Maximum Likelihood in Logistic Regression - Logit Algorithm

Recall:
$$\log - \text{likelihood}$$
 $l(\beta) = \sum_{i} y_{i} \cdot \log (\mp (p_{i} x_{i})) + (n - y_{i}) \log (n - \mp (p_{i} x_{i}))$

Where $\mp (u) = \frac{1}{1 + e^{-u}}$
 $\mp '(u) = \mp (u) \cdot (n - \mp (u))$

=) Gradient and Hessian matrix

$$De(\beta) = \sum_{i} \{(\gamma_{i} - F(\beta^{T} \times_{i})) \cdot x_{i} \}$$
 $HL(\beta) = \sum_{i} \{(\beta^{T} \times_{i}) \cdot (n - F(\beta^{T} \times_{i})) \cdot x_{i} \}$
 $W_{i} \text{ weights}^{n}$

design matrix
$$\mathcal{X} = \begin{pmatrix} 1 & \times_{11} & \dots & \times_{1p} \\ \vdots & \vdots & & \vdots \\ 1 & \times_{n1} & \dots & \times_{np} \end{pmatrix}$$

= we had seen:

we had a nonlinear system of equations:

$$D_{\ell}(\beta) \stackrel{!}{=} 0 \quad \text{to solve}$$

$$\Rightarrow \text{ use Newton Raphson: (slide 66)}$$

$$\hat{\beta}^{\text{nev}} = \hat{\beta}^{\text{old}} - \mathcal{H}_{\ell}(\hat{\beta}^{\text{old}})^{-1} \cdot D_{\ell}(\hat{\beta}^{\text{old}})$$

$$= \hat{\beta}^{\text{old}} - (-x^{T}wx)^{-1}x^{T}wy$$

$$= \hat{\beta}^{\text{old}} + (x^{T}wx)^{-1}x^{T}wy$$
Contain
$$y : \text{ and } \hat{\beta}^{\text{old}}$$

$$= \cdots \text{ (See Slide 7D)}$$

= ... (See Slide 70)

(*) for comparison least squares in linear regression
$$\hat{\beta} = (DC^TDC)^{-1}DC^Ty$$

Algorithm:

• initial values are headed for $\frac{1}{2}$ (not $\frac{1}{2}$) (see Slide $\frac{1}{2}$) $\frac{1}{2} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} = \sum_{i=1}^{n} \frac{1}{2} \frac{1$

we could use here:

- · Stop the iteration if:
 - (1) relative change of the coefficients

<u>oc</u> :

(2) relative change of objective Criterion (here: log likelihood) is Small $\frac{1 l(\hat{\beta}^{\text{new}}) - l(\hat{\beta}^{\text{old}})!}{|l(\hat{\beta}^{\text{old}})|} \leq \epsilon$

What does "logit" mean?

Chance or odds: $\frac{P}{1-P}$

inverse function: $u = log \left(\frac{P}{1-p}\right)$

$$e'' = \frac{P}{\Lambda - P} \iff e''(\Lambda - P) = P$$

$$\Leftrightarrow$$
 $e^h = p(n+e^h) \Leftrightarrow p = \frac{e^h}{n+e^h}$

$$\Rightarrow \mp(u) = \frac{e^u}{1+e^u} = \frac{1}{1+e^u} = \frac{1$$