11/1/18	DYNAMIC PROGRAMMING
0	[Chapter 6 in the Textbook]
0	Closest to a systematic recipe for an algorithm.
C	Closest to a systemalic recipe for an algorithm. Bellman in 1950s a pioneer for this class of algorithm
٥	What does "Dynamic Programming" even mean? L. Name doesn't tell you anything unlike "Greedy' or "Diride & Conquer" algorithm.
ø	In Divide & Conquer -> could split problem into
	In Divide & Conquer -> could split problem into independent portions
	In Dynamic programming, not independent, may have overlap Although still looking at a smaller subproblem to solve a larger problem. > avoid extra work to do!
xample	Fibonacci Sequence: > Example of efficiently hand overlapping recursive calls fib(n) = fib(n-2) + fib(n-1) fib(1) = 1 fib(2) = 1
	Recursive Implementation:

o Don't recursively called fib(n) otherwise M will get re-initialised and it defeats the purpose.

" We call Mfib() recursively. · Runtime of Mfib(n): f(n) -> Other than recursive calle, it does O(1) work. fill one entry of M = make 2 recursive calls make at most 2n recursive calls. Overall: [# of recursive calls] x [work per recursive c $= 2 \cdot 0(1)$ = O(n)Went from exponential to linear time! Just had to remember some values. By Why do it recuesively & not just unroll it? (2) Iterative Solution: unwind recursion fib (n): initialize array M of size n M[1]=1 M[2]=1

	for i = 3 to w:
	M[i] = M[i-2] + M[i-1]
	return M[n]
	Runtime: $\Theta(n)$
Ð	Could be times when you would prefer
	memoisation over iterative solution (for some
	applications where not all intermediate
	values need to be computed).
	Dynamic Programming:
	Method for solving optimization problems
	which exhibit
	-overlapping subproblems
	- optimal substructure
>	Revisiting Interval Scheduling with
	Revisiting Interval Scheduling with Weighted Interval Scheduling-
	- find max weight subset of compatible jobs.
	- Can't sort by finish time like greedy!
	5
	500

>	Usual Steps of dynamic programming:	
	Usual Steps of dynamic programming: - Optimal substructure -> Most difficult part	Ī
	- find a recuesion expression for the value of	
	Optimal solution. 4 OPT	
	- memoisation or iteratively compute the table	e
	- memoisation or iteratively compute the table of OPT - analog of M seen in fibonacci	
	- use OPT table to find actual solution	
	\mathbf{V}	
	Optional depending on the problem.	
c	Let's use this to solve the weighted interval schedu	ıli
	Let's use this to some the weighted interval schedu problem!	
	Optimal Substructure:	
	claim: Let J be the set of jobs.	
	Suppose ji,, ji is an optimal solution	fi
	then j,, ji-1 is an optimal solution.	
	J' = I removing is and all jobs that or	
	with ji	
	F =	
	look a smaller subcom	100
	3 .	1
	1	
	1	
	1 .	

Prof: Suppose not Then there is another solutions
O1,, Ox for J' with greater total Since none of the intervals in I overlap with Ji, we can replace the first (i-1) intervals of the optimal solution for J (ji, ..., ii) with (01, ..., 0k) and increase the total weight. This contradicts that (ju ..., ji) is not optimal.