Speeding up R with Rcpp

Luke KLEIN

9/24/2019

References

This presentation is adapted from portions of:

- Hadley Wickham's book
 - ▶ Wickham, Hadley. Advanced r. Chapman and Hall/CRC, 2014.
- Dirk Eddelbuttel's book
 - ► Eddelbuettel, Dirk, et al. "Rcpp: Seamless R and C++ integration." Journal of Statistical Software 40.8 (2011): 1-18.
- Dirk Eddelbuttel's presentation
 - Eddelbuettel, Dirk. "Introduction Rcpp Workshop", 12/06/2012, http://dirk.eddelbuettel.com/papers/rcpp_workshop_introduction_user2012.pdf

R is powerful

R is both a powerful **interactive** environment for data analysis, visualization, and modeling and an **expressive programming language** designed and built to support these tasks.

► The interactive nature of working with data – through data displays, summaries, model estimation, simulation, and numerous other tasks – is a key strength of the R environment.

The R programming language permits many applications – from interactive explorations to small scripts and all the way to complete implementations of new functionality.

R can be slow

Loops are slower in R than in C++ because R is an interpreted language (not compiled).

In most cases, R does not modify variables in place, but rather modifies a **copy**.

► The repeated allocation of new memory for these tasks is a large source of performance reduction.

R can be slow: An illustration

```
x <- 1:1e6
y <- c(x,x,x)
z <- list(x, x, x)

object_size(x)
object_size(y)
object_size(z)
object_size(x,y)
object_size(x,z)</pre>
```

```
## 12 MB
## 4 MB
## 16 MB
## 4 MB
```

4 MB

Let's illustrate the speed gains possible by using Rcpp First we'll repeatedly evaluate $\frac{1}{1+x}$ using R, and use the rbenchmark package to compare

```
f1 <- function(n, x=1) for (i in 1:n) x=1/(1+x)

f2 <- function(n, x=1) for (i in 1:n) x=(1/(1+x))

f3 <- function(n, x=1) for (i in 1:n) x=(1+x)^(-1)

f4 <- function(n, x=1) for (i in 1:n) x={1/{1+x}}

f5 <- function(n, x=1) for (i in 1:n) x=1/{1+x}
```

Now, let's run the benchmark

Let's bring Rcpp into the mix and see what kind of performance enhancements we can get.

 ${\tt cppFunction}()$ allows you to write C++ functions in R, simply.

```
library(Rcpp)

cppFunction('int fCpp(int n, double x) {
  for (int i=0; i<n; i++) x=1/(1+x);
  return 0;
}')</pre>
```

When you run this code, Rcpp will compile the C++ code and construct an R function that connects to the compiled C++ function.

Now let's run the benchmark again!!!

```
test replications elapsed relative
##
  6 fCpp(N, 1)
                           0.003 1.000
                       10
## 1 f1(N, 1)
                       10
                           0.055 18.333
## 4 f4(N, 1)
                       10 0.057 19.000
## 2 f2(N, 1)
                       10 0.059 19.667
## 5 f5(N, 1)
                       10 0.068 22.667
## 3 f3(N, 1)
                       10
                           0.112 37.333
```

A second example

The standard definition of the Fibonacci sequence is $F_n = F_{(n-1)} + F_{(n-2)}$ with initial values $F_0 = 0$ and $F_1 = 1$.

This leads this intuitive (but slow) R implementation:

```
## basic R function
fibR <- function(n) {
  if (n == 0) return(0)
  if (n == 1) return(1)
  return (fibR(n - 1) + fibR(n - 2))
}</pre>
```

A second example

We can write an easy (and very fast) C++ version:

```
cppFunction('int fibCpp(int x) {
  if (x == 0) return(0);
  if (x == 1) return(1);
  return (fibCpp(x - 1)) + fibCpp(x - 2);
}')
```

A second example

Now, let's compare the two:

```
N <- 35L
benchmark(fibCpp(N), fibR(N),
  columns=c("test", "replications", "elapsed",
  "relative"),
  order="relative", replications=1)</pre>
```

So a two-hundred fold increase for no real effort or setup cost.

