

Capítulo 2 Máquinas de Estado

- 2.1 Introdução
- 2.2 Estruturas das máquinas de estado
- 2.3 Máquina de estados finitos
- 2.4 Máquina de estados não determinísticos
- 2.5 Equivalência de máquinas de estados
- 2.6 Composição de máquinas de estados

2.1 Introdução

- Existe uma classe bastante larga de sistemas (modelos de espaço de estados) que pode ser caracterizada de acordo com o conceito de estado e com a ideia de que um sistema evolui através de uma sequência de mudanças ou transições de estado
- Um modelo de espaço de estados descreve o sistema através de um procedimento, dando a sequência de operações, passo-a-passo, para a evolução do sistema. Mostra como o sinal de entrada provoca alterações no estado e como o sinal de saída é produzido
- Estes sistemas operam tipicamente sobre fluxos de eventos (*event streams*), realizando uma lógica de controlo

- Descrição de um sistema como função envolve 3 entidades:
 - Sinais de entrada
 - Sinais de saída
 - A função de actualização do sinal de saída em resultado do sinal de entrada

 $F: SinalEntrada \rightarrow SinalSaída$

Para uma máquina de estados temos

 $FluxoEventos: Naturais_0 \rightarrow Símbolos$

- Símbolos é um conjunto arbitrário
- O domínio destes sinais representa ordem mas não necessariamente tempo (sabemos que um evento ocorre antes ou depois de outro mas não sabemos qual o tempo entre eventos)
- Uma máquina de estados constrói o sinal de saída através de um símbolo num dado instante observando o símbolo de entrada num dado instante

Definição de Máquina de Estados

Uma Máquina de Estados é um 5-tuple

M'aquinaEstados = (Estados, Entradas, Sa'idas, Actualização, EstadoInicial)

- Estados é o conjunto do espaço de estados
- Entradas é o conjunto do alfabeto de entrada
- Saídas é o conjunto do alfabeto de saída
- EstadoInicial ∈ Estados
- Regra de actualização

Actualização : Estados × Entradas → Estados × Saídas

Denominado Modelo de Funções e Conjuntos

Entradas e Saídas

- Os conjuntos Entradas e Saídas são os conjuntos de todos os possíveis símbolos de entrada e de saída
- O conjunto de sinais de entrada (saída) consiste de todas as sequências infinitas de símbolos de entrada (saída)

 $SinaisEntrada:[Naturais_0 \rightarrow Entradas]$

 $SinaisSaida:[Naturais_0 \rightarrow Saidas]$

- Seja $x \in SinaisEntrada$ o sinal de entrada. Um dado símbolo nesse sinal pode ser escrito x(n) para qualquer $n \in N_0$. A sequência de entrada pode ser escrita como

O índice n refere-se ao número do passo e não ao tempo

Regra de actualização

- A regra de actualização torna possível que a máquina de estados construa o sinal de saída passo a passo pela observação passo a passo do sinal de entrada
- Sendo s(n) ∈ Estados o estado actual no passo n, e x(n) ∈ Entradas o símbolo de entrada corrente, então o símbolo de saída corrente y(n) e o próximo estado s(n+1) é dado por

$$\forall n \ge 0 (s(n+1), y(n)) = Actualização(s(n), x(n))$$

começando em s(0)=EstadoInicial

- A máquina de estados define a função F: SinaisEntrada → SinaisSaída tal que para qualquer sinal de entrada $x \in SinaisEntrada$, o correspondente sinal de saída é dado por y=F(x)
- Notemos que se o EstadoInicial muda, a função F muda

- Cada avaliação da equação anterior é denominada reacção porque define a forma como a máquina de estados reage a um determinado símbolo de entrada
- Apenas um símbolo de saída é produzido por cada símbolo de entrada, não sendo necessário ter acesso a toda a sequência de entrada para produzir a saída
- Trata-se de um procedimento causal já que o estado seguinte e a saída actual dependem apenas do estado inicial e das entradas actual e passadas

- É por vezes conveniente decompor a Actualização em dois passos
 - Função para o estado seguinte

 $EstadoSeguinte: Estados \times Entradas \rightarrow Estados$

Função de saída

Saída: Estados × Entradas → Saída

Relacionando com a definição anterior

$$s(n+1) = EstadoSeguinte(s(n), x(n))$$

 $y(n) = Saida(s(n), x(n))$

$$(s(n+1), y(n)) = Actualização(s(n), x(n))$$
$$= (EstadoSeguinte(s(n), x(n)), Saída(s(n), x(n)))$$

• Stuttering (gaguejar)

