PID **Balance Ball**

وسایل مورد نیاز

سروو موتور SG5010

وظیفه تکان دادن دستگاه و کنترل توب را

برد آردوینو Arduino UNO R3

کنترل کردن سنسور و سرو موتور و دادن پار امتر ها به آن توسط نرم افز ار

مازول فاصله سنج مادون قرمز GP2Y0E03 با رابط GP2Y0E03 وظیفه اندازه گرفتن فاصله توب تا سنسور

چوب بالسا

قطعات توسط پرینتر 3 بعدی با ماده

قطعات اضافي (توپ پینگ پنگ و چسب و میخ وپیچ)

هدف: نشان دادن چگونگی تغییرات پارامترهای کنترل PID و نگهداشتن توپ دقیقا در وسط به وسیله به دستآوردن یارامترهای بهینه

روش: قطعات را متصل کرده و سپس سرو موتور و سنسور را به برد وصل کرده و توسط نرم افزار و دانلود برنامه مشخص دستگاه را حرکت می دهیم و با تغییر پارامترهای $K_{\rm p}$ و $K_{\rm i}$ $K_{\rm i}$ را دقیقا در وسط نگه می داریم

هر سیستم PID سه قسمت عمده دارد:

۱- feedback که در اینجا توسط سنسور به برد داده میشود

actuator -۲ که خروجی سیستم را تغییر میدهد و در اینجا سروو موتور

set point -۳ که در اینجا وسط چوب مورد نظر است

برای سرعت دادن باید به یارامتر k_D عدد بدهیم

مراحل اجرایی:

ابتدا قطعات مورد نیاز خریداری شده و سپس چوب بالسا را مطابق شکل برش داده و فاصله گذاری روی چوب به طور دقیق انجام شد. سپس قطعات پلاستیکی که توسط پرینتر سه بعدی درست شده بود را با پیج و مهره و چسب سرهم کرده و برای برد هم توسط چوب یک جایگاه درست کردیم و همچنین برای نگه داشتن سروو موتور هم یک جایگاه ساختیم.

سپس برای قسمت نرم افزاری کدهای مربوطه را به برد داده و با انجام تستهای زیاد و تغییر پارامتر های $K_0 = K_0$ و $K_1 + K_1$ به نتیجه مورد نظر رسیدیم.