Rightarrow v + \mathrm{i} 0 \notin \operatorname{span} B \text{ with } \mathbf{F} = \mathbf{C}.
         \neg Q \Rightarrow \neg P : \exists u + iv \in V_C, u + iv \notin \operatorname{span} B \Rightarrow (\operatorname{Re} 1)u + (\operatorname{Re} i)v = u \text{ or } (\operatorname{Im} 1)u + (\operatorname{Im} i)v = v \notin \operatorname{span} B. \quad \Box
• Tips: Supp dim V = n, and U is a subsp of V with U \neq V.
            Prove \exists B_V = (v_1, \dots, v_n) suth each v_k \notin U.
  Note that U \neq V \Rightarrow n \geqslant 1. We will construct B_V via the following process.
  Step 1. \exists v_1 \in V \setminus U \Rightarrow v_1 \neq 0. If span(v_1) = V then we stop.
  Step k. Supp (v_1, ..., v_{k-1}) is liney indep in V, each of which belongs to V \setminus U.
               Note that span(v_1, \dots, v_{k-1}) \neq V. And if span(v_1, \dots, v_{k-1}) \cup U = V, then by (1.C.12),
               becs \operatorname{span}(v_1, \dots, v_{k-1}) \not\subseteq U, U \subseteq \operatorname{span}(v_1, \dots, v_{k-1}) \Rightarrow \operatorname{span}(v_1, \dots, v_{k-1}) = V.
              Hence becs span(v_1, \dots, v_{k-1}) \neq V, it must be case that span(v_1, \dots, v_{k-1}) \cup U \neq V.
               Thus \exists v_k \in V \setminus U suth v_k \notin \text{span}(v_1, \dots, v_{k-1}).
               By (2.A.11), (v_1, \dots, v_k) is liney indep in V. If span(v_1, \dots, v_k) = V, then we stop.
  Becs V is finide, this process will stop after n steps.
                                                                                                                                                                Or. Supp U \neq \{0\}. Let B_U = (u_1, \dots, u_m). Extend to a bss (u_1, \dots, u_n) of V.
         Then let B_V = (u_1 - u_k, ..., u_m - u_k, u_{m+1}, ..., u_k, ..., u_n).
```

```
• Note For Exe (15): Supp v \in V \setminus \{0\}. Prove \exists B_V = (v_1, \dots, v_n), v = v_1 + \dots + v_n.
Solus: If n = 1 then let v_1 = v and done. Supp n > 1.
           Extend (v) to a bss (v, v_1, \dots, v_{n-1}) of V. Let v_n = v - v_1 - \dots - v_{n-1}.
           \mathbb{X} span(v, v_1, \dots, v_{n-1}) = span(v_1, \dots, v_n). Hence (v_1, \dots, v_n) is also a bss of V.
                                                                                                                                             COMMENT: Let B_V = (v_1, ..., v_n) and supp v = u_1 + ... + u_n, where each u_i = a_i v_i \in V_i.
                But (u_1, ..., u_n) might not be a bss, becs there might be some u_i = 0.
• Let v_1, \ldots, v_n \in V and dim span(v_1, \ldots, v_n) = n. Then (v_1, \ldots, v_n) is a bss of span(v_1, \ldots, v_n).
  Notice that (v_1, ..., v_n) is a spanning list of span(v_1, ..., v_n) of len n = \dim \text{span}(v_1, ..., v_n).
9 Supp (v_1, \ldots, v_m) is liney indep in V, w \in V. Prove \dim \operatorname{span}(v_1 + w, \ldots, v_m + w) \ge m - 1.
Solus: Using (2.A.10, 11).
   Note that each v_i - v_1 = (v_i + w) - (v_1 + w) \in \text{span}(v_1 + w, ..., v_n + w).
   (v_1,\ldots,v_m) liney indep \Rightarrow (v_1,v_2-v_1,\ldots,v_m-v_1) liney indep \Rightarrow (v_2-v_1,\ldots,v_m-v_1) liney indep.
   \mathbb{Z} If w \notin \text{span}(v_1, \dots, v_m). Then (v_1 + w, \dots, v_m + w) is liney indep.
   Hence m \ge \dim \operatorname{span}(v_1 + w, \dots, v_m + w) \ge m - 1.
                                                                                                                                             • (4E 16) Supp V is finide, U is a subsp of V with U \neq V. Let n = \dim V, m = \dim U.
            Prove \exists (n-m) subsps U_1, ..., U_{n-m}, each of dim (n-1), suth \bigcap_{i=1}^{n-m} U_i = U.
Solus: Let B_U = (v_1, ..., v_m), B_V = (v_1, ..., v_m, u_1, ..., u_{n-m}).
           Define each U_i = \operatorname{span}(v_1, \dots, v_m, u_1, \dots, u_{i-1}, u_{i+1}, \dots, u_{n-m}) \Rightarrow U \subseteq U_i.
           And becs \forall v \in \bigcap_{i=1}^{n-m} U_i, v = v_0 + b_1 u_1 + \dots + b_{n-m} u_{n-m} \in U_i \Rightarrow \operatorname{each} b_i = 0 \Rightarrow v \in U.
           Hence \bigcap_{i=1}^{n-m} U_i \subseteq U.
                                                                                                                                             14 Supp V_1, \ldots, V_m are finide. Prove \dim(V_1 + \cdots + V_m) \leq \dim V_1 + \cdots + \dim V_m.
Solus: For each V_i, let B_{V_i} = \mathcal{E}_i. Then V_1 + \cdots + V_m = \operatorname{span}(\mathcal{E}_1 \cup \cdots \cup \mathcal{E}_m); dim V_i = \operatorname{card} \mathcal{E}_i.
   Now \dim(V_1 + \cdots + V_m) = \dim \operatorname{span}(\mathcal{E}_1 \cup \cdots \cup \mathcal{E}_m) \leqslant \operatorname{card}(\mathcal{E}_1 \cup \cdots \cup \mathcal{E}_m) \leqslant \operatorname{card}\mathcal{E}_1 + \cdots + \operatorname{card}\mathcal{E}_m.
Coro: V_1 + \cdots + V_m is direct
          \Leftrightarrow For each k \in \{1, ..., m-1\}, (V_1 \oplus \cdots \oplus V_k) \cap V_{k+1} = \{0\}, (\mathcal{E}_1 \cap \cdots \cap \mathcal{E}_{k-1}) \cap \mathcal{E}_k = \emptyset
          \iff dim span(\mathcal{E}_1 \cup \cdots \cup \mathcal{E}_m) = \operatorname{card}(\mathcal{E}_1 \cup \cdots \cup \mathcal{E}_m) = \operatorname{card}\mathcal{E}_1 + \cdots + \operatorname{card}\mathcal{E}_m
          \iff dim(V_1 \oplus \cdots \oplus V_m) = \dim V_1 + \cdots + \dim V_m.
                                                                                                                                             • Supp \mathcal{C} is a collectof k-dim subsps of V with any two of them have a (k-1)-dim intersection.
  Prove either all contain a (k-1)-dim intersec, or all contained in a (k+1)-dim subsp.
Solus: If V is finide and dim V = k, then \mathcal{C} = \{V\}, done. We use induc on k. (i) k = 1. Immed.
            (ii) k > 1. Asum it holds for k - 1. If \exists common (k - 1)-dim intersec, then done.
                 Othws, we show all X \in \mathcal{C} are contained in a (k + 1)-dim subsp.
                 Supp U, W \in \mathcal{C} \Rightarrow \dim(U + W) = k + 1. Then for X \in \mathcal{C}, X \cap U, X \cap W are (k - 1)-dim.
```

Now by asum, $\dim(X \cap U + X \cap W) = k \Rightarrow X = (X \cap U) + (X \cap W) \Rightarrow X \subseteq U + W$.

 $(2) |(A \cup B) \cap C| = |(A \cap C) \cup (B \cap C)| = |A \cap C| + |B \cap C| - |A \cap B \cap C|.$ Thus $|(A \cup B) \cup C| = |A| + |B| + |C| + |A \cap B \cap C| - |A \cap B| - |A \cap C| - |B \cap C|$. Becs $(V_1 + V_2) + V_3 = V_1 + (V_2 + V_3) = (V_1 + V_3) + V_2$. $\dim(V_1 + V_2 + V_3) = \dim(V_1 + V_2) + \dim(V_3) - \dim((V_1 + V_2) \cap V_3)$ $= \dim(V_2 + V_3) + \dim(V_1) - \dim((V_2 + V_3) \cap V_1)$ (2) $= \dim(V_1 + V_3) + \dim(V_2) - \dim((V_1 + V_3) \cap V_2)$ Generally, $(X + Y) \cap Z \neq (X \cap Z) + (Y \cap Z)$. Exa: $X = \{(x,0)\}, Y = \{(0,y)\}, Z = \{(z,z)\} \subseteq \mathbb{F}^2$. **COMMENT**: If $X \subseteq Y$, then $(X + Y) \cap Z = Y \cap Z$; $\dim(X + Y + Z) = \dim Y + \dim Z - \dim(Y \cap Z)$, and the wrong formula holds. Simlr for $Y \subseteq Z$, $X \subseteq Z$, and $X, Y \subseteq Z$. **Note:** However, it's true that $(X + Y) \cap Z \supseteq (X \cap Z) + (Y \cap Z) = (X + (Y \cap Z)) \cap Z$. Becs $(X \cap Z) + (Y \cap Z) \ni v = x + y = z_1 + z_2 \in (X + (Y \cap Z)) \cap Z \Rightarrow v \in (X + Y) \cap Z$. • Tips: Becs dim $(V_1 \cap V_2 \cap V_3) = \dim V_1 + \dim(V_2 \cap V_3) - \dim(V_1 + (V_2 \cap V_3))$. And dim $(V_2 \cap V_3) = \dim V_2 + \dim V_3 - \dim(V_2 + V_3)$. We have (1), and (2), (3) simlr. $(1) \dim(V_1 \cap V_2 \cap V_3) = \dim V_1 + \dim V_2 + \dim V_3 - \dim(V_2 + V_3) - \dim(V_1 + (V_2 \cap V_3)).$ (2) $\dim(V_1 \cap V_2 \cap V_3) = \dim V_1 + \dim V_2 + \dim V_3 - \dim(V_1 + V_3) - \dim(V_2 + (V_1 \cap V_3)).$ (3) $\dim(V_1 \cap V_2 \cap V_3) = \dim V_1 + \dim V_2 + \dim V_3 - \dim(V_1 + V_2) - \dim(V_3 + (V_1 \cap V_2)).$ • Supp V_1 , V_2 , V_3 are subsps of V with (a) dim V = 10, dim $V_1 = \dim V_2 = \dim V_3 = 7$. Prove $V_1 \cap V_2 \cap V_3 \neq \{0\}$. By TIPS, $\dim(V_1 \cap V_2 \cap V_3) \ge \dim V_1 + \dim V_2 + \dim V_3 - 2\dim V > 0$. (b) dim V_1 + dim V_2 + dim V_3 > 2 dim V. Prove $V_1 \cap V_2 \cap V_3 \neq \{0\}$. By Tips, $\dim(V_1 \cap V_2 \cap V_3) \ge 2\dim V - \dim(V_2 + V_3) - \dim(V_1 + (V_2 \cap V_3)) \ge 0$.

 $-\dim(V_1 \cap V_2) - \dim(V_1 \cap V_3) - \dim(V_2 \cap V_3) + \dim(V_1 \cap V_2 \cap V_3).$

17 Supp V_1 , V_2 , V_3 are subsps of a finide vecsp. Explain and give a countexa:

 $\dim(V_1 + V_2 + V_3) = \dim V_1 + \dim V_2 + \dim V_3$

 $(1) |(A \cup B) \cup C| = |A \cup B| + |C| - |(A \cup B) \cap C|.$

Solus:

ENDED

- 3·A 注意: 这里我将 3.B 的值空间、零空间、单满射、和 3.D 的可逆性定义前置; 仅涉及概念。
- Tips 1: $T: V \to W$ is liney \iff $\left| \begin{array}{c} (-) \ \forall v, u \in V, T(v+u) = Tv + Tu; \\ (\underline{-}) \ \forall v, u \in V, \lambda \in \mathbb{F}, T(\lambda v) = \lambda (Tv). \end{array} \right| \iff T(v+\lambda u) = Tv + \lambda Tu.$

Note: Supp V is a vecsp. For $U \subseteq V$, U is a subsp of $V \iff \forall u_1, u_2 \in U, \lambda \in \mathbb{F}, u_1 + \lambda u_2 \in U$.

- (3.E.1) A function $T: V \to W$ is liney \iff The graph of T is a subspace of $V \times W$.
- (4E 10) **Note:** Composition and product are not the same in $\mathcal{P}(\mathbf{F})$.

```
Prove \exists T \in \mathcal{L}(V, W), Tu = Su, \forall u \in U. (Or. \exists T \in \mathcal{L}(V, W), T|_{U} = S.)
    In other words, every liney map on a subsp of V can be extended to a liney map on the entire V.
Solus: Supp W is suth V = U \oplus W. Then \forall v \in V, \exists ! u_v \in U, w_v \in W, v = u_v + w_v.
          Define T \in \mathcal{L}(V, W) by T(u_v + w_v) = Su_v.
                                                                                                                                     Or. [Finide Req] Define by T\left(\sum_{i=1}^{m} a_i u_i\right) = \sum_{i=1}^{n} a_i S u_i. Let B_V = \left(\overline{u_1, \dots, u_n}, \dots, u_m\right).
                                                                                                                                     • Note For Restr: U is a subsp of V. (a) (T + \lambda S)|_{U} = T|_{U} + \lambda S|_{U}. (b) (ST)|_{U} = ST|_{U}.
• TIPS 2: T \in \mathcal{L}(V, W). (a) If U is a subsp of W. Then range T \subseteq U \iff T \in \mathcal{L}(V, U) \subseteq \mathcal{L}(V, W).
                                (b) If U is a subsp of V. Then U \subseteq \text{null } T \iff T|_U = 0.
• (4E 4.3) Supp \mathbf{F} = \mathbf{R}, T \in \mathcal{L}(V, W), S = \text{Re} \circ T_{\mathbf{C}}. Show T_{\mathbf{C}} = S - i S \circ i I.
SOLUS: T_C = S + i \operatorname{Im} T_C. \nearrow Re \circ (T_C i I) = \operatorname{Re} \circ (i T_C) = -\operatorname{Im} \circ T_C = S \circ i I.
                                                                                                                                     COMMENT: Re, Im : C \rightarrow R is not liney, while they have the add.
• Note For Complex of Liney Maps: Supp V, W are vecsps over R. Then \mathcal{L}(V, W)_C = \mathcal{L}(V_C, W_C).
  For S, T \in \mathcal{L}(V, W), (S + \lambda T)_{C} = S_{C} + \lambda T_{C}. For S \in \mathcal{L}(V, W), T \in \mathcal{L}(U, V), (ST)_{C} = S_{C}T_{C}.
  For T \in \mathcal{L}(V, W), \text{null}(T_C) = (\text{null } T)_C, \text{range}(T_C) = (\text{range } T)_C.
• (9.A.17) Supp \mathbf{F} = \mathbf{R}, T \in \mathcal{L}(V) suth T^2 = -I. Define complex scalar multi on V as
             (a + bi)v = av + bTv. Then V itself is already a complex vecsp with these defs.
             Show the dim of V as a complex vecsp is half of the dim of V as the usual real vecsp.
Solus: Supp V \neq \{0\}. Let N = \dim V as real vecsp. We construct a real B_V via a (N-1)-step process.
   Let (v_1, Tv_1) be liney indep in V as real vecsp. Let v_2 \notin \text{span}(v_1, Tv_1) \Rightarrow (v_1, Tv_1, v_2) liney indep.
   Step 1. We show (v_1, Tv_1, v_2, Tv_2) liney indep in V as real vecsp. Asum Tv_2 = a_1v_1 + b_1Tv_1 + a_2v_2.
              Then -v_2 = a_1Tv_1 - b_1v_1 + a_2Tv_2. Note that a_2 \neq 0 and a_2^2 = -1 while a_2 \in \mathbb{R}, ctradic.
   Step k. [k \le N-1] We show (v_1, Tv_1, \dots, v_k, Tv_k, v_{k+1}, Tv_{k+1}) liney indep in V as real vecsp. Simlr.
              Asum Tv_{k+1} = a_1v_1 + b_1Tv_1 + \dots + a_{k+1}v_{k+1}. Then -v_{k+1} = a_1Tv_1 - b_1v_1 + \dots + a_{k+1}Tv_{k+1}. \square
• Note For F^S:
  Supp S \neq \emptyset, C_S = \{ f \in \mathbf{F}^S : \exists \text{ finily many } x, \text{ suth } f(x) \neq 0 \}. Then C_S is a subsp of \mathbf{F}^S.
  (a) If S = \{x_1, ..., x_n\}. Find a bss of \mathbf{F}^S and conclude \mathbf{F}^S = C_S.
                                                                                                          \mathbf{F}^S infinide \Rightarrow S infini.
  (b) If S has infily many elem. Prove \mathbf{F}^S is infinide.
                                                                                                                \mathbf{F}^S finide \Rightarrow S fini.
  (c) Supp V is on F. Prove \exists surj T \in \mathcal{L}(C_V, V).
```

11 Supp U is a subsp of V and $S \in \mathcal{L}(U, W)$.

(c) Define $T: C_V \to V$ by $T(f) = \sum f(x)x$. Note that $f(x) \neq 0$ for finily many $x \in V$.

Becs for any $v \in V$, \exists liney indep (v_1, \dots, v_n) suth $v = a_1v_1 + \dots + a_nv_n$. [See higher courses]

Define each $f(v_k) = a_k$ and f(x) = 0 for $x \notin \{v_1, \dots, v_n\}$. Then T(f) = v.

(b) Let $S = \{x_1, \dots, x_n, \dots\}$. Define each $f_i(x_i) = \delta_{i,i} \Rightarrow f_i \in C_S$. $\mathbb{X}(f_1, \dots, f_n, \dots)$ liney indep.

Solus: (a) Define each $f_i(x_i) = \delta_{i,i}$. Supp $f \in C_S$, let each $y_k = f(x_k) = (y_1 f_1 + \dots + y_n f_n)(x_k)$.

Coro: *S* fini \iff **F**^S finide.

Then $f = y_1 f_1 + \dots + y_n f_n \in \operatorname{span}(f_1, \dots, f_n)$. \mathbb{X} If f = 0, then each $y_k = 0$.

13 Supp $(v_1, ..., v_m)$ is liney dep in V and $W \neq \{0\}$. *Prove* $\exists w_1, \dots, w_m \in W, \nexists T \in \mathcal{L}(V, W)$ suth $Tv_k = w_k, \forall k = 1, \dots, m$. **SOLUS:** We prove by ctradic. By liney dep lemma, $\exists j \in \{1, ..., m\}, v_i \in \text{span}(v_1, ..., v_{i-1}).$ Supp $a_1v_1 + \cdots + a_mv_m = 0$, where $a_i \neq 0$. Now let $w_i \neq 0$, while $w_1 = \cdots = w_{i-1} = w_{i+1} = w_m = 0$. Define $T \in \mathcal{L}(V, W)$ with each $Tv_k = w_k$. Then $T(a_1v_1 + \cdots + a_mv_m) = 0 = a_1w_1 + \cdots + a_mw_m$. And $0 = a_i w_i$ while $a_i \neq 0$ and $w_i \neq 0$. Ctradic. OR. We prove the ctrapos: Supp $\forall w_1, \dots, w_m \in W, \exists T \in \mathcal{L}(V, W)$, each $Tv_k = w_k$. Now we show (v_1, \dots, v_n) is liney indep. Supp $\exists a_i \in \mathbf{F}, a_1v_1 + \dots + a_nv_n = 0$. Choose one $w \in W \setminus \{0\}$. By asum, for $(\overline{a_1}w, ..., \overline{a_m}w)$, $\exists T \in \mathcal{L}(V, W)$, each $Tv_k = \overline{a_k}w$. Now we have $0 = T(\sum_{k=1}^{m} a_k v_k) = \sum_{k=1}^{m} a_k T v_k = \sum_{k=1}^{m} a_k \overline{a_k} w = (\sum_{k=1}^{m} |a_k|^2) w$. Then $\sum_{k=1}^{m} |a_k|^2 = 0$. Thus $a_1 = \dots = a_m = 0$. Hence (v_1, \dots, v_n) is liney indep. • (4E 11) Supp V is finide, $T \in \mathcal{L}(V)$ is suth $\forall S \in \mathcal{L}(V)$, ST = TS. Prove $\exists \lambda \in \mathbf{F}, T = \lambda I$. **Solus**: Asum $\exists v \in V, (v, Tv)$ is liney indep. Let $B_V = (v, Tv, u_1, ..., u_n)$. Define $S \in \mathcal{L}(V)$ by $S(av + bTv + c_1u_1 + \cdots + c_nu_n) = bv \Rightarrow S(Tv) = v = T(Sv) = 0$. Asum $V \neq \{0\}$ and $\forall v \in V, (v, Tv)$ is liney dep, then $\exists \lambda_v \in F, Tv = \lambda_v v$. To prove λ_v is indep of v, we discuss in two cases: $\begin{array}{l} (-) \text{ If } (v,w) \text{ is liney indep, } \lambda_{v+w}(v+w) = T(v+w) = Tv + Tw = \lambda_v v + \lambda_w w \\ (=) \text{ Othws, supp } w = cv, \lambda_w w = Tw = cTv = c\lambda_v v = \lambda_v w \Rightarrow \left(\lambda_w - \lambda_v\right) w \end{array} \right\} \Rightarrow \lambda_w = \lambda_v. \ \Box$ Or. Let $B_V = (v_1, \dots, v_m)$. Define $\varphi \in \mathcal{L}(V, \mathbf{F})$ by $\varphi(v_1) = \dots = \varphi(v_m) = 1$. Supp $v \in V$. Define $S_v \in \mathcal{L}(V)$ by $S_v(u) = \varphi(u)v$. Then $Tv = T(\varphi(v_1)v) = T(S_v v_1) = S_v(Tv_1) = \varphi(Tv_1)v = \lambda v$. OR. Define $S_k\left(\sum_{i=1}^n a_i v_i\right) = a_k v_k$. Then $S_k v = v \iff \exists ! a_k \in \mathbf{F}, v = a_k v_k$. Hence $S_k(Tv_k) = T(S_kv_k) = Tv_k \Rightarrow Tv_k = a_kv_k$. Becs v_k is arb. Simlr to above. Done. Or. Define $A^{(j,k)} \in \mathcal{L}(V)$ by $A^{(j,k)}v_j = v_k$, $A^{(j,k)}v_k = v_j$, $A^{(j,k)}v_x = 0$, $x \neq j$, k. Then $\left| \begin{array}{c} A^{(j,k)}Tv_j = TA^{(j,k)}v_j = Tv_k = a_kv_k \\ A^{(j,k)}Tv_j = A^{(j,k)}a_jv_j = a_jA^{(j,k)}v_j = a_jv_k \end{array} \right| \Rightarrow a_k = a_j. \text{ Hence } a_k \text{ is indep of } v_k.$ • (4E 17) Supp V is finide. Show all two-sided ideals of $\mathcal{L}(V)$ are $\{0\}$ and $\mathcal{L}(V)$. A subsp \mathcal{E} of $\mathcal{L}(V)$ is called a two-sided ideal of $\mathcal{L}(V)$ if $TE \in \mathcal{E}, ET \in \mathcal{E}, \forall E \in \mathcal{E}, T \in \mathcal{L}(V)$. **Solus**: If $\mathcal{E} = \{0\}$, then done. Supp $0 \neq S \in \mathcal{E}$, a two-sided ideal of $\mathcal{L}(V)$. Let $B_V = (v_1, \dots, v_n)$. Define $R_{x,y} \in \mathcal{L}(V)$: $v_x \mapsto v_y$, $v_z \mapsto 0$ $(z \neq x)$. Or. $R_{x,y}v_z = \delta_{z,x}v_y$. Asum each $R_{x,y} \in \mathcal{E}$. Then $(R_{1,1} + \cdots + R_{n,n})v_j = v_j \Rightarrow \sum_{r=1}^n R_{r,r} = I \Rightarrow \mathcal{L}(V) \ni T = I \circ T = T \circ I \in \mathcal{E}.$ Or. Let each $Tv_j = w_j = A_{1,j}v_1 + \dots + A_{n,j}v_n \Rightarrow T = \sum_{x=1}^n \sum_{y=1}^n A_{y,x}R_{x,y} \in \mathcal{E}$. Now we prove the asum. Supp $Sv_i \neq 0$ and $Sv_i = a_1v_1 + \cdots + a_nv_n$, where $a_k \neq 0$. We show $R_{k,y}SR_{x,i} = a_kR_{x,y} \in \mathcal{E}$. Becs $SR_{x,i} = a_1R_{x,1} + \dots + a_kR_{x,k} + \dots + a_nR_{x,n} \in \mathcal{E}$, for all $x \in \{1, \dots, n\}$. Or. $(R_{k,y}S)v_i = a_k v_y \Rightarrow ((R_{k,y}S) \circ R_{x,i})v_z = \delta_{z,x}(a_k v_y)$, for all $y \in \{1, ..., n\}$. Immed. **COMMENT:** Not true if infinide. Consider the subsp $X = \{T \in \mathcal{L}(V) : \text{range } T \text{ is finide} \}.$ For any $T \in X$, $\forall E \in \mathcal{L}(V)$, range $TE \subseteq \text{range } T$; range $ET = \text{span}(Ew_1, ..., Ew_n) \Rightarrow TE, ET \in X$.

• Given the fact that $\mathcal{L}(V, W)$ is a vecsp. Prove or give a countexa: V, W are vecsps. By [3.2], the add and homo imply that V is closd add and scalar multi. While W^V might not be a vecsp.

Solus: We can assure that $\{0\} \subseteq \mathcal{L}(V, W), \{0\} \subseteq V, \{0\} \subseteq W$.

- (I) If $W^V = \{0\}$. Then $\mathcal{L}(V, W) = \{0\}$.
 - And $W = \{0\}$, for if not, $\exists w \in W \setminus \{0\}$, define a map f by f(x) = w, $\forall x \in V$.

And V might not be a vecsp. Exa: Let $V = \mathbb{R}$, but with the scalar multi defined by $a \odot v = 0$.

- (II) If W^V is a non0 vecsp \iff W is a non0 vecsp.
 - (a) If $\mathcal{L}(V, W) = \{0\}$, then by Exa (I), V might not be vecsp.
 - (b) If not, then $\exists T \in \mathcal{L}(V, W)$, $T \neq 0$. Which means $\exists v \in V, Tv \neq 0 \Rightarrow v \neq 0$. TODO Then both W and V have a non0 elem.
 - (i) If \exists inje $T \in \mathcal{L}(V, W)$, then $T(u+v) = T(v+u) \Rightarrow u+v = v+u$. etc. Hence V is a vecsp.
 - (ii) If not, then we cannot guarantee that V is a vecsp. Exa: ???
- (III) If W^V is not a vecsp \iff W is not a vecsp.
 - (a) If $\mathcal{L}(V, W) = \{0\}$, then by Exa (I), V might not be vecsp.
 - (b) If not.

ENDED

• TIPS 4: Let $B_{\text{range }T} = (Tv_1, \dots, Tv_n) \Rightarrow R = (v_1, \dots, v_n)$ is liney indep in V. Let span R = U.

(a) $T\left(\sum_{i=1}^n a_i v_i\right) = 0 \Leftrightarrow \sum_{i=1}^n a_i T v_i = 0 \Leftrightarrow a_1 = \dots = a_n = 0$. Thus $U \cap \text{null } T = \{0\}$.

(b) $Tv = \sum_{i=1}^n a_i T v_i \Leftrightarrow v - \sum_{i=1}^n a_i v_i \in \text{null } T \Leftrightarrow v = \left(v - \sum_{i=1}^n a_i v_i\right) + \left(\sum_{i=1}^n a_i v_i\right)$.

Thus U + null T = V. Or, range $T = \{Tu : u \in U\} = \text{range } T|_U$. Using Exe (12).

Coro: Convly if $U \oplus \text{null } T = V$ and $B_U = (v_1, \dots, v_n)$, then $B_{\text{range } T} = (Tv_1, \dots, Tv_n)$.

```
• TIPS 5: Supp S \in \mathcal{L}(U, V) is surj. Define \mathcal{B} \in \mathcal{L}(\mathcal{L}(V, W), \mathcal{L}(U, W)) by \mathcal{B}(T) = TS.
             Then \mathcal{B} is inje. Becs \mathcal{B}(T) = TS = 0 \iff T|_{\text{range }S} = 0.
• (4E 27) Supp P \in \mathcal{L}(V) and P^2 = P. Prove V = \text{null } P \oplus \text{range } P.
Solus: (a) If v \in \text{null } P \cap \text{range } P \Rightarrow Pv = 0, and \exists u \in V, v = Pu. Then v = Pu = P^2u = Pv = 0.
           (b) Note that \forall v \in V, v = Pv + (v - Pv) and P(v - Pv) = 0 \Rightarrow v - Pv \in \text{null } P.
                OR. Becs dim V = \dim \text{null } P + \dim \text{range } P = \dim (\text{null } P \oplus \text{range } P).
                                                                                                                                           Or. Becs P|_{\text{range }P}: Pv \mapsto Pv^2 = Pv \Rightarrow P|_{\text{range }P} = I is iso. By Coro in Exe (12).
                                                                                                                                           • (4E 21) Supp V is finide, T \in \mathcal{L}(V, W), Y is a subsp of W. Let \mathcal{K}_Y = \{v \in V : Tv \in Y\}.
            Then \mathcal{K}_Y is a subsp. Prove \mathcal{K}_Y = \dim \operatorname{null} T + \dim (Y \cap \operatorname{range} T).
Solus: Define the range-restr map R of T by R = T|_{\mathcal{K}_Y} \in \mathcal{L}(\mathcal{K}_Y, Y). Now range R = Y \cap \text{range } T.
           And v \in \text{null } T \iff Tv = 0 \in Y \iff Rv = 0 \in \text{range } T \iff v \in \text{null } R. By [3.22].
                                                                                                                                           COMMENT: Now span(v_1, ..., v_m) \oplus \text{null } T = \mathcal{K}_Y. Where B_{Y \cap \text{range } T} = (Tv_1, ..., Tv_m).
               In particular, dim \mathcal{K}_{\text{range }T} = \dim \text{null } T + \dim \text{range } T \Longrightarrow \mathcal{K}_{\text{range }T} = V.
• (4E 31) Supp V is finide, X is a subsp of V, and Y is a finide subsp of W.
            Prove if dim X + dim Y = dim V, then \exists T \in \mathcal{L}(V, W), null T = X, range T = Y.
Solus: Let V = U \oplus X, B_U = (v_1, \dots, v_m). Then \forall v \in V, \exists ! a_i \in F, x \in X, v = \sum_{i=1}^m a_i v_i + x.
           Let B_Y = (w_1, ..., w_m). Define T \in \mathcal{L}(V, W) with each Tv_i = w_i, Tx = 0.
           Now v \in \text{null } T \iff Tv = a_1w_1 + \dots + a_mw_m = 0 \iff v = x \in X. Hence \text{null } T = X.
           And Y \ni w = a_1w_1 + \dots + a_mw_m = a_1Tv_1 + \dots + a_mTv_m \in \operatorname{range} T. Hence \operatorname{range} T = Y.
           OR. NOTICE that V = U \oplus \text{null } T. By Exe (12), range T = \text{range } T|_{U}.
                 \mathbb{X} dim range T|_U = \dim U = \dim Y; range T \subseteq Y.
   Or. Let B_X = (x_1, \dots, x_n). Now range T = \operatorname{span}(Tv_1, \dots, Tv_m, Tx_1, \dots, Tx_n) = \operatorname{span}(w_1, \dots, w_m) = Y. \square
20, 21 (a) Prove if ST = I \in \mathcal{L}(V), then T is inje and S is surj.
          (b) Supp T \in \mathcal{L}(V, W). Prove if T is inje, then \exists surj S \in \mathcal{L}(W, V), ST = I.
          (c) Supp S \in \mathcal{L}(W, V). Prove if S is surj, then \exists inje T \in \mathcal{L}(V, W), ST = I.
SOLUS:
   (a) Tv = 0 \Rightarrow S(Tv) = 0 = v. Or. \text{null } T \subseteq \text{null } ST = \{0\}.
        \forall v \in V, ST(v) = v \in \text{range } S. \text{ Or. } V = \text{range } ST \subseteq \text{range } S.
   (b) Define S \in \mathcal{L}(\text{range } T, V) by Sw = T^{-1}w, where T^{-1} is the inv of T \in \mathcal{L}(V, \text{range } T).
        Then extend to S \in \mathcal{L}(W, V) by (3.A.11). Now \forall v \in V, STv = T^{-1}Tv = v.
        Or. [Req \ V \ Finide] Let B_{range \ T} = (Tv_1, ..., Tv_n) \Rightarrow B_V = (v_1, ..., v_n). Let U \oplus range \ T = W.
        Define S \in \mathcal{L}(W, V) with each S(Tv_i) = v_i, Su = 0 for u \in U. Thus ST = I.
   (c) By Exe (12), \exists subsp U of W, W = U \oplus \text{null } S, range S = \text{range } S|_{U} = V.
        Note that S|_{U}: U \to V is iso. Define T = (S|_{U})^{-1}, where (S|_{U})^{-1}: V \to U.
        Then ST = S \circ (S|_{U})^{-1} = S|_{U} \circ (S|_{U})^{-1} = I_{V}.
        Or. [Req V Finide] Let B_{\text{range }S} = B_V = (Sw_1, ..., Sw_n) \Rightarrow \text{span}(w_1, ..., w_n) \oplus \text{null } S = W.
        Define T \in \mathcal{L}(V, W) by T(Sw_i) = w_i. Now ST(a_1Sw_1 + \cdots + a_nSw_n) = (a_1Sw_1 + \cdots + a_nSw_n). \square
```