- Uma máquina de estados por cada símbolo de entrada produz exactamente um símbolo de saída e uma mudança de estado (podendo mudar para o mesmo estado)
- Portanto se não houver símbolo de entrada não há símbolo de saída nem mudança de estado
- Por vezes torna-se necessário incluir um novo símbolo nos conjuntos de entrada e de saída denominado de **nulo** (absent)

nulo ∈ Entradas e nulo ∈ Saídas

(s(n), nulo) = Actualização(s(n), nulo)

• Exemplo: Parquímetro

- Parqueamento de 60 minutos
- O parquímetro é alimentado com 10, 20 ou 50 cêntimos
- O parquímetro mostra em minutos o tempo que falta para expirar
- Cada cêntimo incrementa um minuto no tempo, até ao máximo de 60 minutos
- Cada passagem de um minuto é assinalada
- Quando o tempo restante é 0 o mostrador indica Expirado

- Modelo da máquina de estados
 - O conjunto de estados é $Estados = \{0, 1, 2, ..., 60\}$
 - O alfabeto de entrada e de saída são $Entradas = \{10c, 20c, 50c, minuto, nulo\}$ $Saídas = \{Expirado, 1, 2, ..., 60, nulo\}$
 - Estado inicial EstadoInicial = 0
 - Função de actualização

 $Actualização: Estados \times Entradas \rightarrow Estados \times Saídas$


```
(s(n+1), y(n)) = Actualização(s(n), x(n)) =
(0, Expirado) \qquad se \ x(n) = minuto \land (s(n) = 0 \lor s(n) = 1)
(s(n)-1, s(n)-1) \qquad x(n) = minuto \land s(n) > 1
(min(s(n)+10,60), min(s(n)+10,60)) \qquad x(n) = 10c
(min(s(n)+20,60), min(s(n)+20,60)) \qquad x(n) = 20c
(min(s(n)+50,60), min(s(n)+50,60)) \qquad x(n) = 50c
(s(n), nulo) \qquad x(n) = nulo
```

- Qual é a sequência de saída se a sequência de entrada for (20c,minutox15,10c,minutox10,10c,minutox25,...)?
- (Expirado, 20, 19,..., 6, 5, 15, 14,..., 6, 5, 15, 14,..., Expirado, Expirado, ...)

Capítulo 2 Máquinas de Estado

- 2.1 Introdução
- 2.2 Estruturas das máquinas de estado
- 2.3 Máquina de estados finitos
- 2.4 Máquina de estados não determinísticos
- 2.5 Equivalência de máquinas de estados
- 2.6 Composição de máquinas de estados

- Nas máquinas de estados finitos (*Finite State Machines* FSM) o conjunto de estados é finito
- Estas máquinas possuem técnicas analíticas poderosas dado que é possível explorar todas as possíveis sequências de estados
- O alfabeto de entrada e de saída destas máquinas permite representar uma grande variedade de situações
- Quando o número de estados é reduzido, quando os alfabetos de entrada e de saída são finitos e pequenos, podemos descrever a máquina de estados através de um diagrama de transição de estados

Exemplo de um diagrama de transição de estados

• Diagrama de transição de estados

- Cada bola representa um estado
- Cada arco representa uma transição de um estado para outro
- As bolas e os arcos são anotadas/etiquetadas
- Cada bola é etiquetada com o nome do estado que representa
- Cada arco é etiquetado pela entrada e pela saída
- A etiqueta da entrada especifica que símbolo de entrada faz disparar a transição que lhe está associada
- O símbolo de saída indicado é produzido como parte da transição entre estados (se não for indicado o símbolo de saída é produzido o símbolo nulo)
- A execução de uma máquina de estados consiste numa sequência de reacções, na qual cada reacção envolve a transição de um estado para outro ao longo dos arcos

- Existe uma notação especial para certos arcos, arco else, que são percorridos quando nenhum dos outros arcos saindo de um dado estado é percorrido (representando todas as outras possíveis entradas)
- Se este arco não estiver representado, e houver entradas não representadas, então por omissão a transição efectua-se para o próprio estado
- O estado inicial é indicado no diagrama
- A execução começa através do estado inicial. Partindo daí cada vez que chega um símbolo de entrada a máquina de estados reage, transitando para o estado seguinte de acordo com as etiquetas de entrada associadas a cada transição e produzindo um símbolo na saída
- Uma sequência de símbolos de entrada gera uma sequência de estados
- Sabendo a sequência de transições também sabemos a sequência de símbolos de saída

- Exemplo: Telefone com atendimento automático
 - Quando chega uma chamada o telefone toca
 - Se não atenderem até ao 3º toque a máquina responde; se atenderem a máquina não realiza nenhuma acção
 - Toca uma mensagem de boas vindas
 - Grava a mensagem
 - Depois da gravação desliga-se automaticamente
 - *Estados={idle,count1,count2,play greeting,recording}*
 - Entrada={ring,offhook,end greeting,end message,absent}
 - Saidas={answer,record,recorded,absent}

