

Faculty of Computing and Information Technology Department of Mathematical and Data Science

Bachelor of Science (Honours) in Management Mathematics with Computing

Academic Year 2020/2021

BAMS3043 Mathematical and Statistical Software Assignment 4

Programme of Study: RMM3S1G2

No	Student Name	Student ID			
1	Fong Wei Chen	20WMR09181			
2	Wong Ke Ying	20WMR09191			
3	Wong Yet Xiang	20WMR09193			

Question 1

In this project, we are interested in investigating the relationship between the dependent variable 'Life expectancy' and the independent variables in the developed country only. Therefore, we will subset the rows with status equals to 'Developed' in the data and use it for our regression model.

Variable Choosing

		Correlations		
			Lifeexpectanc y	LINT (Incomecomp ositionofreso urces)
	Pearson Correlation	Lifeexpectancy	1.000	.712
,		LINT (Incomecompositionofres ources)	.712	1.000
	Sig. (1-tailed)	Lifeexpectancy		.000
		LINT (Incomecompositionofres ources)	.000	
	N	Lifeexpectancy	512	512
		LINT (Incomecompositionofres ources)	512	512

Figure 1.1

After investigation done on all the independent variables, we decide to choose 'Income composition of resources' as the independent variable. This variable has a strong linear relationship with the dependent variable 'Life expectancy'. A great linear relationship defines that the linear function can be explained clearly with the independent variable. The closer the correlation coefficient to 1 or -1, the stronger the linear relationship between the two variables. 'Income composition of resources' has a Pearson correlation coefficient of 0.712, which is close to 1. (Utexas.edu, 2016)

Missing Value

Case Processing Summary								
	Cases							
	Va	Valid Missing			Total			
	Ν	Percent	N	Percent	Ν	Percent		
Incomecompositionofres ources	463	90.4%	49	9.6%	512	100.0%		

Figure 1.2

From Figure 1.2, there are some missing values found in the column of our chosen variable 'Income composition of resources'.

Case Processing Summary								
	Cases Valid Missing Total							
				_				
	N	Percent	N	Percent	N	Percent		
LINT (Incomecompositionofres ources)	512	100.0%	0	0.0%	512	100.0%		

Figure 1.3

To solve this problem, we replace the missing values with the mean value of the column.

Outliers

Figure 1.4

We run the descriptive statistics to figure out whether there are outliers in the data. As we can see from Figure 1.4, there are some outliers in the boxplot chart. Outliers will dramatically change the magnitude of regression coefficients and the direction of coefficient signs. Therefore, it is important to fix the problems (Choi, 2009).

Figure 1.5

To fix the outliers, we replace the two outliers found with the minimum value in the variable. After dealing with the outliers, the data is ready to fit into linear regression.

		М	odel Summary	b					
Model R		Adjusted R R Square Square		Std. Error of the Estimate	Durbin- Watson				
1	.712 ^a	.507	.506	2.7636	1.858				
a. Predictors: (Constant), SMEAN(Incomecompositionofresources) b. Dependent Variable: Lifeexpectancy									

Figure 1.6

R represents the correlation between the dependent variable and independent variable. 0.712 shows that these 2 variables are having a strong correlation. Besides that, R square value determines how much of the total variation in the dependent variable, Life expectancy, can be explained by the independent variable, Income composition of resources. In this case, 50.7% can be explained, which is quite large. (Laerd Statistics, 2018)

	ANOVA ^a											
Model		Sum of Squares	df	Mean Square	F	Sig.						
1	Regression	4001.109	1	4001.109	523.891	.000 ^b						
	Residual	3895.018	510	7.637								
	Total	7896.128	511									
a. D	a. Dependent Variable: Lifeexpectancy											
b. Pr	edictors: (Cons	tant), SMEAN(Inco	mecompos	itionofresources)								

Figure 1.7

The regression model predicts the dependent variable significantly. This is because the significant value in Figure 1.7 is less than 0.05.

					Coefficie	ents ^a					
	Unstandardized Coefficients			Standardized Coefficients			95.0% Confidence Interval for B Coll		Collinearity	ollinearity Statistics	
	Model		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound	Tolerance	VIF
1	1	(Constant)	31.290	2.097		14.924	.000	27.171	35.409		
		SMEAN (Incomecompositionofres ources)	56.175	2.454	.712	22.889	.000	51.353	60.997	1.000	1.000
	a. De	ependent Variable: Lifeexpect	tancy								

Figure 1.8

The regression equation can be written as:

$$\hat{Y} = 31.290 + 56.175x$$

Figure 1.9

Question 2

Independent Variables Choosing

First Assumption

Our first assumption is based on the correlation between the independent variables and the dependent variable. The closer the coefficient of correlation to 1 or -1, the stronger the linear relationship between the variables. We have decided to choose those independent variables that have coefficients of correlation greater than 0.1 or smaller than 0.1.

