

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Profesor: Pedro Gaspar – Estudiante: Benjamín Mateluna

Geometría Diferencial - MAT2860 Apuntes 06 de Marzo de 2025

Índice

Introducción		3
1.	Curvas en \mathbb{R}^n	4
	1.1. Curvas parametrizadas	4
	1.2. Longitud y Parametro de Arco	
	1.3. Curvatura de una Curva Regular (Teoría Local de Curvas)	
	1.4. Teoría Local de Curvas en el Espacio	
2.	Superficies Regulares	12
	2.1. Definición y ejemplos	12
	2.2. Cambio de Coordenadas	
	2.3. Aplicaciones Diferenciables	
	2.4. El Plano Tangente	
	2.5. El Diferencial de una Aplicación Diferenciable	
3.	La Segunda Forma Fundamental	21
	3.1. Campos Vectoriales y Orientación	21
	3.2. Formas Fundamentales y Aplicación de Gauss	22
	3.3. Secciones Normales	25
	3.4 Isometrías	

Introducción

Habrán tres interrogaciones (I1, I2, I3) cada una vale un $25\,\%$ y un examen (EX) que vale un $25\,\%$. Las fechas son 14 de abril, 19 de Mayo, 16 de Junio y 3 de Julio respectivamente.

1. Curvas en \mathbb{R}^n

1.1. Curvas parametrizadas

Consideramos $\mathbb{R}^n := \{v = (v_1, \dots, v_n) : v_i \in \mathbb{R}\}$. Un espacio vectorial sobre \mathbb{R} de dimensión n, con el producto escalar dado por

$$\langle v, w \rangle = \sum_{i=1}^{n} v_i w_i \quad \text{con } v, w \in \mathbb{R}^n$$

Definición 0.1. Una curva parametrizada en \mathbb{R}^n es una función continua $\alpha: I \subseteq \mathbb{R} \to \mathbb{R}^n$ con I un intervalo abierto. Escribimos $\alpha(t) = (\alpha_1(t), \dots, \alpha_n(t))$.

Diremos que α es diferenciable si sus funciones coordenadas $\alpha_i \in \mathcal{C}^{\infty}$. En tal caso, el vector $\alpha'(t) = (\alpha_1'(t), \cdots, \alpha_n'(t))$ se llama vector tangente a la curva α en $t \in I$

Definición 0.2. La traza de una curva parametrizada $\alpha: I \subseteq \mathbb{R} \to \mathbb{R}^n$ es $\alpha(I) = im(\alpha)$.

Ejemplos

- a) Si $p, v \in \mathbb{R}^n$ con $v \neq 0$, la curva parametrizada $\alpha(t) = tv + p$ con $t \in \mathbb{R}$ que describe una recta que pasa por $p = \alpha(0)$ con vector tangente $\alpha'(t) = v$.
- b) Sea $\beta : \mathbb{R} \to \mathbb{R}^3$ dada por $b(t) := t^3 \cdot \overrightarrow{e}_1$ es una curva parametrizada diferenciable con $\beta'(t) = 3t^2 \cdot \overrightarrow{e}_1$.
- c) Sea $p \in \mathbb{R}^2$ y r > 0 consideramos $\alpha(t) = (rcos(t), rsen(t)) + p$, una curva parametrizada diferenciable cuya traza es $\alpha(\mathbb{R}) = \{(x, y) \in \mathbb{R}^2 : |(x, y)| p = r\}$
- d) Sean $a, b \in \mathbb{R} \setminus \{0\}$. La curva parametrizada $\alpha : \mathbb{R} \to \mathbb{R}^3$ dada por $\alpha(t) = (acos(t), asen(t), bt)$ con $t \in \mathbb{R}$ se llama una helice circular. Además $\alpha'(t) = (-asen(t), acos(t), b)$.
- e) Sea $\alpha : \mathbb{R} \to \mathbb{R}^2$ dada por $\alpha(t) = (t^3 4t, t^2 4)$ es una curva parametrizada diferenciable con $\alpha(-2) = \alpha(2) = 0$, pero $\alpha'(-2) \neq \alpha(2)$.

1.2. Longitud y Parametro de Arco

Sea $\alpha: I \subseteq \mathbb{R} \to \mathbb{R}^n$ una curva parametrizada, consideremos $[a,b] \subseteq I$. Buscamos medir la longitud de $\alpha([a,b])$. Una estrategia, dada una partición $P := \{a = t_0 < t_1 < \dots < t_n = b\}$ de [a,b] calculamos

$$\sum_{i=1}^{k} |\alpha(t_i) - \alpha(t_{i-1})| =: L_a^b(\alpha, P)$$

esta suma corresponde a la longitud de una curva poligonal que pasa por los puntos $\alpha(t_i)$. Si $Q \supseteq P$ es otra partición de [s,b], entonces $L_a^b(\alpha,Q) \ge L_a^b(\alpha,P)$.

Definición 0.3. La longitud de una curva parametrizada α sobre $[a,b] \subseteq I$ es

$$L_a^b(\alpha) = \sup\{L_a^b(\alpha,P): P \ \text{es partici\'on de } [a,b]\}.$$

Si α es diferenciable sobre [a,b] y hacemos $|P| = \max\{t_i - t_{i-1}\}$ muy pequeña, esperariamos que $|\alpha(t_i) - \alpha(t_{i-1})| \approx |\alpha'(\overline{t_i})| (t_i - t_{i-1})$.

Proposición 0.1. Si $\alpha: I \subseteq \mathbb{R} \to \mathbb{R}^n$ es una curva parametrizada diferenciable sobre $[a,b] \subseteq I$, entonces

$$L_a^b(\alpha) = \int_a^b |\alpha'(t)| \, dt$$

(Para la demostración revisar Montiel-Ros, página 5)

Corolario 0.1. Tenemos que $|\alpha(a) - \alpha(b)| \leq L_a^b(\alpha)$.

Corolario 0.2. Si $F: \mathbb{R}^n \to \mathbb{R}^n$ cumple |DF(p)v| = |v| para todo $p, v \in \mathbb{R}^n$, entonces $L_a^b(F \circ \alpha) = L_a^b(\alpha)$.

De hecho, $F \circ \alpha : I \to \mathbb{R}^n$ es una curva parametrizada diferenciable, con

$$|(F \circ \alpha)'(t)| = |DF(\alpha(t))\alpha'(t)| = |\alpha'(t)|$$

para todo $t \in I$, basta con integrar sobre [a,b]. Si $p_0 \in \mathbb{R}^n$ y $A : \mathbb{R}^n \to \mathbb{R}^n$ es una transformación lineal ortogonal , esto es, $\langle Au, Av \rangle = \langle u, v \rangle$ para todo $u, v \in \mathbb{R}^n$, entonces $F : \mathbb{R}^n \to \mathbb{R}^n$ dada por $F(p) = Ap + p_0$ cumple

$$DF(p)v = \frac{d}{dt}F(p+tv)\big|_{t=0} = \frac{d}{dt}(A(p+tv) + p_0)\big|_{t=0} = Av$$

Por lo tanto |DF(p)v| = |Av| = |v|.

Corolario 0.3. Si $h: J \subseteq \mathbb{R} \to I \subseteq \mathbb{R}$ es un difeomorfismo $y \alpha: I \to \mathbb{R}$ es una curva parametrizada diferenciable, entonces

$$L_a^b(\alpha \circ h) = L_c^d(\alpha)$$

 $donde\ h([a,b]) = [c,d]\ para\ todo\ [a,b] \subseteq J.$

Por regla de la cadena tenemos que $(\alpha \circ h')(t) = h'(t)\alpha'(h(t))$. La curva $\alpha \circ h$ tiene la misma traza que α , en efecto $(\alpha \circ h)(J) = \alpha(h(J)) = \alpha(I)$. Decimos que $\alpha \circ h$ es una reparametrización de la curva alpha.

Demostración. Como h y h^{-1} son diferenciables, se tiene que $h'(t) \neq 0$ para todo $t \in J$. Veamos que

$$1 = \frac{d}{dt}(t) = (h^{-1} \circ h)'(t) = (h^{-1})'(h(t))h'(t)$$

Luego como J es un intervalo y h' es continua, tenemos que h' < 0 o h > 0.

• Si h' < 0, entonces h(a) = c, h(b) = d,

$$\int_{a}^{b} |(\alpha \circ h)'(t)| \, dt = \int_{a}^{b} |\alpha'(h(t))| \, |h'(t)| \, dt = \int_{c}^{d} |\alpha'(s)| \, ds = L_{c}^{d}(\alpha)$$

• $Si \ h' > 0$, entonces h(b) = c, h(a) = d,

$$\int_{a}^{b} |(\alpha \circ h)'(t)| \, dt = \int_{a}^{b} |\alpha'(h(t))| \, |h'(t)| \, dt = \int_{d}^{c} -|\alpha'(s)| \, ds = \int_{c}^{d} |\alpha'(s)| \, ds = L_{c}^{d}(\alpha)$$

Definición 0.4. Se dice que una curva parametrizada diferenciable $\alpha: I \subseteq \mathbb{R} \to \mathbb{R}^n$ es regular si $\alpha'(t) \neq 0$ para todo $t \in I$. Si además $|\alpha'(t)| = 1$ para todo $t \in I$ se dice que α esta parametrizada por el arco.

Una curva α parametrizada por el arco tiene las siguientes propiedades

• $\alpha'(t)$ es ortogonal a $\alpha''(t)$ para todo $t \in I$, en efecto

$$0 = \frac{d}{dt}(\left|\alpha'(t)\right|^2) = \frac{d}{dt}(\left\langle\alpha'(t), \alpha'(t)\right\rangle) = 2\left\langle\alpha'(t), \alpha''(t)\right\rangle$$

• Se tiene que $L_a^b(\alpha) = \int_a^b |\alpha'(t)| dt = b - a$.

Teorema 1. Si $\alpha: I \to \mathbb{R}^n$ es una curva parametrizada diferenciable regular, entonces α admite una parametrización por arco. Concretamente, si $t_0 \in I$ y definimos $s: I \to \mathbb{R}$ por

$$s(t) := \int_{t_0}^t |\alpha'(t)| \, dt$$

entonces s es un difeomorfismo sobre $J \subseteq \mathbb{R}$ y $\alpha \circ s^{-1} : J \to \mathbb{R}^n$ esta parametrizada por el arco.

Demostración. Por TFC, sabemos que s es diferenciable, mas aun, $s'(t) = |\alpha'(t)|$ para todo $t \in I$. Luego, s' > 0, es decir, s es creciente y s(I) = J es un intervalo abierto. Además, por teorema de la función inversa,

vemos que

$$(s^{-1})'(r) = \frac{1}{s'(s^{-1}(r))} = \frac{1}{|\alpha'(s^{-1}(r))|} \quad \forall r \in J$$

Por lo tanto $\left|(\alpha \circ s^{-1})'(r)\right| = 1$ para todo $r \in J$, luego $\alpha \circ s^{-1}$ esta parametrizada por el arco.

Ejemplos

a) Sea $\alpha(t) = tv + p_0$ con $p_0, v \in \mathbb{R}^n$ y $v \neq 0$. Como $\alpha'(t) = v$, tenemos

$$s(t) = \int_0^t |v| \, dx = t \, |v|$$

entonces $\alpha \circ s^{-1}(x) = x \cdot \frac{v}{|v|} + p_0$ es una parametrización por el arco de α .

b) Consideremos $\alpha(t) = (rcost, rsent) + p_0$ con $p_0 \in \mathbb{R}^2$ y r > 0. Como $\alpha'(t) = (-rsent, rcost)$ entonces $|\alpha'(t)| = r$, tenemos que

$$s(t) = \int_0^t r dx = rt$$

y $(\alpha \circ s^{-1})(x) = (r\cos(\frac{x}{r}), r\sin(\frac{x}{r})) + p_0$ es una curva parametrizada por el arco para α .

c) Definimos $\alpha(t) = (acost, asent, bt)$ con $a, b \in \mathbb{R} \setminus \{0\}$. Como $|\alpha'(t)| = \sqrt{a^2 + b^2}$ una curva parametrizada por el arco es

$$(\alpha \circ s^{-1})(x) = \left(a\cos\left(\frac{x}{\sqrt{a^2 + b^2}}\right), a\sin\left(\frac{x}{\sqrt{a^2 + b^2}}\right), \frac{bt}{\sqrt{a^2 + b^2}}\right)$$

1.3. Curvatura de una Curva Regular (Teoría Local de Curvas)

Notación: Notamos por \mathcal{J} a la función $\mathcal{J}: \mathbb{R}^2 \to \mathbb{R}^2$ dada por $\mathcal{J}(x,y) = (-y,x)$ que cumple lo siguientes

- \mathcal{J} es una transformación lineal ortogonal.
- $\langle u, \mathcal{J}u, = \rangle 0$ y $\mathcal{J}(\mathcal{J}u) = -u$ para todo $u \in \mathbb{R}^2$.
- Si |u|=1, entonces $\{u,\mathcal{J}u\}$ es una base ortonormal positiva de \mathbb{R}^2 .
- Si $A: \mathbb{R}^2 \to \mathbb{R}^2$ es una transformación lineal ortogonal, entonces $\mathcal{J}A = det(A)A\mathcal{J}$.

Nuestro objetivo es asociar a una curva parametrizada regular $\alpha:I\to\mathbb{R}^n$ una cantidad geometrica, para ello queremos definir una función $K(=K_\alpha):I\to\mathbb{R}$ tal que

- a) K es invariante bajo movimientos rigidos.
- b) K es invariante por parametrizaciones.
- c) $K \equiv 0$ si y solo si α corresponde a un segmento de recta.

Si tenemos $\alpha: I \to \mathbb{R}^2$ una curva parametrizada por el arco, definimos la función $T: I \to \mathbb{R}^2$ dada por $T(s) := \alpha'(s)$ y $N: I \to \mathbb{R}^2$ como $N(s) := \mathcal{J}T(s)$. Recordemos que $\{T(s), N(s)\}$ es una base ortonormal en \mathbb{R}^n para cada $s \in I$ (Diedro de Frenet).

