Team Plan-v1.0

ECLIPSETM

by

3U STUDIOS

Editor: Σάββας Γεράσιμος 1072475

Reviewers: Μπέσιας Σπυρίδων 1072524

Σερταρίδης Ηλίας 1072480 Καπογιάννης Κωσταντίνος 1072521

Περιγραφή της μεθόδου εργασίας της ομάδας

Λαμβάνοντας υπόψη τις μεθοδολογίες Scrum και Kanban συνθέσαμε μια δική μας μεθοδολογία που στηρίζεται στη μέθοδο Kanban. Συγκεκριμένα θα υπάρχουν διάφορα υποέργα τα οποία θα επιλέγονται για υλοποίηση από τα μέλη της ομάδας μας, ανάλογα με βάση τα παραδοτέα. Ταυτόχρονα θα εργάζονται δυάδες σε διαφορετικά κομμάτια ενός παραδοτέου με editor, contributor και τα υπόλοιπα δύο μέλη θα έχουν τον ρόλο των reviewers. Μάλιστα η ομάδα μας θα λειτουργεί με βάση την agile, καθώς κατά την διάρκεια υλοποίησης ενός υπο-έργου μπορούν να προκύψουν νέες ιδέες, προβληματισμοί και συνεπώς να χρειαστεί να ανατρέξουμε σε προηγούμενα ολοκληρωμένα ή παράλληλα υπο-έργα για διορθώσεις ή προσθήκες. Θα υπάρχουν ορισμένες τροποποιήσεις όπως για παράδειγμα τα υποχρεωτικά έργα για τα οποία δεν θα υφίσταται καθυστέρηση και αυτά θα είναι οι αναφορές για τα παραδοτέα. Επίσης θα λαμβάνουν χώρα κάθε εβδομάδα ορισμένα meeting και θα γίνονται αξιολογήσεις ανά τακτά χρονικά διαστήματα.

Βασικά εργαλεία

Η γλώσσα υλοποίησης που θα χρησιμοποιήσουμε για το backend και για τα γραφικά είναι η Java, για τη βάση δεδομένων η mySQL και για τα τεχνικά κείμενα το Word.

Στα εργαλεία που χρησιμοποιούμε συγκαταλέγονται:

Για Pert chart χρησιμοποιούμε το Miro

https://miro.com/app/dashboard/

Για Gantt chart χρησιμοποιούμε το Monday

https://support.monday.com/hc/en-us/articles/360015643840-The-Gantt-Chart-View-and-Widget

Για Sql χρησιμοποιούμε το Mysql Workbench

https://www.mysql.com/products/workbench/

Για Java-Back-end χρησιμοποιούμε το Intellij

https://www.jetbrains.com/idea/

Για Mockup/Design χρησιμοποιούμε το Figma

https://www.figma.com/

Για το διάγραμμα ανάθεσης δυναμικού χρησιμοποιούμε το draw.io

https://app.diagrams.net/

Παρακάτω φαίνονται αναλυτικά όλα τα υπο-έργα και οι διάφορες φάσεις του project του εξαμήνου στις οποίες πρέπει να υλοποιηθούν, καθώς και ο κανονικός χρόνος διάρκειας του κάθε υπο-έργου, λάβαμε υπόψη τον κάθε μήνα με βάση την περίοδο που θα υλοποιηθεί το project του μαθήματος και λάβαμε υπόψη μας τα σαββατοκύριακα(αρχικά λάβαμε υπόψη και τις αργίες αλλά λόγω περιορισμών των διαθέσιμων προγραμμάτων ήταν αδύνατο). Όσον αφορά το κρίσιμο μονοπάτι σε ορισμένες περιπτώσεις που κάποια υπο-έργα ολοκληρώνονταν την ίδια μέρα, θεωρήθηκε κρίσιμο μονοπάτι αυτό που οδηγούσε σε ένα υπο-έργο που είναι προαπαιτούμενο για τα παραδοτέα:

1. Deliverables 1:

- TY1-Project-description-V0.1 (4 εργάσιμες μέρες).
- TY2-Team-plan-V0.1 (3 εργάσιμες μέρες).
- TY3-Project-plan-V0.1 (3 εργάσιμες μέρες).
- TY4-Risk-assesment-V0.1 (1 εργάσιμες μέρες).

2. Deliverables 2:

- TY5-Use-cases-V0.1 (6 εργάσιμες μέρες).
- TY6-Domain-model-V0.1 (3 εργάσιμες μέρες).

3. Deliverables 3:

- TY7-Robustness-diagrams-V0.1 (6 εργάσιμες μέρες).
- TY8-Domain-model-V0.2 (3 εργάσιμες μέρες).
- TY9-Use-cases-V0.2 (3 εργάσιμες μέρες).

4. Deliverables 4:

- TY10-Sequence-diagrams-V0.1 (4 εργάσιμες μέρες).
- TY11-GUI-Design (3 εργάσιμες μέρες).
- TY12- Domain-model-V0.3 (3 εργάσιμες μέρες).
- TY13-Back-end-Design (3 εργάσιμες μέρες).
- TY14-Database-Design (3 εργάσιμες μέρες).

