

RECENT PROGRESS ON THE ESS PROJECT

Mamad Eshraqi HB 2018, Daejeon, South Korea

FROM LARGEST ARCHAEOLOGY SITE IN SWEDEN

FROM LARGEST ARCHAEOLOGY SITE IN SWEDEN

... TO ESS SITE

... TO ESS SITE

CONSTRUCTION STATUS

NEUTRONS

INSTRUMENTS

TARGET

- Rotating tungsten target
 - Target diameter: 2.6 m
 - Mass: II & 3 (Total & Tungsten)
 - 36 sectors
 - Tungsten depth: 0.45 m
 - Revolution frequency: ~0.4 Hz
 - Expected lifetime: 5 years
 - He gas cooled
 - inlet 40 °C, outlet 240 °C
 - Pressure: II bar
 - Mass flow: 3 kg/s
- Neutron beam ports: 42
- Peak flux: ~30-100 x ILL flux
- Cold moderator: Liquid H₂, 17 K, 30 mm
- Thermal moderator: H₂O, 300 K, 30 mm

2018 June 19

SUMMARY SCHEDULE FOR REMAINING WORK

Courtesy: John Womersley

ACCELERATOR

	Length	No. Magnet	$\#\text{Cav} imes oldsymbol{eta}$ g/(Opt)	No. Sections	Power (kW)	IK partner
LEBT (from Plasma)	2.7	2 Solenoids		I		INFN-LNS
RFQ	4.5			I	1600	CEA Saclay
MEBT	4.0	II Quads	3	I	15	ESS-Bilbao
DTL	38.9		5	5	2200	INFN-LNL
LEDP + Spoke	55.9	26 Quads	26 × (0.50)	13	330	IPNO
Medium Beta	76.7	18 Quads	36 × 0.67	9	870	LASA / CEA
High Beta I (~1.3 GeV)	93.7	22 Quads	44 × 0.86	11	1100	STFC / CEA
High Beta II	85.2	20 Quads	40 × 0.86	10	1100	STFC / CEA
Contingency + HEDP	132.3	32 Quads		15		Elettra
DogLeg	64.4	12 Quads + 2		I		Elettra
A2T	44.7	6 Quads + 8 Raster		I		Aarhus Uni
	603.0					

ION SOURCE / LEBT

- ISrc & LEBT hardware installed
- ISrc safety fence installed
- Racks & electronics installed (except chopper) Water-cooling skid delivered yesterday!
- Cable pulling done
- Cable terminations being finalized

- Grounding to be done
- Racks not powered yet (some temporarily)
- Hardware testing will start soon.

HB2018, Daejeon, South Korea

RFQ

Major vanes machining

HB2018, Daejeon, South Korea

Courtesy: Anne-Catherine Chauveau

RFQ

Minor vanes machining

Courtesy: Anne-Catherine Chauveau

RFQ Error Studies

15

- A Fourier analysis based error generation for the RFQ vanes is developed.
 - RFQ error analysis based on this model including machining error, individual positioning vanes and section and global alignment of the RFQ.
 - A simulation framework is prepared for the beam physics treatment of the RFQ non-conformities during the fabrication process

Machining error of one of RFQ vanes as generated by the model. No unphysical abrupt changes on the vane profile.

MEBT

DTL

HB2018, Daejeon, South Korea

Bead pulling and tuning on DTL
Aluminum model (Tank #2 as mock-up) on going in Legnaro

DTL Tank 4 section I at the GSI copper plating facility

SPOKE

First pair of ESS series spoke cavities, March 2018

Series production on-going at Zanon

SPOKE

- Final validation of the cavity preparation process including heat treatment at 650 °C:
 - Eacc max 15 MV/m
 - $Qo > 2x 10^{10}$ at operational gradient

ELLIPTICAL CAVITIES

Coupler-cavity assembly stand

Assembly and adjustment of the cold tuning systems

Main power couplers conditioned for up to 1.1 MW at travelling waves and reflection

String of cavities for M-ECCTD

Pre-series thermal shield

Pre-series space-frame

HB CAVITY MEASUREMENTS

- Passband frequency measurement at different temperature
 - Frequency distance between nearest SOM and the nominal frequency is >1.2 MHz
- Checking the cavity frequency shift as a function of helium pressure during cool down from 4.2 K (~1080 mbar) to 2 K (~30 mbar)
 - Frequency sensitivity to Pressure= 37 Hz/mbar
- Measurement of Q_{ext} for FPC at different temperatures
 - $Q_{ext} \sim 6.8 \times 10^5$

Parameter	f@ 300 K	f @ 4 K	f@2K
П mode	702.991	704.120	704.081
4 ∏ / 5 mode	701.761	702.889	702.848
3 ∏ / 5 mode	698.464	699.592	699.551
2 ∏ / 5 mode	694.370	695.494	695.454
Π/ 5 mode	691.104	692.227	692.187

BEAM DELIVERY SYSTEM

DIAGNOSTICS

23

• Delivery of Beam Shape Monitors for MEBT (3.62 MeV) and Spoke (~90 MeV)

CRYOPLANT

LOSSES DUE TO CAVITY FAILURE

PREVENTING LOSSES

RFDS

- All Spoke Loads and Circulators now at ESS
- All super structure delivered
- Spoke and MB RF windows now at ESS
- Spoke waveguide mounts for stub sections at ESS
- All Stub waveguides arrived
- Delivery rate about once per week!

2018 June 19

SUMMARY

- Construction of the accelerator buildings is finished
 - Target and Instrument halls have a good progress
 - All ESS staff moved to temporary offices on site and construction of the permanent offices will commence soon
- Project is at 50% completion
 - Ion Source and LEBT are installed and will be commissioned this summer
 - Major pieces are arriving for installation in the Klystron Gallery or the Tunnel
- Details of commissioning, beam dynamics and target:
 - You just missed Natalia Milas' talk on Commissioning "ESS Commissioning Plans"
 - Wednesday, Hall-A, 14:00, Natalia Milas (Yngve Levinsen), "Beam Dynamics of the ESS linac"
 - Tuesday, Hall-A, 16:30, Yong Joong Lee, "The Beam Conditions on the Target and Its Operational Impacts on Beam Intercepting Devices at ESS"
 - Wednesday, Hall-A, Rihua Zeng, "Influence of field flatness of the SC cavities and effect of the phase reference line errors on the beam dynamics of the ESS linac"

THANK YOU!

ION SOURCE / LEBT

RFQ SKID INSTALLED AT ESS

RFQ COUPLERS

- Power couplers ready
- Nominal power per coupler: 0.8 MW
- Maximum power per coupler: I MW
- Voltage pulse length: 3.6 ms
- Voltage pulse rate: I4 Hz

