Exercise 1

Consider a (univariate) lognormal random variable: $X \sim LogN(\mu, \sigma^2)$.

- a) Write a Python function that determines the value of the parameters μ and σ^2 from the expectation $\mathbb{E}\{X\}$ and the variance $\mathbb{V}\{X\}$.
 - b) Write a Python script in which you:
 - Use the function created in a) to determine the parameters μ and σ^2 such that $\mathbb{E}\{X\}=3$ and $\mathbb{V}\{X\}=5$.
 - Generate a large sample from the distribution of X with such parameters;
 - Plot the sample (do not join the observations, show them as dots);
 - Plot the histogram (suitably normalized) and superimpose the exact pdf for comparison;
 - Plot the empirical cdf and superimpose the exact cdf for comparison.

Note: display title, labels and legend in each plot.

Exercise 2

a) Given a sample $\{\epsilon_t\}_{t=1,\dots,\bar{t}}$ and a vector of probabilities $\{p_t\}_{t=1,\dots,\bar{t}}$ expressing the relative weights of the observations, the recursive routine fit locdisp mlfp outputs the maximum likelihood estimates of the location and dispersion parameters under the assumption of a multivariate Student t distribution with ν degrees of freedom.

Write a Python function that implements the routine, here written in pseudo-code

$$(\hat{\boldsymbol{\mu}}_{\boldsymbol{\varepsilon}}^{MLFP}, \hat{\boldsymbol{\sigma}}_{\boldsymbol{\varepsilon}}^{2MLFP}) \leftarrow fit_locdisp_mlfp(\{\boldsymbol{\epsilon}_t, p_t\}_{t=1,...,\bar{t}}, \nu)$$

$$0. \text{ Initialize } \begin{cases} \boldsymbol{\mu} \leftarrow \hat{\boldsymbol{\mu}}_{\boldsymbol{\varepsilon}}^{HFP} & (1) \\ \boldsymbol{\sigma}^2 \leftarrow \begin{cases} \frac{\nu-2}{\nu} \hat{\boldsymbol{\sigma}}_{\boldsymbol{\varepsilon}}^{2HFP} & \text{if } \nu > 2 \\ \hat{\boldsymbol{\sigma}}_{\boldsymbol{\varepsilon}}^{2HFP} & \text{otherwise} \end{cases} \end{cases}$$

$$1. \text{ Update weights and FP } \begin{cases} w_t \leftarrow \frac{\nu+\bar{t}}{\nu+(\boldsymbol{\epsilon}_t-\boldsymbol{\mu})'(\boldsymbol{\sigma}^2)^{-1}(\boldsymbol{\epsilon}_t-\boldsymbol{\mu})} \\ q_t \leftarrow \frac{p_t w_t}{\sum_{s=1}^t p_s w_s} \end{cases}, \quad t=1,\ldots,\bar{t}$$

$$2. \text{ Update output } \begin{cases} \boldsymbol{\mu} \leftarrow \sum_{t=1}^{\bar{t}} q_t \boldsymbol{\epsilon}_t \\ \boldsymbol{\sigma}^2 \leftarrow \sum_{t=1}^{\bar{t}} q_t (\boldsymbol{\epsilon}_t - \boldsymbol{\mu})(\boldsymbol{\epsilon}_t - \boldsymbol{\mu})' \end{cases}$$

$$3. \text{ If convergence, output } (\boldsymbol{\mu}, \boldsymbol{\sigma}^2); \text{ else go to 1}$$

where

- each ϵ_t is a $\bar{\imath} \times 1$ vector, each p_t is a scalar, ν is a positive integer;
- ullet the mean and covariance for the initialization (Step 0) are defined as

$$\hat{\boldsymbol{\mu}}_{\boldsymbol{\varepsilon}}^{HFP} \equiv \sum_{t=1}^{\bar{t}} p_t \boldsymbol{\epsilon}_t
\hat{\boldsymbol{\sigma}}_{\boldsymbol{\varepsilon}}^{2HFP} \equiv \sum_{t=1}^{\bar{t}} p_t (\boldsymbol{\epsilon}_t - \hat{\boldsymbol{\mu}}_{\boldsymbol{\varepsilon}}^{HFP}) (\boldsymbol{\epsilon}_t - \hat{\boldsymbol{\mu}}_{\boldsymbol{\varepsilon}}^{HFP})';$$
(2)

$$\hat{\boldsymbol{\sigma}}_{\boldsymbol{\varepsilon}}^{2HFP} \equiv \sum_{t=1}^{t} p_{t}(\boldsymbol{\epsilon}_{t} - \hat{\boldsymbol{\mu}}_{\boldsymbol{\varepsilon}}^{HFP})(\boldsymbol{\epsilon}_{t} - \hat{\boldsymbol{\mu}}_{\boldsymbol{\varepsilon}}^{HFP})'; \tag{2}$$

- convergence in the above routine occurs when the relative Euclidean norm $\|\tilde{\mu} \mu\|/\|\mu\|$ and the relative Frobenius norm $\|\tilde{\sigma}^2 - \sigma^2\|_F / \|\sigma^2\|_F$ between two subsequent updates are smaller than a given threshold (required as an additional input).
- b) To test the function, write a script that calls it with the following inputs:
- $\{\epsilon_t\}_{t=1,\dots,\bar{t}}$ is a sample of $\bar{t}=1000$ simulations from a standard bivariate normal distribution;
- $p_t = 1/\bar{t}$ for every t (observations are equally weighted);
- $\nu = 100$;
- convergence threshold = 10^{-9} .