

82C941 Advanced Sound Synthesizer Data Book

Copyright

Copyright © 1995, OPTi Inc. All rights reserved. No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, without the prior written permission of OPTi Incorporated, 2525 Walsh Avenue, Santa Clara, CA 95051.

Disclaimer

OPTi Inc. makes no representations or warranties with respect to the design and documentation herein described and especially disclaims any implied warranties of merchantability or fitness for any particular purpose. Further, OPTi Inc. reserves the right to revise the design and associated documentation and to make changes from time to time in the content without obligation of OPTi Inc. to notify any person of such revisions or changes.

Trademarks

OPTi and OPTi Inc. are registered trademarks of OPTi Incorporated.

All other trademarks and copyrights are the property of their respective holders.

OPTi Inc.

888 Tasman Drive Milpitas, CA 95035 Tel: (408) 486-8000 Fax: (408) 486-8001

Web Site: http://www.opti.com/

Table of Contents

1.0	Overview	1
2.0	Features	1
3.0	Signal Definitions 3.1 Signal Descriptions 4	2
4.0	Functional Overview	5
5.0	Electrical Specification 5.1 Timing Diagrams	6
6.0	Mechanical Package Dimensions	c

Advanced Sound Synthesizer

1.0 Overview

The 82C941 Advanced Sound Synthesizer creates high-quality, accurate, realistic musical sound. All the music synthesis algorithms are preset to generate the most realistic acoustic sound, or many of the control parameters can be customized during the creation of the music according to General MIDI specifications. Also, the built-in OPTi proprietary decompression algorithm, along with Advanced Time-variable Filter and Amplitude (ATFA) control technique, provides compressed sound memory without degrading quality. The 82C941 is an ideal device to make musical instruments, Karaoke machines, MIDI modules, and PC sound cards.

2.0 Features

- 32 polyphonic playback at 44.1KHz
- Advance Time-variable Filter and Amplitude (ATFA) control
- · Subtractive sound synthesis
- Built-in power management

- Built-in CPU data memory and interface TTL
- Dynamic voice assignment
- Supports up to 16Mx8 sampling memory
- 100 pin CMOS QFP package

Figure 2-1 Functional Block Diagram

May 1996 912-3000-028

3.0 Signal Definitions

Figure 3-1 Pin Diagram

Page 2 912-3000-028

Table 3-1 Numerical Pin Cross-Reference

Pin#	Name	Pin Type
1	CPUDAT0	I/O
2	VCC	
3	VCC	
4	CPUDAT1	I/O
5	CPUDAT2	I/O
6	CPUDAT3	I/O
7	CPUDAT4	I/O
8	CPUDAT5	I/O
9	CPUDAT6	I/O
10	CPUDAT7	I/O
11	ALE	- 1
12	PSENB	I
13	VCC	
14	CPUAD0	0
15	CPUAD1	0
16	CPUAD2	0
17	CPUAD3	0
18	CPUAD4	0
19	CPUAD5	0
20	CPUAD6	0
21	CPUAD7	0
22	RDB	I
23	WRB	I
24	EXTCS	I
25	XIN	I

Pin#	Name	Pin Type
26	EXTRAM	I
27	RESETB	I
28	VSS	
29	VSS	
30	RESET	0
31	UCODED0	I
32	UCODED1	I
33	UCODED2	I
34	UCODED3	I
35	UCODED4	I
36	UCODED5	I
37	UCODED6	I
38	UCODED7	I
39	VSS	
40	UCODEA0	0
41	UCODEA1	0
42	UCODEA2	0
43	UCODEA3	0
44	UCODEA4	0
45	UCODEA5	0
46	UCODEA6	0
47	UCODEA7	0
48	UCODEA8	0
49	UCODEA9	0
50	UCODEA10	0