```
22 Supp U, V are finide, S \in \mathcal{L}(V, W), T \in \mathcal{L}(U, V).
      Prove dim null ST = \dim \text{null } S|_{\text{range } T} + \dim \text{null } T.
Solus: Becs (a) range T|_{\text{null }ST} = \text{range } T \cap \text{null } S = \text{null } S|_{\text{range }T},
                         (b) \operatorname{null} T|_{\operatorname{null} ST} = \operatorname{null} T \cap \operatorname{null} ST = \operatorname{null} T. By [3.22]
                                                                                                                                                                                             OR. NOTICE that u \in \text{null } ST \iff S(Tu) = 0 \iff Tu \in \text{null } S.
                       Thus \{u \in U : Tu \in \text{null } S\} = \mathcal{K}_{\text{null } S \cap \text{range } T} = \text{null } ST. By Exe (4E 21).
                                                                                                                                                                                             Coro: (1) T \operatorname{surj} \Rightarrow \dim \operatorname{null} ST = \dim \operatorname{null} S + \dim \operatorname{null} T.
              (2) T \text{ inv} \Rightarrow \dim \text{null } ST = \dim \text{null } S, \text{ null } ST = \text{null } T.
              (3) S \text{ inje} \Rightarrow \dim \text{null } ST = \dim \text{null } T.
23 Supp V is finide, S \in \mathcal{L}(V, W), T \in \mathcal{L}(U, V).
      Prove dim range ST \leq \min \{ \dim \operatorname{range} S, \dim \operatorname{range} T \}.
Solus: Notice that range ST = \{Sv : v \in \text{range } T\} = \text{range } S|_{\text{range } T}.
               Let range ST = \text{span}(Su_1, ..., Su_{\dim \text{range } T}), where B_{\text{range } T} = (u_1, ..., u_{\dim \text{range } T}).
               \dim \operatorname{range} ST \leq \dim \operatorname{range} T \setminus \dim \operatorname{range} ST \leq \dim \operatorname{range} S.
                                                                                                                                                                                             Or. \operatorname{dim}\operatorname{range} ST = \operatorname{dim}\operatorname{range} S|_{\operatorname{range} T} = \operatorname{dim}\operatorname{range} T - \operatorname{dim}\operatorname{null} S|_{\operatorname{range} T} \leqslant \operatorname{range} T.
                                                                                                                                                                                             COMMENT: \dim \operatorname{range} ST = \dim U - \dim \operatorname{null} ST = \dim \operatorname{range} T|_{U} - \dim \operatorname{range} T|_{\operatorname{null} ST}.
Coro: (1) S|_{\text{range }T} inje \iff dim range ST = \dim \text{range }T.
              (2) Let X \oplus \text{null } S = V. Then X \subseteq \text{range } T \iff \text{range } ST = \text{range } S.
                     And T is surj \Rightarrow range ST = \text{range } S.
              (3) \dim U = \dim V \Rightarrow \dim \operatorname{null} ST \geqslant \dim V - \dim \min \{\dim \operatorname{range} S, \dim \operatorname{range} T \}
                                                                               = \dim \max \{ \dim V - \dim \operatorname{range} S, \dim V - \dim \operatorname{range} T \}.
Exa: Let U=W=\mathbb{R}, V=\mathbb{R}^2. Define T\in\mathcal{L}\big(\mathbb{R},\mathbb{R}^2\big):x\mapsto \big(x,0\big), and S\in\mathcal{L}\big(\mathbb{R}^2,\mathbb{R}\big):(x,y)\mapsto ax, a\neq 0.
          Now dim null S = 1, dim null T = 0, and dim null S|_{range T} = 0.
• (a) Supp dim V = n, ST = 0 where S, T \in \mathcal{L}(V). Prove dim range TS \leq \lfloor \frac{n}{2} \rfloor.
  (b) Give an exa of such S, T with n = 5 and dim range TS = 2.
Solus:
    Note that dim range TS \leq \min \{ \dim \operatorname{range} T, \dim \operatorname{range} S \}. We prove by ctradic.
    Asum dim range TS \ge \left| \frac{n}{2} \right| + 1. Then min \left\{ n - \dim \operatorname{null} T, n - \dim \operatorname{null} S \right\} \ge \left| \frac{n}{2} \right| + 1
    \mathbb{Z} dim null ST = n \leq \dim \text{null } S + \dim \text{null } T \mid \Rightarrow \max \left\{ \dim \text{null } T, \dim \text{null } S \right\} \leq \left\lceil \frac{n}{2} \right\rceil - 1.
    Thus n \le 2(\left\lceil \frac{n}{2} \right\rceil - 1) \Rightarrow \frac{n}{2} \le \left\lceil \frac{n}{2} \right\rceil - 1. Ctradic.
                                                                                                                                                                                             OR. dim null S = n - \dim \operatorname{range} S \leq n - \dim \operatorname{range} TS. \mathbb{X} ST = 0 \Rightarrow \operatorname{range} T \subseteq \operatorname{null} S.
    \dim \operatorname{range} TS \leq \dim \operatorname{range} T \leq \dim \operatorname{null} S \leq n - \dim \operatorname{range} TS. Thus 2 \dim \operatorname{range} TS \leq n.
                                                                                                                                                                                             OR. Becs dim range TS \leq \left\lfloor \frac{n}{2} \right\rfloor, and \left\lfloor \frac{n}{2} \right\rfloor + \left\lfloor \frac{n}{2} \right\rfloor = n.
    We show dim null TS \ge \lceil \frac{n}{2} \rceil. Note that dim null S + \dim \text{null } T \ge n.
    \dim \operatorname{null} S + \dim \operatorname{null} T|_{\operatorname{range} S} = \dim \operatorname{null} TS. If \dim \operatorname{null} S \geqslant \left\lceil \frac{n}{2} \right\rceil. Then done.
    Othws, \dim \operatorname{null} S \leqslant \left\lceil \frac{n}{2} \right\rceil - 1 \Rightarrow \dim \operatorname{null} T \geqslant n - \dim \operatorname{null} S \geqslant n - \left\lceil \frac{n}{2} \right\rceil + 1 = \left\lfloor \frac{n}{2} \right\rfloor + 1 \geqslant \left\lceil \frac{n}{2} \right\rceil.
    Thus dim null TS \ge \max\{\dim \text{null } S, \dim \text{null } T\} = \left\lceil \frac{n}{2} \right\rceil.
                                                                                                                                                                                             Exa: Define T: v_1 \mapsto 0, v_2 \mapsto 0, v_i \mapsto v_i; S: v_1 \mapsto v_4, v_2 \mapsto v_5, v_i \mapsto 0; i = 3, 4, 5.
```

24 Supp $S \in \mathcal{L}(V, M)$, $T \in \mathcal{L}(V, W)$, and null $S \subseteq \text{null } T$. Prove $\exists E \in \mathcal{L}(M, W)$, T = ES. **SOLUS:** Let $V = U \oplus \text{null } S$ OR. Define $E : \text{range } S \to W \text{ by } \underline{E} : Sv \mapsto \underline{v}.$ $Extend E \in \mathcal{L}(\text{range } S, W) \text{ to } E \in \mathcal{L}(M, W).$ OR. Define $E : \text{range } S \to W \text{ by } \underline{E} : Sv \mapsto Tv.$ $\Rightarrow S|_{U}: U \rightarrow \text{range } S \text{ is iso.}$ Extend $T(S|_U)^{-1}$ to $E \in \mathcal{L}(M, W)$. **COMMENT:** Let $\Delta \oplus \text{null } S = \text{null } T$, $U_{\Delta} \oplus (\Delta \oplus \text{null } S) = V = U_{\Delta} \oplus \text{null } T$. Redefine $U = U_{\Delta} \oplus \Delta$. Becs $\Delta = \text{null } T|_U = \text{null } T \cap \text{range}(S|_U)^{-1}$. while $E|_{...}$: range $S|_{U_{\Lambda}} \rightarrow \text{range } T$ is iso. **COMMENT:** Let $E_1 \in \mathcal{L}(U_\Delta \oplus \text{null } T, U_\Delta)$, and E_2 be an iso of range $S|_{U_\Delta}$ onto range T. Define $E_1|_{U_{\Lambda}} = I|_{U_{\Lambda}}$, and $E_2 = T(S|_{U_{\Lambda}})^{-1}$. Then $T = E_2SE_1$. **Coro:** If null S = null T. Then $\Delta = \{0\}$, $U_{\Delta} = U$. [Reg W Finide] By (3.D.3), we can extend inje $T(S|_U)^{-1} \in \mathcal{L}(\text{range } S, W)$ to inv $E \in \mathcal{L}(M, W)$. Or. [Req range S Finide] Let $B_{\text{range }S} = (Sv_1, ..., Sv_n)$. Then $V = \text{span}(v_1, ..., v_n) \oplus \text{null } S$. Define $E \in \mathcal{L}(\text{range } S, W)$ by $E(Sv_i) = Tv_i$. Extend to $E \in \mathcal{L}(M, W)$. Hence $\forall v = \sum_{i=1}^{n} a_i v_i + u \in V$, $(\exists ! u \in \text{null } S \subseteq \text{null } T)$, $Tv = \sum_{i=1}^{n} a_i T v_i + 0 = E(\sum_{i=1}^{n} a_i S v_i + 0)$. **Coro:** [Reg W Finide] Supp null S = null T. We show $\exists \text{ inv } E \in \mathcal{L}(M, W), T = ES$. Redefine $E \in \mathcal{L}(M, W)$ by $E(Tv_i) = Sv_i$, $E(w_i) = x_i$, for each Tv_i and w_i . Where: Let $B_{\text{range }T} = (Tv_1, ..., Tv_m), B_W = (Tv_1, ..., Tv_m, w_1, ..., w_n), B_U = (v_1, ..., v_m).$ Now $V = U \oplus \text{null } T = U \oplus \text{null } S \Rightarrow B_{\text{range } S} = (Sv_1, \dots, Sv_m)$. Let $B_M = (Sv_1, \dots, Sv_m, x_1, \dots, x_n)$. \square **25** Supp $S \in \mathcal{L}(Y, W), T \in \mathcal{L}(V, W),$ and range $T \subseteq \text{range } S.$ Prove $\exists E \in \mathcal{L}(V, Y), T = SE.$ **Solus**: Let $Y = U \oplus \text{null } S$ $\Rightarrow S|_{U}: U \rightarrow \operatorname{range} S \text{ is iso. Becs } (S|_{U})^{-1}: \operatorname{range} S \rightarrow U.$ $\begin{array}{c|c} U_1 \xrightarrow{inv} \operatorname{range} S \\ | & | & | & | \\ \Delta \xrightarrow{inv} \operatorname{range} S |_{\Delta} \\ \oplus & \cup \\ U_{1\Delta} \xrightarrow{inv} \operatorname{range} T \xrightarrow{inv} U_2 \\ & & \square \end{array}$ Define $E = (S|_U)^{-1}T = (S|_U)^{-1}|_{\text{range }T}T \in \mathcal{L}(V, U) \subseteq \mathcal{L}(V, Y).$ Comment: Let $U_1 = U$. Let $U_2 \oplus \text{null } T = V$. Let $U_{1\Delta} = \operatorname{range}(S|_{U_1})^{-1}|_{\operatorname{range} T} \subseteq U_1 = \Delta \oplus U_{1\Delta}$. Or. Let $U_{1\Delta} = \text{range } E|_{U_2}$. Let $\Delta \oplus \text{range } E|_{U_2} = U_1$. [Req range T Finide] Let $B_{\text{range }T}=(Tv_1,\ldots,Tv_n)$. Now $B_{U_2}=(v_1,\ldots,v_n)$. Let $S(u_i) = Tv_i$ for each Tv_i . Define E with each $Ev_i = u_i$, Ex = 0 for $x \in \text{null } T$. **COMMENT**: $\lceil Req \ V \ Finide \rceil$ Note that dim $U_2 \leq \dim U_1 \Longrightarrow \dim \operatorname{null} T = p \geq q = \dim \operatorname{null} S$. Let $B_{\text{null }T}=(x_1,\ldots,x_p), B_{\text{null }S}=(y_1,\ldots,y_q).$ Redefine $E:v_i\mapsto u_i,\ x_k\mapsto y_k,\ x_i\mapsto 0,$ for each $i \in \{1, ..., \dim U_2\}, k \in \{1, ..., \dim \operatorname{null} S\} = K, j \in \{1, ..., \dim \operatorname{null} T\} \setminus K$. Note that $(u_1, ..., u_n)$ is liney indep. Let $X = \text{span}(x_1, ..., x_n) \oplus \text{span}(v_1, ..., v_n)$. Now $E|_X$ is inje, but cannot be re-extend to inv $E \in \mathcal{L}(V, Y)$ suth T = SE.

• Note: $\operatorname{null} T = \operatorname{null} S \Rightarrow E : Sv \mapsto Tv$ and $E^{-1} : Tv \mapsto Sv$ well-defined \Rightarrow range T, range S iso. While range $T = \operatorname{range} S \not\Rightarrow \operatorname{null} T$, $\operatorname{null} S$ iso. Exa. Backwd shift optor and id optor on \mathbf{F}^{∞} .

Redefine *E* by $Ev_i = u_i$, $Ex_j = y_j$ for each v_i and x_j . Then $E \in \mathcal{L}(V, Y)$ is inv.

Coro: $[Req\ V\ Finide\]$ If range $T=\mathrm{range}\ S$, then $\dim\mathrm{null}\ T=\dim\mathrm{null}\ S=p$.

• (3.D.6) Supp V , W are finide, and S , $T \in \mathcal{L}(V, W)$, and $\dim \text{null } S = \dim \text{null } T = n$. Prove $S = E_2 T E_1$, $\exists inv E_1 \in \mathcal{L}(V)$, $E_2 \in \mathcal{L}(W)$.	
Solus: Define $E_1: v_i \mapsto r_i$; $u_j \mapsto s_j$; for each $i \in \{1,, m\}, j \in \{1,, n\}$. Define $E_2: Tv_i \mapsto Sr_i$; $x_j \mapsto y_j$; for each $i \in \{1,, m\}, j \in \{1,, n\}$. Where:	
Let $B_{\text{range}T} = (Tv_1,, Tv_m); \ B_{\text{range}S} = (Sr_1,, Sr_m).$ Let $B_W = (Tv_1,, Tv_m, x_1,, x_p); \ B'_W = (Sr_1,, Sr_m, y_1,, y_p).$ Let $B_{\text{null}T} = (u_1,, u_n); \ B_{\text{null}S} = (s_1,, s_n).$ Thus $B_V = (v_1,, v_m, u_1,, u_n); \ B'_V = (r_1,, r_m, s_1,, s_n).$ $\therefore E_1, E_2 \text{ are inv}$ and $S = E_2 T E_1.$	
28 Supp $T \in \mathcal{L}(V, W)$. Let $(Tv_1,, Tv_m)$ be a bss of range T and each $w_i = Tv_i$.	
(a) Prove $\exists \varphi_1, \dots, \varphi_m \in \mathcal{L}(V, \mathbf{F})$ suth $\forall v \in V, Tv = \varphi_1(v)w_1 + \dots + \varphi_m(v)w_m$.	
(b) [4E 3.F.5] $\forall v \in V, \exists ! \varphi_i(v) \in \mathbf{F}, Tv = \varphi_1(v)w_1 + \dots + \varphi_m(v)w_m$. Thus defining each $\varphi_i : V \to \mathbf{F}$. Show each $\varphi_i \in \mathcal{L}(V, \mathbf{F})$.	
SOLUS: The solus to (b) with (b) itself is another solus to (a).	
(a) $\operatorname{span}(v_1, \dots, v_m) \oplus \operatorname{null} T = V \Rightarrow \forall v \in V, \exists ! a_i \in F, u \in \operatorname{null} T, v = \sum_{i=1}^m a_i v_i + u.$	
Define $\varphi_i \in \mathcal{L}(V, \mathbf{F})$ by $\varphi_i(v_j) = \delta_{i,j}$, $\varphi_i(u) = 0$ for all $u \in \text{null } T$.	
Linity: $\forall v, w \in V \ [\exists ! a_i, b_i \in F], \lambda \in F, \varphi_i(v + \lambda w) = a_i + \lambda b_i = \varphi(v) + \lambda \varphi(w).$	
(b) $\sum_{i=1}^{m} \varphi_i(u + \lambda v) w_i = T(u + \lambda v) = Tu + \lambda Tv = \left(\sum_{i=1}^{m} \varphi_i(u) w_i\right) + \lambda \left(\sum_{i=1}^{m} \varphi_i(v) w_i\right).$	
30 Supp $\varphi, \beta \in \mathcal{L}(V, \mathbf{F})$ and $\text{null } \varphi = \text{null } \beta = \eta$. Prove $\exists c \in \mathbf{F}, \varphi = c\beta$.	
SOLUS: If $\eta = V$, then $\varphi = \beta = 0$, done. Now by Exe (29),	
$\varphi(u) \neq 0 \iff V = \text{null } \varphi \oplus \text{span}(u) \iff V = \text{null } \beta \oplus \text{span}(u) \iff \beta(u) \neq 0.$	
Note that $\forall v \in V, \exists ! u_0 \in \eta, \ a_v \in F, v = u_0 + a_v u$ $\Rightarrow \varphi(u_0 + a_v u) = a_v \varphi(u), \ \beta(u_0 + a_v u) = a_v \beta(u).$ Let $c = \frac{\varphi(u)}{\beta(u)} \in F \setminus \{0\}.$	
$ \rightarrow \varphi(u_0 + u_v u) - u_v \varphi(u), \ \rho(u_0 + u_v u) - u_v \rho(u). $	
• (4E 3.F.6) Supp $\varphi, \beta \in \mathcal{L}(V, \mathbf{F})$. Prove $\text{null } \beta \subseteq \text{null } \varphi \Longleftrightarrow \varphi = c\beta, \exists c \in \mathbf{F}$.	
CORO: $\operatorname{null} \varphi = \operatorname{null} \beta \Longleftrightarrow \varphi = c\beta$, $\exists c \in \mathbb{F} \setminus \{0\}$. Solus: Using Exe (29) and (30).	
(a) If $\varphi = 0$, then done. Othws, supp $u \notin \text{null } \varphi \supseteq \text{null } \beta$.	· \
Now $V = \text{null } \varphi \oplus \text{span}(u) = \text{null } \beta \oplus \text{span}(u)$. By $[1.C \text{ Tips } (1)]$, $\text{null } \varphi = \text{null } \beta$. Let $c = \frac{\varphi(u)}{\beta(u)}$	$\frac{u}{u}$.
Or. We discuss in two cases. If $\operatorname{null} \beta = \operatorname{null} \varphi$, or if $\varphi = 0$, then done. Othws,	,)
$\exists u' \in \text{null } \varphi \setminus \text{null } \beta, \exists u \notin \text{null } \varphi \supseteq \text{null } \beta \Rightarrow V = \text{null } \beta \oplus \text{span}(u') = \text{null } \beta \oplus \text{span}(u).$	
$\forall v \in V, v = w + au = w' + bu', \exists ! w, w' \in \text{null } \beta$ $\text{Thus } \varphi(w + au) = a\varphi(u), \ \beta(w' + bu) = b\beta(u').$ $\text{Let } c = \frac{a\varphi(u)}{b\beta(u')} \in \mathbb{F} \setminus \{0\}. \text{ Done.}$	
NOTICE that by (b) below, we have $\operatorname{null} \varphi \subseteq \operatorname{null} \beta$, ctradic the asum.	
(b) If $c = 0$, then $\text{null } \varphi = V \supseteq \text{null } \beta$, done. Othws, becs $v \in \text{null } \beta \Longleftrightarrow v \in \text{null } \varphi$.	
OR. By Exe (24), $\operatorname{null} \beta \subseteq \operatorname{null} \varphi \Longleftrightarrow \exists E \in \mathcal{L}(\mathbf{F}), \varphi = E \circ \beta.$ [If E is inv. Then $\operatorname{null} \beta = \operatorname{null} \varphi.$] Now $\exists E \in \mathcal{L}(\mathbf{F}), \varphi = E \circ \beta \Longleftrightarrow \exists c = E(1) \in \mathbf{F}, \varphi = c\beta.$ [E is inv $\Longleftrightarrow E(1) \neq 0 \Longleftrightarrow c \neq 0.$]	

• **Note For** [3.30, 32]: *matrix of span*

Supp $L_{\alpha} = (\alpha_1, ..., \alpha_n)$ and $L_{\beta} = (\beta_1, ..., \beta_m)$ are in a vecsp V. Let each $\alpha_k = A_{1,k}\beta_1 + \cdots + A_{m,k}\beta_m$, forming $A = \mathcal{M}(\operatorname{span} L_\beta \supseteq L_\alpha) \in \mathbf{F}^{m,n}$.

Which is the matrix of span. Then $(\beta_1 \cdots \beta_m) \begin{pmatrix} A_{1,1} \cdots A_{1,n} \\ \vdots & \ddots & \vdots \\ A_{m-1} \cdots A_{m-n} \end{pmatrix} = (\alpha_1 \cdots \alpha_n).$

(a) Supp m = n. If $(A_{\cdot,1}, \dots, A_{\cdot,n})$ is a bss of $\mathbf{F}^{n,1}$. We show L_{α} liney indep $\iff L_{\beta}$ liney indep.

(\Leftarrow) Immed. (\Rightarrow) Asum L_{β} is liney dep and $\beta_i = c_1\beta_1 + \cdots + c_{i-1}\beta_{i-1}$. By ctradic.

(b) Supp $m \ge n$. If L_{β} liney indep. We show $(A_{\cdot,1},...,A_{\cdot,n})$ liney indep $\iff L_{\alpha}$ liney indep.

(⇒) Immed. (⇐) By ctradic.

Note: $\mathcal{M}(\operatorname{span} L_{\beta} \supseteq L_{\alpha}) = \mathcal{M}(I, L_{\alpha}, L_{\beta}) \iff L_{\alpha}, L_{\beta} \text{ liney indep} \Rightarrow (A_{\cdot,1}, \dots, A_{\cdot,n}) \text{ liney indep}.$ Where *I* is the id optor restr to span $L_{\alpha} \subseteq \text{span } L_{\beta}$.

(c) Supp m < n. Then $(A_{.1}, ..., A_{.n})$ is liney dep, so is L_{α} .

Supp $T \in \mathcal{L}(V, W)$ and $B_V = (v_1, \dots, v_m), B_W = (w_1, \dots, w_n).$

Then $\mathcal{M}(T, B_V, B_W) = \mathcal{M}(\operatorname{span} B_W \supseteq (Tv_1, \dots, Tv_m))$. See also (4E 3.D.23).

• **Note For Trapose:** [3.F.33] Define $\mathcal{T}: A \to A^t$. By [3.111], \mathcal{T} is liney. Becs $(A^t)^t = A$.

 $\mathcal{T}^2 = I$, $\mathcal{T} = \mathcal{T}^{-1} \Rightarrow \mathcal{T}$ is iso of $\mathbf{F}^{m,n}$ onto $\mathbf{F}^{n,m}$. Define $\mathcal{C}_k : A \to A_{\cdot,k}$, $\mathcal{R}_i : A \to A_{i,\cdot}$, $\mathcal{E}_{i,k} : A \to A_{i,k}$.

Now we show (a) $\mathcal{T}\mathcal{R}_i = \mathcal{C}_i \mathcal{T}$, (b) $\mathcal{T}\mathcal{C}_k = \mathcal{R}_k \mathcal{T}$, and (c) $\mathcal{T}\mathcal{E}_{i,k} = \mathcal{E}_{k,i} \mathcal{T}$.

So that $\mathcal{TC}_k\mathcal{T} = \mathcal{R}_k$, $\mathcal{TR}_i\mathcal{T} = \mathcal{C}_i$, and $\mathcal{TE}_{i,k}\mathcal{T} = \mathcal{E}_{k,i}$.

 $\operatorname{Let} A = \begin{pmatrix} A_{1,1} & \cdots & A_{1,n} \\ \vdots & \ddots & \vdots \\ A_{m,1} & \cdots & A_{m,n} \end{pmatrix} \Rightarrow A^t = \begin{pmatrix} A_{1,1} & \cdots & A_{m,1} \\ \vdots & \ddots & \vdots \\ A_{1,n} & \cdots & A_{m,n} \end{pmatrix}. \quad \begin{array}{c} \operatorname{Note that} (A_{j,k})^t = A_{j,k} = (A^t)_{k,j}. \text{ Thus (c) holds.} \\ \operatorname{And} (A_{\cdot,k})^t = (A_{1,k} & \cdots & A_{m,k}) = (A^t_{k,1} & \cdots & A^t_{k,m}) = (A^t)_{k,k}. \\ \Rightarrow \text{(b) holds. Simlr for (a).} \end{array}$

• Note For [3.47]: $(AC)_{i,k} = \sum_{r=1}^{n} A_{i,r} C_{r,k} = \sum_{r=1}^{n} (A_{i,r})_{1,r} (C_{\cdot,k})_{r,1} = (A_{i,r} C_{\cdot,k})_{1,1} = A_{i,r} C_{\cdot,k}$

• Note For [3.49]: $[(AC)_{\cdot,k}]_{i,1} = (AC)_{i,k} = \sum_{r=1}^{n} A_{j,r} C_{r,k} = \sum_{r=1}^{n} A_{j,r} (C_{\cdot,k})_{r,1} = (AC_{\cdot,k})_{i,1}$

• Exe 10: $[(AC)_{j,\cdot}]_{1,k} = (AC)_{j,k} = \sum_{r=1}^{n} A_{j,r} C_{r,k} = \sum_{r=1}^{n} (A_{j,\cdot})_{1,r} C_{r,k} = (A_{j,\cdot}C)_{1,k}$

• Note: Let $C = \mathcal{M}(T) \in \mathbf{F}^{n,p}$, $A = \mathcal{M}(S) \in \mathbf{F}^{m,n}$ wrto std bses, where $U = \mathbf{F}^p$, $V = \mathbf{F}^n$, $W = \mathbf{F}^m$.

For [3.49], $\mathcal{M}(Te_k, B_V) = C_{\cdot,k} \Rightarrow \mathcal{M}(S(Te_k), B_W) = AC_{\cdot,k}$, $\not \subset \mathcal{M}(ST)(e_k), B_W = (AC)_{\cdot,k}$

For Exe (10), $(AC)_{i,\cdot} = \left[((AC)^t)_{\cdot,i} \right]^t = (C^t(A^t)_{\cdot,i})^t = ((A^t)_{\cdot,i})^t C = A_{i,\cdot} C$

• [4E 3.51] Supp $C \in \mathbf{F}^{m,c}$. (a) For k = 1, ..., p, $(CR)_{\cdot,k} = C_{\cdot,\cdot}R_{\cdot,k} = \sum_{r=1}^{c} C_{\cdot,r}R_{r,k} = R_{1,k}C_{\cdot,1} + \cdots + R_{c,k}C_{\cdot,c}$ $R \in \mathbf{F}^{c,p}$. (b) For j = 1, ..., m, $(CR)_{i,\cdot} = C_{i,\cdot}R_{\cdot,\cdot} = \sum_{r=1}^{c} C_{i,r}R_{r,\cdot} = C_{i,1}R_{1,\cdot} + \cdots + C_{i,c}R_{c,\cdot}$

• Note For [3.52]: $A \in \mathbb{F}^{m,n}$, $c \in \mathbb{F}^{n,1} \Rightarrow Ac \in \mathbb{F}^{m,1}$. By $[4E \ 3.51(a)]$, $(Ac)_{\cdot,1} = c_1 A_{\cdot,1} + \cdots + c_n A_{\cdot,n}$.

Or. $: (Ac)_{j,1} = \sum_{r=1}^{n} A_{j,r} c_{r,1} = \left[\sum_{r=1}^{n} (A_{\cdot,r} c_{r,1}) \right]_{j,1} = (c_1 A_{\cdot,1} + \dots + c_n A_{\cdot,n})_{j,1}$

 $Ac = A_{..}c_{.1} = \sum_{r=1}^{n} A_{.r}c_{r,1} = c_1A_{.1} + \dots + c_nA_{.n}$ Or. $(Ac)_{i,1} = (Ac)_{i,..} = A_{i,..}c \in F$.

Or. Let $B_V = (v_1, ..., v_n)$. Now $Ac = \mathcal{M}(Tv, B_W) = \mathcal{M}(T(c_1v_1 + ... + c_nv_n)) = c_1A_{.1} + ... + c_nA_{.n}$. \Box

By $[4E \ 3.51(b)]$, $(aC)_{1,\cdot} = a_1C_{1,\cdot} + \cdots + a_nC_{n,\cdot}$. • EXE 11: $a \in \mathbf{F}^{1,n}, C \in \mathbf{F}^{n,p} \Rightarrow aC \in \mathbf{F}^{1,p}$. Or. $: (aC)_{1,k} = \sum_{r=1}^{n} a_{1,r}C_{r,k} = \left[\sum_{r=1}^{n} a_{1,r}(C_{r,\cdot})\right]_{1,k} = (a_1C_{1,\cdot} + \dots + a_nC_{n,\cdot})_{1,k}$ $\therefore aC = a_{1,r}C_{.r} = \sum_{r=1}^{n} a_{1,r}C_{r,r} = a_{1}C_{1,r} + \dots + a_{n}C_{n,r} \text{ OR. } (aC)_{1,k} = (aC)_{.k} = aC_{.k} \in \mathbf{F}.$ OR. $aC = ((aC)^t)^t = (C^t a^t)^t = [a_1^t (C^t)_{\cdot,1} + \dots + a_n^t (C^t)_{\cdot,n}]^t = a_1 C_{1,\cdot} + \dots + a_n C_{n,\cdot}$ • CR Factoriz Supp non0 $A \in \mathbb{F}^{m,n}$. Prove, with p below, that $\exists C \in \mathbb{F}^{m,p}$, $R \in \mathbb{F}^{p,n}$, A = CR. (a) $Supp \operatorname{col} A = \operatorname{span}(A_{\cdot,1}, \dots, A_{\cdot,n}) \subseteq \mathbf{F}^{m,1}$, $\dim \operatorname{col} A = c$, the col rank. Let p = c. (b) Supp row $A = \text{span}(A_{1,\cdot}, \dots, A_{m,\cdot}) \subseteq \mathbf{F}^{1,n}$, dim row A = r, the row rank. Let p = r. **Solus**: Using [4E 3.51]. Notice that $A \neq 0 \Rightarrow c, r \geqslant 1$. (a) Reduce to bss $B_C = (C_{\cdot,1}, \cdots, C_{\cdot,c})$, forming $C \in \mathbf{F}^{m,c}$. Then $\forall k \in \{1, \dots, n\}$, $A_{\cdot,k} = R_{1,k}C_{\cdot,1} + \dots + R_{c,k}C_{\cdot,c} = (CR)_{\cdot,k}$, $\exists ! R_{1,k}, \dots, R_{c,k} \in \mathbf{F}$, forming $R \in \mathbf{F}^{c,n}$. Thus A = CR. (b) Reduce to bss $B_R = (R_{1,r}, \dots, R_{r,r})$, forming $R \in \mathbb{F}^{r,n}$. Then $\forall j \in \{1, \dots, m\}$, $A_{i,\cdot} = C_{i,1}R_{1,\cdot} + \dots + C_{i,r}R_{r,\cdot} = (CR)_{i,\cdot}, \exists ! C_{i,1}, \dots, C_{i,r} \in \mathbf{F}, \text{ forming } C \in \mathbf{F}^{m,r}. \text{ Thus } A = CR.$ • EXA: $\begin{pmatrix} 10 & 7 & 4 & 1 \\ 26 & 19 & 12 & 5 \\ 46 & 33 & 20 & 7 \end{pmatrix} \xrightarrow{\text{(I)}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 10 & 7 & 4 & 1 \\ 26 & 19 & 12 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 4 & 1 \\ 12 & 5 \end{pmatrix} \begin{pmatrix} 3 & 2 & 1 & 0 \\ -2 & -1 & 0 & 1 \end{pmatrix}$ $\stackrel{\text{(II)}}{=\!=\!=} \begin{pmatrix} 7 & 4 \\ 19 & 12 \\ 33 & 20 \end{pmatrix} \begin{pmatrix} 2 & 1 & 0 & -1 \\ -1 & 0 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 7 & 4 \\ 19 & 12 \end{pmatrix} \begin{pmatrix} 2 & 1 & 0 & -1 \\ -1 & 0 & 1 & 2 \end{pmatrix}.$ • COL RANK = Row RANK Using CR Factoriz. Let A = CY by (a) and A = XR by (b). (a) $A_{i,\cdot} = (CY)_{i,\cdot} = C_{i,\cdot}Y = C_{i,1}Y_{1,\cdot} + \dots + C_{i,c}Y_{c,\cdot} \in \text{row}A = \text{span}(A_{1,\cdot}, \dots, A_{n,\cdot}) = \text{span}(Y_{1,\cdot}, \dots, Y_{c,\cdot}).$ (b) $A_{\cdot,k} = (XR)_{\cdot,k} = XR_{\cdot,k} = R_{1,k}X_{\cdot,1} + \dots + R_{r,k}X_{\cdot,r} \in colA = span(A_{\cdot,1},\dots,A_{\cdot,m}) = span(X_{\cdot,1},\dots,X_{\cdot,r}).$ Thus (a) $\dim \operatorname{row} A = r \leq c = \dim \operatorname{col} A$, and (b) $\dim \operatorname{col} A = c \leq r = \dim \operatorname{row} A$. OR. Apply (a) to $A^t \in \mathbf{F}^{n,m} \Rightarrow \dim \operatorname{row} A^t = \dim \operatorname{col} A = c \leqslant r = \dim \operatorname{row} A = \dim \operatorname{col} A^t$. • (4E 16) Supp $A \in \mathbb{F}^{m,n} \setminus \{0\}$. Prove $\operatorname{rank} A = 1 \Rightarrow \exists c_j, d_k \in \mathbb{F}$, each $A_{j,k} = c_j \cdot d_k$. Solus: Let $c_j = \frac{A_{j,1}}{A_{1,1}} = \frac{A_{j,2}}{A_{1,2}} = \dots = \frac{A_{j,n}}{A_{1,n}}, \quad d'_k = \frac{A_{1,k}}{A_{1,1}} = \frac{A_{2,k}}{A_{2,1}} = \dots = \frac{A_{m,k}}{A_{m,1}}.$ $\Rightarrow A_{i,k} = d_k' A_{j,1} = c_j A_{1,k} = c_j d_k' A_{1,1} = c_j d_k$, where $d_k = d_k' A_{1,1}$. Or. Using CR Factoriz, immed **5** Supp $B_W = (w_1, ..., w_n)$ and V is finide. Supp $T \in \mathcal{L}(V, W)$. Prove $\exists B_V = (v_1, ..., v_m), \ \mathcal{M}(T, B_V, B_W)_{1, \cdot} = (0 \ \cdots \ 0) \ or \ (1 \ 0 \ \cdots \ 0).$ Solus: Let (u_1, \ldots, u_n) be a bss of V. Let $A = \mathcal{M}(T, (u_1, \ldots, u_n), B_W)$. If $A_{1,\cdot}=0$, then $B_V=\left(u_1,\ldots,u_n\right)$ and done. Othws, supp $A_{1,k}\neq 0$. $\text{Let } v_1 = \frac{u_k}{A_{1,k}} \Rightarrow Tv_1 = 1w_1 + \frac{A_{2,k}}{A_{1,k}}w_2 + \dots + \frac{A_{n,k}}{A_{1,k}}w_n. \ \left| \begin{array}{l} \text{Let } v_{j+1} = u_j - A_{1,j}v_1 \text{ for each } j \in \{1,\dots,k-1\}. \\ \text{Let } v_i = u_i - A_{1,i}v_1 \text{ for } i \in \{k+1,\dots,n\}. \end{array} \right|.$ NOTICE that $Tu_i = A_{1,i}w_1 + \dots + A_{n,i}w_n$. \mathbb{X} Each $u_i \in \text{span}(v_1, \dots, v_n) = V$. Let $B_V = (v_1, \dots, v_n)$. Or. Using Exe (4). Let B_W , be the B_V . Now $\exists B_{V'}$, $\mathcal{M}(T', B_W, B_{V'})_{\cdot,1} = \begin{pmatrix} 1 & 0 & \cdots & 0 \end{pmatrix}^t$ or $\begin{pmatrix} 0 & \cdots & 0 \end{pmatrix}^t$. Which is equiv to $\exists B_V \text{ [Using (3.F.31)] suth } \mathcal{M}(T, B_V, B_W)_{1,\cdot} = \begin{pmatrix} 1 & 0 & \cdots & 0 \end{pmatrix} \text{ or } \begin{pmatrix} 0 & \cdots & 0 \end{pmatrix}.$

```
Prove \exists B_V, B_W, all ent of A = \mathcal{M}(T, B_V, B_W) equal 1.
Solus: Let B_{\text{null }T} = (u_2, \dots, u_n). Extend to a bss (u_1, u_2, \dots, u_n) of V.
             Extend to (Tu_1, w_2, \dots, w_m) a bss of W. Let w_1 = Tu_1 - w_2 - \dots - w_m \Rightarrow B_W = (w_1, \dots, w_m).
             Let v_1 = u_1, v_i = u_1 + u_i \Rightarrow B_V = (v_1, ..., v_n).
                                                                                                                                                               Or. Supp B_{\text{range }T} = (w). By Note For (2.C.15), \exists B_W = (w_1, ..., w_m), \ w = w_1 + ... + w_m.
             By [2.C Tips], \exists a bss (u_1, ..., u_n) of V suth each u_k \notin \text{null } T.
             Now each Tu_k \in \text{range } T = \text{span}(w) \Rightarrow Tu_k = \lambda_k w, \exists \lambda_k \in \mathbb{F} \setminus \{0\}. Let each v_k = \lambda_k^{-1} u_k.
                                                                                                                                                               • (10.A.3, Or 4E 3.D.19) Supp V is finide and T \in \mathcal{L}(V).
  Supp A = \mathcal{M}(T) wrto any B_V. Prove T = \lambda I, \exists \lambda \in \mathbf{F}.
Solus: We show (v, Tv) liney dep by ctradic. Let B_V = (v, Tv, u_1, \dots, u_m), B'_V = (2v, Tv, u_1, \dots, u_m).
             Then Tv = 1 \cdot Tv = 2 \cdot Tv = T(2v) \Rightarrow Tv = 0. Ctradic. Thus Tv = \lambda_v v. Simly to (4E 3.A.11). \square
   OR. Fix one B_V = (v_1, \dots, v_m) and then (v_1, \dots, \frac{1}{2}v_k, \dots, v_m) is also a bss for any given k \in \{1, \dots, m\}.
   Fix one k. Now T(\frac{1}{2}v_k) = A_{1,k}v_1 + \dots + A_{k,k}(\frac{1}{2}v_k) + \dots + A_{m,k}v_m
   \Rightarrow Tv_k = 2A_{1,k}v_1 + \dots + A_{k,k}v_k + \dots + 2A_{m,k}v_m = A_{1,k}v_1 + \dots + A_{k,k}v_k + \dots + A_{m,k}v_m.
   Then A_{j,k} = 0 for all j \neq k. Thus each Tv_k = A_{k,k}v_k. We show A_{k,k} = A_{j,j} for all j \neq k. Fix one such pair.
   Consider B'_{V} = (v'_{1}, ..., v'_{i}, ..., v'_{m}), where v'_{i} = v_{k}, v'_{k} = v_{i} and v'_{i} = v_{i} for all i \in \{1, ..., m\} \setminus \{j, k\}.
   Now T(v'_k) = A_{1,k}v'_1 + \dots + A_{k,k}v'_k + \dots + A_{m,k}v'_m = A_{k,k}v'_k = A_{k,k}v_j, while T(v'_k) = T(v_j) = A_{j,j}v_j. \square
• Tips 1: Supp p \in \mathcal{P}(\mathbf{F}^n). Prove \mathcal{M}(p(T_1, ..., T_n)) = p(\mathcal{M}(T_1), ..., \mathcal{M}(T_n)).
               Where the liney maps T_1, ..., T_n are suth p(T_1, ..., T_n) makes sense. See [5.16,17,20].
Solus: Supp the poly p is defined by p(x_1, ..., x_n) = \sum_{k_1, ..., k_n} \alpha_{k_1, ..., k_n} \prod_{i=1}^n x_i^{k_i}.
             Note that \mathcal{M}(T^x S^y) = \mathcal{M}(T)^x \mathcal{M}(S)^y; \mathcal{M}(T^x + S^y) = \mathcal{M}(T)^x + \mathcal{M}(S)^y.
             Then \mathcal{M}(p(T_1,\ldots,T_n)) = \mathcal{M}(\sum_{k_1,\ldots,k_n} \alpha_{k_1,\ldots,k_n} \prod_{i=1}^n T_i^{k_i})
                                                 = \sum_{k_1,\dots,k_n} \alpha_{k_1,\dots,k_n} \prod_{i=1}^n \mathcal{M}(T_i^{k_i}) = p(\mathcal{M}(T_1),\dots,\mathcal{M}(T_n)).
                                                                                                                                                               • Coro: Supp \tau is an algebraic property. Then \tau holds for liney maps \iff \tau holds for matrices.
              Supp \alpha_1, ..., \alpha_n are disti with each \alpha_k \in \{1, ..., n\}.
              Now p(T_1, ..., T_n) = p(T_{\alpha_1}, ..., T_{\alpha_n}) \iff p(\mathcal{M}(T_1), ..., \mathcal{M}(T_n)) = p(\mathcal{M}(T_{\alpha_1}), ..., \mathcal{M}(T_{\alpha_n})).
• Tips 2: Supp T \in \mathcal{L}(V, W), B_V = (v_1, ..., v_n), B_W = (w_1, ..., w_m).
               Let L = (Tv_{\alpha_1}, \dots, Tv_{\alpha_k}), L_{\mathcal{M}} = (A_{\cdot, \alpha_1}, \dots, A_{\cdot, \alpha_k}), where each \alpha_i \in \{1, \dots, n\}.
               (a) Show [P] L is liney indep \iff L_{\mathcal{M}} is liney indep. [Q]
               (b) Show [P] span L = W \iff \text{span } L_{\mathcal{M}} = \mathbf{F}^{m,1}. [Q]
                                                                                                                         [ Let A = \mathcal{M}(T, B_V, B_W).]
Solus: (a) Note that \mathcal{M}: Tv_k \to A_{\cdot,k} is iso. of span L onto span L_{\mathcal{M}}. By (3.B.9).
             (b) Reduce to liney indep lists. By (a) and [2.39].
                                                                                                                                                                Or. c_1 T v_{\alpha_1} + \dots + c_k T v_{\alpha_k} = c_1 (A_{1,\alpha_1} w_1 + \dots + A_{m,\alpha_1} w_m) + \dots + c_k (A_{1,\alpha_k} w_1 + \dots + A_{m,\alpha_k} w_m)
                                           = (c_1 A_{1,\alpha_1} + \dots + c_k A_{1,\alpha_k}) w_1 + \dots + (c_1 A_{m,\alpha_1} + \dots + c_k A_{m,\alpha_k}) w_m.
          And c_1 A_{\cdot,\alpha_1} + \dots + c_k A_{\cdot,\alpha_k} = c_1 \begin{pmatrix} A_{1,\alpha_1} \\ \vdots \\ A_{m,\alpha_1} \end{pmatrix} + \dots + c_k \begin{pmatrix} A_{1,\alpha_k} \\ \vdots \\ A_{m,\alpha_k} \end{pmatrix} = \begin{pmatrix} c_1 A_{1,\alpha_1} + \dots + c_k A_{1,\alpha_k} \\ \vdots \\ c_1 A_{m,\alpha_k} + \dots + c_k A_{m,\alpha_k} \end{pmatrix}.
```

6 Supp V, W are finide and $T \in \mathcal{L}(V, W)$. Supp dim range T = 1.

```
(a) P \Rightarrow Q: Supp c_1 A_{\cdot,\alpha_1} + \dots + c_k A_{\cdot,\alpha_k} = 0. Let v = c_1 v_{\alpha_1} + \dots + c_k v_{\alpha_k}.
                           Then Tv = (c_1 A_{1,\alpha_1} + \dots + c_k A_{1,\alpha_k}) w_1 + \dots + (c_1 A_{m,\alpha_1} + \dots + c_k A_{m,\alpha_k}) w_m = 0 w_1 + \dots + 0 w_m.
                           Now c_1 T v_{\alpha_1} + \cdots + c_k T v_{\alpha_k} = 0. Then each c_i = 0 \Rightarrow L_{\mathcal{M}} liney indep.
           Q \Rightarrow P : \text{Becs } c_1 T v_{\alpha_1} + \dots + c_k T v_{\alpha_k} = 0. \text{ For each } i \in \{1, \dots, m\}, \ c_1 A_{i, \alpha_1} + \dots + c_k A_{i, \alpha_k} = 0.
                           Which is equiv to c_1 A_{\cdot,\alpha_1} + \cdots + c_k A_{\cdot,\alpha_k} = 0. Thus each c_i = 0 \Rightarrow L liney indep.
           Or. \exists A_{.,\alpha_i} = c_1 A_{.,\alpha_1} + \dots + c_{i-1} A_{.,\alpha_{i-1}}
                   \Leftrightarrow For each i \in \{1, ..., m\}, A_{i,\alpha_i} = c_1 A_{i,\alpha_1} + \cdots + c_{i-1} A_{i,\alpha_{i-1}}
                   \iff Tv_{\alpha_i} = A_{1,\alpha_i}w_1 + \dots + A_{m,\alpha_i}w_m
                                   = (c_1 A_{1,\alpha_1} + \dots + c_{i-1} A_{1,\alpha_{i-1}}) w_1 + \dots + (c_1 A_{m,\alpha_1} + \dots + c_{i-1} A_{m,\alpha_{i-1}}) w_m
                   \iff \exists \, Tv_{\alpha_i} = c_1 Tv_{\alpha_1} + \dots + c_{j-1} Tv_{\alpha_{j-1}}.
    (b) Note that each \mathcal{M}(Tv_{\alpha_i}) = A_{\cdot,\alpha_i}
           P \Rightarrow Q: Supp each w_i = Iw_i = J_{1,i}Tv_{\alpha_1} + \cdots + J_{k,i}Tv_{\alpha_k}.
                           \forall a \in \mathbf{F}^{m,1}, \exists ! w = a_1 w_1 + \dots + a_m w_m \in W, \ a = \mathcal{M}(w, B_W).
                           Becs w = a_1(J_{1,1}Tv_{\alpha_1} + \dots + J_{k,1}Tv_{\alpha_k}) + \dots + a_m(J_{1,m}Tv_{\alpha_1} + \dots + J_{k,m}Tv_{\alpha_k})
                                         = (a_1J_{1,1} + \dots + a_mJ_{1,m})Tv_{\alpha_1} + \dots + (a_1J_{k,1} + \dots + a_mJ_{k,m})Tv_{\alpha_k}.
                           Apply \mathcal{M} to both sides, a = c_1 A_{\cdot, \alpha_1} + \cdots + c_k A_{\cdot, \alpha_k}, where each c_i = a_1 J_{i,1} + \cdots + a_m J_{i,m}.
           Q \Rightarrow P: \ \forall w \in W, \exists \, a = \mathcal{M}(w, B_W) \Rightarrow \exists \, c_k \in \mathbf{F}, a = c_1 A_{\cdot, \alpha_1} + \dots + c_k A_{\cdot, \alpha_k} \in \mathbf{F}^{m, 1}
                           \Rightarrow w = (c_1 A_{1,\alpha_1} + \dots + c_k A_{1,\alpha_k}) w_1 + \dots + (c_1 A_{m,\alpha_1} + \dots + c_k A_{m,\alpha_k}) w_m = c_1 T v_{\alpha_1} + \dots + c_k T v_{\alpha_k}.
           \neg Q \Rightarrow \neg P : \exists w \in W, \exists a \in \mathbf{F}^{m,1}, \mathcal{M}(w, B_W) = a, \text{ but } \not\exists (c_1, \dots, c_k) \in \mathbf{F}^k, a = c_1 A_{\cdot, \alpha_1} + \dots + c_k A_{\cdot, \alpha_k}
                                \Rightarrow \nexists (c_1,\ldots,c_k)\in \mathbf{F}^k, w=c_1Tv_{\alpha_1}+\cdots+c_kTv_{\alpha_k}. For if not, ctradic.
Note: Let L = (Tv_1, ..., Tv_n), L_{\mathcal{M}} = (A_{.1}, ..., A_{.n}).
             Then (a*) By [3.B.9, TIPS (4)], T is inje \iff L is liney indep, so is L_{\mathcal{M}}.
             And (b*) T is surj \iff span L = W \iff span L_{\mathcal{M}} = \mathbf{F}^{m,1}.
             Coro: B_{\mathbf{F}^{n,1}} = (A_{\cdot,1}, \cdots, A_{\cdot,n}) \iff T is inje and surj \iff B_{\mathbf{F}^{1,n}} = (A_{\cdot,1}, \cdots, A_{\cdot,n}).
             COMMENT: If T is inv. Then by (a^*, c) or (b^*, d), we have another proof of CORO.
                                  Or. If m = n. Then by [3.118] and one of (a^*, b^*, c, d). Yet another proof.
             (c) T \operatorname{surj} \iff T' \operatorname{inje} \iff (T'(\psi_1), \dots, T'(\psi_m)) liney indep
```

- $\stackrel{\text{(a)}}{\Longleftrightarrow} ((A^t)_{\cdot,1},\cdots,(A^t)_{\cdot,m})$ liney indep in $\mathbf{F}^{n,1}$, so is $(A_{1,\cdot},\cdots,A_{m,\cdot})$ in $\mathbf{F}^{1,n}$.
- (d) T inje \iff T' surj \iff $V' = \text{span}(T'(\psi_1), ..., T'(\psi_m))$ \iff $\mathbf{F}^{n,1} = \operatorname{span}((A^t)_{\cdot,1}, \cdots, (A^t)_{\cdot,m}) \iff \mathbf{F}^{1,n} = \operatorname{span}(A_{1,\cdot}, \cdots, A_{m,\cdot}).$

ENDED

```
• (3.E.2) Supp V_1 \times \cdots \times V_m is finide. Prove each V_i is finide.
Solus: Define each S_k \in \mathcal{L}(V_1 \times \cdots \times V_m, V_k) by S_k(v_1, \dots, v_m) = v_k. By [3.22], range S_k = V_k is finide.
             Or. Denote V_1 \times \cdots \times V_m by U. Denote \{0\} \times \cdots \times \{0\} \times V_i \times \{0\} \cdots \times \{0\} by U_i.
             We show each U_i is iso to V_i. Then U is finide \Longrightarrow its subsp U_i is finide, so is V_i.
               \begin{aligned} & \text{Define } R_i \in \mathcal{L}(V_i, U_i) \text{ by } R_i(u_i) = (0, \dots, 0, u_i, 0, \dots, 0) \\ & \text{Define } S_i \in \mathcal{L}(U, V_i) \text{ by } S_i(u_1, \dots, u_i, \dots, u_m) = u_i \end{aligned} \right\} \Rightarrow \left\{ \begin{array}{l} R_i S_j|_{U_j} = \delta_{i,j} I_{U_j}, \\ S_i R_j = \delta_{i,j} I_{V_j}. \end{array} \right. 
                                                                                                                                                                  COMMENT: The key tool in solus of (3.E.4,5)
18 Show V and \mathcal{L}(\mathbf{F}, V) are iso vecsps.
Solus: Define \Psi \in \mathcal{L}(V, \mathcal{L}(F, V)) by \Psi(v) = \Psi_v; where \Psi_v \in \mathcal{L}(F, V) and \Psi_v(\lambda) = \lambda v.
             (a) \Psi(v) = \Psi_v = 0 \Rightarrow \forall \lambda \in \mathbf{F}, \Psi_v(\lambda) = \lambda v = 0 \Rightarrow v = 0. Now \Psi inje.
             (b) \forall T \in \mathcal{L}(\mathbf{F}, V), let v = T(1) \Rightarrow T(\lambda) = \lambda v = \Psi_v(\lambda), \forall \lambda \in \mathbf{F} \Rightarrow T = \Psi(T(1)) \in \text{range } \Psi. \square
             Or. Define \Phi \in \mathcal{L}(\mathcal{L}(F, V), V) by \Phi(T) = T(1).
             (a) Supp \Phi(T) = 0 = T(1) = \lambda T(1) = T(\lambda), \forall \lambda \in \mathbb{F} \Rightarrow T = 0. Now \Phi inje.
             (b) For any v \in V, define T \in \mathcal{L}(\mathbf{F}, V) by T(\lambda) = \lambda v. Then \Phi(T) = T(1) = v \in \text{range }\Phi.
COMMENT: \Phi = \Psi^{-1}. This is a countexa of the stmt that \mathcal{L}(V, W) and \mathcal{L}(W, V) are iso if infinde. See (3.F).
• (3.E.6) Supp m \in \mathbb{N}^+. Prove V^m and \mathcal{L}(\mathbb{F}^m, V) are iso.
                                                                                                                          By (3.D.18, 3.E.4), immed.
Solus: Or. Define T:(v_1,\ldots,v_m)\to\varphi, where \varphi:(a_1,\ldots,a_m)\mapsto a_1v_1+\cdots+a_mv_m.
   (a) Supp T(v_1,\ldots,v_m)=0. Then \forall (a_1,\ldots,a_n)\in \mathbb{F}^m, \varphi(a_1,\ldots,a_m)=a_1v_1+\cdots+a_mv_m=0
         For each k, let a_k = 1, a_j = 0 for all j \neq k. Then each v_k = 0 \Rightarrow (v_1, \dots, v_m) = 0. Thus T is inje.
   (b) Supp \psi \in \mathcal{L}(\mathbf{F}^m, V). Let (e_1, \dots, e_m) be std bss of \mathbf{F}^m. Then \forall (b_1, \dots, b_n) \in \mathbf{F}^m,
          \left[T\left(\psi(e_1),\ldots,\psi(e_m)\right)\right](b_1,\ldots,b_m)=b_1\psi(e_1)+\cdots+b_m\psi(e_m)=\psi(b_1e_1+\cdots+b_me_m)=\psi(b_1,\ldots,b_m).
         Thus T(\psi(e_1), \dots, \psi(e_m)) = \psi. Hence T is surj.
• (3.E.3) Give an exa of a vecsp V and its two subsps U_1, U_2 suth
              U_1 \times U_2 and U_1 + U_2 are iso but U_1 + U_2 is not a direct sum.
                                                                                                                                  [V must be infinide.]
Solus: Note that at least one of U_1, U_2 must be infinide. Both can be infinide. [Req Other Courses.]
   Let V = \mathbb{F}^{\infty} = U_1, U_2 = \{(x, 0, \dots) \in \mathbb{F}^{\infty} : x \in \mathbb{F}\}. Then V = U_1 + U_2 is not a direct sum.
   Define T \in \mathcal{L}(U_1 \times U_2, U_1 + U_2) by T((x_1, x_2, \dots), (x, 0, \dots)) = (x, x_1, x_2, \dots)
Define S \in \mathcal{L}(U_1 + U_2, U_1 \times U_2) by S(x, x_1, x_2, \dots) = ((x_1, x_2, \dots), (x, 0, \dots)) \Rightarrow S = T^{-1}.
                                                                                                                                                                  • Supp T \in \mathcal{L}(V). Prove \exists inv T_1, T_2 \in \mathcal{L}(V) suth T = T_1 + T_2.
Solus: Let U \oplus \text{null } T = V, W \oplus \text{range } T = V. Let S : \text{null } T \to W be an iso.
             Define T_1 \in \mathcal{L}(V) by T_1(u) = \frac{1}{2}Tu, T_1(w) = Sw
Define T_2 \in \mathcal{L}(V) by T_2(u) = \frac{1}{2}Tu, T_2(w) = -Sw \} \Rightarrow T = T_1 + T_2 and T_1, T_2 inv.
                                                                                                                                                                  • Supp A, B \in \mathcal{L}(V) and A + B, A - B are inv. Supp C, D \in \mathcal{L}(V).
```

Solus: Asum AX + BY = C, BX + AY = D. Then $(A \pm B)(X \pm Y) = C \pm D$. Let $S = (A + B)^{-1}(C + D)$, $T = (A - B)^{-1}(C - D)$. Now $X = \frac{1}{2}(S + T)$, $Y = \frac{1}{2}(S - T)$.

Prove $\exists X, Y \in \mathcal{L}(V)$ *suth* AX + BY = C, BX + AY = D.

