## Logica

1.90: Relazioni, Funzioni, ...

#### Claudio Sacerdoti Coen

<sacerdot@cs.unibo.it>

Universitá di Bologna

30/09/2020

## Coppie ordinate vs insiemi

#### Insiemi

In un insieme l'ordine non conta e nemmeno la numerosità degli elementi:

$$\{1,2\} = \{2,1\} \ e \ \{1,1\} = \{1\}.$$

## Coppie ordinate

Una coppia ordinata, invece, è formata da due componenti di cui uno è identificato come primo e l'altro come secondo. Due coppie sono uguali sse lo sono rispettivamente il primo e il secondo elemento.

Una coppia non è l'insieme dei suoi elementi e non deve essere pensata come contenente (nel senso di  $\in$ ) i suoi elementi.

$$\langle 1,2 \rangle \neq \langle 2,1 \rangle$$
,  $\langle 1,2 \rangle \neq \{1,2\}$  e 2  $\notin \langle 1,2 \rangle$ .



## Coppie ordinate

## Coppie

Dati X, Y chiamiamo coppia ordinata di prima componente X e seconda componente Y, e la indichiamo con  $\langle X, Y \rangle$  l'insieme  $\{X, \{X, Y\}\}$ 

## Teorema di caratterizzazione delle coppie

$$\langle X, Y \rangle = \langle X', Y' \rangle \iff X = X' \wedge Y = Y'$$

Dimostrazione: omessa

#### Corollario

$$\langle X, Y \rangle \neq \langle Y, X \rangle$$
 a meno che  $X = Y$ 



## Prodotto cartesiano di insiemi

# Teorema: esistenza del prodotto cartesiano di insiemi come insieme

$$\forall A, \forall B, \exists C, \forall Z, (Z \in C \iff \exists a, \exists b, (a \in A \land b \in B \land Z = \langle a, b \rangle))$$

L'insieme C viene chiamato prodotto cartesiano di A e B e indicato come  $A \times B$ .

## Esempio

$$\{a,b\} \times \{1,2\} = \{\langle a,1\rangle, \langle a,2\rangle, \langle b,1\rangle, \langle b,2\rangle\}$$



## Relazioni

#### Definizione di relazione

Una relazione fra A e B è un qualunque sottoinsieme di  $A \times B$ .

#### Elementi in relazione

Sia  $\mathcal{R}$  una relazione. Scriviamo  $a\mathcal{R}b$  sse  $\langle a,b\rangle\in\mathcal{R}$ .

#### Teorema: relazioni da/verso insiemi vuoti

se  $\mathcal{R}\subseteq A\times\emptyset$  oppure  $\mathcal{R}\subseteq\emptyset\times A$  allora  $\mathcal{R}=\emptyset$  (la relazione vuota)

Dimostrazione: non posso formare coppie prendendo uno dei due elementi dall'insieme vuoto, perchè tale insieme è vuoto.



## Relazioni

#### Esempio

La relazione  $\leq$  sull'insieme numerico  $\{0,1,2\}$  è definita come segue:  $\leq = \{\langle 0,0\rangle, \langle 0,1\rangle, \langle 0,2\rangle, \langle 1,1\rangle, \langle 1,2\rangle, \langle 2,2\rangle\}$  e  $0 \leq 2$  è solo una notazione per  $\langle 0,2\rangle \in \leq$ 

## **Funzioni**

#### Definizione di funzione

Una funzione di dominio A e codominio B è una qualunque relazione  $f\subseteq A\times B$  tale che

$$\forall X, (X \in A \Rightarrow \exists! Y, X f Y)$$

(per ogni elemento del dominio c'è un unico elemento del codominio in relazione con esso)

#### Notazione

Sia f una funzione. Scriviamo y = f(x) per dire x f y, ovvero  $\langle x, y \rangle \in f$ .



## **Funzioni**

## Teorema: esistenza dello spazio di funzioni come insieme

$$\forall A, \forall B, \exists C, \forall f,$$
  
 $(f \in C \iff f \text{ è una funzione di dominio } A \text{ e codominio } B)$ 

Indichiamo l'insieme C come  $B^A$  (spazio delle funzioni da A a B.

#### Funzioni da/verso insiemi vuoti

- ②  $\emptyset^A = \emptyset$  sse  $A \neq \emptyset$

Dimostrazione: ogni funzione da A verso B è una relazione fra A e B. Se A o B sono vuoti, le uniche relazioni sono la relazione vuota (già dimostrato). La relazione vuota è una funzione solo se è il dominio a essere vuoto perchè altrimenti a un elemento del dominio dovrei associare uno e un solo elemento del codominio, ma questo non ne ha in quanto vuoto.

