Instructions: 1) Save a copy of this notebook in your drive (File > Save a copy in Drive). Switch to it 2) Place "IPEDS_Dataset_Encoded" dataset in your Google drive 3) On the left of Colab click the folder icon, then Google drive icon. Allow access 4) Run this file

```
# Get institution ethnicity ratios
import pandas as pd
EFA path = "/content/drive/MyDrive/IPEDS Dataset Encoded/Fall Enrollment/EFA 2015-2020 data.csv"
df_EFA = pd.read_csv(EFA_path)
# Select all students and sum together all years
df_EFA = df_EFA[df_EFA['efalevel']=='All students total']
df EFA = df EFA[["unitid", "year", "eftotlt", "efaiant", "efasiat", "efbkaat", "efhispt", "efnhpit", "efwhitt", "ef2mort", "ef
df_EFA = df_EFA.groupby('unitid').sum()
# df_EFA = df_EFA[df_EFA['year']=='2020']
df_EFA.reset_index(inplace=True)
df_EFA.drop('year', inplace=True, axis=1)
df_EFA.head()
from scipy.stats import entropy, chisquare
def shannon index(row):
  # https://en.wikipedia.org/wiki/Diversity_index
  row_ps = [row.airatioU, row.asratioU, row.bkratioU, row.hiratioU, row.nhratioU, row.whratioU, row.tmratioU]
  return entropy(row ps)
df_EFA['eftotlt'] -= (df_EFA['efunknt']+df_EFA['efnralt']) # remove from unis because it is missing in baseline data
df_EFA = df_EFA[df_EFA['eftotlt']>0] # avoid divBy0
# Calculate ethnicity ratios and the diversity index
df_EFA['airatioU'] = df_EFA.apply(lambda row: row.efaiant / row.eftotlt, axis=1)
df EFA['asratioU'] = df EFA.apply(lambda row: row.efasiat / row.eftotlt, axis=1)
df_EFA['bkratioU'] = df_EFA.apply(lambda row: row.efbkaat / row.eftotlt, axis=1)
df_EFA['hiratioU'] = df_EFA.apply(lambda row: row.efhispt / row.eftotlt, axis=1)
df_EFA['nhratioU'] = df_EFA.apply(lambda row: row.efnhpit / row.eftotlt, axis=1)
df_EFA['whratioU'] = df_EFA.apply(lambda row: row.efwhitt / row.eftotlt, axis=1)
df_EFA['tmratioU'] = df_EFA.apply(lambda row: row.ef2mort / row.eftotlt, axis=1)
# df_EFA['unratioU'] = df_EFA.apply(lambda row: (row.efunknt+row.efnralt) / row.eftotlt, axis=1)
# df_EFA['nrratioU'] = df_EFA.apply(lambda row: row.efnralt / row.eftotlt, axis=1) # combine with un for consistency with cens
df_EFA['diversityU'] = df_EFA.apply(shannon_index, axis=1)
df EFA.head()
      unitid eftotlt efaiant efasiat efbkaat efhispt efnhpit efwhitt ef2mor
     0 100654
                  33802
                              85
                                       98
                                             31639
                                                       290
                                                                         1169
                                                                                   47
                                             26633
                                                       4519
                                                                        74531
     1 100663
                 117964
                             335
                                     7434
                                                                  48
                                                                                  446
     2 100690
                  3199
                              11
                                       21
                                              1954
                                                       67
                                                                  11
                                                                         1120
                                                                                   1
     3 100706
                  50450
                             567
                                     2046
                                              5482
                                                       2478
                                                                  49
                                                                        38439
                                                                                  138
     4 100724
                                             25519
                                                      302
                  27390
                              41
                                      125
                                                                  19
                                                                         1072
                                                                                  31
# Combine with state/county information
filename_fips = "/content/drive/MyDrive/DO2022_additional_data/county_fips_master.csv"
#from https://github.com/kjhealy/fips-codes/blob/master/county_fips_master.csv
df_fips = pd.read_csv(filename_fips, encoding='latin-1')
df_fips.drop(['county','state'], inplace=True, axis=1)
df_fips.rename(columns = {"county_name":"county", "state_name":"state"}, inplace = True)
df_fips = df_fips[["fips", "county", "state"]]
df_fips["fips"] = df_fips.apply(lambda row: str(row.fips).zfill(5), axis=1)
HD_path = "/content/drive/MyDrive/IPEDS_Dataset_Encoded/Institutional Characteristics/HD_2015-2021_data.csv"
df_counties = pd.read_csv(HD_path)
df_counties = df_counties.rename(columns={'fips': 'state', 'countynm': 'county'})
df_counties = df_counties[["unitid", "year", "county", "state", "countycd", "longitud", "latitude", "instnm"]]
df_counties.drop_duplicates(subset="unitid", keep='first', inplace=True) # drop older years
df_counties.drop('year', inplace=True, axis=1)
df_unitid_fips = pd.merge(df_fips, df_counties, on=["county", "state"])
df_unitid_fips
df ratiosU = df EFA.merge(df unitid fips, on='unitid')
df_ratiosU["county_state"] = df_ratiosU["county"] + ", " + df_ratiosU["state"]
df_ratiosU["fips_state"] = df_ratiosU.fips.str[:2]
df ratiosU["state abrv"] = df ratiosU.countycd.str[-2:]
df_ratiosU.drop(['efhispt','efwhitt','efbkaat','efaiant','efasiat','efnhpit','efunknt','ef2mort','efnralt'], inplace=True, axi
```

