

Description

The NCEP11N10AK uses **Super Trench II** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{DS(ON)}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification.

Application

- DC/DC Converter
- Ideal for high-frequency switching and synchronous rectification

General Features

- V_{DS} =100V,I_D =55A
 - $R_{DS(ON)}$ =11.5m Ω (typical) @ V_{GS} =10V
 - $R_{DS(ON)}$ =14.5m Ω (typical) @ V_{GS} =4.5V
- ullet Excellent gate charge x $R_{DS(on)}$ product(FOM)
- ullet Very low on-resistance $R_{\mathrm{DS(on)}}$
- 175 °C operating temperature
- Pb-free lead plating

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VST10N115-T2	VST10N115	TO-252	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	100	V	
Gate-Source Voltage	Vgs	±20	V	
Drain Current-Continuous	I _D	55	A A A W	
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	39		
Pulsed Drain Current	I _{DM}	220		
Maximum Power Dissipation	P _D	115		
Derating factor		0.77	W/℃	
Single pulse avalanche energy (Note 5)	E _{AS}	156	mJ	
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 175	$^{\circ}$	

Thermal Characteristic

Thermal Resistance,Junction-to-Case ^(Note 2)	R _{0JC}	1.3	°C/W
---	------------------	-----	------

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics			•			
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250µA	100		-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =100V,V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)				•		
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.1	1.8	2.5	V
Drain Sauras On State Begintanes	В	V _{GS} =10V, I _D =25A	-	11.5	12.5	mΩ
Drain-Source On-State Resistance	R _{DS(ON)}	V_{GS} =4.5V, I_D =25A	-	14.5	17	mΩ
Forward Transconductance	g FS	V _{DS} =5V,I _D =25A	25	-	-	S
Dynamic Characteristics (Note4)						
Input Capacitance	C _{lss}	V _{DS} =50V,V _{GS} =0V, F=1.0MHz	-	2050	-	PF
Output Capacitance	Coss		-	180	-	PF
Reverse Transfer Capacitance	C _{rss}	r-1.0Winz	-	21	-	PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}	V _{DD} =50V,I _D =25A	-	16	-	nS
Turn-on Rise Time	t _r		-	18	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10 V , R_{G} =3 Ω	-	32	-	nS
Turn-Off Fall Time	t _f		-	10	-	nS
Total Gate Charge	Qg	V 50VI 05A	-	42	-	nC
Gate-Source Charge	Q _{gs}	V_{DS} =50V, I_{D} =25A, V_{GS} =10V	-	7.8		nC
Gate-Drain Charge	Q _{gd}	V _{GS} -10V	-	11		nC
Drain-Source Diode Characteristics						
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =25A	-		1.2	V
Diode Forward Current (Note 2)	Is		-	-	55	Α
Reverse Recovery Time	t _{rr}	T _J = 25°C, I _F = 25A	-	45	-	nS
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	95	-	nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, $t \le 10$ sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition : Tj=25 $^{\circ}\text{C}$,VDD=50V,VG=10V,L=0.5mH,Rg=25 Ω

Typical Electrical and Thermal Characteristics

Vds Drain-Source Voltage (V)

Figure 1 Output Characteristics

Vgs Gate-Source Voltage (V)

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

 T_J -Junction Temperature($^{\circ}$ C)

Figure 4 Rdson-Junction Temperature

Figure 5 Gate Charge

Vsd Source-Drain Voltage (V)

Figure 6 Source- Drain Diode Forward

Figure 11 Normalized Maximum Transient Thermal Impedance