2023-2024 学年度第一学期高二期末质量检测

数学试题参考答案及评分标准

说明:

1.本解答指出了每题要考察的主要知识和能力,给出一种或几种解法供参考.如果考生的解法与给出的解法不同,可根据试题的主要考察内容比照评分标准确定相应的评分细则.

2.对解答题, 当考生的解答在某一步出现错误, 但整体解决方案可行且后续步骤没有出现推理或计算错误, 则错误部分依细则扣分, 并根据对后续步骤影响的程度决定后继部分的给分, 但不得超过后续部分正确解答应给分数的一半; 如果后继部分的解答有较严重的错误, 就不再给分.

- 3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.
- 4.解答题只给整数分数,填空题不给中间分.
- 一、选择题:本题考查基础知识和基本运算,每小题 5 分,满分 40 分.
 - 1. A 2. B 3. A 4. C 5. B 6. D 7. B 8. C
- 二、选择题:本题共 4 小题,每小题 5 分,共 20 分.全部选对的得 5 分,有选错的得 0 分,部分选对的得 2 分.
 - 9. ABC 10. AB 11. AD 12. BD
- 三、填空题:本题考查基础知识和基本运算,每小题 5 分,满分 20 分.

13.
$$120^{\circ}$$
 (或 $\frac{2\pi}{3}$) 14. 72 15. $3\times2^{n-1}$ −1 16. $\sqrt{2}$

- 三、解答题:本大题共6小题,满分70分,解答须写出文字说明、证明过程和演算步骤.
- 17. 本小题主要考查二项式定理、组合数计算等基础知识,考查运算求解能力,逻辑推理能力等. 满分 10 分.

解: (1) 展开式中所有二项式系数之和为 64

(2) 由 (1) 知 n=6

则 $T_5 = 2^4 C_6^4 = 240$

所以展开式中的常数项为 240.10 分

18. 本小题主要考查数列的递推关系、累加法、裂项求和等基础知识,考查运算求解能力,逻辑推理能力等,满分 12 分.

所以三角形 <i>ABD</i> 外接圆的方程为 x² + y² - 2x-3=0
故圆心坐标 (1,0),半径 r = 28 分
因为弦长 $2\sqrt{2}$, 所以圆心到直线 ℓ 的距离: $d=\sqrt{2^2-2}=\sqrt{2}$ 9 分
依题意得,直线 l 的斜率存在,设直线 l 的方程为 $y = k(x-3)$,
所以 $d = \frac{ 2k }{\sqrt{k^2 + 1}} = \sqrt{2}$
解得 k = ±1 ,
所以直线 ℓ 的方程为 x + y - 3 = 0, x - y - 3 = 012 分
解法二: (1) 如图所示在等腰梯形 $ABCD$ 中,
因为 AD II BC , $A(0,\sqrt{3})$, $B(-1,0)$, $C(3,0)$
则
所以 $\angle ACB = \frac{\pi}{6}$
因为 $\triangle ABC \cong \triangle DCB$,所以 $\angle DBC = \angle ACB = \frac{\pi}{6}$
所以 $\kappa_{\scriptscriptstyle BD} = \frac{\sqrt{3}}{3}$
所以 BD 所在直线方程为: $y = \frac{\sqrt{3}}{3}(x+1)$, 整理得 $x - \sqrt{3}y + 1 = 0$
(2) 因为四边形 ABCD 是等腰梯形,所以 A,B,C,D 四点共圆,6
分
故 △ABD 的外接圆即 △ABC 的外接圆7 分
由(1)可知,该外接圆以(1,0)为圆心,2为半径8分
因为弦长 $2\sqrt{2}$, 所以圆心到直线 ℓ 的距离 : $d = \sqrt{2^2 - 2} = \sqrt{2}$
依题意得,直线 l 的斜率存在,设直线 l 的方程为 $y = k(x-3)$,
所以 $d = \frac{ 2k }{\sqrt{k^2 + 1}} = \sqrt{2}$
解得 k = ±1 ,
所以直线 / 的方程为 x + y - 3 = 0, x - y - 3 = 012 分

