

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

Disciplina de Bases de Dados

Ano Letivo de 2023/2024

Gestão de Estufas

8220229 | Miguel Tavares

8220805 | Francisco Costa

8220191 | Bruno Ferreira

Maio, 2024

Data de Receção	
Responsável	
Avaliação	
Observações	

Gestão de Estufas

8220229 | Miguel Tavares 8220805 | Francisco Costa 8220191 | Bruno Ferreira

Maio. 2024

Dedicatória

Gostaríamos de expressar a nossa gratidão ao professor de Base de Dados pelo suporte fornecido ao longo deste projeto e pelos conhecimentos transmitidos, que foram fundamentais para o desenvolvimento bem-sucedido deste trabalho.

Resumo

O Trabalho Prático "Gestão de Estufas" foi proposto pela Unidade Curricular de Bases de Dados da Escola Superior de Tecnologia e Gestão para o ano letivo de 2023/2024. O objetivo é criar uma base de dados para informatizar a gestão de estufas de uma empresa, facilitando o registo e consulta de informações sobre plantas, legumes e frutas.

O projeto envolve:

Coleta, armazenamento e organização de dados necessários para a construção da base de dados.

Modelo Conceitual: Foco nas entidades e seus relacionamentos, conforme a metodologia de desenho de bases de dados ensinada nas aulas.

Modelo Lógico: Apresentação do modelo lógico, com validações e verificações usando a técnica de normalização.

Modelo Físico: Implementação da base de dados final no Microsoft SQL Server, incluindo tipos de dados, triggers, stored procedures, functions e views.

Os dados a serem registados incluem detalhes sobre a plantação e colheita, quantidade de sementes e consumo de produtos auxiliares. Consultas específicas devem ser atendidas, como produtos colhidos no mês anterior e quantidade semeada por trimestre.

Conteúdo

R	esumo		ii
ĺn	dice d	e Figuras	iv
ĺn	dice d	e Tabelas	vi
1.	Inti	odução	1
1.	.1	Contextualização	1
	1.2	Apresentação do Caso de Estudo	1
	1.3	Motivação e Objetivos	3
	1.4	Estrutura do Relatório	3
2.	Cor	nstrução do Modelo Concetual	4
	2.1	Identificação das entidades	4
	2.2	Identificação de relacionamentos e respetiva multiplicidade	5
	2.3	Identificação e associação de atributos a entidades ou relacionamentos	6
	2.4	Identificação dos domínios de atributos	. 10
	2.5	Escolha das chaves candidatas, primárias e alternativas	. 11
	2.6	Verificação de redundância no modelo	. 12
	2.7	Validação das transações	. 13
	2.8 Va	alidação do modelo com o utilizador	. 13
3.	Coi	nstrução do modelo lógico	. 14
	3.1 D	erivação de relações para modelo de dados lógico	. 14
	3.2 M	odelo de dados lógico resultante	. 18
	3.3 Va	alidar modelo lógico com Normalização	. 19
	Mode	elo de dados lógico no final da normalização	. 28
	3.4 Va	alidar novamente o modelo com transações	. 29
	3.5 Id	entificar Restrições de Integridade	. 29
	3.6 Re	egras de negócio	. 32
	3.7 Va	alidação do modelo com o utilizador	. 33
	3.8 V	erificação do provável crescimento futuro	. 33
4.	Coı	nstrução do modelo físico	.34
	4.1 Cr	iação das tabelas no SQL Server Management Studio	. 35
		iação das procedures de CUD (Create, Update, Delete) no SQL Server Management	
)	
		onsultas propostas	
		iggers	
		QL SERVER AGENT	
5	Cor	oclusões e Trahalho Futuro	58

Bibliografia	59
Referências WWW	60
Lista de Siglas e Acrónimos	61

Índice de Figuras

Figura 1 - Primeiro esboço do Modelo Concetual	6
Figura 2 - Esboço do modelo concetual com chaves primárias	11
Figura 3 - Modelo lógico de dados com todos os atributos	18
Figura 4 - Modelo logico de dados lógico depois da normalização	28
Figura 5 - Diagrama ER do modelo fisico noSQL	34
Figura 6 - Create Table Estufa	35
Figura 7 - Create Table Secção	36
Figura 8 - Create Table Tipo	37
Figura 9 - Create Table Produto	37
Figura 10 - Create Table Plantio	38
Figura 11 - Create Table Plantio Consumivel	39
Figura 12 - Create Table Consumivel	40
Figura 13 - Create Table Colheita	40
Figura 14 - Create Table Funcionario	41
Figura 15 - Procedure Atualizar Colheita	42
Figura 16 - Procedure Eliminar Colheita	43
Figura 17 - Procedure Inserir Colheita	43
Figura 18 - Procedure Atualizar Estufa	44
Figura 19 - Procedure Eliminar Estufa	44
Figura 20 - Procedure Inserir Estufa	45
Figura 21 - Procedure Atualizar Plantio	46
Figura 22 - Procedure Eliminar Plantio	46
Figura 23 - Procedure Inserir Plantio	47
Figura 24 - Procedure Reverter Plantio	47
Figura 25 - Consulta ' Quais os produtos colhidos no mês anterior'	48
Figura 26 - Resultado exemplo da consulta ' Quais os produtos colhidos no mês anterior'	48
Figura 27 - Consulta ' Qual a quantidade semeada por trimestre por produto no último ano'.	48

Figura 28 - Resultado exemplo ' Qual a quantidade semeada por trimestre por produto no últi	imo
ano'	. 48
Figura 29 - Consulta 'Lista dos produtos com maior quantidade colhida no ano de 2018'	. 48
Figura 30 - Resultado exemplo da consulta lista dos produtos com maior quantidade colhida	ı no
ano de 2018'	. 48
Figura 31 - Consulta 'vista geral da agricultura'	. 49
Figura 32 - Exemplo de resultado da consulta 'vista geral agricultura'	. 49
Figura 33 - trigger 'verificar area da estufa'	. 50
Figura 34 - Trigger 'limite secções estufa'	. 51
Figura 35 - Trigger Verificar Tipo	. 52
Figura 36 - Trigger Limite Produto / Secção	. 53
Figura 37 - Trigger Limite Plantações Por Secção	. 54
Figura 38 - Trigger Atualizar Data Fim Plantio	. 55
Figura 39-Step do SQL SERVER AGENT	. 56
Figura 40-Agendamento para execução do Job	. 57

Índice de Tabelas

Tabela 1 - Identificação das entidades	4
Tabela 2 - Identificação de relacionamentos e respetiva multiplicidade	5
Tabela 3 - Identificação e associassão de atributos da entidade Estufa	6
Tabela 4 - Identificação e associassão de atributos da entidade Secção	7
Tabela 5 - Identificação e associassão de atributos da entidade Tipo	7
Tabela 6 - Identificação e associassão de atributos da entidade Produto	7
Tabela 7- Identificação e associassão de atributos da entidade Plantio	8
Tabela 8 - Identificação e associassão de atributos da entidade Colheita	8
Tabela 9 - Identificação e associassão de atributos da entidade Consumivel	9
Tabela 10 - Identificação e associassão de atributos da entidade Funcionario	9
Tabela 11 - Domínios de atributos	10
Tabela 12 - Identificação das chaves primárias e chaves candidatas	11
Tabela 13 - Documento registo de um funcionário	19
Tabela 14 - Forma não normalizada – Registo Funcionário	20
Tabela 15 - 1ª forma normalizada - Registo de funcionário	20
Tabela 16 - Documento do relatório da plantação	22
Tabela 17 - Forma não normalizada - relatório plantio	23
Tabela 18 - 1ª forma normalizada - relatório plantio	23
Tabela 19 - Documento relatório colheitas de uma plantação	25
Tabela 20 - Forma não normalizada - relatório colheitas de uma plantação	26
Tabela 21 - 1ª forma normalizada - Relatório colheitas de uma plantação	26
Tabela 22 - Entidade Estufa e as suas restrições de integridade	29
Tabela 23 - Entidade Secção e as suas restrições de integridade	29
Tabela 24 - Entidade Tipo e as suas restrições de integridade	30
Tabela 25 - Entidade Produto e as suas restrições de integridade	30
Tabela 26 - Entidade Plantio e as suas restrições de integridade	30
Tabela 27 - Entidade Colheita e as suas restrições de integridade	31
Tabela 28 - Entidade Consumivel e as suas restrições de integridade	31
Tabela 29 - Entidade Plantio_Consumivel e as suas restrições de integridade	31
Tabela 30 - Entidade Funcionario e as suas restrições de integridade	32

1. Introdução

1.1 Contextualização

O presente projeto consiste no desenvolvimento de uma base de dados para a gestão de estufas de uma empresa, conforme proposto aos alunos da unidade curricular de Bases de Dados. A necessidade principal é informatizar os processos de registo e consulta de informações sobre plantas, legumes e frutas, otimizando a gestão e armazenamento de dados.

Inicialmente, será realizada uma análise detalhada dos requisitos fornecidos. Em seguida, seguindo a metodologia de desenho de Bases de Dados abordada nas aulas, será elaborado o modelo conceitual, que servirá como suporte inicial do projeto, focando nas entidades e seus relacionamentos.

Após a elaboração do modelo conceitual, será desenvolvido o modelo lógico, que incluirá um conjunto de validações e verificações utilizando a técnica de normalização aprendida em sala de aula. Finalmente, será apresentado o modelo físico, que consiste na implementação final da base de dados. Para isso, será utilizado o Microsoft SQL Server, incluindo a criação de tipos de dados, triggers, stored procedures, functions e views necessárias para atender aos requisitos e consultas propostas.

1.2 Apresentação do Caso de Estudo

Uma empresa especializada em gestão agrícola contatou a ESTG com um desafio para os alunos da unidade curricular de Bases de Dados. O desafio consiste no desenvolvimento de uma base de dados que armazenará todas as informações relacionadas à gestão de estufas, com o

objetivo de informatizar e otimizar os processos de registo e consulta de dados sobre plantas, legumes e frutas. As especificações básicas são as seguintes:

Organização das Estufas:

- As estufas são divididas em secções: Plantas Aromáticas, Legumes e Frutas. Cada estufa pode ter no máximo 3 secções
- Cada secção pode conter até 10 produtos diferentes, ou seja, cada secção só pode ter um número de plantações indefinido, mas no máximo só pode plantar 10 produtos diferentes no mesmo intervalo de tempo

Registo de Plantação e Colheita:

- Registar informações sobre a plantação e colheita dos produtos.
- Incluir detalhes sobre a quantidade de sementes utilizadas e o consumo de produtos auxiliares (adubo, água, pesticidas, etc.).

