

Disciplina: Engenharia Economica e Avaliação de Projetos

Docentes: Ricardo Kalid; Ricardo Uchoa

Discente: Rodrigo Marcel Araujo Oliveira

Orientador: Ângelo Márcio Oliveira Sant'Anna

AGENDA

Contextualização		
•Introdução		
 Justificativa 		

Pergunta e Hipótese

•Revisão bibliográfica

Objetivos

Escopo

Metodologia

Resultados esperados da pesquisa

Avaliação econômica

- •Negócio
- •Premissas
- Recursos
- •Fluxo de caixa
- •Indicadores econômicos
- •Simulação de Monte Carlo

Conclusões

Consíderações

• A manufatura dos pneus consiste em sete processos ("NEXEN TIRE," [s.d.]) :

Figura 1 - Processo de refino

Fonte: Processo de refino, ("NEXENTIRE," [s.d.])

Figura 4 - Processo de talão

Fonte: Processo de talão, ("NEXEN TIRE," [s.d.])

Figura 2 - Processo de extrusão

Fonte: Processo de extrusão, ("NEXENTIRE," [s.d.])

Figura 5 - Processo de moldagem

Fonte: Processo de modelagem, ("NEXENTIRE," [s.d.])

Figura 3 - Processo de laminação

Fonte: Processo de laminação, ("NEXENTIRE," [s.d.])

Figura 6 - Processo de cura

Fonte: Processo de cura, ("NEXENTIRE," [s.d.])

Introdução

• A manufatura dos pneus consiste em sete processos ("NEXEN TIRE," [s.d.]) :

Figura 7 - Processo de teste e expedição

Fonte: Processo de teste e expedição, ("NEXENTIRE," [s.d.])

Introdução

- A previsão do desempenho do pneu faz parte do planejamento estratégico no processo de manufatura de pneus.
- Modelos de detecção de defeitos para garantia da qualidade de pneus são fundamentais.
- Modelos de aprendizado de máquina vêm ganhando espaço na academia em estudos para investigar padrões não lineares para detecção automática de defeitos em pneus.

Figura 8 - Anatomia do pneu

Fonte: Anatomia do pneu, segundo a ABNT NBR 224 que defini a terminologia para pneus,

Introdução

- Cerca de 800 milhões de pneus inservíveis são descartados em todo o mundo anualmente (TSANG, 2010).
- No Brasil, esses pneus inservíveis acabam servindo de criadouros para o mosquito *Aedes Argypti*, transmissor de dengue, *Zika* e *Chikungunya*.
- É um dos principais fatores que determinam a segurança do veículo.
- Detecção de falhas -> diminuição de custos.

Figura 9 - Pneus inservíveis

Fonte: Pneus inservíveis, ("Reciclagem - Utep," [s.d.])

Justificativa

- Método de previsão de vida útil de pneus baseado em processamento de imagens e aprendizado de máquina (Zhu et al., 2021).
- Algoritmos de aprendizado de máquina envolvendo mistura de variáveis numéricas e categóricas para previsão de desempenho de pneus (Gutierrez-Gomez et al., 2020).
- Prever a tensão triaxial de contato pneu-estrada em (Li et al., 2021)

Pergunta

• Quais modelos de aprendizado de máquina são capazes de avaliar o desempenho dos pneus em sistemas produtivos de manufatura inteligente de pneus?

Hipótese

• Os modelos de aprendizado de máquina não são capazes de avaliar o desempenho de pneus em sistemas produtivos de manufatura.

- Investigar a relação entre as características das variáveis explicativas e as variáveis respostas.
- Analisar o desempenho de diferentes modelos de aprendizado de máquinas para classificação do desempenho do pneu.
- Identificar quais são as variáveis explicativas na composição dos pneus que tem maior impacto na variável resposta.
- Analisar quais são os limiares de cada variável explicativa na fronteira de classificação do desempenho do pneu.

Objetivos

- Dados provenientes de um estudo realizado em uma indústria multinacional
- Pneus para carros de passeio e caminhões.
- Abordagem quantitativa
- Modelagem estatística e computacional

Escopo 10

- Dados provenientes do processo de uniformidade de pneus.
- A variável resposta desse estudo é o desempenho do pneu: A, B e C.
- Tamanho da amostra: 107 observações; 46 (A); 46 (B); 15 (C).

Figura 10 - Processo de uniformidade do pneu

Fonte: Processo de uniformidade do pneu ("Always on the safe side ZF Test Systems for tires," [s.d.])

