Реляционная теория

Реляционная таблица (отношение)

- *Отношение* представляет собой множество элементов, называемых кортежами.
- Отношение Плоская таблица, состоящая из столбцов и строк
- Кортеж Строка отношения.
- В математике корте́ж последовательность конечного числа элементов.
- Многие математические объекты формально определяются как кортежи. Например, граф определяется как кортеж (V,E), где V
 — это набор вершин, а Е — подмножество V × V, обозначающее рёбра.
- Степень. Степень отношения определяется количеством атрибутов, которое оно содержит.
- **Кардинальность** Количество кортежей, которое содержится в отношении.

Альтернативные наименования

Официальные термины	Альтернативный вариант 1	Альтернативный вариант 2
Отношение (Relation)	Таблица (table)	Файл (file)
Кортеж (tuple)	Строка (row)	Запись (record)
Атрибут (attribute)	Столбец (column)	Поле (field)

Реляционная таблица: что есть что

Свойства реляционной таблицы

- 1. Таблица представляет собой двумерную структуру, состоящую из строк и столбцов
- 2. Каждая строка таблицы (кортеж, tuple) представляет собой отдельную сущность внутри набора сущностей
- 3. Каждый столбец таблицы представляет собой атрибут, и у каждого столбца есть свое имя
- 4. На каждом пересечении строки и столбца имеется единственное значение
- 5. Каждая таблица должна иметь атрибут или несколько атрибутов, уникально идентифицирующих каждую строку
- 6. Все значения в столбце должны отображаться в одинаковом формате. Например, если атрибуту присваивается формат целого, то все значения в столбце, представляющем данный атрибут должны быть целыми
- 7. Каждый столбец имеет определенный диапазон значений, называемый доменом атрибута
- 8. Порядок следования строк и столбцов не существенен.

Ключи реляционных баз данных

Тип ключа	Определение
Суперключ (superkey)	Атрибут(или комбинация атрибутов), уникально идентифицирующих каждую сущность в таблице
Потенциальный ключ (candidate key)	Минимальный суперключ. Суперключ, который не содержит подмножества атрибутов, которое само по себе является суперключом.
Первичный ключ (primary key)	Потенциальный ключ, выбранный для уникальной идентификации всех остальных значения атрибутов в любой строке. Не может содержать пустых значений
Вторичный ключ (secondary key)	Атрибут(или комбинация атрибутов), используемый исключительно в целях поиска данных
Внешний ключ (foreign key)	Атрибут(или комбинация атрибутов) в одной таблице, значения которого должны или совпадать со значениями первичного ключа другой таблицы, или быть пустыми

Человек

Ключи пример

id	инн	фамилия	РМИ	отчество	серия паспорта	номер паспорта	дата рождения

Суперключ	Потенциальный ключ	Первич ный ключ	внеш ний ключ	вторич ный
id	id	id	id	ф+и+о+ дата рожден ия
инн	инн	id	I G	V121
ф+и+о+дата рождения	ф+и+о+дата рождения			
серия паспорта+ номер паспорта	серия паспорта+ номер паспорта			
ф+и+о+ИНН				
ф+инн				
id+ИНН+ ф+и+о+серия+ номер+ дата рождения				

Ключи

Вторичный ключ

Целостность данных

• Пустое значение. Указывает, что значение атрибута в настоящий момент неизвестно или неприемлемо для этого кортежа.

Реляционная алгебра

• Реляционная алгебра — это коллекция операций, которые принимают отношения в качестве операндов и возвращают отношение в качестве результата.

Операции реляционной алгебры

Традиционные операции с множествами (булевы / теоретико-множественные)

- объединение: A UNION B,
 A ∪B;
- пересечение: A INTERSECTВ, A ∩B;
- *разность:* A MINUS B ,A-B :
- декартово произведение A TIMES B ; $A \times B$

Специальные реляционные операции

- сокращение (выборка)АWHERE p;
- проекция;
- соединение ;A JOIN B;A⋈B
- Деление; A ÷ В.