Notemos que $N(s) \perp T(s)$ y $T'(s) \perp T(s)$, luego, existe un $k(s) \in \mathbb{R}$ tal que T'(s) = K(s)N(s). La función $K_{\alpha} = K : I \to \mathbb{R}$ se llama la curva de α . Tomando el producto con N(s),

$$K(s) = \langle K(s)N(s), N(s) \rangle$$

Por lo tanto $K(s) = \langle T'(s), N(s) \rangle$. Por otro lado, observemos que

$$N'(s) = \frac{d}{ds}\left(\mathcal{J}T(s)\right) = \mathcal{J}\frac{d}{ds}(T(s)) = \mathcal{J}(K(s)N(s)) = \mathcal{J}(K(s)\mathcal{J}T(s)) = -K(s)T(s)$$

Proposición 1.1. Para una curva parametrizada por el arco $\alpha: I \to \mathbb{R}^2$ vale que T' = KN y N' = -KT.

Ejemplos:

a) Una recta parametrizada por el arco $\alpha(s):=s\cdot\frac{v}{|v|}+p_0$ con $v\in\mathbb{R}^2\setminus\{0\}$, tenemos que

$$T(s) = \frac{v}{|v|}, N(s) = \frac{\mathcal{J}v}{|v|} = \frac{\mathcal{J}v}{|\mathcal{J}v|} y K(s) = 0 \quad \forall s \in \mathbb{R}$$

- b) Si $\alpha: I \to \mathbb{R}^2$ esta parametrizada y $K \equiv 0$, entonces T'(s) = 0 para todo $s \in I$, es decir, $\alpha''(s) = 0$ para todo $s \in I$. Integrando dos veces concluimos que cada coordenada de α es una función lineal, luego α es un segmento de recta.
- c) Sea $\alpha(s) := \left(r\cos\left(\frac{s}{r}\right), r\sin\left(\frac{s}{r}\right)\right) + p_0$, entonces

$$T(s) = \left(-sen\left(\frac{s}{r}\right), cos\left(\frac{s}{r}\right)\right) \text{ y } N(s) = \left(-cos\left(\frac{s}{r}\right), -sen\left(\frac{s}{r}\right)\right)$$

Notemos que

$$T'(s) = \left(-\frac{1}{r}cos\left(\frac{s}{r}\right), -\frac{1}{r}sen\left(\frac{s}{r}\right)\right) = \frac{1}{r}N(s)$$

Por lo tanto $K(s) = \frac{1}{r} \langle N(s), N(s) \rangle = \frac{1}{r}$.

Consideremos ahora una curva regular $\beta: \widetilde{I} \to \mathbb{R}^2$ y una reparametrización $\alpha = \beta \circ h: I \to \mathbb{R}^2$ parametrizada por el arco, donde $h: I \to \widetilde{I}$ es un difeomorfismo con h' > 0. Con esto

$$|\beta'(t)| = |(\beta \circ h \circ h^{-1})'(t)| = |(\alpha \circ h^{-1})'(t)| = (h^{-1})'(t)$$

Así, definimos el diedro de Frenet de la curva α por

$$T_{\beta}(t) := \frac{\beta'(t)}{|\beta'(t)|} = \frac{(\alpha \circ h^{-1})'(t)}{|(\alpha \circ h^{-1})'(t)|} = \frac{\alpha'(h^{-1}(t))h^{-1}(t)}{|\alpha'(h^{-1}(t))h^{-1}(t)|} = T_{\alpha}(h^{-1}(t))$$

Por otro lado

$$N_{\beta} = \mathcal{J}T_{\beta}(t) = \mathcal{J}T_{\alpha}(h^{-1}(t)) = N_{\alpha}(h^{-1}(t))$$

y definimos la curvatura de la curva β por

$$K_{\beta}(t) := K_{\alpha}(h^{-1}(t)) , t \in \widetilde{I}$$

Como $\beta'(t) = |\beta'(t)| T_{\alpha}(h^{-1}(t))$ se tiene que

$$\beta'' = (|\beta'|)' T_{\alpha} \circ h^{-1} + |\beta'|^2 \left(T'_{\alpha} \circ h^{-1}\right)$$

y además $N_{\alpha} \circ h^{-1} = \mathcal{J}T_{\beta} = \frac{\mathcal{J}\beta'}{|\beta'|}$ se sigue que

$$\frac{\left\langle \beta^{\prime\prime}, \mathcal{J}\beta^{\prime}\right\rangle}{\left|\beta^{\prime}\right|} = \left\langle (\left|\beta^{\prime}\right|)^{\prime} T_{\alpha} \circ h^{-1} + \left|\beta^{\prime}\right|^{2} \left(T_{\alpha}^{\prime} \circ h^{-1}\right), N_{\alpha} \circ h^{-1}\right\rangle = \left|\beta^{\prime}\right|^{2} \left\langle T_{\alpha}^{\prime} \circ h^{-1}, N_{\alpha} \circ h^{-1}\right\rangle = \left|\beta^{\prime}\right|^{2} K_{\alpha} \circ h^{-1}$$

Concluimos que $K_{\beta} = \frac{\langle \beta'', \mathcal{J}\beta' \rangle}{|\beta'|^3}$.

Proposición 1.2. Sea $\alpha: I \to \mathbb{R}^2$ una curva regular, entonces

- a) $Si \phi : \widetilde{I} \to I$ es un difeomorfismo entonces $K_{\alpha \circ \phi} = sgn(\phi')K_{\alpha} \circ \phi$.
- b) Si $F: \mathbb{R}^2 \to \mathbb{R}^2$ es un movimiento rigido, entonces $K_{F \circ \alpha} = (det DF) K_{\alpha}$.

Demostración. Sea $\alpha: I \to \mathbb{R}^2$ una curva regular

a) Como $(\alpha \circ \phi)'(t) = \phi'(t)\alpha'(\phi(t))$, se sigue que $|(\alpha \circ \phi)'(t)| = |\phi'(t)| |\alpha'(\phi(t))|$, escrito de otro modo

$$|(\alpha \circ \phi)| = sgn(\phi') \cdot \phi' |\alpha' \circ \phi|$$

Luego

$$K_{\alpha \circ \phi} = \frac{\langle (\alpha \circ \phi)'', \mathcal{J}(\alpha \circ \phi)' \rangle}{|(\alpha \circ \phi)'|^{3}} = \frac{\langle \phi''(\alpha' \circ \phi) + (\phi')^{2} \alpha'' \circ \phi, \phi' \mathcal{J}(\alpha' \circ \phi) \rangle}{sgn(\phi')(\phi')^{3} |\alpha' \circ \phi|^{3}}$$
$$= \frac{(\phi')^{3} \langle \alpha'' \circ \phi, \mathcal{J}\alpha' \circ \phi \rangle}{(\phi')^{3} |\alpha' \circ \phi|^{3}} sgn(\phi') = sgn(\phi') K_{\alpha} \circ \phi$$

b) Sabemos que $F(p) = Ap + p_0$, entonces DF = A. Luego,

$$\langle (F \circ \alpha)'', \mathcal{J}(F \circ \alpha)' \rangle = \langle (DF(\alpha)\alpha')', \mathcal{J}(DF(\alpha)\alpha') \rangle = \langle (A\alpha')', \mathcal{J}(A\alpha') \rangle$$
$$= \langle A\alpha'', (detA)A\mathcal{J}\alpha' \rangle = detA \langle \alpha'', \mathcal{J}\alpha' \rangle$$

 $Además |(F \circ \alpha)'| = |A\alpha'| = |\alpha'|$. Juntando lo anterior vemos que

$$K_{F \circ \alpha} = \frac{\langle (F \circ \alpha)'', \mathcal{J}(F \circ \alpha)' \rangle}{|(F \circ \alpha)'|^3} = \det A \cdot K_{\alpha}$$

Proposición 1.3. Sea $\alpha: I \to \mathbb{R}^2$ una curva parametrizada por el arco. Supongamos que existe una función diferenciable $\theta: I \to \mathbb{R}$ tal que $T(s) = (\cos(\theta(s)), \sin(\theta(s)))$. Entonces $K_{\alpha} = \frac{d\theta}{ds}$.

Demostración. Recordemos que

$$K_{\alpha} = \langle T'_{\alpha}, \mathcal{J}T_{\alpha} \rangle = \left\langle \left(-\frac{d\theta}{ds} sen\theta, \frac{d\theta}{ds} cos\theta \right), (-sen\theta, cos\theta) \right\rangle = \frac{d\theta}{ds} \left| (-sen\theta, cos\theta) \right|^2 = \frac{d\theta}{ds}$$

Teorema 2. Sea $K: I \to \mathbb{R}$ una función diferenciable, entonces existe una unica curva parametrizada por el arco $\alpha: I \to \mathbb{R}$, salvo por movimientos rigidos, tal que $K_{\alpha} = K$.

1.4. Teoría Local de Curvas en el Espacio

Definición 2.1. Sea $\alpha: I \to \mathbb{R}^3$ parametrizada por el arco. La curvatura de α en $s \in I$ es

$$K_{\alpha} := |T'(s)|$$

Observación: Para curvas en \mathbb{R}^3 , $K_{\alpha} \geq 0$. Además, $K_{\alpha} \equiv 0$ si y solo si α es un segmento de recta.

Definición 2.2. Sea $\alpha: I \to \mathbb{R}^3$ una curva parametrizada por el arco, tal que $K_{\alpha} > 0$. Definimos

$$N(s) := \frac{T'(s)}{|T'(s)|}$$

Observación: Como $T(s) \perp T'(s)$, pues |T| = 1, está definición se condice con el caso en \mathbb{R}^2 , además de manera directa, obtenemos que $K_{\alpha}N(s) = T(s)$.

Definición 2.3. Sea $\alpha: I \to \mathbb{R}^3$ parametrizada por el arco. Definimos el vector binormal de α en $s \in I$ por

$$B(s) = T(s) \times N(s)$$

Observación: Por definición del producto cruz el conjunto $\{T, N, B\}$ es una base ortonormal positiva de \mathbb{R}^3 para todo $s \in I$ llamada el tiedro de Frenet de α en $s \in I$.

Notemos que $B'(s) = \frac{d}{ds}(T(s) \times N(s)) = T'(s) \times N(s) + T(s) \times N'(s) = T(s) \times N'(s)$. Además, |B| = |T| |N| = 1 y por lo tanto $B' \perp B$, por otro lado $\langle B', T \rangle = \langle T \times N', T \rangle = 0$, osea $B' \perp T$. Por lo tanto, existe $\tau(s) \in I$ tal quiero

$$B'(s) = \tau(s)N(s)$$

Se dice que $\tau(s) =: \tau_{\alpha}(s)$ es la torsión de α en $s \in I$. Finalmente, como $N' \perp N$, tenemos que

$$N'(s) = aT(s) + bB(s)$$

donde

$$a \langle T, T \rangle = \langle N', T \rangle = \langle N', T \rangle + \langle N, T' \rangle - \langle N, T' \rangle$$
$$= \frac{d}{ds} \langle N, T \rangle - \langle N, T' \rangle = -\langle N, KN \rangle = -K$$

y similarmente obtenemos que $b = \langle N', B \rangle = -\tau(s)$.

Proposición 2.1. Ecuaciones de Frenet-Serret

- T'(s) = K(s)N(s)
- $N'(s) = -K(s)T(s) \tau(s)B(s)$
- $B'(s) = \tau(s)N(s)$

Ejemplos:

a) Sea $\alpha: I \to \mathbb{R}^3$ una curva parametrizada por el arco. Supongamos que $\alpha(I) \subseteq P$ con P un plano. Podemos describir el plano con la ecuación $\langle x - p_0, u \rangle = 0$, donde $p_0, u \in \mathbb{R}^3$ con u unitario y perpendicular al plano. Entonces $\langle \alpha(s) - p_0, u \rangle = 0$ para todo $s \in I$, derivando vemos que

$$\langle \alpha'(s), u \rangle = \langle T(s), u \rangle = 0 \quad \forall s \in I$$

En ese caso, K(s) es el valor absoluto de la curvatura de α como una curva plana. Supongamos que K(s) > 0 para todo $s \in I$. Entonces

$$0 = \frac{d}{ds} = \langle T, u \rangle = \langle T', u \rangle = K(s) \langle N, u \rangle$$

lo que implica que $N \perp u$ para todo $s \in I$. Luego, $B(s) = \pm u$ para todo $s \in I$, se sigue que $\tau(s) = \langle B', N \rangle = 0$.

b) Supongamos que α es una curva parametrizada por el arco tal que $\tau_{\alpha} \equiv 0$, entonces $B' = \tau \cdot N = 0$ para todo $s \in I$ y por lo tanto B = u, con $u \in \mathbb{R}^3$ y |u| = 1, así $T \times N = u$ para todo $s \in I$.

