Linear algebra for data science

Ramkrishna Pasumarthy
Department of Electrical Engineering
IIT Madras
ramkrishna@study.iitm.ac.in

Recall Basic Electrical Engineering

Find currents and voltages

Electrical Networks

Figure: A resistive network.

In conductance form $(G_i = 1/R_i)$ these can be written compactly as

$$(G_1 + G_2 + G_5)V_a - G_5V_b - G_2V_c = 0,$$

 $-G_5V_a + (G_3 + G_4 + G_5)V_b - G_4V_d = 0,$
 $-G_2V_a + (G_2 + G_6)V_c - G_6V_d = I_s,$
 $-G_4V_b - G_6V_c + (G_4 + G_6)V_d = 0.$

Thus the matrix equation $A\mathbf{v} = \mathbf{b}$ is

$$\begin{pmatrix} G_1+G_2+G_5 & -G_5 & -G_2 & 0 \\ -G_5 & G_3+G_4+G_5 & 0 & -G_4 \\ -G_2 & 0 & G_2+G_6 & -G_6 \\ 0 & -G_4 & -G_6 & G_4+G_6 \end{pmatrix} \begin{pmatrix} V_a \\ V_b \\ V_c \\ V_d \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ I_s \\ 0 \end{pmatrix}.$$

Counting

 In how many ways can Roger and Rafa win 10 grand slams between themselves

$$Ro + Ra = 10$$

 In how many ways can write 10 as a sum of two 'real' numbers

$$x_1 + x_2 = 10$$

A simple college experiment

Given an unknown resistance? How would you find its value? You have a voltage source and a current measuring device

Voltage	Current
10	50
20	100
30	150
40	200
50	250
60	300
70	350
80	400
90	450

600 500 400 300 200 100 0 20 40 60 80 100 120

Find R, linear relation

Prediction?

A company manufactures an electronic device to be used in a very wide temperature range. The company knows that increased temperature shortens the life time of the device, and a study is therefore performed in which the life time is determined as a function of temperature. The following data is found:

What is the life for 65 degrees?

Temperature in Celcius (t)	10	20	30	40	50	60	70	80	90
Life time in hours (y)	420	365	285	220	176	117	69	34	5

Relation between y & t (linear?)

Life cycle

Temperature

Curve/Line fitting

• What is the equation of the line passing through (0,6), (1,0), (2,0).

• Is it possible to fit a curve?

Contents

1	Geometry of linear equations
	Row picture
	Column picture
	Matrix form
2	Types of solutions
	For 2-dimensional and 3-dimensional case
3	Vector spaces
	Vector
	Vector addition
	Vector space
	Linear combination
	Subspaces – row space, column space, null space
	Independence and dependence of equations
	Basis and dimension
	Matrix multiplication
	Symmetric matrix

Contents

4	Solving a system of linear equations - Gaussian elimination
	Augmented matrix and pivots
	Manipulating rules
	Step by step process of elimination
	Forward elimination and back substitution
	Reduced row echelon form (rref)
	When could the process breakdown?
	Finding inverses by Gauss-Jordan method
5	Orthogonality
	Length of a vector
	Test for orthogonality
	Orthonormal vectors
	Projection
	Gram-Schmidt orthogonalization

Contents

6	Eigenvalues and eigenvectors
	Finding eigenvectors for distinct eigenvalues
	Finding eigenvectors for repeated eigenvalues
	Diagonalization of a symmetric matrix – Eigenvalue decomposition

Outcome

Module learning outcomes:

- I. Participants will be able to identify relationships between variables in large datasets
- 2. Participants will be able to identify information sufficiency in terms of both equations and variables
- 3. Participants will be able to understand basic linear algebra concepts that underlie the complicated data analytics algorithms

Linear Algebra

How many equations could be formed from this?