States

idle — nothing is happening
count1 — one ring has arrived
count2 — two rings have arrived
play greeting — playing the greeting message
recording — recording the message

Inputs

ring — incoming ringing signal
offhook — a telephone extension is picked up
end greeting — greeting message is finished playing
end message — end of message detected (e.g., dialtone)
absent — no input of interest

Outputs

answer — answer the phone and start the greeting message record — start recording the incoming message recorded — recorded an incoming message absent — default output when there is nothing interesting to say

$$idle \xrightarrow{ring} count1 \xrightarrow{ring} count2 \xrightarrow{offhook} idle \dots$$

$$idle \xrightarrow{ring} count1 \xrightarrow{ring} count2 \xrightarrow{ring} play\ greeting \xrightarrow{end\ greeting} recording \xrightarrow{end\ message} idle \dots$$

- A máquina de estados deve sempre reagir a um símbolo de entrada
 propriedade da receptividade
 - Com a introdução do arco else as máquinas de estado são sempre receptivas
- Uma mesma entrada poderá estar atribuída a mais de uma transição do estado corrente
 - A máquina é livre de escolher qual a transição a seguir entre aquelas que apresentam o mesmo símbolo de entrada
 - Mais do que um comportamento é admissível para a máquina
 - Uma máquina de estados com esta característica é denominada não determinística

- Tabela de actualização
 - Forma alternativa de representar uma máquina de estados
 - Representação tabular do diagrama de transição de estados

Current	(next state, output symbol) Under specified input symbol				
state	ring	offhook	end greeting	end message	absent
idle	(countl,	(idle,	(idle,	(idle,	(idle,
	absent)	absent)	absent)	absent)	absent)
countl	(count2,	(idle,	(idle,	(idle,	(count1,
	absent)	absent)	absent)	absent)	absent)
count2	(play greeting,	(idle,	(idle,	(idle,	(count2,
	answer)	absent)	absent)	absent)	absent)
play greeting	(idle,	(idle,	(recording,	(idle,	(play greeting,
	absent)	absent)	record)	absent)	absent)
recording	(idle,	(idle,	(idle,	(idle,	(recording,
	absent)	recorded)	absent)	recorded)	absent)

- Máquinas de Mealy símbolo de saída produzido durante a transição do estado
- Máquinas de Moore símbolo de saída produzido enquanto a máquina se encontra no estado
- As máquinas de Mealy tornam-se mais úteis quando se realiza uma operação de composição síncrona

- Temos 3 formas de descrever uma máquina de estados:
 - a descrição dos conjuntos e funções, o diagrama de transição de estados e a tabela de actualizações
 - A tabela e o diagrama de transições só podem ser usados se os conjuntos (Estados, Entradas e Saídas) são finitos
 - A descrição através de conjuntos e funções é igualmente possível com espaços de estados finitos ou infinitos
- Sistema determinado pelo estado
 - Conhecendo o estado actual, podemos determinar o comportamento futuro do sistema para qualquer símbolo de entrada futuro
 - O estado actual sumaria a história do sistema
- Por vezes pretendemos saber se um dado problema pode ser realizado através de uma máquina de estados
 - Se o número de padrões necessários para descrever o sistema é finito consegue-se, usando um número de estados igual ao número de padrões, realizar através de uma máquina de estados

- Exemplo: Reconhecedor de código
 - Reconhecedor de código em que os sinais de entrada e de saída são sequências de 0 e 1
 - O sistema deverá produzir na saída *Recognize* sempre que detectar uma sequência 1100 na entrada

$$y(n) = \begin{cases} recognize & if(x(n-3), x(n-2), x(n-1), x(n)) = (1,1,0,0) \\ nulo & outros casos \end{cases}$$

Capítulo 2 Máquinas de Estado

- 2.1 Introdução
- 2.2 Estruturas das máquinas de estado
- 2.3 Máquina de estados finitos
- 2.4 Máquina de estados não determinísticos
- 2.5 Equivalência de máquinas de estados
- 2.6 Composição de máquinas de estados

- Uma máquina de estados não determinística é um modelo incompleto de um sistema, mas mais compacto e cuja informação poderá ser suficiente para analisar o comportamento do sistema
- Numa máquina determinística as entradas que etiquetam as transições de um dado estado são mutuamente exclusivas, ou seja não partilham símbolos comuns
- Nas máquinas não determinísticas pode haver sobreposição entre as etiquetas que representam as entradas
 - Um símbolo de entrada pode aparecer a etiquetar mais de uma transição do mesmo estado, o que significa que uma ou mais transições podem ser realizadas
 - É esta característica que torna a máquina não determinística

