Behavioral Biometrics and Context Analytics

Re-inventing authentication using Python

Jesus Solano
Data Scientist

Risk-based static authentication in web applications with behavioral biometrics and session context analytics

Jesus Solano, Luis Camacho, Alejandro Correa, Claudio Deiro, Javier Vargas, and Martín Ochoa

> Cyxtera Technologies first.last@cyxtera.com

Abstract. In order to improve the security of password-based authentication in web applications, it is a common industry practice to profile users based on their sessions context, such as IP ranges and Browser type. On the other hand, behavioral dynamics such as mouse and keyword features have been proposed in order to improve authentication, but have been shown most effective only in continuous authentication scenarios. In this paper we propose to combine both fingerprinting and behavioral dynamics (for mouse and keyboard) in order to increase security of login mechanisms. We do this by using machine learning techniques that aim at high accuracy, and only occasionally raise alarms for manual inspection. Our combined approach achieves an AUC of 0.957. We discuss the practicality of our approach in industrial contexts.

Keywords: behavioral dynamics, Static Authentication, Machine Learning

1 Introduction

With the increasing popularity of web services and cloud-based applications, we have also seen an increase on attacks to those platforms in the past decade. Several of those publicly known attacks have involved stealing of authentication credential to services (see for instance [10]). In addition to this, passwords are

Risk-based static authentication in web applications with behavioral biometrics and session context analytics

Jesus Solano, Luis Camacho, Claudio Deiro, Javier Vargas, Alejandro Correa, Martin Ochoa

17th International Conference on Applied Cryptography and Network Security

Best workshop paper award

1st International Workshop on Security in Machine Learning and its Applications

ACNS 2019

PASSWORD AUTHENTICATION IS NOT ENOUGH ANYMORE!

Even the "strongest" password can be stolen or broken

Todays Password Model

Passwords are hard for humans to remember – but easy for computers to guess.

Passw

huma

easy

Today: MY PASSWORD IS NO STRONG ENOUGH?

How are online services protecting identities?

Current Approaches

Password Strength

Secrets Based on Challenges

Captcha to Identify Human vs Bot

Current Approaches

Password Strength

Secrets Based on Challenges

Captcha to Identify Human vs Bot

Current Approaches

Password Strength

Secrets Based on Challenges

Captcha to Identify Human vs Bot

Up and Coming Approaches

Continuous Authentication

Connection Behavior

Validating Users' Identity

Context-Based Authentication

Web-based fingerprinting

Connection features at each login request

Storage of users' pattern history

Context-Based Authentication

Device Fingerprinting for Augmenting Web Authentication: Classification and Analysis of Methods

Furkan Alaca

P.C. van Oorschot

School of Computer Science Carleton University, Ottawa, Canada

Design of a Risk Based Authentication System using Machine Learning Techniques

Mohammed Misbahuddin¹, B S Bindhumadhava², B. Dheeptha³

^{1,2}Computer Networks and Internet Engineering (CNIE) Division,
Centre for Development of Advanced Computing, Electronics City, Bangalore, India – 560100

³Dept. of Computer Science & Engineering, Sasta University, Thanjavur, Tamil Nadu – India - 613402

misbah@cdac.in, bindhu@cdac.in, dheepthab1210@gmail.com

17' Alaca et al.

- Explores, summarizes and classifies
 29 device fingerprinting
 mechanism for authentication.
- Combining more vectors tends to improve spoofing resistance.
- Trade-off features vs intrusiveness

17' Misbahuddin et al.

- Adaptative authentication model with a user profile analyzer.
- One-class SVM to learn patterns from legitimate sessions.

Behavioral Biometrics

Long time frames required to achieve high accuracy

Used for continuous authentication, **not** logins

Privacy issues

Increasing privacy reduces accuracy

Behavioral Biometrics

Combining Keystroke and Mouse Dynamics for Continuous User Authentication and Identification

Soumik Mondal and Patrick Bours

Norwegian University of Science and Technology (NTNU)

Teknologivegen 22, 2815 Gjøvik, Norway

{soumik.mondal, patrick.bours}@ntnu.no

Combining Mouse and Keystroke Dynamics Biometrics for Risk-Based Authentication in Web Environments

16' Mondal et al.

- Keystrokes and mouse dynamics for continuous authentication.
- Identification accuracy of 62.2 %
- · Focus on continuous identification.

12' Traore et al.

- Web environments characterized by the limited amount of keystrokes and mouse
 - Mouse dynamics and keystroke dynamics biometrics in a multimodal framework.

MEANWILE IN REAL LIFE ...

Data From The Wild

Behavioral Data

TWOS

320 hours of human-computer interaction in a gamified environment

Context Data

Financial Clients Logins

Data from more than 2 million real users, collected by our company's products

Feature Extraction

$$Win = \frac{75}{100} Mac = \frac{13}{100} \text{ ChromeOS} = \frac{10}{100} \text{ iOS} = \frac{2}{100}$$

Win=
$$\frac{100}{100}$$
 $Mac = \frac{25}{100}$
ChromeOS= $\frac{12}{100}$
 $iOS = \frac{2}{100}$

Session Context

Financial Clients Logins

Data from more than 2 million real users, collected by our company's products

Feature Extraction

$$Win = \frac{75}{100} Mac = \frac{13}{100} \text{ ChromeOS} = \frac{10}{100} \text{ iOS} = \frac{2}{100}$$

Win=
$$\frac{100}{100}$$
 $Mac = \frac{25}{100}$
ChromeOS= $\frac{12}{100}$
 $iOS = \frac{2}{100}$

Session Context

Testing Context Based Authentication - On Its Own

Good performance only at lower thresholds

High sensitivity leads high misclassification

Testing Context Based Authentication - On Its Own

Decision Threshold	Precision	Accuracy	Recall
0.3	0.948	0.750	0.697
0.5	0.972	0.743	0.668
0.7	0.986	0.725	0.633

Sensitive to device impersonation

Behavioral Data

TWOS

320 hours of human-computer interaction in a gamified environment

Feature Extraction

...But this data does not come from logins

Behavioral Data

Feature Extraction

Testing Behavioral Biometrics – On Its Own

Better than state-of-art separability performance

Best classification threshold

Testing Behavioral Biometrics - On Its Own

Decision Threshold	Precision	Accuracy	Recall
0.3	0.862	0.725	0.743
0.5	0.932	0.680	0.607
0.7	0.972	0.572	0.427

- Accurate but sensitive on training data
- May produce a high number of false positives

Who are we defending users from?

Attack Types

Proposed Model

Enhanced Risk-Based Authentication

Web-Based Fingerprinting

October 2019

Parametric linear combination of both machine learning algorithm outputs

Proposed Model Results

Proposed Model Results

Decision Threshold	F1-Score	Precision	Accuracy	Recall
Behavioral	0.798	0.862	0.725	0.743
Context-Based	0.803	0.948	0.750	0.697
Behavioral + Context-Based	0.939	0.937	0.910	(0.940)

- ✓ Reduce friction by reducing false positives
- ✓ Increase security by reducing the number of false negatives
- ✓ Increase robustness of identity verification focused on the user

Conclusions

- ✓ The proposed model outperforms both individual models.
- ✓ Our proposed model reduces friction and increases security in static authentication.
- ✓ Our proposed model is easily extensible to continuous authentication.

Takeaways

Everyone's behavior is a reflection of their identity – learn from it!

Reimagining security is about more certainty and less friction.

Python is a tool to make the limitless of science a reality – play with it!

Question & Answers

Jesus Solano Data Scientist

linkedin.com/in/jesus-solano-go Jesus.solano@Cyxtera.com

Cyxtera