

1010101010 10101010

第 6 章 存储器系统

6.1 概述

在现代计算机中,存储器处于全机中心地位

10000101

存储容量(Memory Capacity)

★ 存储容量指存储器可以存储的二进制信息量。 存储容量=字数×字长

如:一个存储器能存储1024个字,字长8位,则存储器容量可用 1024×8表示

- ★ 微机中的存储器一般都是以字节(8位)进行编址,即总是认为一个字节是"基本"的字长。常用B表示
- ★ 存储单元数一般用K、M、G、T表示 1K=1024 1M=1024K=1024*1024 1G=1024M

1T=1024G

半导体存储器

三. 存储器(芯片)结构与存储原理

1. 存储体

- 一个基本存储电路只能存储一个二进制位。
- 将基本的存储电路有规则地组织起来,就是存储体。
- 存储体又有不同的组织形式:

将各个字的同一位组织在一个芯片中,如:8118 16K*1 (DRAM)

将各个字的 4位 组织在一个芯片中, 如: 2114 1K*4 (SRAM)

将各个字的 8位 组织在一个芯片中, 如:6116 2K*8 (SRAM)。

2. 外围电路

为了区别不同的存储单元,以地址号来选择不同的存储单元。

——于是电路中要有 地址译码器、I/O电路、片选控制端CS、输出缓冲器等外围电路

故: 存储器(芯片) = 存储体 + 外围电路

6.3 微型计算机系统中的存储器组织

现代计算机中的存储器处于全机中心地位

- 对存储器的要求是: 容量大,速度快,成本低
- 为解决三者之间的矛盾,目前通常采用多级存储器体系结构,即使用高速缓冲存储器、主存储器和外存储器。

存储器的基本组织

(1) 与CPU的连接

主要是 地址线、控制线、数据线 的连接。

(2) 多个芯片连接

例如:存储器容量为8K×8,若选用2114芯片(1K×4),则需要:

$$\frac{8K \times 8}{1K \times 4} = 8 \times 2 = 16$$

(1)位扩展法

只在位数方向进行扩展(加大字长),而存储器的字数与存储器芯片字数一致。连接时将各芯片地址线的相应位及各控制线并联,而数据线分别接到数据总线的各位。

用8K×1位芯片组成8K×8位的存储器需要8个芯片,

各芯片地址线、CS和WE分别连接在一起,数据线各自独立(每片1位)

(2) 字扩展法

仅扩展存储容量(单元数),而位数不变。连接时将各芯片同名地址线、数据线、读/写线并联,而使用片选信号区分各个芯片。

如用16K×8位的芯片组成64K×8位的存储器需要4个芯片

地址线——共需16根,片内(214=16384)14根,选片:2根,数据线

——8根,控制线——WE

地址空间分配表

地址	选片	片内	总地址	说明
片号	$A_{15}A_{14}$	$A_{13}A_{12}A_1A_0$		
1	00	00,0000,0000,0000	0000	最低地址
	00	11,1111,1111,1111	3FFF	最高地址
2	01	00,0000,0000,0000	4000	最低地址
	01	11,1111,1111,1111	7FFF	最高地址
3	10	00,0000,0000,0000	8000	最低地址
	10	11,1111,1111,1111	BFFF	最高地址
4	11	00,0000,0000,0000	C000	最低地址
	11	11,1111,1111,1111	FFFF	最高地址

(3) 字位同时扩展法

用1k×4的存储器芯片2114组成2k×8的存储器

2. 存储器地址译码方法

由于每一片存储芯片的容量有限,因此系统存储器总是由若干存储芯片构成。这就使得存储器的地址译码分为片选控制译码和片内译码两部分。

(1) 线选法

用高位地址直接作为芯片的片选信号,每一根地址选通一块芯片(无位扩展情况)。

例:某微机存储容量为4KB,CPU寻址空间为64KB(即地址总线为16位),由1KB的芯片构成(片内地址为10位)。

表1 线选法所示存储器地址分布表

芯片	芯片 地址空间											
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1											
	$A_{15}A_{14}$	$A_{13}A_{12}A_{11}A_{10}$	$A_9A_8A_7A_6A_5A_4A_3A_2A_1A_0$	16进制地址码								
(1)	0 0	0 0,0 1	0 0,0 0 0,0 0 0 0	0400H								
	0 0	0 0,0 1	1 1, 1 1 1 1,1 1 1 1	07FFH								
(2)	0 0	0 0, 1 0	0 0,0 0 0,0 0 0 0	0800H								
	0 0	0 0 , 1 0	1 1,1 1 1 1,1 1 1 1	0BFFH								
(3)	0 0	0 1, 0 0	0 0,0 0 0 0, 0 0 0 0	1000H								
	0 0	0 1, 0 0	1 1, 1 1 1 1, 1 1 1 1	13FFH								
(4)	0 0	1 0, 0 0	0 0, 0 0 0 0, 0 0 0	2000H								
	0 0	1 0, 0 0	1 1, 1 1 1,1 1 1 1	23FFH								

