Instituto de Informática - UFRGS

Sistemas Operacionais

Gerência de Memória Alocação Particionada

Aula 12

3

Introdução

- Memória é um recurso limitado
 - Um programa (processo) para ser executado deve estar na memória
- Problemas:
 - Tamanho do programa excede a capacidade de memória
 - Vários processos devem compartilhar a memória (multiprogramação)
- Necessidades do gerenciamento de memória
 - Racionalizar a ocupação da memória (alocação de memória)
 - Determinação de áreas livres e ocupadas
- A alocação de memória depende:
 - Amarração de endereços é estática ou dinâmica
 - Necessidade de espaço contíguo ou não

Sistemas Operacionais 2

Mecanismos para alocação de memória

Alocação contígua simples

- Sistema mais simples
- Memória principal é dividida em duas partições:
 - Sistema operacional (parte baixa/alta da memória)
 - Processo do usuário (restante da memória)
- Usuário tem controle total da memória podendo inclusive acessar a área do sistema operacional
 - e.g. DOS (não confiável)
- Evolução:
 - Inserir proteção através de mecanismos de hardware + software
 - Registradores de base e de limite
 - Memory Management Unit (MMU)

Instituto de Informática - UFRGS A. Carissimi - 23-avr.-12

Instituto de Informática - UFRGS A. Carissimi -23-avr.-12

Instituto de Informática - UFRGS A. Carissimi -23-avr.-12

Sistemas Operacionais

Sistemas Operacionais

- Extensão natural do sistema de duas partições
 - Definição de múltiplas partições
- Necessidade imposta pela multiprogramação
- Filosofia:
 - Dividir a memória em blocos (partições)
 - Cada partição pode receber um processo (programa em execução)
 - Grau de multiprogramação é limitado pelo número de partições
- Duas formas básicas:
 - Alocação contígua com partições fixa (estática)
 - Alocação contígua com partições variáveis (dinâmica)

Sistemas Operacionais

5

Alocação contígua particionada (cont.)

- O sistema operacional é responsável pelo controle das partições mantendo informações como:
 - Partições alocadas
 - Particões livres
 - Tamanho das partições

Sistemas Operacionais

Alocação contígua particionada fixa

- Memória é dividida em partições de tamanho fixo:
 - Definido na inicialização do sistema (não muda com o tempo)
 - Difícil estimar e prever a real necessidade do sistema
 - Tamanhos idênticos ou não
- Questões:
 - Processos podem ser carregados em qualquer partição?
 - Depende se código é absoluto ou relocável e do tipo de amarração
 - Como tratar área de *heap* e pilha
 - Pré-alocação de uma área para ser compartilhada entre elas
 - Número de processos que podem estar em execução ao mesmo tempo
 - Programa é maior que o tamanho da partição
 - Não executa a menos que se empregue um esquema de overlay

Fragmentação Interna

- Problema da alocação fixa é uso ineficiente da memória principal
- Um processo, não importando quão pequeno seja, ocupa uma partição inteira
 - Fragmentação interna

Sistemas Operacionais

Paliativo para reduzir fragmentação interna

- Partições de tamanho diferentes
 - Processo é alocado para a menor partição possível que satisfaça seus requisitos de memória

Sist. Operacional 8 M
2 M
4 M
6 M
8 M
8 M
12 M

Sistemas Operacionais

Instituto de Informática - UFRGS A. Carissimi -23-avr.-12

0

Partições fixas e amarração

- Com código absoluto sem amarração dinâmica
 - Um processo só pode ser carregado em uma determinada partição
 - Pode haver disputa por uma partição mesmo tendo outras livres
 - Processo é mantido no escalonador de longo prazo (termo)
 - Empregar swapping (escalonamento de médio prazo)
- Com códido absoluto com amarração dinâmica
 - Processo pode ser carregado em qualquer partição de maior ou igual tamanho
 - Se todas as partições estão ocupadas, duas soluções:
 - Processo é mantido no escalonador de longo prazo (termo)
 - Empregar *swapping* (escalonamento a médio prazo)
- Código realocável após carregado apresenta mesmos problemas de um código absoluto sem amarração dinâmica

Sistemas Operacionais 10

Gerenciamento de partições fixas

Alocação particionada dinâmica

- Objetivo é eliminar a fragmentação interna
- Processos alocam memória de acordo com suas necessidades
- Partições são em número e tamanho variáveis

Sistemas Operacionais 12

320 K

128 K

96 K

288 K

64 K

Instituto de Informática - UFRGS A. Carissimi - 23-avr.-12

Instituto de Informática - UFRGS A. Carissimi - 23-aur. 19

Fragmentação externa

- A execução de processos pode criar pedaços livres de memória
 - Pode haver memória disponível, mas não contígua
 - Fragmentação externa

