FUNDAMENTALS OF ELECTRICITY AND ELECTRONICS

BHAVAT NGAMDEEVILAISAK

Voltage

"The potential difference between two points"

Independent voltage source

Dependent voltage source

Voltage "Measured in Volts (V)"

PRACTICAL SOURCES

Independent voltage source

Dependent voltage source

Current

"An amount of charges flow through a cross section of conductor per amount of time"

Independent current source

IDEAL SOURCES

Dependent current source

Current "Measured in Ampere (A)"

Independent current source

PRACTICAL SOURCES

Dependent current source

Resistance

"An ability to resists the flow of current measured in Ohm (Ω) "

Potentiometer

Signal fundamentals

Power "The time rate of expending or absorbing energy measured in Watt (W)"

Passive sign convention (Absorb power)

Active sign convention (Deliver power)

Absorb power = -(Deliver power)

Unit transformation you should know

1. Current = Charge / Time :
$$I = \frac{c}{s}$$

2. Power = Energy / Time :
$$P = \frac{J}{S}$$

3. Conductance = 1 / Resistance : $Uor S = \frac{1}{R}$

Ohm's Law

Kirchoff's Law

$$KCL: I_{in} = I_{out}$$

$$KCL: I_1 + I_2 + I_3 = I_4$$

The sum of the current entering any point is equal to the sum of the current leaving the same point

$$KVL : \sum V = 0$$

$$KVL: V_1 + V_2 + V_3 = V_4$$

The sum of the voltage in any close loop is equal to zero

Total Resistance

Series connection

$$R_t = R_1 + R_2 + \dots + R_n$$

Parallel connection

$$\frac{1}{R_t} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$$

2 Resistor connected in parallel

What if...

Voltage divider

The Light Emitting Diode

The pulldown resistor

Bread board

