# 第10章 直流电源

习题解答

习题: 10-5、10-10、10-11、10-17、10-19

#### 解:

1. 
$$U_{O(AV)} = 0.9 U_2 = 0.9 \times 20 = 18 V$$
  
 $I_{O(AV)} = U_{O(AV)} / R_L = 18/1 = 18 mA$ 

$$I_{D(AV)} = I_{O(AV)}/2 = 18/2 = 9 mA$$

$$U_{RM} = \sqrt{2}U_2 = 1.41 \times 20 = 28.2V$$

2. 如果有一只二极管接反,变压器次级将被短路,从而烧坏变压器线圈。



## $I_{7max} = 38mA$ , $U_{2} = 15V$ .

#### 解:

- 1. 若R=0, 容易烧坏稳压管,不能稳压。
- 2. 设 $U_0$ =6V, $I_{Omax}$ =5mA,电网电 压波动±10%,R=?

### 当变化+10%,*I。*=0时,*I。*最大



$$U_{Imax} = 1.2 \times (1.1U_2) = 1.2 \times 1.1 \times 15 = 19.8V$$

$$R > \frac{U_{Imax} - U_{O}}{I_{Zmax}} = \frac{19.8V - 6V}{38mA} = 363\Omega$$
  
当变化 $-10\%$ , $I_{O}$ 最大时, $I_{Z}$ 最小

$$U_{Imin} = 1.2 \times (0.9U_2) = 1.2 \times 0.9 \times 15 = 16.2V$$

$$R < \frac{U_{Imin} - U_{O}}{I_{Omax} + I_{Z}} = \frac{16.2V - 6V}{(5+10)mA} = 680\Omega$$

即 $363\Omega$  < R <  $680\Omega$ ,可选R =  $510\Omega$ 

#### 10-11 图为线性串联型稳压电路。

解: 1. 若 U<sub>I</sub>=24V,则 U<sub>2</sub>=U<sub>I</sub> / 1.2=24 / 1.2=20 V



电位器调至

最上端

$$U_{Omax} = \frac{R_3 + R_{RP} + R_4}{R_4} \cdot (U_Z + U_{BE}) = \frac{300 + 300 + 300}{300} \cdot (5.3 + 0.7) = 18V$$

$$U_{Omin} = \frac{R_3 + R_{RP} + R_4}{R_4 + R_{RP}} \cdot (U_Z + U_{BE}) = \frac{300 + 300 + 300}{300 + 300} \cdot (5.3 + 0.7) = 9V$$

则Uo的可调范围是(9~18V)。

3. 若 $R_3$ =600 $\Omega$ , $U_0$ 最高为多少?

$$U_{Omax} = \frac{R_3 + R_{RP} + R_4}{R_4} \cdot (U_Z + U_{BE}) = \frac{600 + 300 + 300}{300} \cdot (5.3 + 0.7) = 24V$$

此时晶体管VT<sub>1</sub>饱和。 ~U<sub>1</sub>

 $C_{1} = U_{1} \quad VT_{2} \quad R_{3} \quad R_{4} \quad C_{2} \quad R_{L} \quad U_{C} \quad R_{4} \quad R_{4} \quad R_{5} \quad R_{5} \quad R_{6} \quad R_{7} \quad R_{1} \quad R_{2} \quad R_{2} \quad R_{1} \quad R_{2} \quad R_{2} \quad R_{1} \quad R_{2} \quad R_{2} \quad R_{3} \quad R_{4} \quad R_{2} \quad R_{1} \quad R_{2} \quad R_{3} \quad R_{4} \quad R_{4} \quad R_{4} \quad R_{4} \quad R_{5} \quad R_{$ 

#### 10-17 图为三端集成稳压器应用电路。

解: I3为7805公共端的工作电流。

1. a图稳定输出电流, b图稳定输出电压。

**2. a** 
$$I_O = \frac{U_{23}}{R} + I_3 = \frac{U_{xx}}{R} + I_3$$

3. **b**

$$U_{O} = \left(1 + \frac{R_{2}}{R_{1}}\right) \cdot U_{23} + I_{3}R_{2} = \left(1 + \frac{R_{2}}{R_{1}}\right) \cdot U_{xx} + I_{3}R_{2}$$





**10-19** 图为三端集成稳压器应用电路。 计算 $U_0$ 的可调范围。 设 $U_{EB}$ =0.2V。

解:

$$U_{omax} = \frac{R_1 + R_{RP} + R_3}{R_1} \cdot (U_{xx} + U_{EB}) = \frac{1 + 2 + 0.5}{1} \cdot (15 + 0.2) = 53.2V$$

$$U_{Omin} = \frac{R_1 + R_{RP} + R_3}{R_1 + R_{RP}} \cdot (U_{xx} + U_{EB}) = \frac{1 + 2 + 0.5}{1 + 2} \cdot (15 + 0.2) = 17.7V$$

则 Uo的可调范围是(17.7V~53.2V)。

即 17.7V≤*U*<sub>0</sub>≤ 53.2V