So far, we've used inline C++ with cppFunction(). This makes presentation simpler, but for real problems, it's usually easier to use stand-alone C++ files and then source them into R using sourceCpp().

This lets you take advantage of text editor support for C++ files (e.g., syntax highlighting) as well as making it easier to identify the line numbers in compilation errors.

Your stand-alone C++ file should have extension .cpp, and needs to start with:

```
#include <Rcpp.h>
using namespace Rcpp;
```

And for each function that you want available within R, you need to prefix it with:

```
// [[Rcpp::export]]
```

Note that the **space** is mandatory.

You can embed R code in special C++ comment blocks. This is really convenient if you want to run some test code:

```
/*** R
# This is R code
*/
```

The R code is run with source(echo = TRUE) so you don't need to explicitly print output.

To compile the C++ code, use sourceCpp("path/to/file.cpp")

► This will create the matching R functions and add them to your current session.

Note: that these functions can not be saved in a .Rdata file and reloaded in a later session; they must be recreated each time you restart R.

For example, running sourceCpp() on the following file implements mean in C++ and then compares it to the built-in mean():

```
#include <Rcpp.h>
using namespace Rcpp;
// [[Rcpp::export]]
double meanC(NumericVector x) {
 int n = x.size();
  double total = 0;
  for(int i = 0; i < n; ++i) {
    total += x[i];
  return total / n;
/*** R
x \leftarrow runif(1e5)
microbenchmark(
  mean(x),
 meanC(x)
```

The output of the R code in the lower comment will appear like this

```
> library(microbenchmark)
> x <- runif(1e5)
> microbenchmark(
    mean(x),
    meanC(x)
+ )
Unit: microseconds
     expr
              min
                       la
                              mean
                                     median
                                                  ua
                                                           max neval
  mean(x) 192.890 194.034 229.6489 206.0235 227.4670 775.640
                                                                 100
 meanC(x) 96.163 97.063 142.6581 100.6380 111.1115 1946.385
                                                                 100
```

- ▶ In C++, Programs need to be compiled first. This may require access to header files defining interfaces to other projects.
- After compiling code into an object, the object is linked into an executable, possibly together with other libraries.
- ▶ Pointers and memory management are handled very differently, but many issues common with C can be avoided via STL, i.e. the C++ standard template library (which is something Rcpp promotes as well).

- R is dynamically typed:
 - ▶ x <- 3.14; x <- "foo" is valid.
- ▶ In C++, each variable must be **declared** before first use. Common types are int and long (possibly with unsigned), float and double, bool, as well as char.
- ▶ No standard string type, though std::string comes close.

Note that all of these C++ variable types are **scalars** which is fundamentally different from R where everything is a **vector** (possibly of *length one*).

Classes

C++ has many basic vector classes

▶ IntegerVector, NumericVector, LogicalVector, CharacterVector

and their scalar and matrix equivalents

- ▶ int, double, bool, String
- ► IntegerMatrix, NumericMatrix, LogicalMatrix, CharacterMatrix

Attributes

All R objects have arbitrary additional attributes, used to store **metadata** about the object.

Attributes can be thought of as a named list (with unique names). Attributes can be accessed individually with attr() or all at once (as a list) with attributes().

► See Hadley's **Advanced R** for more details.

In C++, attributes can be queried and modified with .attr(). Rcpp also provides .names() as an alias for the name attribute. The following code snippet illustrates these methods.

Attributes

Note the use of ::create(), a *class* method. This allows you to create an R vector from C++ scalar values:

```
#include <Rcpp.h>
using namespace Rcpp;
// [[Rcpp::export]]
NumericVector attribs() {
  NumericVector out = NumericVector::create(1, 2, 3);
  out.names() = CharacterVector::create("a", "b", "c");
  out.attr("my-attr") = "my-value";
  out.attr("class") = "my-class";
  return out;
```

Missing values

If you're working with missing values in C++, you need to know **two main things**:

- ▶ how R's missing values behave in C++'s scalars (e.g., double).
- how to get and set missing values in vectors (e.g., NumericVector).

