数据结构与算法

Data Structures and Algorithms

谢昊

xiehao@cuz.edu.cn

半线性结构 Semi-Linear Structures

大纲

- 1. 基本术语
- 2. 树
- 3. 二叉树

几种特殊的二叉树

- 二叉树的性质
- 二叉树的存储结构
- 二叉树的基本操作
- 二叉树的遍历
- 二叉树的简单应用: Huffman 编码
- 4. 小结

表 1: 线性结构的优势与不足

	顺序列表	链式列表
访问元素 增删元素	O(1) $O(n)$	O(n) $O(1)$

表 1: 线性结构的优势与不足

	顺序列表	链式列表
访问元素 增删元素	O(1) $O(n)$	O(n) $O(1)$

半线性结构:可去二者之糟粕,取二者之精华

树 (tree) 与森林 (forest)

- ・半线性 (semi-linear) 结构一般指树
- 树由 $n \cap 1$ 顶点 (vertex) 2与连接于其间的若干条边 (edge) 组成
- 空树既无结点亦无边
- 非空树应满足如下条件
 - 有且仅有1个特定结点为根 (root) 结点
 - 除根结点外的其余结点被分为 $d \cap {}^3$ 互不相交 的子树 (subtree)
 - 子树与根之间由边相连,但不形成环 (ring)
- 子树亦为树,满足上述性质(递归定义)
- m 棵4互不相交的树的集合为森林

 $n \in \mathbb{Z} \cap [0, +\infty)$

²又名结点 (node)

 $^{^{3}}d \in \mathbb{Z} \cap [0, +\infty)$

 $^{^4}m \in \mathbb{Z} \cap [0, +\infty)$

图 1: 几种树与非树

图 2: 思维导图亦为树

树的特点

- 根结点无前驱,其余结点有且仅有1个直接前驱
- 所有结点均可有 n 个5 直接后继
- 前驱类似线性,后继则不同,故称半线性

 $^{^{5}}n \in \mathbb{Z} \cap [0, +\infty)$

度 (degree)

- 结点的度指其子树个数
- 树的度指其最大结点度
- •叶 (leaf) 结点度为 0, 亦称终端结点
- 其余结点为分支结点

图 3: 结点的度

结点亲缘关系

• 结点的子树根为该结点的子 (child) 结点

$$b = child(a), \quad c = child(a)$$

• 该结点为子树根的父 (parent) 结点

$$a = parent(b), \quad a = parent(c)$$

• 同一结点的所有子结点互为兄弟 (sibling)

$$b = sibling(c), \quad c = sibling(b)$$

图 4: 结点间的关系6

 $^{^{6}}a$ 为 b 或 c 的父结点,b 或 c 为 a 的子结点,b 与 c 互为兄弟

路径 (path)、深度 (depth) 与高度 (height)

• 若结点序列 $\{n_i\}_{i=0}^k$ 满足:

$$n_i = parent(n_{i+1}), \quad i = 0, 1, \dots, k-1$$

则称之为自 n_0 至 n_k 的一条**路径**

- 所过边数为路径长度 (length)
- 若存在自 n_a 至 n_b 的路径,则该路径<mark>唯一</mark>,且 n_a 为 n_b 的祖先 (ancestor), n_b 为 n_a 的子孙 (descendant)
- 结点深度⁷为根至其的路径长度
- 结点**高度**为其最大子孙深度⁸
 - 树的高度为其根的高度

图 5: 路径、高度与深度

出 涆 深 1 沂 画

 $^{^{7}}$ 又称结点所在**层数 (layer)**,根在第 0 层

⁸此处范围仅限于以其为根的子树内,一般为该子树最大叶深

与线性结构的比较

线性	半线性
首元素无前驱	根结点无父结点
尾元素无后继	叶结点无子结点

其他元素单前驱单后继 其他结点单父结点多子结点

树的存储结构

- 可采用顺序或链式存储结构
- 每结点须记录: 数据信息、与其他结点的逻辑关系

树的存储结构

- 可采用顺序或链式存储结构
- 每结点须记录: 数据信息、与其他结点的逻辑关系

树的结点关系表示方法

- 父结点表示法: 只记录父结点信息
- 子结点表示法: 只记录子结点信息
- 父子结点表示法: 同时记录父子结点信息
- 长子兄弟表示法: 同时记录第一个子结点与兄弟结点信息

