Lecture 10: CNF and PDAs

CSC 320: Foundations of Computer Science

Quinton Yong
quintonyong@uvic.ca

Ambiguous Grammars

- A string is derived ambiguously in a CFG if it has at least two different leftmost derivations
 - i.e. can derive the string in multiple ways even if always substituting the leftmost variable

 A context-free grammar is ambiguous if there exists a string that can be derived ambiguously

Ambiguous Grammars Example

Consider grammar $G = (V, \Sigma, R, E)$ with $V = \{E, F, T\}$, $\Sigma = \{a, +, \cdot, (,)\}$, and R is given by:

$$E \rightarrow E + E \mid E \cdot E \mid (E) \mid a$$

Is this grammar ambiguous? **Yes**

Consider the string $a \cdot a + a$

• Leftmost derivation 1:

$$E \Rightarrow E \cdot E \Rightarrow a \cdot E \Rightarrow a \cdot E + E \Rightarrow a \cdot a + E \Rightarrow a \cdot a + a$$

• Leftmost derivation 2:

$$E \Rightarrow E + E \Rightarrow E \cdot E + E \Rightarrow a \cdot E + E \Rightarrow a \cdot a + E \Rightarrow a \cdot a + a$$

Ambiguous Grammars

• Often, we can **rewrite an ambiguous grammar** for a context free language in an **equivalent unambiguous way**

- However, not every context-free language has an unambiguous grammar which describes it (called **inherently ambiguous languages**)
 - Example: $L = \{0^m 1^n 2^k \mid m = n \text{ or } m = k\}$

We will learn how write a CFG in Chomsky Normal Form (CNF), which can
often make the grammar unambiguous

Chomsky Normal Form (CNF)

• A context-free grammar $G = (V, \Sigma, R, S)$ is in **Chomsky Normal Form** (**CNF**) if every rule is of the form

$$A \rightarrow BC$$
 or $A \rightarrow a$

Right side can be **two variables** or **one terminal**, nothing else

where:

- $a \in \Sigma$
- $A, B, C \in V$
- **B**, **C** may not be the start variable Start variable cannot be on the right side of a rule
- $S \rightarrow \epsilon$ is permitted where S is the start variable No other ϵ -substitutions permitted

Chomsky Normal Form (CNF)

Theorem: Any context-free language is generated by a context-free grammar in Chomsky Normal Form (CNF)

Proof: We will show how to convert any context-free grammar into CNF without changing the language

If any rule in a CFG violates a CNF condition, replace it with equivalent rule(s) that satisfy CNF

- 1. Add a **new start variable** S₀
- 2. Eliminate all ε -rules of form $A \to \varepsilon$
- 3. Eliminate all **unit rules** of form $A \rightarrow B$
- 4. Convert remaining rules

1. Add a **new start variable** S₀

- Let $S \in V$ be the previous start variable
- Let $S_0 \notin V$
- Add new start variable S_0 and rule $S_0 \rightarrow S$
- Thus, the new start variable will not appear on the right of a rule

2. Eliminate all ε -rules of form $A \to \varepsilon$

Repeat until all ε -rules not involving S_0 are eliminated:

- Given $A \to \varepsilon$ where $A \neq S_0$
- For each $W \to uAv$ where u, v are strings of variables and terminals, add new rule $W \to uv$
- For $W \to A$, add $W \to \varepsilon$ (which we will **remove later**) unless $W \to \varepsilon$ was previously removed
- Remove $A \rightarrow \varepsilon$

3. Eliminate all **unit rules** of form $A \rightarrow B$

Repeat until **all unit rules** are eliminated:

- Given $A \rightarrow B$
- For each rule $B \to u$, add $A \to u$ (unless $A \to u$ was previously removed)
 - As before, u is a string of variables and terminals
 - Basically, just copying $B \rightarrow \text{rules}$ into $A \rightarrow \text{rules}$
- Remove $A \rightarrow B$

- 4. Convert remaining rules
- Replace rules $A \rightarrow bC$ with $A \rightarrow BC$, $B \rightarrow b$
- Replace rules $A \rightarrow Bc$ with $A \rightarrow BC$, $C \rightarrow c$
- Replace rules $A \to bc$ with $A \to BC$, $B \to b$, $C \to c$
- Replace rules $A o u_1u_2 \dots u_k$, where $k \ge 3$ and each u_i is a **variable** / **terminal**, with $A o u_1A_1$, $A_1 o u_2A_2$, $A_2 o u_3A_3$, ..., and $A_{k-2} o u_{k-1}u_k$
 - Replace any **terminal** u_i with variable U_i and add rule $U_i o u_i$
 - E.g. A o BcD becomes $A o BA_1$, $A_1 o U_1D$, $U_1 o c$

