



Database and Information Systems
Paderborn University
Warburger Str. 100
33098 Paderborn

#### **Bachelor Thesis**

### Is Oil the future?

Lars K.

Course of Study: Informatik

**Examiner:** Prof. Dr. Gregor Engels

Supervisor: Dipl.-Inf. Roman Tiker,

Dipl.-Inf. Laura Stern,

Otto Normalverbraucher, M.Sc.

Commenced: July 5, 2018

Completed: January 5, 2019

### **Abstract**

 $\dots$  Short summary of the thesis  $\dots$ 

# **Contents**

| 1 Introduction |                      |                                                       |                |  |  |  |  |  |  |  |  |  |
|----------------|----------------------|-------------------------------------------------------|----------------|--|--|--|--|--|--|--|--|--|
| 2              | Chap                 | ter Two                                               | 21             |  |  |  |  |  |  |  |  |  |
| 3              | <b>Headi</b> 3.1 3.2 | Ing on Level 0 (chapter) Heading on Level 1 (section) | 23<br>23<br>24 |  |  |  |  |  |  |  |  |  |
| 4              | Conc                 | usion and Outlook                                     |                |  |  |  |  |  |  |  |  |  |
| Bil            | bliogra              | phy                                                   | 29             |  |  |  |  |  |  |  |  |  |
| Α              | LaTe                 | ( Hints                                               | 31             |  |  |  |  |  |  |  |  |  |
|                | A.1                  | File Encoding and Support of Umlauts                  | 31             |  |  |  |  |  |  |  |  |  |
|                | A.2                  | Citations                                             | 31             |  |  |  |  |  |  |  |  |  |
|                | A.3                  | Formulas and Equations                                | 32             |  |  |  |  |  |  |  |  |  |
|                | A.4                  | Sourcecode                                            | 33             |  |  |  |  |  |  |  |  |  |
|                | A.5                  | Pseudocode                                            | 34             |  |  |  |  |  |  |  |  |  |
|                | A.6                  | Figures                                               | 35             |  |  |  |  |  |  |  |  |  |
|                | A.7                  | More Illustrations                                    | 35             |  |  |  |  |  |  |  |  |  |
|                | A.8                  | Plots with pgfplots                                   | 39             |  |  |  |  |  |  |  |  |  |
|                | A.9                  | Figures with tikz                                     | 40             |  |  |  |  |  |  |  |  |  |
|                | A.10                 | UML diagrams using tikz-uml                           | 40             |  |  |  |  |  |  |  |  |  |
|                | A.11                 | UML diagrams using PlantUML                           | 40             |  |  |  |  |  |  |  |  |  |
|                | A.12                 | Tables                                                | 40             |  |  |  |  |  |  |  |  |  |
|                | A.13                 | Tables spanning multiple pages                        | 42             |  |  |  |  |  |  |  |  |  |
|                | A.14                 | Abbreviations                                         | 44             |  |  |  |  |  |  |  |  |  |
|                | A.15                 | References                                            | 44             |  |  |  |  |  |  |  |  |  |
|                | A.16                 | Definitions                                           | 45             |  |  |  |  |  |  |  |  |  |
|                | A.17                 | Footnotes                                             | 45             |  |  |  |  |  |  |  |  |  |
|                | A.18                 | Various Things                                        | 45             |  |  |  |  |  |  |  |  |  |
|                | A.19                 | Closing remarks                                       | 46             |  |  |  |  |  |  |  |  |  |

# **List of Figures**

| A.1 | Example Choreography                                                                      | 35 |
|-----|-------------------------------------------------------------------------------------------|----|
|     | Example Choreography                                                                      | 36 |
| A.3 | Example to place 3 illustrations next to each other. Further, it is possible to reference |    |
|     | each separately                                                                           | 36 |
| A.4 | Example Choreography I                                                                    | 37 |
| A.5 | Example Choreography II                                                                   | 38 |
| A.6 | Plot of $sin(x)$ directly inside the figure environment with pgfplots                     | 39 |
| A.7 | Coordinates $x$ and $y$ read from csv file and plotted pgfplots                           | 39 |
| A.8 | A regular grid genrated with easily with two for loops                                    | 40 |
| A.9 | Class diagram generated with tikz-uml. Example adapted from Nicolas Kielbasiewicz.        | 41 |

