Departamento de Ciência de Computadores Modelos de Computação (CC1004)

FCUP 2020/21

duração: 2h

Exame (25.06.2021)

N.º	Nome
1.	Seja r a expressão regular $((1 + (0((1^*)1)))^*)$ sobre $\Sigma = \{0, 1\}$.
	Desenhe o diagrama de transição do AFND- ε que se obtém por aplicação do método de Thompson a r
—)	Justifique que $\mathcal{L}(r) = \mathcal{L}(s)$, para $s = ((1 + (01))^*)$.
_	
:)	Descreva informalmente $\mathcal{L}(r)$.
_	
۷.	Diga, justificando, se a gramática $\mathcal{G} = (\{A, B, C\}, \Sigma, P, C)$ com $\Sigma = \{0, 1\}$ e P dado por:
set.	$A \to 1A \mid 1$ $B \to 0A0 \mid 00$ $C \to AC \mid BC \mid 1$ á na forma normal de Chomsky (FNC) e, se não estiver, converta-a para FNC.
Joli	a na forma normal de enomisky (1110) e, se hao estiver, converta-a para 1110.

D	CC/FCUP -Modelos de Computação (CC1004) – Exame	25.06.2021
N.º	Nome	
3.	Considere novamente a gramática $\mathcal{G}=(\{A,B,C\},\Sigma,P,C)$, com $\Sigma=\{0,1\}$ e P dado $A \rightarrow 1A \mid 1$ $B \rightarrow 0A0 \mid 00$ $C \rightarrow AC \mid BC \mid 1$	
	Indique a forma das palavras w que satisfazem as condições indicadas: $A\Rightarrow_{\mathcal{G}}^n w, \text{ para } n\geq 1 \text{ fixo, e } w\in \Sigma^\star.$	
	• $B \Rightarrow_{\mathcal{G}}^{n} w$, para $n \ge 1$ fixo, e $w \in \{0, 1, A, B, C\}^{\star}$.	
	• $C \Rightarrow_{\mathcal{G}}^n w$, para $n \geq 1$ fixo, na derivação de w só se substituiu C 's, e $w \in \{0, 1, A, B, C\}$	<i>C</i> }*.
c)	Apresente uma expressão regular (abreviada) que descreva $w \in \mathcal{L}(\mathcal{G})$. Mostre que $0001101 \in \mathcal{L}(\mathcal{G})$ e $11111 \in \mathcal{L}(\mathcal{G})$, apresentando árvores de derivação . Se a sis do que uma árvore de derivação, deve indicar duas .	palavra admitir
d)	Averigue se $\mathcal G$ é ambígua e, se for, indique uma GIC não ambígua que gere $\mathcal L(\mathcal G)$. Justific	que.

N.T.O	
IN.	
_ ,,	

Nome

4. Seja \mathcal{A} o AFND representado pelo diagrama de transição seguinte, com $\Sigma = \{0, 1\}$.

ue:

a)	Indi	que	x	\in	Σ^{\star}	tal	q
- [,	r >	2 e	r	\subset	r(4)	

 $x \notin \mathcal{L}(\mathcal{A})$

Justifique o segundo caso.

b)	Converta ${\cal A}$ para um AFD, usando o método	base
ado	em subconjuntos. Não renomeie os estados.	

- **5.** Seja $L = \{x \mid x = \varepsilon \text{ ou } |x| \ge 2 \text{ e termina em 0}\}, \text{ com } \Sigma = \{0, 1\}.$
- a) Indique uma expressão regular (abreviada) que defina L.
- **b**) Desenhe o diagrama de transição de um AFD que aceite L.

T	TID . T			
Instificus que quelquen A	Lill arra coasta / tama m	ala manas data astad.	00 + 000	

c) Justifique que qualquer AFD que aceite L tem pelo menos dois estados finais.

6. Diga para que serve o algoritmo CYK. Explique de que modo explora o facto de a gramática estar na forma normal de Chomsky, para resolver corretamente o problema.

N.º	Nome
Re	onda a apenas a uma das alíneas da questão 7
7.	a $L = \{x \mid x \in \{0, 1\}^* \text{ e } x \text{ tem 10 como subpalavra ou tem mais 1's do que 0's} \}$
a) A	esente um autómato de pilha que reconheça L , com aceitação por pilha vazia . Indique a interpretação ados de modo que seja possível compreender a correção do autómato.
	aplicação teorema de Myhill-Nerode, averigue se existe um AFD que reconhece L e, se existir, ne o AFD mínimo para L . Na justificação da resposta, deve usar a relação R_L .
do l	ndo diretamente o lema da repetição para linguagens regulares, prove que L não satisfaz a condição ou que L satisfaz a condição do lema. Diga ainda se L não satisfaz a condição do lema da repetição guagens independentes de contexto (justificando sucintamente).

DCC/FCUP -Modelos de Computação (CC1004) — Exame

25.06.2021