Quelques définitions et commentaires

Altitude		nsité de l'air avec l'altitude agit s nsi que sur son pouvoir réfrigéra nent).				
		u'à 3000 m. Coefficients d'emplo bles puissance (courant alternatif		r au-dessus	de cette alti	tude pour la tension et l
		Altitude	3500 m	4000 m	4500 m	5000 m
		Tension assignée d'emploi	0,90	0,80	0,70	0,60
		Courant assigné d'emploi	0,92	0,90	0,88	0,86
Température ambiante	caractéristiques de foncti - sans restriction pour de	'air contenu dans l'enceinte où onnement sont données : s températures comprises entre elles pour des températures cor	- 5 et + 55 °	С,		oisinage de celui-ci. Le
Courant assigné d'emploi (le)	Il est défini suivant la te température de l'air au vo	ension assignée d'emploi, la fré pisinage de l'appareil.	equence et l	e service a	ssignés, la	catégorie d'emploi et l
Courant thermique conventionnel (lth) (1)	Un contacteur en position dépasse les limites preso	fermée peut supporter ce courai rites par les normes.	nt Ith pendar	nt au moins	8 heures sa	ns que son échauffemer
Courant temporaire admissible	Un contacteur en positior sans atteindre un échauf	n fermée peut supporter ce coura fement dangereux.	ant pendant	un temps lir	nite consécu	utif à un temps de repos
Tension assignée d'emploi (Ue)	et à laquelle se rapporten par la tension entre phase	mbinée avec un courant assigné t les essais correspondants et la es. Sauf cas particuliers tel que d n assignée d'isolement Ui.	catégorie d'	emploi. Pou	r les circuits	triphasés, elle s'exprim
Tension assignée du circuit de commande (Uc)		nsion de commande sur laquelle e, elles sont données pour une totale).				
Tension assignée d'isolement (Ui)	se rapportent les essais	lement d'un appareil est la valeu diélectriques, les lignes de fuit s normes, la valeur retenue pour	e et les dis	tances dans	s l'air. Les	prescriptions n'étant pa
Tension assignée de tenue aux chocs (Uimp)	Valeur de crête d'une ten	sion de choc que le matériel est	susceptible	de supporte	er sans claq	uage.
Puissance assignée d'emploi (s'exprime en kW)	Puissance du moteur nor	malisé pour lequel le contacteur	est prévu à	la tension a	assignée d'e	mploi.
Pouvoir assigné de coupure (2)	Il correspond à la valeur d	u courant que le contacteur peut c	couper dans	des conditio	ns de coupu	re spécifiées par la norm
Pouvoir assigné de fermeture (2)	Il correspond à la valeur norme IEC.	du courant que le contacteur pe	ut établir da	ns des cond	ditions de fe	rmeture spécifiées par l
Facteur de marche (m)	C'est le rapport entre la d	lurée de passage t du courant l e	et la durée d	u cycle T r	$n = \frac{t}{T}$	
	Durée du cycle : c'est la s de repos.	somme des durées de passage d	du courant et	de la pério	de	
Impédance des pôles	la borne d'entrée à la bo $(X = L\omega)$. L'impédance tot	t la somme des impédances des rne de sortie. L'impédance se d ale est donc fonction de la fréqu n courant assigné d'emploi.	écompose e	n une partie	résistive (F	R) et une partie inductiv
Durabilité électrique		nbre moyen de cycles de manœ . Il dépend de la catégorie d'em				
Durabilité mécanique	que le contacteur est sus	nbre moyen de cycles de manœ ceptible d'effectuer sans défailla	ance mécani		e sans cour	ant traversant les pôles,
	(2) En courant alternatif, efficace de la composante	nventionnel à l'air libre, selon IE le pouvoir assigné de coupure e e symétrique du courant de court ets supportent donc un courant a	et le pouvoir -circuit. Com	pte tenu de	l'asymétrie	maximale pouvant existe
	1/6 %	nt extraites de la norme IEC 947				

Quelques définitions et commentaires

	Catégories d'emploi pour contacteurs selon IEC 947-4
	Les catégories d'emploi normalisées fixent les valeurs de courant que le contacteur doit établir ou couper.
	Elles dépendent : - de la nature du récepteur contrôlé : moteur à cage ou à bagues, résistances, - des conditions dans lesquelles s'effectuent les fermetures et ouvertures : moteur lancé ou calé ou en cours de démarrage, inversion de sens de marche, freinage en contre-courant.
	Emploi en courant alternatif
Catégorie AC-1	Elle s'applique à tous les appareils d'utilisation à courant alternatif (récepteurs), dont le facteur de puissance est au moinégal à 0,95 (cos $\varphi \ge 0,95$).
	Exemples d'utilisation : chauffage, distribution.
Catégorie AC-2	Cette catégorie régit le démarrage, le freinage en contre-courant ainsi que la marche par "à-coups" des moteurs à bagues A la fermeture, le contacteur établit le courant de démarrage, voisin de 2,5 fois le courant nominal du moteur. A l'ouverture, il doit couper le courant de démarrage, sous une tension au plus égale à la tension du réseau.
Catégorie AC-3	Elle concerne les moteurs à cage dont la coupure s'effectue moteur lancé. A la fermeture, le contacteur établit le courant de démarrage qui est de 5 à 7 fois le courant nominal du moteur. A l'ouverture, le contacteur coupe le courant nominal absorbé par le moteur, à cet instant, la tension aux bornes de se pôles est de l'ordre de 20 % de la tension du réseau. La coupure reste facile.
	Exemples d'utilisation : tous moteurs à cage courants : ascenseurs, escaliers roulants, bandes transporteuses élévateurs à godets, compresseurs, pompes, malaxeurs, climatiseurs, etc
tégories AC-4 et AC-2	Ces catégories concernent les applications avec freinage en contre-courant et marche par "à-coups" avec des moteurs à cage ou à bagues. Le contacteur se ferme sous une pointe de courant qui peut atteindre 5 à 7 fois le courant nominal du moteur. Lorsqu' s'ouvre, il coupe ce même courant sous une tension d'autant plus importante que la vitesse du moteur est faible. Cette tension peut être égale à celle du réseau. La coupure est sévère.
	Exemples d'utilisation : machines d'imprimerie, à tréfiler, levage, métallurgie.
	Emploi en courant continu
Catégorie DC-1	Elle s'applique à tous les appareils d'utilisation à courant continu (récepteurs) dont la constante de temps (L/R) es inférieure ou égale à 1 ms.
Catégorie DC-3	Cette catégorie régit le démarrage, le freinage en contre-courant ainsi que la marche par "à-coups" des moteurs shunt Constante de temps ≤ 2 ms. A la fermeture, le contacteur établit le courant de démarrage, voisin de 2,5 fois le courant nominal du moteur. A l'ouverture, il doit couper 2,5 fois le courant de démarrage sous une tension au plus égale à la tension du réseau. Tension d'autant plus élevée que la vitesse du moteur est faible et, de ce fait, sa force contre-électromotrice peu élevée La coupure est difficile.
Catégorie DC-5	Cette catégorie concerne le démarrage, le freinage en contre-courant et la marche par "à-coups" de moteurs série Constante de temps ≤ 7,5 ms. Le contacteur se ferme sous une pointe de courant qui peut atteindre 2,5 fois le courant nominal du moteur. Lorsqu' s'ouvre, il coupe ce même courant sous une tension d'autant plus importante que la vitesse du moteur est faible. Cette tension peut être égale à celle du réseau. La coupure est sévère.
	Catégories d'emploi pour contacts et contacteurs auxiliaires selon IEC 947-5
	Emploi en courant alternatif
Catégorie AC-14 (1)	Elle concerne la commande de charges électromagnétiques dont la puissance absorbée, quand l'électro-aimant es fermé, est inférieure à 72 VA.
	Exemple d'utilisation : commande de bobine de contacteurs et relais.
Catégorie AC-15 (1)	Elle concerne la commande de charges électromagnétiques dont la puissance absorbée, quand l'électro-aimant es fermé, est inférieure à 72 VA.
	Exemple d'utilisation : commande de bobine de contacteurs.
	Emploi en courant continu
Catégorie DC-13 (2)	Elle concerne la commande de charges électromagnétiques dont le temps mis pour atteindre 95 % du courant en régime établi (T = 0,95) est égal à 6 fois la puissance P absorbée par la charge (avec P ≤ 50 W).
	Exemple d'utilisation : commande de bobine de contacteurs sans résistance d'économie. (1) Remplace la catégorie AC-11.

