

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

1. **(Currently Amended)** An amide compound of formula I

wherein

R^1 , R^2 independently of one another denote H, a C₁₋₈-alkyl or C₃₋₇-cycloalkyl group optionally substituted by the group R^{11} , while a -CH₂- group in position 3 or 4 of a 5-, 6- or 7-membered cycloalkyl group may be replaced by -O-, -S- or -NR¹³-, or a phenyl or pyridinyl group optionally mono- or polysubstituted by the group R^{12} and/or monosubstituted by nitro, with the proviso that at least one of the groups R^1 , R^2 has a meaning other than H, or

R^1 and R^2 together form a C₂₋₈-alkylene bridge wherein

- one or two -CH₂- groups may be replaced independently of one another by -CH=N- or -CH=CH- and/or
- one or two -CH₂- groups may be replaced independently of one another by

-O-, -S-, -SO-, -(SO₂)-, -C=N-O-R¹⁸-, -CO-, -C(=CH₂)- or -NR¹³- in such a way that heteroatoms are not directly connected to one another,

while in the above-defined alkylene bridge one or more H atoms may be replaced by R¹⁴, and

while the above-defined alkylene bridge may be substituted by one or two identical or different carbo- or heterocyclic groups Cy in such a way that the bond between the alkylene bridge and the group Cy is formed

- via a single or double bond,
- via a common C atom forming a spirocyclic ring system,
- via two common, adjacent C and/or N atoms forming a fused bicyclic ring system or
- via three or more C and/or N atoms forming a bridged ring system,

R³ denotes H, C₁₋₆-alkyl, C₃₋₇-cycloalkyl or C₃₋₇-cycloalkyl-C₁₋₄-alkyl,

X denotes an unbranched C₁₋₄-alkylene bridge and if the group Y is linked to X via a C atom, it may also denote -CH₂-CH=CH-, -CH₂-C≡C-, C₂₋₄-alkylenoxy or C₂₋₄-alkylene-NR⁴, while the bridge X may be attached to R¹ including the N atom attached to R¹ and X forming a heterocyclic group, and

two C atoms or one C and one N atom of the alkylene bridge may be joined together by an additional C₁₋₄-alkylene bridge, and

a C atom may be substituted by R¹⁰ and/or one or two C atoms in each case may be substituted with one or two identical or different substituents selected from C₁₋₆-alkyl, C₃₋₇-

cycloalkyl, and C₃₋₇-cycloalkyl-C₁₋₃-alkyl, while two alkyl substituents may be joined together, forming a carbocyclic ring system, and

with the proviso that the group X with the meaning C₂₋₄-alkyleneoxy has no hydroxy substituents;

W is selected from among -CR^{6a}R^{6b}-O-, -CR^{7a}=CR^{7c}-, -CR^{6a}R^{6b}-NR⁸-, -CR^{7a}R^{7b}-CR^{7e}R^{7d}- and -NR⁸-CR^{6a}R^{6b}-,

Z denotes a single bond, or C₁₋₄-alkylene, wherein two adjacent C atoms may be joined together with an additional C₁₋₄-alkylene bridge,

while a C atom of the alkylene bridge may be substituted with R¹⁰ and/or one or two C atoms independently of one another may be substituted with one or two identical or different C₁₋₆-alkyl groups, while two alkyl groups may be joined together, forming a carbocyclic ring, and

Y is selected from among the following bivalent cyclic groups

while the above-mentioned cyclic groups may be mono- or polysubstituted by R²⁰ at one or more C atoms, and in the case of a phenyl group may also additionally be monosubstituted by nitro, and/or one or more NH groups may be substituted by R²¹,

A denotes one of the meanings given for Cy,

B denotes one of the meanings given for Cy,

b denotes the value 0 or 1,

Cy denotes a carbo- or heterocyclic group selected from one of the following:

- a saturated 3- to 7-membered carbocyclic group,
- an unsaturated 4- to 7-membered carbocyclic group,
- a phenyl group,
- a saturated 4- to 7-membered or unsaturated 5- to 7-membered heterocyclic group with an N, O or S atom as heteroatom,

- a saturated or unsaturated 5- to 7-membered heterocyclic group with two or more N atoms or with one or two N atoms and an O or S atom as heteroatoms,
- an aromatic heterocyclic 5- or 6-membered group with one or more identical or different heteroatoms selected from N, O and/or S,

while the above-mentioned 4-, 5-, 6- or 7-membered groups may be attached via two common, adjacent C atoms fused to a phenyl or pyridine ring, and in the above-mentioned 5-, 6- or 7-membered groups one or two non-adjacent -CH₂- groups may be replaced independently of one another by a -CO-, -C(=CH₂)-, -(SO)- or -(SO₂)- group, and

the above-mentioned saturated 6- or 7-membered groups may also be present as bridged ring systems with an imino, N-(C₁₋₄-alkyl)-imino, methylene, C₁₋₄-alkyl-methylene or di-(C₁₋₄-alkyl)-methylene bridge, and the above-mentioned cyclic groups may be mono- or polysubstituted at one or more C atoms with R²⁰, in the case of a phenyl group they may also additionally be monosubstituted with nitro, and/or one or more NH groups may be substituted with R²¹,