Переименование атрибута

Булевы / теоретико-множественные операции

• объединение: A UNION B, A∪B; ≜

• пересечение: A INTERSECT B, A∩B;

• *разность:* A MINUS В ,А-В ;

• декартово произведение A TIMES B ; A × B

Объединение

- Если даны отношения а и b одного и того же типа, то объединение этих отношений а UNION b является отношением того же типа с телом, которое состоит из всех кортежей t, присутствующих в а или b, или в обоих отношениях.
- a∪b={t: t∈a V t∈b }

Объединение. пример

C# #140 D O	
S# ФИО Дисциплина Оце	нка
1 Иванов И.И. Проектир. БД.	5
2 Петров П.П. ООП	4

В			
S#	ФИО	Дисциплина	Оценка
1	Иванов И.И.	Проектир. БД.	5
3	Сидоров С.С.	Информатика	5

Α	UNION	В	
S#	ФИО	Дисциплина	Оценка
1	Иванов И.И.	Проектир. БД.	5
2	Петров П.П.	ооп	4
3	Сидоров С.С.	Информатика	5

Объединение. Свойства

• Коммутативность $a \cup b = b \cup a$

Двуместный оператор g называется коммутативным, если g(a,b) = g(b,a) для любых a и b

Ассоциативность а∪(b ∪a)= (a∪b) ∪c

Двуместный оператор g называется ассоциативным, если g(a,g(b,c)) = g(g(a,b),c) для любых a, b, c.

Пересечение

- Если даны отношения а и b одного и того же типа, то **пересечением** этих отношений а INTERSECT b является отношение того же типа с телом, состоящим из всех кортежей t, таких, что t присутствует одновременно в а и b.
- a∩b={t: t∈a, t∈b }

Пересечение. пример

Α			
S#	ФИО	Дисциплина	Оценка
1	Иванов И.И.	Проектир. БД.	5
2	Петров П.П.	ооп	4

<u>B</u>			
S#	ФИО	Дисциплина	Оценка
1	Иванов И.И.	Проектир. БД.	5
3	Сидоров С.С.	Информатика	5

Α	INTERSECT	В	
S#	ФИО	Дисциплина	Оценка
1	Иванов И.И.	Проектир. БД.	5

Пересечение. Свойства

• Коммутативность $a \cap b = b \cap a$

Двуместный оператор g называется коммутативным, если g(a,b) = g(b,a) для любых a и b

• **Ассоциативность** $a \cap (b \cap a) = (a \cap b) \cap c$

Двуместный оператор g называется ассоциативным, если g(a,g(b,c)) = g(g(a,b),c) для любых a, b, c.

Разность

- Если даны отношения а и b одного и того же типа, то разностью этих отношений а MINUS b (в указанном порядке), является отношение того же типа с телом, состоящим из всех кортежей t, таких, что t присутствует в а, но не в b.
- a-b={t: t∈a, : t∉b }

Разность. пример

Α			
S#	ΦΝΟ	Дисциплина	Оценка
1	Иванов И.И.	Проектир. БД.	5
2	Петров П.П.	ооп	4

 В

 S#
 ФИО
 Дисциплина
 Оценка

 1
 Иванов И.И.
 Проектир. БД.
 5

 3
 Сидоров С.С.
 Информатика
 5

Α	MINUS	В	
S#	ФИО	Дисциплина	Оценка
2	Петров П.П.	ооп	4

В	MINUS	Α	
S#	ФИО	Дисциплина	Оценка
3	Сидоров С.С.	Информатика	5

Декартово произведение

- декартово произведение а TIMES b отношений а и b, не имеющих общих атрибутов, как отношение, заголовок которого представляет собой (теоретико-множественное) объединение заголовков отношений а и b, а тело состоит из всех кортежей t, таких, что t является (теоретикомножественным) объединением кортежа, принадлежащего к отношению а, и кортежа, принадлежащего к отношению b.
- a×b={t:t=(t1,t2) t1∈a, t2∈b }

