Cs 5050

02 11 14

f(n) is the number of steps the algorithm takes to solve a problem of size n Most divide and conquer algorithms have this form.

The generate **a** recursive calls, each of problem size **n/b**.

At each call they require **cn**^k steps to decompose the problem into smaller problems and/or combine the sub solutions together.

The solution "cook book"

there are three cases based on the relationship among the parameters a, b and k
To solve a given recurrence relation, first extract the parameters a, b and k from the relation
second determine which case applies, third substitute the parameters in the solution form

A fundamental problem to study: given two polynomials P and Q determine the polynomial that is the product of multiplying P and Q

Data structure: a 1D array where the index into the array is the power of x for that location, so P[0] is the coefficient for x^0

Example poly multiply problem where P and Q have three terms.

Algorithm is two nested for loops where each p_i times q_j goes into location i+j in the solution polynomial Algorithm is n^2 since we have two nested loops each of size n.

P=
$$\sum_{i=0}^{n-1} p_i x^i$$

P= $\sum_{i=0}^{n-1} p_i x^i$

P= $p_i x^i$

P

Can we do better? Does not appear so. Try Divide and Conquer. Split each poly into low and high order terms

$$PQ = (P_L + x^{n/k} P_H)(Q_L + x^{n/k} Q_H)$$

$$PQ = P_L Q_L + (P_L Q_H + P_H Q_L) p_L^{n/k} + P_H Q_H x^n$$

$$PQ = P_L Q_L + (P_L Q_H + P_H Q_L) p_L^{n/k} + P_H Q_H x^n$$

$$P_L = P_L Q_L + P_L Q_L$$

$$P_L = P_L Q_L + P_L Q_L$$

$$P_L = P_L Q_L + P_L Q_L$$

$$P_L = P_L Q_L$$

$$Q_L$$

$$Q_$$

Multiply the two divided polynomials and show that to compute PQ we generate 4 problems of $\frac{1}{2}$ size The recurrence relation counts the number of steps.

When we solve using the cook book we get order n²

To improve efficiency need to generate less subproblems!

Notice in the previous decomposition we only need the sum: $P_LQ_H + P_HQ_L$ not each individual solution! Try adding then multiplying See right upper expression.

Note that adding the high order coefficients to the low order coefficients is very counter-intuitive! See lower left expression.

Now we have only three sub problems to solve

With 3 subproblems we get an algorithm that takes about $n^{1.58}$ rather than n^2 Much more efficient for large n