SEM para medición económica y social 2025-1

Dr. Héctor Nájera PUED-UNAM

¿Es relevante este curso para su carrera profesional/académica?

Los principios de la incertidumbre:

Stewart (2019) "The future is uncertain, but the science of uncertainty is the science of the future."

GOOGLE RESULTS FOR VARIOUS PHRASES:

Aceptar la incertidumbre es una condición necesaria del buen análisis estadístico

Cuantificarla es el siguiente gran paso.

¿Cuál es la incertidumbre asociada a los datos? ¿Incertidumbre respecto a qué?

POBLACIÓN DE 15 AÑOS Y MÁS SEGÚN CONDICIÓN DE ACTIVIDAD ECONÓMICA,
OCUPACIÓN, DISPONIBILIDAD PARA TRABAJAR Y SEXO

	Segundo	trimestre		Segundo trimestre			
Condición de actividad económica, ocupación, disponibilidad para trabajar y sexo	2022 ENOE ^N	2023 ENOE	Diferencias 2023-2022	2022 ENOE ^N	2023 ENOE	Diferencias 2023-2022	
	Absolutos			Relativos			
Población de 15 años y más	99 060 977	100 050 783	989 806	100.0	100.0		
Población económicamente activa (PEA) a/	59 338 419	60 216 432	878 013	59.9	60.2	0.3	
Ocupada b/	57 420 677	58 521 990	1 101 313	96.8	97.2	0.4	
Desocupada b/	1 917 742	1 694 442	-223 300	3.2	2.8	-0.4	
Población no económicamente activa (PNEA) a/	39 722 558	39 834 351	111 793	40.1	39.8	-0.3	
Disponible */ c/	7 459 918	5 178 139	-2 281 779	18.8	13.0	-5.8	
No disponible cl	32 262 640	34 656 212	2 393 572	81.2	87.0	5.8	
Hombres	46 636 973	46 931 627	294 654	100.0	100.0		
Población económicamente activa (PEA) a/	35 679 294	35 716 535	37 241	76.5	76.1	-0.4	
Ocupada b/	34 528 782	34 716 585	187 803	96.8	97.2	0.4	
Desocupada b/	1 150 512	999 950	-150 562	3.2	2.8	-0.4	
Población no económicamente activa (PNEA) a/	10 957 679	11 215 092	257 413	23.5	23.9	0.4	
Disponible */ c/	2 892 456	1 687 345	-1 205 111	26.4	15.0	-11.4	
No disponible c/	8 065 223	9 527 747	1 462 524	73.6	85.0	11.4	
Mujeres	52 424 004	53 119 156	695 152	100.0	100.0		
Población económicamente activa (PEA) a/	23 659 125	24 499 897	840 772	45.1	46.1	1.0	
Ocupada b/	22 891 895	23 805 405	913 510	96.8	97.2	0.4	
Desocupada b/	767 230	694 492	-72 738	3.2	2.8	-0.4	
Población no económicamente activa (PNEA) a/	28 764 879	28 619 259	-145 620	54.9	53.9	-1.0	
Disponible */ c/	4 567 462	3 490 794	-1 076 668	15.9	12.2	-3.7	
No disponible c/	24 197 417	25 128 465	931 048	84.1	87.8	3.7	

Para la Encuesta Nacional de Ocupación y Empleo, Nueva Edición (ENOE^N) del tercer trimestre de 2020 al segundo trimestre de 2022, en este rubro se clasificó a las personas ausentes temporales de una actividad u oficio y a las personas con necesidad o deseos de trabajar. A partir del tercer trimestre de 2022, dicho criterio adicional dejó de operar y se retomaron los criterios previos a la pandemia en la clasificación «PNEA disponible» y «PNEA no disponible» aplicados en la ENOE.

Fuente: INEGI

Valor relativo respecto a la población de 15 años y más

Valor relativo respecto a la Población Económicamente Activa (PEA)

Valor relativo respecto a la PNEA

¿Tratamiento suficiente de la incertidumbre?

