

to offer one's own relatively worthless words, opinions, or services in order to attract others' more valuable contributions

reasons why you should NOT take the course (if at all possible)

- your lecturer is an absolute beginner, just like many of you
- this course is very demanding, thus no easy credits
- this course is neither about mathematics, nor about programming
- excellent skills in calculus and linear algebra are crucial
- linear programming is not strictly required as a prerequisite, but you will miss a lot of motivation and experience if you have not learned it

despite of all the disappointments, you are guaranteed to **make great progress** by working hard through the course

the original blue-covered version (uploaded on BB) shall prevail in case of discrepancy

how to achieve the most from the course

- read textbook carefully
- solve as many exercises as possible
- ▶ attend lectures and participate
- complete group project and exam

the most important ever extremely important very important important

regular performance: 10%

- weekly suggested exercises (not for submission, solutions will be provided)
- biweekly reading report (due on Sundays of even-numbered weeks except week 16)
- lecture attendance (penalty for missing lectures)

group project: 20%

- start to search for possible topics as early as possible
- ▶ tentative presentation date: June 1 (week 16)
- project report due on June 5 (week 16)

unit tests: 30%

- ▶ a total of 3 tests lasting for approximately 45 minutes each
- tentative test dates: March 16 (week 5), April 13 (week 9), May 11 (week 13)

final exam: 40%

tentative schedule (subject to change)

week numbers	book contents	extra activities
1	1.1 - 1.6, 2.1 - 2.2	
2	2.3 - 2.6, 3.1	
3	3.2 - 3.6	
4	4.1 – 4.3	
5	4.4 - 4.5	unit test
6	4.6 - 4.7, 5.1	
7	5.2 - 5.9	
8	6.1 - 6.5	
9	7.1 – 7.5	unit test
10	8.1 – 8.8, C.1	
11	C.2 – C.5, 9.1 – 9.3	
12	9.4 - 9.7	
13	10.1 - 10.3	unit test
14	10.4, 11.1 – 11.3	
15	11.4 - 11.8	
16	N/A	project presentations

Chapter 1 Introduction

Last update on 2022-02-23 19:04

Table of contents

Mathematical optimization

Least-squares and linear programming

Convex optimization

Nonlinear optimization

Least-squares and linear programming

Convex optimization

Nonlinear optimization

(mathematical) optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \leq b_i, \quad i=1,\cdots,m$

- optimization variables $x = (x_1, \dots, x_n)$
- ▶ objective function $f_0: \mathbb{R}^n \to \mathbb{R}$
- ▶ constraint functions $f_i: \mathbb{R}^n \to \mathbb{R}, \quad i = 1, \dots, m$

optimal solution x^*

the vector x that gives the smallest objective value among all vectors satisfying the constraints

Examples

portfolio optimization

- variables: amounts invested in different assets
- constraints: budget, max/min investment per asset, minimum return
- objective: overall risk or return variance

device sizing in electronic circuits

- variables: device widths and lengths
- constraints: manufacturing limits, timing requirements, maximum area
- objective: power consumption

data fitting

- variables: model parameters
- constraints: prior information, parameter limits
- objective: measure of misfit or prediction error

Solving optimization problems

general optimization problems

- very difficult to solve
- methods involve some compromises (e.g. very long computation time, or not always fining the solution)

exceptions: certain problem classes can be solved efficiently and reliably

- least-square problems
- linear programming problems
- convex optimization problems

Least-squares and linear programming

Convex optimization

Nonlinear optimization

minimize
$$||Ax - b||_2^2$$

solving least-squares

- ▶ analytic solution: $x^* = (A^T A)^{-1} A^T b$
- reliable and efficient algorithms and software
- ▶ computation time proportional to n^2k (when $A \in \mathbb{R}^{k \times n}$); less if structured
- a mature technology

using least-squares

- least-squares problems are easy to recognize
- a few standard techniques increase flexibility (e.g. including weights, adding regularization terms)

Linear programming

minimize
$$c^T x$$

subject to $a_i^T x \le b_i$, $i = 1, \dots, m$

solving linear programs

- ▶ no analytical formula for solution
- reliable and efficient algorithms and software
- **computation time proportional to** n^2m if $m \ge n$; less if structured
- a mature technology

using linear programming

- no as easy to recognize as least-squares problems
- ▶ a few standard tricks used to convert problems into linear programs (e.g. problems involving ℓ_1 or ℓ_∞ -norms, piecewise linear functions)