R⁴ denotes H or C₁₋₆-alkyl,

R^{6a}, R^{6b} denotes H, C₁₋₄-alkyl or CF₃,

R^{7a}, R^{7b}, R^{7c}, R^{7d} denotes H, F, C₁₋₄-alkyl or CF₃,

R^8 denotes H, C_{1-4} -alkyl, C_{3-7} -cycloalkyl or C_{3-7} -cycloalkyl- C_{1-3} -alkyl,

R^{10} denotes hydroxy, ω -hydroxy- C_{1-3} -alkyl, C_{1-4} -alkoxy, ω -(C_{1-4} -alkoxy)- C_{1-3} -alkyl, C_{1-4} -alkoxycarbonyl, amino, C_{1-4} -alkyl-amino, di-(C_{1-4} -alkyl)-amino, cyclo- C_{3-6} -alkyleneimino, amino- C_{1-3} -alkyl, C_{1-4} -alkyl-amino- C_{1-3} -alkyl, di-(C_{1-4} -alkyl)-amino- C_{1-3} -alkyl, cyclo- C_{3-6} -alkyleneimino- C_{1-3} -alkyl, amino- C_{1-3} -alkoxy, C_{1-4} -alkyl-amino- C_{1-3} -alkoxy, di-(C_{1-4} -alkyl)-amino- C_{1-3} -alkoxy or cyclo- C_{3-6} -alkyleneimino- C_{1-3} -alkoxy, aminocarbonyl, C_{1-4} -alkyl-aminocarbonyl, di-(C_{1-4} -alkyl)-aminocarbonyl or cyclo- C_{3-6} -alkyleneimino-carbonyl,

R^{11} denotes C_{2-6} -alkenyl, C_{2-6} -alkynyl, R^{15} -O, R^{15} -O-CO, R^{15} -CO-O, $R^{16}R^{17}N$, $R^{18}R^{19}N$ -CO or Cy,

R^{12} has one of the meanings given for R^{20} ,

R^{13} has one of the meanings given for R^{17} , with the exception of carboxy,

R^{14} denotes halogen, C_{1-6} -alkyl, C_{2-6} -alkenyl, C_{2-6} -alkynyl, R^{15} -O, R^{15} -O-CO, R^{15} -CO, R^{15} -CO-O, $R^{16}R^{17}N$, $R^{18}R^{19}N$ -CO, R^{15} -O- C_{1-3} -alkyl, R^{15} -O-CO- C_{1-3} -alkyl, R^{15} -O-CO-NH, R^{15} -SO₂-NH, R^{15} -O-CO-NH- C_{1-3} -alkyl-, R^{15} -SO₂-NH- C_{1-3} -alkyl-, R^{15} -CO-C₁₋₃-alkyl, R^{15} -CO-O-C₁₋₃-alkyl, $R^{16}R^{17}N$ -C₁₋₃-alkyl, $R^{18}R^{19}N$ -CO-C₁₋₃-alkyl or Cy-C₁₋₃-alkyl,

R^{15} denotes H, C_{1-4} -alkyl, C_{3-7} -cycloalkyl, C_{3-7} -cycloalkyl- C_{1-3} -alkyl, phenyl,

phenyl-C₁₋₃-alkyl, pyridinyl or pyridinyl-C₁₋₃-alkyl,

R¹⁶ denotes H, C₁₋₆-alkyl, C₃₋₇-cycloalkyl, C₃₋₇-cycloalkyl-C₁₋₃-alkyl, C₄₋₇-cycloalkenyl, C₄₋₇-cycloalkenyl-C₁₋₃-alkyl, ω -hydroxy-C₂₋₃-alkyl, ω -(C₁₋₄-alkoxy)-C₂₋₃-alkyl, amino-C₂₋₆-alkyl, C₁₋₄-alkyl-amino-C₂₋₆-alkyl, di-(C₁₋₄-alkyl)-amino-C₂₋₆-alkyl or cyclo-C₃₋₆-alkyleneimino-C₂₋₆-alkyl,

R¹⁷ has one of the meanings given for R¹⁶ or denotes phenyl, phenyl-C₁₋₃-alkyl, pyridinyl, dioxolan-2-yl, -CHO, C₁₋₄-alkylcarbonyl, carboxy, hydroxycarbonyl-C₁₋₃-alkyl, C₁₋₄-alkoxycarbonyl, C₁₋₄-alkoxycarbonyl-C₁₋₃-alkyl, C₁₋₄-alkylcarbonylamino-C₂₋₃-alkyl, N-(C₁₋₄-alkylcarbonyl)-N-(C₁₋₄-alkyl)-amino-C₂₋₃-alkyl, C₁₋₄-alkylsulphonyl, C₁₋₄-alkylsulphonylamino-C₂₋₃-alkyl or N-(C₁₋₄-alkylsulphonyl)-N(C₁₋₄-alkyl)-amino-C₂₋₃-alkyl,