## Quantificazione limitata come notazione

#### Quantificazione limitata

Nel seguito scriveremo

- ②  $\exists X \in A, P(X)$  (esiste un X in A tale che P(x)) per indicare  $\exists X, (X \in A \land P(X))$
- $\forall X, Y \in A, P(X, Y)$  per indicare  $\forall X \in A, \forall Y \in A, P(X, Y)$
- $\exists X, Y \in A, P(X, Y)$  per indicare  $\exists X \in A, \exists Y \in A, P(X, Y)$



## Relazioni di equivalenza

### Proprietà riflessiva, simmetrica, transitiva

Sia  $\mathcal{R} \subseteq A \times A$ . La relazione  $\mathcal{R}$  gode della proprietà

- **1** Riflessiva se  $\forall X \in A, X \mathcal{R} X$
- **2** Simmetrica se  $\forall X, Y \in A, (X\mathcal{R}Y \Rightarrow Y\mathcal{R}X)$
- **1** Transitiva se  $\forall X, Y, Z \in A, (XRY \land YRZ \Rightarrow XRZ)$

- gode di tutte e tre le proprietà
- < sui numeri naturali è transitiva, ma non simmetrica e non riflessiva
- sui numeri naturali è transitiva e riflessiva, ma non simmetrica
- ullet eq è simmetrica, ma non transitiva e riflessiva



## Tipi di relazioni

#### Relazioni di ordinamento strette

Una relazione  $\mathcal{R} \subseteq A \times A$  è di ordine stretto sse  $\mathcal{R}$  è transitiva e non riflessiva.

- $\bullet = +, \leq +, \leq +$  non sono relazioni di ordinamento strette
- < è un ordinameno stretto dei numeri naturali</li>
- "essere antenato di" è un ordinameno stretto sulle persone

## Tipi di relazioni

#### Relazioni di ordinamento lasche

Una relazione  $\mathcal{R} \subseteq A \times A$  è di ordine (lasco) sse

- $\bigcirc$   $\mathcal{R}$  è transitiva e riflessiva
- 2  $\mathcal{R}$  è antisimmetrica, ovvero  $\forall X, Y \in A, (X\mathcal{R}Y \land Y\mathcal{R}X \Rightarrow X = Y)$

- $\bullet =, \leq, \subseteq$  sono relazioni di ordinamento
- | ("divide") è una relazione di ordinamento sui numeri naturali
- $<, \subsetneq, \neq$  non sono relazioni di ordinamento



## Tipi di relazioni

### Relazioni di equivalenza

Una relazione  $\mathcal{R} \subseteq A \times A$  è di equivalenza sse  $\mathcal{R}$  è riflessiva, simmetrica e transitiva.

### Esempi:

- = è una relazione di equivalenza
- "avere lo stesso cognome", "essere dello stesso modello" sono relazioni di equivalenza
- $<, \le, \ne$  non sono relazioni di equivalenza

#### Intuizione

Una relazione di equivalenza assomiglia all'uguaglianza e viene usata per confrontare oggetti a meno di dettagli non ritenuti rilevanti per quello che si deve fare.



## Classi di equivalenza

Sia  $\equiv \subseteq A \times A$  una relazione di equivalenza su A. La classe di equivalenza di  $x \in A$  rispetto a  $\equiv$ , è definita come segue:

$$[x]_{\equiv} \stackrel{\mathrm{def}}{=} \{ y \in A \mid y \equiv x \}$$

#### Teorema

Sia  $\equiv \subseteq A \times A$  una relazione di equivalenza. Per ogni  $x, y \in A$ , o  $[x]_{\equiv} = [y]_{\equiv}$  (quando  $x \equiv y$ ) oppure  $[x]_{\equiv}$  e  $[y]_{\equiv}$  sono insiemi disgiunti (= senza elementi in comune) (quando  $x \not\equiv y$ ).

