

图 7-1 缓存可以改善由有限广域带宽造成的网络瓶颈

表7-1 带宽造成的传输时延,理想化情况(以秒为时间单位)

	大型HTML (15KB)	JPEG (40KB)	大型JPEG (150KB)	大型文件 (5MB)
拨号 modem(56kbit/s)	2.19	5.85	21.94	748.98
DSL (256Kbit/s)	0.48	1.28	4.80	163.84
T1 (1.4Mbit/s)	0.09	0.23	0.85	29.13
慢速以太网(10Mbit/s)	0.01	0.03	0.12	4.19
DS3 (45Mbit/s)	0.00	0.01	0.03	0.93
快速以太网(100Mbit/s)	0.00	0.00	0.01	0.42

162

7.3 瞬间拥塞

缓存在破坏瞬间拥塞(Flash Crowds)时显得非常重要。突发事件(比如爆炸性新闻、批量 E-mail 公告,或者某个名人事件)使很多人几乎同时去访问一个 Web 文档时,就会出现瞬间拥塞(参见图 7-2)。由此造成的过多流量峰值可能会使网络和 Web 服务器产生灾难性的崩溃。

1998年9月11日,详细描述 Kenneth Starr 对美国总统克林顿调查情况的 "Starr 报告"发布到因特网上去的时候,美国众议院的 Web 服务器每小时收到了超过三百万次的请求,是其平均服务器负荷的 50 倍。据报道,新闻站点 CNN.com 的服务器每秒钟平均会收到超过 50 000 次的请求。