Декартово произведение. пример

Α	A				
S#	ФИО	Дисциплина	Оценка		
1 Иванов И.И.		Проектир. БД.	5		
2	2 Петров П.П. ООП		4		
В					
В					
B S#	ФИО	Дисциплина	Оценка		
	ФИО Иванов И.И.	Дисциплина Проектир. БД.	Оценка 5		
S# 1			Оценка 5 5		

С		
P#	Преподаватель	
Экзамен	Карпов А.А.	
Контрольная	Тунцов К.К.	

S# ФИО Дисциплина Оценка Р# [Преподавате
1 Иванов И.И. Проектир. БД 5 Экзамен	Карпов А.А.
1 Иванов И.И. Проектир. БД 5 Контрольная	Тунцов К.К.
2 Петров П.П. ООП 4 Экзамен	Карпов А.А.
2 Петров П.П. ООП 4 Контрольная	Тунцов К.К.

Специальные реляционные операции

- сокращение (выборка)
- проекция;
- соединение:
 - Естественное соединение
 - Тета-соединение
 - Эквисоединение
- Деление; A ÷ В.

• Переименование атрибута

Выборка (сокращение)

• Операция выборки применяется к одному отношению R и определяет результирующее отношение, которое содержит только те кортежи (строки) из отношения R, которые удовлетворяют заданному условию (предикату).

- Сигма $\sigma_{npeдикаm}(R)$
- σ_{X=x}(a)= {t: t∈a, t(X)=x}

Выборка пример

Α			
S#	ФИО	Дисциплина	Оценка
1	Иванов И.И.	Проектир. БД.	5
2	Петров П.П.	ООП	4
3	Сидоров С.С.	Информатика	5

$$\sigma_{O$$
ценк $a=5}(A)$

A WHERE Оценка=5

S#	ФИО	Дисциплина	Оценка
1	Иванов И.И.	Проектир. БД.	5
3	Сидоров С.С.	Информатика	5

Свойства выборки

- Выборка дистрибутивна относительно пересечения, объединения и разности
 - Одноместный оператор f называется ducmpuбутивным относительно двуместного оператора g, если f(g(a,b)) = g(f(a),f(b)) для любых a и b.
- Выборка дистрибутивна относительно соединения при условии, что условие выборки не сложнее, чем конъюнкция (AND) двух различных условий, по одному для каждого из двух операндов.

Проекция

- Операция проекции применяется к отношению R и определяет новое отношение, содержащее вертикальное подмножество отношения R, создаваемое посредством извлечения значений указанных атрибутов и исключения из результата строк-дубликатов
- π_x(a)={t(x), : t∈a }

Проекция пример

Α			
S#	Оценка		
1	Иванов И.И.	Проектир. БД.	5
2	Петров П.П.	ООП	4
3	Сидоров С.С.	Информатика	5

$$\pi_{_{\{S\#,\Phi MO,\mathcal{A}$$
исциплина\}}}(A)

А OVER S#, ФИО, Дисциплина

S# ФИО		Дисциплина	
1	Иванов И.И.	Проектир. БД.	
2	Петров П.П.	ООП	
3	Сидоров С.С.	Информатика	

$$\pi_{O$$
ценка (A)

A OVER Оценка

Оценка	
	4
	5

Свойства проекции

- Ни один из атрибутов не может быть указан в разделенном запятыми списке имен атрибутов больше одного раза
- Проекция дистрибутивна относительно объединения
 - Одноместный оператор f называется ducmpuбутивным относительно двуместного оператора g, если f(g(a,b)) = g(f(a),f(b)) для любых a и b.
- Проекция дистрибутивна относительно соединения при условии, что все атрибуты, по которым производится соединение, включены в проекцию.

