Développements Limités

Mahendra Mariadassou 4 novembre 2019

Introduction

Plan du cours

- · Domaine d'étude
- · Limites, continuité, dérivabilité et variations
- · Comparaison locale de fonction
- · Etude locale des fonctions
- · Retour sur la limite

Développement Limités

Le but des développements limités est de faire des **approximations** en **négligeant** certaines quantités. On va voir ici qu'on néglige toujours une quantité **par rapport** à une autre.

On va formaliser cette intuition avec la notion de **négligeabilité** et les notations de Landau.

Négligeabilité

Définition

On dit que f est **négligeable** devant g au voisinage de $a\in \mathbb{R}$ s'il existe une fonction ε définie au voisinage de a telle que $\varepsilon(x)\to 0$ quand $x\to a$ et

$$orall x \in D_f \cap D_g \quad f(x) = g(x) arepsilon(x)$$

Dans la plupart des cas, g est non nulle au voisinage de 0 et la condition précédente peut se reformuler: f est négligeable devant g au voisinage de a si et seulement si $\frac{f}{g} \to 0$ quand $x \to a$.

Notation de Landau

Si f est négligeable devant g en a, on note

- $f=o_a(g)$ en omettant a si le voisinage est clair. On dit qu'au voisinage de a, f est un o(g) (prononcé "petit o de g")
- · Par un abus de notation, on utilise la même notation pour des expressions: $x^2 = o(x)$ au voisinage de 0.
- · On écrit enfin f=g+o(h) pour dire f-g=o(h).

Les cas particuliers suivants sont à connaître

- · Si $a \in \mathbb{R}$ et n < m alors $(x-a)^n = o_{\pm \infty}((x-a)^m)$ et $(x-a)^m = o_a((x-a)^n)$
- · Si $\lim_a g = \pm \infty$ et f est bornée au voisinage de a (par exemple $\lim_a f$ finie), alors f = o(g)
- · Si $f = o_a(1)$, alors $\lim_a f = 0$.

Propriétés des o

- · Si f = o(g) et g = o(h), alors f = o(h)
- · Si $f_1=o(g)$ et $f_2=o(g)$, alors $f_1+f_2=o(g)$
- · Si f = o(g), alors $f \times h = o(g \times h)$
- · Si $\lambda \in \mathbb{R}^*$, alors $f = o(g) \Leftrightarrow f = o(\lambda g)$
- · Si $f = o_a(1)$, alors $\lim_a f = 0$.
- · Si $f_1 = o(g_1)$ et $f_2 = o(g_2)$, alors $f_1 imes f_2 = o(g_1 imes g_2)$

Exercices

Montrer que

- $oldsymbol{\cdot} \ orall lpha \in \mathbb{R}_+ \ \ x^lpha = o_{+\infty}(e^x)$
- $oldsymbol{\cdot} \ orall lpha \in \mathbb{R}_+ \quad e^x = o_{-\infty}(|x|^{-lpha})$
- $oldsymbol{\cdot} \ orall lpha \in \mathbb{R}_+ \quad \ln(x) = o_{+\infty}(x^lpha)$
- $oldsymbol{\cdot} \ orall lpha \in \mathbb{R}_+ \quad x^{-lpha} = o_{+\infty}(\ln(x))$

Approximation et somme

Une bonne règle heuristique à retenir pour s'assurer que le résultat approché est peu différent du résultat exact dans une somme est la suivante:

 Pour faire une approximation, on néglige un terme devant les autres à l'intérieur d'une somme

Exemple (I)

Considérons la distance $l'=\frac{lf}{l+f}$ qui apparaît régulièrement en optique. On souhaite connaître la distance l' quand la distance l est grande devant la focale $f(l\gg f)$.

- · Si on néglige f naivement en le posant égal à 0, on obtient $l^\prime=0$ qui est absurde
- · En revanche, si on néglige f devant l dans la somme f+l, on commet une faible erreur puisque $l+f\simeq l$
- ' On peut donc poursuivre le calcul avec l'approximation $l' \simeq rac{lf}{l+f} \simeq f$.

Exemple (II)

De la même façon, si f(x) fait intervenir des sommes, on peut utiliser les mêmes arguments pour svoir comment x se comporte pour des grandes et des petites valeurs de x. Par exemple pour $f(x) = \frac{x}{1+x^2}$:

- $\cdot \:$ si $x\gg 1$, alors $x^2+1\simeq x^2$ et $f(x)\simeq rac{x}{x^2}=1/x$
- · si $x \ll 1$, alors $x^2 + 1 \simeq 1$ et $f(x) \simeq x$

Faire une approximation est **plus précis** que calculer une limite: En effet dire $f(x) \simeq x$ (quand $x \to 0$) est plus précis que d'écrire f tend vers 0 en 0. La limite se déduit de l'approximation mais pas l'inverse.

