

# Heuristics for t-admissibility with complex network approach

**Universidade Federal Fluminense** 

Santos, Carlos Zudio, Anderson Santiago, Leandro Cunha, Luís



 The t-admissibility problem aims to decide whether a graph G has a spanning tree T in which the distance between any two adjacent vertices of G is at most t.(stretch factor)

• The smallest t for which the graph is t-admissible, we call stretch index.

## t-ADMISSIBILITY EXAMPLE



$$d(0,4) = 4$$

$$d(6,8) = 4$$

$$d(4,8) = 2$$

$$d(3,7) = 2$$

$$d(2,4) = 2$$



$$d(5,7) = 5$$

$$d(6,8) = 4$$

$$d(7,8) = 3$$

$$d(4,7) = 2$$

$$d(2,4) = 2$$

# t-ADMISSIBILITY EXAMPLE





$$d(0,4) = 4$$
  
 $d(6,8) = 4$ 



$$d(5,7) = 5$$

Stretch index = 4



|       | Complexity  |
|-------|-------------|
| t = 2 | Polynomial  |
| t = 3 | Open        |
| t ≥ 4 | NP-Complete |



#### **HEURISTICS**

Strategies for generating tree spanners: Algorithms, heuristics and optimal graph classes<sup>2</sup>



# MEDIDAS DE CENTRALIDADE

**Degree centrality** 

$$D_c(v) = \sum_{u=1}^n A_{uv}, u \neq v$$

Leverage centrality

$$L_c(v) = \frac{1}{d(v)} \cdot \sum_{v_j \in N(v)} \frac{d(v) - d(v_j)}{d(v) + d(v_j)}$$

**Closeness centrality** 

$$C_c(v) = \frac{1}{\sum_{u \in V(G) \setminus v} d(u, v)}$$

## CONTRIBUTION

- Utilization of new centrality measures for the tie-breaking problem
- Development of 4 heuristics (2 adapted and 2 new)
- Analysis of the quality of the heuristics.



- Sort the vertices by
  - + degree
  - + closeness
  - leverage

| V | d(v) | Clos.  | Lev.    |
|---|------|--------|---------|
| 3 | 4    | 0,0434 | 0,1547  |
| 2 | 4    | 0,0434 | 0,1547  |
| 6 | 4    | 0,0434 | 0,2857  |
| 0 | 3    | 0,0370 | -0,0285 |
| 4 | 3    | 0,0454 | -0,1428 |
| 1 | 2    | 0,0344 | -0,0266 |
| 5 | 2    | 0,0416 | -0,3333 |
| 8 | 2    | 0,0344 | -0,1666 |
| 7 | 2    | 0,0344 | -0,1666 |

























- Sort the vertices by
  - + degree
  - + closeness
  - leverage

| V | d(v) |
|---|------|
| 3 | 4    |
| 2 | 4    |
| 6 | 4    |
| 0 | 3    |
| 4 | 3    |
| 1 | 2    |
| 5 | 2    |
| 8 | 2    |
| 7 | 2    |





#### **HEURISTICS 2**

| V | d(v) |
|---|------|
| 3 | 4    |
| 2 | 4    |
| 6 | 4    |
| 0 | 3    |
| 4 | 3    |
| 1 | 2    |
| 5 | 2    |
| 8 | 2    |
| 7 | 2    |



ability to contribute

new neighbors to the tree





| V | d(v) |
|---|------|
| 3 | 4    |
| 2 | 4    |
| 6 | 4    |
| 0 | 3    |
| 4 | 3    |
| 1 | 2    |
| 5 | 2    |
| 8 | 2    |
| 7 | 2    |

| V | $f(v) = d_G(v) - A_{tree}(v)$ |
|---|-------------------------------|
| 0 | 0                             |
| 1 | 0                             |
| 4 | 1                             |
| 5 | 1                             |





| V | d(v) |
|---|------|
| 3 | 4    |
| 2 | 4    |
| 6 | 4    |
| 0 | 3    |
| 4 | 3    |
| 1 | 2    |
| 5 | 2    |
|   |      |

| V | $f(v) = d_G(v) - A_{tree}(v)$ |
|---|-------------------------------|
| 0 | 0                             |
| 5 | 0                             |
| 1 | 0                             |
| 6 | 2                             |





