

## On-board function test,

## measurement of initial offset of accelerometer,

# and estimation of offset and sensitivity of accelerometer of AS9888

# **ALSEN Technology Inc.**

#### 2011/11/29

#### **Abstract**

This document introduces a method of function tests of a magnetometer and an accelerometer in the products with AS9888 at the on-board test.

The offset of an accelerometer of AS9888 is roughly adjusted at the shipment. Due to solder implementation or deformations of PCB, the offset value may vary after assemble. Therefore, if the offset accuracy of an accelerometer is significant to application software, an accurate offset value must be measured in advance. A measurement of an accelerometer offset value is necessary as well as a shipment function tests of a magnetometer and an accelerometer.

The document also describes a method of calculating an offset and a sensitivity of an accelerometer according to temperature using the measured offset values and registered values in EEPROM of AS9888.

# 0. Notice

This method for function test is indicated as reference information in order to help the factory plan inspection processes of the product. This also intends to examine functions and to find an initial defect easily without special equipments. An adoption of the method and criteria of judgment are your responsibilities.

# 1. Magnetic sensor functioning test

Ideally, it is necessary to apply 3D magnetic field arbitrarily to a magnetometer in order to examine functions. However, it is impossible to vary a magnetic field quantitatively. Therefore, the method indicated below requires a fixed posture of a product and use a magnetic field generator built in AS9888. That is, this function test is qualitative.

# 2. Accelerometer functioning test

Ideally, it is necessary to apply 3D acceleration arbitrarily to an accelerometer in order to examine functions. However, it is impossible to vary acceleration quantitatively. Therefore, the method indicated below requires a fixed (horizontal) posture of a product and apply a natural acceleration (gravity acceleration). That is, the method is a qualitative function test.



## 3. Measurement of offset of accelerometer

In initial adjustment of acceleration offset, AS9888 is held stable and horizontally, and measurement data is obtained. Then the offset value is stored as adjustment data and this data is used in following measurements. The offset value is defined as difference from zero acceleration if the axis is in a horizontal plane and from 1G if the axis is vertical.

If strong thermal shocks by the reflow soldering etc. is given to the acceleration sensor and to the circuit board, the distortion changes and the amount of the offset of the acceleration sensor may changes. The change by thermal shock is irreversible, and the offset become stable after specific relaxation time passes after solder mount. Therefore, adjustment of acceleration offset should be executed after enough time passes after assembly of your product.

Moreover, acceleration offset may vary if a strong shock is applied to the sensor. To prepare for such an accident, we recommend that manufacturer provides some repair method which can be done by products user.

# 4. Measuring environment

It is important for checking operation of magnetometer that the environment for testing is stable and magnetic field outside the product is enough small. Concretely speaking, the magnetic field must be stable in 7.3ms, while a magnetometer of AS9888 is measuring. The sum of magnetic offset in the product, which means the total magnetic value of magnetic components in the product, and magnetic field radiated by testing equipments must not exceed a measurement range of AS9888 (±1200uT).

Regarding accelerometer, it is necessary to keep the product horizontal and stable in order to set AS9888 horizontal. Horizontal posture means one of X,Y,Z-axis is vertical. If a surface of AS988 and a reference plane of the product is inclined, pay attention to the posture of holding the product. It is necessary to avoid vibration from surrounding equipments. If the environment is not stable, it is necessary to increase measurements and average values.

# 5. Process flow

| Step | Purpose                  | Process                            | Remarks                          |
|------|--------------------------|------------------------------------|----------------------------------|
| 1    | Check solder connection  | Check function of digital IF       | Check the connection of          |
|      | Read adjustment value    | Check function of register R/W     | RSTN,SO/CAD1,I2C,VID,SK/SCL,     |
|      | (EEPROM)                 | Read out adjusted value (EEPROM)   | SI/SDA,CSB/CAD0,VDD pin          |
|      | Initialize for processes | Store adjustment value to register | (Note1)                          |
|      | after Step1              |                                    |                                  |
| 2    | Check function of        | Check function of magnetometer     | Check the connection of INT1 pin |
|      | magnetometer             | using internal magnetic oscillator | and INT2 pin (Note2)             |
| 3    | Check function of        | Measure acceleration in horizontal |                                  |
|      | accelerometer            | posture                            |                                  |
|      | Measure basic data for   |                                    |                                  |
|      | offset calculation       |                                    |                                  |



| 4 | Store adjustment values of | Store measurement data of Step3 and |  |
|---|----------------------------|-------------------------------------|--|
|   | sensors                    | data from EEPROM into nonvolatile   |  |
|   |                            | memory.                             |  |

Note1: Pins which can be checked depend on the type of connection. SO pin can not be checked under I2C connection.

