

LICENCIATURA EN ESTADÍSTICA

Cálculo de Margen de Solvencia Mínimo

Estadística Actuarial

Autores: Nicolas Gamboa - Andrés Roncaglia Docente: Adrián Wibly

2024

Tabla de contenidos

Introducción	1
Ajuste por inflación	1
Distribución para el número de siniestros por póliza Poisson	3
Poisson	3
Distribuciones para la cuantía de los siniestros	4
Método 1: Empírica + Pareto I	4
Metodo 2: Lognormal	5
Metodo 3: Weibull + Pareto I	5
Simulación de la cartera	7
Simulación de la cartera Método 1: Empírica + Pareto I	7
Método 2: Lognormal	8
Método 3: Weibull + Pareto I	8
Discusión	9

Introducción

La gestión de una compañía de seguros conlleva múltiples desafíos, siendo uno de los más relevantes garantizar su estabilidad financiera a largo plazo, la cual es fundamental ya que garantiza la capacidad de cumplir con los compromisos asumidos frente a los asegurados. En un sector expuesto a incertidumbres y riesgos, contar con mecanismos que refuercen la sostenibilidad económica es esencial para proteger la confianza de los clientes y la solidez del negocio.

En este informe se abordará la evaluación de los recursos financieros mínimos necesarios para garantizar que la empresa pueda afrontar sus obligaciones incluso en escenarios adversos, promoviendo así su estabilidad y responsabilidad en el sector asegurador.

Ajuste por inflación

Dado que los datos fueron obtenidos a lo largo del año 2023, el cúal presentó una inflación anual del 211.4%, fue necesario hacer un ajuste por inflación a las cuantías registradas. Para esto se utilizó el Coeficiente de Estabilización de Referencia construido por el Banco Central de la república Argentina, teniendo en cuenta que el cambio en la inflación se calcula a 45 días de la fecha en la que se obtuvo el valor.

Fecha	Cuantía	Valor	Inflación porcentual	Cuantía ajustada
2023-01-02	70939	79.2201	203.8	215512.682
2023-01-02	107871	79.2201	203.8	327712.098
2023-01-02	148775	79.2201	203.8	451978.45
2023-01-02	167011	79.2201	203.8	507379.418
		•••		•••
2023-12-29	534595	240.6707	0	534595
2023-12-29	575992	240.6707	0	575992
2023-12-29	631520	240.6707	0	631520
2023-12-29	1066311	240.6707	0	1066311

Tabla 1: Siniestros registrados en el año 2023, con ajuste por inflación

Se decidió trabajar con la cuantía en miles, debido a los altos valores que toma, para facilitar la interpretación.

Figura 1: Distribución de la cuantía de siniestros ajustada por inflación en el año 2023

También se cuenta con la información de la cantidad de pólizas y siniestros de años anteriores.

Año	Pólizas	Siniestros	Tasa Sin/Pol
2021	24725	3023	0.1222649
2022	25348	3581	0.1412735
2023	25615	3431	0.1339450

Tabla 2: Registro de la tasa de siniestros por año

El objetivo principal es obtener el margen de solvencia mínimo que garantice con una probabilidad del 99% que la empresa de seguros será solvente durante el año 2024, en el cual se asume que se mantendrá la cantidad de pólizas del año 2023. Para cumplir tal objetivo es necesario encontrar la distribución de la cuantía total de siniestros en el año 2024:

$$F(Y) = \sum_{N=0}^{\infty} f(N) \cdot F^{(*)N}(Y)$$

La cual depende de las funciones de distribución de la cantidad de siniestros por póliza y de la cuantía individual:

- *f*(*N*)
- f(x)

Por esto es que se procede a encontrar aproximaciones de las mismas.

Distribución para el número de siniestros por póliza

Poisson

$$N \sim Pois(\lambda)$$

Como parámetro λ se elige a la tasa media de siniestralidad por póliza de años anteriores, 0.1324944, obteniendo así la distribución para la cantidad de siniestros por póliza:

Figura 2: Distribución para la cantidad de siniestros por póliza

La distribución teniendo en cuenta que hay 25615 pólizas es la siguiente.