Dimostrazione: per la proprietà transitiva di  $\equiv$ , se  $x\equiv y$  allora ogni  $z\in [x]_{\equiv}$  è tale che  $z\equiv x\equiv y$  e quindi

 $z \in [y]_{\equiv}$  e perciò  $[x]_{\equiv} = [y]_{\equiv}$ . Inoltre, per le proprietà simmetriche e transitive di  $\equiv$ , se  $z \in [x]_{\equiv} \cap [y]_{\equiv}$  allora

 $x \equiv z \equiv y$  e perciò  $[x]_{\equiv} = [y]_{\equiv}$ . Quindi le due classi sono identiche o disgiunte.



## Classi di equivalenza: esempio

La relazione  $\equiv$  definita come "avere la stessa lettera iniziale" è una relazione di equivalenza.

```
 \begin{split} & ["albero"]_{\equiv} = \{ "albero", "alga", "armadillo", \ldots \} \\ & ["alga"]_{\equiv} = \{ "albero", "alga", "armadillo", \ldots \} \\ & ["albero"]_{\equiv} = [ "alga"]_{\equiv} = [ "armadillo"]_{\equiv} = \ldots \\ & ["banana"]_{\equiv} = \{ "banana", "borsetta", "bullo", \ldots \} \\ & ["albero"]_{\equiv} \cap [ "banana"]_{\equiv} = \emptyset \end{aligned}
```

### Insieme quoziente

Sia  $\equiv \subseteq A \times A$  una relazione di equivalenza. L'insieme quoziente di A rispetto a  $\equiv$  è definito come segue:

$$A_{/\equiv} \stackrel{\mathrm{def}}{=} \{ [x]_{\equiv} \mid x \in A \}$$

Nota: che tale insieme esista è conseguenza dell'assioma di rimpiazzamento

- "avere la stessa età" è una relazione di equivalenza (chiamiamola ≡)
  - [Claudio Sacerdoti Coen]<sub>≡</sub> sono tutti i 44-enni; esso rappresenta l'età 44
  - Persone<sub>/=</sub> ha un elemento per età; tale elemento è l'insieme di tutte le persone identificate per età



#### Intuizione

Gli insiemi quozienti sono uno strumento potentissimo per creare nuovi concetti costruendoli a partire da concetti pre-esistenti e poi semplificandone via i dettagli dovuti alla rappresentazione.

### Esempio: i numeri interi Z

Vogliamo costruire i numeri interi a partire dai naturali. Gli interi completano i naturali permettendo di fare sottrazioni fra naturali arbitrari (2-4=?).

- $Z = \mathbb{N} \times \mathbb{N}$  intuizione:  $\langle 2, 4 \rangle \in Z$  rappresenta 2 4
- $\equiv \subseteq Z \times Z : \langle u_1, l_1 \rangle \equiv \langle u_2, l_2 \rangle \xrightarrow{\text{def}} u_1 + l_2 = u_2 + l_1$  $\langle 2, 4 \rangle \equiv \langle 3, 5 \rangle$  perchè rappresentano la stessa sottrazione: infatti 2 - 4 = 3 - 5 sse 2 + 5 = 4 + 3
- $\mathbb{Z} \stackrel{\text{def}}{=\!\!\!=\!\!\!=} Z_{/\equiv}$
- $\bullet \ \mathbb{Z} = \{\ldots, [\langle 0,2\rangle]_{/_{\equiv}}, [\langle 0,1\rangle]_{/_{\equiv}}, [\langle 0,0\rangle]_{/_{\equiv}}, [\langle 1,0\rangle]_{/_{\equiv}}, [\langle 2,0\rangle]_{/_{\equiv}}, \ldots\}$
- Zucchero sintattico: indichiamo  $[\langle 0,i\rangle]_{/\equiv}$  con -i,  $[\langle 0,0\rangle]_{/\equiv}$  con 0 e  $[\langle i,0\rangle]_{/\equiv}$  con +i.
- $\mathbb{Z} = \{\dots, -2, -1, 0, +1, +2, \dots\}$



## Proprietà delle funzioni

#### Iniettività, suriettività, biettività

 $f \in B^A$ è

- **1** iniettiva quando  $\forall x, y \in A, (f(x) = f(y) \Rightarrow x = y)$
- 2 suriettiva quando  $\forall y \in B, \exists x \in A, f(x) = y$
- biettiva quando è sia iniettiva che suriettiva

- +1 è biettiva sui numeri interi, iniettiva ma non suriettiva sui naturali
- | · | (il valore assoluto) è non suriettiva e non iniettiva sugli interi



## Proprietà delle funzioni e cardinalità

## Intuizione: proprietà delle funzioni e cardinalità degli insiemi

Sia  $f \in B^A$ . Intuitivamente

- Se f è iniettiva allora B ha almeno tanti elementi quanti ne ha A.
- Se f è suriettiva allora A ha almeno tanti elementi quanti ne ha B.
- Se f è biettiva allora A e B hanno lo stesso "numero" di elementi.