Note2: Only monitored pins can be checked.

# 5.1. step1: Check solder connection, Read adjustment values (EEPROM), Set initial values for processes after Step1

| Step | Process                         | Register | Operation    | Data                   | Judgment    |
|------|---------------------------------|----------|--------------|------------------------|-------------|
|      |                                 | (PIN)    | R:read       | Writing operation data |             |
|      |                                 |          | W:write      |                        |             |
| 1-1  | Power ON                        |          |              |                        |             |
| 1-2  | Reset                           | (RSTN)   | Reset signal |                        |             |
|      |                                 |          | Input 5us<   |                        |             |
| 1-3  | Time until reset finish         |          | Wait:>100us  |                        |             |
| 1-4  | Read out WIA device ID register | WIA      | R            | 01001000               | fixed value |
| 1-5  | Set the operation mode          | MS       | W            | 00000100               |             |
|      | EEPROM access mode              |          |              |                        |             |
| 1-6  | EEPROM rise time                |          | Wait:300us<  |                        |             |
| 1-7  | Read out EEPROM (EREF1)         | EREF1    | R            |                        |             |
| 1-8  | Read out EEPROM (EREF2)         | EREF2    | R            |                        |             |
| 1-9  | Read out EEPROM (EREF3)         | EREF3    | R            |                        |             |
| 1-10 | Read out EEPROM (EOSC)          | EOSC     | R            |                        |             |
| 1-11 | Read out EEPROM (EHCX)          | EHCX     | R            |                        |             |
| 1-12 | Read out EEPROM (EHCY)          | EHCY     | R            |                        |             |
| 1-13 | Read out EEPROM (EHCZ)          | EHCZ     | R            |                        |             |
| 1-14 | Read out EEPROM (EAXGA)         | EAXGA    | R            |                        |             |
| 1-15 | Read out EEPROM (EAYGA)         | EAYGA    | R            |                        |             |
| 1-16 | Read out EEPROM (EAZGA)         | EAZGA    | R            |                        |             |
| 1-17 | Read out EEPROM (EAXDT)         | EAXDT    | R            |                        |             |
| 1-18 | Read out EEPROM (EAYDT)         | EAYDT    | R            |                        |             |
| 1-19 | Read out EEPROM (EAZDT)         | EAZDT    | R            |                        |             |
| 1-20 | Read out EEPROM (EAXDA)         | EAXDA    | R            |                        |             |
| 1-21 | Read out EEPROM (EAYDA)         | EAYDA    | R            |                        |             |
| 1-22 | Read out EEPROM (EAZDA)         | EAZDA    | R            |                        |             |
| 1-23 | Read out EEPROM (EAXGTD)        | EAXGTD   | R            |                        |             |
| 1-24 | Read out EEPROM (EAYGTD)        | EAYGTD   | R            |                        |             |
| 1-25 | Read out EEPROM (EAZGTD)        | EAZGTD   | R            |                        |             |

**ALSEN** 

| AS9888 | FST | V1  | 0.0823   | OP Manual | 20111129 |
|--------|-----|-----|----------|-----------|----------|
| ADBOOG | гог | v i | .U.U.040 | OF Manuai | 20111129 |

| 1-26 | Read out EEPROM (ET1)             | ET1  | R           |                       |
|------|-----------------------------------|------|-------------|-----------------------|
| 1-27 | Read out EEPROM (ET2)             | ET2  | R           |                       |
| 1-28 | Set operation mode                | MS   | W           | 00000000              |
|      | Power-down mode                   |      |             |                       |
| 1-29 | Wait time for setup mode          |      | Wait:>100us |                       |
| 1-30 | Set adjustment value of reference | REF1 | W           | EREF1 data            |
|      | circuit                           |      |             |                       |
| 1-31 | Set adjustment value of reference | REF2 | W           | EREF2 data            |
|      | circuit                           |      |             |                       |
| 1-32 | Set adjustment value of reference | REF3 | W           | 0x18 +                |
|      | circuit                           |      |             | Lower 3 bits of EREF3 |
| 1-33 | Adjustment value of oscillator    | OSC  | W           | Data of EOSC          |
|      | circuit                           |      |             |                       |
| 1-34 | Set X-axis gain of accelerometer  | AXGA | W           | Lower 7 bits of EAXGA |
| 1-35 | Set Y-axis gain of accelerometer  | AYGA | W           | Lower 7 bits of EAYGA |
| 1-36 | Set Z-axis gain of accelerometer  | AZGA | W           | Lower 7 bits of EAZGA |
| 1-37 | Set X-axis DAC of accelerometer   | AXDA | W           | Data of EAXDA         |
| 1-38 | Set Y-axis DAC of accelerometer   | AYDA | W           | Data of EAYDA         |
| 1-39 | Set Z-axis DAC of accelerometer   | AZDA | W           | Data of EAZDA         |