Exemplo

- Estado inicial a
- Transita para o estado b da primeira vez que encontra um 1
- Fica no estado b um tempo arbitrário; se receber um 1 mantém-se no estado b, se receber 0 pode manter-se no b ou transitar para o a
- A sequência de entrada (0,1,0,1,0,1,...)

gera ...

$$(a,a,b,a,b,a,b,...)$$
 $(0,1,0,1,0,1,...)$

$$(a,a,b,b,b,a,b,...)$$
 $(0,1,1,1,0,1,...)$

$$(a,a,b,a,b,b,b,...)$$
 $(0,1,0,1,1,1,...)$

$$(a,a,b,b,b,b,b,...)$$
 $(0,1,1,1,1,1,...)$

• Exemplo: parquímetro

• Função de actualização

- Nas máquinas determinísticas se conhecemos o estado inicial e a sequência de entrada então toda a trajectória de estados e a sequência de saída pode ser determinada
 - s(n) e x(n) determinam univocamente s(n+1) e y(n)
- Numa máquina não-determinística o estado seguinte não é completamente determinado pelo estado actual e o símbolo de entrada
 - Não a podemos caracterizar pela função Actualização(s(n),x(n)) porque não há apenas um estado seguinte
- Determinística Actualização: Estados × Entradas → Estados × Saídas
- Não determinística

 $PossíveisActualizações: Estados \times Entradas \rightarrow P(Estados \times Saídas)$

onde $P(Estados \times Saidas)$ representa todos os subconjuntos possíveis

- Para uma máquina de estados ser receptiva é necessário que $\forall s(n) \in Estados\ e\ \forall x(n) \in Entradas\ PossíveisActualizações(s(n),x(n)) ≠ \phi$
- Uma máquina de estados não determinística selecciona arbitrariamente o estado seguinte e o símbolo de saída corrente das PossíveisActualizações dado o estado corrente e o símbolo de entrada
- Nada é dito como a selecção é realizada
- Definição da máquina de estados não determinística num 5-tuple

M'aquina Estados = (Estados, Entradas, Sa'idas, Possíveis Actualiza ções, Estado Inicial)

 Uma máquina determinística é um caso especial de uma não determinística

 $PossiveisActualizações(s(n), x(n)) = \{Actualização(s(n), x(n))\}$

Comportamento

- Definimos o comportamento de uma máquina como o par (x,y) tal que y=F(x), ou seja o possível par entrada-saída
- Definimos o conjunto

 $Comportamentos \subset Sinais Entrada \times Sinais Saída$ onde

Comportamentos = $\{(x, y) \in SinaisEntrada \times SinaisSaída \ | y \'e uma sequência de saída possível para a sequência de entrada x \}$

- Máquina determinística para cada $x \in SinaisEntrada$ existe um $y \in SinaisSaída$ tal que (x,y) é um comportamento
- Para uma máq. determ. o conjunto comportamento é o gráfico de F
- Para uma máq. não deter. para um dado $x \in SinaisEntrada$ pode haver mais de um $y \in SinaisSaida$ tal que (x,y) é um comportamento

Capítulo 2 Máquinas de Estado

- 2.1 Introdução
- 2.2 Estruturas das máquinas de estado
- 2.3 Máquina de estados finitos
- 2.4 Máquina de estados não determinísticos
- 2.5 Equivalência de máquinas de estados
- 2.6 Composição de máquinas de estados

Duas máquinas de estado diferentes, com os mesmos alfabetos,
 podem ser equivalentes no sentido em que para a mesma sequência
 de entrada produzem a mesma sequência de saída

- Exemplo:

- 3 máquinas com o mesmo alfabeto de entrada e de saída
- A e B produzem uma sequência alternada de 110 quando recebem uma sequência de 1's na entrada
- C é não determinística, pode produzir qualquer sequência alternada de 1's (>0) e um 0

- Queremos mostrar que a máquina C simula B e A, e que a máquina B é equivalente a A
- Jogo da simulação com duas máquinas
 - As máquinas começam no mesmo estado inicial
 - A primeira máquina reage ao símbolo de entrada
 - Se a máquina for não determinística existe mais do que uma possível reacção
 - A segunda máquina reage ao mesmo símbolo de entrada de modo a produzir o mesmo símbolo de saída
 - Se a máquina for não determinística é livre de escolher das reacções possíveis qualquer uma que esteja de acordo com o símbolo de saída da primeira máquina e que permita continuar a gerar os mesmo símbolos de saída
 - A segunda máquina simula a primeira máquina se consegue sempre gerar um símbolo de saída igual ao da primeira máquina
- Se a relação de simulação ocorre em ambos os sentidos então as máquinas são equivalentes

