Fakulta informatiky a informačných technológií Slovenská technická univerzita

Pokročilé databázové technológie

PostGIS

https://github.com/Matovic/PostGIS

Zadanie 3

2022 Erik Matovič

1. stiahnite a importujte si dataset pre Open Street mapy ${\bf z}$

https://download.geofabrik.de/europe/slovakia.html do novej DB

Z obrázku č. 01 vidíme výsledok importu databázy príkazom:

osm2pgsql -c -d <názov db> -U <názov používateľa> -W -H <typ prepojenia> -S <cesta súboru style> <cesta OSM súboru>

```
rikapop-os: $ osm2pgsql -c -d PostGIS -U postgres -W -H localhost -S /home/erik/FIII/2_Ing/1_semester/PDT/cvicenia/zadanie3/d
efault.style /home/erik/FIII/2_Ing/1_semester/PDT/cvicenia/zadanie3/d
efault.style /home/erik/FIII/2_Ing/1_semester/PDT/cvicenia/zadanie3/d
password:

2022-11-01 16:48:50

Database version: 14.5 (Ubuntu 14.5-0ubuntu0.22.04.1)

2022-11-01 16:48:55

Database version: 3.2

2022-11-01 16:48:55

Setting up table 'planet_osm_point'

2022-11-01 16:48:51

Setting up table 'planet_osm_polygon'

2022-11-01 16:48:51

Setting up table 'planet_osm_polygon'

2022-11-01 16:48:51

Setting up table 'planet_osm_polygon'

2022-11-01 16:49:24

Processed 27392684 nodes in 3s - 9131k/s

2022-11-01 16:49:24

Processed 3733486 ways in 23s - 155k/s

2022-11-01 16:49:25

Processed 45913 relations in 7s - 7k/s

2022-11-01 16:49:25

Clustering table 'planet_osm_polygon' by geometry...

2022-11-01 16:49:25

Clustering table 'planet_osm_point' by geometry...

2022-11-01 16:49:25

Clustering table 'planet_osm_point' by geometry...

2022-11-01 16:49:26

Creating geometry index on table 'planet_osm_point'...

2022-11-01 16:49:27

Analyzing table 'planet_osm_point' by geometry...

2022-11-01 16:49:30

Analyzing table 'planet_osm_point'...

2022-11-01 16:49:33

Analyzing table 'planet_osm_point'...

2022-11-01 16:49:35

Analyzing table 'planet_osm_point'...

2022-11-01 16:49:55

Analyzing table 'planet_osm_point'...

2022-11-01 16:49:55

Analyzing table 'planet_osm_polygon'...

2022-11-01 16:49:55

Analyzing table 'planet_osm_polygon' done in 30s.

2022-11-01 16:49:55

Analyzing table 'planet_osm_polygon' done in 2s.

2022-11-01 16:4
```

Obr. č. 01: Výsledok úlohy 1

2. Zistite aké kraje sú na Slovensku (planet_osm_polygon, admin_level = '4') a vypíšte ich súradnice ako text s longitude a latitude.

Z obrázku č. 02 vidíme, že máme 8 krajov na Slovensku, ich zobrazenie vidíme na obr. č. 03. Použitá query je v priloženom súbore¹, bolo potrebné transformovať geometrické dáta na typ súradníc longitude a latitude pomocou SRID 4326 a vyfiltrovať kraje.

	name text	st_astext text
1	Trenčiansky kraj	POLYGON((17.353035699999996 48.7775265997475,17.353104 48.77746609974752,17.3539395 48.7767713997477,17.354356199999998 48.776
2	Bratislavský kraj	POLYGON((16.833189099999995 48.380524099845566,16.8332193 48.38020849984564,16.833291399999997 48.37992629984571,16.8334366 4
3	Trnavský kraj	POLYGON((16.933595 48.600625999791326,16.93359899999997 48.60019099979144,16.933632999999997 48.59973599979154,16.933687 48.5
4	Nitriansky kraj	POLYGON((17.705419 47.75898499999446,17.705507699999995 47.75889909999449,17.70733799999996 47.757359999999485,17.708578999999
5	Žilinský kraj	POLYGON((18.322605 49.31510899961467,18.322674999999997 49.315021999614714,18.32316999999998 49.31453599961483,18.32337 49.31
6	Košický kraj	POLYGON((20.18122199999998 48.74099699975657,20.181416 48.74054899975666,20.18169599999999 48.73991799975683,20.18148499999
7	Banskobystrický kraj	POLYGON((18.478672999999997 48.548601999804184,18.478683 48.54857799980419,18.479153 48.54834799980424,18.47973299999999 48.5
8	Prešovský kraj	POLYGON((19.883928 49.20417799964193,19.883958 49.20417799964193,19.887541999999996 49.20130299964263,19.88769399999996 49.20

Obr. č. 02: Výsledok úlohy 2, výsledok je priložený v príslušnom CSV súbore

Obr. č. 03: Mapové zobrazenie úlohy 2

¹ Všetky použité dopyty sú priložené v súbore postgis.sql

3. Zoraďte kraje podľa ich veľkosti (st_area). Veľkosť vypočítajte pomocou vhodnej funkcie a zobrazte v km^2 v SRID 4326.

