1 半导体二极管及其应用

1.1 PN结

1.1.1 PN结的形成

物体根据其导电能力(电阻率)分

导体 电阻率 < 10-3 Ω cm

半导体

绝缘体 电阻率 > 108 Ω cm

半导体: 导电能力介于导体和绝缘体之间。

最常用的半导体材料:

错

原子结构示意图

硅原子结构示意图

锗原子结构示意图

上页

页后

1. 本征半导体 本征半导体就是完全纯净的半导体。

立体结构

平面结构

上页

下页

上页

下页

本征 Si 激发产生电子和空穴

自由电子

空穴

上页

下页

电子、空穴 成对产生

上页

下页

上页

下页

电子和空穴的产生过程动画演示

上页

本征半导体中

的载流子浓度:

$$n_{\rm i} = p_{\rm i} = A \cdot T^{\frac{3}{2}} \cdot e^{-\frac{E_G}{2KT}}$$

n;: 自由电子的浓度 T: 绝对温度

pi: 空穴的浓度

K: 波尔兹曼常数

A: 系数(与半导体材料有关)

 $E_{\rm C}$: 价电子挣脱共价键所需能量,又叫禁带宽度

结论: 半导体材料一定, 载流子浓度随温度 按指数规律增大。

小结:

本征激发使空穴和自由电子成对产生。

相遇复合时,又成对消失。

K(T)——与温度有关的常数

在外电场作用下

上页

下页

上页

上页下页后退

小结:

这就是半导体和金属导电原理的 本质区别。

- 2) 本征半导体的特点:
 - a. 电阻率大。
 - b. 导电性能随温度变化大。

本征半导体不能在半导体器件中直接使用

2. 掺杂半导体

在本征半导体硅或锗中掺入微量的其它适当元素后所形成的半导体。

根据掺杂的不同,杂质半导体分为 { P型导体

(1) N型半导体

掺入五价杂质元素(如磷、砷)的杂质半导体。

上页下页后退

掺入少量五价杂质元素磷

上页

下页

多一中电子

出现了一个正离子

上页

下页

半导体中产生了大量的自由电子和正离子

上页

下页

N型半导体的形成过程

上页

下页

小结:

- a. N型半导体是在本征半导体中掺入少量五价杂质元素形成的。
- b. N型半导体产生了大量的(自由) 电子和正离子。
- c. 电子是多数载流子, 简称多子; 空穴是少数载流子, 简称少子。
- d. $n_p \times n_n = K(T)$
 - e. 因电子带负电, 称这种半导体为N(negative)型或电子型半导体。
 - f. 掺入的杂质能给出电子, 称为施主杂质。

(2) P型半导体

在本征半导体中掺入三价杂质元素,如硼等:

上页

下页

出现了一个空位

上页

下页

半导体中产生了大量的空穴和负离子

P型半导体的形成过程

上页

下页

小结:

- a. P型半导体是在本征半导体中掺入少量的三价杂质元素形成的。
- b. P型半导体产生大量的空穴和负离子。
- c. 空穴是多数载流子, 电子是少数载流子。
- d. $n_p \times n_n = K(T)$
- e. 因空穴带正电, 称这种半导体为p(positive)型或空穴型半导体。
- f. 掺入的杂质能接受电子, 称为受主杂质。

杂质半导体的转型:

当掺入三价元素的密度大于五价元素的密度时,可将N型转型为P型;

当掺入五价元素的密度大于三价元素的密度时,可将P型转型为N型

小结

N型—电子密度>空穴密度

少子——空穴

多子——空穴

P型—电子密度<空穴密度

少子——电子

多子——数目取决于掺杂多少;

少子——数目主要取决于温度。

注意: 半导体中正负电荷总数相等,宏观呈电中性!