Ahora, usando las ecuaciones de frenet vemos que $T \perp u$ y $N \perp u$ para todo $s \in I$ y concluimos que

$$\langle \alpha(s) - \alpha(s_0), u \rangle = \left\langle \int_{s_0}^s T(x) dx, u \right\rangle = \int_{s_0}^s \left\langle T(x), u \right\rangle dx = 0 \quad \forall s \in I$$

Proposición 2.2. Sea $\alpha: I \to \mathbb{R}^3$ una curva parametrizada por el arco, $p_0 \in \mathbb{R}^3$, $A: \mathbb{R}^3 \to \mathbb{R}^3$ lineal, ortogonal y positiva. Sea $F: \mathbb{R}^3 \to \mathbb{R}^3$ con $F(p) = Ap + p_0$. Entonces

$$\begin{split} K_{F\circ\alpha} &= K_{\alpha} \quad , \quad \tau_{F\circ\alpha} = \tau_{\alpha} \\ T_{F\circ\alpha} &= AT_{\alpha} \quad , \quad N_{F\circ\alpha} = AN_{\alpha} \quad , \quad B_{F\circ\alpha} = AB_{\alpha} \end{split}$$

Podemos extender las definiciones de curvatura, torsión y del tiedro de frenet para curvas regulares $\beta: I \to \mathbb{R}^3$ por

$$K_{\beta}(t) := K_{\alpha}(h^{-1}(t))$$

donde $\alpha = \beta \circ h$ es una parametrización por el arco, con h difeomorfismo, h' > 0 y $K_{\beta} > 0$. Se cumple lo siguiente

- $T_{\beta}(t) = T_{\alpha}(h^{-1}(t))$
- $N_{\beta}(t) = N_{\alpha}(h^{-1}(t))$
- $B_{\beta}(t) = B_{\alpha}(h^{-1}(t))$

•
$$\tau_{\beta}(t) = \tau_{\alpha}(h^{-1}(t))$$

Proposición 2.3. Sea $\beta: I \to \mathbb{R}^3$ una curva regular, entonces

a)
$$K_{\beta} = \frac{|\beta' \times \beta''|}{|\beta'|^3}$$

$$b) \ \tau_{\beta} = \frac{-det(\beta', \beta'', \beta''')}{\left|\beta' \times \beta''\right|^{2}} = -\frac{\left\langle \beta', \beta'' \times \beta''' \right\rangle}{\left|\beta' \times \beta''\right|^{2}}$$

c)
$$T_{\beta} = \frac{\beta'}{|\beta'|}$$

$$d) \ B_{\beta} = \frac{\beta' \times \beta''}{|\beta' \times \beta''|}$$

e)
$$N_{\beta} = \frac{|\beta'|^2 \beta'' - \langle \beta', \beta'' \rangle \beta'}{\left| |\beta'|^2 \beta'' - \langle \beta', \beta'' \rangle \beta' \right|}$$

Teorema 3. (Teorema Fundamental de las curvas en el Espacio)

Sea $K, \tau : I \subseteq \mathbb{R} \to \mathbb{R}$ funciones diferenciables con K(s) > 0 para todo $s \in I$. Entonces existe $\alpha : I \to \mathbb{R}^3$ parametrizada por el arco tal que

$$K_{\alpha} = K \quad y \quad \tau_{\alpha} = \tau$$

Además, si $\beta: I \to \mathbb{R}^3$ es parametrizada por el arco tal que $K_\beta = K$ y $\tau_\beta = \tau$. Entonces existe un movimiento rigido $F: \mathbb{R}^3 \to \mathbb{R}^3$ tal que $F \circ \beta = \alpha$.

Demostración. El sistema

$$(FS): \begin{pmatrix} T \\ N \\ B \end{pmatrix}' = A \begin{pmatrix} T \\ N \\ B \end{pmatrix} \quad y \quad A(s) = \begin{pmatrix} 0 & K(s) & 0 \\ -K(s) & 0 & -\tau(s) \\ 0 & \tau(s) & 0 \end{pmatrix}$$

para cada $\{T_0, N_0, B_0\} \subseteq \mathbb{R}^3$ y $s_0 \in I$, existe una única solución del sistema, $\{T, N, B\}$, definida en I tal que $T(s_0) = T_0$, $N(s_0) = N_0$ y $B(s_0) = B_0$. Veamos que $\{T, N, B\}$ son ortonormales para cada $s \in I$. Sea $\{T_0, N_0, B_0\}$ una base ortonormal positiva de \mathbb{R}^3 . Consideremos la función

$$M(s) = \begin{pmatrix} \langle T, T \rangle & \langle T, N \rangle & \langle T, B \rangle \\ \langle N, T \rangle & \langle N, N \rangle & \langle N, B \rangle \\ \langle B, T \rangle & \langle B, N \rangle & \langle B, B \rangle \end{pmatrix} = \begin{pmatrix} T & N & B \end{pmatrix}^T \cdot \begin{pmatrix} T & N & B \end{pmatrix}$$

Por otro lado

$$M'(s) = \begin{pmatrix} T & N & B \end{pmatrix}^{\prime T} \cdot \begin{pmatrix} T & N & B \end{pmatrix} + \begin{pmatrix} T & N & B \end{pmatrix}^{T} \cdot \begin{pmatrix} T & N & B \end{pmatrix}^{\prime}$$
$$= A \begin{pmatrix} T & N & B \end{pmatrix}^{T} \cdot \begin{pmatrix} T & N & B \end{pmatrix} + \begin{pmatrix} T & N & B \end{pmatrix}^{T} \begin{pmatrix} T & N & B \end{pmatrix} A^{T}$$
$$= AM - MA$$

La matriz $M_0(s) = I_3$ con $s \in I$ es solución del sistema, además $M_0(s_0) = I_3 = M(s_0)$ (pues T_0, N_0, B_0 son ortonormales). Por unicidad de la solución $M(s) \equiv I_3$ para todo $s \in I$.

La matriz $(T \ N \ B)$ tiene determinante $1 \ o \ -1$. Como I es conexo y el determinante una función continua, entonces es constante. Como vale 1 en $s = s_0$ pues $\{T_0, N_0, B_0\}$ es base positiva, vale 1 sobre I.

Definition $\alpha: I \to \mathbb{R}^3$ por

$$\alpha(x) = \int_{s_0}^{s} T(x) dx$$

Por TFC, $\alpha'(s) = T(s)$ unitario, luego α es una curva parametrizada por el arco. Además

$$K_{\alpha}(s) = |T'(s)| = |K(s)N(s)| = K(s)|N(s)| = K(s) \quad \forall s \in I$$

$$N_{\alpha}(s) = \frac{T'_{\alpha}(s)}{|T'_{\alpha}(s)|} = \frac{T'(s)}{|T'(s)|} = \frac{K(s)N(s)}{|K(s)N(s)|} = N(s)$$

 $y \ B_{\alpha}(s) = T_{\alpha}(s) \times N_{\alpha}(s) = T(s) \times N(s) = B(s), \ ya \ que \ T(s), N(s), B(s) \ es \ base \ ortonormal \ positiva. \ Por \ tanto,$ $\tau_{\alpha} = \langle B_{\alpha}'(s), N_{\alpha}(s) \rangle = \langle B'(s), N(s) \rangle = \langle \tau N, N \rangle = \tau(s)$

$$\tau_{\alpha} = \langle B'_{\alpha}(s), N_{\alpha}(s) \rangle = \langle B'(s), N(s) \rangle = \langle \tau N, N \rangle = \tau(s)$$

Sea $A: \mathbb{R}^3 \to \mathbb{R}^3$ ortogonal tal que

$$AT_{\beta}(s_0) = T_{\alpha}(s_0)$$

$$AN_{\beta}(s_0) = N_{\alpha}(s_0)$$

$$AB_{\beta}(s_0) = B_{\alpha}(s_0)$$

 $y \ p_0 = \alpha(s_0) - A\beta(s_0)$. Luego, $F: \mathbb{R}^3 \to \mathbb{R}^3$ con $F(p) = Ap + p_0$. Defina $\gamma = F \circ \beta: I \to \mathbb{R}^3$. Queremos ver que $\gamma \equiv \alpha$. Como F es movimiento rigido α y γ tienen curvatura K y torsión τ y tiedro

$$T_{\gamma} = T_{F \circ \beta} = AT_{\beta}$$

$$N_{\gamma} = N_{F \circ \beta} = AN_{\beta}$$

$$B_{\gamma} = B_{F \circ \beta} = AB_{\beta}$$

Luego $f(s) = |T_{\gamma}(s) - T_{\alpha}(s)|^2 + |N_{\gamma}(s) - N_{\alpha}(s)|^2 + |B_{\gamma}(s) - B_{\alpha}(s)|^2$ vale 0 en $s = s_0$. Por otro lado $f'(s) = 2 \left\langle T_{\gamma} - T_{\alpha}, T'_{\gamma} - T'_{\alpha} \right\rangle + 2 \left\langle N_{\gamma} - N_{\alpha}, N'_{\gamma} - N'_{\alpha} \right\rangle + 2 \left\langle B_{\gamma} - B_{\alpha}, B'_{\gamma} - B'_{\alpha} \right\rangle = 0 \quad \forall s \in I$ por lo tanto f es constante g por lo mencionado $f \equiv 0$. De este modo, $\gamma' = T_{\gamma} \equiv T_{\alpha} = \alpha'$. Como

$$f'(s) = 2 \left\langle T_{\gamma} - T_{\alpha}, T'_{\gamma} - T'_{\alpha} \right\rangle + 2 \left\langle N_{\gamma} - N_{\alpha}, N'_{\gamma} - N'_{\alpha} \right\rangle + 2 \left\langle B_{\gamma} - B_{\alpha}, B'_{\gamma} - B'_{\alpha} \right\rangle = 0 \quad \forall s \in I$$

$$\gamma(s_0) = F(\beta s_0) = A\beta(s_0) + p_0 = \alpha(s_0)$$

concluimos que $\gamma \equiv \alpha$.

2. Superficies Regulares

2.1. Definición y ejemplos

Definición 3.1. Sea $\Sigma \subseteq \mathbb{R}^3$, decimos que Σ es una superficie regular si para todo $p \in \Sigma$ existe un abierto $V \subseteq \mathbb{R}^3$ con $p \in V$ y una función diferenciable

$$\varphi: \mathcal{V} \subseteq \mathbb{R}^2 \to \mathbb{R}^3$$

tal que

- $\varphi(\mathcal{V}) = V \cap \Sigma$
- φ es homeomorfismo de V sobre $V \cap \Sigma$
- $\mathbf{D}\varphi(q): \mathbb{R}^3 \to \mathbb{R}^3$ es inyectiva, es decir, si $\varphi = \varphi(u,v)$, entonces

$$D\varphi(q) \cdot e_1 = \frac{d}{dt}\varphi(q + te_1)\big|_{t=0} = \varphi_u(q)$$

$$D\varphi(q) \cdot e_2 = \frac{d}{dt}\varphi(q + te_2)\big|_{t=0} = \varphi_v(q)$$

son linealmente independientes, en otras palabras $\varphi_u(q) \times \varphi_v(q) \neq 0$. Decimos que φ es una parametrización local para Σ

Ejemplos:

- Sea $f: \mathcal{V} \subseteq \mathbb{R}^2 \to \mathbb{R}$ diferenciable, consideramos $\Sigma := \{(x, y, (f(x, y))) \in \mathbb{R}^3 : (x, y) \in \mathcal{V}\}$ Tomamos $V = \mathbb{R}^3$, definimos la función $\varphi: \mathcal{V} \to \mathbb{R}^3$ dada por $\varphi(u, v) = (u, v, f(u, v))$, entonces
 - a) $\varphi(\mathcal{V}) = \Sigma = \Sigma \cap V$.
 - b) φ tiene inversa, a saber, $\varphi^{-1}(x,y,z)=(x,y)$ que es la restricción de una función continua, luego φ^{-1} es continua.
 - c) $\varphi_u(u,v) = \left(1,0,\frac{\partial f}{\partial u}(u,v)\right)$ y $\varphi_v(u,v) = \left(0,1,\frac{\partial f}{\partial v}(u,v)\right)$ son linealmente independientes.

Por lo tanto, φ es una parametrización local con $\varphi(\mathcal{V}) = \Sigma$

■ Veamos la esfera unitaria \mathbb{S}^2 . Si $(x,y,z) \in \mathbb{S}^2$, entonces $x \neq 0$ o $y \neq 0$ o $z \neq 0$. Consideramos

$$\mathbb{S}^2 = \mathbb{S}^2 \cap (V_1^+ \cup V_2^+ \cup V_3^+ \cup V_1^- \cup V_2^- \cup V_3^-)$$

donde $V_i^{\pm}:=\{(x,y,z)\in\mathbb{R}^3:\pm x_i>0\}$. Definimos la función $\varphi_1^{\pm}:B_1(0)\subseteq\mathbb{R}^2\to\mathbb{R}^3$ dada por

$$\varphi_1^{\pm}(u,v) := (\pm \sqrt{1 - u^2 - v^2}, u, v)$$

luego, $\varphi_1^{\pm}(B_1(0)) = V_1^{\pm} \cap \mathbb{S}^2$, $(\varphi_1^{\pm})^{-1} : V_1^{\pm} \cap \mathbb{S}^2 \to B_1(0)$ que manda (x,y,z) en (y,z) es continua y además $(\varphi_1^{\pm})_u^{-1}(q)$ y $(\varphi_1^{\pm})_v^{-1}(q)$ son linealmente independientes para todo $q \in B_1(0)$. Un argumento similar se utiliza para V_2^{\pm} y V_3^{\pm} .

Definición 3.2. Una superficie parametrizada diferenciable es una aplicación diferenciable $\varphi : \mathcal{V} \subseteq \mathbb{R}^2 \to \mathbb{R}^3$ con \mathcal{V} abierto. Se dice que φ es regular si $D\varphi(q) : \mathbb{R}^2 \to \mathbb{R}^2$ es inyectiva para todo $q \in \mathcal{V}$.

Ejemplos:

- Toda parametrización local de una superficie regular es una superficie parametrizada regular.
- Sea $\alpha: I \subseteq \mathbb{R} \to \mathbb{R}^2$ una curva parametrizada diferenciable. Definimos $\varphi: I \times \mathbb{R} \to \mathbb{R}^3$ por $\varphi(u, v) = (\alpha(u), v)$. Esta superficie parametrizada diferenciable se llama cilindro sobre α .

Como $\varphi_u(u,v) = (\alpha'(u),0)$ y $\varphi_v(u,v) = (0,0,1)$ son linealmente independientes si y solo si $\alpha' \not\equiv 0$, es decir, φ es regular si y solo si α es una curva regular.

- Si $I = \mathbb{R}$ y existe $T \in \mathbb{R}$ tal que $\alpha(t+T) = \alpha(t)$ entonces $\varphi(I \times \mathbb{R}) = \alpha(\mathbb{R}) \times \mathbb{R}$ es una superficie regular.
- Si α es inyectiva y para todo $t \in I$ existen abiertos $V \subseteq \mathbb{R}^2$ y $J \subseteq I$ con $t \in J$ tales que $\alpha(I) \cap V = \alpha(J)$ entonces $\varphi(I \times \mathbb{R})$ es una superficie regular.

