MATH 725 HW#1

MARIO L. GUTIERREZ ABED PROF. J. LOUSTAU

Exercise (Exercise 1). Prove that every linearly independent subset of a nonzero vector space V can be extended to a basis of V.

Let us approach this problem in two parts. First we restate the theorem that we covered in class which states that every nonzero vector space contains a basis. Then we use this result to prove the statement on the exercise.

Theorem 1. Every nonzero vector space contains a basis.

Proof. The idea is that a basis can be constructed as a maximal linearly independent set, and this maximal set will be found by using Zorn's lemma.¹

Let V be a nonzero vector space and let S be the set of linearly independent sets in V. Since a single nonzero $v \in V$ is a linearly independent set, we have that $\{v\} \in S$, which indicates that S is nonempty.

Now for two linearly independent sets L and L' in V, we declare that $L \leq L'$ if $L \subset L'$, where \leq represents the partial ordering on S by inclusion. It is easy to see that any subset of a linearly independent set is also a linearly independent set, so if $L \in S$, then any subset of L is also in S. Now that we have defined a partial order on S, let $\{L_{\lambda}\}_{{\lambda}\in\Lambda}$ be a totally ordered subset of S, i.e. a chain on S. That is, every L_{λ} is a linearly independent set in V and for any L_{α} and L_{β} in our chain we have $L_{\alpha} \subset L_{\beta}$ or $L_{\beta} \subset L_{\alpha}$. An upper bound for the L_{λ} 's in S is the union

$$L = \bigcup_{\lambda \in \Lambda} L_{\lambda}.$$

The next step is to check whether L is indeed a linearly independent set, so that L is an element of S; once that is settled then L would be an upper bound in S since $L_{\lambda} \subset L \ \forall \lambda \in \Lambda$.

Let us take any finite set of vectors $v_1, \ldots, v_n \in L$, and show that they are linearly independent. Each v_k is in some L_{λ} , say $v_1 \in L_{\lambda_1}, \ldots, v_n \in L_{\lambda_n}$. Since the L_{λ} 's are totally ordered, one of the sets $L_{\lambda_1}, \ldots, L_{\lambda_n}$ contains the others. That means v_1, \ldots, v_n are all in a common L_{λ} , so they are linearly independent, as desired.

Zorn's lemma now tells us that S contains a maximal element: there is a linearly independent set $L \in V$ that is not contained in any larger linearly independent set in V. We will show that L spans V, so it is a basis.

If span(L) does not span V, then span(L) $\neq V$, so we can pick $v \in V$ with $v \notin \text{span}(L)$. Then L is a proper subset of $L \cup \{v\}$. We will show $L \cup \{v\}$ s linearly independent, which contradicts the maximality of L and thus proves that span(L) = V.

Zorn's Lemma: If P is a partially ordered set in which every chain has an upper bound, then P has a maximal element.

¹Here's Zorn's Lemma, for reference:

To prove that $L \cup \{v\}$ is linearly independent, assume otherwise. That is, take a sum

$$\sum_{i=1}^{k} c_i v_i = 0$$

where the c_i 's are not all 0 and the v_i 's are taken from $L \cup \{v\}$. Since the elements of L are linearly independent, one of the v_i 's with a nonzero coefficient must be v. We can re-index and suppose $v_k = v$, so $c_k \neq 0$. Then we must have $k \geq 2$, since otherwise $c_1v = 0$, which is impossible since $v \neq 0$ and the coefficient of v is nonzero. Consequently we have

$$0 = c_k v + \sum_{i=1}^{k-1} c_i v_i$$

$$\implies c_k v = -\sum_{i=1}^{k-1} c_i v_i.$$

Multiplying both sides of (†) by $1/c_k$, we get

$$v = \sum_{i=1}^{k-1} \left(-\frac{c_i}{c_k} \right) v_i,$$

which shows that $v \in \operatorname{span}(L)$. $(\Rightarrow \Leftarrow)$

This is the contradiction we wanted because by assumption $v \notin \text{span}(L)$. Hence $L \cup \{v\}$ is a linearly independent set, and we are done.

Proof of Exercise 1. Let Γ be a linearly independent subset of V. A basis of V (which exists by Theorem 1) containing Γ will be found as a maximal linearly independent subset containing Γ . Take S to be the set of linearly independent sets in V that contain Γ , so that $\Gamma \in S$, which indicates that S is nonempty. The same argument as in the proof of Theorem 1 shows that every chain of S has an upper bound (if the L_{λ} 's are linearly independent sets in V that each contain Γ , then their union L (defined on equation (\clubsuit) on the proof of Theorem 1) also contains Γ , and $L \in S$ because the L_{λ} 's are totally ordered.)

Now by Zorn's lemma we have a maximal element of S. This is a linearly independent set in V that contains Γ and is maximal with respect to inclusion among all linearly independent sets in S containing Γ . The proof that a maximal element of S is a basis of V follows just as in the proof of Theorem 1 above.