Теорема Виета

Теорема Виета: Пусть многочлен $a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$ имеет корни x_1, x_2, \ldots, x_n . Тогда:

$$x_{1} + x_{2} + \dots + x_{n} = -\frac{a_{n-1}}{a_{n}},$$

$$x_{1}x_{2} + x_{1}x_{3} + \dots + x_{n-1}x_{n} = \frac{a_{n-2}}{a_{n}},$$

$$\vdots$$

$$\sum_{1 \leq i_{1} < i_{2} < \dots < i_{k} \leq n} x_{i_{1}}x_{i_{2}} \dots x_{i_{k}} = (-1)^{k} \frac{a_{n-k}}{a_{n}},$$

$$\vdots$$

$$x_{1}x_{2} \dots x_{n} = (-1)^{n} \frac{a_{0}}{a_{n}}.$$

- Пусть x_1, x_2, x_3 корни уравнения $x^3 2x^2 + x + 1 = 0$. Составьте кубическое уравнение, корнями которого являются числа $\frac{1}{x_1^2}, \frac{1}{x_2^2}, \frac{1}{x_3^2}$.
- $\boxed{2}$ У многочлена с целыми коэффициентами $x^3 + px + q$ имеется три различных корня. Докажите, что сумма кубов этих корней есть целое число, кратное трём.
- |3| Известно, что a+b+c=d, и что

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{1}{d}.$$

Докажите, что по меньшей мере одно из чисел a, b, c равно d.

[4] Даны действительные числа $a_1 \leqslant a_2 \leqslant a_3$ и $b_1 \leqslant b_2 \leqslant b_3$, такие что

$$a_1 + a_2 + a_3 = b_1 + b_2 + b_3,$$

 $a_1a_2 + a_2a_3 + a_1a_3 = b_1b_2 + b_2b_3 + b_1b_3.$

Докажите, что если $a_1 \leq b_1$, то $a_3 \leq b_3$.

- [5] На доске написано несколько приведённых многочленов 37-й степени, все коэффициенты которых неотрицательны. Разрешается выбрать любые два выписанных многочлена f и g и заменить их на такие два приведённых многочлена 37-й степени f_1 и g_1 , что $f+g=f_1+g_1$ или $fg=f_1g_1$. Докажите, что после применения любого конечного числа таких операций не может оказаться, что каждый многочлен на доске имеет 37 различных положительных корней.
- [6] Натуральные числа a, b, c, d, e, f таковы, что число S = a + b + c + d + e + f делит числа abc + def и ab + bc + ca de ef df. Докажите, что S составное.