Exemplo:

Instituto de Informática - UFRGS A. Carissimi -23-avr.-12

Instituto de Informática - UFRGS A. Carissimi -23-avr.-12

Criação processo 120K

SisOp Processo 1 320 K 128 K Processo 4 96 K 288 K Processo 3 64 K

Sistemas Operacionais

Instituto de Informática - UFRGS A. Carissimi -23-avr.-12

Soluções possíveis fragmentação externa

- Concatenar espaços livres adjacentes em memória
 - De duas ou mais partições obter uma partição única
- Reunir partições livres para criar uma única área contígua
 - Técnica de compactação
 - Custo computacional elevado (processador e disco)
 - Acionado somente guando ocorre fragmentação
 - Possível apenas com código absoluto com amarração dinâmico

Gerenciamento de partições dinâmicas

- Determinar qual área de memória livre será alocada a um processo
- Sistema operacional mantém uma lista de lacunas
 - Pedaços de espaços livres em memória
- Necessidade de percorrer a lista de lacunas sempre que um processo é criado
 - Como percorrer essa lista??

Sistemas Operacionais

14

16

Algoritmos para alocação contígua dinâmica

- Best fit
 - Minimizar tam_processo tam_bloco
 - Deixar espaços livres os menores possíveis
- Worst fit
 - Maximizar tam processo tam bloco
 - Deixar espaços livres os maiores possíveis
- First fit
 - tam_bloco > tam_processo
- Circular fit
 - Variação do first-fit

Instituto de Informática - UFRGS A. Carissimi -23-avr.-12

Sistemas Operacionais 15 Sistemas Operacionais

13

Exemplos: Algoritmos alocação contígua dinâmica

Sistemas Operacionais

Sistema buddy

- Compromisso entre partição fixa e partição variável
- Memória é dividida em um certo número de blocos de espaços livre
 - Tamanho em potência de 2
 - Um bloco de tamanho 2 i é dividido em 2 blocos de tamanho 2 i-1 (buddies)
- Custo "gerencial"
 - Necessário manter a lista de blocos livres e ocupados, concatenar buddies etc
- Exemplo de emprego:
 - Operações de E/S transferem diretamente dados de periféricos para memória via DMA, curto-circuitando a gerência de memória
 - Uma solução é alocar contiguamente uma área de memória para E/S

Sistemas Operacionais 18

Swapping

- Obtenção de área de memória livre através do armazenamento temporário de um processo em disco (área de swap)
 - Candidatos potenciais s\u00e3o aqueles em estado bloqueado ou que j\u00e1 executaram demasiadamente no escalonador de curto prazo
- Operação de swapping é sobreposta ao processamento
 - E/S realizada através de DMA
- Procedimentos de swap-in e swap-out
 - Realizado por um processo especial (*swapper deamon*)
- Otimizações:
 - Copiar para o disco apenas as áreas que foram modificadas (dados e pilha)
 - Partição específica para o swap

Overlay

Instituto de Informática - UFRGS A. Carissimi -23-avr.-12

17

- Mecanismo que permite executar processos maiores que a capacidade total de memória ou de uma partição
- Princípio básico é dividir um processo em módulos
 - Um modelo substitui outro
 - Manter em memória apenas os módulos que necessitam residir simultaneamente
 - Necessário definir uma árvore de dependência

Interpretação:

- Módulo A e B devem estar em memória OU
- Módulo A e C devem estar em memória
 Neste caso. D OU E devem estar em memória

Instituto de Informática - UFRGS A. Carissimi -23-avr.-12

Sistemas Operacionais 19 Sistemas Operacionais 20

Exemplo: *overlay*

Exemplo:

Sistemas Operacionais

■ Espaço necessário 78K + supervisor de *overlay*

Leituras complementares

- A. Tanenbaum. <u>Sistemas Operacionais Modernos</u> (3ª edição), Pearson Brasil, 2010.
 - Capítulo 3: seção 3.2.3
- A. Silberchatz, P. Galvin; <u>Sistemas Operacionais</u>. (7ª edição). Campus, 2008.
 - Capítulo 8 (seção 8.3)
- R. Oliveira, A. Carissimi, S. Toscani; <u>Sistemas Operacionais</u>. Editora Bookman 4ª edição, 2010
 - Capítulo 6 (seção 6.2 e 6.4)

Instituto de Informática - UFRGS A. Carissimi -23-avr-12

21

Sistemas Operacionais 22

Instituto de Informática - UFRGS A. Carissimi -23-avr.-12