```
3 Supp V and W are finide, U is a subsp of V, and S \in \mathcal{L}(U, W).
   Prove \exists inv T \in \mathcal{L}(V, W), Tu = Su, \forall u \in U \iff S is inje.
                                                                                                                          [ See also (3.A.11). ]
Solus: (a) \forall u \in U, u = T^{-1}Su \Rightarrow T^{-1}S = I \in \mathcal{L}(U). Or, \text{null } S = \text{null } T|_{U} = \text{null } T \cap U = \{0\}.
            (b) Get a B_U, apply S, then extend to B_V, B_W.
                                                                                                                                                     Exa: Let V = W = \mathbf{F}^{\infty}. Define S(x_1, x_2, \dots) = (0, x_1, x_2, \dots) \Rightarrow S inje.
        Asum \exists inv T \in \mathcal{L}(V, W) suth T|_{V} = S. Then T = S while S is not surj.
8 Supp T \in \mathcal{L}(V, W) is surj. Prove \exists subsp U of V, T|_{U} : U \to W is iso.
Solus: By (3.B.12). Note that range T = W. Or. [ Req range T Finide ] By [3.B TIPS (4)].
                                                                                                                                                     • Tips 1: Supp V = U \oplus X = W \oplus X. Prove U, W are iso.
Solus: \forall u \in U, \exists ! (w, x_1) \in W \times X, u = w + x_1. While \exists ! (u', x_2) \in U \times X, w = u' + x_2.
            Now x_1 = -x_2, u = u'. Thus \pi : U \to W defined by \pi(u) = w, is inje.
            \forall w \in W, \exists ! (u, x_1) \in U \times X, w = u + x_1. \text{ While } \exists ! (w', x_2) \in W \times X, u = w' + x_2.
            Now x_1 = -x_2, w = w'. Thus \pi : U \to W defined by \pi(u) = w, is surj.
                                                                                                                                                     Comment: Let V = \mathbb{F}^{\infty}. Let X = \mathbb{F}^{\infty}, Y = \{(0, x_1, x_2, \dots) \in \mathbb{F}^{\infty}\}. Now X, Y are iso subsps of V.
                 But \nexists iso subsps M, N of V, suth V = M \oplus X = N \oplus Y.
9 Supp U, V, W are finide, while S \in \mathcal{L}(V, W), T \in \mathcal{L}(U, V), and ST inv.
   Prove S,T are inv.
                                                             Note: Not true if U, V, W infinide. Exa: Forwd and backwd shift.
Solus: Let R = (ST)^{-1}. Becs R(ST) = (RS)T = I_U \text{ Or } (ST)R = S(TR) = I_W, T inje and S surj.
                                                                                                                                                     OR. dim W = \dim \operatorname{range} ST \leq \min \{\operatorname{range} S, \operatorname{range} T\} \Rightarrow S, T \operatorname{surj}.
                                                                                                                                                     10 Supp V, W are finide and T \in \mathcal{L}(V, W), S \in \mathcal{L}(W, V). Prove ST = I \iff TS = I.
Solus: Supp ST = I \Rightarrow S, T inv, by (3.B.20,21). Again, TS_1 = I. Becs STS_1 = S_1 = S.
                                                                                                                                                     OR. S((TS)w) = ST(Sw) = Sw \Rightarrow (TS)w = w. OR. S^{-1} = T \not \subset S = S \Rightarrow TS = S^{-1}S = I.
                                                                                                                                                     • TIPS 2: Supp each S_k \in \mathcal{L}(V_k, W_k), W_k \subseteq V_{k+1} \Rightarrow S_m \circ S_{m-1} \circ \cdots \circ S_2 \circ S_1 makes sense.
  (a) By the ctrapos of (3.B.11), S_m \circ \cdots \circ S_1 not inje \Rightarrow \exists S_k not inje. Convly not true unless k = 1.
  (b) By Exe (9), if all V_k finide and iso to each other, then S_m \circ \cdots \circ S_1 inje \Rightarrow inv, so are all S_k.
  (c) \text{null } S_1 \subseteq \text{null } (S_2S_1) \subseteq \cdots \subseteq \text{null } (S_m \cdots S_2S_1); S_m \circ \cdots \circ S_1 \text{ inje} \Rightarrow \text{each } S_k \circ \cdots \circ S_1 \text{ inje}.
  Supp each W_k = V_{k+1}, for if W_k \subseteq V_{k+1}, then S_1, S_2 surj \Rightarrow S_2 \circ S_1 \in \mathcal{L}(V_1, W_2) surj.
  (d) Each S_k \text{ surj} \Rightarrow S_m \circ \cdots \circ S_1 \text{ surj}. Convly not true unless all V_k finide and iso to each other.
  (e) \ \mathrm{range} \, S_m \supseteq \mathrm{range} \big( S_m S_{m-1} \big) \supseteq \cdots \supseteq \mathrm{range} \big( S_m S_{m-1} \cdots S_1 \big); \ S_m \circ \cdots \circ S_1 \ \mathrm{surj} \Rightarrow \mathrm{each} \ S_m \circ \cdots \circ S_k \ \mathrm{surj}.
• (4E 23, OR 10.A.4) Supp (\beta_1, ..., \beta_n) and (\alpha_1, ..., \alpha_n) are bses of V.
  Let T \in \mathcal{L}(V) be suth each T\alpha_k = \beta_k. Prove A = \mathcal{M}(T, \alpha \to \alpha) = \mathcal{M}(I, \beta \to \alpha) = B.
Solus: Each I\beta_k = \beta_k = B_{1,k}\alpha_1 + \dots + B_{n,k}\alpha_n = T\alpha_k = A_{1,k}\alpha_1 + \dots + A_{n,k}\alpha_n \Rightarrow A = B.
                                                                                                                                                     OR. \mathcal{M}(T, \alpha \to \alpha) = \mathcal{M}(I, \beta \to \alpha) \mathcal{M}(T, \alpha \to \beta) = \mathcal{M}(I, \beta \to \alpha).
                                                                                                                                                     OR. \mathcal{M}(T, \alpha \to \alpha) = \mathcal{M}(I, \alpha \to \beta)^{-1} \left[ \mathcal{M}(T, \beta \to \beta) \mathcal{M}(I, \alpha \to \beta) \right] = \mathcal{M}(I, \beta \to \alpha).
                                                                                                                                                     COMMENT: \mathcal{M}(T, \beta \to \beta) = \mathcal{M}(T, \alpha \to \beta) \mathcal{M}(I, \beta \to \alpha) = B. Or. Let A' = \mathcal{M}(T, \beta \to \beta).
                 Simlr. Now each T\beta_k = T(B_{1,k}\alpha_1 + \cdots + B_{n,k}\alpha_n) = A'_{1,k}\beta_1 + \cdots + A'_{n,k}\beta_n \Rightarrow A' = B.
```

- NOTE FOR [3.62]: $\mathcal{M}(v) = \mathcal{M}(I, (v), B_V)$. Here I is restr to span(v), and (v) = () if v = 0.
- Note For [3.65]: $\mathcal{M}(Tv) = \mathcal{M}(I, (Tv), B_W) = \mathcal{M}(T, B_V, B_W) \mathcal{M}(I, (v), B_V) = \mathcal{M}(T, (v), B_W).$
- Note For Exe (15): $\underline{Tx = \mathcal{M}(Tx, B_2)} = \mathcal{M}(I, B_2', B_2) \mathcal{M}(Tx, B_2') = \mathcal{M}(I, B_2', B_2) \mathcal{M}(T, B_1', B_2') \mathcal{M}(x, B_1')$ = $\mathcal{M}(I, B_2', B_2) \mathcal{M}(T, B_1', B_2') \mathcal{M}(I, B_1, B_1') \mathcal{M}(x, B_1) = \mathcal{M}(T, B_1, B_2) x = Ax.$

Where B_1 , B_2 are std bses, and B'_1 , B'_2 are arb bses. Now A is uniq.

Convly, $\forall A \in \mathbf{F}^{m,n}, \exists ! T \in \mathcal{L}(\mathbf{F}^{n,1}, \mathbf{F}^{m,1}), Tx = Ax = \mathcal{M}(T)x \Rightarrow \mathcal{M}(T) = A.$

Hence range A = range T and null A = range T are well-defined becs the def of T is indep of bses.

Let $P_1 \in \mathcal{L}(\mathbf{F}^{n,1}), P_2 \in \mathcal{L}(\mathbf{F}^{m,1})$ be suth $\mathcal{M}(P_1, B_1) = \mathcal{M}(I, B_1', B_1), \mathcal{M}(P_2, B_2) = \mathcal{M}(I, B_2, B_2')$.

Now $\mathcal{M}(T, B_1, B_2)$ inje \iff T inje \iff P_2TP_1 inje \iff $\mathcal{M}(T, B_1', B_2') = \mathcal{M}(P_2TP_1, B_1, B_2)$ inje.

Supp $S \in \mathcal{L}(V, W), A_1 = \mathcal{M}(S, B_V, B_W) = \mathcal{M}(T, B_1, B_2),$

 $C_V = \mathcal{M}(I, B_V', B_V), C_W = \mathcal{M}(I, B_W, B_W'), A_2 = \mathcal{M}(S, B_V', B_W') = C_W A_1 C_V.$

Let $P_1 \in \mathcal{L}(\mathbf{F}^{n,1}), P_V \in \mathcal{L}(V), P_2 \in \mathcal{L}(\mathbf{F}^{m,1}), P_W \in \mathcal{L}(W)$ and bses B_1', B_2' be suth

 $\mathcal{M}(P_1,B_1)=\mathcal{M}(I,B_1',B_1)=C_V=\mathcal{M}(P_V,B_V), \\ \mathcal{M}(P_2,B_2)=\mathcal{M}(I,B_2,B_2')=C_W=\mathcal{M}(P_W,B_W).$

Now A_1 inje \iff T inje \iff the cols of A_1 liney indep \iff S inje. Simlr for surj.

And $\mathcal{M}(S, B_V, B_W)$ inje \iff T inje \iff P_2TP_1 inje \iff $C_WA_1C_V = \mathcal{M}(S, B_V', B_W')$ inje.

Thus *S* inje $\iff \mathcal{M}(S)$ inje, wrto any bses. Simlr for surj and inv.

• TIPS 3: Identify $\mathbf{F}^{m,n}$ with $\mathcal{L}(\mathbf{F}^{n,1},\mathbf{F}^{m,1})$, due to Tx = Ax; or with $\mathcal{L}(\mathbf{F}^{1,n},\mathbf{F}^{1,m})$, due to $Tx = xA^t$. Details about the latter: $x = \mathcal{M}(x)^t \Rightarrow x\mathcal{M}(T)^t = \mathcal{M}(Tx)^t = \mathcal{M}(xA^t)^t = xA^t \Rightarrow \mathcal{M}(T) = A$.

Note: If we define $\mathcal{M}(v) = (c_1 \cdots c_n)$. Then [3,64]: $\mathcal{M}(T)_{k,\cdot} = \mathcal{M}(v_k)\mathcal{M}(T) = \mathcal{M}(Tv_k)$.

Note that $A = \mathcal{M}(T, (v_1, \dots, v_n), (w_1, \dots, w_m)) \in \mathbf{F}^{n,m}$, and each $Tv_k = A_{k,1}w_1 + \dots + A_{k,m}w_m$.

 $[3.65]: \mathcal{M}(Tv) = c_1 \mathcal{M}(Tv_1) + \dots + c_n \mathcal{M}(Tv_n) = c_1 \mathcal{M}(T)_{1,\cdot} + \dots + c_n \mathcal{M}(T)_{n,\cdot} = \mathcal{M}(v) \mathcal{M}(T).$

[3.41]: $C = \mathcal{M}(T, (u_1, \dots, u_p), (v_1, \dots, v_n)) \in \mathbf{F}^{p,n}, A = \mathcal{M}(S, (v_1, \dots, v_n), (w_1, \dots, w_m)) \in \mathbf{F}^{n,m}.$ $\sum_{j=1}^{m} (AC)_{k,j} w_j = STu_k = \sum_{j=1}^{m} (\sum_{r=1}^{n} C_{k,r} A_{r,j}) w_j \Rightarrow (AC)_{k,j} = \sum_{r=1}^{n} C_{k,r} A_{r,j}.$

Exactly in trspose with the original. Now Exe (15): $T \in \mathcal{L}(\mathbf{F}^{1,n},\mathbf{F}^{1,m}): Tx = xA$.

Becs $Tx = \mathcal{M}(Tx) = \mathcal{M}(x)\mathcal{M}(T) = x\mathcal{M}(T)$ wrto std bses.

- TIPS 4: You must first declare bses and the purpose when using \mathcal{M}^{-1} : $\mathbf{F}^{n,1} \mapsto v$, or $\mathbf{F}^{m,n} \mapsto \mathcal{L}(V,W)$.
- Note For Exe (3, 4E 22): $T \in \mathcal{L}(V, W)$ inv $\iff \mathcal{M}(T)$ inv, wrto any $(\Leftrightarrow \text{some}) B_V, B_W$. Supp $\mathcal{M}(T)$ wrto some B_V, B_W is inv. Let $S \in \mathcal{L}(W, V)$ be suth $\mathcal{M}(S, B_W, B_V) = \mathcal{M}(T, B_V, B_W)^{-1}$. Then $\mathcal{M}(TS, B_W) = \mathcal{M}(T, B_V, B_W) \mathcal{M}(S, B_W, B_V) = I = \mathcal{M}(ST, B_V)$. Apply $\mathcal{M}^{-1} \Rightarrow S = T^{-1}$. Coro: $\mathcal{M}(T, B_V, B_W)^{-1} = \mathcal{M}(T^{-1}, B_W, B_V)$, if T or $\mathcal{M}(T)$ inv.
- Note For [3.60]: Supp $B_V = (v_1, ..., v_n), B_W = (w_1, ..., w_m).$

Define $E_{i,j} \in \mathcal{L}(V, W)$ by $E_{i,j}(v_x) = \delta_{i,x}w_j$. Define $R_{i,j} \in \mathcal{L}(W, V) : w_x \mapsto \delta_{i,x}v_j$.

Define $G_{i,j} = R_{x,j}E_{i,x}$, and $Q_{i,j} = E_{x,j}R_{i,x}$. Let $\mathcal{E}^{(j,i)} = \mathcal{M}(E_{i,j})$, simlr for $\mathcal{R}^{(j,i)}$, $\mathcal{G}^{(j,i)}$.

Now $R_{l,k}E_{i,j} = \delta_{i,l}G_{i,k}$, $\mathcal{R}^{(k,l)}\mathcal{E}^{(j,i)} = \delta_{l,j}\mathcal{G}^{(k,i)}$. Simlr for $Q_{i,k}$ and $\mathcal{Q}^{(k,i)}$.

Becs $\mathcal{M}: \mathcal{L}(V, W) \to \mathbf{F}^{m,n}$ is iso. $E_{i,j} = \mathcal{M}^{-1} \mathcal{E}^{(j,i)}. \text{ By [2.42] and [3.61]: } B_{\mathcal{L}(V,W)} = \begin{pmatrix} E_{1,1}, \cdots, E_{n,1}, \\ \vdots & \ddots & \vdots \\ E_{1,m}, \cdots, E_{n,m} \end{pmatrix}; \quad B_{\mathbf{F}^{m,n}} = \begin{pmatrix} \mathcal{E}^{(1,1)}, \cdots, \mathcal{E}^{(1,n)}, \\ \vdots & \ddots & \vdots \\ \mathcal{E}^{(m,1)}, \cdots, \mathcal{E}^{(m,n)} \end{pmatrix}.$

```
• Tips: Let B_{\text{range }T}=(Tv_1,\ldots,Tv_p), B_V=(v_1,\ldots,v_p,\ldots,v_n). Let each w_k=Tv_k.
                          Extend to B_W = (w_1, ..., w_p, ..., w_m). Then T = E_{1,1} + ... + E_{p,p}, \mathcal{M}(T) = \mathcal{E}^{(1,1)} + ... + \mathcal{E}^{(p,p)}.
• (4E 17) Supp U, V, W finide, S \in \mathcal{L}(V, W), A \in \mathcal{L}(\mathcal{L}(U, V), \mathcal{L}(U, W)) : T \mapsto ST.
     Show dim null \mathcal{A} = (\dim U)(\dim \operatorname{null} S), dim range \mathcal{A} = (\dim U)(\dim \operatorname{range} S).
Solus: (a) \forall T \in \mathcal{L}(U, V), ST = 0 \iff \text{range } T \subseteq \text{null } S. Thus \text{null } A = \mathcal{L}(U, \text{null } S).
                            (b) \forall R \in \mathcal{L}(U, W), range R \subseteq \text{range } S \iff \exists T \in \mathcal{L}(U, V), R = ST, by (3.B 25).
                                         Thus range A = \mathcal{L}(U, \text{range } S).
                                                                                                                                                                                                                                                                                                                                                     OR. Let B_{\text{range }S} = (w_1, ..., w_s) with each w_i = Sv_i. Let B_W = (w_1, ..., w_n), B_{\text{null }S} = (v_{s+1}, ..., v_p).
       Let B_U = (u_1, \dots, u_m). Define E_{i,j} \in \mathcal{L}(V, W) : v_x \mapsto \delta_{i,x} w_j. Now S = E_{1,1} + \dots + E_{s,s}.
       Define R_{i,j} \in \mathcal{L}(U,V) : u_x \mapsto \delta_{i,x}v_j. Let E_{k,j}R_{i,k} = Q_{i,j} : u_x \mapsto \delta_{i,x}w_j.
      Define R_{i,j} \in \mathcal{L}(U,V) : u_x \mapsto \delta_{i,x}v_j. Let E_{k,j}K_{i,k} = Q_{i,j} : u_x \mapsto \delta_{i,x}w_j.

For any T \in \mathcal{L}(V), \exists ! A_{i,j} \in \mathbf{F}, T = \sum_{j=1}^p \sum_{i=1}^m A_{j,i}R_{i,j} \Longrightarrow \mathcal{M}(T, u \to v) = \begin{cases} A_{i,1} & \cdots & A_{i,s} & \cdots & A_{i,m} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ A_{s,1} & \cdots & A_{s,s} & \cdots & A_{s,m} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ A_{p,1} & \cdots & A_{p,s} & \cdots & A_{p,m} \end{cases}.

\mathcal{M}(S, v \to w) \mathcal{M}(T, u \to v) = \mathcal{M}(ST, u \to w) = \begin{cases} A_{1,1} & \cdots & A_{1,s} & \cdots & A_{1,m} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ A_{s,1} & \cdots & A_{s,s} & \cdots & A_{p,m} \end{cases} \qquad \mathcal{M}(T, R) = \mathcal{M}(T, u \to v).
\mathcal{M}(A, R \to Q) \mathcal{M}(T, R) = \mathcal{M}(A(T), Q) = \begin{cases} A_{1,1} & \cdots & A_{1,s} & \cdots & A_{1,m} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ A_{s,1} & \cdots & A_{s,s} & \cdots & A_{s,m} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & 0 \end{cases} \qquad \mathcal{M}(A, R \to Q) = \mathcal{M}(S, v \to w).
       B_{\text{range }\mathcal{A}} = \{Q_{x,y} : 1 \leqslant x \leqslant m, \text{ and } 1 \leqslant y \leqslant s\}, B_{\text{null }\mathcal{A}} = \{R_{x,y} : 1 \leqslant x \leqslant m, \text{ and } s+1 \leqslant y \leqslant p\}.
• (4E 10) Supp V, W finide, U is a subsp of V, \mathcal{E} = \{T \in \mathcal{L}(V, W) : T|_U = 0\}. Find dim \mathcal{E}.
Solus: Define \Phi : \mathcal{L}(V, W) \to \mathcal{L}(U, W) by \Phi(T) = T|_U. By [3.A Note For Restr], \Phi is liney.
                             \Phi(T) = 0 \iff \forall u \in U, Tu = 0 \iff T \in \mathcal{E}. Thus \text{null } \Phi = \mathcal{E}.
                            Extend S \in \mathcal{L}(U, W) to T \in \mathcal{L}(V, W) \Rightarrow \Phi(T) = S \in \text{range } \Phi. Thus range \Phi = \mathcal{L}(U, W).
                            Or. Let B_U = (u_1, ..., u_m), B_V = (u_1, ..., u_m, ..., u_n), B_W = (w_1, ..., w_n).
                            Define E_{i,j} \in \mathcal{L}(V,W) : u_x \mapsto \delta_{i,x}w_j.
                          \forall T \in \mathcal{E}, k \in \{1, \dots, m\}, TE_{k,k} = 0 \Rightarrow \operatorname{span} \left\{ \begin{array}{l} \sum_{i,1}^{L_{1,1}} \sum_{i,m,n}^{L_{m,1}} \sum_{i}^{L_{m,1}} \sum_{i}^{L_{m,
• Supp U, V, W finide, S \in \mathcal{L}(U, V), \mathcal{B} \in \mathcal{L}(\mathcal{L}(V, W), \mathcal{L}(U, W)) : T \mapsto TS.
     Show dim null \mathcal{B} = (\dim W)(\dim \text{null } S), dim range \mathcal{B} = (\dim W)(\dim \text{range } S).
Solus: (a) \forall T \in \mathcal{L}(V, W), TS = 0 \iff \text{range } S \subseteq \text{null } T. \text{ Thus null } \mathcal{B} = \{T \in \mathcal{L}(V, W) : T|_{\text{range } S} = 0\}.
                             (b) \forall R \in \mathcal{L}(U, W), \text{null } S \subseteq \text{null } R \iff \exists T \in \mathcal{L}(V, W), R = TS, by (3.B.24).
                                         Thus range \mathcal{B} = \{R \in \mathcal{L}(U, W) : R|_{\text{null }S} = 0\}. Now by Exe (4E 10).
                                                                                                                                                                                                                                                                                                                                                     Or. Let B_{\text{range }S} = (v_1, ..., v_r) with each u_i = Sv_i. Let B_V = (v_1, ..., v_m), B_{\text{null }S} = (u_{r+1}, ..., u_n).
       Let B_W = (w_1, \dots, w_p). Define E_{i,j} \in \mathcal{L}(U, V) : u_x \mapsto \delta_{i,x} v_j \Rightarrow S = E_{1,1} + \dots + E_{r,r}.
      Define R_{i,j} \in \mathcal{L}(V,W): v_x \mapsto \delta_{i,x}w_j. Let R_{k,j}E_{i,k} = Q_{i,j}: u_x \mapsto \delta_{i,x}w_j.

\mathcal{B}(T) = TS = \left(\sum_{j=1}^p \sum_{i=1}^m A_{j,i}R_{i,j}\right) \left(\sum_{k=1}^r E_{k,k}\right) = \sum_{j=1}^p \sum_{i=1}^r A_{j,i}Q_{i,j} \Rightarrow \mathcal{M}(TS,v) = \begin{pmatrix} A_{1,1} & \cdots & A_{1,r} & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ A_{r,1} & \cdots & A_{r,r} & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ A_{p,1} & \cdots & A_{p,r} & \cdots & 0 \end{pmatrix}

range \mathcal{B} = \operatorname{span} \begin{Bmatrix} Q_{1,1}, & \cdots & Q_{r,1} \\ \vdots & \ddots & \vdots \\ Q_{1,p}, & \cdots & Q_{r,p} \end{Bmatrix}, \operatorname{null} \mathcal{B} = \operatorname{span} \begin{Bmatrix} R_{r+1,1}, & \cdots & R_{n,1} \\ \vdots & \ddots & \vdots \\ R_{r+1,p}, & \cdots & R_{n,p} \end{Bmatrix}.
```

```
• Supp A \in \mathbb{F}^{n,n}. Define T, S \in \mathcal{L}(\mathbb{F}^{n,n}) by T(X) = AX, S(Y) = YA^t. Find dim range ST.
Solus: Becs A\mathcal{E}^{(j,k)} = \left[\sum_{x=1}^{n} A_{x,j} \mathcal{E}^{(x,j)}\right] \mathcal{E}^{(j,k)} = \sum_{x=1}^{n} A_{x,j} \mathcal{E}^{(x,k)}. Let B_{\text{col}A} = (C_{\cdot,1}, \dots, C_{\cdot,r}).
               Each A_{\cdot,j} = R_{1,j}C_{\cdot,1} + \dots + R_{r,j}C_{\cdot,r} \Rightarrow B_{\operatorname{range}T} = \{C_{j,k} = \sum_{x=1}^{n} C_{x,j}\mathcal{E}^{(x,k)} : 1 \leq j \leq r, 1 \leq k \leq n\}.
               Becs C_{j,k}A^{t} = C_{j,k} \left[ \sum_{y=1}^{n} A_{k,y}^{t} \mathcal{E}^{(k,y)} \right] = \sum_{x=1}^{n} \sum_{y=1}^{n} C_{x,j} A_{y,k} \mathcal{E}^{(x,y)}.

Simlr, B_{\text{range }ST} = \left\{ \mathcal{X}_{j,k} = \sum_{x=1}^{n} \sum_{y=1}^{n} C_{x,j} C_{y,k} \mathcal{E}^{(x,y)} : 1 \leq j,k \leq r \right\}.
               Each \mathcal{X}_{j,k} = C_{1,k}C_{j,1} + \dots + C_{n,k}C_{j,n} = C_{1,j}(C_{k,1})^t + \dots + C_{n,j}(C_{k,n})^t.
                                                                                                                                                                                       OR. By TIPS (3). Define \varphi \in \mathcal{L}(\mathcal{L}(\mathbf{F}^{n,1})) : X \mapsto AX; \ \psi \in \mathcal{L}(\mathcal{L}(\mathbf{F}^{n,1}, \operatorname{range} A)) : Y \mapsto YA^t.
    Then range \psi \varphi = \{X \in \mathcal{L}(\mathbf{F}^{n,1}, \operatorname{range} A) : X|_{\operatorname{null} A^T} = 0\} of dim (\operatorname{range} A)(\operatorname{range} A^t) = (\operatorname{rank} A)^2. \square
16 Supp V is finide and non0 S \in \mathcal{L}(V) suth \forall T \in \mathcal{L}(V), ST = TS. Prove \exists \lambda \in \mathbf{F}, S = \lambda I.
Solus: Let B_{\text{range }S} = (w_1, \dots, w_m) with each w_i = Sv_i. Extend to bees (w_1, \dots, w_n), (v_1, \dots, v_n) of V.
               Let S = E_{1,1} + \cdots + E_{m,m} \Rightarrow \mathcal{M}(S, B_V) = \mathcal{M}(I, B_{\text{range}S}, B_V). Note that R_{k,1} : w_x \mapsto \delta_{k,x} v_1.
               Then \forall k \in \{1, ..., n\}, 0 \neq SR_{k,1} = R_{k,1}S. Hence dim null S = 0, dim range S = m = n.
               Notice that G_{i,j} = R_{i,j}S = SR_{i,j} = Q_{i,j}. \mathbb{X} For each w_i, \exists ! a_{k,i} \in \mathbb{F}, w_i = a_{1,i}v_1 + \cdots + a_{n,i}v_n.
               Then fix one i. Now for each j \in \{1, ..., n\}, Q_{i,j}(w_i) = w_j = a_{i,i}v_j = G_{i,j}(\sum_{k=1}^n a_{k,i}v_k).
               Let \lambda = a_{i,i}. Hence each w_j = \lambda v_j. Now fix one j, we have a_{1,1}v_j = \cdots = a_{n,n}v_j.
```

ENDED

- Note For [3.79], def of v + U: Given v + U, v is already uniqly determined, as a sort of precond. Even though v + U = v' + U, where v' is *purer* than v.
- Note For [3.85]: $v + U = w + U \iff v \in w + U, \ w \in v + U \iff v w \in U \iff (v + U) \cap (w + U) \neq \emptyset.$
- Note For [3.79, 3.83]:

If *U* is merely a subset of *V*, then [3.85, 86] do not hold $\Rightarrow V/U$ not a vecsp.

If V is merely a subset of a vecsp of which U is a subsp, then [3,79, 86] do not hold $\Rightarrow V/U$ not a vecsp. If U is a vecsp but not a subsp of V, while U, V are subsps of some vecsp, then everything's alright. Hence if V/U is a vecsp, then V, U are subsps of some vecsp.

COMMENT: Supp U, V are subsps and U is not a subsp of V. Note that V/U = (V + U)/U.

Supp $v + U \in V/U$. Then $v \in V$, or possibly $v \in V + U$ as well. To avoid this ambiguity, you have to specify the precond, what subsp that v belongs to.

Exa: Supp U + W = V. Then V/U = (U + W)/U = W/U. Let $W \cap U = I$, $U_I \oplus I = U$, $W_I \oplus I = W$. Now $U_I \oplus W_I \oplus I = V$. Thus $W/U = (W_I \oplus I)/U = W_I/U$. $\forall w_1', w_2' \in W_I$ suth $w_1' + U = w_2' + U \in W_I/U$, $w_1' - w_2' \in U \cap W_I = \{0\} \Rightarrow w_1' = w_2'$.

- *Trivial Cases*: If $v \in U$, then $v + U = 0 + U = \{u : u \in U\} = U$. Now $U = 0 \in V/U$. If $U = \{0\}$, then $v + U = v + \{0\} = \{v\}$, $V/U = V/\{0\} = \{\{v\} : v \in V\}$. If $U = \emptyset$, then $v + U = v + \emptyset = \emptyset$, $V/U = V/\emptyset = \{\emptyset\}$.
- Tips 1: V is a subsp of $U \iff \forall v \in V, v + U = 0 + U = U \iff V/U = \{0\} = \{U\}.$
- Note For [3.88]: If U, V are subspof some vecsp \mathcal{V} . Define the quot map $\pi \in \mathcal{L}(V, V/U)$. Then π is surj by def, and null $\pi = V \cap U$. Thus if \mathcal{V} is finide, then dim $V = \dim V/U + \dim(V \cap U)$. Or. Let $I = V \cap U$, $V_I \oplus I = V$. Becs $V/U = V_I/U$, iso to V_I . Now dim $V = \dim V_I + \dim I$.

7 Supp $\alpha, \beta \in V$, and U, W are subsps of V. Prove $\alpha + U = \beta + W \Rightarrow U = W$.

Solus: (a) $\alpha \in \alpha + U = \beta + W \Rightarrow \exists w \in W, \alpha = \beta + w \Rightarrow \alpha - \beta \in W \Rightarrow \alpha + W = \beta + W$.

(b)
$$\beta \in \beta + W = \alpha + U \Rightarrow \exists u \in U, \beta = \alpha + u \Rightarrow \beta - \alpha \in U \Rightarrow \alpha + U = \beta + U.$$

Or.
$$\pm(\alpha - \beta) \in U \cap W \Rightarrow \left\{ \begin{array}{l} U \ni u = (\beta - \alpha) + w \in W \Rightarrow U \subseteq W \\ W \ni w = (\alpha - \beta) + u \in U \Rightarrow W \subseteq U \end{array} \right\} \Rightarrow U = W.$$

8 Supp $\emptyset \neq A \subseteq V$. Prove A is a trslate $\iff \lambda v + (1 - \lambda)w \in A$, $\forall v, w \in A, \lambda \in F$.

Solus: (a) Supp A = a + U. Then $\lambda(a + u_1) + (1 - \lambda)(a + u_2) = a + (\lambda(u_1 - u_2) + u_2) \in A$.

- (b) Supp $\lambda v + (1 \lambda)w \in A$, $\forall v, w \in A, \lambda \in F$. Supp $\underline{a \in A}$ and let $A' = \{x a : x \in A\}$. Then $0 \in A'$ and $\forall (v - a), (w - a) \in A', \lambda \in F$, (I) $\lambda (v - a) = [\lambda v + (1 - \lambda)a] - a \in A'$.
 - (II) Becs $\lambda(v-a) + (1-\lambda)(w-a) = [\lambda v + (1-\lambda)w] a \in A'$.

Let $\lambda = \frac{1}{2}$ here and use (I) above by $\lambda = 2$, we have $(v - a) + (w - a) \in A'$.

Or. Note that $v, a \in A \Rightarrow \lambda v + (1 - \lambda)a = 2v - a \in A$. Simlr $2w - a \in A$.

Now $(v - \frac{1}{2}a) + (w - \frac{1}{2}a) = v + w - a \in A \Rightarrow v + w - 2a = (v - a) + (w - a) \in A'$.

Thus A' = -a + A is a subsp of V. Hence $a + A' = a + \{x - a : x \in A\} = A$ is a trilate. \square

Prove $A \cap B$ *is either a trslate of some subsp of* V *or is* \emptyset . **Solus**: $\forall \alpha + u, \beta + w \in A \cap B \neq \emptyset, \lambda \in F, \lambda(\alpha + u) + (1 - \lambda)(\beta + w) \in A \cap B$. By Exe (8). Or. Let $A = \alpha + U$, $B = \beta + W$. Supp $v \in (\alpha + U) \cap (\beta + W) \neq \emptyset$. Then $v - \alpha \in U \Rightarrow v + U = \alpha + U = A$, and simlr $v + W = \beta + W = B$. We show $A \cap B = v + (U \cap W)$. Note that $v + (U \cap W) \subseteq A \cap B$. And $\forall \gamma = v + u = v + w \in A \cap B \Rightarrow u = w \in U \cap W \Rightarrow \gamma \in v + (U \cap W)$. **10** *Prove the intersec of any collec of trslates of subsps is either a trslate of some subsps or* \emptyset . **Solus**: Supp $\{A_{\alpha}\}_{{\alpha}\in\Gamma}$ is a collectof trslates of subspst of V, where Γ is an index set. $\forall x, y \in \bigcap_{\alpha \in \Gamma} A_{\alpha} \neq \emptyset, \lambda \in \Gamma, \lambda x + (1 - \lambda)y \in A_{\alpha} \text{ for each } \alpha. \text{ By Exe } (8).$ Or. Let each $A_{\alpha} = w_{\alpha} + V_{\alpha}$. Supp $x \in \bigcap_{\alpha \in \Gamma} (w_{\alpha} + V_{\alpha}) \neq \emptyset$. Then $x - w_{\alpha} \in V_{\alpha} \Longrightarrow x + V_{\alpha} = w_{\alpha} + V_{\alpha} = A_{\alpha}$, for each α . We show $\bigcap_{\alpha \in \Gamma} A_{\alpha} = \bigcap_{\alpha \in \Gamma} (x + V_{\alpha}) = x + \bigcap_{\alpha \in \Gamma} V_{\alpha}$. $y \in \bigcap_{\alpha \in \Gamma} A_{\alpha} \iff \text{for each } \alpha, \ y = x + v_{\alpha} \in A_{\alpha}$ \Leftrightarrow each $v_{\alpha} = y - x \in \bigcap_{\alpha \in \Gamma} V_{\alpha} \Leftrightarrow y \in x + \bigcap_{\alpha \in \Gamma} V_{\alpha}$. **11** Supp $A = \{\lambda_1 v_1 + \dots + \lambda_m v_m : \sum_{i=1}^m \lambda_i = 1\}$, where each $v_i \in V, \lambda_i \in F$. (a) *Prove A is a trslate of some subsp of V* (b) Prove if B is a trslate of some subsp of V and $\{v_1, \dots, v_m\} \subseteq B$, then $A \subseteq B$. (c) Prove A is a trslate of some subsp of V of dim < m. Solus: (a) By Exe (8), $\forall u, w \in A, \lambda \in \mathbb{F}, \lambda u + (1 - \lambda)w = \left(\lambda \sum_{i=1}^{m} a_i + (1 - \lambda) \sum_{i=1}^{m} b_i\right)v_i \in A.$ (b) Supp B = v + U, where $v \in V$ and U is a subsp of V. Let each $v_k = v + u_k \in B$, $\exists ! u_k \in U$. $\forall w \in A, \ w = \sum_{i=1}^{m} \lambda_i v_i = \sum_{i=1}^{m} \lambda_i (v + u_i) = \sum_{i=1}^{m} \lambda_i v + \sum_{i=1}^{m} \lambda_i u_i = v + \sum_{i=1}^{m} \lambda_i u_i \in v + U = B.$ Or. Let $v = \lambda_1 v_1 + \dots + \lambda_m v_m \in A$. To show $v \in B$, use induc on m by k. (i) $k = 1, v = \lambda_1 v_1 \Rightarrow \lambda_1 = 1$. $\forall v_1 \in B$. Hence $v \in B$. (ii) $2 \le k < m$. Asum $v = \lambda_1 v_1 + \dots + \lambda_k v_k \in A \subseteq B$. $\left[\forall \lambda_i \text{ suth } \sum_{i=1}^k \lambda_i = 1 \right]$ For $u = \mu_1 v_1 + \dots + \mu_k v_k + \mu_{k+1} v_{k+1} \in A$. Fix one $\mu_i \neq 1$. Then $\sum_{i=1}^{k+1} \mu_i - \mu_i = 1 - \mu_i \Longrightarrow \left[\sum_{i=1}^{k+1} \frac{\mu_i}{1 - \mu_i} \right] - \frac{\mu_i}{1 - \mu_i} = 1.$ Let $w = \underbrace{\frac{\mu_1}{1 - \mu_i} v_1 + \dots + \frac{\mu_{i-1}}{1 - \mu_i} v_{i-1} + \frac{\mu_{i+1}}{1 - \mu_i} v_{i+1} + \dots + \frac{\mu_{k+1}}{1 - \mu_i} v_{k+1}}_{l \text{ torus}}.$ Let $\lambda_i = \frac{\mu_i}{1 - \mu_i}$ for $i \in \{1, ..., i - 1\}$; $\lambda_j = \frac{\mu_{j+1}}{1 - \mu_i}$ for $j \in \{i, ..., k\}$. Then, $\sum_{i=1}^{k} \lambda_i = 1 \Rightarrow w \in B \\ v_i \in B \Rightarrow u' = \lambda w + (1 - \lambda)v_i \in B \end{cases} \Rightarrow \text{Let } \lambda = 1 - \mu_i. \text{ Thus } u' = u \in B \Rightarrow A \subseteq B.$ (c) If m = 1, then let $A = v_1 + \{0\}$ and done. Now supp $m \ge 2$. Fix one $k \in \{1, ..., m\}$. $A \ni \lambda_1 v_1 + \dots + \lambda_{k-1} v_{k-1} + \left(1 - \lambda_1 - \dots - \lambda_{k-1} - \lambda_{k+1} - \dots - \lambda_m\right) v_k + \lambda_{k+1} v_{k+1} + \dots + \lambda_m v_m$ $= v_k + \lambda_1(v_1 - v_k) + \dots + \lambda_{k-1}(v_{k-1} - v_k) + \lambda_{k+1}(v_{k+1} - v_k) + \dots + \lambda_m(v_m - v_k)$ $\in v_k + \operatorname{span}(v_1 - v_k, \dots, v_m - v_k).$

9 Supp $A = \alpha + U$ and $B = \beta + W$ for some $\alpha, \beta \in V$ and some subsps U, W of V.

```
18 Supp T \in \mathcal{L}(V, W) and U, V are subsps of V. Let \pi : V \to V/U be the quot map.
     Prove \exists S \in \mathcal{L}(V/U, W), T = S \circ \pi \iff U \cap V = \text{null } \pi \subseteq \text{null } T.
Solus: Supp null \pi \subseteq null T. By (3.B.24), done. Or. Define S: (v + U) \mapsto Tv.
            \forall v_1, v_2 \in V \text{ suth } v_1 + U = v_2 + U \Longleftrightarrow v_1 - v_2 \in U \cap V \subseteq \text{null } T \Longleftrightarrow Tv_1 = Tv_2.
            Thus S is well-defined. Convly true as well.
                                                                                                                                                  Coro: \Gamma : \mathcal{L}(V/U, W) \to \mathcal{L}(V, W) with S \mapsto S \circ \pi is inje, range \Gamma = \{T \in \mathcal{L}(V, W) : U \subseteq \text{null } T\}.
COMMENT: If T = I_V. Then S : v + U \rightarrow v is not well-defined, unless U \cap V = \{0\} \subseteq \text{null } I_V.
• Note For [3.88, 3.90, 3.91]: Supp W \oplus U = V. Then V/U = W/U is iso to W. [Convly not true.]
  Becs \forall v \in V, \exists ! u_v \in U, w_v \in W, v = u_v + w_v. Define T \in \mathcal{L}(V) by T(v) = w_v.
  Hence \operatorname{null} T = U, \operatorname{range} T = W, \operatorname{range} T \oplus \operatorname{null} T = V.
  Then \tilde{T} \in \mathcal{L}(V/\text{null }T,V) is defined by \tilde{T}(v+U) = \tilde{T}(w_v'+U) = Tw_v' = w_v. [See Exa below]
  Now \pi \circ \tilde{T} = I_{V/U}, \tilde{T} \circ \pi|_W = I_W = T|_W. Hence \tilde{T} = (\pi|_W)^{-1} is iso of V/U onto W.
• Exa: Let V = \mathbb{F}^2, B_U = (e_1), B_W = (e_2 - e_1) \Rightarrow U \oplus W = V.
          Although (e_2 - e_1) + U = e_2 + U, \tilde{T}(e_2 + U) = T(e_2) = e_2 - e_1. Becs e_2 = e_1 + (e_2 - e_1) \in U \oplus W.
17 Supp V/U is finide. Supp W is finide and V = U + W. Show dim W \ge \dim V/U.
Solus: Let Y \oplus (U \cap W) = W. Then by [1.C \text{ Tips } (3)], V = U \oplus Y. Note that V/U and Y are iso.
                                                                                                                                                  Or. Let B_W = (w_1, ..., w_n). Then V = U + \text{span}(w_1, ..., w_n).
            \forall v \in V, \exists u \in U, \ v = u + (a_1 w_1 + \dots + a_n w_n) \Rightarrow v + U = (a_1 w_1 + \dots + a_n w_n) + U.
                                                                                                                                                  Note: If dim W = \dim V/U. Then B_{V/U} = (w_1 + U, ..., w_n + U). Supp v = \sum_{i=1}^n a_i w_i \in U \cap W
          \Rightarrow v + U = 0 = \sum_{i=1}^{n} a_i(w_i + U) \Rightarrow \text{ each } a_i = 0. \text{ Thus } V = U \oplus W.
12 Supp U is a subsp of V. Prove is V is iso to U \times (V/U).
Solus:
   [ Req V/U Finide ] Let B_{V/U} = (v_1 + U, ..., v_n + U).
   Now \forall v \in V, \exists ! a_i \in F, v + U = \sum_{i=1}^n a_i v_i + U \Rightarrow v - \sum_{i=1}^n a_i v_i \in U \Rightarrow \exists ! u \in U, v = \sum_{i=1}^n a_i v_i + u.
   Thus define \varphi \in \mathcal{L}(V, U \times (V/U))
                                                         and \psi \in \mathcal{L}(U \times (V/U), V)
                by \varphi(v) = (u, \sum_{i=1}^{n} a_i v_i + U), and \psi(u, v + U) = \sum_{i=1}^{n} a_i v_i + u. Then \psi = \varphi^{-1}.
                                                                                                                                                  OR. Let W \oplus U = V. Define Tv = u_v, Sv = w_v \Rightarrow \tilde{T} \in \mathcal{L}(V/W, U), \tilde{S} \in \mathcal{L}(V/U, W) are iso.
   Define \psi(u, v + U) = u + \tilde{S}(v + U) = u + w_v. Define \varphi(v) = (\tilde{T}(v), v + U).
    \frac{(\psi \circ \varphi)(u_v + w_v) = \psi(u_v, w_v + U) = u_v + w_v}{(\varphi \circ \psi)(u, v + U) = \varphi(u + w_v) = (u, w_v + U)} \right\} \Rightarrow \psi = \varphi^{-1}. \text{ Or Becs } \psi \text{ or } \varphi \text{ is inje and surj.} 
                                                                                                                                                  13 Prove B_{V/U} = (v_1 + U, ..., v_m + U), B_U = (u_1, ..., u_n) \Rightarrow B_V = (v_1, ..., v_m, u_1, ..., u_n).
Solus: \forall v \in V, \exists ! a_i \in F, v + U = \sum_{i=1}^m a_i v_i + U \Rightarrow \exists ! b_i \in F, v - \sum_{i=1}^m a_i v_i = \sum_{i=1}^n b_i u_i \in U
            \Rightarrow \forall v \in V, \exists ! a_i, b_j \in F, v = \sum_{i=1}^m a_i v_i + \sum_{j=1}^n b_j u_j.
                                                                                                                                                  Or. \sum_{i=1}^{m} a_i v_i + \sum_{i=1}^{n} b_i u_i = 0 \Rightarrow \sum_{i=1}^{m} a_i (v_i + U) = 0 \Rightarrow \text{each } a_i = 0 \Rightarrow \text{each } b_i = 0.
                                                                                                                                                  OR. Note that B = (v_1, ..., v_m) is liney indep, and [\operatorname{span}(v_1, ..., v_m) + U] \subseteq V.
            v \in \operatorname{span} B \cap U \iff v + U = \sum_{i=1}^{m} a_i (v_i + U) = 0 + U \iff v = 0. Hence \operatorname{span} B \cap U = \{0\}.
            Becs dim [\operatorname{span}(v_1, \dots, v_m) \oplus U] = m + n = \dim V. Now by (2.B.8).
```

```
• (4E 14) Supp V = U \oplus W, B_W = (w_1, ..., w_m). Prove B_{V/U} = (w_1 + U, ..., w_m + U).
Solus: \forall v \in V, \exists ! u \in U, w \in W, v = u + w. \not \exists ! c_i \in F, w = \sum_{i=1}^m c_i w_i \Rightarrow v = \sum_{i=1}^m c_i w_i + u.
           Hence \forall v + U \in V/U, \exists ! c_i \in F, v + U = \sum_{i=1}^m c_i w_i + U.
                                                                                                                                      Or. Becs \pi|_W: W \to W/U is inv, and V/U = W/U.
                                                                                                                                      16 Supp dim V/U = 1. Prove \exists \varphi \in \mathcal{L}(V, \mathbf{F}), null \varphi = U.
Solus: Supp V_0 \oplus U = V. Then V_0 is iso to V/U. Define \varphi \in \mathcal{L}(V, \mathbb{F}) by \varphi(av_0 + u) = a.
                                                                                                                                      Or. Let B_{V/U} = (w + U). Then \forall v \in V, \exists ! a \in F, v + U = aw + U.
           Define \varphi \in \mathcal{L}(V/U, \mathbf{F}) by \varphi(aw + U) = a. Then \operatorname{null}(\varphi \circ \pi) = U.
                                                                                                                                      • Supp U, W are subsps of V, and X, Y are subsps of W.
  Supp U, X are iso, W, Y are iso. Prove or give a countexa: U/W and X/Y are iso.
Solus: A countexa: Let \mathcal{V} = \mathcal{W} = \mathbf{F}^2. Let U = X = Y = \operatorname{span}(e_1), W = \operatorname{span}(e_2).
           Then dim U/W = \dim U - \dim(U \cap W) = 1 \neq 0 = \dim X - \dim(X \cap Y) = \dim X/Y.
           Or. Let \mathcal{V} = U = W = \mathbf{F}^{\infty} = X, Y = \{(0, x_1, x_2, \dots)\}. Then U/W = \{0\}, while dim X/Y = 1. \square
• Tips 2: Supp U, W are vecsps, I = U \cap W. Prove V = U + W \iff V/I = U/I \oplus W/I.
Solus: (a) Supp V = U + W. Then \forall v + I \in V/I, \exists (u_v, w_v) \in U \times W, v + I = (u_v + w_v) + I.
                Note that U/I, W/I \subseteq V/I. Thus V/I = U/I + W/I.
                \forall u + I = w + I \in (U/I) \cap (W/I), \underline{u - w \in I = U \cap W}
                \Rightarrow \exists w' \in I, u = w + w' \in U \cap W \Rightarrow u + I = 0 + I = w + I. \text{ Thus } (U/I) \cap (W/I) = \{0\}.
           (b) Supp V/I = U/I \oplus W/I. Then \forall v \in V, v + I = (u + I) + (w + I)
                \Rightarrow v - u - w \in I = U \cap W \Rightarrow \exists x \in U \cap W, v = u + w + x \in U + W.
                                                                                                                                      • Supp T \in \mathcal{L}(V, W), and U, V are subsps of some vecsp, and X, W are subsps of some vecsp.
  Define T/X^U : V/U \to W/X by T/X^U(v+U) = Tv + X.
  (a) Prove T/X is well-defined \iff (\operatorname{range} T|_{U \cap V})/(X \cap W) = \{0\} \iff \operatorname{range} T|_{U \cap V} is a subsp of X \cap W.
  Supp T/X^U is well-defined, and thus is liney. Define \pi_U \in \mathcal{L}(V, V/U), \pi_X \in \mathcal{L}(W, W/X).
  Then T/X \circ \pi_U = \pi_X \circ T. Define T/X \in \mathcal{L}(V, W/X) by T/X (v) = Tv + X.
  (b) range T/X^U = \operatorname{range}(T/X^U \circ \pi_U) = \operatorname{range}(\pi_X \circ T) = (\operatorname{range} T)/X.
  (c) Prove T/_X^U is surj \iff W = range T + X \cap W.
  (d) Show \operatorname{null} T/_X^U = \left(\operatorname{null} T/_X\right)/U. (e) T/_X^U is inje \iff \operatorname{null} T/_X \subseteq U.
Solus: (a) For v, w \in V. If v + U = w + U \iff v - w \in U \Rightarrow Tv - Tw \in X \cap W \iff Tv + X = Tw + X.
                Then \forall u \in V \cap U, Tu \in X \Rightarrow \operatorname{range} T|_{U \cap V} \subseteq X \cap W. Convly true as well.
           (c) Supp T/X^U is surj. \forall w \in W, w + X \in W/X \Rightarrow \exists v + U \in V/U, Tv + X = w + X
                \Rightarrow w - Tv \in X \cap W \Rightarrow w \in \text{range } T + X \cap W. \text{ Hence } W \subseteq \text{range } T + X \cap W.
               Convly, W = \operatorname{range} T + X \cap W \Rightarrow (\operatorname{range} T)/X = (\operatorname{range} T + X \cap W)/X = W/X.
           (d) v + U \in \text{null } T/X^U \iff Tv \in X \iff v \in \text{null } T/X \iff v + U \in (\text{null } T/X)/U.
                                                                                                                                      • COMMENT: Supp T \in \mathcal{L}(V). Define T/U \in \mathcal{L}(V/U) by T/U = T/U. Then
  (a) T/U well-defined \iff U \cap V invard T. (b) range T/U = \text{range}(\pi \circ T) = (\text{range } T)/U.
  (c) T/U \operatorname{surj} \iff V = \operatorname{range} T + U \cap V. (d) \operatorname{null} T/U = (\operatorname{null} T/U)/U. (e) T/U \operatorname{inje} \iff \operatorname{null} T/U \subseteq U.
```

```
• (5.A.33) Supp T \in \mathcal{L}(V). Prove T/\text{range } T = 0.
                                                                                                By (b) or (d) above, immed.
Solus: v + \text{range } T \in V/\text{range } T \Rightarrow v + \text{range } T \in \text{null}(T/\text{range } T). Thus T/\text{range } T = 0.
• (5.A.34) Supp T \in \mathcal{L}(V). Prove T/\text{null } T is inje \iff null T \cap \text{range } T = \{0\}.
Solus: Notice that (T/\text{null }T)(u + \text{null }T) = Tu + \text{null }T = 0 \iff Tu \in \text{null }T \cap \text{range }T.
          Now T/\text{null } T is inje \iff u + \text{null } T = 0 \iff Tu = 0 \iff \text{null } T \cap \text{range } T = \{0\}.
• Tips 3: Supp U, W are subsps of V and X is a subsp of U \cap W.
            Prove U/W and (U/X)/(W/X) are iso.
Solus: Let U_X \oplus X = U, W_X \oplus X = W. Becs U/W = U_X/W, and U/X = U_X/X.
  Define T \in \mathcal{L}((U_X/X)/(W/X), U_X/W) by T((u_x + X) + W/X) = u_x + W.
   \forall u_1, u_2 \in U_X \text{ suth } (u_1 + X) + W/X = (u_2 + X) + W/X \Rightarrow u_1 - u_2 + X \in W/X
  \Rightarrow u_1 - u_2 \in X + W \not \subset u_1, u_2 \in U_X \Rightarrow u_1 - u_2 \in W \Rightarrow u_1 + W = u_2 + W. Now T is well-defined.
  Inje: \forall u_x \in U_X \text{ suth } u_x + W = 0 \Rightarrow u_x \in W_X \Rightarrow (u_x + X) \in W_X/X.
  Surj: \forall u_x \in U_X, u_x + W = T((u_x + X) + W/X). Hence T is iso.
                                                                                                                                   Or. Define S \in \mathcal{L}(U_X/X, U_X) by S(u_x + X) = u_x. Becs \forall u_1 + X = u_2 + X \in U_X/X,
  u_1 - u_2 \in X \times u_1, u_2 \in U_X \Rightarrow u_1 = u_2. Now S well-defined, and S/W^{(W/X)} = T defined above.
  Becs range S|_{W/X \cap U_X/X} \subseteq W, and U_X = \operatorname{range} S \Rightarrow U_X \subseteq \operatorname{range} S + W. Well-defined. Surj.
   For u_x \in U_X, u_x + W = 0 \iff u_x \in U_X \cap W \iff u_x + X \in (U_X \cap W)/X = \text{null } S/_W. Inje.
                                                                                                                                   ENDED
3.F
4 Supp U is a subsp of V \neq U. Prove U^0 \neq \{0\}.
Solus: Let X \oplus U = V \Rightarrow X \neq \{0\}. Supp s \in X \setminus \{0\}. Let Y \oplus \text{span}(s) = X.
          Define \varphi \in V' by \varphi(u + \lambda s + y) = \lambda. Hence \varphi \neq 0 and \varphi(u) = 0 for all u \in U.
                                                                                                                                   Or. [ Req V Finide ] By [3.106], dim U^0 = \dim V - \dim U > 0.
                Or. Let B_U = (u_1, \dots, u_m), B_V = (u_1, \dots, u_m, v_1 \dots, v_n) with n \ge 1.
                Let B_V = (\psi_1, \dots, \psi_m, \varphi_1, \dots, \varphi_n). Then each \varphi \in \text{span}(\varphi_1, \dots, \varphi_n) will do.
                                                                                                                                   19 U^0 = \{0\} = V^0 \iff U = V.
COMMENT: Another proof of [3.108]: T is surj \iff T' is inje.
               (a) Supp T' is inje. Notice that \psi \neq 0 \iff T'(\psi) \neq 0 \iff \psi \notin (\operatorname{range} T)^0.
```

(b) T is surj \Rightarrow (range T)⁰ = $\{0\}$ = null T'.