上页

下页

3. PN结的形成

以N型半导体为基片

通过半导体扩散工艺

上页 下页

使半导体的一边形成N型区,另一边形成P型区

上页

下页

(1) 在浓度差的作用下, 电子从 N区向P区扩散

上页

下页

在浓度差的作用下,空穴从 P区向N区扩散

上页

下页

小结:

在浓度差的作用下,两边多子互相扩散。在P区和N区交界面上,留下了一层不能移动的正、负离子

上页

下页

模拟电子技术基础

空间电荷层

PN结

上页

下页

形成内电场

上页

下页

PN结一方面阻碍多子的扩散

上页

下页

另一方面加速少子的漂移

上页

下页

形成电位势垒

上页

下页

当扩散与漂移作用平衡时

- a. 流过PN结的净电流为零。
- b. PN结的厚度一定(约几个微米)。
- c. 接触电势一定(约零点几伏)。

上页

下页

PN结形成过程动画演示

上页

下页

当N区和P区的掺杂浓度不等时:

高掺杂浓度区 域用N+表示

离子密 度小

空间电荷 区的宽度 较宽

离子密度大

空间电荷 区的宽度 较窄

上页

下页

- 1.1.2 PN结的单向导电性
- 1. PN结正向偏置

上页下页

PN结变窄

多子进行扩散

 E_{range}

内电场被削弱

K

PN结呈现低阻、导通状态

上页

下页

PN结正偏动画演示

内电场方向

上页

下页

2. PN结反向偏置

PN结变宽

不利多子扩散 有利少子漂移 PN结呈现高距。截止状态|

 E_{P}

内电场增强

因少子浓度主要与温度有关,反向电流与反向电压几乎无关。

此电流称为反向饱和电流,记为 I_{S} 。

上页

下页

PN结反偏动画演示

内电场方向

上页

下页

总结

	势 垒	PN结	多子扩散	少子漂移	状 态
正偏	降低	薄	利	不利	低阻 导通
反偏	增高	厚	不利	利	高阻 截止

上页

1.1.3 PN结的电压与电流关系

上页下页后退

$$i = I_{s}(e^{\frac{u}{U_{T}}}-1)$$

式中

 $I_{\rm S}$ —PN结反向饱和电流

 U_T —热电压

$$U_T = KT/q$$

其中 K----玻耳兹曼常数

q——电子电量

T——绝对温度

在室温 (T=300K) 时, $U_T \approx 26$ mV

模拟电子技术基础

$i = I_{\rm s}(e^{\frac{u}{U_T}}-1)$

讨论:

$$(2)$$
 当 $u>0$,且 $u>>U_T$ 时,

(3) 当
$$u$$
<0,且 $|u|$ >> U_T 时, $i \approx -I_S$

u

$$i = 0$$

$$i \approx I_{\rm s} e^{\frac{u}{U_T}}$$

$$i \approx -I_{\rm S}$$

思考题

- 1. 半导体中的载流子浓度主要与那些因素有关?
- 2. 温度升高,半导体的导电率如何变化?
- 3. 扩散电流与漂移电流的区别是什么?

1.2 半导体二极管

1.2.1 半导体二极管的结构和类型

极 管 就 是 个封 装 的 PN 结

上页

下页

半导体二极管的外型和符号

上页

下页

半导体二极管图片

上页 下页 后退

半导体二极管的类型

(1)按使用的半导体材料不同分为 错管

(2)按结构形式不同分 { 点接触型

上页

半导体二极管的伏安特性 1.2.2

上页

下页

1. 正向特性

(1) 非线性 整个正向特性曲线近似地呈现为指数形式。

$$i_{\mathrm{D}} \approx I_{\mathrm{S}} e^{u_{\mathrm{D}}/U_{\mathrm{T}}}$$

(2) 有死区 $(i_D \approx 0$ 的区域)

上页

下页

(3) 有压降 导通后(即un大于死区电压后)

$$\frac{di_{\rm D}}{du_{\rm D}} \approx I_{\rm S} e^{u_{\rm D}/U_{\rm T}} \frac{1}{U_{\rm T}} \approx \frac{i_{\rm D}}{U_{\rm T}}$$

