

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁷ : C12N 15/54, 1/21, 9/10, C12Q 1/48, 1/68		A2	(11) International Publication Number: WO 00/04166 (43) International Publication Date: 27 January 2000 (27.01.00)
(21) International Application Number: PCT/US99/15871		(74) Agent: MAJARIAN, William, R.; E.I. du Pont de Nemours and Company, Legal Patent Records Center, 1007 Market Street, Wilmington, DE 19898 (US).	
(22) International Filing Date: 13 July 1999 (13.07.99)		(81) Designated States: AE, AL, AU, BA, BB, BG, BR, CA, CN, CU, CZ, EE, GD, GE, HR, HU, ID, IL, IN, IS, JP, KP, KR, LC, LK, LR, LT, LV, MG, MK, MN, MX, NO, NZ, PL, RO, SG, SI, SK, SL, TR, TT, UA, US, UZ, VN, YU, ZA, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).	
(30) Priority Data: 60/092,844 14 July 1998 (14.07.98) US		(75) Inventors; and (75) Inventors/Applicants (for US only): ALLEN, Stephen, M. [US/US]; 2225 Rosewood Drive, Wilmington, DE 19810 (US). FADER, Gary, M. [US/US]; 1000 Woods Lane, Landenberg, PA 19350 (US). FALCO, Saverio, Carl [US/US]; 1902 Millers Road, Arden, DE 19810 (US). KINNEY, Anthony, J. [GB/US]; 609 Lore Avenue, Wilmington, DE 19809 (US). LIGHTNER, Jonathan, E. [US/US]; 4180 Delta Road, Airville, PA 17302 (US). MIAO, Guo-Hua [CN/US]; 202 Cherry Blossom Place, Hockessin, DE 19707 (US). RAFALSKI, J., Antoni [US/US]; 2028 Longcome Drive, Wilmington, DE 19810 (US). THORPE, Catherine, J. [GB/GB]; 120 Ross Street, Cambridge CB1 3BU (GB).	
(54) Title: PLANT CELLULOSE SYNTHASES		<p>Published <i>Without international search report and to be republished upon receipt of that report.</i></p>	
(57) Abstract		<p>This invention relates to an isolated nucleic acid fragment encoding a cellulose synthase. The invention also relates to the construction of a chimeric gene encoding all or a portion of the cellulose synthase, in sense or antisense orientation, wherein expression of the chimeric gene results in production of altered levels of the cellulose synthase in a transformed host cell.</p>	
<pre> SEQ ID NO:2 1 SEQ ID NO:4 RAAGAGCRRGGKKQQPEQQKLASVSLP-LPSSRFTIPTPPRKTQH--RFLACFG--I SEQ ID NO:6 RSTTTKERSLAAQPRAAPQNPQPF--ATACACERSFRPGDQRNGLRAFRCAAAGTV SEQ ID NO:8 RCB--RWTTCSSPPPTPTGRRSPRTP- SEQ ID NO:10 SEQ ID NO:12 SEQ ID NO:14 SEQ ID NO:16 SEQ ID NO:16 SEQ ID NO:18 SEQ ID NO:18 SEQ ID NO:20 SEQ ID NO:20 SEQ ID NO:22 SEQ ID NO:22 SEQ ID NO:23 SEQ ID NO:23 SEQ ID NO:24 SEQ ID NO:24 MFTYGR- SEQ ID NO:25 SEQ ID NO:26 SEQ ID NO:26 RASTPPOTSKXVRNSUSGSQYVXPARYTTSBRGVVLS-RKHELSKGELGQDVNTYVLP SEQ ID NO:27 SEQ ID NO:28 SEQ ID NO:28 SEQ ID NO:29 SEQ ID NO:29 R---PR- </pre> <pre> 60 SEQ ID NO:1 - SEQ ID NO:2 -M-ASAGLVAGSGEMMELV-VIERRDGEPGPKP--MDQRMGQVQCI- SEQ ID NO:4 -R-REGARG---M-ASAGLVAGSGEMMELV-VIERRDGEPGPKP--MDQRMGQVQCI- SEQ ID NO:6 -RERUPAGRGGGFENIE-ASAGLVAGSGEMMELV-VIERRDGEPGPKP--MDQRMGQVQCI- SEQ ID NO:8 -RERUPAGRGGGFENIE-ASAGLVAGSGEMMELV-VIERRDGEPGPKP--MDQRMGQVQCI- SEQ ID NO:10 -R-ASAGLVAGSGEMMELV-VIERRDGEPGPKP--MDQRMGQVQCI- SEQ ID NO:12 -R-ASAGLVAGSGEMMELV-VIERRDGEPGPKP--MDQRMGQVQCI- SEQ ID NO:14 -R-ASAGLVAGSGEMMELV-VIERRDGEPGPKP--MDQRMGQVQCI- SEQ ID NO:16 -R-ASAGLVAGSGEMMELV-VIERRDGEPGPKP--MDQRMGQVQCI- SEQ ID NO:18 -R-ASAGLVAGSGEMMELV-VIERRDGEPGPKP--MDQRMGQVQCI- SEQ ID NO:20 -R-ASAGLVAGSGEMMELV-VIERRDGEPGPKP--MDQRMGQVQCI- SEQ ID NO:22 -R-ASAGLVAGSGEMMELV-VIERRDGEPGPKP--MDQRMGQVQCI- SEQ ID NO:23 -R-ASAGLVAGSGEMMELV-VIERRDGEPGPKP--MDQRMGQVQCI- SEQ ID NO:24 -R-ASAGLVAGSGEMMELV-VIERRDGEPGPKP--MDQRMGQVQCI- SEQ ID NO:25 -R-ASAGLVAGSGEMMELV-VIERRDGEPGPKP--MDQRMGQVQCI- SEQ ID NO:26 PFPOMOPHATKAEGGTQVNLKELFTGGPFRVTRMLNDKVIDAVVTFPOMCAGKHZSCAMP SEQ ID NO:27 -R-ASAGLVAGSGEMMELV-VIERRDGEPGPKP--MDQRMGQVQCI- SEQ ID NO:28 -R-ASAGLVAGSGEMMELV-VIERRDGEPGPKP--MDQRMGQVQCI- SEQ ID NO:29 -R-ASAGLVAGSGEMMELV-VIERRDGEPGPKP--MDQRMGQVQCI- </pre> <pre> 61 SEQ ID NO:1 - SEQ ID NO:2 -M-ASAGLVAGSGEMMELV-VIERRDGEPGPKP--MDQRMGQVQCI- SEQ ID NO:4 -R-REGARG---M-ASAGLVAGSGEMMELV-VIERRDGEPGPKP--MDQRMGQVQCI- SEQ ID NO:6 -RERUPAGRGGGFENIE-ASAGLVAGSGEMMELV-VIERRDGEPGPKP--MDQRMGQVQCI- SEQ ID NO:8 -RERUPAGRGGGFENIE-ASAGLVAGSGEMMELV-VIERRDGEPGPKP--MDQRMGQVQCI- SEQ ID NO:10 -R-ASAGLVAGSGEMMELV-VIERRDGEPGPKP--MDQRMGQVQCI- SEQ ID NO:12 -R-ASAGLVAGSGEMMELV-VIERRDGEPGPKP--MDQRMGQVQCI- SEQ ID NO:14 -R-ASAGLVAGSGEMMELV-VIERRDGEPGPKP--MDQRMGQVQCI- SEQ ID NO:16 -R-ASAGLVAGSGEMMELV-VIERRDGEPGPKP--MDQRMGQVQCI- SEQ ID NO:18 -R-ASAGLVAGSGEMMELV-VIERRDGEPGPKP--MDQRMGQVQCI- SEQ ID NO:20 -R-ASAGLVAGSGEMMELV-VIERRDGEPGPKP--MDQRMGQVQCI- SEQ ID NO:22 -R-ASAGLVAGSGEMMELV-VIERRDGEPGPKP--MDQRMGQVQCI- SEQ ID NO:23 -R-ASAGLVAGSGEMMELV-VIERRDGEPGPKP--MDQRMGQVQCI- SEQ ID NO:24 -R-ASAGLVAGSGEMMELV-VIERRDGEPGPKP--MDQRMGQVQCI- SEQ ID NO:25 -R-ASAGLVAGSGEMMELV-VIERRDGEPGPKP--MDQRMGQVQCI- SEQ ID NO:26 PFPOMOPHATKAEGGTQVNLKELFTGGPFRVTRMLNDKVIDAVVTFPOMCAGKHZSCAMP SEQ ID NO:27 -R-ASAGLVAGSGEMMELV-VIERRDGEPGPKP--MDQRMGQVQCI- SEQ ID NO:28 -R-ASAGLVAGSGEMMELV-VIERRDGEPGPKP--MDQRMGQVQCI- SEQ ID NO:29 -R-ASAGLVAGSGEMMELV-VIERRDGEPGPKP--MDQRMGQVQCI- </pre> <pre> 120 SEQ ID NO:1 - SEQ ID NO:2 -M-ASAGLVAGSGEMMELV-VIERRDGEPGPKP--MDQRMGQVQCI- SEQ ID NO:4 -R-REGARG---M-ASAGLVAGSGEMMELV-VIERRDGEPGPKP--MDQRMGQVQCI- SEQ ID NO:6 -RERUPAGRGGGFENIE-ASAGLVAGSGEMMELV-VIERRDGEPGPKP--MDQRMGQVQCI- SEQ ID NO:8 -RERUPAGRGGGFENIE-ASAGLVAGSGEMMELV-VIERRDGEPGPKP--MDQRMGQVQCI- SEQ ID NO:10 -R-ASAGLVAGSGEMMELV-VIERRDGEPGPKP--MDQRMGQVQCI- SEQ ID NO:12 -R-ASAGLVAGSGEMMELV-VIERRDGEPGPKP--MDQRMGQVQCI- SEQ ID NO:14 -R-ASAGLVAGSGEMMELV-VIERRDGEPGPKP--MDQRMGQVQCI- SEQ ID NO:16 -R-ASAGLVAGSGEMMELV-VIERRDGEPGPKP--MDQRMGQVQCI- SEQ ID NO:18 -R-ASAGLVAGSGEMMELV-VIERRDGEPGPKP--MDQRMGQVQCI- SEQ ID NO:20 -R-ASAGLVAGSGEMMELV-VIERRDGEPGPKP--MDQRMGQVQCI- SEQ ID NO:22 -R-ASAGLVAGSGEMMELV-VIERRDGEPGPKP--MDQRMGQVQCI- SEQ ID NO:23 -R-ASAGLVAGSGEMMELV-VIERRDGEPGPKP--MDQRMGQVQCI- SEQ ID NO:24 -R-ASAGLVAGSGEMMELV-VIERRDGEPGPKP--MDQRMGQVQCI- SEQ ID NO:25 -R-ASAGLVAGSGEMMELV-VIERRDGEPGPKP--MDQRMGQVQCI- SEQ ID NO:26 PFPOMOPHATKAEGGTQVNLKELFTGGPFRVTRMLNDKVIDAVVTFPOMCAGKHZSCAMP SEQ ID NO:27 -R-ASAGLVAGSGEMMELV-VIERRDGEPGPKP--MDQRMGQVQCI- SEQ ID NO:28 -R-ASAGLVAGSGEMMELV-VIERRDGEPGPKP--MDQRMGQVQCI- SEQ ID NO:29 -R-ASAGLVAGSGEMMELV-VIERRDGEPGPKP--MDQRMGQVQCI- </pre> <pre> 131 SEQ ID NO:1 - SEQ ID NO:2 CGDGVGLMPDPGEPPVACHECAFPICRDCCTEYERKEDQUTQNCPCQCYTPERLADCGAVVGD- SEQ ID NO:4 CGDGVGLMPDPGEPPVACHECAFPICRDCCTEYERKEDQUTQNCPCQCYTPERLADCGAVVGD- SEQ ID NO:6 CGDGVGLMPDPGEPPVACHECAFPICRDCCTEYERKEDQUTQNCPCQCYTPERLADCGAVVGD- SEQ ID NO:8 CGDGVGLMPDPGEPPVACHECAFPICRDCCTEYERKEDQUTQNCPCQCYTPERLADCGAVVGD- SEQ ID NO:10 CGDGVGLMPDPGEPPVACHECAFPICRDCCTEYERKEDQUTQNCPCQCYTPERLADCGAVVGD- SEQ ID NO:12 CGDGVGLMPDPGEPPVACHECAFPICRDCCTEYERKEDQUTQNCPCQCYTPERLADCGAVVGD- SEQ ID NO:14 CGDGVGLMPDPGEPPVACHECAFPICRDCCTEYERKEDQUTQNCPCQCYTPERLADCGAVVGD- SEQ ID NO:16 CGDGVGLMPDPGEPPVACHECAFPICRDCCTEYERKEDQUTQNCPCQCYTPERLADCGAVVGD- SEQ ID NO:18 CGDGVGLMPDPGEPPVACHECAFPICRDCCTEYERKEDQUTQNCPCQCYTPERLADCGAVVGD- SEQ ID NO:20 CGDGVGLMPDPGEPPVACHECAFPICRDCCTEYERKEDQUTQNCPCQCYTPERLADCGAVVGD- SEQ ID NO:22 CGDGVGLMPDPGEPPVACHECAFPICRDCCTEYERKEDQUTQNCPCQCYTPERLADCGAVVGD- SEQ ID NO:23 CGDGVGLMPDPGEPPVACHECAFPICRDCCTEYERKEDQUTQNCPCQCYTPERLADCGAVVGD- SEQ ID NO:24 CGDGVGLMPDPGEPPVACHECAFPICRDCCTEYERKEDQUTQNCPCQCYTPERLADCGAVVGD- SEQ ID NO:25 CGDGVGLMPDPGEPPVACHECAFPICRDCCTEYERKEDQUTQNCPCQCYTPERLADCGAVVGD- SEQ ID NO:26 CGDGVGLMPDPGEPPVACHECAFPICRDCCTEYERKEDQUTQNCPCQCYTPERLADCGAVVGD- </pre>			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

TITLE

PLANT CELLULOSE SYNTHASES

This application claims the benefit of U.S. Provisional Application No. 60/092,844.
filed July 14, 1998.

5

FIELD OF THE INVENTION

This invention is in the field of plant molecular biology. More specifically, this invention pertains to nucleic acid fragments encoding cellulose biosynthetic enzymes in plants and seeds.

BACKGROUND OF THE INVENTION

10 Cellulose is a major component of plant fiber, e.g. cotton fiber. Cellulose is composed of crystalline beta-1,4-glucan microfibrils (see World Patent Publication No. WO 98/00549). These microfibrils are strong and can resist enzymatic and mechanical degradation and are important in determining nutritional quality of animal and human foodstuffs. Hence, modification of the biosynthetic pathway responsible for cellulose
15 synthesis through modification of cellulose synthase activity could potentially alter fiber quantity, either by producing more or less fiber in a particular plant species or in a specific organ or tissue of a particular plant. Modification of cellulose synthase activity could increase the value of the fiber to the end-user and may improve the structural integrity of the plant cell wall. Lastly, because cellulose is a major cell wall component, inhibition of
20 cellulose synthesis would probably be lethal. Thus, cellulose synthase may serve as the target for a novel class of herbicides. Plant cellulose synthase genes, homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase, have been reported from cotton, *Arabidopsis*, rice and alfalfa (World Patent Publication Nos. WO 98/00549 and WO 98/18949).

25 There is a great deal of interest in identifying the genes that encode proteins involved in cellulose synthesis. These genes may be used in plant cells to control the synthesis of cellulose. Accordingly, the availability of nucleic acid sequences encoding all or a portion of a cellulose synthase would facilitate studies to better understand cellulose synthesis in plants and provide genetic tools to alter cellulose production.

30

SUMMARY OF THE INVENTION

The instant invention relates to isolated nucleic acid fragments encoding cellulose biosynthesis enzymes. Specifically, this invention concerns an isolated nucleic acid fragment encoding a cellulose synthase and an isolated nucleic acid fragment that is substantially similar to an isolated nucleic acid fragment encoding a cellulose synthase. In
35 addition, this invention relates to a nucleic acid fragment that is complementary to the nucleic acid fragment encoding cellulose synthase. An additional embodiment of the instant invention pertains to a polypeptide encoding all or a substantial portion of a cellulose synthase.

In another embodiment, the instant invention relates to a chimeric gene encoding a cellulose synthase, or to a chimeric gene that comprises a nucleic acid fragment that is complementary to a nucleic acid fragment encoding a cellulose synthase, operably linked to suitable regulatory sequences, wherein expression of the chimeric gene results in production 5 of levels of the encoded protein in a transformed host cell that is altered (i.e., increased or decreased) from the level produced in an untransformed host cell.

In a further embodiment, the instant invention concerns a transformed host cell comprising in its genome a chimeric gene encoding a cellulose synthase, operably linked to suitable regulatory sequences. Expression of the chimeric gene results in production of 10 altered levels of the encoded protein in the transformed host cell. The transformed host cell can be of eukaryotic or prokaryotic origin, and include cells derived from higher plants and microorganisms. The invention also includes transformed plants that arise from transformed host cells of higher plants, and seeds derived from such transformed plants.

An additional embodiment of the instant invention concerns a method of altering the 15 level of expression of a cellulose synthase in a transformed host cell comprising:
a) transforming a host cell with a chimeric gene comprising a nucleic acid fragment encoding a cellulose synthase; and b) growing the transformed host cell under conditions that are suitable for expression of the chimeric gene wherein expression of the chimeric gene results in production of altered levels of cellulose synthase in the transformed host cell.

An addition embodiment of the instant invention concerns a method for obtaining a 20 nucleic acid fragment encoding all or a substantial portion of an amino acid sequence encoding a cellulose synthase.

A further embodiment of the instant invention is a method for evaluating at least one compound for its ability to inhibit the activity of a cellulose synthase, the method comprising 25 the steps of: (a) transforming a host cell with a chimeric gene comprising a nucleic acid fragment encoding a cellulose synthase, operably linked to suitable regulatory sequences; (b) growing the transformed host cell under conditions that are suitable for expression of the chimeric gene wherein expression of the chimeric gene results in production of cellulose synthase in the transformed host cell; (c) optionally purifying the cellulose synthase 30 expressed by the transformed host cell; (d) treating the cellulose synthase with a compound to be tested; and (e) comparing the activity of the cellulose synthase that has been treated with a test compound to the activity of an untreated cellulose synthase, thereby selecting compounds with potential for inhibitory activity.

**35 BRIEF DESCRIPTION OF THE
DRAWINGS AND SEQUENCE DESCRIPTIONS**

The invention can be more fully understood from the following detailed description and the accompanying drawings and Sequence Listing which form a part of this application.

Figure 1 shows a comparison of the amino acid sequences set forth in SEQ ID NOs:2, 4, 8, 10, 12, 14, 16, 18, 20 and 22 and the *Arabidopsis thaliana* sequences (SEQ ID NOs:23 (gi 2827139), 24 (gi 2827141), 26 (gi 4467125), 27 (gi 4886756) and 29 (gi 3135611)) and *Gossypium hirsutum* sequences (SEQ ID NOs:25 (gi 1706958) and 28 (gi 5081779)).

Table 1 lists the polypeptides that are described herein, the designation of the cDNA clones that comprise the nucleic acid fragments encoding polypeptides representing all or a substantial portion of these polypeptides, and the corresponding identifier (SEQ ID NO:) as used in the attached Sequence Listing. The sequence descriptions and Sequence Listing attached hereto comply with the rules governing nucleotide and/or amino acid sequence disclosures in patent applications as set forth in 37 C.F.R. §1.821-1.825.

TABLE 1
Cellulose Biosynthetic Enzymes

Protein	Clone Designation	SEQ ID NO: (Nucleotide) (Amino Acid)	
Cellulose Synthase	bsh1.pk0002.f6	1	2
Cellulose Synthase	Contig composed of: cc01n.pk0005.g3 cdt2c.pk002.g1 cdt2c.pk002.l16 csc1c.pk002.i1 p0031.ccmar05rb p0110.cgsma57r	3	4
Cellulose Synthase	cr1n.pk0135.e10	5	6
Cellulose Synthase	p0097.cqrard17rc	7	8
Cellulose Synthase	p0122.ckamh70rc	9	10
Cellulose Synthase	r1r24.pk0073.g1	11	12
Cellulose Synthase	sdp2c.pk005.o22	13	14
Cellulose Synthase	ses8w.pk0028.f3	15	16
Cellulose Synthase	ssl.pk0036.c10	17	18
Cellulose Synthase	Contig composed of: wl1.pk0009.c9 wr1.pk0160.d11 wre1n.pk0043.f9 wre1n.pk0043.h8 wre1n.pk0131.g10	19	20
Cellulose Synthase	wl1n.pk0044.b1	21	22

The Sequence Listing contains the one letter code for nucleotide sequence characters and the three letter codes for amino acids as defined in conformity with the IUPAC-IUBMB standards described in *Nucleic Acids Research* 13:3021-3030 (1985) and in the *Biochemical Journal* 219 (No. 2):345-373 (1984) which are herein incorporated by reference. The

symbols and format used for nucleotide and amino acid sequence data comply with the rules set forth in 37 C.F.R. §1.822.

DETAILED DESCRIPTION OF THE INVENTION

In the context of this disclosure, a number of terms shall be utilized. As used herein, a
5 "nucleic acid fragment" is a polymer of RNA or DNA that is single- or double-stranded,
optionally containing synthetic, non-natural or altered nucleotide bases. A nucleic acid
fragment in the form of a polymer of DNA may be comprised of one or more segments of
cDNA, genomic DNA or synthetic DNA.

As used herein, "contig" refers to a nucleotide sequence that is assembled from two or
10 more constituent nucleotide sequences that share common or overlapping regions of
sequence homology. For example, the nucleotide sequences of two or more nucleic acid
fragments can be compared and aligned in order to identify common or overlapping
sequences. Where common or overlapping sequences exist between two or more nucleic
acid fragments, the sequences (and thus their corresponding nucleic acid fragments) can be
15 assembled into a single contiguous nucleotide sequence.

As used herein, "substantially similar" refers to nucleic acid fragments wherein
changes in one or more nucleotide bases results in substitution of one or more amino acids,
but do not affect the functional properties of the polypeptide encoded by the nucleotide
sequence. "Substantially similar" also refers to nucleic acid fragments wherein changes in
20 one or more nucleotide bases does not affect the ability of the nucleic acid fragment to
mediate alteration of gene expression by gene silencing through for example antisense or co-
suppression technology. "Substantially similar" also refers to modifications of the nucleic
acid fragments of the instant invention such as deletion or insertion of one or more
nucleotides that do not substantially affect the functional properties of the resulting
25 transcript vis-à-vis the ability to mediate gene silencing or alteration of the functional
properties of the resulting protein molecule. It is therefore understood that the invention
encompasses more than the specific exemplary nucleotide or amino acid sequences and
includes functional equivalents thereof.

For example, it is well known in the art that antisense suppression and co-suppression
30 of gene expression may be accomplished using nucleic acid fragments representing less than
the entire coding region of a gene, and by nucleic acid fragments that do not share 100%
sequence identity with the gene to be suppressed. Moreover, alterations in a nucleic acid
fragment which result in the production of a chemically equivalent amino acid at a given
site, but do not effect the functional properties of the encoded polypeptide, are well known in
35 the art. Thus, a codon for the amino acid alanine, a hydrophobic amino acid, may be
substituted by a codon encoding another less hydrophobic residue, such as glycine, or a more
hydrophobic residue, such as valine, leucine, or isoleucine. Similarly, changes which result
in substitution of one negatively charged residue for another, such as aspartic acid for

glutamic acid, or one positively charged residue for another, such as lysine for arginine, can also be expected to produce a functionally equivalent product. Nucleotide changes which result in alteration of the N-terminal and C-terminal portions of the polypeptide molecule would also not be expected to alter the activity of the polypeptide. Each of the proposed 5 modifications is well within the routine skill in the art, as is determination of retention of biological activity of the encoded products.

Moreover, substantially similar nucleic acid fragments may also be characterized by their ability to hybridize, under stringent conditions (0.1X SSC, 0.1% SDS, 65°C), with the nucleic acid fragments disclosed herein.

10 Substantially similar nucleic acid fragments of the instant invention may also be characterized by the percent identity of the amino acid sequences that they encode to the amino acid sequences disclosed herein, as determined by algorithms commonly employed by those skilled in this art. Preferred are those nucleic acid fragments whose nucleotide sequences encode amino acid sequences that are 80% identical to the amino acid sequences 15 reported herein. More preferred nucleic acid fragments encode amino acid sequences that are 90% identical to the amino acid sequences reported herein. Most preferred are nucleic acid fragments that encode amino acid sequences that are 95% identical to the amino acid sequences reported herein. Sequence alignments and percent identity calculations were performed using the Megalign program of the LASARGENE bioinformatics computing suite 20 (DNASTAR Inc., Madison, WI). Multiple alignment of the sequences was performed using the Clustal method of alignment (Higgins and Sharp (1989) *CABIOS*. 5:151-153) with the default parameters (GAP PENALTY=10, GAP LENGTH PENALTY=10). Default parameters for pairwise alignments using the Clustal method were KTUPLE 1, GAP PENALTY=3, WINDOW=5 and DIAGONALS SAVED=5.

25 A "substantial portion" of an amino acid or nucleotide sequence comprises an amino acid or a nucleotide sequence that is sufficient to afford putative identification of the protein or gene that the amino acid or nucleotide sequence comprises. Amino acid and nucleotide sequences can be evaluated either manually by one skilled in the art, or by using computer-based sequence comparison and identification tools that employ algorithms such as BLAST 30 (Basic Local Alignment Search Tool; Altschul et al. (1993) *J. Mol. Biol.* 215:403-410; see also www.ncbi.nlm.nih.gov/BLAST/). In general, a sequence of ten or more contiguous amino acids or thirty or more contiguous nucleotides is necessary in order to putatively identify a polypeptide or nucleic acid sequence as homologous to a known protein or gene. Moreover, with respect to nucleotide sequences, gene-specific oligonucleotide probes 35 comprising 30 or more contiguous nucleotides may be used in sequence-dependent methods of gene identification (e.g., Southern hybridization) and isolation (e.g., *in situ* hybridization of bacterial colonies or bacteriophage plaques). In addition, short oligonucleotides of 12 or more nucleotides may be used as amplification primers in PCR in order to obtain a particular

nucleic acid fragment comprising the primers. Accordingly, a "substantial portion" of a nucleotide sequence comprises a nucleotide sequence that will afford specific identification and/or isolation of a nucleic acid fragment comprising the sequence. The instant specification teaches amino acid and nucleotide sequences encoding polypeptides that

5 comprise one or more particular plant proteins. The skilled artisan, having the benefit of the sequences as reported herein, may now use all or a substantial portion of the disclosed sequences for purposes known to those skilled in this art. Accordingly, the instant invention comprises the complete sequences as reported in the accompanying Sequence Listing, as well as substantial portions of those sequences as defined above.

10 "Codon degeneracy" refers to divergence in the genetic code permitting variation of the nucleotide sequence without effecting the amino acid sequence of an encoded polypeptide. Accordingly, the instant invention relates to any nucleic acid fragment comprising a nucleotide sequence that encodes all or a substantial portion of the amino acid sequences set forth herein. The skilled artisan is well aware of the "codon-bias" exhibited
15 by a specific host cell in usage of nucleotide codons to specify a given amino acid. Therefore, when synthesizing a nucleic acid fragment for improved expression in a host cell, it is desirable to design the nucleic acid fragment such that its frequency of codon usage approaches the frequency of preferred codon usage of the host cell.

20 "Synthetic nucleic acid fragments" can be assembled from oligonucleotide building blocks that are chemically synthesized using procedures known to those skilled in the art. These building blocks are ligated and annealed to form larger nucleic acid fragments which may then be enzymatically assembled to construct the entire desired nucleic acid fragment. "Chemically synthesized", as related to nucleic acid fragment, means that the component nucleotides were assembled *in vitro*. Manual chemical synthesis of nucleic acid fragments
25 may be accomplished using well established procedures, or automated chemical synthesis can be performed using one of a number of commercially available machines. Accordingly, the nucleic acid fragments can be tailored for optimal gene expression based on optimization of nucleotide sequence to reflect the codon bias of the host cell. The skilled artisan appreciates the likelihood of successful gene expression if codon usage is biased towards
30 those codons favored by the host. Determination of preferred codons can be based on a survey of genes derived from the host cell where sequence information is available.

35 "Gene" refers to a nucleic acid fragment that expresses a specific protein, including regulatory sequences preceding (5' non-coding sequences) and following (3' non-coding sequences) the coding sequence. "Native gene" refers to a gene as found in nature with its own regulatory sequences. "Chimeric gene" refers any gene that is not a native gene, comprising regulatory and coding sequences that are not found together in nature. Accordingly, a chimeric gene may comprise regulatory sequences and coding sequences that are derived from different sources, or regulatory sequences and coding sequences derived

from the same source, but arranged in a manner different than that found in nature. "Endogenous gene" refers to a native gene in its natural location in the genome of an organism. A "foreign" gene refers to a gene not normally found in the host organism, but that is introduced into the host organism by gene transfer. Foreign genes can comprise native genes inserted into a non-native organism, or chimeric genes. A "transgene" is a gene that has been introduced into the genome by a transformation procedure.

5 "Coding sequence" refers to a nucleotide sequence that codes for a specific amino acid sequence. "Regulatory sequences" refer to nucleotide sequences located upstream (5' non-coding sequences), within, or downstream (3' non-coding sequences) of a coding sequence, 10 and which influence the transcription, RNA processing or stability, or translation of the associated coding sequence. Regulatory sequences may include promoters, translation leader sequences, introns, and polyadenylation recognition sequences.

"Promoter" refers to a nucleotide sequence capable of controlling the expression of a coding sequence or functional RNA. In general, a coding sequence is located 3' to a

15 promoter sequence. The promoter sequence consists of proximal and more distal upstream elements, the latter elements often referred to as enhancers. Accordingly, an "enhancer" is a nucleotide sequence which can stimulate promoter activity and may be an innate element of the promoter or a heterologous element inserted to enhance the level or tissue-specificity of a promoter. Promoters may be derived in their entirety from a native gene, or be composed 20 of different elements derived from different promoters found in nature, or even comprise synthetic nucleotide segments. It is understood by those skilled in the art that different promoters may direct the expression of a gene in different tissues or cell types, or at different stages of development, or in response to different environmental conditions.

Promoters which cause a nucleic acid fragment to be expressed in most cell types at most 25 times are commonly referred to as "constitutive promoters". New promoters of various types useful in plant cells are constantly being discovered; numerous examples may be found in the compilation by Okamuro and Goldberg (1989) *Biochemistry of Plants* 15:1-82. It is further recognized that since in most cases the exact boundaries of regulatory sequences have not been completely defined, nucleic acid fragments of different lengths may have 30 identical promoter activity.

The "translation leader sequence" refers to a nucleotide sequence located between the promoter sequence of a gene and the coding sequence. The translation leader sequence is present in the fully processed mRNA upstream of the translation start sequence. The translation leader sequence may affect processing of the primary transcript to mRNA, 35 mRNA stability or translation efficiency. Examples of translation leader sequences have been described (Turner and Foster (1995) *Molecular Biotechnology* 3:225).

The "3' non-coding sequences" refer to nucleotide sequences located downstream of a coding sequence and include polyadenylation recognition sequences and other sequences

encoding regulatory signals capable of affecting mRNA processing or gene expression. The polyadenylation signal is usually characterized by affecting the addition of polyadenylic acid tracts to the 3' end of the mRNA precursor. The use of different 3' non-coding sequences is exemplified by Ingelbrecht et al. (1989) *Plant Cell* 1:671-680.

5 "RNA transcript" refers to the product resulting from RNA polymerase-catalyzed transcription of a DNA sequence. When the RNA transcript is a perfect complementary copy of the DNA sequence, it is referred to as the primary transcript or it may be a RNA sequence derived from posttranscriptional processing of the primary transcript and is referred to as the mature RNA. "Messenger RNA (mRNA)" refers to the RNA that is

10 without introns and that can be translated into polypeptide by the cell. "cDNA" refers to a double-stranded DNA that is complementary to and derived from mRNA. "Sense" RNA refers to an RNA transcript that includes the mRNA and so can be translated into a polypeptide by the cell. "Antisense RNA" refers to an RNA transcript that is complementary to all or part of a target primary transcript or mRNA and that blocks the

15 expression of a target gene (see U.S. Patent No. 5,107,065, incorporated herein by reference). The complementarity of an antisense RNA may be with any part of the specific nucleotide sequence, i.e., at the 5' non-coding sequence, 3' non-coding sequence, introns, or the coding sequence. "Functional RNA" refers to sense RNA, antisense RNA, ribozyme RNA, or other RNA that may not be translated but yet has an effect on cellular processes.

20 The term "operably linked" refers to the association of two or more nucleic acid fragments on a single nucleic acid fragment so that the function of one is affected by the other. For example, a promoter is operably linked with a coding sequence when it is capable of affecting the expression of that coding sequence (i.e., that the coding sequence is under the transcriptional control of the promoter). Coding sequences can be operably linked to

25 regulatory sequences in sense or antisense orientation.

The term "expression", as used herein, refers to the transcription and stable accumulation of sense (mRNA) or antisense RNA derived from the nucleic acid fragment of the invention. Expression may also refer to translation of mRNA into a polypeptide. "Antisense inhibition" refers to the production of antisense RNA transcripts capable of

30 suppressing the expression of the target protein. "Overexpression" refers to the production of a gene product in transgenic organisms that exceeds levels of production in normal or non-transformed organisms. "Co-suppression" refers to the production of sense RNA transcripts capable of suppressing the expression of identical or substantially similar foreign or endogenous genes (U.S. Patent No. 5,231,020, incorporated herein by reference).

35 "Altered levels" refers to the production of gene product(s) in transgenic organisms in amounts or proportions that differ from that of normal or non-transformed organisms.

"Mature" protein refers to a post-translationally processed polypeptide; i.e., one from which any pre- or propeptides present in the primary translation product have been removed.

"Precursor" protein refers to the primary product of translation of mRNA; i.e., with pre- and propeptides still present. Pre- and propeptides may be but are not limited to intracellular localization signals.

A "chloroplast transit peptide" is an amino acid sequence which is translated in conjunction with a protein and directs the protein to the chloroplast or other plastid types present in the cell in which the protein is made. "Chloroplast transit sequence" refers to a nucleotide sequence that encodes a chloroplast transit peptide. A "signal peptide" is an amino acid sequence which is translated in conjunction with a protein and directs the protein to the secretory system (Chrispeels (1991) *Ann. Rev. Plant Phys. Plant Mol. Biol.* 42:21-53).

5 If the protein is to be directed to a vacuole, a vacuolar targeting signal (*supra*) can further be added, or if to the endoplasmic reticulum, an endoplasmic reticulum retention signal (*supra*) may be added. If the protein is to be directed to the nucleus, any signal peptide present should be removed and instead a nuclear localization signal included (Raikhel (1992) *Plant Phys.* 100:1627-1632).

10 15 "Transformation" refers to the transfer of a nucleic acid fragment into the genome of a host organism, resulting in genetically stable inheritance. Host organisms containing the transformed nucleic acid fragments are referred to as "transgenic" organisms. Examples of methods of plant transformation include *Agrobacterium*-mediated transformation (De Blaere et al. (1987) *Meth. Enzymol.* 143:277) and particle-accelerated or "gene gun" transformation

20 25 technology (Klein et al. (1987) *Nature (London)* 327:70-73; U.S. Patent No. 4,945,050, incorporated herein by reference).

Standard recombinant DNA and molecular cloning techniques used herein are well known in the art and are described more fully in Sambrook et al. *Molecular Cloning: A Laboratory Manual*; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, 1989 (hereinafter "Maniatis").

Nucleic acid fragments encoding at least a portion of a cellulose synthase enzyme have been isolated and identified by comparison of random plant cDNA sequences to public databases containing nucleotide and protein sequences using the BLAST algorithms well known to those skilled in the art. The nucleic acid fragments of the instant invention may be used to isolate cDNAs and genes encoding homologous proteins from the same or other plant species. Isolation of homologous genes using sequence-dependent protocols is well known in the art. Examples of sequence-dependent protocols include, but are not limited to, methods of nucleic acid hybridization, and methods of DNA and RNA amplification as exemplified by various uses of nucleic acid amplification technologies (e.g., polymerase chain reaction, ligase chain reaction).

For example, genes encoding other cellulose synthase enzymes, either as cDNAs or genomic DNAs, could be isolated directly by using all or a portion of the instant nucleic acid fragments as DNA hybridization probes to screen libraries from any desired plant employing

methodology well known to those skilled in the art. Specific oligonucleotide probes based upon the instant nucleic acid sequences can be designed and synthesized by methods known in the art (Maniatis). Moreover, the entire sequences can be used directly to synthesize DNA probes by methods known to the skilled artisan such as random primer DNA labeling,
5 nick translation, or end-labeling techniques, or RNA probes using available *in vitro* transcription systems. In addition, specific primers can be designed and used to amplify a part or all of the instant sequences. The resulting amplification products can be labeled directly during amplification reactions or labeled after amplification reactions, and used as probes to isolate full length cDNA or genomic fragments under conditions of appropriate
10 stringency.

In addition, two short segments of the instant nucleic acid fragments may be used in polymerase chain reaction protocols to amplify longer nucleic acid fragments encoding homologous genes from DNA or RNA. The polymerase chain reaction may also be performed on a library of cloned nucleic acid fragments wherein the sequence of one primer
15 is derived from the instant nucleic acid fragments, and the sequence of the other primer takes advantage of the presence of the polyadenylic acid tracts to the 3' end of the mRNA precursor encoding plant genes. Alternatively, the second primer sequence may be based upon sequences derived from the cloning vector. For example, the skilled artisan can follow the RACE protocol (Frohman et al. (1988) *Proc. Natl. Acad. Sci. USA* 85:8998) to generate
20 cDNAs by using PCR to amplify copies of the region between a single point in the transcript and the 3' or 5' end. Primers oriented in the 3' and 5' directions can be designed from the instant sequences. Using commercially available 3' RACE or 5' RACE systems (BRL), specific 3' or 5' cDNA fragments can be isolated (Ohara et al. (1989) *Proc. Natl. Acad. Sci. USA* 86:5673; Loh et al. (1989) *Science* 243:217). Products generated by the 3'
25 and 5' RACE procedures can be combined to generate full-length cDNAs (Frohman and Martin (1989) *Techniques* 1:165).

Availability of the instant nucleotide and deduced amino acid sequences facilitates immunological screening of cDNA expression libraries. Synthetic peptides representing portions of the instant amino acid sequences may be synthesized. These peptides can be
30 used to immunize animals to produce polyclonal or monoclonal antibodies with specificity for peptides or proteins comprising the amino acid sequences. These antibodies can be then be used to screen cDNA expression libraries to isolate full-length cDNA clones of interest (Lerner (1984) *Adv. Immunol.* 36:1; Maniatis).

The nucleic acid fragments of the instant invention may be used to create transgenic plants in which the disclosed polypeptides are present at higher or lower levels than normal or in cell types or developmental stages in which they are not normally found. This would have the effect of altering the level of cellulose synthase in those cells.

Overexpression of the proteins of the instant invention may be accomplished by first constructing a chimeric gene in which the coding region is operably linked to a promoter capable of directing expression of a gene in the desired tissues at the desired stage of development. For reasons of convenience, the chimeric gene may comprise promoter sequences and translation leader sequences derived from the same genes. 3' Non-coding sequences encoding transcription termination signals may also be provided. The instant chimeric gene may also comprise one or more introns in order to facilitate gene expression.