父结点表示法

- 采用数组按层存储各结点
- 每结点包括数据信息与父结点序号

复杂度

- 空间: O(n)
- 时间:
 - 查找父结点 O(1)
 - 但查找子结点○(n)

```
i data parent
```

图 6: 父结点表示法

```
typedef struct {
DataType data; // 数据信息
int parent; // 父结点序号
TreeNode;
```


0	A	-1	
1	В	0	
2	С	0	
3	D	1	
4	Е	1	
5	F	1	
6	G	3	
7	Н	3	
8	I	5	

(b) 存储表示

图 7: 父结点表示法

子结点表示法

- 采用数组按层存储各结点
- 每结点包括数据信息与子结点序号链表

i data children

图 8: 子结点表示法

复杂度

- 空间: O(n)
- 时间:
 - 查找子结点 O(d)⁹
 - 但查找父结点O(n)

typedef struct {
DataType data; // 数据信息
LinkedList children; // 子结点序号链表
TreeNode;

⁹若该结点度数为 d

图 9: 子结点表示法

父子结点表示法

• 结合上述二者

复杂度

- 空间: O(n)
- 时间:
 - 查找子结点 O(d)
 - 但查找父结点 O(1)

```
data parent children
```

图 10: 父子结点表示法

```
typedef struct {
DataType data; // 数据信息
int parent; // 父结点序号
LinkedList children; // 子结点序号链表
TreeNode;
```


图 11: 父子结点表示法

父子结点表示法的性质

• 优势: 一定程度上兼顾了查找效率

• 不足: 插入/删除结点操作需大量修改链表, 效率偏低

父子结点表示法的性质

• 优势: 一定程度上兼顾了查找效率

• 不足: 插入/删除结点操作需大量修改链表, 效率偏低

基本术语

- 若同一结点的所有子结点间具备某种线性次序,则称之为有序树 (ordered tree)
- 有序树的任意非叶结点均有且仅有 1 个长子 (eldest son)

长子兄弟表示法

- 采用数组按层存储各结点
- 每结点包括
 - 数据信息
 - 长子结点序号
 - 首个兄弟结点序号

图 12: 长子兄弟表示法

```
typedef struct {

DataType data; // 数据信息

int eldest_son; // 长子结点序号

int sibling; // 兄弟结点序号

TreeNode;
```


0	A	1	-1
1	В	3	2
2	С	-1	-1
3	D	6	4
4	Е	-1	5
5	F	8	-1
6	G	-1	7
7	Н	-1	-1
8	I	-1	-1
6	G H	-1 -1	7 -1

(b) 存储表示

图 13: 长子兄弟表示法

二叉树

二叉树

二叉树 (binary tree)

- 度不大于 2 的有序树
- 子结点可按左右区分

将树转化为二叉树

- 令长子为左子结点、首个兄弟为右子结点
- 任何树均可按此法转化为二叉树
- 因二叉树的表示与运算相对方便,故树的问题均可转化为二叉树形式进行研究

二叉树

图 14: 将树转化为二叉树

左斜树10

- 所有非叶结点均有且仅有1个左子树
- 每层均有且仅有1个结点
- 已退化为线性结构

图 15: 斜树

¹⁰右斜树与之类似,只需将左改作右

满二叉树 (full binary tree)

- 所有叶结点均在最后一层
- 所有非叶结点度均为 2

性质

- 同深度的二叉树中满二叉树结点最多
- 同深度的二叉树中满二叉树叶结点最多

图 16: 满二叉树

图 17: 非满二叉树

完全二叉树 (proper binary tree)

- 若去除最后一层结点,则为满二叉树
- 最后一层结点自左至右连续11排列

性质

- 同结点数的二叉树中完全二叉树最矮
- 满二叉树亦为完全二叉树的一种

图 18: 完全二叉树

¹¹指中间无空结点

二叉树的性质

性质甲

• 令 N 层二叉树第 k 层结点数为 $n_l(k)$,则有

$$1 \le n_l(k) \le 2^k, \ k \in \mathbb{Z} \cap [0, N)$$

二叉树的性质

性质甲

• 令 N 层二叉树第 k 层结点数为 $n_l(k)$,则有

$$1 \le n_l(k) \le 2^k, \ k \in \mathbb{Z} \cap [0, N)$$

证明

- 1. 左侧不等式显然成立
- 2. 右侧不等式当 k = 0 时,第 0 层仅有根结点,故 $n_l(0) = 1 = 2^0$ 显然成立
- 3. 假设当 k = n < N 1 时成立,即 $n_l(n) \le 2^n$,因所有结点的度均不大于 2,故

