石家庄铁道大学 2013-2014 学年第二学期

<u>2013</u>级本科班期末考试试卷(A)

课程名称: <u>高等数学(A, D)II</u> 考试日期: <u>2014.6.</u> 考试时间: <u>120</u>分钟 考试性质(学生填写): 正常考试() 缓考补考() 重修() 提前修读()

题 号	_	11	Ξ	总分
满分	30	40	30	100
得 分				
改卷人				

得分

一、完成下列各题(共5小题,每小题6分,共30分)

1.
$$f(x,y) = x^3y^2 + (x^2 + 1)\arctan a^{xy}$$
, $\Re f'_x(1,0)$.

- 2. $\[\psi \varphi(x,y) = f(xy,\frac{y}{x}), f \] \] \[\iint \phi'_x(1,1) = a, f'_2(1,1) = b, \] \] \] \] \] \] \]$
- 3. 设 x = x(y,z), y = y(z,x), z = z(x,y) 都是由方程 F(x,y,z) = 0 所确定的具有连续偏导数的隐函数,证明: $\frac{\partial x}{\partial y} \cdot \frac{\partial y}{\partial z} \cdot \frac{\partial z}{\partial x} = -1$.
- 4. 计算二重积分 $\iint_{D} |y-x| d\sigma$, 其中 $D: 0 \le x \le 1, 0 \le y \le 1$.
- 5. 设曲线上点 P(x,y) 处法线与 x 轴的交点为 Q , PQ 被 y 轴平分,求该曲线所满足的微分方程,并求该微分方程的解.

得分

题

二、计算下列各题(共4小题,每小题10分,共40分)

1. 用格林公式计算 $I = \int_{L} (e^{x} \sin y - xy) dx + (e^{x} \cos y + xy) dy$,

其中 L 为从 A(2,0) 沿 $y = \sqrt{2x - x^2}$ 逆时针到 O(0,0) 的一段弧.

2. 设 Σ : $z = \sqrt{a^2 - x^2 - y^2}$, 取上侧, 利用高斯公式计算

$$I = \iint_{\Sigma} (x^2 + y) dy dz + (y^2 + 2z) dz dx + (z^2 + 3x) dx dy.$$

- 3. 设幂级数 $\sum_{n=1}^{\infty} \frac{x^n}{n+1}$. 求: (1)收敛域; (2)和函数; (3) $\sum_{n=1}^{\infty} \frac{1}{(n+1)\cdot 2^n}$ 的和.
- 4. 用拉格朗日乘数法求解: 在周长为2p的一切三角形中, 求其面积最 大者的面积. 面积的计算公式为 $S = \sqrt{p(p-x)(p-y)(p-z)}$.

得分

三、选择题与填空题(共 10 小题,每小题 3 分,共 30 分)

说明:请将下列各题的答案填入下表内,否则不得分.

题号	1	2	3	4	5	6	7	8	9	10
答案										

- 1. 设函数 z = f(x,y) 在点 (x_0, y_0) 处连续,则【 填入表中】.
 - $A \cdot z = f(x, y_0)$ 在 $x = x_0$ 连续, $z = f(x_0, y)$ 在 $y = y_0$ 连续;
 - B. $z = f(x, y_0)$ 在 $x = x_0$ 与 $z = f(x_0, y)$ 在 $y = y_0$ 不全连续;
 - C. $z = f(x, y_0)$ 在 $x = x_0$ 与 $z = f(x_0, y)$ 在 $y = y_0$ 全不连续;
 - D. z = f(x,kx) 在 $x = x_0$ 连续.
- 72. 设 f 可微, $\frac{x-2}{4} = \frac{y+1}{1} = \frac{z-3}{2}$ 是曲面 z = f(x,y) 上点 $M_0(x_0, y_0, z_0)$ 处的法线方程,且该点处位于平面 $y = y_0$ 内的切线的斜率是 2,

函数 z = f(x, y) 在点 $P_0(x_0, y_0)$ 的最大方向导数为【 填入表中 】.

