Pattern Mining: Basic Concepts and Methods

- Basic Concepts
- Frequent Itemset Mining Methods Apriori Algorithm
- Frequent Itemset Mining Methods FPGrowth Algorithm
- Which Patterns Are Interesting? Pattern
 Evaluation Methods

How to Judge if a Rule/Pattern Is Interesting?

- Pattern-mining will generate a large set of patterns/rules
 - Not all the generated patterns/rules are interesting
- Objective Measures: These are quantitative metrics like
 - Support (how often a pattern occurs),
 - Confidence (how often items in a rule are found together), and
 - Correlation (the strength of the relationship between items in a rule).
- Subjective Measures: These are qualitative and depend on the user's perspective, needs, or prior knowledge. They include:
 - Relevance: Is the pattern relevant to the user's specific query or need?
 - **Unexpectedness**: Does the pattern reveal something surprising against the user's existing knowledge base?
 - Freshness: Is the pattern new information, or is it already known?
 - **Timeliness**: Is the pattern currently relevant and timely?

Misleading "Strong" Association Rules

- Sometimes strong rules can be misleading.
- Consider a store with 10,000 total transactions
 - 6000 included video games
 - 7500 included movies
 - 4000 included both video games and movies
- Consider the rule {video games} ⇒ {Movies}
- $Support = \frac{4000}{10000}$ (40%), $Confidence = \frac{4000}{6000}$ (66%)
- If the parameters are set as min_sup = 30% and min_conf = 60%, this rule is a strong rule.
- But this is misleading because P(movies) = 75% which is larger than 66%
- Therefore, computer games and movies are negatively associated.
 - because the purchase of one of these items actually decreases the likelihood of purchasing the other.

Adding Correlation to the mix

- We saw that support and confidence measures are insufficient
- A ⇒ B [support, confidence, correlation]
- A correlation rule is measured by support, confidence and the correlation between A and B
- Many different correlation measures
- We will mainly focus on two:
 - Lift
 - χ2

Limitation of the Support-Confidence Framework

Be careful!

- Are s and c interesting in association rules: "A \Rightarrow B" [s, c]?
- Example: Suppose one school may have the following statistics on # of students who may play basketball and/or eat cereal:

	play-basketball	not play-basketball	sum (row)
eat-cereal	400	350	750
not eat-cereal	200	50	250
sum(col.)	600	400	1000

2-way contingency table

- Association rule mining may generate the following:
 - play-basketball \Rightarrow eat-cereal [40%, 66.7%] (higher s & c)
- But this strong association rule is misleading: The overall % of students eating cereal is 75% > 66.7%, a more telling rule:
 - \neg play-basketball \Rightarrow eat-cereal [35%, 87.5%] (high s & c)

Interestingness Measure: Lift

- The occurrence of itemset A is independent of the occurrence of itemset B if $P(A \cup B) = P(A)P(B)$
- else, itemsets A and B are dependent and correlated

•
$$Lift(A,B) = \frac{c(A \rightarrow B)}{s(C)} = \frac{s(A,B)}{s(A) \times s(B)} = \frac{P(A \cup B)}{P(A)P(B)}$$

- □ Lift(B, C) may tell how B and C are correlated
 - \Box Lift(B, C) = 1: B and C are independent
 - > 1: positively correlated
 - < 1: negatively correlated</p>
- B and C are **negatively** correlated
- B and ¬C are **positively** correlated

Lift is more telling than s & c

	В	¬B	Σ_{row}
С	400	350	750
ΤС	200	50	250
$\Sigma_{col.}$	600	400	1000

$$lift(B,C) = \frac{400/1000}{600/1000 \times 750/1000} = 0.89$$

$$lift(B, \neg C) = \frac{200/1000}{600/1000 \times 250/1000} = 1.33$$

Interestingness Measure: χ^2

• Another measure to test correlated events: χ^2

$$\chi^2 = \sum \frac{(Observed - Expected)^2}{Expected}$$

For the table on the right,

c^2 –	$(400 - 450)^2$	$(350 - 300)^2$	$(200 - 150)^2$	$+\frac{(50-100)^2}{}=5$	55 56
C –	450	300	150	$-\frac{100}{100}$	<i>)))) (() (</i>

	В		В ¬В	
С	7400 (450)		400 (450) 350 (300)	
¬C	21	J (150)	50 (100)	250
Σ_{col}	600		400	1000

Expected value

Observed value

- □ Lookup χ^2 distribution table \rightarrow B, C are correlated
- \square Because the $\chi 2$ value is greater than 1,
 - and the observed value (400) < expected value (450), buying game and buying video are negatively correlated
- \square Thus, χ^2 is also more telling than the support-confidence framework

Lift and χ^2 : Are They Always Good Measures?

 Null transactions: Transactions that contain neither B nor C

- Let's examine the new dataset D
 - BC (100) is much rarer than B¬C (1000) and ¬BC (1000),
 but there are many ¬B¬C (100000)
 - Unlikely B & C will happen together!
- But, Lift(B, C) = 8.44 >> 1 (Lift shows B and C are strongly positively correlated!)
- χ^2 = 670: Observed(BC) >> expected value (11.85)
- Too many null transactions may "spoil the soup"!