### **5.2.** step2: Magnetic sensor function test

| Step | Process                  | Register | Operation  | Data     | Judgment                               |
|------|--------------------------|----------|------------|----------|----------------------------------------|
|      |                          | (PIN)    |            |          |                                        |
| 2-1  | Set INT1EN pin           | INT1EN   | W          | 00000001 | Enable DRI1                            |
| 2-2  | Set SLCT2                | SLCT2    | W          | 00000100 | Turn on measurement of                 |
|      |                          |          |            |          | magnetometer                           |
| 2-3  | Set measurement mode     | MS       | W          | 00000001 |                                        |
|      | Single measurement mode  |          |            |          |                                        |
| 2-4  | Wait until measurement   | (INT1)   | Wait until |          | If INT1 pin is not monitored, monitor  |
|      | finishes                 |          | data       |          | DRDY bit of ST1 register or DR1 bit    |
|      |                          |          | becomes    |          | of INT1ST register, and wait until the |
|      |                          |          | "H"        |          | monitored bit becomes "1".             |
| 2-5  | Read out INT1ST register | INT1ST   | R          | 00000001 | Confirm the status of INT1 pin is      |
|      |                          |          |            |          | reflected in INT1ST register.          |
| 2-6  | Read out ST1 register    | ST1      | R          | 00000001 | Confirm the measurement normally       |
|      |                          |          |            |          | finishes by checking DRDY              |
| 2-7  | Read out HXL register    | HXL      | R          | HXH/L ≠  | Confirm the measurement finishes       |
|      |                          |          |            | -4096 ∩  | and overflow doesn't occur             |
| 2-8  | Read out HXH register    | НХН      | R          | HXH/L ≠  |                                        |
|      |                          |          |            | 4095     |                                        |
| 2-9  | Read out HYL register    | HYL      | R          | HYH/L ≠  |                                        |
|      |                          |          |            | -4096 ∩  |                                        |
| 2-10 | Read out HYH register    | НҮН      | R          | HYH/L ≠  |                                        |
|      |                          |          |            | 4095     |                                        |
| 2-11 | Read out HZL register    | HZL      | R          | HZH/L ≠  |                                        |
|      |                          |          |            | -4096 ∩  |                                        |
| 2-12 | Read out HZH register    | HZH      | R          | HZH/L ≠  |                                        |
|      |                          |          |            | 4095     |                                        |
| 2-13 | Read out ST2 register    | ST2      | R          | 00000000 | Confirm the measurement normally       |
|      |                          |          |            |          | finishes by checking HST               |
| 2-14 | Set operation mode       | MS       | W          | 00001000 |                                        |
|      | Self-test mode           |          |            |          |                                        |
| 2-15 | Wait until measurement   | (INT1)   | Wait until |          | If INT1 pin is not monitored, monitor  |
|      | finishes                 |          | data       |          | DRDY bit of ST1 register or DR1 bit    |
|      |                          |          | becomes    |          | of INT1ST register, and wait until the |
|      |                          |          | "H"        |          | monitored bit becomes "1".             |

**ALSEN** 

AS9888 FST V1.0.0.823 OP Manual 20111129

|      |                          |        |   | AS9      | 888 FST V1.0.0.823 OP Manual 20111129 |
|------|--------------------------|--------|---|----------|---------------------------------------|
| Opti | Read out INT1ST register | INT1ST | R |          | Fall of INT1 pin.                     |
| on   |                          |        |   |          | Since INT1 pin automatically falls    |
|      |                          |        |   |          | when the next operation mode is set,  |
|      |                          |        |   |          | this process is optional.             |
| 2-16 | Read out ST1 register    | ST1    | R | 00000001 | Confirm the measurement normally      |
|      |                          |        |   |          | finishes                              |
| 2-17 | Read out HXL register    | HXL    | R | -100 ≤   | Confirm magnetometer function         |
|      |                          |        |   | HXH/L(*) | using internal magnetic oscillator.   |
| 2-18 | Read out HXH register    | НХН    | R | ≤ 100    | (*)Values are after sensitivity       |
|      |                          |        |   |          | adjustment.                           |
| 2-19 | Read out HYL register    | HYL    | R | -100 ≤   | Sensitivity adjustment is calculated  |
|      |                          |        |   | HYH/L(*) | from the following formula.           |
| 2-20 | Read out HYH register    | НҮН    | R | ≤ 100    | H*((EHC-128)*0.5/128+                 |
|      |                          |        |   |          | 1)                                    |
| 2-21 | Read out HZL register    | HZL    | R | 300 ≤    | H is measured value of data register. |
|      |                          |        |   | HZH/L(*) | Corresponding values of sensitivity   |
| 2-22 | Read out HZH register    | HZH    | R | ≤ 1000   | adjustment of axis for measurement    |
|      |                          |        |   |          | (EHCX/Y/Z register value) is EHC.     |
| 2-23 | Read out ST2 register    | ST2    | R | 00000000 | Confirm the measurement normally      |
|      |                          |        |   |          | finishes by checking HST              |



