AMSC460 Computational Methods

Michael Li

Contents

1	Taylor Polynomials	2
2	Origin of Errors 2.1 Sources of Errors	2 3
	2.1 Sources of Enforces	0
3	Error Propagation and Roundoff Error	3
	3.1 Error Propagation for Arithmetic Operations	
	3.2 Forward Error Analysis	4
4	Unavoidable Error, Numerically Stable/Unstable Algorithms	5
5	Machine Numbers and Machine Arithmetic	6
	5.1 Base 10 Machine Numbers	6
	5.2 Base 2 Machine Numbers	7
	5.3 IEEE654 Machine Numbers	
	5.4 Machine Arithmetic	9
6	Linear Systems	9
	6.1 Solving linear Systems in Matlab	11
	6.2 Matrix Inverses	
	6.3 Number of Operations	
		12

1 Taylor Polynomials

We can approximate the value of f(x) with a point x_0 near x

$$p_n(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + f^{(n)}(x_0) \frac{(x - x_0)^n}{n!}$$

• we have to know the values of $f(x_0), f'(x_0), \ldots$

Remainder term $R_{n+1} = f(x) - p_n(x)$ can be expressed as

$$R_{n+1} = f^{(n+1)}(t) \frac{(x-x_0)^{n+1}}{(n+1)!}$$
 for t between x, x_0

Example: approximate $\sqrt{9.1}$ such that $|\tilde{y} - y| \le 10^{-6}$

- 1. let $x_0 = 9 \implies f(9) = 3, f'(9) = 1/6, f''(9) = 1/108$
- 2. $\tilde{y} = p_2(x_0) = f(9) + f'(9)(9.1 9) + f''(9)\frac{1}{2}(9.1 9)^2 \approx 3.01662037037$
- 3. $R_{n+1} = R_3 = f'''(t) \frac{(9.1-9)^3}{3!} = \frac{3}{8} \frac{1}{6} \frac{1}{10^3} t^{-5/2}$
- 4. since t is between 9.1 and 9, and $t^{-5/2}$ is decreasing, we have $|t^{-5/2} \le 9^{-5/2}$. Thus

$$|R_3| \le \frac{3}{8} \frac{1}{6} \frac{1}{10^3} 9^{-5/2} \approx 2.572 \cdot 10^{-7}$$

And we have that $|\tilde{y} - y| \le 2.573 \cdot 10^{-7} \le 10^{-6}$ as desired

2 Origin of Errors

For simple problems, we can find a formula such as

$$I_1 = \int_0^1 \sin(x) \, dx = -\cos(1) + \cos(0) = 1 - \cos(1)$$

We can then use I_1 to approximate an answer ≈ 0.45969769413186

However, for complicated problems such as

$$I_2 = \int_0^1 \sin(\sin(x)) \, dx$$

We can't create a simple formula. However, we can approximate (in this case with Reimann Sums with interval n = 1000)

$$\hat{I}_2 = \frac{1}{1000} \sum_{j=1}^{1000} \sin(\sin((j-\frac{1}{2})\frac{1}{1000})) \approx 0.430606129785715$$

Things to consider

- how large is the error between \hat{I}_2 and I_2
- \bullet how fast does error decrease if we increase n

Absolute Error: $|\hat{x} - x|$

Relative Error: $\epsilon_x = \frac{\hat{x} - x}{x} \implies \hat{x} = x(1 + \epsilon_x)$

2.1 Sources of Errors

Take the example problem of dropping a mass from height h = 5ft. We want to find t_0 , the time for the mass to hit the floor. Using Newton's law, we can approximate

$$t_0 = \sqrt{\frac{2h}{g}} = \sqrt{\frac{5}{16}}$$

However, suppose that our calculator doesn't have a sqrt function. In this case, we need to approximate $\sqrt{\frac{5}{16}}$

$$x = 1$$

for i = 1 to 5:
 $x = (x + \frac{a}{x})/2$

Using this approximation, we get that $t_0 \approx 0.5590169944$. However, this still might be an accurate value of t_0