| V | d(v) |
|---|------|
| 3 | 4    |
| 2 | 4    |
| 6 | 4    |
| 0 | 3    |
| 4 | 3    |
| 1 | 2    |
| 5 | 2    |
| 8 | 2    |
| 7 | 2    |

| V | f(v) =<br>d <sub>G</sub> (v) - A <sub>tree</sub> (v) |
|---|------------------------------------------------------|
| 0 | 0                                                    |
| 1 | 0                                                    |
| 5 | 0                                                    |
| 7 | 0                                                    |
| 8 | 0                                                    |





# INSTRUCTIONS FOR HEURISTICS 3

- Sort the vertices by
  - + degree
  - + closeness
  - leverage

| V' | d(v) |
|----|------|
| 3  | 4    |
| 2  | 4    |
| 6  | 4    |
| 0  | 3    |
| 4  | 3    |
| 1  | 2    |
| 5  | 2    |
| 8  | 2    |
| 7  | 2    |





#### **HEURISTICS 3**

| V | d(v) |
|---|------|
| 3 | 4    |
| 2 | 4    |
| 6 | 4    |
| 0 | 3    |
| 4 | 3    |
| 1 | 2    |
| 5 | 2    |
| 8 | 2    |
| 7 | 2    |

| V | $f(v) = d_G(v) - A_{tree}(v)$ |
|---|-------------------------------|
| 1 | 0                             |
| 0 | 1                             |
| 2 | 1                             |
| 4 | 1                             |
| 5 | 1                             |
| 6 | 2                             |
| 7 | 2                             |
| 8 | 2                             |

#### Compute for all vértices of G







| V | $f(v) = d_G(v) - A_{tree}(v)$ |
|---|-------------------------------|
| 1 | 0                             |
| 4 | 0                             |
| 5 | 0                             |
| 7 | 0                             |
| 8 | 0                             |
| 0 | 1                             |
| 2 | 1                             |







| V | d(v) |
|---|------|
| 3 | 4    |
| 2 | 4    |
| 6 | 4    |
| 0 | 3    |
| 4 | 3    |
| 1 | 2    |
| 5 | 2    |
| 8 | 2    |
| 7 | 2    |

| V | $f(v) = d_G(v) - A_{tree}(v)$ |
|---|-------------------------------|
| 1 | 0                             |
| 4 | 0                             |
| 5 | 0                             |
| 7 | 0                             |
| 8 | 0                             |
| 0 | 0                             |
| 2 | 0                             |







| V          | Closeness            | Leverage                  |
|------------|----------------------|---------------------------|
| 0          | 0,0370               | -0,0285                   |
| 1          | 0,0344               | -0,0266                   |
| 2          | 0,0434               | 0,1547                    |
| 3          | 0,0434               | 0,1547                    |
|            |                      |                           |
| 4          | 0,0454               | -0,1428                   |
| <b>4</b> 5 | <b>0,0454</b> 0,0416 | <b>-0,1428</b><br>-0,3333 |
|            | •                    |                           |
| 5          | 0,0416               | -0,3333                   |





# INSTRUCTIONS FOR HEURISTICS 4







# INSTRUCTIONS FOR HEURISTICS 4





# COMPUTATIONAL EXPERIMENTS

Generate 11 random graphs with 10 to 20 vertices and a maximum of 34 edges.

 Generate 400 graphs distributed between 100 and 1000 vertices from the Bipartite, Erdos, Watts, and Barabási classes.