I DON'T KNOW HOW TO PROPAGATE ERROR CORRECTLY, SO I JUST PUT ERROR BARS ON ALL MY ERROR BARS.

$$Y = \alpha + \beta_1 H + \beta_2 E + e$$

¿Qué inferencia hacemos si ocurre lo siguiente?

$$\beta_1 = 3 \text{ Cl } 95\% [2.8 - 3.2] \text{ p=.01}$$

Curso sobre incertidumbre y medición

Gelman et al., (2013) "Statistics is said to be the science of defaults. One of our challenges is to defaultize things."

No es un curso de recetas de cocina/estadística:

- Fórmula
- Receta y supuestos
- Interpretación

Proceso generativo de H

$$Y = \alpha + \beta_1 P + \beta_2 E + e$$

Noten que en realidad P viene de $\hat{\theta}$.

Noten que Y viene también de $\hat{\theta}_y$

Noten que E viene también de $\hat{\theta}_E$

$$Y = \alpha + \beta_1 H + \beta_2 E + e$$

¿Qué inferencia hacemos si ocurre lo siguiente?

$$\beta_1 = 3 \text{ CI } 95\% [2.8 - 3.2] \text{ p=.01}$$

"Inferencia no es el inverso del test de una hipótesis"

$$Y = \alpha + \beta_1 P + \beta_2 E + e$$

¿Qué hacer si P tiene alto error?

Noten que en realidad P viene de $\hat{\theta}$.

Noten que Y viene también de $\hat{\theta}_y$

Noten que E viene también de $\hat{\theta}_E$

¿Qué es medir?

¿Qué es medir?

Este curso se pregunta sobre el significado e implicaciones de la medición en ciencias, particularmente en la economía y en las ciencias sociales

También responde a la pregunta de cómo hacerlo desde el punto de vista de teorías y métodos para hacerlo

¿Cómo podemos hacer este tipo de inferencia?

Instrumentos. Con distintas fuentes de error.

Números y rankings

Rank	Bib Name	NOC Code		\bigstar		I	TT	\overline{M}	Total
1	164 UCHIMURA Kohei	JPN	15.100	15.066	15.333	16.266	15.325	15.600	92.690
2	144 NGUYEN Marcel	GER	15.300	13.666	15.366	15.666	15.833	15.200	91.031
3	213 LEYVA Danell	USA	15.366	13.500	14.733	15.566	15.833	15.700	90.698
4	201 KUKSENKOV Mykola	UKR	14.633	14.600	15.200	15.533	15.400	15.066	90.432
5	193 BELYAVSKIY David	RUS	14.466	14.866	14.833	16.200	15.166	14.766	90.297
6	162 TANAKA Kazuhito	JPN	14.166	13.433	15,200	15.533	15.500	15.575	89.407
7	134 THOMAS Kristian	GBR	15.566	14.566	14.633	14.908	14.733	15.000	89.406
8	215 OROZCO John	USA	15.433	12.566	15.200	15.900	15.266	14.966	89.331
9	113 GONZALEZ Fabian	ESP	14.600	14.733	13.966	16.133	14.400	15.166	88.998
10	251 SASAKI JUNIOR Sergio	BRA	14.233	14.366	14.233	16.100	15.200	14.833	88.965
11	205 VERNIAIEV Oleg	UKR	14.533	13.966	14.866	16.233	15.033	14.300	88.931
12	222 SHATILOV Alexander	ISR	15.600	14.266	14.200	15.133	14.400	14.833	88.432
13	132 PURVIS Daniel	GBR	15.166	14.266	14.800	16.000	13.600	14.500	88.332
14	194 GARIBOV Emin	RUS	14.475	14.233	14.866	14.833	15.366	14.233	88.006
15	142 HAMBUCHEN Fabian	GER	15.200	13.266	14.800	14.766	15.400	14.333	87.765
16	125 TOMMASONE Cyril	FRA	13.500	15.333	14.400	15.358	15.000	14.066	87.657
17		SUI	14.866	14.366	14.166	14.566	14.850	14.500	87.314
18	155 POZZO Enrico	ITA	14.700	13.900	14.000	15.466	14.533	14.433	87.032
19	227 JEFFERIS Joshua	AUS	14.066	13.533	14.800	15.433	14.900	14 133	86.865
20	174 KIM Soo Myun	KOR	12.266	13.700	14.200	16.000	14.641	14.966	85.773
21	254 VERBAEYS Jimmy	BEL	13.933	14.033	14.000	15.266	14.833	13.166	85.231
22	154 OTTAVI Paolo	ITA	12.466	14.033	15.016	15.000	14.100	14.033	84.648
23	112 GOMEZ FUERTES Javier	ESP	14.266	12.433	14.800	15.466	14.733	2.733	84.431
24	258 KULESZA Roman	POL	13.866	13.000	13.866	14.400	15.100	13.933	84.165

