

DASO: Distribution-Aware Semantics-Oriented Pseudo-label for Imbalanced Semi-Supervised Learning

Youngtaek Oh¹, Dong-Jin Kim², In So Kweon¹

¹KAIST. ²UC Berkeley / ICSI.

Introduction

Challenges in Imbalanced Semi-supervised Learning (SSL)

- ☐ Biased pseudo-labels (PLs) when learning with long-tailed data.
- ☐ Unknown class distribution of unlabeled data, in practice.
- → Goal: (1) <u>unbiased pseudo-labels</u> (2) <u>without relying on any class prior</u>.

Practical Imbalanced SSL scenarios

Glimpse of the DASO framework

DASO class-adaptively blends two complementarily biased PLs from different classifiers to generate unbiased PL.

Proposed Method

Motivation: Trade-offs between linear and semantic pseudo-label

- ☐ Properties on linear PL w/ FixMatch and semantic PL w/ USADTM.
- FixMatch: Biased towards majority classes
- **USADTM**: Biased towards minority classes
- © DASO: More semantic PL to the minorities mis-predicted to the head.

Analysis on (a) recall and (b) precision of PLs, and (c) test accuracy on CIFAR10-LT.

Distribution-Aware Semantics-Oriented (DASO) Pseudo-label Framework

☐ Blending PLs: class-adaptive blending of semantic PL into linear PL.

$$\hat{p}' = (1 - v) \cdot \hat{p} + v \cdot \hat{q},$$

☐ Semantic alignment loss: balanced feature space for unbiased predictions.

$$\mathcal{L}_{\text{align}} = \mathcal{H}(\hat{q}, q^{(s)}),$$

Experiments

 \Box Comparisons under identical imbalance: $\gamma_l = \gamma_u$.

	CIFAR10-LT				CIFAR100-LT			
	$\gamma = \gamma_l = \gamma_u = 100$		$\gamma = \gamma_l = \gamma_u = 150$		$\gamma = \gamma_l = \gamma_u = 10$		$\gamma = \gamma_l = \gamma_u = 20$	
	$N_1 = 500$	$N_1 = 1500$	$N_1 = 500$	$N_1 = 1500$	$\overline{N_1 = 50}$	$N_1 = 150$	$N_1 = 50$	$N_1 = 150$
FixMatch [1]	67.8±1.13	$77.5_{\pm 1.32}$	$62.9_{\pm 0.36}$	72.4±1.03	45.2±0.55	$56.5{\scriptstyle\pm0.06}$	$40.0{\scriptstyle\pm0.96}$	50.7±0.25
w/ DARP [2]	$74.5{\scriptstyle\pm0.78}$	77.8 ± 0.63	67.2 ± 0.32	73.6 ± 0.73	49.4 ± 0.20	$58.1{\scriptstyle\pm0.44}$	43.4 ± 0.87	52.2 ± 0.66
w/ CReST+[3]	76.3 ±0.86	$78.1{\scriptstyle\pm0.42}$	67.5 ± 0.45	$73.7{\scriptstyle\pm0.34}$	44.5 ± 0.94	57.4 ± 0.18	40.1 ± 1.28	$52.1{\scriptstyle\pm0.21}$
w/ DASO	$76.0{\scriptstyle\pm0.37}$	79.1 ±0.75	70.1 ±1.81	75.1 ±0.77	49.8 ±0.24	59.2 ±0.35	43.6 ±0.09	52.9 ±0.42

 \Box Comparisons under diverse imbalances on unlabeled data: $\gamma_l \neq \gamma_u$.

	CIFAR10-LT $(\gamma_l \neq \gamma_u)$				STL10-LT (γ_u : unknown)			
	$\gamma_u = 1 (uniform)$		$\gamma_u = 1/100 \ (reversed)$		$\gamma_l = 10$		$\gamma_l = 20$	
	$N_1 = 500$	$N_1 = 1500$	$N_1 = 500$	$N_1 = 1500$	$N_1 = 150$	$N_1 = 450$	$N_1 = 150$	$N_1 = 450$
FixMatch [1]	73.0±3.81	81.5±1.15	62.5±0.94	71.8±1.70	56.1±2.32	72.4±0.71	47.6±4.87	64.0±2.27
w/ DARP [2]	$82.5{\scriptstyle\pm0.75}$	84.6 ± 0.34	$70.1{\scriptstyle\pm0.22}$	80.0 ± 0.93	$66.9_{\pm 1.66}$	$75.6{\scriptstyle\pm0.45}$	$59.9_{\pm 2.17}$	$72.3{\scriptstyle\pm0.60}$
w/ CReST [3]	83.2 ± 1.67	87.1 ± 0.28	$70.7{\scriptstyle\pm2.02}$	80.8 ±0.39	61.7 ± 2.51	71.6 ± 1.17	57.1 ± 3.67	$68.6{\scriptstyle\pm0.88}$
w/ CReST+ [3]	82.2 ± 1.53	86.4 ± 0.42	62.9 ± 1.39	$72.9_{\pm 2.00}$	61.2 ± 1.27	$71.5{\scriptstyle\pm0.96}$	56.0 ± 3.19	$68.5{\scriptstyle\pm1.88}$
w/ DASO	86.6 ±0.84	88.8 ±0.59	71.0 ±0.95	80.3 ± 0.65	70.0 ±1.19	78.4 ±0.80	65.7 ±1.78	75.3 ±0.44

☐ Large-scale experiments with realistic scenarios.

Semi-Aves benchmark

- \Box Long-tailed distributions $\gamma_l \neq \gamma_{ll}$
- \Box Large open-set class examples \mathcal{U}_{out}
- \Box Total unlabeled data $\mathcal{U} = \mathcal{U}_{in} + \mathcal{U}_{out}$

	Semi-Aves						
Mathad	u =	$= {\cal U}_{in}$	$\mathcal{U} = \mathcal{U}_{in} + \mathcal{U}_{out}$				
Method	Last Top1	Med20 Top1	Last Top1	Med20 Top1			
Supervised	41.7±0.32	41.7±0.32	41.7±0.32	41.7±0.32			
FixMatch [1]	53.8 ± 0.17	53.8 ± 0.13	45.7 ± 0.89	46.1 ± 0.50			
w/ DARP [2]	52.3 ± 0.48	52.1 ± 0.48	46.3 ± 0.70	46.4 ± 0.61			
w/ CReST [3]	52.1 ± 0.36	52.2 ± 0.27	43.6 ± 0.69	43.6 ± 0.68			
w/ CReST+ [3]	53.9 ± 0.38	53.8 ± 0.38	45.1 ± 1.09	45.2 ± 1.00			
w/ DASO	54.5 ±0.08	54.6 ±0.12	47.9 ±0.41	47.9 ±0.38			

☐ Understanding the effects of DASO on debiasing pseudo-labels.

References

[1] K. Sohn et al., FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence, NIPS 2020.

[2] J. Kim et al., DARP: Distribution Aligning Refinery of Pseudo-label for Imbalanced Semi-supervised Learning, NIPS 2020.

[3] C. Wei et al., CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning, CVPR 2021.

