Benchmarking Open-Source LLMs in RAG Systems with Diploma Abstracts

Authors:

Margit ANTAL (Sapientia University, Romania)
Krisztian BUZA (Budapest University of Economics and Business,
Budapest, Hungary)

MathInfo September 8-12, 2025

Why RAG?

- LLMs are not up to date, hallucinate
- You want answers based on your own private data

RAG System Architecture

RAG = Information Retrieval + Generative Al

RAG Architecture

Details

RAG - Challenges

Challenges

Our RAG challenges

- How to encode?
- How to pass the context?
- How to verify?

Our RAG challenges

- How to encode? = **Embedder model**
- How to pass the context? = Number of similar chunks + Reranking
- How to verify? = Dataset + Metrics

The SapiTheses Dataset

Creation

The SapiTheses Dataset

Question Categorization Taxonomy

- Fact Single Questions (25): Seek direct factual information explicitly present in the abstract.

 What is the Nash equilibrium in the context of two-person games?
- Reasoning Questions (73): The answer is inferred, not explicit. How can musical taste help in forming friendships?
- Summary Questions (24): Ask for key points of the abstract. What is the main purpose of the mobile app for Târgu Mures Zoo?

RAG System Evaluation

Retriever Evaluation

Retrieval Subsystem

- **Tool**: Elasticsearch
- Search Strategies Employed:
 - Lexical Search:
 - **BM25** ranking algorithm.
 - Semantic Search:
 - **Embeddings** generated by the all-mpnet-base-v2 model --> **768-dimensional** embeddings.

Retrieval Quality Metrics

• Mean Reciprocal Rank (MRR): rank_i - the rank position of the first relevant document for the i-th query.

$$ext{MRR} = rac{1}{|Q|} \sum_{i=1}^{|Q|} rac{1}{ ext{rank}_i}.$$

• **Recall@k**: Frequency of the relevant document being found within the **top k** result.

Retriever Performance Insights

Embedding model: all-mpnet-base-v2 (768)

Retriever Performance - BGE models

Embedding models: small (384), base (768), large(1024)

Answer Generation Subsystem Open-Source LLMs tested:

- Mistral-Q4 (7.0B, 32K context)
- Mistral-FP16 (7.0B, 32K context)
- DeepSeek-r1-7.6B (7.6B, 128K context)
- DeepSeek-r1-32B (32.0B, 128K context)
- Llama3 (8.0B, 8K context)
- Gemma3 (7.0B, 8K context)

Generation Performance Metrics

- **Faithfulness**: Checks if the answer is *factually consistent with the retrieved context*.
- **Answer Relevance**: Measures how well the *answer addresses the input question*.
- **Semantic Similarity**: Assesses *content overlap* between the generated and reference answers.
- Answer Correctness: Overall judgment of accuracy, considering factual content and semantic alignment.

Faithfulness

- Question: When and where was Einstein born?
- **Context:** Albert Einstein (born 14 March 1879) was a German-born theoretical physicist, widely held to be one of the greatest and most influential scientists of all time.
- **High faithfulness answer:** Einstein was born in Germany on 14th March 1879.
- Low faithfulness answer: Einstein was born in Germany on 20th March 1879.

Generation Performance - Ideal Setting

LLM + original abstract (100% relevant)

Generation Performance - Real Setting

LLM prompted + TOP 3 abstracts (reranked)

Performance Across Question Types

LLM + original abstract (PERFECT)

Reranking effect

Llama3 + (PERFECT, TOP 5, TOP 5 reranked)

Conclusions

- Lexical and semantic search methods have distinct strengths: consider hybrid search
- **Embedding choice is critical**: Mid-sized embeddings often outperform larger ones in retrieval tasks.
- Llama3 and Mistral models offer balanced performance in faithfulness and correctness.
- Reranking improves generation quality.
- Reasoning-heavy questions remain a challenge for RAG systems.