VLSI group, IIT Madras

Search

- Home
- People
- Research
- Publications
- Teaching
- Prospective Students
- SMDP
- TI RAships

VLSI group, IIT Madras

Double balanced mixer

Goals

• Understand the operation of a double balanced mixer

- The above figure shows the mixer designed in the previous experiment. Ideally a mixer fed with V_{RF} and V_{LO} should have only product of these two components at the output. i.e the output should be zero if either of V_{RF} or V_{LO} is zero. But, as seen earlier, with V_{RF} =0, the above mixer still generates an output proportional to V_{LO} (LO feedthrough). Such a mixer is known as a single balanced mixer.
- LO feedthrough can be eliminated as shown in the circuit below by having two mixers driven by +v_{RF} and -v_{RF} and taking the difference between them. It can be seen by inspection that, when v_{RF}=0, the sum of currents through Q₁ and Q_{1a}. This is a double balanced mixer.

The above circuit is available in the form of an IC-the MC1496 double balanced modulator. Its internal
schematic is shown below. Most of the circuitry including the biasing arrangements are inside the IC. Only
R_E, the load resistors, and the bias current setting resistor need to be connected externally. Compared to the
circuit above, the bottom two transistors and their degenerating resistors are arranged as a differential pair
inside the MC1496 integrated circuit.

To be done before the lab session

• Go through the <u>lecture on double balanced mixers</u> [http://www.ee.iitm.ac.in/~nagendra/EC330/200901/lectures/ec330-mixer2/ec330-mixer2.swf].

Design a double balanced mixer around the MC1496 IC. Use a 12V supply and 1mA current through the bias branch. The mixer should be able to take in an RF input peak of 1V and have a conversion gain(ratio of the sinusoidal component at f_{RF}+f_{LO} OR f_{RF}-f_{LO} at the differential output to the amplitude of the input sinusoid) of 4.

To be done in the lab session

Verify the circuit designed above:

- Take V_{outp} or V_{outm} as the output.
- Drive the input with a low frequency $v_{RF}(\sim 1 \text{kHz})$ and a high frequency $v_{LO}(\sim 10 \text{kHz})$ and observe the output. You can use the oscillator designed in the previous experiment as the 10kHz source.
- Verify that the outputs are as expected.

- Build the differential to single ended converter shown above and drive it from the mixer. Choose appropriate supply voltages for the opamp.
 - Drive the mixer with a low frequency v_{RF} and a high frequency v_{LO} and observe the output.
 - Drive the mixer with a v_{RF} and v_{LO} at close by, but not identical frequencies and observe the low frequency(f_{RF} - f_{LO}) output. For filtering out the high frequency component, use a capacitor of appropriate value across R_L (both of them) which will short it out at high frequencies. Filtering will be a lot easier if you choose a higher f_{LO} , say 25kHz or 50kHz, and a difference frequency around 1kHz.
 - Remove the RF input and observe the output.
 - Remove the LO input and observe the output.

Applications

• This circuit is very commonly used for frequency translation in radio transmitters and receivers.

Something to try on your own

• Drive the lower input with audio, say from your computer or digital player. Drive the LO input with a sinusoid in the AM band(0.5-1.5MHz). You should be able to use an AM radio placed close by to receive the transmitted audio. You can use a short wire connected to the output node as an antenna.