Chapitre 1: Matrices

Mohamed Essaied Hamrita IHEC, Université de Sousse

Féverier 2021

Généralités

Notations et vocabulaires

Définition: Une **matrice** d'odre (n, p) est un tableau de valeurs réelles formé de n lignes et p colonnes.

$$M = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1j} & \dots & a_{1p} \\ a_{21} & a_{22} & \dots & a_{2j} & \dots & a_{2p} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{i1} & a_{i2} & \dots & a_{ij} & \dots & a_{ip} \\ \vdots & \vdots & & \vdots & & \vdots \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nj} & \dots & a_{np} \end{pmatrix} \longleftarrow \mathsf{i}^{\mathsf{i}\mathsf{è}\mathsf{me}} \, \mathsf{ligne}$$

La notation abbrégée est:

$$M = (a_{ij})_{i=1,2,\dots,n}$$
$$_{j=1,2,\dots,p}$$

le premier indice désignera le numéro de la ligne et le deuxième indice celui de la colonne.

Cas particuliers

On appelle matrice **ligne** ou **vecteur ligne** la matrice d'ordre (1,p)

 $V = (a_1 \ a_2 \ \dots \ a_p).$ On appelle matrice **colonne** ou **vecteur colonne** la matrice d'odre (n, 1)

$$V = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$

On appelle matrice **carrée** d'ordre n la matrice d'ordre (n, n).

Parmi les matrices carrées, on distingue:

Les matrices diagonales vérifiants $a_{ij} = 0$ si $i \neq j$.

$$\begin{pmatrix}
a_{11} & 0 & \dots & 0 \\
0 & a_{22} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \dots & 0 & a_{nn}
\end{pmatrix}$$

La matrice identité définit par

$$a_{ij} = \begin{cases} 1 \text{ si } i = j \\ 0 \text{ si } i \neq j \end{cases}$$

Les matrices triangulaires supérieures, vérifiants $a_{ij} = 0$ si i > j.

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \ddots & a_{2n} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & a_{nn} \end{pmatrix}$$

Les matrices triangulaires inférieures vérifiants $a_{ij} = 0$ si i < j.

Les matrices symétriques vérifiants $a_{ij} = a_{ji}$ pour tout i et j. Par exemple:

$$A = \left(\begin{array}{rrr} -1 & 2 & 4 \\ 2 & 3 & 0 \\ 4 & 0 & 3 \end{array}\right)$$

est une matrice symétrique.

La matrice nulle est la matrice dont tous les coefficients sont nuls.

On appelle matrice transposée de A(n,p), la matrice B(p,n) vérifiant $b_{ij}=a_{ji}$. On note la transposée d'une matrice A par A' ou A^t .

$$A = \begin{pmatrix} -2 & 1 & 0 \\ 2 & 3 & -1 \\ 1 & 0 & -3 \end{pmatrix} \qquad A' = \begin{pmatrix} -2 & 2 & 1 \\ 1 & 3 & 0 \\ 0 & -1 & -3 \end{pmatrix}$$

Remarque: A est une matrice symétrique si A=A'.

On dit que A est antisymétrique si A' = -A.

$$A = \left(\begin{array}{cc} 0 & -3 \\ 3 & 0 \end{array} \right)$$
 est une matrice antisymétrique

Opérations sur les matrices

Addition

Deux matrices A et B sont égales si elles ont les mêmes coefficients:

$$A = B \iff a_{ij} = b_{ij}, \ \forall \ i, j.$$

La somme de deux matrices A(n,p) et B(n,p) est la matrice C(n,p) définie par: $c_{ij}=a_{ij}+b_{ij}$. On note C=A+B.

$$A = \begin{pmatrix} 2 & 1 & -4 \\ -3 & 5 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 3 & 5 & 2 \\ 2 & -1 & 3 \end{pmatrix}$$

$$C = A + B = \begin{pmatrix} 2+3 & 1+5 & -4+2 \\ -3+2 & 5+(-1) & 0+3 \end{pmatrix} = \begin{pmatrix} 5 & 6 & -2 \\ -1 & 4 & 3 \end{pmatrix}$$

Propriétés: Soient A, B et C trois matrices d'ordre (n, p).

•
$$A + B = B + A$$
.