- Error in given data: input values might not be accurate. Even if we don't need to approximate calculations, the error in the input data can propagate throughout the entire problem, polluting the final answer
- Modeling error: we don't consider all factors in a given problem (e.g. assuming that the only force acting on the mass is -mg)
- Approximation error: there are some problems we can't solve, so we have to approximate an answer
- Roundoff error: computers can only operate on a finite number of digits, which creates roundoff error

3 Error Propagation and Roundoff Error

Most problems have a certain number of inputs x_1, \ldots, x_n and a certain number of output values y_1, \ldots, y_m

Consider the simplest case of 1 input and 1 output value: y = f(x)

If we only have an approximation \tilde{x} of input value x, the best we can do is compute $\tilde{y} = f(\tilde{x})$.. This gives a relative error of

$$\epsilon_y = \frac{\tilde{y} - y}{y} = \frac{f(\tilde{x}) - f(x)}{f(x)} \approx \frac{(\tilde{x} - x)f'(x)}{f(x)} = \frac{xf'(x)}{f(x)} \cdot \frac{\tilde{x} - x}{x} = c_f \cdot \epsilon_x$$

- $c_f(x) = \frac{xf'(x)}{f(x)}$ is the **condition number** of f at x and determines how sensitive a problem is to small changes to input values
 - Well-conditioned: $|c_f|$ is not much larger than 1
 - Ill-conditioned: $|c_f| \gg 1$

Example: $f(x) = \frac{1}{x}$

 $c_f(x) = -1$ so f is well conditioned for all x. Taking x = 2 and $\hat{x} = 1.96$ we have that

$$x = 2$$
 $\hat{x} = 1.96$ $\epsilon_{\hat{x}} = \frac{\hat{x} - x}{x} = -0.02$ $y = f(x) = 0.5$ $\hat{y} = f(\hat{x}) \approx 0.5102$ $\epsilon_{\hat{y}} = \frac{\hat{y} - y}{y} \approx 0.0204$

Thus $|\epsilon_{\hat{x}}| \approx |\epsilon_{\hat{y}}|$

Example: $f(x) = \ln x$

 $c_f(x) = \frac{1}{\ln x}$ so for x = 1.01, we have that $c_f(x) \approx 100$. Using the Taylor approximation of $\ln x \approx 0 + 1(x-1)$ for x and choosing x = 1.01 and $\hat{x} = 1.02$, we have that

$$x = 1.01$$
 $\hat{x} = 1.02$ $\epsilon_{\hat{x}} = \frac{\hat{x} - x}{x} \approx 0.0099$

$$y = f(x) \approx 0.00995$$
 $\hat{y} = f(\hat{x}) \approx 0.0198$ $\epsilon_{\hat{y}} = \frac{\hat{y} - y}{y} \approx 0.99$

Thus $|\epsilon_{\hat{y}}| \approx 100 \epsilon_{\hat{x}}$

3.1 Error Propagation for Arithmetic Operations

Let x, y be exact values and let \tilde{x}, \tilde{y} be approximate values

- Product: $z = x \cdot y \implies \tilde{z} = \tilde{x}\tilde{y} = x(1 + \epsilon_x)y(1 + \epsilon_y) = z(1 + \epsilon_x + \epsilon_y + \epsilon_x\epsilon_y) \implies \epsilon_z = \epsilon + \epsilon_y + \epsilon_x\epsilon_y \approx \epsilon_x + \epsilon_y$
- Division: $\epsilon_z \approx \epsilon_x + \epsilon_{1/y}$ using f(x) = 1/x
- Sum: $z = x + y \implies \epsilon_z = \frac{x(1 + \epsilon_x) + y(1 + \epsilon_y) (x + y)}{x + y} = \frac{x}{x + y} \epsilon_x + \frac{y}{x + y} \epsilon_y \implies |\epsilon_z| \le \left| \frac{x}{x + y} \right| |\epsilon_x| + \left| \frac{y}{x + y} \right| |\epsilon_y|$
 - if $x \approx -y$, we have that $\left|\frac{x}{x+y}\right|$ and $\left|\frac{y}{x+y}\right|$ are much greater than 1, and cause a larger magnification of relative errors. This is called **subtractive cancellation**

Example:
$$x = 101, y = -100 \implies \frac{x}{x+y} = 101, \frac{y}{x+y} = -100$$