$$n_l(n+1) \le 2 \cdot n_l(n) \le 2 \cdot 2^n = 2^{n+1}$$

于是当 k = n + 1 时,归纳假设成立

性质乙

• 令 k 层二叉树的结点总数为 n(k),则有

$$k \le n(k) \le 2^k - 1$$

性质乙

• 令 k 层二叉树的结点总数为 n(k),则有

$$k \le n(k) \le 2^k - 1$$

证明

- 1. 由性质甲, $1 \le n_l(i) \le 2^i$, $i \in \mathbb{Z} \cap [0, k)$
- 2. 经累加后,有

$$k = \sum_{i=0}^{k-1} 1 \le n(k) = \sum_{i=0}^{k-1} n_i(i) \le \sum_{i=0}^{k-1} 2^i = 2^k - 1$$

思考

- 满足 n(k) = k 的二叉树一定是斜树么?
- 满足 $n(k) = 2^k 1$ 的二叉树一定是满二叉树么?

性质丙

• 令二叉树中度为 d 的结点数为 n_d , $(d \in \{0, 1, 2\})$,则有

$$n_0 = n_2 + 1$$

性质丙

• 令二叉树中度为 d 的结点数为 n_d , $(d \in \{0,1,2\})$, 则有

$$n_0 = n_2 + 1$$

证明

1. 一方面,结点总数由各种度的结点构成,故总结点数 n 满足

$$n = \sum_{d=0}^{2} n_d = n_0 + n_1 + n_2$$

2. 另一方面,每个非根结点均由 1 个结点生成,故度为 d 的结点可生成 d 个结点,即

$$n = \sum_{d=0}^{2} d \cdot n_d + 1 = n_1 + 2n_2 + 1$$

3. 综上得证

思考

• 有 n 个结点的完全二叉树有多少叶结点?

思考

• 有 n 个结点的完全二叉树有多少叶结点?

提示

- 在完全二叉树中,度为1的结点数不多于1
- 当 n 为偶数时, $n_1 = 1$, $n_0 = n/2$, $n_2 = n/2 1$
- 当 n 为奇数时, $n_1 = 0$, $n_0 = (n+1)/2$, $n_2 = (n-1)/2$

性质丁

• 具有 n 个结点的完全二叉树层数 $k = \lfloor \log_2 n \rfloor + 1$

性质丁

• 具有 n 个结点的完全二叉树层数 $k = \lfloor \log_2 n \rfloor + 1$

证明

1. 由完全二叉树性质与性质乙可得,k 层完全二叉树结点数 n 满足

$$2^{k-1} - 1 < n \le 2^k - 1 \stackrel{\textstyle \cdot}{\to} 2^{k-1} \le n < 2^k$$

2. 取对数

$$k-1 \leq \log_2 n < k \not \equiv \log_2 n < k \leq \log_2 n + 1$$

3. 注意到 $k \in \mathbb{Z}$,于是得证

完全二叉树按层序编号

- 可为完全二叉树结点按层序依次编号
- 约定根编号为1, 依次递增
- 称如此编号为 *k* 的结点为**结点** *k*

图 19: 为完全二叉树按层序编号

性质戊

- 为含有 n 个结点的完全二叉树按层序对结点编号 12 ,则有
 - 1. 结点 k 的左右子结点序号分别为 $2k = 2k + 1, k \in \mathbb{Z} \cap [1, \lfloor n/2 \rfloor]$
 - 2. 结点 k 的父结点序号为 $\lfloor k/2 \rfloor$, $k \in \mathbb{Z} \cap (1, n]$

¹²根结点为 1

性质戊

- 为含有 n 个结点的完全二叉树按层序对结点编号¹²,则有
 - 1. 结点 k 的左右子结点序号分别为 2k 与 2k + 1, $k \in \mathbb{Z} \cap [1, \lfloor n/2 \rfloor]$
 - 2. 结点 k 的父结点序号为 $\lfloor k/2 \rfloor$, $k \in \mathbb{Z} \cap (1, n]$