5 Plasmid vectors comprising the instant chimeric gene can then be constructed. The choice of plasmid vector is dependent upon the method that will be used to transform host plants. The skilled artisan is well aware of the genetic elements that must be present on the plasmid vector in order to successfully transform, select and propagate host cells containing the chimeric gene. The skilled artisan will also recognize that different independent transformation events will result in different levels and patterns of expression (Jones et al. 10 (1985) *EMBO J.* 4:2411-2418; De Almeida et al. (1989) *Mol. Gen. Genetics* 218:78-86), and thus that multiple events must be screened in order to obtain lines displaying the desired 15 expression level and pattern. Such screening may be accomplished by Southern analysis of DNA, Northern analysis of mRNA expression, Western analysis of protein expression, or phenotypic analysis.

For some applications it may be useful to direct the instant polypeptides to different 20 cellular compartments, or to facilitate its secretion from the cell. It is thus envisioned that the chimeric gene described above may be further supplemented by altering the coding sequence to encode the instant polypeptides with appropriate intracellular targeting sequences such as transit sequences (Keegstra (1989) *Cell* 56:247-253), signal sequences or sequences encoding endoplasmic reticulum localization (Chrispeels (1991) *Ann. Rev. Plant 25 Phys. Plant Mol. Biol.* 42:21-53), or nuclear localization signals (Raikhel (1992) *Plant Phys.* 100:1627-1632) added and/or with targeting sequences that are already present removed. While the references cited give examples of each of these, the list is not exhaustive and more targeting signals of utility may be discovered in the future.

It may also be desirable to reduce or eliminate expression of genes encoding the 30 instant polypeptides in plants for some applications. In order to accomplish this, a chimeric gene designed for co-suppression of the instant polypeptide can be constructed by linking a gene or gene fragment encoding that polypeptide to plant promoter sequences. Alternatively, a chimeric gene designed to express antisense RNA for all or part of the instant nucleic acid fragment can be constructed by linking the gene or gene fragment in 35 reverse orientation to plant promoter sequences. Either the co-suppression or antisense chimeric genes could be introduced into plants via transformation wherein expression of the corresponding endogenous genes are reduced or eliminated.

Molecular genetic solutions to the generation of plants with altered gene expression have a decided advantage over more traditional plant breeding approaches. Changes in plant phenotypes can be produced by specifically inhibiting expression of one or more genes by antisense inhibition or cosuppression (U. S. Patent Nos. 5,190,931, 5,107,065 and 5,283,323). An antisense or cosuppression construct would act as a dominant negative regulator of gene activity. While conventional mutations can yield negative regulation of gene activity these effects are most likely recessive. The dominant negative regulation available with a transgenic approach may be advantageous from a breeding perspective. In addition, the ability to restrict the expression of specific phenotype to the reproductive tissues of the plant by the use of tissue specific promoters may confer agronomic advantages relative to conventional mutations which may have an effect in all tissues in which a mutant gene is ordinarily expressed.

The person skilled in the art will know that special considerations are associated with the use of antisense or cosuppression technologies in order to reduce expression of particular genes. For example, the proper level of expression of sense or antisense genes may require the use of different chimeric genes utilizing different regulatory elements known to the skilled artisan. Once transgenic plants are obtained by one of the methods described above, it will be necessary to screen individual transgenics for those that most effectively display the desired phenotype. Accordingly, the skilled artisan will develop methods for screening large numbers of transformants. The nature of these screens will generally be chosen on practical grounds, and is not an inherent part of the invention. For example, one can screen by looking for changes in gene expression by using antibodies specific for the protein encoded by the gene being suppressed, or one could establish assays that specifically measure enzyme activity. A preferred method will be one which allows large numbers of samples to be processed rapidly, since it will be expected that a large number of transformants will be negative for the desired phenotype.

The instant polypeptides (or portions thereof) may be produced in heterologous host cells, particularly in the cells of microbial hosts, and can be used to prepare antibodies to the these proteins by methods well known to those skilled in the art. The antibodies are useful for detecting the polypeptides of the instant invention *in situ* in cells or *in vitro* in cell extracts. Preferred heterologous host cells for production of the instant polypeptides are microbial hosts. Microbial expression systems and expression vectors containing regulatory sequences that direct high level expression of foreign proteins are well known to those skilled in the art. Any of these could be used to construct a chimeric gene for production of the instant polypeptides. This chimeric gene could then be introduced into appropriate microorganisms via transformation to provide high level expression of the encoded cellulose synthase. An example of a vector for high level expression of the instant polypeptides in a bacterial host is provided (Example 6).

Additionally, the instant polypeptides can be used as targets to facilitate design and/or identification of inhibitors of those enzymes that may be useful as herbicides. This is desirable because the polypeptides described herein catalyze a step in the synthesis of cellulose. Accordingly, inhibition of the activity of one or more of the enzymes described 5 herein could lead to inhibition plant growth. Thus, the instant polypeptides could be appropriate for new herbicide discovery and design.

All or a substantial portion of the nucleic acid fragments of the instant invention may also be used as probes for genetically and physically mapping the genes that they are a part of, and as markers for traits linked to those genes. Such information may be useful in plant 10 breeding in order to develop lines with desired phenotypes. For example, the instant nucleic acid fragments may be used as restriction fragment length polymorphism (RFLP) markers. Southern blots (Maniatis) of restriction-digested plant genomic DNA may be probed with the nucleic acid fragments of the instant invention. The resulting banding patterns may then be subjected to genetic analyses using computer programs such as MapMaker (Lander et al. 15 (1987) *Genomics* 1:174-181) in order to construct a genetic map. In addition, the nucleic acid fragments of the instant invention may be used to probe Southern blots containing restriction endonuclease-treated genomic DNAs of a set of individuals representing parent and progeny of a defined genetic cross. Segregation of the DNA polymorphisms is noted and used to calculate the position of the instant nucleic acid sequence in the genetic map 20 previously obtained using this population (Botstein et al. (1980) *Am. J. Hum. Genet.* 32:314-331).

The production and use of plant gene-derived probes for use in genetic mapping is described in Bernatzky and Tanksley (1986) *Plant Mol. Biol. Reporter* 4(1):37-41. Numerous publications describe genetic mapping of specific cDNA clones using the 25 methodology outlined above or variations thereof. For example, F2 intercross populations, backcross populations, randomly mated populations, near isogenic lines, and other sets of individuals may be used for mapping. Such methodologies are well known to those skilled in the art.

Nucleic acid probes derived from the instant nucleic acid sequences may also be used 30 for physical mapping (i.e., placement of sequences on physical maps; see Hoheisel et al. In: *Nonmammalian Genomic Analysis: A Practical Guide*, Academic press 1996, pp. 319-346, and references cited therein).

In another embodiment, nucleic acid probes derived from the instant nucleic acid sequences may be used in direct fluorescence *in situ* hybridization (FISH) mapping (Trask 35 (1991) *Trends Genet.* 7:149-154). Although current methods of FISH mapping favor use of large clones (several to several hundred KB; see Laan et al. (1995) *Genome Research* 5:13-20), improvements in sensitivity may allow performance of FISH mapping using shorter probes.

A variety of nucleic acid amplification-based methods of genetic and physical mapping may be carried out using the instant nucleic acid sequences. Examples include allele-specific amplification (Kazazian (1989) *J. Lab. Clin. Med.* 114(2):95-96), polymorphism of PCR-amplified fragments (CAPS; Sheffield et al. (1993) *Genomics* 16:325-332), allele-specific ligation (Landegren et al. (1988) *Science* 241:1077-1080), nucleotide extension reactions (Sokolov (1990) *Nucleic Acid Res.* 18:3671), Radiation Hybrid Mapping (Walter et al. (1997) *Nature Genetics* 7:22-28) and Happy Mapping (Dear and Cook (1989) *Nucleic Acid Res.* 17:6795-6807). For these methods, the sequence of a nucleic acid fragment is used to design and produce primer pairs for use in the amplification reaction or in primer extension reactions. The design of such primers is well known to those skilled in the art. In methods employing PCR-based genetic mapping, it may be necessary to identify DNA sequence differences between the parents of the mapping cross in the region corresponding to the instant nucleic acid sequence. This, however, is generally not necessary for mapping methods.

Loss of function mutant phenotypes may be identified for the instant cDNA clones either by targeted gene disruption protocols or by identifying specific mutants for these genes contained in a maize population carrying mutations in all possible genes (Ballinger and Benzer (1989) *Proc. Natl. Acad. Sci USA* 86:9402; Koes et al. (1995) *Proc. Natl. Acad. Sci USA* 92:8149; Bensen et al. (1995) *Plant Cell* 7:75). The latter approach may be accomplished in two ways. First, short segments of the instant nucleic acid fragments may be used in polymerase chain reaction protocols in conjunction with a mutation tag sequence primer on DNAs prepared from a population of plants in which Mutator transposons or some other mutation-causing DNA element has been introduced (see Bensen, *supra*). The amplification of a specific DNA fragment with these primers indicates the insertion of the mutation tag element in or near the plant gene encoding the instant polypeptides.

Alternatively, the instant nucleic acid fragment may be used as a hybridization probe against PCR amplification products generated from the mutation population using the mutation tag sequence primer in conjunction with an arbitrary genomic site primer, such as that for a restriction enzyme site-anchored synthetic adaptor. With either method, a plant containing a mutation in the endogenous gene encoding the instant polypeptides can be identified and obtained. This mutant plant can then be used to determine or confirm the natural function of the instant polypeptides disclosed herein.

EXAMPLES

The present invention is further defined in the following Examples, in which all parts and percentages are by weight and degrees are Celsius, unless otherwise stated. It should be understood that these Examples, while indicating preferred embodiments of the invention, are given by way of illustration only. From the above discussion and these Examples, one skilled in the art can ascertain the essential characteristics of this invention, and without

departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usages and conditions.

EXAMPLE 1

Composition of cDNA Libraries; Isolation and Sequencing of cDNA Clones

5 cDNA libraries representing mRNAs from various barley, corn, rice, soybean and wheat tissues were prepared. The characteristics of the libraries are described below.

TABLE 2
cDNA Libraries from Barley, Corn, Rice, Soybean and Wheat

Library	Tissue	Clone
bsh1	Barley (<i>Hordeum vulgare</i>) sheath, developing seedling	bsh1.pk0002.f6
ccoln	Corn (<i>Zea mays</i>) cob of 67 day old plants grown in green house*	ccoln.pk0005.g3
cdt2c	Corn (<i>Zea mays</i>) developing tassel 2	cdt2c.pk002.g1 cdt2c.pk002.l16
cr1n	Corn (<i>Zea mays</i>) root from 7 day seedlings grown in light*	cr1n.pk0135.e10
csc1c	Corn (<i>Zea mays</i>) 20 day seedling (germination under cold stress)	csc1c.pk002.i1
p0031	Corn (<i>Zea mays</i>) shoot culture, initiated from seed derived meristems culture was maintained on 273N medium.	p0031.ccmar05rb
p0110	Corn (<i>Zea mays</i>) stages V3/V4** leaf tissue minus midrib harvested 4 hours, 24 hours and 7 days after infiltration with salicylic acid, tissues pooled*	p0110.cgsma57r
p0097	Corn (<i>Zea mays</i>) stage V9** whorl section (7 cm) from plant infected four times with european corn borer	p0097.cqrad17rc
p0122	Corn (<i>Zea mays</i>) pith tissue collected from internode subtending ear node 5 days after pollination	p0122.ckamh70rc
rlr24	Rice (<i>Oryza sativa</i>) leaf (15 days after germination) 24 hours after infection of <i>Magaporthe grisea</i> strain 4360-R-62 (AVR2-YAMO); Resistant	rlr24.pk0073.g1
sdp2c	Soybean (<i>Glycine max</i>) developing pods 6-7 mm	sdp2c.pk005.o22
ses8w	Soybean (<i>Glycine max</i>) mature embryo 8 weeks after subculture	ses8w.pk0028.f3
ss1	Soybean (<i>Glycine max</i>) seedling 5-10 day	ssl.pk0036.c10
wl1	Wheat (<i>Triticum aestivum</i>) leaf 7 day old seedling, light grown	wl1.pk0009.c9
wl1n	Wheat (<i>Triticum aestivum</i>) leaf 7 day old seedling, light grown*	wl1n.pk0044.b1
wr1	Wheat (<i>Triticum aestivum</i>) root; 7 day old seedling, light grown	wr1.pk0160.d11

Library	Tissue	Clone
wre1n	Wheat (<i>Triticum aestivum</i>) root; 7 day old etiolated seedling*	wre1n.pk0043.f9
		wre1n.pk0043.h8
		wre1n.pk0131.g10

*These libraries were normalized essentially as described in U.S. Patent No. 5,482,845, incorporated herein by reference.

**V3, V4 and V9 refer to stages of corn growth. The descriptions can be found in "How a Corn Plant Develops" Special Report No. 48, Iowa State University of Science and Technology Cooperative Extension Service Ames, Iowa, Reprinted February 1993.

cDNA libraries may be prepared by any one of many methods available. For example, the cDNAs may be introduced into plasmid vectors by first preparing the cDNA 10 libraries in Uni-ZAP™ XR vectors according to the manufacturer's protocol (Stratagene Cloning Systems, La Jolla, CA). The Uni-ZAP™ XR libraries are converted into plasmid libraries according to the protocol provided by Stratagene. Upon conversion, cDNA inserts will be contained in the plasmid vector pBluescript. In addition, the cDNAs may be introduced directly into precut Bluescript II SK(+) vectors (Stratagene) using T4 DNA 15 ligase (New England Biolabs), followed by transfection into DH10B cells according to the manufacturer's protocol (GIBCO BRL Products). Once the cDNA inserts are in plasmid vectors, plasmid DNAs are prepared from randomly picked bacterial colonies containing recombinant pBluescript plasmids, or the insert cDNA sequences are amplified via polymerase chain reaction using primers specific for vector sequences flanking the inserted 20 cDNA sequences. Amplified insert DNAs or plasmid DNAs are sequenced in dye-primer sequencing reactions to generate partial cDNA sequences (expressed sequence tags or "ESTs"; see Adams et al., (1991) *Science* 252:1651). The resulting ESTs are analyzed using a Perkin Elmer Model 377 fluorescent sequencer.

EXAMPLE 2

25 Identification of cDNA Clones

cDNA clones encoding cellulose synthase enzymes were identified by conducting BLAST (Basic Local Alignment Search Tool; Altschul et al. (1993) *J. Mol. Biol.* 215:403-410; see also www.ncbi.nlm.nih.gov/BLAST/) searches for similarity to sequences contained in the BLAST "nr" database (comprising all non-redundant GenBank CDS 30 translations, sequences derived from the 3-dimensional structure Brookhaven Protein Data Bank, the last major release of the SWISS-PROT protein sequence database, EMBL, and DDBJ databases). The cDNA sequences obtained in Example 1 were analyzed for similarity to all publicly available DNA sequences contained in the "nr" database using the BLASTN algorithm provided by the National Center for Biotechnology Information (NCBI). The

DNA sequences were translated in all reading frames and compared for similarity to all publicly available protein sequences contained in the “nr” database using the BLASTX algorithm (Gish and States (1993) *Nature Genetics* 3:266-272) provided by the NCBI. For convenience, the P-value (probability) of observing a match of a cDNA sequence to a

5 sequence contained in the searched databases merely by chance as calculated by BLAST are reported herein as “pLog” values, which represent the negative of the logarithm of the reported P-value. Accordingly, the greater the pLog value, the greater the likelihood that the cDNA sequence and the BLAST “hit” represent homologous proteins.

EXAMPLE 3

10 Characterization of cDNA Clones Encoding Cellulose Synthase

The BLASTX search using the EST sequences from clones listed in Table 3 revealed similarity of the polypeptides encoded by the cDNAs to cellulose synthase from *Arabidopsis thaliana* (NCBI Identifier No. gi 2827139, gi 2827141, gi 4467125, gi 4886756 and gi 3135611) and *Gossypium hirsutum* (NCBI Identifier No. gi 1706958 and 5081779). Shown 15 in Table 3 are the BLAST results for individual ESTs (“EST”), the sequences of the entire cDNA inserts comprising the indicated cDNA clones (“FIS”), complete gene sequences (“CGS”) or contigs assembled from two or more ESTs (“Contig”):

TABLE 3

20 BLAST Results for Sequences Encoding Polypeptides Homologous to *Arabidopsis thaliana* and *Gossypium hirsutum* Cellulose Synthase

Clone	Status	BLAST pLog Score
bsh1.pk0002.f6	FIS	154.00 (gi 2827139)
Contig composed of:	Contig	>254.00 (gi 2827141)
cc1n.pk0005.g3		
cdt2c.pk002.g1		
cdt2c.pk002.l16		
csc1c.pk002.i1		
p0031.ccmar05rb		
p0110.cgsma57r		
cr1n.pk0135.e10	FIS	176.00 (gi 1706958)
p0097.cqrard17rc	CGS	>254.00 (gi 2827141)
p0122.ckamh70rc	CGS	>254.00 (gi 2827141)
r1r24.pk0073.g1	EST	77.70 (gi 4467125)
sdp2c.pk005.o22	FIS	>254.00 (gi 4886756)
ses8w.pk0028.f3	EST	>254.00 (gi 2827139)
ssl.pk0036.c10	EST	>254.00 (gi 2827141)
Contig composed of:	Contig	>254.00 (gi 5081779)
w11.pk0009.c9		
wr1.pk0160.d11		
wre1n.pk0043.f9		

wre1n.pk0043.h8 wre1n.pk0131.g10		
wl1n.pk0044.b1	EST	166.00 (gi 3135611)

Figure 1 presents an alignment of the amino acid sequences set forth in SEQ ID NOs:2, 4, 8, 10, 12, 14, 16, 18, 20 and 22 and the *Arabidopsis thaliana* (SEQ ID NOs:23 (gi 2827139), 24 (gi 2827141), 26 (gi 4467125), 27 (gi 4886756) and 29 (gi 3135611)) and 5 *Gossypium hirsutum* (SEQ ID NOs:25 (gi 1706958) and 28 (gi 5081779)) sequences. The data in Table 4 represents a calculation of the percent identity of the amino acid sequences set forth in SEQ ID NOs:2, 4, 8, 10, 12, 14, 16, 18, 20 and 22 and the *Arabidopsis thaliana* (SEQ ID NOs:23, 24, 26, 27 and 29) and *Gossypium hirsutum* (SEQ ID NOs:25 and 28) sequences.

10

TABLE 4

Percent Identity of Amino Acid Sequences Deduced From the Nucleotide Sequences of cDNA Clones Encoding Polypeptides Homologous to *Arabidopsis thaliana* and *Gossypium hirsutum* Cellulose Synthase

SEQ ID NO.	Percent Identity to
2	82% (gi 2827139)
4	69% (gi 2827141)
6	89% (gi 1706958)
8	70% (gi 2827141)
10	70% (gi 2827141)
12	36% (gi 4467125)
14	86% (gi 4886756)
16	88% (gi 2827139)
18	86% (gi 2827141)
20	87% (gi 5081779)
22	70% (gi 3135611)

15

Sequence alignments and percent identity calculations were performed using the Megalign program of the LASARGENE bioinformatics computing suite (DNASTAR Inc., Madison, WI). Multiple alignment of the sequences was performed using the Clustal method of alignment (Higgins and Sharp (1989) CABIOS. 5:151-153) with the default 20 parameters (GAP PENALTY=10, GAP LENGTH PENALTY=10). Default parameters for pairwise alignments using the Clustal method were KTUPLE 1, GAP PENALTY=3, WINDOW=5 and DIAGONALS SAVED=5. Sequence alignments and BLAST scores and probabilities indicate that the nucleic acid fragments comprising the instant cDNA clones

encode a substantial portion of a cellulose synthase. These sequences represent the first barley, corn, rice, soybean and wheat sequences encoding cellulose synthase.

EXAMPLE 4

Expression of Chimeric Genes in Monocot Cells

5 A chimeric gene comprising a cDNA encoding the instant polypeptides in sense orientation with respect to the maize 27 kD zein promoter that is located 5' to the cDNA fragment, and the 10 kD zein 3' end that is located 3' to the cDNA fragment, can be constructed. The cDNA fragment of this gene may be generated by polymerase chain reaction (PCR) of the cDNA clone using appropriate oligonucleotide primers. Cloning sites
10 (NcoI or SmaI) can be incorporated into the oligonucleotides to provide proper orientation of the DNA fragment when inserted into the digested vector pML103 as described below. Amplification is then performed in a standard PCR. The amplified DNA is then digested with restriction enzymes NcoI and SmaI and fractionated on an agarose gel. The appropriate band can be isolated from the gel and combined with a 4.9 kb NcoI-SmaI fragment of the
15 plasmid pML103. Plasmid pML103 has been deposited under the terms of the Budapest Treaty at ATCC (American Type Culture Collection, 10801 University Blvd., Manassas, VA 20110-2209), and bears accession number ATCC 97366. The DNA segment from pML103 contains a 1.05 kb SalI-NcoI promoter fragment of the maize 27 kD zein gene and a 0.96 kb SmaI-SalI fragment from the 3' end of the maize 10 kD zein gene in the vector
20 pGem9Zf(+) (Promega). Vector and insert DNA can be ligated at 15°C overnight, essentially as described (Maniatis). The ligated DNA may then be used to transform *E. coli* XL1-Blue (Epicurian Coli XL-1 Blue™; Stratagene). Bacterial transformants can be screened by restriction enzyme digestion of plasmid DNA and limited nucleotide sequence analysis using the dideoxy chain termination method (Sequenase™ DNA Sequencing Kit;
25 U.S. Biochemical). The resulting plasmid construct would comprise a chimeric gene encoding, in the 5' to 3' direction, the maize 27 kD zein promoter, a cDNA fragment encoding the instant polypeptides, and the 10 kD zein 3' region.

The chimeric gene described above can then be introduced into corn cells by the following procedure. Immature corn embryos can be dissected from developing caryopses
30 derived from crosses of the inbred corn lines H99 and LH132. The embryos are isolated 10 to 11 days after pollination when they are 1.0 to 1.5 mm long. The embryos are then placed with the axis-side facing down and in contact with agarose-solidified N6 medium (Chu et al. (1975) *Sci. Sin. Peking* 18:659-668). The embryos are kept in the dark at 27°C. Friable embryogenic callus consisting of undifferentiated masses of cells with somatic
35 proembryoids and embryoids borne on suspensor structures proliferates from the scutellum of these immature embryos. The embryogenic callus isolated from the primary explant can be cultured on N6 medium and sub-cultured on this medium every 2 to 3 weeks.

The plasmid, p35S/Ac (obtained from Dr. Peter Eckes, Hoechst Ag, Frankfurt, Germany) may be used in transformation experiments in order to provide for a selectable marker. This plasmid contains the *Pat* gene (see European Patent Publication 0 242 236) which encodes phosphinothricin acetyl transferase (PAT). The enzyme PAT confers
5 resistance to herbicidal glutamine synthetase inhibitors such as phosphinothricin. The *pat* gene in p35S/Ac is under the control of the 35S promoter from Cauliflower Mosaic Virus (Odell et al. (1985) *Nature* 313:810-812) and the 3' region of the nopaline synthase gene from the T-DNA of the Ti plasmid of *Agrobacterium tumefaciens*.

The particle bombardment method (Klein et al. (1987) *Nature* 327:70-73) may be used
10 to transfer genes to the callus culture cells. According to this method, gold particles (1 µm in diameter) are coated with DNA using the following technique. Ten µg of plasmid DNAs are added to 50 µL of a suspension of gold particles (60 mg per mL). Calcium chloride (50 µL of a 2.5 M solution) and spermidine free base (20 µL of a 1.0 M solution) are added to the particles. The suspension is vortexed during the addition of these solutions. After
15 10 minutes, the tubes are briefly centrifuged (5 sec at 15,000 rpm) and the supernatant removed. The particles are resuspended in 200 µL of absolute ethanol, centrifuged again and the supernatant removed. The ethanol rinse is performed again and the particles resuspended in a final volume of 30 µL of ethanol. An aliquot (5 µL) of the DNA-coated
20 gold particles can be placed in the center of a Kapton™ flying disc (Bio-Rad Labs). The particles are then accelerated into the corn tissue with a Biolistic™ PDS-1000/He (Bio-Rad Instruments, Hercules CA), using a helium pressure of 1000 psi, a gap distance of 0.5 cm and a flying distance of 1.0 cm.

For bombardment, the embryogenic tissue is placed on filter paper over agarose-solidified N6 medium. The tissue is arranged as a thin lawn and covered a circular area of
25 about 5 cm in diameter. The petri dish containing the tissue can be placed in the chamber of the PDS-1000/He approximately 8 cm from the stopping screen. The air in the chamber is then evacuated to a vacuum of 28 inches of Hg. The macrocarrier is accelerated with a helium shock wave using a rupture membrane that bursts when the He pressure in the shock tube reaches 1000 psi.

30 Seven days after bombardment the tissue can be transferred to N6 medium that contains glufosinate (2 mg per liter) and lacks casein or proline. The tissue continues to grow slowly on this medium. After an additional 2 weeks the tissue can be transferred to fresh N6 medium containing glufosinate. After 6 weeks, areas of about 1 cm in diameter of actively growing callus can be identified on some of the plates containing the glufosinate-supplemented medium. These calli may continue to grow when sub-cultured on the
35 selective medium.

Plants can be regenerated from the transgenic callus by first transferring clusters of tissue to N6 medium supplemented with 0.2 mg per liter of 2,4-D. After two weeks the

tissue can be transferred to regeneration medium (Fromm et al. (1990) *Bio/Technology* 8:833-839).

EXAMPLE 5

Expression of Chimeric Genes in Dicot Cells

5 A seed-specific expression cassette composed of the promoter and transcription terminator from the gene encoding the β subunit of the seed storage protein phaseolin from the bean *Phaseolus vulgaris* (Doyle et al. (1986) *J. Biol. Chem.* 261:9228-9238) can be used for expression of the instant polypeptides in transformed soybean. The phaseolin cassette includes about 500 nucleotides upstream (5') from the translation initiation codon and about
10 1650 nucleotides downstream (3') from the translation stop codon of phaseolin. Between the 5' and 3' regions are the unique restriction endonuclease sites Nco I (which includes the ATG translation initiation codon), Sma I, Kpn I and Xba I. The entire cassette is flanked by Hind III sites.

The cDNA fragment of this gene may be generated by polymerase chain reaction (PCR) of the cDNA clone using appropriate oligonucleotide primers. Cloning sites can be incorporated into the oligonucleotides to provide proper orientation of the DNA fragment when inserted into the expression vector. Amplification is then performed as described above, and the isolated fragment is inserted into a pUC18 vector carrying the seed expression cassette.

20 Soybean embryos may then be transformed with the expression vector comprising sequences encoding the instant polypeptides. To induce somatic embryos, cotyledons, 3-5 mm in length dissected from surface sterilized, immature seeds of the soybean cultivar A2872, can be cultured in the light or dark at 26°C on an appropriate agar medium for 6-10 weeks. Somatic embryos which produce secondary embryos are then excised and
25 placed into a suitable liquid medium. After repeated selection for clusters of somatic embryos which multiplied as early, globular staged embryos, the suspensions are maintained as described below.

Soybean embryogenic suspension cultures can be maintained in 35 mL liquid media on a rotary shaker, 150 rpm, at 26°C with fluorescent lights on a 16:8 hour day/night schedule.
30 Cultures are subcultured every two weeks by inoculating approximately 35 mg of tissue into 35 mL of liquid medium.

Soybean embryogenic suspension cultures may then be transformed by the method of particle gun bombardment (Klein et al. (1987) *Nature* (London) 327:70, U.S. Patent No. 4,945,050). A DuPont Biostatic™ PDS1000/HE instrument (helium retrofit) can be used
35 for these transformations.

A selectable marker gene which can be used to facilitate soybean transformation is a chimeric gene composed of the 35S promoter from Cauliflower Mosaic Virus (Odell et al. (1985) *Nature* 313:810-812), the hygromycin phosphotransferase gene from plasmid pJR225

(from *E. coli*; Gritz et al.(1983) *Gene* 25:179-188) and the 3' region of the nopaline synthase gene from the T-DNA of the Ti plasmid of *Agrobacterium tumefaciens*. The seed expression cassette comprising the phaseolin 5' region, the fragment encoding the instant polypeptides and the phaseolin 3' region can be isolated as a restriction fragment. This fragment can then
5 be inserted into a unique restriction site of the vector carrying the marker gene.

To 50 µL of a 60 mg/mL 1 µm gold particle suspension is added (in order): 5 µL DNA (1 µg/µL), 20 µL spermidine (0.1 M), and 50 µL CaCl₂ (2.5 M). The particle preparation is then agitated for three minutes, spun in a microfuge for 10 seconds and the supernatant removed. The DNA-coated particles are then washed once in 400 µL 70%
10 ethanol and resuspended in 40 µL of anhydrous ethanol. The DNA/particle suspension can be sonicated three times for one second each. Five µL of the DNA-coated gold particles are then loaded on each macro carrier disk.

Approximately 300-400 mg of a two-week-old suspension culture is placed in an empty 60x15 mm petri dish and the residual liquid removed from the tissue with a pipette.

15 For each transformation experiment, approximately 5-10 plates of tissue are normally bombarded. Membrane rupture pressure is set at 1100 psi and the chamber is evacuated to a vacuum of 28 inches mercury. The tissue is placed approximately 3.5 inches away from the retaining screen and bombarded three times. Following bombardment, the tissue can be divided in half and placed back into liquid and cultured as described above.

20 Five to seven days post bombardment, the liquid media may be exchanged with fresh media, and eleven to twelve days post bombardment with fresh media containing 50 mg/mL hygromycin. This selective media can be refreshed weekly. Seven to eight weeks post bombardment, green, transformed tissue may be observed growing from untransformed, necrotic embryogenic clusters. Isolated green tissue is removed and inoculated into
25 individual flasks to generate new, clonally propagated, transformed embryogenic suspension cultures. Each new line may be treated as an independent transformation event. These suspensions can then be subcultured and maintained as clusters of immature embryos or regenerated into whole plants by maturation and germination of individual somatic embryos.

EXAMPLE 6

Expression of Chimeric Genes in Microbial Cells

The cDNAs encoding the instant polypeptides can be inserted into the T7 *E. coli* expression vector pBT430. This vector is a derivative of pET-3a (Rosenberg et al. (1987) *Gene* 56:125-135) which employs the bacteriophage T7 RNA polymerase/T7 promoter system. Plasmid pBT430 was constructed by first destroying the EcoR I and Hind III sites in
35 pET-3a at their original positions. An oligonucleotide adaptor containing EcoR I and Hind III sites was inserted at the BamH I site of pET-3a. This created pET-3aM with additional unique cloning sites for insertion of genes into the expression vector. Then, the Nde I site at the position of translation initiation was converted to an Nco I site using

oligonucleotide-directed mutagenesis. The DNA sequence of pET-3aM in this region, 5'-CATATGG, was converted to 5'-CCCATGG in pBT430.

Plasmid DNA containing a cDNA may be appropriately digested to release a nucleic acid fragment encoding the protein. This fragment may then be purified on a 1% NuSieve

5 GTG™ low melting agarose gel (FMC). Buffer and agarose contain 10 µg/ml ethidium bromide for visualization of the DNA fragment. The fragment can then be purified from the agarose gel by digestion with GELase™ (Epicentre Technologies) according to the manufacturer's instructions, ethanol precipitated, dried and resuspended in 20 µL of water. Appropriate oligonucleotide adapters may be ligated to the fragment using T4 DNA ligase

10 (New England Biolabs, Beverly, MA). The fragment containing the ligated adapters can be purified from the excess adapters using low melting agarose as described above. The vector pBT430 is digested, dephosphorylated with alkaline phosphatase (NEB) and deproteinized with phenol/chloroform as described above. The prepared vector pBT430 and fragment can then be ligated at 16°C for 15 hours followed by transformation into DH5 electrocompetent

15 cells (GIBCO BRL). Transformants can be selected on agar plates containing LB media and 100 µg/mL ampicillin. Transformants containing the gene encoding the instant polypeptides are then screened for the correct orientation with respect to the T7 promoter by restriction enzyme analysis.

For high level expression, a plasmid clone with the cDNA insert in the correct orientation relative to the T7 promoter can be transformed into *E. coli* strain BL21(DE3) (Studier et al. (1986) *J. Mol. Biol.* 189:113-130). Cultures are grown in LB medium containing ampicillin (100 mg/L) at 25°C. At an optical density at 600 nm of approximately 1, IPTG (isopropylthio-β-galactoside, the inducer) can be added to a final concentration of 0.4 mM and incubation can be continued for 3 h at 25°. Cells are then harvested by centrifugation and re-suspended in 50 µL of 50 mM Tris-HCl at pH 8.0 containing 0.1 mM DTT and 0.2 mM phenyl methylsulfonyl fluoride. A small amount of 1 mm glass beads can be added and the mixture sonicated 3 times for about 5 seconds each time with a microprobe sonicator. The mixture is centrifuged and the protein concentration of the supernatant determined. One µg of protein from the soluble fraction of the culture can be separated by SDS-polyacrylamide gel electrophoresis. Gels can be observed for protein bands migrating at the expected molecular weight.

EXAMPLE 7

Evaluating Compounds for Their Ability to Inhibit the Activity of Cellulose Synthase

35 The polypeptides described herein may be produced using any number of methods known to those skilled in the art. Such methods include, but are not limited to, expression in bacteria as described in Example 6, or expression in eukaryotic cell culture, *in planta*, and using viral expression systems in suitably infected organisms or cell lines. The instant

polypeptides may be expressed either as mature forms of the proteins as observed *in vivo* or as fusion proteins by covalent attachment to a variety of enzymes, proteins or affinity tags.

Common fusion protein partners include glutathione S-transferase ("GST"), thioredoxin ("Trx"), maltose binding protein, and C- and/or N-terminal hexahistidine polypeptide

5 ("(His)₆"). The fusion proteins may be engineered with a protease recognition site at the fusion point so that fusion partners can be separated by protease digestion to yield intact mature enzyme. Examples of such proteases include thrombin, enterokinase and factor Xa. However, any protease can be used which specifically cleaves the peptide connecting the fusion protein and the enzyme.

10 Purification of the instant polypeptides, if desired, may utilize any number of separation technologies familiar to those skilled in the art of protein purification. Examples of such methods include, but are not limited to, homogenization, filtration, centrifugation, heat denaturation, ammonium sulfate precipitation, desalting, pH precipitation, ion exchange chromatography, hydrophobic interaction chromatography and affinity chromatography,

15 wherein the affinity ligand represents a substrate, substrate analog or inhibitor. When the instant polypeptides are expressed as fusion proteins, the purification protocol may include the use of an affinity resin which is specific for the fusion protein tag attached to the expressed enzyme or an affinity resin containing ligands which are specific for the enzyme. For example, the instant polypeptides may be expressed as a fusion protein coupled to the

20 C-terminus of thioredoxin. In addition, a (His)₆ peptide may be engineered into the N-terminus of the fused thioredoxin moiety to afford additional opportunities for affinity purification. Other suitable affinity resins could be synthesized by linking the appropriate ligands to any suitable resin such as Sepharose-4B. In an alternate embodiment, a thioredoxin fusion protein may be eluted using dithiothreitol; however, elution may be

25 accomplished using other reagents which interact to displace the thioredoxin from the resin. These reagents include β-mercaptoethanol or other reduced thiol. The eluted fusion protein may be subjected to further purification by traditional means as stated above, if desired. Proteolytic cleavage of the thioredoxin fusion protein and the enzyme may be accomplished after the fusion protein is purified or while the protein is still bound to the ThioBond™

30 affinity resin or other resin.

Crude, partially purified or purified enzyme, either alone or as a fusion protein, may be utilized in assays for the evaluation of compounds for their ability to inhibit enzymatic activation of the instant polypeptides disclosed herein. Assays may be conducted under well known experimental conditions which permit optimal enzymatic activity. For example, assays for cellulose synthase activity are presented in WO 98/18949 and WO 98/00549.

CLAIMS

What is claimed is:

1. An isolated nucleic acid fragment comprising at least 900 nucleotides, wherein the nucleic acid fragment encodes a cellulose synthase comprising a member selected from the group consisting of:
 - (a) an isolated nucleic acid fragment encoding an amino acid sequence that is at least 90% identical to the amino acid sequence set forth in a member selected from the group consisting of SEQ ID NO:2, 6, 12, 14, 16, 18, 20 and 22;
 - (b) an isolated nucleic acid fragment that is complementary to (a).
2. The isolated nucleic acid fragment of Claim 1 wherein nucleic acid fragment is a functional RNA.
3. The isolated nucleic acid fragment of Claim 1 wherein the nucleotide sequence of the fragment comprises the sequence set forth in a member selected from the group consisting of SEQ ID NO:1, 5, 11, 13, 15, 17, 19 and 21.
4. A chimeric gene comprising the nucleic acid fragment of Claim 1 operably linked to suitable regulatory sequences.
5. A transformed host cell comprising the chimeric gene of Claim 4.
6. A cellulose synthase polypeptide comprising all or a substantial portion of the amino acid sequence set forth in a member selected from the group consisting of SEQ ID NO:2, 6, 12, 14, 16, 18, 20 and 22.
7. An isolated nucleic acid fragment encoding a cellulose synthase comprising a member selected from the group consisting of:
 - (a) an isolated nucleic acid fragment encoding an amino acid sequence that is functionally active polypeptide and at least 80% identical to the amino acid sequence set forth in a member selected from the group consisting of SEQ ID NO:4, 8 and 10 ;
 - (b) an isolated nucleic acid fragment that is complementary to (a).
8. The isolated nucleic acid fragment of Claim 7 wherein nucleic acid fragment is a functional RNA.
9. The isolated nucleic acid fragment of Claim 7 wherein the nucleotide sequence of the fragment comprises the sequence set forth in a member selected from the group consisting of SEQ ID NO:3, 7 and 9.
10. A chimeric gene comprising the nucleic acid fragment of Claim 7 operably linked to suitable regulatory sequences.
11. A transformed host cell comprising the chimeric gene of Claim 10.

12. A cellulose synthase polypeptide comprising all or a substantial portion of the amino acid sequence set forth in a member selected from the group consisting of SEQ ID NO:4, 8, 10.

13. A method of altering the level of expression of a cellulose synthase in a host
5 cell comprising:

- (a) transforming a host cell with the chimeric gene of any of Claims 4 and 10; and
- (b) growing the transformed host cell produced in step (a) under conditions that are suitable for expression of the chimeric gene

10 wherein expression of the chimeric gene results in production of altered levels of a cellulose synthase in the transformed host cell.

14. A method of obtaining a nucleic acid fragment encoding all or a substantial portion of the amino acid sequence encoding a cellulose synthase comprising:

- (a) probing a cDNA or genomic library with the nucleic acid fragment of any of Claims 1 and 7;
- (b) identifying a DNA clone that hybridizes with the nucleic acid fragment any of of Claims 1 and 7;
- (c) isolating the DNA clone identified in step (b); and
- (d) sequencing the cDNA or genomic fragment that comprises the clone isolated in step (c)

wherein the sequenced nucleic acid fragment encodes all or a substantial portion of the amino acid sequence encoding a cellulose synthase.

15. A method of obtaining a nucleic acid fragment encoding a substantial portion of an amino acid sequence encoding a cellulose synthase comprising:

- (a) synthesizing an oligonucleotide primer corresponding to a portion of the sequence set forth in any of SEQ ID NOS:1, 3, 5, 7, 9, 11, 13, 15, 17, 19 and 21; and
- (b) amplifying a cDNA insert present in a cloning vector using the oligonucleotide primer of step (a) and a primer representing sequences 30 of the cloning vector

wherein the amplified nucleic acid fragment encodes a substantial portion of an amino acid sequence encoding a cellulose synthase.

16. The product of the method of Claim 14.

17. The product of the method of Claim 15.

35 18. A method for evaluating at least one compound for its ability to inhibit the activity of a cellulose synthase, the method comprising the steps of:

- (a) transforming a host cell with a chimeric gene comprising a nucleic acid fragment encoding a cellulose synthase, operably linked to suitable regulatory sequences;
- 5 (b) growing the transformed host cell under conditions that are suitable for expression of the chimeric gene wherein expression of the chimeric gene results in production of the cellulose synthase encoded by the operably linked nucleic acid fragment in the transformed host cell;
- (c) optionally purifying the cellulose synthase expressed by the transformed host cell;
- 10 (d) treating the cellulose synthase with a compound to be tested; and
- (e) comparing the activity of the cellulose synthase that has been treated with a test compound to the activity of an untreated cellulose synthase, thereby selecting compounds with potential for inhibitory activity.

