Problem Set 3

Aaron Wang

February 11 2024

- 1. Prove each of the following statements for any propositions φ, ψ, ξ .
 - (a) $(\varphi \to \psi), (\psi \to \xi) \vdash (\varphi \to \xi)$

Proof. Let φ , ψ , and ξ . be arbitrary propositions, and suppose $\varphi \to \psi$ and $\psi \to \xi$. We will first show that $\varphi \vdash \xi$. Assume φ . Since we have $\varphi \to \psi$, we get ψ by modus ponens. Further, since we have $\psi \to \xi$, we get ξ by modus ponens. Thus, $\varphi \vdash \xi$. Therefore, by applying the deduction rule, we can conclude $\varphi \to \xi$ Q.E.D.

(b) $\varphi, \psi \vdash \varphi \land \psi$

Proof. Let φ and ψ be arbitrary propositions. Assume φ , and also separately assume ψ . Towards a contradiction, suppose $\neg(\varphi \land \psi)$. We can see that

$$\neg(\varphi \land \psi) \equiv \neg \varphi \lor \neg \psi$$
 by De Morgan's laws
$$\equiv \varphi \to \neg \psi$$
 by conditional disintegration

So we have φ and $\varphi \to \neg \psi$, which gives us $\neg \psi$ by modus ponens. However, since we had ψ by assumption, we get a contradiction.

Therefore, we can conclude $\varphi \wedge \psi$ by Reductio ad absurdum.

- 2. Prove each of the following statements for any propositions φ, ψ, ξ .
 - (a) $\vdash \varphi \rightarrow \varphi$

Proof. Let φ be an arbitrary proposition. Assume φ . Now observe that φ follows from this assumption. Therefore, $\varphi \vdash \varphi$. Now by deduction rule, we can conclude $\varphi \to \varphi$.

Q.E.D.

(b)
$$\vdash (\neg \varphi \rightarrow \varphi) \rightarrow \varphi$$

Proof. Let φ be an arbitrary proposition. Let's first show that $\varphi \equiv \neg \varphi \rightarrow \varphi$

$$\varphi \equiv \varphi \lor \varphi$$
 by idempotence
 $\equiv \neg(\neg \varphi) \lor \varphi$ by double negation
 $\equiv \neg \varphi \to \varphi$ by conditional disintegration

Now we can substitute φ for $\neg \varphi \rightarrow \varphi$ which turns $(\neg \varphi \rightarrow \varphi) \rightarrow \varphi$ into an equivalent expression $\varphi \rightarrow \varphi$, something we have already proved in (a). Therefore we can conclude $(\neg \varphi \rightarrow \varphi) \rightarrow \varphi$.

Q.E.D.

(c)
$$\vdash \neg \varphi \rightarrow (\varphi \rightarrow \neg \psi)$$

Proof. Let φ and ψ be arbitrary propositions. Let's first show that $\psi \to \neg \varphi \equiv \varphi \to \neg \psi$.

$$\psi \to \neg \varphi \equiv \neg \psi \lor \neg \varphi$$
 by conditional disintegration
$$\equiv \neg \varphi \lor \neg \psi$$
 by commutativity
$$\equiv \varphi \to \neg \psi$$
 by conditional disintegration

Using this equivalence, we can substitute $\psi \to \neg \varphi$ for $\varphi \to \neg \psi$ in $\neg \varphi \to (\varphi \to \neg \psi)$ to create an equivalent expression $\neg \varphi \to (\psi \to \neg \varphi)$ which is in the form of Hilbert's first axiom. Consequently, by Hilbert's first axiom, we can conclude $\neg \varphi \to (\varphi \to \neg \psi)$.

(d) $\varphi \wedge \psi \vdash \varphi$

Proof. Let φ and ψ be arbitrary propositions. Assume $\varphi \wedge \psi$. Assume towards a contradiction $\neg \varphi$. Using conjunction introduction, $\varphi \wedge \psi$, $\neg \varphi \vdash (\varphi \wedge \psi) \wedge (\neg \varphi)$. Observe:

$$(\varphi \wedge \psi) \wedge \neg \varphi \equiv (\psi \wedge \varphi) \wedge \neg \varphi \qquad \qquad \text{by commutativity}$$

$$\equiv \psi \wedge (\varphi \wedge \neg \varphi) \qquad \qquad \text{by associativity}$$

$$\equiv \psi \wedge (\bot) \qquad \qquad \text{by complement}$$

$$\equiv \bot \qquad \qquad \text{by domination}$$

So, we have \bot . However, we also have \top which is proven by the Truth theorem (proven by the fact that we proved (a) and (a) is a tautology). Therefore, by Reductio ad Absurdum we can conclude φ .

