Wi-Fi introduction + NetAnim

Andrea Lacava

Stack protocollare

IEEE 802.11 Wi-Fi

Due modi operazionali (operating modes):

- Infrastructure Mode:
 - Ogni nodo è associato ad un Access Point (AP), attraverso il quale tutti i frames sono inviati;
 - Vari APs possono essere connessi tra di loro, di solito attraverso una rete cablata, per creare un 802.11 network esteso (e.g., Sapienza wifi / eduroam / etc.)
- Ad hoc Mode:
 - I nodi comunicano direttamente tra di loro, senza nessun AP da tramite;

IEEE 802.11 Stack protocollare

Logical Link Sub-layer Medium Access Control Sub-layer								
802.11 (Legacy)	802.11a	802.IIb	802.11g	802.IIn	802.11ad	802.11ac (WiFi 5)	802.11ah	802.11ax (WiFi 6)
Frequency hopping, Spread Spectrum	OFDM with 48+4 carriers	Spread Spectrum + QPSK, CCK	OFDM with 48+4 carriers	MIMO + OFDM	256 QAM	Downlink MU-MIMO OFDM 256QAM	MU-MIMO OFDM 256QAM	DL &UL MU-MIMO OFDMA 1024 QAM
2.4 GHz and infrared	5 GHz	2.4 GHz	2.4/5 GHz	2.4/5 GHz	60 GHz	2.4/5 GHz	0.9 GHz	2.4/5 GHz
22 MHz	20 MHz	22 MHz	20 MHz	20/40 MHz	+2 GHz	20/40/80/ 160 MHz	1/2/4/8/ 16 MHz	20/40/80/ 160 MHz
I-2 Mbps	6 to 54 Mbps	1, 2, 5.5 and 11 Mbps	6-54 Mbps	Up to 150 Mbps/ stream, up to 4 streams	Up to 7 Gbps	Up to 866 Mbps/ stream, up to 4 streams	Up to 86 Mbps/ stream, up to 3 streams	Up to 1201 Mbps/ stream, up to 8 streams
1997-1999	1999	1999	2003	2009	2012	2013	2016	2020

Wi-Fi Physical Layer

- Tutti i vari standard operano in una banda ISM (900 MHz, 2.4 GHz, 5 GHz, 60 GHz)
- Tutti i vari standard supportano la transmissione a diversi livelli di data-rates e/o fanno data rate-adaption:
 - Il tasso di trasmissione non è fisso, ma è negoziato in base alle condizioni attuali del canale

Wi-Fi Medium Access Control Layer

Due diversi modalità:

- Distributed Coordination Function: CSMA/CA with (optional) RTS/CTS
- Point Coordination Function: l'Access Point funziona come un coordinator centralizzato con meccanismo di polling

Distributed Coordination Function (without RTS/CTS)

Distributed Coordination Function (without RTS/CTS)

Distributed Coordination Function (with RTS/CTS)

Distributed Coordination Function (with RTS/CTS)

Pointed Coordination Function

Funzionalità aggiuntive

Frammentazioni:

- Frames piccoli hanno più probablità di essere ricevuti correttamente
- I Frames possono essere divisi smaller frames, each with its own checksum
- Stop-and-wait flow control is used for each sub-frame

Energy Saving:

- Modalità Risparmio energetico: I nodi che non hanno nulla da mandare o ricevere possono entrare in modalità sleep
- L'AP salva il traffico verso tali nodi bufferizzandolo
- L'AP invia dei beacon frames periodici con le info riguardo l'AP, la sicurezza (Passoword, etc), e anche se c'è del traffic in attesa di delivery per particolari nodi (usando una struttura a bit-map)
- Il nodo quando si sveglia può fare polling verso l'AP per il dati e poi mettersi di nuovo in modalità sleep

Traffic Prioritization:

- Arbitration Inter Frame Space (AIFS): si possono definire diversi time frames per dare diverse priorità a diversi tipi di traffico.
- SIFS<AIFS1<DIFS<AIFS2<EIFS</p>
- Extended Inter Frame Spacing (EIFS): time frame usato da una station che ha appena ricevuto un frame non decodificato correttamente (malevolo o semplicemente errato)

Struttura del frame Wi-Fi

Frame control:

- Protocol version (solo 00 per adesso)
- Type (data, control, or management)
- Subtype fields (e.g., RTS or CTS)
- To DS and From DS (to or from the network after the AP)
- More fragments -> A questo fragment ne seguiranno altre
- Retry -> Indica se è una retransmission
- Power management -> Chi manda questo frame sta per entrare in power-save mode
- More data -> Chi manda questo frame has dei frames addizionali per il ricevente
- Protected Frame -> II payload del frame è stato been cifrato per sicurezza
- Order -> Ordine -> informa il ricevente che i layer superiori si aspettano che la sequenza dei frames arrive in ordine (no ordering upper layer va gestito qua)

Struttura del frame Wi-Fi

Duration control:

- Per quanto il frame ed il suo acknowledgement occuperanno il canale (NAV)
- Address 1, 2, 3:
 - receiver, transmitter, final destination
- Sequence:
 - numero del frame in modo da trovare i frames duplicati
- Data:
 - Il vero e proprio payload, up to 2312 bytes
- Frame check sequence:
 - 32-bit CRC

Servizi del Wi-Fi

- Definiti dallo standard:
 - Association:
 - per connettersi ad un AP
 - Reassociation:
 - per connettersi ad un altro AP nella stessa rete
 - Disassociate:
 - per disconnettersi dall' AP
 - Autenticazione:
 - diversi metodi disponibili
 - WEP (Wired Equivalent Privacy):
 - password condivisa che cifra tutti i messaggi, molto facile da rompere
 - WPA2 (WiFi Protected Access 2):
 - L'AP può parlare con un authentication server che ha un database di username e password delle the stations e decide se si possono ammettere alla rete
 - In alternativa, una pre-shared key può essere configurata

NetAnim

- Step di installazione sulla VM
 - sudo apt install qt5-default mercurial
 - hg clone http://code.nsnam.org/netanim
 - cd netanim
 - make clean
 - qmake NetAnim.pro
 - make
- Link utili:
 - https://www.nsnam.org/wiki/NetAnim_3.108