filename_fin = "/content/drive/MyDrive/IPEDS_Dataset_Encoded/Institutional Finances/F_F3_1415-1920_data.csv"

```
df_fin = pd.read_csv(filename_fin)
df_fin.drop_duplicates(subset="unitid", keep='first', inplace=True)
df_fin = df_fin[["unitid"]]
df_fin["profit"] = 1
df_ratiosU = df_ratiosU.merge(df_fin, on='unitid', how='left')
df_ratiosU["profit"] = df_ratiosU["profit"].fillna(0)

df_fips_to_state = df_ratiosU[["fips", "state_abrv"]].copy()
df_fips_to_state.drop_duplicates(subset="fips", keep='first', inplace=True)
# df_ratiosU["private"].sum()
df_ratiosU
```

/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py:3326: DtypeWarning: Columns (13,23,48,49,50,51,5 exec(code_obj, self.user_global_ns, self.user_ns)

/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py:3326: DtypeWarning: Columns (130) have mixed type exec(code obj, self.user global ns, self.user ns)

	unitid	eftotlt	airatioU	asratioU	bkratioU	hiratioU	nhratioU	whratioU	tmratioU	diversityU	 county	
0	100654	33802	0.002515	0.002899	0.936010	0.008579	0.001390	0.034584	0.014023	0.320050	 Madison County	
1	100663	117964	0.002840	0.063019	0.225772	0.038308	0.000407	0.631811	0.037842	1.069013	 Jefferson County	
2	100690	3199	0.003439	0.006565	0.610816	0.020944	0.003439	0.350109	0.004689	0.846669	 Montgomery County	
3	100706	50450	0.011239	0.040555	0.108662	0.049118	0.000971	0.761923	0.027532	0.882441	 Madison County	
4	100724	27390	0.001497	0.004564	0.931690	0.011026	0.000694	0.039138	0.011391	0.332807	 Montgomery County	
7454	496265	26	0.000000	0.000000	0.000000	0.038462	0.000000	0.961538	0.000000	0.163024	 Franklin County	Per
7455	496283	15	0.000000	0.000000	0.000000	0.200000	0.000000	0.800000	0.000000	0.500402	 Bonneville County	
7456	496326	21	0.000000	0.047619	0.000000	0.047619	0.095238	0.714286	0.095238	0.978173	 Ada County	
7457	496371	2	0.000000	0.000000	0.000000	0.000000	0.000000	1.000000	0.000000	0.000000	 Lawrence County	
7458	496423	7	0.000000	0.142857	0.000000	0.285714	0.000000	0.571429	0.000000	0.955700	 Whatcom County	W

