第2章密码技术

第2章 密码技术

- 2.1 古典密码
- 2.2 对称密码体制
- 2.3 公钥密码体制

2.3 公钥密码体制

- 2.3.1 公钥密码概述
- 2.3.2 公钥密码体制数学基础
- 2.3.3 Diffie-Hellman密钥交换
- **2.3.4 RSA**
- 2.3.5 其他算法

2.3.1 公钥密码思想

- Diffie和Hellman在1976年首次提出了公钥密码思想,是密码领域的一次真正革命性进步
 - 公钥加密算法基于数学函数(单向陷门函数),代替对 称加密算法的比特模式简单操作(替换和置换)
 - ■解决两个问题:密钥的分发与管理、数字签名及认证
 - ■每个用户有一对选定的密钥
 - □公钥:可以公开,用于加密和验证签名
 - □私钥:自己保存,不能公开,用于解密和签名
 - 三类应用:加密/解密、数字签名、密钥交换

公钥密码体制与对称密码体制。

- 公钥密码体制有两个不同的密钥,在公钥密码体制中,加密密钥(即公钥) PK 是公开信息,而解密密钥(即私钥或秘钥) SK 是需要保密的。
- 加密算法 E 和解密算法 D 也都是公开的。

公钥密码算法的表示

- 加密与解密分开:密钥对产生器产生出接收者 B 的一对密钥:加密密钥 PK_B 和解密密钥 SK_B 。
 - 加密密钥 PK_B 就是接收者B的公钥,它向公众公开。
 - 解密密钥 SK_B 就是接收者B的私钥,对其他人都保密。
- 保密通信:发送者 A 用 B 的公钥 PK_B 对明文 X 加密 (E运算)后,在接收者 B 用自己的私钥 SK_B 解密 (D运算),即可恢复出明文:

$$D_{SK_{B}}(Y) = D_{SK_{B}}(E_{PK_{B}}(X)) = X$$

公钥密码算法满足的需求

- 产生密钥对(公钥PK_B和私钥SK_B)在计算上是容易的
- 发送方A用接收方B的公钥对消息m加密产生密文c,即 c=E_{PKP}(m),在计算上是容易的
- 接收方B用自己的私钥对密文c解密得到明文m,即 m=D_{SKB}(c),在计算上是容易的
- 敌对方T由B的公钥PK_B求私钥SK_B在计算上是不可行的
- 敌对方T由密文c和B的公钥PK_B恢复明文m在计算上是不可行的
- 加密、解密次序可交换,E_{PKB}(D_{SKB}(m))=D_{SKB}(E_{PKB}(m))

公钥加密

■基本要素

- 明文Plaintext
- 加密算法Encryption Algorithm
- 公钥Public Keys和私钥Private key
 - □ 公钥环(多个用户的合法公钥)
 - □自己的私钥
- 密文Ciphertext
- 解密算法Decryption Algorithm

公钥算法的特点

■加密密钥是公开的,但不能用它来解密,即:

$$D_{PK_{B}}(E_{PK_{B}}(X)) \neq X$$

■加密和解密运算可以对调,即加密和解密是互逆的:

$$E_{PK_B}(D_{SK_B}(X)) = D_{SK_B}(E_{PK_B}(X)) = X$$

■ 无需事先分配密钥,减少了密钥数量

公开密钥与对称密钥的区别

对称密码	玛
------	---

71 小小 TI 中

一般要求

- (1)加密和解密使用相同的密 钥和相同的算法
 - (2) 收发双方必须共享密钥

安全性要求

- (1) 密钥必须是保密的
- (2) 若没有其他信息,则解密 消息是不可能或至少是不可行的
- (3) 知道算法和若干密文不足 以确定密钥

公钥密钥

一般要求

- (1)同一算法应用于加密和解密,但使用不同的密钥
- (2) 收送方拥有加密或解密密 钥,而接收方拥有另一密钥

安全性要求

- (1) 私钥必须是保密的
- (2) 若没有其他信息,则解密 消息是不可能或至少是不可行的
- (3) 知道算法和公钥以及若干密文不足以确定私钥

两种基本模型

■ 加密模型

信息用公开密钥加密,用私有密钥解密,实现保密的目标

■ 认证模型(数字签名)信息用私有密钥加密,必须用公开密钥解密,实现对发送方的认证

公钥密码系统的应用

- 加密/解密: 发送者用接收者的公钥加密消息
- 数字签名:发送者用自己的私钥"签名"消息。签名可以通过对整条消息加密或者对消息的一个小的数据块(消息的函数)加密来产生。
- 密钥交换:通信双方交换会话密钥。多种方法,且需要用到通信一方或者双方的私钥。

算 法	加密/解密	数字签名	密钥交换
RSA	是	是	是
ElGamal	是	是	是
Diffie-Hellman	否	否	是
DSA	否	是	否

2022-9-28 网络安全技术-2022秋 12

2.3.2 公钥密码体制数学基础

- 陷门单向函数是满足下列条件的函数f
 - (1) 给定x, 计算y=f_k(x)是容易的;
 - (2) 给定y, 计算x=f_k-¹(y)是不可行的(NP难);
 - (3) 存在k, 已知k时,对给定的任何y,若相应的x存在,则计算x使 $x=f_k^{-1}(y)$ 是容易的。

■举例

■ 计算: 7919*7927=62 773 913 容易

■ 分解:62 773 913 困难

单向函数(One way functions)

■大整数分解困难问题

已知大整数N,求素因子p和q(N=pq)是计算困难的

Challenge number	Difficulty of factoring to the two primes				
15	Everyone can do this instantly				
143	Doable with a little thought				
6887	Should not take more than a few minutes				
31897	A calculator is now useful				
20-digit number	A computer is now required				
600-digit number	This is impossible in practice				
600-digit even number	One factor immediate, other easily computed				
600-digit number with small factor	One factor easily found, other easily computed				

公钥密码体制数学基础

- 研究公钥密钥算法就是找出合适的陷门单向函数
- 典型数学中的难解问题
 - 大整数因子分解问题: RSA公钥密码体制
 - ■基于有限域上的离散对数问题: ElGamal公钥密码 体制
 - 基于椭圆曲线上的离散对数问题: 椭圆曲线公钥密 码体制

2.3.4 Diffie-Hellman密钥交换

■离散对数

- 如果整数a是素数p的本原根,那么:
 a mod p, a² mod p, a³ mod p,..., aⁿ⁻¹ mod p
 由1到p-1的整数组成且各不相同
- 设p为素数,a为模p的本原根,a的幂乘运算为
 Y=a^x mod p (1≤X≤p-1)

则称X为Y的以a为底的模p的离散对数,记做:

$$X = dlog_{a,p}(Y)$$

■对给定的X,a,p,计算Y是可行的;对给定的Y,a,p,计 算X(即求离散对数)计算上非常困难

2022-9-28 网络安全技术-2022秋

举例1: 离散对数计算

■ 计算7是否是71的本原根, 即 7ⁱ mod 71

7	49	59	58	51	2	14	27	47	45	31	4	28	54	23	19
62	8	56	37	46	38	53	16	41	3	21	5	35	32	11	6
42	10	70	64	22	12	13	20	69	57	44	24	26	40	67	43
17	48	52	9	63	15	34	25	33	18	55	30	68	50	66	36
39	60	65	29	61	1										

■ 计算8是否是71的本原根, 即 8ⁱ mod 71

8	64	15	49	37	12	25	58	38	20	18	2	16	57	30	27
3	24	50	45	5	40	36	4	32	43	60	54	6	48	29	19
10	9	1	8	64	15	49	37	12	25	58	38	20	18	2	16
57	30	27	3	24	50	45	5	40	36	4	32	43	60	54	6
48	29	19	10	9	1										

3是素数7的本原根吗?

