Orthogonalité dans l'espace

Produit scalaire dans l'espace 1

1.1 Approche géométrique

Définition 1.

Soit \overrightarrow{u} et \overrightarrow{v} deux vecteurs de l'espace. A, B et C trois points tels que $\overrightarrow{u} = \overrightarrow{AB}$ et $\overrightarrow{v} = \overrightarrow{AC}$. Il existe au moins un plan \mathcal{P} contenant les points A, B et C.

- si $\overrightarrow{u} \neq \overrightarrow{0}$ et $\overrightarrow{v} \neq \overrightarrow{0}$, alors $\overrightarrow{u} \cdot \overrightarrow{v} = AB \times AC \times \cos \widehat{BAC}$.
- si $\overrightarrow{u} = \overrightarrow{0}$ ou $\overrightarrow{v} = \overrightarrow{0}$, alors $\overrightarrow{u} \cdot \overrightarrow{v} = 0$.

Propriétés :

P1 • Bilinéarité (associativité et distributivité) et Symétrie :

$$\bullet \ (k \overrightarrow{u}) \cdot \overrightarrow{v} = \overrightarrow{u} \cdot (k \overrightarrow{v}) = k(\overrightarrow{u} \cdot \overrightarrow{v}). \qquad \bullet \overrightarrow{u} \cdot (\overrightarrow{v} + \overrightarrow{w}) = \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{u} \cdot \overrightarrow{w}. \qquad \bullet \overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{v} \cdot \overrightarrow{u}$$

$$\overrightarrow{u} \cdot (\overrightarrow{v} + \overrightarrow{w}) = \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{u} \cdot \overrightarrow{w}$$

$$\bullet \overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{v} \cdot \overrightarrow{u}$$

P2 • Soit \overrightarrow{u} un vecteur et A et B deux points tels que $\overrightarrow{u} = \overrightarrow{AB}$ on a

$$\overrightarrow{u}\cdot\overrightarrow{u}=\overrightarrow{AB}\cdot\overrightarrow{AB}=AB^2=\|\overrightarrow{u}\|^2$$

1.2Caractérisation vectorielle de l'orthogonalité

Définition 2.

Deux vecteurs \overrightarrow{u} et \overrightarrow{v} sont dits orthogonaux (Noté $\overrightarrow{u} \perp \overrightarrow{u}$) si, et seulement si,

- l'un des deux est nul, ou
- aucun des deux n'est nul et ils dirigent des droites perpendiculaires.

Propriété P3:

Deux vecteurs sont orthogonaux si, et seulement si, leur produit scalaire est nul:

$$\overrightarrow{u} \cdot \overrightarrow{v} = 0$$

- exercices 1 et 2 page 89 (capacités résolues)
- les exercices 56 et 59 page 104 (entrainement ; corrigés en classe)
- exercices 143 et 144 page 112 (en autonomie, réponses en fin de livre)

2 Produit scalaire dans un repère de l'espace

2.1 Expression analytique

Définition 3.

- On appelle base orthonormée (ou orthonormale) d'un espace vectoriel toute base $(\overrightarrow{i};\overrightarrow{j};\overrightarrow{k})$ telle que les vecteurs $\overrightarrow{i},\overrightarrow{j}$ et \overrightarrow{k} sont orthogonaux et $\|\overrightarrow{i}\| = \|\overrightarrow{j}\| = \|\overrightarrow{k}\| = 1$.
- Un repère $(O; \overrightarrow{i}; \overrightarrow{j}; \overrightarrow{k})$ est dit orthonormé si est seulement si la base $(\overrightarrow{i}; \overrightarrow{j}; \overrightarrow{k})$ est orthonormée.

Propriétés :

Dan un repère $(O; \overrightarrow{i}; \overrightarrow{j}; \overrightarrow{k})$, on considère $\overrightarrow{u}(x; y; z)$ et $\overrightarrow{v}(x'; y'; z')$ deux vecteurs et soit $A(x_A; y_A; z_A)$ et $B(x_B; y_B; z_B)$ deux points :

P3 •
$$\overrightarrow{u} \cdot \overrightarrow{v} = xx' + yy' + zz'$$
.

P4 •
$$\overrightarrow{u} \cdot \overrightarrow{u} = x^2 + y^2 + z^2$$
 donc $\|\overrightarrow{u}\| = \sqrt{x^2 + y^2 + z^2}$

P5 •
$$AB = \|\overrightarrow{AB}\| = \sqrt{\left(x_B - x_A\right)^2 + \left(y_B - y_A\right)^2 + \left(z_B - z_A\right)^2}$$

2.2 Formules de polarisation

Propriétés :

P6 • Pour tous vecteurs
$$\overrightarrow{u}$$
 et \overrightarrow{v} de l'espace : $\|\overrightarrow{u} + \overrightarrow{v}\|^2 = \|\overrightarrow{u}\|^2 + 2\overrightarrow{u} \cdot \overrightarrow{v} + \|\overrightarrow{v}\|^2$.