- if x, y are opposite signs but different magnitude, $\left|\frac{x}{x+y}\right|$ and $\left|\frac{y}{x+y}\right|$ are not much larger than 1. This is fine **Example**: $x = 10, y = -1 \implies \frac{x}{x+y} = \frac{10}{9}, \frac{y}{x+y} = \frac{-1}{9}$
- if x, y have the same sign, $\left|\frac{x}{x+y}\right|$ and $\left|\frac{y}{x+y}\right|$ are less than 1. Added together, they give 1. Thus $|\epsilon_z| \leq \max(|\epsilon_x|, |\epsilon_y|)$ **Example**: $x = 3, y = 7 \implies \frac{x}{x+y} = \frac{3}{10}, \frac{y}{x+y} = \frac{7}{10}$

UPSHOT: None of these operations cause significant magnification of relative errors, except subtractive cancellation

3.2 Forward Error Analysis

We try to find the upper bound for relative error at each stage of the algorithm

- start with the bounds for the errors in the given data
- when a function f is applied, we multiply the error bound by $|c_f|$
- when arithmetic operators are used on the values, we use the above error propagation formulas
- each time we round, we add $|\epsilon_M|$ to the error bound

Example: $y = f(x) = 1 - \cos x$ for $x = 10^{-5}$ using double precision machine numbers $c_f = \frac{x \sin x}{1 - \cos x} \approx \frac{x \cdot x}{x^2/2}$ so the function is **well-conditioned** and has unavoidable error of $|c_f| \epsilon_M + \epsilon_M \approx 3 \cdot 10^{-16}$

In contrast, consider the algorithm $y_1 = \cos x$, $y = 1 - y_1$. Using machine arithmetic, we have

$$\hat{x}=fl(x),\quad \tilde{y}_1=\cos\hat{x},\quad \hat{y}_1=fl(\tilde{y}),\quad \tilde{y}=1-\hat{y}_1,\quad \hat{y}=fl(\tilde{y}). \text{ This gives relative errors of }$$

$$\left|\frac{\hat{x}-x}{x}\right| \le \epsilon_M, \quad \left|\frac{\tilde{y}_1-y_1}{y_1}\right| \le c_1\epsilon_M \text{ with } c_1 = \left|\frac{x(-\sin x)}{\cos x}\right| \approx 10^{-10}, \quad \left|\frac{\hat{y}_1-y_1}{y_1}\right| \le c_1\epsilon_M + \epsilon_M$$

$$\left|\frac{\tilde{y}-y}{y}\right| \le c_2(c_1\epsilon_M + \epsilon_M) \text{ with } c_2 = \left|\frac{y_1(-1)}{1-y_1}\right| \approx 2 \cdot 10^{10}$$

Thus we have

$$\left| \frac{\hat{y} - y}{y} \right| \le c_2(c_1 \epsilon_M + \epsilon_M) + \epsilon_M \approx 2\epsilon_M + 2 \cdot 10^{10} \epsilon_M + \epsilon_M \approx 2 \cdot 10^{-6}$$

Which is much larger than the unavoidable error, and thus this algorithm is numerically unstable

4 Unavoidable Error, Numerically Stable/Unstable Algorithms

We want to compute f(x) for an input x. Assuming there are no measurement errors, in the ideal algorithm we would

- round the input to the closest machine number $\hat{x} = fl(x)$
- use \hat{x} and compute $\tilde{y} = f(\hat{x})$ with some extra precision
- round this result: $\hat{y} = fl(\tilde{y})$

This results in unavoidable error:

$$|\epsilon_{\hat{y}}| \le |c_f(x)|\epsilon_M + \epsilon_M$$

In typical computations, we break up the computation of f(x) into a sequence of operations available on our machine For example, we can use the algorithm we used from the previous section to estimate $y = 1 - \cos(x)$ at $x = 5 \cdot 10^{-4}$

```
format compact; format long g
x = 5e-4;
yalg1 = 1 - cos(x)
> 1.24999997352937e-07
```

Relative Error

We can find relative error by using symbolic toolbox and vpa to use 30 digits accuracy

