

🦒 Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE180703804

FCC REPORT

Applicant: APRIX LATINOAMERICA S.A.

Address of Applicant: ADVANCED 099 BLDG SUITE SUITE 4 C CALLE BEATRIZ M

DE CABAL PANAMA

Equipment Under Test (EUT)

Product Name: Tablet PC

Model No.: Tab64_T

Trade mark: APRIX

FCC ID: 2AHJQ-T64T

Applicable standards: FCC CFR Title 47 Part 15 Subpart E Section 15.407

Date of sample receipt: 07 Jul., 2018

Date of Test: 10 Jul., to 13 Aug., 2018

Date of report issued: 14 Aug., 2018

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Report No: CCISE180703804

2 Version

Version No.	Date	Description
00	14 Aug., 2018	Original

Tested by: Zora Lee Date: 14 Aug., 2018

Test Engineer

Reviewed by: Date: 14 Aug., 2018

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	RSION	2
3		NTENTS	
		T SUMMARY	
4	_		
5	GEN	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	TEST ENVIRONMENT AND TEST MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	7
	5.5	MEASUREMENT UNCERTAINTY	7
	5.6	RELATED SUBMITTAL(S) / GRANT (S)	7
	5.7	LABORATORY FACILITY	
	5.8	LABORATORY LOCATION	
	5.9	TEST INSTRUMENTS LIST	8
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT	9
	6.2	CONDUCTED OUTPUT POWER	
	6.3	OCCUPY BANDWIDTH	12
	6.4	POWER SPECTRAL DENSITY	16
	6.5	BAND EDGE	20
	6.6	Spurious Emission	25
	6.6.	1 Restricted Band	25
	6.6.2	2 Unwanted Emissions out of the Restricted Bands	29
	6.7	FREQUENCY STABILITY	36
7	TES	ST SETUP PHOTO	38
Q	FUT	CONSTRUCTIONAL DETAILS	30

4 Test Summary

Test Item	Section in CFR 47	Test Result		
Antenna requirement	15.203/15.407 (a)	Pass		
AC Power Line Conducted Emission	15.207	N/A		
Conducted Peak Output Power	15.407 (a) (1) (iv)	Pass		
26dB Occupied Bandwidth	15.407 (a) (5)	Pass		
6dB Emission Bandwidth	15.407 (a) (1) (iv)	Pass		
Power Spectral Density	15.407(b)	Pass		
Band Edge	15.205/15.209	Pass		
Spurious Emission	15.407(g)	Pass		
Frequency Stability	15.203/15.407 (a)	Pass		
Pass: The EUT complies with the essential requirements in the standard.				

N/A: N/A: Not Applicable.

5 General Information

5.1 Client Information

Applicant:	APRIX LATINOAMERICA S.A.
Address:	ADVANCED 099 BLDG SUITE 4 C CALLE BEATRIZ M DE CABAL PANAMA
Manufacturer	Todos industrial limited
Address:	Room 308, Building #5, Cofoc (Fuan) Robotics Industrial Park, No.90, Dayang Road, Fuyong Street, Shenzhen City, P.R. China

5.2 General Description of E.U.T.

Product Name:	Tablet PC
Model No.:	Tab64_T
Operation Frequency:	Band 1: 5150MHz-5250MHz,
Channel numbers:	Band 1: 802.11a/802.11n20: 4, 802.11n40: 2
Channel separation:	802.11a/802.11n20: 20MHz, 802.11n40: 40MHz,
Modulation technology (IEEE 802.11a):	BPSK, QPSK, 16-QAM, 64-QAM
Modulation technology (IEEE 802.11n):	BPSK, QPSK, 16-QAM, 64-QAM
Data speed (IEEE 802.11a):	6Mbps, 9Mbps,12Mbps,18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps
Data speed (IEEE 802.11n20):	MCS0: 6.5Mbps, MCS1:13Mbps,MCS2:19.5Mbps, MCS3:26Mbps, MCS4:39Mbps, MCS5:52Mbps, MCS6:58.5Mbps, MCS7:65Mbps
Data speed (IEEE 802.11n40):	MCS0:15Mbps, MCS1:30Mbps, MCS2:45Mbps, MCS3:60Mbps, MCS4:90Mbps, MCS5:120Mbps, MCS6:135Mbps, MCS7:150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	1.85 dBi
Power supply:	DC 12V / Rechargeable Li-ion Battery DC3.7V-500mAh
Remark:	The No.: Tab64_T has two styles, one with a battery and the other without battery.