Pin#	Name	Pin Type
51	UCODEA11	0
52	VCC	
53	VCC	
54	UCODEA12	0
55	UCODEA13	0
56	UCODEA14	0
57	UCODEA15	0
58	UCODEA16	0
59	WSHCK	0
60	SHIFTCK	0
61	SHDATA	0
62	UCODECSB	0
63	SROMCSB	1
64	VSS	
65	SDAT0	I
66	SDAT1	- 1
67	SDAT2	1
68	SDAT3	I
69	SDAT4	1
70	SDAT5	I
71	SDAT6	I
72	SDAT7	1
73	SADD0	0
74	SADD1	0
75	SADD2	0

Pin#	Name	Pin Type
76	SADD3	0
77	SADD4	0
78	VSS	
79	VSS	
80	SADD5	0
81	SADD6	0
82	SADD7	0
83	SADD8	0
84	SADD9	0
85	SADD10	0
86	SADD11	0
87	SADD12	0
88	SADD13	0
89	SADD14	0
90	VSS	
91	SADD15	0
92	SADD16	0
93	SADD17	0
94	SADD18	0
95	SADD19	0
96	SADD20	0
97	SADD21	0
98	SADD22	0
99	TESTP0	-
100	TESTP1	

Table 3-2 Alphabetical Pin Cross-Reference

Name	Pin#	Pin Type
ALE	11	1
CPUDAT0	1	I/O
CPUDAT1	4	I/O
CPUDAT2	5	I/O
CPUDAT3	6	I/O
CPUDAT4	7	I/O
CPUDAT5	8	I/O
CPUDAT6	9	I/O
CPUDAT7	10	I/O
CPUAD0	14	0
CPUAD1	15	0
CPUAD2	16	0
CPUAD3	17	0
CPUAD4	18	0
CPUAD5	19	0
CPUAD6	20	0
CPUAD7	21	0
EXTCS	24	1
EXTRAM	26	- 1
PSENB	12	I
RDB	22	ı
RESET	30	0
RESETB	27	I
SADD0	73	0
SADD1	74	0

Name	Pin#	Pin Type
SADD2	75	0
SADD3	76	0
SADD4	77	0
SADD5	80	0
SADD6	81	0
SADD7	82	0
SADD8	83	0
SADD9	84	0
SADD10	85	0
SADD11	86	0
SADD12	87	0
SADD13	88	0
SADD14	89	0
SADD15	91	0
SADD16	92	0
SADD17	93	0
SADD18	94	0
SADD19	95	0
SADD20	96	0
SADD21	97	0
SADD22	98	0
SDAT0	65	ı
SDAT1	66	-
SDAT2	67	I
SDAT3	68	I

Name	Pin#	Pin Type
SDAT4	69	I
SDAT5	70	1
SDAT6	71	-
SDAT7	72	1
SHDATA	61	0
SHIFTCK	60	0
SROMCSB	63	- 1
TESTP0	99	1
TESTP1	100	1
UCODEA0	40	0
UCODEA1	41	0
UCODEA2	42	0
UCODEA3	43	0
UCODEA4	44	0
UCODEA5	45	0
UCODEA6	46	0
UCODEA7	47	0
UCODEA8	48	0
UCODEA9	49	0
UCODEA10	50	0
UCODEA11	51	0
UCODEA12	54	0
UCODEA13	55	0
UCODEA14	56	0
UCODEA15	57	0

Name	Pin#	Pin Type
UCODEA16	58	0
UCODECSB	62	0
UCODED0	31	- 1
UCODED1	32	1
UCODED2	33	- 1
UCODED3	34	- 1
UCODED4	35	- 1
UCODED5	36	- 1
UCODED6	37	- 1
UCODED7	38	- 1
VCC	2	
VCC	3	
VCC	13	
VCC	52	
VCC	53	
VSS	28	
VSS	29	
VSS	39	
VSS	64	
VSS	78	
VSS	79	
VSS	90	
WRB	23	- 1
WSHCK	59	0
XIN	25	- 1