Thus relative error is about $3.4 \cdot 10^{-10}$

Unavoidable error

```
cf = x*sin(x)/(1-cos(x))
    > cf = 1.99999995901967
epsM = 1e-16;
unav_err = cf*epsM + epsM
    > unav_err = 2.99999995901967e-16
```

Since the error from algorithm 1 is $3.4 \cdot 10^{-10}$ which is much larger than the unavoidable error $3 \cdot 10^{-16}$, algorithm 1 is numerically unstable. This large error comes from a few factors:

Note that $y_1 = \cos(x)$ is rounded to the closest machine number, resulting in an error as large as ϵ_M

When we compute $y = 1 - y_1$ (note that $y_1 \approx 1$), we have subtractive cancellation so ϵ_{y_1} will be multiplied by $\left| \frac{y_1}{1-y_1} \right|$

```
factor*epsM > ans = 7.99999916941204e-10
```

Thus the roundoff error in y_1 may cause an error as large as $8 \cdot 10^{-10}$, corresponding to the order of magnitude in the error from algorithm 1

A better algorithm would be to multiply and divide $1 - \cos x$ by $1 + \cos x$, then replacing $1 - \cos^2 x$ using $\sin^2 x + \cos^2 x = 1$

$$y = 1 - \cos x = \frac{(1 - \cos x)(1 + \cos x)}{1 + \cos x} = \frac{\sin^2 x}{1 + \cos x}$$

This algorithm is free from subtractive cancellation. Thus

```
yalg2 = sin(x)^2/(1+cos(x))
    > yalg2 = 1.24999997395833e-07
relerr_alg2 = double(yalg2-Y)/Y
    > relerr_alg2 = 5.55505114272964e-18
```

This is the same order of the unavoidable error, or less. Thus algorithm 2 is numerically stable

5 Machine Numbers and Machine Arithmetic

A Matlab program such as

```
x = 0.1;

y1 = cos(x);

y = y - y1
```

is not evaluated exactly. Machines can only store up to a certain number of digits fro each number and use **machine** arithmetic

5.1 Base 10 Machine Numbers

Numbers are represented in decimal notation. An (n+1)-digit base 10 number with digits $d_i \in \{0, \dots, 9\}$ is

$$(d_0.d_1d_2...d_n)_{10} = d_0 + d_1 \cdot 10^{-1} + d_2 \cdot 10^{-2} + \dots + d_n \cdot 10^{-n}$$

We can normalize numbers to the form $x = \pm q \cdot 10^e$ where

- q is the mantissa
- \bullet e is the **exponent**
- the first digit d_0 is nonzero

For example, we can represent x = 12345 as

$$x = 12345 = 1.2345 \cdot 10^4$$

Thus simple base 10 machine numbers can be presented as

$$\hat{x} = \begin{cases} \pm (d_0 \cdot d_1 d_2 \dots d_n)_{10} \cdot 10^e & d_j \in \{0, \dots, 9\}, \quad d_0 \neq 0, \quad e \in \mathbb{Z}, \quad e_{\min} \leq e \leq e_{\max} \\ 0 & e \leq e_{\max} \end{cases}$$

- largest machine number is $x_{\text{max}} = (9.99...9)_{10} \cdot 10^{e_{\text{max}}} = (10 10^{-n}) \cdot 10^{e_{\text{max}}} \approx 10^{e_{\text{max}}+1}$
- smallest positive machine number is $x_{\min} = (1.00...0) \cdot 10^{e_{\min}} = 10^{e_{\min}}$

We can round a number $\hat{x} = fl(x)$

- normalize x into the form $\pm q \cdot 10^e$
- if $e_{\min} \le e \le e_{\max}$, find the nearest mantissa $\hat{q} = (d_0.d_1d_2...d_n)_{10}$ then set $\hat{x} = \pm \hat{q} \cdot 10^e$
- if $e > e_{\text{max}}$ then **overflow** occurs
- if $e < e_{\min}$ then **underflow** occurs so let \hat{x} be the closer of 0 or x_{\min}

Example: assume we have a machine with n=3, $e_{\min}=-99$, and $e_{\max}=99$. Find $\hat{x}=fl(x)$ for $x=\frac{2}{300}$. We have that $x=+\frac{20}{3}\cdot 10^{-3}$, so $q=\frac{20}{3}$ and e=-3, meaning that we don't have overflow or underflow