Para guiar a construção do protótipo da base de dados, foram formuladas algumas questões de consulta para garantir que o sistema possa responder adequadamente às necessidades. As consultas são as seguintes:

- Identificar todos os produtos que foram colhidos no mês anterior.
- Listar a quantidade de sementes utilizadas por produto em cada trimestre do último ano.
- Identificar quais produtos tiveram a maior quantidade colhida no ano de 2018.

1.3 Motivação e Objetivos

Aos alunos da unidade curricular de Bases de Dados foi proposto pelos docentes responsáveis o desenvolvimento de um projeto voltado para a criação de uma base de dados para a gestão de estufas. Este projeto permite aplicar na prática os conhecimentos adquiridos em sala de aula, consolidando o aprendizado e contribuindo para o desenvolvimento de competências essenciais para o futuro profissional.

Para atingir os objetivos do projeto, consideramos os requisitos apresentados no enunciado. Foi realizado um planejamento meticuloso dos métodos a serem utilizados, visando a elaboração de uma base de dados eficiente e robusta. Pretendemos que o projeto resulte em uma solução que satisfaça plenamente as necessidades de gestão de uma empresa de estufas, conforme especificado no enunciado e com base em cenários reais.

1.4 Estrutura do Relatório

Durante os próximos capítulos deste relatório, serão apresentadas as fases da metodologia de desenho de bases de dados, conforme abordadas nas aulas, incluindo os modelos conceitual, lógico e físico. Serão detalhadas as entidades, seus atributos, relacionamentos, multiplicidade, domínio, chaves primárias e candidatas, além de consultas e triggers para o melhor funcionamento da base de dados.

2. Construção do Modelo Concetual

2.1 Identificação das entidades

Dado o problema proposto encontramos as seguintes entidades:

Entidade	Descrição	Apelido	Ocorrência
Estufa	Uma estrutura projetada para o		Pode haver várias estufas em uma
	cultivo e proteção de plantas em		empresa, então podemos
	condições ambientais		considerar uma ocorrência múltipla.
	controladas.		
Secção	Segmento ou área específica		Cada estufa pode conter várias
	designada para um tipo		seções para diferentes tipos de
	específico de planta ou processo		plantas, então podemos ter várias
	dentro de uma estrutura ou área		seções por estufa. Máximo 3.
	maior.		
Tipo	Categoria que define a natureza		Cada secção e cada produto
	de um produto ou secção, como		pertencem a um único tipo.
	Plantas Aromáticas, Legumes,		
	Frutas, etc.		
Produto	Itens que são produzidos a partir		Cada seção pode cultivar até 10
	da plantação, incluindo, frutas,		produtos diferentes ao mesmo
	vegetais, flores, etc.		tempo.
Plantio	Uma área de terra onde as		Cada produto pode ser plantado em
	plantas são cultivadas em grande		uma área específica, então
	escala.		podemos ter vários plantio por
			produto
Consumível	Produtos consumíveis		Cada consumível pode estar
	diretamente, associados aos		associado a vários plantios, então
	plantios.		podemos ter vários consumíveis
			por plantio.
Colheita	O processo ou período de coleta		Cada produto pode ser colhido uma
	de culturas.		vez, então podemos ter uma
			colheita por produto.
Funcionário	Pessoa responsável pelo		Cada funcionário trabalha em uma
	trabalho nas estufas.		única secção, mas uma secção
			pode ter vários funcionários.

Tabela 1 - Identificação das entidades

2.2 Identificação de relacionamentos e respetiva multiplicidade

Entity Name	Multiplicity	Relationship	Multiplicity	Entity Name
Estufa	11	possui	13	Secção
	13	Pertence a	11	Estufa
	11	contém	0*	Plantio
Secção	1*	tem	11	Tipo
	11	contém	1*	Funcionario
Tipo	11	pertence	1*	Secção
	11	tem	1*	Produto
	0*	utiliza	0*	Consumível
	11	resulta	0*	colheita
Plantio	1*	forma	11	produto
	0*	Pertence a	11	Secção
	11	É formado	1*	Plantio
Produto	1*	pertence	11	Tipo
colheita	0*	associada	11	plantio
Consumível	0*	É requerido	0*	plantio
Funcionário	1*	Trabalha em	11	Secção

Tabela 2 - Identificação de relacionamentos e respetiva multiplicidade

De maneira que seja mais percetível a identificação dos relacionamentos e respetiva multiplicidade é representado um primeiro esboço do diagrama do modelo concetual.

Figura 1 - Primeiro esboço do Modelo Concetual

2.3 Identificação e associação de atributos a entidades ou relacionamentos

Depois de encontradas as entidades e suas relações chegamos ao ponto da identificação dos atributos para a respetiva entidade

Entidade	Atributo	Descrição	Domínio	Null	Multivalores
	Id_Estufa	Identificador único da estufa	idType	Não	Não
	Nome	Nome da estufa	nameType	Não	Não
	Localização	Localização geográfica da estufa	nameType	Não	Não
Estufa	area	Área total da estufa em metros quadrados	areaType	Não	Não
	Temperature	Faixa de temperatura controlada dentro da estufa	MedidaType	Não	Não
	Umidade	Nível de umidade controlado dentro da estufa	MedidaType	Não	Não

Tabela 3 - Identificação e associassão de atributos da entidade Estufa

Descrição **Entidade** Atributo Domínio Null Multivalores Identificador único da Id Seccao idType Não Não secção Breve descrição do descricao TypeNão Descrição Não Secção tipo de plantas cultivadas na secção Área da secção em areaType Não Não area metros quadrados

Tabela 4 - Identificação e associassão de atributos da entidade Secção

Entidade	Atributo	Descrição	Domínio	Null	Multivalores
Tipo	ld_Tipo	Identificador único do tipo	idType	Não	Não
	nome	Nome do tipo do produto/secção	nomeType	Não	Não

Tabela 5 - Identificação e associassão de atributos da entidade Tipo

Entidade	Atributo	Descrição	Domínio	Null	Multivalores
	Id_Produto	Identificador único da produto	idType	Não	Não
	Nome	Nome do produto	nameType	Não	Não
Produto	Decricao	Descrição detalhada do produto	descricaoType	Não	Não
	duracao	Duração em dias que o produto demora a ser produzido	numType	Não	Não

Tabela 6 - Identificação e associassão de atributos da entidade Produto

Entidade	Atributo	Descrição	Domínio	Null	Multivalores
	Id_Plantio	Identificador único	idType	Não	Não
		do plantio			
	datalnicioPlantio	Data do inicio da	dataType	Não	Não
		plantação			
	dataFimPlantio	Data do fim da	dataType	Sim	Não
		plantação			
	quantidadeSementes	Quantidade de	numType	Não	Não
		sementes			
		plantadas			
Plantio	Colhido	Indica se a	booleanType	Não	Não
		plantação já foi			
		totalmente colhida			
	emUso	Indica se a	booleanType	Não	Não
		plantação está em			
		uso			

Tabela 7- Identificação e associassão de atributos da entidade Plantio

Entidade	Atributo	Descrição	Domínio	Null	Multivalores
	Id_Colheita	Identificador único da colheita	idType	Não	Não
Colheita	dataColheita	Data da colheita	dataType	Não	Não
	quantidadeColhida	Quantidade de produto colhido	numType	Não	Não
	observações	Observação da colheita	descricaoType	Não	Não

Tabela 8 - Identificação e associassão de atributos da entidade Colheita

Entidade	Atributo	Descrição	Domínio	Null	Multivalores
	Id_Consuivel	Identificador	idType	Não	Não
		único do			
		consumível			
	Nome	Nome do	nameType	Não	Não
Consumivel		consumível (ex:			
		adubo, pesticida,			
		água)			
	descricao	Descrição	descricaoType	Não	Não
		detalhada do			
		consumível			

Tabela 9 - Identificação e associassão de atributos da entidade Consumivel

Entidade	Atributo	Descrição	Domínio	Null	Multivalores
	Id_Funcionario	Identificador único	idType	Não	Não
		do funcionario			
	Nome	Nome do	nameType	Não	Não
		funcionario			
	apelido	Apelido do	nameType	Não	Não
		funcionário			
	morada	Morada	nameType	Não	Não
		funcionário			
Funcionario	dataNascimento	Data de	dataType	Não	Não
		nascimento do			
		funcionário			
	telemovel	Número de	telfType	Não	Não
		telemovel			
	email	Email do	emailType	Não	Não
		funcionário			

Tabela 10 - Identificação e associassão de atributos da entidade Funcionario

2.4 Identificação dos domínios de atributos

Domínio	DataType	Restrições
idType	Nvarchar(15)	Nenuma
nameType	Varchar(50)	Nenhuma
areaType	Decimal(5,2)	Tem de ser um valor maior que 0.
numType	Int	Tem de ser um valor positivo ou 0
medidaType	int	Nenhuma
descricaoType	Varchar(200)	Nenhuma
dataType	date	Nenhuma
boolenaType	Bit	Deve ser true(1) ou false(0) DEFAULT 0
telfType	Varchar(9)	Tem de ter 9 digitos
emailType	Varchar(30)	Tem de conter um @

Tabela 11 - Domínios de atributos

2.5 Escolha das chaves candidatas, primárias e alternativas

Entidade	Chave Primária	Chave(s) Candidata(s)
Estufa	Id_Estufa	-
Secção	Id_Seccao	-
Tipo	Id_Tipo	Nome
Produto	Id_Produto	-
Plantio	Id_Plantio	-
Consumivel	Id_Consumivel	-
Colheita	Id_Colheita	-
Funcionario	Id_Funcionario	-

Tabela 12 - Identificação das chaves primárias e chaves candidatas

Foi reconstruído o modelo concetual agora com as chaves primárias.

Figura 2 - Esboço do modelo concetual com chaves primárias

2.6 Verificação de redundância no modelo

O processo de verificação de redundância no modelo de dados envolve várias etapas para garantir que não haja duplicações desnecessárias e que a integridade dos dados seja mantida. Abaixo está um exemplo adaptado ao contexto do sistema de gestão de estufas:

Passo 1: Verificação de Relacionamentos 1:1

O primeiro passo desta etapa envolve verificar se existem entidades com um relacionamento 1:1. Na nossa base de dados não foram encontrados relacionamentos 1:1 entre entidades. Portanto, não há necessidade de ajustes neste aspeto do modelo.

Passo 2: Identificação de Relacionamentos Redundantes

O segundo passo consiste em identificar relacionamentos redundantes. Um relacionamento é considerado redundante quando transmite a mesma informação que outro relacionamento existente e não possui um propósito significativo adicional.

