

# Final Project

Sturm-Liouville problem

Noe Lomidze

Kutaisi International University

January 9, 2025

#### **Contents**

| Tasks                             | 6  |
|-----------------------------------|----|
| Sturm-Liouville problem           | 7  |
| Examples, Sturm-Liouville Problem | 8  |
| Main results                      | 9  |
| Reduction to Sturm–Liouville form | 10 |
| Simple example                    | 11 |
| Regular SL-BVP properties         | 12 |
| Regular SL-BVP properties         | 13 |
| Numerical Methods for ODEs        | 14 |
| Numerical Methods for ODEs        | 15 |

| Numerical Methods for ODEs         | 16 |
|------------------------------------|----|
| Shooting method for BVPs           | 17 |
| Shooting method for BVPs           | 18 |
| Shooting method for BVPs           | 19 |
| Previous example solved: Problem 3 | 20 |
| Previous example solved: Problem 3 | 21 |
| Previous example solved: Problem 3 | 22 |
| Another simple example             | 23 |
| Another simple example             | 24 |
| Orthogonality                      | 25 |
| Nice example:                      | 26 |

| Nice example:        | 27 |
|----------------------|----|
| Nice example:        | 28 |
| Nice example:        | 29 |
| Numerical Solution   | 30 |
| Numerical Solution   | 31 |
| Numerical Solution   | 32 |
| Another Good Example | 33 |
| Another Good Example | 34 |
| Another Good Example | 35 |
| Another Good Example | 36 |
| Another Good Example | 37 |

| Another Good Example | 38 | 3 |
|----------------------|----|---|
| Another Good Example | 39 | ) |

#### **Tasks**

#### i Description

- Formulate algorithm, explain your approach in written.
- Describe properties of numerical methods written.
- Develop test cases and demonstrate validity of your results.
- Upload all necessary files, including
  - 1. Presentation file
  - 2. Code
  - 3. Test data and their description
- Using shooting method and ball motion equation is compulsory

### Sturm-Liouville problem

#### i Components

- Input: Sturm-Liouville problem
- Task: find first 8 eigenvalues and eigenfunctions
- Approach: approximate vanishing or singular coefficients
- Output: visualisation of eigenvalues and eigenfaunctions
- Test: test case description
- Methodology: should contain problem formulation, including equation with initial and boundary condition, method of solution, algorithm

### Examples, Sturm-Liouville Problem



#### Theory

In mathematics and its applications, a **Sturm-Liouville** problem is a second-order linear ordinary differential equation of the form:

$$\frac{d}{\mathrm{d}x} \left[ p(x) \frac{\mathrm{d}y}{\mathrm{d}x} \right] + q(x)y = -\lambda w(x)y \tag{1}$$

for the given functions p(x), q(x) and w(x) together with some Boundary Conditions at extreme values of x. The goals are:

- To find the  $\lambda$  (eigenvalue) for which there exists a non-trivial solution to the problem.
- To find the corresponding solution y=y(x) of the problem, such functions are eigenfunctions

#### Main results

The main results in Sturm-Liouville theory apply to a Sturm-Liouville problem:  $\frac{d}{dx} \left[ p(x) \frac{dy}{dx} \right] + q(x)y = -\lambda w(x)y$  on a finite interval [a,b] that is "regular". The problem is regular if:

- the coefficient functions p, q, w and derivative p' are all continuous on [a, b];
- p(x) > 0 and w(x) > 0 for all  $x \in [a, b]$ ;
- the problem has separated boundary conditions of the form

$$\alpha_1 y(a) + \alpha_2 y'(a) = 0 \quad \alpha_1, \alpha_2 \text{ not both } 0, \tag{2}$$

$$\beta_1 y(b) + \beta_2 y'(b) = 0 \quad \beta_1, \beta_2 \text{ not both } 0, \tag{3}$$

The function w = w(x) is called the weight or density function.