Q.E.D.

(e) ⊢ T

Proof. From (a) we concluded $\varphi \to \varphi$. Since $\varphi \to \varphi \equiv \top$ (proved in PSet 2), we can also conclude \top .

3. Prove each of the following statements for any propositions φ, ψ, ξ, χ

(a)
$$\varphi \vdash (\varphi \lor \psi)$$

Proof. Let φ and ψ be arbitrary propositions. Assume φ . Towards a contradiction, suppose $\neg(\varphi \lor \psi)$. Using conjunction introduction, $\varphi, \neg(\varphi \lor \psi) \vdash \varphi \land \neg(\varphi \lor \psi)$ Observe:

$$\varphi \land \neg (\varphi \lor \psi) \equiv \varphi \land (\neg \varphi \land \neg \psi) \qquad \text{by De Morgan's laws}$$

$$\equiv (\varphi \land \neg \varphi) \land \neg \psi \qquad \text{by associativity}$$

$$\equiv \bot \land \neg \psi \qquad \text{by complement}$$

$$\equiv \bot \qquad \text{by domination}$$

So, we have $\neg(\varphi \lor \psi) \vdash \bot$. However, we also have $\neg(\varphi \lor \psi) \vdash \top$ because we assumed $\neg(\varphi \lor \psi)$. Therefore, by Reductio ad Absurdum we can conclude $\neg(\neg(\varphi \lor \psi))$ or $\varphi \lor \psi$.

Q.E.D.

(b)
$$(\varphi \to \xi), (\psi \to \xi), (\varphi \lor \psi) \vdash \xi$$

Proof. Let φ , ψ and ξ be arbitrary propositions. Assume $(\varphi \to \xi)$, $(\psi \to \xi)$, and $(\varphi \lor \psi)$. Assume towards a contradiction $\neg \xi$. Using conjunction introduction:

$$(\varphi \to \xi), (\psi \to \xi), \vdash (\varphi \to \xi) \land (\psi \to \xi)$$

Observe:

$$(\varphi \to \xi) \land (\psi \to \xi)$$

$$\equiv (\neg \varphi \lor \xi) \land (\neg \psi \lor \xi) \qquad \text{by conditional disintegration} \times 2$$

$$\equiv (\neg \varphi \land \neg \psi) \lor \xi \qquad \text{by distributivity}$$

$$\equiv \neg (\varphi \lor \psi) \lor \xi \qquad \text{by De Morgan's laws}$$

$$\equiv (\varphi \lor \psi) \to \xi \qquad \text{by conditional disintegration}$$

So, we have $\varphi \lor \psi$ and $(\varphi \lor \psi) \to \xi$. By *modus ponens* we can conclude ξ .

(c) $\varphi, \neg \varphi \vdash \psi$

Proof. Let φ and ψ be arbitrary propositions. Assume φ as a premise. By disjunction introduction, $\varphi \vdash \varphi \lor \psi$. Observe:

$$\varphi \lor \psi \equiv \neg(\neg \varphi) \lor \psi$$
 by double negation
$$\equiv \neg \varphi \to \psi$$
 by conditional disintegration

Now assume $\neg \varphi$ as another premise. By modus ponens, we conclude ψ .

Q.E.D.

(d) $(\varphi \lor \psi), \neg \varphi \vdash \psi$

Proof. Let φ and ψ be arbitrary propositions. Assume $(\varphi \lor \psi)$ and $\neg \varphi$. Observe:

$$\varphi \lor \psi \equiv \neg(\neg \varphi) \lor \psi$$
 by double negation
$$\equiv \neg \varphi \to \psi$$
 by conditional disintegration

So, we have $\neg \varphi$ and $\neg \varphi \rightarrow \psi$. By modus ponens we can conclude ψ .

Q.E.D.

(e)
$$(\varphi \to \xi), (\psi \to \chi), (\varphi \lor \psi) \vdash \xi \lor \chi$$

Proof. Let φ , ψ , ξ , and χ be arbitrary propositions.

