	\mathbf{A}	В	\mathbf{C}	Σ	J:
NÉV: ELTE AZON.:					

Prog. inf. I. (BSc.)

${\bf Minta\ vizsgadolgozat}$

2012. január 0.

Első rész (75 perc)

- A. Minden feladatban írjuk be a megfelelő választ a sor végén levő keretbe. Csak az eredmény lesz pontozva. Minden helyes válasz 1 pontot ér. Az elégségeshez legalább 6 pontot kell szerezni ebből a feladatból. (15 pont)
 - 1. Hány különböző lineáris kombinációja van két lineárisan független vektornak \mathbb{R}^5 -ben?

 ∞

2. Mi hiányzik az alábbi állításból, hogy annak egy ekvivalens megfogalmazását kapjuk, hogy $U \subseteq \mathbb{R}^5$ altér \mathbb{R}^5 -ben: $U \subseteq \mathbb{R}^5$ nem üres halmaz pontosan akkor altér, ha $\mathbf{u}, \mathbf{v} \in U$ esetén $\mathbf{u} + \mathbf{v} \in U$. és . . .

 $\mathbf{u} \in U, \ \lambda \in \mathbb{R}$ esetén $\lambda \mathbf{u} \in U$

3. Adjunk meg egy $\mathbf{v} \in \mathbb{R}^4$ vektort úgy, hogy \mathbf{v} -t hozzávéve az $\{[1 \ 1 \ 0 \ 0]^T, [1 \ 0 \ 1 \ 0]^T, [1 \ 0 \ 0 \ 1]^T\}$ vektorhalmazhoz, bázist kapjunk \mathbb{R}^4 -ben.

Pl. $[1 \ 0 \ 0 \ 0]^T$.

4. Mennyi lehet a rangja egy olyan 3×4 -es valós elemű nem nulla mátrixnak, melynek i-edik sorában ($1 \le i \le 3$ esetén) pontosan i darab nem nulla elem van, és a harmadik sor az első két sor összege?

2

5. Mondjunk példát 3 dimenziós altérre \mathbb{R}^5 -ben.

Pl. $\{\mathbf{a} \in \mathbb{R}^5 \mid a_4 = a_5 = 0\}.$

6. Az A és B mátrixok AB szorzata létezik és 4×7 -es, továbbá mind az A-nak, mind a B-nek kevesebb sora van, mint oszlopa. Hány oszlopa lehet A-nak?

5 vagy 6.

7. Mi az $A\mathbf{x} = \mathbf{0}$ homogén lineáris egyenletrendszer megoldása, ha A négyzetes, és létezik neki inverze?

 $\mathbf{x} = \mathbf{0}$

8. Mondjunk legalább egy, a mátrixokon végrehajtható rangtartó átalakítást.

Sorcsere.

9. Mi lesz a $\mathbf{v} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ és a $\mathbf{w} = 2\mathbf{i} + 4\mathbf{j} + 7\mathbf{k}$ vektorok vektoriális szorzata, $\mathbf{v} \times \mathbf{w}$?

 $\mathbf{v} \times \mathbf{w} = 2\mathbf{i} - \mathbf{j}$

10. Hány inverzió van 5 elem "fordított" sorbarendezésében (azaz az 54321 permutációban)?

10

11. Számoljuk ki az $A=\begin{bmatrix}1&3&5\\-1&-3&-5\\1&5&3\end{bmatrix}$ mátrix második sorának harmadik eleméhez tartozó előjelezett aldeterminánst.

 $A_{23} = -2$

12. Legyen $A \in \mathbb{R}^{3\times 3}$, melynek determinánsa -2. Mi lesz det $3A^2$?

$$\det 3A^2 = 3^3(-2)^2 = 108$$

13. Legyen φ a sík tükrözése egy origón átmenő egyenesre, és legyen A a φ mátrixa valamely bázisban. Mik az A mátrix sajátértékei?

Sajátértékek: 1, -1

14. Legyen a φ lineáris transzformáció mátrixa (valamely bázisban) diagonalizálható, és tegyük föl, hogy φ karakterisztikus polinomja $k_{\varphi}(x) = x^6 + ax^4 + x^2$ valamely $a \in \mathbb{R}$ értékre. Hány dimenziós φ képtere?