912-3000-028 Page

3.1 Signal Descriptions

Pin No	Signal Name	Signal Type	Signal Description
1, 4-10	CPUDAT0- CPUDAT7	I/O	CPU Data Bus. CPUDAT7 (MSB) through CPUDAT0 (LSB).
11	ALE	I	CPU Address Latch Enable signal for latching the low byte of the address.
12	PSENB	I	CPU Program Store Enable is the read strobe to external program.
21-14	CPUAD7- CPUAD0	0	CPU Address lower byte address.
22	RDB	I	Internal CPU Data RAM Read enable signal.
23	WRB	I	Internal CPU Data RAM and DSP Register Write enable signal.
24	EXTCS	I	External DSP Chip Select active high enable signal.
25	XIN	ı	45.1584 MHz master clock input.
26	EXTRAM	1	Internal CPU Data RAM disable signal.
27	RESETB	I	DSP Master Reset active low input signal.
30	RESET	0	DSP Master Reset signal output.
31-38	UCODED0- UCODED7	I	μcode memory data bus. UCODED7 (MSB) through UCODED0 (LSB).
40-51, 54-58	UCODEA0- UCODEA16	0	μcode memory address bus. UCODEA16 (MSB) through UCODEA0 (LSB).
59	WSHCK	0	DAC Word Clock signal.
60	SHIFTCK	0	DAC Data Shift Clock signal.
61	SHDATA	0	DAC Serial Data signal.
62	UCODECSB	0	μcode Memory Chip Select active low enable signal.
63	SROMCSB	I	Sound Memory Chip Select active low signal.
65-72	SDAT0- SDAT7	I	Sound Memory Data Bus. SDAT7 (MSB) through SDAT0 (LSB).
73-77, 80-88, 90-98	SADD0- SADD22	0	Sound Memory Address Bus. SADD22 (MSB) through SADD0 (LSB).
99-100	TESTP0- TESTP1	I	Chip Test Mode select pins. For normal chip operation test pins must be connected to ground.
2-3, 13, 52-53	VCC		5V supply pins.
28-29, 39, 64, 78-79, 90	VSS		Ground pins.

Page 4 912-3000-028

4.0 Functional Overview

The 82C941 is a specialized digital signal processor (QDSP) designed to generate high quality and realistic sound. The 82C941 musical synthesizer contains all the necessary modules to create acoustic sound; and each module of parameters can be modified for each individual voice during the creation of sound. To make the best and simple MIDI interpreter interface, the 82C941 has an advanced parameter self-extracting module. The vcode memory and CPU interface module allows true playback of the 32 polyphonic voices of music at 44.1KHz without any frequency degradation or loss of quality of sound. The OPTi Advanced Time-variable Filter and Amplitude (ATFA), along with the subtractive sound generation synthesis method, are highly balanced to create accurate acoustic sound between each functional module. All the functional module parameters are automatically extracted and modified without CPU command access during each voice of music generation. The low frequency oscillator with vibrator module creates a deeper sensation of timbre which makes a better effect of sound. The high performance of the internal multi-stage filter with 32 different cut-off frequency levels, along with two-dimensional envelop generator, makes it possible to recreate very accurate acoustic sound.

The 82C941 automatic power management module is an advanced control unit that achieves maximum power saving during creation of sound and stand-by operation of the DSP, vcode, and sound memory access operations. With this module, the device reliability of operation is expanded beyond industrial specification and operational environment for all of the 82C941 application fields.

Using OPTi Q_PCM technology, the 16 bit-sound sampling data is compressed at a 4:1 rate to accomplish a low cost

requirement for sound memory with no sound degradation. The inside of the 82C941 decompression module reconverts original true 16-bit sampled sound data using compressed sound data. The internal 16 bit Q_PCM data produces the best quality of sound at 44.1 KHz playback by using an internal 32-bit data path for each module, along with an auto-looping sequencer, which is capable of handling 1 to 1 million auto-reload looping or non-looping sequences or one short looping sequence.

The 82C941 digital Q_filter is implemented to support variable frequency for each voice from 12 dB to 96 dB to achieve optimized sound characteristics. With this Q_filter, each sound can be produced more clearly and naturally with a small amount of sound data, also, musical effects can be obtained by time varying filter control. Due to the high performance of the Q_filter, a more realistic patch split effect, an after-touch effect, and a breath effect can be achieved by cross-mapping the Q_filter either by note or by velocity with the MIDI parameter.

