Classifier evaluation

Victor Kitov

November-December 2015.

Confusion matrix

Confusion matrix $M = \{m_{ij}\}_{i,j=1}^{C}$ shows the number of ω_i class objects predicted as belonging to class ω_j .

Diagonal elements correspond to correct classifications and off-diagonal elements - to incorrect classifications.

Example of confusion matrix visualization

Example of confusion matrix visualization

- Errors here are concentrated at distinguishing between classes 1 and 2.
- We can unite classes 1 and 2 into new class «1+2», then solve 6-class classification problem, and finally separate classes 1 and 2 for all objects assigned to class «1+2» with a separate classifier.

2 class case

Confusion matrix:

Prediction

True class

	+	-
+	TP (true positives)	FN (false negatives)
-	FP (false positives)	TN (true negatives)

P and N - number of observations of positive and negative class.

$$P = TP + FN$$
, $N = TN + FP$

Quality metrics

Accuracy:	$\frac{TP+TN}{P+N}$
Error rate:	1-accuracy= $\frac{FP+FN}{P+N}$
FPR (error rate on negatives):	FP N
TPR (error rate on positives):	TP P
Precision:	TP TP+FP
Recall:	TP P
F-measure:	$\frac{2}{\frac{1}{Precision} + \frac{1}{Recall}}$
Weighted F-measure:	$\frac{1}{\frac{\beta^2}{1+\beta^2} \frac{1}{Precision} + \frac{1}{1+\beta^2} \frac{1}{Recall}}$

Class label versus class probability evaluation

- Discriminability quality measures evaluate class label prediction.
 - examples: previously mentioned measures: error rate, precision, recall, etc..
- Reliability quality measures evaluate class probability prediction.
 - Example: probability likelihood:

$$\prod_{i=1}^{N} \widehat{\rho}(y_i|x_i)$$

Brier score:

$$\frac{1}{n}\sum_{i=1}^{n}\sum_{c=1}^{C}\left(\mathbb{I}[x_{i}\in\omega_{c}]-\widehat{\rho}(\omega_{c}|x_{i})\right)^{2}$$

• Example when class labels are predicted accurately, but class probabilities - not. 6/18

Table of Contents

Bayes decision rule

- Definition: $\widehat{\omega}_i$ means, that «prediction is equal to ω_i »
- Loss matrix:

predicted class

true class

	•	
	$\widehat{\omega}_{1}$	$\widehat{\omega}_{2}$
ω_1	0	λ_1
ω_2	λ_2	0

• λ_1, λ_2 - costs of incorrect classification of objects, belonging to classes ω_1 and ω_2 respectively.

Bayes decision rule

• Expected loss of prediction $\widehat{\omega}_1$: $L(\widehat{\omega}_1) = \lambda_2 p(\omega_2 | x) = \lambda_2 p(\omega_2) p(x | \omega_2) / p(x)$

- Expected loss of prediction $\widehat{\omega}_2$: $L(\widehat{\omega}_2) = \lambda_1 \rho(\omega_1 | x) = \lambda_1 \rho(\omega_1) \rho(x | \omega_1) / \rho(x)$
- Bayes decision rule minimizes expected loss:

$$\widehat{\omega}^* = \arg\min_{\widehat{\omega}} L(\widehat{\omega})$$

• This is equivalent to:

$$\widehat{\omega}* = \widehat{\omega}_1 \iff \lambda_2 \rho(\omega_2) \rho(x|\omega_2) < \lambda_1 \rho(\omega_1) \rho(x|\omega_1) \iff \frac{\rho(x|\omega_1)}{\rho(x|\omega_2)} > \frac{\lambda_2 \rho(\omega_2)}{\lambda_1 \rho(\omega_1)} = \mu$$

Discriminant decision rules

- Decision rule based on discriminant functions:
 - predict $\omega_1 \iff g_1(x) g_2(x) > \mu$
 - predict $\omega_1 \Longleftrightarrow g_1(x)/g_2(x) > \mu$ (for $g_1(x) > 0$, $g_2(x) > 0$)
- Decision rule based on probabilities:
 - predict $\omega_1 \iff P(\omega_1|x) > \mu$

