

Lecture 05 Quantization

Part I

Song Han

songhan@mit.edu

Lecture Plan

Today we will:

- 1. Review the numeric *data types* used in the modern computing systems, including integers and floatingpoint numbers.
- 2. Learn the basic concept of *neural network quantization*
- 3. Learn three types of common neural network quantization:
 - 1. K-Means-based Quantization
 - 2. Linear Quantization
 - 3. Binary and Ternary Quantization

Today's Al is too BIG!

Today's Al is too BIG!

Model Compression and Hardware Acceleration for Neural Networks: A Comprehensive Survey [Deng et al., IEEE 2020]

Memory is Expensive

Data Movement → More Memory Reference → More Energy

Operation	Energy [pJ]	Rel	ative En	ergy Co	st	
32 bit int ADD	0.1					
32 bit float ADD	0.9					
32 bit Register File	1					:
32 bit int MULT	3.1			4 2	200 ×	
32 bit float MULT	3.7					
32 bit SRAM Cache	5					
32 bit DRAM Memory	640					
Rough Energy Cost For Various C	Operations in 45nm 0.9V	1	10	100	1000	10000

This image is in the public domain

Computing's Energy Problem (and What We Can Do About it) [Horowitz, M., IEEE ISSCC 2014]

Low Bit-Width Operations are Cheap

Less Bit-Width → **Less Energy**

Operation	Energy [pJ]		
8 bit int ADD	0.03	30 ×	-
32 bit int ADD	0.1		
16 bit float ADD	0.4		
32 bit float ADD	0.9		
8 bit int MULT	0.2		16
32 bit int MULT	3.1		
16 bit float MULT	1.1		
32 bit float MULT	3.7		
Rough Energy Cost For Various	Operations in 45nm 0.9V	1 10	_

Computing's Energy Problem (and What We Can Do About it) [Horowitz, M., IEEE ISSCC 2014]

Low Bit-Width Operations are Cheap

Less Bit-Width → **Less Energy**

Operation	Energy [pJ]
8 bit int ADD	0.03
32 bit int ADD	0.1
16 bit float ADD	0.4

How should we make deep learning more efficient?

Computing's Energy Problem (and What We Can Do About it) [Horowitz, M., IEEE ISSCC 2014]

What is Quantization?

Quantization is the process of constraining an input from a continuous or otherwise large set of values to a discrete set.

Original Image

16-Color Image

Images are in the public domain.

Numeric Data Types

How is numeric data represented in modern computing systems?

Integer

- Unsigned Integer
 - *n*-bit Range: $[0, 2^n 1]$
- Signed Integer
 - Sign-Magnitude Representation
 - *n*-bit Range: $[-2^{n-1}-1, 2^{n-1}-1]$
 - Both 000...00 and 100...00 represent 0
 - Two's Complement Representation
 - *n*-bit Range: $[-2^{n-1}, 2^{n-1} 1]$
 - 000...00 represents 0
 - 100...00 represents -2^{n-1}

Sign Bit

Fixed-Point Number

(using 2's complement representation)

Floating-Point Number

Example: 32-bit floating-point number in IEEE 754

Sign 8 bit Exponent

23 bit Fraction

$$(-1)^{sign} \times (1 + Fraction) \times 2^{Exponent-127} \leftarrow Exponent Bias = 127 = 2^{8-1}-1$$
 (significant / mantissa)

$$0.265625 = 1.0625 \times 2^{-2} = (1 + 0.0625) \times 2^{125-127}$$

Floating-Point Number

Exponent Width → Range; Fraction Width → Precision

Numeric Data Types

Question: What is the following IEEE half precision (IEEE FP16) number in decimal?

Exponent Bias = 15₁₀

- Sign: -
- Exponent: $10001_2 15_{10} = 17_{10} 15_{10} = 2_{10}$ Fraction: $1100000000_2 = 0.75_{10}$
- Decimal Answer = $-(1 + 0.75) \times 2^2 = -1.75 \times 2^2 = -7.0_{10}$

Numeric Data Types

• Question: What is the decimal 2.5 in Brain Float (BF16)?

$$2.5_{10} = 1.25_{10} \times 2^{1}$$

Exponent Bias = 127₁₀

- Sign: +
- Exponent Binary: $1_{10} + 127_{10} = 128_{10} = 10000000_2$
- Fraction Binary: $0.25_{10} = 0100000_2$
- Binary Answer

What is Quantization?

