

IN THE CLAIMS:

All pending claims and their present status are produced below.

1 1. (Currently Amended) A computer-implemented method for the real-time
2 tracking of goods in a supply chain, including:
3 affixing a tag to each good to be tracked and/or to each conveyance used to store or
4 carry the goods;
5 marking [[the]] a location of one of the goods at a data appliance and storing
6 information on said location at a site server coupled to said data appliance;
7 uploading said information to a data center, said data center coupled to said site server;
8 compensating for missing information by using a previous tag read and a current tag
9 read and
10 charging users of said supply chain a fee dependent on the number of tracked goods to
11 access said data center and view reports compiled using said location
12 information regarding each tracked good.

1 2. (Original) The method of claim 1, further including aggregating one or more
2 of said goods into a conveyance at a data point and wherein said marking includes indicating
3 an aggregation event occurred at said data point.

1 3. (Original) The method of claim 2, wherein said marking further includes
2 performing aggregation-by-inference, wherein an aggregation event occurring at said location
3 for a conveyance automatically indicates that said conveyance has been completely filled with
4 items.

1 4. (Original) The method of claim 2, further including performing de-
2 aggregation-by-inference at a second data point, wherein a de-aggregation event indicating
3 that all items have been removed from said conveyance is generated.

1 5. (Original) The method of claim 1, wherein said tag affixed to said one of the
2 goods is a Radio Frequency Identification (RFID) tag and said marking includes scanning said
3 tag affixed to said one of the goods using an RFID reader.

1 6. (Original) The method of claim 1, wherein said one of the goods is stored in
2 one of said conveyances, and said marking includes scanning said tag affixed to said one of
3 said conveyances using a reader.

1 7. (Original) The method of claim 1, wherein said marking includes scanning a
2 tag using a tag reader.

1 8. (Previously Presented) The method of claim 7, wherein said tag reader is
2 coupled to a data appliance.

1 9. (Previously Presented) The method of claim 7, wherein said tag reader is part
2 of a data appliance.

1 10. (Original) The method of claim 1, wherein said marking includes tracking said
2 one of the goods using global positioning satellite (GPS) technology.

1 11. (Original) The method of claim 1, wherein said storing utilizes the Universal
2 Data Appliance Protocol (UDAP) to communicate said location information from said data
3 appliance to said site server.

1 12. (Previously Presented) The method of claim 1, further including accessing
2 said data center and viewing said reports.

1 13. (Original) The method of claim 1, further including aggregating a good into a
2 conveyance when said good is loaded into said conveyance and de-aggregating said good
3 from said conveyance when said good is unloaded from said conveyance.

1 14. (Cancelled)

1 15. (Previously Presented) The method of claim 1, wherein said compensating
2 includes detecting that a missing tag read occurred by learning that a tag read was made on
3 said good at a first location and at a third location, but not at a second location, wherein said
4 good could not arrive at said third location without first passing through said second location.

1 16. (Original) The method of claim 1, further including filtering out any
2 duplicative tag reads.

1 17. (Currently Amended) A computer-implemented method for the real-time
2 tracking of goods in a supply chain, including:
3 affixing a tag to each good to be tracked and/or to each conveyance used to store or
4 carry the goods;
5 marking [[the]] a location of one of the goods at a data appliance and storing
6 information on said location at a site server coupled to said data appliance;
7 uploading said location information to a data center, said data center coupled to said
8 site server;
9 compensating for missing information by using a previous tag read and a current tag
10 read and
11 charging users of said supply chain a fee per transaction to access said data center and
12 view information regarding each tracked good, each transaction including a
13 single tag read.

1 18. (Original) The method of claim 17, further including aggregating one or more
2 of said goods into a conveyance at a data point and wherein said marking includes indicating
3 an aggregation event occurred at said data point.

1 19. (Original) The method of claim 18, wherein said marking further includes
2 performing aggregation-by-inference, wherein an aggregation event occurring at said location
3 for a conveyance automatically indicates that said conveyance has been completely filled with
4 items.

1 20. (Original) The method of claim 18, further including de-aggregation-by-
2 inference at a second data point, wherein a de-aggregation event indicating that all items have
3 been removed from said conveyance is generated.