Exemple (III)

En notations de Landau, on a

$$f(x) = x(1+o(1)) = x+o(x)$$
 au voisinage de 0

.
$$f(x)=rac{1}{x}(1+o(1))=rac{1}{x}+o\left(rac{1}{x}
ight)$$
 au voisinage de $+\infty$

C'est très utile mais on peut avoir d'aller plus loin et de connaître le comportement de f(x)-x au voisinage de 0. On sait juste f(x)-x=o(x) mais on ne connaît pas son ordre de grandeur: x^2 ? x^3 ? Autre chose?

De même si on ne manipule pas directement des sommes mais des fonctions différentes (par exemple $\cos(x)$, $\sin(x)$), peut-on faire le même genre d'approximation?

C'est justement l'intérêt des développements limités.

Exercice

Donner des approximations des quantités suivantes:

Correction

$$egin{aligned} ext{Quand } A \ll 1, rac{1}{1+A} \simeq 1 \ ext{Quand } B \ll 1, rac{3+B+2B^2}{2+3B+B^2} \simeq rac{3}{2} \ ext{Quand } a \ll b, rac{a+b}{ab} \simeq rac{1}{a} \ ext{Quand } x \ll y, rac{x^2+y^2+2xy}{3x-y} \simeq -y \ ext{Quand } u \ll v, \sqrt{u^2+v^2} \simeq |v| \ ext{Quand } w \ll 1, e^{\sqrt{w}-1} \simeq rac{1}{e} \end{aligned}$$

$$\operatorname{quand} A\gg 1, rac{1}{1+A}\simeq rac{1}{A}$$
 $\operatorname{quand} B\gg 1, rac{3+B+2B^2}{2+3B+B^2}\simeq 2$ $\operatorname{quand} a\gg b, rac{a+b}{ab}\simeq rac{1}{b}$ $\operatorname{quand} x\gg y, rac{x^2+y^2+2xy}{3x-y}\simeq rac{x}{3}$ $\operatorname{quand} u\gg v, \sqrt{u^2+v^2}\simeq |u|$ $\operatorname{quand} w\gg 1, e^{\sqrt{w}-1}\simeq e^{\sqrt{w}-1}$

Correction (II)

La quantité $e^{\sqrt{w}-1}$ est un cas particulier au sens où la somme est dans l'argument de l'exponentielle. On a donc

$$e^{\sqrt{w}-1}=rac{1}{e}e^{\sqrt{w}}$$

Et il n'y a pas de somme et donc on ne peut en général négliger aucun terme. La formule se simplifie néanmoins quand $w\ll 1$ parce qu'on a alors $e^{\sqrt{w}}\simeq 1$. Mais on n'a négligé aucun terme pour arriver à cette approximation.

Développements Limités

Premier Contact

Soit $n \in \mathbb{R}$, $a \in \mathbb{R}$ et f une fonction définie au voisinage de a sauf éventuellement en a. On dit que f admet un développement limité à l'ordre n en a (noté $DL_n(a)$) s'il existe des réels (b_0,b_1,\ldots,b_n) tels que

$$orall x \in D_f \quad f(x) = b_0 + b_1(x-a) + \cdots + b_n(x-a)^n + o((x-a)^n)$$

Attention, on ne développe pas les $(x-a)^k$ (puisqu'on regarde des termes correctifs quand on s'éloigne de a).

De façon générale, en posant h=(x-a), on se ramènera **toujours** à des DL en 0.

Le terme $o((x-a)^n)$ est appelé *reste* ou *terme complémentaire*, le terme $b_0 + \cdots + b_n (x-a)^n$ est appelé terme polynômial.

Formule de Taylor

Le théorème suivant permet de construire explicitement b_0,b_1,\ldots,b_n

Soit $n\in\mathbb{R}$, $a\in\mathbb{R}$ et f une fonction définie au voisinage de a sauf éventuellement en a. Si f est n dérivable en a, alors elle admet le $DL_n(a)$ suivant

$$f(x) = f(a) + f'(a)(x - a) + \frac{f^{(2)}(a)}{2!}(x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + o((x - a)^n)$$

Autrement si f est n fois dérivable, on sait choisir b_0,\ldots,b_n sans (trop d') efforts

