УДК 512 (075.8) ББК 22.143 3 15

Авторский коллектив:

В. А. Артамонов, Ю. А. Бахтурин, Э. Б. Винберг, Е. С. Голод, В. А. Исковских, А. И. Кострикин, В. Н. Латышев, А. В. Михалев, А. П. Мишина, А. Ю. Ольшанский, А. А. Панчишкин, И. В. Проскуряков, А. Н. Рудаков, Л. А. Скорняков, А. Л. Шмелькин

Сборник задач по алгебре / Под ред. А.И. Кострикина: Учеб. пособ.: Для вузов. В 2 т. Т.2. / Ч. III. Основные алгебраические структуры. — М.: Φ ИЗМАТЛИТ, 2007. — 168 с. — ISBN 978-5-9221-0726-6.

Задачник составлен применительно к учебнику А.И. Кострикина «Введение в алгебру» (Т. 1. «Основы алгебры». Т. 2. «Линейная алгебра». Т. 3. «Основные структуры алгебры»).

Цель книги — обеспечить семинарские занятия сразу по двум обязательным курсам: «Высшая алгебра» и «Линейная алгебра и геометрия», а также предоставить студентам материал для самостоятельной работы.

Настоящее издание выходит в 2-х томах. В 1 том вошли «Основы алгебры» и «Линейная алгебра и геометрия». Второй том составляет часть III «Основные алгебраические структуры».

Для студентов первых двух курсов математических факультетов университетов и педагогических институтов.

Библиогр. 20 назв.

Учебное издание

СБОРНИК ЗАДАЧ ПО АЛГЕБРЕ

Том 2

Редактор *И.Л. Легостаева* Оригинал-макет: *И.В. Шутов*

Оформление переплета: А.Ю. Алехина

Подписано в печать 30.05.06. Формат $60 \times 90/16$. Бумага офсетная. Печать офсетная.

Усл. печ. л. 10,5. Уч.-изд. л. 12,5. Тираж 2000 экз. Заказ №

Издательская фирма «Физико-математическая литература»

МАИК «Наука/Интерпериодика»

117997, Москва, ул. Профсоюзная, 90 E-mail: fizmat@maik.ru, fmlsale@maik.ru;

http://www.fml.ru

Отпечатано с готовых диапозитивов

в ОАО «Ивановская областная типография» 153008, г. Иваново, ул. Типографская, 6

E-mail: 091-018@adminet.ivanovo.ru

ISBN 978-5-9221-0726-6

© ФИЗМАТЛИТ, 2007

© Коллектив авторов, 2007

ISBN 978-5-9221-0726-6

ОГЛАВЛЕНИЕ

III. Основные алгебраические структуры

Глава 13. Группы	6
§ 54. Алгебраические операции. Полугруппы	6
§ 55. Понятие группы. Изоморфизм групп	7
§ 56. Подгруппы, порядок элемента группы. Смежные классы	13
§ 57. Действие группы на множестве. Отношение сопряженности	18
§ 58. Гомоморфизмы и нормальные подгруппы. Факторгруппы, центр	24
§ 59. Силовские подгруппы. Группы малых порядков	29
§ 60. Прямые произведения и прямые суммы. Абелевы группы	31
§ 61. Порождающие элементы и определяющие соотношения	38
§ 62. Разрешимые группы	42
Глава 14. Кольца	46
§ 63. Кольца и алгебры	46
§ 64. Идеалы, гомоморфизмы, факторкольца	52
§ 65. Специальные классы алгебр	64
§ 66. Поля	69
§ 67. Расширения полей. Теория Галуа	74
§ 68. Конечные поля	86
Глава 15. Элементы теории представлений	90
§ 69. Представления групп. Основные понятия	90
§ 70. Представления конечных групп	95
§ 71. Групповые алгебры и модули над ними	101
§ 72. Характеры представлений	106
§ 73. Первоначальные сведения о представлениях непрерывных групп	112

Оглавление

ОТВЕТЫ И УКАЗАНИЯ	116
Приложение. Теоретические сведения	158
§ V. Элементы теории представлений	158
§ VI. Список определений	160
§ VII. Список обозначений	166

Часть III

ОСНОВНЫЕ АЛГЕБРАИЧЕСКИЕ СТРУКТУРЫ

Глава 13

ГРУППЫ

§ 54. Алгебраические операции. Полугруппы

54.1. Ассоциативна ли операция * на множестве M, если

- д) $M=\mathbb{Z},\quad x*y=x^2+y^2;$ e) $M=\mathbb{R},\quad x*y=\sin x\cdot\sin y;$
- ж) $M = \mathbb{R}^*, \quad x * y = x \cdot y^{x/|x|}$?
- **54.2.** Пусть S полугруппа матриц $\begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix}$, где $x, y \in \mathbb{R}$, с операцией умножения. Найти в этой полугруппе левые и правые нейтральные элементы, а также элементы, обратимые слева или справа относительно этих нейтральных.
- **54.3.** На множестве M определена операция \circ по правилу $x \circ y =$ = x. Доказать, что (M, \circ) — полугруппа. Что можно сказать о нейтральных и обратимых элементах этой полугруппы? В каких случаях она является группой?
- **54.4.** На множестве M^2 , где M некоторое множество, определена операция \circ по правилу $(x,y)\circ(z,t)=(x,t)$. Является ли M^2 полугруппой относительно этой операции? Существует ли в M^2 нейтральный элемент?
- 54.5. Сколько элементов содержит полугруппа, состоящая из всех степеней матрицы

$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
?

Является ли эта полугруппа группой?

- **54.6.** Доказать, что полугруппы $(2^M, \cup)$ и $(2^M, \cap)$ изоморфны.
- 54.7. Сколько существует неизоморфных между собой полугрупп порядка 2?

- **54.8.** Доказать, что во всякой конечной полугруппе найдется идемпотент.
- **54.9.** Полугруппа называется *моногенной*, если она состоит из положительных степеней одного из своих элементов (такой элемент является *порождающим*).

Доказать, что:

- а) моногенная полугруппа конечна тогда и только тогда, когда содержит идемпотент;
- б) конечная моногенная полугруппа либо является группой, либо имеет только один порождающий элемент;
- в) любые две бесконечные моногенные полугруппы изоморфны;
- г) всякая конечная моногенная полугруппа изоморфна полугруппе вида S(n,k), определенной на множестве $\{a_1,\ldots,a_n\}$ следующим образом:

$$a_i + a_j = \left\{ \begin{array}{cc} a_{i+j}, & \text{если} & i+j \leqslant n, \\ a_{k+l+1}, & \text{если} & i+j > n, \end{array} \right.$$

где l — остаток от деления числа i+j-n-1 на n-k.

§ 55. Понятие группы. Изоморфизм групп

- **55.1.** Какие из указанных числовых множеств с операциями являются группами:
 - а) (A, +), где A одно из множеств \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} ;
 - б) (A, \cdot) , где A одно из множеств \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} ;
 - в) (A_0,\cdot) , где A одно из множеств \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} , а $A_0 = A \setminus \{0\}$;
 - Γ) $(n\mathbb{Z},+)$, где n натуральное число;
 - д) $(\{-1,1\},\cdot)$;
 - е) множество степеней данного вещественного числа $a \neq 0$ с целыми показателями относительно умножения;
 - ж) множество всех комплексных корней фиксированной степениn из 1 относительно умножения;
 - множество комплексных корней всех степеней из 1 относительно умножения;
 - и) множество комплексных чисел с фиксированным модулем r относительно умножения;
 - к) множество ненулевых комплексных чисел с модулем, не превосходящим фиксированное число r, относительно умножения;
 - л) множество ненулевых комплексных чисел, расположенных на лучах, выходящих из начала координат и образующих с лучом Ox углы $\varphi_1, \varphi_2, \dots, \varphi_n$, относительно умножения;

- м) множество всех непрерывных отображений $\varphi:[0,1] \to [0,1]$, для которых $\varphi(0)=0, \varphi(1)=1,$ и $x< y\Rightarrow \varphi(x)< \varphi(y),$ относительно суперпозиции?
- **55.2.** Доказать, что полуинтервал [0,1) с операцией \oplus , где $\alpha \oplus \beta$ дробная часть числа $\alpha + \beta$, является группой. Какой из групп из задачи 55.1 изоморфна эта группа? Доказать, что всякая ее конечная подгруппа является циклической.
- **55.3.** Доказать, что множество 2^M всех подмножеств в непустом множестве M является группой относительно операции симметрической разности

$$A\Delta B = [A\cap (M\setminus B)] \cup [B\cap (M\setminus A)].$$

- **55.4.** Пусть G группа относительно умножения. Зафиксируем в G элемент a и зададим в G операцию $x\circ y=x\cdot a\cdot y$. Доказать, что G относительно новой операции \circ является группой, изоморфной (G,\cdot) .
- **55.5.** Какие из указанных ниже совокупностей отображений множества $M = \{1, 2, \dots, n\}$ в себя образуют группу относительно умножения:
 - а) множество всех отображений;
 - б) множество всех инъективных отображений;
 - в) множество всех сюръективных отображений;
 - г) множество всех биективных отображений;
 - д) множество всех четных перестановок;
 - е) множество всех нечетных перестановок;
 - ж) множество всех транспозиций;
 - з) множество всех перестановок, оставляющих неподвижными элементы некоторого подмножества $S \subseteq M$;
 - и) множество всех перестановок, при которых образы всех элементов некоторого подмножества $S\subseteq M$ принадлежат этому подмножеству;
 - к) множество $\{E, (12)(34), (13)(24), (14)(23)\};$
 - л) множество

$${E, (13), (24), (12)(34), (13)(24), (14)(23), (1234), (1432)}$$
?

- **55.6.** Какие из указанных множеств квадратных вещественных матриц фиксированного порядка образуют группу:
 - а) множество симметрических (кососимметрических) матриц относительно сложения;
 - б) множество симметрических (кососимметрических) матриц относительно умножения;
 - в) множество невырожденных матриц относительно сложения;
 - г) множество невырожденных матриц относительно умножения;

- д) множество матриц с фиксированным определителем d относительно умножения;
- е) множество диагональных матриц относительно сложения;
- ж) множество диагональных матриц относительно умножения;
- з) множество диагональных матриц, все элементы диагоналей которых отличны от 0, относительно умножения;
- и) множество верхних треугольных матриц относительно умножения;
- к) множество верхних нильтреугольных матриц относительно умножения:
- л) множество верхних нильтреугольных матриц относительно сложения;
- м) множество верхних унитреугольных матриц относительно умножения;
- н) множество всех ортогональных матриц относительно умножения;
- о) множество матриц вида f(A), где A фиксированная нильпотентная матрица, f(t) произвольный многочлен со свободным членом, отличным от 0, относительно умножения;
- п) множество верхних нильтреугольных матриц относительно операции $X\circ Y=X+Y-XY;$
- р) множество ненулевых матриц вида $\begin{pmatrix} x & y \\ -y & x \end{pmatrix}$ $(x, y \in \mathbb{R})$ относительно умножения;
- с) множество ненулевых матриц вида $\begin{pmatrix} x & y \\ \lambda y & x \end{pmatrix}$ $(x,y\in\mathbb{R})$, где λ фиксированное вещественное число, относительно умножения;
- т) множество матриц

$$\left\{\pm\begin{pmatrix}1&0\\0&1\end{pmatrix},\quad\pm\begin{pmatrix}i&0\\0&-i\end{pmatrix},\quad\pm\begin{pmatrix}0&1\\-1&0\end{pmatrix},\quad\pm\begin{pmatrix}0&i\\i&0\end{pmatrix}\right\}$$

относительно умножения?

- **55.7.** Показать, что множество $\mathbf{O}_n(\mathbb{Z})$ всех целочисленных ортогональных матриц размера n образует группу относительно умножения. Найти порядок этой группы.
- **55.8.** Доказать, что множество верхних нильтреугольных матриц порядка 3 является группой относительно операции

$$X \circ Y = X + Y + \frac{1}{2}[X, Y].$$

55.9. Пусть X — множество точек кривой $y=x^3$, l — прямая, проходящая через точки $a,b\in X$ (касательная к X при a=b), c — ее третья точка пересечения с X и m — прямая, проходящая через начало координат O и точку c (касательная к X при c=0).

Положим $a \oplus b = d$, где d — третья точка пересечения m и X или O, если m касается X в точке O. Доказать, что (X,\oplus) — коммутативная группа.

55.10. Доказать, что множество функций вида

$$y = \frac{ax + b}{cx + d},$$

где $a, b, c, d \in \mathbb{R}$ и $ad - bc \neq 0$, является группой относительно операции композиции функций.

55.11. Доказать, что коммутатор

$$[x, y] = xyx^{-1}y^{-1}$$

элементов x, y группы G обладает свойствами: а) $[x,y]^{-1}=[y,x];$

- 6) $[xy, z] = x[y, z]x^{-1}[x, z];$
- B) $[z, xy] = [z, x]x[z, y]x^{-1}$.

55.12. Пусть задано разложение подстановки σ в произведение независимых циклов

$$\sigma = (i_1, \ldots, i_k)(j_1, \ldots, j_m) \ldots$$

Найти разложение подстановки σ^{-1} в произведение независимых циклов.

- 55.13. Какие из следующих равенств тождественно выполняются в группе S_3 :
 - a) $x^6 = 1$;
 - 6) [[x, y], z] = 1;
 - B) $[x^2, y^2] = 1$?
- 55.14. Доказать, что в группе верхних унитреугольных матриц порядка 3 выполняется тождество

$$(xy)^n = x^n y^n [x, y]^{-n(n-1)/2}, \qquad n \in \mathbb{N}.$$

55.15. Доказать, что если в группе G выполняется тождество [[x,y],z]=1, то в G выполняются тождества

$$[x, yz] = [x, y][x, z],$$
 $[xy, z] = [x, z][y, z].$

55.16. Доказать, что если в группе G выполняется тождество $x^2 =$ = 1, то G коммутативна.

55.17. Какие из отображений групп $f: \mathbb{C}^* \mapsto \mathbb{R}^*$ являются гомоморфизмами:

a)
$$f(z) = |z|;$$
 6) $f(z) = 2|z|;$ B) $f(z) = \frac{1}{|z|};$

г)
$$f(z) = 1 + |z|$$
; д) $f(z) = |z|^2$; e) $f(z) = 1$;

ж)
$$f(z) = 2$$
?

- **55.18.** Для каких групп G отображение $f: G \mapsto G$, определенное правилом:
- а) $f(x) = x^2$, б) $f(x) = x^{-1}$, является гомоморфизмом?

При каком условии эти отображения являются изоморфизмами?

- **55.19.** Сопоставим каждой матрице $\binom{a\ b}{c\ d}\in \mathbf{GL}(2,\mathbb{C})$ функцию $y=\dfrac{ax+b}{cx+d}$ (см. задачу 55.10). Будет ли это отображение гомоморфизмом?
- **55.20.** Разбить на классы попарно изоморфных групп следующий набор групп:

$$\mathbb{Z}$$
, $n\mathbb{Z}$, \mathbb{Q} , \mathbb{R} , \mathbb{Q}^* , \mathbb{R}^* , \mathbb{C}^* , $\mathbf{UT}_2(A)$,

где A — одно из колец \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} .

- **55.21.** Найти все изоморфизмы между группами $({\bf Z}_4,+)$ и $({\bf Z}_5^*,\cdot).$
- **55.22.** Доказать, что группа порядка 6 либо коммутативна, либо изоморфна группе \mathbf{S}_3 .
- **55.23.** Доказать, что если рациональное число a не равно нулю, то отображение $\varphi: x \mapsto ax$ является автоморфизмом группы \mathbb{Q} . Найти все автоморфизмы группы \mathbb{Q} .
- **55.24.** Пусть G ненулевая аддитивная группа, состоящая из вещественных чисел, такая, что в каждом ограниченном промежутке содержится лишь конечное число ее элементов. Доказать, что $G \simeq \mathbb{Z}$.
- **55.25.** Привести примеры плоских геометрических фигур, группы движения которых изоморфны:
 - a) $\mathbf{Z}_2;$ 6) $\mathbf{Z}_3;$ 8) $\mathbf{S}_3;$ 7) $\mathbf{V}_4.$
 - **55.26.** Какие из следующих групп изоморфны между собой:

группа \mathbf{D}_4 движений квадрата; группа кватернионов \mathbf{Q}_8 ;

группа из задачи 55.5, л);

группа из задачи 55.6, т)?

- **55.27.** Доказать, что группы собственных движений тетраэдра, куба и октаэдра изоморфны соответственно группам A_4 , S_4 , S_4 .
 - **55.28.** Доказать, что группы \mathbf{U} и $\mathbf{SO}_2(\mathbb{R})$ изоморфны.
- **55.29.** Пусть G множество всех пар элементов (a,b), $a \neq 0$, из поля k относительно операции $(a,c) \circ (c,d) = (ac,ad+b)$. Доказать, что G является группой, изоморфной группе всех линейных функций $x \mapsto ax+b$ относительно суперпозиции.
- **55.30.** Пусть G множество всех вещественных чисел, отличных от -1. Доказать, что G является группой относительно умножения

$$x \cdot y = x + y + xy.$$

- **55.31.** Доказать, что:
- a) множество всех автоморфизмов произвольной группы является группой относительно композиции;
- б) отображение

$$\sigma: x \mapsto axa^{-1}$$
.

где a — фиксированный элемент группы G, является автоморфизмом группы G (внутренним автоморфизмом);

- в) множество всех внутренних автоморфизмов произвольной группы является группой относительно композиции.
- 55.32. Найти группы автоморфизмов групп:
- a) \mathbb{Z} ; б) \mathbf{Z}_p ; в) \mathbf{S}_3 ;
- г) V_4 ; д) D_4 ; е) Q_8 .
- **55.33.** Доказать, что отображение $a\mapsto \sigma$, сопоставляющее каждому элементу a группы G перестановку $\sigma:x\mapsto ax$ множества G, является инъективным гомоморфизмом группы G в группу S_G .
- **55.34.** Найти в соответствующих группах \mathbf{S}_n подгруппы, изоморфные группам:
- **55.35.** Пусть σ перестановка степени n и $A_{\sigma}=(\delta_{i\sigma(j)})$ квадратная матрица порядка n. Доказать, что если G некоторая группа перестановок степени n, то множество матриц A_{σ} , где $\sigma \in G$, образует группу, изоморфную группе G.
- **55.36.** Найти в соответствующих группах матриц $\mathbf{GL}_n(\mathbb{C})$ подгруппы, изоморфные группам:
- **55.37.** Найти в группе вещественных матриц порядка 4 подгруппу, изоморфную группе \mathbf{Q}_8 .

- **55.38.** Доказать, что группу $\mathbf{U}_{p^{\infty}}$ нельзя отобразить гомоморфно на конечную группу, отличную от единичной.
 - 55.39. Будут ли изоморфны группы
 - a) $SL_2(3)$; 6) S_4 ; B) A_5 ?

§ 56. Подгруппы, порядок элемента группы. Смежные классы

- 56.1. Доказать, что во всякой группе:
- а) пересечение любого набора подгрупп является подгруппой;
- б) объединение двух подгрупп является подгруппой тогда и только тогда, когда одна из подгрупп содержится в другой;
- в) если подгруппа C содержится в объединении подгрупп A и B, то либо $C \subseteq A$, либо $C \subseteq B$.
- 56.2. Доказать, что конечная подполугруппа любой группы является подгруппой. Верно ли это утверждение, если подполугруппа бесконечна?
 - 56.3. Найти порядок элемента группы:

a)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4 \end{pmatrix} \in \mathbf{S}_5;$$
 6) $\begin{pmatrix} 6 & 6 & 6 \\ 2 & 3 & 1 & 5 & 4 \end{pmatrix}$

$$\text{ 6) } \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 4 & 5 & 1 & 6 \end{pmatrix} \in \mathbf{S}_6;$$

$$\mathbf{B}) \ \frac{-\sqrt{3}}{2} + \frac{1}{2}i \in \mathbb{C}^*;$$

$$\Gamma) \ \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} i \in \mathbb{C}^*;$$

д)
$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix} \in \mathbf{GL}_4(\mathbb{R});$$

e)
$$\begin{pmatrix} 0 & i \\ 1 & 0 \end{pmatrix} \in \mathbf{GL}_2(\mathbb{C});$$

ж)
$$\begin{pmatrix} -1 & a \\ 0 & 1 \end{pmatrix} \in \mathbf{GL}_2(\mathbb{C});$$

3)
$$\begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix} \in \mathbf{GL}_2(\mathbb{C});$$

и)
$$\begin{pmatrix} \lambda_1 & * & \dots & * \\ 0 & \lambda_2 & * & \dots \\ \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & \lambda_n \end{pmatrix} \in \mathbf{GL}_n(\mathbb{C}),$$

где $\lambda_1, \ldots, \lambda_n$ — различные корни k-й степени из 1.

56.4. Пусть p — простое нечетное число, X — целочисленная квадратная матрица размера n, причем матрица E+pX лежит в $\mathbf{SL}_n(\mathbb{Z})$ и имеет конечный порядок. Доказать, что X=0.

- **56.5.** Доказать, что:
- а) элемент $\frac{3}{5} + \frac{4}{5}i$ группы \mathbb{C}^* имеет бесконечный порядок;
- б) число $\frac{1}{\pi} \arctan \frac{4}{3}$ иррационально.
- 56.6. Сколько элементов порядка 6 содержится в группе:
- a) \mathbb{C}^* ; \qquad \qquad \qquad \qquad \qquad \qquad
- б) $\mathbf{D}_2(\mathbb{C})$;
 - в) **S**₅;
- Γ) A_5 ?
- 56.7. Доказать, что во всякой группе:
- а) элементы x и yxy^{-1} имеют одинаковый порядок;
- б) элементы ab и ba имеют одинаковый порядок;
- в) элементы xyz и zyx могут иметь разные порядки.
- **56.8.** Пусть элементы x и y группы G имеют конечный порядок и xy = yx.
 - а) Доказать, что если порядки элементов x и y взаимно просты, то порядок произведения xy равен произведению их порядков.
 - б) Доказать, что существуют показатели k и l такие, что порядок произведения x^ky^l равен наименьшему общему кратному порядков x и y.
 - в) Верны ли эти утверждения для некоммутирующих элементов x и y?
 - **56.9.** Доказать, что:
 - а) если элемент x группы G имеет бесконечный порядок, то $x^k = x^l$ тогда и только тогда, когда k = l;
 - б) если элемент x группы G имеет порядок n, то $x^k = x^l$ тогда и только тогда, когда n|(k-l);
 - в) если элемент x группы G имеет порядок n, то $x^k = e$ тогда и только тогда, когда n|k.
 - **56.10.** Доказать, что в группе S_n :
 - а) порядок нечетной перестановки является четным числом;
 - б) порядок любой перестановки является наименьшим общим кратным длин независимых циклов, входящих в ее разложение.
- **56.11.** Найти порядок элемента x^k , если порядок элемента x равен n.
- **56.12.** Пусть G конечная группа, $a \in G$. Доказать, что $G = \langle a \rangle$ тогда и только тогда, когда порядок a равен |G|.
- **56.13.** Найти число элементов порядка p^m в циклической группе порядка p^n , где p простое число, $0 < m \leqslant n$.
- **56.14.** Пусть $G = \langle a \rangle$ циклическая группа порядка n. Доказать, что:

- а) элементы a^k и a^l имеют одинаковые порядки тогда и только тогда, когда НОД (k,n)= НОД (l,n);
- б) элемент a^k является порождающим элементом G тогда и только тогда, когда k и n взаимно просты;
- в) всякая подгруппа $H\subseteq G$ порождается элементом вида a^d , где d|n;
- г) для всякого делителя d числа n существует единственная подгруппа $H\subseteq G$ порядка d.
- **56.15.** В циклической группе $\langle a \rangle$ порядка n найти все элементы g, удовлетворяющие условию $g^k = e$, и все элементы порядка k при:
 - a) n = 24, k = 6; 6) n = 24, k = 4;
 - B) n = 100, k = 20; r) n = 100, k = 5;
 - д) n = 360, k = 30; e) n = 360, k = 12;
 - ж) n = 360, k = 7.
 - 56.16. Найти все подгруппы в циклической группе порядка:
 - а) 24; б) 100; в) 360; г) 125;
 - д) p^n (p простое число)
- **56.17.** Предположим, что в некоторой неединичной группе все неединичные элементы имеют одинаковый порядок p. Доказать, что p является простым числом.
- **56.18.** Пусть G конечная группа и d(G) наименьшее среди натуральных чисел s таких, что $g^s = e$ для всякого элемента $g \in G$ (период группы G).

Доказать, что:

- а) период d(G) делит |G| и равен наименьшему общему кратному порядков элементов группы G;
- б) если группа G коммутативна, то существует элемент $g \in G$ порядка d(G);
- в) конечная коммутативная группа является циклической тогда и только тогда, когда d(G) = |G|.

Верны ли утверждения б) и в) для некоммутативной группы?

- **56.19.** Существует ли бесконечная группа, все элементы которой имеют конечный порядок?
- **56.20.** *Периодической частью* группы G называется множество всех ее элементов конечного порядка.
 - а) Доказать, что периодическая часть коммутативной группы является подгруппой.
 - б) Верно ли утверждение а) для некоммутативной группы?
 - в) Найти периодическую часть групп \mathbb{C}^* и $\mathbf{D}_n(\mathbb{C})^*$.

- г) Доказать, что если в коммутативной группе G есть элементы бесконечного порядка и все они содержатся в подгруппе H, то H совпадает с G.
- **56.21.** Доказать, что в коммутативной группе множество элементов, порядки которых делят фиксированное число n, является подгруппой. Верно ли это утверждение для некоммутативной группы?
- **56.22.** Найти все конечные группы, в которых существует наибольшая собственная подгруппа.
- **56.23.** Является ли циклической группа $(\mathbb{Z}/15\mathbb{Z})^*$ обратимых элементов кольца $\mathbb{Z}/15\mathbb{Z}$?
- **56.24.** Множество всех подгрупп группы G образует цепь, если для любых двух ее подгрупп одна содержится в другой.
 - а) Доказать, что подгруппы циклической группы порядка p^n , где p простое число, образуют цепь.
 - Найти все конечные группы, в которых подгруппы образуют цепь.
 - в) Найти все группы, у которых подгруппы образуют цепь.
- **56.25.** Представить группу $\mathbb Q$ в виде объединения возрастающей цепочки циклических подгрупп.
- **56.26.** Установить изоморфизм между группами \mathbf{U}_n комплексных корней степени n из 1 и группой \mathbf{Z}_n вычетов по модулю n.
- **56.27.** Какие из групп $\langle g \rangle$, порожденных элементом $g \in G$, изоморфны:

a)
$$G = \mathbb{C}^*, \quad g = -\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i;$$

б)
$$G = \mathbf{GL}_2(\mathbb{C}), \quad g = \begin{pmatrix} 0 & 1 \\ i & 0 \end{pmatrix};$$

B)
$$G = \mathbf{S}_6$$
, $g = (32651)$;

r)
$$G = \mathbb{C}^*$$
, $g = 2 - i$;

д)
$$G = \mathbb{R}^*, \quad g = 10;$$

e)
$$G = \mathbb{C}^*, \quad g = \cos \frac{6\pi}{5} + i \sin \frac{6\pi}{5};$$

ж)
$$G = \mathbb{Z}, \quad g = 3?$$

- **56.28.** Доказать, что во всякой группе четного порядка имеется элемент порядка 2.
- **56.29.** Будет ли группа обратимых элементов кольца вычетов \mathbf{Z}_{16} циклической?
- **56.30.** Доказать, что всякая собственная подгруппа группы \mathbf{U}_{p^∞} является циклической конечного порядка.

56.31. Доказать, что:

- а) в мультипликативной группе поля для любого натурального числа n существует не более одной подгруппы порядка n;
- б) всякая конечная подгруппа мультипликативной группы поля является циклической;
- в) мультипликативная группа конечного поля является циклической.
 - 56.32. Найти все подгруппы в группах:
 - a) \mathbf{S}_3 ; 6) \mathbf{D}_4 ; 8) \mathbf{Q}_8 ; 7) \mathbf{A}_4 .
- **56.33.** Доказать, что каждая конечная подгруппа в $\mathbf{SO}_2(\mathbb{R})$ является циклической.
- **56.34.** Доказать, что если подгруппа H группы \mathbf{S}_n содержит одно из множеств

то
$$H = \mathbf{S}_n$$
. $\{(1\,2), (1\,3), \dots, (1\,n)\}$ $\{(1\,2), (1\,2\,3\dots n)\},$

- **56.35.** Найти все элементы группы G, коммутирующие с данным элементом $g \in G$ (централизатор элемента g), если:
 - a) $G = \mathbf{S}_4$, g = (12)(34);
 - 6) $G = \mathbf{SL}_2(\mathbb{R}), \quad g = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix};$
 - B) $G = \mathbf{S}_n, \quad g = (1 \ 2 \ 3 \ \dots \ n).$
 - **56.36.** Для многочлена f от переменных x_1, x_2, x_3, x_4 положим

$$G_f = \{ \sigma \in \mathbf{S}_4 \mid f(x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(3)}, x_{\sigma(4)}) = f(x_1, x_2, x_3, x_4) \}.$$

Доказать, что G_f — подгруппа в ${f S}_4$, и найти эту подгруппу для многочлена:

- a) $f = x_1x_2 + x_3x_4;$ 6) $f = x_1x_2x_3;$
- B) $f = x_1 + x_2;$ Γ) $f = x_1 x_2 x_3 x_4;$
- д) $f = \prod_{1 \leqslant j < i \leqslant 4} (x_i x_j).$

56.37. Найти смежные классы:

- а) аддитивной группы $\mathbb Z$ по подгруппе $n\mathbb Z$, n натуральное число;
- б) аддитивной группы $\mathbb C$ по подгруппе $\mathbb Z[i]$ целых гауссовых чисел, т. е. чисел a+bi с целыми a,b;
- в) аддитивной группы \mathbb{R} по подгруппе \mathbb{Z} ;
- г) аддитивной группы $\mathbb C$ по подгруппе $\mathbb R$;
- д) мультипликативной группы $\hat{\mathbb{C}}^*$ по подгруппе \mathbf{U} чисел с модулем 1:
- e) мультипликативной группы \mathbb{C}^* по подгруппе \mathbb{R}^* ;
- ж) мультипликативной группы \mathbb{C}^* по подгруппе положительных вешественных чисел:

- з) группы подстановок \mathbf{S}_n по стационарной подгруппе элемента n;
- и) аддитивной группы вещественных (3×2) -матриц по подгруппе всех матриц (a_{ij}) с условием $a_{31} = a_{32} = a_{22} = 0$;
- к) аддитивной группы всех многочленов степени не выше 5 с комплексными коэффициентами по подгруппе многочленов степени не выше 3;
- л) циклической группы $\langle a \rangle_6$ по подгруппе $\langle a^4 \rangle$.
- **56.38.** Пусть g невырожденная матрица из $\mathbf{GL}_n(\mathbb{C})$ и $H = \mathbf{SL}_n(\mathbb{C})$. Доказать, что смежный класс gH состоит из всех матриц $a \in \mathbf{GL}_n(\mathbb{C})$, определитель которых равен определителю матрицы g.
- **56.39.** Пусть H подгруппа в группе G. Доказать, что отображение $xH\mapsto Hx^{-1}$ задает биекцию между множеством левых и множеством правых смежных классов G по H.
- **56.40.** Пусть g_1 , g_2 элементы группы G и H_1 , H_2 подгруппы в G. Доказать, что следующие свойства эквивалентны:
 - a) $g_1H_1 \subseteq g_2H_2$; 6) $H_1 \subseteq H_2$ и $g_2^{-1}g_1 \in H_2$.
- **56.41.** Пусть g_1 , g_2 элементы группы G и H_1 , H_2 подгруппы в G. Доказать, что непустое множество $g_1H_1\cap g_2H_2$ является левым смежным классом G по подгруппе $H_1\cap H_2$.
- **56.42.** Пусть K правый смежный класс группы G по подгруппе H. Доказать, что если $x,y,z\in K$, то $xy^{-1}z\in K$.
- **56.43.** Пусть K непустое подмножество в группе G, причем если $x,y,z\in K$, то $xy^{-1}z\in K$. Доказать, что K является правым смежным классом группы G по некоторой подгруппе H.
- **56.44.** Пусть H_1 , H_2 подгруппы в группе G, причем $H_1 \subseteq H_2$. Если индекс H_1 в H_2 равен n, а индекс H_2 в G равен m, то индекс H_1 в G равен mn.
- **56.45.** Доказать, что в группе диэдра все осевые симметрии образуют смежный класс по подгруппе вращений.

§ 57. Действие группы на множестве. Отношение сопряженности

- **57.1.** Найти все орбиты группы G невырожденных линейных операторов, действующих на n-мерном пространстве V, если:
 - а) G группа всех невырожденных линейных операторов;
 - б) G группа ортогональных операторов;
 - в) G группа операторов, матрицы которых в базисе (e_1,\ldots,e_n) диагональны;

- г) G группа операторов, матрицы которых в базисе (e_1,\ldots,e_n) верхние треугольные.
- **57.2.** Найти стационарную подгруппу G_a вектора $a=e_1+e_2+\ldots+e_n$, если:
 - а) G группа из 57.1, в); б) G группа из 57.1, г).
 - **57.3.** Найти стационарную подгруппу G_x и орбиту вектора x, если:
 - а) G группа всех ортогональных операторов в трехмерном евклидовом пространстве;
 - б) G группа всех собственных ортогональных операторов в двумерном евклидовом пространстве.
- **57.4.** Пусть G группа всех невырожденных линейных операторов в n-мерном векторном пространстве V и X множество всех подпространств размерности k в X.
 - а) Найти орбиты группы G в X.
 - б) Пусть e_1, \ldots, e_n такой базис в V, что e_1, \ldots, e_k базис некоторого подпространства U. Найти в базисе e_1, \ldots, e_n матрицы операторов из стационарной подгруппы G_U .
- **57.5.** Пусть G группа всех невырожденных линейных операторов в n-мерном векторном пространстве V и F множество флагов в V, т. е. наборов $f=(V_0,V_1,\ldots,V_n)$ подпространств в V, причем $0=V_0<< V_1<\ldots< V_n=V$.
 - а) Найти орбиты G в F.
 - б) Пусть $e_i \in V_i \setminus V_{i-1}, \ i=1,\dots,n$. Доказать, что e_1,\dots,e_n базис V.
 - в) В базисе e_1, \dots, e_n найти матрицы операторов из стационарной подгруппы G_f .
- **57.6.** Пусть G группа всех невырожденных линейных операторов в n-мерном векторном пространстве V и X (соответственно Y) множество всех ненулевых разложимых q-векторов из $\Lambda^q V$ (из $S^q(V)$).
 - а) Найти орбиты действия G в X и Y.
 - б) Найти стационарную подгруппу G_a разложимого q-вектора a (вектора из $S^q(V)$).
- **57.7.** Пусть G группа всех невырожденных линейных операторов в n-мерном вещественном (комплексном) пространстве V и B множество всех симметричных (эрмитовых) билинейных функций в V. Если $g \in G$ и $b \in B$, то положим $g(b)(x,y) = b(g^{-1}x,g^{-1}y)$.
 - а) Доказать, что задано действие G в B.
 - б) Описать орбиты G в B. Найти их число.
 - в) Описать стационарную подгруппу G_b положительно определенной функции b.

- **57.8.** Пусть G группа всех невырожденных линейных операторов в n-мерном комплексном пространстве V и L(V) — множество всех линейных операторов в V. Если $g \in G$ и $f \in L(V)$, то положим g(f) = $= qfq^{-1}$.
 - а) Доказать, что задано действие G в L(V).
 - б) Описать орбиты G в L(V).
- **57.9.** Найти во множестве $\{1,2,\ldots,10\}$ все орбиты и все стационарные подгруппы для группы G, порожденной подстановкой:

a)
$$g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 5 & 8 & 3 & 9 & 4 & 10 & 6 & 2 & 1 & 7 \end{pmatrix} \in \mathbf{S}_{10};$$

6) $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 7 & 4 & 6 & 1 & 8 & 3 & 2 & 9 & 5 & 10 \end{pmatrix} \in \mathbf{S}_{10};$

$$\text{б) } g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 7 & 4 & 6 & 1 & 8 & 3 & 2 & 9 & 5 & 10 \end{pmatrix} \in \mathbf{S}_{10};$$

- B) $q = (1 6 9)(2 10)(3 4 5 7 8) \in \mathbf{S}_{10}$.
- 57.10. В прямоугольной системе координат задан ромб с вершинами

$$A = (0, 1), \quad B = (2, 0), \quad C = (0, -1), \quad D = (-2, 0).$$

- а) Найти матрицы ортогональных преобразований плоскости, переводящих ромб в себя.
- б) Доказать, что эти матрицы образуют относительно умножения группу G, изоморфную группе \mathbf{V}_4 .
- в) Найти орбиты действия группы G на множестве вершин ромба и их стационарные подгруппы.
- **57.11.** Найти порядок группы диэдра \mathbf{D}_n .
- **57.12.** Найти порядок:
- а) группы вращений куба;
- б) группы вращений тетраэдра;
- в) группы вращений додекаэдра.
- **57.13.** Доказать, что:
- а) группа вращений икосаэдра изоморфна группе A_5 ;
- б) группа движений тетраэдра изоморфна S_4 .
- 57.14. Найти порядок стационарной подгруппы вершины для группы вращений:
 - а) октаэдра; б) икосаэдра; в) тетраэдра;
 - д) диэдра. г) куба;
- **57.15.** Пусть G группа аффинных преобразований в n-мерном аффинном пространстве X. Предположим, что Y — множество всех наборов из n+1 точки (A_0,\ldots,A_n) , находящихся в общем положении.
 - а) Найти орбиты G в Y.
 - б) Найти стационарную подгруппу G_a набора $a \in Y$.

- **57.16.** Пусть G группа аффинных преобразований в n-мерном аффинном вещественном (комплексном) пространстве X. Обозначим через Q множество всех квадратичных функций в X. Если $g \in G$, $h \in Q$ и $x \in X$, то положим $g(h) = h(g^{-1}x)$.
 - а) Доказать, что задано действие G в Q.
 - б) Описать орбиты G в Q.
 - в) Описать стационарную подгруппу G_h невырожденной функции $h \in Q.$
- **57.17.** Пусть G группа дробно-линейных преобразований $z \to a \frac{z-b}{1-z\overline{b}}, \ |a|=1, \ |b|<1,$ единичного круга с центром O из задачи 24.25. Найти:
 - а) стационарную подгруппу точки O;
 - б) орбиту точки O;
 - в) пересечение стационарных подгрупп двух различных точек единичного круга.
- **57.18.** Пусть группа G действует на множестве X и x, y элементы одной орбиты G в X. Доказать, что все такие $g \in G$, что g(x) = y, составляют левый смежный класс G по стационарной подгруппе G_x и правый смежный класс по стационарной подгруппе G_y .
- **57.19.** Пусть коммутативная группа G действует на некотором множестве M. Доказать, что если для некоторых $g \in G$ и $m_0 \in M$ справедливо равенство $gm_0 = m_0$, то gm = m для любой точки m, лежащей в одной орбите с точкой m_0 .
 - **57.20.** Пусть H подгруппа группы G, $a \in G$. Доказать, что:
 - а) отображение $\sigma_a \colon gH \mapsto agH$ есть перестановка на множестве M всех левых смежных классов группы G по подгруппе H;
 - б) отображение $f\colon a\mapsto \sigma_a$ определяет действие группы G на M;
 - в) σ_a является тождественной перестановкой тогда и только тогда, когда a принадлежит пересечению всех подгрупп, сопряженных с H в группе G.
- **57.21.** Перенумеровав левые смежные классы группы G по подгруппе H, найти все перестановки σ_a (задача 57.20), если:
 - а) $G = \mathbf{Z}_4$, H единичная подгруппа;
- б) $G=\mathbf{D}_4,\,H-$ подгруппа, состоящая из тождественного преобразования и некоторой осевой симметрии квадрата.
 - **57.22.** Доказать, что для любой группы G:
 - а) сопряжение определяет действие

$$m \mapsto g \cdot m = gmg^{-1}, \qquad g, m \in G,$$

группы G на множестве G;

- б) стационарная подгруппа точки m (централизатор элемента m) совпадает со множеством элементов группы G, перестановочных с m.
- 57.23. Найти централизатор:
- а) перестановки (12)(34) в группе S_4 ;
- б) перестановки $(1 \ 2 \ 3 \dots n)$ в группе \mathbf{S}_n .
- **57.24.** В группе $\mathbf{GL}_2(\mathbb{R})$ найти централизатор матрицы:

$$\text{a)} \, \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right); \qquad \text{b)} \, \left(\begin{array}{cc} 2 & 0 \\ 0 & 2 \end{array} \right); \qquad \text{b)} \, \left(\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array} \right); \qquad \text{f)} \, \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right).$$

- **57.25.** В группе $\mathbf{GL}_n(\mathbb{R})$ найти централизатор матрицы diag $(\lambda_1,\ldots,\lambda_n)$, если:
 - а) все элементы диагонали различны;
 - б) $\lambda_1 = \ldots = \lambda_k = a, \ \lambda_{k+1} = \ldots = \lambda_n = b$ и $a \neq b$.
- **57.26.** Какие из трех матриц сопряжены между собой в группе $\mathbf{GL}_2(\mathbb{C})$:

$$A_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \qquad A_2 = \begin{pmatrix} 1/2 & 0 \\ 0 & 2 \end{pmatrix}, \qquad A_3 = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$$
?

- **57.27.** Пусть F поле. В группе $\mathbf{SL}_n(F)$ найти:
- а) централизатор C_{ij} элементарной матрицы $E+E_{ij}$ при $1\leqslant i\neq j\leqslant n;$
- б) пересечение C_{ij} при всех i, j, где $1 \leqslant i \neq j \leqslant n$;
- в) класс сопряженных элементов, содержащих $E+\underline{E}_{ij}$.

Доказать, что любые две элементарные матрицы $E+\alpha E_{ij}$ и $E+\beta E_{pq}$, где $1\leqslant i\neq j,\ p\neq q\leqslant n$ и $\alpha,\ \beta\in F^*$, сопряжены.

- **57.28.** В группе $O_2(\mathbb{R})$ ортогональных операторов найти:
- а) централизатор оператора поворота на угол $q \neq k\pi;$
- б) централизатор симметрии относительно оси OX.
- **57.29.** Доказать, что в группе $\mathbf{O}_2(\mathbb{R})$ любые две симметрии сопряжены.
 - 57.30. Найти классы сопряженных элементов групп:
 - a) \mathbf{S}_3 ; 6) \mathbf{A}_4 ; B) \mathbf{D}_4 .
- **57.31.** Найти все конечные группы, число классов сопряженности которых равно: a) 1; б) 2; в) 3.
 - **57.32.** В группе S_4 найти класс сопряженности:
 - а) перестановки $(1\,2)(3\,4);$ б) перестановки $(1\,2\,4).$
- **57.33.** Есть ли в группах S_5 , S_6 несопряженные элементы одина-ковых порядков?

- **57.34.** Доказать, что две перестановки сопряжены в группе \mathbf{S}_n тогда и только тогда, когда они имеют одинаковую цикловую структуру, т. е. их разложения в произведения независимых циклов для любого k содержат одинаковое число циклов длины k.
 - 57.35. Найти число классов сопряженности в группах:
 - a) S_4 ; 6) S_5 ; B) S_6 ; Γ) D_n .
- **57.36.** *Канонической формой* матрицы $A \in \mathbf{SO}_3(\mathbb{R})$ называется сопряженная с A матрица вида

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \varphi & -\sin \varphi \\ 0 & \sin \varphi & \cos \varphi \end{pmatrix}.$$

Доказать, что матрицы A_1 и A_2 сопряжены в $\mathbf{SO}_3(\mathbb{R})$ тогда и только тогда, когда их канонические формы связаны соотношением $\varphi_1+\varphi_2=2\pi k$ или $\varphi_1-\varphi_2=2\pi k$ для некоторого целого k.

- **57.37.** Доказать, что:
- а) если H и K сопряженные подгруппы конечной группы и $K\subseteq G$ $\subseteq H$, то K=H;
- б) подгруппы

$$H = \left\{ \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} \quad (n \in \mathbb{Z}) \right\}, \quad K = \left\{ \begin{pmatrix} 1 & 2n \\ 0 & 1 \end{pmatrix} \quad (n \in \mathbb{Z}) \right\}$$

сопряжены в группе $\mathbf{GL}_2(\mathbb{R})$, и $K \subset H$.

- **57.38.** Найти нормализатор N(H) подгруппы H в группе G, если:
- а) $G = \mathbf{GL}_2(\mathbb{R}), H$ подгруппа диагональных матриц;
- б) $G = \mathbf{GL}_2(\mathbb{R}), H$ подгруппа матриц вида

$$\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}, \qquad a \in \mathbb{R};$$

- B) $G = S_4$, $H = \langle (1234) \rangle$.
- 57.39. Найти группу автоморфизмов:
- a) группы \mathbf{Z}_5 ; б) группы \mathbf{Z}_6 .
- **57.40.** Доказать, что:
- а) Aut $S_3 \simeq S_3$, причем все автоморфизмы группы S_3 внутренние;
- б) Aut $\mathbf{V}_4 \simeq \mathbf{S}_3$, причем внутренним для \mathbf{V}_4 является лишь тождественный автоморфизм.
- 57.41. Является ли циклической группа автоморфизмов:
- a) группы \mathbb{Z}_9 ; б) группы \mathbb{Z}_8 ?
- **57.42.** Найти порядок группы Aut Aut Aut \mathbb{Z}_9 .

- **57.43.** В группе S_6 построить внешний автоморфизм.
- **57.44.** Доказать, что в группе \mathbf{S}_n $(n \neq 6)$ все автоморфизмы внутренние.
- **57.45.** Доказать, что группа автоморфизмов \mathbf{D}_4 изоморфна \mathbf{D}_4 . Найти подгруппу внутренних автоморфизмов группы \mathbf{D}_4 .
- **57.46.** Найти группу автоморфизмов группы \mathbf{D}_n и подгруппу ее внутренних автоморфизмов.

§ 58. Гомоморфизмы и нормальные подгруппы. Факторгруппы, центр

- **58.1.** Доказать, что подгруппа H группы G нормальна, если:
- а) G коммутативная группа, H любая ее подгруппа;
- б) $G = \mathbf{GL}_n(\mathbb{R}), H$ подгруппа матриц с определителем, равным 1;
- B) $G = \mathbf{S}_n$, $H = \mathbf{A}_n$;
- r) $G = \mathbf{S}_4$, $H = \mathbf{V}_4$;
- д) G группа невырожденных комплексных верхнетреугольных матриц, H группа матриц вида

$$E + \sum_{\substack{1 \le i < j \le n \\ j-i > k}} \alpha_{ij} E_{ij}, \qquad \alpha_{ij} \in \mathbb{C}.$$

58.2. Будет ли нормальной подгруппой в группе $\mathbf{GL}_n(\mathbb{Z})$ множество всех матриц вида

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix},$$

где числа a, d нечетны, а числа b, c четны?

- **58.3.** Доказать, что любая подгруппа индекса 2 является нормальной.
- **58.4.** Найти все нормальные подгруппы, отличные от единичной и от всей группы в группах:
 - а) \mathbf{S}_3 ; б) \mathbf{A}_4 ; в) \mathbf{S}_4 .
- **58.5.** На примере группы ${\bf A}_4$ показать, что нормальная подгруппа K нормальной подгруппы H группы G не обязательно является нормальной в G.
- **58.6.** Пусть A и B нормальные подгруппы группы G и $A \cap B$ единичная подгруппа. Доказать, что xy = yx для любых $x \in A, y \in B$.
- **58.7.** Пусть H подгруппа в G индекса 2, C класс сопряженных в G элементов и $C \subset H$. Доказать, что C является либо классом сопря-

женных в H элементов, либо объединением двух классов сопряженных в H элементов, состоящих из одинакового числа элементов.

- **58.8.** Доказать, что факторгруппа $\mathbb{R}^*/\mathbb{Q}^*$ не является циклической.
- **58.9.** Найти число классов сопряженности в группе ${\bf A}_5$ и число элементов в каждом из классов.
 - **58.10.** Доказать, что группа A_5 является простой.
- **58.11.** а) Доказать, что в группе кватернионов ${f Q}_8$ любая подгруппа является нормальной.
 - б) Найти центр и все классы сопряженности в группе \mathbf{Q}_8 .
 - в) Доказать, что комплексные матрицы

$$\begin{split} &\pm E = \pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, & & \pm I = \pm \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \\ &\pm J = \pm \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, & & \pm K = \pm \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \end{split}$$

относительно умножения матриц образуют группу, изоморфную ${f Q}_8.$

- **58.12.** Найти все нормальные подгруппы в группе диэдра \mathbf{D}_n .
- **58.13.** Доказать, что каждая конечная подгруппа в ${\bf O}_2(\mathbb{R})$, не лежащая в ${\bf O}_2(\mathbb{R})$, является группой диэдра ${\bf D}_n,\ n\geqslant 2.$
- **58.14.** Пусть F поле и G подгруппа в $\mathbf{GL}_n(F)$, содержащая $\mathbf{SL}_n(F)$. Доказать, что G нормальна в $\mathbf{GL}_n(F)$.
- ${f 58.15.}$ Сопоставим каждой матрице $egin{pmatrix} a & b \\ c & d \end{pmatrix} \in {f GL}_2({\Bbb C})$ дробнолинейное преобразование

$$f(z) = \frac{az+b}{cz+d}.$$

Доказать, что это сопоставление является гомоморфизмом и найти ядро этого гомоморфизма.

- **58.16.** Доказать, что ядро любого гомоморфизма группы \mathbb{C}^* в аддитивную группу \mathbb{R} является бесконечной группой.
- **58.17.** Пусть $n, m \geqslant 2$ натуральные числа и $\mathbf{SL}_n(\mathbb{Z}; m\mathbb{Z})$ подмножество в $\mathbf{SL}_n(\mathbb{Z})$, состоящее из матриц вида E + Xm, где X целочисленная квадратная матрица размера n. Доказать, что:
 - а) $\mathbf{SL}_n(\mathbb{Z}; m\mathbb{Z})$ нормальная подгруппа в $\mathbf{SL}_n(\mathbb{Z});$
 - б) если m=p простое число, то

$$\mathbf{SL}_n(\mathbb{Z})/\mathbf{SL}_n(\mathbb{Z};p\mathbb{Z}) \simeq \mathbf{SL}_n(\mathbb{Z}_p);$$

- в) группа $\mathbf{SL}_n(\mathbb{Z};m\mathbb{Z})$ не содержит элементов конечного порядка при $m\geqslant 3;$
- г) если G конечная подгруппа в $\mathbf{SL}_n(\mathbb{Z})$, то порядок G делит

$$\frac{1}{2}(3^n - 1)(3^n - 3) \times \dots \times (3^n - 3^{n-1}).$$

- **58.18.** Доказать, что для любой группы G множество всех внутренних автоморфизмов является нормальной подгруппой в группе $\operatorname{Aut} G$ всех автоморфизмов группы G.
- **58.19.** Доказать, что любая подгруппа, содержащая коммутант группы, нормальна.
 - **58.20.** Найти центр группы: а) S_n ; б) A_n ; в) D_n .
 - **58.21.** Пусть группа G порождена элементами a, b, причем

$$a^2 = b^2 = (ab)^4 = 1.$$

Доказать, что элемент $(ab)^2$ лежит в центре группы G.

- **58.22.** Доказать, что центр группы порядка p^n , где p простое число $(n \in \mathbb{N})$, содержит более одного элемента.
- **58.23.** Пусть G множество верхних унитреугольных матриц порядка 3 с элементами из поля \mathbf{Z}_p .
 - а) Доказать, что G некоммутативная группа порядка p^3 относительно умножения.
 - б) Найти центр группы G.
 - в) Найти все классы сопряженных элементов группы G.
 - 58.24. Найти центр группы:
 - a) $\mathbf{GL}_n(\mathbb{R});$ 6) $\mathbf{O}_2(\mathbb{R});$ 8) $\mathbf{SO}_2(\mathbb{R});$ \mathbf{F}) $\mathbf{SO}_3(\mathbb{R});$
 - д) $\mathbf{SU}_2(\mathbb{C});$ е) $\mathbf{SU}_n(\mathbb{C});$ ж) верхнетреугольных матриц.
 - **58.25.** Найти центр:
 - а) группы всех дробно-линейных преобразований комплексной плоскости;
 - б) группы всех преобразований единичного круга из задачи 57.17.
- ${f 58.26.}$ Доказать, что группа H является гомоморфным образом конечной циклической группы G тогда и только тогда, когда H также циклическая, и ее порядок делит порядок группы G.
- **58.27.** Доказать, если группа G гомоморфно отображена на группу H, причем $a\mapsto a'$, то:
 - а) порядок a делится на порядок a';
 - б) порядок G делится на порядок H.

58.28. Найти все гомоморфные отображения:

- a) $\mathbf{Z}_6 \to \mathbf{Z}_6;$ 6) $\mathbf{Z}_6 \to \mathbf{Z}_{18};$ B) $Z_{18} \to Z_6$;
- Γ) $\mathbf{Z}_{12} \to \mathbf{Z}_{15}$; д) $\mathbf{Z}_6 \rightarrow \mathbf{Z}_{25}$.
- 58.29. Доказать, что аддитивную группу рациональных чисел нельзя гомоморфно отобразить на аддитивную группу целых чисел.

58.30. Найти факторгруппы:

- a) $\mathbb{Z}/n\mathbb{Z}$; б) U_{12}/U_{3} ; B) $4\mathbb{Z}/12\mathbb{Z}$; Γ) $\mathbb{R}^*/\mathbb{R}_+$.
- **58.31.** Пусть F^n аддитивная группа n-мерного линейного пространства над полем F и H — подгруппа векторов k-мерного подпространства. Доказать, что факторгруппа F^{n}/H изоморфна F^{n-k} .
- **58.32.** Пусть H_n множество чисел с аргументами вида $2\pi k/n$ $(k \in \mathbb{Z})$. Доказать, что:
 - a) $\mathbb{R}/\mathbb{Z} \simeq \mathbf{U};$ 6) $\mathbb{C}^*/\mathbb{R}^* \simeq \mathbf{U};$ B) $\mathbb{C}^*/\mathbf{U} \simeq \mathbb{R}_+;$
 - д) $\mathbb{C}^*/\mathbf{U}_n \simeq \mathbb{C}^*;$ е) $\mathbb{C}^*/H_n \simeq \mathbf{U};$ г) $\mathbf{U}/\mathbf{U}_n \simeq \mathbf{U}$; ж) $H_n/\mathbb{R}_+ \simeq \mathbf{U}_n$; з) $H_n/\mathbf{U}_n \simeq \mathbb{R}_+$.
 - **58.33.** Пусть

$$G = \mathbf{GL}_n(\mathbb{R}), \qquad H = \mathbf{GL}_n(\mathbb{C}), \qquad P = \mathbf{SL}_n(\mathbb{R}), \qquad Q = \mathbf{SL}_n(\mathbb{C})$$

$$\begin{split} A &= \{X \in G \mid |\det X| = 1\}, & B &= \{X \in H| \mid \det X| = 1\}, \\ B &= \{X \in G \mid \det X > 1\}, & N &= \{X \in H| \det X > 0\}. \end{split}$$

Доказать, что:

- **58.34.** Пусть G группа аффинных преобразований n-мерного пространства, H — подгруппа параллельных переносов, K — подгруппа преобразований, оставляющих неподвижной данную точку О. Доказать, что:
 - а) H является нормальной подгруппой в G;
 - б) $G/H \simeq K$.
- **58.35.** Доказать, что факторгруппа группы S_4 по нормальной подгруппе $\{e, (12)(34), (13)(24), (14)(23)\}$ изоморфна группе S_3 .
- **58.36.** Доказать, что если H подгруппа индекса k в группе G, то H содержит некоторую нормальную в G подгруппу, индекс которой в G делит k!.
- 58.37. Доказать, что подгруппа, индекс которой является наименьшим простым делителем порядка группы, нормальна.
- **58.38.** Доказать, что факторгруппа группы $\mathbf{GL}_2(\mathbf{Z}_3)$ по ее центру изоморфна группе S_4 .