Least-squares and linear programming

Convex optimization

Nonlinear optimization

Convex optimization problems

minimize
$$f_0(x)$$

subject to $f_i(x) \leq b_i, \quad i=1,\cdots,m$

objective and constraint functions are convex

$$f_i(\alpha x + \beta y) \le \alpha f_i(x) + \beta f_i(y)$$

if
$$\alpha, \beta \geq 0$$
 and $\alpha + \beta = 1$

includes least-squares problems and linear programs as special cases

solving convex optimization problems

- no analytical solution
- reliable and efficient algorithms
- ▶ computation time (roughly) proportional to $\max\{n^3, n^2m, F\}$ where F is the cost of evaluating f_i 's and their first and second derivatives
- almost a technology

using convex optimization

- often difficult to recognize
- many tricks for transforming problems into convex form
- surprisingly many problems can be solved via convex optimization

Example

m lamps illuminating n (small and flat) patches

intensity I_k at patch k depends linearly on lamp powers p_j

$$I_k = \sum_{j=1}^m a_{kj} p_j, \qquad a_{kj} = r_{kj}^{-2} \max\{\cos \theta_{kj}, 0\}$$

problem: achieve desired illumination I_{des} (minimizing the maximum percentage deviation/error) with bounded lamp powers

$$\begin{array}{ll} \text{minimize} & \max\limits_{1 \leq k \leq n} \big|\log I_k - \log I_{\mathsf{des}}\big| \\ \\ \text{subject to} & 0 \leq p_j \leq p_{\mathsf{max}}, \qquad j = 1, \cdots, m \end{array}$$

possible solutions

- 1. use uniform power $p_i = p$, vary p and plot the function
- 2. use least-squares

minimize
$$\sum_{k=1}^{n} (I_k - I_{\text{des}})^2$$

round
$$p_j$$
 if $p_j > p_{max}$ or $p_j < 0$

3. use weighted least-squares

minimize
$$\sum_{k=1}^{n} (I_k - I_{des})^2 + \sum_{j=1}^{m} w_j (p_j - p_{max}/2)^2$$

iteratively adjust weights w_j until $0 \le p_j \le p_{\mathsf{max}}$

4. use linear programming

$$\begin{array}{ll} \text{minimize} & \max\limits_{1 \leq k \leq n} \left| I_k - I_{\mathsf{des}} \right| \\ \\ \text{subject to} & 0 \leq p_j \leq p_{\mathsf{max}}, \qquad j = 1, \cdots, m \end{array}$$

which can be solved via linear programming

5. use convex optimization: equivalent formulation of the problem

$$\begin{array}{ll} \text{minimize} & \max\limits_{1 \leq k \leq n} h(I_k/I_{\mathsf{des}}) \\ \\ \text{subject to} & 0 \leq p_j \leq p_{\mathsf{max}}, \qquad j = 1, \cdots, m \end{array}$$

with $h(u) = \max\{u, 1/u\}$, implying the objective function is convex

exact solution obtained with effort \approx modest factor \times least-squares effort

additional constraints: does adding either of below complicate the problem

- 1. no more than half of total power is in any 10 lamps
- 2. no more than half of the lamps are on $(p_i > 0)$
- ▶ answer: with the first still easy to solve, with the second extremely difficult
- moral: (untrained) intuition does not always work; without the proper background very easy problems can appear quite similar to very difficult problems

Least-squares and linear programming

Convex optimization

Nonlinear optimization

Nonlinear optimization

traditional techniques for general nonconvex problems involve compromises

local optimization methods

- ▶ find a point that minimizes the objective function among feasible points near it
- ► fast, can handle large problems
- require initial guess
- provide no information about distance to global optimum

global optimization methods

- find the global solution
- worst-case complexity grows exponentially with problem size

the above algorithms are often based on solving convex subproblems roles of convex optimization in nonconvex problems

- initialization for local optimization
- convex heuristics for nonconvex optimization
- bounds for global optimization

Least-squares and linear programming

Convex optimization

Nonlinear optimization

Course outline

theory

- basic convex analysis
- recognize and formulate problems as convex optimization problems
- Lagrangian duality, characterize optimal solutions

applications

probability and statistics, computational geometry, data fitting

algorithms

- problem types: unconstrained, equality constrained, inequality constrained
- ▶ algorithms: Newton's algorithm, interior-point methods

Brief history of convex optimization

theory (convex analysis): ca 1900-1970

algorithms

- ▶ 1947: simplex algorithm for linear programming (Dantzig)
- ▶ 1960s: early interior-point methods (Fiacco & McCormick, Dikin, ...)
- ▶ 1970s: ellipsoid method and other subgradient methods
- ▶ 1984: polynomial-time interior-point methods for linear programming (Karmarkar)
- ▶ 1994: polynomial-time interior-point methods for nonlinear convex optimization (Nesterov & Nemirovski)

applications

- before 1990: mostly in operations research; few in engineering
- since 1990: many new applications in engineering (control, signal processing, communications, circuit design, ...); new problem classes (semidefinite and second-order cone programming, robust optimization, ...)