Exemplo: determinar se C simula B

Máquinas nos estados iniciais

$$S_0 = (0 \text{ and } 3, 0) \in Estados_B \times Estados_C$$

A máquina B reage primeiro (está a ser simulada)

$$S_1 = (1 \text{ and } 4, 1 \text{ to } 5) \in Estados_B \times Estados_C$$

 $S_2 = (2 \text{ and } 5, 1 \text{ to } 5) \in Estados_B \times Estados_C$

- Volta a $S_0 \Rightarrow \mathbf{C}$ simula **B**
- A relação de simulação estabelece a correspondência entre as 2 máquinas $S_{BC} = \{S_0, S_1, S_2\} \subset Estados_B \times Estados_C$
- A simulação é usada para estabelecer uma relação entre um modelo mais abstracto e um modelo mais detalhado

- Estratégia de simulação
 - Suponha-se que temos duas máquinas X e Y definidas por X=(Estados_X, Entradas, Saídas, Possíveis Actualizações_X, EstadoInicial_X) e

 $Y = (Estados_y, Entradas, Saidas, Possíveis Actualizações_y, Estado Inicial_y)$

- Y simula X se existe um subconjunto $S \subset Estados_X$, x $Estados_Y$ tal que
 - 1. $(EstadoInicial_X, EstadoInicial_Y) \in S$
 - 2. Se $(s_X(n), s_Y(n)) \in S$, então $\forall x (n) \in Entradas$, e $\forall (s_X(n+1), y_X(n)) \in PossiveisActualizações_X(s_X(n), x(n))$, existe $(s_Y(n+1), y_Y(n)) \in PossiveisActualizações_Y(s_Y(n), x(n))$ tal que 1. $(s_X(n+1), s_Y(n+1)) \in S$ 2. $y_X(n) = y_Y(n)$
- O conjunto *S* se existir é denominado a relação de simulação, estabelecendo uma correspondência entre os estados das duas máquinas

Exemplo: determinar se B simula A

A relação de simulação é o sub-conjunto

$$S_{A,B} \subset \{0,1,2,3,4,5\} \times \{0 \text{ and } 3,1 \text{ and } 4,2 \text{ and } 5\}$$

- A reage primeiro (está a ser simulada)
- Sequência de estados: $S_{A,B} = \{(0,0 \text{ and } 3), (1,1 \text{ and } 4), (2,2 \text{ and } 5), (3,0 \text{ and } 3), (4,1 \text{ and } 4), (5,2 \text{ and } 5)\}$
- Conclui-se que **B** simula **A** e é fácil de verificar que **A** simula **B**
- As máquinas A e B são equivalentes

- A relação de simulação é transitiva
 - Mostrámos que C simula B e que B simula A

$$S_{B,C} \subset Estados_B \times Estados_C$$
 $S_{A,B} \subset Estados_A \times Estados_B$

então

$$S_{A,C} = \{(S_A, S_C) \in Estados_A \times Estados_C \mid \exists S_B \in Estados_B \text{ onde } (S_A, S_B) \in S_{A,B} \text{ e } (S_B, S_C) \in S_{B,C} \}$$

é a relação de simulação que mostra que C simula A

- Exemplo: aplicação da propriedade transitiva
 - **B** simula **A** $S_{A,B} = \{(0,0 \text{ and } 3), (1,1 \text{ and } 4), (2,2 \text{ and } 5), (3,0 \text{ and } 3), (4,1 \text{ and } 4), (5,2 \text{ and } 5)\}$
 - C simula B $S_{BC} = \{ (0 \text{ and } 3, 0), (1 \text{ and } 4, 1 \text{ to } 5), (2 \text{ and } 5, 1 \text{ to } 5) \}$
 - Podemos concluir que C simula A $S_{AC} = \{(0,0), (1,1to5), (2,1to5), (3,0), (4,1to5), (5,1to5)\}$

Exemplo: determinar se B simula C

A relação de simulação é o sub-conjunto

$$S_{C,B} \subset \{0,1to5\} \times \{0and3,1and4,2and5\}$$

- C reage primeiro (está a ser simulada)
- Sequência de estados:

$$S_{C,B} = \{(0,0 \text{ and } 3), (1 \text{ to } 5,1 \text{ and } 4),...\}$$

• Conclui-se que **B** não simula **C**

Capítulo 2 Máquinas de Estado

- 2.1 Introdução
- 2.2 Estruturas das máquinas de estado
- 2.3 Máquina de estados finitos
- 2.4 Máquina de estados não determinísticos
- 2.5 Equivalência de máquinas de estados
- 2.6 Composição de máquinas de estados