- **58.39.** Доказать, что в группе \mathbb{Q}/\mathbb{Z} :
- а) каждый элемент имеет конечный порядок;
- б) для каждого натурального n имеется в точности одна подгруппа порядка n.
- **58.40.** Доказать, что группа внутренних автоморфизмов группы G изоморфна факторгруппе группы G по ее центру.
- **58.41.** Доказать, что факторгруппа некоммутативной группы по ее центру не может быть циклической.
- **58.42.** Доказать, что группа порядка p^2 , где p простое число, коммутативна.
- **58.43.** Доказать, что группа всех автоморфизмов некоммутативной группы не может быть циклической.

* * *

- **58.44.** Найти число классов сопряженности и число элементов в каждом классе для некоммутативной группы порядка p^3 , где p простое число.
- **58.45.** Подгруппа H называется *максимальной* в группе G, если $H \neq G$ и любая подгруппа, содержащая H, совпадает с H или G. Доказать, что:
 - а) пересечение любых двух различных максимальных коммутативных подгрупп содержится в центре группы;
 - б) во всякой конечной простой некоммутативной группе найдутся две различные максимальные подгруппы, пересечение которых содержит более одного элемента;
 - в) во всякой конечной простой некоммутативной группе существует собственная некоммутативная подгруппа.
- **58.46.** Доказать, что факторгруппа $\mathbf{SL}_2(\mathbf{Z}_5)$ по ее центру изоморфна \mathbf{A}_5 .
- **58.47.** Пусть F поле, $n\geqslant 3$ и G нормальная подгруппа в $\mathbf{GL}_n(F)$. Доказать, что либо $G\supseteq \mathbf{SL}_n(F)$, либо G состоит из скалярных матриц.
- **58.48.** Пусть F поле, содержащее не менее четырех элементов и G нормальная подгруппа в $\mathbf{GL}_2(F)$. Доказать, что либо $G \supseteq \mathbf{SL}_2(F)$, либо G состоит из скалярных матриц.
 - **58.49.** Доказать, что $\mathbf{SL}_2(2) \simeq \mathbf{S}_3$.
 - **58.50.** Найти все нормальные подгруппы в $\mathbf{SL}_2(3)$.

- **58.51.** Пусть G нормальная подгруппа конечного индекса в $\mathbf{SL}_n(\mathbb{Z}),\ n\geqslant 3$. Тогда существует такое натуральное число m, что $G\subseteq \mathbf{SL}_n(\mathbb{Z},m\mathbb{Z})$.
- **58.52.** Пусть F поле, $n\geqslant 3$ и φ автоморфизм группы $\mathbf{GL}_n(F)$. Доказать, что существует такой гомоморфизм групп $\eta:\mathbf{GL}_n(F)\to F^*$ и автоморфизм η поля F, индуцирующий автоморфизм $\mathbf{GL}_n(F)$ такой, что либо

$$\varphi(x) = \eta(x) g \tau(x) g^{-1},$$

либо

$$\varphi(x) = \eta(x) g^t \tau(x)^{-1} g^{-1},$$

для всех $x, y \in \mathbf{GL}_n(F)$ $g \in \mathbf{GL}_n(F)$.

§ 59. Силовские подгруппы. Группы малых порядков

- 59.1. Найти порядок групп:
- a) $\mathbf{GL}_n(\mathbb{F}_q)$; 6) $\mathbf{SL}_n(\mathbb{F}_q)$;
- в) невырожденных верхнетреугольных матриц размера n над конечным полем из q элементов.
- **59.2.** Изоморфны ли: а) группа Q_8 и группа D_4 ;
- б) группа S_4 и группа $SL_2(3)$?
- 59.3. Найти все силовские 2-подгруппы и 3-подгруппы в группах:
- a) \mathbf{S}_3 ; 6) \mathbf{A}_4 .
- **59.4.** Указать сопрягающие элементы для силовских 2-подгрупп и силовских 3-подгрупп в группах:
 - a) S_3 ; 6) A_4 .
- **59.5.** Доказать, что любая силовская 2-подгруппа группы \mathbf{S}_4 изоморфна группе диэдра \mathbf{D}_4 .
- **59.6.** В каких силовских 2-подгруппах группы \mathbf{S}_4 содержатся перестановки:
 - a) (1324); 6) (13); B) (12)(34)?
- **59.7.** Доказать, что существуют в точности две некоммутативные неизоморфные группы порядка 8 группа кватернионов \mathbf{Q}_8 и группа диэдра \mathbf{D}_4 .
 - **59.8.** Доказать, что силовская 2-подгруппа группы $\mathbf{SL}_2(\mathbb{Z}_3)$:
 - а) изоморфна группе кватернионов;
 - б) нормальна в $\mathbf{SL}_{2}(\mathbb{Z}_{3})$.
 - **59.9.** Сколько различных силовских p-подгрупп в группе \mathbf{A}_5 , где:

 - **59.10.** Найти порядок силовской p-подгруппы в группе \mathbf{S}_n .

- **59.11.** Сколько различных силовских p-подгрупп в группе \mathbf{S}_p , где p простое число?
- **59.12.** Доказать, что силовская p-подгруппа в группе G единственна тогда и только тогда, когда она нормальна в G.
 - **59.13.** Пусть

$$P = \left\{ egin{pmatrix} 1 & a \ 0 & 1 \end{pmatrix} \middle| \quad a \in \mathbf{Z}_p, \quad p$$
 — простое число $brace$.

- а) Доказать, что P силовская p-подгруппа в группе $\mathbf{SL}_2(\mathbf{Z}_p)$.
- б) Найти нормализатор подгруппы P в $\mathbf{SL}_2(\mathbf{Z}_p)$.
- в) Найти число различных силовских p-подгрупп в $\mathbf{SL}_2(\mathbf{Z}_p)$.
- г) Доказать, что P силовская p-подгруппа в группе $\mathbf{GL}_2(\mathbf{Z}_p)$.
- д) Найти нормализатор подгруппы P в $\mathbf{GL}_2(\mathbf{Z}_p)$.
- e) Найти число различных силовских p-подгрупп в $\mathbf{GL}_2(\mathbf{Z}_p)$.
- **59.14.** Доказать, что подгруппа верхних унитреугольных матриц является силовской p-подгруппой в $\mathbf{GL}_n(\mathbf{Z}_p)$.
- **59.15.** В группе диэдра \mathbf{D}_n для каждого простого делителя p числа 2n:
 - а) найти все силовские p-подгруппы;
 - б) указать сопрягающие элементы для силовских p-подгрупп.
- **59.16.** Доказать, что образ силовской p-подгруппы конечной группы G при гомоморфизме группы G на группу H является силовской подгруппой в H.
- **59.17.** Доказать, что любая силовская p-подгруппа прямого произведения конечных групп A и B является произведением силовских p-подгрупп сомножителей A и B.
- **59.18.** Пусть P силовская p-подгруппа конечной группы G, H нормальная в G подгруппа.
 - а) Доказать, что пересечение $P\cap H$ является силовской p-подгруппой в H
 - б) Привести пример, показывающий, что без предположения о нормальности подгруппы H утверждение пункта а) неверно.
- **59.19.** Доказать, что все силовские подгруппы группы порядка 100 коммутативны.
 - 59.20. Доказать, что любая группа порядка:
- a) 15; б) 35; в) 185; г) 255; коммутативна.
- **59.21.** Сколько различных силовских 2-подгрупп и силовских 5-подгрупп в некоммутативной группе порядка 20?

- 59.22. Доказать, что не существует простых групп порядка:
- a) 36;
- б) 80:
- в) 56:
- г) 196:
- л) 200.
- **59.23.** Пусть p и q простые числа, p < q. Доказать, что:
- а) если q-1 не делится на p, то любая группа порядка pq коммутативна:
- б) если q-1 делится на p, то в группе невырожденных матриц вида (a, b) $(a, b \in \mathbf{Z}_q)$ имеется некоммутативная подгруппа порядка pq.
- **59.24.** Сколько элементов порядка 7 в простой группе порядка 168?

- **59.25.** Пусть K нормальная подгруппа в p-группе G. Доказать, что $K \cap Z(G) \neq 1$.
- **59.26.** Пусть V конечномерное векторное пространство над полем F характеристики p и G-p-группа линейных невырожден ных операторов в V. Доказать, что существует такой ненулевой вектор $x \in V$, что qx = x для всех $q \in G$.
- **59.27.** Пусть P силовская p-подгруппа в конечной группе G и H — подгруппа в G, содержащая нормализатор $N_G(P)$. Доказать, что $N_G(H) = H$.
- **59.28.** Пусть G конечная группа, N нормальная подгруппа в G и P — силовская подгруппа в N. Доказать, что $G = N \cdot N_G(P)$ (лемма Фиттинга).
- **59.29.** Предположим, что в конечной группе G имеется такой элемент a, что $\frac{|G|}{|K(a)|} = p$ — простое число, где K(a) — класс сопряженных с a элементов из G. Доказать, что:
 - а) p^2 не делит порядок группы G;
 - б) если p=2, то в группе G имеется такая абелева подгруппа Hнечетного порядка и индекса 2, что $aha^{-1} = h^{-1}$ для любого $h \in H$.

§ 60. Прямые произведения и прямые суммы. Абелевы группы

- **60.1.** Доказать, что группы \mathbb{Z} и \mathbb{Q} не разлагаются в прямую сумму ненулевых подгрупп.
- 60.2. Разлагаются ли в прямое произведение неединичных подгрупп группы:
 - a) S_3 ;

- б) \mathbf{A}_4 ; в) \mathbf{S}_4 ; г) \mathbf{Q}_8 ?

- **60.3.** Доказать, что конечная циклическая группа является прямой суммой примарных циклических подгрупп.
- **60.4.** Доказать, что прямая сумма циклических групп $\mathbf{Z}_m \oplus \mathbf{Z}_n$ является циклической группой тогда и только тогда, когда наибольший общий делитель m и n равен 1.
 - 60.5. Разложить в прямую сумму группы:
 - a) \mathbf{Z}_{6} ; 6) \mathbf{Z}_{12} ; B) \mathbf{Z}_{60} .
- **60.6.** Доказать, что мультипликативная группа комплексных чисел является прямым произведением группы положительных вещественных чисел и группы всех комплексных чисел, по модулю равных 1.
- **60.7.** Доказать, что при $n\geqslant 3$ мультипликативная группа кольца вычетов ${\bf Z}_{2^n}$ является прямым произведением подгруппы $\{\pm 1\}$ и циклической группы порядка 2^{n-2} .
 - 60.8. Чему равен порядок:
 - а) прямого произведения конечных групп;
 - б) элемента прямого произведения конечных групп?
- **60.9.** Доказать, что если в абелевой группе подгруппы A_1, A_2, \ldots, A_k имеют конечные попарно взаимно простые порядки, то их сумма является прямой.
- **60.10.** Пусть D подгруппа прямого произведения $A \times B$ групп Aи B взаимно простых порядков. Доказать, что

$$D \simeq (D \cap A) \times (D \cap B).$$

- **60.11.** Пусть k наибольший порядок элементов конечной абелевой группы G. Доказать, что порядок любого элемента группы G делит k. Верно ли это утверждение без предположения об абелевости группы?
- **60.12.** Найти все прямые разложения группы, состоящей из чисел вида $\pm 2^n$.
- **60.13.** Пусть A конечная абелева группа. Найти все прямые разложения группы $\mathbb{Z} \oplus A$, в которых одно из слагаемых является бесконечной циклической группой.
- **60.14.** Найти классы сопряженности группы $A \times B$, если известны классы сопряженности групп A и B.
- **60.15.** а) Доказать, что центр прямого произведения $A \times B$ равен прямому произведению центров A и B.
 - б) Пусть N нормальная подгруппа в $A \times B$, причем

$$N \cap A = N \cap B = 1$$
.

Доказать, что N лежит в центре $A \times B$.

- **60.16.** Доказать, что если факторгруппа A/B абелевой группы A по подгруппе B является свободной абелевой группой, то $A=B\oplus C$, где C свободная абелева группа.
- **60.17.** Доказать, что подгруппа A абелевой группы G выделяется в G прямым слагаемым тогда и только тогда, когда существует сюръективный гомоморфизм $\pi\colon G\to A$ такой, что $\pi^2=\pi$.
- **60.18.** Пусть φ_1 , φ_2 гомоморфизмы групп A_1 , A_2 в абелеву группу B. Доказать, что существует единственный гомоморфизм $\varphi:A_1\times A_2\to B$, ограничения которого на A_1 и A_2 совпадают соответственно с φ_1 и φ_2 . Существенна ли здесь абелевость группы B?
- **60.19.** На множестве гомоморфизмов абелевой группы A в абелеву группу B определим операцию сложения по правилу

$$(\alpha + \beta)(x) = \alpha(x) + \beta(x).$$

Доказать, что гомоморфизмы $A \to B$ образуют абелеву группу $\operatorname{Hom}(A,B).$

60.20. Найти группы гомоморфизмов:

- a) Hom $(\mathbf{Z}_{12}, \mathbf{Z}_{6});$ 6) Hom $(\mathbf{Z}_{12}, \mathbf{Z}_{18});$
- в) Hom ($\mathbf{Z}_6, \mathbf{Z}_{12}$); г) Hom ($A_1 \oplus A_2, B$);
- д) Hom $(A, B_1 \oplus B_2)$; e) Hom $(\mathbf{Z}_n, \mathbf{Z}_k)$;
- ж) $\operatorname{Hom}(\mathbb{Z}, \mathbf{Z}_n);$ з) $\operatorname{Hom}(\mathbf{Z}_n, \mathbb{Z});$
- и) Hom (\mathbb{Z}, \mathbb{Z}) ; к) Hom $(\mathbf{Z}_2 \oplus \mathbf{Z}_2, \mathbf{Z}_8)$;
- л) Hom (${\bf Z}_2 \oplus {\bf Z}_3, {\bf Z}_{30}$).
- **60.21.** Доказать, что $\text{Hom}(\mathbb{Z}, A) \simeq A$.
- **60.22.** Пусть A абелева группа. Доказать, что все ее эндоморфизмы образуют кольцо End A с единицей относительно сложения и обычного умножения отображений.
- **60.23.** Доказать, что группа автоморфизмов абелевой группы совпадает с группой обратимых элементов ее кольца эндоморфизмов.
 - 60.24. Найти кольца эндоморфизмов групп:
 - a) \mathbb{Z} ; б) \mathbf{Z}_n ; в) \mathbb{Q} .
- **60.25.** Доказать, что в абелевой группе отображение $x \to nx$ $(n \in \mathbb{Z})$ является эндоморфизмом. Для каких групп оно будет:
 - а) инъективным; б) сюръективным?
- **60.26.** Доказать, что кольцо эндоморфизмов свободной абелевой группы ранга n изоморфно кольцу $\mathbf{M}_n(\mathbb{Z})$.
 - 60.27. Найти группы автоморфизмов групп:
 - а) \mathbb{Z} ; б) \mathbb{Q} ; в) \mathbf{Z}_{2^n} ; г) свободной абелевой ранга n.
- 2 А.И. Кострикин

- **60.28.** Доказать, что:
- a) Aut $\mathbf{Z}_{30} \simeq \operatorname{Aut} \mathbf{Z}_{15}$;
- б) Aut $(\mathbb{Z} \oplus \mathbf{Z}_2) = \mathbf{Z}_2 \oplus \mathbf{Z}_2$.
- **60.29.** Доказать, что кольцо End $(\mathbb{Z} \oplus \mathbf{Z}_2)$ бесконечно и некоммутативно.
- **60.30.** Доказать, что кольцо эндоморфизмов конечной абелевой группы является прямой суммой колец эндоморфизмов ее примарных компонент.
- **60.31.** Доказать, что подгруппа конечно порожденной абелевой группы также конечно порождена.
- **60.32.** Доказать, что всякий гомоморфизм конечно порожденной абелевой группы на себя является автоморфизмом.

Верно ли аналогичное утверждение для аддитивной группы кольца многочленов?

- **60.33.** Доказать, что свободные абелевы группы рангов m и n изоморфны тогда и только тогда, когда m=n.
- **60.34.** Пусть $A,\ B,\ C$ конечнопорожденные абелевы группы, причем $A\oplus C\simeq B\oplus C$. Доказать, что $A\simeq B$.
- **60.35.** Пусть порядок конечной абелевой группы G делится на натуральное число m. Доказать, что в G есть подгруппа порядка m.
- **60.36.** Пусть A и B конечные абелевы группы, причем для любого натурального числа m в A и B число элементов порядка m одинаково. Доказать, что $A \simeq B$.
- **60.37.** Пусть A и B конечнопорожденные абелевы группы, причем каждая из них изоморфна подгруппе другой. Доказать, что $A \simeq B$.
- **60.38.** Доказать, что подгруппа B свободной абелевой группы A является свободной, причем ранг B не превосходит ранга A.
- **60.39.** Пользуясь основной теоремой о конечно порожденных абелевых группах, найти с точностью до изоморфизма все абелевы группы порядка:
 - а) 2; б) 6; в) 8; г) 12;
 - д) 16; е) 24; ж) 36; з) 48.
- **60.40.** Говорят, что абелева группа *имеет тип* (n_1, n_2, \ldots, n_k) , если она является прямой суммой циклических групп порядков n_1, n_2, \ldots, n_k .

Есть ли в абелевой группе типа (2,16) подгруппы типа:

- a) (2,8); 6) (4,4); B) (2,2,2)?
- **60.41.** Найти тип группы $(\langle a \rangle_9 \oplus \langle b \rangle_{27})/\langle 3a+9b \rangle$.
- 60.42. Изоморфны ли группы:

- а) $(\langle a \rangle_2 \oplus \langle b \rangle_4)/\langle 2b \rangle$ и $(\langle a \rangle_2 \oplus \langle b \rangle_4)/\langle a + 2b \rangle$;
- б) ${\bf Z}_6 \oplus {\bf Z}_{36}$ и ${\bf Z}_{12} \oplus {\bf Z}_{18}$;
- в) ${\bf Z}_6 \oplus {\bf Z}_{36}$ и ${\bf Z}_9 \oplus {\bf Z}_{24}$;
- г) $\mathbf{Z}_{6} \oplus \mathbf{Z}_{10} \oplus \mathbf{Z}_{10}$ и $\mathbf{Z}_{60} \oplus \mathbf{Z}_{10}$?
- 60.43. Сколько подгрупп:
- а) порядков 2 и 6 в нециклической абелевой группе порядка 12;
- б) порядков 3 и 6 в нециклической абелевой группе порядка 18;
- в) порядков 5 и 15 в нециклической абелевой группе порядка 75?
- 60.44. Найти все прямые разложения групп:
- a) $\langle a \rangle_2 \oplus \langle b \rangle_2$;
- б) $\langle a \rangle_p \oplus \langle b \rangle_p$;
- B) $\langle a \rangle_2 \oplus \langle b \rangle_4$.
- 60.45. Сколько элементов:
- а) порядка 2, 4 и 6 в группе ${\bf Z}_2 \oplus {\bf Z}_4 \oplus {\bf Z}_3$;
- б) порядка 2, 4 и 5 в группе ${\bf Z}_2 \oplus {\bf Z}_4 \oplus {\bf Z}_4 \oplus {\bf Z}_5$?
- **60.46.** Пользуясь основной теоремой о конечных абелевых группах, доказать, что конечная подгруппа мультипликативной группы поля является циклической.
- **60.47.** Пусть F поле, у которого мультипликативная группа F^* конечно порождена. Доказать, что поле F конечно.
- **60.48.** Доказать, что конечно порожденная подгруппа мультипликативной группы комплексных чисел разлагается в прямое произведение свободной абелевой группы и конечной циклической.
- **60.49.** Пусть A свободная абелева группа с базисом e_1, \ldots, e_n и $x=m_1e_1+\ldots+m_ne_n\in A\setminus 0$, где $m_i\in \mathbb{Z}$. Доказать, что циклическая группа $\langle x\rangle$ является прямым слагаемым в A тогда и только тогда, когда наибольший общий делитель чисел m_1,\ldots,m_n равен 1.
- **60.50.** Пусть A свободная абелева группа с базисом x_1, \ldots, x_n . Доказать, что элементы

$$y_j = \sum_{i=1}^n a_{ij} x_i, \qquad j = 1, \dots, n, \quad a_{ij} \in \mathbb{Z},$$

составляют базис группы A тогда и только тогда, когда $\det(a_{ij}) = \pm 1$.

60.51. Пусть A — свободная абелева группа с базисом $x_1, \ldots, x_n,$ B — ее подгруппа с порождающими элементами

$$y_j = \sum_{i=1}^n a_{ij} x_i, \qquad j = 1, \dots, n, \quad a_{ij} \in \mathbb{Z}.$$

Доказать, что факторгруппа A/B конечна тогда и только тогда, когда $\det(a_{ij}) \neq 0$, и при этом $|A/B| = |\det(a_{ij})|$.

60.52. Разложить в прямую сумму циклических групп факторгруппу A/B, где A — свободная абелева группа с базисом x_1, x_2, x_3, B — ее подгруппа, порожденная y_1, y_2, y_3 :

a)
$$\begin{cases} y_1 = 7x_1 + 2x_2 + 3x_3, \\ y_2 = 21x_1 + 8x_2 + 9x_3, \\ y_3 = 5x_1 - 4x_2 + 3x_3; \end{cases} \\ y_1 = 5x_1 + 5x_2 + 2x_3, \\ y_2 = 11x_1 + 8x_2 + 5x_3, \\ y_3 = 17x_1 + 5x_2 + 8x_3; \end{cases}$$
 b)
$$\begin{cases} y_1 = 5x_1 + 5x_2 + 2x_3, \\ y_2 = 11x_1 + 8x_2 + 5x_3, \\ y_3 = 17x_1 + 5x_2 + 8x_3; \end{cases}$$
 c)
$$\begin{cases} y_1 = 6x_1 + 5x_2 + 7x_3, \\ y_2 = 8x_1 + 7x_2 + 11x_3, \\ y_3 = 6x_1 + 5x_2 + 11x_3; \end{cases}$$
 e)
$$\begin{cases} y_1 = 4x_1 + 5x_2 + x_3, \\ y_2 = 8x_1 + 9x_2 + x_3, \\ y_3 = 4x_1 + 6x_2 + 2x_3; \end{cases}$$
 e)
$$\begin{cases} y_1 = 2x_1 + 6x_2 - 2x_3, \\ y_2 = 2x_1 + 8x_2 - 4x_3, \\ y_3 = 4x_1 + 12x_2 - 2x_3; \end{cases}$$
 e)
$$\begin{cases} y_1 = x_1 + 2x_2 + 3x_3, \\ y_2 = 2x_1 + 8x_2 - 4x_3, \\ y_3 = 4x_1 + 12x_2 - 2x_3; \end{cases}$$
 e)
$$\begin{cases} y_1 = x_1 + 2x_2 + 3x_3, \\ y_2 = 2y_1, \\ y_3 = 3y_1; \end{cases}$$
 e)
$$\begin{cases} y_1 = 4x_1 + 7x_2 + 3x_3, \\ y_2 = 2x_1 + 3x_2 + 4x_3, \\ y_3 = 3y_1; \end{cases}$$
 e)
$$\begin{cases} y_1 = 2x_1 + 3x_2 + 4x_3, \\ y_2 = 5x_1 + 5x_2 + 6x_3, \\ y_3 = 2x_1 + 6x_2 + 9x_3; \end{cases}$$
 e)
$$\begin{cases} y_1 = 3x_1 + 3x_2, \\ y_2 = 9x_1 + 3x_2 - 6x_3, \\ y_3 = -3x_1 + 3x_2 + 6x_3. \end{cases}$$
 f)
$$\begin{cases} y_1 = 3x_1 + 3x_2, \\ y_2 = 9x_1 + 3x_2 - 6x_3, \\ y_3 = -3x_1 + 3x_2 + 6x_3. \end{cases}$$
 f)
$$\begin{cases} y_1 = 3x_1 + 3x_2 - 6x_3, \\ y_2 = -3x_1 + 3x_2 - 6x_3, \\ y_3 = -3x_1 + 3x_2 - 6x_3, \end{cases}$$

- **60.53.** В факторгруппе свободной абелевой группы A с базисом x_1, x_2, x_3 по подгруппе B, порожденной $x_1 + x_2 + 4x_3$ и $2x_1 x_2 + 2x_3$, найти порядок смежного класса $(x_1 + 2x_3) + B$.
- **60.54.** В факторгруппе свободной абелевой группы A с базисом x_1, x_2, x_3 по подгруппе B, порожденной $2x_1 + x_2 50x_3$ и $4x_1 + 5x_2 + 60x_3$, найти порядок элемента $32x_1 + 31x_2 + B$.
- **60.55.** Доказать, что кольцо эндоморфизмов конечной абелевой группы коммутативно тогда и только тогда, когда каждая ее примарная компонента является циклической.

* * *

60.56. Аддитивная подгруппа H в n-мерном вещественном пространстве \mathbb{R}^n дискретна, если существует такая окрестность нуля U,

- что $U\cap H=0$. Доказать, что дискретная подгруппа в \mathbb{R}^n является свободной абелевой группой и ее ранг не превосходит n.
 - **60.57.** Найти все элементы конечного порядка в $\mathbb{R}^n/\mathbb{Z}^n$.
- **60.58.** Пусть $H=\mathbb{Z}[i]$ подгруппа целых гауссовых чисел в аддитивной группе поля комплексных чисел \mathbb{C} . Предположим, что $z=x+iy\in\mathbb{C}\setminus H$, где $x,y\in\mathbb{R}^*$, причем xy^{-1} иррационально. Доказать, что $\langle z\rangle+H$ всюду плотно в \mathbb{C} .
- **60.59.** Пусть H- аддитивная замкнутая подгруппа в \mathbb{R}^n . Доказать, что $H=L\oplus H_1$, где L- подпространство в \mathbb{R}^n и H_1- дискретная подгруппа в \mathbb{R}^n .
- **60.60.** Доказать, что если порядок элемента a абелевой группы A взаимно прост с n, то уравнение nx = a имеет в A решение.
- **60.61.** Абелева группа A называется ∂ елимой, если уравнение nx = a имеет в ней решение при любом $a \in A$ и целом $n \neq 0$.

Доказать, что группа делима тогда и только тогда, когда при любом a и любом простом p уравнение px=a имеет решение.

- **60.62.** Доказать, что прямая сумма делима тогда и только тогда, когда делимы все прямые слагаемые.
 - **60.63.** Доказать, что группы $\mathbb Q$ и $\mathbf U_{p^\infty}$ (p- простое число) делимы.
- **60.64.** Доказать, что в группе без кручения можно ввести структуру линейного пространства над полем $\mathbb Q$ тогда и только тогда, когда она является делимой.
- **60.65.** Пусть A делимая подгруппа группы G, B максимальная подгруппа группы G такая, что $A \cap B = \{0\}$ (такая всегда существует). Доказать, что $G = A \oplus B$.
- **60.66.** Доказать, что в любой абелевой группе существует делимая подгруппа, факторгруппа по которой не имеет делимых подгрупп.
- **60.67.** Пусть A конечно порожденная абелева группа и B подгруппа в A. Предположим, что A/B группа без кручения. Тогда $A=B\oplus C$, где C свободная абелева группа.
- **60.68.** Пусть A, B свободные абелевы группы и $\varphi: A \to B$ гомоморфизм групп. Доказать, что $\ker \varphi$ прямое слагаемое в A.

60.69. Пусть A — свободная абелева группа с базой e_1, \ldots, e_n , C — целочисленная квадратная матрица размера n. Обозначим через B множество всех таких векторов $x_1e_1 + \ldots + x_ne_n \in A$, что

$$C\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = 0.$$

Доказать, что B — подгруппа в A, являющаяся прямым слагаемым в A. Обратно, любое прямое слагаемое в A задается системой линейных однородных целочисленных уравнений.

§ 61. Порождающие элементы и определяющие соотношения

- **61.1.** Доказать, что:
- а) группа S_n порождается транспозицией (12) и циклом (12...n);
- б) группа \mathbf{A}_n порождается тройными циклами.
- 61.2. Доказать, что:
- а) группа $\mathbf{GL}_n(K)$ над полем K порождается матрицами вида $E+aE_{ij}$, где $a\in K,\ 1\leqslant i\neq j\leqslant n$, и матрицами $E+bE_{11}$, где $b\in K,\ b\neq -1$;
- б) группа $\mathbf{UT}_n(K)$ порождается матрицами $E+aE_{ij}$, где $a\in K$, $1\leqslant i< j\leqslant n$.
- **61.3.** Доказать, что специальная линейная группа $\mathbf{SL}_n(K)$ над полем K порождается *трансвекциями*, т.е. элементарными матрицами вида $E + \alpha E_{ij}$ $(i \neq j)$.
 - **61.4.** Доказать, что:
 - а) любую целочисленную матрицу с единичным определителем можно привести к единичному виду только элементарными преобразованиями, заключающимися в том, что к одной строке прибавляется другая строка, умноженная на ± 1 ;
 - б) группа $\mathbf{SL}_n(\mathbb{Z})$ конечно порождена.

* * *

61.5. Пусть \mathbb{F}_q — поле из $q \neq 9$ элементов и a — образующий циклической группы \mathbb{F}_q^* . Доказать, что $\mathbf{SL}_2(\mathbb{F}_q)$ порождается двумя матрицами

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 \\ a & 1 \end{pmatrix}.$$

- **61.6.** Доказать, что
- а) A_5 порождается двумя подстановками, (254) и (12345).
- б) Доказать, что \mathbf{A}_n при четном $n \geqslant 4$ порождается двумя элементами: $a = (12)(n-1,n), \ b = (1,2,\ldots,n-1).$
- в) Доказать, что \mathbf{A}_n при нечетном $n\geqslant 5$ порождается двумя элементами: $a=(1,n)(2,n-1),\ b=(1,2,\ldots,n-2).$
- 61.7. Найти все двухэлементные множества, порождающие группы:
- а) \mathbf{Z}_6 ; б) \mathbf{S}_3 ; в) \mathbf{Q}_8 ; г) \mathbf{D}_4 ; д) $\langle a \rangle_2 \oplus \langle b \rangle_2$.
- **61.8.** Доказать, что если d минимальное число порождающих конечной абелевой группы A, то для группы $A \oplus A$ аналогичное число равно 2d.
 - **61.9.** Доказать, что группа $\mathbf{S}_2 \times \mathbf{S}_3$ порождается двумя элементами.
- **61.10.** Доказать, что если группа имеет конечную систему порождающих, то из любой системы порождающих можно выбрать конечную подсистему, порождающую всю группу.
- **61.11.** Будет ли конечно порожденным нормальное замыкание матрицы $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ в группе G, порожденной матрицами A и $B = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$?
 - 61.12. Доказать, что:
 - а) каждое слово в свободной группе эквивалентно единственному несократимому слову;
 - б) «свободная группа» действительно является группой.
- **61.13.** Пусть F свободная группа со свободными порождающими $x_1,\ldots,x_n,$ G произвольная группа. Доказать, что для любых элементов $g_1,\ldots,g_n\in G$ существует единственный гомоморфизм $\varphi:F\to G$ такой, что $\varphi(x_1)=g_1,\ldots,\varphi(x_n)=g_n.$ Вывести отсюда, что любая конечно порожденная группа изоморфна факторгруппе подходящей свободной группы конечного ранга.
- **61.14.** Доказать, что в свободной группе нет элементов конечного порядка, отличных от единицы.
- **61.15.** Доказать, что два коммутирующих элемента свободной группы лежат в одной циклической подгруппе.
- **61.16.** Доказать, что слово w лежит в коммутанте свободной группы с системой свободный порождающих x_1,\ldots,x_n тогда и только тогда, когда для каждого $i=1,\ldots,n$ сумма показателей у всех вхождений x_i в w равна 0.
- **61.17.** В свободной группе описать все слова, сопряженные слову w.
- **61.18.** Доказать, что факторгруппа свободной группы по ее коммутанту свободная абелева группа.

- **61.19.** Доказать, что свободные группы рангов m и n изоморфны тогда и только тогда, когда m=n.
 - 61.20. Сколько подгрупп индекса 2 в свободной группе ранга 2?
- **61.21.** а) Доказать, что в свободной группе F ранга k все слова, в которых сумма показателей при каждой переменной делится на n, образуют нормальную подгруппу N.
 - б) Доказать, что $F/N = \overbrace{\mathbf{Z}_n \oplus \ldots \oplus \mathbf{Z}_n}^{k \text{ раз}}$
- **61.22.** Доказать, что все сюръективные гомоморфизмы свободной группы ранга 2 на группу $\mathbf{Z}_n \oplus \mathbf{Z}_n$ имеют одно и то же ядро.
- **61.23.** Сколько существует гомоморфизмов свободной группы ранга 2 в группу:
 - a) $\mathbf{Z}_2 \oplus \mathbf{Z}_2$; 6) \mathbf{S}_3 ?
- **61.24.** Доказать, что в $\mathbf{SL}_2(\mathbb{Z})$ множество матриц $({a \atop c} {b \atop d})$, где $a \equiv d \equiv 1 \pmod 4$, $b \equiv c \equiv 0 \pmod 2$, образует группу с двумя порождающими

$$\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, \qquad \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}.$$

61.25. Доказать, что если группа G с порождающими элементами x_1,\dots,x_n задана определяющими соотношениями $R_i(x_1,\dots,x_n)=1$ $(i\in I)$ и в какой-либо группе H для элементов $h_1,\dots,h_n\in H$

$$R_i(h_1,\ldots,h_n)=1,$$

то существует единственный гомоморфизм $\varphi:G\to H$ такой, что $\varphi(x_1)=h_1,\ldots,\varphi(x_n)=h_n.$

61.26. Доказать, что если между элементами a и b группы выполнены соотношения

$$a^5 = b^3 = 1, b^{-1}ab = a^2,$$

то a = 1.

- **61.27.** Показать, что группа, порожденная элементами $a,\ b$ с соотношениями $a^2=b^7=1,\ a^{-1}ba=b^{-1},$ конечна.
- **61.28.** Доказать, что группа, заданная порождающими элементами x_1, x_2 с соотношениями:
 - a) $x_1^2 = x_2^3 = (x_1 x_2)^2 = 1$;
- б) $x_1^2=x_2^3=1,\quad x_1^{-1}x_2x_1=x_2^2;$ изоморфна ${f S}_3.$

61.29. Доказать, что группа, заданная порождающими элементами x_1, x_2 и определяющими соотношениями

$$x_1^2 = x_2^n = 1,$$
 $x_1^{-1}x_2x_1 = x_2^{-1},$

изоморфна группе диэдра \mathbf{D}_n .

61.30. Доказать, что группа, заданная порождающими элементами x_1, x_2 и определяющими соотношениями

$$x_1^4 = 1,$$
 $x_1^2 = x_2^2,$ $x_2^{-1}x_1x_2 = x_1^3,$

изоморфна группе кватернионов \mathbf{Q}_8 .

61.31. Доказать, что группа, заданная порождающими элементами $x_1,\ x_2$ и определяющими соотношениями $x_1^2=x_2^2=1,$ изоморфна группе матриц

$$\left\{ \begin{pmatrix} \pm 1 & n \\ 0 & 1 \end{pmatrix} \;\middle|\;\; n \in \mathbb{Z} \right\}.$$

61.32. Доказать, что группа, заданная порождающими элементами $x_1,\ x_2$ и определяющими соотношениями $x_1^2=x_2^2=(x_1x_2)^n=1$, изоморфна группе матриц

$$\left\{ \begin{pmatrix} \pm 1 & k \\ 0 & 1 \end{pmatrix} \middle| \quad k \in \mathbf{Z}_n \right\}.$$

- **61.33.** Найти порядок группы, заданной образующими a,b и определяющими соотношениями:
 - a) $a^3 = b^2 = (ab)^3 = 1$;
 - 6) $a^4 = b^2 = 1$, $ab^2 = b^3a$, $ba^3 = a^2b$.
- **61.34.** Пусть G группа, порожденная элементами x_{ij} , $1 \leqslant i < j \leqslant n$, с определяющими соотношениями

$$x_{ij}x_{kl} = x_{kl}x_{ij},$$
 $1 \le i < j \ne k < l \ne i \le n;$
 $x_{ij}x_{jl}x_{ij}^{-1}x_{jl}^{-1} = x_{il},$ $1 \le i < j < l \le n.$

Доказать, что:

а) каждый элемент группы G представляется в виде

$$x_{12}^{m_{12}}x_{13}^{m_{12}}\dots x_{1n}^{m_{1n}}x_{23}^{m_{23}}\dots x_{2n}^{m_{2n}}\dots x_{n-1,n}^{m_{n-1,n}},$$

где $m_{ij} \in \mathbb{Z}$;

б) $G \simeq \mathbf{UT}_n(\mathbb{Z})$.

- **61.35.** Доказать, что если $G/H=\langle gH\rangle$ бесконечная циклическая группа, то $G=\langle g\rangle H,\ \langle g\rangle\cap H=\{e\}.$
- **61.36.** Описать в терминах порождающих элементов и определяющих соотношений группы, у которых имеется бесконечная циклическая нормальная подгруппа с бесконечной циклической факторгруппой.
- **61.37.** Пусть группа G задана порождающими элементами x_1 , x_2 и определяющим соотношением $x_1x_2x_1^{-1}=x_2^2$. Найти наименьшую подгруппу, порожденную в G элементом x_2 . Является ли эта подгруппа нормальной?
- **61.38.** Пусть группа G порождена элементами $a,\,b,\,c$ с определяющими соотношениями $a^2=b^3=c^5=abc$. Доказать, что abc центральный элемент порядка 2.

§ 62. Разрешимые группы

- 62.1. Найти коммутатор:
- а) невырожденных матриц $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ и $\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}$;

б)
$$\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$$
 и $\begin{pmatrix} x & y \\ 0 & z \end{pmatrix}$;

в) двух транспозиций в симметрической группе \mathbf{S}_n ;

$$\Gamma) \, \begin{pmatrix} \beta & 0 \\ 0 & \beta^{-1} \end{pmatrix} \, \mathsf{H} \, \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix}.$$

- **62.2.** Доказать следующие свойства коммутанта G' групп:
- а) G' нормальная подгруппа в G;
- б) факторгруппа G/G' коммутативна;
- в) если N нормальна в G и G/N коммутативна, то $G'\subseteq N$.
- **62.3.** Доказать, что при сюръективном гомоморфизме $\varphi:G'\to H$ выполнено равенство $\varphi(G)'=H'.$
- **62.4.** Установить биективное соответствие между гомоморфизмами группы в коммутативные группы и гомоморфизмами ее факторгруппы по коммутанту.
- **62.5.** Доказать, что коммутант группы $\mathbf{GL}_n(K)$ содержится в $\mathbf{SL}_n(K)$.
- **62.6.** Доказать, что коммутант прямого произведения есть прямое произведение коммутантов сомножителей.

62.7. Найти коммутанты и порядки факторгрупп по коммутантам для групп:

a) S_3 ;

б) \mathbf{A}_4 ;

в) S_4 ;

г) \mathbf{Q}_8 .

62.8. Найти коммутанты групп: a) S_n ;

62.9. Доказать, что коммутант нормальной подгруппы нормален во всей группе.

62.10. Pядом коммутантов (или производным рядом) группы G называется ряд подгрупп

$$G = G^0 \supset G' \supset G'' \supset \dots$$

где $G^{i+1} = (G^i)'$.

Доказать, что:

- а) все члены ряда коммутантов нормальны в G;
- б) для всякого гомоморфизма φ группы G на группу H

$$\varphi(G^i) = H^i$$
.

- **62.11.** Доказать, что:
- а) всякая подгруппа разрешимой группы разрешима;
- б) всякая факторгруппа разрешимой группы разрешима;
- в) если A и B разрешимые группы, то группа $A \times B$ разрешима;
- г) если $G/A \simeq B$ и A, B разрешимые группы, то G разрешима.
- 62.12. Доказать разрешимость групп:
- a) S_3 ;
- б) **А**₄;
- B) S_4 ;
- г) **Q**₈;
- \mathbf{D}_n .

б) \mathbf{D}_n .

- **62.13.** Пусть $\mathbf{UT}_n(K)$ группа верхних унитреугольных матриц. Доказать, что:
 - а) $\mathbf{UT}_n^m(K)$ (множество матриц из $\mathbf{UT}_n(K)$ с m-1 нулевыми диагоналями выше главной) подгруппа в $\mathbf{UT}_n(K)$;
 - б) если $A \in \mathbf{UT}_n^i(K), \ B \in \mathbf{UT}_n^j(K), \ \text{то} \ [A, B] \in \mathbf{UT}_n^{(i+j)}(K);$
 - в) группа $\mathbf{UT}_n(\H{K})$ разрешима.
- **62.14.** Доказать, что группа невырожденных верхних треугольных матриц разрешима.
- **62.15.** Доказать, что конечная группа G разрешима тогда и только тогда, когда в ней имеется ряд подгрупп

$$G = H_0 \supseteq H_1 \supseteq \ldots \supseteq H_k = \{e\}$$

такой, что H_{i+1} нормальна в H_i и H_i/H_{i+1} — (циклическая) группа простого порядка.

62.16. Доказать, что конечная p-группа разрешима.

- **62.17.** Доказать разрешимость группы порядка pq, где p, q различные простые числа.
 - 62.18. Доказать разрешимость группы порядка:
 - a) 20; б) 12;
 - в) p^2q , где p, q различные простые числа;
 - г) 42; д) 100; e) n < 60.
 - **62.19.** Доказать для трансвекций $t_{ij}(lpha) = E + lpha E_{ij}$ формулу

$$[t_{ik}(\alpha), t_{kj}(\beta)] = t_{ij}(\alpha\beta)$$

при различных i, j, k.

- **62.20.** Пусть F поле и $n \geqslant 3$. Доказать, что:
- a) $\mathbf{SL}'_n(F) = \mathbf{GL}'_n(F) = \mathbf{SL}_n(F);$
- б) группы $\mathbf{SL}_n(F)$ и $\mathbf{GL}_n(F)$ не являются разрешимыми.
- **62.21.** Пусть F поле, содержащее не менее четырех элементов. Доказать, что:
 - a) $SL'_2(F) = GL'_2(F) = SL_2(F);$
 - б) группы $\mathbf{SL}_2(\bar{F})$ и $\mathbf{GL}_2(F)$ не являются разрешимыми.

* * *

- **62.22.** Пусть p, q, r различные простые числа. Доказать, что любая группа порядка pqr разрешима.
- **62.23.** Пусть p, q, r различные простые числа. Доказать, что неразрешимая группа порядка p^2qr изоморфна \mathbf{A}_5 .
- **62.24.** Если порядок конечной группы является произведением различных простых чисел, то G разрешимая группа, обладающая такой циклической нормальной подгруппой N, что G/N циклическая группа.
- **62.25.** Пусть G конечная группа, причем G=G', центр G имеет порядок 2 и факторгруппа по центру изоморфна ${\bf A}_5$. Доказать, что $G\simeq {\bf SL}_2({\bf Z}_5)$.
- **62.26.** Пусть F поле, V n-мерное векторное пространство над F и G группа невырожденных линейных операторов в V, причем, если $g \in G$, то g = 1 + h, где $h^n = 0$. Доказать, что:
 - а) в V существует такой вектор $x \neq 0$, что gx = x для всех $g \in G$;
 - б) в V существует такой базис e_1, \dots, e_n , что матрицы всех операторов $g, g \in G$ в этом базисе верхнетреугольные;
 - в) группа G разрешима.

- **62.27.** Пусть $p,\,q$ простые числа, причем p делит q-1. Доказать, что:
 - а) существует целое $r \not\equiv 1 \pmod q$ такое, что $r^p \equiv 1 \pmod q$;
 - б) существует (с точностью до изоморфизма) ровно одна некоммутативная группа порядка pq.

62.28. Доказать, что:

- а) если в коммутативной группе элементы a, b связаны соотношениями $a^3=b^5=(ab)^7=e,$ то a=b=e;
- б) подгруппа, порожденная в S_7 перестановками (123) и (14567), не является разрешимой;
- в) группа с порождающими элементами x_1 , x_2 и определяющими соотношениями $x_1^3 = x_2^5 = (x_1x_2)^7 = e$ не является разрешимой.
- 62.29. Разрешима ли свободная группа?

Глава 14

кольца

§ 63. Кольца и алгебры

- **63.1.** Какие из следующих числовых множеств образуют кольцо относительно обычных операций сложения и умножения:
 - a) множество \mathbb{Z} ;
 - б) множество $n\mathbb{Z}$ (n > 1);
 - в) множество неотрицательных целых чисел;
 - г) множество Q;
 - д) множество рациональных чисел, в несократимой записи которых знаменатели делят фиксированное число $n \in \mathbb{N}$;
 - е) множество рациональных чисел, в несократимой записи которых знаменатели не делятся на фиксированное простое число p;
 - ж) множество рациональных чисел, в несократимой записи которых знаменатели являются степенями фиксированного простого числа p;
 - з) множество вещественных чисел вида $x + y\sqrt{2}$, где $x, y \in \mathbb{Q}$;
 - и) множество вещественных чисел вида $x + y\sqrt[3]{2}$, где $x, y \in \mathbb{Q}$;
 - к) множество вещественных чисел вида $x+y\sqrt[3]{2}+z\sqrt[3]{4}$, где $x,y,z\in\mathbb{Q}$;
 - л) множество комплексных чисел вида x + yi, где $x, y \in \mathbb{Z}$;
 - м) множество комплексных чисел вида x+yi, где $x,y\in\mathbb{Q};$
 - н) множество всевозможных сумм вида $a_1z_1+a_2z_2+\ldots+a_nz_n$, где a_1,a_2,\ldots,a_n рациональные числа, z_1,z_2,\ldots,z_n комплексные корни степени n из 1;
 - о) множество комплексных чисел вида $\frac{x+y\sqrt{D}}{2}$, где D фиксированное целое число, *свободное от квадратов* (не делящееся на квадрат простого числа), x, y целые числа одинаковой четности?
- **63.2.** Какие из указанных множеств матриц образуют кольцо относительно матричного сложения и умножения:
 - а) множество вещественных симметрических матриц порядка n;
 - б) множество вещественных ортогональных матриц порядка n;

- в) множество верхних треугольных матриц порядка $n \geqslant 2$;
- г) множество матриц порядка $n\geqslant 2$, у которых две последние строки нулевые;
 - д) множество матриц вида $\begin{pmatrix} x & y \\ Dy & x \end{pmatrix}$, где D фиксированное целое число, $x,y\in\mathbb{Z}$;
 - e) множество матриц вида $\begin{pmatrix} x & y \\ Dy & x \end{pmatrix}$, где D фиксированный элемент некоторого кольца K, $x,y \in K$;
 - ж) множество матриц вида $\frac{1}{2}\begin{pmatrix} x & y \\ Dy & x \end{pmatrix}$, где D фиксированное целое число, свободное от квадратов, x и y целые числа одинаковой четности;
 - з) множество комплексных матриц вида $\begin{pmatrix} z & w \\ -\overline{w} & \overline{z} \end{pmatrix}$;
 - и) множество вещественных матриц вида

$$\begin{pmatrix} x & -y & -z & -t \\ y & x & -t & z \\ z & t & x & -y \\ t & -z & y & x \end{pmatrix} ?$$

- **63.3.** Какие из следующих множеств функций образуют кольцо относительно обычных операций сложения и умножения функций:
 - а) множество функций вещественного переменного, непрерывных на отрезке [a,b];
 - б) множество функций, имеющих вторую производную на интервале (a,b):
 - в) множество целых рациональных функций вещественного переменного:
 - г) множество рациональных функций вещественного переменного;
 - д) множество функций вещественного переменного, обращающихся в 0 на некотором подмножестве $D\subseteq\mathbb{R};$
 - е) множество тригонометрических многочленов

$$a_0 + \sum_{k=1}^{n} (a_k \cos kx + b_k \sin kx)$$

с вещественными коэффициентами, где n — произвольное натуральное число;

ж) множество тригонометрических многочленов вида

$$a_0 + \sum_{k=1}^{n} \cos kx$$

с вещественными коэффициентами, где n — произвольное натуральное число;

з) множество тригонометрических многочленов вида

$$a_0 + \sum_{k=1}^n a_k \sin kx$$

с вещественными коэффициентами, где n — произвольное натуральное число;

- и) множество функций, определенных на некотором множестве D и принимающих значение в некотором кольце R;
- к) все степенные ряды от одной или нескольких переменных;
- л) все лорановские степенные ряды от одной переменной?
- ${f 63.4.}$ Во множестве многочленов от переменного t с обычным сложением рассматривается операция умножения, заданная правилом

$$(f \circ g)(t) = f(g(t)).$$

Является ли это множество кольцом относительно заданного умножения и обычного сложения?

- **63.5.** Образует ли кольцо множество всех подмножеств некоторого множества относительно симметрической разности и пересечения, рассматриваемых как сложение и умножение соответственно?
 - 63.6. Доказать изоморфизм колец из задач:
 - а) 63.1, о) и 63.2, ж);
 - б) 63.2, з) и 63.2, и).
- **63.7.** Какие из колец, указанных в задачах 63.1–63.5, содержат делители нуля?
- **63.8.** Найти обратимые элементы в кольцах с единицей из задач 63.1–63.5.
- **63.9.** Доказать, что одно из колец задач 63.3, д) и 63.3, е) изоморфно, а другое не изоморфно кольцу многочленов $\mathbb{R}\left[x\right]$.
- **63.10.** Доказать, что все обратимые элементы кольца с единицей образуют группу относительно умножения.
- **63.11.** Найти все обратимые элементы, все делители нуля и все нильпотентные элементы в кольцах:
 - a) \mathbf{Z}_n ;
 - б) \mathbf{Z}_{p^n} , где p простое число;
 - в) K[x]/(fK[x]), где K поле;
 - г) верхних треугольных матриц над полем;
 - $\mathbf{M}_{2}(\mathbb{R});$
 - е) всех функций, определенных на некотором множестве S и принимающих значения в поле K;
 - ж) всех степенных рядов от одной переменной;
 - $_3)$ \mathbb{Z} ;
 - и) $\mathbb{Z}[i]$.

- **63.12.** Доказать, что группа обратимых элементов $\mathbb{Z}[\sqrt{3}\,]^*$ бесконечна.
 - **63.13.** Пусть R конечное кольцо. Доказать, что:
 - а) если R не содержит делителей нуля, то оно имеет единицу и все его ненулевые элементы обратимы;
 - б) если R имеет единицу, то каждый его элемент, имеющий односторонний обратный, обратим;
 - в) если R имеет единицу, то всякий левый делитель нуля является правым делителем нуля.
- **63.14.** Доказать, что в кольце с единицей и без делителей нуля каждый элемент, имеющий односторонний обратный, является обратимым.
 - **63.15.** Пусть R кольцо с единицей, $x, y \in R$. Доказать, что:
 - а) если произведения xy и yx обратимы, то элементы x и y также обратимы;
 - б) если R без делителей нуля и произведение xy обратимо, то x и y обратимы;
 - в) без дополнительных предположений о кольце R из обратимости произведения xy не следует обратимость элементов x и y;
 - г) если обратим элемент 1 + ab, то обратим и элемент 1 + ba.
 - **63.16.** Пусть R прямая сумма колец R_1, \ldots, R_k .
 - а) При каких условиях R коммутативно; имеет единицу; не имеет делителей нуля?
 - б) Найти в R все обратимые элементы; все делители нуля; все нильпотентные элементы.
 - **63.17.** Доказать, что:
 - а) если числа k и l взаимно просты, то $\mathbf{Z}_{kl} = \mathbf{Z}_k \oplus \mathbf{Z}_l;$
 - б) если $n=p_1^{k_1}\dots p_s^{k_s}$, где p_1,\dots,p_s различные простые числа, то

$$\mathbf{Z}_n = \mathbf{Z}_{p_1^{k_1}} \oplus \ldots \oplus \mathbf{Z}_{p_s^{k_s}};$$

- в) если числа k и l взаимно просты, то $\varphi(kl)=\varphi(k)\varphi(l)$, где φ функция Эйлера.
- **63.18.** Найти все делители нуля в $\mathbb{C} \oplus \mathbb{C}$.
- **63.19.** Доказать, что:
- а) делитель нуля в произвольной (ассоциативной) алгебре не является обратимым;
- б) в конечномерной алгебре с единицей всякий элемент, не являющийся делителем нуля, обратим;

- в) конечномерная алгебра без делителей нуля является *телом* (алгеброй с делением).
- **63.20.** Доказать, что:
- а) конечномерная алгебра с единицей и без делителей нуля над полем $\mathbb C$ изоморфна $\mathbb C$;
- б) над полем $\mathbb C$ не существует конечномерных алгебр с делением, отличных от $\mathbb C$.
- **63.21.** Перечислить с точностью до изоморфизма все коммутативные двумерные алгебры над \mathbb{C} :
 - а) с единицей;
 - б) не обязательно с единицей.
- **63.22.** Перечислить с точностью до изоморфизма все коммутативные двумерные алгебры над \mathbb{R} :
 - а) с единицей;
 - б) не обязательно с единицей.
 - **63.23.** Пусть \mathbb{H} тело кватернионов.
 - а) Является ли $\mathbb H$ алгеброй над полем $\mathbb C$, если умножение на скаляр $\alpha\in\mathbb C$ понимать как левое умножение на $\alpha\in\mathbb H$?
 - б) Доказать, что отображения

$$1 \mapsto \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad i \mapsto \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \quad j \mapsto \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad k \mapsto \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$

являются изоморфизмами $\mathbb H$ как алгебры над полем $\mathbb R$ на некоторую подалгебру в алгебре матриц $\mathbf M_2(\mathbb C)$ над $\mathbb R.$

- в) Доказать, что отображение $z \mapsto \begin{pmatrix} z & 0 \\ 0 & \overline{z} \end{pmatrix}$ является изоморфным вложением поля $\mathbb C$ в алгебру $\mathbb H$, реализованную в виде подалгебры алгебры $\mathbf M_2(\mathbb C)$ над $\mathbb R$ (см. б)).
- г) Решить в \mathbb{H} уравнение $x^2 = -1$.
- **63.24.** Тензорной алгеброй $\mathbb{T}(V)$ векторного пространства V над полем K называется (бесконечномерное) векторное пространство

$$\mathbb{T}(V) = \bigoplus_{k=0}^{\infty} \mathbb{T}_k(V),$$

где
$$\mathbb{T}_0(V)=K, \ \mathbb{T}_k(V)=\underbrace{V\otimes \ldots \otimes V}_{k \text{ раз}}$$
 для любых $k,m>0,$ с умно-

жением

$$f \cdot g = f \otimes g$$
, где $f \in T_k(V)$, $g \in T_m(V)$.

Доказать, что:

- а) $\mathbb{T}(V)$ ассоциативная алгебра с единицей над полем K;
- б) в $\mathbb{T}(V)$ нет делителей нуля.
- **63.25.** Алгеброй Грассмана $\Lambda(V)$ векторного пространства V над полем K называется векторное пространство

$$\Lambda(V) = \bigoplus_{k=0}^{\infty} \Lambda^k(V),$$

где $\Lambda^0(V) = K$, с умножением

$$f \cdot g = f \wedge g$$
,

где $f\in \Lambda^k(V),\quad g\in \Lambda^m(V)$ для любых k,m>0. Доказать, что:

- а) $\Lambda(V)$ является ассоциативной алгеброй с единицей над полем K;
- б) каждый элемент из $I=\bigoplus_{k\geqslant 1}\Lambda^k(V)$ является нильпотентным;
- в) каждый элемент из $\Lambda(V)$, не лежащий в I, обратим.
- **63.26.** Симметрической алгеброй S(V) векторного пространства V над полем K называется векторное пространство

$$S(V) = \bigoplus_{k=0}^{\infty} S^k(V),$$

где $S^0(V) = k$, с умножением

$$f \cdot g = \operatorname{Sym}(f \otimes g),$$

где $f \in S^k(V)$, $g \in S^m(V)$ для любых k,m>0. Доказать, что:

- а) S(V) является ассоциативной, коммутативной алгеброй над K;
- б) если $x_1, ..., x_n$ базис пространства V, то S(V) изоморфно алгебре многочленов от $x_1, ..., x_n$.
- **63.27.** Пусть A и B алгебры над полем K. Тензорное произведение алгебр $C = A \otimes_K B$ определяется как тензорное произведение векторных пространств A и B над K с умножением

$$(a' \otimes b') \cdot (a'' \otimes b'') = a'a'' \otimes b'b''.$$

Доказать изоморфизм алгебр над полем K:

- a) $\mathbb{C} \otimes_K \mathbb{C} \simeq \mathbb{C} \oplus \mathbb{C}$ $(K = \mathbb{R})$;
- 6) $\mathbf{M}_n(K) \otimes_K \mathbf{M}_m(K) \simeq \mathbf{M}_{mn}(K)$;
- в) $\mathbf{M}_n(K) \otimes_K A \simeq \mathbf{M}_n(A)$, где A произвольная ассоциативная алгебра над K;

- r) $K[X_1, ..., X_n] \otimes_K K[Y_1, ..., Y_m] \simeq K[X_1, ..., X_n, Y_1, ..., Y_m];$
- e) $\mathbf{S}(V) \otimes_K \Lambda(V) \simeq \mathbb{T}(V)$ при $\dim V = 2$;
- ж) $\mathbb{Q}(\sqrt{p}) \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{q}) \simeq \mathbb{Q}(\sqrt{p} + \sqrt{q})$, где p и q различные простые числа.
- **63.28.** Пусть K поле характеристики нуль, $R = K[x_1, \dots, x_n]$ кольцо многочленов и p_i, q_i линейные операторы на R как векторном пространстве над K, причем для $f \in R$

$$p_i(f) = x_i f, \qquad q_i(f) = \frac{\partial}{\partial x_i} f.$$

Обозначим через $A_n(K)$ подалгебру в алгебре линейных операторов в R, порожденную $p_1,\ldots,p_n,q_1,\ldots,q_n$. Она называется алгеброй Вейля или алгеброй дифференциальных операторов.

Доказать, что:

- a) $q_j p_i p_i q_j = \delta_{ij}$, $p_i p_j = p_j p_i$, $q_i q_j = q_j q_i$;
- б) базис $A_n(K)$ как векторного пространства образуют одночлены

$$p_1^{l_1} \dots p_n^{l_n} q_1^{t_1} \dots q_n^{t_n}, \qquad l_i, t_j \geqslant 0.$$

63.29. Пусть $f=f(p_1,\ldots,p_n,q_1,\ldots,q_n)$ — элемент алгебры Вейля $A_n(K)$ (см. задачу 63.28.) Доказать, что

$$p_i f = f p_i + \frac{\partial f}{\partial q_i}, \qquad q_i f = f q_i - \frac{\partial f}{\partial p_i}.$$

- **63.30.** Доказать, что алгебра верхних нильтреугольных матриц порядка n является нильпотентной алгеброй индекса n.
 - **63.31.** Доказать, что:
 - а) в кольце всех функций на отрезке [0, 1] делителями нуля являются функции, принимающие нулевое значение, и только они;
 - б) в кольце непрерывных функций на отрезке [0,1] делителями нуля являются ненулевые функции, принимающие нулевое значение на некотором отрезке [a,b], где $0 \le a < b \le 1$.

§ 64. Идеалы, гомоморфизмы, факторкольца

- 64.1. Найти все идеалы кольца:
- a) \mathbb{Z} ;
- б) K[x], где K поле.
- 64.2. Доказать, что кольца:
- a) $\mathbb{Z}[x]$;

- б) K[x, y], где K поле; не являются кольцами главных идеалов.
- **64.3.** Доказать, что в кольце матриц над полем всякий двусторонний идеал либо нулевой, либо совпадает со всем кольцом.
- **64.4.** Доказать, что в кольце матриц $\mathbf{M}_n(R)$ с элементами из произвольного кольца R идеалами являются в точности множества матриц, элементы которых принадлежат фиксированному идеалу кольца R.
- **64.5.** Найти все идеалы кольца верхних треугольных матриц порядка 2 с целыми элементами.
 - **64.6.** Пусть I и J множества матриц вида

$$\begin{pmatrix} 0 & g & h \\ 0 & 0 & 2k \\ 0 & 0 & 0 \end{pmatrix}, \qquad \begin{pmatrix} 0 & l & 2m \\ 0 & 0 & 2n \\ 0 & 0 & 0 \end{pmatrix}$$

с целыми коэффициентами $g,\ h,\ k,\dots$ Доказать, что I является идеалом в кольце R верхних треугольных матриц над $\mathbb{Z},\ J$ есть идеал кольца I, но J не является идеалом кольца R.

- **64.7.** Найти все левые идеалы алгебры $\mathbf{M}_2(\mathbf{Z}_2)$.
- **64.8.** Найти все идеалы двумерной алгебры L над полем $\mathbb R$ с базисом (1,e), где 1 единица в L, и:
 - a) $e^2 = 0$; 6) $e^2 = 1$.
- **64.9.** Доказать, что если идеал кольца содержит обратимый элемент, то он совпадает со всем кольцом.
 - 64.10. Образуют ли идеал необратимые элементы колец:
- **64.11.** Доказать, что кольцо целых чисел не содержит минимальных идеалов.
 - 64.12. Найти максимальные идеалы в кольцах:
 - a) \mathbb{Z} ; 6) $\mathbb{C}[x]$; b) $\mathbb{R}[x]$; r) \mathbf{Z}_n .
- **64.13.** Доказать, что множество I_S непрерывных функций, обращающихся в 0 на фиксированном подмножестве $S \subseteq [a,b]$, является идеалом в кольце функций, непрерывных на [a,b].

Верно ли, что всякий идеал этого кольца имеет вид I_S для некоторого $S\subseteq [a,b]$?

- **64.14.** Пусть R кольцо непрерывных функций на отрезке [0,1], $I_c = \{f(x) \in R \mid f(c) = 0\}$ $(0 \leqslant c \leqslant 1)$. Доказать, что:
 - а) I_c максимальный идеал R;
 - б) всякий максимальный идеал R совпадает с I_c для некоторого c.

- **64.15.** Доказать, что коммутативное кольцо с единицей (отличной от нуля), не имеющее идеалов, отличных от нуля и всего кольца, является полем. Существенно ли для этого утверждения наличие единицы?
- **64.16.** Доказать, что кольцо с ненулевым умножением и без собственных односторонних идеалов является телом.
- **64.17.** Доказать, что кольцо с единицей и без делителей нуля, в котором всякая убывающая цепочка левых идеалов конечна, является телом.
- **64.18.** Пусть K коммутативное кольцо без делителей нуля и отображение $\delta\colon\thinspace K\setminus\{0\}\to\mathbb{N}$ удовлетворяет условию: для любых элементов $a,\ b\in K$, где $b\neq 0$, существуют элементы $q,r\in K$ такие, что a=bq+r и $\delta(r)<\delta(b)$ или r=0.

Доказать, что существует отображение δ_1 : $K\setminus\{0\}\to\mathbb{N}$, удовлетворяющее как этому условию, так и условию: для любых $a,b\in K$, где $ab\neq 0,\ \delta_1(ab)\geqslant \delta(b)$.

64.19. Доказать, что:

- а) кольцо целых гауссовых чисел вида $x + iy \ (x, y \in \mathbb{Z})$ евклидово;
- б) кольцо комплексных чисел вида $x+iy\sqrt{3}$ $(x,y\in\mathbb{Z})$ не является евклидовым;
- в) кольцо комплексных чисел вида $\frac{x+iy\sqrt{3}}{2}$, где x и y целые числа одинаковой четности, евклидово.
- **64.20.** В кольце $\mathbb{Z}[i]$ разделить a=40+i на b=3-i с остатком относительно функции $\delta(x+iy)=x^2+y^2$ из задачи 64.18.
- **64.21.** В кольце $\mathbb{Z}[i]$ найти наибольший общий делитель чисел 20+9i и 11+2i.
- **64.22.** Доказать, что всякую прямоугольную матрицу с элементами из евклидова кольца с помощью элементарных преобразований ее строк и столбцов можно привести к виду

$$\begin{pmatrix} e_1 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & e_2 & \dots & 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & e_r & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \end{pmatrix},$$

где $e_1|e_2|\dots|e_r, e_i \neq 0 \ (i=1,2\dots,r).$

- **64.23.** Доказать, что в задаче 64.22 для $i=1,\ldots,r$ произведение $e_1\ldots e_i$ совпадает с наибольшим общим делителем всех миноров размера i исходной матрицы.
- **64.24.** Доказать, что любое кольцо, заключенное между кольцом главных идеалов R и его полем частных Q, само является кольцом главных идеалов.
- **64.25.** Доказать, что кольцо многочленов R[x] над коммутативным кольцом R с единицей и без делителей нуля является кольцом главных идеалов тогда и только тогда, когда R поле.
- **64.26.** Найти все идеалы в алгебре рядов $\mathbb{C}[[x]]$ от одной переменной x.
- **64.27.** Доказать, что алгебра Вейля $A_n(K)$ (см. задачу 63.28) проста, если K поле нулевой характеристики.
- **64.28.** (Китайская теорема об остатках.) Пусть A коммутативное кольцо с единицей. Доказать, что:
 - а) если I_1 и I_2 идеалы в A и $I_1+I_2=A$, то для любых элементов $x_1,x_2\in A$ существует такой элемент $x\in A$, что $x-x_1\in I_1,\ x-x_2\in I_2;$
 - б) если I_1, \ldots, I_n идеалы в A и $I_i + I_j = A$ для всех $i \neq j$, то для любых элементов $x_1, \ldots, x_n \in A$ существует такой элемент $x \in A$, что $x x_k \in I_k$ $(k = 1, \ldots, n)$.
- **64.29.** Пусть R и S кольца с единицей и $\varphi \colon R \to S$ гомоморфизм.
 - а) Верно ли, что образ единицы кольца R является единицей кольца S?
 - б) Верно ли утверждение а), если гомоморфизм φ сюръективен?
- **64.30.** Пусть K поле и $K[x_1, \ldots, x_n]$ алгебра многочленов. Предположим, что $f_1, \ldots, f_n \in K[x_1, \ldots, x_n]$.

Доказать, что:

а) отображение φ , при котором

$$\varphi(g(x_1,\ldots,x_n))=g(f_1,\ldots,f_n),$$

является эндоморфизмом K-алгебры $K[x_1, \ldots, x_n]$;

б) если arphi — автоморфизм $K[x_1,\ldots,x_n]$, то якобиан

$$J = \det\left(\frac{\partial f_i}{\partial x_j}\right)$$

является ненулевой константой;

в) если $h=h(x_2,\ldots,x_n)$, то отображение Ψ , при котором

$$\Psi(g(x_1,\ldots,x_n)) = g(x_1 + h, x_2,\ldots,x_n),$$

является автоморфизмом $K[x_1, \ldots, x_n]$.

64.31. Пусть K — поле и $K[[x_1 \dots x_n]]$ — алгебра степенных рядов от x_1, \dots, x_n . Предположим, что $f_1, \dots, f_n \in K[[x_1 \dots x_n]]$ имеют нулевые свободные члены.

Доказать, что:

а) отображение φ , при котором

$$\varphi(g(x_1,\ldots,x_n))=g(f_1,\ldots,f_n),$$

является эндоморфизмом $K[[x_1, ..., x_n]];$

б) отображение φ является автоморфизмом тогда и только тогда, когда якобиан

 $J = \det\left(\frac{\partial f_i}{\partial x_i}\right)$

имеет ненулевой свободный член.

64.32. Пусть K — поле нулевой характеристики и $h = h(q_1) \in A_n(K)$. Доказать, что отображение φ , при котором

$$\varphi(f(p_1,\ldots,p_n,q_1,\ldots,q_n)) = f(p_1+h,p_2,\ldots,p_n,q_1,\ldots,q_n),$$

является автоморфизмом K-алгебры $A_n(K)$.

- **64.33.** Пусть φ автоморфизм \mathbb{C} -алгебры $\mathbf{M}_n(\mathbb{C})$. Доказать, что:
- а) левый аннулятор матрицы $\varphi(E_{nn})$ имеет размерность n(n-1);
- б) жорданова форма матрицы $\varphi(E_{nn})$ равна E_{11} ;
- в) существует такая обратимая матрица Y, что

$$Y^{-1}\varphi(E_{nn})Y = E_{nn};$$

- г) отображение $A \to Y^{-1}\varphi(A)Y$ является автоморфизмом $\mathbf{M}_n(\mathbb{C})$, переводящим $\mathbf{M}_{n-1}(\mathbb{C})$ в себя;
- д) существует такая обратимая матрица X, что $\varphi(A)=XAX^{-1}$ для любой матрицы $A\in \mathbf{M}_n(\mathbb{C}).$
- **64.34.** Пусть K поле.
- а) Доказать, что линейное отображение

$$\varphi \colon \mathbf{M}_n(K) \otimes_K \mathbf{M}_m(K) \to \mathbf{M}_{nm}(K),$$

где $1 \le i, i \le n, 1 \le r, s \le m$ и

$$\varphi(E_{ij}\otimes E_{rs})=E_{i+n(r-1),j+n(s-1)},$$

является изоморфизмом K-алгебр.

б) Доказать, что линейное отображение

$$\Psi \colon \mathbf{M}_n(K) \to \mathbf{M}_n(K) \otimes_K \mathbf{M}_n(K),$$

где

$$\Psi(E_{ij}) = E_{ij} \otimes E_{ij},$$

является гомоморфизмом K-алгебр. Найти $\operatorname{Ker}\Psi$.

- 64.35. Доказать, что образ коммутативного кольца при гомоморфизме является коммутативным кольцом.
- **64.36.** Доказать, что отображение $\varphi: f(x) \to f(c) \ (c \in \mathbb{R})$ является гомоморфизмом кольца вещественных функций, определенных на \mathbb{R} , на поле \mathbb{R} .
 - 64.37. Найти все гомоморфизмы колец:
 - a) $\mathbb{Z} \to 2\mathbb{Z}$;
- б) $2\mathbb{Z} \to 2\mathbb{Z}$:
- B) $2\mathbb{Z} \to 3\mathbb{Z}$: Γ) $\mathbb{Z} \to \mathbf{M}_2(\mathbf{Z}_2)$.
- 64.38. Найти все гомоморфизмы:
- а) группы \mathbb{Z} в группу \mathbb{Q} ;
- б) кольца \mathbb{Z} в поле \mathbb{O} .
- 64.39. Доказать, что любой гомоморфизм поля в кольцо является или нулевым, или изоморфным отображением на некоторое подполе.
- **64.40.** Пусть K поле и $R = K[x_1, \dots, x_n]$ алгебра многочленов от x_1, \ldots, x_n над полем K. Построить биекцию между пространством строк K^n и множеством всех гомоморфизмов K-алгебр $R \to K$.
 - 64.41. Доказать, что:
 - а) $F[x]/\langle x-\alpha\rangle \simeq F$ (F- поле);
 - 6) $\mathbb{R}[x]/\langle x^2+1\rangle \simeq \mathbb{C}$;
 - B) $\mathbb{R}[x]/\langle x^2 + x + 1 \rangle \simeq \mathbb{C}$.
 - **64.42.** При каких a и b факторкольца $\mathbf{Z}_{2}[x]/\langle x^{2}+ax+b\rangle$
 - а) изоморфны между собой;
 - б) являются полями?
 - 64.43. Изоморфны ли факторкольца

$$\mathbb{Z}[x]/\langle x^3+1\rangle$$
, $\mathbb{Z}[x]/\langle x^3+2x^2+x+1\rangle$?

64.44. Изоморфны ли факторкольца

$$\mathbb{Z}[x]/\langle x^2-2\rangle, \qquad \mathbb{Z}[x]/\langle x^2-3\rangle$$
?

64.45. Пусть a и b — различные элементы поля F. Доказать, что F[x]-модули

 $F[x]/\langle x-a\rangle$, $F[x]/\langle x-b\rangle \simeq F$

не изоморфны, но соответствующие факторкольца изоморфны.

64.46. Доказать, что если $a \neq b$ и $c \neq d$ — элементы поля F, то факторкольца

$$F[x]/\langle (x-a)(x-b)\rangle F, \qquad F[x]/\langle (x-c)(x-d)\rangle$$

изоморфны.

64.47. Какие из следующих алгебр изоморфны над \mathbb{C} :

$$A_1 = \mathbb{C}[x, y]/\langle x - y, xy - 1 \rangle, \qquad A_2 = \mathbb{C}[x]/\langle (x - 1)^2 \rangle,$$

$$A_3 = \mathbb{C} \oplus \mathbb{C}, \qquad A_4 = \mathbb{C}[x, y], \qquad A_5 = \mathbb{C}[x]/\langle x^2 \rangle?$$

- **64.48.** Изоморфны ли алгебры A и B над полем \mathbb{C} :
- a) $A = \mathbb{C}[x, y]/\langle x^n y \rangle$, $B = \mathbb{C}[x, y]/\langle x y^m \rangle$;
- 6) $A = \mathbb{C}[x,y]/\langle x^2 y^2 \rangle$, $B = \mathbb{C}[x,y]/\langle (x-y)^2 \rangle$?
- **64.49.** Изоморфны ли следующие алгебры над полем \mathbb{R} :
- a) $A = \mathbb{R}[x]/\langle x^2 + x + 1 \rangle$, $B = \mathbb{R}[x]/\langle 2x^2 3x + 3 \rangle$;
- 6) $A = \mathbb{R}[x]/\langle x^2 + 2x + 1 \rangle$, $B = \mathbb{R}[x]/\langle (x^2 3x + 2) ?$
- **64.50.** Доказать, что элемент f алгебры $K[x]/\langle x^{n+1} \rangle$ (K- поле) обратим тогда и только тогда, когда $f(0) \neq 0$.
- **64.51.** Пусть K поле и $f \in K[x]$ имеет степень n. Доказать, что размерность K-алгебры K[x]/fK[x] равна n.
 - **64.52.** Пусть K поле. Доказать, что:
 - а) если многочлены $f,g\in K[x]$ взаимно просты, то

$$K[x]/fgK[x] \simeq K[x]/fK[x] \oplus K[x]/gK[x];$$

б) если $f=p_1^{k_1}\dots p_s^{k_s}$, где p_1,\dots,p_s — взаимно простые неприводимые многочлены, то

$$K[x]/fK[x] \simeq K[x]/p_1^{k_1}K[x] \oplus \ldots \oplus K[x]/p_s^{k_s}K[x].$$

- **64.53.** Доказать, что факторкольцо R/I коммутативного кольца с единицей является полем тогда и только тогда, когда I максимальный идеал в R.
- **64.54.** Доказать, что идеал I коммутативного кольца R является простым тогда и только тогда, когда I ядро гомоморфизма R в некоторое поле.
 - **64.55.** Доказать, что:
 - а) факторкольцо $\mathbb{Z}[i]/\langle 2 \rangle$ не является полем;
 - б) факторкольцо $\mathbb{Z}[i]/\langle 3 \rangle$ является полем из девяти элементов;
 - в) $\mathbb{Z}[i]/\langle n \rangle$ является полем тогда и только тогда, когда n простое число, не равное сумме квадратов двух целых чисел.
- **64.56.** При каких $a\in\mathbb{F}_7$ факторкольцо $\mathbb{F}_7[x]/\langle x^2+a\rangle$ является полем?
- **64.57.** Доказать, что при любом целом n>1 факторкольцо $\mathbb{Z}[x]/\langle n \rangle$ изоморфно $\mathbf{Z}_n[x].$
- **64.58.** Пусть f(x) неприводимый многочлен степени n из кольца $\mathbf{Z}_p[x]$. Доказать, что факторкольцо $\mathbf{Z}_p[x]/\langle f(x) \rangle$ является конечным полем, и найти число его элементов.
 - **64.59.** Доказать, что:
 - а) всякое кольцо изоморфно подкольцу некоторого кольца с единицей:
 - б) n-мерная алгебра с единицей над полем F изоморфна подалгебре алгебры с единицей размерности n+1;
 - в) n-мерная алгебра с единицей над полем K изоморфна некоторой подалгебре алгебры $\mathbf{M}_n(K)$;
 - г) n-мерная алгебра над K изоморфна подалгебре алгебры $\mathbf{M}_{n+1}(K).$
- **64.60.** Пусть I_1, \dots, I_s идеалы в алгебре с единицей $A, I_i + I_j = A$ при $i \neq j$. Доказать, что отображение

$$f: A / \bigcap_{k=1}^{s} I_k \mapsto A/I_1 \oplus \ldots \oplus A/I_s,$$

задаваемое формулой

$$f(a + \bigcap_{k=1}^{s} I_k) = (a + I_1, \dots, a + I_s),$$

является изоморфизмом алгебр.

- **64.61.** Установить изоморфизм $\mathbb{Q}[x]/\langle x^2-1\rangle\simeq\mathbb{Q}\oplus\mathbb{Q}.$
- 64.62. Доказать, что

$$\mathbb{Q}[x]/\langle x^2 - 2 \rangle \simeq \mathbb{Q}[\sqrt{2}].$$

- **64.63.** Пусть I максимальный идеал в $\mathbb{Z}[x]$. Доказать, что $\mathbb{Z}[x]/I$ конечное поле.
- **64.64.** Пусть V векторное пространство над полем K нулевой характеристики. Доказать, что

$$S(V) \simeq \mathbb{T}(V)/I$$
,

где I — идеал в T(V), порожденный всеми элементами

$$x \otimes y - y \otimes x$$
, где $x, y \in V$.

64.65. Пусть V — векторное пространство над полем K нулевой характеристики. Доказать, что

$$\Lambda(V) \simeq \mathbb{T}(V)/I,$$

где I — идеал в $\mathbb{T}(V)$, порожденный всеми элементами

$$x\otimes y+y\otimes x$$
, где $x,y\in V$.

64.66. Пусть V — векторное пространство размерности 2n с базисом $p_1 \dots p_n, q_1 \dots q_n$ над полем K нулевой характеристики. Доказать, что

$$A_n(K) \simeq T(V)/I$$
,

где I — идеал в T(V), порожденный всеми элементами

$$p_i \otimes q_j - q_j \otimes p_i - \delta_{ij}, \quad p_i \otimes p_j - p_j \otimes p_i, \quad q_i \otimes q_j - q_j \otimes q_i.$$

64.67. Пусть (e_1,\ldots,e_n) — базис векторного пространства V над полем K характеристики, отличной от 2, и $\Lambda(V)$ — внешняя (или грассманова алгебра) над векторным пространством V.

Доказать, что:

- a) dim $\Lambda(V) = 2^n$;
- б) если $x_1,\ldots,x_{n+1}\in\Lambda^1(V)\oplus\ldots\oplus\Lambda^n(V)$, то $x_1\times\ldots\times x_{n+1}=0$;

в) формула

$$\varphi(e_i) = \sum_{j=1}^n a_{ij}e_j + \omega_i, \qquad i = 1, \dots, n,$$

где $\omega_i\in\Lambda^1(V)\oplus\ldots\oplus\Lambda^n(V)$, задает автоморфизм тогда и только тогда, когда $\det(a_{ij})\neq 0$.

64.68. Пусть R — кольцо с единицей. Левым аннулятором подмножества $M \subseteq R$ называется множество

$$\{x \in R \mid xm = 0 \quad$$
для всякого $m \in M\}.$

Доказать, что:

- а) левый аннулятор любого подмножества является в R левым идеалом:
- б) левый аннулятор правого идеала кольца R, порожденного идемпотентом, также порождается (как левый идеал) некоторым идемпотентом.
- **64.69.** Доказать, что сумма левых идеалов, порожденных попарно ортогональными идемпотентами, также порождается идемпотентом.
- **64.70.** Пусть I_k $(k=1,\ldots,n)$ множество матриц порядка n над полем K, состоящее из матриц, у которых вне k-го столбца все элементы равны 0.

Доказать, что:

- а) I_k левый идеал $\mathbf{M}_n(K)$;
- б) I_k минимальный подмодуль в $\mathbf{M}_n(K)$, рассматриваемый как левый модуль над собой;
- B) $\mathbf{M}_n(K) = I_1 \oplus \ldots \oplus I_n;$
- г) модуль $\mathbf{M}_2(K)$ обладает разложением в прямую сумму минимальных подмодулей, отличным от разложения в);
- д) между двумя этими разложениями модуля $\mathbf{M}_2(K)$ существует модульный изоморфизм.
- **64.71.** Пусть R алгебра всех линейных операторов в конечномерном векторном пространстве V и J_L множество всех операторов из R, образ которых лежит в подпространстве L. Доказать, что J_L является правым идеалом в R.

Обратно, пусть J — левый идеал в R. Доказать, что существует, и притом единственное, такое подпространство L в V, что $J=J_L$.

64.72. Пусть R — алгебра всех линейных операторов в конечномерном векторном пространстве V и I_L — множество всех операторов из R, ядро которых содержит подпространство L. Доказать, что I_L является левым идеалом в R.

Обратно, пусть I — левый идеал в R. Доказать, что существует, и притом единственное, такое подпространство L в V, что $I=I_L$.

64.73. Доказать, что множества матриц:

a)
$$I = \left\{ \begin{pmatrix} x & 2x \\ y & 2y \end{pmatrix} \mid (x, y \in K) \right\}, \quad J = \left\{ \begin{pmatrix} x & 0 \\ y & 0 \end{pmatrix} \mid (x, y \in K) \right\};$$
 6) $I = \left\{ \begin{pmatrix} -x & 3x \\ -y & 3y \end{pmatrix} \mid (x, y \in K) \right\}, \quad J = \left\{ \begin{pmatrix} 0 & x \\ 0 & y \end{pmatrix} \mid (x, y \in K) \right\};$

являются подмодулями кольца $\mathbf{M}_2(K)$ как левого модуля над собой и $\mathbf{M}_2(K)/I \simeq J.$

- **64.74.** Пусть $R=I_1\oplus I_2$ разложение кольца с единицей e в прямую сумму двусторонних идеалов I_1 , I_2 и $e=e_1+e_2$, где $e_1\in I_1$, $e_2\in I_2$. Доказать, что e_1 и e_2 единицы колец I_1 и I_2 .
- **64.75.** Доказать, что кольца ${f Z}_{mn}$ и ${f Z}_m\oplus {f Z}_n$ изоморфны тогда и только тогда, когда m и n взаимно просты.
- **64.76.** Кольцо называется вполне приводимым справа, если оно является прямой суммой правых идеалов, являющихся простыми модулями над этим кольцом. При каких n кольцо вычетов \mathbf{Z}_n вполне приводимо?
- **64.77.** Доказать, что алгебра всех верхних треугольных матриц порядка $n\geqslant 2$ над полем не является вполне приводимой.
- **64.78.** Доказать, что в коммутативном вполне приводимом кольце с единицей число идемпотентов и число идеалов конечны.
- **64.79.** Доказать, что во всякой вполне приводимой алгебре пересечение всех максимальных идеалов равно нулю.
- **64.80.** Доказать, что всякое коммутативное вполне приводимое кольцо с единицей изоморфно прямой сумме полей.
- **64.81.** Модуль называется вполне приводимым, если его можно разложить в прямую сумму минимальных подмодулей. Какие циклические группы вполне приводимы как модули над кольцом \mathbb{Z} ?
- **64.82.** Кольцо называется вполне приводимым слева, если оно вполне приводимо как левый модуль над собой. Доказать, что если кольцо R вполне приводимо слева и I его левый идеал, то $R = I \oplus J$ для некоторого левого идеала J кольца R.
- **64.83.** Доказать, что всякий левый идеал вполне приводимого слева кольца R:
 - а) вполне приводим как левый модуль над R;
 - б) порождается идемпотентом.
 - **64.84.** Пусть R вполне приводимое слева кольцо с единицей.

Доказать, что:

- а) если R не содержит идемпотентов, отличных от 0 и 1, то R тело;
- б) если R не содержит делителей нуля, то R тело.

Верны ли эти утверждения для колец, в которых существование единицы заранее не предположено?

- **64.85.** Доказать, что если xy=0 для любых двух элементов $x,\ y$ левого идеала I вполне приводимого слева кольца R с единицей, то $I=\{0\}.$
- **64.86.** Доказать, что если I идеал кольца R с единицей, то факторкольцо R/I тоже имеет единицу.
- **64.87.** Доказать, что факторкольцо коммутативного нётерова кольца также нётерово.
- **64.88.** Доказать, что кольцо вычетов $\mathbf{Z}_{p_1...p_m}$, где p_1,\ldots,p_m различные простые числа, является прямой суммой полей.
- **64.89.** Найти все подмодули в векторном пространстве с базисом (e_1,\ldots,e_n) как модули над кольцом всех диагональных матриц, если

$$\operatorname{diag}(\lambda_1,\ldots,\lambda_n)\circ(\alpha_1e_1+\ldots+\alpha_ne_n)=\lambda_1\alpha_1e_1+\ldots+\lambda_n\alpha_ne_n.$$

- **64.90.** Пусть R коммутативное кольцо с единицей и без делителей нуля, рассматриваемое как модуль над собой. Доказать, что R изоморфно любому своему ненулевому подмодулю тогда и только тогда, когда R кольцо главных идеалов.
 - 64.91. Доказать, что правило

$$h(x) \circ f = h(x^r)f$$
,

- где h(x) фиксированный многочлен, превращает кольцо многочленов F[x] над полем F в свободный модуль ранга r над F[x].
- **64.92.** Пусть в кольце R нет делителей нуля и M свободный R-модуль. Доказать, что если $r\in R\setminus 0$ и $m\in M\setminus 0$, то $rm\neq 0$.
- **64.93.** Пусть R кольцо с единицей, причем все R-модули свободны. Доказать, что R является телом.

* * *

64.94. Пусть K — поле нулевой характеристики. Доказать, что алгебра полиномов $K[x_1, \ldots, x_n]$ является простым модулем над алгеброй Вейля $A_n(K)$ (см. задачу 63.28).

- **64.95.** Пусть K поле нулевой характеристики. Доказать, что каждый ненулевой модуль над алгеброй Вейля $A_n(K)$ имеет бесконечную размерность над K.
- **64.96.** Пусть K алгебра вещественных функций на отрезке $[-\pi,\pi]$, представимых многочленами от $\cos x$, $\sin x$ с вещественными коэффициентами.

Доказать, что:

- а) K является областью;
- 6) $K \simeq \mathbb{R}[X, Y]/(X^2 + Y^2 1);$
- в) поле частных для K изоморфно полю рациональных функций $\mathbb{R}(T).$

§ 65. Специальные классы алгебр

- **65.1.** Доказать, что кольцо многочленов от одного переменного над коммутативным нётеровым кольцом с единицей является нётеровым.
- **65.2.** Доказать, что алгебра многочленов от конечного числа переменных над полем нётерова.
- **65.3.** Алгебра $A(\alpha,\beta)$ обобщенных кватернионов над полем F характеристики, отличной от 2, где $\alpha,\beta\in F^*$, определяется как векторное пространство над F с базисом (1,i,j,k) и таблицей умножения

$$\begin{aligned} 1\cdot 1 &= 1, & 1\cdot i &= i\cdot 1 = i\\ 1\cdot j &= j\cdot 1 = j, & 1\cdot k &= k\cdot 1 = k,\\ i^2 &= -\alpha, & j^2 &= -\beta, & ij &= -ji &= k. \end{aligned}$$

Доказать, что:

- а) $A(\alpha,\beta)$ (ассоциативная) центральная простая алгебра над полем F:
 - б) отображение

$$x = x_0 + x_1 i + x_2 j + x_3 k \mapsto x_0 - x_1 i - x_2 j - x_3 k = \overline{x}$$

является *инволюцией* (т. е. для любых $x,y\in A(\alpha,\beta)$ выполняются равенства $\overline{x+y}=\overline{x}+\overline{y},\ \overline{xy}=\overline{yx},\ \overline{\overline{x}}=x);$

в) для любого $x \in A(\alpha, \beta)$

$$x^2 - (\operatorname{tr} x)x + N(x) = 0,$$

где $\operatorname{tr} x = x + \overline{x}$ и $N(x) = x\overline{x}$ — элементы поля F;

г) алгебра $A(\alpha,\beta)$ является телом тогда и только тогда, когда норменное уравнение N(x)=0 имеет в ней только нулевое решение:

- д) алгебра $A(\alpha,\beta)$ является либо телом, либо изоморфна алгебре матриц $\mathbf{M}_2(F)$ в соответствии с существованием или отсутствием в ней делителей нуля;
- е) если норменное уравнение имеет в алгебре $A(\alpha,\beta)$ ненулевое решение, то оно имеет решение и во множестве ненулевых чистых кватернионов;
- ж) подалгебра F(a), порожденная элементом a алгебры $A(\alpha,\beta)$, является коммутативной алгеброй размерности $\leqslant 2$ над F, и если a не является делителем нуля, то F(a) поле, изоморфное полю разложения многочлена x^2 $(\operatorname{tr} a)x + N(a)$;
- з) ($meopema\ Bumma$) норма N(x) является квадратичной формой ранга 3 на пространстве чистых кватернионов, и, обратно, каждой квадратичной форме ранга 3 на трехмерном векторном пространстве W над полем F соответствует алгебра обобщенных кватернионов, определяемая как векторное пространство $F \oplus W$ с правилами умножения

$$1 \cdot w = w \cdot 1,$$

$$w_1 \cdot w_2 = -Q(w_1, w_2) \cdot 1 + [w_1, w_2],$$

- где Q билинейная форма на W, ассоциированная с данной квадратичной формой, $[w_1,w_2]$ векторное произведение элементов пространства W;
- и) приведенная конструкция устанавливает биективное соответствие между кватернионными алгебрами над полем F (с точностью до изоморфизма) и классами эквивалентности квадратичных форм ранга S на трехмерном векторном пространстве над S. (Формы S0: S1: S2: S3: S4: S4: S5: S4: S5: S5: S6: S8: S8: S8: S8: S8: S8: S8: S8: S9: S8: S9: S8: S9: S8: S9: S
- **65.4.** Конечномерная алгебра называется *полупростой*, если она не содержит ненулевых нильпотентных идеалов. Доказать, что:
 - а) факторалгебра $\mathbb{C}[x]/\langle f(x)\rangle$ полупроста тогда и только тогда, когда многочлен f(x) не имеет кратных корней;
 - б) алгебра, порожденная полем $\mathbb C$ и матрицей A в алгебре $\mathbf M_n(\mathbb C)$, полупроста тогда и только тогда, когда минимальный многочлен матрицы A не имеет кратных корней;
 - в) конечномерная алгебра над полем полупроста тогда и только тогда, когда она вполне приводима слева;
 - г) коммутативная полупростая алгебра с единицей изоморфна прямой сумму полей;

- д) если все идемпотенты полупростой алгебры лежат в центре, то алгебра является прямой суммой нескольких тел.
- **65.5.** Пусть $H=(h_{ij})$ симметрическая $(n \times n)$ -матрица над полем F. Алгеброй Клиффорда называется 2^n -мерное пространство $\mathbb{C}(F,H)$ над F с базисом, составленным из символов

$$e_{i_1...i_k}$$
 $(1 \leqslant i_1 < i_2 < ... < i_k \leqslant n)$ и $e_0 = 1$,

и с умножением, определяемым правилами

$$e_i e_i = h_{ii},$$
 $e_0 e_i = e_i e_0 = e_i,$ $e_i e_j + e_j e_i = h_{ij},$
 $e_{i_1...i_k} = e_{i_1}...e_{i_k}$ $(1 \le i_1 < ... < i_k \le n).$

Если V-n-мерное векторное пространство с базисом (e_1,\ldots,e_n) и квадратичной формой Q, то алгебра Клиффорда $\mathbb{C}_Q(F)$ квадратичной формы Q определяется как алгебра $\mathbb{C}(F,H)$, где $h_{ij}=Q(e_i,e_j)$.

- а) Доказать, что если H=0, то $\mathbb{C}(F,H)\simeq\Lambda(V)$.
- б) Четной алгеброй Клиффорда $\mathbb{C}^+(F,H)$ (или $\mathbb{C}^+_Q(F)$) называется подалгебра алгебры Клиффорда, порожденная элементами $e_{i_1}\dots e_{i_{2m}}$ ($m=0,1,\dots,[n/2]$). Доказать, что четная алгебра Клиффорда квадратичной формы

$$Q(x_1, x_2, x_3) = h_{11}x_1^2 + h_{12}x_1x_2 + h_{22}x_2^2,$$

не распадающаяся в F на линейные множители, является квадратичным расширением поля F, изоморфным полю разложения

$$F(\sqrt{h_{12}^2-4h_{11}h_{22}})$$

формы Q.

- в) Доказать, что при char $F \neq 2$ четная алгебра Клиффорда квадратичной формы Q на трехмерном векторном пространстве V изоморфна алгебре обобщенных кватернионов формы $Q^{(2)}$ на трехмерном векторном пространстве $W = \Lambda^2 V$ (см. задачу 65.3).
- г) В условиях задачи в) доказать, что квадратичная форма

$$N(x) = x\overline{x}$$

на пространстве чистых кватернионов эквивалентна форме $\lambda Q\ (\lambda \in F^*).$

65.6. Пусть $A = A_0 \oplus A_1 - 2$ -градуированная ассоциативная алгебра над полем K, т. е. $A_i A_j \subset A_{i+j}$ (сложение индексов по модулю 2).

Определим в A новую операцию, полагая

$$[x,y] = xy - (-1)^{ij}yx,$$

где $x \in A_i$, $y \in A_i$.

а) Доказать, что для любых однородных элементов $x \in A_i, \ y \in A_j, \ z \in A$ имеем

$$[x,y] = (-1)^{ij}[y,x],$$

$$[x,[y,z]] + [y,[z,x]] + (-1)^{ij+1}[z,[x,y]] = 0.$$

Алгебра с 2-градуировкой, для которой однородные элементы удовлетворяют данным соотношениям, называется супералгеброй Ли.

б) Пусть V-n-мерное векторное пространство с базисом (e_1,\dots,e_n) над полем K характеристики, не равной 2, и $\Lambda(V)-$ внешняя алгебра на V,I- тождественный оператор на $V,L_0=K\cdot I$ и L_1- линейная оболочка операторов φ_i и ψ_i , где

$$\varphi_i(w) = w \wedge e_i,$$

$$\psi_i(e_{i_1} \wedge \ldots \wedge e_{i_p}) = \begin{cases} (-1)^{p-k} e_{i_1} \wedge \ldots \wedge \widehat{e}_{i_k} \wedge \ldots \wedge e_{i_p}, \text{ если } i_k = i, \\ 0, \quad \text{если } i_k \neq i \text{ для всех } k = 1, \ldots, p. \end{cases}$$

Доказать, что $L=L_0\oplus L_1$ является супералгеброй Ли относительно операции, введенной в а).

- **65.7.** Пусть K расширение поля $\mathbb Q$ степени n. Доказать, что:
- а) для любого многочлена $f(x) \in \mathbb{Q}[x]$ степени n найдется матрица A порядка n, для которой f(A) = 0;
- б) алгебра $\mathbf{M}_n(\mathbb{Q})$ содержит подалгебру, изоморфную K;
- в) если L подалгебра в $\mathbf{M}_n(\mathbb{Q})$, являющаяся полем, то

$$[L:Q] \leqslant n.$$

- **65.8.** Имеет ли делители нуля $\mathbb C$ -алгебра аналитических функций, определенных в области $U\subseteq \mathbb C$?
- **65.9.** Функция комплексного переменного называется *целой*, если она аналитична на всей комплексной плоскости. Доказать, что всякий конечно порожденный идеал алгебры целых функций является главным.
- **65.10.** Дифференцированием кольца R называется отображение $D:R \to R$, удовлетворяющее условиям

$$D(x+y) = D(x) + D(y),$$

$$D(xy) = D(x)y + xD(y), \quad x, y \in R.$$

Найти все дифференцирования колец:

- **65.11.** Множество L с операцией сложения, относительно которой L является коммутативной группой, и операцией умножения \circ , связанной со сложением законами дистрибутивности, называется кольцом $\mathcal{J}u$, если для любых $x,y,z\in L$ выполняются равенства

$$x\circ x=0,$$

$$(x\circ y)\circ z+(y\circ z)\circ x+(z\circ x)\circ y=0\quad \mbox{(тождество Якоби)}.$$

Доказать, что:

- а) в кольце Ли выполняется тождество $x \circ y = -y \circ x$;
- б) векторы трехмерного пространства образуют кольцо Ли относительно сложения и векторного умножения;
- в) всякое кольцо R является кольцом Ли относительно сложения и операции $x\circ y=xy-yx;$
- г) множество всех дифференцирований кольца R является кольцом Ли относительно сложения и операции $D_1 \circ D_2 = D_1 D_2 D_2 D_1$.
- **65.12.** Пусть K поле и D дифференцирование K-алгебры матриц $\mathbf{M}_n(K)$. Доказать, что существует такая матрица $A \in \mathbf{M}_n(K)$, что D(X) = AX XA для всех X.
- **65.13.** Пусть K поле нулевой характеристики и D дифференцирование алгебры Вейля $A_n(K)$. Доказать, что существует такой элемент $f \in A_n(K)$, что D(g) = fg gf для любого $g \in A_n(K)$.
- **65.14.** Доказать, что полугрупповое кольцо R[S] упорядоченной полугруппы S не имеет делителей нуля тогда и только тогда, когда кольцо R не имеет делителей нуля.
- **65.15.** Пусть p простое число и \mathbb{Z}_p кольцо целых p-адических чисел, т. е. множество всех формальных рядов $\sum_{i\geqslant 0}a_ip^i$, где $a_i\in\mathbb{Z}$ и $0\leqslant a_i< p$. При этом

$$\sum_{i\geqslant 0} a_i p^i + \sum_{i\geqslant 0} b_i p^i = \sum_{i\geqslant 0} c_i p^i,$$
$$\left(\sum_{i\geqslant 0} a_i p^i\right) \left(\sum_{i\geqslant 0} b_i p^i\right) = \sum_{i\geqslant 0} d_i p^i,$$

если для любого $n\geqslant 0$ в \mathbf{Z}_{p^n}

§ 66. Поля 69

$$\sum_{i=0}^{n-1} a_i p^i + \sum_{i=0}^{n-1} b_i p^i = \sum_{i=0}^{n-1} c_i p^i,$$
$$\left(\sum_{i=0}^{n-1} a_i p^i\right) \left(\sum_{i=0}^{n-1} b_i p^i\right) = \sum_{i=0}^{n-1} d_i p^i.$$

Доказать, что:

- а) \mathbb{Z}_p кольцо без делителей нуля, содержащее \mathbb{Z} ;
- б) элемент $\sum_{i\geqslant 0}a_ip^i$ обратим в \mathbb{Z}_p тогда и только тогда, когда $a_0=1,2,\ldots,p-1;$
- в) естественный гомоморфизм групп обратимых элементов $\mathbb{Z}_p^* \to \mathbf{Z}_{p^n}^*$ сюръективен при любом n;
- г) каждый идеал в \mathbb{Z}_p главный и имеет вид $(p^n), \ n \geqslant 0;$
- д) найти все простые элементы в \mathbb{Z}_p .

65.16.

- а) Доказать, что поле p-адических чисел \mathbb{Q}_p , т. е. поле частных \mathbb{Z}_p , состоит из элементов вида p^mh , где $m\in\mathbb{Z},\ h\in\mathbb{Z}_p$.
- б) Показать, что $\mathbb Q$ содержится в $\mathbb Q_p$ в качестве подполя.
- в) Доказать, что элемент $p^m \Big(\sum_{i\geqslant 0} a_i p^i\Big)$ из \mathbb{Q}_p , где $0\leqslant a_i\leqslant p-1$, для некоторого $m\geqslant 1$ лежит в \mathbb{Q} тогда и только тогда, когда, начиная с некоторого N, элементы $a_i,\ i\geqslant N$, образуют периодическую последовательность.
- г) Найти в \mathbb{Q}_5 образы элементов 2/7 и 1/3.
- **65.17.** Пусть K поле, p неприводимый многочлен от одной переменной X с коэффициентами в K. Построить по аналогии с задачей 65.15 кольцо $K[X]_p$ и его поле частных $K(X)_p$. Показать, что если p имеет степень 1, то $K[X]_p \simeq K[[X]]$.
- **65.18.** Найти все подкольца поля рациональных чисел \mathbb{Q} , содержащие единицу.

§ 66. Поля

- **66.1.** Какие из колец в задачах 63.1–63.3 являются полями?
- **66.2.** Какие из следующих множеств матриц образуют поле относительно обычных матричных операций:
 - а) $\left\{ \begin{pmatrix} x & y \\ ny & x \end{pmatrix}; \quad x,y \in \mathbb{Q} \right\}$, где n фиксированное целое число;
 - б) $\left\{ \begin{pmatrix} x & y \\ ny & x \end{pmatrix}; \quad x,y \in \mathbb{R} \right\}$, где n фиксированное целое число;

в)
$$\left\{ \begin{pmatrix} x & y \\ ny & x \end{pmatrix}; \quad x,y \in \mathbf{Z}_p \right\}$$
, где $p=2,3,5,7$?

- **66.3.** Пусть K поле и F поле дробей алгебры формальных степенных рядов K[[x]]. Доказать, что каждый элемент из F представляется в виде $x^{-s}h$, где $s\geqslant 0$ и $h\in K[[x]]$.
- **66.4.** Доказать, что порядок единицы поля в его аддитивной группе либо бесконечен, либо является простым числом.
- **66.5.** Для каких чисел n=2,3,4,5,6,7 существует поле из n элементов?
- **66.6.** Доказать, что поле из p^2 элементов, где p простое число, имеет единственное собственное подполе.
- **66.7.** Доказать, что поля $\mathbb Q$ и $\mathbb R$ не имеют автоморфизмов, отличных от тождественного.
- **66.8.** Найти все автоморфизмы поля \mathbb{C} , при которых каждое вещественное число переходит в себя.
- **66.9.** Имеет ли поле $\mathbb{Q}(\sqrt{2})$ автоморфизмы, отличные от тождественного?
 - **66.10.** Доказать, что в поле F характеристики p:
 - а) справедливо тождество

$$(x+y)^{p^m} = x^{p^m} + y^{p^m}$$
 (т — натуральное число);

- б) если F конечно, то отображение $x\mapsto x^p$ является автоморфизмом.
- **66.11.** Доказать, что если комплексное число z не является вещественным, то кольцо $\mathbb{R}[z]$ совпадает с полем $\mathbb{C}.$
 - **66.12.** При каких $m,n\in\mathbb{Z}\setminus\{0\}$ поля $\mathbb{Q}(\sqrt{m})$ и $\mathbb{Q}(\sqrt{n})$ изоморфны?
- **66.13.** Доказать, что для любого автоморфизма φ поля K множество элементов, неподвижных относительно φ , является подполем.
- **66.14.** Доказать, что любые два поля из четырех элементов изоморфны.
- **66.15.** Существует ли поле, строго содержащее поле комплексных чисел?
- **66.16.** Доказать, что любое конечное поле имеет положительную характеристику.
- **66.17.** Существует ли бесконечное поле положительной характеристики?

66.18. Решить в поле $\mathbb{Q}(\sqrt{2})$ уравнения:

a)
$$x^2 + (4 - 2\sqrt{2})x + 3 - 2\sqrt{2} = 0$$
;

$$6) x^2 - x - 3 = 0;$$

B)
$$x^2 + x - 7 + 6\sqrt{2} = 0$$
;

r)
$$x^2 - 2x + 1 - \sqrt{2} = 0$$
.

66.19. Решить систему уравнений

$$x + 2z = 1$$
, $y + 2z = 2$, $2x + z = 1$:

- а) в поле \mathbb{Z}_3 ; б) в поле \mathbb{Z}_5 .
- 66.20. Решить систему уравнений

$$3x + y + 2z = 1$$
, $x + 2y + 3z = 1$, $4x + 3y + 2z = 1$

в поле вычетов по модулю 5 и по модулю 7.

66.21. Найти такой многочлен f(x) степени не выше 3 с коэффициентами из \mathbf{Z}_5 , что

$$f(0) = 3,$$
 $f(1) = 3,$ $f(2) = 5,$ $f(4) = 4.$

66.22. Найти все многочлены f(x) с коэффициентами из \mathbb{Z}_5 , что

$$f(0) = f(1) = f(4) = 1,$$
 $f(2) = f(3) = 3.$

66.23. Какие из уравнений:
a)
$$x^2 = 5$$
, б) $x^7 = 7$, в) $x^3 = a$, имеют решения в поле ${\bf Z}_{11}$?

- 66.24. В поле вычетов по модулю 11 решить уравнения:
- a) $x^2 + 3x + 7 = 0$;
- 6) $x^2 + 5x + 1 = 0$;
- B) $x^2 + 2x + 3 = 0$;
- r) $x^2 + 3x + 5 = 0$.
- **66.25.** Доказать, что в поле из n элементов выполняется тождество
 - **66.26.** В поле \mathbf{Z}_p решить уравнение $x^p = a$.
- **66.27.** Доказать, что если $x^n = x$ для всех элементов x поля K, то K конечно и его характеристика делит n.
- 66.28. Найти все порождающие элементы в мультипликативной группе поля:
 - б) \mathbf{Z}_{11} ; в) \mathbf{Z}_{17} . a) ${\bf Z}_7$;

- **66.29.** Пусть a, b элементы поля порядка 2^n , где n нечетно. Доказать, что если $a^2 + ab + b^2 = 0$, то a = b = 0.
- **66.30.** Пусть F поле, причем группа F^* циклическая. Доказать, что F конечно.
- **66.31.** В поле рациональных функций с вещественными коэффициентами решить уравнения:
 - a) $f^4 = 1$; of $f^2 f x = 0$.
 - **66.32.** Доказать, что в поле \mathbf{Z}_p выполняются равенства:

a)
$$\sum_{k=1}^{p-1} k^{-1} = 0$$
 $(p > 2);$ 6) $\sum_{k=1}^{(p-1)/2} k^{-2} = 0$ $(p > 3).$

- **66.33.** Пусть $n \geqslant 2$ и ζ_1, \dots, ζ_m все корни n-й степени из 1 в поле K. Доказать, что:
 - а) $\{\zeta_1, ..., \zeta_m\}$ группа по умножению;
 - б) $\{\zeta_1, ..., \zeta_m\}$ корни степени m из 1;
 - в) m делит n;
 - Γ) если $k \in \mathbb{Z}$, то

$$\zeta_1^k+\ldots+\zeta_m^k=\left\{egin{array}{ll} 0, & \mbox{если} & m \mbox{ не делит } k, \\ m, & \mbox{если} & m \mbox{ делит } k. \end{array}
ight.$$

66.34. Пусть $m_k m_{k-1} \dots m_0$ и $n_k n_{k-1} \dots n_0$ — записи натуральных чисел m и n в системе счисления с основанием s, где s — простое число.

Доказать, что:

- а) числа $\binom{m}{n}$ и $\binom{m_0}{n_0}\binom{m_1}{n_1}\dots\binom{m_n}{n_n}$ при делении на s дают одинаковые остатки;
- б) $\binom{m}{n}$ делится на s тогда и только тогда, когда при некотором i выполняется неравенство $m_i < n_i$.
- **66.35.** *Нормированием поля* K называется функция $\|x\|$, $x \in K$, принимающая вещественные неотрицательные значения, причем:

 $\|x\|=0$ тогда и только тогда, когда x=0; $\|xy\|=\|x\|\|y\|;$ $\|x+y\|\leqslant \|x\|+\|y\|.$

Доказать, что следующие функции в $\mathbb Q$ являются нормированиями:

a)
$$\|x\|=\left\{ egin{array}{ll} 1, & x
eq 0, \\ 0, & x=0; \end{array}
ight.$$

б) $||x|| = |x|^s$, где s — фиксированное число, $0 < s \leqslant 1$;

в) $\|x\| = |x|_p^s$, p — простое число, s — фиксированное положительное число, меньшее 1, причем если $x = p^r m n^{-1}$, где m, n — целые числа, не делящиеся на p, то $|x|_p = p^{-r}$.

* * *

- **66.36.** Пусть ||x|| нормирование \mathbb{Q} , причем существует такое y, что $||y|| \neq 0, 1$. Тогда ||x|| имеет либо вид б), либо вид в) из задачи 66.35.
- **66.37.** Пусть K поле и K(x) поле рациональных функций от одной переменной x. Доказать, что следующие функции в K(x) являются нормированиями:
 - a) $\|f\|=\left\{ egin{array}{ll} 1, & \mbox{если} & f
 eq 0, \\ 0, & \mbox{если} & f=0; \end{array}
 ight.$
 - б) $||hg^{-1}|| = c^{\deg h \deg g}$, где $h, g \in K[x]$ и 0 < c < 1;
 - в) если p(x) неприводимый многочлен, $h=p^r(x)u(x)v^{-1}(x)$, где $u(x),\ v(x)$ многочлены, не делящиеся на p(x), то $|h|=c^r$, где 0< c<1.
 - 66.38. Доказать, что:
 - а) пополнение $\mathbb Q$ относительно нормирования из задачи 66.37, б) равно $\mathbb R$;
 - б) пополнение $\mathbb Q$ относительно нормирования из задачи 66.37, в) равно $\mathbb Q_p$;
 - в) пополнение \mathbb{Z} относительно нормирования из задачи 66.37, б) равно \mathbb{Z}_p ;
 - г) пополнение $\mathbb{C}[x]$ относительно нормирования из задачи 66.37, в) с p=x равно алгебре степенных рядов $\mathbb{C}[[x]]$.
- **66.39.** Последовательность $x_n,\ n\geqslant 1$, элементов из \mathbb{Q}_p сходится относительно метрики $\|f\|$ из задачи 66.37, в) тогда и только тогда, когда

$$\lim_{n \to \infty} ||x_n - x_{n+1}||_p = 0.$$

66.40. При каких $t \in \mathbb{Q}_p$ сходятся ряды:

a)
$$e^t = \sum \frac{t^n}{n!}$$
; 6) $\ln(1+x) = \sum_{n\geqslant 1} \frac{1}{n} (-1)^n t^n$; b) $\sum_{n\geqslant 0} x^n$?

