姓名: 鍾勝隆 系級: 電機四 學號: B02901001

Report

Performance:

Test Case	Insertion Sort		Merge Sort		Heap Sort		QuickSort	
	Time (sec)	Memory (MB)	Time (sec)	Memory (MB)	Time (sec)	Memory (MB)	Time (sec)	Memory (MB)
Case 1	0.09697	2.9	0.02619	13.1	0.00740	13.0	0.00472	13
Case 2	2.15136	14.5	0.08573	14.1	0.04234	14.1	0.03018	14.1
Case 3	142.562	27.6	0.57716	22.9	0.25066	22.8	0.30957	23
Case 4	647.99	46.2	1.31223	33.4	0.61562	33.6	1.73105	29

Problem size

數據分析:

將資料繪製成圖表可以發現 Insert Sort 在 Problem size 極大時(測資達十八萬),所需要耗費的時間明顯多於其他三者 sorting methods, 同時 Memory usage 亦然。Insert Sort 在worst case 是會到達 O(n^2),所以結果在預測之中。此外我將 Insert Sort 的迴圈,輸出執行順序(for loop 中的 int i 變數),可觀察出隨著資料變多,排序的速度有明顯漸漸下降。

Memory 的使用狀況是 Insert Sort 在 case4 花費最多,而不是 Merge sort,我認爲是因爲運算的時間也應會與使用的記憶體成正比,Insert Sort 在巨大的測資上花費較多的記憶體,因爲比較的次數增加劇烈。

此外,由輸出的結果可以看出,Heap sort 和 Quicksort 的 stability 都是 unstable,因為同樣的字雖然排在一起,但是排序後的順序與原本輸入的順序不同。Insert sort 和 merge sort 則沒有這種問題,是 stable 的排序方式。

OPTIONAL(empirical order/complexity of the running time and space from the two plots)

Problem size v.s. Memory usage

Problem size