#### Reduction to Sturm-Liouville form

The differential Equation 1 is said to be in **Sturm-Liouville** or **self-adjoint form** 

### Bessel equation

$$x^2y'' + xy' + (x^2 - \nu^2)y = 0$$

which can be written in Sturm-Liouville form (first by dividing through by x, then by collapsing the first two terms on the left into one term) as:

$$(xy')' + \left(x - \frac{\nu^2}{x}\right)y = 0$$

### Simple example

For 
$$\lambda \in \mathbb{R}$$
, solve:  $y'' + \lambda y = 0$   $y(0) = 0$ ,  $y'(\pi) = 0$ 

Case 1. Let  $\lambda < 0$ . Then  $\lambda = -\mu^2$ ,  $\mu \in \mathbb{R} \setminus \{0\}$ . Solution of ODE is  $y(x) = Ae^{\mu x} + Be^{-\mu x}$ 

This y satisfies boundary conditions iff  $A=B=0 \Longrightarrow y \equiv 0$ . So there are no negative eigenvalues..

Case 2. Let  $\lambda = 0$ . In this case, it easily follows that trivial solution is the only solution of

$$y'' = 0$$
,  $y(0) = 0$ ,  $y'(\pi) = 0$ . Thus, 0 is not an eigenvalue.

**Case 3.** Let  $\lambda > 0$ . Then  $\lambda = \mu^2$ , where  $\mu \in R \setminus \{0\}$ . The general solution of ODE is given by

$$y(x) = A\cos(\mu x) + B\sin(\mu x)$$

We need: A=0 and  $B\cos(\mu\pi)=0$ . But  $B\cos(\mu\pi)=0$  iff either B=0 or  $\cos(\mu\pi)=0$ .

If A=0 and  $B=0 \Rightarrow y \equiv 0$ , Thus  $\cos(\mu\pi)=0$  should hold, the last equation has solutions given by  $\mu=\left(\frac{1}{2}+n\right)$ , for  $n=0,\pm 1,\pm 2,\ldots$  Thus the eigenvalues are  $\lambda_n=\left(\frac{1}{2}+n\right)^2, \quad n=0,1,2,\ldots$  and corresponding eigenfunctions are given by  $\phi_n=B\sin\left(\left(\frac{1}{2}+n\right)x\right)$ 

*Note*: All the eigenvalues are positive. The eigenfunctions corresponding to each eigenvalue form a one dimensional vector space and so the eigenfunctions are unique upto a constant multiple.

### Regular SL-BVP properties

Eigenvalues of regular *SL-BVP* are real.  $\mathcal{L}[y] \equiv \frac{d}{dx} \left[ p(x) \frac{dy}{dx} \right] + q(x)y, \quad \mathcal{L}[y] + \lambda r(x)y = 0$ 



#### **Proof**

Suppose  $\lambda \in \mathbb{C}$  is an eigenvalue and y be the corresponding eigenfunction. That is,

$$\begin{split} \mathcal{L}[y] + \lambda r(x)y &= 0, \ a_1y(a) + a_2p(a)y'(a) = 0, \ b_1y(b) + a_2p(b)y'(b) = 0, \text{ Taking compl conj} \\ \mathcal{L}[\overline{y}] + \lambda r(x)\overline{y} &= 0, \ a_1\overline{y}(a) + a_2p(a)\overline{y}'(a) = 0, \ b_1\overline{y}(b) + a_2p(b)\overline{y}'(b) = 0 \end{split}$$

Multiply the first ODE with  $\overline{y}$  and multiply that with y, subtracting one from another yields:

$$\left[p(y'\overline{y}-\overline{y}'y)\right]'+\left(\lambda-\overline{\lambda}\right)ry\overline{y}=0$$
, Integrating the last equation yields:

$$\left[p(y'\overline{y}-\overline{y}'y)\right]\mid_a^b=-\left(\lambda-\overline{\lambda}\right)\int_a^br(x)\ |y(x)|^2\,\mathrm{d}x.$$

But LHS is zero, since we have both boundary conditions, also we know that  $b_1^2 + b_2^2 \neq 0$  Thus  $(\lambda - \overline{\lambda}) \int_a^b r |y|^2 dy = 0$ 

Since y being an eigenfaunction  $y \neq 0$ , also r > 0, only possibility is that  $\lambda = \overline{\lambda}$  which means that  $\lambda$  is real.

Done.

