姓名:方盛俊 学号: 201300035

一. (20 points) 利用信息熵进行决策树划分

- 1. 对于不含冲突样本(即属性值相同但标记不同的样本)的训练集,必 存在与训练集一致(训练误差为0)的决策树. 如果训练集可以包含 无穷多个样本,是否一定存在与训练集一致的深度有限的决策树?并 说明理由(仅考虑每次划分仅包含一次属性判断的决策树).
- 2. 信息熵 Ent(D) 定义如下

$$\operatorname{Ent}(D) = -\sum_{k=1}^{|\mathcal{Y}|} p_k \log_2 p_k \tag{1}$$

请证明信息熵的上下界为

$$0 \le \operatorname{Ent}(D) \le \log_2 |\mathcal{Y}| \tag{2}$$

并给出等号成立的条件.

3. 在 ID3 决策树的生成过程中, 需要计算信息增益(information gain)以生成新的结点. 设离散属性 a 有 V 个可能取值 $\{a^1, a^2, \dots, a^V\}$,请考教材 4.2.1 节相关符号的定义证明:

$$Gain(D, a) = Ent(D) - \sum_{v=1}^{V} \frac{|D^v|}{|D|} Ent(D^v) \ge 0$$
 (3)

即信息增益非负.

解:

1. 对于属性值均为有限取值的离散值的训练集来说, 存在与训练集一致的深度有限决策树. 因为对于有限取值的离散值, 每一层都会减少一种待选的属性, 所以深度必然有限.

对于属性值为有无限中取值时,例如有一种属性是连续值时,不一定存在与训练集一致的深度有限决策树.

例如我们构造一个只有单个属性和单个标记的训练集 $D = \{(x_i, y_i)\},$ 其中

$$y = D(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ 0, & x \in \mathbb{R} \backslash \mathbb{Q} \end{cases}$$

而 $x \in [0,1]$, 即定义域为 [0,1] 的 Dirichlet 函数.

我们这样取出我们的无穷多个训练集样本: 从 $x_1 = 0$ 开始取, 此时 i = 1, 不断取出比 x_{2i-1} 大且相邻的有理数 x_{2i+1} , 其中 $i = 1, 2, \cdots$, 并且在两个相邻的有理数 x_{2i-1} 和 x_{2i+1} 之间任取一个无理数 x_{2i} , 并使得 $x_{2i-1} < x_{2i} < x_{2i+1}$. 而它们对应的 $y_i = D(x_i)$.

这样, 我们就构造出了一个标记为 1 和 0 交替出现的无穷个样本的训练集.

对于一个这样的训练集, 我们使用处理连续值属性的决策树算法, 我们在训练集中不断地对属性 x 进行划分, 无论划分区间多小, 也不可能得到一个标记 y 完全为 1 或 0 的子集, 因此决策树算法 会不断继续下去, 生成深度无限的决策树.

2. 因为 $0 \le p_k \le 1$, 则有 $p_k \log_2 p_k \le 0$, 因此

$$-\sum_{k=1}^{|\mathcal{Y}|} p_k \log_2 p_k \ge 0$$

令 $-\sum_{k=1}^{|\mathcal{Y}|} p_k \log_2 p_k = 0$,则有 $p_k \log_2 p_k = 0$ 即有当每一个 $p_k = 0$ 或 $p_k = 1$ 时等号成立. 对于原式

$$Ent(D) = -\sum_{k=1}^{|\mathcal{Y}|} p_k \log_2 p_k, \sum_{k=1}^{|\mathcal{Y}|} p_k = 1$$

显然在 $0 \le p_k \le 0$ 时是上凸函数, 因此是一个凸优化问题. 对应拉格朗日函数为

$$L(\boldsymbol{p}, \lambda) = -\sum_{k=1}^{|\mathcal{Y}|} p_k \log_2 p_k + \lambda (\sum_{k=1}^{|\mathcal{Y}|} p_k - 1)$$

将其转化为矩阵形式则有

$$L(\boldsymbol{p}, \lambda) = -\boldsymbol{p}^{\mathrm{T}} \log_2 \boldsymbol{p} + \lambda (\boldsymbol{1}^{\mathrm{T}} \boldsymbol{p} - 1)$$