## **List of Tables**

| A.1 | Example Table                                                                    | 40 |
|-----|----------------------------------------------------------------------------------|----|
| A.2 | Example table for 4 constraints (W-Z), each having 4 parameters with (M und SD). |    |
|     | Note: use always the same number of decimal places                               | 41 |
| A.3 | Table directly generated from the values of a csf file                           | 42 |
| A.4 | A sample long table                                                              | 42 |

# **List of Listings**

| A 1  | The code is separated b | v two horizontal l | ines in the listings | environment       | 33     |
|------|-------------------------|--------------------|----------------------|-------------------|--------|
| л. і | The code is separated b | y two nonzonian i  | mes m me nsungs      | CIIVII OIIIIICIIL | <br>J. |

# **List of Algorithms**

| A.1 | Sample algorithm |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 3 | 4 |
|-----|------------------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|---|---|
| A.2 | Description      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 3 | 5 |

# **Acronyms**

**ER** error rate. 44

**FR** Fehlerrate. 44

**RDBMS** Relational Database Management System. 44

# 1 Introduction

This thesis tarts with Chapter 2.

# 2 Chapter Two

### 3 Heading on Level 0 (chapter)

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place.  $\sin^2(\alpha) + \cos^2(\beta) = 1$ . If you read this text, you will get no information  $E = mc^2$ . Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look.  $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$ . This text should contain all letters of the alphabet and it should be written in of the original language.  $\sqrt[n]{a} = \sqrt[n]{a}$ . There is no need for special content, but the length of words should match the language  $a\sqrt[n]{b} = \sqrt[n]{a^n}b$ .

#### 3.1 Heading on Level 1 (section)

Hello, here is some text without a meaning.  $d\Omega = \sin\vartheta d\vartheta d\varphi$ . This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look.  $\sin^2(\alpha) + \cos^2(\beta) = 1$ . This text should contain all letters of the alphabet and it should be written in of the original language  $E = mc^2$ . There is no need for special content, but the length of words should match the language.  $\sqrt[q]{a} \cdot \sqrt[q]{b} = \sqrt[q]{ab}$ .

#### 3.1.1 Heading on Level 2 (subsection)

Hello, here is some text without a meaning.  $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$ . This text should show what a printed text will look like at this place.  $a\sqrt[n]{b} = \sqrt[n]{a^nb}$ . If you read this text, you will get no information  $d\Omega = \sin \vartheta d\vartheta d\varphi$ . Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.  $\sin^2(\alpha) + \cos^2(\beta) = 1$ .

#### Heading on Level 3 (subsubsection)

Hello, here is some text without a meaning  $E=mc^2$ . This text should show what a printed text will look like at this place.  $\sqrt[q]{a} \cdot \sqrt[q]{b} = \sqrt[q]{ab}$ . If you read this text, you will get no information.  $\frac{\sqrt[q]{a}}{\sqrt[q]{b}} = \sqrt[q]{\frac{a}{b}}$ . Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information

about the selected font, how the letters are written and an impression of the look.  $a\sqrt[n]{b} = \sqrt[n]{a^nb}$ . This text should contain all letters of the alphabet and it should be written in of the original language.  $d\Omega = \sin \vartheta d\vartheta d\varphi$ . There is no need for special content, but the length of words should match the language.

Heading on Level 4 (paragraph) Hello, here is some text without a meaning. This text should show what a printed text will look like at this place.  $\sin^2(\alpha) + \cos^2(\beta) = 1$ . If you read this text, you will get no information  $E = mc^2$ . Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look.  $\sqrt[q]{a} \cdot \sqrt[q]{b} = \sqrt[q]{ab}$ . This text should contain all letters of the alphabet and it should be written in of the original language.  $\frac{\sqrt[q]{a}}{\sqrt[q]{b}} = \sqrt[q]{a}$ . There is no need for special content, but the length of words should match the language.  $a\sqrt[q]{b} = \sqrt[q]{a^nb}$ .

