Diskrete Strukturen Pflichtserie 11

Nikita Emanuel John Fehér, 3793479

17. Januar 2025 09:15-10:45 Dietzschold, Johannes

11.1

Sei $\phi: A \to B$ ein Homomorphismus zwischen kommutativen Gruppen. Sei $\ker(\phi) \subset A$ wie folgt definiert: $\ker(\phi) := \{x \in A : \phi(x) = 0_B\}$. Zeigen Sie dass $\ker(\phi)$ ist eine Untergruppe von A. (D.h. Sie müssen zeigen dass a) $0_A \in \ker(\phi)$, b) wenn $x \in \ker(\phi)$ dann auch $-x \in \ker(\phi)$, und c) wenn $x, y \in \ker(\phi)$ dann auch $x + y \in \ker(\phi)$. ($\ker(\phi)$ heißt auch "kern von ϕ ")

- a) Da ϕ Homomorphismus $\implies \phi(0_A) = 0_B$ $\implies 0_A \in \ker(\phi)$
- b) Angenommen $x \in \ker(\phi) \implies \phi(x) = 0_B$ Da ϕ Homomorphismus $\implies \phi(-x) = -\phi(x) = -0_B$ $\implies -x \in \ker(\phi)$
- c) Angenommen $x, y \in \ker(\phi) \implies \phi(x) = 0_B$ und $\phi(y) = 0_B$ Da ϕ Homomorphismus: $\phi(x+y) = \phi(x) + \phi(y) = 0_B + 0_B = 0_B$ $\implies x+y \in \ker(\phi)$

Da alle drei Bedingungen erfüllt sind gilt: $\ker(\phi)$ Untergruppe A