CS7301: Advanced Topics in Optimization for Machine Learning

Lecture 4.1: Projected Gradient Descent and Conditional Gradient Descent

Rishabh Iyer

Department of Computer Science University of Texas, Dallas https://github.com/rishabhk108/AdvancedOptML

February 12, 2021

1/29

Summary of what has been studied so far...

- Basics of Convex Functions and Convex Sets
- Properties of Convex Funcions, Examples
- Analysis of Gradient Descent: Lipschitz Continuous, Smooth, Strongly Convex
- Lower bounds of gradient algorithms (first order algorithms)
- Accelerated Gradient Descent
- Proximal Gradient Descent

Recap: Proximal Gradient Descent

• From the previous slide:

$$\operatorname{argmin}_{x} \frac{1}{2\gamma} (x - [x_t - \gamma \nabla f(x_t)])^2 + h(x)$$

- Define $\operatorname{prox}_t(x) = \operatorname{argmin}_z \frac{1}{2t} ||x z||^2 + h(z)$
- Notice that the update rule then is

$$x_{t+1} = \operatorname{prox}_{\gamma}(x_t - \gamma \nabla f(x_t))$$

- Convergence bound: Assume f,h are convex and the proximal minimization is easy (ideally closed form), then using a step size of $\gamma=1/L$, we can bound: $f(x_T)-f(x^*)\leq \frac{LR^2}{2T}$
- This is exactly the same convergence rate for smooth functions!

Recap on Lagrangian and Duality

- Consider the Problem of Constrained Convex Minimization: $\min_{x \in \mathcal{C}} f(x)$
- A simple modification of the gradient descent procedure is:
 - **①** At every iteration t: (Gradient Step): Compute $y_{t+1} = x_t \alpha \nabla f(x_t)$
 - 2 (Projection step) $x_{t+1} = P_{\mathcal{C}}(y_{t+1})$
- ullet Key here is the Projection step. Define $P_{\mathcal{C}}(x) = \operatorname{argmin}_{y \in \mathcal{C}} \frac{1}{2} ||x-y||^2$

Projected Gradient Descent and Proximal Gradient Descent

- There is a close connection between Proximal and Projected Gradient Descent.
- Define $h(x) = I(x \in C)$ where I(.) is the Indicator function.
- Its easy to see that the $\operatorname{prox}_h(x) = P_{\mathcal{C}}(x)$, i.e. the Prox operator is exactly the same as a projection operator.
- As a result, projected gradient descent becomes a special case of proximal gradient descent.
- Theoretical results of Proj. GD: All results for standard Gradient descent carry over to the projected case as long as the projection operator is easy to compute!

Algorithm: Projected Gradient Descent (We use x_u^k instead of z^k)

Find a starting point $x_p^0 \in \mathcal{C}$.

Set k=1

repeat

- 1. Choose a step size $t^k \propto 1/\sqrt{k}$.
- 2. Set $x_u^k = x_p^{k-1} t^k \nabla f(x_p^{k-1})$.
- 3. Set $x_p^k = \underset{z \in C}{\operatorname{argmin}} ||x_u^k z||_2^2$.
- 4. Set k = k + 1.

until stopping criterion (such as $||\mathbf{x}_p^k - \mathbf{x}_p^{k-1}|| \le \epsilon$ or $f(\mathbf{x}_p^k) > f(\mathbf{x}_p^{k-1})$) is satisfied¹

Figure 1: The projected gradient descent algorithm.

Better criteria can be found using Lagrange duality theory; etc. > (= > = > > < 7/29

Convergence Results for Projected Gradient Descent

- Lipschitz continuous functions PGD: R^2B^2/ϵ^2 iterations*
- Lipschitz continuous functions + Strongly Convex PGD: $2B^2/\epsilon 1$ iterations*
- Smooth Functions PGD: $\frac{R^2L}{\epsilon}$ iterations.
- Smooth Functions Nesterov's PGD: $\sqrt{\frac{2LR^2}{\epsilon}}$ iterations*
- Smooth + Strongly Convex PGD: With $\gamma = 1/L$, achieve an ϵ -approximate solution in $\frac{L}{\mu} \log(\frac{R^2L}{2\epsilon})$ iterations.
- Smooth + Strongly Convex Nesterov's PGD: With $\gamma=1/L$, achieve an ϵ -approximate solution in $\sqrt{\frac{L}{\mu}}\log(\frac{R^2L}{2\epsilon})$ iterations*.
- Key Requirement for Projected Gradient to Work: Projection must be easy (closed form obtainable) for the constraint.