Variáveis explicativas:

- Flutuação da força radial (RFV);
- Flutuação de força lateral (LFV);
- Excentricidade radial (RRO);
- Efeito de conicidade (CONICITY);
- Efeito angular (PLY);
- Força radial 1°-2° harmônico (H1RFV-H2RFV);
- Força lateral 1ºharmônico (H1LFV);
- Excentricidade radial 1º harmônico (H1RRO);
- Emenda de tampa (CAPSPLICE).

Figura 11 - Sistema de eixos coordenados e forças que actuam num pneu

Fonte: Sistema de eixos coordenados e forças que actuam nu m pneu, ("Parâmetros de Medida da Uniformidade de um Pneu Vulcanizado | Ciência e Tecnologia da Borracha Ciência e Tecnologia da Borracha," [s.d.])

- Técnicas de amostragem: Hold-out e Leave-oneout (Arlot & Celisse, 2010)
- Ajuste de hiperparâmetros: GridSearchCV (Ahmad et al., 2022)
- Matriz cruzada (Deng et al., 2016)
- Métrica de avaliação: Acurácia; Precision; Recall; F score; AUC; etc.

Figura 12 - Matriz cruzada

Classe Predita

Fonte: Matriz cruzada, (Autor, 2022)

Figura 13 - Métricas de avaliação

$$AC = \frac{\sum_{i=1}^{n} N_{ii}}{\sum_{i=1}^{n} \sum_{j=1}^{n} N_{ij}}$$

$$PREC_{i} = \frac{N_{ii}}{\sum_{j=1}^{n} N_{ji}}$$

$$REC_{i} = \frac{N_{ii}}{\sum_{j=1}^{n} N_{ij}}$$

$$F \ score_{i} = \frac{2 \times PREC_{i} \times REC_{i}}{PREC_{i} + REC_{i}}$$

Fonte: Métricas de avaliação, (Autor, 2022)

• Support Vector Machine (SVM), (Cortes et al., 1995).

Figura 14 - Margem do SVM

Fonte: Suppot Vector Machine, (Autor, 2022)

• Multi-layer Perceptron (MLP), (FACELI et al., 2011).

Figura 15 - Percepton multicamadas

Fonte: Perceptron multicamadas, (SILVA et al., 2010)

• Random Forest (RF), (Breiman, 2001)

Figura 16 - Diagrama do RF

Fonte: Diagrama do RF, (NAIN; GARG; KUMAR, 2018)

• Gauss Process Classification (GPC), (Taki et al., 2018)

Figura 17 - Limites de decisão de um GCP

Fonte: Limites de decisão, (SNELL; ZEMEL, [s.d.])

• Gradient Boosting Machine (GBM), (James et al., 2013)

Figura 18 - Diagrama do GBM

Fonte: Diagrama do Gradient Boosting, (ZHANG et al., 2021)

• Regressão Logística (LR), (Hastie et al., 2009)

Figura 19 - Função Logit da LR

Fonte: Logit da LR, ("How To Build Logistic Regression Model In R," [s.d.])

- Compreender a relação entre as características das variáveis explicativas e as variáveis respostas.
- Averiguar se modelos de aprendizado de máquina são capazes de avaliar o desempenho de pneus em sistemas produtivos de manufatura.
- Identificar quais são as variáveis explicativas na composição dos pneus que tem maior impacto na variável reposta.
- Analisar quais são os limiares de cada variável explicativa na fronteira de classificação do desempenho do pneu.

- Empresa de Software (Startup) para avaliar o desempenho de pneus.
- Produto: plataforma de modelos estatísticos para avaliação de desempenho de pneus
- Unidade funcional: API por requisição gerada
- Preço de venda: R\$ 2,00
- Média anual de vendas de pneus no Brasil: 56 Milhões ("VENDAS TOTAIS DE PNEUS CRESCEM 0,4%, MAS SEGUE ACUMULANDO QUEDA NO ANO COMPARADO EM 2021 | ANIP Associação Nacional da Indústria de Pneumáticos," [s.d.])

