Table 38. Cost and Performance Characteristics of New Central Station Electricity Generating Technologies

				Base	Contingency Factors		Total			6	
				Overnight Cost	Project	Technological	Overnight Cost	Variable O&M⁵	Fixed	Heatrate ⁶ in	Heatrate nth-of-
Technology	Online Year ¹	Size (mW)	Leadtime (Years)	in 2007 (\$2006/kW)	Contingency Factor ²	Optimism Factor ³	in 2007⁴ (2006 \$/kW)	(\$2006 mills/kWh)	O&M ⁵ (\$2006/kW)	2007 (Btu/kWhr)	a-kind (Btu/kWr)
Scrubbed Coal New ⁷	2011	600	4	1,434	1.07	1.00	1,534	4.46	26.79	9,200	8,740
Integrated Coal-Gasification Combined Cycle (IGCC) ⁷	2011	550	4	1,657	1.07	1.00	1,773	2.84	37.62	8,765	7,450
IGCC with Carbon Sequestration	2011	380	4	2,302	1.07	1.03	2,537	4.32	44.27	10,781	8,307
Conv Gas/Oil Comb Cycle	2010	250	3	683	1.05	1.00	717	2.01	12.14	7,196	6,800
Adv Gas/Oil Comb Cycle (CC)	2010	400	3	654	1.08	1.00	706	1.95	11.38	6,752	6,333
ADV CC with Carbon Sequestration	2010	400	3	1,254	1.08	1.04	1,409	2.86	19.36	8,613	7,493
Conv Combustion Turbine ⁸	2009	160	2	476	1.05	1.00	500	3.47	11.78	10,833	10,450
Adv Combustion Turbine	2009	230	2	450	1.05	1.00	473	3.08	10.24	9,289	8,550
Fuel Cells	2010	10	3	4,653	1.05	1.10	5,374	46.62	5.50	7,930	6,960
Advanced Nuclear	2016	1350	6	2,143	1.10	1.05	2,475	0.48	66.05	10,400	10,400
Distributed Generation -Base	2009	5	2	972	1.05	1.00	1,021	6.93	15.59	9,200	8,900
Distributed Generation -Peak	2010	2	3	1,168	1.05	1.00	1,227	6.93	15.59	10,257	9,880
Biomass	2011	80	4	2,490	1.07	1.05	2,809	6.53	62.70	8,911	8,911
MSW - Landfill Gas	2010	30	3	1,773	1.07	1.00	1,897	0.01	111.15	13,648	13,648
Geothermal 7,9	2011	50	4	1,057	1.05	1.00	1,110	0.00	160.18	35,376	33,729
Conventional Hydropower9	2011	500	4	1,410	1.10	1.00	1,551	3.41	13.59	10,022	10,022
Wind	2010	50	3	1,340	1.07	1.00	1,434	0.00	29.48	10,022	10,022
Wind Offshore	2011	100	4	2,547	1.10	1.03	2,872	0.00	87.05	10,022	10,022
Solar Thermal ⁷	2010	100	3	3,499	1.07	1.00	3,744	0.00	55.24	10,022	10,022
Photovoltaic ⁷	2009	5	2	5,380	1.05	1.00	5,649	0.00	11.37	10,022	10,022

¹Online year represents the first year that a new unit could be completed, given an order date of 2007.

Sources: The values shown in this table are developed by the Energy Information Administration, Office of Integrated Analysis and Forecasting, from analysis of reports and discussions with various sources from industry, government, and the Department of Energy Fuel Offices and National Laboratories. They are not based on any specific technology model, but rather, are meant to represent the cost and performance of typical plants under normal operating conditions for each plant type. Key sources reviewed are listed in the 'Notes and Sources' section at the end of the chapter.

²A contingency allowance is defined by the American Association of Cost Engineers as the "specific provision for unforeseeable elements if costs within a defined project scope; particularly important where previous experience has shown that unforeseeable events which will increase costs are likely to occur."

³The technological optimism factor is applied to the first four units of a new, unproven design. It reflects the demonstrated tendency to underestimate actual costs for a first-of-a-kind unit.

⁴Overnight capital cost including contingency factors, excluding regional multipliers and learning effects. Interest charges are also excluded. These represent costs of new projects initiated in 2007.

⁵O&M = Operations and maintenance.

⁶For hydro, wind, and solar technologies, the heatrate shown represents the average heatrate for conventional thermal generation as of 2006. This is used for purposes of calculating primary energy consumption displaced for these resources, and does not imply an estimate of their actual energy conversion efficiency.

⁷Capital costs are shown before investment tax credits are applied.

⁸Combustion turbine units can be built by the model prior to 2009 if necessary to meet a given region's reserve margin.

⁹Because geothermal and hydro cost and performance characteristics are specific for each site, the table entries represent the cost of the least expensive plant that could be built in the Northwest Power Pool region, where most of the proposed sites are located.