Missing values: Scalars

The following code explores what happens when you take one of R's missing values, coerce it into a scalar, and then coerce back to an R vector.

```
#include <Rcpp.h>
using namespace Rcpp;
// [[Rcpp::export]]
List scalar_missings() {
  int int_s = NA_INTEGER;
  String chr_s = NA_STRING;
  bool lgl_s = NA_LOGICAL;
  double num s = NA REAL;
  return List::create(int_s, chr_s, lgl_s, num_s);
```

Let's call the scalar_missings function.

```
str(scalar_missings())
```

List of 4
\$: int NA
\$: chr NA
\$: logi TRUE
\$: num NA

With the exception of bool, things look pretty good here: all of the missing values have been preserved. However, as we'll see in the following sections, things are not quite as straightforward as they seem.

Missing values: Boolean

While C++'s bool has two possible values - true or false A logical vector in R has three possible values

► TRUE, FALSE, and NA

So, if you coerce a length 1 logical vector from C++ to R, make sure it doesn't contain any missing values otherwise they will be converted to TRUE.

Missing values: Integers

With integers in C++, missing values are **stored** as **the smallest possible integer**. If you don't do anything to them when passing them to R, **their values will be preserved**.

So, since R doesn't know that the smallest integer has this special meaning in C++, if you do anything to it you're likely to get an incorrect value: for example,

```
evalCpp('NA_INTEGER + 1')
```

```
## [1] -2147483647
```

Thus, if you want to work with missing integer values, either use a length one IntegerVector in C++ or be *very* careful with your code.

Differences between R and C++ Missing values: Doubles

With doubles, you may be able to get away with ignoring missing values and working with NANs (not a number). This is because R's NA is a special type of IEEE 754 floating point number NaN. So any logical expression that involves a NaN (or in C++, NAN) always evaluates as FALSE:

```
evalCpp("NAN == 1")
evalCpp("NAN < 1")
evalCpp("NAN > 1")
evalCpp("NAN == NAN")
```

```
## [1] FALSE
## [1] FALSE
## [1] FALSE
## [1] FALSE
```

Missing values: Doubles

However, in numeric contexts NaNs will correctly propagate NAs:

```
evalCpp("NAN + 1")
evalCpp("NAN - 1")
evalCpp("NAN / 1")
evalCpp("NAN * 1")
```

```
## [1] NaN
## [1] NaN
## [1] NaN
## [1] NaN
```

Missing values: Vectors

With vectors, you need to use a missing value specific to the type of vector, NA_REAL, NA_INTEGER, NA_LOGICAL, NA_STRING:

```
#include <Rcpp.h>
using namespace Rcpp;
// [[Rcpp::export]]
List missing_sampler() {
  return List::create(
    NumericVector::create(NA REAL),
    IntegerVector::create(NA_INTEGER),
    LogicalVector::create(NA_LOGICAL),
    CharacterVector::create(NA STRING));
```

Missing values: Vectors

```
str(missing_sampler())
```

```
## $ : num NA
## $ : int NA
## $ : logi NA
## $ : chr NA
```

List of 4

Missing values: Vectors

To check if a value in a vector is missing, use the class method ::is_na():

```
#include <Rcpp.h>
using namespace Rcpp;
// [[Rcpp::export]]
LogicalVector is_naC(NumericVector x) {
  int n = x.size();
  Logical Vector out(n);
  for (int i = 0; i < n; ++i) {
    out[i] = NumericVector::is na(x[i]);
  }
  return out;
```

Missing values: Vectors

Running the code yields the following:

```
is_naC(c(NA, 5.4, 3.2, NA))
```

[1] TRUE FALSE FALSE TRUE

Missing values: Vectors

Another alternative is the sugar function is_na(), which takes a vector and returns a logical vector.

```
#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
LogicalVector is_naC2(NumericVector x) {
  return is_na(x);
}
```

```
is_naC2(c(NA, 5.4, 3.2, NA))
```

```
## [1] TRUE FALSE FALSE TRUE
```

Rcpp sugar

In computer science, **syntactic sugar** is syntax within a programming language that is designed to make things easier to read or to express.

