

Objectif:

Comparer deux approches différentes d'apprentissage de réseaux de neurones pour conclure quelle approche est supérieure dans le cas du jeu Snake.

		Approche 1	Approche 2	
\nearrow	Grandir le "snake" 10 fois			
	Gagnant de x itérations (/ 10 parties)			E
	Gagnant de y itérations (/ 10 parties)			
$\overline{\langle} \rangle$	Gagnant de z itérations (/ 10 parties)			->
	x < y < z			

Approche 1: Apprentissage par évolution (NEAT)

NEAT = NeuroEvolution of Augmenting Topologies

- Suivre l'historique des gènes
- Appliquer la spéciation
- Développement incrémental de la structure du réseau de neurones

pip install neat-python

Approche 2: Apprentissage par renforcement (Q Learning)

Q Learning = apprendre fonction Q* avec un réseau de neurones.

- Définir les récompenses
- Suivre une stratégie (π)
- Développement par ajustement de Q_π
 (s, a) et Q(s,a)

Choix des approches

Comparer deux implémentations du réseau de neurones artificiels:

- Un réseau évolutionnaire où le nombre de couche cachée et de noeud varie entre itérations
- Un réseau stable avec une structure prédéfinie qui varie seulement au niveau des poids

Résultats Préliminaires:

- Jeu "snake" fonctionnelle
- État "map" mise à jour dynamiquement
- Action "UP, DOWN, LEFT, RIGHT" disponible
- À faire: implémenter les librairies python

