

for Board Examination

Time Allowed: 2 Hrs. Maximum Marks: 35
1. What type of hybridisation is involved for carbon in a carbonyl group?
2. Arrange the following compounds in the increasing order of boiling points:
$C_9H_5OC_9H_5$, C_4H_9COOH , C_4H_9OH (1
3. What is the name of the following reaction?
W NOT STANDARD
$RCOC1 + H_2 \xrightarrow{\text{anhyd. AlCl}_3} RCHO + HC1 $ (1
4. Complete the reaction:
$+ \text{HCN} \longrightarrow ?$ (1
5. Draw the structures of hex-2-en-4-ynoic acid.
6. How will you convert the following to benzoic acid?
(i) Ethylbenzene (ii) Bromobenzene. (2
7. Write the structures of the products formed by the aldol condensation of the following:
(i) 2-Methylpentanal (ii) Phenyl acetaldehyde. (2
8. Explain the following:
(i) Benzoic acid is stronger acid than acetic acid.
(ii) Chloroacetic acid is stronger acid than acetic acid. (2
9. Write the names of the reagents to bring about the following conversions: (i) Ethane nitrile to ethanal (ii) p-Fluorotoluene to p-fluorobenzaldehyde (2)
(i) Ethane nitrile to ethanal (ii) p-Fluorotoluene to p-fluorobenzaldehyde (2) 10. There are two —NH ₂ groups in semicarbazide. However, only one is involved in the formation of semicarbazone. Give
reason. (2
11. Explain the following reactions by giving one example:
(i) Reosenmund reduction (ii) Cannizzaro's reaction (iii) Wolff Kishner reduction. (3
12. Complete the following reactions:
$(i) \qquad \begin{array}{c} & \xrightarrow{\text{H}_2\text{O, boil}} \\ & \xrightarrow{\text{Hydrolysis}} \end{array} \qquad \qquad (ii) \text{C}_6\text{H}_5\text{CHO} \xrightarrow{\text{H}_2\text{NCONHNH}_2} \rightarrow $
CHO Hydrolysis (II) 56155110
11 PV
$(iii) CH_3COCH_2COOC_2H_5 \xrightarrow{NaBH_4} \longrightarrow (3)$
13. Give one chemical test to distinguish between the following:
(i) Pentan-2-one and pentan-3-one (ii) Phenol and benzoic acid
(iii) Acetophenone and benzophenone
14. An organic compound (A) (molecular formula $C_8H_{16}O_2$) was hydrolysed with dilute sulphuric acid to give carboxylic acid (B)
and an alcohol (C). Oxidation of (C) with chromic acid produced (B). (C) on dehydration gives but-1-ene. Write equations for the reactions involved.
15. How will you convert acetic acid into:
(i) acetamide (ii) acetyl chloride (iii) ethyl acetate. (3)
A4600 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16. (a) An organic compound with the molecular formula C ₉ H ₁₀ O forms 2, 4-DNP derivative, reduces Tollen's reagent and undergoes Cannizzaro reaction. On vigorous oxidation, it gives 1,2-benzenedicarboxylic acid. Identify the compound.
(b) Arrange the following compounds in the increasing order of their reactivity in nucleophilic addition reaction:
Ethanal, propanal, propanone, butanone.

▶ To check your performance, see HINTS AND SOLUTIONS TO SOME QUESTIONS at the end of Part II of the book.

than benzoic acid. Explain.

(c) Although p-hydroxybenzoic acid is less acidic than benzoic acid, ortho hydroxybenzoic acid is about 15 times more acidic

(2,1,2)

UNIT 12: ALDEHYDES, KETONES AND CARBOXYLIC ACIDS

- 1. sp²
- 2. $C_2H_5 OC_2H_5 < C_4H_0OH < C_4H_0COOH$
- 3. Rosenmund's reaction

5. CH_o—C=C—CH=CH—COOH

6. (i)
$$KMnO_4, KOH \longrightarrow KMnO_4, KOH \longrightarrow Benzoic acid$$

7. (i)
$$\text{CH}_3$$
— $\text{CH}_2\text{CH}_2\text{CH}$ — CH_3 + $\text{CHCH}_2\text{CH}_2\text{CH}_3$ — dil. NaOH + $\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2$ — CH_3 — $\text{CH}_2\text{CH}_2\text{CH}_2$ — CH_3 — $\text{CH}_2\text{CH}_2\text{CH}_3$ — CH_3 — $\text{C$