Intuition

Dans le développement de Taylor, les termes sont triés du plus important au moins important. En effet, au voisinage de a

$$1\gg (x-a)\gg (x-a)^2\gg \cdots \gg (x-a)^n\gg o((x-a)^n)$$

Le DL permet donc d'obtenir des approximations successives, dites d'ordre $0,1,\ldots,n$ de f (au voisinage de a) en ne gardant que les termes les plus à gauche:

Ordre 0
$$f(x) \simeq f(a)$$

Ordre 1 $f(x) \simeq f(a) + f'(a)(x-a)$
Ordre 2 $f(x) \simeq f(a) + f'(a)(x-a) + \frac{f^{(2)}(a)}{2!}(x-a)^2$
 \vdots
Ordre n $f(x) \simeq f(a) + f'(a)(x-a) + \frac{f^{(2)}(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$

Intuition (II)

Certaines des approximations précédentes sont bien connues:

- · l'approximation d'ordre 0 est la limite
- · l'approximation d'ordre 1 est la tangente
- · Plus généralement, l'approximation d'ordre n est un polynôme de degré n

Intuition (III)

Lien avec l'approximation

DLs et différentielle

Quand on utilise les DLs dans des contextes concrets, l'absence de notations f et x peut entrainer des erreurs. On va donc revenir aux notions de différentielles pour l'expliciter.

On considère deux quantités a et b reliées entre elles par une certaine relation b et on cherche une approximation de b(a) au voisinage d'une valeur de référence a_0 . Si b est continue, on sait que b(a) sera proche de $b(a_0)$ mais on voudrait être plus précis.

On définit les petits écarts $\Delta b=b(a)-b(a_0)$ et $\Delta a=a-a_0$. On sait que $\Delta b \to 0$ quand $\Delta a \to 0$ mais on cherche un lien plus précis entre Δb et Δa .

Illustration graphique

Lien avec la dérivée

On a vu avec les différentielles que pour des variations infinitésimales, on a

$$\mathrm{d}b = \alpha \mathrm{d}a \quad \text{avec } \alpha = \frac{\mathrm{d}b}{\mathrm{d}a}$$

Si on considère des variations **suffisamment petites** Δb et Δa , cette relation doit rester valable:

$$\Delta b \simeq \alpha \Delta a$$

Lien avec les dérivées successives

Si on n'est pas satisfait de l'approximation précédente, on peut rajouter des termes correctifs proportionnels à $\Delta a^2, \Delta a^3, \ldots$

$$\Delta b \simeq \alpha \Delta a + \beta \Delta a^2 + \gamma \Delta a^3 + \dots$$

Compte tenus des définitions de $\Delta b=b(a)-b(a_0)$ et $\Delta a=a-a_0$, cela revient à approcher la relation b(a) par un polynôme b^{DL} de a de degré n (le fameux DL)

$$b^{DL}(a) = b(a_0) + \alpha(a - a_0) + \beta(a - a_0)^2 + \gamma(a - a_0)^3 + \dots$$

Lien avec les dérivées successives (II)

Pour s'assurer que l'approximation $b^{DL}(a)\simeq b(a)$ est valide au voisinage de a_0 , on impose à b^{DL} et b d'avoir la même valeur en a_0 , mais également la même pente, la même concavité, etc.

En termes formels,

$$orall k \leq n \quad rac{\mathrm{d}^k b^{DL}}{\mathrm{d} a^k}(a_0) = rac{\mathrm{d}^k b}{\mathrm{d} a^k}(a_0)$$

Exercice

Dériver $b^{DL}(a)$ 3 fois en a_0 et montrer qu'au point de référence a_0 on a

$$rac{\mathrm{d} b^{DL}}{\mathrm{d} a}(a_0)=lpha$$

$$rac{\mathrm{d}^2 b^{DL}}{\mathrm{d} a^2}(a_0) = 2 imeseta$$

$$rac{\mathrm{d}^3 b^{DL}}{\mathrm{d} a^3}(a_0) = 3 imes 2 imes \gamma$$

En déduire les valeurs de α , β , γ

Lien avec les dérivées successives (III)

On retrouve ainsi en égalisant les dérivées, et avec la notation de Leibniz la formule de Taylor

$$b(a)\simeq b(a_0)+rac{\mathrm{d} b}{\mathrm{d} a}(a_0)\Delta a+rac{1}{2!}rac{\mathrm{d}^2 b}{\mathrm{d} a^2}(a_0)\Delta a^2+\cdots+rac{1}{n!}rac{\mathrm{d}^n b}{\mathrm{d} a^n}(a_0)\Delta a^n$$

La méthode à suivre pour faire un DL est donc systématique

- · exprimer b en fonction de a (souvent donné dans l'exercice)
- · choisir un point de référence a_0 (idem)
- · calculer les premières dérivées de b
- · en déduire les coefficients du DL et conclure

Exemple (I)

Pour faire un DL de $u=\cos(\theta)$ autour de $\theta_0=\pi/3$, on calcule les valeurs successives des dérivées de u en θ_0 .

