

Data processing And Analytics

Spark Stream Report

Realised By:

Adnan EL MOUTTAKI Saad BELOUAD Anouar ZAHRAN

Supervised By:

Pr. Mauri Andrea

Report on Real-Time Stock Market Analysis Using Spark Streaming

Introduction

The objective of this project was to leverage Spark Streaming to conduct real-time analysis of stock market data.

The project aimed to create a dynamic dashboard that could provide investors with timely insights into stock market trends and asset values.

Data Source

The dataset used for this project was derived from **stock.csv**, which was modified to focus on two key columns: the stock **name** and its **value**.

Task Details and Methodology

Task 1: Identifying the Most Valuable Stocks

<u>Objective</u>: Determine the top N stocks with the highest value within each time window.

<u>Methodology</u>: Applied a window operation to segment the data into fixed intervals, grouping by stock name and calculating the maximum stock price.

<u>Results:</u> Produced a ranked list of stocks by maximum price within each window, with a bar plot visualisation for the top 10 stocks in 80-second windows.

+		++	+-	+	
1	window		name max_price rank		
÷		·i		+	
[2023-11-06	09:28	PCLN	979.23	1	
[2023-11-06	09:28	G00GL	429.2839	2	
[2023-11-06	09:28	REGN	229.55	3	
[2023-11-06	09:28	PSA	153.06	4	
[2023-11-06	09:28	CMI	131.8	5	
[2023-11-06	09:28	CHTR	123.31	6	
[2023-11-06	09:28	MMM	115.63	7	
[2023-11-06	09:28	BXP	106.39	8	
[2023-11-06	09:28	[LH]	97.75	9	
[2023-11-06	09:28	MLM	95.67	10	
+		+		+	

Task 2: Tracking Stocks That Lost Value

Objective: Identify stocks that decreased in value from one window to the next.

<u>Methodology:</u> Compared stock values between consecutive windows to flag those with a decrease in price.

<u>Results:</u> Generated a list of stocks that lost value, potentially indicating a downward trend.

			previous_max_price	price_difference
[2023-11-06 09:28 [2023-11-06 09:28 [2023-11-06 09:28	NEE	79.18	80.39	-0.8399999999999963 -1.2099999999999937 -0.4699999999999886

Task 3: Finding Stocks with the Greatest Gains

Objective: Pinpoint stocks that gained the most value between windows.

<u>Methodology:</u> Calculated the difference in stock prices between windows to identify the highest positive changes.

<u>Results:</u> Highlighted stocks with significant gains, offering insights into strong market performers.

Task 4: Implementing a Control for Excessive Value Loss

<u>Objective</u>: Monitor and alert if a stock's value falls below a set threshold within a time frame.

<u>Methodology</u>: Established a threshold for excessive loss and flagged stocks exceeding this limit.

For this project, the threshold was set at a maximum allowed loss of -5%.

<u>Results:</u> Provided a control mechanism for risk management by signalling potential critical value drops.

This alert system is crucial for investors to make timely decisions to mitigate losses.

window	name curren	t_max_price p	revious_max_price	price_difference	excessive_loss
[2023-11-06 09:53 [2023-11-06 09:53		68.43 137.33	· ·	-10.699999999999989 -9.429999999999978	· ·

Task 5: Calculating Personal Asset Fluctuations

<u>Objective:</u> Assess how the value of a personal portfolio changes with market fluctuations.

<u>Methodology</u>: Joined a personal stock portfolio dataframe, which contains a sample of stock names, with real-time market data to compute total asset value.

<u>Results:</u> Offers a real-time view of the portfolio's worth, enabling timely investment decisions.

+				+		+
name	price	†	timestamp	name	amount	market_value
T						-
RE	127.16	2023-11-06	09:27:12	RE	64	8138.24
ACN	75.56	2023-11-06	09:27:09	ACN	25	1889.0
ARE	70.97	2023-11-06	09:27:06	ARE	66	4684.0199999999995
KMB	89.85	2023-11-06	09:26:58	KMB	8	718.8
ISRG	191.9256	2023-11-06	09:26:56	ISRG	5	959.628
LH	89.64	2023-11-06	09:27:00	LH	86	7709.04
CMI	119.32	2023-11-06	09:27:00	CMI	56	6681.92
PXD	122.17	2023-11-06	09:27:06	PXD	40	4886.8
PXD	124.88	2023-11-06	09:27:10	PXD	40	4995.2
VTR	71.95	2023-11-06	09:27:09	VTR	70	5036.5
AZO	382.14	2023-11-06	09:26:58	AZO	14	5349.96
+				+		+

User Guide

To replicate the analysis presented in this report, follow these steps:

- 1. Run the 'kafka_project' notebook to initiate the data streaming process.
- 2. Modify the `construct_stock` function to match the schema of your modified `stock.csv` file. Ensure the row indices match the columns for stock name and price.

```
The function should look like this:
```

- 3. If you encounter an error due to file size limitations, compress the original file into a ZIP archive and then decompress it within the notebook environment.
- 4. Once the Kafka producer is running and streaming data, open the 'project_template' notebook.
- 5. Execute the cells in the 'project_template' notebook in order. Each cell contains comments explaining the purpose and function of the code within.
- 6. If any issues arise during execution, please reach out to one of the authors of this report for assistance.

Conclusion

The project successfully demonstrated the use of Spark Streaming to analyse stock market data in real-time.

The tasks were executed to provide valuable insights into stock performance and portfolio management, showcasing the potential of big data technologies in financial analytics.