Opérations sur les matrices

Addition

Deux matrices A et B sont égales si elles ont les mêmes coefficients:

$$A = B \iff a_{ij} = b_{ij}, \ \forall \ i, j.$$

La somme de deux matrices A(n,p) et B(n,p) est la matrice C(n,p) définie par: $c_{ij}=a_{ij}+b_{ij}$. On note C=A+B.

$$A = \begin{pmatrix} 2 & 1 & -4 \\ -3 & 5 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 3 & 5 & 2 \\ 2 & -1 & 3 \end{pmatrix}$$

$$C = A + B = \begin{pmatrix} 2+3 & 1+5 & -4+2 \\ -3+2 & 5+(-1) & 0+3 \end{pmatrix} = \begin{pmatrix} 5 & 6 & -2 \\ -1 & 4 & 3 \end{pmatrix}$$

Propriétés: Soient A, B et C trois matrices d'ordre (n, p).

- A + B = B + A.
- (A+B)+C=A+(B+C).

Opérations sur les matrices

Addition

Deux matrices A et B sont égales si elles ont les mêmes coefficients:

$$A = B \iff a_{ij} = b_{ij}, \ \forall \ i, j.$$

La somme de deux matrices A(n,p) et B(n,p) est la matrice C(n,p) définie par: $c_{ij}=a_{ij}+b_{ij}$. On note C=A+B.

$$A = \begin{pmatrix} 2 & 1 & -4 \\ -3 & 5 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 3 & 5 & 2 \\ 2 & -1 & 3 \end{pmatrix}$$

$$C = A + B = \begin{pmatrix} 2+3 & 1+5 & -4+2 \\ -3+2 & 5+(-1) & 0+3 \end{pmatrix} = \begin{pmatrix} 5 & 6 & -2 \\ -1 & 4 & 3 \end{pmatrix}$$

Propriétés: Soient A, B et C trois matrices d'ordre (n, p).

- A + B = B + A.
- (A+B)+C=A+(B+C).
- (A+B)' = A' + B'.

Mutiplication

Le produit d'une matrice A(n,p) par un scalaire α est la matrice C(n,p) définie par: $c_{ij}=\alpha a_{ij}$. On note $C=\alpha A$.

Propriétés:

• $(\alpha + \beta)A = \alpha A + \beta A \ \forall \alpha, \beta \in \mathbb{R}.$

Mutiplication

Le produit d'une matrice A(n,p) par un scalaire α est la matrice C(n,p) définie par: $c_{ij}=\alpha a_{ij}$. On note $C=\alpha A$.

- $(\alpha + \beta)A = \alpha A + \beta A \ \forall \alpha, \beta \in \mathbb{R}.$

$$-2 \times \left(\begin{array}{cc} 1 & -2 \\ 2 & 0 \\ 1 & -4 \end{array}\right) = \left(\begin{array}{cc} -2 & 4 \\ -4 & 0 \\ -2 & 8 \end{array}\right)$$

Produit de deux matrices

Soient A(n,p) et B(p,m) deux matrices. Le produit de A et B, noté $A\times B$ est la matrice C(n,m) définie par:

$$c_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj}$$

$$\begin{pmatrix} 1 & 3 \\ 2 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 2 & -3 & 1 \\ -2 & 2 & 0 \end{pmatrix} =$$

$$\begin{pmatrix} 1 \times 2 + 3 \times (-2) & 1 \times (-3) + 3 \times 2 & 1 \times 1 + 3 \times 0 \\ 2 \times 2 + (-1) \times (-2) & 2 \times (-3) + (-1) \times 2 & 2 \times 1 + (-1) \times 0 \\ -1 \times 2 + 2 \times (-2) & -1 \times (-3) + 2 \times 2 & -1 \times 1 + 2 \times 0 \end{pmatrix} =$$

$$\begin{pmatrix} -4 & 3 & 1 \\ 6 & -8 & 2 \\ 6 & 7 & 1 \end{pmatrix}$$

En général $A \times B \neq B \times A$. Si $A \times B = B \times A$, on dit que A et B commutent.

$$\bullet \ (A \times B) \times C = A \times (B \times C)$$

En général $A \times B \neq B \times A$. Si $A \times B = B \times A$, on dit que A et B commutent.

- $\bullet \ (A \times B) \times C = A \times (B \times C)$
- $\bullet \ A \times (B+C) = (A \times B) + (A \times C)$

En général $A \times B \neq B \times A$. Si $A \times B = B \times A$, on dit que A et B commutent.

- $\bullet \ (A \times B) \times C = A \times (B \times C)$
- $\bullet \ A \times (B+C) = (A \times B) + (A \times C)$
- $\bullet (A \times B)' = B' \times A'$

En général $A \times B \neq B \times A$. Si $A \times B = B \times A$, on dit que A et B commutent.