```
• Note For [3.102] and Exe (18): For U = \emptyset, U^0 = \{ \varphi \in V' : U \subseteq \text{null } \varphi \} = V'. While \{ 0 \}_V^0 = V'.
  Not a ctradic to Exe (21) becs \emptyset is not a subsp. Now U^0 = V' can be true with U = \emptyset \neq \{0\}.
• TIPS 1: Supp \varphi_1, \dots, \varphi_m \in V'. Denote [\operatorname{null} \varphi_a \cap \dots \cap \operatorname{null} \varphi_b] by \bigcap_a^b \operatorname{null} \varphi_I.
              Supp \Omega is a subsp of V'. Denote \{v \in V : \varphi(v) = 0, \forall \varphi \in \Omega\} by C^0 \Omega.
  (a) \Omega is infinide. By def, \bigcap_{\epsilon \Omega} \text{null } \varphi = C^0 \Omega.
  (b) \Omega = \operatorname{span}(\varphi_1, \dots, \varphi_m). Becs v \in \bigcap_1^m \operatorname{null} \varphi_I \iff \forall \varphi = \sum_{i=1}^n a_i \varphi_i \in \Omega, \varphi(v) = 0 \iff v \in C^0 \Omega.
25 Supp U is a subsp of V. Explain why U = C^0U^0.
Solus: Asum v \in C^0U^0 while v \in V \setminus U. Then let span(v) \oplus U \oplus X = V.
            \exists \varphi \in V', \text{null } \varphi = U \oplus X \Rightarrow \varphi \in U^0. \not \subseteq \varphi(v) = 0 \Rightarrow 0 \neq v \in \text{null } \varphi \cap \text{span}(v). Ctradic.
                                                                                                                                                     COMMENT: X \subseteq W = \{v \in V : \varphi(v) = 0, \forall \varphi \in X^0\}, the promotion of the subset X of V.
• Supp U, W are subsps of V. Prove the promotion of U \cup W is U + W.
Solus: (U \cup W)^0 = \{ \varphi \in V' : \varphi(u) = \varphi(w) = \varphi(u+w) = 0, \forall u \in U, w \in W \} = (U+W)^0.
                                                                                                                                                     21 Supp U, W are subsps of V. Prove W^0 \subseteq U^0 \Rightarrow U \subseteq W.
Solus: \varphi \in W^0 \iff \text{null } \varphi \supseteq W \Rightarrow \text{null } \varphi \supseteq U \iff \varphi \in U^0. Wrong becs generally \nexists \varphi \in V' with \text{null } \varphi = W.
            v \in U \Rightarrow \forall \varphi \in W^0 \subseteq U^0, \varphi(v) = 0 \Rightarrow v \in W, by Exe (25).
                                                                                                                                                     COMMENT: (1) If U is merely a subset and W is a subsp. Promote U as X, let W = Y.
                      Then Y^0 = W^0 \subset U^0 = X^0 \Rightarrow Y = W \supset X \supset U. Still true.
                 (2) If W is merely a subset and U is a subsp. Promote W as Y, let U = X. For exa,
                      Let W = \{(1,0), (0,1)\} \not\supseteq U = \{(x,0) \in \mathbb{R}^2\}. Then Y = \mathbb{R}^2 \supseteq X = U, Y^0 = \{0\} \subseteq X^0.
22 Supp U and W are subsps of V. Prove (U + W)^0 = U^0 \cap W^0.
Solus: (a) \varphi \in (U+W)^0 \Rightarrow \forall u \in U, w \in W, \mid U \subseteq U+W \Rightarrow (U+W)^0 \subseteq U^0
                 \varphi(u) = \varphi(w) = 0 \Rightarrow \varphi \in U^0 \cap W^0. \quad | W \subseteq U + W \Rightarrow (U + W)^0 \subseteq W^0
            (b) \varphi \in U^0 \cap W^0 \subseteq V' \Rightarrow \forall u \in U, w \in W, \varphi(u+w) = 0 \Rightarrow \varphi \in (U+W)^0.
                                                                                                                                                     37 Supp U is a subsp of V and \pi is the quot map. Thus \pi' \in \mathcal{L}((V/U)', V').
     (a) Show \pi' is inje: Becs \pi is surj. Use [3.108].
     (b) Show range \pi' = U^0: By [3.109](b), range \pi' = (\text{null } \pi)^0 = U^0.
     (c) Conclude that \pi' is iso from (V/U)' onto U^0: Immed.
Solus: (a) Or. \pi'(\varphi) = 0 \iff \forall v \in V (\forall v + U \in V), \varphi(\pi(v)) = \varphi(v + U) = 0 \iff \varphi = 0.
            (b) Or. \psi \in \operatorname{range} \pi' \iff \exists \varphi \in (V/U)', \psi = \varphi \circ \pi \iff \operatorname{null} \psi \supseteq U \iff \psi \in U^0.
                                                                                                                                                     • Supp U is a subsp of V. Prove (V/U)' is iso to U^0.
                                                                                                              Another proof of [3.106]
Solus: Define \xi: U^0 \to (V/U)' by \xi(\varphi) = \widetilde{\varphi}, where \widetilde{\varphi} \in (V/U)' is defined by \widetilde{\varphi}(v+U) = \varphi(v).
            Inje: \xi(\varphi) = 0 = \widetilde{\varphi} \Rightarrow \forall v \in V \ (\forall v + U \in V/U), \widetilde{\varphi}(v + U) = \varphi(v) = 0 \Rightarrow \varphi = 0.
            Surj: \Phi \in (V/U)' \Rightarrow \forall u \in U, \Phi(u+U) = \Phi(0+U) = 0 \Rightarrow U \subseteq \text{null}(\Phi \circ \pi) \Rightarrow \xi(\Phi \circ \pi) = \Phi.
            Or. Define \nu:(V/U)'\to U^0 by \nu(\Phi)=\Phi\circ\pi. Now \nu\circ\xi=I_{U^0},\ \xi\circ\nu=I_{(V/U)},\Rightarrow\xi=\nu^{-1}.
```

23 Supp U and W are subsps of V. Prove $(U \cap W)^0 = U^0 + W^0$. Solus: (a) $\varphi = \psi + \beta \in U^0 + W^0 \Rightarrow \forall v \in U \cap W$, | Or. $U \cap W \subseteq U \Rightarrow (U \cap W)^0 \supseteq U^0$ $U \cap W \subseteq W \Rightarrow (U \cap W)^0 \supseteq W^0$ $\varphi(v) = (\psi + \beta)(v) = 0 \Rightarrow \varphi \in (U \cap W)^0.$ (b) $\lceil Req Finide \rceil$ By Exe (22), $\dim(U^0 + W^0) = \dim V - \dim(U \cap W)$. Or. Let $I = U \cap W$. We show $(U \cap W)^0 \subset U^0 + W^0$. Define $\chi \in \mathcal{L}(V/I, V/U \times V/W)$ by $\chi : v + I \mapsto (v + U, v + W)$. Well-defined: $v_1 + I = v_2 + I \in V/I \iff v_1 - v_2 \in I$ $\iff v_1 - v_2 \in U \text{ and } v_1 - v_2 \in W \Rightarrow (v_1 + U, v_1 + W) = (v_2 + U, v_2 + W).$ Inje: $(v + U, v + W) = 0 \iff v \in U \cap W = I \iff v + I = 0$. Surj: $\forall v \in V \text{ suth } (v + U, v + W) \in V/U \times V/W, \text{ becs } \emptyset \neq (v + U) \cap (v + W) = v + I \in V/I.$ Thus $\chi' \in \mathcal{L}((V/U \times V/W)', (V/I)')$ is iso. Now we find an iso of $U^0 \times W^0$ onto $(U \cap W)^0$. By (3.E.4), supp $\xi: (V/U)' \times (V/W)' \rightarrow (V/U \times V/W)'$ is iso. By (c) in Exe (37), supp $\Lambda_1: U^0 \times W^0 \to (V/U)' \times (V/W)'$ and $\Lambda_2: (V/I)' \to (U \cap W)^0$ are isos. Hence $(\Lambda_2 \circ \chi' \circ \xi \circ \Lambda_1) : U^0 \times W^0 \to (U \cap W)^0$ is iso. Now we see how it works: $\forall (\varphi_U, \varphi_W) \in U^0 \times W^0, \text{ null } \pi_U \subseteq \text{null } \varphi_U \Rightarrow \exists \, \psi_U \in (V/U)', \, \psi_U \circ \pi_U = \varphi_U, \text{ simlr for } \varphi_W,$ thus $\Lambda_1: (\varphi_U, \varphi_W) \mapsto (\psi_U, \psi_W)$. Then $\xi: (\psi_U, \psi_W) \mapsto (\psi_U S_U + \psi_W S_W)$, [See notats in (3.E.2).] Now $(\psi_U S_U + \psi_W S_W) \stackrel{\chi'}{\hookrightarrow} (\psi_U S_U + \psi_W S_W) \circ \chi \stackrel{\Lambda_2}{\hookrightarrow} (\psi_U S_U + \psi_W S_W) \circ \chi \circ \pi_I$, which sends v to $\psi_U(v+U) + \psi_W(v+W) = (\varphi_U + \varphi_W)(v)$, which is $\varphi_U + \varphi_W$. Thus $(\Lambda_2 \circ \chi' \circ \xi \circ \Lambda_1)$ is the surj $\Lambda : U^0 \times W^0 \to U^0 + W^0$ defined in [3.77]. **EXA:** Not true if U or W is merely a subset. Let $V = \mathbb{F}^2$, $U = \text{span}(e_1)$, $W = \{(1,1), (0,1)\}$. • Coro: $V = U \oplus W \iff V' = U^0 \oplus W^0$. • Supp $V = U \oplus W$. Define $\iota : V \to U$ by $\iota(u + w) = u$. Thus $\iota' \in \mathcal{L}(U', V')$. (a) Show $\operatorname{null} \iota' = \{0\}$: $\operatorname{null} \iota' = (\operatorname{range} \iota)_U^0 = U_U^0 = \{0\}$. Or. $\iota'(\psi) = \psi \circ \iota = 0 \Longleftrightarrow U \subseteq \operatorname{null} \psi$. (b) Prove range $\iota' = W_V^0$: range $\iota' = (\text{null } \iota)_V^0 = W_V^0$. Now ι' is iso from $U'/\{0\}$ onto W^0 . **Solus**: (b) Or. Note that $W = \text{null } \iota \subseteq \text{null } (\psi \circ \iota)$. Then $\psi \circ \iota \in W^0 \Rightarrow \text{range } \iota' \in W^0$. Supp $\varphi \in W^0$. Becs null $\iota = W \subseteq \text{null } \varphi$. By [3.B Tips (3)], $\varphi = \varphi \circ \iota = \iota'(\varphi)$. • Supp $V = U \oplus W$. Prove $U^0 = \{ \varphi \in V' : \varphi = \varphi \circ \iota \}$, where $\iota \in \mathcal{L}(V, W) : u_v + w_v \to w_v$. **Solus**: $\varphi \in U^0 \iff U \subseteq \text{null } \varphi \iff \varphi = \varphi \circ \iota$, by [3.B Tips (3)]. **Note:** The notat $W_V' = \{ \varphi \in V' : \varphi = \varphi \circ \iota \} = U^0$ is not well-defined [without a bss]. Simply becs W is not uniq. A bss of V' as precond would fix this. See NOTE FOR Exe (31) **EXA:** Let $B_V = (e_1, e_2)$. Let $B_U = (e_1), B_X = (e_2 - e_1), B_Y = (e_2)$. Then $\iota_X : ae_1 + b(e_2 - e_1) \mapsto b(e_2 - e_1), \ \iota_Y : ae_1 + be_2 \mapsto be_2$. Now by notat asum, $X_V' = Y_V' = U^0$.

COMMENT: Supp U is a subsp of V. Then finding the corres subsp in V' req another 'half' $W \in \mathcal{S}_V U$ to be uniq, while finding the corres subsp of V for a subsp of V' must have the another 'half' assumed as precond.

Thus X = Y, ctradic. But what if let $B_{V'} = (\beta_1, \beta_2)$ and thus fix $B_{U'} = (c_1\beta_1 + c_2\beta_2)'$?

Now $X^0 = U_V'$.

Now $\Upsilon^0 = U_V'$.

(1) For $V = U \oplus X$, let $B_{U'_V} = (\varphi)$ with $\varphi : e_1 \mapsto 1$, $e_2 - e_1 \mapsto 0 \Rightarrow e_2 \mapsto 1$.

Everything seems alright until you notice the following:

(2) For $V = U \oplus Y$, let $B_{U_V'} = (\psi)$ with $\psi : e_1 \mapsto 1, e_2 \mapsto 0$.

```
31 Supp V is finide and B_{V'} = (\varphi_1, ..., \varphi_n). Show \exists ! B_V whose dual bss is the B_{V'}.
Solus: For each k \in \{1, ..., n\}, let \Gamma_k = \{1, ..., n\} \setminus \{k\}. Let each U_k = \bigcap_{i \in \Gamma_k} \text{null } \varphi_i.
              By Exe (4E 23), V' = \operatorname{span}(\varphi_1, \dots, \varphi_n) = (\operatorname{null} \varphi_1 \cap \dots \cap \operatorname{null} \varphi_n)^0 \Rightarrow U_k \cap \operatorname{null} \varphi_k = \{0\}.
              Thus \forall x_k \in U_k \setminus \{0\}, x_k \notin \text{null } \varphi_k \text{ while } x_k \in \text{null } \varphi_i \text{ for all } j \in \Gamma_k.
              Fix one x_k and let v_k = [\varphi_k(x_k)]^{-1}x_k \Rightarrow \varphi_k(v_k) = 1, \varphi_i(v_k) = 0 for all j \neq k.
              Simply for each v_k, \varphi_i(v_k) = \delta_{i,k} for all j \iff for each \varphi_i, \varphi_i(v_k) = \delta_{i,k} for all k.
              \not Z a_1 v_1 + \dots + a_n v_n = 0 \Rightarrow \text{each } \varphi_k(0) = a_k.
              Now we prove the uniques part. Supp the dual bss of B'_V = (u_1, \dots, u_n) is the B_V.
              For each k, we have \varphi_j(v_k) = \varphi_j(u_k) for all k \Rightarrow v_k - u_k \in \bigcap_{j=1}^n \operatorname{null} \varphi_j = \{0\}.
                                                                                                                                                                                  • Note For Exe (31): Supp V is finide, and \Omega is a subsp of V' with B_{\Omega} = (\varphi_1, \dots, \varphi_m).
  The 'W' is not clear when we are to find one suth W'_V = \Omega, becs the another 'half' is undefined.
  Extend to B_{V'} = (\varphi_1, ..., \varphi_n). By Exe (31), \exists ! \text{ corres } B_V = (v_1, ..., v_n). Let B_U = (v_{m+1}, ..., v_n).
  Let B_W = (v_1, ..., v_m). Thus W_V' = \Omega. Now W is well-defined with B_V as precond.
• Note For Exe (1): Every liney functional is either surj or is a zero map.
   Which means, for \varphi \in V', \varphi = 0 \iff \dim \operatorname{span}(\varphi) = 0 \iff \dim \operatorname{range} \varphi = 0.
   And \varphi \neq 0 \iff \dim \operatorname{span}(\varphi) = 1 \iff \dim \operatorname{range} \varphi = 1. Thus \dim \operatorname{span}(\varphi) = \dim \operatorname{range} \varphi.
• (4E 23) Supp V is finide, \Omega = \operatorname{span}(\varphi_1, \dots, \varphi_m) \subseteq V'. Prove \Omega = (\operatorname{null} \varphi_1 \cap \dots \cap \operatorname{null} \varphi_m)^0.
Solus: Becs each span(\varphi_k) \subseteq (null \varphi_k)<sup>0</sup>. By Note For Exe (1) and Exe (23), Immed.
              Or. Reduce to B_{\Omega}=(\beta_1,\ldots,\beta_p). We show \Omega=(\operatorname{null}\beta_1\cap\cdots\cap\operatorname{null}\beta_p)^0, then done by Tips (2).
              Let B_V = (\beta_1, ..., \beta_v, \gamma_1, ..., \gamma_a). By Exe (31), let B_V = (v_1, ..., v_v, u_1, ..., u_a).
              Define each \Gamma_k = \{1, ..., p\} \setminus \{k\}. Then \text{null } \beta_k = \text{span}\{v_i\}_{i \in \Gamma_k} \oplus \text{span}(u_1, ..., u_q).
              Now (\text{null }\beta_1 \cap \cdots \cap \text{null }\beta_p) = \text{span}(u_1, \dots, u_q). Simlr to (4E 2.C.16).
              Supp \varphi = \sum_{i=1}^p a_i \beta_i + \sum_{j=1}^q b_j \gamma_j \in \text{span}(u_1, \dots, u_q)^0. Then each \varphi(u_k) = 0 = b_k
              Thus span(u_1, ..., u_q)^0 \subseteq \text{span}(\beta_1, ..., \beta_p) = \Omega.
                                                                                                                                                                                  • Tips 2: Supp each \varphi_i, \beta_i \in \mathcal{L}(V, W). Supp span(\varphi_1, \dots, \varphi_m) = \text{span}(\beta_1, \dots, \beta_n).
                 Prove \operatorname{null} \varphi_1 \cap \cdots \cap \operatorname{null} \varphi_m = \operatorname{null} \beta_1 \cap \cdots \cap \operatorname{null} \beta_n.
Solus: Becs each \beta_k \in \text{span}(\varphi_1, \dots, \varphi_m).
              \forall v \in \bigcap_{1}^{m} \text{null } \varphi_{I}, \beta_{k}(v) = 0. \text{ Thus } \bigcap_{1}^{m} \text{null } \varphi_{I} \subseteq \bigcap_{1}^{n} \text{null } \beta_{I}. \text{ Rev the roles and done.}
                                                                                                                                                                                  Or. Supp (\varphi_1, \dots, \varphi_i) is a bss of span(\varphi_1, \dots, \varphi_m). Let N_k \oplus \bigcap_{i=1}^{j} \text{null } \varphi_i = \text{null } \varphi_k.
              Now \bigcap_{1}^{j} \operatorname{null} \varphi_{I} \cap (\operatorname{null} \varphi_{k}) = \bigcap_{1}^{j} \operatorname{null} \varphi_{I}. Thus \bigcap_{1}^{m} \operatorname{null} \varphi_{I} = \bigcap_{1}^{j} \operatorname{null} \varphi_{I}.
              \not \subset \beta_k \in \operatorname{span}(\varphi_1, \dots, \varphi_j). Let M_k \oplus \bigcap_1^j \operatorname{null} \varphi_I = \operatorname{null} \beta_k. Simlr, \bigcap_1^n \operatorname{null} \beta_I = \bigcap_1^j \operatorname{null} \varphi_I.
                                                                                                                                                                                  26 Supp V is finide, \Omega is a subsp of V'. Then get a B_{\Omega} and by TIPS (1) and Exe (4E 23), \Omega = (C^0 \Omega)^0.
Exa: Immed, \Omega \subseteq (C^0 \Omega)^0. Now we give a countexa for \Omega \supseteq (C^0 \Omega)^0.
         Let V = \{(x_1, x_2, \dots) \in \mathbb{F}^{\infty} : x_k \neq 0 \text{ for only finily many } k\}. Then V' = (\mathbb{F}^{\infty})'.
         Let \Omega = \left\{ \varphi \in \operatorname{span}(\varphi_{\alpha_1}, \dots, \varphi_{\alpha_m}) : \exists m, \alpha_k \in \mathbb{N}^+ \right\} \subsetneq V'. Then C^0 \Omega = \left\{ 0 \right\} \Rightarrow (C^0 \Omega)^0 = V'.
Coro: Supp V is finide. For every subsp \Omega of V', \exists ! subsp U of V suth \Omega = U^0.
```

```
• Supp span(\varphi_1, ..., \varphi_m) \subseteq V'. Let each U_k \oplus \text{null } \varphi_k = V.
  Prove or give a countexa: (U_1 + \cdots + U_m) \oplus (\text{null } \varphi_1 \cap \cdots \cap \text{null } \varphi_m) = V.
Solus: Let V = \mathbb{R}^2. Define \varphi_1 = \varphi_2 : (x, y) \mapsto x. Let B_{U_1} = (e_1), B_{U_2} = (e_1 + e_2) \Rightarrow U_1 + U_2 = V.
             OR. Let B_{V'} = (\varphi_1, \varphi_2) be corres to the std bss. Let B_{U_1} = B_{U_2} = (e_1 + e_2) \Rightarrow U_1 + U_2 \subsetneq V.
• Tips 3: Let B_{U^0} = (\varphi_1, ..., \varphi_m), B_{V'} = (\varphi_1, ..., \varphi_n) \Rightarrow B_V = (v_1, ..., v_n).
               We show (a) B_U = (v_{m+1}, \dots, v_n); (b) U = \text{null } \varphi_1 \cap \dots \cap \text{null } \varphi_m.
                (a) Becs span(v_{m+1},...,v_n)^0 = \text{span}(\varphi_1,...,\varphi_m) = U^0. Now by Exe (20, 21).
                      OR. Becs by (b), U = \bigcap_{1}^{m} \text{null } \varphi_{I} = \text{span}(v_{m+1}, \dots, v_{n}).
                (b) Each null \varphi_k = \operatorname{span}\{B_V \setminus \{v_k\}\} \Rightarrow \bigcap_{1}^m \operatorname{null} \varphi_I = \operatorname{span}(v_{m+1}, \dots, v_n). Now by (a).
                      Or. Becs \operatorname{span}(\varphi_1, \dots, \varphi_m) = U^0 = (\operatorname{null} \varphi_1 \cap \dots \cap \operatorname{null} \varphi_m)^0. Now by Exe (20, 21).
                                                                                                                                                                   24 Prove, using the pattern of [3.104], that dim U + \dim U^0 = \dim V.
Solus: By Tips (3). Or. Let B_U = (u_1, ..., u_m), B_V = (u_1, ..., u_m, v_1, ..., v_n), B_{V'} = (\psi_1, ..., \psi_m, \varphi_1, ..., \varphi_n).
             Supp \psi = \sum_{i=1}^{m} a_i \psi_i + \sum_{j=1}^{n} b_j \varphi_j \in U^0 \Rightarrow \text{each } \psi(u_k) = a_k = 0. \text{ Thus } U^0 \subseteq \text{span}(\varphi_1, \dots, \varphi_n).
• Supp T \in \mathcal{L}(V, W), each \varphi_k \in V', and each \psi_k \in W'.
28 \operatorname{null} T' = \operatorname{span}(\psi_1, \dots, \psi_m) \iff \operatorname{range} T = (\operatorname{null} \psi_1) \cap \dots \cap (\operatorname{null} \psi_m).
29 range T' = \operatorname{span}(\varphi_1, \dots, \varphi_m) \iff \operatorname{null} T = (\operatorname{null} \varphi_1) \cap \dots \cap (\operatorname{null} \varphi_m).
34 Define \Lambda: V \to \mathbf{F}^{V'} by \Lambda v = \overline{v}, and \overline{v}: V' \to \mathbf{F} by \overline{v}(\varphi) = \varphi(v).
     (a) Show \overline{v} \in V'' and \Lambda \in \mathcal{L}(V, V'').
     (b) Show if T \in \mathcal{L}(V), then T'' \circ \Lambda = \Lambda \circ T, where T'' = (T')'.
     (c) Show if V is finide, then \Lambda is iso from V onto V''.
SOLUS: (a) \overline{v}(\varphi + \lambda \psi) = (\varphi + \lambda \psi)(v) = \varphi(v) + \lambda \psi(v) = \overline{v}(\varphi) + \lambda \overline{v}(\psi).
                   \overline{v + \lambda w}(\varphi) = \varphi(v + \lambda w) = \varphi(v) + \lambda \varphi(w) = \overline{v}(\varphi) + \lambda \overline{w}(\varphi).
             (b) (T''\overline{v})(\varphi) = (\overline{v} \circ T')(\varphi) = \overline{v}(T'(\varphi)) = (T'(\varphi))(v) = (\varphi \circ T)(v) = \varphi(Tv) = \overline{Tv}(\varphi).
             (c) \overline{v} = 0 \Rightarrow \forall \varphi \in V', \overline{v}(\varphi) = \varphi(v) = 0 \Rightarrow v = 0. Inje. Now becs V finide.
                                                                                                                                                                   36 Supp U is a subsp of V. Define i: U \to V by i(u) = u. Thus i' \in \mathcal{L}(V', U').
     (a) Show null i' = U^0: null i' = (\text{range } i)^0 = U^0 \Leftarrow \text{range } i = U.
     (b) Prove range i' = U': range i' = (\text{null } i)_U^0 = \{0\}_U^0 = U'.
     (c) Prove \tilde{i}' is iso from V'/U^0 onto U': Immed.
Solus: (a) Or. \forall \varphi \in V', i'(\varphi) = \varphi \circ i = \varphi|_{U}. Thus i'(\varphi) = 0 \iff \forall u \in U, \varphi(u) = 0 \iff \varphi \in U^{0}.
             (b) Or. Supp \psi \in U'. By (3.A.11), \exists \varphi \in V', \varphi|_U = \psi. Then i'(\varphi) = \psi.
                                                                                                                                                                   • Supp T \in \mathcal{L}(V, W). Prove range T' \supseteq (\text{null } T)^0.
                                                                                                                   \begin{bmatrix} Another proof of [3.109](b) \end{bmatrix}
Solus: Let V = U \oplus \text{null } T. Let R = (T|_U)^{-1}|_{\text{range } T}. Define \iota \in \mathcal{L}(V, U) by \iota(u + w) = u.
             \forall \Phi \in (\operatorname{null} T)^0, let \psi = \Phi \circ R, then T'(\psi) = \psi \circ T = \Phi \circ (R \circ T|_V) = \Phi \circ \iota = \Phi \in \operatorname{range} T'.
Coro: [3.108] and [3.110] hold without the hypo of finide. Now T inv \iff T' inv.
```

