清华大学本科生考试试题专用纸

考试课程	望 《形式语言与自动材	 □ A 卷 	2016年6月20日				
<u>.</u>	学号:	姓名:	班级:				
(注:解答可以与	在答题纸上,也可以写在	E试卷上; 交卷	时二者都需要交回。)				
	列各命题的真假性,回往						
1. 存在判定—	·个 DF4 和一个正规表:	达式是否等价的	通用算法。				
	正规语言 L_1 和 L_2 , L_3	ı – <i>L</i> 2 是正规语	- - - -				
3. 正规语言的]补语言不一定是正规语	言。					
4. 不存在通用]算法可以判定两个正规	语言的交是非空	的。				
	A 中,若对于同一输入 A 最小化一节中的概念		印 s 的后继状态之间是可区别的 之间也一定是可区别的。				
6. 语言 <i>L</i> = {	$a^{i}b^{j}c^{k} \mid i,j,k \geq 0, $ $\ddot{E} i=1$	则 <i>j</i> =k} 不满足	针对正规语言的 Pumping 引理。				
7. 任何递归语言都存在一个可以接受它的带两个计数器的计数器机。							
8. 某些 P 问	题不是 <i>NP</i> 问题。						
二.(12 分) 选择填	空 (每小题 2 分)						
1. 语言 {0 ⁱ 1 ^j	$ i \ge j \ge 0$ }	o					
2. 语言 {x	x∈{0,1}*,且x为wı	w 的形式 }	o				
3. 语言 $\{x \mid x \in \{0,1\}^*, \ \exists \ x \ 为 \ w^R w \ \text{的形式} \ (w^R \ \not \equiv \ w \ \text{的反} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$							
4. 语言 {0 ⁱ 1 ^j	$ i,j\geq 0, i=j \}$	o					
	<i>i,j</i> ≥ 0, <i>i</i> + <i>j</i> 为偶数 } _						
		果程中定义的通	用语言)}。				
供选择的答案:							

- A. 是某个有限自动机的语言,也是某个空栈接受方式的 DPDA 的语言。
- B. 是某个有限自动机的语言,但不是任何空栈接受方式的 DPDA 的语言。
- C. 既是某个终态接受方式的 DPDA 的语言,又是某个空栈接受方式的 DPDA 的语言,但不是任何有限自动机的语言。
- D. 是某个终态接受方式的 DPDA 的语言, 但不是任何空栈接受方式的 DPDA 的语言, 也不是任何有限自动机的语言。
- E. 是某个 PDA 的语言, 但不是任何 DPDA 的语言。
- F. 是递归语言, 但不是任何 PDA 的语言。
- G. 是递归可枚举语言, 但不是递归语言。
- H. 不是递归可枚举语言。

三.(32 分) 简答题:

1. (4 分) 设 CFG $G = (\{S, A, B\}, \{a, b\}, P, S)$, 其中 P 由下列产生式集合构成:

$$S \to SAB \mid aB \mid \varepsilon$$

$$A \to b$$

$$B \to A \mid \varepsilon$$

先消去 P 中的 ε-产生式,得到产生式集合 P1; 再消去 P1 中的 unit 产生式得到产生式集合P2。

- (1) 指出 P1 中所包含的全部产生式; (3分)
- (2) 指出 P2 中所包含的全部产生式; (1分)
- **2.** (4 分) 文法 G(S)为开始符号)的产生式集合为:

$$S \rightarrow AB \mid BA \mid SS \mid AC \mid BD$$

 $C \rightarrow SB$
 $D \rightarrow SA$
 $A \rightarrow a$
 $B \rightarrow b$

上图表示对于文法 G 和字符串 aba 应用 CYK 算法时所构造的表。

- (1) 分别计算图中所有 X_{ij} (1 $\leq i,j \leq$ 3)
- (2) 是否有 $aba \in L(G)$?
- **3. (6分)** 设映射 $h: \{a,b\} \to \{0,1\}^*$ 定义为 $h(a) = \varepsilon, h(b) = 10$ 。定义 $\{a,b\}$ 上的一个正规表达式 $E = \varepsilon + (a+b)(ba)^*$ 。
 - (1) 给出一个正规表达式 E^R ,使得 $L(E^R) = (L(E))^R$ (后者为 L(E) 的反向)。(2分)

- (2) 给出一个正规表达式 h(E), 使得 L(h(E)) = h(L(E))。 (2分)
- (3) 试构造一个 DFAA,使得 $L(A) = \sim L(h(E))$ 。这里, \sim 代表语言的补运算。
- **4. (4分)** 下图描述了图灵机 $M = (\{q_0, q_1, q_2, q_3\}, \{0, 1\}, \{0, 1, B\}, \delta, q_0, B, \{q_3\})$:

(1) 指出该图灵机的语言 L(M)

(2分)

- (2) 对于每个 $w \in L(M)$,该图灵机到达终态时带上呈现的0/1串与w是什么关系?(2分)
- **5. (4 分)** 下图刻画了 PDA $P = (\{q_0\}, \{0,1\}, \{Z_0,A\}, \delta, q_0, Z_0)$ 的转移规则,试利用课程中介绍的从空栈接受的 PDA 到 CFG 的转换算法,定义一个与该 PDA 等价的 CFG,开始符号设为 S:

- **6. (4 分)** 设有空栈接受方式的 $PDAP_N = (Q, \Sigma, \Gamma, \delta_N, q_0, Z_0)$ 。依照课程中介绍的转换算法,定义一个等价于 P_N 的终态接受方式的 $PDAP_F = (Q \cup \{p_0, p_f\}, \Sigma, \Gamma \cup \{X_0\}, \delta_F, p_0, X_0, \{p_f\})$ 。其中,新增状态 p_0 和 p_f 不属于Q,新增栈符号 X_0 不属于 Γ 。 试给出 δ_F 的严格定义(不可用示意图替代)。
- 7. (6 分) 对于语言 $L = \{a^m b^n c^p \mid m < n < p, 其中<math>m, n, p$ 均为自然数 $\}$,可以利用 Pumping 引理证明 L 不是上下文无关语言,以下是一个证明概要:

考虑任意的 $n\geq 1$ 。取 z= ______ ① ____ $\in L$ 。

对任意满足条件 $z = uvwxy \land vx \neq \varepsilon \land |vwx| \leq n$ 的 u, v, w, x, y,

若 ② 时,取 k = ③;

若 ④ 时,取 k= ⑤ 。(若需更多分支,可自行添加)

则有 $uv^k wx^k v \notin L$ 。

试在其中 ①、②、③、④ 和 ⑤ 处填写适当的内容。(若需更多分支,可自行添加)

- 四.(25 分)设计题:(必要时解释设计思路)
 - **1. (5 分)** 试构造接受下列语言的一个确定有限自动机(DFA),且该有限自动机的状态数 不超过 6:

 $L = \{ w \mid w \in \{a,b\}^*, w$ 含相同个数的a和b,且w的每个前缀中a和b个数之差不超过 $1 \}$

- 注:要求状态数不超过 6,并不意味着状态数一定会达到 6。后面的题目也类似。
- 2. (5 分) 试给出下列正规语言的一个正规表达式,且该表达式中运算符的总数不超过

10 (只能使用 '+', '*' 以及 '连接'3 种运算符和括号, 不计括号数):

 $L = \{ w \mid w \in \{a, b\}^*, |w| \ge 1, 且当 w 以 a 结尾时,它的长度为奇数 \}$

- **3.** (**5** 分**)** 试给出下列语言的一个上下文无关文法,且该文法的非终结符数目不超过 3: $L = \{ w \mid w \in \{a, b\}^*, \ \exists \ w \neq w^R \ (这里, w^R \in \{a, b\}^*) \}$
- **4. (5 分)** 试构造接受下列语言的一个 PDA (终态接受和空栈接受均可), 要求该 PDA 的状态数和堆栈符号数均不超过 5:

 $L = \{x \mid x \in \{a, b\}^*, x \text{ 的长度为偶数,且 } x \text{ 不为 } ww^R \text{ 的形式}(w^R \in w \text{ 的反向})\}$

5. (5 分) 试给出下列语言的一个图灵机 $M = (Q, \{a,b\}, \{a,b,...,B\}, \delta, q_0,B, \{q_f\})$:

 $L = \{x \mid x \in \{a, b\}^*, \ \exists \ x \ \mathsf{\mathcal{Y}} \ ww^R \ \text{的形式} \ (w^R \ \exists \ w \ \text{的反向}) \}$

要求该图灵机的状态数不超过 8,初态为 q_0 ,唯一的终态为 q_f 。用状态转移图描述你所设计的图灵机。

 $(对到达<math>q_t$ 时读写头所处位置不作要求)

- 五.(15 分) 证明题: (要求证明过程严谨,步骤明确。)
 - **1.** (**5 分**) 证明如下语言 *L* 不是正规语言:

 $L = \{ w \mid w \in \{a, b, c\}^*$,且满足:若 w 中仅含一个 a,则 b 的个数不少于 c 的个数 }

- **2. (5 分)** 设 CFGG = (V, T, P, S) ,构造一个空栈接受方式的 $PDAE = (\{q\}, T, V \cup T, \delta, q, S)$,其中转移函数 δ 定义如下:
 - (1) 对每一 $A \in V$, $\delta(q, \varepsilon, A) = \{(q, \beta) \mid "A \rightarrow \beta" \in P \};$
 - (2) 对每一 $a \in T$, $\delta(q, a, a) = \{ (q, \varepsilon) \}.$

以下是证明 $N(E) \subset L(G)$ 的一个证明框架,试在此框架基础上补齐完整的证明过程。

证明: 欲证 $N(E) \subset L(G)$, 即对任何 $w \in T^*$, $w \in N(E) \Rightarrow w \in L(G)$.

即证明: 对任何 $w \in T^*$, if $(q, w, S) \vdash^* (q, \varepsilon, \varepsilon)$, then $S \Rightarrow^*_{lm} w$.

我们先用归纳法证明一个更一般的结论:对于任何 $A \in V$, $if(q,w,A) \mid^* (q, \varepsilon, \varepsilon)$, then $A \Rightarrow^* l_m w$ 。然后,用S替换其中的A,就可证明上述结论。下面是归纳证明的过程:

归纳于 (q,w,A) \vdash *(q, ε, ε) 的步数 n.

基础 *n*=1。......

归纳 n>1。......

证毕。

- **3. (5 分)** 给定上下文无关文法 G = (V, T, P, S) ,且 $L(G) \neq \Phi$ 。定义 G' = (V', T, P', S),其中 V' 归纳定义如下:
 - (1) 基础: 若 P 中有产生式 $A \rightarrow w$, 其中 $w \in T^*$, 则 $A \in V'$;
 - (2) 归纳: 若 P 中有产生式 $A \rightarrow X_1 X_2 ... X_m$, 其中 $X_i \in T \cup V'$ ($1 \le i \le m$),则 $A \in V'$;
 - (3) V'中的符号只能由以上步骤产生。

刮	文们定义 $P' = \{A \to X_1 X_2 X_m \mid A \to X_1 X_2 X_m \in P \land A \in V' \land X_i \in T \cup V' (1 \le i \le m)\}$ 。
	代证明: $L(G)=L(G')$ 。