¿Qué significa estar 8 puntos abajo?

¿Qué nos permite hacer conclusiones sobre estos scores?

¿De verdad 2,766?

¿Números absolutos?

¿Víctima de homicidio doloso?

¿Víctima?

¿Homicidio doloso?

Números y rankings

No es muy distinto a lo que nos interesa hacer en distintas disciplinas

En qué términos A > B y por tanto debe entrar a la UNAM?

Score B

Score A

La medición está en el corazón de la ciencia

- Nos permite concluir si cierto tratamiento es útil para abatir una enfermedad
- Podemos afirmar si el clima está cambiando y si es producto de la actividad humana
- Que la tecnología funcione y se comporte como esperamos que lo haga
- Diagnóstico de anticuerpos
- Flora y fauna en expansión o extinción
- Registrar señales de que las cosas están cambiando o permanecen en su estado actual
- Clasificar a las personas que aprovecharán de mejor manera los recursos universitarios
- Identificar si alguien tiene depresión aguda
- Si existen desigualdades sociales

CONCEPTOS/Abstracciones

Expectativas racionales

Precariedad laboral

Bienestar económico Pobreza

Igualdad de oportunidades

Capital social

Desarrollo

Inversión social

Corrupción Inflación

Igualdad de género

Capital cultural Productividad

Pobreza multidimensional

Habilidad matemática

Bienestar social Desc

Desempleo

Clase social

Felicidad '

Informalidad

Calidad de un servicio

Inversión

Desarrollo

Preguntas

¿Cuál es la prevalencia de estos fenómenos?

¿Cuál es su distribución poblacional, territorial o temporal?

¿Cómo se relacionan unos fenómenos con otros?

¿Por qué el curso?

PUED

Algunos ejemplos

¿Cómo sé que el índice resultante sirve para los propósitos de mi investigación?

Muchas ideas y muchos indices

¿Bajo qué criterios sabemos que podemos usarlos?

¿QUÉ ES EL ÍNDICE DE REZAGO SOCIAL?

Índice de Desarrollo Social de la Ciudad de México por manzana, 2020

Índice de Bienestar Económico Sostenible (IBES) **INAE V**

Índice de progreso social

Economía

¿Cuál es la medida real de la informalidad?

Índice de Desarrollo Humano (IDH): qué « Social Welfare Index cómo se calcula

WELFARE INDEX PMI 2021

CORRUPTION PERCEPTIONS INDEX Hacia un nuevo sistema de indicadores de

bienestar

Mismo fenómeno diferentes resultados

Índice de Marginación

Fuente:

Elaboración propia con datos de:

Conapo. Índice de Marginación por entidad federativa y municipio 2010. México. 2011. Base electrónica de datos. Fecha de consulta: mayo de 2014. Índice de marginación (CONAPO, 2010)

¿Bajo qué criterios concluyo que los municipios en rojo tienen mayor marginación que los de color tenue?

¿Qué me dice que esas cinco categorías son la mejor manera de representar los datos?

