# Advanced Search Hill climbing, simulated annealing, genetic algorithm

Xiaojin Zhu

jerryzhu@cs.wisc.edu

**Computer Sciences Department University of Wisconsin, Madison** 

#### **Optimization problems**

- Previously we want a path from start to goal
  - Uninformed search: g(s): Iterative Deepening
  - Informed search: g(s)+h(s): A\*
- Now a different setting:
  - Each state s has a score f(s) that we can compute
  - The goal is to find the state with the highest score, or a reasonably high score
  - Do not care about the path
  - This is an optimization problem
  - Enumerating the states is intractable
  - Even previous search algorithms are too expensive

#### **Examples**

N-queen: f(s) = number of conflicting queens in state s

Note we want s with the lowest score f(s)=0. The techniques are the same. Low or high should be obvious from context.

#### **Examples**

N-queen: f(s) = number of conflicting queens
 in state s

Note we want s with the lowest score f(s)=0. The techniques are the same. Low or high should be obvious from context.

- Traveling salesperson problem (TSP)
  - Visit each city once, return to first city
  - State = order of cities, f(s) = total mileage



#### **Examples**

 N-queen: f(s) = number of conflicting queens in state s



Note we want s with the lowest score f(s)=0. The techniques are the same. Low or high should be obvious from context.

- Traveling salesperson problem (TSP)
  - Visit each city once, return to first city
  - State = order of cities, f(s) = total mileage



- Boolean satisfiability (e.g., 3-SAT)
  - State = assignment to variables
  - f(s) = # satisfied clauses

$$A \lor \neg B \lor C$$

$$\neg A \lor C \lor D$$

$$B \lor D \lor \neg E$$

$$\neg C \lor \neg D \lor \neg E$$

$$\neg A \lor \neg C \lor E$$

## 1. HILL CLIMBING



#### Hill climbing

- Very simple idea: Start from some state s,
  - Move to a neighbor t with better score. Repeat.
- Question: what's a neighbor?
  - You have to define that!
  - The neighborhood of a state is the set of neighbors
  - Also called 'move set'
  - Similar to successor function

#### **Neighbors: N-queen**

Example: N-queen (one queen per column). One possibility:



slide 8

#### **Neighbors: N-queen**

Example: N-queen (one queen per column). One possibility: tie breaking more promising?

Pick the right-most most-conflicting column;

Move the queen in that column vertically to a



### **Neighbors: TSP**

- state: A-B-C-D-E-F-G-H-A
- f = length of tour



#### **Neighbors: TSP**

- state: A-B-C-D-E-F-G-H-A
- f = length of tour
- One possibility: 2-change







#### **Neighbors: SAT**

- State: (A=T, B=F, C=T, D=T, E=T)
- f = number of satisfied clauses
- Neighbor:

$$A \lor \neg B \lor C$$

$$\neg A \lor C \lor D$$

$$B \lor D \lor \neg E$$

$$\neg C \lor \neg D \lor \neg E$$

$$\neg A \lor \neg C \lor E$$

#### **Neighbors: SAT**

- State: (A=T, B=F, C=T, D=T, E=T)
- f = number of satisfied clauses
- Neighbor: flip the assignment of one variable

$$A \lor \neg B \lor C$$

$$\neg A \lor C \lor D$$

$$B \lor D \lor \neg E$$

$$\neg C \lor \neg D \lor \neg E$$

$$\neg A \lor \neg C \lor E$$

#### Hill climbing

- Question: What's a neighbor?
  - (vaguely) Problems tend to have structures. A small change produces a neighboring state.
  - The neighborhood must be small enough for efficiency
  - Designing the neighborhood is critical. This is the real ingenuity – not the decision to use hill climbing.
- Question: Pick which neighbor?
- Question: What if no neighbor is better than the current state?

#### Hill climbing

- Question: What's a neighbor?
  - (vaguely) Problems tend to have structures. A small change produces a neighboring state.
  - The neighborhood must be small enough for efficiency
  - Designing the neighborhood is critical. This is the real ingenuity – not the decision to use hill climbing.
- Question: Pick which neighbor? The best one (greedy)
- Question: What if no neighbor is better than the current state? Stop. (Doh!)

#### Hill climbing algorithm

- 1. Pick initial state s
- 2. Pick *t* in neighbors(*s*) with the largest *f*(*t*)
- 3. IF  $f(t) \le f(s)$  THEN stop, return s
- 4. s = t. GOTO 2.
- Not the most sophisticated algorithm in the world.
- Very greedy.
- Easily stuck.

#### Hill climbing algorithm

- 1. Pick initial state s
- 2. Pick *t* in neighbors(*s*) with the largest *f*(*t*)
- 3. IF  $f(t) \le f(s)$  THEN stop, return s
- 4. s = t. GOTO 2.

Not the most sophisticated algorithm in e world.

Very greedy.