Essais correspondant aux catégories d'emploi normalisées selon IEC 158-1 en fonction du courant assigné d'emploi le et de la tension assignée d'emploi Ue

				ablissement au fonctio r						olissement e u fonctionn			iel
Courant alternatif Applications	Catégorie	Etablic	sement		Coupu	ro		Etablica	sement		Coupu	ro	
caractéristiques	d'emploi	I	U	cos φ	l	U	cos φ	l	U	cos φ	l	U	cos φ
Résistances, charges non inductives ou faiblement inductives		le	Ue	0,95	le	Ue	0,95	1,5 le	1,1 Ue	0,95	1,5 le	1,1 Ue	0,95
Moteurs													
Moteurs à bagues : démarrage, coupure.	AC-2	2,5 le	Ue	0,65	2,5 le	Ue	0,65	4 le	1,1 Ue	0,65	4 le	1,1 Ue	0,65
Moteurs à cage :	AC-3 le 17 A	6 le	Ue	0,65	le	0,17 Ue	0,65	10 le	1,1 Ue	0,65	8 le	1,1 Ue	0,65
démarrage, coupure moteur lancé.	17 < le 100 A	6 le	Ue	0,35	le	0,17 Ue	0,35	10 le	1,1 Ue	0,35	8 le	1,1 Ue	0,35
	le > 100 A	6 le	Ue	0,35	le	0,17 Ue	0,35	8 le	1,1 Ue	0,35	6 le	1,1 Ue	0,35
Moteurs à cage :	AC-4 le 17 A	6 le	Ue	0,65	6 le	Ue	0,65	12 le	1,1 Ue	0,65	10 le	1,1 Ue	0,65
démarrage, inversion de marche,	17 < le 100 A	6 le	Ue	0,35	6 le	Ue	0,35	12 le	1,1 Ue	0,35	10 le	1,1 Ue	0,35
marche par à-coups	le > 100 A	6 le	Ue	0,35	6 le	Ue	0,35	<u>10 le</u>	1,1 Ue	0,35	8 le	1,1 Ue	0,35
Courant continu	Caténavia				Cause			Ftablia			Cause		
Applications caractéristiques	Catégorie d'emploi	<u> </u>	sement U	L/R (ms)	Coupu I	U	L/R (ms)	<u> </u>	sement U	L/R (ms)	Coupu I	U	L/R (ms)
Résistances, charges non inductives ou faiblement inductives		le	Ue	1	le	Ue	1	1,5 le	1,1 Ue	1	1,5 le	1,1 Ue	1
Moteurs shunt : démarrage, inversion de marche, marche par à-coups	DC-3	2,5 le	Ue	2	2,5 le	Ue	2	4 le	1,1 Ue	2,5	4 le	1,1 Ue	2,5
Moteurs série : démarrage, inversion de marche, marche par à-coups	DC-5	2,5 le	Ue	7,5	2,5 le	Ue	7,5	4 le	1,1 Ue	15	4 le	1,1 Ue	15
Contacteurs at	uxiliaires et c	ontac	ts aux	iliaires									
				ablissement au fonctio r						olissement e u fonctionn			nel
Courant alternatif	Catégorie	Etablia	sement		Counci	**		Etablia	aamant		Council	ro.	
Applications caractéristiques	d'emploi	l	U	cos φ	Coupu I	U	cos φ	l	sement U	cos φ	Coupu I	U	cos φ
Electro-aimants	AC-11	10 le	Ue	0,7	le	Ue	0,4	<u>11le</u>	1,1 Ue	0,7	11 le	1,1 Ue	0,7
Courant continu Applications	Catégorie	Etoblic	sement		Coupu	ro		Etoblic	sement		Coupu	ro	
caractéristiques	d'emploi	l	U	L/R (ms)	l	U	L/R (ms)	 	U	L/R (ms)	l	U	L/R (ms)
Electro-aimants	DC-11	le	Ue	6 P (1)	le	Ue	6 P (1)	1,1 le	1,1 Ue	6 P (1)	le	1,1 Ue	6 P (1)

Essais correspondant aux catégories d'emploi normalisées selon IEC 947 en fonction du courant assigné d'emploi le et de la tension assignée d'emploi Ue

Contacteurs													
				ablissement au fonctio r						lissement e			el
Courant alternatif													
Applications	Catégorie	Etablis	sement		Coupu			Etabliss			Coupui		
caractéristiques	d'emploi	ı	U	cos φ	ı	U	cos φ	ı	U	cos φ	ı	U	cos φ
Résistances, charges non inductives ou faiblement inductives	AC-1	le ———	Ue	0,95	le	Ue	0,95	1,5 le	1,05 Ue	0,8	1,5 le	1,05 Ue	0,8
Moteurs													
Moteurs à bagues : démarrage, coupure.	AC-2	2,5 le	Ue	0,65	2,5 le	Ue	0,65	4 le	1,05 Ue	0,65	4 le	1,05 Ue	0,65
Moteurs à cage :	AC-3 le 17 A	6 le	Ue	0,65	le	0,17 Ue	0,65	10 le	1,05 Ue	0,45	8 le	1,05 Ue	0,45
démarrage, coupure moteur lancé.	17 < le 100 A	6 le	Ue	0,35	le	0,17 Ue	0,35	10 le	1,05 Ue	0,45	8 le	1,05 Ue	0,45
	le > 100 A	6 le	Ue	0,35	le	0,17 Ue	0,35	<u>10 le</u>	1,05 Ue	0,35	10 le	1,05 Ue	0,35
	AC-4 le 17 A	6 le	Ue	0,65	6 le	Ue	0,65	12 le	1,05 Ue	0,45	10 le	1,05 Ue	0,45
démarrage, inversion de marche,	17 < le 100 A	<u>6 le</u>	Ue	0,35	6 le	Ue	0,35	12 le	1,05 Ue	0,35	10 le	1,05 Ue	0,35
marche par à-coups	le > 100 A	<u>6 le</u>	Ue	0,35	6 le	Ue	0,35	12 le	1,05 Ue	0,35	10 le	1,05 Ue	0,35
Courant continu													
Applications	Catégorie	Etablis	sement		Coupu			Etabliss	sement		Coupui		
caractéristiques	d'emploi	<u> </u>	U	L/R (ms)	ı	U	L/R (ms)	<u> </u>	U	L/R (ms)	<u> </u>	U	L/R (ms
Résistances, charges non inductives ou faiblement inductives	DC-1	le	Ue	1	le	Ue	1	1,5 le	1,05 Ue	1	1,5 le	1,05 Ue	1
Moteurs shunt: démarrage, inversion de marche, marche par à-coups	DC-3	2,5 le	Ue	2	2,5 le	Ue	2	4 le	1,05 Ue	2,5	4 le	1,05 Ue	2,5
Moteurs série : démarrage, inversion de marche, marche par à-coups	DC-5	2,5 le	Ue	7,5	2,5 le	Ue	7,5	4 le	1,05 Ue	15	4 le	1,05 Ue	15

				tablissement au fonctio r			<u> </u>			olissement e u fonctionr			iel
Courant alternatif Applications	Catégorie	Etablis	sement		Coup	oure		Etablis	sement		Coupu	ıre	
caractéristiques	d'emploi		U	cos φ		U	cos φ	l .	U	cos φ	I	U	cos φ
Electro-aimants - < 72 VA - > 72 VA	AC-14 AC-15	6 le 10 le	Ue Ue	0,3 0,3	le le	Ue Ue	0,3	6 le 10 le	1,1 Ue 1,1 Ue	0,7 0,3	6 le 10 le	1,1 Ue 1,1 Ue	0,7 0,3
Courant continu													
Applications	Catégorie	Etablis	sement		Coup	oure		Etablis	sement		Coupu	ıre	
caractéristiques	d'emploi		U	L/R (ms)	Ī	U	L/R (ms)	ı	U	L/R (ms)	I	U	L/R (ms)
Electro-aimants	DC-13	le	Ue	6 P (1)	le	Ue	6 P (1)	1,1 le	1,1 Ue	6 P (1)	le	1,1 Ue	6 P (1)

en courant continu jusqu'à la limite supérieure de P = 50 W soit 6 P = 300 ms = L/R.