Teorema 4. (Teorema de la Función Implicita) Sea $h: W \subseteq \mathbb{R}^3 \to \mathbb{R}$ continua diferenciable, $p_0 = (x_0, y_0, z_0) \in W$ tal que $\frac{\partial h}{\partial z}(p_0) \neq 0$. Entonces existen abiertos $\mathcal{V} \subseteq \mathbb{R}^2$, $I \subseteq \mathbb{R}$ y $f: \mathcal{V} \to I$ continua diferenciable tales que

- El punto $p_0 \in \mathcal{V} \times I$
- Se tiene la igualdad de conjuntos $h^{-1}(h_{p_0}) \cap (\mathcal{V} \times I) = \{(x, y, f(x, y)) : (x, y) \in \mathcal{V}\}$

Además se tiene que

$$\frac{\partial f}{\partial x}(x,y) = \frac{-\frac{\partial h}{\partial x}(x,y,f(x,y))}{-\frac{\partial h}{\partial z}(x,y,f(x,y))}$$

$$\frac{\partial f}{\partial y}(x,y) = \frac{-\frac{\partial h}{\partial y}(x,y,f(x,y))}{-\frac{\partial h}{\partial x}(x,y,f(x,y))}$$

Si h es suave entonces f también lo es.

Definición 4.1. Sea $F:W\subseteq\mathbb{R}^n\to\mathbb{R}^m$ diferenciable. Se dice que $q\in\mathbb{R}^m$ es un valor regular para F, si $F^{-1}(q)=\emptyset$ o si para todo $p\in F^{-1}(q)$ se tiene que $DF(p):\mathbb{R}^n\to\mathbb{R}^m$ es sobreyectiva.

Por ejemplo si $h:W\subseteq\mathbb{R}^n\to\mathbb{R}$ entonces $Dh(p):\mathbb{R}^n\to\mathbb{R}$

$$Dh(p)e_i = \frac{d}{dt}h(p+te_i)\big|_{t=0}$$

$$= \frac{d}{dt}h(p_1,\dots,p_{i-1},p_i+t,p_{i+1},\dots,p_n)\big|_{t=0}$$

$$= \frac{\partial h}{\partial x_i}(p)$$

Luego $q \in \mathbb{R}$ es valor regular par a h si y solo si para todo $p \in h^{-1}(q)$, $\frac{\partial h}{\partial x_i}(p) \neq 0$ para algún i, o sea, $\nabla h(p) \neq 0$ para todo $p \in h^{-1}(q)$.

Teorema 5. Sea $h: W \subseteq \mathbb{R}^3 \to \mathbb{R}$ una función diferenciable. Si $c \in \mathbb{R}$ es un valor regular para h, entonces $h^{-1}(c)$ es una superficie regular.

Demostración. Si c es valor regular, entonces para todo $p \in h^{-1}(c)$ se sigue que $\nabla h(p) \neq 0$, es decir,

$$\frac{\partial h}{\partial x}(p) \neq 0$$
 δ $\frac{\partial h}{\partial y}(p) \neq 0$ δ $\frac{\partial h}{\partial z}(p) \neq 0$

Supongamos sin perdida de generalidad que $\frac{\partial h}{\partial z} \neq 0$. Por teo de la función Implicita, existen abiertos $\mathcal{V} \subseteq \mathbb{R}^2$, $I \subseteq \mathbb{R}$ y una función suave $f: \mathcal{V} \to I$ tales que $p \in \mathcal{V} \times I$ y $h^{-1}(c) \cap (\mathcal{V} \times I) = Graf(f)$.

Por lo visto al inicio de la sección, existe parametrización local $\varphi: \mathcal{V} \to \mathbb{R}^3$ con $\varphi(\mathcal{V}) = h^{-1}(c) \cap (\mathcal{V} \times I)$.

2.2. Cambio de Coordenadas

Lema 5.1. Sea $\varphi: \mathcal{V} \subseteq \mathbb{R}^2 \to \mathbb{R}^3$ superficie parametrizada regular

$$\varphi(u,v) = (x(u,v), y(u,v), z(u,v))$$

Entonces para todo punto $(u_0, v_0) \in \mathcal{V}$ se tiene que $D(\pi \circ \varphi)(u_0, v_0) : \mathbb{R}^2 \to \mathbb{R}^2$ es un isomorfismo lineal, donde $\pi : \mathbb{R}^3 \to \mathbb{R}^2$ es una de las proyecciones a los planos xy, xz o yz.

Consecuentemente existe $V_0 \subseteq V$ abierto con $(u_0, v_0) \in V_0$ tal que $\pi \circ \varphi(V_0) = W_0 \subseteq \mathbb{R}^2$ es abierto $y \pi \circ \varphi|_{V_0} : V_0 \to W_0$ es un difeomorfismo.

Demostración. La matriz $D\varphi(u_0, v_0) : \mathbb{R}^2 \to \mathbb{R}^3$ es

$$\begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} \end{pmatrix} (u_0, v_0)$$

Como la superficie es regular, las columnas son linealmente independientes. Luego la matriz tiene una submatriz 2×2 invertible. Pero estas submatrices son las matrices de

$$D(\pi \circ \varphi)(u_0, v_0) : \mathbb{R}^2 \to \mathbb{R}^2$$

La última parte es consecuencia directa del teorema de la función inversa.

Observación: La función $\psi = \varphi \circ (\pi \circ \varphi)^{-1} : W_0 \to \mathbb{R}^3$ es también una superficie parametrizada regular con

$$\psi(W_0) = \varphi((\pi \circ \varphi)^{-1}(W_0)) = \varphi(\mathcal{V}_0)$$

Además, $\pi \circ \psi = id_{W_0}$, osea, ψ es la grafica de una función $f: W_0 \to \mathbb{R}$ diferenciable.

Corolario 5.1. Si $\Sigma \subseteq \mathbb{R}^3$ es una superficie regular, entonces para todo $p \in \Sigma$ existe parametrización local cuya imagen contiene a p y que es grafica.

Teorema 6. Si $\varphi_i : \mathcal{V}_i \subseteq \mathbb{R}^2 \to \Sigma$ son parametrizaciones locales de Σ con $U := \varphi_1(\mathcal{V}_1) \cap \varphi_2(\mathcal{V}_2) \neq \emptyset$.

$$\varphi_2^{-1} \circ \varphi_1 : \varphi_1^{-1}(U) \subseteq \mathbb{R}^2 \to \varphi_2^{-1}(U) \subseteq \mathbb{R}^2$$

es un difeomorfismo. Se dice que $\varphi_2^{-1} \circ \varphi_1$ es un cambio de coordenadas.

Demostración. Como φ_i son homeomorfismos, basta demostrar que $\varphi_2^{-1} \circ \varphi_1$ es diferenciable en cada $p_1 \in$ $\varphi_1^{-1}(U)$. Sean

$$q = \varphi_1(p_1)$$
 y $p_2 = \varphi_2^{-1}(q) = \varphi_2^{-1}(\varphi_1(p_1))$

Por el lema, existe proyección $\pi: \mathbb{R}^3 \to \mathbb{R}^2$ y un abierto $V_2 \subseteq \varphi_2^{-1}(U)$ con $p_2 \in V_2$ tal que

$$\pi \circ \varphi_2 : V_2 \to \pi(\varphi_2(V_2)) =: W \subseteq \mathbb{R}^2 \ un \ abierto$$

es un difeomorfismo. Sea $V_1 := (\varphi_2^{-1} \circ \varphi_1)^{-1}(V_2) = \varphi_1^{-1}(\varphi_2(V_2))$, entonces

- $p_1 \in V_1$ pues $\varphi_2^{-1} \circ \varphi_1(p_1) = \varphi_2^{-1}(q) = p_2 \in V_2$. $Si \ p \in V_1$ entonces $\varphi_1(p) \in \varphi_2(V_2)$ y por ende $\pi \circ \varphi_1(p) \in \pi \circ \varphi_2(V_2) = W$

Por lo tanto esta bien definida la función $(\pi \circ \varphi_2)^{-1} \circ \pi \circ \varphi_1 : V_1 \to \mathcal{V}_2$. La cual cumple que $(\pi \circ \varphi_2)^{-1} \circ \pi \circ \varphi_1 = \varphi_2^{-1} \circ \varphi_1$ en su dominio. Como $(\pi \circ \varphi_2)^{-1}$ y $(\pi \circ \varphi_1)$ son diferenciables, $\varphi_2^{-1} \circ \varphi_1$ es diferenciable en $p_1 \in V_1$.

Aplicaciones Diferenciables

Definición 6.1. Se dice que $f: \Sigma \to \mathbb{R}^d$ es diferenciable en $p \in \Sigma$ si existe una parametrización local $\varphi: \mathcal{V} \subseteq$ $\mathbb{R}^2 \to \Sigma \ con \ p \in \varphi(\mathcal{V}) \ y \ tal \ que \ f \circ \varphi \ es \ diferenciable \ en \ \varphi^{-1}(p) \in \mathcal{V}.$

Definición 6.2. Se dice que

$$\gamma: V \subseteq \mathbb{R}^d \to \Sigma \subseteq \mathbb{R}^3$$

con Σ una superficie parametrizada regular, es diferenciable en $q \in V$. Si existe una parametrización local $\varphi : \mathcal{V} \subseteq$ $\mathbb{R}^2 \to \Sigma \ con \ \gamma(q) \in \varphi(\mathcal{V}) \ tal \ que$

$$\varphi^{-1} \circ \gamma : \gamma^{-1}(\varphi(\mathcal{V})) \subseteq \mathbb{R}^d \to \mathbb{R}^2$$

es diferenciable en $q \in \gamma^{-1}(\varphi(\mathcal{V}))$.

Observación:

a) La definición de diferenciabilidad de $f: \Sigma \to \mathbb{R}^d$ no depende de la parametrización

$$f \circ \widetilde{\varphi} = (f \circ \varphi) \circ (\varphi^{-1} \circ \widetilde{\varphi})$$

entonces $f \circ \widetilde{\varphi}$ es diferenciable si y solo si $f \circ \varphi$ es diferenciable.

- b) Esta noción de diferenciabilidad es local, es decir, si $p \in U \subseteq \Sigma$, con U abierto, entonces f es diferenciable si y solo si $f|_U : U \to \mathbb{R}^d$ es diferenciable en p.
- c) Si $f: \Sigma \to \mathbb{R}^d$ es diferenciable entonces f es continua, en efecto

$$f = (f \circ \varphi) \circ \varphi^{-1}$$

es composición de mapeos continuos.

d) Observaciones análogas se cumplen para $\gamma: V \subseteq \mathbb{R}^2 \to \Sigma$.

Ejemplos:

- Si $\varphi : \mathcal{V} \subseteq \mathbb{R}^2 \to \Sigma$ es una parametrización local, entonces φ y φ^{-1} son diferenciables y $\varphi^{-1} \circ \varphi$ es la identidad.
- Si $h:W\subseteq\mathbb{R}^3\to\mathbb{R}$ es diferenciable con W abierto y si $\Sigma\subseteq W$ es una superficie parametrizada regular, entonces $h\big|_{\Sigma}:\Sigma\to\mathbb{R}$ es diferenciable. Para toda parametrización local $\varphi:\mathcal{V}\subseteq\mathbb{R}^2\to\Sigma$ tenemos que $h\big|_{\Sigma}$ es la composición de φ y h.
- Función altura, $h: \Sigma \to \mathbb{R}$ dada por $h(p) = \langle u, p p_0 \rangle$. Esta función mide la altura del punto $p_0 \Sigma$ al plano $p_0 + u^{\perp}$, donde |u| = 1.
- El cuadrado de la distancia a un $p_0 \in \mathbb{R}^3$. Es decir, $f\Sigma \to \mathbb{R}$ dada por $|p p_0|^2$. Si $p_0 \notin \Sigma$ entonces $|p p_0|$ también es diferenciable.

Lema 6.1.

- a) Sean $\gamma: \mathcal{V} \subseteq \mathbb{R}^d \to \Sigma$ y $f: \Sigma \to \mathbb{R}^m$ tales que γ es diferenciable en q y f es diferenciable en $\gamma(q)$ entonces $f \circ \gamma$ es diferenciable en q.
- b) Sean $f: \Sigma \to \mathbb{R}^m$ y $\phi: W \subseteq \mathbb{R}^m \to \mathbb{R}^d$ con $f(\Sigma) \subseteq W$ tales que f es diferenciable en p y ϕ es diferenciable en p.

Demostración.

a) Sea $\varphi: \mathcal{V} \subseteq \mathbb{R}^2 \to \mathbb{R}^3$ una parametrización local con $\gamma(q) \in \varphi(\mathcal{V})$. Entonces $\varphi \circ \gamma$ es diferenciable en q y $f \circ \varphi$ es diferenciable en $\varphi^{-1}(\gamma(q))$. Luego

$$f \circ \gamma = (f \circ \varphi) \circ (\varphi^{-1} \circ \gamma)$$

es diferenciable en q por ser composición de funciones diferenciables.

b) Sea $\varphi: \mathcal{V} \subseteq \mathbb{R}^2 \to \mathbb{R}^3$ una parametrización local de $p \in \varphi(\mathcal{V})$, entonces $f \circ \varphi: \mathcal{V} \to \mathbb{R}^m$ es diferenciable en $\varphi^{-1}(p)$. Además $f \circ \varphi(\mathcal{V}) \subseteq f(\Sigma) \subseteq W$ y φ es diferenciable en $f \circ \varphi(\varphi^{-1}(p)) = f(p)$. Luego

$$(\phi \circ f) \circ \varphi = \phi \circ (f \circ \varphi)$$

es diferenciable en φ^{-1} . Por lo tanto, $\phi \circ f$ es diferenciable en $p \in \Sigma$.

Corolario 6.1. Una aplicación $\gamma: V \subseteq \mathbb{R}^d \to \Sigma$ es diferenciable $q \in V$ si y solo si sus coordenadas $\gamma_1, \gamma_2, \gamma_3$ son funciones diferenciables de V a \mathbb{R} en q.

