- 1. For complexes $[Fe(CN)6]^{3-}$ or $[Fe(CN)6]^{4-}$ answer the following questions:
 - (a) Which complex will show the higher value for Δo , give a brief reason for your answer?

Ans: Higher the charge on the metal ion higher will be Δ o

In $[Fe(CN)_6]^{4-}$ the iron is in +2 oxidation state while in $[Fe(CN)_6]^{3-}$ iron is in +3 oxidation state thus $[Fe(CN)_6]_3^{-}$ will show higher Δ o value.

(b) Calculate the wavelength most intensely absorbed light for $[Fe(CN)_6]^{4-}$ complex ($\Delta o = 392 \text{ kJ/mol}$) [Avogadro's no. = $6.02214 \times 10^{23} \text{ mol}^{-1}$]

Ans: $\Delta o = 392 \text{ kJ/mol}$

$$\Delta o = [(392 \text{ kJ/mol x } 1000 \text{ J})/1 \text{ kJ}] / 6.02214 \text{ x } 10^{23} = 6.5093 \text{ x } 10^{-19} \text{ J}]$$

 $\Delta o = hv$

As $v = c/\lambda$

So, $\Delta o = hc/\lambda$

$$\lambda = hc/\ \Delta o \ = \ [6.6261\ x\ 10^{-34}\ Js\ x\ 2.9979\ x\ 10^{8}\ m/s]/\ 6.5093\ x\ 10^{-19}\ J$$

$$\lambda = 305.17 \times 10^{-9} \text{ m} = 305 \text{ nm}$$

(c) What will be the color of a dilute aqueous solution of $[Fe(CN)_6]^{4-}$?

Ans: Almost colorless as it absorbs in the UV region. Refer to the artist's wheel.

2. The material NiFe₂O₄ will prefer spinel or inverse spinel structure? Use the crystal field theory to explain.

Ans. Ni(II) prefers octahedral geometry over tetrahedral due to stabilization through LFSE.

Octahedral (t2g 6 eg 2): LFSE: -1.2 Δο

Tetrahedral (e4 t2 4): LFSE: -0.8 Δt

Fe(III) is similar for both octahedral and tetrahedral (LFSE = 0 units)

So NiFe₂O₄ will be an inverse spinel.

3. If we add two equivalents of KCN into a solution containing $[Cu(NH_3)_4(H_2O)]^{2+}$ complex sample, it produces $[Cu(NH_3)_4(CN)_2]$. Based on the crystal field theory, predict the Cu *d*-orbital splitting and coordination geometry for both the complexes?

Ans.

