

Formularium

$Academieja ar\ 2024-2025$

Timo Vandevenne

Formule	Variabelen en uitleg
Verdunningsregel: $M_i V_i = M_f V_f$	M Molariteit [mol/l]
	m Molaliteit [mol/kg]
PV = nRT	P Druk
	V Volume
	R Gasconstante
	T Temperatuur [K]
$\Delta U = q + w$	ΔU Verandering van interne energie
•	q warmteuitwisseling met omgeving
	(q>0: warmte van omgeving in systeem)
	w Arbeid verricht op/door het systeem
	(w>0: arbeid op systeem)
$w = -P\Delta V$	ΔV Volumeverandering
Wet van Hess:	ΔH^0_{rxn} Reactieenthalpie
$\Delta H_{rxn}^0 = \sum i\Delta H_f^0(prod.) - \sum j\Delta H_f^0(reag.)$	$(\Delta H_{rxn}^{0}) > 0$: endotherme reactie)
	$\mathbf{H}_{\mathbf{f}}^{0}$ Standaardvormingsenthalpie
	\mathbf{i}, \mathbf{j} coefficiënten in reactievergelijking
$q = ms\Delta T$	m massa [g]
1	s Specifieke warmte $\left[\frac{J}{g^{\circ}C}\right]$
$q = C\Delta T$	ΔT Temperatuurverandering
q 0 = 1	C Warmtecapaciteit
$q_{sys} = 0 \Leftrightarrow q_{rxn} + q_{cal} + q_{opl} = 0$	Viaimiccapacitori
$q_{rxn} = n\Delta H_{rxn}^0$	
$\frac{q_{rxn} = n\Delta H_{rxn}^0}{E = h\nu = h\frac{c}{\lambda}}$	E Energie [J]
$E = nv = n\lambda$	
	h constante van Planck = $6.62 \cdot 10^{-34}$ Js
	\mathbf{v} frequentie [Hz]
	c Lichtsnelheid = $3 \cdot 10^8 \frac{m}{s}$
$E_{kin,e^-} = h\mathbf{v} - W$	λ Golflengte [m] W Werkfunctie: maat voor hoe sterk e^- in metaal worden
$E_{kin,e^-} = n v - w$	
De Broglie: $\lambda = \frac{h}{p} = \frac{h}{mu}$	vastgehouden \mathbf{p} Impuls $\left[\frac{kg \cdot m}{s}\right]$
De Brogne. $\lambda = \frac{1}{p} - \frac{1}{mu}$	
	m Massa bewegend deeltje [kg]
W-t D-lt D	u Snelheid
Wet van Dalton: $P_i = y_i P_{tot}$	P _i Partieeldruk
Wet van Raoult: $P_i = x_i P_i^0$	y _i Molfractie gas [%] x _i Molfractie vloeistof [%]
wet van naoun. $I_i = x_i I_i$	P _i Dampdruk
C.	i Dampuruk
Wet van Henry: $P_i = x_i H_i = \frac{C_i}{k}$	$\mathbf{C_i}$ Concentratie
10	H _i Henry constante
	\mathbf{k} gegeven constante bij bep. temp