Výsledok zoradenia podľa veľkosti od najmenšieho po najväčší je zobrazený na obrázku č. 04. Bolo potrebné si transformovať súradnicovy systém do iného pomocou funkcie ST_TRANSFORM nakoľko stĺpec way je v súrandicovom systéme 3857 a taktiež je potrebné pretypovanie z geometrických dát na geografické. Následne výsledok vydelíme mocninou tisícky, aby sme mali výsledok v km² a zoradíme kraje.

	name text	size double precision		
1	Bratislavský kraj	2051.660249334629		
2	Trnavský kraj	4145.3500582742045		
3	Trenčiansky kraj	4501.7955362039675		
4	Nitriansky kraj	6341.240667757967		
5	Košický kraj	6751.964233845798		
6	Žilinský kraj	6806.886696700411		
7	Prešovský kraj	8971.62395364117		
8	Banskobystrický kraj	9454.546381534283		

Obr. č. 04: Výsledok úlohy 2

4. Pridajte si dom, kde bývate ako polygón (nájdite si súradnice napr. cez google maps) do planet_osm_polygon (znova pozor na súradnicový systém). Výsledok zobrazte na mape.

Výsledok zobrazenia na mape vidíme na obrázku č. 05. Bol vytvorený polygón s 5 súradnicami(4 rozdielne, prvá sa opakuje na začiatku a na konci, aby sa vytvoril polygón) bytového domu Spartakovská 9 v Trnave funkciou ST_PolygonFromText súradnicového systému 4326. Súradnice boli zistené pomocou www.openstreetmap.org a po vytvorení polygónu bolo potrebné ho transformovať do systému stĺpca way na súradnicový systém 3857 funkciou ST_TRANSFORM.

Obr. č. 05: Výsledok úlohy 4 zobrazený na mape v QGIS

5. Zistite v akom kraji je váš dom.

Bytový dom sa nachádza v Trnavskom kraji, zistili sme to tak, že sme našli prienik medzi krajmi a domom – vyfiltrovali sme si kraje a použili sme funkciu ST_INTERSECTS, kde sme ako argumenty dali súradnice kraja a vnoreným dopytom sme zistili súradnice domu.

Obr. č. 06: Výsledok úlohy 5

6. Pridajte si do planet_osm_point vašu aktuálnu polohu (pozor na súradnicový systém). Výsledok zobrazte na mape.

Súradnice polohy boli zistené pomocou <u>www.openstreetmap.org</u> a následne bolo potrebné vytvoriť bod s danými súradnicami funkciou ST_MakePoint a funkciou ST_SetSRID sme mu definovali súradnicový systém 4326. Nakoľko stĺpec way je nastavený na systém 3857, tak funkciou ST_TRANSFORM sme transformovali súradnicový systém na potrebný systém 3857.

Obr. č. 07: Výsledok úlohy 6 zobrazený na mape v QGIS

7. Zistite či ste doma - či je vaša poloha v rámci vášho bývania.

Funkciou ST_INTERSECTS nájdeme prienik, ak ho nájdeme, tak vypíšeme meno polygónu, teda Home, ak nie, tak sa nevypíše nič. Ako argumenty sme dali súradnice domu a vnoreným dopytom zas súradnicu polohy.

Obr. č. 08: Výsledok úlohy 7

8. Zistite ako ďaleko sa nachádzate od FIIT (name = 'Fakulta informatiky a informačných technológií STU'). Pozor na správny súradnicový systém – vzdialenosť musí byť skutočná.

Výpočet vzdialenosti je realizovaný funkciou ST_DISTANCE, pričom ako argumenty boli dané geografické dáta bodu(polohy) a polygónu(FIIT). Nakoľko stĺpec way je u oboch tabuľkách nastavený na súradnicový systém 3857, tak funkciou ST_TRANSFORM sme transformovali oba súradnicové systémy na potrebný systém 4326 a pretypovali na geography. Následne sme výsledok normalizovali na kilometre vydelením číslovkou 1000. Pre vyfiltrovanie polygónu pre FIIT a bodu pre polohu sme do podmienky dali príslušné názvy.