Figure 1

Figure 1 (cont'd.)

SEQ ID NO:27	CGDQIGLTVEGDLFVACNECGFPACRPCYEYERREGTQNCPQCKTRYKRLRGSPRVEGDE	
SEQ ID NO:28	-----	
SEQ ID NO:29	CRDEIELTVDGEPEFVACNECAFVCRPCYEYERREGNQACPQCKTRFKRLKGSPRVEGD-	
 181		
SEQ ID NO:2	-----	240
SEQ ID NO:4	EEEDGVDDLENEFNWSDK-----HDSQYLAESMLAHMSYG-RGADLDGVPQPFHPIPNVP	
SEQ ID NO:6	-----	
SEQ ID NO:8	EEEDGVDDLEGEFGLQDGAAHEDDPQYVAEMLRAQMSYG-RGGDAH---PGFSPVPNVP	
SEQ ID NO:10	EEEDGVDDLDNEFNW-DG-----HDSQSVAEMLYGHMSYG-RGGDPNGAPQAFQLNPNVP	
SEQ ID NO:12	-----	
SEQ ID NO:14	DEEDV-DDIEHEFNIDEQKNKHGQ---VAEAMLHGRMSYG--RGPEDDDNSQFPTPVIAG	
SEQ ID NO:16	-----	
SEQ ID NO:18	-----	
SEQ ID NO:20	-----	
SEQ ID NO:22	-----	P
SEQ ID NO:23	DEDDV-DDIENEFNYAQGANKARH---QRHGE---EFSSS---SRHESQPIPLLTHGHTVS	
SEQ ID NO:24	EEEEDIDDLLEYEFD-----HGMDEHAAEAALSSRLNTG--RGGLDSAPPG---SQIP	
SEQ ID NO:25	-----	
SEQ ID NO:26	-----	
SEQ ID NO:27	DEEDI-DDIEYEFNIEHEQDKHKH---SAEAMLYGKMSYG--RGPEDDENGRFP-PVIAG	
SEQ ID NO:28	-----	
SEQ ID NO:29	EEDDDIDDLNEFEYGN---NGIGFDQVSEGMSISRNSGFPQSDLDSAPPG---SQIP	
 241		
SEQ ID NO:2	-----	300
SEQ ID NO:4	LLTNGQMVDIIPPQHALVPSFV---GGGGKRIHPLPYADPNLPVQPRSMDPSKDLAAYG	
SEQ ID NO:6	-----	
SEQ ID NO:8	LLTNGQMVDIIPPEQHALVPSYMSGGGGGGKRIHPLPFADPNLPVQPRSMDPSKDLAAYG	
SEQ ID NO:10	LLTNGQMVDIIPPEQHALVPSFM---GGGGKRIHPLPYADPSLPVQPRSMDPSKDLAAYG	
SEQ ID NO:12	-----	
SEQ ID NO:14	GRSR---PVSGEFPISSNAYGDQMLSSSLHKRVHPYPVSEPGSARW---DEKKXDG	
SEQ ID NO:16	-----	
SEQ ID NO:18	-----	
SEQ ID NO:20	-----	
SEQ ID NO:22	LLTNGQMVDIIPPEQHALVPSYMSGGGGGGKRIHPLPFADPNLPVQPRSMDPSKDLAAYG	
SEQ ID NO:23	GEIRTPDTQSVRTTSGPLGPSDRNAISSPYIDPR-QPVPVRIVDPSK---DLNSYG	
SEQ ID NO:24	LLTYCDEDADMYSDRHALIVP--PS-TGYGNRVYPAPFTDSSAPPQARSMVPQKDIAEYG	
SEQ ID NO:25	-----	
SEQ ID NO:26	-----	ETQGTYG
SEQ ID NO:27	GHS---GEFPVGG-GYGNNG---EHGLHKRVHPYPSEAGS---EGG	
SEQ ID NO:28	-----	
SEQ ID NO:29	LLTYGDEDVEISSDRHALIVP--PSLGGHGNRVPVSLDPTVAHRRLMVPQKDLAVYG	
 301		
SEQ ID NO:2	-----	360
SEQ ID NO:4	YGSVAWKERMESWKQKQ-ERMHQTRNDGGGD-----DGDDADLPLM-DEARQPLSR	
SEQ ID NO:6	-----	
SEQ ID NO:8	YGSVAWKERMEGWKQKQ-ERLQHVRSEGGGDW-----DGDDADLPLM-DEARQPLSR	
SEQ ID NO:10	YGSVAWKERMENWKQRQ-ERMHQTRNDGGGD-----DGDDADLPLM-DEARQPLSR	
SEQ ID NO:12	-----	
SEQ ID NO:14	-----	
SEQ ID NO:16	-----	
SEQ ID NO:18	-----	HE
SEQ ID NO:20	-----	
SEQ ID NO:22	YGSVAWKERMEGWKQKQ-ERLQHVRSEGGGDW-----DGDDADLPLM-DEARQPLSR	
SEQ ID NO:23	LGNVDWKERVEGWKLQEKNMQLQMTGKYHEGKGG-EIEGTGSNGEELQM-ADDTRLPMR	

Figure 1 (cont'd.)

SEQ ID NO:24	YGSVAWKDRMEVWKRQGEKLQVIKHEGGNNRGSN-DDDELDDPDMPMM-DEGRQPLSR	
SEQ ID NO:25	-----	
SEQ ID NO:26	YGNAYWP-----QDEMYGD-----DMDEGMRRGMVETADKPWRPLSR	
SEQ ID NO:27	-----WRERMDDWKLQHG-----NLGPEPDDDPEMGLI-DEARQPLSR	
SEQ ID NO:28	-----	
SEQ ID NO:29	YGSVAWKDRMEEWKRKQNEKLQVVRHEGDP-----DFEDGDDADFPMM-DEGRQPLSM	
 361		
SEQ ID NO:2	-----	420
SEQ ID NO:4	KIPLPSSQINPYRMIIIRLVVLCCFFHYRVMHPVPDAFALWLISVICEIWFAMSWILDQ	
SEQ ID NO:6	-----	
SEQ ID NO:8	KVPISSSRINPYRMIIIVIRLVVLGFFFHYRVMHPAKDAFALWLISVICEIWFAMSWILDQ	
SEQ ID NO:10	KIPLPSSQINPYRMIIIRLVVLGFFFHYRVMHPVNDAFALWLISVICEIWFAMSWILDQ	
SEQ ID NO:12	-----	
SEQ ID NO:14	KVPIASSKINPYRMIVARLVLIAFLRLYRMLNPVHDALGLWLTSIICEIWFAFSWILDQ	
SEQ ID NO:16	-----	
SEQ ID NO:18	-----LHPVNDAYGLWLTSVICEIWFAVSWIMDQ	
SEQ ID NO:20	-----	
SEQ ID NO:22	KVPISSSRINPYRMIIIVIRLVVLGFFFHYRVMHPAKDAFALWLISVICEIWFAMSCILDQ	
SEQ ID NO:23	VVPIPSSRLTPYRVIIILRLIILCFFLQYRTTHPVKNAYPLWLTSVICEIWFAFSWLLDQ	
SEQ ID NO:24	KLPIRSSRINPYRMLILCRLAILGLFFHYRILHPVNDAYGLWLTSVICEIWFAVSWILDQ	
SEQ ID NO:25	-----	
SEQ ID NO:26	RIPIPAAIISPYRLLIVIRFVVLCCFFLTWRIRNPNEAIWLWLMIIICELWFGFSWILDQ	
SEQ ID NO:27	KVPIASSKINPYRMIVARLVLIAVFLRLYRLLNPVHDALGLWLTSVICEIWFAVSWILDQ	
SEQ ID NO:28	-----	
SEQ ID NO:29	KIPIKSSKINPYRMLIVRLVILGLFFHYRILHPVKDAYALWLISVICEIWFAVSWILDQ	
 421		
SEQ ID NO:2	-----	480
SEQ ID NO:4	FPKWFPIERETYLDRLSLRFDKEGHPS-----QLAPVDFFVSTVDPLKEPPLVTANTVLS	
SEQ ID NO:6	-----	
SEQ ID NO:8	FPKWLPIERETYLDRLSLRFDKEGQPS-----QLAPIDFFVSTVDPTKEPPLVTANTVLS	
SEQ ID NO:10	FPKWFPIERETYLDRLSLRFDKEGQPS-----QLAPIDFFVSTVDPLKEPPLVTTNTVLS	
SEQ ID NO:12	-----	
SEQ ID NO:14	FPKWFPIERETYLDRLSIRYEREGERPN-----MLAPVDVFVSTVDPMKEPPLVTANTVLS	
SEQ ID NO:16	-----	
SEQ ID NO:18	FPKWYPIQRETYLDRLSLRYEKEGKPS-----ELSSVDVFVSTVDPMKEPPLITANTVLS	
SEQ ID NO:20	-----	
SEQ ID NO:22	FPKWFPIERETYLDRLSLRFDKEGQPS-----QLAPIDFFVSTVDPTKEPPLVTANTVLS	
SEQ ID NO:23	FPKWYPINRETYLDRLAIRYDRDGEPS-----QLVPVDVFVSTVDPLKEPPLVTANTVLS	
SEQ ID NO:24	FPKWYPIERETYLDRLSLRYEKEGKPS-----GLAPVDVFVSTVDPLKEPPLITANTVLS	
SEQ ID NO:25	-----	
SEQ ID NO:26	IPLKLCPINRSTDLEVLRDKFDMPSPSNPTGRSDLPGIDLFVSTADPEKEPPLVTANTILS	
SEQ ID NO:27	FPKWFPIERETYLDRLSLRYEREGERPN-----MLAPVDVFVSTVDPLKEPPLVTSNTVLS	
SEQ ID NO:28	-----	
SEQ ID NO:29	FPKWYPIERETYLDRLSLRYEKEGKPS-----GLSPVDVFVSTVDPLKEPPLITANTVLS	
 481		
SEQ ID NO:2	-----	540
SEQ ID NO:4	ILSVDPVDKVSCYVSDGAAMLTFEALSETSEFAKKWVPFCRYSLEPRAPEWYFQQ--	
SEQ ID NO:6	-----H-----	
SEQ ID NO:8	ILSVDPVVEKVSCYVSDGAAMLTFEALSETSEFAKKWVPFSKKFNIEPRAPEWYFQQ--	
SEQ ID NO:10	ILSVDPVDKVSCYVSDGAAMLTFEALSETSEFAKKWVPFCRYSLEPRAPEWYFQQ--	
SEQ ID NO:12	ILAAGYPAGKVTCKYISDDAGAEVTRNAVVEARFAALWVSFCRKHGVEPRNLEAYFNAGE	
SEQ ID NO:14	ILAMDYPVDKISCYISDDGASMCTFESLSETAEFARKWVPFCKKFSIEPRAPEMFSE--	
SEQ ID NO:16	-----	
SEQ ID NO:18	ILAVIDYPVDKVACYVSDGAAMLTFEALSETSEFARRWVPFCCKYNIIEPRAPEWYFGQ--	

Figure 1 (cont'd.)

SEQ ID NO:20	-----	
SEQ ID NO:22	ILSVDYPVEKVSCYVSDDGAAMLTFEALSETSEFAKKWPFSKKENIEPRAPEWYFQQ--	
SEQ ID NO:23	ILSVDYPVDKVACYVSDDGSAMLTFESLSETAEFAKKWPFCKKFNIEPRAPEFYFAQ--	
SEQ ID NO:24	ILAVIDYPVDKVACYVSDDGAAMLTFEALSDTAEFARKWPFCKKFNIEPRAPEWYFSQ--	
SEQ ID NO:25	-----RRWPFCKKHNVEPRAPEFYFNE--	
SEQ ID NO:26	ILAVIDYPVEKVSCYLSDDGGALLSFEAMAEAAASFADLWVPFCRKHNIEPRNPDSYFSL--	
SEQ ID NO:27	ILAMDYPVEKISCYVSDDGASMLTFESLSETAEFARKWPFCKKFSIEPRAPEMYFTL--	
SEQ ID NO:28	---DYPVEKVSCYVSDDGAAMLTFEALSETSEFARKWPFCKKYNNIEPRAPEWYFAQ--	
SEQ ID NO:29	ILAVIDYPVDKVACYVSDDGAAMLTFEALSETAEFARKWPFCKKYCIEPRAPEWYFCH--	
 541		
SEQ ID NO:2	-----	600
SEQ ID NO:4	KIDYLKDVKAPNFVRERRAMKREYEEFKVRINALVAKAQ-----	
SEQ ID NO:6	-----	
SEQ ID NO:8	KIDYLKDVKVAASFVRERRAMKREYEEFKVRINALVAKAQ-----	
SEQ ID NO:10	KIDYLKDVKVAANFVRERRAMKREYEEFKVRINALVAKAQ-----	
SEQ ID NO:12	GGGGKAKVVARGSY-RGMAWPELVRDRRRVRREYEMRLRIDALQAADARRR-----	
SEQ ID NO:14	KIDYLKDVKQPTFVKERRAMKREYEEFKVRINALVAKAQ-----	
SEQ ID NO:16	-----AKAQ-----	
SEQ ID NO:18	KMDYLNKVKHPAFVRERRAMKRDYEEFKVRINSLVATAQ-----	
SEQ ID NO:20	-----	
SEQ ID NO:22	KIDYLKDVKVAASFVRERRAMKREYEEFKVRINALVAKAQ-----	
SEQ ID NO:23	KIDYLKDQPSFVKERRAMKREYEEFKVRINALVAKAQ-----	
SEQ ID NO:24	KMDYLNKVKHPAFVRERRAMKRDYEEFKVKINALVATAQ-----	
SEQ ID NO:25	KIDYLKDVKHPSFVKERRAMKREYEEFKVRINALVAKAQ-----	
SEQ ID NO:26	KIDPTKNKSRIDFVKDRRKIKREYDEFKVRINGLPDSIRRRSDAFNAREE-----	
SEQ ID NO:27	KVDYLNQDKVHPTFVKERRAMKREYEEFKVRINAQVAKAS-----	
SEQ ID NO:28	KIDYLKDVKQTSFVKERRAMKREYEEFKVRVNGLVAKAQ-----	
SEQ ID NO:29	KMDYLNKVKHPAFVRERRAMKRDYEEFKVKINALVATAQ-----	
 601		
SEQ ID NO:2	-----	660
SEQ ID NO:4	KVPEEGWTMQDGTWPWG-----NNVRDHPGMIQVFL-----	
SEQ ID NO:6	-----	
SEQ ID NO:8	KVPEEGWTMQDGSPWP-----NNVRDHPGMIQVFL-----	
SEQ ID NO:10	KVPEEGWTMQDGTWPWG-----NNVRDHPGMIQVFL-----	
SEQ ID NO:12	-----	
SEQ ID NO:14	KVPOGGWIMQDGTWPWG-----RRGAADDHAGVVQVLIDFA-----	
SEQ ID NO:16	KMPEEGWTMQDGTWPWG-----NNTRDHPGMIQVFL-----	
SEQ ID NO:18	KVPEDGWTMQDGTWPWG-----NNVRDHPGMIQVFL-----	
SEQ ID NO:20	-----	
SEQ ID NO:22	KVPEEGWTMQDGSPWP-----	
SEQ ID NO:23	KIPEEGWTMQDGTWPWG-----NNTRDHPGMIQVFL-----	
SEQ ID NO:24	KVPEEGWTMQDGTWPWG-----NNVRDHPGMIQVFL-----	
SEQ ID NO:25	KKPEEGWVMQDGTWPWG-----NNTRDHPGMIQVFL-----	
SEQ ID NO:26	MKALKQMRESGGDPTEPVKVKPATW-MADGTHWPGTWAASTREHSKGDHAGILQVMLKPP-----	
SEQ ID NO:27	KVPLEGWIMQDGTWPWG-----NNTRDHPGMIQVFL-----	
SEQ ID NO:28	KVPEEGWIMQDGTWPWG-----NNTRDHPGMIQVFL-----	
SEQ ID NO:29	KVPEDGWTMQDGTWPWG-----NSVRDHPGMIQVFL-----	
 661		
SEQ ID NO:2	-----	720
SEQ ID NO:4	G-QSGGHDV-----GNELPRLVYVSREKRPGYNHHKKAGAMNALVRSAVLNA-----	
SEQ ID NO:6	-----	
SEQ ID NO:8	G-QSGGRDV-----GNELPRLVYVSREKRPGYNHHKKAGAMNALVRSAVLNA-----	
SEQ ID NO:10	G-QSGGLDCE-----GNELPRLVYVSREKRPGYNHHKKAGAMNALVRSAVLNA-----	
SEQ ID NO:12	GSVPQLGVANGSKLIDVASDVCLPALVYVCREKRRGHAAHRKAGAMNA-----	

Figure 1 (cont'd.)

SEQ ID NO:14	-----G-SGGGLDTE-----GNQLPRLVYVSREKRPQFQHHKKAGAMNALVRSAVLTNA	
SEQ ID NO:16	-----G-HSGGLDTD-----GNELPRLVYVSREKRPQFQHHKKAGAMNALIRVSAVLTNG	
SEQ ID NO:18	-----G-QDGVRDVE-----GNELPRLVYVSREKRPQFDHHKKAGAMNALVRASAIITNA	
SEQ ID NO:20	-----	
SEQ ID NO:22	-----	
SEQ ID NO:23	-----G-HSGGLDTD-----GNELPRLIYVSREKRPQFQHHKKAGAMNALIRVSAVLTNG	
SEQ ID NO:24	-----G-HSGVRDTD-----GNELPRLVYVSREKRPQFDHHKKAGAMNSLIRVSAVLSNA	
SEQ ID NO:25	-----G-SAGALDVD-----GKEPLPRLVYVSREKRPQYQHHKKAGAENALVRVSAVLTNA	
SEQ ID NO:26	SSDPLIG-NSDDKV1DFSDTDTRLPMFVYVSREKRPQYDHNKKAGAMNALVRVASAILSNG	
SEQ ID NO:27	-----G-HSGGFDFVE-----GHEPLPRLVYVSREKRPQFQHHKKAGAMNALVRVAGVLTNA	
SEQ ID NO:28	-----G-QSGGLDAE-----GNELPRLVYVSREKRPQFQHHKKAGAMNALVRVSAVLTNG	
SEQ ID NO:29	-----G-SDGVRDVE-----NNELPRLVYVSREKRPQFDHHKKAGAMNSLIRVGVLNSA	
 721		
SEQ ID NO:2	-----	
SEQ ID NO:4	PYLLNLDCDHYINNSKAIKEAMCFMMDPLLGKK-----VCYVQFPQRFDGIDRHDRYAN	
SEQ ID NO:6	-----	
SEQ ID NO:8	AYLLNLDCDHYINNSKAIKEAMCFMMDPLVGKK-----VCYVQFPQRFDGIDKNDRYAN	
SEQ ID NO:10	PYLLNLDCDHYINNSKAIKEAMCFMMDPLLGKK-----VCYVQFPQRFDGIDRHDRYAN	
SEQ ID NO:12	PFILNLDCDHYYVNNSQLRAGICFMIERGGGAAEDAGAVAFVQFPQRVDGVDPGDRYAN	
SEQ ID NO:14	PFMLNLDCDHYVNNSKAAREAMCFLMDPQTGKK-----VCYVQFPQRFDGIDTHDRYAN	
SEQ ID NO:16	AYLLNVDCDHYNNSKALKEAMCFMMDPVLGKK-----TCYVQFPQRFDGIDLHDRYAN	
SEQ ID NO:18	PYLLNVDCDHYINNSKALREAMCFMMDPQLGKK-----VCYVQFPQRFDGIDRHDYSN	
SEQ ID NO:20	-----EAMCFLMDPNLGPO-----VCYVQFPQRFDGIDRNDRYAN	
SEQ ID NO:22	-----	
SEQ ID NO:23	AYLLNVDCDHYFNNNSKAIKEAMCFMMDPAIGKK-----CCYVQFPQRFDGIDLHDRYAN	
SEQ ID NO:24	PYLLNVDCDHYINNSKAIRESMCFCMMDPQS GKK-----VCYVQFPQRFDGIDRHDYSN	
SEQ ID NO:25	PFILNLDCDHYINNSKAMREAMCFLMDPQFGKK-----LCYVQFPQRFDGIDRHDRYAN	
SEQ ID NO:26	PFILNLDCDHYIYNCKAVREGMCFCMMDRG-GED-----ICYIQFPQRFEGIDPSDRYAN	
SEQ ID NO:27	PFMLNLDCDHYVNNNSKAVREAMCFLMDPQ1GKK-----VCYVQFPQRFDGIDTNDRYAN	
SEQ ID NO:28	AFLNLDCDHYINNSKALREAMCFLMDPNLGKQ-----VCYVQFPQRFDGIDRNDRYAN	
SEQ ID NO:29	PYLLNVDCDHYINNSKALREAMCFMMDPQS GKK-----ICYVQFPQRFDGIDRHDYSN	
 781		
SEQ ID NO:2	-----	840
SEQ ID NO:4	RNVVFFDINMKGLDGIQGPIYVGTGCVFRQALYGYDAP---KTKKPPSRTCNCWPWKCI	
SEQ ID NO:6	-----	
SEQ ID NO:8	RNVVFFDINMKGLDGIQGPIYVGTGCVFRQALYGYDAP---KTKKPPSRTCNCWPWKCL	
SEQ ID NO:10	RNVVFFDINMKGLDGIQGPIYVGTGCVFRQALYGYDAP---KTKKPPSRTCNCWPWKCF	
SEQ ID NO:12	HNRVLFDCTELGLDGLQGPIYVGTGCLFRRALYSVDLPR-----	
SEQ ID NO:14	RNTVFFDINMKGLDGIQGPVYVGTGCVFRQALYGYDAP---RPKMVSCDC-----	
SEQ ID NO:16	RNIVFFDINMKQDGQVGPVYVGTGCCFNQRQALYGYDPVLTEEDLE-----PNIIV	
SEQ ID NO:18	RNVVFFDINMKGLDGIQGPIYVGTGCVFRQALYGYDAP---AKKKPPSKTCNCWPWKCC	
SEQ ID NO:20	RNTVFFDINLRGLDGIQGPVYVGTGCVFNRTAIYGEPPIKAK---K-----PGFLA	
SEQ ID NO:22	-----	
SEQ ID NO:23	RNIVFFDINMKGLDGIQGPVYVGTGCCFNQRQALYGYDPVLTEEDLE-----PNIIV	
SEQ ID NO:24	RNVVFFDINMKGLDGIQGPIYVGTGCVFRQALYGYDAP---KKKKPPGKTCNCWPWKCC	
SEQ ID NO:25	RNVVFFDINMLGLDGLQGPVYVGTGCVFRQALYGYDPVVSEKRPK---MTCDCWPSWCC	
SEQ ID NO:26	NNTVFFDGNMRALDGQVGPVYVGTGTMFRRALYGYDPP-----	
SEQ ID NO:27	RNTVFFDINMKGLDGIQGPVYVGTGCVFKRQALYGYEPPKGPK---RPKMISC CGC	
SEQ ID NO:28	RNTVFFDINLRGLDGIQGPVYVGTGCVFNRTALYGYEPPLKPKHRK---TGILS	
SEQ ID NO:29	RNVVFFDINMKGLDGLQGPIYVGTGCVFRQALYGYDAP---KKKKGPRKTCNCWPWKCL	

Figure 1 (cont'd.)

841		900
SEQ ID NO:2	-----	-----
SEQ ID NO:4	CCCCFGNRKTKKKTKTSKP-----	KFEKIKKLF-KKKEQAPAYALGEIDEA--APG-
SEQ ID NO:6	-----	-----
SEQ ID NO:8	SCCC---SRNKNKKKTTKP-----	KTEKKRLLFFKKAENPSPAYALGEIDEA--APG-
SEQ ID NO:10	CCCCFGNRKQKK---TTKP-----	KTEKKRLLFFKKEENQSPAYALGEIDEA--APG-
SEQ ID NO:12	-----	-----
SEQ ID NO:14	-CPCFGSRKKYKE-----	KNDANGEAASLKG
SEQ ID NO:16	-KSCCGSRKKGKGNNK-----	YS-DKKKAMGR--TESTVPIFNMEDIEEGVEG--Y
SEQ ID NO:18	LCC--GSRKKKN---ANS-----	KKEKKRKV--KHSEASKQIHALENIEAGN--EG-
SEQ ID NO:20	-SLCXG-KKKASKSKKR-----	SSDKKSNKH--VDSSVPVNLEDIEEGVEGAGF
SEQ ID NO:22	-----	-----
SEQ ID NO:23	-KSCCGSRKKGKSS-KK-----	YNYEKRRGINR--SDSNAPLFNMEDIDEFGFEG--Y
SEQ ID NO:24	LCC--GLRKKSK---T-----	KAKDKKT--NTKETSKQIHALENVDEGVIVPV-
SEQ ID NO:25	-CCCGGSRKKSKKGEKKGLLGGGLLYGKKKKMMGKNVVKKGSAPVFDLEEIEEGLEG--Y	-----
SEQ ID NO:26	-----NPDKLLEKESETEALTTSDFDPLDVTQLPKRFGNSTLL-----	AESIPI
SEQ ID NO:27	-CPCFGRRRKNN-----	FSKNDMNGDVAALGG
SEQ ID NO:28	-SLCGGSRKKSSKSSKK-----	GSDKKKSGKH--VDSTVPVNLEDIEEGVEGAGF
SEQ ID NO:29	LCF--GSRKNRK---AKT-----	VAADKKK--KNREASKQIHALENIEEGRGHKV-
 901		960
SEQ ID NO:2	-----	-----
SEQ ID NO:4	AENEKAGIVNQQKLEKKFGQSSVFVASTLLENGGTLSASPASLLKEAIHVISCGYEDKT	-----
SEQ ID NO:6	-----	ET
SEQ ID NO:8	ADIEKAGIVNQQKLEKKFGQSSVFVASTLLENGGTLSASPASLLKEAIHVISCGYEDKT	-----
SEQ ID NO:10	AENEKAGIVNQQKLEKKFGQSSVFVASTLLENGGTLSASPASLLKEAIHVISCGYEDKT	-----
SEQ ID NO:12	-----	-----
SEQ ID NO:14	MDDDKEVLMQSQMNFEEKFGQSSI FVTSTLMEEGGVPPSSPAALLKEAIHVISCGYEDKT	-----
SEQ ID NO:16	DD-ERTLLMSQKSLEKRGFGQSPVFIAATFMEQGGI PPTTNPATLLKEAIHVISCGYEDKT	-----
SEQ ID NO:18	TNNEKTSNLQTKEKRGFGQSPVFVASTLLEDDGGVPHGVSPASLLKEAIQVISCGYEDKT	-----
SEQ ID NO:20	DD-EKSVLMSQMSLEKRGFGQSAFVASTLMEYGGVPOSSTPESLLKEAIHVISCGYEDKS	-----
SEQ ID NO:22	-----	-----
SEQ ID NO:23	DD-ERSILMSQRSVEKRGFGQSPVFIAATFMEQGGI PPTTNPATLLKEAIHVISCGYEDKT	-----
SEQ ID NO:24	SNVEKRSEATQLKLEKKFGQSPVFVASAVLQNGGVPRNASPACLLREAIQVISCGYEDKT	-----
SEQ ID NO:25	EELEKSTLMSQKNFEKRGFGQSPVFIASTLMEENGGLPEGTNSTSLIKEAIHVISCGYEEKT	-----
SEQ ID NO:26	AEFQGRPLADHPAV--KYGRPP---GALR---VPRDPLDATTVAESVSVISCWYEDKT	-----
SEQ ID NO:27	AEGDKEHLMFEMNFETKTFGQSSI FVTSTLMEEGGVPPSSPAVLLKEAIHVISCGYEDKT	-----
SEQ ID NO:28	DD-EKSLLMSQMSLEKRGFGQSAFVASTLMEYGGVPOSSTPESLLKEAIHVISCGYEDKT	-----
SEQ ID NO:29	LNVEQSTEAMQMKLQKKYQGSPVFVASARLENGGMARNASPACLLKEAIQVISRGYEDKT	-----
 961		1020
SEQ ID NO:2	-----HEDITGFKMHARGWISIYCMPPRPFCKGSAPI NLSDRLNQVLRWAL	-----
SEQ ID NO:4	GWGKDIGHWIYGSVTEDILTGFKMHCHGWRISIYCIPKRAFKGSAPI NLSDRLNQVLRWAL	-----
SEQ ID NO:6	EWGKEIGWIYGSVTEDILTGFKMHCHGWRISIYCIPKRAFKGSAPI NLSDRLNQVLRWAL	-----
SEQ ID NO:8	DWGKEIGWIYGSITEDILTGFKMHCHGWRISIYCIPKRAFKGSAPI NLSDRLNQVLRWAL	-----
SEQ ID NO:10	DWGKEIGWIYGSITEDILTGFKMHCHGWRISIYCIPKRAFKGSAPI NLSDRLNQVLRWAL	-----
SEQ ID NO:12	-----WRP-----RRSL	-----
SEQ ID NO:14	EWGLELGWIYGSITEDILTGFKMHCHGWRISIYCIPKRAFKGSAPI NLSDRLNQVLRWAL	-----
SEQ ID NO:16	EWGKEIGWIYGSVTEDILTGFKMHCHGWRISIYCIPKRAFKGSAPI NLSDRLNQVLRWAL	-----
SEQ ID NO:18	EWGKEIGWIYGSVTEDILTGFKMHCHGWRISIYCIPKRAFKGSAPI NLSDRLNQVLRWAL	-----
SEQ ID NO:20	EWGKEIGWIYGSVTEDILTGFKMHCHGWRISIYCIPKRAFKGSAPI NLSDRLNQVLRWAL	-----
SEQ ID NO:22	-----	-----
SEQ ID NO:23	EWGKEIGWIYGSVTEDILTGFKMHARGWISIYCNPPRPAFKGSAPI NLSDRLNQVLRWAL	-----
SEQ ID NO:24	EWGKEIGWIYGSVTEDILTGFKMHCHGWRISIYCIPKRAFKGSAPI NLSDRLNQVLRWAL	-----
SEQ ID NO:25	EWGKEIGWIYGSVTEDILTGFKMHCHGWRISIYCIPKRAFKGSAPI NLSDRLNQVLRWAL	-----
SEQ ID NO:26	EWGDRVGIYGSVTEDVVTGYRMHNRGWRSVYCITKRDSSFRGSAPI NLTDRLNQVLRWAT	-----

Figure 1 (cont'd.)

SEQ ID NO:27	EWGTELGIYGSITEDILTGFKMHCRGWRHSIYCMPCRPAFKGSAPINLSDRLNQVLRWAL	
SEQ ID NO:28	DWGSEIGWIYGSVTEDILTGFKMHARGWRHSIYCMPCRPAFKGSAPINLSDRLNQVLRWAL	
SEQ ID NO:29	EWGKEIGWIYGSVTEDILTGSKMHSHGWRHVCTPKLAALKGSAPINLSDRLHQVLRWAL	
 1021		
SEQ ID NO:2	GSVEILFSRHCPIWNYGG-RLKLLERMAYINTIVYPITSPLIAYCVLPAICLLTNKFI	1080
SEQ ID NO:4	GSIEIFFSNHCPLWYGYGGG-LKFLERFSYINSIVYPWTSIPLLAYCTLPACCLLTGKFI	
SEQ ID NO:6	GSVEIFMSRHCPLWYAYGG-RLKWLRFAYNTIVYPFTSIPLLAYCTIPAVCCLLTGKFI	
SEQ ID NO:8	GSVEIFFSKHCPLWYGYGGG-LKFLERFSYINSIVYPWTSIPLLAYCTLPACCLLTGKFI	
SEQ ID NO:10	GSIEIFFSNHCPLWYGYGGG-LKFLERFSYINSIVYPWTSIPLLAYCTLPACCLLTGKFI	
SEQ ID NO:12	G-----CRL-----	
SEQ ID NO:14	GSIEIFFSHHCPLWYGFKEKKLKWLERFAYANTTVYPFTSIPLVAYCILPAVCCLTDKFI	
SEQ ID NO:16	GSIEIFLSRHCPLWYGYNG-KLKPLMRLAYINTIVYPFTSIPLLAYCTLPACCLLTGKFI	
SEQ ID NO:18	GSVEIFFSRHCPIWYGYGGG-LKLLERFSYINSVVYPWTSPLLLVYCTLPACCLLTGKFI	
SEQ ID NO:20	GSVEILFSRHCPLWYGYGG-RLKFLERFAYINTTIYPLTSLPLLVYCILPAICCLLTGKFI	
SEQ ID NO:22	-----	
SEQ ID NO:23	GSIEILLSRHCPIWGYHG-RLRLLERIAYINTIVYPITSIPLLAYCILPAFCCLITDRFI	
SEQ ID NO:24	GSVEIFLSRHCPIWGYGGG-LKWLRFAYNTIVYPFTSIPLLAYCILPAVCCLLTGKFI	
SEQ ID NO:25	GSVEIFLSRHCPLWYGYGG-KLKWLRFAYNTIVYPFTSIPLLAYCTIPAVCCLLTGKFI	
SEQ ID NO:26	GSVEIFFSRNNNAI---LASKRLKFLQRLAYLNVGIYPPFTSFLFLYLICFLPAFSLFSGQFI	
SEQ ID NO:27	GSVEIFFSRHSPLWYGYKGGKLKWLERFAYANTTIYPTSIPLLAYCILPAICCLTDKFI	
SEQ ID NO:28	GSVEILFSRHCPIWYGYSR-RLKWLRFAYVNTTIYPTAIPLLMYCTLPAVCCLTNKFI	
SEQ ID NO:29	GSVEIFLSRHCPIWYGYGGG-LKWLRLSYINSVVYPWTSPLIVYCSLPAICCLLTGKFI	
 1081		
SEQ ID NO:2	IPEISNYAGMFILMFASIFATGILELRWSGVGIEDWWRNEQFWVIGGTS AHLFAVFQGL	1140
SEQ ID NO:4	TPELNNVASLWFMSLFICIFATSILEMRWSGVGIDDDWWRNEQFWVIGGVSSHLFAVFQGL	
SEQ ID NO:6	IPTELNNAISIWFIALFLSIIATSVLELRWSGVSIEDWWRNEQFWVIGGVSAHLSAHLFQGL	
SEQ ID NO:8	TPELTNVASIWFMALFICISVTGILEMRWSGVAIADDWWRNEQFWVIGGVSAHLSAHLFQGL	
SEQ ID NO:10	TPELNNVASLWFMSLFICIFATSILEMRWSGVGIDDDWWRNEQFWVIGGVSSHLFAVFQGL	
SEQ ID NO:12	-----	
SEQ ID NO:14	MPPISTFAGLYFVALFSSIIATGILELKWSGVSI EEWWRNEQFWVIGGVSAHLSAHLFQGL	
SEQ ID NO:16	IPEISNFASMWFILLFVSIFTTSILELRWSGVSIEDWWRNEQFWVIGGTS AHLFAVFQGL	
SEQ ID NO:18	VPEISNYASLVMALFISIAATGILEMQWGGVSIDDDWWRNEQFWVIGGVSSHLFALFQGL	
SEQ ID NO:20	MPEISNLASIWFIALFLSIFATGILEMRWSGVGIDEWWRNEQFWVIGGISAHLSAHLFQGL	
SEQ ID NO:22	-----	
SEQ ID NO:23	IPEISNYASIWFILLFISIAVTGILELRWSGVSIEDWWRNEQFWVIGGTS AHLFAVFQGL	
SEQ ID NO:24	VPEISNYAGILFMLMFISIAVTGILEMQWGGVGIDDDWWRNEQFWVIGGASSHLFALFQGL	
SEQ ID NO:25	IPTLSNLTSVWFLALFLSIIATGVLELRWSGVSIQDWWRNEQFWVIGGVSAHLSAHLFQGL	
SEQ ID NO:26	VRTLSISFLVYLLMITICLIGLAVLEVKGWVGIGLEEEWWRNEQWWLISGTSSHLYAVVQGV	
SEQ ID NO:27	MPPISTFASLFFISLFMSIIVTGILELRWSGVSI EEWWRNEQFWVIGGISAHLSAHLFQGL	
SEQ ID NO:28	IPQISNLASIWFISLFISIFATGILKMKWNGVGIDQWWRNEQFWVIGGVSAHLSAHLFQGL	
SEQ ID NO:29	VPEISNYASILFMALFSSIAITGILEMQWKGVGIDDDWWRNEQFWVIGGVSAHLSAHLFQGL	
 1141		
SEQ ID NO:2	LKVLAGIDTNFTVTSKANDEDGD--FAELYVFKWTSLLIPPTTVLVINLVGMVAGISYAI	1200
SEQ ID NO:4	LKVIAGVDTSTVTSKGGDD--EE-FSELYTFKWTTLIIPPTTLLLNFIGVVAGISNAI	
SEQ ID NO:6	LKVLGGVDTSTVTSKAAGDEADA-FGDLYLFKWTTLVPPTTLIIINMVGVAGVSDAV	
SEQ ID NO:8	LKVFAGIDTSFTVTSKAGDD--EE-FSELYTFKWTTLIIPPTTLLLNFIGVVAGISNAI	
SEQ ID NO:10	LKVIAGVDTSTVTSKGGDD--EE-FSELYTFKWTTLIIPPTTLLLNFIGVVAGVSNAI	
SEQ ID NO:12	-----	
SEQ ID NO:14	LKVLAGIDTNFTVTSKATDDE-E--FGELYTFKWTTLIIPPTTLLIINIVGVVAGISDAI	
SEQ ID NO:16	LKVLAGIDTNFTVTSKASDEDGD--FAELYVFKWTSLLIPPTTVLIVNLVGVAGVSYAI	
SEQ ID NO:18	LKVLAGVNTNFTVTSKAADD--GE-FSELYIFKWTSLIIPPTTLLIMNIVGVVVGISDAI	
SEQ ID NO:20	LKVLAGIDTNFTVTSKANDEEGD--FAELYMFKWTTLIIPPTTLLIINMVGVVAGTSYAI	
SEQ ID NO:22	-----	
SEQ ID NO:23	LKVLAGIDTNFTVTSKATDEDGD--FAELYIFKWTALLIPPTTVLLVNLIGIVAGVSYAV	

Figure 1 (cont'd.)