Négocio 18

Tabela 1 - Descrição dos recursos

Descrição dos Recursos	Quantidades de recursos	Quantidade de horas semanais	Custo por horas		Custo de aquisição	Cust	o total (ano 0)
Aluno de mestrando	1	40	R\$9.38	R\$	1,500.00	R\$	18,000.00
Orientador	1	10	R\$93.75	R\$	3,750.00	R\$	45,000.00
Administrador	1	40	R\$37.50	R\$	6,000.00	R\$	72,000.00
Coordenador de projetos	1	40	R\$75.00	R\$	12,000.00	R\$	144,000.00
Desenvolvedor de software Junior	2	40	R\$34.38	R\$	5,500.00	R\$	132,000.00
Desenvolvedor de software Pleno	1	40	R\$45.00	R\$	7,200.00	R\$	86,400.00
Desenvolvedor de software Sênior	1	40	R\$55.00	R\$	8,800.00	R\$	105,600.00
Gerente comercial	1	40	R\$50.00	R\$	8,000.00	R\$	96,000.00
Técnico de informatica	2	40	R\$15.63	R\$	2,500.00	R\$	60,000.00
Escritório (coworking salvador)	1			R\$	5,500.00		66,000.00
Equipamentos de escritório	12			R\$	300.00	R\$	3,600.00
Computador + acessorios	12			R\$	4,500.00	R\$	54,000.00
Infraestrutura de software (AWS)	1			R\$	2,880.00	R\$	34,560.00
Consultoria para Patente	1			R\$	50,000.00	R\$	50,000.00
Consultoria para desenvolvimento do site da empresa	1			R\$	30,000.00	R\$	30,000.00
Investimento na marca				R\$	70,000.00	R\$	70,000.00
Software livre - Python/ R				R\$	-	R\$	-
Software livre - Project Libre				R\$	-	R\$	-
Software livre - Libreoffice				R\$	-	R\$	-
Software livre - Github/ Gitlab				R\$	-	R\$	-
Base de dados - Capes				R\$	-	R\$	-
				Tot	al	R\$	1,067,160.00

Fonte: (Autor, 2022)

Tabela 2 - Premissas do fluxo de caixa

Premissas assumidas.		
Período base (unidade de tempo básica)	ano	
Unidade funcional (base de cálculo):	API	de requisição gerada
Inflação	0.0	% / ano
Quantidade de períodos cobertos pelo capital de giro	1.0	ano(s) que deve ser menor ou igual a 4
Impostos proporcionais federais (IPI, PIS/CONFINS etc.)	8.0	% sobre a receita total
Impostos proporcionais estaduais (ICMS etc.)	2.5	% sobre a receita total
Impostos proporcionais municipais (ISS etc.)	0.0	% sobre a receita total
Investimento máximo em PD&I (veja capital de giro)	10.0	% da receita líquida
Investimento máximo em marketing (veja capital de giro)	5.0	% da receita líquida
Outras despesas, por exemplo, causas trabalhistas, multas	5.0	% do custo operacional
Taxa de imposto de renda sobre o LAIR	10.0	%
Contribuição social sobre o LAIR	7.5	%
Outras taxas ou impostos ou tributos sobre o LAIR	5.0	%
Tempo de retorno mínimo	3.0	ano (s)
Empréstimo para capital de giro (CG)	200,000.00	R\$
Empréstimo para investimento em bens de capital	100,000.00	R\$
Quantidade de períodos para quitar o empréstimo	5	Obs.: deve ser menor ou igual a 10
Período de carência para pagamento do juros do empréstimo	2	ano(s), apenas para período inteiro de carência
Período de carência para pagamento do principal do empréstin	2	ano (s), deve ser maior ou igual a carência para os juros
Taxa de juros, inclue a inflação	6.0	% por ano

Fonte: Adaptado de (KALID, 2022).

Premissas 20

Tabela 3 - Receitas Brutas ao longo do tempo.