Ao revisar o diagrama de relacionamentos, identificamos que as entidades Estufa, Secção e Plantio estão inter-relacionadas. No entanto, essas relações não são redundantes, pois cada uma fornece informações únicas e específicas sobre a gestão das estufas. Por exemplo, a entidade Plantio possui dados sobre as plantações específicas dentro de uma Secção da Estufa, enquanto a Secção detalha as diferentes áreas dentro de uma Estufa.

Passo 3: Verificação do Propósito dos Relacionamentos (Dimensão Temporal)

O terceiro e último passo envolve a verificação do propósito dos relacionamentos, também conhecida como "dimensão temporal". É essencial considerar o contexto de cada relacionamento para determinar sua importância e evitar a remoção de relacionamentos aparentemente redundantes que são, na verdade, cruciais para o funcionamento do sistema.

Por exemplo, observamos que há dois tipos de relacionamentos que podem parecer redundantes: Plantio e Colheita. Embora ambos se relacionem à produção agrícola dentro das estufas, um está focado no início do ciclo de vida das plantas (plantio) e o outro na sua conclusão (colheita). Ambos são necessários para o controle eficaz da produção e a gestão dos ciclos de cultivo. A remoção de qualquer um desses relacionamentos comprometeria a capacidade de monitorar e gerenciar os processos de cultivo nas estufas.

Conclusão

Após a análise detalhada do modelo de dados, concluímos que:

Não existem relacionamentos 1:1 que necessitem de reavaliação.

Não foram identificados relacionamentos redundantes que transmitem a mesma informação.

Todos os relacionamentos existentes têm um propósito claro e são essenciais para o bom funcionamento do sistema de gestão de estufas.

Portanto, o modelo de dados atual é eficiente e bem estruturado, sem redundâncias desnecessárias, garantindo a integridade e a funcionalidade da base de dados.

2.7 Validação das transações

Para garantir que o modelo conceitual da base de dados desenvolvida para a gestão de estufas suporta as transações necessárias, verificaremos se as relações e entidades presentes são capazes de atender às consultas e operações esperadas.

Revemos os casos de uso exemplares para demonstrar a funcionalidade do modelo em situações práticas. Verificamos a consistência e a integridade dos dados, assegurando que todas as chaves primárias estavam corretamente definidas e que as regras de negócio eram respeitadas. Além disso, consideramos a performance do sistema, garantindo que índices apropriados foram aplicados nas colunas frequentemente consultadas.

Conclusão

O modelo conceitual atual da base de dados para a gestão de estufas é capaz de suportar todas as transações mencionadas. As entidades e seus relacionamentos fornecem uma estrutura robusta para registrar, consultar e analisar dados sobre plantações, colheitas e produtos auxiliares, atendendo aos requisitos especificados no projeto.

2.8 Validação do modelo com o utilizador

Tendo por base todos os pontos anteriores é possível dizer que o modelo é válido e cumpre todas as necessidades propostas logo é possível proceder para as próximas etapas.

3. Construção do modelo lógico

3.1 Derivação de relações para modelo de dados lógico

Neste passo, vamos derivar os relacionamentos para o modelo lógico com base no modelo conceitual apresentado. Esta derivação inclui a definição de entidades, atributos, chaves primárias, chaves estrangeiras e a tradução de relacionamentos conforme identificado no modelo conceitual.

Entidades Fortes

As entidades fortes são aquelas cuja existência não depende de outras entidades. Abaixo estão as entidades fortes identificadas, já com as chaves estrangeiras provenientes das outras entidades:

- 1. Estufa (Estufa)
 - Atributos: Id_Estufa (PK), Nome, Localizacao, Area, Temperatura, Umidade
 - Chave Primária: Id_Estufa
- 2. Secção (Secao)
 - Atributos: Id Seccao (PK), Descricao, Area, Id Estufa (FK), Id Tipo(FK)
 - Chave Primária: Id_Seccao
 - Chave Estrangeira: Id_Estufa referencia estufa (Id_Estufa)
 - Chave Estrangeira: Id_Tipo referencia Tipo (Id_Tipo)
- 3. Tipo (Tipo)
 - Atributos: Id_Tipo (PK), Nome
 - Chave Primária: Id Tipo
- 4. **Produto** (Produto)
 - Atributos: Id_Produto (PK), Nome, Descrição, Duração, Id_Tipo (FK)
 - Chave Primária: Id_Produto
 - Chave Estrangeira: Id_Tipo referencia Tipo (Id_Tipo)
- 5. Plantio (Plantio)
 - Atributos: Id_Plantio (PK), DatalnicioPlantio, DataFimPlantio,
 QuantidadeSementes, Colhido, EmUso, Id_Secao (FK), Id_Produto (FK)
 - Chave Primária: Id_Plantio
 - Chave Estrangeira: Id_Seccao referencia Seccao(Id_Seccao)
 - Chave Estrangeira: Id Produto referencia Produto (Id Produto)

6. Colheita (Colheita)

- Atributos: Id_Colheita(PK), DataColheita, QuantidadeColhida, Observaçoes,
 Id_Plantio (FK)
- Chave Primária: Id_Colheita
- Chave Estrangeira: Id_Plantio referencia Plantio(Id_Plantio)

7. Consumivel (Consumivel)

- Atributos: Id_Consumivel (PK), Nome, Descricao
- Chave Primária: Id_Consumivel
- 8. Funcionario (Funcionario)
 - Atributos: Id_Funcionario (PK), Nome, Apelido, Morada, DataNascimento,
 Telemovel, Email, Id_Seccao (FK)
 - Chave Primária: Id_Funcionario
 - Chave Estrangeira: Id_Seccao referencia Seccao(Id_Seccao)

Entidades Fracas

Tendo em conta todos os esboços apresentados anteriormente do modelo concetual podemos concluir que não existem entidades fracas

Nos próximos passos vamos proceder à identificação e avaliação dos vários tipos de relacionamentos existentes. Teremos a entidade pai e a entidade filho. À entidade filho será adicionada uma cópia da chave primária da entidade pai.

Relacionamentos 1 para Muitos (1...*)

- I. Estufa 1... Secção*
 - Entidade Pai: Estufa (Id_Estufa, Nome, Localização, Área, Temperatura, Umidade)
 - Chave Primária: Id Estufa
 - Entidade Filho: Secção (Id_Seccao, Descrição, Área, Id_Estufa)
 - Chave Primária: Id_SeccaoChave Estrangeira: Id_Estufa
- II. Tipo 1... Secção*
 - Entidade Pai: Tipo (Id_Tipo, nome)
 - Chave Primária: Id_Tipo
 - Entidade Filho: Secção (Id_Seccao, Descrição, Área, Id_Tipo)
 - Chave Primária: Id_Seccao
 - Chave Estrangeira: Id_Tipo
- III. Secção 1... Plantio*
 - Entidade Pai: Secção (Id_Seccao, Descrição, Área)
 - Chave Primária: Id Seccão
 - Entidade Filho: Plantio (Id_Plantio, dataInicioPlantio, dataFimPlantio, quantidadeSementes, Colhido, emUso, Id_Seccao)
 - Chave Primária: ID_Plantio
 - Chave Estrangeira: ID_Seccão
- IV. Plantio 1... Colheita*
 - Entidade Pai: Plantio (Id_Plantio, dataInicioPlantio, dataFimPlantio, quantidadeSementes, Colhido, emUso)
 - Chave Primária: Id Plantio
 - Entidade Filho: Colheita (Id_Colheita, dataColheita, quantidadeColhida, Observações, Id_plantio)
 - Chave Primária: Id_Colheita
 - Chave Estrangeira: Id_Plantio

V. Produto 1... Plantio*

- Entidade Pai: Produto (Id Produto, Nome, Descrição, duração)
 - Chave Primária: Id_Produto
- Entidade Filho: Plantio (Id_Plantio, dataInicioPlantio, dataFimPlantio, quantidadeSementes, Colhido, emUso, Id_Produto)
 - Chave Primária: Id_PlantioChave Estrangeira: Id_Produto

VI. Tipo 1... Produto*

- Entidade Pai: Tipo (Id_Tipo, nome)
 - Chave Primária: Id_Tipo
- Entidade Filho: Produto (Id_Produto, Nome, Descrição, duração, Id_Tipo)
 - Chave Primária: Id_Produto
 - Chave Estrangeira: Id_Tipo

VII. Secção 1... Funcionário*

- Entidade Pai: Secção (Id_Seccão, Descrição, Área)
 - Chave Primária: Id_Seccão
- Entidade Filho: Funcionário (Id_Funcionario, nome, apelido, morada, dataNascimento, telemóvel, email, Id_Seccao)
 - Chave Primária: Id_FuncionarioChave Estrangeira: Id_Seccao

Relacionamentos Muitos para Muitos (...)

- I. Plantio ... Consumível
 - Entidade Pai 1: Plantio (Id_Plantio, dataInicioPlantio, dataFimPlantio, quantidadeSementes, Colhido, emUso)
 - Chave Primária: Id_Plantio
 - Entidade Pai 2: Consumível (Id_Consumível, Nome, Descrição)
 - Chave Primária: Id_Consumivel
 - Entidade Filho: Plantio_Consumível (Id_Plantio_Consumível, Id_Plantio, Id_Consumivel, quantidade)
 - Chave Primária: Id_Plantio_Consumivel
 - Chave Estrangeiras: Id_Plantio, Id_Consumivel

3.2 Modelo de dados lógico resultante

Figura 3 - Modelo lógico de dados com todos os atributos

3.3 Validar modelo lógico com Normalização

Documento registo de	um funcionário na secção ond	e o mesmo vai trabalhar
Informação Estufa		
Id_Estufa: E1	NomeE: Estufa1	Localização: Porto
Area: 200	Temperatura: 30	Umidade: 10
Informação Secção		
Id_Seccao: S1	Descrição: secção das frutas	Area: 50
Informação funcionário		
Id_Funcionario: F200	NomeF: Rui	
Apelido: Fernandes	Morada: Rua d	da base de dados
Data Nascimento: 2/3/2000	Telemovel: 912	2345678
Email: ruif@gmail.com		

Tabela 13 - Documento registo de um funcionário

Passos de Normalização

Id Estufa – A

NomeE - B

Localizacao - C

Area - D

Temperatura - E

Umidade - F

Id_Seccao - G

Descricao - H

Area - I

Id_Funcionario - J

NomeF - K

Apelido - L

Morada-M

Data Nascimento - N

Telemovel - O

Email - P

Forma Não Normalizada

Forma inicial do documento onde há redundância e possíveis grupos repetidos. Vamos normalizar isso passo a passo.

