```
# -*- coding: utf-8 -*-
Created on Fri Sep 25 10:06:29 2020
@author: akash
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from plotly.offline import init_notebook_mode, iplot
import matplotlib.pyplot as plt
import plotly.express as px
import plotly.graph_objects as go
import plotly.figure_factory as ff
from plotly.colors import n_colors
from plotly.subplots import make_subplots
import datetime
from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator
from sklearn.feature_extraction.text import CountVectorizer
from PIL import Image
from nltk.corpus import stopwords
stop=set(stopwords.words('english'))
from nltk.util import ngrams
import re
from collections import Counter
import nltk
from nltk.corpus import stopwords
import requests
```

import json

```
Data Loading and Preperation
tweets = pd.read_csv("C:/Users/akash/Desktop/S3/Exam/IPL2020_Tweets.csv")
tweets.shape
print(tweets['user_verified'].unique())
print(tweets['hashtags'].unique())
print(tweets['is_retweet'].unique())
# Only one single value in 'is_retweet'
## Hence we can delete that column
tweets = tweets.drop('is_retweet', axis=1)
tweets.shape
tweets[['date','time']] = tweets.date.str.split(expand=True)
tweets['hour'] = tweets.time.astype(str).str[:2]
def remove_tag(string):
  text=re.sub('<.*?>',",string)
  return text
```

```
def remove_mention(text):
         line=re.sub(r'@\w+',",text)
          return line
def remove_hash(text):
         line=re.sub(r'#\w+','',text)
          return line
def remove_newline(string):
          text=re.sub('\n',",string)
          return text
def remove_url(string):
          text = re.sub('http[s]?://(?:[a-zA-Z]|[0-9]|[$-\_@.\&+]|[!*\(\),]|(?:\%[0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-f
F]))+',",string)
           return text
def remove_number(text):
         line=re.sub(r'[0-9]+','',text)
           return line
def remove_punct(text):
         line = re.sub(r'[!"\$%&\'()*+,\-.\/:;=#@?\[\\\]^_\[\}~]*','',text)
           return line
```

```
def text_strip(string):
  line=re.sub('\s{2,}', '', string.strip())
  return line
def remove_thi_amp_ha_words(string):
  line=re.sub(r'\bamp\b|\bthi\b|\bha\b',' ',string)
  return line
tweets['refine_text']=tweets['text'].str.lower()
tweets['refine_text']=tweets['refine_text'].apply(lambda x:remove_tag(str(x)))
tweets['refine_text']=tweets['refine_text'].apply(lambda x:remove_mention(str(x)))
tweets['refine_text']=tweets['refine_text'].apply(lambda x:remove_hash(str(x)))
tweets['refine_text']=tweets['refine_text'].apply(lambda x:remove_newline(x))
tweets['refine_text']=tweets['refine_text'].apply(lambda x:remove_url(x))
tweets['refine_text']=tweets['refine_text'].apply(lambda x:remove_number(x))
tweets['refine_text']=tweets['refine_text'].apply(lambda x:remove_punct(x))
tweets['refine_text']=tweets['refine_text'].apply(lambda x:remove_thi_amp_ha_words(x))
tweets['refine_text']=tweets['refine_text'].apply(lambda x:text_strip(x))
```



```
df = tweets.drop_duplicates(subset='user_name', keep="first")
df = df[df['year_created']>2006]
df = df['year_created'].value_counts().reset_index()
df.columns = ['year', 'count']
fig = sns.barplot(x=df["year"], y=df["count"], orientation='vertical').set_title('Year-wise creation of
users')
plt.xticks(rotation='vertical')
# We can see that majority of the accounts have been created in 2020.
############################### Top 10 locations based on number of tweets {perfect}
locations = tweets['user location'].value counts().reset index()
locations.columns = ['user location', 'count']
locations = locations[locations['user location']!='NA']
locations = locations.sort_values(['count'],ascending=False)
fig = sns.barplot(x=locations.head(10)["count"], y=locations.head(10)["user_location"],
orientation='horizontal').set_title('Top 10 locations')
fig = sns.barplot(x=locations.head(11)["count"], y=locations.head(11)["user_location"],
orientation='horizontal').set_title('Top 11 locations')
```

```
fig = sns.barplot(x=locations.head(16)["count"], y=locations.head(16)["user_location"],
orientation='horizontal').set_title('Top 16 locations')
fig = sns.barplot(x=locations.head(22)["count"], y=locations.head(22)["user_location"],
orientation='horizontal').set_title('Top 22 locations')
## Now we get the top 10 locations as Mumbai, New Delhi, Hyderabad, Bengaluru, Chennai, Kolkata,
Noida, Tamil Nadu, Jaipur and Kerala
#### Relation between number or tweets and number of hashtags per user {perfect}
tweets['hashtags'] = tweets['hashtags'].fillna('[]')
tweets['hashtags_count'] = tweets['hashtags'].apply(lambda x: len(x.split(',')))
tweets.loc[tweets['hashtags'] == '[]', 'hashtags_count'] = 0
tweets['hashtags_count']
userwise = tweets['user_name'].value_counts().reset_index()
userwise.columns = ['user_name', 'tweets_count']
fig = sns.scatterplot(x=tweets['hashtags_count'], y=userwise['tweets_count']).set_title('Number of
hashtags used in Tweets')
```



```
#### Hashtags per tweet
htcounts = tweets['hashtags_count'].value_counts().reset_index()
htcounts.columns = ['hashtags_count', 'count']
htcounts = htcounts.sort_values(['count'],ascending=False)
fig = sns.barplot(x=htcounts["hashtags_count"], y=htcounts["count"],
orientation='vertical').set_title('Number of hashtags per tweet')
# We can confirm our previous observation of inverse proportion between hashtags and tweet
counts
######## Top 10 hashtags used in tweets
hts = tweets['hashtags'].value_counts().reset_index()
hts.columns = ['hashtag', 'count']
hts = hts.sort_values(['count'],ascending=False)
fig = sns.barplot(x=hts.head(10)['hashtag'],
y=hts.head(10)['count'],orientation='vertical').set_title('Top 10 hashtags')
plt.xticks(rotation = 'vertical')
fig = sns.barplot(x=hts.head(17)['hashtag'],
y=hts.head(17)['count'],orientation='vertical').set_title('Top 17 hashtags')
plt.xticks(rotation = 'vertical')
```



```
hour = prematch['hour'].value_counts().reset_index()
hour.columns = ['hour', 'count']
fig = sns.barplot(x=hour["hour"], y=hour['count'], orientation='vertical').set_title('Pre-Match Number
of Tweets on hourly basis')
# We can assume that this follows a normal distribution
####### Wordcloud
text = prematch['text']
text = str(text)
wordcloud = WordCloud(max_font_size=50, max_words=100,
background_color="white").generate(text)
plt.figure()
plt.imshow(wordcloud, interpolation="bilinear")
plt.axis("off")
plt.show()
```