 $\dim \mathcal{I}m\,\varphi = 4$

15. Mi lehet a $c \in \mathbb{R}$ konstans értéke, ha a szokásos $\mathbf{x}^T\mathbf{y}$ euklideszi struktúrára nézve a $\mathbf{v}=(1\ 2\ 3\ c)^T\in\mathbb{R}^4$ vektor normája 4?

$$c = \pm \sqrt{2}$$

- **B.** Válaszoljuk meg az alábbi kérdéseket. A kimondandó állításokat nem kell bizonyítani. Ügyeljünk a pontos fogalmazásra. Minden teljes válasz 2 pontot ér. Az elégségeshez legalább 4 pontot kell szerezni ebből a feladatból. (10 pont)
- 16. Definiáljuk egy $\mathbf{v}_1, \dots, \mathbf{v}_n$ vektorrendszer rangját.

A $\mathbf{v}_1, \dots, \mathbf{v}_n$ vektorrendszer rangja az általa generált altér dimenziója.

17. Írjuk föl az $A \in \mathbb{R}^{\ell \times m}$ és a $B \in \mathbb{R}^{m \times n}$ mátrix C = AB szorzatában a harmadik sor ötödik elemének a képletét.

$$_{3}[C]_{5} = \sum_{j=1}^{m} {}_{3}[A]_{jj}[B]_{5}$$

18. Mondjuk ki a determinánsok szorzástételét.

Ha A és B négyzetes mátrixok, melyeknek a szorzata, AB létezik, akkor $\det(AB) = \det A \det B$.

19. Mit jelent, hogy egy V euklideszi térben az U és W alterek ortogonálisak egymásra?

U és W pontosan akkor merőlegesek egymásra, ha minden $\mathbf{u} \in U$ és minden $\mathbf{w} \in W$ vektor merőleges egymásra: $\langle \mathbf{u}, \mathbf{w} \rangle = 0$.

20. Mondjuk ki a lineáris leképezések egyértelmű kiterjesztési tételét.

Ha $\mathbf{a}_1, \dots, \mathbf{a}_n$ bázis \mathbb{R}^n -ben, $\mathbf{b}_1, \dots, \mathbf{b}_n$ pedig tetszőleges vektorok \mathbb{R}^k -ban, akkor létezik pontosan egy $\varphi : \mathbb{R}^n \to \mathbb{R}^k$ lineáris leképezés, melyre $\varphi(\mathbf{a}_i) = \mathbf{b}_i$ $(1 \le i \le n)$.

Az elégségeshez a dolgozat második részével együtt legalább 15 pontot kell szerezni.

	Prog. inf. I. (BSc.)	$ m Minta\ vizsgadolgozat/3$ $ m Második\ rész\ (45\ perc)$	2012. január 0.			
С.	Bizonyítsuk az alábbi állításokat. követelmény az elégségeshez.	Ügyeljünk a pontos fogalmazásra.	Ebben a részben nincs minimum-			
21.		független vektorrendszerhez hozzá iggő, akkor az új vektor lineárisan				
22.	Mondjuk ki és bizonyítsuk be a v	valós euklideszi terekre érvényes Ca	uchy-egyenlőtlenséget. (6 pont)			
	A hátlapra!					
	Ha az I. rész két kérdéscsoportjál érdemjegye az összpontszám alap	pól a megszerzett pontszám eléri a 6 ján: $0-14:$ 1	i-ot, illetve a 4-et akkor a dolgozat			
		$ \begin{array}{r} 14 \\ 15 - 18 \\ 19 - 22 \\ 3 \\ 23 - 26 \\ 4 \\ 27 - 35 \\ \end{array} $				

ELTE AZON.:

EREDMÉNYHIRDETÉS: január 0-án, pénteken 0 órakor a Déli tömb 11-111-es szobájában. Ezt követően a vizsgadolgozatok Szalay tanár úrtól vehetők át a vizsgaidőszakban minden héten kedden, szerdán vagy csütörtökön délelőtt.