R¹⁸, R¹⁹ independently of one another denote H or C₁₋₆-alkyl,

R²⁰ denotes halogen, hydroxy, cyano, C₁₋₆-alkyl, C₂₋₆-alkenyl, C₂₋₆-alkynyl, C₃₋₇-cycloalkyl, C₃₋₇-cycloalkyl-C₁₋₃-alkyl, hydroxy-C₁₋₄-alkyl, R²²-C₁₋₃-alkyl or one of the meanings given for R²²,

R²¹ denotes C₁₋₄-alkyl, ω -hydroxy-C₂₋₃-alkyl, ω -C₁₋₄-alkoxy-C₂₋₆-alkyl, ω -C₁₋₄-alkyl-amino-C₂₋₆-alkyl, ω -di-(C₁₋₄-alkyl)-amino-C₂₋₆-alkyl, ω -cyclo-C₃₋₆-alkyleneimino-C₂₋₆-alkyl,

phenyl-C₁₋₃-alkyl, C₁₋₄-alkyl-carbonyl, C₁₋₄-alkoxy-carbonyl or C₁₋₄-alkylsulphonyl,

R²² denotes phenyl-C₁₋₃-alkoxy, OHC, HO-N=HC, C₁₋₄-alkoxy-N=HC, C₁₋₄-alkoxy, C₁₋₄-alkylthio, carboxy, C₁₋₄-alkylcarbonyl, C₁₋₄-alkoxycarbonyl, aminocarbonyl, C₁₋₄-alkylamino-carbonyl, di-(C₁₋₄-alkyl)-aminocarbonyl, cyclo-C₃₋₆-alkyl-amino-carbonyl, cyclo-C₃₋₆-alkyleneimino-carbonyl, cyclo-C₃₋₆-alkyleneimino-C₂₋₄-alkyl-aminocarbonyl, phenyl-amino-carbonyl, C₁₋₄-alkyl-sulphonyl, C₁₋₄-alkyl-sulphanyl, C₁₋₄-alkyl-sulphonylamino, amino, C₁₋₄-alkylamino, di-(C₁₋₄-alkyl)-amino, C₁₋₄-alkyl-carbonyl-amino, cyclo-C₃₋₆-alkyleneimino, phenyl-C₁₋₃-alkylamino or N-(C₁₋₄-alkyl)-phenyl-C₁₋₃-alkylamino, acetylamino, propionylamino, phenylcarbonylamino, phenylcarbonylmethylamino, (4-morpholinyl)carbonyl, (1-pyrrolidinyl)carbonyl, (1-piperidinyl)carbonyl, (hexahydro-1-azepinyl)carbonyl, (4-methyl-1-piperazinyl)carbonyl, methylenedioxy, or aminocarbonyl-amino,

while in the above-mentioned groups and residues, in each case one or more C atoms may additionally be mono- or polysubstituted by F and/or in each case one or two C atoms may additionally be monosubstituted by Cl or Br independently of one another and/or in each case one or more phenyl rings may additionally, independently of one another, have one, two or three substituents selected from among F, Cl, Br, I, C₁₋₄-alkyl, C₁₋₄-alkoxy, difluoromethyl, trifluoromethyl, hydroxy, amino, C₁₋₃-alkylamino, di-(C₁₋₃-alkyl)-amino, acetylamino, aminocarbonyl, cyano, difluoromethoxy, trifluoromethoxy, amino-C₁₋₃-alkyl, C₁₋₃-alkylamino-C₁₋₃-alkyl- and di-(C₁₋₃-alkyl)-amino-C₁₋₃-alkyl and/or may be monosubstituted by nitro, and

the H atom of any carboxy group present or an H atom bonded to an N atom may each be replaced by a group which can be cleaved in vivo,

or a tautomer, diastereomer, or enantiomer thereof or mixtures thereof, or a salt thereof,

with the following provisos (M1), (M2) and (M3)

~~(M1) in the event that Y denotes phenylene substituted with CN,~~

~~X denotes $\text{CH}_2\text{CH}(\text{OH})\text{CH}_2\text{O}$, Z denotes a single bond, R¹ denotes a straight chain or branched alkyl group with 1 to 10 C atoms and R² and R³ represent H, then W does not represent $\text{CR}^{6a}\text{R}^{6b}\text{O}$,~~

~~(M2) (M1) in the event that W denotes -CH=CH- and Y denotes a phenylene group and Z is a single bond, then the bridges X and Z at the phenylene ring of the group Y are in the para position to one another and at least one of the following conditions is met:~~

- (a) the group Y meaning phenylene is at least monosubstituted,
- (b) b has the value 0 and the group A is at least disubstituted,
- (c) b has the value 1;

~~(M3) (M2) the following individual compounds are not included:~~

~~N [4 (2 diethylamino ethoxy) phenyl] 3 phenyl propionamide,~~

~~N [4 (2 morpholin 4 ylethoxy) phenyl] 3 phenyl propionamide,~~

3-(4-chloro-phenyl)-N-{2-[4-(2-diethylamino-ethoxy)-phenyl]-ethyl}-acrylamide,
N-{2-[3-(4-{2-[2-(4-chloro-phenoxy)-acetylamino]-ethyl}-phenoxy)-2-hydroxy-
propylamino]-ethyl}-isobutyramide,
cyclopentanecarboxylic acid {2-[3-(4-{2-[2-(4-chloro-phenoxy)-acetylamino]-
ethyl}-phenoxy)-2-hydroxy-propylamino]-ethyl}-amide,
2-(4-chloro-phenoxy)-N-(2-{4-[2-hydroxy-3-(2-phenylacetylamino-ethylamino)-
propoxy]-phenyl}-ethyl)-acetamide.

2. (Previously presented) An amide compound according to claim 1, wherein:

R^1 , R^2 independently of one another denote H, a C₁₋₈-alkyl or C₃₋₇-cycloalkyl group
optionally substituted by the group R^{11} , or a phenyl group optionally mono- or
polysubstituted by the group R^{12} and/or monosubstituted by nitro, with the proviso
that at least one of the groups R^1 , R^2 has a meaning other than H, or
 R^1 and R^2 form a C₂₋₈-alkylene bridge wherein
- one or two -CH₂- groups independently of one another may be replaced by -CH=N- or
-CH=CH- and/or
- one or two -CH₂- groups independently of one another may be replaced by -O-, -S-,
-CO-, -C(=CH₂)- or -NR¹³- so that heteroatoms are not directly connected to one another,
while in the alkylene bridge defined above one or more H atoms may be replaced by
 R^{14} , and
while the alkylene bridge defined hereinbefore may be substituted with one or two

identical or different carbo- or heterocyclic groups Cy so that the bond between the alkylene bridge and the group Cy is made

- via a single or double bond,
- via a common C atom forming a spirocyclic ring system,
- via two common adjacent C and/or N atoms forming a fused bicyclic ring system or
- via three or more C and/or N atoms forming a bridged ring system,

X denotes an unbranched C₁₋₄-alkylene bridge and if the group Y is linked to X via a C atom, it may also denote -CH₂-CH=CH-, -CH₂-C≡C-, C₂₋₄-alkylenoxy or C₂₋₄-alkylene-NR⁴, while the bridge X may be connected to R¹ including the N atom attached to R¹ and X forming a heterocyclic group, and

two C atoms or a C and an N atom of the alkylene bridge may be joined together by an additional C₁₋₄-alkylene bridge, and

a C atom may be substituted by R¹⁰ and/or one or two C atoms in each case may be substituted by one or two identical or different C₁₋₆-alkyl groups, and with the proviso that the group X with the meaning C₂₋₄-alkylenoxy has no hydroxy substituents; and

Z denotes a single bond, or C₁₋₄-alkylene, wherein two adjacent C atoms may be joined together by an additional C₁₋₄-alkylene bridge,

while a C atom of the alkylene bridge may be substituted by R¹⁰ and/or one or two C atoms independently of one another may be substituted by one or two identical or different

C₁₋₆-alkyl groups,

b has the value 0,

R¹⁰ denotes hydroxy, ω-hydroxy-C₁₋₃-alkyl, C₁₋₄-alkoxy, ω-(C₁₋₄-alkoxy)-C₁₋₃-alkyl, amino, C₁₋₄-alkyl-amino, di-(C₁₋₄-alkyl)-amino, cyclo-C₃₋₆-alkyleneimino, amino-C₁₋₃-alkyl, C₁₋₄-alkyl-amino-C₁₋₃-alkyl, di-(C₁₋₄-alkyl)-amino-C₁₋₃-alkyl, cyclo-C₃₋₆-alkyleneimino-C₁₋₃-alkyl, amino-C₁₋₃-alkoxy, C₁₋₄-alkyl-amino-C₁₋₃-alkoxy, di-(C₁₋₄-alkyl)-amino-C₁₋₃-alkoxy or cyclo-C₃₋₆-alkyleneimino-C₁₋₃-alkoxy,

R¹⁴ denotes halogen, C₁₋₆-alkyl, R¹⁵-O, R¹⁵-O-CO, R¹⁵-CO, R¹⁵-CO-O, R¹⁶R¹⁷N, R¹⁸R¹⁹N-CO, R¹⁵-O-C₁₋₃-alkyl-, R¹⁵-O-CO-C₁₋₃-alkyl, R¹⁵-CO-C₁₋₃-alkyl, R¹⁵-CO-O-C₁₋₃-alkyl, R¹⁶R¹⁷N-C₁₋₃-alkyl, R¹⁸R¹⁹N-CO-C₁₋₃-alkyl or Cy-C₁₋₃-alkyl,

R¹⁵ denotes H, C₁₋₄-alkyl, C₃₋₇-cycloalkyl, C₃₋₇-cycloalkyl-C₁₋₃-alkyl, phenyl or phenyl-C₁₋₃-alkyl,