证明

- 1. 考察结论 1,当 k=1 时,显然其左右子结点序号分别为 2 与 3,成立
- 2. 假设当 k = m 时成立,即结点 m 的左右子结点序号分别为 2m 与 2m + 1,
 - 因结点 m+1 的左子结点必为结点 m 的右子结点的后继
 - 故结点 m+1 的左子结点序号为 (2m+1)+1=2(m+1)
 - 且结点 m+1 的右子结点序号为 2(m+1)+1

则当 k = m + 1 时,假设成立,故结论 1 成立

3. 由结论 1 知结论 2 成立

12根结点为 1

顺序存储

- 按完全二叉树层序编号方式为二叉树编号, 跳过不存在结点的编号
- 以静态数组方式存储,留空不存在的结点

<u>二叉</u>树的存储结构

图 20: 二叉树的顺序存储示例

<u>二叉</u>树的存储结构

图 21: 右斜树的顺序存储示例

顺序存储的特点

- 可利用性质戊快速访问各结点: O(1)
- 增删结点可能需要大幅调整存储
- 在存储含有稀疏结点的二叉树时需耗费大量存储空间
- 仅适合存储含有稠密结点的完全二叉树

链式存储

- 采用二/三叉链表表示结点
- 结点除存信息包括
 - 数据信息
 - 左、右子结点地址
 - 可选的父结点地址
- 为后续处理方便,设置虚拟首结点

```
data left right parent
```

图 22: 二叉树结点的链式存储结构

```
typedef struct BinaryTreeNode {
DataType data; // 数据信息
struct BinaryTreeNode *left; // 左子结点地址
struct BinaryTreeNode *right; // 右子结点地址
struct BinaryTreeNode *parent; // 可选的父结点地址
BinaryTreeNode;

typedef struct {
BinaryTreeNode *head; // 虚拟首结点
```

} BinaryTree;

图 23: 二叉树的链式存储示例

二叉树的抽象数据类型

```
ADT BinaryTree {
    数据:
         数据对象: \mathcal{D} = \{a_k | a_k \in 数据元素集合, k \in \mathbb{Z} \cap [0, n)\}
         逻辑关系: 若\mathcal{D} = \emptyset,则\mathcal{R} = \emptyset; 否则\mathcal{R} = \{\langle a_i, a_j \rangle | i < j; i, j \in \mathbb{Z} \cap [0, n); a_i, a_j \in \mathcal{D}_l \cup \{a_0\}或\mathcal{D}_r \cup \{a_0\}\}^{13}
    操作:
         create_binary_tree()
             构造并初始化一个空二叉树t
         insert_left_binary_tree(p, d)
             在二叉树中结点p 下插入值为d 的左子结点,右子结点可简单类比,略
         remove left binary tree(p)
             在二叉树中删除结点p 的左子树,右子树可简单类比,略
         traverse binary tree(t)
             以某种方式遍历二叉树t 的所有结点
```

 $^{^{13}}a_0$ 为根结点, \mathcal{D}_l 与 \mathcal{D}_r 分别为其左右子树结点集合,且 $\mathcal{D}_l\cap\mathcal{D}_r=\varnothing$

二叉树的初始化

- 利用结点初始化方法
- 注意空指针处理

```
BinaryTreeNode *create_binary_tree_node(DataType d) {
       BinaryTreeNode *n =
               malloc(sizeof(BinaryTreeNode));
       if (n) {
           n->data = d;
           n->left = n->right = n->parent = NULL;
       }
       return n;
8
9
   BinaryTree *create_binary_tree() {
       BinaryTree *t = malloc(sizeof(BinaryTree));
       if (t) {
           t->head = create binary tree node(0);
       return t;
7
```

为二叉树中的指定结点插入左子结点14

- 将原左子树作为新结点的左子树
- 注意更新双向链接关系的顺序
- 可将操作拆分为两部分
- 类似于双向链表的结点插入

```
BinaryTreeNode *attach left binary tree(
           BinaryTreeNode *p, BinaryTreeNode *n) {
2
       assert(n && p):
       if (p->left) {
           n->left = p->left. p->left->parent = n:
5
       p->left = n. n->parent = p:
       return n;
9
   bool insert left binary tree(
           BinaryTreeNode *p, DataType d) {
       if (!p) {
```

printf("Wrong insertion place!\n");

BinaryTreeNode *n = create_binary_tree_node(d);
return n && attach left binary tree(p, n);

return false:

9

¹⁴右子结点可直接类比,略,下同

删除二叉树中的指定结点的左子树

- 注意更新双向链接关系的顺序
- 可将操作拆分为两部分
- 拆除的子树须通过遍历释放

```
BinaryTreeNode *detach left binary tree(
           BinaryTreeNode *p) {
       assert(p && p->left);
       BinaryTreeNode *c = p->left;
       p->left = c->parent = NULL:
       return c;
   bool remove left binary tree(BinaryTreeNode *p) {
       if (!p) {
2
           printf("Wrong removal place!\n");
           return false;
```

return cleanup_binary_tree_by_node(c);

BinaryTreeNode *c = detach_left_binary_tree(p);

遍历 (traversal)

- 按某种约定顺序访问半线性结构中的所有结点
- 每个结点均被且仅被访问1次
- 意义: 使半线性结构转化为线性结构
- 两类常见遍历方式: 深度优先与广度优先
- 前者可按访问根结点的次序区分
 - **先序 (preorder) 遍历**: 根结点 ⇒ 子树序列¹⁵
 - **中序 (inorder) 遍历**¹⁶: 左子树 ⇒<mark>根</mark>结点 ⇒ 右子树
 - **后序 (postorder) 遍历**: 子树序列 ⇒<mark>根</mark>结点
- ・ 后者包括层序 (level order) 遍历

¹⁵按顺序遍历每个子树,遍历方式亦为递归相同遍历方式,其余类同 16仅针对二叉树

图 24: 二叉树的先序遍历示例: $A \to B \to D \to E \to G \to C \to F$

图 25: 二叉树的中序遍历示例: $D \to B \to G \to E \to A \to C \to F$

图 26: 二叉树的后序遍历示例: $D \to G \to E \to B \to F \to C \to A$

图 27: 二叉树的<mark>层</mark>序遍历示例: $A \to B \to C \to D \to E \to F \to G$

二叉树遍历性质甲

• 由先序遍历与中序遍历可推出后序遍历

二叉树遍历性质甲

• 由先序遍历与中序遍历可推出后序遍历

证明

- 1. 由先序遍历性质可找出根结点
- 2. 由中序遍历性质可找出左右子树
- 3. 对左右子树分别递归应用上述步骤直至 无左右子树

先序: 根 左子树 右子树

中序: 左子树 根 右子树

图 28: 先序 + 中序 ⇒ 后序

- 已知先序: $A \to B \to D \to E \to G \to C \to F$
- 已知中序: $D \to B \to G \to E \to A \to C \to F$
- 求后序

图 29: 示例过程: 先序 + 中序 ⇒ 后序

- 已知先序: $A \to B \to D \to E \to G \to C \to F$
- 已知中序: $D \to B \to G \to E \to A \to C \to F$
- 求后序

图 29: 示例过程: 先序 + 中序 ⇒ 后序

- 已知先序: $A \to B \to D \to E \to G \to C \to F$
- 已知中序: $D \to B \to G \to E \to A \to C \to F$
- 求后序

图 29: 示例过程: 先序 + 中序 ⇒ 后序

- 已知先序: $A \to B \to D \to E \to G \to C \to F$
- 已知中序: $D \to B \to G \to E \to A \to C \to F$
- 求后序

图 29: 示例过程: 先序 + 中序 ⇒ 后序

- 已知先序: $A \to B \to D \to E \to G \to C \to F$
- 已知中序: $D \to B \to G \to E \to A \to C \to F$
- 求后序

图 29: 示例过程: 先序 + 中序 ⇒ 后序

- 已知先序: $A \to B \to D \to E \to G \to C \to F$
- 已知中序: $D \to B \to G \to E \to A \to C \to F$
- 求后序

图 29: 示例过程: 先序 + 中序 ⇒ 后序

- 已知先序: $A \to B \to D \to E \to G \to C \to F$
- 已知中序: $D \to B \to G \to E \to A \to C \to F$
- 求后序

图 29: 示例过程: 先序 + 中序 ⇒ 后序

- 已知先序: $A \to B \to D \to E \to G \to C \to F$
- 已知中序: $D \to B \to G \to E \to A \to C \to F$
- 求后序