			Co	rrelations	
		Lifeexpectanc y	LINT (Incomecomp ositionofreso urces)	AdultMortality	percen penc
Pearson Correlation	Lifeexpectancy	1.000	.727	432	
	LINT (Incomecompositionofres ources)	.727	1.000	403	
	AdultMortality	432	403	1.000	
	percentageexpenditure	.421	.535	228	
	thinness119years	742	634	.520	
	thinness59years	725	620	.521	
	Schooling	.357	.643	212	
	GDP	.387	.506	228	
	Alcohol	073	.020	013	
	infantdeaths	079	088	.220	
	HepatitisB	078	213	.163	
	Measles	051	041	.091	
	BMI	.011	008	013	
	underfivedeaths	032	031	.209	
	Polio	.060	.032	.071	
	Totalexpenditure	.179	.131	174	
	Diphtheria	015	018	014	
	HIVAIDS				
	Population	.123	.117	032	

Figure 2.1

After the first assumption, we have 9 independent variables left. Then we will fix the missing values problem in these 9 columns. We replace the missing value with the mean of each column.

	Correlations										
		Lifeexpectanc y	LINT (Incomecomp ositionofreso urces)	AdultMortality	percentageex penditure	thinness119y ears	thinness59ye ars	Schooling	GDP	Totalexpendit ure	Population
Pearson Correlation	Lifeexpectancy	1.000	.719	465	.402	664	662	.384	.377	.106	.081
	LINT (Incomecompositionofres ources)	.719	1.000	430	.539	632	641	.670	.523	.151	.051
	AdultMortality	465	430	1.000	240	.487	.496	253	244	146	024
	percentageexpenditure	.402	.539	240	1.000	381	388	.272	.926	.107	.054
	thinness119years	664	632	.487	381	1.000	.991	407	379	222	096
	thinness59years	662	641	.496	388	.991	1.000	417	380	231	077
	Schooling	.384	.670	253	.272	407	417	1.000	.207	.190	.043
	GDP	.377	.523	244	.926	379	380	.207	1.000	.120	.017
	Totalexpenditure	.106	.151	146	.107	222	231	.190	.120	1.000	156
	Population	.081	.051	024	.054	096	077	.043	.017	156	1.000

Figure 2.2

Notice that after missing values are replaced, the correlation coefficient may vary compared to Figure 2.1. For example, the correlation coefficient of the independent variable 'Population' has decreased to a value lower than 0.1. However, we will still remain this independent variable since it already passed the first assumption.

Second Assumption

The second assumption is the multicollinearity. Multicollinearity exists when the independent variables in a regression model are highly correlated. If the correlation coefficient is between 0 and 0.3 (0 and -0.3), it means that the relationship between two variables is weak. On the other hand, if the coefficient is between 0.7 and 1.0 (-0.7 and -1.0), it means that the two variables are strongly correlated (Ratner, 2009). Multicollinearity brings negative impacts such as reducing the precision of the estimated coefficients that weakens the statistical power of the regression model. We might not be able to rely on the p-values to determine the independent variables that are statistically significant (Frost, n.d).

From Figure 2.2, we can notice that the independent variables 'thinness 1 - 19 years' and 'thinness 5 - 9 years' are strongly correlated. The correlation coefficient between these two independent variables is 0.991. Therefore, we will remove one of these variables from our model. 'thinness 1 - 19 years' is removed since 'thinness 5 - 9 years' has stronger linear relationship with the dependent variable compared to it.

	Correlations										
		Lifeexpectanc y	AdultMortality	percentageex penditure	thinness59ye ars	Totalexpendit ure	SMEAN (Incomecomp ositionofreso urces)	SMEAN (Schooling)	SMEAN(GDP)	SMEAN (Population)	
Pearson Correlation	Lifeexpectancy	1.000	455	.405	604	.072	.709	.383	.358	.075	
	AdultMortality	455	1.000	213	.431	155	430	245	225	022	
	percentageexpenditure	.405	213	1.000	315	.005	.514	.269	.871	.048	
	thinness59years	604	.431	315	1.000	318	592	451	317	072	
	Totalexpenditure	.072	155	.005	318	1.000	.138	.227	.075	125	
	SMEAN (Incomecompositionofres ources)	.709	430	.514	592	.138	1.000	.666	.499	.049	
	SMEAN(Schooling)	.383	245	.269	451	.227	.666	1.000	.162	.038	
	SMEAN(GDP)	.358	225	.871	317	.075	.499	.162	1.000	.017	
	SMEAN(Population)	.075	022	.048	072	125	.049	.038	.017	1.000	

Figure 2.3

After the two assumptions above, the eligible 8 independent variables are shown in Figure 2.3.