R¹⁷ has one of the meanings given for R¹⁶ or denotes phenyl, phenyl-C₁₋₃-alkyl, C₁₋₄-alkylcarbonyl, hydroxycarbonyl-C₁₋₃-alkyl, C₁₋₄-alkylcarbonylamino-C₂₋₃-alkyl, N-(C₁₋₄-alkylcarbonyl)-N-(C₁₋₄-alkyl)-amino-C₂₋₃-alkyl, C₁₋₄-alkylsulphonyl, C₁₋₄-alkylsulphonylamino-C₂₋₃-alkyl or N-(C₁₋₄-alkylsulphonyl)-N(C₁₋₄-alkyl)-amino-C₂₋₃-alkyl,

R^{20} denotes halogen, hydroxy, cyano, C_{1-6} -alkyl, C_{3-7} -cycloalkyl, C_{3-7} -cycloalkyl- C_{1-3} -alkyl, hydroxy- C_{1-4} -alkyl, R^{22} - C_{1-3} -alkyl or one of the meanings given for R^{22} ,

R^{21} denotes C_{1-4} -alkyl, ω -hydroxy- C_{2-3} -alkyl, ω - C_{1-4} -alkoxy- C_{2-6} -alkyl, ω - C_{1-4} -alkyl-amino- C_{2-6} -alkyl, ω -di-(C_{1-4} -alkyl)-amino- C_{2-6} -alkyl, ω -cyclo- C_{3-6} -alkyleneimino- C_{2-6} -alkyl, phenyl, phenyl- C_{1-3} -alkyl, C_{1-4} -alkyl-carbonyl, carboxy, C_{1-4} -alkoxy-carbonyl or C_{1-4} -alkylsulphonyl,

R^{22} denotes phenyl, phenyl- C_{1-3} -alkoxy, C_{1-4} -alkoxy, C_{1-4} -alkylthio, carboxy, C_{1-4} -alkylcarbonyl, C_{1-4} -alkoxycarbonyl, aminocarbonyl, C_{1-4} -alkylaminocarbonyl, di-(C_{1-4} -alkyl)-aminocarbonyl, cyclo- C_{3-6} -alkyleneimino-carbonyl, C_{1-4} -alkyl-sulphonyl, C_{1-4} -alkyl-sulphanyl, C_{1-4} -alkyl-sulphonylamino, amino, C_{1-4} -alkylamino, di-(C_{1-4} -alkyl)-amino, cyclo- C_{3-6} -alkyleneimino, phenyl- C_{1-3} -alkylamino, N-(C_{1-4} -alkyl)-phenyl- C_{1-3} -alkylamino, acetylamino, propionylamino, phenylcarbonylamino, phenylcarbonylmethylamino, (4-morpholinyl)carbonyl, (1-pyrrolidinyl)carbonyl, (1-piperidinyl)carbonyl, (hexahydro-1-azepinyl)carbonyl, (4-methyl-1-piperazinyl)carbonyl, methylenedioxy, or aminocarbonyl-amine.

3. (Previously presented) An amide compound according to claim 1, wherein:

R^1 , R^2 independently of one another denote H, C_{1-6} -alkyl, C_{3-7} -cycloalkyl, C_{3-7} -cycloalkyl- C_{1-3} -alkyl, ω -hydroxy- C_{2-3} -alkyl, ω -(C_{1-4} -alkoxy)- C_{2-3} -alkyl, C_{1-4} -alkoxy-carbonyl- C_{1-4} -alkyl, carboxyl- C_{1-4} -alkyl, amino- C_{2-4} -alkyl, C_{1-4} -alkyl-amino- C_{2-4} -alkyl, di-(C_{1-4} -alkyl)-amino- C_{2-4} -alkyl, cyclo- C_{3-6} -alkyleneimino- C_{2-4} -alkyl, pyrrolidinyl, N-(C_{1-4} -

alkyl)-pyrrolidinyl, pyrrolidinyl-C₁₋₃-alkyl, N-(C₁₋₄-alkyl)-pyrrolidinyl-C₁₋₃-alkyl, piperidinyl, N-(C₁₋₄-alkyl)-piperidinyl, piperidinyl-C₁₋₃-alkyl, N-(C₁₋₄-alkyl)-piperidinyl-C₁₋₃-alkyl, phenyl, phenyl-C₁₋₃-alkyl, pyridyl or pyridyl-C₁₋₃-alkyl, with the proviso that at least one of the groups R¹, R² has a meaning other than H, while in the above-mentioned groups and residues one or more C atoms may be mono- or polysubstituted by F and/or one or two C atoms may independently of one another be monosubstituted by Cl or Br, and the phenyl or pyridyl group may be mono- or polysubstituted by the group R¹² and/or may be monosubstituted by nitro.

