CH365 Chemical Engineering Thermodynamics

Lesson 26 Review

Homework

Problem 5.17

A Carnot engine operates between temperature levels of 600 K and 300 K. It drives a Carnot refrigerator, which provides cooling at 250 K and discards heat at 300 K.

Determine a numerical value for the ratio of heat extracted by the refrigerator ("cooling load") to the heat delivered to the engine ("heating load").

Problem 5.17, continued

Determine a numerical value for the ratio of heat extracted by the refrigerator ("cooling load") to the heat delivered to the engine ("heating load").

Want relationship between Q_c^R and Q_H^E

Problem 5.17, continued

Carnot Efficiency, η

Coefficient of Performance, COP

J, 1	<u> </u>
absorbs $\left Q_{H}^{E}\right $, discards $\left Q_{C}^{E}\right $, and produces $\left W\right $	absorbs $\left Q_{c}^{R}\right $, discards $\left Q_{H}^{R}\right $, and consumes $\left W\right $
$\left \mathbf{W} \right = \left \mathbf{Q}_{H}^{E} \right - \left \mathbf{Q}_{C}^{E} \right $ 1st Law	$\left \mathbf{W} \right = \left \mathbf{Q}_{H}^{R} \right - \left \mathbf{Q}_{C}^{R} \right $ 1st Law
$\eta \equiv \frac{ W }{\left Q_H^E\right } \qquad \text{(Eq. 5.6)} \\ \text{definition of efficiency} \\ \text{input > output}$	$\frac{\text{output}}{\text{input}} \qquad \qquad COP \equiv \frac{\left Q_C^R\right }{\left W\right } \qquad \begin{array}{c} \text{definition of coefficient of performance (or COP)} \\ \text{output > input} \end{array}$
$\eta = \frac{\left Q_{H}^{E}\right - \left Q_{C}^{E}\right }{\left Q_{H}^{E}\right } = 1 - \frac{\left Q_{C}^{E}\right }{\left Q_{H}^{E}\right }$	$COP = \frac{\begin{vmatrix} Q_{C}^{R} \\ \end{vmatrix} - \begin{vmatrix} Q_{C}^{R} \end{vmatrix}}{\begin{vmatrix} Q_{C}^{R} \end{vmatrix} - \begin{vmatrix} Q_{C}^{R} \end{vmatrix}} \Rightarrow \frac{1}{COP} = \frac{\begin{vmatrix} Q_{H}^{R} \\ - Q_{C}^{R} \end{vmatrix}}{\begin{vmatrix} Q_{C}^{R} \\ - Q_{C}^{R} \end{vmatrix}} = \frac{\begin{vmatrix} Q_{H}^{R} \\ - Q_{C}^{R} \end{vmatrix}}{\begin{vmatrix} Q_{C}^{R} \\ - Q_{C}^{R} \end{vmatrix}} - 1$
Carnot's equation $0 = \frac{Q_H^E}{T_H^E} + \frac{Q_C^E}{T_C^E} \qquad \qquad \frac{\left Q_C^E\right }{\left Q_H^E\right } = \frac{T_C^E}{T_H^E}$ (Eqns. 5.4 L22 Slide 7)	Carnot's Equation $0 = \frac{Q_H^R}{T_H^R} + \frac{Q_C^R}{T_C^R} \qquad \qquad \frac{\left Q_H^R\right }{\left Q_C^R\right } = \frac{T_H^R}{T_C^R}$

$$\eta = 1 - \frac{T_C^E}{T_H^E}$$
 (Eq. 5.7)

$$\frac{1}{COP} = \frac{T_H^R}{T_C^R} - 1 = \frac{T_H^R - T_C^R}{T_C^R} \implies COP = \frac{T_C^R}{T_H^R - T_C^R}$$