######## N-gram

```
def ngram_df(corpus,nrange,n=None):
  vec = CountVectorizer(stop_words = 'english',ngram_range=nrange).fit(corpus)
  bag_of_words = vec.transform(corpus)
  sum_words = bag_of_words.sum(axis=0)
  words_freq = [(word, sum_words[0, idx]) for word, idx in vec.vocabulary_.items()]
  words_freq =sorted(words_freq, key = lambda x: x[1], reverse=True)
  total_list=words_freq[:n]
  df=pd.DataFrame(total_list,columns=['text','count'])
  return df
unigram_pre=ngram_df(prematch['refine_text'],(1,1),10)
bigram_pre=ngram_df(prematch['refine_text'],(2,2),10)
trigram_pre=ngram_df(prematch['refine_text'],(3,3),10)
fig = sns.barplot(x=unigram_pre["text"], y=unigram_pre['count'],orientation='vertical').set_title('Top
10 single words')
plt.xticks(rotation='vertical')
fig = sns.barplot(x=bigram_pre['text'], y=bigram_pre['count'], orientation='vertical').set_title('Top 10
double words')
plt.xticks(rotation='vertical')
fig = sns.barplot(x=trigram_pre['text'], y=trigram_pre['count'],orientation='vertical').set_title('Top 10
triple words')
plt.xticks(rotation='vertical')
```