SEQ ID NO:24	LKVLAGVNTNFTVTSKAADD--GA-FSELYIFKWTTLIIPPTTLLIINIIGVIVGVSDAI	
SEQ ID NO:25	LKVLAGVDTNFTVTKAADDTE---FGELYLFKWTTLIIPPTTLLIILNMVGVVAGVSDAI	
SEQ ID NO:26	LKVIAGIEISFTLTTKSGGDDNEDIYADLYIVWKSSLMIPPIVIAVNIIIAIVVAFIRTI	
SEQ ID NO:27	LKILAGIDTNFTVTSKATDDD-D--FGELYAFKWTTLIIPPTTVLIINIVGVVAGISDAI	
SEQ ID NO:28	LKVLAGIDTNFTVTSKASDEDGD--FAELYMFKWTTLIIPPTTLLIINLVGVVAGISYVI	
SEQ ID NO:29	LKVLAGVDTNFTVTSKAADD--GE-FSDLYLFKWTSLLIIPPTMILLINVIGVIVGVSDAI	
 1201		
SEQ ID NO:2	NNGYQSWGPLFGKLFFSIWVILHLYPFLKGKLMGKQNRTPTIVIVWSILLASIFSLLWVKI	1260
SEQ ID NO:4	NNGYESWGPLFGKLFFAFWVIVHLYPFLKGKLMGRQNRTPTIVIVWSILLASIFSLLWVRI	
SEQ ID NO:6	NNGYGSWGPLFGKLFFSFWVIVHLYPFLKGKLMGRQNRTPTIVVLSILLASIFSLLWVRI	
SEQ ID NO:8	NNGYESWGPLFGKLFFAFWVIVHLYPFLKGKLMGRQNRTPTIVIVWSILLASIFSLLWVRV	
SEQ ID NO:10	NNGYESWGPLFGKLFFAFWVIVHLYPFLKGKLMGRQNRTPTIVIVWSILLASIFSLLWVRI	
SEQ ID NO:12	-----LGEDER-----LWSRM	
SEQ ID NO:14	NNGYQSWGPLFGKLFFSFWVIVHLYPFLKGKLMGRQNRTPTIVVIWSVLLASIFSLLWVRI	
SEQ ID NO:16	NNGYQSWGPLFGKLFFAFWVIVAHLYPFLKGKLLGRQNRTPTIVIVWSVLLASIFSLLWVRI	
SEQ ID NO:18	NNGYDSWGPLFGRLFFALWVILHLYPFLKGKLLGKQDRMPTIILVWSILLASILTLMWVRI	
SEQ ID NO:20	NNGYQSWGPLFGKLFFAFWVIVHLYPFLKGKLMGRQNRTPTIVIVWAULLASIFSLLWVRI	
SEQ ID NO:22	-----	
SEQ ID NO:23	NNGYQSWGPLFGKLFFALWVIAHLYPFLKGKLLGRQNRTPTIVIVWSVLLASIFSLLWVRI	
SEQ ID NO:24	SNGYDSWGPLFGRLFFALWVIVHLYPFLKGMLGKQDKMPTIIVVWSILLASILTLLWVRV	
SEQ ID NO:25	NNGYGSWGPLFGKLFFAFWVILHLYPFLKGKLMGRQNRTPTIVVLSILLASIFSLLWVRI	
SEQ ID NO:26	YQAVPQWSKLLIGGAAFFSFWVLAHLYPFAKGKLMGRRGKPTTIVFWAGLIAITISLLWTAI	
SEQ ID NO:27	NNGYQSWGPLFGKLFFSFWVIVHLYPFLKGKLMGRQNRTPTIVVIWSVLLASIFSLLWVRI	
SEQ ID NO:28	NNGYQSWGPLFGKLFFAFWVIIHLYPFLKGKLMGRQNRTPTIVVVWSILLASIFSLLWVRI	
SEQ ID NO:29	SNGYDSWGPLFGRLFFALWVIIHLYPFLKGKLLGKQDRMPTIIVVWSILLASILTLLWVRV	
 1261		
SEQ ID NO:2	DPFISDTQKAVAM-GQCGVNC---	1284
SEQ ID NO:4	DPFLAKDDGPLL--EECGLDCN--	
SEQ ID NO:6	DPFIPKAKGPILKP-C-GVEC---	
SEQ ID NO:8	DPFLAKSNGPLL--EECGLDCN--	
SEQ ID NO:10	DPFLAKDDGPLL--EECGLDCN--	
SEQ ID NO:12	KQMVLISGPR-----	
SEQ ID NO:14	DPFVLKTKGPDTKL--CGINC---	
SEQ ID NO:16	DPFTSDSNKLT--NGQCGINC--	
SEQ ID NO:18	NPFVSRD-GPVL--EICGLNCDES	
SEQ ID NO:20	DPFTTRLAGPNI--QTCGINC--	
SEQ ID NO:22	-----	
SEQ ID NO:23	NPFVDANPNANNFNGKGGVF----	
SEQ ID NO:24	NPFVAKG-GPVL--EICGLNCGN-	
SEQ ID NO:25	DPFLPKQTGPVLKQ-C-GVEC---	
SEQ ID NO:26	NP---NTGPAAAEGVGGGGFQFP	
SEQ ID NO:27	DPFVLKTKGPDTSK--CGINC---	
SEQ ID NO:28	DPFTTRVTGPDV--EQCGINC---	
SEQ ID NO:29	NPFVAKG-GPIL--EICGLDC--L	

SEQUENCE LISTING

<110> E. I. du Pont de Nemours and Company

<120> Plant Cellulose Synthases

<130> BB-1170

<140>

<141>

<150> 60/092,844

<151> July 14, 1998

<160> 29

<170> Microsoft Office 97

<210> 1

<211> 1221

<212> DNA

<213> Hordeum vulgare

<400> 1

gcacgaggat attcttactg ggtttaaaat gcacgcaaga ggttggatat caatctactg	60
catgccacca cgacacctgtt tcaagggttc tgcccaatc aatctctctg accgtctcaa	120
tcaaggcttc cgtggggctc ttgggtcagt tgaattctg ttttagcagac attgtcctat	180
ctggtacaat tacgggtggc ggttgaaact tctggagagg atggcttaca tcaacaccat	240
tgttatcca ataacatccc ttccacttgc cgcttattgt gtgccttcctg ctatctgtct	300
cctcaccaac aaatttatca ttcccagagat cagtaactt gctgggatgt tctttattct	360
tatgtttgc tccatctttc ccacgggtat attggagctg cgatggagtg gtgtcgccat	420
cgaggactgg tgagaaaacg agcagttctg ggttattgtt ggcacatctg cccatcttt	480
cgcagtttc cagggtctgc tgaagggtt ggccggatt gacaccaact tcacggttac	540
ctcgaaggca aacgacgagg atggcgatt tgctgagttt tacgtgttca agtggaccag	600
tctcctcatt cctccgacca ccgtcctgtt gattaacctg gtgggcattt tggcaggcat	660
atcatatgcc atcaacagcg gttaccagtc ttgggttcca ctttcgaaa agctttttt	720
ctcaatctgg gtgatcctcc atctctaccc ttccctcaag ggtctcatgg ggaagcagaa	780
ccgcacgcca accatcgta ttgtttggtc catccctcta gcctccatct tctccctcc	840
gtgggtgaag atcgaccctt tcataatccga taccaggaaa gccgtcgcca tggggcagt	900
tggcgtcaac tgctgatcgg cgccgaagag tatctgcccc cctcgtgtaa atacccgagg	960
gggttggatg ggattttgtt gttgttagatg aagacggagt tttatgttaag ttattattgc	1020
cccttcgtgc tgagaagcac aaaccgtgaa gcctacgaaa cctgcagcgt acattgtgat	1080
ttttttctcc ttttctttc atctgtgata cctgttgtt cttcttagag tatattatgt	1140
cagaacgtat ctatagttct atacacacta tgacaccaac tatttatata aggcaactgt	1200
tgcatcaact cttctgcaaa a	1221

<210> 2

<211> 304

<212> PRT

<213> Hordeum vulgare

<400> 2

His Glu Asp Ile Leu Thr Gly Phe Lys Met His Ala Arg Gly Trp Ile			
1	5	10	15

Ser Ile Tyr Cys Met Pro Pro Arg Pro Cys Phe Lys Gly Ser Ala Pro		
20	25	30

Ile Asn Leu Ser Asp Arg Leu Asn Gln Val Leu Arg Trp Ala Leu Gly		
35	40	45

Ser Val Glu Ile Leu Phe Ser Arg His Cys Pro Ile Trp Tyr Asn Tyr
 50 55 60

Gly Gly Arg Leu Lys Leu Leu Glu Arg Met Ala Tyr Ile Asn Thr Ile
 65 70 75 80

Val Tyr Pro Ile Thr Ser Leu Pro Leu Ile Ala Tyr Cys Val Leu Pro
 85 90 95

Ala Ile Cys Leu Leu Thr Asn Lys Phe Ile Ile Pro Glu Ile Ser Asn
 100 105 110

Tyr Ala Gly Met Phe Phe Ile Leu Met Phe Ala Ser Ile Phe Ala Thr
 115 120 125

Gly Ile Leu Glu Leu Arg Trp Ser Gly Val Gly Ile Glu Asp Trp Trp
 130 135 140

Arg Asn Glu Gln Phe Trp Val Ile Gly Gly Thr Ser Ala His Leu Phe
 145 150 155 160

Ala Val Phe Gln Gly Leu Leu Lys Val Leu Ala Gly Ile Asp Thr Asn
 165 170 175

Phe Thr Val Thr Ser Lys Ala Asn Asp Glu Asp Gly Asp Phe Ala Glu
 180 185 190

Leu Tyr Val Phe Lys Trp Thr Ser Leu Leu Ile Pro Pro Thr Thr Val
 195 200 205

Leu Val Ile Asn Leu Val Gly Met Val Ala Gly Ile Ser Tyr Ala Ile
 210 215 220

Asn Ser Gly Tyr Gln Ser Trp Gly Pro Leu Phe Gly Lys Leu Phe Phe
 225 230 235 240

Ser Ile Trp Val Ile Leu His Leu Tyr Pro Phe Leu Lys Gly Leu Met
 245 250 255

Gly Lys Gln Asn Arg Thr Pro Thr Ile Val Ile Val Trp Ser Ile Leu
 260 265 270

Leu Ala Ser Ile Phe Ser Leu Leu Trp Val Lys Ile Asp Pro Phe Ile
 275 280 285

Ser Asp Thr Gln Lys Ala Val Ala Met Gly Gln Cys Gly Val Asn Cys
 290 295 300

<210> 3

<211> 3776

<212> DNA

<213> Zea mays

<400> 3

gcgccgcgcg caggcgcaac gcaacaaagg gaaaccccag ccggaggagc aaaagctagc 60
 aagcggtgtcc ctccccctcc ctcactcccg tttcattcca ttccccccca gacccgccta 120
 ccgccccccgc cgcacgcacq cttgccccgg gatctggaga tctggtagcg ccagggggat 180
 ggaggccagc gccgggctgg tcgcccgtc gcacaaccgg aacgagctcg tcgtcatccg 240
 ccgcgtatggc gagccagggc cgaagcccat ggaccagcgg aacggccagg tgtgccagat 300

ttgcggcgac	gacgtggggc	gcaaccccga	cggggagccg	ttcgtggcct	gcaacgagtg	360
cgccccc	atctgcccc	actgctacga	gtacgagcgc	cgcgaggggca	cgcagaactg	420
cccccagtgc	aagaccgcgt	tcaagcgcct	caaggggtgc	gcccgcgtgc	ccggggacga	480
ggaggaggac	ggcgtcgcac	acctggagaa	cgagttcaac	tggagcgaca	agcacgactc	540
ccagtacctc	gccgagtcga	tgccttacgc	ccacatgagc	tacggcccg	gcccgcacct	600
cgacggcgtg	ccgcagccat	tccacccat	ccccaatgtt	ccctccctca	ccaacggaca	660
gatggtcgt	gacatcccc	cggaccaagca	cgcccttgcg	ccctcggtcg	tgggtggcgg	720
ggggaaagagg	attcacccctc	tcccgtaacgc	ggatcccaac	tttctgtgc	aaccgaggtc	780
tatggaccc	tccaaggatc	tcgcccata	tggctacggg	agcgttagcat	ggaaggagag	840
gatggagagc	ttgaaagcaga	agcaggagag	gatgcaccag	acgaggaacg	atggcggcgg	900
cgatgttgt	gatgtacgt	atctaccact	aatggatgaa	gctagacagc	cattgtccag	960
aaagatccc	cttccatcaa	gccaaatcaa	ccccatatgg	atgattataa	taattcggt	1020
agtggttt	tggttcttc	tccactacgc	agtgtatgc	ccgggtcctg	atgcatttgc	1080
tttatggctc	atatctgtga	tctgtgaaat	ttgttttgc	atgtcttgg	ttcttgacca	1140
gtttccaaag	tgtttccata	tcgagggga	aacctatctt	gaccggctga	gtttaagggt	1200
tgacaacaa	gggcattcctt	ctcaactcgc	ccctgttgc	ttctttgtca	gtacgggtga	1260
tccttgaag	gaacctccat	tggtaactgc	taatactgtt	ctatctatcc	tttcgggtga	1320
ttatccagg	gataagggtt	catgctacgt	ttctgtatgt	ggtgctgcca	tgctgacatt	1380
tgaagcatt	tctgaaacat	ctgaatttgc	aaagaaatgg	tttcccttct	gcaaaagata	1440
tagccttgag	cctcgtgctc	cagagtggta	cttccaacag	aagatagact	acctgaaaaga	1500
caagggtggc	ccaaacttgc	tttagagaacg	gaggaatcg	aagagagagt	atgaggaatt	1560
caaggtcaga	atcaatgcct	tggttctaa	agccaaaaag	tttccttgagg	aaggatggac	1620
aatgcaggat	ggaactccat	ggcccgaaaa	taatgtccgt	gatcatccctg	aatgtattca	1680
gttttcctt	ggtaaagggt	gtggccatga	tgttggaa	aatgagctgc	ctcgatttgt	1740
ttatgtttca	agagaaaaac	ggccaggtca	caaccatcac	aagaagggtg	gtgcstatgaa	1800
tgcattggc	cgagtctctg	ctgtactaac	taatgtctt	tatgtctg	acttggattg	1860
tgatcactat	atcaataata	gtaaaggctat	aaaggaagca	atgtgtttt	tgtatggatcc	1920
tttgcttgg	aaagaaagttt	gctatgtgc	gtttcctcaa	agatttgatg	ggatttgatcg	1980
ccatgatcga	tatgctaaca	gaaatgttgc	cttttgc	atcaacatga	aaggtttgg	2040
tggtatccag	ggcccaattt	atgtgggtac	tggatgtgc	ttcagaaggc	aggcattata	2100
tggctacgt	gtccccaaaa	caaagaagcc	accatcaaga	acttgcaact	gctggccaaa	2160
gtgggtcatt	tgttgttgc	gttttgtaa	caggaagacc	aagaagaaga	ccaagacctc	2220
taaacctaaa	tttgagaaga	taaagaaact	tttaagaaa	aaggaaaatc	aagcccctgc	2280
atatgtctt	gttggaaattt	atgaagccgc	tccaggagct	aaaaatgaaa	aggctagtat	2340
tgtaaatcaa	cagaagttgg	aaaagaaatt	tggccagtc	tcagttttt	ttgcatccac	2400
acttcttgc	aatgggtggaa	ccctgaagag	tgccagtc	gcttcttcc	tgaaggaagc	2460
tatacatgtc	atcgttgttgc	gatatgaaga	caaaacaggc	tggggaaaag	atattggtt	2520
gatttatgg	tcagtacacag	aagatattct	tactgggtt	aaagatgc	gccatgggt	2580
gcggtaatt	tactgcatac	ctaaacgggc	cgccttcaaa	ggttccgcac	ctctcaatct	2640
ttccgatctg	cttcaccagg	ttcttcgg	ggcttgcgt	tcaattgaaa	tttttttcag	2700
caaccactgc	cctctctgtt	atgggtatgg	tggtgacta	aagttcctgg	aaagttttc	2760
gtacattaac	tccatcgat	acccttggac	atctatcccg	ctttggcct	attgcacatt	2820
gcctccatc	tgcttgc	caggaaatt	tatcacgca	gagcttaaca	atgttgccag	2880
cctctgg	atgtcacttt	tcatctgc	ttttgtac	agcatccctgg	aatatgagatg	2940
gagtgtgt	ggcatcgat	actgggtgg	aaacgagcag	ttttgggtca	ttggaggcgt	3000
gttccat	ctcttcgt	tgttccagg	actcctcaag	gtcatagctg	gtgtagacac	3060
gagcttcact	gtgacatcca	agggcggaga	cgacgaggag	ttctcagagc	tgtacacatt	3120
caaattggac	acccttgc	tacccgcac	accctgc	ctactgaact	tcattggagt	3180
ggtagtgc	atctccat	cgatcaacaa	cgatata	tcatggggcc	ccctgttcgg	3240
gaagcttcc	tttgcattt	gggtgtatgt	ccatcttac	ccgttccctca	agggtcttgt	3300
tggtggggc	aacaggacgc	caacgattgt	cattgtctgg	tccatccccc	tggcttcgt	3360
cttctcg	cttgggtcc	ggatcgaccc	gttcttgc	aaggatgt	gtccccctgtt	3420
ggaggagtgt	ggtctggatt	gcaacttaga	ggtcagc	tggacttccc	cgtca	3480
tggcgaaga	agatatttttgc	cagatgttt	gtggccat	ttctttttc	aattttgtc	3540
cctctgtaga	tagaaacaag	gggagaaggg	aaaaaaaat	acttgcattt	cttttgttcc	3600
atgggtgtgg	tgtgtgtgg	cggctcagcc	tcgtgatgc	agtttgggc	aaaccggagg	3660
ctgcggcaac	cttgcgtcgt	tcggccacga	atatactagg	gaagatcgc	accaatcaat	3720
caatcgatga	ccgagttcaa	ttgttgc	aaaaaaa	aaaaaaa	aaaaaa	3776

<210> 4
<211> 1148
<212> PRT
<213> Zea mays

<400> 4

Arg Ala Ala Gln Ala Gln Arg Asn Lys Gly Lys Pro Gln Pro Glu Glu
1 5 10 15

Gln Lys Leu Ala Ser Val Ser Leu Pro Leu Pro His Ser Arg Phe Ile
20 25 30

Pro Phe Pro Pro Arg Arg Tyr Arg Arg Arg Arg Thr His Ala Cys
35 40 45

Pro Gly Ile Trp Arg Ser Gly Ser Ala Arg Gly Met Glu Ala Ser Ala
50 55 60

Gly Leu Val Ala Gly Ser His Asn Arg Asn Glu Leu Val Val Ile Arg
65 70 75 80

Arg Asp Gly Glu Pro Gly Pro Lys Pro Met Asp Gln Arg Asn Gly Gln
85 90 95

Val Cys Gln Ile Cys Gly Asp Asp Val Gly Arg Asn Pro Asp Gly Glu
100 105 110

Pro Phe Val Ala Cys Asn Glu Cys Ala Phe Pro Ile Cys Arg Asp Cys
115 120 125

Tyr Glu Tyr Glu Arg Arg Glu Gly Thr Gln Asn Cys Pro Gln Cys Lys
130 135 140

Thr Arg Phe Lys Arg Leu Lys Gly Cys Ala Arg Val Pro Gly Asp Glu
145 150 155 160

Glu Glu Asp Gly Val Asp Asp Leu Glu Asn Glu Phe Asn Trp Ser Asp
165 170 175

Lys His Asp Ser Gln Tyr Leu Ala Glu Ser Met Leu His Ala His Met
180 185 190

Ser Tyr Gly Arg Gly Ala Asp Leu Asp Gly Val Pro Gln Pro Phe His
195 200 205

Pro Ile Pro Asn Val Pro Leu Leu Thr Asn Gly Gln Met Val Asp Asp
210 215 220

Ile Pro Pro Asp Gln His Ala Leu Val Pro Ser Phe Val Gly Gly Gly
225 230 235 240

Gly Lys Arg Ile His Pro Leu Pro Tyr Ala Asp Pro Asn Leu Pro Val
245 250 255

Gln Pro Arg Ser Met Asp Pro Ser Lys Asp Leu Ala Ala Tyr Gly Tyr
260 265 270

Gly Ser Val Ala Trp Lys Glu Arg Met Glu Ser Trp Lys Gln Lys Gln
275 280 285

Glu Arg Met His Gln Thr Arg Asn Asp Gly Gly Gly Asp Asp Gly Asp
 290 295 300
 Asp Ala Asp Leu Pro Leu Met Asp Glu Ala Arg Gln Pro Leu Ser Arg
 305 310 315 320
 Lys Ile Pro Leu Pro Ser Ser Gln Ile Asn Pro Tyr Arg Met Ile Ile
 325 330 335
 Ile Ile Arg Leu Val Val Leu Cys Phe Phe Phe His Tyr Arg Val Met
 340 345 350
 His Pro Val Pro Asp Ala Phe Ala Leu Trp Leu Ile Ser Val Ile Cys
 355 360 365
 Glu Ile Trp Phe Ala Met Ser Trp Ile Leu Asp Gln Phe Pro Lys Trp
 370 375 380
 Phe Pro Ile Glu Arg Glu Thr Tyr Leu Asp Arg Leu Ser Leu Arg Phe
 385 390 395 400
 Asp Lys Glu Gly His Pro Ser Gln Leu Ala Pro Val Asp Phe Phe Val
 405 410 415
 Ser Thr Val Asp Pro Leu Lys Glu Pro Pro Leu Val Thr Ala Asn Thr
 420 425 430
 Val Leu Ser Ile Leu Ser Val Asp Tyr Pro Val Asp Lys Val Ser Cys
 435 440 445
 Tyr Val Ser Asp Asp Gly Ala Ala Met Leu Thr Phe Glu Ala Leu Ser
 450 455 460
 Glu Thr Ser Glu Phe Ala Lys Lys Trp Val Pro Phe Cys Lys Arg Tyr
 465 470 475 480
 Ser Leu Glu Pro Arg Ala Pro Glu Trp Tyr Phe Gln Gln Lys Ile Asp
 485 490 495
 Tyr Leu Lys Asp Lys Val Ala Pro Asn Phe Val Arg Glu Arg Arg Ala
 500 505 510
 Met Lys Arg Glu Tyr Glu Glu Phe Lys Val Arg Ile Asn Ala Leu Val
 515 520 525
 Ala Lys Ala Gln Lys Val Pro Glu Glu Gly Trp Thr Met Gln Asp Gly
 530 535 540
 Thr Pro Trp Pro Gly Asn Asn Val Arg Asp His Pro Gly Met Ile Gln
 545 550 555 560
 Val Phe Leu Gly Gln Ser Gly Gly His Asp Val Glu Gly Asn Glu Leu
 565 570 575
 Pro Arg Leu Val Tyr Val Ser Arg Glu Lys Arg Pro Gly Tyr Asn His
 580 585 590
 His Lys Lys Ala Gly Ala Met Asn Ala Leu Val Arg Val Ser Ala Val
 595 600 605

Leu Thr Asn Ala Pro Tyr Leu Leu Asn Leu Asp Cys Asp His Tyr Ile
 610 615 620
 Asn Asn Ser Lys Ala Ile Lys Glu Ala Met Cys Phe Met Met Asp Pro
 625 630 635 640
 Leu Leu Gly Lys Lys Val Cys Tyr Val Gln Phe Pro Gln Arg Phe Asp
 645 650 655
 Gly Ile Asp Arg His Asp Arg Tyr Ala Asn Arg Asn Val Val Phe Phe
 660 665 670
 Asp Ile Asn Met Lys Gly Leu Asp Gly Ile Gln Gly Pro Ile Tyr Val
 675 680 685
 Gly Thr Gly Cys Val Phe Arg Arg Gln Ala Leu Tyr Gly Tyr Asp Ala
 690 695 700
 Pro Lys Thr Lys Lys Pro Pro Ser Arg Thr Cys Asn Cys Trp Pro Lys
 705 710 715 720
 Trp Cys Ile Cys Cys Cys Phe Gly Asn Arg Lys Thr Lys Lys Lys
 725 730 735
 Thr Lys Thr Ser Lys Pro Lys Phe Glu Lys Ile Lys Lys Leu Phe Lys
 740 745 750
 Lys Lys Glu Asn Gln Ala Pro Ala Tyr Ala Leu Gly Glu Ile Asp Glu
 755 760 765
 Ala Ala Pro Gly Ala Glu Asn Glu Lys Ala Ser Ile Val Asn Gln Gln
 770 775 780
 Lys Leu Glu Lys Lys Phe Gly Gln Ser Ser Val Phe Val Ala Ser Thr
 785 790 795 800
 Leu Leu Glu Asn Gly Gly Thr Leu Lys Ser Ala Ser Pro Ala Ser Leu
 805 810 815
 Leu Lys Glu Ala Ile His Val Ile Ser Cys Gly Tyr Glu Asp Lys Thr
 820 825 830
 Gly Trp Gly Lys Asp Ile Gly Trp Ile Tyr Gly Ser Val Thr Glu Asp
 835 840 845
 Ile Leu Thr Gly Phe Lys Met His Cys His Gly Trp Arg Ser Ile Tyr
 850 855 860
 Cys Ile Pro Lys Arg Ala Ala Phe Lys Gly Ser Ala Pro Leu Asn Leu
 865 870 875 880
 Ser Asp Arg Leu His Gln Val Leu Arg Trp Ala Leu Gly Ser Ile Glu
 885 890 895
 Ile Phe Phe Ser Asn His Cys Pro Leu Trp Tyr Gly Tyr Gly Gly
 900 905 910
 Leu Lys Phe Leu Glu Arg Phe Ser Tyr Ile Asn Ser Ile Val Tyr Pro
 915 920 925

Trp Thr Ser Ile Pro Leu Leu Ala Tyr Cys Thr Leu Pro Ala Ile Cys
 930 935 940
 Leu Leu Thr Gly Lys Phe Ile Thr Pro Glu Leu Asn Asn Val Ala Ser
 945 950 955 960
 Leu Trp Phe Met Ser Leu Phe Ile Cys Ile Phe Ala Thr Ser Ile Leu
 965 970 975
 Glu Met Arg Trp Ser Gly Val Gly Ile Asp Asp Trp Trp Arg Asn Glu
 980 985 990
 Gln Phe Trp Val Ile Gly Gly Val Ser Ser His Leu Phe Ala Val Phe
 995 1000 1005
 Gln Gly Leu Leu Lys Val Ile Ala Gly Val Asp Thr Ser Phe Thr Val
 1010 1015 1020
 Thr Ser Lys Gly Gly Asp Asp Glu Glu Phe Ser Glu Leu Tyr Thr Phe
 1025 1030 1035 1040
 Lys Trp Thr Thr Leu Leu Ile Pro Pro Thr Thr Leu Leu Leu Asn
 1045 1050 1055
 Phe Ile Gly Val Val Ala Gly Ile Ser Asn Ala Ile Asn Asn Gly Tyr
 1060 1065 1070
 Glu Ser Trp Gly Pro Leu Phe Gly Lys Leu Phe Phe Ala Phe Trp Val
 1075 1080 1085
 Ile Val His Leu Tyr Pro Phe Leu Lys Gly Leu Val Gly Arg Gln Asn
 1090 1095 1100
 Arg Thr Pro Thr Ile Val Ile Val Trp Ser Ile Leu Leu Ala Ser Ile
 1105 1110 1115 1120
 Phe Ser Leu Leu Trp Val Arg Ile Asp Pro Phe Leu Ala Lys Asp Asp
 1125 1130 1135
 Gly Pro Leu Leu Glu Glu Cys Gly Leu Asp Cys Asn
 1140 1145
 <210> 5
 <211> 1189
 <212> DNA
 <213> Zea mays
 <400> 5
 gcacgagacc gagtggggca aggagattgg gtggatctat gggtcggta cagaggatat 60
 cctgacgggg ttcaagatgc actgccgggg gtggaagtcc gtgtactgca cgccgacacg 120
 gccggcggtc aaggggtcgg cgcggatcaa ctgtctgtat cgtctccacc aggtgctgcg 180
 ctggggcgctg gggtccgtgg agatcttcat gagccgccc ac tgcccgctct ggtacgccta 240
 cggcgccccgg ctcaagtggc tggagcgttt cgcctacacc aacaccatcg tgtaccctt 300
 cacctccatc cgcgtccctcg cctactgcac catccccgc gc tgcctgc tcacccggcaa 360
 gttcatcatt cccacgctga acaacctcgc cagcatctgg ttcatcgcc tctccctgtc 420
 catcatcgcg acgagcgtcc tggagctgcg gtggagcggg gtgagcatcg aggactggtg 480
 gcgcaacgag cagttctggg tcatcggcg cgtgtccgcg catctttcg ccgtgttcca 540
 gggcttcctc aagggttctgg gggcggtgg aaccatcgc accgtcacct ccaaggcggc 600
 cggcgacgag gcccacgcct tcggggaccc tcatcttc aagtggacca ccctgctggt 660
 gccccccacc acgctcatca tcatcaacat ggtggccatc gtggccggcg tgcgtccacgc 720

cgtcaacaac ggctacggct cctggggccc gctttcggc aagctttct ttccttctg 780
 ggtcatcgtc caccttacc cgttcccaa gggctcatg gggaggcaga accggacgcc 840
 caccatcgtc gtgccttgtt ccattccct cgccctccatc ttctcgctcg tctgggtcag 900
 gatcgaccgg ttatccccga aggccaaggg cccatccctc aagccatgcg gagtcgagt 960
 ctgagtcac ctagctacct tttgttgcgt tgacggacg cggccgtgcg tttggacata 1020
 caggcactt tggccaggc tactcatgtt cgactttttt ttaattttt tacaagattt 1080
 gtgatcgagt gactgagtga gacagagtgt tgggtgtaag aactgtgatg gaattcactc 1140
 aaattaatgg acatTTTTT tcttcaactg caaaaaaaaaaaaaaaa 1189

<210> 6
<211> 320
<212> PRT
<213> Zea mays

<400> 6
His Glu Thr Glu Trp Gly Lys Glu Ile Gly Trp Ile Tyr Gly Ser Val
1 5 10 15
Thr Glu Asp Ile Leu Thr Gly Phe Lys Met His Cys Arg Gly Trp Lys
20 25 30
Ser Val Tyr Cys Thr Pro Thr Arg Pro Ala Phe Lys Gly Ser Ala Pro
35 40 45
Ile Asn Leu Ser Asp Arg Leu His Gln Val Leu Arg Trp Ala Leu Gly
50 55 60
Ser Val Glu Ile Phe Met Ser Arg His Cys Pro Leu Trp Tyr Ala Tyr
65 70 75 80
Gly Gly Arg Leu Lys Trp Leu Glu Arg Phe Ala Tyr Thr Asn Thr Ile
85 90 95
Val Tyr Pro Phe Thr Ser Ile Pro Leu Leu Ala Tyr Cys Thr Ile Pro
100 105 110
Ala Val Cys Leu Leu Thr Gly Lys Phe Ile Ile Pro Thr Leu Asn Asn
115 120 125
Leu Ala Ser Ile Trp Phe Ile Ala Leu Phe Leu Ser Ile Ile Ala Thr
130 135 140
Ser Val Leu Glu Leu Arg Trp Ser Gly Val Ser Ile Glu Asp Trp Trp
145 150 155 160
Arg Asn Glu Gln Phe Trp Val Ile Gly Gly Val Ser Ala His Leu Phe
165 170 175
Ala Val Phe Gln Gly Phe Leu Lys Val Leu Gly Gly Val Asp Thr Ser
180 185 190
Phe Thr Val Thr Ser Lys Ala Ala Gly Asp Glu Ala Asp Ala Phe Gly
195 200 205
Asp Leu Tyr Leu Phe Lys Trp Thr Thr Leu Leu Val Pro Pro Thr Thr
210 215 220
Leu Ile Ile Ile Asn Met Val Gly Ile Val Ala Gly Val Ser Asp Ala
225 230 235 240

Val Asn Asn Gly Tyr Gly Ser Trp Gly Pro Leu Phe Gly Lys Leu Phe
 245 250 255

Phe Ser Phe Trp Val Ile Val His Leu Tyr Pro Phe Leu Lys Gly Leu
 260 265 270

Met Gly Arg Gln Asn Arg Thr Pro Thr Ile Val Val Leu Trp Ser Ile
 275 280 285

Leu Leu Ala Ser Ile Phe Ser Leu Val Trp Val Arg Ile Asp Pro Phe
 290 295 300

Ile Pro Lys Ala Lys Gly Pro Ile Leu Lys Pro Cys Gly Val Glu Cys
 305 310 315 320

<210> 7

<211> 3786

<212> DNA

<213> Zea mays

<400> 7

ccacagctca	tataccaaga	gccggaggcag	c t tagcgcag	cccagagcgg	cgccgcgcca	60
agcacaaccc	ccacccgcca	cagccgcgtg	cgc a atgtgag	cgg t gcgcgc	ggccgggaga	120
ccagaggagg	ggaggactac	gtgcatttcg	ctgtgccgc	gccgcggggt	tcgtgcgcga	180
g c gagatccg	gccccggcggg	gccccgggccc	tgagatggag	gctagcgcgg	ggctgggtggc	240
cggctcgcat	aaccggaa c g	agctgggtt	gatccgcgc	gaccgcga g t	cgggagccgc	300
gggcggcggc	gccccggcgc	gggcggaggc	gccgtgc c ag	atatgcggc	acgagg t cg	360
ggtggggcttc	gacgggggac	ccttcgtggc	gt g caac g ag	tgcgccttcc	ccgtctgcgc	420
cgcctgtac	gagtac g agc	gcccgcagg	ctcgcaageg	tgc g ccgcagt	gcagg g acccg	480
ctacaagcgc	ctcaagg g ct	gccccgggt	ggccggcgc	gaggaggagg	acggcgtcga	540
cgacctggag	ggcgagttcg	gcctgcagga	cg g ccgcgc	cac g ggac g	acccgcagta	600
cgtcgccag	tccatgctca	gggcgcagat	gag t ac g gc	cgcggcggc	acgcgcaccc	660
cggcttcagc	cccgtccccca	acgtgcgcgt	cctc g accaac	ggccagatgg	ttgat g acat	720
ccgc g ccggag	cagcacgcgc	tcgtgcgc	ctacatgagc	ggccggcggc	gcgggggcaa	780
gaggatccac	ccgctccctt	tcgcagatcc	caac t ticca	gt g caac g cc	atccat g ga	840
cccgtccaag	gatctggccg	cctacggata	tggcagcgtg	gcctggaa g g	agagaat g ga	900
gggctt g gaag	cagaaggcagg	aqgc g ctgc a	gcatgtcagg	agc g agg g gt	gcgg g tatt g	960
ggatggcgcac	gatgcagatc	tgccactaat	ggat g aa g ct	aggcagccat	tgtccagaaa	1020
agtc cc tata	tcatcaagcc	gaattaatcc	ctacaggat g	attatcg t ta	tccgg t gggt	1080
ggttttgggt	ttcttcttcc	actacc g agt	gatgc at ccg	g c gaaagat g	catttgcatt	1140
gtggctcata	tctgtatct	gt g aaatctg	gtt g cgat g	tcctggat t c	ttgat g cat g t	1200
ccaaag t gg	cttccaatcg	agagagagac	ttac t ggac	cgtt t gtcac	taag t ttga	1260
caaggaaggt	caaccctctc	agcttgc t cc	aat g cacttc	tttgc t agta	cgg t gtatcc	1320
cacaaaggaa	cctcccttgg	tcac g cgaa	cact g tc t t	tccat c ctt	ctgtggat t ta	1380
tccgg t tgag	aagg t ctc t t	gctat t ttc	tgat g at g gt	gctgc a at g c	ttac t tt g ta	1440
agcattgtct	gaaacatctg	aatttgc aaa	gaaatggg t t	c t ttt c ag g ca	aaaagg t taa	1500
tatcgagcct	c t gtgc t c t g	agtgg t actt	cc t ac g aga g ag	atagactacc	t g aaagacaa	1560
ggttgc t gct	tcattt g tta	gggagaggag	ggc t gat g ga g	agagaat g ac g	aggaatt g aa	1620
ggtaaggatc	aatgc c ttgg	ttg g aaa g c	cc a aaagg t tt	cct g agg g aa g	gat g gacaat	1680
gcaagat g ga	agccccctggc	ctggaaacaa	cgtac g cgat	cat c ctggaa	tgatt g agg t	1740
attccttggc	caaagtggcg	gtcg t gat g t	ggaagg a at	gag t tc c tc	gcctgg t tt	1800
tgtctcgaga	gaaaagaggc	cagg t tataa	ccat c aca g ag	aagg t ctgg t g	ccat g aat g c	1860
actgg t ccgt	gtctctgc t g	tcttat c aaa	tgctgcata c	ctatt g aact	tggact g t g a	1920
tcactacatc	aaacaatagca	aggccataaaa	agagg t ctat g	tgtt t cat g ta	tggat c ttt	1980
ggtggggaa g	aaagtgt g t	atgtac g at t	ccctcagagg	tttgc t at g ta	ttgacaaaaaa	2040
tgatcgat c	gcta a cagg a	acgttgc t t	tttgc a at c t	aacat g aa g ag	gtt t ggac g gg	2100
tattcaagg a	cccatttat g	tgg t act g g	atgtt t ttt c c	agac g ggcagg	cact g tat g g	2160
ttat g at g t c	cctaaaac g a	agaagg c acc	atcaagaact	tgcaact g t	ggcc a at g t g	2220
gtgc c cttct t	tgctgc t gca	gcaggaacaa	gaataaaaag	aagactac aa	aaccaaagac	2280
ggagaagaag	aaaagattat	tttcaagaa	agcagaaaac	ccat c tctt g	catat g cttt	2340

gggtgaaatt gatgaagggtg ctccaggtgc tgatatcgag aaggccggaa tcgtaaatca 2400
 acagaaaacta gagaagaaaat ttgggcagtc ttctgtttt gtcgcataa cacttcttga 2460
 gaacggaggg accctgaaga gcgcaagtcc agcttcttctt ctgaaggaag ctatacatgt 2520
 tatacagctgc ggctacgaag acaagaccga ctggggaaaa gagattggct ggatttacgg 2580
 atcgatcaca gaggatatact tgactggatt taagatgcac tgccatggct ggccgtctat 2640
 ttactgcata cccaagcggc ctgcattcaa agttctgcg cctctgaacc ttccgcaccg 2700
 tcttcaccag gtccttcgtc gggcccttgg gtcctgcgaa attttcttca gcaaggactg 2760
 cccacttgg tacggatacg gcccgggct aaaattctg gaaaggtttt cttatatcaa 2820
 ctccatcggt tatcccttggc cgccattcc tccctggct tactgtaccc tgctgtccat 2880
 ctgcctgc acggggaaat ttatcacacc agagttacc aatgtgcaca gtatctgggt 2940
 catgcactt ttcatctgc tctccgtgc cgccatctg gaaatgaggt ggagtggcgt 3000
 ggccatcgac gactgggtgg ggaacgagca gttctgggtc atcggaggcg ttccggcga 3060
 tctgttcgcg gtgttccagg gcctgctgaa ggtgttcgccc ggcacgacca cgagcttcac 3120
 cgtgacgtcg aaggccgggg acgacgagga gttctcgag ctgtacacgt tcaagtggac 3180
 caccctgcgt atacccccca ccacgtctt cctgctgaaac ttcatcgggg tggggccgg 3240
 gatctcgaaac gcgatcaaca acgggtacga gtcgtggggc cccctgttcg ggaagcttt 3300
 ctgccttc tgggtgatcg tccacccgtt cccgttcctc aagggtctgg tggggaggca 3360
 gaacaggacg ccgacgatcg tcacgtctg gtccatctg ctggcctcga tcttctcgct 3420
 cctgtgggtc cgccgtcgacc cggtctctgc caagagcaac ggcccgtcc tggaggagtg 3480
 tggcctggac tgcaactgaa gtggggggcc cctgtcactc gaagttctgt cacggggcga 3540
 ttacgcctga ttttttggg ttgttgttgg tgaattctt tgctgttagat agaaaccaca 3600
 tgtccacggc atctctgcg tgcattgg agcaggagag aggtgcctgc tgctgtttgt 3660
 tgagtaattt aaaaagttta aagtataca gtgatgcaca ttccagtgcc cagtgtattc 3720
 ccttttaca gtctgtatata tagcgacaaa ggacatattg gtttaggagtt tgattttttt 3780
 gtaaaa 3786

<210> 8

<211> 1165

<212> PRT

<213> Zea mays

<400> 8

His	Ser	Ser	Tyr	Thr	Lys	Ser	Arg	Ser	Ser	Leu	Ala	Gln	Pro	Arg	Ala
1															
															15

Ala	Pro	Arg	Gln	Ala	Gln	Pro	Pro	Pro	Ala	Thr	Ala	Ala	Cys	Ala	Cys
															30
20															

Glu	Arg	Ser	Pro	Arg	Pro	Gly	Asp	Gln	Arg	Arg	Gly	Gly	Leu	Arg	Ala
															45
35															

