# Wright-Fisher stochastic heat equations with irregular drifts

#### Zhenyao Sun

Beijing Institute of Technology

July, 2025

Joint work with Clayton Barnes (AWS) and Leonid Mytnik (Technion)

# Regularization by noise

• Consider the differential equation:

$$\begin{cases} \mathrm{d}X_t = b(X_t)\mathrm{d}t = |X_t|^\alpha \mathrm{d}t, \quad t>0, \\ X_0 = 0, \end{cases}$$

where  $\alpha \in (0,1)$ .

- The drift  $b(x) = |x|^{\alpha}$  is not Lipschitz at 0  $\implies$  non-uniqueness of the solutions.
- One solution  $X_t \equiv 0$ .
- The other solution  $X_t = C_{\alpha} t^{\frac{1}{1-\alpha}}, t \geq 0$ .

# Regularization by non-degenerate noise

Zvonkin (1974, Mat. Sb. (N.S.)), Veretennikov (1979, Mat. Sb. (N.S.))

Suppose that

- b is a bounded measurable function, and
- B is a Brownian motion,

then there exists a unique strong solution to the SDE

$$\begin{cases} \mathrm{d}X_t = b(X_t)\mathrm{d}t + \mathrm{d}B_t, & t > 0, \\ X_0 = x \in \mathbb{R}. \end{cases}$$

Zvonkin's transform is not available for SPDEs.

# Partial regularization effect by degenerate noise

- Uniqueness in law for one-dimensional SDE can be analyzed by Feller's test.
- For example, consider non-negative solutions to the SDE

$$\mathrm{d}X_t = b(X_t)\mathrm{d}t + \sqrt{2X_t}\mathrm{d}B_t; \quad X_0 = 0$$

where, with  $\alpha > 0$  and  $\beta > 0$ ,

$$b(x) := \int_e^\infty \frac{1 - e^{-xu}}{\alpha u (\log u)^{1+\beta}} du, \quad x \ge 0.$$

#### Clement (2019, Electron. J. Probab.)

- If  $\beta > 1$ , the uniqueness in law holds;
- If  $\beta = 1$  and  $\alpha \ge 1$ , the uniqueness in law holds;
- If  $\beta = 1$  and  $\alpha < 1$ , the uniqueness in law fails;
- If  $\beta$  < 1, the uniqueness in law fails.

# Regularization by multiplicative noise

• The shape of a "critical" drift b(x):



# Wright-Fisher Stochastic Heat Equations (Wright-Fisher SHE)

 Quasi-linear heat equation perturbed by the Wright-Fisher space-time white noise

$$\begin{cases} \partial_t u = \frac{\Delta}{2} u + b(u) + \sqrt{|u(1-u)|} \dot{W}, & x \in \mathbb{R}, t \ge 0, \\ u_0 = f, & x \in \mathbb{R}. \end{cases}$$

- $\dot{W}$  is the space-time white noise on  $\mathbb{R}_+ \times \mathbb{R}$ , i.e. a centered Gaussian process with  $\mathbb{E}[\dot{W}_t(x)\dot{W}_s(y)] = \delta_0(t-s)\delta_0(x-y)$ .
- The noise coefficient  $\sqrt{|u(1-u)|}$ 
  - is non-Lipshitz at u = 0 and u = 1; and
  - is degenerate at u = 0 and u = 1.
- Challenging open problems:
  - the strong uniqueness?
  - the solution theory in higher dimensions?
- Question: How strong is the regularization effect of the Wright-Fisher white noise?

#### Motivation

- Shiga (1988, Math. Appl.): Wright-Fisher SHE = scaling limit of "genetic stepping stone model."
  - $b(u) = c_1(1-u) c_2u + c_3u(1-u)$ .
  - $c_1 > 0$  and  $c_2 > 0$  are called the mutation rates.
  - $c_3 \in \mathbb{R}$  is called the selection rate.
- Mueller-Tribe (1995, Probab. Theory Related Fields), Durrett-Fan (2016, Ann. Appl. Probab.): Wright-Fisher SHE = scaling limit of (biased) voter model.
  - $b(u) = c_3 u(1-u)$ .
  - Unbiased  $\implies c_3 = 0$ .
- Brunet-Derrida (1997, Phys. Rev. E), Mueller-Mytnik-Quastel (2011, Invent. Math.): The Wright-Fisher SHE is the key to the proof of the Brunet-Derrida conjecture.

#### Weak existence

• Fix intitial value  $f \in \mathcal{C}(\mathbb{R},[0,1])$ .

