

ENGENHARIA INFORMÁTICA

MATEMÁTICA I

Ficha de Trabalho - 1º Teste

1. Calcule o quociente e o resto das seguintes divisões:

1.1.
$$(x^5 + 1): (x + 3)$$

1.2.
$$(-x^4 + 6x^2 + 4x):(3x + 6)$$

1.3.
$$(x^4 - 3x^2 + 2): (x^2 + 1)$$

1.4.
$$(6x^3 + 5x^2 - 9x - 2): (3x - 1)$$

usando, se possível:

Algoritmo da divisão

Regra de Ruffini

2. Determine as raízes de cada um dos seguintes polinómios e decomponha-os em fatores:

2.1.
$$x^2 - 5x - 14$$

2.2.
$$2x^3 + 3x^2 - 2x$$

2.3.
$$x^3 - 2x^2 - x + 2$$

2.4.
$$-2x^3 - 2x^2 + 2x + 2$$

3. Resolva, em IR, cada uma das seguintes equações:

3.1.
$$\frac{1}{25} = 5^{1-x^2}$$

3.2.
$$8e^{-0.2t} + 20 = 120 + 6e^{-0.2t}$$

3.3.
$$3^{x-4} + 4 = 2 + 2 \times 3^{x-4}$$

3.4.
$$\ln(x^2+5)=2\ln(x-1)$$

3.5.
$$\ln(x) + \ln(2x+1) = 0$$

3.6.
$$\ln x^4 - \ln x = 18$$

3.7.
$$9^x - 6 \cdot 3^x + 5 = 0$$

3.8.
$$x \ln x + 5 \ln x = 0$$

3.9.
$$\log_5(5-x) = 1 - \log_5(x)$$

4. Dadas as funções definidas por:

$$f(x) = x + 2$$

•
$$f(x) = x + 2$$
 e $g(x) = \frac{2x^2 + 1}{3}$

•
$$f(x) = \frac{2}{x^2 - 9}$$
 e $g(x) = 2x - 1$

$$e \qquad g\!\big(x\big)\!=2x\,-$$

•
$$f(x) = -x + \sqrt{4 - x}$$
 e $g(x) = 2x^2$

$$g(x) = 2x^{2}$$

•
$$f(x) = 2 + \sqrt{x^2 - 9}$$
 e $g(x) = 3x$

$$q(x) = 3x$$

4.1. Determine, para cada par, o domínio das funções.

4.2. Caraterize, para cada par, as funções $\,f + g\,$, $\,f - g\,$, $\,f \times g\,$, $\,\frac{f}{g}$, $\,f \circ g\,$ e $\,g \circ f\,$.

5. Caraterize a inversa de f, sendo f uma função real de variável real, definida por:

5.1.
$$f(x) = -4x$$

5.2.
$$f(x) = -3x + 1$$

5.3.
$$f(x) = \frac{2x+3}{x+1}$$

5.4.
$$f(x) = \sqrt{x-1}$$

6. Calcule os seguintes limites:

6.1.
$$\lim_{x \to 1} \frac{x^2 - 2x + 1}{x^2 - 5x + 4}$$

6.2.
$$\lim_{x \to -\infty} \frac{10x^3 - x^2 + 7}{4x^2 - 5}$$

6.3.
$$\lim_{x \to +\infty} \frac{x^5 + 2x + 3}{(2x - 5)^2}$$

6.4.
$$\lim_{x \to 2} \frac{\sqrt{x+2} - 2}{x-2}$$

6.5.
$$\lim_{x \to +\infty} \frac{\ln x}{3x}$$

6.6.
$$\lim_{x\to 0} \frac{\ln(x+1)}{2x}$$

6.7.
$$\lim_{z \to 5} \frac{z^2 - 10z + 25}{z - 5}$$

6.8.
$$\lim_{x\to 0} \frac{e^{x+1}-e}{x^2-x}$$

6.9.
$$\lim_{x\to 0} \left(\frac{e^{2x}-1}{x} \right)$$

6.10.
$$\lim_{x \to +\infty} \left(\sqrt{x+1} - \sqrt{x} \right)$$

6.11.
$$\lim_{x \to 1} \frac{x \ln x^4}{2x - 2}$$

7. Estude a continuidade de cada uma das seguintes funções nos pontos indicados. Caso não seja contínua, estude a continuidade à esquerda e à direita do ponto indicado.

7.1.
$$f(x) = |x|$$
 para $x = 0$

7.2.
$$h(x) = \begin{cases} 3x^2 - 1 \text{ se } x < 1 \\ 2 \text{ se } x = 1 \text{ para } x = 1 \\ 1 + x^3 \text{ se } x > 1 \end{cases}$$

7.3.
$$g(x) = \begin{cases} \frac{x}{x-1} & \text{se } x \neq 1 \\ 2 & \text{se } x = 1 \end{cases}$$
 para $x = 1$

8. Mostre, aplicando o teorema de Bolzano, que a equação:

8.1.
$$x^3 - 2x + 5 = 0$$
 tem pelo menos uma raiz no intervalo $]-3,0[$

8.2.
$$x^4 - 2x - 1 = 0$$
 tem pelo menos uma raiz no intervalo $\begin{bmatrix} -1,0 \end{bmatrix}$

9. Para cada uma das seguintes funções escreva uma equação para as assintotas do respetivo gráfico:

9.1.
$$f(x) = \frac{8}{4-x^2}$$

9.2.
$$f(x) = \frac{x^4 - 16}{x^3}$$

9.3.
$$f(x) = \frac{2x^2}{\sqrt{x^2 - 16}}$$

$$9.5. f(x) = x \cdot \ln x$$

 $f(x) = \frac{x+1}{x-2}$

9.6.
$$f(x) = \frac{\ln x^3}{x}$$