F09T2A1

Gegeben sein folgendes Differentialgleichungssystem

$$x' = -y + x\sin(x^2 + y^2) \tag{1}$$

$$y' = x + y\sin(x^2 + y^2)$$
 (2)

- a) Bestimme alle periodischen Orbits.
- b) Skizziere das Phasenportrait.

Hinweis: Man transformiere auf Polarkoordinaten. Zunächst bestimme man eine Differentialgleichung für $r = \sqrt{x^2 + y^2}$.

zu a):

Transformation in Polarkoordinaten: $\dot{r} = p(r, \varphi), \ \dot{\varphi} = q(r, \varphi)$ mit

$$p(r,\varphi) := f(r\cos(\varphi), r\sin(\varphi))\cos(\varphi) + g(r\cos(\varphi), r\sin(\varphi))\sin(\varphi)$$

$$= \cos(\varphi)[-r\sin(\varphi) + r\cos(\varphi)\sin(r^2)] + \sin(\varphi)[r\cos(\varphi) + r\sin(\varphi)\sin(r^2)]$$

$$= r\sin(r^2)((\cos(\varphi))^2 + (\sin(\varphi))^2) = r\sin(r^2) = \dot{r}$$

$$q(r,\varphi) := \frac{1}{r}(g(r\cos(\varphi), r\sin(\varphi))\cos(\varphi) - f(r\cos(\varphi), r\sin(\varphi))\sin(\varphi)) =$$

$$= \frac{1}{r}((r\cos(\varphi) + r\sin(\varphi)\sin(r^2))\cos(\varphi) - \sin(\varphi)(-r\sin(\varphi) + r\cos(\varphi)\sin(r^2)))$$

$$= (\cos(\varphi))^2 + (\sin(\varphi))^2 = 1 = \dot{\varphi}$$

$$\to \varphi(t) = \varphi_0 + t$$

Für jede periodische Lösung von $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} f(x,y) \\ g(x,y) \end{pmatrix}$ muss die auf Polarkoordinaten transformierte Lösung von $\dot{r} = p(r,\varphi) = r\sin(r^2)$ ebenfalls periodisch sein.

Da jede Lösung einer reellen, autonomen Differentialgleichung mit stetiger rechter Seite monoton ist (d.h. ist $h: I \to \mathbb{R}$ stetig und $\lambda: J \to \mathbb{R}$ Lösung zu x' = h(x) dann ist λ monoton)

 $\Rightarrow \dot{r} = r \sin(r^2)$ hat nur konstante periodische Lösungen. r = 0, $\sin(r^2) = 0$ d.h. $r^2 = \pi k$ mit $k \in \mathbb{N}_0 \Rightarrow$ nichtkonstante periodische Lösungen: $r(t) = \sqrt{\pi k}$, $k \in \mathbb{N}_0$, $\varphi(t) = \varphi_0 + t$ zu b):

(Orbit ist eine Trajektorie)