

Brendon Boldt

Overview

- Semantic parsing
- Word embeddings
- Augmented semantic parsing
- Experiement

Semantic Parsing

- Maps natural language to formal representation
- e.g., English \rightarrow SQL, λ -calculus
- Production rules + semantic composition
- Applied to question answering, robot control
- Model can acquire new rules through
 - Question and answer pairs
 - Interactively acquired rules

Word Embeddings

- Represent words as real-valued vectors
- Dimensions are semantically meaningful
- Unsupervised learning
- Uses: synonymy, analogical reasoning
 - "smile" more similar to "happy" than to "sad"
 - "queen" "woman" + "man" = "king"

Augmenting Sem. Parsing

- SP treats words as meaningless tokens
 - o "dog", "hound", and "canine" unrelated
- Semantically identical word replacements not always recognized
- NL words have individual semantic content
- Allow SP to treat words as vectors
- Provides robustness against natural variations

Experiment

- Consider a simple grammar: action + object
 - Actions: add, remove, find
 - Objects: box, ball
- Replace in-grammar words with synonyms
 - "destroy ball" \rightarrow "? ball" \rightarrow "remove ball"
 - \circ "add cube" \rightarrow "add ?" \rightarrow "add box"

<u>Re</u>sources

- Semantic parser: SEMPRE (Percy Liang, Stanford)
- Word embeddings: GloVe (Christopher Manning, Stanford)
- Synonyms: WordNet (Princeton)