University of Illinois at Urbana-Champaign

Scipy Optimizer Performance

---- Estimation of Functions

SPRING 2023

Feng Zhao

Table of Contents

1.	Ger	ieral Tal	ble	3			
		Output Constraint Setup					
	2.1	-	ormance vs. Data Points Distribution & Functions				
	2.2		Output Bound in Scipy Optimizers				
		2.2.1	Constraints Allowerance For Each Optimizer	8			
		2.2.2	Norm Function	9			

1. General Table

	Iterations	Output Constraint	Jacobian	Hessian
SLSQP	/	Accept	Yes	No
trust-constr	Similar ¹ (In comparison to SLSQP)	Accept	Yes	No
COBYLA	More (In comparison to SLSQP)	Accept	No	No
Nelder-Mead	More (In comparison to SLSQP)	N/A	No	No
BFGS	/	N/A	No	Yes
CG	More ² (In comparison to BFGS)	N/A	Yes	No
Newton-CG	Similar (In comparison to BFGS)	N/A	Yes	Yes

*From Perfect – Good – Medium – Bad – Terrible, it means the over-fitting is more serious.

	Data Points Distribution	Function Choice	# Data	Degree	Degree of
	2 444 1 21146 215410 411211		Points	Level	Overfitting
			(N)	(K)	
SLSQP	Uniform:	Single Sigmoid	10	5	good
	Take the number of data points equal to N by averaging across the -10 to 10 interval.	$S(x)=rac{1}{1+e^{-x}}$		10	terrible
			100	5	good
				10	terrible
		Combined Sigmoid	10	5	terrible
		S(x+5) + S(5-x)		10	terrible
		- 1	100	5	medium
				10	terrible

 $^{^1\,}$ From high level to low for # iterations: More – Similar – Less $^2\,$ From high level to low for # iterations: More – Similar – Less

		Rate Changing	10	5	good
		A 5 (1985) AN		10	bad
		$\frac{1}{3}\left(e^{\left(\operatorname{abs}(x)-9\right)}\right)$	100	5	perfect
		5		10	good
	Random:	Single Sigmoid	10	5	good
				10	terrible
	Take the equal number		100	5	good
	of data points by			10	terrible
	randomly sampling from	Combined Sigmoid	10	5	medium
	the -10 to 10 interval	_		10	terrible
	using		100	5	medium
	np.random.uniform.			10	terrible
		Rate Changing	10	5	medium
				10	terrible
			100	5	medium
				10	terrible
	Adjusted(weighted)	Single Sigmoid	10	5	good
	Random:			10	terrible
			100	5	good
	Under the premise of			10	terrible
	using random sampling,	Combined Sigmoid 10	10	5	good
	assign weights to the data points. Take 40% of the required data points			10	bad
			100	5	good
				10	terrible
	from the -10 to -5 range,	Rate Changing	10	5	medium
	40% from the 5 to 10			10	medium
	range, and the remaining		100	5	good
	20% from the -5 to 5			10	terrible
	range.				
trust-constr	Uniform	Single Sigmoid	10	5	perfect
				10	bad
			100	5	perfect
				10	medium
		Combined Sigmoid	10	5	perfect
				10	bad
			100	5	perfect
				10	medium
		Rate Changing	10	5	perfect
				10	bad
			100	5	perfect
				10	bad
	Random	Single Sigmoid	10	5	perfect
				10	good

			100	5	good
			100	10	medium
		Combined Sigmoid	10	5	perfect
		Comomica Sigmora	10	10	bad
			100	5	perfect
			100	10	bad
		Rate Changing	10	5	perfect
		Rate Changing	10	10	terrible
			100	5	perfect
			100	10	terrible
	Adjusted(weighted)	Single Sigmoid	10	5	good
	Random	Single Signiold	10	10	bad
	Kandom		100	5	
			100	10	good terrible
		Combined Sigmaid	10	5	
		Combined Sigmoid	10		perfect
			100	10	bad
			100	5	perfect
		D . Cl	10	10	medium
		Rate Changing	10	5	perfect
			100	10	medium
			100	5	perfect
CODYL	I I: £	Circle Ciamerid	10	10	medium
COBYLA	Uniform	Single Sigmoid	10	5	good
			100	10	bad
			100	5	good
		~	10	10	medium
		Combined Sigmoid	10	5	terrible
			100	10	terrible
			100	5	terrible
				10	medium
		Rate Changing	10	5	perfect
				10	bad
			100	5	perfect
				10	medium
	Random	Single Sigmoid	10	5	good
				10	terrible
			100	5	good
				10	medium
		Combined Sigmoid	10	5	terrible
				10	bad
			100	5	terrible
				10	bad
		Rate Changing	10	5	good

			10	good
		100	5	medium
			10	bad
Adjusted(weighted)	Single Sigmoid	10	5	good
Random			10	terrible
		100	5	good
			10	terrible
	Combined Sigmoid	10	5	terrible
			10	terrible
		100	5	terrible
			10	terrible
	Rate Changing	10	5	perfect
			10	perfect
		100	5	perfect
			10	bad

	Pros	Cons
SLSQP	 Can handle problems with both linear and nonlinear constraint conditions. Can effectively handle large-scale problems (large size of data points). 	For complex problems, the algorithm may require multiple iterations to find the optimal solution, which may cause over-fitting seriously.
trust-constr	 It can generally handle linear and nonlinear constraint conditions. It can quickly find the optimal solution and balance between global and local convergence. 	May encounter limitations when handling large-scale problems if Jacobian and Hessian matrices are given.
COBYLA	 Can perform calculations without requiring Jacobian and Hessian matrices. Typically requires a bit more iterations to find the optimal solution. 	Can only handle inequality constraint conditions.
All Three		May converge to local minimum that is not the optimal solution.