It makes the language "sweeter" for human use:

▶ Things can be expressed more clearly, more concisely, or in an alternative style that some may prefer.

Rcpp provides a lot of syntactic "sugar" to ensure that C++ functions work very similarly to their R equivalents. In fact, Rcpp sugar makes it possible to write efficient C++ code that looks almost identical to its R equivalent!

If there's a sugar version of the function you're interested in, you should use it: it'll be both expressive and well tested. Sugar functions aren't always faster than a handwritten equivalent, but they will get faster in the future as more time is spent on optimising Rcpp.

Rcpp sugar

Sugar functions can be roughly broken down into

- arithmetic and logical operators
- logical summary functions
- vector views

First, there's a grab bag of sugar functions that mimic frequently used R functions:

▶ Math functions: abs(), acos(), asin(), atan(), beta(), ceil(), ceiling(), choose(), cos(), cosh(), digamma(), exp(), expm1(), factorial(), floor(), gamma(), lbeta(), lchoose(), lfactorial(), lgamma(), log(), log10(), log1p(), pentagamma(), psigamma(), round(), signif(), sin(), sinh(), sqrt(), tan(), tanh(), tetragamma(), trigamma(), trunc().

Rcpp sugar

Also:

- Scalar summaries: mean(), min(), max(), sum(), sd(), and var().
- ▶ Vector summaries: cumsum(), diff(), pmin(), and pmax().
- Finding values: match(), self_match(), which_max(),
 which_min().
- ▶ Dealing with duplicates: duplicated(), unique().
- ▶ d/q/p/r for all standard distributions.

Rcpp sugar: Arithmetic and logical operators

All the basic arithmetic and logical operators are **vectorised**: - +, *, -, /, pow, <, <=, >, >=, !=, !.

For example, we could use sugar to considerably simplify the implementation of pdistC().

Rcpp sugar: Arithmetic and logical operators

```
cppFunction('NumericVector pdistC(double x, NumericVector y
  int n = ys.size();
  NumericVector out(n);
  for(int i = 0; i < n; ++i) {
    out[i] = sqrt(pow(ys[i] - x, 2.0));
  return out;
}')
#include <Rcpp.h>
using namespace Rcpp;
// [[Rcpp::export]]
NumericVector pdistC2(double x, NumericVector ys) {
  return sqrt(pow((x - ys), 2));
}
```

Rcpp sugar: Logical summary functions

The sugar function any() and all() are fully *lazy* so that any(x == 0), for example, **might only need to evaluate one element of a vector**, and return a special type that can be converted into a bool in C++ using .is_true(), .is_false(), or .is_na().

We could also use this sugar to write an efficient function to determine whether or not a numeric vector contains any missing values.

To do this in R, we could use any(is.na(x)):

```
any_naR <- function(x) any(is.na(x))</pre>
```

However, in R this will do the same amount of work regardless of the location of the missing value because the base R implementation is NOT lazy.

Rcpp sugar: Logical summary functions

Here's the C++ implementation using Rcpp sugar:

```
#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
bool any_naC(NumericVector x) {
  return is_true(any(is_na(x)));
}
```

Rcpp sugar: Logical summary functions

5 any_naR(x2)

 $6 \text{ any_naC}(x2)$

Now let's compare them using three use-cases.

order=NULL, replications=100)				
## test	replications	elapsed	relative	user.self
## 1 any_naR(x0)	100	0.054	54	0.040
## 2 any_naC(x0)	100	0.030	30	0.030
## 3 any_naR(x1)	100	0.049	49	0.037
## 4 any_naC(x1)	100	0.030	30	0.031

100

100

0.027

0.001

27

0.017

0.001

Rcpp sugar: Vector views

A number of helpful functions provide a "view" of a vector: head(), tail(), rep_each(), rep_len(), rev(), seq_along(), and seq_len().