即 up升高, ip急剧增大

上页

2. 反向特性

(1) 当 $|u_{\rm D}| < U_{\rm (BR)}$ 时, $|i_{\rm D}| \approx I_{\rm S}$

 $I_{\rm S}$ $\{$ 程管<0.1 μ A 错管几十到几百 μ A

上页

下页

|(2) 当 $|u_{\rm D}| > U_{\rm (BR)}$ 时

反向电流急剧增大

二极管发生反向击穿

击穿的类型:

根据击穿可逆性分为{执击穿

上页

下页

电击穿:

二极管发生反向击穿后, 如果

a. 功耗 $P_{\rm D}(=|U_{\rm D}I_{\rm D}|)$ 不大。

b. PN结的温度小于允许的最高结温-

-硅管150∽200°C

锗管75∽100°C

c. 降低反向电压, 二极管仍能正常工作。

热击穿:

PN结被烧坏,造成二极管的永久性损坏。

上页 下页 后退

- (3) 产生击穿的机理:
- a. 齐纳击穿

击穿的机理:

电场将PN结的价电子从共价键中激发出来。

击穿的特点 { 击穿电压低于4V 击穿的特点 { 击穿电压具有负的温度系数

上页

下页

(b) 雪崩击穿

半导体的掺杂浓度低 空间电荷区中就有较强的电场

击穿的机理:

电场使PN结中的少子"碰撞电离"共价键中的价电子

击穿的的特点 {

击穿电压具有正的温度系数

上页

总结

	掺杂 浓度	PN 结	击穿 电压	温度系数	形成原因
齐纳	高	薄	<4V	负	价电子受激发
雪崩	低	厚	> 6V	正	少子加速 碰撞电离

上页

下页

- 1.2.3 温度对半导体二极管特性的影响
 - 1. 当温度上升时,死区电压缩小,正向管压降降低。

$$\triangle u_{\rm D}/\triangle T = -(2 \le 2.5) \text{ mV/°C}$$
.

即 温度每升高1°C,管压降降低(252.5)mV

2. 温度升高,反向饱和电流增大。

$$I_{\rm S}(T) = 2^{\frac{T-T_0}{10}} I_{\rm S}(T_0)$$

即 平均温度每升高10°C,反向饱和电流增大一倍

- 1.2.4 半导体二极管的主要电参数
- 1. 额定电流I_F 管子长期运行所允许通 过的电流平均值。
- 2. 反向击穿电压U(BR)

二极管能承受的最高反向电压。

上页

下页

3. 最高允许反向工作电压 $U_{ m R}$

为了确保管子安全工作,所允许的最高反向电压。

$$U_{\rm R}$$
= (1/2~2/3) $U_{\rm (BR)}$

4. 反向电流IR

室温下加上规定的反向电压测得的电流。

上页

下页

5. 正向电压降 U_{F}

指通过一定的直流测试电流时的管压降。

6. 最高工作频率 $f_{
m M}$

当工作频率过高时,其单向导电性明显变差。

上页

下页

- 1.2.5 半导体二极管的模型
- 1. 理想二极管

1) 伏安特性

2) 电路符号

上页

下页

2. 恒压模型

1) 伏安特性

2) 电路模型

上页

下页

3. 折线模型

1) 伏安特性

2) 电路模型

$$\begin{array}{c|c}
 & u_{D} & - \\
\hline
i_{D} & r_{D} \\
\hline
u_{th} & \end{array}$$

上页

下页

4. 小信号动态模型

1) 伏安特性

动态电阻
$$r_{\mathbf{d}} = \frac{\Delta u_{\mathbf{D}}}{\Delta i_{\mathbf{D}}}\Big|_{\substack{u_{\mathbf{D}} = U_{\mathbf{D}} \\ i_{\mathbf{D}} = I_{\mathbf{D}}}}$$