Figura 3: Simulación de la cantidad de siniestros totales.

Distribuciones para la cuantía de los siniestros

Una vez encontrada la distribución para la cantidad de siniestros por póliza es necesario encontrar la distribución para la cuantía que pueden llegar a tener dichas pólizas. Para esta se propusieron varias alternativas.

Método 1: Empírica + Pareto I

Para este primer método se decidió usar la distribución empírica hasta el cuantil 0.995, a partir del cual se decidió obtener muestras de una distribución Pareto.

Para obtener las muestras de la distribución empírica se utilizó el método de la grilla y los parámetros para la distribución pareto fueron estimados de la siguiente manera:

$$\hat{\beta} = \frac{\mu_2}{\mu_2 - (1-q) \cdot X_l} = 1.0032 \qquad \qquad \hat{\alpha} = X_l \cdot (1-q)^{1/\beta} = 8.8608$$

Donde μ_2 es la media de la distribución a partir del valor X_l , que es el valor del cuantil q=0.995.

Sin embargo, dado que la distribución Pareto devolvía en ciertas ocasiones valores muy extremos, poco probables en la práctica, se decidió acotar la distribución Pareto a 10 millones como máximo.

Mediante una simulación de 3000 muestras se obtuvo la siguiente distribución para la cuantía individual:

Figura 4: Simulación de la distribución por el método 1 de la cuantía individual.

Metodo 2: Lognormal

El segundo método consiste en obtener muestras a partir de una distribución log-normal, cuyos parámetros fueron estimados de la siguiente forma:

$$\hat{\mu} = log(m_1) - 0.5 \cdot log(R) = 6.1387 \qquad \quad \hat{\sigma}^2 = log(R) = 0.2334$$

Donde m_1 es el momento de primer orden, m_2 el de segundo orden y $R=m_2/m_1^2$ es el coeficiente de asimetría.

Mediante una simulación de 3000 muestras se obtuvo la siguiente distribución:

Figura 5: Simulación de la distribución por el método 2 de la cuantía individual.

Metodo 3: Weibull + Pareto I

Como último caso se decidió ajustar una distribución Weibull hasta el cuantil 0.995, a partir del cual se ajustó una distribución Pareto de la misma forma que en el método 1. Los parámetros de la distribución Weibull $(\alpha_w \ y \ \beta_w)$ fueron estimados automáticamente por el método de los momentos.

$$\beta_w = 587.9055$$
 $\alpha_w = 2.0433$

Mediante una simulación de 3000 muestras se obtuvo la siguiente distribución:

Figura 6: Simulación de la distribución por el método 3 de la cuantía individual.

Método	Min.	P_1	P_5	P_{25}	P_{50}	P_{75}	P_{95}	P_{99}	Max.
Wei+Par	8.05	60.80	134.57	322.11	496.67	680.31	1003.25	1244.71	8773.33
Lognormal	87.66	154.06	210.72	335.23	459.36	649.64	1023.76	1428.77	2388.70
Emp+Par	82.20	184.69	255.22	374.28	461.46	547.42	883.90	1544.14	5978.70
Empírica	91.95	206.11	276.36	394.67	478.58	570.14	914.50	1484.81	4897.90

Tabla 3: Medidas resumen de las distribuciones propuestas y empirica de la cuantía individual

Simulación de la cartera

Una vez obtenidas las distribuciones para la cantidad de siniestros por póliza y de la cuantía de las mismas se puede proceder a hacer simulaciones de la cuantía total con el fin de obtener una aproximación de la distribución de esta, para cada uno de los métodos de simulación de la cuantía individual. Se realizaron 1000 muestras en cada método.

- Paso 1: Se obtiene una muestra la distribución de la cantidad de siniestros para una póliza.
- Paso 2: Se obtienen tantas muestras de la cuantía individual del siniestro como cantidad de siniestros obtenidos en el paso anterior.
- Paso 3: Se repite este proceso tantas veces como pólizas en la cartera.
- Paso 4: Se suman las cuantías simuladas, este es un valor simulado de la cuantía total.
- Paso 5: Se repite el proceso anterior para obtener una muestra de la distribución de la cuantía total.