Phe	Arg	Cys	Ala	Ala	Ala	Gly	Phe	Val	Arg	Glu	Arg	Asp	Pro	Ala
50														
														60

Gly	Arg	Gly	Gly	Pro	Glu	Met	Glu	Ala	Ser	Ala	Gly	Leu	Val	Ala
65														
														80

Gly	Ser	His	Asn	Arg	Asn	Glu	Leu	Val	Val	Ile	Arg	Arg	Asp	Arg	Glu
85															95

Ser	Gly	Ala	Ala	Gly	Gly	Ala	Ala	Arg	Arg	Ala	Glu	Ala	Pro	Cys
100														
														110

Gln	Ile	Cys	Gly	Asp	Glu	Val	Gly	Val	Gly	Phe	Asp	Gly	Glu	Pro	Phe
115															125

Val	Ala	Cys	Asn	Glu	Cys	Ala	Phe	Pro	Val	Cys	Arg	Ala	Cys	Tyr	Glu
130															140

Tyr Glu Arg Arg Glu Gly Ser Gln Ala Cys Pro Gln Cys Arg Thr Arg
 145 150 155 160
 Tyr Lys Arg Leu Lys Gly Cys Pro Arg Val Ala Gly Asp Glu Glu Glu
 165 170 175
 Asp Gly Val Asp Asp Leu Glu Gly Glu Phe Gly Leu Gln Asp Gly Ala
 180 185 190
 Ala His Glu Asp Asp Pro Gln Tyr Val Ala Glu Ser Met Leu Arg Ala
 195 200 205
 Gln Met Ser Tyr Gly Arg Gly Asp Ala His Pro Gly Phe Ser Pro
 210 215 220
 Val Pro Asn Val Pro Leu Leu Thr Asn Gly Gln Met Val Asp Asp Ile
 225 230 235 240
 Pro Pro Glu Gln His Ala Leu Val Pro Ser Tyr Met Ser Gly Gly
 245 250 255
 Gly Gly Gly Lys Arg Ile His Pro Leu Pro Phe Ala Asp Pro Asn Leu
 260 265 270
 Pro Val Gln Pro Arg Ser Met Asp Pro Ser Lys Asp Leu Ala Ala Tyr
 275 280 285
 Gly Tyr Gly Ser Val Ala Trp Lys Glu Arg Met Glu Gly Trp Lys Gln
 290 295 300
 Lys Gln Glu Arg Leu Gln His Val Arg Ser Glu Gly Gly Asp Trp
 305 310 315 320
 Asp Gly Asp Asp Ala Asp Leu Pro Leu Met Asp Glu Ala Arg Gln Pro
 325 330 335
 Leu Ser Arg Lys Val Pro Ile Ser Ser Arg Ile Asn Pro Tyr Arg
 340 345 350
 Met Ile Ile Val Ile Arg Leu Val Val Leu Gly Phe Phe His Tyr
 355 360 365
 Arg Val Met His Pro Ala Lys Asp Ala Phe Ala Leu Trp Leu Ile Ser
 370 375 380
 Val Ile Cys Glu Ile Trp Phe Ala Met Ser Trp Ile Leu Asp Gln Phe
 385 390 395 400
 Pro Lys Trp Leu Pro Ile Glu Arg Glu Thr Tyr Leu Asp Arg Leu Ser
 405 410 415
 Leu Arg Phe Asp Lys Glu Gly Gln Pro Ser Gln Leu Ala Pro Ile Asp
 420 425 430
 Phe Phe Val Ser Thr Val Asp Pro Thr Lys Glu Pro Pro Leu Val Thr
 435 440 445
 Ala Asn Thr Val Leu Ser Ile Leu Ser Val Asp Tyr Pro Val Glu Lys
 450 455 460

Val Ser Cys Tyr Val Ser Asp Asp Gly Ala Ala Met Leu Thr Phe Glu
 465 470 475 480
 Ala Leu Ser Glu Thr Ser Glu Phe Ala Lys Lys Trp Val Pro Phe Ser
 485 490 495
 Lys Lys Phe Asn Ile Glu Pro Arg Ala Pro Glu Trp Tyr Phe Gln Gln
 500 505 510
 Lys Ile Asp Tyr Leu Lys Asp Lys Val Ala Ala Ser Phe Val Arg Glu
 515 520 525
 Arg Arg Ala Met Lys Arg Glu Tyr Glu Glu Phe Lys Val Arg Ile Asn
 530 535 540
 Ala Leu Val Ala Lys Ala Gln Lys Val Pro Glu Glu Gly Trp Thr Met
 545 550 555 560
 Gln Asp Gly Ser Pro Trp Pro Gly Asn Asn Val Arg Asp His Pro Gly
 565 570 575
 Met Ile Gln Val Phe Leu Gly Gln Ser Gly Gly Arg Asp Val Glu Gly
 580 585 590
 Asn Glu Leu Pro Arg Leu Val Tyr Val Scr Arg Glu Lys Arg Pro Gly
 595 600 605
 Tyr Asn His His Lys Lys Ala Gly Ala Met Asn Ala Leu Val Arg Val
 610 615 620
 Ser Ala Val Leu Ser Asn Ala Ala Tyr Leu Leu Asn Leu Asp Cys Asp
 625 630 635 640
 His Tyr Ile Asn Asn Ser Lys Ala Ile Lys Glu Ala Met Cys Phe Met
 645 650 655
 Met Asp Pro Leu Val Gly Lys Lys Val Cys Tyr Val Gln Phe Pro Gln
 660 665 670
 Arg Phe Asp Gly Ile Asp Lys Asn Asp Arg Tyr Ala Asn Arg Asn Val
 675 680 685
 Val Phe Phe Asp Ile Asn Met Lys Gly Leu Asp Gly Ile Gln Gly Pro
 690 695 700
 Ile Tyr Val Gly Thr Gly Cys Val Phe Arg Arg Gln Ala Leu Tyr Gly
 705 710 715 720
 Tyr Asp Ala Pro Lys Thr Lys Lys Pro Pro Ser Arg Thr Cys Asn Cys
 725 730 735
 Trp Pro Lys Trp Cys Leu Ser Cys Cys Cys Ser Arg Asn Lys Asn Lys
 740 745 750
 Lys Lys Thr Thr Lys Pro Lys Thr Glu Lys Lys Lys Arg Leu Phe Phe
 755 760 765
 Lys Lys Ala Glu Asn Pro Ser Pro Ala Tyr Ala Leu Gly Glu Ile Asp
 770 775 780

Glu Gly Ala Pro Gly Ala Asp Ile Glu Lys Ala Gly Ile Val Asn Gln
 785 790 795 800
 Gln Lys Leu Glu Lys Lys Phe Gly Gln Ser Ser Val Phe Val Ala Ser
 805 810 815
 Thr Leu Leu Glu Asn Gly Gly Thr Leu Lys Ser Ala Ser Pro Ala Ser
 820 825 830
 Leu Leu Lys Glu Ala Ile His Val Ile Ser Cys Gly Tyr Glu Asp Lys
 835 840 845
 Thr Asp Trp Gly Lys Glu Ile Gly Trp Ile Tyr Gly Ser Ile Thr Glu
 850 855 860
 Asp Ile Leu Thr Gly Phe Lys Met His Cys His Gly Trp Arg Ser Ile
 865 870 875 880
 Tyr Cys Ile Pro Lys Arg Pro Ala Phe Lys Gly Ser Ala Pro Leu Asn
 885 890 895
 Leu Ser Asp Arg Leu His Gln Val Leu Arg Trp Ala Leu Gly Ser Val
 900 905 910
 Glu Ile Phe Phe Ser Lys His Cys Pro Leu Trp Tyr Gly Tyr Gly Gly
 915 920 925
 Gly Leu Lys Phe Leu Glu Arg Phe Ser Tyr Ile Asn Ser Ile Val Tyr
 930 935 940
 Pro Trp Thr Ser Ile Pro Leu Leu Ala Tyr Cys Thr Leu Pro Ala Ile
 945 950 955 960
 Cys Leu Leu Thr Gly Lys Phe Ile Thr Pro Glu Leu Thr Asn Val Ala
 965 970 975
 Ser Ile Trp Phe Met Ala Leu Phe Ile Cys Ile Ser Val Thr Gly Ile
 980 985 990
 Leu Glu Met Arg Trp Ser Gly Val Ala Ile Asp Asp Trp Trp Arg Asn
 995 1000 1005
 Glu Gln Phe Trp Val Ile Gly Gly Val Ser Ala His Leu Phe Ala Val
 1010 1015 1020
 Phe Gln Gly Leu Leu Lys Val Phe Ala Gly Ile Asp Thr Ser Phe Thr
 1025 1030 1035 1040
 Val Thr Ser Lys Ala Gly Asp Asp Glu Glu Phe Ser Glu Leu Tyr Thr
 1045 1050 1055
 Phe Lys Trp Thr Thr Leu Leu Ile Pro Pro Thr Thr Leu Leu Leu
 1060 1065 1070
 Asn Phe Ile Gly Val Val Ala Gly Ile Ser Asn Ala Ile Asn Asn Gly
 1075 1080 1085
 Tyr Glu Ser Trp Gly Pro Leu Phe Gly Lys Leu Phe Phe Ala Phe Trp
 1090 1095 1100

Val Ile Val His Leu Tyr Pro Phe Leu Lys Gly Leu Val Gly Arg Gln
1105 1110 1115 1120

Asn Arg Thr Pro Thr Ile Val Ile Val Trp Ser Ile Leu Leu Ala Ser
1125 1130 1135

Ile Phe Ser Leu Leu Trp Val Arg Val Asp Pro Phe Leu Ala Lys Ser
1140 1145 1150

Asn Gly Pro Leu Leu Glu Glu Cys Gly Leu Asp Cys Asn
1155 1160 1165

<210> 9
<211> 3936
<212> DNA
<213> Zea m

<400> 9

cttccccc	gtcggtgcgg	cgtggcgcgg	ctcgccgttc	ggtgagaaac	caactggggg	60
atgaggatct	gctgcttagag	tgagaggagc	tacggtcagt	atccctctgc	ttcgtccgcg	120
gcggaaagtgg	aggggaggaa	gcgatggagg	cgagcgcgg	gctggtgcc	ggctccacca	180
accgcaacga	gctcgtcg	atccgcgcg	acggcgatcc	cgggccgaa	ccggccgcgg	240
agcagaacgg	gcagggtgtc	cagattgcg	gcgacgacgt	ccgcctgtc	ccgggactgc	300
accccttcgt	ggcgtcaac	gagtgcgc	tccccgtctg	ccgggactgc	tacgaataacg	360
agcgccggg	gggcacgcag	aactgc	agtgcacag	tcgataca	cgcctcaagg	420
gctgccaacg	tgtgaccgg	gacgaggagg	aggacggcg	cgatgac	gacaacgagt	480
tcaactgg	cgccatgac	tcgcagtctg	tggccagtc	catgctctac	ggccacatga	540
gctacggccg	tggaggtgac	cctaattggcg	cgccacaa	tttccagtc	aaccccaatg	600
ttccactct	caccaacggg	caaattgggg	atgacatccc	accggagca	cacgcgtgg	660
tgcctctt	catgggttgt	ggggaaaaga	ggatacatcc	ccttccttat	gccccatcca	720
gcttacctgt	gcaacccagg	tctatggacc	catccaa	tcttgctca	tatgggtatg	780
gtagtgtgc	ttggaaaggaa	cgatggaga	attggaa	gagacaagag	aggatgcacc	840
agacggggaa	tgtggtgt	ggtgatgt	gtgacatgc	tgtatctacca	ctaattggatg	900
aagcaagaca	acaactgtcc	aggaaaattc	cacttc	aagccagatt	aatccatata	960
ggatgattat	cattattcg	cttgggtt	tggggttctt	cttccactac	cgagtatgc	1020
atccgggtgaa	tgtgcattt	gctttgtg	tcata	tatctgt	atctgtgaa	1080
ccatgtctt	gattttgtat	caattccaa	agtgg	tattgagaga	gagacttacc	1140
tagaccggc	gtca	tgcacaagg	aaggccag	atctcaactt	gctccaattt	1200
atttctt	cagta	gtatcc	aggaa	tttggtcaca	acaaatactg	1260
ttctatctat	ccttcgg	gattatc	ttgata	tttgc	tttctgtat	1320
atgggtgtgc	aatgctaa	tttga	tatctgaa	atctgaattt	gcaaagaaat	1380
gggttctt	ctgcaaa	acgg	tacaatatt	aac	tccagagtgg	1440
agaagataga	ctactt	gacaagg	cag	ttttagggag	aggagagcaa	1500
tgaagagaga	gtat	gaggaa	ttcaagg	aatcaatgc	cttagttgc	1560
aagtcc	agaaggatgg	acaat	atgg	aaagcc	ctggcctg	1620
gtgatcatcc	tgg	aatg	cagg	ttgg	cgaggc	1680
gaaatgaact	gccacgatt	gtt	ctag	acgacc	tataaccatc	1740
ataagaaacg	tgg	ctat	gat	gg	ataatgtc	1800
catattt	aaacttggat	tgt	gat	act	acaaatgtc	1860
caatgttt	tatgatggac	cctt	act	gat	ttgtatgt	1920
aaagatttga	tgggattt	gat	gat	gtt	cagttcc	1980
atatcaacat	gaaagg	ttt	gg	ttt	gtttttt	2040
tat	gat	ttt	gg	ttt	actggatgt	2100
ggacttgc	ctg	ctt	gg	ttt	ccaccatca	2160
aaaagaagac	tac	ccaa	accc	ttt	aagaaagaag	2220
agaaccaatc	ccct	gtc	tgg	ttt	ggagctgaga	2280
atgaaaaggc	cggt	tat	gt	ttt	aatcttct	2340
ttttgttac	atcc	acactt	tcg	gaga	atgtcgtt	2400
ctctttt	agaag	ctata	gtt	gg	acagactgg	2460
aaaaagagat	tgg	ctgg	atc	gat	tttcaaga	2520

tgcattgtca tggttggcgg tcaatttact gcataccctaa acgggttgc ttcaaagggtt 2580
 ctgcacctct gaatcttc gatcgcttc accaggtgct tcggtggtc cttgggtcta 2640
 ttgagatctt cttcagcaat cattgcctc tttggtatgg gtatgggtc ggtctgaaat 2700
 ttttggaaag atttcctac atcaactcca tcgtgtatcc ttggacatct attcccctct 2760
 tggcttaactg tacattgcct gccatctgtt tattgacagg gaaatttatac actccagagc 2820
 tgaataatgt tgccagcctg tggttcatgt cacttttat ctgcattttt gctacgagca 2880
 tcctagaaaat gagatggagt ggtgttgaa ttgatgactg gtggaggaat gagcagttct 2940
 gggtcattgg aggtgtgtcc tcacaccctt ttgctgtgtt ccagggactt ctcaagggtca 3000
 tagctgtgt tgatacaagc ttcaccgtga catcaaagggg tggagatgt gaggagttct 3060
 cagagcttacat tacattcaaa tggactacac tattgatacc tccttaccacc ttgottctat 3120
 tgaacttcat tggtgtggtc gctggcggtt caaatgcgtt caataacgga tatgagtcat 3180
 gggggccccct ctttgggaaat ctatttttg cattttgggtt gattgtccat ctttateccct 3240
 ttctcaaaagg tttgggttggg aggcaaaaca ggacaccaac gattgtcatc gtctggtcca 3300
 ttctgtggc ttcaatcttc tcgctccctt ggggttccggat tgatccttc cttgcgaagg 3360
 atgatgggtcc gcttcttgaa gagtgtgggtt tggattgcaaa cttaggatgtc agtgcacatcg 3420
 cttcccccaat ctgcataatgc ttgaagtata ttttctgggtt ttgtccccca tattcagtgt 3480
 ctgttagataa gagacatgaa atgtcccaag tttcttttga tccatggtga acctacttaa 3540
 tatctgagag atatactggg ggaaaatggg ggctgcggca atccttgc agttgggccc 3600
 tggaaatcacag catatgcgaa tgtttgattt tgcaagcatc ttttattactt ggtcgcaata 3660
 tagatgggtt gagccgaaca gcaaggattt ttgattctgc actgctcccg tgtacaaact 3720
 tggttctcaa taaggcaggc aggaatgcat ctggcagtgg aacagagcaaa cctgcacatt 3780
 atttatgtat gcctgttcat tggagggtttt gttcattaca tgttcgtcta tactagaaaa 3840
 aacagaatataat tagcattaaat ctatagttaa ttaatgtatg taaatgcgcc tgggggggtt 3900
 tggactgt aatcatctga gttgggtttt tgaaaa 3936

<210> 10

<211> 1086

<212> PRT

<213> Zea mays

<400> 10

Met	Glu	Ala	Ser	Ala	Gly	Leu	Val	Ala	Gly	Ser	His	Asn	Arg	Asn	Glu
1								10						15	

Leu	Val	Val	Ile	Arg	Arg	Asp	Gly	Asp	Pro	Gly	Pro	Lys	Pro	Pro	Arg
								20				30			

Glu	Gln	Asn	Gly	Gln	Val	Cys	Gln	Ile	Cys	Gly	Asp	Asp	Val	Gly	Leu
								35				40		45	

Ala	Pro	Gly	Gly	Asp	Pro	Phe	Val	Ala	Cys	Asn	Glu	Cys	Ala	Phe	Pro
								50				55		60	

Val	Cys	Arg	Asp	Cys	Tyr	Glu	Tyr	Glu	Arg	Arg	Glu	Gly	Thr	Gln	Asn
								65				70		75	80

Cys	Pro	Gln	Cys	Lys	Thr	Arg	Tyr	Lys	Arg	Leu	Lys	Gly	Cys	Gln	Arg
								85				90		95	

Val	Thr	Gly	Asp	Glu	Glu	Asp	Gly	Val	Asp	Asp	Leu	Asp	Asn	Glu	
								100				105		110	

Phe	Asn	Trp	Asp	Gly	His	Asp	Ser	Gln	Ser	Val	Ala	Glu	Ser	Met	Leu
								115				120		125	

Tyr	Gly	His	Met	Ser	Tyr	Gly	Arg	Gly	Asp	Pro	Asn	Gly	Ala	Pro	
								130				135		140	

Gln	Ala	Phe	Gln	Leu	Asn	Pro	Asn	Val	Pro	Leu	Leu	Thr	Asn	Gly	Gln
								145				150		155	160

Met Val Asp Asp Ile Pro Pro Glu Gln His Ala Leu Val Pro Ser Phe
 165 170 175

 Met Gly Gly Gly Lys Arg Ile His Pro Leu Pro Tyr Ala Asp Pro
 180 185 190

 Ser Leu Pro Val Gln Pro Arg Ser Met Asp Pro Ser Lys Asp Leu Ala
 195 200 205

 Ala Tyr Gly Tyr Gly Ser Val Ala Trp Lys Glu Arg Met Glu Asn Trp
 210 215 220

 Lys Gln Arg Gln Glu Arg Met His Gln Thr Gly Asn Asp Gly Gly
 225 230 235 240

 Asp Asp Gly Asp Asp Ala Asp Leu Pro Leu Met Asp Glu Ala Arg Gln
 245 250 255

 Gln Leu Ser Arg Lys Ile Pro Leu Pro Ser Ser Gln Ile Asn Pro Tyr
 260 265 270

 Arg Met Ile Ile Ile Ile Arg Leu Val Val Leu Gly Phe Phe Phe His
 275 280 285

 Tyr Arg Val Met His Pro Val Asn Asp Ala Phe Ala Leu Trp Leu Ile
 290 295 300

 Ser Val Ile Cys Glu Ile Trp Phe Ala Met Ser Trp Ile Leu Asp Gln
 305 310 315 320

 Phe Pro Lys Trp Phe Pro Ile Glu Arg Glu Thr Tyr Leu Asp Arg Leu
 325 330 335

 Ser Leu Arg Phe Asp Lys Glu Gly Gln Pro Ser Gln Leu Ala Pro Ile
 340 345 350

 Asp Phe Phe Val Ser Thr Val Asp Pro Leu Lys Glu Pro Pro Leu Val
 355 360 365

 Thr Thr Asn Thr Val Leu Ser Ile Leu Ser Val Asp Tyr Pro Val Asp
 370 375 380

 Lys Val Ser Cys Tyr Val Ser Asp Asp Gly Ala Ala Met Leu Thr Phe
 385 390 395 400

 Glu Ala Leu Ser Glu Thr Ser Glu Phe Ala Lys Lys Trp Val Pro Phe
 405 410 415

 Cys Lys Arg Tyr Asn Ile Glu Pro Arg Ala Pro Glu Trp Tyr Phe Gln
 420 425 430

 Gln Lys Ile Asp Tyr Leu Lys Asp Lys Val Ala Ala Asn Phe Val Arg
 435 440 445

 Glu Arg Arg Ala Met Lys Arg Glu Tyr Glu Glu Phe Lys Val Arg Ile
 450 455 460

 Asn Ala Leu Val Ala Lys Ala Gln Lys Val Pro Glu Glu Gly Trp Thr
 465 470 475 480

Met Gln Asp Gly Thr Pro Trp Pro Gly Asn Asn Val Arg Asp His Pro
 485 490 495
 Gly Met Ile Gln Val Phe Leu Gly Gln Ser Gly Gly Leu Asp Cys Glu
 500 505 510
 Gly Asn Glu Leu Pro Arg Leu Val Tyr Val Ser Arg Glu Lys Arg Pro
 515 520 525
 Gly Tyr Asn His His Lys Lys Ala Gly Ala Met Asn Ala Leu Val Arg
 530 535 540
 Val Ser Ala Val Leu Thr Asn Ala Pro Tyr Leu Leu Asn Leu Asp Cys
 545 550 555 560
 Asp His Tyr Ile Asn Asn Ser Lys Ala Ile Lys Glu Ala Met Cys Phe
 565 570 575
 Met Met Asp Pro Leu Leu Gly Lys Lys Val Cys Tyr Val Gln Phe Pro
 580 585 590
 Gln Arg Phe Asp Gly Ile Asp Arg His Asp Arg Arg Tyr Ala Asn Arg Asn
 595 600 605
 Val Val Phe Phe Asp Ile Asn Met Lys Gly Leu Asp Gly Ile Gln Gly
 610 615 620
 Pro Ile Tyr Val Gly Thr Gly Cys Val Phe Arg Arg Gln Ala Leu Tyr
 625 630 635 640
 Gly Tyr Asp Ala Pro Lys Thr Lys Lys Pro Pro Ser Arg Thr Cys Asn
 645 650 655
 Cys Trp Pro Lys Trp Cys Phe Cys Cys Cys Phe Gly Asn Arg Lys
 660 665 670
 Gln Lys Lys Thr Thr Lys Pro Lys Thr Glu Lys Lys Lys Leu Leu Phe
 675 680 685
 Phe Lys Lys Glu Glu Asn Gln Ser Pro Ala Tyr Ala Leu Gly Glu Ile
 690 695 700
 Asp Glu Ala Ala Pro Gly Ala Glu Asn Glu Lys Ala Gly Ile Val Asn
 705 710 715 720
 Gln Gln Lys Leu Glu Lys Lys Phe Gly Gln Ser Ser Val Phe Val Thr
 725 730 735
 Ser Thr Leu Leu Glu Asn Gly Gly Thr Leu Lys Ser Ala Ser Pro Ala
 740 745 750
 Ser Leu Leu Lys Glu Ala Ile His Val Ile Ser Cys Gly Tyr Glu Asp
 755 760 765
 Lys Thr Asp Trp Gly Lys Glu Ile Gly Trp Ile Tyr Gly Ser Val Thr
 770 775 780
 Glu Asp Ile Leu Thr Gly Phe Lys Met His Cys His Gly Trp Arg Ser
 785 790 795 800

Ile Tyr Cys Ile Pro Lys Arg Val Ala Phe Lys Gly Ser Ala Pro Leu
 805 810 815

Asn Leu Ser Asp Arg Leu His Gln Val Leu Arg Trp Ala Leu Gly Ser
 820 825 830

Ile Glu Ile Phe Phe Ser Asn His Cys Pro Leu Trp Tyr Gly Tyr Gly
 835 840 845

Gly Gly Leu Lys Phe Leu Glu Arg Phe Ser Tyr Ile Asn Ser Ile Val
 850 855 860

Tyr Pro Trp Thr Ser Ile Pro Leu Leu Ala Tyr Cys Thr Leu Pro Ala
 865 870 875 880

Ile Cys Leu Leu Thr Gly Lys Phe Ile Thr Pro Glu Leu Asn Asn Val
 885 890 895

Ala Ser Leu Trp Phe Met Ser Leu Phe Ile Cys Ile Phe Ala Thr Ser
 900 905 910

Ile Leu Glu Met Arg Trp Ser Gly Val Gly Ile Asp Asp Trp Trp Arg
 915 920 925

Asn Glu Gln Phe Trp Val Ile Gly Gly Val Ser Ser His Leu Phe Ala
 930 935 940

Val Phe Gln Gly Leu Leu Lys Val Ile Ala Gly Val Asp Thr Ser Phe
 945 950 955 960

Thr Val Thr Ser Lys Gly Gly Asp Asp Glu Glu Phe Ser Glu Leu Tyr
 965 970 975

Thr Phe Lys Trp Thr Thr Leu Leu Ile Pro Pro Thr Thr Leu Leu Leu
 980 985 990

Leu Asn Phe Ile Gly Val Val Ala Gly Val Ser Asn Ala Ile Asn Asn
 995 1000 1005

Gly Tyr Glu Ser Trp Gly Pro Leu Phe Gly Lys Leu Phe Phe Ala Phe
 1010 1015 1020

Trp Val Ile Val His Leu Tyr Pro Phe Leu Lys Gly Leu Val Gly Arg
 1025 1030 1035 1040

Gln Asn Arg Thr Pro Thr Ile Val Ile Val Trp Ser Ile Leu Leu Ala
 1045 1050 1055

Ser Ile Phe Ser Leu Leu Trp Val Arg Ile Asp Pro Phe Leu Ala Lys
 1060 1065 1070

Asp Asp Gly Pro Leu Leu Glu Glu Cys Gly Leu Asp Cys Asn
 1075 1080 1085

<210> 11
<211> 1138
<212> DNA
<213> Oryza sativa

<400> 11

cgctgctccc ggcgatggac gtgttcgtca ccaccgcca cccccacaag gagccgccc 60
 tcgcccacggc gaacaccgtg ctgtccatat atcctcgccg cgggctaccc cgccggcaag 120
 gtgacagtct atatttccga cgacgcaggc gcggaggtga cacgtaacgc ggtcgtag 180
 gcgcccccgt tcgcggcgct ttgggtgtcg ttctgcccga agcacggcgt cgagccgagg 240
 aacctggagg cgtacttcaa cgccggcgag ggtgggtggtg gcaaggcgaa ggtgggtggcg 300
 agggggagct acagggggat ggcgtgccc gagctggtgc ggcacaggag acgggtgcgc 360
 cgcgagtagc aggagatgcg gctgcgatc gacgcgtgc aggccgcca tgccgcgcgc 420
 cggcggccgcg ggcggccga tgaccacgcc ggagttgtgc aggtactgtat cgattttgct 480
 gggagcgtgc cacagctcgg cggtgcgaac gggagcaagc tcatcgacgt cgccctctgtc 540
 gacgtgtgcc tcccgccgct tggtagtgc tgccgcgaga agcgcgcgg ccacgcgcac 600
 caccgaaagg cggggccat gaacgcgcc ttcatacctcg acctcgactg cgactactac 660
 gtcaacaact cgcaggccct cgcgcgcgcg atctgctca tgatcgaacg cggccggccgc 720
 ggagccgcgg aagacgcggc cgccgtcg ttcgtccagt tcccgagcg ggtcgacggc 780
 gtcgatcccc ggcggccgtc cgccaaaccac aaccgcgtcc tcttcgactg caccgagctc 840
 ggcctcgacg gcctccaggg ccccatctac gtccgcaccc gctgcttgtt cgcgcgtgtc 900
 ggcgcctaca ggcgcgaccc ggcgcgtgg agaccgcgcg gttcattggg ctgtcgcccta 960
 ctcggagaag acgagcggct atggtccagg atgaaaacaaa tggtaatatt aagtggtcca 1020
 aggtaaaaaa ctcagctaaa acctgaccca agctgtaca tgggtaaaaa tatatggccc 1080
 aaaaatgaaat ttactttttt ttttttacca aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1138

<210> 12

<211> 341

<212> PRT

<213> Oryza sativa

<400> 12

Arg	Cys	Ser	Arg	Arg	Trp	Thr	Cys	Ser	Ser	Pro	Pro	Pro	Thr	Pro	Thr
1														10	15

Arg	Ser	Arg	Arg	Ser	Pro	Arg	Arg	Thr	Pro	Cys	Cys	Pro	Tyr	Ile	Leu
														20	30

Ala	Ala	Gly	Tyr	Pro	Ala	Gly	Lys	Val	Thr	Cys	Tyr	Ile	Ser	Asp	Asp
														35	45

Ala	Gly	Ala	Glu	Val	Thr	Arg	Asn	Ala	Val	Val	Glu	Ala	Ala	Arg	Phe
														50	60

Ala	Ala	Leu	Trp	Val	Ser	Phe	Cys	Arg	Lys	His	Gly	Val	Glu	Pro	Arg
														65	80

Asn	Leu	Glu	Ala	Tyr	Phe	Asn	Ala	Gly	Glu	Gly	Gly	Gly	Lys	Ala	
														85	95

Lys	Val	Val	Ala	Arg	Gly	Ser	Tyr	Arg	Gly	Met	Ala	Trp	Pro	Glu	Leu
														100	110

Val	Arg	Asp	Arg	Arg	Arg	Val	Arg	Arg	Glu	Tyr	Glu	Glu	Met	Arg	Leu
														115	125

Arg	Ile	Asp	Ala	Leu	Gln	Ala	Ala	Asp	Ala	Arg	Arg	Arg	Arg	Arg	Gly
														130	140

Ala	Ala	Asp	Asp	His	Ala	Gly	Val	Val	Gln	Val	Leu	Ile	Asp	Phe	Ala
														145	160

Gly	Ser	Val	Pro	Gln	Leu	Gly	Val	Ala	Asn	Gly	Ser	Lys	Leu	Ile	Asp
														165	175

Val Ala Ser Val Asp Val Cys Leu Pro Ala Leu Val Tyr Val Cys Arg
 180 185 190

Glu Lys Arg Arg Gly His Ala His His Arg Lys Ala Gly Ala Met Asn
 195 200 205

Ala Pro Phe Ile Leu Asp Leu Asp Cys Asp Tyr Tyr Val Asn Asn Ser
 210 215 220

Gln Ala Leu Arg Ala Gly Ile Cys Phe Met Ile Glu Arg Gly Gly Gly
 225 230 235 240

Gly Ala Ala Glu Asp Ala Gly Ala Val Ala Phe Val Gln Phe Pro Gln
 245 250 255

Arg Val Asp Gly Val Asp Pro Gly Asp Arg Tyr Ala Asn His Asn Arg
 260 265 270

Val Leu Phe Asp Cys Thr Glu Leu Gly Leu Asp Gly Leu Gln Gly Pro
 275 280 285

Ile Tyr Val Gly Thr Gly Cys Leu Phe Arg Arg Val Ala Leu Tyr Ser
 290 295 300

Val Asp Leu Pro Arg Trp Arg Pro Arg Arg Ser Leu Gly Cys Arg Leu
 305 310 315 320

Leu Gly Glu Asp Glu Arg Leu Trp Ser Arg Met Lys Gln Met Val Ile
 325 330 335

Leu Ser Gly Pro Arg
 340

<210> 13

<211> 3517

<212> DNA

<213> Glycine max

<400> 13

gcacgagcca acaaacaacac ccttatgtgg acacattagg tgaggttcaa cagctagcac	60
caatcttcct tcataaaaaca caaacctttg atcacacaat ctcaccctaa ttttgttgt	120
tgttgtgcca ttcccatatt gtccccatca ctaagacatg gaagccagcg ctggactgg	180
cgcgtggtca cataaccgca atgagctagt tgtcattcat gcccattgaag agccgaaggc	240
tttgaagaac ttggatgggc aagtgtgtga gatttgtgg gatggcgtgg gactcacgg	300
ggatggagac ttgtttgtgg cttgcaatga gtgtggttt ccagtgtgca ggccttgcta	360
tgagtatgaa aggagagaag gaagccacct ttgcccacag tgaaaaacca gatacaagcg	420
tctcaaaggg agccccccgag tggagggaga ttagatgaa gaggatgtgg atgatattga	480
gcatgaattc aatattgtat agcaaaagaa caagcatggc caggttgcag aagccatgct	540
tcatgggagg atgagctatg gaagagggtcc tgaagatgat gacaattccc agttccaaac	600
acctgtcatt gctgggtgc gttctagcc ttagtggg gagttcccaa tatcatctaa	660
tgccttatggg gatccatgtt tattttttttt actgcataaa agatgtgcattt catatccagt	720
gtctgaacct ggaagtgc aaatggatgggatgg aaaaaaaaaaaa agatggatgg aaagatagaa	780
tggatgactg gaaattgcag caaggcaatt tggggcctga accggatgaa gatccatgt	840
cagccatgtt agatgaagca aggcaaccac tgcataaggaa agtgcataa gcatccagca	900
aatcaatcc atatagaatg gtgattgtgg cacgtctgg tattttgtt ttttttttttca	960
gatacagact catgaacccca gtacatgtt ccctggggct atggctaaacc ttttttttttca	1020
gtgaaatctg gtttgctttt tcatggatcc tggatcagtt tcccaatgg ttttttttttca	1080
atagagagac ctacccatgttgc cgtcttttca tcaggtatga gcgtgaagggt gaaacccaaaca	1140
tgcttgctcc tggatcagtt ttttttttttca ccgtggatcc catgaaggaa ctttttttttca	1200
ttacagaaaaa cactgttctt tcaatcttgg ccatggatcca cccgggttcataaaatatcat	1260

gctacat ttc tgatgat gga gcctcaat gtacatttg a gaaactgcag 1320
agtttgc tag aaagtggta ccgtttgt a agaaatttc catagaacct cgggcacctg 1380
agatgtactt cagcagaag attgactacc taaaggacaa agtcaaccc acctttgtt 1440
aggagcgtcg agctatgaag aggaaatacg aagagttaa ggttaggatc aatgcattg 1500
ttgctaaggc ccagaaagt cctcaggag gatggatcat gcaggatggg acaccatggc 1560
cagggataaa cactaaggat catcctgtt tgattcaagt gtttcttggt agcagtggag 1620
gtcttgatc tgaaggaaac caacttcctc gccttggta tggttccaga gagaaaaggc 1680
ctggtttca acaccacaag aaagctggg ccatgaatgc tctgggtcgt gtatctgtc 1740
ttctcacaaa tgctccccc atgttgaact tggattgtg tcactatgtc aataacagca 1800
aggctgccc agaggccatg tgcttcttga tggaccaca aactgggaag aaggctctgt 1860
atgtccagtt tcctcaaaga tttgatggt ttgatcacaca tgatcgat tccaacagg 1920
acacagttt ctggatatt aacatgaagg gtctagatgg tattcaagg cctgttatgt 1980
tggggactgg atgttttgc aggaggcaag cttgtatgg ctataatcct cccaagggtc 2040
caaagcgcc aaaaatggta agctgtgatt gttgcccgtg ttttggaaagc cgcaagaagt 2100
ataaggagaa gaatgatgca aatggagagg ctgcaagcct aaaaggatg gatgatgaca 2160
aagagggtt gatgtccaa atgaattt gagaaggatt tggacaatcc tctattttg 2220
tgacttctac ctgtatggaa gaggggtggg tgcctccccc ttcaagtcc gctgcccgtc 2280
ttaaagaagc cattcatgtg attagctgt gatatgaa taaaactgaa tggggacttg 2340
agcttgggtt gatctatggc tctatcacag aagatattct aacaggttt aagatgcatt 2400
gccgtgggtt gagggtccatt tattgtatgc caaagagagc tgcatcaag ggtactgtc 2460
ctatcaactt gtcagatcgt ctcaaccagg ttcttcgtt ggcacttggg tccattgaga 2520
ttttctttag tcaccattgc cctctatgtt atggcttcaa gggaaaagaag ctaaagtggc 2580
tttagagatt tgccatgtca aacacaactg tctatccatt cacctccatt cctctagttg 2640
cctactgtat tcttccagca gtttggttac tcaactgacaa attcatcatg ccaccgatta 2700
gcacccccc tgggttgtac tttgttgctc ttttcctc aatcattgca actggatttc 2760
tttaggttga atggagtggc gtgagcattt aggaatggg gagaatgag cagttttggg 2820
tcattgggtt tttatcagct caccctttt ctgttataca agtctgtca aaggttctgg 2880
ctggaaattga caccatattc actgttacat caaaggcaac agatgatgaa gagttttggag 2940
aattgtacac cttaaagtgg actacactct tgattccccc aaccactatt ttgatcatta 3000
acattgttgg tgggttgtct ggaatctcag atgcccataaa caatgggtac caatccctggg 3060
gaccacttt tggaaagctc ttctttccct tctgggtgtat tgccatctc tatccattcc 3120
ttaaagggtt gatgggtcgc caaaatcgca caccaccaat tttgtgtt ggtcagtgc 3180
tattggccctc tattttctcc ttactttggg taagaattga tccatttgc tcaagacta 3240
agggacactgta taccaaagctt tttggaaatca actgtctaaaa aagactgtt tccctatagt 3300
attattttt taaaagatgtt ttttagggatc atacattctt gtttccacaa accaacaagg 3360
tggcaatgca caagatcaa taaggaaaga gtggaaaattt tttgtatcat aatgagtgt 3420
tatcattttt gtaaatgttc tcaaggacat ctgtttggt tggaaactgccc caaaaattgc 3480
agttttatct attcaactgga aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa 3517

<210> 14
<211> 1039
<212> PRT
<213> Glycine max

<220>
<221> UNSURE
<222> (201)

<400> 14
Met Glu Ala Ser Ala Gly Leu Val Ala Gly Ser His Asn Arg Asn Glu
1 5 10 15

Leu Val Val Ile His Gly His Glu Glu Pro Lys Ala Leu Lys Asn Leu
 20 25 30

Asp Gly Gln Val Cys Glu Ile Cys Gly Asp Gly Val Gly Leu Thr Val
35 40 45

Asp Gly Asp Leu Phe Val Ala Cys Asn Glu Cys Gly Phe Pro Val Cys
50 55 60

Arg Pro Cys Tyr Glu Tyr Glu Arg Arg Glu Gly Ser His Leu Cys Pro
 65 70 75 80
 Gln Cys Lys Thr Arg Tyr Lys Arg Leu Lys Gly Ser Pro Arg Val Glu
 85 90 95
 Gly Asp Asp Asp Glu Glu Asp Val Asp Asp Ile Glu His Glu Phe Asn
 100 105 110
 Ile Asp Glu Gln Lys Asn Lys His Gly Gln Val Ala Glu Ala Met Leu
 115 120 125
 His Gly Arg Met Ser Tyr Gly Arg Gly Pro Glu Asp Asp Asn Ser
 130 135 140
 Gln Phe Pro Thr Pro Val Ile Ala Gly Gly Arg Ser Arg Pro Val Ser
 145 150 155 160
 Gly Glu Phe Pro Ile Ser Ser Asn Ala Tyr Gly Asp Gln Met Leu Ser
 165 170 175
 Ser Ser Leu His Lys Arg Val His Pro Tyr Pro Val Ser Glu Pro Gly
 180 185 190
 Ser Ala Arg Trp Asp Glu Lys Lys Xaa Asp Gly Trp Lys Asp Arg Met
 195 200 205
 Asp Asp Trp Lys Leu Gln Gln Gly Asn Leu Gly Pro Glu Pro Asp Glu
 210 215 220
 Asp Pro Asp Ala Ala Met Leu Asp Glu Ala Arg Gln Pro Leu Ser Arg
 225 230 235 240
 Lys Val Pro Ile Ala Ser Ser Lys Ile Asn Pro Tyr Arg Met Val Ile
 245 250 255
 Val Ala Arg Leu Val Ile Leu Ala Phe Phe Leu Arg Tyr Arg Leu Met
 260 265 270
 Asn Pro Val His Asp Ala Leu Gly Leu Trp Leu Thr Ser Ile Ile Cys
 275 280 285
 Glu Ile Trp Phe Ala Phe Ser Trp Ile Leu Asp Gln Phe Pro Lys Trp
 290 295 300
 Phe Pro Ile Asp Arg Glu Thr Tyr Leu Asp Arg Leu Ser Ile Arg Tyr
 305 310 315 320
 Glu Arg Glu Gly Glu Pro Asn Met Leu Ala Pro Val Asp Val Phe Val
 325 330 335
 Ser Thr Val Asp Pro Met Lys Glu Pro Pro Leu Val Thr Ala Asn Thr
 340 345 350
 Val Leu Ser Ile Leu Ala Met Asp Tyr Pro Val Asp Lys Ile Ser Cys
 355 360 365
 Tyr Ile Ser Asp Asp Gly Ala Ser Met Cys Thr Phe Glu Ser Leu Ser
 370 375 380