#### 3.2 Lists

#### 3.2.1 Example for list (itemize)

- First item in a list
- · Second item in a list
- Third item in a list
- · Fourth item in a list
- Fifth item in a list

#### Example for list (4\*itemize)

- First item in a list
  - First item in a list
    - \* First item in a list
      - · First item in a list
      - · Second item in a list
    - \* Second item in a list
  - Second item in a list
- · Second item in a list

#### 3.2.2 Example for list (enumerate)

- 1. First item in a list
- 2. Second item in a list
- 3. Third item in a list
- 4. Fourth item in a list
- 5. Fifth item in a list

#### **Example for list (4\*enumerate)**

- 1. First item in a list
  - a) First item in a list
    - i. First item in a list
      - A. First item in a list
      - B. Second item in a list
    - ii. Second item in a list
  - b) Second item in a list
- 2. Second item in a list

#### 3.2.3 Example for list (description)

First item in a list

**Second** item in a list

Third item in a list

Fourth item in a list

Fifth item in a list

#### Example for list (4\*description)

First item in a list

First item in a list

**First** item in a list

First item in a list

**Second** item in a list

# **4 Conclusion and Outlook**

Outlook

# **Bibliography**

- [ASF16] The Apache Software Foundation. *Apache ODE* <sup>TM</sup> *The Orchestration Director Engine*. 2016. URL: http://ode.apache.org (cit. on p. 32).
- [RVA16] H. Reijers, I. Vanderfeesten, W. van der Aalst. "The effectiveness of workflow management systems: A longitudinal study". In: *International Journal of Information Management* 36.1 (Feb. 2016), pp. 126–141. DOI: 10.1016/j.ijinfomgt.2015.08.003 (cit. on p. 32).
- [WCL+05] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, D. F. Ferguson. Web Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable Messaging, and More. Prentice Hall PTR, 2005. ISBN: 0131488740. DOI: 10.1.1/jpb001 (cit. on p. 31).

All links were last followed on March 17, 2018.

### **A LaTeX Hints**

We cannot solve our problems with the same level of thinking that created them

(Albert Einstein)

One sentence per line. This rule is important for the usage of version control systems. A new line is generated with a blank line. As you would do in Word: New paragraphs are generated by pressing enter. In LaTeX, this does not lead to a new paragraph as LaTeX joins subsequent lines. In case you want a new paragraph, just press enter twice (!). This leads to an empty line. In word, there is the functionality to press shift and enter. This leads to a hard line break. The text starts at the beginning of a new line. In LaTeX, you can do that by using two backslashes (\\). This is rarely used.

Please do *not* use two backslahes for new paragraphs. For instance, this sentence belongs to the same paragraph, whereas the last one started a new one. A long motivation for that is provided at http://loopspace.mathforge.org/HowDidIDoThat/TeX/VCS/#section.3.

### A.1 File Encoding and Support of Umlauts

The template offers foll UTF-8 support. All recent editors should not have issues with that.

#### A.2 Citations

References are set by means of \cite[key].

| Code: | Result:                                                            |
|-------|--------------------------------------------------------------------|
| A     | Example: [WCL+05] or by author input: Weerawarana et al. [WCL+05]. |

#### A LaTeX Hints

The following sentence demonstrates 1. the capitalization of author names at the beginning of the sentence, 2. the correct citation using author names and the reference, 3. that the author names are a hyperlink to the bibliography and that 4. the bibliography contains the name prefix "van der" of "Wil M. P. van der Aalst".

Code: Result:

| \Citet{RVvdA2016} present a study on the      | Reijers et al. [RVA16] present a study on the ef- |
|-----------------------------------------------|---------------------------------------------------|
| effectiveness of workflow management systems. | fectiveness of workflow management systems.       |

The following sentence demonstrates that you can overwrite the text part of the generated label using label in a bibliopgrahie-entry, but the year and the uniqueness is still generated by biber.

