

FCC Test Report

(Co-Located)

Report No.: RF140224C17L-2

FCC ID: ZHV-DTAFA

Test Model: DTAFA

Received Date: Feb. 24, 2014

Test Date: May 06, 2016

Issued Date: May 09, 2016

Applicant: Riverbed Technology Inc.

Address: 680 Folsom Street San Francisco, California USA 94107

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan,

R.O.C.

Test Location: No. 19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City

33383, TAIWAN (R.O.C.)

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Report No.: RF140224C17L-2 Page No. 1 / 24 Report Format Version: 6.1.1 Reference No.: 160307C09

Table of Contents

R	Release	e Control Record	. 3
1	C	Certificate of Conformity	. 4
2	5	Summary of Test Results	. 5
	2.1 2.2	Measurement Uncertainty	
3	(General Information	. 6
	3.1 3.2 3.2.1 3.3 3.3.1 3.4	General Description of Applied Standards	. 8 10 11 11 12
4	1	Fest Types and Results	13
	4.1.3 4.1.4 4.1.5 4.1.6 4.1.7 4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6	Test Instruments Test Procedures Deviation from Test Standard Test Setup EUT Operating Conditions Test Results Conducted Emission Measurement	13 14 15 15 16 17 19 19 20 20 20
5	F	Pictures of Test Arrangements	23
Α	ppend	dix – Information on the Testing Laboratories	24

Release Control Record

Issue No.	Description	Date Issued
RF140224C17L-2	Original release	May 09, 2016

Page No. 3 / 24 Report Format Version: 6.1.1

Report No.: RF140224C17L-2 Reference No.: 160307C09

1 Certificate of Conformity

Product: Wireless a/b/g/n/AC Access Point

Brand: riverhed

Test Model: DTAFA

Sample Status: Engineering Sample

Applicant: Riverbed Technology Inc.

Test Date: May 06, 2016

Standards: 47 CFR FCC Part 15, Subpart C (Section 15.247)

47 CFR FCC Part 15, Subpart E (Section 15.407)

ANSI C63.10:2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by: Cline Chou, Date: May 09, 2016

Celine Chou / Specialist

Ken Liu / Senior Manager

2 Summary of Test Results

Applied Standard:	47 CFR FCC Part 15, Subpart C (Section 15.247) 47 CFR FCC Part 15, Subpart E (Section 15.407)			
FCC Clause	Test Item	Remarks		
15.207 15.407(b)(6)	AC Power Conducted Emission	Pass	Meet the requirement of limit. Minimum passing margin is -18.95dB at 0.51177MHz.	
15.205 / 15.209 / 15.247(d) 15.407(b) (1/2/3/4/6)	Radiated Emissions	Pass	Meet the requirement of limit. Minimum passing margin is -0.7dB at 2360.00MHz.	

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expended Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	2.44 dB
Padiated Emissions up to 1 CHz	30MHz ~ 200MHz	3.86 dB
Radiated Emissions up to 1 GHz	200MHz ~1000MHz	3.87 dB
Radiated Emissions above 1 GHz	1GHz ~ 18GHz	2.29 dB
Radiated Emissions above 1 GHZ	18GHz ~ 40GHz	2.29 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	Wireless a/b/g/n/AC Access Point
Brand	riverbed
Test Model	DTAFA
Status of EUT	Engineering Sample
D 0 1 D "	12Vdc from adapter
Power Supply Rating	48Vdc from POE
Madulatian Tons	CCK, DQPSK, DBPSK for DSSS
Modulation Type	256QAM, 64QAM, 16QAM, QPSK, BPSK for OFDM
Modulation Technology	DSSS, OFDM
	802.11b:11/5.5/2/1Mbps
Transfer Data	802.11a/g: 54/48/36/24/18/12/9/6Mbps
Transfer Rate	802.11n: up to 450.0Mbps
	802.11ac: up to 1299.9Mbps
Operating Frequency	2.4GHz: 2412 ~ 2462MHz
Operating Frequency	5.0GHz: 5180 ~ 5240MHz, 5745 ~ 5825MHz
	2412 ~ 2462MHz:
	11 for 802.11b, 802.11g, 802.11n (20MHz)
	7 for 802.11n (40MHz)
	5180 ~ 5240MHz:
	4 for 802.11a, 802.11n (20MHz), 802.11ac (20MHz)
Number of Channel	2 for 802.11n (40MHz), 802.11ac (40MHz)
	1 for 802.11ac (80MHz)
	5745 ~ 5825MHz:
	5 for 802.11a, 802.11n (20MHz), 802.11ac (20MHz)
	2 for 802.11n (40MHz), 802.11ac (40MHz)
	1 for 802.11ac (80MHz)
	2412 ~ 2462MHz: 739.930mW
Output Power	5180 ~ 5240MHz: 543.546mW
	5745 ~ 5825MHz: 312.173mW
Antenna Type	2.4GHz: PIFA antenna with 4.0dBi gain
,	5GHz: PIFA antenna with 5.0dBi gain
Antenna Connector	IPEX
Accessory Device	Adapter
Data Cable Supplied	NA

