ECE 113: Communication Electronics

Meeting 2: Noise in Communication System

January 18, 2019

Dynamic Range

Consider an amplifier having a gain ($G_{dB} = 10dB$)

- Ideally $(P_{out} = G * P_{in})$
- Reallistically $(P_{out} \neq G * P_{in})$
 - $P_{out} \neq 0$ when $P_{in} = 0$ due to non-zero noise power
 - $P_{out} \neq G * P_{in}$ for very large P_{in} due to saturation of nonlinear devices

Dynamic Range

Range of signal Levels over which linear relationship between input and output is valid

Electronic Noise

- Caused by random motion of charges in devices and materials
- Various sources of noise
 - Thermal Noise (Johnson or Nyquist Noise)- caused by thermal vibration of bound charges
 - Shot Noise applicable to electron tube and solid-state devices
 - Flicker Noise $\frac{1}{6}$ noise that occurs in most electronic devices
 - Plasma Noise, Quantum Noise, etc.

Thermal Noise in Resistors

Consider a resistor at a temperature (T) degrees Kelvin (K).

• Planck's black body radiation law.

$$v_n = \sqrt{rac{4hfBR}{e^{hf/kT} - 1}}$$

Thermal Noise at RF

• At microwave frequencies, hf << kT.

$$v_n = \sqrt{4kTBR}$$
 Rayleigh-Jeans approximation

• Equivalent circuit for a noisy resistor

$$P_n = kTB$$

Equivalent Noise Temperature

• A white noise source can be replaced by a noisy resistor of value R at temperature T_e so that the same noise power is delivered to the load.

$$T_e = \frac{N_c}{kE}$$

Noise Factor (F)

- Measure of degradation of the signal-to-noise ratio between input and output of the component
- When noise and a desired signal are applied to the input of a noiseless network, both noise and desired signal will be amplified/attenuated by the same factor

 If the network is <u>noisy</u>, the output noise power will be increased <u>more than</u> the desired signal power

Noise Factor

- Input noise power results from a matched resistor at $T_0 = 290 K$
 - $N_i = kT_oB$
- $N_o = kG(T_o + T_e)B$
- With $S_o = GS_i$

$$F = \frac{S_i}{kT_oB} \frac{kG(T_o + T_e)B}{GS_i} = 1 + \frac{T_e}{T_o} \ge 1$$

Noise Figure (NF)

• Identical with Noise Factor, except that it is given in dB

if
$$F = \frac{SNR_{in}}{SNR_{out}}$$

$$NF = 10log(F) = 10log(\frac{SNR_{in}}{SNR_{out}})$$

- Noise figure and equivalent noise temperatures are interchangeable characterizations of noise properties of component (in practice, NF is used)
- Noise figure for passive components
 - At thermal equilibrium, F = L
 - Example: a 6 dB attenuator has a NF of 6 dB

Cascaded Systems

- Typical microwave system consists of multiple stages each of which can degrade SNR to varying degrees
- Consider a cascade of 2 components

$$N_1 = G_1 k T_0 B + G_1 k T_{e1} B,$$

The cascaded equivalent noise temperature

$$T_{cas} = T_{e1} + \frac{1}{G_1} T_{e2}$$

It can also be shown that

$$F_{cas} = F_1 + \frac{1}{G_1}(F_2 - 1)$$

• Extending it to arbitrary number of stages,

$$F_{cas} = F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1 G_2} + \dots$$

Examples

Compute the overall NF of the system

- If the input noise power from a feeding antenna is $N_i = kT_AB$ where $T_A = 150k$, then find the output noise power in dBm. Assume system is at temperature $T_o = 290K$ and bandwidth of 10 MHz
- If SNR = 20 dB is required at the output of receiver, what is the minimum input signal power (in dBm)?

END