《高数》试卷1(上)

(A)
$$f(x) = \ln x^2$$
 π $g(x) = 2 \ln x$ (B) $f(x) = |x|$ π

(B)
$$f(x) = |x|$$
 π

 $g(x) = \sqrt{x^2}$

(C)
$$f(x) = x$$
 $\Re g(x) = \left(\sqrt{x}\right)^2$ (D) $f(x) = \frac{|x|}{x}$ $\Re g(x) = 1$

2. 函数
$$f(x) = \begin{cases} \frac{\sqrt{\sin x + 4} - 2}{\ln(1 + x)} & x \neq 0 \\ a & x = 0 \end{cases}$$
 在 $x = 0$ 处连续,则 $a = ($).

(A) 0 (B)
$$\frac{1}{4}$$
 (C) 1 (D) 2

3. 曲线 $y = x \ln x$ 的平行于直线 x - y + 1 = 0 的切线方程为 ().

(A)
$$y = x - 1$$
 (B) $y = -(x + 1)$ (C) $y = (\ln x - 1)(x - 1)$ (D) $y = x$

- 4. 设函数 f(x) = |x|, 则函数在点 x = 0 处 ().
- (A)连续且可导 (B)连续且可微 (C)连续不可导 (D)不连续不可微
- 5. 点 x = 0 是函数 $y = x^4$ 的 ().
- (A) 驻点但非极值点 (B) 拐点 (C) 驻点且是拐点 (D) 驻点且是极值点

6. 曲线
$$y = \frac{1}{|x|}$$
 的渐近线情况是().

- (A) 只有水平渐近线 (B) 只有垂直渐近线 (C) 既有水平渐近线又有垂直渐近线
- (D) 既无水平渐近线又无垂直渐近线

7.
$$\int f'\left(\frac{1}{x}\right) \frac{1}{x^2} dx$$
 的结果是().

(A)
$$f\left(-\frac{1}{x}\right) + C$$
 (B) $-f\left(-\frac{1}{x}\right) + C$ (C) $f\left(\frac{1}{x}\right) + C$ (D) $-f\left(\frac{1}{x}\right) + C$

8.
$$\int \frac{dx}{e^x + e^{-x}}$$
 的结果是 ()

(A)
$$\arctan e^x + C$$
 (B) $\arctan e^{-x} + C$ (C) $e^x - e^{-x} + C$ (D) $\ln(e^x + e^{-x}) + C$

9. 下列定积分为零的是(

(A)
$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\arctan x}{1+x^2} dx$$
 (B) $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} x \arcsin x dx$ (C) $\int_{-1}^{1} \frac{e^x + e^{-x}}{2} dx$ (D)

$$\int_{-1}^{1} \left(x^2 + x\right) \sin x \, dx$$

10. 设
$$f(x)$$
为连续函数,则 $\int_0^1 f'(2x)dx$ 等于().

(A)
$$f(2)-f(0)$$
 (B) $\frac{1}{2}[f(11)-f(0)]$ (C) $\frac{1}{2}[f(2)-f(0)]$ (D) $f(1)-f(0)$

二. 填空题(每题4分,共20分)

1. 设函数
$$f(x) = \begin{cases} \frac{e^{-2x} - 1}{x} & x \neq 0 \\ a & x = 0 \end{cases}$$
 在 $x = 0$ 处连续,则 $a =$ _____.

2. 已知曲线
$$y = f(x)$$
 在 $x = 2$ 处的切线的倾斜角为 $\frac{5}{6}\pi$,则 $f'(2) = ______$.

3.
$$y = \frac{x}{x^2 - 1}$$
 的垂直渐近线有 ______ 条.

$$4. \int \frac{dx}{x(1+\ln^2 x)} = \underline{\hspace{1cm}}.$$

5.
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(x^4 \sin x + \cos x \right) dx = \underline{\qquad}.$$

三. 计算(每小题5分,共30分)

1. 求极限

$$2 \lim_{x \to 0} \frac{x - \sin x}{x \left(e^{x^2} - 1\right)}$$

- 2. 求曲线 $y = \ln(x + y)$ 所确定的隐函数的导数 y'_x .
- 3. 求不定积分

$$3\int xe^{-x}dx$$

四. 应用题(每题10分,共20分)

1. 作出函数 $y = x^3 - 3x^2$ 的图像.

