## Fourier Analysis

Note Title Review. Let fe R [-11, 17] f \* Pr(x) -> f(x) if f is cts at It f is cts everywhere, the limit is unif. & z. 5. Application to the heat equation on the unit disc. Let  $D = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$ In polar coordinates (r, 0)  $D = \{ (r, 0) : 0 < r < 1 \}.$ Let f∈ R[-π, π]. Define  $u = u(r,0) = f * P_r(0), \quad (r,0) \in D$ Thm (1)  $\mathcal{U} \in C^2(D)$  and  $\Delta \mathcal{U} = \frac{\partial^2 u}{\partial r^2} u + \frac{\partial u}{r \cdot dr} + \frac{\partial^2 u}{r^2 \cdot dr^2}$ (2) If f is cts at O, then  $\lim_{r\to 1} U(r,0) = f(0)$ If f is cts everywhere, the limit is unif.

(3) If f is cts on the circle, then

$$u = u(r, \theta)$$
 satisfies  $\Delta u = 0$ 

Moveover,  $u$  is the unique solution of  $\Delta u = 0$ 

satisfying both  $O$  and  $O$ .

Pf. (1) Notice that

 $u(r, \theta) = \sum_{n = -\infty}^{\infty} r^{|n|} \hat{f}(n) e^{in\theta}$ 
 $|\hat{f}(n)| \leq \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)| dx$ ,  $\forall n \in \mathbb{Z}$ 

Moveover, for any  $o < \rho < 1$ , the series

$$\sum_{n = -\infty}^{\infty} r^{|n|} \hat{f}(n) e^{in\theta}$$

$$\sum_{n = -\infty}^{\infty} (r^{|n|} \hat{f}(n) e^{in\theta})$$

$$\sum_{n = -\infty}^{\infty} (r^{|n|} \hat{f}(n) e^{in\theta})$$
Converge unif on  $\{(r, \theta) : o < r < \rho\}$ 

So  $u$  is diff on  $v$ . (Indeed  $v$  is infinite odiff on  $v$ )

(ii) If  $v$  is a continuity pt of  $v$ , then

$$u(r, v) \rightarrow f(v) = v < r < r$$

## which is an approcation of the convergence Thin.

(iii) 
$$\Delta u = \frac{\partial^{2} u}{\partial t^{2}} + \frac{\partial u}{r \partial r} + \frac{\partial^{2} u}{\gamma^{2} \partial \theta^{2}}$$

$$= \sum_{n=-\infty}^{\infty} \Delta \left( \gamma^{(n)} \hat{f}(n) e^{(n)\theta} \right)$$

$$= 0$$
(e.g.  $\Delta \left( \gamma^{3} e^{(i3\theta)} \right) = 6r \cdot e^{(i3\theta)} + 3r e^{(i3\theta)}$ 

$$+ (i3)^{2} \cdot r e^{(i3\theta)}$$

$$= 0$$
To prove the uniqueness result, let
$$V = v(r,\theta) \text{ be another solution}$$
of  $\Delta v = 0$  statisfying  $0$  and  $0$ .

For a fixed  $0 < r < 1$ , write
$$v(r,\theta) \sim \sum_{n=-\infty}^{\infty} a_{n}(r) e^{(in\theta)}$$
where  $a_{n}(r) = \frac{1}{2\pi} \int_{-\pi}^{\pi} v(r,\theta) e^{-(in\theta)} d\theta$ 

Recall that  $\frac{\partial^{2} v}{\partial y^{2}} + \frac{1}{r} \frac{\partial v}{\partial r} + \frac{\partial^{2} v}{y^{2} \partial \theta^{2}} = 0$ 

Let 
$$n \in \mathbb{Z}$$
. Taking integration gives

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \left( \frac{\partial^{2} V}{\partial \gamma^{2}} + \frac{1}{\gamma} \frac{\partial V}{\partial \gamma} + \frac{\partial^{2} V}{\gamma^{2} \partial \theta^{2}} \right) e^{-in\theta} d\theta$$

$$\Rightarrow \Omega_{n}(r)'' + \frac{1}{\gamma} \Omega_{n}(r)' + \frac{(ni)^{2}}{\gamma^{2}} \Omega_{n}(r) = 0$$

$$:= -\frac{n^{2}}{\gamma^{2}} \Omega_{n}(r)$$

However, the general solution of the above ODE is

$$\Omega_{n}(r) = \begin{cases} A \gamma^{[n]} + B \gamma^{[n]}, & n \in \mathbb{Z} \setminus \{0\} \\ A + B \log \gamma, & n = 0 \end{cases}$$

Notice  $\Omega_{n}(r)$  is fodd in  $\{0 < r < 1\}$ , here  $B = 0$ .

Here  $\Sigma = V(r, \theta) \sim \sum_{n=-\infty}^{\infty} A_{n} \gamma^{[n]} e^{in\theta}$ .

As  $V(r, \cdot)$  is  $C^{2}$ ,  $\Sigma = \sum_{n=-\infty}^{\infty} A_{n} \gamma^{[n]} e^{in\theta}$ .