Α	В	С	D	E	F	G	Н	1	J	K	L	M	N	0	Р
E1	Estufa1	Porto	200	30	10	S1	Secção	50	F20	Rui	Fernand	Rua	2/3	91234	ruif@g
							das		0		es	da	/20	5678	mail.co
							frutas					base	00		<u>m</u>
												de			
												dados			
										Joã	André	Rua	12/	91987	joaoa
										О		da	5/2	6543	@gmai
												base	00		I.com
												de	1		
												dados			

Tabela 14 - Forma não normalizada – Registo Funcionário

1. Primeira Forma Normal (1FN)

Α	В	С	D	Е	F	G	Н		J	K	L	M	N	0	Р
E1	Estufa1	Porto	200	30	10	S1	Secçã	50	F20	Rui	Fernand	Rua	2/3	91234	ruif@g
							o das		0		es	da	/20	5678	mail.co
							frutas					base	00		<u>m</u>
												de			
												dados			
E1	Estufa1	Porto	200	30	10	S1	Secçã	50	F20	Joã	André	Rua	12/	91987	joaoa
							o das		1	0		da	5/2	6543	@gmai
							frutas					base	00		l.com
												de	1		
												dados			

Tabela 15 - 1ª forma normalizada - Registo de funcionário

Primary key - A,G,J

Identificar dependências parciais:

2. Segunda Forma Normal (2FN)

Informação Estufa -	٨	В	С	D	Е	F		
Informação Secção - G	6 I	1	I					
Informação funcionário -	J	K		L	М	Ν	0	Р

Identificar dependências transitivas:

Não foram encontradas dependências transitivas.

3ª Forma Normal (3FN)

A terceira forma normal (3FN) elimina dependências transitivas. Nenhum atributo não chave deve depender de outro atributo não chave. Aqui, cada atributo não chave deve depender apenas da chave primária.

Com isso, podemos confirmar que as tabelas já estão em 3NF.

	Relatório da	plantação
Plantação		
Id_Plantio: P101	Data início plantio:1/3	3/2024
Quantidade sementes:500	Colhido: Não	Em uso: sim
Produto plantado		
Id_Produto: P10	Nome	eP: tomate
DescriçãoP: Variedade tomate	cereja Dura	ção: 90 dias
Id_Tipo: T3 NomeT: fruta		
Consumíveis utilizados		
Id_PlantioConsumivel: PC1	Id_Consumivel: C1	NomeC: Fertilizante A
Quantidade: 20		DescriçãoC: fertilizante orgânico
Id_PlantioConsumivel: PC2	Id_Consumivel: C2	NomeC: Fertilizante B
Quantidade: 32		DescriçãoC: fertilizante não orgânico

Tabela 16 - Documento do relatório da plantação

Passos de Normalização

Id_Plantio - A

Data início plantio- B

Quantidade sementes - C

Colhido – D

Em uso – E

 $Id_Produto - F$

NomeP – G

DescriçãoP - H

Duração – I

Id_Tipo – J

NomeT – K

Id_PlantioConsumivel - L

Quantidade - M

Id_Consumivel - N

NomeC - O

DescriçãoC - P

Forma Não Normalizada

Forma inicial do documento onde há redundância e possíveis grupos repetidos. Vamos normalizar isso passo a passo.

A	В	С	D	E	F	G	Н		J	K	L	M	N	0	Р
P1	1/3/2024	500	Não	Sim	P10	tom	Varied	90	Т3	fruta	PC1	20	C1	Fertilizan	fertilizante
01						ate	ade							te A	orgânico
							tomate								
							cereja								
															fertilizante
															não
											PC2	32	C2	Fertilizan	orgânico
														te B	

Tabela 17 - Forma não normalizada - relatório plantio

1^a Forma Normal (1FN)

A primeira forma normal (1 FN) requer que cada campo contenha apenas um valor e que cada registo seja único. Isso elimina grupos repetidos e garante a atomicidade dos dados.

Α	В	С	D	Е	F	G	Н	I	J	K	L	M	N	0	Р
P1	1/3/202	500	Nã	Sim	P1	tom	Varied	90	Т3	frut	PC1	20	C1	Fertiliz	fertiliza
01	4		0		0	ate	ade			а				ante A	nte
							tomate								orgânic
							cereja								О
P1	1/3/202	500	Nã	Sim	P1	tom	Varied	90	Т3	frut	PC2	32	C2	Fertiliz	fertiliza
01	4		0		0	ate	ade			а				ante B	nte não
							tomate								orgânic
							cereja								0

Tabela 18 - 1ª forma normalizada - relatório plantio

Primary key - A, F, J, L

Identificar dependências parciais:

A – B, C, D, E

 $F-G,\,H,\,I,\,J,\,K$

L-M, N, O, P

2ª Forma Normal (2FN)

Plantação - A B C D E
Produto plantado - F G H I J K
Consumíveis utilizados – L M N O P
Identificar dependências transitivas:
J -> K N -> O, P
3ª Forma Normal (3FN)
Tipo - J K
PK – J
Consumível referenciado (consumível)
PK - N
Plantação - A B C D E
PK - A
Produto plantado - F G H I J
PK – F FK - J
Consumíveis utilizados (PlantioConsumivel) – L M N PK – L

FK - N

Relat	ório das colheitas de uma pla	antação
Informação sobre a Plantação		
Id_Plantio: P101	Data início plantio:1/3/2024	
Quantidade sementes:500	Colhido: Não	Em uso: sim
Colheitas		
Id_Colheita: C202	Data colheita: 1/7/2024	Quantidade colhida: 450
Observações: Primeira colheita		
Id_Colheita: C203	Data colheita: 21/7/2024	Quantidade colhida: 180
Observações: Segunda colheita		
Produto colhido		
Id_Produto: P10	NomeP: toma	ate
DescriçãoP: Variedade tomate co	ereja Duração: 90	dias
Id_Tipo: T3 NomeT: fruta		

Tabela 19 - Documento relatório colheitas de uma plantação

Passos de Normalização

Id_Plantio - A

Data início plantio - B

Quantidade sementes - C

Colhido - D

Em uso – E

Id_Colheita - F

Data colheita- G

Quantidade colhida - H

Observações - I

 $Id_Produto - J$

NomeP - K

DescriçãoP – L

Duração - M

Id_Tipo - N

NomeT - O

Forma Não Normalizada

Α	В	С	D	Е	F	G	Н	1	J	K	L	M	N	0
P101	1/3/2024	500	Não	Sim	C2	1/7/	450	Primeira	P10	tomate	Variedade	90	T3	fruta
					02	202		colheita			tomate			
						4					cereja			
					C2	21/	180	Segund						
					03	7/2		а						
						024		colheita						

Tabela 20 - Forma não normalizada - relatório colheitas de uma plantação

1ª Forma Normal (1FN)

A primeira forma normal (1FN) requer que cada campo contenha apenas um valor e que cada registo seja único. Isso elimina grupos repetidos e garante a atomicidade dos dados.

Α	В	С	D	E	F	G	Н	T	J	K	L	M	N	0
P101	1/3/2024	500	Não	Sim	C202	1/7/	450	Primeira	P10	tomate	Variedade	90	Т3	fruta
						202		colheita			tomate			
						4					cereja			
P101	1/3/2024	500	Não	Sim	C203	21/7	180	Segunda	P10	tomate	Variedade	90	T3	fruta
						/202		colheita			tomate			
						4					cereja			

Tabela 21 - 1ª forma normalizada - Relatório colheitas de uma plantação

Primary key - A, F, J

Identificar dependências parciais:

A – B, C, D, E

F – G, H, I

J – K, L, M, N, O

Modelo de dados lógico no final da normalização

Figura 4 - Modelo logico de dados lógico depois da normalização

3.4 Validar novamente o modelo com transações

Após a implementação das relações normalizadas no modelo de dados, é crucial validar novamente o modelo com transações práticas para garantir a integridade e eficiência do sistema. Esta etapa envolve a execução de diversas transações que simulam operações reais para verificar a consistência dos dados e o correto funcionamento das relações estabelecidas. Em conclusão, a validação do modelo com transações práticas confirmou que a estrutura de dados desenvolvida é sólida, eficiente e adequada para suportar as operações diárias de gestão

3.5 Identificar Restrições de Integridade

de estufas, atendendo aos requisitos especificados no projeto.

Tabela: Estufa

Entidade	Atributo	Domínio	Null	Multivalores
	Id_Estufa	nvarchar(15)	Não	Não
	Nome	varchar(50)	Não	Não
	Localização	varchar(50)	Não	Não
Estufa	area	Decimal(5,2)	Não	Não
	Temperature	int	Não	Não
	Umidade	int	Não	Não

Tabela 22 - Entidade Estufa e as suas restrições de integridade

Tabela: Secção

Entidade	Atributo	Domínio	Null	Multivalores
	Id_Seccao	nvarchar(15)	Não	Não
	Descrição	Varchar(200)	Não	Não
Secção	area	decimal(5,2)	Não	Não
	ld_estufa	nvarchar(15)	Não	Não
	Id_Tipo	nvarchar(15)	Não	Não

Tabela 23 - Entidade Secção e as suas restrições de integridade

Tabela: Tipo

Entidade	Atributo	Domínio	Null	Multivalores
	Id_Tipo	nvarchar(15)	Não	Não
Tipo	nome	varchar(50)	Não	Não

Tabela 24 - Entidade Tipo e as suas restrições de integridade

Tabela: Produto

Entidade	Atributo	Domínio	Null	Multivalores
	Id_Produto	nvarchar(15)	Não	Não
	Nome	varchar(50)	Não	Não
Produto	Decricao	varchar(50)	Não	Não
	duracao	numType	Não	Não
	Id_Tipo	nvarchar(15)	Não	Não

Tabela 25 - Entidade Produto e as suas restrições de integridade

Tabela: Plantio

Entidade	Atributo	Domínio	Null	Multivalores
	Id_Plantio	nvarchar(15)	Não	Não
	datalnicioPlantio	date	Não	Não
	dataFimPlantio	date	Sim	Não
	quantidadeSementes	int	Não	Não
Plantio	Colhido	bit	Não	Não
	emUso	bit	Não	Não
	Id_Produto	nvarchar(15)	Não	Não
	Id_Seccao	nvarchar(15)	Não	Não

Tabela 26 - Entidade Plantio e as suas restrições de integridade

Tabela: Colheita

Entidade	Atributo	Domínio	Null	Multivalores
	Id_Colheita	nvarchar(15)	Não	Não
	dataColheita	date	Não	Não
Colheita	quantidadeColhida	int	Não	Não
	Observações	Varchar(200)	Não	Não
	Id_plantio	nvarchar(15)	Não	Não

Tabela 27 - Entidade Colheita e as suas restrições de integridade

Tabela: Consumivel

Entidade	Atributo	Domínio	Null	Multivalores
	Id_Consuivel	nvarchar(15)	Não	Não
Consumivel	Nome	varchar(50)	Não	Não
	descricao	varchar(200)	Não	Não