对其求微分得

$$dL(\boldsymbol{p}, \lambda)$$

$$= \operatorname{tr}(-\boldsymbol{p}^{\mathrm{T}}(\mathrm{d} \log_{2} \boldsymbol{p}) - (\mathrm{d}\boldsymbol{p})^{\mathrm{T}} \log_{2} \boldsymbol{p} + \lambda \mathbf{1}^{\mathrm{T}} \mathrm{d}\boldsymbol{p})$$

$$= -\operatorname{tr}(\boldsymbol{p}^{\mathrm{T}}(\frac{1}{\ln 2} \ln' \boldsymbol{p} \odot \mathrm{d}\boldsymbol{p})) - \operatorname{tr}((\mathrm{d}\boldsymbol{p})^{\mathrm{T}} \log_{2} \boldsymbol{p}) + \lambda \operatorname{tr}(\mathbf{1}^{\mathrm{T}} \mathrm{d}\boldsymbol{p})$$

$$= -\frac{1}{\ln 2} \operatorname{tr}(\boldsymbol{p}^{\mathrm{T}}(\ln' \boldsymbol{p} \odot \mathrm{d}\boldsymbol{p})) - \frac{1}{\ln 2} \operatorname{tr}((\mathrm{d}\boldsymbol{p})^{\mathrm{T}} \ln \boldsymbol{p}) + \frac{1}{\ln 2} \operatorname{tr}(\lambda \ln 2\mathbf{1}^{\mathrm{T}} \mathrm{d}\boldsymbol{p})$$

$$= -\frac{1}{\ln 2} \operatorname{tr}((\boldsymbol{p} \odot \ln' \boldsymbol{p})^{\mathrm{T}} \mathrm{d}\boldsymbol{p}) - \frac{1}{\ln 2} \operatorname{tr}(\ln \boldsymbol{p}^{\mathrm{T}} \mathrm{d}\boldsymbol{p}) - \frac{1}{\ln 2} \operatorname{tr}(-\lambda \ln 2\mathbf{1}^{\mathrm{T}} \mathrm{d}\boldsymbol{p})$$

$$= -\frac{1}{\ln 2} \operatorname{tr}(\mathbf{1}^{\mathrm{T}} \mathrm{d}\boldsymbol{p}) - \frac{1}{\ln 2} \operatorname{tr}(\ln \boldsymbol{p}^{\mathrm{T}} \mathrm{d}\boldsymbol{p}) - \frac{1}{\ln 2} \operatorname{tr}(-\lambda \ln 2\mathbf{1}^{\mathrm{T}} \mathrm{d})$$

$$= \operatorname{tr}(-\frac{1}{\ln 2}((1 - \lambda \ln 2)\mathbf{1} + \ln \boldsymbol{p})^{\mathrm{T}} \mathrm{d}\boldsymbol{p})$$

因此有

$$\frac{\partial L(\boldsymbol{p}, \lambda)}{\partial \boldsymbol{p}} = -\frac{1}{\ln 2} ((1 - \lambda \ln 2) \mathbf{1} + \ln \boldsymbol{p})$$

令
$$\frac{\partial L(\boldsymbol{p}, \lambda)}{\partial \boldsymbol{p}} = 0$$
 即可知 \boldsymbol{p} 各分量相同, 即 $p_i = p_j, i \neq j$

再由我们知道 $\sum_{k=1}^{|\mathcal{Y}|} p_k = 1$ 则有

$$p_k = \frac{1}{|\mathcal{Y}|}$$

即当 $p_k = \frac{1}{|\mathcal{Y}|}$ 时我们取得最大值

$$\operatorname{Ent}(D) = -\sum_{k=1}^{|\mathcal{Y}|} \frac{1}{|\mathcal{Y}|} \log_2 \frac{1}{|\mathcal{Y}|} = \log_2 |\mathcal{Y}|$$

3.