66.41. Пусть $a \in \mathbb{Q}_p$ и $x_n = a^{p^n}$. Существует ли $\lim_{n \to \infty} x_n$?

66.42. Пусть $f(x)\in \mathbb{Z}_p[x],\ a_0\in \mathbb{Z}_p,$ причем $\|f(a_0)/f'(a_0)^2\|_p<1.$ Положим

$$a_{n+1} = a_n - \frac{f(a_n)}{f'(a_n)}.$$

Доказать, что существует $a = \lim a_n$, причем f(a) = 0 и $||a - a_0||_p < 1$.

- **66.43.** Доказать, что любой автоморфизм в \mathbb{Q}_p тождествен.
- **66.44.** Пусть $f(x) \in \mathbb{Z}_p[x]$ имеет степень n и старший коэффициент f(x) равен 1. Пусть образ $\overline{f(x)}$ многочлена f(x) в $\mathbb{Z}/p\mathbb{Z}[x]$ разложим, $\overline{f}(x) = g(x)h(x)$, где g(x), h(x) взаимно просты, имеют старший коэффициент 1, причем

$$\deg g(x) = r, \qquad \deg h(x) = n - r.$$

Тогда f(x) = u(x)v(x), где $\deg u(x) = r$, $\deg h(x) = n - r$, старшие коэффициенты u(x), v(x) равны 1, причем образы u(x), v(x) в $\mathbb{Z}/p\mathbb{Z}[x]$ равны соответственно g(x) и h(x).

66.45. Пусть $f(x) \in \mathbb{Z}_p[x]$ и $a \in \mathbf{Z}_p$, причем в \mathbf{Z}_p

$$f(a) = 0, \qquad f'(a) \neq 0.$$

Тогда существует такой элемент $b\in\mathbb{Z}_p$, что f(b)=0 и образ b в \mathbf{Z}_p равен a.

- **66.46.** Пусть m натуральное число, не делящееся на p и $a\in 1+p\mathbf{Z}_p$. Тогда существует такое $b\in\mathbb{Z}_p$, что $b^m=a$.
 - **66.47.** Пусть поля \mathbb{Q}_p и $\mathbb{Q}_{p'}$ изоморфны. Доказать, что p=p'.
- **66.48.** Кольцо \mathbb{Z}_p компактно в \mathbb{Q}_p относительно p-адической топологии.

§ 67. Расширения полей. Теория Галуа

В этом параграфе все кольца и алгебры предполагаются коммутативными и обладающими единицей.

67.1. Пусть A — алгебра над полем K и

$$K = K_0 \subset K_1 \subset K_1 \subset \ldots \subset K_s$$

— башня подполей в A.

Доказать, что

$$(A:K) = (A:K_s)(K_s:K_{s-1}) \times ... \times (K_1:K_0).$$

- **67.2.** Пусть A алгебра над полем K и $a \in A$. Доказать, что:
- а) если элемент a не является алгебраическим над K, то подалгебра K[a] изоморфна кольцу многочленов K[x];
- б) если a алгебраический элемент над K, то

$$K[a] \simeq K[x]/\langle \mu_a(x) \rangle$$
,

где $\mu_a(x)$ — некоторый однозначно определенный унитарный многочлен (минимальный многочлен элемента a) над K;

- в) если A поле, то для всякого алгебраического над K элемента $a \in A$ многочлен $\mu_a(x)$ неприводим в K[x];
- г) если все элементы из A алгебраичны над K и для всякого $a \in A$ многочлен $\mu_a(x)$ неприводим, то A — поле.
- 67.3. Найти минимальные многочлены для элементов:
- a) $\sqrt{2}$ над \mathbb{O} :
- б) $\sqrt[7]{5}$ над \mathbb{Q} ; в) $\sqrt[105]{9}$ над \mathbb{Q} ;
- г) 2-3i над \mathbb{R} ; д) 2-3i над \mathbb{C} ; е) $\sqrt{2}+\sqrt{3}$ над \mathbb{O} :
- ж) $1 + \sqrt{2}$ над $\mathbb{Q}(\sqrt{2} + \sqrt{3})$.
- **67.4.** Доказать, что:
- а) если A конечномерная алгебра над K, то всякий элемент из A алгебраичен над K;
- б) если $a_1, \ldots, a_s \in A$ алгебраические элементы над K, то подалгебра $K[a_1,\ldots,a_s]$ конечномерна над K.
- **67.5.** Доказать, что если A поле и $a_1, \ldots, a_s \in A$ алгебраические элементы над K, то расширение $K(a_1, ..., a_s)$ совпадает с алгеброй $K[a_1,\ldots,a_s]$.
- **67.6.** Доказать, что множество всех элементов K-алгебры A, алгебраических над K, является подалгеброй в A, а если A — поле, то подполем.
 - 67.7. Доказать, что если в башне полей

$$K = K_0 \subset K_1 \subset K_2 \subset \ldots \subset K_s = L$$

каждый этаж $K_{i-1} \subset K_i \; (i=1,\ldots,s)$ является алгебраическим расширением, то L/K — алгебраическое расширение.

67.8. Доказать, что всякий многочлен с коэффициентами из поля K имеет корень в некотором расширении L/K.

67.9. Пусть K — поле. Доказать, что:

- а) для произвольного многочлена из K[x] существует поле разложения этого многочлена над K;
- б) для любого конечного множества многочленов из K[x] существует поле разложения над K.
- **67.10.** Пусть K поле, $g(x) \in K[x]$, $h(x) \in K[x]$, f(x) = g(h(x)), и α корень многочлена g(x) в некотором расширении L/K. Доказать, что многочлен f неприводим над K тогда и только тогда, когда g(x) неприводим над K и h(x) α неприводим над $K[\alpha]$.
 - **67.11.** Пусть K поле, $a \in K$. Доказать, что:
 - а) если p простое число, то многочлен x^p a либо неприводим, либо имеет корень в K;
 - б) если многочлен x^n-1 разлагается в K[x] на линейные множители, то многочлен $x^n-a\in K[x]$ либо неприводим, либо для некоторого делителя $d\neq 1$ числа n многочлен x^d-a имеет корень в K;
 - в) предположение о разложимости x^n-1 на линейные множители существенно для справедливости утверждения б).
- **67.12.** Доказать, что над полем K характеристики $p \neq 0$ многочлен $f(x) = x^p x a$ либо неприводим, либо разлагается в произведение линейных множителей, и указать это разложение, если f(x) имеет корень x_0 .
 - **67.13.** Найти степень поля разложения над $\mathbb Q$ для многочленов:
 - a) ax + b $(a, b \in \mathbb{Q}, a \neq 0)$;
 - б) $x^2 2$; в) $x^3 1$; г) $x^3 2$; д) $x^4 2$;
 - е) $x^{p} 1$ (p простое число);
 - ж) $x^n 1$ $(n \in \mathbb{N})$;
 - з) x^p-a $(a\in\mathbb{Q}$ и не является p-й степенью в $\mathbb{Q},\ p$ простое число);
 - и) $(x^2-a_1)\times\ldots\times(x^2-a_n)$ $(a_1,\ldots,a_n$ принадлежит \mathbb{Q}^* и все различны).
- **67.14.** Доказать, что конечное расширение L/K является простым тогда и только тогда, когда множество промежуточных полей между K и L конечно, и привести пример конечного расширения, не являющегося простым.
- **67.15.** Пусть L/K алгебраическое расширение. Доказать, что расширение L(x)/K(x) также алгебраическое и

$$(L(x):K(x))=(L:K).$$

67.16. Пусть L/K — расширение. Элементы $a_1,\ldots,a_s\in L$ называются алгебраически независимыми над K, если $f(a_1,\ldots,a_s)\neq 0$ для всякого ненулевого многочлена $f(x_1,\ldots,x_s)\in K[x_1,\ldots,x_s]$.

Доказать, что элементы $a_1,\ldots,a_s\in L$ алгебраически независимы над K тогда и только тогда, когда расширение $K(a_1,\ldots,a_s)$ K-изоморфно полю рациональных функций $K(x_1,\ldots,x_s)$.

67.17. Пусть L/K — расширение и $a_1, \ldots, a_s; b_1, \ldots, b_n$ — две максимальные алгебраически независимые над K системы элементов из L. Доказать, что m=n (стелень трансцендентности L над K).

67.18. Доказать, что:

- а) в конечномерной коммутативной K-алгебре A имеется лишь конечное число максимальных идеалов и их пересечение совпадает с множеством N(A) всех нильпотентных элементов алгебры A (нильрадикал алгебры A);
- б) $A^{\text{red}} = A/N(A) pedyцированная алгебра (не содержит отличных от 0 нильпотентных элементов);$
- в) алгебра A/N(A) изоморфна прямому произведению полей K_1, \ldots, K_s , являющихся расширениями поля K;
- Γ) $s \leqslant (A:K)$;
- д) набор расширений K_i определен для алгебры A однозначно с точностью до изоморфизма 1);
- е) если B подалгебра в A, то всякая компонента B является расширением в одной или нескольких компонентах A;
- ж) если I идеал в A, то компоненты алгебры A/I содержатся среди компонент алгебры A.
- **67.19.** Пусть K поле, $f(x) \in K[x]$, $p_1(x)^{k_1} \times \ldots \times p_s(x)^{k_s}$ разложение f(x) в произведение степеней различных неприводимых многочленов над K, $A = K[x]/\langle f(x) \rangle$. Доказать, что

$$A^{\mathrm{red}} = A/N(A) \simeq \prod_{i=1}^{s} k[x]/\langle p_l(x) \rangle.$$

- **67.20.** Пусть A-K-алгебра и L- расширение поля K. Доказать, что:
- а) если $f_1, \ldots f_n$ различные K-гомоморфизмы $A \to L$, то f_1, \ldots, f_n линейно независимы как элементы векторного пространства над L всех K-линейных отображений $A \to L$;
- б) число различных K-гомоморфизмов $A \to L$ не превосходит (A:L).

Найти все автоморфизмы полей $\mathbb{Q}(\sqrt{2})$, $\mathbb{Q}(\sqrt{2}+\sqrt{3})$, $\mathbb{Q}(\sqrt[3]{2})$.

- **67.21.** Пусть A конечномерная K-алгебра и L расширение поля K. Положим $A_L = L \otimes_K A$. Пусть (e_1, \ldots, e_n) базис A над K. Доказать, что:
 - а) $(1 \otimes e_1, \dots, 1 \otimes e_n)$ базис A_L над L;

- б) при естественном вложении A в A_L образ A является K-подалгеброй в A_L .
- **67.22.** Пусть A конечномерная K-алгебра, L расширение поля K. Доказать, что:
 - а) если B подалгебра в A, то B_L подалгебра в A_L ;
 - б) если I идеал алгебры A и I_L соответствующий идеал в A_L , то $(A/I)_L \simeq A_L/I_L$;
 - в) если $A=\prod_{i=1}^s A_i$, то $A_L\simeq\prod_{i=1}^s (A_i)_L$;
 - г) если K_1, \ldots, K_s множество компонент алгебры A, то множество компонент алгебр A_L совпадает с объединением множеств компонент алгебр $(K_1)_L, \ldots, (K_s)_L$;
 - д) если F расширение поля L, то $(A_L)_F \cong A_F$.
- **67.23.** Пусть A конечномерная K-алгебра, L расширение поля K, B некоторая L-алгебра. Доказать, что:
 - а) каждый K-гомоморфизм $A \to B$ однозначно продолжается до L-гомоморфизма $A_L \to B_L$;
 - б) множество K-гомоморфизмов $A \to L$ находится в биективном соответствии со множеством компонент алгебры A_L , изоморфных L;
 - в) число различных K-гомоморфизмов $A \to L$ не превосходит (A:K) (ср. с задачей 67.20, б)).
- **67.24.** Пусть F и L расширения поля K, причем F/K конечное. Доказать, что существует расширение E/K, для которого имеются вложения F в E и L в E, оставляющие на месте все элементы из K.
- **67.25.** Пусть A конечномерная K-алгебра и $A = K[a_1, \ldots, a_s]$. Доказать, что следующие свойства расширения L/K равносильны:
 - а) все компоненты A_L изоморфны L;
 - б) L поле расщепления для минимального многочлена любого элемента $a \in A$ (расщепляющее поле K-алгебры A).
- **67.26.** Доказать, что если L расщепляющее поле K-алгебры A и B подалгебра в A, то любой K-гомоморфизм $B \to L$ продолжается до K-гомоморфизма $A \to L$.
- **67.27.** Расщепляющее поле L для конечномерной K-алгебры A называется полем разложения для A, если никакое его собственное подполе, содержащее K, не является расщепляющим для A.

Доказать, что:

- а) если $A=K[a_1,\ldots,a_s]$, то L поле разложения для A тогда и только тогда, когда L поле разложения для минимальных многочленов элементов a_1,\ldots,a_s ;
- б) любые два поля разложения K-алгебры A изоморфны над K;

- в) для поля разложения K-алгебры A существует K-вложение в любое расщепляющее поле для A.
- **67.28.** Пусть A конечномерная K-алгебра, L поле расщепления для A. Доказать, что число компонент L-алгебры A_L одно и то же для всех расщепляющих полей алгебры A (сепарабельная степень $(A:K)_s$ алгебры A).
- **67.29.** Пусть A-K-алгебра и L- расширение поля K. Доказать, что:
 - а) число компонент алгебры A_L не превосходит $(A:K)_s$;
 - б) число различных K-гомоморфизмов $A \to L$ не превосходит $(A:K)_s$ и равенство имеет место тогда и только тогда, когда L расщепляющее поле для A.
- **67.30.** Доказать, что следующие свойства конечного расширения L/K равносильны:
 - а) все компоненты алгебры L_L изоморфны L;
 - б) L имеет (L:K) различных K-автоморфизмов;
 - в) для любых K-вложений $\varphi_i\colon L\to L'$ (i=1,2) поля L в любое расширение L'/K имеем $\varphi_1(L)=\varphi_2(L);$
 - г) всякий неприводимый многочлен из K[x], имеющий корень в L, разлагается над L в произведение линейных множителей;
 - д) L есть поле разложения некоторого многочлена из K[x]. (Расширение L/K, удовлетворяющее этим условиям, называется нормальным.)
 - **67.31.** Пусть $K \subset L \subset F$ башня конечных расширений поля K. Доказать, что:
- а) если расширение F/K нормальное, то расширение F/L также нормальное;
 - б) если расширения L/K и F/L нормальные, то расширение F/K не обязательно нормальное;
 - в) всякое расширение степени 2 нормально.
- **67.32.** Пусть A конечномерная K-алгебра и $a \in A$. Характеристический многочлен, определитель и след линейного оператора $t \mapsto at$ на A обозначаются соответственно через

$$\chi_{A/K}(a,x), \qquad N_{A/K}(a), \qquad {\rm tr\,}_{A/K}(a)$$

и называются соответственно xарактеристическим многочленом, нормой и следом элемента a алгебры A над K.

Доказать, что если $K\subset L\subset F$ — башня конечных расширений полей и $a\in F$, то:

а) $\chi_{F/K}(a,x) = N_{L(x)/K(x)}(\chi_{F/L}(a,x))$, где $\chi_{F/L}(a,x)$ рассматривается как элемент поля рациональных функций K(x);

- 6) $N_{F/K}(a) = N_{L/K}(N_{F/L}(a));$
- B) $\operatorname{tr}_{F/K}(a) = \operatorname{tr}_{L/K}(\operatorname{tr}_{F/L}(a)).$
- **67.33.** Пусть L/K конечное расширение и $a \in L$. Доказать, что:
- а) минимальный многочлен элемента a равен $\pm \chi_{K(a)/K}(a,x)$;
- б) $\chi_{L/K}(a,x)$ является (с точностью до знака) степенью минимального многочлена элемента a.
- **67.34.** Пусть L/K конечное расширение. Доказать, что K-билинейная форма на L

$$(x,y) \mapsto \operatorname{tr}_{L/K}(xy)$$

либо невырожденная, либо $\operatorname{tr}_{L/K}(x) = 0$ для всех $x \in L$.

- **67.35.** Доказать, что следующие свойства конечномерной K-алгебры A равносильны:
 - а) для всякого расширения L/K алгебра A_L редуцированная (задача 67.18);
 - б) $(A:K)_s = (A:K)$ (задача 67.28);
 - в) для некоторого расширения L/K существует (A:K) гомоморфизмов K-алгебр $A \to L$;
 - г) билинейная форма $(x,y)\mapsto {\rm tr\,}_{A/K}(xy)$ на A невырождена. (Алгебра A, удовлетворяющая этим условиям, называется cenapa- бельной.)
- **67.36.** Пусть L расширение поля K. Доказать, что конечномерная K-алгебра A сепарабельна тогда и только тогда, когда сепарабельна L-алгебра A_L .
- **67.37.** Доказать, что всякая подалгебра и всякая факторалгебра сепарабельной K-алгебры являются сепарабельными K-алгебрами.
- **67.38.** Пусть A сепарабельная K-алгебра, (A:K)=n и $\varphi_1,\ldots,\varphi_n$ различные K-гомоморфизмы алгебры A в некоторое ее расщепляющее поле L. Доказать, что для всякого элемента $a\in A$

$$\operatorname{tr}_{A/K}(a) = \sum_{i=1}^{n} \varphi_i(a), \qquad N_{A/K}(a) = \prod_{i=1}^{n} \varphi_i(a),$$
$$\chi_{A/K}(a, x) = \prod_{i=1}^{n} (\varphi_i(a) - x).$$

- **67.39.** Конечное расширение L/K называется *сепарабельным*, если L сепарабельная K-алгебра.
 - а) Доказать, что сепарабельное расширение полей является простым.

б) Являются ли числа

$$a = -\frac{1}{2} + i\frac{\sqrt{2}}{2}, \qquad b = \sqrt{2} + i$$

примитивными элементами расширения $\mathbb{Q}(\sqrt{2},i)/\mathbb{Q}$?

- **67.40.** Доказать, что конечномерная K-алгебра сепарабельна тогда и только тогда, когда она является прямым произведением сепарабельных расширений поля K.
- **67.41.** Пусть $K=K_0\subset K_1\subset\ldots\subset K_s=L$ башня конечных расширений полей. Доказать, что расширение L/K сепарабельно тогда и только тогда, когда каждое расширение K_i/K_{i-1} $(i=1,\ldots,s)$ сепарабельно.
- **67.42.** Пусть K поле. Многочлен $f(x) \in K[x]$ называется cena- paбельным, если ни в каком расширении поля K он не имеет кратных корней.

Доказать, что:

- а) если K имеет характеристику 0, то всякий неприводимый многочлен из K[x] сепарабелен;
- б) если K имеет характеристику $p \neq 0$, то всякий неприводимый многочлен $f(x) \in K[x]$ сепарабелен тогда и только тогда, когда его нельзя представить в виде $g(x^p)$, где $g(x) \in K[x]$.

Привести пример несепарабельного неприводимого многочлена над каким-либо полем.

- **67.43.** Пусть A конечномерная K-алгебра. Элемент $a \in A$ называется сепарабельным над полем K, если K[a] сепарабельная K-алгебра. Доказать, что элемент сепарабелен тогда и только тогда, когда сепарабелен его минимальный многочлен.
 - **67.44.** Пусть $K \subset L \subset F$ башня конечных расширений полей. Доказать, что:
 - а) если элемент $a \in F$ сепарабелен над K, то a сепарабелен над L;
 - б) утверждение, обратное к а), верно, если расширение L/K сепарабельно.
- **67.45.** Пусть A сепарабельная K-алгебра, $f(x) \in K[x]$ сепарабельный многочлен.

Доказать, что алгебра $B=A[x]/\langle f(x)
angle$ сепарабельна.

- **67.46.** Пусть $A=K[a_1,\ldots,a_s]$ конечномерная K-алгебра. Доказать, что следующие условия утверждения равносильны:
 - а) A сепарабельная K-алгебра;
 - б) всякий элемент $a \in A$ сепарабелен;
 - в) элементы a_1, \ldots, a_s сепарабельны.

- **67.47.** Доказать, что:
- а) конечное расширение K/F поля F сепарабельно тогда и только тогда, когда либо K имеет характеристику 0, либо характеристика K равна p>0 и $K^p=K$;
- б) всякое конечное расширение конечного поля сепарабельно.
- **67.48.** Конечное расширение полей L/K характеристики p>0 называется *чисто несепарабельным*, если в $L\setminus K$ нет сепарабельных элементов над K. Доказать, что L/K является чисто несепарабельным расширение тогда и только тогда, когда $L^{p^k} \subseteq K$ для некоторого $k \geqslant 1$.
- **67.49.** Пусть $K\subset K_0\subset K_1\ldots\subset K_s=L$ башня конечных расширений полей. Доказать, что расширение L/K чисто несепарабельно тогда и только тогда, когда каждое расширение K_i/K_{i-1} $(i=1,\ldots,s)$ чисто несепарабельно.
- **67.50.** Доказать, что степень чисто несепарабельного расширения поля характеристики p > 0 является степенью числа p, а его сепарабельная степень равна 1.
 - **67.51.** Пусть L/K конечное расширение полей. Доказать, что:
 - а) множество K_s всех сепарабельных над K элементов из L является полем, сепарабельным над K;
 - б) L/K_s чисто несепарабельное расширение;
 - B) $(K_s:K)=(L:K)_s$;
 - г) $(L:K) = (L:K)_s \cdot (L:K)_i$, где $(L:K)_i = (L:K_s)$ несепарабельная степень расширения L/K.
- **67.52.** Пусть $K \subset L \subset F$ башня конечных расширений полей. Доказать, что:
 - a) $(F:K)_s = (F:L)_s \cdot (L:K)_s$;
 - 6) $(F:K)_i = (F:L)_i \cdot (L:K)_i$.
- **67.53.** Пусть L/K конечное расширение полей, $n=(L:K)_s$ и $\varphi_1,\ldots,\varphi_n$ множество всех K-вложений поля L в какое-либо расщепляющее поле расширения L/K.

Доказать, что при любом $a \in L$:

a)
$$\operatorname{tr}_{L/K}(a) = (L : K)_i \sum_{j=1}^n \varphi_j(a);$$

6)
$$N_{L/K}(a) = \Big(\prod_{j=1}^{n} \varphi_{j}(a)\Big)^{(L:K)_{i}};$$

$$\mathrm{B)} \ \chi_{L/K}(a,x) = \Big(\prod_{j=1}^n (\varphi_j(a) - x)\Big)^{(L:K)_i}.$$

67.54. Нормальное конечное сепарабельное расширение полей L/K называется расширением Галуа, а группа K-автоморфизмов такого расширения называется его группой Галуа и обозначается через G(L/K).

Доказать, что:

- а) G(L/K) транзитивно действует на множестве корней из поля L минимального многочлена любого элемента поля L;
- б) порядок группы G(L/K) равен степени расширения L/K.
- 67.55. Найти группу Галуа расширения:
- a) \mathbb{C}/\mathbb{R} ; 6) $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$;
- в) L/K, где (L:K) = 2; г) $\mathbb{Q}(\sqrt{2} + \sqrt{3})/\mathbb{Q}.$
- **67.56.** Группой Галуа над полем K сепарабельного многочлена $f(x) \in K[x]$ называется группа Галуа поля разложения этого многочлена над K (как некоторая группа перестановок на множестве корней f(x)). Найти группы Галуа над полем $\mathbb Q$ многочленов из задачи 67.13.
- **67.57.** Пусть G конечная группа автоморфизмов поля L и $K=L^G$ поле неподвижных элементов. Доказать, что L/K расширение Галуа и G(L/K)=G.
- **67.58.** Доказать, что если элементы a_1, \ldots, a_n алгебраически независимы над полем K, то группа Галуа многочлена

$$x^n + a_1 x^{n-1} + \ldots + a_n$$

над полем рациональных функций $K(a_1, \ldots, a_n)$ есть \mathbf{S}_n .

- **67.59.** Доказать, что всякая конечная группа является группой Галуа некоторого расширения полей.
- **67.60.** (Основная теорема теории Галуа.) Пусть L/K расширение Галуа и G его группа Галуа. Доказать, что сопоставление всякой подгруппе $H \subset G$ подполя L^H неподвижных элементов определяет биективное соответствие между всеми подгруппами группы G и всеми промежуточными подполями расширения L/K, при котором промежуточное подполе F соответствует подгруппе H = G(L/F); при этом расширение F/K нормально тогда и только тогда, когда подгруппа H нормальна в G, и в этом случае каноническое отображение $G \to G(F/K)$ определяет изоморфизм $G(F/K) \simeq G/H$.
- **67.61.** Используя основную теорему теории Галуа и существование вещественного корня у всякого многочлена нечетной степени с вещественными коэффициентами, доказать алгебраическую замкнутость поля комплексных чисел.
- **67.62.** Доказать, что группа Галуа всякого конечного расширения L/\mathbb{F}_p циклическая и порождается автоморфизмом $x \mapsto x^p$ $(x \in L)$.

67.63. Доказать, что группа Галуа над полем K сепарабельного многочлена $f(x) \in K[x]$, рассматриваемая как подгруппа в \mathbf{S}_n , содержится в группе четных перестановок тогда и только тогда, когда дискриминант

$$D = \prod_{i>j} (x_i - x_j)^2$$

многочлена f(x), где x_1, \ldots, x_n — корни f(x) в его поле разложения, является квадратом в поле K.

- **67.64.** Пусть L/K расширение Галуа с циклической группой Галуа $\langle \varphi \rangle_n$. Доказать, что существует такой элемент $a \in L$, что элементы $a, \varphi(a), \ldots, \varphi^{n-1}(a)$ образуют базис L над K.
- **67.65.** Пусть L/K сепарабельное расширение степени n и $\varphi_1, \ldots, \varphi_n$ различные K-вложения L в некоторое расшепляющее для L поле. Доказать, что элемент $a \in L$ является примитивным элементом в L/K тогда и только тогда, когда образы $\varphi_1(a), \ldots, \varphi_n(a)$ различны.
- **67.66.** Найти группу автоморфизмов K-алгебры, являющейся прямым произведением n полей, изоморфных K.
- **67.67.** Пусть L/K расширение Галуа с группой Галуа G, $L=\prod L_{\sigma}$, где L_{σ} компонента алгебры L_{L} , проекция на которую индуцирует на L автоморфизм σ , и e_{σ} единица компоненты L_{σ} . Доказать, что для продолжений автоморфизмов из G до L-автоморфизмов алгебры L_{L} справедливы равенства

$$\tau(e_{\sigma}) = e_{\sigma\tau^{-1}}, \qquad \sigma, \tau \in G.$$

- **67.68.** Пусть L расщепляющее поле для сепарабельной K-алгебры A и $\varphi_1,\ldots,\varphi_n$ множество всех K-гомоморфизмов $A\to L$. Доказать, что элементы $y_1,\ldots,y_n\in A$ образуют базис A над K тогда и только тогда, когда $\det(\varphi_i(y_j))\neq 0$.
- **67.69.** (*Теорема о нормальном базисе.*) Доказать, что в расширении Галуа L/K с группой Галуа G существует такой элемент $a \in L$, что множество $\{\sigma(a) \mid \sigma \in G\}$ является базисом поля L над K.
- **67.70.** Найти поле инвариантов $K(x_1,\ldots,x_n)^{A_n}$ для группы \mathbf{A}_n , действующей на поле рациональных функций посредством перестановок переменных.
- **67.71.** Пусть ε первообразный комплексный корень степени n из 1 и группа $G=\langle\sigma\rangle_n$ действует на поле $\mathbb{C}(x_1,\dots,x_n)$ по правилу

$$\sigma(x_1) = \varepsilon^i x_i \quad (i = 1, \dots, n).$$

Найти поле инвариантов $\mathbb{C}(x_1,\ldots,x_n)^G$.

- **67.72.** Найти поле инвариантов для группы G, действующей на поле $\mathbb{C}(x_1,\ldots,x_n)$ посредством циклической перестановки переменных.
- **67.73.** Пусть поле K содержит все корни степени n из 1 и элемент $a \in K$ не является степенью с показателем d > 1 ни для какого делителя d числа n. Найти группу Галуа над K многочлена $x^n a$.
- **67.74.** Пусть поле K содержит все корни степени n из 1 и L/K расширение Галуа с циклической группой Галуа порядка n. Доказать, что $L = K(\sqrt[n]{a})$ для некоторого элемента $a \in K$.
- **67.75.** Пусть поле K содержит все корни степени n из 1. Доказать, что конечное расширение L/K является расширением Галуа с абелевой группой Галуа периода n тогда и только тогда, когда

$$L = K(\theta_1, \dots, \theta_s),$$

где

$$\theta_i^n = a_i \in K \quad (i = 1, \dots, s)$$

- (т. е. L является полем разложения над K многочлена $\prod_{i=1}^{s} (x_i^n a_i)^s$).
- **67.76.** Пусть поле K содержит все корни степени n из 1 и $L = K(\vartheta_1, \dots, \theta_s)$, где

$$\theta_i^n = a_i \in K^* \quad (i = 1, \dots, s).$$

Доказать, что

$$G(L/K) \simeq \langle (K^*)^n, a_1, \dots, a_s \rangle / (K^*)^n.$$

- **67.77.** Пусть поле K содержит все корни степени n из 1. Установить биективное соответствие между множеством всех (с точностью до K-изоморфизма) расширений Галуа с абелевой группой Галуа периода n и множеством всех конечных подгрупп группы $K^*/(K^*)^n$.
- **67.78.** Доказать, что всякое расширение Галуа L/K степени p поля K характеристики p>0 имеет вид $L=K(\theta)$, где θ корень многочлена x^p-x-a ($a\in K$), и, обратно, всякое такое расширение является расширением Галуа степени 1 или p.
- **67.79.** Пусть K поле характеристики p>0. Доказать, что конечное расширение L/K является расширением Галуа периода p тогда и только тогда, когда $L=K(\theta_1,\ldots,\theta_s)$, где θ_i корень многочлена x^p-x-a_i ($a_i\in K;\ i=1,\ldots,s$).
- **67.80.** Пусть K поле характеристики p>0 и $L=K(\theta_1,\ldots,\theta_s)$, где θ_i корень многочлена x^p-x-a_i ($a_i\in K,\ i=1,\ldots,s$).Доказать,

ЧТО

$$G(L/K) \simeq \langle \rho(K), a_1, \dots, a_s \rangle / K$$
,

где $\rho: K \to K$ — аддитивный гомоморфизм $x \mapsto x^p - x$.

67.81. Пусть K — поле характеристики p>0. Установить биективное соответствие между множеством всех (с точностью до K-изоморфизма) расширений Галуа L/K с абелевой группой Галуа периода p и множеством всех конечных подгрупп группы $K/\rho(K)$.

§ 68. Конечные поля

- **68.1.** Доказать, что всякое конечное расширение конечного поля является простым.
 - **68.2.** Доказать, что:
 - а) конечное расширение конечного поля нормально;
 - б) любые два конечных расширения конечного поля F одной степени F-изоморфны.
 - **68.3.** Доказать, что:
 - а) для любого числа q, являющегося степенью простого числа, существует единственное (с точностью до изоморфизма) поле из q элементов;
 - б) вложение поля \mathbb{F}_q в поле $\mathbb{F}_{q'}$ существует тогда и только тогда, когда q' есть степень q;
 - в) если K и L конечные расширения конечного поля F, то F-вложение поля K в L существует тогда и только тогда, когда (K:L)|(L:F);
 - г) если многочлен f(x) над конечным полем F разлагается в произведение неприводимых множителей степеней n_1,\ldots,n_s , то степень поля разложения многочлена f(x) над F равна наименьшему общему кратному чисел n_1,\ldots,n_s .
- **68.4.** Пусть F конечное поле из нечетного числа q элементов. Элемент $a \in F^*$ называется $\kappa \mathit{вадратичным}$ вычетом в F, если двучлен x^2-a имеет корень в F.

Доказать, что:

- а) число квадратичных вычетов равно (q-1)/2;
- б) a является квадратичным вычетом тогда и только тогда, когда $a^{(q-1)/2}=1$, и не является квадратичным вычетом при $a^{(q-1)/2}=-1$

68.5. Разложить на неприводимые множители:

a)
$$x^5 + x^3 + x^2 + 1$$
 B $\mathbb{F}_2[x]$;

6)
$$x^3 + 2x^2 + 4x + 1$$
 B $\mathbb{F}_5[x]$;

B)
$$x^4 + x^3 + x + 2$$
 B $\mathbb{F}_3[x]$;

r)
$$x^5 + 3x^3 + 2x^2 + x + 4$$
 b $\mathbb{F}_5[x]$;

* * *

68.6. Для элемента $a \in F^*$ положим $\left(\frac{a}{F}\right)$ равным 1, если a- квадратичный вычет в F, и -1- в противном случае.

Доказать, что:

- а) отображение $F^* \to \{-1,1\}$, при котором $a \mapsto \left(\frac{a}{F}\right)$, является гомоморфизмом групп;
- б) $\left(\frac{a}{F}\right)=\operatorname{sgn}\sigma_a$, где $\sigma_a\colon x\mapsto ax$ перестановка на множестве элементов поля F.
- **68.7.** Пусть a и b взаимно простые числа и $\sigma\colon x\to ax$ перестановка на множестве классов вычетов по модулю b.

Доказать, что:

a) если b четно, то

$$\operatorname{sgn} \sigma = \left\{ \begin{array}{cc} 1 & \text{при } b \equiv 2 \pmod{4}, \\ (-1)^{(a-1)/2} & \text{при } b \equiv 0 \pmod{4}; \end{array} \right.$$

б) если b нечетно, $b = \prod_{i=1}^{s} p_i \; (p_1, \dots, p_s \; - \;$ простые числа), то

$$\operatorname{sgn}\sigma = \prod_{i=1}^{s} \left(\frac{n}{p_i}\right),\,$$

где $\left(\frac{a}{p_i}\right)=\left(\frac{a}{\mathbf{Z}_{p_i}}\right)$ (символ Лежандра) (в этом случае $\operatorname{sgn}\sigma$ обозначается через $\left(\frac{a}{b}\right)$ и называется символом Якоби);

B)
$$\left(\frac{a}{b_1b_2}\right) = \left(\frac{a}{b_1}\right)\left(\frac{a}{b_2}\right)$$
, $\left(\frac{a_1a_2}{b}\right) = \left(\frac{a_1}{b}\right)\left(\frac{a_2}{b}\right)$; $\Gamma\left(\frac{-1}{b}\right) = (-1)^{(b-1)/2}$.

68.8. Пусть G — аддитивно записанная конечная абелева группа нечетного порядка, σ — автоморфизм группы G, $\left(\frac{\sigma}{G}\right)=\operatorname{sgn}\sigma$, где σ

рассматривается как перестановка на множестве G. Доказать, что если G представляется в виде объединения $\{0\} \cup S \cup \{-S\}$ непересекающихся подмножеств, то

$$\left(\frac{\sigma}{G}\right) = (-1)^{|\sigma(S) \cap (-S)|}.$$

68.9. Пусть σ — автоморфизм группы G нечетного порядка, G_1 — подгруппа в G, инвариантная относительно σ , $G_2 = G/G_1$ и σ_1 , σ_2 — автоморфизмы G_1 и G_2 , индуцированные σ . Доказать, что

$$\left(\frac{\sigma}{G}\right) = \left(\frac{\sigma_1}{G_1}\right) \left(\frac{\sigma_2}{G_2}\right),\,$$

и получить отсюда утверждение задачи 68.7, б).

68.10. (Лемма Гаусса.) Доказать, что если N- количество чисел x из промежутка $1\leqslant x\leqslant (b-1)/2$, для которых $ax\equiv r\pmod b$, $-(b-1)/2\leqslant r\leqslant 1$, то

$$\left(\frac{a}{b}\right) = (-1)^N$$
.

68.11. Доказать, что
$$\left(\frac{2}{b}\right) = (-1)^{(b^2-1)/8}$$
.

68.12. (*Квадратичный закон взаимности.*) Доказать, что для любых взаимно простых нечетных чисел a и b

$$\left(\frac{a}{b}\right)\left(\frac{b}{a}\right) = (-1)^{(a-1)/2 \cdot (b-1)/2}.$$

68.13. Пусть V — конечномерное пространство над конечным полем F нечетного порядка, \mathcal{A} — невырожденный линейный оператор на V. Доказать, что

$$\left(\frac{\mathcal{A}}{V}\right) = \left(\frac{\det \mathcal{A}}{F}\right).$$

68.14. Пусть F — конечное расширение поля \mathbb{F}_q степени n. Доказать, что в F как векторном пространстве над \mathbb{F}_q существует базис вида $x, x^q, \ldots, x^{q^{m-1}}$ для некоторого $x \in F$.

68.15. Доказать, что элементы $x_1,\dots,x_n\in\mathbb{F}_{q^n}$ образуют базис над \mathbb{F}_q тогда и только тогда, когда

$$\det \begin{pmatrix} x_1 & x_2 & \dots & x_n \\ x_1^q & x_2^q & \dots & x_n^q \\ \dots & \dots & \dots & \dots \\ x_1^{q^{n-1}} & x_2^{q^{n-1}} & \dots & x_n^{q^{n-1}} \end{pmatrix} \neq 0.$$

68.16. Пусть $a\in\mathbb{F}_{q^n}$. Элементы $a,a^q,\dots,a^{q^{n-1}}$ образуют базис \mathbb{F}_{q^n} как векторного пространства над \mathbb{F}_q тогда и только тогда, когда в $\mathbb{F}_{q^n}[x]$ многочлены x^n-1 и

$$ax^{n-1} + a^q x^{n-2} + \dots + a^{q^{n-2}} x + a^{q^{n-1}}$$

взаимно просты.

Глава 15

ЭЛЕМЕНТЫ ТЕОРИИ ПРЕДСТАВЛЕНИЙ

§ 69. Представления групп. Основные понятия

69.1. Доказать, что отображение $\rho\colon\thinspace \mathbb{Z} \to \mathbf{GL}_2(\mathbb{C})$, при котором

$$\rho(n) = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}, \qquad n \in \mathbb{Z},$$

является приводимым двумерным комплексным представлением группы $\mathbb Z$ и не эквивалентно прямой сумме двух одномерных представлений.

69.2. Доказать, что отображение $\rho\colon$ $\langle a\rangle_p\to \mathbf{GL}_2(\mathbb{F}_p)$ (p- простое число), при котором

$$\rho(a^k) = \begin{pmatrix} 1 & k \cdot 1 \\ 0 & 1 \end{pmatrix}$$

является приводимым двумерным представлением циклической группы $\langle a \rangle_p$ и не эквивалентно прямой сумме двух одномерных представлений.

- **69.3.** Пусть $A \in \mathbf{GL}_n(\mathbb{C})$. Доказать, что отображение $\rho_A \colon \mathbb{Z} \to \mathbf{GL}_n(\mathbb{C})$, при котором $\rho_A(n) = A^n$, является представлением группы \mathbb{Z} и представления ρ_A и ρ_B эквивалентны тогда и только тогда, когда жордановы нормальные формы матриц A и B совпадают (с точностью до порядка клеток).
- **69.4.** Будет ли линейным представлением группы $\mathbb R$ в пространстве $C(\mathbb R)$ непрерывных функций на вещественной прямой отображение L, определяемое по формулам:
 - a) $(L(t)f)(x) = \hat{f}(x-t);$
 - $\mathsf{G)}\ (L(t)f)(x) = f(tx);$
 - B) $(L(t)f)(x) = f(e^t x);$
 - $\Gamma) (L(t)f)(x) = e^t f(x);$
 - д) (L(t)f)(x) = f(x) + t;
 - e) $(L(t)f)(x) = e^t f(x+t)$?

- **69.5.** Какие из подпространств в $C(\mathbb{R})$ инвариантны относительно линейного представления L из задачи 69.4, а):
 - а) подпространство бесконечно дифференцируемых функций;
 - б) подпространство многочленов;
 - в) подпространство многочленов степени $\leq n$;
 - г) подпространство четных функций;
 - д) подпространство нечетных функций;
 - e) линейная оболочка функций $\sin x$ и $\cos x$;
 - ж) подпространство многочленов от $\cos x$ и $\sin x$;
 - з) линейная оболочка функций $\cos x, \cos 2x, \dots, \cos nx;$
- и) линейная оболочка функций $e^{c_1t}, e^{c_2t}, \dots, e^{c_nt}$, где c_1, c_2, \dots, c_n различные фиксированные вещественные числа?
- **69.6.** Найти подпространства пространства многочленов, инвариантные относительно представления L из задачи 69.4, а.
- **69.7.** Записать матрицами (в каком-либо базисе) ограничение линейного представления L из задачи 69.5 на подпространство многочленов степени $\leqslant 2$.
- **69.8.** Записать матрицами (в каком-либо базисе) ограничение линейного представления L из задачи 69.5 на линейную оболочку функций $\sin x$ и $\cos x$.
- **69.9.** Доказать, что каждая из следующих формул определяет линейное представление группы $\mathbf{GL}_n(F)$ в пространстве $\mathbf{M}_n(F)$:
 - a) $\Lambda(A) \cdot X = AX$;
 - 6) Ad $(A) \cdot X = AXA^{-1}$;
 - B) $\Phi(A) \cdot X = AX^t A$.
- **69.10.** Доказать, что линейное представление Λ (см. задачу 69.9, а)) вполне приводимо и его инвариантные подпространства совпадают с левыми идеалами алгебры $\mathbf{M}_n(K)$.
- **69.11.** Доказать, что если char F не делит n, то линейное представление Ad (см. задачу 69.9, б)) вполне приводимо и его нетривиальные инвариантные подпространства пространство матриц с нулевым следом и пространство скалярных матриц.
- **69.12.** Доказать, что если char $F \neq 2$, то линейное представление Φ (см. задачу 69.9, в)) вполне приводимо и его нетривиальные инвариантные подпространства пространства симметрических и кососимметрических матриц.
- **69.13.** Пусть V двумерное пространство над полем F. Показать, что существуют представления ρ_1 и ρ_2 группы \mathbf{S}_3 на V, для которых

в некотором базисе пространства V будут выполнены соотношения

$$\rho_1((1\ 2)) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \rho_1((1\ 2\ 3)) = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix},$$

$$\rho_2((1\ 2)) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \rho_2((1\ 2\ 3)) = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}.$$

Доказать, что эти представления изоморфны тогда и только тогда, когда char $F \neq 3$.

69.14. Пусть V — двумерное векторное пространство над полем F. Показать, что существуют два представления ρ_1 , ρ_2 группы

$$\mathbf{D}_4 = \langle a, b \mid a^4 = b^2 = (ab)^2 = 1 \rangle$$

на V, для которых в некотором базисе пространства V будут выполнены соотношения

$$\rho_1(a) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad \rho_1(b) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$

$$\rho_2(a) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad \rho_2(b) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Будут ли эти представления эквивалентны?

- **69.15.** Пусть ρ_1 и ρ_2 представления групп \mathbf{S}_3 и \mathbf{D}_4 из задач 69.13 и 69.14. Будут ли эти представления неприводимы?
- **69.16.** Пусть V векторное пространство над полем F с базисом $(e_1,\dots,e_n).$ Зададим отображение $\psi\colon \mathbf{S}_n \to \mathbf{GL}(V)$, полагая

$$\psi_{\sigma}(e_i) = e_{\sigma(i)},$$

где $\sigma \in \mathbf{S}_n$, $i = 1, \dots, n$.

Доказать, что:

- а) ψ представление группы \mathbf{S}_n ;
- б) подпространство W векторов, сумма координат которых относительно базиса (e_1,\ldots,e_n) равна нулю, и подпространство U векторов с равными координатами инвариантны относительно представления ψ ;
- в) если char F не делит n, то ограничение представления ψ на W неприводимое (n-1)-мерное представление группы \mathbf{S}_n .

69.17. Пусть $P_{n,m}$ — подпространство однородных многочленов степени m в алгебре $F[x_1,\ldots,x_n]$ и char F=0. Определим отображение $\Theta\colon \mathbf{GL}_n(F) \to \mathbf{GL}(P_{n,m})$, полагая для $f\in P_{n,m}$ и $A=(a_{ij})\in \mathbf{GL}_n(F)$:

$$(\Theta_A f)(x_1, \dots, x_n) = f\left(\sum_{i=1}^n x_i a_{i1}, \dots, \sum_{i=1}^n x_i a_{in}\right).$$

Доказать, что Θ — неприводимое представление группы $\mathbf{GL}_n(F)$ на пространстве $P_{n.m.}$

69.18. Пусть задано n-мерное пространство V над полем F нулевой характеристики. Определим отображение $\Theta: \mathbf{GL}(V) \to \mathbf{GL}(\Lambda^m V)$, полагая

$$\Theta(f)(x_1 \wedge \ldots \wedge x_m) = (fx_1) \wedge \ldots \wedge (fx_m),$$

где $x_1,\ldots,x_m\in V$ и $f\in\mathbf{GL}(V)$. Доказать, что Θ — неприводимое представление группы $\mathbf{GL}(V)$.

- **69.19.** Доказать, что:
- а) для любого представления ρ группы G существует представление $ho^{\otimes m}$ группы G на пространстве

$$V^{\otimes m} = \underbrace{V \otimes \ldots \otimes V}_m$$

m раз контравариантных тензоров на пространстве V такое, что

$$\rho^{\otimes m}(g)(v_1 \otimes \ldots \otimes v_m) = (\rho(g)v_1) \otimes \ldots \otimes (\rho(g)v_m)$$

при любых $v_1, ..., v_m \in V, g \in G$;

- б) подпространства симметрических и кососимметрических тензоров являются инвариантными подпространствами для представления $ho^{\otimes m}$. Найти размерности этих подпространств, если $\dim V = n$.
- **69.20.** Пусть задано представление $\Phi:G \to \mathbf{GL}(V)$ над полем F и гомоморфизм $\xi:G \to F^*$. Рассмотрим отображение $\Phi_\xi:G \to \mathbf{GL}(V)$, заданное по правилу $\Phi_\xi(g)=\xi(g)\Phi(g),\ g\in G$. Доказать, что Φ_ξ представление группы G. Оно неприводимо тогда и только тогда, когда неприводимо представление Φ .
- **69.21.** Пусть Φ комплексное представление конечной группы G. Доказать, что каждый оператор $\Phi_q, g \in G$, диагонализируем.
- **69.22.** Пусть $\rho:G \to \mathbf{GL}(V)$ конечномерное представление группы G над полем F. Доказать, что в V существует базис, в котором для

любого $g \in G$ матрица $\rho(g)$ имеет клеточно-верхнетреугольный вид

$$\rho(g) = \begin{pmatrix} \rho_1(g) & * \\ & \ddots & \\ 0 & & \rho_m(g) \end{pmatrix},$$

где ρ_i — неприводимые представления группы G.

- **69.23.** Пусть $\rho\colon G\to \mathbf{GL}(V)$ конечномерное представление группы G и в V существует базис (e_1,\ldots,e_n) , в котором для любого $g\in G$ матрица $\rho(g)$ имеет клеточно-верхнетреугольный вид из задачи 69.22, где размер d_i квадратной матрицы $\rho_i(g)$ не зависит от g. Доказать, что:
 - а) линейная оболочка V_i векторов $e_{d_1+\ldots+d_{i-1}+1},\ldots,e_{d_1+\ldots+d_i}$ является G-инвариантным подпространством $(1\leqslant i\leqslant m);$
 - б) отображение $g\mapsto \rho_i(g)$ является матричным представлением группы G;
 - в) линейное представление группы G, соответствующее этому матричному представлению, изоморфно представлению, возникающему на факторпространстве V_i/V_{i-1} (по определению $V_0=0$).
 - **69.24.** Пусть $\rho: G \to \mathbf{GL}(V)$ представление группы G. Доказать, что:
 - а) для любого $v \in V$ линейная оболочка $\langle \rho(g)v \mid g \in G \rangle$ является инвариантным подпространством для представления ρ ;
 - б) любой вектор из V лежит в некотором инвариантном подпространстве размерности $\leqslant |G|$.
 - в) минимальное инвариантное подпространство, содержащее вектор $v \in V$, совпадает с $\langle \rho(g)v | g \in G \rangle$.
- **69.25.** Пусть $\rho \colon G \to \mathbf{GL}(V)$ представление группы G и H подгруппа в G, $[G:H]=k<\infty$. Доказать, что если подпространство U инвариантно относительно ограничения представления ρ на подгруппу H, то размерность минимального подпространства, содержащего U, инвариантного относительно представления ρ , не превосходит $k \cdot \dim U$.
- **69.26.** Пусть V векторное пространство над полем $\mathbb C$ с базисом (e_1,\dots,e_n) . Определим в V представление Φ циклической группы $\langle a \rangle_n$, полагая $\Phi(a)(e_i)=e_{i+1}$ при i< n и $\Phi(a)(e_n)=e_1$. При n=2m найти размерность минимального инвариантного подпространства, содержащего векторы:
 - a) $e_1 + e_{m+1}$;
 - $6) e_1 + e_3 + \ldots + e_{2m-1};$
 - B) $e_1 e_2 + e_3 \ldots e_{2m}$;
 - r) $e_1 + e_2 + \ldots + e_m$.

- 69.27. Доказать, что у любого множества попарно коммутирующих операторов на конечномерном комплексном векторном пространстве Vесть общий собственный вектор.
- 69.28. Доказать, что всякое неприводимое представление абелевой группы на конечномерном векторном пространстве над полем С одномерно.
- **69.29.** Пусть $G=\langle a \rangle_p imes \langle b \rangle_p$, где p простое число и K поле характеристики p. Предположим, что V — векторное пространство над K с базисом $x_0, x_1, \ldots, x_n, y_1, \ldots, y_n$. Зададим отображение $\rho \colon G \to \mathbf{GL}(V)$, полагая

$$\rho(a)x_i = \rho(b)x_i = x_i, \quad 0 \leqslant i \leqslant n;$$

$$\rho(a)y_i = x_i + y_i, \quad 1 \leqslant i \leqslant n;$$

$$\rho(b)y_i = y_i + x_{i-1}, \quad 1 \leqslant i \leqslant n.$$

Доказать, что ρ продолжается до представления группы G. Проверить, что это представление неразложимо.

69.30. Доказать, что неприводимые комплексные представления группы \mathbf{U}_{n^∞} взаимно однозначно соответствуют последовательностям (a_n) натуральных чисел таким, что

$$0 \leqslant a_n \leqslant p^n - 1, \qquad a_n \equiv a_{n+1} \pmod{p^n}$$

при всех n.

69.31. Доказать, что неприводимые комплексные представления группы \mathbb{Q}/\mathbb{Z} взаимно однозначно соответствуют последовательностям натуральных чисел (a_n) таким, что

$$0 \leqslant a_n \leqslant n - 1, \qquad a_n \equiv a_m \pmod{n},$$

если n делит m.

§ 70. Представления конечных групп

- **70.1.** Пусть \mathcal{A} и \mathcal{B} два перестановочных оператора на конечномерном векторном пространстве V над $\mathbb C$ и $\mathcal A^m=\mathcal B^n=\mathcal E$ для некоторых натуральных чисел m и n. Доказать, что пространство V распадается в прямую сумму одномерных инвариантных относительно ${\mathcal A}$ и ${\mathcal B}$ подпространств.
- 70.2. Перечислить все неприводимые комплексные представления групп:

- **70.3.** Пусть V векторное пространство над полем F, $\mathcal{A} \in \mathbf{GL}(V)$ и $\mathcal{A}^n = \mathcal{E}$.
 - а) Доказать, что соответствие $a^k \mapsto \mathcal{A}^k$ определяет представление циклической группы $\langle a \rangle_n$ на пространстве V.
 - б) Найти все инвариантные подпространства этого представления при указанных порядках n, если оператор $\mathcal A$ задается в некотором базисе матрицей A:

$$n=4, \quad A=\left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right); \qquad n=6, \quad A=\left(\begin{array}{cc} 0 & -1 \\ 1 & -1 \end{array} \right).$$

в) Пусть $F = \mathbb{C}$ и в V имеется такой базис e_0, e_1, \dots, e_{n-1} , что

$$\mathcal{A}(e_i) = \left\{ egin{array}{ll} e_{i+1}, & ext{если} & i < n-1, \\ e_0, & ext{если} & i = n-1. \end{array} \right.$$

Разложить это представление в прямую сумму неприводимых.

- г) Доказать, что представление из в) изоморфно регулярному представлению группы $\langle a \rangle_n$.
- **70.4.** Разложить в прямую сумму одномерных представлений регулярное представление группы:
 - a) $\langle a \rangle_2 \times \langle b \rangle_2$; 6) $\langle a \rangle_2$
- 6) $\langle a \rangle_2 \times \langle b \rangle_3;$ B) $\langle a \rangle_2 \times \langle b \rangle_4.$
- **70.5.** Пусть $H=\langle a\rangle_3$ циклическая подгруппа группы G, Φ регулярное представление группы G и Ψ его ограничение на H. Найти кратность каждого неприводимого представления группы H в разложении представления Ψ в сумму неприводимых:
 - a) $G = \langle b \rangle_6$, $a = b^2$; 6) $G = \mathbf{S}_3$, a = (1, 2, 3).
- **70.6.** Найти все неизоморфные одномерные вещественные представления группы $\langle a \rangle_n$.
- **70.7.** Доказать, что неприводимое вещественное представление конечной циклической группы имеет размерность не более двух.
 - **70.8.** Пусть $ho_k\colon \langle a
 angle_n o \mathbf{GL}_2(\mathbb{R})$ представление, для которого

$$\rho_k(a) = \begin{pmatrix} \cos \frac{2\pi k}{n} & -\sin \frac{2\pi k}{n} \\ \sin \frac{2\pi k}{n} & \cos \frac{2\pi k}{n} \end{pmatrix}, \quad 0 < k < n.$$

Доказать, что:

- а) представление ρ_k неприводимо, если $k \neq n/2$;
- б) представления ho_k и $ho_{k'}$ эквивалентны тогда и только тогда, когда k=k' или k+k'=n:

- в) любое двумерное вещественное неприводимое представление группы $\langle a \rangle_n$ эквивалентно представлению ρ_k для некоторого k.
- **70.9.** Найти число неэквивалентных неприводимых вещественных представлений:
 - a) группы \mathbf{Z}_n ;
 - б) всех абелевых групп порядка 8.
- **70.10.** Найти число неэквивалентных двумерных комплексных представлений групп:
 - a) \mathbf{Z}_2 , \qquad 6) \mathbf{Z}_4 , \qquad 8) $\mathbf{Z}_2 \oplus \mathbf{Z}_2$.
- **70.11.** Пусть G абелева группа порядка n. Доказать, что число неэквивалентных k-мерных комплексных представлений группы G равно коэффициенту при t^k ряда $(1-t)^{-n}$. Найти этот коэффициент.
- **70.12.** Доказать, что ядро одномерного представления группы G содержит коммутант этой группы.
- **70.13.** Пусть ρ представление группы G в пространстве V и в V существует базис, в котором все операторы $\rho(g)$ $(g \in G)$ диагональны. Доказать, что $\operatorname{Ker} \rho \supseteq G'$.
- **70.14.** Доказать, что все неприводимые комплексные представления конечной группы одномерны тогда и только тогда, когда она коммутативна.
- **70.15.** Найти все неизоморфные одномерные комплексные представления групп ${f S}_3$ и ${f A}_4.$
- **70.16.** Найти все одномерные комплексные представления групп \mathbf{S}_n и \mathbf{D}_n .
- **70.17.** Построить неприводимое двумерное комплексное представление группы \mathbf{S}_3 .
- **70.18.** Используя гомоморфизм группы \mathbf{S}_4 на группу \mathbf{S}_3 , построить неприводимое двумерное комплексное представление группы \mathbf{S}_4 .
- **70.19.** Используя изоморфизм групп перестановок и соответствующих групп движений куба и тетраэдра (см. 57.13), построить:
 - а) два неприводимых трехмерных матричных комплексных представления группы ${f S}_4;$
 - б) неприводимое трехмерное представление группы ${f A}_4.$
- **70.20.** Доказать, что если ε корень степени n из 1, то отображение

$$a \mapsto \begin{pmatrix} \varepsilon & 0 \\ 0 & \varepsilon^{-1} \end{pmatrix}, \quad b \mapsto \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

продолжается до представления ρ_{ε} группы \mathbf{D}_n . Является ли оно неприводимым при $\varepsilon \neq \pm 1$?