图 29: 示例过程: 先序+中序 ⇒ 后序

二叉树遍历性质乙

• 由后序遍历与中序遍历可推出先序遍历

二叉树遍历性质乙

• 由后序遍历与中序遍历可推出先序遍历

证明

1. 与性质甲类似,略

后序: 左子树 右子树 根

中序: 左子树 根 右子树

图 30: 后序 + 中序 ⇒ 先序

- 已知后序: $D \to G \to E \to B \to F \to C \to A$
- 已知中序: $D \to B \to G \to E \to A \to C \to F$
- 求先序

图 31: 示例过程: 后序+中序 ⇒ 先序

- 已知后序: $D \to G \to E \to B \to F \to C \to A$
- 已知中序: $D \to B \to G \to E \to A \to C \to F$
- 求先序

图 31: 示例过程: 后序+中序 ⇒ 先序

- 已知后序: $D \to G \to E \to B \to F \to C \to A$
- 已知中序: $D \to B \to G \to E \to A \to C \to F$
- 求先序

图 31: 示例过程: 后序+中序 ⇒ 先序

- 已知后序: $D \to G \to E \to B \to F \to C \to A$
- 已知中序: $D \to B \to G \to E \to A \to C \to F$
- 求先序

图 31: 示例过程: 后序+中序 ⇒ 先序

- 已知后序: $D \to G \to E \to B \to F \to C \to A$
- 已知中序: $D \to B \to G \to E \to A \to C \to F$
- 求先序

图 31: 示例过程: 后序+中序 ⇒ 先序

- 已知后序: $D \to G \to E \to B \to F \to C \to A$
- 已知中序: $D \to B \to G \to E \to A \to C \to F$
- 求先序

图 31: 示例过程: 后序+中序 ⇒ 先序

- 已知后序: $D \to G \to E \to B \to F \to C \to A$
- 已知中序: $D \to B \to G \to E \to A \to C \to F$
- 求先序

图 31: 示例过程: 后序+中序 ⇒ 先序

- 已知后序: $D \to G \to E \to B \to F \to C \to A$
- 已知中序: $D \to B \to G \to E \to A \to C \to F$
- 求先序

图 31: 示例过程: 后序+中序 ⇒ 先序

二叉树遍历性质丙

• 由先序遍历与后序遍历不可推出中序遍历

二叉树遍历性质丙

• 由先序遍历与后序遍历不可推出中序遍历

证明

1. 当根结点度为1时无法区分左右子树

先序: 根 左子树 ? 右子树

后序: 左子树 ? 右子树 根

图 32: 先序 + 后序 ⇒ 中序

二叉树深度优先遍历的递归实现17

```
void traverse_preorder(
    BinaryTreeNode *p,
    Visit v) {
    if (!p) {
        return; // 递归出口
    }
    v(p->data);
    traverse_preorder(p->left, v);
    traverse_preorder(p->right, v);
}
```

```
void traverse_postorder(
    BinaryTreeNode *p,
    Visit v) {
    if (!p) {
        return; // 递归出口
    }
    traverse_postorder(p->left, v);
    traverse_postorder(p->right, v);
    v(p->data);
}
```

¹⁷须事先定义: **typedef void** (*Visit)(DataType);

二叉树广度优先遍历的非递归实现

- 用队列对每层结点按顺序缓存
- 根结点首先入队
- 当结点出队时均将其子树按顺序入队
- 当队列空时结束

```
void traverse_binary_tree_level_order(
            BinaryTreeNode *p, Visit v) {
        LinkedQueue *buffer = create linked queue();
        if (!buffer) { return; }
        push linked queue(buffer, p);
        while (!empty linked queue(buffer)) {
            pop linked queue(buffer. (DataType *)(&p)):
            v(p->data);
8
            if (p->left) {
                 push linked queue(buffer, p->left);
10
11
            if (p->right) {
12
                 push linked queue(buffer, p->right);
13
14
15
        destroy linked queue(buffer);
16
17
```

应用:表达式树

- 考虑仅包括二元运算的表达式
- 可将运算符作为根结点, 左右操作数分别为左右子结点
- 操作数为叶结点,运算符为非叶结点
- 如此可将表达式转换为二叉树
- 前/中/后缀表达式分别对应二叉树的先/中/后序遍历

例:表达式树

- 前缀表达: + A / B C * D E
- 中缀表达: A B / C + D * E
- 后缀表达: ABC / DE*+

图 33: 表达式树示例

哈夫曼 (Huffman) 编码

- 需求: 信息传输中的压缩编码
 - 频率高的信息采用短编码
 - 频率低的信息采用长编码
- 目标: 用尽可能少的数据表示尽可能多的信息
- 应用:语音、图像、视频等流媒体数据的压缩

