

Michael Olkin, GISP Springfield Water and Sewer Commission michael.olkin@waterandsewer.org

What to Expect Today

This Presentation is a SQL

What to Expect Today

Cats included to keep us entertained

Dedicated to Moonbeam 1999-2019

Guiding Principle #1

The Typical End User Doesn't Care About SQL

Why should we?

GIS Spatial Querying is a bit of a Black Box

SQL is somewhere inside of the Black Box

We can speak directly with our data

Today: Spatial Queries in Two Environments

Relational Database Management System

SQL Server Management Studio

Desktop GIS

Quantum GIS (qGIS)

Why Bother with Spatial Queries?

Be Cross-Platform: Get Spatial without using GIS Software Avoid hard-coding redundant fields

Stop the
Geoprocessing
Madness:
cut down on
geoprocessed
data-scraps

Quiz 1: Sequel or Original?

Answer: Sequel (Indiana Jones and the Temple of Doom)

Open Standards Have Provided a Common Language

OGC Simple Feature Specification (SFS)

Standard for storing, writing & querying spatial data

Implemented in many spatial database engines, including PostGIS, MySQL, Oracle, DB2 & MS SQL Server

Basis for ST_Geometry, the default Esri Enterprise Geodb storage format (supported since ArcGIS 9.0)

Basics: Line Length & Polygon Area

- GIS software automatically displays calculated lengths & areas
 - We can do the same via queries

(fe)Line Length

```
SELECT [SHAPE].STLength() as [Length (Ft)]
,CAST([SHAPE].STLength() as int) as [Rounded (Ft)]
```


Length (Ft)	Rounded (Ft)
1056.36436184714	1056

Polygon Area

SELECT SHAPE.**STArea()** as [Area (SqFt)]
,CAST([SHAPE].**STArea()** as int) as [Rounded (SqFt)]

Area (SqFt)	Rounded (SqFt)
5165.25909423828	5165

ArcGIS Attribute Tables Include Queried Length & Area

Courtesy of the .**STArea()** & .**STLength()** OGC standard SQL methods

M	MA Community Boundaries							
Г	TOWN	TOWN_ID *	TYPE	Shape *	Shape.STArea()	Shape.STLength()		
	AGAWAM	5	TC	Polygon	678359450.582886	124870.856014		
	BLANDFORD	33	T	Polygon	1489822147.959229	151837.038478		
	BRIMFIELD	43	T	Polygon	984585267.367065	139455.497565		
	CHESTER	59	Т	Polygon	1036066948.710754	123169.940193		
	CHICOPEE	61	С	Polygon	665489578.487732	113703.429529		
	EAST LONGMEADO	85	T	Polygon	362622827.615417	76395.572426		
	GRANVILLE	112	T	Polygon	1201935274.76178	143192.252252		
	HAMPDEN	120	T	Polygon	547499195.579956	96518.837234		
	HOLLAND	135	T	Polygon	363809057.05542	78802.091849		
	HOLYOKE	137	С	Polygon	635590489.577759	130582.871378		
	LONGMEADOW	159	Т	Polygon	267481704.531372	65052.317277		
	LUDLOW	161	T	Polygon	789950776.076111	121351.862216		

Using .STArea() & .STLength() in our own Query

```
SELECT [TOWN]
    ,[TOWN_ID]
    ,[TYPE]
    ,[Shape]
    ,[Shape].STArea() as [Shape.STArea()]
    ,[Shape].STLength() as [Shape.STLength()]
FROM [dbo].[MGIS_TownBoundsSurvey_evw]
WHERE [FIPS_STCO] = 25013
ORDER BY [TOWN]
```

Ⅲ F	Results	lts Mes	sages			
	TOWN	TOWN_ID	TYPE	SHAPE	Shape.STArea()	Shape.STLength(), aka Perimeter
1	AGAWAM	5	TC	0xC90800000104B1	678359450.582886	124870.856013551
2	BLANDFORD	33	Т	0xC9080000010410	1489822147.95923	151837.038477624
3	BRIMFIELD	43	Т	0xC90800000104CC	984585267.367065	139455.497564861
4	CHESTER	59	Т	0xC908000001040D	1036066948.71075	123169.940193395
5	CHICOPEE	61	С	0xC9080000010401	665489578.487732	113703.42952942
6	EAST LONGMEADOW	85	Т	0xC908000001040E	362622827.615417	76395.5724258823
7	GRANVILLE	112	Т	0xC9080000010414	1201935274.76178	143192.252252094
8	HAMPDEN	120	Т	0xC9080000010409	547499195.579956	96518.8372343257
9	HOLLAND	135	Т	0xC9080000010400	363809057.05542	78802.0918490844
10	HOLYOKE	137	С	0xC908000001043F	635590489.577759	130582.871378171
11	LONGMEADOW	159	Т	0xC9080000010421	267481704.531372	65052.3172765477
12	LUDLOW	161	Т	0xC9080000010475	789950776.076111	121351.862215934
	******	***	-	0.000000000000000	**********	450000 004040044

Quiz 2: Sequel or Original?

