

2026

Electrochemistry

MPQ Solution - 01

Physical Chemistry

By- Amit Mahajan Sir

The specific conductance of a saturated solution of silver bromide is κ S cm⁻¹. The limiting ionic conductivity of Ag⁺ and Br⁻ ions are x and y, respectively. The solubility of silver bromide in gL⁻¹ is: (Molar mass of AgBr = 188)

$$\frac{K \times 1000}{x - y}$$

$$\frac{\kappa}{x+y} \times 188$$

$$\frac{K \times 1000 \times 188}{x + y}$$

$$\frac{x+y}{\kappa} \times \frac{1000}{188}$$

$$M = S = Solubility in mol/h$$

$$N = \frac{K \times 1000}{M}$$

$$(x+y) = \frac{K \times 1000}{M}$$

$$S = \frac{K \times 1000}{M}$$

The resistance of 0.1 N solution of formic acid is 200 ohm and cell constant is 2.0 cm⁻¹. the equivalent conductivity (in S cm² eq⁻¹) of 0.1 N formic acid is:

A 100

N=0.1N R=200 Sc L=2cm

$$\frac{d}{d} = 2 cm^{2}$$

$$\frac{d}{d}$$

D None of these

A conductance cell was filled with a 0.02 M KCl solution which has a specific conductance of 2.768×10^{-3} ohm⁻¹ cm⁻¹. If its resistance is 82.4 ohm at 25°C, the

cell constant is:

$$0.2821 \text{ cm}^{-1}$$

Constant is:
$$M = 0.02 \text{ M} (KU)$$
 0.2182 cm^{-1}
 $\mathcal{K} = 2.768 \times 10^{-3} \text{ J} \text{ cm}^{-1}$
 0.2281 cm^{-1}
 $\mathcal{R} = 82.4 \text{ ohms}$
 0.2821 cm^{-1}
 \mathcal{L}

The ionic conductivity of Ba²⁺ and Cl⁻ at infinite dilution are 127 and 76 ohm⁻¹ cm² eq⁻¹ respectively. The equivalent conductivity of BaCl₂ at infinity dilution (in ohm⁻¹ cm² eq⁻¹) would be:

203
$$\int_{Ba^{+}(N)}^{\infty} = |a7| Scm^{2}eq^{-1}$$

B
$$\frac{279}{279}$$
 $\int_{0}^{\infty} (N) = 76$

D 139.5
$$\frac{8}{N_{Ba}} = 127 + 76 = 2035 \text{ cm eq}$$

Λ^{∞}_{AgCl} can be obtained:

- by extraplotation of the graph Λ and \sqrt{C} to zero concentration
- by known values of Λ[∞] of AgNO₃, HCl and HNO₃
- Both (A) and (B) $\Lambda_{Aga} = \Lambda_{AgNos} + \Lambda_{Ha} \Lambda_{HNos}$
- None of these

The conductance of a salt solution (AB) measured by two parallel electrodes of area 100 cm² separated by 10 cm was found to be 0.0001 Ω^{-1} . If volume enclosed between two electrode contain 0.1 mole of salt, what is the molar conductivity (S cm² mol⁻¹) of salt at same concentration.

A 10 $a = 100 \text{ cm}^2$ d = 10 cmB 0.1 $62 = 10^4 \text{ S}$

None of these

Given below are two statements:

- XStatement-I: For KI, molar conductivity increases steeply with dilution.
- XStatement-II: For carbonic acid, molar conductivity increases slowly with dilution.

In the light of the above statement, choose the correct answer from the options given below:

(JEE MAINS 27 July 2nd shift-2022)

- A Both statement I and statement II are true
- Both statement I and statement II are false
- C Statement 1 is true but statement II is false
- Statement 1 is false but statement II is true

Given below are two statements:

(JEE MAINS 26 Aug. 1st shift 2021)

X Statement-I: The limiting molar conductivity of KCl (strong electrolyte) is higher compared to that of CH₃COOH (weak electrolyte).