Au-delà les charges sont composées de charges plus faibles mises en parallèle. De ce fait la valeur 300 ms constitue une limite supérieure, quelle que soit la valeur de l'énergie absorbée.

Caractéristiques: pages 22005/2 à 26100/3 Références: pages 22006/2 à 26102/2 Encombrements, schémas: pages 22015/2 à 26103/3

Choix des contacteurs selon la catégorie d'emploi AC-3

Courant et p			p.o. 0		-0 (0	5 22.0	')					
Taille des contacteurs			LC1- LP1- K06	LC1- LC1- K09	LC1- LP1- K12	LC1- LP1- D09	LC1- LP1- D12	LC1- LP1- D18	LC1- LP1- D25	LC1- LP1- D32	LC1-	LC1- LP1- D40
Courant d'emploi maximal en AC-3	≤ 440 V	Α	6	9	12	9	12	18	25	32	38	40
Puissance nomimale	220/240 V	kW	1,5	2,2	3	2,2	3	4	5,5	7,5	9	11
d'emploi P (puissances normalisées	380/400 V	kW	2,2	4	5,5	4	5,5	7,5	11	15	18,5	18,5
des moteurs)	415 V	kW	2,2	4	5,5	4	5,5	9	11	15	18,5	22
	440 V	kW	3	4	5,5	4	5,5	9	11	15	18,5	22
	500 V	kW	3	4	4	5,5	7,5	10	15	18,5	18,5	22
	660/690 V	kW	3	4	4	5,5	7,5	10	15	18,5	18,5	30
	1000 V	kW	-	_	_	_	_	_	_	_	_	22
Fréquences maxi		les de	manœ	uvres/h	eure (1							
Facteur de marche	Puissance d'emploi					LC1- LP1-	LC1- LP1-	LC1- LP1-	LC1- LP1-	LC1- LP1-	LC1-	LC1 LP1
						D09	D12	D18	D25	D32	D38	D40
≤ 85%	P		_	_	_	1200	1200	1200	1200	1000	1000	1000
	0,5 P		-	-	-	3000	3000	2500	2500	2500	2500	2500
≤ 25 %	Р		_	_	_	1800	1800	1800	1800	1200	1200	1200
Courant et p	uissance (d'em	ploi s	elon l	JL, C	SA (θ :	≤ 55°C)					
Taille			LC1-	LC1-	LC1							
des contacteurs			LP1- K06	LP1- K09	LP1- K12	LP1- D09	LP1- D12	LP1- D18	LP1- D25	LP1- D32	D38	LP1 D40
	≤ 440 V	Α	6	9	12	9	12	18	25	32	-	40
	≥ 440 V					· <u></u>	·		·	-	·	
maximal en AC-3 Puissance nomimale	200/208 V	НР	1,5	2	3	2	3	5	7,5	10	_	10
maximal en AC-3 Puissance nomimale d'emploi P (puissances normalisées		HP HP	1,5	3	3	2	3	5	7,5 7,5	10	-	10
Courant d'emploi maximal en AC-3 Puissance nomimale d'emploi P (puissances normalisées des moteurs) 60 Hz	200/208 V										- - -	

10

5

10

7,5

15

20

30

30

575/600 V HP 3

⁽¹⁾ En fonction de la puissance d'emploi et du facteur de marche ($\theta \le 55$ °C).

500 530 560 600 530	1000 280 500 530 600 670 530 LC1- BM	### Application ### Applicat	BR 1800 500 900 900 900 900 750
1000 280 500 530 560 600 670 530 - LC1- BM	1000 280 500 530 600 670 530 LC1- BM	1500 425 750 800 750 750 670	1800 500 900 900 900 900 750
280 500 530 560 600 670 530 - LC1- BM	280 500 530 560 600 670 530 LC1- BM	425 750 800 800 750 750 670	500 900 900 900 900 750
500 530 560 600 670 530 - LC1- BM	500 530 560 600 670 530 LC1- BM	750 800 800 750 750 670	900 900 900 900 900 750
530 560 600 670 530 - LC1- BM	530 560 600 670 530 LC1- BM	800 800 750 750 670	900 900 900 900 750
560 600 670 530 - LC1- BM	560 600 670 530 LC1- BM	800 750 750 670	900 900 900 750
600 670 530 - LC1- BM	600 670 530 LC1- BM	750 750 670	900 900 750
670 530 - LC1- BM	670 530 LC1-	750 670 LC1-	900 750 LC1-
530 - LC1- BM	530 LC1- BM	670 LC1-	750 LC1-
- LC1- BM	LC1-	LC1-	LC1-
ВМ	ВМ		
		BP	BR
120	120		
	120	120	120
120	120	120	120
120	120	120	120
		120	120 120

Caractéristiques : pages 22005/2 à 26100/3 Références : pages 22006/2 à 26102/2 Encombrements, schémas pages 22015/2 à 26103/3

Commande de moteurs

triphasés asynchrones à

Le courant lc coupé en AC-3 est égal au courant nominal le absorbé par le

cage avec coupure "moteur lancé".

moteur.

Choix des contacteurs selon la durabilité électrique

Emploi en catégorie AC-3 (Ue ≤ 440 V)

Puissance d'emploi en kW-50 Hz

Exemple

Moteur asynchrone avec P = 5.5 kW - Ue = 400 V - Ie = 11 A - Ic = Ie = 11 Aou moteur asynchrone avec P = 5.5 kW - Ue = 415 V - Ie = 11 A - Ic = Ie = 11 A3 millions de cycles de manœuvres souhaités.

Les courbes de choix ci-dessus déterminent le calibre du contacteur à choisir : soit LC1 ou LP1-D18.

(1) La partie en pointillé concerne seulement le LC1-D38

Emploi en catégorie AC-3 (Ue = 660/690 V) (2)

(2) Pour Ue = 1000 V utiliser les courbes 660/690 V sans dépasser le courant d'emploi correspondant à la puissance d'emploi indiquée sous 1000 V.

Commande de moteurs triphasés asynchrones à cage avec coupure "moteur lancé" Le courant lc coupé en AC-3 est égal au courant nominal le absorbé par le moteur.

Caractéristiques: pages 22005/2 à 26100/3 Références: pages 22006/2 à 26102/2 Encombrements, schémas pages 22015/2 à 26103/3

Commande de moteurs triphasés asynchrones à

Le courant lc coupé en AC-3 est égal au courant nominal le absorbé par le

cage avec coupure "moteur lancé".

moteur.

Choix des contacteurs selon la durabilité électrique

Emploi en catégorie AC-3 (Ue ≤ 440 V)

Puissance d'emploi en kW-50 Hz

Exemple

Moteur asynchrone avec P = 132 kW - Ue = 380 V - Ie = 245 A - Ic = Ie = 245 A ou moteur asynchrone avec P = 132 kW - Ue = 415 V - Ie = 240 A - Ic = Ie = 240 A 1,5 million de cycles de manœuvres souhaités. Les courbes de choix ci-dessus déterminent le calibre du contacteur à choisir : LC1-F330.

(1) La partie en pointillé concerne uniquement le LC1-BL.

Emploi en catégorie AC-3 (Ue = 660/690 V)

Commande de moteurs triphasés asynchrones à cage avec coupure "moteur lancé". Le courant lc coupé en AC-3 est égal au courant nominal le absorbé par le moteur.

Exemple

Moteur asynchrone avec P = 132 kW - Ue = 660 V - Ie = 140 A - Ic = Ie = 140 A 1,5 million de cycles de manœuvres souhaités.

Les courbes de choix ci-dessus déterminent le calibre du contacteur à choisir : LC1-F330.

