Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Duration: 3 Hrs.

Faculty of Engineering

End Sem (Even) Examination May-2018 CE3CO09 Transportation Engineering

Branch/Specialisation: CE Programme: B.Tech. **Maximum Marks: 60**

Note:	of	Q.1 (MCQs) sh	nould be written	in full instead	if any, are indicated. An of only a, b, c or d.	nswers
	(b) Ass	sume suitable c	lata according t	o IRC if not gi	ven.	
Q.1	i.	The max. val	ue of co-efficie	nt of friction al	ong lateral direction is:	1
		(a) 1	(b) 0.5	(c) 0.07	(d) 0.15	
	ii.	The primary	object of provid	ling camber is		1
		(a) Improved	appearance			
		(b) Easy sepa	ration of up an	d down traffic		
		(c) Easy drain				
		(d) Easy over	taking facility			
	iii.	A Bitumen bo	ound macadam	pavement is be	est suited where	1
		(a) Rainfall is	s heavy	-		
		(b) Ground w	ater table is at	shallow depths		
		(c) The clima	te is hot and hu	mid		
		(d) Rainfall is	s less			
	iv.	Formula for C	G.I. value is			1
		(a) $0.002a +$	0005ac + 0.01b	od		
		` /	05a c + 0.01bd			
		` '	0005ab + 0.01d	ed		
		` ′	0.5a b + 0.01cd			
	v.	` '		sisting section	of 20 cm slab, given	1
		-	s of contact are	=	-	
		(a) 23.37cm		(c) 14.07cm	(d) 18.08cm	
	vi.	` /	` '	` '	e following data; h =	1
		-	$1 \times 10^5 \text{ kg/cm}^2$,u			
		(a) 66.89cm	•	(c) 72.37cm		
			. ,	` /	` '	Г.О.

[3]

	ii.	(a) Explain in brief design of Dowel bar.	3
		(b) Determine the spacing between contraction joints for 3.5	5
		meter slab width having thickness of 20 cm and $f = 1.5$, for	
		the following two cases:	
		(I) For plain cement concrete, allowable $Sc = 0.8 \text{ kg/cm}^2$	
		(II) For reinforcement cement concrete, 1.0 cm diameter	
		bars at 0.3 meter Spacing.	
OR	iii.	Explain with diagram the following terms:	8
		(a) Warping stresses and Frictional stresses	
		(b) Contraction joint and Expansion joint	
		(c) Tie bars	
Q.5	i.	Briefly explain the causes of failure of flexible pavement.	3
		(Minimum 6 points)	
	ii.	Explain Flexible and Rigid Pavement Failures with diagram.	7
OR	iii.	What are different types of Overlay? Explain overlay Design by	7
		Benkelman Beam deflection Studies.	
Q.6		Attempt any two:	
	i.	What are the important points to be considered while selecting	5
		the suitable site for Airport?	
	ii.	Explain different features of Wind Rose Diagram.	5
	iii.	Write short note on Taxiways and geometrical elements of	5
		Runway with diagram.	

Marking Scheme CE3CO09 Transportation Engineering

0.1			
Q.1	i.	The max. value of co-efficient of friction along lateral direction is:	1
		(d) 0.15	
	ii.	The primary object of providing camber is	1
		(c) Easy drainage	
	iii.	A Bitumen bound macadam pavement is best suited where	1
		(d) Rainfall is less	
	iv.	Formula for G.I. value is	1
		(b) $0.2a + .005a c + 0.01bd$	
	v.	Find Equivalent radius of resisting section of 20 cm slab, given that the radius of	1
		contact area of wheel load is 15 cm;	
		(c) 14.07 cm	
	vi.	Compute radius of relative stiffness for the following data; h = 15cm, E =	1
		$2.1 \times 10^5 \text{ kg/cm}^2, u = 0.13, k = 3 \text{kg/cm}^3$	
		(a) 66.89cm	
	vii.	Warping Cracks is type of;	1
		(a) Rigid Pavement Failure	
	viii.	The removal and diversion of surface water from the roadway is called+	1
		(c) Surface drainage	
	ix.	The Airport reference temperature is given by	1
		(b) $T_a + (T_m - T_a)/3$	
	х.	The Threshold markings are:	1
		(d) All of these	
Q.2	i.	Explain PIEV Theory with diagram.	2
		1 mark for explanation	
		1 mark for diagram	
	ii.	Write steps for Super elevation design in brief.	3
	111	3/4 marks for each step (4 steps) (3/4 mark *4)	
	iii.	Calculate the Safe overtaking sight distance for a design speed of 96 kmph. If	
		given that speed of Overtaken Vehicle is 80 kmph, reaction time 2 Sec,	
		acceleration of overtaking vehicle is 2.5kmph/sec and two way traffic road.	