$$P7 \bullet \overrightarrow{u} \cdot \overrightarrow{v} = \frac{1}{2} \left(\|\overrightarrow{u} + \overrightarrow{v}\|^2 - \|\overrightarrow{u}\|^2 - \|\overrightarrow{v}\|^2 \right).$$

P8 •
$$\overrightarrow{u} \cdot \overrightarrow{v} = \frac{1}{4} \left(\|\overrightarrow{u} + \overrightarrow{v}\|^2 - \|\overrightarrow{u} - \overrightarrow{v}\|^2 \right).$$

- exercices 3 et 4 page 91 (capacités résolues)
- les exercices 63 et 68 page 104 (entrainement ; corrigés en classe)
- exercices 145 et 146 page 112 (en autonomie, réponses en fin de livre)

3 Orthogonalité de droites et de plans

3.1 Orthogonalité de deux droites

Définition 4.

- Une droite d de vecteur directeur \overrightarrow{u} et une droite d' de vecteur \overrightarrow{v} sont dites **orthogonales** si et seulement si les vecteurs \overrightarrow{u} et \overrightarrow{v} sont **orthogonaux**.
- Deux droites sont dites **perpendiculaires** si et seulement si elles sont **coplanaires et or- thogonales**.

Propriété :

P9 • Deux droites d_1 et d_2 de vecteurs directeurs \overrightarrow{u} et \overrightarrow{v} sont orthogonales si et seulement si $\overrightarrow{u} \cdot \overrightarrow{v} = 0$.

3.2 Orthogonalité d'une droite et d'un plan

Définition 5.

Une droite d de vecteur directeur \overrightarrow{u} est **orthogonale** à un plan \mathcal{P} si et seulement si \overrightarrow{u} est orthogonal à tous les vecteurs de la direction de \mathcal{P} .

Propriétés :

- 10 Une droite d de vecteur directeur \overrightarrow{u} est **orthogonale** à un plan \mathcal{P} si et seulement si \overrightarrow{u} est orthogonal à deux vecteurs non colinéaires de la direction de \mathcal{P} .
- 11 Une droite d est orthogonale à un plan \mathcal{P} si et seulement si d est orthogonale à toutes les droites du plan \mathcal{P} .
- 12 Il existe une unique droite d passant par un point A et perpendiculaire à un plan \mathcal{P} donné.
- 12 Il existe un unique plan $\mathcal P$ passant par un point A et perpendiculaire à une droite d donnée.

- exercices 5 et 6 page 93 (capacités résolues)
- les exercices 76 et 80 page 105 (entrainement ; corrigés en classe)
- exercices 148 et 149 page 113 (en autonomie, réponses en fin de livre)

4 Vecteur normal à un plan

4.1 caractérisation d'un plan avec le produit scalaire

Définition 6.

On dit qu'un vecteur non nul \overrightarrow{n} est un vecteur normal à un plan \mathcal{P} si \overrightarrow{n} est un vecteur directeur d'une droite orthogonale au plan \mathcal{P} .

Propriétés :

- 13 Un vecteur non nul \overrightarrow{n} est un vecteur normal à un plan \mathcal{P} si et seulement si \overrightarrow{n} est orthogonal à deux vecteurs non colinéaires de la direction de \mathcal{P} .
- 14 Soit \overrightarrow{n} un vecteur non nul et A un point de l'espace. L'unique plan \mathcal{P} passant par A et de vecteur normal \overrightarrow{n} est l'ensemble des points M de l'espace tels que $\overrightarrow{AM} \cdot \overrightarrow{n} = 0$.

4.2 Projeté orthogonal d'un point

Propriétés :

- 15 Le projeté orthogonal du point N sur une droite d est le point N' de la droite d le plus proche du point N.
- 16 Le **projeté orthogonal** du point M **sur un plan** \mathcal{P} est le point M' du plan \mathcal{P} le plus proche du point M..

4.3 Plan médiateur d'un segment

Définition 7.

Soit A et B deux points distincts de l'espace. Le **plan médiateur** du segment [AB] est le plan passant par le milieu I de [AB] et de vecteur normal \overline{AB} .

- \bullet exercices 7 et 8 page 95 (capacités résolues)
- les exercices 85 et 91 page 107 (entrainement ; corrigés en classe)
- exercices 150 et 152 page 113 (en autonomie, réponses en fin de livre)

5 Produit scalaire

5.1 Équation cartésienne d'un plan

Définition 8.

Dans un repère orthonormé, un plan \mathcal{P} de vecteur normal $\overrightarrow{n}(a;b;c)$ a une équation de la forme

$$ax + by + cz + d = 0$$

Réciproquement, si les réels a, b et c ne sont pas tous les trois nuls, l'ensemble des points M(x; y; z) tels que ax + by + cz + d = 0 est un plan de vecteur normal $\overrightarrow{n}(a; b; c)$.