(1) La partie en pointillé concerne uniquement le LC1-BL.

pages 24003/2 à 24055/5

Références :

Contacteurs type LC1-D et LP1-D

Circuit de commande en courant alternatif ou courant continu

pages 24011/2 à 24015/9

pages 24014/2 à 24014/5, 24016/2 et 24016/3

Schémas:

pages 2/01//6 2/01//7 et 2/016/3

pages 24014/6, 24014/7 et 24016/3							
Type de contacteurs			LC1-D09 LP1-D09	LC1-D12 LP1-D12	LC1-D18 LP1-D18	LC1-D25 LP1-D25	
Environnement							
Tension assignée d'isolement (Ui)	Selon IEC 947-4-1, catégorie de surtension III, degré de pollution : 3	v	1000	1000	1000	1000	
	Selon UL, CSA	V	600	600	600	600	
Tension assignée de tenue aux chocs (Uimp)	Selon IEC 947	kV	8	8	8	8	
Conformité aux normes			IEC 947-1, 947- EN 60947-1, EN		, VDE 0660, BS	5424, JEM 1038.	
Certifications des produits				DEMKO, NEMKO		Trennung	
Degré de protection (1)	Selon VDE 0106 Raccordement puissance Protection contre le toucher IP 2X Raccordement bobine Protection contre le toucher IP 2X						
Traitement de protection	Selon IEC 68		"TH"				
Température de l'air ambiant au voisinage de l'appareil	Pour stockage Pour fonctionnement Admissible	à Uc					
Altitude maximale d'utilisation Positions de fonctionnement	Sans déclassement Sans déclassement	m	3000 ± 30° occasionn	els, par rapport a	au plan vertical n	ormal de montage	
Tenue au feu	Selon UL 94 Selon IEC 695-2-1		V 1 960°	V1 960°	V1 960°	V1 960°	
Tenue aux chocs (2) 1/2 sinusoïde = 11ms	Contacteur ouvert Contacteur fermé		10 gn 15 gn	10 gn 15 gn	10 gn 15 gn	8 gn 15 gn	
Tenue aux vibrations (2) 5300 Hz	Contacteur ouvert Contacteur fermé		2 gn 4 gn	2 gn 4 gn	2 gn 4 gn	2 gn 4 gn	
Caractéristiques des pôles							
Nombre de pôles			3	3 ou 4	3	3 ou 4	
Courant assigné d'emploi (le) (Ue ≤ 440 V)	En AC-3, θ ≤ 55 °C En AC-1, θ ≤ 55 °C	A A	9 25	12 25	18 32	25 40	
Tension assignée d'emploi (Ue)	Jusqu'à	v	690	690	690	690	
Limites de fréquence	Du courant d'emploi	Hz	25400	25400	25400	25400	
Courant thermique conventionnel (Ith)	θ ≤ 55 °C	Α	25	25	32	40	
Pouvoir assigné de fermeture	A l'établissement selon IEC 947						

Pouvoir assigné de coupure	A l'établissement et à la coupure selon IEC 947

Courant temporaire admissible Pendant 1 s 210 210 240 380 240 120 Si le courant était au préalable nul Pendant 10 s 105 105 145 depuis 15 min avec θ ≤ 40 °C Pendant 1 min 61 61 Pendant 10 min 30 Α 30 40 50

Protection par fusible Sans relais thermique fusible gG type 1 50 contre les courts-circuits 20 25 32 U ≤ 440 V 20 25 type 2 10

Α Voir pages 27012/2 et 27012/3, les calibres des fusibles aM ou gG Avec relais thermique correspondant au relais thermique associé A Ith et 50 Hz $\mathbf{m}\Omega$ 2,5 2,5 2,5 Impédance moyenne par pôle Puissance dissipée par pôle 0,36 1,25 0,20 3,2

pour courants d'emploi ci-dessus AC-1 W 1,56 1,56 2,5

(1) Protection assurée pour les sections de raccordement indiquées sur les pages 24008/8 et 24008/9 et pour le raccordement par câble.

(2) Sans modification de l'état des contacts dans la direction la plus défavorable (bobine sous Ue).

	LC1-D38	LC1-D40 LP1-D40	LC1-D50 LP1-D50	LC1-D65 LP1-D65	LC1-D80 LP1-D80	LC1-D95	LC1-D115	LC1-D150
000	1000	1000	1000	1000	1000	1000	1000	1000
00	600	600	600	600	600	600	600	600
	8	8	8	8	8	8	8	8
EC 947-1, 947-4-1, NFC EN 60947-1, EN 60947-4		, BS 5454, JEM	1038.					
SE, DEMKO, NEMKO, SEMKO, FI, UL, CSA,		UL, CSA						
onforme aux recommar	ndations SNCF, Sic	here Trennung						
Protection contre le touc		D40 D00						
rotection contre le toucl ГН"	ner ip zx saul LPT	D40D80						
60+ 80								
5+ 55								
40+ 70, pour fonction	inement à Uc							
3000 = 30° occasionnels, par i	ronnort ou plan	iool normal da	ontogo					
30° occasionneis, par i	rapport au pian vert	icai normai de ir	iontage					1
/ 1	V 1	V 1	V 1	V 1	V 1	V 1	V 1	V 1
60°	960°	960°	960°	960°	960°	960°	960°	960°
gn	8 gn	8 gn	8 gn	8 gn	8 gn	8 gn	6 gn	6 gn
5 gn	15 gn	10 gn	10 gn	10 gn	10 gn	10 gn	15 gn	15 gn
! gn	2 gn	2 gn	2 gn	2 gn	2 gn	2 gn	2 gn	2 gn
1 gn	4 gn	4 gn	3 gn	3 gn	3 gn	3 gn	4 gn	4 gn
		3 ou 4	3	3 ou 4	3 ou 4	3	3 ou 4	3
	3							
2	38	40	50	65	80	95	115	150
2			50 80	65 80	80 125	95 125	115 200	150 200
2 0	38	40						
32 30 390	38 50	40 60	80	80	125	125	200	200
32 50 590 25400	38 50 690 25400	40 60 1000 25400	80 1000 25400	80 1000 25400	125 1000 25400	125 1000 25400	200 1000 25400	200 1000 25400
32 50 690 25400	38 50 690 25400	40 60 1000	1000	1000	125	125	1000	1000
32 50 590 25400	38 50 690 25400	40 60 1000 25400	80 1000 25400	80 1000 25400	125 1000 25400	125 1000 25400	200 1000 25400	200 1000 25400
32 50 590 25400 A l'établissement selon II	38 50 690 25400 50	40 60 1000 25400	80 1000 25400	80 1000 25400	125 1000 25400	125 1000 25400	200 1000 25400	200 1000 25400
32 590 25400 A l'établissement selon II	38 50 690 25400 50 EC 947	40 60 1000 25400 60	80 1000 25400 80	80 1000 25400 80	125 1000 25400 125	125 1000 25400 125	200 1000 25400 200	200 1000 25400 200
32 50 590 55400 60 A l'établissement selon II A l'établissement et la co	38 50 690 25400 50 EC 947 Supure selon IEC 94 430 310	40 60 1000 25400 60 7 720 320	80 1000 25400 80 810 400	80 1000 25400 80 900 520	125 1000 25400 125 990 640	125 1000 25400 125	200 1000 25400 200 1100 950	200 1000 25400 200 1400 1200
32 590 590 60 A l'établissement selon II A l'établissement et la co	38 50 690 25400 50 EC 947 oupure selon IEC 94 430 310 150	40 60 1000 25400 60 7 720 320 165	80 1000 25400 80 810 400 208	80 1000 25400 80 900 520 260	125 1000 25400 125 990 640 320	125 1000 25400 125 1100 800 400	200 1000 25400 200 1100 950 550	200 1000 25400 200 1400 1200 580
32 590 590 50 A l'établissement selon II A l'établissement et la co	38 50 690 25400 50 EC 947 Supure selon IEC 94 430 310	40 60 1000 25400 60 7 720 320	80 1000 25400 80 810 400	80 1000 25400 80 900 520	125 1000 25400 125 990 640	125 1000 25400 125	200 1000 25400 200 1100 950	200 1000 25400 200 1400 1200
32 390 390 35400 50 A l'établissement selon II A l'établissement et la co 30 30	38 50 690 25400 50 EC 947 Supure selon IEC 94 430 310 150 60	40 60 1000 25400 60 77 720 320 165 72	80 1000 25400 80 810 400 208 84	900 520 260 110	125 1000 25400 125 990 640 320 135	125 1000 25400 125 1100 800 400 135	200 1000 25400 200 1100 950 550 250	200 1000 25400 200 1400 1200 580 250
32 390 390 30 A l'établissement selon III A l'établissement et la co 30 30 38 30	38 50 690 25400 50 EC 947 oupure selon IEC 94 430 310 150	40 60 1000 25400 60 7 720 320 165	80 1000 25400 80 810 400 208	80 1000 25400 80 900 520 260	125 1000 25400 125 990 640 320	125 1000 25400 125 1100 800 400	200 1000 25400 200 1100 950 550	200 1000 25400 200 1400 1200 580
32 390 390 35400 30 4 l'établissement et la co 330 360 38 30	38 50 690 25400 50 EC 947 Supure selon IEC 94 430 310 150 60	40 60 1000 25400 60 7 720 320 165 72 63 50	80 1000 25400 80 810 400 208 84 80 63	900 520 260 110 125 80	125 1000 25400 125 990 640 320 135 125 100	125 1000 25400 125 1100 800 400 135	200 1000 25400 200 1100 950 550 250	200 1000 25400 200 1400 1200 580 250
32 390 25400 A l'établissement selon li A l'établissement et la co 130 260 38 30	38 50 690 25400 50 EC 947 Supure selon IEC 94 430 310 150 60	40 60 1000 25400 60 7 720 320 165 72 63 50	80 1000 25400 80 810 400 208 84 80 63	900 520 260 110 125 80	125 1000 25400 125 990 640 320 135 125 100	125 1000 25400 125 1100 800 400 135	200 1000 25400 200 1100 950 550 250	200 1000 25400 200 1400 1200 580 250
32 390 390 35400 36 37 I 'établissement selon II 30 I 'établissement et la co 30 I 'établissement et la co 40 I 'ét	38 50 690 25400 50 EC 947 Supure selon IEC 94 430 310 150 60	40 60 1000 25400 60 7 720 320 165 72 63 50	80 1000 25400 80 810 400 208 84 80 63	900 520 260 110 125 80	125 1000 25400 125 990 640 320 135 125 100	125 1000 25400 125 1100 800 400 135	200 1000 25400 200 1100 950 550 250	200 1000 25400 200 1400 1200 580 250
3 32 50 50 50 50 50 50 50 50 50 50 50 50 50	38 50 690 25400 50 EC 947 Supure selon IEC 94 430 310 150 60 50 50 50 7012/3, les calibres	40 60 1000 25400 60 77 720 320 165 72 63 50 des fusibles aM	80 1000 25400 80 810 400 208 84 80 63 ou gG corresponded	900 520 260 110 125 80	990 640 320 135 125 100 thermique asso	125 1000 25400 125 1100 800 400 135 160 100 cié	200 1000 25400 200 1100 950 550 250 200 125	200 1000 25400 200 1400 1200 580 250 250