- Lets assume for simplicity that $\mathcal{C} = \{x | f(x) \leq c\}$
- Computing the projection step involves solving: $\min_{z} \{\frac{1}{2} ||z-x||^2, \text{ such that } f(z) \leq c \}.$
- Use the idea of Lagrange multipliers!
- Define $g(z, \lambda) = \frac{1}{2}||z x||^2 + \lambda(f(z) c)$.
- ullet Optimality conditions are: $abla_z g = 0$ and $abla_\lambda g = 0!$
- There are two options. Either $x \in \mathcal{C}$, in which case the constraints are not active, or x is outside \mathcal{C} in which case we need $\nabla_z g = 0$ and $\nabla_\lambda g = 0$.
- The second case implies: f(z) = c and $z x + \lambda \nabla f(z) = 0$. If both these can be solved in closed form, we are done!

- Optimality conditions imply: f(z) = c and $z x + \lambda \nabla f(z) = 0$. If both these can be solved in closed form, we are done!
- Compute the Projection operators for the constraints $C_f = \{x \mid f(x) < c\}$
 - $f(x) = a^T x$
 - $f(x) = ||x||_2^2$
 - $f(x) = ||x||_1$
 - $f(x) = ||x x_0||^2$
 - $f(x) = x^T A x + b x + c$
 - $f(x) = ||x||_{\infty}$

Easy to Project Sets \mathcal{C} (with closed form solutions)

- Solution set of a linear system $C = \{x \in \Re^n : A^T x = b\}$
- Affine images $C = \{Ax + b : x \in \mathbb{R}^n\}$
- Nonnegative orthant $C = \{x \in \Re^n : x \succeq 0\}$. It may be hard to project on arbitrary polyhedron.
- Norm balls $\mathcal{C} = \{\mathsf{x} \in \Re^n : \|\mathsf{x}\|_p \leq 1\}$, for $p = 1, 2, \infty$

Table of Orthogonal Projections: 500

$$P_C(z) = prox_{I_C}(z) = argmin_x \frac{1}{2t} ||x - z||^2 + I_C(x) = argmin_{x \in C} \frac{1}{2t} ||x - z||^2$$

Set C =	For $t = 1$, $P_{C}(z) =$	Assumptions
\Re_{+}^{n}	[z] ₊	
Box[l, u]	$P_{C}(z)_{i} = min\{max\{z_{i}, l_{i}\}, u_{i}\}$	$l_i \leq u_i$
Ball[c, r]	$c + \frac{r}{\max\{\ z - c\ _2, r\}}(z - c)$	$\ .\ _2$ ball, centre $c \in \Re^n$ & radius $r>0$
$\{x Ax = b\}$	$z - A^T (AA^T)^{-1} (Az - b)$	$A \in \Re^{m \times n}$, $b \in \Re^m$, A is full row rank
$\{x a^Tx \leq b\}$	$z - \frac{[a^Tz - b]_+}{\ a\ ^2}a$	$0 \neq a \in \Re^n \ b \in \Re$
Δ_n	$[z - \mu^*e]_+$ where $\mu^* \in \Re$ satisfies $e^{T}[z - \mu^*e]_+ = 1$	
$H_{a,b}\cap \operatorname{Box}[I,u]$	$P_{\text{Box}[1,u]}(z - \mu^*a)$ where $\mu^* \in \Re$ satisfies $a^T P_{\text{Box}[1,u]}(z - \mu^*a) = b$	$0 \neq a \in \Re^n \ b \in \Re$
$H^{a,b}\cap \operatorname{Box}[I,u]$	$\begin{array}{l} P_{\text{Box}[l,u]}(z) & \text{a}^{T}P_{\text{Box}[l,u]}(z) \leq b \\ P_{\text{Box}[l,u]}(z - \lambda^* \mathbf{a}) & \text{a}^{T}P_{\text{Box}[l,u]}(z) > b \\ \text{where } \lambda^* \in \Re \text{ satisfies} & \text{a}^{T}P_{\text{Box}[l,u]}(z - \lambda^* \mathbf{a}) = b \ \& \ \lambda^* > 0 \end{array}$	$0 \neq a \in \Re^n \ b \in \Re$
$B_{\parallel.\parallel_1}[0,lpha]$	$ \begin{split} \mathbf{z} & & \ \mathbf{z}\ _1 \leq \alpha \\ & [\mathbf{z} - \lambda^* \mathbf{e}]_+ \odot \mathit{sign}(\mathbf{z}) & & \ \mathbf{z}\ _1 > \alpha \\ & \text{where } \lambda^* > 0, \ \& \ [\mathbf{z} - \lambda^* \mathbf{e}]_+ \odot \mathit{sign}(\mathbf{z}) = \alpha \end{split} $	$\alpha > 0$ UT DALLAS