Operation Frequency each of channel						
	Band 1					
802.11a/802.11n20 802.11n40 /					1	
Channel	Frequency	Channel	Frequency	/	/	
36	5180MHz	38	5190MHz	/	/	
40	5200MHz	46	5230MHz			
44	5220MHz					
48	5240MHz					

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Band 1					
802.11a/802.11n20		802.11n40		/	
Channel	Frequency	Channel	Frequency	/	/
Lowest channel	5180MHz	Lowest channel	5190MHz	/	/
Middle channel	5200MHz	Highest channel	5230MHz		
Highest channel	5240MHz				

5.3 Test environment and test mode

Operating Environment:					
Temperature:	24.0 °C	24.0 °C			
Humidity:	54 % RH				
Atmospheric Pressure:	1010 mbar				
Test mode:					
Continuously transmitting mode	Keep the EUT in 100	0% duty cycle transmitting with modulation.			
We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:					
Per-scan all kind of data rate, a	nd found the follow lis	st were the worst case.			
Mode	Mode Data rate				
802.11a		6 Mbps			
802.11n20		6.5 Mbps			
802.11n40		13 Mbps			

Report No: CCISE180703804

5.4 Description of Support Units

N/A

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±2.22 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±2.76 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.28 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.72 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±2.88 dB (k=2)

5.6 Related Submittal(s) / Grant (s)

This is an original grant, no related submittals and grants.

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.8 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.9 Test Instruments list

Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-16-2018	03-15-2019
Biconical Antenna	SCHWARZBECK	VUBA9117	359	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-16-2018	03-15-2019
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020
EMI Test Software	AUDIX	E3	Ve	ersion: 6.110919b)
Pre-amplifier	HP	8447D	2944A09358	03-07-2018	03-06-2019
Pre-amplifier	CD	PAP-1G18	11804	03-07-2018	03-06-2019
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-07-2018	03-06-2019
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-07-2018	03-06-2019
Spectrum Analyzer	Agilent	N9020A	MY50510123	11-10-2017	11-09- 2018
Signal Generator	Rohde & Schwarz	SMX	835454/016	03-07-2018	03-06-2019
Signal Generator	R&S	SMR20	1008100050	03-07-2018	03-06-2019
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2018	03-06-2019
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2018	03-06-2019
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2018	03-06-2019
DC Power Supply	XinNuoEr	WYK-10020K	1409050110020	10-31-2017	10-30-2018
Temperature Humidity Chamber	HengPu	HPGDS-500	20140828008	09-24-2017	09-23-2018
Simulated Station	Rohde & Schwarz	CMW500	140493	06-24-2018	06-23-2019

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-07-2018	03-06-2019
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-07-2018	03-06-2019
LISN	CHASE	MN2050D	1447	03-19-2018	03-18-2019
LICN	Dobdo 9 Cobwerz	E0112 75	0.420624/040	07-21-2017	07-20-2018
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2019
Cable	HP	10503A	N/A	03-07-2018	03-06-2019
EMI Test Software	AUDIX	E3	V	ersion: 6.110919b)

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part15 E Section 15.203 /407(a)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, § 15.213, § 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

E.U.T Antenna:

The WiFi antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is 1.85 dBi.

6.2 Conducted Output Power

Toot Doguiroment	CCC Port45 C Coation 45 407 (a) (4) (iv)	
Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (iv)	
Test Method:	ANSI C63.10: 2013, KDB789033	
Limit:	Band 1: 24dBm	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.9 for details	
Test mode:	Refer to section 5.3 for details	
Test results:	Passed	

Report No: CCISE180703804

Measurement Data:

Band 1									
Mode	Test CH	Conducted Output power (dBm)	Limit (dBm)	Result					
	Lowest	3.42							
802.11a	Middle	3.08	24.00	Pass					
	Highest	3.10							
	Lowest	3.30							
802.11n20	Middle	2.83	24.00	Pass					
	Highest	2.63							
902 11n 10	Lowest	3.14	24.00	Pass					
802.11n40	Highest	2.70	24.00						

6.3 Occupy Bandwidth

Measurement Data:

Band 1:

	26dB I	Emission Bandwidth	(MHz)			
Test Channel	802.11n 802.11n (HT20) (HT40)			Limit	Result	
Lowest	20.08	20.40	40.00			
Middle	20.24	20.40		N/A	PASS	
Highest	20.08	20.40	40.00			
	99% (
Test Channel	802.11a	802.11n (HT20)	802.11n (HT40)	Limit	Result	
Lowest	17.28	18.00	36.32			
Middle	17.28	18.00		N/A	PASS	
Highest	17.20	18.00	36.32			