### Regular SL-BVP properties

Eigenfunctions of the distinct eigenvalues, of a regular SL-BVP are othogonal:

$$\int_{a}^{b} r(x)u(x)v(x) = 0 \tag{4}$$



#### **Proof**

As in the previous proof, writing down the equations satisfied by u and v, and multiplying the equation for u with v and vice versa, finally substracting we get:

$$[p(u'v-v'u)]+(\lambda-\mu)ruv=0$$

Integrating the last equality yields:

$$[p(u'v - v'u)] \mid_a^b = -(\lambda - \mu) \int_a^b r(x)u(x)v(x) dx$$

Reasoning exactly as in the previous proof, LHS is zero, since  $\lambda \neq \mu$ , proof is done.

#### **Numerical Methods for ODEs**

There are many methods to solve  $\frac{d}{dy} = f(t, \boldsymbol{y})$ , but lets consider two:

Euler's method:  $y_{j+1} = y_j + kf_j$ , which is O(k)

```
Code
</>
 def euler method(f, t0, y0, h, t end):
     t values = [t0]
     y values = [y0]
     while t values[-1] < t end:</pre>
         t new = t values[-1] + h
         y new = y values[-1] +
         h * f(t values[-1], y values[-1])
         t values.append(t new)
         y values.append(y new)
     return np.array(t values), np.array(y values)
```

#### **Numerical Methods for ODEs**

Classical Runge-Kutta Method:

$$y_{j+1} = y_j + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4), \quad O(k^4)$$
 (5)

Where:

$$\begin{aligned} k_1 &= kf_j \\ k_2 &= kf \big( t_j + \frac{k}{2}, y_j + \frac{1}{2} k_1 \big) \\ k_3 &= kf \big( t_j + \frac{k}{2}, y_j + \frac{1}{2} k_2 \big) \\ k_4 &= kf \big( t_{j+1}, y_j + k_3 \big) \end{aligned}$$

#### **Numerical Methods for ODEs**

#### </> Code

```
def rk4 method(f, t0, y0, h, t end):
    t values = [t0]
   y values = [y0]
   while t_values[-1] < t_end:</pre>
        t = t values[-1]
        y = y \text{ values}[-1]
        k1 = h * f(t, y)
        k2 = h * f(t + h/2, y + k1/2)
        k3 = h * f(t + h/2, y + k2/2)
        k4 = h * f(t + h, y + k3)
        y new = y + (1/6) * (k1 + 2*k2 + 2*k3 + k4)
        t new = t + h
        t values.append(t new)
        y values.append(y new)
    return np.array(t values), np.array(y values)
```

### **Shooting method for BVPs**

In numerical analysis, the **shooting method** is a method for solving a boundary value problem by recuding it to an <u>initial value problem</u>.

Example:

$$w''(t) = \frac{3}{2}w^2(t), \quad w(0) = 4, \quad w(1) = 1, \text{ to the initial value problem}$$
 (6)

$$w''(t) = \frac{3}{2}w^2(t), \quad w(0) = 4, \quad w'(0) = s \tag{7}$$

After solving using different methods for s, we get

$$w'(0) = -8 \text{ and } w'(0) = -35.9 \text{ (approximately)}$$
 (8)

### **Shooting method for BVPs**



Figure 1: Trajectories w(t;s) for s=w'(0) equal to -7, -8, -10, -36 and -40

### **Shooting method for BVPs**



Figure 2: The function F(s) = w(1; s) - 1

#### Previous example solved: Problem 3

By hand we got  $\lambda_n = \left(\frac{1}{2} + n\right)^2$ ,  $\phi_n(x) = \sin\left(\left(\frac{1}{2} + n\right)x\right)$ In python file: SimpleSL\_example.py I used **shooting method** with **RK4** to do the same as before, with bisection method, I was able to find the eigenvalues iteratively taking midpoints of interval  $[\lambda_{\min}, \lambda_{\max}]$ , checking the sign of  $y'(\pi)$  and so on..

```
def runge_kutta_4(f, y0, t, h):
   def shooting_method(lambda_val, x, h):
   def find_eigenvalues(n_eigenvalues, x_points):
   def compute_eigenfunction(lambda_val, x, h):
```

### Previous example solved: Problem 3



### Previous example solved: Problem 3

#### Eigenvalues vs Analytical Values:

```
Eigenvalues vs Analytical Values:
   Numerical
               Analytical Error (%)
   0.250000
               0.250000
                           0.000048
   2.250000
               2.250000
                           0.000001
   6.250001
               6.250000
                           0.000016
   12.250000
               12.250000
                           0.000002
   20.250011
               20.250000
                           0.000055
   30.250031
               30.250000
                           0.000103
   42.250075
               42.250000
                           0.000176
   56.250180
               56.250000
                           0.000319
```