5. Deliverables 5:

- TY15-Class-diagrams-V0.1 (3 εργάσιμες μέρες).
- TY16-Database-Implementation (5 εργάσιμες μέρες).
- TY17-Back-end-Implementation (10 εργάσιμες μέρες).
- TY18-GUI-Implementation (10 εργάσιμες μέρες).
- TY19-Test-Cases-V0.1 (5 εργάσιμες μέρες).

6. Deliverables 6:

TY20-Final-Versions (8 εργάσιμες μέρες).

Κατόπιν φαίνεται η ονομασία του κάθε υπο-έργου που αναφέραμε παραπάνω:

TY1	Project-description-V0.1						
TY2	Team-plan-V0.1						
TY3	Project-plan-V0.1						
TY4	Risk-assesment-V0.1						
TY5	Use-cases-V0.1						
TY6	Domain-model-V0.1						
TY7	Robustness-diagrams-V0.1						
TY8	Use-cases-V0.2						
TY9	Domain-model-V0.2						
TY10	Sequence-diagrams-V0.1						
TY11	GUI-Design						
TY12	Domain-model-V0.3						
TY13	Back-end-Design						
TY14	Database-Design						
TY15	Class-diagrams-V0.1						
TY16	Database-Implementation						
TY17	Back-end-Implementation						
TY18	GUI-Implementation						
TY19	Test-Cases-V0.1						
TY20	Final-Versions						

Μετέπειτα κατασκευάζουμε ένα βοηθητικό πίνακα με τα διαφορετικά υπο-έργα, τις εξαρτήσεις (προαπαιτούμενα υπο-έργα), καθώς και τον κανονικό, το χειρότερο και το καλύτερο χρόνο διεκπεραίωσης του κάθε υπο-έργου:

activity	TY1	TY2	TY3	TY4	TY5	TY6	TY7	TY8	TY9	TY10	TY11	TY12	TY13
predecessors			TY1	TY1	TY3	TY3	TY5	TY7	TY7	TY7	TY8	TY11	TY12
			TY2	TY2	TY4	TY4	TY6				TY9		
											TY10		
Expected	4	3	3	1	6	3	6	3	3	4	3	3	3
time	days	days	days	day	days								

Best time	3	2	2	0.5	5	2	4	2	2	3	2	2	2
	days	days	days	day	days								
Worst time	6	5	4	1.5	8	4	8	5	4	5	4	4	4
	days												
activity	TY14	TY15	TY16	TY17	T18	TY19	TY20						
predecessors			TY1	TY1	TY3	TY3	TY5						
			TY2	TY2	TY4	TY4	TY6						
Expected	3	3	5	10	10	5	8						
time	days												
Best time	2	2	4	8	6	3	6						
	days												
Worst time	4	4	7	12	13	7	10						
	days												

<u>Διάγραμμα PERT:</u>

Έχοντας κάνει την ανάλυση του έργου σε υπο-έργα και έχοντας μια αρχική εκτίμηση των χρονικών πλαισίων και των εξαρτήσεων μεταξύ τους, μπορούμε να προχωρήσουμε στην κατασκευή του διαγράμματος PERT, προκειμένου να δούμε γραφικά τις εξαρτήσεις και τις παραλληλοποιήσεις των υπο-έργων. Στην περίπτωση των Deliverables 1,4,5 χρειάστηκε ο υπολογισμός της διακύμανσης. Τα κρίσιμα μονοπάτια έχουν την ίδια διάρκεια, ωστόσο πρέπει να ληφθεί υπόψη η διακύμανση για να επιλεχθεί το κρίσιμο μονοπάτι. Μόνο στα παράλληλα ΤΥ έχει νόημα η επιλογή της διακύμανσης και συγκεκριμένα στις περιπτώσεις:

- ➤ TY1-TY2 ή TY1-TY3
- > TY10-TY11 ή TY10-TY12 ή TY10-TY13
- ➤ TY14-TY15 ή TY14-TY16 ή TY14-TY17 ή TY14-TY18

Τυπικά	Διακύμανση
Υποέργα	

TY2	[(5-2)/6] ² =0,25
TY3	[(4-2)/6] ² =0,11
TY11	[(4-2)/6] ² =0,11
TY12	[(4-2)/6] ² =0,11
TY13	[(4-2)/6] ² =0,11
TY15	[(4-2)/6] ² =0,11
TY16	[(7-4)/6] ² =0,25
TY17	[(12-8)/6] ² =0,44
TY18	[(13-6)/6] ² =1,36

Το διάγραμμα φαίνεται παρακάτω:

Deliverables 3

<u>Διάγραμμα Gantt:</u>

Έχοντας υλοποιήσει το διάγραμμα PERT, είναι αρκετά εύκολο να σχεδιάσουμε το διάγραμμα Gantt, το οποίο φαίνεται παρακάτω:

