Лабораторная работа #6

Задача об эпидемии. Вариант 11

Баулин Егор Александрович, учебная группа: НКНбд-01-18

Содержание

Цель работы	4
Выполнение лабораторной работы Теоретическое введение	5 5
Выводы	9

Список иллюстраций

0.1	Случай #1																		,	7
0.2	Случай #2																		,	8

Цель работы

- Построить графики изменения числа особей в каждой из трех групп по модели.
- Рассмотреть, как будет протекать эпидемия в разных случаях.

Выполнение лабораторной работы

Теоретическое введение

Предположим, что некая популяция, состоящая из N особей, (считаем, что популяция изолирована) подразделяется на три группы.

- S(t) восприимчивые к болезни, но пока здоровые особи
- I(t) это число инфицированных особей, которые также при этом являются распространителями инфекции
- R(t) это здоровые особи с иммунитетом к болезни.

До того, как число заболевших не превышает критического значения I^* считаем, что все больные изолированы и не заражают здоровых. Когда $I(t) > I^*$, тогда инфицирование способны заражать восприимчивых к болезни особей.

Таким образом, скорость изменения числа S(t) меняется по следующему закону:

$$\frac{\partial S}{\partial t} = \begin{cases} -\alpha S, \text{åñëè} I(t) > I^* \\ 0, \text{åñëè} I(t) \le I^* \end{cases}$$

Поскольку каждая восприимчивая к болезни особь, которая, в конце концов, заболевает, сама становится инфекционной, то скорость изменения числа инфекционных особей представляет разность за единицу времени между заразившимися и теми, кто уже болеет и лечится, т.е.:

$$\frac{\partial I}{\partial t} = \begin{cases} \alpha S - \beta I, \text{åñëè} I(t) > I^* \\ -\beta I, \text{åñëè} I(t) \le I^* \end{cases}$$

А скорость изменения выздоравливающих особей (при этом приобретающие иммунитет к болезни)

$$\frac{\partial R}{\partial t} = \beta I$$

Постоянные пропорциональности:

- α коэффициент заболеваемости
- β коэффициент выздоровления

Для того, чтобы решения соответствующих уравнений определялось однозначно, необходимо задать начальные условия. Считаем, что на начало эпидемии в момент времени t=0 нет особей с иммунитетом к болезни R(0)=0, а число инфицированных и восприимчивых к болезни особей I(0) и S(0) соответственно. Для анализа картины протекания эпидемии необходимо рассмотреть два случая: $I(0) \leq I^*$ и $I(0) > I^*$ Код на Python:

Динамика изменения числа людей в каждой из трех групп в случае, когда $I(0) \leq I^*$ с начальными условиями I(0)=116, R(0)=16, S(0)=17000. Коэффициенты $\alpha=0.2, \beta=0.1$. (рис. 1)

Рис. 0.1: Случай #1

Динамика изменения числа людей в каждой из трех групп в случае, когда $I(0)>I^*$ с начальными условиями I(0)=116, R(0)=16, S(0)=17000. Коэффициенты $\alpha=0.2, \beta=0.1$. (рис. 2)

Рис. 0.2: Случай #2

Выводы

- Построил графики изменения числа особей в каждой из трех групп по модели.
- Рассмотрел, как будет протекать эпидемия в разных случаях.