```
15 Supp T \in \mathcal{L}(V, W). Prove T' = 0 \Rightarrow T = 0.
                                                                                              Coro: If V, W finide, then \Gamma : T \mapsto T' is iso.
Solus: Supp T' = 0. Then null T' = \{0\} = (\text{range } T)^0.
                                                                                                                                                                 OR. By Exe (25), range T = \{ w \in W : \varphi(w) = 0, \forall \varphi \in (\text{range } T)^0 = \text{null } T' = W' \} = \{ 0 \}.
                                                                                                                                                                • Let B_V = (v_1, ..., v_n), B_{V'} = (\varphi_1, ..., \varphi_n), B_W = (w_1, ..., w_m), B_{W'} = (\psi_1, ..., \psi_m).
• TIPS 4: Define \Phi \in \mathcal{L}(V',V): \varphi_k \mapsto v_k; \ \Psi \in \mathcal{L}(W,W'): w_i \mapsto \psi_i.
               Define T \in \mathcal{L}(V, W) suth \mathcal{M}(T, B_V, B_W) = A. Let S = \Phi T' \Psi \Rightarrow \mathcal{M}(S, B_W, B_V) = A^t.
• Tips 5: Define each E_{i,k} \in \mathcal{L}(V,W) : v_x \mapsto \delta_{i,x} w_k, and each \exists_{k,i} \in \mathcal{L}(W',V') : \psi_x \mapsto \delta_{k,x} \varphi_i.
               Note that each E'_{j,k}(\psi_x) = \psi_x \circ E_{j,k} = \delta_{k,x} \varphi_j = \exists_{k,j} (\psi_x) \Rightarrow E'_{j,k} = \exists_{k,j}.
               \mathcal{L}(V,W) \ni \sum_{j=1}^{n} \sum_{k=1}^{m} A_{k,j} E_{j,k} \iff \sum_{j=1}^{n} \sum_{k=1}^{m} A_{k,j} \exists_{k,j} \in \mathcal{L}(W',V'). Uniqly by Exe (16).
6 Define \Gamma: V' \to \mathbf{F}^m by \Gamma(\varphi) = (\varphi(v_1), \dots, \varphi(v_m)), where v_1, \dots, v_m \in V.
   Show (a) span(v_1, ..., v_m) = V \iff \Gamma inje. (b) (v_1, ..., v_m) liney indep \iff \Gamma surj.
Solus: Let (e_1, \dots, e_m) be the std bss of \mathbf{F}^m.
   (a) Becs \Gamma(\varphi) = 0 \iff \varphi(v_1) = \dots = \varphi(v_m) = 0 \iff \text{null } \varphi = \text{span}(v_1, \dots, v_m). Immed.
   (b) Supp \Gamma is surj. Let each e_k = \Gamma(\varphi_k) \Rightarrow \varphi_k(v_j) = \delta_{j,k}. Now a_1v_1 + \dots + a_mv_m = 0 \Rightarrow \text{each } a_k = \varphi_k(0).
         Supp (v_1, \ldots, v_m) is liney indep. Let U = \text{span}(v_1, \ldots, v_m), B_{U'} = (\psi_1, \ldots, \psi_m). Let W \oplus U = V.
         Define \iota : u_v + w_v \mapsto u_v. Each \psi_k \circ \iota = \varphi_k \in V' \Rightarrow \varphi_k(v_i) = \psi_k(v_i) = \delta_{i,k} \Rightarrow \text{each } e_k = \Gamma(\varphi_k).
   Or. Let (\psi_1, \dots, \psi_m) be dual bss of the std bss of \mathbf{F}^m. Define an iso \Psi : \mathbf{F}^m \to (\mathbf{F}^m)' by \Psi(e_k) = \psi_k.
   Define T \in \mathcal{L}(\mathbf{F}^m, V) by Te_k = v_k. Now T(x_1, ..., x_m) = x_1v_1 + \cdots + x_mv_m.
   \forall \varphi \in V', k \in \{1, \dots, m\}, \lceil T'(\varphi) \rceil(e_k) = \varphi(Te_k) = \varphi(v_k) = \lceil \varphi(v_1)\psi_1 + \dots + \varphi(v_m)\psi_m \rceil(e_k)
   Now T'(\varphi) = \varphi(v_1)\psi_1 + \cdots + \varphi(v_m)\psi_m = \Psi(\Gamma(\varphi)). Hence T' = \Psi \circ \Gamma.
   By (3.B.3), (a) range T = \operatorname{span}(v_1, \dots, v_m) = V \iff T' inje \iff \Gamma inje.
                     (b) (v_1, \dots, v_m) is liney indep \iff T is inje \iff T' surj \iff \Gamma surj.
                                                                                                                                                                • (4E 25) Define \Gamma: V \to \mathbf{F}^m by \Gamma(v) = (\varphi_1(v), \dots, \varphi_m(v)), where \varphi_1, \dots, \varphi_m \in V'.
  Show (c) span(\varphi_1, ..., \varphi_m) = V' \iff \Gamma inje. (d) (\varphi_1, ..., \varphi_m) liney indep \iff \Gamma surj.
Solus: Let (e_1, \dots, e_m) be the std bss of \mathbf{F}^m.
   (c) Becs \Gamma(v) = 0 \iff \varphi_1(v) = \cdots = \varphi_m(v) = 0 \iff v \in (\text{null }\varphi_1) \cap \cdots \cap (\text{null }\varphi_m).
         By Exe (4E 23), \operatorname{span}(\varphi_1, \dots, \varphi_m) = V' \iff \operatorname{null} \Gamma = (\operatorname{null} \varphi_1) \cap \dots \cap (\operatorname{null} \varphi_m) = \{0\}.
   (d) Supp (\varphi_1, ..., \varphi_m) is liney indep. [ Req Finide ] Extend to B_V = (\varphi_1, ..., \varphi_n).
         Then by Exe (31), B_V = (v_1, ..., v_n) and each \varphi_k(v_i) = \delta_{i,k} \Rightarrow \text{each } e_k = \Gamma(\varphi_k).
          Convly, let each v_k be suth e_k = \Gamma(v_k) = (\varphi_1(v_k), \dots, \varphi_m(v_k)). If a_1\varphi_1 + \dots + a_m\varphi_m = 0. Immed.
          Or. Let U = \operatorname{span}(v_1, \dots, v_m). Then B_{U'} = (\varphi_1|_{U'}, \dots, \varphi_m|_{U'}) \Rightarrow (\varphi_1, \dots, \varphi_m) liney indep.
                                                                                                                                                                OR. Let (\psi_1, \dots, \psi_m) be dual bss of the std bss of \mathbf{F}^m. Define an iso \Psi : \mathbf{F}^m \to (\mathbf{F}^m)' by \Psi(e_k) = \psi_k.
   \forall (x_1,\ldots,x_m) \in \mathbf{F}^m, \Gamma'(\Psi(x_1,\ldots,x_m)) = x_1\varphi_1 + \cdots + x_m\varphi_m. Define \Phi = \Gamma' \circ \Psi. Thus by (3.B.3),
   (c) \Gamma inje \iff \Gamma' surj \iff \Phi surj \iff (\varphi_1, \dots, \varphi_m) spanning V'. Simlr for (d).
                                                                                                                                                                 9 Show \forall \psi \in V', \psi = \psi(v_1) \varphi_1 + \dots + \psi(v_n) \varphi_n, where B_V = (v_1, \dots, v_n), B_{V'} = (\varphi_1, \dots, \varphi_n).
SOLUS: \psi(v) = a_1 \psi(v_1) + \dots + a_n \psi(v_n) = \psi(v_1) \varphi_1(v) + \dots + \psi(v_n) \varphi_n(v).
```

Exes about Sequences and Number Theory before Chapter 4

• (2.A.16) Prove the vecsp U of all continuous functions in $\mathbb{R}^{[0,1]}$ is infinide.

Solus: By [3.A Note For \mathbf{F}^S], immed. Or. Fix one $m \in \mathbf{N}^+$ and $p \in \mathcal{P}([0,1])$.

Then p has infily many roots and hence each coeff is zero, othws deg $p \ge 0$, ctradic [4.12].

Thus $(1, x, ..., x^m)$ is liney indep in $\mathbb{R}^{[0,1]}$. Simlr to [2.16], U is infinide.

Or. Note that
$$\frac{1}{1} > \frac{1}{2} > \dots > \frac{1}{m}$$
, $\forall m \in \mathbb{N}^+$. Supp $f_m = \begin{cases} x - \frac{1}{m}, & x \in \left(\frac{1}{m}, 1\right] \\ 0, & x \in \left[0, \frac{1}{m}\right] \end{cases}$

Then
$$f_1\left(\frac{1}{m}\right) = \cdots = f_m\left(\frac{1}{m}\right) = 0 \neq f_{m+1}\left(\frac{1}{m}\right)$$
. Hence $f_{m+1} \notin \operatorname{span}(f_1, \dots, f_m)$. By (2.A.14). \square

• (3.F.35) Prove $(\mathcal{P}(\mathbf{F}))'$ is iso to \mathbf{F}^{∞} .

Solus: Define
$$\theta \in \mathcal{L}[(\mathcal{P}(\mathbf{F}))', \mathbf{F}^{\infty}]$$
 by $\theta(\varphi) = (\varphi(1), \varphi(z), \cdots, \varphi(z^m), \cdots)$.

Notice that $\forall p \in \mathcal{P}(\mathbf{R}), \exists ! c_i \in \mathbf{F}, m = \deg p, \ p(z) = c_0 + c_1 z + \dots + c_m z^m \in \mathcal{P}_m(\mathbf{F}).$

Inje:
$$\theta(\varphi) = 0 \Rightarrow \forall p \in \mathcal{P}(\mathbf{F}), \varphi(p) = c_0 \varphi(1) + c_1 \varphi(z) + \dots + c_m \varphi(z^m) = 0.$$

Surj: Supp
$$x = (x_0, x_1, \dots) \in \mathbf{F}^{\infty}$$
. Define $\psi_x(p) = x_0 c_0 + \dots + x_m c_m \Rightarrow \text{each } \psi_x(z^k) = x_k$.

$$\forall p, q \in \mathcal{P}(\mathbf{F})$$
, supp $\deg p = m \ge n = \deg q$, [which is why we do not write $(p + \lambda q)$.] $\psi_x(\lambda p + \mu q) = \sum_{j=0}^n x_j(\lambda a_j + \mu b_j) + \sum_{k=1}^{m-n} x_{n+k}\lambda a_{n+k} = \lambda \psi_x(p) + \mu \psi_x(q)$.

COMMENT: $\mathcal{P}(\mathbf{F})$, \mathbf{F}^{∞} not iso $\Longrightarrow \mathcal{P}(\mathbf{F})$, $(\mathcal{P}(\mathbf{F}))'$ not iso. But $\mathcal{P}(\mathbf{F})$ is iso to $\mathbf{F}^{\mathbf{N}}$, see the 'U' in (3.E.14).

• (3.E.14) Supp
$$U = \{(x_1, x_2, \dots) \in \mathbf{F}^{\infty} : x_k \neq 0 \text{ for only finily many } k\}$$
. Denote it by $\mathbf{F}^{\mathbb{N}}$. (a) Show U is a subsp of \mathbf{F}^{∞} . [Do it in your mind] (b) Prove \mathbf{F}^{∞}/U is infinide.

SOLUS: For ease of nota, denote the p^{th} term of $u = (x_1, \dots, x_p, \dots) \in \mathbf{F}^{\infty}$ by u[p].

For each
$$r \in \mathbb{N}^+$$
, let $e_r[k] = \begin{cases} 1, & (k-1) \equiv 0 \pmod{r} \\ 0, & \text{othws} \end{cases}$ simply $e_r = (1, \underbrace{0, \cdots, 0}_{(r-1)}, 1, \underbrace{0, \cdots, 0}_{(r-1)}, 1, \cdots).$

For $m \in \mathbb{N}^+$. Let $a_1(e_1 + U) + \dots + a_m(e_m + U) = 0 + U \Rightarrow \exists u \in U, a_1e_1 + \dots + a_me_m = u$.

Supp $u = (x_1, \dots, x_L, 0, \dots)$, where L is the largest suth $u[L] \neq 0$.

Let $s \in \mathbb{N}^+$ be suth $h = s \cdot m! + 1 > L$, and $e_1[h] = \cdots = e_m[h] = 1$.

Notice that for any $p, r \in \{1, ..., m\}$, $e_r[s \cdot m! + 1 + p] = e_r[p + 1] = 1 \iff p \equiv 0 \pmod{r} \iff r \mid p$.

Let $1 = p_1 \leqslant \cdots \leqslant p_{\tau(p)} = p$ be the disti factors of p. Moreover, $r \mid p \iff r = p_k$ for some k.

Now
$$u[h+p] = 0 = \sum_{r=1}^{m} a_r e_r [p+1] = \sum_{k=1}^{\tau(p)} a_{p_k}$$
.

Let
$$q = p_{\tau(p)-1}$$
. Then $\tau(q) = \tau(p) - 1$, and each $q_k = p_k$. Again, $\sum_{r=1}^m a_r e_r [h + q] = 0 = \sum_{k=1}^{\tau(p)-1} a_{p_k}$.

Thus
$$a_{p_{\tau(p)}} = a_p = 0$$
 for all $p \in \{1, \dots, m\} \Rightarrow (e_1, \dots, e_m)$ is liney indep in \mathbf{F}^{∞} .

Or. For each
$$r \in \mathbb{N}^+$$
, let $e_r[p] = \begin{cases} 1 \text{, if } 2^r \mid p \mid \text{ Simlr, let } m \in \mathbb{N}^+ \text{ and } a_1(e_1 + U) + \dots + a_m(e_m + U) = 0 \\ 0 \text{, othws} \mid \Rightarrow a_1 e_1 + \dots + a_m e_m = u \in U. \end{cases}$

Supp *L* is the largest suth $u[L] \neq 0$. And *l* is suth $2^{ml} > L$. Then for each $k \in \{1, ..., m\}$,

$$u[2^{ml} + 2^k] = 0 = \sum_{r=1}^m a_r e_r[2^k] = a_1 + \dots + a_k$$
. Thus each $a_k = 0$. Simlr.

Exes about Polys before Chapter 4

• (1.C.9) A function $f: \mathbb{R} \to \mathbb{R}$ is called periodic if $\exists p \in \mathbb{N}^+$, f(x) = f(x+p) for all $x \in \mathbb{R}$. *Is the set of periodic functions* $R \to R$ *a subsp of* R^R ? *Explain.*

Solus: Denote the set by *S*.

Supp $h(x) = \cos x + \sin \sqrt{2}x \in S$, since $\cos x$, $\sin \sqrt{2}x \in S$.

Asum $\exists p \in \mathbb{N}^+$ suth h(x) = h(x+p), $\forall x \in \mathbb{R}$. Let $x = 0 \Rightarrow h(0) = h(\pm p) = 1$.

Thus $1 = \cos p + \sin\sqrt{2}p = \cos p - \sin\sqrt{2}p$

 $\Rightarrow \sin \sqrt{2}p = 0$, $\cos p = 1 \Rightarrow p = 2k\pi$, $k \in \mathbb{Z}$, while $p = \frac{m\pi}{\sqrt{2}}$, $m \in \mathbb{Z}$.

Hence $2k = \frac{m}{\sqrt{2}} \Rightarrow \sqrt{2} = \frac{m}{2k} \in \mathbb{Q}$. Ctradic!

Or. Becs $\cos x + \sin \sqrt{2}x = \cos(x+p) + \sin(\sqrt{2}x + \sqrt{2}p)$. By diff twice, $\cos x + 2\sin\sqrt{2}x = \cos(x+p) + 2\sin(\sqrt{2}x + \sqrt{2}p).$

$$\frac{\sin\sqrt{2}x = \sin\left(\sqrt{2}x + \sqrt{2}p\right)}{\cos x = \cos(x + p)} \right\} \Rightarrow \text{Let } x = 0, \ p = \frac{m\pi}{\sqrt{2}} = 2k\pi. \text{ Ctradic.}$$

• (1.C.24) Let $V_E = \{ f \in \mathbb{R}^R : f \text{ is even} \}, V_O = \{ f \in \mathbb{R}^R : f \text{ is odd} \}. Show V_E \oplus V_O = \mathbb{R}^R.$

Solus: (a) $V_E \cap V_O = \{ f \in \mathbb{R}^R : f(x) = f(-x) = -f(-x) \} = \{ 0 \}.$

(b)
$$\left| \begin{array}{l} \text{Let } f_e(x) = \frac{1}{2} \left[g(x) + g(-x) \right] \Longrightarrow f_e \in V_E \\ \text{Let } f_o(x) = \frac{1}{2} \left[g(x) - g(-x) \right] \Longrightarrow f_o \in V_O \end{array} \right| \Rightarrow \forall g \in \mathbb{R}^R, \ g(x) = f_e(x) + f_o(x).$$

- (2.C.7) (a) Let $U = \{ p \in \mathcal{P}_4(\mathbf{F}) : p(2) = p(5) = p(6) \}$. Find a bss of U.
 - (b) Extend the bss in (a) to a bss of $\mathcal{P}_4(\mathbf{F})$, and find a W suth $\mathcal{P}_4(\mathbf{F}) = U \oplus W$.

Solus: Using (2.C.10).

NOTICE that $\nexists p \in \mathcal{P}(\mathbf{F})$ of deg 1 and 2, while $p \in U$. Thus dim $U \leq \dim \mathcal{P}_4(\mathbf{F}) - 2 = 3$.

- (a) Consider B = (1, (z-2)(z-5)(z-6), z(z-2)(z-5)(z-6)).Let $a_0 + a_3(z-2)(z-5)(z-6) + a_4z(z-2)(z-5)(z-6) = 0 \Rightarrow a_0 = a_3 = a_4 = 0$. Thus the list *B* is liney indep in *U*. Now dim $U \ge 3 \Rightarrow \dim U = 3$. Thus $B_U = B$.
- (b) Extend to a bss of $\mathcal{P}_4(\mathbf{F})$ as $(1,z,z^2,(z-2)(z-5)(z-6),z(z-2)(z-5)(z-6))$. Let $W = \operatorname{span}(z, z^2) = \{az + bz^2 : a, b \in \mathbf{F}\}$, so that $\mathcal{P}_4(\mathbf{F}) = U \oplus W$.
- Note For (2.C.10): For each nonC $p \in \text{span}(1, z, ..., z^m)$, $\exists \text{ smallest } m \in \mathbb{N}^+$, which is deg p.
 - (a) If p_0, p_1, \dots, p_m are suth all $a_{k,k} \neq 0$, and

If p_0, p_1, \dots, p_m are such as $a_{k,k}$. $p_0 = a_{0,0}, \text{ each } p_k = a_{0,k} + a_{1,k}z + \dots + a_{k,k}z^k.$ Then the upper-trig $\mathcal{M}(I, (p_0, p_1, \dots, p_m), (1, z, \dots, z^m)) = \begin{pmatrix} a_{0,0} & a_{0,1} & \dots & u_{0,m} \\ 0 & a_{1,1} & \dots & a_{1,m} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{m,m} \end{pmatrix}$

(b) If p_0, p_1, \dots, p_m are suth all $a_{k,k} \neq 0$, and $p_{0} = a_{0,0} + \dots + a_{m,0}x^{m}, \text{ each } p_{k} = a_{k,k}x^{k} + \dots + a_{m,k}x^{m}.$ Then the lower-trig $\mathcal{M}(I, (p_{0}, p_{1}, \dots, p_{m}), (1, z, \dots, z^{m})) = \begin{pmatrix} a_{0,0} & 0 & \dots & 0 \\ a_{1,0} & a_{1,1} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \end{pmatrix}.$

Comment: Define $\xi_k(p)$ by the coeff of z^k in $p \in \mathcal{P}_m(\mathbf{F})$. Then $\mathcal{M}(\xi_k, (1, z, ..., z^m), (1)) = \mathcal{E}^{(1,k)} \in \mathbf{F}^{1,m+1}$. • (2.C.10) Supp $m \in \mathbb{N}^+$, $p_0, p_1, \dots, p_m \in \mathcal{P}(\mathbf{F})$ are suth each $\deg p_k = k$. *Prove* $(p_0, p_1, ..., p_m)$ *is a bss of* $\mathcal{P}_m(\mathbf{F})$. **Solus**: Using induc on *m*. (i) k = 1. $\deg p_0 = 0$; $\deg p_1 = 1 \Rightarrow \operatorname{span}(p_0, p_1) = \operatorname{span}(1, x)$. (ii) $1 \le k \le m-1$. Asum span $(p_0, p_1, ..., p_k) = \text{span}(1, x, ..., x^k)$. Then span $(p_0, p_1, ..., p_k, p_{k+1}) \subseteq \text{span}(1, x, ..., x^k, x^{k+1}).$ $\mathbb{Z} \operatorname{deg} p_{k+1} = k+1, \ p_{k+1}(x) = a_{k+1}x^{k+1} + r_{k+1}(x); \ a_{k+1} \neq 0, \ \operatorname{deg} r_{k+1} \leqslant k.$ $\Rightarrow x^{k+1} = \frac{1}{a_{k+1}} \Big(p_{k+1}(x) - r_{k+1}(x) \Big) \in \text{span}(1, x, \dots, x^k, p_{k+1}) = \text{span}(p_0, p_1, \dots, p_k, p_{k+1}).$ $x_{k+1} \in \text{span}(p_0, p_1, \dots, p_k, p_{k+1}) \Rightarrow \text{span}(1, x, \dots, x^k, x^{k+1}) \subseteq \text{span}(p_0, p_1, \dots, p_k, p_{k+1}).$ Thus $\mathcal{P}_m(\mathbf{F}) = \operatorname{span}(1, x, \dots, x^m) = \operatorname{span}(p_0, p_1, \dots, p_m).$ OR. By comparing coeffs. Denote the coeff of x^k in $p \in \mathcal{P}(\mathbf{F})$ by $\xi_k(p)$. Supp $L = a_m p_m(x) + \dots + a_1 p_1(x) + a_0 p_0(x) = 0 \cdot x^m + \dots + 0 \cdot x + 0 \cdot 1 = R, \forall x \in \mathbf{F}.$ We show $a_m = \cdots = a_0 = 0$ via the following process. So that (p_0, p_1, \dots, p_m) is liney indep. **Step 1.** For k = m, $\xi_m(L) = a_m \xi_m(p_m) = \xi_m(R) = 0 \ \, \text{\mathbb{Z} deg $p_m = m$, $\xi_m(p_m) \neq 0 \Rightarrow a_m = 0$.}$ Now $L = a_{m-1}p_{m-1}(x) + \dots + a_0p_0(x)$. **Step k.** For $0 \le k \le m$, we have $a_m = \cdots = a_{k+1} = 0$. Now $\xi_k(L) = a_k \xi_k(p_k) = \xi_k(R) = 0 \ \mathbb{Z} \deg p_k = k, \ \xi_k(p_k) \neq 0 \Rightarrow a_k = 0.$ Now if k = 0, then done. Othws, we have $L = a_{k-1}p_{k-1}(x) + \cdots + a_0p_0(x)$. • Tips: Supp $m \in \mathbb{N}^+$, $p_0, p_1, \dots, p_m \in \mathcal{P}_m(\mathbb{F})$ are suth the lowest term of each p_k is of deg k. *Prove* $(p_0, p_1, ..., p_m)$ *is a bss of* $\mathcal{P}_m(\mathbf{F})$. **Solus**: Using induc on *m*. Let each p_k be defined by $p_k(x) = a_{k,k}x^k + \cdots + a_{m,k}x^m$, where $a_{k,k} \neq 0$. (i) k = 1. $p_m(x) = a_{m,m}x^m$; $p_{m-1}(x) = a_{m-1,m-1}x^{m-1} + a_{m,m-1}x^m \Longrightarrow \operatorname{span}(x^m, x^{m-1}) = \operatorname{span}(p_m, p_{m-1})$. (ii) $1 \le k \le m-1$. Asum span $(x^m, ..., x^{m-k}) = \text{span}(p_m, ..., p_{m-k})$. Then span $(p_m, \dots, p_{m-(k+1)}) \subseteq \operatorname{span}(x^m, \dots, x^{m-(k+1)})$. $\mathbb{Z} p_{m-(k+1)}$ has the form $a_{m-(k+1),m-(k+1)} x^{m-(k+1)} + r_{m-(k+1)}(x)$; where the lowest term of $r_{m-(k+1)} \in \mathcal{P}_m(\mathbf{F})$ is of deg (m-k). $\Rightarrow x^{m-(k+1)} = \frac{1}{a_{m-(k+1),m-(k+1)}} \Big(p_{m-(k+1)}(x) - r_{m-(k+1)}(x) \Big) \in \operatorname{span}(x^m, \dots, x^{m-k}, p_{m-(k+1)}) \\ = \operatorname{span}(p_m, \dots, p_{m-k}, p_{m-(k+1)}).$ $\therefore x^{m-(k+1)} \in \operatorname{span}(p_m, \dots, p_{m-k}, p_{m-(k+1)})$ $\Rightarrow \operatorname{span}(x^m, \dots, x^{m-k}, x^{m-(k+1)}) \subseteq \operatorname{span}(p_m, \dots, p_{m-k}, p_{m-(k+1)}).$ Thus $\mathcal{P}_m(\mathbf{F}) = \operatorname{span}(x^m, \dots, x, 1) = \operatorname{span}(p_m, \dots, p_1, p_0).$ OR. By comparing coeffs. Denote the coeff of x^k in $p \in \mathcal{P}(\mathbf{F})$ by $\xi_k(p)$. Supp $L = a_m p_m(x) + \dots + a_1 p_1(x) + a_0 p_0(x) = 0 \cdot x^m + \dots + 0 \cdot x + 0 \cdot 1 = R, \forall x \in \mathbf{F}.$ We show $a_m = \cdots = a_0 = 0$ via the following process. So that (p_0, p_1, \dots, p_m) is liney indep. **Step 1.** For k = 0, $\xi_0(L) = a_0 \xi_0(p_0) = \xi_0(R) = 0 \ \ \ \deg p_0 = 0$, $\xi_0(p_0) \neq 0 \Rightarrow a_0 = 0$. Now $L = a_1 p_1(x) + \dots + a_m p_m(x)$. **Step k.** For $0 \le k \le m$, we have $a_{k-1} = \cdots = a_0 = 0$. Now $\xi_k(L) = a_k \xi_k(p_k) = \xi_k(R) = 0 \ \mathbb{Z} \deg p_k = k$, $\xi_k(p_k) \neq 0 \Rightarrow a_k = 0$. Now if k = m, then done. Othws, we have $L = a_{k+1}p_{k+1}(x) + \cdots + a_mp_m(x)$.

- Note For [2.11]: Good definition for a general term always aviods undefined behaviours. If deg p=0, then $p(z)=a_0\neq 0$, but not literally a_0z^0 , by which if p is defined, then it comes to 0^0 . To make it clear, we specify that in $\mathcal{P}(\mathbf{F})$, $a_0z^0=a_0$, where z^0 appears just for notat conveni. Becs by def, the term a_0z^0 in a poly only represents the const term of the poly, which is a_0 . For conveni, we asum $z^0=1$ in formula deduction and poly def. Absolutely without 0^0 .
- (4E 2.C.10) Supp m is a positive integer. For $0 \le k \le m$, let $p_k(x) = x^k (1-x)^{m-k}$. Show $(p_0, ..., p_m)$ is a bss of $\mathcal{P}_m(\mathbf{F})$.

Solus: We may see $p_0 = 1$ and $p_m(x) = x^m$, from the expansion below, by the Note For [2.11] above.

Note that each
$$p_k(x) = \sum_{j=0}^{m-k} C_{m-k}^j (-1)^j \cdot x^{j+k} \cdot 1^j = \underbrace{(-1)^0 \cdot x^k \cdot 1^0}_{\text{of deg k}} + \underbrace{\sum_{j=1}^{m-k} C_{m-k}^j (-1)^j \cdot x^{j+k} \cdot 1^j}_{\text{of deg m; denote it by } q_k(x)}.$$

OR. Simlr to the TIPS above. We will recurly prove each $x^{m-k} \in \text{span}(p_m, ..., p_{m-k})$.

- (i) k = 1. $p_m(x) = x^m \in \text{span}(p_m)$; $p_{m-1}(x) = x^{m-1} x^m \Rightarrow x^{m-1} \in \text{span}(p_{m-1}, p_m)$.
- (ii) $k \in \{1, \dots, m-1\}$. Supp for each $j \in \{0, \dots, k\}$, we have $x^{m-j} \in \text{span}(p_{m-j}, \dots, p_m)$, $\exists ! a_m \in \mathbf{F}$. Note that $x^{m-(k+1)} = p_{m-(k+1)}(x) + \sum_{j=1}^{k+1} C_{k+1}^j (-1)^{j+1} x^{m-(k+1)+j} \in \text{span}(p_{m-(k+1)}, x^{m-k}, \dots, x^m)$. Thus $x^{m-(k+1)} \in \text{span}(p_{m-(k+1)}, p_{m-k}, \dots, p_m)$.

Or. For any $m,k \in \mathbb{N}^+$ suth $k \leq m$. Define $p_{k,m}$ by $p_{k,m}(x) = x^k (1-x)^{m-k}$. Define the stmt $S(m):(p_{0,m},\ldots,p_{m,m})$ is liney indep (and therefore is a bss). We use induc on to show S(m) holds for all $m \in \mathbb{N}^+$.

- (i) m = 0. $p_{0,0} = 1$, and $ap_{0,0} = 0 \Rightarrow a = 0$. m = 1. Let $a_0(1-x) + a_1x = 0$, $\forall x \in \mathbf{F}$. Then take x = 1, $x = 0 \Rightarrow a_1 = a_0 = 0$.
- (ii) $1 \le m$. Asum S(m) and S(m-1) holds. Now we show S(m+1) holds.

Supp
$$\sum_{k=0}^{m+1} a_k p_{k,m+1}(x) = \sum_{k=0}^{m+1} a_k [x^k (1-x)^{m+1-k}] = 0, \forall x \in \mathbf{F}.$$

Now
$$a_0(1-x)^{m+1} + \sum_{k=1}^m a_k x^k (1-x)^{m+1-k} + a_{m+1} x^{m+1} = 0, \forall x \in \mathbf{F}.$$

While
$$x = 0 \Rightarrow a_0 = 0$$
; and $x = 1 \Rightarrow a_{m+1} = 0$.

Then
$$0 = \sum_{k=1}^{m} a_k x^k (1-x)^{m+1-k}$$

 $= x(1-x) \sum_{k=1}^{m} a_k x^{k-1} (1-x)^{m-k}$, note that $m-k = (m-1) - (k-1)$
 $= x(1-x) \sum_{k=0}^{m-1} a_{k+1} x^k (1-x)^{m-1-k} = x(1-x) \sum_{k=0}^{m-1} a_{k+1} p_{k,m-1}(x)$.

Hence $\sum_{k=0}^{m-1} a_{k+1} p_{k,m-1}(x) = 0$, $\forall x \in \mathbb{F} \setminus \{0,1\}$. Which has infily many zeros.

Moreover,
$$\sum_{k=0}^{m-1} a_{k+1} p_{k,m-1}(x) = 0$$
. By asum, $a_1 = \dots = a_{m-1} = a_m = 0$.

Thus
$$(p_{0,m+1},...,p_{m+1,m+1})$$
 is liney indep and $S(m+1)$ holds.

- (3.D.19) Supp $T \in \mathcal{L}(\mathcal{P}(\mathbf{R}))$ is inje. And $\deg Tp \leqslant \deg p$ for every non0 $p \in \mathcal{P}(\mathbf{R})$.
 - (a) Prove T is surj. (b) Prove for every non0 p, deg Tp = deg p.

Solus: (a) T is inje $\iff \forall n \in \mathbb{N}^+, T|_{\mathcal{P}_n(\mathbb{R})} \in \mathcal{L}(\mathcal{P}_n(\mathbb{R}))$ is inje, so is inv $\iff T$ is surj.

- (b) (i) $\deg p = -\infty \geqslant \deg Tp \iff p = 0 = Tp$. And $\deg p = 0 \geqslant \deg Tp \iff p = C \neq 0$.
 - (ii) Asum $\forall s \in \mathcal{P}_n(\mathbf{R})$, $\deg s = \deg Ts$. We show $\forall p \in \mathcal{P}_{n+1}(\mathbf{R})$, $\deg Tp = \deg p$ by ctradic. Supp $\exists r \in \mathcal{P}_{n+1}(\mathbf{R})$, $\deg Tr \leqslant n < n+1 = \deg r$. By (a), $\exists s \in \mathcal{P}_n(\mathbf{R})$, T(s) = (Tr). $\not \subseteq T$ is inje $\Rightarrow s = r$. While $\deg s = \deg Ts = \deg Tr < \deg r$. Ctradic.

 \mathbb{Z} By (2.C.10), span(Dx, Dx^2 , Dx^3 , ...) = span(1, x, x^2 , ...) = $\mathcal{P}(\mathbb{R})$. Let D(C) = 0, $Dx^k = p_k$ of deg (k-1), for all $C \in \mathcal{P}_0(\mathbf{R})$ and each $k \in \mathbf{N}^+$. Notice that $\mathbf{R} \neq \mathcal{P}_0(\mathbf{R})$. Becs $B_{\mathcal{P}_m(\mathbf{R})} = (p_1, \dots, p_m, p_{m+1})$. And for all $p \in \mathcal{P}(\mathbf{R})$, $\exists ! m = \deg p \in \mathbf{N}^+$. So that $\exists ! a_i \in \mathbb{R}, p = \sum_{i=1}^{m+1} a_i p_i \Rightarrow \exists q = \sum_{i=1}^{m+1} a_i x^i, Dq = p.$ OR. We will recurly define a seq of polys $(p_k)_{k=0}^{\infty}$ where $Dp_0 = 1$, $Dp_k = x^k$ for each $k \in \mathbb{N}^+$. So that $\forall p = \sum_{k=0}^{\deg p} a_k x^k \in \mathcal{P}(\mathbf{R}), Dq = p, \exists q = \sum_{k=0}^{\deg p} a_k p_k.$ (i) Becs deg $Dx = (\deg x) - 1 = 0$, $Dx = C \in \mathbb{F} \setminus \{0\}$. Let $p_0 = C^{-1}x \Rightarrow Dp_0 = C^{-1}Dx = 1$. (ii) Supp we have defined $Dp_0 = 1$, $Dp_k = x^k$ for each $k \in \{1, ..., n\}$. Becs deg $D(x^{n+2}) = n + 1$. Let $D(x^{n+2}) = a_{n+1}x^{n+1} + a_nx^n + \dots + a_1x + a_0$, with $a_{n+1} \neq 0$. Then $a_{n+1}^{-1}D(x^{n+2}) = x^{n+1} + a_{n+1}^{-1}(a_nDp_n + \dots + a_1Dp_1 + a_0Dp_0)$ $\Rightarrow x^{n+1} = D\left[\underline{a_{n+1}^{-1}(x^{n+2} - a_np_n - \dots - a_1p_1 - a_0p_0)}\right]$. Thus defining p_{n+1} , so that $Dp_{n+1} = x^{n+1}$. \square • Supp $V = \mathbb{R}^{\mathbb{R}}$ with a subsp $U = \{ f \in \mathbb{R}^{\mathbb{R}} : f(x_1) = \dots = f(x_m) = 0 \}$, where each $x_k \in \mathbb{R}$. *Prove if* $W \in S_V U$, then dim W = m. *Hint*: Find an iso from V/U onto \mathbb{R}^m . **Solus:** Define $T \in \mathcal{L}(V/U, \mathbb{R}^m)$ by $T(f + U) = (f(x_1), \dots, f(x_m))$. $\forall f + U = g + U \in V/U, f - g \in U \Rightarrow f(x_k) = g(x_k)$. Well-defined. Inje: Each $f(x_k) = 0 \Rightarrow f + U = 0$. Surj: Immed. • (3.F.7) Show the dual bss of $(1, x, ..., x^m)$ of $\mathcal{P}_m(\mathbf{R})$ is $(\varphi_0, \varphi_1, ..., \varphi_m)$, where $\varphi_k(p) = \frac{p^{(k)}(0)}{k!}$. **Solus:** *The uniques of dual bss is guaranteed by* [3.5]. For $j, k \in \mathbb{N}$, $(x^{j})^{(k)} = \begin{cases} j(j-1)\cdots(j-k+1)\cdot x^{(j-k)}, & j \geqslant k. \\ j(j-1)\cdots(j-j+1) = j! & j = k. \\ 0, & i \leqslant k. \end{cases} \Rightarrow (x^{j})^{(k)}(0) = \begin{cases} 0, & j \neq k. \\ k!, & j = k. \\ \cdots & j \leqslant k. \end{cases}$ Exa: By [2.C.10], $B_m = (1,7x-5,...,(7x-5)^m)$ is a bss of $\mathcal{P}_m(\mathbf{R})$. Let each $\varphi_k = \frac{p^{(k)}(5/7)}{7 \cdot k!}$.

ENDED

• (3.B.26) Supp $D \in \mathcal{L}(\mathcal{P}(\mathbf{R}))$ and $\forall p, \deg(Dp) = (\deg p) - 1$. Prove $D \in \mathcal{P}(\mathbf{R})$ is surj.

SOLUS: $[D \text{ might not be } D: p \mapsto p'.]$ The proof here is too informal to be valid: Becs span $(Dx, Dx^2, Dx^3, \cdots) \subseteq \text{range } D$, and $\deg Dx^n = n - 1$.

• TIPS 1: Supp $p \in \mathcal{P}_n(\mathbf{F})$ has at least n+1 disti zeros. Then by the ctrapos of [4.12], $\deg p < 0 \Rightarrow p = 0$. OR. We show if $p \in \mathcal{P}(\mathbf{F})$ has at least m disti zeros, then either p = 0 or $\deg p \geqslant m$. Supp $n \neq 0$. Becs $\exists 1, n \geqslant 1$, $a \in \mathcal{P}(\mathbf{F})$, $n(z) = [(z - \lambda_n)^{\alpha_1}, \dots (z - \lambda_n)^{\alpha_m}]_{\alpha(z)}$

Supp $p \neq 0$. Becs $\exists ! \alpha_i \geqslant 1, q \in \mathcal{P}(\mathbf{F}), \ p(z) = \left[(z - \lambda_1)^{\alpha_1} \cdots (z - \lambda_m)^{\alpha_m} \right] q(z)$. \Box [*Another proof of* [4.7]] If a poly had two different sets of coeffs,

then subtracting the two exprs would give a poly with some non0 coeffs but infily many zeros.

- Note For [4.8]: $div\ algo\ for\ polys$ $\underbrace{\text{of len}\,(\deg p \deg s + 1)}_{\text{of len}\,(\deg p \deg s + 1)}$ [Another proof] $\text{Supp deg}\ p \geqslant \deg s. \text{ Then } \left(\underbrace{1,z,\ldots,z^{\deg s 1}}_{\text{of len deg}\ s},s,zs,\cdots,z^{\deg p \deg s}\right) \text{ is a bss of } \mathcal{P}_{\deg p}(\mathbf{F}).$ Becs $q \in \mathcal{P}(\mathbf{F}),\exists !\ a_i,b_j \in \mathbf{F},$ $q = a_0 + a_1z + \cdots + a_{\deg s 1}z^{\deg s 1} + b_0s + b_1zs + \cdots + b_{\deg p \deg s}z^{\deg p \deg s}s$ $= \underbrace{a_0 + a_1z + \cdots + a_{\deg s 1}z^{\deg s 1}}_{r} + s\underbrace{\left(b_0 + b_1z + \cdots + b_{\deg p \deg s}z^{\deg p \deg s}\right)}_{a}. \text{ Note that } r,q \text{ are uniq.}$
- Note For [4.11]: each zero of a poly corres to a deg-one factor; [Another proof] First supp $p(\lambda) = 0$. Write $p(z) = a_0 + a_1 z + \dots + a_m z^m$, $\exists ! a_0, a_1, \dots, a_m \in \mathbb{F}$ for all $z \in \mathbb{F}$. Then $p(z) = p(z) p(\lambda) = a_1(z \lambda) + \dots + a_m(z^m \lambda^m)$ for all $z \in \mathbb{F}$. Hence $\forall k \in \{1, \dots, m\}, z^k \lambda^k = (z \lambda)(z^{k-1}\lambda^0 + z^{k-2}\lambda^1 + \dots + z^{k-(j+1)}\lambda^j + \dots + z\lambda^{k-2} + z^0\lambda^{k-1})$. Thus $p(z) = \sum_{j=1}^m a_j(z \lambda) \sum_{i=1}^k \lambda^{i-1} z^{k-i} = (z \lambda) \sum_{j=1}^m a_j \sum_{i=1}^k \lambda^{i-1} z^{k-i} = (z \lambda) q(z)$.
- (4E 2) Prove if $w, z \in \mathbb{C}$, then $||w| |z|| \le |w z|$. Solus: $|w - z|^2 = (w - z)(\overline{w} - \overline{z}) = |w|^2 + |z|^2 - 2Re(w\overline{z}) \ge |w|^2 + |z|^2 - 2|w\overline{z}| = ||w| - |z||^2$. Or. $|w| = |w - z + z| \le |w - z| + |z| \Rightarrow |w| - |z| \le |w - z|$. $|z| = |z - w + w| \le |z - w| + |w| \Rightarrow |z| - |w| \le |w - z|$.
- **5** Supp $m \in \mathbb{N}$, and z_1, \ldots, z_{m+1} are disti in \mathbb{F} , and $w_1, \ldots, w_{m+1} \in \mathbb{F}$. Prove $\exists ! p \in \mathcal{P}_m(\mathbb{F}), p(z_k) = w_k$ for each $k \in \{1, \ldots, m+1\}$.

Solus:

Define $T \in \mathcal{L}(\mathcal{P}_m(\mathbf{F}), \mathbf{F}^{m+1})$ by $Tq = (q(z_1), \dots, q(z_m), q(z_{m+1}))$.

Becs $Tq = 0 \Rightarrow (m+1)$ disti zeros for q of deg no more than $m \Rightarrow q = 0$. Now T iso.

Or. Let $p_1 = 1$, $p_k(z) = \prod_{i=1}^{k-1} (z - z_i) = (z - z_1) \cdots (z - z_{k-1})$ for each $k \in \{2, \dots, m+1\}$.

By (2.C.10), $B_p = (p_1, ..., p_{m+1})$ is a bss of $\mathcal{P}_m(\mathbf{F})$. Let $B_e = (e_1, ..., e_{m+1})$ be the std bss of \mathbf{F}^{m+1} .

Now
$$Tp_1 = (1, ..., 1)$$
, $Tp_k = \left(\prod_{i=1}^{k-1} (z_1 - z_i), ..., \prod_{i=1}^{k-1} (z_j - z_i), ..., \prod_{i=1}^{k-1} (z_{m+1} - z_i)\right)$;

$$\begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 1 & A_{2,2} & 0 & \cdots & 0 \\ 1 & A_{3,2} & A_{3,3} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & A_{m+1,2} & A_{m+1,3} & \cdots & A_{m+1,m+1} \end{pmatrix} \text{ And } \prod_{i=1}^{k-1} \left(z_j - z_i \right) = 0 \iff j \leqslant k-1, \text{ becs } z_1, \ldots, z_{m+1} \text{ are disti.}$$

$$= \mathcal{M} \left(T, B_p, B_e \right). \text{ Where } A_{j,k} = \prod_{i=1}^{k-1} \left(z_j - z_i \right) \neq 0 \text{ for all } j > k-1 \geqslant 1.$$
Now the rows of $\mathcal{M} \left(T \right)$ liney indep. By (4E 3.C.17) OR (3.F.32). \square

• Tips 2: Supp non0 $p, q \in \mathcal{P}(\mathbf{F})$ are multi of each other. Prove p = cq for a $c \neq 0$.

Solus: Let p = rq, $q = sp \Rightarrow p = rsp \Rightarrow r(z)s(z) = 1$ for all z with $p(z) \neq 0$, while such z is fini.

Thus (rs)(z) = 1 for infily many z, so for all z. Now deg $rs = 1 = \deg r + \deg s$.

6 Supp non0 $p \in \mathcal{P}_m(\mathbf{C})$ has deg m. Prove [P] p has m disti zeros \iff p and its deri p' have no common zeros. [Q] **Solus**: (a) Supp *p* of deg *m* has *m* disti zeros. By [4.14], $p(z) = c(z - \lambda_1) \cdots (z - \lambda_m)$. If m = 0, then $p = c \neq 0 \Rightarrow p$ has no zeros, and p' = 0, done. If m = 1, then $p(z) = c(z - \lambda_1)$, and p' = c has no zeros, done. For each $j \in \{1, ..., m\}$, let $q_i(z - \lambda_i) = p(z) \Rightarrow q_i(\lambda_i) \neq 0$. Now $p'(z) = (z - \lambda_i)q_i'(z) + q_i(z) \Rightarrow p'(\lambda_i) = q_i(\lambda_i) \neq 0.$ Or. $\neg Q \Rightarrow \neg P$: Supp $p(z) = (z - \lambda)q(z)$, $p'(z) = (z - \lambda)r(z)$. Becs $p'(z) = (z - \lambda)q'(z) + q(z) \Rightarrow p'(\lambda) = q(\lambda) = 0 \Rightarrow q(z) = (z - \lambda)s(z)$. Now $p(z) = (z - \lambda)^2 s(z)$. Hence p has strictly less than m disti zeros. (b) $\neg P \Rightarrow \neg Q$: Becs $0 \neq p \in \mathcal{P}_m(\mathbb{C})$. Supp all disti zeros are $\lambda_1, \dots, \lambda_M$, with M < m. By Pigeon Hole Principle, $(z - \lambda_k)^2 q(z) = p(z)$ for some $\lambda_k \Rightarrow p'(\lambda_k) = 0 = p(\lambda_k)$. **Note:** If F = R. Then replace "m disti zeros" with "m disti zeros in C" and the result still holds. **8** Supp $p \in \mathcal{P}(\mathbf{R})$. Let $(Tp)(x) = \begin{cases} \frac{p(x) - p(3)}{x - 3} & \text{if } x \neq 3, \\ p'(3) & \text{if } x = 3. \end{cases}$ Show $Tp \in \mathcal{P}(\mathbf{R})$. Solus: For $x \neq 3$, $T(x^k) = \frac{x^k - 3^k}{x - 3} = \sum_{i=1}^k 3^{i-1} x^{k-i}$. Still true for x = 3. Each $T(a_0 + a_1 x + \dots + a_m x^m) = a_1 + \dots + a_k \sum_{i=1}^k 3^{i-1} x^{k-i} + \dots + a_m \sum_{i=1}^m 3^{i-1} x^{m-i} \in \mathcal{P}(\mathbf{R})$. Or. Notice that $\underline{\exists ! q \in \mathcal{P}(\mathbf{R})}, p(x) - p(3) = (x-3)q(x)$. For $x \neq 3$, $q(x) = \frac{p(x) - p(3)}{x-3}$ p'(x) = (p(x) - p(3))' = q(x) + (x - 3)q'(x). For x = 3, p'(3) = q(3). Now Tp = q. **11** Supp $p \in \mathcal{P}(\mathbf{F})$ with deg $p = m \in \mathbf{N}$. Let $U = \{pq : q \in \mathcal{P}(\mathbf{F})\}$. Find a bss of $\mathcal{P}(\mathbf{F})/U$. **Solus:** If deg p=0, then $U=\mathcal{P}(\mathbf{F})$, $\mathcal{P}(\mathbf{F})/U=\{0+U\}$, with the uniq bss (). Supp deg $p\geqslant 1$. Becs $\forall s \in \mathcal{P}(\mathbf{F}), \exists ! r \in \mathcal{P}_{m-1}(\mathbf{F}), q \in \mathcal{P}(\mathbf{F}) \Rightarrow \exists ! pq \in U, s = (p)q + (r) \Rightarrow \underline{\mathcal{P}(\mathbf{F}) = U \oplus \mathcal{P}_{m-1}(\mathbf{F})}. \square$ **L1** Prove $\forall p, q \in \mathcal{P}(\mathbf{F}), k \in \mathbf{N}^+, (pq)^{(k)} = C_k^k p^{(k)} q^{(0)} + \dots + C_k^j p^{(j)} q^{(k-j)} + \dots + C_k^0 p^{(0)} q^{(k)}.$ **Solus:** We use induc on $k \in \mathbb{N}^+$. (i) k = 1. $(pq)^{(1)} = (pq)' = C_1^1 p^{(1)} q^{(0)} + C_1^0 p^{(0)} q^{(1)}$. (ii) $k \ge 2$. Asum for $(pq)^{(k-1)} = C_{k-1}^{k-1} p^{(k-1)} q^{(0)} + \dots + C_{k-1}^{j} p^{(j)} q^{(k-1-j)} + \dots + C_{k-1}^{0} p^{(0)} q^{(k-1)}$. Now $(pq)^{(k)} = ((pq)^{(k-1)})' = (\sum_{j=0}^{k-1} C_{k-1}^j p^{(j)} q^{(k-j-1)})' = \sum_{j=0}^{k-1} \left[C_{k-1}^j (p^{(j+1)} q^{(k-j-1)} + p^{(j)} q^{(k-j)}) \right].$ $= \left[C_{k-1}^{0} \left(p_{k-1}^{(1)} q^{(k-1)} + p_{k-1}^{(0)} q^{(k)} \right) \right] + \left[C_{k-1}^{1} \left(p^{(2)} q^{(k-2)} + p_{k-1}^{(1)} q^{(k-1)} \right) \right]$ $+ \cdots + \left\lceil C_{k-1}^{j-2} \left(\underline{p^{(j-1)}} q^{(k-j+1)} + p^{(j-2)} q^{(k-j+2)} \right) \right\rceil + \left\lceil C_{k-1}^{j-1} \left(\underline{p^{(j)}} q^{(k-j)} + \underline{p^{(j-1)}} q^{(k-j+1)} \right) \right\rceil$ $+ \left[C_{k-1}^{j} \left(p_{k-1}^{(j+1)} q^{(k-j-1)} + p_{k-1}^{(j)} q^{(k-j)} \right) \right] + \left[C_{k-1}^{j+1} \left(p^{(j+2)} q^{(k-j-2)} + p_{k-1}^{(j+1)} q^{(k-j-1)} \right) \right]$ $+ \cdots + \left\lceil C_{k-1}^{k-2} \left(p^{(k-1)} q^{(1)} + p^{(k-2)} q^{(2)} \right) \right\rceil + \left\lceil C_{k-1}^{k-1} \left(\left\lceil p^{(k)} q^{(0)} \right\rceil + p^{(k-1)} q^{(1)} \right) \right\rceil.$

L2 Supp $\alpha \in \mathbb{N}^{+}$ suth $p(z) = (z - \lambda)^{\alpha} q(z)$. Prove $p^{(\alpha - 1)}(\lambda) = 0$. **Solus:** $[(z - \lambda)^{\alpha} q(z)]^{(\alpha - 1)} = \sum_{j=1}^{\alpha - 1} C_{\alpha - 1}^{j} [(z - \lambda)^{\alpha}]^{(j)} [q(z)]^{(\alpha - 1 - j)}$. Note that $[(z - \lambda)^{\alpha}]^{(j)} = \alpha(\alpha - 1) \cdots (\alpha - j + 1) \cdot (z - \lambda)^{(\alpha - j)}$. Hence $(pq)^{(k)} = C_k^0 p^{(0)} q^{(k)} + \dots + \left[C_{k-1}^j + C_{k-1}^{j-1} \right] (p^{(j)} q^{(k-j)}) + \dots + C_k^k p^{(k)} q^{(0)}.$

• (4E 13) Supp nonC $p, q \in \mathcal{P}(C)$ have no common zeros. Let $m = \deg p, n = \deg q$. Define $T: \mathcal{P}_{n-1}(\mathbf{C}) \times \mathcal{P}_{m-1}(\mathbf{C}) \to \mathcal{P}_{m+n-1}(\mathbf{C})$ by T(r,s) = rp + sq. Prove T is inje. Coro: $\exists ! r \in \mathcal{P}_{n-1}(\mathbf{C}), s \in \mathcal{P}_{m-1}(\mathbf{C}) \text{ suth } rp + sq = 1.$ **Solus:** Immed, *T* is liney. Supp T(r,s) = rp + sq = 0. Then rp = -sq. Becs p, q are coprime $\Rightarrow p \mid s$, while $\deg s \leqslant m - 1 \Rightarrow s = 0 \Rightarrow r = 0$. Or. Let $\lambda_1, \dots, \lambda_M$ and μ_1, \dots, μ_N be the disti zeros of p and q respectly. Notice that $M \leq m, N \leq n$. By the ctrapos of [4.13], $M = 0 \iff m = 0 \Rightarrow s = 0 \iff r = 0 \iff n = 0 \iff N = 0$. Now supp $M, N \ge 1$. We show s = 0. Similar for r = 0. Or. $s = 0 \Rightarrow r = 0$. Write $p(z) = a(z - \lambda_1)^{\alpha_1} \cdots (z - \lambda_M)^{\alpha_M}$. $(\exists! \alpha_i \ge 1, a \in F.)$ Let $\max\{\alpha_1, \dots, \alpha_M\} = A = \alpha_L$. For each $D \in \{0,1,\ldots,A-1\}$, let $I_{>D} = \{I_{D,1},\ldots,I_{D,J_D}\}$ be suth each $\alpha\big[I_{D,i}\big] = \alpha_{I_{D,i}} \geqslant D+1$. Now $\{L\} = I_{>A-1} \subseteq \cdots \subseteq I_{>0} = \{1, \dots, M\}$. Becs $rp + sq = 0 \Rightarrow (rp + sq)^{(k)} = 0$ for all $k \in \mathbb{N}^+$. We use induc on D to show $s^{(D)}(\lambda[I_{D,j}]) = 0$ for each $D \in \{0, ..., A-1\}$. NOTICE that $p^{(D)}(\lambda[I_{D,i}]) = 0$ for each $D \in \{0, ..., A-1\}$ and each $I_{D,i} \in I_{>D}$. (L2)(i) D = 0. Each $(rp + sq)(\lambda[I_{0,i}]) = (sq)(\lambda[I_{0,i}]) = s(\lambda[I_{0,i}]) = 0$. Where $q(\lambda[I_{0,i}]) \neq 0$. $D = 1. \text{ Each } (r'p + rp')(\lambda[I_{1,i}]) + (s'q + sq')(\lambda[I_{1,i}]) = (s'q)(\lambda[I_{1,i}]) = s'(\lambda[I_{1,i}]) = 0.$ Where $p'(\lambda[I_{1,i}]) = 0$, and each $I_{1,i} \subseteq I_{0,i} \Rightarrow s(\lambda[I_{1,i}]) = 0$. (ii) $2 \leqslant D \leqslant A-1$. Asum $s^{(d)}\left(\lambda \left[I_{d,j}\right]\right)=0$ for each $d \in \{0,1,\ldots,D-1\}$ and each $\lambda \left[I_{d,j}\right] \in I_{>d}$. Each $[rp + sq]^{(D)}(\lambda[I_{D,j}]) = [C_D^D r^{(D)} p^{(0)} + \dots + C_D^d r^{(d)} p^{(D-d)} + \dots + C_D^0 r^{(0)} p^{(D)}](\lambda[I_{D,i}])$ (L1)+ $\left[C_D^D s^{(D)} q^{(0)} + \dots + C_D^d s^{(d)} q^{(D-d)} + \dots + C_D^0 s^{(0)} q^{(D)}\right] (\lambda \left[I_{D,i}\right])$ $= [C_D^D s^{(D)} q^{(0)}] (\lambda [I_{D,i}])$. Where each $\lambda [I_{D,i}] \in I_{>D} \subseteq I_{D-1,\alpha}$. Hence $s^{(D)}(\lambda[I_{D,i}]) = 0$. The asum holds for all $D \in \{0, ..., A-1\}$. Notice that $\forall k = \{0, \dots, A-2\}, s^{(k)} \text{ and } s^{(k+1)} \text{ have zeros } \{\lambda[I_{k+1,1}], \dots, \lambda[I_{k+1,I_{k+1}}]\} \text{ in common.}$ Now $\forall D \in \{1, \dots, A-1\}, s = s^{(0)}, \dots, s^{(D)}$ have zeros $\{\lambda[I_{D,1}], \dots, \lambda[I_{D,J_D}]\}$ in common. Thus s(z) is divisible by $(z - \lambda [I_{D,1}])^{\alpha [I_{D,1}]} \cdots (z - \lambda [I_{D,I_D}])^{\alpha [I_{D,I_D}]}$, for each $D \in \{0, \dots, A-1\}$. Hence $s(z) = \left[(z - \lambda_1)^{\alpha_1} \cdots (z - \lambda_M)^{\alpha_M} \right] s_0(z)$, while $\deg s < m = \alpha_1 + \cdots + \alpha_M$. Now by Tips (1). \square

ENDED

凭借我的经验,我认为,好的自学教材,除了提供足够的一级知识外,还能通过各种方式,将二级、三级知识顺理成章地经过学科思维的浓缩喻于习题或课文中。在 LADR 的熏陶下,我渐渐认为,自学教材带来的长期收益更重要——所谓素养一类的隐形东西,无论堆砌多少知识记忆都难以学到;外在的选拔,表面上看都是知识竞赛,但真正有含金量的选拔,往往十二分地注重隐性能力;实际的工作表现也是如此;客观上看这确实是在当今公共信息过剩的时代下人与人拉开差距的核心原因之一,也是我相信最能仅通过自身努力耕耘获得长期稳定回报的地方。现在看看速学速成应付选拔竞争的选择有多愚蠢吧:考不上放弃吧,因为几乎没有习得那些隐性能力,就确实是除了知识和解题技巧之外啥也没得到,这些知识中实用的那些内容怎么着都能学到,不具有不可替代性,实际工作更需要隐形的素养;再考再战吧,就得辛苦刷题,总归不如在学的过程中把"和习题的挣扎"当作练习对学科思维的启发最好。考上了吧又要和更"拔尖创新人才"竞争隐形的能力,一样难以优胜,只不过这个情况下可以做一个更"优越"的平庸之人罢了,除了短期速成而来的外在"纪念品"之外再也没有什么学习成果可长期变现——和质量至上、不怕耽误时间进度的学习者相比又能有什么优越之处呢?

此章核心内容 3/4e 差距过大。4e 将第 2 章线性相关性引理和多项式结合,更自然地引出原来 3e 的 8.C 节的极小多项式,并前置了相关习题,让定理和习题更加富有动机和系统性。这份笔记主要面向 3e 纸质书的读者,所以题号和定理索引都采用 3e (除 4e 新增章节)。为了严密性,我决定将 3e 第 8 章提前到第 5 章后,对应到 4e 只有第 8 章前三节。

```
• Tips 1: Supp V = U \oplus W and U, W invard T \in \mathcal{L}(V). Prove \operatorname{null} T|_U \oplus \operatorname{null} T|_W = \operatorname{null} T.
Solus: \forall v = u + w \in \text{null } T, Tv = Tu + Tw = 0 \Rightarrow Tu, Tw = 0 \Rightarrow v \in \text{null } T|_{U} \oplus \text{null } T|_{W}.
CORO: E(\lambda, T) = E(\lambda, T|_{II}) \oplus E(\lambda, T|_{W}). Replace T with T - \lambda I, immed.
• NOTE FOR Exe (2, 3): ST = TS \Rightarrow p(S) q(T) = q(T) p(S). And null q(T), range q(T) invard p(S).
• (5.E.1) Give S, T \in \mathbb{F}^4 suth ST = TS while \exists invarspd S but not T, invarspd T but not S.
Solus: Define S:(x,y,z,w)\mapsto (y,x,0,0) and T:(x,y,z,w)\mapsto (0,0,w,z)\Rightarrow TS=ST=0.
           Thus e_1, e_2 are eigvecs of T but not of S, and e_3, e_4 are eigvecs of S but not of T.
10 Define T \in \mathcal{L}(\mathbf{F}^n) by T(x_1, x_2, x_3, ..., x_n) = (x_1, 2x_2, 3x_3, ..., nx_n).
    (a) Find all eigvals and eigvecs; (b) Find all invarsps of V under T.
Solus: Let (e_1, ..., e_n) be the std bss of \mathbf{F}^n. The eigends are \{1, ..., n\} of len dim \mathbf{F}^n.
           Let each E_k = \text{span}(e_k). The set of all eigences is (E_1 \cup \cdots \cup E_n) \setminus \{0\}.
           Supp U is invarsp. Then u = (x_1, x_2, ..., x_n) \in U \Rightarrow Tu = (x_1, 2x_2, ..., x_n) \in U.
           And Tu - u = (0, x_2, 2x_3, \dots, (n-1)x_n) \in U \Rightarrow \dots \Rightarrow (0, \dots, 0, x_n) \Rightarrow \operatorname{each} x_k e_k \in U.
           Get a B_U and pick all non0 x_k. Forming span(e_{k_1}, \dots, e_{k_m}) = U.
                                                                                                                                      COMMENT: The result (b) holds generally where \exists B_V consists of eigences of T.
• Supp T \in \mathcal{L}(V), \lambda_1, ..., \lambda_m are the disti eigvals corres v_1, ..., v_m, and U invarspd T.
• Tips 2: Supp v_1 + \cdots + v_m \in U. Prove each v_k \in U.
Solus: Consider the stmt P(k): if v_1 + \cdots + v_k \in U, then each v_i \in U.
           (i) v_1 \in U. P(1) holds. (ii) For 2 \le k \le m. Asum P(k-1) holds. Supp v = v_1 + \cdots + v_k \in U.
           Then Tv = \lambda_1 v_1 + \dots + \lambda_k v_k \in U \Longrightarrow Tv - \lambda_k v = (\lambda_1 - \lambda_k)v_1 + \dots + (\lambda_{k-1} - \lambda_k)v_{k-1} \in U.
           For each j \in \{1, ..., k-1\}, \lambda_i - \lambda_k \neq 0 \Rightarrow (\lambda_i - \lambda_k)v_i = v_i' is an eigeec of T corres \lambda_i.
           By asum, each v_i \in U. Thus v_1, \dots, v_{k-1} \in U. So that v_k = v - v_1 - \dots - v_{k-1} \in U.
                                                                                                                                      • Tips 3: Supp V = E(\lambda_1, T) \oplus \cdots \oplus E(\lambda_m, T). Prove U = E(\lambda_1, T|_U) \oplus \cdots \oplus E(\lambda_m, T|_U).
Solus: Becs \forall u \in U, \exists ! v_i \in E(\lambda_i, T), v = v_1 + \dots + v_m. By Tips (2), each v_i \in U.
                                                                                                                                      19 Supp n \in \mathbb{N}^+. Define T \in \mathcal{L}(\mathbb{F}^n) by T(x_1, ..., x_n) = (x_1 + ... + x_n, ..., x_1 + ... + x_n).
    In other words, the ent of \mathcal{M}(T) wrto the std bss are all 1's. Find all eigvals and eigvecs of T.
Solus: Supp x_k \neq 0 and T(x_1, ..., x_n) = (\lambda x_1, ..., \lambda x_n) = (x_1 + ... + x_n, ..., x_1 + ... + x_n).
           Then (I) \lambda = 0 \Rightarrow x_1 + \dots + x_n = 0. If n > 1, then \lambda = 0 is eigval; othws not, becs T = I.
                   (II) \lambda \neq 0 \Rightarrow x_1 = \dots = x_n \Rightarrow \lambda x_k = nx_k. Now n is eigval.
                                                                                                                                      OR. Becs range T = \{(x, ..., x) \in \mathbb{F}^n\} of dim 1. By Exe (29). Simlr.
                                                                                                                                      Or. Supp n > 1. Becs null T = \{(-x_2 - \dots - x_n, x_2, \dots, x_n)\} of dim n - 1 > 0 \Rightarrow 0 is eigval.
           Notice that n is also eigval corres (x, ..., x) \neq 0. We show 0, n are the only eigvals.
           Supp non0 x \in \mathbb{F}^n and \lambda \in \mathbb{F} with Tx = \lambda x. Becs range T = \text{span}((1, ..., 1)), \exists ! \alpha \in \text{range } T,
           \lambda x = \alpha \Rightarrow x corres \lambda and \alpha corres n are liney dep. By the ctrapos of [5.10], \lambda = n.
```

```
20 Define S \in \mathcal{L}(\mathbf{F}^{\infty}) by S(z_1, z_2, z_3, \dots) = (z_2, z_3, \dots).
     Show every elem of F is an eigeal of S, and find all eigences of S.
Solus: Supp z_k \neq 0 and S(z_1, z_2, ...) = (\lambda z_1, \lambda z_2, ...) = (z_2, z_3, ...). Then each \lambda z_k = z_{k+1}.
            (I) \lambda = 0 \Rightarrow \operatorname{each} z_k = \dots = z_2 = \lambda z_1 = 0. Let z_1 \neq 0 \Rightarrow E(0, S) = \operatorname{span}(e_1).
            (II) \lambda \neq 0 \Rightarrow \lambda^k z_1 = \lambda^{k-1} z_2 = \dots = \lambda z_k = z_{k+1}, let z_1 \neq 0 \Rightarrow E(\lambda, S) = \text{span}[(1, \lambda^1, \dots, \lambda^k, \dots)].\square
• TIPS 4: Supp T \in \mathcal{L}(\mathbb{R}^2) is the countclockws rotat by \theta \in \mathbb{R}. Define \mathcal{C}(a,b) = a + ib.
  Becs (\cos \theta + i \sin \theta)(a + ib) = r(\cos(\alpha + \theta) + i \sin(\alpha + \theta)).
  Hence T(a,b) = (a\cos\theta - b\sin\theta, a\sin\theta + b\cos\theta). Now \mathcal{M}(T) = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}.
• Supp V is finide, T \in \mathcal{L}(V), \lambda \in \mathbf{F}.
13 Prove \exists \alpha \in \mathbf{F}, |\alpha - \lambda| < \frac{1}{1000} suth (T - \alpha I) is inv.
Solus: Let each |\alpha_k - \lambda| = \frac{1}{1000 + k}, where k \in \{1, \dots, \underline{\dim V + 1}\}. Then \exists \alpha_k not an eigval.
                                                                                                                                                   • (4E 11) Prove \exists \delta > 0 suth (T - \alpha I) is inv for all \alpha \in \mathbf{F} suth 0 < |\alpha - \lambda| < \delta.
Solus: If T has no eigvals, then (T - \alpha I) is inje for all \alpha \in \mathbf{F}, done.
            Supp \lambda_1, \dots, \lambda_m are all the disti eigvals of T unequal to \lambda.
            Let \delta > 0 be suth, for each eigval \lambda_k, \lambda_k \notin (\lambda - \delta, \lambda) \cup (\lambda, \lambda + \delta).
            So that for all \alpha \in \mathbf{F} suth 0 < |\alpha - \lambda| < \delta, (T - \alpha I) is inv.
                                                                                                                                                   Or. Let \delta = \min\{|\lambda - \lambda_k| : k \in \{1, ..., m\}, \lambda_k \neq \lambda\}.
            Then \delta > 0 and each \lambda_k \neq \alpha [\iff (T - \alpha I) is inv ] for all \alpha \in F suth 0 < |\alpha - \lambda| < \delta.
                                                                                                                                                   15 Supp T \in \mathcal{L}(V). Supp S \in \mathcal{L}(V) is inv.
     (a) Prove T and S^{-1}TS have the same eigvals.
     (b) Describe the relationship between eigvecs of T and eigvecs of S^{-1}TS.
Solus: (a) \lambda is an eigval of T with an eigvec v \Rightarrow S^{-1}TS(S^{-1}v) = S^{-1}Tv = S^{-1}(\lambda v) = \lambda S^{-1}v.
                 \lambda is an eigval of S^{-1}TS with an eigvec v \Rightarrow S(S^{-1}TS)v = T\underline{Sv} = \underline{\lambda Sv}.
                 Or. Note that S(S^{-1}TS)S^{-1} = T. Every eigral of S^{-1}TS is an eigral of S(S^{-1}TS)S^{-1} = T.
                 Or. Tv = \lambda v \iff TSu = \lambda Su \iff (S^{-1}TS)u = \lambda u. Where v = Su.
                       (S^{-1}TS)u = \lambda u \iff S^{-1}Tv = \lambda S^{-1}v \iff Tv = \lambda v. Where u = S^{-1}v.
            (b) E(\lambda, T) = \{Su : u \in E(\lambda, S^{-1}TS)\}; E(\lambda, S^{-1}TS) = \{S^{-1}v : v \in E(\lambda, T)\}.
                                                                                                                                                   • (4E 15) Show \lambda is eigral of T \iff \text{of } T'.
Solus: [Req Finide; For [5.6]] T - \lambda I_V \text{ not inv} \iff (T - \lambda I_V)' = T' - \lambda I_V, \text{ not inv.}
                                                                                                                                                   (a) Supp \lambda is eigval with v. Let U be invar with U \oplus \text{span}(v) = V, by Exe (4E 39).
                 Define \psi \in V' by \psi(cv + u) = c. Then [T'(\psi)](cv + u) = \psi(c\lambda v + Tu) = \lambda c = \lambda \psi(cv + u).
            (b) A countexa: Let T be the forwd shift optor on V = \mathbf{F}^{\infty}. No eigvals for T, by Exe (18).
                 Define \psi \in V' by \psi(x_1, x_2, \dots) = x_1. Then [T'(\psi)](x_1, x_2, \dots) = \psi(0, x_1, x_2, \dots) = 0.
                                                                                                                                                   23 Supp V is finide, and S,T \in \mathcal{L}(V). Prove ST and TS have the same eigensts.
Solus: [False if infinide. See Exe (18, 20).] Supp v \neq 0 and STv = \lambda v \Rightarrow T(STv) = \lambda Tv = TS(Tv).
            If Tv = 0, then T not inje, so are TS, ST. Othws, \lambda is eigval of TS. Rev the roles in asum.
```