Code: Result:

|                                               | The workflow engine Apache ODE [ASF16] |
|-----------------------------------------------|----------------------------------------|
| ApacheODE} executes \BPEL processes reliably. | executes BPEL processes reliably.      |

Code: Result:

Words are best enclosed using \texttt{\ \textbackslash qq\{..\}}, then the correct quotes are used. \textbackslash description \textbackslash qq\{..\} \textbackslash qq\{...\} \textbackslash qq\{...\}, then the correct quotes are used.

When creating the Bibtex file it is recommended to make sure that the DOI is listed.

### A.3 Formulas and Equations

Code: Result:

| Equations $f(x)=x$ inside the text can be | Equations $f(x) = x$ inside the text can be pro- |
|-------------------------------------------|--------------------------------------------------|
| provided                                  | vided.                                           |
|                                           |                                                  |

A list with all available mathematical symbols is provided at http://texdoc.net/pkg/symbols-a4.

Code: Result:

| <br>As example the set of natural numbers is given by $\mathbb{N}$ . |
|----------------------------------------------------------------------|
| 4 · ·                                                                |

#### **Listing A.1** The code is separated by two horizontal lines in the listings environment.

```
<listing name="second sample">
  <content>not interesting</content>
</listing>
```

For the documentation of editing mathematical formulas read the package documentation of  $amsmath^{1}$ .

Equation A.1 is numbered and can be referenced in the text:

Code: Result:

| \begin{align}   |       |       |
|-----------------|-------|-------|
| \label{eq:test} | r - v | (A.1) |
| x = y           | x = y | (A.1) |
| \end{align}     |       |       |

Following equation is not numbered because of using \align\* as environment.

Code: Result:

| \begin{align*}                |       |
|-------------------------------|-------|
| <pre>x = y \end{align*}</pre> | x = y |

The template offers \abs to enable the bars scaling well at the absolute value:

Code: Result:

| <pre>\$\abs{X}\$.</pre> | X . |
|-------------------------|-----|

More details about mathematical environments provides the documentation available at http://www.ctan.org/tex-archive/help/Catalogue/entries/voss-mathmode.html.

#### A.4 Sourcecode

Listing A.1 shows how to emmbed source code. With  $\$ lstinputlisting the source code can be loaded directly from files.

<sup>1</sup>http://texdoc.net/pkg/amsmath

#### **Algorithm A.1** Sample algorithm

```
procedure Sample(a, v_e)
      parentHandled \leftarrow (a = \text{process}) \lor \text{visited}(a'), (a', c, a) \in HR
                                                                                 //(a',c'a) \in HR denotes that a' is the parent of a
      \textbf{if} \ \mathsf{parentHandled} \ \land (\mathcal{L}_{\mathit{in}}(a) = \emptyset \ \lor \ \forall l \in \mathcal{L}_{\mathit{in}}(a) : \mathsf{visited}(l)) \ \textbf{then}
             visited(a) \leftarrow true
              \begin{aligned} & \text{writes}_{\circ}(a, v_e) \leftarrow \begin{cases} & \text{joinLinks}(a, v_e) & \left|\mathcal{L}_{in}(a)\right| > 0 \\ & \text{writes}_{\circ}(p, v_e) & \exists p: (p, c, a) \in \mathsf{HR} \\ & (\emptyset, \emptyset, \emptyset, false) & \text{otherwise} \end{cases}  \end{aligned} 
             if a \in \mathcal{A}_{basic} then
                    HandleBasicActivity(a, v_e)
             else if a \in \mathcal{A}_{flow} then
                    HandleFlow(a, v_e)
             else if a = process then
                                                                                                   // Directly handle the contained activity
                    HANDLEACTIVITY(a', v_e), (a, \bot, a') \in HR
                    writes_{\bullet}(a) \leftarrow writes_{\bullet}(a')
             end if
             for all l \in \mathcal{L}_{out}(a) do
                    HANDLELINK(l, v_e)
             end for
      end if
end procedure
```

Code: Result:

Source code is also available in the text \ Source code is also available in the text tinline|<listing />|. />.

