Creating Optimal Model

Joshua Lympany, Haotian Sun

Goal of Assignment

Find a model that outputs the most amount of profit

• +1.5\$ for correct prediction 0

Predict customer wouldn't buy, and actually wouldn't have. Correctly send customer discount.

• -5\$ for false prediction 1

Predict customer wouldn't buy, but actually would have. Falsely send customer discount.

Maximize Precision (0) and Recall (1)

Precision more important, as nearly 5x more instances of prediction 0.

Preprocessing

- Drop features for various reasons (too few values, unmeaningful, no predictiveness, data type, ...)
- Created dummy variables
- Splitting training / test

Different Models

Classifiers for all

- Cross-Validation on <u>many</u> parameters for: xgBoost / RandomForest / KNN
- SVC

- Checked classification report on all variations
- Focus: Maximize Precision (0) and Recall (1)

The best model

- RandomForestClassifier
- Class_weight='balanced'
- max_depth=9, min_samples_split=12, min_samples_leaf=17, max_features=5, n_estimators=37, random_state=71

Without Class_weight='balanced'

	precision	recall	f1-score	support
0	0.82 0.00	1.00	0.90 0.00	5292 1194
accuracy macro avg weighted avg	0.41 0.67	0.50 0.82	0.82 0.45 0.73	6486 6486 6486

With Class_weight='balanced'

	precision	recall	f1-score	support
0	0.00	0 61	0.72	F2F <i>C</i>
0	0.86	0.61	0.72	5256
1	0.26	0.59	0.36	1230
accuracy			0.61	6486
macro avg	0.56	0.60	0.54	6486
weighted avg	0.75	0.61	0.65	6486

Model: xgboost

		precision	recall	f1-score	support
	0	0.85 0.25	0.62 0.53	0.72 0.34	5256 1230
	_	0.23	0.00	0.54	1250
accura	су			0.61	6486
macro av	vg	0.55	0.58	0.53	6486
weighted av	vg	0.74	0.61	0.65	6486

Global Interpretation: Feature importances

Global Interpretation: Permutation Importances

Global Interpretation: Partial Dependence Plots

Local interpretation: Waterfall plot of SHAP values for the second row of data points

Local interpretation: SHAP power diagram for data point with index 18518

Local interpretation

Global and Local Interpretation

Conclusion and Profit

• Calculation:

```
(Actual_amount_of_0s*Precision_0*1.5) + (Actual_amount_of_1s*(1-Recall_1)*(-5)
```

= **4289.01\$** (y_test)