#### Shiga (1994, Can. J. Math.)

If  $b(\cdot)$  is continuous and  $b(0) \ge 0 \ge b(1)$ , then the weak existence holds for the SPDE

(\*) 
$$\begin{cases} \partial_t u = \frac{\Delta}{2} u + b(u) + \sqrt{u(1-u)} \dot{W}, & x \in \mathbb{R}, t \ge 0, \\ u_0 = f, & x \in \mathbb{R}. \end{cases}$$

That is, there exists a filtered probability space  $(\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{P})$ , a space-times white noise  $\dot{W}$ , and an adapted continuous  $\mathcal{C}(\mathbb{R}, [0,1])$ -valued process  $(u_t)_{t\geq 0}$ , such that (\*) holds in an analytically weak sense.

• Question: What if  $b(\cdot)$  is discontinuous? Even the existence is not clear.

# **Uniqueness in law: Duality Method**

• uniqueness in law = the probability law induced by  $(u_t)_{t\geq 0}$  on the path sapce  $\mathcal{C}(\mathbb{R}_+,\mathcal{C}(\mathbb{R},[0,1]))$  is unique.

#### Shiga (1988, Math. Appl.)

The uniqueness in law of (\*) holds provided

$$b(u) = c_1(1-u) - c_2u + c_3u(1-u)$$
 where  $c_1 \ge 0, c_2 \ge 0$  and  $c_3 \in \mathbb{R}$ .

#### Athreya-Tribe (2000, Ann. Probab.)

The uniqueness in law of (\*) holds provided

$$b(u) = \sum_{k=0}^{\infty} b_k u^k$$
, and  $b_1 < -\sum_{k=0, k \neq 1}^{\infty} |b_k| R^{k-1}$  for some  $R > 1$ .

- Both Shiga (1988) and Athreya-Tribe (2000) used the duality method.
- The drifts are Lipshitz functions.

### Uniqueness in law: Girsanov transformation

#### Mueller-Mytnik-Ryzhik (2021, Comm. Math. Phys.)

The uniqueness in law holds provided b is continuous,

$$\sup_{u\in(0,1)}\frac{|b(u)|}{\sqrt{u(1-u)}}<\infty, \text{ and } f(x)=1-f(-x)=0 \text{ for large enough } x.$$

- When the red part holds, we say the initial value f has a compact interface.
- The main tool is Girsanov transformation.
- The drift can be a non-Lipshitz Hölder continuous function.

#### Main Result

• Recall the condition in Athreya-Tribe (2000):

$$b(u) = \sum_{k=0}^{\infty} b_k u^k$$
, and  $b_1 < -\sum_{k \in \{0\} \cup \mathbb{N} \setminus \{1\}} |b_k| R^{k-1}$  for some  $R > 1$ .

# Barnes-Mytnik-S. (2025+, to appear in Probab. Theory Related Fields)

The weak existence and uniqueness in law holds for (\*) provided

$$b(u) = \sum_{k \in \{0,\infty\} \cup \mathbb{N}} b_k u^k = \sum_{k=0}^{\infty} b_k u^k + b_{\infty} \mathbf{1}_{\{1\}}(u)$$

with 
$$b_1 \leq -\sum_{k \in \{0,\infty\} \cup \mathbb{N} \setminus \{1\}}^{\infty} |b_k| R^{k-1}$$
 for some  $R \geq 1$ .

### **Examples of Hölder drift**

Consider the Wright-Fisher SHE with Hölder continuous drift:

(2) 
$$\begin{cases} \partial_t u = \frac{\Delta}{2} u + u^{\alpha} (1 - u) + \sqrt{u(1 - u)} \dot{W}, & x \in \mathbb{R}, t \ge 0, \\ u_0 = f, & x \in \mathbb{R}. \end{cases}$$

| According to                 | uniqueness in law holds for (2) provided |  |  |
|------------------------------|------------------------------------------|--|--|
| Shiga (1988) or              | . 1                                      |  |  |
| Athreya-Tribe (2000)         | $\alpha = 1$                             |  |  |
| Mueller-Mytnik-Ryzhik (2021) | $lpha \in [rac{1}{2},1]$ and            |  |  |
|                              | f has compact interface                  |  |  |
| Barnes-Mytnik-S. (2025+)     | $\alpha \in (0,1]$                       |  |  |

This is expected, since the uniqueness in law holds for the SDE

$$\mathrm{d} X_t = X_t^{\alpha}(1-X_t)\mathrm{d} t + \sqrt{X_t(1-X_t)}\mathrm{d} B_t; \quad X_0 = x \in [0,1].$$

What if " $\alpha=0$ "? Pay attention that  $u^{\alpha}(1-u)$  converges to the discontinuous drift  $(1-u)-\mathbf{1}_{\{0\}}(u)$  when  $\alpha\downarrow 0$ .