The 82C941 CPU interface module contains all the necessary interface logic and CPU data memory to minimize overall system integration cost and to utilize slow speed 8-bit microprocessors without degradation of playback sound quality. To achieve minimum CPU handshaking during operation, all the generation and recreation of sound parameters is done by self-control hardware inside the module instead of depending on the CPU handshaking to receive internal synthesizer parameters to continue sound generation operation. Also, EXTCSB and EXTRAM can be used for multilevel connection of synthesis devices and record memory connection for high performance sound module or instrument applications.

912-3000-028 Page 5

5.0 Electrical Specification

Parameter	Symbol	Min	Тур	Max	Units
Absolute Maximum Ratings					
Ambient Temperature	-	-40		+85	°C
Storage Temperature	-	-65		+150	°C
Voltage on any Pin to Vss	-	-0.5		Vcc + 0.5	V
Supply Voltage	Vcc	-0.5		6.5	V
Maximum IoL per I/O Pin	-			15	mA
Recommended Operating Conditions			•	•	
Supply Voltage	Vcc	4.75		5.25	V
Supply Voltage	Vss		0		V
Operating Free-Air Temperature	TA	0		70	°C
DC Characteristics (Over Operating Conditions)			1	1	
Input low voltage @ Vcc = 5.0V	VIL	-0.5		1.5	V
Input high voltage @ Vcc = 5.0V	VIH	3.5		Vcc + 0.5	V
Output low voltage @ IoL = 3.2mA, Vcc = 5.0V	Vol			0.45	V
Output high voltage @ IOH = 0.8mA, Vcc = 5.0V	Voн	2.4			V
Logical 0 input current @ VIN = 0.45V	II∟			-50	μΑ
Input leakage current @ 0.45 < VIN < VCC	ILI			±10	μΑ
Power supply current @ Vcc = 5.0V	Icc		5	10	mA
External Clock Characteristics			•		
Oscillator frequency	1/TCLCL		45.1585		MHz
High Time	тСНСХ		9		ns
Low Time	TCLCX		9		ns
Rise Time	тСLСН		5		ns
Fall Time	TCHCL		5		ns
AC Characteristics (Over Operating Conditions)			•		
ALE Signal Width	TLHL	127			ns
Address Valid Time to ALE Low	TAVLL	28			ns
Address Hold Time after ALE Low	TLLAX	48			ns
ALE Low to RDB for WRB Low	TLLWL	200			ns
ALE Low to Valid Time Data Out	TLLDV			517	ns
Address Valid Time to RDB WRB Low	TAVWL	203			ns
Address to Valid Data Out Time	TAVDV			585	ns
RDB Low to Address Hold Time	TRLAZ			0	ns
ALE High to Address Latch Out	TALDL		20		ns

Page 6 912-3000-028

Parameter	Symbol	Min	Тур	Max	Units
RDB Signal Width	TRLRH	400			ns
RDB Low to Valid Data Out	TRLDV			252	ns
Data Hold Time after RDB	TRHDX	0			ns
Data Hold Time after RDB	TRHDZ			97	ns
WRB to RDB High to ALE High	TWHLH	43		123	ns
Data Valid Time to WRB Transition	TQVWX	23			ns
Data Hold Time after WRB	TWHQX	33			ns
Memory Chip Select Pulse Width	тСSPW	850			ns
Memory Address Valid after CSB Low	TCSLAV		20		ns
Memory Data Value Time after CSB Low	TAVDO			150	ns

5.1 Timing Diagrams

Figure 5-1 Format of DAC Output Waveforms

Figure 5-2 External Clock Waveform

912-3000-028 Page 7

Figure 5-3 Data Memory Read Waveform

Figure 5-4 Data Memory and DSP Write Waveform

Figure 5-5 Sound and μcode Memory Read Waveform

OPTi

Page 8 912-3000-028

6.0 Mechanical Package Dimensions

Figure 6-1 Mechanical Package Dimensions

Page 10 912-3000-028