Zusammenfassung Gewöhnliche DGLn

© B Tim Baumann, http://timbaumann.info/uni-spicker

Def (Klassifikation von DGLn).

- (I) Gewöhnliche DGL: Gesucht ist Funktion in einer Variable Partielle DGL: Gesucht ist Funktion in mehreren Variablen
- (II) Ordnung einer DGL: Höchste Ableitung der gesuchten Funktion, die in Gleichung vorkommt
- (III) Explizite DGL: Gleichung der Form $y^{(k)} = f(t, y, \dot{y}, ..., y^{(k-1)})$ Implizite DGL: Allgemeinere Form $F(t, y, \dot{y}, ..., y^{(k)}) = 0$
- (IV) Skalare DGL: Gesucht ist Funktion mit Wert in \mathbb{R} n-dimensionale DGL: Gesuchte Funktion hat Wert in \mathbb{R}^n
- (V) Lineare DGL: Gleichung hat die Form $a_k(t)y^{(k)}(t)+a_{(k-1)}(t)y^{k-1}(t)+\ldots+a_1(t)\dot{y}(t)+a_0(t)y(t)=0$
- (VI) Autonome DGL: Gleichung der Form $F(y, \dot{y}, ..., y^{(k)}) = 0$ (keine Abhängigkeit von t, Zeitinvarianz)

Def. Sei $\mathcal{D} \subset \mathbb{R} \times \mathbb{R}^n$ offen, $f : \mathcal{D} \to \mathbb{R}^n$ und $(t_0, y_0) \in \mathcal{D}$. Dann ist ein **Anfangswertproblem** (AWP) gegeben durch die Gleichungen

$$\dot{y}(t) = f(t, y(t)), \qquad y(t_0) = y_0.$$
 (1.1)

Notation. Sei im Folgenden I stets ein Intervall in \mathbb{R} .

Def. • Sei $\mathcal{D} \subset \mathbb{R} \times \mathbb{R}^n$, $f: \mathcal{D} \to \mathbb{R}^n$. Eine differenzierbare Funktion $y: I \to \mathbb{R}^n$ heißt **Lösung** von $\dot{y} = f(t, y)$, falls für alle $t \in I$ gilt: $\dot{y}(t) = f(t, y(t))$.

• Sei $\mathcal{D} \subset \mathbb{R} \times (\mathbb{R}^n)^k = \mathbb{R} \times \mathbb{R}^n \times ... \times \mathbb{R}^n$, $f: \mathcal{D} \to \mathbb{R}^n$. Eine k-mal differenzierbare Funktion $y: I \to \mathbb{R}^n$ heißt Lösung von

$$y^{(k)} = f(t, y, \dot{y}, ..., y^{(k-1)}), \tag{1.2}$$

falls für alle $t \in I$ gilt: $y^{(k)}(t) = f(t, y(t), \dot{y}(t), ..., y^{(k-1)}(t))$

Satz. • Ist $y: I \to \mathbb{R}^n$ eine Lösung von (1.2), dann ist

$$(y_1, ..., y_k): I \to \mathbb{R}^{kn}, \qquad t \mapsto (y(t), \dot{y}(t), ..., y^{(k-1)}(t))$$

eine Lösung des Systems von Gleichungen

$$(1.3) \begin{cases} \dot{y}_1 = y_2 \\ \dot{y}_2 = y_3 \\ \vdots \\ \dot{y}_{k-1} = y_k \\ \dot{y}_k = f(t, y_1, y_2, ..., y_{k-1}, y_k) \end{cases}$$

• Ist umgekehrt $(y_1, ..., y_k) : I \to \mathbb{R}^n$ eine Lösung von (1.3), dann ist $y = y_1 : I \to \mathbb{R}^n$ eine Lösung von (1.2).

Satz. • Ist $y: I \to \mathbb{R}^n$ eine Lösung von AWP (1.1), dann ist

$$(y_1, y_2): I \to \mathbb{R}^{n+1}, \qquad t \mapsto (y_1(t), y_2(t)) = (t, y(t))$$

eine Lösung des Anfangswertproblems

$$(1.4) \begin{cases} \dot{y}_1(t) = 1, & y_1(t_0) = t_0 \\ \dot{y}_2(t) = f(y_1(t), y_2(t)), & y_2(t_0) = y_0 \end{cases}$$

• Ist $(y_1, y_2): I \to \mathbb{R}^{n+1}$ eine Lösung von (1.4), dann ist $y = y_2: I \to \mathbb{R}^n$ eine Lösung von (1.1).