表 2: 例: 两种颜色二进制编码的总数据量比较

颜色	定长	Huffman	出现概率	
A	000	00	18%	
B	001	11	32%	
C	010	010	10%	
D	011	100	14%	
E	100	101	16%	
F	101	0110	4%	
G	110	0111	6%	
总数据量18	3 <i>n</i>	2.6n		

图 34: 实例图片

¹⁸n 为像素点个数

问题转化与建模

- 因二进制编码,故二叉树表示
- 左、右子树路径分别表示 0 与 1
- 编码值与叶结点——对应
- 叶结点记录编码值对应权重
- 其他结点表示其子结点权重和
- 根至叶路径表示该叶对应编码

图 **35:** Huffman 编码树示例¹⁹

¹⁹路径中虚线表示 0,实线表示 1

Huffman 编码的目标

• 最小化所有叶结点深度的加权线性组合,即

$$\min \sum_{k=0}^{n-1} \omega_k d_k$$

其中 ω_k 与 d_k 分别为第 k 个叶结点的权重与 深度

• 满足上述要求的最优二叉树被称为相应信息的 Huffman 编码树

Huffman 编码树的构建过程

- 1. **初始化**: 由给定的权重集合 $\{\omega_k\}_{k=0}^{n-1}$ 构建由 n 棵根树组成的 $\frac{n}{n}$
- 2. **合并**:在 \mathcal{F} 中选取根权重<mark>最小</mark>的两棵二叉树分别作为左右子树构建新二叉树
- 3. 替换: 以新二叉树替换两棵旧二叉树
- 4. **重复**: 重复步骤 2、3 直至 \mathcal{F} 中只有一棵二叉树即为 Huffman 编码树

图 36: Huffman 编码树构建过程: 初始化

图 37: Huffman 编码树构建过程: 合并与替换

图 38: Huffman 编码树构建过程: 合并与替换

图 39: Huffman 编码树构建过程: 合并与替换

图 40: Huffman 编码树构建过程: 合并与替换

图 41: Huffman 编码树构建过程: 合并与替换

图 42: Huffman 编码树构建过程: 合并与替换

Huffman 编码树的特点

- 无度为1的结点
 - 所有非叶结点均为两个子结点合并而成,故度为 2
- 结果不唯一
 - 可额外规定合并时左右子结点权重顺序,如左小于右

- 结点包括权重、左右子结点与父结点信息
- 可采用顺序表或数组存储结点序列

```
weight left right parent
```

图 43: Huffman 编码树的结点结构

```
typedef struct {

int weight; // 结点权重

int left; // 左子结点序号

int right; // 右子结点序号

int parent; // 父结点序号

HuffmanNode;
```

```
18
0
             -1|-1|-1
2
         10
             -1|-1|-1
3
         14
             -1
                          D
         16
             -1
4
5
    i_1
             -1
6
    i_2
             -1|-1|-1|
         100 -1 -1 -1
7
         100 - 1 - 1 - 1
8
         |100| - 1| - 1| - 1
9
10
         100 - 1 - 1 - 1
         100 - 1 - 1 - 1
11
         100 - 1 - 1 - 1
12
```

图 44: Huffman 编码树的构建过程

- 结点包括权重、左右子结点与父结点信息
- 可采用顺序表或数组存储结点序列

```
weight left right parent
```

图 43: Huffman 编码树的结点结构

```
typedef struct {

int weight; // 结点权重

int left; // 左子结点序号

int right; // 右子结点序号

int parent; // 父结点序号

HuffmanNode;
```

```
18
0
             -1|-1|-1
                          В
2
         10 -1 -1 -1
3
         14
             -1
                          D
         16
             -1
4
              -11
                          F
6
             -1|-1|
                          G
7
    i_2
         10
              5
         100 - 1 - 1 - 1
8
         |100| - 1| - 1| - 1
9
10
         100 - 1 - 1 - 1
         100 - 1 - 1 - 1
11
         100 - 1 - 1 - 1
12
```

