Л7. Маніпуляційний рівень роботи з РБД (продовження)

Приклад 8. Розглянемо деяку компанію, яка зберігає у БД дані про постачальників і деталі, що постачаються. Нехай постачальникам і деталям присвоюється деякий статус. Бізнес компанії організований таким чином, що постачальники мають право постачати лише ті деталі, статус яких не вище статусу постачальника.

Відношення А «Постачальники»

№ постачальника	Найменування	X (статус постач.)
1	TDK	4
2	Iptv	1
3	KmP	2

Відношення В «Деталі»

№ деталі	Найменування	Y (статус деталі)
1	Стрічка	3
2	Флеш-диск	2
3	Компакт-диск	1

Відповідь на питання "Які постачальники мають право постачати які деталі?" дає Θ - з'єднання : A/X > = Y/B

<u>№</u> пост-ка	Наймен.пос т.	Х (статус)	№ деталі	Наймен.дет	Ү (статус)
1	TDK	4	1	Стрічка	3
1	TDK	4	2	Флеш-диск	3
1	TDK	4	3	Компакт-дис к	1
2	Iptv	1	3	Компакт-дис к	1
3	KmP	2	2	Флеш-диск	2
3	КтР	2	3	Компакт-дис к	1

Приклад 9. Нехай ϵ відношення P ,D i PD, що зберігають інформацію про постачальників, деталі та поставки відповідно:

№ постачальника	Найменування
PNUM	PNAME
1	TDK
2	Iptv
3	КтР

Таблиця 16 Вілношення Р

№ деталі	Найменування
DNUM	DNAME

1	Стрічка
2	Флеш-диск
3	Компакт-диск

Таблиця 17 Відношення D

№ постачальника	№ деталі	Кількість
PNUM	DNUM	VOLUME
1	1	100
1	2	200
1	3	300
2	1	150
2	2	250
3	1	1000

Таблиця 18 Відношення PD

Відповідь на питання, які деталі постачаються постачальниками, дає екві-з'єднання P[PNUM=PNUM]PD. Насправді, виходячи з того, що у відношеннях є однакові атрибути, потрібно спочатку перейменувати атрибути, а потім виконати екві-з'єднання.

Запис стає більш громіздким: (*P RENAME PNUM AS PNUM1*)[*PNUM1=PNUM2*](*PD RENAME PNUM AS PNUM2*)

Зазвичай, такою складною формою запису не користуються. Але, в результаті маємо відношення:

PNUM1	PNAME	PNUM2	DNUM	VOLUME
	TDK	1		100
	TDK	1	2	200
	TDK	1	ź	300
2	Iptv	2	j	150
2	Iptv	2		250
Ĵ	KmP	3	j	1000

Таблиця 19 Відношення "Якими постачальниками постачаються які деталі "

Приклад 10. У попередньому прикладі відповідь на питання "які деталі постачаються постачальниками", більш просто записується у вигляді природного з'єднання трьох відношень P JOIN PD JOIN D (для наочності порядок атрибутів змінено, це є допустимим за властивостями відношень):

PNUM	PNAME	DNUM	DNAME	VOLU ME
j	TDK	1	Стрічка	100
j	TDK	2	Флеш-диск	200
Î	TDK	3	Компакт-диск	300
2	Iptv	1	Стрічка	150
,	Iptv	2	Флеш-диск	250

. KmP	1	Стрічка	1000
-------	---	---------	------

Таблиця 20 Відношення Р JOIN PD JOIN D

Означення 11. Нехай задано відношення $A(X_1, X_2, ..., X_n, Y_1, Y_2, ... Y_m)$ і $B(Y_1, Y_2, ... Y_m)$, причому атрибути $Y_1, Y_2, ... Y_m$ - спільні для двох відношень. Діленням відношень A на B називається відношення з заголовком $X_1, X_2, ..., X_n$ і тілом, що містить множину кортежів $(x_1, x_2, ..., x_n)$, таких, що для ycix кортежів $(y_1, y_2, ..., y_m) \in B$ у відношенні A знайдеться кортеж $(x_1, x_2, ..., x_n, y_1, y_2, ... y_m)$.

Відношення $A \in \emph{dіленим}$, відношення B - $\emph{dільник}$. Умовно ділення відношень можна вважати аналогічним діленню чисел з залишком.

Синтаксис операції ділення: *A DEVIDEBY В*

Зауваження. Типові запити, що реалізуються за допомогою операції ділення, зазвичай у своєму формулюванні мають слово "усі" - "які постачальники постачають усі деталі?".