Note:

1. The EUT incorporates a MIMO function. Physically, the EUT provides 3 completed transmitters and 3 receivers.

Modulation Mode	TX Function
802.11b	3TX
802.11g	3TX
802.11a	3TX
802.11n (20MHz)	3TX
802.11n (40MHz)	3TX
802.11ac (20MHz)	3TX
802.11ac (40MHz)	3TX
802.11ac (80MHz)	3TX

2. The EUT consumes power from the following adapter & PoE.

Adapter		
Brand:	Powertron Electronics Corp.	
	PA1024-2HUB	
Model:	PA1024-2HU	
	PA1024-120HUB200	
Input:	100-240Vac, 50-60Hz, 0.6A	
Output:	12Vdc, 2.0A, 24W Max	
Power Line:	1.50m non-shielded cable with one core	

POE (Support units only)			
Brand:	EnGenius		
Model:	NPE-5818		
Output:	48Vdc, 0.5A		
Adapter for POE (Support u	Adapter for POE (Support units only)		
Brand:	Powertron Electronics Corp.		
Model:	PA1024-480DUB050		
Input:	100-240V~50-60Hz 0.6A		
Output:	48Vdc, 0.5A, 24W Max		
Power Line:	1.55m non-shielded cable without core		

3.2 Description of Test Modes

For 2.4GHz

11 channels are provided for 802.11b, 802.11g and 802.11n (20MHz):

Channel	Frequency	Channel	Frequency
1	2412MHz	7	2442MHz
2	2417MHz	8	2447MHz
3	2422MHz	9	2452MHz
4	2427MHz	10	2457MHz
5	2432MHz	11	2462MHz
6	2437MHz		

7 channels are provided for 802.11n (40MHz):

Channel	Frequency	Channel	Frequency
3	2422MHz	7	2442MHz
4	2427MHz	8	2447MHz
5	2432MHz	9	2452MHz
6	2437MHz		

For 5180 ~ 5240MHz

4 channels are provided for 802.11a, 802.11n (20MHz), 802.11ac (20MHz):

Channel	Frequency	Channel	Frequency
36	5180 MHz	44	5220 MHz
40	5200 MHz	48	5240 MHz

2 channels are provided for 802.11n (40MHz), 802.11ac (40MHz):

	, ,	· · · · · · · · · · · · · · · · · · ·	
Channel	Frequency	Channel	Frequency
38	5190 MHz	46	5230 MHz

1 channel is provided for 802.11ac (80MHz):

<u>'</u>	<u>'</u>
Channel	Frequency
42	5210MHz

For 5745 ~ 5825MHz:

5 channels are provided for 802.11a, 802.11n (20MHz), 802.11ac (20MHz):

Channel	Frequency	Channel	Frequency
149	5745MHz	161	5805MHz
153	5765MHz	165	5825MHz
157	5785MHz		

2 channels are provided for 802.11n (40MHz), 802.11ac (40MHz):

Channel	Frequency	Channel	Frequency
151 5755MHz		159	5795MHz

1 channel is provided for 802.11ac (80MHz):

Channel	Frequency
155	5775MHz

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT CONFIGURE		APPLICABLE TO		DESCRIPTION
MODE	RE≥1G	RE<1G PLC		DESCRIPTION
-	\checkmark	\checkmark	\checkmark	Power from PoE

Where **RE≥1G:** Radiated Emission above 1GHz &

RE<1G: Radiated Emission below 1GHz

Bandedge Measurement

PLC: Power Line Conducted Emission

Note: The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on **Z-plane**.