- $u(\theta_0) = \cos(\theta_0) = \frac{1}{2}$
- $\frac{\mathrm{d}u}{\mathrm{d}\theta}(\theta_0) = -\sin(\theta_0) = -\frac{\sqrt{3}}{2}$
- $rac{\mathrm{d}^2 u}{\mathrm{d} heta^2}(heta_0) = -\cos(heta_0) = -rac{1}{2}$
- $rac{\mathrm{d}^3 u}{\mathrm{d} heta^3}(heta_0) = \sin(heta_0) = rac{\sqrt{3}}{2}$

Exemple (II)

D'ou on déduit que si heta reste proche de $heta_0=rac{\pi}{3}$, on a

$$u(\theta) = \cos(\theta) \simeq \frac{1}{2} - \frac{\sqrt{3}}{2} \left(\theta - \frac{\pi}{3}\right) - \frac{1}{2!} \frac{1}{2} \left(\theta - \frac{\pi}{3}\right)^2 + \frac{1}{3!} \frac{\sqrt{3}}{2} \left(\theta - \frac{\pi}{3}\right)^3$$
$$\simeq \frac{1}{2} - \frac{\sqrt{3}}{2} \left(\theta - \frac{\pi}{3}\right) - \frac{1}{4} \left(\theta - \frac{\pi}{3}\right)^2 + \frac{\sqrt{3}}{12} \left(\theta - \frac{\pi}{3}\right)^3$$

Exercice

En appliquant la procédure vue dans l'exemple, calculer un DL_3 des fonctions suivantes

- v = an(u) lorsque u est proche de $rac{\pi}{6}$
- $v = \ln(u)$ lorsque u est proche de 2
- $\cdot A=1+t+2t^2+3t^3$ lorsque t est proche de 1. Montrer que dans ce cas-là, le DL est en fait rigoureusement égal à A mais écrit sous une autre forme
- $A = 1 + t + 2t^2 + 3t^3$ lorsque t est proche de 0. Commenter le résultat

Exercice - Proposition

Dans la pratique, on se ramène toujours à des DLs en 0 et il est bon de connaître les $DL_3(0)$ des fonctions suivantes (à calculer comme vu dans l'exemple)

$\sin(x)$	$\cos(x)$	$\tan(x)$
1		1
$\overline{1+u}$		$\overline{1-u}$
e^u		e^{-u}
$\sqrt{1+u}$		$\sqrt{1-u}$
$\ln(1+u)$		$\ln(1-u)$
$(1+u)^{lpha}$		$(1-u)^{lpha}$

DLs classiques

Les DLs suivants au voisinage de 0 sont à connaître.

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + o(x^{n})$$

$$\cos(x) = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \dots + (-1)^{n} \frac{x^{2n}}{2n!} + o(x^{2n})$$

$$\sin(x) = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots + (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+1})$$

$$\frac{1}{1+x} = 1 - x + x^{2} + \dots + (-1)^{n} x^{n} + o(x^{n})$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} + \dots + (-1)^{n-1} \frac{x^{n}}{n} + o(x^{n})$$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2} x^{2} + \dots$$

$$+ \frac{\alpha(\alpha-1) \dots (\alpha-(n-1))}{n!} x^{n} + o(x^{n})$$

Opérations sur les DLs

Comme pour les limites et les dérivées, on peut aussi utiliser des règles pour combiner les DLs.

Addition, multiplication de DL

Si f et g admettent toutes deux un DL_n en 0 et $\lambda \in \mathbb{R}$, alors

- · f+g admet un DL_n en 0, qui s'obtient en additionnant les parties polynômiales des DL_n de f et g (penser à la linéarité de la dérivée: $(f+g)^{(k)}=f^{(k)}+g^{(k)}$)
- f imes g admet un DL_n en 0, qui s'obtient en multipliant les parties polynômiales des DL_n de f et g et **en ne gardant que les termes de degrés** $\leq n$.
- · λf admet un DL_n en 0, qui s'obtient en multipliant la partie polynômiale du DL_n de f par λ .