### Another simple example

Almost the same equation, but different boundary points:

$$y'' + \lambda y = 0, y(0) = 0, y(1) = 0 \tag{9}$$

Solution by inspection is:

$$A\cos(\sqrt{\lambda}x) + B\sin(\sqrt{\lambda}x) \tag{10}$$

But because of boundary conditions we get:  $\sin(\sqrt{\lambda}x) = 0$  so

$$\lambda_n = \pi^2 n^2, \ y_n(x) = \sin(\pi n x) \tag{11}$$

## Another simple example



## **Orthogonality**



#### Proof

- 1.  $\int_{0}^{1} \sin(m\pi x) * \sin(n\pi x) * 1 dx = 0$  if  $m \neq n$
- $2.\sin(A)\sin(B) = \frac{1}{2}[\cos(A-B) \cos(A+B)] \text{ applying it } \Rightarrow 3.\left(\frac{1}{2}\right)\int_0^1[\cos((m-n)\pi x) \cos((m+n)\pi x)] =$

$$= \left(\frac{1}{2}\right) \left[ \frac{\sin((m-n)\pi x)}{(m-n)\pi} - \frac{\sin((m+n)\pi x)}{(m+n)\pi} \right]_0^1$$

Since m and n are integers and  $m \neq n \Longrightarrow$ 

$$\sin((m-n)\pi) = \sin((m+n)\pi) = 0, \text{ and we're done.} (12)$$

$$y'' + 3y' + 2' + \lambda y = 0, \ y(0) = 0, \ y(1) = 0.$$
 (13)

**Solution** The characteristic equation of that is:

$$r^2 + 3r + 2 + \lambda$$
, with zeros  $r_{1,2} = \frac{-3 \pm \sqrt{1 - 4\lambda}}{2}$  (14)

Case 1: If  $\lambda < \frac{1}{4}$  then  $r_1$  and  $r_2$  are real and distinct, so the general solution is

$$y = c_1 e^{r_1 t} + c_2 e^{r_2 t} (15)$$

The boundary conditions require that:  $c_1+c_2=0 \ \land \ c_1e^{r_1}+c_2e^{r_2}=0$ 

Since the determinant of this system is  $e^{r_2} - e^{r_1} \neq 0$ , the system has only the trivial solution. Therefore  $\lambda$  is not an eigenvalue of equation 13

Case 2: If  $\lambda = \frac{1}{4}$  then  $r_1 = r_2 = -\frac{3}{2}$  so the general solution of equation 13 is

$$y = e^{\frac{-3x}{2}}(c_1 + c_2 x) \tag{16}$$

The boundary condition y(0)=0 requires that  $c_1=0$ , so  $y=c_2xe^{\frac{-3x}{2}}$  and the boundary condition y(1)=0 requires that  $c_2=0$ . Therefore  $\lambda=\frac{1}{4}$  is not an eigenvalue.

**Case 3:** If  $\lambda > \frac{1}{4}$  then:

$$r_{1,2} = -\frac{3}{2} \pm iw$$
 with (17)

$$w = \frac{\sqrt{4\lambda - 1}}{2}$$
 or equivalently,  $\lambda = \frac{1 + 4w^2}{4}$  (18)

Noe Lomidze Final Project Fall Term 2024 15 / 21

Case 3(Continued): In this case the general solution of equation 13 is

$$y = e^{\frac{-3x}{2}} (c_1 \cos wx + c_2 \sin wx) \tag{19}$$

Boundary condition y(0)=0 requires that  $c_1=0$ , so  $y=c_2e^{\frac{-3x}{2}}\sin wx$  which holds with  $c_2\neq 0$  iff  $w=n\pi$  where n is an integer. So the eigenvalues are

$$\lambda_n = \frac{1 + 4n^2\pi^2}{4},\tag{20}$$

with associated eigenfunctions

$$y_n = e^{\frac{-3x}{2}} \sin n\pi x, \quad n = 1, 2, 3, \dots$$
 (21)

Eigenfunctions of the Sturm-Liouville Problem  $y'' + 3y' + 2y + \lambda y = 0$ , y(0) = y(1) = 0



