

本科实验报告

课程名称: 数字逻辑设计

姓 名: 王伟杰

学院: 计算机学院

系: 软件工程

专 业: 软件工程

学 号: 3210106034

指导教师: 马德

2022年10月24日

浙江大学实验报告

课程名称:		数字逻辑设计	实	_实验类型:					
实验项目名称:	7段数码管显示译码器设计与应用								
学生姓名:	王伟杰	专业:	软件工程	学号:	3210106034				
同组学生姓名:		王熠、陈苇远	指-	导老师:	马德				
实验地点:	东 4-509	实验日	期:2022	年 <u>1</u>	.0 月 24	_日			

一、实验目的

- 1.1 掌握七数码管显示原理。
- 1.2 掌握七段码显示译码设计。
- 1.3 进一步熟悉Xilinx ISE 环境及SWORD实验平台。

二、实验内容

- 2.1 原理图设计实现显示译码MyMC14495模块
- 2.2 用MyMC14495模块实现数码管显示

三、操作方法与实验步骤

原理图设计实现显示译码MyMC14495模块

- 1.设计实现74LS138
 - □新建工程,工程名称用D_74LS138_SCH。
 - □新建Schematic源文件,文件名称用 D_74LS138。
 - □原理图方式进行设计。

原理图实现:

2.仿真

```
integer i;
initial begin
    point = 0;
    LE = 0;
    D3 = 0;
    D2 = 0;
    D1 = 0;
    D0 = 0;
    for(i = 0; i \le 15; i = i + 1) begin
    \{D3, D2, D1, D0\} = i;
    point = i;
    #50;
    end
    #50;
    LE = 1;
end
```

仿真结果:

3.生成逻辑符号图

用MyMC14495模块实现数码管显示

1.新建工程

- □新建工程DispNumber_sch
- □新建schematic文件DispNumber_sch
- □复制MyMC14495. sym和. sch到工程根目录
- □在symbols框里的第一个元件,就是 MyMC14495

2.绘制原理图

3.下载验证

```
#ucf文件中的引脚约束:
NET "SW[0]" LOC=AA10 | IOSTANDARD=LVCMOS15;
NET "SW[1]" LOC=AB10 | IOSTANDARD=LVCMOS15;
NET "SW[2]" LOC=AA13 | IOSTANDARD=LVCMOS15;
```

```
NET "SW[3]" LOC=AA12 | IOSTANDARD=LVCMOS15;
NET "SW[4]" LOC=Y13 | IOSTANDARD=LVCMOS15;
NET "SW[5]" LOC=Y12 | IOSTANDARD=LVCMOS15;
NET "SW[6]" LOC=AD11 | IOSTANDARD=LVCMOS15;
NET "SW[7]" LOC=AD10 | IOSTANDARD=LVCMOS15;
NET "BIN[0]" LOC = AF13 | IOSTANDARD = LVCMOS15;#SW[14]
NET "BIN[1]" LOC = AF10 | IOSTANDARD = LVCMOS15;#SW[15]
NET "SEGMEN[0]" LOC=AB22 | IOSTANDARD=LVCMOS33;#a
NET "SEGMEN[1]" LOC=AD24 | IOSTANDARD=LVCMOS33;#b
NET "SEGMEN[2]" LOC=AD23 | IOSTANDARD=LVCMOS33;#c
NET "SEGMEN[3]" LOC=Y21 | IOSTANDARD=LVCMOS33;#d
NET "SEGMEN[4]" LOC=W20 | IOSTANDARD=LVCMOS33;#e
NET "SEGMEN[5]" LOC=AC24 | IOSTANDARD=LVCMOS33;#f
NET "SEGMEN[6]" LOC=AC23 | IOSTANDARD=LVCMOS33;#g
NET "SEGMEN[7]" LOC=AA22 | IOSTANDARD=LVCMOS33;#point
NET "AN[0]" LOC=AD21 | IOSTANDARD=LVCMOS33;
NET "AN[1]" LOC=AC21 | IOSTANDARD=LVCMOS33;
NET "AN[2]" LOC=AB21 | IOSTANDARD=LVCMOS33;
NET "AN[3]" LOC=AC22 | IOSTANDARD=LVCMOS33;
```


四、实验结果与分析

原理图设计实现显示译码MyMC14495模块

项目中成功出现元件且功能正常

MyMC14495

用MyMC14495模块实现数码管显示

Hex	$D_3D_2D_1D_0$	BI/LE	1	b	С	d	е	f	g	р
0	0000	0	0	0	0	0	0	0	1	р
1	0001	0	1	0	0	1	1	1	1	р
2	0010	0	0	0	1	0	0	1	0	р
3	0011	0	0	0	0	0	1	1	0	р
4	0100	0	1	0	0	1	1	0	0	р
5	0101	0	0	1	0	0	1	0	0	р
6	0110	0	0	1	0	0	0	0	0	р
7	0111	0	0	0	0	1	1	1	1	р
8	1000	0	0	0	0	0	0	0	0	Р
9	1001	0	0	0	0	0	1	0	0	Р
Α	1010	0	0	0	0	1	0	0	0	Р
В	1011	0	1	1	0	0	0	0	0	Р
С	1100	0	0	1	1	0	0	0	1	Р
D	1101	0	1	0	0	0	0	1	0	Р
Е	1110	0	0	1	1	0	0	0	0	Р
F	1111	0	0	1	1	1	0	0	0	Р
X	XXXX	1	1	1	1	1	1	1	1	1

结果符合真值表及逻辑表达式:

五、讨论、心得

通过本次实验, 我完整地理解了7段数码管显示译码器的原理及实现步骤。

本次实验的重点在于正确绘制出原理图,这个步骤花费了我很多时间。此后我会在上实验课之前完成原理图的绘制或代码的编写,从而节省课堂时间,更好地解决更多深层次的问题。