Notice  $\Sigma = V(r, \theta) \Rightarrow f(\theta)$  as  $r \Rightarrow 1$ .

So for any given  $\Sigma = \sum_{n=-\infty}^{\infty} A_{n} \gamma^{[n]} e^{in\theta} d\theta$ .

 $\Sigma = \sum_{n=-\infty}^{\infty} A_{n} \gamma^{[n]} e^{in\theta} d\theta$ .

 $\Sigma = \sum_{n=-\infty}^{\infty} A_{n} \gamma^{[n]} e^{in\theta} d\theta$ .

|      | That is, $A_n r^{ n } \rightarrow \widehat{f}(n)$ ous $r \rightarrow 1$ Hence $A_n = \widehat{f}(n)$ .  Therefore, $v(r, 0) = \sum_{n=-\infty}^{\infty} \widehat{f}(n) r^{ n } e^{in 0}$ |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | = u(r, 0)                                                                                                                                                                                |
|      | Chap3. Convergence of Founier Senies.                                                                                                                                                    |
| §3,1 | Recall: If f is cts on the circle so that $\sum_{n=-\infty}^{\infty}  \widehat{f}(n)  < \infty,$                                                                                         |
|      | then $S_N f(x) \implies f(x)$ on the Circle.                                                                                                                                             |
|      | In this chapter, we present some more general results on the convergence of fourier Series.                                                                                              |
|      | 1) Mean square convergence.                                                                                                                                                              |
|      | Thm 1: Let $f \in \mathbb{R}[-\pi, \pi]$ , then $\frac{1}{2\pi} \int_{-\pi}^{\pi}  f(x) - S_N f(x) ^2 dx \to 0 \text{ as } N \to \infty$                                                 |
|      | ( L²- Convergena)                                                                                                                                                                        |

2 Pointwise Convergence. Thm2. Let f e R[-11, 11] Assume that f is diff. at xo. Then  $S_N f(x_0) \rightarrow f(x_0)$  as  $N \rightarrow \infty$ Examples of continuous functions on the Circle (3) with divergent Founier Senes. \$3.2 Inner product spaces. Def. Let V be a vector space on C An inner product on Vover C is a map <·,·>: V×V → C so that (1)  $\langle x,y \rangle = \langle y,x \rangle$  (conjugate symmetry)  $(2) \langle \lambda x + \beta y, Z \rangle = \lambda \langle x, Z \rangle + \beta \langle y, Z \rangle_{x}$  $\forall \lambda, \beta \in \mathbb{C}$  $(3) \quad \langle x, x \rangle \geqslant 0.$ 

Def.  $\|x\| = \sqrt{\langle x, x \rangle}$ ,  $\forall x \in V$ . Thm: Let V be an inner product space over C. O (Pythagorean Thm) If  $\langle x, y \rangle = 0$ , then  $\|x+y\|^2 = \|x\|^2 + \|y\|^2$ 2 (Cauchy-Schwartz inequality) < x , y > | \le | | x | | \cdot | | y | | 3 (triangle inequality)  $\|x+y\| \leq \|x\| + \|y\|$ P = (1) Assume  $\langle x, y \rangle = 0$ .  $||x+y||^2 = \langle x+y, x+y \rangle$  $= \|x\|^2 + \|y\|^2 + \langle x, y \rangle + \langle y, x \rangle$ = ||x||2 + ||4||2 (2) Let x, y in  $\bigvee$ Let  $y = |\langle x, y \rangle|$ . WLOG, assume that y > 0, otherwise we have nothing to prove.

|   | Then $\langle x, y \rangle = r e^{i\theta}$ for some $\theta \in [0, 2\pi]$ .                                    |
|---|------------------------------------------------------------------------------------------------------------------|
|   | Let te R, define                                                                                                 |
|   | $f(t) = \  x + te^{i\theta}y \ ^2$                                                                               |
|   | $= \langle x + te^{i\theta}y, x + te^{i\theta}y \rangle$                                                         |
|   | $=   x  ^2 + t^2   y  ^2 + \langle x, te^{i\theta} y \rangle$                                                    |
|   | + < teig, x>                                                                                                     |
|   | $=   x  ^2 + t^2   y  ^2 + 2rt.$ Hence $f$ is a quadratic poly taking non-negative values.                       |
|   | It follows that                                                                                                  |
|   | Cod onich J                                                                                                      |
|   | r <   x     y  .                                                                                                 |
|   | (3)                                                                                                              |
|   | $  x+y  ^2 = \langle x+y, x+y \rangle$                                                                           |
|   | $= \ x\ ^2 + \ y\ ^2 + \langle x, y \rangle + \langle y, x \rangle$                                              |
|   | $ \leq   x  ^{2} +   y  ^{2} + 2  x   \cdot   y   $ $ = (  x   +   y  )^{2} $ $ = (  x   +   y  )^{2} $ Schwarz) |
|   | So   x+y   \le   x   +   y  .                                                                                    |
| I |                                                                                                                  |