		grob word blands bas t make all the state of	
		Solution	
		O.S.D = $(d_1 + d_2)$ for one-way traffic	
		$= (d_1 + d_2 + d_3) \text{ for two-way traffic}$	
		V = 96 kmph Acc. No:	
		Assume $V_b = V - 16 = 80$ kmph and Price 1	1
		A 2.5 kmph/sec. (from Table 4.7); $t = 2 \text{ secs.}$	
		$d_1 = 0.28 \text{ V}_b \text{ t} = 0.28 \times 80 \times 2 = 44.8 \text{ m}$	
		$d_2 = 0.28 V_b T + 2.s$	1
		$s = (0.2 V_b + 6) = 0.2 \times 80 + 6 = 22 m$	
		$T = \sqrt{\frac{14.4 \mathrm{s}}{\mathrm{A}}} = \sqrt{\frac{14.4 \times 22}{2.5}} = 11.3 \mathrm{secs}.$	1
		$d_2 = 0.28 \times 80 \times 11.3 + 2 \times 22 = 297 \text{ m}$	
		$d_3 = 0.28 \text{ V T} = 0.28 \times 96 \times 11.3 = 303.7 \text{ m}$	1
		O.S.D. on one-way traffic road = $d_1 + d_2 = 341.8 \text{ m}$; say 342 m	
		O.S.D. on two-way traffic road = $d_1 + d_2 + d_3 = 645.5$ m; say 646 m	1
		all	
OR	iv.	Calculate the Stopping Sight distance on a highway at a descending gradient of	5
		2% for a design speed of 80 kmph. If given that reaction time $t = 2.5$ Sec, $g = 2.5$	
		9.81 m/sec ² , design coefficient of friction is 0.35.	

		Solution Total reaction time t may be taken as 2.5 seconds and design coefficient of friction as	
		f = 0.35. $V = 80 \text{ kmph}; n = -2\% = -0.02, G = 9.8 \text{ m/sec}^2$	
		$v = \frac{80}{3.6} = 22.2 \text{ m/sec}$	1
		SSD on road with gradient is given in Eq. 4.3 and 4.4.	
		From Eq. 4.3, SSD = vt + $\frac{v^2}{2g(f \pm n\%)}$ = 2.2 × 2.5 + $\frac{22.2^2}{2 \times 9.8(0.35 - 0.02)}$	2
		= 55.5 + 76.2 = 131.7 m say 132 m	2
		Alternatively, using Eq. 4.4	OR
		SSD = $0.278 \text{ V.t} + \frac{\text{V}^2}{254 (\text{f} \pm 0.01) \text{ n}}$	3
		$= 0.278 \times 80 \times 2.5 + \frac{80^2}{254(0.35 - 0.02)} = 55.6 + 76.4 = 132 \text{ m}$	2
		== 1(0.05 0.02)	2
Q.3	i.	Define WBM and WMM.	2
		1 mark for each explanation. (1 mark *2)	
	ii.	Explain in detail Marshall Mix Design Method of flexible pavement with	8
		diagrams.	
		5 marks for explanation and procedure, 3 marks for diagram	
OR	iii.	Explain in detail California Bearing Ratio method of flexible pavement design	8
OIC	111.	with diagrams.	
		5 marks for explanation,	
		2 marks for diagram and	
		1 mark for formula.	
0.4		Diff. divide Bill 1	
Q.4	i.	Differentiate between Rigid pavement and Flexible pavement.	2
	ļ	1/2 mark for each point (1/2 mark * 4)	
	ii.	Explain in brief design of Dowel bar.	3
		34 mark for each step (34 mark *4)	
	iii.	Determine the spacing between contraction joints for 3.5 meter slab width having thickness of 20 cm and $f = 1.5$, for the following two cases:	
		(a) for plain cement concrete, allowable $Sc = 0.8 \text{ kg/cm}^2$	
		(b) For reinforcement cement concrete, 1.0 cm diameter bars at 0.3 meter	
		Spacing.	

		Solution 14, Agent have to start the start and blind at a surface or making to said the			
		believed to de troc animismor out has date stronged teamer and at believed a rec			
		Case (i) For Plain Cement Concrete Slab (without reinforcement)			
		Assume unit weight of CC, $W = 2400 \text{ kg/m}^3$			
		Using Eq. 7.30 spacing between contraction joints.			
		$L_{c} = \frac{2 S_{c}}{Wf} \times 10^{4} = \frac{2 \times 0.8 \times 10^{4}}{2400 \times 1.5} = 4.44 \text{ m}$ 3.57 3.57	2		
ı		Case (ii) For Reinforced Cement Concrete Slab			
ı		Total cross sectional area of steel, A _s in one direction along the slab width			
		$A_s = \frac{3.5 \times \pi \times 1.0^2}{0.3 \times 4} = 9.16 \text{ cm}^2$			
1		Using Eq. 7.29, spacing between contraction joints,			
		$L_{c} = \frac{200 S_{s} A_{s}}{b h W f} = \frac{200 \times 1200 \times 9.16}{3.5 \times 20 \times 2400 \times 1.5} = 8.72 m$	1.5		
OR	iv	Explain the following terms:	5		
		(a) Warping stresses and Frictional stresses 2 marks			
1		(b) Contraction joint and Expansion joint 2 marks			
		(c) Tie bars 1 mark			
Q.5	i.	What are general causes of Pavement Failures?	3		
		½ mark for each point (½ mark * 6)			
OR	ii.	Explain Flexible and Rigid Pavement Failures with diagram.	7		
		1 mark for each point with diagram.	<u> </u>		
	iii.	What are different types of Overlay? 2 marks	7		
		Explain overlay Design by Benkelman Beam deflection studies.			
		5 marks			
0.6	•	Attended one two			
Q.6	i.	Attempt any two.	<u> </u>		
1	ii.	What are the important points to be considered while selecting the suitable site	5		
		for Airport?			
	:::	1 mark for each point (1 mark * 5)	 _		
	iii.	Explain different features of Wind Rose Diagram.	5		
	•	1 mark for each point (1 mark * 5)	 _ 		
	iv.	Write short note on Taxiways and geometrical elements of runway. 2.5 marks for each (2.5 marks * 2)	5		
		2.5 marks for each (2.5 marks * 2)			
