«Национальный исследовательский университет «Высшая школа экономики» Лицей

Индивидуальная выпускная работа

ИТ-ПРОЕКТ: Простой в освоении растровый графический редактор с функцией работы со слоями

https://github.com/maratbekzenteev/ivr_project

Выполнил: Бекзентеев Марат Рустамович

Группа: 11И2

Консультант:

Палеев Даниил Алексеевич

1. Введение

Выбор предметной области проекта был обусловлен, во-первых, интересом к графическим редакторам с точки зрения пользователя и большим опытом работы как в MS Paint, так и в Adobe Photoshop и GIMP, во-вторых, предыдущим опытом разработки (в учебных целях) веб- и desktop-приложений с использованием flask и PyQt 5 соответственно. Интерес к созданию графического редактора объясняется желанием дополнить и улучшить вышеперечисленные имеющиеся на рынке решения.

2. Проблемное поле

Проблема, решаемая проектом, заключается, во-первых, в отсутствии в функциональности имеющихся на рынке графических редакторов одной или возможностей: работа многослойными нескольких И3 следующих С изображениями (в том числе работа с каждым из слоёв по отдельности), обработка прозрачных и полупрозрачных изображений (такими считаются изображения, содержащие пиксели со значением альфа-канала, не равным 255), выравнивание содержимого слоёв по сетке, во-вторых, в недостаточной простоте и интуитивности интерфейса профессиональных графических редакторов, который, как правило, включает в себя несколько подвижных панелей инструментов и множество элементов, с которыми пользователь не может работать одновременно), что делает их недоступными для множества пользователей.

3. Образ продукта

Финальным продуктом являются два приложения, отвечающие за две составляющие проекта: клиентскую, которая запускается на компьютере пользователя, и серверную, работающую на сервере либо локально и отвечающая на запросы пользователя по получению пользовательских проектов из базы данных и их сохранению в неё.

К клиентской части проекта предъявлены следующие функциональные требования:

- Создание, удаление слоёв, их перемещение друг относительно друга, перемещение их содержимого по плоскости (последнее в финальной версии проекта не было реализовано для растровых слоёв, но было реализовано для остальных типов слоёв)),
- Выделение части слоя (в финальной версии проекта реализовано не было),
- Рисование кистью на слоях (реализовано в рамках функциональности растровых слоёв),
- Заливка выделенных участков слоёв (реализована в рамках функциональности растровых слоёв),
- Создание текстовых слоёв и работа с ними,
- Создание фигурных слоёв, то есть слоёв, предназначенных для размещения на них фигур и выравнивания фигур по сетке, и работа с ними (требование изначально не предъявлялось),
- Создание пользовательской сетки и выравнивание содержимого слоёв по ней (было реализовано для слоёв-картинок, фигурных и текстовых слоёв, изначально не предполагалось к реализации для растровых слоёв),
- Экспорт изображений в форматах PNG, BMP, GIF (в финальной версии проекта реализован экспорт в форматах PNG, BMP, JPG),
- Сохранение файлов на компьютер пользователя и открытие файлов с него.
 Вышеуказанные требования позволяют проекту быть удобным в использовании, вкупе с интуитивным интерфейсом, автоматически скрывающим ненужные пользователю элементы (например, если пользователь работает с растровым слоем, на панели инструментов показываются только инструменты для работы с

растровым слоем, сеткой и всем проектом в целом), позволяют пользователю быстро и эффективно использовать программу, не тратя времени на её освоение.

К серверной части проекта предъявлены следующие требования:

- Регистрация и авторизация пользователя из программы-клиента,
- Смена пароля пользователя (требование изначально не предъявлялось),
- Сохранение проекта в аккаунт пользователя после авторизации,
- Получение списка проектов пользователя из аккаунта после авторизации,
- Открытие проекта из списка после авторизации.
 Вышеуказанные требования позволяют пользователю работать со своими проектами, переключаясь между несколькими компьютерами, что увеличивает скорость и эффективность работы в программе.

4. Сделанный продукт

Сделанный продукт рассчитан на следующие сценарии использования:

- Работа с проектом целиком. Включает в себя создание проекта с нуля с указанием целевого разрешения, открытие проекта из файла с компьютера пользователя, открытие проекта из аккаунта пользователя, сохранение проекта в файле на компьютер пользователя, сохранение проекта в аккаунте пользователя, изменение размера выходного файла проекта с указанием нового размера, экспорт проекта в файлы изображений форматов PNG, BMP, JPG.
- Работа с растровыми слоями (в терминологии программы они носят название «холсты» по своей возможности рисовать). Растровые слои – слои, на которых пользователь может редактировать каждый пиксель в отдельности, рисуя на слое кистями различных начертаний, чертя отрезки, прямоугольники, окружности, заливая области. Растровые слои поддерживают прозрачность.
- Работа с сеткой. На сетку позволяется добавлять вертикальные и горизонтальные прямые, деля тем самым плоскость проекта на прямоугольники, в которые можно

помещать различные типы объекты: текст, слои, картинки. Прямая сетки задаётся либо абсолютно (в пикселях), либо относительно (в процентах от ширины/высоты изображения проекта в зависимости от направления прямой сетки), в таком случае прямая меняет своё положение при смене разрешения изображения проекта.