Quantization is the process of constraining an input from a continuous or otherwise large set of values to a discrete set.

The difference between an input value and its quantized value is referred to as quantization error.

Original Image

16-Color Image

<u>Images</u> are in the public domain. "Palettization"

Quantization [Wikipedia]

Neural Network Quantization: Agenda

1		1	1
1			1
0	1	1	
1	1	1	1

K-Means-based
Quantization

Linear Quantization **Binary/Ternary** Quantization

Storage	Floating-Point Weights	Integer Weights; Floating-Point Codebook
Computation	Floating-Point Arithmetic	Floating-Point Arithmetic

Neural Network Quantization

Weight Quantization

weights (32-bit float)

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

3.2 × smaller

Assume N-bit quantization, and #parameters = $M >> 2^{N}$.

32 bit
$$\times M$$

= 32M bit
= NM bit
= NM bit
32/N \times smaller

Deep Compression [Han et al., ICLR 2016]

reconstructed weights (32-bit float)

2.00	-1.00	1.50	0.00
0.00	0.00	-1.00	2.00
-1.00	2.00	0.00	-1.00
2.00	0.00	1.50	1.50

quantization error

0.09	0.02	-0.02	0.09
0.05	-0.14	-0.08	0.12
0.09	-0.08	0	-0.03
-0.13	0	0.03	-0.01

storage

Fine-tuning Quantized Weights

Deep Compression [Han et al., ICLR 2016]

Accuracy vs. compression rate for AlexNet on ImageNet dataset

Deep Compression [Han et al., ICLR 2016]

Before Quantization: Continuous Weight

After Quantization: Discrete Weight

Deep Compression [Han et al., ICLR 2016]

After Quantization: Discrete Weight after Training

How Many Bits do We Need?

Huffman Coding

- In-frequent weights: use more bits to represent
- Frequent weights: use less bits to represent

Summary of Deep Compression

Deep Compression Results

Network	Original Size	Compressed Size	Compression Ratio	Original Accuracy	Compressed Accuracy
LeNet-300	1070KB	27KB	40x	98.36%	98.42%
LeNet-5	1720KB	44KB	39x	99.20%	99.26%
AlexNet	240MB	6.9MB	35x	80.27%	80.30%
VGGNet	550MB	11.3MB	49x	88.68%	89.09%
GoogleNet	28MB	2.8MB	10x	88.90%	88.92%
ResNet-18	44.6MB	4.0MB	11x	89.24%	89.28%

Can we make compact models to begin with?

Deep Compression [Han et al., ICLR 2016]

SqueezeNet

SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size [landola et al., arXiv 2016]

Deep Compression on SqueezeNet

Network	Approach	Size	Ratio	Top-1 Accuracy	Top-5 Accuracy
AlexNet	_	240MB	1x	57.2%	80.3%
AlexNet	SVD	48MB	5x	56.0%	79.4%
AlexNet	Deep Compression	6.9MB	35x	57.2%	80.3%
SqueezeNet	-	4.8MB	50x	57.5%	80.3%
SqueezeNet	Deep Compression	0.47MB	510x	57.5%	80.3%

SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size [landola et al., arXiv 2016]

- The weights are decompressed using a lookup table (i.e., codebook) during runtime inference.
- K-Means-based Weight Quantization only saves storage cost of a neural network model.
 - All the computation and memory access are still floating-point.

Neural Network Quantization

1		1	1
1			1
0	1	1	
1	1	1	1

K-Means-based
Quantization

Linear Quantization

Binary/Ternary Quantization

Storage	Floating-Point Weights	Integer Weights; Floating-Point	Integer Weights
	vveigiits	Codebook	
Computation	Floating-Point Arithmetic	Floating-Point Arithmetic	Integer Arithmetic

Linear Quantization

What is Linear Quantization?