## 5.3. step3: Accelerometer function test and measurement of basic data for offset estimation

| Step   | Process                | Register | Operation  | Data              | Judgment                 |
|--------|------------------------|----------|------------|-------------------|--------------------------|
|        |                        | (PIN)    |            |                   |                          |
| 3-1    | Set SLCT2              | SLCT2    | W          | 00000000(LPF off) | Magnetometer             |
|        |                        |          |            | 00001000(LPF on)  | measurement off          |
|        |                        |          |            |                   | Accelerometer LPF off    |
|        |                        |          |            |                   | or off                   |
| 3-2    | Set measurement mode   | MS       | W          | 0000001           |                          |
|        | Single measurement     |          |            |                   |                          |
|        | mode                   |          |            |                   |                          |
| 3-3    | Wait until measurement | (INT1)   | Wait until |                   | If INT1 pin is not       |
|        | finishes               |          | data       |                   | monitored, monitor       |
|        |                        |          | becomes    |                   | DRDY bit of ST1          |
|        |                        |          | "H"        |                   | register or DR1 bit of   |
|        |                        |          |            |                   | INT1ST register, and     |
|        |                        |          |            |                   | wait until the monitored |
|        |                        |          |            |                   | bit becomes "1".         |
| Option | Read out INT1ST        | INT1ST   | R          |                   | Fall of INT1 pin.        |
|        | register               |          |            |                   | Since INT1 pin           |
|        |                        |          |            |                   | automatically falls when |
|        |                        |          |            |                   | the next operation mode  |
|        |                        |          |            |                   | is set, this process is  |
|        |                        |          |            |                   | optional.                |
| 3-4    | Read out ST1 register  | ST1      | R          | 0000001           | Confirm the              |
|        |                        |          |            |                   | measurement normally     |
|        |                        |          |            |                   | finishes by checking     |
|        |                        |          |            |                   | DRDY                     |
| 3-5    | Read out TMPS register | TMPS     | R          | TMPS = [0x28,     | Confirm the              |
|        |                        |          |            | 0xE0]             | measurement finishes     |
| 3-6    | Read out EMPT register | EMPT     | R          | 00000000          | and temperature is       |
|        |                        |          |            |                   | within the specification |
| 3-7    | Read out A1XL register | A1XL     | R          | -2048 < AXH/L ∩   | 1) Confirm the           |
| 3-8    | Read out A1XH register | A1XH     | R          | AXH/L < 2047      | measurement finishes     |
| 3-9    | Read out A1YL register | A1YL     | R          | -2048 < AYH/L ∩   | and overflow doesn't     |
| 3-10   | Read out A1YH register | A1YH     | R          | AYH/L < 2047      | occur                    |
| 3-11   | Read out A1ZL register | A1ZL     | R          | -2048 < AZH/L ∩   | 2) Measure more than     |
| 3-12   | Read out A1ZH register | A1ZH     | R          | AZH/L < 2047      | once and use the average |
|        |                        |          |            |                   | value                    |
| 3-13   | Read out ST2 register  | ST2      | R          | 0000010           | Confirm the              |

