Deep Neural Network for Image Classification: Application

Build and apply a deep neural network to supervised learning.

Packages

Let's first import all the packages that you will need during this assignment.

- <u>numpy</u> is the fundamental package for scientific computing with Python.
- matplotlib is a library to plot graphs in Python.
- <u>h5py</u> is a common package to interact with a dataset that is stored on an H5 file.
- PIL and scipy are used here to test your model with your own picture at the end.
- dnn_app_utils provides the functions implemented in the "Building your Deep Neural Network: Step by Step" assignment to this notebook.
- np.random.seed(1) is used to keep all the random function calls consistent. It will help us grade your work.

```
import time
import numpy as np
import h5py
import matplotlib.pyplot as plt
import scipy
from PIL import Image
from scipy import ndimage
from dnn_app_utils_v3 import *

*matplotlib inline
plt.rcParams['figure.figsize'] = (5.0, 4.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'

*load_ext autoreload
*autoreload 2

np.random.seed(1)
```

Dataset

We use the name "Cat vs non-Cat" dataset.

```
a training set of m_train images labelled as cat (1) or non-cat (0)
a test set of m_test images labelled as cat and non-cat
each image is of shape (num_px, num_px, 3) where 3 is for the 3 channels (RGB).
```

```
train_x_orig, train_y, test_x_orig, test_y, classes = load_data()
```

```
# Explore your dataset
m_train = train_x_orig.shape[0]
num_px = train_x_orig.shape[1]
m_test = test_x_orig.shape[0]

print ("Number of training examples: " + str(m_train))
print ("Number of testing examples: " + str(m_test))
print ("Each image is of size: (" + str(num_px) + ", " + str(num_px) + ", 3)")
print ("train_x_orig shape: " + str(train_x_orig.shape))
print ("train_y shape: " + str(train_y.shape))
print ("test_x_orig shape: " + str(test_x_orig.shape))
print ("test_y shape: " + str(test_y.shape))
```

```
# Reshape the training and test examples
train_x_flatten = train_x_orig.reshape(train_x_orig.shape[0], -1).T
test_x_flatten = test_x_orig.reshape(test_x_orig.shape[0], -1).T

# Standardize data to have feature values between 0 and 1.
train_x = train_x_flatten/255.
test_x = test_x_flatten/255.

print ("train_x's shape: " + str(train_x.shape))
print ("test_x's shape: " + str(test_x.shape))
```

12, 288 equals $64 \times 64 \times 3$ which is the size of one reshaped image vector.

Architecture of your model

Now that you are familiar with the dataset, it is time to build a deep neural network to distinguish cat images from non-cat images.

You will build two different models:

- A 2-layer neural network
- An L-layer deep neural network

You will then compare the performance of these models, and also try out different values for L.

Let's look at the two architectures.

2-layer neural network

Figure 2: 2-layer neural network.

The model can be summarized as: INPUT -> LINEAR -> RELU -> LINEAR -> SIGMOID -> OUTPUT.

Detailed Architecture of figure 2:

- The input is a (64,64,3) image which is flattened to a vector of size (12288, 1).
- The corresponding vector: $[x_0, x_1, \dots, x_{12287}]^T$ is then multiplied by the weight matrix $W^{[1]}$ of size $(n^{[1]}, 12288)$.
- You then add a bias term and take its relu to get the following vector: $[a_0^{[1]}, a_1^{[1]}, \dots, a_{n^{[1]}-1}^{[1]}]^T$.
- · You then repeat the same process.
- You multiply the resulting vector by $W^{[2]}$ and add your intercept (bias).
- Finally, you take the sigmoid of the result. If it is greater than 0.5, you classify it to be a cat.

General methodology

p)

As usual you will follow the Deep Learning methodology to build the model:

- 1. Initialize parameters / Define hyperparameters
- 2. Loop for num iterations:
 - a. Forward propagation
 - b. Compute cost function
 - c. Backward propagation
 - d. Update parameters (using parameters, and grads from backpro
- 4. Use trained parameters to predict labels

