This page shows how to calculate the regression line for our example using the least amount of calculation.

First form the following table:

X	x^2	y	y^2	x y
5	25	6	36	30
1	1	0	0	0
10	100	8	64	80
4	16	6	36	24
20	142	20	136	134

[The last row represents the column totals.] We see that xmean = 20 / 4 = 5.0, and ymean = 20 / 4 = 5.0.

The variance of x (= (the standard deviation of x) 2) is Sx 2 = (sum x 2 - n xmean 2) / (n - 1) or

$$Sx^2 = (142 - 4 * 5.0^2) / (4 - 1) = 42 / 3 = 14.$$

The covariance is Sxy = (sum xy - n xmean ymean) / (n - 1) or

$$Sxy = (134 - 4 * 5.0 * 5.0) / (n - 1) = 34 / 3 = 11.33.$$

The slope of the regression line is $b1 = Sxy / Sx^2$, or b1 = 11.33 / 14 = 0.809.

The intercept is b0 = ymean - b1 xmean, or b0 = 5.00 - .809 x 5.00 = 0.95

Thus the equation of the least squares line is yhat = 0.95 + 0.809 x.