CREDIT CARD FRAUD DETECTION

Shruti Agarwal, Zihao Zhou, Zora Mardjoko

Motivation

\$246,000,000

was lost due to credit card fraud in 2023.

Objective and Value Proposition

- Developing a predictive model to determine whether a transaction is fraudulent or not.
 - Flag fraudulent transactions and block them!
- Understanding which features play a significant role in predicting fraudulent transactions.

Exploratory Data Analysis

Unnamed: 0	trans_date_trans_time	cc_num	merchant	category	amt	first	last	gender	street	merch_lat	merch_long	is_fraud
0	21/06/2020 12:14	2.291160e+15	fraud_Kirlin and Sons	personal_care	2.86	Jeff	Elliott	М	351 Darlene Green	33.986391	-81.200714	0
1	21/06/2020 12:14	3.573030e+15	fraud_Sporer- Keebler	personal_care	29.84	Joanne	Williams		3638 Marsh Union	39.450498	-109.960431	0
2	21/06/2020 12:14	3.598220e+15	fraud_Swaniawski, Nitzsche and Welch	health_fitness	41.28	Ashley	Lopez		9333 Valentine Point	40.495810	-74.196111	0
3	21/06/2020 12:15	3.591920e+15	fraud_Haley Group	misc_pos	60.05	Brian	Williams	М	32941 Krystal Mill Apt. 552	28.812398	-80.883061	0

Dataset

#	Column	Non-Null Count	Dtype
0	Unnamed: 0	555719 non-null	int64
1	trans_date_trans_time	555719 non-null	object
2	cc_num	555719 non-null	float64
3	merchant	555719 non-null	object
4	category	555719 non-null	object
5	amt	555719 non-null	float64
6	first	555719 non-null	object
7	last	555719 non-null	object
8	gender	555719 non-null	object
9	street	555719 non-null	object
10	city	555719 non-null	object
11	state	555719 non-null	object
12	zip	555719 non-null	int64
13	lat	555719 non-null	float64
14	long	555719 non-null	float64
15	city_pop	555719 non-null	int64
16	job	555719 non-null	object
17	dob	555719 non-null	object
18	trans_num	555719 non-null	object
19	unix_time	555719 non-null	int64
20	merch_lat	555719 non-null	float64
21	merch_long	555719 non-null	float64
22	is_fraud	555719 non-null	int64
			T

j€	ect						
t64		columns (total 14	columns):				
oat64		Column	Non-Null Count	Dtype			
oat64							
t64		merchant	555719 non-null	object			
	1	category	555719 non-null	object			
	2	amt	555719 non-null	float64			
	3	gender	555719 non-null	int64			
	4	city_pop	555719 non-null	int64			
	5	is_fraud	555719 non-null	int64			
	6	full_name	555719 non-null	object			
	7	job_category	555719 non-null	object			
	8	month	555719 non-null	int32			
	9	day_of_week	555719 non-null	int32			
	10	time_of_day	555719 non-null	int64			
	11	distance_between	555719 non-null	float64			
	12	age	555719 non-null	int64			
	13	division	555719 non-null	object			

Feature Engineering

- unix_time → time_of_day, month, day_of_week
- merch_lat, merch_long, lat, long → distance_between
- 3. $dob \rightarrow age$
- 4. state → division

EDA: Graphed

- Transactions were dispersed throughout
- Divided location (long/lat) into geographic "zones"
- Calculated distance between for relative measure

What We Learned from EDA: Correlation Mx

- Correlated features:zip, lat, long,merch_lat,merch_long
- Computed
 distance_between
 and dropped
 correlated features

What We Learned from EDA: Categories

What We Learned from EDA: Price

Skewed price distribution

Modeling

Method 1: Vanilla Logistic Regression

Metrics:

Logistic Regression Metrics

Accuracy: 0.9953303759047397

Precision: 0.07142857142857142

Recall: 0.0078125

F1 Score: 0.014084507042253521

Train recall: 0.01556420233463035

Takeaways:

High accuracy, low precision/recall

→ class imbalance

High training/testing error

→ underfitting

Logistic Regression Tuning

SMOTE-d on Normalized

Address class imbalance!

Recall → out of all true fraudulent,
% correct prediction

Precision → out of fraudulent predictions, % correct prediction

Logistic Regression Metrics

Accuracy: 0.896367699543044

Precision: 0.031456432840515886

Recall: 0.78125

F1 Score: 0.06047777441790142

Method 2: Decision Tree Classification

Precision: 0.1601796407185629

Recall: 0.8359375

Accuracy: 0.9805877055468464 F1-score: 0.26884422110552764

Performed GridSearch + 3-Fold Cross Validation.

Optimal parameters: max_depth = 10

Method 3: Random Forest Classification

Precision: 0.9375

Recall: 0.703125

Accuracy: 0.9985324038557754

F1-score: 0.8035714285714286

Performed GridSearch + 2-Fold Cross Validation.

Optimal parameters:

max_depth = 30 n_estimators = 35

Conclusion

Best Overall Model:

Random Forest Classifier

Random Forest Classification

Precision: 0.9375

Recall: 0.703125

Accuracy: 0.9985324038557754

F1-score: 0.8035714285714286

- Highest precision (0.94 > 0.17)
- Improved recall score (low number of false negatives)
- Most even distribution of weights on features

Limitations and Areas to Explore

- Limitations
 - Model results display tradeoff between high precision and high recall
 - Quantity of one hot-encoded data (at what point does it become "too much" data?)
- In the future, it would be interesting to consider implementing the following modifications:
 - Complex feature engineering (i.e. repeated transactions)
 - Job categories into sectors to reduce blow up