Convergence Results for Projected Gradient Descent

- Lipschitz continuous functions PGD: R^2B^2/ϵ^2 iterations*
- Lipschitz continuous functions + Strongly Convex PGD: $2B^2/\epsilon 1$ iterations*
- Smooth Functions PGD: $\frac{R^2L}{\epsilon}$ iterations.
- Smooth Functions Nesterov's PGD: $\sqrt{\frac{2LR^2}{\epsilon}}$ iterations*
- Smooth + Strongly Convex PGD: With $\gamma = 1/L$, achieve an ϵ -approximate solution in $\frac{L}{\mu} \log(\frac{R^2L}{2\epsilon})$ iterations.
- Smooth + Strongly Convex Nesterov's PGD: With $\gamma=1/L$, achieve an ϵ -approximate solution in $\sqrt{\frac{L}{\mu}}\log(\frac{R^2L}{2\epsilon})$ iterations*.
- Key Requirement for Projected Gradient to Work: Projection must be easy (closed form obtainable) for the constraint.

 Note that the Projected gradient descent can be seen as optimizing the local quadratic expansion of f:

$$\begin{aligned} x_{k+1} &= P_{\mathcal{C}}(\operatorname{argmin}_{y}[f(x_{k}) + \nabla f(x_{k})^{T}(y - x_{k}) + \frac{1}{2\alpha_{k}}||y - x_{k}||^{2}]) \\ &= P_{\mathcal{C}}(\operatorname{argmin}_{y}||y - (x_{k} - \alpha_{k}\nabla f(x_{k}))||^{2}) \end{aligned}$$

 Note that the Projected gradient descent can be seen as optimizing the local quadratic expansion of f:

$$\begin{aligned} x_{k+1} &= P_{\mathcal{C}}(\operatorname{argmin}_{y}[f(x_{k}) + \nabla f(x_{k})^{T}(y - x_{k}) + \frac{1}{2\alpha_{k}}||y - x_{k}||^{2}]) \\ &= P_{\mathcal{C}}(\operatorname{argmin}_{y}||y - (x_{k} - \alpha_{k}\nabla f(x_{k}))||^{2}) \end{aligned}$$

 This involves optimizing a quadratic function over the constraints, which is easy for only a smaller class of constraints.

 Note that the Projected gradient descent can be seen as optimizing the local quadratic expansion of f:

$$\begin{aligned} x_{k+1} &= P_{\mathcal{C}}(\operatorname{argmin}_{y}[f(x_{k}) + \nabla f(x_{k})^{T}(y - x_{k}) + \frac{1}{2\alpha_{k}}||y - x_{k}||^{2}]) \\ &= P_{\mathcal{C}}(\operatorname{argmin}_{y}||y - (x_{k} - \alpha_{k}\nabla f(x_{k}))||^{2}) \end{aligned}$$

- This involves optimizing a quadratic function over the constraints, which is easy for only a smaller class of constraints.
- For example, the Projection operator can only be computed for L_p norms with $p=1,2,\infty$ and not for other values of p.

 Note that the Projected gradient descent can be seen as optimizing the local quadratic expansion of f:

$$\begin{aligned} x_{k+1} &= P_{\mathcal{C}}(\operatorname{argmin}_{y}[f(x_{k}) + \nabla f(x_{k})^{T}(y - x_{k}) + \frac{1}{2\alpha_{k}}||y - x_{k}||^{2}]) \\ &= P_{\mathcal{C}}(\operatorname{argmin}_{y}||y - (x_{k} - \alpha_{k}\nabla f(x_{k}))||^{2}) \end{aligned}$$

- This involves optimizing a quadratic function over the constraints, which is easy for only a smaller class of constraints.
- For example, the Projection operator can only be computed for L_p norms with $p=1,2,\infty$ and not for other values of p.
- Similarly, projection is not easy on Polyhedral constraints (like the submodular polyhedron, combinatorial constraints like paths, cuts, ...)

