数据的机器级表示与运算

浮点数运算

主讲人: 邓倩妮

上海交通大学

浮点数的算术精确性

•
$$x \times_f y = Round(x \times y)$$

- 基本思想:
- 首先进行计算,
- 然后将计算结果表示为规定的浮点数标准格式
 - 如果阶 (exponent) 太大, 就溢出
 - 将运算结果的尾数位舍入到 frac 规定的长度

四种舍入模式

•	\$1.40	\$1.60	\$1.50	\$2.50	- \$1.50
• 向() (截断)	\$1	\$1	\$1	\$2	- \$1
• 向正无穷大(向上)	\$2	\$2	\$2	\$3	- \$1
• 向负无穷大(向下)	\$1	\$1	\$1	\$2	- \$2
■ 首选"偶数"值(默认)	\$1	\$2	\$2	\$2	- \$2

- 默认模式:最近舍入(Round to Nearest),首选"偶数"值
- 与四舍五入相比:不是.5的舍入, 同四舍五入
- .5的舍入,采用取偶数的方式。例如:
 - 最近舍入模式:Round(0.5) = 0; Round(1.5) = 2; Round(2.5) = 2;
 - 四舍五入模式:Round(0.5) = 1; Round(1.5) = 2; Round(2.5) = 3;

首选"偶数"值 Round-To-Even

- 当数值处于中间时,怎么做?
 - 一半时间向上舍入,一半时间向下舍入
- 减少运算中产生的误差
 - 例如:多个正数的加法,will consistently be over- or under- estimated
- Java支持的模式
- 在其他位置上的舍入, 规则相同
- 当数值处于中间时, Round so that least significant digit is even
 - E.g., round to nearest hundredth

```
7.89<u>49999</u> 7.89 (Less than half way)
```

7.89<u>50001</u> 7.90 (Greater than half way)

7.89<u>50000</u> 7.90 (Half way—round up)

7.88<u>50000</u> 7.88 (Half way—round down)

二进制数的最近舍入

- 二进制数的 Round-To-Even
 - 偶数 "Even": 最低有效位为 0
 - 数值处于中间 "Half way" 要舍弃的位数的形式 = 100…2

Examples

Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2 3/32	10.00 <u>011</u> 2	10.002	(<1/2—down)	2
2 3/16	10.00 <u>110</u> 2	10.012	(>1/2—up)	2 1/4
2 7/8	10.11 <u>100</u> 2	11.002	(1/2—up)	3
2 5/8	10.10 <u>100</u> 2	10.102	(1/2—down)	2 1/2

浮点数加法

- $(-1)^{s1}$ M1 2^{E1} + $(-1)^{s2}$ M2 2^{E2}
 - •假定 E1 > E2

- 运算步骤:
 - 对阶
 - 尾数加减
 - 规格化(左规,右规)
 - 舍入
 - 检查溢出

■ 运算结果: (-1)^s M 2^E

Exercise

Sign	Exponent	Fraction		
<u>1 bit</u>	5 bits	10 bits		
S	Е	F		

■ Given A=2.6125×10¹, B=4.150390625×10⁻¹, Calculate the sum of A and B by hand, assuming A and B are stored by the following format, Assume 1 guard(保护位), 1 round bit (舍入位), and 1 sticky bit (粘贴位), and round to the nearest even (首选"偶数"值舍入). Show all the steps.

Solution:

$$2.6125 \times 10^{1} + 4.150390625 \times 10^{-1}$$
 $2.6125 \times 10^{1} = 26.125 = 11010.001 = 1.1010001000 \times 2^{4}$
 $4.150390625 \times 10^{-1} = .4150390625 = .011010100111$
 $=1.1010100111 \times 2^{-2}$ (对阶, 小阶往大阶对)
Shift binary point 6 to the left to align exponents,
GR

1.1010001000 00

+.0000011010 10 0111 (Guard = 1, Round = 0, Sticky = 1)

1.1010100010 10 (尾数相加) and (尾数规格化检查)

the extra bits (G,R,S) are more than half of the least significant bit (0). Thus, the value is rounded up. (含入)

1.1010100011 × 24 (检查,无溢出)

 $= 11010.100011 \times 2^{0} = 26.546875 = 2.6546875 \times 10^{1}$

浮点加法运算电路

FP Add 的算术特性

- 与整数加法(形成的阿贝尔群)比较
 - 加法封闭 Closed under addition? Yes
 - But may generate infinity or NaN
 - 交换性 Commutative? Yes
 - 结合性 Associative?
 - 溢出、 舍入导致的不精确
 - (3.14+1e10)-1e10 = 0, 3.14+(1e10-1e10) = 3.14
 - 0 是加法单位元 additive identity? **Yes**
 - 每个元素都有加法逆元(additive inverse)? **Almost**
 - Yes, except for infinities & NaNs
- 単调性 Monotonicity
 - $a \ge b \Rightarrow a+c \ge b+c$?
 - Except for infinities & NaNs

Almost

浮点乘法 FP Multiplication

- $(-1)^{s1}$ **M1** 2^{E1} \times $(-1)^{s2}$ **M2** 2^{E2}
- Exact Result: (-1)^s M 2^E
- 步骤:
 - 阶码加
 - 尾数乘
 - 规格化
 - 舍入
 - 检查溢出
- Fixing
 - If $M \ge 2$, shift M right, increment E
 - If E out of range, overflow
 - Round M to fit frac precision

FP Mult的算术特性

- 与整数乘法(可交换的环 Commutative Ring)比较
 - 乘法封闭 Closed under multiplication?