5.2 Intersection de droites

Propriétés :

Soit \mathcal{P} un plan de vecteur normal \overrightarrow{n} et d une droite passant par un point A et de vecteur directeur \overrightarrow{u} .

17 • Si \overrightarrow{u} et \overrightarrow{n} ne sont pas orthogonaux, alors la droite d et le plan \mathcal{P} sont sécants.

18 • Si \overrightarrow{u} et \overrightarrow{n} sont orthogonaux, alors :

- si $A \in \mathcal{P}$, alors la droite d est incluse dans le plan \mathcal{P} .
- si $A \notin \mathcal{P}$, alors la droite d est strictement parallèle au plan \mathcal{P} .

5.3 Intersection de plans

Propriétés :

Soit \mathcal{P} et \mathcal{P}' deux plans de vecteurs normaux \overrightarrow{n} et $\overrightarrow{n'}$

19 • Si \overrightarrow{n} et $\overrightarrow{n'}$ sont colinéaires, alors \mathcal{P} et $\mathcal{P'}$ sont parallèles

20 • Si \overrightarrow{n} et $\overrightarrow{n'}$ ne sont pas colinéaires, alors \mathcal{P} et $\mathcal{P'}$ sont sécants selon une droite.

21 • On se place dans un repère orthonormé.

Les plans \mathcal{P} et \mathcal{P}' d'équations respectives ax + y + cz + d = 0 et a'x + b'y + c'z + d = 0 sont sécants si et seulement si, (a;b;c) n'est pas proportionnel à (a';b';c').

A faire:

 \bullet exercices 9 à 14 pages 97 à 99 (capacités résolues)

ullet les exercices 98, 111, 154, 125, 132 et 137 pages 108 ,109, 110 et 111 (entrainement ; corrigés en classe)

• exercices 154 à 160 page 113 (en autonomie, réponses en fin de livre)

Synthèse: Orthogonalité dans l'espace page 112

Projeté orthogonal

• Projeté orthogonal de M sur une droite d Point H de d tel que (MH) $\perp d$

- Projeté orthogonal de M sur un plan ${\mathcal P}$ Point H de ${\mathcal P}$ tel que (MH) $\perp {\mathcal P}$

Propriétés du produit scalaire

Si \vec{u} , \vec{v} et \vec{w} sont trois vecteurs de l'espace et k est un réel, alors :

- (1) Bilinéarité: $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$ et $(\vec{k} \cdot \vec{u}) \cdot \vec{v} = \vec{u} \cdot (\vec{k} \cdot \vec{v}) = \vec{k} (\vec{u} \cdot \vec{v})$.
- (2) Symétrie : $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$.
- (3) Si $\vec{u} = \overrightarrow{AB}$, $\vec{u} \cdot \vec{u} = \overrightarrow{AB} \cdot \overrightarrow{AB} = AB^2 = ||\vec{u}||^2$.
- (4) \vec{u} et \vec{v} sont orthogonaux si et seulement si $\vec{u} \cdot \vec{v} = 0$.
- (5) Dans un repère orthonormé:

 $\vec{u} \cdot \vec{v} = xx' + yy' + zz'$ avec $\vec{u}(x; y; z)$ et $\vec{v}(x'; y'; z')$.

Orthogonalité dans l'espace

Produit scalaire de deux vecteurs

Soit $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$.

- Si $\vec{u} = \vec{0}$ ou $\vec{v} = \vec{0}$ alors $\vec{u} \cdot \vec{v} = 0$;
- sinon $\vec{u} \cdot \vec{v} = \overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \times \overrightarrow{AC} \times \cos \widehat{BAC}$.

Vecteur normal et équation de plan

 \mathcal{P} plan passant par A et dirigé par les vecteurs \vec{u} et \vec{v} .

- $\cdot \vec{n}$ vecteur normal à \mathcal{P} équivaut à $\vec{n} \cdot \vec{u} = \vec{n} \cdot \vec{v} = 0$.
- \mathcal{P} est l'ensemble des points M de l'espace tels que $\overrightarrow{AM} \cdot \overrightarrow{n} = 0$.
- Dans un repère orthonormé, équation d'un plan \mathcal{P} : ax + by + cz + d = 0 avec $\vec{n}(a;b;c)$ vecteur normal à \mathcal{P} .

Orthogonalité de droites et de plans

d et d' droites de vecteurs directeurs \vec{u} et $\vec{u'}$. \mathcal{P} plan dirigé par \vec{v} et \vec{w} .

(1) $d \perp d'$ équivaut à $\vec{u} \cdot \vec{u}' = 0$

(2) $d \perp \mathcal{P}$ équivaut à $\begin{cases} \vec{u} \cdot \vec{v} = 0 \\ \vec{u} \cdot \vec{w} = 0 \end{cases}$ équivaut à :

 $\vec{u} \cdot \vec{t} = 0$ pour tout vecteur \vec{t} de la direction de \mathcal{P} .

(3) Plan médiateur de [AB] : plan passant par le milieu de [AB] et orthogonal à (AB).