¿Hay algún indicador del índice que explica la variabilidad observada?

¿Cuál es la relación entre el concepto de marginación y el mapa?

Índice de desarrollo humano

¿Bajo qué criterios puedo concluir que México, Chile, Argentina y Brasil tienen el mismo nivel de desarrollo humano?

¿El índice ordena lo que quiero que ordene (Mayor a menor desarrollo humano)?

Clasificación e inferencia

¿Qué me permite hacer inferencia sobre si la pobreza cayó, incrementó o se quedó igual?

¿Qué me permite hacer conclusiones sobre el patrón/distribución de la pobreza?

Clasificación de poblaciones

Múltiples variables y relaciones

Muchas veces nos interesa saber si un fenómeno se relaciona con otro (signo y magnitud de la relación)

¿Cómo puedo confiar en esos coeficientes?

	Entry wage	10 years after	Entry wage	10 years after	Perceived
	secondary	secondary	tertiary	tertiary	returns to
	education	education	education	education	schooling
Female	-0.252**	-0.347***	-0.252***	-0.395***	0.136
	(0.083)	(0.089)	(0.076)	(0.080)	(0.096)
Age	0.059	0.119*	0.047	0.018	-0.041
	(0.056)	(0.059)	(0.055)	(0.052)	(0.066)
Immigrant	0.086	0.064	0.101	0.086	0.076
	(0.096)	(0.088)	(0.071)	(0.083)	(0.134)
Father's education	0.266	0.377**	0.441**	0.211	-0.231
low	(0.179)	(0.142)	(0.162)	(0.147)	(0.329)
Father's education	0.189**	0.164*	-0.017	-0.044	-0.177
medium	(0.072)	(0.068)	(0.071)	(0.072)	(0.118)
Mother's education	-0.032	-0.159	-0.132	-0.189	0.240
low	(0.122)	(0.149)	(0.133)	(0.167)	(0.279)
Mother's education	0.051	0.113	0.121	0.008	0.058
medium	(0.067)	(0.067)	(0.067)	(0.070)	(0.105)
Not proceeding to	-0.065	-0.048	-0.198**	-0.178*	-0.542***
University	(0.097)	(0.103)	(0.076)	(0.078)	(0.115)
Next-to-last year	0.115	0.106	0.090	-0.009	-0.189
students	(0.096)	(0.103)	(0.105)	(0.101)	(0.108)
Probability of	-0.007**	-0.007**	-0.001	-0.001	0.006
completion	(0.002)	(0.002)	(0.002)	(0.002)	(0.004)
Constant	7.025***	7.214***	7.296***	8.112***	3.222***
	(0.440)	(0.460)	(0.432)	(0.431)	(0.570)
R2	0.055	0.078	0.042	0.061	0.070

Muchos datos no implica mejor medición

<u>PUED</u>

Depende qué hago con los datos para vincularlos al espacio de teorías y conceptos.

Pero es ciencias sociales...

SEM y medición socioeconómica

Andrew Gelman: ¿Qué tema en estadística está ausente en la mayoría de los textos?

Variación, comparación o medición

La mayoría de los textos en estadística cubren análisis de datos y muestreo, pero raramente lo integran con medición

SEM es, probablemente, el mejor marco analítico para estimar el error de medición socio-económica.

SEM

- Structural Equation Modelling
- Más de 100 años de constante evolución que han dado origen a un marco unificado con modelos no excluyentes sino complementarios:
 - Análisis factorial
 - Modelos de senderos
 - Modelos de ecuaciones múltiples
 - Modelos anidados o multinivel
 - SEM trabaja con modelos generativos (a la Bayes)

Social Science Research

Fifty years of structural equation modeling: A history of generalization, unification, and diffusion ☆

Kenneth A. Bollen ^a № ™, Zachary Fisher ^b, Adam Lilly ^c, Christopher Brehm ^c, Lan Luo ^d,