Choix:

Contacteurs type LC1-D

Circuit de commande en courant alternatif

Contacteurs type LC1
pages 24003/2 à 24055/5
Références:
pages 24011/2 à 24015/9
Encombrements:
pages 24014/2 à 24014/5, 24016/2 et 24016/3
Schémas:
Pages 24014/6, 24014/7 et 24016/3

pages 24014/6, 24014/7 et 24016/3

Type de contacteurs					LC1-D09	LC1-D12	LC1-D18	LC1-D25			
Caractéristiques	du circuit d	de comman			LC1-D03	LCT-D12	LCT-DIO	LC1-D23			
	uu circuit (Je Comman	u c 								
Tension assignée du ci de commande (Uc)	ircuit	50 ou 60 Hz		V	21660						
Limites de la tension de commande ($\theta \le 55$ ° Bobines 50		De fonctionner	ment		0,81,1 Uc						
		De retombée			0,30,6 Uc						
Bobines 50/	/60 Hz	De fonctionner	ment		0,851,1 Uc er	n 60 Hz					
		De retombée			0,30,6 Uc						
Consommation moyen	ne										
à 20 °C et à Uc	C 50 Hz	Appel	Bobine 50 Hz	VA	60	60	60	90			
			Cos φ		0,75	0,75	0,75	0,75			
			Bobine 50/60 Hz	VA	70	70	70	100			
		Maintien	Bobine 50 Hz	VA	7	7	7	7,5			
			Cos φ		0,3	0,3	0,3	0,3			
			Bobine 50/60 Hz	VA	8	8	8	8,5			
	C 60 Hz	Appel	Bobine 60 Hz	VA	70	70	70	100			
			Cos φ		0,75	0,75	0,75	0,75			
			Bobine 50/60 Hz	VA	70	70	70	100			
		Maintien	Bobine 60 Hz	VA	7,5	7,5	7,5	8,5			
			Cos φ		0,3	0,3	0,3	0,3			
			Bobine 50/60 Hz	VA	8	8	8	8,5			
Dissipation thermique		50/60 Hz		w	23	23	23	2,53,5			
Temps de fonctionnem	ent (1)	Fermeture "F"		ms	1222	1222	1222	1524			
		Ouverture "O"		ms	419	419	419	519			
Durabilité mécanique en millions de cycles de	manœuvres	Bobine 50 ou 6	60 Hz		20	20	16	16			
.,		Bobine 50/60 h	Hz en 50 Hz		15	15	15	12			
Cadence maximale à température ambiante	≤ 55 °C		nanœuvres par heure		3600	3600	3600	3600			
		(1) Le temps de	fermeture "F" se mesure	depuis la	mise sous tensio	n du circuit d'alime	entation de la bob	ne jusqu'à l'entré			

en contact des contacts principaux. Le temps d'ouverture "O" se mesure depuis l'instant où le circuit de la bobine est coupé jusqu'à séparation des contacts principaux.

LC1-D32	LC1-D38	LC1-D40	LC1-D50	LC1-D65	LC1-D80	LC1-D95	LC1-D115	LC1-D150	
21660		24660					24500		
0,81,1 Uc		0,851,1 Uc					0,851,1 Uc	_	
0,30,6 Uc							0,30,5 Uc	_	
0,851,1 Uc en	60 Hz						0,81,15 Uc en 50/60 Hz		
0,30,6 Uc							0,30,5 Uc		
90	90	200	200	200	200	200	300	-	
0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,8	0,9	
100	100	245	245	245	245	245	450	450	
7,5	7,5	20	20	20	20	20	22	_	
0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,9	
8,5	8,5	26	26	26	26	26	6	6	
100	100	220	220	220	220	220	300	_	
0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,8	0,9	
100	100	245	245	245	245	245	450	450	
8,5	8,5	22	22	22	22	22	22	_	
0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,9	
8,5	8,5	26	26	26	26	26	6	6	
2,53,5	2,53,5	610	610	610	610	610	78	67	
1524	1524	2026	2026	2026	2035	2035	2050	2535	
519	519	812	812	812	620	620	620	2055	
16	16	16	16	16	10	10	8	_	
12	12	6	6	6	4	4	8	8	
3600	3600	3600	3600	3600	3600	3600	2400	1200	

Choix:

pages 24003/2 à 24055/5

Références:
pages 24011/2 à 24015/9

Encombrements:
pages 24014/2 à 24014/5, 24016/2 et 24016/3

Caractéristiques
Schémas:
pages 24014/6, 24014/7 et 24016/3

Blocs de contacts auxiliaires sans contacts étanches pour contacteurs LC1-D, LP1-D et LC1-F

Type de blocs de contacts			LA1-D	LA2-D	LA3-D	LA8-D (1)			
Environnement									
Conformité aux normes			IEC 337-1, 9 VDE 0660, B		47-5-1, NF C 6	3-140,			
Certifications des produits ASE, UL, CSA, DEMKO, NEMKO, SEMKO, FI									
Traitement de protection	Selon IEC 68		"TH"						
Degré de protection	Selon VDE 0106		Protection co	ontre le touche	r IP2X				
Température de l'air ambiant	Pour stockage	∘c	- 60+ 80						
au voisinage de l'appareil	Pour fonctionnement	∘c	- 5+ 55						
	Admissible pour fonctionnement à Uc	∘c	- 40+ 70						
Altitude maximale d'utilisation	Sans déclassement	m	3000						
Raccordement	Conducteur souple ou rigide avec ou sans embout	mm²	Mini : 1 x 1 ;	maxi : 2 x 2,5					
Caractéristiques des contac	ets instantanés et temporisés								