2) 电路模型

$$i_{\rm d}$$
 + $u_{\rm d}$ - $r_{\rm d}$

1.3 半导体二极管的应用

1.3.1 在整流电路中的应用

整流: 将交流电变成直流电的过程。

整流电路: 完成整流功能的电路。

常见的整流电路有一

半波整流电路

全波整流电路

桥式整流电路

上页 下页 后退

桥式整流电路

议
$$u_2 = \sqrt{2}U_2 \sin \omega t$$

1. 工作原理

a. 当u₂>0时

电流流动方向

上页

下页

b. 当u₂<0时

电流流动方向

上页

下页

音频信号

用音频信号去控制高频信号的幅值

上页 下页 后退

检波的过程

上页

下页

1.3.3 限幅电路

工作原理

a. 当 u_i 较小使二极管 D_1 、 D_2 截止时

$$u'_{i} = \frac{R_{i}}{R_{i} + R} u_{i}$$
 电路正常放大

b. 当 u_i 使二极管 D_1 或 D_2 导通时

$$u_{\rm i}^{\prime} \approx U_{\rm F}$$

输入电压波形

上页

页 后退

输入端电压波形

上页下页

习题 1.1 在本题图所示的电路中,交流电源的电压U为 220V,现有三只半导体二极管 D_1 、 D_2 、 D_3 和三只220V、40W灯 2001011、11、12、12 接在该电源上。试问哪只(或哪些)灯泡发光最亮?哪只(或哪些)二极管承受的反向电压最大?

电压U为正半周时, D_1 与 D_3 截止, D_2 导通,过灯 L_1 与 L_3 亮

电压U为正半周时, D_1 与 D_3 导通, D_2 截止,灯 L_2 亮

灯L₂最亮,二极管D₂ 承受的反向电压最大 习题 1.7 设本题图所示各电路中的二极管性能均为理想。试判断各电路中的二极管是导通还是截止,并求出A、B两点之间的电压 U_{AB} 值。

- 1. 断开二极管
- 2. B点接地
- 3. 判别二极管两端电位

D管截止

$$U_{AB}$$
=-12V

- 1. 断开二极管
- 2. B点接地
- 3. 判别二极管两端电位

D管导通

$$U_{\rm AB}$$
=15V

1.4 特种二极管

 $u_{\mathbf{Z}}$

1.4.1 硅稳压二极管

伏安特性

特点:

- a. 正向特性与普通管类似
- b. 反向击穿特性很陡

稳压管通常工作于反向电击穿状态用来稳定直流电压

符号

*

上页

下页

1. 硅稳压管的主要电参数

- (1) 稳定电压 U_z
- (2) 动态电阻 $r_{\rm Z} = \frac{\Delta U_{\rm Z}}{\Delta I_{\rm Z}}$
- (3) 最大允许工作电流 I_{ZM}
- (4) 最大允许功率耗散 P_{ZM}

(5) 温度系数 $\alpha_{\rm u}$

温度系数 $\alpha_{\rm m}$

定义: 温度每变化 1° C时 U_{Z} 的相对变化率。即

$$\alpha_{\rm u} = \frac{\frac{\Delta U_{\rm Z}}{U_{\rm Z}}}{\Delta T} \times 100 \%$$

 $U_{7} > 6V$ 管子出现雪崩击穿, α_{11} 为正;

 U_{7} <4V 出现齐纳击穿, α_{II} 为负。

 U_{7} 介于4V到6V之间, α_{11} 可能为正,也可能为负。

具有温度补偿的硅稳压管

 $\begin{array}{c} D_{z1} \\ D_{z2} \end{array}$

把一只 α_U 为 正的管子与另 一只 α_U 为负 的管子串联

(2)

将两只 α_U 为正 的稳压管串联

上页

下页

2. 硅稳压管的等效电路

反向击穿时端电压表达式 $U_z = U_{z_0} + I_z r_z$

反向

正向

上页

下页

3. 硅稳压管稳压电路

R——限流电阻

(1) 稳压原理

a. U_{Γ} 不稳定

b. R_L改变

(2) 限流电阻计算

输出电压稳定的条件:

$$U_{\rm I} \frac{R_{\rm L}}{R + R_{\rm L}} \ge U_{\rm Z}$$

(保证稳压管被击穿)