2. Output Constraint Setup

2.1 Performance vs. Data Points Distribution & Functions

Data Points Distribution:

Uniform:

Take the number of data points equal to N by averaging across the -10 to 10 interval.

Random:

Take the equal number of data points by randomly sampling from the -10 to 10 interval using np.random.uniform.

Adjusted(weighted) Random:

Under the premise of using random sampling, assign weights to the data points. Take 40% of the required data points from the -10 to -5 range, 40% from the 5 to 10 range, and the remaining 20% from the -5 to 5 range. By allocating more data points to the smoother region of the sigmoid function, we can indirectly force the optimizer to fit more precisely within that region, thus avoiding overfitting.

- For the Sigmoid function, COBYLA performs well with uniform and random data point distributions, but not with adjusted random data point distribution; Trust_Constr works well with random and adjusted random data point distributions, but not with uniform data point distribution; SLSQP is suitable for all types of data point distributions.
- For the Combined Sigmoid function, COBYLA works well with all types of data point distributions; Trust_Constr works well with uniform and adjusted random data point distributions, but not with random data point distribution; SLSQP is suitable for all types of data point distributions.
- For the Rate-changing function, COBYLA performs well with random and adjusted random data point distributions, but not with uniform data point distribution; Trust_Constr is suitable for all types of data point distributions; SLSQP is suitable for all types of data point distributions.

Here is the overall performance in table format:

_	COBYLA	Trust_Constr	SLSQP
Sigmoid - Uniform	Medium	Bad	Good
Sigmoid - Random	Good	Good	Perfect
Sigmoid - Adjusted	Bad	Perfect	Perfect
Random			
Combined Sigmoid -	Good	Good	Perfect
Uniform			
Combined Sigmoid -	Medium	Good	Good

Random			
Combined Sigmoid -	Good	Good	Perfect
Adjusted Random			
Rate-changing -	Medium	Good	Perfect
Uniform			
Rate-changing -	Good	Perfect	Good
Random			
Rate-changing -	Good	Perfect	Perfect
Adjusted Random			

2.2 Fit Output Bound in Scipy Optimizers

2.2.1 Constraints Allowerance For Each Optimizer

Optimizer	Search Space	Inequality	Equality	Explicit/Implicit	Linear/Non-Linear
	Definition	Constraints	Constraints	Constraints	Constraints
SLSQP	Bounds	Yes	Yes	Explicit	Both
Trust-Constr	Bounds	Yes	Yes	Inequality only	Both
COBYLA	Constraints	Yes	No	Both explicit and	Both
				implicit	

Trust-Constr, SLSQP, and COBYLA all accept both linear and nonlinear constraints. However, Trust-Constr is more suited for problems with nonlinear constraints, while SLSQP and COBYLA are better suited for problems with linear constraints.

SLSQP and COBYLA optimizers limit the search space by using bounds as a parameter, while the trust-constr optimizer uses constraints as a parameter to define the search space.

SLSQP can handle explicit equality and inequality constraints, while COBYLA can only handle inequality constraints. Trust-constr optimizer can handle both explicit and implicit equality and inequality constraints.

Therefore, the main difference between the optimizers are the SLSQP and COBYLA optimizer prefer to use bounds to limit the search space, while the trust-constr optimizer uses constraints to define the search space. The difference between them lies in whether the constraints are explicitly expressed.

It should be pointed out that the SLSQP optimizer prefer to use bounds to limit the search space, but it can also handle explicit equality and inequality constraints.

$$egin{array}{ll} \min_x & f(x) \ & ext{subject to:} & c_j(x) = 0, \quad j \in \mathcal{E} \ & c_j(x) \geq 0, \quad j \in \mathcal{I} \ & ext{lb}_i \leq x_i \leq ext{ub}_i, \, i = 1, \dots, N. \end{array}$$

Figure 2.1 Constrained Minimization Bound Set For SLSQP

$$egin{array}{ll} \min_x & f(x) \ & ext{subject to:} & c^l \leq c(x) \leq c^u, \ & x^l < x < x^u. \end{array}$$

Figure 2.2 Constrained Minimization Bound Set For trust-constr

Defining Nonlinear Constraints:

The nonlinear constraint:

$$c(x) = egin{bmatrix} x_0^2 + x_1 \ x_0^2 - x_1 \end{bmatrix} \leq egin{bmatrix} 1 \ 1 \end{bmatrix},$$

with Jacobian matrix:

$$J(x) = egin{bmatrix} 2x_0 & 1 \ 2x_0 & -1 \end{bmatrix},$$

and linear combination of the Hessians:

$$H(x,v) = \sum_{i=0}^1 v_i
abla^2 c_i(x) = v_0 egin{bmatrix} 2 & 0 \ 0 & 0 \end{bmatrix} + v_1 egin{bmatrix} 2 & 0 \ 0 & 0 \end{bmatrix},$$

is defined using a NonlinearConstraint Object.

Figure 1.1 Nonlinear Constraints Mathmatical Expression

2.2.2 Norm Function

The norm2_sq function calculates the squared Euclidean distance between the linear function A.dot(x choose) and a target vector b. It can be written as:

$$||A.x_choose - b||^2 = (A.x_choose - b)^T (A.x_choose - b)$$

where $\| . \|$ denotes the L2 norm, T denotes transpose, and A is a matrix determined by the input vector x_choose.

In summary, the norm2_sq function calculates the distance between a linear function $A.dot(x_choose)$ and a target vector b, which is used as the objective function in the optimization problem. The optimization seeks to find the x_choose that minimizes the distance subject to constraints, using various optimization methods and constraints. The optimization is subject to constraints specified by the constraints parameter, which can be either inequality constraints on x_choose or nonlinear constraints on the output of $A.dot(x_choose)$.