CALIBRACIÓN DE CÁMARA

Trabajo Nro 1
Alejandra C. Callo Aguilar
Jose H. Jaita Aguilar

Resumen

- Detección del padrón
- Binarizar y findContours con Otsu
- Transformación de espacio
- Detección del centro del anillo
- Re-proyección
- Fronto-paralelo
- Resultados y Mejoras

Binarizar y findcontours con Otzu

- El metodo otzu encuentra la varianza entre valores disperson (blanco 255 y negro 0)
- En nuestro caso vario desde 32 hasta 178.

ROI

 La region de interes se actualiza en cada frame, dependiendo de la ultima detección del padron.

Transformación de espacio

 Cambiamos de espacio, de modo que al detectar el orden sea mucho mas fácil.

La transformacion es llamada dos veces.

Tracking

Detección del centro del anillo

- Regresar a la imagen original, y extraer solo la región en donde está en anillo.
- Calcular el centro de masa de los dos contorno y usar el promedio


```
[1206.02, 656.321] [1205.97, 655.897]
2
[1084.8, 621.017] [1084.88, 620.831]
2
[967.232, 587.129] [967.041, 586.782]
2
[852.644, 553.738] [852.473, 553.547]
2
[1232.72, 541.848] [1232.76, 541.443]
2
[741.03, 520.803] [741.055, 520.456]
```

- Se uso dos camaras : PS3 y lifecam
- 20 imágenes por frame.
- 3 padrones: chessboard, circle, rings

RMS

Camera	Chessboard	Circle	Ring
LifeCam	0.254622	0.233688	0.227625
PS3	0.345601	0.261889	0.185876

- Se calcula la matriz de la camara, la cual contiene las distancias focal y los centros opticos, ademas se calcula los 5 coeficientes de distorción.
- El padron de anillo da el mejor resultado de rms para la calibración.

```
rms: 0.254622
Camera Matrix:
[652.1405354042361, 0, 320;
0, 652.1405354042361, 240;
0, 0, 1]
Dist Coeffs:
[-0.02091168150659021;
0.9379747057378891;
0;
0;
```


Antes y despues usando la camara PS3

Imagen a la derecha con calibración, imagen original a la izquierda. PS3 - rings

LIFECAM RINGS

RMS

Camera	Chessboard	Circle	Rings
LifeCam	0.370638	0.2177	0.148326
PS3	0.349146	0.125189	0.204986

Distancia focal (fx fy)

Camera	Chessboard	Circle	Rings
LifeCam	570.6 573.1	616.9 618.4	592,2 594.7
PS3	869.9 867.0	924.7 929.4	831.5 833.1

Centros

S	(CX	cy)	
ti o	<u> </u>	Coo	.ff	

	Р	S3				
. (1	. 4	ĿΟ	4	0	I-O\	

Camera

LifeCam

Distortion Coeffs = (k1 k2 p1 p2 k3)

Camera	Chessboard	Circle	Rings
LifeCam	0.02086369081658167	0.03516728064650094	-0.0710979402240891
	-0.1299971885829539	0.1295410459855558	0.729340703690755
	0.00115638259079395	-0.0051737688957505	0.0051595262349940
	0.00254437777731369	0.01455189376527968	-0.0019585090599969
	0.09641381183127756	-0.3164481357139774	-2.273025218326369
PS3	-0.3263188639086633	-0.37010307138634450	-0.3871039388318425
	-0.2708403386810941	.5230441519666785	0.639585047530688
	-0.0091328598249548	0.00062073862838877	-0.0008722373515382
	0.00146528943549403	-0.0037219406150214	-0.0028879110164752
	1.836965640003434	-1.62500540148747	-2.143526199720469