Exemple

- $\cos(x) = 1 \frac{x^2}{2} + o(x^2)$
- $e^x = 1 + x + \frac{x^2}{2} + o(x^2)$

On a donc (les termes en rouges sont des $o(x^2)$):

 $e^x + \cos(x) = 2 + x + o(x^2)$ (terme d'ordre 2 du DL_2 nul)

$$e^{x}\cos(x) = \left(1 + x + \frac{x^{2}}{2} + o(x^{2})\right) \left(1 - \frac{x^{2}}{2} + o(x^{2})\right)$$

$$= 1 - \frac{x^{2}}{2} + o(x^{2}) + x - \frac{x^{3}}{2} + o(x^{3}) + \frac{x^{2}}{2} - \frac{x^{4}}{4} + o(x^{4})$$

$$+ o(x^{2}) + o(x^{4}) + o(x^{4})$$

$$= 1 + x + o(x^{2})$$

Composition

Soit f:A o B et g:B o C deux fonctions avec

$$0 \in A, 0 \in B \text{ et } f(0) = 0$$

Si f et g admettent toutes deux un DL_n en 0, alors $g\circ f$ s'obtient en composant les parties polynômiales des DL_n de f et g et **en ne gardant que les termes de degrés** $\leq n$.

Exemple (I)

Avec $\sin(x)=x-\frac{x^3}{3!}+o(x^3)$ et $\frac{x}{1+x}=x-x^2+x^3+o(x^3)$, on pose implicitement $X=\frac{x^2}{1+x}$ (petit quand x est proche de 0).

$$\sin\left(\frac{x}{1+x}\right) = \sin(X)$$
$$= X - \frac{X^3}{3!} + o(X^3)$$

Exemple (II)

Pour finir le calcul, on développe et on ne garde que les termes de degré au plus 3

$$X = x - x^2 + x^3 + o(x^3)$$
 $X^2 = (x - x^2 + x^3 + o(x^3))^2 = x^2 - 2x^3 + o(x^3)$
 $X^3 = (x - x^2 + x^3 + o(x^3))^3 = x^3 + o(x^3)$
 $O(X^3) = O(x^3)$

et donc au final

$$\sin\left(\frac{x}{1+x}\right) = x - x^2 + x^3 - x^3/6 + o(x^3)$$
 $= x - x^2 + \frac{5x^3}{6} + o(x^3)$

Quotient

Comme d'habitude, quotienter par f revient à multiplier par 1/f, on cherche donc un DL_n de 1/f. Soit f une fonction admettant le $DL_n(0)$ suivant:

$$f(x) = b_0 + b_1 x + \cdots + b_n x^n + o(x^n)$$

- $\cdot\;$ Si $b_0=0$, alors 1/f n'a pas de DL en 0
- · Sinon, 1/f admet un $DL_n(0)$ obtenu en écrivant:

$$egin{aligned} rac{1}{f(h)} = & rac{1}{b_0 + b_1 x + \cdots + b_n x^n + o(x^n)} \ = & rac{1}{b_0} rac{1}{1 + rac{b_1}{b_0} x + \cdots + rac{b_n}{b_0} x^n + o(x^n)} \end{aligned}$$

Et il faut donc composer le $DL_n(0)$ de $u\mapsto rac{1}{1+u}$ avec $u=rac{b_1}{b_0}x+\cdots+rac{b_n}{b_0}x^n+o(x^n)$.

Les calculs à faire peuvent être un brin compliqués...

Exemple (I)

On va calculer le $DL_2(0)$ de $1/e^x$. On sait que

$$e^x = 1 + x + rac{x^2}{2} + o(x^2) = 1 + u$$

avec $u=x+rac{x^2}{2}+o(x^2).$ On va donc composer avec le $DL_2(0)$ de $rac{1}{1+u}$, à savoir

$$\frac{1}{1+u} = 1 - u + u^2 + o(u^2)$$

Exemple (II)

On commence par calculer u^2 (et il est clair que $o(u^2) = o(x^2)$)

$$u^2 = (x + \frac{x^2}{2} + o(x^2))^2 = x^2 + o(x^2)$$

D'où on tire

$$\frac{1}{e^x} = \frac{1}{1+u} = 1 - u + u^2 + o(u^2)$$

$$= 1 - \left(x + \frac{x^2}{2}\right) + x^2 + o(x^2)$$

$$= 1 - x + \frac{x^2}{2} + o(x^2)$$

Exemple (III)