7459 rows × 21 columns


```
# Get baseline data for ethnicity per county
RacePerCounty path = "/content/drive/MyDrive/D02022 additional data/censusDataAGE15-24.csv" # 15-24 yo
df_RPC = pd.read_csv(RacePerCounty_path)
df_RPC = df_RPC.rename(columns={'countyFIPS': 'fips', 'TOT_POP':'eftotlt', 'Hispanic': 'efhispt', 'White':'efwhitt', 'Black or
colsC = ['eftotlt','efhispt','efwhitt','efbkaat','efaiant','efasiat','efnhpit','ef2mort']
df_RPC[colsC]=df_RPC[colsC].astype("float")
df_RPC = df_RPC[df_RPC['eftotlt']>0] # avoid divBy0
# print(df_RPC["eftotlt"].min())
df_RPC['fips'] = df_RPC['fips'].astype("string")
df RPC["fips"] = df RPC.apply(lambda row: str(row.fips).zfill(5), axis=1)
# RacePerCounty_path = "/content/drive/MyDrive/D02022_additional_data/race_per_county_clean.csv"
# df_RPC = pd.read_csv(RacePerCounty_path)
# df_RPC.columns = df_RPC.iloc[0]
# df_RPC = df_RPC.iloc[1: , :]
# df_RPC = df_RPC.drop('Geography', axis=1)
# df_RPC = df_RPC.rename(columns={'Geographic Area Name': 'County', 'Total':'eftotlt','Hispanic or Latino total': 'efhispt', '
# colsC = ['eftotlt','efhispt','efwhitt','efbkaat','efaiant','efasiat','efnhpit','ef2mort']
# df_RPC[colsC]=df_RPC[colsC].apply(lambda x: x.str.replace(',',''))
# df RPC[colsC]=df RPC[colsC].astype("float")
```

```
# ul krc.neau()
# Baseline ratios for ethnicity per county
df ratiosC = pd.DataFrame()
df_ratiosC['fips'] = df_RPC['fips']
df ratiosC['airatioC'] = df RPC.apply(lambda row: row.efaiant / row.eftotlt, axis=1)
df_ratiosC['asratioC'] = df_RPC.apply(lambda row: row.efasiat / row.eftotlt, axis=1)
df ratiosC['bkratioC'] = df RPC.apply(lambda row: row.efbkaat / row.eftotlt, axis=1)
df ratiosC['hiratioC'] = df RPC.apply(lambda row: row.efhispt / row.eftotlt, axis=1)
df_ratiosC['nhratioC'] = df_RPC.apply(lambda row: row.efnhpit / row.eftotlt, axis=1)
df_ratiosC['whratioC'] = df_RPC.apply(lambda row: row.efwhitt / row.eftotlt, axis=1)
df ratiosC['tmratioC'] = df RPC.apply(lambda row: row.ef2mort / row.eftotlt, axis=1)
# df_ratiosC['unratioC'] = df_RPC.apply(lambda row: 1 / row.eftotlt, axis=1)
df ratiosC.head()
        fips airatioC asratioC bkratioC hiratioC nhratioC whratioC tmratioC
              0.003833
     0 01001
                        0.012457 0.222177 0.026831 0.000684 0.708966
                                                                          0.025051
     1 01003
               0.007665
                        0.019121 0.136445 0.049570 0.000426 0.763649
                                                                          0.023124
     2 01005
              0.003481
                        0.001899   0.576899   0.030380   0.000949   0.371519
                                                                          0.014873
     3 01007
              0.003929
                        0.007500
     4 01009 0.006074 0.002684 0.017940 0.115836 0.000565 0.841644 0.015256
# # Get baseline data for ethnicity per state
# RacePerState_path = "/content/drive/MyDrive/D02022_additional_data/race_per_state_clean.csv"
# df_RPS = pd.read_csv(RacePerState_path)
# df RPS.set_index('Label (Grouping)', inplace=True)
# df_RPS = df_RPS.copy().T
# df RPS = df RPS.dropna(axis='columns', how='all')
# df_RPS = df_RPS.reset_index()
# df_RPS = df_RPS.rename_axis(None, axis=1)
# df_RPS = df_RPS.rename(columns={'index': 'State', 'Total':'eftotlt', 'Hispanic or Latino total': 'efhispt', 'White total':'ef
# colss = ['eftotlt','efhispt','efwhitt','efbkaat','efaiant','efasiat','efnhpit','efunknt','ef2mort']
# df_RPS[colss]=df_RPS[colss].apply(lambda x: x.str.replace(',',''))
# df RPS[colsS]=df RPS[colsS].astype("float")
# df_RPS.head()
# df_RPS['eftotlt'] -= (df_RPS['efunknt']) # remove from states because it is missing in other baseline data
# df_RPS = df_RPS[df_RPS['eftotlt']>0] # avoid divBy0
df_RPS = df_RPC.merge(df_fips_to_state, on='fips')
df RPS.drop(['fips'], inplace=True, axis=1)
df_RPS = df_RPS.groupby('state_abrv', as_index=False).sum()
# Baseline ratios for ethnicity per state
df_ratiosS = pd.DataFrame()
df ratiosS['state abrv'] = df RPS['state abrv']
# df_ratiosS['state'] = df_RPS['State']
df_ratiosS['airatioS'] = df_RPS.apply(lambda row: row.efaiant / row.eftotlt, axis=1)
df ratiosS['asratioS'] = df RPS.apply(lambda row: row.efasiat / row.eftotlt, axis=1)
df_ratiosS['bkratioS'] = df_RPS.apply(lambda row: row.efbkaat / row.eftotlt, axis=1)
df ratiosS['hiratioS'] = df RPS.apply(lambda row: row.efhispt / row.eftotlt, axis=1)
df_ratiosS['nhratioS'] = df_RPS.apply(lambda row: row.efnhpit / row.eftotlt, axis=1)
df_ratiosS['whratioS'] = df_RPS.apply(lambda row: row.efwhitt / row.eftotlt, axis=1)
df ratiosS['tmratioS'] = df RPS.apply(lambda row: row.ef2mort / row.eftotlt, axis=1)
# df_ratiosS['unratioS'] = df_RPS.apply(lambda row: row.efunknt / row.eftotlt, axis=1)
df ratiosS.head()
# Baseline ratios for USA as a whole
airatioUS = df RPS['efaiant'].sum() / df RPS['eftotlt'].sum()
asratioUS = df_RPS['efasiat'].sum() / df_RPS['eftotlt'].sum()
bkratioUS = df_RPS['efbkaat'].sum() / df_RPS['eftotlt'].sum()
hiratioUS = df_RPS['efhispt'].sum() / df_RPS['eftotlt'].sum()
nhratioUS = df_RPS['efnhpit'].sum() / df_RPS['eftotlt'].sum()
whratioUS = df RPS['efwhitt'].sum() / df RPS['eftotlt'].sum()
tmratioUS = df_RPS['ef2mort'].sum() / df_RPS['eftotlt'].sum()
# # unratioUS = df RPS['efunknt'].sum() / df RPS['eftotlt'].sum()
titutions vs state/county
.hiratioU, row.nhratioU, row.whratioU, row.tmratioU]
.hiratioS, row.nhratioS, row.whratioS, row.tmratioS]
.hiratioU, row.nhratioU, row.whratioU, row.tmratioU]
.hiratioC, row.nhratioC, row.whratioC, row.tmratioCl
```

