Lecture 11: Convergence in probability

Ciaran Evans

Convergence in probability

Definition: A sequence of random variables $X_1, X_2, ...$ converges in probability to a random variable X if, for every $\varepsilon > 0$,

$$\lim_{n\to\infty} P(|X_n - X| \ge \varepsilon) = 0$$

Example

Let
$$U \sim Uniform(0,1)$$
, and let $X_n = \sqrt{n} \mathbb{I}\{U \leq 1/n\}$.
Then $X_n \stackrel{P}{\rightarrow} 0$.
 $\forall x \in \mathbb{I}$ $\forall x \in \mathbb{I}$

Weak Law of Large Numbers (WLLN)

04 P((Xn-112E) 4 022

=> P((X,-11)= >> 0 as ~>0

Theorem: Let $X_1, X_2, ...$ be iid random variables with $\mathbb{E}[X_i] = \mu$

Theorem: Let
$$X_1, X_2, ...$$
 be iid random variables with $\mathbb{E}[X_i] = \mu$ and $Var(X_i) = \sigma^2 < \infty$. Then
$$\overline{X}_n \stackrel{p}{\to} \mu$$
Let $\Sigma > 0$ as $\Lambda \to \infty$ $\forall \Sigma > 0$ Let $\Sigma > 0$

$$\overline{X}_{n} \stackrel{P}{\rightarrow} \mu$$
Pf: wts $P(|\overline{X}_{n}-m| \geq \xi) \rightarrow 0$ as $n \rightarrow \infty$
Let $\xi \neq 0$

$$Var(\overline{X}_{n})$$
((hehrelet)

Pf: wts
$$P(|\overline{X}_n - n| \ge \xi) \Rightarrow 0$$
 as $n \Rightarrow \infty$
Let $\xi > 0$
 $0 = P(|\overline{X}_n - n| \ge \xi) \stackrel{L}{=} \frac{Var(\overline{X}_n)}{\xi^2}$ (Chebyshev)
 $Var(\overline{X}_n) = Var(\frac{1}{n} \stackrel{?}{\leq} X_i) = \frac{1}{n^2} Var(\frac{2}{n} X_i)$
 $= \frac{1}{n^2} \stackrel{?}{\leq} Var(X_i)$
 $= \frac{1}{n^2} \stackrel{?}{\leq} Var(X_i)$

Activity Part I

Conduct a simulation to see the WLLN in action:

 $https://sta711\text{-}s25.github.io/class_activities/ca_lecture_11.html$

Activity Part I

Another example

Suppose that $X_1, X_2, ... \stackrel{iid}{\sim} Uniform(0, 1)$, and let $X_{(n)} = \max\{X_1, ..., X_n\}$. Then $X_{(n)} \stackrel{p}{\rightarrow} 1$.

Activity Part II

Use a simulation to verify the Uniform example from the previous slide:

 $https://sta711-s25.github.io/class_activities/ca_lecture_11.html$