- $\bullet \ (A \times B) \times C = A \times (B \times C)$
- $\bullet \ A \times (B+C) = (A \times B) + (A \times C)$
- $\bullet (A \times B)' = B' \times A'$
- Si A est une matrice carrée d'ordre n, $A \times I_n = I_n \times A = A$, I_n est la matrice identité d'ordre n.

Calculer les produits suivants:

$$a_1 = (1, -2, 3) \begin{pmatrix} 6 \\ 1 \\ -3 \end{pmatrix}; a_2 = (-2, 0, 3, -1) \begin{pmatrix} 1 \\ 1 \\ -3 \\ 4 \end{pmatrix}$$

$$A = \left(\begin{array}{ccc} 3 & 1 & 5 \\ 2 & 7 & 0 \end{array}\right) \left(\begin{array}{cccc} 2 & 1 & 1 & 0 \\ 3 & 0 & 1 & 8 \\ 0 & 5 & 3 & 4 \end{array}\right)$$

Calculer les produits suivants:

$$a_1 = (1, -2, 3) \begin{pmatrix} 6 \\ 1 \\ -3 \end{pmatrix}; a_2 = (-2, 0, 3, -1) \begin{pmatrix} 1 \\ 1 \\ -3 \\ 4 \end{pmatrix}$$

$$A = \left(\begin{array}{ccc} 3 & 1 & 5 \\ 2 & 7 & 0 \end{array}\right) \left(\begin{array}{cccc} 2 & 1 & 1 & 0 \\ 3 & 0 & 1 & 8 \\ 0 & 5 & 3 & 4 \end{array}\right)$$

$$a_1 = 1 \times 6 + (-2) \times 1 + 3 \times (-3) = -5. \setminus a_2 = (-2) \times 1 + 0 \times 1 + 3 \times (-3) + (-1) \times 4 = -15. \setminus A = \begin{pmatrix} 9 & 28 & 19 & 28 \\ 25 & 2 & 9 & 56 \end{pmatrix}.$$

Puissance d'une matrice

Soit A une matrice carrée d'ordre n. On définit les puissances de A par:

$$A^k = \underbrace{A \times A \times \cdots \times A}_{k \text{ fois}}, \ \forall \ k \in \mathbb{N}^* \text{ et } A^0 = I_n.$$

$$A = \left(\begin{array}{cc} 1 & -2 \\ 2 & 3 \end{array}\right); \qquad A^2 = \left(\begin{array}{cc} 1 & -2 \\ 2 & 3 \end{array}\right) \left(\begin{array}{cc} 1 & -2 \\ 2 & 3 \end{array}\right) = \left(\begin{array}{cc} -3 & -8 \\ 8 & 5 \end{array}\right)$$

Si $A^2 = A$, alors on dit que A est **idempotente**.

Puissance d'une matrice

Soit A une matrice carrée d'ordre n. On définit les puissances de A par:

$$A^k = \underbrace{A \times A \times \cdots \times A}_{k \text{ fois}}, \ \forall \ k \in \mathbb{N}^* \text{ et } A^0 = I_n.$$

$$A = \begin{pmatrix} 1 & -2 \\ 2 & 3 \end{pmatrix}; \qquad A^2 = \begin{pmatrix} 1 & -2 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & -2 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} -3 & -8 \\ 8 & 5 \end{pmatrix}$$

Si $A^2 = A$, alors on dit que A est **idempotente**.

Formule de Newton

Soient A et B deux matrices carrées d'ordre n. Si les matrices A et B commutent (AB = BA), alors

$$(A+B)^n = \sum_{k=0}^n C_n^k A^k B^{n-k} = \sum_{k=0}^n C_n^k A^{n-k} B^k$$

Soient A et B deux matrices carrées d'ordre n.

• $(A+B)^2=(A+B)(A+B)=A^2+AB+BA+B^2$. L'égalité $(A+B)^2=A^2+2AB+B^2$ ne se produira que dans le cas où A et B commutent.

Soient A et B deux matrices carrées d'ordre n.

- $(A+B)^2=(A+B)(A+B)=A^2+AB+BA+B^2$. L'égalité $(A+B)^2=A^2+2AB+B^2$ ne se produira que dans le cas où A et B commutent.
- De même $(A B)(A + B) = A^2 BA + AB B^2$.