1 21. (Original) The method of claim 17, wherein said tag affixed to said one of the
2 goods is a Radio Frequency Identification (RFID) tag and said marking includes scanning said
3 tag affixed to said one of the goods using an RFID reader.

1 22. (Original) The method of claim 17, wherein said one of the goods is stored in
2 one of said conveyances, and said marking includes scanning said tag affixed to said one of
3 said conveyances using a reader.

1 23. (Original) The method of claim 17, wherein said marking includes scanning a
2 tag using a tag reader.

1 24. (Previously Presented) The method of claim 23, wherein said tag reader is
2 coupled to said data appliance.

1 25. (Previously Presented) The method of claim 23, wherein said tag reader is part
2 of said data appliance.

1 26. (Original) The method of claim 17, wherein said marking includes tracking
2 said one of the goods using global positioning satellite (GPS) technology.

1 27. (Original) The method of claim 17, wherein said storing utilizes the Universal
2 Data Appliance Protocol (UDAP) to communicate location information from said data
3 appliance to said site server.

1 28. (Previously Presented) The method of claim 17, further including said
2 accessing said data center and viewing reports.

1 29. (Original) The method of claim 17, further including aggregating a good into a
2 conveyance when said good is loaded into said conveyance and de-aggregating said good
3 from said conveyance when said good is unloaded from said conveyance.

1 30. (Canceled)

1 31. (Previously Presented) The method of claim 17, wherein said compensating
2 includes detecting that a missing tag read occurred by learning that a tag read was made on
3 said good at a first location and at a third location, but not at a second location, wherein said
4 good could not arrive at said third location without first passing through said second location.

1 32. (Original) The method of claim 29, further including filtering out any
2 duplicative tag reads.

1 33. (Previously Presented) A system for real-time tracking of goods in a supply
2 chain, including:
3 a data center comprising compensation logic;

4 one or more site servers coupled to said data center;
5 one or more data appliances, each of said data appliances coupled to one of said site
6 servers; and
7 one or more tags, each of said tags affixed to a good or conveyance in a way such that
8 they are readable by tag reader coupled to or part of said data appliances;
9 wherein said compensation logic compensates for missing information by using a
10 previous tag read and a current tag read, and users are charged a fee per good
11 tracked to access said data center and view reports compiled using location
12 information regarding each tracked good.

1 34. (Previously Presented) The system of claim 33, wherein said tags and tag
2 readers both utilize Radio Frequency Identification (RFID) technology.

1 35. (Original) The system of claim 33, further including an Intransit Data
2 Appliance (IDA) and an Enterprise Server, said Enterprise server coupled to said data center
3 and said IDA coupled to said Enterprise Server to transmit data on the location of a good or
4 conveyance using Global Positioning Satellite (GPS) technology.

1 36. (Previously Presented) A system for real-time tracking of goods in a supply
2 chain, including:

3 a data center comprising compensation logic;
4 one or more site servers coupled to said data center;
5 one or more data appliances, each of said data appliances coupled to one of said site
6 servers;
7 one or more tags, each of said tags affixed to a good or conveyance in a way such that
8 they are readable by tag reader coupled to or part of said data appliances,
9 wherein said compensation logic compensates for missing information by using a
10 previous tag read and a current tag read, and users are charged a fee per
11 transaction to access said data center and view reports compiled using location
12 information regarding each tracked good, each of said transactions including a
13 tag read.

1 37. (Previously Presented) The system of claim 36, wherein said tags and tag
2 readers both utilize Radio Frequency Identification (RFID) technology.

1 38. (Original) The system of claim 36, further including an Intransit Data
2 Appliance (IDA) and an Enterprise Server, said Enterprise server coupled to said data center
3 and said IDA coupled to said Enterprise Server to transmit data on the location of a good or
4 conveyance using Global Positioning Satellite (GPS) technology.

1 39. (Previously Presented) A system for real-time tracking of goods in a supply
2 chain, including:
3 a collaboration center;
4 one or more data centers comprising compensation logic, coupled to said collaboration
5 center;
6 one or more site servers coupled to said data center;
7 one or more data appliances, each of said data appliances coupled to one of said site
8 servers;
9 one or more tags, each of said tags affixed to a good or conveyance in a way such that
10 they are readable by tag reader coupled to or part of said data appliances,
11 wherein said compensation logic compensates for missing information by using a
12 previous tag read and a current tag read, and users are charged a fee per good
13 tracked to access said data center and view location information regarding each
14 tracked good.