$$x_{k+1} = P_{\mathcal{C}}(\operatorname{argmin}_{y}||y - (x_k - \alpha_k \nabla f(x_k))||^2)$$

Projected Gradient Descent:

$$x_{k+1} = P_{\mathcal{C}}(\operatorname{argmin}_{y}||y - (x_k - \alpha_k \nabla f(x_k))||^2)$$

Pros:

15/29

$$x_{k+1} = P_{\mathcal{C}}(\operatorname{argmin}_{y}||y - (x_k - \alpha_k \nabla f(x_k))||^2)$$

- Pros:
 - Computing Projection operator easy in some cases: L2 Ball, convex cone, halfspaces, box, simplex

$$x_{k+1} = P_{\mathcal{C}}(\operatorname{argmin}_{y}||y - (x_k - \alpha_k \nabla f(x_k))||^2)$$

- Pros:
 - Computing Projection operator easy in some cases: L2 Ball, convex cone, halfspaces, box, simplex
 - Enjoys the same convergence rates as the unconstrained case

$$x_{k+1} = P_{\mathcal{C}}(\operatorname{argmin}_{y}||y - (x_k - \alpha_k \nabla f(x_k))||^2)$$

- Pros:
 - Computing Projection operator easy in some cases: L2 Ball, convex cone, halfspaces, box, simplex
 - Enjoys the same convergence rates as the unconstrained case
- Cons:

$$x_{k+1} = P_{\mathcal{C}}(\operatorname{argmin}_{y}||y - (x_k - \alpha_k \nabla f(x_k))||^2)$$

- Pros:
 - Computing Projection operator easy in some cases: L2 Ball, convex cone, halfspaces, box, simplex
 - Enjoys the same convergence rates as the unconstrained case
- Cons:
 - For high dimensional problems, projection can be expensive: O(n) for Simplex, $O(nm^2)$ for nuclear norms, and involves a QP for general polyhedrons

$$x_{k+1} = P_{\mathcal{C}}(\operatorname{argmin}_{y}||y - (x_k - \alpha_k \nabla f(x_k))||^2)$$

- Pros:
 - Computing Projection operator easy in some cases: L2 Ball, convex cone, halfspaces, box, simplex
 - Enjoys the same convergence rates as the unconstrained case
- Cons:
 - For high dimensional problems, projection can be expensive: O(n) for Simplex, $O(nm^2)$ for nuclear norms, and involves a QP for general polyhedrons
 - Full Gradient Descent may destroy certain desirable structure like sparsity

$$x_{k+1} = P_{\mathcal{C}}(\operatorname{argmin}_{y}||y - (x_k - \alpha_k \nabla f(x_k))||^2)$$

- Pros:
 - Computing Projection operator easy in some cases: L2 Ball, convex cone, halfspaces, box, simplex
 - Enjoys the same convergence rates as the unconstrained case
- Cons:
 - For high dimensional problems, projection can be expensive: O(n) for Simplex, $O(nm^2)$ for nuclear norms, and involves a QP for general polyhedrons
 - Full Gradient Descent may destroy certain desirable structure like sparsity
- On the other hand, optimizing a linear function over constraints are much easier.

$$x_{k+1} = P_{\mathcal{C}}(\operatorname{argmin}_{y}||y - (x_k - \alpha_k \nabla f(x_k))||^2)$$

- Pros:
 - Computing Projection operator easy in some cases: L2 Ball, convex cone, halfspaces, box, simplex
 - Enjoys the same convergence rates as the unconstrained case
- Cons:
 - For high dimensional problems, projection can be expensive: O(n) for Simplex, $O(nm^2)$ for nuclear norms, and involves a QP for general polyhedrons
 - Full Gradient Descent may destroy certain desirable structure like sparsity
- On the other hand, optimizing a linear function over constraints are much easier.
- Can we come up with an algorithm that only needs to optimize allows linear function over constraints?