2. 求曲线 $y^2 = 2x$ 和直线 y = x - 4 所围图形的面积.

《高数》试卷1参考答案

- 一 选择题
- 1. B 2. B 3. A 4. C 5. D 6. C 7. D 8. A 9. A 10. C
- 二. 填空题
- 1. -2 2. $-\frac{\sqrt{3}}{3}$ 3. 2 4. $\arctan \ln x + c$ 5. 2
- 三. 计算题

四.应用题

《高数》试卷2(上)

- -. 选择题(将答案代号填入括号内, 每题 3 分, 共 30 分)
- 1.下列各组函数中,是相同函数的是(

(A)
$$f(x) = |x| \neq g(x) = \sqrt{x^2}$$

(B)
$$f(x) = \frac{x^2 - 1}{x - 1}$$
 $\pi 1 y = x + 1$

(C)
$$f(x) = x \pi g(x) = x(\sin^2 x + \cos^2 x)$$
 (D) $f(x) = \ln x^2 \pi g(x) = 2 \ln x$

(D)
$$f(x) = \ln x^2 \pi g(x) = 2 \ln x$$

2.设函数
$$f(x) = \begin{cases} \frac{\sin 2(x-1)}{x-1} & x < 1 \\ 2 & x = 1 \\ x^2 - 1 & x > 1 \end{cases}$$
 , 则 $\lim_{x \to 1} f(x) = ($).

- (A)

3.设函数 y = f(x) 在点 x_0 处可导,且 f'(x) > 0,曲线则 y = f(x) 在点 $(x_0, f(x_0))$ 处的切 线的倾斜角为{

- (A)
- 0 (B) $\frac{\pi}{2}$ (C) 锐角 (D) 钝角

4.曲线 $y = \ln x$ 上某点的切线平行于直线 y = 2x - 3,则该点坐标是().

(A)
$$\left(2, \ln \frac{1}{2}\right)$$

(B)
$$\left(2,-\ln\frac{1}{2}\right)$$

(C)
$$\left(\frac{1}{2}, \ln 2\right)$$

(A)
$$\left(2, \ln \frac{1}{2}\right)$$
 (B) $\left(2, -\ln \frac{1}{2}\right)$ (C) $\left(\frac{1}{2}, \ln 2\right)$ (D) $\left(\frac{1}{2}, -\ln 2\right)$

5.函数 $y = x^2 e^{-x}$ 及图象在(1,2) 内是().

- (A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的 6.以下结论正确的是(
- (A) 若 x_0 为函数y = f(x)的驻点,则 x_0 必为函数y = f(x)的极值点.
- (B) 函数 y = f(x) 导数不存在的点,一定不是函数 y = f(x) 的极值点.

(C) 若函数 y = f(x) 在 x_0 处取得极值,且 $f'(x_0)$ 存在,则必有 $f'(x_0) = 0.$

- (D) 若函数 y = f(x)在 x_0 处连续,则 $f'(x_0)$ 一定存在.
- 7.设函数 y = f(x)的一个原函数为 $x^2 e^{\frac{1}{x}}$,则 f(x) = (

(A)
$$(2x-1)e^{\frac{1}{x}}$$
 (B) $2x-e^{\frac{1}{x}}$ (C) $(2x+1)e^{\frac{1}{x}}$ (D) $2xe^{\frac{1}{x}}$

(B)
$$2x - e^{\frac{1}{x}}$$

(C)
$$(2x+1)e^{\frac{1}{x}}$$

(D)
$$2xe^{\frac{1}{x}}$$

8.若
$$\int f(x)dx = F(x) + c$$
,则 $\int \sin x f(\cos x)dx = ($

(A)
$$F(\sin x)+c$$
 (B) $-F(\sin x)+c$ (C) $F(\cos x)+c$ (D) $-F(\cos x)+c$

9.设
$$F(x)$$
为连续函数,则 $\int_0^1 f'\left(\frac{x}{2}\right) dx = ($).

(A)
$$f(1)-f(0)$$
 (B) $2[f(1)-f(0)]$ (C) $2[f(2)-f(0)]$ (D) $2[f(\frac{1}{2})-f(0)]$

10.定积分
$$\int_a^b dx \left(a < b\right)$$
 在几何上的表示().