2022-9-28

举例2: 计算素数19的本原根 •

а	a ²	a ³	a ⁴	a ⁵	a ⁶	a ⁷	a ⁸	a ⁹	a ¹⁰	a ¹¹	a ¹²	a ¹³	a ¹⁴	a ¹⁵	a ¹⁶	a ¹⁷	a ¹⁸	
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	4	8	16	13	7	14	9	18	17	15	11	3	6	12	5	10	1	18
3	9	8	5	15	7	2	6	18	16	10	11	14	4	12	17	13	1	18
4	16	7	9	17	11	6	5	1	4	16	7	9	17	11	6	5	1	9
5	6	11	17	9	7	16	4	1	5	6	11	17	9	7	16	4	1	9
6	17	7	4	5	11	9	16	1	6	17	7	4	5	11	9	16	1	9
7	11	1	7	11	1	7	11	1	7	11	1	7	11	1	7	11	1	3
8	7	18	11	12	1	8	7	18	11	12	1	8	7	18	11	12	1	6
9	5	7	6	16	11	4	17	1	9	5	7	6	16	11	4	17	1	9
10 202	5 2-9-28	12	6	3	11	15	17	18 网络安全	9 - 技术-2 (14 22秋	7	13	16	8	4	2	1	18

举例:模19的整数幂(续)

a	a ²	a ³	a ⁴	a ⁵	a ⁶	a ⁷	a ⁸	a ⁹	a ¹⁰	a ¹¹	a ¹²	a ¹³	a ¹⁴	a ¹⁵	a ¹⁶	a ¹⁷	a ¹⁸	
11	7	1	11	7	1	11	7	1	11	7	1	11	7	1	11	7	1	3
12	11	18	7	8	1	12	11	18	7	8	1	12	11	18	7	8	1	6
13	17	12	4	14	11	10	16	18	6	2	7	15	5	8	9	3	1	18
14	6	8	17	10	7	3	4	18	5	13	11	2	9	12	16	15	1	18
15	16	12	9	2	11	13	5	18	4	3	7	10	17	8	6	14	1	18
16	9	11	5	4	7	17	6	1	16	9	11	5	4	7	17	6	1	9
17	4	11	16	6	7	5	9	1	17	4	11	16	6	7	5	9	1	9
18	1	18	1	18	1	18	1	18	1	18	1	18	1	18	1	18	1	2

19的本原根为: 2、3、10、13、14、15

2022-9-28

网络安全技术-2022秋

Diffie-Hellman算法

- 全局共享参数
 - q:素数
 - a: a<q, a是q的本原根
- ■用户共享key的计算

Alice	
Select a private X _A	$X_A < q$
Calculate public Y _A	$Y_A = a^{XA} \mod q$
Calculate K	K=Y _B XA mod q

Bob	
Select a private X _B	$X_B < q$
Calculate public Y _B	$Y_B = a^{XB} \mod q$
Calculate K	K=Y _A ^{XB} mod q

Diffie-Hellman密钥交换

■ 目的: 使得两个用户能够安全地交换密钥

■ 算法的有效性:

计算离散对数很困难

 $K=(Y_B)^{X_A} \mod q$

 $=(a^{X_B} \mod q)^{X_A} \mod q$

 $=(a^{X_B})^{X_A} \mod q$

 $=(a^{X_A})^{X_B} \mod q$

 $=(a^{X_A} \mod q)^{X_B} \mod q$

 $= (-Y_{A})^{X_{B}} \mod q$

Alice

Alice和Bob共享一个素数q 和a, 其中a<q, a是一个本 原根

Alice生成一个私钥X_A, 其中 X_A<q

Alice计算公钥Y_A=a^{X_A} mod q

Alice以明文形式接收到 Bob的公钥Y_B

Alice计算共享密钥K= (內含)
Alice计算共享密钥K= Bob

Alice和Bob共享一个素数q 和a, 其中a<q, a是一个本 原根

Bob生成一个私钥X_B, 其中 X_B<q

Y_B Bob计算公钥Y_B=a^{X_B} mod q

Bob以明文形式接收到 Alice的公钥Y₄

Bob计算共享密钥K= (Y_A)^{X_B} mod q ²²

Diffie-Hellman

■密钥交换协议

■场景:用户Alice 希望与用户Bob建立 连接,并且在此连接 上使用密钥加密消息。

Diffie-Hellman

■举例

- q=353, a=3
- Alice $X_A = 97$, $Y_A = 3^{97}$ mod 353=40
- Bob X_B=233, Y_B=3²³³ mod 353=248

