Евклидови и унитарни пространства. Ортогонализация по метода на Грам-Шмид

За да говорим за дължина на вектор и ъгъл между ненулеви вектори на линейно пространство над $\mathbb R$ или над $\mathbb C$, трябва да въведем понятието скаларно произведение.

Определение 20.1. Скаларно произведение

$$\langle \ , \ \rangle : V \times V \longrightarrow F,$$

в линейно пространство V над полето $F=\mathbb{R}$ на реалните числа или полето $F=\underline{\mathbb{C}}$ на комплексните числа е изображение със свойствата:

- (i) $\langle v, u \rangle = \overline{\langle u, v \rangle}$ sa $\forall u, v \in V$;
- (ii) $\langle u_1 + u_2, v \rangle = \langle u_1, v \rangle + \langle u_2, v \rangle$ sa $\forall u_1, u_2, v \in V$;
- (iii) $\langle \lambda u, v \rangle = \lambda \langle u, v \rangle$ sa $\forall u, v \in V, \forall \lambda \in F$;
- $(iv)\ \langle v,v\rangle \in \mathbb{R}^{\geq 0}$ за $\forall v \in V \ c \ \langle v,v\rangle = 0 \in F$ точно когато $v = \mathcal{O}_V \in V$.

Съгласно Твърдение 15.2, скаларното произведение е линейно относно първия си аргумент.

ОПРЕДЕЛЕНИЕ 20.2. Линейно пространство V над полето $\mathbb R$ на реалните числа със скаларно произведение $\langle \; , \; \rangle: V \times V \to \mathbb R$ се нарича евклидово

Линейно пространство V над полето $\mathbb C$ на комплексните числа със скаларно произведение $\langle \ , \ \rangle: V \times V \to \mathbb C$ се нарича унитарно.

Следствие 20.3. Аксиомите за скаларно произведение в евклидово или унитарно пространство V имат следните следствия:

- (a) $\langle u, v_1 + v_2 \rangle = \langle u, v_1 \rangle + \langle u, v_2 \rangle$ sa $\forall u, v_1, v_2 \in V$;
- (6) $\langle u, \lambda v \rangle = \overline{\lambda} \langle u, \underline{v} \rangle$ so $\forall u, v \in V$, $\forall \lambda \in \mathbb{R}$ unu $\lambda \in \mathbb{C}$;
- (в) $\langle \overrightarrow{\mathcal{O}_V}, v \rangle = \langle v, \overrightarrow{\mathcal{O}_V} \rangle = 0$ за $\forall v \in V$ и нулевия вектор $\overrightarrow{\mathcal{O}}_V \in V$;

(2)
$$\langle \sum_{i=1}^{m} \lambda_i u_i, \sum_{j=1}^{n} \mu_j v_j \rangle = \sum_{i=1}^{m} \sum_{j=1}^{n} \lambda_i \overline{\mu_j} \langle u_i, v_j \rangle$$

за произволни $u_i, v_j \in V$ и $\lambda_i, \mu_j \in F = \mathbb{R}$ или $\lambda_i, \mu_j \in F = \mathbb{C}$.

Доказателство. (a) За произволни вектори $u, v_1, v_2 \in V$ е в сила

$$\langle u, v_1 + v_2 \rangle = \overline{\langle v_1 + v_2, u \rangle} = \overline{\langle v_1, u \rangle + \langle v_2, u \rangle} = \overline{\langle v_1, u \rangle} + \overline{\langle v_2, u \rangle} = \langle u, v_1 \rangle + \langle u, v_2 \rangle,$$

съгласно $\overline{z_1+z_2}=\overline{z_1}+\overline{z_2}$ за произволни комплексни числа $z_1,z_2\in\mathbb{C}.$

