Model Slicing and Support Structure Generation for 3d Printing

Stefan Sydow

Technische Universität Berlin Fakultät IV (Elektrotechnik und Informatik) Institut für Technische Informatik und Mikroelektronik Computer Graphics

March 30, 2012

Agenda

Starting Point

Architecture

Implementation
Support Structur Generation
Slicing
Adaptive Mesh

Starting Point

- Many nice tools of libraries, but none suitable.
 (pythonOCC, Meshlab, libcarve, netfabb, FreeCAD)
- ► Slicing software like Skeinfrogde and Slic3r are very complex.
- ► Own C++ raytracer implementation.

Architecture

- ▶ import model; build KD-tree.
- ► Generate support structure.
- slice model; build contours.
- ▶ fill contours with an adaptive grid.

Figure: Last level of the KD-tree.

Support Structur Generation

- ► Mark triangles faceing steep "down".
- ▶ Obtain the contour of this surface.
- Projekt onto the model and the base plane.
- ▶ Build the support volume from support and projection surface.
- ► Use the KD tree representation for slicing.

Figure: Support volume for the Stanford Bunny.

Slicing

- ► Intersect model and support KD tree with the slicing plane
- ► Build contour set form edges.

Figure: Slice through the model

Adaptive Mesh

- Grid layout is defined by a set of planes.
- Planes are translated along their normal to generate different lines.
- ► Translation step decides on grid density
- $b ds = ds_{max} \cdot \left(1 \frac{h_{max}}{h_{lineavg}}\right)$

h: model height; ds: translation step

Figure: Adaptive grid density