Position Measurements with CRV

Using Arrival Time and Light Yield Differences

Test runs 1002,1005-1018 from June 2017

Go Figure (Test Beam Run Setup)

Motivation

• Estimate position of muons using time and light yield differences

Method

- Test runs 1002,1005-1018 from June 2017
 - o beam position varied from 5 to 2250mm from FEB1 end
- Used channels 2,3
- Plotted Wire-chamber measured x-position
- Plotted calculated x-position with formulae
 - o using arrival time difference on opposite ends of fiber
 - o using light yield difference on opposite ends of fiber

Time Difference Method (Using One Fiber, Channel 2)

$$(t_1 - t_2) \cdot v = \Delta d$$

$$\downarrow$$

$$(t_1 - t_2 - t_c) \cdot v = \Delta d$$

$$x = \frac{(l + \Delta d)}{2}$$

t_c : Time Offset Correction

Run 1007

Ideally:

$$\frac{1}{N} \sum_{i=1}^{N} (t_1 - t_2) = 0$$

Time Difference Method (Using Both Fibers, Channels 2 & 3)

One Fiber

$$(t_1 - t_2 - t_c) \cdot v = \Delta d$$

Two Fibers
$$\left(\frac{t_{1,2} + t_{1,3}}{2} - \frac{t_{2,2} + t_{2,3}}{2} - t_c\right) \cdot v = \Delta d$$

Leading Edge Time vs. Peak Time

- Two types of arrival times recorded by FEBs
 - Leading edge (LE) time
 - Peak time (or simply, time)

Speed of Light Calculation

$$\Delta d = v \cdot (t_1 - t_2 - t_c)$$

Using Peak Time

Path Difference vs. Peak Time Difference Using Channel 2

Path Difference vs. Peak Time Difference Using Channel 3

 $v_{\text{using peak time}} \approx \text{166.975mm/ns}$

Using LE Time

Path Difference vs. LE Time Difference Using Channel 2

Path Difference vs. LE Time Difference Using Channel 3

 $v_{\text{using LE time}} \approx \text{140.835mm/ns}$

Position Plots

Run 1002

Using Peak Time

Run 1002 Measured X-Position Distribution

Using LE Time

Run 1002 Measured X-Position Distribution

Position Plots

Run 1018

Using Peak Time

Run 1018 Measured X-Position Distribution

Using LE Time

Run 1018 Measured X-Position Distribution

Correlation Plots

Statistics

- When both fibers are used, for both peak and LE time methods...
 - o standard deviation becomes smaller
 - o average position becomes less accurate

Light Yield Difference Method

Approximating Unknown Attenuation Length (λ)

$$\lambda - \frac{l}{2} = 3000 = l$$

$$x = \frac{l}{2} - R\left(\lambda - \frac{l}{2}\right)$$

$$\lambda - \frac{l}{2} = \frac{3000}{0.571}$$

Unadjusted PE-Calculated vs. Measured X-Position

PE-Calculated vs. Measured X-Position

Position Plots

Run 1002

Using $\lambda - \frac{l}{2} = 3000 \text{ mm}$

 $\lambda = 4,500 \text{ mm}$

Run 1002 Measured X-Position Distribution

Using
$$\lambda - \frac{l}{2} = \frac{3000}{0.571}$$
 mm

 $\lambda = 6,754 \text{ mm}$

Run 1002 Measured X-Position Distribution

Position Plots

Run 1018

Using $\lambda - \frac{l}{2} = 3000 \text{ mm}$

 $\lambda = 4,500 \text{ mm}$

Run 1018 Measured X-Position Distribution

Using
$$\lambda - \frac{l}{2} = \frac{3000}{0.571}$$
 mm

 $\lambda = 6,754 \text{ mm}$

Run 1018 Measured X-Position Distribution