$$s_k = \operatorname{argmin}_{s \in \mathcal{C}} \nabla f(x_k)^T s \tag{1}$$

$$x_{k+1} = (1 - \gamma_k)x_k + \gamma_k s_k \tag{2}$$

 Conditional Gradient Descent, also known as Frank Wolfe Method uses a local linear expansion of f:

$$s_k = \operatorname{argmin}_{s \in \mathcal{C}} \nabla f(x_k)^T s \tag{1}$$

$$x_{k+1} = (1 - \gamma_k)x_k + \gamma_k s_k \tag{2}$$

 \bullet Most critically, there is **no projection**! Just involves solving a linear program over $\mathcal C$

$$s_k = \operatorname{argmin}_{s \in \mathcal{C}} \nabla f(x_k)^T s \tag{1}$$

$$x_{k+1} = (1 - \gamma_k)x_k + \gamma_k s_k \tag{2}$$

- ullet Most critically, there is **no projection**! Just involves solving a linear program over ${\cal C}$
- Default choice of step sizes is $\gamma_k = 2/(k+1), k = 1, 2, \cdots$,

$$s_k = \operatorname{argmin}_{s \in \mathcal{C}} \nabla f(x_k)^T s \tag{1}$$

$$x_{k+1} = (1 - \gamma_k)x_k + \gamma_k s_k \tag{2}$$

- ullet Most critically, there is **no projection**! Just involves solving a linear program over ${\cal C}$
- Default choice of step sizes is $\gamma_k = 2/(k+1), k = 1, 2, \cdots$,
- Since $x_k, s_k \in \mathcal{C}$, it implies that $x_{k+1} \in \mathcal{C}$

$$s_k = \operatorname{argmin}_{s \in \mathcal{C}} \nabla f(x_k)^T s \tag{1}$$

$$x_{k+1} = (1 - \gamma_k)x_k + \gamma_k s_k \tag{2}$$

- ullet Most critically, there is **no projection**! Just involves solving a linear program over ${\cal C}$
- Default choice of step sizes is $\gamma_k = 2/(k+1), k = 1, 2, \cdots$,
- Since $x_k, s_k \in \mathcal{C}$, it implies that $x_{k+1} \in \mathcal{C}$
- We are moving less and less in the direction of the linearization as the algorithm proceeds!

Example: Norm Constraints

What happens when $C = \{x : \|x\| \le t\}$ for a norm $\|\cdot\|$? Then

$$s \in \underset{\|s\| \le t}{\operatorname{argmin}} \nabla f(x^{(k-1)})^T s$$
$$= -t \cdot \left(\underset{\|s\| \le 1}{\operatorname{argmax}} \nabla f(x^{(k-1)})^T s\right)$$
$$= -t \cdot \partial \|\nabla f(x^{(k-1)})\|_*$$

where $\|\cdot\|_*$ is the corresponding dual norm. In other words, if we know how to compute subgradients of the dual norm, then we can easily perform Frank-Wolfe steps

A key to Frank-Wolfe: this can often be simpler or cheaper than projection onto $C=\{x:\|x\|\leq t\}$. Also often simpler or cheaper than the prox operator for $\|\cdot\|$

February 12, 2021

Aside Dual Norms

- Define f(x) = ||x|| as a norm
- The dual norm $||x||_*$ is defined as:

$$||x||_* = \max_{||z|| \le 1} z^T x$$

- Examples: Consider p-norm
- The dual norm of a p-norm $f(x) = ||x||_p$ is a q-norm such that 1/p + 1/q = 1
- Dual of the 1-norm is the ∞-norm. Dual of the 2-norm is itself!
- Also.

$$\partial ||x||_* = \operatorname{argmax}_{||Z|| \le 1} z^T x$$

Example: L_1 Norm Constraints

For the ℓ_1 -regularized problem

$$\min_{x} f(x)$$
 subject to $||x||_{1} \le t$

we have $s^{(k-1)} \in -t\partial \|\nabla f(x^{(k-1)})\|_{\infty}$. Frank-Wolfe update is thus

$$i_{k-1} \in \underset{i=1,\dots p}{\operatorname{argmax}} |\nabla_i f(x^{(k-1)})|$$

 $x^{(k)} = (1 - \gamma_k) x^{(k-1)} - \gamma_k t \cdot \operatorname{sign}(\nabla_{i_{k-1}} f(x^{(k-1)})) \cdot e_{i_{k-1}}$

Like greedy coordinate descent!