Tabela 28 - Entidade Consumivel e as suas restrições de integridade

Tabela: Plantio_Consumivel

Entidade	Atributo	Domínio	Null	Multivalores
	Id_Plantio_Consumivel	nvarchar(15)	Não	Não
Plantio_Consumivel	quantidade	int	Não	Não
	Id_Plantio	nvarchar(15)	Não	Não
	Id_Consumivel	nvarchar(15)	Não	Não

Tabela 29 - Entidade Plantio_Consumivel e as suas restrições de integridade

Tabela: Funcionario

Entidade	Atributo	Domínio	Null	Multivalores
	Id_Funcionario	nvarchar(15)	Não	Não
	Nome	varchar(50)	Não	Não
	apelido	varchar(50)	Não	Não
	morada	varchar(50)	Não	Não
Funcionario	dataNascimento	date	Não	Não
	telemovel	varchar(9)	Não	Não
	email	varchar(30)	Não	Não
	Id_Seccao	nvarchar(15)	Não	Não

Tabela 30 - Entidade Funcionario e as suas restrições de integridade

3.6 Regras de negócio

- Uma estufa pode conter no máximo 3 secções.
- Cada secção pode conter no máximo 20 plantios em uso.
- Cada secção só pode conter no máximo 10 produtos diferentes com plantações ativas.
- O tipo do produto a ser plantado, tem de ser igual ao tipo da secção.
- A data de fim de plantio é calculada ao somar 15 dias depois da mesma ser dada como colhida.
- Um plantio n\u00e3o tem limite de colheitas.
- A partir do momento que um plantio é dado como colhido, não podemos realizar mais colheitas relativas a essa plantação.
- Uma plantação pode usar vários consumíveis.
- Um funcionário trabalha apenas numa secção de uma estufa, ou seja, o mesmo não pode trabalhar em várias seções.
- Uma secção pode ter vários funcionários.

3.7 Validação do modelo com o utilizador

Tendo por base todos os pontos anteriores é possível dizer que o modelo é válido e cumpre todas as necessidades propostas logo é possível proceder para as próximas etapas.

3.8 Verificação do provável crescimento futuro

É fundamental garantir que o modelo lógico desenvolvido até o momento seja capaz de suportar as transações atuais e possíveis adições futuras com facilidade. Isso assegura que a base de dados atenderá às necessidades das estufas por um longo período. Considerando que, muitas vezes, o próprio utilizador não sabe exatamente quais serão as futuras necessidades, não é necessário alterar o modelo lógico desenvolvido até o momento, a menos que o mesmo solicite uma mudança específica.

4. Construção do modelo físico

Figura 5 - Diagrama ER do modelo fisico noSQL

4.1 Criação das tabelas no SQL Server Management Studio

Tabela Estufa

```
USE [Projeto_BD]
SET ANSI_NULLS ON
SET QUOTED_IDENTIFIER ON
CREATE TABLE [dbo].[Estufa](
       [Id Estufa] [nvarchar](15) NOT NULL,
       [nome] [varchar](50) NOT NULL,
       [localizacao] [varchar](50) NOT NULL,
       [area] [decimal](5, 2) NOT NULL,
       [temperatura] [int] NOT NULL,
       [umidade] [int] NOT NULL,
 CONSTRAINT [PK_Estufa] PRIMARY KEY CLUSTERED
       [Id_Estufa] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF,
ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON, OPTIMIZE_FOR_SEQUENTIAL_KEY = OFF)
ON [PRIMARY]
) ON [PRIMARY]
GO
ALTER TABLE [dbo].[Estufa] WITH CHECK ADD CONSTRAINT [Range Temperatura] CHECK
(([temperatura] >= (0) AND [temperatura] <= (100)))
ALTER TABLE [dbo].[Estufa] CHECK CONSTRAINT [Range Temperatura]
ALTER TABLE [dbo] [Estufa] WITH CHECK ADD CONSTRAINT [Range Umidade] CHECK
(([umidade]>=(0) AND [umidade]<=(100)))
ALTER TABLE [dbo].[Estufa] CHECK CONSTRAINT [Range Umidade]
ALTER TABLE [dbo].[Estufa] WITH CHECK ADD CONSTRAINT [Valor Area] CHECK
(([area]>(0)))
ALTER TABLE [dbo].[Estufa] CHECK CONSTRAINT [Valor Area]
Figura 6 - Create Table Estufa
```

Tabela Secção

```
USE [Projeto_BD]
SET ANSI NULLS ON
SET QUOTED IDENTIFIER ON
G0
CREATE TABLE [dbo].[Seccao](
       [Id_Seccao] [nvarchar](15) NOT NULL,
       [descricao] [varchar](200) NOT NULL,
       [area] [decimal](5, 2) NOT NULL,
       [Id_Estufa] [nvarchar](15) NOT NULL,
       [Id_Tipo] [nvarchar](15) NOT NULL,
 CONSTRAINT [PK_Seccao] PRIMARY KEY CLUSTERED
       [Id_Seccao] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF,
ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON, OPTIMIZE_FOR_SEQUENTIAL_KEY = OFF)
ON [PRIMARY]
) ON [PRIMARY]
GO
ALTER TABLE [dbo].[Seccao] WITH CHECK ADD CONSTRAINT [FK_Seccao_Estufa] FOREIGN
KEY([Id_Estufa])
REFERENCES [dbo].[Estufa] ([Id_Estufa])
ALTER TABLE [dbo].[Seccao] CHECK CONSTRAINT [FK_Seccao_Estufa]
ALTER TABLE [dbo].[Seccao] WITH CHECK ADD CONSTRAINT [FK_Seccao_Tipo] FOREIGN
KEY([Id_Tipo])
REFERENCES [dbo].[Tipo] ([Id_Tipo])
ALTER TABLE [dbo].[Seccao] CHECK CONSTRAINT [FK_Seccao_Tipo]
ALTER TABLE [dbo]. [Seccao] WITH CHECK ADD CONSTRAINT [Area Value] CHECK
(([area]>(0)))
G0
ALTER TABLE [dbo].[Seccao] CHECK CONSTRAINT [Area Value]
Figura 7 - Create Table Secção
```

Tabela Tipo

```
USE [Projeto BD]
SET ANSI_NULLS ON
GO
SET QUOTED IDENTIFIER ON
GO.
CREATE TABLE [dbo].[Tipo](
       [Id_Tipo] [nvarchar](15) NOT NULL,
       [nome] [varchar](50) NOT NULL,
 CONSTRAINT [PK Tipo] PRIMARY KEY CLUSTERED
       [Id Tipo] ASC
)WITH (PAD INDEX = OFF, STATISTICS NORECOMPUTE = OFF, IGNORE DUP KEY = OFF,
ALLOW ROW LOCKS = ON, ALLOW PAGE LOCKS = ON, OPTIMIZE FOR SEQUENTIAL KEY = OFF)
ON [PRIMARY]
) ON [PRIMARY]
ALTER TABLE [dbo].[Tipo] WITH CHECK ADD CONSTRAINT [chk Tipo Id Tipo] CHECK
(([Id Tipo]='FR' OR [Id Tipo]='PL' OR [Id Tipo]='LE'))
ALTER TABLE [dbo].[Tipo] CHECK CONSTRAINT [chk Tipo Id Tipo]
Figura 8 - Create Table Tipo
```

• Tabela Produto

```
USE [Projeto_BD]
GO
SET ANSI NULLS ON
GO
SET QUOTED IDENTIFIER ON
GO.
CREATE TABLE [dbo].[Produto](
       [Id_Produto] [nvarchar](15) NOT NULL,
       [nome] [varchar](50) NOT NULL,
       [descricao] [varchar](200) NOT NULL,
       [duracao] [int] NOT NULL,
       [Id_Tipo] [nvarchar](15) NOT NULL,
 CONSTRAINT [PK_Produto] PRIMARY KEY CLUSTERED
(
       [Id Produto] ASC
)WITH (PAD INDEX = OFF, STATISTICS NORECOMPUTE = OFF, IGNORE DUP KEY = OFF,
ALLOW ROW LOCKS = ON, ALLOW PAGE LOCKS = ON, OPTIMIZE FOR SEQUENTIAL KEY = OFF)
ON [PRIMARY]
) ON [PRIMARY]
GO
ALTER TABLE [dbo].[Produto] WITH CHECK ADD CONSTRAINT [FK_Produto_Tipo] FOREIGN
KEY([Id Tipo])
REFERENCES [dbo].[Tipo] ([Id Tipo])
ALTER TABLE [dbo].[Produto] CHECK CONSTRAINT [FK_Produto_Tipo]
ALTER TABLE [dbo].[Produto] WITH CHECK ADD CONSTRAINT [Value Duracao] CHECK
(([duracao]>(0)))
G0
ALTER TABLE [dbo].[Produto] CHECK CONSTRAINT [Value Duracao]
Figura 9 - Create Table Produto
```

• Tabela Plantio

```
USE [Projeto BD]
SET ANSI_NULLS ON
GO
SET QUOTED IDENTIFIER ON
GO.
CREATE TABLE [dbo].[Plantio](
       [Id_Plantio] [nvarchar](15) NOT NULL,
       [dataInicioPlantio] [date] NOT NULL,
       [dataFimPlantio] [date] NULL,
       [quantidadeSementes] [int] NOT NULL,
       [colhido] [bit] NOT NULL,
       [emUso] [bit] NOT NULL,
       [Id_Produto] [nvarchar](15) NOT NULL,
       [Id Seccao] [nvarchar](15) NOT NULL,
 CONSTRAINT [PK Plantio] PRIMARY KEY CLUSTERED
       [Id Plantio] ASC
)WITH (PAD INDEX = OFF, STATISTICS NORECOMPUTE = OFF, IGNORE DUP KEY = OFF,
ALLOW ROW LOCKS = ON, ALLOW PAGE LOCKS = ON, OPTIMIZE FOR SEQUENTIAL KEY = OFF)
ON [PRIMARY]
) ON [PRIMARY]
GO
ALTER TABLE [dbo].[Plantio] ADD CONSTRAINT [DF Plantio colhido] DEFAULT ((0))
FOR [colhido]
ALTER TABLE [dbo].[Plantio] ADD CONSTRAINT [DF_Plantio_emUso] DEFAULT ((1)) FOR
[emUso]
GO.
ALTER TABLE [dbo].[Plantio] WITH CHECK ADD CONSTRAINT [FK Plantio Produto]
FOREIGN KEY([Id_Produto])
REFERENCES [dbo].[Produto] ([Id_Produto])
ALTER TABLE [dbo].[Plantio] CHECK CONSTRAINT [FK_Plantio_Produto]
ALTER TABLE [dbo].[Plantio] WITH CHECK ADD CONSTRAINT [FK_Plantio_Seccao]
FOREIGN KEY([Id_Seccao])
REFERENCES [dbo].[Seccao] ([Id_Seccao])
ALTER TABLE [dbo].[Plantio] CHECK CONSTRAINT [FK_Plantio_Seccao]
ALTER TABLE [dbo].[Plantio] WITH CHECK ADD CONSTRAINT [Value
QuantidadeSementes] CHECK (([quantidadeSementes]>(0)))
ALTER TABLE [dbo].[Plantio] CHECK CONSTRAINT [Value QuantidadeSementes]
Figura 10 - Create Table Plantio
```

