

IoT Fundamentals – ECE3501

Allen Ben Philipose – 18BIS0043

Lab Task - 1

To: Prof. Suresh Chavhan

TASK - I

Aim

To design a circuit using Arduino for detecting the intensity of light using a photo sensor and plot it with respect to time

Tools Required

Tinkercad – for simulating the connection and coding of the Arduino circuit

ThingSpeak – for plotting the graph

Circuit Diagram

Flow diagram

*Wait seconds was changed from 0.1 to 1 seconds (precision was reduced) for easier representation of plotting

Output from Tinkercad

Code

```
int S = 0;
void setup()
{
     pinMode(A0, INPUT);
     Serial.begin(9600);
     pinMode(9, OUTPUT);
}
void loop()
{
      // Read the value from Sensor
      S = analogRead(A0);
      // Print the value from Sensor
      Serial.println(S);
      // Map reading to LED
      analogWrite(9, map(S, 0, 1023, 0, 255));
      delay(1000);
      // Wait for 1000 millisecond(s)
}
```

Observations

datetime	~	field1 💌	latitude 💌	longitude 💌	elevation 💌	status 💌
26-07-2020 12:03:30 UTC		26	-89	155.6	22	Awake
26-07-2020 12:03:31 UTC		26	0.5	-170	23	Awake
26-07-2020 12:03:32 UTC		806	90	0	24	Awake
26-07-2020 12:03:33 UTC		806	70	10	25	Awake
26-07-2020 12:03:34 UTC		895	80	20	26	Awake
26-07-2020 12:03:35 UTC		901	40	30	27	Awake
26-07-2020 12:03:36 UTC		881	50	40	28	Awake
26-07-2020 12:03:37 UTC		700	60	50	29	Awake
26-07-2020 12:03:38 UTC		700	20	60	30	Awake
26-07-2020 12:03:39 UTC		857	30	70	31	Awake
26-07-2020 12:03:40 UTC		923	10	80	32	Awake
26-07-2020 12:03:41 UTC		923	30	90	33	Awake
26-07-2020 12:03:42 UTC		777	50	100	34	Awake
26-07-2020 12:03:43 UTC		26	60	110	35	Awake
26-07-2020 12:03:44 UTC		911	70	120	36	Awake,

^{*}Only field1 contains observed values, other values are random and do not affect the graph

Output from Excel

Output from ThingSpeak

Conclusion

Therefore, by using Tinkercad, we simulated a circuit for measuring the light intensity and by recording the output in a csv file, we can plot it using ThingSpeak.

TASK – I: WITH WIFI MODULE

Modified Circuit Diagram

Code

String ssid = "Simulator Wifi"; // SSID to
connect to

String password = ""; // Our virtual wifi has no
password

```
String host = "api.thingspeak.com"; // Open
Weather Map API
const int httpPort = 80;
       uri
String
"/update?api_key=3Q88GUPEY53X3DNH&field1=";
int setupESP8266(void) {
  // Start our ESP8266 Serial Communication
  Serial.begin(115200); // Serial connection
over USB to computer
  Serial.println("AT"); // Serial connection
on Tx / Rx port to ESP8266
 delay(10); // Wait a little for the ESP
to respond
  if (!Serial.find("OK")) return 1;
 // Connect to 123D Circuits Simulator Wifi
  Serial.println("AT+CWJAP=\"" + ssid + "\",\""
+ password + "\"");
 delay(10); // Wait a little for the ESP
to respond
  if (!Serial.find("OK")) return 2;
```

```
// Open TCP connection to the host:
  Serial.println("AT+CIPSTART=\"TCP\",\""
                                               +
host + "\"," + httpPort);
  delay(50); // Wait a little for the ESP
to respond
  if (!Serial.find("OK")) return 3;
  return 0;
}
void anydata(void) {
  int temp = analogRead(A0);
  analogWrite(9, map(temp, 0, 1023, 0, 255));
  // Construct our HTTP call
  String httpPacket = "GET " + uri + String(temp)
+ " HTTP/1.1\r\nHost: " + host + "\r\n\r\n";
  int length = httpPacket.length();
  // Send our message length
  Serial.print("AT+CIPSEND=");
  Serial.println(length);
```

```
delay(10); // Wait a little for the ESP to
respond if (!Serial.find(">")) return -1;
  // Send our http request
  Serial.print(httpPacket);
  delay(10); // Wait a little for the ESP to
respond
  if (!Serial.find("SEND OK\r\n")) return;
}
void setup() {
  setupESP8266();
}
void loop() {
anydata();
  delay(1000);
}
```

Output from TinkerCad

Output from ThinkSpeak