Dans ce cas précis, on aurait aussi pu remarquer que $1/e^x=e^{-x}$ et se rappeler que le $DL_2(0)$ de e^{-x} est

$$e^{-x} = 1 + (-x) + \frac{(-x)^2}{2} + o((-x)^2)$$

= $1 - x + \frac{x^2}{2} + o(x^2)$

On retrouve heureusement le même résultat

Exercices

Calculer les DLs suivants (ceux notés [*] sont difficiles)

$$DL_4(0) ext{ de } rac{x}{\sin(x)}$$
 $DL_2(0) ext{ de } \ln(a^x + b^x)$ [*] $DL_4(0) ext{ de } rac{1}{\cos(x)}$ $DL_4(\pi/2) ext{ de } \sin(x)^{\sin(x)}$ [*] $DL_2(\pi/4) ext{ de } \sqrt{\tan(x)}$ $DL_1(0) ext{ de } \sqrt{1 + \sqrt{1 - x}}$ $DL_4(0) ext{ de } e^{\cos(x)}$ $DL_3(0) ext{ de } x\sqrt{rac{1 + x}{1 - x}}$ $DL_3(1) ext{ de } rac{\ln(x)}{\sqrt{x}}$

Solutions (I)

Calculer les DLs suivants

$$\frac{x}{\sin(x)} = \frac{1}{1 - [x^2/3! - x^4/5! + o(x^4)]}$$

$$= 1 + [x^2/3! - x^4/5!] + [x^2/3! - x^4/5!]^2 + o(x^4)$$

$$= 1 + \frac{x^2}{6} + \frac{7x^4}{360} + o(x^4)$$

$$\ln(a^x + b^x) = x \ln(a) + \ln(1 + (b/a)^x)$$

$$= x \ln(a) + \ln(2) + \frac{1}{2}[(b/a)^x - 1] - \frac{1}{8}[(b/a)^x - 1]^2$$

$$= \ln(2) + \frac{\ln(a) + \ln(b)}{2}x + x^2 \frac{\ln^2(b/a)}{2} - \frac{1}{8}x^2 \ln^2(b/a) + o(x^2)$$

$$= \ln(2) + \frac{\ln(a) + \ln(b)}{2}x + \frac{3(\ln(a) - \ln(b))^2}{8}x^2 + o(x^2)$$

Solutions (II)

$$\begin{split} \frac{1}{\cos(x)} &= \frac{1}{1 - [x^2/2! - x^4/4! + o(x^4)]} \\ &= 1 + [x^2/2! - x^4/4!] + [x^2/2! - x^4/4!]^2 + o(x^4) \\ &= 1 + \frac{x^2}{2} + \frac{5x^4}{24} + o(x^4) \\ \sin(x)^{\sin(x)} &= \sin(\pi/2 + h)^{\sin(\pi/2 + h)} = \cos(h)^{\cos(h)} \\ &= \exp\left[(1 - h^2/2 + h^4/24) \ln(1 - h^2/2 + h^4/24)\right] + o(h^4) \\ &= \exp((1 - h^2/2 + h^4/24)(-h^2/2 + h^4/24 - h^4/8)) + o(h^4) \\ &= \exp((1 - h^2/2 + h^4/24)(-h^2/2 - h^4/12)) + o(h^4) \\ &= \exp(-h^2/2 - h^4/12 + h^4/4) + o(h^4) \\ &= \exp(-h^2/2 + h^4/6) + o(h^4) \\ &= 1 + (-h^2/2 + h^4/6) + (-h^2/2 + h^4/6)^2/2 + o(h^4) \\ &= 1 - h^2/2 + h^4/6 + h^4/8 = 1 - \frac{h^2}{2} + \frac{7h^4}{24} + o(h^4) \end{split}$$

Solutions (III)

$$\tan(\pi/4 + x) = \tan(\pi/4) + \tan'(\pi/4)x + \frac{\tan''(\pi/4)}{2}x^2 + o(x^2)$$

$$= 1 + 2x + 2x^2 + o(x^2)$$

$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{1}{8}x^2 + o(x^2)$$

$$\sqrt{\tan(\pi/4 + x)} = \sqrt{1 + (2x + 2x^2)} + o(x^2)$$

$$= 1 + (x + x^2) - \frac{1}{8}(2x + 2x^2)^2 + o(x^2)$$

$$= 1 + x + x^2 - \frac{1}{2}x^2 + o(x^2) = 1 + x - \frac{x^2}{2} + o(x^2)$$

Solutions (IV)

$$\sqrt{1-x} = 1 - \frac{x}{2} + o(x)$$

$$\sqrt{2+h} = \sqrt{2} + \frac{h}{2\sqrt{2}} + o(h)$$

$$\sqrt{1+\sqrt{1-x}} = \sqrt{1+(1-x/2)} + o(x)$$

$$= \sqrt{2-x/2} + o(x) = \sqrt{2} - \frac{x}{4\sqrt{2}} + o(x)$$

Solutions (V)