**ALSEN** 

|      |                        |        | <del></del> | AS9888 FST            | V1.0.0.823 OP Manual 20111 |
|------|------------------------|--------|-------------|-----------------------|----------------------------|
|      |                        |        |             |                       | measurement normally       |
|      |                        |        |             |                       | finishes                   |
|      |                        |        |             |                       | *Magnetometer is off       |
|      |                        |        |             |                       | (HST=1)                    |
| 3-14 | Judge maximum value of |        |             | AXH/L ≠ -2048 ∩       | Judge maximum,             |
|      | X-axis sensor signal   |        |             | AXH/L ≠ 2047          | minimum, and               |
| 3-15 | Judge maximum value of |        |             | AYH/L ≠ -2048 ∩       | fluctuation (maximum -     |
|      | Y-axis sensor signal   |        |             | AYH/L ≠ 2047          | minimum) values of         |
| 3-16 | Judge maximum value of |        |             | AZH/L ≠ -2048 ∩       | each axis signal (Step     |
|      | Z-axis sensor signal   |        |             | AZH/L ≠ 2047          | 3-32 ~ 3-37).              |
| 3-17 | Judge minimum value of |        |             | AXH/L ≠ -2048 ∩       | Judgment value of          |
|      | X-axis sensor signal   |        |             | AXH/L ≠ 2047          | fluctuation must be set    |
| 3-18 | Judge minimum value of |        |             | AYH/L ≠ -2048 ∩       | according to test          |
|      | Y-axis sensor signal   |        |             | AYH/L ≠ 2047          | environment. (Note 3)      |
| 3-19 | Judge minimum value of |        |             | AZH/L ≠ -2048 ∩       |                            |
|      | Z-axis sensor signal   |        |             | AZH/L ≠ 2047          |                            |
| 3-20 | Judge fluctuation of   |        |             | Set according to test |                            |
|      | X-axis sensor signal   |        |             | environment           |                            |
| 3-21 | Judge fluctuation of   |        |             | Set according to test |                            |
|      | Y-axis sensor signal   |        |             | environment           |                            |
| 3-22 | Judge fluctuation of   |        |             | Set according to      |                            |
|      | Z-axis sensor signal   |        |             | test environment      |                            |
| 3-23 | Estimate optimal DAC   |        |             |                       | cf. 6.5 How to estimate    |
|      | value                  |        |             |                       | offset values              |
| 3-24 | Set X-axis DAC of      | AXDA   | W           | Data of EAXDA         |                            |
|      | accelerometer          |        |             |                       |                            |
| 3-25 | Set Y-axis DAC of      | AYDA   | W           | Data of EAYDA         |                            |
|      | accelerometer          |        |             |                       |                            |
| 3-26 | Set Z-axis DAC of      | AZDA   | W           | Data of EAZDA         |                            |
|      | accelerometer          |        |             |                       |                            |
| 3-27 | Set measurement mode   | MS     | W           | 00000001              |                            |
|      | Single measurement     |        |             |                       |                            |
|      | mode                   |        |             |                       |                            |
| 3-28 | Wait until measurement | (INT1) | Wait until  |                       | If INT1 pin is not         |
|      | finishes               |        | data        |                       | monitored, monitor         |
|      |                        |        | becomes     |                       | DRDY bit of ST1            |
|      |                        |        | "H"         |                       | register or DR1 bit of     |
|      |                        |        |             |                       | INT1ST register, and       |
|      |                        |        |             |                       | wait until the monitored   |
|      |                        |        | l .         | <u> </u>              |                            |



