Firm Boundaries and External Costs in Shale Gas Production

Matthew O'Keefe (Northwestern University)

January 2024

When do markets form?

- ► Coase (1937, 1960): when **transaction costs** are low enough
- ► Large empirical literature testing specific predictions (e.g., asset specificity)
- lacktriangle Significant empirical challenges \Rightarrow limited work on quantifying transaction costs
 - ▶ Wallis and North (1986), Masten et al (1991), Atalay et al (2019),
- ► Little exploration of the *distribution* of transaction costs within markets
 - ▶ Demsetz (1988): transaction costs might vary across counterparties, across time

This paper: new evidence from wastewater sharing in Pennsylvania

- ► Fracking a shale gas well requires 10-20M gallons of water at once
- ▶ Over time, 25% returns as wastewater (along with the hydrocarbons)
- Firms reuse wastewater as a substitute for freshwater to reduce costs
 - ► Can save up to \$1M for a typical well (\$0.25M freshwater, \$0.75M final disposal)
- ► Efficiencies ⇒ approx. 10% of reuse occurs via **sharing** trade between rival firms
 - ► Trade enables more efficient matching from old wells to new wells

This paper

- ▶ Like all market transactions, sharing is subject to transaction costs
 - ► Transaction costs: any costs foregone under integration (i.e., if firms merged)
- ► Three questions:
 - 1. How large are the transaction costs of sharing?
 - 2. What are the main sources of transaction costs?
 - 3. What are the environmental impacts of transaction costs?

Quantifying transaction costs

- lacktriangle Water is heavy \Rightarrow transporting wastewater is costly (typically, trucked)
- ▶ Data: wastewater shipments within and between firms, at high spatial resolution
- ▶ Idea: transaction costs ≡ "distance premia" firms incur to avoid sharing

Key findings

- 1. Transaction costs are large, but heterogenous
 - ▶ \$6/bbl mean across transactions, \$2/bbl standard deviation
- 2. Transaction costs...
 - ► Are greater for riskier types of wastewater
 - ► Are greater for counterparties with poor environmental records
 - Vary significantly across firm-pairs
- 3. In Pennsylvania, environmental impacts are limited
 - ► Freshwater consumption decreases, but transportation increases

Related literature

- ► Quantification of the Coasean transaction costs
 - ► Masten Meehan Snyder 1991, Atalay Hortacsu Li Syverson 2019, ...
 - ► Contribution: richer within-market evidence
- ► Direct environmental impacts of fracking
 - ► Hausman and Kellogg 2015, Black et al 2021, ...
 - ► Contribution: novel empirical framework for policy evaluation
- ► Regulation of environmental externalities in oligopoly
 - Mansur 2007, Fowlie 2009, Ryan 2012, Fowlie et al 2016, Leslie 2018, Preonas 2023, ...
 - ► Contribution: complementary source of market imperfection

Setting

Model

Estimates

Externalities

Conclusion

Data: wastewater disposal records

- ▶ Monthly disposal records by well pad from Pennsylvania DEP, 2017-20
- ► What it has:
 - ► Monthly transfer volumes for **all** well pads / destinations
 - ▶ Detailed facility information (precise locations, permit numbers, ...)
- ► What it doesn't have:
 - ▶ Dates, times, or modes of particular shipments
 - Contract terms
 - Prices
- ► Supplementary data: completion info from FracFocus (incl. fracking inputs)

Fact 1: decentralized production

- ► Wastewater disposal HHI: 1,090
- ► Locations of twenty largest firms (by disposal volume):

Fact 2: more old wells than new wells

- ► Average month: 1,721 well pads reporting disposal vs. 55 completions
- ▶ June 2018 (well pads reporting disposal in blue, completions in red):

Fact 3: most reuse occurs locally

▶ 47% of wastewater is shipped to one of the four nearest destinations:

Prevalence of wastewater sharing

► Disposal market shares:

Outcome	Facility	% Vol.
Reuse	Own well/CTF	70.6
	Independent CTF	12.5
	Rival well/CTF	8.6
Final Disposal	Injection Well	8.4

- ► Three reasons for sharing:
 - 1. Temporal mismatches
 - 2. Geographic synergies
 - 3. Non-geographic synergies

Is there enough sharing?

