Dimensions in Clustering

Clustering: Dimensions (1)

Where are the three clusters?

Clustering: Dimensions (2)

Simple assignment based on a 1D distribution

Clustering: Dimensions (3)

Simple assignment based on a 1D distribution

Clustering: Dimensions (4)

What if this was not a 1D distribution?

Clustering: Dimensions (5)

The distribution is in 2D. Some points differ in the 2nd D

Clustering: Dimensions (6)

If the difference is minor, we still get the same clusters

Clustering: Dimensions (7)

The difference could be significant

Clustering: Dimensions (8)

A big difference in the 2nd D can lead to different clusters

Clustering: Dimensions (9)

We can introduce another D by color coding. This is a Boolean Dimension

Clustering: Dimensions (10)

Create a 3rd
Dimansion

Clustering: Dimensions (11)

Create a 3rd
Dimansion

Clustering: Dimensions (12)

Where are the 3 clusters now?

Clustering: Dimensions (13)

If the 3rd is small, then the clustering is the same as in 2D

Clustering: Dimensions (14)

If the 3rd is big, then the clustering differs from 2D

Dimensions in Clustering

Break

HTTP://SCIENTIFICMARKETER.COM

COPYRIGHT @ NICHOLAS J RADOLIFFE 2007. ALL RIGHTS RESERVED. *WITH APOLOGIES TO MR SPOCK & STAR TREK.

Normalization in Clustering

Normalization of a linear relationship (1)

Normalization of a linear relationship (2)

Normalization of a linear relationship (3)

Normalization of a linear relationship (4)

X	Υ
0	10
1	0
2	40
3	50
4	40
5	50
6	40
7	50
8	90
9	100

X	Υ
0	0.1
0.1	0
0.2	0.4
0.3	0.5
0.4	0.4
0.5	0.5
0.6	0.4
0.7	0.5
0.8	0.9
0.9	1
1	0.8

Normalization of a linear relationship (5)

Y = 10 +

X	Υ
0	0.1
0.1	0
0.2	0.4
0.3	0.5
0.4	0.4
0.5	0.5
0.6	0.4
0.7	0.5
0.8	0.9
0.9	1
1	0.8

Normalization of a linear relationship (6)

Normalization of a linear relationship (7)

Normalize

Normalize Input $X = 2 \rightarrow X' = 0.2$

Predict Output X' = 0.2 -> Y' = 0.26

Denormalize Output Y' = 0.26 -> Y = 26

Normalization of a linear relationship (8)

Predict Output X' = 0.2 -> Y' = 0.26

Denormalize Output Y' = 0.26 -> Y = 26

$$Y = 0.1 + 0.8 * X$$

Prediction in Original Space: X = 2 -> Y = 26

Normalization of a non-linear relationship (1)

Original data in 2D: Find 2 clusters

Normalization of a non-linear relationship (2)

Found 2 Clusters

Normalization of a non-linear relationship (3)

Clusters segment the image

Normalization of a non-linear relationship (4)

Non-normalized 2D data

Normalization of a non-linear relationship (5)

Non-normalized 2D data

Normalize the data: Search for 2 Clusters

Normalization of a non-linear relationship (6)

Non-normalized 2D data

Found 2 Clusters in the normalized data

Normalization of a non-linear relationship (6)

Non-normalized 2D data

Clusters Segment the Image

Normalization of a non-linear relationship (7)

Clustering before normalization

Clustering after normalization

Normalization of Linear and Non-Linear Outcomes

- Non-linear (Normalization can change outcome):
 - K-Means
 - Neural Net
- Linear (Normalization should not change outcome):
 - Logistic Regression
 - Linear Regression
 - Mixture of Gaussians
- https://en.wikipedia.org/wiki/Linearity
- https://en.wikipedia.org/wiki/Linear function

Normalization in Clustering

In-Class Exercise

Normalization in K-Means

- Download L07-3-KMeansNorm_Incomplete.py from Canvas and load into Spyder.
- Run the script: Some results will be wrong
- Add code to normalize each input dimension
- Add code to de-normalize the output
- Specifically, replace all lines that say: "Replace this line with code".
- Run the script: Results should be correct

In-Class Exercise

- KMeansNorm_Incomplete.py
 - a. Get mean and standard deviation of point dimensions. Use the np.mean and np.std functions
 - b. Z-Normalize points and centroid guesses based on distribution of points
 - c. Let the KMeans function determine the labels and the centroids in normalized space
 - d. De-normalize the centroids
 - e. Return the labels and the de-normalized centroids
- 2. Answer the following questions
 - a) What is the single most obvious difference between the distributions of the first and second dimensions?
 - b) Does separation of clusters in Test 1 occur along the x, y, or both dimensions? Why?
 - c) Does separation of clusters in Test 2 occur along the x, y, or both dimensions? Why?
 - d) Does separation of clusters in Test 3 occur along the x, y, or both dimensions? Why?
 - e) Does separation of clusters in Test 4 occur along the x, y, or both dimensions? Why?
- 3. Why is normalization important in K-means clustering?
- 4. How do you encode categorical data in a K-means clustering?
- 5. Why is clustering un-supervised learning as opposed to supervised learning?