Easily stuck.

your enemy:

local

optima

#### Local optima in hill climbing

Useful conceptual picture: f surface = 'hills' in state space

Global optimum, where we want to be

 But we can't see the landscape all at once. Only see the neighborhood. Climb in fog.

state



#### Local optima in hill climbing

Local optima (there can be many!)



Plateaux





#### Not every local minimum should be escaped



#### Repeated hill climbing with random restarts

- Very simple modification
  - 1. When stuck, pick a random new start, run basic hill climbing from there.
  - 2. Repeat this *k* times.
  - 3. Return the best of the *k* local optima.
- Can be very effective
- Should be tried whenever hill climbing is used

Question: How do we make hill climbing less greedy?

- Question: How do we make hill climbing less greedy?
  - Stochastic hill climbing
    - Randomly select among better neighbors
    - The better, the more likely
    - Pros / cons compared with basic hill climbing?

- Question: How do we make hill climbing less greedy?
  - Stochastic hill climbing
    - Randomly select among better neighbors
    - The better, the more likely
    - Pros / cons compared with basic hill climbing?
- Question: What if the neighborhood is too large to enumerate? (e.g. N-queen if we need to pick both the column and the move within it)

- Question: How do we make hill climbing less greedy?
  - Stochastic hill climbing
    - Randomly select among better neighbors
    - The better, the more likely
    - Pros / cons compared with basic hill climbing?
- Question: What if the neighborhood is too large to enumerate? (e.g. N-queen if we need to pick both the column and the move within it)
  - First-choice hill climbing
    - Randomly generate neighbors, one at a time
    - If better, take the move
    - Pros / cons compared with basic hill climbing?

- We are still greedy! Only willing to move upwards.
- Important observation in life:

Sometimes one needs to temporarily step back in order to move forward.



Sometimes one needs to move to an inferior neighbor in order to escape a local optimum.

#### WALKSAT [Selman]

- Pick a random unsatisfied clause
- Consider 3 neighbors: flip each variable
- If any improves f, accept the best
- If none improves f:
  - 50% of the time pick the least bad neighbor
  - 50% of the time pick a random neighbor

This is the best known algorithm for satisfying Boolean formulae.

$$A \lor \neg B \lor C$$

$$\neg A \lor C \lor D$$

$$B \lor D \lor \neg E$$

$$\neg C \lor \neg D \lor \neg E$$

$$\neg A \lor \neg C \lor E$$



## 2. SIMULATED ANNEALING

#### anneal

 To subject (glass or metal) to a process of heating and slow cooling in order to toughen and reduce brittleness.

- 1. Pick initial state s
- 2. Randomly pick *t* in neighbors(*s*)
- 3. IF f(t) better THEN accept  $s \leftarrow t$ .
- 4. ELSE /\* t is worse than s \*/
- 5. accept s←t with a small probability
- 6. GOTO 2 until bored.

- 1. Pick initial state s
- 2. Randomly pick *t* in neighbors(*s*)
- 3. IF f(t) better THEN accept  $s \leftarrow t$ .
- 4. ELSE /\* t is worse than s \*/
- 5. accept  $s \leftarrow t$  with a small probability
- 6. GOTO 2 until bored.

How to choose the small probability?

idea 1: 
$$p = 0.1$$

- 1. Pick initial state s
- 2. Randomly pick *t* in neighbors(*s*)
- 3. IF f(t) better THEN accept  $s \leftarrow t$ .
- 4. ELSE /\* t is worse than s \*/
- 5. accept  $s \leftarrow t$  with a small probability
- 6. GOTO 2 until bored.

How to choose the small probability?

idea 1: p = 0.1

idea 2: p decreases with time

- 1. Pick initial state s
- 2. Randomly pick *t* in neighbors(*s*)
- 3. IF f(t) better THEN accept  $s \leftarrow t$ .
- 4. ELSE /\* t is worse than s \*/
- 5. accept  $s \leftarrow t$  with a small probability
- 6. GOTO 2 until bored.

How to choose the small probability?

```
idea 1: p = 0.1
```

idea 2: p decreases with time

idea 3: p decreases with time, also as the 'badness'

|f(s)-f(t)| increases

- If f(t) better than f(s), always accept t
- Otherwise, accept t with probability

$$\exp\left(-\frac{|f(s)-f(t)|}{T}\right)$$

Boltzmann distribution

- If f(t) better than f(s), always accept t
- Otherwise, accept t with probability

$$\exp\left(-\frac{|f(s)-f(t)|}{T}\right)$$



- T is a temperature parameter that 'cools' (anneals) over time, e.g.  $T \leftarrow T^*0.9$  which gives  $T = (T_0)^{\#iteration}$ 
  - High temperature: almost always accept any t
  - Low temperature: first-choice hill climbing
- If the 'badness' (formally known as energy difference) |f(s)-f(t)| is large, the probability is small.