Соединение

- *Ecmecmвенное соединение A JOIN B,* A⋈B
- Tema-coeдинение (A TIMES B) WHERE X θ У, А⋈_FВ
- Эквисоединение (A TIMES B) WHERE X = У, А⋈_FВ

Тета-соединение

R⋈_FS. Операция тета-соединения определяет отношение, которое содержит кортежи из декартова произведения отношений R и S, удовлетворяющие предикату F. Предикат F имеет вид R.a_i θ S.b_i, где вместо θ может быть указана одна из операций сравнения (<, ≤, >, ≥,=,≠).

Тета-соединение

Α			
S#	ФИО	Дисциплина	Оценка
1	. Иванов И.И.	Проектир. БД.	5
2	Петров П.П.	ООП	4

D	
D#	Преподаватель
Информатика	Карпов А.А.
ООП	Тунцов К.К.

Α		TIMES	D			
Si	Ħ	ФИО	Дисциплина	Оценка	D#	Преподаватель
	1	Иванов И.И.	Проектир. БД.	5	Информатика	Карпов А.А.
	1	Иванов И.И.	Проектир. БД.	5	ООП	Тунцов К.К.
	2	Петров П.П.	ООП	4	Информатика	Карпов А.А.
	2	Петров П.П.	ООП	4	ООП	Тунцов К.К.

А ⋈Дисциплина>D# □

Α	TIMES	D WHERE Дисциплина>D#				
S#	ФИО	Дисциплина	Оценка	D#	Преподаватель	
1	Иванов И.И.	Проектир. БД.	5	Информатика	Карпов А.А.	
1	Иванов И.И.	Проектир. БД.	5	ООП	Тунцов К.К.	
2	Петров П.П.	ООП	4	Информатика	Карпов А.А.	

Эквисоединение

R⋈_FS Определяет отношение, которое содержит кортежи из декартова произведения отношений R и S, удовлетворяющие предикату F (предикат должен предусматривать только сравнение на равенство)

Эквисоединение пример

Α				
S#		ФИО	Дисциплина	Оценка
	1	Иванов И.И.	Проектир. БД.	5
	2	Петров П.П.	ООП	4

D		
D#	Преподаватель	
Информатика	Карпов А.А.	
ООП	Тунцов К.К.	

А ⋈_{Дисциплина=D#} D

Α	TIMES	D WHERE Дисциплина=D#				
S#	ФИО	Дисциплина	Оценка	D#	Преподаватель	
2	Петров П.П.	ООП	4	ООП	Тунцов К.К.	

Естественное соединение

 R ⋈ S. Естественным соединением называется соединение по эквивалентности двух отношений R и S, выполненное по всем общим атрибутам x, из результатов которого исключается по одному экземпляру каждого общего атрибута.

Естественное соединение

- Предположим, что отношения а и b, соответст венно, имеют следующие атрибуты. Х 1 , Х 2 , . . . , Х m , Y 1 , Y 2 , . . . , Yn
- YI, Y2, ..., Yn, ZI, Z2, ..., Zp
- ЭТО означает, что два рассматриваемых отношения имеют общее множество атрибутов Y, состоящее из атрибутов YI, Y2,..., Yn (и только из этих атрибутов), другие атрибуты отношения а образуют множество x, состоящее из атрибутов X1, X2, Xm, а другие атрибуты отношения b образуют множество z, состоящее из атрибутов Z1, Z2,..., Zp.
- В таком случае (**естественное**) **соединение** а и b выражается следующим образом.
- a JOIN b
- Оно представляет собой отношение с заголовком { X, Y, Z } и телом, состоящим из всех таких кортежей { X x, Y y, z z }, что любой из этих кортежей присутствует и в отношении а, со значением х атрибута х и значением у атрибута Y, и в отношении b, со значением у атрибута Y и значением z атрибута Z.

Естественное соединение пример

	Λ.
1	^
•	_
•	•

S#		ФИО	Дисциплина	Оценка
	1	Иванов И.И.	Проектир. БД.	5
	2	Петров П.П.	ООП	4

D

Дисциплина	Преподаватель
Информатика	Карпов А.А.
ООП	Тунцов К.К.

