# Raspberry Pi 3 Setup

for

**GPIO** control

# 目錄

| 安裝 GPIO 函式庫 Wiring Pi              | 3 |
|------------------------------------|---|
| Cross Compiler in Eclipse 環境設置(VM) | 4 |
| 周邊元件接線說明                           | 5 |
| WiringPi 程式說明                      | 8 |
| <b>参考資料</b>                        | 9 |

# 安裝 GPIO 函式庫 Wiring Pi

套件軟體更新 \$ sudo apt-get update \$ sudo apt-get upgrade

安裝 WiringPi \$ sudo apt-get install git-core \$ git clone git://git.drogon.net/wiringPi

取得目前最新版本 \$ cd wiringPi \$ git pull origin

若已是最新版本則執行以下指令 \$ cd wiringPi \$ sudo ./build

測試WiringPi 是否安裝成功 \$gpio-v \$gpio readall 若安裝成功,則會出現當前所使用板子的腳位圖

| coot@raspberrypi:/home/pi/wiringPi# gpio readall |     |    |   |    |   |        |    |      |   |       |   |  |
|--------------------------------------------------|-----|----|---|----|---|--------|----|------|---|-------|---|--|
| wiringPi                                         |     |    |   |    |   |        |    |      |   | Value | 1 |  |
| 0                                                | ï   | 17 | Ī | 11 | Ī | GPIO 0 |    | IN   | Ī | Low   | Ĭ |  |
| 1                                                |     | 18 |   | 12 |   | GPIO 1 |    | IN   |   | High  |   |  |
| 2                                                |     | 27 |   | 13 |   | GPIO 2 |    | IN   |   | Low   |   |  |
| 3                                                |     | 22 |   | 15 |   | GPIO 3 |    | IN   |   | Low   |   |  |
| 4                                                |     | 23 |   | 16 |   | GPIO 4 |    | IN   |   | High  |   |  |
|                                                  |     | 24 |   | 18 |   | GPIO 5 |    | IN   |   | High  |   |  |
| 6                                                |     | 25 |   | 22 |   | GPIO 6 |    | IN   |   | High  |   |  |
|                                                  |     | 4  |   |    |   | GPIO 7 |    | IN   |   | Low   |   |  |
| 8                                                |     | 2  |   | 3  |   | SDA    |    | IN   |   | High  |   |  |
| 9                                                |     | 3  |   | 5  |   | SCL    |    | IN   |   | High  |   |  |
| 10                                               |     | 8  |   | 24 |   | CE0    |    | IN   |   | Low   |   |  |
| 11                                               |     |    |   | 26 |   | CE1    |    | IN   |   | High  |   |  |
| 12                                               |     | 10 |   | 19 |   | MOSI   |    | IN   |   | Low   |   |  |
| 13                                               |     | 9  |   | 21 |   | MISO   |    | IN   |   | Low   |   |  |
| 14                                               |     | 11 |   | 23 |   | SCLK   |    | IN   |   | Low   |   |  |
| 15                                               |     | 14 |   | 8  |   | TxD    |    | ALT0 |   | High  |   |  |
| 16                                               |     | 15 |   | 10 |   | RxD    |    | ALTO |   | High  |   |  |
| 17                                               |     | 28 |   | 3  |   | GPIO 8 |    | ALT2 |   | Low   |   |  |
| 18                                               |     | 29 |   | 4  |   | GPIO 9 |    | ALT2 |   | Low   |   |  |
| 19                                               |     | 30 |   |    |   | GPI010 |    | ALT2 |   | Low   |   |  |
| 20                                               |     | 31 |   | 6  |   | GPI011 |    | ALT2 |   | Low   |   |  |
|                                                  | -+- |    | + |    | + |        | -+ |      | + |       | + |  |

# Cross Compiler in Eclipse 環境設置(VM)

將 Pi 底下的 libwiringPi 檔 copy 至 VM 中,並重新命名為「libwiringPi.so」/usr/local/lib/libwiringPi.so.1.0

在 VM 中安裝 WiringPi git clone git://git.drogon.net/wiringPi cd wiringPi git pull origin

#### 執行 Eclipse

至 Project Properties -> GCC C++ Compiler -> Includes -> Include path 增加.h 路徑



- 至 Project Properties -> GCC C++ Linker -> Libraries
  - -> Libraries 增加 WiringPi 及 phread
  - -> Libraries search path TAB 增加「libwiringPi.so」的路徑位置



# 周邊元件接線說明

## 所需元件:

硬體控制板(Arduino or Raspberry Pi)

步進馬達 x1

伺服馬達 x1

L298N 驅動板

18650 電池 x2

## 元件說明

## L298N 驅動板



Motor A 控制 IN1 及 IN2 控制邏輯, Motor B 控制 IN3 及 IN4 方法如下圖相同

| ENA  | IN1     | IN2     | 功能     |
|------|---------|---------|--------|
| HIGH | HIGH    | LOW     | 馬達正轉   |
| HIGH | LOW     | HIGH    | 馬達反轉   |
| HIGH | IN1=IN2 | IN1=IN2 | 馬達快速停止 |
| LOW  | ingored | ignored | 馬達慢速停止 |

自走車使用 18650 電池 x2 透過 L298 輸出 5v 電壓來驅動馬達(FK-130SH) (此馬達當電壓超過 7V 時會因保護機制而切斷電流,所以用 L298N 輸出 5V 電壓來驅動)





## 步進馬達 FK-130SH - 控制前進後退



伺服馬達 - 控制左轉右轉



紅色為 VCC 黑色為 GND 橙色為訊號控制線

## 接線示意圖



## WiringPi 程式說明

控制前後左右動作 example

```
#include <iostream>
| #include <iostreamonal **
| #include <
```

## 13~14 行:

將<wiringPi.h>及<softPwm.h> include 進來 若所使用之 GPIO 腳位有提供 Pwm 輸出可不需使用 softPwm library

## 32 行:

wiringPi library 初始化設定

## 34-37 行:

透過 softPwmCreate 設定指定的 GPIO 腳位可使用 Pwm 控制

```
46⊝ void forward() {

for (int i = 100; i <= 500; i++) { //begin low speed to high speed

softPwmWrite(3, i);

softPymmWrite(2, 0);

delay(10);

}

void backward() {

for (int i = 50; i <= 500; i++) {

softPymmWrite(3, 0);

softPymmWrite(2, i);

delay(10);

}

60
}
```

給予 GPIO 3(接至 IN1)高電位, GPIO2(接至 IN2)低電位,則可以使車子向前,後退則反之

可自行設定i值即可控制馬達快慢

```
void right(){
    for (int i = 0; i <= 500; i++) {
        softPwmWrite(12, i);
        delay(50);
    }
}
void left(){
    for (int i = 500; i <= 0; i--) {
        softPwmWrite(12, i);
        delay(50);
    }
}</pre>
```

將 GPIO12 腳位接至伺服馬達控制線

同上,可透過 softPwmWrite 中的 i 值來控制伺服馬達的角度

#### 若 GPIO 腳位有支援 Pwm 輸出

可將

softPwmCreate(Pin, INITIAL\_VALUE, RANGE)替换成 pinMode (Pin, PWM\_OUTPUT); softPwmWrite(12, i);替换成 pwmWrite (1, i);

# 參考資料

http://wiringpi.com/