This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

MAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

DIALOG(R)File 352:Derwent WPI

(c) 2001 Derwent Info Ltd. All rts. reserv.

009339033 **Image available** WPI Acc No: 1993-032496/199304

XRAM Acc No: C93-014677 XRPX Acc No: N93-025006

Semiconductor solar cell mfr. - by forming amorphous silicon layer on substrate, forming silicon-nitride or oxide film patterns and thermally

treating NoAbstract

Patent Assignee: SANYO ELECTRIC CO (SAOL) Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No Kind Date Applicat No Kind Date Week

JP 4360518 A 19921214 JP 91136655 A 19910607 199304 B

Priority Applications (No Type Date): JP 91136655 A 19910607

Patent Details:

- Patent No Kind Lan Pg Main IPC Filing Notes

JP 4360518 A 4 H01L-021/20

Title Terms: SEMICONDUCTOR; SOLAR; CELL; MANUFACTURE; FORMING; AMORPHOUS; SILICON; LAYER; SUBSTRATE; FORMING; SILICON; NITRIDE; OXIDE;

FILM; PATTERN; THERMAL; TREAT; NOABSTRACT

Derwent Class: L03; U12; X15

International Patent Class (Main): H01L-021/20 International Patent Class (Additional): H01L-031/04

File Segment: CPI; EPI

DIALOG(R)File 347:JAPIO

(c) 2000 JPO & JAPIO. All rts. reserv.

03995418

Image available

MANUFACTURE OF PHOTOVOLTAIC DEVICE

PUB. NO.:

04-360518 [JP 4360518 A]

PUBLISHED:

December 14, 1992 (19921214)

INVENTOR(s): NOGUCHI SHIGERU

IWATA HIROSHI

SANO KEIICHI

APPLICANT(s): SANYO ELECTRIC CO LTD [000188] (A Japanese Company or

Corporation), JP (Japan)

APPL. NO.:

03-136655 [JP 91136655]

FILED:

June 07, 1991 (19910607)

INTL CLASS:

[5] H01L-021/20; H01L-031/04

JAPIO CLASS: 42.2 (ELECTRONICS -- Solid State Components)

JAPIO KEYWORD:R004 (PLASMA); R096 (ELECTRONIC MATERIALS -- Glass

Conductors)

JOURNAL:

Section: E, Section No. 1361, Vol. 17, No. 230, Pg. 129, May

11, 1993 (19930511)

ABSTRACT

PURPOSE: To prevent the generation of undesired unevenness on the formation surface of an amorphous silicon layer which is crystallized afterward, and manufacture a photovoltaic device provided with polycrystalline silicon of high quality.

CONSTITUTION: The following are provided; a process for forming an amorphous silicon layer 2 on a substarte 1, and a process wherein, after silicon nitride or silicon oxide 3 is dispersed and arranged on the amorphous silicon layer 2, said layer 2 is crystallized by heat treatment, and a polycrystalline silicon layer 4 is formed.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平4-360518

(43)公開日 平成4年(1992)12月14日

(51)	r 4	\sim 1
1511	Int	(.I ·

識別記号

庁内整理番号

FΙ

技術表示箇所

HO1L 21/20

31/04

9171 - 4M

7376 – 4M

HO1L 31/04

Х

審査請求 未請求 請求項の数3(全 4 頁)

(21	1	uu	950	皿	–
121	,	aT.	ᡂ	₩.	7

特願平3-136655

(22)出願日

平成3年(1991)6月7日

(71)出願人 000001889

三洋電機株式会社

大阪府守口市京阪本通2丁目18番地

(72)発明者 能口 繁

守口市京阪本通2丁目18番地 三洋電機株

式会社内

(72)発明者 岩多 浩志

守口市京阪本通2丁目18番地 三洋電機株

式会社内

(72)発明者 佐野 景一

守口市京阪本通2丁目18番地 三洋電機株

式会社内

(74)代理人 弁理士 西野 卓嗣

(54) 【発明の名称】 光起電力装置の製造方法

(57)【要約】

【目的】 本発明は、後に結晶化される非晶質シリコン 層の形成表面の不所望な凹凸の発生を無くすると共に、 高品質の多結晶シリコンを備えた光起電力装置を製造す るものである。

【構成】 本発明の光起電力装置の製造方法は、基板1上に非晶質シリコン層2を形成する工程と、この非晶質シリコン層2上に壁化シリコンまたは酸化シリコン3を分散配置した後、非晶質シリコン層2を熱処理して結晶化させ、多結晶シリコン層4を形成する工程と、を備えている。