- **70.21.** Пусть ρ_{ε} и $\rho_{\varepsilon'}$ неприводимые двумерные комплексные группы представления \mathbf{D}_n из задачи 70.20. Доказать, что ρ_{ε} и $\rho_{\varepsilon'}$ изоморфны тогда и только тогда, когда $\varepsilon' = \varepsilon^{\pm 1}$.
- **70.22.** Пусть ρ неприводимое комплексное представление группы \mathbf{D}_n . Доказать, что ρ изоморфно ρ_{ε} для некоторого ε .
- **70.23.** Пусть ρ естественное двумерное вещественное представление \mathbf{D}_n в виде преобразований, составляющих правильный n-угольник. Найти такое ε , что ρ изоморфно ρ_{ε} .
- **70.24.** Используя реализацию кватернионов в виде комплексных матриц порядка 2 (см. задачу 58.11, в)), построить двумерное комплексное представление группы \mathbf{Q}_8 .
- **70.25.** Пусть группа G имеет точное приводимое двумерное представление.

Доказать, что:

- а) коммутант группы G' абелева группа;
- б) если G конечна и основное поле имеет характеристику 0, то G коммутативна.
- **70.26.** Доказать, что точное двумерное комплексное представление конечной некоммутативной группы неприводимо.
- **70.27.** Пусть G конечная группа, ρ ее конечномерное комплексное представление и в некотором базисе матрицы всех операторов $\rho(g)$ ($g \in G$) верхнетреугольные. Доказать, что $\operatorname{Ker}(\rho) \supseteq G'$.
- **70.28.** Доказать, что если в задачах 69.22, 69.23 основное поле является полем комплексных чисел и группа G конечна, то представление ρ эквивалентно прямой сумме представлений ρ_1,\ldots,ρ_m .
- **70.29.** Доказать, что если в задаче 69.22 основное поле является полем комплексных чисел и группа G конечна, то существует такая невырожденная матрица C, что для всех $g \in G$

$$C^{-1}\rho(g)C = \begin{pmatrix} \rho_1(g) & 0 \\ & \ddots \\ 0 & \rho_m(g) \end{pmatrix}.$$

70.30. Пусть G — конечная группа порядка $n, \, \rho$ — ее регулярное представление. Доказать, что

$$\operatorname{tr} \rho(g) = \left\{ \begin{array}{cc} 0, & g \neq 1, \\ n, & g = 1. \end{array} \right.$$

- **70.31.** Доказать, что для любого неединичного элемента конечной группы существует неприводимое комплексное представление, переводящее его в неединичный оператор.
- **70.32.** Пусть \mathcal{A} , \mathcal{B} линейные операторы в конечномерном векторном пространстве V над полем F характеристики 0 и $\mathcal{A}^3 = \mathcal{B}^2 = \mathcal{E}$, $\mathcal{AB} = \mathcal{BA}^2$.

Доказать, что для всякого подпространства U, инвариантного относительно $\mathcal A$ и $\mathcal B$, существует подпространство W, инвариантное относительно $\mathcal A$, $\mathcal B$ и такое, что $V=U\oplus W$.

- **70.33.** Найти все неэквивалентные двумерные комплексные представления групп:
 - a) A_4 ; 6) S_3 .
- **70.34.** Найти число и размерности неприводимых комплексных представлений групп:
 - а) ${\bf S}_3;$ б) ${\bf A}_4;$ в) ${\bf S}_4;$ г) ${\bf Q}_8;$ д) ${\bf D}_n;$ е) ${\bf A}_5.$
- **70.35.** Сколько прямых слагаемых в разложении на неприводимые компоненты регулярного представления следующих групп:
 - a) \mathbf{Z}_3 ; b) \mathbf{Q}_8 ; r) \mathbf{A}_4 ?
- **70.36.** С помощью теории представлений доказать, что группа порядка 24 не может совпадать со своим коммутантом.
- **70.37.** Могут ли неприводимые комплексные представления конечной группы исчерпываться:
 - а) тремя одномерными и четырьмя двумерными;
 - б) двумя одномерными и двумя пятимерными;
 - в) пятью одномерными и одним пятимерным?
- **70.38.** Доказать, что в группе $\mathbf{GL}_2(\mathbb{C})$ нет подгруппы, изоморфной \mathbf{S}_4 .
- **70.39.** Доказать существование двумерного инвариантного подпространства в любом восьмимерном комплексном представлении группы \mathbf{S}_4 .
- **70.40.** Доказать существование одномерного инвариантного подпространства в любом пятимерном представлении группы ${f A}_4$.
- **70.41.** Доказать, что число неприводимых представлений группы G строго больше числа неприводимых представлений любой ее факторгруппы по нетривиальной нормальной подгруппе.

- **70.42.** Для каких конечных групп регулярное представление над полем $\mathbb C$ содержит лишь конечное число подпредставлений?
- **70.43.** Доказать, что любое неприводимое представление конечной p-группы над полем характеристики p единично.
- **70.44.** Пусть G конечная p-группа и ρ ее представление в конечномерном пространстве V над полем характеристики p. Доказать, что в V существует такой базис, что для любого $g \in G$ матрица оператора $\rho(g)$ верхняя унитреугольная.
- **70.45.** Пусть H нормальная подгруппа в конечной группе G. Доказать, что размерность любого неприводимого представления группы G над полем F не превосходит [G:H]m, где m наибольшая размерность неприводимого представления группы H над полем F.
- **70.46.** Доказать, что в $\mathbf{GL}_n(\mathbb{C})$ существует лишь конечное число попарно несопряженных подгрупп фиксированного конечного порядка.
- **70.47.** Пусть $\rho: G \to \mathbf{GL}_3(\mathbb{R})$ неприводимое трехмерное вещественное представление конечной группы G и представление $\widetilde{\rho}: G \to \mathbf{GL}_3(\mathbb{C})$ получается как композиция отображения ρ со стандартным вложением $\mathbf{GL}_3(\mathbb{R}) \to \mathbf{GL}_3(\mathbb{C})$. Доказать, что представление $\widetilde{\rho}$ неприводимо.
- **70.48.** Доказать, что всякое неприводимое неодномерное комплексное представление группы порядка p^3 , где p простое число, является точным.
- **70.49.** Найти число неприводимых комплексных представлений некоммутативной группы порядка p^3 и их размерности.
- **70.50.** Вещественное представление Φ циклической группы $\langle a \rangle$ порядка 4, при котором

$$\Phi(a) = \left(\begin{array}{ccc} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{array}\right),$$

разложить в прямую сумму неприводимых.

70.51. Рассмотрим вещественное трехмерное представление группы $G = \langle a \rangle_2 \times \langle b \rangle_2$, где

$$\Phi(a) = \begin{pmatrix} 5 & -4 & 0 \\ 6 & -5 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad \Phi(b) = -E.$$

Разложить Ф в прямую сумму неприводимых представлений.

70.52. Рассмотрим двумерное комплексное представление Φ группы $G=\langle a \rangle_2 imes \langle b \rangle_2$, где

$$\Phi(a) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \Phi(b) = \begin{pmatrix} & 0 & -1 \\ & -1 & & 0 \end{pmatrix}.$$

Разложить Φ в прямую сумму неприводимых представлений.

- **70.53.** Доказать, что любая конечная подгруппа в группе $\mathbf{GL}(2,\mathbb{C})$ (соответственно в $\mathbf{GL}(2,\mathbb{C})$) сопряжена с подгруппой в группе унитарных (соответственно ортогональных матриц) размера 2.
- **70.54.** Доказать, что всякая конечная подгруппа в $\mathbf{SL}_2(\mathbb{Q})$ является подгруппой одной из следующих групп: \mathbf{D}_3 , \mathbf{D}_4 , \mathbf{D}_6 .
- **70.55.** Доказать, что каждая конечная подгруппа в $\mathbf{SL}_2(\mathbb{R})$ сопряжена с подгруппой в $\mathbf{SO}_2(\mathbb{R})$ и потому является циклической.
- **70.56.** Доказать, что каждая конечная подгруппа в $\mathbf{SL}_2(\mathbb{R})$ сопряжена с подгруппой в $\mathbf{SO}_2(\mathbb{R})$ и потому является циклической.
- **70.57.** Доказать, что каждая конечная подгруппа в $\mathbf{GL}_2(\mathbb{R})$ сопряжена с подгруппой в $\mathbf{O}_2(\mathbb{R})$ и потому является либо циклической, либо группой диэдра $\mathbf{D}_n,\ n\geqslant 2.$
- **70.58.** Пусть G конечная неабелева простая группа. Доказать, что размерность любого неприводимого нетривиального комплексного или вещественного представления больше 2.

§ 71. Групповые алгебры и модули над ними

- **71.1.** Является ли алгебра кватернионов вещественной групповой алгеброй:
 - а) группы кватернионов;
 - б) какой-либо группы?
- **71.2.** Пусть V векторное пространство над полем F с базисом $(e_1,e_2,e_3),\ \varphi:F[\mathbf{S}_3] \to \operatorname{End} V$ гомоморфизм, где $\varphi(\sigma)(e_i)=e_{\sigma(i)}$ для всех $\sigma\in\mathbf{S}_3$ (i=1,2,3). Найти размерность ядра и размерность образа гомоморфизма φ .
- **71.3.** Найти базис ядра гомоморфизма $\varphi\colon \mathbb{C}(\langle a\rangle_n)\to\mathbb{C}$, при котором $\varphi(a)=\varepsilon$, где ε корень степени n из 1.
- **71.4.** Пусть группа H изоморфна факторгруппе группы G. Доказать, что F[H] изоморфна факторалгебре алгебры F[G].
 - **71.5.** Пусть $G = G_1 \times G_2$. Доказать, что

$$F[G] \simeq F[G_1] \otimes F[G_2].$$

71.6. Пусть G — конечная группа, R — множество отображений из G в поле F. Определим на R операции, полагая для $f_1, f_2 \in R$

$$(\alpha f_1 + \beta f_2)(g) = \alpha f_1(g) + \beta f_2(g),$$

$$(f_1 f_2)(g) = \sum_{h \in G} f_1(h) f_2(h^{-1}g).$$

Доказать, что R — алгебра над полем F и отображение

$$f \mapsto \sum_{g \in G} f(g)g$$

из R в F[G] — изоморфизм алгебр.

- **71.7.** Доказать, что если группа G содержит элементы конечного порядка, то групповая алгебра F[G] имеет делители нуля.
- **71.8.** Доказать, что всякий неприводимый F[G]-модуль изоморфен фактормодулю регулярного F[G]-модуля.
- **71.9.** Найти все коммутативные двусторонние идеалы групповой алгебры $\mathbb{C}[G]$ для:

- **71.10.** Найти все элементы x групповой алгебры F[G], удовлетворяющие условию xg=x при любом $g\in G$.
 - 71.11. Найти базис центра групповой алгебры групп:
 - a) \mathbf{S}_3 ; 6) \mathbf{Q}_8 ; b) \mathbf{A}_4 .
- **71.12.** Доказать, что в групповой алгебре A свободной абелевой группы ранга r нет делителей нуля. Поле частных для A изоморфно полю рациональных дробей от r переменных.
- **71.13.** Пусть A кольцо, V A-модуль и $V = U \oplus W$, причем U неприводимый модуль и в W нет подмодулей, изоморфных U. Доказать, что если α автоморфизм модуля V, то $\alpha(U) = U$.
- **71.14.** Пусть A кольцо, A-модуль V разложен в прямую сумму подмодулей $V=U\oplus W,\ \varphi\colon U\to W$ гомоморфизм A-модулей. Доказать, что $U_1=\{x+\varphi(x)|\ x\in U\}$ есть A-подмодуль в V, изоморфный U, и $V=U_1\oplus W$.
- **71.15.** Пусть A полупростая конечномерная алгебра над $\mathbb C$ и A-модуль V разлагается в прямую сумму попарно неизоморфных неприводимых A-модулей: $V=V_1\oplus\ldots\oplus V_k$. Найти группу автоморфизмов модуля V.
- **71.16.** Пусть A полупростая конечномерная алгебра над $\mathbb C$ и A-модуль V есть прямая сумма двух изоморфных неприводимых A-

модулей. Доказать, что группа автоморфизмов A-модуля V изоморфна $\mathbf{GL}_2(\mathbb{C}).$

- **71.17.** Пусть A полупростая конечномерная алгебра над $\mathbb C$ и V A-модуль, конечномерный над $\mathbb C$. Доказать, что V имеет конечное число A-подмодулей тогда и только тогда, когда он является прямой суммой попарно неизоморфных неприводимых A-модулей.
- **71.18.** Пусть G конечная группа, F поле характеристики 0 и групповая алгебра A=F[G] рассматривается как левый модуль над собой. Доказать, что для любого его подмодуля U и гомоморфизма A-модулей $\varphi:U\to A$ существует такой элемент $a\in A$, что $\varphi(u)=ua$ для всех $u\in U$.
- **71.19.** Для каких конечных групп комплексная групповая алгебра является простой?
- **71.20.** Пусть A = F[G] (F поле), G конечная группа порядка n > 1, и для $n \cdot 1 \neq 0$ положим

$$e_1 = (n \cdot 1)^{-1} \sum_{g \in G} g, \quad e_2 = 1 - e_1.$$

Доказать, что Ae_1 и Ae_2 — собственные двусторонние идеалы и $A=Ae_1\oplus Ae_2$.

71.21. Доказать, что равенство

$$xy = f(x, y) \cdot 1 + \sum_{g \in G \setminus \{1\}} \alpha_g \cdot g, \qquad \alpha_g \in F,$$

в групповой алгебре F[G] задает на пространстве F[G] симметрическую билинейную функцию и ядро этой функции f — двусторонний идеал в F[G].

- **71.22.** Пусть G конечная группа, f билинейная функция на $\mathbb{R}[G]$, определенная в задаче 71.21. Доказать, что f невырождена, и найти сигнатуру функции f для групп:
 - a) $\mathbf{Z}_2;$ 6) $\mathbf{Z}_3;$ 8) $\mathbf{Z}_4;$ \mathbf{r}) $\mathbf{Z}_2 \oplus \mathbf{Z}_2.$
- **71.23.** Пусть H подгруппа группы G и $\omega(H)$ левый идеал в F[G], минимальный среди левых идеалов, содержащих $\{h-1\mid h\in H\}$. Доказать, что если H нормальная подгруппа, то идеал $\omega(H)$ двусторонний.
- **71.24.** Разложить в прямую сумму полей групповые алгебры группы $\langle a \rangle_3$ над полями вещественных и комплексных чисел.

- **71.25.** Доказать, что $\mathbb{Q}[\langle a \rangle_p]$ (p простое число) есть прямая сумма двух двусторонних идеалов, один из которых изоморфен \mathbb{Q} , а другой $\mathbb{Q}(\varepsilon)$, где ε первообразный корень степени p из 1.
- **71.26.** Пусть G конечная группа, char F не делит |G|, I идеал в F[G]. Доказать, что $I^2 = I$.
 - 71.27. Найти идемпотенты и минимальные идеалы в кольцах:
 - a) $\mathbb{F}_3[\langle a \rangle_2];$
- б) $\mathbb{F}_2[\langle a \rangle_2];$
- B) $\mathbb{C}[\langle a \rangle_2];$
- r) $\mathbb{R}[\langle a \rangle_3]$.
- **71.28.** Пусть G конечная группа. Доказать, что при любом $a\in \mathbb{C}[G]$ уравнение a=axa разрешимо в $\mathbb{C}[G]$.
 - 71.29. Сколько различных двусторонних идеалов в алгебре:
 - a) $\mathbb{C}[\mathbf{S}_3];$ 6) $\mathbb{C}[\mathbf{Q}_8]$?
- **71.30.** Для каких конечных групп G групповая алгебра $\mathbb{C}[G]$ является прямой суммой n=1,2,3 матричных алгебр?
- **71.31.** Пусть G группа, A алгебра над полем F с единицей, φ гомоморфизм $G \to A^*$. Доказать, что существует единственный гомоморфизм $F[G] \to A$, ограничение которого на G совпадает с φ .
- **71.32.** Доказать, что если char F не делит порядка конечной группы G, то любой двусторонний идеал групповой алгебры F[G] является кольцом с единицей. Верно ли это утверждение для произвольных алгебр с единицей?
- **71.33.** Пусть F поле характеристики $p>0,\ p$ делит порядок конечной группы G и

$$u = \sum_{g \in G} g \in F[G].$$

Доказать, что F[G]u — подмодуль левого регулярного модуля, не выделяющийся прямым слагаемым.

71.34. Пусть $G=\langle a \rangle_p,\ F$ — поле характеристики $p,\ \Phi\colon\ G \to \mathbf{GL}_2(F),$ где

$$\Phi(a^s) = \begin{pmatrix} 1 & s \cdot 1 \\ 0 & 1 \end{pmatrix}$$

- представление группы G. Указать такой F[G] подмодуль U регулярного представления V=F[G], что представление G на V/U изоморфно Φ . При каких p представление Φ изоморфно регулярному представлению?
- **71.35.** Доказать, что алгебра $\mathbb{F}_2[\langle a \rangle_2]$ не является прямой суммой минимальных левых идеалов.
- **71.36.** Пусть H-p-группа, являющаяся нормальной подгруппой в конечной группе G, F- поле характеристики p.

- а) Доказать, что идеал $\omega(H)$ из задачи 71.23 нильпотентен.
- б) Найти индекс нильпотентности идеала $\omega(H)$ при $G=\langle a \rangle_2,\ H==\langle a \rangle_2,\ F=\mathbb{F}_2.$
- **71.37.** Доказать, что все идеалы групповой алгебры бесконечной циклической группы главные.
- **71.38.** Доказать, что циклический модуль над алгеброй $F[\langle a \rangle_{\infty}]$ либо конечномерен над F, либо изоморфен левому регулярному $F[\langle a \rangle_{\infty}]$ -модулю.
- **71.39.** Пусть $A = \mathbb{C}[\langle g \rangle_{\infty}], P = Ax_1 \oplus Ax_2$ свободный A-модуль с базисом $(x_1, x_2), H$ подмодуль, порожденный в P элементами h_1, h_2 . Разложить P/H в прямую сумму циклических A-модулей и найти их размерности, если:
 - a) $h_1 = gx_1 + x_2$, $h_2 = x_1 (g+1)x_2$;
 - 6) $h_1 = g^2 x_1 + g^{-2} x_2$, $h_2 = g^4 x_1 + (1 g) x_2$;
 - B) $h_1 = gx_1 + 2g^{-1}x_2$, $h_2 = (1+g)x_1 + 2(g^{-2}+g^{-1})x_2$.
- **71.40.** Пусть \mathcal{A}, \mathcal{B} линейные операторы на $V = F[x], \mathcal{A}(f(x)) = f'(x), \mathcal{B}(f(x)) = xf(x)$. Доказать, что отображение $\varphi : g \mapsto \mathcal{AB}$ продолжается до гомоморфизма $F[\langle g \rangle_{\infty}] \to \operatorname{End} V$, и найти $\operatorname{Ker} \varphi$.
- **71.41.** Пусть M максимальный идеал алгебры $A=F[\langle a \rangle_{\infty}]$ и $r=\dim_F(A/M).$

Доказать, что:

- а) если $F = \mathbb{C}$, то r = 1;
- б) если $F = \mathbb{R}$, то r = 1 или r = 2;
- в) если $F = \mathbb{F}_2$, то r может быть неограниченно велико.
- **71.42.** Доказать, что групповая алгебра свободной абелевой группы конечного ранга является нетеровой.
- **71.43.** Доказать, что в групповой алгебре свободной абелевой группы конечного ранга справедлива теорема о существовании и единственности разложения на простые множители.
- **71.44.** Разложить в произведение простых множителей элемент групповой алгебры $A=\mathbb{C}[G]$ свободной абелевой группы G с базисом (g_1,g_2) :
 - a) $g_1g_2 + g_1^{-1}g_2^{-1}$;
 - $6) 1 + g_1^{-1}g_2 g_1g_2^{-1} g_1^{-2}g_2^2.$
- **71.45.** Пусть G свободная абелева группа с базисом (g_1,g_2) . Найти факторалгебру групповой алгебры A=F[G] по идеалу I, порожденному элементами:
 - а) $g_1g_2^{-1}$; б) g_1-g_2 ; в) g_1-1 и g_2-2 .

- **71.46.** Доказать, что если группа G конечна и алгебра $\mathbb{C}[G]$ не имеет нильпотентных элементов, то G коммутативна.
- **71.47.** Пусть H нормальная подгруппа в группе G, V некоторый F[G]-модуль и (H-1)V линейная оболочка элементов вида (h-1)v, где $h\in H,\ v\in V$.

Доказать, что:

- а) (H-1)V является F[G]-подмодулем в V;
- б) если H силовская (нормальная) p-подгруппа в G, char F=p и (H-1)V=V, то V=0.
- **71.48.** Доказать, что комплексные групповые алгебры групп \mathbf{D}_4 и \mathbf{Q}_8 изоморфны.
- **71.49.** Найти число попарно неизоморфных комплексных групповых алгебр размерности 12.
- **71.50.** Доказать, что число слагаемых в разложении групповой алгебры симметрической группы \mathbf{S}_n над полем $\mathbb C$ в прямую сумму матричных алгебр равно числу представлений числа n в виде

$$n = n_1 + n_2 + \ldots + n_k,$$

где $n_1 \geqslant n_2 \geqslant \ldots \geqslant n_k > 0$.

§ 72. Характеры представлений

- **72.1.** Пусть элемент g группы G имеет порядок k и $\chi-n$ -мерный характер группы G. Доказать, что $\chi(g)$ есть сумма n (не обязательно различных) корней степени k из 1.
- **72.2.** Пусть Φ трехмерное комплексное представление группы $\langle a \rangle_3$ и $\chi_\Phi(g)=0$ для некоторого $g \in \mathbf{Z}_3$. Доказать, что Φ эквивалентно регулярному представлению.
- **72.3.** Пусть χ двумерный комплексный характер группы $G==\langle a \rangle_3 \times \langle b \rangle_3$. Доказать, что $\chi(g) \neq 0$ для всякого $g \in G$.
- **72.4.** Пусть χ двумерный комплексный характер группы нечетного порядка. Доказать, что $\chi(g) \neq 0$ для любого $g \in G$.
- **72.5.** Пусть $\Phi-n$ -мерное комплексное представление конечной группы G. Доказать, что $\chi_{\Phi}(g)=n$ тогда и только тогда, когда g принадлежит ядру представления Φ .
- **72.6.** Пусть A аддитивная группа n-мерного векторного пространства V над полем \mathbb{F}_p и χ неприводимый нетривиальный ком-

плексный характер группы А. Доказать, что подмножество

$$\{a \in A \mid \chi(\alpha) = 1\}$$

есть (n-1)-мерное подпространство в V.

72.7. Пусть χ — комплексный характер конечной группы G и $m=\max\{|\chi(g)| \mid g\in G\}$. Доказать, что

$$H=\{g\in G\mid \chi(g)=m\}, \qquad K=\{g\in G\mid |\chi(g)|=m\}$$

- нормальные подгруппы в G.
- **72.8.** Доказать, что двумерный комплексный характер χ группы \mathbf{S}_3 неприводим тогда и только тогда, когда $\chi((123)) = -1$.
- **72.9.** Пусть χ двумерный комплексный характер конечной группы G и $g \in G'$. Доказать, что если $\chi(g) \neq 2$, то χ неприводим.
 - 72.10. Чему равно «среднее значение»

$$\frac{1}{|G|} \sum_{g \in G} \chi(g)$$

неприводимого характера неединичной конечной группы G?

- **72.11.** Доказать, что для любого элемента g неединичной конечной группы G существует такой нетривиальный неприводимый комплексный характер χ группы G, что $\chi(g) \neq 0$.
- **72.12.** Доказать, что отображение группы G в $\mathbb C$ является одномерным характером группы G тогда и только тогда, когда это отображение является гомоморфизмом группы G в группу $\mathbb C^*$.
- **72.13.** Доказать, что центральная функция, равная произведению двух одномерных характеров группы G, является одномерным характером группы G.
- **72.14.** Доказать, что операция умножения функций определяет во множестве одномерных характеров группы G структуру абелевой группы \widehat{G} , двойственной к группе G.
- **72.15.** Доказать, что для конечной циклической группы A группа \widehat{A} конечная циклическая группа того же порядка.

- **72.16.** Пусть конечная абелева группа A разлагается в прямое произведение $A=A_1\times A_2,\ \alpha_1\in \widehat{A}_1,\ \alpha_2\in \widehat{A}_2.$ Доказать, что отображение $A\to \mathbb{C}^*,$ переводящее элемент (a_1,a_2) в $\alpha_1(a_1)\cdot \alpha_2(a_2),$ является одномерным характером группы A и $\widehat{A}\simeq \widehat{A}_1\times \widehat{A}_2.$
 - **72.17.** Пусть B- подгруппа конечной абелевой группы A и

$$B^0=\{lpha\in\widehat{A}\mid \ lpha(b)=1$$
 для всякого $b\in B\}.$

Доказать, что:

- а) B^0 подгруппа в \widehat{A} и всякая подгруппа в \widehat{A} совпадает с B^0 для некоторой подгруппы B;
 - б) $\widehat{B} \simeq \widehat{A}/B^0$;
 - в) $B_1 \subset B_2$ тогда и только тогда, когда $B_1^0 \supset B_2^0$;
 - $(B_1 \cap B_2)^0 = B_1^0 \cdot B_2^0;$
 - д) $(B_1B_2)^0 = B_1^0 \cap B_2^0$.
 - **72.18.** Пусть Φ гомоморфизм группы G в $\mathbf{GL}_n(\mathbb{C})$.

Доказать, что:

- а) отображение $\Phi^*\colon g \mapsto (\Phi(g^{-1}))^t$ также является представлением группы G;
- б) $\chi_{\Phi}(g) = \overline{\chi}_{\Phi^*}(g)$ для всякого $g \in G$;
- в) представления Φ и Φ^* эквивалентны тогда и только тогда, когда значения характера χ вещественны.
- **72.19.** Пусть Φ неприводимое комплексное представление группы \mathbf{S}_n и $\Phi'(\sigma) = \Phi(\sigma) \mathrm{sgn} \ \sigma \ (\sigma \in \mathbf{S}_n)$.

Доказать, что Φ' — представление группы \mathbf{S}_n и следующие утверждения эквивалентны:

- a) $\Phi \sim \Phi'$;
- б) ограничение представления Φ на \mathbf{A}_n приводимо;
- в) $\chi_{\Phi}(\sigma)=0$ для любой нечетной подстановки $\sigma\in\mathbf{S}_n.$
- **72.20.** В задаче 58.11 задана группа матриц из $\mathbf{M}_2(\mathbb{C})$, изоморфная группе кватернионов \mathbf{Q}_8 . Доказать неприводимость этого двумерного представления группы \mathbf{Q}_8 и найти его характер.

72.21. Найти характер представления группы \mathbf{S}_n в пространстве с базисом (e_1,\ldots,e_n) , задаваемого формулой

$$\Phi(\sigma)e_i = e_{\sigma(i)}$$
 для $\sigma \in \mathbf{S}_n$.

- **72.22.** Найти характер двумерного представления группы \mathbf{D}_n , определяющегося изоморфизмом группы \mathbf{D}_n с группой симметрий фиксированного правильного n-угольника.
- **72.23.** Найти характер трехмерного представления группы S_4 , определяющегося изоморфизмом группы S_4 с группой симметрий фиксированного правильного тетраэдра.
- **72.24.** Найти характер представления группы \mathbf{S}_4 , определяющегося изоморфизмом группы \mathbf{S}_4 с группой вращений куба.
 - 72.25. Составить таблицу неприводимых характеров групп:
- **72.26.** Составить таблицу характеров одномерных представлений и вычислить группу одномерных характеров (задача 72.14) для групп:
 - a) \mathbf{S}_3 ; б) \mathbf{A}_4 ; в) \mathbf{Q}_8 ; г) \mathbf{S}_n ; д) \mathbf{D}_n
- **72.27.** Найти модуль определителя матрицы, строки которой совпадают со строками таблицы неприводимых характеров абелевой группы порядка n.
 - **72.28.** Составить таблицу неприводимых характеров групп: а) S_3 ; б) S_4 ; в) Q_8 ; г) D_4 ; д) D_5 ; е) A_4 .
- **72.29.** Может ли характер представления некоторой группы порядка 8 принимать значения (1, -1, 2, 0, 0, -2, 0, 0)?
 - 72.30. Разложить центральную функцию

$$(1,-1,i,-i,j,-j,k,-k) \mapsto (5,-3,0,0,-1,-1,0,0)$$

на ${f Q}_8$ по базису неприводимых характеров. Является ли она характером какого-либо представления?

72.31. Определить, какая из центральных функций на S_3

$$f_1: (e, (12), (13), (23), (123), (132)) \mapsto (6, -4, -4, -4, 0, 0),$$

 $f_2: (e, (12), (13), (23), (123), (132)) \mapsto (6, -4, -4, -4, 3, 3)$

является характером, и указать это представление.

- **72.32.** Пусть A аддитивная группа конечномерного векторного пространства V над полем \mathbb{F}_p и Ψ нетривиальный неприводимый (комплексный) характер аддитивной группы поля \mathbb{F}_p .
 - а) Доказать, что всякий неприводимый характер χ группы A имеет вид

$$\chi(a) = \Psi(l(a))$$

для некоторой линейной функции $l \in V^*$.

- б) Установить изоморфизм двойственной группы \widehat{A} (см. задачу 72.14) и аддитивной группы пространства V^* .
- в) Построить изоморфизм A и $\widehat{\widehat{A}}.$
- **72.33.** Пусть в условиях предыдущей задачи f комплекснозначная функция на A. Определим функцию \widehat{f} на \widehat{A} , полагая для $\chi \in \widehat{A}$

$$\widehat{f}(\chi) = \frac{1}{|A|} \sum_{a \in A} f(a) \chi(a) = (f, \chi)_A.$$

а) Доказать, что

$$f = \sum_{\chi \in \widehat{A}} \widehat{f}(\chi) \cdot \chi.$$

б) Доказать, что $\widehat{fg}(\chi)=\sum_{\varphi\in\widehat{A}}\widehat{f}(\varphi)\widehat{g}(\varphi^{-1}\cdot\chi).$

- в) Сравнить функции f на A и $\widehat{\widehat{f}}$ на $\widehat{\widehat{A}}$, используя изоморфизм из задачи 72.32, в).
- **72.34.** Пусть A аддитивная группа поля \mathbb{F}_p . Рассмотрим функцию f на A, полагая

$$f(a) = \left\{ \begin{array}{rrr} 0, & \text{если} & a = 0, \\ 1, & \text{если} & a = x^2 \text{ для некоторого } x \in \mathbb{F}_p^*, \\ -1, & \text{в остальных случаях.} \end{array} \right.$$

Доказать, что если χ — неприводимый комплексный характер группы A, то $|(f,\chi)_A|=p^{-1/2}$.

- **72.35.** Пусть G конечная группа, H ее подгруппа. Доказать, что центральная функция на H, получающаяся ограничением на H характера группы G, является характером группы H.
- **72.36.** Пусть Φ матричное n-мерное представление группы G. Построим представление Ψ группы G на пространстве квадратных матриц порядка n, полагая для $\mathcal{A} \in \mathbf{M}_n(K)$

$$\Psi_g(A) = \Phi_g A^t \Phi_g.$$

Выразить χ_{Ψ} через χ_{Φ} .

- **72.37.** Найти неприводимые слагаемые представления Ψ задачи 72.36 и их кратности, если:
 - а) Φ двумерное неприводимое представление группы S_3 ;
 - б) Φ представление из задачи 72.23;
 - в) Φ двумерное представление группы \mathbf{Q}_8 из задачи 72.20.
- **72.38.** Пусть Φ матричное n-мерное представление группы G. Построим представление Ψ группы G на пространстве квадратных матриц $\mathbf{M}_n(K)$, полагая

$$\Psi_g(A) = \Phi_g \cdot A.$$

Выразить χ_{Ψ} через χ_{Φ} .

- **72.39.** Пусть $\rho:G\to \mathbf{GL}(V)$ регулярное комплексное представление группы $\langle a\rangle_n$. Найти кратность единичного представления группы \mathbf{Z}_n в разложении представления $\rho^{\otimes m}$ (см. задачу 69.19) на неприводимые представления.
- **72.40.** Пусть ρ двумерное неприводимое комплексное представление группы \mathbf{S}_3 . Разложить на неприводимые представления $ho^{\otimes 2}$ и $ho^{\otimes 3}$.
- **72.41.** Пусть $\rho:\langle a\rangle_n\mapsto \mathbf{GL}(V)$ комплексное регулярное представление группы $\langle a\rangle_n$. Найти кратность единичного представления группы в разложении на неприводимые компоненты представления, возникающего на пространстве кососимметрических m-контравариантных тензоров на V (см. задачу 69.19).

* * *

72.42. Пусть χ — характер группы G, f — центральная функция на G,

$$f(g) = \frac{1}{2}(\chi(g)^2 - \chi(g^2)).$$

Доказать, что f — характер группы G.

72.43. Пусть Φ — представление группы $G=\mathbf{S}_3$ в пространстве $\mathbb{C}(G)$ всех комплекснозначных функций на G:

$$(\Phi_{\sigma}f)(x) = f(\sigma^{-1}x), \qquad f \in \mathbb{C}(G), \quad x \in G, \quad \sigma \in G,$$

 $f_0\in\mathbb{C}(G)$ и V_0 — линейная оболочка множества элементов вида $\Phi_\sigma f_0$, где $\sigma\in G.$

Найти характер ограничения Φ на V_0 для:

- a) $f_0(\sigma) = \operatorname{sgn} \sigma$;
- б) $f_0(\sigma)=\left\{egin{array}{ll} 1, & ext{если} & \sigma\in\{e,(12)\}, \\ 0 & ext{в противном случае;} \end{array}
 ight.$
- в) $f_0(\sigma) = \left\{ egin{array}{ll} 1, & \mbox{если} & \sigma \in \{e, (123), (132)\}, \\ 0 & \mbox{в противном случае;} \end{array}
 ight.$

г)
$$f_0(\sigma) = \left\{ \begin{array}{rl} 1, & \text{если} & \sigma \in \{e, (13), (23)\}, \\ -1, & \text{если} & \sigma \in \{(12), (123), (132)\}. \end{array} \right.$$

72.44. Пусть Φ — комплексное представление конечной группы G на пространстве V, Ψ — представление группы G на пространстве W. Обозначим через $T(\Phi,\Psi)$ пространство таких линейных отображений S из V в W, что $S\circ\Phi_g=\Psi_g\circ S$ для всех $g\in G$.

Доказать, что

$$\dim T(\Phi, \Psi) = (\chi_{\Phi}, \chi_{\Psi})_G.$$

§ 73. Первоначальные сведения о представлениях непрерывных групп

Если не указывается противное, то все рассматриваемые в этом параграфе представления предполагаются конечномерными.

* * *

73.1. Пусть F есть поле \mathbb{R} или \mathbb{C} .

Доказать, что:

- а) для любой матрицы $A \in \mathbf{M}_n(F)$ отображение $P_A \colon t \mapsto e^{tA}$ $(t \in F)$ является дифференцируемым матричным представлением аддитивной группы поля F;
- б) всякое дифференцируемое матричное представление P аддитивной группы поля F имеет вид P_A , где A=P'(0);
- в) представления P_A и P_B эквивалентны тогда и только тогда, когда матрицы A и B подобны.
- **73.2.** Доказать, что P является матричным представлением аддитивной группы поля \mathbb{R} , и найти такую матрицу A, что $P=P_A$, если:

a)
$$P(t) = \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix}$$
; 6) $P(t) = \begin{pmatrix} \operatorname{ch} t & \operatorname{sh} t \\ \operatorname{sh} t & \operatorname{ch} t \end{pmatrix}$;
B) $P(t) = \begin{pmatrix} e^t & 0 \\ 0 & 1 \end{pmatrix}$; r) $P(t) = \begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix}$;
A) $P(t) = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$; e) $P(t) = \begin{pmatrix} 1 & e^t - 1 \\ 0 & e^t \end{pmatrix}$.

- **73.3.** Какие из матричных представлений группы \mathbb{R} из задачи 73.2 эквивалентны?
- **73.4.** В каком случае представления P_A и P_{-A} эквивалентны для $F=\mathbb{C}$?
- **73.5.** Найти все дифференцируемые комплексные матричные представления групп:
 - a) \mathbb{R}_+^* ; 6) \mathbb{R}^* ; b) \mathbb{C}^* ;
 - г) U (предполагается дифференцируемость представления по аргументу комплексного числа z).
- **73.6.** Всякое ли комплексное линейное представление группы $\mathbb Z$ получается ограничением на $\mathbb Z$ некоторого представления группы $\mathbb C$?
- **73.7.** Найти в пространстве \mathbb{C}^n все подпространства, инвариантные относительно матричного представления P_A (см. задачу 73.1) в случае, когда характеристический многочлен матрицы A не имеет кратных корней.
- **73.8.** Доказать, что матричное представление P_A (см. задачу 73.1) вполне приводимо тогда и только тогда, когда матрица A диагонализируема.

73.9. Пусть R_n — пространство однородных многочленов степени n от x,y с комплексными коэффициентами. Для

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbf{SL}_2(\mathbb{C})$$

и $f \in R_n$ положим

$$(\Phi_n(A)f)(x,y) = f(ax + cy, bx + dy).$$

Доказать, что ограничение представления Φ_n на подгруппу $\mathbf{SU}_2(\mathbb{C})$ неприводимо.

- **73.10.** Пусть $G = \mathbf{GL}_2(\mathbb{C})$. Комплексную функцию на G назовем *полиномиальной*, если она есть многочлен от матричных элементов.
 - а) Пусть $t(A)={\rm tr}\,A,\,d(A)={\rm det}\,A.$ Доказать, что t и d центральные полиномиальные функции на G.
 - б) Доказать, что любая центральная полиномиальная функция на G является многочленом от t и d.
 - в) Пусть $A=(a_{ij})\in G$ и $R=\mathbb{C}[x,y].$ Обозначим через $\Psi(A)$ гомоморфизм $R\to R$, для которого

$$\Psi(A): x \mapsto a_{11}x + a_{12}y,
\Psi(A): y \mapsto a_{21}x + a_{22}y.$$

Доказать, что Ψ — представление группы G в пространстве R и подпространства однородных многочленов степени n инвариантны относительно представления Ψ .

- г) Доказать, что для $A \in \mathbf{SL}_2(\mathbb{C})$ ограничение $\Psi(A)$ на под пространство R_n совпадает с оператором $\Phi_n(A)$ из задачи 73.9.
- д) Пусть χ_n характер ограничения $\Psi|_{R_n}$. Доказать, что

$$\chi_n = t\chi_{n-1} - d\chi_{n-2}.$$

73.11. Пусть \mathbb{H} — пространство комплексных матриц вида

$$X = \left(\begin{array}{cc} z & w \\ -\overline{w} & \overline{z} \end{array}\right)$$

со структурой четырехмерного евклидова пространства $(X,X)=\det X$ и $\mathbb{H}_0=\{X\in\mathbb{H}\,|\, \mathrm{tr}\, X=0\}.$

Доказать, что:

а) отображение $P \colon \mathbf{SU}_2 \to \mathbf{GL}(\mathbb{H}_0)$, определенное формулой

$$P(A): X \mapsto AXA^{-1},$$

является (вещественным) линейным представлением группы \mathbf{SU}_2 , $\mathrm{Ker}\,P=\pm E$, а $\mathrm{Im}\,P$ состоит из всех собственных ортогональных преобразований пространства H_0 ;

- б) отображение $R: \mathbf{SU}_2 \times \mathbf{SU}_2 \to \mathbf{GL}(\mathbb{H})$, определенное формулой $R(A,B): X \mapsto AXB^{-1}$, является (вещественным) линейным представлением группы $\mathbf{SU}_2 \times \mathbf{SU}_2$, $\ker R = \{(E,E), (-E,-E)\}$, а $\operatorname{Im} R$ состоит из всех собственных ортогональных преобразований пространства \mathbb{H}_0 ;
- в) комплексификация линейного представления P изоморфна ограничению представления Φ_2 группы \mathbf{SL}_2 из задачи 73.9 на подгруппу \mathbf{SU}_2 .
- **73.12.** Пусть G топологическая связная разрешимая группа и ρ непрерывный гомоморфизм G в группу невырожденных линейных операторов в конечномерном комплексном пространстве V.

Доказать, что:

- а) в V существует ненулевой вектор, являющийся собственным для всех операторов $\rho(g), \ g \in G;$
- б) в V существует такой базис e_1, \dots, e_n , что все матрицы $\rho(g)$, $g \in G$, в этом базисе верхнетреугольные.
- **73.13.** Пусть F алгебраически замкнутое поле и G разрешимая группа невырожденных линейных операторов в конечномерном векторном пространстве V над F. Доказать, что существуют такие базис e_1, \ldots, e_n в V и нормальная подгруппа N в G конечного индекса (зависящего только от n), что N состоит из верхнетреугольных матриц.

ОТВЕТЫ И УКАЗАНИЯ

- **54.1.** a) Нет. б) Да. в) Нет. г) Нет. д) Да. е) Нет. ж) Да.
- **54.2.** Все элементы вида $e_a = \begin{pmatrix} 1 & a \\ 0 & 0 \end{pmatrix}$ нейтральны слева; нейтральных справа и двусторонних нейтральных нет. Относительно e_a обратимы справа все элементы $\begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix}$ при $x \neq 0$; обратимы слева лишь элементы вида $\begin{pmatrix} x & ax \\ 0 & 0 \end{pmatrix}$ при $x \neq 0$.
- **54.3.** Любой элемент нейтрален справа; относительно любого нейтрального x каждый элемент обратим слева и лишь сам x обратим справа при |M|=1.
 - **54.4.** Да; не существует, если |M| > 1.
 - **54.5.** a) 3. б) Нет.
 - **54.6.** Рассмотреть отображение $A \to \overline{A}$.
- **55.1.** Все множества в а), кроме \mathbb{N} , все множества в в), кроме \mathbb{N}_0 и \mathbb{Z}_0 , г), д), е), ж), з), и) при r=1 и при r=0, л) при $\varphi_k=2k\pi/n$ (считая, что $\varphi_1<\varphi_2<\ldots<\varphi_n$).
 - **55.2.** Группе и) при r = 1.
 - **55.5.** б), в), г), д), з), и), к), л).
 - **55.6.** а), г), д) при d = 1, е), з), л), м), н), о), п), р), с) при $\lambda < 0$, т).
 - **55.13.** а) и в).
 - **55.16.** Рассмотреть элемент $(xy)^2$.
 - **55.17.** a), в), д), е).
 - 55.18. Для коммутативных групп.
 - **55.19.** Будет.
- **55.20.** $\{\mathbb{Z}, n\mathbb{Z}, \mathbf{UT}_2(\mathbb{Z})\}, \{\mathbb{Q}, \mathbf{UT}_2(\mathbb{Q})\}, \{\mathbb{R}, \mathbf{UT}_2(\mathbb{R}), \mathbb{C}, \mathbf{UT}_2(\mathbb{C})\}, \{\mathbb{Q}^*\}, \{\mathbb{C}^*\}.$
 - **55.21.** $[k] \to [2^k] \text{ if } [k] \to [3^k].$
- **55.22.** Если в группе тождественно $x^2=e$, то см. задачу 55.16; в противном случае найти некоммутирующие элементы x и y, для которых $x^2=y^3=1$.
 - 55.23. Других автоморфизмов нет.
- **55.25.** a) Равнобедренный, но не равносторонний треугольник или пара точек.
- б) $[KB] \cap [LC] \cap [MA]$, где K, L, M середины сторон правильного треугольника ABC.

- в) Правильный треугольник.
- г) Параллелограмм или прямоугольник.
- **55.26.** \mathbf{D}_4 изоморфна группе из задачи 55.5, л); \mathbf{Q}_8 изоморфна группе из задачи 55.6, г).

 - д) \mathbf{D}_4 . e) \mathbf{S}_4 .
 - **55.34.** а) $\{e, (123), (132)\}$. б), в) см. задачу 55.26.
 - **55.36.** Использовать задачу 55.26.
 - **55.37.** Использовать задачи 55.26 и 55.35.
 - 55.39. Эти группы попарно не изоморфны. Рассмотреть центры групп.
 - **56.1.** б) Если $A \cup B$ подгруппа, $x \in A \setminus B$, $y \in B \setminus A$, рассмотреть xy.
 - в) Рассмотреть $x \in (C \setminus A) \cap (C \setminus B)$.
- **56.2.** Для любого элемента a подполугруппы найдутся различные k и l такие, что $a^k=a^l$, откуда $a\cdot a^{k-l-1}=a^{k-l}=e$, так что элемент a обратим в подполугруппе; утверждение неверно для $\mathbb{N}\subset\mathbb{Z}$.
 - **56.3.** a) 6. б) 5. в) 12. г) 8. д) 4. е) 8. ж) 2.
- **56.4.** Рассмотреть случай, когда порядок E + pX является простым числом.
- **56.5.** а) Доказать по индукции, что для любого натурального числа n найдутся такие целые числа m,k, что $(3+4i)^n=(3+5m)+(4+5k)i$.
 - б) вытекает из а).
 - **56.6.** a) 2. б) 4. в) 20. г) 0.
 - **56.7.** б) Использовать a).
 - в) Рассмотреть перестановки (123), (12) и (13).
- **56.8.** а) Для взаимно простых чисел p и q существуют u и v такие, что pu+qv=1.
 - б) Следует из а).
 - в) Рассмотреть (12) и (123).
 - 56.9. Воспользоваться тем, что порядок цикла равен его длине.
 - **56.11.** n/HOД(n,k).
 - **56.13.** $p^m p^{m-1}$
 - **56.14.** a) См. задачу 56.11. б) См. указание к задаче 56.8.
 - в) Рассмотреть наименьшее из натуральных чисел s, для которых $a^s \in H$.
- г) Использовать в). Если d_1 и d_2 различные делители n, то соответствующие подгруппы имеют различные порядки.
- **56.15.** Если $x^k = e$ и $x = a^l$, то $a^{kl} = e$, откуда kl : n и l : HOД(n,k); элемент a^k имеет порядок n/HOД(n,k), (см. задачу 56.10) и поэтому удовлетворяет условию при HOД(n,l) = n/k.
- **56.18.** Пусть $n = |G|, \, d = d(G), \, m$ наименьшее общее кратное порядков элементов G.
- а) По теореме Лагранжа d|n, откуда $x^d=1,$ так что d делится на порядок любого элемента группы, т. е. m|d.
- б) Пусть $d = p_1^{k_1} \dots p_s^{k_s}$ разложение на простые множители; в силу а) в G существует элемент x, порядок которого равен $p_1^{k_1}l$, где l и p_1 взаимно просты;

тогда x^l имеет порядок $p_1^{k_1}$; аналогично получаются элементы x_2,\ldots,x_s , и произведение x_1,\ldots,x_s (см. задачу 56.8, a)) имеет порядок d.

Утверждения б) и в) неверны для S_3 .

56.19. $\mathbf{U}_{p^{\infty}}$.

- ${f 56.20.}$ б) Неверно: в группе G биекций плоскости на себя композиция симметрий относительно двух параллельных прямых является параллельным переносом.
- в) Множество корней всех степеней из 1; множество диагональных матриц с корнями из 1 на главной диагонали.
- **56.21.** Неверно: в $\mathbf{GL}_2(\mathbb{R})$ элементы порядка 2 не составляют подгруппу (см. ответ к задаче 56.20, б)).
 - **56.22.** \mathbf{Z}_{p^k} (p простое число).
 - **56.24.** a) Выписать явно все подгруппы (см. задачу 56.14, г)).
- б) ${\bf Z}_{p^k}$ (p простое число); заметить, что группа является объединением своих циклических подгрупп, и если они образуют цепь, то группа циклическая, далее использовать задачу 56.14, г).
- в) ${\bf Z}_{p^n} \ {\bf U}_{p^\infty}$; пусть p наименьший из порядков элементов группы; p простое число, так как из p=kl следует, что в подгруппе $\langle x \rangle$ имеется элемент порядка k; $\langle x \rangle_p$ наименьшая неединичная подгруппа, содержащаяся во всех других подгруппах, так что порядки всех элементов делятся на p и на самом деле являются степенями p.

56.25.
$$\bigcup_{n \in N} \left\langle \frac{1}{n!} \right\rangle.$$

56.26.
$$\cos \frac{2k\pi}{n} + i \sin \frac{2k\pi}{n} \to [k].$$

56.28. Если в группе G нет элементов порядка 2, то

$$G = \{(x, x^{-1})(x \neq e)\} \cup \{e\}$$

и |G| нечетен.

- **56.29.** Эта группа не является циклической, так как она имеет порядок 8, но порядок каждого элемента не превосходит 4.
 - **56.30.** См. задачу 56.24, в).
- **56.31.** б) Показать, что если конечная абелева группа содержит не более одной подгруппы любого заданного порядка, то она циклическая, и воспользоваться а).
 - **56.32.** a) E, S_3 , $\langle (ij) \rangle$, $\langle (123) \rangle$.
 - 6) E, \mathbf{D}_4 , $\langle (13) \rangle$, $\langle (24) \rangle$, $\langle (12) (34) \rangle$, $\langle (13) (24) \rangle$, $\langle (14) (23) \rangle$, $\langle (1234) \rangle$, \mathbf{V}_4 .
 - B) E, \mathbf{Q}_8 , $\langle i \rangle$, $\langle j \rangle$, $\langle k \rangle$.
- r) E, \mathbf{A}_4 , $\langle (12)(34) \rangle$, $\langle (13)(24) \rangle$, $\langle (14)(24) \rangle$, \mathbf{V}_4 , $\langle (123) \rangle$, $\langle (124) \rangle$, $\langle (134) \rangle$, $\langle (234) \rangle$.
 - **56.34.** a) (ij) = (1i)(1j)(1i).
 - **56.35.** a) \mathbf{D}_4 . б) $\mathbf{D}_2(\mathbb{R})$ при $a \neq b$; $\mathbf{SL}_2(\mathbb{R})$ при a = b. в) $\langle g \rangle$.
 - **56.36.** a) **D**₄.
- б) ${f S}_3$ как подгруппа ${f S}_4$, состоящая из перестановок с неподвижным элементом ${f 4}.$

- B) $\{e, (12), (34), (12)(34)\}.$
- Γ) **S**₄. \Box **Д**) **A**₄.
- **56.41.** Использовать задачу 56.40.
- **57.1.** а) Две орбиты; одна состоит только из одного нулевого вектора, другая из всех ненулевых векторов.
 - б) Каждая орбита состоит из всех векторов одинаковой длины.
- в) Каждому подмножеству $I\subseteq\{1,2,\ldots,n\}$ отвечает орбита O_I , состоящая из тех векторов x, у которых координата x_i равна 0 тогда и только тогда, когда $i\in I$. Всего 2^n различных орбит.
- г) Всего n+1 различных орбит $O,\ O_1,\dots,O_n$, где O состоит только из нулевого вектора, а $O_i,\ i\geqslant 1,\ -$ из всех таких векторов $x=\sum_{t=1}^n x_t e_t$, для которых $x_i\neq 0$ и $x_j=0$ для всех j>i.
 - **57.2.** а) G_a содержит только тождественный оператор.
- б) G_a состоит из операторов с матрицами $A=(a_{ij})$ такими, что $\sum_{j=1}^n a_{ij}=1$ для любого $i=1,2,\ldots,n$.
 - **57.3.** а) Группа ортогональных операторов в плоскости $\langle x \rangle^{\perp}$.
 - б) Группа поворотов в плоскости $\langle x \rangle^{\perp}$.
 - **57.4.** а) Орбита G равна X.
 - б) G_U состоит из всех матриц вида

$$\begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$$
,

где A — обратимая матрица размера k, C — обратимая матрица размера n-k и B — матрица размера $k \times (n-k)$.

- **57.5.** в) G_f состоит из всех верхнетреугольных матриц в базисе e_1, \dots, e_n .
- **57.9.** Орбиты: а) {1,5,4,9}, {2,8}, {3}, {6,10,7};
- б) {1,7,2,4}, {3,6}, {5,8,9}, {10}.

57.10. a)
$$\begin{pmatrix} \pm 1 & 0 \\ 0 & \pm 1 \end{pmatrix}$$
.

б) Рассмотреть, например, отображение

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \mapsto e, \qquad \qquad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \mapsto (12)(34),$$

$$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \mapsto (13)(24), \qquad \qquad \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \mapsto (14)(23)$$

или установить изоморфизм, занумеровав стороны ромба.

в) Две орбиты: $\{A, C\}$ и $\{B, D\}$,

$$G_A = G_C = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \right\};$$

$$G_B = G_D = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right\}.$$

57.11. В группу входят n различных поворотов n-угольника вокруг центра и n осевых симметрий; $|\mathbf{D}_n|=2n$.