Test plot as follows: Band 1:

6.4 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (iv)				
Test Method:	ANSI C63.10:2013, KDB 789033				
Limit:	Band 1: 11 dBm/MHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Report No: CCISE180703804

Measurement Data:

Band 1									
Mode	Test CH	PSD (dBm)	Limit (dBm)	Result					
	Lowest	-7.50							
802.11a	Middle	-7.78	11.00	Pass					
	Highest	-8.46							
	Lowest	-7.87							
802.11n(HT20)	Middle	-8.23	11.00	Pass					
	Highest	-8.55							
902 11 _m (UT40)	Lowest	-11.03	11.00	Door					
802.11n(HT40)	Highest	-11.06	11.00	Pass					

Test plot as follows:

6.5 Band Edge

Test Requirement:	FCC Part 15 E Sect	tion 15.407 (b)						
Test Method:	ANSI C63.10:2013	, KDB 789033						
Receiver setup:	Detector	RBW	VBW	Remark				
•	Quasi-peak	120kHz	300kHz	Quasi-peak Value				
	RMS	1MHz	3MHz	Average Value				
Limit:	Band	,	V/m @3m)	Remark				
	Band 1/2/3		.20	Peak Value				
	Bana 1/2/0		.00	Average Value				
	Band 4		.20	Peak Value				
	Band 4 limit:	54	.00	Average Value				
	All emissions shall more above or belo 25 MHz above or be the band edge increasing line Remark: 1. Band 1/2/3 limit: E[dBµV/m] = EIR 2. Band 4 limit: E[dBµV/m] = EIR	For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasinglinearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. Remark: 1. Band 1/2/3 limit: E[dBµV/m] = EIRP[dBm] + 95.2=68.2 dBuV/m, for EIPR[dBm]=-27dBm. 2. Band 4 limit: E[dBµV/m] = EIRP[dBm] + 95.2=68.2 dBuV/m, for EIPR[dBm]=-27dBm. E[dBµV/m] = EIRP[dBm] + 95.2=68.2 dBuV/m, for EIPR[dBm]=-10dBm.						
Test Procedure:	1. The EUT was perfect the ground at a to determine the control of the EUT was antenna, which tower. 3. The antenna has the ground to a Both horizontal make the meas 4. For each suspers case and then meters and the to find the max 5. The test-receives Specified Bance 6. If the emission the limit specifies of the EUT wou have 10dB max to determine the second t	placed on the top a 3 meter camber be position of the set 3 meters away was mounted or leight is varied from letermine the mall and vertical polar surement. The antenna was a rotatable was ture imum reading, were system was selwidth with Maxim level of the EUT ed, then testing of the gin would be re-	of a rotating take. The table was highest radiation by from the interference of a value of a rizations of the country of the top of a value of a rizations of the country o	ole 0.8 meters above rotated 360 degrees n. erence-receiving triable-height antenna four meters above the field strength, antenna are set to anged to its worst is from 1 meter to 4 grees to 360 degrees of Function and				

Report No: CCISE180703804

Measurement Data (worst case):

Band 1:

			Ва	nd 1 – 802.1	1a					
			Test cha	nnel: Lowest	channel					
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	41.86	36.23	7.05	41.93	43.21	68.20	-24.99	Horizontal		
5150.00	41.67	36.23	7.05	41.93	43.02	68.20	-25.18	Vertical		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	32.58	36.23	7.05	41.93	33.93	54.00	-20.07	Horizontal		
5150.00	32.45	36.23	7.05	41.93	33.80	54.00	-20.20	Vertical		
			Test char	nnel: Highest	channel					
			Dete	ctor: Peak Va	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	41.68	35.37	7.11	41.89	42.27	68.20	-25.93	Horizontal		
5350.00	42.12	35.37	7.11	41.89	42.71	68.20	-25.49	Vertical		
			Detec	tor: Average	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	32.55	35.37	7.11	41.89	33.14	54.00	-20.86	Horizontal		
5350.00	32.78	35.37	7.11	41.89	33.37	54.00	-20.63	Vertical		