【特許請求の範囲】

- 【讃求項1】 - 基板上に非晶質シリコン層を形成する工 程と、この非品質シリコン層上に窒化シリコンまたは酸 化シリコンを分散配置した後、上記非晶質シリコン層を 熱処理して結晶化させる工程と、を備えたことを特徴と する光起電力装置の製造方法。

【請求項2】 非晶質シリコン層を結晶化させる工程後 に、上記室化シリコンまたは酸化シリコンを除去する工 程を備えたことを特徴とする請求項1記載の光起電力装 置の製造方法。

【請求項3】 非晶質シリコン層を結晶化させる工程前 に、上記非晶質シリコン層上にA.1電極層を形成する工 程を備えたことを特徴とする請求項1記載の光起電力装 量の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、多結晶の光起電力装置 の製造方法に関する。

[0002]

【従来の技術】ガラス、ステンレス等の基板上に非晶質 半導体、例えば、非晶質シリコン層を形成してなる光起 電力装置は、その製造が簡単で安価である反面、光電変 機効率が低いという問題があった。

【0003】そこで、基板上に形成した非晶質シリコン 層に対し、アニールまたはエネルギーピーム照射等によ る熱処理を施すことにより、非晶質シリコン層を結晶化 させて光起電力装置を製造することが成されている。

【0004】斯る非晶質シリコン層の結晶化の方法とし ては、特開平1-46278号公報に示されているよう 質シリコン層を形成し、この非晶質シリコン層を熱処理 して結晶化する方法がある。

[0005]

【発明が解決しようとする課題】しかしながら、上記方 法によれば、絶縁基板上に形成された金属導電層によっ て基板上に不所望な凹凸が生じ、この上に形成され、後 に結晶化される非晶質半導体層を均一な膜厚で形成する のが困難であった。

【0006】また、上述の方法において、十分に高品質 な多結晶シリコンを形成するには、至っていない。

【0007】そこで、本発明は、結晶化される非晶質シ リコン層の形成表面に、不所望な凹凸が発生するのを防 止すると共に、高品質の多結晶シリコンを備えた光起電 力装置を製造するものである。

[0008]

【課題を解決するための手段】本発明の光起電力装置の 製造方法は、基板上に非晶質シリコン層を形成する工程 と、この非晶質シリコン層上に窒化シリコンまたは酸化 シリコンを分散配置した後、上記非晶質シリコン層を熱 処理して結晶化させる工程と、を備えたことを特徴とす。50 品質シリコン層 5 に代えて、微結晶または多結晶のシリ

[0009]

る.

【作用】本発明によれば、非晶質シリコン層上に形成さ れた窒化シリコンまたは酸化シリコンが、非晶質シリコ ン層の結晶化に際して結晶核として作用し、結晶粒径が 適宜に制御された多結晶シリコンが形成される。

[0010]

【実施例】図1は、本発明製造方法の第1実施例を工程 順に示す断面図である。

【0011】まず、図1(A)に示す工程において、ステ ンレス等の金属板からなる基板1上に、非晶質シリコン 2を形成する。この非晶質シリコン層2は、周知のプラ ズマCVD法、熱CVD法またはスパッタリング法を用 い、リン (P) (またはポロン (B)) 等の不純物を若 干ドープしてn-型(またはp-型)にした状態で形成す る。なお、基板1としては、金属板に限らず、ガラス等 の透明板の表面に、酸化インジウム錫(ITO)、酸化 鍋(SnΟ₂)、酸化亜鉛(ZnO)等の透明電極層を 形成したものを用いてもよい。

【0012】その後、非晶質シリコン層2上に、後工程 の非晶質シリコン層2の熱処理による結晶化工程におい て、結晶核となる窒化シリコン3を分散配置するべく、 島状または線状に形成する。この窒化シリコン3は、周 知のプラズマCVD法等により、一旦非晶質シリコン層 2上の略全面に形成した後、フォトリソグラフ法を用い て、島状または線状にパターニングして形成する。ここ で、変化シリコン3の径(または線幅)及び配置間隔と しては、0.01μm以下では粒径が小さすぎて、後の 非晶質シリコン層2の熱処理における結晶化工程におい に、碁盤目状に金属導電層を形成した絶縁基板上に非晶 30 て、大きな結晶粒径が得られず、一方、10μm以上で は、窒化シリコン3以外の部分に結晶核が形成されてし まい、これまた、大きな結晶粒径が得られなくなる。従 って、窒化シリコン3の径(または線幅)及び配置間隔 は、 $0.01\sim10\mu$ mが好ましい。

