Values of $\int_{0}^{L} mMdx$

	Linear M diagrams				Parabolic M diagrams*		
M	M	M_0 L	M_1	$M_0 $ M_1	slope=0 M_1 $L/2$ $L/2$	slope=0 L	M_0 L M_1
m	LmM	<u>L</u> mM ₀	<u>L</u> mM ₁	$\frac{L}{2} m(M_0 + M_1)$	2 <u>L</u> mM ₁	$\frac{L}{3}mM_1$	$\frac{L}{3}m(2M_0+M_1)$
m_0	$\frac{L}{2}m_0M$	$\frac{L}{3}m_0M_0$	$\frac{L}{6} m_0 M_1$	$\frac{L}{6} m_0 \times \\ (2 \mathrm{M}_0 + M_1)$	$\frac{L}{3}m_0M_1$	$\frac{L}{12} m_0 M_1$	$rac{L}{12} m_0 imes \ (5 ext{M}_0 + M_1)$
L m_1	$\frac{L}{2}m_1M$	$\frac{L}{6} m_1 M_0$	$\frac{L}{3}m_1M_1$	$\frac{\underline{L}}{6} m_1 \times \\ (M_0 + 2M_1)$	$\frac{L}{3}m_1M_1$	$\frac{L}{4} m_1 M_1$	$\frac{L}{4} m_1 \times (M_0 + M_1)$
$m_0 \underbrace{ \qquad \qquad }_{L} m_1$	$\frac{L}{2}(m_0 + m_1)M$	$\frac{L}{6}(2m_0 + m_1) \times M_0$	$\frac{L}{6}(m_0 + 2m_1) \times M_1$	$\begin{aligned} & \frac{L}{6} \big[m_0 (2 \mathrm{M}_0 \! + \! M_1) \\ & + m_1 (M_0 \! + \! 2 \mathrm{M}_1) \big] \end{aligned}$	$\frac{L}{3}(m_0 + m_1)M_1$	$\frac{L}{12}(m_0 + 3m_1) \times M_1$	$\frac{L}{12} [m_0 (5M_0 + M_1) + 3m_1 (M_0 + M_1)]$

 \star - note: M_0 and M_1 are positive in the directions shown

Most general case:

