算法竞赛中的数学问题——例题

东北育才学校 张听海

February 5, 2018

Contents

1	因数	女与倍数
	1.1	哈希函数
	1.2	[UOJ48] 核聚变反应强度
	1.3	[BZOJ2299] 向量
	1.4	[POJ3696] The Luckiest Number
2	欧拉	拉函数
	2.1	[BZOJ2818] Gcd
	2.2	[BZOJ2190] 仪仗队
	2.3	[BZOJ3884] 上帝与集合的正确用法
	2.4	离散对数问题
3	三分	·法
	3.1	[BZOJ1857] 传送带

因数与倍数 1

1.1 哈希函数

给定正整数 h, 求有多少对非负整数 (x,y) 满足 h = xy + x + y.

T 组数据.

 $T \leq 10,000, h \leq 10^8.$

整理得 h+1=(x+1)(y+1). 即求 h+1 的正因子个数.

欧拉筛预处理得到 $1 \sim 10^4$ 之间的所有质数, 进而得到 h+1 的质因子分解式.

如果用所有找到的质数试除之后 h > 1,则剩下的 h 必为质数 (即原 h 的最大质因子).

注意到若 $h+1=p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_k^{\alpha_k}$,则 h+1 的正因子个数为 $(\alpha_1+1)(\alpha_2+1)\cdots(\alpha_k+1)$.

1.2 [UOJ48] 核聚变反应强度

给出 n 个正整数 a_1, a_2, \dots, a_n , 计算 a_1 与每个 a_i 的次大公约数(能同时整除 x, y 的正整数中第二大的 数),如果没有输出-1.

 $n \leq 10^5$, $a_i \leq 10^{12}$.

对于两个正整数 a_1 和 a_i , 它们的公约数必为 $gcd(a_1,a_i)$ 的公约数. 即求 $gcd(a_1,a_i)$ 的次大公约数. 欧拉筛预处理出质数数列.

对于每个 a_i , 欧几里得算法求出 $\gcd(a_1,a_i)$, 之后从小到大用质数试除, 找到最小的 $p \mid \gcd(a_1,a_i)$, 输 $\coprod \gcd(a_1,a_i)$

1.3 [BZOJ2299] 向量

给你一对数 a,b, 你可以任意使用 (a,b),(a,-b),(-a,b),(-a,-b),(b,a),(b,-a),(-b,a),(-b,-a) 这些 向量,问你能不能拼出另一个向量 (x,y).

T 组数据.

 $T \le 50,000, -2 \times 10^9 \le a, b, x, y \le 2 \times 10^9.$

相当于有三种操作:

- 给 x 或 y 加上或减去 2a 或 2b.
- x=x+a, y=y+b.
- x=x+b,y=y+a.

后两种操作可以使用 0 次或 1 次.

枚举后两种操作是否使用,之后用裴蜀定理判定能否拼成.

1.4 [POJ3696] The Luckiest Number

对于给定的整数 L, 找出 L 能整除最短的全 8 序列的长度.

注:全8序列为形如888…8.

多组数据.

$$1 \le L \le 2 \times 10^9$$

$$1 \le L \le 2 \times 10^{9}.$$

$$\underbrace{888 \cdots 8}_{n \uparrow 8} = \frac{8}{9} (10^{n} - 1) = L \cdot p, \quad \text{即 } 10^{x} - 1 = \frac{9Lp}{8}.$$

设 $m = \frac{9L}{\gcd(L,8)}$, 则存在 p' 使得 $10^x - 1 = mp'$, 即求 $10^x \equiv 1 \pmod{m}$ 的最小解.

当 $gcd(10,m) \neq 1$ 时, 无解.

当 gcd(10,m) = 1 时,由于 $10^{\varphi(m)} \equiv 1 \pmod{m}$,只需考虑 $\varphi(m)$ 的因子.

对 $\varphi(m)$ 质因数分解.

对每个质因子 p_i , 执行 $n = n/p_i$ 直到以下情形之一被满足: (1) $p_i \nmid n$; (2) $x^n \not\equiv 1 \pmod{m}$. 考虑过全部质因子后即得解.

2 欧拉函数

2.1 [BZOJ2818] Gcd

给定整数 N, 求 $1 \le x, y \le N$ 且 gcd(x,y) 为素数的数对 (x,y) 有多少对? $1 \le N \le 10^7$.

欧拉筛法预处理质数数列及 $\varphi(n)$ 前缀和.

题目等价于求 $1 \le x, y \le \left| \frac{N}{p} \right|$ 且 gcd(x,y) = 1 的数对的个数,其中 p 为质数.

2.2 [BZOJ2190] 仪仗队

一个 $N \times N$ 的方阵,问从最后方的点能看到多少个点.

 $1 \le N \le 40,000$.

满足以下情形之一的点可被看到:

- (1) 该点为 (0,1),(1,0),(1,1) 之一;
- (2) $2 \le x, y \le n 1 \perp \gcd(x, y) = 1$.

所求即 $3+\sum_{i=1}^{n} \varphi(i)$.

欧拉筛求欧拉函数,求和.

2.3 [BZOJ3884] 上帝与集合的正确用法

求 $2^{2^{2^{2^{\cdots}}}}$ mod p 的值.

T 组数据.

 $T \le 1,000$, $1 \le p \le 10^7$.

欧拉筛预处理欧拉函数值.

设
$$p = 2^k \cdot q$$
,其中 q 为奇数. 则 $2^{2^{2^{2^{m}}}} \mod p = 2^k \left(2^{2^{2^{2^{m}}}-k} \mod q\right)$. 由欧拉定理 $2^k \left(2^{2^{2^{2^{m}}}-k} \mod q\right) = 2^k \left[2^{\left(2^{2^{2^{m}}}-k\right) \mod \varphi(q)} \mod q\right]$.

递归计算, 直至q=1.

2.4 离散对数问题

已知 a,b,n, 解同余方程 $a^x \equiv b \pmod{n}$, 其中 $\gcd(a,n) = 1$. 由欧拉定理, $a^x \equiv a^{x+\varphi(n)} \pmod{n}$. 因此只需枚举 $0 \le x < \varphi(n)$. 分块优化. 设 $x = p\lceil \varphi(n) \rceil - q$, 这里 $0 < p, q \leqslant \lceil \varphi(n) \rceil$. 则 $a^{p\lceil \varphi(n) \rceil - q} \equiv b \pmod{n}$ 等价于 $a^{p\lceil \varphi(n) \rceil} \equiv b \cdot a^q \pmod{n}$. 枚举 $0 < q \leqslant \lceil \varphi(n) \rceil$,用 hash 表记录余数与 q 值的关系. 再枚举 p,找到使 x 最小的 p,q. 以上算法也被称为大步小步法 (BSGS).

3 三分法

3.1 [BZOJ1857] 传送带

在二维平面上有两个线段型传送带 AB 和 CD, 小明在传送带 AB 上的速度为 P, 在传送带 CD 上的速度为 Q, 在平面其余位置的速度为 R, 求小明从 A 走到 B 需要的最短时间.

 $1 \leqslant P,Q,R \leqslant 10$,各点坐标 $\leqslant 1,000$.

三分套三分.