Homework 2

1. Suppose that (X, d_X) and (Y, d_Y) are metric spaces. Define $d: (X \times Y) \times (X \times Y) \to \mathbb{R}$ by

$$d((x,y),(a,b)) = d_X(x,a) + d_Y(y,b).$$

Prove $(X \times Y, d)$ is a metric space.

2. Let X be a set with the following metric:

$$\rho(x,x) = 0$$

$$\rho(x,y) = 1, \quad x \neq y$$

Show that in (X, ρ) every subset is open.

- 3. Show that the function $f: \mathbb{R} \to \mathbb{R}$; f(x) = |x| is continuous for all $x \in \mathbb{R}$. Hint: Use the reverse triangle inequality.
- 4. Show that if $d: X \times X \to \mathbb{R}$ is a metric then d is a continuous function.
- 5. Find the limits and show by arguing directly from the definitions that the following sequences converge.

a)
$$a_n = \frac{2n-3}{n+5}, n \ge 0.$$

b)
$$b_n = \frac{n+5}{n^2 - n - 1}, n \ge 2.$$

6. Suppose (a_n) , (b_n) and (c_n) are sequences of real numbers. Show if $a_n \leq b_n \leq c_n$ for all n and both (a_n) and (c_n) converge to L then (b_n) converges to L.