Soient A et B deux matrices carrées d'ordre n.

- $(A+B)^2=(A+B)(A+B)=A^2+AB+BA+B^2$. L'égalité $(A+B)^2=A^2+2AB+B^2$ ne se produira que dans le cas où A et B commutent.
- De même $(A B)(A + B) = A^2 BA + AB B^2$.

Soient A et B deux matrices carrées d'ordre n.

- $(A+B)^2=(A+B)(A+B)=A^2+AB+BA+B^2$. L'égalité $(A+B)^2=A^2+2AB+B^2$ ne se produira que dans le cas où A et B commutent.
- De même $(A B)(A + B) = A^2 BA + AB B^2$.

Exercice

Soient A et B deux matrices carrées d'ordre 2 définies par:

$$A = \begin{pmatrix} 4 & -2 \\ 2 & -1 \end{pmatrix}; \qquad B = \begin{pmatrix} 1 & 3 \\ 2 & 6 \end{pmatrix}$$

Calculer (A - B)(A + B) et $A^2 - B^2$.

Solution

$$A-B = \begin{pmatrix} 3 & -5 \\ 0 & -7 \end{pmatrix} \text{ et } A+B = \begin{pmatrix} 5 & 1 \\ 4 & 5 \end{pmatrix}.$$

$$(A-B)(A+B) = \begin{pmatrix} 3 & -5 \\ 0 & -7 \end{pmatrix} \begin{pmatrix} 5 & 1 \\ 4 & 5 \end{pmatrix} = \begin{pmatrix} -5 & -22 \\ -28 & -35 \end{pmatrix}$$

$$A^{2} = \begin{pmatrix} 4 & -2 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} 4 & -2 \\ 2 & -1 \end{pmatrix} = \begin{pmatrix} 12 & -6 \\ 6 & -3 \end{pmatrix}$$

$$B^2 = \begin{pmatrix} 1 & 3 \\ 2 & 6 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 2 & 6 \end{pmatrix} = \begin{pmatrix} 7 & 21 \\ 14 & 42 \end{pmatrix}$$

D'où
$$A^2 - B^2 = \begin{pmatrix} 12 & -6 \\ 6 & -3 \end{pmatrix} - \begin{pmatrix} 7 & 21 \\ 14 & 42 \end{pmatrix} = \begin{pmatrix} 5 & -27 \\ -8 & -45 \end{pmatrix}$$

Soit la matrice
$$J$$
 définie par $J=\left(\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{array}\right)$

① Calculer J^2 et trouver une relation entre J^2 et I_3 . En déduire J^n pour tout $n \in \mathbb{N}^*$.

Soit la matrice
$$J$$
 définie par $J=\left(\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{array}\right)$

- ① Calculer J^2 et trouver une relation entre J^2 et I_3 . En déduire J^n pour tout $n \in \mathbb{N}^*$.
- Soit $A = I_3 + J$. Trouver une relation entre A et A^2 . En déduire A^n pour tout $n \in \mathbb{N}^*$.

Soit la matrice
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
.

En appliquant la formule de Binôme, déterminer A^n .

Solution

Il est à remarquer que $A=I_3+J$, avec $J=\left(\begin{array}{ccc} 0&1&0\\0&0&1\\0&0&0\end{array}\right)$.

Donc $A^n = \sum_{k=0}^{n} C_n^k J^k I_3^{n-k}$. On peut vérifier que

$$J^{k} = \left\{ \begin{array}{ccc} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right) & \text{si } k = 2, \\ & 0_{3} & \text{si } k > 2 \end{array} \right.$$

Donc,

$$A^{n} = C_{n}^{0} J^{0} I_{3}^{n} + C_{n}^{1} J^{1} I_{3}^{n-1} + C_{n}^{2} J^{2} I_{3}^{n-2}$$

$$= 1 \times I_{3} \times I_{3} + n \times J \times I_{3} + \frac{n(n-1)}{2} \times J^{2} \times I_{3}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + n \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} + \frac{n(n-1)}{2} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & n & \frac{n(n-1)}{2} \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix}$$

Inverse d'une matrice

Définition

Une matrice carrée d'ordre n est dite inversible s'il existe une matrice carrée B d'ordre n telle que $AB=BA=I_n$. On note $B=A^{-1}$. La matrice $B=A^{-1}$ s'appelle la matrice inverse de A.

