Высшая математика

Лисид Лаконский

November 2022

Содержание

1	Вы	сшая математика - 25.11.2022	2
	1.1	Исследование функций с помощью первой и второй производ-	
		ной	2
		1.1.1 Наибольшее и наименьшее значение	2
		1.1.2 Исследование кривой на выпуклость и вогнутость, точ-	
		ки перегиба	2
	1.2	Асимптоты функций	3
	1.3	Общий план исследования функции	3
		1.3.1 Примеры применения общего плана исследования функ-	
		ции	4

1 Высшая математика - 25.11.2022

Исследование функций с помощью первой и второй производной

1.1.1 Наибольшее и наименьшее значение

Если f(x) имеет производную и на [a;b] возрастает, то f'(x) > 0, если убывает - f'(x) < 0

Если x_1 - точка максимума, то

 $f(x_1) > f(B)$ любой точке из ϵ - окрестности точки x_1). Если x_2 - точка минимума, то $f(x_1) < f(B)$ любой точке из ϵ - окрестности точки x_2)

Теорема об необходимом условии существования экстремума Если дифференцируемая функция f(x) имеет в точке x_1 максимум или минимум, то её производная в этой точке равна нулю или не существует. **Замечание.** Не при всяком x, при котором производная равна нулю, существует максимум или минимум.

Теорема о достаточном условии существования экстремума

Пусть f(x) непрерывна на некотором интервале, содержащем точку x_1 , в которой $f'(x_1) = 0$ или не существует, и f(x) дифференцируема во всех точках интервала (кроме, может, самой x_1).

Если при переходе через эту точку знак производной меняется с плюса на минус, то она называется точкой максимума. Если меняется знак меняется с минуса на плюс, то она называется точкой минимума.

Наибольшее и наименьшее значение функции на отрезке. Пусть f(x) непрерывна на [a;b], тогда функция достигает своего наибольшего (наименьшего) значения или на концах [a;b], или в одной из точек экстремума внутри отрезка.

Примеры решения задач Найдем наибольшее значение функции $f(x) = 2x^2 - 3x^2 - 12x + 1$, определенной на отрезке $[-2; \frac{5}{2}]$ $f'(x) = 6x^2 - 6x - 12$

Найдем экстремумы, приравняя производную к нулю: $x_1 = -1, x_2 = 2$ f(-2) = -3, f(2) = -19, f(-1) = 8 - other, $f(\frac{5}{2}) = -16\frac{1}{2}$

1.1.2 Исследование кривой на выпуклость и вогнутость, точки перегиба

Выпуклость и вогнутость Кривая обращена выпуклостью вверх (выпукла), если все точки кривой лежат ниже любой ее касательной на этом интервале. При этом f''(x) < 0

Кривая обращена выпуклостью вниз (вогнута), если все точки кривой лежат ниже любой ее касательной на этом интервале. При этом f''(x) > 0 Точка перегиба Точка, отделяющая выпуклую часть непрерывной кривой от ее вогнутой части называется точкой перегиба. Если y = f(x) - непрерывна в точке a, f''(a) = 0 или не существует; при переходе через a меняет знак, то a - точка перегиба.

Теорема о втором достаточном условии существования **экстремума** Если $f'(x_1) = 0$ или не существует, $f''(x_1) > 0$, то в точке x_1 - минимум, иначе если $f''(x_1) < 0$, то в точке x_1 - максимум. **Замечание** Если $f'(x_1) = f''(x_1) = \dots = f^{(n-1)}, n$ - нечетное, то производной не существует. Если n - четное, то $f^{(n)} > 0$ - минимум, $f^{(n)} < 0$ - максимум.