Nombre de contacts			2 ou 4	2	2	2		
Tension assignée d'emploi (Ue)	Jusqu'à	v	660					
rension assignee d'emploi (de)	Jusqu a	V	000					
Tension assignée d'isolement (Ui)	Selon IEC 947-1	٧	690					
	Selon VDE 0110 groupe C	٧	750					
	,							
	Selon CSA	٧	600					
Courant thermique conventionnel (Ith)	Pour température ambiante ≤ 55 °C	Α	10					
Frénces de coment dismulai		Hz	05 400					
Fréquence du courant d'emploi		пи	25400					
Pouvoir de commutation minimal	U mini	٧	17					
	I mini	mA	5					
Protection contre les courts-circuits	Selon IEC 947-5-1 et VDE 0660. Fusible gG	Α	10					
Pouvoir assigné de fermeture	Selon IEC 947-5-1, I efficace	Α	c:140;a	: 250				
Courant de surcharge	Admissible pendant 1 s	Α	100					
Courant de surcharge	Admissible pendant 1 s	А	100					
	500 ms	Α	120					
	100 ms	Α	140					
	700							
Résistance d'isolement		MΩ	> 10					
Temps de non-chevauchement	Garanti entre contacts "O" et "F"	ms	1,5 (à l'encle	nchement et a	u déclenchemei	nt)		
Temps de chevauchement	Garanti entre contacts "O" et "F" sur LA1-DC22	ms	1,5					
remps de chevadenement	Caranti entre contacts O et 1 sui EA1-DOZZ	1113	1,0		_			
Temporisation (additifs LA2-D et LA3-D)	Température de l'air ambiant pour fonctionnement	°C	-	- 40+ 70	- 40+ 70	_		
Uniquement assurée dans la zone	Fidélité		_	±2%	± 2 %	_		
de réglage figurant sur la face avant	2/			+ 15 %	4= 0/			
	Dérive jusqu'à 0,5 million de cycles de manœuvre				+ 15 %	-		
	Dérive en fonction de la température ambiante		-	0,25 % par °C	0,25 % par °C	_		
Durabilité mécanique	En millions de cycles de manœuvres		30	5	5	30		
-	En millions de cycles de manœuvies				J	30		
Puissance d'emploi des contacts	(1) Utilisable sur contacteurs LC1-D et LP1-D unique	omont	Voir page 24	009/4				

⁽¹⁾ Utilisable sur contacteurs LC1-D et LP1-D uniquement.

Choix: pages 24003/2 à 24055/5 Références: pages 24011/2 à 24015/9 Blocs de contacts auxiliaires avec ou sans contacts étanches pour contacteurs LC1-D, LP1-D et LC1-F

Encombrements : pages 24014/2 à 24014/5, 24016/2 et 240

Caractéristiques

pages 24014/6, 24014/7 et 24016/3

Puissance d'emploi des contacts (selon IEC 947-5-1)

Courant alternatif catégorie AC-14 et AC-15

Durabilité électrique (valable jusqu'à 3600 cycles de man/h) sur charge inductive telle que bobine d'électro-aimant: puissance établie ($\cos \varphi \ 0.7$) = 10 fois la puissance coupée ($\cos \varphi \ 0.4$).

				110/	220/	380/		
	V	24	48	127	230	400	440	600
1 million de cycles de manœuvres	VA	150	300	400	480	500	500	500
3 millions de cycles de manœuvres	VA	80	170	250	290	320	320	320
10 millions de cycles de manœuvres	VA	30	65	90	120	130	130	130
Pouvoir de fermeture occasionnel	VA	1200	2600	7000	13 000	15 000	13 000	9000

Puissances coupées en VA

- 1 Limite de coupure des contacts valable pour : 50 cycles de manœuvres au maximum espacés de 10 s (puissance coupée = puissance établie x cos φ 0,7).
- 2 Durabilité électrique des contacts pour :
 - 1 million de cycles de manœuvres (2a),
 - 3 millions de cycles de manœuvres (2b),
 - 10 millions de cycles de manœuvres (2c).
- 4 Limite thermique.

Courant continu catégorie DC-13

Durabilité électrique (valable jusqu'à 1200 cycles de man/h) sur charge inductive telle que bobine d'électroaimant, sans réduction de consommation, dont la constante de temps augmente avec la puissance.

1 million de cycles de manœuvres	
3 millions de cycles de manœuvres	
10 millions de cycles de manœuvres	
Pouvoir de fermeture occasionnel	

٧	24	48	110	220	440	600	
W	120	90	75	68	61	58	
W	70	50	38	33	28	27	
W	25	18	14	12	10	9	
W	1000	700	400	260	220	170	

- 2 Durabilité électrique des contacts pour :
 - 1 million de cycles de manœuvres (2a),
 - 3 millions de cycles de manœuvres (2b),
 - 10 millions de cycles de manœuvres (2c).
- 3 Limite de coupure des contacts valable pour : 20 cycles de manœuvres au maximum espacés de 10 s avec un temps de passage du courant de 0,5 s par cycle de manœuvres.
- 4 Limite thermique.

Choix: pages 24003/2 à 24055/5 Caractéristiques : pages 24008/2 à 24010/3 **Encombrements** pages 24014/2 à 24014/5 Schémas pages 24014/6 et 24014/7 Contacteurs pour commande de moteurs de 9 à 150 A, en AC-3 Circuit de commande en courant alternatif

Références

LC1-D2510i i

LC1-D9511i i

LC1-D11500i i

Contacteurs tripolaires avec raccordement pour câbles avec ou sans embout

des r	ances noteur) Hz e	s triph	nasés				Courant assigné d'emploi en AC-3	Contacts auxiliaires instantanés	Référence de base à compléter par le repère de la tension (2) Fixation(1)		Masse -
230V		415V				1000V	440V jusqu'à	\	`,	Tensions usuelles	
kW	kW	kW	kW	kW	kW	kW	Α				kç
2,2	4	4	4	5,5	5,5	-	9		LC1-D0900i i	B7 E7 F7 P7 V7	0,340
								1 –	LC1-D0910i i	B7 E7 F7 P7 V7	0,340
								- 1	LC1-D0901i i	B7 E7 F7 P7 V7	0,340
3	5,5	5,5	5,5	7,5	7,5	-	12		LC1-D1200i i	B7 E7 F7 P7 V7	0,345
								1 –	LC1-D1210i i	B7 E7 F7 P7 V7	0,345
								- 1	LC1-D1201i i	B7 E7 F7 P7 V7	0,345
4	7,5	9	9	10	10	-	18		LC1-D1800i i	B7 E7 F7 P7 V7	0,35
								1 –	LC1-D1810i i	B7 E7 F7 P7 V7	0,36
								- 1	LC1-D1801i i	B7 E7 F7 P7 V7	0,36
5,5	11	11	11	15	15	-	25		LC1-D2500i i	B7 E7 F7 P7 V7	0,400
								1 –	LC1-D2510i i	B7 E7 F7 P7 V7	0,530
								- 1	LC1-D2501i i	B7 E7 F7 P7 V7	0,530
7,5	15	15	15	18,5	18,5	-	32		LC1-D3200i i	B7 E7 F7 P7 V7	0,54
								1 –	LC1-D3210i i	B7 E7 F7 P7 V7	0,55
								- 1	LC1-D3201i i	B7 E7 F7 P7 V7	0,55
9	18,5	18,5	18,5	18,5	18,5	_	38	1 –	LC1-D3810i i	B7 E7 F7 P7 V7	0,55
								- 1	LC1-D3801i i	B7 E7 F7 P7 V7	0,55
11	18,5	22	22	22	30	22	40	1 1	LC1-D4011i i	B5 E5 F5 P5 V5	1,400
15	22	25	30	30	33	30	50	1 1	LC1-D5011i i	B5 E5 F5 P5 V5	1,400
18,5	30	37	37	37	37	37	65	1 1	LC1-D6511i i	B5 E5 F5 P5 V5	1,400
22	37	45	45	55	45	45	80	1 1	LC1-D8011i i	B5 E5 F5 P5 V5	1,590
25	45	45	45	55	45	45	95	1 1	LC1-D9511i i	B5 E5 F5 P5 V5	1,610
30	55	59	59	75	80	75	115		LC1-D11500i i	B5 E5 F5 P5 V5	2,420
40	75	80	80	90	100	90	150		LC1-D15000i i	B7 E7 F7 P7 V7	2,440

Nota: Les contacteurs tripolaires sans contact auxiliaire sont conformes à la norme EN 50012.

Blocs de contacts auxiliaires et modules : voir pages 24013/2 à 24013/9.

(1) LC1-D09 à D38 : encliquetage sur profilé (de 35 mm AM1-DP ou par vis. LC1-D40 à D95 : encliquetage sur profilé (de 35 mm ou 75 mm AM1-DL ou par vis.

LC1-D115 et D150 : encliquetage sur 2 profilés (de 35 mm AM1-DP ou par vis.

