Compactification

Def An embedding e: $X \rightarrow Y$ is a cto injection which is a noneomorphism onto its image: $e^-: e(X) \longrightarrow X$ is cts

Def a compactification of X is a compact space K and an embedding e: X -> k s.t. e(x) is dense in K.

Examples: R can be compactified:

$$\widehat{\mathbb{R}} = [-\infty, +\infty]$$

(2) Add one pt, so, and get 5'.

and X not cpt

If X is LCH, there is a one pt (Alexandroff) compactification.

Choose an object $\infty \notin X$. $X = X \cup \{\infty\}$, $U \subset X$ is open if $U \subset X$ and U is open, or $\infty \in U$ and $U^c \subset X$ is compact.

Thus X' is compact Hausdorff, X - X' is an embedding of cet: If {Ui} is an open cover, I u. s.t. 2000.

So Us is cet. Thus {Ui} ito cover Us which is opt.

Hausdorff: it suffices to separate ∞ from $x \in X$. Since x is LCH, \exists open $v \in X$ s.t. $x \in V$, \overline{V} cpt. so $\infty \in \overline{V}^c$.

Det top sp is called completely regular if \forall closed FcX and $x \in F^c$, \exists cts $f: X \to (0,1]$ sit. f(x) = 1 and $f|_{F} = 0$.

Call X Tymonoff if X is completely regular & T.

Page

Facts:

- ① Tychonoff → Hausdorff
- 2 Normal => Tychonoff by Urysohn/Tietze
- 3 LCH => Tychonoff
- 4 Amy subspace of a tychonoff sp is Tychonoff.

Embedding Lemna: Suppose & C(X, (0, 17).

Define
$$e: X \longrightarrow [0,i]^{\frac{1}{2}}$$
 (qt!) by $x \longmapsto (f(x))_{f \in \Phi}$

De is ets

- @ e is injective iff & separates points
- 3 if Φ separates points from dosed sets $(\forall F \subset X \text{ closed}, \land E \neq^c, \exists x \in \Phi \text{ s.t. } f(x) \notin \overline{f(F)}),$ e is open (when corestricted to e(X)).
- ⊕ If ∮ separates pts And separates pts & closed sets,
 e is an embedding.

If ① Observe Tfoe=f is cts Yf∈ I.

- 3 suppose à separates ets from closed sets.

Let UCX be open, XEU. Want to find open VC[0,1] \$

s.t. e(x) & Vne(X) < e(U)

Now I fet s.t. f(x) \notin f(u). Then

 $W := [0,1] \setminus \overline{f(u^2)}$ is open and contains f(x).

Thus $e(x) \in \Pi_{p}^{-1}(W)$ open in $[0,1]^{\frac{1}{p}}$.

Observe $e(y) \in Tf'(w) \cap e(X) \iff f(y) \notin \widehat{f(u')}$ V = Tf'(w) $\Rightarrow y \in U.$ $\Rightarrow y \in U.$ $\Rightarrow x \in V \cap e(X) = e(u).$

(4) by (De (2), $e: X \longrightarrow [0,1]^{\frac{1}{2}}$ is acts mjection, by (2), $e^{-1}: e(X) \longrightarrow X$ is cts.

Cor: X is Tychonoff iff \exists embedding $X \hookrightarrow [0,1]^{I}$.

If \exists : take $I = \Phi = C(X,C_0,1]$ and apply embedding lemma \subseteq : $[0,1]^{I}$ is opt handwith \Rightarrow Normal \Rightarrow tychonoff,

so X is a subspace of tychonoff & so is tychonoff.

Stone-čech Compactification: Suppose X is tychonoff. Let $\Phi = C(X_1[o_1i])$. Consider the embedding $e: X \longrightarrow [o_1i]^{\Phi}$ and Jefine $\beta X = \overline{e(X)}$.

Then (BX, e) is a compactification of X.

Theorem: The compactification (BX, e) satisfies:

- 2) the map f in O is unique.
- 3 pX is uniquely characterized by univ. prop. 0.
- (4) & is a functor {Tychonoff Sp} --- {Cpt Hausdorff sp}.

Prove in order: (2), (3), (4), (1).

② Suppose e': X → K is a compactification.

And $f: X \longrightarrow Z$ is cts. There exists at most one cts $g: K \longrightarrow Z$ s.t. $g \circ e' = f$.

pf if
$$g_i \circ e = f$$
 for $i=1,2$, then $g_i = g_2$ on $e'(X) \subset K$. So $g_i = g_2$.

do this w_i nets