We can observe that most pre-match tweets are are regarding teams and sponsors of the events


```
text = str(text)
wordcloud = WordCloud(max_font_size=50, max_words=100,
background_color="white").generate(text)
plt.figure()
plt.imshow(wordcloud, interpolation="bilinear")
plt.axis("off")
plt.show()
######## N-gram
unigram_match=ngram_df(matchdays['refine_text'],(1,1),10)
bigram_match=ngram_df(matchdays['refine_text'],(2,2),10)
trigram_match=ngram_df(matchdays['refine_text'],(3,3),10)
fig = sns.barplot(x=unigram_match["text"],
y=unigram_match['count'],orientation='vertical').set_title('Top 10 single words')
plt.xticks(rotation='vertical')
fig = sns.barplot(x=bigram_match['text'],
y=bigram_match['count'],orientation='vertical').set_title('Top 10 double words')
plt.xticks(rotation='vertical')
```



```
hour = day1['hour'].value_counts().reset_index()
hour.columns = ['hour', 'count']
fig = sns.barplot(x=hour["hour"], y=hour['count'], orientation='vertical').set_title('Number of Tweets
on hourly basis on Day 1 of schedule')
####### Wordcloud
text = day1['text']
text = str(text)
wordcloud = WordCloud(max_font_size=50, max_words=100,
background_color="white").generate(text)
plt.figure()
plt.imshow(wordcloud, interpolation="bilinear")
plt.axis("off")
plt.show()
```

```
day2 = tweets[(tweets['date'] > '2020-09-19') & (tweets['date'] <= '2020-09-20')]
day2['date'].unique()
####### Hourly analysis
hour = day2['hour'].value_counts().reset_index()
hour.columns = ['hour', 'count']
fig = sns.barplot(x=hour["hour"], y=hour['count'], orientation='vertical').set_title('Number of Tweets
on hourly basis on Day 2 of schedule')
####### Wordcloud
text = day2['text']
text = str(text)
wordcloud = WordCloud(max_font_size=50, max_words=100,
background_color="white").generate(text)
```

```
plt.figure()
plt.imshow(wordcloud, interpolation="bilinear")
plt.axis("off")
plt.show()
################################# Day 3 - 21/09/2020: SRH v/s RCB = RCB won
day3 = tweets[(tweets['date'] > '2020-09-20') & (tweets['date'] <= '2020-09-21')]
day3['date'].unique()
####### Hourly analysis
hour = day3['hour'].value_counts().reset_index()
hour.columns = ['hour', 'count']
fig = sns.barplot(x=hour["hour"], y=hour['count'], orientation='vertical').set_title('Number of Tweets
on hourly basis on Day 3 of schedule')
```

Wordcloud

Hourly analysis

```
text = day3['text']
text = str(text)
wordcloud = WordCloud(max_font_size=50, max_words=100,
background_color="white").generate(text)
plt.figure()
plt.imshow(wordcloud, interpolation="bilinear")
plt.axis("off")
plt.show()
################################### Day 4 - 22/09/2020: RR v/s CSK = RR won
day4 = tweets[(tweets['date'] > '2020-09-21') & (tweets['date'] <= '2020-09-22')]
day4['date'].unique()
```

```
hour = day4['hour'].value_counts().reset_index()
hour.columns = ['hour', 'count']
fig = sns.barplot(x=hour["hour"], y=hour['count'], orientation='vertical').set_title('Number of Tweets
on hourly basis on Day 4 of schedule')
####### Wordcloud
text = day4['text']
text = str(text)
wordcloud = WordCloud(max_font_size=50, max_words=100,
background_color="white").generate(text)
plt.figure()
plt.imshow(wordcloud, interpolation="bilinear")
plt.axis("off")
plt.show()
```



```
wordcloud = WordCloud(max_font_size=50, max_words=100,
background_color="white").generate(text)
plt.figure()
plt.imshow(wordcloud, interpolation="bilinear")
plt.axis("off")
plt.show()
################################ Day 6 - 24/09/2020: KXIP v/s RCB = KXIP won by 97 runs
day6 = tweets[(tweets['date'] > '2020-09-23') & (tweets['date'] <= '2020-09-24')]
day6['date'].unique()
###### Hourly analysis
hour = day6['hour'].value_counts().reset_index()
hour.columns = ['hour', 'count']
fig = sns.barplot(x=hour["hour"], y=hour['count'], orientation='vertical').set_title('Number of Tweets
on hourly basis on Day 6 of schedule')
```

Wordcloud

```
text = day6['text']

text = str(text)

wordcloud = WordCloud(max_font_size=50, max_words=100, background_color="white").generate(text)

plt.figure()

plt.imshow(wordcloud, interpolation="bilinear")

plt.axis("off")

plt.show()
```

- # From daily analysis of match day data, we can concur that tweets reduce significantly after the match starts until the match ends.
- ## Because of this, we can also observe a some amount of tweets regarding previous day's game in present day's analysis.

Looking at daily tweet analysis in Data Exploration and match-day analysis, we can concur that high-adrenaline events from the match might be high contributors to the spike in number of tweets

More events such as high scores, dropped catches, excpetional fieldings may also contribute hugely to the spike.

We can also observe that whenever CSK is in game, words such as 'dhoni', 'msd', 'msdian', 'thala', etc are always mentioned in high numbers.

This has changed from pre-match analysis where in 'Suresh Raina' was bieng mentioned more.

#######Also it can be observed that match day tweets are majorly dominated by high-adrenaline events, certain high performing player, captain of the winning team and match polls.