```
• (4E 37) Supp V is finide, T \in \mathcal{L}(V). Define A \in \mathcal{L}(\mathcal{L}(V)) by \mathcal{A}(S) = TS.
  Prove the set of eigvals of T equals the set of eigvals of A.
Solus: (a) For v \neq 0 and Tv = \lambda v, let v_1 = v \Rightarrow B_V = (v_1, \dots, v_n).
                Define S \in \mathcal{L}(V) : v_i \mapsto v, Or v_i \mapsto \delta_{1,i}v_1. Then each (T - \lambda I)Sv_i = 0.
                Thus (T - \lambda I)S = 0 \Rightarrow \mathcal{A}(S) = TS = \lambda S with S \neq 0.
           (b) Supp S \neq 0 and TS = \lambda S. Then \exists v \in V \setminus \text{null } S. Let u = Sv \Rightarrow Tu = TSv = \lambda Sv = \lambda u.
                Or. TS - \lambda S = (T - \lambda I)S = 0 \Rightarrow \{0\} \neq \text{range } S \subseteq \text{null}(T - \lambda I) \Rightarrow (T - \lambda I) \text{ not inje.}
                                                                                                                                          • Tips 5: Supp S, T \in \mathcal{L}(V), p \in \mathcal{P}(F). Prove Sp(TS) = p(ST)S.
Solus: We prove each S(TS)^m = (ST)^m S by induc. (i) m = 0, 1. Immed.
           (ii) m > 1. S(TS)^{m-1} = (ST)^{m-1}S \Rightarrow S(TS)^m = S(TS)^{m-1}(TS) = (ST)^{m-1}(ST)S = (ST)^mS. \square
COMMENT: If S is inv. Then p(TS) = S^{-1}p(ST)S, p(ST) = Sp(TS)S^{-1}.
Coro: Becs S is inv, T \in \mathcal{L}(V) is arb \iff ST = R \in \mathcal{L}(V) is arb. Hence p(S^{-1}RS) = S^{-1}p(R)S.
27, 28 Supp dim V > 1, k \in \{1, ..., \dim V - 1\}.
          Supp every subsp of dim k is invard a T \in \mathcal{L}(V). Prove T = \lambda I.
Solus: We prove the ctrapos. Supp \exists v \in V \setminus \{0\} not eigvec.
           Then (v, Tv) liney indep \Rightarrow B_V = (v, Tv, u_1, \dots, u_n). Let U = \text{span}(v, u_1, \dots, u_{k-1}).
                                                                                                                                          Or. Supp v = v_1 \in V \setminus \{0\} \Rightarrow B_V = (v_1, ..., v_n). Let Tv_1 = c_1v_1 + \cdots + c_nv_n.
           Let B_U = (v_1, v_{\alpha_1}, \dots, v_{\alpha_{k-1}}). Becs every such U invar. Now Tv_1 \in U \Rightarrow Tv_1 = c_1v_1.
           By Exe (26), done. For 0 \neq c_j \in \{c_2, ..., c_n\}, let B_W = (v_1, v_{\beta_1}, ..., v_{\beta_{k-1}}) with each \beta_i \neq j.
                                                                                                                                          29 Supp T \in \mathcal{L}(V), range T is finide. Prove T has at most 1 + \dim \operatorname{range} T disti eigvals.
Solus: Becs range T finide \Rightarrow not too many. Let \lambda_1, \dots, \lambda_m be the disti eigends of T with corres v_1, \dots, v_m.
           Then (v_1, \dots, v_m) liney indep \Rightarrow (\lambda_1 v_1, \dots, \lambda_m v_m) liney indep, if each \lambda_k \neq 0. Othws,
           \exists ! \lambda_k = 0. Now \{\lambda_i v_j : j \neq k\} liney indep. Thus m - 1 \leq \dim \operatorname{range} T.
                                                                                                                                          35 Supp V is finide, T \in \mathcal{L}(V), and U is invard T. Show \lambda is eigval of T/U \Rightarrow of T.
Solus:
   Supp v + U \neq 0 and Tv + U = \lambda v + U \Rightarrow (T - \lambda I)v = u \in U. If u = 0, done. Othws, two cases.
  If (T - \lambda I)|_{U} inje \Rightarrow surj. Then (T - \lambda I)v = u = (T - \lambda I)|_{U}(w), \exists w \in U \Rightarrow T(v + w) = \lambda(v + w).
   If (T - \lambda I)|_{II} = T|_{II} - \lambda I_{II} not inje. Then \lambda is eigval of T|_{II} \Rightarrow of T.
                                                                                                                                          Or. Let B_U = (u_1, ..., u_m) \Rightarrow (Tv - \lambda v, Tu_1 - \lambda u_1, ..., Tu_m - \lambda u_m) of len (m+1) liney dep in U.
   So that a_0(T - \lambda I)v + a_1(T - \lambda I)u_1 + \dots + a_m(T - \lambda I)u_m = 0, \exists a_k \neq 0.
   Then Tw = \lambda w, where w = a_0 v + a_1 u_1 + \dots + a_m u_m \neq 0 \Leftarrow w \notin U \Leftarrow v \notin U.
                                                                                                                                          Exa: Let V = \mathbb{F}^{\mathbb{N}}, U = \{ x \in \mathbb{F}^{\mathbb{N}} : x_1 = 0 \}, T \in \mathcal{L}(V) : e_k = e_{k+1}. Then (T/U)(e_1 + U) = e_2 + U = 0.
• (4E 39) Supp T \in \mathcal{L}(V), V is finide. Prove \exists eigval of T \iff \exists invarsp U of dim dim V-1.
Solus: (a) Supp \lambda is eigval with v. Becs dim E(\lambda, T) \ge 1 \iff \dim \operatorname{range}(T - \lambda I) \le \dim V - 1 = N.
                Let B_{\text{range}(T-\lambda I)} = (w_1, \dots, w_m), B_{E(\lambda, T)} = (u_1, \dots, u_n), B_U = (w_1, \dots, w_m, u_1, \dots, u_{N-m}).
                Note: U \notin \mathcal{S}_V \operatorname{span}(v) unless u_n = v.
           (b) Convly, becs dim V/U = 1. By (3.A.7), Exe (35).
```

24 Supp $A \in \mathbb{F}^{n,n}$. Define $T \in \mathcal{L}(\mathbb{F}^{n,1})$ by $Tx = Ax$. Prove λ is eigend of T if: (a) the sum of the ent in each row of A equals λ . (b) each col of A .	
Solus: Supp $x \neq 0$ and $Ax = (A_{j,1}x_1 + \dots + A_{j,n}x_n)_{j=1}^n = \alpha(x_j)_{j=1}^n = \alpha x$.	
(a) Supp $A_{R,1} + \cdots + A_{R,n} = \lambda$. Let $x_1 = \cdots = x_n$. Immed.	
(b) Supp $A_{1,C} + \cdots + A_{n,C} = \lambda$. Note that $\left[\sum_{R=1}^{n} A_{R,\cdot}\right] x = \sum_{k=1}^{n} \left(A_{1,k} + \cdots + A_{n,k}\right) x_k$. Each $(Ax)_{R,1} = \lambda(x)_{R,1}$. Thus for x with $\sum_{k=1}^{n} x_k \neq 0$, λ is the corres eigval.	
OR. Becs $(T - \lambda I)x = ((A_{j,1}x_1 + \dots + A_{j,n}x_n) - \lambda x_j)_{j=1}^n = (y_j)_{j=1}^n$. Now $y_1 + \dots + y_n = \sum_{k=1}^n x_k \left[\sum_{j=1}^n A_{j,k}\right] - \lambda \sum_{j=1}^n x_j = 0$. Thus $(T - \lambda I)$ not surj.	
OR. Let $(e_1,, e_n)$ be the std bss of $\mathbf{F}^{n,1}$. Define $\psi \in (\mathbf{F}^{n,1})'$ with each $\psi(e_k) = 1$. Becs $Ae_k = A_{\cdot,k} = \sum_{j=1}^n A_{j,k}e_j \Rightarrow \psi[(T - \lambda I)e_k] = \psi(\sum_{j=1}^n A_{j,k}e_j - \lambda e_k) = \sum_{j=1}^n A_{j,k} - \lambda = 0$.	
OR. Define $S \in \mathcal{L}(\mathbf{F}^{n,1})$ by $Sx = A^tx$. By (a), $\begin{bmatrix} 3.\text{F Tips } (4) \end{bmatrix}$, and Exe (15, 4E 15),	
the sum of the ent in each row of A^t equals $\lambda \Rightarrow \lambda$ is eigval of $S = \Phi^{-1}T'\Phi$, so of T' , of T .	П
• Supp $A \in \mathbf{F}^{n,n}$. Define $T \in \mathcal{L}(\mathbf{F}^{1,n})$ by $Tx = xA$. Prove λ is eigval of T if: (a) the sum of the ent in each col of A equals λ . (b) each row of A .	
Solus: Supp $x \neq 0$ and $xA = (x_1A_{1,k} + \dots + x_nA_{n,k})_{k=1}^n = \alpha(x_k)_{k=1}^n = \alpha x$. (a) Supp $A_{1,C} + \dots + A_{n,C} = 1$. Let $x_1 = \dots = x_n$. Immed.	
(b) Supp $A_{R,1} + \cdots + A_{R,n} = \lambda$. Note that $\sum_{C=1}^{n} x A_{\cdot,C} = \sum_{j=1}^{n} (A_{j,1} + \cdots + A_{j,n}) x_{j}$.	
Each $(xA)_{1,C} = \lambda(x)_{1,C}$. Thus for x suth $\sum_{k=1}^{n} x_k \neq 0$, λ is the corres eigval.	
OR. Becs $(T - \lambda I)x = ((x_1 A_{1,k} + \dots + x_n A_{n,k}) - \lambda x_k)_{k=1}^n = (y_k)_{k=1}^n$.	
Now $y_1 + \dots + y_n = \sum_{j=1}^n x_j \left[\sum_{k=1}^n A_{j,k} \right] - \lambda \sum_{k=1}^n x_k = 0.$	
Or. Simlr. Becs $e_j A = A_{j,\cdot} = \sum_{k=1}^n A_{j,k} e_k \Rightarrow \psi[(T - \lambda I)e_j] = \sum_{k=1}^n A_{j,k} - \lambda = 0$.	
Or. Define $S \in \mathcal{L}(\mathbf{F}^{1,n})$ by $Sx = xA^t \Rightarrow S = \Phi^{-1}T'\Phi$. Simlr and by $[3.D \text{ Tips } (3)]$.	
End	ED
5.B (I) 覆盖 4e 的本节全部、3e 前半部分。(II) 覆盖 3e 本节后半部分「上三角矩阵」、4e 5.C 节。 注意: 4e 的 5.B 节和 3e 的 8.C 节、9.A 节许多结论和习题有交集。5.B(II) 的题号使用 4e 5.C 节.	
I.9 Supp V finide, $T \in \mathcal{L}(V)$, and non0 $v \in V$. Let $p \in \mathcal{P}(\mathbf{F})$ be non0 of smallest deg with $p(T)v = 0$. Show every zero of p is eigval of T . By div algo, p div the m	nin.
Solus: Or. Let $p(z) = (z - \lambda)q(z) \Rightarrow p(T)v = 0 = (T - \lambda I)q(T)v \Rightarrow T(q(T)v) = \lambda q(T)v$.	
• I.Tips 1: Supp V is finide, $T \in \mathcal{L}(V)$, and $v \in V$. (a) Prove \exists ! monic p_v of smallest deg suth $p_v(T)v = 0$. (b) Prove p_v is the min q of $T _{\operatorname{null} p_v(T)}$. So that the min of T is a multi of	p_v .
SOLUS: (a) $\begin{bmatrix} \textit{Existns} \end{bmatrix}$ If $v = 0$, then let $p_v(z) = 1$. Supp $v \neq 0$. Then $(v, Tv, \dots, T^{\dim V}v)$ liney dep. $\exists \text{ smallest } m \text{ suth } -T^mv = c_0v + c_1Tv + \dots + c_{m-1}T^{m-1}v$. Thus define p_v .	
Or. Let $\underline{U = \operatorname{span}(v, Tv, \dots, T^{m-1}v)}$ of dim m invard T . Let p_v be the min of T	$ _{U}$.
[<i>Uniques</i>] Supp q_v is monic of smallest deg [= deg p_v] and $q_v(T)v = 0$. Then $(p_v - q_v)(T)v = 0$, while deg $p_v = m = \deg q_v \Rightarrow \deg (p_v - q_v) < m$.	
(b) Becs $p_v(T _{\text{null }p_v(T)}) = 0 \Rightarrow p_v$ is multi of q . $\not \subset q(T)v = 0 \Rightarrow q = p_v$, by the min of $\deg p_v$.	

11 Supp $\mathbf{F} = \mathbf{C}$, $T \in \mathcal{L}(V)$, non $C p \in \mathcal{P}(\mathbf{F})$. *Prove* α *is eigval of* $p(T) \iff \alpha = p(\lambda)$ *for some eigval* λ *of* T. **Solus**: Supp $p(T) - \alpha I$ not inje. Let $p(z) - \alpha = c(z - \lambda_1) \cdots (z - \lambda_m)$, with $c \neq 0$, becs p nonC. Then $\exists (T - \lambda_i I)$ not inje. Now $p(\lambda_i) - \alpha = 0$. Convly true immed. • Supp non0 $v \in V$. Prove [5.21] using the given map below, and also [4E 5.22], in Exe (I.17). **I.16** Define $S: \mathcal{P}_{\dim V}(\mathbf{C}) \to V$ by S(p) = p(T)v. Then S not inje $\Rightarrow \exists$ non0 $p \in \text{null } S$. **I.17** Define $S: \mathcal{P}_{\dim V^2}(\mathbf{C}) \to \mathcal{L}(V)$ by S(p) = p(T). Then S not inje $\Rightarrow \exists$ non0 $p \in \text{null } S$. • (4E1.7) Supp $S, T \in \mathcal{L}(V)$ and p, q are mins of ST, TS respectly. Prove S or T is inv $\Rightarrow p = q$. **Solus:** $S \text{ inv} \Rightarrow p(TS) = S^{-1}p(ST)S = 0$ and $q(ST) = Sq(TS)S^{-1} = 0 \Rightarrow p = q$. Rev the roles. • (4E I.21) Supp V finide, $T \in \mathcal{L}(V)$. Prove the min p has deg at most $1 + \dim \operatorname{range} T$. **Solus**: Let q be the min of $T|_{\text{range }T}$. Then $q(T)Tv=0 \Rightarrow zq(z)$ of $\deg < 1 + \dim \operatorname{range }T$ is multi of $p.\Box$ • (4E I.28) Supp V is finide and $T \in \mathcal{L}(V)$. Prove the min p of T' equals the min q of T. **Solus**: $\forall \varphi \in V'$, $p(T')(\varphi) = \varphi \circ p(T) = 0 \Rightarrow \operatorname{range} p(T) \subseteq C^0V'$. Thus p(T) = 0. $\not \subseteq \varphi \circ q(T) = 0$. OR. By (3.F.15), for any $s \in \mathcal{P}(\mathbf{F})$, $s(T') = s(T)' = 0 \iff s(T) = 0$. Simlr. • (8.C.18 Or 4E I.16) Define $T \in \mathcal{L}(\mathbf{F}^n): (x_1, \dots, x_n) \mapsto (-a_0 x_n, x_1 - a_1 x_n, \dots, x_{n-1} - a_{n-1} x_n).$ Show the min p of T is $q(z) = a_0 + a_1 z + \cdots + a_{n-1} z^{n-1} + z^n$. **Solus:** Becs $Te_1 = e_2$, $T^2e_1 = e_3$, \cdots , $T^{n-1}e_1 = e_n$, $T^ne_1 = T^{n-k}e_{k+1} = Te_n = -(a_0e_1 + \cdots + a_{n-1}e_n)$. Let $-T^n = c_0 I + c_1 T + \cdots + c_{n-1} T^{n-1} \Rightarrow \text{each } c_k = a_k$. Becs $n = \dim V$. No smaller deg. • (4E I.8) Find the min p of $T \in \mathcal{L}(\mathbb{R}^2)$, the countclockws rotat optor by $\theta \in \mathbb{R}^+$. L = |OD|**Solus:** If $\theta = 2k\pi$, then p(z) = z - 1. If $\theta = \pi + 2k\pi$, then p(z) = z + 1. $T^2 \overrightarrow{v} = \overrightarrow{OA}$ \mathbf{C} Othws, let span $(v, Tv) = \mathbb{R}^2$. Let $L = x^2 + y^2$, where v = (x, y). $T \overrightarrow{v} = OC$ Supp $p(z) = z^2 + bz + c$. Let $P = L\cos\theta \Rightarrow L/2P = 1/(2\cos\theta)$. Then $Tv = (L/2P)(T^2v + v) \Rightarrow T = (L/2P)(T^2 + I)$. Hence $p(T) = T^2 - 2\cos\theta T + I = 0$. Or. Let (e_1, e_2) be the std bss. Becs $Te_1 = \cos \theta \ e_1 + \sin \theta \ e_2$, $T^2e_1 = \cos 2\theta \ e_1 + \sin 2\theta \ e_2$. $ce_1 + bTe_1 = -T^2e_1 \iff \begin{pmatrix} 1\cos\theta\\0\sin\theta \end{pmatrix} \begin{pmatrix} c\\b \end{pmatrix} = \begin{pmatrix} -\cos2\theta\\-\sin2\theta \end{pmatrix}$. Now det = $\sin\theta \neq 0$, c=1, $b=-2\cos\theta$. • (4E I.11) Supp V is 2-dim, $T \in \mathcal{L}(V)$ with the min p, and $\mathcal{M}(T,(v,w)) = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$. (a) Show q(z) = (z - a)(z - d) - bc is a multi of p. (b) Show if b = c = 0 and a = d, then p(z) = z - a; othws p = q. **SOLUS:** (a) $Tv = av + bw \Rightarrow (T - aI)v = bw \Rightarrow (T - dI)(T - aI)v = bTw - bdw = bcv$. $Tw = cv + dw \Rightarrow (T - dI)w = cv \Rightarrow (T - aI)(T - dI)w = cTv - acv = bcw.$ (b) If b = c = 0 and a = d. Then $\mathcal{M}(T) = a\mathcal{M}(I) \Rightarrow T = aI$. Othws, we show $T \notin \text{span}(I)$, so that $\deg p = \dim V$. Let (1) a = d, (2) b = 0, (3) c = 0. Then (1), (2) and (3) cannot be all true. (I) Asum (1) is true, with (2) or (3) not true. Then Tv = av + bw, or $Tw = cv + aw \notin \text{span}(w)$. (II) Asum (2) or (3) are true, with (1) not true. Then Tv = av + bw, or Tw = cv + dw.

```
• (4E I.29) Supp V is finide, dim V = n \ge 2, and T \in \mathcal{L}(V). Show T has a 2-dim invarsp.
Solus: See [9.8] for a graceful proof. Or. Let each V_k be an arb vecsp of dim k with an arb T_k \in \mathcal{L}(V_k).
   Define the stmt P(k): every optor on a V_k has invarsp of dim 2. (i) k=2. Immed.
   (ii) k \ge 2. Asum P(k) holds. Let p be the min of T_{k+1} = T. Note that V_{k+1} non0 \Rightarrow p nonC, \deg p \ge 1.
   (a) If p(z) = (z - \lambda)q(z), then by (4E 5.A.39), \exists U invarspd T of dim k.
        By asum, the optor T|_U on a k-dim vecsp has invarsp of dim 2, so has T.
   (b) Othws, T_{k+1} has no eigvals \Rightarrow p of deg \geqslant 1 has no zeros, thus F = R, and deg p is even.
        Let p(z) = (z^2 + b_1 z + c_1) \cdots (z^2 + b_m z + c_m) \Rightarrow \exists (T^2 + b_i T + c_i) not inje
        \Rightarrow \exists v \neq 0, (T^2 + b_i T + c_i)v = 0 \Rightarrow T^2 v \in \text{span}(v, Tv), \text{ invard } T, \text{ while } \dim \text{span}(v, Tv) = 2.
                                                                                                                                     • Note For [4E 5.33]: Supp \mathbf{F} = \mathbf{R}, V is finide, T \in \mathcal{L}(V), and b^2 < 4c for b, c \in \mathbf{F}.
                               Prove dim null(T^2 + bT + cI)^j is even for each j \in \mathbb{N}^+.
Solus: Using induc on j. (i) Immed. (ii) j > 1. Asum it holds for j - 1.
          Replace V with \operatorname{null}(T^2 + bT + cI)^j and T with T restr to \operatorname{null}(T^2 + bT + cI)^j.
           Then (T^2 + bT + cI)^j = 0 \Rightarrow (z^2 + bz + c)^j is a multi of the min of T \Rightarrow no eigense for T.
           Let U be invarspd T and has the largest even dim of all such invarsp. If V = U, done. Othws,
           for w \in V \setminus U \Rightarrow W = (w, Tw) invard T of dim 2 \Rightarrow U + W of dim (\dim U + 2) invard T.
                                                                                                                                     OR. Let q(z) = z^2 + bz + c. Note that the min of T restr to each null q(T)^j has no real zeros.
           If some dim null q(T)^j is odd. Then T restr to null q(T)^j must have a real eigval, ctradic.
                                                                                                                                     • Supp V finide, T \in \mathcal{L}(V) with the min p.
• (4E I.13) Prove \forall q \in \mathcal{P}(\mathbf{F}), \exists ! r \in \mathcal{P}_{\deg p-1}(\mathbf{F}), q(T) = r(T).
Solus: Becs p \neq 0. By the div algo, immed. [r = 0 \text{ if } q = p] Or. By Exe (4E I.19).
                                                                                                                                     OR. Let \deg p = m. Becs T^m \in \operatorname{span}(I, T, \dots, T^{m-1}). For \deg q < m, the repres of q(T) is uniq.
          If deg q \ge m. For each k \in \mathbb{N}, \exists ! b_{j,k} \in \mathbb{F}, T^{m+k} = b_{0,k}I + b_{1,k}T + \dots + b_{m-1,k}T^{m-1}.
                                                                                                                                     • (4E I.19) Let \mathcal{E} = \{q(T) : q \in \mathcal{P}(\mathbf{F})\}, a subsp of \mathcal{L}(V). Prove dim \mathcal{E} = \deg p.
Solus: Becs \mathcal{E} = \operatorname{span}(I, T, \dots, T^{\dim \mathcal{L}(V) - 1}) = \operatorname{span}(I, T, \dots, T^{\deg p - 1}), by Exe (4E I.13). Immed.
                                                                                                                                     Or. Define \Phi \in \mathcal{L}(\mathcal{P}(F), \mathcal{L}(V)) by \Phi(q) = q(T) \Rightarrow \operatorname{range} \Phi = \mathcal{E}.
          Becs \Phi(q) = q(T) = 0 \iff q \text{ is a multi of the min } p \iff q \in \{ps : s \in \mathcal{P}(\mathbf{F})\} = \text{null } \Phi.
           Now by (4.11), dim \mathcal{P}(\mathbf{F})/\text{null }\Phi = \deg p. By [3.91](d).
                                                                                                                                     • (8.C.11) Supp T \in \mathcal{L}(V) is inv. Prove \exists q \in \mathcal{P}(\mathbf{F}), T^{-1} = q(T).
Solus: Becs the const term of p is non0. Let I = a_1T + \cdots + a_mT^m \Rightarrow T^{-1} = a_1I + a_2T + \cdots + a_mT^{m-1}. \square
• (4E I.14) Supp p(z) = a_0 + a_1 z + \dots + a_{m-1} z^{m-1} + z^m, and a_0 \neq 0.
             Give a repres of s, the min of T^{-1}.
                                                                                               s(z) = z^m p(0)^{-1} p(z^{-1}), z \neq 0.
Solus: Define q(z) = z^m + \frac{a_1}{a_0} z^{m-1} + \dots + \frac{a_{m-1}}{a_0} z + \frac{1}{a_0} \Rightarrow q(T^{-1}) = T^{-m} p(T) = 0.
           Now \deg s \leqslant \deg q = \deg p. Revly, \deg q = \deg p \leqslant \deg s.
                                                                                                                                     OR. Becs each T^{-k} \notin \text{span}(I, T^{-1}, ..., T^{-(k-1)}) for k \in \{1, ..., m-1\}. Done.
          For if not, supp T^{-k} = b_0 I + b_1 T^{-1} + \dots + b_{k-1} T^{k-1}. Note that T inv \Rightarrow \exists b_i \neq 0.
          Now T^k(T^{-k}) = I = b_0 T^k + b_1 T^{k-1} + \dots + b_{k-1} T \Rightarrow T^j \in \text{span}(I, T, \dots, T^{k-1}).
```

	7) Show the min s of $(T - \lambda I)$ is $q(z) = p(z + \lambda)$.	
Solus:	Becs deg $q = \deg p$, and $q(T - \lambda I) = p(T) = 0 \Rightarrow q$ a multi of s . Now the deg of min p of T is no less than the deg of min s of $(T - \lambda I)$.	
	Revly, the deg of min s of $S = T - \lambda I$ is no less than the deg of min p of $(S + \lambda I)$.	
	OR. Define $r(z) = s(z - \lambda) \Rightarrow r(T) = 0 \Rightarrow \deg r = \deg s \geqslant \deg p$.	
	OR. Becs $T^k \in \operatorname{span}(I, T, \dots, T^{k-1}) = \operatorname{span}(I, (T - \lambda I), \dots, (T - \lambda I)^{k-1}) \ni (T - \lambda I)^k$.	
• (4E I.1	8) Supp deg $p=m$, and $\lambda \neq 0$. Show the min s of λT is $q(z)=\lambda^m p(z/\lambda)$.	
Solus:	Becs deg $q = \deg p$, and $q(\lambda T) = \lambda^m p(T) = 0 \Rightarrow q$ is multi s .	
	Now the deg of min p of T is no less than the deg of min s of λT .	
	Revly, the deg of min s of $S = \lambda T$ is no less than the deg of min p of $\lambda^{-1}S$.	
	OR. Define $r(z) = s(\lambda z) \Rightarrow r(T) = 0 \Rightarrow \deg r = \deg s \geqslant \deg p$. OR. Becs $(\lambda T)^k \in \operatorname{span}(\lambda I, \lambda T, \dots, (\lambda T)^{k-1}) = \operatorname{span}(I, T \dots, T^{k-1}) \ni T^k$.	
	OR. Becs $(\Lambda I) \in \text{span}(\Lambda I, \Lambda I, \dots, (\Lambda I))^{-1} = \text{span}(I, I \dots, I^{-1}) \ni I^{-1}$.	
• (4E I.1	0,23) Supp deg $p = m$, and non0 $v \in V$. Let each $U_k = \operatorname{span}(v, Tv,, T^k v)$.	
Sourc.	Prove $\exists j \in \{1, \dots, m\}$, $U_{j-1} = U_n$ for all $n \ge j-1$. Supp j is the smallest suth $T^j v = a_0 v + a_1 T v + \dots + a_{j-1} T^{j-1} v \in U_{j-1} \Rightarrow j \le m$.	
JOLUS:	Then U_{j-1} is invard T , so is each $U_n = \operatorname{span}(v, Tv, \dots, T^{j-1}v, \dots, T^nv)$.	
(a) (b)	upp V is finide, and $v \in V$ is non0 suth $q(T)v = 0$, where $q(z) = z^2 + 2z + 2$. Supp $\mathbf{F} = \mathbf{R}$. Prove $\nexists B_V$ suth $\mathcal{M}(T)$ up-trig. Supp $\mathbf{F} = \mathbf{C}$, and $\exists B_V$ suth $A = \mathcal{M}(T)$ up-trig. Prove $-1 + \mathbf{i}$ or $-1 - \mathbf{i}$ on diag. Define p_v as in $[\operatorname{ITPS}(1)]$. Note that $v \neq 0 \Rightarrow \deg p_v \neq 0$. $\not \subseteq q(T _{\operatorname{null} p_v(v)}) = 0$. Now q of $\deg 2$ is a multi of the min of $T _{\operatorname{null} p_v(v)}$, which is p_v , of which the min of T is a m	
	(a) Note that q has no 1-deg factors \Rightarrow deg $p_v \geqslant$ 2. By [4E 5.44].	ui.
	(b) $q(z) = (z+1+i)(z+1-i) \Rightarrow -1-i \text{ or } -1+i \text{ zero of } p_v \Rightarrow \text{ is eigval} \Rightarrow \text{ on diag.}$	
• II.TH	Ps 1: Supp $B_V = (v_1,, v_n), B_{V'} = (\varphi_1,, \varphi_n), T \in \mathcal{L}(V), A = \mathcal{M}(T, B_V).$ (a) A up-trig $\iff T = \sum_{k=1}^n \sum_{j=1}^k A_{j,k} E_{k,j} \iff T' = \sum_{k=1}^n \sum_{j=1}^k A_{k,j}^t \exists_{j,k} \iff A^t \text{ low-trig.}$ (b) A low-trig $\iff T = \sum_{k=1}^n \sum_{j=1}^k A_{k,j} E_{j,k} \iff T' = \sum_{k=1}^n \sum_{j=1}^k A_{j,k}^t \exists_{k,j} \iff A^t \text{ up-trig.}$	
• II.TH	Prove $\mathcal{M}(T, \alpha \to \alpha)$ up-trig $\iff \mathcal{M}(T, \beta \to \beta)$ low-trig.	
	For each $k \in \{1, \dots, n\}$, $T\beta_{n-k+1} = T\alpha_k \in \operatorname{span}(\alpha_1, \dots, \alpha_k) = \operatorname{span}(\beta_n, \dots, \beta_{n-k+1})$.	
CORO:	(a) Supp $\mathbf{F} = \mathbf{C}$. Then $\exists B_V$ suth $\mathcal{M}(T, B_V)$ low-trig. (b) T up-trig $\iff T'$ up-trig.	
	3 Supp V finide, $T \in \mathcal{L}(V)$. Prove $T _{U}$, T/U up-trig for some invarsp $U \iff T$ up- Supp $B_{U} = (u_{1},, u_{p})$, $B_{V/U} = (w_{1} + U,, w_{q} + U)$ suth $\mathcal{M}(T _{U})$, $\mathcal{M}(T/U)$ up-trig.	trig.
	Then each $Tu_k \in \text{span}(u_1,, u_k)$ and each $Tw_j + U \in \text{span}(w_1 + U,, w_j + U)$. By (3.E.13), $B_V = (u_1,, u_p, w_1,, w_q)$. Now each $Tw_j \in \text{span}(u_1,, u_p, w_1,, w_j)$.	
	OR. By (4E 5.B.25)(b) and [4E 5.44], immed. Convly, by [4E 5.44], immed.	

```
L1 Supp T \in \mathcal{L}(V), \alpha, \beta \in \mathbf{F} and \alpha \neq \beta. Prove \operatorname{null}(T - \alpha I) \subseteq \operatorname{range}(T - \beta I).
Solus: \forall v \in \text{null}(T - \alpha I), Tv = \alpha v \Rightarrow (T - \beta I)[v/(\alpha - \beta)] = v \in \text{range}(T - \beta I).
                                                                                                                                                                    5 Supp \mathbf{F} = \mathbf{C}, V is finide, and T \in \mathcal{L}(V).
   Supp V = \text{null}(T - \lambda I) \oplus \text{range}(T - \lambda I) for all \lambda \in \mathbb{C}. Prove T is diag.
Solus: (i) dim V = 1. Immed. (ii) dim V > 1. Asum it holds for vecsps of smaller dim.
             \exists \text{ eigval } \lambda_0 \Rightarrow U = \text{range}(T - \lambda_0 I) \text{ invard } T \Rightarrow U = \text{null}(T|_U - \lambda I) \oplus \text{range}(T|_U - \lambda I).
             While V = E(\lambda_0, T) \oplus U \Rightarrow \dim U < \dim V. By asum, T|_U is diag wrto B_U of eigvecs.
                                                                                                                                                                    Or. Supp T not diag. We show \exists \lambda \in \mathbb{C}, \text{null}(T - \lambda I) \cap \text{range}(T - \lambda I) \neq \{0\}.
   Let the min of T be p(z) = (z - \lambda_1)^{\alpha_1} \cdots (z - \lambda_m)^{\alpha_m}, where each \alpha_k \ge 1 and \exists \alpha_i > 1.
   Let q(z)(z - \lambda_i) = p(z) \Rightarrow 0 = p(T) = (T - \lambda_i I)q(T) \Rightarrow \text{range } q(T) \subseteq \text{null}(T - \lambda_i I).
   Let q(z) = (z - \lambda_i)s(z) \Rightarrow \operatorname{range} q(T) \subseteq \operatorname{range}(T - \lambda_i I). Note that q(T) \neq 0.
                                                                                                                                                                    Or. Let \lambda_1, \dots, \lambda_m be disti eigvals. Now V = \text{null}(T - \lambda_k I) \oplus \text{range}(T - \lambda_k I) for each \lambda_k.
   Asum V = \left[\bigoplus_{i=1}^{J} \text{null}(T - \lambda_i I)\right] \oplus \left[\bigcap_{i=1}^{J} \text{range}(T - \lambda_i I)\right] \text{ for } j \in \{1, \dots, m-1\}.
   Becs by (L1), \bigcap_{i=1}^{j} \operatorname{range}(T - \lambda_i I) \supseteq \operatorname{null}(T - \lambda_{i+1} I), and by [1.C TIPS (2)],
   \bigcap_{i=1}^{J} \operatorname{range}(T - \lambda_i I) = \operatorname{null}(T - \lambda_{i+1} I) \oplus \left[\bigcap_{i=1}^{J} \operatorname{range}(T - \lambda_i I) \cap \operatorname{range}(T - \lambda_{i+1} I)\right].
   By induc, V = [\operatorname{null}(T - \lambda_1 I) \oplus \cdots \oplus \operatorname{null}(T - \lambda_m I)] \oplus [\operatorname{range}(T - \lambda_1 I) \cap \cdots \cap \operatorname{range}(T - \lambda_m I)].
   Asum U = \bigcap_{k=1}^m \operatorname{range}(T - \lambda_k I) \neq \{0\}. Becs U invard T. Thus \exists \mu = \lambda_j \text{ eigval of } T|_U. Ctradic.
                                                                                                                                                                    13 Supp A, B \in \mathbb{F}^{n,n} and A is diag with dist ents on diag. Prove AB = BA \iff B is diag.
Solus: Notice that for any diag C, each C_{i,k} = 0 for j \neq k.
             Becs (I) A_{i,i}B_{i,k} = A_{i,1}B_{1,k} + \dots + [A_{i,i}B_{i,k}] + \dots + A_{i,n}B_{n,k} = (AB)_{i,k}.
             And (II) B_{j,k}A_{k,k} = B_{j,1}A_{1,k} + \dots + [B_{j,k}A_{k,k}] + \dots + B_{j,n}A_{n,k} = (BA)_{j,k}.
             Supp B diag. If j = k, then (BA)_{i,k} = (AB)_{i,k}, othws true as well.
             Supp AB = BA \Rightarrow A_{j,j}B_{j,k} = A_{k,k}B_{j,k}. Asum B_{j,k} \neq 0 with j \neq k. Then A_{j,j} = A_{k,k}, ctradic.
                                                                                                                                                                    14 Supp \mathbf{F} = \mathbf{C}, k \in \mathbf{N}^+, and T \in \mathcal{L}(V) is inv. Prove T^k diag \Rightarrow T diag.
Solus: Let the min of T^k be p(z) = (z - \lambda_1) \cdots (z - \lambda_m) \Rightarrow \operatorname{each} \lambda_k \text{ non0 and disti.}
             Becs any non0 \lambda \in \mathbb{C} has k disti k^{th} roots. Let \{\mu_{1,i}, \dots, \mu_{k,i}\} be the roots of z^k = \lambda_i.
             For x, y \in \{1, ..., n\}, x \neq y \iff \mu_{p,x}^k = \lambda_x \neq \lambda_y = \mu_{q,y}^k for each p, q \in \{1, ..., k\} \Rightarrow \mu_{p,x} \neq \mu_{q,y}.
             Thus all \mu's are dist. Let s(z) = (z^k - \lambda_1) \cdots (z^k - \lambda_m) = \prod_{j=1}^m \prod_{i=1}^k (z - \mu_{i,j}) \Rightarrow s(T) = 0.
EXA: Not true if F = R. Define T \in \mathcal{L}(R^2) : (x,y) \mapsto (-y,x). No eigvals.
• Supp \mathbf{F} = \mathbf{C}, n \in \mathbf{N}, n \ge 2. Prove T is diag \iff \forall p \in \mathcal{P}(\mathbf{F}), \operatorname{null} p(T) = \operatorname{null} [p(T)]^n.
Solus: (a) Supp T diag. Let p(z) = (z - \alpha_1) \cdots (z - \alpha_m). We show each \text{null}(T - \alpha_k I)^n = \text{null}(T - \alpha_k I).
                   Done if T - \alpha_k I = S inje. Supp S not inje. Notice that \text{null } S|_{\text{range } S} = \text{null } S \cap \text{range } S = \{0\}.
                   By (3.B.22), dim null S^2 = \dim \text{null } S \Rightarrow \text{null } S^2 = \text{null } S. Asum null S^j = \text{null } S for j \ge 2.
                   Becs dim null(S^{j}S) = dim(null S^{j} \cap \text{range } S) + dim null S. By induc.
             (b) Supp \operatorname{null}(T - \lambda I) = \operatorname{null}(T - \lambda I)^n for all \lambda \in \mathbb{C}. Let \lambda_1, \dots, \lambda_m be disti eigvals of T.
                   Define p(z) = (z - \lambda_1) \cdots (z - \lambda_m). Then [p(T)]^{\dim V} = 0 \Rightarrow p(T) = 0 \Rightarrow p is the min.
```

Or. By (4E 8.A.3) and Exe (5), T diag $\iff \forall \lambda \in \mathbb{F}$, $\text{null}(T - \lambda I) = \text{null}(T - \lambda I)^2$.

18 Supp $1 \in \mathcal{L}(V)$ is any U prove $1/U \in \mathcal{L}(V/U)$ is any U invarspa 1 .	
Solus: By $[5.A \text{ Tips } (2)]$, $\exists B_U = (v_1,, v_m)$ consists of eigences of T .	
Extend to eigvecs $B_V = (v_1, \dots, v_m, w_1, \dots, w_p) \Rightarrow B_{V/U} = (w_1 + U, \dots, w_p + U)$.	
Becs for each w_k , \exists eigval λ of T , $Tw_k = \lambda w_k \Rightarrow (T/U)(w_k + U) = \lambda w_k + U$.	
Or. Becs the min of T is multi of that of T/U . By [4E 5.62].	
Comment: In Exa [5.15]: $T \in \mathcal{L}(V)$ not diag while $T _{U}$, T/U diag.	
	·····
	ENDED
5.E [4E]	
6 Supp $\mathbf{F} = \mathbf{C}$, V is finide, and $S, T \in \mathcal{L}(V)$ commu.	
Prove $\exists \alpha, \lambda \in \mathbb{C}$ suth range $(S - \alpha I) + \text{range}(T - \lambda I) \neq V$.	
Solus : Supp $A, C \in \mathbb{F}^{n,n}$ are up-trig matrices of S, T wrto a $B_V = (v_1, \dots, v_n)$ suth A, C comm	u.
Let $\alpha = A_{n,n}$, $\lambda = C_{n,n}$. Then range $(S - \alpha I)$, range $(T - \lambda I) \subseteq \text{span}(v_1, \dots, v_{n-1})$.	
7 Supp $\mathbf{F} = \mathbf{C}$, and $S, T \in \mathcal{L}(V)$ commu, S diag. Prove $\exists B_V$ suth S diag and T up-to-	rio
Solus: Let $\lambda_1, \dots, \lambda_m$ be disti eigvals of $S \Rightarrow V = E(\lambda_1, S) \oplus \dots \oplus E(\lambda_m, S)$.	
Becs each $E_k = E(\lambda_k, S)$ invard T . Let each $T _{E_k}$ be up-trig with $B_{E_k} = (v_{1,k}, \dots, v_{M_k,k})$.	
Then S diag while T up-trig with the same $B_V = (v_{1,1}, \dots, v_{M_n,n})$.	
OR. Using induc on $n = \dim V$. (i) $n = 1$. Immed. (ii) $n > 1$. Asum it holds for small	er V .
$\exists \text{ eigval } \lambda \text{ of } S, U = \text{null}(S - \lambda I), W = \text{range}(S - \lambda I) \Rightarrow V = \text{null}(S - \lambda I) \oplus \text{range}(S - \lambda I)$	
Apply the asum to $T _U$, $S _U$ and $T _W$, $S _W$, then put B_U , B_W together.	
2 Supp $\mathcal{E} \subseteq \mathcal{L}(V)$ and every elem of \mathcal{E} diag.	
Prove each pair of elems of \mathcal{E} commu $\Rightarrow \exists B_V$ suth all elem of \mathcal{E} diag.	
Solus: Let dim $V = n \Rightarrow \dim \mathcal{L}(V) = n^2$. Write $V = \bigoplus_{\lambda_k \in F} E(\lambda_k, T)$ for each $T \in \mathcal{E}$.	
$\exists \{T_1, \dots, T_m\} \subseteq \mathcal{E} \text{ with each elem of } \mathcal{E} \text{ in span}(T_1, \dots, T_m) \text{ and } m \leq n^2.$	
Notice that $U_k = E(\lambda_1, T_1) \cap \cdots \cap E(\lambda_k, T_k) = E(\lambda_k, T_k _{U_{k-1}}) = \bigoplus_{\lambda_{k+1}} E(\lambda_{k+1}, T_{k+1} _{U_k}).$	
Hence $V = \bigoplus_{\lambda_1} E(\lambda_1, T_1) = \bigoplus_{\lambda_1, \dots, \lambda_m} [E(\lambda_1, T_1) \cap \dots \cap E(\lambda_m, T_m)]$. Take bss of each summar	nd.
Then we form B_V . For any $T \in \mathcal{E}$, $\mathcal{M}(T, B_V) = c_1 \mathcal{M}(T_1, B_V) + \dots + c_m \mathcal{M}(T_m, B_V)$.	
9 Supp $\mathbf{F} = \mathbf{C}$, V finide and non0. Supp $\mathcal{E} \subseteq \mathcal{L}(V)$ is suth all $S, T \in \mathcal{E}$ commu.	
(a) Prove \exists eigvec $v \in V$ of all elem of \mathcal{E} . (b) $\exists B_V$ suth all elem of \mathcal{E} has up-trig materials $\exists B_V$ such all elem of \mathcal{E} has up-trig materials $\exists B_V$ such all elem of \mathcal{E} has up-trig materials $\exists B_V$ such all elem of \mathcal{E} has $\exists B_V$ such all elem of \mathcal{E} .	atrix.
Solus: Simil to Exe (2). $\exists \{T_1, \dots, T_m\} \subseteq \mathcal{E}$. Let $U_0 = V, U_k = E(\lambda_1, T_1) \cap \dots \cap E(\lambda_k, T_k)$.	
(a) Let $\lambda_1, \dots, \lambda_m$ be eigends of T_1, \dots, T_m respectly with each λ_k eigend of $T_k _{U_k} \Rightarrow U_k \neq 0$	0
Now for non0 $v \in U_m$, $\forall T = c_1 T_1 + \dots + c_m T_m \in \mathcal{E}$, $Tv = (c_1 \lambda_1 + \dots + c_m \lambda_m)v$.	
(b) Using induc on dim V . (i) Immed. (ii) dim $V > 1$. Asum it holds for smaller V .	
Let v_1 be a common eigerc of all T_k . Let $W \oplus \text{span}(v_1) = V, P : av_1 + w \mapsto w$.	
Simlr in [4E 5.80], each pair of $\{\hat{T}_1, \dots, \hat{T}_m\}$ commu. By asum, $\exists B_W \Rightarrow \exists B_V$. Now each $\mathcal{M}(T_k, B_V)$ up-trig $\Rightarrow \forall T \in \mathcal{E}, \mathcal{M}(T) = c_1 \mathcal{M}(T_1) + \dots + c_m \mathcal{M}(T_m)$, wrtc	$B_{\rm W}$. \square
	<i>- v</i> · □

```
8 Note: Supp V is a non0 finide vecsp over F. Supp T \in \mathcal{L}(V). Let m_T be the min of T.
                 An Exe marked by \blacksquare is still true if infinide or partially finide.
• Supp T nilp, U non0 and U \oplus \text{null } T = \text{null } T^2. Prove U is not invard T.
Solus: Let u \in U and T^2u = 0 \neq Tu \in \text{null } T. If U invar, then Tu \in U \cap \text{null } T = \{0\}, ctradic.
                                                                                                                                                          A.3 Supp T inv. Prove G(\lambda, T) = G(\lambda^{-1}, T^{-1}) for any non0 \lambda \in F.
Solus: (T - \lambda I)^j v = 0 = \sum_{i=0}^j C_i^i (-\lambda)^{j-i} T^i v. Apply (-\lambda)^{-j} T^{-j} to both sides. (T^{-1} - \lambda^{-1} I)^j v = 0.
                                                                                                                                                          OR. We use induc on j to show each null(T - \lambda I)^j = \text{null}(T^{-1} - \lambda^{-1}I)^j. (i) Immed. (ii) j > 1.
            Asum true for (j-1) \Rightarrow \forall v \in \text{null}(T-\lambda I)^j, (T-\lambda I)v \in \text{null}(T-\lambda I)^{j-1} = \text{null}(T^{-1}-\lambda^{-1}I)^{j-1}.
            Which equiv \operatorname{null}(T^{-1} - \lambda^{-1}I)^{j-1}v \in \operatorname{null}(T - \lambda I) = \operatorname{null}(T^{-1} - \lambda^{-1}I), by (i).
A.5 Supp T^{n-1}v \neq 0, T^nv = 0. Prove (v, Tv, ..., T^{n-1}v) is liney indep.
Solus: a_0v + a_1Tv + \dots + a_{n-1}T^{n-1}v = 0 \Rightarrow a_0T^{n-1}v = 0 \Rightarrow a_0 = 0. Similar for a_1, \dots, a_{n-1}.
• Note For [8.19] Or [4E 8.18]: If m_T(z) = z^m. Then \exists v \text{ suth } T^{m-1}v \neq 0.
  If m = \dim V. Then B_V = (T^{m-1}v, ..., Tv, v). Let each w_k = T^{m-k}v. Then Tw_1 = 0, T(w_k) = w_{k-1}.
A.6 Supp T nilp, n = \dim V, T^{n-1} \neq 0. Prove \nexists S \in \mathcal{L}(V), S^k = T for all k > 1.
Solus: Asum \exists suth S \Rightarrow S is nilp. Then null S^n = \cdots = \text{null } S^{kn} = \text{null } T^n = V.
            Now \exists t \in \mathbb{N} with (n-t)k \in \{n, ..., kn\} \Rightarrow \text{null } T^{n-t} = \text{null } S^{nk-tk} = V.
                                                                                                                                                          • (4E A.4) Supp m_T is a multi of (z - \lambda)^m with m \in \mathbb{N}^+. Prove \dim \text{null}(T - \lambda I)^m \geqslant m.
Solus: Becs \lambda is eigval of T. We show z^m is the min of N = (T - \lambda I)|_{\text{null}(T - \lambda I)^m} \Rightarrow N^m = 0 \neq N^{m-1}.
            Let each U_k \oplus \text{null } N^{k-1} = \text{null } N^k \text{ for } k \in \{2, ..., m\} \Rightarrow U_k \text{ not invard } N \Rightarrow U_k \text{ non0.}
            Thus \operatorname{null} N^0 \subseteq \operatorname{null} N \subseteq \cdots \subseteq \operatorname{null} N^m \Rightarrow \dim \operatorname{null} (T - \lambda I)^m = \dim \operatorname{null} N^m \geqslant m.
                                                                                                                                                           Or. Let m_T(z) = (z - \lambda)^m q(z). We show \{0\} \subseteq \text{null}(T - \lambda I) \subseteq \cdots \subseteq \text{null}(T - \lambda I)^m by ctradic.
            Asum \operatorname{null}(T - \lambda I)^k = \operatorname{null}(T - \lambda I)^{k+1} for k \in \{1, \dots, m-1\}.
            Then \operatorname{null}(T - \lambda I)^k = \operatorname{null}(T - \lambda I)^m \Rightarrow (T - \lambda I)^m q(T)v = 0 = (T - \lambda I)^k q(T)v.
                                                                                                                                                           • (4E A.3) Prove V = \text{null } T \oplus \text{range } T \iff \text{null } T^2 = \text{null } T.
Solus: (a) \operatorname{null} T^2 = \operatorname{null} T = \operatorname{null} T^{\dim V} \Rightarrow \dim \operatorname{range} T^{\dim V} = \dim \operatorname{range} T.
            (b) V = \text{null } T \oplus U, U = \text{range } T, \ X \text{ dim null } T^2 = \text{dim null } T + \text{dim null } T|_{\text{range } T}.
                                                                                                                                                           OR. (a) Supp null T^2 = \text{null } T. Then Tu \in \text{null } T \cap \text{range } T \iff T^2u = 0 \iff Tu = 0.
                   (b) Supp \operatorname{null} T \cap \operatorname{range} T = \{0\}. Then T^2u = 0 \iff Tu \in \operatorname{null} T \iff Tu = 0.
A.17 Supp range T^m = \text{range } T^{m+1}. Show range T^m = \text{range } T^{m+1} = \cdots.
Solus: By Exe (A.19), \operatorname{null} T^m = \operatorname{null} T^{m+1} = \cdots \Rightarrow \dim \operatorname{range} T^m = \dim \operatorname{range} T^{m+1} = \cdots.
                                                                                                                                                           OR. Supp w = T^{m+k}v. Then becs T^mv \in \operatorname{range} T^{m+1}, \exists T^{m+1}u = T^mv. Thus w = T^{m+k+1}u.
A.18 Supp dim V = n. Show range T^n = \text{range } T^{n+1} = \cdots.
                                                                                                                          By Exe (A.19), simlr. \Box
Solus: Asum range T^n \supseteq \operatorname{range} T^{n+1}. By Exe (A.17), V = \operatorname{range} T^0 \supseteq \operatorname{range} T \supseteq \cdots \supseteq \operatorname{range} T^{n+1}.
            Now each dim range T^{k+1} \leq \dim \operatorname{range} T^k - 1 \Rightarrow \dim \operatorname{range} T^{n+1} \leq \dim \operatorname{range} T^0 - (n+1). \square
```