- (A) 线段长b-a (B) 线段长a-b (C) 矩形面积 $(a-b)\times 1$ (D) 矩形面积 $(b-a)\times 1$
- 二. 填空题 (每题 4 分, 共 20 分)

1.设
$$f(x) = \begin{cases} \frac{\ln(1-x^2)}{1-\cos x} & x \neq 0 \\ a & x = 0 \end{cases}$$
, 在 $x = 0$ 连续,则 $a =$ ______.

2.设
$$y = \sin^2 x$$
,则 $dy = \underline{\qquad} d \sin x$.

3.函数
$$y = \frac{x}{x^2 - 1} + 1$$
 的水平和垂直渐近线共有_____条.

4.不定积分
$$\int x \ln x dx =$$
______.

5. 定积分
$$\int_{-1}^{1} \frac{x^2 \sin x + 1}{1 + x^2} dx =$$
______.

三. 计算题 (每小题 5 分, 共 30 分)

1.求下列极限:

2.求由方程 $y = 1 - xe^y$ 所确定的隐函数的导数 y'_x .

3.求下列不定积分:

$$\bigcirc \int \tan x \sec^3 x dx$$

$$\Im \int x^2 e^x dx$$

四. 应用题 (每题 10 分, 共 20 分)

1.作出函数 $y = \frac{1}{3}x^3 - x$ 的图象.(要求列出表格)

2.计算由两条抛物线: $y^2 = x, y = x^2$ 所围成的图形的面积.

《高数》试卷2参考答案

一.选择题: CDCDB CADDD

二填空题: 1.-2 2.2 sin x 3.3 4. $\frac{1}{2}x^2 \ln x - \frac{1}{4}x^2 + c$ 5. $\frac{\pi}{2}$

三.计算题: 1. ① e^2 ②1 2. $y'_x = \frac{e^y}{y-2}$

$$2. y_x' = \frac{e^y}{y-2}$$

3.1)
$$\frac{\sec^3 x}{3} + c$$
 2) $\ln(\sqrt{x^2 + a^2} + x) + c$ 3) $(x^2 - 2x + 2)e^x + c$

四.应用题: 1.略 $2.S = \frac{1}{3}$

《高数》试卷3(上)

- 一、 填空题(每小题 3 分, 共 24 分)
- 1. 函数 $y = \frac{1}{\sqrt{9-r^2}}$ 的定义域为_
- 3. 函数 $f(x) = \frac{x^2 1}{x^2 3x + 2}$ 的无穷型间断点为______.
- 4. 设 f(x) 可导, $y = f(e^x)$, 则 $y' = _____$.
- 5. $\lim_{x \to \infty} \frac{x^2 + 1}{2x^2 + x 5} = \underline{\qquad}.$
- 6. $\int_{-1}^{1} \frac{x^3 \sin^2 x}{x^4 + x^2 1} dx = \underline{\qquad}$
- 7. $\frac{d}{dx} \int_0^{x^2} e^{-t} dt =$ ______.
- 二、求下列极限(每小题 5 分, 共 15 分)

- 1. $\lim_{x\to 0} \frac{e^x 1}{\sin x}$; 2. $\lim_{x\to 3} \frac{x 3}{x^2 9}$; 3. $\lim_{x\to \infty} \left(1 + \frac{1}{2x}\right)^{-x}$.
- 三、求下列导数或微分(每小题 5 分, 共 15 分)
- 1. $y = \frac{x}{x+2}$, $\Re y'(0)$.

 $2. \quad y = e^{\cos x}, \ \Re dy.$

- 3. 设 $xy = e^{x+y}$, 求 $\frac{dy}{dx}$.
- 四、求下列积分(每小题5分,共15分)
- 1. $\int \left(\frac{1}{x} + 2\sin x\right) dx$.
- $2. \int x \ln(1+x) dx.$

$$3. \quad \int_0^1 e^{2x} dx$$

五、
$$(8 \, f)$$
 求曲线
$$\begin{cases} x = t \\ y = 1 - \cos t \end{cases}$$
 在 $t = \frac{\pi}{2}$ 处的切线与法线方程.

六、(8 分)求由曲线 $y = x^2 + 1$, 直线 y = 0, x = 0和 x = 1所围 成的平面图形的面积, 以及此图形绕 y 轴旋转所得旋转体的体 积.

七、(8 分)求微分方程y'' + 6y' + 13y = 0的通解.