- **57.12.** a) 24. 6) 12.
- в) 60. Все вершины правильного многогранника образуют одну орбиту относительно действия группы вращения многогранника. При этом порядок стационарной подгруппы равен числу ребер, выходящих из вершины.
- **57.13.** а) Каждому вращению куба сопоставить перестановку на множестве диагоналей куба.
- б) Каждому движению тетраэдра сопоставить перестановку на множестве его вершин; полученное отображение в \mathbf{S}_4 инъективно, ибо каждое аффинное преобразование определяется однозначно образами четырех точек общего положения; сюръективность вывести из того факта, что в образе, кроме подгруппы \mathbf{A}_4 , есть нечетная подстановка.
 - **57.14.** a) 4. 6) 5.
 - **57.15.** а) Орбита G равна Y. б) $G_a = 1$.
 - **57.17.** а) $\{az \mid |a| = 1\}$. б) Орбита нуля весь круг. в) 1
 - **57.19.** По условию задачи $m = hm_0$ для некоторого $h \in G$. Отсюда

$$gm = g(hm_0) = (gh)m_0 = (hg)m_0 = h(gm_0) = hm_0 = m.$$

- **57.20.** а) Заметить, что $ag_1H=ag_2H\to g_1H=g_2H$; и для каждого $x\in G$ $xH=a(a^{-1}xH).$
 - б) Проверить, что $\sigma_{ab} = \sigma_a \sigma_b$.
 - в) Доказать, что условия gH = agH и $a \in gHg^{-1}$ равносильны.
- **57.21.** а) Каждый смежный класс $\{e\}$, $\{x\}$, $\{x^2\}$, $\{x^3\}$ состоит из одного элемента, присвоим им соответственно номера 1, 2, 3, 4, тогда $\sigma_x=(1234)$, $\sigma_{x^2}=(13)(24)$, $\sigma_{x^3}=(1432)$, σ_e тождественная перестановка.
- 6) Пусть x данная симметрия, а y поворот квадрата на 90° . Тогда $G=H\cup yH\cup y^2H\cup y^3H$, и, занумеровав смежные классы в указанном порядке, имеем: σ_e тождественная перестановка, $\sigma_y=(1234),\,\sigma_{y^2}=(13)(24),\,\sigma_{y^3}=(14)(23),\,\sigma_x=(24),\,\sigma_{xy}=(12)(34),\,\sigma_{y^2x}=(13),\,\sigma_{y^3x}=(14)(23).$ (Для вычисления воспользоваться соотношением $xy=y^{-1}x$.)
 - 57.23. а) Подгруппа, порожденная группой Клейна и циклом (12).
 - б) Множество всех степеней данной перестановки.
 - 57.24. а) Подгруппа диагональных матриц. б) Вся группа.
 - в) Множества матриц вида $\begin{pmatrix} a+b & 2a \\ 3a & 4a+b \end{pmatrix}$, где $a,b\in\mathbb{R}$ и $b^2+5ab-2a^2\neq 0$.
 - г) Множество матриц вида $\begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$, где $a,b \in \mathbb{R},\ a \neq 0.$
 - 57.25. а) Подгруппа всех диагональных матриц.
- б) Подгруппа всех матриц вида $\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$, где A и B невырожденные матрицы порядка k и n-k соответственно.
- **57.26.** A_1 и A_3 сопряжены, так как имеют одинаковую жорданову форму, а A_1 и A_2 не сопряжены, так как имеют разные жордановы нормальные формы.
- **57.27.** а) C_{ij} как группа порождается матрицами $E + \lambda E_{pq}$, где $j \neq p \neq q \neq i$.
 - $\dot{}$ δ) λE , $\lambda^n = 1$.

- в) $E+{}^tab$, где a,b- строки, причем $b^ta=0$. Последнее утверждение вытекает из в).
 - **57.28.** a) $\mathbf{SO}_2(\mathbb{R})$. б) $\pm E$, симметрии относительно OX и OY.
 - **57.30.** a) $\mathbf{S}_3 = \{e\} \cup \{(12), (13), (23)\} \cup \{(123), (132)\}.$
 - 6) $\mathbf{A}_4 = \{e\} \cup \{(12)(34), (13)(24), (14)(23)\} \cup \{(123), (124), (142), (243)\} \cup \{(123), (124), ($
- $\cup \{(123), (134), (142), (243)\} \cup \{(132)(143), (124), (234)\}.$
- в) Симметрия относительно средних линий квадрата, повороты квадрата на углы $\pm \pi/2$, центральная симметрия квадрата, тождественное отображение.
 - 57.31. а) Единичная группа.
- б) Группа порядка 2; поскольку все неединичные элементы группы сопряжены, порядок группы n должен делится на n-1.
- в) Группа изоморфна группе подстановок ${\bf S}_3$ или имеет порядок 3. В любой группе есть класс, состоящий только из единицы. Пусть n- порядок группы G, а k,l- числа сопряженных элементов в каждом из классов, $k\leqslant l$. Тогда n делится на k и l и 1+k+l=n. Возможные решения: 1) $n=3,\,k=l=1;\,2$) $n=4,\,k=1,\,l=2,\,$ это решение нужно отбросить, поскольку группы порядка 4 абелевы (т. е. имеют 4 класса); 3) $n=6,\,k=2,\,l=3;\,$ чтобы установить изоморфизм $G\cong {\bf S}_3,\,$ использовать действие группы G сопряжениями (см. задачу 57.22 на классе, состоящем из трех элементов).
 - **57.32.** a) {(12)(34), (13)(24), (14)(23)}.
 b) {(123), (132), (124), (142), (134), (143), (234), (243)}.
- **57.34.** Пусть $a=(i_1\dots i_k)(i_{k+1}\dots i_l)\dots$ разложение перестановки a на независимые циклы. Для вычисления перестановки $c=bab^{-1}$ записать b в виде

$$\begin{pmatrix} i_1 & \dots & i_k & i_{k+1} & \dots & i_l & \dots \\ j_1 & \dots & j_k & j_{k+1} & \dots & j_l & \dots \end{pmatrix}.$$

Тогда $c=(j_1\ldots j_k)(j_{k+1}\ldots j_l)\ldots$

- **57.35.** а) 5. б) 7. в) 11.
- г) $\frac{n+6}{2}$, если n четно, и $\frac{n+3}{2}$, если n нечетно; для нахождения числа элементов, сопряженных с данным, достаточно найти порядок его централизатора; обратить внимание на то, что поворот вокруг центра на угол π совмещает n-угольник с собой, если n четно.
- **57.36.** Необходимость следует из равенства следов сопряженных матриц. Для доказательства достаточности равенства $\varphi_1 + \varphi_2 = 2\pi k$ в качестве сопрягающей матрицы для канонических форм рассмотреть матрицу diag (-1, -1, 1).
 - 57.37. а) Сопряженные подгруппы имеют одинаковый порядок.
 - б) $K = gHg^{-1}$, где g = diag(2, 1).
 - **57.38.** a) $N(H) = \langle H, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \rangle$.
- б) N(H) состоит из всех невырожденных матриц второго порядка, в которых $a_{21}=0$.
 - в) N(H) состоит из 8 перестановок, выписанных в ответе к задаче 57.21, б).
- **57.39.** а) Aut G циклическая группа порядка 4, состоящая из автоморфизмов возведения в степень k=1,2,3,4.
- б) $\operatorname{Aut} G$ группа второго порядка, в которую кроме тождественного автоморфизма входит автоморфизм возведения в пятую степень.

- ${f 57.40.}$ а) Каждый автоморфизм группы ${f S}_3$ определяется своим действием на трех элементах второго порядка.
- б) Любая перестановка неединичных элементов группы ${f V}_4$ определяет ее автоморфизм.
- 57.41. а) Да, Aut \mathbf{Z}_9 циклическая группа порядка 6, порождаемая автоморфизмом возведения в квадрат.
- б) Het, $|{
 m Aut}\,{f Z}_8|=4$, но квадрат каждого автоморфизма тождественное отображение.
 - **57.42.** | Aut Aut Aut $\mathbf{Z}_9 | = 1$. Использовать задачи 57.41 и 57.39.
- **57.43, 57.44.** *Каргаполов М.И.*, *Мерзляков Ю.И.* Основы теории групп. М.: Наука, 1982. Гл. 2, § 5.3.
- **57.45.** Пусть $\mathbf{D}_4 = \langle a, b \mid a^4 = b^2 = (ab)^2 = 1 \}$. Тогда Aut $\mathbf{D}_4 = \langle \varphi, \psi \rangle$, где $\varphi(a) = a, \ \varphi(b) = ba, \ \psi(a) = a^{-1}, \ \varphi(b) = b$. При этом $\varphi^4 = \psi^2 = (\varphi\psi) = 1$, т. е. Aut $\mathbf{D}_4 \simeq \mathbf{D}_4$, Int $\mathbf{D}_4 = \langle \varphi^2, \psi \rangle$.
- **57.46.** Пусть $\mathbf{D}_n = \langle a, b \mid a^n = b^2 = (ab)^2 = 1 \}$. Тогда $\mathrm{Aut}\,\mathbf{D}_n = \langle \varphi, \psi_k, \ (k,n) = 1 \rangle$, где $\varphi(a) = a, \ \varphi(b) = ba, \ \varphi(a) = a^k, \ \psi(b) = b$, где $(k,n) = 1, \ 1 \leqslant k \leqslant n-1$.
 - 58.1. б) Использовать теорему об определителе произведения матриц.
 - в) Использовать теорему о четности произведения перестановок.
 - **58.4.** a) A_3 . 6) V_4 .
- в) V_4 и A_4 . Воспользоваться тем, что порядок подгруппы делит порядок группы, что нормальная подгруппа вместе с любым элементом содержит все сопряженные, а также задачами 57.27 и 57.30.
 - **58.5.** Haпример, $K = \{(12)(34)\}, H = \mathbf{V}_4$.
 - **58.6.** $aba^{-1}b^{-1} = a(ba^{-1}b^{-1}) = (aba^{-1})b^{-1} \in A \cap B$.
- **58.7.** Пусть $c \in C$ и $G = H \cup Hx$ разложение группы G на два смежных класса. Тогда любой элемент из C может быть записан в виде hch^{-1} или в виде $hxcx^{-1}h^{-1}$, где $h \in H$.
- **58.9.** Пять классов сопряженности, состоящих из 1, 15, 20, 12 и 12 элементов. Воспользоваться задачами 57.34 и 58.7. Группа ${\bf A}_5$ состоит из четырех классов элементов, сопряженных в ${\bf S}_5$, представителями которых являются e, (12)(34), (124) и (12345). Первый и второй состоят из нечетного числа элементов (1 и 15), поэтому являются классами сопряженности и в ${\bf A}_5$. Третий также не распадается в ${\bf A}_5$ на два класса, ибо в качестве x (см. указание к задаче 58.7) можно выбрать перестановку (45), но тогда $(45)(123)(45)^{-1}=(123)$. Наконец, четвертый распадается в ${\bf A}_5$ на два класса, ибо число его элементов 24 не делит порядок группы ${\bf A}_5$.
- **58.10.** В соответствии с задачей 58.9 порядок нормальной подгруппы, делящей число 60, можно составить из слагаемых 1, 15, 20, 12, 12, причем в качестве одного из слагаемых непременно нужно взять 1, ибо e входит в любую подгруппу.
- **58.11.** Сначала доказать в). Центр состоит из $\pm E$. Других подгрупп порядка 2 нет, поэтому все они нормальны (см. задачу 58.3). Классы сопряженности $\{E\}, \{-E\}, \{\pm I\}, \{\pm J\}, \{\pm K\}$.
 - **58.12.** Подгруппы \mathbf{D}_k в \mathbf{D}_n , где k делит n, и подгруппа вращений в \mathbf{D}_n .

58.15. λE .

58.17. в) Вытекает из задачи 56.4.

- г) По в) при естественном гомоморфизме $\mathbf{SL}_n(\mathbb{Z})$ в $\mathbf{SL}_n(\mathbf{Z}_3)$ группа Gотображается инъективно.
- **58.18.** Если α_q автоморфизм $x \to gxg^{-1}$, то α_e тождественный автоморфизм, $(\alpha_g)^{-1} = \alpha_{g^{-1}}, \ \alpha_g \alpha_h = \alpha_{gh}$ и

$$(\varphi \alpha_g \varphi^{-1})(x) = \varphi(g \varphi^{-1}(x) g^{-1}) = \varphi(g) x \varphi(g^{-1}) = \alpha_{\varphi(g)}(x)$$

для любого $\varphi \in \operatorname{Aut} G$.

- **58.20.** a) S_2 при n = 2 и $\{e\}$ при $n \neq 2$.
- б) A_3 при n = 3 и $\{e\}$ при $n \neq 3$.
- в) Центр является единичным при нечетных n, а при четных включает еще поворот на угол π .
- 58.22. Элемент лежит в центре тогда и только тогда, когда он совпадает со всеми сопряженными ему элементами. Поэтому, если в центре лежит лишь одна единица, то $p^n=1+p^{k_1}+\ldots+p^{k_i}$ $(k_i\geqslant 1)$ (число элементов любого класса сопряженности делит порядок группы). Но тогда 1 делится на p.
 - **58.23.** б) Центр состоит из матриц вида $E + bE_{13}$.
- в) Класс сопряженности нецентрального элемента $E + aE_{12} + bE_{13} + cE_{23}$ состоит из матриц вида $E + aE_{12} + xE_{13} + cE_{23}$ ($x \in \mathbf{Z}_p$).
 - **58.24.** a) $\{\lambda E\}$. б) $\{\pm E\}$. в) Вся группа. д) $\{\pm E\}$. е) $\{\alpha E\mid \alpha^n=1\}$. ж) $\{E+\lambda E_{1n}\}$.

 - **58.27.** Группа H изоморфна факторгруппе группы G.
- **58.28.** Гомоморфизм определяется образом порождающего элемента a. Ниже указаны возможные образы этого элемента.
 - а) Любой элемент группы; число гомоморфизмов равно n.
 - б) $e, b^3, b^6, b^9, b^{12}, b^{15}$
 - B) e, b, b^2, b^3, b^4, b^5 .
 - г) e, b^5, b^{10} .
 - д) e.
 - **58.29.** Найти образ a/2, если $a \mapsto 1$.
 - **58.30.** a) \mathbf{Z}_n . 6) \mathbf{Z}_4 . B) \mathbf{Z}_3 . Γ) \mathbf{Z}_2 .
 - **58.31.** Построить линейное отображение F^n на F^{n-k} с ядром H.
 - 58.32. Рассмотреть отображения:
 - a) $x \to \cos 2\pi x + i \sin 2\pi x;$ 6) $z \to \frac{z}{|z|};$
 - в) $z \to |z|$; г) $z \to z^n$; д) $z \to z^n$.
 - e) $z \to \left(\frac{z}{|z|}\right)^n$; $x \to \frac{z}{|z|}$; $z \to |z|$.
- **58.33.** Для доказательства изоморфизма вида $X/Y \cong \mathbb{Z}$ найти гомоморфизм X на \mathbb{Z} с ядром Y.
- **58.34.** Воспользоваться тем, что каждый элемент $g \in G$ однозначно представим в виде kh, где $k \in K$, $h \in H$. Доказать, что отображение $g \to k$ является при этом гомоморфизмом $G \to K$.

- **58.35.** В силу задачи 57.13 группа \mathbf{S}_4 действует на кубе. Отсюда, если занумеровать три пары противоположных граней куба числами 1, 2, 3, мы получим действие группы на множестве $\{1,2,3\}$. Проверить, что ядром этого действия является подгруппа \mathbf{V}_4 .
- **58.36.** Проверить, что пересечение N всех подгрупп группы G, сопряженных в G с H, является нормальной в G подгруппой. С помощью задачи 57.20 установить, что факторгруппа G/N изоморфна некоторой подгруппе группы \mathbf{S}_k .
- **58.37.** Пусть N нормальная в G подгруппа, построенная в решении задачи 58.36. Тогда p! делится на |G/N| и $|G/N|\geqslant p$, ибо $N\subseteq H$. Но по условию p минимальный простой делитель числа |G|, а значит, и у числа |G/N| не может быть простых делителей, меньших, чем p, так как |G| делится на |G/N|. С другой стороны, в разложении числа p! простые делители, кроме одного, меньше p. Поэтому |G/N|=p, т. е. индексы, а следовательно, и порядки подгрупп N и H совпадают. Из включения $N\subseteq H$ следует тогда равенство N=H (и нормальность подгруппы H).
- **58.38.** Любой линейный оператор действует на одномерных подпространствах, переставляя их. Проверить, что в двумерном пространстве над \mathbf{Z}_3 имеется четыре одномерных подпространства, которые можно произвольным образом переставить с помощью подходящего линейного оператора. Проверить, наконец, что ядром действия является центр группы $\mathbf{GL}_2(\mathbf{Z}_3)$.
- **58.39.** В собственную подгруппу порядка n попадают все смежные классы вида $k/n+\mathbb{Z}$, где k любое целое число.
- **58.40.** Рассмотреть отображение, сопоставляющее каждому $g \in G$ автоморфизм $x \to gxg^{-1}$.
- **58.41.** Если $G/\mathbb{Z}=\langle a\mathbb{Z}\rangle$, то любые элементы $x,y\in G$ имеют вид $x=a^kz_1$, $y=a^lz_2$, а тогда xy=yx.
 - **58.42.** Использовать задачи 58.22 и 58.41.
 - **58.43.** Использовать задачи 58.40 и 58.41.
- **58.44.** p^2+p-1 , причем p классов состоят из одного элемента, а остальные из p элементов. Вывести из задач 58.22 и 58.41, что центр $\mathbb Z$ имеет порядок p. Централизатор любого элемента $a \notin \mathbb Z$ имеет порядок p^2 , так как он содержит $\mathbb Z \cup \{a\}$ и не совпадает со всей группой. Число сопряженных с a элементов равно $p^3: p^2=p$.
- **58.45.** а) Проверить, что произведения $a_0b_1\dots a_{n-1}b_{n-1}a_n$ элементов максимальных подгрупп A и B составляют подгруппу C, строго содержащую A и B (а значит, совпадающую с G). Элементы из $A\cap B$ перестановочны с элементами из C, так как A и B коммутативны.
- 6) Пусть H некоторая максимальная подгруппа в $G\colon H\neq \{e\}$, так как G не является циклической группой. Обозначим |H|=m и |G|=n=lm. Из максимальности подгруппы H и простоты группы G следует, что нормализатор N подгруппы H в группе G совпадает с H, т.е. существует l различных сопряженных с H максимальных подгрупп. Если допустить, что их попарные пересечения содержат только e, то в их объединение входит 1+l(m-1) элементов из G. Поскольку lm-l+1 < n, то найдется элемент, не лежащий ни в одной из них, а значит, найдется содержащая этот элемент максимальная подгруппа K, не сопряженная с H. Пусть опять $|K|=m_1$ и $n=l_1m_1$. Тогда,

допустив, как и выше, что $l+l_1$ максимальных подгрупп попарно пересекаются по $\{e\}$, получим

$$1 + l(m-1) + l_1(m_2 - 1) \ge 1 + \frac{n}{2} + \frac{n}{2} > n$$

элементов в G.

- в) Одна из максимальных подгрупп некоммутативна, иначе, как видно из $\pi\pi$. a), б), в группе G был бы нетривиальный центр вопреки ее простоте.
- **58.46.** Cm.: Gorenstein D. Finite groups. Harper and Row, 1968. Γ π. 2, § 8.
- **58.47, 58.51.** См.: *Супруненко Д.А.* Группы матриц. М.: Наука, 1972. Гл. III.
- **58.52.** См.: Изоморфизмы классических групп над целостными кольцами. М.: Мир, 1980. С. 252–258.
- **59.1.** а) $(q^n-1)(q^n-q)\times\ldots\times(q^n-q^{n-1})$. При подсчете числа невырожденных матриц заметить, что если уже выбраны i первых строк, то для выбора (i+1)-й строки имеется q^n-q^i возможностей: действительно, всего существует q^n различных строк длины n над полем из q элементов, но в качестве (i+1)-й подходят лишь те из них, которые не являются линейными комбинациями i строк, выбранных раньше. Число таких линейных комбинаций это число упорядоченных наборов, составленных из i коэффициентов, т.е. q^i .
- б) $\frac{1}{1-q}(q^n-1)(q^n-q) \times \ldots \times (q^n-q^{n-1})$; подгруппа $\mathbf{SL}_n(\mathbb{F}_q)$ есть ядро гомоморфизма $A \to \det A$ группы $\mathbf{GL}_n(\mathbb{F}_q)$ на мультипликативную группу поля \mathbf{Z}_q (состоящую из q-1 элементов). Отсюда по теореме о гомоморфизме $|\mathbf{GL}_n(\mathbb{F}_q)/\mathbf{SL}(\mathbb{F}_q)| = q-1$; остается применить а) и теорему Лагранжа.
 - 59.2. а) Нет; найти число э лементов второго порядка в этих группах.
- б) Нет; заметить, что матрица 2E лежит в центре группы $\mathbf{SL}_2(\mathbf{Z}_3)$ и воспользоваться задачей 58.14, а).
 - **59.3.** a) 2-подгруппы $\langle (12) \rangle$, $\langle (13) \rangle$, $\langle (23) \rangle$; 3-подгруппа $\langle (123) \rangle$.
 - б) 2-подгруппа V_4 ; 3-подгруппы $\langle (123) \rangle$, $\langle (124) \rangle$, $\langle (134) \rangle$, $\langle (234) \rangle$.
- **59.4.** а) Первая и вторая (см. ответ к задаче 59.3, а)) из силовских 2-подгрупп сопряжены с помощью перестановки (23), первая и третья с помощью (13).
- б) Первая и вторая из силовских 3-подгрупп сопряжены с помощью перестановки (12)(34), первая и третья— с помощью (13)(24), первая и четвертая— с помощью (23)(14).
- **59.5.** Занумеровав вершины квадрата, получить изоморфное представление группы \mathbf{D}_4 перестановками: $\mathbf{D}_4 \simeq P \subset \mathbf{S}_4$. Поскольку $|\mathbf{D}_4| = 8$ и $|\mathbf{S}_4| = 24 = 8 \cdot 3, \ P$ силовская 2-подгруппа в \mathbf{S}_4 . Другие силовские 2-подгруппы группы \mathbf{S}_4 изоморфны P в силу сопряженности.
- **59.6.** a) В подгруппе $\{e, (1324), (1423), (12)(34), (13)(24), (14)(23), (12), (34)\}.$
 - б) В подгруппе $\{e, (1234), (1432), (13)(24), (12)(34), (14)(23), (13), (24)\}.$
 - в) В каждой из трех силовских 2-подгрупп.

- **59.7.** Эти группы неизоморфны по задаче 59.2. Если в некоторой неабелевой группе G порядка 8 есть подгруппа второго порядка, не лежащая в центре, то $G \cong \mathbf{D}_4$; это следует из задач 57.20 и 59.5. В противном случае обозначаем e и -e элементы центра группы G (по задачам 58.22 и 58.23 центр группы G состоит из двух элементов). Пусть $i,j\in G$ и $ij\neq ji$. Обозначим k=ij, $i^{-1}=-i,\ j^{-1}=-j,\ k^{-1}=-k$. Проверить, что естественное отображение группы G на группу кватернионов является изоморфизмом.
- **59.8.** Решая в группе $\mathbf{SL}_2(\mathbf{Z}_3)$ уравнение $X^2=E$, получаем лишь два решения: $X=\pm E$. Аналогично находим шесть элементов порядка 4, решая уравнение $X^2=-E$. Из них уже не извлекаются квадратные корни, т.е. в $\mathbf{SL}_2(\mathbf{Z}_3)$ нет элементов порядка 8. Поскольку получилось восемь элементов, порядки которых степени двойки, в $\mathbf{SL}_2(\mathbf{Z}_3)$ есть лишь одна силовская 2-подгруппа, так как $|\mathbf{SL}_2(\mathbf{Z}_3)|=24=8\cdot 3$ по задаче 59.2. Следовательно, это подгруппа нормальна. Она неабелева, так как, например, элементы $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ и $\begin{pmatrix} -1 & -1 \\ -1 & 1 \end{pmatrix}$ имеют порядок 4 и не коммутируют. Далее использовать задачу 59.7.

59.10.
$$p^m$$
, где $m=\left\lceil \frac{n}{p} \right\rceil + \left\lceil \frac{n}{p^2} \right\rceil + \left\lceil \frac{n}{p^3} \right\rceil + \dots$

- **59.11.** (p-2)!. Число p! делится на p, но не делится на p^2 . Значит, каждая силовская p-подгруппа состоит из степеней одного цикла $(i_1i_2\dots i_p)$. Число таких циклов равно (p-1)!, а число различных порождающих в циклической подгруппе порядка p равно p-1.
 - 59.12. Воспользоваться теоремой о сопряженности силовских подгрупп.
- **59.13.** а) $|\mathbf{SL}_2(\mathbf{Z}_p)| = p(p-1)(p+1)$ (см. задачу 59.1). Значит, силовская p-подгруппа имеет порядок p.
 - б) Нормализатор состоит из всех матриц вида $\begin{pmatrix} x & y \\ 0 & x^{-1} \end{pmatrix}$, где $x \neq 0$.
- в) Поскольку порядок нормализатора равен p(p-1), его индекс, а значит, и число различных силовских p-подгрупп, равно p+1.
 - г) Использовать задачу 59.1.
 - д) Множество всех матриц вида $\begin{pmatrix} x & y \\ 0 & z \end{pmatrix}$, где $x, z \neq 0$.
 - e) p + 1.
- **59.14.** Доказать, что порядок подгруппы и максимальная степень числа p, делящая $|\mathbf{GL}_n(\mathbb{Z}_p)|$, равны $p^{n(n-1)/2}$ (см. задачу 59.1).
- **59.15.** а) Если p нечетно, то силовская p-подгруппа единственна и состоит из поворотов правильного n-угольника на углы $2\pi k/p^l$, $0\leqslant k < p^l$, где p^l наибольшая степень числа d, делящая n. Пусть $n=2^l\cdot m$, где m нечетно. Тогда в \mathbf{D}_n содержится m различных силовских 2-подгрупп. Каждую такую подгруппу можно получить, если выбрать правильный 2^l -угольник, вершины которого содержатся среди вершин данного n-угольника (а центр тот же), и рассмотреть все движения, совмещающие его с собой.
- б) При p=2 в качестве сопрягающих элементов можно взять повороты на углы $2\pi k/m$, $0 \leqslant k < m-1$.

- **59.16.** Пусть $|G|=p^l\cdot m$, где m не делится на p, и $|\operatorname{Ker} \varphi|=p^s\cdot t$, где t не делится на p. Тогда $H\simeq G/\operatorname{Ker} \varphi$, и по теореме Лагранжа порядок силовской p-подгруппы P в H равен p^{l-s} . С другой стороны, $|P\cap\operatorname{Ker} \varphi|\leqslant p^s$, ибо $|\operatorname{Ker} \varphi|$ делится на $|P\cap\operatorname{Ker} \varphi|$. Значит, $|\varphi(P)|=|P/P\cap\operatorname{Ker} \varphi|\geqslant p^{l-s}$, что и требовалось.
- **59.17.** Очевидно, что $P \subseteq \varphi_A(P) \times \varphi_B(P)$, где φ_A и φ_B гомоморфизмы проецирования на A и B соответственно. Это включение на самом деле является равенством, как видно из сравнения порядков |P|, $|\varphi_A(P)|$ и $|\varphi_B(P)|$.
- **59.18.** а) Пусть $|G|=p^l\cdot m$ и $|H|=p^s\cdot t$, где m, t не делятся на p. Тогда порядок p-подгруппы PH/H в G/H не больше p^{t-s} . Значит, порядок ядра $P\cap H$ естественного гомоморфизма $P\to PH/H$ не меньше p^s , что и требуется доказать.
- б) В качестве P и H взять, например, различные силовские 2-подгруппы в \mathbf{S}_3 (см. задачу 59.3).
 - **59.19.** См. задачу 58.36.
- **59.20.** Использовать теорему о том, что число различных силовских p-подгрупп делит порядок группы и сравнимо с 1 по модулю p, а также 59.12 и 58.6.
- **59.21.** Пять силовских 2-подгрупп и одна силовская 5-подгруппа (см. указание к задаче 59.20).
 - **59.22.** а) К силовской 3-подгруппе H применить задачу 58.36.
- б) Если силовская 5-подгруппа не является нормальной, то, как следует из теоремы о числе силовских подгрупп, в группе должно быть 16 различных 5-подгрупп. Поскольку их попарные пересечения тривиальны, в группе не больше, чем $80-16\cdot 4=16$ элементов, порядки которых суть степени двойки, они могут образовывать лишь одну силовскую 2-подгруппу, которая, следовательно, нормальна.
 - в) Решение аналогично б).
 - **59.23.** a) См. указание к задаче 59.20.
- б) Рассмотреть все матрицы вида $\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$, где $b \in \mathbf{Z}_q$ и a принадлежат подгруппе порядка p в мультипликативной группе поля \mathbf{Z}_q (эта подгруппа существует, так как |q-1| делится на p).
 - **59.24.** 48.
 - 59.25. Индукция по порядку группы.
- **59.26.** Индукция по порядку группы. Выбрать в G нормальную подгруппу индекса p.
- **60.1.** Если $\mathbb{Z} = A \oplus B$, где $A \neq 0$, $B \neq 0$, и $m \in A$, $n \in B$, то $mn \in A \cap B = \{0\}$. Аналогичное соображение применимо и к группе \mathbb{Q} .
- **60.2.** В группах S_3 , A_4 , S_4 нет нормальных подгрупп, пересекающихся по единице, а в Q_8 любая нетривиальная подгруппа содержит -1; поэтому перечисленные группы неразложимы в прямое произведение.
- **60.3.** Если $\langle a \rangle$ аддитивная циклическая группа порядка $n=n_1 \cdot n_2$, где $(n_1,n_2)=1$, то $\langle a \rangle = \langle a^{n_1} \rangle + \langle a^{n_2} \rangle$ (указанные слагаемые имеют соответственно порядки n_2 и n_1 , и поэтому их пересечение тривиально).
 - **60.5.** a) $\langle a \rangle_6 = \langle a^3 \rangle \times \langle a^2 \rangle$.

- б) ${\bf Z}_{12} \simeq {\bf Z}_3 \oplus {\bf Z}_4$.
- в) ${\bf Z}_{60} \simeq {\bf Z}_3 \oplus {\bf Z}_4 \oplus {\bf Z}_5$ (укажите порождающие элементы слагаемых).
- **60.6.** Следует из представления комплексных чисел в тригонометрической форме.
- **60.7.** Элемент из \mathbf{Z}_{2^n} обратим тогда и только тогда, когда его класс содержит нечетное число, поэтому порядок мультипликативной группы кольца \mathbf{Z}_{2^n} равен 2^{n-1} . Элемент $3=1+2\pmod{2^n}$ имеет порядок 2^{n-2} и его циклическая подгруппа тривиально пересекается с подгруппой $\{\pm 1\}$; поэтому их произведение имеет порядок 2^{n-1} , т.е. совпадает с группой $\mathbf{Z}_{2^n}^*$.
 - 60.8. а) Произведению порядков сомножителей.
 - б) Наименьшему общему кратному порядков компонент.
- **60.9.** Используя предыдущую задачу, показать, что $(A_1+A_2+\ldots+A_{i-1})\cap A_i=\{0\}$ при любом i.
- **60.11.** Если $m=p_1^{k_1}\dots p_r^{k_r}$, то в группе существуют элементы порядков $p_1^{k_1},\dots,p_r^{k_r}$ (см., например, задачу 60.3). Пользуясь задачами 60.8, 60.7, показать, что их сумма имеет порядок m. В группе \mathbf{S}_3 есть элементы порядка 2 и 3, но нет элемента порядка 6. Использовать 56.8, б).
 - **60.12.** $\{\pm 1\} \times \langle 2 \rangle = \{\pm 1\} \times \langle -2 \rangle$.
- **60.13.** Одно из слагаемых совпадает с A, другое порождается суммой порождающего элемента группы $\mathbb Z$ с любым элементом группы A. Таким образом, будет |A| прямых разложений.
- **60.14.** Каждый класс группы $A \times B$ является произведением класса из A на класс из B.
- **60.16.** В качестве C взять подгруппу, порожденную прообразами базисных элементов A/B.
 - **60.17.** $G = A \oplus \text{Ker } \pi$.
- **60.18.** Абелевость группы B существенна, так как образы групп A_1 и A_2 коммутируют при любом гомоморфизме $\varphi:A_1\times A_2\to B.$
 - **60.20.** a), б), в) **Z**₆.
 - r) Hom $(A_1, B) \oplus$ Hom (A_2, B) .
 - д) $\operatorname{Hom}(A, B_1) \oplus \operatorname{Hom}(A, B_2)$.
 - е) \mathbf{Z}_d , где d = (m, n).
 - ж) \mathbf{Z}_n . 3) $\{0\}$. и) \mathbb{Z} .
 - **60.21.** Гомоморфизму $\varphi : \mathbb{Z} \to A$ сопоставить $\varphi(1)$.
 - **60.24.** a) \mathbb{Z} . f) \mathbb{Z}_n .
 - в) $\mathbb Q$; показать, что если $\varphi:\mathbb Q \to \mathbb Q$ эндоморфизм, то $\varphi(r)=r\varphi(1)$.
- **60.25.** а) Отображение $x\to nx$ имеет тривиальное ядро тогда и только тогда, когда в группе нет элементов, порядок которых делит n, и если $n=p_1^{k_1}\dots p_r^{k_r}$ каноническое разложение на простые множители, это означает, что примарные компоненты групп относительно простых чисел p_1,\dots,p_r равны 0.
- б) Сюръективность отображения означает, что в группе уравнение nx=g разрешимо для любого g.
- **60.26.** Эндоморфизму φ поставить в соответствие матрицу так же, как это делается для линейных операторов.

- **60.27.** a) \mathbb{Z}_2 . 6) \mathbb{Q}^* .
- в) Единичная при n=1, циклическая порядка 2 при $n=2,\,{\bf Z}_2\times {\bf Z}_{2^{n-2}}$ при n>2.
- г) Группа целочисленных матриц с определителем ± 1 . Во всех случаях использовать задачи 60.23 и 60.24.
- **60.28.** а) $\langle a \rangle_{30} = \langle a_1 \rangle_2 \oplus \langle a_2 \rangle_{15}$, где $a_1 = 15a$, $a_2 = 2a$. При любом автоморфизме $\varphi(\langle a_1 \rangle) = \langle a_1 \rangle$, $\varphi(\langle a_2 \rangle) = \langle a_2 \rangle$, так как a_1 и a_2 имеют взаимно простые порядки. Остается заметить, что у $\langle a_1 \rangle$ имеется лишь тождественный автоморфизм.
- б) Пусть $\mathbb{Z}=\langle a \rangle$, $\mathbf{Z}_2=\langle b \rangle$; при любом автоморфизме $\varphi(\mathbf{Z}_2)=\mathbf{Z}_2$ и $\varphi(b)=b$. Кроме того, $\varphi(a)$ может быть равен a,-a,a+b,-a+b. Нетрудно проверить, что каждый из этих автоморфизмов в квадрате дает тождественный автоморфизм.
- **60.29.** В обозначениях ответа к предыдущей задаче $\varphi(a) = na + \varepsilon b$, $\varphi(b) = \delta b$, где $n \in \mathbb{Z}$, $\varepsilon, \delta = 0, 1$. Не коммутируют эндоморфизмы φ_1 , φ_2 , где $\varphi_1(a) = a, \ \varphi_1(b) = 0, \ \varphi_2(b) = 0, \ \varphi_2(a) = b$.
- **60.30.** Всякая примарная компонента инвариантна относительно любого эндоморфизма данной группы; воспользоваться задачей 60.20.
- **60.31.** Индукция по числу порождающих элементов группы. Если группа циклическая и равна $\langle a \rangle$ (операция сложение), U ее ненулевая подгруппа, k наименьшее положительное число такое, что $ka \in U$, то U порождается элементом ka. Действительно, если $ma \in U$, разделим m с остатком на k: m = qk + r. Тогда $ra = ma q(ka) \in U$, следовательно, r = 0 и ma = q(ka). Предположим, что утверждение доказано для группы с n-1 порождающим, $G = \langle a_1, \ldots, a_{n-1} \rangle$ и $U \subseteq G$ подгруппа. Рассмотрим элементы $u = m_1a_1 + \ldots + m_na_n \in U$. Если $m_n = 0$ для всех $u \in U$, то $U \subseteq \langle a_1, \ldots, a_{n-1} \rangle$, и можно воспользоваться индуктивным предположением. В противном случае пусть m_n^0 наименьшее положительное число для всех элементов $u \in U$, т.е. существует $u^0 \in U$ такой, что $u^0 = m_1^0a_1 + \ldots + m_n^0a_n$. Очевидно, любое число m_n , входящее в разложение любого $u \in U$, делится на m_n^0 нацело, скажем, $m_n = qm_n^0$. Тогда $u qu^0 \in U \cap \langle a_1, \ldots, a_{n-1} \rangle$. Эта подгруппа, по предположению индукции порождается n-1 элементом. Тогда U порождается теми же элементами и u^0 .
- **60.32.** а) Если φ гомоморфизм группы G на себя, не являющийся автоморфизмом, то $\operatorname{Ker} \varphi \subset \operatorname{Ker} \varphi^2 \subset \ldots$ строго возрастающая цепочка подгрупп, и ее объединение не может порождаться конечным множеством элементов: каждый из них лежал бы в члене цепочки с конечным номером. Остается воспользоваться предыдущей задачей.
 - б) Рассмотреть дифференцирование.
- **60.33.** Если бы свободные абелевы группы рангов m и n ($m \neq m$) были изоморфны, то ранг не был бы инвариантом свободной абелевой группы, однако его инвариантность может быть доказана так же, как основная лемма о линейной зависимости. Можно использовать и такое соображение: если G свободная абелева группа ранга n, то $|G/2G|=2^n$.
- **60.34.** Воспользоваться единственностью разложения конечнопорожденных абелевых групп.
 - **60.35.** Индукция по порядку группы и числу m.

- 60.36. Использовать доказательство теоремы единственности конечных абелевых групп.
 - 60.37. Использовать теорему единственности для разложений.
 - **60.40.** a) Есть. б) Нет. в) Нет.
 - **60.41.** (3,27); показать, что $\langle a \rangle_9 \oplus \langle b \rangle_{27} = \langle a \oplus 3b \rangle \oplus \langle b \rangle$.
 - 60.42. а) Нет: вторая группа циклическая, а первая нет.
 - б) Изоморфны. в) Не изоморфны.
 - **60.43.** a) 3.
- 60.46. Доказать, что если конечная абелева группа не является циклической, то в ней найдется подгруппа типа (p,p) (см. задачу 60.40). Учесть, что уравнение $x^p = 1$ имеет в поле не более p решений.
- **60.47.** Пусть a_1, \ldots, a_n максимальная независимая система элементов. Рассмотреть элемент $1 + a_1 \cdots a_n$ и вывести отсюда, что группа F^* конечна.
 - **60.48.** Использовать задачу 60.46.
- **60.50.** Если y_i (j = 1, ..., n) составляют базис, то через них можно выразить x_i ($i=1,\ldots,n$) с целочисленной матрицей B коэффициентов. Тогда AB = E и $\det A = \pm 1$, где $A = (a_{ij})$.
- 60.51. Использовать доказательство основной теоремы о конечно порожденных абелевых группах, основанное на приведении матрицы к диагональному виду элементарными преобразованиями строк и столбцов.
 - **60.52.** a) $\mathbf{Z}_2 \oplus \mathbf{Z}_2 \oplus \mathbf{Z}_3$. б) \mathbf{Z}_{31} . в) $\mathbf{Z}_2 \oplus \mathbf{Z}_3 \oplus \mathbf{Z}_3$. д) $\mathbf{Z}_4 \oplus \mathbb{Z}$. e) $\mathbf{Z}_2 \oplus \mathbf{Z}_2 \oplus \mathbf{Z}_2$. ж) \mathbf{Z}_3 . з) $\mathbb{Z} \oplus \mathbb{Z}$. и) \mathbb{Z} . к) $\{0\}$. Γ) $\mathbf{Z}_2 \oplus \mathbf{Z}_4$.

 - л) $\mathbf{Z}_3 \oplus \mathbf{Z}_4$. м) $\mathbf{Z}_3 \oplus \mathbf{Z}_6 \oplus \mathbb{Z}$.
 - **60.53.** 3.
- **60.55.** Учитывая задачи 60.30 и 60.24, остается показать, что кольцо эндоморфизмов конечной примарной нециклической группы некоммутативно. Не уменьшая общности, можно рассмотреть группу $\langle a \rangle_{p^k} \oplus \langle b \rangle_{p^l}, \, k \geqslant l.$ В силу задачи 60.20 любой эндоморфизм такой группы имеет вид

$$\varphi(a) = s_1 a + t_1 b, \qquad \varphi(b) = s_2 a + t_2 b,$$

где s_{2} делится на p^{k-l} . Не коммутируют, например, автоморфизмы $\varphi,\,\psi$ такие, что $\varphi(a) = a$, $\varphi(b) = 0$, $\psi(a) = b$, $\psi(b) = 0$.

- **60.56.** Доказать конечную порожденность H. Для этого выбрать максимальную независимую над \mathbb{R} систему элементов e_1, \ldots, e_k в H. Доказать, что H порождается e_1, \dots, e_k и конечным множеством $H \cap D$, где $D = \{ \sum x_i e_i \mid 0 \leqslant x_i \leqslant 1 \}.$
 - **60.59.** Использовать задачу 60.56.
- **60.60.** Отображение x nx есть автоморфизм циклической группы $\langle a \rangle$ (имеет тривиальное ядро), поэтому при подходящем x будет nx = a.
- **60.63.** Делимость группы $\mathbb Q$ очевидна. Если $\varepsilon^{p^k}=1$, то существует δ такое, что $\delta^p = \varepsilon$. Если $q \neq p$ — простое число, то $(q, p^k) = 1$, и можно воспользоваться задачами 60.60 и 60.61.
- **60.65.** То, что сумма подгрупп A и B прямая, следует из условия; надо показать, что она равна G. Пусть существует элемент $g \notin A \oplus B$. Подгруппа $\langle g \rangle$ имеет ненулевое пересечение с $A \oplus B$ — иначе сумма $A \oplus B \oplus \langle g \rangle$ прямая

и вместо B можно было бы взять $B\oplus \langle g \rangle$, что невозможно в силу максимальности B. Пусть $ng\in A\oplus B$. Можно считать n простым числом (если бы было не так, вместо g мы взяли бы $\frac{n}{p}g$ при некотором p|n). Итак, ng=a+b,

- $a \in A, b \in B$. Ввиду делимости A в ней есть элемент a_1 такой, что $na_1 = a$. Получаем, что $ng_1 = b$, где $g_1 = g a$ также не лежит в $A \oplus B$. По выбору подгруппы B будет $A \cap \langle g_1, B \rangle \neq 0$. Значит, некоторый элемент $a' \in A$ можно выразить в виде $a' = kg_1 + b', b' \in B, 0 < k < n$. Так как (k, n) = 1, существуют u, v такие, что ku + nv = 1, значит, $g_1 = kug_1 + nvg_1$. Так как $ng_1 \in A \oplus B$, $kg_1 = a' b' \in A \oplus B$, то $g_1 \in A \oplus B$. Получили противоречие.
- **60.66.** Пусть D сумма всех делимых подгрупп. Нетрудно проверить, что D делима. Пусть $a \in D$, тогда $a = a_1 + \ldots + a_k$, где a_i принадлежит A_i $(i = 1, \ldots, k)$ делимому слагаемому группы D. Если $na_i' = a_i, i = 1, \ldots, k$, то $n\left(\sum_{i=1}^k a_i'\right) = a$. Согласно предыдущей задаче вся группа разлагается в прямую сумму $D \oplus B$. Если бы в B нашлась делимая подгруппа, то она содержалась бы в D, что невозможно. Итак, в B нет делимых подгрупп. Факторгруппа всей группы по D изоморфна B.
 - 60.67. Использовать задачу 60.16.
 - **60.68.** Использовать задачу 60.67.
 - 60.69. Воспользоваться задачей 60.67.
- **61.1.** а) Рассмотреть элементы, сопряженные с транспозицией (12) при помощи степеней данного цикла.
- б) Элементы из \mathbf{A}_n произведения четного числа транспозиций, и $(ij)(jk)=(ijk),\,(ij)(kl)=(ikj)(ikl).$
- **61.2.** Использовать приведение матриц элементарными преобразованиями строк к ступенчатому виду.
- **61.3.** Невырожденная матрица приводится к диагональному виду элементарными преобразованиями над строками, т. е. умножением слева на соответствующую элементарную матрицу.
 - **61.5.** Cm.: Gorenstein D. Finite groups. Harper and Row, 1968. P. 44.
 - **61.7.** а) $\{1, a\}$, $\{5, a\}$, $\{2, 3\}$, $\{4, 3\}$, где a любой элемент из \mathbf{Z}_6 .
 - б) Две различные транспозиции или транспозиция и тройной цикл.
 - в) Любые два не взаимно обратные элементы порядка 4.
- г) Поворот σ квадрата на угол $\pm \pi/2$ и любая осевая симметрия τ , а также τ и $\tau\sigma$.
 - д) $\{a,b\}$, $\{a,a+b\}$, $\{b,a+b\}$.
- **61.10.** Если g_1, \ldots, g_n конечная система порождающих, $f_1, f_2, \ldots, f_k, \ldots$ другая система порождающих, то элементы g_1, \ldots, g_n выражаются через вторую систему. В каждом таком выражении участвует лишь конечное число элементов второй системы, скажем, f_1, \ldots, f_m . Тогда f_1, \ldots, f_m порождают всю группу.
- **61.11.** Нормальное замыкание элемента A порождается как подгруппа элементами $B^iAB^{-i}=\begin{pmatrix}1&2^i\\0&1\end{pmatrix}$ $(i\in\mathbb{Z}),$ и поэтому изоморфно группе рациональных чисел вида $m/2^k$ относительно сложения. Эта подгруппа не конечно порождена.
 - 61.12. а) Использовать индукцию по числу возможных сокращений.

- б) Операция определена корректно в силу а). Ассоциативность очевидна. Единицей служит пустое слово. Словом, обратным к $u=x_{i_1}^{\varepsilon_1}\dots x_{i_n}^{\varepsilon_n}$, служит $x_{i_n}^{-\varepsilon_n}\dots x_{i_1}^{-\varepsilon_1}$.
- **61.13.** Гомоморфизм φ определяется так: если $u=x_{i_1}^{\varepsilon_1}\dots x_{i_n}^{\varepsilon_n}$, то $\varphi(u)=g_{i_1}^{\varepsilon_1}\dots g_{i_n}^{\varepsilon_n}$. Это единственно возможное определение.
- **61.14.** Всякое несократимое слово можно записать в виде $u=vwu^{-1}$, где w имеет в начале и в конце не взаимно простые буквы. Тогда $u^n=vw^nv^{-1}$, где длина w^n в n раз больше длины w и вообще $d(u^n)=d(u)++(n-1)d(w)$, поэтому $u^n\neq 1$ (пустому слову).
- **61.15.** Будем считать, что коммутирующие элементы u,v несократимы. Пусть $d(u)\leqslant d(v).$
- 1) Если в uv сокращается больше половины слова u, то переходим к словам u, uv (второе более короткое, чем v, и эти слова коммутируют, как и u с v).
- 2) Если в vu сокращаются больше половины слова u, то, аналогично, переходим к рассмотрению $u^{-1},\,vu$.
- 3) Если в слове vu^{-1} сокращается больше половины второго сомножителя, переходим к рассмотрению u^{-1} , $u^{-1}v$.
- 4) Если в vu^{-1} сокращается больше половины первого сомножителя, переходим к uvu^{-1} .
- 5) В оставшемся случае будет $u=u_1u_2$, где $d(u_1)=d(u_2)$, $v=u_2^{-1}v'$, где между сомножителями нет сокращений. Из равенства uv=vu получаем $u,v'=u_2^{-1}v'u_1u_2$. Так как в $v'u_1u_2$ сокращается не более, чем u_1 , получаем $u_1=u_2^{-1}$ и u=1.
- $\tilde{6}$) Делая каждый раз замены типа (1)–(4), мы в конце концов придем к случаю (5). Рассматривая предыдущий шаг, найдем порождающий элемент, через который выражаются u и v.
- **61.16.** В любом коммутаторе и в произведении коммутаторов сумма показателей по каждому вхождению x_i равна 0 при любом i. Пусть в слове u сумма показателей при некотором x_i равна $k \neq 0$. Согласно задаче 61.13 построим гомоморфизм свободной группы в $\mathbb Z$ такой, что $x_i \to 1$, $x_j \to 0$ $(j \neq i)$. Тогда u перейдет в $k \neq 0$, и следовательно, не лежит в коммутанте.
- **61.17.** Слова, имеющие несократимую запись uw_1u^{-1} , где w_1 циклическая перестановка w.
- **61.18.** Пусть F свободная группа со свободными порождающими $x_1,\ldots,x_n,$ A свободная абелева с базисом a_1,\ldots,a_n . Если гомоморфизм $F\to A$ продолжает отображения $x_i\to a_1,\ldots,x_n\to a_n$ (см. задачу 61.13), то его ядром является коммутант.
 - 61.19. Воспользоваться задачей 61.16.
- **61.20.** Подгруппа индекса 2 нормальна в любой группе. Задача сводится к описанию различных сюръективных гомоморфизмов свободной группы на группу $\langle a \rangle_2$. Если $x_1,\ x_2$ свободные порождающие свободной группы, то согласно 61.13 нужно по-разному выбрать образы $x_1,\ x_2$. Ответ: $\varphi_1(x_1)=a,\ \varphi_1(x_2)=1,\ \varphi_2(x_1)=a,\ \varphi_2(x_2)=a,\ \varphi_3(x_1)=1,\ \varphi_3(x_2)=a,\ \text{т. е.}$ имеются три подгруппы индекса 2.
- **61.22.** Очевидно, при любом гомоморфизме группы $F=(x_1,x_2)$ в $\mathbf{Z}_n \times \mathbf{Z}_n$ коммутант, а также элементы x_1^n, x_2^n переходят в единицу. Факторгруппа

по подгруппе N, порожденной коммутантом и элементами x_1^n, x_2^n , изоморфна $\mathbf{Z}_n \times \mathbf{Z}_n$. Поэтому N будет ядром любого сюръективного гомоморфизма $F \to \mathbf{Z}_n \times \mathbf{Z}_n$.

- **61.23.** a) 16. б) 36; воспользоваться задачей 61.13.
- **61.25.** Согласно задаче 61.13 построим гомоморфизм φ свободной группы F со свободными порождающими x_1,\ldots,x_n в H такой, что $\varphi(x_i)=h_i,\ i=1,2,\ldots,n$. При этом гомоморфизме наименьшая нормальная подгруппа R, содержащая слова $R_i(x_1,\ldots,x_n),\ i\in I$, перейдет в единицу. Если $N=\operatorname{Ker}\varphi$, то $\operatorname{Im}\varphi\simeq F/N\simeq (F/R)/(N/R)$.
- **61.27.** Доказать, что каждый элемент выражается в виде $a^i b^j, \ 0 \leqslant i < 2, \ 0 \leqslant j < 7.$
- **61.28.** Вывести из определяющих соотношений, что порядок группы ≤ 8 , затем воспользоваться задачей 61.25.
- **61.29.** Вывести из определяющих соотношений, что порядок группы $\leq 2n$, затем воспользоваться задачей 61.25.
- **61.30.** Вывести из определяющих соотношений, что порядок группы ≤ 8 , затем воспользоваться задачей 61.25.
- **61.31.** Согласно задаче 61.25 рассмотреть гомоморфизм этой группы на группу указанных матриц, при котором

$$x_1 \rightarrow \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \quad x_2 \rightarrow \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}$$

(квадрат второй матрицы равен E); воспользоваться тем, что подгруппа, порожденная x_1x_2 , нормальна.

- **61.32.** См. указание к задаче 61.31.
- **61.34.** См.: *Милнор Дж.* Введение в алгебраическую K-теорию. М.: Мир, 1974. § 5.
- **61.35.** Каждый смежный класс по H имеет вид g^iH , $i\in\mathbb{Z}$, поэтому любой элемент группы имеет вид g^ih , $h\in H$.
- **61.36.** Пусть $\langle h \rangle$ бесконечная циклическая подгруппа, порожденная h; факторгруппа G/H бесконечная циклическая, порожденная gH. По предыдущей задаче $G=\langle g \rangle \langle h \rangle$. Так как H нормальна, $ghg^{-1} \in H$ и отображение $x \to gxg^{-1}$ ($x \in H$) автоморфизм группы H. Поэтому ghg^{-1} , как и h, порождающий элемент группы H. Значит, ghg^{-1} равен h или h^{-1} . Поэтому в группе выполнено одно из двух соотношений: $ghg^{-1} = h$, $ghg^{-1} = h^{-1}$. В первом случае группа свободная абелева, так как она порождается элементами x_1, x_2 и задается определяющим соотношением $x_1x_2x_1^{-1} = x_2$. Рассмотрим группу с порождающими x_1, x_2 и определяющим соотношением $x_1x_2x_1 = x_2^{-1}$. В этой группе циклическая подгруппа, порождённая x_2 , нормальна (видно из определяющего соотношения), факторгруппа по ней бесконечная циклическая (рассмотреть гомоморфизм в $\mathbb Z$ такой, что $x_1 \to 1, x_2 \to 0$). Элемент x_2 также имеет бесконечный порядок, для этого рассмотрим гомоморфизм нашей группы

в группу матриц вида
$$\left(\begin{array}{cc} \pm 1 & n \\ 0 & 1 \end{array}\right)$$
, $x_2 \to \left(\begin{matrix} 1 & 1 \\ 0 & 1 \end{matrix}\right)$ (см. задачу 61.25).

61.37. Наименьшая нормальная подгруппа, порожденная x, изоморфна аддитивной группе чисел вида $m/2^k$, $m,k\in\mathbb{Z}$. Рассмотреть гомоморфизм в группу матриц второго порядка, при котором $x_1 o \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$, $x_2 o \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ (сравнить с задачей 61.11).

62.1. a)
$$\begin{pmatrix} \frac{1}{a} & 0 \\ 0 & a \end{pmatrix}$$
. 6) $\begin{pmatrix} 1 & \frac{b}{c} + \frac{ay - bx}{cz} - \frac{y}{z} \\ 0 & 1 \end{pmatrix}$. B) $\begin{pmatrix} 1 & \lambda(\beta^2 - 1) \\ 0 & 1 \end{pmatrix}$.