L'intuizione è buona, ma non in termine di numeri:

- Quanti elementi ha (in numero) un insieme infinito?
- Ci sono insiemi infiniti più infiniti di altri?



## Cardinalità di un insieme

#### Avere la stessa cardinalità

Due insiemi *A*, *B* hanno la stessa cardinalità sse esiste una biiezione fra *A* e *B*.

Avere la stessa cardinalità è una "relazione di equivalenza", ma sulla classe di tutti gli insiemi.

#### Numeri cardinali

Sia U la classe di tutti gli insiemi. Un numero cardinale è un elemento di  $U_{//equiv}$  dove  $\equiv$  significa avere la stessa cardinalità.

### Esempio

• 3 
$$\stackrel{\mathrm{def}}{=}$$
 [{1,2,3}] = {{1,2,3}, {5,2,8}, {\emptyset,3,\langle1,2\rangle}, ...}

$$\bullet \ 0 \stackrel{\text{def}}{=} [\emptyset] = \{\emptyset\}$$

• 
$$\aleph_0 \stackrel{\text{def}}{=} [\mathbb{N}] = {\mathbb{N}, \{n \in \mathbb{N} \mid n \text{ è pari}\}, \mathbb{Q}, \ldots}$$

## Cardinalità di un insieme

#### Teorema: esistenza dei numeri cardinali come insiemi

Con un certo sforzo è possibile costruire i numeri cardinali senza usare le classi di equivalenza su classi, ma lavorando solo su insiemi. Ogni numero cardinale viene ottenuto come insieme.

#### Notazione dei numeri cardinali

Usiamo come notazione per i numeri cardinali relativi a insiemi finiti (vedi dopo) i numeri naturali 0,1,2,... (le classi degli insiemi con 0, 1, 2,... elementi).

Si usano altri simboli speciali per i cardinali degli insiemi infiniti (vedi dopo).



## Cardinalità di un insieme

#### Cardinalità di un insieme

Per ogni insieme A si definisce cardinalità di A, indicata con |A| il numero cardinale  $[A]_{/=}$ .

$$\begin{split} |\{1,2,3\}| &= [\{1,2,3\}]_{/\equiv} \\ &= \{\{1,2,3\}, \{5,2,8\}, \{\emptyset,3,\langle 1,2\rangle\}, \ldots\} = 3 \end{split}$$



#### Insiemi finiti

Un insieme si dice finito quando non è infinito.

#### Osservazione

Intuitivamente sappiamo che un insieme con 3 elementi è finito.

Immaginate un albergo con 3 stanze singole tutte occupate. Arriva un nuovo cliente. Può l'albergatore con una qualche manovra accomodare tutti i clienti nell'hotel rispettando il fatto che una singola può essere occupata da un solo cliente?

### L'albergo di Hilbert

Intuitivamente sappiamo che l'insieme dei numeri naturali è infinito.

Immaginate un albergo con una stanza singola per ogni numero naturale, tutte occupate. Arriva un nuovo cliente. Può l'albergatore con una qualche manovra accomodare tutti i clienti nell'hotel rispettando il fatto che una singola può essere occupata da un solo cliente?

### L'albergo di Hilbert

Intuitivamente sappiamo che l'insieme dei numeri naturali è infinito.

Immaginate un albergo con una stanza singola per ogni numero naturale, tutte occupate. Arriva un nuovo cliente. Può l'albergatore con una qualche manovra accomodare tutti i clienti nell'hotel rispettando il fatto che una singola può essere occupata da un solo cliente?

Soluzione: per ogni n si chiede al cliente nella stanza n di trasferirsi nella stanza n+1; ora la stanza 0 è libera per il nuovo arrivato.

#### Insiemi infiniti

Un insieme A si dice infinito quando è in biiezione con un suo sottoinsieme proprio B (i.e.  $B \subseteq A$  e |B| = |A|).



## L'ordinamento dei numeri cardinali

#### < su numeri cardinali

Siano x, y due numeri cardinali.  $x \le y$  se dati due insiemi A e B tali che |A| = x e |B| = y esiste una iniziezione fra A e B. In particolare,  $|C| \le |D|$  sse esiste una iniezione fra C e D.

