Serie 5

Philipp Stassen, Felix Jäger, Lisa Krebber

16. Mai 2018

Aufgabe 15

(1) Sei S eine Sprache und Φ eine Menge von S-Sätzen, die endliche Modelle besitzt. Behauptung: Die Klasse aller S-Strukturen $\mathfrak A$ mit $\mathfrak A \models \Phi$ ist genau dann axiomatisierbar, wenn eine $N \in \mathbb{N}$ existiert, sodass die Trägermenge jeder S-Struktur \mathfrak{A} mit $\mathfrak{A} \models \Phi$ höchstens N Elemente enthält.

Beweis. " \Leftarrow " Man fügt Φ einen Satz hinzu, der ausdrückt, dass es höchstens N verschiedene Variablen gibt. Es lässt sich formulieren, dass es nur n verschiedene Variablen gibt:

$$\exists v_1 \,\exists v_2 \dots \exists v_n : \bigwedge_{\substack{i=1,j=1\\i < j}}^n \neg (v_i \equiv v_j) \tag{1}$$

$$\forall x: \bigvee_{i=1}^{n} x \equiv v_i \tag{2}$$

Fügt man diese Sätze für alle $n \leq N$ nun per Disjunktion zusammen, erhält man einen langen Satz, der vereint mit Φ die Modell Klasse axiomatisiert.

- " \Longrightarrow " Angenommen kein solches N existiert und die Klasse der Modelle, die Φ erfüllen und endlich sind, ist axiomatiersierbar durch Φ' , dann gibt es zu jedem $n \in \mathbb{N}$ Modelle $\mathcal{M}_n \models \Phi'$ mit $|\mathcal{M}(\forall)| = n$. Aus Theorem 71 folgt nun, dass Φ' auch ein unendliches Modell besitzt. Dies widerspricht der Annahme.
- (2) Es sei φ ein S_{Gr} -Satz und Φ_{Gr} die üblichen Gruppen Axiome. Behauptung: Gilt φ für jede unendliche Gruppe, dann existiert ein N, sodass φ für jede Gruppe mit mindestens N Elementen gilt.

Beweis. Wir definieren

$$\Phi' = \Phi \cup \bigcup_{n \in \mathbb{N}} \{ \psi_{\geq n} \} \text{ mit}$$
 (3)

$$\Phi' = \Phi \cup \bigcup_{n \in \mathbb{N}} \{ \psi_{\geq n} \} \text{ mit}$$

$$\psi_{\geq n} = \exists v_1 \dots \exists v_n : \bigwedge_{i < j < n} \neg (v_i \equiv v_j).$$

$$(4)$$

Da φ für jede unendliche Gruppe gilt, d.h. $\mathcal{M} \vDash \varphi$ für alle $\mathcal{M} \in \operatorname{Mod}_{S_{Gr}}(\Phi')$, folgt, dass $\Phi' \vDash \varphi$. Nach dem Kompaktheitssatz existiert nun eine endliche Teilmenge $\Phi_0 \subset \Phi'$, sodass $\Phi_0 \vDash \varphi$. Wähle n_0 sodass $\Phi_0 \subseteq \Phi' \cup \bigcup_{n < n_0} \{\psi_{\geq n}\}$. Nun ist jedes Modell $\mathcal{M} \in \operatorname{Mod}_{S_{Gr}}(\Phi_0)$ ein Modell von φ und eine Gruppe mit mindestens $n_0 := N$ Elementen.

Aufgabe 17

Es seien Φ die Körperaxiome, K_0 ein Körper und S_{K_0} die erweiterte Sprache aus Aufgabe 16. Wir definieren

$$\Phi_0 := \Phi \cup \bigcup_{n>0} \{ \forall a_1 \dots \forall a_n : \exists x : \sum_{i=0}^n a_i x^i \equiv 0 \}.$$
 (5)

Der Satz von Kronecker sagt nun, dass jede endliche Teilmenge $\Phi_0 \subseteq \Phi'$ erfüllbar ist, da wir in diesem Fall ein Modell $\mathfrak A$ haben, sodass $K_0 \hookrightarrow \mathfrak A$ und die (endlich vielen) Polynome dort eine Nullstelle besitzen.

Nun folgt aus dem Kompaktheitssatz, dass Φ' ebenfalls erfüllbar ist. Sei K_1 so, dass $K_0 \hookrightarrow K_1$ und $K_1 \vDash \Phi'$. Wir iterieren dieses Verfahren, indem wir nun die Sprache $S_{K_{i+1}}$ und die Formelmenge

$$\Phi_{i+1} := \Phi_i \cup \bigcup_{n>0} \{ \forall a_1 ... \, \forall a_n : \, \exists x : \sum_{i=0}^n a_i x^i \equiv 0 \}$$
 (6)

(evtl. muss man die Variablen geschickter indizieren...) betrachten. Daraus erhalten wir eine Kette $\langle K_n | n \in \mathbb{N} \rangle$, sodass $K_n \hookrightarrow K_{n+1}$ und $K_{n+1} \models \Phi_n$.

Wir können nun $K := \bigcup_{n \in \mathbb{N}} K_n$ definieren. Hier ist $K_n \subset K_{n+1}$ als Teilmenge aufgefasst, indem K_n mit seinem Bild unter der Einbettung $K_n \hookrightarrow K_{n+1}$ identifiziert wird. (Vielleicht könnte man auch stattdessen das Tensorprodukt der Folge betrachten und spart sich dann diese Schummelei...). K ist nun ein algebraisch abgeschlossener Körper und $K_0 \hookrightarrow K$.