QUARKS

The u-, d-, and s-quark masses are estimates of so-called "currentquark masses," in a mass-independent subtraction scheme such as $\overline{\rm MS}$ at a scale $\mu \approx 2$ GeV. The c- and b-quark masses are the "running" masses in the $\overline{\rm MS}$ scheme. For the *b*-quark we also quote the 1S mass. These can be different from the heavy quark masses obtained in potential models.

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

$$m_u = 2.3^{+0.7}_{-0.5}~{
m MeV}~{
m Charge} = {2\over 3}~e~{
m I}_z = +{1\over 2} \ m_u/m_d = 0.38 - 0.58$$

$$\mathsf{Charge} = \frac{2}{3} \ e \quad \mathsf{I}_{\mathsf{Z}} = +\frac{1}{2}$$

d

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

$$m_d=4.8^{+0.5}_{-0.3}~{
m MeV}$$
 Charge $=-\frac{1}{3}~{
m e}~{\it I}_z=-\frac{1}{2}$ $m_s/m_d=17$ –22 $\overline{m}=(m_u+m_d)/2=3.5^{+0.7}_{-0.2}~{
m MeV}$

5

$$I(J^P) = 0(\frac{1}{2}^+)$$

 $m_{s}=95\pm 5$ MeV Charge $=-rac{1}{3}$ e Strangeness =-1 $m_s / ((m_u + m_d)/2) = 27.5 \pm 1.0$

C

$$I(J^P)=0(\tfrac{1}{2}^+)$$

$$m_c = 1.275 \pm 0.025 \; {
m GeV} \qquad {
m Charge} = {2 \over 3} \; e \quad {
m Charm} = +1$$

b

$$I(J^P) = 0(\frac{1}{2}^+)$$

 $\mathsf{Charge} = -\frac{1}{3} \ e \qquad \mathsf{Bottom} = -1$

Created: 8/21/2014 13:13

$$m_b(\overline{\text{MS}}) = 4.18 \pm 0.03 \text{ GeV}$$

 $m_b(1\text{S}) = 4.66 \pm 0.03 \text{ GeV}$

$$I(J^P) = 0(\frac{1}{2}^+)$$

$$\mathsf{Charge} = \tfrac{2}{3} \ e \qquad \qquad \mathsf{Top} = +1$$

Mass (direct measurements) $m=173.21\pm0.51\pm0.71$ GeV $^{[a,b]}$ Mass ($\overline{\rm MS}$ from cross-section measurements) $m=160^{+5}_{-4}$ GeV $^{[a]}$ Mass (Pole from cross-section measurements) $m=176.7^{+4.0}_{-3.4}$ GeV $m_t-m_{\overline t}=-0.2\pm0.5$ GeV (S = 1.1) Full width $\Gamma=2.0\pm0.5$ GeV $\Gamma(W\,b)/\Gamma(W\,q\,(q=b,\,s,\,d))=0.91\pm0.04$

t-quark EW Couplings

$$\begin{aligned} F_0 &= 0.690 \pm 0.030 \\ F_- &= 0.314 \pm 0.025 \\ F_+ &= 0.008 \pm 0.016 \\ F_{V+A} &< 0.29 \text{, CL} = 95\% \end{aligned}$$

t DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(MeV/c)
Wq(q = b, s, d)			_
W b			-
ℓu_ℓ anything	$[c,d]$ (9.4 ± 2.4) %		_
$\gamma q(q=u,c)$	[e] < 5.9 imes 10	95%	_
$\Delta T = 1$ weak neutral current (T1) modes			
Zq(q=u,c)	[f] < 2.1 imes 10	95%	_

b' (4th Generation) Quark, Searches for

```
Mass m>190 GeV, CL = 95% (p\overline{p}, \text{ quasi-stable }b') Mass m>400 GeV, CL = 95% (pp, \text{ neutral-current decays}) Mass m>675 GeV, CL = 95% (pp, \text{ charged-current decays}) Mass m>46.0 GeV, CL = 95% (e^+e^-, \text{ all decays})
```

t' (4th Generation) Quark, Searches for

Mass m > 782 GeV, CL = 95% (pp, neutral-current decays) Mass m > 700 GeV, CL = 95% (pp, charged-current decays)

Created: 8/21/2014 13:13

Free Quark Searches

All searches since 1977 have had negative results.

NOTES

- [a] A discussion of the definition of the top quark mass in these measurements can be found in the review "The Top Quark."
- [b] Based on published top mass measurements using data from Tevatron Run-I and Run-II and LHC at $\sqrt{s}=7$ TeV. Including the most recent unpublished results from Tevatron Run-II, the Tevatron Electroweak Working Group reports a top mass of 173.2 ± 0.9 GeV. See the note "The Top Quark' in the Quark Particle Listings of this *Review*.
- [c] ℓ means e or μ decay mode, not the sum over them.
- [d] Assumes lepton universality and W-decay acceptance.
- [e] This limit is for $\Gamma(t \to \gamma q)/\Gamma(t \to W b)$.
- [f] This limit is for $\Gamma(t \to Zq)/\Gamma(t \to Wb)$.

Created: 8/21/2014 13:13