### **Actuadores**



# C2.3 Reto en clase

#### Circuito temporizador con circuito NE555



#### Instrucciones

- De acuerdo con la información presentada por el asesor referente al tema, elabore lo que se solicita dentro del apartado desarrollo.
- Toda actividad o reto se deberá realizar utilizando el estilo MarkDown con extension .md y el entorno de desarrollo VSCode, debiendo ser elaborado como un documento single page, es decir si el documento cuanta con imágenes, enlaces o cualquier documento externo debe ser accedido desde etiquetas y enlaces.
- Es requisito que el archivo .md contenga una etiqueta del enlace al repositorio de su documento en Github, por ejemplo Enlace a mi GitHub
- Al concluir el reto el reto se deberá subir a github el archivo .md creado.
- Desde el archivo .md se debe exportar un archivo .pdf con la nomenclatura C2.3\_NombreAlumno\_Equipo.pdf, el cual deberá subirse a classroom dentro de su apartado correspondiente, para que sirva como evidencia de su entrega; siendo esta plataforma oficial aquí se recibirá la calificación de su actividad por individual.
- Considerando que el archivo .pdf, fue obtenido desde archivo .md, ambos deben ser idénticos y mostrar el mismo contenido.
- Su repositorio ademas de que debe contar con un archivo **readme**.md dentro de su directorio raíz, con la información como datos del estudiante, equipo de trabajo, materia, carrera, datos del asesor, e incluso logotipo o imágenes, debe tener un apartado de contenidos o indice, los cuales realmente son ligas o **enlaces a sus documentos .md**, evite utilizar texto para indicar enlaces internos o externo.
- Se propone una estructura tal como esta indicada abajo, sin embargo puede utilizarse cualquier otra que le apoye para organizar su repositorio.

```
readme.md
 blog
 | C2.1 x.md
 | C2.2_x.md
 | C2.3_x.md
 | img
 docs
| | A2.1_x.md
```



## Desarrollo

1. Investigue que es la modulación por ancho de pulso y para que sirve.

R= Modulación que nos permite variar el tiempo de la señal cuando se encuentra en estado alto o bajo. Esto significa que podemos controlar el tiempo que se acciona la señal. Esto nos sirve en servomotoresmotores controlando el tiempo de accion.

2. Calcule el valor de C y R para obtener un valor de señal de 5 segundos para el siguiente circuito temporizador mono-estable.

| Valor R  | Valor C | Procedimientos                                             |
|----------|---------|------------------------------------------------------------|
| 97 kohms | 47 μF   | t = 1.1 x 97,0000 ohms x 0.000047 Faradios = 5.01 segundos |

3. Como se podrá observar la imagen anexa corresponde a un circuito temporizador, que terminal se tendría que utilizar para activar el temporizador? Cual terminal se utilizaría si se desea integrar un actuador eléctrico?

R= Con el Trigger o Pin #2 se activa el temporizador y con el Output o Pin #3 es donde se ve el resultado del temporizador, por lo cual el actuador debe ir conectado ahi.





| Criterios     | Descripción                                                                              |    |
|---------------|------------------------------------------------------------------------------------------|----|
| Instrucciones | Se cumple con cada uno de los puntos indicados dentro del apartado Instrucciones?        |    |
| Desarrollo    | Se respondió a cada uno de los puntos solicitados dentro del desarrollo de la actividad? | 80 |



🕮 Ir a Readme

Ir a repositorio de GitHub