Análisis formal de complejidad para dijkstra_tiempo

Sean:

• $L = \text{MAX_LOCALIDADES}$ (número de localidades)

1. Planteamiento y desarrollo de T(L)

El algoritmo realiza:

- 1. Inicialización de un arreglo booleano y otro flotante de tamaño L: costo t_1+t_2L .
- 2. Un ciclo externo de L-1 iteraciones:
 - \bullet En cada iteración, un ciclo interno de L para buscar el nodo no visitado con menor distancia: t_3L
 - Si se encuentra u, se marca como visitado: t_4
 - Otro ciclo de L para actualizar distancias a vecinos: t_5L

La estructura es:

$$T(L) = t_1 + t_2 L + \sum_{i=0}^{L-2} [t_3 L + t_4 + t_5 L]$$

Resolviendo la sumatoria:

$$T(L) = t_1 + t_2L + (L-1)[t_3L + t_4 + t_5L]$$

$$T(L) = t_1 + t_2L + (L-1)t_3L + (L-1)t_4 + (L-1)t_5L$$

$$T(L) = t_1 + t_2L + (t_3 + t_5)L(L-1) + (L-1)t_4$$

Redefiniendo $c_1 = t_3 + t_5$, $c_2 = t_1 + t_2L + (L-1)t_4$:

$$T(L) = c_1 L(L-1) + c_2$$
$$T(L) = c_1 (L^2 - L) + c_2$$

Para cotas asintóticas, el término dominante es L^2 , así que:

$$T(L) \sim c_1 L^2$$
 cuando $L \to \infty$

2. Cotas de complejidad y comprobación con límites

Mejor caso: El algoritmo siempre recorre ambos ciclos internos completos (no depende de los datos). Así que:

$$T_m(L) = c_1 L^2 + c_2$$

Peor caso: Igual que el mejor caso, ya que la estructura de los ciclos no depende del grafo.

$$T_p(L) = c_1 L^2 + c_2$$

 ${\bf Caso}$ ${\bf promedio:}$ El costo también es idéntico (ya que todos los ciclos se recorren completos):

$$T_{pr}(L) = c_1 L^2 + c_2$$

Límites:

$$\lim_{L \to \infty} \frac{T(L)}{L^2} = c_1$$

Por lo tanto:

$$T(L) \in \mathcal{O}(L^2)$$

$$T(L) \in \Omega(L^2)$$

$$T(L) \in \Theta(L^2)$$

3. Resumen Final:

• Mejor caso: $\Theta(L^2)$

• Peor caso: $\Theta(L^2)$

• Caso promedio: $\Theta(L^2)$

Cada cota está verificada con límites al infinito, usando los nombres de variables reales del código.