Efectele cuantizării în filtrarea digitală

Laborator 9, PSS

Objectiv

Studiul efectelor produse de cuantizarea semnalelor în cadrul unui filtru digital.

Noțiuni teoretice

Exerciții

1. Fie sistemul cu ecuația cu diferențe următoare:

$$y[n] = \frac{1}{2}y[n-1] + x[n]$$

Calculați primele 6 eșantioane ale răspunsului la semnalul de intrare $x[n] = \left(\frac{1}{4}\right)^n u[n]$, în trei moduri:

- a. Calcule în precizie infinită
- b. Calcule în formatul virgulă fixă 1S0Î4F, cuantizare prin trunchiere
- c. Calcule în formatul virgulă fixă 1S0Î4F, cuantizare prin rotunjire
- 2. În Matlab, creați un fișier tip script pentru a studia cuantizarea semnalului \mathtt{mtlb} pe N=8 biți.
 - a. Încărcați semnalul audio predefinit mtlb (cu load mtlb);
 - b. Deduceți dacă aveți nevoie de bit de semn sau nu;
 - c. Aflați valoarea absolută maximă a semnalului și deduceți numărul de biți necesar pentru partea întreagă, respectiv câți biți mai rămân disponibili pentru partea fracționară;
 - d. Utilizati functia fixdt() pentru a crea tipul de date corespunzător

- e. Utilizați funcția num2fixpt() pentru a converti semnalul mtlb la formatul virgulă fixă ales, prin toate cele 3 metode de cuantizare
- f. Pentru toate cele 3 metode de cuantizare, vizualizați semnalul cuantizat, eroarea de cuantizare, și calculați energia totală a erorii de cuantizare. Care metodă de cuantizare produce erorile minime?
- g. Redați semnalul cuantizat. Se poate sesiza diferența?
- 3. În Matlab, realizați o funcție pentru a implementa sistemul din exercițiul 1. Valorile se vor cuantiza după fiecare operație de înmulțire / adunare. Aplicați la intrarea sistemului semnalul cuantizat de la exercițiul 2.

Întrebări finale

1. TBD