To approximate the mantissa $q = \frac{20}{3}$, we note that $\frac{20}{3} = 6.6666...$

- $\hat{q}_{\text{left}} = (6.666)$
- $\hat{q}_{\text{left}} = (6.667)$ (closer so we round to this)

Thus we have that

$$\hat{x} = fl(x) = +(6.667)_{10} \cdot 10^{-2}$$

To find the upper bound for rounding error, note that

$$\left| \frac{\hat{x} - x}{x} \right| = \frac{|\hat{q} \cdot 10^e - q \cdot 10^e|}{q \cdot 10^e} = \frac{|\hat{q} - q|}{q}$$

Since $q \ge 1$ and $|\hat{q} - q| \le 0.5 \cdot 10^{-n}$ (spacing between 2 successive mantissa values is 10^{-n} and the largest possible value is half of this), rounding error is bounded by

$$\left| \frac{\hat{x} - x}{x} \right| = \frac{|\hat{q} - q|}{q} \le 0.5 \cdot 10^{-n}$$

Thus machine epsilon for base 10 system is $\epsilon_M = 0.5 \cdot 10^{-n}$

5.2 Base 2 Machine Numbers

Numbers are represented in binary notation. An (n+1)-digit base 2 number with digits $d_j \in \{0, \ldots, 1\}$ is

$$(d_0 \cdot d_1 d_2 \dots d_n)_2 = d_0 \cdot 2^0 + d_1 \cdot 2^{-1} + \dots + d_n \cdot 2^{-n}$$

We can normalize numbers to the form $x = \pm q \cdot 2^e$ where

- q is the mantissa
- e is the **exponent**
- the first digit d_0 is nonzero

For example, we can represent $x = (1101)_2$ as

$$x = (1101)_2 = (1.101)_2 \cdot 2^3$$

Thus simple base 2 machine numbers can be presented as

$$\hat{x} = \begin{cases} \pm (1.d_1 d_2 \dots d_n)_2 \cdot 2^e & d_j \in \{0, \dots, 1\}, \quad e \in Z, \quad e_{\min} \le e \le e_{\max} \\ 0 & \end{cases}$$

- largest machine number is $x_{\text{max}} = (1.1...1)_2 \cdot 2^{e_{\text{max}}} = (2 2^{-n}) \cdot 2^{e_{\text{max}}} \approx 2^{e_{\text{max}} + 1}$
- smallest positive machine number is $x_{\min} = (1.00...0)_2 \cdot 2^{e_{\min}} = 2^{e_{\min}}$

We can round a number $\hat{x} = fl(x)$

- normalize x into the form $\pm q \cdot 2^e$
- if $e_{\min} \leq e \leq e_{\max}$, find the nearest mantissa $\hat{q} = (d_0.d_1d_2...d_n)_2$ then set $\hat{x} = \pm \hat{q} \cdot 2^e$
- if $e > e_{\text{max}}$ then **overflow** occurs
- if $e < e_{\min}$ then **underflow** occurs so let \hat{x} be the closer of 0 or x_{\min}

Example: How does Matlab represent x = .1 Matlab uses binary machine numbers with n = 53, $e_{\min} = -1021$, $e_{\max} = 1024$. Find $\hat{x} = fl(x)$ for $x = \frac{1}{10}$

We have that $x = +\frac{16}{10} \cdot 2^{-4}$, so $q = \frac{16}{10}$ and e = -4, meaning that we don't have overflow or underflow

To approximate the mantissa $q = \frac{16}{10}$, we note that $\frac{16}{10} = (1.10011001100...)_2$

- $\hat{q}_{\text{left}} = (1.10011001100...11001)_2$
- $\hat{q}_{\text{right}} = (1.10011001100...11010)_2$ (this is closer so we round to this)

Thus we have that

$$\hat{x} = fl(x) = +\hat{q}_{right} \cdot 2^{-3}$$

To find the upper bound for rounding error, note that

$$\left| \frac{\hat{x} - x}{x} \right| = \frac{\left| \hat{q} \cdot 2^e - q \cdot 2^e \right|}{q \cdot 2^e} = \frac{\left| \hat{q} - q \right|}{q}$$

