Bayesian Networks: Inference and Independence

Today:

- Bayesian Networks
- How do we perform inference on Bayesian Networks?
- How do we reason about independence in Bayesian Networks?

Review

Independence
$$P(X,Y) = P(X)P(Y)$$

$$XLY \qquad P(X|Y) = P(X)$$

Conditional Indep.
$$P(X,Y|Z) = P(X|Z)P(Y|Z)$$

$$XLY|Z P(X|Z) = P(X|Y,Z)$$

Binary Random Variables X_1 , X_2 , X_3

How many independent parameters (θ) to specify joint distribution?

Binary Random Variables X_1 , X_2 , X_3

How many independent parameters (θ) to specify joint distribution?

For n binary R.V.s, $2^n - 1$ independent parameters specify the joint distribution.

Binary Random Variables X_1 , X_2 , X_3

How many independent parameters (θ) to specify joint distribution?

For n binary R.V.s, $2^n - 1$ independent parameters specify the joint distribution.

In general vector of parameters
$$\dim(heta) = \prod_{i=1}^{n} |\mathrm{support}(X_i)| - 1$$

- Node:
- Edges encode:

- Node: Random Variable
- Edges encode:

$$P(X_{1},X_{2},X_{3}) = P(X_{1}) P(X_{2}) P(X_{3} | X_{1},X_{2})$$
• Node: Random Variable
• Edges encode:
$$P(X_{1:n}) = \prod_{i=1}^{n} P(X_{i} | pa(X_{i}))$$

$$P(X_{1:n}) = P(X_{1:n}) P(X_{2} | X_{1}) P(X_{2} | X_{1})$$

$$P(X_{1:n}) = P(X_{1:n}) P(X_{1:n}) P(X_{1:n}) P(X_{1:n})$$

Counting Parameters

For discrete R.V.s:

$$\dim(heta_X) = (|\mathrm{support}(X)| - 1) \prod_{Y \in Pa(X)} |\mathrm{support}(Y)|$$

$$Support(B) = {0,13}$$

 $|Support(B)| = 2$

$$Support(E) = {0,13}$$

 $1 = 2$
 $Pa(E) = {B,53}$

$$|support(B)| = 2$$

 $|support(S)| = 2$

B.N. Number of parameters: 10 Number of parameters for naive representation 25-1=31

Inputs

Inputs

• Bayesian network structure

Inputs

- Bayesian network structure
- Bayesian network parameters

Inputs

- Bayesian network structure
- Bayesian network parameters
- Values of evidence variables

Inputs

- Bayesian network structure
- Bayesian network parameters
- Values of evidence variables

Outputs

Posterior distribution of query variables

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

Inputs

- Bayesian network structure
- Bayesian network parameters
- Values of evidence variables

Outputs

Posterior distribution of query variables

P(B) P(S) E $P(E \mid B, S)$ $P(C \mid E)$

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

Inference

Inputs

- Bayesian network structure
- Bayesian network parameters
- Values of evidence variables

Outputs

Posterior distribution of query variables

Given that you have detected a trajectory deviation, and the battery has not failed what is the probability of a solar panel failure?

P(B) P(S) E $P(E \mid B, S)$ $P(C \mid E)$

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

Inference

Inputs

- Bayesian network structure
- Bayesian network parameters
- Values of evidence variables

Outputs

• Posterior distribution of *query variables*

Given that you have detected a trajectory deviation, and the battery has not failed what is the probability of a solar panel failure?

$$P(S = 1 \mid D = 1, B = 0)$$

Query

Evidence

P(B) P(S) E $P(E \mid B, S)$ $P(C \mid E)$

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

Inference

Inputs

- Bayesian network structure
- Bayesian network parameters
- Values of evidence variables

Outputs

Posterior distribution of query variables

Given that you have detected a trajectory deviation, and the battery has not failed what is the probability of a solar panel failure?

$$P(S = 1 \mid D = 1, B = 0)$$

Exact

P(B) P(S) E $P(E \mid B, S)$ $P(D \mid E)$ $P(C \mid E)$

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

Inference

Inputs

- Bayesian network structure
- Bayesian network parameters
- Values of evidence variables

Outputs

Posterior distribution of query variables

Given that you have detected a trajectory deviation, and the battery has not failed what is the probability of a solar panel failure?