```
A.10 Supp T not nilp, n = \dim V. Show V = \operatorname{null} T^{n-1} \oplus \operatorname{range} T^{n-1}.
Solus: Notice that \operatorname{null} T^{n-1} \neq \operatorname{null} T^n \Rightarrow \operatorname{dim} \operatorname{null} T^n = \operatorname{dim} V. Thus \operatorname{null} T^{n-1} = \operatorname{null} T^n.
            \nabla V = \text{null } T^n \oplus \text{range } T^n, range T^n \subseteq \text{range } T^{n-1} \Rightarrow V = \text{null } T^{n-1} + \text{range } T^{n-1}.
                                                                                                                                                     OR. Then dim range T^{n-1} = \dim \operatorname{range} T^n \Rightarrow \operatorname{range} T^{n-1} = \operatorname{range} T^n.
                                                                                                                                                     Or. By Exe (4E A.3), \operatorname{null} T^{2(n-1)} = \operatorname{null} T^{n-1} \iff V = \operatorname{null} T^{n-1} \oplus \operatorname{range} T^{n-1}.
                                                                                                                                                     • (4E A.18) Supp T nilp. Prove T^{1+\dim \operatorname{range} T} = 0.
Solus: Let dim V = n. Then dim \operatorname{null} T^{n-1}|_{\operatorname{range} T} + \operatorname{dim} \operatorname{null} T = \operatorname{dim} V.
            Now null T^{n-1}|_{\text{range }T} = \text{range }T \Rightarrow T|_{\text{range }T} \in \mathcal{L}(\text{range }T) is nilp.
                                                                                                                                                     OR. Let dim range T = k. Asum T^{k+1} \neq 0. Let m be suth T^m = 0 \neq T^{m-1}. Then k + 2 \leq m.
            Let v be suth T^{m-1}v \neq 0 = T^mv \Rightarrow (v, Tv, ..., T^{m-1}v) liney indep \Rightarrow k \geqslant m-1 \geqslant k+1.
• (4E A.12) Supp every v \in V is a g-eigvec of T. Prove V = G(\lambda, T).
Solus: Becs for any liney indep (v, w), (v, w, v + w) of g-eigvecs is liney dep; say corres \alpha, \beta, \gamma repectly.
            If \alpha = \beta then done. If \alpha = \gamma, then v, v + w \in G(\alpha, T) \Rightarrow w \in G(\alpha, T). If \beta = \gamma, then simlr.
            Thus \alpha = \beta = \gamma. Any two liney indep v, w corres one eigval.
B.5 [4E A.15] Prove non0 T diag \Rightarrow each G(\lambda, T) = E(\lambda, T).
                                                                                                                  Convly true if req F = C.
Solus: \forall w \in G(\lambda_i, T), \exists ! v_i \in E(\lambda_i, T), w = v_1 + \dots + v_m.
            Note that (T - \lambda_i I)^k w = 0 = \sum_{i=1}^m (\lambda_i - \lambda_i)^k v_i \Rightarrow w = v_i \in E(\lambda_i, T).
                                                                                                                                                     Or. By (4E B.6), immed. Or. Supp G(\lambda_i, T) \supseteq E(\lambda_i, T). Let w \in G(\lambda_i, T) \setminus E(\lambda_i, T)
            Let (T - \lambda_i I)^k w = 0 \neq (T - \lambda_i I)^{k-1} w. By [5.B(I) \text{ Tips } (1)], m_T is a multi of (z - \lambda_i)^k. \nabla k \geq 2\Box
• (4E A.16) Supp S,T \in \mathcal{L}(V) nilp and commu. Prove S+T, ST are nilp
Solus: By [4E 5.80], \exists B_V suth S, T up-trig (with only 0's on diags). By (4E 5.C.2).
                                                                                                                                                     Or. Let S^p = T^q = 0. Becs S, T commu, (ST)^{\max\{p,q\}} = 0 = (S+T)^{p+q} = \sum_{i=0}^{p+q} C_{p+q}^i S^i T^{p+q-i}.
B.10 Supp \mathbf{F} = \mathbf{C}. Prove \exists commu D, N \in \mathcal{L}(V), T = D + N, D diag, N nilp.
Solus: Note: D \operatorname{diag}_{N} N \operatorname{nilp} \not\Rightarrow D, N \operatorname{commu}_{N} Exa. De_{1} = e_{1}, De_{2} = 0, Ne_{1} = 0, Ne_{2} = e_{1}.
            We use induc on dim V = n. (i) Immed. (ii) n > 1. Asum it holds for smaller V.
            Becs V = G_1 \oplus U, where U = G_2 \oplus \cdots \oplus G_m, and each G_k = G(\lambda_k, T).
            \exists B_{G_1} \text{ suth } T|_{G_1} = (T - \lambda_1 I)|_{G_1} + \lambda_1 I|_{G_1} = N_1 + D_1 \text{ up-trig and } N_1, D_1 \text{ commu.}
            \exists commu D_2, N_2 \in \mathcal{L}(U), T|_U = D_2 + N_2, D_2 diag, N_2 nilp; wrto some B_U, by (4E 5.E.7).
            Define P_1, P_2 \in \mathcal{L}(V) by P_1(v_1 + u) = v_1, P_2(v_1 + u) = u. Let D = D_1P_1 + D_2P_2, N = N_1P_1 + N_2P_2.
            D + N = (D_1 + N_1)P_1 + (D_2 + N_2)P_2 = T, DN = D_1N_1P_1 + D_2N_2P_2 = NP, B_V = B_{G_1} \cup B_U. \square
            Or. \forall v \in V, \exists ! v_k \in G_k, v = v_1 + \dots + v_m. Define D \in \mathcal{L}(V) : v \mapsto (\lambda_1 v_1 + \dots + \lambda_m v_m)
            Then D|_{G_k} = \lambda_k I. Let N = T - D \Rightarrow N|_{G_k} = (T - D)|_{G_k} = (T - \lambda_k I)|_{G_k} is nilp \Rightarrow N nilp.
            Becs DN = DT - D^2, ND = TD - D^2, X each TDv_k = \lambda_k Tv_k = DTv_k \Rightarrow TD = DT.
                                                                                                                                                     Or. Define P_i \in \mathcal{L}(V) : w_i + u \mapsto w_i, where w_i \in G_i, u \in \bigoplus_{i \neq i} G_i.
            Now T = T|_{G_1}P_1 + \cdots + T|_{G_m}P_m. Let N_i = T|_{G_i} - \lambda_i I \Rightarrow N_1 P_1 + \cdots + N_m P_m : v_i \mapsto N_k v_i.
            Where B_V = (v_1, ..., v_n) are g-eigvecs and v_i \in G_k. Let D = \lambda_1 P_1 + \cdots + \lambda_m P_m : v_i \mapsto \lambda_k v_i.
            Hence T = D + N, and DN = ND : v_i \mapsto \lambda_k N_k v_i.
```

```
• (4E B.7) Supp \lambda is an eigral of T with multy d. Prove G(\lambda, T) = \text{null}(T - \lambda I)^d.
Solus: Let N = T - \lambda I, and \text{null } N \subseteq \cdots \subseteq \text{null } N^m = \text{null } N^{m+1}. Choose B_{\text{null } N}.
           Extend to B_{\text{null }N^2} \Rightarrow \cdots \Rightarrow B_{\text{null }N^m}, with each step adding at least one bss vec. Thus m \leq d.
                                                                                                                                                Or. Let m_T(z) = (z - \lambda)^m q(z) with q(\lambda) \neq 0.
           Becs by (4E B.6), G(\lambda, T) = \text{null}(T - \lambda I)^m. Now by (4E A.4).
                                                                                                                                                Or. Let the min of N = (T - \lambda I)|_{G(\lambda, T)} be z^m \Rightarrow the min of N + \lambda I = T|_{G(\lambda, T)} is s(z) = (z - \lambda)^m.
           Becs the char of T [See [9.21] for the case \mathbf{F} = \mathbf{R}] is a multi of m_T, which is a multi of s.
• (4E B.6) Supp \lambda is an eigral of T. Explain why the expo of (z - \lambda)
              in the factoriz of m_T is the smallest m \in \mathbb{N}^+ suth (T - \lambda I)^m |_{G(\lambda, T)} = 0.
Solus: Each (T - \alpha I)^k |_{G(\lambda, T)} are inv for \alpha \neq \lambda. Becs m_T(T|_{G(\lambda, T)}) = 0 \iff (T - \lambda I)^k |_{G(\lambda, T)} = 0.
                                                                                                                                                Or. Let m_T(z) = (z - \lambda)^m q(z), with q(\lambda) \neq 0. We show \operatorname{null}(T - \lambda I)^m \supseteq \operatorname{null}(T - \lambda I)^{m+1}.
           Supp v \in \text{null}(T - \lambda I)^{m+1} \iff (T - \lambda I)^m v \in \text{null}(T - \lambda I) = E(\lambda, T).
            Then 0 = m_T(T)v = q(T) \lceil (T - \lambda I)^m v \rceil = q(\lambda) \lceil (T - \lambda I)^m v \rceil \Rightarrow v \in \text{null}(T - \lambda I)^m.
           Let k be suth null (T - \lambda I)^k = G(\lambda, T) = \text{null}(T - \lambda I)^m. Becs (T - \lambda I)^k q(T) = 0 \Rightarrow k \geqslant m.
Note: The expo of an irreducible \omega in the factoriz of m_T is the smallest m suth \omega^m(T)|_{\text{null }\omega(T)}=0.
• Supp \lambda_1, \ldots, \lambda_m are the disti eigvals of T.
• B.Tips 1: Supp \mathbf{F} = \mathbf{C}, U invarspd T. Prove U = G(\lambda_1, T|_U) \oplus \cdots \oplus G(\lambda_m, T|_U).
Solus: We use induc on dim U = N. (i) Immed. (ii) N > 1. Asum it holds for smaller U.
            Supp \lambda_1 is an eigval of T|_U. Let W \oplus G(\lambda_1, T|_U) = U, where W = \text{range}(T|_U - \lambda_1 I)^N invard T|_U.
           Note that T|_{U}|_{W} = T|_{W}. By asum, W = G(\lambda_{2}, T|_{W}) \oplus \cdots \oplus G(\lambda_{m}, T|_{W}).
           Now we show G(\lambda_k, T|_U) \subseteq G(\lambda_k, T|_W) for each k \in \{2, ..., m\}.
            \forall v \in G(\lambda_k, T|_U), \exists ! u_1 \in G(\lambda_1, T|_U), w_k \in G(\lambda_k, T|_W), v = u_1 + w_2 + \dots + w_m. By [8.13].
                                                                                                                                                COMMENT: Note that generally, X \oplus Y \supseteq U \neq (X \cap U) \oplus (Y \cap U), and (X + U) \cap (Y + U) \neq U.
• B.Tips 2: Supp V = U \oplus W, and U, W invard T. Then G(\lambda, T) = G(\lambda, T|_U) \oplus G(\lambda, T|_W).
• B.Tips 3: Supp \mathbf{F} = \mathbf{C}, and q(z) = (z - \lambda_1)^{\alpha_1} \cdots (z - \lambda_k)^{\alpha_k}.
                Let F_i = \text{null}(T - \lambda_i I)^{\alpha_i}. Prove \text{null } q(T) = F_1 \oplus \cdots \oplus F_m.
Solus: Each (T - \lambda_k I)^{\alpha_k}|_{G(\lambda_j, T)} is inje for k \neq j \Rightarrow \text{null } q(T)|_{G(\lambda_j, T)} = F_j. Or. By [B \text{ Tips } (1,4)].
• Supp p, q \in \mathcal{P}(\mathbf{F}) have no common zeros on \mathbf{C}.
• B.Tips 4: (a) Prove null p(T) \oplus \text{null } q(T) = \text{null}(pq)(T), range p(T) + \text{range } q(T) = V.
                (b) Prove range p(T) \cap \text{range } q(T) = \text{range}(pq)(T).
Solus: (a) By Exe (4E 4.13), \forall v \in V, v = r(T)p(T)v + s(T)q(T)v.
   (b) v \in \text{range } p(T) \cap \text{range } q(T) \Rightarrow \exists u, w \in V, v = p(T)u = q(T)w = (pq)(T)(r(T)w + s(T)u). \blacksquare
CORO: Supp (pq)(T) = 0. We show null p(T) = \text{range } q(T).
          Becs '\supseteq' holds \Rightarrow null q(T) \cap \text{range } p(T) = \{0\}. By (5.C.3) and [1.C \text{ TIPS } (1)].
                                                                                                                                                Supp (p_1 \cdots p_k)(T) = 0, and p_1, \dots, p_k \in \mathcal{P}(\mathbf{F}) have no common zeros on C.
          (c) Each null p_i(T) = \text{range}(\prod_{i \neq i}^k p_i)(T) = \bigcap_{i \neq i}^k \text{range } p_i(T). Or. By (d).
          (d) Each range p_i(T) = \bigoplus_{i \neq j}^k \text{null } p_i(T). Note that V = \text{null } p_i(T) \oplus \left[\bigoplus_{i \neq j}^k \text{null } p_i(T)\right].
```

```
• Note: If (pq)(T) = 0. Let V_C = G(\lambda_1, T_C) \oplus \cdots \oplus G(\lambda_m, T_C), and m_T(z) = (z - \lambda_1)^{k_1} \cdots (z - \lambda_m)^{k_m}.
             Let \mathcal{A} = \{\alpha_1, \dots, \alpha_A\} be the intersec of the zeros of p and the eigvals of T. Simlr for \mathcal{B}.
             Then \mathcal{A} \cap \mathcal{B} = \emptyset. Let p = \omega_{\alpha_1} \cdots \omega_{\alpha_A} p_0, q = \omega_{\beta_1} \cdots \omega_{\beta_R} q_0, where \omega_{\lambda_i}(z) = (z - \lambda_i)^{k_i}.
             By [B Tips (3)], null p(T_C) = G(\alpha_1, T_C) \oplus \cdots \oplus G(\alpha_A, T_C). Similr for q(T_C).
             For F = R, if \exists \alpha_i \notin R, then \exists \alpha_i = \overline{\alpha_i}. Simlr for \mathcal{B}. Now V_C = \text{null } p(T_C) \oplus \text{null } q(T_C).
• Note For [8.55]: Supp N^m = 0 \neq N^{m-1}. Let each null N^k = \text{null } N^{k-1} \oplus U_k for k \in \{2, ..., m\}.
  (1) Start by B_{U_m} = (v_{1,1}, \dots, v_{n_1,1}). But (Nv_{1,1}, \dots, Nv_{n_1,1}) might be liney dep. Invalid method.
  (2) \mathcal{M}(N, B_{\text{null }N} \cup B_{U_2} \cup \cdots \cup B_{U_m}) is a block up-trig matrix with the diag blocks all zero.
• Note For Exe (D.6): Let B = (N^{m_1}v_1, ..., N^{m_1-k}v_1, ..., N^{m_n}v_n, ..., N^{m_n-k}v_n), 0 \le k \le \min\{m_1, ..., m_n\}.
  All liney indep in null N^{k+1}. Supp N^{k+1} sends a liney combina of the Jordan B_V to zero.
  Then all coeffs of N^{m_1-k-i}v_k are zero. Thus \operatorname{null} N^{k+1} \subseteq \operatorname{span} B. Now B is a bss of \operatorname{null} N^{k+1}.
C.20 [4E B.20] Supp \mathbf{F} = \mathbf{C}, and each V_k non0 invarsp of V = V_1 \oplus \cdots \oplus V_m.
                      Let p_k be the char of T|_{V_k}. Prove the char of T is p_1 \cdots p_m.
Solus: By [B \text{ Tips } (1)], V = G(\lambda_1, T) \oplus \cdots \oplus G(\lambda_n, T) \Rightarrow V_k = G(\lambda_1, T|_{V_k}) \oplus \cdots \oplus G(\lambda_m, T|_{V_k}).
            By [B Tips (2)], each G(\lambda_i, T) = G(\lambda_i, T|_{V_1}) \oplus \cdots \oplus G(\lambda_i, T|_{V_m}).
            Let d_{j,k} be the multy of \lambda_j of T|_{V_k}. Then d_{j,1}+\cdots+d_{j,n}=d_j, the multy of \lambda_j of T.
            Thus each p_k(z) = (z - \lambda_1)^{d_{1,k}} \cdots (z - \lambda_n)^{d_{n,k}}. While the char of T is (z - \lambda_1)^{d_1} \cdots (z - \lambda_n)^{d_n}. \square
            Or. Let A be a block diag matrix of T, with each A_k = \mathcal{M}(T|_{V_k}) up-trig. By Exe (B.11).
                                                                                                                                                       D.8 Supp \mathbf{F} = \mathbf{C}. Prove \not\equiv non0 invarsps U, W suth U \oplus W = V \iff m_T(z) = (z - \lambda)^{\dim V}.
Solus: Let N = T - \lambda I \Rightarrow the min of N is z^{\dim V}.
            Then by Exe (D.3), the line directly above the diag of any Jordan \mathcal{M}(N) is all 1.
            Thus the only Jordan block of \mathcal{M}(N) is \mathcal{M}(N) itself. Convly true as well.
                                                                                                                                                       OR. (a) If \exists two or more eigvals of T|_U or T|_W, then m_T has two or more disti factors, done.
              Now supp \exists only one eigval \lambda for T|_{U}, T|_{W}, and T. Supp m_{T}(z) = (z - \lambda)^{m}.
              Let M = \max\{\dim U, \dim W\}. Let S = (T - \lambda I)^M \Rightarrow \operatorname{null} S|_U \oplus \operatorname{null} S|_W = \operatorname{null} S.
              Becs G(\lambda, T|_U) = U, G(\lambda, T|_W) = W, G(\lambda, T) = V \Rightarrow S = 0. Now by Exe (4E B.6).
              OR. Becs \exists Jordan \mathcal{M}(T|_{U}), \mathcal{M}(T|_{W}) \Rightarrow Jordan \mathcal{M}(T). Consider z^{M} by Exe (D.3).
         (b) Supp T has only one eigval. Let m_T(z) = (z - \lambda)^m with m < \dim V.
               Becs \exists Jordan B_V = \left(\underbrace{v_{1,1}, \cdots, v_{m_1,1}}_{\text{bss for } U}, \underbrace{v_{1,2}, \cdots, v_{m_2,2}, \cdots, v_{1,k}, \cdots, v_{m_k,k}}_{\text{bss for } W}\right) for T.
```

ENDED

9.A Note: *V* denotes a finide non0 vecsp over F.

```
• Note For [9.10]: Let q \in \mathcal{P}(C) be the min of T_C. Note that A = \mathcal{M}(T_C) = \mathcal{M}(T).
Then q(A) = 0 = \overline{q(A)} = \overline{q}(A) \Rightarrow \overline{q}(T_C) = q(T_C) = 0 \Rightarrow q = \overline{q} \Rightarrow q \in \mathcal{P}(R). \mathbb{X} q(T) = 0.
```

• Note For [9.12]: Another proof:
$$\overline{T_{\rm C}(u+{\rm i}v)}=\overline{Tu+{\rm i}Tv}=Tu-{\rm i}Tv=T_{\rm C}(\overline{u+{\rm i}v}).$$
 $\overline{(T_{\rm C}-\lambda I)(u+{\rm i}v)}=\overline{T_{\rm C}(u+{\rm i}v)-\lambda(u+{\rm i}v)}=T_{\rm C}(u-{\rm i}v)-\overline{\lambda}(u-{\rm i}v)=(T_{\rm C}-\overline{\lambda}I)(\overline{u+{\rm i}v}).$ We use induc on m to show $\overline{(T_{\rm C}-\lambda I)^m(u+{\rm i}v)}=(T_{\rm C}-\overline{\lambda}I)^m(\overline{u+{\rm i}v}).$ (i) Immed. (ii) $m>1.$ Asum it holds for $(m-1)$. Let $(T_{\rm C}-\lambda I)^{m-1}(u+{\rm i}v)=x+{\rm i}y\Rightarrow (T_{\rm C}-\overline{\lambda}I)^{m-1}(\overline{u+{\rm i}v})=x-{\rm i}y.$ Then $\overline{(T_{\rm C}-\lambda I)^m(u+{\rm i}v)}=\overline{(T_{\rm C}-\lambda I)(x+{\rm i}y)}=(T_{\rm C}-\overline{\lambda}I)(x-{\rm i}y)=(T_{\rm C}-\overline{\lambda}I)^m(\overline{u+{\rm i}v}).$

• Note For [9.17]: Detailed proof:

Let
$$B = (u_1 + iv_1, \dots, u_m + iv_m)$$
 be a bss of $G(\lambda, T_C)$. By [9.12], $\overline{B} = (u_1 - iv_1, \dots, u_m - iv_m)$ in $G(\overline{\lambda}, T_C)$.

(a) If
$$a_1(u_1 - iv_1) + \cdots + a_m(u_m - iv_m) = 0$$
. Conjuging, now each $\overline{a_k} = 0$. Liney indep.

(b)
$$\forall u - iv \in G(\overline{\lambda}, T_{\mathcal{C}}), u + iv \in G(\lambda, T_{\mathcal{C}}) \Rightarrow u + iv \in \operatorname{span} B \Rightarrow u - iv \in \operatorname{span} \overline{B}.$$

13 Supp
$$\mathbf{F} = \mathbf{R}$$
, $T \in \mathcal{L}(V)$, and $b^2 < 4c$. Let $q(z) = z^2 + bz + c = (z - \lambda)(z - \overline{\lambda})$.

Prove $\dim \operatorname{null} q(T)^j$ is even for each $j \in \mathbf{N}^+$. [See also Note For [4E 5.33] in (5.BI).]

Solus: By
$$[8.B \text{ Tips } (3)]$$
, null $q(T_C)^j = \text{null} (T_C - \lambda I)^j \oplus \text{null} (T_C - \overline{\lambda} I)^j$. By $[9.17]$ and $[9.4]$.

Note: Let
$$Q(\lambda, T) = \text{null } q(T)^{\dim V}$$
. Then by (4E 8.B.6,7) for T_C , by [9.10,20], and by [8.B TIPS (4)],

(a)
$$Q(\lambda, T) = \text{null } q(T)^d$$
, where $d = \dim G(\lambda, T_C)$.

(b) The expo of
$$q$$
 in the factoriz of m_T is the smallest $m \in \mathbb{N}^+$ suth $q(T)^m|_{Q(\lambda,T)} = 0$.

(c)
$$m_T = p_1^{\alpha_1} \cdots p_m^{\alpha_m} q_1^{\beta_1} \cdots q_M^{\beta_M} \iff V = \left[\bigoplus_{j=1}^m G(\mu_j, T)\right] \oplus \left[\bigoplus_{k=1}^M Q(\lambda_k, T)\right].$$

Where each $p_i(z) = z - \mu_i$, $q_k(z) = z^2 - 2(\operatorname{Re}\lambda_k)z + |\lambda_k|^2 = z^2 + b_k z + c_k.$

Fix one
$$k$$
. Let $q(z) = q_k(z) = (z - \lambda)(z - \overline{\lambda}), \lambda = a + bi, G = G(\lambda, T_C), \overline{G} = G(\overline{\lambda}, T_C)$.

Replace T with $T|_Q$. Let $Q = Q(\lambda, T)$ of dim β , and $Q_C = G \oplus \overline{G}$, and Jordan bss B_J of Q_C .

Now
$$\mathcal{M}(T_{\mathrm{C}}) = \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix}$$
, $\mathcal{M}(T_{\mathrm{C}} - \lambda I) = \begin{pmatrix} \overline{R_1} & 0 \\ 0 & \overline{R_2} \end{pmatrix}$, $\mathcal{M}(T_{\mathrm{C}} - \overline{\lambda} I) = \begin{pmatrix} R_2 & 0 \\ 0 & R_1 \end{pmatrix}$ wrto Jordan bss.

So then
$$\mathcal{M}(T_{\mathrm{C}}^2 + bT_{\mathrm{C}} + cI) = \mathcal{M}(T_{\mathrm{C}} - \lambda I)\mathcal{M}(\overline{T_{\mathrm{C}} - \lambda I}) = \begin{pmatrix} R & 0 \\ 0 & R \end{pmatrix}$$
, where $R = R_1 R_2$.

Where A_1 , R_1 , R_2 , R are block diag matrices, and $A_1 = \mathcal{M}(T_C|_G)$, $A_2 = \mathcal{M}(T_C|_{\overline{G}}) = \overline{\mathcal{M}(T_C|_G)}$.

Each
$$A_{1,k} = \begin{pmatrix} \lambda & 1 & 0 \\ \ddots & \ddots & 1 \\ 0 & \lambda \end{pmatrix}$$
, $R_{1,k} = \begin{pmatrix} 0 & 1 & 0 \\ \ddots & \ddots & 1 \\ 0 & 0 \end{pmatrix}$, $R_{2,k} = \begin{pmatrix} 2bi & 1 & 0 \\ \ddots & \ddots & 1 \\ 0 & 2bi \end{pmatrix}$, $R_k = \begin{pmatrix} 0 & 2bi & 1 & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & & \ddots & 1 \\ 0 & 0 & & 2bi \\ 0 & 0 & & \cdots & & 0 \end{pmatrix}$.

Let the Jordan bss Q_C for T_C be $(u_1 + i v_1, ..., u_\beta + i v_\beta, u_1 - i v_1, ..., u_\beta - i v_\beta)$.

Now due to $\mathcal{M}(T_{C})$, $T(u_{1} \pm i v_{1}) = (a \pm i b)(u_{1} \pm i v_{1}) = (a u_{1} - b v_{1}) \pm i (b u_{1} + a v_{1})$,

$$T(u_j \pm i v_j) = (a \pm i b)(u_j \pm i v_j) + (u_{j-1} \pm i v_{j-1}) = (a u_j - b v_j + u_{j-1}) \pm i (b u_j + a v_j + v_{j-1}).$$

Hence $Tu_1 = a u_1 - b v_1$, $Tv_1 = b u_1 + a v_1$, and $Tu_i = u_{i-1} + a u_i - b v_i$, $Tv_i = v_{i-1} + b u_i + a v_i$.

$$\text{Let } B_Q = \begin{pmatrix} u_1, v_1, \dots, u_{\beta}, v_{\beta} \end{pmatrix} \Rightarrow \mathcal{M}(T, B_Q) = \begin{pmatrix} \mathcal{R} & I_2 & 0 \\ \ddots & \ddots & \\ 0 & \mathcal{R} \end{pmatrix}, \text{ where } \mathcal{R} = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \text{ and } I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$
 Or. $B_Q = \begin{pmatrix} v_1, u_1, \dots, v_{\beta}, u_{\beta} \end{pmatrix} \Rightarrow \mathcal{R} = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}.$

- (a) $||u + v||^2 = ||u||^2 + ||v||^2 + 2\operatorname{Re}\langle u, v \rangle$. $||u + iv||^2 = ||u||^2 + ||v||^2 + 2\operatorname{Im}\langle u, v \rangle$.
 - (b) $||u|| ||v||| \le ||u v||$. Equa $\iff u = cv, c > 0$. Where $u, v \ne 0$.
 - (c) $|||v|| 1| = ||v v/||v||| \le ||v u||$ if ||u|| = 1. Equa $\iff u = v/||v||$.
 - $(\mathrm{d}) \, \left| \|u\|^2 \|v\|^2 \right| = \left| \langle u + v, u v \rangle \right| \leqslant \|u + v\| \, \|u v\| \leqslant \|u\|^2 + \|v\|^2 = \frac{1}{2} \left[\|u + v\|^2 + \|u v\|^2 \right].$

21 *Implement the corres inner prod from a norm* $\|\cdot\|: U \to [0, \infty)$ *satisfying* [6.22].

Solus: If $\mathbf{F} = \mathbf{R}$. Define $\langle u, v \rangle = \frac{1}{4} (\|u + v\|^2 - \|u - v\|^2) = \langle v, u \rangle$. Before we start:

1.
$$\langle u, v \rangle = -\langle -u, v \rangle = -\langle u, -v \rangle$$
.

2.
$$\langle u + v, v \rangle = \frac{1}{4} \left[\|u + v + v\|^2 + \|-u + v + v\|^2 - \|-u + v + v\|^2 - \|u + v - v\|^2 \right]$$

$$= \frac{1}{2} \left[\left(\|u\|^2 + \|2v\|^2 \right) - \left(\|-u + v\|^2 + \|v\|^2 \right) \right]$$

$$= 4 \langle v, v \rangle + 2 \left(\|u\|^2 + \|v\|^2 \right) - 2 \|u - v\|^2 = \langle u, v \rangle + \langle v, v \rangle.$$

3.
$$\langle u, 2v \rangle = \frac{1}{4} \left[\|u + v + v\|^2 - \|u - v - v\|^2 \right]$$

$$= \frac{1}{4} \left[\|u + v + v\|^2 + \|u + v - v\|^2 - \|u + v - v\|^2 - \|u - v - v\|^2 \right]$$

$$= \frac{1}{2} \left[\left(\|u + v\|^2 + \|v\|^2 \right) - \left(\|u - v\|^2 + \|v\|^2 \right) \right] = 2 \langle u, v \rangle.$$

Add: $\langle u + w, v \rangle = \langle u, v \rangle + \langle w, v \rangle$.

We show
$$||u + w + v||^2 - ||u + w - v||^2 = ||u + v||^2 + ||w + v||^2 - ||u - v||^2 - ||w - v||^2$$
.

$$RHS = \frac{1}{2} (||u + w + 2v||^2 + ||u - w||^2) - \frac{1}{2} (||u + w - 2v||^2 + ||u - w||^2) = 2 \langle u + w, 2v \rangle = LHS.$$

Homo: $\langle \lambda u, v \rangle = \lambda \langle u, v \rangle$. True by add if $\lambda \in \mathbb{N}$, and then by (1) if $\lambda \in \mathbb{Z}$.

Note that by add, $n \cdot \langle n^{-1}u, v \rangle = \langle u, v \rangle$ for $n \in \mathbb{N}^+$. Thus the case for $\lambda \in \mathbb{Q}^+$ holds, so for \mathbb{Q} .

We show the case for $\lambda \in \mathbb{R}$. By def, $\exists ! (a_n)_{n=0}^{\infty} \in \mathbb{Q}^{\infty}$ suth $\lim_{n \to \infty} a_n = \lambda$.

$$4\lambda\langle u,v\rangle = 4\lim_{n\to\infty} a_n\langle u,v\rangle = 4\lim_{n\to\infty} \langle a_nu,v\rangle = \lim_{n\to\infty} \left[\|a_nu+v\|^2 - \|a_nu-v\|^2\right].$$

To show $\lim_{n\to\infty} \|a_n u + v\| = \|\lambda u + v\|$, so then $\lambda \langle u, v \rangle = \langle \lambda u, v \rangle$.

Notice that $||u \pm v|| \le ||u|| + ||v|| \Longrightarrow ||u|| - ||v||| \le ||u \pm v||$.

Thus $\left|\lim_{n\to\infty} \|a_n u + v\| - \|\lambda u + v\|\right| \le \left\|\lim_{n\to\infty} a_n v - \lambda v\right\| = 0.$

If $\mathbf{F} = \mathbf{C}$. Define $\langle u, v \rangle = R(u, v) + i I(u, v)$.

Where
$$R(u,v) = \frac{1}{4} (\|u+v\|^2 - \|u-v\|^2)$$
 and $I(u,v) = R(u,iv) = \frac{1}{4} (\|u+iv\|^2 - \|u-iv\|^2)$.

Conjug Symm: $\langle u, v \rangle = R(u, v) + i I(u, v) = R(v, u) - i I(v, u) = \overline{\langle v, u \rangle}$

Note that R(u,v) = R(v,u) and R(v,iu) = R(iu,v). Thus we show -I(u,v) = I(v,u).

Which equiv
$$||u - iv||^2 - ||u + iv||^2 = ||i(-iu - v)||^2 - ||i(-iu + v)||^2 = ||iu + v||^2 - ||iu - v||^2$$
.

Homo: $\langle \lambda u, v \rangle = \lambda \langle u, v \rangle$. True if $\lambda \in \mathbb{R}$. We show the case for $\lambda = i$.

$$\begin{split} \langle \mathrm{i} \, u, v \rangle &= \frac{1}{4} \left[\| \mathrm{i} \, u + v \|^2 - \| \mathrm{i} \, u - v \|^2 + \mathrm{i} \left(\| \mathrm{i} \, u + \mathrm{i} \, v \|^2 - \| \mathrm{i} \, u - \mathrm{i} \, v \|^2 \right) \right] \\ &= \frac{1}{4} \left[\| u - \mathrm{i} \, v \|^2 - \| u + \mathrm{i} \, v \|^2 + \mathrm{i} \left(\| u + v \|^2 - \| u - v \|^2 \right) \right] \\ &= \mathrm{i} \frac{1}{4} \left[-\mathrm{i} \| u - \mathrm{i} \, v \|^2 + \mathrm{i} \| u + \mathrm{i} \, v \|^2 + \left(\| u + v \|^2 - \| u - v \|^2 \right) \right] = \mathrm{i} \, \langle u, v \rangle \end{split}$$

3 Supp $\mathbf{F} = \mathbf{R}$, $V \neq \{0\}$. Replace the positivity cond in [6.3] with $\exists v \in V$, $\langle v, v \rangle > 0$. Show this does not change the inner prods from $V \times V$ to \mathbf{R} .

Solus: Supp $w \in V$ with $\langle w, w \rangle > 0$. Asum $\exists u \in V$ with $\langle u, u \rangle < 0$.

Define
$$p(x) = \langle u + xw, u + xw \rangle = \langle w, w \rangle x^2 + 2\langle u, w \rangle x + \langle u, u \rangle \Rightarrow$$
 two disti zeros.

Supp
$$\langle u + \lambda w, u + \lambda w \rangle = 0 \Rightarrow u + \lambda w = 0 \Rightarrow \langle u, u \rangle = \lambda^2 \langle -w, -w \rangle \geqslant 0$$
, ctradic.

```
6 Supp u, v \in V. Prove ||u|| \le ||u + av|| for all a \in F \Rightarrow \langle u, v \rangle = 0.
Solus: Becs ||u||^2 \le ||u + av||^2. Let \langle u - cv, cv \rangle = 0 \Rightarrow ||u - cv||^2 = \langle u, u - cv \rangle = ||u||^2 - \overline{c}\langle u, v \rangle.
              Thus ||u||^2 \le ||u - cv||^2 = ||u||^2 - |\langle u, v \rangle|^2 / ||v||^2.
                                                                                                                                                                          Or. ||u||^2 \le ||u||^2 + |a|^2 ||v||^2 + 2\text{Re } \bar{a}\langle u, v \rangle \Rightarrow -2\text{Re } \bar{a}\langle u, v \rangle \le |a|^2 ||v||^2 \text{ for all } a \in F.
             Let a = -\langle u, v \rangle \Rightarrow 2 |\langle u, v \rangle|^2 \leqslant |\langle u, v \rangle|^2 ||v||^2. If \langle u, v \rangle \neq 0, then 2 \leqslant ||v||^2; might not be true.
                                                                                                                                                                          • Tips 1: Supp u, v \in V, ||xu + yv||^2 = |x|^2 ||u||^2 + |y|^2 ||v||^2 for x, y \in F. Prove \langle u, v \rangle = 0.
Solus: Becs Re(x\overline{y}\langle u,v\rangle) = 0. Take (x,y) = (1,1) and (i,1). Or. By Exe (6), immed.
                                                                                                                                                                          • Tips 2: Supp A \in \mathbb{F}^{m,n}. Prove ||Ax||^2 \leq \sum_{j=1}^m \sum_{k=1}^n |A_{j,k}|^2 \cdot ||x||^2 for all x \in \mathbb{F}^{m,1}.
Solus: ||Ax||^2 = ||A_{\cdot,1}x_1 + \dots + A_{\cdot,n}x_n||^2 = \sum_{j=1}^m |x_1A_{j,1} + \dots + x_nA_{j,n}|^2 \leqslant \sum_{j=1}^m ||A_{j,\cdot}||^2 \cdot ||x||^2.
                                                                                                                                                                          • (4E 23) Supp v_1, ..., v_m \in V, each ||v_k|| \le 1. Show \exists a_k = \pm 1, ||a_1v_1 + \cdots + a_mv_m|| \le \sqrt{m}.
Solus: We use induc on m. (i) m = 1. Immed. (ii) m > 1. Asum it holds for smaller m.
             Let u = a_1 v_1, w = a_2 v_2 + \dots + a_m v_m \Rightarrow ||u||^2 \le 1, ||w||^2 \le m - 1.
              Then ||u + w||^2 + ||u - w||^2 \le 2m. Or. ||u + w|| \cdot ||u - w|| \le m.
                                                                                                                                                                          • Supp u, v_1, \dots, v_n are non0 in V suth each \langle v_i, u \rangle > 0 and \langle v_i, v_i \rangle \leqslant 0 for i \neq j.
   Show (v_1, ..., v_n) liney indep.
\textbf{Solus:} \hspace{0.3cm} \text{(i) Asum } v_1 = cv_2. \hspace{0.1cm} \text{Then } \langle cv_2, u \rangle > 0 \Rightarrow c > 0, \\ \text{while } \langle v_1, v_1 \rangle = c \langle v_2, v_1 \rangle \geqslant 0 \Rightarrow c \leqslant 0. \hspace{0.1cm} \text{ctradic.}
              (ii) Asum (v_1, ..., v_{n-1}) liney indep. Asum v_n = c_1 v_1 + ... + c_{n-1} v_{n-1}.
             Then \langle v_n, u \rangle = c_1 \langle v_1, u \rangle + \dots + c_{n-1} \langle v_{n-1}, u \rangle > 0. Thus we can choose all c_k \in \mathbb{R}.
             Write c_1v_1 + \dots + c_nv_n = 0, c_n = -1. Let P = \{i : c_i \ge 0\}, N = \{i : c_i < 0\}.
             Then \sum_{j \in P} c_j v_j = \sum_{k \in N} -c_k v_k \Longrightarrow 0 \leqslant \left\langle \sum_{j \in P} c_j v_j, \sum_{k \in N} -c_k v_k \right\rangle = \sum_{j \in N} -c_j c_k \langle v_j, v_k \rangle \leqslant 0.
             While \langle \sum_{j \in P} c_j v_j, u \rangle, \langle \sum_{k \in N} -c_k v_k, u \rangle \geqslant 0, where the equas hold \iff all c_i = 0.
                                                                                                                                                                          6.B
14 Supp (e_1, \ldots, e_m) orthon, each v_j \in V suth ||e_j - v_j|| < \frac{1}{\sqrt{m}}. Show (v_1, \ldots, v_m) liney indep.
Solus: Let a_1v_1 + \cdots + a_mv_m = 0.
             \sum_{j=1}^{m} |a_j|^2 = \left\| \sum_{j=1}^{m} a_j (e_j - v_j) \right\|^2 \leqslant \left[ \sum_{j=1}^{m} |a_j| \cdot \|e_j - v_j\| \right]^2 \leqslant \left\| (|a_j|)_{j=1}^m \right\|^2 \cdot \left\| (\|e_j - v_j\|)_{j=1}^m \right\|^2.
                                                                                                                                                                          EXA: Let v_i = e_i - (e_1 + \dots + e_m)/m \Rightarrow ||e_i - v_i||^2 = 1/m. Note that v_1 + \dots + v_m = 0.
                                                                                                                                                                          • For orthog (e_1,\ldots,e_m) and v=a_1e_1+\cdots+a_me_m, becs \langle v,e_k\rangle=a_k\|e_k\|^2, v=\frac{\langle v,e_1\rangle}{\|e_1\|^2}e_1+\cdots+\frac{\langle v,e_m\rangle}{\|e_n\|^2}e_m.
  Now \|v\|^2 = \frac{|\langle v, e_1 \rangle|^2}{\|e_1\|^2} + \dots + \frac{|\langle v, e_m \rangle|^2}{\|e_m\|^2}. Replace each e_k with \|e_k\|^{-1}e_k, now (e_1, \dots, e_m) is a orthon list.
• Supp (e_1, ..., e_m) orthog, v \in V. Show \sum_{k=1}^m (1 - ||e_k||^2) |\langle v, e_k \rangle|^2 \le ||v||^2 - \sum_{k=1}^m |\langle v, e_k \rangle|^2.
Solus: Let u = \langle v, e_1 \rangle e_1 + \dots + \langle v, e_m \rangle e_m \Rightarrow \|u\|^2 = \sum_{k=1}^n \left| \|e_k\| \langle v, e_k \rangle \right|^2, \langle u, v \rangle = \sum_{k=1}^n \left| \langle v, e_k \rangle \right|^2.
             Let ||v - u||^2 = ||v||^2 + ||u||^2 - \langle v, u \rangle - \langle u, v \rangle = ||v||^2 + \sum_{k=1}^n (||e_k||^2 - 2) |\langle v, e_k \rangle|^2 \ge 0.
                                                                                                                                                                          Coro: If orthon, \langle u, v - u \rangle = 0 \Rightarrow ||v||^2 = ||u||^2 + ||v - u||^2.
            Bessel's Inequa: \sum_{k=1}^{m} |\langle v, e_k \rangle|^2 \le ||v||^2. [Exe (2)] Equa \iff v \in \text{span}(e_1, \dots, e_m).
```

```
• (4E9) Supp (e_1, ..., e_m) is the result of applying [6.31]
            to a liney indep (v_1, ..., v_m) in V. Show each \langle v_i, e_i \rangle > 0.
Solus: Let f_i = v_i - \langle v_i, e_1 \rangle e_1 - \dots - \langle v_i, e_{i-1} \rangle e_{i-1}.
             Becs ||f_i|| \langle v_i, e_i \rangle = \langle v_i, f_i \rangle = ||v_i||^2 - |\langle v_i, e_1 \rangle|^2 - \dots - |\langle v_i, e_{i-1} \rangle|^2 \geqslant 0, by Bessel's Inequa.
             If \langle v_i, f_i \rangle = 0, then by Exe (2), v_i \in \text{span}(e_1, ..., e_{i-1}) = \text{span}(v_1, ..., v_{i-1}). \mathbb{X} \|f_i\| \neq 0.
                                                                                                                                                                    Note: Supp (v_1, ..., v_m) liney dep. Let j be the largest suth (v_1, ..., v_{i-1}) liney indep.
           Apply [6.31]. Now v_i \in \text{span}(v_1, ..., v_{i-1}) = \text{span}(e_1, ..., e_{i-1}) \Rightarrow f_i = 0.
• TIPS: Supp (v_1, ..., v_m) liney indep in V. Get the corresorthon (e_1, ..., e_m) via [6.31].
            Let S = \{\lambda \in \mathbb{F} : |\lambda| = 1\}, and S^m be the collectof maps \{1, ..., m\} \to S.
            Supporthon (u_1, ..., u_m) suth each span(u_1, ..., u_k) = \text{span}(v_1, ..., v_k).
            We show it equals (c(1)e_1, ..., c(m)e_m) for some c \in S^m by induc on k.
            (i) k = 1. span(e_1) = \text{span}(u_1) \Rightarrow u_1 = \langle u_1, e_1 \rangle e_1, \ \mathbb{X} |\langle u_1, e_1 \rangle| = 1. Let c(1) = \langle u_1, e_1 \rangle.
            (ii) k > 1. Asum each |c(i)| = 1 and c(i)e_i = u_i for i \in \{1, ..., k-1\}.
                   u_k = \langle u_k, e_1 \rangle e_1 + \dots + \langle u_k, e_k \rangle e_k. \mathbb{Z} \langle u_i, u_k \rangle = 0 = c(j) \langle e_i, u_k \rangle for j \neq k. Simlr, c(k) = \langle u_k, e_k \rangle.
• (4E 10) Supp (v_1, ..., v_m) liney indep. Explain why the orthon list produced by [6.31]
  is the only orthon (e_1, \ldots, e_m) suth each \langle v_k, e_k \rangle > 0 and \operatorname{span}(v_1, \ldots, v_k) = \operatorname{span}(e_1, \ldots, e_k).
Solus: Fix one k. Let v_k = a_1e_1 + \cdots + a_ke_k \Rightarrow \operatorname{each} a_i = \langle v_k, e_i \rangle. Let f_k = v_k - a_1e_1 - \cdots - a_{k-1}e_{k-1}.
             NOTICE that e_k = f_k / a_k \Rightarrow ||f_k||^2 / |a_k|^2 = 1 \Rightarrow |a_k| = ||f_k||. X = \langle v_k, e_k \rangle > 0 \Rightarrow a_k = ||f_k||.
                                                                                                                                                                    OR. Let (e_1, \dots, e_m) be suth orthon list. Get (e'_1, \dots, e'_m) from (v_1, \dots, v_m) via [6.31].
             By Tips, each e_k = c(k)e_k', \mathbb{X} \langle v_k, e_k \rangle, \langle v_k, e_k' \rangle > 0 \Rightarrow 0 < c(k) = 1.
                                                                                                                                                                    10 Supp \mathbf{F} = \mathbf{R}, (v_1, \dots, v_m) is liney indep in V.
     Prove \exists exactly 2^m orthon lists spans span(v_1, ..., v_m).
Solus: Using induc on m. (i) m = 1. Let e_1 = \pm v_1/\|v_1\|. (ii) m > 1. Asum it holds for (m-1).
             Get 2^{m-1} orthon lists corres (v_1, \dots, v_{m-1}). Fix one as (e_1, \dots, e_{m-1}) and apply [6.31] at step m.
             Supp (e_1, \dots, e_{m-1}, e_m') is also orthon. Notice that e_m' = \langle e_m', e_m \rangle e_m. So |\langle e_m', e_m \rangle| = 1.
             Let e'_m = -e_m. Sum it up, we have 2^{m-1} \times 2 = 2^m orthon lists.
                                                                                                                       OR. By TIPS, immed.
                                                                                                                                                                   11 Supp V \neq 0, and \langle \cdot, \cdot \rangle_1, \langle \cdot, \cdot \rangle_2 are inner prods suth \langle v, w \rangle_1 = 0 \iff \langle v, w \rangle_2 = 0.
     Prove \exists c > 0, \langle v, w \rangle_1 = c \langle v, w \rangle_2 for all v, w \in V.
Solus: Fix non0 v_1, v_2 \in V. Define \varphi_1, \psi_1 \in V' by \varphi_1 : v \mapsto \langle v_1, v \rangle_1, \psi_1 : v \mapsto \langle v, v_2 \rangle_1. Siml for \varphi_2, \psi_2.
             Becs \langle v_1, v \rangle_1 = 0 \iff \langle v_1, v \rangle_2 = 0. By (3.B.30), let c_1 = \langle v_1, v_1 \rangle_1 / \langle v_1, v_1 \rangle_2 > 0 \Rightarrow \varphi_1 = c_1 \varphi_2.
             Simlr, let c_2 = \langle v_2, v_2 \rangle_1 / \langle v_2, v_2 \rangle_2 \Rightarrow \psi_1 = c_2 \psi_2. Choose v_1 = v_2 so that c = c_1 = c_2.
             For any v_1' \in V, get c_1' simlr. Becs \langle v_1, v \rangle_1 = c_1 \langle v_1, v \rangle_2 while \langle v_1', v \rangle_1 = c_1' \langle v_1', v \rangle_2.
             Now c_1\langle v_1, v_1'\rangle_2 = \langle v_1, v_1'\rangle_1 = \overline{\langle v_1', v_1\rangle_1} = \overline{c_1'\langle v_1', v_1\rangle_2} \Rightarrow c_1 = c_1'. Siml for c_2 = c_2'.
             Or. For any v_1', v_2' \in V, get c_1' = c_2' simlr. Becs c_2 \langle v_1', v_2 \rangle_2 = \langle v_1', v_2 \rangle_1 = c_1' \langle v_1', v_2 \rangle_2.
                                                                                                                                                                    Or. Define c_v = \langle v, v \rangle_1 / \langle v, v \rangle_2 for all non0 v \in V. Fix non0 u, v \in V.
             Let c = \langle u, v \rangle_2 / \langle v, v \rangle_2 \Rightarrow \langle u - cv, v \rangle_1 = \langle u - cv, v \rangle_2 = 0 \Rightarrow \langle u, v \rangle_1 = c \langle v, v \rangle_1 = c_v \langle u, v \rangle_2.
             Rev the roles of u, v \Rightarrow c_v \langle u, v \rangle_2 = \langle u, v \rangle_1 = \overline{\langle v, u \rangle_1} = \overline{c_u \langle v, u \rangle_2} = c_u \langle u, v \rangle_2 \Rightarrow c_v = c_u.
```

