	Α	В	С	D	Е	F	G	Н	
1	n=	4	kmax=	10	I ! !		 	Х	r
2	10	1	0	0	 	5	,	1	
3	-2	9	1	0		-1	! !	1	
4	0	0,1	4	-1	 !	-5	! !	1	
5	0	0	-1	8	 	40	 	1	

Рис. 3.8. Таблица исходных данных для решения системы линейных алгебраических уравнений итерационными методами на языке VBA

4. Численные методы решения систем нелинейных уравнений

Требуется решить систему нелинейных уравнений вида:

$$F_{1}(x_{1}, x_{2},..., x_{n}) = 0$$

$$F_{2}(x_{1}, x_{2},..., x_{n}) = 0$$
...
$$F_{n}(x_{1}, x_{2},..., x_{n}) = 0.$$
(4.1)

4.1. Метод простой итерации (метод Якоби) для систем нелинейных уравнений

Систему нелинейных уравнений (4.1) после преобразований

$$x_i = x_i - F_i(x)/M_i$$
, $i = 1, 2, 3, ..., n$

(здесь M_i определяются из условия сходимости), представим в виде:

$$x_{1} = f_{1}(x_{1}, x_{2},..., x_{n})$$

$$x_{2} = f_{2}(x_{1}, x_{2},..., x_{n})$$

$$...$$

$$x_{n} = f_{n}(x_{1}, x_{2},..., x_{n})$$
(4.2)

Из системы (4.2) легко получить итерационные формулы метода Якоби. Возьмем в качестве начального приближения какую-нибудь совокупность чисел $x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}$. Подставляя их в правую часть (4.2) вместо переменных $x_1, x_2, ..., x_n$, получим новое приближение к решению исходной системы:

$$x_{1}^{(1)} = f_{1}(x_{1}^{(0)}, x_{2}^{(0)}, ..., x_{n}^{(0)})$$

$$x_{2}^{(1)} = f_{2}(x_{1}^{(0)}, x_{2}^{(0)}, ..., x_{n}^{(0)})$$

$$...$$

$$x_{n}^{(1)} = f_{n}(x_{1}^{(0)}, x_{2}^{(0)}, ..., x_{n}^{(0)})$$

$$(4.3)$$

Эта операция получения первого приближения $x_1^{(1)}, x_2^{(1)}, ..., x_n^{(1)}$ решения системы уравнения (4.2) называется первым шагом итерации. Под-

ставляя полученное решение в правую часть уравнения (4.2) получим следующее итерационное приближение: $x_1^{(2)}, x_2^{(2)}, ..., x_n^{(2)}$ и т.д.:

$$x_i^{(k+1)} = f_i(x_1^{(k)}, x_2^{(k)}, \dots, x_n^{(k)}), \qquad i = 1, 2, 3, \dots, n.$$
 (4.4)

Итерационный процесс можно считать законченным, если все значения переменных (k+1)-ой итерации, отличаются от значений соответствующих переменных предыдущей итерации, на величину по модулю меньшую заданной точности ε , т.е. если:

$$\max_{i} |x_{i}^{(k+1)} - x_{i}^{(k)}| < \varepsilon \tag{4.5}$$

4.2. Метод Зейделя для систем нелинейных уравнений

Метод Зейделя отличается от метода Якоби тем, что вычисления ведутся не по формулам (3.4), а по следующим формулам:

$$x_{1}^{(k+1)} = f_{1}(x_{1}^{(k)}, x_{2}^{(k)}, ..., x_{n}^{(k)})$$

$$x_{2}^{(k+1)} = f_{2}(x_{1}^{(k+1)}, x_{2}^{(k)}, ..., x_{n}^{(k)})$$

$$x_{3}^{(k+1)} = f_{3}(x_{1}^{(k+1)}, x_{2}^{(k+1)}, ..., x_{n}^{(k)})$$

$$...$$

$$x_{n}^{(k+1)} = f_{n}(x_{1}^{(k+1)}, x_{2}^{(k+1)}, ..., x_{n}^{(k+1)})$$

$$(4.6)$$

При решении систем нелинейных уравнений необходимо определить приемлемое начальное приближение. Для случая двух уравнений с двумя неизвестными начальное приближение находится графически.