八、(7)求微分方程 $y' + \frac{y}{x} = e^x$ 满足初始条件 y(1) = 0 的特解.

《高数》试卷3参考答案

$$-1. |x| < 3$$

2.
$$a = 4$$

3.
$$x = 2$$

2.
$$a = 4$$
 3. $x = 2$ 4. $e^x f'(e^x)$

5.
$$\frac{1}{2}$$

二.1. 原式=
$$\lim_{x\to 0}\frac{x}{x}=1$$

$$2. \lim_{x \to 3} \frac{1}{x+3} = \frac{1}{6}$$

3. 原式=
$$\lim_{x\to\infty} [(1+\frac{1}{2x})^{2x}]^{-\frac{1}{2}} = e^{-\frac{1}{2}}$$

$$\equiv$$
 1. $y' = \frac{2}{(x+2)^2}$, $y'(0) = \frac{1}{2}$

$$2. dy = -\sin x e^{\cos x} dx$$

$$\Rightarrow y' = \frac{e^{x+y} - y}{x - e^{x+y}} = \frac{xy - y}{x - xy}$$

四. 1. 原式= $\lim |x| - 2\cos x + C$

6小时通关高数秘籍

扫描二维码1.7秒即可获取

七. 特征方程: $r^2 + 6r + 13 = 0 \Rightarrow r = -3 \pm 2i$ $y = e^{-3x} (C_1 \cos 2x + C_2 \sin 2x)$

$$\int \int \cdot y = e^{-\int \frac{1}{x} dx} \left(\int e^x e^{\int \frac{1}{x} dx} dx + C \right)$$
$$= \frac{1}{x} [(x-1)e^x + C]$$

$$\therefore y = \frac{x-1}{x}e^x$$

《高数》试卷4(上)

- 一、选择题(每小题3分)
- 1、函数 $y = \ln(1-x) + \sqrt{x+2}$ 的定义域是 ().
- A [-2,1] B [-2,1) C (-2,1] D (-2,1)
- 2、极限 $\lim_{x\to\infty} e^x$ 的值是 ().
- A、 $+\infty$ B、 0 C、 $-\infty$ D、 不存在
- 3. $\lim_{x\to 1} \frac{\sin(x-1)}{1-x^2} = ($).
- A, 1 B, 0 C, $-\frac{1}{2}$ D, $\frac{1}{2}$
- 4、曲线 $y = x^3 + x 2$ 在点(1,0) 处的切线方程是()

$$A, \quad y = 2(x-1)$$

B,
$$y = 4(x-1)$$

C,
$$y = 4x - 1$$

D,
$$y = 3(x-1)$$

5、下列各微分式正确的是().

A,
$$xdx = d(x^2)$$

$$B_{x} \cos 2x dx = d(\sin 2x)$$

$$C_x dx = -d(5-x)$$

$$C_{x} dx = -d(5-x)$$
 $D_{x} d(x^{2}) = (dx)^{2}$

6、设
$$\int f(x)dx = 2\cos\frac{x}{2} + C$$
 , 则 $f(x) = ($).

A,
$$\sin \frac{x}{2}$$

$$B_{\gamma} - \sin \frac{x}{2}$$

A,
$$\sin \frac{x}{2}$$
 B, $-\sin \frac{x}{2}$ C, $\sin \frac{x}{2} + C$ D, $-2\sin \frac{x}{2}$

$$D_{\gamma} - 2\sin\frac{x}{2}$$

$$7. \int \frac{2 + \ln x}{x} dx = ().$$

A.
$$-\frac{2}{x^2} + \frac{1}{2} \ln^2 x + C$$
 B. $\frac{1}{2} (2 + \ln x)^2 + C$

B,
$$\frac{1}{2}(2 + \ln x)^2 + C$$

$$C, \quad \ln|2 + \ln x| + C$$

C,
$$\ln |2 + \ln x| + C$$
 D, $-\frac{1 + \ln x}{x^2} + C$

8、曲线 $y=x^2$, x=1 , y=0 所围成的图形绕 y 轴旋转所得旋转体体积 V=() .

$$A \cdot \int_0^1 \pi x^4 dx$$

$$B \int_0^1 \pi y dy$$

$$C$$
, $\int_0^1 \pi (1-y) dy$

D,
$$\int_{0}^{1} \pi (1-x^{4}) dx$$

9,
$$\int_0^1 \frac{e^x}{1+e^x} dx = ()$$
.