- Analisámos os sistemas como funções, logo a composição de sistemas é uma composição de funções
- Pretendemos definir uma nova máquina de estados que descreve a composição de várias máquinas de estado
- Vamos trabalhar com composição síncrona, ou seja, cada máquina de estados na composição reage simultaneamente ou instantaneamente
- A reacção da composição consiste num conjunto de reacções simultâneas de cada uma das máquinas componentes
- Um sistema que reage apenas em resposta a estímulos externos é denominado de **reactivo**
- Como a composição é síncrona estes sistemas são denominados de reactivos síncronos
- As reacções são instantâneas, o símbolo de saída de uma máquina acontece de uma forma simultânea com o símbolo de entrada

Composição lado-a-lado

- As duas máquinas de estado não interferem entre si
- Pretende-se definir uma única máquina de estados representando a operação síncrona das duas máquinas de estado componentes
- Poderemos desejar que apenas uma máquina reaja
- Se trocarmos a ordem das máquinas obtemos uma máquina diferente mas equivalente

- Definição da composição de máquinas lado-a-lado
 - $Estados = Estados_A \times Estados_B$
 - $Entradas = Entradas_A \times Entradas_B$
 - $Saidas = Saidas_A \times Saidas_B$
 - $EstadoInicial = (EstadoInicial_A, EstadoInicial_B)$
 - $((s_A(n+1), s_B(n+1)), (y_A(n), y_B(n))) = Actualização((s_A(n), s_B(n)), (x_A(n), x_B(n)))$

onde

- $(s_A(n+1), y_A(n)) = Actualização_A (s_A(n), x_A(n))$
- $(s_B(n+1), y_B(n)) = Actualização_B (s_B(n), x_B(n))$

– Exemplo:

- $Estados = Estados_A \times Estados_B = \{(1,1),(2,1)\}$
- $Entradas = Entradas_A \times Entradas_B = \{(0,0),(1,0),(nulo_A,0),(0,nulo_B),(1,nulo_B),(nulo_A,nulo_B)\}$
- $Saidas = Saidas_A \times Saidas_B = \{(a,c),(b,c),(nulo_A,c),(a,nulo_B),(b,nulo_B),(nulo_A,nulo_B)\}$
- $EstadoInicial = (EstadoInicial_A, EstadoInicial_B) = (1, 1)$

• Composição em cascata

Também designada por ligação em série

- Assumpções sobre as máquinas componentes
 - $Saidas_A \subset Entradas_B$
- Definição da composição de máquinas em cascata
 - $Estados = Estados_A \times Estados_B$
 - $Entradas = Entradas_A$
 - $Saidas = Saidas_B$
 - $EstadoInicial = (EstadoInicial_A, EstadoInicial_B)$
 - $((s_A(n+1),s_B(n+1)), y_B(n)) = Actualização((s_A(n),s_B(n)),x(n))$

onde

- $(s_A(n+1), y_A(n)) = Actualização_A (s_A(n), x(n))$
- $(s_B(n+1), y_B(n)) = Actualização_B (s_B(n), y_A(n))$

Exemplo

- $Estados = Estados_A \times Estados_B = \{(0,0),(0,1),(1,0),(1,1)\}$
- $Entradas = Saidas = \{0, 1, nulo\}$
- EstadoInicial = (0,0)

- Entradas e saídas sob a forma de produto
 - Pretende-se modelar a situação em que as entradas são seleccionadas de partes distintas e as saídas são enviadas para partes distintas

- Exemplo

Exemplo

• Composição para a frente genérica

Exercício: defina a composição das máquinas para este exemplo

- Assumpções sobre as máquinas componentes
 - $Saidas_{A2} \subset Entradas_{B1}$
- Definição da composição para a frente genérica
 - $Estados = Estados_A \times Estados_B$
 - $Entradas = Entradas_A \times Entradas_{B2}$
 - $Saidas = Saidas_{A1} \times Saidas_{A2} \times Saidas_{B}$
 - $EstadoInicial = (EstadoInicial_A, EstadoInicial_B)$
 - $((s_A(n+1), s_B(n+1)), (y_{A1}(n), y_{A2}(n), y_B(n))) =$ $Actualização((s_A(n), s_B(n)), (x_A(n), x_{B2}(n)))$ onde
 - $(s_A(n+1),(y_{A1}(n),y_{A2}(n)))=Actualização_A(s_A(n),x_A(n))$
 - $(s_B(n+1), y_B(n)) = Actualiza \zeta \tilde{a} o_B(s_B(n), (y_{A2}(n), x_{B2}(n)))$

Composição hierárquica

- Diferentes estratégias para composição das máquinas
- Essas estratégias geram máquinas de estado diferentes mas equivalentes

- Composição de máquinas com retroacção (feedback)
 - A saída de uma máquina de estados é ligada à entrada da mesma máquina de estados
 - A saída é uma consequência instantânea da entrada
 - Numa máquina com retroacção a saída depende da entrada que depende da saída ...

Problema semelhante quando pretendemos determinar x tal que

$$x = f(x)$$

para uma dada função f.

- A solução desta equação, se existir, é denominada de ponto fixo
- Pode não ter ponto fixo, pode ter um ponto fixo ou vários pontos fixos
- Exemplo:

$$- f(x) = I + x^2$$
 não tem solução em R

$$- f(x)=1-x$$
 solução única em $x=0.5$

$$- f(x) = x^2$$
 que tem duas soluções em $x = 0$ e $x = 1$

- Uma composição com retroacção sem ponto fixo nalgum estado atingível, é uma composição mal formada
 - Não se pode avaliar uma composição mal formada
- Uma composição com retroacção com mais de um ponto fixo nalgum estado atingível, também é uma composição mal formada
- Uma composição com retroacção com um ponto fixo em todos os estados atingíveis na composição, é uma composição bem formada

Composição de retroacção sem entradas

- − Só é possível se $Saidas_A \subset Entradas_A$
- − Suponha-se que o estado corrente é $s(n) \in Estados_A$
- Pretende-se encontrar o símbolo $y(n) \in Saidas_A$ que satisfaça $(s(n+1),y(n)) = Actualização_A(s(n),y(n))$
- Encontrando y(n), a função $Actualização_A$ permite determinar s(n+1)
- A composição anterior é bem formada se para cada estado atingível $s(n) \in Estados_A$ existe um único símbolo de saída y(n) que satisfaz a equação anterior

- Se a composição é bem formada a definição da máquina composta é
 - $Estados = Estados_A$
 - Entradas = {reage,nulo}
 - $Saidas = Saidas_A$
 - EstadoInicial = EstadoInicial_A
 - Actualização(s(n),x(n)) =

$$=\begin{cases} Actualização_A(s(n), y(n)) & se \ x(n) = reage \\ (s(n), x(n)) & se \ x(n) = nulo \end{cases}$$

Exemplo

- Entradas_A=Saídas_A={true,false,nulo}
- O alfabeto de entrada da máquina composta é {reage,nulo}
- Pretende-se obter uma solução não nula para y(n)
- Como o símbolo de saída é também o símbolo de entrada, procuramos um símbolo de entrada diferente do nulo

- *Saida*_A(1,false)=false
- $Saida_A(2,true)=true$
- A composição é bem formada porque em cada estado atingível existe um ponto fixo único
- Sequência de saída *(false,true,false,true,false,true,...)* para a sequência de entrada *(reage,reage,reage,...)*

- Saida_A(1,false)=false
- Não há solução para $Saida_A(2,y(n))=y(n)$
- A composição é mal formada

- Mais do que um ponto fixo
- Composição mal formada
- Conclusão
 - A 2ª e a 3ª máquina não podem ser usadas numa composição com retroacção
 - A 2ª não tem solução, a 3ª tem mais de uma solução
 - Aceitamos composições com retroacção se existir exactamente uma solução não nula em cada estado atingível

 Composição de retroacção com saída determinada pelo estado

- Exemplo anterior
 - Todos os arcos produzem o mesmo símbolo de saída, independentemente da entrada
 - O y(n) depende apenas do estado
 - y(n)=false se s(n)=1 e y(n)=true se s(n)=2
 - Tem apenas um único ponto fixo

− Diz-se que uma máquina \mathbf{A} tem a **saída determinada pelo estado** se em cada estado atingível $s(n) \in Estados_A$ existe um único símbolo de saída y(n)=b (que depende de s(n)), e que é independente do símbolo nulo

$$x(n) \neq nulo$$
 $Saida_A(s(n),x(n))=b$

- Nesta situação a máquina composta é definida como
 - $Estados = Estados_A$
 - Entradas = {reage,nulo}
 - $Saidas = Saidas_A$
 - $EstadoInicial = EstadoInicial_A$
 - Actualização(s(n),x(n)) =

$$= \begin{cases} Actualização_A(s(n),b) & se \ x(n) = reage \\ (s(n),x(n)) & se \ x(n) = nulo \end{cases}$$

onde b é o único símbolo de saída no estado s(n)

Exemplo

• A tem a saída determinada pelo estado, B não é bem formada, mas a composição é bem formada

Composição de retroacção com entradas

 Pretende-se construir uma máquina de estados que esconda a retroacção, ficando apenas com uma entrada e uma saída

– Máquina A:

- $Entradas_A = Entradas_{A1} \times Entradas_{A2}$
- $Saidas_A = Saidas_{A1} \times Saidas_{A2}$
- $Saidas_{A2} \subset Entradas_{A1}$
- $saida_A = (saida_{AI}, saida_{A2}) : Estados_A \times Entradas_A \rightarrow Saidas_A$ onde $saida_{AI} : Estados_A \times Entradas_A \rightarrow Saidas_{AI}$ e $saida_{A2} : Estados_A \times Entradas_A \rightarrow Saidas_{A2}$
- Pretende-se encontrar o símbolo de saída $(y_1(n), y_2(n)) \in Saidas_A$ tal que

$$(y_1(n), y_2(n)) = saida_A(s(n), (x_1(n), y_2(n)))$$

onde

$$y_1(n) = saida_{A1}(s(n), (x_1(n), y_2(n)))$$

e

$$y_2(n) = saida_{A2}(s(n), (x_1(n), y_2(n)))$$

Composição:

- $Estados = Estados_A$
- $Entradas = Entradas_{AI}$
- $Saidas = Saidas_{A1}$
- EstadoInicial = EstadoInitial_A
- (s(n+1),y(n)) = Actualização(s(n),x(n))= (EstadoSeguinte(s(n),x(n)), saida(s(n),x(n)))
- $EstadoSeguinte(s(n),x(n)) = EstadoSeguinte_A(s(n),(x(n),y_2(n)))$
- $saida(s(n),x(n)) = saida_{AI}(s(n),(x(n), y_2(n)))$ onde $y_2(n)$ é solução única

– Exemplo:

- $Entradas_A = Reais \times Reais$
- $Saidas_A = Reais$
- $Estados_A = Reais$
- $(s(n+1),y(n)) = Actualização_A(s(n),(x_1(n),x_2(n))) = (0.5s(n)+x_1(n)+x_2(n),s(n))$
- Como $x_2(n)=y(n)=s(n)$ então Actualização(s(n),x(n))=(0.5s(n)+x(n)+s(n),s(n))=(1.5s(n)+x(n),s(n))

- Procedimento construtivo para uma composição com retroacção
 - Num número finito de passos identifica um ponto fixo ou desiste
 - Começa em cada reacção, para todos os sinais não especificados, com o valor "desconhecido"
 - Com o que é conhecido acerca dos símbolos de entrada experimenta determinar para cada máquina de estados o máximo possível acerca dos símbolos de saída
 - As máquinas de estado podem ser executadas em qualquer ordem
 - Com base no aprendido sobre os símbolos de saída actualiza o conhecimento sobre os símbolos de entrada e repete o processo
 - Repete o processo até que todos os valores dos sinais estejam especificados ou então não ser possível aprender nada mais

- Exemplo

• Comportamento={((reage,reage,reage,...), (1,0,0,...))}

Busca exaustiva

- Se na composição com retroacção existem uma ou mais máquinas cuja saída é determinada pelo estado, é fácil determinar um único ponto fixo
- Se a máquina não tiver a saída determinada pelo estado aplicamos o procedimento anterior
 - Se falhar não podemos concluir que a composição é mal formada
- Podemos determinar se a máquina tem um ponto fixo único através de uma busca exaustiva
 - Para cada estado atingível e para cada possível entrada, tentamos todas as possíveis transições
 - Rejeitamos aquelas que levam a contradições
 - Se após rejeitarmos todas as contradições restar apenas uma possibilidade em cada estado atingível a composição é bem formada
 - É necessário que o número de estados e o número de transições seja finito

Máquinas não-determinísticas

- As máquinas não-determinísticas podem ser compostas da mesma forma que as determinísticas
- Como as máquinas determinísticas são um caso especial, os dois tipos de máquinas podem ser misturadas numa composição
- Composições sem retroacção operam quase como as anteriores
- Composições com retroacção necessitam de modificações:
 - Em cada reacção a máquina pode ter vários possíveis símbolos de saída e vários possíveis estados seguintes
 - Para cada máquina, para cada reacção definem-se os conjuntos
 - PossíveisEntradas ⊂ Entradas, PossíveisEstadosSeguintes ⊂ Estados,
 PossíveisSaídasSeguintes ⊂ Saídas
 - Se as entradas para uma dada máquina na composição é conhecida completamente então *PossíveisEntradas* tem apenas um elemento, se são desconhecidas então *PossíveisEntradas* é vazio

Conclusões

- Muitos sistemas são desenhados como máquinas de estados
- A estrutura resulta da composição de várias máquinas de estado
- Considerámos composição síncrona
- Composição com retroacção torna-se particularmente difícil porque o símbolo de entrada pode depender do símbolo de saída na mesma reacção
- Denominámos uma composição com retroacção bem formada se qualquer sinal tem um único símbolo nulo em cada reacção