Radiated Emission Test (Above 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	SURE MODE FREQUENCY BAND AVAILABLE (MHz) CHANNEL			TESTED CHANNEL	MODULATION TECHNOLOGY
	802.11b	2412-2462	1 to 11	6	DSSS
-		5180-5240	36 to 48		
	802.11a	5745-5825	149 to 165	40	OFDM

Radiated Emission Test (Below 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	GURE MODE FREQUENCY BAND AVAILABLE (MHz) CHANNEL			TESTED CHANNEL	MODULATION TECHNOLOGY
	802.11b	2412-2462	1 to 11	6	DSSS
-		5180-5240	36 to 48	40	OFDM
	802.11a	5745-5825	149 to 165	40	

Power Line Conducted Emission Test:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	MODE	FREQUENCY BAND (MHz)	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY
	802.11b	2412-2462	1 to 11	6	DSSS
-	200 11	5180-5240	36 to 48	40	OFDM
	802.11a	5745-5825	149 to 165	40	

Report No.: RF140224C17L-2 Page No. 10 / 24 Report Format Version: 6.1.1

Test Condition:

APPLICABLE TO ENVIRONMENTAL CONDITIONS		INPUT POWER	TESTED BY
RE≥1G	20deg. C, 70%RH	48Vdc	Jones Chang
RE<1G	20deg. C, 70%RH	48Vdc	Jones Chang
PLC	20deg. C, 71%RH	48Vdc	Jones Chang

3.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α.	Notebook	DELL	E5410	1HC2XM1	FCC DoC Approved	-
B.	POE	EnGenius	NPE-5818	NA	NA	-
C.	Adapter	Powertron Electronics Corp.	PA1024-480DUB050	NA	NA	-

Note:

- 1. All power cords of the above support units are non-shielded (1.8m).
- 2. Items A acted as communication partners to transfer data.

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	LAN cable	1	10	N	0	-
2.	LAN cable	1	1.8	N	0	-
3.	DC power cable	1	1.55	N	0	-

3.3.1 Configuration of System under Test

Report No.: RF140224C17L-2 Page No. 11 / 24 Report Format Version: 6.1.1

3.4 General Description of Applied Standards

The EUT is a RF Product. According to the specification of the EUT declared by the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247) FCC Part 15, Subpart E (15.407)

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

Note: The EUT is also considered as a kind of computer peripheral, because the connection to computer is necessary for typical use. It has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (DoC). The test report has been issued separately.

Report No.: RF140224C17L-2 Page No. 12 / 24 Report Format Version: 6.1.1

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

po		
Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

Limits of Unwanted Emission Out of The Restricted Bands

Applicable To	Limit				
789033 D02 General UNII Test	Field Strei	ngth at 3m			
Procedures New Rules v01r02	PK:74 (dBµV/m)	AV:54 (dBμV/m)			
Applicable To	EIRP Limit	Equivalent Field Strength at 3m			
15.407(b)(1)					
15.407(b)(2)	PK: -27 (dBm/MHz)	PK: 68.2 (dBµV/m)			
15.407(b)(3)					
15.407(b)(4)	PK: -27 (dBm/MHz) ^{*1} PK: -17 (dBm/MHz) ^{*2}	PK: 68.2 (dBμV/m) ^{*1} PK: 78.2 (dBμV/m) ^{*2}			

NOTE: *1 beyond 10MHz of the band edge *2 within 10 MHz of band edge

The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$E = \frac{1000000 \sqrt{30P}}{3}$$
 µV/m, where P is the eirp (Watts).

Report No.: RF140224C17L-2 Page No. 13 / 24 Report Format Version: 6.1.1

4.1.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Test Receiver ROHDE & SCHWARZ	ESIB7	100187	Apr. 18, 2016	Apr. 17, 2017
Spectrum Analyzer ROHDE & SCHWARZ	FSP40	100041	Sep. 02, 2015	Sep. 01, 2016
BILOG Antenna SCHWARZBECK	VULB9168	9168-151	Jan. 07, 2016	Jan. 06, 2017
HORN Antenna SCHWARZBECK	9120D	209	Jan. 20, 2016	Jan. 19, 2017
HORN Antenna SCHWARZBECK	BBHA 9170	BBHA9170241	Jan. 18, 2016	Jan. 17, 2017
Preamplifier Agilent	8447D	2944A10738	Oct.18, 2015	Oct. 17, 2016
Preamplifier Agilent	8449B	3008A01964	Aug. 22, 2015	Aug. 21, 2016
RF signal cable HUBER+SUHNER	SUCOFLEX 104	Cable-CH3-03 (214378)	Aug. 22, 2015	Aug. 21, 2016
RF signal cable HUBER+SUHNER	SUCOFLEX 106	Cable-CH3-03 (309224+12738)	Aug. 22, 2015	Aug. 21, 2016
Software BV ADT	ADT_Radiated_ V7.6.15.9.4	NA	NA	NA
Antenna Tower inn-co GmbH	MA 4000	013303	NA	NA
Antenna Tower Controller BV ADT	AT100	AT93021702	NA	NA
Turn Table BV ADT	TT100	TT93021702	NA	NA
Turn Table Controller BV ADT	SC100	SC93021702	NA	NA
26GHz ~ 40GHz Amplifier	EM26400	815221	Oct. 18, 2015	Oct. 17, 2016

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Chamber 3.
- 3. The horn antenna and preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
- 4. The FCC Site Registration No. is 988962.
- 5. The IC Site Registration No. is IC 7450F-3.

