Gebze Technical University Computer Engineering

CSE 331 - 2018

ASSIGNMENT 3 REPORT

CELAL CAN KAYA 161044014

Course Assistant: Fatma Nur Esirci

ŞEMATİK TASARIMLAR

Şekil 1- Mips32

Şekil 2- Control Unit Doğruluk Tablosu

Şekil 3- Control Unit

VERİLOG MODÜLLERİ

Mips32 – Top level modülüm.Register, alu, control unit ve 32Bitlik 2:1 Muxlar kullanılarak yapılmış modülüm. Muxları instruction shift veya sltu olduğunda doğru şekilde write data'ya aktarmak için kullanıyorum.

Control_unit – 5 Bitlik Function code'un doğruluk tablosunu kullanarak Select bitinin hangi değişkenlere bağlı olduğunu bulup formülünü çıkardım. Daha sonra o formülleri kullanarak alu için select bitlerini üreterek Alu'ya gönderdim.

Mips_registers – registers.mem dosyasındaki registerları "registers" ın içine atıyorum. Daha sonraki işlemler yapıldıktan sonra gelen Write data'yı Regwrite == 1 oldugu zaman Rd registerına yazıyorum.

Alu32 – 8:1 Mux Kullanarak seçilmiş olan operasyonu output olarak veriyorum.

_2mux - 1 Bitlik 2:1 Mux

_32Bit_2mux - 32 Tane 2:1 Mux Kullanılarak yapılmış 32 Bitlik 2:1 Mux

_32Bit_4mux - 3 Tane 32 Bitlik 2:1 Mux Kullanılarak yapılmış 32 Bitlik 4:1 Mux

_32Bit_8mux – 2 Tane 32 Bitlik 4:1 Mux ve 1 Tane 32 Bitlik 2:1 Mux Kullanılarak yapılmış 8:1 Mux. Alu'da select bitine göre hangi işlemin yapılacağını seçmek için yazdım.

_32Bit_and - 32 Bitlik And

_32Bit_or – 32 Bitlik Or

_32Bit_xor - 32 Bitlik Xor

_32Bit_nor - 32 Bitlik Nor

_32Bit_right_shift – 2:1 Lik Muxlar kullanılarak yapılmış Aritmetik right shift modülü. Kaç bit kaydırılacağını seçmek için B inputunun ilk 5 bitine bakıyorum. İlk 5 Bitten sonraki bitler 32'nin tam katı olacağından onları shifte dahil ettiğimizde sonuca herhangi bir etki yapmayacağından dolayı sadece ilk 5 bit üzerinden işlem yaptım.

_32Bit_left_shift — 2:1 Lik Muxlar kullanılarak yapılmış Logical left shift modülü. Kaç bit kaydırılacağını seçmek için B inputunun ilk 5 bitine bakıyorum. İlk 5 Bitten sonraki bitler 32'nin tam katı olacağından onları shifte dahil ettiğimizde sonuca herhangi bir etki yapmayacağından dolayı sadece ilk 5 bit üzerinden işlem yaptım.

Half_adder - 2 Tane 1 Bitlik Sayıyı toplayıp, toplamı ve carry bitini veren modül

Full_adder – Half adder kullanılarak yapılmış 2 Tane 1 Bitlik Sayı ve Carry bitini toplayıp, toplamı ve carry bitini veren modül

_32Bit_adder — Full adderlar kullanılarak yapılan ve M Inputu 0 verildiğinde 32 bit toplama yapan, M Inputu 1 verildiğinde 32 bit çıkarma yapan modül

SİMÜLASYON SONUÇLARI

Modelsim

Registers Dosyası

Tüm modüllerim testlerime göre düzgünce çalışıyor. Sonuçları "registers.mem" dosyasına tekrar yazdım. Gelen inputlar sürekli olarak değişmemesi için her instruction'un sonucunu sırayla 32. Registerdan itibaren geriye doğru yazdırdım.Inputlar olarakta genel olarak "registers.mem" dosyasındaki ilk registerları kullandım. "registers.mem" dosyasının içeriğini değiştirmeden yolladım.Modelsim üzerinden çalıştırdıktan sonra tekrar "registers.mem" dosyasına bakarak değişimleri görebilirsiniz.