(б) За произволни $u,v\in V$ и $\lambda\in\mathbb{R}$, съответно, $\lambda\in\mathbb{C}$ е изпълнено

$$\langle u, \lambda v \rangle = \overline{\langle \lambda v, u \rangle} = \overline{\lambda} \langle v, u \rangle = \overline{\lambda} \ \overline{\langle v, u \rangle} = \overline{\lambda} \ \langle u, v \rangle,$$

използвайки $\overline{(z_1z_2)}=\overline{z_1}\,\overline{z_2}$ за $\forall z_1,z_2\in\mathbb{C}.$

(в) За произволен вектор $u \in V$ е в сила $0u = \mathcal{O}_V$, така че

$$\langle \mathcal{O}_V, v \rangle = \langle 0u, v \rangle = 0 \langle u, v \rangle = 0$$
 и

$$\langle v, \mathcal{O}_V \rangle = \langle v, 0u \rangle = \overline{0} \ \langle v, u \rangle = 0 \ \langle v, u \rangle = 0.$$

Свойство (г) се получава от аксиоми (ii), (iii) за скаларно произведение и следствия (а), (б) от аксиомите за скаларно произведение.

Съгласно Следствие 20.3 (a), (б), скаларното произведение в евклидово пространство V е линейно относно втория си аргумент. Да забележим, че скаларното произведение в унитарно пространство не е линейно относно втория си аргумент. Функциите със свойствата (a), (б) от Следствие 20.3 се наричат косолинейни.

Определение 20.4. Векторите b_1, \ldots, b_n от евклидово или унитарно пространство V са ортогонални, ако $\langle b_i, b_j \rangle = 0$ за всички различни $1 \le i \ne j \le n$.

ЛЕМА 20.5. Произволни ненулеви ортогонални вектори v_1, \ldots, v_n от евклидово (унитарно) пространство V са линейно независими.

Доказателство. Нека

$$\lambda_1 v_1 + \ldots + \lambda_i v_i + \ldots + \lambda_n v_n = \mathcal{O}_V$$

е линейна комбинация на v_1, \ldots, v_n , равна на нулевия вектор $\mathcal{O}_V \in V$ с коефициенти $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ или $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$. Скаларното произведение на тази линейна комбинация с v_i е равно на

$$0 = \langle \mathcal{O}_V, v_i \rangle = \langle \lambda_1 v_1 + \ldots + \lambda_i v_i + \ldots + \lambda_n v_n, v_i \rangle = \lambda_i \langle v_i, v_i \rangle,$$

съгласно $\langle v_j, v_i \rangle = 0$ за $1 \le i \ne j \le n$. Поради $v_i \ne \mathcal{O}_V$, скаларният квадрат $\langle v_i, v_i \rangle > 0$ е положителен, откъдето $\lambda_i = 0$ за всички $1 \le i \le n$ и векторите v_1, \ldots, v_n са линейно независими.

ОПРЕДЕЛЕНИЕ 20.6. Ако V е евклидово или унитарно пространство и $v \in V$, то неотрицателният корен квадратен $||v|| := \sqrt{\langle v, v \rangle}^{\geq 0} \in \mathbb{R}^{\geq 0}$ от скаларния квадрат $\langle v, v \rangle \in \mathbb{R}^{\geq 0}$ на v се нарича дължина на v.

За произволен вектор $v \in V$ и произволен скалар $\lambda \in \mathbb{R}$ или $\lambda \in \mathbb{C}$ е в сила

$$\langle \lambda v, \lambda v \rangle = \lambda \overline{\lambda} \langle v, v \rangle = |\lambda|^2 ||v||^2,$$

откъдето $||\lambda v||=|\lambda|||v||$. В частност, ако $v\in V\setminus\{\overrightarrow{\mathcal{O}_V}\}$ е ненулев вектор от евклидово или унитарно пространство V, то $\frac{v}{||v||}\in V$ има дължина

$$\left| \left| \frac{v}{||v||} \right| \right| = 1.$$

Определение 20.7. Векторите e_1, \ldots, e_n от евклидово или унитарно пространство V са ортонормирани, ако са ортогонални и $||e_i||=1$ за всички $1 \le i \le n$.