$$\begin{split} & \operatorname{Gain}(D,a) \\ & = \operatorname{Ent}(D) - \sum_{v=1}^{V} \frac{|D^v|}{|D|} \operatorname{Ent}(D^v) \\ & = -\sum_{v=1}^{V} \frac{|D^v|}{|D|} \sum_{k=1}^{|\mathcal{Y}|} p_k \log_2 p_k + \sum_{v=1}^{V} \frac{|D^v|}{|D|} \sum_{k=1}^{|\mathcal{Y}|} p_k^v \log_2 p_k^v \\ & = -\sum_{k=1}^{|\mathcal{Y}|} \sum_{v=1}^{V} \frac{|D^v|}{|D|} \frac{|D_k|}{|D|} \log_2 \frac{|D_k|}{|D|} + \sum_{k=1}^{|\mathcal{Y}|} \sum_{v=1}^{V} \frac{|D^v|}{|D|} \frac{|D_k^v|}{|D^v|} \log_2 \frac{|D_k^v|}{|D^v|} \\ & = -\sum_{k=1}^{|\mathcal{Y}|} \sum_{v=1}^{V} \frac{|D_k^v|}{|D|} \frac{|D|}{|D^v|} \frac{|D^v|}{|D|} \log_2 \frac{|D_k|}{|D|} + \sum_{k=1}^{|\mathcal{Y}|} \sum_{v=1}^{V} \frac{|D_k^v|}{|D|} \log_2 \frac{|D_k^v|}{|D^v|} \\ & = -\sum_{k=1}^{|\mathcal{Y}|} \sum_{v=1}^{V} \frac{|D_k^v|}{|D|} \log_2 \frac{|D_k|}{|D|} \cdot 2^{\frac{|D^v|}{|D_k^v|} \frac{|D_k|}{|D|}} + \sum_{k=1}^{|\mathcal{Y}|} \sum_{v=1}^{V} \frac{|D_k^v|}{|D|} \log_2 \frac{|D_k^v|}{|D^v|} \\ & = -\sum_{k=1}^{|\mathcal{Y}|} \sum_{v=1}^{V} \frac{|D_k^v|}{|D|} \log_2 \frac{|D^v|}{|D_k^v|} \frac{|D_k|}{|D|} \cdot 2^{\frac{|D^v|}{|D_k^v|} \frac{|D_k|}{|D|}} \\ & \geq -\log_2 \sum_{k=1}^{|\mathcal{Y}|} \sum_{v=1}^{V} \frac{|D_k^v|}{|D|} \log_2 \sum_{v=1}^{V} \frac{|D^v|}{|D_k^v|} \frac{|D_k|}{|D|} \cdot 2^{\frac{|D^v|}{|D_k^v|} \frac{|D_k|}{|D|}} \\ & = -\frac{|D^v|}{|D_k^v|} \frac{|D_k|}{|D|} \log_2 \sum_{v=1}^{V} \frac{|D^v|}{|D|} \sum_{k=1}^{|\mathcal{Y}|} \frac{|D_k|}{|D|} \\ & = -\frac{|D^v|}{|D_k^v|} \frac{|D_k|}{|D|} \log_2 1 \cdot 1 \\ & = -\frac{|D^v|}{|D_k^v|} \frac{|D_k|}{|D|} \log_2 1 \cdot 1 \end{split}$$

其中不等号使用了 Jensen 不等式, 即 $\mathbb{E}[f(x)] \ge f(\mathbb{E}[x])$, 其中 f 是凸函数.

因此信息增益 Gain(D, a) 非负.

二. (15 points) 决策树划分计算

本题主要展现决策树在不同划分标准下划分的具体计算过程. 假设一个包含三个布尔属性 X,Y,Z 的属性空间,目标函数 f = f(X,Y,Z) 作为标记空间,它们形成的数据集如1所示.

编号	X	Y	Z	f	编号	X	Y	Z	f
1	1	0	1	1	5	0	1	0	0
2	1	1	0	0	6	0	0	1	0
3	0	0	0	0	7	1	0	0	0
4	0	1	1	1	8	1	1	1	0

Table 1: 布尔运算样例表

- 1. 请使用信息增益作为划分准则画出决策树的生成过程. 当两个属性信息增益相同时, 依据字母顺序选择属性.
- 2. 请使用基尼指数作为划分准则画出决策树的生成过程, 当两个属性基尼指数相同时, 依据字母顺序选择属性.

解:

1. 通过写了一个 Python 程序计算得出:

对于一开始的八个样本, X 信息增益为 0, Y 信息增益为 0, Z 信息增益为 0.31, 因此首先选择 Z.

其他同理, 最后得出如下图:

2. 对于一开始的八个样本, X 基尼指数为 0.375, Y 信息增益为 0.375, Z 信息增益为 0.25, 因此首先选择最小的 Z.

其他同理, 最后得出如下图:

三. (25 points) 决策树剪枝处理

教材 4.3 节介绍了决策树剪枝相关内容, 给定包含 5 个样例的人造数据集如表3a所示, 其中"爱运动"、"爱学习"是属性,"成绩高"是标记.验证集如表3b所示. 使用信息增益为划分准则产生如图1所示的两棵决策树. 请回答以下问题:

(a) 训练集								
编号	爱运动	爰学习	成绩高					
1	是	是						
2	否	是	是 否					
3	是是否	否	否					
4	是	否	否					
5	否	否	是					

(b) 验证集								
编号	爱运动	爰学习	成绩高					
6		是	- 是 否					
7	否	是否	否					
8	是 否	否	否					
9	否	否	否					

Table 2: 人造数据集

Figure 1: 人造数据决策树结果

1. 请验证这两棵决策树的产生过程.