> 【0013】次に、図1(B)に示す工程において、非晶 質シリコン層2を500~700℃の温度でアニールす るか、または非晶質シリコン層2表面にレーザピーム、 電子ピーム等のエネルギーピームを照射することによ り、非晶質シリコン層2を熱処理し、非晶質シリコン層 2の結晶化を行い、n-型(またはp-型)の多結晶シリ 40 コン層4を形成する。斯る多結晶シリコン層4は、非晶 質シリコン層2の結晶化が、非晶質シリコン層2と窒化 シリコン3との界面に生じる結晶核を中心として、非晶 質シリコン層2の内部に進んでいくことによって形成さ れる。即ち、上記界面を成長核として、大きな粒径の結 晶粒を有する多結晶シリコン層4が形成される。

【0014】最後に、図1(C)に示す工程において、結 晶化された多結晶シリコン層4の表面に、p⁻型(また はn・型)の非晶質シリコン層 5を形成する。なお、非

コン層を形成してもよい。その後、非晶質シリコン層5 上に1TO、SnO1、ZnO等の透明電極層6を形成 する。但し、基板1が、上述の如く、透明板表面にIT O、SnO:、ZnOを形成したものであれば、透明電 福層6に代えて、アルミニウム(A1)、銀(Ag)等 の金属電極層を形成する。

【0015】以上の工程により、光起電力装置が完成す る.

【0016】ところで、上述の工程において、非晶質シ リコン層 2 上に形成された窒化シリコン 3 は、非晶質シ 10 表面領域に、p型の多結晶シリコン層16が自動的に形成 リコン層2を好適に結晶化するためのものであり、多結 晶シリコン層4を形成した後は、全くの不要物であり、 更に、図 1 (C)に示す非晶質シリコン層 5 及び透明電極 層6の形成表面である多結晶シリコン層4の表面に不所 望な凹凸を生じさせる。

【0017】そこで、非晶質シリコン層2の多結晶化「 (即ち、多結晶シリコン層4の形成)後に、窒化シリコ ン3を除去するのが好ましい。斯る窒化シリコン3の除 去によって、不所望な凹凸がなくなり、非晶質シリコン 層5及び透明電極層6の形成が容易となる。

【0018】一方、図2は本発明の製造方法の第2実施 例を工程順に示す断面図である。

【0019】図2(A)に示す工程において、図1(A)に 示す工程と同様にして、ガラス等の透明板表面に、1T 〇、Sn〇2、 Zn〇等の透明電極層を形成した透明な 基板11上に、n-型の非晶質シリコン層12と、島状また は線状の窒化シリコン13とを形成する。

【0020】次に、図2(B)に示す工程において、非晶 質シリコン暦12上に、A I 電極層14を形成する。

【0021】最後に、図2(C)に示す工程において、非 30 晶質シリコン層12を500~700℃の温度でアニール するか、またはA1電極層14上にレーザピーム、電子ビ

ーム等のエネルギーピームを照射して、非晶質シリコン 層12を熱処理することにより、非晶質シリコン層12の結 晶化を行い、n·型(またはp·型)の多結晶シリコン層 15を形成する。斯る多結晶シリコン層15は、非晶質シリ コン層12の結晶化が、非晶質シリコン層12と空化シリコ ン13との界面に生じる結晶核を中心として、非晶質シリ コン層12の内部に進んでいくことによって形成される。

【0022】この結晶化時に、A1電極層14中のAlが 多結晶シリコン層15内に拡散し、多結晶シリコン層15の

【0023】こうして、pn接合を備えた多結晶シリコ ンからなる光起電力装置が製造される。

【0024】なお、以上の2つの実施例においては、窒 化シリコン3、13を用いた場合について説明したが、窒 化シリコンに代えて酸化シリコンを用いることができ、 この場合も上述と全く同様にして、光起電力装置が製造 される。

[0025]

【発明の効果】本発明によれば、基板上に非晶質シリコ ン層を形成する工程と、この非晶質シリコン層上に窒化 シリコンまたは酸化シリコンを分散配置した後、上記非 晶質シリコン層を熱処理して結晶化させる工程と、を備 えているので、後に結晶化される非晶質シリコン層の形 成表面に、不所望な凹凸が生じることがなく、更に、高 品質の多結晶シリコン層を形成することができる。

【図面の簡単な説明】

【図1】本発明の製造方法の第1実施例を工程順に示す 断面図である。

【図2】本発明の製造方法の第2実施例を工程順に示す 断面図である。

. [図1]

[図2]