$$A. \frac{\sqrt{17}}{2}$$

B.
$$\sqrt{17}$$
 C. $\frac{21}{2}$ D. 21

C.
$$\frac{21}{2}$$

- 3. 设z = f(x, y) 具有二阶连续偏导数,在 (x_0, y_0) 处具有平行于xOy 坐标 面的切平面,且 $f''_{xx}(x_0,y_0)=a$, $f''_{xy}(x_0,y_0)=b$, $f''_{yy}(x_0,y_0)=c$, 其中 x_0, y_0 是二次代数方程 $ax^2 + 2bx + c = 0$ 的两个不同的实根.则 $f(x_0,y_0)$ 【 填入表中】
 - A. 是极大值;

B. 是极小值;

C. 是极值;

- D. 不是极值.
- 4. 下列不正确的是【 填入表中 】.
 - A. $\iint_{\mathbb{R}} (x+y)d\sigma > \iint_{\mathbb{R}} (x+y)^2 d\sigma$, 其中 D 由 x 轴, y 轴与直线 x+v=1所用成:
 - B. $\iint \ln(x+y)d\sigma > \iint [\ln(x+y)]^2 d\sigma$, 其中 D 是以(1,0),(1,1),(2,0) 为顶点的三角形区域:
 - C. $0 < \iint x(x+y)d\sigma < 2$, 其中 D 是以(0,0), (1,0), (1,1), (0,1)为顶 点的正方形区域:
 - D. 若函数 f(x,y) 在区域 D 上连续,则 f(x,y) 在 D 上至少取得最 大值与最小值各一次.
- 5. 下列结论正确的是【 填入表中 】.
 - A. 若 $\sum_{n=0}^{\infty} |u_n|$ 发散,则 $\sum_{n=0}^{\infty} u_n$ 发散;
 - B. 若 $\sum_{n=0}^{\infty} u_n$ 发散,则 $\lim_{n\to\infty} u_n \neq 0$;
 - C. 若级数 $\sum_{n=0}^{\infty} u_n$ 的部分和数列 s_n 有界,则该级数发散;
 - D. 若 $\sum_{n=0}^{\infty} u_n$ 绝对收敛,则 $\sum_{n=0}^{\infty} u_n^2$ 收敛.
- 6. 设 $0 < a_n < \frac{\pi}{2}, 0 < b_n < \frac{\pi}{2}, \cos a_n a_n = \cos b_n$,且 $\sum_{n=1}^{\infty} b_n$ 收敛,则

【 *填入表中* 】.

A.
$$\lim_{n\to\infty} a_n \neq 0$$
, $\sum_{n=1}^{\infty} \frac{a_n}{b_n}$ 收敛; B. $\lim_{n\to\infty} a_n \neq 0$, $\sum_{n=1}^{\infty} \frac{a_n}{b_n}$ 发散;

B.
$$\lim_{n\to\infty} a_n \neq 0$$
, $\sum_{n=1}^{\infty} \frac{a_n}{b_n}$ 发散;

C.
$$\lim_{n\to\infty} a_n = 0$$
, $\sum_{n=1}^{\infty} \frac{a_n}{b_n}$ 收敛; D. $\lim_{n\to\infty} a_n = 0$, $\sum_{n=1}^{\infty} \frac{a_n}{b_n}$ 发散.

D.
$$\lim_{n\to\infty} a_n = 0$$
, $\sum_{n=1}^{\infty} \frac{a_n}{b_n}$ 发散

7. 设
$$\Omega: 0 \le x \le 1, 0 \le y \le 2, 0 \le z \le 2,$$
 则 $\iint_{\Omega} (x+y+z)dV = \mathbb{I}$ 填入表中 】.

- 8. 设球面 $\Sigma: x^2 + y^2 + z^2 = 2az$,则 $\iint_{\Sigma} (x^2 + y^2 + z^2) dS = \mathbb{I}$ 填入表中 \mathbb{I} .
- 9. 设 f(x) 是以 2π 为周期的函数,且 $f(x) = \begin{cases} 0 & -\pi < x \le 0 \\ x & 0 < x \le \pi \end{cases}$,则函数展为傅立叶级数的系数 $b_2 =$ 【 $\frac{4}{3}$ λ 表中 】.
- 10. 设 y'' + p(x)y' + q(x)y = f(x) 的三个特解是 $y_1 = x$, $y_2 = e^x$, $y_3 = e^{2x}$, 则此方程满足条件 y(0) = 2, y'(0) = 1 的特解是 【 *填入表中* 】.