DÉTERMINANTS, VALEURS PROPRES ET DIAGONALISATION

1. DÉTERMINANTS

1.1. Différentes définitions

Soit $A \in M_n(\mathbf{R})$ avec $A = (a_{i,j})_{1 \le i,j \le n}$

DÉFINITION 1.1.0.1 (Déterminant). —

On définit en premier lieu :

$$\det A = \sum_{w \in S_n} \varepsilon(w) a_{w(i),1} \cdot a_{w(2),2} \cdot \ldots \cdot a_{w(n),n}.$$

C'est la formule de CRAMER.

Définition 1.1.0.2. —

Une seconde définition possible :

Pour tous $i,j \in \{1,\ldots,n\}$, soit $A_{i,j} \in M_{n-1}(\mathbf{R})$ la matrice (extraite) obtenue en enlevant la i-ième ligne et la j-ième colonne de A.

On a alors:
$$\det' A = a_{1,1} \cdot \det'(A_{1,1}) - a_{1,2} \cdot \det'(A_{1,2}) + \ldots + (-1)^{n-1} a_{1,n} \cdot \det'(A_{1,n}) = \sum_{i=1}^{n} (-1)^{i+1} a_{1,i} \cdot \det'(A_{1,i})$$

Exemple. — Prenons:

$$A = \begin{pmatrix} 2 & 1 & -1 \\ 0 & 2 & 1 \\ 4 & -1 & 0 \end{pmatrix}.$$

On a:

$$A_{1,1} = \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix} \; ; \; A_{1,2} = \begin{pmatrix} 0 & 1 \\ 4 & 0 \end{pmatrix} .$$

Ce qui donne avec la seconde définition:

$$\det A = 2 \det \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix} - \det \begin{pmatrix} 0 & 1 \\ 4 & 0 \end{pmatrix} - \det \begin{pmatrix} 0 & 2 \\ 4 & -1 \end{pmatrix}.$$

Exemple 2. — On vérifie que les deux définitions coïncident :

$$\det\begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{pmatrix} = a_{1,1}a_{2,2} - a_{2,1}a_{1,2}.$$

$$\det \begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{pmatrix} = a_{1,1} \det(a_{2,2}) - a_{1,2} \det(a_{2,1}) = a_{1,1} a_{2,2} - a_{2,1} a_{1,2}.$$

Remarque. — Soient E un R-espace vectoriel de dimension n et $B = (e_1, \ldots, e_n)$ une base de E. Soit $(u_1, u_2, \dots, u_n) \in E^n$ un n-uplet de vecteurs de E. Pour tout j, on pose :

$$u_j = \sum_{i=1}^n a_{i,j} \cdot e_i \ a_{i,j} \in \mathbf{R}.$$

On appelle déterminant dans la base B de (u_1, \ldots, u_n) le réel :

$$\det_B(u_1, u_2, \dots, u_n) = \det(a_{i,j}).$$

Exemple. — Pour n = 2. On prend :

$$u_1 = 2e_1 + 3e_2,$$

$$u_2 = -e_1 + 6e_2.$$

On a alors:

$$\det_{B}(u_{1}, u_{2}) = \det\begin{pmatrix} 2 & -1\\ 3 & 6 \end{pmatrix} = 15.$$

Remarque. — Si $u_j = e_j$ pour tout $j \in \{1, ..., n\}$ alors $\det_B(e_1, ..., e_n) = \det(I_d) = 1$.

Proposition 1.1.0.1. —

On a les énoncés :

1. pour tout
$$w \in S_n$$
:
$$\det_B(u_{w(1)}, u_{w(2)}, \dots, u_{w(n)}) = \varepsilon(w) \det_B(u_1, u_2, \dots, u_n);$$
2. on en déduit que le déterminant change de signe si on échange deux colonnes;

- 3. si pour $i \neq j$ on a $u_i = u_j$ alors le déterminant est nul (puisque négatif et positif simultanément).

DÉMONSTRATION 1.1.0.1. —

Il suffit de montrer le premier point.

On sait que S_n est engendré par les transpositions. On suppose donc que $w \in S_n$ est une transposition.

