

'Naïve' methods of Forecasting

BN2255 – Business Analytics in Practice

Trend analysis

- In forecasting the main goal is to find a trend in the data
 - a trend is a regular underlying pattern in the data
- Finding this trend allows us to use the past to predict the future
- Three main methods of finding a trend in a data series
 - Moving average methods, also called 'naïve'
 - Time-series analysis
 - Causal models

Cornershop plc

 Cornershop plc wants to create a model that will help it forecast its sales. It has provided you with the following data on sales over the last 20 weeks.

Week	Sales	
	1	512
	2	526
	3	492
	4	521
	5	535
	6	541
	7	504
	8	474
	9	483
	10	509
	11	494
	12	535
	13	466
	14	527
	15	546
	16	476
	17	527
	18	509
	19	500
	20	514

Moving averages

- Always a good idea to plot your data!
 - Here plot suggests that past sales show relatively small variation
 - AVERAGE = 509 , STDEV = 23.4, CoV = 4.6%
- How to predict the future?
 - Assume that it will be much like the past
 - Since the past is relatively stable, we can calculate its central tendency
 - In this case, the central tendency is adequately described by the AVERAGE!
 - Remember, the AVERAGE is often our 'best guess'
- Should we use the average of the whole series, or just a subset?
 - What is more likely: the (near) future depends on the recent past or can be equally influenced by the distant past?
 - Is the near past a better predictor of the future relatively to more distant periods?
 - If so, we then we want to only consider the more recent past in out forecasts
- Moving average forecasts: use the average of the data series from the last n periods as the forecast for the next period

Forecasting errors

- How to decide on an appropriate number for n?
 - Use the one that produces the smallest forecasting errors
- We measure forecasting errors using backcasting
 - Create a forecast for a period where we know the realised value and compare the forecast with the realised
- Measures
 - Mean Absolute Deviation (MAD)
 - Absolute Deviation = ABS(forecast realised)
 - Mean Square Error (MSE)
 - Square error = (forecast realised)^2

Method for choosing n

- 1) Create forecasts (backcasts) for different values of n and calculate their errors
- 2) Choose the value of n such that it results in smaller MAD and MSE values

Pros and Cons of Moving averages

- Pros:
 - Simple to use
 - Quick to estimate
 - Easy to explain
 - Low cost
 - Reasonably accurate (when series is stationary)
- Cons
 - Simplistic
 - Not suitable for long-term forecasts
 - Unsuitable if series is non-stationary

Exponential smoothing

- When using a MA forecast, is it logical for each period to have an equal weight in the outcome of the forecast?
 - Often, we want to place more weight at more recent periods, because we believe that the recent past better reflects the current situation
- An easy way to impose this is to adopt an exponential weighting pattern to our moving average

$$F_{t+1} = aD_t + a(1-a) D_{t-1} + a(1-a)^2 D_{t-2} + a(1-a)^3 D_{t-3} + ... + a(1-a)^{n-1} D_{t-(n-1)}$$

where,
F = forecast
D = realised values
t = time
n = number of
observations

Exponential smoothing (2)

 Using simple mathematics, we can simplify the smoothing formula to:

$$F_{t+1} = aD_t + (1-a) F_t$$

or,
 $F_{t+1} = F_t + a(D_t - F_t)$

- So: New forecast = Old forecast + a*(last forecast error)
- The choice of the alpha value (a) is significant
 - The greater the alpha, the more responsive the model is to past errors
 - Good in situations of rapid change, bad when the error was simply the result of randomness
 - Usually, we adopt values of a in the range of 0.15 to 0.35
- How to choose between different potential values of alpha?
 - Use the one that results in smaller forecasting errors!