An affine mapping of integers to real numbers

weights (32-bit float)

-0.98 1.48 2.09 0.09 **-0.14** -1.08 **2.12** -1.03 -0.91 1.92 1.87 1.53 1.49

quantized weights (2-bit signed int)

1	-2	0	7
-1	-1	-2	1
-2	1	-1	-2
1	-1	0	0

zero point (2-bit signed int)

<u>scale</u>

(32-bit float)

reconstructed weights (32-bit float)

2.14	-1.07	1.07	0
0	0	-1.07	2.14
-1.07	2.14	0	-1.07
2.14	0	1.07	1.07

quantization error

-0.05	0.09	0.41	0.09
0.05	-0.14	-0.01	-0.02
0.16	-0.22	0	0.04
-0.27	0	0.46	0.42

Decimal Binary 01 00 -2 10

Linear Quantization

An affine mapping of integers to real numbers r = S(q - Z)

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacob et al., CVPR 2018]

quantized integer Z

Linear Quantization

An affine mapping of integers to real numbers r = S(q - Z)

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacob et al., CVPR 2018]

Scale of Linear Quantization

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

$$r_{\text{max}} = S \left(q_{\text{max}} - Z \right)$$

$$r_{\text{min}} = S \left(q_{\text{min}} - Z \right)$$

$$\downarrow$$

$$r_{\text{max}} - r_{\text{min}} = S \left(q_{\text{max}} - q_{\text{min}} \right)$$

$$S = \frac{r_{\text{max}} - r_{\text{min}}}{q_{\text{max}} - q_{\text{min}}}$$

Scale of Linear Quantization

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

 q_{max}

Binary	Decimal
01	1
00	0
11	-1
10	-2

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

$$S = \frac{r_{\text{max}} - r_{\text{min}}}{q_{\text{max}} - q_{\text{min}}}$$

$$= \frac{2.12 - (-1.08)}{1 - (-2)}$$
$$= 1.07$$

 q_{\min}

 $-2 - 1 \ 0 \ 1$

Zero Point of Linear Quantization

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

$$r_{\min} = S \left(q_{\min} - Z \right)$$

$$\downarrow$$

$$Z = q_{\min} - \frac{r_{\min}}{S}$$

$$\downarrow$$

$$= \text{round} \left(q_{\min} - \frac{r_{\min}}{S} \right)$$

Zero Point of Linear Quantization

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

a	a	
q_{min}	q_{max}	
-2 - 1	0 1	

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

$$Z = q_{\min} - \frac{r_{\min}}{S}$$

Decimal

-2

01

00

11

10

= round(
$$-2 - \frac{-1.08}{1.07}$$
)
= -1

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

Consider the following matrix multiplication.

$$Y = WX$$

$$S_{\mathbf{Y}}\left(\mathbf{q}_{\mathbf{Y}}-Z_{\mathbf{Y}}\right)=S_{\mathbf{W}}\left(\mathbf{q}_{\mathbf{W}}-Z_{\mathbf{W}}\right)\cdot S_{\mathbf{X}}\left(\mathbf{q}_{\mathbf{X}}-Z_{\mathbf{X}}\right)$$

$$\mathbf{q_Y} = \frac{S_{\mathbf{W}}S_{\mathbf{X}}}{S_{\mathbf{Y}}} \left(\mathbf{q_W} - Z_{\mathbf{W}} \right) \left(\mathbf{q_X} - Z_{\mathbf{X}} \right) + Z_{\mathbf{Y}}$$

$$\mathbf{q_Y} = \frac{S_{\mathbf{W}}S_{\mathbf{X}}}{S_{\mathbf{Y}}} \left(\mathbf{q_W}\mathbf{q_X} - Z_{\mathbf{W}}\mathbf{q_X} - Z_{\mathbf{X}}\mathbf{q_W} + Z_{\mathbf{W}}Z_{\mathbf{X}} \right) + Z_{\mathbf{Y}}$$

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacob et al., CVPR 2018]

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

Consider the following matrix multiplication.

