# Obvious Strategy-Proof Mechanisms

Alon Eden

Harvard University

#### Overview of this talk

- Motivation
- Defining Obvious Strategy-Proofness (OSP) [Li]
- Demonstration and characterization
- Refinement of Obviousness [Pycia Troyan]
- Experimental evidence of limitation of theory [Breitmoser Schweighofer-Korditsch]

#### Dominant strategy

A strategy  $S_i$  is dominant for player i:

$$\forall S'_i, S_{-i} \ u_i(S_i, S_{-i}) \ge u_i(S'_i, S_{-i})$$

A game is dominant strategy incentive compatible (DSIC):

Every player has a dominant strategy

#### Dominant strategy

A strategy  $S_i$  is dominant for player i:

$$\forall S'_i, S_{-i} \ u_i(S_i, S_{-i}) \ge u_i(S'_i, S_{-i})$$

A game is dominant strategy incentive compatible (DSIC):

Every player has a dominant strategy

#### Second price auction

- One item for sale
- Players bid  $(b_1, ..., b_n)$
- Highest bidder wins
- Pays second highest bid

Dominant strategy:  $b_i = v_i$ 

- One item for sale
- All players are initially in
- Prices ascends slowly
- Players dropout until one player remains



Pays the price in which the last agent dropped out

- One item for sale
- All players are initially in
- Prices ascends slowly
- Players dropout until one player remains



Pays the price in which the last agent dropped out

#### Dominant strategy:

- $v_i$  < Price: stay
- $v_i \leq \text{Price: dropout}$

- One item for sale
- All players are initially in
- Prices ascends slowly
- Players dropout until one player remains



Pays the price in which the last agent dropped out

#### Dominant strategy:

- $v_i$  < Price: stay
- $v_i \leq \text{Price: dropout}$

Strategically equivalent to second price auction (same winner and payment, same normal form)

- One item for sale
- All players are initially in
- Prices ascends slowly
- Players dropout until one player remains



Pays the price in which the last agent dropped out

#### Dominant strategy:

- $v_i$  < Price: stay
- $v_i \ge \text{Price: dropout}$

Strategically equivalent to second price auction (same winner and payment, same normal form)

second price auctions are harder in practice [Kagel Harstad Levin '87]

#### Ascending auctions are easier

[Li]:



#### Ascending auctions are easier

[Li]:

















#### Earliest points of departure



#### Earliest points of departure



#### Earliest points of departure





$$x \succ_j w \succ_j y \succ_j z$$

$$\forall S_i \ u_j(S_j, S_i) \ge u_j(S'_j, S_i)$$



$$x \succ_j w \succ_j y \succ_j z$$

$$\forall S_i \ u_j(S_j, S_i) \ge u_j(S'_j, S_i)$$



$$x \succ_j w \succ_j y \succ_j z$$

$$\forall S_i \ u_j(S_j, S_i) \geq u_j(S'_j, S_i)$$



$$x >_j w >_j y >_j z$$

 $S_i$  dominates  $S'_i$ :

$$\forall S_i \ u_j(S_j, S_i) \ge u_j(S'_j, S_i)$$



$$x \succ_j w \succ_j y \succ_j z$$

$$\forall S_i \ u_j(S_j, S_i) \ge u_j(S'_j, S_i)$$



$$x \succ_j w \succ_j y \succ_j z$$

$$\forall S_i \ u_j(S_j, S_i) \ge u_j(S'_j, S_i)$$



$$x \succ_j w \succ_j y \succ_j z$$

$$\forall S_i \ u_j(S_j, S_i) \geq u_j(S'_j, S_i)$$



$$x \succ_j w \succ_j y \succ_j z$$

$$\forall S_i \ u_j(S_j, S_i) \ge u_j(S'_j, S_i)$$



$$x \succ_j w \succ_j y \succ_j z$$

$$\forall S_i \ u_j(S_j, S_i) \ge u_j(S'_j, S_i)$$



$$x >_j w >_j y >_j z$$

$$\forall S_i \ u_j(S_j, S_i) \ge u_j(S'_j, S_i)$$



$$x \succ_j w \succ_j y \succ_j z$$



$$x \succ_j w \succ_j y \succ_j z$$

 $S_i$  obviously dominates  $S_i'$ : worst outcome under  $S_i \ge$ best outcome under  $S_i'$ over all points of dept.

$$\inf_{k \in D} u_j(S_j, S_i, h) \ge \sup_{h \in D} u_j(S'_j, S_i, h)$$







best outcome made possible by dev  $\leq$  worst outcome by not dev

## Obviously dominates [Li]



$$x \succ_j w \succ_j y \succ_j z$$

 $S_j$  obviously dominates  $S_j'$ : worst outcome under  $S_j \ge$ best outcome under  $S_j'$ over all points of dept.