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 1 - 802.11n(HT20)										
	Test channel: Lowest channel										
Detector: Peak											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5150.00	42.31	36.23	7.05	41.93	43.66	68.20	-24.54	Horizontal			
5150.00	41.92	36.23	7.05	41.93	43.27	68.20	-24.93	Vertical			
			De	tector: Avera	ge						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5150.00	32.92	36.23	7.05	41.93	34.27	54.00	-19.73	Horizontal			
5150.00	32.45	36.23	7.05	41.93	33.80	54.00	-20.20	Vertical			
				nnel: Highest							
			Dete	ctor: Peak Va	alue			T			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5350.00	42.36	35.37	7.11	41.89	42.95	68.20	-25.25	Horizontal			
5350.00	42.12	35.37	7.11	41.89	42.71	68.20	-25.49	Vertical			
			Detect	tor: Average	Value						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5350.00	32.81	35.37	7.11	41.89	33.40	54.00	-20.60	Horizontal			
5350.00	32.27	35.37	7.11	41.89	32.86	54.00	-21.14	Vertical			

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 1 - 802.11n(HT40)									
	Test channel: Lowest channel									
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	42.36	36.23	7.05	41.93	43.71	68.20	-24.49	Horizontal		
5150.00	42.75	36.23	7.05	41.93	44.10	68.20	-24.10	Vertical		
			Detec	tor: Average	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	32.85	36.23	7.05	41.93	34.20	54.00	-19.80	Horizontal		
5150.00	33.15	36.23	7.05	41.93	34.50	54.00	-19.50	Vertical		
				nnel: Highest						
			Dete	ector: Peak Va	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	42.69	35.37	7.11	41.89	41.89	68.20	-26.31	Horizontal		
5350.00	42.85	35.37	7.11	41.89	41.89	68.20	-26.31	Vertical		
			Detec	tor: Average	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	32.88	35.37	7.11	41.89	33.47	54.00	-20.53	Horizontal		
5350.00	33.42	35.37	7.11	41.89	34.01	54.00	-19.99	Vertical		

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

6.6 Spurious Emission

6.6.1 Restricted Band

0.0.1	Restricted band	5.6.1 Restricted Band									
	Test Requirement:	FCC Part15 E S	ection 1	5.407(b)						
	Test Method:	ANSI C63.10: 20)13								
	Test Frequency Range:	4.5 GHz to 5.15	GHz and	d 5.35	GHz to 5.46G	Hz					
	Test site:	Measurement Di	stance:	3m							
	Receiver setup:	Frequency			RBW	VBW		Remark			
		Above 1GHz									
	Limit:	Frequency	1					Remark			
		Above 1GH	z	74.00			Peak Value				
	Test Procedure:	Above 1GHz Peak 1MHz 3MHz Peak Value RMS 1MHz 3MHz Average Value Frequency Limit (dBuV/m @3m) Remark									
	Test Instruments:	Refer to section									
	Test mode:	Refer to section	5.3 for d	letails							
	Test results:	Passed									

Peport No: CCISE180703804

Measurement Data (worst case):

Band 1:

	Band 1 – 802.11a											
			Test cha	nnel: Lowest	channel							
Detector: Peak Value												
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4500.00	42.36	34.50	6.80	42.05	41.61	74.00	-32.39	Horizontal				
4500.00	42.55	34.50	6.80	42.05	41.80	74.00	-32.20	Vertical				
			Detec	tor: Average	Value							
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4500.00	33.52	34.50	6.80	42.05	32.77	54.00	-21.23	Horizontal				
4500.00	32.98	34.50	6.80	42.05	32.23	54.00	-21.77	Vertical				
			Test cha	nnel: Highest	channel							
			Dete	ector: Peak Va	alue							
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5460.00	42.18	34.90	7.18	41.85	42.41	74.00	-31.59	Horizontal				
5460.00	42.69	34.90	7.18	41.85	42.92	74.00	-31.08	Vertical				
			Detec	tor: Average	Value							
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5460.00	32.45	34.90	7.18	41.85	32.68	54.00	-21.32	Horizontal				
5460.00	32.77	34.90	7.18	41.85	33.00	54.00	-21.00	Vertical				