Tabela PlantioConsumivel

```
USE [Projeto BD]
SET ANSI_NULLS ON
GO
SET QUOTED IDENTIFIER ON
GO.
CREATE TABLE [dbo].[PlantioConsumivel](
       [Id PlantioConsumivel] [nvarchar](15) NOT NULL,
       [quantidade] [int] NOT NULL,
       [Id Plantio] [nvarchar](15) NOT NULL,
       [Id Consumivel] [nvarchar](15) NOT NULL,
 CONSTRAINT [PK PlantioConsumivel] PRIMARY KEY CLUSTERED
       [Id PlantioConsumivel] ASC
)WITH (PAD INDEX = OFF, STATISTICS NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF,
ALLOW ROW LOCKS = ON, ALLOW PAGE LOCKS = ON, OPTIMIZE FOR SEQUENTIAL KEY = OFF)
ON [PRIMARY]
) ON [PRIMARY]
ALTER TABLE [dbo].[PlantioConsumivel] WITH CHECK ADD CONSTRAINT
[FK PlantioConsumivel Consumivel] FOREIGN KEY([Id Consumivel])
REFERENCES [dbo].[Consumivel] ([Id Consumivel])
ALTER TABLE [dbo].[PlantioConsumivel] CHECK CONSTRAINT
[FK PlantioConsumivel Consumivel]
ALTER TABLE [dbo].[PlantioConsumivel] WITH CHECK ADD CONSTRAINT
[FK_PlantioConsumivel_Plantio] FOREIGN KEY([Id_Plantio])
REFERENCES [dbo].[Plantio] ([Id_Plantio])
ALTER TABLE [dbo].[PlantioConsumivel] CHECK CONSTRAINT
[FK_PlantioConsumivel_Plantio]
ALTER TABLE [dbo].[PlantioConsumivel] WITH CHECK ADD CONSTRAINT [Value
Quantidade] CHECK (([quantidade]>(0)))
ALTER TABLE [dbo].[PlantioConsumivel] CHECK CONSTRAINT [Value Quantidade]
Figura 11 - Create Table Plantio Consumivel
```

• Tabela Consumivel

```
USE [Projeto_BD]
SET ANSI_NULLS ON
GO
SET QUOTED IDENTIFIER ON
GO.
CREATE TABLE [dbo].[Consumivel](
       [Id_Consumivel] [nvarchar](15) NOT NULL,
       [nome] [varchar](50) NOT NULL,
       [descricao] [varchar](200) NOT NULL,
 CONSTRAINT [PK Consumivel] PRIMARY KEY CLUSTERED
       [Id Consumivel] ASC
)WITH (PAD INDEX = OFF, STATISTICS NORECOMPUTE = OFF, IGNORE DUP KEY = OFF,
ALLOW ROW LOCKS = ON, ALLOW PAGE LOCKS = ON, OPTIMIZE FOR SEQUENTIAL KEY = OFF)
ON [PRIMARY]
) ON [PRIMARY]
GO
```

Figura 12 - Create Table Consumivel

• Tabela Colheita

```
USE [Projeto_BD]
SET ANSI NULLS ON
GO
SET QUOTED_IDENTIFIER ON
CREATE TABLE [dbo].[Colheita](
       [Id_Colheita] [nvarchar](15) NOT NULL,
       [dataColheita] [date] NOT NULL,
       [quantidadeColhida] [int] NOT NULL,
       [observacoes] [varchar](200) NOT NULL,
       [Id_Plantio] [nvarchar](15) NOT NULL,
 CONSTRAINT [PK_Colheita] PRIMARY KEY CLUSTERED
       [Id Colheita] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF,
ALLOW ROW LOCKS = ON, ALLOW_PAGE_LOCKS = ON, OPTIMIZE_FOR_SEQUENTIAL_KEY = OFF)
ON [PRIMARY]
) ON [PRIMARY]
ALTER TABLE [dbo].[Colheita] WITH CHECK ADD CONSTRAINT [FK_Colheita_Plantio]
FOREIGN KEY([Id Plantio])
REFERENCES [dbo].[Plantio] ([Id_Plantio])
ALTER TABLE [dbo].[Colheita] CHECK CONSTRAINT [FK_Colheita_Plantio]
ALTER TABLE [dbo].[Colheita] WITH CHECK ADD CONSTRAINT [Value
QuantidadeColhida] CHECK (([quantidadeColhida]>(0)))
ALTER TABLE [dbo].[Colheita] CHECK CONSTRAINT [Value QuantidadeColhida]
Figura 13 - Create Table Colheita
```

• Tabela Funcionario

```
USE [Projeto_BD]
SET ANSI_NULLS ON
SET QUOTED_IDENTIFIER ON
CREATE TABLE [dbo].[Funcionario](
       [Id_Funcionario] [nvarchar](15) NOT NULL,
       [nome] [varchar](50) NOT NULL,
       [apelido] [varchar](50) NOT NULL,
       [morada] [varchar](50) NOT NULL,
       [dataNascimento] [date] NOT NULL,
       [telemovel] [varchar](9) NOT NULL,
       [email] [varchar](30) NOT NULL,
       [Id_Seccao] [nvarchar](15) NOT NULL,
 CONSTRAINT [PK_Funcionario] PRIMARY KEY CLUSTERED
       [Id_Funcionario] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF,
ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON, OPTIMIZE_FOR_SEQUENTIAL_KEY = OFF)
ON [PRIMARY]
) ON [PRIMARY]
GO
ALTER TABLE [dbo].[Funcionario] WITH CHECK ADD CONSTRAINT
[FK Funcionario Seccao] FOREIGN KEY([Id Seccao])
REFERENCES [dbo].[Seccao] ([Id_Seccao])
ALTER TABLE [dbo]. [Funcionario] CHECK CONSTRAINT [FK Funcionario Seccao]
G0
```

Figura 14 - Create Table Funcionario

4.2 Criação das procedures de CUD (Create, Update, Delete) no SQL Server Management Studio

Seguem-se alguns exemplos de procedures

• Atualizar colheita

```
SET ANSI NULLS ON
SET QUOTED IDENTIFIER ON
CREATE PROCEDURE [dbo].[AtualizarColheita]
   @Id_Colheita NVARCHAR(15),
   @dataColheita DATE,
   @quantidadeColhida INT,
    @observacoes NVARCHAR(200),
    @Id_Plantio NVARCHAR(15)
AS
BEGIN
    BEGIN TRY
        BEGIN TRANSACTION
        UPDATE Colheita
        SET dataColheita = @dataColheita,
            quantidadeColhida = @quantidadeColhida,
            observacoes = @observacoes,
            Id_Plantio = @Id_Plantio
        WHERE Id_Colheita = @Id_Colheita
        COMMIT TRANSACTION
    END TRY
    BEGIN CATCH
        ROLLBACK TRANSACTION
        DECLARE @ErrorMessage NVARCHAR(4000) = ERROR MESSAGE();
        RAISERROR('Erro ao atualizar colheita: %s', 16, 1, @ErrorMessage)
    END CATCH
END
```

Figura 15 - Procedure Atualizar Colheita

Eliminar colheita

```
SET ANSI_NULLS ON
SET QUOTED_IDENTIFIER ON
GO
CREATE PROCEDURE [dbo].[EliminarColheita]
    @Id_Colheita NVARCHAR(15)
AS
BEGIN
    BEGIN TRY
        BEGIN TRANSACTION
        DELETE FROM Colheita
        WHERE Id_Colheita = @Id_Colheita
        COMMIT TRANSACTION
    END TRY
    BEGIN CATCH
        ROLLBACK TRANSACTION
        DECLARE @ErrorMessage NVARCHAR(4000) = ERROR MESSAGE();
        RAISERROR('Erro ao eliminar colheita: %s', 16, 1, @ErrorMessage)
    END CATCH
END
GO
Figura 16 - Procedure Eliminar Colheita
   • Inserir colheita
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
CREATE PROCEDURE [dbo].[InserirColheita]
    @Id_Colheita NVARCHAR(15),
    @dataColheita DATE,
    @quantidadeColhida INT,
    @observacoes NVARCHAR(200),
    @Id Plantio NVARCHAR(15)
AS
BEGIN
    BEGIN TRY
        BEGIN TRANSACTION
        INSERT INTO Colheita (Id_Colheita, dataColheita, quantidadeColhida,
observacoes, Id Plantio)
        VALUES (@Id_Colheita, @dataColheita, @quantidadeColhida, @observacoes,
@Id_Plantio)
        COMMIT TRANSACTION
    END TRY
    BEGIN CATCH
        ROLLBACK TRANSACTION
        DECLARE @ErrorMessage NVARCHAR(4000) = ERROR_MESSAGE();
        RAISERROR('Erro ao inserir colheita: %s', 16, 1, @ErrorMessage)
    END CATCH
END
G0
```

Figura 17 - Procedure Inserir Colheita

Atualizar Estufa

```
SET ANSI_NULLS ON
SET QUOTED_IDENTIFIER ON
GO
CREATE PROCEDURE [dbo].[AtualizarEstufa]
    @Id Estufa NVARCHAR(15),
    @nome NVARCHAR(50),
    @localizacao NVARCHAR(100),
    @area DECIMAL(5, 2),
    @temperatura DECIMAL(5, 2),
    @umidade DECIMAL(5, 2)
AS
BEGIN
    BEGIN TRY
        BEGIN TRANSACTION
        UPDATE Estufa
        SET nome = @nome,
            localizacao = @localizacao,
            area = @area,
            temperatura = @temperatura,
            umidade = @umidade
        WHERE Id Estufa = @Id Estufa
        COMMIT TRANSACTION
    END TRY
    BEGIN CATCH
        ROLLBACK TRANSACTION
        DECLARE @ErrorMessage NVARCHAR(4000) = ERROR_MESSAGE();
        RAISERROR('Erro ao atualizar estufa: %s', 16, 1, @ErrorMessage)
    END CATCH
END
GO
Figura 18 - Procedure Atualizar Estufa

    Eliminar Estufa

SET ANSI NULLS ON
SET QUOTED_IDENTIFIER ON
CREATE PROCEDURE [dbo].[EliminarEstufa]
    @Id_Estufa NVARCHAR(15)
BEGIN
    BEGIN TRY
        BEGIN TRANSACTION
        DELETE FROM Estufa
        WHERE Id_Estufa = @Id_Estufa
        COMMIT TRANSACTION
    END TRY
    BEGIN CATCH
        ROLLBACK TRANSACTION
        DECLARE @ErrorMessage NVARCHAR(4000) = ERROR MESSAGE();
        RAISERROR('Erro ao eliminar estufa: %s', 16, 1, @ErrorMessage)
    END CATCH
END
```