Definición 6.3. Sean Σ_1, Σ_2 superficies regulares. Se dice que

$$F:\Sigma_1\to\Sigma_2$$

es diferenciable en $p \in \Sigma_1$. Si existen parametrizaciones locales $\varphi_i : \mathcal{V}_i \subseteq \mathbb{R}^2 \to \mathbb{R}^3$ para Σ_i con $p \in \varphi_1(\mathcal{V}_1)$ y $F(p) \in \varphi_2(\mathcal{V}_2)$ tales que

$$\varphi_2^{-1} \circ F \circ \varphi_1 : (F \circ \varphi_1)^{-1}(\varphi(\mathcal{V}_2)) \to \mathcal{V}_2$$

es diferenciable en q.

Proposición 6.1. Sea $F: \Sigma_1 \to \Sigma_2 \subseteq \mathbb{R}^3$ y escribimos

$$F(p) = (F_1(p), F_2(P), F_3(p))$$

donde $F_i: \Sigma \to \mathbb{R}$. Entonces F es diferenciable en $p \in \Sigma_1$ si y solo si F_i son diferenciables en $p \in \Sigma_1$.

Definición 6.4. Se dice que $F: \Sigma_1 \to \Sigma_2$ entre superficies regulares es un difeomorfismo si

- F es diferenciable, es decir, F es diferenciable para todo $p \in \Sigma_1$.
- \blacksquare F es una biyección y F^{-1} es diferenciable

Teorema 7. Sean $F: \Sigma_1 \to \Sigma_2$ y $G: \Sigma_2 \to \Sigma_3$ aplicaciones diferenciables entre superficies regulares. Si F es diferenciable en $p \in \Sigma_1$ y G es diferenciable en $F(p) \in \Sigma_2$ entonces $G \circ F$ es diferenciable en $p \in \Sigma_1$.

Demostración. Escribimos $G(p) = (G_1(p), G_2(p), G_3(p))$ donde $G_i : \Sigma_2 \to \mathbb{R}$ son diferenciables en F(p) por la proposición anterior. Por el lema anterior tenemos que $G_i \circ F : \Sigma_1 \to \mathbb{R}$ son diferenciables en $p \in \Sigma_1$. Como

$$G \circ F(p) = (G_1 \circ F(p), G_2 \circ F(p), G_3 \circ F(p))$$

por la proposición anterior, $G \circ F$ es diferenciable en $p \in \Sigma_1$.

Del teorema anterior se sigue que Σ_1 es difeomorfo a Σ_2 define una relación de equivalencia entre superficies regulares. Notemos que

$$id_{\Sigma_1}: \Sigma_1 \to \Sigma_1$$

es un difeomorfismo. Si φ_1, φ_2 son parametrizaciones locales entonces $\varphi_2^{-1} \circ id_{\Sigma_1} \circ \varphi_1 = \varphi_2^{-1} \circ \varphi_1$ es un cambio de coordenadas.

Ejemplo: Consideremos las superficies regulares \mathbb{S}^2 y

$$\Sigma := \left\{ (x,y,z) \in \mathbb{R}^3 : \left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 + \left(\frac{z}{c}\right)^2 = 1 \right\}$$

Afirmamos que \mathbb{S}^2 y Σ son difeomorfas. En efecto, definimos $\phi: \mathbb{R}^3 \to \mathbb{R}^3$ por $\phi(x,y,z) = (ax,by,cz)$ como ϕ es lineal e invertible ϕ y ϕ^{-1} son diferenciables y luego ϕ es un difeomorfismo. Además si $(x,y,z) \in \mathbb{S}^2$ entonces

$$\phi(x, y, z) = (ax, by, cz) \in \Sigma$$

Por lo tanto $\phi(\mathbb{S}^2) \subseteq \Sigma$. similarmente $\phi^{-1}(\Sigma) \subseteq \mathbb{S}^2$. Claramente $\phi: \mathbb{S}^2 \to \Sigma$ es una biyección. Además como ϕ es diferenciable en todo punto

$$\phi|_{\mathbb{S}^2}: \mathbb{S}^2 \to \mathbb{R}^3$$

es diferenciable. Por la proposición anterior tenemos que $\phi|_{\mathbb{S}^2}: \mathbb{S}^2 \to \Sigma$ es diferenciable. similarmente para ϕ^{-1} .

La misma idea demuestra, en general, que si $\phi: U_1 \subseteq \mathbb{R}^3 \to U_2 \subseteq \mathbb{R}^3$ es difeomorfismo entre abiertos y $\Sigma \subseteq U_1$ es una superficie regular, entonces

$$\phi|_{\Sigma}: \Sigma \to \phi(\Sigma)$$

donde $\phi(\Sigma)$ es una superficie regular, es un difeomorfismo entre superficies.

2.4. El Plano Tangente

Sea $\Sigma \subseteq \mathbb{R}^3$ una superficie regular, $p \in \Sigma$. Si $\varphi_i : \mathcal{V}_i \subseteq \mathbb{R}^2 \to \mathbb{R}^3$ son parametrizaciones locales para Σ con $p \in \varphi_1(\mathcal{V}_1) \cap \varphi_2(\mathcal{V}_2)$. Vimos que $\varphi_2^{-1} \circ \varphi_1$ es un difeomorfismo entre abiertos de \mathbb{R}^2 .

Luego, $D(\varphi_2^{-1} \circ \varphi_1)(\varphi_1^{-1}(p))$ es un isomorfismo lineal. De ahí,

$$D\varphi_1(\varphi_1^{-1}(p))(\mathbb{R}^2) = D(\varphi_2 \circ (\varphi_2^{-1} \circ \varphi_1))(\mathbb{R}^2) = D\varphi_2(\varphi_2^{-1}(p)) \circ D(\varphi_2^{-1} \circ \varphi_1)(\varphi_1^{-1}(p))(\mathbb{R}^2) = D\varphi_2(\varphi_2^{-1}(p))$$

y cualquier parametrización local en p tiene derivada con la misma imagen en $\varphi^{-1}(p)$.

Definición 7.1. El plano tangente a Σ en $p \in \Sigma$ es el subespacio vectorial

$$D\varphi(\varphi^{-1}(p))(\mathbb{R}^2) \subseteq \mathbb{R}^3$$

con φ una parametrización local en p. Lo denotaremos por $T_p\Sigma$.

Denotamos por $\varphi_u := D\varphi(\varphi^{-1}(p))e_1$ y $\varphi_v := D\varphi(\varphi^{-1}(p))e_2$.

Observación: Geometricamente $T_p\Sigma$ es un plano en \mathbb{R}^3 que pasa por $0\in\mathbb{R}^3$.

Proposición 7.1. Para $p \in \Sigma$ y $w \in \mathbb{R}^3$ tenemos que $w \in T_p\Sigma$ si y solo si existe una curva parametrizada diferenciable $\alpha : (-\varepsilon, \varepsilon) \subseteq \mathbb{R} \to \mathbb{R}^3$ tal que

- $\alpha(0) = p.$
- $\alpha(t) \in \Sigma$ para todo $t \in (-\varepsilon, \varepsilon)$.
- $\alpha'(0) = w.$

Ejemplos:

• Consideremos un plano en \mathbb{R}^3 , es decir, $P = q + span\{w_1, w_2\}$. Su parametrización local es $\varphi : \mathbb{R}^2 \to \mathbb{R}^3$ dada por $\varphi(u, v) = q + uw_1 + vw_2$, luego

$$\varphi_u(u,v) = w_1$$
$$\varphi_v(u,v) = w_2$$

es decir $T_{\varphi(u,v)}P = span\{w_1, w_2\}.$

■ Sea $f: \mathcal{V} \subseteq \mathbb{R}^2 \to \mathbb{R}$ una función diferenciable. Tomemos $Graf(f) = \{(x, f(x)) : x \in \mathcal{V} \subseteq \mathbb{R}^2\}$. Su parametrización local es $\varphi(u, v) = (u, v, f(u, v))$, entonces

$$\varphi_u(u, v) = \left(1, 0, \frac{\partial f}{\partial u}\right)$$

$$\varphi_v(u, v) = \left(0, 1, \frac{\partial f}{\partial v}\right)$$

se sigue que $T_{\varphi(u,v)}Graf(f)=\Big\{(a,b,a\frac{\partial f}{\partial u}+b\frac{\partial f}{\partial v}):a,b\in\mathbb{R}\Big\}.$

Demostración. Sea $p \in \Sigma$, $\varphi : \mathcal{V} \subseteq \mathbb{R}^2 \to \mathbb{R}^3$ una parametrización local en p y $p_0 = \varphi^{-1}(p)$.

 $\blacksquare \ \Rightarrow \mid \textit{Existen } a,b \in \mathbb{R} \textit{ tales que}$

$$w = D\varphi(p_0)(a,b) = a\varphi_u(p_0) + b\varphi_v(p_0)$$

Como $p_0 \in \mathcal{V}$ y \mathcal{V} es abierto, tenemos que $p_0 + t(a,b) \in \mathcal{V}$ para $t \in (-\varepsilon,\varepsilon)$ y $\varepsilon > 0$ suficientemente pequeño. Definimos

$$\alpha: (-\varepsilon, \varepsilon) \to \mathbb{R}^3 \quad por \quad \alpha(t) = \varphi(p_0 + t(a, b))$$

entonces α es diferenciable $y \alpha((-\varepsilon, \varepsilon)) \subseteq \Sigma$. Por otro lado $\alpha(0) = \varphi(p_0) = p$ y

$$\alpha'(0) = \frac{d}{dt}\Big|_{t=0} \varphi(p_0 + t(a, b))$$

$$= D\varphi(p_0) \left(\frac{d}{dt}\Big|_{t=0} (p_0 + t(a, b))\right) = D\varphi(p_0)(a, b)$$

$$= w$$

• $\Leftarrow \mid Como \ \alpha(0) = p \in \varphi(\mathcal{V}) \ y \ \varphi(\mathcal{V})$ es abierto en Σ , tenemos que $\alpha(t) \in \varphi(\mathcal{V})$ para t suficientemente pequeño. Luego, esta bien definida

$$\alpha_0 := \varphi^{-1} \circ \alpha$$

y es una curva diferenciable en \mathcal{V} . Sea $(a,b) = \alpha'_0(0) \in \mathbb{R}^2$, entonces

$$D\varphi(p_0)(a,b) = D\varphi(\alpha_0(0))\alpha'_0(0) = (\varphi \circ \alpha_0)'(0) = \alpha'(0) = w$$

Ejemplo: Sea $h: W \subseteq \mathbb{R}^3 \to \mathbb{R}$ diferenciable y $c \in \mathbb{R}$ un valor regular para h. Vimos que $h^{-1}(c) = \Sigma$ es una superficie regular. Sea $p \in \Sigma$, y $w \in T_p\Sigma$, existe α curva diferenciable tal que $\alpha'(0) = w$, $\alpha(0) = p$ y $\alpha(t) \in \Sigma$ para todo $t \in (-\varepsilon, \varepsilon)$. Veamos que $h \circ \alpha \equiv c$. Entonces

$$0 = (h \circ \alpha)'(0) = Dh(\alpha(0))\alpha'(0) = Dh(p)w$$

luego $T_p\Sigma\subseteq ker(Dh(p))=(\nabla h(p))^{\perp}$. Por lo tanto $T_p\Sigma=(\nabla h(p))^{\perp}$. Hemos concluido que el gradiente de la función es perpendicular al plano tangente $T_p\Sigma$.

Por ejemplo $h(x,y,z)=x^2+y^2+z^2$ entonces $\nabla h=(2x,2y,2z),$ es decir, $\nabla h=2p$ para todo $p\in\mathbb{R}^3.$ Como $\mathbb{S}^2=h^{-1}(1)$ tenemos $T_p\mathbb{S}^2=(\nabla h(p))^\perp=p^\perp$

2.5. El Diferencial de una Aplicación Diferenciable

Definición 7.2. Sea $f: \Sigma \to \mathbb{R}^m$ diferenciable en $p \in \Sigma$. Definimos la derivada o diferencial de f en $p \in \Sigma$ se define por

$$Df_p: T_p\Sigma \to \mathbb{R}^m$$

$$w = \alpha'(0) \to (f \circ \alpha)'(0) \in \mathbb{R}^m$$

Proposición 7.2. La derivada de una función diferenciable no depende de la elección de la curva y es lineal.

Demostración. Sea $\varphi : \mathcal{V} \subseteq \mathbb{R}^2 \to \mathbb{R}^3$ parametrización local para Σ con $p \in \varphi(\mathcal{V})$. Escriba $p_0 = \varphi^{-1}(p) \in \mathcal{V}$. Sea $\alpha : (-\varepsilon, \varepsilon) \to \mathbb{R}^3$ una curva diferenciable, con $\alpha(0) = p$, $\alpha'(0) = w \in T_p\Sigma$ y $\alpha(t) \in \varphi(\mathcal{V})$ para todo $t \in (-\varepsilon, \varepsilon)$. Definimos $\alpha_0 = \varphi^{-1} \circ \alpha : (-\varepsilon, \varepsilon) \to \mathcal{V}$ es una curva parametrizada diferenciable con $\alpha_0(0) = \varphi^{-1}(\alpha(0)) = p_0$.

Notemos que $w = D\varphi(p_0)(\alpha'_0(0))$. Luego

$$Df_p(w) = (f \circ \alpha)'(0) = (f \circ \varphi \circ \varphi^{-1} \circ \alpha)'(0) = ((f \circ \varphi) \circ \alpha_0)'(0)$$
$$= D(f \circ \varphi)(\alpha_0(0))\alpha_0'(0)$$
$$= D(f \circ \varphi)(p_0) \circ (D\varphi)^{-1}(p_0)w$$

para todo $w \in T_p\Sigma$. Es decir,

$$Df_p = D(f \circ \varphi)(p_0) \circ (D\varphi)^{-1}(p_0)$$

entonces, Df_p es lineal y no depende de α .