## **SA** algorithm

```
// assuming we want to maximize f()
current = Initial-State(problem)
for t = 1 to \infty do
   T = Schedule(t); // T is the current temperature, which; is
   monotonically decreasing with t
   if T=0 then return current; //halt when temperature = 0
   next = Select-Random-Successor-State(current)
   deltaE = f(next) - f(current); // If positive, next is better
   than current. Otherwise, next is worse than current.
   if deltaE > 0 then current = next; // always move to a
   better state
   else current = next with probability p = exp(deltaE /
   T); // as T \rightarrow 0, p \rightarrow 0; as deltaE \rightarrow -\infty, p \rightarrow0
end
```

# **Simulated Annealing issues**

- Cooling scheme important
- Neighborhood design is the real ingenuity, not the decision to use simulated annealing.
- Not much to say theoretically
  - With infinitely slow cooling rate, finds global optimum with probability 1.
- Proposed by Metropolis in 1953 based on the analogy that alloys manage to find a near global minimum energy state, when annealed slowly.
- Easy to implement.
- Try hill-climbing with random restarts first!

# **GENETIC ALGORITHM**



http://www.genetic-programming.org/slide 39

#### **Evolution**

- Survival of the fittest, a.k.a. natural selection
- Genes encoded as DNA (deoxyribonucleic acid), sequence of bases: A (Adenine), C (Cytosine), T (Thymine) and G (Guanine)
- The chromosomes from the parents exchange randomly by a process called crossover. Therefore, the offspring exhibit some traits of the father and some traits of the mother.
  - Requires genetic diversity among the parents to ensure sufficiently varied offspring
- A rarer process called mutation also changes the genes (e.g. from cosmic ray).
  - Nonsensical/deadly mutated organisms die.
  - Beneficial mutations produce "stronger" organisms
  - Neither: organisms aren't improved.

#### **Natural selection**

- Individuals compete for resources
- Individuals with better genes have a larger chance to produce offspring, and vice versa
- After many generations, the population consists of lots of genes from the superior individuals, and less from the inferior individuals
- Superiority defined by fitness to the environment
- Popularized by Darwin
- Mistake of Lamarck: environment does not force an individual to change its genes

- Yet another AI algorithm based on real-world analogy
- Yet another heuristic stochastic search algorithm
- Each state s is called an individual. Often (carefully) coded up as a string.



(32752411)

- The score f(s) is called the fitness of s. Our goal is to find the global optimum (fittest) state.
- At any time we keep a fixed number of states. They are called the population. Similar to beam search.

# Individual encoding

- The "DNA"
- Satisfiability problem(A B C D E) = (T F T T T)
- TSPA-E-D-C-B-F-G-H-A

$$A \lor \neg B \lor C$$

$$\neg A \lor C \lor D$$

$$B \lor D \lor \neg E$$

$$\neg C \lor \neg D \lor \neg E$$

$$\neg A \lor \neg C \lor E$$



 Genetic algorithm: a special way to generate neighbors, using the analogy of cross-over, mutation, and natural selection.

24748552

32752411

24415124

32543213

(a)

Initial Population

 Genetic algorithm: a special way to generate neighbors, using the analogy of cross-over, mutation, and natural selection.



 Genetic algorithm: a special way to generate neighbors, using the analogy of cross-over, mutation, and natural selection.



 Genetic algorithm: a special way to generate neighbors, using the analogy of cross-over, mutation, and natural selection.



# **Genetic algorithm (one variety)**

- 1. Let  $s_1, \ldots, s_N$  be the current population
- 2. Let  $p_i = f(s_i) / \Sigma_j f(s_j)$  be the reproduction probability
- 3. FOR k = 1; k < N; k + = 2
  - parent1 = randomly pick according to p
  - parent2 = randomly pick another
  - randomly select a crossover point, swap strings of parents 1, 2 to generate children t[k], t[k+1]
- **4.** FOR k = 1; k <= N; k ++
  - Randomly mutate each position in t[k] with a small probability (mutation rate)
- 5. The new generation replaces the old:  $\{s\} \leftarrow \{t\}$ . Repeat.

# **Proportional selection**

- $p_i = f(s_i) / \Sigma_i f(s_i)$
- $\Sigma_j f(s_j) = 5+20+11+8+6=50$
- $p_1 = 5/50 = 10\%$

| Individual | Fitness | Prob. |
|------------|---------|-------|
| Α          | 5       | 10%   |
| В          | 20      | 40%   |
| С          | 11      | 22%   |
| D          | 8       | 16%   |
| E          | 6       | 12%   |

# Variations of genetic algorithm

- Parents may survive into the next generation
- Use ranking instead of f(s) in computing the reproduction probabilities.
- Cross over random bits instead of chunks.
- Optimize over sentences from a programming language. Genetic programming.

•

# **Genetic algorithm issues**

- State encoding is the real ingenuity, not the decision to use genetic algorithm.
- Lack of diversity can lead to premature convergence and non-optimal solution
- Not much to say theoretically
  - Cross over (sexual reproduction) much more efficient than mutation (asexual reproduction).
- Easy to implement.
- Try hill-climbing with random restarts first!