Calculus II

Reference: strategy for integrating by parts

Todor Milev

2019

Every differentiation rule

Every differentiation rule

$$(uv)' = u'v + uv'$$

Product Rule

Every differentiation rule corresponds to a differential form rule

$$(uv)' = u'v + uv'$$

 $d(uv) = vdu + udv$

Product Rule
Differential Prod. Rule

Every differentiation rule corresponds to a differential form rule which in turn corresponds to an integration rule.

$$(uv)' = u'v + uv'$$
 Product Rule $\int d(uv) = \int vdu + \int udv$ Differential Prod. Rule integration of the above

Every differentiation rule corresponds to a differential form rule which in turn corresponds to an integration rule.

$$(uv)' = u'v + uv'$$

 $d(uv) = vdu + udv$
 $\int d(uv) = \int vdu + \int udv$
Product Rule
Differential Prod. Rule
integration of the above
 $uv = \int vdu + \int udv$

Product Rule Differential Prod. Rule

Every differentiation rule corresponds to a differential form rule which in turn corresponds to an integration rule.

$$(uv)' = u'v + uv'$$

$$d(uv) = vdu + udv$$

$$\int d(uv) = \int vdu + \int udv$$

$$uv = \int vdu + \int udv$$

$$\int udv = uv - \int vdu$$

Product Rule Differential Prod. Rule integration of the above rearrange

Every differentiation rule corresponds to a differential form rule which in turn corresponds to an integration rule.

$$(uv)' = u'v + uv'$$

$$d(uv) = vdu + udv$$

$$\int d(uv) = \int vdu + \int udv$$

$$uv = \int vdu + \int udv$$

$$\int udv = uv - \int vdu$$

Product Rule Differential Prod. Rule integration of the above rearrange

Every differentiation rule corresponds to a differential form rule which in turn corresponds to an integration rule.

$$(uv)' = u'v + uv'$$

$$d(uv) = vdu + udv$$

$$\int d(uv) = \int vdu + \int udv$$

$$uv = \int vdu + \int udv$$

$$\int udv = uv - \int vdu$$

Product Rule
Differential Prod. Rule
integration of the above
rearrange

Every differentiation rule corresponds to a differential form rule which in turn corresponds to an integration rule.

We just proved the following.

Proposition ((Rule of) Integration by Parts)

$$\int u dv = uv - \int v du$$

Integration by parts: strategy for applying

Integration by parts:

$$\int u dv = uv - \int v du.$$

Generally: Choose *u* in this order: **LIPET**

Integration by parts: strategy for applying

Integration by parts:

$$\int u dv = uv - \int v du.$$

Generally: Choose *u* in this order: **LIPET**

Logs, Inverse trig, Polynomial, Exponential, Trig