UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

ALGEBRA Y ALGEBRA LINEAL 520142

PRACTICA 14. Matrices

Problema 1. Pruebe las siguientes proposiciones:

- a) Si A es cuadrada, entonces $A+A^t$ es simétrica y $A-A^t$ es antisimétrica.
- b) Toda matriz cuadrada es suma de una matriz simétrica y otra antisimétrica.
- c) Las matrices $A \cdot A^t$ y $A^t A$ son simétricas.
- d) Si A y B son ortogonales (M ortogonal ssi $M^{-1} = M^t$) entonces AB es ortogonal.
- e) Si A es simétrica y H es ortogonal entonces $H^{-1}AH$ es simétrica.
- f) Si A_{nxn} es simétrica y B_{nxm} entonces B^tAB es simétrica.
- g) Si A y B son simétricas entonces no necesariamente AB es simétrica.
- h) Si A es ortogonal entonces $det(A) = \pm 1$
- i) Si A es antisimétrica entonces $det(A) = (-1)^n det(A)$.

[En práctica: a, b, d y h]

Problema 2. Calcule la inversa de las siguientes matrices usando:

a) Operaciones elementales de filas b) Matriz adjunta

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 4 \\ 0 & 2 \end{pmatrix} \qquad C = \begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix}$$

$$D = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 3 & 4 \\ -1 & 0 & -2 \end{pmatrix} \qquad E = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{pmatrix} \qquad H = \begin{pmatrix} 1 & 0 & 2 \\ 2 & -1 & 3 \\ 4 & 1 & 8 \end{pmatrix}$$

Problema 3. En cada caso calcule det(A) y $det(A^{-1})$

a)
$$A = \begin{pmatrix} 1 & 1 \\ 2 & 4 \end{pmatrix}$$
 b) $A = \begin{pmatrix} 2 & -1 & 1 \\ 4 & 1 & -3 \\ 2 & -1 & 3 \end{pmatrix}$

c) ¿Cuál es la relación entre det(A) y $det(A^{-1})$?

[En práctica: a]

Problema 4. Sea $A \in M_{2x2}(\mathbb{R}) \wedge det(A) = 2$. Calcule:

- a) $det(A^2)$ b) $det(A^3)$ c) $det(A^n)$, $n \in \mathbb{N}$

- d) det(2A) e) det(3A) f) $det(k \cdot A)$, $k \in \mathcal{R}$

Problema 5. Sean A_{nxn} y B_{nxn}

- a) Si $A^{-1} = \frac{1}{25}A^t$ calcule det(A)
- b) Si det(A) = a y $det(B) = \sqrt{2}$ calcule $det(2A \cdot 3B)$
- c) Si $A^{-1} = 2A^t$ calcule det(A).

[En práctica (b)]

Problema 6. Pruebe que si $A = \begin{pmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{pmatrix}$ entonces det(A) = (b-a)(c-a)(c-b)

Problema 7. Calcule $\lambda \in \mathbb{R}$ tal que $det(A - \lambda I) = 0$, donde $A = \begin{pmatrix} 0 & 1 & 2 \\ -1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$

En práctica

Problema 8. Sea $A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 3 & 4 \\ -1 & 0 & -2 \end{pmatrix}$; muestre que $A^{-1} = -\frac{1}{3}(A^2 - 2A - 4I)$

Problema 9. Calcule, si es que existen valores de $k \in \mathbb{R}$, para los cuales las matrices siguientes tienen inversa

a)
$$A = \begin{pmatrix} k & 1 & 1 \\ 1 & k & 1 \\ 1 & 1 & k \end{pmatrix}$$
 b) $B = \begin{pmatrix} 2 & -2 & 6 \\ 0 & k & 4 - k \\ 0 & k & -k \end{pmatrix}$ c) $C = \begin{pmatrix} 3 & 4 & -k \\ 2 & 6 & -2k \\ 1 & 3 & 1 + k \end{pmatrix}$
[En práctica(a)]

Problema 10. Sea
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- a) Calcule números reales a y b, tales que: $A^2 + aA + bI = \theta$.
- b) De la ecuación anterior calcule una expresión para la inversa de A.
- c) Usando la expresión obtenida en (b) calcule la inversa de A.
- d) Compruebe el resultado obtenido.

[En práctica]

Problema 11. Calcule el rango de las siguientes matrices

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 2 \\ 4 & 8 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 2 & -3 \\ 0 & 4 & 0 \end{pmatrix}$$

$$D = \begin{pmatrix} 1 & 2 & 1 \\ 4 & 2 & 3 \\ 3 & 0 & 3 \end{pmatrix} \qquad E = \begin{pmatrix} 2 & 1 & 3 & 1 & 2 \\ 1 & 2 & 1 & 3 & 2 \\ 3 & 3 & 2 & 2 & 3 \\ 4 & 5 & 3 & 5 & 5 \end{pmatrix}$$

Problema 12. Calcule, si es que existen, valores de $k \in \mathbb{R}$ para que las matrices tengan rango tres, dos o uno

$$A = \begin{pmatrix} k & 1 & 1 \\ 1 & k & 1 \\ 1 & 1 & k \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & k & 1 & k \\ 1 & 1 & k - 1 & 1 \end{pmatrix} \qquad C = \begin{pmatrix} 2 & -2 & 6 & k \\ 0 & k & -k & 1 \\ 0 & k & k & k \end{pmatrix}$$
[En práctica B]