Note: this is a lot simpler than projection onto the ℓ_1 ball, though both require O(n) operations

Example: L_p Norm Constraints

For the ℓ_p -regularized problem

$$\min_{x} f(x)$$
 subject to $||x||_p \le t$

for $1 \le p \le \infty$, we have $s^{(k-1)} \in -t\partial \|\nabla f(x^{(k-1)})\|_q$, where p,q are dual, i.e., 1/p+1/q=1. Claim: can choose

$$s_i^{(k-1)} = -\alpha \cdot \text{sign}(\nabla f_i(x^{(k-1)})) \cdot |\nabla f_i(x^{(k-1)})|^{p/q}, \quad i = 1, \dots n$$

where α is a constant such that $\|s^{(k-1)}\|_q=t$ (check this!), and then Frank-Wolfe updates are as usual

Note: this is a lot simpler projection onto the ℓ_p ball, for general p! Aside from special cases $(p=1,2,\infty)$, these projections cannot be directly computed (must be treated as an optimization)

Empirically: Projected vs Conditional Gradient Descent

Comparing projected and conditional gradient for constrained lasso problem, with $n=100,\,p=500$:

We will see that Frank-Wolfe methods match convergence rates of known first-order methods; but in practice they can be slower to converge to high accuracy (note: fixed step sizes here, line search would probably improve convergence)

Duality Gap

Frank-Wolfe iterations admit a very natural duality gap (truly, a suboptimality gap):

$$\max_{s \in C} \nabla f(x^{(k-1)})^T (x^{(k-1)} - s)$$

This is an upper bound on $f(x^{(k-1)}) - f^*$

Proof: by the first-order condition for convexity

$$f(s) \ge f(x^{(k-1)}) + \nabla f(x^{(k-1)})^T (y - x^{(k-1)})$$

Minimizing both sides over all $s \in C$ yields

$$f^{\star} \ge f(x^{(k-1)}) + \min_{s \in C} \ \nabla f(x^{(k-1)})^T (y - x^{(k-1)})$$

Rearranged, this gives the duality gap above

LAS

= → ~ 22/29

Convergence Results

Following Jaggi (2011), define the curvature constant of f over C:

$$M = \max_{\substack{x,s,y \in C \\ y = (1-\gamma)x + \gamma s}} \frac{2}{\gamma^2} \left(f(y) - f(x) - \nabla f(x)^T (y - x) \right)$$

(Above we restrict $\gamma \in [0,1]$.) Note that $\kappa = 0$ when f is linear. The quantity $f(y) - f(x) - \nabla f(x)^T (y-x)$ is called the Bregman divergence defined by f

Theorem: Conditional gradient method using fixed step sizes $\gamma_k=2/(k+1)$, $k=1,2,3,\ldots$ satisfies

$$f(x^{(k)}) - f^{\star} \le \frac{2M}{k+2}$$

Hence the number of iterations needed to achieve $f(x^{(k)}) - f^{\star} \leq \epsilon$ is $O(1/\epsilon)$

Convergence Results

This matches the known rate for projected gradient descent when ∇f is Lipschitz, but how do the assumptions compare? In fact, if ∇f is Lipschitz with constant L then $M \leq \operatorname{diam}^2(C) \cdot L$, where

$$\operatorname{diam}(C) = \max_{x,s \in C} \|x - s\|_2$$

To see this, recall that ∇f Lipschitz with constant L means

$$f(y) - f(x) - \nabla f(x)^{T} (y - x) \le \frac{L}{2} ||y - x||_{2}^{2}$$

Maximizing over all $y=(1-\gamma)x+\gamma s$, and multiplying by $2/\gamma^2$,

$$M \le \max_{\substack{x,s,y \in C \\ y = (1-\gamma)x + \gamma s}} \frac{2}{\gamma^2} \cdot \frac{L}{2} \|y - x\|_2^2 = \max_{x,s \in C} L \|x - s\|_2^2$$

and the bound follows. Essentially, assuming a bounded curvature is no stronger than what we assumed for proximal gradient

ALLAS

२ € 24/29

Step Size Variants

Convergence analysis:

$$\gamma_k = 2/(k+1)$$

• Line Search:

$$\gamma_k = \operatorname{argmin}_{\gamma \in [0,1]} f((1-\gamma)x_k + \gamma s_k)$$

(Can also be done using backtracking line search)

• Gap based:

$$\gamma_k = \min(\frac{f(x_k)}{L||s_k - x_k||^2}, 1)$$

(L is the Lipschitz constant of f)

Frank Wolfe Algorithm

Input: initial guess
$$\boldsymbol{x}_0$$
, tolerance $\delta > 0$

For $t = 0, 1, \dots$ do (2)