► Actual sharing rate (10.5%) is lower than distance-minimizing rate (31.9%):

▶ Why? Either (1) transaction costs; or (2) technological incompatibility

Evidence of transaction costs: 2017 EQT-Rice merger

► EQT and Rice merger created largest gas producer in US

► Large pre-merger transportation synergies, but no pre-merger sharing

Evidence of transaction costs: 2017 EQT-Rice merger (cont)

Post-merger disposal shares

► Post-merger "sharing" rate 43%

Evidence of transaction costs: 2017 EQT-Rice merger (cont)

Post-merger disposal shares

- ▶ Post-merger "sharing" rate 43%, close to **model-implied optimum**
 - ► Suggests firm boundaries matter, not technological incompatibilities

Setting

Model

Estimates

Externalities

Conclusion

How large are transaction costs?

- ► K is the set of old well pads in month t
- \triangleright D is the set of new wells in month t
- ► A transaction is a shipment from an old well pad to a new well
 - ► One transaction = one *truckload* of wastewater (110 barrels)
- $ightharpoonup r_{\kappa\delta}^K$ and $r_{\kappa\delta}^D$ are the costs of reusing wastewater from κ at δ , where:

$$r_{\kappa\delta} = r_{\kappa\delta}^K + r_{\kappa\delta}^D = \begin{cases} ext{Technological Cost} & \kappa \text{ and } \delta \text{ in same firm} \\ ext{Technological Cost} + ext{Transaction Cost} & \kappa \text{ and } \delta \text{ in rival firms} \end{cases}$$

► Technological costs: transportation, treatment, labor, ...

Empirical strategy: matching with transferable utility

- 1. Truckloads of wastewater matched from old well pads K to new wells D
- 2. Shipment/receipt decisions are made locally in response to prices:

$$r_{\kappa\delta} = \overbrace{r_{\kappa\delta}^{K} + au_{\kappa\delta}}^{ ext{Sender's Costs}} + \overbrace{r_{\kappa\delta}^{D} - au_{\kappa\delta}}^{ ext{Reciver's Costs}}$$

- ightharpoonup au: intra-firm transfer prices, inter-firm market prices, determined in equilibrium
- 3. $r_{\kappa\delta}$ identified from observed match (Galichon and Salanie 2022)
 - ► Identification in terms of **shipment distances**
 - ► Within-firm shipments ⇒ technological costs
 - ► Between-firm shipments ⇒ transaction costs

Supply: wastewater disposal as a discrete choice problem

- $ightharpoonup Q_{\kappa}$ truckloads of wastewater are generated at κ
- ▶ The operator at κ ships *i*th truckload to the least cost destination δ :

$$\delta^* = rg \min_{\delta \in D_0} \quad \mathit{r}^{\mathcal{K}}_{\kappa \delta} + \mathit{ au}_{\kappa \delta} - \epsilon_{i \delta}$$

- $ightharpoonup D_0 = D \cup \{0\}$ includes all new wells and the outside option (final disposal)
- $ightharpoonup r_{\kappa\delta}^{K} + \tau_{\kappa\delta}$ is the sender's share of the joint costs of reuse at δ
- lacktriangledown is a truckload-specific, non-systematic latent cost (EV Type 1, dispersion σ_K)

Demand: water acquisition as a discrete choice problem

- $lackbox{}{}$ C_δ truckloads of water (wastewater or freshwater) are needed at δ
- \blacktriangleright The operator at δ accepts jth truckload from the least cost source:

$$\kappa^* = \arg\min_{\kappa \in \mathcal{K}_0} \quad r_{\kappa\delta}^D - au_{\kappa\delta} - \eta_{\kappa j}$$

- ightharpoonup $K_0=K\cup\{0\}$ includes all producing wells and the outside option (freshwater)
- $ightharpoonup r_{\kappa\delta}^D au_{\kappa\delta}$ is the receiver's share of the joint costs of reusing wastewater from κ
- $lacktriangleq \eta_{\kappa j}$ is a truckload-specific, non-systematic latent cost (EV Type 1, dispersion σ_D)

Equilibrium: local supply = local demand

- lacktriangle Equilibrium is characterized by utility transfers au and shipments μ
 - $lacktriangleq \mu_{\kappa\delta}$ is the number of truckloads expected to be shipped from κ to δ
- ▶ Markets clear **in expectation** for each $\kappa \in K$ and $\delta \in D$:

$$\begin{split} \mu_{\kappa\delta}^* &= Q_{\kappa} \times P\left(\delta = \arg\min_{\delta' \in D_0} r_{\kappa\delta'}^K + \tau_{\kappa\delta'} - \epsilon_{i\delta'}\right) \quad \text{Supply of κ-trucks to δ} \\ &= C_{\delta} \times P\left(\kappa = \arg\min_{\kappa' \in K_0} r_{\kappa'\delta}^D - \tau_{\kappa'\delta} - \eta_{\kappa'j}\right) \quad \text{Demand for κ-trucks at δ} \end{split}$$