#### Weak existence is non-trivial for discontinous drifts

- Denote by  $u^{(\alpha)}$  the solution to the SPDE (2) with parameter  $\alpha$ .
- It is standard to verify that the family of random elements  $\{u^{(\alpha)}: \alpha \in (0,1]\}$  is tight in the path space  $\mathcal{C}(\mathbb{R}_+, \mathcal{C}(\mathbb{R},[0,1]))$ .
- By Skorohod's embedding, we can assume WLOG that there exists a sequence  $\alpha_n \downarrow 0$  such that almost surely  $u := \lim_{n \to \infty} u^{(\alpha_n)}$  exists in  $\mathcal{C}(\mathbb{R}_+, \mathcal{C}(\mathbb{R}, [0, 1]))$ .
- However,  $z_n \to z$  in [0,1] does not necessarily imply that  $z_n^{\alpha_n} \to z^0 = \mathbf{1}_{(0,1]}(z)$ . For a counter example, consider  $z_n := \exp(-\frac{\log 2}{\alpha_n}) \to 0 =: z$ , but  $z_n^{\alpha_n} = \frac{1}{2} \not\to \mathbf{1}_{(0,1]}(z) = 0$ .
- So, from the standard "martingale problem argument", it is not clear if u solve the SPDE

$$\begin{cases} \partial_t u = \frac{\Delta}{2}u + (1-u) - \mathbf{1}_{\{0\}}(u) + \sqrt{u(1-u)}\dot{W}, & x \in \mathbb{R}, t \ge 0, \\ u_0 = f, & x \in \mathbb{R}. \end{cases}$$

# **Examples for discontinuous drifts**

Nevertheless, our result implies the following:

# Barnes-Mytnik-S. (2025+, to appear in Probab. Theory Related Fields)

For each  $\delta \in [-1,1]$ , the weak existence and uniqueness in law hold for the SPDE

(3) 
$$\begin{cases} \partial_t u = \frac{\Delta}{2} u + (1-u) + \delta \mathbf{1}_{\{0\}}(u) + \sqrt{u(1-u)} \dot{W}, & x \in \mathbb{R}, t \ge 0, \\ u_0 = f, & x \in \mathbb{R}. \end{cases}$$

We can also show that  $\delta$  is a relevant parameter!

# Barnes-Mytnik-S. (2025+, to appear in Probab. Theory Related Fields)

Suppose that  $f \not\equiv 1$ . The distributions of the solution to the SPDE (3) are different for each  $\delta \in [-1,1]$ .

### **Examples for discontinuous drifts**

This is drastically different from the SDE

(4) 
$$dX_t = [(1 - X_t) + \delta \mathbf{1}_{\{0\}}(X_t)]dt + \sqrt{X_t(1 - X_t)}dB_t.$$

where  $\delta$  is basically irrelevant.

#### Simple fact

When  $\delta=-1$ , the uniquess in law does not hold for the SDE (4). When  $\delta\in(-1.1]$ , the uniquess in law does hold, but the distributions of the solution to the SDE (4) are the same for different  $\delta\in(-1,1]$ .

**Insight**: The Wright-Fisher noise has a very different regularizing effect in the SPDE setting compared to the SDE setting!

#### Overview

Here is an overview of what we know about the 1-D SHE

$$\partial_t u_t = \frac{\Delta}{2} u_t + b(u) + \sigma(u) \dot{W}.$$

| $\sigma(u)$ $b(u)$                   | 0                    | Lipschitz                              | Hölder                                 | Discontinuous                          | Measurable                       |
|--------------------------------------|----------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------|
| deterministic: 0                     | well-posed           | well-posed                             | non-uniqueness<br>for some drift       | non-uniqueness<br>for some drift       | non-uniqueness<br>for some drift |
| additive: 1                          | well-posed           | well-posed                             | well-posed                             | well-posed                             | well-posed                       |
| Lipschitz<br>& non-degenerate        | well-posed           | well-posed                             | well-posed                             | well-posed                             | well-posed                       |
| 3/4-Hölder<br>& non-degenerate       | well-posed           | weakly<br>well-posed                   | weakly<br>well-posed                   | ?                                      | ?                                |
| Feller noise: $\sqrt{u}$             | weakly<br>well-posed | weakly<br>well-posed<br>for some drift | ?                                      | ?                                      | ?                                |
| Wright-Fisher noise: $\sqrt{u(1-u)}$ | weakly<br>well-posed | weakly<br>well-posed                   | weakly<br>well-posed<br>for some drift | weakly<br>well-posed<br>for some drift | ?                                |

