Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

Section A

Ans	wer all questions in the boxes provided. Working may be continued below the lines if necessary.	
1.	[Maximum mark: 5]	
	Let $f(x) = 8x + 3$ and $g(x) = 4x$, for $x \in \mathbb{R}$.	
	(a) Write down $g(2)$.	[1]
	(b) Find $(f \circ g)(x)$.	[2]
	(c) Find $f^{-1}(x)$.	[2]

4. [Maximum mark: 7]

The following diagram shows the graph of a function f.

(a) Find $f^{-1}(-1)$.

(b) Find $(f \circ f)(-1)$. [3]

(c) On the same diagram, sketch the graph of y = f(-x). [2]

[2]

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

Section A

Answer all questions in the boxes provided. Working may be continued below the lines if necessary.

1. [Maximum mark: 6]

The following diagram shows part of the graph of a quadratic function f.

The vertex is at (3, -1) and the *x*-intercepts at 2 and 4.

The function f can be written in the form $f(x) = (x - h)^2 + k$.

(a) Write down the value of h and of k.

[2]

The function can also be written in the form f(x) = (x - a)(x - b).

(b) Write down the value of a and of b.

[2]

(c) Find the *y*-intercept.

[2]

(This question continues on the following page)

Do **not** write solutions on this page.

Section B

Answer all questions in the answer booklet provided. Please start each question on a new page.

8. [Maximum mark: 15]

Let f(x) = a(x+3)(x-1). The following diagram shows part of the graph of f.

The graph has x-intercepts at (p, 0) and (q, 0), and a y-intercept at (0, 12).

- (a) (i) Write down the value of p and of q.
 - (ii) Find the value of a.

[6]

(b) Find the equation of the axis of symmetry of the graph of f.

[3]

(c) Find the largest value of f.

[3]

The function f can also be written as $f(x) = a(x - h)^2 + k$.

(d) Find the value of h and of k.

[3]

5.	[Maximum	mark:	6]
----	----------	-------	----

Consider $f(x) = x^2 + qx + r$. The graph of f has a minimum value when x = -1.5. The distance between the two zeros of f is 9.

(a) Show that the two zeros are 3 and -6.

[2]

(b) Find the value of q and of r.

[4]

 							 	, .			-						•							•			•						•	•
						•	 		٠								*					 					•		•			•		

......

.

Let $f(x) = kx^2 + kx$ and g(x) = x - 0.8. The graphs of f and g intersect at two distinct points. Find the possible values of k.

Turn over

6. [Maximum mark: 6]

Let
$$f(x) = px^2 + (10 - p)x + \frac{5}{4}p - 5$$
.

- (a) Show that the discriminant of f(x) is $100 4p^2$. [3]
- (b) Find the values of p so that f(x) = 0 has two **equal** roots. [3]

 •
 •
 •
 •

Turn over