4.1.3 Test Procedures

- a. The EUT was placed on the top of a rotating table 0.8 meters (for below 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for RMS Average (Duty cycle < 98%) for Average detection (AV) at frequency above 1GHz, then the measurement results was added to a correction factor (10 log(1/duty cycle)).
- 4. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 5. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 Deviation from Test Standard

No deviation.

Report No.: RF140224C17L-2 Page No. 15 / 24 Report Format Version: 6.1.1

4.1.5 Test Setup

<Frequency Range 30MHz~1GHz>

<Frequency Range above 1GHz>

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

- a. Placed the EUT on the testing table.
- b. Prepared notebook to act as communication partner and placed it outside of testing area.
- c. The communication partner connected with EUT via a RJ45 cable and ran a test program (provided by manufacturer) to enable EUT under transmission condition continuously at specific channel frequency.
- d. The communication partner sent data to EUT by command "PING".

4.1.7 Test Results

Above 1GHz Data:

802.11b + 802.11a

CHANNEL	CH 6 + CH 40	FUNDTION	Peak (PK) Average (AV)
FREQUENCY RANGE	1GHz ~ 40GHz		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	2360.00	62.2 PK	74.0	-11.8	1.17 H	227	29.50	32.70		
2	2360.00	47.7 AV	54.0	-6.3	1.17 H	227	15.00	32.70		
3	*2437.00	112.7 PK			1.55 H	169	79.80	32.90		
4	*2437.00	109.1 AV			1.55 H	169	76.20	32.90		
5	4874.00	49.0 PK	74.0	-25.0	1.60 H	278	43.00	6.00		
6	4874.00	35.9 AV	54.0	-18.1	1.60 H	278	29.90	6.00		
7	5150.00	61.0 PK	74.0	-13.0	1.54 H	66	55.00	6.00		
8	5150.00	47.5 AV	54.0	-6.5	1.54 H	66	41.50	6.00		
9	*5200.00	109.9 PK			2.04 H	187	70.40	39.50		
10	*5200.00	99.6 AV			2.04 H	187	60.10	39.50		
11	#10400.00	60.9 PK	74.0	-13.1	1.89 H	54	43.20	17.70		
12	#10400.00	48.2 AV	54.0	-5.8	1.89 H	54	30.50	17.70		
		ANTENNA	A POLARITY	/ & TEST DI	STANCE: V	ERTICAL AT	73 M			
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	2360.00	73.3 PK	74.0	-0.7	1.99 V	206	40.60	32.70		
2	2360.00	52.2 AV	54.0	-1.8	1.99 V	206	19.50	32.70		
3	*2437.00	124.5 PK			1.80 V	177	91.60	32.90		
4	*2437.00	120.1 AV			1.80 V	177	87.20	32.90		
5	4874.00	57.0 PK	74.0	-17.0	1.60 V	138	51.00	6.00		
6	4874.00	53.0 AV	54.0	-1.0	1.60 V	151	47.00	6.00		
7	5150.00	72.8 PK	74.0	-1.2	1.67 V	97	66.80	6.00		
8	5150.00	51.7 AV	54.0	-2.3	1.67 V	97	45.70	6.00		
9	*5200.00	126.4 PK			1.79 V	113	86.90	39.50		
10	*5200.00	116.4 AV			1.79 V	113	76.90	39.50		
11	#10400.00	63.2 PK	74.0	-10.8	1.84 V	198	45.50	17.70		
12	#10400.00	49.8 AV	54.0	-4.2	1.84 V	198	32.10	17.70		

Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. " # ": The radiated frequency is out of the restricted band.

Report No.: RF140224C17L-2 Reference No.: 160307C09 Page No. 17 / 24 Report Format Version: 6.1.1