A ⋈ D

Α	JOIN	D		
S#	ФИО	Дисциплина	Оценка	Преподаватель
2	Петров П.П.	ООП	4	Тунцов К.К.

Деление

- Предположим, что отношение R определено на множестве атрибутов A, а отношение S — на множестве атрибутов B, причем B ⊆ A (т.е. B является подмножеством A). Пусть C=A-B, т.е. С является множеством атрибутов отношения R, которые не являются атрибутами отношения S. Тогда определение операции деления будет выглядеть следующим образом.
- R ÷ S, Результатом операции деления является набор кортежей отношения R, определенных на множестве атрибутов C, которые соответствуют комбинации всех кортежей отношения S.
- R DIVIDEBY S PER C

Деление пример

делимое (DEND) , делитель (DOR), посредник (MED) DEND ⋈ MED ÷ DOR

Дополнительные операторы реляционной алгебры

- Оператор переименования атрибутов S RENAME CITY AS SCITY
- A RENAME Atr_1 , Atr_2 AS $NewAtr_1$, $NewAtr_2$ где Atr_1 , Atr_2 старые значения атрибутов $NewAtr_1$, $NewAtr_2$ новые значения атрибутов атрибутов
- Оператор присвоения Result←операция
- Оператор переименования атрибутов

$$\sigma_{_{\mathit{UMS_cmap}\leftarrow\mathit{UMS_Hob}}}(R)$$

Оператор переименования

- ρ_s (E) или $\rho_{S(a_1,a_2,...,a_n)}(E)$
- Операция переименования позволяет присвоить новое имя S выражению E, а также дополнительно переименовать атрибуты как a_1 , a_2 ,... a_n

Приоритеты операций реляционной алгебры

Операция	Приоритет
Переименование	4
Выборка	3
Проекция	3
Декартово произведение	2
Соединение	2
Пересечение	2
Деление	2
Объединение	1
Разность	1

RelaX relational algebra calculator

http://clotho.uom.gr/relax/help.htm

 https://dbisuibk.github.io/relax/calc/local/uibk/local/0

R1			
Спортсмен	Дисциплина	Олимпиада	Место

R2	
Город	Олимпиада
Сочи	2014
Пхенчхан	2018

R3	
Страна	Город
Корея	Пхенчхан
Россия	Сочи

R4	
Спортсмен	Страна

1. Найти страны, спортсмены которых участвовали в олимпиаде в Пхенчхане

$$R124 \leftarrow R1 \bowtie R2 \bowtie R4$$

R124					
Спортсмен	Дисциплина	Олимпиада	Место	Город	Страна

Ответ
$$\Pi_{\text{{crpana}}}\left(\sigma_{\text{{ropod}}=\Pi_{\text{{XehqXah}}}}\left(R1\bowtie R2\bowtie R4\right)\right)$$

R1			
Спортсмен	Дисциплина	Олимпиада	Место

R2	
Город	Олимпиада
Сочи	2014
Пхенчхан	2018

R3	
Страна	Город
Корея	Пхенчхан
Россия	Сочи

R4	
Спортсмен	Страна

2. Найти страны, которые участвовали в олимпиаде в Корее и заняли 1-е места

 $R23 \leftarrow R2 \bowtie R3$

$$R14 \leftarrow R1 \bowtie R4$$

R23		
Город	Олимпиада	Страна

R14				
ФИО	Дисциплина	Олимпиада	Место	Страна

Ответ
$$\Pi_{\text{{crpaha}}}\left(\sigma_{\text{{mecto=1}},\text{{crpaha1=Kopes}}}\left(\left(\rho_{R23'\text{{(город,олимпиада,crpaha1)}}}(R23)\right)\bowtie R14\right)\right)$$

$$\Pi_{\text{{crpana}}} \left(\sigma_{\text{{mecto}=1},\text{{crpana}}=\text{{Kopes}}} \left(\left(\sigma_{\text{{crpana}} \leftarrow \text{{crpana}}} \left(R23 \right) \right) \bowtie R14 \right) \right)$$