Tabela RB: receitas brutas ao long	o do tempo.						Cenário 1	Cenário 2	Cenário 3
				Consumo da API		Cenário escolhido:	0	0	1
Período	Receita Não Operacional	Receita total sobre vendas	Valor unitário consumo por requisição de API	Venda por período (ano)	Sub-total / R\$	Venda mensal / consumo	Venda mensal / consumo	Venda mensal / consumo	Venda mensal / consumo
0	R\$0.00	R\$0.00	R\$ 2.00	R\$ -	R\$ -	0	0.00	0.00	0.00
1	R\$0.00	R\$2,400,000.00	R\$ 2.00	R\$ 1,200,000.00	R\$ 2,400,000.00	100,000	50000.00	75000.00	100000.00
2	R\$0.00	R\$4,800,000.00	R\$ 2.00	R\$ 2,400,000.00	R\$ 4,800,000.00	200,000	100000.00	150000.00	200000.00
3	R\$0.00	R\$7,200,000.00	R\$ 2.00	R\$ 3,600,000.00	R\$ 7,200,000.00	300,000	200000.00	250000.00	300000.00
4	R\$0.00	R\$9,600,000.00	R\$ 2.00	R\$ 4,800,000.00	R\$ 9,600,000.00	400,000	300000.00	350000.00	400000.00
5	R\$0.00	R\$12,000,000.00	R\$ 2.00	R\$ 6,000,000.00	R\$ 12,000,000.00	500,000	400000.00	450000.00	500000.00
6	R\$0.00	R\$14,400,000.00	R\$ 2.00	R\$ 7,200,000.00	R\$ 14,400,000.00	600,000	500000.00	550000.00	600000.00
7	R\$0.00	R\$16,800,000.00	R\$ 2.00	R\$ 8,400,000.00	R\$ 16,800,000.00	700,000	600000.00	650000.00	700000.00
8	R\$0.00	R\$19,200,000.00	R\$ 2.00	R\$ 9,600,000.00	R\$ 19,200,000.00	800,000	700000.00	750000.00	800000.00
9	R\$0.00	R\$21,600,000.00	R\$ 2.00	R\$ 10,800,000.00	R\$ 21,600,000.00	900,000	800000.00	850000.00	900000.00
10	R\$0.00	R\$24,000,000.00	R\$ 2.00	R\$ 12,000,000.00	R\$ 24,000,000.00	1,000,000	900000.00	950000.00	1000000.00

Fonte: Adaptado de (KALID, 2022).

Premissas 21

Tabela 4 - Fluxo de caixa descontado.

