CHILSquare Testistics of the sal to zuznos clos at The thi-square test for Goodness of fit a tests claims about population proportions [categorical variables] -> It is a non-parametric test that is performed categorical data. [ordinal, nominal data] Ex: There is a population of Male who likes different color of bike yellow Bike /3 population orange Bike 1/3 Red Bikeprons 131 ztrojes to zeonezettik of Theoritical ozs 0106 AT categorical distribution. Aick sample data. -) In order to test the above llien O EOE ni Sample yellow Bike Red Bike 2 5 902> observed babagya categorical distribution.

The need to come to conclusion on population proportions given and this test is called Goodess of fit.

in a small city were found to be the following.

weight < 50 kg 50-75 775

Below are the results.

30%

50%

yelloy

< 50	50-75	775
140	160	200

20%

using a = 0.105, would you conclude the population differences of weights has changed in last 10 years)

In 2020 (50 50.75 775)
when, n = 500
0bserved 140 160 200

In 3010 < 20 kg 20-12/2 572

O wall hypothesis (th): The data meets the expectation

destribution.

Alternate hypothesis H. The data does not meet the

expectation.

sold this feet is colled

x > 5.991 of Reject the wall hypothesis

The weights of population has charged : 2129thogy Muy (E + 10: 14 c'asatogya storesta

10 56, ng = 8

The F-distribution with d, and do degrees of freedom is the distribution of

X = 51/d, Si -> Independent Random variables,

S

F-Test: Variance Ratio Test Company the Variance between 2 groups }

a) The following data shows the noiof bulbs produced daily for some days by a workers A and B.

A balbardo con we consider based

40 390900 on the data worker B is

30 38

38 (041) (021-021) (001-051)

41 33

38 32

40

40

(34201109401 11001 01) 100900 1 10000 1

A) will hypothesis the of 2 2 wildless to aligner of

-	A	- 13			
X,	×	(x,-x)2			
40	37	9			
30	37	49			
38	37	-			
41	37	16			
38	37	1			
35	37	4			
x, = 3:	+	Z (x;-x)2 = 80			
2 = 2 (x:-x:)2					
n-1					
= 80 = 16					
5					

В						
e×	×a		(x2-x)2			
39	37		4			
38	37		1			
41	37		16			
23	37		16			
32	37		25			
39	37		4			
40	37		9			
34	37		9			
X ₂ = 37		2	(x;-x1)=84			
	1	1				

Variance Ration [F-test]
$$F = \frac{z_1^2}{z_2^2} = \frac{16}{12} = 1.33$$

* Decision Rule: [F-distribution] -> is also a right-should distribution.

> F-test 73.9715 {Reject will hypothesis}

is 1:33 > 3:97(5 => False.

we fail to reject the mell hypothesis.

worker A ~ worker B