Сходимость метода Зейделя (Якоби тоже) зависит от вида функции в (4.2), вернее она зависит от матрицы, составленной из частных производных:

$$F' = \begin{pmatrix} f'_{11} & f'_{12} & f'_{13} & \dots & f'_{1n} \\ f'_{21} & f'_{22} & f'_{23} & \dots & f'_{2n} \\ \dots & \dots & \dots & \dots \\ f'_{n1} & f'_{n2} & f'_{n3} & \dots & f'_{nn} \end{pmatrix}, \tag{4.7}$$

где
$$f'_{ij} = \frac{\partial f_i}{\partial x_i}$$
.

Итерационный процесс сходится, если сумма модулей каждой строки F' меньше единицы в некоторой окрестности корня:

$$|f'_{i1}| + |f'_{i2}| + |f'_{i3}| + \dots + |f'_{in}| < 1, \quad i = 1, 2, 3, \dots, n$$

$$\max_{1 \le i \le n} \sum_{j=1}^{n} |f'_{ij}| < 1$$

или

Пример 4.1. Найти решение системы методом Зейделя с точностью $\varepsilon = 0.001$:

$$F(x, y) = 2\sin(x+1) - y - 0.5 = 0$$

$$G(x, y) = 10\cos(y-1) - x + 0.4 = 0$$
(4.8)

Решение: Представим (4.8) в виде (4.5):

$$x = f_1(x, y) = x - (2\sin(x+1) - y - 0.5) / M_1$$

$$y = f_2(x, y) = y - (10\cos(y-1) - x + 0.4) / M_2$$
(4.9)

Задаем начальные приближения $x_0 = -1$, $y_0 = -0.7$.

Запишем достаточное условие сходимости и определяем M_1, M_2 :

$$F' = \begin{pmatrix} f'_{1x} & f'_{1y} \\ f'_{2x} & f'_{2y} \end{pmatrix} = \begin{pmatrix} 1 - 2\cos(x+1)/M_1 & 1/M_1 \\ -1/M_2 & 1 + 10\sin(y-1)/M_2 \end{pmatrix}$$
$$|1 - 2\cos(x_0 + 1)/M_1| + |1/M_1| < 1$$

$$|-1/M_2| + |1+10\sin(y_0-1)/M_2| < 1$$

$$|1-2\cos(1+1)/M_1| + |1/M_1| < 1$$

 $|-1/M_2| + |1+10\sin(-0.7-1)/M_2| < 1$

$$|1-2/M_1| + |1/M_1| < 1$$
 и $|-1/M_2| + |1-9.91665/M_2| < 1$

Определяем частные значения $\boldsymbol{M}_1 = 2$, $\boldsymbol{M}_2 = 10$, которые удовлетворяют неравенствам

$$1-2/2+1/2<1$$
 и $1/10-9,91665/10<1$

Переходим к реализации итерационного процесса:

$$x_{k+1} = x_k - (2\sin(x_k + 1) - y_k - 0.5)/2$$

$$y_{k+1} = y_k - (10\cos(y_k - 1) - x_k + 0.4)/10$$

$$x_{1} = x_{0} - (2\sin(x_{0} + 1) - y_{0} - 0.5)/2 =$$

$$= -1 - (2\sin(-1 + 1) + 0.7 - 0.5)/2 = -1.1$$

$$y_{1} = y_{0} - (10\cos(y_{0} - 1) - x_{0} + 0.4)/10 =$$

$$= -0.7 - (10\cos(-0.7 - 1) + 1.1 + 0.4)/10 = -0.72116$$

$$x_{2} = x_{1} - (2\sin(x_{1} + 1) - y_{1} - 0.5)/2 =$$

$$= -1.1 - (2\sin(-1.1 + 1) + 0.72116 - 0.5)/2 = -1.11075$$

$$y_{2} = y_{1} - (10\cos(y_{1} - 1) - x_{1} + 0.4)/10 =$$

$$= -0.72116 - (10\cos(-0.72116 - 1) + 1.11075 + 0.4)/10 = -0.72244$$

$$x_3 = x_2 - (2\sin(x_2+1) - y_2 - 0.5)/2 =$$

$$= -1.11075 - (2\sin(-1.11075+1) + 0.72244 - 0.5)/2 = -1.11145$$

$$y_3 = y_2 - (10\cos(y_2-1) - x_2 + 0.4)/10 =$$

$$= -0.72244 - (10\cos(-0.72244-1) + 1.11145 + 0.4)/10 = -0.72252$$
Определяем погрешность по формуле $\max_{1 \le i \le n} |x_i^{(k+1)} - x_i^{(k)}| < \varepsilon$:
$$|x_3 - x_2| = |-1.11145 + 1.11075| = 0.00007 < \varepsilon = 0.001$$

$$|y_3 - y_2| = |-0.72252 + 0.72244| = 0.00008 < \varepsilon = 0.001$$

Таким образом, имеем решение: $x^* = -1,1115$, $y^* = -0,7225$.

Программа, реализующая решение данной задачи, представлена на рис. 4.1. Исходные данные — начальные приближения x_0 , y_0 , множители M_1 , M_2 , точность ϵ и максимальное число итераций \mathbf{n} .

	Α	В
1	x0	-1
2	y0	-0,7
3	M1	2
4	M2	10
5	е	0,001
6	n	10000
7	Х	-1,1112
8	у	-0,72245

```
Sub program5()
  x = Cells(1, 2)
  y = Cells(2, 2)
  m1 = Cells(3, 2)
  m2 = Cells(4, 2)
  eps = Cells(5, 2)
  n = Cells(6, 2)
  For k = 1 To n
   xk = x-(2*Sin(x+1)-y-0.5)/m1
   yk = y-(10*Cos(y-1)-x+0.4)/m2
   If Abs(xk-x) \le And Abs(yk-y) \le Then
     Cells(7, 2) = xk
     Cells(8, 2) = yk
     End
   End If
   x = xk
   y = yk
  Next k
  MsgBox "решение не найдено"
End Sub
```

Рис. 4.1. Программа решения системы нелинейных уравнений методом Зейделя.

4.3. Метод Ньютона решения систем нелинейных уравнений

Основная идея метода Ньютона состоит в выделении из уравнений системы линейных частей, которые являются главными при малых приращениях аргументов. Это позволяет свести исходную задачу к решению последовательности систем линейных уравнений.

Рассмотрим систему двух нелинейных уравнений с двумя неизвестными вида:

$$F(x, y) = 0 G(x, y) = 0$$
 (4.10)

Пусть известно некоторое приближение x_k , y_k корня x^* , y^* . Тогда поправки $\Delta x_k = x_{k+1} - x_k$, $\Delta y_k = y_{k+1} - y_k$ можно найти, решая систему:

$$F(x_k + \Delta x_k, y_k + \Delta y_k) = 0$$

$$G(x_k + \Delta x_k, y_k + \Delta y_k) = 0$$
(4.11)

Для этого разложим функции F, G в ряд Тейлора по Δx_k , Δy_k . Сохранив только линейные по Δx_k , Δy_k части, получим систему линейных уравнений

$$\frac{\partial F(x_k, y_k)}{\partial x} \Delta x_k + \frac{\partial F(x_k, y_k)}{\partial y} \Delta y_k = -F(x_k, y_k)$$

$$\frac{\partial G(x_k, y_k)}{\partial x} \Delta x_k + \frac{\partial G(x_k, y_k)}{\partial y} \Delta y_k = -G(x_k, y_k)$$
(4.12)

относительно неизвестных поправок Δx_k , и Δy_k . Решая эту систему линейных уравнений, определяем значения Δx_k , Δy_k .