$$\mathbf{Y} = \mathbf{WX}$$

$$\mathbf{q_Y} = \underbrace{\frac{S_\mathbf{W} S_\mathbf{X}}{S_\mathbf{Y}}} \left(\mathbf{q_W} \mathbf{q_X} - Z_\mathbf{W} \mathbf{q_X} - Z_\mathbf{X} \mathbf{q_W} + Z_\mathbf{W} Z_\mathbf{X} \right) + \underbrace{Z_\mathbf{Y}}_{N\text{-bit Integer}}$$
 N-bit Integer Multiplication **N-bit Integer Addition Addition**

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

Consider the following matrix multiplication.

$$\mathbf{Y} = \mathbf{WX}$$

$$\mathbf{q_Y} = \frac{S_{\mathbf{W}}S_{\mathbf{X}}}{S_{\mathbf{Y}}} \left(\mathbf{q_W}\mathbf{q_X} - Z_{\mathbf{W}}\mathbf{q_X} - Z_{\mathbf{X}}\mathbf{q_W} + Z_{\mathbf{W}}Z_{\mathbf{X}} \right) + Z_{\mathbf{Y}}$$

Empirically, the scale $\frac{S_{\mathbf{W}}S_{\mathbf{X}}}{S_{\mathbf{Y}}}$ is always in the interval (0, 1). Fixed-point Multiplication

$$\frac{S_{\mathbf{W}}S_{\mathbf{X}}}{S_{\mathbf{Y}}} = 2^{-n}M_0$$
, where $M_0 \in [0.5,1)$

Bit Shift

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacob et al., CVPR 2018]

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

Consider the following matrix multiplication.

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacob et al., CVPR 2018]

Symmetric Linear Quantization

Zero point Z=0 and Symmetric floating-point range

Bit Width	q min	Q _{max}
2	-2	1
3	-4	3
4	-8	7
N	-2N-1	2N-1-1

Symmetric Linear Quantization

Full range mode

$$S = \frac{r_{\text{max}} - r_{\text{min}}}{q_{\text{max}} - q_{\text{min}}}$$

$$S = \frac{r_{\min}}{q_{\min} - Z} = \frac{-|r|_{\max}}{q_{\min}} = \frac{|r|_{\max}}{2^{N-1}}$$

- use full range of quantized integers
- example: PyTorch's native quantization, ONNX

Symmetric Linear Quantization

Restricted range mode

$$S = \frac{r_{\text{max}} - r_{\text{min}}}{q_{\text{max}} - q_{\text{min}}}$$

$$S = \frac{r_{\text{max}}}{q_{\text{max}} - Z} = \frac{|r|_{\text{max}}}{q_{\text{max}}} = \frac{|r|_{\text{max}}}{2^{N-1} - 1}$$

• example: TensorFlow, NVIDIA TensorRT, Intel DNNL

Asymmetric vs. Symmetric

Asymmetric Linear Quantization

 $r = \frac{|r|_{\max}}{r}$

Symmetric Linear Quantization

- The quantized range is fully used.
- The implementation is more complex, and zero points require additional logic in hardware.
- The quantized range will be wasted for biased float range.

Z=0

 q_{max}

 q_{\min}

- Activation tensor is non-negative after ReLU, and thus symmetric quantization will lose 1 bit effectively.
- The implementation is much simpler.

Neural Network Distiller

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

Consider the following matrix multiplication.

$$\mathbf{q_Y} = \frac{S_W S_X}{S_Y} \left(\mathbf{q_W q_X} - Z_W \mathbf{q_X} - Z_X \mathbf{q_W} + Z_W Z_X \right) + Z_Y$$
Rescale to N-bit Integer Multiplication N-bit Integer Addition/Subtraction Addition
$$\mathbf{q_Y} = \frac{S_W S_X}{S_Y} \left(\mathbf{q_W q_X} - Z_X \mathbf{q_W} \right) + Z_Y$$

$$\mathbf{q_W q_X} - Z_X \mathbf{q_W} + Z_W \mathbf{q_W} + Z_W$$

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

So far, we ignore bias. Now we consider the following fully-connected layer with bias.