- $Q_{in} = Q_1$
- $Q_1 + Q_{32} = Q_2$
- $Q_2 + Q_{43} = Q_{32} + Q_3$
- $\bullet Q_3 = Q_{out} + Q_{43}$

- $Q_{in} = Q_1$
- $Q_1 + Q_{32} = Q_2$
- $Q_2 + Q_{43} = Q_{32} + Q_3$
- $\bullet Q_3 = Q_{out} + Q_{43}$

- Can we solve the equations when
 - $Q_{in} = 10, Q_{32} = 5 \text{ and } Q_{43} = 3$
 - $Q_{in} = 10, Q_{out} = 10 \text{ and } Q_3 = 7$
 - $Q_{in} = 10, Q_{out} = 11 \text{ and } Q_3 = 7$

•
$$Q_{in} = Q_1$$

• $Q_1 + Q_{32} = Q_2$
• $Q_2 + Q_{43} = Q_{32} + Q_3$
• $Q_3 = Q_{out} + Q_{43}$

• Can we solve the equations when $Q_{in} = 10$, $Q_{32} = 5$ and $Q_{43} = 3$?

Unique solution

•
$$Q_{in} = Q_1$$

• $Q_1 + Q_{32} = Q_2$
• $Q_2 + Q_{43} = Q_{32} + Q_3$
• $Q_3 = Q_{out} + Q_{43}$

• Can we solve the equations when $Q_{in} = 10$, $Q_{out} = 10$ and $Q_3 = 17$?

Infinite number of solutions

- Loop involving Q_2 and Q_{32} : both are unmeasured
- Given measurements consistent with equations

•
$$Q_{in} = Q_1$$

• $Q_1 + Q_{32} = Q_2$
• $Q_2 + Q_{43} = Q_{32} + Q_3$
• $Q_3 = Q_{out} + Q_{43}$

• Can we solve the equations when $Q_{in} = 10$, $Q_{out} = 11$ and $Q_3 = 7$?

No solution

• Given information not consistent with equations

System of Equations: Key Concept

Understanding when do we have:

- Unique solution
- No solution
- Infinite number of solutions

Solving Simultaneous Linear Equations

Solve the two linear equations:

$$4x - 2y = 0$$
; $-2x + 4y = 6$

Solving Simultaneous Linear Equations

Elimination (High school method)

$$4x - 2y = 0$$

$$2(-2x + 4y = 6)$$

$$6y = 12$$

$$\Rightarrow y = 2$$
$$\Rightarrow x = 1$$
2) is the solution

(1,2) is the solution

Graphical method

(1,2) is the solution

- We may view a system of linear equations in three different ways
 - Matrix form $-\mathbf{A}x = \mathbf{b}$ where \mathbf{A} forms a matrix with the coefficients of the unknowns and \mathbf{x} forms a matrix with the unknowns and \mathbf{b} , a matrix with the values in the R.H.S
 - Row picture viewing one equation at a time
 - Column picture two separate equations as one vector equation

Geometry for a system of 2 equations:

Matrix form

• Consider two linear equations:

$$4x - 2y = 0$$

$$-2x + 4y = 6$$

- A matrix is a rectangular arrangement of numbers in rows and columns
- Rows run horizontally and columns run vertically
- Order of a matrix: $m \times n$ where m is the # of rows and n is the # of columns

Matrix form

$$\begin{bmatrix} 4 & -2 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 6 \end{bmatrix}$$

- This is of the form Ax = b
 - where –
 - \bullet **A** matrix with coefficients of the unknowns
 - \circ x unknowns
 - $\mathbf{b} \text{R.H.S}$ of the equations
- n equations and n unknowns $\Rightarrow n \times n$ matrix (square matrix)
- m equations and n unknowns $\Rightarrow m \times n$ matrix (rectangular matrix)

Row picture

$$4x - 2y = 0$$
; $-2x + 4y = 6$

• Taking one row at a time and plotting it in the *x*–*y* plane

Few points that satisfy 4x - 2y = 0 are (0,0), (1,2) and (1/2, 1)

Few points that satisfy -2x + 4y = 6 are (-3,0), (-1,1)

and (1,2)