$$\begin{aligned}
\cos(x) &= 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + o(x^4) \\
e^h &= 1 + h + \frac{h^2}{2} + o(h^2) \\
e^{\cos(x)} &= e^{1 - \frac{x^2}{2!} + \frac{x^4}{4!}} + o(x^4) = e\left(e^{-\frac{x^2}{2!} + \frac{x^4}{4!}}\right) + o(x^4) \\
&= e\left(1 + \left(-\frac{x^2}{2!} + \frac{x^4}{4!}\right) + \left(-\frac{x^2}{2!} + \frac{x^4}{4!}\right)^2 / 2\right) + o(x^4) \\
&= e\left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^4}{8}\right) + o(x^4) \\
&= e - \frac{e}{2}x^2 + \frac{e}{6}x^4 + o(x^4)
\end{aligned}$$

Comme le calcul fait intervenir e^h avec h d'ordre x^2 , il suffit de faire un DL_2 de \exp en h pour avoir un DL_4 en x.

Solutions (VI)

$$\sqrt{1+x} = 1 + x/2 - x/8 + o(x^2)$$

$$\sqrt{1/(1-x)} = (1-x)^{-1/2}$$

$$= 1 - \frac{1}{2}(-x) + \frac{3}{8}(-x)^2 + o(x^2)$$

$$= 1 + x/2 + 3x^2/8 + o(x^2)$$

$$\sqrt{\frac{1+x}{1-x}} = (1+x/2 - x^2/8)(1+x/2 + 3x^2/8) + o(x^2)$$

$$= 1 + x + o(x^2)$$

$$x\sqrt{\frac{1+x}{1-x}} = x + x^2 + o(x^3)$$

Comme on multiplie par x à la fin, on se contente d'un DL_2 de $\sqrt{\frac{1+x}{1-x}}$.

Solutions (VI)

$$\frac{1}{\sqrt{1+x}} = 1 - \frac{x}{2} + \frac{3}{8}x^2 + o(x^2)$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + o(x^3)$$

$$= x\left(1 - \frac{x}{2} + \frac{x^2}{3} + o(x^2)\right)$$

$$\frac{\ln(1+x)}{\sqrt{1+x}} = x\left[(1 - \frac{x}{2} + \frac{x^2}{3})(1 - \frac{x}{2} + \frac{3}{8}x^2) + o(x^2)\right]$$

$$= x\left[1 - x + \frac{23}{24}x^2 + o(x^2)\right]$$

$$= x - x^2 + \frac{23}{24}x^3 + o(x^3)$$

Comme $\ln(x)=x+o(x)$ et qu'on multiplie, on se contente d'un DL $_2$ de $\frac{1}{\sqrt{1+x}}$. On obtiendra bien un DL $_3$ après multiplication.

Retour sur les DLs d'ordre 1 et 2

DL d'ordre 1 en physique

Physiquement, l'approximation d'ordre 1 considère que les variations Δb et Δa sont proportionnelles, et ce dans le même rapport que les différentielles $\mathrm{d}b$ et $\mathrm{d}a$.

Du point de vue graphique, cela revient à confondre la courbe de b(a) avec une droite (en l'occurence sa tangente en a_0). Les $DL_1(0)$ sont très utilisés pour remplacer des petits angles θ , ils permettent d'écrire

- $\sin(\theta) \simeq \theta$
- $\tan(\theta) \simeq \theta$

qui est une très bonne approximation pour des petits angles (de l'ordre de 0.3490659 radians).

Représentation graphique

DL d'ordre 2 en physique

Si on s'éloigne un peu trop du point de référence a_0 (et pour certaines valeurs de a_0), l'approximation par une droite n'est pas très satisfaisante et il faut rajouter un terme correctif en $(a-a_0)^2$ pour obtenir une meilleure approximation. Ceci revient à approcher le graphe de b(a) par une parabole.

Le $DL_2(0)$ est très utilisé pour remplacer le \cos de petits angles θ , il permet d'écrire

$$\cos(heta) \simeq 1 - rac{ heta^2}{2}$$

qui est une très bonne approximation pour des petits angles (jusqu'à 0.7853982 radians).

Représentation graphique

Exercice

En optique ondulatoire, on a souvent affaire à la fonction *sinus cardinal* définie par

$$\operatorname{sinc}(x) = \frac{\sin(x)}{x}$$

En partant du DL de \sin , trouver directement le $DL_4(0)$ de $\mathrm{sinc}(x)$. Pourquoi peut-on définir $\mathrm{sinc}(0)=1$? Que peut-on dire de la dérivée première du sinus cardinal lorsque x tend 0 ? Et du signe de sa dérivée seconde ?

