22. Nicht fortsetzbare Lösungen

In diesem Paragraphen: $\emptyset \neq D \subseteq \mathbb{R}^2$, $f: D \to \mathbb{R}$, $(x_0, y_0) \in D$ und I, J, K, \ldots seien Intervalle in \mathbb{R} .

Wir betrachten das AWP

$$(A) \begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

Bemerkung: Die Definitionen und Sätze dieses Paragraphen gelten allgemeiner für Systeme, also $D \subseteq \mathbb{R}^{m+1}, \ f: D \to \mathbb{R}^m, \ (x_0, y_0) \in D, \ x_0 \in \mathbb{R}, \ y_0 \in \mathbb{R}^m \ (\text{vgl. Paragraph 15}).$

Definitionen und Bezeichnungen

- (1) $\mathcal{L}_{(A)} := \text{Menge aller L\"osungen von } (A).$
- (2) Für $y \in \mathcal{L}_{(A)}$ bezeichne I_y das Definitionsintervall von y.
- (3) Seien $u, v \in \mathcal{L}_{(A)}$. v heißt eine Fortsetzung von u, gdw. $I_u \subseteq I_v$ und u = v auf I_u . I.d. Fall schreiben wir $u \otimes v$.
- (4) $v \in \mathcal{L}_{(A)}$ heißt **nicht fortsetzbar (nf)**, gdw. aus $y \in \mathcal{L}_{(A)}$ und $v \otimes y$ folgt $I_v = I_y$ (also y = v).

Erinnerung: (A) ist eindeutig lösbar \iff aus $y_1, y_2 \in \mathcal{L}_{(A)}$ folgt: $y_1 = y_2$ auf $I_{y_1} \cap I_{y_2}$.

Satz 22.1

Sei $u \in \mathcal{L}_{(A)}$. Dann existiert ein $v \in \mathcal{L}_{(A)}$: v ist eine nicht fortsetzbare Fortsetzung von u ("Maximale Fortsetzung von u").

Beweis

 $\mathcal{L} := \{ y \in \mathcal{L}_{(A)} : u \otimes y \}, \ \mathcal{L} \neq \emptyset$, denn $u \in \mathcal{L}$. \otimes ist eine Ordnungsrelation auf \mathcal{L} . Weiter gilt für $v \in \mathcal{L} : v$ ist ein maximales Element in $\mathcal{L} \iff v$ ist nicht fortsetzbar. Wegen des Zornschen Lemmas ist z.z.: jede Kette in \mathcal{L} hat eine obere Schranke in \mathcal{L} . Sei also $\emptyset \neq \mathcal{K} \subseteq \mathcal{L}$ eine Kette in \mathcal{L} . $I := \bigcup_{u \in \mathcal{K}} I_y$. Wegen $x_0 \in I_y \ \forall y \in \mathcal{K} : I$ ist ein Intervall.

Definiere $z: I \to \mathbb{R}$ wie folgt: Ist $x \in I \Longrightarrow \exists y \in \mathcal{K} : x \in I_y$. z(x) := y(x). Gilt auch noch $x \in I_{\tilde{y}}, \ \tilde{y} \in \mathcal{K}, \ \mathcal{K}$ Kette $\Longrightarrow y \otimes \tilde{y}$ oder $\tilde{y} \otimes y$. Etwa: $y \otimes \tilde{y}$. D.h.: $I_y \subseteq I_{\tilde{y}}$ und $y = \tilde{y}$ auf $I_y \Longrightarrow y(x) = \tilde{y}(x)$.

z ist wohldefiniert. Klar: $z(x_0) = y_0$. 12.2 $\implies z \in \mathcal{L}_{(A)}$ Nach Konstruktion: $y \otimes z \ \forall y \in \mathcal{K}$.

Sei $y \in \mathcal{K} \implies u \otimes y$ und $y \otimes z \implies u \otimes z \implies z \in \mathcal{L}$. z ist also eine obere Schranke von \mathcal{K} in \mathcal{L} .

Satz 22.2

Sei D offen und $f \in C(D, \mathbb{R})$.

- (1) $\exists y \in \mathcal{L}_{(A)} : x_0 \in I_y^{\circ}$
- (2) Ist $y \in \mathcal{L}_{(A)}$, so existivt eine nicht fortsetzbare Fortsetzung $\widehat{y} \in \mathcal{L}(A)$ von y mit $I_{\widehat{y}}$ ist offen.
- (3) Ist (A) eindeutig lösbar, so hat (A) eine eindeutig bestimmte, nicht fortsetzbare Lösung $y:(\omega_{-},\omega_{+})\to\mathbb{R}$, wobei $\omega_{-}<\omega_{+},\ \omega_{-}\in\mathbb{R}\cup\{-\infty\},\ \omega_{+}\in\mathbb{R}\cup\{\infty\}$ ("die" Lösung des AWPs).

Beweis

- (1) 12.6 (Peano, III)
- (2) Wegen 22.1 ist nur zu zeigen: $I_{\widehat{y}}$ ist offen.

Annahme: $I_{\widehat{y}}$ ist *nicht* offen. Dann existiert $\max I_{\widehat{y}}$ oder $\min I_{\widehat{y}}$. Etwa: $\exists b := \max I_{\widehat{y}}$.

$$x_1 := b, \ y_1 := \widehat{y}(b). \text{ AWP } (B) \begin{cases} y' &= f(x, y) \\ y(x_1) &= y_1 \end{cases}$$

Wende (1) auf (B) an. Dann existiert eine Lösung $\tilde{y}: K \to \mathbb{R}$ von (B) mit $x_1 = b \in \mathcal{K}^{\circ} \implies$ $\exists \varepsilon > 0 : [b,b+\varepsilon) \subseteq K. \text{ Definiere } z : I_{\widehat{y}} \cup [b,b+\varepsilon) \to \mathbb{R} \text{ durch } z(x) := \begin{cases} \widehat{y}(x), & x \in I_{\widehat{y}} \\ \widehat{y}(x), & x \in [b,b+\varepsilon) \end{cases}.$ Klar: $z(x_0) = \widehat{y}(x_0) = y_0$. 12.3 $\Longrightarrow z \in \mathcal{L}_{(A)}$.

Weiter: $I_{\widehat{y}} \subsetneq I_z = I_{\widehat{y}} \cup [b, b+\varepsilon)$ und $\widehat{y} = z$ auf $I_{\widehat{y}}$. Widerspruch, denn \widehat{y} ist nicht fortsetzbar.

Folgerung 22.3

Es sei $D \subseteq \mathbb{R}^2$ offen, $f \in C(D, \mathbb{R})$, f sei auf D partiell differenzierbar nach g und $f_g \in C(D, \mathbb{R})$. Dann hat (A) eine eindeutig bestimmte nicht fortsetzbare Lösung $y:(\omega_-,\omega_+)\to\mathbb{R}$.

Beweis

Beispiele: (1)
$$D = \mathbb{R}^2$$
, $f(x,y) = 1 + y^2$, AWP $\begin{cases} y' &= 1 + y^2 \\ y(0) &= 0 \end{cases}$

Voraussetzungen obiger Folgerung sind erfüllt.

$$\frac{\mathrm{d}y}{\mathrm{d}x}=1+y^2 \implies \int \frac{\mathrm{d}y}{1+y^2} = \int \mathrm{d}x + c \implies \arctan y = x+c \implies y(x) = \tan(x+c), \ 0 = y(0) = \tan c \implies c = 0.$$

Die eindeutig bestimmte, nicht fortsetzbare Lösung des AWPs lautet: $y(x) = \tan x, x \in$ $(\omega_{-}, \omega_{+}), \ \omega_{-} = -\pi/2, \ \omega_{+} = \pi/2 \ (also: \omega_{+} = -\omega_{-}).$

(2) f erfülle die Voraussetzungen obiger Folgerung und es gelte $D = \mathbb{R}^2$ und

(*)
$$f(x,y) = f(-x,y) = f(-x,-y) = f(x,-y) \ \forall (x,y) \in \mathbb{R}^2$$
.

Dann gilt für die eindeutig bestimmte, nicht fortsetzbare Lösung $y:(\omega_-,\omega_+)\to\mathbb{R}$ des AWPs $\begin{cases} y' &= f(x,y)\\ y(0) &= 0 \end{cases}:\omega_+ = -\omega_-.$

Beweis

Klar: $\omega_- < 0 < \omega_+$. Wir zeigen $\omega_+ \ge -\omega_-$ (analog: $\omega_+ \le \omega_-$). Annahme: $\omega_+ < -\omega_-$.

Sei
$$x \in [0, -\omega_-) \implies -x \in (\omega_-, 0] \subseteq (\omega_-, \omega_+)$$
. Definiere $z : [0, -\omega_-) \to \mathbb{R}$ durch $z(x) := -y(-x)$.

$$z(0) = -y(0) = 0, \ z'(x) = -y'(-x)(-1) = y'(-x) = f(-x, y(-x)) \stackrel{(*)}{=} f(x, y(-x))$$

$$u(0) = y(0) = 0$$
, 12.3 $\Longrightarrow u$ löst das AWP auf $(\omega_-, -\omega_-)$.

Ohne Beweis:

Satz 22.4

Sei $I = [a, b] \subseteq \mathbb{R}$, $D := I \times \mathbb{R}$ und $f \in C(D, \mathbb{R})$ sei auf D beschränkt. (12.4 $\Longrightarrow \exists u \in \mathcal{L}_{(A)} : I_u = I$).

Ist $y \in \mathcal{L}_{(A)}$, so existiert ein $\tilde{y} \in \mathcal{L}_{(A)} : I_{\tilde{y}} = I$ und $y = \tilde{y}$ auf I_y .