3-Hydroxy-2, 4-diphenylbutanal

12.
$$(i)$$
 CHO $\xrightarrow{[Ag(NH_3)_2]^+}$ COO-

- (ii) $C_6H_5CHO \xrightarrow{H_2NCONHNH_2} C_6H_5CH=NNHCONH_2 + H_2O$
- 14. (i) Since the given compound on hydrolysis with dil. HSO₄ gives carboxylic acid (B) and an alcohol (C), it must be an ester.
 - (ii) Since the oxidation of alcohol (C) gives the acid B, therefore, both the carboxylic acid B and alcohol C must contain same number of C atoms.
 - (iii) Since ester (A) contains 8 carbon atoms, therefore, both carboxylic acid (B) and the alcohol (C) must contain 4 C atoms each.
 - (iv) Alcohol (C) on dehydration gives but-1-ene and therefore, C must be a straight chain alcohol i.e., butan-1-ol.
 - (v) (B) is obtained by the oxidation of (C) and therefore, B must be butanoic acid.

 This also suggests that the ester (A) must be butyl butanoate. The relevant reactions are:

$$\begin{array}{c} \text{CH}_{3}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{C} \\ \text{Butyl butanoate (A)} \\ \text{(M.F C}_{8}\text{H}_{16}\text{O}_{2}) \end{array} \\ \begin{array}{c} \text{dil. H}_{2}\text{SO}_{4} \\ \text{Hydrolysis} \end{array} \\ \text{Butanoic acid} \\ \text{Butanoic acid} \\ \text{(B)} \end{array} \\ \begin{array}{c} \text{CH}_{3}\text{CH}_{2}\text{CH}_$$

16. (a) The given compound forms 2,4-DNP derivative. Therefore, it is an aldehyde or ketone. Since it reduces Tollen's reagent, it must be an aldehyde. The compound undergoes Cannizzaro's reaction, so it does not contain a-hydrogen. On vigorous oxidation, it gives 1,2-benzenedicarboxylic acid, it means that it must be containing alkyl group at 2-position with respect to CHO group on the benzene ring.

(C)

The molecular formula suggests it should be
$$\begin{array}{c} \operatorname{CH_3} \\ \operatorname{CH_2CH_3} \\ \text{2-Ethylbenzaldehyde} \end{array}$$

$$\begin{array}{c} \text{COO}^-\\ \text{CH}_2\text{CH}_3\\ + \text{Ag} \underbrace{\begin{array}{c} \text{Tollen's reagent} \\ [\text{Ag}(\text{NH}_3)_2]^+\text{OH}^- \end{array}} \\ \text{Silver}\\ \text{mirror} \\ \\ \text{Silver}\\ \text{mirror} \\ \\ \text{NO}_2\\ \\ \text{CH}=\text{N NH}\\ \\ \text{NO}_2\\ \\ \text{CH}_2\text{CH}_3\\ \\ \text{O}\\ \\ \text{Vigorous} \\ \\ \text{I,2-Benzene dicarboxylic acid} \\ \\ \text{CH}=\text{N NH}\\ \\ \text{NO}_2\\ \\ \text{CH}_2\text{CH}_3\\ \\ \text{O}\\ \\ \text$$

 ${\it 2,4-DNP~derivative}$ $(b)~{\it butanone} < {\it Propanone} < {\it propanal} < {\it ethanal}$

(B)

(c) —OH group is electron releasing group and therefore, it increases the negative charge on the anion. As a result, p-hydroxy benzoic acid is less acidic than benzoic acid. However, o-hydroxy benzoic acid is more acidic than benzoic acid. The enhanced acidity of o-isomer is due to very effective intramolecular hydrogen bonding in the carboxylate ion. As a result, o-hydroxy benzoate ion is stabilized to a great extent and therefore, it makes o-isomer more acidic.

COOH
$$\rightarrow$$
 H+ +