|        |                        |        |   | AS9888 FST      | V1.0.0.823 OP Manual 2011 |
|--------|------------------------|--------|---|-----------------|---------------------------|
|        |                        |        |   |                 | bit becomes "1".          |
| Option | Read out INT1ST        | INT1ST | R |                 | Fall of INT1 pin.         |
|        | register               |        |   |                 | Since INT1 pin            |
|        |                        |        |   |                 | automatically falls when  |
|        |                        |        |   |                 | the next operation mode   |
|        |                        |        |   |                 | is set, this process is   |
|        |                        |        |   |                 | optional.                 |
| 3-29   | Read out ST1 register  | ST1    | R | 00000001        | Confirm the               |
|        |                        |        |   |                 | measurement normally      |
|        |                        |        |   |                 | finishes by checking      |
|        |                        |        |   |                 | DRDY                      |
| 3-30   | Read out TMPS register | TMPS   | R | TMPS = [0x28,   | Confirm the               |
|        |                        |        |   | 0xE0]           | measurement finishes      |
| 3-31   | Read out EMPT register | EMPT   | R | 00000000        | and temperature is        |
|        |                        |        |   |                 | within the specification  |
| 3-32   | Read out A1XL register | A1XL   | R | -2048 < AXH/L ∩ | 1) Confirm the            |
| 3-33   | Read out A1XH register | A1XH   | R | AXH/L < 2047    | measurement finishes      |
| 3-34   | Read out A1YL register | AlYL   | R | -2048 < AYH/L ∩ | and overflow doesn't      |
| 3-35   | Read out A1YH register | A1YH   | R | AYH/L < 2047    | occur                     |
| 3-36   | Read out A1ZL register | A1ZL   | R | -2048 < AZH/L ∩ | 2) Measure more than      |
| 3-37   | Read out A1ZH register | A1ZH   | R | AZH/L < 2047    | once and use the average  |
|        |                        |        |   |                 | value                     |
| 3-38   | Read out ST2 register  | ST2    | R | 00000010        | Confirm the               |
|        |                        |        |   |                 | measurement normally      |
|        |                        |        |   |                 | finishes                  |
|        |                        |        |   |                 | *Magnetometer is off      |
|        |                        |        |   |                 | (HST=1)                   |
| 3-39   | Judge maximum value of |        |   | AXH/L ≠ -2048 ∩ | Judge maximum,            |
|        | X-axis sensor signal   |        |   | AXH/L ≠ 2047    | minimum, and              |
| 3-40   | Judge maximum value of |        |   | AYH/L ≠ -2048 ∩ | fluctuation (maximum –    |
|        | Y-axis sensor signal   |        |   | AYH/L ≠ 2047    | minimum) values of        |
| 3-41   | Judge maximum value of |        |   | AZH/L ≠ -2048 ∩ | each axis signal (Step    |
|        | Z-axis sensor signal   |        |   | AZH/L ≠ 2047    | 3-32 ~ 3-37).             |
| 3-42   | Judge minimum value of |        |   | AXH/L ≠ -2048 ∩ | Judgment value of         |
|        | X-axis sensor signal   |        |   | AXH/L ≠ 2047    | fluctuation must be set   |
| 3-43   | Judge minimum value of |        |   | AYH/L ≠ -2048 ∩ | according to test         |
|        | Y-axis sensor signal   |        |   | AYH/L ≠ 2047    | environment. (Note 3)     |
| 3-44   | Judge minimum value of |        |   | AZH/L ≠ -2048 ∩ |                           |
|        | Z-axis sensor signal   |        |   | AZH/L ≠ 2047    |                           |

AS9888 FST V1.0.0.823 OP Manual 20111129

**ALSEN** 

|      | 1100000 1 D1 V 1.0.0.020 O1 Main |  |                       |                       |  |  |  |
|------|----------------------------------|--|-----------------------|-----------------------|--|--|--|
| 3-45 | Judge fluctuation of             |  | Set according to test |                       |  |  |  |
|      | X-axis sensor signal             |  |                       | environment           |  |  |  |
| 3-46 | Judge fluctuation of             |  |                       | Set according to test |  |  |  |
|      | Y-axis sensor signal             |  |                       | environment           |  |  |  |
| 3-47 | Judge fluctuation of             |  | Set according to test |                       |  |  |  |
|      | Z-axis sensor signal             |  |                       | environment           |  |  |  |

Note1: Hold equipment (or the circuit board) stable and horizontal to keep AS9888 horizontal. Horizontal means that one of X, Y and Z axis of accelerometer is vertical. It is not cared whichever the axis is, or which is up or down.

Note2: Measure accelerometer more than 10 times and use average of those data. When the data is not stable because of oscillation from circumstances, increase averaging number. If environmental temperature varies while measuring, please use the measurement data which are acquired after the temperature becomes stable. (Data is used at Step 4-1)

If measurement fluctuation is different between LPF on and off, different numbers of average can be set in order to minimize the difference.

For example, please take the following steps to determine the measurement time. (When the measurement noise follows the normal distribution)

- (a) Determine the permissible error of averaged measurement data ( $\Sigma$ ) acquired in step 3-32  $\sim$  3-37. 1 LSB is roughly equivalent to 0.22 degree pitch/roll angle error.
- (b) Determine the standard deviation of averaged measurement data ( $\sigma$ ) by repeating step 3-32  $\sim$  3-37 (where n is the number of measurement) using the same device. Moreover confirm that averaged measurement data follows the normal distribution.
- (c) Determine the number of measurement N by using following equation (where  $\Sigma$  is defined in step(a),  $\sigma$  is defined in step(b))

$$N \ge n \times (\sigma / \Sigma)^2$$

When AKSC\_Decomp9888 function is used for calculating the average value, N must be 1, 2, 4, 8, 16, or 32. If the calculated value N exceeds this limitation, the measurement environment needs to be reviewed or another function is needed which calculates average value.

e.g. Permissible error is  $5\Sigma = 10 LSB$ , standard deviation  $5\sigma = 40 LSB$ , when the measurement time n = 1.

$$N = 1 \times (40/10)^2 = 16$$
 times

Note3: We recommend the measurement environment to which the judging value for step  $3-20 \sim 3-22$ ,  $3-39 \sim 3-47$  is 15 at most to be constructed. Therefore, the final judgment value must be set under your own responsibility.

Note4: Measured values (average values) of step  $3-32 \sim 3-37$  are used to estimate offset which is suitable for environmental temperature. Error of measured value causes error of offset estimation. Take care of the followings and execute step 3.

(a) Accuracy of measurement posture (horizontal)

Error of the angle during shipment test becomes a calculation error of pitch/roll angle calculated by an accelerometer data.



#### (b) Temperature

An acceleration offset depends on temperature of the device. Please measure after the temperature becomes stable.

An offset of acceleration varies within the following range:

offset@T  $\leq$  (offset@25°C)  $\pm$  10.2 × (T - 25), T; device temperature(°C)

Please change this formula according to AS9888 characteristic.

10 LSB is roughly equivalent to 2.2 degree pitch/roll angle error.

Conversion formula for T and TMPS register is;

T=(176-TMPS)/1.6

#### (c) Noise caused by oscillation

An unexpected shock is applied while measuring acceleration, correct measurement result is not obtained. For that case, please measure again. Moreover, please try to get rid of a source of oscillation. The less vibration produces better measurement result. (cf. Note2)

Note5: The offset of acceleration sensor becomes stable after specific relaxation time passes after reflow soldering.

The offset adjustment must be executed after enough time passes after assembled. Moreover, the offset adjustment must be executed on final product.

#### 5.4. Step4: Store adjustment values of accelerometer

| Step | Process         | Register                                                                                      | Operation            | Judge              | Remarks                 |  |  |  |  |
|------|-----------------|-----------------------------------------------------------------------------------------------|----------------------|--------------------|-------------------------|--|--|--|--|
|      |                 | (PIN)                                                                                         |                      |                    |                         |  |  |  |  |
| 4-1  | Store values of | Store values of EEPROM of Step 1-7~1-27, and values of accelerometer in horizontal posture of |                      |                    |                         |  |  |  |  |
|      | Step 3-32~3-37  | Step 3-32~3-37 into nonvolatile memories.                                                     |                      |                    |                         |  |  |  |  |
|      | 1-7~1-10 are ac | ljustment values of w                                                                         | whole device.        |                    |                         |  |  |  |  |
|      | 1-10~1-13 are   | sensitivity adjustmen                                                                         | t values of magnetor | meter              |                         |  |  |  |  |
|      | Estimate offset | s and sensitivity of                                                                          | f accelerometer at a | an arbitrary tempe | erature using values of |  |  |  |  |
|      | 1-14~1-27 and   | 3-32~3-37.                                                                                    |                      |                    |                         |  |  |  |  |



# 6. How to estimate offset and sensitivity of accelerometer

#### 6.1. Configuration of EEPROM

|       | 7                                                      | 6             | 5             | 4 | 3               | 2             | 1            | 0   |
|-------|--------------------------------------------------------|---------------|---------------|---|-----------------|---------------|--------------|-----|
| EREF3 | Temperature at test room temperature (delta from TMPS) |               |               |   |                 |               |              |     |
|       | (signed value:-16~15)                                  |               |               |   |                 |               |              |     |
| EAGA  | Gain value (AGA register) (unsigned:7~43,71~107)       |               |               |   |                 |               |              |     |
| EADT  | Temperature property (signed:-256~255)                 |               |               |   |                 |               |              |     |
| EADA  | DAC value (ADA register) (unsigned:0~67,128~195)       |               |               |   |                 |               |              |     |
| EAGTD | Temperatu                                              | re property o | f sensitivity | D | etailed value o | f sensitivity | (signed:-16~ | 15) |
|       | (                                                      | unsigned:0~   | 7)            |   |                 |               |              |     |

#### 6.2. Temperature of test room temperature at DMT

tRT = 136 + EREF3[7:3]

#### 6.3. Gain values

EAX/Y/ZGA[6:0] values are read and copied to AX/Y/ZGA[6:0].