Exemple

$$A = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}; \qquad B = \begin{pmatrix} 3 & -2 \\ -1 & 1 \end{pmatrix}; \qquad AB = BA = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2$$

La matrice A est inversible et $A^{-1} = B$.

Théorème

• Si deux matrices carrées d'ordre n A et B sont inversibles alors la matrice AB est inversible et $(AB)^{-1} = B^{-1}A^{-1}$.

Inverse d'une matrice

Définition

Une matrice carrée d'ordre n est dite inversible s'il existe une matrice carrée B d'ordre n telle que $AB=BA=I_n$. On note $B=A^{-1}$. La matrice $B=A^{-1}$ s'appelle la matrice inverse de A.

Exemple

$$A = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}; \qquad B = \begin{pmatrix} 3 & -2 \\ -1 & 1 \end{pmatrix}; \qquad AB = BA = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2$$

La matrice A est inversible et $A^{-1} = B$.

Théorème

- Si deux matrices carrées d'ordre n A et B sont inversibles alors la matrice AB est inversible et $(AB)^{-1} = B^{-1}A^{-1}$.
- En particulier $(A^n)^{-1} = (A^{-1})^n$.

Calcul de l'inverse d'une matrice

Inverse d'une matrice d'ordre 2.

Soit A la matrice d'ordre 2 définie par:

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

L'inverse de A est donnée par:

$$A^{-1} = \frac{1}{ad - bc} \left(\begin{array}{cc} d & -b \\ -c & a \end{array} \right)$$

Exemple

$$A = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}; \qquad A^{-1} = \frac{1}{3-2} \begin{pmatrix} 3 & -2 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 3 & -2 \\ -1 & 1 \end{pmatrix}$$

Calcul de l'inverse: Méthode de Gauss-Jordan

Dans ce paragraphe, on exposera une méthode de calcul de l'inverse d'une matrice, dite méthode de Gauss-Jordan. Cette méthode consiste à transformer la matrice A en I_n et I_n en A^{-1} .

$$\left[\begin{array}{c|c}A \mid I_n\end{array}\right] \longrightarrow \left[\begin{array}{c|c}I_n \mid A^{-1}\end{array}\right]$$

Cette méthode consiste à effectuer un certain nombre d'actions élémentaires pour aboutir à ce résultat.

Opérations élémentaires

• On peut échanger deux lignes quelconques L_i et L_k . On écrira $L_i \longleftrightarrow L_k$.

Calcul de l'inverse: Méthode de Gauss-Jordan

Dans ce paragraphe, on exposera une méthode de calcul de l'inverse d'une matrice, dite méthode de Gauss-Jordan. Cette méthode consiste à transformer la matrice A en I_n et I_n en A^{-1} .

$$\left[\begin{array}{c|c}A \mid I_n\end{array}\right] \longrightarrow \left[\begin{array}{c|c}I_n \mid A^{-1}\end{array}\right]$$

Cette méthode consiste à effectuer un certain nombre d'actions élémentaires pour aboutir à ce résultat.

Opérations élémentaires

- On peut échanger deux lignes quelconques L_i et L_k . On écrira $L_i \longleftrightarrow L_k$.
- On peut remplacer une ligne quelconque L_i par l'un de ses multiples non nuls. On notera $L_i \longleftrightarrow \alpha L_i \ (\alpha \neq 0)$.

Calcul de l'inverse: Méthode de Gauss-Jordan

Dans ce paragraphe, on exposera une méthode de calcul de l'inverse d'une matrice, dite méthode de Gauss-Jordan. Cette méthode consiste à transformer la matrice A en I_n et I_n en A^{-1} .

$$\left[\begin{array}{c|c}A \mid I_n\end{array}\right] \longrightarrow \left[\begin{array}{c|c}I_n \mid A^{-1}\end{array}\right]$$

Cette méthode consiste à effectuer un certain nombre d'actions élémentaires pour aboutir à ce résultat.

