Spam Classifier – Full Evaluation

- 1. Project Objective
- **Goal:** Build a machine learning model to classify SMS/email messages as **spam** (unwanted) or **ham** (normal).
- Type of problem: Text Classification.
- **Key ML concepts:** Text preprocessing, TF-IDF, Naive Bayes classifier.
- 2. Dataset
- **Source:** spam.csv located at D:\Documents\ML 100 days\Proj-4\spam.csv.
- Columns used:
 - label: Spam or Ham
 - message: The text of the SMS/email

Exploration:

- Checked dataset shape, count of spam vs ham messages.
- Spam messages are fewer than ham messages, which is typical in realworld datasets.

3. Text Preprocessing

Machines cannot understand raw text. We need to convert it into numbers.

Steps we performed:

- 1. **Tokenization:** Split messages into words.
- 2. **Stopword Removal:** Removed common words like "the", "is", "at" that carry little meaning.

3. TF-IDF (Term Frequency – Inverse Document Frequency):

- Converts text to numeric vectors.
- Words appearing frequently in one message but not across all messages are weighted higher.
- Example: "free" in spam → higher weight, "the" → low weight.

Code used:

from sklearn.feature extraction.text import TfidfVectorizer

```
vectorizer = TfidfVectorizer(stop words='english')
```

X train tfidf = vectorizer.fit transform(X train)

X_test_tfidf = vectorizer.transform(X_test)

4. Data Visualization

- WordCloud to understand frequent words:
 - Spam WordCloud: Shows words like "free, win, offer"
 - Ham WordCloud: Shows words like "ok, call, meeting"

Code used:

from wordcloud import WordCloud

import matplotlib.pyplot as plt

```
spam_wc = WordCloud(width=600, height=400, background_color="black").generate("
".join(spam_messages))
```

plt.imshow(spam_wc, interpolation="bilinear")

Visualization helps us **intuitively understand patterns** in spam vs ham messages.

- 5. Model Training
- Algorithm: Multinomial Naive Bayes
- Why Naive Bayes?
 - Simple and fast for text classification.
 - Works well with high-dimensional features (many words).
 - Assumes independence between words (naive assumption).

Code used:

from sklearn.naive_bayes import MultinomialNB

```
model = MultinomialNB()
model.fit(X_train_tfidf, y_train)
y pred = model.predict(X test tfidf)
```

- 6. Model Evaluation
- Accuracy: ~97–99%
- Confusion Matrix:
 - True Positive (TP): Correctly predicted spam
 - True Negative (TN): Correctly predicted ham
 - False Positive (FP): Ham predicted as spam
 - False Negative (FN): Spam predicted as ham

Code used:

from sklearn.metrics import accuracy score, confusion matrix, classification report

```
print("Accuracy:", accuracy_score(y_test, y_pred))
print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred))
print("Classification Report:\n", classification_report(y_test, y_pred))
```

Interpretation:

- High accuracy shows the model can reliably distinguish spam from ham.
- Precision & recall can indicate if spam detection is more important than avoiding false alarms.

• 7. Testing Custom Messages

You can test the model with new messages:

```
test_messages = [

"Congratulations! You won a free ticket to Bahamas. Claim now!",

"Hi John, are we still meeting for lunch tomorrow?"
]
```

• Output:

pred = model.predict(test tfidf)

o First message → Spam

test tfidf = vectorizer.transform(test messages)

Second message → Ham

This demonstrates **real-world usage** of the classifier.

• 8. Summary & Key Takeaways

• Theory Applied:

- o Text preprocessing, TF-IDF, Naive Bayes probability theory.
- o Understanding of spam patterns through visualization.

Skills Practiced:

- Pandas for data handling
- Scikit-learn for ML models
- Matplotlib & WordCloud for visualization

Outcome:

- o Fully functional spam detection model.
- o Can predict new messages with high accuracy.
- Clear understanding of preprocessing, feature extraction, and model evaluation.