Convert the following grammar \boldsymbol{G} into CNF:

$$S \rightarrow ASA \mid aB$$

$$A \rightarrow B \mid S$$

$$B \rightarrow b \mid \varepsilon$$

Convert the following grammar *G* into CNF:

$$S \rightarrow ASA \mid \alpha B$$
 $A \rightarrow B \mid S$
 $B \rightarrow b \mid \varepsilon$

$$S_0 \rightarrow S$$

$$S \rightarrow ASA \mid aB$$

$$A \rightarrow B \mid S$$

$$B \rightarrow b \mid \varepsilon$$

1. Add a new start variable S_0

Convert the following grammar *G* into CNF:

$$S_0 \rightarrow S$$

$$S \rightarrow ASA \mid aB$$

$$A \rightarrow B \mid S$$

$$B \rightarrow b \mid \varepsilon$$

2. Eliminate all ε -rules of form $A \to \varepsilon$

Removed:

 $B \to \varepsilon$

Convert the following grammar **G** into CNF:

$$S_0 \rightarrow S$$

$$S \rightarrow ASA \mid aB$$

$$A \rightarrow B \mid S$$

$$B \rightarrow b \mid \varepsilon$$

$$S_0 \rightarrow S$$

$$S \rightarrow ASA \mid aB \mid a$$

$$A \rightarrow B \mid S \mid \varepsilon$$

$$B \rightarrow b$$

- For each $W \to uAv$ where u, v are strings of variables and terminals, add new rule $W \to uv$
- For $W \to A$, add $W \to \varepsilon$ (which we will **remove later**) unless $W \to \varepsilon$ was previously removed
- Remove $A \rightarrow \varepsilon$

Removed:

Convert the following grammar **G** into CNF:

$$m{B}
ightarrow m{arepsilon}$$
 , $m{A}
ightarrow m{arepsilon}$

$$S_0 \to S$$

$$S \to ASA \mid aB \mid a$$

$$A \to B \mid S \mid \varepsilon$$

$$B \to b$$

$$S_0 \rightarrow S$$

$$S \rightarrow ASA \mid aB \mid a \mid SA \mid AS + S$$

$$A \rightarrow B \mid S$$

$$B \rightarrow b$$

- For each $W \to uAv$ where u, v are strings of variables and terminals, add new rule $W \to uv$
- For $W \to A$, add $W \to \varepsilon$ (which we will **remove later**) unless $W \to \varepsilon$ was previously removed
- Remove $A \rightarrow \varepsilon$

Removed:

 $m{B}
ightarrow m{arepsilon}$, $m{A}
ightarrow m{arepsilon}$

Convert the following grammar *G* into CNF:

$$S_0 \rightarrow S$$

$$S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

$$A \rightarrow B \mid S$$

$$B \rightarrow b$$

3. Eliminate all **unit rules** of form $A \rightarrow B$

Convert the following grammar *G* into CNF:

Removed:

$$egin{aligned} B &
ightarrow arepsilon$$
 , $A &
ightarrow arepsilon$, $S_0 &
ightarrow S$

$$S \rightarrow S$$

$$S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

$$A \rightarrow B \mid S$$

$$B \rightarrow b$$

$$S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$
 $S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$
 $A \rightarrow B \mid S$
 $B \rightarrow b$

- For each rule $B \to u$, add $A \to u$ (unless $A \to u$ was previously removed)
 - As before, u is a string of variables and terminals
 - Basically, just copying $B \rightarrow \text{rules}$ into $A \rightarrow \text{rules}$
- Remove $A \rightarrow B$

vart the following grammar Cinta CNE.

Removed:

$$B \to \varepsilon$$
, $A \to \varepsilon$,
 $S_0 \to S$, $A \to B$

Convert the following grammar \boldsymbol{G} into CNF:

$$S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

$$S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

$$A \rightarrow B \mid S$$

$$B \rightarrow b$$

$$S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$
 $S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$
 $A \rightarrow S \mid b$
 $B \rightarrow b$

- For each rule $B \to u$, add $A \to u$ (unless $A \to u$ was previously removed)
 - As before, u is a string of variables and terminals
 - Basically, just copying $B \rightarrow \text{rules}$ into $A \rightarrow \text{rules}$
- Remove $A \rightarrow B$

Convert the following grammar *G* into CNF:

Removed:

$$egin{aligned} B &
ightarrow egin{aligned} arepsilon &
ho &
ho \ S_0 &
ightarrow S \end{array}, A &
ightarrow B \end{array}, A &
ightarrow S \end{aligned}$$

$$S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

$$S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

$$A \rightarrow S \mid b$$

$$B \rightarrow b$$

$$S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$
 $S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$
 $A \rightarrow b \mid ASA \mid aB \mid a \mid SA \mid AS$
 $B \rightarrow b$

- For each rule $B \to u$, add $A \to u$ (unless $A \to u$ was previously removed)
 - As before, u is a string of variables and terminals
 - Basically, just copying $B \rightarrow \text{rules}$ into $A \rightarrow \text{rules}$
- Remove $A \rightarrow B$