Figura 19 - Procedure Eliminar Estufa

Inserir Estufa

```
SET ANSI_NULLS ON
SET QUOTED_IDENTIFIER ON
GO
CREATE PROCEDURE [dbo].[InserirEstufa]
   @Id Estufa NVARCHAR(15),
   @nome NVARCHAR(50),
   @localizacao NVARCHAR(100),
   @area DECIMAL(5, 2),
   @temperatura DECIMAL(5, 2),
   @umidade DECIMAL(5, 2)
AS
BEGIN
    BEGIN TRY
        BEGIN TRANSACTION
        INSERT INTO Estufa (Id Estufa, nome, localizacao, area, temperatura,
umidade)
        VALUES (@Id_Estufa, @nome, @localizacao, @area, @temperatura, @umidade)
        COMMIT TRANSACTION
    END TRY
    BEGIN CATCH
        ROLLBACK TRANSACTION
        DECLARE @ErrorMessage NVARCHAR(4000) = ERROR MESSAGE();
        RAISERROR('Erro ao inserir estufa: %s', 16, 1, @ErrorMessage)
    END CATCH
END
G0
```

Figura 20 - Procedure Inserir Estufa

• Atualizar Plantio

```
SET ANSI_NULLS ON
SET QUOTED_IDENTIFIER ON
CREATE PROCEDURE [dbo].[AtualizarPlantio]
   @Id_Plantio NVARCHAR(15),
    @dataInicioPlantio DATE,
    @dataFimPlantio DATE,
    @quantidadeSementes INT,
   @colhido BIT,
    @emUso BIT,
   @Id_Produto NVARCHAR(15),
    @Id_Seccao NVARCHAR(15)
AS
BEGIN
    BEGIN TRY
        BEGIN TRANSACTION
        UPDATE Plantio
```

```
SET dataInicioPlantio = @dataInicioPlantio,
            dataFimPlantio = @dataFimPlantio,
            quantidadeSementes = @quantidadeSementes,
            colhido = @colhido,
            emUso = @emUso,
            Id Produto = @Id Produto,
            Id_Seccao = @Id_Seccao
       WHERE Id_Plantio = @Id_Plantio
        COMMIT TRANSACTION
   END TRY
   BEGIN CATCH
        ROLLBACK TRANSACTION
        DECLARE @ErrorMessage NVARCHAR(4000) = ERROR_MESSAGE();
        RAISERROR('Erro ao atualizar plantio: %s', 16, 1, @ErrorMessage)
   END CATCH
END
G0
```

Figura 21 - Procedure Atualizar Plantio

• Eliminar Plantio

```
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
CREATE PROCEDURE [dbo].[EliminarPlantio]
   @Id_Plantio NVARCHAR(15)
BEGIN
    BEGIN TRY
        BEGIN TRANSACTION
        DELETE FROM Plantio
        WHERE Id_Plantio = @Id_Plantio
        COMMIT TRANSACTION
    END TRY
    BEGIN CATCH
        ROLLBACK TRANSACTION
        DECLARE @ErrorMessage NVARCHAR(4000) = ERROR_MESSAGE();
        RAISERROR('Erro ao eliminar plantio: %s', 16, 1, @ErrorMessage)
    END CATCH
END
G0
```

Figura 22 - Procedure Eliminar Plantio

Inserir Plantio

```
SET ANSI_NULLS ON
SET QUOTED_IDENTIFIER ON
GO
CREATE PROCEDURE [dbo].[InserirPlantio]
    @Id Plantio NVARCHAR(15),
    @dataInicioPlantio DATE,
   @dataFimPlantio DATE,
    @quantidadeSementes INT,
    @colhido BIT,
    @emUso BIT,
    @Id Produto NVARCHAR(15),
    @Id_Seccao NVARCHAR(15)
AS
BEGIN
    BEGIN TRY
        BEGIN TRANSACTION
        INSERT INTO Plantio (Id Plantio, dataInicioPlantio, dataFimPlantio,
quantidadeSementes, colhido, emUso, Id_Produto, Id_Seccao)
        VALUES (@Id_Plantio, @dataInicioPlantio, @dataFimPlantio,
@quantidadeSementes, @colhido, @emUso, @Id_Produto, @Id_Seccao)
        COMMIT TRANSACTION
    END TRY
   BEGIN CATCH
        ROLLBACK TRANSACTION
        DECLARE @ErrorMessage NVARCHAR(4000) = ERROR_MESSAGE();
        RAISERROR('Erro ao inserir plantio: %s', 16, 1, @ErrorMessage)
    END CATCH
END
GO
```

Figura 23 - Procedure Inserir Plantio

Reverter Plantio

```
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
CREATE PROCEDURE [dbo].[ReverterPlantio]
AS
BEGIN
    SET NOCOUNT ON;
    -- Reverte os campos Colhido e EmUso após 15 dias
    UPDATE Plantio
    SET Colhido = 1,
        EmUso = 0
    WHERE Colhido = 1 AND DATEDIFF(DAY, dataFimPlantio, GETDATE()) >= 15;
END
GO
```

Figura 24 - Procedure Reverter Plantio

4.3 Consultas propostas

1. Quais os produtos colhidos no mês anterior.

SELECT P.nome AS Produto, C.dataColheita, C.quantidadeColhida, S.descricao AS Seccao, E.nome AS Estufa FROM dbo,Colheita AS C INNER JOIN

dbo.Plantio AS PL ON C.Id_Plantio = PL.Id_Plantio INNER JOIN dbo.Produto AS P ON PL.Id_Produto = P.Id_Produto INNER JOIN dbo.Seccao AS S ON PL.Id_Seccao = S.Id_Seccao INNER JOIN

dbo.Estufa AS E ON S.Id_Estufa = E.Id_Estufa

(C.dataColheita >= DATEADD(MONTH, - 1, DATEADD(MONTH, DATEDIFF(MONTH, 0, GETDATE()), 0))) AND (C.dataColheita < DATEADD(MONTH, DATEDIFF(MONTH, 0, GETDATE()), 0))

Figura 25 - Consulta ' Quais os produtos colhidos no mês anterior'

	Produto	dataColheita	quantidadeColhida	Seccao	Estufa
1	Maça	2024-05-01	12	Aqui Temos Frutas	Estufa1

Figura 26 - Resultado exemplo da consulta ' Quais os produtos colhidos no mês anterior'

2. Qual a quantidade semeada por trimestre por produto no último ano

SELECT p.nome AS Produto, YEAR(pl.datalnicioPlantio) AS Ano, DATEPART(QUARTER, pl.datalnicioPlantio) AS Trimestre, SUM(pl.quantidadeSementes) AS QuantidadeSemeada FROM

dbo.Plantio AS pl INNER JOIN dbo.Produto AS p ON pl.ld_Produto = p.ld_Produto

(pl.datalnicioPlantio >= DATEFROMPARTS(YEAR(GETDATE()) - 1, 1, 1))

WHERE GROUP BY p.nome, YEAR(pl.datalnicioPlantio), DATEPART(QUARTER, pl.datalnicioPlantio)

Figura 27 - Consulta ' Qual a quantidade semeada por trimestre por produto no último ano'

	Produto	Ano	Trimestre	QuantidadeSemeada
1	Maça	2023	1	463
2	Maça	2023	2	550

Figura 28 - Resultado exemplo ' Qual a quantidade semeada por trimestre por produto no último ano

3. Lista dos produtos com maior quantidade colhida no ano de 2018

SELECT P.nome AS Produto, SUM(C.quantidadeColhida) AS Quantidade_Total_Colhida

FROM dbo.Colheita AS C INNER JOIN

dbo.Plantio AS PL ON C.Id_Plantio = PL.Id_Plantio INNER JOIN

dbo.Produto AS P ON PL.Id_Produto = P.Id_Produto

WHERE (DATEPART(YEAR, C.dataColheita) = 2018)

GROUP BY P.nome

Figura 29 - Consulta 'Lista dos produtos com maior quantidade colhida no ano de 2018'

Produto	Quantidade Total Colhida

Figura 30 - Resultado exemplo da consulta lista dos produtos com maior quantidade colhida no ano de 2018'

Outras consultas relevantes:

Vista geral da agricultura

E.nome AS Nome_Estufa, E.localizacao AS Localizacao_Estufa, S.descricao AS Descricao_Seccao, S.area AS Area_Seccao, P.nome AS Nome_Produto, PL.dataInicioPlantio, PL.quantidadeSementes AS Quantidade_Plantada, PL.colhido AS Produto_Colhido, C.dataColheita, C.quantidadeColhida AS Quantidade_Colhida, CON.nome AS Nome_Consumivel, PC.quantidade AS Quantidade_Consumivel_Usada SELECT

dbo.Estufa AS E INNER JOIN FROM

dbo.Seccao AS S ON E.Id_Estufa = S.Id_Estufa INNER JOIN dbo.Plantio AS PL ON S.Id_Seccao = PL.Id_Seccao INNER JOIN
dbo.Produto AS P ON PL.Id_Produto = P.Id_Produto LEFT OUTER JOIN dbo.Colheita AS C ON PL.Id_Plantio = C.Id_Plantio LEFT OUTER JOIN

dbo.PlantioConsumivel AS PC ON PL.Id_Plantio = PC.Id_Plantio LEFT OUTER JOIN

dbo.Consumivel AS CON ON PC.Id_Consumivel = CON.Id_Consumivel

Figura 31 - Consulta 'vista geral da agricultura'

	Nome_Estufa	Localizacao_Estufa	Descricao_Seccao	Area_Seccao	Nome_Produto	dataInicioPlantio	dataFimPlantio	Quantidade_Plantada	Produto_Colhido	dataColheita	Quantidade_Colhida	Nome_Consumi
1	Estufa1	Porto	Aqui Temos Frutas	40.00	Maça	2018-02-01	2018-04-03	13	0	2018-04-04	13	agua
2	Estufa1	Porto	Aqui Temos Frutas	40.00	Maça	2018-02-01	2018-04-03	13	0	2018-04-04	13	adubo
3	Estufa1	Porto	Aqui Temos Frutas	40.00	Maça	2018-02-01	2018-04-03	13	0	2024-05-01	12	agua
4	Estufa1	Porto	Agui Temos Frutas	40.00	Maça	2018-02-01	2018-04-03	13	0	2024-05-01	12	adubo