$$Y = WX + b$$

$$S_{\mathbf{Y}} \left(\mathbf{q}_{\mathbf{Y}} - Z_{\mathbf{Y}} \right) = S_{\mathbf{W}} \left(\mathbf{q}_{\mathbf{W}} - Z_{\mathbf{W}} \right) \cdot S_{\mathbf{X}} \left(\mathbf{q}_{\mathbf{X}} - Z_{\mathbf{X}} \right) + S_{\mathbf{b}} \left(\mathbf{q}_{\mathbf{b}} - Z_{\mathbf{b}} \right)$$

$$\downarrow Z_{\mathbf{W}} = 0$$

$$S_{\mathbf{Y}} \left(\mathbf{q}_{\mathbf{Y}} - Z_{\mathbf{Y}} \right) = S_{\mathbf{W}} S_{\mathbf{X}} \left(\mathbf{q}_{\mathbf{W}} \mathbf{q}_{\mathbf{X}} - Z_{\mathbf{X}} \mathbf{q}_{\mathbf{W}} \right) + S_{\mathbf{b}} \left(\mathbf{q}_{\mathbf{b}} - Z_{\mathbf{b}} \right)$$

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

So far, we ignore bias. Now we consider the following fully-connected layer with bias.

$$Y = WX + b$$

$$S_{\mathbf{Y}} \left(\mathbf{q}_{\mathbf{Y}} - Z_{\mathbf{Y}} \right) = S_{\mathbf{W}} \left(\mathbf{q}_{\mathbf{W}} - Z_{\mathbf{W}} \right) \cdot S_{\mathbf{X}} \left(\mathbf{q}_{\mathbf{X}} - Z_{\mathbf{X}} \right) + S_{\mathbf{b}} \left(\mathbf{q}_{\mathbf{b}} - Z_{\mathbf{b}} \right)$$

$$\downarrow Z_{\mathbf{W}} = 0$$

$$S_{\mathbf{Y}} \left(\mathbf{q}_{\mathbf{Y}} - Z_{\mathbf{Y}} \right) = S_{\mathbf{W}} S_{\mathbf{X}} \left(\mathbf{q}_{\mathbf{W}} \mathbf{q}_{\mathbf{X}} - Z_{\mathbf{X}} \mathbf{q}_{\mathbf{W}} \right) + S_{\mathbf{b}} \left(\mathbf{q}_{\mathbf{b}} - Z_{\mathbf{b}} \right)$$

$$\downarrow Z_{\mathbf{b}} = 0, \quad S_{\mathbf{b}} = S_{\mathbf{W}} S_{\mathbf{X}}$$

$$S_{\mathbf{Y}} \left(\mathbf{q}_{\mathbf{Y}} - Z_{\mathbf{Y}} \right) = S_{\mathbf{W}} S_{\mathbf{X}} \left(\mathbf{q}_{\mathbf{W}} \mathbf{q}_{\mathbf{X}} - Z_{\mathbf{X}} \mathbf{q}_{\mathbf{W}} + \mathbf{q}_{\mathbf{b}} \right)$$

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

So far, we ignore bias. Now we consider the following fully-connected layer with bias.

$$\mathbf{Y} = \mathbf{W}\mathbf{X} + \mathbf{b}$$

$$Z_{\mathbf{W}} = 0 \downarrow Z_{\mathbf{b}} = 0, \quad S_{\mathbf{b}} = S_{\mathbf{W}}S_{\mathbf{X}}$$

$$S_{\mathbf{Y}} \left(\mathbf{q}_{\mathbf{Y}} - Z_{\mathbf{Y}} \right) = S_{\mathbf{W}}S_{\mathbf{X}} \left(\mathbf{q}_{\mathbf{W}}\mathbf{q}_{\mathbf{X}} - Z_{\mathbf{X}}\mathbf{q}_{\mathbf{W}} + \mathbf{q}_{\mathbf{b}} \right)$$

