МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский ядерный университет «МИФИ»

Новоуральский технологический институт -

филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

(НТИ НИЯУ МИФИ) Колледж НТИ

Цикловая методическая комиссия информационных технологий

ОТЧЕТ №10

ПО ПРАКТИЧЕСКОМУ ЗАНЯТИЮ НА ТЕМУ

«ПРОГРАММНАЯ РЕАЛИЗАЦИЯ КРИПТОГРАФИЧЕСКИХ АЛГОРИТМОВ»

ПМ.05 «Разработка программного обеспечения компьютерных сетей» МДК.05.01 «Защита информации в КС»

Специальность СПО 09.02.03 «Программирование в компьютерных системах»

очная форма обучения на базе основного общего образования

Выполнил		
студент группы КПР-47 Д	6	
Егорушкин И.А.	11.12.2020	Lyn2
	дата	подпись
Проверил		
преподаватель		
Горницкая И.И.	дата	подпись

Цель работы: Анализ рисков информационной безопасности

Оборудование:

AMD Ryzen 5 3550U

ОЗУ 8 Гб

Программное обеспечение:

Windows 10 Professional 64 бит;

Ход работы:

Номер	Исходные данные									
варианта	Часть 1	Часть 2								
	Алгоритм шифрования	р	q	e	d	\mathbf{m}_1	m ₂	m ₃		
2	Одиночная перестановка	17	11	7	23	8	15	45		

Применение алгоритма симметричного шифрования

Симметричное шифрование используется для обмена данными во многих современных сервисах, часто в сочетании с асимметричным шифрованием. Например, мессенджеры защищают с помощью таких шифров переписку (при этом ключ для симметричного шифрования обычно доставляется в асимметрично зашифрованном виде), а сервисы для видеосвязи — потоки аудио и видео. В защищенном транспортном протоколе TLS симметричное шифрование используется для обеспечения конфиденциальности передаваемых данных.

Симметричные алгоритмы не могут применяться для формирования цифровых подписей и сертификатов, потому что секретный ключ при использовании этого метода должен быть известен всем, кто работает с шифром, что противоречит самой идее электронной подписи (возможности проверки ее подлинности без обращения к владельцу).

Применение алгоритма асимметричного шифрования

Асимметричное шифрование решает главную проблему симметричного метода, при котором для кодирования и восстановления данных используется один и тот же ключ. Если передавать этот ключ по незащищенным каналам, его могут перехватить и получить доступ к зашифрованным данным. С другой стороны, асимметричные алгоритмы гораздо медленнее симметричных, поэтому во многих криптосистемах применяются и те и другие.

Например, стандарты SSL и TLS используют асимметричный алгоритм на стадии установки соединения (рукопожатия): с его помощью кодируют и передают ключ от симметричного шифра, которым и пользуются в ходе дальнейшей передачи данных.

Также асимметричные алгоритмы применяются для создания электронных подписей для подтверждения авторства и (или) целостности данных. При этом подпись генерируется с помощью закрытого ключа, а проверяется с помощью открытого.

Одиночная перестановка

```
def encode(keyword, message, normalize=False):
  # True - отбрасывать пробелы при шифровании
  if normalize:
     message = ".join(message.split())
  rows = len(message) // len(keyword)
  if len(message) % len(keyword) != 0:
    rows += 1
  indexes = sorted([(index, value) for index, value in enumerate(keyword)], key=lambda item:
item[1])
  result = "
  for row in range(rows):
     for index in indexes:
       position = index[0] * rows + row
       if position < len(message):
         result += message[position]
       else:
         result += ' '
  return result
def decode(keyword, cipher):
  rows = len(cipher) // len(keyword)
  if len(cipher) % len(keyword) != 0:
```

```
rows += 1
  indexes = sorted([(index, value) for index, value in enumerate(keyword)], key=lambda item:
item[1])
  indexes = sorted([(index, value) for index, value in enumerate(indexes)], key=lambda item:
item[1][0])
  result = "
  for index in indexes:
    for row in range(rows):
       position = index[0] + len(keyword) * row
       if position < len(cipher):
         result += cipher[position]
  return result
key = 'Илья'
text = 'Егшорушкин Илья Андреевич'
enc = encode(key, text)
print('ENCODE:', enc)
dec = decode(key, enc)
print('DECODE:', dec)
Программа шифрования и дешифрования сообщения при помощи алгоритма RSA
p = 17
q = 11
e = 7
d = 23
m1 = 8
m2 = 15
m3 = 45
```

def rsa(p, q, e, d, m):

```
print('сообщение', m)
  n = p * q
  Fq = (p - 1) * (q - 1)
  c = m ** e % n
  print('ENCODE', c)
  c = c ** d % n
  print('DECODE:', c)
  print()
rsa(p, q, e, d, m1)
rsa(p, q, e, d, m2)
rsa(p, q, e, d, m3)
Результаты шифрования и дешифрования заданных сообщений
сообщение 8
ENCODE 134
```

DECODE: 8

сообщение 15

ENCODE 93

DECODE: 15

сообщение 45

ENCODE 122

DECODE: 45

Вывод : были применены знания шифрации и дешифрации сообщений в виде кода.