4. (Previously presented) An amide compound according to claim 1, wherein:

R¹ and R² form an alkylene bridge according to claim 1 in such a way that R¹R²N- denotes a group selected from azetidine, pyrrolidine, piperidine, azepan, 2,5-dihydro-1H-pyrrole, 1,2,3,6-tetrahydro-pyridine, 2,3,4,7-tetrahydro-1H-azepine, 2,3,6,7-tetrahydro-1H-azepine, piperazine, wherein the free imine function is substituted by R¹³, piperidin-4-one, piperidin-4-one-oxime, piperidin-4-one-O-C₁₋₄-alkyl-oxime, morpholine and thiomorpholine,

while one or more H atoms may be replaced by R¹⁴, and/or the abovementioned groups may be substituted by one or two identical or different carbo- or heterocyclic groups Cy.

5. (Previously presented) An amide compound according to claim 1, wherein:

the group

is defined according to one of the following partial formulae

wherein one or more H atoms of the heterocycle formed by the group $R^1R^2N^-$ may be replaced by R^{14} and the ring attached to the heterocycle formed by the group $R^1R^2N^-$ may be

mono- or polysubstituted by R^{20} at one or more C atoms, and in the case of a phenyl ring it may also additionally be monosubstituted by nitro and

X' , X'' independently of one another denote a single bond or C_{1-3} -alkylene and if the group Y is linked to X' or X'' via a C atom, may also denote $-C_{1-3}$ -alkylene-O-, $-C_{1-3}$ -alkylene-NH- or $-C_{1-3}$ -alkylene-N(C_{1-3} -alkyl)-, and

while in the definitions given hereinbefore for X' , X'' in each case a C atom may be substituted by R^{10} , and/or one or two C atoms in each case may be substituted by one or two identical or different substituents selected from C_{1-6} -alkyl, C_{2-6} -alkenyl, C_{2-6} -alkynyl, C_{3-7} -cycloalkyl, C_{3-7} -cycloalkyl- C_{1-3} -alkyl, C_{4-7} -cycloalkenyl and C_{4-7} -cycloalkenyl- C_{1-3} -alkyl, while two alkyl and/or alkenyl substituents may be joined together forming a carbocyclic ring system, and

in X' , X'' independently of one another in each case one or more C atoms may be mono- or polysubstituted by F and/or in each case one or two C atoms independently of one another may be monosubstituted by Cl or Br.

6. (Cancelled)

7. (Previously presented) An amide compound according to claim 1, wherein:

X denotes -CH₂-, -CH₂-CH₂-, or -CH₂-CH₂-CH₂-, and

if the group Y is linked to X via a C atom, it also denotes

-CH₂-CH=CH-, -CH₂-C≡C-, -CH₂-CH₂-O-, -CH₂-CH₂-CH₂-O- or

-CH₂-CH₂-NR⁴- or -CH₂-CH₂-CH₂-NR⁴-,

while the bridge X may be connected to R¹ including the N atom attached to R¹ and X, forming a heterocyclic group, and

while, in X, a C atom may be substituted by a hydroxy, ω -hydroxy-C₁₋₃-alkyl, ω -(C₁₋₄-alkoxy)-C₁₋₃-alkyl and/or C₁₋₄-alkoxy group, and/or one or two C atoms independently of one another may each be substituted by one or two identical or different C₁₋₄-alkyl groups selected from C₁₋₆-alkyl, \pm C₃₋₇-cycloalkyl, or C₃₋₇-cycloalkyl-C₁₋₃-alkyl, while two alkyl substituents may be joined together, forming a carbocyclic ring system, and

in each case one or more C atoms may be mono- or polysubstituted by F and/or in each case one or two C atoms may independently of one another be monosubstituted by Cl or Br.

8. (Previously presented) An amide compound according to claim 1, wherein:

Z is a single bond, -CH₂- or -CH₂-CH₂-, while one or two C atoms independently of one another may be mono- or disubstituted by F, CH₃ or CF₃ and/or monosubstituted by Cl.

9. (Currently amended) An amide compound according to claim 1, wherein:

W denotes -CH₂-O-, -CH₂-NR⁸-, -CH₂-CH₂- or -CH=CH-,

wherein in each case one or two C atoms may be substituted independently of one

another by F, CH₃ or CF₃.

10. -- 11. (Canceled)

12. (Previously presented) An amide compound according to claim 1, wherein:
the group A denotes phenyl, pyridyl or naphthyl,
while the above-mentioned cyclic groups may be mono- or polysubstituted by R²⁰ at
one or more C atoms, and in the case of a phenyl group may also additionally be
monosubstituted by nitro, and/or one or more NH groups may be substituted by R²¹.

13. (Previously presented) An amide compound according to claim 1, wherein:
b has the value 0.

14. (Previously presented) An amide compound according to claim 1, wherein:
b has the value 1 and B has a meaning selected from among phenyl, furanyl, thienyl
and pyridyl,
while the above-mentioned cyclic groups may be mono- or polysubstituted by R²⁰ at
one or more C atoms, and in the case of a phenyl group may also additionally be
monosubstituted by nitro.

