Divide-and-Conquer Solution

- We assume that n is an exact power of 2 in each of the $n \times n$ matrices.
- Suppose that we partition each of A, B, and C into four $n/2 \times n/2$ matrices

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}, C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix},$$

so that we rewrite the equation $C = A \cdot B$ as

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \cdot \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}.$$

21

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}, C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix},$$

SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, B)

n = A.rows2 let C be a new $n \times n$ matrix **if** n == 1 $c_{11} = a_{11} \cdot b_{11}$ **else** partition A, B, and C as in equations (4.9) $C_{11} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{11}, B_{11}) + \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{12}, B_{21})$ $C_{12} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{11}, B_{12}) + \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{12}, B_{22})$ $C_{21} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{21}, B_{11}) + \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{22}, B_{21})$ $C_{22} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{21}, B_{12}) + \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{22}, B_{22})$

Implementation Detail

- How do we partition the matrices in line 5?
 - We can partition the matrices without copying entries.
 - The trick is to use index calculations. We identify a submatrix by a range of row indices and a range of column indices of the original matrix.

Strassen's Method (1/6)

- The key to Strassen's method is to make the recursion tree slightly less bushy.
- ▶ Instead of performing 8 recursive multiplications of $n/2 \times n/2$ matrices, it performs only 7.
- Strassen's method has four steps:
 - 1. Divide the input matrices A and B and output matrix C into $n/2 \times n/2$ submatrices. (It takes $\Theta(1)$ time.)
 - 2. Create 10 matrices S_1 , S_2 , ..., S_{10} , each of which is $n/2 \times n/2$ and is the sum or difference of two matrices created in step 1. (It takes $\Theta(n^2)$ time.)

Strassen's Method (2/6)

- 3. Using the submatrices created in step 1 and the 10 matrices created in step 2, recursively compute seven matrix products P_1 , P_2 , ..., P_7 . Each matrix P_i is $n/2 \times n/2$.
- 4. Compute the desired submatrices C_{11} , C_{12} , C_{21} , C_{22} of the result matrix C by adding and subtracting various combinations of the P_i matrices. (We can compute all four submatrices $\Theta(n^2)$ time.)

Strassen's Method (3/6)

• In step 2, we create the following 10 matrices:

$$S_1 = B_{12} - B_{22} ,$$

$$S_2 = A_{11} + A_{12} ,$$

$$S_3 = A_{21} + A_{22} ,$$

$$S_4 = B_{21} - B_{11}$$
,

$$S_5 = A_{11} + A_{22} ,$$

$$S_6 = B_{11} + B_{22} ,$$

$$S_7 = A_{12} - A_{22} ,$$

$$S_8 = B_{21} + B_{22}$$
,

$$S_9 = A_{11} - A_{21} ,$$

$$S_{10} = B_{11} + B_{12}$$
.

25

Strassen's Method (4/6)

• In step 3, we recursively multiply $n/2 \times n/2$ matrices seven times to compute the following $n/2 \times n/2$ matrices, each of which is the sum or difference of products of A and B submatrices:

Strassen's Method (5/6)

• Step 4 adds and subtracts the P_i matrices created in step 3 to construct the four $n/2 \times n/2$ submatrices of the product C.

$$C_{11} = P_5 + P_4 - P_2 + P_6$$

$$A_{11} \cdot B_{11} + A_{11} \cdot B_{22} + A_{22} \cdot B_{11} + A_{22} \cdot B_{22} \\ - A_{22} \cdot B_{11} + A_{22} \cdot B_{21} \\ - A_{11} \cdot B_{22} - A_{22} \cdot B_{21} + A_{12} \cdot B_{22} \\ - A_{22} \cdot B_{22} - A_{22} \cdot B_{21} + A_{12} \cdot B_{22} + A_{12} \cdot B_{21} \\ \hline A_{11} \cdot B_{11} + A_{12} \cdot B_{21}$$

26

Strassen's Method (6/6)

$$C_{12} = P_{1} + P_{2}$$

$$C_{21} = P_{3} + P_{4}$$

$$A_{11} \cdot B_{12} - A_{11} \cdot B_{22} + A_{12} \cdot B_{22}$$

$$A_{11} \cdot B_{12} + A_{12} \cdot B_{22}$$

$$A_{21} \cdot B_{11} + A_{22} \cdot B_{11} + A_{22} \cdot B_{21}$$

$$C_{22} = P_{5} + P_{1} - P_{3} - P_{7}$$

$$A_{11} \cdot B_{11} + A_{11} \cdot B_{22} + A_{22} \cdot B_{11} + A_{22} \cdot B_{22} + A_{11} \cdot B_{12}$$

$$-A_{21} \cdot B_{11}$$

$$-A_{21} \cdot B_{11}$$

$$-A_{21} \cdot B_{11} - A_{21} \cdot B_{11} + A_{21} \cdot B_{12}$$

$$A_{22} \cdot B_{22} + A_{21} \cdot B_{11} + A_{21} \cdot B_{12}$$

29