Let's now implement those two models!

```
### CONSTANTS DEFINING THE MODEL ####
n_x = 12288  # num_px * num_px * 3
n_h = 7
n_y = 1
layers_dims = (n_x, n_h, n_y)
```

```
# GRADED FUNCTION: two layer model
def two_layer_model(X, Y, layers_dims, learning_rate = 0.0075, num_iterations = 3000, print_cost=False):
   Implements a two-layer neural network: LINEAR->RELU->LINEAR->SIGMOID.
   Arguments:
   X -- input data, of shape (n_x, number of examples)
   Y -- true "label" vector (containing 1 if cat, 0 if non-cat), of shape (1, number of examples)
   layers_dims -- dimensions of the layers (n_x, n_h, n_y)
   num_iterations -- number of iterations of the optimization loop
   learning rate -- learning rate of the gradient descent update rule
   print_cost -- If set to True, this will print the cost every 100 iterations
   parameters -- a dictionary containing W1, W2, b1, and b2
   np.random.seed(1)
   grads = {}
   costs = []
                                           # to keep track of the cost
   m = X.shape[1]
                                            # number of examples
   (n_x, n_h, n_y) = layers_dims
   # Initialize parameters dictionary, by calling one of the functions you'd previously implemented
   parameters = None
   # Get W1, b1, W2 and b2 from the dictionary parameters.
   W1 = parameters["W1"]
   b1 = parameters["b1"]
   W2 = parameters["W2"]
  b2 = parameters["b2"]
```

```
# Loop (gradient descent)
for i in range(0, num_iterations):
   # Forward propagation: LINEAR -> RELU -> LINEAR -> SIGMOID. Inputs: "X, W1, b1, W2, b2". Output: "A1, cache.
   A1, cache1 = None
   A2, cache2 = None
   # Compute cost
   cost = None
   # Initializing backward propagation
   dA2 = - (np.divide(Y, A2) - np.divide(1 - Y, 1 - A2))
   # Backward propagation. Inputs: "dA2, cache2, cache1". Outputs: "dA1, dW2, db2; also dA0 (not used), dW1, dl
   dA1, dW2, db2 = None
   dA0, dW1, db1 = None
   \# Set grads['dWl'] to dW1, grads['db1'] to db1, grads['dW2'] to dW2, grads['db2'] to db2
   grads['dW1'] = dW1
   grads['db1'] = db1
   grads['dW2'] = dW2
   grads['db2'] = db2
   # Update parameters.
   parameters = None
   # Retrieve W1, b1, W2, b2 from parameters
   W1 = parameters["W1"]
   b1 = parameters["b1"]
   W2 = parameters["W2"]
   b2 = parameters["b2"]
   # Print the cost every 100 training example
   if print_cost and i % 100 == 0:
      print("Cost after iteration {}: {}".format(i, np.squeeze(cost)))
   if print cost and i % 100 == 0:
       costs.append(cost)
  # plot the cost
  plt.plot(np.squeeze(costs))
  plt.ylabel('cost')
  plt.xlabel('iterations (per hundreds)')
  plt.title("Learning rate =" + str(learning_rate))
  plt.show()
  return parameters
```

Run the cell below to train your parameters. See if your model runs. The cost should be decreasing. It may take up to 5 minutes to run 2500 iterations. Check if the "Cost after iteration 0" matches the expected output below, if not click on the square () on the upper bar of the notebook to stop the cell and try to find your error.

parameters = two_layer_model(train_x, train_y, layers_dims = (n_x, n_h, n_y), num_iterations = 2500, print cost=True)

```
predictions_test = predict(test_x, test_y, parameters)
```

predictions train = predict(train x, train y, parameters)

```
# GRADED FUNCTION: L layer model
def L_layer_model(X, Y, layers_dims, learning_rate = 0.0075, num_iterations = 3000, print_cost=False):#1r was 0.009
   Implements a L-layer neural network: [LINEAR->RELU]*(L-1)->LINEAR->SIGMOID.
   X -- data, numpy array of shape (number of examples, num_px * num_px * 3)
    Y -- true "label" vector (containing 0 if cat, 1 if non-cat), of shape (1, number of examples)
   layers_dims -- list containing the input size and each layer size, of length (number of layers + 1).
   learning rate -- learning rate of the gradient descent update rule
   num_iterations -- number of iterations of the optimization loop
   print_cost -- if True, it prints the cost every 100 steps
   parameters -- parameters learnt by the model. They can then be used to predict.
                                       # keep track of cost
    # Parameters initialization. (≈ 1 line of code)
   parameters = None
    # Loop (gradient descent)
    for i in range(0, num_iterations):
        # Forward propagation: [LINEAR -> RELU]*(L-1) -> LINEAR -> SIGMOID.
       AL, caches = None
        # Compute cost.
       cost = None
        # Backward propagation
        grads = None
       # Update parameters.
       parameters = None
        # Print the cost every 100 training example
       if print_cost and i % 100 == 0:
           print ("Cost after iteration %i: %f" %(i, cost))
        if print cost and i % 100 == 0:
           costs.append(cost)
    # plot the cost
    plt.plot(np.squeeze(costs))
   plt.ylabel('cost')
   plt.xlabel('iterations (per hundreds)')
   plt.title("Learning rate =" + str(learning_rate))
   plt.show()
    return parameters
```

You will now train the model as a 4-layer neural network.

Run the cell below to train your model. The cost should decrease on every iteration. It may take up to 5 minutes to run 2500 iterations. Check if the "Cost after iteration 0" matches the expected output below, if not click on the square (on the upper bar of the notebook to stop the cell and try to find your error.

```
parameters = L_layer_model(train_x, train_y, layers_dims, num_iterations = 2500, print_cost = True)
pred_train = predict(train_x, train_y, parameters)
```

```
pred_test = predict(test_x, test_y, parameters)
```