保证稳压管可靠工作的条件:

$$I_{\mathrm{Z}(\mathrm{min})} \leq I_{\mathrm{Z}} \leq I_{\mathrm{Z}(\mathrm{max})}$$

$$U_{\mathbf{O}} = U_{\mathbf{Z}}$$

$$I_{\rm O} = \frac{U_{\rm O}}{R_{\rm L}} = \frac{U_{\rm Z}}{R_{\rm L}}$$

$$I_{\rm Z} = I - I_{\rm O}$$

$$I = \frac{U_{\mathrm{I}} - U_{\mathrm{O}}}{R} = \frac{U_{\mathrm{I}} - U_{\mathrm{Z}}}{R}$$

由式

$$I = \frac{U_{\rm I} - U_{\rm Z}}{R}$$

$$I_{\rm Z} = I - I_{\rm O}$$

知 当 $U_{\rm I}$ 为最大值 $U_{\rm I\,(max)}$ 时,I值最大; 此时当 $I_{\rm O}$ 为最小值 $I_{\rm O\,(min)}$ 时, $I_{\rm z}$ 值最大。 为保证管子安全 工作应使

$$\frac{U_{\text{I(max)}} - U_{\text{Z}}}{R} - I_{\text{O(min)}} \le I_{\text{ZM}}$$

由此可得

$$R \ge \frac{U_{\rm I(max)} - U_{\rm Z}}{I_{\rm O(min)} + I_{\rm ZM}}$$

由式

$$I = \frac{U_{\rm I} - U_{\rm Z}}{R}$$

$$I_{\rm Z} = I - I_{\rm O}$$

知 当 U_I 为最小值 $U_{I \text{ (min)}}$ 时,I值最小; 此时当 I_O 为最大值 $I_{O \text{ (max)}}$ 时, I_z 值最小。 为保证电路可靠工作应使

$$R$$
 I_{O}
 $+$
 I_{Z}
 \downarrow
 D_{Z}
 \downarrow
 R_{L}
 \downarrow
 U_{O}

$$\frac{U_{\mathrm{I(min)}} - U_{\mathrm{Z}}}{R} - I_{\mathrm{O(max)}} \ge I_{\mathrm{Z(min)}}$$

$$R \le \frac{U_{\text{I(min)}} - U_{\text{Z}}}{I_{\text{O(max)}} + I_{\text{Z(min)}}}$$

$$R \ge \frac{U_{\text{I(max)}} - U_{\text{Z}}}{I_{\text{O(min)}} + I_{\text{ZM}}}$$

及

$$R \le \frac{U_{\text{I(min)}} - U_{\text{Z}}}{I_{\text{O(max)}} + I_{\text{Z(min)}}}$$

得

$$\frac{U_{\mathrm{I(max)}} - U_{\mathrm{Z}}}{I_{\mathrm{O(min)}} + I_{\mathrm{ZM}}} \le R \le \frac{U_{\mathrm{I(min)}} - U_{\mathrm{Z}}}{I_{\mathrm{O(max)}} + I_{\mathrm{Z(min)}}}$$

1.12 电路如本题 图所示。其中限 流电阻 $R=2k\Omega$, 硅稳压管Dz1、 Dz2 的稳定电压 Uz1、Uz2分别为 6V和8V,正向 压降为 0.7V, 动 态电阻可以忽 略。试求各电路 输出端A、B两 端之间电压UAB 的值。

颞 1.12 图

1.4.2 变容二极管

- 1. PN结的电容效应
- (1) 扩散电容 C_D

非平衡少子的积累

△U变化时,P区 积累的非平衡少 子浓度分布图

 $1 \Delta U = 0 \ 2 \Delta U < 0 \ 3 \Delta U > 0$

上页

下页

PN结正向偏置电压越高,积累的非平衡少子越多。这种电容效应用扩散电容 C_D 表征。

$$C_{\rm D} = \frac{\Delta Q}{\Delta U}$$

上页下页后退

(2) 势垒电容 $C_{\rm B}$

a. 当PN结正向偏置电压升高时

b. 当PN结正向偏置电压降低时

PN结的偏置电压能使空间电荷层中电荷量发生变化。这种电容效应用势垒电容 $C_{\rm R}$ 表征。

小结:

PN结的结电容 C_i

$$C_{\rm j} = C_{\rm D} + C_{\rm B}$$

当PN结反偏时: $C_{\rm B} >> C_{\rm D}$ $C_{\rm j} \approx C_{\rm B}$

当PN结正偏时: $C_D >> C_B C_j \approx C_D$

变容二极管的特点:

a. 当二极管反向偏置时,因反向电阻为很大,可作电容使用。

b. 电容量与所加的反向偏置电压的大小有关。

变容二极管的符号及C-U特性曲线

#

符号

C-U特性曲线

谐振频率:
$$f = \frac{1}{2\pi\sqrt{LC}}$$

式中
$$C = \frac{C_1 C_j}{C1 + C_i}$$

上页

下页

$$C_1 >> C_j$$

$$C = \frac{C_1 C_j}{C_1 + C_j} \approx C_j$$

故谐振频率

$$f \approx \frac{1}{2\pi\sqrt{LC_{\rm j}}}$$

上页

下页

其它特种二极管: 发光二极管

上页

下页

其它特种二极管: 光敏二极管

OLED

有机发光二极管(Organic Light-Emitting Diode)

• OLED 显示技术与传统的LCD显示方式不同,无需背光灯,采用非常薄的有机材料涂层和玻璃基板,当有电流通过时,这些有机材料就会发光。而且OLED显示屏幕可以做得更轻更薄,可视角度更大,并且能够显著节省电能。

模拟电子技术基础

OLCD

上页

下页

思考题

- 1. 稳压管可以稳压的条件是什么?
- 2. 稳压管稳压电路的特点是什么?

3. 稳压管稳压电路中限流电阻的大小对电路的性能有何影响么?

例1 设图示电路中的二极管性能均为理想。试判断各电路中的二极管是导通还是截止,并求出A、B两点之间的电压 U_{AB} 值。

上页

解: 判断电路中二极管导通的方法:

假定电路即将导通,电路中的电流为零,判断电路中各二极管上的压降。压降高的管子优先导通。

对于图 a,在电路即将导通时, D_1 、 D_2 上的正偏电压分别为 10V,-5V。

$$U_{\mathrm{AB}} = 0 \mathrm{V}$$

D₂反偏电压为5V

对于图 b, 在电路即将导通时,

D₁、D₂上的正偏电压分别为:

10V, 25V

D2优先导通

D,优先导通后

$$U_{AB} = -15V$$

即 D₁上的反偏电压为15V D₁截止

上页下

例2. 电路如图所示。设 D_1 、 D_2 的性能均理想,输入电压 u_1 的变化范围为 $0\sim30V$ 。画出电路的传输特性曲线。

解: 当D₁、D,均导通时

$$i_{D2} = i_2 = \frac{V_2 - u_I}{R_2}$$

$$i_{D1} = -(i_1 + i_{D2}) = -(\frac{V_1 - u_I}{R_1} + \frac{V_2 - u_I}{R_2})$$

上页

下页

代入有关数据得

$$i_{\rm D1} = \frac{2u_{\rm I} - 24}{5}$$

$$i_{D2} = \frac{18 - u_{I}}{5}$$

可见:

 D_1 导通的条件是 $u_I > 12V$

 D_2 导通的条件是 u_I < 18 V

$$i_{\rm D1}=\frac{2u_{\rm I}-24}{5}$$

$$i_{D2} = \frac{18 - u_{I}}{5}$$

故 当
$$u_{\rm I} \le 12{
m V}$$
时, ${
m D}_1$ 截止、 ${
m D}_2$ 导通。 $u_{
m O} = 6 + \frac{18-6}{5+5} \times 5 = 12{
m V}$
当 $12{
m V} < u_{
m I} \le 18{
m V}$ 时, ${
m D}_1$ 、 ${
m D}_2$ 均导通, $u_{
m O} = u_{
m I}$
当 $u_{
m I} > 18{
m V}$ 时, ${
m D}_1$ 导通、 ${
m D}_2$ 截止, $u_{
m O} = 18{
m V}$

u_o~u_i关系曲线