15. (Previously presented) An amide compound according to claim 1, wherein:
R²⁰ denotes F, Cl, Br, I, OH, cyano, C₁₋₄-alkyl, C₁₋₄-alkoxy, difluoromethyl,
trifluoromethyl, difluoromethoxy, trifluoromethoxy, amino, C₁₋₃-alkyl-amino, di-C₁₋₃-alkyl-

amino, carboxy or C₁₋₄-alkoxy-carbonyl, while substituents R²⁰ occurring repeatedly may have the same or different meanings and in the case of a phenyl ring this may additionally also be monosubstituted by nitro.

16. (Previously presented) An amide compound according to claim 1 selected from the following compounds:

- (1) N-[3-chloro-4-(2-piperidin-1-yl-ethoxy)-phenyl]-2-(2-chloro-4-trifluoromethyl-phenoxy)-acetamide
- (2) 2-(2-chloro-4-trifluoromethyl-phenoxy)-N-[3-cyano-4-(2-diethylamino-ethoxy)-phenyl]-acetamide
- (3) 2-(2-chloro-4-trifluoromethyl-phenoxy)-N-[1-(2-diethylamino-ethyl)-2,3-dihydro-1H-indol-5-yl]-acetamide
- (4) N-[3-chloro-4-(3-diethylamino-prop-1-ynyl)-phenyl]-2-(2-chloro-4-trifluoromethyl-phenoxy)-acetamide
- (5) 2-(2-chloro-4-trifluoromethyl-phenoxy)-N-[1-(2-diethylamino-ethyl)-2,3-dimethyl-1H-indol-5-yl]-acetamide
- (6) 2-(2-chloro-4-trifluoromethyl-phenoxy)-N-[1-(2-diethylamino-ethyl)-1H-indol-5-yl]-acetamide
- (7) 2-(2-chloro-4-trifluoromethyl-phenoxy)-N-[4-(2-diethylamino-ethoxy)-3-methoxy-phenyl]-acetamide

(8) 2-(3-chloro-biphenyl-4-yloxy)-N-[3-chloro-4-(2-diethylamino-ethoxy)-phenyl]-acetamide

(9) N-[3-chloro-4-(2-diethylamino-ethoxy)-phenyl]-2-(2-chloro-4-trifluoromethyl-phenoxy)-acetamide

(10) 2-(4-tert.-butyl-2-chloro-phenoxy)-N-[3-chloro-4-(2-diethylamino-ethoxy)-phenyl]-acetamide

(11) 3-chloro-4-{[3-chloro-4-(2-diethylamino-ethoxy)-phenylcarbamoyl]-methoxy}-benzoic acid-methylester

(12) N-[3-chloro-4-(2-diethylamino-ethoxy)-phenyl]-2-(2,4-dibromo-phenoxy)-acetamide

(13) 2-(4-bromo-2-chloro-phenoxy)-N-[3-chloro-4-(2-diethylamino-ethoxy)-phenyl]-acetamide

(14) N-[3-chloro-4-(2-diethylamino-ethoxy)-phenyl]-2-(4-iodo-2-methyl-phenoxy)-acetamide

(15) methyl (2-{2-chloro-4-[2-(2,4-dichloro-phenoxy)-acetylamino]-phenoxy}-ethylamino)-acetate

(16) N-[3-chloro-4-(2-pyrrolidin-1-yl-ethoxy)-phenyl]-2-(2-chloro-4-trifluoromethyl-phenoxy)-acetamide

(17) N-[3-chloro-4-[2-(ethyl-propyl-amino)-ethoxy]-phenyl]-2-(2-chloro-4-trifluoromethyl-phenoxy)-acetamide

(18) N-{3-chloro-4-[2-(ethyl-methyl-amino)-ethoxy]-phenyl}-2-(2-chloro-4-trifluoromethyl-phenoxy)-acetamide

(19) N-[3-chloro-4-(2-diethylamino-ethoxy)-phenyl]-2-(2-chloro-4-dimethylamino-phenoxy)-acetamide

(20) (E)-N-[3-chloro-4-(2-diethylamino-ethoxy)-phenyl]-3-(2-chloro-4-trifluoromethyl-phenyl)-acrylamide

(21) N-[3-chloro-4-(2-diethylamino-ethoxy)-phenyl]-2-(2-chloro-4-trifluoromethyl-phenylamino)-acetamide

(22) N-[3-chloro-4-(2-diethylamino-ethoxy)-phenyl]-2-(2-chloro-4-furan-2-yl-phenoxy)-acetamide

(23) N-[3-chloro-4-(2-diethylamino-ethoxy)-phenyl]-2-(2-chloro-4-thiophen-2-yl-phenoxy)-acetamide

(24) N-[3-chloro-4-(2-diethylamino-ethoxy)-phenyl]-2-(2-chloro-4-pyridin-3-yl-phenoxy)-acetamide

(25) 2-(2-bromo-4-trifluoromethyl-phenoxy)-N-[3-chloro-4-(2-diethylamino-ethoxy)-phenyl]-acetamide

(26) N-{3-chloro-4-[2-(2,5-dihydro-pyrrol-1-yl)-ethoxy]-phenyl}-2-(2-chloro-4-trifluoromethyl-phenoxy)-acetamide

