Formal Modelling of Communicating Systems

Jorge A. Pérez JBI University of Groningen

March 23, 2017

- ► The mCRL2 approach
- Process syntax / Contrast with CCS

The mCRL2 Approach

- ► mCRL2: "micro Common Representation Language 2" The "Dutch approach" to reactive, concurrent systems
- Axiomatic semantics (as opposed to the structured operational semantics of CCS)
- ► Extends Algebra of Communicating Processes (ACP) with data, time, and multi-actions
- ightharpoonup Logic-based verification: the modal μ -calculus with data and time
- ► Supported by a robust toolset: http://www.mcrl2.org

Actions

- ▶ Denoted *a*, *b*, *c*, . . . , *read*, *deliver* (as in CCS)
- ► Can be parametric on data e.g., read(7), write(inc, 2).
- ▶ As in CCS, most actions do not overlap in time...
- ...unless they are multi-actions, which occur at the same time.

Behavior

- ▶ Defined using LTS (as in CCS)
- ▶ It is useful to explicitly distinguish the starting and terminating states in an LTS:

$$A = (S, Act, \rightarrow, s, T)$$

▶ Trace and failure equivalences, in both strong and weak versions

Data Types

- ▶ Many built-in data types: Booleans, Naturals, and Reals, but also functions, lists, bags, sets, etc.
- ▶ Also supports user-defined types, following an equational treatment, based on constructors (elements), maps (operations on elements), and equations (rules)

Processes

- Building blocks for behavior, based upon multi-actions with data
- Operators combine behavior; axioms characterize their meaning
- Actions declared with their sort; they are atomic (no duration)

Multi-actions

- Collection of actions that occur at the same time
- ▶ Generated by the following syntax:

$$\alpha ::= \tau \mid \mathbf{a}(\mathbf{d}) \mid \alpha \mid \beta$$

where

- ightharpoonup au is the empty multi-action
- data parameters \vec{d} can be omitted in $a(\vec{d})$
- ► Examples:
 - error
 - error error error
 - $ightharpoonup \tau | error$
 - error|send(true)
- ▶ Operations: $\alpha \sqsubseteq \beta$ (ordering), $\alpha \setminus \beta$ (removes actions in β from α), $\underline{\alpha}$ (removes data from α)

Sequential Composition, Choices, Conditionals

- ▶ An action *a* is a process that does *a* and then terminates
- ▶ Given processes p, q process $p \cdot q$ executes q once p computes This way, e.g., $a \cdot b \cdot c$ is a process (NB. no "zero" process)
- ▶ Choices (+) are as in CCS, whereas sums $\sum_{d:D} p(d)$ generalize choices by considering a potentially infinite domain D
- ▶ An explicit form of deadlock, denoted δ , which prevents processes to terminate
- ► This way, e.g., choice process a + b can terminate, whereas $a \cdot \delta + b \cdot \delta$ cannot terminate. Process $a + b \cdot \delta$ could terminate.
- ► Conditionals $c \rightarrow p \diamond q$ are as expected (c as a Boolean condition based on data)

Recursive Processes

Infinite behavior is handled using declarations, as in CCS.

This is easily seen in the following toy mCRL2 specification:

```
act set, alarm, reset;

proc P = set.Q;

Q = reset.P + alarm.Q;

init P;
```

This way, all actions and process variables are declared before use; the initial process behavior is stipulated under **init**.

Parallel Processes

- ▶ Parallel composition of processes p and q is denoted $p \parallel q$
- ▶ For conceptual and technical reasons, in mCRL2 process $p \parallel q$ is "decomposed" using two auxiliary operators:
 - ▶ In p | | q the first action must come from p
 - ▶ In $p \mid q$ the first action must occur simultaneously in p and q
- ▶ This decomposition is formalized by the axiom:

$$x \parallel y = x \lfloor y + y \rfloor x + x | y$$

(In axioms, variables such as x, y stand for processes, and allow their manipulation)

▶ Notice that a|b denotes both a multi-action AND a synchronization of two processes consisting of a single action

Process Communication

- ▶ Operator $\Gamma_C(p)$ takes some actions out of a multi-action and replaces them with a single action
- ▶ In $\Gamma_C(p)$, C is a set of allowed communications of the form

$$|a_1|\cdots|a_n\to c$$
 $(n>1)$

- Equality of data is relevant. Examples:
 - $\Gamma_{\{a|b\to c\}}(a(0)|b(0)) = c(0)$
 - $\Gamma_{\{a|b\to c\}}(a(0)|b(0)|d(0)) = c(0)|d(0)$
 - $\Gamma_{\{a|b\to c\}}(a(0)|b(1)) = a(0)|b(1)$
- Function $\gamma_C(\alpha)$ applies the communication described by C to multi-action α . Examples:
 - $\gamma_{\{a|b\rightarrow c\}}(a|a|b|c) = a|c|c$
- ▶ In C an action cannot occur in two LHSs of an allowed communication, nor a RHS can occur in an LHS.

Allowed Actions

▶ Operator $\nabla_V(p)$ says which multi-actions from p are allowed to occur, with respect to the multi-actions in V. Data is ignored. Example:

$$abla_{\{a,a|b\}}(a|b+a+b)=a+a|b$$

► The empty multi-action τ cannot occur in V. Some axioms:

$$\nabla_{V}(\alpha) = \alpha \quad \text{if } \underline{\alpha} \in V \cup \{\tau\}$$

$$\nabla_{V}(\alpha) = \delta \quad \text{if } \underline{\alpha} \notin V \cup \{\tau\}$$

$$\nabla_{V}(x+y) = \nabla_{V}(x) + \nabla_{V}(y)$$

- Question: What would be the LTSs of
 - \blacktriangleright $(a \cdot b \parallel c \cdot d)$
 - $\Gamma_{\{a|c\rightarrow e,b|d\rightarrow f\}}(a\cdot b\parallel c\cdot d)$

Blocking and Renaming

- ▶ The operator $\partial_B(p)$ has the opposite effect of $\nabla_V(p)$. The set B contains action names that are not allowed.
- ► A whole multi-action is blocked if one of its actions is in *B*. Example:

$$\partial_{\{b\}}(a(0)|b(true,5)|c)=a(0)$$

► Some axioms:

$$\partial_B(\tau) = \tau$$
 $\partial_B(a(d)) = a(d) \text{ if } a \notin B$
 $\partial_B(a(d)) = \delta \text{ if } a \in B$
 $\partial_B(\alpha|\beta) = \partial_B(\alpha)|\partial_B(\beta)$

► The operator $\rho_R(p)$, where set R contains renamings of the form $a \to b$, replaces every occurrence of a in p by b.

Hiding (and Prehiding)

- ▶ The hiding operator τ_I removes action names in I from multi-actions. Examples:
 - $\qquad \qquad \tau_{\{a\}}(a) = \tau$
 - $\qquad \qquad \tau_{\{a\}}(a|b) = b$
- ▶ The prehiding operator Υ_U postpones hiding of actions in U, using a special visible action int.
- ▶ Hiding and prehiding are therefore related:

$$\tau_{I \cup \{int\}}(x) = \tau_{\{int\}}(\Upsilon_I(x))$$