Numerical Optimization

2016.12.12

김태원

Feature based method

Direct method

$$E(\xi) = \sum_{i} \left(I_{ref}(\mathbf{p}_{i}) - I(\omega(\mathbf{p}_{i}, D_{ref}(\mathbf{p}_{i}), \xi)) \right)^{2}$$

$$E(\xi) = \sum_{i} \left(I_{ref} \left(\mathbf{p}_{i} \right) - I\left(\omega \left(\mathbf{P}_{i}, \xi \right) \right) \right)^{2}$$

$$E(\xi) = \sum_{i} \left(I_{ref} \left(\mathbf{p}_{i} \right) - I(\omega(\mathbf{P}'_{i})) \right)^{2}$$

$$E(\xi) = \sum_{i} (I_{ref}(\mathbf{p}_{i}) - I(\mathbf{p}'_{i}))^{2}$$

 $\mathbf{p}_i \in \mathbf{R}^2$ is pixel coordinates

 $I_{ref}(\mathbf{p}_i) \in \mathbf{R}$ is intensity

 $D_{ref}(\mathbf{p}_i) \in \mathbf{R}$ is depth

Cost functions

Feature based method

Direct method

Motion estimation

$$E(\xi) = \sum_{i} \left(I_{ref}(\mathbf{p}_{i}) - I(\omega(\mathbf{p}_{i}, D_{ref}(\mathbf{p}_{i}), \xi)) \right)^{2}$$

$$\xi^* = \operatorname*{argmin}_{\xi} \left(E(\xi) \right)$$

Desirable Characteristics of a Cost Function

- Scalar
- Clearly defined (preferably unique) maximum or minimum
 - Local
 - Global
- Preferably positive-definite (i.e., always a positive number)

Goal of Numerical Optimization

$$\xi^* = \operatorname*{argmin}_{\xi} \left(E(\xi) \right)$$

Search Problem

$$\xi^* = \operatorname*{argmin}\left(E\left(\xi\right)\right)$$

Two Approaches to Numerical Minimization

1. Gradient Search

2. Gradient-free search

Gradient

Gradient

ex)
$$E(\xi) = \xi^3$$

 $\frac{\partial E}{\partial \xi} = 3\xi^2$
 $\frac{\partial E}{\partial \xi}\Big|_{\xi^0} = 3(\xi^0)^2$

Jacobian

$$\xi = \begin{bmatrix} \xi_1 & \xi_2 & \xi_3 & \xi_4 & \xi_5 & \xi_6 \end{bmatrix}^T$$

$$\frac{\partial E}{\partial \xi} = \begin{bmatrix} \frac{\partial E}{\partial \xi_1} & \frac{\partial E}{\partial \xi_2} & \frac{\partial E}{\partial \xi_3} & \frac{\partial E}{\partial \xi_4} & \frac{\partial E}{\partial \xi_5} & \frac{\partial E}{\partial \xi_6} \end{bmatrix}$$

ex)
$$E(\xi) = \xi_1^2 + \xi_2^2 + \xi_3^2 + \xi_4^2 + \xi_5^2 + \xi_6^2$$

$$\frac{\partial E}{\partial \xi} = \begin{bmatrix} 2\xi_1 & 2\xi_2 & 2\xi_3 & 2\xi_4 & 2\xi_5 & 2\xi_6 \end{bmatrix}$$

$$\xi^0 = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix}^T$$

$$\frac{\partial E}{\partial \xi}\Big|_{\xi^0} = \begin{bmatrix} 2 & 2 & 2 & 2 & 2 \end{bmatrix}$$

Gradient descent = Steepest Descent

- Initialization
- Step size
 - Can change as a function of iteration
- Gradient direction
- Stopping condition

Initialize θ Do { $\theta \leftarrow \theta - \alpha \nabla_{\theta} J(\theta)$ } while ($\alpha ||\nabla J|| > \epsilon$)

Example

$$\underline{\theta}^{k+1} \leftarrow \underline{\theta}^k - \alpha \nabla_{\underline{\theta}} J(\underline{\theta}^k)$$

$$\alpha = 0.1$$

$$\left. \begin{array}{ll} \xi^0 = 0 & \xi^1 \leftarrow 0 - 0.1(-10) \\ \left. \frac{\partial E}{\partial \xi} \right|_{\xi^0} = -10 & \xi^1 = 1 \end{array} \right.$$

$$\left. \begin{array}{ll} \xi^1 = 1 & \xi^2 \leftarrow 1 - 0.1(-8) \\ \left. \frac{\partial E}{\partial \xi} \right|_{\xi^1} = -8 & \xi^2 = 1.8 \end{array} \right.$$

$$\left. \begin{array}{ll} \xi^2 = 1.8 & \xi^3 \leftarrow 1.8 - 0.1(-6.4) \\ \left. \frac{\partial E}{\partial \xi} \right|_{\xi^2} = -6.4 & \xi^3 = 2.44 \end{array} \right.$$

$$E(\xi) = (\xi - 5)^2 = \xi^2 - 10\xi + 25$$
$$\frac{\partial E}{\partial \xi} = 2\xi - 10$$