解法三: (1)过 D作 $DF \perp x$ 交 X 轴于点 F, 在等腰梯形 ABCD中, 因为 AD I IBC ,且 $A(0, \sqrt{3})$, 所以 $|AD| = |OF| = |BC| - 2|BO| = 4 - 2 \times 1 = 2$ 2 分 所以 BD 所在直线方程为: $y = \frac{\sqrt{3}}{2}(x+1)$, 线段 BD 的中点为($\frac{1}{2}$, $\frac{\sqrt{3}}{2}$), 由①②解得 $\triangle ABD$ 的外接圆的圆心为 E(1,0), 过点 E 作 $PQ \perp x$ 轴交 $\triangle ABD$ 的外接圆于 P,Q 两点 因为点 C 在 $\triangle ABD$ 的外接圆上, 又根据圆的对称性可知满足题设的直线 ℓ 为直线 ℓ 和直线 ℓ ℓ , 故所求直线 l 的方程为 x + y - 3 = 0 或 x - y - 3 = 0. 20. 本小题主要考查抛物线的方程、直线与抛物线的位置关系等基础知识, 考查运算求解能 力、直观想象等. 满分 12 分. 解法一: (1) 设抛物线 $y^2 = 2 px$ 与直线 y = 2x - 3 交于 $S(x_1, y_1)$, $T(x_2, y_2)$.

因为 $y_M = \frac{y_1 + y_2}{2} = 1$
所以 <i>p</i> = 2,
则抛物线方程为 $y^2=4x$,准线方程为 $x=-1$ 5 分
(2) 依题意设直线 AB 的方程为 $x = my + 1$, $m \neq 0$, $A(x_3, y_3)$, $B(x_4, y_4)$.
联立方程组 $\begin{cases} x = my + 1, \\ y^2 = 4x, \end{cases}$ 整理得 $y^2 - 4my - 4 = 0$,
故 $\begin{cases} y_3 + y_4 = 4m, \\ y_3 y_4 = -4, \end{cases}$
所以 $ AB = AF + BF = x_3 + 1 + x_4 + 1 = my_3 + 1 + 1 + my_4 + 1 + 1$
$= m(y_3 + y_4) + 4 = 4m^2 + 4$
因为 $AB \perp CD$,直线 CD 的方程为 $x = -\frac{1}{m}y + 1$,
同理可得 $CD = \frac{4}{m^2} + 4$
所以 $S = \frac{1}{2} AB \cdot CD = \frac{1}{2} (4m^2 + 4) \cdot \left(\frac{4}{m^2} + 4\right) = 8\left(2 + m^2 + \frac{1}{m^2}\right)$
$\geq 8\left(2+2\sqrt{m^2\cdot\frac{1}{m^2}}\right)=32$,
当且仅当 $m^2 = \frac{1}{m^2}$,即 $m = \pm 1$ 时,取等号
所以四边形 ABCD 面积 S 的最小值为 32.
解法二: (1) 设抛物线 $y^2 = 2 px$ 与直线 $y = 2x - 3$ 交于 $S(x_1, y_1)$, $T(x_2, y_2)$.
则 $\begin{cases} y_1^2 = 2 px_1, \\ y_2^2 = 2 px_2, \end{cases}$ 1分
作差得 $\frac{{y_1}^2 - {y_2}^2}{x_1 - x_2} = \frac{y_1 - y_2}{x_1 - x_2} (y_1 + y_2) = 2 p$
所以 $k_{ST} = \frac{2p}{(y_1 + y_2)} = 2$
因为 y ₁ + y ₂ = 2 ,所以 p = 24 分
则抛物线方程为 $y^2=4x$, 准线方程为 $x=-1$ ····································
(2) 依题意设直线 AB 的方程为 $y = k(x-1)$, $k \neq 0$, $A(x_3, y_3)$, $B(x_4, y_4)$.

高二数学参考答案 第5页 共10页

分

分

分

分

	将 $y_1 + y_2 = \frac{-2mt}{m^2 + 4}$, $y_1 y_2 = \frac{t^2 - 4}{m^2 + 4}$, 代入上式整理得 $t^2 - t - 2 = 0$.10 分
	解得 t = 2, t = -1,	.11 分
	因为直线不过点 $(2,0)$,所以 $t = -1$	
	所以,直线 / 恒过定点(-1,0)	12
分		