X Statement-II: Molar conductivity decreases with decrease in concentration of electrolyte.

In the light of the above statements, choose the most appropriate answer from the options given below:

- A Statement I is false but statement II is true
- Both statement I and statement II is true
- C Statement I is true but statement II is false
- Both statement I and statement II is false

QUESTION - (JEE Advance 2017)

The conductance of a 0.0015 M aqueous solution of a weak monobasic acid was determined by using conductivity cell consisting of platinized Pt electrodes. The distance between the electrodes is 120 cm with an area of cross section of 1 cm². the conductance of this solution was found to be 5×10^{-7} S. The pH of the solution is 4. The value of limiting molar conductivity ($\Lambda^{\circ}_{\rm m}$) of this weak monobasic acid in aqueous solution is $Z \times 10^2$ S cm² mol⁻¹. The value of Z is:

$$M = 15 \times 10^{4} \, \text{M}$$
. $PH = H$.

 $d = 120 \, \text{cm}$ $\Lambda_{M}^{0} = 2 \times 10^{2} \, \text{S cm}^{2} \, \text{mol}^{1}$
 $a = 1 \, \text{cm}^{2}$.

 $G_{1} = 5 \times 10^{7} \, \text{S}$
 $R = 61 \times 1 = 5 \times 10^{7} \times 120 = 600 \times 10^{7} = 6 \times 10^{5}$

PH=H=> [H+]=10-PH=10-H [H+]=Cx=10-H 15xxxxx=10-H

QUESTION - (JEE Advance 2022)

Consider the strong electrolytes $Z_m X_n$, $U_m Y_p$ and $V_m X_n$. Limiting molar conductivity (Λ °) of $U_m Y_p$ and $V_m X_n$ are 250 and 440 S cm² mol⁻¹, respectively. The

value of (m+n+p) is _____.

Given:

Ion	\mathbb{Z}^{n+}	U p.+	Vn+	\mathbf{X}^{m-}	Y ^{m-}
λ°(S cm ² mol ⁻¹)	50.0	25.0	100.0	80.0	100.0

 λ° is limiting molar conductivity of ions.

The plot of molar conductivity (A) of $Z_m X_n$ vs $c^{1/2}$ is given below:

$$\int_{M}^{\infty} Z_{m} x_{n} = 340 = m\lambda_{2}^{0}m^{+} + n\lambda_{2}^{0}m^{-} = 50m + 80n - 0$$
 $\int_{M}^{\infty} U_{m} x_{p} = 850 = m\lambda_{1}^{0}p^{+} + p\lambda_{2}^{0}m^{-} = 85m + 100p - 8$
 $\int_{M}^{\infty} U_{m} x_{p} = 850 = m\lambda_{1}^{0}p^{+} + p\lambda_{2}^{0}m^{-} = 100m + 80n - 8$
 $\int_{M}^{\infty} U_{m} x_{n} = 440 = m\lambda_{1}^{0}n^{+} + n\lambda_{2}^{0}m^{-} = 100m + 80n - 8$

$$+50m = +100$$
 $m = 2$

$$50 \times 2 + 80 = 340$$

 $800 = 340$
 $N = 3$

$$25\times2+100P=250$$
 $100P=200$
 $P=2$
 $M+100P=200$
 $100P=200$

QUESTION

Let C_{NaCl} and C_{BaSO₄} be the conductances (in S) measured for saturated aqueous solutions of NaCl and BaSO₄, respectively, at a temperature T.

Which of the following is false?

(JEE MAINS 3 Sep. 1st shift 2020)

- A lonic mobilities of ions from both salts increase with T.
- B $CBaSO_4 (T_2) > CBaSO_4 (T_1) \text{ for } T_2 > T_1$
- CNaCl (T_2) > CNaCl (T_1) for T_2 > T_1
- $CN_{\underline{aCl}}(T_2) > CBaSO_4$ at a given T

The variation of molar conductivity with concentration of an electrolyte (X) in aqueous solution is shown in the given figure. (JEE MAINS 5th sep 2nd shift 2020)

