MSO 202A: Complex Variables

August-September 2022

Assignment-5

Throughout C_R will denote the circle of radius R around origin, oriented counterclockwise. and $C_1 = C$.

- 1. (T) Find the max value of |f| on $|z| \le 1$ where $f(z) = z^2 + 3z 1$. Where is it attained?
- 2. Analytic functions satisfies Mean Value Property. Let f be holomorphic function on a an open set containing the closed disc $|z z_0| \le r$. Show that u satisfies:

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{it}) dt.$$

(Remark: $\frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{it}) dt$ called the **Mean Value of** f over the circle $|z - z_0| = r$.)

3. (T)Harmonic functions satisfies Mean Value Property. Let u be Harmonic function on a an open set Ω containing the closed disc $|z - z_0| \le r$. Show that u satisfies :

$$u(z_0) = \frac{1}{2\pi} \int_0^{2\pi} u(z_0 + re^{it}) dt.$$

- 4. Find the mean value of the function $u(x,y) = x^2 y^2 + x$ on the circle |z i| = 2.
- 5. (**T**)Let f be a nowhere zero, entire function. Prove that there exists an entire function g such that $\exp(g) = f$.
- 6. Find out all entire functions f such that $f(x) = e^x$ for $x \in \mathbb{R}$.
- 7. Find out the order of the all zeros for

(T)(a)
$$f(z) = z^2(e^{z^2} - 1)$$
 (b) $z \sin z$. (c) $\sin^3(z)/z$

8. (T)Does there exist a holomorphic function f on \mathbb{D} such that $Z_f = \{z \in \mathbb{D} : f(z) = 0\}$ is equal to the following set? Justify your answer.

(a)
$$S_1 = \{1/n : n \in \mathbb{N}\}$$
. (b) $S_2 = \{1 - 1/n : n \in \mathbb{N}\}$. (c) $S_1 = \{z \in \mathbb{D} : \operatorname{Re}(z) = 0\}$ (d) $S_4 = \{z \in \mathbb{D} : -1/2 < y < 1/2\}$.

- 9. (T) Evaluate $\int_{\Gamma} \frac{1}{z^4} dz$ where Γ is the part of clockwise oriented ellipse $\frac{(x-3)^2}{1} + \frac{y^2}{4} = 1$ lying on the upper half plane y > 0.
- 10. (**T**)Write down the power series expansion $\sum a_n(z-z_0)^n$ of the function $Log(z) = \log_{\pi}(z)$ around $z_0 = -1 + \iota$.

What is the radius of convergence of the power series?

For which values of z, we have $Log(z) = \sum a_n(z-z_0)^n$?

11. (T) Evaluate the following integrals on the square γ , oriented on the counterclockwise direction with sides $x=\pm 2, y=\pm 2$.

(a)
$$\int_{\gamma} \frac{\cos z}{z(z^2+8)} dz$$
 (b) $\int_{\gamma} \frac{\cosh z}{z^4} dz$.

12. Find out

$$\int_C \frac{2z^3 + z^2 + 4}{z^4 + 4z^2}; \quad C: |z - 2| = 4$$