ROC curve

- ROC curve is a function TPR(FPR).
- It shows how the probability of correct classification on positive classes ("recognition rate") changes with probability of incorrect classification on negative classes ("false alarm").
- It is build as a set of points $TPR(\mu)$, $FPR(\mu)$.
- ullet If $\mu\downarrow$, the algorithm predicts ω_1 more often and
 - TPR=1 − ε₁ ↑
 - FPR=ε₂ ↑
- Diagonal points correspond to random assignment of ω_1 and ω_2 with probabilities p and 1-p.
- Characterizes classification accuracy for different μ .
 - more concave ROC curves are better

Iso-loss lines

- Define $\varepsilon_1, \varepsilon_2$ probabilities of error on objects of class ω_1 and ω_2 respectively.
- 1 ε_1 = TPR, ε_2 = FPR
- Expected loss:

$$L = \lambda_2 \rho(\omega_2) \varepsilon_2 + \lambda_1 \rho(\omega_1) \varepsilon_1 = \lambda_2 \rho(\omega_2) \varepsilon_2 - \lambda_1 \rho(\omega_1) (1 - \varepsilon_1) + \lambda_1 \rho(\omega_1)$$

Iso-loss line:

$$(1 - \varepsilon_1) = \frac{\lambda_2 \rho(\omega_2)}{\lambda_1 \rho(\omega_1)} \varepsilon_2 + \frac{\lambda_1 \rho(\omega_1) - L}{\lambda_1 \rho(\omega_1)}$$

• In the optimal point iso-loss line is tangent to the ROC curve with slope of the curve equal to $\frac{\lambda_2 p(\omega_2)}{\lambda_1 p(\omega_1)}$

Comparison of classifiers using ROC curves

Comparison of classifiers using ROC curves

How to compare different classifiers?

Area under the curve

- AUC area under the ROC curve:
 - ullet global quality characteristic for different μ
 - AUC∈ [0, 1]
 - AUC=0.5 equivalent to random guessing
 - AUC=1 no errors classification.
 - AUC property: it is equal to probability that for 2 random objects $x_1 \in \omega_1$ and $x_2 \in \omega_2$ it will hold that: $\widehat{\rho}(\omega_1|x_1) > \widehat{\rho}(\omega_2|x)$

Bayes decision rule with uncertainty about λ_1 and λ_2

- Predefined λ_1, λ_2 : too specific.
 - estimate losses associated with yield point estimates of classifiers
- Undefined λ_1, λ_2 : too broad
 - compare AUC of different classifiers

LC index

- LC index classifier comparison in intermediary case:
 - **1** Scale λ_1 and λ_2 so that $\lambda_1 + \lambda_2 = 1$
 - define $\lambda_1 = \lambda$, $\lambda_2 = 1 \lambda$
 - $\textbf{0} \quad \text{for each } \lambda \in [0,1] \text{ calculate}$ $L(\lambda) = \begin{cases} +1 & \text{if 1st classifier is better} \\ -1 & \text{if 2nd classifier is better} \end{cases}$
 - 4 define probability density distribution of λ : $p(\lambda)$ (for example, from "triangular" class)
 - **3** select classifier 1 if $\int_0^1 L(\lambda)p(\lambda)d\lambda > 0$ and classifier 2 otherwise.

Error rate distribution

- Define e probability of error on the new object.
- What is the distribution of e?
 - we know that on held-out sample of size n there were k mistakes.

Probability to make k mistakes on sample of size n:

$$p(k|e,n) = \binom{n}{k} e^{k} (1-e)^{n-k}$$

Then

$$p(e|k,n) = \frac{p(e,k|n)}{p(k|n)} = \frac{p(k|e,n)p(e|n)}{\int p(k|n)p(e|n)de}$$

Assuming no prior knowledge about the error rate $p(e|n) \equiv const$, we obtain

$$p(e|k,n) = \frac{p(k|e,n)}{\int p(k|n)de} \propto e^k (1-e)^{n-k}$$

Error rate distribution

Since the beta distribution has the form

$$Be(x|\alpha,\beta) = [\Gamma(\alpha+\beta)/(\Gamma(\alpha)\Gamma(\beta))]x^{\alpha-1}(1-x)^{\beta-1}$$
, so $p(e|k,n) \sim Be(k+1,n-k+1)$

Beta distribution:

$$\xi \sim \textit{Be}(\alpha, \beta) \Rightarrow \mathbb{E}[\xi] = \frac{\alpha}{\alpha + \beta}, \ \textit{Var}[\xi] = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$$