Opérations élémentaires

- On peut échanger deux lignes quelconques L_i et L_k . On écrira $L_i \longleftrightarrow L_k$.
- On peut remplacer une ligne quelconque L_i par l'un de ses multiples non nuls. On notera $L_i \longleftrightarrow \alpha L_i \ (\alpha \neq 0)$.
- On peut remplacer une ligne quelconque par la somme d'un multiple (non nul) de cette ligne et d'une combinaison finie des autres lignes.

$$L_i \longleftrightarrow \alpha L_i + \sum \beta_k L_k$$

Mohamed Essaied Hamrita IHEC, Université

Chapitre 1: Matrices

Féverier 2021

Exemple

Soit

$$A = \left(\begin{array}{cc} 1 & 2 \\ 1 & 3 \end{array}\right)$$

Effectuons des opérations élémentaires pour atteindre la transformation suivante:

$$\left[\begin{array}{cc|c} 1 & 2 & 1 & 0 \\ 1 & 3 & 0 & 1 \end{array}\right] \longrightarrow \left[\begin{array}{cc|c} 1 & 0 & A^{-1} \end{array}\right]$$

• $a_{11} = 1$, donc la première ligne reste inchangée $(L_1 \longleftarrow L_1)$.

Soit

$$A = \left(\begin{array}{cc} 1 & 2 \\ 1 & 3 \end{array}\right)$$

Effectuons des opérations élémentaires pour atteindre la transformation suivante:

$$\left[\begin{array}{cc|c} 1 & 2 & 1 & 0 \\ 1 & 3 & 0 & 1 \end{array}\right] \longrightarrow \left[\begin{array}{cc|c} 1 & 0 & A^{-1} \end{array}\right]$$

- $a_{11} = 1$, donc la première ligne reste inchangée $(L_1 \longleftarrow L_1)$.
- Afin de rendre $a_{21}=0$, on peut effectuer l'opération élémentaire suivante: $L_2 \longleftarrow L_2 L_1$.

Soit

$$A = \left(\begin{array}{cc} 1 & 2 \\ 1 & 3 \end{array}\right)$$

Effectuons des opérations élémentaires pour atteindre la transformation suivante:

$$\left[\begin{array}{cc|c} 1 & 2 & 1 & 0 \\ 1 & 3 & 0 & 1 \end{array}\right] \longrightarrow \left[\begin{array}{cc|c} 1 & 0 & A^{-1} \end{array}\right]$$

- $a_{11} = 1$, donc la première ligne reste inchangée $(L_1 \longleftarrow L_1)$.
- Afin de rendre $a_{21}=0$, on peut effectuer l'opération élémentaire suivante: $L_2 \longleftarrow L_2 L_1$.

Soit

$$A = \left(\begin{array}{cc} 1 & 2 \\ 1 & 3 \end{array}\right)$$

Effectuons des opérations élémentaires pour atteindre la transformation suivante:

$$\left[\begin{array}{cc|c} 1 & 2 & 1 & 0 \\ 1 & 3 & 0 & 1 \end{array}\right] \longrightarrow \left[\begin{array}{cc|c} 1 & 0 & A^{-1} \end{array}\right]$$

- $a_{11} = 1$, donc la première ligne reste inchangée $(L_1 \longleftarrow L_1)$.
- Afin de rendre $a_{21}=0$, on peut effectuer l'opération élémentaire suivante: $L_2 \longleftarrow L_2 L_1$.

Aprés ces deux opérations élémentaires, on aura:

$$\left[\begin{array}{cc|c}1&2&1&0\\1&3&0&1\end{array}\right]\longrightarrow \left[\begin{array}{cc|c}1&2&1&0\\0&1&-1&1\end{array}\right]$$

Il reste une opération afin de rendre $a_{12}=0$. Pour ce faire, on procède comme suit $L_1 \longleftarrow L_1 - 2 \times L_2$. D'où, on obtient

$$\left[\begin{array}{cc|c}1&2&1&0\\0&1&-1&1\end{array}\right]\longrightarrow \left[\begin{array}{cc|c}1&0&3&-2\\0&1&-1&1\end{array}\right]$$

Donc,

$$A^{-1} = \left(\begin{array}{cc} 3 & -2 \\ -1 & 1 \end{array}\right)$$

• Dans la première opération, a_{11} est appelé premier **pivot**.

- Dans la première opération, a_{11} est appelé premier **pivot**.
- D'une manière générale, la méthode de Gauss-Jordan, appelée aussi Pivot de Gauss, est décrite comme suit:

- Dans la première opération, a_{11} est appelé premier **pivot**.
- D'une manière générale, la méthode de Gauss-Jordan, appelée aussi Pivot de Gauss, est décrite comme suit:
 - Si $a_{11} \neq 0$, alors a_{11} est le premier pivot et $L_1 \longleftarrow \frac{1}{a_{11}} L_1$.

