Public Key Encryption

Jiuqin ZHOU

Outline

- 1. Asymmetric Ciphers
 - i. Public-Key Cryptography →
 - ii. The RSA Algorithm →
 - iii. Other Public-Key Crypto-systems →

Simplified Model

Five Requirements

Plaintext: This is the readable message or data that is fed into the algorithm as input.

Simplified Model

Five Requirements

Encryption algorithm: The encryption algorithm performs various transformations on the plaintext.

Simplified Model

Five Requirements

Public and Private Keys: This is a pair of keys that have been selected so that if one is used for encryption, the other is used for decryption.

Simplified Model

Five Requirements

Ciphertext: This is the encrypted message produced as output. It depends on the plaintext and the key.

Simplified Model

Five Requirements

Decryption Algorithm: This algorithm accepts the ciphertext and the matching key and produces the original plaintext.

Simplified Model

Five Requirements

Computationally Easy

- 1. It is computationally easy for a party B to generate a key pair (public key PU_b , private key PR_b).
- 2. It is computationally easy for a sender A, knowing the public key and the message to be encrypted, M, to generate the corresponding ciphertext: $C=E(PU_b,M)$.
- 3. It is computationally easy for the receiver B to decrypt the resulting ciphertext using the private key to recover the original message: $M = D(PR_b, C) = D(PR_b, E(PU_b, M))$.

Simplified Model

Five Requirements

Computationally Infeasible

- 4. It is computationally infeasible for an adversary, knowing the public key, PU_b , to determine the private key, PR_b .
- 5. It is computationally infeasible for an adversary, knowing the public key, PU_b , and a ciphertext, C, to recover the original message, M.

Encryption & Decryption

Fast

Exponentiation

Algorithm

Extended

Euclidean

Algorithm

RSA Decryption

- Suppose that user A has published its public key $\{e,n\}$ and that user B wishes to send the message M to A. Then B calculates $C=M^e\mod n$ and transmits C.
- On receipt of this ciphertext, user A decrypts by calculating $M=C^d \mod n$ using its private key $\{d,n\}$.

Encryption & Decryption

Fast Exponentiation

Algorithm

Extended Euclidean

Algorithm

Important Observations

- $M^{ed}=M \mod n$ holds if $ed=1 \mod \phi(n)$.
- If n=p*q, where p and q are two prime numbers, then $\phi(n)=(p-1)(q-1).$

Encryption & Decryption

Fast

Exponentiation

Algorithm

Extended

Euclidean

Algorithm

RSA Key Generation

- 1. Select two prime number p and q, and calculate n=p*q and $\phi(n)=(p-1)(q-1).$
- 2. Select an integer e that is relatively prime to $\phi(n)$, and calculate its reverse element d such that $ed=1 \mod \phi(n)$.
- 3. We get the public key $\{d,n\}$ and private key $\{e,n\}$.

Encryption & Decryption

Fast Exponentiation Algorithm

Extended Euclidean Algorithm

- The speed of the RSA encryption & decryption bounds to the speed of calculating **exponentiation**.
- Let's form the problem in a formal way: Given integers a, n, and m with $n \ge 0$ and $0 \le a < m$, compute $a^n \mod m$.

Encryption & Decryption

Fast Exponentiation Algorithm

Extended

Euclidean

Algorithm

```
1 function powerModed(a, n, m) {
2   if (n = 0) {
3     return 1;
4   }
5
6   let x = power(a, Math.floor(n / 2));
7
8   x = x * x % m;
9   if (n % 2 = 1) {
10     x = x * a % m;
11   }
12
13   return x;
14 }
```

(2) In Javascript

Simple but not Efficient

$$a^n = \Pi_1^n a \tag{1}$$

Fast Exponentiation Algorithm

$$a^n = egin{cases} 1 & \mathrm{n} = 0 \ (a^{\lfloor n/2
floor})^2 & \mathrm{n} ext{ is even} \ (a^{\lfloor n/2
floor})^2 st a & \mathrm{n} ext{ is odd} \end{cases}$$