*S* is obviously dominant: obviously dominates every *S'* 

## Obviously dominates [Li]



$$x \succ_j w \succ_j y \succ_j z$$

 $S_j$  obviously dominates  $S_j'$ : worst outcome under  $S_j \ge$ best outcome under  $S_j'$ over all points of dept.

*S* is obviously dominant: obviously dominates every *S'* 

## Obviously dominates [Li]



$$x \succ_j w \succ_j y \succ_j z$$

 $S_j$  obviously dominates  $S_j'$ : worst outcome under  $S_j \ge$ best outcome under  $S_j'$ over all points of dept.

S is obviously dominant: obviously dominates every S'

G is OSP if every player has an obviously dominant strategy

































- A set of items to be allocated
- Order agents in a random order
- Each agent clinches its favorite remaining item

- A set of items to be allocated
- Order agents in a random order
- Each agent clinches its favorite remaining item

RSD is OSP

- A set of items to be allocated
- Order agents in a random order
- Each agent clinches its favorite remaining item

RSD is OSP

RSD is not OSP

- A set of items to be allocated
- Order agents in a random order
- Each agent clinches its favorite remaining item

RSD is OSP

RSD is not OSP when bidders submit preference list in advance

- A set of items to be allocated
- Order agents in a random order
- Each agent clinches its favorite remaining item

RSD is OSP

RSD is not OSP when bidders submit preference list in advance

[Li] people are more prone to in RSD when preferences are given in advance



Playing L is a dominant strategy at (i) but not at (ii)



Playing L is a dominant strategy at (i) but not at (ii)

Player 1's experience is very similar



| Λ .         | D \         |             | $\Gamma$                   |
|-------------|-------------|-------------|----------------------------|
| $A \succ_1$ | $B \succ_1$ | $C \succ_1$ | $\boldsymbol{\mathcal{D}}$ |

| Experience $\psi_1$ | Associated Outcomes |
|---------------------|---------------------|
| $\{I_1\}$           | Ø                   |
| $\{I_1,L\}$         | A, C                |
| $\{I_1, R\}$        | B, D                |



| Experience $\psi_1$ | Associated Outcomes |
|---------------------|---------------------|
| $\{I_1\}$           | Ø                   |
| $\{I_1,L\}$         | A, C                |
| $\{I_1,R\}$         | B, D                |

G and G' are i-indistinguishable if they generate the same experience for i



games that are *i*-indistinguishable



games that are *i*-indistinguishable







games that are *i*-indistinguishable



[Li] Thm.  $S_i$  is obviously dominant for G iff it is dominant in any G' in its equivalence class

# Is this game "obvious"? [Pycia Troyan]

$$o_1 >_i o_2 >_i \dots >_i o_{99} >_i o_{100}$$



# Is this game "obvious"? [Pycia Troyan]

$$o_1 >_i o_2 >_i \dots >_i o_{99} >_i o_{100}$$



Passing is obviously dominant for agent i

# Is this game "obvious"? [Pycia Troyan]

$$o_1 >_i o_2 >_i \dots >_i o_{99} >_i o_{100}$$



Passing is obviously dominant for agent *i* Is chess obvious to the white player?

