1 Hamiltonian Monte Carlo, code tests

Energy conservation in HMC potential kinetic energy -1000 -2000

Figure 1: Action, kinetic term and Hamiltonian vs integration step; (p,q)=(1,1); n=20; g=-2.5; L=100; $\tau=0.0001;$ time: 5s.

Energy violation in HMC, 10^3 steps

Figure 2: $\log \Delta H$ vs $\log \tau$ (purple): $(p,q)=(2,0);\ n=10;\ g=-2.2431;$ $L=10^3;$ Linear fit (green): $m=4.37\pm0.07,\ q=37.6\pm0.8$

Energy violation in HMC, 10⁴ steps 0.5 0 -0.5 -1 -1.5 -2 -2.5 -3.5

Figure 3: $\log \Delta H$ vs $\log \tau$ (purple): $(p,q)=(2,0);\ n=10;\ g=-2.2431;$ $L=10^4;$ Linear fit (green): $m=1.95\pm0.05,\ q=18.1\pm0.1$

-10

-10.5

-9.5

-4

-4.5

-5 L -11.5

-11

Energy violation in HMC, 10^5 steps

Figure 4: $\log \Delta H$ vs $\log \tau$ (purple): $(p,q)=(2,0);\ n=10;\ g=-2.2431;$ $L=10^5;$ Linear fit (green): $m=1.74\pm0.04,\ q=17.5\pm0.4$

Figure 5: Action Tr D^4+g Tr D^2 vs Monte Carlo time; (p,q)=(1,1); n=20; $g=-2.5; L=100; \tau_{\rm cold10}=0.0001; \tau_{\rm cold90}=0.0005; \tau_{\rm hot}=0.001;$ time: 5s.

Figure 6: Action Tr D^4+g Tr D^2 vs Monte Carlo time; (p,q)=(0,3); n=20; g=-2.5; L=100; $\tau=0.0001;$ time: 36s.

Figure 7: Action Tr D^4+g Tr D^2 vs Monte Carlo time; (p,q)=(1,3); n=20; g=-2.5; L=100; $\tau_{\rm cold10}=0.001;$ $\tau_{\rm cold90}=0.0005;$ $\tau_{\rm hot}=0.0005;$ time: 5m 40s.

Figure 8: Action Tr D^4+g Tr D^2 vs g; Metropolis (Green) and HMC (purple); $(p,q)=(2,0);~n=20;~L=100;~\tau=0.0001;$ time 13m 20s

Order parameter (2,0): comparison Metropolis/HMC O.7 HMC + Metropolis O.4 O.3 O.2 O.1

Figure 9: Order parameter vs g; Metropolis (Green) and HMC (purple); $(p,q)=(2,0);~n=20;~L=100;~\tau=0.0001;$ time 13m 20s

-2.5

-2

-1.5

-3

0 L -4

-3.5

Figure 10: Convergence of the expectation value of the observable $2g_2$ Tr D^2+4 Tr D^4 to the number of degrees of freedom of the Dirac operator for geometry (0,3). The three sets correspond to matrix size $n=16\times 16,\ 32\times 32$ and 64×64 .

Matrix	time	time
dimension	HMC (sec)	Metropolis (sec)
16	23	17
32	100	428
64	1612	21218

Table 1: Time for 100 sweeps of HMC and Metropolis for geometry (0,3). Fitting of the data gives a computational cost of $O(n^{4.6})$ and $O(n^{2.6})$ for Metropolis and HMC respectively.

Autocorrelation of order parameter (2,0) test: comparison Metropolis/HMC

Figure 11: Autocorrelation $\chi(a) = \langle F(t)F(t+a)\rangle - \langle F(t)\rangle\langle F(t+a)\rangle$ normalized by $\chi(0)$, where F(t) is the order parameter for the (2,0) phase transition at Monte Carlo time t. The coupling constant $g_2 = 2.725$ was chosen to be at the phase transition. The exponential fit gives an autocorrelation time of ~ 250 sweeps for Metropolis and ~ 25 sweeps for HMC.