Ejemplos:

• Sea $f: \Sigma \to \mathbb{R}^m$ dada por $f \equiv c$. Para todo $p \in \Sigma$ y todo $w \in T_p\Sigma$, $w = \alpha'(0)$, luego

$$Df_p(w) = (f \circ \alpha)'(0) = \frac{d}{dt}\Big|_{t=0} (f \circ \alpha)(t) = 0$$

• Sea $i_{\Sigma}: \Sigma \to \mathbb{R}^3$ la inclusión, es decir, $i_{\Sigma}(p) = p$. Para $p \in \Sigma$ con $w = \alpha'(0) \in T_p\Sigma$ tenemos que

$$D(i_{\Sigma})_p w = (i_{\Sigma} \circ \alpha)'(0) = \alpha'(0) = w$$

■ Sea $F: \mathbb{R}^3 \to \mathbb{R}^m$ diferenciable, entonces $F|_{\Sigma} =: f$ es diferenciable. Además, si $p \in \Sigma$, $w = \alpha'(0) \in T_p\Sigma$ se sigue que

$$Df_p(w) = (f \circ \alpha)'(0) = (F \circ \alpha)'(0) = DF(\alpha(0))\alpha'(0) = DF(p)w$$

es decir, $Df_p = DF(p)|_{T_n\Sigma}$.

- Sea $h: \Sigma \to \mathbb{R}$ dada por $h(p) = \langle p p_0, u \rangle$ con $p_0, u \in \mathbb{R}^3$ y |u| = 1, entonces $Dh_p w = \langle w, u \rangle$.
- Sea $f: \Sigma \to \mathbb{R}$ dada por $f(p) = |p p_0|^2$, luego $Df_p w = 2 \langle w, p p_0 \rangle$.
- Sea $\pi_i: \mathbb{R}^3 \to \mathbb{R}$ la proyección en la coordenada i-esima, entonces $D\left(\pi_i\Big|_{\Sigma}\right)w = w_i$.

(Corregir hacia atras)

Dada $\gamma : \mathcal{V} \subseteq \mathbb{R}^n \to \Sigma$ diferenciable en $q \in \mathcal{V}$ luego su derivada está bien definida como aplicación lineal $D_{\gamma}(q) : \mathbb{R}^n \to \mathbb{R}^3$, notemos que

$$D_{\gamma}(q)w = \frac{d}{dt}\Big|_{t=0} \gamma(q+tw) = (\gamma \circ \beta)'(0)$$

donde $\beta(t) = q + tw$, como $\gamma \circ \beta \in \Sigma$ vemos que $(\gamma \circ \beta)'(0) \in T_{\gamma(q)}\Sigma$, definimos su diferencial como

$$D_{\gamma_q} := D_{\gamma}(q) : \mathbb{R}^n \to T_{\gamma(q)} \Sigma$$

Definición 7.3. Sea $F: \Sigma_1 \to \Sigma_2$ diferenciable en $p \in \Sigma_1$. Dado $v \in T_p\Sigma$ definimos el **diferencial F en p** como $DF_p: T_p\Sigma_1 \to T_{F(p)}\Sigma_2$ dada por

$$DF_p(v) := (F \circ \alpha)'(0)$$

donde α es una curva diferenciable tal que $\alpha \subset \Sigma_1$ y es tangente a $\alpha'(0) = v$.

Observación: El diferencial de F esta bien definido, como $\alpha \subset \Sigma_1$ se tiene que $F \circ \alpha \subset \Sigma_2$ y pasa por el punto F(p), luego $(F \circ \alpha)'(0) \in T_{F(p)}\Sigma_2$. Además, por la discusión anterior, el valor no depende de la elección de la curva α y es un mapeo lineal.

Ejemplo: Sea $A\mathbb{R}^3 \to \mathbb{R}^3$ lineal y $\Sigma \subseteq \mathbb{R}^3$ superficie regular tal que $A(\Sigma) \subseteq \Sigma$. Luego esta bien definida $A: \Sigma \to \Sigma$ y es diferenciable en $p \in \Sigma$, pues es restricción de una aplicación diferenciable. Queremos calcular

$$DA_p: T_p\Sigma \to T_{A(p)}\Sigma$$

Sea $v \in T_p\Sigma$ y $v = \alpha'(0)$ para $\alpha \subset \Sigma$ tangente a v, entonces

$$DA_p(v) = \frac{d}{dt}\Big|_{t=0} (A \circ \alpha)(t) = A\left(\frac{d}{dt}\Big|_{t=0} \alpha(t)\right) = A(\alpha'(0)) = Av$$

Por lo tanto $DA_p = A\Big|_{T_p\Sigma}$.

Teorema 8. (Regla de la Cadena) Sean $F: \Sigma_1 \to \Sigma_2 \ y \ G: \Sigma_2 \to \Sigma_3$ aplicaciones diferenciables en $p \in \Sigma_1 \ y \ F(p) \in \Sigma_2$ respectivamente, entonces

$$D(G \circ F)_p = DG_{F(p)} \circ DF(p)$$

Demostración. Sea $v \in T_p\Sigma_1$ y $\alpha \subset \Sigma_1$ tangente a $\alpha'(0) = v$. Notemos que

$$D(G \circ F)_p(\alpha'(0)) = (G \circ F \circ \alpha)'(0) = DG_{F(p)}(F \circ \alpha)'(0) = DG_{F(p)} \circ DF_p(\alpha'(0))$$

Corolario 8.1. Sea $F: \Sigma_1 \to \Sigma_2$ un difeomorfismo, entonces $D(F^{-1})_{F(p)} = (DF_p)^{-1}$ para todo $p \in \Sigma_1$

Teorema 9. (Teorema de la Función Inversa) Sea $F: \Sigma_1 \to \Sigma_2$ diferenciable. Sea $p \in \Sigma_1$ tal que Df_p es isomorfismo, entonces existe $U \subseteq \Sigma_1$ abierto con $p \in U$ tal que $F(U) \subseteq \Sigma_2$ es abierto g

$$F\Big|_{U}:U\to F(U)$$

es un difeomorfismo.

Definición 9.1. Sea $f: \Sigma \to \mathbb{R}$ diferenciable. Decimos que $p \in \Sigma$ es un **punto crítico** de f si

$$0 \equiv Df_p: T_p\Sigma \to \mathbb{R}$$

en otras palabras, no es sobreyectiva. Se dice que $c \in \mathbb{R}$ es un valor regular si $f^{-1}(c)$ no contiene puntos críticos.

Proposición 9.1. Sea $f: \Sigma \to \mathbb{R}$ diferenciable $y \ p \in \Sigma$ un punto maximo o minimo (local o global), entonces p es punto crítico.

Demostración. Sea $v \in T_p\Sigma$ y $\alpha \subset \Sigma$ tangente a $\alpha'(0) = v$, luego

$$Df_p(v) = (f \circ \alpha)'(0) = 0$$

Concluimos que p es punto crítico de f.

Teorema 10. Sea $f: \Sigma \to \mathbb{R}$ diferenciable, si $c \in \mathbb{R}$ es valor regular de f, entonces $f^{-1}(c)$ es una curva regular.

Observación: Se dice que $S \subset \Sigma$ es una **curva regular** si para todo $p \in \Sigma$ existe un abierto $U \subseteq \Sigma$ y una curva parametrizada regular $\alpha : I \subseteq \mathbb{R} \to \Sigma$ tal que $\alpha(I) = U \cap S$.

Sea $f: \Sigma \to \mathbb{R}^m$ diferenciable en $p \in \Sigma$. Si $\varphi: \mathcal{V} \subseteq \mathbb{R}^2 \to \mathbb{R}^3$ es parametrización local para Σ con $p \in \varphi(\mathcal{V})$ tenemos una base de $T_p\Sigma$, a saber, $\varphi_u(p_0), \varphi_v(p_0)$ donde $p_0 = \varphi^{-1}(p)$. Vimos que $Df_p \circ D\varphi_{p_0} = D(f \circ \varphi)_{p_0}$, luego

$$Df_p(a\varphi_u(p_0) + b\varphi_v(p_0)) = Df_p(D\varphi_{p_0}(a,b)) = D(f \circ \varphi)_{p_0}(a,b)$$

es decir, la matriz de Df_p respecto a $\{\varphi_u(p_0), \varphi_v(p_0)\}$ es la matriz jacobiana de $D(f \circ \varphi)_{p_0}$.

3. La Segunda Forma Fundamental

3.1. Campos Vectoriales y Orientación

Definición 10.1. Sea Σ una superficie regular. Una aplicación continua $V: \Sigma \to \mathbb{R}^3$ se dice campo vectorial. Se dice que V es:

- a) Campo tangente si $V(p) \in T_p\Sigma$ para todo $p \in \Sigma$.
- b) Campo normal si $V(p) \in (T_p \Sigma)^{\perp}$ para todo $p \in \Sigma$.
- c) Campo unitario si |V(p)| = 1 para todo $p \in \Sigma$.

Ejemplo: Sea $\varphi: \mathcal{V} \subseteq \mathbb{R}^2 \to \mathbb{R}^3$ una parametrización local para Σ y $U = \varphi(\mathcal{V})$ entonces

$$\varphi_u \circ \varphi^{-1} : U \to \mathbb{R}^3$$

 $\varphi_v \circ \varphi^{-1} : U \to \mathbb{R}^3$

son campos tangentes. Sea $N^x: \mathcal{V} \to \mathbb{R}^3$ dada por

$$N^{x}(u,v) := \frac{\varphi_{u}(u,v) \times \varphi_{v}(u,v)}{|\varphi_{u}(u,v) \times \varphi_{v}(u,v)|}$$

es diferenciable y $N^x \perp T_{\varphi(u,v)}\Sigma$. Luego $N = N^x \circ \varphi^{-1}$ es campo unitario, normal y diferenciable.

Definición 10.2. Se dice que una superficie regular Σ es **orientable** si existe un campo normal, unitario y continuo $N: \Sigma \to \mathbb{R}^3$. En ese caso, se dice que N define una Orientación. Además,

- Sea $\{w_1, w_2\}$ base de $T_p\Sigma$, se dice **positiva** si $\{w_1, w_2, N(p)\}$ es una base positiva de \mathbb{R}^3 .
- Una parametrización φ es **positiva** si $N^x = N \circ \varphi$.

Observaciones:

a) Si Σ es conexa y esta orientada por $N: \Sigma \to \mathbb{R}^3$, hay exactamente dos orientaciones en Σ , que son N y -N. En efecto, sea $V: \Sigma \to \mathbb{R}^3$ normal, unitario y continuo, entonces

$$A = \{ p \in \Sigma : V(p) = N(p) \} = (V - N)^{-1}(0),$$

$$B = \{ p \in \Sigma : V(p) = -N(p) \} = (V + N)^{-1}(0),$$

son cerrados. Dado $p \in \Sigma$ se tiene que $V(p) \in (T_p\Sigma)^{\perp} = span\{N(p)\}$ y |V(p)| = 1, luego V(p) = N(p) ó V(p) = -N(p), es decir $A \cup B = \Sigma$. Además, $A \cap B = \emptyset$. Así, por conexidad, tenemos que $A = \Sigma$ y por lo tanto $V \equiv N$ o bien $B = \Sigma$ y $V \equiv -N$.

- b) Dada $N: \Sigma \to \mathbb{R}^3$ una orientación. Veamos que N es diferenciable. Sea $p \in \Sigma$, existe una parametrización local $\varphi: \mathcal{V} \subseteq \mathbb{R}^2 \to \mathbb{R}^3$ para Σ con $p \in \varphi(\mathcal{V})$ y $\varphi(\mathcal{V})$ conexo. De ahí, $N\big|_{\varphi(\mathcal{V})}$ define una orientación para $\varphi(\mathcal{V})$. Por (a) tenemos que $(N^x \circ \varphi^{-1}) \equiv N$ ó $(N^x \circ \varphi^{-1}) \equiv -N$ y por lo tanto $N\big|_{\varphi(\mathcal{V})}$ es diferenciable. Concluimos que N es diferenciable.
- c) Si Σ_1 y Σ_2 son difeomorfos. Entonces Σ_1 es orientable si y solo si Σ_2 es orientable.

Ejemplos:

- Si $\Sigma = \varphi(\mathcal{V})$ para una parametrización, entonces Σ es orientable.
- Sea $\Sigma = Graf(f)$ con $f : \mathcal{V} \subseteq \mathbb{R}^2 \to \mathbb{R}^3$ diferenciable, entonces $\varphi(u, v) = (u, v, f(u, v))$ es parametrización local y $\varphi(\mathcal{V}) = \Sigma$. Luego

$$\varphi_u(u, v) = (1, 0, \partial_u f)$$

$$\varphi_v(u, v) = (0, 1, \partial_v f)$$

entonces

$$\varphi_u \times \varphi_v = (-\partial_u f, -\partial_v f, 1) = (-\nabla f, 1)$$

consideramos

$$N^{x}(u, v) = \frac{1}{\sqrt{1 + |\nabla f|^{2}}} (-\nabla f, 1)$$

se sigue que $N^x \circ \varphi^{-1}$ define una orientación para Σ .

• (Niveles Regulares) Sea $h: W \subseteq \mathbb{R}^3 \to \mathbb{R}$ diferenciable y $c \in \mathbb{R}$ un valor regular para h, luego $\Sigma = h^{-1}(c)$ es superficie regular. Sabemos que $T_p\Sigma = (\nabla h(p))^{\perp}$. Si $W_0 = \{p \in W : \nabla h(p) \neq 0\}$, entonces W_0 es abierto y $\Sigma \subset W_0$. Definimos $N: W_0 \to \mathbb{R}^3$ dada por

$$N(p) := \frac{\nabla h(p)}{|\nabla h(p)|}$$

es continua y dado $p \in \Sigma$ se tiene que $N(p) \perp T_p \Sigma$. Por lo tanto $N|_{\Sigma}$ define una orientación.

Proposición 10.1. Sea Σ una superficie regular. Entonces Σ es orientable si y solo si existen $\{\varphi_i : \mathcal{V}_i \subseteq \mathbb{R}^2\}_i$ parametrizaciones locales para Σ tales que

- $\varphi_i^{-1} \circ \varphi_i$ tiene determinante jacobiano positivo para todo i, j.