Obr. č. 09: Výsledok úlohy 7

9. Stiahnite si QGIS a vyplotujte kraje a váš dom z úlohy 2 na mape - napr. červenou čiarou.

Obr. č. 10 ukazuje vyplotované kraje Slovenska, v Trnavskom kraji vidíme malú bodku, ktorá po priblížení ukáže, že je to domov, viď. obr. č. 11.

Obr. č. 10: Vyplotované kraje v QGIS so zníženou opacity

Obr. č. 11: Po priblížení na domov(žltá farba). Zelené okolie znázorňuje kraje(konkrétne Trnavský).

10. Zistite súradnice centroidu (ťažiska) plošne najmenšieho okresu (vo výsledku nezabudnite uviesť aj EPSG kód súradnicového systému).

Výsledok je v bod v súradnicovom systéme 4326. Okrem podmienky admin_level = '8' pre vyfiltrovanie okresov je aj potrebné vyhľadať iba okresy na Slovensku(ref LIKE 'SK%').

Najmenším okresom je okres Bratislava I.

	st_astext text	â
1	POINT(17.099410126661734 48.1509806974175	5)

Obr. č. 12: Výsledok úlohy 10

Obr. č. 13: Mapové zobrazenie najmenšieho okresu v QGIS

11. Vytvorte priestorovú tabuľku všetkých úsekov ciest, ktorých vzdialenosť od vzájomnej hranice okresov Malacky a Pezinok je menšia ako 10 km.

Pre vytvorenie priestorovej tabuľky používame tabuľku čiar(planet_osm_line), kde vyfiltrujeme typy ciest nakoľko v tabuĺke môžu byť aj rieky, hranice krajov, okresov a hocijaké čiary. Spojíme tabuľky čiar a polygónov na vzdialenosti 10 000 metrov, teda 10 km.

Obr. č. 13: Mapové zobrazenie ciest vzdialených menej ako 10 km od spoločných hraníc okresov Malacky a Pezinok v QGIS

12. Jedným dopytom zistite číslo a názov katastrálneho územia (z dát ZBGIS, https://www.geoportal.sk/sk/zbgis_smd/na-stiahnutie/), v ktorom sa nachádza najdlhší úsek cesty (z dát OSM) v okrese, v ktorom bývate.

Improtovanie tabuľky ku_1, ktorá obsahuje informácie o katastry, bola importovaná pod názvom "katastralne_uzemie" a bolo to realizované nasledovným príkazom:

ogr2ogr -f "PostgreSQL" -a_srs "EPSG:5514" PG:"host=localhost user=<username>
password=<password> dbname=PostGIS" -nlt MULTIPOLYGON -nln <nazov tabulky> -sql
"SELECT * FROM ku_1" -dialect SQLite -overwrite <cest k suboru gpkg>

Hľadáme prienik so stĺpcom shape v katastri so subquery, v ktorej spojíme tabuľku čiar a polygónov podľa ST_CONTAINS(či je v polygóne(okrese) daná cesta, pretože nehľadáme cestu, ktorá pretína viacero okresov). Následne vyfiltrujeme typy ciest a okres Trnava a zoradíme podľa dĺžky od najväčšieho po najmenší a zoberieme iba najvrchnejšiu cestu. Súradnicový systém katastrálneho územia je 5514, preto je potrebná transformácia systému cesty na tento systém.

Cesta sa nachádza v 2 katastrálnych územiach – Dolná Krupá a Špačince.

	objectid [PK] integer	dow timestamp with time zone	idn5 integer	nm5 character varying (50)	
1	502	2022-01-18 01:00:00+01	811548	Dolná Krupá	
2	2861	2022-01-18 01:00:00+01	861049	Špačince	

Obr. č. 14: Výsledok úlohy 12

Obr. č. 15: Mapové zobrazenie najdlhšej cesty v orkese Trnava v QGIS

13. Vytvorte oblasť Okolie_Bratislavy, ktorá bude zahŕňať zónu do 20 km od Bratislavy, ale nebude zahŕňať oblasť Bratislavy (Bratislava I až Bratislava V) a bude len na území Slovenska. Zistite jej výmeru.

Spojíme stĺpce way pre všetky okresy mimo Bratislava I-V, pričom výmeru delíme mocninou tisícky, nech máme výsledok v km². Zároveň platí, že vyhľadávame okresy(admin_level='8') iba na Slovensku(ref LIKE 'SK%')

Obr. č. 16: Výsledok úlohy 13 v km²

Obr. č. 17: Mapové zobrazenie oblasti v QGIS