Glu Thr Ala Glu Phe Ala Arg Lys Trp Val Pro Phe Cys Lys Lys Phe
 385 390 395 400
 Ser Ile Glu Pro Arg Ala Pro Glu Met Tyr Phe Ser Glu Lys Ile Asp
 405 410 415
 Tyr Leu Lys Asp Lys Val Gln Pro Thr Phe Val Lys Glu Arg Arg Ala
 420 425 430
 Met Lys Arg Glu Tyr Glu Glu Phe Lys Val Arg Ile Asn Ala Leu Val
 435 440 445
 Ala Lys Ala Gln Lys Val Pro Gln Gly Gly Trp Ile Met Gln Asp Gly
 450 455 460
 Thr Pro Trp Pro Gly Asn Asn Thr Lys Asp His Pro Gly Met Ile Gln
 465 470 475 480
 Val Phe Leu Gly Ser Ser Gly Gly Leu Asp Thr Glu Gly Asn Gln Leu
 485 490 495
 Pro Arg Leu Val Tyr Val Ser Arg Glu Lys Arg Pro Gly Phe Gln His
 500 505 510
 His Lys Lys Ala Gly Ala Met Asn Ala Leu Val Arg Val Ser Ala Val
 515 520 525
 Leu Thr Asn Ala Pro Phe Met Leu Asn Leu Asp Cys Asp His Tyr Val
 530 535 540
 Asn Asn Ser Lys Ala Ala Arg Glu Ala Met Cys Phe Leu Met Asp Pro
 545 550 555 560
 Gln Thr Gly Lys Lys Val Cys Tyr Val Gln Phe Pro Gln Arg Phe Asp
 565 570 575
 Gly Ile Asp Thr His Asp Arg Tyr Ala Asn Arg Asn Thr Val Phe Phe
 580 585 590
 Asp Ile Asn Met Lys Gly Leu Asp Gly Ile Gln Gly Pro Val Tyr Val
 595 600 605
 Gly Thr Gly Cys Val Phe Arg Arg Gln Ala Leu Tyr Gly Tyr Asn Pro
 610 615 620
 Pro Lys Gly Pro Lys Arg Pro Lys Met Val Ser Cys Asp Cys Cys Pro
 625 630 635 640
 Cys Phe Gly Ser Arg Lys Lys Tyr Lys Glu Lys Asn Asp Ala Asn Gly
 645 650 655
 Glu Ala Ala Ser Leu Lys Gly Met Asp Asp Asp Lys Glu Val Leu Met
 660 665 670
 Ser Gln Met Asn Phe Glu Lys Lys Phe Gly Gln Ser Ser Ile Phe Val
 675 680 685
 Thr Ser Thr Leu Met Glu Glu Gly Gly Val Pro Pro Ser Ser Ser Pro
 690 695 700

Ala Ala Leu Leu Lys Glu Ala Ile His Val Ile Ser Cys Gly Tyr Glu
 705 710 715 720
 Asp Lys Thr Glu Trp Gly Leu Glu Leu Gly Trp Ile Tyr Gly Ser Ile
 725 730 735
 Thr Glu Asp Ile Leu Thr Gly Phe Lys Met His Cys Arg Gly Trp Arg
 740 745 750
 Ser Ile Tyr Cys Met Pro Lys Arg Ala Ala Phe Lys Gly Thr Ala Pro
 755 760 765
 Ile Asn Leu Ser Asp Arg Leu Asn Gln Val Leu Arg Trp Ala Leu Gly
 770 775 780
 Ser Ile Glu Ile Phe Phe Ser His His Cys Pro Leu Trp Tyr Gly Phe
 785 790 795 800
 Lys Glu Lys Leu Lys Trp Leu Glu Arg Phe Ala Tyr Ala Asn Thr
 805 810 815
 Thr Val Tyr Pro Phe Thr Ser Ile Pro Leu Val Ala Tyr Cys Ile Leu
 820 825 830
 Pro Ala Val Cys Leu Leu Thr Asp Lys Phe Ile Met Pro Pro Ile Ser
 835 840 845
 Thr Phe Ala Gly Leu Tyr Phe Val Ala Leu Phe Ser Ser Ile Ile Ala
 850 855 860
 Thr Gly Ile Leu Glu Leu Lys Trp Ser Gly Val Ser Ile Glu Glu Trp
 865 870 875 880
 Trp Arg Asn Glu Gln Phe Trp Val Ile Gly Gly Val Ser Ala His Leu
 885 890 895
 Phe Ala Val Ile Gln Gly Leu Leu Lys Val Leu Ala Gly Ile Asp Thr
 900 905 910
 Asn Phe Thr Val Thr Ser Lys Ala Thr Asp Asp Glu Glu Phe Gly Glu
 915 920 925
 Leu Tyr Thr Phe Lys Trp Thr Thr Leu Leu Ile Pro Pro Thr Thr Ile
 930 935 940
 Leu Ile Ile Asn Ile Val Gly Val Val Ala Gly Ile Ser Asp Ala Ile
 945 950 955 960
 Asn Asn Gly Tyr Gln Ser Trp Gly Pro Leu Phe Gly Lys Leu Phe Phe
 965 970 975
 Ser Phe Trp Val Ile Val His Leu Tyr Pro Phe Leu Lys Gly Leu Met
 980 985 990
 Gly Arg Gln Asn Arg Thr Pro Thr Ile Val Val Ile Trp Ser Val Leu
 995 1000 1005
 Leu Ala Ser Ile Phe Ser Leu Leu Trp Val Arg Ile Asp Pro Phe Val
 1010 1015 1020

Leu Lys Thr Lys Gly Pro Asp Thr Lys Leu Cys Gly Ile Asn Cys
1025 1030 1035

<210> 15
<211> 2125

<212> DNA

<213> Glycine max

<400> 15

gccaaagctc	agaagatgcc	agaggaaggt	tggacaatgc	aggatggAAC	tccttggcct	60
gaaaataatc	ctagggatca	tccgggaatg	attcagggt	tttaggtca	tagtggggg	120
ctggatACAG	atggAAATG	gctgcctaga	cttGTTATG	tttctcgta	gaagcgacca	180
ggcttccAAC	atcacaAGAA	ggctggagCT	atGAATGCTT	tgattcgagt	ttctgtgtc	240
ttgaccaatG	gtgcataTCT	tctGAATGTG	gattgtgatC	actatTTCA	taatAGCAAA	300
gccctcaAGA	aAGCCATGTG	tttcatgtG	gatCCTGTT	ttggAAAGAA	gacatgtat	360
gttcaattTC	ctcagAGATT	tgacGGCATT	gactTGcacG	atcgatATGC	caatcgcaat	420
attgtgttCT	ttgatATCAA	catgAAAGGT	caggatGGTG	ttcaggGCC	agtctatgt	480
ggaactggtt	gttGTTCAA	taggcaAGCT	ttgtatGGTT	atgatCCTG	tttgactgag	540
gaagatttgg	aacctaACAT	tattgtAAAG	agttgttgcG	tttctagAAA	gaagggAAAG	600
ggTggcaATA	agaAGTACAG	tgacaAGAAG	aaggcGatGG	gaagaACTGA	atccactgtA	660
ccccatATTA	atatggAAAGA	catAGAGGAG	ggtgtGAAG	gttatGatGA	tGAAAGGACA	720
ctacttatGT	ctcaaAAGAG	cttggAGAAG	cgtttggcT	agtctccAGT	ttttattgt	780
gccactttCA	tggagcAGGG	tggcattCCA	ccttcaACGA	accctgcAAC	tcttcttaAG	840
gaagcaatCC	atgttatCAG	ctgtggTTAC	gaagacaAGA	cagaatGGGG	caaagagatt	900
ggatggatCT	atggctCTGT	gacAGAAGAT	atcttgACTG	gggtcaAGAT	gcatgtcgt	960
ggttggattt	ccatctATTG	catGCCACCT	cggccAGCAT	ttaagggtTC	tgctccatc	1020
aatctttCTG	atcgTCTAA	tcagggtCTT	cggtgcccT	tgggttcaAT	tgagatTTT	1080
ctaagcaggC	attgtccCTT	gtggatGc	tacaatGGGA	agttGAAGCC	tctgatgagg	1140
cttgctrata	ttaacaccat	tgtctacCCG	tttacctCAA	tcccattGAT	tgcttactgt	1200
acgcttCCTG	cattttgtct	tctcacaAAAT	aaatttATA	ttcctgAGAT	aagcaacTTT	1260
gccagtagtG	ggtcattCT	tctctttgtc	tccattttA	ccacttcaAT	tcttgagett	1320
aggTggagtg	gggtcagTAT	agaAGACTGG	tggagAAATG	aacagtTCTG	ggttatcggt	1380
gggacatCTG	cgcacTCTT	tgtgtgttC	caggGGCTTC	taaaAGTGT	tgctgggatc	1440
gatacaaatt	ttactgttac	atcgAAggcA	tcggacgagg	atggggactt	tgccgagctt	1500
tatgtgttA	aatggacATC	acttctcatc	cctcctacAA	cagtgtttat	tgtgaatttG	1560
gttgggatttG	tggctgggt	atccatGCC	ataaaACAGTG	gttaccAGTC	ttgggttcca	1620
ctatTTggca	agctgttCTT	tgtatCTGG	gtcattGCC	atctataACCC	attcttGAAG	1680
ggTctcttgg	gcaggcAAAAA	tcgtacCCCA	accatgttA	ttgtttggTC	cgttcttctt	1740
gcttcaatat	tctccttGCT	gtgggtgAGG	attgatCCCT	tcacctctGA	ctccaacAAA	1800
ttaaccaatG	gtcaatgtgg	catcaACTGT	tagttcttt	gtatgattCA	ttttgtgttG	1860
ttatTTccCTT	ttgcttggag	atacacaAGG	ttgctgtcgT	gtatataGCA	agaatttca	1920
gcctatcaAA	gttgcTggA	ggattgaACC	cctgaaATAG	atggGAATGT	accctctcTG	1980
tttcttattt	ttatctacat	gttccTTACA	agaatAGTC	gtagtaatGT	tgaggtgtat	2040
gttatatttt	ttccccacAG	aatataAAATT	tgttcatGCG	aatatttaAT	gaaagccAAC	2100
aaggTccctgt	gttGTTTGT	tcttt				2125

<210> 16

<211> 610

<212> PRT

<213> Glycine max

<400> 16

Ala Lys Ala Gln Lys Met Pro Glu Glu Gly Trp Thr Met Gln Asp Gly
1 5 10 15

Thr Pro Trp Pro Gly Asn Asn Pro Arg Asp His Pro Gly Met Ile Gln
20 25 30

Val Phe Leu Gly His Ser Gly Gly Leu Asp Thr Asp Gly Asn Glu Leu
 35 40 45
 Pro Arg Leu Val Tyr Val Ser Arg Glu Lys Arg Pro Gly Phe Gln His
 50 55 60
 His Lys Lys Ala Gly Ala Met Asn Ala Leu Ile Arg Val Ser Ala Val
 65 70 75 80
 Leu Thr Asn Gly Ala Tyr Leu Leu Asn Val Asp Cys Asp His Tyr Phe
 85 90 95
 Asn Asn Ser Lys Ala Leu Lys Glu Ala Met Cys Phe Met Met Asp Pro
 100 105 110
 Val Leu Gly Lys Lys Thr Cys Tyr Val Gln Phe Pro Gln Arg Phe Asp
 115 120 125
 Gly Ile Asp Leu His Asp Arg Tyr Ala Asn Arg Asn Ile Val Phe Phe
 130 135 140
 Asp Ile Asn Met Lys Gly Gln Asp Gly Val Gln Gly Pro Val Tyr Val
 145 150 155 160
 Gly Thr Gly Cys Cys Phe Asn Arg Gln Ala Leu Tyr Gly Tyr Asp Pro
 165 170 175
 Val Leu Thr Glu Glu Asp Leu Glu Pro Asn Ile Ile Val Lys Ser Cys
 180 185 190
 Cys Gly Ser Arg Lys Lys Gly Lys Gly Asn Lys Lys Tyr Ser Asp
 195 200 205
 Lys Lys Lys Ala Met Gly Arg Thr Glu Ser Thr Val Pro Ile Phe Asn
 210 215 220
 Met Glu Asp Ile Glu Glu Gly Val Glu Gly Tyr Asp Asp Glu Arg Thr
 225 230 235 240
 Leu Leu Met Ser Gln Lys Ser Leu Glu Lys Arg Phe Gly Gln Ser Pro
 245 250 255
 Val Phe Ile Ala Ala Thr Phe Met Glu Gln Gly Gly Ile Pro Pro Ser
 260 265 270
 Thr Asn Pro Ala Thr Leu Leu Lys Glu Ala Ile His Val Ile Ser Cys
 275 280 285
 Gly Tyr Glu Asp Lys Thr Glu Trp Gly Lys Glu Ile Gly Trp Ile Tyr
 290 295 300
 Gly Ser Val Thr Glu Asp Ile Leu Thr Gly Phe Lys Met His Ala Arg
 305 310 315 320
 Gly Trp Ile Ser Ile Tyr Cys Met Pro Pro Arg Pro Ala Phe Lys Gly
 325 330 335
 Ser Ala Pro Ile Asn Leu Ser Asp Arg Leu Asn Gln Val Leu Arg Trp
 340 345 350

Ala Leu Gly Ser Ile Glu Ile Phe Leu Ser Arg His Cys Pro Leu Trp
 355 360 365
 Tyr Gly Tyr Asn Gly Lys Leu Lys Pro Leu Met Arg Leu Ala Tyr Ile
 370 375 380
 Asn Thr Ile Val Tyr Pro Phe Thr Ser Ile Pro Leu Ile Ala Tyr Cys
 385 390 395 400
 Thr Leu Pro Ala Phe Cys Leu Leu Thr Asn Lys Phe Ile Ile Pro Glu
 405 410 415
 Ile Ser Asn Phe Ala Ser Met Trp Phe Ile Leu Leu Phe Val Ser Ile
 420 425 430
 Phe Thr Thr Ser Ile Leu Glu Leu Arg Trp Ser Gly Val Ser Ile Glu
 435 440 445
 Asp Trp Trp Arg Asn Glu Gln Phe Trp Val Ile Gly Gly Thr Ser Ala
 450 455 460
 His Leu Phe Ala Val Phe Gln Gly Leu Leu Lys Val Leu Ala Gly Ile
 465 470 475 480
 Asp Thr Asn Phe Thr Val Thr Ser Lys Ala Ser Asp Glu Asp Gly Asp
 485 490 495
 Phe Ala Glu Leu Tyr Val Phe Lys Trp Thr Ser Leu Leu Ile Pro Pro
 500 505 510
 Thr Thr Val Leu Ile Val Asn Leu Val Gly Ile Val Ala Gly Val Ser
 515 520 525
 Tyr Ala Ile Asn Ser Gly Tyr Gln Ser Trp Gly Pro Leu Phe Gly Lys
 530 535 540
 Leu Phe Phe Ala Ile Trp Val Ile Ala His Leu Tyr Pro Phe Leu Lys
 545 550 555 560
 Gly Leu Leu Gly Arg Gln Asn Arg Thr Pro Thr Ile Val Ile Val Trp
 565 570 575
 Ser Val Leu Leu Ala Ser Ile Phe Ser Leu Leu Trp Val Arg Ile Asp
 580 585 590
 Pro Phe Thr Ser Asp Ser Asn Lys Leu Thr Asn Gly Gln Cys Gly Ile
 595 600 605
 Asn Cys
 610
 <210> 17
 <211> 2890
 <212> DNA
 <213> Glycine max
 <400> 17
 gcacgagctc cacccagttt atgatgcata tggcttgtgg ttgacatca gtcatctgtga 60
 aatatggttt gctgtatcat ggataatggta tcagtttcca aaatggtacc caatacagcg 120
 agaaacatac cttgatcgta tgtcactcag gtataaaaaa gaaggaaagc catctgagtt 180

gtccaggatgt	gacgtctttt	tcaagtactgt	tgcattccatg	aaggAACCTC	cactgattac	240
agcaaacact	gttctatcta	tccttgctgt	tgattatcca	tttgataaaag	ttgcatgcta	300
tgtctcagat	gatgggtctg	ctatgcttac	tttgaagca	ctgtctgaga	catctgaatt	360
tgcttaggaga	tgggttccat	ttttaagaaa	atacaatatt	gagccccggg	caccagaatg	420
gtacttttgt	cagaagatgg	actatctgaa	aaataaaagta	cacccagcat	ttgtcaggga	480
aaggagagca	atgaagaggg	attatgaaga	atthaagggt	aggattaaca	ttttgggtggc	540
aacagcacaa	aaggttctg	aggatggatg	gaccatgcaa	gtgggactc	cttggcttgg	600
aaaataatgt	agggatcatc	ctggcatgat	tcaggtcttc	tttgggcagg	atgggtttcg	660
tgtatgttga	ggaaatgagc	taccccgctt	ggtctacgtt	tctagagaaa	agaggccagg	720
gtttgatcac	cacaaaaagg	ctggtgcaat	aatgtcttg	gtacgggctt	cagcaattat	780
cactaatgca	ccctatcttc	tgaatgttga	ttgtgatcac	tacattaaca	atagcaaggc	840
acttagagaa	gctatgtgtt	ttatgtgga	tcctcaacta	ggggaaaagg	tttgctatgt	900
gcaatttctt	cagcgtttt	atggaaattga	tagacatgat	agatattcaa	acagaaaatgt	960
tgtatTTTC	gatattaaaca	tgaaaggatt	ggatggata	caaggtccaa	tatatgtcgg	1020
aactggatgt	gtttcagaa	ggtacgca	ttatggatat	gatgcac	ccaagaagaa	1080
accaccgagc	aaaacttgta	actgttggcc	aaagtggtgc	tgcctatgtt	ttggctctag	1140
aaagaaaaaaag	aatgccaata	gtaagaagga	aaaaaagagg	aaggtaa	acagtgaagc	1200
atcaaagcag	atacatgcac	ttgaaaat	tgaggcgggg	aatgaaggaa	ccaacaatga	1260
gaagacatcc	aatctgactc	aaacaaagg	ggagaagagg	tttggacagt	ctccagatt	1320
tgtagccccc	acacttttgg	atgatggtgg	agttccacat	ggcgtgagtc	ctgcatact	1380
tttaaaagaa	gccatccagg	tcatcgtt	ttgttatgaa	gacaaaacag	aatgggaaa	1440
agaagttttgg	tggatata	gttctgtgac	agaggat	ttgactggat	ttaaaatgca	1500
ttggccatgtt	tggcggtctg	tgtattgcat	tcctaagcgg	cctgcattt	aggggcttgc	1560
gcctatcaac	ctttcagatc	gtctgcacca	agttcttccg	ttggcttctt	ggtctgttga	1620
gatttttttc	agcagacatt	gtccaaatcg	gtatggctat	ggtgggtggat	tgaattgtt	1680
ggaacgattt	tcctcattt	actcgggtgt	atatccctgg	acttccctcc	cattgcttgc	1740
ctactgtact	ctaccagcca	tatgcctt	gactggaaaa	tttacatgtac	ccgagattag	1800
caactatgccc	agtcttgcgt	tcatggccct	tttcatatcc	attgcagca	ctggcatct	1860
tgagatgca	tggggcggtg	ttagataga	cgactgggg	aggaacgaa	agttttgggt	1920
gatcgggggt	gtttttccc	atctatttgc	cctatttcag	ggtttactga	aggtcttggc	1980
ttgtgtgaac	acaaaacttca	ctgtgaccc	aaaagcagca	gatgtatggag	aattctcaga	2040
actctacata	ttcaagtgg	catcactt	gatccctcca	atgactttac	tttcatgaa	2100
tattgtcg	gtgggtgtcg	ggatctcaga	tgccatcaac	aatggttatg	actcatggg	2160
acccctctt	ggtagattgt	tctttgcatt	gtgggtgatc	ctccatctt	acccctctt	2220
gaaggggggt	cttggaaaac	aagatagaat	gccaaccatt	atattggttt	ggtcaatct	2280
tctggccctt	atcttgactc	tcatgtgggt	cagaattaac	ccgtttgtgt	caagagacgg	2340
ccccgtgtt	gaaatttgg	gattgaattt	cgacgagtcg	tgaataaaaga	aaagctgaag	2400
aaaaggggtt	agttatTTT	cagctacact	gcagtcatgt	tgaagaatgc	agccagacaca	2460
tgcttcacaa	agttgcacga	attttccgat	ggaaagtttt	tttttccgggt	gttgagat	2520
taaagagagg	aaggggaggg	ggctgacaca	ttgttacctt	gtaatagggt	tttttcat	2580
attctttgtat	tatattttt	gtgggtttt	gtgttattct	cttccagtt	tcatgttata	2640
taagaaaagag	gcattgaatg	ataaaattt	cccttcttcaa	aatgggggat	cctcagtc	2700
aaaaaaattac	ttggtcatat	ttttaggtat	gggtcttgc	ctgtttaaaa	ccatggtaa	2760
taccgtcaaa	actatggata	ttcttgc	tcagatgtgt	ttttgtgttt	tattattaa	2820
cactcaggaa	ccttttgggtt	tgattcaatt	attcaatgtt	tgatggcac	aaaaaaaaaa	2880
aaaaaaaaaaa						2890

<210> 18
<211> 793
<212> PRT
<213> Glycine max

<400> 18

His Glu Leu His Pro Val Asn Asp Ala Tyr Gly Leu Trp Leu Thr Ser
1 5 10 15

Val Ile Cys Glu Ile Trp Phe Ala Val Ser Trp Ile Met Asp Gln Phe
20 25 30

Pro Lys Trp Tyr Pro Ile Gln Arg Glu Thr Tyr Leu Asp Arg Leu Ser
 35 40 45
 Leu Arg Tyr Glu Lys Glu Gly Lys Pro Ser Glu Leu Ser Ser Val Asp
 50 55 60
 Val Phe Val Ser Thr Val Asp Pro Met Lys Glu Pro Pro Leu Ile Thr
 65 70 75 80
 Ala Asn Thr Val Leu Ser Ile Leu Ala Val Asp Tyr Pro Val Asp Lys
 85 90 95
 Val Ala Cys Tyr Val Ser Asp Asp Gly Ala Ala Met Leu Thr Phe Glu
 100 105 110
 Ala Leu Ser Glu Thr Ser Glu Phe Ala Arg Arg Trp Val Pro Phe Cys
 115 120 125
 Lys Lys Tyr Asn Ile Glu Pro Arg Ala Pro Glu Trp Tyr Phe Gly Gln
 130 135 140
 Lys Met Asp Tyr Leu Lys Asn Lys Val His Pro Ala Phe Val Arg Glu
 145 150 155 160
 Arg Arg Ala Met Lys Arg Asp Tyr Glu Glu Phe Lys Val Arg Ile Asn
 165 170 175
 Ser Leu Val Ala Thr Ala Gln Lys Val Pro Glu Asp Gly Trp Thr Met
 180 185 190
 Gln Asp Gly Thr Pro Trp Pro Gly Asn Asn Val Arg Asp His Pro Gly
 195 200 205
 Met Ile Gln Val Phe Leu Gly Gln Asp Gly Val Arg Asp Val Glu Gly
 210 215 220
 Asn Glu Leu Pro Arg Leu Val Tyr Val Ser Arg Glu Lys Arg Pro Gly
 225 230 235 240
 Phe Asp His His Lys Lys Ala Gly Ala Met Asn Ala Leu Val Arg Ala
 245 250 255
 Ser Ala Ile Ile Thr Asn Ala Pro Tyr Leu Leu Asn Val Asp Cys Asp
 260 265 270
 His Tyr Ile Asn Asn Ser Lys Ala Leu Arg Glu Ala Met Cys Phe Met
 275 280 285
 Met Asp Pro Gln Leu Gly Lys Lys Val Cys Tyr Val Gln Phe Pro Gln
 290 295 300
 Arg Phe Asp Gly Ile Asp Arg His Asp Arg Tyr Ser Asn Arg Asn Val
 305 310 315 320
 Val Phe Phe Asp Ile Asn Met Lys Gly Leu Asp Gly Ile Gln Gly Pro
 325 330 335
 Ile Tyr Val Gly Thr Gly Cys Val Phe Arg Arg Tyr Ala Leu Tyr Gly
 340 345 350

Tyr Asp Ala Pro Ala Lys Lys Lys Pro Pro Ser Lys Thr Cys Asn Cys
 355 360 365
 Trp Pro Lys Trp Cys Cys Leu Cys Cys Gly Ser Arg Lys Lys Lys Asn
 370 375 380
 Ala Asn Ser Lys Lys Glu Lys Lys Arg Lys Val Lys His Ser Glu Ala
 385 390 395 400
 Ser Lys Gln Ile His Ala Leu Glu Asn Ile Glu Ala Gly Asn Glu Gly
 405 410 415
 Thr Asn Asn Glu Lys Thr Ser Asn Leu Thr Gln Thr Lys Leu Glu Lys
 420 425 430
 Arg Phe Gly Gln Ser Pro Val Phe Val Ala Ser Thr Leu Leu Asp Asp
 435 440 445
 Gly Gly Val Pro His Gly Val Ser Pro Ala Ser Leu Leu Lys Glu Ala
 450 455 460
 Ile Gln Val Ile Ser Cys Gly Tyr Glu Asp Lys Thr Glu Trp Gly Lys
 465 470 475 480
 Glu Val Gly Trp Ile Tyr Gly Ser Val Thr Glu Asp Ile Leu Thr Gly
 485 490 495
 Phe Lys Met His Cys His Gly Trp Arg Ser Val Tyr Cys Ile Pro Lys
 500 505 510
 Arg Pro Ala Phe Lys Gly Ser Ala Pro Ile Asn Leu Ser Asp Arg Leu
 515 520 525
 His Gln Val Leu Arg Trp Ala Leu Gly Ser Val Glu Ile Phe Phe Ser
 530 535 540
 Arg His Cys Pro Ile Trp Tyr Gly Tyr Gly Gly Leu Lys Leu Leu
 545 550 555 560
 Glu Arg Phe Ser Tyr Ile Asn Ser Val Val Tyr Pro Trp Thr Ser Leu
 565 570 575
 Pro Leu Leu Val Tyr Cys Thr Leu Pro Ala Ile Cys Leu Leu Thr Gly
 580 585 590
 Lys Phe Ile Val Pro Glu Ile Ser Asn Tyr Ala Ser Leu Val Phe Met
 595 600 605
 Ala Leu Phe Ile Ser Ile Ala Ala Thr Gly Ile Leu Glu Met Gln Trp
 610 615 620
 Gly Gly Val Ser Ile Asp Asp Trp Trp Arg Asn Glu Gln Phe Trp Val
 625 630 635 640
 Ile Gly Gly Val Ser Ser His Leu Phe Ala Leu Phe Gln Gly Leu Leu
 645 650 655
 Lys Val Leu Ala Gly Val Asn Thr Asn Phe Thr Val Thr Ser Lys Ala
 660 665 670

Ala Asp Asp Gly Glu Phe Ser Glu Leu Tyr Ile Phe Lys Trp Thr Ser
 675 680 685

Leu Leu Ile Pro Pro Met Thr Leu Leu Ile Met Asn Ile Val Gly Val
 690 695 700

Val Val Gly Ile Ser Asp Ala Ile Asn Asn Gly Tyr Asp Ser Trp Gly
 705 710 715 720

Pro Leu Phe Gly Arg Leu Phe Phe Ala Leu Trp Val Ile Leu His Leu
 725 730 735

Tyr Pro Phe Leu Lys Gly Leu Leu Gly Lys Gln Asp Arg Met Pro Thr
 740 745 750

Ile Ile Leu Val Trp Ser Ile Leu Leu Ala Ser Ile Leu Thr Leu Met
 755 760 765

Trp Val Arg Ile Asn Pro Phe Val Ser Arg Asp Gly Pro Val Leu Glu
 770 775 780

Ile Cys Gly Leu Asn Cys Asp Glu Ser
 785 790

<210> 19
<211> 1742
<212> DNA
<213> Triticum aestivum

<220>
<221> unsure
<222> (9)

<220>
<221> unsure
<222> (271)

<400> 19

>wheatcong aagctatgtc cttcctaattt gatccaaacc taggtccgca agtctgttat 60
 gtgcaggccc cacaagggtt tggatggattt gataggaatg atcgatatgc aaacaggaac 120
 actgtctttt ttgtatattaa cttgaggggc ctggacggca ttcaaggacc agtttatgtg 180
 ggaactgggtt gtgttttcaa cagaacggct atctatgggtt atgagcccc aattaaggcg 240
 aagaagccag gtttcttggc atcattatgt nggggcaaga agaaggcaag caagtcaaag 300
 aaaaggagct cagataagaa aaagtcaaac aagcatgtgg acagttctgt tccagtattc 360
 aatctcaag acatagagga ggggtttgaa ggttctgggt ttgtatgtgaa gaaatcagtt 420
 ctcatgtctc aaatgagctt agagaagaga tttggccagt cagcagcatt tggtgcctcc 480
 actctgatgg aatatggtg tggatccatc tcgtccactc cagaatctct tttgaaagaa 540
 gctatccatg tcataagttt tggctatgag gacaagtctg aatggggAAC tgagattgg 600
 tggatctatg gatctgtcac agaagatatt ctaactggat tcaagatgca cgcaagaggc 660
 tggcgttcaa tctattgtcat gcccaagcgc ccagcttca agggatctgc ccccatcaat 720
 ctttcaagatc gctgtatca agtgcgtcggt tggctcttg gttctgttga aattcttttc 780
 agccggcatt gccccttatg gtatggctac ggagggcgcc tcaagttctt ggagagattc 840
 gcttacatca acaccaccaat ttacccacta acctctctcc cgcttcttagt ctattgtata 900
 ttgcctgtca tctgtctgtc cactggaaag ttcatcatgc cagagattag caacttggcc 960
 agtatctgtt tcattgtcgct cttccttca attttcgcca ctggatctct tgagatgagg 1020
 tggagtgggtt ttggcattga cgagtgggtt aggaatgaac agttctgggtt cattggaggt 1080
 atctctgtccc atctgtttgc cgtctttcag ggttctctgaa aggtgcttgc aggtatcgac 1140
 accaacttca ctgtcaccc tc aaggctaat gatgaagaag ggcacttgc tgagctctac 1200
 atgttcaagt ggacgacgct tcttacccct ccgacgacca ttttgcat taacatggtc 1260
 ggtgtcgttg ctggtaatcc tc acggccatc aacagtgggtt accaactatg gggccgctc 1320

tttgggaagc tttctttgc cttctgggtg attgttcaact tataccatt cctcaagggt 1380
 cttatggca gccaacccg cacaccgacg attgtcatcg tctggctgt cctccctcgct 1440
 tctatcttc cttctgtgt gttcgatgtt gatccattca ctaccgtct cgctggccca 1500
 aatatccaaa cctgtggcat caactgttag gaaagtggga gttttagag acagaaaata 1560
 taacagtat cgagcgacca cctgtggagc cagagaatat ttatgttggg gttgtgaatt 1620
 actacgttg agaaaagtgt caaaatttgag aaaacacatt tgtaataga tgtaatagac 1680
 tatctaccgt tttcatgagg ttaagcttctt ctttttgga aaaaaaaaaa aaaaaaaaaa 1740
 aa 1742

<210> 20
<211> 506
<212> PRT
<213> Triticum aestivum

<220>
<221> UNSURE
<222> (88)

<400> 20

Glu Ala Met Cys Phe Leu Met Asp Pro Asn Leu Gly Pro Gln Val Cys
 1 5 10 15

Tyr Val Gln Phe Pro Gln Arg Phe Asp Gly Ile Asp Arg Asn Asp Arg
 20 25 30

Tyr Ala Asn Arg Asn Thr Val Phe Phe Asp Ile Asn Leu Arg Gly Leu
 35 40 45

Asp Gly Ile Gln Gly Pro Val Tyr Val Gly Thr Gly Cys Val Phe Asn
 50 55 60

Arg Thr Ala Ile Tyr Gly Tyr Glu Pro Pro Ile Lys Ala Lys Lys Pro
 65 70 75 80

Gly Phe Leu Ala Ser Leu Cys Xaa Gly Lys Lys Lys Ala Ser Lys Ser
 85 90 95

Lys Lys Arg Ser Ser Asp Lys Lys Ser Asn Lys His Val Asp Ser
 100 105 110

Ser Val Pro Val Phe Asn Leu Glu Asp Ile Glu Glu Gly Val Glu Gly
 115 120 125

Ala Gly Phe Asp Asp Glu Lys Ser Val Leu Met Ser Gln Met Ser Leu
 130 135 140

Glu Lys Arg Phe Gly Gln Ser Ala Ala Phe Val Ala Ser Thr Leu Met
 145 150 155 160

Glu Tyr Gly Gly Val Pro Gln Ser Ser Thr Pro Glu Ser Leu Leu Lys
 165 170 175

Glu Ala Ile His Val Ile Ser Cys Gly Tyr Glu Asp Lys Ser Glu Trp
 180 185 190

Gly Thr Glu Ile Gly Trp Ile Tyr Gly Ser Val Thr Glu Asp Ile Leu
 195 200 205

Thr Gly Phe Lys Met His Ala Arg Gly Trp Arg Ser Ile Tyr Cys Met
 210 215 220

Pro Lys Arg Pro Ala Phe Lys Gly Ser Ala Pro Ile Asn Leu Ser Asp
 225 230 235 240

 Arg Leu Asn Gln Val Leu Arg Trp Ala Leu Gly Ser Val Glu Ile Leu
 245 250 255

 Phe Ser Arg His Cys Pro Leu Trp Tyr Gly Tyr Gly Gly Arg Leu Lys
 260 265 270

 Phe Leu Glu Arg Phe Ala Tyr Ile Asn Thr Thr Ile Tyr Pro Leu Thr
 275 280 285

 Ser Leu Pro Leu Leu Val Tyr Cys Ile Leu Pro Ala Ile Cys Leu Leu
 290 295 300

 Thr Gly Lys Phe Ile Met Pro Glu Ile Ser Asn Leu Ala Ser Ile Trp
 305 310 315 320

 Phe Ile Ala Leu Phe Leu Ser Ile Phe Ala Thr Gly Ile Leu Glu Met
 325 330 335

 Arg Trp Ser Gly Val Gly Ile Asp Glu Trp Trp Arg Asn Glu Gln Phe
 340 345 350

 Trp Val Ile Gly Gly Ile Ser Ala His Leu Phe Ala Val Phe Gln Gly
 355 360 365

 Leu Leu Lys Val Leu Ala Gly Ile Asp Thr Asn Phe Thr Val Thr Ser
 370 375 380

 Lys Ala Asn Asp Glu Glu Gly Asp Phe Ala Glu Leu Tyr Met Phe Lys
 385 390 395 400

 Trp Thr Thr Leu Leu Ile Pro Pro Thr Thr Ile Leu Ile Ile Asn Met
 405 410 415

 Val Gly Val Val Ala Gly Thr Ser Tyr Ala Ile Asn Ser Gly Tyr Gln
 420 425 430

 Ser Trp Gly Pro Leu Phe Gly Lys Leu Phe Phe Ala Phe Trp Val Ile
 435 440 445

 Val His Leu Tyr Pro Phe Leu Lys Gly Leu Met Gly Arg Gln Asn Arg
 450 455 460

 Thr Pro Thr Ile Val Ile Val Trp Ala Val Leu Leu Ala Ser Ile Phe
 465 470 475 480

 Ser Leu Leu Trp Val Arg Val Asp Pro Phe Thr Thr Arg Leu Ala Gly
 485 490 495

 Pro Asn Ile Gln Thr Cys Gly Ile Asn Cys
 500 505

<210> 21
 <211> 1029
 <212> DNA
 <213> Triticum aestivum

<400> 21

gcacgagccg	ctcctcacca	acggccagat	ggttgatgac	atcccgcgg	agcagcacgc	60
gctcgccg	tcctacatga	gccccggcgg	cggcgcccc	aaggatcc	acccgctcc	120
tttcgcagat	cccaaccttc	cagtcaacc	gagatccatg	gaccgtcca	aggatctggc	180
ccgcctacgga	tatggcagcg	tggcctggaa	ggagagaatg	gagggcttga	agcagaagca	240
ggagcgcctg	cagcatgtca	ggagcgaggg	tggcggtgat	tggatggcg	acgatgcaga	300
tctgccacta	atggatgaag	ctaggcagcc	attgtccaga	aaagtcccta	tatcatcaag	360
ccgaattaat	ccctacagga	tgattatcgt	tatccggttg	gtggtttgg	gtttttctt	420
ccactaccca	gtgatgcata	cggcggaaaaga	tgcatttgca	ttgtggctca	tatctgtaat	480
ctgtgaaatc	tggtttgcga	tgtcctgtat	tctgtatcag	ttcccaaagt	gttttccaat	540
cgagagagag	acttacctgg	accgtttgtc	actaaggttt	gacaaggaaag	gtcaaccctc	600
tcagcttgct	ccaatcgact	tctttgtcag	tacgggtgat	cccacaaaagg	aacctccctt	660
ggtcacacgc	aacactgtcc	tttccatcct	ttctgtggat	tatccggttg	agaaggcttc	720
ctgctatgtt	tctgtatgatg	gtgctgcaat	gcttacgttt	gaagcattgt	ctgaaacatc	780
tgaatttgca	aagaaaatggg	ttccttcag	caaaaagttt	aatatcgagc	ctcgctgctcc	840
tgagtggtac	ttccaacaga	agatagacta	cctgaaaagac	aagggtgctg	cttcatttgt	900
tagggagagg	agggcgatga	agagagaata	cgaggaattc	aaggtaagga	tcaatgcctt	960
ggttgcaaaa	gccccaaaagg	ttcctgagga	aggatggaca	atgcaagatg	gaagcccttg	1020
gcctggaaaa						1029

<210> 22

<211> 340

<212> PRT

<213> Triticum aestivum

<400> 22

Pro	Leu	Leu	Thr	Asn	Gly	Gln	Met	Val	Asp	Asp	Ile	Pro	Pro	Glu	Gln
1							5				10				15

His	Ala	Leu	Val	Pro	Ser	Tyr	Met	Ser	Gly	Gly	Gly	Gly	Gly	Lys
							20				25			30

Arg	Ile	His	Pro	Leu	Pro	Phe	Ala	Asp	Pro	Asn	Leu	Pro	Val	Gln	Pro
							35				40			45	

Arg	Ser	Met	Asp	Pro	Ser	Lys	Asp	Leu	Ala	Ala	Tyr	Gly	Tyr	Gly	Ser
						50				55				60	

Val	Ala	Trp	Lys	Glu	Arg	Met	Glu	Gly	Trp	Lys	Gln	Lys	Gln	Glu	Arg
						65				70				75	80