Таким образом, решение системы уравнений по методу Ньютона состоит в построении итерационной последовательности:

$$x_{k+1} = x_k + \Delta x_k y_{k+1} = y_k + \Delta y_k$$
 (4.13)

где Δx_k , Δy_k - решения систем линейных уравнений, вида (4.12) на каждом шаге итерации.

В методе Ньютона для обеспечения хорошей сходимости также важен правильный выбор начального приближения.

Пример 4.2. Найти решение системы (4.8) методом Ньютона с точностью $\varepsilon = 0.001$.

$$F(x, y) = 2\sin(x+1) - y - 0.5 = 0$$

$$G(x, y) = 10\cos(y-1) - x + 0.4 = 0$$
(4.13)

Решение. Начальные приближения $x_0 = -1$, $y_0 = -0.7$. Определим частные производные:

$$\frac{\partial F(x,y)}{\partial x} = 2\cos(x+1); \qquad \frac{\partial F(x,y)}{\partial y} = -1$$

$$\frac{\partial G(x,y)}{\partial x} = -1 \qquad \frac{\partial G(x,y)}{\partial x} = -10\sin(y-1)$$

и, используя (4.12), построим систему линейных уравнений относительно поправок

$$\begin{cases} 2\cos(x_k+1)\Delta x_k & -1\cdot\Delta y_k = -2\sin(x_k+1) + y_k + 0.5 \\ -1\cdot\Delta x_k & -10\sin(y_k-1)\Delta y_k = -10\cos(y_k-1) - x_k + 0.4 \end{cases}$$

Подставляя начальные приближения $x_0 = -1$, $y_0 = -0.7$ и решая систему линейных уравнений

$$\begin{cases} 2\Delta x_0 & -\Delta y_0 = -0.2 \\ -\Delta x_0 & +9.9166\Delta y_0 = -0.116 \end{cases},$$

определяем поправки на первом шаге итерации

$$\Delta x_0 = -0.1112$$
, $\Delta y_0 = -0.0225$

Далее начальное приближение уточняем по формулам (4.13)

$$x_1 = x_0 + \Delta x_0 = -1 - 0.1112 = -1.1112$$

 $y_1 = y_0 + \Delta y_0 = -0.7 - 0.0225 = -0.7225$

Подставляя результаты первой итерации $x_1 = -1,1112$, $y_1 = -0,7225$ и решая систему линейных уравнений

$$\begin{cases} 1,9876\Delta x_1 & -\Delta y_1 = -5,5806 \cdot 10^{-4} \\ -\Delta x_1 & +9,8852\Delta y_1 = 2,4576 \cdot 10^{-5} \end{cases}$$

определяем поправки на втором шаге итерации

$$\Delta x_1 = -2.945 \cdot 10^{-4} \approx 0,0003, \quad \Delta y_1 = -2.73 \cdot 10^{-5} \approx 0,00003$$

Далее x_1 и y_1 уточняем по формулам (4.12)

$$x_2 = x_1 + \Delta x_1 = -1,1112 - 0,0003 \approx -1,1115$$

 $y_2 = y_1 + \Delta y_1 = -0,7225 - 0,00003 \approx -0,7225$

Определяем погрешность по формуле $\max_{i} |x_i^{(k+1)} - x_i^{(k)}| < \epsilon$:

$$|x_2 - x_1| = |\Delta x_1| = 0,0003 < \varepsilon = 0,001$$

 $|y_2 - y_1| = |\Delta y_1| = 0,00003 < \varepsilon = 0,001$

Таким образом, имеем решение: $x^* = -1,1115$, $y^* = -0,7225$.

Программа, реализующая метод Ньютона для указанной задачи, представлена на рис. 4.2. Исходные данные – начальные приближения x_0 , y_0 , точность ε и максимальное число итераций n.

