Elementary Number Theory

Daniel Mao

Copyright \bigodot 2021 Daniel Mao All Rights Reserved.

Contents

1	Gre	eatest Common Divisor	1
	1.1	Definition]
	1.2	Properties	1

ii CONTENTS

Chapter 1

Greatest Common Divisor

1.1 Definition

Definition (Greatest Common Divisor).

1.2 Properties

Proposition 1.2.1. Let A and B be two non-empty, finite sets of integers, not both $\{0\}$. Let gcd(A) denote the GCD of the elements in A and gcd(B) denote that of B. Then I claim that

$$\gcd(A \cup B) = \gcd(\gcd(A), \gcd(B)).$$

Proof. Let a denote the number $\gcd(\gcd(A),\gcd(B))$. Then $a|\gcd(A)$ and $a|\gcd(B)$. Since $\gcd(A)$ is the GCD of elements in A, by definition, it divides all elements in A. Similarly, $\gcd(B)$ divides all elements in B. Since $a|\gcd(A)$ and $\gcd(A)$ divides all elements in A, a divides all elements in A. Similarly, a also divides all elements in B. Since a divides all elements in A and all elements in B, a is a common divisor of elements in $A \cup B$. Let a' be an arbitrary common divisor of elements in $A \cup B$. Since a' divides all elements in $A \cup B$, in particular, a' divides all elements in A. Since a' divides all elements in A and $\gcd(A)$ is the GCD of elements in A, $a'|\gcd(A)$. Similarly, $a'|\gcd(B)$. Since $a'|\gcd(A)$ and $a'|\gcd(B)$, a' is a common divisor of the two numbers $\gcd(A)$ and $\gcd(B)$. Since $a = \gcd(\gcd(A), \gcd(B))$ is the greatest common divisor, $a \ge a'$. That is, any common divisor of elements in $A \cup B$ is $a \in A$. Since $a \in A$ is a common divisor of elements in $a \in A$. Since $a \in A$ is a common divisor of elements in $a \in A$. Since $a \in A$ is a common divisor of elements in $a \in A$. Since $a \in A$ is a common divisor of elements in $a \in A$. Since $a \in A$ is a common divisor of elements in $a \in A$. Since $a \in A$ is a common divisor

of elements in $A \cup B$ and any common divisor a' is $\leq a, a$ is the GCD of $A \cup B$. That is, $a = \gcd(A \cup B)$. That is,

$$\gcd(A \cup B) = \gcd(\gcd(A), \gcd(B)),$$

as claimed.