Analysis of DNA methylation data

Methods applied in EWAS analyses

- The data is really just a matrix of samples vs. Transformed intensity values from hybridised methylation sites
- That is, Illumina DNAm data is just a NxK matrix of values between 0 and 1
- We are interested in whether specific probes present in all or most samples exhibit association with a phenotype (i.e. trait/disease)

	Sample 1	Sample 2	Sample 3
cg00005974	0.12	0.83	0.33
cg00004962	0.43	0.21	0.29
cg00001070	0.66	0.22	0.55
cg00007232	0.04	0.31	0.02
cg00000845	0.13	0.11	0.91
cg00009598	0.24	0.22	0.41
cg00000941	0.12	0.83	0.33
cg00002848	0.43	0.21	0.29
cg00004718	0.66	0.42	0.55
cg00002858	0.04	0.19	0.02
cg00002893	0.13	0.11	0.91
cg00004361	0.24	0.22	0.41
cg00007169	0.04	0.76	0.22
cg00001373	0.13	0.11	0.91
cg00003000	0.24	0.22	0.41
cg00009140	0.12	0.83	0.33
cg00006890	0.43	0.21	0.29

Other quantitative methods that are used in EWAS analyses

- T-test
- 1-1 regression (Limma, robust, GLM, etc.)
- Shrinkage methods (LASSO/RIDGE+variants)
- LASSO+RIDGE=ELNET
- (CP)PLS/PCA regression
- ++ active research field

Methods for screening

- The elastic net (glmnet) is EXTREMELY fast, and works well on a standard PC (not to great with categorical variables)
- Can run GLMs, i.e. «Poisson», «multinomial», «binomial» also survival
- Takes whole methylation matrix as explanatory variables in one go!
- RIDGE and LASSO special cases in a continum of methods set with a parameter
- Variance not computed

EWAS analyses:

- Further analyses can be subsequently carried out by using standard linear regression to get the «variance explained» R^2 statistic
- Adjust for: Sex, Smoking, age, cell type
- Ethnicity (often not performed, 65 SNPs available on EPIC)
- Family background (random effects models)
- First 10 PCA components often related to cell type, sex and age
- Age and sex in particular exhibit a a strong «global»
 DNAm influence
- PCA may adjusting away effects of phenotype.

Regression results

Table 1

	est	se	pval
cg00005974	0.004296261	0.0009989015	4.345633e-05
cg00004962	0.003799851	0.0009631020	1.586828e-04
cg00001070	-0.003374497	0.0008764390	2.219065e-04
cg00007232	0.003697749	0.0009846563	3.084131e-04
cg00000845	0.003388276	0.0009250157	4.229506e-04
cg00009598	0.003565897	0.0009857787	4.933585e-04
cg00000941	0.003430470	0.0009732136	6.716065e-04
cg00002848	-0.003285014	0.0009320666	6.726013e-04
cg00004718	0.003507581	0.0009975113	6.908778e-04
cg00002858	0.003445350	0.0009992500	8.648064e-04
cg00002893	-0.003197148	0.0009326856	9.231261e-04
cg00004361	0.003326078	0.0009714479	9.353788e-04
cg00007169	0.003255150	0.0009585613	1.024061e-03
cg00001373	0.003154435	0.0009526732	1.343493e-03
cg00003000	0.003189906	0.0009679909	1.412346e-03
cg00009140	0.003138950	0.0009540474	1.436013e-03
cg00006890	0.003201494	0.0009814987	1.570154e-03

Multiple testing

- Expect 5 significant p<0.05 for every 100 CpGs from pure randomness (if independent)
- Bonferroni correct (multiply p value with number of tests)
- Methylome highly correlated so Bonferroni is too strict
- FDR a good alternative (Q values), however FDR 0.05 difficult to reproduce
- Many more genomic CpG loci than array probes...
- ...probes may correlate with missing CpG loci => increase sample size
- CpGs vary check genes and regions (CpG islands, shelfs, shores, promoter regions, TSSs, enhancers, gene body, etc)
- P value "torturing" common in methylation analyses

QQ plot and Volcano plot

Associations between methylation and gestational age?

Adjustment for cell type (Houseman) and sex

...added 20 PC's

Even more refined analyses...

Results/impressions from experience...

- Physical measurements seems to be better correlated with methylation data
- Data from questionnaires difficult due to a number of reasons (missing, «subjective answers»)
- «Kostdata» (nutrition) difficult, effects maybe too weak to discover
- Behavioural/cognitive data difficult to detect
- DNA methylation mark does not seem to be easily altered

GDPR

- Bureaucracy in human data horrible and is getting worse
- Often problems with availability and delays
- A potential life saver:
 - NCBI GENBANK ton's of genetic data available (Gene Expression Omnibus)
- https://www.ncbi.nlm.nih.gov/gds