	В	¬В	Σ_{row}
U	100	1000	1100
¬С	1000	100000	101000
$\Sigma_{\text{col.}}$	1100	101000	102100

null transactions

Contingency table with expected values added

	В	B ¬B	
С	100 (11.85)	1000	1100
¬С	1000 (988.15)	100000	101000
$\Sigma_{\text{col.}}$	1100	101000	102100

Interestingness Measures & Null-Invariance

- Null invariance means: The number of null transactions does not matter.
 Does not change the measure value.
- A few interestingness measures: Some are null invariant
- If you care about the null values (if huge imbalance?) use Null Invariant

Measure	Definition	Range	Null-Invariant?
$\chi^2(A,B)$	$\sum_{i,j} \frac{(e(a_i,b_j)-o(a_i,b_j))^2}{e(a_i,b_j)}$	$[0, \infty]$	No
Lift(A, B)	$\frac{s(A \cup B)}{s(A) \times s(B)}$	$[0, \infty]$	No
Allconf(A, B)	$\frac{s(A \cup B)}{max\{s(A), s(B)\}}$	[0, 1]	Yes
Jaccard(A, B)	$\frac{s(A \cup B)}{s(A) + s(B) - s(A \cup B)}$	[0, 1]	Yes
Cosine(A, B)	$\frac{s(A \cup B)}{\sqrt{s(A) \times s(B)}}$	[0, 1]	Yes
Kulczynski(A, B)	$\frac{1}{2} \left(\frac{s(A \cup B)}{s(A)} + \frac{s(A \cup B)}{s(B)} \right)$	[0, 1]	Yes
$\mathit{MaxConf}(A, B)$	$max\{\frac{s(A\cup B)}{s(A)}, \frac{s(A\cup B)}{s(B)}\}$	[0, 1]	Yes

Let
$$p = \frac{s(A \cup B)}{s(A)} = P(B|A)$$

$$q = \frac{s(A \cup B)}{s(B)} = P(A|B)$$

p, q are null invariant

Essentially min, max, mean variants of p, q

Null Invariance: An Important Property

- Why is null invariance crucial for the analysis of massive transaction data?
 - Many transactions may contain neither milk nor coffee!

milk vs. coffee contingency table

	milk	$\neg milk$	Σ_{row}
coffee	mc	$\neg mc$	c
$\neg coffee$	$m \neg c$	$\neg m \neg c$	$\neg c$
Σ_{col}	m	$\neg m$	Σ

- Lift and χ^2 are not null-invariant: not good to evaluate data that contain too many or too few null transactions!
- Many measures are not null-invariant!

Null-transactions w.r.t. m and c

Data set	mc	$\neg mc$	$m \neg c$	$m \neg c$	χ^2	Lift
D_1	10,000	1,000	1,000	100,000	90557	9.26
D_2	10,000	1,000	1,000	100	0	1
D_3	100	1,000	1,000	100,000	670	8.44
D_4	1,000	1,000	1,000	100,000	24740	25.75
D_5	1,000	100	10,000	100,000	8173	9.18
D_6	1,000	10	100,000	100,000	965	1.97

Comparison of Null-Invariant Measures

- Not all null-invariant measures are created equal
- Which one is better?
 - D₄—D₆ differentiate the null-invariant measures

2-variable contingency table

	milk	$\neg milk$	Σ_{row}
coffee	mc	$\neg mc$	c
$\neg coffee$	$m \neg c$	$\neg m \neg c$	$\neg c$
Σ_{col}	m	$\neg m$	Σ

All 5 are null-invariant

Data set	mc	$\neg mc$	$m \neg c$	$\neg m \neg c$	AllConf	Jaccard	Cosine	Kulc	MaxConf
D_1	10,000	1,000	1,000	100,000	0.91	0.83	0.91	0.91	0.91
D_2	10,000	1,000	1,000	100	0.91	0.83	0.91	0.91	0.91
D_3	100	1,000	1,000	100,000	0.09	0.05	0.09	0.09	0.09
D_4	1,000	1,000	1,000	100,000	0.5	0.33	0.5	0.5	0.5
D_5	1,000	100	10,000	100,000	0.09	0.09	0.29	0.5	0.91
D_6	1,000	10	100,000	100,000	0.01	0.01	0.10	0.5	0.99

Subtle: They disagree on those cases

Summary

- Basic Concepts
 - What Is Pattern Discovery? Why Is It Important?
 - Basic Concepts: Frequent Patterns and Association Rules
 - Compressed Representation: Closed Patterns and Max-Patterns
- Efficient Pattern Mining Methods
 - The Downward Closure Property of Frequent Patterns
 - The Apriori Algorithm
 - The FPGrowth Algorithm
 - Extensions or Improvements of Apriori
- Pattern Evaluation
 - Interestingness Measures in Pattern Mining
 - Interestingness Measures: Lift and χ^2
 - Null-Invariant Measures
 - Comparison of Interestingness Measures