Information Cascades

Social Computing

Department of Computer Science University of Massachusetts, Lowell

Hadi Amiri hadi@cs.uml.edu

Lecture Topics

- Information Cascades
- Cascade Principles
- Simple Cascade Model

Following the Crowd

- Social relations influence behaviors & decisions
 - opinions, activities, technologies, etc.

- Information cascade
 - behaviors that cascade from one node to another like an epidemic! and produce collective outcomes.

How and why such influence occurs?

UMASS

- Local Mind!
 - Restaurant choice!

Following the Crowd- Cnt.

Local Mind!

- 15 people stand on a street corner and stare up into the sky!!!
- How many passersby looked up?
 - More people staring up more passersby follow!
 - All people looking up 45% of passersby follow!

Following the Crowd- Demo!

How to start a movement!

Following the Crowd- Cnt.

1. Cascades can occur when people **make decisions sequentially**, with later people watching the actions of earlier people.

2. People **infer** something about what the earlier people know from their actions!

Cascade Framework

- 1. There is a **decision** to be made
 - whether to adopt a new technology, etc!
- 2. People make decisions **sequentially**.
- 3. Each person has some **private info**.
- People don't know other's private info.
- 5. People can **observe choices** made by those who acted earlier.

Cascade Example

- Urn with 3 (blue or red) marbles
- A large group of participants
- Each participant:
 - Draw a marble & see the color
 - Place it back without showing others
 - Guess if the urn is majority-red or majority-blue.
 - Publicly announces their guess.

Those who guess correctly will receive rewards!

Cascade Example

UMASS

 What's the likelihood of urn being majority-red or majority-blue?

UMASS

What should we expect to happen?

- First participant
 - If it's red marble
 - guess majority-red.
 - If it's blue marble
 - guess majority-blue.

• 1st participant's guess conveys **perfect info** about what has been seen.

- Second participant
 - see the same color as the first participant announced
 - see the opposite color

- Second participant
 - see the same color as the first participant announced
 - should guess this color as well.
 - see the opposite color
 - · Will be indifferent.
 - Assumption: break the tie by guessing the color seen.
- 2nd participant guess conveys
 perfect info about what has been seen.

- Third participant
 - First two guesses are opposite colors
 - First two guesses are same color

- Third participant
 - First two guesses are opposite colors
 - Guess the color (s)he sees!
 - First two guesses are same color (say blue)
 - · If third participant draws blue.
 - If third participant draws red.

- Third participant
 - First two guesses are opposite colors
 - Guess the color (s)he sees!
 - First two guesses are same color (say blue)
 - If third participant draws blue.
 - Simple!
 - If third participant draws red.
 - blue, blue, red. All perfect info!
 - Guess majority-blue! ignore his own private info
 - Which, taken by itself, suggested that the urn is majority-red!

First two guesses are the same → third should follow, regardless of private info.

An information cascade has begun!

- Fourth participant! The cascade case:
 - 4th participant, heard
 - blue, blue!
 - First 2 guesses conveyed perfect info
 - 3rd guess conveys **no** info.
 - 4th is in exactly the same situation as 3rd!
 - Same for all subsequent participants!

Summary

- ✓ If participants 1 & 2 make the same decision:
 - All will follow regardless of their private info.
- 3's decision conveys no info!
- 4th and subsequent participants will be in the same position as participant 3.

Lecture Topics

UMASS

- Information Cascades
- Cascade Principles
- Simple Cascade Model

- 1. Cascades can easily occur!
 - Based on very little info,
 - Pre-cascade info influences the behavior of the population.

UMASS

General Cascades Principles- Cnt.

- 2. Cascades can lead to non-optimal (wrong) outcomes!
 - Say the urn is majority-red!
 - First two participants draw blue:
 - All others wrongly guess blue!

t.

General Cascades Principles- Cnt.