	Α	В
1	x0	-1
2	y0	-0,7
3	е	0,001
4	n	10000
5	Χ	-1,11149
6	у	-0,72253
7		
8		

```
Sub program6()
  x = Cells(1, 2)
  y = Cells(2, 2)
  e = Cells(3, 2)
  n = Cells(4, 2)
  For k = 1 To n
   F = 2 * Sin(x + 1) - y - 0.5
   G = 10 * Cos(y - 1) - x + 0.4
   Fx = 2 * Cos(x + 1)
   Fy = -1
   Gx = -1
   Gy = -10 * Sin(y - 1)
   D = Fx * Gy - Gx * Fy
   Dx = (G * Fy - F * Gy) / D
   Dy = (F * Gx - G * Fx) / D
   xk = x + Dx
   yk = y + Dy
   If Abs(xk-x) < e And Abs(yk-y) < e Then
     Cells(5, 2) = xk
     Cells(6, 2) = yk
     End
   End If
   x = xk
   y = yk
  Next k
 MsgBox "решение не найдено"
 End
End Sub
```

Рис. 4.2. Программа, реализующая метод Ньютона на языке VBA.

Пример 4.3. Найти решение системы (4.8) с помощью программы Excel.

$$F(x, y) = 2\sin(x+1) - y - 0.5 = 0$$

$$G(x, y) = 10\cos(y-1) - x + 0.4 = 0$$

Порядок решения.

- 1) Подключить надстройку «Поиск решения» через *Кнопка «Офис»- Параметры Excel-Надстройки-Надстройки Excel-Перейти* (рис. 4.3);
- 2) Ввести в ячейки **A1**, **B1**, **C1**, **D1** заголовки столбцов (рис. 4.4a);
- 3) В ячейку A2 начальное приближение для x: — 1
- 4) В ячейку **B2** начальное приближение для y: **0.7**
- 5) В ячейку C2 формулу F(x,y) =2*SIN(A2+1)-B2-0,5
- 6) В ячейку D2 формулу G(x,y) =10*COS(B2-1)-A2+0,4
- 7) Вызвать диалоговое окно «Поиск решения»: Данные-Поиск решения (рис. 4.5)

- 8) В качестве целевой ячейки указываем результат вычисления левой части одного из уравнений, например, F(x, y), т.е. ячейку **C2**
- 9) Для решения уравнения значение F(x, y) = 0, поэтому выбираем переключатель «значение», а в соответствующее поле вводим **0**
- 10) Установив курсор в поле «Изменяя ячейки», выделяем ячейки незвестных $x, y, \text{ т.e. } \mathbf{A2: B2}$
- 11) Остальные уравнения системы рассматриваются как дополнительные ограничения (G(x, y) = 0). Нажимаем кнопку «Добавить», отмечаем мышью ячейку **D2** и вводим =**0**
- 12) Нажимаем кнопку «Выполнить». Если решение найдено, появляется окно сообщения предложением сохранить найденное решение или восстановить исходные значения. Нажимаем кнопку ОК.
- 13) В ячейках **A2: В2** решение системы (рис. 4.4б),

T.e
$$x = -1,111, y = -0,723$$

Рис. 4.3. Подключения надстройки «Поиск решения».

Рис. 4.4. Рабочий лист до и после выполнения поиска решения.

Рис. 4.5. Параметры окна «Поиск решения».

Задание к лабораторной работе № 4

Найдите решение заданной системы нелинейных уравнений с прикидкой точности результата с помощью эмпирического критерия:

- а) методом простой итерации;
- б) методом Ньютона или методом Зейделя;
- в) с использованием одного из инструментальных средств.