$$\mathbf{q}_{\mathbf{Y}} = \frac{S_{\mathbf{W}}S_{\mathbf{X}}}{S_{\mathbf{Y}}} \left(\mathbf{q}_{\mathbf{W}}\mathbf{q}_{\mathbf{X}} + \frac{\mathbf{p}_{\mathbf{recompute}}}{\mathbf{q}_{\mathbf{b}} - Z_{\mathbf{X}}\mathbf{q}_{\mathbf{W}}} \right) + Z_{\mathbf{Y}}$$

$$\downarrow \mathbf{q}_{bias} = \mathbf{q}_{\mathbf{b}} - Z_{\mathbf{X}}\mathbf{q}_{\mathbf{W}}$$

$$\mathbf{q}_{\mathbf{Y}} = \frac{S_{\mathbf{W}}S_{\mathbf{X}}}{S_{\mathbf{Y}}} \left(\mathbf{q}_{\mathbf{W}}\mathbf{q}_{\mathbf{X}} + \mathbf{q}_{bias} \right) + Z_{\mathbf{Y}}$$

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

So far, we ignore bias. Now we consider the following fully-connected layer with bias.

$$\mathbf{Y} = \mathbf{W}\mathbf{X} + \mathbf{b}$$

$$Z_{W} = 0$$

$$Z_{b} = 0, \quad S_{b} = S_{W}S_{X}$$

$$\mathbf{q}_{bias} = \mathbf{q}_{b} - Z_{X}\mathbf{q}_{W}$$

$$\mathbf{q}_{Y} = S_{W}S_{X} \left(\mathbf{q}_{W}\mathbf{q}_{X} + \mathbf{q}_{bias}\right) + Z_{Y}$$
Rescale to N-bit Int Mult. N-bit Int N-bit Int Add. Add

Note: both q_b and q_{bias} are 32 bits.

Linear Quantized Convolution Layer

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

Consider the following convolution layer.

Note: both q_b and q_{bias} are 32 bits.

Linear Quantized Convolution Layer

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

Consider the following convolution layer.

Note: both q_b and q_{bias} are 32 bits.

INT8 Linear Quantization

An affine mapping of integers to real numbers r = S(q - Z)

Neural Network	ResNet-50	Inception-V3
Floating-point Accuracy	76.4%	78.4%
8-bit Integer- quantized Acurracy	74.9%	75.4%

Latency-vs-accuracy tradeoff of float vs. integer-only MobileNets on ImageNet using Snapdragon 835 big cores.

Neural Network Quantization

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

3	0	2	1	3:	2.00
1	1	0	3	2:	1.50
0	3	1	0	1:	0.00
3	1	2	2	0:	-1.00

K-Means-based Quantization

Linear Quantization

Storage	Floating-Point Weights	Integer Weights; Floating-Point Codebook	Integer Weights
Computation	Floating-Point Arithmetic	Floating-Point Arithmetic	Integer Arithmetic

Summary of Today's Lecture

Today, we reviewed and learned

- the numeric data types used in the modern computing systems, including integers and floating-point numbers.
- converting the weights and activations of neural networks into a limited discrete set of numbers.
- three types of common neural network quantization:
 - K-Means-based Quantization
 - Linear Quantization

References

- 1. Model Compression and Hardware Acceleration for Neural Networks: A Comprehensive Survey [Deng et al., IEEE 2020]
- 2. Computing's Energy Problem (and What We Can Do About it) [Horowitz, M., IEEE ISSCC 2014]
- 3. Deep Compression [Han et al., ICLR 2016]
- 4. Neural Network Distiller: https://intellabs.github.io/distiller/algo-quantization.html
- 5. Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacob et al., CVPR 2018]
- 6. BinaryConnect: Training Deep Neural Networks with Binary Weights during Propagations [Courbariaux et al., NeurIPS 2015]
- 7. Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1. [Courbariaux et al., Arxiv 2016]
- 8. XNOR-Net: ImageNet Classification using Binary Convolutional Neural Networks [Rastegari et al., ECCV 2016]
- 9. Ternary Weight Networks [Li et al., Arxiv 2016]
- 10. Trained Ternary Quantization [Zhu et al., ICLR 2017]