A.
$$\ln \frac{1+e}{2}$$

B.
$$\ln \frac{2+\epsilon}{2}$$

C.
$$\ln \frac{1+\epsilon}{3}$$

A.
$$\ln \frac{1+e}{2}$$
 B. $\ln \frac{2+e}{2}$ C. $\ln \frac{1+e}{3}$ D. $\ln \frac{1+2e}{2}$

10、微分方程 $y'' + y' + y = 2e^{2x}$ 的一个特解为 ().

A,
$$y* = \frac{3}{7}e^{2x}$$

B.
$$y* = \frac{3}{7}e^{-\frac{1}{2}}$$

A,
$$y* = \frac{3}{7}e^{2x}$$
 B, $y* = \frac{3}{7}e^{x}$ C, $y* = \frac{2}{7}xe^{2x}$ D, $y* = \frac{2}{7}e^{2x}$

D,
$$y* = \frac{2}{7}e^{2x}$$

二、填空题 (每小题 4 分)

2、如果
$$\lim_{x\to 0} \frac{3\sin mx}{2x} = \frac{2}{3}$$
,则 $m =$ ______.

$$3 \int_{-1}^{1} x^3 \cos x dx = \underline{\hspace{1cm}};$$

4、微分方程
$$y'' + 4y' + 4y = 0$$
 的通解是

三、计算题(每小题5分)

1、求极限
$$\lim_{x\to 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{x}$$
;

2、求

$$y = \frac{1}{2}\cot^2 x + \ln \sin x$$
 的导数;

3、求函数
$$y = \frac{x^3 - 1}{x^3 + 1}$$
 的微分;

$$4$$
、求不定积分 $\int \frac{dx}{1+\sqrt{x+1}}$;

5、求定积分
$$\int_{\frac{1}{e}}^{e} |\ln x| dx$$
 ;

6、解方程
$$\frac{dy}{dx} = \frac{x}{y\sqrt{1-x^2}}$$
 ;

四、应用题 (每小题 10 分)

- 1、 求拋物线 $y = x^2$ 与 $y = 2 x^2$ 所围成的平面图形的面积.
- 2、利用导数作出函数 $y = 3x^2 x^3$ 的图象.

参考答案

-, 1, C; 2, D; 3, C; 4, B; 5, C; 6, B; 7, B; 8, A; 9, A; 10, D;

$$\equiv$$
, 1, $(x+2)e^x$; 2, $\frac{4}{9}$; 3, 0; 4, $y = (C_1 + C_2 x)e^{-2x}$; 5, 8, 0

$$\equiv 1$$
, 1; $2\sqrt{\cot^3 x}$; $3\sqrt{\frac{6x^2}{(x^3+1)^2}}dx$; $4\sqrt{2\sqrt{x+1}}-2\ln(1+\sqrt{x+1})+C$;

5,
$$2(2-\frac{1}{e})$$
; 6, $y^2 + 2\sqrt{1-x^2} = C$;

四、1、
$$\frac{8}{3}$$
;

2、图略

《高数》试卷5(上)

一、选择题(每小题3分)

1、函数
$$y = \sqrt{2+x} + \frac{1}{\lg(x+1)}$$
 的定义域是().

- A, $(-2,-1) \cup (0,+\infty)$
- B, $(-1,0) \cup (0,+\infty)$
- $C \cdot (-1,0) \cap (0,+\infty)$
- $D_{\cdot}(-1,+\infty)$
- 2、下列各式中,极限存在的是().
- limcosx
- By $\lim_{x\to\infty} \arctan x$ Cy $\lim_{x\to\infty} \sin x$ Dy $\lim_{x\to+\infty} 2^x$

$$3 \cdot \lim_{x \to \infty} \left(\frac{x}{1+x}\right)^x = () .$$

- A, e B, e^2 C, 1 D, $\frac{1}{e}$

4、曲线 $y = x \ln x$ 的平行于直线 x - y + 1 = 0 的切线方程是 ().