Key:

□ Alice: 248⁹⁷ mod 353=160

□ Bob: 40²³³ mod 353=160

用户A和B使用Diffie-Fiellman算法交换密钥,已知共享素数q=31,本原根a=3.

- (1) 如果用户A选择的私钥 $X_A = 4$,则 $Y_A = [填空1]$
- (2) 如果用户B选择的私钥 $X_B=2$,则 $Y_B=[填空2]$
- (3) A和B的共享密钥K= [填空3]

Diffie-Hellman

■ 中间人攻击

D-H协议不能 认证参与者,对于 中间人攻击脆弱

■ 改进: 使用数字

签名和公钥证书

2.3.4 RSA算法

- RSA是一种可逆公钥密码体制,也是目前理论 上最为成熟完善的公钥密码体制
- ■大整数分解困难问题

己知大整数N,求素因子p和q(N=pq)是计算困难的

RSA算法

	密钥产生	
select p,q	p and q both prime, p≠q	
n=p×q		
$\Phi(n)=(p-1)\times(q-1)$	<u> </u>	正整数n的欧拉函数Φ(n)
select integer e	gcd(Φ(n), e)=1; 1 <e<φ(n)<< td=""><td>Φ(n)和e互质</td></e<φ(n)<<>	Φ(n)和e互质
calculate d	$de \equiv 1 \pmod{\Phi(n)}$; $d < \Phi(n)$	
public key	PK={e, n}	
private key	SK={d, n}	

	加密
plaintext	M <n< td=""></n<>
ciphertext	C=Me mod n

	解密
ciphertext	С
plaintext	M=C ^d mod n

RSA算法举例

- 已知p=17,q=11,e=7,求密钥和明文m=88的加解密过程
- 求密钥:
 - n=17*11=187
 - $\Phi(n)=(p-1)*(q-1)=16*10=160$
 - \blacksquare ed mod Φ(n)=1-->d=23
 - PK={e,n}={7, 187}, SK={d,n}={23, 187}
- ■加密:
 - c=887 mod 187=11
- 解密:
 - p=11²³ mod 187=88

RSA的安全性

- RSA的安全性基于分解大整数的困难性假设
- 对RSA算法的攻击可能的方式
 - 穷举攻击
 - 数学攻击
 - 计时攻击
 - 选择密文攻击:
- 密钥长度应该介于1024bit到2048bit之间
- 来自两方面的威胁
 - 人类计算能力的不断提高
 - 分解算法的进一步改进

公钥加密存在的问题

- 需要比较长的密钥(>1024bit)
- 计算成本:加密速度比DES慢1000倍!
- ■长明文的安全问题

公钥应用

- 对称加密和公钥加密各有优缺点
 - ■公钥密码体制密钥共享便捷
 - 对称密码体制加密简单、高效
- 因此,在实际应用中,你会如何使用?
 - 混合使用两种密码体制
- 应用举例:场景描述Alice向Bob加密传输一个大文件,应该如何设计加密方案(含密钥的分发)

公钥应用

- ■很少用于大量数据加密
- ■数字签名
- ■密钥的管理与认证

2.3.5 ElGamal密码体制

- 1984年由T.Elgamal提出
- ElGamal密码体制是一种基于离散对数的公钥密码体制
- 与Diffie-Hellman密钥分配体制密切相关
- ElGamal的安全性是基于计算离散对数的困难性之 上的
 - 为了恢复Alice的私钥,攻击者需要计算X_A=d log_{a,q}(Y_A)
 - 为了恢复K,攻击者需要选择随机数k,然后计算离散对数k=d log_{a,q}(C_1)