Assume $\varphi \to \xi, \psi \to \chi$, and $\varphi \lor \psi$. Assume towards a contradiction $\neg(\xi \lor \chi)$. Observe that by De Morgan's laws $\neg(\xi \lor \chi) \equiv \neg \xi \lor \neg \chi$ from which we can use conjunction elimination to conclude $\neg \xi$ and $\neg \chi$. Now, by modus tollens, we can use $\neg \xi$ and $\varphi \to \xi$ to conclude $\neg \varphi$. Similarly, by modus tollens, we can use $\neg \chi$ and $\psi \to \chi$ to conclude $\neg \psi$. Since we have $\neg \psi$ and $\neg \varphi$ we can use conjuction introduction to conclude $\neg \psi \land \neg \varphi$ which is equivalent to $\neg(\varphi \lor \psi)$ by De Morgan's laws. Since we proved $\neg(\varphi \lor \psi)$ and assumed $\varphi \lor \psi$, by Reductio Ad Absurdum we can conclude $\neg(\neg(\xi \lor \chi))$ or $\xi \lor \chi$.

4. Let \mathcal{L} be a binary predicate. Prove the following statement.

$$\vdash \neg \exists x \forall y (\mathcal{L}(x, y) \leftrightarrow \neg \mathcal{L}(y, y))$$

Proof. Let \mathcal{L} be a binary predicate. Towards a contradiction, assume $\exists x \forall y (\mathcal{L}(x, y) \leftrightarrow \neg \mathcal{L}(y, y))$ which by existential elimination says $\forall y (\mathcal{L}(t, y) \leftrightarrow \neg \mathcal{L}(y, y))$ for a new term t. By universal elimination, $\forall y (\mathcal{L}(t, y) \leftrightarrow \neg \mathcal{L}(y, y))$ is true for any value y so let y = t. In this case, $\mathcal{L}(t, t) \leftrightarrow \neg \mathcal{L}(t, t) \equiv \bot$ so $\exists x \forall y (\mathcal{L}(x, y) \leftrightarrow \neg \mathcal{L}(y, y)) \vdash \bot$ (Look at a truth table). However, we assumed $\exists x \forall y (\mathcal{L}(x, y) \leftrightarrow \neg \mathcal{L}(y, y))$ so by the truth theorem $\exists x \forall y (\mathcal{L}(x, y) \leftrightarrow \neg \mathcal{L}(y, y)) \vdash \top$. Since $\exists x \forall y (\mathcal{L}(x, y) \leftrightarrow \neg \mathcal{L}(y, y))$ leads to a contradiction, we can conclude $\neg \exists x \forall y (\mathcal{L}(x, y) \leftrightarrow \neg \mathcal{L}(y, y))$ by Reductio Ad Absurdum.

Q.E.D.

5. Consider a universe of discourse consisting of every natural number. Recall that a positive integer is *prime* when it has *exactly two* positive divisors: one and itself.

Let $\omega(x) := "x \text{ is an odd number."}$

Let $\pi(x) := "x \text{ is a prime number."}$

Further, suppose the following statements only contain propositions.

(a) Prove φ , where φ is the statement $\varphi \vdash \forall x (\omega(x) \to \pi(x))$.

Proof. Let $\varphi:= "\varphi \vdash \forall x (\omega(x) \to \pi(x))"$. Assume φ . Therefore we have φ which says $\varphi \vdash \forall x (\omega(x) \to \pi(x))$. Observe that $\varphi \vdash \forall x (\omega(x) \to \pi(x))$ is $\varphi \to \forall x (\omega(x) \to \pi(x))$ by deduction rule. Thus by modus ponens, we use φ and $\varphi \to \forall x (\omega(x) \to \pi(x))$ to get $\forall x (\omega(x) \to \pi(x))$. Therefore by modus ponens $\varphi \vdash \forall x (\omega(x) \to \pi(x))$

O.E.D.

(b) Prove $\forall x (\omega(x) \to \pi(x))$.

Proof. From (a) we found $\vdash \varphi$. Thus, we have $\varphi \vdash \forall x (\omega(x) \to \pi(x))$ from which deduction rule gives us $\varphi \to \forall x (\omega(x) \to \pi(x))$. By Modus ponens, since we have φ and $\varphi \to \forall x (\omega(x) \to \pi(x))$, we can conclude $\forall x (\omega(x) \to \pi(x)).//$ Q.E.D.