#### 6.4. How to estimate sensitivity

#### 6.4.1. Sensitivity values StRTX/Y/Z at room temperature 'tRT'

StRTX/Y/Z = 256 + EAX/Y/ZGTD[4:0]

StRTX/Y/Z; sensitivity at tRT

#### 6.4.2. Temperature coefficients of sensitivity KsteX/Y/Z

| EAGTD[7:5] | Kste      | Unit                     |
|------------|-----------|--------------------------|
| 0          | -0.428125 | %/degC                   |
|            |           | (sensitivity standard at |
| 1          | -0.384375 | temperature tRT)         |
| 2          | -0.340625 |                          |
| 3          | -0.296875 |                          |
| 4          | -0.253125 |                          |
| 5          | -0.209375 |                          |
| 6          | -0.165625 |                          |
| 7          | -0.121875 |                          |

#### 3. How to estimate sensitivities StX/Y/Z at any temperature 't'

 $StX/Y/Z = \{KsteX/Y/Z * (t - tRT) + 1\} * StRTX/Y/Z$ 



#### 6.5. How to estimate offset values

#### 6.5.1. How to estimate offsets OtLX/Y/Z at test temperature 'tL' at horizontal level test

```
OtLX = AX + StLX * GX OtLY = AY + StLY * GY OtLZ = AZ + StLZ * GZ G = (GX, GY, GZ); Direction of gravity at horizontal level. Assuming the positive direction of Z-axis is vertically upward, <math>G = (0,0,-1)
```

#### 6.5.2. How to estimate temperature coefficients of offsets KoteX/Y/Z

```
KoteX/Y/Z = (EAX/Y/ZGA[7:7]&EAX/Y/ZDT[7:0])*1.5/\DeltaT

\DeltaT; (High test temperature at DMT) – (test room temperature at DMT)

Usually high temperature is 60°C, room temperature is 25°C \rightarrow \DeltaT=35°C
```

#### 6.5.3. How to estimate offsets OtX/Y/Z at any temperature 't'

```
OtX/Y/Z = KoteX/Y/Z * (t - tL) + OtLX/Y/Z
```

#### 6.6. Calculate optimal DAC value

#### 6.6.1. Definition of function

#### 6.6.1.1. lin2dac()

```
void AKSC_lin2dac(
            intvec*
                                              //(i) : EAGA
                       GA,
   const
   const
            intvec*
                       DALinearCode,
                                              //(i) : linear DAC code
            intvec*
                       DA
                                              //(o) : DAC
)
  intvec
            DALinearCode;
  DALinearCode = * DALinearCode;
  if ((0x40\&GA->u.x) == 0x40) {
            DALinearCode.u.x = -DALinearCode.u.x;
if ((0x40\&GA->u.y) == 0x40) {
            DALinearCode.u.y = -DALinearCode.u.y;
if ((0x40\&GA->u.z) == 0x40) {
            DALinearCode.u.z = -DALinearCode.u.z;
}
DA->u.x = ((DALinearCode.u.x >= 0) ? (DALinearCode.u.x + 0x80) : (-DALinearCode.u.x));
DA->u.y = ((DALinearCode.u.y) >= 0) ? (DALinearCode.u.y + 0x80) : (-DALinearCode.u.y));
```

Alsen proprietary & confidential: product information is subject to change without notice.

Alsen Technology Inc. Tel: +886-2-2290-2188 Fax: +886-2-2290-2188 http://www.AlsenTec.com



```
DA->u.z = ((DALinearCode.u.z >= 0)? (DALinearCode.u.z + 0x80) : (-DALinearCode.u.z)); }
```

#### 6.6.1.2. dac2lin()

```
void AKSC dac2lin(
             intvec*
                       GA,
                                            //(i) : GAIN
  const
             intvec*
                       DA,
                                            //(i) : DAC
  const
             intvec*
                       DALinearCode
                                           //(o) : linear DAC code
)
  DALinearCode->u.x = ((DA->u.x >= 0x80) ? (DA->u.x - 0x80) : (-DA->u.x));
  DALinearCode-\ge u.y = ((DA-\ge u.y \ge 0x80)? (DA-\ge u.y - 0x80): (-DA-\ge u.y));
  DALinearCode-\ge u.z = ((DA-\ge u.z \ge 0x80)?(DA-\ge u.z - 0x80):(-DA-\ge u.z));
if ((0x40\&GA->u.x) == 0x40) {
   DALinearCode->u.x = -DALinearCode->u.x;
}
if ((0x40\&GA->u.y) == 0x40) {
   DALinearCode->u.y = -DALinearCode->u.y;
if ((0x40\&GA->u.z) == 0x40) {
   DALinearCode->u.z = -DALinearCode->u.z;
}
```

#### 6.6.2. Estimate DACopt value (optimal DAC)

}

```
DACopt = lin2dac(AGA, dac2lin(AGA,ADA) – rint(EAGA[5:0]+16)/2048*OtL))
AGA; gain (AX/Y/ZGA register) value
ADA; current DAC (AX/Y/ZDA) value
OtL; offset value when ADA is set.
```

lin2dac and dac2lin are implemented as these functions return the value of output arguments.



#### 6.6.3. Flow of optimal DAC estimation