3.2. Formas Fundamentales y Aplicación de Gauss

Definición 10.3. Sea Σ una superficie regular. La primera forma fundamental de Σ en $p \in \Sigma$ es la restricción del producto interno a $T_p\Sigma$,

$$\langle .,. \rangle = I_p : T_p \Sigma \times T_p \Sigma \to \mathbb{R}, \quad \langle w_1, w_2 \rangle_p = I_p(w_1, w_2) \to \langle w_1, w_2 \rangle_p$$

Sea $\varphi: \mathcal{V} \subseteq \mathbb{R}^2 \to \mathbb{R}^3$ una parametrización local para Σ , entonces las funciones diferenciables $E, F, G: \mathcal{V} \to \mathbb{R}$ dadas por

$$E(u,v) := |\varphi_u(u,v)|^2$$
, $F(u,v) := \langle \varphi_u(u,v), \varphi_v(u,v) \rangle$, $G(u,v) := |\varphi_v(u,v)|^2$,

se llaman los coeficientes de la primera forma fundamental en las coordenadas (u,v). Se dice que φ es una parametrización ortogonal si $F\equiv 0$. Podemos escribir $\langle .,.\rangle_p$ en $p=\varphi(p_0)$ en términos de la base $\{\varphi_u(p_0),\varphi_v(p_0)\}$ como

$$I_p(w_1, w_2) = \langle a_1 \varphi_u(p_0) + a_2 \varphi_v(p_0), b_1 \varphi_u(p_0) + b_2 \varphi_v(p_0) \rangle = a_1 b_1 E(p_0) + (a_1 b_2 + a_2 b_1) F(p_0) + a_2 b_2 G(p_0) \rangle$$

Observación: Si denotamos las variables de φ por x_i también se usa la notación $g_{ij} := \langle \varphi_{x_i}, \varphi_{x_j} \rangle$, es decir, $g_{11} = E$, $g_{12} = g_{21} = F$ y $g_{22} = G$.

Ejemplos:

■ Sea $P = p_0 + w^{\perp} \subseteq \mathbb{R}^3$ un plano, podemos escoger $w_1, w_2 \in w^{\perp}$ ortonormales y definir una parametrización $\varphi : \mathbb{R}^2 \to \mathbb{R}^3$ por $\varphi(u, v) := p_0 + uw_1 + vw_2$, con lo cual $\varphi_u \equiv w_1$ y $\varphi_v \equiv w_2$. Luego

$$\begin{pmatrix} E & F \\ F & G \end{pmatrix}(u, v) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \forall (u, v) \in \mathbb{R}^2$$

■ Para una gráfica $\Sigma = Graf(f)$ de una función $f: \mathcal{V} \subseteq \mathbb{R}^2 \to \mathbb{R}$ diferenciable la parametrización local $\varphi_u = (1,0,\partial_u f)$ y $\varphi_v = (0,1,\partial_v f)$, luego

$$E(u,v) = 1 + (\partial_u f(u,v))^2$$
, $F(u,v) = \langle \partial_u f(u,v), \partial_v f(u,v) \rangle$, $G(u,v) = 1 + (\partial_v f(u,v))^2$

■ Considere el cilindro $\{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 = r^2\}$ con parametrización local $\varphi(u,v) = (rcosu, rsenu, v)$. Tenemos $\varphi_u(u,v) = (-rsenu, rcosu, 0)$ y $\varphi_v(u,v) = (0,0,1)$, luego

$$E(u, v) = r^2$$
, $F(u, v) = 0$, $G(u, v) = 1$

Vemos que la parametrización es ortogonal.

Observación: Veamos lo siguiente

$$|\varphi_{u} \times \varphi_{v}|^{2}(u, v) = |\varphi_{u}(u, v)|^{2} \cdot |\varphi_{v}(u, v)|^{2} - \langle \varphi_{u}(u, v), \varphi_{v}(u, v) \rangle^{2}$$
$$= E(u, v) \cdot G(u, v) - F^{2}(u, v) = \det \begin{vmatrix} E & F \\ F & G \end{vmatrix}(u, v)$$

Luego, la matriz $\begin{pmatrix} E & F \\ F & G \end{pmatrix}$ es invertible y es definida positiva.

Proposición 10.2. Sea $f: \Sigma \to \mathbb{R}$ diferenciable. Existe un campo tangente diferenciable $\nabla^{\Sigma} f: \Sigma \to \mathbb{R}^3$ tal que

$$\left\langle \nabla^{\Sigma} f(p), w \right\rangle_p = D f_p(w) \quad \forall w \in T_p \Sigma$$

Definición 10.4. El campo $\nabla^{\Sigma} f$ se llama campo gradiente de f.

Observación: Para una parametrización local $\varphi: \mathcal{V} \subseteq \mathbb{R}^2 \to \mathbb{R}^3$ de Σ , se escribe como

$$\nabla^{\Sigma} f(p) = \frac{f_u \cdot G - f_v \cdot F}{EG - F^2} (p_0) \cdot \varphi_u(p_0) + \frac{f_v \cdot E - f_u \cdot F}{EG - F^2} (p_0) \cdot \varphi_v(p_0)$$

para todo $p = \varphi(p_0) \in \varphi(\mathcal{V})$, donde $f_u = (f \circ \varphi)_u$ y $f_v = (f \circ \varphi)_v$.

Supongamos que Σ es una superficie regular orientable y sea $N: \Sigma \to \mathbb{R}^3$ un campo normal unitario diferenciable. Observe que N define una aplicación $N: \Sigma \to \mathbb{S}^2$ llamada la **aplicación de Gauss** de Σ . Como en el caso de curvas, esperamos describir la geometría de Σ usando la derivada de N.

Proposición 10.3. Sea $p \in \Sigma$, tenemos $T_p\Sigma$ y la derivada de N es una aplicación lineal $DN_p: T_p\Sigma \to T_p\Sigma$ la cual es simétrica (autoadjunta) respecto a $\langle .,. \rangle_p$.

Demostración. La primera afirmación es consecuencia de $T_p\Sigma = N(p)^{\perp} = T_{N(p)}\mathbb{S}^2$, donde usamos que $T_q\mathbb{S}^2 = q^{\perp}$ para todo $q \in \mathbb{S}^2$. Resta ver que DN(p) es simétrica. Sea $\varphi : \mathcal{V} \subseteq \mathbb{R}^2 \to \mathbb{R}^3$ es una parametrización local de Σ con $p = \varphi(p_0)$, entonces

$$\langle DNp(\varphi_u(p_0)), \varphi_v(p_0) \rangle_p = \langle D(N \circ \varphi)_{p_0} e_1, \varphi_v(p_0) \rangle = \langle (N \circ \varphi)_u, \varphi_v \rangle (p_0)$$

$$= \frac{\partial}{\partial u} \langle N, \varphi_v, (\rangle p_0) - \langle N, \varphi_{vu} \rangle (p_0) = -\langle N, \varphi_{vu} \rangle (p_0)$$

del mismo modo se tiene que $\langle DNp(\varphi_v(p_0)), \varphi_u(p_0) \rangle_p = -\langle N, \varphi_{uv} \rangle (p_0)$. Como $\varphi_{uv} = \varphi_{vu} \ y \ \{\varphi_u(p_0), \varphi_v(p_0)\}$ es una base para $T_p\Sigma$, concluimos que DN_p es simétrica.

Definición 10.5. Se dice que $A_p := -DN_p : T_p\Sigma \to T_p\Sigma$ es el operador de Weingarten de Σ en p. La forma bilineal $\mathbb{I}_p : T_p\Sigma \times T_p\Sigma \to \mathbb{R}$ asociada al operador A_p mediante $\langle .,. \rangle_p$ se llama la segunda forma fundamental de Σ en p. Concretamente

$$\mathbb{I}_n(w_1, w_2) = \langle A_n w_1, w_2 \rangle = -\langle DN_n w_1, w_2 \rangle = -\langle w_1, DN_n w_2 \rangle$$

para todo $w_1, w_2 \in T_p\Sigma$.

Ejemplos:

■ Para un plano $P = p_0 + w^{\perp} \subseteq \mathbb{R}^3$ la aplicación de Gauss $N : P \to \mathbb{S}^2$ es constante y vale $N(p) = \frac{w}{|w|}$. Luego $A_p = -DN_p \equiv 0$ y $\mathbb{I}_p \equiv 0$ para todo $p \in \Sigma$.

■ Sea $\mathbb{S}^2(r) := \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = r^2\}$. Luego $N(f) = -\frac{1}{r}p$. Sea $w \in T_p\mathbb{S}^2(r)$, con $w = \alpha'(0)$ y $\alpha \subset \mathbb{S}^2(r)$, entonces

$$DN_p(w) = (N \circ \alpha)'(0) = \frac{d}{dt}\Big|_{t=0} N(\alpha(t)) = \frac{d}{dt}\Big|_{t=0} \left(-\frac{1}{r}p\right) = -\frac{1}{r}\alpha'(0) = -\frac{1}{r}w$$

Por lo tanto $A_p w = \frac{1}{r} w$, entonces la segunda forma fundamental tiene la forma $\mathbb{I}_p(v,w) = \frac{1}{r} \langle v,w \rangle_p$ y

$$A_p = \begin{pmatrix} \frac{1}{r} & 0\\ 0 & \frac{1}{r} \end{pmatrix}$$

■ Consideremos $C := \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 = r^2\} = h^{-1}(r^2) \operatorname{con} h(x,y,z) = x^2 + y^2, \operatorname{luego} T_pC = (\nabla h(p))^{\perp} = (2x,2y,0)^{\perp}.$ Sean $w_1 = (-y,x,0) = \alpha'(0)$ y $w_2 = (0,0,1) = \beta'(0)$ donde

$$\alpha(t) = \left(\cos\left(\frac{t}{r}\right)x - \sin\left(\frac{t}{r}\right)y, \sin\left(\frac{t}{r}\right)x + \cos\left(\frac{t}{r}\right)y, z\right)$$
$$\beta(t) = (x, y, z + t)$$

Tomamos $N(p) = -\frac{1}{r}(x, y, 0)$, luego

$$DN_p w_1 = \frac{d}{dt} \Big|_{t=0} N(\alpha(t)) = -\frac{1}{r} w_1$$
$$DN_p w_2 = \frac{d}{dt} \Big|_{t=0} N(\beta(t)) = 0$$

por lo tanto

$$A_p = \begin{pmatrix} \frac{1}{r} & 0\\ 0 & 0 \end{pmatrix}$$

Definición 10.6. Los autovalores de A_p se llaman las curvaturas principales de Σ en p y las denotamos $k_1(p) \le k_2(p)$. Los autovectores $\{e_1, e_2\}$ que corresponden a k_1, k_2 se llaman direcciones principales de Σ en p. Además se definen

$$k_{\Sigma}(p) := det(A_p) \quad H_{\Sigma}(p) := \frac{1}{2} tr(A_p)$$

la curvatura gaussiana y curvatura media respectivamente.

Observación: La curvatura gaussiana es la unica que no depende de la orientación, además, se tiene lo siguiente

$$k_1 = H_{\Sigma} - \sqrt{H_{\Sigma}^2 - k_{\Sigma}}$$
 y $k_2 = H_{\Sigma} + \sqrt{H_{\Sigma}^2 - k_{\Sigma}}$

lo anterior esta bien definido gracias a la desigualdad de las medias.

Proposición 10.4. Sea Σ una superficie regular. Sea $\alpha:(-\varepsilon,\varepsilon)\to\Sigma$ una curva parametrizada por el arco con $\alpha(0)=p\ y\ \alpha'(0)\in T_p\Sigma$. Sea k_α la curvatura de α en $p\ y\ N_\alpha$ el normal unitario. Entonces

$$\mathbb{I}_p(\alpha'(0), \alpha'(0)) = \langle N_{\Sigma}(p), k_{\alpha} N_{\alpha} \rangle$$

Demostración. Como $\alpha'(t) \in T_p\Sigma$ se sigue que $\langle N \circ \alpha(t), \alpha'(t) \rangle = 0$, entonces

$$\langle DN_{\alpha(t)}(\alpha'(t)), \alpha'(t) \rangle + \langle N(\alpha(t)), \alpha''(t) \rangle = 0$$

lo que implica la afirmación.

Veamos que $\langle N(\alpha(t)), \alpha''(t) \rangle$ solo depende de la dirección tangente $\alpha'(0) \in T_p \Sigma$.

3.3. Secciones Normales

Definición 10.7. Sea $v \in T_p\Sigma$ unitario, definimos la curvatura normal de Σ en p en la dirección de v por $k_v := \mathbb{I}_p(v, v)$.

Sea $\{e_1, e_2\}$ base ortonormal de $T_p\Sigma$ tal que $A_p(e_i) = k_i(p)e_i$. Entonces $v = \langle v, e_1 \rangle e_1 + \langle v, e_2 \rangle e_2$ y también

$$k_{v} = \mathbb{I}_{p}(v, v) = \mathbb{I}_{p}(\langle v, e_{1} \rangle e_{1} + \langle v, e_{2} \rangle e_{2}, \langle v, e_{1} \rangle e_{1} + \langle v, e_{2} \rangle e_{2})$$

$$= \langle v, e_{1} \rangle^{2} \mathbb{I}_{p}(e_{1}, e_{1}) + 2 \langle v, e_{1} \rangle \langle v, e_{2} \rangle \mathbb{I}_{p}(e_{1}, e_{2}) + \langle v, e_{2} \rangle^{2} \mathbb{I}_{p}(e_{2}, e_{2})$$

$$= \langle v, e_{1} \rangle^{2} k_{1} + \langle v, e_{2} \rangle^{2} k_{2}$$

Corolario 10.1. $k_1(p)$ y $k_2(p)$ son el maximo y minimo de las curvaturas normales k_v , para $v \in T_p\Sigma$ unitario.