1 40. (Previously Presented) The system of claim 39, wherein said tags and tag
2 readers both utilize Radio Frequency Identification (RFID) technology.

1 41. (Original) The system of claim 39, further including an Intransit Data
2 Appliance (IDA) and an Enterprise Server, said Enterprise server coupled to said data center
3 and said IDA coupled to said Enterprise Server to transmit data on the location of a good or
4 conveyance using Global Positioning Satellite (GPS) technology.

1 42. (Previously Presented) A system for real-time tracking of goods in a supply
2 chain, including:
3 a collaboration center;
4 one or more data centers comprising compensation logic, coupled to said collaboration
5 center;

6 one or more site servers coupled to said data center;
7 one or more data appliances, each of said data appliances coupled to one of said site
8 servers;
9 one or more tags, each of said tags affixed to a good or conveyance in a way such that
10 they are readable by tag reader coupled to or part of said data appliances,
11 wherein said compensation logic compensates for missing information by using a
12 previous tag read and a current tag read, and said users are charged a fee per
13 transaction to access said data center and view reports compiled using location
14 information regarding each tracked good, each of said transactions including a
15 tag read.

1 43. (Previously Presented) The system of claim 42, wherein said tags and tag
2 readers both utilize Radio Frequency Identification (RFID) technology.

1 44. (Original) The system of claim 42, further including an Intransit Data
2 Appliance (IDA) and an Enterprise Server, said Enterprise server coupled to said data center
3 and said IDA coupled to said Enterprise Server to transmit data on the location of a good or
4 conveyance using Global Positioning Satellite (GPS) technology.

1 45. (Currently Amended) A program storage device readable by a machine,
2 tangibly embodying a program of instructions executable by the machine to perform a method
3 for the real-time tracking of goods in a supply chain, the method including:
4 affixing a tag to each good to be tracked and/or to each conveyance used to store or
5 carry the goods;
6 marking [[the]] a location of one of the goods at a data appliance and storing
7 information on said location at a site server coupled to said data appliance;
8 uploading said location information to a data center, said data center coupled to said
9 site server;
10 compensating for missing information by using a previous tag read and a current tag
11 read; and
12 charging users of said supply chain a fee dependent on the number of tracked goods to
13 access said data center and view reports compiled using location information
14 regarding each tracked good.

1 46. (Currently Amended) A program storage device readable by a machine,
2 tangibly embodying a program of instructions executable by the machine to perform a method
3 for the real-time tracking of goods in a supply chain, the method including:

4 affixing a tag to each good to be tracked and/or to each conveyance used to store or

5 carry the goods;

6 marking [[the]] a location of one of the goods at a data appliance and storing

7 information on said location at a site server coupled to said data appliance;
8 uploading said information to a data center, said data center coupled to said site server;
9 compensating for missing information by using a previous tag read and a current tag
10 read; and

11 charging users of said supply chain a fee per transaction to access said data center and
12 view information regarding each tracked good, each transaction including a
13 single tag read.

1 47. (Previously Presented) The system of claim 33, wherein said site server is
2 configured to aggregate one or more of said goods into a conveyance at a data point and
3 indicate an aggregation event.

1 48. (Previously Presented) The system of claim 47, wherein said site server is
2 further configured to perform aggregation-by-inference, wherein an aggregation event
3 automatically indicates that said conveyance has been completely filled with items.

1 49. (Currently Amended) The method of claim 1, wherein said compensating
2 comprises compensating for missing information about a good by using aggregation
3 information derived from a previous tag read [[with]] and a current tag read to create a
4 missing tag read for the good.

1 50. (Previously Presented) The method of claim 1, wherein said compensating
2 comprises compensating for missing information about a second location by using location
3 information from a previous tag read at a first location with location information from a
4 current tag read at a third location to create a missing tag read for the good at the second
5 location.

1 51. (Previously presented) The method of claim 1, further comprising:
2 receiving the missing information subsequent to the compensating; and
3 replacing the compensated information with the missing information.