Since $q \ge 1/2$ and $|\hat{q} - q| \le 0.5 \cdot 2^{-n}$ (spacing between 2 successive mantissa values is 2^{-n} and the largest possible value is half of this), rounding error is bounded by

$$\left| \frac{\hat{x} - x}{x} \right| = \frac{|\hat{q} - q|}{q} \le 0.5 \cdot 2^{-n}$$

Thus machine epsilon for base 2 system is $\epsilon_M = 2^{-n-1}$

5.3 IEEE654 Machine Numbers

The issue with base 2 machine numbers is that there is a huge hole around 0; the distance between 0 and x_{\min} is much larger than the distance between x_{\min} and the next largest number $x_1 = (1 + 2^{-n})x_{\min}$

- Rounding numbers $|x| > x_{\min}$ causes a relative error of size $\leq \epsilon_M$. However, rounding numbers $|x| < x_{\min}$ gives either 0 or x_{\min} , causing relative error of size $\leq 100\%$
- y > x and y x > 0 have different meanings. For machine numbers $x = x_{\min}$ and $y = x_1$
 - -y>x evaluates to true since $x_1>x_{\min}$
 - -y-x>0 evaluates to false since the computer computes $y-x=x_1-x_{\min}=2^{-n}\cdot 2^{e_{\min}}$ which is rounded to 0

We fix this by adding subnormal numbers with spacing $2^{-n} \cdot 2^{e_{\min}}$

$$\pm (0.d_1 \dots d_n)_2 \cdot 2^{e_{\min}}$$

Now rounding a number x with $|x| \leq x_{\min}$ is more well-behaved

$$\left| \frac{\hat{x} - x}{x} \right| \le \begin{cases} 2^{-n-1} & |x| \ge x_{\min} \\ \min(2^{-n-1} \frac{x_{\min}}{x}, 1) & |x| < x_{\min} \end{cases}$$

This results in gradual underflow since we generate values slightly smaller than x_{\min}

How to handle overflow, division by 0, 0/0, etc

We introduce a few numbers to handle the above issues

- ullet +Inf and -Inf for handling overflow
- +0 and -0 to handle underflow, but still keep sign
- NaN for indeterminate expressions like 0/0 or Inf Inf

UPSHOT: IEEE754 machine numbers have the following form with $d_i \in \{0,1\}$ and integer e

$$\hat{x} = \begin{cases} \pm (1.d_1 \dots d_n)_2 \cdot 2^e & e_{\min} \le e \le e_{\max} \\ \pm (0.d_1 \dots d_n)_2 \cdot 2^{e_{\min}} & \text{subnormal numbers} \\ Inf, -Inf, NaN & \text{special values} \end{cases}$$

5.4 Machine Arithmetic

For machine numbers x, y, x + y is usually not a machine number. Thus the result is rounded to become a machine number For operations like y = sqrt(x) are implemented as follows: for an input x

- find the exact result $Y = \sqrt{x}$ (using extra digits)
- return the machine number y = fl(Y)

This usually results in an error $|\epsilon_y| \leq \epsilon_M$

UPSHOT: each arithmetic operation in a program causes a relative error of size $\leq \epsilon_M$

Example: for Matlab code x = .1; y = 1 - cos(x), the machine performs the following operations to find \hat{y}

- $\hat{x} = fl(.1)$ round .1 to the closest machine number
- $Y_1 = \cos(\hat{x})$ find the true value of $\cos(\hat{x})$ with extra accuracy
- $\hat{y}_1 = fl(Y_1)$ round Y_1 to the closest machine number
- $Y = 1 \hat{y}_1$ find the true result of $1 \hat{y}_1$ with extra accuracy
- $\hat{y} = fl(Y)$ round Y to the closest machine number

6 Linear Systems

Example find x_1, x_2, x_3 such that

$$2x_1 + 3x_2 + x_3 = 1$$
$$4x_1 + 3x_2 + x_3 = -2$$
$$-2x_1 + 2x_2 + x_3 = 6$$

We can write this using matrix-vector notation

$$\begin{bmatrix} 2 & 3 & 1 \\ 4 & 3 & 1 \\ -2 & 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ 6 \end{bmatrix}$$

