Estimación de parámetros

Análisis estadístico de datos

- 1. Considerar una variable aleatoria X normal con media μ y varianza σ^2 ambas desconocidas. En un experimento se observaron los siguientes valores de X: 18.9, 17.4, 20.8, 18.3, y 17.0. A partir de los datos, estimar sin sesgo μ y σ^2 .
- 2. Simular una muestra de tres variables aleatorias X_1 , X_2 y X_3 que siguen una distribución normal estándar. Calcular la media muestral \bar{X} , estimador de la media poblacional. Repetir este procedimiento 10000 veces y contruir un histograma de frecuencia de \bar{X} . A partir de los datos simulados estimar el sesgo y varianza de \bar{X} y comparar con los valores esperados. Graficar el histograma y superponer la función de densidad de probabilidad de \bar{X} . Nota: no ajustar el histograma.
- 3. Considerar una variable aleatoria X que sigue una distribución normal con una media μ desconocida y una desviación estándar $\sigma=4.5$. En un experimento se observa el valor x=37.2. Encontrar la función de verosimilitud de $L(\mu)$. Calcular el estimador de máxima verosimilitud de μ ($\hat{\mu}$). Calcular la verosimilitud máxima $L_{\rm max}=L(\hat{\mu})$. Calcular el cociente de verosimilitudes $\lambda(\mu)=L(\mu)/L_{\rm max}$ y graficar la función de costo $J(\mu)=-2\ln\lambda(\mu)$.
- 4. Una moneda cargada se lanza n=12 veces de la cuáles salen k=8 caras. Considerar la función de masa de probabilidad binomial del número de caras $P(k) = \binom{n}{k} p^k (1-p)^{n-k}$. Graficar la función de verosimilitud del parámetro p para los valores dados de n y k (L(p)). Calcular el estimador de máxima verosimilitud de p en función de n y k derivando L(p) (\hat{p}). Calcular la máxima verosimilitud $L_{\max} = L(\hat{p})$. Calcular el cociente de verosimilitudes $\lambda(p) = L(p)/L_{\max}$ y graficar la función de costo $J(p) = -2 \ln \lambda(p)$.
- 5. Un experimento mide tres veces una variable normal X obteniendo los valores $x_1 = 3.38$, $x_2 = 5.06$ y $x_3 = 7.67$. Escribir la función de densidad de probabilidad conjunta $f(x_1, x_2, x_3)$. Considerando que la media μ es desconocida y la desviación estándar es $\sigma = 1.4$, encontrar y graficar la función de verosimilitud $L(\mu)$. Calcular el estimador de máxima verosimilitud de μ . Calcular el cociente de verosimilitudes $\lambda(\mu) = L(\mu)/L_{\text{max}}$ y graficar la función de costo $J(\mu) = -2 \ln \lambda(\mu)$.

- 6. Calcular el estadístico T^2 de una muestra de variables normales (1.78, 2.57, 2.13) con media poblacional $\mu=2.05$. Calcular la función de verosimilitud en función de la varianza $L(\sigma^2)$. Calcular la función de costo asociada. Graficar ambas funciones indicando la posición del estimador de máxima verosimilitud de la varianza.
- 7. Considerar la variable $X=(X_1,X_2)$ que sigue una distribución normal bivariada con desviaciones estándares $\sigma_1=2.3$, $\sigma_2=1.7$ y correlación $\rho=-0.78$. Calcular la función de verosimilitud de los parámetros μ_1 y μ_2 para los valores observados $x_1=7.9$ y $x_2=13.4$ ($L(\mu_1,\mu_2)$). Calcular los estimadores de máxima verosimilitud de μ_1 y μ_2 y evaluar la verosimilitud máxima $L_{\rm max}$. Calcular el cociente de verosimilitudes $\lambda(\mu_1,\mu_2)=L(\mu_1,\mu_2)/L_{\rm max}$ y graficar la función de costo $J(\mu_1,\mu_2)=-2\ln\lambda(\mu_1,\mu_2)$.