New hardware at Mainz

High performance 12-core PC Dell R710

Two X5670 CPUs (24 virtual CPUs) @ 2.93GHz (3.33GHz turbo) 24GB memory @ 1333MHz

6*500GB with a fast PERC H700 ($\approx 450 \frac{MB}{s}$ serial writing)

Special ATLAS conditions: 3500€

Low power 12-core PC Dell R710

Two L5640 CPUs (24 virtual CPUs) @ 2.26GHz (2.8GHz turbo) 24GB memory @ 1333MHz

6*500GB with a fast PERC H700 ($\approx 450 \frac{MB}{s}$ serial writing)

Special ATLAS conditions: 3200€

48 x 1G-port switch Dell PowerConnect 6248

 $\mathsf{two}\;\mathsf{SFP} + \;\mathsf{modules}\; \big(\mathsf{two}\;\mathsf{ports}\;\mathsf{each}\big)$

Special ATLAS conditions: 888€ + 100€

New hardware at Mainz

Power consumption with different power supplies

Power supply:	1×570	2×570	1×870	2×870
low load	156 ± 3	163 ± 3	171 ± 3	190 ±4
high load	324 ± 6	332 ± 7	329 ± 6	351 ± 7

Table: Power consumption of the high performance PC in Watts

Power supply:	1×570	2×570	1×870	2×870
low load	101 ± 2	113 ±2	114 ± 2	138 ± 2
high load	249 ± 4	252 ± 4	250 ± 4	273 ± 4

Table: Power consumption of the low power PC in Watts

High load via linpack (10k equations) benchmarks (HT on) taking 19GB memory:

Fast PC: 102 GFLOPS (292 MFLOPS)
Watt

Low Power PC: 82 GFLOPS (337 $\frac{MFLOPS}{Watt}$)

Let's talk about racks

10kW racks are suggested so far

351 Watts per PC \Rightarrow up to 28 PCs per rack

2U-PCs fit without a problem!

If you really want to buy expensive 2U-PCs I would put disks into every PC instead of building a separate disk farm (Dell R510: up to 12×3.5 " disks per PC) \rightarrow need 100PCs to achieve 300TB. Better: Buy 1U-PCs and external raid arrays! (also if you want a

separate farm)

Flow control Sliding window

Congestion Avoidance

Congestion window

Packet sizes

Dell-1 - 1µs Interrupt Coalescence 10 UDP data rate Data rate[Gb/s] TCP data rate 8 UDP sending data rate 100 1000 10000 10 Packet size[B] CPU load and Packet loss [%] 100 .UDP CPU load -TCP CPU load ---Packet loss ⊢ 80 60 40 20 10 100 1000 10000 Packet size[B]

Interrupt coalescence

$1\mu s \hat{=}$ automatic calibration of interrupt coalescence

Interrupt Coalescence

$1\mu s\hat{=}$ automatic calibration of interrupt coalescence

Window sizes

I've run several tests with different memory settings and a interrupt coalescence of $1\mu s$:

Settings

```
sysctl -w "net.ipv4.tcp_rmem=$i $i $i" sysctl -w "net.ipv4.tcp_wmem=$i $i $i" sysctl -w "net.core.rmem_max=$i" sysctl -w "net.core.wmem_max=$i" sysctl -w "net.ipv4.udp_mem=$i $i $i" sysctl -w "net.ipv4.udp_rmem_min=$i" sysctl -w "net.ipv4.udp_wmem_min=$i" sysctl -w "net.ipv4.udp_wmem_min=$i"
```

Performance tests

Window sizes

The second bin is the default value

Performance tests

Conclusions

We should use TCP because:

- Flow control and congestion avoidance
- TCP-optimized hardware (offload etc.)
- Adding reliability on top of UDP only in user mode (TCP: inside Kernel)!
- UDP: can only write MTU to socket; TCP: data stream instead
- Naggle algorithm helps you sending large packages (low CPU as shown)