浙江大学2020-2021春夏学期《复变函数》课程期末考试试卷 (求是科学班, 回忆版)

课程号: 751Q0006 考试日期: 2021年7月5日 考试时间: 120 分钟

由 CC98 @ reenoiP 整理

- 一. (50分, 每小题10分)
- (1) 求幂级数 $\sum_{n=1}^{\infty} [2 + \cos(n\pi)]^n z^{3n}$ 的收敛半径.
- (2) 写出一个从第一象限到单位圆盘的双全纯映射 f 使得 $f(e^{i\frac{\pi}{4}}) = 0$.
- (3) 计算积分 $\int_{|z|=1} \frac{\bar{z}}{z-2} |dz|$.
- (4) 求方程 $z^5 5z^3 z + 3 = 0$ 在单位圆盘 \mathbb{D} 中的零点个数.
- (5) 用辐角原理证明代数基本定理.
- 二. (10分) 给定首一复系数多项式 $f(z) = z^d + \cdots + a_1 z + a_0 \ (d \ge 1)$.
- (1) 证明: 若对任意 $|z| \le 1$ 有 $|f(z)| \le 1$, 则 $f(z) = z^d$.
- (2) 对 $0 < r < +\infty$, 定义 $h(r) = \frac{\|f\|_r}{r^d}$, 其中 $\|f\|_{\rho} = \max_{|z| = \rho} |f(z)|$. 证明: h 要么 恒为常数, 要么严格单调递减; 并确定 h 恒为常数的充要条件.
- 三. (15分) 叙述 Riemann 映射定理, 并给出有界情形的证明.

$$d(z_1, z_2) = \sup_{f \in \mathcal{F}} |f(z_1) - f(z_2)|$$

(1) 证明: 对任意 $h \in Aut(\mathbb{D})$ 有

$$d(h(z_1), h(z_2)) = d(z_1, z_2), \quad \forall z_1, z_2 \in \mathbb{D}$$

- (2) 对 0 < r < 1 计算 d(r, -r).
- (3) 对一般的 $z_1, z_2 \in \mathbb{D}$ 计算 $d(z_1, z_2)$.

五. (10分) 给出你学习复变函数课程的心得体会, 以及对本课程的建议.