- A, y = x
- B, $y = (\ln x 1)(x 1)$
- C, y = x 1 D, y = -(x + 1)
- 5、已知 $y = x \sin 3x$,则 dy = ().
- A, $(-\cos 3x + 3\sin 3x)dx$ B, $(\sin 3x + 3x\cos 3x)dx$
- $C_{x} (\cos 3x + \sin 3x) dx$
- D, $(\sin 3x + x \cos 3x) dx$
- 6、下列等式成立的是().
- A, $\int x^{\alpha} dx = \frac{1}{\alpha + 1} x^{\alpha 1} + C$ B, $\int a^{x} dx = a^{x} \ln x + C$
- C, $\int \cos x dx = \sin x + C$ D, $\int \tan x dx = \frac{1}{1 + x^2} + C$
- 7、计算 $\int e^{\sin x} \sin x \cos x dx$ 的结果中正确的是 ().
- A, $e^{\sin x} + C$

B, $e^{\sin x} \cos x + C$

$$C \cdot e^{\sin x} \sin x + C$$

$$D_{x} e^{\sin x} (\sin x - 1) + C$$

8、曲线 $y=x^2$, x=1 , y=0 所围成的图形绕 x 轴旋转所得旋转 体体积V = ().

$$B = \int_0^1 \pi y dy$$

$$C \cdot \int_0^1 \pi (1-y) dy$$

$$D_{x} \int_{0}^{1} \pi (1-x^{4}) dx$$

9、设
$$a > 0$$
,则 $\int_0^a \sqrt{a^2 - x^2} dx = ($).

$$A \cdot a^2$$

$$B = \frac{\pi}{2}a^2$$

$$C, \frac{1}{4}a^2$$

A,
$$a^2$$
 B, $\frac{\pi}{2}a^2$ C, $\frac{1}{4}a^2$ 0 D, $\frac{1}{4}\pi a^2$

10、方程 () 是一阶线性微分方程.

$$A_{x} x^{2} y' + \ln \frac{y}{x} = 0$$

$$B_y y' + e^x y = 0$$

$$C_{x}(1+x^{2})y'-y\sin y=0$$

C.
$$(1+x^2)y' - y\sin y = 0$$
 D. $xy'dx + (y^2 - 6x)dy = 0$

二、填空题(每小题4分)

1、设
$$f(x) = \begin{cases} e^x + 1, x \le 0 \\ ax + b, x > 0 \end{cases}$$
 ,则有 $\lim_{x \to 0^-} f(x) = \underline{\qquad}$, $\lim_{x \to 0^+} f(x) = \underline{\qquad}$;

2、设
$$y = xe^x$$
 ,则 $y'' =$ _______;

4.
$$\int_{1}^{1} x^{3} \cos x dx =$$
_____;

5、微分方程 y'' - 3y' + 2y = 0 的通解是_____

三、计算题(每小题5分)

1、求极限
$$\lim_{x\to 1} (\frac{1}{x-1} - \frac{3}{x^2 + x - 2});$$

2、求
$$y = \sqrt{1 - x^2} \arccos x$$
 的导数;

3、求函数
$$y = \frac{x}{\sqrt{1-x^2}}$$
 的微分;

6小时通关高数秘籍

扫描二维码1.7秒即可获取

4、求不定积分 $\int \frac{1}{x\sqrt{2+\ln x}} dx$;

- 5、求定积分 $\int_{\frac{1}{e}}^{e} |\ln x| dx$;
- 6、求方程 $x^2y' + xy = y$ 满足初始条件 $y(\frac{1}{2}) = 4$ 的特解.

四、应用题 (每小题 10 分)

- 1、求由曲线 $y=2-x^2$ 和直线 x+y=0 所围成的平面图形的面积.
- 2、利用导数作出函数 $y = x^3 6x^2 + 9x 4$ 的图象.

参考答案(B卷)

$$\equiv$$
, 1, 2, b; 2, $(x+2)e^x$; 3, $\ln 5$, 0; 4, 0; 5, $C_1e^x + C_2e^{2x}$.

$$\equiv 1, \frac{1}{3}$$
; $2, -\frac{x}{\sqrt{1-x^2}} \arccos x - 1$; $3, \frac{1}{(1-x^2)\sqrt{1-x^2}} dx$;

4.
$$2\sqrt{2+\ln x} + C$$
; 5. $2(2-\frac{1}{e})$; 6. $y = \frac{2}{x}e^{2-\frac{1}{x}}$;

四、
$$1$$
、 $\frac{9}{2}$; 2 、图略