

Solution Modeling

Bachelor of Information Systems Institut Teknologi Del

Solution Modeling

Learning Objective(s)

This material should address the following question(s).

- How to express a solution?
- Is visual modeling a good option to express a solution?

Discussion Point

Expressing A Solution.

Problem Requires Solution

Solution Development

Analyzing Designing Executable A problem Coding the problem the solution solution understanding using models in Java, Python, ... in binaries the problem

Challenges for beginners

- Freshmen find programming, coding in particular, is **difficult**.
 - Even for students from computing major.

What makes coding difficult?

- Difficulty in understanding logic.
- Complicated programming language.
 - Boilerplate codes.
 - Rules & conventions.
- Paradigm.
- Documentation.
- Examples.

How can we **express** out solution without the actual coding? Or at least, delay it for later.

Discussion Point

Expressing A Solution: **Modeling**.

Modeling

- A model is an abstraction of an activity or an artifact.
 - It temporarily omits irrelevant aspects from our view.
 - Modeling is the process of building a model.
 - Modeling language.
- In programming:
 - Pseudocode (like codes).
 - Diagrams (visual objects).

Floor plan https://cdn.houseplansservices.com/

Modeling

- Advantages of modeling:
 - Could find **patterns** on similar solutions.
 - Could find points of improvement.
 - Could conduct **testing** before materializing it.

Floor plan https://cdn.houseplansservices.com/

Discussion Point

Pseudocode vs. **Diagrams**

Challenge

- Smallest number finder.
 - There are three arbitrary numbers, say x, y, and z.
 - How to determine which number is the smallest one?

x, y, z?

Challenge

- One possible solution:
 - 1st: compare the first two numbers to find the smallest.
 - 2nd: compare the outcome of the 1st step to z.

x, y, z?

```
PROGRAM: Smallest Number Finder
This program accepts three numbers and returns the smallest between the three.
DECLARATION:
x, y, z : integer
                      {the inputs given by the user}
                       {where the the output will be stored}
s : integer
ALGORITHM:
 x := read user input
                       {reading the user input}
 y := read user input
                       {reading the user input}
 z := read user input
                       {reading the user input}
 if(x < y)
                       {when the value of x is less than the value of y}
                       {set s with the value of x}
   s := x
 else
                       {when the value of x is NOT less than the value of y}
                       {set s with the value of y}
   s := y
 endif
                       {end the comparison}
 if(z < s)
                       {when the value of z is less than the value of s}
   S := Z
                       {set s with the value of x}
 endif
                       {end the comparison}
 return(s)
                       {return s as the final result}
```

Pseudocode

Flowchart

```
PROGRAM: Smallest Number Finder
This program accepts three numbers and returns the smallest between the three.
DECLARATION:
x, y, z : integer
                          {the inputs given by the user}
                          {where the the output will be stored}
        : integer
ALGORITHM:
  x := read user input
                          {reading the user input}
  y := read user input
                          {reading the user input}
  z := read user input
                          {reading the user input}
  if(x < y)
                          {when the value of x is less than the value of y}
                          {set s with the value of x}
   s := x
  else
                          {when the value of x is NOT less than the value of y}
                          {set s with the value of y}
   s := v
  endif
                          {end the comparison}
  if(z < s)
                          {when the value of z is less than the value of s}
                          {set s with the value of x}
   s := z
  endif
                          {end the comparison}
  return(s)
                          {return s as the final result}
```

Pseudocode

Modeling with Visual Objects

- Advantages:
 - Intuitive.
 - Easier to understand.
 - Less to no boilerplate code.
 - Focus on the solution.
 - Fit for beginner.
- Disadvantages:
 - Not suitable to draw complex and large solutions.

Final **Thoughts.**

Conclusion

- 1. Solutions are expressed in codes written in a specific programing language.
 - Later, the code will be translated into machine language.
 - Writing code could be hard, especially for beginners (freshmen).
- 2. Modeling could help us focus on the solution.
 - Pseudocode vs. diagram (visual objects).

References

Wassberg, J. (2020). Computer Programming for Absolute Beginners. Packt.

– E O F –

Course Lecturer

Mario E. S. Simaremare Institut Teknologi Del

(D) @dasar-pemrograman

Supported by

Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi RI

Inovasi Modul Digital 2022