Equilibrium as a convex program

▶ Galichon and Salanie (2022): the unique equilibrium μ^* satisfies:

$$\begin{aligned} & \underset{\mu \geq 0}{\min} & & \sum_{\kappa \in K} \sum_{\delta \in D} \mu_{\kappa \delta} r_{\kappa \delta} + \mathcal{E} \left(\mu, \mathbf{Q}, \mathbf{C} \right) \\ & \text{s.t.} & & \sum_{\delta \in D} \mu_{\kappa \delta} \leq Q_{\delta} & \forall \; \kappa \in K \\ & & & \sum_{\kappa \in K} \mu_{\kappa \delta} \leq C_{\delta} & \forall \; \delta \in D \end{aligned}$$

lacktriangledown ${\cal E}$ is a convex ${\it match\ entropy}$ function that depends on distributions of ϵ and η

Details

Parameterization

$$r_{\kappa\delta} = \begin{cases} \overbrace{d_{\kappa\delta} + x_{\kappa\delta}' \beta + \xi_{\kappa}^{\mathcal{I}} + \xi_{\delta}^{\mathcal{I}}}^{\text{Technological Cost}} & \kappa \text{ and } \delta \text{ in same firm} \\ d_{\kappa\delta} + x_{\kappa\delta}' \beta + \xi_{\kappa}^{\mathcal{I}} + \xi_{\delta}^{\mathcal{I}} + z_{\kappa\delta}' \alpha + \pi_{b} \\ \hline Transaction Cost} & \kappa \text{ and } \delta \text{ in rival firms} \end{cases}$$

- $ightharpoonup d_{κδ}$ represents distance-related costs (over-the-road shipping distance)
- ightharpoonup x_{K δ} is a vector of observable transaction characteristics (e.g., fluid composition)
- $lackbox{}{}$ $\xi^{\mathcal{I}}_{\kappa}$ and $\xi^{\mathcal{I}}_{\delta}$ are unobserved, additively separable costs of reuse within the firm
- ightharpoonup $z_{\kappa\delta}$ is a vector of transaction characteristics (e.g., facility-type interactions)
- \blacktriangleright π_b is an unobserved friction for firm pair b

Identification

▶ If \mathcal{E} is known, then r is identified by its gradient at the equilibrium match μ^* :

$$r_{\kappa\delta} - \frac{\partial \mathcal{E}\left(\mu^*, \mathbf{Q}, \mathbf{C}\right)}{\partial \mu_{\kappa\delta}} = 0$$

▶ Data reveals μ^* ⇒ system of $|K| \times |D|$ linear equations:

$$d_{\kappa\delta} + x'_{\kappa\delta}\beta + \xi_{\kappa}^{\mathcal{I}} + \xi_{\delta}^{\mathcal{I}} + z'_{\kappa\delta}\alpha + \pi_b - \sigma_K \log\left\{\frac{\mu_{\kappa0}}{\mu_{\kappa\delta}}\right\} - \sigma_D \log\left\{\frac{\mu_{0\delta}}{\mu_{\kappa\delta}}\right\} = 0$$

- \triangleright β, ξ, α, π, σ are identified if system is invertible
- ▶ In practice: $\mu_{0\delta}$ is poorly observed \Rightarrow partial identification of ξ and σ

Estimation

- ► For a given $\theta = (\beta, \xi, \alpha, \pi, \sigma)$, can compute the equilibrium match $\mu(\theta)$
 - ▶ $μ_{κδ}(θ)$ ∝ equilibrium prob. of observing a shipment from κ to δ
- ► Maximum likelihood estimator (without outside options):

$$\hat{\theta} = \arg\max_{\theta \in \Theta} \ \sum_{\kappa \in K} \sum_{\delta \in D} \hat{\mu}_{\kappa \delta} \log \left(\frac{\mu_{\kappa \delta} \left(\theta \right)}{\sum_{\kappa \delta} \mu_{\kappa \delta} \left(\theta \right)} \right)$$

