

<u>Department of Instrumentation and Automation Technology</u> <u>University of Colombo</u>

Smart Vehicle Number Plate Recognition and Mobile-Controlled Gate Access System

Project Proposal 2025

Group Number 24

2022T03142 - M.Raahulan

2022T01329 - B. Nilukshan

2022T01351 - M.S safni

2022T01266 - M.J.M Arsath

Smart Vehicle Number Plate Recognition and Mobile-Controlled Gate Access System

1. Introduction

This project focuses on developing a smart vehicle access control system for institutional gate security. Using the ESP32-CAM module, real-time images of vehicle number plates will be captured when motion is detected. These images are sent to a local server for OCR (Optical Character Recognition) and database comparison. Based on the results, a custom-built mobile app allows security personnel to approve or deny gate access. The system is designed to operate day and night with integrated lighting, enhancing both automation and security.

2. Objectives

Capture vehicle images in real-time using ESP32-CAM.
Trigger image capture via motion sensors (PIR/Ultrasonic).
Send captured images to a server over Wi-Fi.
Perform AI-assisted number plate detection and OCR.
Compare the plate with a database of registered vehicles.
Send the verification result to a mobile app.
Allow gate access control via the mobile app.
Maintain a timestamped log of all detected vehicles.
Ensure 24/7 operation using IR/LED lighting for night vision.

3. Methodology

The system involves setting up hardware like ESP32-CAM and motion sensors at the gate, with a relay module to control the gate motor. When motion is detected, ESP32-CAM captures an image and sends it to a local server. An AI model detects the number plate, followed by OCR for character extraction. The plate number is checked against a database. Based on the result, a mobile app interface enables the security to open the gate. Night vision is ensured using IR/LED lights

Week	Tasks
Week 1	Research on similar systems
	and finalize project scope.
Week 2	Procure components and set up
	ESP32-CAM module.
Week 3	Integrate and test motion sensor
	with ESP32-CAM.
Week 4	Set up lighting system and test
	night vision capability.
Week 5	Develop AI model for number
	plate detection (YOLOv5 or
	MobileNet-SSD).
Week 6	Implement OCR and integrate
	it with AI detection pipeline.
Week 7	Set up server (Raspberry Pi/PC)
	and connect with ESP32-CAM.
Week 8	Start development of mobile
	application (UI design, basic
	control).
Week 9	Integrate database
	(SQLite/Firebase) and enable
	real-time data sync.
Week 10	Connect mobile app to database
	and gate control system via
	relay module.
Week 11	Perform full system integration
	and begin testing at installation
	site.
Week 12	Analyze performance, prepare
	final documentation, and
	deploy system.

5. Components Used

Component	Description	
ESP32-CAM Module	Image capture and Wi-Fi	
	transmission	
PIR / Ultrasonic Sensor	Motion detection	
IR / LED Light	Night vision support	
Relay Module	Gate motor control	
Raspberry Pi or PC	Local server for AI processing	
Wi-Fi Router	Communication bridge	
Mobile App (Flutter/Android)	Gate access control	
Database (SQLite/Firebase)	e/Firebase) Store plate numbers and	
	timestamps	

6. Estimated Budget (in LKR)

Item	Quantity	Unit Price (LKR)	Total (LKR)
ESP32- CAM	1	2,160	2,160
PIR Sensor	1	320	320
IR/LED Light	2	500	1,000
Relay Module	1	700	700
Wi-Fi Router	1	5,000	5,000
Misc. (Wires, Board)	1	-	2,000
Mobile App Dev Tools	-	-	Free/Open Source
Total Amount	7	-	11,180

7. Expected Project Outcomes

- o A low-cost, scalable, and intelligent vehicle access system.
- o AI-powered number plate recognition with high accuracy.
- o User-friendly mobile app for real-time gate control.
- o Secure, timestamped logging of all vehicle entries.
- o Day and night functionality with integrated lighting.
- o Enhanced security with human verification via mobile.
- o Ready-to-deploy system for institutions and facilities.

Graphical Roadmap Diagram

Conclusion:

This enhanced vehicle access system leverages the ESP32-CAM module, mobile application control, and intelligent lighting to create a secure, efficient, and automated gate control setup. By integrating both edge computing and mobile-based approval, the system balances automation with security oversight — ideal for faculty or institutional gate access control.