Answer: Sequel (The Godfather Part II)

Spatial Data Can Be Rendered Via SQL Queries

Latitude Longitude Points from X/Y or Lat/Lon fields -72.83398931 42.11638925 SPRINGFIELD Points from Polygon Centroids Buffers from any features Points from line Start or End nodes

Basics: Make Your Point

Constructing a GIS-readable point from x/y or lat/long columns

SELECT Latitude, Longitude, SpatialRef

Latitude	Longitude	SpatialRef
42.11638925	-72.83398931	4326

SELECT GEOMETRY::STGeomFromText('POINT(' +
CONVERT(VARCHAR, Longitude) + ' ' +
CONVERT(VARCHAR, Latitude) + ')', SpatialRef)
as Shape

Shape

0xE6100000010C79EAB214603552C0902DC...

★

SELECT [Shape].ToString() as ShapeString

Basics: Draw The Line

LINESTRING (373574.7 2886328.4, 373524.0 2886355.7, 373481.9 2886369.7, 373447.6 2886379.8, 373392.2 2886393.9, 373326.7 2886407.9, 372787.8 2886494.5, 372543.0 2886538.8)

Basics: Create a Polygon

POLYGON ((356803.4 2876290.2, 356789.6 2876393.7, 356739.7 2876390.1, 356753.2 2876288.8, 356803.4 2876290.2))

Roll your own SHAPE field from x/y or lat/lon fields

point data

Virtual Layer in QGIS

Query Layer in ArcMap or **ArcGIS Pro**

Compatible with **ArcGIS Server** Map Services

Buffer via an ArcGIS Query Layer

"Dynamic" Buffer

Not recommended for large selection sets

use a good WHERE clause to narrow the scope

A word about querying Esri Versioned Feature Classes

Versioned Feature Classes have a "Versioned View"

The Versioned View provides the current posted Default version of the data

Naming convention: <Feature Class Name>_EVW

https://desktop.arcgis.com/en/arcmap/latest/manage-data/using-sql-with-gdbs/what-is-a-versioned-view.htm

Quiz 3: Sequel or Original?

Answer: Sequel (Despicable Me 2)

Spatial Querying: The Toolbox through a new lense

Distance: Point to Point

Where's the Nearest Hydrant?

DECLARE @Addr VARCHAR(50)

SET @Addr = '555 MAIN ST'

DECLARE @PT GEOMETRY

SET @PT = (SELECT SHAPE FROM AddressPts

WHERE Address = @Addr)

SELECT TOP 1 @Addr as Address, h.HydrantID, h.SHAPE.**STDistance**(@PT) as Distance, h.SHAPE.ToString() as HydrantGeometry FROM Hydrants as h ORDER BY h.SHAPE.**STDistance**(@PT)

Address	HydrantID	Distance	HydrantGeometry
555 MAIN ST	888	47.05	POINT (361358.95999999344 2863573.450000003)

Point in Polygon

In which neighborhood is this address?

SELECT a.Address, n.Neighborhood FROM AddressPts as a JOIN Neighborhoods as n ON n.Shape.**STContains(**a.Shape**)** = 1 WHERE a.Address = '555 MAIN ST'

Address	Neighborhood
555 MAIN ST	Happyville

Polygon Center in Polygon

Example: Town in County

SELECT t.TOWN as Community ,c.COUNTY as County ,format((t.SUM_ACRES / c.AREA_ACRES),'P1') as [% Coverage of County] FROM MGIS_TOWNBOUNDSSURVEY as t JOIN MGIS_COUNTYBOUNDARIES as c ON c.shape.STIntersects(t.shape.STCentroid()) = 1 WHERE t.TOWN = 'SPRINGFIELD'

Community	County	% Coverage of County
SPRINGFIELD	HAMPDEN	5.2 %

HAMPDEN

Polygon Overlap Area

Percentage of parcel in Zone A, B or C watershed protection area

SELECT DISTINCT swp.SWPZONE as [SWP Zone]

,format(sum(swp.Shape.**STIntersection(**p.Shape**).STArea()**) / p.Shape.**STArea()**, 'P1') as [Overlap Pct]

FROM [MGIS_Parcels] as p

JOIN [MGIS_SurfaceWaterProtection_ZoneABC] as swp

ON p.Shape.**STIntersection(**swp.shape**).STArea()** > 0

WHERE p.LOC_ID = 'M_78537_875189'

GROUP BY swp.SWPZONE, p.Shape.STArea()

SWP Zone	Overlap Pct
А	23.8 %
С	76.2 %

Quiz 4: Sequel or Original?