EIGamal密码体制

■ 数字签名标准DSS

- 专门为数字签名功能而设计的算法
- 不能用来加密或者进行密钥交换
- 采用DSA算法,基于EIGamal密码算法

椭圆曲线公钥密码体制ECC

- 椭圆曲线密码(ECC)由Neal Koblitz和Victor Miller于1985年发明。
- 椭圆曲线密码为公钥密码机制,可以看作是椭圆曲线对先前基于离散对数问题的密码系统的模拟,只是群元素由元素数换为有限域上的椭圆曲线上的点。
- 安全性基于椭圆曲线群上计算离散对数困难问题
 - 给定椭圆曲线上的一个点P,一个整数k,求解Q=kP 容易;

椭圆曲线公钥密码体制ECC

- ECC特点
 - 可以用更短的密钥获得更高的安全性
 - ■加密速度比RSA快
- ■典型算法
 - ECDH: ECC算法和DH结合使用,用于密钥磋商
 - ECDSA: ECC算法和DSA结合使用,用于数字签名 (比特币中使用)
- 应用场合:适用于处理能力、存储空间、带宽及功耗受限的场合,如移动互联网、无线手机加密

小结

	RSA	ElGamal	ECC
数论基础	欧拉定理	离散对数	离散对数
安全性基础	整数分解问题 的困难性	有限域上离散对数 问题的困难性	椭圆曲线离散对数 问题的困难性
当前安全密钥长度 (bit)	1024	1024	160
用途	加密、数字签名	加密、数字签名	加密、数字签名
是否申请专利	是	否	否
复杂性			设计困难, 实现复杂

关于密码算法的一些事

1994年,全世界范围内同时使用了1600个工作站、耗时8个月时间才完成了129位数的分解。

如果要用同样的计算能力来分解250位数则要耗时

80万年

利用万亿次传统计算机分解300位的整数需要150万年

量子计算机则只要!秒钟即可解决。

关于密码算法的一些事

2019年9月23日晚,谷歌发表的一篇关于实现"量子霸权"(量子优越性)的论文Quantum supremacy using a programmable superconducting processor。这篇关于"量子霸权"的论文声称其开发出来拥有54个量子比特数组(其中53个功能正常)的量子计算机达到了量子优越性,他们用3分20秒运行一系列操作,传统超级计算机(世界上第一超算)大约需要花费10000年才能完成计。

量子霸权后给我们的加密算法造成多大的影响?

关于密码算法的一些事

- 量子计算机的出现不会给现代密码学带来毁灭 性的打击
 - 对于公钥密码体制: 只要数学难解问题在数学上未取得突破,依然可用
 - 对于分组密码和安全散列算法:需要重新设计算法, 但依然是可以实现的

附1: 模19的整数幂

- 通过19的整数幂,可观察到:
 - 所有序列均以1结束
 - ■每一行均有整数个幂序列长
 - 有些序列长为18。这时称a生成了模19的非零整数集, 并称这样的整数a为模19的本原根
- ■对于素数p,正整数a若是p的本原根,则a的幂能够生成1~p-1的所有整数,即

 $a, a^2, a^3, ..., a^{p-1}$

(模p)各不相同。

附1: 模19的整数幂(续)

■ 只有当a为p的本原根时,对于给定的Y, 才存在唯一的以a为底模p的离散对数

以3为底,模为19的离散对数

а	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
log _{3,19} (a)	18	7	1	14	4	8	6	3	2	11	12	15	17	13	5	10	16	9

以5为底,模为19的离散对数

а	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
log _{5,19} (a)	9			8	1	2	6		5		3						4	
ŕ	18			17	10	11	15		14		12						13	

仅当a为p的本原根时,以a为底模p的离散对数才唯一

2022-9-28 网络安全技术-2022秋 43