Outliers

Figure 2.4

We can notice that 4 of the 8 chosen independent variables have outliers. We will replace the outliers of each variable with the maximum or minimum value of that particular variable range.

Figure 2.5

First Model (Model B)

		М	odel Summary	b					
Model R		R Square	Adjusted R Square	Std. Error of the Estimate	Durbin- Watson				
1	.778ª	.605	.599	2.4901	1.695				
pe	rcentageexp	dictors: (Constant), SMEAN(Totalexpenditure), SMEAN(Population), centageexpenditure, AdultMortality, SMEAN(Schooling), thinness59years, EAN(Incomecompositionofresources), SMEAN(GDP)							
b. De	pendent Var	iable: Lifeexp	ectancy						

Figure 2.6

As we can see in Figure 2.6, the R value is the multiple correlation coefficient. It can be used to determine the quality of the prediction of the dependent variable (Laerd Statistics, 2018). Our first multiple linear regression model has a R value of 0.778 that indicates a good level of prediction. The R Square value is 0.605 which means that 60.5% of the variability of the dependent variable is explained by the chosen 8 independent variables.

ANOVA ^a										
	Model		Sum of Squares	df	Mean Square	F	Sig.			
	1	Regression	4777.234	8	597.154	96.306	.000 ^b			
ا.		Residual	3118.893	503	6.201					
		Total	7896.128	511						

a. Dependent Variable: Lifeexpectancy

Figure 2.7

The first multiple linear regression model predicts the dependent variable significantly. This is because the significant value in Figure 2.7 is less than 0.05.

b. Predictors: (Constant), SMEAN(Totalexpenditure), SMEAN(Population), percentageexpenditure, AdultMortality, SMEAN(Schooling), thinness59years, SMEAN (Incomecompositionofresources), SMEAN(GDP)

				Coefficie	ents ^a					
	Unstandardized Coefficients			Standardized Coefficients			95.0% Confidence Interval for B		Collinearity Statistics	
Model		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound	Tolerance	VIF
1	(Constant)	46.388	2.814		16.483	.000	40.859	51.917		
	AdultMortality	012	.003	126	-3.880	.000	018	006	.748	1.338
	percentageexpenditure	.000	.000	.196	3.448	.001	.000	.000	.243	4.114
	thinness59years	-1.337	.180	279	-7.439	.000	-1.690	984	.559	1.788
	SMEAN (Incomecompositionofres ources)	51.851	3.863	.657	13.422	.000	44.261	59.441	.328	3.052
	SMEAN(Schooling)	498	.099	203	-5.009	.000	693	302	.476	2.101
	SMEAN(GDP)	-4.360E-5	.000	220	-3.710	.000	.000	.000	.223	4.484
	SMEAN(Population)	1.514E-8	.000	.019	.655	.513	.000	.000	.945	1.058
	SMEAN(Totalexpenditure)	084	.052	050	-1.624	.105	185	.018	.825	1.212

Figure 2.8

The regression equation can be written as:

 \hat{Y} = 46.388 - 0.012 x1 - 1.337 x3 + 51.851 x4 - 0.498 x5 - 4.360E-5 x6 + 1.514E-8 x7 - 0.084 x8 From the 'Sig' column in Figure 2.8, we can see that 2 out of 8 independent variables are not significant in predicting the dependent variable. The not significant independent variables are 'Population' and 'Total expenditure'.

Second Model (Model C)

The second multiple linear regression model is the reduced model of our first model. Stepwise regression is a technique that uses an algorithm to perform a number of times of multiple regression by removing the weakest correlated variable each time. (ScaleStatistics.com, n.d.) We used it to choose the best combination of independent variables to predict the outcomes.

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.712ª	.507	.506	2.7636
2	.747 ^b	.558	.557	2.6178
3	.761°	.579	.577	2.5567
4	.768 ^d	.590	.587	2.5258
5	.771 ^e	.594	.590	2.5175

- a. Predictors: (Constant), SMEAN (Incomecompositionofresources)
- b. Predictors: (Constant), SMEAN (Incomecompositionofresources), thinness59years
- c. Predictors: (Constant), SMEAN (Incomecompositionofresources), thinness59years, SMEAN(Schooling)
- d. Predictors: (Constant), SMEAN (Incomecompositionofresources), thinness59years, SMEAN(Schooling), AdultMortality
- e. Predictors: (Constant), SMEAN (Incomecompositionofresources), thinness59years, SMEAN(Schooling), AdultMortality, SMEAN (Totalexpenditure)

Figure 2.9

From the figure above, we can see that the R Square and Adjusted R Square values are increasing when the independent variables increase. Therefore, our second model will be the final model in row five which consists of 5 independent variables. It has a R value of 0.771 that indicates a good level of prediction and a R Square value of 0.594 which means 59.4% of the variability of the dependent variable is explained by the 5 independent variables.