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 1 - 802.11n(HT20)									
	Test channel: Lowest channel									
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4500.00	42.15	34.50	6.80	42.05	41.40	74.00	-32.60	Horizontal		
4500.00	43.36	34.50	6.80	42.05	42.61	74.00	-31.39	Vertical		
			Detec	tor: Average '	√alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4500.00	33.52	34.50	6.80	42.05	32.77	54.00	-21.23	Horizontal		
4500.00	33.89	34.50	6.80	42.05	33.14	54.00	-20.86	Vertical		
				nnel: Highest						
				ctor: Peak Va	alue		_	I		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	42.25	34.90	7.18	41.85	42.48	74.00	-31.52	Horizontal		
5460.00	42.78	34.90	7.18	41.85	43.01	74.00	-30.99	Vertical		
			Detec	tor: Average '	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	33.25	34.90	7.18	41.85	33.48	54.00	-20.52	Horizontal		
5460.00	33.86	34.90	7.18	41.85	34.09	54.00	-19.91	Vertical		

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 1 - 802.11n(HT40)									
	Test channel: Lowest channel									
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4500.00	42.58	34.50	6.80	42.05	41.83	74.00	-32.17	Horizontal		
4500.00	42.65	34.50	6.80	42.05	41.90	74.00	-32.10	Vertical		
			Detec	tor: Average	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4500.00	33.23	34.50	6.80	42.05	32.48	54.00	-21.52	Horizontal		
4500.00	33.41	34.50	6.80	42.05	32.66	54.00	-21.34	Vertical		
			-							
				nnel: Highest						
				ector: Peak Va	alue			I		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	42.36	34.90	7.18	41.85	42.59	74.00	-31.41	Horizontal		
5460.00	42.87	34.90	7.18	41.85	43.10	74.00	-30.90	Vertical		
			Detec	tor: Average	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	33.15	34.90	7.18	41.85	33.38	54.00	-20.62	Horizontal		
5460.00	33.20	34.90	7.18	41.85	33.43	54.00	-20.57	Vertical		

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

6.6.2 Unwanted Emissions out of the Restricted Bands

Test Requirement:	FCC Part15 C Section 15.209 and 15.205						
Test Method:	ANSI C63.10: 20	ANSI C63.10: 2013					
Test Frequency Range:	30MHz to 40GHz	30MHz to 40GHz					
Test site:	Measurement Dis	Measurement Distance: 3m					
Receiver setup:	Frequency	Detecto	or	RBW	VE	BW Remark	
	30MHz-1GHz	Quasi-pe	eak	100kHz	300)kHz	Quasi-peak Value
	Above 1GHz	Peak			1Hz	Peak Value	
	7,0000 10112	RMS		1MHz		1Hz	Average Value
Limit:	Frequency		Lim	nit (dBuV/m @3	im)		Remark
	30MHz-88MH			40.0		Q	uasi-peak Value
	88MHz-216M			43.5			uasi-peak Value
	216MHz-960N			46.0			uasi-peak Value
	960MHz-1GH	lz		54.0		Q	uasi-peak Value
	Above 1GH	z		68.20			Peak Value
				54.00			Average Value
	Remark:						
	Above 1GHz limit: $E[dB\mu V/m] = EIRP[dBm] + 95.2=68.2 dBu V/m$, for $EIPR[dBm]=-27dBm$.						
Test Procedure:							
	 The EUT was placed on the top of a rotating table 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or 						
Test setup:	Below 1GHz		- 55.110	ed and then re		<u> a c</u>	3110011
	Delow IGHZ						

Measurement Data (worst case):

Below 1GHz

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Remark

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Report No: CCISE180703804

Above 1GHz: Band 1:

Band 1:			D	14 000 1	4 -			
				1 – 802.1				
Test channel: Lowest channel								
	T.	1	Detecto	or: Peak V	alue			ı
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10360.00	49.89	40.10	9.82	41.97	57.84	68.20	-10.36	Vertical
10360.00	49.68	40.10	9.82	41.97	57.63	68.20	-10.57	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10360.00	40.23	40.10	9.82	41.97	48.18	54.00	-5.82	Vertical
10360.00	40.14	40.10	9.82	41.97	48.09	54.00	-5.91	Horizontal
			Test chann					
	I	1	Detecto	or: Peak V	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400.00	50.23	40.00	9.85	41.95	58.13	68.20	-10.07	Vertical
10400.00	50.11	40.00	9.85	41.95	58.01	68.20	-10.19	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400.00	41.53	40.00	9.85	41.95	49.43	54.00	-4.57	Vertical
10400.00	41.25	40.00	9.85	41.95	49.15	54.00	-4.85	Horizontal
			T	.I. I.P.I				
			Test channe					
	T	T _	Detecto	or: Peak V	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10480.00	49.82	39.70	9.96	41.88	57.60	68.20	-10.60	Vertical
10480.00	50.12	39.70	9.96	41.88	57.90	68.20	-10.30	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10480.00	40.05	39.70	9.96	41.88	47.83	54.00	-6.17	Vertical
10480.00	40.68	39.70	9.96	41.88	48.46	54.00	-5.54	Horizontal
Remark:								

Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 1 – 802.11n(HT20)								
Test channel: Lowest channel								
Detector: Peak Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarizatior
10360.00	49.69	40.10	9.82	41.97	57.64	68.20	-10.56	Vertical
10360.00	49.26	40.10	9.82	41.97	57.21	68.20	-10.99	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarizatio
10360.00	40.58	40.10	9.82	41.97	48.53	54.00	-5.47	Vertical
10360.00	40.23	40.10	9.82	41.97	48.18	54.00	-5.82	Horizonta
			Test chann	nel: Middle	channel			
			Detecto	or: Peak V	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarizatio
10400.00	50.01	40.00	9.85	41.95	57.91	68.20	-10.29	Vertical
10400.00	49.63	40.00	9.85	41.95	57.53	68.20	-10.67	Horizonta
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarizatio
10400.00	41.12	40.00	9.85	41.95	49.02	54.00	-4.98	Vertical
10400.00	40.06	40.00	9.85	41.95	47.96	54.00	-6.04	Horizonta
Test channel: Highest channel								
				or: Peak V				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarizatio
10480.00	49.68	39.70	9.96	41.88	57.46	68.20	-10.74	Vertical
10480.00	49.77	39.70	9.96	41.88	57.55	68.20	-10.65	Horizonta
Detector: Average Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarizatio
10480.00	40.67	39.70	9.96	41.88	48.45	54.00	-5.55	Vertical
10480.00	40.78	39.70	9.96	41.88	48.56	54.00	-5.44	Horizonta

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

	Band 1 – 802.11n(HT40)							
	Test channel: Lowest channel							
	Detector: Peak Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10380.00	49.53	40.00	9.85	41.95	57.43	68.20	-10.77	Vertical
10380.00	48.75	40.00	9.85	41.95	56.65	68.20	-11.55	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10380.00	40.36	40.00	9.85	41.95	48.26	54.00	-5.74	Vertical
10380.00	39.82	40.00	9.85	41.95	47.72	54.00	-6.28	Horizontal
	Test channel: Highest channel							
			Detecto	or: Peak V	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10460.00	49.96	39.80	9.92	41.90	57.78	68.20	-10.42	Vertical
10460.00	49.66	39.80	9.92	41.90	57.48	68.20	-10.72	Horizontal
	Detector: Average Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10460.00	40.78	39.80	9.92	41.90	48.60	54.00	-5.40	Vertical
10460.00	40.35	39.80	9.92	41.90	48.17	54.00	-5.83	Horizontal

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Frequency stability

o. r requeity stability					
Test Requirement:	FCC Part15 E Section 15.407 (g)				
Limit:	Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.				
Test setup:	Temperature Chamber Spectrum analyzer EUT				
	Att.				
	Variable Power Supply				
	Note: Measurement setup for testing on Antenna connector				
Test procedure:	 The EUT is installed in an environment test chamber with external power source. Set the chamber to operate at 50 centigrade and external power source to output at nominal voltage of EUT. A sufficient stabilization period at each temperature is used prior to each frequency measurement. When temperature is stabled, measure the frequency stability. The test shall be performed under -30 to 50 centigrade and 85 to 115 percent of the nominal voltage. Change setting of chamber and external power source to complete all conditions. 				
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Report No: CCISE180703804

Measurement Data (the worst channel):

Band 1:

Voltage vs. Frequency Stability (Lowest channel=5180MHz)

Test c	onditions	F	Man Barietian (mmm)		
Temp(°C)	Voltage(ac)	Frequency(MHz)	Max. Deviation (ppm)		
	10V	5179.997643	0.45		
20	12V	5179.974779	4.87		
	14V	5179.963951	6.96		

Temperature vs. Frequency Stability (Lowest channel=5180MHz)

Test co	onditions	Fraguency/MH=)	Max Daviation (nnm)		
Voltage(ac)	Temp(°ℂ)	Frequency(MHz)	Max. Deviation (ppm)		
	-20	5179.987033	2.50		
	-10	5179.995377	0.89		
	0	5179.968421	6.10		
10\/	10	5179.987556	2.40		
12V	20	5179.996681	0.64		
	30	5179.974290	4.96		
	40	5179.963775	6.99		
	50	5179.974929	4.84		