#### < su numeri cardinali

Siano x, y due numeri cardinali. x < y se  $x \le y$  e  $x \ne y$ . In particolare |A| < |B| sse esiste una iniezione di A in B e non esiste nessuna biiezione fra A e B.



## L'ordinamento dei numeri cardinali

- $2 = |\{1,2\}| < |\{a,b,c\}| = 3$  come testimoniato dall'iniezione  $1 \mapsto a, \ 2 \mapsto b$  e dall'assenza di biezioni
- $2=|\{1,2\}|<|\mathbb{N}|=\aleph_0$  come testimoniato dall'iniezione funzione  $1\mapsto 1,\ 2\mapsto 2$  e dall'assenza di biezioni
- $|\mathbb{P}| = |\{n \in \mathbb{N} \mid n \text{ è pari}\}| \leq |\mathbb{N}|$  come testimoniato dalla funzione identità che è una iniezione
- $|\mathbb{P}| \not< |\mathbb{N}|$  in quanto  $|\mathbb{P}| = |\mathbb{N}|$  come testimoniato dalla bijezione f(x) = 2 \* x,  $f \in \mathbb{N}^{\mathbb{P}}$



#### Osservazione

Le intuizioni che ci derivano dalla nostra interazione quotidiana con oggetti finiti sono spesso fuorvianti quando applicate all'infinito.

Teorema: per ogni insiemi finito A e per ogni suo sottoinsieme B (i.e.  $B \subseteq A$ ),  $B \subsetneq A$  sse |B| < |A|.

Definizione di insieme infinito: per ogni insieme infinito A c'è un suo sottoinsieme proprio B (i.e.  $B \subseteq A$ ) tale che |B| = |A|.

Quindi la nozione intuitiva di taglia indotta dall'essere un sottoinsieme proprio è fuorviante quando applicata fuori da un contesto infinito ed è meglio quindi non considerarla anche nel finito.

## Metodo di diagonalizzazione Cantor

#### Teorema di Cantor

L'idea alla base del teorema è ancora lo sfruttamento del paradosso del mentitore:

Enunciato: sia |T| un insieme non vuoto. Allora  $|T| < |2^T|$ .

Dimostrazione per assurdo:

Per assurdo, supponiamo  $|T| = |2^T|$ , ovvero che esista una biiezione g fra T e  $2^T$  (l'insieme delle parti di T).

Sia  $A \stackrel{\text{def}}{=} \{x \in T \mid x \notin g(x)\}.$ 

Poichè  $A \in 2^T$  e g è una bilezione, deve essercy un  $y \in T$  tale che g(y) = A, il che è assurdo poichè  $y \in g(y) = A \iff y \notin g(y)$  per definizione di A.

Quindi T e  $T^T$  non possono essere in bilezione e poichè  $f(x) = \{x\} \in 2^T$  è una iniezione di T in  $2^T$  concludiamo che  $|T| < |T^T|$ .



## Metodo di diagonalizzazione Cantor

#### Funzioni caratteristiche

Sia  $\mathbb B$  un qualuque insieme con due elementi, chiamati booleani, e indicati con 0 e 1, sia A un insieme e sia  $C \subseteq A$ .

La funzione caratteristica di C (come sottoinsieme di A) è la funzione  $\chi_C \in \mathbb{B}^A$  tale che  $\chi_C(x) = 1 \iff x \in C$ .

La funzione che associa a ogni  $C \in 2^A$  la funzione  $\chi_C \in \mathbb{B}^A$  è una biiezione. Pertanto  $|2^A| = |\mathbb{B}^A|$ .

#### Corollario al teorema di Cantor

Enunciato: Per ogni insieme T con almeno due elementi,  $|T| < |T^T|$ . Dimostrazione: poichè T ha almeno due elementi, vi è un  $\mathbb{B} \subseteq T$  tale che  $|\mathbb{B}| = 2$ .

Quindi  $|T| < |2^T| = |\mathbb{B}^T| \le |T^T|$  per il teorema di Cantor e poichè le funzioni di codominio |T| saranno non meno delle funzioni di codominio  $\mathbb{B} \subseteq T$ .