ANOVA^a Sum of Squares df Mean Square Sig. Model 5 4689.076 937.815 .000^f Regression 5 147.966 Residual 3207.052 506 6.338 Total 7896.128 511

Figure 2.10

The second multiple linear regression model predicts the dependent variable significantly. This is because the significant value in Figure 2.10 is less than 0.05.

		Coeff	icients ^a			
		Unstandardize	d Coefficients	Standardized Coefficients		
Model		B Std. Error		Beta	t	Sig.
5	(Constant)	47.540 2.668			17.821	.000
	SMEAN (Incomecompositionofres ources)	48.794	3.492	.618	13.975	.000
	thinness59years	-1.358	.181	283	-7.489	.000
	SMEAN(Schooling)	411	.096	168	-4.262	.000
	AdultMortality	011	.003	123	-3.763	.000
	SMEAN(Totalexpenditure)	108	.052	064	-2.084	.038

a. Dependent Variable: Lifeexpectancy

Figure 2.11

The regression equation can be written as:

$$\hat{Y}$$
= 47.540 + 48.794 x1 - 1.358 x2 - 0.411 x3 - 0.011 x4 - 0.108 x5

From the 'Sig' column in Figure 2.11, we can see that all the independent variables are significant in predicting the dependent variable.

f. Predictors: (Constant), SMEAN(Incomecompositionofresources), thinness59years, SMEAN(Schooling), AdultMortality, SMEAN(Totalexpenditure)

Excluded Variables

Model	I	Beta In	t	Sig.	Partial Correlation	Collinearity Statistics Tolerance
5	percentageexpenditure	.021 ^f	.661	.509	.029	.776
	SMEAN(GDP)	051 ^f	-1.511	.131	067	.716
	SMEAN(Population)	002 ^f	071	.943	003	.981

Predictors in the Model: (Constant), SMEAN(Incomecompositionofresources), thinness59years, SMEAN(Schooling), AdultMortality, SMEAN(Totalexpenditure)

Figure 2.12

These are the variables excluded from the final model when the system starts to test with stepwise regression. It is because the p - value of the independent variables in that model are greater than 0.05.

Question 3

In conclusion, we think that model B is the best model because the adjusted R - square value among these three models is the highest which is 0.599. Adjusted R square is mainly used to compare the goodness of fit for regression models that contain different numbers of independent variables. Besides, the R square value in model B also indicates that 60.5% of the variability of the dependent variable is explained by the chosen 8 independent variables. Thus, it indicates that the independent variables have a better fit in model B compared to the other models.

Question 4

By using mean value of x1 = 77, x2 = 2502.891616, x3 = 1.3, x4 = 0.853, x5 = 15.82, x6 = 21595.8638400, x7 = 4521699.17, x8 = 7.56, the 95% Prediction Interval of life expectancy is $74.30050 < Y^* < 84.09459$.

References

Choi S.W. (2009). "The Effect of Outliers on Regression Analysis: Regime Type and Foreign Direct Investment | Request PDF. [online] Available at: https://www.researchgate.net/publication/267025663 The Effect of Outliers on Regression A nalysis Regime Type and Foreign Direct Investment

Frost, J. (n.d.). *Multicollinearity in Regression Analysis: Problems, Detection, and Solutions*. Available at: https://statisticsbyjim.com/regression/multicollinearity-in-regression-analysis/

Laerd Statistics. (2018). *Linear Regression Analysis in SPSS Statistics - Procedure, Assumptions and Reporting the output*. [online] Laerd.com. Available at: https://statistics.laerd.com/spss-tutorials/linear-regression-using-spss-statistics.php

Laerd Statistics. (2018). *Multiple Linear Regression Analysis using SPSS Statistics*. Available at: https://statistics.laerd.com/spss-tutorials/multiple-regression-using-spss-statistics.php

Ratner, B. (2009). *The correlation coefficient: Its values range between* +1/-1, *or do they?*. [online] Available at: https://link.springer.com/article/10.1057/jt.2009.5

ScaleStatistics.com. (n.d.). *Use and Interpret Stepwise Regression in SPSS*. [online] Available at: https://www.scalestatistics.com/stepwise-regression.html

Utexas.edu. (2016). *Pearson Correlation and Linear Regression*. [online] Available at: http://sites.utexas.edu/sos/guided/inferential/numeric/bivariate/cor/