- **62.2.** a) $g[a,b]g^{-1}=[gag^{-1},gbg^{-1}].$ б) [aG',bG']=[a,b]G'=G'. в) Если [aN,bN]=N, то [a,b]N=N и $[a,b]\in N.$
- **62.3.** $\varphi([a,b]) = [\varphi(a), \varphi(b)].$
- **62.4.** Если $\varepsilon: G \to G/G'$ естественный гомоморфизм, $\varphi: G/G' \to A$ гомоморфизм в абелеву группу A, то $\varphi \varepsilon : G \to A$ — также гомоморфизм. Биективность этого соответствия следствия следует из задачи 62.2, в) и того, что ε сюръективен.
 - **62.5.** По теореме об определителе произведения $ABA^{-1}B^{-1}=1$.
 - **62.6.** Вытекает из того, что $[(a_1, b_1), (a_2, b_2)] = ([a_1, a_2], [b_1, b_2]).$

 - r) $\{\pm 1\}$, 4. в) **А**₄, 2.
- **62.8.** а) A_n ; коммутатор четная перестановка и согласно задаче 62.1, в), коммутант содержит все тройные циклы; \mathbf{A}_n порождается тройными циклами (см. задачу 61.1).
- б) Если элемент $a \in \mathbf{D}_n$ есть поворот на угол $2\pi/n$, то $\mathbf{D}'_n = \langle a \rangle$, если nнечетно, и $\mathbf{D}'_n = \langle a^2 \rangle$, если n четно.
 - 62.10. а) Индукция с применением предыдущей задачи.
 - б) Индукция с применением задачи 62.2.
- 62.11. а) Следует из того, что коммутант подгруппы содержится в коммутанте группы.
 - б) Следует из задачи 62.3.
 - в) Индукция с применением задачи 62.6.
 - г) Так как $B^{(k)}=\langle e \rangle$, то $G^{(k)}\subseteq A$ и $G^{(k+l)}=\langle e \rangle$, где $A^{(l)}=\langle e \rangle$.
 - **62.12.** См. задачи 62.7 и 62.8.
- 62.14. Следует из задачи 62.13, в), так как коммутант этой группы содержится в $\mathbf{UT}_n(K)$.
- **62.15.** Если ряд, указанный в задаче, имеется, то $G^{(l)} = \langle e \rangle$ в силу задачи 62.2, в). Если группа разрешима, то факторы ее ряда коммутантов $G^{(i)}/G^{(i+1)}$ абелевы, поэтому между $G^{(i)}$ и $G^{(i+1)}$ можно вставить несколько подгрупп так, что получается ряд с нужными свойствами.
- **62.16.** Согласно задаче 58.22 центр конечной *p*-группы G нетривиален. Пусть A — подгруппа порядка p, лежащая в центре. Тогда A нормальна в G. Завершается доказательство индукцией с переходом к G/A (тоже p-группа) и использованием задачи 62.12.
- **62.17.** Если q > p, то силовская q-подгруппа нормальна в группе (см. указание к задаче 59.20).

- **62.18.** а) Силовская 5-подгруппа нормальна, так как индекс ее нормализатора делитель числа 4 и сравним с 1 по модулю 5.
- б) Если в группе порядка 12 силовская 3-подгруппа не нормальна, то таких подгрупп по крайней мере 8. Но по теореме Силова существует подгруппа порядка 4, и тогда она в силу сказанного единственна.
- в) Если p>q, то число m подгрупп порядка p^2 сравнимо с 1 по модулю p только при m=1. Если p<q, то число q-подгрупп сравнимо с 1 по модулю q и делит p или p^2 . Так как p оно делить не может, оно равно p^2 . Значит, элементов порядка q будет $p^2(q-1)$. Однако подгруппа p^2 существует, поэтому она единственна $(p^2q=p^2(q-1)+p^2)$.
 - г) Силовская 7-подгруппа нормальна.
 - д) Силовская 5-подгруппа нормальна.
- е) Комбинируются соображения задач 62.16, 62.18, в), а также то, что если некоторая силовская подгруппа имеет индекс нормализатора k, то группа представляется подстановками на множестве силовских подгрупп, т.е. на k символах.
 - **62.20.** Использовать задачу 62.19.
 - **62.21.** Использовать задачу 62.1, в).
- **62.26.** См.: *Хамфри Дж.* Линейные алгебраические группы. М.: Мир, 1980. С. 184–186.
- **62.27.** а) Так как порядок q-1 мультипликативной группы \mathbf{Z}_q делится на p, то таких чисел r существует p-1 (см. задачу 60.46).
- б) Группа, состоящая из матриц $\binom{r^i}{0} \binom{x}{1}$, где r число из a), рассматриваемое по подмодулю q, $x \in \mathbf{Z}_q$ $(0 \leqslant i < p)$, некоммутативна достаточно рассмотреть матрицы $\binom{r}{0} \binom{0}{1}$ и $\binom{1}{0} \binom{1}{1}$. Эта группа имеет порядок pq. Пусть G неабелева группа порядка pq, $A = \langle a \rangle$ ее силовская подгруппа порядка q, $B = \langle b \rangle$ силовская подгруппа порядка p. Тогда по теореме Силова (см. также задачу 62.17) A нормальна в G. Поэтому $bab^{-1} = a^{s^i}$, в частности, $b^pab^{-p} = a = a^{s^p}$; поэтому $s^p \equiv 1 \pmod{q}$, так как G неабелева. Меняя, если нужно, элемент b на его k-ю степень (1 < k < p), мы можем s заменить на любое число, обладающее аналогичными свойствами. Поэтому если G_1 и G_2 две неабелевы группы порядка pq, в них можно выбрать элементы a_i , b_i (i=1,2), аналогичные a и b, обладающие свойствами: $a_i^q = e$, $b_i^q = e$, $b_ia_ib_i^{-1} = a_i^r$, где $r^p \equiv 1 \pmod{q}$. Изоморфизм между такими группами устанавливается соответствием $\varphi(a_1^sb_1^t) = a_2^sb_2^t$, где $0 \leqslant s < q$, $0 \leqslant t < p$.
- **62.28.** б) Произведение этих перестановок в указанном порядке есть цикл длины 7. Согласно а) факторгруппа этой группы по коммутанту тривиальна, поэтому группа совпадает со своим коммутантом.
- в) Данная группа гомоморфно отображается на группу из б) согласно задаче 61.25 и поэтому неразрешима.
- **62.29.** Неразрешима, если система свободных порождающих состоит более, чем из одного элемента, так как в этом случае нет нетривиальных абелевых нормальных подгрупп. См. также задачу 62.11, б).

- **63.1.** а), б), г), е), ж), з), к), л), м), н), о) при $D \equiv 1 \pmod{4}$.
- **63.2.** в), г), д), е), ж) при $D \equiv 1 \pmod{4}$.
- з), и) Использовать, что $\sqrt[3]{2}$ не является корнем квадратного трехчлена над $\mathbb Q$.
 - **63.3.** Все, кроме з).
 - **63.4.** Нет.
 - **63.5.** См. задачу 1.2.
- **63.7.** 63.2, в); 63.4, г) при n>2; 63.2, д) при $D=c^2$ $(c\in\mathbb{Z})$; 63.2, е) при $D=c^2$ $(c\in K)$; 63.3, а); 63.3, б); 63.3, д) при $|R\setminus D|>1$; 63.3, и); 63.5.
 - **63.10.** Заметить, что $(xy)^{-1} = y^{-1}x^{-1}$.
- **63.11.** а) \mathbf{Z}_n^* состоит из всех таких классов [k], что числа k и n взаимно просты; делителями нуля являются все такие классы [k], что k и n имеют нетривиальный общий делитель; нильпотентными элементами являются все такие классы [k], что k делится на все простые делители n.
- б) $\mathbf{Z}_{p^n}^*$ состоит из всех таких классов [k], что k не делится на p; делителями нуля являются все классы вида [pm]; каждый делитель нуля нильпотентен.
 - в) Аналогично a), где вместо n берется многочлен f.
- г) Множества матриц (α_{ij}) , у которых соответственно $\alpha_{ii} \neq 0$ (i = 1, ..., n); $\alpha_{ii} = 0$ хотя бы при одном i; все $\alpha_{ii} = 0$.
 - д) Множества матриц A соответственно $\cot A \neq 0$, $\det A = \operatorname{tr} A = 0$.
- е) Множество функций, не принимающих значение 0; множество функций, принимающих значение 0; нулевая функция.
- ж) Обратимыми элементами являются ряды с ненулевым свободным членом; делителей нуля и нетривиальных нильпотентных элементов нет.
- **63.13.** а) Отображение $x \to ax$ $(a \in R, \ a \neq 0)$ биекция, поэтому ax = a при некотором $x \in R$; любой $b \in R$ представим в виде b = ya, и тогда bx = b, т. е. x левая единица.
- б) Элемент, обратимый справа, не является правым делителем нуля, и поэтому $x \to xa$ биекция.
- в) Если ab=0 и a не является правым делителем 0, то элементы x_1a,\ldots,x_na попарно различны и один из них равен 1. Утверждение в) неверно в алгебре над \mathbf{Z}_2 с базисом (x,y) и таблицей умножения $xy=y^2=0,\ yx=y,\ x^2=x.$
- б) Неверно в бесконечномерной алгебре над $\mathbb Z$ с базисом $(y^kx^l\mid k,l\in\mathbb N)$ (элементы x и y не коммутируют) и умножением

е коммутируют) и умножением
$$y^k x^l \cdot y^r x^s = \left\{ \begin{array}{ll} y^k x^{l-r+s} & \text{при} \quad l > r, \\ y^k x^s & \text{при} \quad l = r, \\ y^{k+r-l} x^s & \text{при} \quad l < r. \end{array} \right.$$

- **63.14.** Если ab = 1, то (ba 1)b = 0.
- **63.15.** б) См. ответ к задаче 63.14.
- в) См. ответ к задаче 63.13.
- **63.16.** а) R коммутативно (имеет единицу) тогда и только тогда, когда каждое прямое слагаемое R_i коммутативно (имеет единицу); в R нет делителей нуля тогда и только тогда, когда k=1.

- б) Элемент $a \in R$, $a = (a_1, \ldots, a_k)$, $a_i \in R_i$, обратим (нильпотентен) тогда и только тогда, когда каждое a_i обратимо (нильпотентно) в R_i , i = 1, ..., k.
- **63.17.** а) Отображение $[x]_k o ([x]_k, [x]_l)$ изоморфизм. в) Пара ([x], [y]) обратима в $\mathbf{Z}_k imes \mathbf{Z}_l$ тогда и только тогда, когда [x] обратим в \mathbf{Z}_k , [y] обратим в \mathbf{Z}_l ; $\varphi(n)$ — число порождающих элементов \mathbf{Z}_n .
- **63.19.** б), в) Рассмотреть линейное отображение $\varphi_a: A \to A$, задаваемое формулой $\varphi_a(x) = ax$.
- 63.20. Использовать существование аннулирующего многочлена у каждого элемента алгебры.
 - **63.21.** a) $\mathbb{C} \oplus \mathbb{C}$, $\mathbb{C}[x]/\langle x^2 \rangle$.
- б) Кроме алгебр в а), еще три алгебры: $\mathbb{C}e \oplus \mathbb{C}e$, где $e^2 = 0$; $\mathbb{C}e \oplus \mathbb{C}f$, где $e^2 = ef = fe = 0, f^2 = e; \mathbb{C}e \oplus \mathbb{C}f,$ где $e^2 = 0, f^2 = f.$
 - **63.22.** a) $\mathbb{R} \oplus \mathbb{R}$, \mathbb{C} , $\mathbb{R}[x]/\langle x^2 \rangle$.
- б) Кроме алгебр в a), $\mathbb{R}e \oplus \mathbb{R}e$, где $e^2 = 0$; $\mathbb{R}e \oplus \mathbb{R}f$, где $e^2 = 0$, $f^2 = f$, и векторное пространство $\mathbb{R}e\oplus\mathbb{R}f$, где $e^2=ef=fe=0$, $f^2=e$.
 - **63.23.** а) Нет.
 - г) Все кватернионы $x_1i + x_2j + x_3k$ с условием $x_1^2 + x_2^2 + x_3^2 = 1$.
 - **63.24.** Использовать базис T(V), построенный с помощью базиса V.
 - **63.25.** б) Использовать базис $\Lambda^k(V)$, построенный по базису V.
 - в) Если x нильпотентный элемент кольца, то $\alpha + x$ обратим при $\alpha \neq 0$.
- **63.28.** Применить операторы $p_1^{l_1} \times ... \times p_n^{l_n} q_1^{t_1} \times ... \times q_n^{t_n}$ к одночленам $x_1^{m_1} \times \ldots \times x_n^{\bar{m}_n}$.
- 63.31. б) Нули непрерывной функции образуют замкнутое подмножество. Если fg = 0, то нули f и g в объединении дают [0, 1].
 - 64.1. Использовать деление с остатком. б) f(x)K[x].
 - б) Рассмотреть идеал (x, y). **64.2.** а) Рассмотреть идеал (2, x).
- **64.3.** Если ненулевая матрица X принадлежит идеалу I, то матрица AXBвида $E_{11}+\ldots+E_{rr}\in I$, откуда $AXBE_{11}=E_{11}\in I$; поэтому $E=E_{11}+\ldots+I_{rr}$ $+E_{nn}\in I.$
- **64.5.** Каждый идеал состоит из всех матриц вида $\begin{pmatrix} a_1 & a_2 \\ 0 & a_3 \end{pmatrix}$, где элементы a_k составляют в \mathbb{Z} идеал I_k (k=1,2,3), причем $I_1\subseteq I_2$ и $I_3\subseteq I_2$.
- 64.7. 0; вся алгебра; все матрицы с нулевым первым (вторым) столбцом; все матрицы с одинаковыми столбцами.
 - **64.8.** а) 0, L и подалгебра $\langle e \rangle$.
- б) 0, L, (1+e) и (1-e). Всякий идеал, отличный от 0 и L, является одномерным подпространством в L.
 - **64.12.** а) $\langle p \rangle$, где p простое число.
 - б) $\langle p(x) \rangle$, где p(x) многочлен первой степени.
- в) $\langle p(x) \rangle$, где p(x) многочлен первой степени или многочлен второй степени, не имеющий действительных корней.
 - 64.13. Неверно.
- 64.14. б) Если нет точки, где все функции обращаются в 0, то для каждой точки $a \in [0,1]$ найдется такая функция f_a , что $f_a(a) \neq 0$. В силу

непрерывности функция $f_a^2(x)$ строго положительна в некоторой окрестности $(a-\varepsilon_a,a+\varepsilon_a)$ точки a (и неотрицательна в остальных точках). Поскольку из каждого покрытия отрезка интервалами можно выбрать конечное покрытие, найдется конечное число функций f_1,\ldots,f_k из идеала таких, что $f_1^2(x)+\ldots+f_k^2(x)>0$ для любого x.

- **64.15.** Рассмотреть идеал, порожденный элементом $a \neq 0$. Кольцо с нулевым умножением, аддитивная группа которого циклическая простого порядка, не имеет нетривиальных идеалов, но полем не является.
- **64.16.** Доказать, что полные правые делители нуля (т.е. элементы $a\in R$, для которых Ra=0) образуют левый идеал и поэтому не могут быть отличными от нуля. Если же $ba\neq 0$, то Ra=R. Вывести отсюда, что в R вообще нет делителей нуля и что отличные от нуля элементы кольца образуют группу по умножению.
- **64.17.** Пусть $R\ni a\neq 0$. Имеем $Ra\supseteq Ra^2\supseteq\dots$, откуда $Ra^k=Ra^{k+1}$ при некотором k. Отсюда $a^k=ba^{k+1}$, 1=ba.
 - **64.18.** Положить $\delta_1(a) = \min_{x \in K \setminus \{0\}} \delta_1(ax)$.
 - **64.19.** a) Рассмотреть норму $\delta(x + iy) = x^2 + y^2$.
- б) В этом кольце элементы 2 и $1\pm\sqrt{3}$ простые, и $4=2\cdot 2=(1+i\sqrt{3})\times (1-i\sqrt{3})$ два неассоциированных разложения на простые множители.
 - в) Рассмотреть норму $\delta(x+iy) = x^2 + y^2$.
- **64.24.** Пусть $R\subseteq A\subseteq Q$ и I идеал в A. Доказать, что $I=\langle r_0\rangle$, где r_0 порождает идеал кольца, состоящий из числителей всех элементов из I.
- **64.25.** Пусть R[x] кольцо главных идеалов. Для $0 \neq a \in R$ рассматриваем идеал $I = \langle x, a \rangle$ кольца R[x]. Так как $a \in R$, то $I = \langle f_0 \rangle$, где f_0 константа, т. е. I = R[x]. Отсюда 1 = u(x)x + v(x)a, а v(0) = 1, так что R поле; заметить, что $F[x,y] \cong F[x][y]$.
 - **64.26.** $(x^n), n \ge 0.$
 - **64.28.** а) Представить единицу в виде $1 = a_1 + a_2$, где $a_1 \in I_1$, $a_2 \in I_2$.
- б) По индукции свести к случаю n=2. Для каждого $i\geqslant 2$ можно найти элементы $a_i\in I_i$ и $b_i\in I_i$ такие, что $1=a_i+b_i$. Тогда

$$1 = \prod_{i=1}^{n} (a_i + b_i) \in I_1 + \prod_{i=2}^{n} I_k.$$

Следовательно, $I_1+\prod_{i=2}^n I_i=A$ и согласно задаче а) можно найти $y_1\equiv 1\pmod{I_1}$ и $y_1\equiv 0\pmod{\prod_{i=2}^n I_i}$. Аналогично найдутся $y_2,\ldots,y_n\in A$ такие, что $y_j\equiv 1\pmod{I_j}$ и $y_j\equiv 0\pmod{I_i}$ при $i\neq j$. Тогда элемент $x=x_1y_1+\ldots+x_ny_n$ удовлетворяет требованиям задачи.

- **64.29.** a) Нет. б) Да.
- **64.31.** а) Использовать задачу 63.11, в).
- г) Любой гомоморфизм имеет вид $n \to ne_i$, где e_i идемпотент кольца матриц; всего восемь гомоморфизмов, соответствующих идемпотентам $O, E, E_{11}, E_{22}, E_{11} + E_{12}, E_{21} + E_{22}, E_{11} + E_{21}, E_{12} + E_{22}$.
 - **64.38.** а) $n \to na$, где a произвольный фиксированный элемент из \mathbb{Q} .

- $6) n \rightarrow 0, n \rightarrow n.$
- **64.39.** Доказать, что ядро гомоморфизма или равно нулю или совпадает с полем.
 - 64.41. Рассмотреть гомоморфизмы:

a)
$$f(x) \to f(\alpha)$$
; 6) $f(x) \to f(i)$; B) $f(x) \to f\left(\frac{-1 + i\sqrt{3}}{2}\right)$.

- **64.42.** Поле получается при $f_1(x) = x^2 + x + 1$, изоморфные факторкольца при $f_1(x) = x^2$ и $f_2(x) = x^2 + 1$. Рассмотреть таблицы умножения для указанных факторколец.
- **64.43.** Нет: в первом факторкольце есть ненулевой элемент, куб которого равен нулю, а во втором факторкольце элемента с таким свойством нет.
 - **64.44.** Нет.
- **64.45.** При умножении на элемент $x-a\in F[x]$ любой элемент первого модуля обращается в 0, а во втором модуле это не так; оба факторкольца изоморфны F.
- **64.46.** Пусть $\langle (x-a)(x-b) \rangle = I_1$, $\langle (x-c)(x-d) \rangle = I_2$. Записать произвольный элемент из $F[x]/I_1$ в виде $\alpha(x-a) + \beta(x-b) + I_1$ и поставить ему в соответствие элемент $k\alpha(x-c) + k\beta(x-d) + I_2 \in F[x]/I_2$, где $k = \frac{a-b}{c-d}$.
 - **64.47.** $A_1 \cup A_3$, $A_2 \cup A_5$.
 - **64.48.** a) Да. б) Нет.
 - **64.49.** a) Да. б) Нет.
- ${f 64.50.}$ Искать обратный элемент к f методом неопределенных коэффициентов
 - **64.52.** Аналогично задаче 63.17.
 - **64.53.** См. задачу 64.15.
 - 64.54. Использовать вложение колец без делителей нуля в поле.
 - 64.55. а) Найти делители нуля.
 - б) Доказать, что каждый ненулевой элемент имеет обратный.
- в) Доказать, что данное кольцо не содержит делителей нуля, если n простое число, не равное сумме двух квадратов, и что конечное ненулевое коммутативное кольцо без делителей нуля является полем.
- **64.57.** Рассмотреть отображение $a_0x^k+\ldots+a_k\to \overline{a}_0x^k+\ldots+\overline{a}_k$, где $\overline{a}_i=a_i+\langle n\rangle\ (i=0,\ldots,k).$
 - **64.58.** p^n .
 - **64.59.** а) Ввести структуру кольца на прямой сумме $S = R \oplus \mathbb{Z}$.
- б) Если R алгебра над полем K, то превратить в алгебру над K прямую сумму $S = R \oplus K$.
- в) Сопоставить каждому элементу a в данной алгебры A линейный оператор φ_a на векторном пространстве A над K, при котором $\varphi_a(x) = ax$.
 - г) Использовать б).
- **64.60.** Доказать, что $I_k + \cap_{i \neq k} I_i = A$ для всякого $k = 1, \dots, s$; вывести отсюда сюръективность отображения f.
 - **64.61.** Использовать гомоморфизм $f(x) \to (f(1), f(-1))$.

- **64.63.** Показать, что $I\cap \mathbb{Z} \neq 0$ и I содержит нетривиальный по модулю $I\cap \mathbb{Z}$ многочлен.
 - 64.64-64.66. Воспользоваться теоремой о гомоморфизмах.
- **64.67.** в) Условие $\det(a_{ij}) \neq 0$ вытекает из сюръективности композиции $\Lambda(V) \stackrel{\varphi}{\longrightarrow} \Lambda(V) \longrightarrow \Lambda(V)/I_2$, где I_2 идеал, порожденный $\Lambda^2(V)$. Для доказательства того, что φ автоморфизм, необходимо показать, что $\varphi(e_i) \wedge \varphi(e_j) + \varphi(e_j) \wedge \varphi(e_i) = 0$ для всех i,j, а также сюръективность φ . Последнее достаточно показать для отображения φ с единичной матрицей (a_{ij}) . Доказательство проводится убывающей индукцией по k, начиная с включения $\Lambda^n V \subset \operatorname{Im} \varphi$.
- ${f 64.68.}$ б) Аннулятор порождается идемпотентом 1-e, где e порождающий элемент данного идеала.
- **64.69.** Если идеалы I_1,\ldots,I_n порождаются попарно ортогональными идемпотентами e_1,\ldots,e_n , то $I_1+\ldots+I_n$ порождается идемпотентом $e_1+\ldots+e_n$.
- **64.70.** г) Например, $L_2=\left\{\begin{pmatrix} a&a\\b&b\end{pmatrix}\right\}\oplus\left\{\begin{pmatrix} a&2a\\b&2b\end{pmatrix}\right\}$, где a,b любые элементы поля.

$$\mathrm{C}(\left(\begin{matrix} a & 0 \\ c & 0 \end{matrix} \right)) = \left(\begin{matrix} a & a \\ c & c \end{matrix} \right), \, \varphi \left(\left(\begin{matrix} 0 & b \\ 0 & d \end{matrix} \right) \right) = \left(\begin{matrix} b & 2b \\ d & 2d \end{matrix} \right).$$

- **64.73.** $M_2(K) = I \oplus J$.
- **64.75.** Рассмотреть ядро гомоморфизма $\mathbf{Z}_{mn} \to \mathbf{Z}_m \oplus \mathbf{Z}_n$, при котором $l+mn\mathbb{Z} \to (l+m\mathbb{Z},l+n\mathbb{Z}).$
- **64.76.** При n, не делящихся на квадрат простого числа; использовать задачу 64.75.
- **64.77.** Доказать, что идеал, состоящий из всех матриц вида aE_{1n} , лежит в ненулевом идеале этой алгебры.
- **64.78.** Если $R = I_1 \oplus \ldots \oplus I_n$ разложение кольца R в прямую сумму простых колец и e идемпотент в R, то $e = e_1 + \ldots + e_n$, где $e_i \in I_i$ идемпотенты. Доказать, что в I_i число идемпотентов конечно (использовать задачу 64.16). Затем использовать задачу 64.15.
- **64.79.** Если $A = I_1 \oplus \ldots \oplus I_n$ вполне приводимая алгебра (I_k простые алгебры), то $I_1 \oplus \ldots \oplus I_{k-1} \oplus I_{k+1} \oplus \ldots \oplus I_n$ ее максимальный идеал ($k = 1, 2, \ldots, n$).
 - **64.80.** Использовать задачу 64.15.
- **64.81.** Конечные циклические группы, порядки которых не делятся на квадрат. Циклическая группа не содержит собственных подгрупп тогда и только тогда, когда ее порядок простое число; использовать разложение циклической группы в прямую сумму примарных циклических групп.
- **64.82.** Пусть $R = I_1 \oplus \ldots \oplus I_n$ разложение кольца R в прямую сумму минимальных левых идеалов. Если $I \subset R$, то существует $I_{k_1} \nsubseteq I$, и тогда $I_{k_1} \cap I = 0$. Если $I_{k_1} \oplus I \neq R$, то существует $I_{k_2} \nsubseteq I_{k_1} \oplus I$, и $I_{k_2} \cap (I_{k_1} \oplus I) = 0$. В конце концов получаем $I_{k_1} \oplus \ldots \oplus I_{k_s} \oplus I = R$ (при некотором s < n).
- **64.83.** а) Если $R = I_1 \oplus \ldots \oplus I_n$ разложение кольца в прямую сумму минимальных левых идеалов и I левый идеал в R, то $R = I_1 \oplus \ldots \oplus I_k \oplus I$

при соответствующей нумерации слагаемых (см. указание к задаче 64.82) и $I\simeq R/(I_1\oplus\ldots\oplus)\simeq I_{k+1}\oplus\ldots\oplus I_n.$

- б) $R=I\oplus J$ (см. задачу 64.82), $1=e_1+e_2$, где $e_1\in I,\ e_2\in J$; доказать, что e_1,e_2 идемпотенты и что $I=Re_1$.
- **64.84.** Рассмотреть циклическую группу простого порядка с нулевым умножением. См. указание к задачам 64.82, б) и 64.16.
 - **64.85.** См. задачу 64.82.
 - **64.88.** См. задачу 64.75.
- **64.89.** Линейные оболочки наборов векторов e_{i_1},\dots,e_{i_s} , где $1\leqslant i_1<\dots< i_s\leqslant n$. Доказать, что если подмодуль A содержит вектор $\alpha_{i_1}e_{i_1}+\dots+ \alpha_{i_s}e_{i_s}$, где $\alpha_{i_1},\dots,\alpha_{i_s}\neq 0$, то $e_{i_1},\dots,e_{i_s}\in A$.
- **64.90.** $k \to kk_0$, где k_0 фиксированный, k произвольный элемент из R, дает изоморфизм R-модуля R с левым идеалом $I = Rk_0$. Обратно: наличие изоморфизма R-модуля R с левым идеалом $I \subseteq R$ означает, что $I = Rk_0$, где k_0 образ 1 при этом изоморфизме.
- **64.91.** $F[x]=F[x]\circ 1\oplus F[x]\circ x\oplus\ldots\oplus F[x]\circ x^{k_1}$, причем $F[x]\circ x^i\simeq F[x]$ (изоморфизм F[x]-модулей).
- **65.1.** Пусть I идеал в A[x]. Легко видеть, что множество коэффициентов a_i многочленов $a_0+a_1x+\ldots+a_ix^i$ из J является идеалом I в A. Последовательность идеалов $I_0\subseteq I_1\subseteq I_2\subseteq \ldots$ стабилизируется, скажем, на I_r ; пусть a_{ij} ($i=0,\ldots,r,\ j=1,\ldots,n$) образующие для I_i , и пусть для каждого из указанных i,j выбран многочлен f_{ij} из J степени i со старшим коэффициентом a_{ij} . Тогда $\{f_{ij}\}$ множество образующих J. Для каждого $f\in J$ индукцией по степени можно показать, что f лежит в идеале, порожденном f_{ij} .
 - 65.2. Воспользоваться предыдущей задачей.
 - 65.3. г) Написать формулу для обратного элемента.
 - д) Рассмотрим три случая.

Случай 1. Среди элементов $-\alpha, -\beta, -\alpha\beta$ есть элемент, равный γ^2 для некоторого $\gamma \in F$. Пусть для определенности $-\alpha = \gamma^2, \, \gamma \in K$. Тогда в A есть, очевидно, делители нуля, и изоморфизм $A \cong \mathbf{M}_2(F)$ можно задать явными формулами, например,

$$1 \to \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad i \to \begin{pmatrix} \gamma & 0 \\ 0 & -\gamma \end{pmatrix}, \quad j \to \begin{pmatrix} 0 & \beta \\ -1 & 0 \end{pmatrix}, \quad k \to \begin{pmatrix} 0 & \gamma\beta \\ \gamma & 0 \end{pmatrix}.$$

Случай 2. В A есть делитель нуля вида u+p, где $u=\gamma\cdot 1,\ \gamma\in K,$ $\gamma\neq 0,\ p=x_1i+x_2j+x_3k$ — чистый кватернион. Тогда (см. г)) N(u+p)= $=\gamma^2-p^2=0$. Положим i'=p и дополним i' до базиса $i',\ j',\ k'$ пространства чистых кватернионов так, чтобы выполнялись соотношения $i'^2=\gamma^2,\ j'^2=-\beta,$ i'j'=-j'i'=k'. Это сводит случай 2 к случаю 1.

Случай 3. В A есть чисто мнимый делитель нуля $p = x_1i + x_2j + x_3k$. Если $x_1 \neq 0$, то, рассматривая кватернион

$$u + x_1 \left(1 + \frac{u^2}{4\alpha x_1^2} \right) i + x_2 \left(1 - \frac{u^2}{4\alpha x_1^2} \right) j + x_3 \left(1 + \frac{u^2}{4\alpha x_1^2} \right) k,$$

мы сводим случай 3 к случаю 2. Если $x_1=0$, то имеет место случай 1.

- е) В матричном представлении д) чистые кватернионы выделяются условием ${\rm tr}\, P=0.$ Таким образом, все нильпотентные матрицы (и только они) представляют чисто мнимые делители нуля в A.
 - ж) Воспользоваться г), е).
- з) Умножением на ненулевой элемент $\lambda \in F$ можно добиться того, что определитель матрицы Q станет квадратом поля F; тогда Q в некоторой системе координат имеет вид $\alpha x_1^2 + \beta x_2^2 + \alpha \beta x_3^2$. Следует обратить внимание на то, что векторное произведение зависит от выбора ориентации. Проверить, что замена ориентации W приводит к замене алгебры A на двойственную алгебру A° , умножение * в которой связано с умножением \cdot в A по правилу $a \cdot b = b * a$ (как векторные пространства A и A° совпадают). Далее, если A алгебра кватернионов, то $A \simeq A^\circ$.
 - **65.4.** в) Рассмотреть F-линейное отображение $x \to ax$.
- д) Свести утверждение к случаю простой алгебры с единицей. Минимальные идеалы имеют вид Ae, где $e^2=e$.
- **65.5.** в) Подпространство A_0 чистых кватернионов алгебры $A=C^+{}_Q(F)$ выделяется условием $x=-\overline{x}$, где черта обозначает естественную инволюцию алгебры Клиффорда: $\overline{1}=1$, $\overline{e}_i=e_i$, $\overline{e_ie_j}=e_je_i$. В качестве базиса A_0 можно выбрать элементы $e_1e_2-\frac{1}{2}Q(e_1,e_2)$, $e_2e_3-\frac{1}{2}Q(e_2,e_3)$, $e_1e_3-\frac{1}{2}Q(e_1,e_3)$.
- **65.7.** а) Достаточно рассмотреть случай неприводимого многочлена f над \mathbb{Q} . Тогда $K=\mathbb{Q}[X]/(f(X))$ конечное расширение степени n над \mathbb{Q} ; пусть x класс $X\pmod {f(X)}$. Тогда отображение $K\to K$, определенное формулой $a\to xa$, является линейным отображением n-мерного векторного пространства K над \mathbb{Q} в себя, причем его минимальный многочленом элемента x.
 - **65.8.** Нет.
- **65.9.** Пусть $I=\langle f_1,\dots,f_n\rangle$. Для любой точки $z\in\mathbb{C}$ определим неотрицательное целое число $n(z)=\min_i\gamma_z(f_i)$, где $\gamma_z(f_i)$ обозначает порядок нуля функции f_i в точке z (если $f_i(z)\neq 0$, то $\gamma_z(f_i)=0$). Пусть (z_k) с последовательность всех точек в \mathbb{C} , для которых $n(z_k)\neq 0$. Построить целую функцию f, имеющую последовательность (z_k) , последовательностью нулей с кратностями $n(z_k)$ и показать, что $I=\langle f\rangle$.
 - **65.10.** a) D = 0; рассмотреть x = y = 1.
 - б) f(x)D, где $f(x) \in \mathbb{Z}[x]$, D обычное дифференцирование.
- в) $\sum f_i D_i$, где $f_i \in \mathbb{Z}[x_1,\dots,x_n]$, D_i частные дифференцирования по переменным.
- **65.12.** См.: *Херстейн.* Некоммутативные кольца. М.: Мир, 1972. С. 99.
- **65.13.** См.: *Диксмье*. Универсальные обертывающие алгебры. М.: Мир, 1978. С. 170, 171.
- **65.15, 65.16.** См.: *Боревич З.И.*, *Шафаревич И.Р.* Теория чисел. М.: Наука, 1985.
 - **66.2.** a) Если $\sqrt{n} \notin \mathbb{Q}$. б) Если n < 0.
 - в) n=2 при $p=3;\, n=2,3$ при $p=5;\, n=3,5,6$ при p=7.

- **66.5.** Мультипликативная группа поля из четырех элементов имеет порядок 3, и для построения такого поля достаточно иметь матрицу порядка 2 над полем ${\bf Z}_2$, для чего достаточно, чтобы она удовлетворяла уравнению $A^2+A+E=0$, т. е. $\operatorname{tr} A=\det A=1$. Такая матрица есть $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$, и поле состоит из элементов O,E,A,A+E; при n=6 рассмотреть порядки элементов в аддитивной группе.
- **66.6.** $\{ke \mid k \in \mathbb{Z}\};$ аддитивная группа собственного подполя имеет порядок p и содержит указанное подполе.
- **66.7.** Для поля $\mathbb Q$ доказать сначала неподвижность целых чисел при любом автоморфизме; для поля $\mathbb R$ заметить, что неотрицательные числа являются квадратами, и поэтому их образы неотрицательны; из x>y следует, что $\varphi(x)=\varphi(x-y)+\varphi(y)>\varphi(y)$; далее воспользоваться рациональными приближениями.
 - **66.8.** $z \to z$ и $z \to \overline{z}$; рассмотреть образ i.
- **66.9.** $x+y\sqrt{2} \to x-y\sqrt{2}$ единственный такой автоморфизм; рассмотреть образ $\sqrt{2}$.
- **66.10.** При m=1 заметить, что биномиальные коэффициенты $\binom{p}{n}$ делятся на p; далее применить индукцию.
 - б) Ненулевой гомоморфизм поля в себя является автоморфизмом.
 - **66.12.** При $m/n = r^2$ $(r \in \mathbb{Q} \setminus \{0\})$.
- **66.14.** Аддитивная группа поля K из четырех элементов не может быть циклической, и поэтому все ее отличные от 0 элементы имеют порядок 2, $K==\{0,1,a,a+1\}$; при этом умножение определяется однозначно, в частности, a(a+1)=1.
- **66.15.** Например, поле рациональных функций, с комплексными коэффициентами.
 - **66.17.** Существует, например, $F_n(X)$.
 - **66.18.** a) $\{-1, -3 + 2\sqrt{2}\}$.
 - б) \varnothing ; 13 не является квадратом в $\mathbb{Q}(\sqrt{2})$.
 - в) Ø. г) Ø.
 - **66.19.** a) Ø. б) (2, 3, 2).
 - **66.21.** $t + 3t^2 + t^3$
 - **66.23.** Bce.
- **66.25.** Мультипликативная группа поля из n элементов имеет порядок n-1.
 - **66.26.** x = a.
 - **66.28.** a) 3 и 5. б) 2, 3, 8 и 9.
- **66.29.** Показать , что если $a \neq 0$, то $(ba^{-1})^3 = 1$ и 3 делит $2^n 1$, что неверно.
- **66.30.** Пусть $F^*=\langle x \rangle$. Доказать, что x алгебраично над простым подполем. Простое подполе отлично от $\mathbb Q$, так как $\mathbb Q^*$ не является циклической группой.

- **66.31.** a) $\{\pm 1\}$. 6) \emptyset .
- **66.32.** а) Так как при p>2 в ${\bf Z}_p$ нет элементов порядка 2, то $k\to k^{-1}$ биекция и $\sum_{k=1}^{p-1}k^{-1}=\sum_{k=1}^{p-1}k$.
 - б) Аналогично а); $8|(p^2-1)$.
- **66.35, 66.36.** См.: Платонов В. П., Рапинчук А. С. Алгебраические группы и теория чисел. М: Наука, 1991. Гл. I, § 1.1.
 - **66.37, 66.38.** Решение аналогично решениям задач 66.35 и 66.36.
- **66.42–66.45.** См.: *Боревич З. И.*, *Шафаревич И. Р.* Теория чисел М.: Мир, 1985.
 - **66.46.** Использовать задачу 66.45.
 - **66.47.** Использовать нормирование полей p-адических чисел.
- **67.1.** Индукцией по s свести к случаю s=1; в этом случае построить базис A над K, исходя из базисов A над K_1 и K_1 над K.
 - **67.6.** Применить задачу 67.4.
- **67.7.** Индукцией по s свести к случаю s=2; в этом случае применить задачи 67.1, 67.4, 67.5.
 - **67.8.** Если многочлен p(x) неприводим, то он имеет корень в $K[x]/\langle p(x) \rangle$.
 - **67.9.** а) Применить индукцию по степени f(x), используя задачу 67.8.
 - б) Применить а) к многочлену $f_1(x) \times \ldots \times f_l(x)$.
- **67.10.** Рассмотреть степени расширений в башне полей $K \subset K(\alpha) \subset K(\theta,\eta)$, где η корень многочлена $h(x)-\alpha$ в некотором расширении поля L, и воспользоваться задачами 67.1, 67.2.
- **67.11.** а), б) Сравнить разложение многочлена x^n-a на линейные множители в его поле разложения с возможным разложением этого многочлена над полем K.
 - в) Например, многочлен $x^4 + 1$ над полем вещественных чисел.
- **67.12.** $f(x) = \prod_{i \in \mathbb{F}_p} (x x_0 i)$, где \mathbb{F}_p поле из p элементов, содержащиеся в K. Доказать, что если в некотором расширении L поля K многочлен f(x) имеет корень, то f(x) разлагается над L в произведение линейных множителей, и вывести отсюда, что над K все неприводимые множители многочлена f(x) имеют одинаковую степень.
 - **67.13.** a) 1. б) 2. в) 2. г) 6. д) 8.
- и) 2^r , где r ранг матрицы $(k_{ij}),\ i=1,\ldots,s,\ j=0,\ldots,t,$ над полем вычетов по модулю 2 и \overline{k}_{ij} класс вычетов по модулю 2 показателя k_{ij} в разложении $a_i=(-1)^{k_{i0}}\cdot\prod_{j=1}^t p_j^{k_{ij}}$ числа a_i в произведение степеней различных простых чисел p_1,\ldots,p_t (допускается, что некоторые $k_{ij}=0$).
- ж) Показать, что если ζ первообразный корень n-й степени из 1 и $\mu_{\zeta}(x)$ его минимальный многочлен над $\mathbb Q$, то для всякого простого $p|n,\,\zeta_p$ также является корнем $\mu_{\zeta}(x)$; в противном случае, если $x^n-1=\mu_{\zeta}(x)h(x),\,\zeta$ является корнем многочлена $h(x^p)$; привести последнее в противоречие с тем, что x^n-1 не имеет кратных множителей над полем вычетов по модулю p.
 - з) Воспользоваться задачей 67.11.
- и) Если K искомое поле, рассмотреть $(K^*)^2 \cap \mathbb{Q}^*$ и применить индукцию по n.

- **67.14.** $F(X,Y)/F(X^p,Y^p)$, где F поле характеристики p. Если поле K конечно, воспользоваться задачей 56.36. Пусть K бесконечно и $L=K(a_1,\ldots,a_s)$. Индукцией по s вопрос о существовании примитивного элемента сводится к случаю s=2; в этом случае показать, что при некотором $\lambda \in K$ элемент $a_1+\lambda a_2$ не содержится в собственном промежуточном поле. Обратно: если L=K(a), то показать, что всякое промежуточное поле порождается над K коэффициентами некоторого делителя из L[x] минимального многочлена $\mu_a(x)$ элемента a над K.
 - **67.15.** Выбрать базис L(x) над K(x), состоящий из элементов L.
- **67.17.** Индукцией по i $(0 \le i \le m)$ доказать, что при надлежащей нумерации элементов b_1,\ldots,b_n система $a_1,\ldots,a_i,b_{i+1},\ldots,b_n$ является максимальной системой алгебраически независимых над K элементов в L.
- **67.18.** а) Показать, что число максимальных идеалов не превосходит (A:K). Далее показать, что если элемент $a\in A$ не является нильпотентным, то идеал, максимальный во множестве идеалов, не пересекающихся с $\{a,a^2,\ldots,\}$, является максимальным идеалом в A.
- б) Использовать a). Для получения единственности в д) показать, что во всяком представлении $A=\prod_{j=1}^t L_j$ поля L_j изоморфны факторалгебрам по всевозможным максимальным идеалам в A.
- **67.20.** Применить индукцию по n. Записав соотношение линейной зависимости для f_i , получить противоречие, исходя из того, что f_i гомоморфизм алгебры.
- **67.23.** а) Всякий K-гомоморфизм $A \to B$ единственным образом продолжается до L-гомоморфизма $A_L \to B$.
 - б) Использовать а).
 - **67.24.** Взять в качестве E любую компоненту алгебры F_L .
- **67.25.** Для доказательства б)— а) заметить, что если L_i любая компонента A_L и $\overline{a}_1,\dots,\overline{a}_s$ образы a_1,\dots,a_s в L_i , то $L_i=L(\overline{a}_1,\dots,\overline{a}_s)$; для получения импликации а)— в) применить к подалгебре K[a] задачи 67.22, а), 67.19 и 67.18, е).
 - **67.26.** Применить задачу 67.25.
- **67.27.** б) Заметить, что каждое из полей L_1, L_2 является расщепляющим для другого; получить отсюда K-вложения $L_1 \to L_2$ и $L_2 \to L_1$.
 - **67.28.** Использовать задачи 67.27, в) и 67.22.
- **67.29.** а) Выбрать расщепляющее поле для A, содержащее поле L, и применить задачу 67.22.
 - б) Применить а) и задачу 67.23, б).
 - **67.30.** Воспользоваться задачами 67.25 и 67.29, б).
 - **67.31.** б) Необязательно: например, $\mathbb{Q} \subset \mathbb{Q}(\sqrt{2}) \subset \mathbb{Q}(\sqrt[4]{2})$.
- **67.32.** Для получения двух последних соотношений общий случай свести к двум частным, когда $a\in K$ и L=K(a). В первом случае использовать любой базис в L/F, связанный с башней полей, а во втором в L/K использовать базис из степеней a. Для получения первого соотношения заметить, что $\chi_{L/K}(a,x)=\mathbf{N}_{L(x)/K(x)}(a-x)$.
 - **67.33.** Использовать задачу 67.32.

67.34. Если ${\rm Tr\,}_{L/K}(a) \neq 0$ для некоторого $a \in L$, то

$$(x, ax^{-1}) \rightarrow \operatorname{Tr}_{L/K}(a) \neq 0$$

для всякого $x \neq 0$ из L.

- **67.35.** Каждое из условий а)-в) равносильно тому, что $A_L \simeq \prod L$ для расщепляющего поля L. Невырожденность формы следа на A и A_L означает одно и то же. Нильпотентные элементы всегда содержатся в ядре формы следа.
 - **67.37.** Использовать задачи 67.22 и 67.12.
- **67.38.** Воспользоваться тем, что ${\rm Tr\,}_{A/K}(a)={\rm Tr\,}_{A_L/L}(a)$, и аналогично в других случаях.
 - **67.39.** a) Воспользоваться задачами 67.14, 67.22.
 - б) b примитивный элемент, a примитивным элементом не является.
 - **67.40.** Использовать задачу 67.22, в).
 - **67.41.** Воспользоваться задачами 67.34 и 67.35, г).
- **67.42.** Многочлен x^p-t над полем рациональных функций K(t), где K- произвольное поле характеристики $p \neq 0$.
 - **67.43.** Использовать задачу 67.19.
- **67.44.** Для доказательства обратного утверждения воспользоваться задачей 67.41.
- **67.45.** Пусть L расщепляющее поле для многочлена f(x). Показать, что $B_L \simeq \prod_{i=1}^n A_i$, где $A_i \simeq A_L$, $n=\deg f$.
- **67.46.** Для доказательства импликации в) \to а) представить A как факторалгебру алгебры $K[x_1,\dots,x_s]/\left(\mu_{a_1}(x_1),\dots,\mu_{a_s}(x_s)\right)$ и воспользоваться задачей 67.45.
 - **67.47.** a) Использовать задачи 67.46, 67.45, 67.42, 67.11.
 - **67.48.** Рассмотреть $\mu_a(x)$ для всякого элемента $a \in L$.
 - **67.50.** Воспользоваться задачами 67.48 и 67.49.
- **67.51.** б) Используя задачу 67.26, доказать, что для всякого расщепляющего поля E расширения L/K число различных K-вложений $L \to L$ равно $(K_s:K)$.
- **67.52.** а) Подсчитать число различных K-вложений поля F в какое-либо расщепляющее поле расширения F/K.
- **67.53.** Рассмотреть башню полей $K \subset K_s \subset L$ и применить задачи 67.31, 67.38.
 - **67.54.** а) Применить задачи 67.30 и 67.35.
 - б) Применить задачу 67.27.
- **67.55.** а) Группа $G(\mathbb{C}/\mathbb{R})$ состоит из тождественного автоморфизма и комплексного сопряжения.
 - б), в) \mathbf{Z}_2 . г) $\mathbf{Z}_2 \oplus \mathbf{Z}_2$.

 - д) \mathbf{D}_4 . e) \mathbf{Z}_{p-1} . ж) \mathbf{Z}_n^* .
 - з) Полупрямое произведение группы ${\bf Z}_p$ и ее группы автоморфизмов.
- и) Прямое произведение r экземпляров группы ${f Z}_2$ (см. ответ к задаче 67.13).
- **67.57.** Всякий элемент $a\in L$ является корнем сепарабельного многочлена над K степени $\leqslant |G|$, а именно $f(x)=\prod_{\sigma\in G}(x-\sigma(a))$. Используя

существование примитивного элемента у всякого (конечного) сепарабельного расширения, доказать, что (L:K)=|G|.

- **67.58.** Рассмотреть действие \mathbf{S}_n на поле рациональных функций $K(a_1,\dots,a_n)$ и применить задачу 67.57.
- **67.59.** Вложить группу G в симметрическую группу и применить задачу 67.57.
 - **67.60.** Применить задачу 67.57.
- **67.61.** Сначала доказать, что всякое отличное от $\mathbb R$ расширение Галуа $L/\mathbb R$ имеет степень, равную степени числа 2. Затем, используя разрешимость конечной 2-группы и несуществование расширений $L'/\mathbb R$ степени $\geqslant 2$, показать, что $L=\mathbb C$.
 - **67.63.** Рассмотреть действие элементов группы G на \sqrt{D} .
- **67.64.** Используя линейную независимость автоморфизмов (задача 67.21), доказать, что L является циклическим модулем над $K[\varphi]$.
- **67.66.** Группа \mathbf{S}_n , действующая посредством перестановок на компонентах алгебры $A = \prod K_i \, (K_i \simeq K)$. Использовать, что K_i являются единственными минимальными идеалами в A.
- **67.67.** Принять во внимание, что $\tau(x)=\sum_{\sigma}\sigma(\tau x)e_{\sigma}=\sum_{\sigma}\sigma(x)\tau(e_{\sigma})$ для $x\in L.$
- **67.68.** Использовать задачу 67.20 или интерпретировать $(\varphi_i(y_j))$ как матрицу перехода к новому базису, вложив A в A_L .
- **67.69.** Если поле K конечно, см. задачу 67.64. Пусть K бесконечно, ω_1,\ldots,ω_n некоторый базис L над K и $\omega=a_1\omega_1+\ldots+a_n\omega_n$ произвольный элемент из L (если $a_i\in K$) или из L_L (если $a_i\in L$). Условие из задачи 67.68, обеспечивающее, что элементы $\{\sigma(\omega),\sigma\in G\}$ образуют базис в L (соответственно в L_L), означает, что для некоторого многочлена $f(x_1,\ldots,x_n)\in L[x_1,\ldots,x_n]$ его значение $f(a_1,\ldots,a_n)\neq 0$. Далее использовать существование нормального базиса в L_L (задача 67.67).
 - **67.70.** Если характеристика поля $K \neq 2$, то

$$K(x_1,\ldots,x_n)^{A_n}=K(\sigma_1,\ldots,\sigma_n,\Delta),$$

где σ_1,\ldots,σ_n — элементарные симметрические многочлены от $x_1,\ldots,x_n,$ $\Delta=\prod_{j>i}(x_j-x_i).$ В случае произвольной характеристики имеет место равенство

$$K(x_1,\ldots,x_n)^{A_n}=K(\sigma_1,\ldots,\sigma_n,y),$$

где $y = \sum_{\sigma \in A_n} \sigma \left(\prod_{i=1}^n x_i^{i-1} \right)$.

- **67.71.** $\mathbb{C}(x_1^n,x_1^{n-2}x_2,\dots,x_1x_{n-1},x_n)$. Использовать задачу 67.60.
- **67.72.** $\mathbb{C}(y_1^n,y_1^{n-2}y_2,\ldots,y_1y_{n-1},y_n)$, где $y_i=\sum_{k=1}^n \varepsilon^{-ik}x_k$, ε первообразный корень степени n из единицы. В пространстве линейных форм от x_1,\ldots,x_n выбрать базис, состоящий из собственных векторов оператора σ ; затем использовать задачу 67.71.
- **67.73.** Группа ${\bf Z}_n$. Поле разложения L многочлена x^n-a над K имеет вид $L=K(\theta)$, где θ некоторый корень многочлена x^n-a в L. Группа G(L/K) порождается автоморфизмом σ , при котором $\sigma(\theta)=\varepsilon\theta$, где ε —

некоторый порождающий элемент (циклической) группы корней степени n из 1. Использовать задачу 67.11.

- **67.74.** Пусть ε порождающий элемент группы корней степени n из 1 в K; $y \in L$ такой элемент из L, что $\sum_{i=1}^n \varepsilon^{-i} \sigma^i y \neq 0$ (почему такой элемент существует?); тогда $a = \left(\sum_{i=1}^n \varepsilon^{-i} \sigma^i y\right)^n$. Рассмотреть собственные векторы оператора σ на L.
- **67.75.** Если $L=K(\theta_1,\dots,\theta_s)$, то для всякого $\sigma\in G(L/K)$ $\sigma(\theta_i)=$ $=\varepsilon_i(\sigma)\theta_i$, где $\varepsilon_i(\sigma)^n=1$. Обратно, если группа G(L/K) абелева периода n, то использовать следующий факт: если во множестве попарно коммутирующих линейных операторов, каждый из которых диагонализируем, то существует базис из векторов, собственных для всех этих операторов. (Этот факт следует из задачи 40.7.)
- **67.76.** Рассмотреть билинейное отображение $G(L/K) \times A \to \mathbf{U}_n$ для $\sigma \in G(L/K)$, $\overline{a} \in A$ $(a \in \langle K^{*n}, a_1, \dots, a_s \rangle)$, $(\sigma, \overline{a}) \to (\sigma\theta) \cdot \theta^{-1}$, где $\theta \in L$ и $\theta^n = a$.
- **67.77.** $L \to (L^{*n} \cap K^*)/K^{*n}$; если $A = B/K^{*n}$, $B = \langle K^{*n}, a_1, \dots, a_s \rangle$ подгруппа в K^* , то $A \to L = K(\theta, \dots, \theta_s)$, где $\theta_i^n = a_i$. Воспользоваться задачей 67.76.
- **67.78.** Если $G(L/K)=\langle \sigma \rangle$, то для отыскания θ использовать корневой вектор высоты 2 линейного оператора σ . Для доказательства обратного утверждения воспользоваться задачей 67.12.
- **67.79.** Если $L = K(\theta_1, \dots, \theta_s)$, то для всякого $\sigma \in G(L/K)$ $\sigma(\theta_i) = \theta_i + + \gamma_i$, $\gamma_i \in \mathbb{F}_p$ (см. задачу 67.12). Обратно: если G = G(L/K) есть прямое произведение s циклических групп порядка p, то выберем в G подгруппы H_i $(i=1,\dots,s)$ индекса p, для которых $\cap_{i=1}^s H_i = \{e\}$; тогда $L^{H_i} = K(\theta_i)$ (см. задачу 67.78) и $L = K(\theta_1,\dots,\theta_s)$.
- **67.80.** Рассмотреть билинейное отображение $G(L/K) \times A \to \mathbb{F}_p$, где для $\sigma \in G(L/K)$, $\overline{u} \in A$ $(a \in \langle \rho(k), a_1, \ldots, a_s \rangle)$, $(\sigma, a) \to \sigma(\theta) \theta$, где $\theta \in L$ и $\rho(\theta) = a$.
- **67.81.** $L \to (\rho(L) \cap K)/\rho(K)$; если $A = B/\rho(K)$, $B = \langle \rho(K), a_1, \dots, a_s \rangle$, то $A \to K(\theta_1, \dots, \theta_s)$, где $\rho(\theta_i) = a_i$. Воспользоваться задачами 67.79 и 67.80.
 - 68.1. Воспользоваться задачей 56.36.
 - **68.2.** а) Если |L|=q, то L является полем разложения многочлена x^q-x . б) Использовать указание к а) и задачу 67.27, б).
- **68.3.** В пункте а) использовать, что многочлен $x^q x$ не имеет кратных корней.
 - **68.4.** Использовать задачу 56.36.
 - **68.5.** r) $(x^2 + x + 1)(x^2 + 2x + 4)$.
 - **68.6.** б) Разложить σ в произведение независимых циклов.
- **68.7.** Если $b=\prod_{j=1}^k p_j^{n_j}$, где p_j различные простые числа, то разложить кольцо ${\bf Z}_8$ в прямое произведение колец вычетов по модулю $p_j^{n_j}$. Если $b=p^n$, p простое, то представить множество классов вычетов в виде объединения подмножеств, каждое из которых содержит все элементы, имеющие одинаковый порядок в аддитивной группе кольца вычетов. Далее использовать строение группы обратимых элементов кольца вычетов по модулю p^n .
- **68.8.** Подсчитать число инверсий перестановки σ , упорядочив элементы из G следующим образом: $0, x_1, \ldots, x_n, -x_n, \ldots, -x_1$, где $\{x_1, \ldots, x_n\} = S$.