Приклад 11. У прикладі з постачальниками, деталями та поставками відповімо на питання, "які постачальники постачають *усі* деталі?".

У якості діленого візьмемо проєкцію X=PD[PNUM,DNUM], що містить номери постачальників і номери деталей, що постачаються ними:

PNUM	DNUM
1	1
1	2
1	3
2	1
2	2
3	1

Таблиця 21 Проекція X=PD/PNUM,DNUM/

В якості дільника візьмемо проекцію Y=D[DNUM], що містить список номерів ycix деталей:

DNUM	
1	
2	
3	

Таблиця 22 Проекція *Y=D[DNUM]*

Ділення *X DEVIDEBY Y* дає список номерів постачальників, які постачають *усі* деталі:

PNUM	
1	

Таблиця 23 Відношення *X DEVIDEBY Y*

В нашому прикладі лише постачальник з номером 1 постачає усі деталі.

Деякі приклади застосування реляційних операторів

Приклад 12. Отримати імена постачальників, що постачають деталь номер 2.

Розв'язок:

((DP JOIN P) WHERE DNUM = 2)[PNAME]

Приклад 13. Отримати імена постачальників, що постачають у крайньому разі один диск.

Розв'язок:

 $(((D \text{ WHERE } DNAME = \iota \mathcal{D} ka) \text{ JOIN } DP) \text{ JOIN } P)[PNAME]$

Відповідь можна отримати інакше:

(((D JOIN DP) JOIN P) WHERE DNAME = Pauka)[PNAME]

Приклад 14. Отримати імена постачальників, що постачають усі деталі.

Розв'язок:

((DP[PNUM,DNUM]DEVIDEBY D[DNUM])JOIN P)[PNAME]

Приклад 15. Отримати імена постачальників, що не постачають деталь номер 2.

Розв'язок:

((P[PNUM] MINUS((P JOIN DP) WHERE DNUM = 2)[PNUM])JOIN P(PNAME)

Відповідь на цей запит можна отримати покроково:

- отримати список номерів усіх постачальників: $T_1 = P[PNUM]$
- з'єднати дані про постачальників та поставки: T_2 = P JOIN DP
- в даних про постачальників та поставки залишити лише дані про поставки деталі номер 2: $T_3 = T_2$ WHERE DNUM = 2
- отримати список номерів постачальників, що постачають деталь номер 2: $T_4 = T_3[PNUM]$
- отримати список номерів постачальників, що не постачають деталь номер 2:

 $T_5 = T_1 \text{ MINUS } T_4$

- з'єднати список номерів постачальників, що не постачпють деталь номер 2 з даними про постачальників (будуть отримані повні дані про постачальників, які не постачають деталь номер 2): $T_6 = T_5 \text{ JOIN } P$
- результат (імена постачальників, які не постачають деталь номер 2): $T_7 = T_6[PNAME]$

Залежні реляційні оператори

Не усі оператори реляційної алгебри ϵ незалежними - деякі з них виражаються через інші реляційні оператори. Оператори з'єднання, перетину та ділення можна виразити через інші реляційні оператори, тобто ці оператори не ϵ примітивними. Оператори, що залишилися (об'єднання, віднімання, декартовий добуток, вибірка, проекція) ϵ примітивними операторами - їх неможна виразити один через інший.

Оператор з'єднання

Оператор з'єднання визначається через оператори декартового добутку та вибірки. Для оператора природного з'єднання додається оператор проекції.

Оператор перетину

Оператор перетину виражається через віднімання в такий спосіб:

A INTERSECT B = A MINUS (A MINUS B)

Оператор ділення

Оператор ділення виражається через оператори віднімання, декартового добутку та проекції:

A DEVIDEBY B = A[X] MINUS ((A[X] TIMES B) MINUS A)[X]

Таким чином показано, що оператори з'єднання, перетину та ділення можна виразити через інші реляційні оператори, тобто ці оператори не ϵ примітивними.

Примітивні реляційні оператори

Оператори, що залишилися (об'єднання, віднімання, декартовий добуток, вибірка, проекція) є примітивними операторами.

-Оператор декартового добутку

Оператор декартового добутку — ϵ диний оператор, *що збільшує кількість атрибутів*, тому його неможна виразити через об'єднання, віднімання, вибірку, проекцію.

-Оператор проекції

Оператор проекції - єдиний оператор, що змишує кількість атрибутів, тому його теж неможна виразити через об'єднання, віднімання, декартовий добуток, вибірку.