|          | *** 1 | TT1 0 | TTO 1 | ***  | TTO 1 | 112 2 | TT 4 4 | **** 0 1 | TT4 0 0 |
|----------|-------|-------|-------|------|-------|-------|--------|----------|---------|
| Type     | H1v1  | H1v2  | H2v1  | H2v2 | H3v1  | H3v2  | H4v1   | H4v2r1   | H4v2r3  |
| Vertices |       |       |       |      |       |       |        |          |         |
| 10       | 0.0   | 0.0   | 1.0   | 0.0  | 0.0   | 0.0   | 0.0    | 0.0      | 0.0     |
| 11       | 0.0   | 0.0   | 0.0   | 0.0  | 0.0   | 0.0   | 0.0    | 0.0      | 0.0     |
| 12       | 0.0   | 0.0   | 0.0   | 0.0  | 0.0   | 0.0   | 0.0    | 0.0      | 0.0     |
| 13       | 0.0   | 0.0   | 0.0   | 1.0  | 1.0   | 1.0   | 0.0    | 0.0      | 0.0     |
| 14       | 0.0   | 0.0   | 0.0   | 0.0  | 0.0   | 0.0   | 0.0    | 0.0      | 0.0     |
| 15       | 0.0   | 0.0   | 0.0   | 0.0  | 0.0   | 0.0   | 0.0    | 0.0      | 0.0     |
| 16       | 0.0   | 1.0   | 0.0   | 1.0  | 0.0   | 0.0   | 0.0    | 0.0      | 0.0     |
| 17       | 0.0   | 0.0   | 0.0   | 0.0  | 3.0   | 3.0   | 0.0    | 1.0      | 0.0     |
| 18       | 2.0   | 1.0   | 1.0   | 1.0  | 2.0   | 1.0   | 0.0    | 0.0      | 0.0     |
| 19       | 0.0   | 0.0   | 1.0   | 0.0  | 1.0   | 1.0   | 0.0    | 0.0      | 0.0     |
| 20       | 1.0   | 1.0   | 2.0   | 1.0  | 2.0   | 2.0   | 0.0    | 0.0      | 0.0     |
|          | DC    | DC    | DC    | DC   | DC    | DC    | DC     | CC       | CC      |
|          |       | CC    |       | CC   |       | CC    | CC     | LC       | LC      |
|          |       | LC    |       | LC   |       | LC    | LC     |          |         |



|           |       |       |                 |       |                 |       |       | <u> </u> |        |        |
|-----------|-------|-------|-----------------|-------|-----------------|-------|-------|----------|--------|--------|
| n $Av(m)$ | 100.0 | 200.0 | 300.0           | 400.0 | 500.0           | 600.0 | 700.0 | 800.0    | 900.0  | 1000.0 |
| Class     | 1.9k  | 7.6k  | 17.4k           | 30.5k | 46.9k           | 68.8k | 93.6k | 122.3k   | 154.8k | 191.1k |
| Barabasi  | 1.9   | 2.0   | 2.0             | 2.0   | 2.0             | 2.0   | 2.0   | 2.0      | 2.0    | 2.0    |
| Erdos     | 2.8   | 3.2   | 3.3             | 3.8   | 4.0             | 4.4   | 3.8   | 3.6      | 4.3    | 4.3    |
| Watts     | 3.6   | 4.8   | <b>1.04</b> 5.1 | 4.8   | 5.2             | 5.3   | 5.2   | 5.5      | 5.3    | 5.0    |
| Bipartite | 4.8   | 5.6   | 5.6             | 6.8   | 7.0 <b>1.61</b> | 6.8   | 7.2   | 8.0      | 6.6    | 7.2    |



- The values at the bottom of the cell represent the average between the heuristic's stretch factor and the lower limit value as specified in the literature.
- The values at the top of the cell represent the standard deviation.

| n         |       |       |       |       |       |       |       |        |        |        |
|-----------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|
| Av(m)     | 100.0 | 200.0 | 300.0 | 400.0 | 500.0 | 600.0 | 700.0 | 800.0  | 900.0  | 1000.0 |
| Class     | 1.9k  | 7.6k  | 17.4k | 30.5k | 46.9k | 68.8k | 93.6k | 122.3k | 154.8k | 191.1k |
| Barabasi  | 0.45  | 0.3   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0    | 0.0    |
| Darabasi  | 1.3   | 1.9   | 2.0   | 2.0   | 2.0   | 2.0   | 2.0   | 2.0    | 2.0    | 2.0    |
| Erdos     | 0.48  | 0.67  | 0.3   | 0.53  | 0.83  | 0.8   | 0.66  | 0.39   | 0.6    | 0.6    |
| Liuos     | 2.4   | 2.5   | 2.9   | 2.9   | 2.9   | 3.4   | 3.4   | 3.2    | 3.2    | 3.2    |
| Watts     | 0.63  | 0.6   | 0.66  | 0.63  | 0.48  | 0.78  | 0.64  | 0.8    | 0.66   | 0.64   |
| walls     | 3.0   | 3.2   | 3.6   | 3.0   | 3.6   | 3.7   | 3.7   | 3.4    | 3.4    | 3.7    |
| Bipartite | 0.79  | 1.49  | 0.97  | 1.2   | 0.91  | 0.97  | 1.0   | 1.32   | 0.91   | 1.28   |
| Dipartite | 4.4   | 4.4   | 4.8   | 4.4   | 4.6   | 4.8   | 5.0   | 5.2    | 4.6    | 5.4    |



- The values at the bottom of the cell represent the average between the heuristic's stretch factor and the lower limit value as specified in the literature.
- The values at the top of the cell represent the standard deviation.



| n $Av(m)$ | 100.0            | 200.0 | 300.0            | 400.0 | 500.0           | 600.0           | 700.0           | 800.0  | 900.0           | 1000.0 |
|-----------|------------------|-------|------------------|-------|-----------------|-----------------|-----------------|--------|-----------------|--------|
| Class     | 1.9k             | 7.6k  | 17.2k            | 30.5k | 46.9k           | 68.8k           | 93.6k           | 122.3k | 154.8k          | 191.8k |
| Barabasi  | <b>0.78</b> 2.7  | 3.5   | 3.6              | 3.7   | 4.0             | 3.8             | 4.0             | 4.0    | 4.1             | 4.0    |
| Erdos     | 4.3              | 5.1   | <b>0.66</b> 4.4  | 5.0   | 0.0             | <b>0.94</b> 5.1 | <b>1.28</b> 5.4 | 1.13   | <b>1.79</b> 5.7 | 5.6    |
| Watts     | <b>1.26</b> 5.3  | 6.4   | <b>1.49</b> 5.4  | 6.2   | 6.0             | 7.3             | 6.5             | 6.4    | 6.5             | 6.4    |
| Bipartite | <b>1.88</b> 5.33 | 6.0   | <b>2.33</b> 6.88 | 7.0   | <b>1.56</b> 7.4 | <b>1.95</b> 8.4 | <b>1.28</b> 8.6 | 7.4    | 8.4             | 8.2    |



- The values at the bottom of the cell represent the average between the heuristic's stretch factor and the lower limit value as specified in the literature.
- The values at the top of the cell represent the standard deviation.



| n         |       |       |       |       |       |       |       |        |        |        |
|-----------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|
| Av(m)     | 100.0 | 200.0 | 300.0 | 400.0 | 500.0 | 600.0 | 700.0 | 800.0  | 900.0  | 1000.0 |
| Class     | 1.9k  | 7.6k  | 17.4k | 30.5k | 46.9k | 68.8k | 93.6k | 122.3k | 154.8k | 191.1k |
| Barabasi  | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0    | 0.0    |
| Darabasi  | 2.0   | 2.0   | 2.0   | 2.0   | 2.0   | 2.0   | 2.0   | 2.0    | 2.0    | 2.0    |
| Erdos     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0    | 0.0    |
| Liuos     | 2.0   | 2.0   | 2.0   | 2.0   | 2.0   | 2.0   | 2.0   | 2.0    | 2.0    | 2.0    |
| Watts     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0    | 0.0    |
| watts     | 2.0   | 2.0   | 2.0   | 2.0   | 2.0   | 2.0   | 2.0   | 2.0    | 2.0    | 2.0    |
| Bipartite | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0    | 0.0    |
| Dipartite | 2.0   | 2.0   | 2.0   | 2.0   | 2.0   | 2.0   | 2.0   | 2.0    | 2.0    | 2.0    |



- The values at the bottom of the cell represent the average between the heuristic's stretch factor and the lower limit value as specified in the literature.
- The values at the top of the cell represent the standard deviation.



- The centrality measures improved the selection of vertices.
- The heuristic 4 presented trees with better solutions for the stretch factor
- We need to evaluate the heuristics with new classes of graphs.



### **THANKS!**



## Questions?

@cthadeusantos & cthadeusantos@gmail.com
& carlosthadeu@id.uff.br