(2) Tensions (du circuit	de con	<u>nmande</u>	existar	ntes (de	elai vari	iable, ci	onsulter	notre	agence	region	ale).		
Volts	24	42	48	110	115	220	230	240	380	400	415	440	500	660
LC1-D09D1	15													
50 Hz	B5	D5	E5	F5	_	M5	P5	U5	Q5	V5	N5	R5	S5	Y5
60 Hz	В6	D6	E6	F6	_	M6	_	U6	Q6	_	_	R6	_	_
LC1-D09D1	50 (bobir	nes D11	15 et D1	150 ant	iparasit	ées d'o	rigine)							
50/60 Hz	В7	D7	E7	F7	FE7	M7	P7	U7	Q7	V7	N7	R7	_	_

Autres tensions de 24 à 660 V, voir pages 24017/2 à 24017/5.

Contacteurs et contacteurs-inverseurs type LCi -D et LPi -D Blocs de contacts auxiliaires

Caractéristiques : pages 24008/2 à 24010/3

Encombrements : pages 24014/2 à 24014/5, 24016/2 et 24 Références

Schémas : pages 24014/6, 24014/7 et 24016/3

Blocs de contacts auxiliaires instantanés

Nombre de	Montage sur contacteur par encliquetage		Cor	nposi I	ition I	1	Référence	Masse
contacts par bloc	Frontal	Latéral	\Box	A	1	7		
			<u>T</u>					k
1	LC1-D25D95 LP1-D25D80	-	-	-	1	-	LA1-DN10 (2)	0,02
	LP1-D25D00				_	1	LA1-DN01 (2)	0,02
2	LC1-D09D150 LP1-D09D80	_	-	-	1	1	LA1-DN11	0,03
	LF 1-D09D00				2	_	LA1-DN20	0,03
					_	2	LA1-DN02	0,03
	-	LC1-D09D150	-	-	1	1	LA8-DN11 (3)	0,030
		LP1-D09D32			2		LA8-DN20 (3)	0,030
4	LC1-D09D150	-	_	_	2	2	LA1-DN22	0,050
	LP1-D09D80				1	3	LA1-DN13	0,050
					4	_	LA1-DN40	0,050
					_	4	LA1-DN04	0,050
					3	1	LA1-DN31	0,05
(1)Dont 1	"F" et 1 "O" chevauchants.				2	2 (1)	LA1-DC22	0,05
Pour rep	érage conforme à la norm	ne EN 50012						
2	LC1-D0910D3810 LP1-D0910D3210	_	-	-	1	1	LA1-DN11M	0,030
	LC1/LP1-D0900D3200 LC1-D11500/D15000	_	-	-	1	1	LA1-DN11P	0,03
	LC1-D4011D9511 LP1-D4011D8011	_	-	-	1	1	LA1-DN11G	0,03
4	LC1-D0910D3810		_	_	2	2	LA1-DN22M	0,050
	LP1-D0910D3210		_	_	1	3	LA1-DN13M	0,050
		_	_	_	3	1	LA1-DN31M	0,050
	LC1/LP1-D0900D3200		_	_	2	2	LA1-DN22P	0,050
	LC1-D11500/D15000		_	_	1	3	LA1-DN13P	0,050
		_	_	_	3	1	LA1-DN31P	0,050
	LC1-D4011D9511 LP1-D4011D8011	_	_	-	2	2	LA1-DN22G	0,050
Blocs	de contacts auxiliai	res instantan	és a	vec	COI	ntacts	s étanches	
Utilisatio	n recommandée en ambi	ances industrielle	s part	ticuli	èrem	ent sé	vères	
2	LC1-D09D150 LP1-D09D80	-	2				LA1-DX20	0,04
	Li 1-003000		_	2 (4	l) –	_	LA1-DY20	0,040
4	LC1-D09D150	-	2	_	2		LA1-DZ40	0,050
	LP1-D09D80		2		1	1	LA1-DZ31	0,060

^{2 – 1 1} LA1-DZ31

(2) Possibilité maximale de montage : 1 bloc du D25...D38, 2 blocs du D40...D95.

(3) Jeu de cales nécessaire pour montage sur LC1-D40 à D95, à commander séparément, voir page 24013/11.

(4) Appareil muni de 4 bornes de continuité des masses de blindage.

Contacteurs et contacteurs-inverseurs type LCi -D et LPi -D Blocs de contacts auxiliaires temporisés et d'accrochage mécanique

Caractéristiques : pages 24008/2 à 24010/3 Encombrements :

pages 24014/2 à 24014/5, 24016/2 et 24016/3 rences (suite) Schémas :

pages 24014/6, 24014/7 et 24016/3

D			
RINCS RE	contacts	aliviliaires	temporisés
Dioco ac	COLITACIO	auxilialics	torriportions

Nombre	1 bloc	Temporis	ation	Référence	Masse
de	par contacteur	Туре	Domaine de	(1)	
contacts	Encliquetage frontal		réglage		kg
		-			
1 "F" + 1 "O"	LC1-D09D150 LP1-D09D80	Travail	0,13 s (2)	LA2-DT0	0,060
	LF 1-D09D80				
			0,130 s	LA2-DT2	0,060
			0,130 \$	LAZ-DIZ	0,060
			10180 s	LA2-DT4	0,060
			130 s (3)	LA2-DS2	0,060
		Repos	0,13 s (2)	LA3-DR0	0,060
				<u> </u>	
			0,130 s	LA3-DR2	0,060
			10180 s	LA3-DR4	0,060
	crochage mécanique				

Blocs d'accrochage mécanique

Commande du déclenchement	1 bloc par contacteur Encliquetage frontal	Référence de base à compléter (4)	Tensions usuelles	Masse kg
Manuelle ou électrique	LC1-D09D65 LP1-D09D65	LA6-DK10i	BEFMQ	0,070
	LC1-D80D150 LP1-D80	LA6-DK20i	BEFMQ	0,090

Volts 50/60 Hz, a	24	32/36	42/48	60/72	100	110/127	220/240	256/277	380/415
Repère	В	С	E	EN	K	F	M	U	Q

⁽¹⁾ Capot de plombage à commander séparément, voir page 24013/11.
(2) Avec échelle dilatée de 0,1 à 0,6 s.
(3) Avec temps de commutation de 40 ms ± 15 ms entre l'ouverture du contact "O" et la fermeture du contact "F".
(4) Tensions du circuit de commande existantes (délai variable, consulter notre agence régionale).

"Voir sur la page de droite les possibilités de montage selon le type et le calibre du contacteur".

Contacteurs types LC1-D

Choix: pages 24003/2 à 24007/3 Caractéristiques pages 24008/2 à 24010/3

Références pages 24011/2 à 24012/5

Schémas

Encombrements

pages 24014/6 et 24014/7

LC1-	С	c1 (1)	c2	c3 (2)	
D09, D12	80	113	125	133	
D18, D2500	85	118	130	138	
(1) Avec 2 ou	4 contact	S.			

(2) + 4 mm avec capot de plombage.

(3) Avec ou sans utilisation conjuguée d'un module d'antiparasitage LA4-DA1, DB1, DE1

LC1-D40, D50, D65

LC1-D2510, D2501, D2504

44

LA4

(3)

150(DM,DR,DW,DL)

142(DF,DT)

12,5

(LA8)

3

135(Di 2, Di

LC1-	С	c1 (1)	c2	c3 (2)	
D2510,D2501, D2504	93	127	138	146	
D32	99	132	144	152	
(4) 4 0 4				200 // 4 / 51/40	D 1 10 1)

(1) Avec 2 ou 4 contacts; 1 contact = 120 (D25) et 125 (D32) (LA1-DN10 ou DN01)

(2) + 4 mm avec capot de plombage.

Périmètre de sécurité

125(4)

153(1)(LA1)

165(LA6-DK20)

173(2)(LA2,LA3)

(3) Avec ou sans utilisation conjuguée d'un module d'antiparasitage LA4-DA1, DB1, DE1.

127

12,5

(LA8)

LC1-D80, D95

(2) + 4 mm avec capot de plombage. (2) + 4 mm avec capot de plombage.

(3) 85 : 3 pôles, 96 : 4 pôles

(4) 140 : LC1-Di i 008

(3) 75 : 3 pôles, 85 : 4 pôles (4) 125 : LC1-Di i 008.