 $\boldsymbol{s}_t \in \underset{\boldsymbol{s} \in \mathcal{D}}{\operatorname{max}} \langle -\nabla f(\boldsymbol{x}_t), \boldsymbol{s} \rangle$ (3)

 $\boldsymbol{d}_t = \boldsymbol{s}_t - \boldsymbol{x}_t$ (4)

 $\boldsymbol{g}_t = -\langle \nabla f(\boldsymbol{x}_t), \boldsymbol{d}_t \rangle$ (5)

If $\boldsymbol{g}_t < \delta$: (6)

// exit if gap is below tolerance return \boldsymbol{x}_t (7)

Variant 1: set step size as

 $\gamma_t = \min\left\{\frac{g_t}{L||\boldsymbol{d}_t||^2}, 1\right\}$ (8)

Variant 2: set step size by line search $\gamma_t = \underset{\boldsymbol{s} \in [0,1]}{\operatorname{min}} f(\boldsymbol{x}_t + \gamma \boldsymbol{d}_t)$ (9)

(10)

CS7301: Advanced Optimization in ML

 $\boldsymbol{x}_{t+1} = \boldsymbol{x}_t + \gamma_t \boldsymbol{d}_t.$

end For loop

Convergence for Non Convex Objectives

- Define $g_k = \max_{s \in \mathcal{C}} \langle s x_k, -\nabla f(x_k) \rangle$
- Then a point x_k is a stationary point for constrained optimization if and only if $g_k = 0$.
- Then (Simon Lacoste-Julien, 2017: Convergence rates of Frank Wolfe for Non-Convex Objectives) shoed that:

$$\min_{0 \leq i \leq t} g_i \leq \frac{\max(2h_0, L \operatorname{diam}(\mathcal{C})^2)}{\sqrt{t+1}}$$

where $h_0 = f(x_0) - \min_{x \in \mathcal{C}} f(x)$ is the initial global suboptimality.

• Similar result also holds for projected gradient descent.

More Results and Additional Reading

- Lower Bound: Conditional Gradient Analysis is tight. For any $x_0 \in \mathbb{R}^d$ and for $1 \le k \le d/2 1$, there exists a L smooth convex function and convex set $\mathcal C$ with diameter D s.t. for any algorithm of f that computes local gradients of f and does a linear minimization over $\mathcal C$, we have $f(x_k) f_* \ge \frac{LD^2}{8(k+1)}, \forall k \ge 1$
- Additionally, Linear Convergence, i.e. $O(\log 1/\epsilon)$ can be shown under certain cases (domain is given by a polyhedron or optimum lies in the interior)
 - BS16 A. Beck and S. Shtern, "Linearly convergent away-step conditional gradient for non-strongly convex functions," Mathematical Programming, 1–27, 2016.
 - LJ15 S. Lacoste-Julien and M. Jaggi, "On the Global Linear Convergence of Frank-Wolfe Optimization Variants," NIPS, 2015.

 Projected Gradient Descent requires optimizing a quadratic function over the constraints

- Projected Gradient Descent requires optimizing a quadratic function over the constraints
- While it is easy for a few constraints, several common constraints do not admit easy projection operators

- Projected Gradient Descent requires optimizing a quadratic function over the constraints
- While it is easy for a few constraints, several common constraints do not admit easy projection operators
- Conditional Gradient Descent requires solving a linear program over constraints

- Projected Gradient Descent requires optimizing a quadratic function over the constraints
- While it is easy for a few constraints, several common constraints do not admit easy projection operators
- Conditional Gradient Descent requires solving a linear program over constraints
- This is easy for a large class of constraints (e.g. combinatorial constraints, polyhedral constraints etc.)

- Projected Gradient Descent requires optimizing a quadratic function over the constraints
- While it is easy for a few constraints, several common constraints do not admit easy projection operators
- Conditional Gradient Descent requires solving a linear program over constraints
- This is easy for a large class of constraints (e.g. combinatorial constraints, polyhedral constraints etc.)
- In contrast, conditional gradient can be slower in terms of convergence

- Projected Gradient Descent requires optimizing a quadratic function over the constraints
- While it is easy for a few constraints, several common constraints do not admit easy projection operators
- Conditional Gradient Descent requires solving a linear program over constraints
- This is easy for a large class of constraints (e.g. combinatorial constraints, polyhedral constraints etc.)
- In contrast, conditional gradient can be slower in terms of convergence
- Takeaways: If projection is easy, use projected gradient descent. Else, conditional gradient is the go to algorithm!