$$P(S = 1 \mid D = 1, B = 0)$$

Exact

Approximate

 ${\it B}$ battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

 $P(S=1 \mid D=1, B=0)$

B battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

$$P(S=1 \mid D=1, B=0) = \frac{P(S=1, D=1, B=0)}{P(D=1, B=0)}$$

B battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

 $P(S=1 \mid D=1, B=0)$ P(S=1, D=1, B=0) P(D=1, B=0) $P(S=1, D=1, B=0) = \sum_{e,c} P(B=0, S=1, E=e, D=1, C=c)$

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

$$P(S=1 \mid D=1, B=0) = \sum_{e,c} P(S=1, D=1, B=0)$$

$$P(S=1, D=1, B=0) = \sum_{e,c} P(B=0, S=1, E=e, D=1, C=c)$$

$$P(B=0, S=1, E, D=1, C)$$

$$= P(B=0) P(S=1) P(E \mid B=0, S=1) P(D=1 \mid E) P(C=1 \mid E)$$

$$\text{Fareboard Network}$$

 ${\it B}$ battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

Product

X	Υ	$\phi_1(X,Y)$				
0	0	0.3	_			
0	1	0.4	X	Y	Z	$\phi_3(X,Y,Z)$
1	0	0.2 —	0	0	0	0.0
1	1	0.1 —	0	0	1	0.0
			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1	0	0.1
			₩ 0	1	1	0.2
_			/∭ 1	0	0	0.0
Υ	Z	$\phi_2(Y,Z)$	//// 1	0	1	0.0
0	0	0.2	1	1	0	0.0
0	1	0.0	1	1	1	0.0
1	0	0.3				
1	1	0.5				

 ${\it B}$ battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

Product

Condition

\overline{X}	Υ	Z	$\phi(X,Y,Z)$			
0	0	0	0.08			. (77. 77)
0	0	1	0.31	$Y = 1$ $\frac{X}{}$	Z	$\phi(X,Z)$
0	1	0	0.09 -	→ 0	0	0.09
0	1	1	0.37 -	→ 0	1	0.37
1	0	0	0.01	<i>→</i> 1	0	0.02
1	0	1	0.05	/ → 1	1	0.07
1	1	0	0.02 -	// -		
1	1	1	0.07 -			

B battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

Exact Inference

Product

X	Υ	$\phi_1(X,Y)$				
0	0	0.3	_			
0	1	0.4	X	Y	Z	$\phi_3(X,Y,Z)$
1	0	0.2	0	0	0	0.06
1	1	0.1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0	1	0.00
			\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1	0	0.12
			₩ 0	1	1	0.20
_		(-, -)	////>>>> 1	0	0	0.04
<i>Y</i>	Z	$\phi_2(Y,Z)$	/ 1	0	1	0.00
0	0	0.2	1	1	0	0.03
0	1	0.0	// → 1	1	1	0.05
1	0	0.3	1/ -			
1	1	0.5				

Condition

Marginalize

X	Y	Z	$\phi(X,Y,Z)$			
0	0	0	0.08			. (37. 72)
0	0	1	0.31	<i>X</i>	Z	$\phi(X,Z)$
0	1	0	0.09	0	0	0.17
0	1	1	0.37	0	1	0.68
1	0	0	0.01	1	0	0.03
1	0	1	0.05	1	1	0.12
1	1	0	0.02	_		
1	1	1	0.07			

 ${\it B}$ battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

C communication loss

Exact Inference

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

Condition

Marginalize

X	Υ	Z	$\phi(X,Y,Z)$			
0	0	0	0.08			. (32.73)
0	0	1	0.31	<i>X</i>	Z	$\phi(X,Z)$
0	1	0	0.09	→ 0	0	0.17
0	1	1	0.37	→ 0	1	0.68
1	0	0	0.01	→ 1	0	0.03
1	0	1	0.05	→ 1	1	0.12
1	1	0	0.02			
1	1	1	0.07			

Exact Inference

```
struct VariableElimination
    ordering # array of variable indices
end
function infer(M::VariableElimination, bn, query, evidence)
    \Phi = [condition(\phi, evidence) for \phi in bn.factors]
    for i in M. ordering
         name = bn.vars[i].name
         if name ∉ query
             inds = findall(\phi \rightarrow in\_scope(name, \phi), \Phi)
             if !isempty(inds)
                  φ = prod(Φ[inds]) = product over
                 deleteat! (Φ, inds)

φ = marginalize (φ, name)

of Variables
                  push! (\Phi, \Phi)
             end
         end
    end
    return normalize!(prod(\Phi))
     Rehoosing order to eliminate variables is difficult
end
```