LC1-D115, D150

LC1-	С	а		
D11500, D15000	132	120	120	
D115004	132	155		
D115006, D150006	115	120		
D1150046	115	155		
(1) Avec 2 ou 4 contacts.				

(2) + 4 mm avec capot de plombage

155(LA6-DK20)

Choix:

pages 24003/2 à 24007/3 Caractéristiques : pages 24008/2 à 24010/3

Références pages 24011/2 à 24012/5 Schémas :

pages 24014/6 et 24014/7

Contacteurs types LC1-D et LP1-D

Montage

LC1-D09 à D38, LP1-D09 à D32 Sur profilé AM1-DP200 ou AM1-DE200

→	

LC1-	D09	D12	D18	D25	D32	D38	
b	74	74	74	84	84	84	
c (AM1-DP200)	82	82	87	95	100	100	
c (AM1-DE200)	90	90	95	103	108	108	
LP1-	D09	D12	D18	D25	D32		
c (AM1-DP200)	117	117	122	132	137		

130

140

LC1-D40 à D95, LP1-D40 à D80

Sur profilé AM1-DL200 ou DL201 (largeur 75 mm) Pour LC1 sur profilé AM1-EDi i i ou AM1-DE200 (largeur 35 mm)

LC1-	D40	D50	D65	D80	D95
c (AM1-DL200)	131	131	131	142	142
c (AM1-DL201)	121	121	11	132	132
c (AM1-EDi i i ou DE200)	121	121	121	132	132
LP1-	D40	D50	D65	D80	
c (AM1-DL200)	188	188	188	198	
c (AM1-DL201)	178	178	178	198	

c (AM1-DE200) LC1-D115, D150

Sur profilé AM1-DP200 ou AM1-DE200

125

125

145

LC1-	D11500	D115006	D15000	D150006
c (AM1-DP200 ou DR200)	134,5	117,5	134,5	117,5
c (AM1-DEiii ou EDiii)	142.5	125.5	142.5	125.5

LC1-D09 à D38, LP1-D09 à D32

Sur 1 profilé DZ5-MB et platine encliquetable LA9-D973

D09 à D18

D25, D32

LA9-D973

49

LC1-	D09	D12	D18	D25	D32	D38	
С	80	80	85	93	98	98	
LP1-	D09	D12	D18	D25	D32		
c	115	115	120	130	135		

LC1-D40 à D95, LP1-D40 à D80

Sur 2 profilés DZ5-MB à 120 mm d'entraxe

D40	D50	D65	D80	D95
114	114	114	125	125
D40	D50	D65	D80	
171	171	171	181	
	114 D40	114 114 D40 D50	114 114 114 D40 D50 D65	114 114 114 125 D40 D50 D65 D80

Choix:

pages 24003/2 à 24007/3 Caractéristiques :

pages 24008/2 à 24010/3

Références

pages 24011/2 à 24012/5

Schémas

pages 24014/6 et 24014/7

Contacteurs types LC1-D et LP1-D

Schémas

Contacteurs tripolaires (Références: LC1-D0900 à D3200

LC1-D11500 et D15000

LC1-D0910 à D3810 LP1-D0910 à D3210

LC1-D0901 à D3801 LP1-D0901 à D3201

LC1 et LP1-D4011 à D9511

Contacteurs tétrapolaires (Références: s: pages 24012/2 à 24012/5) LC1 et LP1-

LC1 et LP1-D12004 à D80004 LC1-D115004

D12008 à D25008

LC1 et LP1-D40008 à D80008

Blocs additifs frontaux

Contacts auxiliaires instantanés (Références: page 24013/3) 1 "O" LA1-DN01 (1)

1 "F" LA1-DN10 (1)

1 "F" + 1 "O" LA1-DN11

2 "F" LA1-DN20

43/NO (94) (63 41/NC (92) 42

54

63/NO 53/NO 54 64

2 "O" LA1-DN02

2 "F" + 2 "O" LA1-DN22

1 "F" + 3 "O" LA1-DN13

4 "F" LA1-DN40

51/NC 61/NC 52 62

62

62

0N/E9 73/NO 54 74 64 84

4 "O" LA1-DN04

2 "F" + 2 "O" dont 1 "F" + 1 "O" chevauchants LA1-DC22

3 "F" + 1 "O" LA1-DN31

73/NO 74 62 84

Blocs additifs frontaux

Contacts auxiliaires instantanés conformes à la norme EN 50012 (Références : page 24013/3) 1 "F" + 1 "O" LA1-DN11P 1 "F" + 1 "O" LA1-DN11G 1 "F" + 1 "O" LA1-DN11M 1

1 "F" + 3 "O" LA1-DN13P

3 "F" + 1 "O" LA1-DN31P

13/NO 21/NC 22

21/NC 33/NO

33/NO 43/NC

2 "F" + 2 "O" LA1-DN22P

2 "F" + 2 "O" LA1-DN22G

1 "F" + 3 "O" LA1-DN13M

3 "F" + 1 "O" LA1-DN31M

2 "F" + 2 "O" LA1-DN22M

Contacteurs type LC1-D Bobines courant alternatif

Références

Tension de commande Uc	Résis- tance moy. à 20 °C	Induc- tance circuit fermé	Référence (1)	Résis- tance moy. à 20 °C	Induc- tance circuit fermé	Référence (1)	Masse
	± 10%			± 10 %			
V	Ω	Н		Ω	Н		kg

Pour contacteurs LC1-D09, D12, D18, D2500

Spécifications

Consommation moyenne à 20 °C :

- consolimination intoyenine a 20 °C. appel (cos φ = 0,75) 50 Hz : 60 VA, 60 Hz : 70 VA, maintien (cos φ = 0,3) 50 Hz : 7 VA, 60 Hz : 7,5 VA. Domaine de fonctionnement (θ ≤ 55 °C) : 0,8...1,1 Uc.

Spécifications

Consommation moyenne à 20 °C :

- appel (cos ϕ = 0,75) 50/60 Hz : 70 VA à 50 Hz,
- maintien (cos ϕ = 0,3) 50/60 Hz : 8 VA à 50 Hz.

Domaine de fonctionnement ($\theta \le 55$ °C): 0,85...1,1 Uc.

						50/60 Hz	
_	_	-	5	,6	0,24	LX1-D2Z7	0,070
_	_	_	6	,19	0,26	LX1-D2B7	0,070
_	_	_	1	9,15	0,77	LX1-D2D7	0,070
_	_	_	2	:5	1	LX1-D2E7	0,070
_	_	_	1	30	5,5	LX1-D2F7	0,070
_	_	_	_		_	LX1-D2FE7	0,070
_	_	_	1	59	6,7	LX1-D2G7	0,070
_	_	_	5	39	22	LX1-D2M7	0,070
_	_	_	5	95	21	LX1-D2P7	0,070
_	_	_	6	45	25	LX1-D2U7	0,070
_	_	_	1	580	60	LX1-D2Q7	0,070
_	_	_	1	810	64	LX1-D2V7	0,070
_	_	_	1	938	74	LX1-D2N7	0,070
_	_	_	2	242	79	LX1-D2R7	0,070
	- - - - - -			6 1 2 1 1 5 5 6 1 1 1 2	6,19 19,15 25 130 159 539 595 645 1810 1810 1938 1938 1938 1938 1938	- - - 6,19 0,26 - - 19,15 0,77 - - 25 1 - - - 130 5,5 - - - - - - - - - - - - 159 6,7 - - - 539 22 - - - 595 21 - - - 645 25 - - - 1810 64 - - - 1938 74 - - - 2242 79	- - - 6,19 0,26 LX1-D2B7 - - - 19,15 0,77 LX1-D2D7 - - - 25 1 LX1-D2E7 - - - 130 5,5 LX1-D2F7 - - - LX1-D2F7 - - - LX1-D2G7 - - - 539 22 LX1-D2M7 - - - 645 25 LX1-D2U7 - - - 1580 60 LX1-D2Q7 - - - 1810 64 LX1-D2V7 - - - 1938 74 LX1-D2N7

- (1) Les 2 derniers repères de la référence correspondent au repère de la tension.
- (2) Tension pour bobines spécifiques alimentées en 24 V, équipant des contacteurs munis de modules temporisateurs "série".
- (3) Cette bobine peut être utilisée en 240 V en 60 Hz.
- (4) Cette bobine peut être utilisée en 230/240 V en 50 Hz et en 240 V uniquement en 60 Hz.