En fait, S_n est engendré par les transpositions simples, i.e. les transpositions de la forme (k, k + 1) avec $1 \le k < n$. (1§)

On suppose donc que w est de la forme (k, k+1). Soit A la matrice (u_1, u_2, \ldots, u_n) de ces n vecteurs dans les coordonnées de la base B. Soit A' la matrice obtenue en permutant les colonnes k et k+1 de A. Il faut donc vérifier que :

$$\det A' = \varepsilon(w) \det A = -\det A.$$

On calcule à gauche et à droite :

$$\det A = \sum_{j=1}^{n} (-1)^{j+1} a_{1,j} \det(A_{1,j}),$$
$$\det A' = \sum_{j=1}^{n} (-1)^{j+1} a'_{1,j} \det(A'_{1,j}).$$

- Pour $j \neq k, k+1$ on a $a'_{1,j} = a_{1,j}$ et $A'_{1,j}$ est obtenue en échangeant les colonnes $k \text{ et } k+1 \text{ de } A_{1,j}$
- Pour j = k on a $a'_{1,k} = a_{1,k+1}$ et donc $A'_{1,k} = A_{1,k+1}$. Pour j = k+1 on a $a'_{1,k+1} = a_{1,k}$ et donc $A'_{1,k+1} = A_{1,k}$.

$$\det A' = \sum_{j \neq k, k+1} (-1)^{j+1} \det(A'_{i,j})^{(2\S)} + (-1)^{k+1} a'_{1,k} \det(A'_{1,k}) + (-1)^k a'_{1,k+1} \det(A'_{1,k+1}),$$

$$\det A' = \sum_{j \neq k, k+1} (-1)^{j+1} (-\det(A_{i,j})) + (-1)^{k+1} a_{1,k+1} (-\det(A_{1,k+1})) + (-1)^k a_{1,k} (-\det(A_{1,k})),$$

$$\det A' = -\det A.$$

1.2. Formes n-linéaires alternées

Définition 1.2.0.3 (Forme *n*-linéaire). — Soit E un R-espace vectoriel de dimension $n \geq 1$. Une forme n-linéaire sur E est une application $\varphi: E^n \to \mathbf{R}$ qui est linéaire sur chaque composante.

Proposition 1.2.0.2. —

Soit B une base de E avec dim E = n.

$$\det_{B} : \begin{cases} E^{n} \to \mathbf{R} \\ (u_{1}, \dots, u_{n}) \mapsto \det_{B}(u_{1}, \dots, u_{n}) \end{cases}$$

est une forme n-linéaire.

^{18.} En effet, toute transposition est un produit de transpositions simples par une conjugaison adaptée : on « renomme » les éléments.

^{2§.} Par récurrence sur n on a $det(A'_{i,j}) = -det(A_{i,j})$.

DÉMONSTRATION 1.2.0.2. —

On pose:

$$A = \begin{pmatrix} a_{1,1} & \dots & a_{1,k-1} & aa'_{1,k} + ba''_{1,k} & a_{1,k+1} & \dots & a_{1,n} \\ a_{2,1} & \dots & a_{2,k-1} & aa'_{2,k} + ba''_{2,k} & a_{2,k+1} & \dots & a_{2,n} \\ \vdots & & \vdots & & \vdots & & \vdots \end{pmatrix}$$

$$A' = \begin{pmatrix} a_{1,1} & \dots & a_{1,k-1} & a'_{1,k} & a_{1,k+1} & \dots & a_{1,n} \\ a_{2,1} & \dots & a_{2,k-1} & a'_{2,k} & a_{2,k+1} & \dots & a_{2,n} \\ \vdots & & \vdots & & \vdots & & \vdots \end{pmatrix}$$

$$A'' = \begin{pmatrix} a_{1,1} & \dots & a_{1,k-1} & a''_{1,k} & a_{1,k+1} & \dots & a_{1,n} \\ a_{2,1} & \dots & a_{2,k-1} & a''_{2,k} & a_{2,k+1} & \dots & a_{2,n} \\ \vdots & & \vdots & & \vdots & & \vdots \end{pmatrix}$$

On veut montrer:

$$\det A = a \det A' + b \det A''.$$

On calcule:

$$\det A = \sum_{j \neq k} (-1)^{j+1} a_{1,j} \det(A_{i,j}) + (-1)^{k+1} (aa'_{1,k} + ba''_{1,k}) \det(A_{1,k}),$$

$$\det A' = \sum_{j \neq k} (-1)^{j+1} a_{1,j} \det(A'_{i,j}) + (-1)^{k+1} a'_{1,k} \det(A_{1,k}),$$

$$\det A'' = \sum_{j \neq k} (-1)^{j+1} a_{1,j} \det(A''_{i,j}) + (-1)^{k+1} a''_{1,k} \det(A_{1,k})$$

On doit alors montrer:

$$\forall j \neq k, \det A_{i,j} = a \det(A'_{i,j}) + b \det(A''_{i,j})$$

ce qui est démontré par hypothèse de récurrence.

DÉFINITION 1.2.0.4 (Forme *n*-linéaire alternée). — Soit $\varphi: E^n \to \mathbf{R}$ une forme *n*-linéaire alternée avec E un \mathbf{R} -espace vectoriel.

 φ est une forme n-linéaire alternée si on a :

$$\varphi(u_1, u_2, \dots, u_n) = 0$$

dès que deux composantes u_i, u_j avec $i \neq j$ coïncident.