- ▶ In R these would all produce copies of the vector, but in Rcpp they simply point to the existing vector and override the subsetting operator ([) to implement special behaviour.
- ► This makes them very efficient: for instance, rep_len(x, 1e6) does not have to make a million copies of x!

The following case study illustrates the conversion of a Gibbs sampler in R to C++.

The R and C++ code shown below is very similar (it only took a few minutes to convert the R version to the C++ version), but runs about 20 times faster on my computer.

Dirk Eddelbuettel's blog post also shows another way to make it even faster: - using the faster random number generator functions in \mathbf{GSL} (easily accessible from R through the RcppGSL package) can make it another 2 - 3x faster.

The R code is as follows:

```
gibbs_r <- function(N, thin) {
  mat <- matrix(nrow = N, ncol = 2)</pre>
  x <- y <- 0
  for (i in 1:N) {
    for (j in 1:thin) {
      x \leftarrow rgamma(1, 3, y * y + 4)
      y \leftarrow rnorm(1, 1 / (x + 1), 1 / sqrt(2 * (x + 1)))
    mat[i, ] \leftarrow c(x, y)
  mat
```

This is straightforward to convert to C++. We:

- add type declarations to all variables
- use (instead of [to index into the matrix
- subscript the results of rgamma and rnorm to convert from a vector into a scalar

```
#include <Rcpp.h>
using namespace Rcpp;
// [[Rcpp::export]]
NumericMatrix gibbs_cpp(int N, int thin) {
  NumericMatrix mat(N, 2);
  double x = 0, y = 0;
  for(int i = 0; i < N; i++) {
    for(int j = 0; j < thin; j++) {</pre>
      x = rgamma(1, 3, 1 / (y * y + 4))[0];
      y = rnorm(1, 1 / (x + 1), 1 / sqrt(2 * (x + 1)))[0];
    }
    mat(i, 0) = x;
    mat(i, 1) = y;
  return(mat);
```

Benchmarking the two implementations yields:

```
## test replications elapsed relative
## 1 gibbs_r(100, 10) 100 0.830 21.842
## 2 gibbs_cpp(100, 10) 100 0.038 1.000
```

The same C++ code that is used with sourceCpp() can also be bundled into a package. There are several benefits of moving code from a stand-alone C++ source file to a package:

- ➤ Your code can be made available to users without C++ development tools.
- Multiple source files and their dependencies are handled automatically by the R package build system.
- Packages provide additional infrastructure for testing, documentation, and consistency.

To add Rcpp to an existing package, you put your C++ files in the src/ directory and modify/create the following configuration files:

▶ In DESCRIPTION, add:

```
LinkingTo: Rcpp
Imports: Rcpp
```

We need to *import* Rcpp so that internal Rcpp code is properly loaded. This is a bug in R and hopefully will be fixed in the future.

► Make sure your NAMESPACE includes:

```
useDynLib(mypackage)
importFrom(Rcpp, sourceCpp)
```

To generate a new Rcpp package that includes a simple "hello world" function you can use Rcpp.package.skeleton():

```
Rcpp.package.skeleton("NewPackage", attributes = TRUE)
```

To generate a package based on C++ files that you've been using with sourceCpp(), use the cpp_files parameter:

Finally, before building the package, you'll need to run Rcpp::compileAttributes().

- ► This function scans the C++ files for Rcpp::export attributes and generates the code required to make the functions available in R.
- Re-run compileAttributes() whenever functions are added, removed, or have their signatures changed.
 - This is done automatically by the devtools package and by Rstudio.

For more details see the Rcpp package vignette, vignette("Rcpp-package").