Примеры решения задач Пусть $y = \frac{x}{1+x^2}$, исследуем ее на выпуклость

и вогнутость; найдем точки перегиба.
$$y' = \frac{1+x^2-x*2x}{(1+x^2)^2} = \frac{1-x^2}{(1+x^2)^2},$$

$$y'' = \frac{-2x(1+x^2)^2-(1-x^2)*2(1+x^2)2x}{(1+x^2)^4} = \frac{2x^3-6x}{(1+x^2)^3} = \frac{2x(x^2-3)}{(x^2+1)^3} = \frac{2x(x-\sqrt{3})(x+\sqrt{3})}{(1+x^2)^3}$$

$$\mathrm{sign}(-\infty;\sqrt{3}) = -1, \, \mathrm{sign}[-\sqrt{3};0] = 1, \, \mathrm{sign}(0;\sqrt{3}) = -1 \, \mathrm{sign}[\sqrt{3};+\infty] = 1$$

1.2 Асимптоты функций

Прямая называется **асимптотой** к кривой, если расстояние Δ от некоторой переменной точки кривой до этой прямой стремится к нулю при удалении данной точки в бесконечность.

Виды асимптот:

- 1. Вертикальные: $\lim_{x\to a+0}=\infty$ (хотя бы справа или слева), x=a -
- 2. Горизонтальные: $\lim_{x\to\infty} f(x) = b, y = b$
- 3. Наклонные: $y=kx+b,\,k=\lim_{x\to\infty}\frac{f(x)}{x},\,b=\lim_{x\to\infty}(f(x)-kx)$

1.3 Общий план исследования функции

Общий план исследования функции:

- 1. Находим область определения функции, нули функции, интервалы знакопостоянства
- 2. Проверяем четность-нечетность, периодичность функции, находим точки пересечения с осями
- 3. Исследуем функцию на непрерывность, точки разрыва, вертикальные асимптоты
- 4. Находим первую производную, точки экстремума, вычисляем значение функции в этих точках

- 5. Находим вторую производную, исследуем на выпуклость и вогнутость
- 6. Проверяем наклонные асимптоты, можно проверить отдельные точки

1.3.1Примеры применения общего плана исследования функции

Пример 1. Рассмотрим функцию $y=\frac{x}{1+x^2},\,y=0$ при x=0, при положительных x график располагается выше оси x, при отрицательных ниже.

Проверим на четность и нечетность: $f(-x) = \frac{-x}{1+x^2} = -y(x)$ - функция **является нечетной** - симметрична относительно нуля. Найдем первую производную: $y' = \frac{1-x^2}{(1+x^2)^2}, \ y' = 0$ в точках $x_1 = 1, \ x_2 = -1,$ вычислим значения функции в этих точках: $y(1) = \frac{1}{2}, \ y(-1) = -\frac{1}{2}$ Найдем вторую производную: $y'' = \frac{2x(x-\sqrt{3})(x+\sqrt{3})}{(1+x^2)^3},$ исследуем ее на

выпуклость и вогнутость.

Поищем наклонную асимптоту данной функции:
$$k=\lim_{x\to\infty}\frac{f(x)}{x}=\lim_{x\to\infty}\frac{1}{1+x^2}=0,\,b=\lim_{x\to\infty}(f(x)-0*x)=\lim_{x\to\infty}\frac{x}{1+x^2}=0,\,y=0$$
- горизонтальная асимптота.

Пример 2.

Рассмотрим функцию $y=\frac{x}{x^2-1},\ y=0$ при x=0, область определения данной функции: $(-\infty;-1)\cup(-1;1)\cup(1;+\infty)$

Проверим на четность и нечетность: $f(-x) = \frac{-x}{x^2-1} = -y(x)$ - функция является нечетной - симметрична относительно нуля.

$$\lim_{x \to 1+0} \frac{x}{x^2 - 1} = +\infty, \ \lim_{x \to 1-0} \frac{x}{x^2 - 1} = -\infty$$

Найдем первую производную данной функции: $y' = -\frac{x^2+1}{(x^2-1)^2} < 0$ -

Найдем вторую производную данной функции: $y'' = \frac{2x(x^2+3)}{(x^2-1)^3}$, исследуем ее на выпуклость и вогнутость.