Método 1: Empírica + Pareto I

Luego, dado que la media de la prima pura es 1720.809 millones, y el valor del cuantil 0.99 es 1800.739 millones, el margen de solvencia mínimo que se necesitaría para garantizar una probabilidad de solvencia del 99% es de 79.93 millones.

Método 2: Lognormal

Para este caso la media de la prima pura resulta 1766.875 millones, el valor del cuantil 0.99 es 1843.443 millones, y por lo tanto el margen de solvencia mínimo que se necesitaría para garantizar una probabilidad de solvencia del 99% es de 76.568 millones.

Método 3: Weibull + Pareto I

Si se usa el método 3 para simular la cuantía individual, la media de la prima pura equivale a 1819.868 millones, el valor del cuantil 0.99 a 1915.696 millones, y así el margen de solvencia mínimo que se necesitaría para garantizar una probabilidad de solvencia del 99% es de 95.828 millones.

Discusión

Método	Min.	P_1	P_5	P_{25}	P_{50}	P_{75}	P_{95}	P_{99}	Max.
Emp+Par	1606.461	1646.419	1665.747	1697.679	1719.918	1742.475	1778.905	1800.739	1842.229
Lognormal	1649.668	1694.790	1711.586	1744.472	1766.488	1788.409	1822.960	1843.443	1875.467
Wei+Par	1713.387	1740.850	1758.990	1795.156	1818.922	1843.051	1881.257	1915.696	1941.808

Tabla 4: Medidas resumen de las distribuciones propuestas de la cuantía total (en millones)

Todas las distribuciones propuestas para la simulación de la cuantía individual tienen tanto aspectos positivos como negativos.

La distribución log-normal, a pesar de distribuirse de forma similar a los datos observados, posee una cola pesada por lo que los valores extremos se vuelven muy poco probables. Si bien las distribuciones que se propusieron con valores extremos distribuidos como Pareto resuelven esto, tal vez se podría explorar más el valor extremo propuesto, ya que tal vez 10 millones es demasiado. También se pudo haber elegido otro λ para la distribución de la cantidad de siniestros por póliza.

La distribución de la cuantía total simulada en base al método Weibull+Pareto parece ser el método más conservador, ya que en más del 50% de las simulaciones, la cuantía total toma un valor mayor a 1800 millones de pesos. En cambio, el método basado en la distribución lognormal es el más arriesgado, ya que es el método que brinda el menor margen de solvencia, a pesar de que la cuantía total del método basado en la distribución Empírica+Pareto parece tomar valores menores. Esto se debe a que la distribución por el método lognormal es menos asimétrica a la derecha por no tener una cola liviana como el resto de métodos.

A continuación se presentan las primas puras (PP) estimadas, los márgenes de solvencia mínimos(MSM) por sobre las primas recargadas(PPR) para cada uno de los métodos propuestos.

Método	Recargo de Seguridad	PP	PPR	MSM
Empírica + Pareto I	1%	1720.809	1738.017	62.721
Empírica + Pareto I	2%	1720.809	1755.225	45.513
Empírica + Pareto I	3%	1720.809	1772.433	28.305
Log-normal	1%	1766.875	1784.544	58.899
Log-normal	2%	1766.875	1802.213	41.230
Log-normal	3%	1766.875	1819.881	23.562
Weibull $+$ Pareto I	1%	1819.868	1838.067	77.629
Weibull $+$ Pareto I	2%	1819.868	1856.266	59.431
Weibull $+$ Pareto I	3%	1819.868	1874.464	41.232

Los valores se encuentran expresados en millones de pesos.

Si se tuviera que recomendar un método, se considera que el más adecuado es el basado en la distribución empírica con cola Pareto, tomando un recargo de seguridad del 2%, ya que el margen de solvencia mínimo obtenido es razonable, y disminuirlo aún más implicaría aumentar el recargo de seguridad, lo cual pareciera ser excesivo.

Los cálculos y datos utilizados pueden ser consultados en el repositorio del trabajo.