Multi Dimension Example 1

Gradient vector

$$\nabla J(\underline{\theta}) = \begin{bmatrix} \frac{\partial J(\underline{\theta})}{\partial \theta_0} & \frac{\partial J(\underline{\theta})}{\partial \theta_1} & \dots \end{bmatrix}$$

Update rule

$$\underline{\theta}^{k+1} \leftarrow \underline{\theta}^k - \alpha \nabla_{\underline{\theta}} J(\underline{\theta}^k)$$

Multi dimension example 2

Gradient vector

$$\nabla J(\underline{\theta}) = \begin{bmatrix} \frac{\partial J(\underline{\theta})}{\partial \theta_0} & \frac{\partial J(\underline{\theta})}{\partial \theta_1} & \dots \end{bmatrix}$$

• Update rule

$$\underline{\theta}^{k+1} \leftarrow \underline{\theta}^k - \alpha \nabla_{\underline{\theta}} J(\underline{\theta}^k)$$

Multi dimension example 3

Gradient vector

$$\nabla J(\underline{\theta}) = \begin{bmatrix} \frac{\partial J(\underline{\theta})}{\partial \theta_0} & \frac{\partial J(\underline{\theta})}{\partial \theta_1} & \dots \end{bmatrix}$$

Update rule

$$\underline{\theta}^{k+1} \leftarrow \underline{\theta}^k - \alpha \nabla_{\underline{\theta}} J(\underline{\theta}^k)$$

Gradient descent problem

Update rule

$$\underline{\theta}^{k+1} \leftarrow \underline{\theta}^k - \alpha \nabla_{\theta} J(\underline{\theta}^k)$$

Newton-Raphson Iteration

Newton-Raphson algorithm is an iterative search using both the gradient and the Hessian matrix

Difficulties with Newton-Raphson Iteration

$$\mathbf{u}_{k+1} = \mathbf{u}_k - \left[\frac{\partial^2 J}{\partial \mathbf{u}^2} \Big|_{\mathbf{u} = \mathbf{u}_k} \right]^{-1} \left[\frac{\partial J}{\partial \mathbf{u}} \Big|_{\mathbf{u} = \mathbf{u}_k} \right]^T$$

- Good when close to the optimum, but ...
- Hessian matrix (i.e., the curvature) may be
 - Hard to estimate, e.g., large effects of small errors
 - Locally misleading, e.g., wrong curvature
- Gradient searches focus on local minima

Gradient Search Issues

Steepest Descent

$$\mathbf{u}_{k+1} = \mathbf{u}_k - \varepsilon \left[\frac{\partial J}{\partial \mathbf{u}} \Big|_{\mathbf{u} = \mathbf{u}_k} \right]^T$$

Newton Raphson

$$\mathbf{u}_{k+1} = \mathbf{u}_k - \left[\frac{\partial^2 J}{\partial \mathbf{u}^2} \bigg|_{\mathbf{u} = \mathbf{u}_k} \right]^{-1} \left[\frac{\partial J}{\partial \mathbf{u}} \bigg|_{\mathbf{u} = \mathbf{u}_k} \right]^T$$

- Need to evaluate gradient (and possibly Hessian matrix)
- Not global: gradient searches focus on local minima
- Convergence may be difficult with "noisy" or complex cost functions

Local Minima Problem

Two Types Gradient-Free Search

Find Global Minima

Just Gradient-Free

Gradient-Free Search: Grid-Based Search

Gradient-Free Search: Random Search

Three-Parameter Grid Search

- Regular spacing
- Fixed resolution
- Trials grow as mⁿ, where
 - n = Number of parameters
 - m = Resolution

Three-Parameter Random Field Search

Variable spacing and resolution
Arbitrary number of trials
Random space-filling

Directed (Structured) Search for Minimum Cost

Continuation of grid-based or random search
Localize areas of low cost
Increase sampling density in those areas

Directed (Structured) Search for Minimum Cost

Interpolate or extrapolate from one or more starting points

Downhill Simplex Search (Nelder-Mead Algorithm)

- Simplex: N-dimensional figure in control space defined by
 - N+1 vertices
 - (N+1) N/2 straight edges between vertices

Search Procedure for Downhill Simplex Method

- Select starting set of vertices
- Evaluate cost at each vertex
- Determine vertex with largest cost (e.g., J₁ at right)

- Project search from this vertex through middle of opposite face (or edge for N = 2)
- Evaluate cost at new vertex (e.g., J_4 at right)
- Drop J_1 vertex, and form simplex with new vertex
- Repeat until cost is small

Humanoid Walker optimized via Nelder-Mead http://www.youtube.com/watch?v=BcYPLR_j5dg

Tutorial

- Frame to frame motion estimation (16.11.14)
- Numerical optimization (16.12.12)
- Graph SLAM
- Loop closure detection

Paper study

- Feature based method
 - 1. Real-time Depth Enhanced Monocular Odometry
 - 2. Lidar Odometry and Mapping in Real-time
- Direct method
 - 3. LSD-SLAM
 - 4. Large-Scale Direct SLAM with Stereo Cameras
 - 5. Semi-Direct Visual Odometry for a fisheye-stereo camera