Chessboard

332.4 229.3

306.4 275.1

Circle

349.9 211.9

323.2 325.3

Rings

339.5

359.1

232.6

259.9

Camera	RMS	Fx	Fy	Cx	Су	
LifeCam (chessboard)	0.370638	570.6	573.1	332.4	229.3	
LifeCam (circle)	0.2177	616.9	618.4	349.9	211.9	
LifeCam (Ring)	0.148326	592,2	594.7	339.5	232.6	
PS3 (chessboard)	0.349146	869.9	867.0	306.4	275.1	
PS3 (circle)	0.125189	924.7	929.4	323.2	325.3	
PS3 (Ring)	0.204986	831.5	833.1	359.1	259.9	

Re-proyección de los puntos de control

$$\begin{pmatrix} x \\ y \end{pmatrix} = \text{hom}^{-1} \begin{bmatrix} \begin{pmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix} \end{bmatrix}$$

$$\mathbf{x} = \text{hom}^{-1} \left[(\mathbf{R} \, \mathbf{t}) \cdot \text{hom}(\mathbf{X}) \right]$$

$$\begin{pmatrix} u \\ v \end{pmatrix} = \text{hom}^{-1} \begin{bmatrix} \begin{pmatrix} s_x & s_\theta & u_c \\ 0 & s_y & v_c \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \right]$$

$$Hrotacion = K * R^T * K^{-1}$$

 $Htraslacion = K * R^T * T$

Imagen canónica y un-proyectada

Re-proyección de los puntos de control

fronto-paralelo

Otros videos

	RMS	сх	су	fx	fy	colinearidad
chessboard	0.365575	315.964	262.3825	835.5134	834.2809	0.201169
PS3	0.3008	311.465	254.1079	862.1704	861.9566	0.200996
chessboard	0.273077	333.28	226.82	616.72	617.14	0.189816
LifeCam	0.338737	322.68	224.84	587.788	585.4207	0.203616
ring	0.204013	327.4766	245.4116	835.2978	841.22079	0.111414
PS3	0.16205	322.6281	248.3768	802.5028	808.0497	0.129744
ring	0.214894	346.0884	231.6856	649.1335	652.9549	0.09879
LifeCam	0.152757	346.7182	238.5005	580.3936	583.5451	0.0801274

Nuevos Videos

Colinearidad para imagenes con y sin filtrar

RMS para images con y sin filtrar

RMS vs iteraciones 20 imagenes con filtrado

Usando imágenes seleccionadas aleatoriamente vs manualmente Usando camara ps3, padrón de anillos

	aza de magenes	20	50	80	150	300
á	aleatorio	0.572116	0.541251	0.562230	0.532517	0.525441
ľ	manualmente	0.305087	0.305087	0.305087	0.305087	0.305087

	RMS	сх	су	fx	fy	colinearidad
chessboard PS3	0.504785	338.4	262.9	857.7	847.1	0.124 - 0.0642
circle PS3	0.41254	325.7	249.5	842.1	824.8	0.1025 - 0.0498
ring PS3	0.305087	316.8	241.6	810.9	814.6	0.1102 - 0.0587
chessboard LifeCam	0.308884	313.6	226.9	597.6	587.5	0.0879 - 0.0625
circle LifeCam	0.28751	314.8	228.2	580.4	585.2	0.0825 - 0.0684
ring LifeCam	0.182048	321.8	224.9	582.2	580.1	0.0966 - 0.0522

-617 V-179) ~ P:156 C:166 R:186

/-- F22 -- 272\ D-426 C-420 D-00

Conclusiones y mejoras

- El padrón del anillo da los mejores resultados, debido a que si hay una rotación o cambio de proyección tanto la elipse como el circulo aun mantienen el mismo centro.
- Imágenes tomadas manualmente dan mejores resultados, además de que filtrarlos por la rotación entre 5 a 60 grados mejora aún más.
- Es mejor tener buenas imágenes aunque sean pocas que tener muchas pero no muy buenas para la calibración.
- Mientras más preciso sean los puntos de control, mejor será la calibración.
- Buscar otras formas de obtener mejores imágenes para la calibración
- La iteración del refinamiento termine cuando los puntos de control sean casi iguales entre dos iteraciones consecutivas