## Infiniti di cardinalità crescente

#### Osservazione

Il teorema di Cantor ci dice che esistono insiemi infiniti di cardinalità crescente:

$$\aleph_0 = |\mathbb{N}| < |2^{\mathbb{N}}| < |2^{2^{\mathbb{N}}}| < \dots$$

#### Insiemi numerabili

Un insieme A si dice numerabile se  $|A| = \aleph_0$ , ovvero se posso stabilire una biiezione fra i numeri naturali e gli elementi di A, ovvero se posso enumerare uno dopo l'altro tutti gli elementi di A.

- $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{N} \times \mathbb{N}$  sono enumerabili
- $2^{\mathbb{N}}, 2^{2^{\mathbb{N}}}$  non sono enumerabili



## Infiniti di cardinalità crescente

#### Osservazione

Un computer può rappresentare in memoria, come sequenza di bit, tutti gli elementi di un insieme sse questo insieme è enumerabile.

## **Spoiler**

Procediamo ora a dimotrare che i numeri reali (e quindi anche i complessi, i quaternioni, i vettori, etc.) non sono enumerabili.

### I numeri reali

#### I numeri reali

Costruirete l'insieme  $\mathbb R$  dei numeri reali nel corso di Analisi Matematica.

- Un numero reale può essere rappresentato da una sequenza infinit di cifre, di cui un numero finito prima della virgola (chiamata parte intera)
  - Esempio:  $\pi = 3.14159265...$
- Un numero reale può essere rappresentato in più di un modo
  - Esempio: 1 = 3 \* 1/3 = 3 \* 0.333... = 0.999...
- In base 10 si ottiene una rappresentazione univoca escludendo le rappresentazioni che terminano con un 9 periodico
  - Esempio: escludiamo 0.999... e teniamo solo 1



## Cardinalità dei numeri reali

## $|\mathbb{N}| < |\mathbb{R}|$

Dimostrazione usando il teorema di Cantor.

 $[0,1]\subseteq \mathbb{R} \text{ e quindi } |[0,1]|\leq |\mathbb{R}|.$ 

Rappresentato in base 2, un numero in [0, 1] ha come parte intera 0 e come parte decimale (dopo la virgola) una sequenza infinita di 0 o 1.

In altre parole, ogni  $x \in \mathbb{B}^{\mathbb{N}}$  rappresenta un numero reale (in maniera non univoca per via delle sequenze con 1 periodici, similmente a quello che accade in base 10).

Pertanto il numero di rappresentazioni è  $|\mathbb{B}^{\mathbb{N}}| > |\mathbb{N}|$ . Il numero cardinale di rappresentazioni duplicate è  $|\mathbb{N}|$  (perchè?) che è  $< |\mathbb{B}^{\mathbb{N}}|$  e con un ragionamento qui omesso si dimostra che quindi quello delle non duplicate rimane  $|\mathbb{B}^{\mathbb{N}}|$ .

Concludendo  $|\mathbb{N}| < |\mathbb{B}^{\mathbb{N}}| = |[0, 1]| \le |\mathbb{R}|$ .



## Cardinalità dei numeri reali

#### Osservazioni

Il teorema precedente ci dice che i numeri reali (e i complessi, i vettori, etc.) non sono enumerabili.

Pertanto un computer non può rappresentare tutti i numeri reali, ma solo un piccolissimo sottoinsieme enumerabile.

L'aritmetica dei calcolatori è pertanto profondamente diversa da quella vista nel corso di analisi.

Nel corso di Analisi Numerica studierete alcuni modi di rappresentare alcuni numeri reali sul computer e come effettuare computazioni approssimate con essi.

## Le funzioni matematiche non sono computabili

#### Osservazione

Tutte le funzioni che posso scrivere in un linguaggio di programmazione sono enumerabili.

(scrivo prima tutti i programmi con un carattere, poi quelli con due, . . . )

le funzioni matematiche  $\mathbb{N}^\mathbb{N}$  sono non enumerabili, così come molti insiemi, e quindi non programmabili/rappresentabili in un computer

## Dalle funzioni ai programmi

## Soluzione (1/2)

Nel resto del corso eviteremo (quasi sempre) il ricorso a insiemi generici e funzioni matematiche. Al loro posto introdurremo un linguaggio di programmazione con tipi di dati da usare al posto degli insiemi e funzioni ricorsive (= programmi) per definire procedure di calcolo su di essi.

### Soluzione (2/2)

Descriveremo i linguaggi artificiali che useremo per evitare i paradossi logici e scrivere formule, dimostrazioni, etc. come tipi di dati.

Esempio: una formula sarà un tipo di dato e quindi rappresentabile in memoria; scriveremo programmi che manipolano formule.