ЛЕМА 20.8. Базис $e = (e_1, \ldots, e_n)$ на евклидово или унитарно пространство V е ортонормиран тогава и само тогава, когато

$$\langle ex, ey \rangle = \sum_{i=1}^{n} x_i \overline{y_i} = x^t \overline{y}$$

за произволни вектори $ex, ey \in V$ с координати $x, y \in M_{n \times 1}(F), F \in \{\mathbb{R}, \mathbb{C}\}$ спрямо базиса e.

Доказателство. Ако $e = (e_1, \dots, e_n)$ е ортонормиран базис на V, то

$$\langle ex, ey \rangle = \langle \sum_{i=1}^{n} x_{i} e_{i}, \sum_{j=1}^{n} y_{j} e_{j} \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} \overline{y_{j}} \langle e_{i}, e_{j} \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} \overline{y_{j}} \delta_{ij} =$$

$$= \sum_{i=1}^{n} x_{i} \overline{y_{i}} = (x_{1}, \dots, x_{n}) \begin{pmatrix} \overline{y_{1}} \\ \dots \\ \overline{y_{i}} \\ \dots \\ \overline{y_{n}} \end{pmatrix},$$

съгласно

$$\langle e_i, e_j \rangle = \delta_{i,j} = \begin{cases} 0 & \text{ sa } 1 \le i \ne j \le n, \\ 1 & \text{ sa } 1 \le i = j \le n. \end{cases}$$

Обратно, нека $\langle ex, ey \rangle = x^t \overline{y}$ за произволни вектори $ex, ey \in V$. Тогава

$$\langle e_i, e_i \rangle = (0, \dots, 0, 1, 0, \dots, 0) \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \underbrace{0.0 + \dots + 0.0}_{i=1} + 1.1 + \underbrace{0.0 + \dots + 0.0}_{n-i} = 1 \quad \text{3a} \quad \forall 1 \leq i \leq n.$$

Ако $1 \le i < j \le n$, то

$$\langle e_i, e_j \rangle = (0, \dots, 0, 1, 0, \dots, 0) \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \underbrace{0.0 + \dots + 0.0}_{i-1} + 1.0 + \underbrace{0.0 + \dots + 0.0}_{j-1-i} + 0.1 + \underbrace{0.0 + \dots + 0.0}_{n-j} = 0$$

и $\langle e_j,e_i\rangle=\overline{\langle e_i,e_j\rangle}=\overline{0}=0.$ Това доказва, че базисът $e=(e_1,\ldots,e_n)$ е ортонормиран.

В Лема 20.8 видяхме, че скаларното произведение се задава удобно чрез кооринатите на векторите спрямо ортонормиран базис на евклидово или унитарно пространство V. Сега ще разгледаме алгоритъм, наречен ортогонализация по метода на Грам-Шмид, чрез който от произволен базис b_1, \ldots, b_n на V получаваме ортонормиран базис e_1, \ldots, e_n .

Твърдение 20.9. Съществува алгоритъм, наречен ортогонализация по метода на Грам-Шмид, който по зададени линейно независими вектори a_1, \ldots, a_n от евклидово (унитарно) пространство V построява ненулеви ортогонални вектори $b_1, \ldots, b_n \in V$ с

$$l(a_1,\ldots,a_i)=l(b_1,\ldots,b_i)$$
 sa $\forall 1\leq i\leq n$.

Ако a_1, \ldots, a_m са ортогонални за някое $2 \le m \le n$, то

$$b_1 = a_1, b_2 = a_2, \dots, b_m = a_m.$$

Доказателство. С индукция по $1 \leq i \leq n$, за произволни линейно независими $a_1,\ldots,a_i \in V$ ще докажем, че съществуват ненулеви ортогонални вектори $b_1,\ldots,b_i \in V$ с линейна обвивка $l(b_1,\ldots,b_i)=l(a_1,\ldots,a_i)$. В частност, ако a_1,\ldots,a_i са ортогонални, то $b_1=a_1,\,b_2=a_2,\ldots,\,b_i=a_i$. За n=1 избираме $b_1=a_1$.

Ако $a_1,\ldots,a_i\in V$ са линейно независими вектори, то a_1,\ldots,a_{i-1} са линейно независими и по индукционно предположение съществуват ненулеви ортогонални вектори $b_1,\ldots,b_{i-1}\in V$ с $l(a_1,\ldots,a_{i-1})=l(b_1,\ldots,b_{i-1}).$ Търсим

$$b_i = a_i + \sum_{k=1}^{i-1} \lambda_{i,k} b_k \tag{20.1}$$

с такива $\lambda_{i,j} \in F = \mathbb{R}$ или $F = \mathbb{C}$, че b_i да е ортогонален на b_1, \dots, b_{i-1} . Това изисква

$$0 = \langle b_i, b_j \rangle = \langle a_i, b_j \rangle + \langle \lambda_{i,j} b_j, b_j \rangle = \langle a_i, b_j \rangle + \lambda_{i,j} \langle b_j, b_j \rangle$$
 за всички $1 \leq j \leq i-1$.

Съгласно $b_j \neq \overrightarrow{\mathcal{O}}_V$, скаларните квадрати $\langle b_j, b_j \rangle \in \mathbb{R}^{>0}$ са различни от 0, така че можем да изберем

$$\lambda_{i,j} = -\frac{\langle a_i, b_j \rangle}{\langle b_j, b_j \rangle}$$
 sa $1 \le j \le i - 1$.

Тогава b_1,\ldots,b_{i-1},b_i образуват ортогонална система вектори. Ако допуснем, че $b_i=\mathcal{O}_V,$ то

$$a_i = \sum_{j=1}^{i-1} (-\lambda_{i,j}) b_j \in l(b_1, \dots, b_{i-1}) = l(a_1, \dots, a_{i-1})$$

противоречи на линейната независимост на a_1,\dots,a_{i-1},a_i . Това доказва, че векторите b_1,\dots,b_{i-1},b_i са ненулеви.

$$l(a_1,\ldots,a_{i-1},a_i)=l(b_1,\ldots,b_{i-1},b_i)$$

използваме, че $l(a_1,\ldots,a_{i-1})=l(b_1,\ldots,b_{i-1}),$ откъдето

$$l(a_1,\ldots,a_{i-1},a_i)=l(a_1,\ldots,a_{i-1})+l(a_i)=l(b_1,\ldots,b_{i-1})+l(a_i)=l(b_1,\ldots,b_{i-1},a_i).$$

За

За да проверим

$$l(b_1,\ldots,b_{i-1},a_i)=l(b_1,\ldots,b_{i-1},b_i)$$

е достатъчно да забележим, че от (20.1) следва

$$b_i \in l(b_1, \dots, b_{i-1}, a_i)$$
 и $a_i = b_i - \sum_{i=1}^{i-1} \lambda_{i,j} b_j \in l(b_1, \dots, b_{i-1}, b_i).$

Ако $a_1,\dots,a_i\in V$ са ортогонални, то $a_1,\dots,a_{i-1}\in V$ са ортогонални и

$$b_1 = a_1, \ldots, b_{i-1} = a_{i-1}$$

по индукционно предположение. Тогава при търсене на b_i по правилото (20.1) получаваме

$$\lambda_{i,j} = -\frac{\langle a_i, b_j \rangle}{\langle b_j, b_j \rangle} = -\frac{\langle a_i, a_j \rangle}{\langle a_j, a_j \rangle} = 0$$

за всички $1 \le j \le i - 1$, откъдето $b_i = a_i$.