Remarque. — On en déduit que le déterminant dans une base donnée est une forme n-linéaire alternée.

Proposition 1.2.0.3. —

Soit φ une forme *n*-linéaire alternée. Alors pour tout $w \in S_n$, $\varphi(u_{w(1)}, \ldots, u_{w(n)}) = \varepsilon(w)\varphi(u_1, \ldots, u_n)$.

DÉMONSTRATION 1.2.0.3. —

On peut supposer que w est une transposition simple : w = (k, k+1) avec $1 \le k < n$. On veut montrer:

$$\varphi(u_1, \dots, u_{k-1}, u_{k+1}, u_k, u_{k+2}, \dots, u_n) = -\varphi(u_1, \dots, u_n).$$

Pour simplifier les notations, on oublie les indices u_i avec $i \neq k, k+1$. On a :

$$\varphi(u_k + u_{k+1}, u_k + u_{k+1}) = 0$$

et donc par linéarité :

et donc par linéarité :
$$\varphi(u_k,u_k) + \varphi(u_k,u_{k+1}) + \varphi(u_{k+1},u_k) + \varphi(u_{k+1},u_{k+1}) = 0 \iff \varphi(u_k,u_{k+1}) = -\varphi(u_{k+1},u_k).$$

Proposition 1.2.0.4. —

Soient E un \mathbf{R} -espace vectoriel de dimension n et $B=(e_1,\ldots,e_n)$ une base de E. Soit $\varphi:E^n\to {\bf R}$ une forme n-linéaire alternée. Alors :

$$\varphi(u_1,\ldots,u_n)=\det_B(u_1,\ldots,u_n)\varphi(e_1,\ldots,e_n)$$

où les u_i sont exprimés dans la base B.

Remarque. — Toutes les formes n-linéaires alternées sont proportionnelles au déterminant.

Démonstration 1.2.0.4. —

Soit $u_j = \sum_{i=1}^n a_{i,j} e_i$, les $a_{i,j}$ sont les coordonnées des u_j dans la base B.

$$\varphi(u_1,\ldots,u_n) = \varphi\left(\sum_{i=1}^n a_{i,1}e_i,\ldots,\sum_{i=1}^n a_{i,n}e_i\right).$$

Comme φ est n-linéaire alternée :

where
$$\varphi$$
 est n -inheadre attended .
$$\varphi(u_1,\ldots,u_n) = \sum_{w \in S_n} a_{w(1),1} a_{w(2),2} \ldots a_{w(n),n} \varphi(e_{w(1)},\ldots,e_{w(n)})$$

$$\varphi(u_1,\ldots,u_n) = \sum_{w \in S_n} a_{w(1),1} a_{w(2),2} \ldots a_{w(n),n} \varepsilon(w) \varphi(e_1,\ldots,e_n)$$

$$\varphi(u_1,\ldots,u_n) = \det_B(u_1,\ldots,u_n) \varphi(e_1,\ldots,e_n)$$

Remarques. — On a démontré :

- 1. Pour une base B choisie, le déterminant \det_B est une forme n-linéaire alternée;
- 2. pour toute forme *n*-linéaire alternée, φ , on a : $\varphi(\cdot) = \det_B(\cdot)\varphi(B)$;
- 3. en particulier, les deux déterminants coïncident.

Proposition 1.2.0.5. —

Pour tout $A \in M_n(\mathbf{R})$ on a :

$$\det(A) = \det(A^t).$$

DÉMONSTRATION 1.2.0.5. — On a :

$$A = (a_{i,j})$$

 $A^t = (b_{i,j}), b_{i,j} = a_{j,i}$

On calcule par la formule de CRAMER :

$$\det(A^t) = \sum_{w \in S_n} \varepsilon(w) \prod_{i=1}^n b_{w(i),i},$$

$$\det(A^t) = \sum_{w \in S_n} \varepsilon(w) \prod_{i=1}^n a_{i,w(i)}.$$

Pour w fixé, dans i décrit 1 à n alors w(i) décrit également 1 à n. On effectue un changement de variable j = w(i) et alors $i = w^{-1}(j)$ et on a :

$$\det(A^t) = \sum_{w \in S_n} \varepsilon(w) \prod_{j=1}^n a_{w^{-1}(j),j},$$

$$\det(A^t) = \sum_{w \in S_n} \varepsilon(w^{-1}) \prod_{j=1}^n a_{w(j),j},$$

$$\det(A^t) = \sum_{w \in S_n} \varepsilon(w) \prod_{j=1}^n a_{w(j),j},$$

$$\det(A^t) = \det(A).$$

Remarque. — On peut calculer det(A) en développant par rapport à la première ligne ou la première colonne (au choix). On a alors :

$$\det(A) = \sum_{i=1}^{n} (-1)^{n} a_{i,1} \det(A_{i,1}).$$