(27) ethyl 1-(2-{2-chloro-4-[2-(2-chloro-4-trifluoromethyl-phenoxy)-acetylamino]-phenoxy}-ethyl)-piperidine-4-carboxylate

(28) N-[3-chloro-4-(3-diethylamino-propoxy)-phenyl]-2-(2-chloro-4-trifluoromethyl-phenoxy)-acetamide

(29) N-{4-[2-(2-aminomethyl-pyrrolidin-1-yl)-ethoxy]-3-chloro-phenyl}-2-(2-chloro-4-trifluoromethyl-phenoxy)-acetamide

(30) N-{3-chloro-4-[2-(2-dimethylaminomethyl-pyrrolidin-1-yl)-ethoxy]-phenyl}-2-(2-chloro-4-trifluoromethyl-phenoxy)-acetamide

(31) N-[3-bromo-4-(2-diethylamino-ethoxy)-phenyl]-2-(2-chloro-4-trifluoromethyl-phenoxy)-acetamide

(32) N-{3-chloro-4-[2-(4-methoxy-piperidin-1-yl)-ethoxy]-phenyl}-2-(2-chloro-4-trifluoromethyl-phenoxy)-acetamide

(33) N-{3-chloro-4-[2-(4-hydroxy-piperidin-1-yl)-ethoxy]-phenyl}-2-(2-chloro-4-trifluoromethyl-phenoxy)-acetamide

(34) 2-(2-chloro-4-trifluoromethyl-phenoxy)-N-[4-(2-diethylamino-ethoxy)-3-nitro-phenyl]-acetamide

(35) N-[3-chloro-4-(2-diethylamino-ethoxy)-phenyl]-2-(2-chloro-4-trifluoromethoxy-phenylamino)-acetamide

(36) N-[3-chloro-4-(2-diethylamino-ethoxy)-phenyl]-2-(2-fluoro-4-trifluoromethyl-phenylamino)-acetamide

(37) 2-(2-bromo-4-trifluoromethyl-phenylamino)-N-[3-chloro-4-(2-diethylamino-ethoxy)-phenyl]-acetamide

(38) (E)-3-(4'-chloro-biphenyl-4-yl)-N-(4-piperidin-1-ylmethyl-phenyl)-acrylamide

(39) N-[3-chloro-4-(2-diethylamino-ethylamino)-phenyl]-2-(2-chloro-4-trifluoromethyl-phenoxy)-acetamide

(40) N-{3-chloro-4-[2-(4-methyl-piperidin-1-yl)-ethylamino]-phenyl}-2-(2-chloro-4-trifluoromethyl-phenoxy)-acetamide

(41) (E)-3-(4'-chloro-biphenyl-4-yl)-N-(4-dimethylaminomethyl-phenyl)-acrylamide

(42) (E)-3-[5-(4-chloro-phenyl)-pyridin-2-yl]-N-(4-piperidin-1-ylmethyl-phenyl)-acrylamide

(43) (E)-N-{3-chloro-4-[2-(4-methyl-piperidin-1-yl)-ethylamino]-phenyl}-3-(2-chloro-4-trifluoromethyl-phenyl)-acrylamide

(44) (E)-N-[3-chloro-4-(4-methyl-piperidin-1-ylmethyl)-phenyl]-3-(2-chloro-4-trifluoromethyl-phenyl)-acrylamide

(45) 2-(2-chloro-4-trifluoromethyl-phenoxy)-N-[4-(2-diethylamino-ethoxy)-3-methyl-phenyl]-acetamide

(46) (E)-3-(2-chloro-4-trifluoromethyl-phenyl)-N-[4-(2-diethylamino-ethoxy)-3-methyl-phenyl]-acrylamide

(47) (E)-3-(2-chloro-4-trifluoromethyl-phenyl)-N-[4-(2-diethylamino-ethoxy)-3-methoxy-phenyl]-acrylamide

(48) (E)-N-[3-chloro-4-(2-diethylamino-ethyl)-phenyl]-3-(2-chloro-4-trifluoromethyl-phenyl)-acrylamide

(49) N-[3-chloro-4-(2-diethylamino-ethyl)-phenyl]-2-(2-chloro-4-trifluoromethyl-phenoxy)-acetamide

(50) N-{3-chloro-4-[2-(4-methyl-piperidin-1-yl)-ethyl]-phenyl}-2-(2-chloro-4-trifluoromethyl-phenoxy)-acetamide

including the salts thereof.

17. (Previously presented) A physiologically acceptable salt of an amide compound of formula I according to claim 1.

18. (Previously presented) A composition comprising at least one amide compound according to claim 1 together with one or more inert carriers and/or diluents.

19. -- 21. (Canceled)

22. (Currently Amended) A method for influencing the eating behaviour of a mammal to reduce body weight or prevent increase in body weight comprising administering thereto at least one amide compound according to claim 1.

23. (Canceled)

24. (Currently Amended) A method for treating a urinary problem, including selected from the group consisting of urinary incontinence, overactive bladder, urgency, nycturia or and enuresis, in a mammal comprising administering thereto at least one amide compound according to claim 1.