So the solution of the system is (1,2)

Geometry for a system of 3 equations

• Consider a system of 3 equations:

$$x + 2y + z = 6$$

$$6x - 2y = 4$$

$$-3x - y + 4z = 8$$

Matrix form

$$\begin{bmatrix} 1 & 2 & 1 \\ 6 & -2 & 0 \\ -3 & -1 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ 8 \end{bmatrix}$$

Row picture

$$x + 2y + z = 6$$
; $6x - 2y = 4$; $-3x - y + 4z = 8$

- Each equation describes a plane in 3 dimensions. The intersection of the first plane with the second plane is a line
- The 3^{rd} plane (not shown in the figure) intersects the line of intersection of the other two planes at a point (1,1,3)
- Solution for the system of equation is (1,1,3)

A system of linear equations can have –

- Unique solution or
- No solution

or

Infinite number of solutions

2 dimensional case

Unique solution

• This is the nice case where the system will have a point of intersection and hence a unique solution. 4x - 2y = 0 and -2x + 4y = 6 has a unique solution (1,2)

One solution (x, y) = (1,2)

No solution

• A system has no solution if the equations are inconsistent. For example, -2x + 4y = 6 and -6x + 12y = 6 has no solution

$$-6x + 12y = 6 \implies -2x + 4y = 2$$

which contradicts with the first equation and hence the system has no solution

Parallel: No solution

Infinite number of solutions

• The other case is when one equation is just some multiple of the other. Then we will get infinite number of solutions

$$-2x + 4y = 6$$
; $-4x + 8y = 12$

Whole line of solutions

Singular case for three dimensions

Two planes may be parallel

Two parallel planes: No solution

• One plane is parallel to the line of intersection of the other two planes

No intersection: No solution

Singular case for three dimensions

Three parallel planes

All planes parallel: No solution or a whole plane of solutions

• One equation is just the sum of the other two equations, the three planes have a whole line in common \ /

Line of intersection: Infinite # of solutions

<u>Vector</u>

- A vector is defined as an ordered collection of numbers
- Elements of a vector arranged as a column \rightarrow column vector
- Elements of a vector arranged as a row \rightarrow row vector
- If a vector v contains three real numbers say, $v = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$, then v belongs
- The vectors $\begin{bmatrix} a \\ b \end{bmatrix}$ and $\begin{bmatrix} b \\ a \end{bmatrix}$ are not the same

Vector Addition

Addition of a vector $\begin{bmatrix} 6 \\ -3 \\ 4 \end{bmatrix}$ is done component by component and can be

$$\begin{bmatrix} 6 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ -3 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 4 \end{bmatrix} = \begin{bmatrix} 6 \\ -3 \\ 4 \end{bmatrix}$$

Column picture

$$4x - 2y = 0$$
; $-2x + 4y = 6$

Column picture: Linear combination of columns

$$x \begin{bmatrix} 4 \\ -2 \end{bmatrix} + y \begin{bmatrix} -2 \\ 4 \end{bmatrix} = \begin{bmatrix} 0 \\ 6 \end{bmatrix}$$

We know that the solution for the two equations is (1,2)

Substitute them

$$1\begin{bmatrix} 4 \\ -2 \end{bmatrix} + 2\begin{bmatrix} -2 \\ 4 \end{bmatrix} = \begin{bmatrix} 0 \\ 6 \end{bmatrix}$$

Column picture

$$x + 2y + z = 6$$
; $6x - 2y = 4$; $-3x - y + 4z = 8$

$$x \begin{bmatrix} 1 \\ 6 \\ -3 \end{bmatrix} + y \begin{bmatrix} 2 \\ -2 \\ -1 \end{bmatrix} + z \begin{bmatrix} 1 \\ 0 \\ 4 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ 8 \end{bmatrix}$$

Solution for the system of equation is

Thank you

Acknowledgement for slides:

Prof. Sridharakumar Narasimham

Prof. Raghunathan Rengaswamy