AIL 862

Lecture 23

Confidence Prediction in DCVA

Confidence Prediction in DCVA

Detecting specialized change with DCVA

Detecting specialized change with DCVA

Detecting specialized change with DCVA

Other possible approaches

DCVA + supervised training on few examples (maybe with U-Net)

Other possible approaches

 Supervised training on few examples (maybe with U-Net) + postclassification

Other possible approaches

• DCVA + CLIP

Supervised CD

Dependent on availability of training data

Yields good result if abundant bi-temporal training data is available

Supervised or Unsupervised

Any semantic segmentation architecture can be used for supervised CD. How?

Siamese

Siamese with ViT?

Siamese-Multitask

Supervised CD via unsupervised CD

Deep Supervision

Figure from Pyramid Scene Parsing Network

Deep Supervision

Channel attention

• Channel attention is a broader concept that refers to any technique in a CNN that focuses on the importance of different channels within the feature maps.

• "Squeeze-and-Excitation Networks" by Hu et al.

 Seeks to strengthen the representational power of a CNN by enhancing the quality of channel relationships

Multi-sensor input

Multi-sensor Siamese

Multi-class output

- Class imbalance
- Concept of few-shot filtering
- Few shot filtering hyperparameters

TransUNet recap

TransUNet CD

TransUNetCD: A Hybrid Transformer Network for Change Detection in Optical Remote-Sensing Images

Domain Adaptation

• We briefly covered domain adaptation previously.

Unsupervised Domain Adaptation

Unsupervised Domain Adaptation

Batch Normalization based DA methods align feature distributions through feature standardization by setting mean of features to 0 and variance to 1.

Ack: Subhankar Roy, UniTn for this slide

Batch Normalization

 Generally, running mean and variance are estimated during training.

• However, BN (for domain adaptation) suggests to estimate the above from test time minibatches.

Unsupervised Domain Adaptation

• Domain Translation (GAN? However, why not used so much?)

Unsupervised Domain Adaptation

Domain Confusion / domain adversarial training