Logik und diskrete Stukturen

Felix (2807144) & Philipp (2583572) Müller

WS 14/15

Blatt 11

Aufgabe 1

Wähle p = 5 und q = 7. Daher $n = 5 \cdot 7 = 35$. Wir haben

$$\phi(n) = \phi(35) = \phi(5 \cdot 7) = \phi(5) \cdot \phi(7) = 6 \cdot 4 = 24$$

Verschlüssele $n \in \{0, \dots, 34\}$. Wähle e = 5 $(1 < e < \phi(35)$ und ggT (5, 24) = 1). Suche $d \in \mathbb{N}$ so, dass $ed = 1 \mod \phi(n)$.

d	de	$de \mod 24$
1	5	5
2	10	10
3	15	15
4	20	20
5	25	1
6	30	6
7	35	11
	÷	
28	140	20
29 (=: d)	145	1
30	150	6

Öffentlicher Schlüssel (n, e) = (35, 5)

Privater Schlüssel (n, d) = (35, 29)

Nachricht FELIX = { 6 5 12 9 24 } (Nummer im Alphabet).

	X	$x^5 \mod 35$
F	6	6
E	5	10
L	12	17
Ι	9	4
X	24	19

Geheimtext: { 6 10 17 4 19 }

Aufgabe 2

$$\phi = ((x_1 \implies \neg x_2) \land \neg (x_3 \iff x_1))$$

b)

$$\phi = ((x_1 \Longrightarrow x_2) \land \neg ((x_3 \Longrightarrow x_1) \land (x_1 \Longrightarrow x_3)))$$
 Elimination der Äquivalenz
$$\phi = ((\neg x_1 \lor \neg x_2) \land \underbrace{\neg ((\neg x_3 \lor x_1) \land (\neg x_1 \lor x_3)))}_{= \neg (\neg x_3 \lor x_1) \lor (\neg x_1 \lor x_3)}$$
 Elimination der Implikation
$$= \neg (\neg x_3 \lor x_1) \lor (\neg x_1 \lor x_3)$$
 De Morgan
$$= (x_3 \land x_1) \lor (x_1 \land \neg x_3)$$
 Elimination der doppelten N
$$\phi = ((\neg x_1 \land \ge x_2) \land \underbrace{((x_3 \land \neg x_1) \lor (x_1 \land \neg x_3)))}_{= ((x_3 \land x_1) \lor x_1) \land ((x_3 \land \neg x_1) \lor \neg x_3)}$$
 (*)

$$\phi = ((\neg x_1 \lor \neg x_2) \land ((x_3 \lor x_1) \land (\neg x_1 \lor x_1) \land ((x_3 \lor \neg x_3) \land (\neg x_1 \lor \neg x_3))))$$

Mit Abkürzungen aus Roeglin 12/13, S.84 folgt

$$\phi = (\neg x_1 \lor \neg x_2) \land (x_3 \lor x_1) \land \underbrace{(\neg x_1 \lor x_1)}_{\text{immer wahr}} \land \underbrace{(x_3 \lor \neg x_3)}_{\text{immer wahr}} \land (\neg x_1 \lor \neg x_2)$$

$$\phi = (\neg x_1 \lor \neg x_2) \land (x_3 \lor x_1) \land (\neg x_1 \lor \neg x_3)$$

a) Benutze (\ast) für Wahrheitstabelle:

x_1	x_2	x_3	$A = (\neg x_1 \lor \neg x_2)$	$B = (x_3 \land \neg x_1)$	$C = (x_1 \land \neg x_3)$	$D = (B \vee C)$	$\phi = (A \wedge D)$
0	0	0	1	0	0	0	0
1	0	0	1	0	1	1	1
0	1	0	1	0	0	0	0
1	1	0	0	0	1	1	0
0	0	1	1	1	0	1	1
1	0	1	1	0	0	0	0
0	1	1	1	1	0	1	1
_1	1	1	0	0	0	0	0

DNF:

$$(x_1 \wedge \neg x_2 \wedge \neg x_3) \vee (\neg x_1 \wedge \neg x_2 \wedge x_3) \vee (\neg x_1 \wedge x_2 \wedge x_3)$$