Alejandro Martinez ^d, Ai Ye ^d

Show more ✓

+ Add to Mendeley 🗠 Share 🗦 Cite

https://doi.org/10.1016/j.ssresearch.2022.102769 7

Get rights and content >

SEM

- Ecuaciones estructurales ha formado parte de los cursos básicos en psicometría y sociología desde hace unos 20 años
- Los programas fundamentales de posgrado en ciencias médicas y ciencias sociales suelen tener al menos una clase de SEM
- Recientemente en Reino Unido y en EUA se ha incorporado SEM a los cursos de economía
- Variables latentes suele ser el nombre con el que se identifica en econometría
- Quizá la fusión más importante en la historia de la estadística es la de variables latentes con inferencia bayesiana

SEM

SEM trabaja con variables "observables" y "inobservables".

Esto permite convertir supuestos clásicos inescrutables en hipótesis empíricas vía parámetros

Por ejemplo, el error de medición

Objetivo

Desarrollar las capacidades críticas y analíticas de los estudiantes para la producción y escrutinio de índices sociales e indicadores económicos.

Expectativas del curso

Al final del curso la es que los alumnos sean capaces de:

Entender por qué es importante trabajar con medidas falsables en ciencias sociales Identificar la diferencia entre distintas tradiciones en medición

Comprender por qué la medición basada en modelos (teórico-estadísticos) es la mejor manera de abordar el problema en cuestión

Distinguir entre un método de agregación y una metodología de escrutinio empírico

Comprender las implicaciones de una mala medición en estadística inferencial

Apreciar la relevancia de la teoría de la medida para producir y examinar índices sociales

Comprender los vínculos entre la teoría de la medida, variables latentes y ecuaciones estructurales Entender por qué los principios de confiabilidad y validez son una necesidad necesaria para una calidad mínima de medición

Implementar análisis de *ecuaciones estructurales* de confiabilidad y validez usando: **R-software** Interpretar los resultados de los análisis de una forma crítica Identificar los usos apropiados e inapropiados de ecuaciones estructurales

Plan de trabajo

- 1. Observación, medición y error
 - Qué es medir y qué es error de medición
- 2. Principios de medición
 - Error de medición, su historia y estimación
- 3. Principios de medición: Confiabilidad
 - Conceptos y métodos de cálculo
 - Clásica y ecuaciones estructurales
- 4. Principios de medición: Validez
 - Conceptos y métodos de cálculo
 - Clásica y ecuaciones estructurales
- 5. Ecuaciones estructurales para el análisis de datos
 - Modelos de relaciones múltiples (Path analysis)
 - Modelos de clasificación (Latent Class)
 - Modelos multinivel

Características de las sesiones

- Las sesiones combinan discusión, teoría y aplicación con el programa R.
- Los docentes impartirán cada sesión (prepararán un archivo.ppt) y se dedicará siempre un espacio para discusión, ejercicios en grupo y/o implementación de análisis usando el programa R.

Bibliografía básica

Evaluación

Dos ejercicios:

1. Ejercicio sobre confiabilidad con SEM (50%)

2. Ejercicio sobre validez con SEM (50%)

Materiales

• Github:

https://github.com/hectornajera83/SEM2025I

Próxima clase

Lecturas para la siguiente sesión

- Esencial
 - Fry, Hanna 2021. What data can't do. The New Yorker: https://www.newyorker.com/magazine/2021/03/29/what-data-cant-do
 - Loken, E., & Gelman, A. (2017). Measurement error and the replication crisis. *Science*, 355(6325), 584-585.

CONTACTO

Dr. Héctor Nájera Investigador (SNI-II)

Programa Universitario de Estudios del Desarrollo (PUED)

Universidad Nacional Autónoma de México (UNAM)

Campus Central, Ciudad Universitaria, Ciudad de México, México.

Tel. (+52) 55 5623 0222, Ext. 82613 y 82616

Tel. (+52) 55 5622 0889

Email: hector.najera@comunidad.unam.mx