- ► Implemented similarly to BLP (Conlon and Gortmaker 2020)
- ► Standard MLE inference (one observation = one truckload)
- ▶ In practice: pool data from many markets (one month = one market)
 - Assumption: β, α, π, σ are fixed across months, while ξ adjusts (with facility age)

Setting

Model

Estimates

Externalities

Conclusion

Estimated transaction costs

► Summary stats (μ -weighted, $N \approx 1.3$ M):

	Est (miles)	SE	\$/bbl
Mean $\mathbf{z}_{\kappa\delta}'\alpha + \pi_b$	125.7	0.07	5.71
Std. Dev.	48.1	0.09	2.18

- ▶ The mean transaction cost is equivalent to shipping a truck 125.7 extra miles
- ▶ \$5/mile trucking costs \Rightarrow \$5.71/bbl or \$26.3M/year
 - ► Approx. 67% of typical conventional disposal costs (roughly \$9/bbl)
 - ► Approx. 5% of "all in" water costs (from sourcing to disposal, roughly \$500M/year)

Model validation: EQT-Rice merger

► EQT-Rice "sharing" rate pre- and post-merger

Sources of transaction costs

	Est (miles)	SE	\$/bbl
Sharing market cost shifters α			
rival $ imes$ poor $ o$ good env record	-	-	-
rival $ imes$ good $ o$ poor env record	8.5	0.11	0.39
rival $ imes$ gel $ o$ slickwater	-28.6	0.10	-1.30
rival $ imes$ slickwater $ o$ gel	85.3	3.00	3.88
Relationship fixed effects π_b			
mean	117.9	0.07	5.36
std dev	49.2	0.09	2.23

- ► Interpretation: evidence of *contracting frictions...*
 - ► Inter-operator environmental liability, information frictions, relationship dynamics

Limited trade within relationships

► Actual vs. no-friction bilateral sharing rates:

- ► Evidence of dynamic frictions? Ex ante coordination vs. ex post opportunism
 - ▶ Difficult to communicate future fracking plans, commit to delivery schedules

Policy implications

- 1. To encourage sharing, improve the contracting environment
 - ► Liability rules / shields (e.g., Oklahoma)
 - Disclosure of wastewater composition
 - ► Public pre-registration of fracking activity
 - ▶ ..
- 2. Interventions that ignore contracting fundamentals may fail
 - ► Digital platforms (i.e., Uber for wastewater)

Setting

Model

Estimates

Externalities

Conclusion

Environmental externalities

- ▶ Potential benefits from improved sharing markets:
 - 1. Less freshwater usage, less final disposal
 - 2. Less transportation
- ▶ 90% reuse \Rightarrow limited scope for improvement on 1
 - ► Max reduction in freshwater consumption is approx. 580 acre-feet/year
 - ► Social value on the order of \$1M/year, valued at desalination costs
 - ▶ Difficult to quantify social costs of final disposal

External costs of transportation

- ▶ In PA: nearly all wastewater transported via heavy water-hauling trucks
 - ► 500,000 truck trips each year, 30.0 miles per truckload
- ► Unpriced transportation externalities are roughly \$7M per year
 - ▶ \$3.4M CO2 (EPA Social Cost of Carbon); \$3.3M NOx, PM2.5 (EASIUR)
 - ▶ Not included: at least 1-2 trucking-related wastewater spills per year
- ▶ In comparison, private transportation costs are roughly \$100M per year

Transaction costs and equilibrium transportation

► Fitted model vs. counterfactual with no transaction costs:

- 1. Sharing rate increases from approx. 10% to approx. 50%
- 2. Mean shipment distance increases by 15%
 - ightharpoonup \Rightarrow transportation externalities **increase** by roughly \$1M/year

Implications for optimal regulation

- ► Net environmental spillovers from transaction costs are likely modest (in PA...)
 - ► Potentially even positive! If transportation externalities are large
- ► Nevertheless, Pigouvian intervention could be justified by private cost savings
 - ► Social costs = external costs + private costs
 - ► Roughly \$50M/year in excess private costs (direct + indirect)
- ▶ In paper: show Pigouvian program can entail large sharing subsidies
 - ► Depending on interpretation of transaction costs (Pareto relevance?)

