# **Boolean Algebra**

- ➤ Boolean algebra is used to analyze and simplify the digital (logic) circuits. It uses only the binary numbers i.e. 0 and 1. It is also called as Binary Algebra or logical Algebra.
- ➤ Boolean algebra was invented by George Boole in 1854.

# Rule in Boolean Algebra

Following are the important rules used in Boolean algebra.

- Variable used can have only two values. Binary 1 for HIGH and Binary 0 for LOW.
- Complement of a variable is represented by an overbar (-). Thus, complement of variable B is represented as B. Thus if B = 0 then B = 1 and B = 1 then B = 0.
- ORing of the variables is represented by a plus (+) sign between them. For example ORing of A, B, C is represented as A + B + C.
- Logical ANDing of the two or more variable is represented by writing a dot between them such as A.B.C. Sometime the dot may be omitted like ABC.

## **Boolean Function**

- A Boolean Function is described by an algebraic expression called Boolean expression which consists of binary variables, the constants 0 and 1, and the logic operation symbols.
- ➤ The function F is equal to 1 if x is 1 or if both y' and z are equal to 1, F is equal to 0 otherwise. Saying y'=1 is equivalent to saying that y=0.
- $\triangleright$  So F is equal to 1 if x=1 or if yz=01.

## **Truth Table**

- > The relationship between a function in a truth table and its binary variables can be represented in a truth table.
- There are eight possible combination for assigning bits to the three variables x, y and z.

# Logic Diagrams and Expressions

| Truth Table |                                                                    | Logic Equation                                    |
|-------------|--------------------------------------------------------------------|---------------------------------------------------|
| XYZ         | $\mathbf{F} = \mathbf{X} + \overline{\mathbf{Y}} \cdot \mathbf{Z}$ |                                                   |
| 000         | 0                                                                  | $\mathbf{F} = \mathbf{X} + \mathbf{Y} \mathbf{Z}$ |
| 0 0 1       | 1                                                                  |                                                   |
| 010         | 0                                                                  | Logic Diagram                                     |
| 011         | 0                                                                  | X                                                 |
| 100         | i                                                                  | 7 - 4                                             |
| 101         | 1                                                                  |                                                   |
| 110         | 1                                                                  | z                                                 |
| 111         | 1                                                                  | \$2 - 28.                                         |

Boolean equations, truth tables and logic diagrams describe the same function!

## **Boolean Laws**

There are six types of Boolean Laws.

#### **Commutative law**

Any binary operation which satisfies the following expression is referred to as commutative operation.

(i) 
$$A.B = B.A$$
 (ii)  $A + B = B + A$ 

Commutative law states that changing the sequence of the variables does not have any effect on the output of a logic circuit.

#### **Associative law**

This law states that the order in which the logic operations are performed is irrelevant as their effect is the same.

(i) 
$$(A.B).C = A.(B.C)$$
 (ii)  $(A+B)+C=A+(B+C)$ 

#### Distributive law

Distributive law states the following condition.

$$A.(B+C) = A.B + A.C$$

#### **AND** law

These laws use the AND operation. Therefore they are called as AND laws.

$$(i) A.0 = 0$$

(i) 
$$A.0 = 0$$
 (ii)  $A.1 = A$ 

(iii) 
$$A.A = A$$
 (iv)  $A.\overline{A} = 0$ 

#### **OR** law

These laws use the OR operation. Therefore they are called as OR laws.

(ii) 
$$A + 1 = 1$$

(iii) 
$$A + A = A$$

(iii) 
$$A + A = A$$
 (iv)  $A + \overline{A} = 1$ 

#### **INVERSION law**

This law uses the NOT operation. The inversion law states that double inversion of a variable results in the original variable itself.

$$\overline{\overline{A}} = A$$

## 1. Boolean Algebra simplification rules

| 1. $A + \overline{A} = 1$                              | 2.  A + A = A                                            |
|--------------------------------------------------------|----------------------------------------------------------|
| $3.  A \cdot A = A$                                    | $4. \qquad A \cdot \overline{A} = 0$                     |
| 5. $A \cdot (B+C) = A \cdot B + A \cdot C$             | 6.  A+0=A                                                |
| 7. $A+1=1$                                             | 8. $A \cdot 1 = A$                                       |
| $9.  A \cdot 0 = 0$                                    | 10. $A \cdot B = B \cdot A$                              |
| 11. $A + B = B + A$                                    | $12.  B \cdot (A + \overline{A}) = B$                    |
| $13.  A + A \cdot B = A$                               | 14. $A \cdot (A + B) = A$                                |
| $15.  A + \overline{A} \cdot B = A + B$                | $16.  A \cdot (\overline{A} + B) = A \cdot B$            |
| 17. $\overline{A+B} = \overline{A} \cdot \overline{B}$ | 18. $\overline{A \cdot B} = \overline{A} + \overline{B}$ |

# De Morgan's Theoram

De Morgan has suggested two theorems which are extremely useful in Boolean Algebra. The two theorems are discussed below.

## **Theorem 1**

$$\overline{A.B} = \overline{A} + \overline{B}$$

• The left hand side (LHS) of this theorem represents a NAND gate with inputs A and B, whereas the right hand side (RHS) of the theorem represents an OR gate with inverted inputs.

• This OR gate is called as **Bubbled OR**.



Table showing verification of the De Morgan's first theorem –

| Α | В | AB | Ā | B | $\overline{A} + \overline{B}$ |
|---|---|----|---|---|-------------------------------|
| 0 | 0 | 1  | 1 | 1 | 1                             |
| 0 | 1 | 1  | 1 | 0 | 1                             |
| 1 | 0 | 1  | 0 | 1 | 1                             |
| 1 | 1 | 0  | 0 | 0 | 0                             |

# **Theorem 2**

$$\overline{A + B} = \overline{A} \cdot \overline{B}$$

## NOR = Bubbled AND

- The LHS of this theorem represents a NOR gate with inputs A and B, whereas the RHS represents an AND gate with inverted inputs.
- This AND gate is called as **Bubbled AND**.



NOR = Bubbled AND



**Bubbled AND** 

Table showing verification of the De Morgan's second theorem –

| Α | В | A+B | Ā | B | Ā.B |
|---|---|-----|---|---|-----|
| 0 | 0 | 1   | 1 | 1 | 1   |
| 0 | 1 | 0   | 1 | 0 | 0   |
| 1 | 0 | 0   | 0 | 1 | 0   |
| 1 | 1 | 0   | 0 | 0 | 0   |