.hiratioU, row.nhratioU, row.whratioU, row.tmratioU]
rratioUS, whratioUS, tmratioUS]

.hiratioU, row.nhratioU, row.whratioU, row.tmratioU]
1ratioUS, whratioUS, tmratioUS]

7 ')

3=1)

L_US", "chi2_US", "diversityU", "state", "county", "fips", "fips_state", "state_abrv", "longitud", "latitude", "profit", 'efto-

	unitid	KL_S	KL_C	KL_US	chi2_US	diversityU	state	county	fips	fips_state	state_abrv	longi
7327	238193	0.105243	0.090681	0.001408	0.002652	1.250260	Wisconsin	Milwaukee County	55079	55	WI	-87.965
4720	167534	0.040316	0.080868	0.006244	0.011708	1.193036	Massachusetts	Worcester County	25027	25	MA	-71.79
7129	226833	0.155722	0.007314	0.008092	0.014206	1.226810	Texas	Wichita County	48485	48	TX	-98.519
1648	129695	0.026082	0.005178	0.008699	0.015909	1.260637	Connecticut	Hartford County	09003	09	СТ	-72.561
6761	243823	0.186651	0.366107	0.009569	0.018305	1.220216	Texas	Dallas County	48113	48	TX	-96.893
5446	200527	2.537098	inf	4.481102	112.540140	0.182958	North Dakota	Rolette County	38079	38	ND	-99.750
407	187596	1.898465	0.145226	4.517413	113.591561	0.186626	New Mexico	McKinley County	35031	35	NM	-108.149
384	105297	2.921498	0.169030	4.685073	118.365529	0.082513	Arizona	Apache County	04001	04	AZ	-109.21
3961	155140	4.658056	3.574919	4.806535	121.307070	0.000000	Kansas	Douglas County	20045	20	KS	-95.232
390	188216	2.096953	2.966206	4.806535	121.307070	0.000000	New Mexico	Bernalillo County	35001	35	NM	-106.664

