多様体の基本群は高々可算である

@mikecat1024

タイトル通りのことを示します. 間違いなどがあれば三毛猫 (@mikecat1024) まで教えていただけると嬉しいです。

定義 2.1 (多様体).

位相空間 M が Hausdorff かつ第二可算かつ座標近傍系をもつとき, M を多様体という.

補題 2.2.

n 次元多様体 M の可算開被覆 $\mathcal C$ で、任意の開集合 $U\in\mathcal C$ が $\mathbb R^n$ の開球と同相であるようなものが存在する. **証明.** M の座標近傍系を A とすれば、任意の $x\in M$ について、x のある座標近傍(U,ϕ) \in A が存在する. また、 $U':=\phi(U)\subset\mathbb R^n$ は開集合であるから、ある $\delta>0$ が存在し、 $x':=\phi(x)$ を中心とする半径 δ の開 球 $B'_\delta(x')$ で $B'_\delta(x')$ $\subset U'$ となるようなものが存在する.ここで、 $\mathcal B=\{\phi^{-1}(B'_\delta(x'))\}_{x\in M}$ とすれば、これは M の開被覆であり、M は第二可算なので Lindelöf 性からその可算部分開被覆 $\mathcal B_0$ が存在し、 ϕ は同相なので $\mathcal C=\mathcal B_0$ とすれば条件を満たす.

補題 2.3.

可分な局所連結空間 X の連結成分 $\pi_0(X)$ は高々可算である.

証明. X の稠密な可算部分集合を X_0 とすれば、局所連結空間の連結成分は開集合なので、任意の $C \in \pi_0(X)$ について、 $C \cap X_0 \neq \emptyset$ である. C に対して、適当な $x_C \in C \cap X_0$ を対応させるような写像を f とすれば、

$$f:\pi_0(X)\ni C\mapsto x_C\in X_0$$

が定まるが, $\pi_0(X)$ の異なる元は共通部分を持たないので f は可算集合への単射である. したがって $\pi_0(X)$ は高々可算である.

補題 2.4.

compact な距離空間 (X,d) について、その開被覆を A とすれば、ある $\epsilon>0$ が存在して X の半径 ϵ 以下の任意の部分集合はある $U\in A$ に含まれる.

証明. X は compact なので, A の有限部分開被覆 $\{A_1,\ldots,A_n\}$ が存在し, $f:X\to\mathbb{R}$ を

$$f(x) = \frac{1}{n} \sum_{i=1}^{n} d(x, A_i^c)$$

で定めれば、f は compact 空間上の実連続関数なので最小値 δ が存在する.ここで、 $\{A_1,\ldots,A_n\}$ は X の開被覆なので、 $\delta>0$ である.これより、 $x\in X$ を任意に固定すれば、 $f(x)\geq \delta$ が成り立つので、ある i が存在し

て $d(x,A_i^c) \geq \delta$ となる.これは x を中心とする半径 $\delta/2$ の球 $B_{\delta/2}(x)$ について $B_{\delta/2}(x) \subset A_i$ が成り立つことを示すので、 $\epsilon = \delta/2$ とすれば主張が従う.

定理 2.5.

多様体Mの基本群は高々可算である.

証明. 補題 2.2 の条件を満たす M の開被覆を A_0 とする. また, 各 $U, V \in A_0$ について, 補題 2.3 より $U \cap V$ の連結成分は高々可算である. ゆえに,

$$\mathcal{C}_0 = \bigcup_{U, V \in \mathcal{A}_0} \pi_0(U \cap V)$$

とすれば、 C_0 は高々可算になる。ここで、 $\varphi: C_0 \to M$ を $C_{U,V} \in \pi_0(U \cap V) \subset C_0$ に対して、適当な一つの点 $x_{U,V} \in C_{U,V}$ を対応させるような写像とする。このとき、 $R_0 := \{\varphi(C)\}_{C \in C_0}$ は高々可算集合である。ただし、 $b \in R_0$ としておく。さらに、

$$P_0 = \{h_{x,y} : x$$
 から y への $path \mid \exists U \in \mathcal{A}_0, x, y \in R_0 \cap U\}$

とすれば、 P_0 も高々可算となる.

以下, $b \in M$ を任意に固定し, $\pi_1(M,b)$ の任意の元 f が

$$H_0 := \{h_{x_1,y_1}h_{x_2,y_2}\cdots h_{x_n,y_n} \mid n \in \mathbb{N}, h_{x_i,y_i} \in P_0\}$$

の元と homotopic であることを示せば十分である.実際, P_0 が高々可算であることから H_0 も高々可算なので, $\pi_1(M,b)$ が高々可算であることが従う.今, A_0 は M の開被覆なので, $\{f^{-1}(U)\}_{U\in\mathcal{A}_0}$ は f の定義域 [0,1] の開被覆である.[0,1] は compact なので, A_0 の有限部分集合 A_{-1} で, $\{f^{-1}(U)\}_{U\in\mathcal{A}_{-1}}$ が [0,1] の開被覆となるようなものが存在する.ここで,補題 2.4 より,

$$0 = x_0 < x_1 < \dots < x_{n-1} < x_n = 1$$

なる有限個の数であって、すべての $1 \leq j \leq n$ についてある $U_j \in \mathcal{A}_{-1}$ が存在し、 $f([x_{j-1},x_j]) \subset U_j$ を満たすものが存在する.このとき、すべての $1 \leq i \leq n-1$ について、 $f(x_i) \in U_i \cap U_{i+1}$ が成り立つので、 R_0 の定義より、すべての $1 \leq i \leq n-1$ についてある $s_i \in R_0$ が存在して、 $f(x_i)$ と s_i は同じ連結成分に属するようなものが存在する.多様体においては連結と弧状連結は同値なので、 s_i から $f(x_i)$ への path が存在し、それを一つとって g_i と定める.ただし、 $g_0 = g_n = c_b$ と定めておく.また、

$$f_i(x) = f((x_i - x_{i-1})x + x_{i-1})$$

と定めれば, $f_i:[0,1]\to M$ は $f(x_{i-1})$ から $f(x_i)$ への path である. 以上より,

$$f \sim f_1 f_2 \cdots f_n$$

 $\sim g_0 f_1 g_1^{-1} g_1 f_2 \cdots g_{n-1}^{-1} g_{n-1} f_n g_n^{-1}$

が成り立つ. ただし, g_i^{-1} は基本群における g_i の逆元である. さらに, $1 \le i \le n-1$ について, $g_i f_{i+1} g_{i+1}^{-1}$ と $h_{s_i,s_{i+1}} \in P_0$ の始点と終点は等しく $s_i,s_{i+1} \in B_{i+1}$ であり, B_{i+1} は単連結なので $g_i f_{i+1} g_{i+1}^{-1} \sim h_{s_i,s_{i+1}}$ が成り立つ. したがって,

$$f \sim h_{b,s_1} h_{s_1,s_2} \cdots h_{s_{n-1},b} \in H_0$$

となるので, $\pi_1(M,b)$ は高々可算であることが従う.