图 44: Huffman 编码树的构建过程

- 结点包括权重、左右子结点与父结点信息
- 可采用顺序表或数组存储结点序列

```
weight left right parent
```

图 43: Huffman 编码树的结点结构

```
typedef struct {

int weight; // 结点权重

int left; // 左子结点序号

int right; // 右子结点序号

int parent; // 父结点序号

HuffmanNode;
```

```
18
0
             -1|-1|-1
                         В
2
         10
             -1|-1|
3
         14
             -1
                         D
    i_2
         16
             -1
             -11
                         F
6
             -1|-1|
                         G
         10
              5
                 6
         20
8
                     -1
         |100| - 1|
                 -1 | -1
9
10
         100 - 1 - 1 - 1
         100 - 1 - 1 - 1
11
         100 - 1 - 1 - 1
12
```

图 44: Huffman 编码树的构建过程

- 结点包括权重、左右子结点与父结点信息
- 可采用顺序表或数组存储结点序列

```
weight left right parent
```

图 43: Huffman 编码树的结点结构

```
typedef struct {

int weight; // 结点权重

int left; // 左子结点序号

int right; // 右子结点序号

int parent; // 父结点序号

} HuffmanNode;
```

```
18 -1 -1 -1
0
             -1 | -1 | -1
                          В
2
         10
             -1|-1|
3
         14
             -1
                          D
         16
             -1
4
             -11
                          F
6
             -1|-1|
                          G
         10
              5
                  6
    i_2
         20
8
                     -1
              3
9
         30
                     -1
10
         |100| - 1|
         |100| - 1|
11
         100 - 1 - 1 - 1
12
```

图 44: Huffman 编码树的构建过程

- 结点包括权重、左右子结点与父结点信息
- 可采用顺序表或数组存储结点序列

```
weight left right parent
```

图 43: Huffman 编码树的结点结构

```
typedef struct {

int weight; // 结点权重

int left; // 左子结点序号

int right; // 右子结点序号

int parent; // 父结点序号

HuffmanNode;
```

0		18	-1	-1	10	A
1	i_2	32	-1	-1	-1	В
2		10	-1	-1	8	С
3		14	-1	-1	9	D
4		16	-1	-1	9	Ε
5		4	-1	-1	7	F
6		6	-1	-1	7	G
7		10	5	6	8	
8		20	2	7	10	
9	i_1	30	3	4	-1	
10		38	0	8	-1	
11		100	-1	-1	-1	
12		100	-1	-1	-1	

图 44: Huffman 编码树的构建过程

- 结点包括权重、左右子结点与父结点信息
- 可采用顺序表或数组存储结点序列

```
weight left right parent
```

图 43: Huffman 编码树的结点结构

```
typedef struct {

int weight; // 结点权重

int left; // 左子结点序号

int right; // 右子结点序号

int parent; // 父结点序号

HuffmanNode;
```

0		18	-1	-1	10	A
1		32	-1	-1	11	В
2		10	-1	-1	8	С
3		14	-1	-1	9	D
4		16	-1	-1	9	Ε
5		4	-1	-1	7	F
6		6	-1	-1	7	G
7		10	5	6	8	
8		20	2	7	10	
9		30	3	4	11	
10	i_1	38	0	8	-1	
11	i_2	62	9	1	-1	
12		100	-1	-1	-1	

图 44: Huffman 编码树的构建过程

- 结点包括权重、左右子结点与父结点信息
- 可采用顺序表或数组存储结点序列

```
weight left right parent
```

图 43: Huffman 编码树的结点结构

```
typedef struct {

int weight; // 结点权重

int left; // 左子结点序号

int right; // 右子结点序号

int parent; // 父结点序号

} HuffmanNode;
```

```
18
             -1 | -1 | 10 |
             -1 | -1 | 11
                         В
2
         10
             -1|-1|
3
         14
             -1
                         D
         16
             -1
4
             -11
                          F
6
             -1|-1|
                         G
         10
             5
                 6
         20
                    10
8
             3
9
         30
                    11
         38
             0
                 8
                     12
         62
             9
                     12
        |100| 10 | 11 | -1
12
```

图 44: Huffman 编码树的构建过程

小结

小结

- 半线性结构以树与森林为代表,前驱为线性、后继为非线性
- 树与森林的问题均可转化为二叉树,使研究更加方便、统一
- 二叉树可采用顺序与链式两种方式存储
- 二叉树的遍历可将半线性结构转化为线性结构
- Huffman 编码树可用于数据压缩