Représentation graphique

Intérêt en mathématiques

Les DLs permettent de calculer très facilement des limites. En particulier, la règle de l'Hopital est un cas particulier de DLs.

$$rac{f(x)-f(x_0)}{g(x)-g(x_0)} = rac{f'(x_0)(x-x_0)+o(x-x_0)}{g'(x_0)(x-x_0)+o(x-x_0)} \ = rac{f'(x_0)+o(1)}{g'(x_0)+o(1)} {
ightarrow} rac{f'(x_0)}{g'(x_0)}$$

Intérêt en mathématiques (II)

On peut aussi retrouver des limites classiques en 0

$$e^x = 1 + x + o(x) \Rightarrow rac{e^x - 1}{x} extstyle > 1 \ \sin(x) = x + o(x) \Rightarrow rac{\sin(x)}{x} extstyle > 1 \ \ln(1 + x) = x + o(x) \Rightarrow rac{\ln(1 + x)}{x} extstyle > 1 \ x extstyle > 0$$

et d'autres plus neuves

$$\cos(x) = 1 - rac{x^2}{2} + o(x^2) \Rightarrow rac{1 - \cos(x)}{x^2} \stackrel{1}{\longrightarrow} rac{1}{2}$$

Exercices d'applications (I)

- · Dans le modèle du gaz parfait avec PV=nRT, on considère une enceinte étanche thermostatée (nombre de moles et température constants). On suppose que le volume de l'enceinte passe de V à $V+\Delta V$. La pression évolue en conséquence de P à $P+\Delta P$. Relier ΔP à ΔV en faisant un DL au premier ordre. Comment se compare les variations relatives $\Delta P/P$ et $\Delta V/V$.
- On considère une sphère de rayon R et de surface S. On suppose que le rayon de la sphère passe de R à $R+\Delta R$. La surface évolue en conséquence de S à $S+\Delta S$. Relier ΔS à ΔR en faisant un DL au premier ordre. Comment se compare les variations relatives $\Delta S/S$ et $\Delta R/R$.

Exercices d'applications (II)

On cherche à évaluer le comportement de la quantité $f(t)=\frac{1}{\sqrt{t^2+\tau^2}}$ lorsque t est petit devant τ . Exprimer f(t) sour la forme $C(1+x)^{\alpha}$ où $x=t/\tau$ est une quantité sans dimension très petite et C et α sont des constantes à déterminer. En faisant ensuite un DL à l'ordre 2 de $(1+x)^{\alpha}$, en déduire un DL(t) de (t)0.

Exercices d'applications (III)

En utilisant les DL (et surtout les théorèmes d'opérations) calculer les limites suivantes:

$$egin{aligned} &\lim_{x o 0} rac{\cos(x)-1}{\ln(1+x)\sin(x)} &\lim_{x o 0} rac{\ln(1+ an(x))}{\sin(x)} \ &\lim_{x o 0} rac{\sin(x) an(x)}{\sin(x)} &\lim_{x o 0} rac{1}{x^2} - rac{1}{\sin^2(x)} \ &\lim_{x o 1} rac{\ln(x)}{x^2-1} &\lim_{x o 1} rac{\ln(x)(an(\pi x/4)-1)}{(x-1)^2} \ &\lim_{x o +\infty} \left(rac{2x+1}{2x-1}
ight)^{2x} &\lim_{x o +\infty} x\left(\left(1+rac{1}{x}
ight)^x-e
ight) \end{aligned}$$

Les courageux peuvent aussi essayer de calculer les DL_1 des 6 premières fonctions.

Exercices d'applications (III): Réponses

$$\lim_{x \to 0} \frac{\cos(x) - 1}{\ln(1 + x)\sin(x)} = -\frac{1}{2} \qquad \lim_{x \to 0} \frac{\ln(1 + \tan(x))}{\sin(x)} = 1$$

$$\lim_{x \to 0} \frac{\sin(x)\tan(x)}{\sin(x^2)} = 1 \qquad \lim_{x \to 0} \frac{1}{x^2} - \frac{1}{\sin^2(x)} = -\frac{1}{3}$$

$$\lim_{x \to 1} \frac{\ln(x)}{x^2 - 1} = \frac{1}{2} \qquad \lim_{x \to 1} \frac{\ln(x)(\tan(\pi x/4) - 1)}{(x - 1)^2} = \frac{\pi}{2}$$

$$\lim_{x \to +\infty} \left(\frac{2x + 1}{2x - 1}\right)^{2x} = e^2 \qquad \lim_{x \to +\infty} x \left(\left(1 + \frac{1}{x}\right)^x - e\right) = -\frac{e}{2}$$