Break

Yellow: Autism Red: recently vaccinated

 $X \perp Y \mid Z$

$$X \perp Y \mid Z \implies$$

 $X \perp Y \mid Z \implies \mathsf{All} \; \mathsf{of} \; X \mathsf{'s} \; \mathsf{influence} \; \mathsf{on} \; Y \; \mathsf{comes} \; \mathsf{through} \; Z$

$$P(X \mid Z) = P(X \mid Y, Z)$$

 $X \perp Y \mid Z \implies \mathsf{All} \; \mathsf{of} \; X \mathsf{'s} \; \mathsf{influence} \; \mathsf{on} \; Y \; \mathsf{comes} \; \mathsf{through} \; Z$

$$P(X \mid Z) = P(X \mid Y, Z)$$

 $X \perp Y \mid Z \implies \mathsf{All} \; \mathsf{of} \; X$'s influence on Y comes through Z

$$P(X \mid Z) = P(X \mid Y, Z)$$

$$A \perp C \mid B$$
 ?

 $X \perp Y \mid Z \implies \text{All of } X \text{'s influence on } Y \text{ comes through } Z \qquad P(X \mid Z) = P(X \mid Y, Z)$

$$P(X \mid Z) = P(X \mid Y, Z)$$

$$A \perp C \mid B$$
 ? Yes

 $X \perp Y \mid Z \implies \mathsf{All} \; \mathsf{of} \; X \mathsf{'s} \; \mathsf{influence} \; \mathsf{on} \; Y \; \mathsf{comes} \; \mathsf{through} \; Z$

$$P(X \mid Z) = P(X \mid Y, Z)$$

 $X \perp Y \mid Z \implies \text{All of } X \text{'s influence on } Y \text{ comes through } Z \qquad P(X \mid Z) = P(X \mid Y, Z)$

$$P(X \mid Z) = P(X \mid Y, Z)$$

$$B \perp C \mid A$$
 ?

 $X \perp Y \mid Z \implies \text{All of } X \text{'s influence on } Y \text{ comes through } Z \qquad P(X \mid Z) = P(X \mid Y, Z)$

$$P(X \mid Z) = P(X \mid Y, Z)$$

 $X \perp Y \mid Z \implies \mathsf{All} \; \mathsf{of} \; X \mathsf{'s} \; \mathsf{influence} \; \mathsf{on} \; Y \; \mathsf{comes} \; \mathsf{through} \; Z$

$$P(X \mid Z) = P(X \mid Y, Z)$$

$$B \perp C \mid A$$
 ? Yes

 $X \perp Y \mid Z \implies \mathsf{All} \; \mathsf{of} \; X \mathsf{'s} \; \mathsf{influence} \; \mathsf{on} \; Y \; \mathsf{comes} \; \mathsf{through} \; Z$

$$P(X \mid Z) = P(X \mid Y, Z)$$

 $X \perp Y \mid Z \implies \mathsf{All} \; \mathsf{of} \; X \mathsf{'s} \; \mathsf{influence} \; \mathsf{on} \; Y \; \mathsf{comes} \; \mathsf{through} \; Z$

$$P(X \mid Z) = P(X \mid Y, Z)$$

 $A \perp C \mid B$? Yes

 $B \perp C \mid A$? Yes

 $B \perp C \mid A$? Inconclusive

 $X \perp Y \mid Z \implies \mathsf{All} \; \mathsf{of} \; X \mathsf{'s} \; \mathsf{influence} \; \mathsf{on} \; Y \; \mathsf{comes} \; \mathsf{through} \; Z$

$$P(X \mid Z) = P(X \mid Y, Z)$$

 $A \perp C \mid B$? Yes

 $B \perp C \mid A$? Yes

 $B \perp C \mid A$? Inconclusive

Mediator

 $X \perp Y \mid Z \implies \mathsf{All} \; \mathsf{of} \; X \mathsf{'s} \; \mathsf{influence} \; \mathsf{on} \; Y \; \mathsf{comes} \; \mathsf{through} \; Z$

$$P(X \mid Z) = P(X \mid Y, Z)$$

 $A \perp C \mid B$? Yes

Mediator

 $B \perp C \mid A$? Yes

 $B \perp C \mid A$? Inconclusive

A Is a Child

B Recently Vaccinated

C Diagnosed with Autism

 $X \perp Y \mid Z \implies \mathsf{All} \; \mathsf{of} \; X \mathsf{'s} \; \mathsf{influence} \; \mathsf{on} \; Y \; \mathsf{comes} \; \mathsf{through} \; Z$

$$P(X \mid Z) = P(X \mid Y, Z)$$

 $A \perp C \mid B$? Yes

Mediator

 $B \perp C \mid A$? Yes

Confounder

 $B \perp C \mid A$? Inconclusive

Collider

A Saw the Dietician

Is Overweight

C) Has Acne

 $(B \perp D \mid A)$?

 $(B \perp D \mid A)$? Yes!

$$(B \perp D \mid A)$$
 ? Yes!

$$(B \perp D \mid E)$$
?

$$(B \perp D \mid A)$$
 ? Yes!

$$(B \perp D \mid E)$$
 ? Inconclusive

$$(B \perp D \mid A)$$
 ? Yes!

$$(B \perp D \mid E)$$
?

Inconclusive

Why is this relevant to decision making?

C = {C, D}

Let \mathcal{C} be a set of random variables.

Let \mathcal{C} be a set of random variables.

A path between A and B is d-separated* by C if any of the following are true

Let \mathcal{C} be a set of random variables.

A path between A and B is d-separated* by C if any of the following are true

1. The path contains a *chain* X o Y o Z such that $Y \in \mathcal{C}$

Let \mathcal{C} be a set of random variables.

A path between A and B is d-separated* by C if any of the following are true

- 1. The path contains a *chain* $X \to Y \to Z$ such that $Y \in \mathcal{C}$
- 2. The path contains a *fork* $X \leftarrow Y \rightarrow Z$ such that $Y \in \mathcal{C}$

Let \mathcal{C} be a set of random variables.

A path between A and B is d-separated* by C if any of the following are true

- 1. The path contains a *chain* $X \to Y \to Z$ such that $Y \in \mathcal{C}$
- 2. The path contains a *fork* $X \leftarrow Y \rightarrow Z$ such that $Y \in \mathcal{C}$
- 3. The path contains an *inverted fork* (v-structure) $X \to Y \leftarrow Z$ such that Y is *not* in C and no descendant of Y is in C.

Let \mathcal{C} be a set of random variables.

A path between A and B is d-separated* by C if any of the following are true

- 1. The path contains a *chain* X o Y o Z such that $Y \in \mathcal{C}$
- 2. The path contains a *fork* $X \leftarrow Y \rightarrow Z$ such that $Y \in \mathcal{C}$
- 3. The path contains an *inverted fork* (v-structure) $X \to Y \leftarrow Z$ such that Y is *not* in C and no descendant of Y is in C.

We say that A and B are d-separated by C if all paths between A and B are d-separated by C.

Let \mathcal{C} be a set of random variables.

A path between A and B is d-separated* by C if any of the following are true

- 1. The path contains a *chain* $X \to Y \to Z$ such that $Y \in \mathcal{C}$
- 2. The path contains a *fork* $X \leftarrow Y \rightarrow Z$ such that $Y \in \mathcal{C}$
- 3. The path contains an *inverted fork* (v-structure) $X \to Y \leftarrow Z$ such that Y is *not* in C and no descendant of Y is in C.

We say that A and B are d-separated by C if all paths between A and B are d-separated by C.

If A and B are d-separated by $\mathcal C$ then $A \perp B \mid \mathcal C$

- 1. The path contains a *chain* X o Y o Z such that $Y \in \mathcal{C}$
- 2. The path contains a *fork* $X \leftarrow Y \rightarrow Z$ such that $Y \in \mathcal{C}$
- 3. The path contains an *inverted fork* (v-structure) $X \to Y \leftarrow Z$ such that $Y \notin \mathcal{C}$ and no descendant of Y is in \mathcal{C} .

1. Enumerate all (non-cyclic) paths between nodes in question

- 1. The path contains a *chain* $X \to Y \to Z$ such that $Y \in \mathcal{C}$
- 2. The path contains a *fork* $X \leftarrow Y \rightarrow Z$ such that $Y \in \mathcal{C}$
- 3. The path contains an *inverted fork* (v-structure) $X \to Y \leftarrow Z$ such that $Y \notin \mathcal{C}$ and no descendant of Y is in \mathcal{C} .