# Is this game "obvious"? [Pycia Troyan]

$$o_1 >_i o_2 >_i \dots >_i o_{99} >_i o_{100}$$



Passing is obviously dominant for agent *i*Is chess obvious to the white player?
Some complexity notion is not captured by OSP theory



#### OSP:

the player has a **complete** strategic plan

$$x \succ_j w \succ_j y \succ_j z$$



#### OSP:

the player has a **complete** strategic plan

$$x \succ_j w \succ_j y \succ_j z$$



SOSP:

Player cannot plan ahead

$$x \succ_j w \succ_j y \succ_j z$$



SOSP:

Player cannot plan ahead

$$x \succ_j w \succ_j y \succ_j z$$



SOSP:

Player cannot plan ahead

Important special cases:

- Random serial dictatorship
- Posted price mechanisms

$$x \succ_j w \succ_j y \succ_j z$$











### [Bade Gonczarowski]



 $w \succ_1 x \succ_1 y \succ_1 z$ 

#### OSF:

Players are able to plan one step ahead

*i.e.* have a strategic plan for the current and next node

### [Bade Gonczarowski]



 $w \succ_1 x \succ_1 y \succ_1 z$ 

#### OSF:

Players are able to plan one step ahead

*i.e.* have a strategic plan for the current and next node

### [Bade Gonczarowski]



 $w \succ_1 x \succ_1 y \succ_1 z$ 

#### OSF:

Players are able to plan one step ahead

*i.e.* have a strategic plan for the current and next node

### [Bade Gonczarowski]



#### OSF:

Players are able to plan one step ahead

*i.e.* have a strategic plan for the current and next node

$$w \succ_1 x \succ_1 y \succ_1 z$$

Pycia and Troyan enable varying the amount of foresight of an agent

- If price < v: stay in, drop out next turn
- If price >= v: drop out

- If price < v: stay in, drop out next turn
- If price >= v: drop out

- If price < v: stay in, drop out next turn
- If price >= v: drop out

price \$0 \$1 \$2 \$3 \$4 \$5 Suppose  $v_2 = 5$ out out out out out out

- If price < v: stay in, drop out next turn
- If price >= v: drop out

- If price < v: stay in, drop out next turn
- If price >= v: drop out

- If price < v: stay in, drop out next turn
- If price >= v: drop out

- If price < v: stay in, drop out next turn
- If price >= v: drop out

## Millipede games



### Each player can:

- Clinch one of several options, and leave the game
- Pass, and may play again

## Millipede games



### Each player can:

- Clinch one of several options, and leave the game
- Pass, and may play again

## Millipede games



### Each player can:

- Clinch one of several options, and leave the game
- Pass, and may play again

## Millipede games cont.

### Each player can:

- Clinch one of several options, and leave the game
- Pass, and may play again

#### After a pass:

- If an outcome that was possible for i disappears, i is offered everything that was clinchable for i
- If something that was clinchable disappears, i is offered everything that was previously possible for i

Equivalence [Pycia Troyan]

**Thm.** a game with no transfers is OSP iff it is equivalent to a millipede game

[Breitmoser Schweighofer-Kodritsch] compare 5 conditions:

- 1. 2P auction
- 2. 2P auction + simulation of ascending auction w/o dropout info
- 3. 2P + simulation of ascending auction w. dropout info
- 4. Ascending auction w/o dropout info
- 5. Ascending auction w. dropout info

[Breitmoser Schweighofer-Kodritsch] compare 5 conditions:

- 1. 2P auction
- 2. 2P auction + simulation of ascending auction w/o dropout info

Not simple

- 3. 2P + simulation of ascending auction w. dropout info
- 4. Ascending auction w/o dropout info
- 5. Ascending auction w. dropout info

simple

[Breitmoser Schweighofer-Kodritsch] compare 5 conditions:

- 1. 2P auction ← Worst performance
- 2. 2P auction + simulation of ascending auction w/o dropout info
- 3. 2P + simulation of ascending auction w. dropout info
- 4. Ascending auction w/o dropout info
- 5. Ascending auction w. dropout info —— Best performance

[Breitmoser Schweighofer-Kodritsch] compare 5 conditions:

- 1. 2P auction ← Worst performance
- 2. 2P auction + simulation of ascending auction w/o dropout info
- 3. 2P + simulation of ascending auction w. dropout info
- 4. Ascending auction w/o dropout info
- 5. Ascending auction w. dropout info —— Best performance



# [Breitmoser Schweighofer-Kodritsch] results



# [Breitmoser Schweighofer-Kodritsch] results



# [Breitmoser Schweighofer-Kodritsch] results

