Versió 1 (la més recent)

Pregunta 1

Resposta desada

Puntuat sobre 10.00

We wish to study how the temperature varies with depth in an open air water tank. For that, we take a vertical segment from the bottom to the surface at the tank midpoint, and mesh it with 3 linear elements of equal length as shown in the image.

The water temperature follows the 1D Poisson equation $-k_c \frac{d^2T}{dx^2} = f(x)$, where k_c is the thermal conductivity of water, and the internal heat source is the warming of the tank, with a power density $\widetilde{f(x)}=(8x+4)W/m$ (x is the height above the tank bottom in m). (a) (3 points)Take as thermal conductivity of water $k_c=0.57\frac{W}{mC}$. Find the sum of all the coefficients in the stiffness matrix K.

0

O 1.14

 \bigcirc 2.28

O Leave it empty (no penalty)

O 13.68

Hint: K(2,3) = -1.14.

(b) (4 points) Approximate the thermal conductivity of water as $k_c=0.5rac{W}{mC}$. The temperature has been found to be $T_1=20C$ at the bottom of the tank, and $T_4=25.3C$ at the surface. Assume that there is no convection, and consider the power density function f on each element $[n_i,n_{i+1}]$ as **constant**, with its midpoint value $f(rac{n_i+n_{i+1}}{2})$. Find the heat flow Q_4 .

○ Leave it empty (no penalty)

O -7.5

O 7.5

O 7.0667

 $\operatorname{Hint:} Q_1 = -7.9333.$

(c) (3 points) Keep the value $0.5 \frac{W}{mC}$ for the thermal conductivity of water. Now assume the same constant approximation for f as in the previous section and that the temperature at the bottom of the tank is $T_1=20C$. Let's consider now that there is convection on the tank surface (that is, in node 4), following the law $k_c rac{dT}{dx} + eta(T-T_\infty) = 0$, with air temperature $T_\infty = 22C$ but with an unknown value for eta. Deduct the value of eta from the fact that the surface temperature is $T_4=25.3C$. Approximate f as in (b).

O 2.1613

O Leave it empty (no penalty)

O 2.1423

2.1414

O 2.0557

Hint: solve the FEM problem with convection given by eta and unknown T_4 . You will get a value for T_4 which will depend on eta.

Torna a començar

Desa

Emplena amb les respostes correctes

Envia i acaba

Tanca la previsualització

Comentaris

Expandeix-ho tot

Opcions de previsualització

> Opcions de visualització

Informació tècnica

Camps personalitzats de preguntes

Download this question in Moodle XML format