#### A.5 Pseudocode

Algorithm A.1 shows a sample algorithm.



Figure A.1: Example Choreography

And if you want to write an algorithm that goes over several pages, you can only do this with the following **dirty** hack:

# Algorithmus A.2 Description code goes here test2

### A.6 Figures

The Figure A.1 and A.2 are important to understand this document. In the appendix Figure A.4 on page 37 shows again the complete choreography.

Figure A.3 shows the usage of the package subcaption. It is indeed possible to reference to sub figures: Figure A.3a.

It is possible to convert SVGs to PDF directly during compilation. This is described in the source code of latex-tipps.tex, but commented out.

#### A.7 More Illustrations

Figures A.4 and A.5 show two choreographies, which should further explain the facts. The second figure is rotated 90 degrees to demonstrate the pdflscape package.



**Figure A.2:** The example choreography. Now slightly smaller to demonstrate \textwidth. And also the use of alternative captions for the list of images. However, the latter is only conditionally recommended, because who reads so much text under a picture? Or is it just a matter of style?



**Figure A.3:** Example to place 3 illustrations next to each other. Further, it is possible to reference each separately.



Figure A.4: Example Choreography I



**Figure A.5:** Example Choreography II

### A.8 Plots with pgfplots

The package pdfplots provides plotting of functions directly in LATEX like with matlab or gnuplot. Some visual examples are available here $^2$ .



**Figure A.6:** Plot of sin(x) directly inside the figure environment with pgfplots.



**Figure A.7:** Coordinates x and y read from csv file and plotted pgfplots.

 $<sup>^2 \</sup>verb|http://texdoc.net/pkg/visualtikz|$ 

| summed      |                                     | Title   |
|-------------|-------------------------------------|---------|
| Table       | as                                  | in      |
| tabsatz.pdf | recommended                         | gesetzt |
| Example     | a nice example for using "multirow" |         |

**Table A.1:** Exampe Table – see http://www.ctan.org/tex-archive/info/german/tabsatz/

### A.9 Figures with tikz

The tikz is a package for creating graphics programmatically. With this package grids or other regular strucutres can be easily generated.



**Figure A.8:** A regular grid genrated with easily with two for loops.

### A.10 UML diagrams using tikz-uml

Figure A.9 presents a class diagram typeset using tikz-uml.

### A.11 UML diagrams using PlantUML

In case LuaLATEX is used and PlantUML is installed, UML diagrams can be defined using PlantUML.

#### A.12 Tables

Table A.1 shows results and ?? shows how numerical data can be represented in a table.



Figure A.9: Class diagram generated with tikz-uml. Example adapted from Nicolas Kielbasiewicz.

|             | Param   | eter 1 | Param | eter 2 | Paran | neter 3 | Paran | neter 4 |
|-------------|---------|--------|-------|--------|-------|---------|-------|---------|
| Bedingungen | M       | SD     | M     | SD     | M     | SD      | M     | SD      |
| W           | 1.1     | 5.55   | 6.66  | .01    |       |         |       |         |
| X           | 22.22   | 0.0    | 77.5  | .1     |       |         |       |         |
| Y           | 333.3   | .1     | 11.11 | .05    |       |         |       |         |
| Z           | 4444.44 | 77.77  | 14.06 | .3     |       |         |       |         |

**Table A.2:** Example table for 4 constraints (W-Z), each having 4 parameters with (M und SD). Note: use always the same number of decimal places.

