Generative Adversarial Networks (GANs) Workshop

Presented by: Chan Yi Xuan EEE, Y3

MLDA's Mission

Provide an integrated platform for EEE/IEM students to learn and implement Machine Learning, Data Science & AI, as well as facilitate connections with the industry.

Which one is FAKE?

Generative Models

Given training data, generative models aim at learning the true data distribution of the training set to generate new data points from this distribution with some variations.

Training samples

Generated samples

Classifier Model vs. Generative Model

Classifier Model

Goal: Models the decision boundary

Generative Model

 Goal: Models the actual distribution of each classes

Noise Class Features
$$\xi, Y \longrightarrow X$$

$$P(X \mid Y)$$

Generative Models

Given training data, generative models aim at learning the true data distribution of the training set to generate new data points from this distribution with some variations.

Two famous deep generative model algorithms:

- Variational Autoencoder (VAE)
- Generative Adversarial Network (GAN)

Generative Models

Given training data, generative models aim at learning the true data distribution of the training set to generate new data points from this distribution with some variations.

Two famous deep generative model algorithms:

- Variational Autoencoder (VAE)
- Generative Adversarial Network (GAN)
 - Applications of GANs
 - Concept and theory behind GANs
 - Properties of DCGAN

Face Generation StyleGAN2

Cat Generation StyleGAN2

Super Resolution SRGAN

Image Translation CycleGAN

Generative Adversarial Networks

Generator

Learns to make fakes that look real

Discriminator

Learns to distinguish real from fake

Generative Adversarial Networks

Discriminator: A classifier which can distinguish between different classes

Input: Real or Fake Samples

Discriminator: A classifier which can distinguish between different classes

Input: Real or Fake Samples

Discriminator: A classifier which can distinguish between different classes

Input: Real or Fake Samples

Discriminator: A classifier which can distinguish between different classes

Input: Real or Fake Samples

Discriminator: A classifier which can distinguish between different classes

Input: Real or Fake Samples

Discriminator: A classifier which can distinguish between different classes

Input: Real or Fake Samples

Discriminator: A classifier which can distinguish between different classes

Input: Real or Fake Samples

Generator: Model that is used to generate new plausible examples from the problem domain

Input: Random noise

Generator: Model that is used to generate new plausible examples from the problem domain

Input: Random noise

Generator: Model that is used to generate new plausible examples from the problem domain

Input: Random noise

Generator: Model that is used to generate new plausible examples from the problem domain

Input: Random noise

Output: Fake data

Noise Vector

- Also known as latent variable, are those variables that are important for a domain but are not directly observable.
- Random noise vector's dimensionality is smaller than the target output's dimensionality
- Noise helps GAN to produce a wide variety of data

Generator: Model that is used to generate new plausible examples from the problem domain

Input: Random noise

Generator: Model that is used to generate new plausible examples from the problem domain

Input: Random noise

Generator: Model that is used to generate new plausible examples from the problem domain

Input: Random noise

Generator: Model that is used to generate new plausible examples from the problem domain

Input: Random noise

Output: Fake data

Approximate the distribution of problem domain

https://poloclub.github.io/ganlab/

Loss Function: Binary Cross Entropy (BCE) Loss

$$BCE = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$

m: sample size y: label ŷ: prediction

Loss Function: Binary Cross Entropy (BCE) Loss

 $BCE = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$ **Label y = 1 (real)**

Note: log(1) = 0

 $\log \hat{\mathbf{y}}^{(i)}$

m: sample sizey: labelŷ: prediction

Loss Function: Binary Cross Entropy (BCE) Loss

 $BCE = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log \hat{y}^{(i)} + \frac{(1 - y^{(i)}) \log(1 - \hat{y}^{(i)})}{\text{Label y} = 0 \text{ (fake)}}$

Note: log(1) = 0

$$\log (1 - \hat{y}^{(i)})$$

m: sample size y: label ŷ: prediction

Loss Function: Binary Cross Entropy (BCE) Loss

$$BCE = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$

BCE Loss -> Minimax Loss

Loss Function: Binary Cross Entropy (BCE) Loss

$$BCE = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$

BCE Loss -> Minimax Loss

$$\frac{\min \max}{d g} - \left[\mathbb{E}(\log(d(x))) + \mathbb{E}(1 - \log(d(g(z)))) \right]$$

OR...
$$\frac{\min \max}{g} \left[\mathbb{E}(\log(d(x))) + \mathbb{E}(1 - \log(d(g(z)))) \right]$$

GENERATIVE ADVERSARIAL NETWORKS (GANs)

Complete GAN Model

Complete GAN Model

Training Discriminator

Keep generator constant

Complete GAN Model

Training Generator

Keep discriminator constant

GAN is trained in an alternative fashion

GAN is trained in an alternative fashion

Do not use discriminator that is too strong!

Generator

Discriminator

- Replace all pooling layers with convolutional stride
- Use transposed convolution for upsampling
- Use batch normalization in both the generator and the discriminator
- Remove fully connected hidden layers
- Use ReLU activation in generator for all layers except for the output, which uses Tanh
- Use LeakyReLU activation in the discriminator for all layers

Credit: https://towardsdatascience.com/gan-by-example-using-keras-on-tensorflow-backend-1a6d515a60d0

$$output \ size = \frac{input \ size + 2 * padding - kernel \ size}{stride} + 1$$

Generator: transposed convolution ~ upsampling

4 step process:

- 1. Calculate new parameters z and p'z = s -1; p' = k - p - 1
- 2. Insert **z** number of zeros between each rows and columns of the input
- 3. Pad the modified input images with p' number of zeros
- 4. Perform standard convolution with **stride length of 1**

Generator: transposed convolution ~ upsampling

4 step process:

- 1. Calculate new parameters z and p'z = s -1; p' = k - p - 1
- 2. Insert **z** number of zeros between each rows and columns of the input
- 3. Pad the modified input images with p' number of zeros
- 4. Perform standard convolution with **stride length of 1**

Generator: transposed convolution ~ upsampling

4 step process:

- 1. Calculate new parameters z and p'z = s -1; p' = k - p - 1
- 2. Insert **z** number of zeros between each rows and columns of the input
- 3. Pad the modified input images with p' number of zeros
- 4. Perform standard convolution with **stride length of 1**

 $output\ size = (input\ size\ -1)*stride\ -2*padding + kernel\ size$

EXTRA MATERIALS

Supervised vs. Unsupervised Learning

Supervised

- Data: (x, y)x is data, y is label
- Goal: Learn function to map x -> y
- Examples: Regression, classification, object detection, etc.

Unsupervised

- Data: xx is data, no labels
- Goal: Learn some hidden or underlying structure of the data
- Examples: Clustering, dimensionality reduction, feature learning, etc.

Batch Normalization

- Stabilize generator's learning process
- Prevent mode collapse

10 modes

Collapse to 1 mode

Activations:

$$a = \max(0, z)$$

Every layer of generator, except the last layer

tanh

$$a = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

Last layer of generator

Leaky ReLU

$$a = \max(0.2z, z)$$

Every layer of discriminator