- Работа со слоями-картинками. Слоями-картинками в терминологии программы именуются слои, на которые можно вставлять какое-то изображение целиком без возможности редактирования, а затем перемещать его содержимое по плоскости проекта, масштабировать, помещать в какой-либо прямоугольник сетки и выравнивать внутри него (выравнивать по краям / по центру / заполнять изображением весь прямоугольник сетки).
- Работа с фигурными слоями. Фигурный слой слой, содержащий векторную фигуру

 ей может быть отрезок, прямоугольник, эллипс которую пользователь может
 привязывать к узлам сетки, тем самым выравнивая её, или перемещать по
 плоскости проекта.
- Работа с текстовыми слоями. Текстовый слой слой, на котором пользователь может печатать форматированный текст (пользователь может менять цвет, шрифт и размер отдельных его символов, делать их полужирными, курсивными и/или подчёркнутыми, выравнивать их по левому краю / по центру / по правому краю / по ширине). Текст помещается пользователем в любой прямоугольник сетки.
- Взаимодействие пользователя с сервером. Включает в себя регистрацию, авторизацию, смену пароля, выбор проекта из списка для последующего открытия, открытие и сохранение проекта на сервер.

5. База данных

В качестве базы данных backend-части проекта (фактически его серверной части) выступает нереляционная база данных mongoDB. Выбор пал на неё в силу её структуры, а именно записей («документов»), представляющих собой JSON-

подобные файлы. Эта особенность позволяет хранить файлы проектов графического редактора без внесения каких-либо изменений, так как они сами по себе имеют JSON-подобную структуру. Сама база данных имеет две таблицы («коллекции»), users — коллекция пользователей, каждая запись содержит в себе имя пользователя и его пароль, зашифрованный по алгоритму SHA256, projects — коллекция проектов, каждая запись — проект, содержит информацию о пользователе (имя, пароль) и данные проекта (имя, разрешение, данные о сетке и слоях).

6. Реализация проекта

И клиентская, и серверная часть проекта были написаны на Python версии 3.9. Для реализации клиентской части были задействованы библиотеки PyQt5 (графический интерфейс программы), json (сохранение, открытие и обработка JSON-файлов, полученных в результате работы программы либо из файловой системы), requests (HTTP-запросы к серверной части проекта, в том числе с JSON-аргументами). PyQt 5 была выбрана в качестве GUI-библиотеки как единственная, известная мне, и как лучшая из подобных библиотек для Python; json и request обладают всем необходимым для проекта функционалом и минималистичны в синтаксисе.

Для реализации серверной части использованы библиотеки flask (создание самого веб-приложения, обработка запросов клиентской части), pymongo (взаимодействие с mongoDB-базой данных, в которой хранятся данные о пользователях и их проектах), hashlib (для хеширования паролей пользователей по алгоритму SHA256). flask был выбран, так как серверная часть проекта не настолько велика, чтобы реализовывать её на django или .NET Framework, вдобавок к этому, обладает минималистичным синтаксисом. pymongo был выбран как единственная официальная реализация mongoDB-клиента для Python.

Из инструментов для разработки / сервисов были использованы PyCharm Community Edition (написание проекта, взаимодействие с системой контроля версий, вёрстка Markdown-файлов), Qt Designer (набросок интерфейса программы на раннем этапе проектирования), reqbin.com (отладка серверной части проекта), Microsoft To Do (организация невыполненных задач по проекту), документация Qt.

7. Этапы работы

Хронологическое разбиение проекта на этапы примерно соответствует финальному разбиению проекта на пользовательские сценарии: сначала реализовывалась функциональность растровых слоёв, затем работа с несколькими слоями, слои-картинки, фигурные слои, текстовые слои, серверная функциональность, затем было проведено комментирование кода и его рефакторинг, после чего была улучшена графическая составляющая программы (нарисованы иконки). На каждом этапе так или иначе дорабатывался функционал предыдущих этапов: исправлялись ошибки, добавлялись новые методы классов, совместимость с только что написанными элементами программы. Один из самых ярких примеров – виджет списка слоёв, дорабатывавшийся на протяжении всего времени работы над клиентской частью проекта.

8. Рефлексия

В процессе работы над проектом возникла проблема правильного планирования времени, так как проект оказался больше и тяжелее в реализации, чем предполагалось изначально. Проблему решило увеличение темпов работы над проектом и отслеживание прогресса в Microsoft To Do. Вторая возникшая проблема — неудобство при работе с PyQt в силу громоздкости библиотеки и её синтаксиса, а также неочевидности реализации некоторых функций. Проблема была решена прочтением нужных статей из документации библиотеки.

Продукт в перспективе дальнейшего развития следует перенести на другую библиотеку, а значит, на другой язык (предположительно, С# или Kotlin). Также стоит отметить, что в текущей версии лишь частично реализованы некоторые функции, которые можно было бы дополнить до изначально заявленного состояния. Помимо этого, проект мог бы пройти косметическую доработку, став ещё более удобным для использования.

В процессе работы над проектом были приобретены навыки планирования времени, работы с документацией, планирования структуры проекта (а значит, и кода) на будущее, создания пользовательских интерфейсов, работы с нереляционными базами данных.

Риски, обозначенные в проектной заявке, частично оправдали себя: программа работает несколько медленнее, чем аналоги, написанные на С++ (особенно можно отметить получение ответов на запросы от сервера и заливку участков слоёв), при этом качество выходного изображения, вопреки названному риску, получается на уровне программ-конкурентов.

9. Заключение

Работа над проектом, несмотря на сложности при разработке и большую его величину, позволила мне приобрести множество полезных навыков и создать действительно применимый на практике продукт, имеющий ценность и дальнейшие перспективы.