Leu	Gln	His	Val	Arg	Ser	Glu	Gly	Gly	Asp	Trp	Asp	Gly	Asp	Asp
						85				90			95	

Ala	Asp	Leu	Pro	Leu	Met	Asp	Glu	Ala	Arg	Gln	Pro	Leu	Ser	Arg	Lys
						100				105			110		

Val	Pro	Ile	Ser	Ser	Ser	Arg	Ile	Asn	Pro	Tyr	Arg	Met	Ile	Ile	Val
						115				120			125		

Ile	Arg	Leu	Val	Val	Leu	Gly	Phe	Phe	His	Tyr	Arg	Val	Met	His
						130				135			140	

Pro	Ala	Lys	Asp	Ala	Phe	Ala	Leu	Trp	Leu	Ile	Ser	Val	Ile	Cys	Glu
						145				150			155		160

Ile	Trp	Phe	Ala	Met	Ser	Cys	Ile	Leu	Asp	Gln	Phe	Pro	Lys	Trp	Phe
						165				170			175		

Pro Ile Glu Arg Glu Thr Tyr Leu Asp Arg Leu Ser Leu Arg Phe Asp
 180 185 190
 Lys Glu Gly Gln Pro Ser Gln Leu Ala Pro Ile Asp Phe Phe Val Ser
 195 200 205
 Thr Val Asp Pro Thr Lys Glu Pro Pro Leu Val Thr Ala Asn Thr Val
 210 215 220
 Leu Ser Ile Leu Ser Val Asp Tyr Pro Val Glu Lys Val Ser Cys Tyr
 225 230 235 240
 Val Ser Asp Asp Gly Ala Ala Met Leu Thr Phe Glu Ala Leu Ser Glu
 245 250 255
 Thr Ser Glu Phe Ala Lys Lys Trp Val Pro Phe Ser Lys Lys Phe Asn
 260 265 270
 Ile Glu Pro Arg Ala Pro Glu Trp Tyr Phe Gln Gln Lys Ile Asp Tyr
 275 280 285
 Leu Lys Asp Lys Val Ala Ala Ser Phe Val Arg Glu Arg Arg Ala Met
 290 295 300
 Lys Arg Glu Tyr Glu Glu Phe Lys Val Arg Ile Asn Ala Leu Val Ala
 305 310 315 320
 Lys Ala Gln Lys Val Pro Glu Glu Gly Trp Thr Met Gln Asp Gly Ser
 325 330 335
 Pro Trp Pro Gly
 340
 <210> 23
 <211> 1081
 <212> PRT
 <213> Arabidopsis thaliana
 <400> 23
 Met Glu Ala Ser Ala Gly Leu Val Ala Gly Ser Tyr Arg Arg Asn Glu
 1 5 10 15
 Leu Val Arg Ile Arg His Glu Ser Asp Gly Gly Thr Lys Pro Leu Lys
 20 25 30
 Asn Met Asn Gly Gln Ile Cys Gln Ile Cys Gly Asp Asp Val Gly Leu
 35 40 45
 Ala Glu Thr Gly Asp Val Phe Val Ala Cys Asn Glu Cys Ala Phe Pro
 50 55 60
 Val Cys Arg Pro Cys Tyr Glu Tyr Glu Arg Lys Asp Gly Thr Gln Cys
 65 70 75 80
 Cys Pro Gln Cys Lys Thr Arg Phe Arg Arg His Arg Gly Ser Pro Arg
 85 90 95
 Val Glu Gly Asp Glu Asp Glu Asp Asp Val Asp Asp Ile Glu Asn Glu
 100 105 110

Phe Asn Tyr Ala Gln Gly Ala Asn Lys Ala Arg His Gln Arg His Gly
 115 120 125
 Glu Glu Phe Ser Ser Ser Arg His Glu Ser Gln Pro Ile Pro Leu
 130 135 140
 Leu Thr His Gly His Thr Val Ser Gly Glu Ile Arg Thr Pro Asp Thr
 145 150 155 160
 Gln Ser Val Arg Thr Thr Ser Gly Pro Leu Gly Pro Ser Asp Arg Asn
 165 170 175
 Ala Ile Ser Ser Pro Tyr Ile Asp Pro Arg Gln Pro Val Pro Val Arg
 180 185 190
 Ile Val Asp Pro Ser Lys Asp Leu Asn Ser Tyr Gly Leu Gly Asn Val
 195 200 205
 Asp Trp Lys Glu Arg Val Glu Gly Trp Lys Leu Lys Gln Glu Lys Asn
 210 215 220
 Met Leu Gln Met Thr Gly Lys Tyr His Glu Gly Lys Gly Glu Ile
 225 230 235 240
 Glu Gly Thr Gly Ser Asn Gly Glu Glu Leu Gln Met Ala Asp Asp Thr
 245 250 255
 Arg Leu Pro Met Ser Arg Val Val Pro Ile Pro Ser Ser Arg Leu Thr
 260 265 270
 Pro Tyr Arg Val Val Ile Ile Leu Arg Leu Ile Ile Leu Cys Phe Phe
 275 280 285
 Leu Gln Tyr Arg Thr Thr His Pro Val Lys Asn Ala Tyr Pro Leu Trp
 290 295 300
 Leu Thr Ser Val Ile Cys Glu Ile Trp Phe Ala Phe Ser Trp Leu Leu
 305 310 315 320
 Asp Gln Phe Pro Lys Trp Tyr Pro Ile Asn Arg Glu Thr Tyr Leu Asp
 325 330 335
 Arg Leu Ala Ile Arg Tyr Asp Arg Asp Gly Glu Pro Ser Gln Leu Val
 340 345 350
 Pro Val Asp Val Phe Val Ser Thr Val Asp Pro Leu Lys Glu Pro Pro
 355 360 365
 Leu Val Thr Ala Asn Thr Val Leu Ser Ile Leu Ser Val Asp Tyr Pro
 370 375 380
 Val Asp Lys Val Ala Cys Tyr Val Ser Asp Asp Gly Ser Ala Met Leu
 385 390 395 400
 Thr Phe Glu Ser Leu Ser Glu Thr Ala Glu Phe Ala Lys Lys Trp Val
 405 410 415
 Pro Phe Cys Lys Lys Phe Asn Ile Glu Pro Arg Ala Pro Glu Phe Tyr
 420 425 430

Phe Ala Gln Lys Ile Asp Tyr Leu Lys Asp Lys Ile Gin Pro Ser Phe
 435 440 445
 Val Lys Glu Arg Arg Ala Met Lys Arg Glu Tyr Glu Glu Phe Lys Val
 450 455 460
 Arg Ile Asn Ala Leu Val Ala Lys Ala Gln Lys Ile Pro Glu Glu Gly
 465 470 475 480
 Trp Thr Met Gln Asp Gly Thr Pro Trp Pro Gly Asn Asn Thr Arg Asp
 485 490 495
 His Pro Gly Met Ile Gln Val Phe Leu Gly His Ser Gly Gly Leu Asp
 500 505 510
 Thr Asp Gly Asn Glu Leu Pro Arg Leu Ile Tyr Val Ser Arg Glu Lys
 515 520 525
 Arg Pro Gly Phe Gln His His Lys Lys Ala Gly Ala Met Asn Ala Leu
 530 535 540
 Ile Arg Val Ser Ala Val Leu Thr Asn Gly Ala Tyr Leu Leu Asn Val
 545 550 555 560
 Asp Cys Asp His Tyr Phe Asn Asn Ser Lys Ala Ile Lys Glu Ala Met
 565 570 575
 Cys Phe Met Met Asp Pro Ala Ile Gly Lys Lys Cys Cys Tyr Val Gln
 580 585 590
 Phe Pro Gln Arg Phe Asp Gly Ile Asp Leu His Asp Arg Tyr Ala Asn
 595 600 605
 Arg Asn Ile Val Phe Phe Asp Ile Asn Met Lys Gly Leu Asp Gly Ile
 610 615 620
 Gln Gly Pro Val Tyr Val Gly Thr Gly Cys Cys Phe Asn Arg Gln Ala
 625 630 635 640
 Leu Tyr Gly Tyr Asp Pro Val Leu Thr Glu Glu Asp Leu Glu Pro Asn
 645 650 655
 Ile Ile Val Lys Ser Cys Cys Gly Ser Arg Lys Lys Gly Lys Ser Ser
 660 665 670
 Lys Lys Tyr Asn Tyr Glu Lys Arg Arg Gly Ile Asn Arg Ser Asp Ser
 675 680 685
 Asn Ala Pro Leu Phe Asn Met Glu Asp Ile Asp Glu Gly Phe Glu Gly
 690 695 700
 Tyr Asp Asp Glu Arg Ser Ile Leu Met Ser Gln Arg Ser Val Glu Lys
 705 710 715 720
 Arg Phe Gly Gln Ser Pro Val Phe Ile Ala Ala Thr Phe Met Glu Gln
 725 730 735
 Gly Gly Ile Pro Pro Thr Thr Asn Pro Ala Thr Leu Leu Lys Glu Ala
 740 745 750

Ile His Val Ile Ser Cys Gly Tyr Glu Asp Lys Thr Glu Trp Gly Lys
 755 760 765
 Glu Ile Gly Trp Ile Tyr Gly Ser Val Thr Glu Asp Ile Leu Thr Gly
 770 775 780
 Phe Lys Met His Ala Arg Gly Trp Ile Ser Ile Tyr Cys Asn Pro Pro
 785 790 795 800
 Arg Pro Ala Phe Lys Gly Ser Ala Pro Ile Asn Leu Ser Asp Arg Leu
 805 810 815
 Asn Gln Val Leu Arg Trp Ala Leu Gly Ser Ile Glu Ile Leu Leu Ser
 820 825 830
 Arg His Cys Pro Ile Trp Tyr Gly Tyr His Gly Arg Leu Arg Leu Leu
 835 840 845
 Glu Arg Ile Ala Tyr Ile Asn Thr Ile Val Tyr Pro Ile Thr Ser Ile
 850 855 860
 Pro Leu Ile Ala Tyr Cys Ile Leu Pro Ala Phe Cys Leu Ile Thr Asp
 865 870 875 880
 Arg Phe Ile Ile Pro Glu Ile Ser Asn Tyr Ala Ser Ile Trp Phe Ile
 885 890 895
 Leu Leu Phe Ile Ser Ile Ala Val Thr Gly Ile Leu Glu Leu Arg Trp
 900 905 910
 Ser Gly Val Ser Ile Glu Asp Trp Trp Arg Asn Glu Gln Phe Trp Val
 915 920 925
 Ile Gly Gly Thr Ser Ala His Leu Phe Ala Val Phe Gln Gly Leu Leu
 930 935 940
 Lys Val Leu Ala Gly Ile Asp Thr Asn Phe Thr Val Thr Ser Lys Ala
 945 950 955 960
 Thr Asp Glu Asp Gly Asp Phe Ala Glu Leu Tyr Ile Phe Lys Trp Thr
 965 970 975
 Ala Leu Leu Ile Pro Pro Thr Thr Val Leu Leu Val Asn Leu Ile Gly
 980 985 990
 Ile Val Ala Gly Val Ser Tyr Ala Val Asn Ser Gly Tyr Gln Ser Trp
 995 1000 1005
 Gly Pro Leu Phe Gly Lys Leu Phe Phe Ala Leu Trp Val Ile Ala His
 1010 1015 1020
 Leu Tyr Pro Phe Leu Lys Gly Leu Leu Gly Arg Gln Asn Arg Thr Pro
 1025 1030 1035 1040
 Thr Ile Val Ile Val Trp Ser Val Leu Leu Ala Ser Ile Phe Ser Leu
 1045 1050 1055
 Leu Trp Val Arg Ile Asn Pro Phe Val Asp Ala Asn Pro Asn Ala Asn
 1060 1065 1070

Asn Phe Asn Gly Lys Gly Gly Val Phe
 1075 1080

 <210> 24
 <211> 1084
 <212> PRT
 <213> Arabidopsis thaliana

 <400> 24
 Met Asn Thr Gly Gly Arg Leu Ile Ala Gly Ser His Asn Arg Asn Glu
 1 5 10 15

 Phe Val Leu Ile Asn Ala Asp Glu Ser Ala Arg Ile Arg Ser Val Gln
 20 25 30

 Glu Leu Ser Gly Gln Thr Cys Gln Ile Cys Gly Asp Glu Ile Glu Leu
 35 40 45

 Thr Val Ser Ser Glu Leu Phe Val Ala Cys Asn Glu Cys Ala Phe Pro
 50 55 60

 Val Cys Arg Pro Cys Tyr Glu Tyr Glu Arg Arg Glu Gly Asn Gln Ala
 65 70 75 80

 Cys Pro Gln Cys Lys Thr Arg Tyr Lys Arg Ile Lys Gly Ser Pro Arg
 85 90 95

 Val Asp Gly Asp Asp Glu Glu Glu Asp Ile Asp Asp Leu Glu Tyr
 100 105 110

 Glu Phe Asp His Gly Met Asp Pro Glu His Ala Ala Glu Ala Ala Leu
 115 120 125

 Ser Ser Arg Leu Asn Thr Gly Arg Gly Leu Asp Ser Ala Pro Pro
 130 135 140

 Gly Ser Gln Ile Pro Leu Leu Thr Tyr Cys Asp Glu Asp Ala Asp Met
 145 150 155 160

 Tyr Ser Asp Arg His Ala Leu Ile Val Pro Pro Ser Thr Gly Tyr Gly
 165 170 175

 Asn Arg Val Tyr Pro Ala Pro Phe Thr Asp Ser Ser Ala Pro Pro Gln
 180 185 190

 Ala Arg Ser Met Val Pro Gln Lys Asp Ile Ala Glu Tyr Gly Tyr Gly
 195 200 205

 Ser Val Ala Trp Lys Asp Arg Met Glu Val Trp Lys Arg Arg Gln Gly
 210 215 220

 Glu Lys Leu Gln Val Ile Lys His Glu Gly Gly Asn Asn Gly Arg Gly
 225 230 235 240

 Ser Asn Asp Asp Asp Glu Leu Asp Asp Pro Asp Met Pro Met Met Asp
 245 250 255

 Glu Gly Arg Gln Pro Leu Ser Arg Lys Leu Pro Ile Arg Ser Ser Arg
 260 265 270

Ile Asn Pro Tyr Arg Met Leu Ile Leu Cys Arg Leu Ala Ile Leu Gly
 275 280 285
 Leu Phe Phe His Tyr Arg Ile Leu His Pro Val Asn Asp Ala Tyr Gly
 290 295 300
 Leu Trp Leu Thr Ser Val Ile Cys Glu Ile Trp Phe Ala Val Ser Trp
 305 310 315 320
 Ile Leu Asp Gln Phe Pro Lys Trp Tyr Pro Ile Glu Arg Glu Thr Tyr
 325 330 335
 Leu Asp Arg Leu Ser Leu Arg Tyr Glu Lys Glu Gly Lys Pro Ser Gly
 340 345 350
 Leu Ala Pro Val Asp Val Phe Val Ser Thr Val Asp Pro Leu Lys Glu
 355 360 365
 Pro Pro Leu Ile Thr Ala Asn Thr Val Leu Ser Ile Leu Ala Val Asp
 370 375 380
 Tyr Pro Val Asp Lys Val Ala Cys Tyr Val Ser Asp Asp Gly Ala Ala
 385 390 395 400
 Met Leu Thr Phe Glu Ala Leu Ser Asp Thr Ala Glu Phe Ala Arg Lys
 405 410 415
 Trp Val Pro Phe Cys Lys Phe Asn Ile Glu Pro Arg Ala Pro Glu
 420 425 430
 Trp Tyr Phe Ser Gln Lys Met Asp Tyr Leu Lys Asn Lys Val His Pro
 435 440 445
 Ala Phe Val Arg Glu Arg Arg Ala Met Lys Arg Asp Tyr Glu Glu Phe
 450 455 460
 Lys Val Lys Ile Asn Ala Leu Val Ala Thr Ala Gln Lys Val Pro Glu
 465 470 475 480
 Glu Gly Trp Thr Met Gln Asp Gly Thr Pro Trp Pro Gly Asn Asn Val
 485 490 495
 Arg Asp His Pro Gly Met Ile Gln Val Phe Leu Gly His Ser Gly Val
 500 505 510
 Arg Asp Thr Asp Gly Asn Glu Leu Pro Arg Leu Val Tyr Val Ser Arg
 515 520 525
 Glu Lys Arg Pro Gly Phe Asp His His Lys Lys Ala Gly Ala Met Asn
 530 535 540
 Ser Leu Ile Arg Val Ser Ala Val Leu Ser Asn Ala Pro Tyr Leu Leu
 545 550 555 560
 Asn Val Asp Cys Asp His Tyr Ile Asn Asn Ser Lys Ala Ile Arg Glu
 565 570 575
 Ser Met Cys Phe Met Met Asp Pro Gln Ser Gly Lys Lys Val Cys Tyr
 580 585 590

Val Gln Phe Pro Gln Arg Phe Asp Gly Ile Asp Arg His Asp Arg Tyr
 595 600 605
 Ser Asn Arg Asn Val Val Phe Phe Asp Ile Asn Met Lys Gly Leu Asp
 610 615 620
 Gly Ile Gln Gly Pro Ile Tyr Val Gly Thr Gly Cys Val Phe Arg Arg
 625 630 635 640
 Gln Ala Leu Tyr Gly Phe Asp Ala Pro Lys Lys Lys Pro Pro Gly
 645 650 655
 Lys Thr Cys Asn Cys Trp Pro Lys Trp Cys Cys Leu Cys Cys Gly Leu
 660 665 670
 Arg Lys Lys Ser Lys Thr Lys Ala Lys Asp Lys Lys Thr Asn Thr Lys
 675 680 685
 Glu Thr Ser Lys Gln Ile His Ala Leu Glu Asn Val Asp Glu Gly Val
 690 695 700
 Ile Val Pro Val Ser Asn Val Glu Lys Arg Ser Glu Ala Thr Gln Leu
 705 710 715 720
 Lys Leu Glu Lys Lys Phe Gly Gln Ser Pro Val Phe Val Ala Ser Ala
 725 730 735
 Val Leu Gln Asn Gly Gly Val Pro Arg Asn Ala Ser Pro Ala Cys Leu
 740 745 750
 Leu Arg Glu Ala Ile Gln Val Ile Ser Cys Gly Tyr Glu Asp Lys Thr
 755 760 765
 Glu Trp Gly Lys Glu Ile Gly Trp Ile Tyr Gly Ser Val Thr Glu Asp
 770 775 780
 Ile Leu Thr Gly Phe Lys Met His Cys His Gly Trp Arg Ser Val Tyr
 785 790 795 800
 Cys Met Pro Lys Arg Ala Ala Phe Lys Gly Ser Ala Pro Ile Asn Leu
 805 810 815
 Ser Asp Arg Leu His Gln Val Leu Arg Trp Ala Leu Gly Ser Val Glu
 820 825 830
 Ile Phe Leu Ser Arg His Cys Pro Ile Trp Tyr Gly Tyr Gly Gly
 835 840 845
 Leu Lys Trp Leu Glu Arg Phe Ser Tyr Ile Asn Ser Val Val Tyr Pro
 850 855 860
 Trp Thr Ser Leu Pro Leu Ile Val Tyr Cys Ser Leu Pro Ala Val Cys
 865 870 875 880
 Leu Leu Thr Gly Lys Phe Ile Val Pro Glu Ile Ser Asn Tyr Ala Gly
 885 890 895
 Ile Leu Phe Met Leu Met Phe Ile Ser Ile Ala Val Thr Gly Ile Leu
 900 905 910

Glu Met Gln Trp Gly Gly Val Gly Ile Asp Asp Trp Trp Arg Asn Glu
 915 920 925
 Gln Phe Trp Val Ile Gly Gly Ala Ser Ser His Leu Phe Ala Leu Phe
 930 935 940
 Gln Gly Leu Leu Lys Val Leu Ala Gly Val Asn Thr Asn Phe Thr Val
 945 950 955 960
 Thr Ser Lys Ala Ala Asp Asp Gly Ala Phe Ser Glu Leu Tyr Ile Phe
 965 970 975
 Lys Trp Thr Thr Leu Leu Ile Pro Pro Thr Thr Leu Leu Ile Ile Asn
 980 985 990
 Ile Ile Gly Val Ile Val Gly Val Ser Asp Ala Ile Ser Asn Gly Tyr
 995 1000 1005
 Asp Ser Trp Gly Pro Leu Phe Gly Arg Leu Phe Phe Ala Leu Trp Val
 1010 1015 1020
 Ile Val His Leu Tyr Pro Phe Leu Lys Gly Met Leu Gly Lys Gln Asp
 1025 1030 1035 1040
 Lys Met Pro Thr Ile Ile Val Val Trp Ser Ile Leu Leu Ala Ser Ile
 1045 1050 1055
 Leu Thr Leu Leu Trp Val Arg Val Asn Pro Phe Val Ala Lys Gly Gly
 1060 1065 1070
 Pro Val Leu Glu Ile Cys Gly Leu Asn Cys Gly Asn
 1075 1080
 <210> 25
 <211> 685
 <212> PRT
 <213> *Gossypium hirsutum*
 .
 <400> 25
 Arg Arg Trp Val Pro Phe Cys Lys Lys His Asn Val Glu Pro Arg Ala
 1 5 10 15
 Pro Glu Phe Tyr Phe Asn Glu Lys Ile Asp Tyr Leu Lys Asp Lys Val
 20 25 30
 His Pro Ser Phe Val Lys Glu Arg Arg Ala Met Lys Arg Glu Tyr Glu
 35 40 45
 Glu Phe Lys Val Arg Ile Asn Ala Leu Val Ala Lys Ala Gln Lys Lys
 50 55 60
 Pro Glu Glu Gly Trp Val Met Gln Asp Gly Thr Pro Trp Pro Gly Asn
 65 70 75 80
 Asn Thr Arg Asp His Pro Gly Met Ile Gln Val Tyr Leu Gly Ser Ala
 85 90 95
 Gly Ala Leu Asp Val Asp Gly Lys Glu Leu Pro Arg Leu Val Tyr Val
 100 105 110

Ser Arg Glu Lys Arg Pro Gly Tyr Gln His His Lys Lys Ala Gly Ala
 115 120 125
 Glu Asn Ala Leu Val Arg Val Ser Ala Val Leu Thr Asn Ala Pro Phe
 130 135 140
 Ile Leu Asn Leu Asp Cys Asp His Tyr Ile Asn Asn Ser Lys Ala Met
 145 150 155 160
 Arg Glu Ala Met Cys Phe Leu Met Asp Pro Gln Phe Gly Lys Lys Leu
 165 170 175
 Cys Tyr Val Gln Phe Pro Gln Arg Phe Asp Gly Ile Asp Arg His Asp
 180 185 190
 Arg Tyr Ala Asn Arg Asn Val Val Phe Phe Asp Ile Asn Met Leu Gly
 195 200 205
 Leu Asp Gly Leu Gln Gly Pro Val Tyr Val Gly Thr Gly Cys Val Phe
 210 215 220
 Asn Arg Gln Ala Leu Tyr Gly Tyr Asp Pro Pro Val Ser Glu Lys Arg
 225 230 235 240
 Pro Lys Met Thr Cys Asp Cys Trp Pro Ser Trp Cys Cys Cys Cys Cys
 245 250 255
 Gly Gly Ser Arg Lys Lys Ser Lys Lys Lys Gly Glu Lys Lys Gly Leu
 260 265 270
 Leu Gly Gly Leu Leu Tyr Gly Lys Lys Lys Lys Met Met Gly Lys Asn
 275 280 285
 Tyr Val Lys Lys Gly Ser Ala Pro Val Phe Asp Leu Glu Glu Ile Glu
 290 295 300
 Glu Gly Leu Glu Gly Tyr Glu Glu Leu Glu Lys Ser Thr Leu Met Ser
 305 310 315 320
 Gln Lys Asn Phe Glu Lys Arg Phe Gly Gln Ser Pro Val Phe Ile Ala
 325 330 335
 Ser Thr Leu Met Glu Asn Gly Gly Leu Pro Glu Gly Thr Asn Ser Thr
 340 345 350
 Ser Leu Ile Lys Glu Ala Ile His Val Ile Ser Cys Gly Tyr Glu Glu
 355 360 365
 Lys Thr Glu Trp Gly Lys Glu Ile Gly Trp Ile Tyr Gly Ser Val Thr
 370 375 380
 Glu Asp Ile Leu Thr Gly Phe Lys Met His Cys Arg Gly Trp Lys Ser
 385 390 395 400
 Val Tyr Cys Val Pro Lys Arg Pro Ala Phe Lys Gly Ser Ala Pro Ile
 405 410 415
 Asn Leu Ser Asp Arg Leu His Gln Val Leu Arg Trp Ala Leu Gly Ser
 420 425 430

Val Glu Ile Phe Leu Ser Arg His Cys Pro Leu Trp Tyr Gly Tyr Gly
 435 440 445
 Gly Lys Leu Lys Trp Leu Glu Arg Leu Ala Tyr Ile Asn Thr Ile Val
 450 455 460
 Tyr Pro Phe Thr Ser Ile Pro Leu Leu Ala Tyr Cys Thr Ile Pro Ala
 465 470 475 480
 Val Cys Leu Leu Thr Gly Lys Phe Ile Ile Pro Thr Leu Ser Asn Leu
 485 490 495
 Thr Ser Val Trp Phe Leu Ala Leu Phe Leu Ser Ile Ile Ala Thr Gly
 500 505 510
 Val Leu Glu Leu Arg Trp Ser Gly Val Ser Ile Gln Asp Trp Trp Arg
 515 520 525
 Asn Glu Gln Phe Trp Val Ile Gly Gly Val Ser Ala His Leu Phe Ala
 530 535 540
 Val Phe Gln Gly Leu Leu Lys Val Leu Ala Gly Val Asp Thr Asn Phe
 545 550 555 560
 Thr Val Thr Ala Lys Ala Ala Asp Asp Thr Glu Phe Gly Glu Leu Tyr
 565 570 575
 Leu Phe Lys Trp Thr Thr Leu Leu Ile Pro Pro Thr Thr Leu Ile Ile
 580 585 590
 Leu Asn Met Val Gly Val Val Ala Gly Val Ser Asp Ala Ile Asn Asn
 595 600 605
 Gly Tyr Gly Ser Trp Gly Pro Leu Phe Gly Lys Leu Phe Phe Ala Phe
 610 615 620
 Trp Val Ile Leu His Leu Tyr Pro Phe Leu Lys Gly Leu Met Gly Arg
 625 630 635 640
 Gln Asn Arg Thr Pro Thr Ile Val Val Leu Trp Ser Ile Leu Leu Ala
 645 650 655
 Ser Ile Phe Ser Leu Val Trp Val Arg Ile Asp Pro Phe Leu Pro Lys
 660 665 670
 Gln Thr Gly Pro Val Leu Lys Gln Cys Gly Val Glu Cys
 675 680 685
 <210> 26
 <211> 1111
 <212> PRT
 <213> Arabidopsis thaliana
 <400> 26
 Met Ala Ser Thr Pro Pro Gln Thr Ser Lys Lys Val Arg Asn Asn Ser
 1 5 10 15
 Gly Ser Gly Gln Thr Val Lys Phe Ala Arg Arg Thr Ser Ser Gly Arg
 20 25 30

Tyr Val Ser Leu Ser Arg Asp Asn Ile Glu Leu Ser Gly Glu Leu Ser
 35 40 45
 Gly Asp Tyr Ser Asn Tyr Thr Val His Ile Pro Pro Thr Pro Asp Asn
 50 55 60
 Gln Pro Met Ala Thr Lys Ala Glu Glu Gln Tyr Val Ser Asn Ser Leu
 65 70 75 80
 Phe Thr Gly Gly Phe Asn Ser Val Thr Arg Ala His Leu Met Asp Lys
 85 90 95
 Val Ile Asp Ser Asp Val Thr His Pro Gln Met Ala Gly Ala Lys Gly
 100 105 110
 Ser Ser Cys Ala Met Pro Ala Cys Asp Gly Asn Val Met Lys Asp Glu
 115 120 125
 Arg Gly Lys Asp Val Met Pro Cys Glu Cys Arg Phe Lys Ile Cys Arg
 130 135 140
 Asp Cys Phe Met Asp Ala Gln Lys Glu Thr Gly Leu Cys Pro Gly Cys
 145 150 155 160
 Lys Glu Gln Tyr Lys Ile Gly Asp Leu Asp Asp Asp Thr Pro Asp Tyr
 165 170 175
 Ser Ser Gly Ala Leu Pro Leu Pro Ala Pro Gly Lys Asp Gln Arg Gly
 180 185 190
 Asn Asn Asn Asn Met Ser Met Met Lys Arg Asn Gln Asn Gly Glu Phe
 195 200 205
 Asp His Asn Arg Trp Leu Phe Glu Thr Gln Gly Thr Tyr Gly Tyr Gly
 210 215 220
 Asn Ala Tyr Trp Pro Gln Asp Glu Met Tyr Gly Asp Asp Met Asp Glu
 225 230 235 240
 Gly Met Arg Gly Gly Met Val Glu Thr Ala Asp Lys Pro Trp Arg Pro
 245 250 255
 Leu Ser Arg Arg Ile Pro Ile Pro Ala Ala Ile Ile Ser Pro Tyr Arg
 260 265 270
 Leu Leu Ile Val Ile Arg Phe Val Val Leu Cys Phe Phe Leu Thr Trp
 275 280 285
 Arg Ile Arg Asn Pro Asn Glu Asp Ala Ile Trp Leu Trp Leu Met Ser
 290 295 300
 Ile Ile Cys Glu Leu Trp Phe Gly Phe Ser Trp Ile Leu Asp Gln Ile
 305 310 315 320
 Pro Lys Leu Cys Pro Ile Asn Arg Ser Thr Asp Leu Glu Val Leu Arg
 325 330 335
 Asp Lys Phe Asp Met Pro Ser Pro Ser Asn Pro Thr Gly Arg Ser Asp
 340 345 350

Leu Pro Gly Ile Asp Leu Phe Val Ser Thr Ala Asp Pro Glu Lys Glu
 355 360 365
 Pro Pro Leu Val Thr Ala Asn Thr Ile Leu Ser Ile Leu Ala Val Asp
 370 375 380
 Tyr Pro Val Glu Lys Val Ser Cys Tyr Leu Ser Asp Asp Gly Gly Ala
 385 390 395 400
 Leu Leu Ser Phe Glu Ala Met Ala Glu Ala Ala Ser Phe Ala Asp Leu
 405 410 415
 Trp Val Pro Phe Cys Arg Lys His Asn Ile Glu Pro Arg Asn Pro Asp
 420 425 430
 Ser Tyr Phe Ser Leu Lys Ile Asp Pro Thr Lys Asn Lys Ser Arg Ile
 435 440 445
 Asp Phe Val Lys Asp Arg Arg Lys Ile Lys Arg Glu Tyr Asp Glu Phe
 450 455 460
 Lys Val Arg Ile Asn Gly Leu Pro Asp Ser Ile Arg Arg Arg Ser Asp
 465 470 475 480
 Ala Phe Asn Ala Arg Glu Glu Met Lys Ala Leu Lys Gln Met Arg Glu
 485 490 495
 Ser Gly Gly Asp Pro Thr Glu Pro Val Lys Val Pro Lys Ala Thr Trp
 500 505 510
 Met Ala Asp Gly Thr His Trp Pro Gly Thr Trp Ala Ala Ser Thr Arg
 515 520 525
 Glu His Ser Lys Gly Asp His Ala Gly Ile Leu Gln Val Met Leu Lys
 530 535 540
 Pro Pro Ser Ser Asp Pro Leu Ile Gly Asn Ser Asp Asp Lys Val Ile
 545 550 555 560
 Asp Phe Ser Asp Thr Asp Thr Arg Leu Pro Met Phe Val Tyr Val Ser
 565 570 575
 Arg Glu Lys Arg Pro Gly Tyr Asp His Asn Lys Lys Ala Gly Ala Met
 580 585 590
 Asn Ala Leu Val Arg Ala Ser Ala Ile Leu Ser Asn Gly Pro Phe Ile
 595 600 605
 Leu Asn Leu Asp Cys Asp His Tyr Ile Tyr Asn Cys Lys Ala Val Arg
 610 615 620
 Glu Gly Met Cys Phe Met Met Asp Arg Gly Gly Glu Asp Ile Cys Tyr
 625 630 635 640
 Ile Gln Phe Pro Gln Arg Phe Glu Gly Ile Asp Pro Ser Asp Arg Tyr
 645 650 655
 Ala Asn Asn Asn Thr Val Phe Phe Asp Gly Asn Met Arg Ala Leu Asp
 660 665 670

Gly Val Gln Gly Pro Val Tyr Val Gly Thr Gly Thr Met Phe Arg Arg
 675 680 685
 Phe Ala Leu Tyr Gly Phe Asp Pro Pro Asn Pro Asp Lys Leu Leu Glu
 690 695 700
 Lys Lys Glu Ser Glu Thr Glu Ala Leu Thr Thr Ser Asp Phe Asp Pro
 705 710 715 720
 Asp Leu Asp Val Thr Gln Leu Pro Lys Arg Phe Gly Asn Ser Thr Leu
 725 730 735
 Leu Ala Glu Ser Ile Pro Ile Ala Glu Phe Gln Gly Arg Pro Leu Ala
 740 745 750
 Asp His Pro Ala Val Lys Tyr Gly Arg Pro Pro Gly Ala Leu Arg Val
 755 760 765
 Pro Arg Asp Pro Leu Asp Ala Thr Thr Val Ala Glu Ser Val Ser Val
 770 775 780
 Ile Ser Cys Trp Tyr Glu Asp Lys Thr Glu Trp Gly Asp Arg Val Gly
 785 790 795 800
 Trp Ile Tyr Gly Ser Val Thr Glu Asp Val Val Thr Gly Tyr Arg Met
 805 810 815
 His Asn Arg Gly Trp Arg Ser Val Tyr Cys Ile Thr Lys Arg Asp Ser
 820 825 830
 Phe Arg Gly Ser Ala Pro Ile Asn Leu Thr Asp Arg Leu His Gln Val
 835 840 845
 Leu Arg Trp Ala Thr Gly Ser Val Glu Ile Phe Phe Ser Arg Asn Asn
 850 855 860
 Ala Ile Leu Ala Ser Lys Arg Leu Lys Phe Leu Gln Arg Leu Ala Tyr
 865 870 875 880
 Leu Asn Val Gly Ile Tyr Pro Phe Thr Ser Leu Phe Leu Ile Leu Tyr
 885 890 895
 Cys Phe Leu Pro Ala Phe Ser Leu Phe Ser Gly Gln Phe Ile Val Arg
 900 905 910
 Thr Leu Ser Ile Ser Phe Leu Val Tyr Leu Leu Met Ile Thr Ile Cys
 915 920 925
 Leu Ile Gly Leu Ala Val Leu Glu Val Lys Trp Ser Gly Ile Gly Leu
 930 935 940
 Glu Glu Trp Trp Arg Asn Glu Gln Trp Trp Leu Ile Ser Gly Thr Ser
 945 950 955 960
 Ser His Leu Tyr Ala Val Val Gln Gly Val Leu Lys Val Ile Ala Gly
 965 970 975
 Ile Glu Ile Ser Phe Thr Leu Thr Thr Lys Ser Gly Gly Asp Asp Asn
 980 985 990

Glu Asp Ile Tyr Ala Asp Leu Tyr Ile Val Lys Trp Ser Ser Leu Met
 995 1000 1005
 Ile Pro Pro Ile Val Ile Ala Met Val Asn Ile Ile Ala Ile Val Val
 1010 1015 1020
 Ala Phe Ile Arg Thr Ile Tyr Gln Ala Val Pro Gln Trp Ser Lys Leu
 1025 1030 1035 1040
 Ile Gly Gly Ala Phe Phe Ser Phe Trp Val Leu Ala His Leu Tyr Pro
 1045 1050 1055
 Phe Ala Lys Gly Leu Met Gly Arg Arg Gly Lys Thr Pro Thr Ile Val
 1060 1065 1070
 Phe Val Trp Ala Gly Leu Ile Ala Ile Thr Ile Ser Leu Leu Trp Thr
 1075 1080 1085
 Ala Ile Asn Pro Asn Thr Gly Pro Ala Ala Ala Ala Glu Gly Val Gly
 1090 1095 1100
 Gly Gly Gly Phe Gln Phe Pro
 1105 1110
 <210> 27
 <211> 1026
 <212> PRT
 <213> Arabidopsis thaliana
 <400> 27
 Met Glu Ala Ser Ala Gly Leu Val Ala Gly Ser His Asn Arg Asn Glu
 1 5 10 15
 Leu Val Val Ile His Asn His Glu Glu Pro Lys Pro Leu Lys Asn Leu
 20 25 30
 Asp Gly Gln Phe Cys Glu Ile Cys Gly Asp Gln Ile Gly Leu Thr Val
 35 40 45
 Glu Gly Asp Leu Phe Val Ala Cys Asn Glu Cys Gly Phe Pro Ala Cys
 50 55 60
 Arg Pro Cys Tyr Glu Tyr Glu Arg Arg Glu Gly Thr Gln Asn Cys Pro
 65 70 75 80
 Gln Cys Lys Thr Arg Tyr Lys Arg Leu Arg Gly Ser Pro Arg Val Glu
 85 90 95
 Gly Asp Glu Asp Glu Glu Asp Ile Asp Asp Ile Glu Tyr Glu Phe Asn
 100 105 110
 Ile Glu His Glu Gln Asp Lys His Lys His Ser Ala Glu Ala Met Leu
 115 120 125
 Tyr Gly Lys Met Ser Tyr Gly Arg Gly Pro Glu Asp Asp Glu Asn Gly
 130 135 140
 Arg Phe Pro Pro Val Ile Ala Gly Gly His Ser Gly Glu Phe Pro Val
 145 150 155 160