线选法连线简单,但地址会有重叠. (如A15-A14取不同值时,各芯片对应不同地址)

(2) 全译码法

全译码法除了将地址总线的低位地址直接与芯片的地址线相连之外,其余高位地址全部接入译码器,由译码器的输出作为各芯片的片选信号。

例:某微机地址线16位,存储容量为64KB,由8KB的芯片构成(片内地址为13位)。

(3) 部分译码法

将高位地址线中的一部分进行译码,产生片选信号。该方法适用于 不需要全部地址空间的寻址能力,但采用线选法地址线又不够用的 情况。

(4) 存储器地址译码电路设计步骤

- ① 根据系统中实际存储器容量,确定存储器在整个寻址空间中的位置;
- ② 根据所选用存储器芯片的容量,画出地址分配图或列出地址分配表;
- ③ 根据地址分配图或分配表确定译码方法并画出相应的地址位图;
 - ④ 选用合适器件, 画出译码电路图。

存储器地址译码举例:

某微机系统地址总线为 $16位(A_{15}—A_0)$; 双向数据总线 $8位(D_7—D_0)$,控制总线中与主存有关的信号有:

MREQ(存储器请求),R/W(读/写控制)。

① 实际存储器地址空间分配如下:

0000H—1FFFH为系统程序区(8KB),由EPROM组成;

2000H—7FFFH为用户程序区(24KB);由SRAM组成,最高

2K地址空间为系统程序工作区(2KB),由SRAM组成。

② 现选用如下存储器芯片,据此画出地址分配图。

EPROM: 8K×8位(控制端仅有CS),需1片

SRAM: 8K×8位,需3片;2K×8位,需1片

地址分配表

芯片号	类型与容量	地址范围
(1)	EPROM 8KB	0000H- 1FFFH
(2)	SRAM 8KB	2000H- 3FFFH
(3)	SRAM 8KB	4000H- 5FFFH
(4)	SRAM 8KB	6000H- 7FFFH
(5)	SRAM 2KB	F800H- FFFFH

系统寻址空间64KB

地址分配图

③ 画出地址位图

←片	← 8KB ← ← − − − − 8KB EPROM/SRAM片内译码 − − →														
A ₁₅	A ₁₄	A ₁₃	A ₁₂	A ₁₁	A ₁₀	A ₉	A ₈	$\mathbf{A_7}$	A ₆	A ₅	A ₄	A ₃	A ₂	$\mathbf{A_1}$	A_0
0	0	0		0000H——1FFFH (片1)											
0	0	1		2000H——3FFFH (片2)									2)		
0	1	0		4000H——5FFFH (片3)									3)		
0	1	1		6000H——7FFFH (片4)											
1	1	1	1	1 1 F800H——FFFFH (片5)								5)			
→ 2KB SRAM 片选译码 → CKB SRAM片内译码 →															

④ 选用3-8译码器和基本门电路设计电路

3. 课堂练习

- (1) 有若干片1K×8位的SRAM芯片,采用字扩展方法构成4KB存储器,问:需要_4__片SRAM?该存储器需要多少
- 12 根地址线?参与片选的地址位至少需要_2_位?
- (3) 如内存按字节编址,用存储容量为32K×8的存储芯片构成地址为A0000H至EFFFFH的存储空间,则需要多少片? (10)

(4) 已知如下电路,问第6个芯片的寻址范围从_A000H_到

BFFFH 。

四、IBM PC/XT 的存储器分配图

00000H

系统板上的RAM 256K

3FFFFH 40000H

IO通道中的扩展RAM 384K

9FFFFH A0000H

保留(包括显示)的RAM 128K

BFFFFH C0000H

DOUDH 扩展的ROM FERRI 192K

EFFFFH F0000H

16K (可在系统板上扩展)

F3FFFH F6000H

32KBASIC程序

FE000H

FFFFFF

8K基本ROM

RAM 640K

包括中断向量区;BIOS数据区; DOS内存驻留程序;用户程序区。

保留 128K

显卡上的显示缓冲区在此区域 单色显示在 B0000H~B0FFFH; 彩色/图形在B8000H~BBFFFH。

ROM 256K

C0000H~EFFFFH, 所插卡的BIOS;

FE000H~FFFFFH,系统板的基本输入输出系统 BIOS,占8K字节。

F6000H~FDFFFH, 32K放BASIC程序。

第6章 学习重点

- 1. 掌握存储器的基本概念(分类,主要性能指标,容量)
- 2. 区别存储器地址和存储单元的内容,掌握存储器读写操作过程
- 3. 掌握存储器的扩展技术(位扩展、字扩展)
- 4. 掌握片选译码方法(线选法、全译码法)