7459 rows × 16 columns

lor_var, label="KL"):

∍n

```
color_var, label="KL"):
    ibusercontent.com/plotly/datasets/master/geojson-counties-fips.json') as response:

lse)

ipby("fips")[color_var].mean()

i, geojson=counties, locations=df_counties.index, color=color_var, color_continuous_scale="matter", scope="usa", labels={color_var}.

i, "t":0,"l":0,"b":0})
```

cy("state_abrv")[color_var].mean()
locations=df_states.index, color=color_var,locationmode='USA-states', color_continuous_scale="matter", scope="usa", labels={color_var}, "t":0,"1":0,"b":0})

draw_counties(df_diversity, "KL_C")

draw_states(df_diversity, "KL_S")

draw_states(df_diversity, "diversityU")

draw_states(df_diversity, "KL_US")

draw_states(df_diversity, "chi2_US")

ax1 = df_diversity.plot.scatter(x='KL_US',y='profit',c='DarkBlue')

df_diversity[df_diversity["profit"]==1]["KL_US"].hist(bins=10,alpha=0.5)

df_diversity[df_diversity["profit"]==0]["KL_US"].hist(bins=10,alpha=0.5)

<matplotlib.axes._subplots.AxesSubplot at 0x7f893918fa60>

df_diversity[df_diversity["profit"]==0]["KL_US"].hist(bins=10,alpha=0.5,range=(0,5))
df_diversity[df_diversity["profit"]==1]["KL_US"].hist(bins=10,alpha=0.5,range=(0,5))

plt.hist(df_diversity[df_diversity["profit"]==1]["KL_US"]/df_diversity[df_diversity["profit"]==1]["KL_US"].sum(), edgecolor='b
plt.hist(df_diversity[df_diversity["profit"]==0]["KL_US"]/df_diversity[df_diversity["profit"]==0]["KL_US"].sum(), edgecolor='b
plt.title("Histogram of Ages")
plt.xlabel("Deviation from representativeness (KL bin)")
plt.ylabel("Number of institutions")

Text(0, 0.5, 'Individuals')

Histogram of Ages

from scipy.stats import mannwhitneyu
mannwhitneyu(df_diversity[df_diversity["profit"]==0]["KL_US"], df_diversity[df_diversity["profit"]==1]["KL_US"], alternative="
MannwhitneyuResult(statistic=5467515.0, pvalue=4.554595377595352e-50)

df_diversity[df_diversity["eftotlt"]>1000].sort_values(by=['KL_US'])[:5]

	unitid	KL_S	KL_C	KL_US	chi2_US	diversityU	state	county	fips	fips_state	state_abrv	longitud
7327	238193	0.105243	0.090681	0.001408	0.002652	1.250260	Wisconsin	Milwaukee County	55079	55	WI	-87.965174
4720	167534	0.040316	0.080868	0.006244	0.011708	1.193036	Massachusetts	Worcester County	25027	25	MA	-71.79503
7129	226833	0.155722	0.007314	0.008092	0.014206	1.226810	Texas	Wichita County	48485	48	TX	-98.519386
1648	129695	0.026082	0.005178	0.008699	0.015909	1.260637	Connecticut	Hartford County	09003	09	СТ	-72.561939
6761	243823	0.186651	0.366107	0.009569	0.018305	1.220216	Texas	Dallas County	48113	48	TX	-96.893564

	unitid	KL_S	KL_C	KL_US	chi2_US	diversityU	state	county	fips	fips_state	state_abrv	longitud	la
5446	200527	2.537098	inf	4.481102	112.540140	0.182958	North Dakota	Rolette County	38079	38	ND	-99.750836	48
407	187596	1.898465	0.145226	4.517413	113.591561	0.186626	New Mexico	McKinley County	35031	35	NM	-108.149392	35
384	105297	2.921498	0.169030	4.685073	118.365529	0.082513	Arizona	Apache County	04001	04	AZ	-109.21684	36
3961	155140	4.658056	3.574919	4.806535	121.307070	0.000000	Kansas	Douglas County	20045	20	KS	-95.232879	38
390	188216	2.096953	2.966206	4.806535	121.307070	0.000000	New Mexico	Bernalillo County	35001	35	NM	-106.664475	35

Colab paid products - Cancel contracts here