A matrix A is **singular** if there exists a nonzero vector x such that Ax = 0. Since Ax is a linear combination of the column vectors: $Ax = x_1 \cdot (\text{col } 1) + x_2 \cdot (\text{col } 2) + \dots$

- a matrix is singular if the columns are linearly dependent (either no solution or infinitely many solutions)
- a matrix is nonsingular if the columns are linearly independent (has a unique solution)

Solving the example matrix above using elimination gives

$$\begin{bmatrix} 2 & 3 & 1 \\ 0 & -3 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ -4 \\ 1 \end{bmatrix}$$

Note that the entries on the diagonal of the first matrix are called **pivots**

This translates to the following equations

$$1x_3 = 1$$
$$-3x_2 - x_3 = -4$$
$$2x_1 + 3x_2 + x_3 = 1$$

Using back substituion, we get $x_3 = 1, x_2 = 1, x_3 = -3/2$

Note that the original linear system Ax = b was transformed into a new linear system Ux = y with an upper triangular matrix U. This means that original linear system is nonsingular

We can also use **LU Decomposition** to solve this equation

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad U = \begin{bmatrix} 2 & 3 & 1 \\ 4 & 3 & 1 \\ -2 & 2 & 1 \end{bmatrix}$$

Perform Gaussian Elimination on U and adjust L accordingly

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}, \quad U = \begin{bmatrix} 2 & 3 & 1 \\ 0 & -3 & -1 \\ 0 & 5 & 2 \end{bmatrix}$$

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & -\frac{5}{3} & 1 \end{bmatrix}, \quad U = \begin{bmatrix} 2 & 3 & 1 \\ 0 & -3 & -1 \\ 0 & 0 & \frac{1}{3} \end{bmatrix}$$

From here we can use forward substitution to solve Ly = b

$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & -\frac{5}{3} & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ 6 \end{bmatrix}$$

which gives $y_1 = 1, y_2 = -4, y_3 = \frac{1}{3}$.

The last step involves using **substitution** to solve for x in Ux = y, yielding $x_3 = 1, x_2 = 1, x_1 = -\frac{3}{2}$

The benefit of LU decomposition is that if we're solving multiple linear systems with the same matrix A (Ax = b and $A\tilde{x} = \tilde{b}$), we only need to do Gaussian elimination once

- Use Gaussian elimination on matrix A to find LU decomposition A = LU
- solve Ly = b using forward substitution, then solve Ux = y using back substitution
- solve $L\tilde{y} = \tilde{b}$ using forward substitution, then solve $U\tilde{x} = \tilde{y}$ using back substitution

The pivot points of matrix U during Gaussian elimination must be nonzero. If it so happens that a pivot is 0, we need to perform **pivoting** (swapping the rows), creating a matrix \tilde{A} , and then solving $\tilde{A}x = \tilde{b}$ using LU decomposition

If pivoting breaks down at a particular column j (meaning that all pivot candidates in column j are zero), then the matrix A is **singular**

Note: should always select the pivot with the largest absolute value to avoid unnecessary error

6.1 Solving linear Systems in Matlab

To solve Mx = b where M is in upper or lower triangular, we use $x = M \setminus b$ which will use back or forward substitution appropriately

To solve Ax = b

To solve multiple linear equations Ax = b and $A\tilde{x} = \tilde{b}$

```
[L, U, p] = lu(A, 'vector'); % Gaussian elimination with pivoting to find L, U, p x = U\(L\b(p)); % use L, U, p to solve Ax = b xh = U\(L\bh(p)); % use L, U, p to solve A xh = bh
```

6.2 Matrix Inverses

Another way to solve Ax = b is to use inverse $x = A^{-1}b$

We can find A^{-1} by using Gaussian elimination to find L, U, p and then solving linear systems for n right-hand side vectors

$$\begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \dots, \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$