-Оператор вибірки

Оператор вибірки — ϵ диний оператор, який доволя ϵ проводити порівняння за атрибутами відношення, тому його неможна виразити через об' ϵ днання, віднімання, декартовий добуток, проекцію.

-Операторы об'єднання і віднімання. Не коментуємо.

Запити, що неможна виразити засобами реляційної алгебри

Не дивлячись на потужність мови реляційної алгебри, ϵ типи запитів, які принципово неможна виразити лише за допомогою операторів реляційної алгебри. Для отримання відповідей на такі запити потрібно застосовувати процедурні розширення реляційних мов.

Погана нормалізація відношень

Приклад 16. Нехай ϵ відношення ХІМІЧНИЙ_СКЛАД_РЕЧОВИН з набором атрибутів (Найменування речовини, Водень, Гелій, ..., 105_элемент). Значенням атрибуту "Речовина" ϵ найменування хімічних речовин, значеннями інших атрибутів - процентний склад відповідних елементів у даній речовині. Таке відношення могло б мати, наприклад, такий вигляд:

Найм. речовини	Водень	Гелій	••••	105 елемент
ДНК	5	3		0,01
Бензин	50	0		0

Таблиця 24 Відношення ХІМІЧНИЙ СКЛАД РЕЧОВИН

Розглянемо запит "Знайти усі хімічні елементи, вміст яких у будь-якій з речовин перевищує заданий відсоток (скажемо, 90)".

З алгоритмічної точки зору цей запит виконується елементарно - переглядаються усі стовбці таблиці, і якщо у стовбці присутнє хоча б одне значення, що більше за 90, то запам'ятовується заголовок цього стовпця. Набір найменувань стовпців, які запам'яталися в процесі перегляду, і ϵ відповіддю на запит.

Формально неможливо виразити цей запит в рамках реляційної алгебри, тому що відповіддю на цей запит повинен бути *список атрибутів* відношень, які задовольняють визначеній умові. У реляційній алгебрі немає операторів, що маніпулюють з найменуваннями атрибутів.

На справді, цей приклад показує, що таблиця погано нормалізована (1 нормальна форма). В таблиці є набір однотипових атрибутів (у кількості 105 стовбців).

Коректніше розбити це відношення на три різні відношення:

РЕЧОВИНА (НОМЕР РЕЧОВИНИ, РЕЧОВИНА),

ЕЛЕМЕНТИ(НОМЕР_ЕЛЕМЕНТА, ЕЛЕМЕНТ), ХІМІЧНИЙ_СКЛАД_РЕЧОВИН (НОМЕР_РЕЧОВИНИ, НОМЕР_ЕЛЕМЕНТА, ВІДСОТОК ВМІСТУ).

Номер речовини	Назва речовини
1	днк
2	Бензин

Таблиця 25 Відношення РЕЧОВИНИ

Номер елемента	Назва елемента
1	Водень
2	Гелій
105	

Таблиця 26 Відношення ЕЛЕМЕНТИ

Номер речовини	Номер елемента	Відсоток
1	1	5
1	2	3
2	1	50

Таблиця 27 Відношення ХІМІЧНИЙ СКЛАД РЕЧОВИН

Для відношень, нормалізованих таким чином, вихідний запит реалізується такою послідовністю операторів:

R1(HOMEP_РЕЧОВИНИ, HOMEP_ЕЛЕМЕНТА, ВІДСОТОК)=

ХІМІЧНИ СКЛАД РЕЧОВИН[ВІДСОТОК>90]. (Вибірка з відношення).

R2(HOMEP ЕЛЕМЕНТА) = R1[HOMEP ЕЛЕМЕНТА]. (Проекція відношення).

R3(HOMEP ЕЛЕМЕНТА, ЕЛЕМЕНТ)=

R2[HOMEP_EЛЕМЕНТА=HOMEP_EЛЕМЕНТА]ЕЛЕМЕНТИ. (Природне з'єднання) PEЗУЛЬТАТ(ЕЛЕМЕНТ) = R3[ЕЛЕМЕНТ]. (Проекція таблиці).

Мовою SQL такий запит реалізується одним оператором SELECT:

SELECT ЕЛЕМЕНТИ.ЕЛЕМЕНТ

FROM ЕЛЕМЕНТИ, XIМІЧНИЙ СКЛАД РЕЧОВИН

WHERE

ЕЛЕМЕНТИ.НОМЕР_ЕЛЕМЕНТА=ХІМІЧНИЙ_СКЛАД_РЕЧОВИН.НОМЕР_ЕЛЕМЕНТА AND XIMIЧНИЙ_СКЛАД_РЕЧОВИН.ВІДСОТОК>90;