Tabela FCP: fluxo de caixa do projeto, as unidades monetárias estão em R\$.			_				_	_			_	
	Período / ano>	0	1	2	3	4	5	6	7	8	9	10
Receita bruta ou receita total	RB = RV + RNO	0.00	2,400,000.00	4,800,000.00	7,200,000.00	9,600,000.00	12,000,000.00	14,400,000.00	16,800,000.00	19,200,000.00	21,600,000.00	24,000,000.00
Receita Não Operacional	RNO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Receita total sobre vendas	RV = q . Pu	0.00	2,400,000.00	4,800,000.00	7,200,000.00	9,600,000.00	12,000,000.00	14,400,000.00	16,800,000.00	19,200,000.00	21,600,000.00	24,000,000.00
Quantidade vendida / unidades	q	0	1,200,000	2,400,000	3,600,000	4,800,000	6,000,000	7,200,000	8,400,000	9,600,000	10,800,000	12,000,000
Preço unitário / (R\$/API)	Pu	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00
Impostos proporcionais (ISS, ICMS, IPI, PIS, CONFINS etc.) total	IPp = IPF + IPE + IPM	0.00	252,000.00	504,000.00	756,000.00	1,008,000.00	1,260,000.00	1,512,000.00	1,764,000.00	2,016,000.00	2,268,000.00	2,520,000.00
Impostos proporcionais federais (IPI, PIS/CONFINS etc.)	IPF	0.00	192,000.00	384,000.00	576,000.00	768,000.00	960,000.00	1,152,000.00	1,344,000.00	1,536,000.00	1,728,000.00	1,920,000.00
Impostos proporcionais estaduais (ICMS etc.)	IPE	0.00	60,000.00	120,000.00	180,000.00	240,000.00	300,000.00	360,000.00	420,000.00	480,000.00	540,000.00	600,000.00
Impostos proporcionais municipais (ISS etc.)	IPM	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Receita líquida	RL = RT - IPt	0.00	2,148,000.00	4,296,000.00	6,444,000.00	8,592,000.00	10,740,000.00	12,888,000.00	15,036,000.00	17,184,000.00	19,332,000.00	21,480,000.00
Custos e investimentos	CI = IT + CO	1,151,388.00	1,055,214.40	1,272,477.10	1,462,489.91	1,622,651.20	2,087,688.35	2,304,567.28	2,575,689.22	2,775,479.54	3,433,962.98	3,627,606.73
Investimento total	IT = IBC + IBE + IBI + PD&I + MKT	207,600.00	87,610.00	103,720.00	119,830.00	135,940.00	152,050.00	168,160.00	184,270.00	200,380.00	216,490.00	232,600.00
Custo variável	CV	36,288.00	65,318.40	130,636.80	195,955.20	261,273.60	326,592.00	391,910.40	457,228.80	522,547.20	587,865.60	653,184.00
Custo fixo	CF	907,500.00	902,286.00	1,038,120.30	1,146,704.71	1,225,437.60	1,609,046.35	1,744,496.88	1,934,190.42	2,052,552.34	2,629,607.38	2,741,822.73
Lucro operacional ou LAJIRDA ou EBITDA	LO = RL - CI	-1,151,388.00	1,092,785.60	3,023,522.90	4,981,510.09	6,969,348.80	8,652,311.65	10,583,432.72	12,460,310.78	14,408,520.46	15,898,037.02	17,852,393.27
Depreciações (somatório)	Ds	30,000.00	15,520.00	15,520.00	15,520.00	15,520.00	15,520.00	15,520.00	15,520.00	15,520.00	15,520.00	15,520.00
Somatório da amortização (principal) de empréstimos e outros dedutíveis do IR	SAD = Emp + OD	47,189.40	48,380.22	114,849.91	126,929.77	137,720.15	163,969.58	178,039.27	119,570.96	128,754.98	160,873.65	169,750.34
Lucro antes do juros, imposto de tenda e das contribuições sociais (LAJIR)	LAJIR = LO - (DS+SAD)	-1,228,577.40	1,028,885.38	2,893,152.99	4,839,060.32	6,816,108.65	8,472,822.07	10,389,873.45	12,325,219.82	14,264,245.49	15,721,643.37	17,667,122.93
Juros de empréstimos pagos a credores	JE	0.00	0.00	19,080.00	15,695.28	12,107.47	8,304.39	4,273.13	0.00	0.00	0.00	0.00
Lucro antes do imposto de renda e das contribuições sociais (LAIR)	LAIR = LAJIR -JE	-1,228,577.40	1,028,885.38	2,874,072.99	4,823,365.04	6,804,001.18	8,464,517.67	10,385,600.31	12,325,219.82	14,264,245.49	15,721,643.37	17,667,122.93
Total de impostos e taxas sobre o LAIR	TT = IR+CS+OT	0.00	231,499.21	646,666.42	1,085,257.13	1,530,900.27	1,904,516.48	2,336,760.07	2,773,174.46	3,209,455.23	3,537,369.76	3,975,102.66
Imposto de renda, % sobre o LAIR	IR	0.00	102,888.54	287,407.30	482,336.50	680,400.12	846,451.77	1,038,560.03	1,232,521.98	1,426,424.55	1,572,164.34	1,766,712.29
Contribuições sociais, % sobre o LAIR	CS	0.00	77,166.40	215,555.47	361,752.38	510,300.09	634,838.83	778,920.02	924,391.49	1,069,818.41	1,179,123.25	1,325,034.22
Outras taxas ou impostos ou tributos sobre o LAIR	ОТ	0.00	51,444.27	143,703.65	241,168.25	340,200.06	423,225.88	519,280.02	616,260.99	713,212.27	786,082.17	883,356.15
Lucro líquido	LL = LAIR - TT	-1,228,577.40	797,386.17	2,227,406.57	3,738,107.91	5,273,100.92	6,560,001.20	8,048,840.24	9,552,045.36	11,054,790.25	12,184,273.61	13,692,020.27
Capital de giro disponível			200,000.00	3,224,792.74	9,190,307.21	18,201,516.04	30,034,618.15	44,643,459.59	62,244,345.20	82,851,180.81	106,090,244.67	131,966,538.55
Capital de giro necessário, sem considerar a reserva para depreciação			1,055,214.40	1,272,477.10	1,462,489.91	1,622,651.20	2,087,688.35	2,304,567.28	2,575,689.22	2,775,479.54	3,433,962.98	3,627,606.73
Capital de giro necessário, considerando la reserva para depreciação e o lucro líquido p	odsitivo		1,039,694.40	1,256,957.10	1,446,969.91	1,607,131.20	2,072,168.35	2,289,047.28	2,560,169.22	2,759,959.54	3,418,442.98	3,612,086.73
Diferença entre o capital de giro disponível e o necessário	CGn = Emp.p-CGn		-839,694.40	1,967,835.64	7,743,337.31	16,594,384.84	27,962,449.80	42,354,412.32	59,684,175.98	80,091,221.27	102,671,801.69	128,354,451.82
Mínimo valor da diferença entre o empréstimo disponível e o capital de giro necessário		-839,694.40										
	+	•	-	-	-	-	-	-	-	-	-	

Fonte: Adaptado de (KALID, 2022).

Fluxo de caixa 22

Tabela 5 - Indicadores econômicos.