Gly Gly Gly Tyr Gly Asn Gly Glu His Gly Leu His Lys Arg Val His
 165 170 175

Pro Tyr Pro Ser Ser Glu Ala Gly Ser Glu Gly Gly Trp Arg Glu Arg
 180 185 190

Met Asp Asp Trp Lys Leu Gln His Gly Asn Leu Gly Pro Glu Pro Asp
 195 200 205

Asp Asp Pro Glu Met Gly Leu Ile Asp Glu Ala Arg Gln Pro Leu Ser
 210 215 220

Arg Lys Val Pro Ile Ala Ser Ser Lys Ile Asn Pro Tyr Arg Met Val
 225 230 235 240

Ile Val Ala Arg Leu Val Ile Leu Ala Val Phe Leu Arg Tyr Arg Leu
 245 250 255

Leu Asn Pro Val His Asp Ala Leu Gly Leu Trp Leu Thr Ser Val Ile
 260 265 270

Cys Glu Ile Trp Phe Ala Val Ser Trp Ile Leu Asp Gln Phe Pro Lys
 275 280 285

Trp Phe Pro Ile Glu Arg Glu Thr Tyr Leu Asp Arg Leu Ser Leu Arg
 290 295 300

Tyr Glu Arg Glu Gly Glu Pro Asn Met Leu Ala Pro Val Asp Val Phe
 305 310 315 320

Val Ser Thr Val Asp Pro Leu Lys Glu Pro Pro Leu Val Thr Ser Asn
 325 330 335

Thr Val Leu Ser Ile Leu Ala Met Asp Tyr Pro Val Glu Lys Ile Ser
 340 345 350

Cys Tyr Val Ser Asp Asp Gly Ala Ser Met Leu Thr Phe Glu Ser Leu
 355 360 365

Ser Glu Thr Ala Glu Phe Ala Arg Lys Trp Val Pro Phe Cys Lys Lys
 370 375 380

Phe Ser Ile Glu Pro Arg Ala Pro Glu Met Tyr Phe Thr Leu Lys Val
 385 390 395 400

Asp Tyr Leu Gln Asp Lys Val His Pro Thr Phe Val Lys Glu Arg Arg
 405 410 415

Ala Met Lys Arg Glu Tyr Glu Glu Phe Lys Val Arg Ile Asn Ala Gln
 420 425 430

Val Ala Lys Ala Ser Lys Val Pro Leu Glu Gly Trp Ile Met Gln Asp
 435 440 445

Gly Thr Pro Trp Pro Gly Asn Asn Thr Lys Asp His Pro Gly Met Ile
 450 455 460

Gln Val Phe Leu Gly His Ser Gly Gly Phe Asp Val Glu Gly His Glu
 465 470 475 480

Leu Pro Arg Leu Val Tyr Val Ser Arg Glu Lys Arg Pro Gly Phe Gln
 485 490 495

 His His Lys Lys Ala Gly Ala Met Asn Ala Leu Val Arg Val Ala Gly
 500 505 510

 Val Leu Thr Asn Ala Pro Phe Met Leu Asn Leu Asp Cys Asp His Tyr
 515 520 525

 Val Asn Asn Ser Lys Ala Val Arg Glu Ala Met Cys Phe Leu Met Asp
 530 535 540

 Pro Gln Ile Gly Lys Lys Val Cys Tyr Val Gln Phe Pro Gln Arg Phe
 545 550 555 560

 Asp Gly Ile Asp Thr Asn Asp Arg Tyr Ala Asn Arg Asn Thr Val Phe
 565 570 575

 Phe Asp Ile Asn Met Lys Gly Leu Asp Gly Ile Gln Gly Pro Val Tyr
 580 585 590

 Val Gly Thr Gly Cys Val Phe Lys Arg Gln Ala Leu Tyr Gly Tyr Glu
 595 600 605

 Pro Pro Lys Gly Pro Lys Arg Pro Lys Met Ile Ser Cys Gly Cys Cys
 610 615 620

 Pro Cys Phe Gly Arg Arg Lys Asn Lys Lys Phe Ser Lys Asn Asp
 625 630 635 640

 Met Asn Gly Asp Val Ala Ala Leu Gly Ala Glu Gly Asp Lys Glu
 645 650 655

 His Leu Met Phe Glu Met Asn Phe Glu Lys Thr Phe Gly Gln Ser Ser
 660 665 670

 Ile Phe Val Thr Ser Thr Leu Met Glu Glu Gly Val Pro Pro Ser
 675 680 685

 Ser Ser Pro Ala Val Leu Leu Lys Glu Ala Ile His Val Ile Ser Cys
 690 695 700

 Gly Tyr Glu Asp Lys Thr Glu Trp Gly Thr Glu Leu Gly Trp Ile Tyr
 705 710 715 720

 Gly Ser Ile Thr Glu Asp Ile Leu Thr Gly Phe Lys Met His Cys Arg
 725 730 735

 Gly Trp Arg Ser Ile Tyr Cys Met Pro Lys Arg Pro Ala Phe Lys Gly
 740 745 750

 Ser Ala Pro Ile Asn Leu Ser Asp Arg Leu Asn Gln Val Leu Arg Trp
 755 760 765

 Ala Leu Gly Ser Val Glu Ile Phe Phe Ser Arg His Ser Pro Leu Trp
 770 775 780

 Tyr Gly Tyr Lys Gly Lys Leu Lys Trp Leu Glu Arg Phe Ala Tyr
 785 790 795 800

Ala Asn Thr Thr Ile Tyr Pro Phe Thr Ser Ile Pro Leu Leu Ala Tyr
 805 810 815
 Cys Ile Leu Pro Ala Ile Cys Leu Leu Thr Asp Lys Phe Ile Met Pro
 820 825 830
 Pro Ile Ser Thr Phe Ala Ser Leu Phe Phe Ile Ser Leu Phe Met Ser
 835 840 845
 Ile Ile Val Thr Gly Ile Leu Glu Leu Arg Trp Ser Gly Val Ser Ile
 850 855 860
 Glu Glu Trp Trp Arg Asn Glu Gln Phe Trp Val Ile Gly Gly Ile Ser
 865 870 875 880
 Ala His Leu Phe Ala Val Val Gln Gly Leu Leu Lys Ile Leu Ala Gly
 885 890 895
 Ile Asp Thr Asn Phe Thr Val Thr Ser Lys Ala Thr Asp Asp Asp Asp
 900 905 910
 Phe Gly Glu Leu Tyr Ala Phe Lys Trp Thr Thr Leu Leu Ile Pro Pro
 915 920 925
 Thr Thr Val Leu Ile Ile Asn Ile Val Gly Val Val Ala Gly Ile Ser
 930 935 940
 Asp Ala Ile Asn Asn Gly Tyr Gln Ser Trp Gly Pro Leu Phe Gly Lys
 945 950 955 960
 Leu Phe Phe Ser Phe Trp Val Ile Val His Leu Tyr Pro Phe Leu Lys
 965 970 975
 Gly Leu Met Gly Arg Gln Asn Arg Thr Pro Thr Ile Val Val Ile Trp
 980 985 990
 Ser Val Leu Leu Ala Ser Ile Phe Ser Leu Leu Trp Val Arg Ile Asp
 995 1000 1005
 Pro Phe Val Leu Lys Thr Lys Gly Pro Asp Thr Ser Lys Cys Gly Ile
 1010 1015 1020
 Asn Cys
 1025
 <210> 28
 <211> 701
 <212> PRT
 <213> *Gossypium hirsutum*
 <400> 28
 Asp Tyr Pro Val Glu Lys Val Ser Cys Tyr Val Ser Asp Asp Gly Ala
 1 5 10 15
 Ala Met Leu Thr Phe Glu Ala Leu Ser Glu Thr Ser Glu Phe Ala Arg
 20 25 30
 Lys Trp Val Pro Phe Cys Lys Lys Tyr Asn Ile Glu Pro Arg Ala Pro
 35 40 45

Glu Trp Tyr Phe Ala Gln Lys Ile Asp Tyr Leu Lys Asp Lys Val Gln
 50 55 60

Thr Ser Phe Val Lys Glu Arg Arg Ala Met Lys Arg Glu Tyr Glu Glu
 65 70 75 80

Phe Lys Val Arg Val Asn Gly Leu Val Ala Lys Ala Gln Lys Val Pro
 85 90 95

Glu Glu Gly Trp Ile Met Gln Asp Gly Thr Pro Trp Pro Gly Asn Asn
 100 105 110

Thr Arg Asp His Pro Gly Met Ile Gln Val Phe Leu Gly Gln Ser Gly
 115 120 125

Gly Leu Asp Ala Glu Gly Asn Glu Leu Pro Arg Leu Val Tyr Val Ser
 130 135 140

Arg Glu Lys Arg Pro Gly Phe Gln His His Lys Lys Ala Gly Ala Met
 145 150 155 160

Asn Ala Leu Val Arg Val Ser Ala Val Leu Thr Asn Gly Ala Phe Leu
 165 170 175

Leu Asn Leu Asp Cys Asp His Tyr Ile Asn Asn Ser Lys Ala Leu Arg
 180 185 190

Glu Ala Met Cys Phe Leu Met Asp Pro Asn Leu Gly Lys Gln Val Cys
 195 200 205

Tyr Val Gln Phe Pro Gln Arg Phe Asp Gly Ile Asp Arg Asn Asp Arg
 210 215 220

Tyr Ala Asn Arg Asn Thr Val Phe Phe Asp Ile Asn Leu Arg Gly Leu
 225 230 235 240

Asp Gly Ile Gln Gly Pro Val Tyr Val Gly Thr Gly Cys Val Phe Asn
 245 250 255

Arg Thr Ala Leu Tyr Gly Tyr Glu Pro Pro Leu Lys Pro Lys His Arg
 260 265 270

Lys Thr Gly Ile Leu Ser Ser Leu Cys Gly Gly Ser Arg Lys Lys Ser
 275 280 285

Ser Lys Ser Ser Lys Lys Gly Ser Asp Lys Lys Lys Ser Gly Lys His
 290 295 300

Val Asp Ser Thr Val Pro Val Phe Asn Leu Glu Asp Ile Glu Glu Gly
 305 310 315 320

Val Glu Gly Ala Gly Phe Asp Asp Glu Lys Ser Leu Leu Met Ser Gln
 325 330 335

Met Ser Leu Glu Lys Arg Phe Gly Gln Ser Ala Val Phe Val Ala Ser
 340 345 350

Thr Leu Met Glu Asn Gly Gly Val Pro Gln Ser Ala Thr Pro Glu Thr
 355 360 365

Leu Leu Lys Glu Ala Ile His Val Ile Ser Cys Gly Tyr Glu Asp Lys
 370 375 380
 Thr Asp Trp Gly Ser Glu Ile Gly Trp Ile Tyr Gly Ser Val Thr Glu
 385 390 395 400
 Asp Ile Leu Thr Gly Phe Lys Met His Ala Arg Gly Trp Arg Ser Ile
 405 410 415
 Tyr Cys Met Pro Lys Arg Pro Ala Phe Lys Gly Ser Ala Pro Ile Asn
 420 425 430
 Leu Ser Asp Arg Leu Asn Gln Val Leu Arg Trp Ala Leu Gly Ser Val
 435 440 445
 Glu Ile Leu Phe Ser Arg His Cys Pro Ile Trp Tyr Gly Tyr Ser Gly
 450 455 460
 Arg Leu Lys Trp Leu Glu Arg Phe Ala Tyr Val Asn Thr Thr Ile Tyr
 465 470 475 480
 Pro Val Thr Ala Ile Pro Leu Leu Met Tyr Cys Thr Leu Pro Ala Val
 485 490 495
 Cys Leu Leu Thr Asn Lys Phe Ile Ile Pro Gln Ile Ser Asn Leu Ala
 500 505 510
 Ser Ile Trp Phe Ile Ser Leu Phe Leu Ser Ile Phe Ala Thr Gly Ile
 515 520 525
 Leu Lys Met Lys Trp Asn Gly Val Gly Ile Asp Gln Trp Trp Arg Asn
 530 535 540
 Glu Gln Phe Trp Val Ile Gly Gly Val Ser Ala His Leu Phe Ala Val
 545 550 555 560
 Phe Gln Gly Leu Leu Lys Val Leu Ala Gly Ile Asp Thr Asn Phe Thr
 565 570 575
 Val Thr Ser Lys Ala Ser Asp Glu Asp Gly Asp Phe Ala Glu Leu Tyr
 580 585 590
 Met Phe Lys Trp Thr Thr Leu Leu Ile Pro Pro Thr Thr Leu Leu Ile
 595 600 605
 Ile Asn Leu Val Gly Val Val Ala Gly Ile Ser Tyr Val Ile Asn Ser
 610 615 620
 Gly Tyr Gln Ser Trp Gly Pro Leu Phe Gly Lys Leu Phe Phe Ala Phe
 625 630 635 640
 Trp Val Ile Ile His Leu Tyr Pro Phe Leu Lys Gly Leu Met Gly Arg
 645 650 655
 Gln Asn Arg Thr Pro Thr Ile Val Val Val Trp Ser Ile Leu Leu Ala
 660 665 670
 Ser Ile Phe Ser Leu Leu Trp Val Arg Ile Asp Pro Phe Thr Thr Arg
 675 680 685

Val Thr Gly Pro Asp Val Glu Gln Cys Gly Ile Asn Cys
 690 695 700

 <210> 29
 <211> 1081
 <212> PRT
 <213> *Arabidopsis thaliana*

 <400> 29
 Arg Pro Arg Leu Ile Ala Gly Ser His Asn Arg Asn Glu Phe Val Leu
 1 5 10 15

 Ile Asn Ala Asp Glu Asn Ala Arg Ile Arg Ser Val Gln Glu Leu Ser
 20 25 30

 Gly Gln Thr Cys Gln Ile Cys Arg Asp Glu Ile Glu Leu Thr Val Asp
 35 40 45

 Gly Glu Pro Phe Val Ala Cys Asn Glu Cys Ala Phe Pro Val Cys Arg
 50 55 60

 Pro Cys Tyr Glu Tyr Glu Arg Arg Glu Gly Asn Gln Ala Cys Pro Gln
 65 70 75 80

 Cys Lys Thr Arg Phe Lys Arg Leu Lys Gly Ser Pro Arg Val Glu Gly
 85 90 95

 Asp Glu Glu Glu Asp Asp Ile Asp Asp Leu Asp Asn Glu Phe Glu Tyr
 100 105 110

 Gly Asn Asn Gly Ile Gly Phe Asp Gln Val Ser Glu Gly Met Ser Ile
 115 120 125

 Ser Arg Arg Asn Ser Gly Phe Pro Gln Ser Asp Leu Asp Ser Ala Pro
 130 135 140

 Pro Gly Ser Gln Ile Pro Leu Leu Thr Tyr Gly Asp Glu Asp Val Glu
 145 150 155 160

 Ile Ser Ser Asp Arg His Ala Leu Ile Val Pro Pro Ser Leu Gly Gly
 165 170 175

 His Gly Asn Arg Val His Pro Val Ser Leu Ser Asp Pro Thr Val Ala
 180 185 190

 Ala His Arg Arg Leu Met Val Pro Gln Lys Asp Leu Ala Val Tyr Gly
 195 200 205

 Tyr Gly Ser Val Ala Trp Lys Asp Arg Met Glu Glu Trp Lys Arg Lys
 210 215 220

 Gln Asn Glu Lys Leu Gln Val Val Arg His Glu Gly Asp Pro Asp Phe
 225 230 235 240

 Glu Asp Gly Asp Asp Ala Asp Phe Pro Met Met Asp Glu Gly Arg Gln
 245 250 255

 Pro Leu Ser Met Lys Ile Pro Ile Lys Ser Ser Lys Ile Asn Pro Tyr
 260 265 270

Arg Met Leu Ile Val Leu Arg Leu Val Ile Leu Gly Leu Phe Phe His
 275 280 285
 Tyr Arg Ile Leu His Pro Val Lys Asp Ala Tyr Ala Leu Trp Leu Ile
 290 295 300
 Ser Val Ile Cys Glu Ile Trp Phe Ala Val Ser Trp Val Leu Asp Gln
 305 310 315 320
 Phe Pro Lys Trp Tyr Pro Ile Glu Arg Glu Thr Tyr Leu Asp Arg Leu
 325 330 335
 Ser Leu Arg Tyr Glu Lys Glu Gly Lys Pro Ser Gly Leu Ser Pro Val
 340 345 350
 Asp Val Phe Val Ser Thr Val Asp Pro Leu Lys Glu Pro Pro Leu Ile
 355 360 365
 Thr Ala Asn Thr Val Leu Ser Ile Leu Ala Val Asp Tyr Pro Val Asp
 370 375 380
 Lys Val Ala Cys Tyr Val Ser Asp Asp Gly Ala Ala Met Leu Thr Phe
 385 390 395 400
 Glu Ala Leu Ser Glu Thr Ala Glu Phe Ala Arg Lys Trp Val Pro Phe
 405 410 415
 Cys Lys Lys Tyr Cys Ile Glu Pro Arg Ala Pro Glu Trp Tyr Phe Cys
 420 425 430
 His Lys Met Asp Tyr Leu Lys Asn Lys Val His Pro Ala Phe Val Arg
 435 440 445
 Glu Arg Arg Ala Met Lys Arg Asp Tyr Glu Glu Phe Lys Val Lys Ile
 450 455 460
 Asn Ala Leu Val Ala Thr Ala Gln Lys Val Pro Glu Asp Gly Trp Thr
 465 470 475 480
 Met Gln Asp Gly Thr Pro Trp Pro Gly Asn Ser Val Arg Asp His Pro
 485 490 495
 Gly Met Ile Gln Val Phe Leu Gly Ser Asp Gly Val Arg Asp Val Glu
 500 505 510
 Asn Asn Glu Leu Pro Arg Leu Val Tyr Val Ser Arg Glu Lys Arg Pro
 515 520 525
 Gly Phe Asp His His Lys Lys Ala Gly Ala Met Asn Ser Leu Ile Arg
 530 535 540
 Val Ser Gly Val Leu Ser Asn Ala Pro Tyr Leu Leu Asn Val Asp Cys
 545 550 555 560
 Asp His Tyr Ile Asn Asn Ser Lys Ala Leu Arg Glu Ala Met Cys Phe
 565 570 575
 Met Met Asp Pro Gln Ser Gly Lys Lys Ile Cys Tyr Val Gln Phe Pro
 580 585 590

Gln Arg Phe Asp Gly Ile Asp Arg His Asp Arg Tyr Ser Asn Arg Asn
 595 600 605
 Val Val Phe Phe Asp Ile Asn Met Lys Gly Leu Asp Gly Leu Gln Gly
 610 615 620
 Pro Ile Tyr Val Gly Thr Gly Cys Val Phe Arg Arg Gln Ala Leu Tyr
 625 630 635 640
 Gly Phe Asp Ala Pro Lys Lys Lys Gly Pro Arg Lys Thr Cys Asn
 645 650 655
 Cys Trp Pro Lys Trp Cys Leu Leu Cys Phe Gly Ser Arg Lys Asn Arg
 660 665 670
 Lys Ala Lys Thr Val Ala Ala Asp Lys Lys Lys Asn Arg Glu Ala
 675 680 685
 Ser Lys Gln Ile His Ala Leu Glu Asn Ile Glu Glu Gly Arg Gly His
 690 695 700
 Lys Val Leu Asn Val Glu Gln Ser Thr Glu Ala Met Gln Met Lys Leu
 705 710 715 720
 Gln Lys Lys Tyr Gly Gln Ser Pro Val Phe Val Ala Ser Ala Arg Leu
 725 730 735
 Glu Asn Gly Gly Met Ala Arg Asn Ala Ser Pro Ala Cys Leu Leu Lys
 740 745 750
 Glu Ala Ile Gln Val Ile Ser Arg Gly Tyr Glu Asp Lys Thr Glu Trp
 755 760 765
 Gly Lys Glu Ile Gly Trp Ile Tyr Gly Ser Val Thr Glu Asp Ile Leu
 770 775 780
 Thr Gly Ser Lys Met His Ser His Gly Trp Arg His Val Tyr Cys Thr
 785 790 795 800
 Pro Lys Leu Ala Ala Phe Lys Gly Ser Ala Pro Ile Asn Leu Ser Asp
 805 810 815
 Arg Leu His Gln Val Leu Arg Trp Ala Leu Gly Ser Val Glu Ile Phe
 820 825 830
 Leu Ser Arg His Cys Pro Ile Trp Tyr Gly Tyr Gly Gly Leu Lys
 835 840 845
 Trp Leu Glu Arg Leu Ser Tyr Ile Asn Ser Val Val Tyr Pro Trp Thr
 850 855 860
 Ser Leu Pro Leu Ile Val Tyr Cys Ser Leu Pro Ala Ile Cys Leu Leu
 865 870 875 880
 Thr Gly Lys Phe Ile Val Pro Glu Ile Ser Asn Tyr Ala Ser Ile Leu
 885 890 895
 Phe Met Ala Leu Phe Ser Ser Ile Ala Ile Thr Gly Ile Leu Glu Met
 900 905 910

Gln Trp Gly Lys Val Gly Ile Asp Asp Trp Trp Arg Asn Glu Gln Phe
915 920 925

Trp Val Ile Gly Gly Val Ser Ala His Leu Phe Ala Leu Phe Gln Gly
930 935 940

Leu Leu Lys Val Leu Ala Gly Val Asp Thr Asn Phe Thr Val Thr Ser
945 950 955 960

Lys Ala Ala Asp Asp Gly Glu Phe Ser Asp Leu Tyr Leu Phe Lys Trp
965 970 975

Thr Ser Leu Leu Ile Pro Pro Met Thr Leu Leu Ile Ile Asn Val Ile
980 985 990

Gly Val Ile Val Gly Val Ser Asp Ala Ile Ser Asn Gly Tyr Asp Ser
995 1000 1005

Trp Gly Pro Leu Phe Gly Arg Leu Phe Phe Ala Leu Trp Val Ile Ile
1010 1015 1020

His Leu Tyr Pro Phe Leu Lys Gly Leu Leu Gly Lys Gln Asp Arg Met
1025 1030 1035 1040

Pro Thr Ile Ile Val Val Trp Ser Ile Leu Leu Ala Ser Ile Leu Thr
1045 1050 1055

Leu Leu Trp Val Arg Val Asn Pro Phe Val Ala Lys Gly Gly Pro Ile
1060 1065 1070

Leu Glu Ile Cys Gly Leu Asp Cys Leu
1075 1080

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : C12N 15/54, 1/21, 9/10, C12Q 1/48, 1/68		A3	(11) International Publication Number: WO 00/04166
			(43) International Publication Date: 27 January 2000 (27.01.00)
<p>(21) International Application Number: PCT/US99/15871</p> <p>(22) International Filing Date: 13 July 1999 (13.07.99)</p> <p>(30) Priority Data: 60/092,844 14 July 1998 (14.07.98) US</p> <p>(71) Applicant (<i>for all designated States except US</i>): E.I. DU PONT DE NEMOURS AND COMPANY [US/US]; 1007 Market Street, Wilmington, DE 19898 (US).</p> <p>(72) Inventors; and</p> <p>(75) Inventors/Applicants (<i>for US only</i>): ALLEN, Stephen, M. [US/US]; 2225 Rosewood Drive, Wilmington, DE 19810 (US). FADER, Gary, M. [US/US]; 1000 Woods Lane, Landenberg, PA 19350 (US). FALCO, Saverio, Carl [US/US]; 1902 Millers Road, Arden, DE 19810 (US). KINNEY, Anthony, J. [GB/US]; 609 Lore Avenue, Wilmington, DE 19809 (US). LIGHTNER, Jonathan, E. [US/US]; 4180 Delta Road, Airville, PA 17302 (US). MIAO, Guo-Hua [CN/US]; 202 Cherry Blossom Place, Hockessin, DE 19707 (US). RAFALSKI, J., Antoni [US/US]; 2028 Longcome Drive, Wilmington, DE 19810 (US). THORPE, Catherine, J. [GB/GB]; 120 Ross Street, Cambridge CB1 3BU (GB).</p>		<p>(74) Agent: MAJARIAN, William, R.; E.I. du Pont de Nemours and Company, Legal Patent Records Center, 1007 Market Street, Wilmington, DE 19898 (US).</p> <p>(81) Designated States: AE, AL, AU, BA, BB, BG, BR, CA, CN, CU, CZ, EE, GD, GE, HR, HU, ID, IL, IN, IS, JP, KP, KR, LC, LK, LR, LT, LV, MG, MK, MN, MX, NO, NZ, PL, RO, SG, SI, SK, SL, TR, TT, UA, US, UZ, VN, YU, ZA, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).</p> <p>Published <i>With international search report.</i></p> <p>(88) Date of publication of the international search report: 27 April 2000 (27.04.00)</p>	
<p>(54) Title: PLANT CELLULOSE SYNTHASES</p> <p>(57) Abstract</p> <p>This invention relates to an isolated nucleic acid fragment encoding a cellulose synthase. The invention also relates to the construction of a chimeric gene encoding all or a portion of the cellulose synthase, in sense or antisense orientation, wherein expression of the chimeric gene results in production of altered levels of the cellulose synthase in a transformed host cell.</p> <p>SEQ ID NO:2 1 60 SEQ ID NO:4 RAAGAGRHHKPPKPKQKLAVSLP—LPHEHFTFVVFVAKTRK—KTAACPG— SEQ ID NO:6 KSTTYTKERELAQPAAAPKQPP—ATACACRSRPPDQQRGGGLRAFNCANAQDV SEQ ID NO:8 SEQ ID NO:10 SEQ ID NO:12 RCB—KMTCCSPTTTTPTKLLKPLPT SEQ ID NO:14 SEQ ID NO:16 SEQ ID NO:18 SEQ ID NO:20 SEQ ID NO:22 SEQ ID NO:23 SEQ ID NO:24 HSTYGR— SEQ ID NO:25 SEQ ID NO:26 HASTPPOTSEKVNSHNGGSGQTVKFAKRTSSQTVSLP—KONIELSGELSDGTNTTVKIP SEQ ID NO:27 SEQ ID NO:28 SEQ ID NO:29 R—PR— 61 120 SEQ ID NO:2 N—REGARD—ME—ASAGLVAVSSINRHLV—VIRBRGEPGPKP—MDRNGIVCQI— SEQ ID NO:4 SEQ ID NO:6 SEQ ID NO:8 KERDPAGRGGSPTE—ASAGLVAVSSINRHLV—VIRBRGEPGPKP—MDRNGIVCQI— SEQ ID NO:10 ME—ASAGLVAVSSINRHLV—VIRBRGEPGPKP—MDRNGIVCQI— SEQ ID NO:12 SEQ ID NO:14 ME—ASAGLVAVSSINRHLV—VIRBRGEPGPKP—MDRNGIVCQI— SEQ ID NO:16 SEQ ID NO:18 SEQ ID NO:20 SEQ ID NO:22 SEQ ID NO:23 SEQ ID NO:24 SEQ ID NO:25 SEQ ID NO:26 PTPONOMATAKETOTVSHMLFTGSGTNTVTRAHLMEDVVIDEUVTHPOMAGAMHRCAMP SEQ ID NO:27 SEQ ID NO:28 SEQ ID NO:29 ME—ASAGLVAVSSINRHLV—VIRBRGEPGPKP—MDRNGIVCQI— 121 180 SEQ ID NO:2 CDDOWHNPDSSTPVVACHECAFPZICHCYTYEERGDTOPCPQCNTTFLMLMCANP60— SEQ ID NO:4 SEQ ID NO:6 SEQ ID NO:8 SEQ ID NO:10 CDRHVVYGDSEPVVACHECAFPVVCACYTYEERGDTOPCPQCNTTFLMLMCANP60— SEQ ID NO:12 SEQ ID NO:14 CDRHVVYGDSEPVVACHECAFPVVCACYTYEERGDTOPCPQCNTTFLMLMCANP60— SEQ ID NO:16 SEQ ID NO:18 SEQ ID NO:20 SEQ ID NO:22 SEQ ID NO:23 CDRHVVYGDSEPVVACHECAFPVVCACYTYEERGDTOPCPQCNTTFLMLMCANP60— SEQ ID NO:24 SEQ ID NO:25 CDRHVVYGDSEPVVACHECAFPVVCACYTYEERGDTOPCPQCNTTFLMLMCANP60— SEQ ID NO:26 CDRHVVYGDSEPVVACHECAFPVVCACYTYEERGDTOPCPQCNTTFLMLMCANP60—</p>			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

INTERNATIONAL SEARCH REPORT

International Application No PCT, US 99/15871
--

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 C12N15/54	C12N1/21	C12N9/10	C12Q1/48	C12Q1/68
-----------------	----------	----------	----------	----------

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C12N C12Q

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>WO 98 00549 A (WILLIAMSON RICHARD EDWARD ; PENG LIANGCAI (AU); ARIOLI ANTONIO (AU)) 8 January 1998 (1998-01-08) see SEQ ID NOS:1-12</p> <p>---</p> <p>-/-</p>	1,2,4-7, 10-17

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

Z document member of the same patent family

Date of the actual completion of the international search

9 February 2000

Date of mailing of the international search report

23. 02. 00

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Maddox, A

INTERNATIONAL SEARCH REPORT

International Application No
PCT, US 99/15871

C(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	ARIOLI, T., ET AL.: "Arabidopsis thaliana cellulose synthase catalytic subunit (RSW1) gene complete cds" EMBL ACCESSION NO:AF027172, 3 February 1998 (1998-02-03), XP002124282 the whole document	1,4-6, 13-17
X	-& ARIOLI, T. ET AL.: "Molecular analysis of cellulose biosynthesis in Arabidopsis" SCIENCE, vol. 279, 30 January 1998 (1998-01-30), pages 717-720, XP002124283 the whole document & ARIOLI, T., ET AL.: "Cellulose synthase catalytic subunit" TREMBL ACCESSION NO:048946, 1 June 1998 (1998-06-01), ---	6,13-17
X	ARIOLI, T., ET AL.: "Arabidopsis thaliana cellulose synthase catalytic subunit (Ath-A) mRNA, complete cds" EMBL ACCESSION NO: AF027173, 3 February 1998 (1998-02-03), XP002129994 the whole document	7,10-17
X	-& ARIOLI, T., ET AL.: "Molecular analysis of cellulose biosynthesis in Arabidopsis" SCIENCE, vol. 279, 30 January 1998 (1998-01-30), pages 717-720, XP002124283 the whole document & ARIOLI, T., ET AL.: "CELLULOSE SYNTHASE CATALYTIC SUBUNIT." TREMBL ACCESSION NO.048497, 1 June 1998 (1998-06-01), ---	12-17
X	ARIOLI, T., ET AL.: "Arabidopsis thaliana cellulose synthase catalytic subunit (Ath-B) mRNA, complete cds" EMBL ACCESSION NO:AF027174, 3 February 1998 (1998-02-03), XP002124284 the whole document	1,2,4,5, 13-17
X	-& ARIOLI T., ET AL.: "Molecular analysis of cellulose biosynthesis in Arabidopsis " SCIENCE, vol. 279, 30 January 1998 (1998-01-30), pages 717-720, XP002124283 the whole document & ARIOLI, T., ET AL.: "Cellulose synthase catalytic subunit" TREMBL ACCESSION NO:048948, 1 June 1998 (1998-06-01), ---	6,13-17
		-/-

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 99/15871

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 98 18949 A (CALGENE INC ;PEAR JULIE R (US); STALKER DAVID M (US); DELMER DEBOR) 7 May 1998 (1998-05-07) figures 3A-C,6A-E,7A-D ---	1,2,4-7, 10-17
X	PEAR, J.R., ET AL.: "Gossypium hirsutum cellulose synthase (celA2) mRNA, partial cds" EMBL ACCESSION NO:U58284, 13 December 1996 (1996-12-13), XP002124438	1,2,4-7, 10-17
X	-& PEAR, J.R., ET AL.: "HIGHER PLANTS CONTAIN HOMOLOGS OF THE BACTERIAL CELA GENES ENCODING THE CATALYTIC SUBUNIT OF CELLULOSE SYNTHASE" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 93, October 1996 (1996-10), pages 12637-12642, XP002061424 see whole document particularly footnote left col page 12639	6,12-17
Y	& PEAR, J.R., ET AL.: "Cellulose synthase fragment" TREMBL ACCESSION NO:P93156, 1 May 1997 (1997-05-01), ---	1,2,4-6
X	PEAR, J.R., ET AL.: "Gossypium hirsutum cellulose synthase (celA1) mRNA, complete cds" EMBL ACCESSION NO:U58283, 13 December 1996 (1996-12-13), XP002124439 the whole document	1,2,4-6, 13-17
X	-& PEAR, J.R., ET AL.: "HIGHER PLANTS CONTAIN HOMOLOGS OF THE BACTERIAL CELA GENES ENCODING THE CATALYTIC SUBUNIT OF CELLULOSE SYNTHASE" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 93, October 1996 (1996-10), pages 12637-12642, XP002061424 the whole document & PEAR, J.R. ET AL.: "Cellulose synthase" TREMBL ACCESSION NO:P93155, 1 May 1997 (1997-05-01), ---	6,13-17
		-/-

INTERNATIONAL SEARCH REPORT

International Application No
PL/US 99/15871

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>WU, L., ET AL.: "Arabidopsis thaliana cellulose synthase mRNA, partial cds" EMBL ACCESSION NO: AF062485, 18 May 1998 (1998-05-18), XP002129995 the whole document</p> <p>-& WU, L., ET AL.: "AraxCelA, a new member of cellulose synthase gene family from Arabidopsis thaliana (accession no. AF062485) (PGR 98-113)" PLANT PHYSIOLOGY 117:1125, July 1998 (1998-07), XP002130048</p> <p>---</p>	7,10-17
X	<p>DBEST DATABASE ID:37681, 2 December 1993 (1993-12-02), XP002124440 the whole document</p> <p>& SASAKI, T.: "Rice cDNA, partial sequence (R1814-1A)" EMBL ACCESSION NO:D24381, 29 November 1993 (1993-11-29),</p> <p>---</p>	1,2,4-6, 16,17
X	<p>DATABASE DBEST ID:1473188, 20 January 1998 (1998-01-20), XP002129996 & NAHM, B.H., ET AL.: "96AS0237 Rice Immature Seed Lambda ZAPII cDNA Library Oryza sativa cDNA clone 96AS0237." EMBL ACCESSION NO:AA751514, 21 January 1998 (1998-01-21),</p> <p>---</p>	1,2,4-6, 16,17
X	<p>SASAKI, T., ET AL.: DATABASE DBEST ID:75334,15 November 1994 (1994-11-15), XP002129997 & SASAKI, T. ET AL.: "Rice cDNA, partial sequence (S3630_1A)." EMBL ACCESSION NO:D41261, 13 November 1994 (1994-11-13),</p> <p>---</p>	7,10-12, 16,17
X	<p>SASAKI, T., ET AL.: DATABASE DBEST ID:75839,15 November 1994 (1994-11-15), XP002129998 & SASAKI, T., ET AL.: "Rice cDNA, partial sequence (S4564_1A)" EMBL ACCESSION NO:D41766, 14 November 1994 (1994-11-14),</p> <p>---</p>	7,10-12, 16,17
Y	<p>SASAKI, T., ET AL.: "Rice cDNA, partial sequence (R2668_1A)" EMBL ACCESSION NO:D24862, 29 November 1993 (1993-11-29), XP002124441 the whole document</p> <p>-& DBEST DATABASE ID:38158, 2 December 1993 (1993-12-02), XP002124442 the whole document</p> <p>---</p> <p>-/-</p>	1,2,4-6

INTERNATIONAL SEARCH REPORT

International Application No

PL., US 99/15871

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 98 00551 A (MAYO FOUNDATION ;MCDONALD JOHN A (US); SPICER ANDREW P (US); AUGUS) 8 January 1998 (1998-01-08) see page 14 lines 21 and 22, and SEQ ID NO:48 ----	6
P,X	EP 0 875 575 A (NISSHIN SPINNING) 4 November 1998 (1998-11-04) the whole document ----	1,2,4-7, 10-12
P,X	SASAKI, T., ET AL.: "Oryza sativa cDNA, partial sequence (R2825_6A)." EMBL ACCESSION NO:AU031954, 19 October 1998 (1998-10-19), XP002129999 the whole document ----	16,17
P,X	TAYLOR, N.G., ET AL.: "Arabidopsis thaliana cellulose synthase catalytic subunit (IRX3) mRNA, complete cds." EMBL ACCESSION NO:AF088917, 25 May 1999 (1999-05-25), XP002130000 the whole document ----	1,2,6, 16,17
P,X	BLEWITT, M., ET AL.: "BNLGH13827 Six-day Cotton fiber Gossypium hirsutum cDNA 5' similar to (AF027172) cellulose synthase catalytic subunit [Arabidopsis thaliana] gi 4049343 gnl PID e1361041 (AL034567) cellulose synthase catalytic subunit (RSW1) [Arabidopsis thaliana], mRNA sequence." EMBL ACCESSION NO:AI729626, 12 June 1999 (1999-06-12), XP002130001 the whole document ----	1,2,6, 16,17
P,X	BLEWITT, M., ET AL.: "BNLGH15835 Six-day Cotton fiber Gossypium hirsutum cDNA 5' similar to (AF027172) cellulose synthase catalytic subunit [Arabidopsis thaliana] gi 4049343 gnl PID e1361041 (AL034567) cellulose synthase catalytic subunit (RSW1) [Arabidopsis thaliana], mRNA sequence." EMBL ACCESSION NO:AI729981, 12 June 1999 (1999-06-12), XP002130002 the whole document ----	1,2,6, 16,17
P,X	LAOSINCHAI W., ET AL.: "Gossypium hirsutum cellulose synthase catalytic subunit (celA3) mRNA, complete cds." EMBL ACCESSION NO:AF150630, 21 June 1999 (1999-06-21), XP002130003 the whole document ----	1,2,6, 16,17
	-/-	

INTERNATIONAL SEARCH REPORT

International Application No

PCT, US 99/15871

C(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 5 723 764 A (SINGLETARY GEORGE WILLIAM ET AL) 3 March 1998 (1998-03-03) ---	13
A	AMOR Y ET AL: "EVIDENCE FOR A CYCLIC DIGUANYLIC ACID-DEPENDENT CELLULOSE SYNTHASE IN PLANTS" PLANT CELL, US, AMERICAN SOCIETY OF PLANT PHYSIOLOGISTS, ROCKVILLE, MD, vol. 3, page 989-995 XP002061420 ISSN: 1040-4651 the whole document ---	6,18
A	LI ET AL: "beta-Glucan synthesis in the cotton fiber" PLANT PHYSIOLOGY, US, AMERICAN SOCIETY OF PLANT PHYSIOLOGISTS, ROCKVILLE, MD, vol. 101, no. 4, page 1149-1156 XP002087180 ISSN: 0832-0889 the whole document ---	6,18
A	WO 91 13988 A (UNIV TEXAS) 19 September 1991 (1991-09-19) the whole document -----	1-6, 13-18

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 99/15871

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:

3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see additional sheets

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.

2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 1-6,13-18 all partially

Nucleic acid fragments encoding barley cellulose synthase, and corresponding polypeptide as represented by SEQ ID NOS:1 and 2, fragments encoding amino acid sequence 90% identical thereto, transformed hosts containing and methods for obtaining said sequences, methods for altering expression and methods for evaluating inhibitors using said sequences.

2. Claims: 1-6,13-18 all partially and 7-12 all completely

Nucleic acid fragments encoding corn cellulose synthase, and corresponding polypeptide as represented by SEQ ID NOS:3-10, fragments encoding amino acid sequence 90% identical thereto, transformed hosts containing and methods for obtaining said sequences, methods for altering expression and methods for evaluating inhibitors using said sequences.

3. Claims: 1-6,13-18 all partially

Nucleic acid fragments encoding rice cellulose synthase, and corresponding polypeptide as represented by SEQ ID NOS:11 and 12, fragments encoding amino acid sequence 90% identical thereto, transformed hosts containing and methods for obtaining said sequences, methods for altering expression and methods for evaluating inhibitors using said sequences.

4. Claims: 1-6,13-18 all partially

Nucleic acid fragments encoding soybean cellulose synthase, and corresponding polypeptide as represented by SEQ ID NOS:13-18, fragments encoding amino acid sequence 90% identical thereto, transformed hosts containing and methods for obtaining said sequences, methods for altering expression and methods for evaluating inhibitors using said sequences.

5. Claims: 1-6,13-18 all partially

Nucleic acid fragments encoding wheat cellulose synthase, and corresponding polypeptide as represented by SEQ ID NOS:19-22, fragments encoding amino acid sequence 90% identical thereto, transformed hosts containing and methods for obtaining said sequences, methods for altering expression and methods for evaluating inhibitors using said sequences.

6. Claim : 18 partially

FURTHER INFORMATION CONTINUED FROM PCT/SA/ 210

Method for evaluating a compound for inhibitory activity on cellulose synthase comparing activity of cellulose synthase produced in a transformed host with and without the addition of the compound, not covered by any of the previous groups of claimed inventions 1-5.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PL, US 99/15871

Patent document cited in search report	Publication date	Patent family member(s)			Publication date
WO 9800549 A	08-01-1998	AU	3160397 A		21-01-1998
		CA	2259126 A		08-01-1998
		EP	0956353 A		17-11-1999
-----	-----	-----	-----	-----	-----
WO 9818949 A	07-05-1998	AU	5092398 A		22-05-1998
		BR	9712457 A		19-10-1999
		EP	0938573 A		01-09-1999
-----	-----	-----	-----	-----	-----
WO 9800551 A	08-01-1998	AU	3652297 A		21-01-1998
-----	-----	-----	-----	-----	-----
EP 0875575 A	04-11-1998	JP	10276782 A		20-10-1998
-----	-----	-----	-----	-----	-----
US 5723764 A	03-03-1998		NONE		
-----	-----	-----	-----	-----	-----
WO 9113988 A	19-09-1991	AU	7556991 A		10-10-1991
-----	-----	-----	-----	-----	-----