Номер варианта	Система уравнений	Номер варианта	Система уравнений
1	$\begin{cases} x_2 - \sin x_1 = 0; \\ x_1^2 + x_2^2 = 1 \\ (x_1 > 0) \end{cases}$	11	$\begin{cases} x_2 - \sqrt{x_1 + 1} = 0; \\ x_1^2 - 2x_1^2 + x_2^2 - 2x_2 = -1 \\ (x_1 > 0) \end{cases}$
2	$\begin{cases} x_1 + 3 \lg x_1 - x_2^2 = 0; \\ 2x_1^2 - x_1x_2 - 5x_1 = -1 \\ (x_1 > 0, x_2 > 0) \end{cases}$	12	$\begin{cases} x_2 - 0.5 \ln(x_1 + 1) = 0; \\ x_1^2 + x_2^2 - 2x_2 = 0 \\ (x_1 > 0) \end{cases}$
3	$\begin{cases} x_1^2 + x_2^2 + x_3^2 = 1; \\ 2x_1^2 + x_2^2 - 4x_3 = 0; \\ 3x_1^2 - 4x_2 + x_3^2 = 0 \\ (x_1, x_2, x_3 > 0) \end{cases}$	13	$\begin{cases} \frac{x_1}{1+2x_1^2} - 2x_2 = 0; \\ x_1^2 + x_2^2 = 1 \\ (x_1 < 0) \end{cases}$
4	$\begin{cases} x_1^2 + x_2^2 = 1; \\ x_1^3 - x_2 = 0 \end{cases}$	14	$\begin{cases} e^{x_1} + 2x_2^2 = 4; \\ x_1^2 + 3x_2^2 = 0 \\ (x_1 > 0) \end{cases}$
5	$\begin{cases} x_1 + x_1^2 - 2x_2x_3 = 0, 1; \\ x_2 - x_2^2 + 3x_1x_3 = -0, 2; \\ x_3 + x_3^2 + 2x_1x_2 = 0, 3 \end{cases}$	15	$\begin{cases} x_2 + 1, 5\cos(x_1 - 1) = 1; \\ 0, 6x_2^2 + 0, 4x_1^2 = 1 \\ (x_2 > 0) \end{cases}$
6	$\begin{cases} x_1 \cos x_1 - x_2 = 0; \\ x_1^2 + x_2^2 = 0 \\ (x_1 > 0) \end{cases}$	16	$\begin{cases} x_1 - \sin x_2 - \cos x_2 = 0, 8; \\ x_2 - 0, 02 \sin x_1^2 - 0, 4x_1 = 0 \end{cases}$
7	$\begin{cases} x_2 - 2x_1 e^{-x_1} = 0; \\ x_1^2 + x_2^2 = 1 \\ (x_1 < 0) \end{cases}$	17	$ \begin{cases} tg(x_1x_2 + 0, 2) - 2x_1 = 0; \\ 0, 8x_1^2 + 2x_2^2 = 1 \\ (x_1 > 0) \end{cases} $
8	$\begin{cases} x_1^{2/3} + x_2^{2/3} = 1; \\ x_1^2 + x_2^2 - 2x_1 = 0 \\ (x_2 < 0) \end{cases}$	18	$ \begin{cases} \sin(0, 5x_1 + x_2) - 1, 2x_1 = 1; \\ x_1^2 + x_2^2 = 1 \\ (x_1 > 0) \end{cases} $
9	$\begin{cases} x_1 - 2\sin x_1 + x_2 = 1; \\ x_1^2 + x_2^2 = 1 \\ (x_1 > 0) \end{cases}$	19	$\begin{cases} \cos(x_1 - 2) + x_2 = 1; \\ \sin x_1 + 2x_2^2 = 1, 5 \\ (x_1 > 0) \end{cases}$
10	$\begin{cases} x_1^2 + x_2 + x_3^2 = 1; \\ x_1^2 + 2x_2^2 - x_3 = 0; \\ 2x_1^2 + 2x_2^2 = 0 \\ (x_1, x_2 > 0, x_3 < 0) \end{cases}$	20	$\begin{cases} \sqrt{3}x_1 - 2\sin x_1^2 - 3\sqrt{2}x_2 = 0,5; \\ x_1^2 + 2x_2^2 = 1 \\ (x_1 > 0) \end{cases}$