#### **Numerical Solution**

Consider the Sturm-Liouville problem:

$$y'' + 3y' + 2y + \lambda y = 0, \ y(0) = 0, \ y(1) = 0$$
 (22)

#### **Shooting Method Approach:**

1. Convert to first-order system:

$$\begin{pmatrix} {y_1}' \\ {y_2}' \end{pmatrix} = \begin{pmatrix} y_2 \\ -3y_2 - 2y_1 - \lambda y_1 \end{pmatrix}$$
 (23)

where  $y_1 = y$  and  $y_2 = y'$ 

2. For each  $\lambda$ , solve IVP with initial conditions:

$$y_1(0) = 0, \ y_2(0) = 1$$
 (24)

#### **Numerical Solution**

using RK4 method with step size h:

$$k_{1} = f(t_{n}, y_{n})$$

$$k_{2} = f\left(t_{n} + \frac{h}{2}, y_{n} + \left(\frac{h}{2}\right)k_{1}\right)$$

$$k_{3} = f\left(t_{n} + \frac{h}{2}, y_{n} + \left(\frac{h}{2}\right)k_{2}\right)$$

$$k_{4} = f(t_{n} + h, y_{n} + hk_{3})$$

$$y_{n+1} = y_{n} + \left(\frac{h}{6}\right)(k_{1} + 2k_{2} + 2k_{3} + k_{4})$$
(25)

3. Define shooting function:

#### **Numerical Solution**

$$F(\lambda) = y_1(1) \tag{26}$$

Eigenvalues occur when  $F(\lambda) = 0$ 

4. Find eigenvalues using bisection:

For interval  $[\lambda_L, \lambda_R]$ , if  $F(\lambda_L)F(\lambda_M) < 0$  where  $\lambda_M = \frac{\lambda_L + \lambda_R}{2}$ , then eigenvalue exists in  $[\lambda_L, \lambda_M]$ 

5. Initial guesses based on analytical solution:

$$\lambda_n \approx \frac{1 + 4n^2\pi^2}{4} \tag{27}$$

## Legendre equation

$$-(1-x^2)y'' + 2xy' + \lambda y = 0 \text{ on } [-1,1]$$
(28)

with boundary conditions y(-1) = y(1) = 0

$$\frac{d}{\mathrm{d}x}\left[(1-x^2)\frac{\mathrm{d}y}{\mathrm{d}x}\right] + l(l+1)y = 0 \tag{29}$$

The above form is a special case of the so-called associated Legendre differential equation corresponding to the case m=0. The Legendre differential equation has regular singular points at  $-1, 1, \text{ and } \infty$ 

To solve this using the shooting method, we first transform the secondorder ODE into a system of first-order ODEs:

Let v = y', then:

$$y' = v$$

$$v' = \frac{2xv + \lambda y}{1 - x^2} \tag{30}$$

This gives us the system:

$$\frac{d}{\mathrm{d}x}[y] = [v] \qquad \frac{d}{\mathrm{d}x}[v] = \left[\frac{2xv + \lambda y}{1 - x^2}\right] \tag{31}$$

The shooting method converts our boundary value problem into an initial value problem:

- At x = -1:
  - We know y(-1) = 0 (given boundary condition)
  - We guess y'(-1) = 1 (arbitrary non-zero value)

For a given eigenvalue guess  $\lambda$ :

- 1. Set initial conditions y(-1) = 0, y'(-1) = 1
- 2. Integrate the system from x = -1 to x = 1
- 3. Check the value of y(1)

Eigenvalue Search, Define the shooting function:  $F(\lambda) = y(1)$  The eigenvalues are the values of  $\lambda$  where  $F(\lambda) = 0$ , then runge kutta, and then bisection method for finding eigenvalues.

## <>> Methods def runge kutta 4(f, x, y, h): def forward euler(f, x, y, h): def compare methods(n eigenvalues=8, n points=100): def bisection eigenvalue(lambda left,

lambda right, x start, x end, n points, tol=1e-6,

max iter=50, shoot func=shoot):





Lower the points get, better the difference between methods is:



# Thanks for your attention

#### Refs:

The-Shooting-Method - berkeley.edu

Numerical\_Study\_on\_the\_Boundary\_Value

Problem\_by\_Using\_a\_Shooting\_Method https://www.math.iitb.ac.in/~siva/

ma41707/ode7.pdf