## **Duality method**

• We say two Markov processes  $(X_t)_{t\geq 0}$  and  $(Y_t)_{t\geq 0}$  are dual to each other if there exists a large class of functions H(x,y) such that

$$\mathbb{E}[H(X_t, Y_0)] = \mathbb{E}[H(X_0, Y_t)].$$

- Bachelier (1900, Ann. Sci. École Norm. Sup.): Brownian motion and the heat equation  $\partial_t h = \frac{\Delta}{2}h$ .
- McKean (1975, Comm. Pure Appl. Math.): Branching Brownian motion and the FKPP equation  $\partial_t v = \frac{\Delta}{2}v + v(1-v)$ .
- Harris (1978, Ann. Probab.):
  Coalescing random walk and the voter model.
- Shiga (1986, Math. Appl.): LCBM and the stochastic FKPP equation  $\partial_t v = \frac{\Delta}{2} v + \sqrt{v(1-v)} \dot{W}$ .
- Tóth-Werner (1998, Probab. Theory Relat. Fields): (Hard) Coalescing Brownian motions and itself.
- **Folklore**: Stochastic heat equation  $\partial_t u = \frac{\Delta}{2} u + u \dot{W}$  and itself.
- . . .

#### The Dual of the Wright-Fisher SHEs

- The dual of Wright-Fisher SHEs are coalescing-branching Brownian motions (CBBMs).
- Two parameters:
  - Branching rate  $\mu > 0$ .
  - Offspring distribution  $(p_k)_{k \in \{0,\infty\} \cup \mathbb{N}}$ .
- Three dynamics:
  - Spatial movement: Particle move as independent Brownian motions.
  - Branching: Each particle branches into a random number of particles with the rate  $\mu$ . The offspring number is sampled according to the distribution  $(p_k)_{k \in \{0,\infty\} \cup \mathbb{N}}$ .
  - *Coalescing:* Each pair of particles coalesces as one particle with rate 1/2 according to their intersection local time.

# An illustration of the dual particle system



## **Explosion in CBBM**

 To build a duality relation between CBBMs and the Wright-Fisher SHEs, we take

$$\mu:=\sum_{k\in\{0,\infty\}\cup\mathbb{N}\setminus\{1\}}^\infty |b_k|$$

and  $p_1 := 0$ ,  $p_k := |b_k|/\mu$  for  $k \in \{0, \infty\} \cup \mathbb{N} \setminus \{1\}$ .

• The dynamic is well-defined up to the explosion time

$$au_{\infty} := \lim_{n \to \infty} \inf\{t \ge 0 : \# \mathsf{particles} \ge n\}.$$

- $(b_k)$  satisfies AT's condition  $\implies p_{\infty} = 0$  and  $(p_k)$  has exponential moment  $\implies \tau_{\infty} = \infty$  a.s.
- If AT's condition does not hold (especially when  $p_{\infty}=|b_{\infty}|/\mu>0$ ) the explosion might happen in finite time.
- The definition of the particle system needs more justification!

# Coming down from infinity

- A coalescing Brownian motion (CBM) is CBBM with  $p_1 = 1$ .
- Define CBM with infinitely many initial particles as the limit of a sequence of CBMs with finite initial particles.
- Denote by  $Z_t(A)$  the number of particles in a domain A at time t of a CBM with infinitely many initial particles, i.e.  $Z_0(\mathbb{R}) = \infty$ .

#### Barnes-Mytnik-S. (2024, Ann. Probab.)

The total population  $Z_t(\mathbb{R}) < \infty$  for every t > 0  $\iff Z_0(\cdot)$  is compactly supported.

Moreover, in this case

$$\left(\int v_t(x)\mathrm{d}x\right)^{-1}Z_t(\mathbb{R})\xrightarrow{L^1}1,\quad t\downarrow 0$$

where  $(v_t(x))_{t\geq 0,x\in\mathbb{R}}$  is the unique non-negative solution to the 1d PDE  $\partial_t v_t = \frac{\Delta}{2} v_t - v_t^2/2$  with initial value  $v_0 = Z_0$ .

# Reflecting from infinity

- Similarly, we can justify the definition of the CBBM for arbitrary offspring distribution (allowing  $p_{\infty} > 0$ ).
- It is defined as the limit of a sequence of CBBMs with truncated offspring distributions.
- Denote by  $X_t(\mathbb{R})$  the total population of a CBBM with arbitrary branching rate and arbitrary offspring distribution.

```
Barnes-Mytnik-S. (2025+, to appear in Probab. Theory Related Fields)
```

If  $X_0(\mathbb{R}) < \infty$ , then  $X_t(\mathbb{R})$  is "reflecting" from  $\infty$ .

• This "reflecting from infinity" property of the dual particle system is the key to the well-posedness of the corersponding SPDE.

Thanks!