- **68.9.** а) Использовать задачу 68.8, взяв произвольным образом множества S_1 и S_2 в G_1 и G_2 и положив $S=S_1\cup \varphi^{-1}(S_2)$, где $\varphi\colon G\to G_2$ канонический гомоморфизм.
 - **68.10.** Использовать задачу 68.8.
 - **68.11.** Использовать задачу 68.10.
- **68.12.** Множество R пар чисел (x,y), где $1 \leqslant x \leqslant (a-1)/2$, $1 \leqslant y \leqslant \leqslant (b-1)/2$, разбивается в объединение четырех подмножеств:

$$R_1 = \{(x, y) \in R \mid ay - bx < -b/2\},\$$

$$R_2 = \{(x, y) \in R \mid -b/2 < ay - bx < 0\},\$$

$$R_3 = \{(x, y) \in R \mid 0 < ay - bx < a/2\},\$$

$$R_4 = \{(x, y) \in R \mid a/2 < ay - bx\}.$$

Используя биекцию

$$(x,y) \to \left(\frac{a+1}{2} - x, \frac{b+1}{2} - y\right),$$

показать, что $|R_1| = |R_4|$. Используя задачу 68.10, показать, что

$$\left(\frac{a}{b}\right) = (-1)^{|R_2|}, \quad \left(\frac{b}{a}\right) = (-1)^{|R_3|}.$$

- **68.13.** Представить матрицу оператора ${\cal A}$ в виде произведения элементарных.
- **68.14 68.16.** См.: *Лидл 3., Нидеррайтер Г*. Конечные поля. Т. 1-M.: Мир, 1988. Гл. 2, § 3.
 - 69.4. а) Да. б) Нет. в) Да. г) Да. д) Нет. е) Да
 - 69.5. Все указанные подпространства, за исключением г), д) и з).

69.7.
$$\begin{pmatrix} 1 & -t & t^2 \\ 0 & 1 & -2t \\ 0 & 0 & 1 \end{pmatrix}$$
 (B базисе $1, x, x^2$).

- **69.8.** $\begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix}$ (B базисе $\sin x, \cos x$).
- **69.10.** Представить пространство $\mathbf{M}_n(K)$ в виде суммы подпространств, состоящих из матриц, все столбцы которых, кроме одного, нулевые.
- **69.11.** Доказать предварительно, что подпространства в $\mathbf{M}_n(K)$ инвариантное относительно всех операторов $\mathrm{Ad}\,(A)$, где матрица A диагональна, является линейной оболочкой некоторого множества матричных единиц E_{ij} $(i \neq j)$ и некоторого подпространства диагональных матриц.
- **69.12.** Доказать предварительно, что всякое подпространство в $\mathbf{M}_n(K)$, инвариантное относительно всех операторов вида $\Phi(A)$, где матрица A диагональна, является линейной оболочкой некоторого множества матриц вида $aE_{ij} + bE_{ji} \ (i \neq j)$ и некоторого подпространства диагональных матриц.

69.13. Найти общий вид матриц X таких, что

$$X \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} X,$$
$$X \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix} X,$$

и показать, что всегда $\det X = 0$.

- **69.16.** в) Пусть $H\subseteq W$ инвариантное подпространство и $x\in H$. Рассмотреть вектор $\pi x-x$ для $\pi=\{ij\}.$
- **69.17.** Определить сначала подпространства, инвариантные относительно ограничения представления Θ на подгруппу диагональных матриц.
- **69.25.** Использовать задачу 69.24, в) и разложение группы G на левые смежные классы по H.
 - **69.26.** a) m. 6) 2. B) 1. Γ) m+1.
- **69.27.** Если A и B коммутирующие операторы, то каждое собственное подпространство оператора A инвариантно относительно B.
 - **70.2.** Использовать задачу 69.28.
- **70.5.** В обоих случаях каждое неприводимое представление группы H встречается с кратностью 2.
- **70.6.** Только тривиальное для группы нечетного порядка; для группы четного порядка еще гомоморфизм на подгруппу $\{-1,1\}$ в $\mathbf{GL}_1(\mathbb{R})\simeq\mathbb{R}^*.$
- **70.7.** Воспользоваться теоремой о существовании у вещественного оператора двумерного инвариантного подпространства.
 - **70.9.** a) [n/2] + 1. Использовать задачу 70.8.
- **70.15.** Для S_3 : тривиальное и сопоставляющее подстановке ее знак; использовать теорему о коммутанте и задачу 62.7, а). Для A_4 : использовать теорему о коммутанте и задачу 62.7, б).
 - 70.16. Использовать теорему о коммутанте и задачу 62.8.
 - 70.17. Можно взять представление задачи 69.13.
- **70.31.** Рассмотреть разложение регулярного представления в сумму неприводимых подпредставлений.
- **70.32.** Доказать, что подгруппа, порожденная $\mathcal A$ и $\mathcal B$ в $\mathbf{GL}(V)$, изоморфна $\mathbf S_3$.

 - в) 1, 1, 2, 3, 3. г) 1, 1, 1, 1, 2.
- д) если n=2k, то четыре одномерных и k-1 двумерных, если n=2k+1, то два одномерных и k двумерных.
 - е) 1, 3, 3, 4, 5. Использовать основные теоремы и задачу 69.16.
 - **70.37.** а), б), в) Нет.
- **70.38.** Существование подгруппы приводит к существованию двумерного представления группы \mathbf{S}_4 .
 - 70.42. Только для абелевых.
 - 70.43. Провести индукцию по порядку группы.
 - **70.45.** Использовать задачу 69.25.

- **70.46.** Воспользоваться конечностью числа неизоморфных групп фиксированного порядка и конечностью числа неизоморфных представлений данной размерности фиксированной конечной группы.
 - **70.48.** Заметить, что группы порядков p и p^2 абелевы.
- **70.49.** p^2 одномерных представлений и p-1 p-мерных. Заметить, что центр данной группы имеет порядок p и число классов сопряженных элементов равно p^2+p-1 . Так как факторгруппа по центру коммутативна, то коммутант данной группы имеет порядок p. Этим определяется число одномерных представлений. Заметить еще, что в данной группе есть нормальная подгруппа индекса p и доказать, что размерность неприводимого представления не может быть больше p.
- **70.54.** Пусть G конечная подгруппа в $\mathbf{SL}_2(\mathbb{Q})$. Ввести в пространстве \mathbb{R}^2 новое скалярное произведение

$$(x,y)_G = \sum_{g \in G} (gx, gy),$$

где $(x,y)=x_1y_1+x_2y_2$ для строк $x=(x_1,x_2)$ и $y=(y_1,y_2)$. Показать, что относительно этого скалярного произведения каждый оператор g становится ортогональным. Поэтому G состоит из поворотов и отражений. Вывести, что $G\subseteq \mathbf{D}_n$ для некоторого n. Так как $\operatorname{tr} g\in \mathbb{Q}$, то, используя задачу 4.13, показать, что n равно 3,4 или 6.

- **70.55.** Воспользоваться задачами 70.54, 56.33.
- **70.57.** Воспользоваться задачами 56.33, 58.13.
- **70.58.** Простая неабелева группа G совпадает со своим коммутантом G'. Поэтому при любом неприводимом комплексном представлении $\varphi:G\to \mathbf{GL}_2(\mathbb{C})$ определитель каждой матрицы $\varphi(g),\ g\in G$, равен единице. Более того, это представление точно, т. е. ядро представления состоит только из единичного элемента. Размерность неприводимого представления делит порядок группы G. Следовательно, если φ двумерное неприводимое комплексное представление группы G, то в силу первой теоремы Силова в G имеется элемент g порядка g. При этом собственные значения матрицы g(g) равны g0 лежит в центре группы g0, и поэтому сам элемент g1 лежит в центре g3, что невозможно в силу простоты неабелевой группы g6. Поэтому матрица g7 имеет два разных собственных значения: g7. В частности, g8 частности, g9 собственных значения: g9 имеет два разных собственных значения: g9. В частности, g9 имеет два разных собственных значения: g9. В частности, g9 собственных значения: g9.
 - 71.2. Базис состоит из одного вектора

$$\sum_{\sigma \in S_3} (\operatorname{sgn} \sigma) \sigma.$$

Размерность равна 5.

71.3.
$$\{\varepsilon - a, \varepsilon^2 - a^2, \dots, \varepsilon^{n-1} - a^{n-1}\}.$$

71.9. а) Пусть

$$e_1 = \frac{1}{6} \sum_{\sigma \in \mathbf{S}_3} \sigma, \qquad e_2 = \frac{1}{6} \sum_{\sigma \in \mathbf{S}_3} (\operatorname{sgn} \sigma) \sigma.$$

Коммутативные идеалы: 0, $\mathbb{C}e_1$, $\mathbb{C}e_2$, $\mathbb{C}e_1 \oplus \mathbb{C}e_2$. 6) Пусть $Q_8 = \{E, \overline{E}, I, \overline{I}, J, \overline{J}, K, \overline{K}\}$,

б) Пусть
$$Q_8 = \{E, \overline{E}, I, \overline{I}, J, \overline{J}, K, \overline{K}\}$$

$$e_1 = (E + \overline{E})(E + I + J + K),$$
 $e_2 = (E + \overline{E})(E + I - J - K),$
 $e_3 = (E + \overline{E})(E - I - J - K),$ $e_4 = (E + \overline{E})(E + I - J + K).$

Коммутативные идеалы — линейные оболочки любого подмножества векторов множества $\{e_1, e_2, e_3, e_4\}.$

в) Пусть

$$e_1 = \frac{1}{10} \sum_{A \in \mathbf{D}_5} A, \qquad e_2 = \frac{1}{10} \sum_{A \in \mathbf{D}_5} (\det A) A.$$

Коммутативные идеалы: 0, $\mathbb{C}e_1$, $\mathbb{C}e_2$, $\mathbb{C}e_1 \oplus \mathbb{C}e_2$.

71.10. Если G бесконечна, то x = 0, если конечна, то

$$x = \alpha \sum_{g \in G} g, \qquad \alpha \in F.$$

- **71.11.** Базис центра F[G] образуют элементы вида $\sum_{g \in C} g$, если в качестве C взять последовательно все классы сопряжённых элементов в G.
 - 71.16. Использовать лемму Шура.
 - **71.19.** Только для $G = \{e\}$.
 - **71.22.** a) 2. б) 1. в) 2. r) 4.
 - **71.24.** Пусть ε первообразный корень степени 3 из единицы в \mathbb{C} ,

$$r_0 = \frac{1}{3}(e + a + a^2) \in \mathbb{R}[\langle a \rangle_3] \subset \mathbb{C}[\langle a \rangle_3],$$

$$r_1 = \frac{1}{3}(e + \varepsilon a + \varepsilon^2 a^2) \in \mathbb{C}[\langle a \rangle_3],$$

$$r_2 = \frac{1}{3}(e + \varepsilon^2 a + \varepsilon a^2) \in \mathbb{C}[\langle a \rangle_3].$$

 $\mathbb{R}[\langle a
angle_3] = F_0 \oplus F_1$, где поле $F_0 = \mathbb{R} r_0 \simeq \mathbb{R}$ и

$$F_1 = \left\{ \alpha_0 e + \alpha_1 a + \alpha_2 a^2 \, \middle| \, \sum_{i=0}^2 \alpha_i = 0, \, \, \alpha_i \in \mathbb{R} \, \right\} \simeq \mathbb{C}.$$

При изоморфизме $\mathbb{C} \to F_1$ имеем $1 \to e - r_0$, $\varepsilon \to a(e - r_0)$. $\mathbb{C}[\langle a \rangle_3] = F_0' \oplus F_1' \oplus F_2'$. Поля $F_i' = \mathbb{C} r_i$ изоморфны \mathbb{C} .

- **71.25.** Использовать неприводимость многочлена $x^{p-1} + x^{p-2} + \ldots + x + 1$ над полем \mathbb{Q} .
 - **71.27.** а) Идемпотенты $e_1 = 2 + 2a$, $e_2 = 2 + a$; идеалы $\mathbb{F}_3 e_1$, $\mathbb{F}_3 e_2$.
 - б) Идемпотент единица групповой алгебры; идеал $\mathbb{F}_2(1+a)$.
 - в) Идемпотенты $\frac{1}{2}(1+a),\, \frac{1}{2}(1-a);$ идеалы $\mathbb{C}e_1,\, \mathbb{C}e_2.$
 - г) Идемпотенты $\frac{1}{3}(1+a+a^2), \ \frac{1}{3}(2-a-a^2);$ идеалы $\mathbb{R}e_1, \ \mathbb{R}[\langle a \rangle_3]e_2.$
- **71.28.** Проверить аналогичное утверждение для групповой алгебры $\mathbf{M}_n(\mathbb{C})$ и использовать теорему о структуре групповой алгебры конечной группы.
 - **71.29.** a) 8. 6) 32.
 - **71.30.** a) $\{e\}$. 6) $G \simeq \mathbf{Z}_2$.
- в) $G\simeq \dot{\mathbf{Z}}_3$ или \mathbf{S}_3 . Воспользоваться тем, что n равно числу классов сопряженных элементов в G.
 - **71.34.** При p=2

$$U = F[G](a - e)^2.$$

- **71.36.** а) Рассмотреть случай G=H. Провести индукцию по порядку группы H.
 - б) n = 2.
- **71.39.** а) $P/H\simeq a/(g-ge)A\oplus A/(g-\varepsilon^2e)A$, где ε первообразный корень степени три из единицы в $\mathbb C$.
 - б) P/H = 0. в) $P/H \simeq A$.
 - **71.40.** Ker $\varphi = 0$.
- **71.41.** Рассмотреть аналогичный вопрос для A = F[t] кольца многочленов.
 - **71.44.** а) Элемент прост. б) $(g_1 g_2)^2 (-g_1^{-1}g_2^{-1} g_1^{-2})$.
 - **71.45.** a) 0. 6) $F[\langle g_1 \rangle]$. B) F.
 - **72.1.** Использовать задачу 69.21.
- **72.2.** Используя задачу 69.11, найти возможный диагональный вид матрицы оператора $\Phi(g)$.
 - 72.3, 72.4. Использовать задачу 72.1.
- **72.5.** Заметить, что сумма n корней из 1 равна n только когда все слагаемые равны 1.
- **72.6.** Использовать задачу 72.5 и доказать, что любая подгруппа индекса p в A есть подгруппа элементов некоторого (n-1)-мерного подпространства.
- **72.7.** Пусть χ характер представления Φ . Используя задачу 72.5, доказать, что $\Phi(g) = E$ для $g \in H$. Аналогично, показать, что $g \in K$ тогда и только тогда, когда матрица $\Phi(g)$ скалярная.
 - 72.8. Использовать теорему Машке и свойства коммутанта.
 - 72.9. Использовать теорему Машке и свойства коммутанта.

72.21. $\chi_{\Phi}(\sigma)$ есть число элементов множества $\{1,2,3,\ldots,n\}$, неподвижных относительно σ .

72.22. Пусть
$$\mathbf{D}_n=\langle a,b \mid a^2=b^n=e,\ aba=b^{-1} \rangle.$$
 Тогда $\chi(b^k)==2\cos\frac{2\pi k}{n},\ \chi(ab^k)=0.$

. Использовать задачу 70.19.

. Использовать задачу 70.19.

72.25. Использовать задачу 72.4.

72.26. а) Два характера: тривиальный и $\sigma \to \operatorname{sgn} \sigma$.

		е	(123)	(132)	(12)(34)
б)	φ_0	1	1	1	1
	φ_1	1	ε	ε^2	1
	φ_2	1	ε^2	ε	1

, где arepsilon — первообразный корень степени 3 из 1 в $\mathbb C$.

ke i1 1 1 1 1 φ_0 в) φ_1 1 1 -11 1 -1 1 1 -1 φ_2 φ_3

- г) См. а).
- д) Пусть $\mathbf{D}_n = \langle a, b \ | a^2 = b^n = e, \ aba = b^{-1} \rangle$. Если n нечетно, то одномерных характеров два: тривиальный и $a^ib^j \to (-1)^i$. Если n четно, то четыре: тривиальный и $a^ib^j \to (-1)^i$, $a^ib^j \to (-1)^{i+j}$.
- **72.27.** $n^{n/2}$. Использовать соотношения ортогональности для характеров для вычисления произведения матрицы на ее сопряженную.

		е	(12)	(123)
72.28. a)	φ_0	1	1	1
12.20. a)	φ_1	1	-1	1
	φ_0	2	0	-1

. Использовать задачи 72.26 и 70.19.

		е	(12)	(123)	(12)(34)	(1234)
б)	φ_0	1	1	1	1	1
	φ_1	-1	1	1	1	-1
	φ_2	3	1	0	-1	-1
	φ_3	3	-1	0	-1	1
	φ_4	2	0	-1	2	0

. Использовать задачи $72.26,\ 72.23,\ 72.24,\ 72.20.$

							_				
		1	-1	i	j	k					
в) -	φ_0	1	1	1	1	1					
	φ_1	1	1	1	-1	-1		Іспользовать задачи 72.26 и 2.20.			
	$arphi_2$	1	1	-1	1	-1					
	φ_3	1	1	-1	-1	1					
	φ_4	2	-2	0	0	()				
		e	b	b^2	a	ab					
	φ_0	1	1	1	1	1					
г)	φ_1	1	-1	1	-1	1	Пи	спользовать задачи 72.26 и 72.22.			
Γ)	φ_2	1	-1	1	1	-1	. 11	спользовать задачи 12.20 и 12.22.			
	φ_3	1	1	1	-1	-1					
	φ_4	2	0	-2	0	C)				
		е	b		b^2		a				
	φ_0	1	1		1		1				
д)	φ_1	2	$2\cos$	$\frac{2\pi}{5}$	$2\cos\frac{4\pi}{5}$		0	. Использовать задачи 72.26 и 72.22.			
	φ_2	2	$2\cos\frac{4\pi}{5}$		$2\cos$	$\frac{2\pi}{5}$	0				
e)		е	(12)(34)		(123)) ((132)				
	φ_0	1		1	1		1				
	φ_1	1		1	ε		ε^2	, где ε — корень третьей сте-			
	φ_2	1		1	ε^2	ε^2		пени из 1 в С. Использовать задачу 72.26.			
	φ_3	3	_	-1	0		0				

72.29. Нет, так как скалярный квадрат указанной функции не является целым числом.

72.30. В обозначениях к задаче 72.28, а) $F = 2\varphi_4 + 0, 5\varphi_1 + 0, 5\varphi_3$.

72.31. В обозначениях ответа к задаче 72.28, а) запишем $f_1=-\varphi_0+3\varphi_1+2\varphi_2,\ f_2=4\varphi_1+\varphi_2.$ Отсюда следует, что f_1 не является характером представления. f_2 — характер прямой суммы неприводимого двумерного представления группы \mathbf{S}_3 и четырех экземпляров нетривиального одномерного представления этой группы.

72.32. а) Доказать, что отображение A в $\mathbb C$, переводящее χ в $\chi(a)$, при некотором $a\in A$ есть характер группы A и доказать, что возникающее таким образом отображение $A\to \widehat A$ есть изоморфизм.

72.33. в) Вывести с помощью а) равенство

$$f(a) = \sum_{\chi \in \widehat{A}} f(\chi) \cdot \chi(a)$$

и доказать, что $\widehat{\widehat{f}}$ переходит в $(|A|)^{-1}f$ при изоморфизме задачи 72.32, в).

- **72.34.** Использовать равенство $(f, f)_A = \sum_{\chi \in \widehat{A}} (f, \chi)_A^2$.
- **72.37.** Приведем разложение характера представления Ψ на неприводимые характеры.
 - a) $\chi_{\Psi} = \Psi_0 + \Psi_1 + \Psi_2$.
 - б) $\chi_{\Psi} = \Psi_0 + \Psi_1 + \Psi_2 + \Psi_4$.
 - B) $\chi_{\Phi} = \Psi_0 + \Psi_1 + \Psi_2 + \Psi_3$.
 - **72.38.** $\chi_{\Psi} = n \cdot \chi_{\Phi}$.
- **72.39.** n^{m-1} . Доказать, что все неприводимые представления группы G входят в $ho^{\otimes m}$ с одинаковой кратностью.
 - **72.40.** a) $\chi_{\rho^2}=\Psi_0+\Psi_1+\Psi_2.$ f) $\chi_{\rho^3}=\Psi_0+\Psi_1+3\Psi_2.$

 - **72.41.** Если

$$\overline{n} = \left\lceil \frac{n+1}{2} \right\rceil, \qquad \overline{m} = \left\lceil \frac{m}{2} \right\rceil,$$

то кратность равна $\binom{\overline{n}-1}{\overline{m}}$.

- 72.42. Рассмотреть представление на пространстве кососимметрических дважды контравариантных тензоров.
 - **72.43.** В обозначениях ответа к задаче 72.28, a):

 - **73.2.** a) $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. 6) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.
 - B) $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. Γ) $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.
 - д) $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. e) $\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$.
 - **73.3.** б) и г).
- **73.4.** В том случае, когда для любых k, λ в жордановой форме матрицы Aчисло жордановых клеток порядка k с собственным значением λ равно числу жордановых клеток порядка k с собственным значением $-\lambda$.
 - **73.5.** а) Всякое представление имеет вид $R_A(t) = e^{(\ln t)A}$, $A \in \mathbf{M}_n(\mathbb{C})$.
 - б) Всякое представление эквивалентно представлению вида

$$R_{A,B}(t) = \begin{pmatrix} e^{\ln|t|\cdot|A|} & 0 \\ 0 & (\operatorname{sgn} t)e^{\ln|t|\cdot B} \end{pmatrix}, \quad A \in \mathbf{M}_p(\mathbb{C}), \quad B \in \mathbf{M}_q(\mathbb{C}).$$

Рассмотреть образ элемента $-1 \in \mathbb{R}^*$ при данном представлении, доказать, что его собственные подпространства инвариантны, и воспользоваться а).

в) Всякое представление эквивалентно представлению вида

$$z o egin{pmatrix} z^{k_1} & & 0 \\ & z^{k_2} & \\ & & \ddots \\ 0 & & z^{k_n} \end{pmatrix}, \quad k_1, \dots, k_n \in \mathbb{Z}.$$

Доказать, что представление аддитивной группы $\mathbb C$, получаемое как композиция гомоморфизма $\mathbb C \to \mathbb C^*$ $(t \to e^t)$ и представления группы $\mathbb C^*$, имеет вид P_A (см. задачу 73.1) и $e^{2\pi i A} = E$. Затем доказать, что матрица A подобна целочисленной диагональной матрице.

г) Всякое представление эквивалентно представлению вида

$$z o egin{pmatrix} z^{k_1} & & 0 \\ & z^{k_2} & \\ & & \ddots & \\ 0 & & & z^{k_n} \end{pmatrix}, \quad k_1, \dots, k_n \in \mathbb{Z}.$$

Рассмотреть представление аддитивной группы поля \mathbb{R} , получаемое как композиция гомоморфизма $\mathbb{R} \to \mathbf{U}$ $(t \to e^{it})$, и представления группы \mathbf{U} , затем воспользоваться задачей 73.1.

- **73.6.** Да; доказать, что всякую невырожденную комплексную квадратную матрицу можно представить в виде e^A , и воспользоваться задачей 73.1.
 - **73.7.** Линейные оболочки наборов собственных векторов для A.
- **73.9.** Рассмотреть ограничение представления Φ_n на подгруппу диагональных матриц.
- **73.10.** д) Доказать, что равенство имеет место на подмножестве диагонализируемых матриц.
 - 73.11. Заметить, что

$$\mathbf{SU}_2(\mathbb{C}) = \{ A \in \mathbb{H} \mid (A, A) = 1 \}.$$

Доказать, что если $A \in \mathbf{SU}_2(\mathbb{C})$ имеет собственные значения $e^{\pm i\varphi}$, то оператор P(A) есть поворот пространства \mathbb{H}_0 на угол 2φ вокруг оси, проходящей через $A-\frac{1}{2}(\operatorname{tr} A)E \in \mathbb{H}_0$.

- б) Доказать, что группа $R(\mathbf{SU}_2(\mathbb{C}) \times \mathbf{SU}_2(\mathbb{C}))$ транзитивно действует на единичной сфере в \mathbb{H} , и воспользоваться a).
- в) Комплексификация пространства \mathbb{H}_0 есть подпространство матриц вида $\begin{pmatrix} a & b \\ c & -a \end{pmatrix}$ в $\mathbf{M}_2(\mathbb{C})$. Искомый изоморфизм осуществляется отображением, сопоставляющим такой матрице многочлен $f(x,y) = -bx^2 + 2axy + cy^2$.
- **73.12, 73.13.** См.: *Супруненко Д.А.* Группы матриц. М.: Наука, 1972. Гл. V.

Приложение

ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

§ V. Элементы теории представлений

Для изложения основных определений и первоначальных результатов в теории представлений групп традиционно используется несколько разных способов. При дальнейшем развитии теории выясняются связи между различными вариантами определений и вырабатываются способы "перевода с одного языка на другой". Мы не имеем в виду определенного способа первоначального изложения, считая целесообразным ознакомить изучающих с основными способами, принятыми в литературе, и дать возможность преподавателю найти задачи, использующие удобные ему варианты изложения.

Напомним в основных чертах эти основные подходы к построению теории представлений или варианты терминологии.

А. Терминология линейных представлений Линейным представлением группы G на пространстве V называется гомоморфизм $\Phi\colon G \to \mathbf{GL}(V)$ группы G в группу невырожденных линейных операторов на V. Размерность пространства V называется размерностью или степенью представления. Гомоморфизмом представления Φ группы G на пространстве V в представление Ψ группы G на пространстве W называется линейное отображение $\alpha:V\to W$, для которого $\alpha(\Phi(g)v)=\Psi(\alpha(v))$ при всех $g\in G,\ v\in V$. Если гомоморфизмом является изоморфизмом пространств, то представления Φ и Ψ называют изоморфными.

Подпространство U в пространстве V представления Φ группы G называют инвариантным, если $\Phi(g)U=U$ при всех $g\in G$. Представление ненулевой степени, не имеющее инвариантных подпространств, отличных от нуля и всего пространства, называют неприводимым.

Б. Терминология матричных представлений Матричным представлением группы G степени n над полем F называется гомоморфизм $\rho: G \to \mathbf{GL}_n(F)$ группы G в группу обратимых матриц порядка n над полем F. Два матричных представления ρ и σ группы G одного и того же порядка n над F называют эквивалентными (изоморфными), если существует такая невырожденная матрица $C \in \mathbf{M}_n(F)$, что $\rho(g) = C^{-1}\sigma(g)C$ для всех $g \in G$.

Матричное представление называется $\mathit{приводимым}$, если оно эквивалентно представлению, в котором все матрицы имеют один и тот же "угол нулей", т. е. имеют вид $\begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$, где A и B — матрицы порядков r и s, одинаковых для всех $g \in G$.

В. Терминология линейных G-пространств Пусть G — группа, V — линейное пространство. Говорят, что на V задана структура линейного G-пространства, если на $G \times V$ определена операция со значениями в V, причем отображение $v \to g * v$ является линейным отображением пространства V в себя и $g_1*(g_2*v) = (g_1g_2)*v$ при всех $g_1,g_2 \in G, v \in V$. Два G-пространства V и W называют изоморфными, если существует такой изоморфизмом пространств $\alpha: V \to W$, что $\alpha(g*v) = g*\alpha(v)$ для всех $g \in G, v \in V$.

Подпространство U в G-пространстве V называют uнвариантным, если $g*u\in U$ при всех $g\in G,\,u\in U$. Ненулевое G-пространство V называют uнеприводимым, если оно не имеет нетривиальных инвариантных подпространств.

Г. Терминология модулей над групповой алгеброй Пространство V называют модулем над групповой алгеброй F[G] или F[G]-модулем, если на $F[G] \times V$ определена операция $(a,v) \to a \cdot v$ со значениями в V, для которой $a_1(a_2v) = (a_1a_2) \cdot v$. Два F[G]-модуля V и W изоморфны, если существует линейное отображение $\alpha \colon V \to W$, для которого $\alpha(a \cdot v) = a \cdot \alpha(v)$ при всех $a \in F[G], v \in V$.

Подпространство U в F[G]-модуле V называют nod mod y nem, если $a \cdot u \in U$ при всех $a \in F[G]$, $u \in U$, и ненулевой модуль V называют $npoc m \omega m$ или nen p u e o d u e

Отметим, что, имея структуру F[G]-модуля на V и рассматривая группу G как подмножество в F[G] (суммы с одним ненулевым коэффициентом, равным 1), при ограничении операции на $G \times V$ мы получаем на V структуру G-пространства $(g,v) \to g \cdot v$.

Наоборот, имея на V структуру G-пространства, мы можем положить

$$\left(\left(\sum \alpha_g \cdot g\right), v\right) \to \sum \alpha_g(g * v),$$

и это превращает V в F[G]-модуль.

Если Φ — линейное представление группы G на V, то операция

$$(g,v) \to \Phi(g)v$$

задает на V структуру G-пространства.

Если V-G-пространство и $\Phi(g)\colon v\to g*v$, то $\Phi(g)$ — линейный оператор на V, и легко показать, что $g\to\Phi(g)$ — линейное представление группы G на пространстве V.

Если имеется линейное представление группы G на n-мерном пространстве V, то, выбирая в V базис и сопоставляя каждому элементу $g \in G$ матрицу оператора $\Phi(g)$ в этом базисе, мы получаем отображение G в $\mathbf{GL}_n(F)$, которое оказывается матричным представлением группы G. Другой выбор базиса приводит к эквивалентному матричному представлению.

Если задано n-мерное матричное представление ρ группы G, то, сопоставляя каждому элементу $g \in G$ оператор умножения на матрицу $\rho(g)$ в пространстве F^n , мы получаем линейное представление группы G на пространстве F^n .

Нетрудно проверить, что указанные способы перехода от F[G]-модулей к G-пространствам, линейным и матричным представлениям и обратно переводят неприводимые объекты в неприводимые и изоморфные — в изоморфные.

Операция умножения в F[G] задает на пространстве V=F[G] структуру F[G]-модуля; соответствующее линейное представление группы G на V называют регулярным представлением. Мы можем также задавать регулярное представление, рассматривая пространство V с базисом (e_g) , $g\in G$, и определяя отображение $R:G\to \mathbf{GL}(V)$ правилом $R(h)e_g=e_{hg}$ при всех $g,h\in G$. Базис (e_g) называется каноническим базисом пространства регулярного представления.

Приведем основные теоремы о представлениях групп.

Теорема 1. Пусть G' — коммутант группы G и $\varphi: G \to G/G'$ — канонический гомоморфизм. Тогда формула $\psi \to \psi \circ \varphi$ устанавливает взаимно однозначное соответствие между множествами одномерных представлений групп G и G/G'.

T е о р е м а $\ 2$ (Машке). Пусть группа $\ G$ конечна $\ u$ char $\ F$ не делит $\ |G|$. Тогда всякое конечномерное представление группы $\ G$ над полем $\ F$ изоморфно прямой сумме неприводимых представлений.

T е о р е м а 3. Пусть группа G конечна, поле F алгебраически замкнуто и char F не делит |G|. Тогда число различных неприводимых представлений группы G над полем F равно числу классов сопряженных элементов группы G, а сумма квадратов размерностей этих представлений равна порядку группы G.

§ VI. Список определений

Приведем список основных понятий, использованных в задачнике.

Алгебра банахова — полная нормированная алгебра.

Алгебра Грассмана векторного пространства— внешняя алгебра пространства.

Алгебра групповая (группы G над полем F) — множество конечных формальных линейных комбинаций вида $\sum_g \alpha_g g \ (g \in G, \ a_g \in F)$ с естественным сложением и умножением на элементы поля F и операцией умножения

$$\alpha_a q \cdot \alpha_h h = \alpha_a \alpha_h q h$$
,

распространяющейся на линейные комбинации по закону дистрибутивности.

Алгебра дифференциальных операторов — алгебра Вейля.

Алгебра нетерова (коммутативная)— коммутативная алгебра, в которой всякая строго возрастающая последовательность идеалов конечна.

Алгебра нормированная (над нормированном полем K) — алгебра с функцией $\|x\|$, $x\in A$, принимающей неотрицательные вещественные значения, причем:

а) $||x|| \ge 0$ и ||x|| = 0 тогда и только тогда, когда x = 0;

- $6) ||x + y|| \le ||x|| + ||y||;$
- в) $\|\lambda x\| = |\lambda| \cdot \|x\|$, где $\lambda \in K$, $x \in A$;
- $||xy|| \le ||x|| \cdot ||y||.$

Алгебра полупростая — алгебра, не имеющая ненулевых двусторонних идеалов, состоящих из нильпотентных элементов; в коммутативном случае алгебра без нильпотентных элементов, отличных от 0.

Алгебра простая — алгебра, не имеющая двусторонних идеалов, отличных от 0 и всей алгебры.

Алгебра формальных степенных рядов (от переменного x над полем K) — множество формальных выражений вида $\sum_{k=0}^{\infty} a_k x^k$ ($a_k \in K$) с естественнымсложением и умножением на элементы поля K и операцией умножения

$$\sum_{k=0}^{\infty}a_kx^k\cdot\sum_{k=0}^{\infty}b_kx^k=\sum_{k=0}^{\infty}c_kx^k,\quad\text{где}\quad c_k=\sum_{\substack{i+j=k\\i\geqslant 0,\ j\geqslant 0}}a_ib_j.$$

Алгебра центральная — алгебра, центр которой совпадает с $1\cdot K$, где 1 — единица алгебры, K — ее основное поле.

Векторное пространство нормированное (над нормированном полем K) — векторное пространство с функцией $\|x\|$, принимающей неотрицательные вещественные значения, причем:

- а) $||x|| \ge 0$ и ||x|| = 0 тогда и только тогда, когда x = 0;
- 6) $||x + y|| \le ||x|| + ||y||$;
- в) $\|\lambda x\| = |\lambda| \cdot \|x\|$, где $\lambda \in K$, $x \in V$.

Вращение — движение, сохраняющее ориентацию пространства и имеющее неподвижную точку.

K-вложение — инъективный K-гомоморфизм.

Гомоморфизм унитарный — гомоморфизм колец (алгебр), при котором единица переходит в единицу.

K-гомоморфизм — гомоморфизм алгебр над полем K; термин употребляется в случае, когда алгебры рассматриваются одновременно над некоторым расширением поля K.

Группа делимая — абелева группа, в которой для любого элемента a и любого целого числа n уравнение nx = a имеет решение.

Группа диэдра \mathbf{D}_n — группа движений плоскости, отображающих правильный n-угольник на себя.

Группа кватернионов \mathbf{Q}_8 — множество элементов ± 1 , $\pm i$, $\pm j$, $\pm k$ с умножением элементов, как в теле кватернионов.

 Γ руппа Kлейна V_4 — группа перестановок

$${e, (12)(34), (13)(24), (14)(23)}$$

и всякая изоморфная ей группа.

Группа периодическая — группа, все элементы которой имеют конечный порядок.

Движение — отображение евклидова пространства в себя, сохраняющее расстояния между точками.

Действие группы на множестве — группа G действует на множестве M, если каждому элементу $g\in G$ поставлена в соответствие биекция $M\to M$ и $g_1g_2(m))=(g_1g_2)(m)$ для любых $g_1,g_2\in G,\ m\in M$.

6 А. И. Кострикин

Декремент перестановки — разность между степенью перестановки и числом циклов в ее разложении на независимые циклы (с учетом циклов длины 1).

Делитель нуля в кольце — элемент a, для которого существует элемент $b \neq 0$ такой, что ab = 0 (левый делитель нуля).

Eдиницы матричные — квадратные матрицы E_{ij} $(i,j=1,\ldots,n)$, у которых на пересечении i-й строки и j-го столбца стоит 1, а остальные элементы равны 0.

Идеал максимальный — идеал кольца (алгебры), не содержащийся строго ни в каком идеале, отличном от всего кольца (всей алгебры).

Идеал простой (коммутативного кольца) — идеал, факторкольцо (факторалгебра) по которому не содержит делителей нуля.

Идемпотент — элемент кольца, совпадающий со своим квадратом.

 ${\it Идемпотенты}$ ортогональные — идемпотенты, произведение которых равно нулю.

Кватернион — элемент тела кватернионов.

 K ватернион $\mathit{чистый}$ — кватернион, действительная часть которого равна 0.

Кольцо без делителей нуля — кольцо, не содержащее делителей нуля, отличных от 0.

Кольцо многочленов от некоммутирующих переменных x_1, \ldots, x_n (над кольцом A) — множество формальных выражений вида

$$\sum_{k_1,\ldots,k_m} a_{k_1,\ldots,k_m} x_{k_1} \times \ldots \times x_{k_m} \quad (a_{k_1,\ldots,k_m} \in A)$$

с естественными операциями сложения и умножения одночленов

$$a_{k_1,\ldots,k_m}x_{k_1}\times\ldots\times x_{k_m}\cdot b_{i_1,\ldots,i_s}x_{i_1}\times\ldots\times x_{i_s}=$$

$$=a_{k_1,\ldots,k_m}b_{i_1,\ldots,i_s}x_{k_1}\times\ldots\times x_{k_m}x_{i_1}\times\ldots\times x_{i_s},$$

распространяемыми на суммы по закону дистрибутивности.

Кольцо нетерово (коммутативное) — коммутативное кольцо, в котором всякая строго возрастающая последовательность идеалов конечна.

Кольцо простое — кольцо с ненулевым умножением, не имеющее двусторонних идеалов, отличных от нулевого и самого кольца.

Кольцо целых гауссовых чисел — кольцо, состоящее из комплексных чисел $x+yi\ (x,y\in\mathbb{Z}).$

Коммутант группы — подгруппа, порожденная всеми коммутаторами элементов группы.

Коммутатор элементов группы x u y - элемент группы $xyx^{-1}y^{-1}$.

Коммутатор кольца x и y — элемент кольца xy - yx.

Координаты барицентрические — координаты $\lambda_0, \lambda_1, \ldots, \lambda_n$ точки x аффинного пространства относительно системы точек x_0, x_1, \ldots, x_n , находящихся в общем положении, определяющиеся равенством

$$x = \sum_{i=0}^n \lambda_i x_i,$$
 где $\sum_{i=0}^n \lambda_i = 1.$

K opas мерность подпространства — разность между размерностью пространства и размерностью подпространства.

Корень (комплексный) из 1— комплексное число, некоторая степень которого с ненулевым показателем равна 1.

Корень (комплексный) из 1 первообразный степени n — корень из 1, не являющийся корнем из 1 степени, меньшей n.

Матрица верхняя (*нижняя*) *треугольная* — матрица, у которой элементы, стоящие ниже (выше) главной диагонали, равны 0.

Матрица Грама (системы векторов e_1, \ldots, e_n евклидова пространства) — матрица $((e_i, e_j))$ порядка n.

Mатрица Kососимметрическая — матрица A, для которой ${}^tA=-A$.

 $\underline{Mampuua}$ косоэрмитова — комплексная матрица, для которой ${}^tA==-\overline{A},$ где \overline{A} — матрица, полученная из A заменой ее элементов на комплексно сопряженные.

Матрица нильпотентная — матрица, некоторая степень которой равна нулевой матрице (нильпотентный элемент кольца матриц).

Матрица нильтреугольная— верхняя (или нижняя) треугольная матрица с нулями на главной диагонали.

Mатрица ортогональная — матрица A, для которой ${}^t A = A^{-1}$.

Матрица перестановки — матрица, у которой в каждой строке и в каждом столбце стоит ровно один элемент, равный 1, а остальные элементы равны 0.

Матрица периодическая — матрица, некоторая степень которой равна единичной матрице.

Матрица присоединенная — матрица, транспонированная к матрице, составленной из алгебраических дополнений элементов данной матрицы.

Матрица симметрическая — матрица A, для которой ${}^t A = A$.

Матрица треугольная — верхняя или нижняя треугольная матрица.

Матрица унимодулярная — матрица с определителем 1.

Mатрица унитарная — комплексная матрица A, для которой ${}^t\overline{A}==A^{-1}$, где ${}^t\overline{A}$ — матрица, полученная из tA заменой ее элементов на комплексно сопряженные.

Матрица унитреугольная — треугольная матрица с единицами на главной диагонали.

Mатрица элементарная — матрица вида $E+(\gamma-1)E_{ij},\ \gamma \neq 0$ (матрица I типа), $E+\alpha E_{ij},\ \alpha \neq 0$ (II типа); иногда элементарными называют также матрицы-перестановки.

Mатрица эрмитова — комплексная матрица A, для которой ${}^tA=\overline{A}$, где \overline{A} — матрица, полученная из A заменой ее элементов на комплексно сопряженные.

Многочлен круговой (деления круга) $\Phi_n(x)$ — многочлен

$$\prod_{k=1}^{\varphi(n)} (x - \varepsilon_k),$$

где $\varepsilon_1,\dots,\varepsilon_{\varphi(n)}$ — первообразные корни степени n из 1.

Многочлен минимальный линейного оператора— многочлен наименьшей степени, аннулирующий данный оператор; минимальный многочлен матрицы оператора.

Многочлен минимальный матрицы— многочлен наименьшей степени, аннулирующий данную матрицу.

 ${\it Modynb}$ неприводимый — ненулевой модуль, не имеющий подмодулей, отличных от нулевого и самого модуля.

Модуль приводимый — ненулевой модуль, не являющийся неприводимым. Модуль унитарный — модуль, в котором единица кольца действует тожественно

Mодуль циклический — модуль, в котором существует такой элемент m_0 , что для любого элемента m модуля M существует элемент кольца a такой, что $am_0=m$.

Нильрадикал кольца — наибольший (в смысле теоретико-множественного включения) двусторонний идеал кольца, состоящий из нильпотентных элементов.

Нормализатор подгруппы — наибольшая подгруппа, в которой данная подгруппа является нормальной.

 ${\it Hopmaльнoe}$ замыкание элемента группы — наименьшая нормальная подгруппа, содержащая данный элемент.

Оператор кососимметрический — линейный оператор \mathcal{A} , для которого $(\mathcal{A}x,y)=-(y,\mathcal{A}x)$ при любых векторах x и y (т. е. $\mathcal{A}^*=-\mathcal{A}$).

Оператор косоэрмитов — линейный оператор A в эрмитовом пространстве, для которого $(\mathcal{A}x,y)=-(x,A^*y)$ при любых векторах x и y (т. е. $\mathcal{A}^*=-\mathcal{A}$).

Оператор нормальный — линейный оператор в евклидовом или метрическом пространстве, перестановочный со своим сопряженным оператором.

Оператор ортогональный — линейный оператор \mathcal{A} , сохраняющий скалярное произведение векторов $((\mathcal{A}x, \mathcal{A}y) = (x, y)$ для любых векторов x и y (т. е. $\mathcal{A}^* = \mathcal{A}^{-1}$).

 $One pamop\ nonynpocmoй\ -$ линейный оператор, у которого всякое инвариантное подпространство обладает инвариантным дополнительным подпространством.

Оператор самосопряженный — линейный оператор в евклидовом или эрмитовом пространстве, для которого $(\mathcal{A}x,y)=(x,\mathcal{A}y)$ при любых векторах x и y (т. е. $\mathcal{A}^*=\mathcal{A}$).

Оператор симметрический — линейный оператор в евклидовом или эрмитовом пространстве, для которого $(\mathcal{A}x,y)=(x,\mathcal{A}y)$ при любых векторах x и y (т. е. $\mathcal{A}^*=\mathcal{A}$).

Оператор сопряженный (к оператору A) — линейный оператор A^* , для которого $(Ax, y) = (x, A^*y)$.

Оператор унитарный — линейный оператор \mathcal{A} в эрмитовом пространстве, сохраняющий скалярное произведение векторов $(\mathcal{A}x, \mathcal{A}y) = (x, y)$ для любых векторов x, y (т. е. $\mathcal{A}^* = \mathcal{A}^{-1}$).

Оператор эрмитов — линейный оператор \mathcal{A} в эрмитовом пространстве, для которого $(\mathcal{A}x,y)=(x,\mathcal{A}y)$ при любых векторах x и y (т. е. $\mathcal{A}^*=\mathcal{A}$).

Определитель Грама — определитель матрицы Грама.

Opбuma элемента — множество образов элемента при действии всех элементов группы.

Отражение (в пространстве U параллельно дополнительному подпространству V) — линейный оператор, ставящий каждому вектору $x=u+v\;(u\in U,\,v\in V)$ в соответствие вектор u-v.

Параллелепипед (со сторонами $a_1, ..., a_k$) — множество линейных комбинаций $\sum_{i=1}^k \lambda_i a_i$ ($0 \le \lambda_i \le 1, i = 1, ..., k$).

 $\ensuremath{\textit{Перестановка}}$ — взаимно однозначное отображение конечного множества на себя; подстановка.

Период группы — наименьшее натуральное число n, для которого $x^n = e$ для любого элемента группы x.

Периодическая часть группы — множество элементов группы, имеющих конечный порядок.

Подгруппа максимальная — подгруппа, не содержащаяся строго ни в какой подгруппе, отличной от всей группы.

Подпространство дополнительное (к подпространству U) — подпространство V, для которого все пространство равно $U \oplus V$.

Подпространство вполне изотропное (относительно симметрической или полуторалинейной функции f(x,y) — подпространство, на котором f(x,y) принимает нулевое значение.

Поле разложения многочлена — наименьшее расщепляющее поле многочлена. Поле расшепляющее многочлена — расширение поля коэффициентов многочлена, над которым он раскладывается в произведение линейных множителей.

Поле расщепляющее многочленов — расширение поля коэффициентов многочленов, над которым все данные многочлены раскладываются в произведение линейных множителей.

Пополнение метрического пространства — пополнение относительно последовательности Коши.

Проектирование (на подпространство U параллельно дополнительному подпространству V) — линейный оператор, ставящий каждому вектору x=u+v ($u\in U,\,v\in V$) в соответствие вектор u.

Произведение полупрямое групп G и H — множество $G \times H$ с операцией

$$(x,y)(z,t) = (x \cdot \varphi(y)(z), yt),$$

где $\varphi: H \to \operatorname{Aut} G$ — некоторый гомоморфизм.

Символ Кронекера — $\delta_{ij} = 1$, $\delta_{ij} = 0$ при $i \neq j$ (i, j = 1, ..., n).

След матрицы— сумма элементов матрицы, стоящих на главной диагонали.

След оператора — след матрицы данного оператора.

Тело кватернионов — векторное пространство над полем $\mathbb R$ с базисом 1,i,j,k, где 1 — единица умножения, $i^2=j^2=k^2=-1$, ij=-ji=k, jk=-kj=i, ki=-ik=j; алгебра обобщенных кватернионов при $\alpha=\beta=1$.

 Φ ункция $M\ddot{e}$ биуса — функция натурального числа n, определяемая равенством

$$\mu(n) = \left\{ \begin{array}{ll} 1 & \text{при } n = 1, \\ (-1)^r, & \text{если } n - \text{произведение } r \text{ различных простых чисел,} \\ 0 & \text{в остальных случаях.} \end{array} \right.$$

 Φ ункция Эйлера — при n=1 равна 1, при n>1 равна числу натуральных чисел, меньших n и взаимно простых с n.

Центр группы (кольца) — множество элементов, перестановочных со всеми элементами группы (кольца).

 $\it Элемент$ нильпотентный кольца — элемент, некоторая степень которого равна $\it 0$.

Элементарные преобразования строк матрицы над кольцом — умножение строки на обратный элемент кольца (I тип), прибавление к строке другой строки, умноженной на элемент кольца (II тип).

 $p\text{-}\mathit{epynna}$ — группа, все элементы которой имеют порядок вида p^n $(n\in\mathbb{N}).$

p-подгруппа силовская — максимальная подгруппа, являющаяся p-подгруппой.

§ VII. Список обозначений

 tA — транспонированная матрица для матрицы A.

 \widehat{A} — присоединенная матрица для матрицы A.

 \mathcal{A}^* — сопряженный оператор для линейного оператора \mathcal{A} .

 ${\bf A}_n$ — знакопеременная группа степени n (группа четных перестановок на множестве $\{1,2,\ldots,n\}$).

|A| — число элементов множества A.

[A,B] — коммутатор AB-BA матриц A и B.

 $\operatorname{Aut} G$ — группа автоморфизмов группы G.

Alt — оператор альтернирования в пространстве $\mathbb{T}_0^q(V)$.

(a) — идеал кольца, порожденный элементом a.

 $\langle a \rangle$ — подгруппа (подкольцо, подалгебра, подпространство), порожденная элементом a.

 $\langle a \rangle_n$ — циклическая группа порядка n с образующим элементом a.

 $\arg z$ — аргумент комплексного числа z: считается, что $0 \le \arg z < 2\pi$.

 \mathbb{C} — множество (поле, аддитивная группа) комплексных чисел.

 \mathbf{D}_{n} — группа диэдра (группа движений правильного n-угольника).

 $\mathbf{D}_{n}(A)$ — множество диагональных матриц порядка n над кольцом A.

 \mathcal{D} — оператор дифференцирования в функциональных пространствах.

 $\mathrm{diag}\,(\lambda_1,\ldots,\lambda_n)$ — диагональная матрица с элементами $\lambda_1,\ldots,\lambda_n$ на главной диагонали.

 $End\ A$ — кольцо эндоморфизмов абелевой группы A (кольца A).

 e^A — сумма ряда Тейлора функции e^x при x = A (A — матрица).

 E_{ij} (матричная единица) — матрица, у которой элемент на пересечении i-й строки с j-м столбцом равен 1, а остальные элементы равны 0.

 \mathbb{F}_q — поле из q элементов.

 G_a — стационарная подгруппа элемента $a\in M$ при действии группы G на множестве M.

G' — коммутант группы G.

 $\mathbf{GL}(V)$ — группа невырожденных линейных операторов в векторном пространстве V.

 $\dot{\mathbf{GL}}_n(F)$ — группа невырожденных линейных операторов в n-мерном векторном пространстве над полем F, группа невырожденных матриц порядка n над полем F.

 $\mathbf{GL}_n(q)$ — то же самое, что и $\mathbf{GL}_n(\mathbb{F}_q)$.

 \mathbb{H} — тело кватернионов.

 $\operatorname{Hom}(A,B)$ — группа гомоморфизмов группы A в абелеву группу B.

 K^* — группа обратимых элементов кольца K.

K(a) — расширение поля K, полученное присоединением элемента a.

F[G] — групповая алгебра группы G над полем K.

K[x] — кольцо многочленов от переменного x с коэффициентами из кольца K.

 $K[x]_n$ — множество многочленов из кольца K[x] степени, не большей n.

K(x) — поле рациональных функций от переменного x с коэффициентами из поля K.

K[[x]] — кольцо формальных степенных рядов от переменного x с коэффициентами из кольца K.

 $K[x_1,\ldots,x_n]$ — кольцо многочленов от переменных x_1,\ldots,x_n с коэффициентами из кольца K.

 $K\{x_1,\ldots,x_n\}$ — кольцо многочленов от некоммутирующих переменных x_1,\ldots,x_n с коэффициентами из кольца K.

L(V) — множество линейных операторов в векторном пространстве V.

 $\ln A$ — сумма ряда Тейлора функции $\ln (1-x)$ при x=E-A (A — матрица).

 $\mathbf{M}_n(K)$ — кольцо (алгебра) матриц порядка n над кольцом K .

 \mathbb{N} — множество натуральных чисел.

N(A) — нильрадикал алгебры A.

N(H) — нормализатор подгруппы H.

 $\mathbf{N}_{A/K}(a)$ — норма элемента a алгебры A над полем K.

 $n\mathbb{Z}$ — множество целых чисел, кратных числу n.

 $\mathbf{O}_{n}(K)$ — группа ортогональных матриц порядка n над полем K.

 \mathbb{Q} — множество (поле, аддитивная группа) рациональных чисел.

 \mathbb{Q}_p — поле p-адических чисел.

 \mathbb{R}_+ — множество (мультипликативная группа) положительных вещественных чисел.

rkA — ранг матрицы.

 $\operatorname{rk} \mathcal{A}$ — ранг линейного оператора \mathcal{A} .

 $\langle S \rangle$ — подгруппа (подкольцо, подалгебра, подпространство) с множеством порождающих S; аффинная оболочка множества S.

 \mathbf{S}_n — симметрическая группа степени n (группа перестановок множества $\{1,\dots,n\}$).

 \mathbf{S}_X — группа взаимно однозначных отображений множества X на себя.

 $\mathbf{SL}_{n}(K)$ — группа матриц с определителем 1 над полем K.

 $\mathbf{SL}_n(q)$ — то же самое, что $\mathbf{SL}_n(\mathbb{F}_q)$.

 $\mathbf{SO}_n(\mathbb{C})$ — группа ортогональных матриц с определителем 1 над полем K.

 $\mathbf{SU}_n(\mathbb{C})$ — группа унитарных комплексных матриц с определителем 1.

 \mathbf{SU}_n — то же самое, что и $\mathbf{SU}_n(\mathbb{C})$.

 $\mathbf{S}(V)$ — симметрическая алгебра векторного пространства V.

 $\mathbf{S}^q(V)-q$ -я симметрическая степень векторного пространства V.

Sym — оператор суммирования в пространстве $\mathbb{T}_0^q(V)$.

 $\mathbb{T}(V)$ — тензорная алгебра векторного пространства V.

 $\mathbb{T}_p^q(V)$ — векторное пространство тензоров типа (p,q) на векторном пространстве V.

 $\operatorname{tr} A$ — след матрицы A.

 $\operatorname{tr} \mathcal{A} - \operatorname{cлед}$ линейного оператора \mathcal{A} .

 $\operatorname{tr}_{A|K}(a)$ — след элемента a алгебры A над полем K.

 ${f U}-{f г}$ руппа комплексных чисел с модулем 1.

 \mathbf{U}_n — группа комплексных корней степени n из 1.

 \mathbf{U}_{p^∞} — группа комплексных корней степени p^n из 1 $(n\in\mathbb{N})$ (p — простое число).

 U° — ортогональное дополнение к подмножеству U векторного пространства в сопряженном пространстве.

 U^{\perp} — ортогональное дополнение к подмножеству U векторного пространства относительно заданной билинейной функции.

 $\mathbf{UT}_n(K)$ — группа унитреугольных матриц порядка n над полем K.

 \mathbf{V}_4 — группа Клейна.

 V^* — векторное пространство, сопряженное (двойственное) к пространству V.

 $V(a_1,\ldots,a_k)$ — объем параллелепипеда со сторонами a_1,\ldots,a_k .

 $x \wedge y$ — произведение элементов x,y в алгебре Грассмана векторного пространства.

 \mathbb{Z} — множество (кольцо, аддитивная группа) целых чисел; бесконечная циклическая группа.

 \mathbf{Z}_n — циклическая группа порядка n; кольцо вычетов по модулю n.

 \mathbb{Z}_p — кольцо целых p-адических чисел.

 $\mathbb{Z}[i]$ — кольцо целых гауссовых чисел.

 $\sqrt[n]{z}$ — множество комплексных корней степени n из числа $z\in\mathbb{C}$.

 $\mu(n)$ — функция Мебиуса.

 $\mu(a)$ — минимальный многочлен алгебраического элемента a.

 $\Lambda(V)$ — внешняя алгебра (алгебра Грассмана) векторного пространства V. $\Phi_n(x)$ — многочлен деления круга (круговой многочлен)

 $\prod_{k=1}^{\varphi(n)}(x-arepsilon_k)$, где $arepsilon_k$ — первообразный корень степени n из 1 $(k=1,\dots,arphi(n))$.

 $\varphi(n)$ — функция Эйлера.

 $\chi_{A|K}(a,x)$ — характеристический многочлен элемента a алгебры A над полем K .

 1_{X} — тождественное отображение множества X.

 2^{X} — множество всех подмножеств множества X.