Neural Nets II

Elliott Ash

Text Data Course, Bocconi 2018

Tuning NN Hyperparameters

- Number of hidden layers:
 - having a single hidden layer will generally give decent results.
 - more layers with fewer neurons can recover hierarchical relations and complex functions
 - for text classification, try one or two hidden layers as a baseline.
- Number of neurons:
 - a common practice is to set neuron counts like a funnel, with fewer and fewer neurons at each level
 - or just pick 150 neurons per layer
 - overall, better to have too many neurons, and use regularization
- Activation functions:
 - ReLU works well for hidden layers
 - softmax is good for the output layer in classification tasks

Xavier and He Initialization

Activation function	Uniform distribution [-r, r]	Normal distribution
Logistic	$r = \sqrt{\frac{6}{n_{\rm inputs} + n_{\rm outputs}}}$	$\sigma = \sqrt{\frac{2}{n_{\rm inputs} + n_{\rm outputs}}}$
Hyperbolic tangent	$r = 4\sqrt{\frac{6}{n_{\rm inputs} + n_{\rm outputs}}}$	$\sigma = 4 \sqrt{\frac{2}{n_{\rm inputs} + n_{\rm outputs}}}$
ReLU (and its variants)	$r = \sqrt{2} \sqrt{\frac{6}{n_{\rm inputs} + n_{\rm outputs}}}$	$\sigma = \sqrt{2} \sqrt{\frac{2}{n_{\rm inputs} + n_{\rm outputs}}}$

 Connection weights should be initialized randomly according to a uniform distribution or normal distribution, as indicated in the table (see Geron Chapter 11).

model.add(Dense(64, kernel_initializer='he_normal')
model.add(Dense(64, kernel_initializer='he_uniform'

Other Activation Functions

► Leaky ReLU

$$\max(\alpha z, z)$$

where α is set to a small number, such as .01, or learned in training.

Exponential linear unit

$$\mathsf{ELU}(z) = \begin{cases} \alpha(\exp(z) - 1) & z < 0 \\ z & z \ge 0 \end{cases}$$

▶ In general, ELU has had the best performance so far, but it is slower than ReLU.

Batch normalization

- Another trick to speed up training:
 - in between layers, zero-center and normalize the inputs to variance one.
 - normally done before a non-linear activation function

```
\label{eq:from_series} \begin{array}{ll} from & keras.layers.normalization & import & BatchNormalization \\ model.add(Dense(64, use\_bias=False)) \\ model.add(BatchNormalization()) \\ model.add(Activation('elu')) \end{array}
```

Regularization for Sparse Models

As with linear models, neural network parameters can be regularized with an L1 and/or L2 penalty to push weak neurons to zero and produce a sparse model.

Dropout

- Another major advance in neural nets is dropout.
 - ▶ at every training step, every neuron has some probability *p* (typically .5) of being temporarily dropped out, so that it will be ignored at this step.
 - after training, neurons dont get dropped any more.
- Neurons trained with dropout:
 - cannot co-adapt with neighboring neurons and must be independently useful.
 - cannot rely excessively on just a few input neurons, they have to pay attention to all input neurons.
 - this makes your model less sensitive to slight changes in the inputs.
- If a model is over-fitting, increase dropout. Dropout can be higher for large layers and lower for small layers.

from keras.layers import Dropout model.add (Dropout (0.5))

Optimizers and loss functions

Choice of optimization algorithm is the topic of active research, which has shown that it can have a big impact on model performance.

```
model.compile(optimizer='adam', loss='binary_crossentropy')
model.compile(optimizer='sgd', loss='binary_crossentropy')
```

- A good starting choice is Adam (adaptive moment estimation), which is fast and usually works well. For robustness, can also try SGD.
- Loss functions:

Prediction Task	Loss Function to Use	
binary classification	binary_crossentropy	
multi-class classification	categorical_crossentropy	
regression	mean_squared_error	

Early stopping

A popular/efficient regularization method is to continually evaluate your model at regular intervals, and then to stop training when the test-set accuracy starts to decrease.

Practical Guidelines

Table 11-2. Default DNN configuration		
He initialization		
ELU		
Batch Normalization		
Dropout		
Adam		
None		

Batch Training with Large Data

If data sets don't fit in memory, one can load the data in batches from disk.

can also continuously update a saved model.

Grid search for model choice

- ▶ The flexibility of DNNs is a blessing and a curse.
 - in general, one should make a complex model that allows regularization.
- ▶ But still, there are many choices to be made.
 - to choose the number of hidden layers, for example, one can use cross-validation grid search (as we did with standard scikit-learn models).

Grid search for model choice (code)

```
from keras.wrappers.scikit_learn import KerasClassifier
from sklearn.model selection import GridSearchCV
# instantiate KerasClassifier with build function
def create_model(hidden_layers=1):
    model = Sequential()
    model.add(Dense(16, input_dim=num_features))
    for i in range(hidden_layers):
        model.add(Dense(8, activation='relu'))
    model.add(Dense(1, activation='sigmoid'))
    model.compile(loss='binary_crossentropy',
                optimizer='adam'.
                metrics= ['accuracy'])
    return model
clf = KerasClassifier(create_model)
# set oup grid search CV to select number of hidden layers
params = {'hidden_layers' : [0,1,2,3]}
grid = GridSearchCV(clf, param_grid=params)
grid. fit (X,Y)
grid.best params
```