Machine Predictive Maintenance

Failure Classification

• • •

December, 2022

Project objective:

Deliver a product to Northrup

Grumman to predict machine failure

Data

Northrup Grumman Machine Failure

Data

Northrup Grumman Machine Failure

- Contains a data point for each product run through the machine
- 10000 points in dataset accounting for about 76 days of machine time
- Includes information on air temp, process temp, rotational speed, torque, tool wear, and failure

Range

Heat Dissipation, Power Failure, and Overstrain Failure are most common failures

Relationships

Grouping between features show correlation between type of recorded data and type of failure

Relationships

Grouping between features show correlation between type of recorded data and type of failure

Relationships

RESULTS

Final Model has the most incorrect predictions in no failure

98% Accuracy 82% Precision

CONCLUSIONS

- Avoid the following to prevent failure:
 - Torque (power failure): less than 20 Nm or more than 58 Nm
 - Tool Wear (tool wear failure): more than 190 minutes of use
 - Rotational speed (overstrain and heat dissipation failure): less than 1200 rpm
- Final model 98% accurate with 82% precision

FUTURE WORK

1. Expand Dataset to confirm results

2. Predict Maintenance for other machines in the facility

THANK YOU