Quantum number, Electronic

configuration and Shape of orbitals

- **61.** For n = 3 energy level, the number of possible orbitals (all kinds) are
 - (a) 1

(b) 3

(c) 4

- (d) 9
- **62.** Which of the following ions is not having the configuration of neon
 - (a) F
- (b) Mg^{+2}
- (c) Na^+
- (d) Cl^-
- 63. Elements upto atomic number 103 have been synthesized and studied. If a newly discovered element is found to have an atomic number 106, its electronic configuration will be
 - (a) $[Rn]5f^{14}$, $6d^4$, $7s^2$
 - (b) $[Rn]5f^{14}$, $6d^1$, $7s^27p^3$
 - (c) $[Rn]5f^{14}$, $6d^6$, $7s^0$
 - (d) $[Rn]5f^{14}$, $6d^5$, $7s^1$
- **64.** Ions which have the same electronic configuration are those of
 - (a) Lithium and sodium
 - (b) Sodium and potassium
 - (c) Potassium and calcium
 - (d) Oxygen and chlorine
- **65.** When the azimuthal quantum number has a value of l=0, the shape of the orbital is
 - (a) Rectangular

- (b) Spherical
- (c) Dumbbell
- (d) Unsymmetrical
- **66.** The magnetic quantum number for valency electrons of sodium is
 - (a) 3

(b) 2

(c) 1

- (d) 0
- **67.** The electronic configuration of an element with atomic number 7 *i.e.* nitrogen atom is
 - (a) $1s^2$, $2s^1$, $2p_x^3$
 - (b) $1s^2$, $2s^22p_x^22p_y^1$
 - (c) $1s^2$, $2s^22p_x^12p_y^12p_z^1$
 - (d) $1s^2$, $2s^22p_x^12p_y^2$
- 68. In a multi-electron atom, which of the following orbitals described by the three quantum members will have the same energy in the absence of magnetic and electric fields

$$(1)n = 1, l = 0, m = 0$$

$$(2)n = 2, l = 0, m = 0$$

$$(3)$$
 $n = 2$, $l = 1$, $m = 1$

$$(4)n = 3, l = 2, m = 0$$

$$(5)$$
 $n = 3$, $l = 2$, $m = 0$

- (a)(1) and (2)
- (b) (2) and (3)
- (c)(3) and (4)
- (d) (4) and (5)
- 69. Which of the following represents the electronic configuration of an element with atomic number 17
 - (a) $1s^2$, $2s^22p^6$, $3s^13p^6$

IIT-JEE CHEMISTRY

- (b) $1s^2$, $2s^22p^6$, $3s^23p^4$, $4s^1$
- (c) $1s^2$, $2s^22p^6$, $3s^23p^5$
- (d) $1s^2$, $2s^22p^6$, $3s^13p^4$, $4s^2$
- **70.** The shape of s -orbital is
 - (a) Pyramidal
 - (b) Spherical
 - (c) Tetrahedral
 - (d) Dumb-bell shaped
- **71.** When 3d orbital is complete, the new electron will enter the
 - (a) 4p-orbital
- (b) 4f-orbital
- (c) 4s-orbital
- (d) 4*d*-orbital
- 72. In a potassium atom, electronic energy levels are in the following order
 - (a) 4s > 3d
- (b) 4s > 4p
- (c) 4s < 3d
- (d) 4s < 3p
- 73. Fe (atomic number = 26) atom has the electronic arrangement
 - (a) 2, 8, 8, 8
- (b) 2, 8, 16
- (c) 2, 8,14, 2
- (d) 2, 8, 12, 4
- **74.** Cu^{2+} will have the following electronic configuration
 - (a) $1s^2$, $2s^22p^6$, $3s^23p^63d^{10}$
 - (b) $1s^2$, $2s^22p^6$, $3s^23p^63d^9$, $4s^1$
 - (c) $1s^2$, $2s^22p^6$, $3s^23p^63d^9$
 - (d) $1s^2$, $2s^22p^6$, $3s^23p^63d^{10}$, $4s^1$
- 75. Which one is the electronic configuration of Fe^{+2}

- (a) $1s^2$, $2s^22p^6$, $3s^23p^63d^6$
- (b) $1s^2$, $2s^22p^6$, $3s^23p^63d^4$, $4s^2$
- (c) $1s^2$, $2s^22p^6$, $3s^23p^63d^5$, $4s^1$
- (d) None of these
- **76.** How many electrons can be fit into the orbitals that comprise the 3^{rd} quantum shell n=3
 - (a) 2

- (b) 8
- (c) 18
- (d) 32
- 77. Which element is represented by the following electronic configuration

- (a) Nitrogen
- (b) Oxygen
- (c) Fluorine
- (d) Neon
- 78. If the value of azimuthal quantum number is 3, the possible values of magnetic quantum number would be
 - (a) 0, 1, 2, 3
 - (b) 0, -1, -2, -3
 - (c) $0, \pm 1, \pm 2, \pm 3$
 - (d) ± 1 , ± 2 , ± 3
- **79.** Krypton $(_{36}Kr)$ has the electronic configuration $(_{18}Ar)$ $4s^2, 3d^{10}, 4p^6$. The 37^{th} electron will go into which one of the following sub-levels
 - (a) 4*f*
- (b) 4d
- (c) 3p
- (d) 5s

IIT-JEE CHEMISTRY

- 80. If an electron has spin quantum number of $+\frac{1}{2}$ and a magnetic quantum number of -1, it cannot be presented in an
 - (a) d -orbital
- (b) f -orbital
- (c) p -orbital
- (d) s -orbital
- **81.** The azimuthal quantum number is related to
 - (a) Size
- (b) Shape
- (c) Orientation
- (d) Spin
- 82. The total number of electrons that can be accommodated in all the orbitals having principal quantum number 2 and azimuthal quantum number 1 is
 - (a) 2

(b) 4

(c) 6

- (d) 8
- 83. Electronic configuration of C is
 - (a) $1s^2$, $2s^22p^2$
- (b) $1s^2$, $2s^22p^3$
- (c) $1s^2$, $2s^2$
- (d) $1s^2$, $2s^22p^6$
- **84.** There is no difference between a 2p and a 3p orbital regarding
 - (a) Shape
- (b) Size
- (c) Energy
- (d) Value of n
- **85.** The electronic configuration of chromium is
 - (a) $[Ne]3s^23p^63d^4$, $4s^2$
 - (b) $[Ne]3s^23p^63d^5, 4s^1$
 - (c) $[Ne]3s^23p^6, 4s^24p^4$

- (d) $[Ne]3s^23p^63d^1$, $4s^24p^3$
- **86.** The shape of p -orbital is
 - (a) Elliptical
 - (b) Spherical
 - (c) Dumb-bell
 - (d) Complex geometrical
- **87.** The electronic configuration (outermost) of Mn^{+2} ion (atomic number of Mn=25) in its ground state is
 - (a) $3d^5$, $4s^0$
- (b) $3d^4$, $4s^1$
- (c) $3d^3$, $4s^2$
- (d) $3d^2$, $4s^24p^2$
- **88.** The principal quantum number represents
 - (a) Shape of an orbital
 - (b) Distance of electron from nucleus
 - (c) Number of electrons in an orbit
 - (d) Number of orbitals in an orbit
- 89. When the azimuthal quantum number has a value of l=1, the shape of the orbital is
 - (a) Unsymmetrical
 - (b) Spherically symmetrical
 - (c) Dumb-bell
 - (d) Complicated
- 90. How many electrons can be accommodated in a sub-shell for which n=3, l=1
 - (a) 8

(b) 6

(c) 18

(d) 32