#### A.12.1 Tables with pgfplots

With the pgfplotstable package tables can be directly generated from a csv file.

|   | b | с | d |
|---|---|---|---|
| 1 | 4 | 5 | 1 |
| 2 | 3 | 1 | 5 |
| 3 | 5 | 6 | 1 |
| 4 | 1 | 4 | 9 |
| 5 | 3 | 4 | 7 |

**Table A.3:** Table directty generated from the values of a csf file.

### A.13 Tables spanning multiple pages

**Table A.4:** A sample long table.

| First column           | Second column | Third column |
|------------------------|---------------|--------------|
| A                      | BC            | D            |
| Continued on next page |               |              |

Table A.4 – continued from previous page

| First column           | Second column | Third column |
|------------------------|---------------|--------------|
| A                      | BC            | D            |
| Continued on next page |               |              |

|              | continued it off previous page |              |  |
|--------------|--------------------------------|--------------|--|
| First column | Second column                  | Third column |  |
| A            | BC                             | D            |  |

Table A.4 – continued from previous page

#### A.14 Abbreviations

At the first pass the Fehlerrate (FR) was 5. At the second pass was FR 3. The plural form can be seen here: error rates (ERs). To demonstrate what the list of abbreviations looks like for longer description texts, Relational Database Management Systems (RDBMS) must be mentioned here.

With  $\gls{...}$  you can enter abbreviations, the first time you call it, the long form is used. When reusing  $\gls{...}$  the short form is automatically displayed. The abbreviation is also automatically inserted in the abbreviation list. With  $\glspl{...}$  the plural form is used. If you want the short form to appear directly at the first use, you can use  $\glsunset{...}$  to mark an abbreviation as already used. The opposite is achieved with  $\glsplsel{...}$ .

Abbreviations are defined in  $\c$  was rbeitung. tex by means of  $\c$  newscronym $\{...\}\{...\}$ 

More information at: http://tug.ctan.org/macros/latex/contrib/glossaries/glossariesbegin.pdf

#### A.15 References

For distant sections "varioref" is recommended: "See Appendix A.3 on page 32". The command \ref works similar to \cref the difference beeing that a reference to the page is additionally added. \ref: "Appendix A.1 on page 31", \cref: "Appendix A.1", \ref: "A.1".

If "varioref' causes difficulties, then "cref' can be used instead. This also creates the word "section" automatically: Appendix A.3. This is also possible for illustrations etc. In English please use \Cref{...} (with large "C" at the beginning).

#### A.16 Definitions

**Definition A.16.1 (Title)** 

Definition Text

Definition A.16.1 shows ...

#### A.17 Footnotes

Footnotes are provided by the command  $footnote{...}^3$ . Citing footnotes is possible by provinding a label  $footnote{label{...}}$  and cite the footnote with  $cref{...}$  in the text<sup>3</sup>.

#### A.18 Various Things

Code: Result:

\begin{compactenum}[I.]
 \item You can also keep the numbering

compact thanks to paralist

\item and switch to a different numbering
\end{compactenum}

I. You can also keep the numbering compact thanks to paralist

II. and switch to a different numbering

The words "workflow" and "dwarflike" can be copied from the PDF and pasted to a text file.

Code: Result:

In case \LuaLaTeX{} is used as compiler, there is no ligature at  $\q$ f\/l} in the word  $\q$ fdwarflike} (in contrast to  $\q$ fl} at  $\q$ q{workflow}).

In other words: \qq{dwarflike} and \qq{dwarf
\/like} look the same in the PDF.

In case they do not, there is an issue with Lua\LaTeX{} and the selnolig package.

In case LuaLATEX is used as compiler, there is no ligature at "fl" in the word "dwarflike" (in contrast to "fl" at "workflow"). In other words: "dwarflike" and "dwarflike" look the same in the PDF. In case they do not, there is an issue with LuaLATEX and the selnolig package.

<sup>&</sup>lt;sup>3</sup>Example footnote.

### A.19 Closing remarks

Please feel free to provide enhancements for this template and create a new ticket on GitHub (https://github.com/latextemplates/uni-stuttgart-computer-science-template/issues).

#### **Declaration**

I hereby declare that the work presented in this thesis is entirely my own and that I did not use any other sources and references than the listed ones. I have marked all direct or indirect statements from other sources contained therein as quotations. Neither this work nor significant parts of it were part of another examination procedure. I have not published this work in whole or in part before. The electronic copy is consistent with all submitted copies.

place, date, signature