R1			
Спортсмен	Дисциплина	Олимпиада	Место
	<u> </u>		

R2	
Город	Олимпиада
Сочи	2014
Пхенчхан	2018

R3	
Страна	Город
Корея	Пхенчхан
Россия	Сочи

R4	
Спортсмен	Страна

3. Найти страну, в которой поводилось больше 1 олимпиады

$$R23 \leftarrow R2 \bowtie R3$$

$$R2323 \leftarrow R23 \bowtie \left(\rho_{R23'(город1,олимпиада1,страна)}(R23)\right)$$

R23		
Город	Олимпиада	Страна

R2323				
Город	Олимпиада	Страна	Город1	Олимпиада1

Ответ
$$\Pi_{\text{{crpaнa}}}\left(\sigma_{\text{олимпиада}<>\text{олимпиада}1}\left(R23\bowtie\left(\rho_{R23'\text{{ropog1,олимпиада}1,crpaha}}\right)\right)\right)$$

$$R2323' \leftarrow \Pi_{\text{{crpana}}} \left(\sigma_{\text{олимпиада} <> \text{олимпиада} 1} (R2323) \right)$$

R1			
Спортсмен	Дисциплина	Олимпиада	Место

R2	
Город	Олимпиада
Сочи	2014
Пхенчхан	2018

R3	
Страна	Город
Корея	Пхенчхан
Россия	Сочи

R4 Спортсмен Страна

4. Найти страну, в которой поводилось НЕ больше 1 олимпиады

$$R23 \leftarrow R2 \bowtie R3$$

$$R2323 \leftarrow R23 \bowtie \left(\rho_{R23'(\text{город1,олимпиада1,страна})}(R23)\right)$$

K23		
Город	Олимпиада	Страна

I.	R2323				
	Город	Олимпиада	Страна	Город1	Олимпиада1
	Popul		o ap anam	- op og -	

$$R2323' \leftarrow \Pi_{\text{{crpaha}}} \left(\sigma_{\text{олимпиада} <> \text{олимпиада} 1} (R2323) \right)$$

Ответ
$$\Pi_{\text{{crpaнa}}}(R3) - R2323'$$

Страна

R1			
Спортсмен	Дисциплина	Олимпиада	Место

R2	
Город	Олимпиада
Сочи	2014
Пхенчхан	2018

R3	
Страна	Город
Корея	Пхенчхан
Россия	Сочи

R4	
Спортсмен	Страна

5. Найти страны, спортсмены которых не участвовали в олимпиаде в Пхенчхане

$$R124 \leftarrow R1 \bowtie R2 \bowtie R4$$

R124					
Спортсмен	Дисциплина	Олимпиада	Место	Город	Страна

OTBET
$$\Pi_{\text{{crpana}}}(R4) - \Pi_{\text{{crpana}}}\left(\sigma_{\text{{ropo}} d = \Pi x \text{{enh}} x \text{{an}}}(R1 \bowtie R2 \bowtie R4)\right)$$

Спортсмен Дисциплина Олимпиада Место	R1			
	Спортсмен	Дисциплина	Олимпиада	Место

R2	
Город	Олимпиада
Сочи	2014
Пхенчхан	2018

R3	
Страна	Город
Корея	Пхенчхан
Россия	Сочи

R4	
Спортсмен	Страна

6. Найти страны, спортсмены которых участвовали во всех олимпиадах

$$R14 \leftarrow R1 \bowtie R4$$

R14				
ФИО	Дисциплина	Олимпиада	Место	Страна

Ответ
$$\Pi_{\text{{crpana,O}},\text{{Oимпиада}}}(R1\bowtie R4) \div \Pi_{\text{{O}},\text{{O}},\text{{UM}},\text{{U}},\text{{A}}}(R2)$$