- Dans la première opération, a_{11} est appelé premier **pivot**.
- D'une manière générale, la méthode de Gauss-Jordan, appelée aussi Pivot de Gauss, est décrite comme suit:
 - **1** Si $a_{11} \neq 0$, alors a_{11} est le premier pivot et $L_1 \longleftarrow \frac{1}{a_{11}} L_1$.
 - ② On effectue les opérations élémentaires suivantes: $L_k \longleftarrow L_k \frac{a_{k1}}{a_{11}}L_1$ pour $k=2,\ldots,n$.

- Dans la première opération, a_{11} est appelé premier **pivot**.
- D'une manière générale, la méthode de Gauss-Jordan, appelée aussi Pivot de Gauss, est décrite comme suit:
 - Si $a_{11} \neq 0$, alors a_{11} est le premier pivot et $L_1 \longleftarrow \frac{1}{a_{11}} L_1$.
 - ② On effectue les opérations élémentaires suivantes: $L_k \longleftarrow L_k \frac{a_{k1}}{a_{11}}L_1$ pour $k=2,\ldots,n$.
 - **3** Si $a_{11} = 0$, on intervertit 2 lignes pour ramener un coefficient différent de 0 en haut à gauche.

- Dans la première opération, a_{11} est appelé premier **pivot**.
- D'une manière générale, la méthode de Gauss-Jordan, appelée aussi Pivot de Gauss, est décrite comme suit:
 - ① Si $a_{11} \neq 0$, alors a_{11} est le premier pivot et $L_1 \longleftarrow \frac{1}{a_{11}} L_1$.
 - ② On effectue les opérations élémentaires suivantes: $L_k \longleftarrow L_k \frac{a_{k1}}{a_{11}}L_1$ pour $k=2,\ldots,n$.
 - $oxed{3}$ Si $a_{11}=0$, on intervertit 2 lignes pour ramener un coefficient différent de 0 en haut à gauche.
 - ① On repète 1, 2, 3 pour la nouvelle matrice mais en prenant un deuxième pivot a_{22} de la nouvelle matrice et a_{k2} au lieu de a_{k1} et ainsi de suite en prenant comme pivot a_{pp} toujours de la dernière matrice et en remplaçant a_{k2} par a_{kp} .

Déterminons, par la méthode de Gauss-Jordan, l'inverse de la matrice ${\cal A}$ définie par

$$A = \left(\begin{array}{ccc} 2 & 1 & -4 \\ 3 & 3 & -5 \\ 4 & 5 & -2 \end{array}\right)$$

 $1^{\text{i\`ere}}$ itération: k=1, Pivot $_1$: $a_{11}=2$.

$$\begin{bmatrix} 2 & 1 & -4 & 1 & 0 & 0 \\ 3 & 3 & -5 & 0 & 1 & 0 \\ 4 & 5 & -2 & 0 & 0 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} L_1 \leftarrow \frac{1}{2}L_1 \\ L_2 \leftarrow L_2 - \frac{3}{2}L_1 \\ L_3 \leftarrow L_3 - \frac{4}{2}L_1 \end{bmatrix} \begin{bmatrix} 1 & \frac{1}{2} & -2 & \frac{1}{2} & 0 & 0 \\ 0 & \frac{3}{2} & 1 & -\frac{3}{2} & 1 & 0 \\ 0 & 3 & 6 & -2 & 0 & 1 \end{bmatrix}$$

 $2^{\text{ième}}$ itération: k=2, Pivot₂: $a_{22}=2$.

$$\begin{bmatrix} 1 & \frac{1}{2} & -2 & \frac{1}{2} & 0 & 0 \\ 0 & \frac{3}{2} & -2 & -\frac{3}{2} & 1 & 0 \\ 0 & 3 & 6 & -2 & 0 & 1 \end{bmatrix} \longrightarrow$$

$$L_{1} \leftarrow L_{1} - \frac{1/2}{3/2}L_{2} \quad \begin{bmatrix} 1 & 0 & -\frac{7}{3} & 1 & -\frac{1}{3} & 0 \\ 0 & 1 & \frac{2}{3} & -1 & \frac{2}{3} & 0 \\ L_{2} \leftarrow \frac{1}{3/2}L_{2} & 0 & 0 & 4 & 1 & -2 & 1 \end{bmatrix}$$

 $3^{\text{ième}}$ itération: k=3, Pivot₃: $a_{33}=4$.