Cenários>	Menor TMA		TMA interm	ediária	Maior TMA	
ГМА	4.0%		6.0%		8.0%	
nvestimento	R\$ 1,407,715.54	R\$ 1,407,715.54		R\$ 1,254,066.63		25
R VP sem Inv.	R\$ 53,646,020.9	2	R\$ 46,106,4	60.51	R\$ 39,811,788	.41
e VPL	R\$ 52,238,305.38	Viável	R\$ 44,852,393.88	Viável	R\$ 38,687,754.16	Viável
t VPLp	R\$ 6,440,510.00	Viável	R\$ 6,094,003.18	Viável	R\$ 5,765,616.22	Viável
o IL ou IBC	2.2	Viável	2.2	Viável	2.1	Viável
r ROIp	8.1%	Viável	8.0%	Viável	7.9%	Viável
n ROI	12.4%	Viável	14.5%	Viável	16.6%	Viável
R TIR	145.9%	Viável	145.9%	Viável	145.9%	Viável
i TIRm	12.4%	Viável	14.5%	Viável	16.6%	Viável
s TIR / TMA	36.5	Viável	24.3	Viável	18.2	Viável
c TIRm / TMA	3.1	Viável	2.4	Viável	2.1	Viável
o TR-RB/ (ano)	1.1	Viável	1.1	Viável	1.1	Viável
TR-RB / N	10.9%		11.0%	5	11.0%	
TR-DL/ (ano)	2.20	Viável	2.22	Viável	2.23	Viável
TR-DL / N	22.0%		22.2%		22.3%	
TR-LL / (ano)	2.22	Viável	2.24	Viável	2.26	Viável
TR-LL / N	22.2%		22.4%		22.6%	

Fonte: Adaptado de (KALID, 2022).

Figura 20 - Distribuição da receita anual

Fonte: (Autor, 2022)

$$f(z;k;\theta) = \frac{z^{k-1}e^{\frac{-z}{\theta}}}{\theta^k\Gamma(k)} \quad z,k,\theta > 0$$

 $Z \sim Gama(k = 9500, \theta = 200)$

Média: 1899827 Mediana: 1899 629 Desvio padrão: 19 507

Número de interações: 30 000

Figura 21 - Distribuição da taxa de crescimento anual da receita

Fonte: (Autor, 2022)

$$f(y;\mu;\sigma) = \frac{e^{-\frac{1}{2}\left(\frac{\ln(y)-\mu}{\sigma}\right)^2}}{y\sigma\sqrt{2\pi}} \quad \mu \in \mathbb{R}, \qquad \sigma, y > 0 \qquad f(x;\mu;\sigma) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1} \quad 0 \le x \le 1, \qquad \alpha, \beta > 0$$

 $Y \sim LogNormal(\mu = -\frac{3}{2}, \sigma^2 = \frac{1}{100})$

Média: 0,22 Mediana: 0,22

Desvio padrão: 0,02

Figura 22 - Distribuição da taxa mínima de atratividade

Fonte: (Autor, 2022)

$$f(x;\mu;\sigma) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1} \quad 0 \le x \le 1, \qquad \alpha,\beta > 0$$

$$X \sim Beta(\alpha = 7, \beta = 70)$$

Média: 0,09 Mediana: 0.08

Desvio padrão: 0,03

Taxa de crescimento da receita (TCR)

$$TCR_{ij} = Y$$
, $i \in [1, 10]$, $j \in [1, 30\ 000]$

Receita Bruta (RB)

$$RB_{ij} = \begin{cases} 0, & i = 0, \quad j \in [1,30\ 000] \\ E[Z], & i = 1, \quad j \in [1,30\ 000] \\ RB_{(i-1)j}(1 + TCR_{ij}), & i \in [2,10], \quad j \in [1,30\ 000] \end{cases}$$

Fluxo de caixa descontado (FCD)

$$FCD_{ij} = \begin{cases} LL_{ij} = RB_{ij} - IPt_i - CI_i - DS_i - SAD_i - JE_i - TT_i, & i \in [0, 1], & j \in [1, 30\ 000] \\ LL_{ij} = RB_{(i-1)j} (1 + TCR_{ij}) - IPt_i - CI_i - DS_i - SAD_i - JE_i - TT_i, & i \in [2, 10], & j \in [1, 30\ 000] \end{cases}$$

Taxa mínima de atratividade (TMA)

$$TMA_j = E[X], j \in [1,30\ 000]$$

Valor Presente Líquido (VPL)

$$VPL_{j} = FCD_{0j} + \sum_{i=1}^{n=10} \frac{FCD_{ij}}{\left(1 + TMA_{j}\right)^{i}}, \quad i \in [1, 10], \quad j \in [1, 30\ 000]$$