- 1. Enumerate all (non-cyclic) paths between nodes in question
- 2. Check all paths for d-separation

- 1. The path contains a *chain* $X \to Y \to Z$ such that $Y \in \mathcal{C}$
- 2. The path contains a *fork* $X \leftarrow Y \rightarrow Z$ such that $Y \in \mathcal{C}$
- 3. The path contains an *inverted fork* (v-structure) $X \to Y \leftarrow Z$ such that $Y \notin \mathcal{C}$ and no descendant of Y is in \mathcal{C} .

- 1. Enumerate all (non-cyclic) paths between nodes in question
- 2. Check all paths for d-separation
- 3. If all paths d-separated, then CE

- 1. The path contains a *chain* $X \to Y \to Z$ such that $Y \in \mathcal{C}$
- 2. The path contains a *fork* $X \leftarrow Y \rightarrow Z$ such that $Y \in \mathcal{C}$
- 3. The path contains an *inverted fork* (v-structure) $X \to Y \leftarrow Z$ such that $Y \notin \mathcal{C}$ and no descendant of Y is in \mathcal{C} .

- 1. Enumerate all (non-cyclic) paths between nodes in question
- 2. Check all paths for d-separation
- 3. If all paths d-separated, then CE

- 1. The path contains a *chain* $X \to Y \to Z$ such that $Y \in \mathcal{C}$
- 2. The path contains a *fork* $X \leftarrow Y \rightarrow Z$ such that $Y \in \mathcal{C}$
- 3. The path contains an *inverted fork* (v-structure) $X \to Y \leftarrow Z$ such that $Y \notin \mathcal{C}$ and no descendant of Y is in \mathcal{C} .

- √ 1. Enumerate all (non-cyclic) paths between nodes in question
 - 2. Check all paths for d-separation3. If all paths d-separated, then CE

- 1. The path contains a *chain* $X \to Y \to Z$ such that $Y \in \mathcal{C}$
- 2. The path contains a *fork* $X \leftarrow Y \rightarrow Z$ such that $Y \in \mathcal{C}$ No

No

3. The path contains an *inverted fork* (v-structure) $X \to Y \leftarrow Z$ such that $Y \notin \mathcal{C}$ and no descendant of Y is in \mathcal{C} .

- 1. The path contains a *chain* X o Y o Z such that $Y \in \mathcal{C}$
- 2. The path contains a *fork* $X \leftarrow Y \rightarrow Z$ such that $Y \in \mathcal{C}$
- 3. The path contains an *inverted fork* (v-structure) $X \to Y \leftarrow Z$ such that $Y \notin \mathcal{C}$ and no descendant of Y is in \mathcal{C} .

B battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

C communication loss

- 1. The path contains a *chain* X o Y o Z such that $Y \in \mathcal{C}$
- 2. The path contains a *fork* $X \leftarrow Y \rightarrow Z$ such that $Y \in \mathcal{C}$
- 3. The path contains an *inverted fork* (v-structure) $X \to Y \leftarrow Z$ such that $Y \notin \mathcal{C}$ and no descendant of Y is in \mathcal{C} .

 $D \perp C \mid B$?

B battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

C communication loss

- 1. The path contains a *chain* X o Y o Z such that $Y \in \mathcal{C}$
- 2. The path contains a *fork* $X \leftarrow Y \rightarrow Z$ such that $Y \in \mathcal{C}$
- 3. The path contains an *inverted fork* (v-structure) $X \to Y \leftarrow Z$ such that $Y \notin \mathcal{C}$ and no descendant of Y is in \mathcal{C} .

$$D \perp C \mid B$$
 ?

$$D \perp C \mid E$$
 ?

- ${\it B}$ battery failure
- S solar panel failure
- E electrical system failure
- D trajectory deviation
- C communication loss

- 1. The path contains a *chain* X o Y o Z such that $Y \in \mathcal{C}$
- 2. The path contains a *fork* $X \leftarrow Y \rightarrow Z$ such that $Y \in \mathcal{C}$
- 3. The path contains an *inverted fork* (v-structure) $X \to Y \leftarrow Z$ such that $Y \notin \mathcal{C}$ and no descendant of Y is in \mathcal{C} .

Recap