Formule	Variabelen en uitleg
$\Delta T_b = iK_b m$	ΔT_b Kookpuntsverhoging
$\Delta T_f = iK_f m$	ΔT_f Vriespuntsverlaging
	i Van 't Hoff factor: aantal opgeloste deeltjes waarin een
	verbinding voorkomt in oplossing
	$\mathbf{K_b}, \mathbf{K_f}$ karakteristiek van het oplosmiddel
	m Molaliteit [mol/kg]
$\pi = iMRT$	π Osmotische druk
$\Delta P = x_{\text{opgeloste stof}} P_{\text{oplosmiddel}}^{0}$ $v = k[A]^{x}[B]^{y}$	ΔP Dampdrukverlaging
$v = k[A]^x[B]^y$	$aA+bB \rightleftharpoons cC+dD$
	v Reactiesnelheid [M/s]
A 1	k Snelheidsconstante [Eenheid afh. van reactieorde]
Arrhenius vergelijking:	x =a, y =b indien elementaire stap
$k = Ae^{\overline{RT}}$	$\mathbf{E_a}$ Activeringsenergie [kJ/mol]
$k = Ae^{\frac{-Ea}{RT}}$ $K = \frac{[C]^c[D]^d}{[A]^a[B]^b}$	K Evenwichtsconstante (K>1: Evenwicht naar rechts)
	[X] Concentratie van stof $X [M] = [mol/l]$
	Q Reactieconstante, K met actuele concentraties
	(Q>K: systeem naar links voor evenwicht)
Principe van Le Châtelier	Systeem compenseert uitwendige stress gedeeltelijk
	• Concentratieverandering
	• Druk & volumeverandering • Temporatuurgygaandering
	 Temperatuursverandering → K verandert Katalysator & inert gas hebben geen invloed
$pH = -\log[H^+] = -\log[H_3O^+]$	• Ratalysatol & mert gas hebben geen myloed
$pOH = -\log[OH^{-}] = 14 - pH$	
$[H^{+}][A^{-}]$	
$K_a = \frac{[-1][-1]}{[HA]}$	$\mathbf{K_a}$ Aciditeitsconstante $(\mathbf{p}\mathbf{K_a} = -\log K_a)$
$[OH^{-}][B^{+}]$	
$K_{a} = \frac{[H^{+}][A^{-}]}{[HA]}$ $K_{b} = \frac{[OH^{-}][B^{+}]}{[B]}$	$\mathbf{K_b}$ Basiciteitsconstante $(\mathbf{p}\mathbf{K_b} = -\log K_b)$
$K_a K_b = K_w$	$\mathbf{K_w}$ Dissociatie $\mathbf{constante}$ van water
$pK_a + pK_b = pK_w$	$K_w = [H^+][OH^-] = 10^{-14} \text{ bij } 25^{\circ}\text{C}$
$K_{sp} = [C]^d [D]^d$	$\mathbf{K_{sp}}$ Oplosbaarheidsproduct: beschrijf het oplossen van
-F	een ionische verbinding in water
$Q = [C]_0^c [D]_0^d$	\mathbf{Q} Reactiequotiënt, \mathbf{K}_{sp} met actuele concentraties
	[X] ₀ Concentratie voor reactie
	• $Q < K_{sp}$: Onverzadigde oplossing \rightarrow Geen neerslag
	• Q $<$ K _{sp} : Verzadigde oplossing \rightarrow Net geen neerslag
	• Q <k<sub>sp: Oververzadigde oplossing \rightarrow Neerslag onstaat</k<sub>
Nernst: $E = E^{0} - \frac{RT}{nF} \log Q$ $\xrightarrow{\text{A(s)} \mid A^{a+} (xM) \mid B^{b+} (yM) \mid B(s)}} \xrightarrow{\text{Kathode: reductie}}$	F Faraday constante: lading 1 mol e ⁻
$A(s) \mid A^{a+} (xM) \mid B^{b+} (yM) \mid B(s)$	Notatie celdiagram
$ \xrightarrow{\text{Anode: oxidatie}} \xrightarrow{\text{Kathode: reductie}} $ $ RT $	
$E_{cel}^0 = \frac{RT}{nF} \log K$	$\mathbf{E_{cel}^0}$ Celpotentiaal $(E_{cel}^0 > 1)$: Formatie producten
$E_{cel}^{0} = E_{ox}^{0} + E_{red}^{0} = E_{red,anode}^{0} + E_{red,kathode}^{0}$	$\mathbf{E_{red}^0}$ Reductiepotentiaal (afleesbaar in de tabel) $\mathbf{E_{ox}^0}$ Oxidatiepotentiaal $E_{ox}^0 = -E_{red}^0$

Timo Vandevenne 2/2