Exercices Réduction

Nathan Maillet

Diagonalisation

Soit $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$. Diagonaliser $B = \begin{pmatrix} A & A & A \\ A & A & A \\ A & A & A \end{pmatrix}$ et prévoir ses valeurs propres sans calcul.

Valeurs propres -

Soient $A, B \in M_n(\mathbb{C})$ et ϕ l'endomorphisme de $M_n(\mathbb{C})$ défini par :

$$\forall X \in M_n(\mathbb{C}), \varphi(X) = AX - XB.$$

- a) Montrer que φ est un isomorphisme si et seulement si A et B n'ont pas de valeurs propres communes.
- b) Donner les expressions des valeurs propres de ϕ en fonction de celles de A et B.

Calcul de commutant -

Calculer le commutant de $A = \begin{pmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{pmatrix}$

Diagonalisation simultanée

Soient f, g deux endomorphismes diagonlisables tels que $f \circ g = g \circ f$. Montrer que f et g sont simultanément diagonalisables (i.e qu'il existe une base tel que f et g soient tous deux diagonale).

Équation de matrice

Résoudre l'équation $X^2 = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$

Matrices particulières -

Trouver les matrices A de $\mathcal{M}_{6}\left(\mathbb{C}\right)$ telles que $A^{3}-5A^{5}+8A-4I=0, A^{2}-3A+2I\neq0$ et $\mathrm{tr}A=8$.

1