28+1

EPITA

Mathématiques

Contrôle S2

durée: 3 heures.

Février 2023

Nom:

Prénom:

Classe: El

NOTE

31 <

J. Bres

15,5

Le barème est sur 40 points. La note sera ramenée à une note sur 20 en divisant par 2.

Consignes:

- Lire le sujet en entier avant de commencer. Il y a en tout 7 exercices.
- La rigueur de votre rédaction sera prise en compte dans la note.
- Un malus d'un point sur la note sur 20 sera appliqué aux copies manquant de propreté.
- Documents et calculatrices interdits.
- Aucune réponse au crayon de papier ne sera corrigée.

4,516 -1,5

Exercice 1 : polynômes (6 points)

On considère le polynôme $P(X) = X^6 - X^5 - 3X^4 + 7X^3 + 14X^2 + 6X$.

1. Montrer que -1 est une racine de P et trouver son ordre exact de multiplicité.

 $P(-1) = (-1)^6 - (-1)^5 - 3(-1)^6 + 7(-1)^3 + 14(-1)^6 + 6(-1)$ = 1 + 1 - 3 - 7 + 14 - 6

Donc -1 est bien une racine de P

P'(X)=6x5-5x4-12x3+21x2+28x+6

 $P''(x) = 30x^{4} - 20x^{3} - 36x^{2} + 42x + 28$ et P''(x) = 0

P(3)(X)=120X3-60X2-72X+42 et P(3)(-1)=114 ±0 (-1) est une rouvre de P d'ordre de roultiplicité exactores

- 2. Que peut-on en déduire en termes de divisibilité?
 On en de deut que (X+1)3/P(X) et FQFRIX3 fel que P(X)-(X+1)2/Q(
- 3. En vous aidant d'une seule division euclidienne, factoriser P en produit de polynômes irréductibles dans $\mathbb{R}[X]$.

On sout que $(X+1)^3|P(X)$ et $P(X)=(X+1)^3Q(X)$ avec $Q(X)\in P(X)$

-4x⁵-6x⁴+6x³+14x²+6x -(-4x⁵-12x²-12x³-4x²)

-(6X4+18X3+18X46X)

Donc P(x)=(X+1)3(x3-4x2+6x)

on (X-4x+6) n'admet pas de nacines néelles

Donc P(X)=X(X+1)3(X=4X+6) en prodent de polynome

innederchibles dans REXI

Exercice 2 : équations différentielles (6 points)

Dans cet exercice, les questions sont indépendantes.

- 1. On considère l'équation différentielle (E_1) : $(x+1)y'-2y=(x+1)^3\cos(3x)$ sur $I=]-1,+\infty[$.
 - (a) Résoudre (E_1) sur I.

Résolution de l'equation (f_0): ($\infty+1$)y'-2y=0 $g_0 = Ke^{-S\frac{b}{a}} \quad Sost f(\infty) = \frac{2}{2} \quad \text{ef } F(\infty) = -2\ln(\infty+1)$

are b=-2 et (car f= xu' avec u(cc) xet)

Done yo=Ke 201(00+1)

= (x(x+1), k = 1h de (Ex)

On cheretre une solution particulière sous la torme:

yp= K(x)x (2e+1)

(2+1) 4p - 240 = (2e+1) cos(3be)

=>(ze+1)([(x)x(x+1)]+((x)x(x+2))-2(((x)x(x+1)))-

=> K(x)(ze+1) + K(x)(x+1)2 - 2 K(se) x (xe+1)=(x+1) cos (3

-> K/(a) (set1) = 6c+1)3cos(3x) L

= $K'(\omega t) = \omega S(3x)$

Donc K(x) = 1 sch (30c) ~

Et yp=K6c) x (2c+1)2 done yp= 1 sch(350) x(2c+1)

Donc S= {y= Kx6e+1) + 1 sin(30) 26e+1)2, KERZ}

(b) Trouver les solutions de (E_1) telles que y(0) = 1.

Pour que y(0)=1 il faut que

Fx (0+1)2+1=sn(3x0)x(0+1)2=1

=> Kx1=1=> K=1

Done les solutions, de t, telles que y (0)=1 sont S={y=(x+1)2+{sin(3x)x(x+1)2, ken}2

3

_	
2.	Soit (E_2) : $y'' + 4y' + 13y = (25x^2 + 16x + 2)e^{2x}$ sur $J = \mathbb{R}$.
	(a) Montrer que $y_p: x \longmapsto x^2 e^{2x}$ est une solution particulière de (E_2) .
	yp= =2e2x et yp=2xe2x+2x2e2x1
	et yp=20ex2e20e+20ex+20ex+20ex+20ex
1	$yp'' + 4yp + 13yp = 8xee^{2x} + 2e^{2x} + x^24e^{2x} + 4(2xe^{2x} + x^22e^{2x}) + 13xe^{2x} = e^{2x}(8x + 2 + 8x^2 + 8xe^2 + 13xe^2)$ $= e^{2x}(16x + 2 + 25x^2)$
	Donc ypide ->222 est ber une solution partouloiere
	(h) Transport to the plating la (T)
	(b) Trouver toutes les solutions de (E_2) .
	Nous savons que yp=2002
	Oberolvens $y''+4y'+13y=0$
. (Soit Requation associe: R2+42+132=0
10	1=-36 donc le polynome admet 2 paunes non néelles
	Soit 21=-2-3: et 29=-2+3:
	Done 40= e-20 (K. (05(30) + K. sh(30)) avec(Ky, Ky) E M
Exe	Done S= {y=x2222+ e-20(K,cos(3x)+Ksch(3x)), (K, K)+N25
	rcice 3: études locales (6,5 points) 6/6,5 -0,5
1.	Soient f et g deux fonctions définies sur \mathbb{R} . Soit $a \in \mathbb{R} \cup \{+\infty, -\infty\}$. Rappeler les définitions mathématiques de $f(x) \sim g(x)$ et $f(x) = o(g(x))$ au voisinage de a .
	flac)~g(seX=) lom flae) = 1, 4 se E [] L
1	et flat = 0(0(00)) (= 2 flat flat) = 0 (H2 E R
11	2-30 gOc)
2.	Donner, en justifiant, un équivalent simple (autre que la fonction elle même) de $f(x) = 3x^3 - 2x^2 + 6x$ en $a = 0$ ET en $a = +\infty$.
	$f(be) \sim 6 \approx can lim 3 = -2 = 2 + 6 = 3 = -2 = 2 + 6 = $
Λ	200 62 62 62
1	ET
	for 12 303 (a) Om 303-202460 - 23(3-2+6)

3. Soient h et k deux fonctions telles qu'au voisinage de 0
$h(x) = 1 + 2x + x^2 - 3x^3 + o(x^3)$ et $k(x) = -x + 3x^2 + o(x^2)$
(a) Donner un équivalent le plus simple possible en 0 de : $h(x)$ (sans justifier), $k(x)$ (sans justifier) et $xh(x) + k(x)$ (en justifiant).
h(x)=1+2x+o(x) et K(x)=-x+3x2+o(x2)
$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dx = 2x + 2x^2 + dx^2$
Done 20(1x)+K(0x)=x+2x2-x+3x2+0(0x2)
Dere $x = h(x) + k(6x) + k(6x$
Allordre let 2 oui mais pas à l'ordre 3
1 ((a) + (Coc) = 1+ e(1)
15h(x)+K(x)=1+2x-2+d(x)=1+2e+d(x)
Mse)+Kse)= 4+ 20x+ xe2-xx+3xe2+6622) = 1+xx+4x2+6622)
Exercice 4 : développements limités (5 points)
Dans cet exercice, vous prendrez soin de rappeler les développements limités usuels que vous devez utiliser.
1. Trouver le développement limité en 0 à l'ordre 3 de $f(x) = \cos(x)e^{-2x}$.
$\cos(\alpha) = 14x^{2} + 0(\alpha^{3})$ $e^{2} = 1+x+20^{2} + 20(x^{3})$
Done e = 1+(-2x)+(-2x)+(-2x)+(-2x)3+dx3)
$\int_{1}^{\infty} \int_{0}^{\infty} e^{-2x} = 1 + (-2x) + \frac{(-2x)}{(-2x)} + \frac{(-2x)}{(-2x)} + \frac{(-2x)^{3}}{(-2x)^{3}} + c(x^{3})$ $= 1 - 2x + 2x^{2} - \frac{4x^{3}}{3} + c(x^{3})$
Done $f(x) = (1+x^2+0(x^3))(1-2-x+2x^2-4x^3+0(x^3))$
$f(x) = 1 - 2x + 2x^2 - 6x^3 + x^2 - 2x^3 + o(x^3)$
$f(x) = 1 - 2x + 2x^2 - 4x^3 + x^2 - 2x^3 + o(x^3)$ $f(x) = 1 - 2x + 5x^2 - 7x^3 + o(x^3)$
2.3
······································

CONT	PRÔLE S2 – Février 2023
2.	Calculer le développement limité en 0 à l'ordre 2 de $g(x) = \sqrt{1+x}$ à partir d'un des cinq DL usuels.
	g(x)= 1/1+x = (1+x) 2 (1+xe)=1+ax+ a(a-1)x2+o(x2)
1	glax=1+ 1=x+ 1=(1-1)x2+0(x2)
()	$=1+1x-1x^2+0(x^2)$
3.	Trouver le développement limité en 0 à l'ordre 2 de $h(x) = \ln \left(1 + \sqrt{1+x}\right)$.
	(1+2=1+1=-12+d2)
	ln(1+1+1==-1=+0(2))=ln(2(1+1x-1=+0(2))
	$= \ln(2) + \ln(2 + 1) = -1 = 2 + 0(2^2)$
	$\ln(1+9e) = 2e - \frac{3e^2}{2} + o(a^2)$
\wedge	ln(1+ 1x-1x2+0622))=(1x-1x2)-(4x-16x2)+06x2)
L	$= \frac{1}{16} x^2 - \frac{1}{16} x^2 - \frac{1}{16} x^2 + o(\alpha^2)$
	$= \frac{1}{2} = \frac{3}{3} = \frac{3}{10} = \frac{2}{3}$
	h(xe) = ln(2)+1x-3x+0(x2)
Exe	ercice 5 : calculs de limites (3,5 points) 2,5/3,5 - 1
1.	Calculer $\lim_{x\to 0} \frac{e^x + e^{-x} - 2}{\sin(\frac{x}{2})}$. Vous devez utiliser les DL!
	e=1+x+x2+062)ef e=1-xe+x2+062)
	$sin(\infty) = \infty + o(\infty)$ $sin(2) = 2 + o(\infty^2)$
1	$\frac{3}{2}$
	$\int \frac{1+x+x^2+1-x+x^2-2+o(x^2)}{2} \frac{x^2+o(x^2)}{2} \sqrt{\frac{x^2}{2}} + o(x^2) \sqrt{\frac{x^2}{2}}$
	$\frac{2}{2} + O(\alpha^2) \qquad \qquad \frac{1}{2} \qquad + O(1)$
	lan ete -2 - 2 2
	2 (2) = 1/100 On lon 2>c=0
	done lum $e^{x} + e^{-x} = 2$
	>c >0 Suh(\frac{3e}{2}) 7

2. Calculer $\lim_{x\to +\infty} \left(1+\ln\left(1+\frac{1}{x}\right)\right)^x$. Vous devez utiliser les DL.
$\lim_{x\to+\infty} (1+\ln(1+\frac{x}{x}))^{2} = \lim_{x\to0} (1+\ln(1+x))^{2}$
15 (1+lh(1+X)) = eln(1+lh(1+X)) = & lh(1+ln(1+X))
ln(1+X)= X-X2+0(x) ln(1+X-x2+0(x2))= X-X2-(X-2)+
2(x-X2+0(x2))= 1- X+0(x) = X- X2+0(x2) lon fixln (1+1) = 01
Exercice 6: espaces vectoriels 1 (8 points)
1. Les ensembles suivants sont-ils des R-espaces vectoriels? Justifiez rigoureusement votre réponse.
(a) $E = \{(x,y) \in \mathbb{R}^2, x \leq y\}$
ECR2 qui est un sev de néférence
· OpEE can six=0 et y=0 alons x ≤y
· Soit (u,v) E E tel que u(x,y) over x <y< td=""></y<>
My (setsen, ytyn) et sets, & ytyn can sey et sa &y
Done utVEE pad di 20
Soit SEP, lu(Zx, Zy) lasty can asy
Done Juff
Done E est un gev de D' donc un Rev
(b) $F = \{(x, y, z) \in \mathbb{R}^3, x - y = 0\}.$
FCR3 qui est un ser de nelenerce
· Ops EF car 0-0-0
· Soit (u, v) EF avec u(a, x, z) et v(x, x, z)
utv (20+20, 20+20, 20) 20+20, -(20+20)=0
1 done utvEF
Sout REAL, Lu (Doc, 200, 22) Loe-20e=0
done Ru EF
done Fest un sev de Rª donc un Rev

(c) $G = \{P \in \mathbb{R}[X], X \mid P\}$
XIP => PCX)=XQ(X) avec Q(X) ER[X]
6. C REXJ qui est us ser de notenerce
· O_{RCJ} soit $P(X) = 0$ expansest a 6 can sion prend $x = 0$, $P(0) = O_{X}Q(0)$
Sof (P, B)EG avec P(X)=XQ(X) avec Q(X)E/R(X) B(X)=XQ(X) Q'(X)E/R(X)
P(X) + B(X) = XQ(X) + XQ'(X) $e + (Q(X) + Q'(X)) = P(X) + P(X) + P(X)$
2. Dans cette question, il n'est pas demandé de justifier les réponses. 2. Dans cette question, il n'est pas demandé de justifier les réponses. 2. Dans cette question, il n'est pas demandé de justifier les réponses.
2. Dans cette question, il n'est pas demandé de justifier les réponses.
Donner un sous-espace vectoriel de E (autre que E et $\{0_E\}$) dans les cas suivants :
(a) $E = \mathbb{R}^4$ $C = \frac{1}{2}(x, y, z, t) \in \mathbb{R}^4$, $x + y + z + t = 0$? Ced in sev de E
2 Cest un seu de E
(b) $E = \mathbb{R}^{\mathbb{R}}$ $D = \{ f(x) \in \mathbb{R}^{\mathbb{R}}, \text{ set de } E \}$ $D = \{ f(x) \in \mathbb{R}^{\mathbb{R}}, \text{ set de } E \}$
Dest un sev de E
(c) $E = \{(u_n) \in \mathbb{R}^{\mathbb{N}}, (u_n) \text{ converge}\}\$ $\mathcal{I} = \{(u_n) \in \mathbb{N}, (u_n) \in \mathbb{N}, (u_n) \in \mathbb{N}\}$
1 Eat un sev de E
Exercice 7: espaces vectoriels 2 (5 points) 3,515 -1,5
Les deux questions sont indépendantes.
1. Dans \mathbb{R}^3 , on considère les sous-espaces vectoriels
$F = \{(x, y, z) \in \mathbb{R}^3, x = 0\} \text{ et } G = \{(x, y, z) \in \mathbb{R}^3, x = y\}$
(a) A-t-on $F \cap G = \{0_{\mathbb{R}^3}\}$? Justifier. (b) Can be verkeur $(0,0,3) \in F \cap G$ et est $\neq S \cap G$.

(b)	Rappeler la définition mathématique de l'ensemble $F+G$.
	F+G= {W=u+V, w E Fx et u EF, v EG}
	Le vecteur $u = (1, 2, 3)$ appartient-il à $F + G$? Justifier. (O,d, A) $E = E + (A, A, 2) + E = (A, A, 2)$
0/2	Et (0+1,1+1,1+2)=(1,2,3) donc uEF+6
(d)	La décomposition que vous avez trouvé est-elle unique? Justifier. Pourquoi en étiez-vous certain avant même de faire le moindre calcul?
015	On peut aussi l'éverire avec (0,1,2) EF et (11,1) EG Don elle n'est pas unique (an z pria pas de contrautres sur les deux sous espaces (ar FDG + 10 ps) vertonvels
2. Soi	ent E un \mathbb{R} -espace vectoriel et $\mathcal{F}=(u_1,u_2,\cdots,u_n)\in E^n$ une famille de n vecteurs de E . $(n\in\mathbb{N}^*)$
(a)	Donner la définition mathématique de : \mathcal{F} est une famille libre de E .
	$\forall (\alpha_1, \dots, \alpha_n) \in \mathbb{R}_{\lambda_1} \cup_{i+\dots+\alpha_{n+1}} = O_{\mathcal{E}} (\alpha_1, \dots, \alpha_n) = (O_{i+1}, O)$
(b)	Donner la définition mathématique de : \mathcal{F} est une famille génératrice de E .
0,5	YuEE, J (ac,, an) tol que w= x, u, + + anun
(c)	Dans $E=\mathbb{R}^3$, donner un exemple d'une famille libre composée de 2 vecteurs et un exemple d'une famille liée composée de 3 vecteurs. Justification non demandée.
0,5	$F_{4} = ((-1,2,3),(1,0,0))$
05	$F_2 = ((1,1,1), (2,2,2), (3,3,3))$
75	
(d)	Dans $E = \mathbb{R}^2$, donner un exemple d'une famille génératrice de E . Justification non demandée.
0,51	F3=((1,0,0),(0,1,0),(0,0,1))
(