Figura 32 - Exemplo de resultado da consulta 'vista geral agricultura'

4.3 Triggers

Trigger para verificar a área da secção em relação à estufa

A área tem de ser maior que 0 e menor que a área da estufa

```
USE [Projeto_BD]
SET ANSI_NULLS ON
G0
SET QUOTED_IDENTIFIER ON
ALTER TRIGGER [dbo].[trg_VerificarAreaSecao]
ON [dbo].[Seccao]
FOR INSERT, UPDATE
AS
BEGIN
    DECLARE @Id_Estufa INT
    DECLARE @Area_Secao DECIMAL(10, 2)
    DECLARE @IsValid BIT
    -- Obter os valores das inserções ou atualizações
    SELECT @Id_Estufa = i.Id_Estufa, @Area_Secao = i.Area
    FROM inserted i
    -- Chamar a função para verificar a área
    SET @IsValid = dbo.fn_VerificarAreaSecao(@Id_Estufa, @Area_Secao)
    -- Verificar se a área da secção é válida
    IF @IsValid = 0
    BEGIN
        RAISERROR('A área da secção não pode ser maior que a área da estufa.',
16, 1)
        ROLLBACK TRANSACTION
    END
END
Figura 33 - trigger 'verificar area da estufa'
```

Trigger limite de secçõs por estufa

Uma estufa só pode conter no máximo 3 secções

```
USE [Projeto_BD]
G0
SET ANSI_NULLS ON
G0
SET QUOTED_IDENTIFIER ON
GO
ALTER TRIGGER [dbo].[trg_LimitarSecoesPorEstufa]
ON [dbo].[Seccao]
FOR INSERT, UPDATE
AS
BEGIN
    DECLARE @Id_Estufa NVARCHAR(15)
   DECLARE @Count INT
    -- Seleciona o Id_Estufa da inserção ou atualização
    SELECT @Id_Estufa = i.Id_Estufa
    FROM inserted i
    -- Conta o número de seções na estufa
   SELECT @Count = COUNT(*)
    FROM Seccao
   WHERE Id_Estufa = @Id_Estufa
    -- Se o número de seções for maior que 3, lança um erro e faz rollback
   IF @Count > 3
    BEGIN
        RAISERROR('Cada estufa pode ter no máximo 3 seções.', 16, 1)
        ROLLBACK TRANSACTION
    END
END
```

Figura 34 - Trigger 'limite secções estufa'

Trigger para verificar tipo de Produto / Secção

Este trigger é responsável por verificar se o tipo do produto a ser plantado em determinada secção é igual ao tipo da secção, ou seja, produto e secção têm de ser do mesmo tipo.

```
USE [Projeto_BD]
SET ANSI_NULLS ON
GO
SET QUOTED IDENTIFIER ON
ALTER TRIGGER [dbo].[trg_VerificarTipoProdutoSecao]
ON [dbo].[Plantio]
FOR INSERT, UPDATE
AS
BEGIN
    DECLARE @Id_Seccao NVARCHAR(15)
    DECLARE @Id Produto NVARCHAR(15)
    DECLARE @Tipo_Secao NVARCHAR(50)
    DECLARE @Tipo_Produto NVARCHAR(50)
    -- Seleciona o Id Secao e Id Produto da inserção ou atualização
    SELECT @Id Seccao = i.Id Seccao, @Id Produto = i.Id Produto
    FROM inserted i
    -- Obtém o tipo da secção
    SELECT @Tipo_Secao = s.Id_Tipo
    FROM Seccao s
    WHERE s.Id_Seccao = @Id_Seccao
    -- Obtém o tipo do produto
    SELECT @Tipo_Produto = p.Id_Tipo
    FROM Produto p
    WHERE p.Id_Produto = @Id_Produto
    -- Verifica se os tipos coincidem
    IF @Tipo_Secao != @Tipo_Produto
    BEGIN
        RAISERROR('O tipo do produto não coincide com o tipo da secção.', 16, 1)
        ROLLBACK TRANSACTION
        RETURN
    END
END
```

Figura 35 - Trigger Verificar Tipo

Trigger que limita a quantidade de produtos por Secção

Este trigger serve para limitar a quantidade de produtos plantados durante um intervalo de tempo numa secção

Só se pode plantar 10 produtos diferentes por secção ao mesmo tempo.

```
USE [Projeto_BD]
SET ANSI_NULLS ON
G0
SET QUOTED_IDENTIFIER ON
ALTER TRIGGER [dbo].[trg_LimitarProdutosPorTipoPorSecao]
ON [dbo].[Plantio]
FOR INSERT, UPDATE
AS
BEGIN
    DECLARE @Id_Seccao NVARCHAR(15)
    DECLARE @Id_Produto NVARCHAR(15)
    DECLARE @Id_Tipo NVARCHAR(15)
    DECLARE @Count INT
    -- Seleciona o Id Secao e Id Produto da inserção ou atualização
    SELECT @Id Seccao = i.Id Seccao, @Id Produto = i.Id Produto
    FROM inserted i
    -- Seleciona o Id_Tipo do produto inserido ou atualizado
    SELECT @Id Tipo = p.Id Tipo
    FROM Produto p
    WHERE p.Id Produto = @Id Produto
    -- Conta o número de produtos diferentes do mesmo tipo na seção
    SELECT @Count = COUNT(DISTINCT p.Id Produto)
    FROM Plantio pl
    JOIN Produto p ON pl.Id Produto = p.Id Produto
    WHERE pl.Id Seccao = @Id Seccao AND p.Id Tipo = @Id Tipo
    -- Se o número de produtos diferentes do mesmo tipo for maior que 10, lança
um erro e faz rollback
    IF @Count > 10
    BEGIN
        RAISERROR('Cada secção pode ter no máximo 10 produtos diferentes de um
mesmo tipo.', 16, 1)
        ROLLBACK TRANSACTION
    END
END
Figura 36 - Trigger Limite Produto / Secção
```

Trigger que limita o número de plantações por secção

Este trigger é responsável por verificar o número de plantações numa secção, a mesma só pode ter no máximo 20 plantações

```
USE [Projeto_BD]
SET ANSI_NULLS ON
G0
SET QUOTED IDENTIFIER ON
ALTER TRIGGER [dbo].[trg_LimitarPlantioPorSecao]
ON [dbo].[Plantio]
FOR INSERT, UPDATE
AS
BEGIN
    DECLARE @Id Seccao NVARCHAR(15)
    DECLARE @PlantioCount INT
    -- Seleciona o Id_Secao da inserção ou atualização
    SELECT @Id_Seccao = i.Id_Seccao
    FROM inserted i
    -- Conta quantas plantações existem para essa secção
    SELECT @PlantioCount = COUNT(*)
    FROM Plantio
    WHERE Id_Seccao = @Id_Seccao
    -- Se o número de plantações já for 20 ou mais, impede a operação
    IF @PlantioCount >= 20
    BEGIN
        RAISERROR('Cada secção pode ter no máximo 20 plantações.', 16, 1)
        ROLLBACK TRANSACTION
        RETURN
    END
END
```

Figura 37 - Trigger Limite Plantações Por Secção

Trigger atualizar data fim de plantio

Este trigger é responsável por atualizar a data de fim de plantio

```
USE [Projeto_BD]
/****** Object: Trigger [dbo].[trg_AtualizarDataFimPlantio]
06/06/2024 00:01:23 ******/
                                                                    Script Date:
SET ANSI_NULLS ON
SET QUOTED_IDENTIFIER ON
ALTER TRIGGER [dbo].[trg_AtualizarDataFimPlantio]
ON [dbo].[Plantio]
FOR UPDATE
AS
BEGIN
    IF UPDATE(Colhido)
    BEGIN
        DECLARE @Id_Plantio INT
        -- Seleciona os valores da inserção ou atualização
        SELECT @Id_Plantio = i.Id_Plantio
        FROM inserted i
        WHERE i.Colhido = 1
        -- Atualiza a Data_Fim com a data atual
        UPDATE Plantio
        SET dataFimPlantio = GETDATE()
        WHERE Id_Plantio = @Id_Plantio
    END
END
```

Figura 38 - Trigger Atualizar Data Fim Plantio

4.3 SQL SERVER AGENT

Aqui usamos o SQL server agente para verificar se já se passaram 15 dias de repouso após a data de fim de plantio para poder replantar, este executa todos os dias o stored procedure ReverterPlantio à 00:00.

Figura 39-Step do SQL SERVER AGENT

Figura 40-Agendamento para execução do Job

5. Conclusões e Trabalho Futuro

Uma vez concluído o trabalho e aplicados todos os conceitos adquiridos durante o semestre na unidade curricular de Base de Dados foi possível obter uma visão mais prática de como é, e como deve funcionar, uma base de dados e todas as etapas da sua criação. Posto isto, também é possível verificar que existem alguns aspetos que devem ser melhorados de maneira que se possa satisfazer totalmente a base de dados em questão. Em conclusão, o trabalho foi concluído satisfatoriamente, abrangendo todos os pontos propostos.

Bibliografia

C. E. B. THOMAS M. CONNOLLY, DATABASE SYSTEMS -A Practical Approach to Design, Implementation, and Management, Pearson, 2015.

Referências WWW

[01] https://moodle2.estg.ipp.pt/course/view.php?id=214

Página do Moodle da Unidade Curricular onde encontramos os conteúdos sobre BD.

[02] https://stackoverflow.com/

[03] https://www.youtube.com/playlist?list=PLTU76O6uRMfQixOnW0IAdDxwCM40M8rTl

Playlist de vídeos disponibilizados pelo professor – Tutoriais Vídeos SQL Server 2017

[04]

https://www.youtube.com/watch?v=ZNObiptSMSI&list=PL08903FB7ACA1C2FB&ab_channel=kudvenkat

Playlist de vídeos disponibilizados pelo professor - Tutoriais Vídeos SQL Server - mais antigo mas mais completo

Lista de Siglas e Acrónimos

SGBD Sistema de Gestão de Base de Dados

BD Base de Dados

DBDL Database Designation Language (Linguagem de designação de base de dados)

PK Primary Key (Chave Primária)

FK Foreign key (Chave Estrangeira)

UNF Forma não normalizada

1FN 1ª forma normalizada

2FN 2ª forma normalizada

3FN 3ª forma normalizada