Bases de Gröbner et systèmes structurés

Thibaut Verron, sous la direction de Jean-Charles Faugère et Mohab Safey El Din

UPMC Sorbonne Universités, Paris, France INRIA Paris-Rocquencourt, Équipe PoLSys Laboratoire d'Informatique de Paris 6, UMR CNRS 7606

Rencontres Doctorales Lebesgue, 13 octobre 2014

Problem statement

Polynomial System Solving (PoSSo)

- ▶ Input: polynomial system $f_1, ..., f_m \in \mathbb{K}[X_1, ..., X_n]$
- Output: exact "solution" of the system:
 - list of the solutions if finite
 - parametrization of the set of solutions
 - list of one point per connected component...

Many applications

- Good model for many problems Examples: cryptography attacks, mechanical systems, physics, optimization...
- Also useful for theoretical problems
 Examples: algorithmic geometry,
 real algebraic geometry...

Several tools

- Multivariate resultants
- Triangular sets
- Gröbner bases

Goal

Solving the Membership Problem:

- ▶ Input: $f_1, \ldots, f_m, f \in \mathbb{K}[X_1, \ldots, X_n]$
- ▶ Output: "True" iff $f \in I := \langle f_1, \ldots, f_m \rangle$

Equivalently, build a Normal Form for *I*: a computable function NF, such that

.

$$NF_I(f) = 0 \iff f \in I$$

Goal

Solving the Membership Problem:

- ▶ Input: $f_1, ..., f_m, f \in \mathbb{K}[X_1, ..., X_n]$
- ▶ Output: "True" iff $f \in I := \langle f_1, \ldots, f_m \rangle$

Equivalently, build a Normal Form for *I*: a computable function NF_I such that

$$NF_I(f) = 0 \iff f \in I$$

Two easy cases

nique generator (gcd)	
odular reduction	
ıclid algorithm	
	odular reduction

Goal

Solving the Membership Problem:

- ▶ Input: $f_1, ..., f_m, f \in \mathbb{K}[X_1, ..., X_n]$
- ▶ Output: "True" iff $f \in I := \langle f_1, \dots, f_m \rangle$

Equivalently, build a Normal Form for *I*: a computable function NF₁ such that

$$NF_I(f) = 0 \iff f \in I$$

Two easy cases

	Univariate case	Degree 1
Basis	Unique generator (gcd)	Linear basis
Reduction	Modular reduction	Gauss reduction
Algorithm	Euclid algorithm	Gauss reduction

Goal

Solving the Membership Problem:

- ▶ Input: $f_1, ..., f_m, f \in \mathbb{K}[X_1, ..., X_n]$
- ▶ Output: "True" iff $f \in I := \langle f_1, \dots, f_m \rangle$

Equivalently, build a Normal Form for *I*: a computable function NF_I such that

$$NF_I(f) = 0 \iff f \in I$$

Two easy cases

Univariate case	Degree 1
Unique generator (gcd)	Linear basis
Modular reduction	Gauss reduction
Euclid algorithm	Gauss reduction
Degree	Columns of the matrix
	Unique generator (gcd) Modular reduction Euclid algorithm

Goal

Solving the Membership Problem:

- ▶ Input: $f_1, \ldots, f_m, f \in \mathbb{K}[X_1, \ldots, X_n]$
- ▶ Output: "True" iff $f \in I := \langle f_1, \dots, f_m \rangle$

Equivalently, build a Normal Form for *I*: a computable function NF₁ such that

$$NF_I(f) = 0 \iff f \in I$$

General case

	General case
Basis	Gröbner basis
Reduction	$LT(f) = m \cdot LT(g) \implies f - mg = \dots$
Algorithm	Buchberger, Lazard, F ₄ , F ₅
Explicit order	Monomial order

LT(f) = "leading term" of f (largest monomial in the support)

Algorithms

```
Polynomial system
+2XY+Y^2+X
```

Pair-wise reductions:

$$g_1 = f - g = 0X^2 + 3XY + \dots$$

 $g_2 = Yf - Xg_1 = 0X^2Y + Y^3 + \dots$

Gröbner basis
$$\begin{cases}
Y^3 + Y^2 - \frac{4}{9}X - \frac{2}{9}Y - \frac{4}{9} \\
X^2 + Y^2 + \frac{1}{3}X + \frac{2}{3}Y - \frac{2}{3} \\
XY + \frac{1}{3}X - \frac{1}{3}Y + \frac{1}{3}
\end{cases}$$

Algorithms

Algorithms

Computing Gröbner bases in practice

Importance of structure

- Even modern algorithms can be slow in full generality
- For a given system (from an application), full generality is not necessary
- Good structures:
 - Example: homogeneous systems
 - Natural or easy to test
 - Dedicated algorithms or strategies
- Good algebraic properties:
 - Example: finite number of solutions
 - Hard to test but generic
 - Complexity improvements to all algorithms

Example of structure: homogeneous polynomials

Definitions, basic property

- ► Homogeneous polynomial = only monomials of the same degree
- ► Homogeneous ideal = generated by homogeneous polynomials
- ▶ *I* homogeneous, $f = f_d + \cdots + f_0$ homogeneous components

$$f \in I \iff \forall i, f_i \in I$$

Algorithmic advantages

- Only need to consider homogeneous polynomials
- Reduce several smaller matrices
- Algorithms more predictible:

$$f$$
 "reduces to" $g \neq 0 \implies \deg(g) \geq \deg(f)$

Example of property: regular sequences

Definition

$$F = (f_1, \ldots, f_m)$$
 homo. $\in \mathbb{K}[X]$ is regular iff

$$\begin{cases} \langle F \rangle \subsetneq \mathbb{K}[\mathbf{X}] \\ \forall i, f_i \text{ is no zero-divisor in } \mathbb{K}[\mathbf{X}]/\langle f_1, \dots, f_{i-1} \rangle \\ \iff \text{"complete intersection"} \end{cases}$$

Properties

- ▶ Algorithmic: no reductions to zero in F₅ → faster computations
- ► Algebraic: Hilbert Series ~ complexity bounds
- ► Geometric: generic property

Our work: weighted homogeneous systems

Definitions

- ▶ System of weights: $(w_1, ..., w_n) \in \mathbb{N}^{*n}$
- W-degree: $\deg_W(X_1^{\alpha_1}\cdots X_n^{\alpha_n})=\sum_{i=1}^n w_i\alpha_i$
- W-homogeneous polynomial

Some results...

- ► Algorithmic strategy:
 - How to compute a GB?

$$F(X_1,\ldots,X_n)$$
 W-homogeneous $\iff F(X_1^{w_1},\ldots,X_n^{w_n})$ homogeneous

- ► Additional properties:
 - What properties to use? Are they generic? Do they have an easy characterization?
- Complexity bounds:
 - ▶ Structure: size of the matrices divided by $\prod w_i$
 - ► Generic properties: complexity overall divided by $(\prod w_i)^3$

Our work: weighted homogeneous systems

Definitions

- ▶ System of weights: $(w_1, ..., w_n) \in \mathbb{N}^{*n}$
- W-degree: $\deg_W(X_1^{\alpha_1}\cdots X_n^{\alpha_n})=\sum_{i=1}^n w_i\alpha_i$
- W-homogeneous polynomial

Some results...

► Algorithmic strategy

Additional properties

Complexity bounds

... and more questions

- Additional structures:
 - Several systems of weights?Non-positive weights?
- ► Strategy for affine systems:
 - Strategy for affine systems:
 - How to choose the weights for a given system?

One last word

Thank you for your attention!