This will generate n solution vectors, who make up the columns of A^{-1}

6.3 Number of Operations

Elimination updates on a matrix U subtract multiples of the pivot role, so updates look like

$$u_{42} = u_{42} - l_{42} \cdot u_{22}$$

On a computer, this involves

- Memorization Access: need to access the values of u_{42}, l_{42}, u_{22}
- Multiplication
- Addition/Subtraction

Consider the following operations:

- Finding L, U, p costs $\frac{1}{3}n^3 + O(n^2)$ operations Elimination of n-1 columns costs $n(n-1) + (n-1)(n-2) + \cdots + 2 \cdot 1 = \frac{1}{3}n^3 + O(n^2)$
- Solving Ax = b if we know L, U, p costs n^2 operations Solving Ly = b and finding y_1, y_2, \dots, y_n cost $0 + 1 + \dots + (n-1) = \frac{n(n-1)}{2}$ operations Solving Ux = y and finding x_n, x_{n-1}, \dots, x_1 costs $1 + 2 + \dots + n = \frac{(n+1)n}{2}$ operations
- Finding A^{-1} costs $\frac{2}{3}n^3 + O(n^2)$ operations

 Finding first column costs $\frac{n(n-1)}{2}$ for forward substitution and $\frac{(n+1)n}{2}$ for back substitution

 Finding first column costs $\frac{(n-1)(n-2)}{2}$ for forward substitution and $\frac{(n+1)n}{2}$ for back substitution

 :
- Total: $\frac{1}{6}n^3 + O(n^2)$ for forward substitution and $n\frac{(n+1)n}{2}$ for back substitution Solving Ax = b if we know A^{-1} costs n^2 operations
- Matrix operations for $A^{-1}b$ take n^2 operations
- **UPSHOT**: finding L, U, p then solving Ax = b is cheaper

6.4 Errors in Linear Systems

When solving Ax = b, we normally don't know the exact values of A and b, and have to use approximations \hat{A} and \hat{b} to solve $\hat{A}x = \hat{b}$. This can lead to a large amount of error. Consider

$$\left[\begin{array}{cc} 1.01 & .99 \\ -.99 & 1.01 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{c} 2 \\ 2 \end{array}\right]$$

We can see that $x = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is the solution

Now consider $\hat{b} = \begin{bmatrix} 2.02 \\ 1.98 \end{bmatrix}$, then we get a solution vector $\hat{x} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$

To measure the error of vectors, we use **vector norm** $\|\mathbf{x}\|$ which has the following properties

- $\|\mathbf{x}\| = 0 \implies x = 0$
- $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$
- $\bullet \|\mathbf{x} + \mathbf{y}\| = \|\mathbf{x}\| + \|\mathbf{y}\|$

We also define 3 types of norms

- $\|\mathbf{x}\|_1 = |x_1| + \dots + |x_n|$
- $\|\mathbf{x}\|_2 = (|x_1| + \dots + |x_n|)^{1/2}$
- $\|\mathbf{x}\|_{\infty} = \max(|x_1|, \cdots, |x_d|)$

If a subscript isn't provided, then the equation is valid for all 3 norms

We can then calculate the **relative error** with respect to a vector norm as $\frac{\|\hat{\mathbf{x}} - x\|}{\|\mathbf{x}\|}$

To measure the error of matrix, we use a **matrix norm** $\|\mathbf{A}\|$ that has the property

 $\bullet \ \|\mathbf{A}\mathbf{x}\| \le \|\mathbf{A}\| \|\mathbf{x}\|$

Where $\|\mathbf{x}\|$ is one of the vector norms and $\|\mathbf{A}\|$ satisfies

$$\|\mathbf{A}\| = \sup_{x \in R^n, x \neq 0} \frac{\|\mathbf{A}\mathbf{x}\|}{\|\mathbf{x}\|} = \max_{x \in R^n, \|\mathbf{x}\| = 1} \|\mathbf{A}\mathbf{x}\|$$

Depending on which type of vector is used, we have 3 matrix norms:

- $\|\mathbf{A}\|_{\infty} = \max_{i=1,...,n} \sum_{j=1,...,n} |a_{ij}|$ (max of row sums of absolute values)
- $\|\mathbf{A}\|_1 = \max_{j=1,\dots,n} \sum_{i=1,\dots,n} |a_{ij}|$ (max of column sums of absolute values)