- 2. 对图1的结果基于该验证集进行预剪枝、后剪枝,给出剪枝后的决策树.
- 3. 比较预剪枝、后剪枝的结果,每种剪枝方法在训练集、验证集上的准确率分别为多少? 哪种方法拟合能力较强?

解:

1. 对于一开始的五个样本,"爱运动"的信息增益为 0.42,"爱学习"的信息增益也为 0.42, 所以两棵决策树的第一层无论是选择"爱运动"还是"爱学习",均是正确的.

对于左边的决策树,第二层的"爱运动"的信息增益为 0.92, 因此 左边的决策树验证完毕.

对于右边的决策树,第二层的"爱学习"的信息增益为 0.92, 因此右边的决策树验证完毕.

2. 对于左边的决策树:

首先是预剪枝,对于"预剪枝"若不进行剪枝,那么每个样本都会被标记为"是",编号 {6} 的样例被分类正确,精度为 25.0%. 若进行划分,那么第 6 个或第 7 个样例会被分类错误,第 8 和第 9 个样例分类正确,精度为 75.0%,因此我们进行划分.

对于"爱学习",如果进行剪枝,那么第9个样例会从正确转为错误,使得验证集精度变为50%,因此我们禁止划分.

同理有后剪枝的结果:

后剪枝

对于右边的决策树:

首先是预剪枝,对于"预剪枝"若不进行剪枝,那么每个样本都会被标记为"是",编号 {6} 的样例被分类正确,精度为 25.0%. 若进行划分,只有第 8 个样例会被分类正确,精度为 25.0%,因此我

们禁止划分.

预剪枝

原分支 "爱运动" 验证集精度 "爱运动" 剪枝前: 25.0%

剪枝后: 25.0%

预剪枝决策: 禁止划分

同理有后剪枝的结果:

后剪枝

3. 对于左边的决策树来说, 预剪枝和后剪枝在训练集上的准确率均为 80%, 在测试集上的准确率均为 75%.

对于右边的决策树来说, 预剪枝在训练集上的准确率均为 60%, 在测试集上的准确率均为 25%. 后剪枝在训练集上的准确率均为 100%, 在测试集上的准确率均为 50%.

因此我们可知,后剪枝的拟合能力较强.

四. (20 points) 连续与缺失值

1. 考虑如表 4所示数据集,仅包含一个连续属性,请给出将该属性"数字"作为划分标准时的决策树划分结果。

属性	类别
3	正
4	负
6	负
9	正

Table 4: 连续属性数据集

2. 请阐述决策树如何处理训练时存在缺失值的情况,具体如下:考虑表 1的数据集,如果发生部分缺失,变成如表 5所示数据集(假设 X,Y,Z 只有 0 和 1 两种取值). 在这种情况下,请考虑如何处理数

X	Y	Z	f
1	0	-	1
-	1	0	0
0	-	0	0
0	1	1	1
-	1	0	0
0	0	-	0
1	-	0	0
_1	1	1	0

Table 5: 缺失数据集

据中的缺失值,并结合问题 二第 1 小问的答案进行对比,论述方法的特点以及是否有局限性。

3. 请阐述决策树如何处理测试时存在缺失值的情况,具体如下:对于问题 三训练出的决策树,考虑表 6所示的含有缺失值的测试集,输出其标签,并论述方法的特点以及是否有局限性。

编号	爱运动	爱学习	成绩高
6	是	-	
7	-	是	
8	否	-	
9	-	否	

Table 6: 缺失数据集

解:

五. (20 points) 多变量决策树

考虑如下包含 10 个样本的数据集, 每一列表示一个样本, 每个样本具有二个属性, 即 $\mathbf{x}_i = (x_{i1}; x_{i2})$.

编号	1	2	3	4	5	6	7	8	9	10
$\overline{A_1}$	24	53	23	25	32	52	22	43	52	48
A_2	40	52	25	77	48	110	38	44	27	65
标记	1	0	0	1	1	1	1	0	0	1

- 1. 计算根结点的熵;
- 2. 构建分类决策树, 描述分类规则和分类误差;
- 3. 根据 $\alpha x_1 + \beta x_2 1$,构建多变量决策树,描述树的深度以及 α 和 β 的值.

解: