

Al-Dhahir 2

IN THE CLAIMS:

1. (Cancelled).

2. (Currently Amended) A receiver operating in an environment where a transmission channel, H, between a transmitter of information and said receiver has a memory corresponding to n transmitted symbols, said receiver being responsive to an n_o plurality of receiving antennas comprising:

a pre-filter having an $n_o \times n_i$ plurality of FIR filters, F(i,k), where n_i is a number of transmitting antennas whose signals said receiver is processing, i is an index running from 1 to n_o and k is an index running from 1 to n_i , each filter F(i,k) being responsive to a signal that is derived from receiving antenna i, and applying its output signal to a pre-filter output point k;

decision logic responsive to said pre-filter output points; and

The receiver of claim 1 further comprising a sampling circuit interposed between said n_o plurality of antennas and said pre-filter that samples received signal at rate

$T_s = \frac{T}{l}$, where l is an integer that is greater than 1, and T is symbol rate of a transmitter

whose signals said receiver receives.

3. (Currently Amended) A receiver operating in an environment where a transmission channel, H, between a transmitter of information and said receiver has a memory corresponding to n transmitted symbols, said receiver being responsive to an n_o plurality of receiving antennas comprising:

Al-Dhabir 2

a pre-filter having an $n_r \times n_t$ plurality of FIR filters, $F(i,k)$, where n_r is a number of transmitting antennas whose signals said receiver is processing, i is an index running from 1 to n_r , and k is an index running from 1 to n_t , each filter $F(i,k)$ being responsive to a signal that is derived from receiving antenna i , and applying its output signal to a pre-filter output point k ;

decision logic responsive to said pre-filter output points; and

~~The receiver of claim 1 further comprising a preprocessor for computing coefficients of said FIR filters that result in an effective transmission channel memory between said transmitter and output of said pre-filter of N_s transmitted symbols that is less than n_r .~~

4. (Previously Presented) The receiver of claim 2 further comprising a preprocessor for computing coefficients of said FIR filters in response to a block of N_s symbols that is received by said receiver, and installing the computed coefficients in said FIR filters.

5. (Canceled)

6. (Previously Presented) The receiver of claim 4 where said coefficients of said FIR filters are computed and installed every time said transmission channel, H , exhibits a significant change.

7. (Canceled)

Al-Dhahir 2

8. (Canceled)

9. (Canceled)

10. (Canceled)

11. (Canceled).

12. (Original) The receiver of claim 2 where said plurality of FIR filters is expressed by matrix \mathbf{W} , and \mathbf{W} is computed by $\mathbf{W}_{opt}^* = \tilde{\mathbf{B}}_{opt}^* \mathbf{R}_{xy} \mathbf{R}_{yy}^{-1}$,
 $\mathbf{W}_{opt}^* = \tilde{\mathbf{B}}_{opt}^* \mathbf{R}_{xx} \mathbf{H}^* (\mathbf{H} \mathbf{R}_{xx} \mathbf{H}^* + \mathbf{R}_{nn})^{-1}$, or $\mathbf{W}_{opt}^* = \tilde{\mathbf{B}}_{opt}^* (\mathbf{R}_{xx}^{-1} + \mathbf{H}^* \mathbf{R}_{nn}^{-1} \mathbf{H})^{-1} \mathbf{H}^* \mathbf{R}_{nn}^{-1}$, where \mathbf{R}_{xx} is an autocorrelation matrix of a block of signals transmitted by a plurality of transmitting antennas to said n_o antennas via a channel having a transfer characteristic \mathbf{H} , \mathbf{R}_{nn} is an autocorrelation matrix of noise received by said plurality of n_o antennas during said block of signals transmitted by said transmitting antennas, $\mathbf{R}_{xy} = \mathbf{R}_{xx} \mathbf{H}^*$, $\mathbf{R}_{yy} = \mathbf{H} \mathbf{R}_{xx} \mathbf{H}^* + \mathbf{R}_{nn}$, and $\tilde{\mathbf{B}}_{opt}^*$ is a sub-matrix of matrix \mathbf{B}_{opt}^* , where $\mathbf{B}_{opt} = \arg \min_B trace(\mathbf{R}_{ee})$ subject to a selected constraint, \mathbf{R}_{ee} being the error autocorrelation function.

13. (Original) The receiver of claim 12 wherein said plurality of FIR filters are subjected to designer constraints relative to any one or a number of members of the following set: transmission channel memory, size of said block, effective memory of the

Al-Dhahir 2

combination consisting of said transmission channel and said pre-filter; n_i , n_o , autocorrelation matrix \mathbf{R}_{xx} , autocorrelation matrix \mathbf{R}_{yy} , value of factor l in said sampling circuit, and decision delay.

14. (Previously Presented) The receiver of claim 12, where said matrix \mathbf{W} is

expressible by $\mathbf{W} = [\mathbf{W}_0 \quad \mathbf{W}_1 \quad \dots \quad \mathbf{W}_{N_f-1}]'$, where matrix \mathbf{W}_q , q being an index between 0 and N_f-1 , is a matrix that specifies q^{th} tap coefficients of said FIR filters.

15. (Original) The receiver of claim 12 where said constraint restricts \mathbf{B} so that

$\mathbf{B}'\Phi = \mathbf{I}_{n_i}$, where $\Phi^* = [\mathbf{0}_{n_i \times n_i, m} \quad \mathbf{I}_{n_i} \quad \mathbf{0}_{n_i \times n_i(N_b-m)}]$ and m is a selected constant.

16. (Original) The receiver of claim 15 where $\mathbf{B} = \bar{\mathbf{R}}^{-1}\Phi(\Phi'\bar{\mathbf{R}}^{-1}\Phi)^{-1}$, $\bar{\mathbf{R}}$ is a sub-matrix of a matrix $\mathbf{R}^\perp = \mathbf{R}_{xx} - \mathbf{R}_{xy}\mathbf{R}_{yy}^{-1}\mathbf{R}_{yx}$.

17. (Original) The receiver of claim 12 where said constraint restrict \mathbf{B} so that

$$\mathbf{B}'\mathbf{B} = \mathbf{I}_{n_i}.$$

18. (Original) The receiver of claim 17 where $\mathbf{B} = \mathbf{U} [e_{n_i N_b} \quad \dots \quad e_{n_i(N_b+1)-1}]$,

each element e_p is a vector having a 0 element in all rows other than row p , at which row the element is 1, and \mathbf{U} is a matrix that satisfies the equation $\bar{\mathbf{R}} = \mathbf{U}\Sigma\mathbf{U}^*$, Σ being a diagonal matrix.