Below 1GHz data

802.11b + 802.11a

CHANNEL	CH 6 + CH 40	DETECTOR FUNCTION	Quasi-Peak (QP)
FREQUENCY RANGE	30MHz ~ 1GHz		

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL A	AT 3 M				
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	57.12	32.0 QP	40.0	-8.0	2.00 H	87	46.60	-14.60			
2	181.55	31.7 QP	43.5	-11.8	2.00 H	146	47.10	-15.40			
3	403.20	33.2 QP	46.0	-12.8	1.00 H	346	43.40	-10.20			
4	500.42	31.2 QP	46.0	-14.8	1.50 H	104	39.40	-8.20			
5	751.23	32.9 QP	46.0	-13.1	1.00 H	181	35.70	-2.80			
6	850.30	41.8 QP	46.0	-4.2	2.01 H	241	43.00	-1.20			
		ANTENN	A POLARITY	/ & TEST DI	STANCE: V	ERTICAL AT	Г 3 M				
NO.	FREQ EMISSION LIMIT		MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)				
1	41.57	37.3 QP	40.0	-2.7	1.49 V	0	52.40	-15.10			
2	107.67	33.1 QP	43.5	-10.4	1.00 V	237	50.50	-17.40			
3	199.05	31.2 QP	43.5	-12.3	2.00 V	236	47.60	-16.40			
4	220.44	32.5 QP	46.0	-13.5	1.00 V	149	48.70	-16.20			
5	374.04	35.1 QP	46.0	-10.9	1.00 V	340	45.70	-10.60			
6	725.96	30.1 QP	46.0	-15.9	1.00 V	168	33.40	-3.30			

Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Frequency (MHz)	Conducted Limit (dBuV)				
Frequency (MHZ)	Quasi-peak	Average			
0.15 - 0.5	66 - 56	56 - 46			
0.50 - 5.0	56	46			
5.0 - 30.0	60	50			

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Test Receiver ROHDE & SCHWARZ	ESCI	100424	Oct. 12, 2015	Oct. 11, 2016
RF signal cable (with 10dB PAD) Woken	5D-FB	Cable-cond2-01	Dec. 26, 2015	Dec. 25, 2016
LISN ROHDE & SCHWARZ (EUT)	ESH2-Z5	100100	Jan. 11, 2016	Jan. 10, 2017
LISN ROHDE & SCHWARZ (Peripheral)	ESH3-Z5	100312	Jul. 21, 2015	Jul. 20, 2016
Software ADT	BV ADT_Cond_ V7.3.7.3	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Shielded Room 2.
- 3. The VCCI Site Registration No. is C-2047.

4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) were not recorded.

NOTE: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

Same as 4.1.6.

4.2.7 Test Results

802.11b + 802.11a

Phase	Line (L)	Detector Function	Quasi-Peak (QP) / Average (AV)
Channel	CH 6 + CH 40		

	Corr.		Reading Value		Emission Level		Limit		Ма	rgin	
No	Freq.	Factor	[dB	[dB (uV)]		[dB (uV)]		[dB (uV)]		(dB)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.15000	10.01	32.79	21.23	42.80	31.24	66.00	56.00	-23.20	-24.76	
2	0.16139	10.04	30.06	15.85	40.10	25.89	65.39	55.39	-25.29	-29.50	
3	0.20084	10.12	26.68	16.69	36.80	26.81	63.58	53.58	-26.78	-26.77	
4	0.51177	10.16	23.26	16.89	33.42	27.05	56.00	46.00	-22.58	-18.95	
5	3.16083	10.36	17.65	11.47	28.01	21.83	56.00	46.00	-27.99	-24.17	
6	19.98543	11.18	17.16	10.06	28.34	21.24	60.00	50.00	-31.66	-28.76	

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

Phase	Line (L)	LI Jefector Flinction	Quasi-Peak (QP) / Average (AV)
Channel	CH 6 + CH 40		

	Erog Corr.		Reading Value		Emission Level		Limit		Margin	
No	Freq.	Factor	[dB ((uV)]	[dB (uV)]		[dB (uV)]		(dB)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	10.00	32.05	19.40	42.05	29.40	66.00	56.00	-23.95	-26.60
2	0.20084	10.04	25.33	14.11	35.37	24.15	63.58	53.58	-28.21	-29.43
3	0.50581	10.16	21.19	14.96	31.35	25.12	56.00	46.00	-24.65	-20.88
4	1.04930	10.23	16.12	10.67	26.35	20.90	56.00	46.00	-29.65	-25.10
5	1.48382	10.25	17.09	11.73	27.34	21.98	56.00	46.00	-28.66	-24.02
6	19.24253	10.98	13.03	5.48	24.01	16.46	60.00	50.00	-35.99	-33.54

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

5 Pictures of Test Arrangements	
Please refer to the attached file (Test Setup Photo).	

Report No.: RF140224C17L-2 Page No. 23 / 24 Reference No.: 160307C09 Report Format Version: 6.1.1

Appendix - Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab

Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab

Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com
Web Site: www.bureauveritas.com

The address and road map of all our labs can be found in our web site also.

--- END ---

Report No.: RF140224C17L-2 Page No. 24 / 24 Report Format Version: 6.1.1