```
12 Supp V is finide. Let \langle \cdot, \cdot \rangle_1 and \langle \cdot, \cdot \rangle_2 be inner prods with corres norms \| \cdot \|_1 and \| \cdot \|_2.
     Prove \exists c > 0, ||v||_1 \leqslant c||v||_2 for all v \in V.
Solus: Let B_V = (e_1, \dots, e_n) be orthon wrto \langle \cdot, \cdot \rangle_2. Supp v = a_1 e_1 + \dots + a_n e_n.
            NOTICE that ||v||_1 \le ||a_1e_1||_1 + \dots + ||a_ne_n||_1 \le \max\{||e_1||_1, \dots, ||e_n||_1\} \cdot (|a_1| + \dots + |a_n|).
            \mathbb{X} |a_1| + \dots + |a_n| \le n \cdot \max\{|a_k| : 1 \le k \le n\} \le n \cdot \sqrt{|a_1|^2 + \dots + |a_n|^2} \le n \cdot ||v||_2.
                                                                                                                                                          13 Supp (v_1, ..., v_m) liney indep in V. Show \exists w \in V suth each \langle w, v_i \rangle > 0.
Solus: Using induc on m. (i) m = 1. Let w = v_1. (ii) m > 1. Asum it holds for (m - 1).
            By asum, \exists w' \in \text{span}(v_1, \dots, v_{m-1}) suth each \langle w', v_k \rangle > 0 for k \in \{1, \dots, m-1\}.
            Apply [6.31] to get the corres (e_1, \dots, e_m). Let w = w' + ae_m.
            Becs each \langle e_m, v_k \rangle = 0 \Rightarrow \langle w, v_k \rangle = \langle w', v_k \rangle > 0 for k \in \{1, \dots, m-1\}.
            Note that \langle e_m, v_m \rangle \neq 0. Hence \exists \, a \in \mathbb{F}, \, \langle w, v_m \rangle = \langle w' + a e_m, v_m \rangle = \langle w', v_m \rangle + a \langle e_m, v_m \rangle > 0. \square
            Or. We show \exists w \in V suth each \langle w, v_i \rangle = \langle v_i, w \rangle = 1. Let U = \text{span}(v_1, \dots, v_m).
            Define \varphi \in U' by each \varphi(v_i) = 1. Becs \exists ! w \in U, each \varphi(v_i) = \langle v_i, w \rangle.
                                                                                                                                                          • (4E 19) Supp B_V = (v_1, \ldots, v_n). Prove \exists B_V' = (u_1, \ldots, u_n) suth \langle v_i, u_k \rangle = \delta_{i,k}.
Solus: Let (\varphi_1, ..., \varphi_n) be the corres dual bss of B_V. Becs \exists ! u_k \in V, \varphi_k(v) = \langle v, u_k \rangle for all v \in V.
            Then \varphi_k(v_j) = \delta_{j,k} = \langle v_j, u_k \rangle. Now let a_1u_1 + \dots + a_nu_n = 0 \Rightarrow \operatorname{each} \langle v_j, 0 \rangle = 0 = a_j.
                                                                                                                                                          16 Supp \mathbf{F} = \mathbf{C}, V finide, non0 T \in \mathcal{L}(V), all eigens have abs vals less than 1.
     Let \epsilon > 0. Prove \exists m \in \mathbb{N}^+, ||T^m v|| \leq \epsilon ||v|| for all v \in V.
Solus: Let \langle \cdot, \cdot \rangle_V be the inner prod on V, and \| \cdot \|_V be the corres norm on V.
            Using Euclid inner prod \langle \cdot, \cdot \rangle and the corres norm \| \cdot \| on \mathbb{C}^{n,1} id with \mathbb{C}^n.
            Supp A = \mathcal{M}(T) up-trig wrto orthon B_V = (e_1, ..., e_n).
            Then \forall v = x_1 e_1 + \dots + x_n e_n \in V, \|v\|_V = \|x\|. Now we show \|A^m x\| \le \epsilon \|x\| for all x \in \mathbb{C}^{n,1}.
            Define D, N \in \mathbb{C}^{n,n} by D_{i,k} = \delta_{i,k} A_{i,k}, N = A - D. Then N is nilp with N^p = 0 \neq N^{p-1}.
            Let \rho = \max\{|D_{1,1}|, \dots, |D_{n,n}|\} \Rightarrow 0 \le \rho < 1, and each ||D^k x|| \le \rho^k ||x|| \le ||x||.
            Let M = \sum_{j=1}^n \sum_{k=1}^n |N_{j,k}|^2. By [6.A Tips (2)], ||Nx|| \le M||x|| \Rightarrow ||N^k x|| \le M||N^{k-1}x|| \le M^k ||x||.
            Hence ||A^{p+q}x|| = ||b_0D^{p+q}x + \dots + b_kD^{p+q-k}N^kx + \dots + b_{p-1}D^{q+1}N^{p-1}x||
                                    \leq \left[b_0 \rho^{p+q} + \dots + b_k \rho^{p+q-k} M^k + b_{n-1} \rho^{q+1} M^{p-1}\right] \|x\|.
            Where each b_i = C_{p+q}^j \le (p+q)^j for j \in \{0, ..., p-1\} \Rightarrow \text{each } b_i \le (p+q)^{p-1}.
            Let \sigma = \max\{1, M, ..., M^{p-1}\}. \mathbb{X} \max\{\rho^{p+q}, ..., \rho^{q+1}\} = \rho^{q+1}.
            Now ||A^{p+q}x|| \le (p+q)^{p-1}\rho^{q+1}\sigma||x||. Note that as q \to \infty, (p+q)^{p-1}\rho^{q+1} \to 0.
```

ENDED

Prove $(\text{null } T)^{\perp} = \text{range } T$.	
Solus: Becs range $T \subseteq (\operatorname{null} T)^{\perp} = \{v \in V : v \text{ ortho to all vecs in null } T\}$. $\mathbb{X} \operatorname{null} T \cap \operatorname{range} T = \{OR. \forall v \in (\operatorname{null} T)^{\perp}, \exists ! (u, w) \in \operatorname{null} T \times \operatorname{range} T, \langle u + w, u \rangle = \langle u, u \rangle = 0 \Rightarrow v \in \operatorname{range} T.$	0}.□
8 Supp V is finide, $P^2 = P \in \mathcal{L}(V)$, $ Pv \le v $ for all $v \in V$. Prove range $P = \{\text{null } P \in V : w = Pv \le Pv \le Pv \le w = w + u $, where $w = Pv$, $u \in \text{null } P \in V$. Supp non0 $u \in \text{null } P \in V$. Thus $ v \le w \le w \le v \le $,
10 Supp V finide, U a subsp, $T \in \mathcal{L}(V)$, and $P_UT = TP_U$. Prove U and U^{\perp} invard T.	
Solus: (a) $P_{U}TP_{U} = TP_{U}P_{U} = TP_{U}$. (b) $P_{U^{\perp}}TP_{U^{\perp}} = (I - P_{U})T(I - P_{U}) = T(I - P_{U})^{2} = TP_{U^{\perp}}$.	
Or. (a) range $T _U = \operatorname{range} TP_U = \operatorname{range} P_U T \subseteq U$. (b) range $T _{U^{\perp}} = \operatorname{range} T(I - P_U) = \operatorname{range} (I - P_U) T \subseteq U^{\perp}$.	П
Comment: The trick $T = (P_U _{\text{range }T})^{-1}TP_U$ is invalid.	
• Tips 2: Supp U finide subsp of $V, v \in V, \varphi \in U' : u \mapsto \langle u, v \rangle$. Then $\exists ! w \in U, \varphi(u) = \langle u, w \rangle = \langle u, v \rangle$ for all $u \in U \Rightarrow v - w \in U^{\perp}$. Now $w = P_U v$.	
• Tips 3: Supp U , W finide subsps of V . Prove $W^{\perp} \subseteq U^{\perp} \Rightarrow U \subseteq W$.	
Solus: $v \in U \Rightarrow \forall x \in W^{\perp} \subseteq U^{\perp}$, $\langle v, x \rangle = 0 \Rightarrow v \in (W^{\perp})^{\perp} = W$, by [6.51].	
• Tips 4: Supp U , W subsps of V . Prove $(U+W)^{\perp}=U^{\perp}\cap W^{\perp}$, $(U\cap W)^{\perp}=U^{\perp}+1$	
SOLUS: (a) Supp $v \in V$. Then $\forall u + w \in U + W$, $\langle u + w, v \rangle = 0 \iff \forall u \in U, w \in W$, $\langle u, v \rangle = \langle u, w \rangle$	$\rangle = 0.$
(b) $v_1 \in U^{\perp}, v_2 \in W^{\perp} \Rightarrow \forall x \in U \cap W, \langle v_1 + v_2, x \rangle = 0$. Thus $U^{\perp} + W^{\perp} \subseteq (U \cap W)^{\perp}$.	
Or. $U \cap W \subseteq U$, $W \Rightarrow (U \cap W)^{\perp} \supseteq U^{\perp} + W^{\perp}$. $\left[\text{Req Finide } \right] \text{ By (a), } \dim(U^{\perp} + W^{\perp}) = \dim V - \dim(U \cap W).$	
Exa: Not true if infinide. Let $U = \{(x_1, 0, \dots, 0, x_{2k-1}, 0, \dots) \in \mathbf{F}^{\infty}\}, W = \{\sum_{k=1}^{\infty} a_k (e_{2n} + \frac{1}{n} e_{2n-1})\}$	
Then $U \cap W = \{0\} \Rightarrow (U \cap W)^{\perp} = \mathbf{F}^{\infty}$. While $U^{\perp} + W^{\perp} \not\ni (0, 1, 0, \frac{1}{2}, 0, \cdots, 0, \frac{2}{k}, 0, \cdots)$.	•
$\frac{1}{2} \left(\frac{1}{2} \right) \left(1$	

ENDED

Comment: See [9.30] without using [7.24] and the hypo $\mathbf{F} = \mathbf{C}$.
Note: Another proof of [7.24]: Induc step: For dim $V > 1$. Asum it holds for smaller dim.
Let u be an eigvec with $ u = 1$. Let $B_U = (u) \Rightarrow U$ invard T , so is $U^{\perp} \Rightarrow T _{U^{\perp}}$ normal.
By asum, \exists orthon $B_{U^{\perp}}$ of eigvecs of $T _{U^{\perp}}$. Now $B_V = B_U \cup B_{U^{\perp}}$ of orthon eigvecs.
Ended
LINDED
7.C & 7.D [4E] Note: V denotes a finide vecsp over F. 7.D[4E] 处结合了 3e 的 9.B 节。
C.20 Supp $T \in \mathcal{L}(V)$ and orthon $B_V = (e_1,, e_n)$.
Supp $v_1, \ldots, v_n \in V$ and each $\langle Te_k, e_j \rangle = \langle v_k, v_j \rangle$. Prove T posi.
Solus : Define $R \in \mathcal{L}(V) : e_k \mapsto v_k \Rightarrow \langle Te_k, e_j \rangle = \langle Re_k, Re_j \rangle = \langle R^*Re_k, e_j \rangle \Rightarrow \mathcal{M}(T, B_V) = \mathcal{M}(R^*R, B_V) \square$
C.22 Supp T posi, $u \in V$ with $ u = 1$ suth $ Tu \ge Tv $ for all $v \in V$ with $ v = 1$. Show u is eigvec corres the largest eigval of T .
Solus: Supporthon eigvess $B_V = (e_1, \dots, e_n)$ corres $\lambda_1 \geqslant \dots \geqslant \lambda_n$. Let $u = \sum_{k=1}^n c_k e_k \Rightarrow \sum_{k=1}^n c_k ^2 = 1$.
Supp $v = \sum_{i=1}^{n} a_{i}e_{i}$ and $ v = 1$. Then $ Tv ^{2} = \sum_{i=1}^{n} \lambda_{i} ^{2} a_{i} ^{2} \leq \lambda_{1} ^{2}$. Simlr, $ Tu ^{2} \leq \lambda_{1} ^{2}$.
$\mathbb{Z} \ Tv\ ^2 = \lambda_1 ^2 \iff v = a_1 e_1 + \dots + a_I e_I, \text{ where } \lambda_1 = \dots = \lambda_I > \lambda_{I+1}, \text{ if } \lambda_n \neq \lambda_1; \text{ othws } J = n.$
Hence $\sum_{k=1}^{n} \lambda_k ^2 c_k ^2 = Tu ^2 = \sum_{k=1}^{n} \lambda_1 ^2 c_k ^2 \Rightarrow \sum_{k=1}^{n} [\lambda_1 ^2 - \lambda_k ^2] \cdot c_k ^2 = 0.$
$\triangle_{k=1}$, λ
C.23 Supp $\langle \cdot, \cdot \rangle_1$, $\langle \cdot, \cdot \rangle_2$ are inner prods on V . Prove \exists inv posi $T \in \mathcal{L}(V)$, $\langle u, v \rangle_2 = \langle Tu, v \rangle_1$.
Solus : Let (e_1, \dots, e_n) , (f_1, \dots, f_n) be orthon been write $\langle \cdot, \cdot \rangle_2$, $\langle \cdot, \cdot \rangle_1$. Define $R \in \mathcal{L}(V)$ by $Re_k = f_k$.
$\forall u = \sum_{i=1}^{n} x_i e_i, \ v = \sum_{i=1}^{n} y_i e_i, \ \langle u, v \rangle_2 = x_1 \overline{y_1} + \dots + x_n \overline{y_n} = \langle Ru, Rv \rangle_1 = \langle R^*Ru, v \rangle_1. $
NOTE FOR Square Root of Id: Supp $T \subset \mathcal{L}(\mathbb{F}^2)$ and $T^2 = I$ Let $\mathcal{M}(T) = \begin{pmatrix} a & b \end{pmatrix}$ write std bes
• Note For Square Root of Id: Supp $T \in \mathcal{L}(\mathbf{F}^2)$ and $T^2 = I$. Let $\mathcal{M}(T) = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ wrot std bss.
(a) If T is self-adj $\iff b = c$. Then $ab + bd = 0$, $a^2 + b^2 = b^2 + d^2 = 1$.
$ a = d = 1, b = 0, \text{ Or } a = \pm \sqrt{1 - b^2} = -d, b \neq 0, \text{ Or } b = \pm \sqrt{1 - a^2} = \pm \sqrt{1 - d^2} \neq 0, a = -d.$
If $\mathbf{F} = \mathbf{R}$, $ b < 1$, then $\mathcal{M}(T) = \begin{pmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha \end{pmatrix}$, and $T(r\cos \beta, r\sin \beta) = (r\cos(\alpha - \beta), r\sin(\alpha - \beta))$.
(b) If <i>T</i> is not self-adj and $T \neq \pm I$. Then by (4E 5.B.11), $a = -d$, $a^2 + bc = 1$.
If $a = -d = \pm 1$, then $bc = 0$, and if $ Te_1 \neq Te_2 $ or $\langle Te_1, Te_2 \rangle \neq 0$, then T is not an isomet.
D.2 Supp $T \in \mathcal{L}(V, W)$, $\langle Tu, Tv \rangle = 0$ for all orthog $u, v \in V$. Prove \exists isomet $S, T = \lambda S$.
Solus: Supporthog $B_V = (v_1, \dots, v_n) \Rightarrow (Tv_1, \dots, Tv_n)$ is orthog.
Let $g_k = Tv_k/\ Tv_k\ $, $e_k = v_k/\ v_k\ $. Define isomet $S \in \mathcal{L}(V, W) : e_k \mapsto g_k$.
Let $\lambda_k = Tv_k / v_k $. Then $S^* : g_k \mapsto e_k \Rightarrow S^*(Tv_k) = Tv_k e_k = \lambda_k v_k$.
Notice that v_1 is arb. Simly to (4E 3.A.11). Hence $S^*T = \lambda I \Rightarrow T = \lambda S$.
OR. Let orthon $B_V = (e_1,, e_n)$. Becs $\langle u + v, u - v \rangle = u ^2 - v ^2$.
Now $0 = \langle e_1 + e_k, e_1 - e_k \rangle = \langle Te_1 + Te_k, Te_1 - Te_k \rangle \Rightarrow \text{each } Te_k = \lambda. \text{ Supp } \lambda \neq 0.$
Let $S = \lambda^{-1}T$. Becs $\langle e_j, e_k \rangle = 0 \Rightarrow \langle Te_j, Te_k \rangle = \langle \lambda Se_j, \lambda Se_k \rangle = 0 \Longleftrightarrow \langle Se_j, Se_k \rangle = 0$.

```
D.5 Supp S \in \mathcal{L}(V). Prove S self-adj and unit \iff \exists P_U, S = 2P_U - I.
Solus: Supp S self-adj and unit. Then V = E(1,S) \oplus E(-1,S), E(1,S) = E(-1,S)^{\perp} \Rightarrow S = 2P_U - I.
           Or. S^2 = I. Let P = \frac{1}{2}(S + I) \Rightarrow P^2 = P self-adj \Rightarrow range P = (\text{null } P)^{\perp} = U.
           Supp S = 2P_U - I \Rightarrow S self-adj. Then \forall u \in U, Su = u, and \forall w \in U^{\perp}, Sw = -w.
           ||S(u+w)||^2 = ||u+w||^2. Or. S^2(u+w) = u+w \Rightarrow S^{-1} = S = S^*. Or. Apply to a orthon B_V. \Box
D.Tips: Supp T \in \mathcal{L}(V), each eigeal of T_C has abs val 1.
           Supp ||Tv|| \le ||v|| for all v \in V. Prove T unit.
Solus: Supp Jordan \mathcal{M}(T_{\mathbf{C}}) wrto B_1 = (u_1 + \mathrm{i} v_1, \dots, u_n + \mathrm{i} v_n) \Rightarrow \mathcal{M}(T, B_1) = \mathcal{M}(T, B_2),
           where B_2 = (x_1 + iy_1, ..., x_n + iy_n) with each x_k + iy_k = (\sqrt{\|u_k\|^2 + \|v_k\|^2})^{-1}(u_k + iv_k).
           Becs ||T_{C}(u+iv)||^{2} = ||Tu||^{2} + ||Tv||^{2} \le ||u+iv||^{2}. By Exe (D.9), T_{C} is unit.
           Consider \mathcal{M}(T) wrto B_V = (v_1, u_1, \dots, v_n, u_n) and by [9.36].
                                                                                                                                       D.11 Supp S \in \mathcal{L}(V), and \{Sv : v \in \emptyset\} = \{v \in V : ||v|| \le 1\} = \emptyset. Prove S is unit.
SOLUS: NOTICE that ||S(||v||^{-1}v)|| \le 1 \Rightarrow ||Sv|| \le ||v|| for all v \in \mathbb{O}.
           Asum S not inv. Then \exists v \in V \backslash \text{range } S, ||v||^{-1}v \notin \{Sv : v \in \odot\} = \odot. Ctradic.
           Note: If v \neq 0, Sv = 0 \in \bigcirc, then v \in \bigcirc. Wrong becs only a \|v\|^{-1} v \in \bigcirc, where 0 \leq a \leq 1.
           Now \forall v \in V \setminus \{0\}, S[\|Sv\|^{-1}v] \in \bigcirc \iff \|Sv\|^{-1}v \in \bigcirc \Rightarrow \|Sv\|^{-1}\|v\| \leqslant 1.
           OR. NOTICE that \bigcirc_C = \{u + iv \in V_C : ||u||^2 + ||v||^2 \le 1\} = \{Su + iSv : u, v \in V, ||u||^2 + ||v||^2 \le 1\}.
           We show each eigval of S_C has abs val 1. Then done by TIPS.
           Asum |\lambda| < 1 and \lambda is eigval of S_C with u + iv and ||u||^2 + ||v||^2 = 1.
           Then S_{\mathbf{C}}[\lambda^{-1}(u+\mathrm{i}\,v)] = u+\mathrm{i}\,v \in \mathcal{O}_{\mathbf{C}} while \lambda^{-1}(u+\mathrm{i}\,v) \notin \mathcal{O}_{\mathbf{C}}. Ctradic.
                                                                                                                                       7.E [4E] & 7.F [4E]
                                              NOTE: V, W are finide non0 vecsps over \mathbf{F}.
E.1 Supp T \in \mathcal{L}(V, W). Show T = 0 \iff all singuals are 0.
Solus: (a) T = 0 \iff T^* = 0 \iff T^*T = 0 \Rightarrow all singuals are 0.
           (b) all singvals are 0 \iff T^*T nilp. Becs T^*T diag \Rightarrow T^*T = 0 = T.
                                                                                                                                       OR. Supp T has N positive singvals. Now N = 0 \Leftrightarrow \dim \operatorname{range} T = 0 \Leftrightarrow T = 0.
                                                                                                                                       E.4 Supp T \in \mathcal{L}(V, W), and s_1, s_n are the max and min of singuals.
      Prove \{||Tv|| : v \in V, ||v|| = 1\} = [s_n, s_1].
Solus: Get the SVD (e_1, \ldots, e_m), (f_1, \ldots, f_m) in V, W. We show \forall s \in [s_n, s_1], \exists v \in V, ||Tv|| = s.
           Say v = xe_1 + ye_n with (I) ||v||^2 = x^2 + y^2 = 1, (II) ||Tv||^2 = s_1^2 x^2 + s_n^2 y^2 = s^2.
           If s_1 = s_n. Done. Supp s_1 > s_n. Then s_1^2 - s^2 = (s_1^2 - s_n^2) y^2, and s_1^2 - s_n^2 = (s_1^2 - s_n^2) x^2.
                                                                                                                                       Comment: T is a scalar multi of an isomet \iff \{||Tv||: v \in V, ||v|| = 1\} = \{s_1\}.
E.11 Supp T \in \mathcal{L}(V) is posi, B_V = (v_1, ..., v_n) is orthon, and s_1, ..., s_n are the singuals.
        Prove \langle Tv_1, v_1 \rangle + \cdots + \langle Tv_n, v_n \rangle = s_1 + \cdots + s_n.
Solus: \langle Tv_k, v_k \rangle = \langle \sqrt{T}v_k, \sqrt{T}v_k \rangle = \|\sqrt{T}v_k\|^2. Note that \sqrt{T} = \sqrt{T^*} = (\sqrt{T})^* is posi.
```

Notice that $s_1, ..., s_n$ are the eigends of $\sqrt{T}^* \sqrt{T} = T \Rightarrow \sqrt{s_1}, ..., \sqrt{s_n}$ are the singulas of \sqrt{T} .

Get the SVD $(e_1, ..., e_n)$, $(f_1, ..., f_n)$. By $(4 \to 7.A.5)$, $\sum \|\sqrt{T}v_k\|^2 = \sum \|\sqrt{T}e_k\|^2 = \sum s_k$.

```
E.17 Supp T \in \mathcal{L}(V). Prove T self-adj \iff T^{\dagger} self-adj.
                                                                                                                       By Exe (E.16), immed.
Solus: Let \lambda_1, \dots, \lambda_m be disti eigrals of T with \lambda_1 = 0 if any. Let U = (\text{null } T)^{\perp}.
            m_T = (z - \lambda_1) \cdots (z - \lambda_m) \iff m_{T|_U} = m_T \text{ if } T \text{ inje, othws } m_{T|_U} = (z - \lambda_2) \cdots (z - \lambda_m)
            \iff the min of (T|_U)^{-1} is (z-\lambda_1^{-1})\cdots(z-\lambda_m^{-1}) if T inje, and othws (z-\lambda_2^{-1})\cdots(z-\lambda_m^{-1})
            \iff m_{T^{\dagger}} = \text{the min of } (T|_{U})^{-1} \text{ if } T \text{ inje, othws } z(z - \lambda_{2}^{-1}) \cdots (z - \lambda_{m}^{-1}).
                                                                                                                                                      F.3 Supp T \in \mathcal{L}(V, W) and v \in V. Prove ||Tv|| = ||T|| ||v|| \iff T^*Tv = ||T||^2v.
Solus: Let s_1 = \cdots = s_i \ge \cdots \ge s_n be the singular with the SVD bses (e_1, \dots, e_n), (f_1, \dots, f_n).
            NOTICE that ||Tv||^2 = s_1^2 |\langle v, e_1 \rangle|^2 + \dots + s_n^2 |\langle v, e_n \rangle|^2 = s_1^2 ||v||^2
                              \iff v \in \operatorname{span}(e_1, \dots, e_i) \iff T^*Tv = \sum s_i^2 \langle v, e_i \rangle e_i = \sum s_1^2 \langle v, e_i \rangle e_i.
                                                                                                                                                      Or. Supp T^*Tv = ||T||^2v. Then ||T||^2||v|| = ||T^*Tv|| \le ||T|| ||Tv|| \Rightarrow ||T|| ||v|| \le ||Tv||.
   \operatorname{Supp} \|Tv\| = \|T\| \|v\|. \text{ Then } \|T^*Tv - \|T\|^2 v\|^2 = \|T^*Tv\|^2 + \|T\|^4 \|v\|^2 - 2\operatorname{Re} \left\langle T^*Tv, \|T\|^2 v \right\rangle \leqslant 0.
   Becs ||T^*Tv||^2 \le ||T||^2 ||Tv||^2 = ||T||^2 ||T||^2 ||v||^2, and \langle T^*Tv, ||T||^2 v \rangle = \langle Tv, ||T||^2 Tv \rangle = ||T||^2 ||Tv||^2.
                                                                                                                                                      F.19 Prove ||T^*T|| = ||T||^2.
                                                                 ||T|| = ||\sqrt{T^*T}|| = \sqrt{||T^*T||}. Or. By Exe (F.2), ||T^*T|| = s_1^2. \square
Solus: \forall v \in V, \|\sqrt{T^*T}v\| = \|Tv\| \leqslant \|T\|\|v\|, \text{ and } \|Tv\| = \|\sqrt{T^*T}v\| \leqslant \|\sqrt{T^*T}\|\|v\| \Rightarrow \|\sqrt{T^*T}\| = \|T\|\Box v\|
            Or. T = S\sqrt{T^*T}, \sqrt{T^*T} = S^*T \Rightarrow ||T|| \leqslant ||S|| ||\sqrt{T^*T}||, ||\sqrt{T^*T}|| \leqslant ||S^*|| ||T||.
F.20 Supp T \in \mathcal{L}(V) normal. Prove ||T^k|| = ||T||^k.
Solus: Let B_V = (e_1, \dots, e_n) be orthon eigences of T^*T with corresteigvals s_1^2, \dots, s_n^2.
            Becs (T^k)^*T^ke_i = (T^*T)^ke_i = s_i^{2k}e_i. Now \max\{s_1, \dots, s_n\}^k = \max\{s_1^k, \dots, s_n^k\}.
                                                                                                                                                      Or. Note that (T^*T)_C and T^*T have the same eigvals \Rightarrow ||T_C||_C = ||T||.
            Let B_{V_C} = (e_1, \dots, e_n) be orthon eigvecs of T_C corres eigvals \lambda_1, \dots, \lambda_n of T^k corres \lambda_1^k, \dots, \lambda_n^k.
            By Exe (F.2), ||T_C^k|| = \max\{|\lambda_i^k|\} = \max\{|\lambda_i|\}^k = ||T_C||^k.
                                                                                                                                                      OR. Becs singulas of T are the abs of eigvals in C. Let T_C v = ||T||v with v \in V_C and ||v|| = 1.
            Then T_{\mathbf{C}}^k v = ||T||^k v \Rightarrow ||T||^k = ||T_{\mathbf{C}}^k v|| \leqslant ||T_{\mathbf{C}}^k||. \mathbf{Z} By Exe (F.5), ||T_{\mathbf{C}}^k|| \leqslant ||T_{\mathbf{C}}||^k.
                                                                                                                                                      F.28 Supp T \in \mathcal{L}(V). Prove \exists unit S \in \mathcal{L}(V), T = \sqrt{TT^* S}.
                                                                                                                            Let T^* = S\sqrt{TT^*}. \square
Solus: Supp s_1, \ldots, s_m are the positive singulas of T with SVD (e_1, \ldots, e_m), (f_1, \ldots, f_m).
            \text{Becs } T^*Te_k = s_k^2e_k, \, f_k = Te_k/s_k \Rightarrow TT^*f_k = TT^*Te_k/s_k = s_kTe_k = s_k^2f_k \Rightarrow \sqrt{TT^*}f_k = s_kf_k.
            \dim E(s_k, \sqrt{T^*T}) \leq \dim E(s_k, \sqrt{TT^*}). Apply revly. Thus \dim E(0, \sqrt{T^*T}) = \dim E(0, \sqrt{TT^*}).
            Get orthon bses of E(0, \sqrt{T^*T}) and E(0, \sqrt{TT^*}). Forming two orthon bses of V.
            Define S \in \mathcal{L}(V) by Se_i = f_i. Note: The same S in T = S\sqrt{T^*T}.
                                                                                                                                                      OR. Extend to orthon bses (e_1, \dots, e_n), (f_1, \dots, f_n). Define Se_j = f_j \Rightarrow \sqrt{TT^*} Se_k = s_k f_k = Te_k.
Coro: T = S\sqrt{T^*T} \Rightarrow T^* = \sqrt{T^*T} S^* \Longrightarrow TT^* = ST^*TS^*.
           OR. T = S\sqrt{T^*T} = \sqrt{TT^*}S \Rightarrow \sqrt{T^*T} = S^*\sqrt{TT^*}S \Longrightarrow T^*T = S^*\sqrt{TT^*}SS^*\sqrt{TT^*}S = S^*TT^*S.
F.30 Supp T \in \mathcal{L}(V), and S \in \mathcal{L}(V) unit suth ST posi. Prove ST = \sqrt{T^*T}.
Solus: Let R = ST \Rightarrow T = S^*R \Rightarrow T^* = R^*S = RS. Then T^*T = R^*SS^*R = R^2. By the uniques.
                                                                                                                                                      OR. Let B_V = (e_1, \dots, e_n) be orthon eigvecs of ST with corres eigvals \lambda_1, \dots, \lambda_n.
            Becs ST = T^*S^* \Rightarrow T = S^*T^*S^*. Let each f_k = S^*e_k \Rightarrow T^*f_k = \lambda_k e_k.
            Thus T^*Te_k = T^*S^*STe_k = \lambda_k^2 e_k \Rightarrow \sqrt{T^*T} e_k = \lambda_k e_k = STe_k.
```

```
F.31 Supp T \in \mathcal{L}(V) self-adj. Or supp \mathbf{F} = \mathbf{C} and T \in \mathcal{L}(V) normal.
        Prove \exists unit S with T = S\sqrt{T^*T} suth S, \sqrt{T^*T} diag wrto same orthon bss.
Solus: Becs T = S\sqrt{T^*T} = \sqrt{TT^*} S = \sqrt{T^*T} S. If \mathbf{F} = \mathbf{C}, then done. But othws?
            Let B_V = (e_1, \dots, e_n) be orthon eigvecs of T with corres \lambda_1, \dots, \lambda_n, which are real if self-adj.
            Note that T^*e_k = \overline{\lambda_k}e_k \Rightarrow T^*Te_k = |\lambda_k|^2e_k. Define S \in \mathcal{L}(V) by Se_k = |\lambda_k|^{-1}\lambda_ke_k.
                                                                                                                                                   F.8 Supp S \in \mathcal{L}(V) inv. Prove if T \in \mathcal{L}(V) and ||S - T|| < 1/||S^{-1}||, then T inv.
Solus: Note that 1/\|S^{-1}\| = s_n, where s_1 \ge \cdots \ge s_n are the singulas of T.
            Becs s_n = \min\{||S - T|| : \dim \operatorname{range} T = 0, 1, ..., n - 1\} > ||S - T|| \Rightarrow \dim \operatorname{range} T = n.
                                                                                                                                                   \text{Or. } v \neq 0, Tv = 0 \Rightarrow \|v\| = \|S^{-1}Sv\| \leqslant \|S^{-1}\| \, \|Sv\| = \|S^{-1}\| \, \|(S-T)v\| \Rightarrow 1/\|S^{-1}\| \leqslant \|S-T\|. \quad \Box
F.14 Supp U, W subsps of V suth ||P_U - P_W|| < 1. Prove dim U = \dim W.
Solus: Note that 1 = s_m = \min\{\|P_U - T\| : T \in \mathcal{L}(V) \text{ and dim range } T = 0, 1, \dots, m - 1\}.
            Thus dim range P_W \geqslant dim range P_U. Apply revly, done.
                                                                                                                                                   Or. Becs P_U = I - P_{U^{\perp}} Or P_W = I - P_{W^{\perp}} \Rightarrow P_W - P_U = P_W + P_{U^{\perp}} - I Or P_U - P_W = P_U + P_{W^{\perp}} - I.
            By Exe (F.8), P_W + P_{U^{\perp}} and P_U + P_{W^{\perp}} are inv \Rightarrow \{0\} = \text{null}(P_W + P_{U^{\perp}}) \supseteq \text{null}P_W \cap \text{null}P_{U^{\perp}}.
            And V = \text{range}(P_U + P_{W^{\perp}}) \subseteq \text{range} P_U + \text{range} P_{W^{\perp}} = U + W^{\perp}.
                                                                                                                                                   F.22 Supp T \in \mathcal{L}(V, W). Let n = \dim V and s_1 \ge \cdots \ge s_n are the singuals.
        Prove s_{n-k+1} = \min\{||T|_{U}|| : U \text{ is subsp of } V, \dim U = k\} \text{ for } 1 \leq k \leq n.
Solus: Get the SVD bses (e_1, ..., e_n), (f_1, ..., f_n). Let U = \text{span}(e_{n-k+1}, ..., e_n) \Rightarrow ||T|_U|| = s_{n-k+1}.
            Supp U is a k-dim subsp of V. Becs ||T|_U|| = ||T|_U P_U|| = ||T - T|_{U^{\perp}} P_{U^{\perp}}|| \ge s_{n-k+1}.
                                                                                                                                                   F.13 Supp S, T \in \mathcal{L}(V) are posi. Show ||S - T|| \le \max\{||S||, ||T||\} \le ||S + T||.
SOLUS: ||S + T|| = ||\sqrt{S + T}||^2 \ge ||\sqrt{S + T}v||^2 = \langle Sv + Tv, v \rangle = \langle Sv, v \rangle + \langle Tv, v \rangle = ||\sqrt{S}v||^2 + ||\sqrt{T}v||^2.
            Let v \in V suth \|\sqrt{S}v\|^2 = \|\sqrt{S}\|^2 = \|S\| \Rightarrow \|S + T\| \ge \|S\|. Simler, \|S + T\| \ge \|T\|.
            Denote \max\{|\lambda|: \lambda \text{ is eigval of } T\} by |\lambda_M|_T. We show |\lambda_M|_{S-T} \leq \max\{|\lambda_M|_S, |\lambda_M|_T\}.
            Note that ||T||I - T is posi, so is R = ||T||I - T + S = ||T||I - (T - S).
            Thus ||T|| - |\lambda_M|_R = |\lambda_M|_{S-T} \le ||T||. Simlr, ||T|| - |\lambda_M|_{||S||I - (S-T)} = |\lambda_M|_{T-S} \le ||S||.
                                                                                                                                                   F.11 Supp \mathbf{F} = \mathbf{C}, T \in \mathcal{L}(V). Prove \forall \epsilon > 0, \exists \text{ diag } S \text{ suth } 0 < \|T - S\| < \epsilon.
Solus: Supp A = \mathcal{M}(T) up-trig wrto orthon B_V = (e_1, \dots, e_n). Let \lambda_k = A_{k,k}.
            Becs T has finily many eigvals, \exists \delta \in (0, \epsilon/n), \nexists disti j, k suth \lambda_i + j\delta = \lambda_k + k\delta.
            Thus define Re_k = k\delta e_k \Rightarrow T + R has n disti eigvals, while R posi and 0 < ||R|| < \delta.
                                                                                                                                                   F.16 Supp S \in \mathcal{L}(V) posi inv. Prove \exists \delta > 0 suth if T self-adj and ||S - T|| < \delta, then T posi.
Solus: Let \delta be the smallest singual of posi inv S. Then \forall v \in V, \langle Sv, v \rangle = ||\sqrt{S}v||^2 \geqslant \delta ||v||^2.
            Supp T self-adj and 0 < ||S - T|| < \delta = \min\{||S - R|| : \dim \operatorname{range} R \leq \dim V - 1\} \Rightarrow T inv.
            Then |\langle (S-T)v,v\rangle| \leq ||S-T|| ||v||^2 < \delta ||v||^2 for all non0 v \in V.
            Asum \exists v \in V, \langle Tv, v \rangle < 0 \Rightarrow \delta ||v||^2 \leqslant |\langle Sv, v \rangle| \leqslant |\langle Sv - Tv, v \rangle| < \delta ||v||^2.
            Or. \langle Tv, v \rangle = \langle Sv, v \rangle + \langle (T - S)v, v \rangle \geqslant \delta ||v||^2 - \langle (S - T)v, v \rangle > 0 for v \neq 0.
```

少了关于无限维内积空间及其算子的基本内容,LADR 第七章学起来明显更快更平常,没有前半部分许多题目去掉有限维假设后的悬疑和激动时刻。也许研究无限维内积空间有硬性的分析学知识门槛,所以这本书的性质不允许过多涉及这方面。
10.A Note: V denotes a finide non0 vecsp over F. For (10.B), see [4E] Chapter 9.

12 Supp V is inner prodsp, $P = P_U$, and $S \in \mathcal{L}(V)$ is posi. Prove $\operatorname{tr}(SP) \geqslant 0$. **Solus**: Let orthon $B_U = (e_1, \dots, e_m)$, $B_{U^{\perp}} = (f_1, \dots, f_n)$.

Solus: Let orthon $B_U = (e_1, ..., e_m), B_{U^{\perp}} = (f_1, ..., f_n).$ Becs $\operatorname{tr}(SP) = \sum \langle SPe_i, e_i \rangle + \sum \langle SPf_j, f_j \rangle = \sum \langle Se_i, e_i \rangle \geqslant 0.$

17 Supp $T \in \mathcal{L}(V)$ suth $\operatorname{tr}(ST) = 0$ for all $S \in \mathcal{L}(V)$. Prove T = 0.

Solus: Let $S = T^* \Rightarrow \operatorname{tr}(T^*T) = s_1^2 + \dots + s_n^2 = 0$. By (4E 7.E.1) Or Exe (11).

OR. Asum $T \neq 0 \Rightarrow \exists \text{ non } 0 \in V \text{ suth } Tv_1 \neq 0$. Extend $v = v_1 \text{ to } B_V = (v_1, \dots, v_n)$.

Then $Tv_1 = A_{1,1}v_1 + \cdots + A_{n,1}v_n \Rightarrow \exists A_{j,1} \neq 0$. Define $S \in \mathcal{L}(V)$ by each $Sv_k = \delta_{j,k}v_1$.

Now $S = E_{j,1} \Rightarrow \mathcal{M}(ST) = \mathcal{E}^{(1,j)}\mathcal{M}(T) \Longrightarrow 0 = \operatorname{tr}(ST) = A_{j,1}$. Ctradic.

Or. Asum $\exists Tv \neq 0$. Extend to $B_V = (Tv, u_1, \dots, u_n)$. Define $S \in \mathcal{L}(V) : Tv \mapsto v, u_i \mapsto 0$.

Now $(TS)(Tv) = Tv, (TS)(u_i) = 0 \Rightarrow tr(TS) = 1$. Ctradic.

• (4E 8.D.10) Supp $\tau : \mathcal{L}(V) \to \mathbf{F}$, $\tau(I) = \dim V$, and $\tau(ST) = \tau(TS)$. Prove $\tau = \operatorname{tr}$.

• (4E 8.D.12) Supp V, W are finide inner prodsps. Define $\langle \cdot, \cdot \rangle$ on $\mathcal{L}(V, W)$ by $\langle S, T \rangle = \operatorname{tr}(ST^*)$. Let orthon $B_V = (e_1, \dots, e_n)$, $B_W = (f_1, \dots, f_m)$. Prove $\langle S, T \rangle = \sum_{j=1}^m \sum_{k=1}^n \mathcal{M}(S)_{j,k} \overline{\mathcal{M}(T)_{j,k}}$.

Solus: Becs $\mathcal{M}(ST^*)_{j,k} = \mathcal{M}(S)_{j,r}\mathcal{M}(T^*)_{r,k} = \mathcal{M}(S)_{j,r}\overline{\mathcal{M}(T)_{k,r}}$. Take k = j.

Or. Define $E_{k,j}(e_x) = \delta_{k,x} f_j$, $R_{j,k}(f_y) = \delta_{j,y} e_k$, and $Q_{j,k}(f_y) = \delta_{j,y} f_k$. See Note For [3.60].

Becs $E_{k,j}^* = R_{j,k}$, and $\langle E_{k,l}, E_{i,j} \rangle = \operatorname{tr}(E_{k,l}R_{j,i}) = \operatorname{tr}(\delta_{i,k}Q_{j,l}) = \delta_{i,k}\delta_{j,l}$.

Now $\left\langle \sum A_{j,k} E_{k,j}, \sum C_{x,y} E_{y,x} \right\rangle = \sum A_{j,k} \overline{C_{j,k}}$

[4E] 9 NOTE: V, W denote finide non0 vecsps over F.

A.2 Supp β is biliney on V of dim n. Prove $\exists \varphi_k, \tau_k \in V'$, $\beta(u,v) = \sum_{k=1}^n \varphi_k(u) \tau_k(v)$.

Solus: $\forall v \in V, V' \ni \varphi_v : u \mapsto \beta(u, v)$. Define such $\varphi_1, \dots, \varphi_n$ for a $B_V = (v_1, \dots, v_n)$.

Now $\forall u, v \in V$, $\beta(u, v) = \beta(u, \sum a_i v_i) = \sum a_i \beta(u, v_i) = \sum a_i \varphi_i(u)$. Get the dual bss of B_V . \square

A.3 Supp $\beta \in (V \times V)'$ is biliney. Prove $\beta = 0$.

SOLUS: $\beta(u,x) + \beta(v,y) + \beta(u,y) + \beta(v,x) = \beta(u+v,x+y) = \beta(u,x) + \beta(v,y) = \beta(u,y) + \beta(v,x) = 0.$ $2\beta(u,v) = \beta(2u,2v) = 4\beta(u,v) = 0.$ Or. $\beta(2u,2v) = \beta(2u,v) = \beta(u,2v) \Rightarrow \beta(0,v) = \beta(u,0) = 0.$

A.4 Supp V is real inner prodsp, β is biliney on V. Show $\exists ! T \in \mathcal{L}(V)$, $\beta(u,v) = \langle Tu,v \rangle$.

Solus: Let orthon $B_V = (e_1, \dots, e_n) \Rightarrow \beta(u, v) = \sum \beta(u, e_i) \langle e_i, v \rangle = \langle \sum \beta(u, e_i) e_i, v \rangle$.

Supp $\beta(u,v) = \langle Tu,v \rangle = \sum \langle Tu,e_i \rangle \langle e_i,v \rangle$. Then each $\langle Tu,e_i \rangle = \beta(u,e_i) \Rightarrow Tu = \sum \beta(u,e_i)e_i$. \square

Or. Define $Te_j = \sum \beta(e_j, e_i)e_i$. Then $\langle Te_j, e_k \rangle = \beta(e_j, e_k)$.

Thus $\langle Tu, v \rangle = \sum a_j b_k \langle Te_j, e_k \rangle = \sum a_j b_k \beta(e_j, e_k) = \beta(u, v)$.

B.1 Supp $m \in \mathbb{N}^+$. Show dim $V^{(m)} = \dim V^m$.				
Solus:	Let $B_V = (e_1, \dots, e_n)$ with corres $B_V = (\varphi_1, \dots, \varphi_n)$. Supp α is m -liney. $\forall v_j = \sum_{i=1}^n \varphi_i(v_j)e_i, \ \alpha(v_1, \dots, v_m) = \sum_{i_1=1}^n \dots \sum_{i_m=1}^n \varphi_{i_1}(v_1) \dots \varphi_{i_m}(v_m) \ \alpha(e_{i_1}, \dots, e_{i_m}).$ Define m -liney $\alpha_I(v_1, \dots, v_m) = \varphi_{i_1}(v_1) \dots \varphi_{i_m}(v_m)$, for each $I = (i_1, \dots, i_m) \in \Gamma = \{1, \dots, n\}^n$. Hence $\alpha = \sum_{I \in \Gamma} \alpha(e_{i_1}, \dots, e_{i_m}) [\alpha_I] \in \operatorname{span}(\alpha_I)_{I \in \Gamma}$. Supp $\exists c_I \in \Gamma$, $I \in \Gamma$ suth $\sum_{I \in \Gamma} c_I \alpha_I = 1$. Note that for each $I = (j_1, \dots, j_m) \in \Gamma$, $\alpha_I(e_{j_1}, \dots, e_{j_m}) = \delta_{I,J} \Rightarrow 0(e_{j_1}, \dots, e_{j_m}) = c_J$.			
	Supp square B , C on diag of block up-trig A . Prove $\det A = (\det B)(\det C)$. If the cols of B are liney dep, then the cols of A are liney dep, done. Now supp B is inv. Let $A = \begin{pmatrix} B & D \\ 0 & C \end{pmatrix}$, $P = \begin{pmatrix} B & 0 \\ 0 & C \end{pmatrix}$, $Q = \begin{pmatrix} 0 & D \\ 0 & 0 \end{pmatrix}$. Supp $A \in \mathbf{F}^{n,n}$, $B \in \mathbf{F}^{m,m}$, $C \in \mathbf{F}^{p,p}$. Now $\det(A_{\cdot,1} \cdots A_{\cdot,n}) = \det(P_{\cdot,1} \cdots P_{\cdot,m} (P+Q)_{\cdot,m+1} \cdots (P+Q)_{\cdot,n})$. Becs each col of D is in $\cot B = \mathbf{F}^m \Rightarrow \operatorname{each} Q_{\cdot,m+k} \in \operatorname{span}(P_{\cdot,1}, \dots, P_{\cdot,m}) \Rightarrow \det A = \det P$.			
	Supp $T \in \mathcal{L}(V)$. Define $g : \mathbf{F} \to \mathbf{F}$ by $g(x) = \det(I + xT)$. Show $g'(0) = \operatorname{tr} T$. Supp $T_{\mathbf{C}}$ up-trig wrto B_V and $\lambda_1, \dots, \lambda_n$ are the diag ents. Then $\det \mathcal{M}(I + \delta T_{\mathbf{C}}, B_V) = (1 + \delta \lambda_1) \cdots (1 + \delta \lambda_n) = 1 + \delta(\lambda_1 + \cdots + \lambda_n) + \cdots + \delta^n \lambda_1 \cdots \lambda_n$ OR. Let p be the char of $-T$. Then $\forall x \in \mathbf{F} \setminus \{0\}$, $\det(I + xT) = x^n \det(x^{-1}I + T) = x^n p(x^{-1}) = 1 - \operatorname{tr}(-T) \cdot x + \cdots + (-1)^n \det(-T) \cdot x^n$.			
C.19 Solus:				
C.20 Solus:				
C.22 Solus:				