Yes

- But may generate infinity or NaN
- 交換性 Multiplication Commutative?

Yes

结合性 Multiplication is Associative?

No

- Possibility of overflow, inexactness of rounding
- Ex: (1e20*1e20) *1e-20= inf, 1e20* (1e20*1e-20) = 1e20
- 1 是乘法单位元 multiplicative identity?

Yes

Multiplication distributes over addition?

No

- Possibility of overflow, inexactness of rounding
- 1e20*(1e20-1e20) = 0.0, 1e20*1e20 1e20*1e20 = NaN
- 単调性 Monotonicity
 - $a \ge b \& c \ge 0 \Rightarrow a * c \ge b * c$?

Almost

Except for infinities & NaNs

Floating Point Multiplication Example

$$(0.5 = 1.0000 \times 2^{-1}) \times (-0.4375 = -1.1100 \times 2^{-2})$$

Step 0: Hidden bits restored in the representation above

Step 1: Add the exponents (not in bias would be -1 + (-2) = -3

and in bias would be (-1+127) + (-2+127) - 127 = (-1 - 127) + (-1 -

2) + (127+127-127) = -3 + 127 = 124

Step 2: Multiply the significands

 $1.0000 \times 1.110 = 1.110000$

Step 3: Normalized the product, checking for exp over/underflow

 1.110000×2^{-3} is already normalized

Step 4: The product is already rounded, so we're done

Step 5: Rehide the hidden bit before storing

MIPS 浮点运算指令

• MIPS 有独立的浮点寄存器文件 (\$f0,\$f1, ...,\$f31) (whose registers are used in *pairs* for double precision values) with special instructions to load to and store from them

```
lwcl $f1,54($s2) $f1 = Memory[$s2+54]
swcl $f1,58($s4) $memory[$s4+58] = $f1
```

■ 支持 IEEE 754 单精度 single

```
add.s $f2,$f4,$f6 $f2 = $f4 + $f6
```

和双精度运算 double precision operations

```
add.d $f2,$f4,$f6 #$f2||$f3 = $f4||$f5 + $f6||$f7
```

similarly for sub.s, sub.d, mul.s, mul.d, div.s, div.d

MIPS 浮点运算指令续

- 单精度浮点数比较
- c.x.s \$f2,\$f4

where x may be eq, neq, lt, le, gt, ge

• 双精度浮点数比较

■ 根据浮点比较结果转移 branch operations

$$\#if(cond==0)$$

Frequency of Common MIPS Instructions

Only included those with >3% and >1%

	SPECint	SPECfp
addu	5.2%	3.5%
addiu	9.0%	7.2%
or	4.0%	1.2%
sll	4.4%	1.9%
lui	3.3%	0.5%
lw	18.6%	5.8%
SW	7.6%	2.0%
lbu	3.7%	0.1%
beq	8.6%	2.2%
bne	8.4%	1.4%
slt	9.9%	2.3%
slti	3.1%	0.3%
sltu	3.4%	0.8%

	SPECint	SPECfp
add.d	0.0%	10.6%
sub.d	0.0%	4.9%
mul.d	0.0%	15.0%
add.s	0.0%	1.5%
sub.s	0.0%	1.8%
mul.s	0.0%	2.4%
1.d	0.0%	17.5%
s.d	0.0%	4.9%
1.s	0.0%	4.2%
S.S	0.0%	1.1%
lhu	1.3%	0.0%

C语言中的浮点运算

- C 语言支持两种精度的浮点数 float & double
- 不同类型间的转换
 - Casting between int, float, and double changes bit representation
 - double/float → int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to Tmin(最小整数)
 - int \rightarrow double
 - Exact conversion, as long as **int** has ≤ 53 bit word size
 - int → float
 - Will round according to rounding mode
 - 单精度: (有效尾数24位,相当于7位十进制有效位数); int型有效位数31位,相当于10位十进制有效位

Discussion 1:

 What about following type converting: will it output true?

```
if ( i == (int) ((float) i) ) {
     printf ("true");
}
if ( f == (float) ((int) f) ) {
     printf ("true");
}
```

Question II about IEEE 754

- How about FP add associative?
- (X+Y)+Z=X+(Y+Z)

$$x = -1.5 \times 10^{38}$$
, $y = 1.5 \times 10^{38}$, $z = 1.0$
 $(x+y)+z = (-1.5\times10^{38}+1.5\times10^{38})+1.0 = 1.0$
 $x+(y+z) = -1.5\times10^{38}+(1.5\times10^{38}+1.0) = 0.0$

Floating Point Puzzles

- For each of the following C expressions, either:
 - Argue that it is true for all argument values
 - Explain why not true

```
int x = ...;
float f = ...;
double d = ...;
```

Assume neither **d** nor **f** is NaN

```
• x == (int)(float) x
• x == (int) (double) x
f == (float) (double) f
• d == (double)(float) d
• f == -(-f);
• 2/3 == 2/3.0
• d < 0.0 \Rightarrow ((d*2) < 0.0)
• d > f \Rightarrow -f > -d
• d * d >= 0.0
• (d+f)-d == f
```


总结

- IEEE Floating Point has clear mathematical properties
- Represents numbers of form M x 2^E
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers

谢谢!

