() 3,4 W

() 0,8 W

Codificação e Transmissão

3º teste

Nome:	N°
Apresente as respostas às seguintes questões nestas folha	s do questioná
1. Assinale com (V)erdadeiro ou (F)also as seguintes afirmações	
() – Na modulação PAM alargam-se os impulsos de forma a "poupar" largura	de banda
(LB), uma vez que a largura dos impulsos é inversamente proporcional à LB.	
() – No processo de quantificação (modulação PCM) a potência de ruído aumo diminuição do espaçamento entre níveis.	enta com a
() – Na modulação PCM, uma amostra quantificada em um de 512 níveis pode representada por uma palavra de código de 8 bits.	erá ser
() - Na modulação Delta o sinal modulador é subamostrado, permitindo o uso quantificadores de 1 bit.	de
2. Escolha múltipla – Assinale apenas a alínea que estiver correcta	
1. Considere uma comunicação digital binária em banda base, através de um car usando-se no recetor um filtro adaptado. Para se atingir a mesma probabilidade os códigos unipolar e polar a relação entre as energias médias é: () $\langle E_{unipolar} \rangle = \langle E_{polar} \rangle + 3dB$ () $\langle E_{unipolar} \rangle = \langle E_{unipolar} \rangle + 3dB$ () $\langle E_{unipolar} \rangle = \langle E_{unipolar} \rangle + 6dB$	
2. Os sinais $s_1(t)$ e $s_2(t)$ são representados pelos vetores $s_1 = \begin{bmatrix} 2 & 1 & 1 & -2 \end{bmatrix}^T$ e $s_2 = \begin{bmatrix} 3 & 0 & 1 & 0 \end{bmatrix}^T$. O coeficiente de correlação entre $s_1(t)$ e $s_2(t)$ vale () 0,7 () 0 () 0,5 () -1	
3. À entrada de um recetor coerente tem-se um sinal 8-PSK com uma relação E_1 (onde E_b é a energia do bit). A probabilidade de erro de símbolo vale: $ () P_e = 2 \times Q \left(\sqrt{120} \operatorname{sen} \frac{\pi}{8} \right) \qquad () P_e = 2 \times Q \left(\sqrt{60} \operatorname{sen} \frac{\pi}{8} \right) $ $ () P_e = Q \left(\sqrt{60} \operatorname{sen} \frac{\pi}{8} \right) \qquad () P_e = 2 \times Q \left(\sqrt{120} \operatorname{sen} \frac{\pi}{4} \right) $	$_{b}/N_{o}=20$
4. Numa comunicação digital transmite-se um sinal 16-QAM com energia médi Pretende-se passar para 256-QAM mas mantendo a distância mínima na constel energia média do sinal 256-QAM é:	

() 2,2 W

() 4,2 W

Codificação e Transmissão

Exame de recurso -3^a parte

Annual de la constant	N°
Apresente as respostas às seguintes questões nestas fol	has do questionário
 Uma das modulações por impulso é a Pulse-Position Modulation (PPM). E constrói o sinal modulado em PPM. 	xplique como se
2. Apresente, em forma de onda, o código de linha Manchester da seguinte se	quência NRZ:
101101101010001	
3. Considere uma trama com multiplexagem TDM, em que são multiplex telefónicos. Além destes 30 canais, são usados mais 2 canais de controlo. Sa canal ocupa 8 bits e que cada canal é amostrado a uma frequência de 8 kHz, c	abendo que cada
a) O débito de cada canal	
b) O débito da trama	

4. Considere o sinal s(t) apresentado na figura abaixo.

a. Determine a resposta impulsional do filtro adaptado a este sinal e desenhe-o.

b. Desenhe o sinal à saída do filtro em função do tempo.

c. Qual é o valor de pico na saída?

- 5. Um sinal BFSK atravessa um canal AWGN e no recetor com detetor coerente obtém-se uma probabilidade de erro de 10⁻⁵.
- a. Calcule a probabilidade de erro se utilizarmos um detetor não coerente.

b. No caso da deteção coerente, se trocarmos a modulação para BPSK, de quantos dB podemos reduzir a energia transmitida para obter a mesma probabilidade de erro? Justifique.

6. Considere as duas constelações da figura para os sinais 8-PSK e 8-QAM. Em ambos os casos usou-se uma codificação de Gray.

a. Verifique que a energia média de cada sinal é igual $\frac{3}{2}d^2$.

b. Ambas constelações são de energia mínima? Justifique.