Details

Setting

Model

Estimates

Externalities

Conclusion

Conclusion

- ► New evidence on transaction costs from a unique setting
 - 1. Transaction costs are large, but heterogeneous
 - 2. Significant variation across counterparties
 - 3. Contracting frictions appear to play an outsized role
- ► Generic empirical framework for wastewater policy evaluation
- ► Environmental spillovers from imperfect sharing markets are modest in PA, but...
 - ▶ Rates of reuse significantly lower in Permian, Bakken, ...
 - ► Largest shale plays globally are not yet well developed (Vaca Muerta, Sichuan Basin)

- ► Thank you!
- ► Questions/comments: mfokeefe@u.northwestern.edu

Conventional disposal and reuse

► In Pennsylvania, injection well capacity severely limited by geology, regulation

- ▶ Due to high transportation costs, 89% of wastewater is **reused** in subsequent fracking
 - lacktriangle Minimal treatment required \Rightarrow cost of reuse \approx cost of transportation

Full estimates

	Est	SE	\$/bbl
Mean $\phi_{\kappa\delta}$ weighted by data weighted by benchmark	125.7	0.072	5.71
	154.2	0.081	7.01
Sharing market cost shifters α			
$ \begin{array}{l} rival \times poor \to good env record \\ rival \times good \to poor env record \end{array} $	- 8.5	0.110	0.39
$\begin{array}{l} rival \times gel \to slickwater \\ rival \times slickwater \to gel \end{array}$	-28.6	0.103	-1.30
	85.3	2.996	3.88
$\begin{array}{l} \operatorname{rival} \times \operatorname{large} \ \kappa \to \operatorname{well} \ \operatorname{pad} \\ \operatorname{rival} \times \operatorname{large} \ \kappa \to \operatorname{CTF} \\ \operatorname{rival} \times \operatorname{small} \ \kappa \to \operatorname{well} \ \operatorname{pad} \\ \operatorname{rival} \times \operatorname{small} \ \kappa \to \operatorname{CTF} \end{array}$	25.2	0.044	1.15
	4.4	0.151	0.20
	29.6	0.261	1.35
Within-firm cost shifters eta gel $ o$ slickwater slickwater $ o$ gel small κo CTF	6.7	0.092	0.31
	-8.7	0.046	-0.39
	-5.7	0.129	-0.26
$\sigma_{\kappa} + \sigma_{\delta}$	22.5	0.006	1.02

Match entropy function

$$\mathcal{E}(\mu, \mathbf{Q}, \mathbf{C}) = -G^*(\mu, \mathbf{Q}) - H^*(\mu, \mathbf{C})$$

 $ightharpoonup G^*(\mu, n)$ is the generalized entropy of choice for disposal

$$G^{*}\left(\mu,\mathbf{Q}\right) = \sup_{U \in \mathbb{R}^{K \times D}} \left(\sum_{\kappa \in K} \sum_{\delta \in D} \mu_{\kappa \delta} U_{\kappa \delta} - \sum_{\kappa \in K} Q_{\kappa} E\left[\max_{\delta \in D_{0}} U_{\kappa \delta} + \epsilon_{i \delta} \right] \right)$$

 \blacktriangleright $H^*(\mu, m)$ is the generalized entropy of choice for reuse

$$H^{*}\left(\mu,\mathbf{C}\right) = \sup_{\mathbf{V} \in \mathbb{R}^{K \times D}} \left(\sum_{\kappa \in K} \sum_{\delta \in D} \mu_{\kappa \delta} V_{\kappa \delta} - \sum_{\delta \in D} C_{\delta} E\left[\max_{\kappa \in K_{0}} V_{\kappa \delta} + \eta_{\kappa j} \right] \right)$$

Match entropy function (cont)

 \blacktriangleright For ϵ and η EV type 1,

$$\begin{split} \mathcal{E}\left(\mu, \mathbf{Q}, \mathbf{C}\right) &= -\sum_{\kappa, \delta} \mu_{\kappa \delta} \left\{ \sigma_{K} \log \left(\frac{\mu_{\kappa \delta}}{Q_{\kappa}}\right) + \sigma_{D} \log \left(\frac{\mu_{\kappa \delta}}{C_{\delta}}\right) \right\} \\ &- \sigma_{K} \sum_{k} \mu_{\kappa 0} \log \left(\frac{\mu_{\kappa 0}}{Q_{\kappa}}\right) - \sigma_{D} \sum_{\delta} \mu_{0 \delta} \log \left(\frac{\mu_{0 \delta}}{C_{\delta}}\right) \end{split}$$