Definición 10.8. Sea Σ una superficie regular $y : \Sigma \to \mathbb{S}^2$ aplicación de Gauss. Dado $p \in \Sigma$ se dice un punto

- eliptico si $k_{\Sigma}(p) > 0$.
- hiperbolico si $k_{\Sigma}(p) < 0$.
- parabolico si $k_{\Sigma}(p) = 0$ y $H_{\Sigma}(p) \neq 0$.
- **plano** si $k_1(p) = 0$ y $k_2(p) = 0$

Observación:

- a) Si p es eliptico entonces todas las curvaturas normales en p tienen el mismo signo y toda sección normal en p esta contenida en un lado de $T_p\Sigma$.
- b) Si p es hiperbolico, $k_1(p) < 0 < k_2(p)$ y Σ tiene puntos en ambos lados de $T_p\Sigma$.

Estas conclusiones se pueden profundizar estudiando la hessiana en p de la función $f: \Sigma \to \mathbb{R}$ dada por $f(q) := \langle q - p, N(p) \rangle$.

Sea $\varphi = \varphi(u,v) : \mathcal{V} \subseteq \mathbb{R}^2 \to \mathbb{R}^3$ parametrización local. Luego $\varphi_u(u,v)$ y $\varphi_v(u,v)$ son campos tangentes, definimos

$$\begin{split} e(u,v) &:= \mathbb{I}_{\varphi(u,v)}(\varphi_u(u,v),\varphi_u(u,v)) = \left\langle A_{\varphi(u,v)}\varphi_u(u,v),\varphi_u(u,v) \right\rangle \\ &= -\left\langle DN_{\varphi(u,v)}(\varphi_u(u,v)),\varphi_u(u,v) \right\rangle = -\left\langle (N\circ\varphi)_u(u,v),\varphi_u(u,v) \right\rangle \\ &= \left\langle N\circ\varphi(u,v)(u,v),\varphi_{uu}(u,v) \right\rangle \end{split}$$

Del mismo modo se tiene que

$$f(u,v) := \mathbb{I}_{\varphi(u,v)}(\varphi_u(u,v),\varphi_v(u,v)) = \langle N \circ \varphi(u,v),\varphi_{uv}(u,v) \rangle$$

$$g(u,v) := \mathbb{I}_{\varphi(u,v)}(\varphi_v(u,v),\varphi_v(u,v)) = \langle N \circ \varphi(u,v),\varphi_{vv}(u,v) \rangle$$

Estas funciones se llaman coeficientes de la segunda forma fundamental en $\varphi(u,v) \in \Sigma$ respecto a φ .

Teorema 11. Se tienen las siguientes igualdades

$$k_{\Sigma} \circ \varphi = \det \left(\begin{pmatrix} E & F \\ F & G \end{pmatrix}^{-1} \begin{pmatrix} e & f \\ f & g \end{pmatrix} \right) = \frac{eg - f^2}{EG - F^2}$$

$$H_{\Sigma} \circ \varphi = \frac{1}{2} tr \left(\begin{pmatrix} E & F \\ F & G \end{pmatrix}^{-1} \begin{pmatrix} e & f \\ f & g \end{pmatrix} \right) = \frac{Eg + Ge - 2Ff}{EG - F^2}$$

Demostración. Sea $p = \varphi(p_0)$ con $p_0 \in \mathcal{V}$ y escribamos

$$A_p = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

para la matriz de A_p en la base $\{\varphi_u(p_0), \varphi_v(p_0)\}$. Basta demostrar

$$\begin{pmatrix} E & F \\ F & G \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} e & f \\ f & g \end{pmatrix}$$

Notemos que

$$A_p(\varphi_u(p_0)) = a_{11}\varphi_u(p_0) + a_{21}\varphi_v(p_0) \qquad y \qquad A_p(\varphi_v(p_0)) = a_{12}\varphi_u(p_0) + a_{22}\varphi_v(p_0)$$

Tomando producto interno de cada ecuación con φ_u y φ_v vemos que

$$e(p_0) = \langle A_p(\varphi_u(p_0)), \varphi_u(p_0) \rangle = \langle a_{11}\varphi_u(p_0) + a_{21}\varphi_v(p_0), \varphi_u(p_0) \rangle$$

= $a_{11}E(p_0) + a_{21}F(p_0)$

Del mismo modo vemos que

$$f(p_0) = \langle A_p(\varphi_u(p_0)), \varphi_v(p_0) \rangle = a_{11}F(p_0) + a_{21}G(p_0)$$

$$f(p_0) = \langle A_p(\varphi_v(p_0)), \varphi_u(p_0) \rangle = a_{12}E(p_0) + a_{22}F(p_0)$$

$$g(p_0) = \langle A_p(\varphi_v(p_0)), \varphi_v(p_0) \rangle = a_{12}F(p_0) + a_{22}G(p_0)$$

Corolario 11.1. Como resultado se tiene que $k_1, k_2 : \Sigma \to \mathbb{R}$ son funciones continuas y son diferenciables en todo $p \in \Sigma$ donde $k_1(p) \neq k_2(p)$.

Ejemplo: Sea $\Sigma = Graf(h)$ con $h: \mathcal{V} \subseteq \mathbb{R}^2 \to \mathbb{R}$ diferenciable con parametrización $\varphi(u,v) = (u,v,h(u,v))$. Recordemmos que

$$\varphi_u = (1, 0, h_u)$$
, $\varphi_v = (0, 1, h_v)$, $N = (-\nabla h, 1) \frac{1}{(1 + h_u^2 + h_v^2)^{1/2}} = \frac{1}{\sqrt{1 + h_u^2 + h_v^2}} (-h_u, h_v, 1)$

Además, tenemos que

$$E = 1 + h_u^2$$
, $F = h_u h_v$, $G = 1 + h_v^2$

y por lo tanto

$$EG - F^2 = (1 + h_u^2)(1 + h_v^2) - (h_u h_v)^2 = 1 + h_u^2 + h_v^2$$

Buscamos calcular e, g, f, para ello veamos que

$$\varphi_{uu} = (0, 0, h_{uu}) , \quad \varphi_{uv} = (0, 0, h_{uv}) , \quad \varphi_{vv} = (0, 0, h_{vv})$$

luego

$$e = \langle N, \varphi_{uu} \rangle = \frac{h_{uu}}{\sqrt{1 + h_u^2 + h_v^2}} \ , \quad f = \langle N, \varphi_{uv} \rangle = \frac{h_{uv}}{\sqrt{1 + h_u^2 + h_v^2}} \ , \quad g = \langle N, \varphi_{vv} \rangle = \frac{h_{vv}}{\sqrt{1 + h_u^2 + h_v^2}} \ ,$$

entonces

$$eg - f^2 = \frac{h_{uu}h_{vv} - h_{uv}^2}{\sqrt{1 + h_u^2 + h_v^2}}$$

Concluimos que

$$k_{\Sigma} = \frac{h_{uu}h_{vv} - h_{uv}^2}{(1 + h_u^2 + h_v^2)^{3/2}}$$

por otro lado

$$eG + gE - 2Ff = \frac{h_{uu}(1 + h_v^2)}{\sqrt{1 + h_u^2 + h_v^2}} + \frac{h_{vv}(1 + h_u^2)}{\sqrt{1 + h_u^2 + h_v^2}} - \frac{2h_u h_v h_{uv}}{\sqrt{1 + h_u^2 + h_v^2}}$$

y Finalmente

$$H_{\Sigma} = \frac{h_{uu}(1 + h_v^2) + h_{vv}(1 + h_u^2) - 2h_u h_v h_{uv}}{(1 + h_u^2 + h_v^2)^{3/2}}$$

Ejemplo: Sea $\varphi(u,v)=(ucosv,usenv,v)$ luego $E=1,\ F=0\ y\ G=1+u^2$. Además, $\varphi_{uu}=(0,0,0),\ \varphi_{uv}=(-senv,cosv,0)\ y\ \varphi_{vv}=(-ucosv,-usenv,0)$. Lo que implica que $e=g=0\ y\ f=-\frac{1}{\sqrt{1+u^2}}$. Finalmente

$$k_{\Sigma} = \frac{0 - \left(\frac{1}{1 + u^2}\right)}{1 + u^2} = -\frac{1}{(1 + u^2)^2} < 0, \quad H_{\Sigma} = 0$$

Definición 11.1. Sea Σ una superficie regular y un punto $p \in \Sigma$ se dice umbilical si existe $\lambda \in \mathbb{R}$ tal que

$$\mathbb{I}_p(v, w) = \lambda \langle v, w \rangle_p \quad \forall v, w \in T_p \Sigma$$

Se dice que Σ es **totalmente umbilical** si todo $p \in \Sigma$ es punto umbilical.

Proposición 11.1. Las siguientes afirmaciones son equivalentes

- a) $\mathbb{I}_p = \lambda \langle ., . \rangle_p = \lambda I_p$.
- b) $A_p v = \lambda v \quad \forall v \in T_p \Sigma$.
- c) $k_1(p) = k_2(p) = \lambda$.
- d) Todas las curvaturas normales de Σ en p son iguales a λ .
- e) $k_{\Sigma}(p) = \lambda^2 = H_{\Sigma}^2$.

Teorema 12. Sea Σ una superficie regular totalmente umbilical y conexa, entonces Σ esta contenida en un plano o una esfera.

Demostración. Sea $\varphi : \mathcal{V} \subseteq \mathbb{R}^2 \to \mathbb{R}^3$ una parametrización local con \mathcal{V} conexo. Sea $N : \varphi(\mathcal{V}) \to \mathbb{S}^2$ el campo normal unitario definido por φ .

a) Por la propiedad anterior, existe $\lambda: \mathcal{V} \to \mathbb{R}$ tal que

$$-A_{\varphi(u,v)} = DN_{\varphi(u,v)} = \lambda(u,v) \cdot id_{T_{\varphi(u,v)}\Sigma}$$

Afirmamos que λ es diferenciable, notemos que

$$\lambda(u,v)\varphi_u = DN_{\varphi(u,v)}(\varphi_u(u,v)) = (N \circ \varphi)_u(u,v)$$
$$\lambda(u,v)\varphi_v(u,v) = (N \circ \varphi)_v(u,v)$$

tomando producto interno de la primera ecuación con φ_u y usando que $|\varphi_u| = E \neq 0$ tenemos que

$$\lambda(u, v) = \frac{\langle (N \circ \varphi)_u(u, v), \varphi_u(u, v) \rangle}{E(u, v)}$$

por lo tanto λ es diferenciable en \mathcal{V} .

b) Demostraremos que $\lambda_u = \lambda_v = 0$. Derivando las ecuaciones en el item anterior, en v y en u respectivamente

$$\lambda_v \varphi_u + \lambda \varphi_{uv} = (N \circ \varphi)_{uv}$$
$$\lambda_u \varphi_v + \lambda \varphi_{vu} = (N \circ \varphi)_{vu}$$

y por ende $\lambda_v \varphi_u = \lambda_u \varphi_v$ en V, pero φ_u y φ_v son linealmente independientes, es decir, $\lambda_u = \lambda_v = 0$. Vemos que λ es constante $\lambda \equiv c$.

c) Si c=0, entonces DN=0 en $\varphi(\mathcal{V})$. Luego $\varphi(\mathcal{V})$ esta contenido en un plano. Si $c\neq 0$, definimos $f:\mathcal{V}\to\mathbb{R}^3$ por

$$f(u,v) := \varphi(u,v) - \frac{1}{c}(N \circ \varphi)(u,v)$$

se tiene que $f_u = \varphi_u - \frac{1}{c}(N \circ \varphi)_u = 0$ en \mathcal{V} , lo mismo para f_v . Luego f es constante, o sea, existe $p_0 \in \mathbb{R}^3$ tal que

$$\varphi(u,v) - p_0 = \frac{1}{c}(N \circ \varphi)(u,v)$$

de este modo

$$|\varphi(u,v) - p_0| = \frac{1}{c}$$

en V. Concluimos que $\varphi(V)$ esta contenida en la esfera de centro p_0 y radio 1/c.

d) Este argumento demuestra que $\lambda: \Sigma \to \mathbb{R}$ tal que $\mathbb{I}_p = \lambda I_p$ es localmente constante y por conexidad es constante. Además, también es localmente constante la aplicación $F: \Sigma \to \mathbb{R}^3$ dada por

$$F(p) = \lambda p - N(p)$$

Por lo tanto F es constante y Σ esta contenida en una esfera o un plano.

Teorema 13. Sea $\Sigma \subseteq \mathbb{R}^3$ una superficie regular orientable compacta y se tiene que H_{Σ} es constante, entonces Σ es una esfera.

Teorema 14. Sea $\Sigma \subseteq \mathbb{R}^3$ una superficie regular orientable compacta y tal que k_{Σ} es constante, entonces Σ es una esfera.

3.4. Isometrías

Definición 14.1. Un mapeo diferenciable $\phi: \Sigma \to \Sigma'$ entre superficies regulares es una isometría local si

$$D\phi_p: T_p\Sigma \to T_{\phi(p)}\Sigma'$$

es una isometría lineal, es decir

$$\langle D\phi_p v, D\phi_p w \rangle_{\phi(p)} = \langle v, w \rangle_p$$

para todo $v, w \in T_n\Sigma$ y todo $p \in \Sigma$.

Observación: Si ϕ es isometría local, $D\phi_p$ es inyectiva para todo $p \in \Sigma$, luego es isomorfismo lineal. Por teorema de la función implica, ϕ es un difeomorfismo local.

Si además ϕ es un difeomorfismo, se dice que ϕ es una **isometría**.

Ejemplo: Sea $F : \mathbb{R}^3 \to \mathbb{R}^3$ un movimiento rigido, en otras palabras, $F(p) = L_p + p_0$ con L_p una isometría lineal y si $\Sigma \subseteq \mathbb{R}^3$ es superficie regular entonces $F(\Sigma) = \Sigma'$ es una superficie regular y

$$\phi = F \Big|_{\Sigma} : \Sigma \to \Sigma'$$

es dife
omorfismo. Además, para todo $p \in \Sigma$ y todo
 $v \in T_p \Sigma$

$$D\phi_p v = D(F\Big|_{\Sigma})_p v = DF(p)v = Lv$$

luego $D\phi_p: T_p\Sigma \to T_{\phi(p)}\Sigma'$ es una isometría lineal.