$$\begin{bmatrix} 1 & 0 & -\frac{7}{3} \\ 0 & 1 & \frac{2}{3} \\ 0 & 0 & 4 \end{bmatrix} \xrightarrow{1 & -\frac{1}{3}} \xrightarrow{0} \\ L_1 \leftarrow L_1 - \frac{-7/3}{4} L_3 \\ L_2 \leftarrow L_2 - \frac{2/3}{4} L_3 \\ L_3 \leftarrow \frac{1}{4} L_3 \end{bmatrix} \xrightarrow{1 & 0} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{\frac{19}{12}} \xrightarrow{-\frac{3}{2}} \xrightarrow{\frac{7}{12}} \\ -\frac{7}{6} & 1 & -\frac{1}{6} \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{\frac{1}{4}} \xrightarrow{\frac{1}{2}} \xrightarrow{\frac{1}{4}}$$

Ainsi,

$$A^{-1} = \begin{pmatrix} \frac{19}{12} & -\frac{3}{2} & \frac{7}{12} \\ -\frac{7}{6} & 1 & -\frac{1}{6} \\ \frac{1}{4} & -\frac{1}{2} & \frac{1}{4} \end{pmatrix}$$

Exercice

Déterminer, par la méthode de Gauss-Jordan, l'inverse de la matrice ${\cal A}$ définie par

$$A = \begin{pmatrix} -2 & -\frac{1}{2} & 1 & \frac{1}{2} \\ 1 & \frac{1}{2} & 0 & -\frac{1}{2} \\ -8 & -1 & 2 & 2 \\ 3 & \frac{1}{2} & -1 & -\frac{1}{2} \end{pmatrix}$$

 $1^{\text{ière}}$ itération: k = 1, Pivot₁: $a_{11} = -2$.

$$\begin{bmatrix} -2 & -\frac{1}{2} & 1 & \frac{1}{2} \\ 1 & \frac{1}{2} & 0 & -\frac{1}{2} \\ -8 & -1 & 2 & 2 \\ 3 & \frac{1}{2} & -1 & -\frac{1}{2} \end{bmatrix} \longrightarrow \begin{bmatrix} L_1 \leftarrow -\frac{1}{2}L_1 \\ L_2 \leftarrow L_2 - \frac{1}{2}L_1 \\ L_3 \leftarrow L_3 - 4L_1 \\ L_4 \leftarrow L_4 + \frac{3}{2}L_1 \end{bmatrix} \begin{bmatrix} 1 & \frac{1}{4} & -\frac{1}{2} & -\frac{1}{4} & -\frac{1}{2} & 0 \\ 0 & \frac{1}{4} & \frac{1}{2} & -\frac{1}{4} & \frac{1}{2} & 1 \\ 0 & 1 & -1 & 0 & -4 & 0 \\ 0 & -\frac{1}{4} & \frac{1}{2} & \frac{1}{4} & \frac{3}{2} & 0 \end{bmatrix}$$

Exercice

 $2^{\mathsf{ième}}$ itération: k=2, Pivot_2 : $a_{22}=\frac{1}{4}$.

 $3^{\text{ième}}$ itération: k=3, Pivot₃: $a_{33}=-4$.

$$\longrightarrow \begin{array}{c} L_1 \leftarrow L_1 - \frac{1}{4}L_3 \\ L_2 \leftarrow L_2 + \frac{1}{2}L_3 \\ L_3 \leftarrow -\frac{1}{4}L_3 \\ L_4 \leftarrow L_4 + \frac{1}{4}L_3 \end{array} \left[\begin{array}{ccccc} 1 & 0 & 0 & -\frac{1}{4} & \left| \begin{array}{ccccc} \frac{1}{2} & 0 & -\frac{1}{4} & 0 \\ 0 & 1 & 0 & -\frac{1}{2} & -1 & 2 & \frac{1}{2} & 0 \\ 0 & 0 & 1 & -\frac{1}{4} & \left| \begin{array}{ccccc} \frac{3}{2} & 1 & -\frac{1}{4} & 0 \\ 0 & 0 & 0 & \frac{1}{4} & \left| \begin{array}{ccccc} \frac{1}{2} & 0 & \frac{1}{4} & 1 \end{array} \right] \end{array} \right]$$

Exercice

 $4^{\text{ième}}$ itération: k=4, Pivot₄: $a_{44}=\frac{1}{4}$.

Ainsi,

$$A^{-1} = \left(\begin{array}{cccc} 1 & 0 & 0 & 1 \\ 0 & 2 & 1 & 2 \\ 2 & 1 & 0 & 1 \\ 2 & 0 & 1 & 4 \end{array}\right)$$