- 3. Some (but not all) cascades can be very fragile!
 - Suppose first 2 guesses are blue
 - Participant <u>x</u> and x+1 draw red and "show" it to others!
- deicion of x+2?

General Cascades Principles- Cnt.

- 3. Some (but not all) cascades can be very fragile!
 - Suppose first 2 guesses are blue
 - Participant x and x+1 draw red and "show" it to others!
 - deicion of x+2?
 - Four pieces of perfect info:
 - blue (1), blue (2), red (*x*), red (*x*+1)!
 - Decide based on his/her own draw!

Lecture Topics

- Information Cascades
- Cascade Principles
- Simple Cascade Model

Cascade Model

- *n* individuals make decisions **sequentially**
 - decision: accept or reject some option
- Private signal (info)
 - imperfect signals on if accepting is good or bad.
- Two States:
 - Good idea, accept with probability Pr[G]=p
 - Bad idea, reject with probability Pr[B]=1-p

The aggregation of private signals convey perfect information about the correct action.

Cascade Model- Cnt.

- Payoffs: based on accept/reject decisions
 - If reject, payoff = 0.
 - If accept and option is a good idea, payoff= $v_q > 0$
 - If accept and option is a bad idea, payoff= $v_b < o$

- Expected payoff in the absence of other info is o;
 - $v_g p + v_b (1 p) = 0.$
 - initially payoff from accepting/rejecting is same.

Sequential Decision-Making

- Suppose *n* knows that everyone before her has followed their own accept/reject signals!
- If a = r (among people before n)

n will follow her own signal.

If
$$|a-r|=1$$
 $|a-r|=1$

• If
$$|a-r|=1$$

• Makes *n* indifferent OR reinforces majority signal.

If
$$|a-r|>=2$$
, then

 $^{\circ}$ *n* follow the earlier majority & ignore her own signal.

Figure 16.3: A cascade begins when the difference between the number of acceptances and rejections reaches two.

Figure 16.3: A cascade begins when the difference between the number of acceptances and rejections reaches two.

- It is very hard for (a r) to remain in [-1, +1] range.
 - If 3 people in a row get the same signal, a cascade will certainly begin.

• The probability of finding 3 matching signals in a row converges to 1 as the number of people N goes to infinity.

• Hint:

Divide the first N people into blocks of 3 people

• The probability of finding 3 matching signals in a row converges to 1 as the number of people N goes to infinity.

• Solution:

- Divide people into blocks of 3
 - [1, 2, 3], [4, 5, 6], etc.
 - People in one block receive same signal with probability $q^3 + (1 q)^3$
 - The probability that none of these blocks consists of identical signals

$$[1-(q^3+(1-q)^3)]^{N/3}$$
.

- Different variations of the same problem:
 - What if people don't see all the decisions made earlier but only some of them?
 - What if private signals convey information with different level of certainty?
 - What if different people receive different payoffs?

Lessons from Cascades

- The aggregate behavior of many people with limited info can produce very accurate results.
 - If many people are guessing independently, then the average of their guesses is often a good estimate
 - Number of jelly beans in a jar!
 - Weight of a bull at a fair!

Lessons from Cascades- Cnt.

- But in cascades, people guess sequentially, and
 - Can observe the earlier guesses of others,
 - being influenced by them,
 - Conform to majority!

Lessons from Cascades- Cnt.

- Tension in collaboration
 - Hiring Committee
 - · decide if to make a job offer to candidate A or B
 - cascade may develop quickly

Easy fix

 Ask experts to make partial decisions independently before collaboration phase!

Lessons from Cascades- Cnt.

- Marketers & cascades!
 - Initiate a buying cascade for a new product.
 - Induce an initial set of people to adopt a new product,
 - Other consumers may follow & adopt the product!
 - Even if its worse than competing products!
- Most effective if later consumers are able to observe
 - the adoption decisions (guesses),
 - but not how satisfied the early buyers are (ball color).

Reading

• Ch.16 Information Cascades [NCM]