Advanced Topics in Computer Science

Report for Part#2 of Assignment (2018/2019)

Università degli studi di Padova Laurea Magistrale in Informatica

Petri Net Sensitivity Analysis by Simulation

Studenti | Fasolato Francesco (1177742) | Zecchin Giacomo (1179034) | Docente | De Leoni Massimiliano

Figura 1: Ticket Management Petri Net (CPN Tools) modificata

1 Modifiche a Ticket Management

Rispetto alla rete di Petri riferita alla prima parte, è stata apportata una sola modifica. Abbiamo deciso di attribuire alla transizione $Check\ Completeness\ la\ priorità\ P_HIGH$. Eseguendo più volte la simulazione per trovare il corretto numero di impiegati da assumere, ci siamo accorti che era presente un caso limite: al 182-esimo giorno sarebbe stato prodotto un token in Waiting Tickets e questo avrebbe fatto si che la transizione Prepare for CC avesse la stessa probabilità di effettuare il fire di $Check\ Completeness$. Questo non sarebbe stato corretto poiché anche al giorno 182 è possibile chiudere il ticket.

Grazie alla priorità conferita siamo così sicuri che, nel caso in cui ci sia la possibilità che entrambe queste transizioni possano effettuare il fire lo stesso giorno (il 182-esimo), la scelta ricada sempre su Check Completeness.

2 Sensitivity Analysis

In questa sezione affronteremo il problema degli *Expired Tickets*. Ognuno di questi comporta una perdita in denaro per il Comune. Il motivo per cui questi ticket scadono è che non vengono gestiti entro un prefissato lasso di tempo (10 giorni) da nessun impiegato (entità *Employee* nella Petri Net), poiché occupato in altre mansioni.

La richiesta è di analizzare i dati raccolti dalle subruns allo scopo di capire se sia conveniente assumere o meno nuovi impiegati (assumendo che l'organico attuale sia di 15 persone) e, nel caso fosse così, quanti bisognerebbe assumerne assumendo che il costo di un impiegato è di ≤ 400 ($\leq 2 * 5$ giorni * 40 violazioni).

2.1 Modalità ed Analisi delle Subruns

Attualmente il comune, con un organico di 15 persone, in media lascia scadere ticket che, se gestiti, avrebbero portato un guadagno di circa \in 5458, come si evince dal grafico riportato nel *Report Part I*:

Expired_Tickets								
count_iid	34.200000	1.703680	2.050634	2.763592	5.492314	25	46	
max_iid	500.000000	0.000000	0.000000	0.000000	0.000000	500	500	
min_iid	50.000000	0.000000	0.000000	0.000000	0.000000	50	50	
sum_iid	5457.500000	329.369947	396.445876	534.281092	1061.820777	3200	7950	
avrg_iid	160.218191	7.378741	8.881416	11.969282	23.787539	114.285714	211.666667	

Figura 2: Expired Tickets con 15 impiegati

Al fine di massimizzare i guadagni recuperando anche i ticket che scadono, abbiamo effettuato delle simulazioni per prevedere qual è il numero minimo di impiegati da assumere. Per rendere più precise queste stime sono state effettuate diverse analisi, **per ogni nuova assunzione**, secondo lo schema seguente:

- 5 simulazioni da 30 subruns ognuna;
- 2 simulazioni da 50 subruns ognuna;
- 1 simulazione da 100 subruns.

Di seguito, per praticità, riporteremo solo i valori medi ricavati dalle analisi svolte come descritto precedentemente e riguardanti la somma dei valori degli *Expired Tickets*.

N° Imp.\ Subruns	30	30	30	30	30	50	50	100
16	5110.0	4972.5	4849.2	4735.0	5505.8	4863.0	5052.5	4990.8
17	4430.0	4695.8	4733.3	4437.5	4440.0	4307.0	4703.5	4601.0
18	3882.5	3573.3	3629.2	3780.0	4095.8	3705.0	3941.0	3869.5
19	3435.0	3393.3	3535.0	3535.8	3147.5	3252.5	3334.5	3336.3
20	2939.2	2968.3	2980.0	2869.2	2738.3	2755.5	2832.0	2813.3
21	2277.5	2530.0	2394.2	2366.7	2493.3	2525.5	2476.0	2475.3
22	2020.8	2091.6	1902.5	2020.0	2157.5	2101.5	1973.5	2053.5
23	1806.6	1495.0	1746.6	1863.3	1680.8	1662.0	1540.5	1676.5
24	1443.3	1375.0	1348.3	1230.0	1224.2	1293.0	1180.0	1328.7
25	1155.0	1150.0	1154.2	1178.3	940.8	1188.0	1157.5	1085.2
26	905.8	726.6	906.7	799.2	641.7	838.5	880.5	868.0
27	546.7	590.0	670.8	752.5	637.5	777.5	646.0	687.0
28	585.8	502.5	390.8	500.8	495.0	489.5	582.5	449.0

Figura 3: Valori medi per simulazioni

Ave \ Subruns	Ave 30 Subruns	Ave 50 Subruns	Ave 100 Subruns	TOT Average	Hiring Cost	Total Cost
16	5034.5	4957.8	4990.8	4994.4	400.0	4994.4
17	4547.3	4505.3	4601.0	4551.2	800.0	4551.2
18	3792.2	3823	3869.5	3828.2	1200.0	3828.2
19	3409.3	3293.5	3336.3	3346.4	1600.0	3346.4
20	2899	2793.8	2813.3	2835.4	2000.0	2835.4
21	2412.3	2500.8	2475.3	2462.8	2400.0	2462.8
22	2038.5	2037.5	2053.5	2043.2	2800.0	2043.2
23	1718.5	1601.3	1676.5	1665.4	3200.0	1665.4
24	1324.2	1236.5	1328.7	1296.5	3600.0	1296.5
25	1115.7	1172.8	1085.2	1124.6	4000.0	1124.6
26	796	859.5	868	841.2	4400.0	841.2
27	639	711.8	687	679.3	4800.0	679.3
28	495	536	449	493.3	5200.0	493.3

Figura 4: Medie totali

3 Conclusioni

Abbiamo analizzato i valori medi (in rif. alla tabella #4) in relazione al costo aggiuntivo che comporterebbe ogni assunzione (\leq 400) ed abbiamo realizzato un grafico che riassume le nostre analisi.

Come si può evincere da tale grafico, il guadagno maggiore (ovvero il valore minore dell'ammontare totale dei ticket scaduti più il costo delle nuove assunzioni) si ottiene con **20 impiegati**. Il valore riportato (€4835.4) è minore anche del valore calcolato senza assumere nessun nuovo impiegato (€5457.5) e questo, quindi, **giustifica l'assunzione** di 5 nuovi impiegati.