Figura 23 - Distribuição do VPL

Fonte: (Autor, 2022)

Medidas resumo

Média: 9 796 681 Mediana: 9 567 978 Desvio padrão: 2 168 243

Taxa Interna de Retorno (TIR)

$$VPL_j = FCD_{0j} + \sum_{i=1}^{n=10} \frac{FCD_{ij}}{\left(1 + TIR_j\right)^i} = 0, \quad i \in [1, 10], \quad j \in [1, 30\ 000]$$

Figura 24 - Distribuição da TIR

Fonte: (Autor, 2022)

Medidas resumo

Média: 0,63 Mediana: 0,63

Desvio padrão: 0,05

- A avaliação econômica em função das premissas adotadas demonstra que o projeto proposto é viável.
- Foi possível criar diversos cenários de receita, taxa de crescimento e TMA em função de distribuições de probabilidade para avaliação dos indicadores econômicos TIR e VPL.
- Conforme as simulações de Monte Carlo, a média do VLP é positiva e o TIR apresenta valores superiores a TMA.

Conclusões 27

• Análise disponível em: https://github.com/roaraujo/engenharia-economica-avaliacao-projetos

Considerações 28

- ACOSTA, S. M. et al. Relevance vector machine with tuning based on self-adaptive differential evolution approach for predictive modelling of a chemical process. **Applied Mathematical Modelling**, v. 95, p. 125–142, 1 jul. 2021.
- Always on the safe side ZF Test Systems for tires. [s.d.]. ARLOT, S.; CELISSE, A. A survey of cross-validation procedures for model selection.
- ARLOT, S.; CELISSE, A. A survey of cross-validation procedures for model selection. https://doi.org/10.1214/09-SS054, v. 4, n. none, p. 40–79, 1 jan. 2010.
- BREIMAN, L. Heuristics of instability and stabilization in model selection. https://doi.org/10.1214/aos/1032181158, v. 24, n. 6, p. 2350–2383, 1 dez. 1996.
- BREIMAN, L. Random Forests. v. 45, p. 5–32, 2001.
- CORTES, C.; VAPNIK, V.; SAITTA, L. Support-vector networks. **Machine Learning 1995 20:3**, v. 20, n. 3, p. 273–297, set. 1995.
- DE CASTRO, L. N. Fundamentals of Natural Computing : Basic Concepts, Algorithms, and Applications. **Fundamentals of Natural Computing**, 2 jun. 2006.

- DEMŠAR, J. Statistical Comparisons of Classifiers over Multiple Data Sets. **Journal of Machine Learning Research**, v. 7, p. 1–30, 2006.
- GUTIERREZ-GOMEZ, L.; PETRY, F.; KHADRAOUI, D. A Comparison Framework of Machine Learning Algorithms for Mixed-Type Variables Datasets: A Case Study on Tire-Performances Prediction. **IEEE Access**, v. 8, p. 214902–214914, 2020.
- HASTIE, T.; TIBSHIRANI, R.; FRIEDMAN, J. The Elements of Statistical Learning. Springer Series in Statistics. 2009.
- How To Build Logistic Regression Model In R. Disponível em: https://www.analyticsvidhya.com/blog/2015/10/basics-logistic-regression/>. Acesso em: 20 jun. 2022.
- JAMES, G. et al. Statistical Learning. p. 15–57, 2013.
- KECMAN, V. Support Vector Machines An Introduction. p. 1–47, 22 abr. 2005.

- LEE, S. K. et al. Prediction of tire pattern noise in early design stage based on convolutional neural network. **Applied Acoustics**, v. 172, 15 jan. 2021.
- LI, X.; GUO, M.; ZHOU, X. A multivariate multiple regression analysis of tire-road contact peak triaxial stress by using machine learning methods. **Mechanics of Advanced Materials and Structures**, 2021.
- MACKAY, D. J. C. INTRODUCTION TO GAUSSIAN PROCESSES. 1996.
- MEURER, A. P. S.; LOBO, D. D. S. CARACTERIZAÇÃO DA LOGÍSTICA DO SISTEMA AGROINDUSTRIAL (SAG) DA CANA-DE-AÇÚCAR NO CENTRO-OESTE DO BRASIL DOI 10.5752/P.1984-6606.2015v15n39p45. **Revista Economia & Gestão**, v. 15, n. 39, 8 jul. 2015.
- NAIN, S. S.; GARG, D.; KUMAR, S. Performance evaluation of the WEDM process of aeronautics super alloy. **Materials and Manufacturing Processes**, v. 33, n. 16, p. 1793–1808, 10 dez. 2018.
- NEXEN TIRE. Disponível em: https://www.nexentire.com/br/information/tire_information/basic_sense/process.php. Acesso em: 19 jun. 2022.