Следствие 20.10. Нека a_1, \ldots, a_n са линейно независими вектори от евклидово (унитарно) пространство V и $a_{n+1} \in l(a_1, \ldots, a_n)$. Тогава прилагането на ортогонализация по метода на Грам-Шмид към $a_1, \ldots, a_n, a_{n+1}$ дава $b_{n+1} = \overrightarrow{\mathcal{O}}_V$.

Доказателство. Чрез ортогонализация по метода на Грам-Шмид, от линейно независимите вектори $a_1,\ldots,a_n\in V$ получаваме ненулеви ортогонални $b_1,\ldots,b_n\in V$ с $l(a_1,\ldots,a_n)=l(b_1,\ldots,b_n)$. Търсим

$$b_{n+1} = a_{n+1} + \sum_{j=1}^{n} \lambda_{n+1,j} b_j.$$

Съгласно $a_{n+1} \in l(a_1,\ldots,a_n) = l(b_1,\ldots,b_n)$ съществуват $\mu_j \in F, F \in \{\mathbb{R},\mathbb{C},$ така че

$$a_{n+1} = \sum_{j=1}^{n} \mu_j b_j.$$

В резултат,

$$b_{n+1} = \sum_{j=1}^{n} \mu_j b_j + \sum_{j=1}^{n} \lambda_{n+1,j} b_j = \sum_{j=1}^{n} (\mu_j + \lambda_{n+1,j}) b_j.$$

От условията

$$0 = \langle b_{n+1}, b_j \rangle = (\mu_j + \lambda_{n+1,j}) \langle b_j, b_j \rangle$$

следва $\mu_j + \lambda_{n+1,j} = 0$ за всички $1 \leq j \leq n$ и $b_{n+1} = \overrightarrow{\mathcal{O}}_V$.

Следствие 20.11. Нека V е n-мерно евклидово (унитарно) пространство, а $e_1, \ldots, e_k \in V$ е ортонормирана система вектори. Тогава $k \leq n$ и e_1, \ldots, e_k може да се допълни до ортонормиран базис $e_1, \ldots, e_k, e_{k+1}, \ldots, e_n$ на V.

B частност, съществува ортонормиран базис e_1, \ldots, e_n на V.

Доказателство. Ненулевите ортогонални вектори e_1,\ldots,e_k са линейно независими по Лема 20.5. Съгласно Твърдение 5.14, $k\leq n$ и можем да допълним e_1,\ldots,e_k до базис $e_1,\ldots,e_k,v_{k+1},\ldots,v_n$ на V. В частност, съществува базис v_1,\ldots,v_n на V.

Към линейно независимите вектори $e_1,\ldots,e_k,v_{k+1},\ldots,v_n$ или v_1,\ldots,v_n прилагаме ортогонализация по метода на Грам-Шмид и получаваме ненулеви ортогонални вектори $b_1,\ldots,b_n\in V$. При това, $b_1=e_1,\ldots,b_k=e_k$, ако $v_1=e_1,\ldots,v_k=e_k$ са два по два ортогонални. Векторите b_1,\ldots,b_n са линейно независими и образуват базис на V съгласно Твърдение 5.12. Полагаме

$$||b_i||:=\sqrt{\langle b_i,b_i
angle}^{\geq 0}, \;\; e_i:=rac{b_i}{||b_i||} \;\;$$
 за всички $\;1\leq i\leq n$

и получаваме ортонормирана система вектори $e_1,\ldots,e_n\in V$. Тази система е линейно независима съгласно Лема 20.5. Прилагаме Твърдение 5.12 и получаваме, че e_1,\ldots,e_n е ортонормиран базис на n-мерното пространство V. Ако $v_1=e_1,\ldots,v_k=e_k$, то ортогонализацията по метода на Грам-Шмид и нормирането запазват e_1,\ldots,e_k и полученият базис $e_1,\ldots,e_k,e_{k+1},\ldots,e_n$ съдържа e_1,\ldots,e_k .