Answer: Original (The Terminator)

Line / Point Connectivity

Selecting upstream / downstream manhole IDs by joining to the coincident start & end nodes of the pipes

```
SELECT g.[ASSETID] as GravityPipeAssetID

,F_MH_XY.ASSETID as Calculated_F_Node

,T_MH_XY.ASSETID as Calculated_T_Node

FROM [GRAVITYPIPE] as g

JOIN [MANHOLE] as F_MH_XY

on (g.Shape.STStartPoint()).STX = F_MH_XY.Shape.STX

and (g.Shape.STStartPoint()).STY = F_MH_XY.Shape.STY

JOIN [MANHOLE] as T_MH_XY

on (g.Shape.STEndPoint()).STX = T_MH_XY.Shape.STX

and (g.Shape.STEndPoint()).STY = T_MH_XY.Shape.STY
```

•		
GravityPipeAssetID	Calculated_F_Node	Calculated_T_Node
P997B	41C1	2035A
P43E2B	456C	45BE
P13FB	313D	3148
P3EFA	3149	407A
P4365	30DD	4364
P41D2	41C5	41C4
P1501	3146	3149
P41D9	3FBF	41CB
P5011	4103	41CB
P18C2	4880	3FBF

Line / Point Connectivity

Detecting errors or miscodes with upstream/downstream node values

g.[ASSETID] as GravityPipeAssetID ,(g.Shape.STEndPoint()).STX as PipeStartX, m.Shape.STX as ManholeX ,(g.Shape.STEndPoint()).STY as PipeStartY, m.Shape.STY as ManholeY, g.[F_NODE] as Current_F_Node ,case isnull(mxy.ASSETID,") WHEN "THEN 'Spatial Mismatch' ELSE mxy.ASSETID END as Correct_F_Node FROM GRAVITYPIPE as g

join SMH as m on g.F_NODE = m.ASSETID
join SMH as mxy
on (g.Shape.STStartPoint()).STX = mxy.Shape.STX and (g.Shape.STStartPoint()).STY = mxy.Shape.STY
where m.Shape.STX <> (g.Shape.STStartPoint()).STX and m.Shape.STY <> (g.Shape.STStartPoint()).STY

GravityPipeAssetID	PipeStartX	ManholeX	PipeStartY	ManholeY	Current_F_Node	Correct_F_Node
P47EE	363865.05325	363865.05325	2875992.89775001	2875992.89775001	1B5A	4B01A
P4655	367720.359999999	361807.003999993	2865468.90449999	2875011.37774999	1BA2	Spatial Mismatch
P1122	379845.25	379906.25	2863031.75	2863499.5	24B0	Spatial Mismatch
P1E7B	362723.322750002	362786.249750003	2868109.30374999	2868147.99950001	33C7	Spatial Mismatch
P20CB	356680.140249997	356514.886749998	2866862.92325	2867068.1145	3DD7	Spatial Mismatch
P3F67	389488 972499996	389463 520999998	2879242 9945	2879427 88375001	3FF9	Snatial Mismatch

Practical Benefits of Start/End Node Attributes

Upstream / Downstream Trace

```
SET @NewInsertCount = @@ROWCOUNT;
-- the tree traversal:
WHILE @NewInsertCount > 0
-- enter the loop if there was something inserted in the previous statement
BEGTN
   --We insert into #CHILDREN all ASSETIDs which are "children"
   -- The @NewInsertCount will indicate how many children are added for each iteration; v
   INSERT INTO #CHILDREN(ID, ASSETID, Location, F NODE, T NODE, PipeType )
       SELECT @NewInsertCount, ASSETID, Location, F_NODE, T_NODE
               ,[PipeSubType] as [PipeType]
                                                  Pipes WHERE EXISTS
              (SELECT ASSETID, Location, F_NODE, T_NODE, PipeSubType FROM #CHILDREN
                               Pipes.F NODE = #CHILDREN.T NODE)
        AND NOT EXISTS
             (SELECT ASSETID, Location, F_NODE, T_NODE, PipeSubType FROM #CHILDREN
                                     Pipes.ASSETID = #CHILDREN.ASSETID);
        SET @NewInsertCount = @@ROWCOUNT;
   -- if the value is 0 then there were no new children inserted thus no "grandchildren"
```


FND

Advanced: Spatial Joining by Start or End of a Line

Problem: How can we detect lines that have improper directionality?

SELECT sL.SVC_LineID ,sL.WtrMainID as SvcLineWaterMainID ,wM.FACILITYID as WaterMainID, sL.DeliveryArea

FROM [dbo].[wServiceLine_evw] sL -- Water Service Lines
LEFT OUTER JOIN [dbo].[wMainLine_evw] wM -- Water Mains

--Joining STEndPoint or STStartPoint is processor intensive.

--Best to avoid running in a production environment.

ON sL.Shape.STEndPoint().STIntersects(wM.SHAPE) = 1

—Only show the backward service lines WHERE wm.FACILITYID is not null

SVC_LineID	SvcLineWater MainID	WaterMainID	DeliveryArea	
581	42492	49736		

Practice Data & Sample Code

https://github.com/MikeOlkinSwsc/SpatialSQL

Michael Olkin, GISP Springfield Water and Sewer Commission

michael.olkin@waterandsewer.org https://github.com/MikeOlkinSwsc/SpatialSQL