- Parâmetros de Medida da Uniformidade de um Pneu Vulcanizado | Ciência e Tecnologia da BorrachaCiência e Tecnologia da Borracha. Disponível em: . Acesso em: 19 jun. 2022.
- PROBST, P.; BOULESTEIX, A.-L. To Tune or Not to Tune the Number of Trees in Random Forest. **Journal of Machine Learning Research**, v. 18, p. 1–18, 2018.
- KALID, RICARDO. (2022). (FCD_e_Indicadores_economicos.xlsx). Disponível em: https://www.dropbox.com/sh/82s5959ougolwhn/AADTeEGn5tczkTUr1RMw3AgMa/Planilhas?dl=0 &lst=>. Acesso em: 05 jun 2022.
- RAJESWARI, M. et al. Detection of tyre defects using weighted quality-based convolutional neural network. **Soft Computing**, v. 26, n. 9, p. 4261–4273, 1 maio 2022.
- RASMUSSEN, C. E. Gaussian Processes in Machine Learning. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 3176, p. 63–71, 2004.
- **Reciclagem Utep**. Disponível em: https://www.utep.com.br/reciclagem.php>. Acesso em: 19 jun. 2022.

- SCORNET, E.; BIAU, G.; VERT, J.-P. CONSISTENCY OF RANDOM FORESTS 1. **The Annals of Statistics**, v. 43, n. 4, p. 1716–1741, 2015.
- Secretaria de Estado da Saúde Para eliminar possíveis focos do Aedes aegypti, SC terá uma semana de mobilização para recolhimento de pneus. Disponível em: https://www.saude.sc.gov.br/index.php/noticias-geral/todas-as-noticias/1641-noticias-2019/10637-para-eliminar-possiveis-focos-do-aedes-aegypti-sc-tera-uma-semana-de-mobilizacao-para-recolhimento-de-pneus. Acesso em: 29 maio. 2022.
- SILVA, Ivan N. da; SPATTI, Danilo H.; FLAUZINO, Rogério A. **Redes neurais artificiais**: para engenharia e ciências aplicadas. São Paulo: Artliber: 2010
- SNELL, J. C.; ZEMEL, R. BAYESIAN FEW-SHOT CLASSIFICATION WITH ONE-VS-EACH P ´OLYA-GAMMA AUGMENTED GAUSSIAN PROCESSES. [s.d.].
- TAKI, M. et al. Assessment of energy consumption and modeling of output energy for wheat production by neural network (MLP and RBF) and Gaussian process regression (GPR) models. **Journal of Cleaner Production**, v. 172, p. 3028–3041, 20 jan. 2018.
- TSANG, H.-H. In: Rubber: Types, Properties and Uses USES OF SCRAP RUBBER TIRES OVERVIEW OF THE SCRAP TIRE PROBLEM. 2010.

- VENDAS TOTAIS DE PNEUS CRESCEM 0,4%, MAS SEGUE ACUMULANDO QUEDA NO ANO COMPARADO EM 2021 | ANIP Associação Nacional da Indústria de Pneumáticos. Disponível em: https://www.anip.org.br/releases/vendas-totais-de-pneus-crescem-04-mas-segue-acumulando-queda-no-ano-comparado-em-2021/>. Acesso em: 20 jun. 2022.
- WANG, Y. et al. Unsupervised Learning with Generative Adversarial Network for Automatic Tire Defect Detection from X-ray Images. **Sensors 2021, Vol. 21, Page 6773**, v. 21, n. 20, p. 6773, 12 out. 2021.
- XU, Q. et al. Roadside estimation of a vehicle **x2019;s center of gravity height based on an improved single-stage detection algorithm and regression prediction technology. **IEEE Sensors Journal**, 2021.
- ZHANG, T. et al. Improving Convection Trigger Functions in Deep Convective Parameterization Schemes Using Machine Learning. **Journal of Advances in Modeling Earth Systems**, v. 13, n. 5, 1 maio 2021.
- ZHU, J.; HAN, K.; WANG, S. Automobile tire life prediction based on image processing and machine learning technology: https://doi.org/10.1177/16878140211002727, v. 13, n. 3, p. 1–13, 11 mar. 2021.

Obrigado