Convert the following grammar *G* into CNF:

$$S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$
 $S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$
 $A \rightarrow b \mid ASA \mid aB \mid a \mid SA \mid AS$
 $B \rightarrow b$

4. Convert remaining rules

Convert the following grammar **G** into CNF:

$$S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

$$S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

$$A \rightarrow b \mid ASA \mid aB \mid a \mid SA \mid AS$$

$$B \rightarrow b$$

$$S_0 \rightarrow AA_1 \mid aB \mid a \mid SA \mid AS$$
 $S \rightarrow AA_1 \mid aB \mid a \mid SA \mid AS$
 $A \rightarrow b \mid AA_1 \mid aB \mid a \mid SA \mid AS$
 $B \rightarrow b$
 $A_1 \rightarrow SA$

- Replace rules $A \to u_1u_2 \dots u_k$, where $k \ge 3$ and each u_i is a **variable** / **terminal**, with $A \to u_1A_1$, $A_1 \to u_2A_2$, $A_2 \to u_3A_3$, ..., and $A_{k-2} \to u_{k-1}u_k$
 - Replace any **terminal** u_i with variable U_i and add rule $U_i o u_i$
 - E.g. $A \to BcD$ becomes $A \to BA_1$, $A_1 \to U_1D$, $U_1 \to c$

Convert the following grammar *G* into CNF:

$$S_0 \rightarrow AA_1 \mid aB \mid a \mid SA \mid AS$$
 $S \rightarrow AA_1 \mid aB \mid a \mid SA \mid AS$
 $A \rightarrow b \mid AA_1 \mid aB \mid a \mid SA \mid AS$
 $B \rightarrow b$
 $A_1 \rightarrow SA$

$$S_0 \rightarrow AA_1 \mid UB \mid a \mid SA \mid AS$$
 $S \rightarrow AA_1 \mid UB \mid a \mid SA \mid AS$
 $A \rightarrow b \mid AA_1 \mid UB \mid a \mid SA \mid AS$
 $B \rightarrow b$
 $A_1 \rightarrow SA$
 $U \rightarrow a$

• Replace rules $A \rightarrow bC$ with $A \rightarrow BC$, $B \rightarrow b$

Convert the following grammar **G** into CNF:

A context-free grammar is in **Chomsky Normal Form** (**CNF**) if every rule is of the form $A \to BC$ or $A \to a$ where:

- $a \in \Sigma$
- $A, B, C \in V$
- B, C may not be the start variable
- $S \rightarrow \epsilon$ is permitted where S is the start variable

Pushdown Automata

- The class of context-free languages is the class of languages recognized by context-free grammars
- Next, we want to show that the set of context-free languages is exactly the set of languages recognized by **pushdown automata**

Pushdown Automata (PDA)

- A pushdown automaton (PDA) is essentially an NFA with a stack
- The stack provides additional memory to recognize more complex languages

Pushdown Automata Transitions

Pushdown automata **transitions** use the following notation:

In state q, we can take the transition when:

- reading symbol w from input and top stack symbol is a
- pop a from the top of the stack and push b onto the top the stack

Pushdown Automata ε -Transitions

• If $w = \varepsilon$, then input symbol is ignored

$$\varepsilon, a \rightarrow b$$

• If $a = \varepsilon$, then top stack symbol is ignored and b is pushed onto the stack

$$w, \varepsilon \rightarrow b$$

• If $b = \varepsilon$, then top stack symbol is removed from the stack

$$w, a \rightarrow \varepsilon$$

• If $w = a = b = \varepsilon$, then the transition is a **free transition**

$$\mathcal{E}, \mathcal{E} \to \mathcal{E}$$

Pushdown Automata Acceptance

- PDA M accepts an input string w similar to an NFA
- *M* accepts *w* if:
 - starting with empty stack
 - there is any execution path that reads the entire input using transitions
 - and end on an accept state
- All strings which are accepted by a PDA M is the **language recognized by** M, denoted L(M)

• w = 0011 is accepted

• $\mathbf{w} = \boldsymbol{\varepsilon}$ is accepted

• w = 00011 is not accepted

• w = 00111 is not accepted

• What is L(M)? { $0^n 1^n | n \ge 0$ }

Formal Definition: Pushdown Automata

A pushdown automaton is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- **Q** is a finite set of states
- Σ is a finite input alphabet
- **Γ** is a finite **stack alphabet**
- $\delta: \mathbf{Q} \times (\mathbf{\Sigma} \cup \{\mathbf{\varepsilon}\}) \times (\mathbf{\Gamma} \times \{\mathbf{\varepsilon}\}) \to \mathbf{\mathcal{P}}(\mathbf{Q} \times \mathbf{\Gamma})$ is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of accept states

•
$$\Sigma = \{0, 1\}, \Gamma = \{0, \$\}$$

Create a PDA which recognizes the language

$$L = \{ ww^r \mid w \in \{0, 1\}^* \} \setminus \{\varepsilon\}$$

• Try w = 1010010