Back

Estimated transaction cost distribution

▶ Inverse CDF (μ -weighted):

Back

Model fit

Sharing Rate (as sender, by firm)

Mean Dist (as sender, by firm)

Sharing Rate (as receiver, by firm)

Mean Dist (as receiver, by firm)

Dispersion estimates

► Point estimate for dispersion:

	Est (miles)	SE	\$/bbl
$\sigma_{K} + \sigma_{D}$	22.5	0.01	1.02

► Counterfactuals:

	Mean Dist (mi)	Share %
Data Fitted model	24.86 24.86	10.60 10.58
$ \sigma_{K} + \sigma_{D} \to 0 $ $ \sigma_{K} + \sigma_{D} \to \infty $	21.61 146.99	9.72 84.37
5		

Ambiguous effects of reducing transaction costs

Transaction costs and transportation

► Proportional re-scaling of transaction costs:

- ▶ In fitted model, removing transaction costs *increases* shipment distance by 15%
- ▶ Why? Non-random distribution of firms + matching on non-transport costs
 - ightharpoonup As ϕ shrinks, marginal matches tend to be further away

Pigouvian regulation

▶ Socially optimal (Pigouvian) shipment plan μ^* solves:

$$\min_{\mu \in \mathcal{M}(Q,C)} \Gamma\left(\mu\right) + C\left(\mu\right)$$

- ightharpoonup $\Gamma\left(\mu\right)$ represents external costs under shipment plan μ
- $ightharpoonup C(\mu)$ represents private costs under μ
- ▶ **Question:** should sharing frictions ϕ count towards $C(\mu)$?

Are sharing frictions welfare-relevant?

- ► Familiar distinction from consumer markets (e.g., switching costs)
 - ▶ Some "costs" may be relevant to decisionmakers, but not the social planner
- ► Examples of welfare-relevant sharing frictions:
 - Wages expended in finding out about sharing opportunities
 - Wages expended in haggling / bargaining / price discovery
 - ► Quantifiable risks to future profits (e.g., risk of lawsuits)
 - ▶ ...
- ► Examples of welfare-irrelevant sharing frictions:
 - ▶ Managerial inattention / status quo bias, loss aversion, excessive secrecy, ...

Pigouvian regulation (cont)

- ▶ Let $s \in [0, 1]$ index the welfare-relevance of sharing frictions:
- $s\phi$ is welfare-relevant and $(1-s)\phi$ is not
 - ightharpoonup s = 0 if sharing frictions are entirely welfare-irrelevant
 - ightharpoonup s=1 if sharing frictions are entirely welfare-relevant
- ▶ Socially optimal (Pigouvian) shipment plan μ_s^* solves:

$$\min_{\mu \in \mathcal{M}(Q,C)} \Gamma(\mu) + C_s(\mu)$$

- ightharpoonup $\Gamma\left(\mu
 ight)$ represents external costs under shipment plan μ
- ightharpoonup $C_s\left(\mu
 ight)$ represents welfare-relevant component of private costs under μ

Pigouvian tax rates

- ► Hypothetical policy response: Pigouvian tax on truck-miles
- ▶ Holding volume fixed, μ^* can be implemented with a tax on truck-miles:

$$tax_{\kappa\delta}^{(s)} = \gamma - (1-s) \, d_{\kappa\delta}^{-1} \phi_{\kappa\delta}$$

- $ightharpoonup \gamma$ is the marginal external cost of trucking (calibrate to 7%)
- ▶ If s < 1, uniform tax + sharing subsidies is optimal
- ▶ If s = 1, uniform tax is optimal
- lacktriangle Two inference problems: for optimal tax, regulator needs to know $\phi_{\kappa\delta}$ and s
 - lacktriangle In many settings $\phi_{\kappa\delta}$ (or an equivalent parameter) is identified, but s is not
 - lacktriangle Standard practice: argue s=0 or s=1 is more correct, check robustness
 - ► Even if firms knew s, would have incentives to shade (for larger subsidies)

Social cost savings and regret

► Change in social costs vs. status quo (\$/bbl):

- ► Sharing subsidies can reduce social costs by \$0.72 per barrel vs. uniform tax, but:
 - 1. Unnecessary subsidies can increase social costs by \$2.43 per barrel (before MCPF)
 - 2. Not cost-effective for reasonable MCPF values
 - 3. External costs are increased by 13.5% (not shown)