Encryption & Decryption

Fast Exponentiation Algorithm

Extended Euclidean Algorithm

- From the key generation process, there is one step seems too unclear to us: How to calculate the d, which is the reverse of e under the field $\mod \phi(n)$? By the definition of module, $ed=1\mod \phi(n)$ can be transformed into $ed+k\phi(n)=1$, and we are interested to find a pair (d,k).
- Let's form the problem in a formal way: Given integers a,b, how to find two additional integers x,y, such that $ax+by=\gcd(a,b)$.

Encryption & Decryption

Fast Exponentiation

Algorithm

Extended Euclidean Algorithm

Basic Euclidean Equation

$$\gcd(a,b) = \gcd(b\%a,a) \tag{1}$$

Other Important Equations

$$ax + by = \gcd(a, b) \tag{2}$$

$$(b\%a)x_1 + ay_1 = \gcd(b\%a, a)$$
 (3)

$$b\%a = b - \lfloor b/a \rfloor * a \tag{4}$$

Combine (1), (4), and (3)

$$a(y_1 - \lfloor b/a \rfloor x_1) + bx_1 = \gcd(a, b) \tag{5}$$

Encryption &

Decryption

Fast

Exponentiation

Algorithm

Extended

Euclidean

Algorithm

```
1 function gcdExtended(a, b) {
2    if (a = 0) {
3       return [b, 0, 1];
4    }
5
6    let [gcd, x_1, y_1] = gcdExtended(b % a, a);
7
8    x = y_1 - Math.floor(b / a) * x_1;
9    y = x_1;
10
11    return [gcd, x, y];
12 }
```

(6), (7) in Javascript

Compare (2) and (5)

$$\begin{aligned}
x &= y_1 - \lfloor b/a \rfloor x_1 \\
y &= x_1
\end{aligned} \tag{6}$$

The Ending Case

$$x=0$$
 $y=1$ if b%a == 0 (7)
 $gcd(a,b)=b$

Asymmetric Ciphers » Other Public-Key Crypto-systems

Diffie-Hellman Key Exchange

Elgamal Cryptographic System

- For this scheme, there are two publicly known numbers: a prime number q and an integer a that is a primitive root of q.
- Alice selects a random integer $X_A < q$ and computes $Y_A = a^{X_A} \mod q$. Similarly, Bob independently selects a random integer $X_B < q$ and computes $Y_B = a^{X_B} \mod q$.
- ullet Each side keeps the X value private and makes the Y value available publicly to the other side. Thus, X_A is Alice's private key and Y_A is Alice's corresponding public key, and similarly for Bob.
- Alice computes the key as $K=(Y_B)^{X_A}\mod q$ and Bob computes the key as $K=(Y_A)^{X_B}\mod q$. These two calculations produce identical results.

Asymmetric Ciphers » Other Public-Key Crypto-systems

Diffie-Hellman Key Exchange

Elgamal Cryptographic System

- The global elements of ElGamal are a prime number q and a, which is a primitive root of q.
- User A generates a private/public key pair as follows: Generate a random integer X_A , such that $1 < X_A \le q-1$. Compute $Y_A = a^{X_A} \mod q$. A's private key is X_A and A's public key is $\{q,a,Y_A\}$.

Asymmetric Ciphers » Other Public-Key Crypto-systems

Diffie-Hellman Key Exchange

Elgamal Cryptographic System

- Choose a random integer k such that $1 \leq k \leq q-1$. Compute a one-time key $K=(Y_A)^k \mod q$. Encrypt the message M as the pair of integers (C_1,C_2) where $C_1=a^k \mod q$; $C_2=KM \mod q$.
- User A recovers the plaintext as follows: Recover the key by computing $K=(C_1)^{X_A}\mod q$. Compute $M=(C_2K^{-1})\mod q$.