Лекция 8

1. ТЕОРЕМА ВЕЙЕРШТРАССА.

Пусть $D_a^+:=D\cap(a,+\infty)$ и $D_a^-:=D\cap(-\infty,a).$

Определение 1. Пусть точка a — предельная для множества D_a^+ и существует предел функции f по множеству D_a^+ в точке a. Этот предел называют пределом справа функции f в точке a и обозначают $\lim_{x\to a+0} f(x)$. Аналогично определяется предел слева, который обозначают $\lim_{x\to a-0} f(x)$.

Теорема 2 (Вейерштрасс). Пусть f — не убывает и ограничена на множестве D, a — предельная точка множества D_a^- . Тогда существует предел слева

$$\lim_{x\to a-0} f(x) = \sup\{f(x) \colon x\in D_a^-\}.$$

 Π усть f — не убывает и ограничена на множестве D, a — предельная точка множества D_a^+ . Тогда существует предел справа

$$\lim_{x \to a+0} f(x) = \inf\{f(x) \colon x \in D_a^+\}.$$

Аналогичные утверждения с заменой inf на sup справедливы и для невозрастающей функции.

Доказательство. Пусть $M = \sup\{f(x) \colon x \in D_a^-\}$. Тогда для каждого $\varepsilon > 0$ найдется такая точка $x_0 \in D_a^-$, что $M - \varepsilon < f(x_0)$. Т.к. f не убывает на D_a^- , то для каждого $x \in (x_0, a)$ выполнено $M - \varepsilon < f(x_0) \le f(x) \le M < M + \varepsilon$. Тогда, взяв $\delta := a - x_0$ получаем, что для каждого $x \in B_\delta'(a) \cap D_a^-$ выполнено $|f(x) - M| < \varepsilon$.

2. НЕПРЕРЫВНЫЕ ФУНКЦИИ.

Определение 3. Функция $f: D \to \mathbb{R}$ непрерывна (по множеству D) в точке $a \in D$, если для каждого $\varepsilon > 0$ найдется такое $\delta > 0$, что для каждого $x \in D$, $|x - a| < \delta$, выполнено $|f(x) - f(a)| < \varepsilon$.

С помощью кванторов данное утверждение записывается в виде $\forall \varepsilon > 0 \ \exists \delta > 0 \colon \forall x \in D \ |x - a| < \delta \Rightarrow |f(x) - f(a)| < \varepsilon$.

Определение 4. Точка $a \in D$ называется изолированной точкой множества D если для некоторого $\delta > 0$ выполнено $B'_{\delta}(a) \cap D = \emptyset$.

Ясно, что точка $a \in D$ может быть либо изолированной, либо предельной точкой множества D.

Предложение 5. Пусть $f: D \to \mathbb{R}$, $a \in D$. Следующие утверждения равносильны:

- 1) функция f непрерывна в точке a (по множеству D);
- 2) для каждой последовательности точек $x_n \in D, x_n \to a,$ выполнено $f(x_n) \to f(a);$
- 3) либо точка a- изолированная точка множества D, либо a- предельная точка множества D и $\lim_{x\to a} f(x) = f(a)$.

Доказательство. Если точка a — изолированная, то для некоторого $\delta > 0$ выполнено $B'_{\delta}(a) \cap D = \emptyset$. Поэтому единственная точка $x \in D, |x-a| < \delta$, это точка a, а значит f всегда непрерывна в изолированной точке. Кроме того, если последовательность точек $x_n \in D$ сходится к изолированной точке a, то начиная с некоторого номера N выполнено $x_n = a$ при n > N.

Если a — предельная точка множества D, то $1) \Rightarrow 2$) обосновывается также, как в доказательстве эквивалентности опрделенией предела по Коши и по Гейне, $2) \Rightarrow 3$) следует из определения предела по Гейне, $3) \Rightarrow 1$) следует из определения предела по Коши и определения непрерывности.

Следующие свойства непрерывных функций следуют из свойств предела.

Предложение 6. Пусть функции f,g определены на некотором множестве $D \subset \mathbb{R}$ и непрерывны в некоторой точке $a \in D$. Тогда

- 1) $\alpha f + \beta g, f \cdot g$ непрерывны в точке a;
- 2) если $g(x) \neq 0$ при $x \in D$, то f/g непрерывна в точке a;
- 3) найдутся такие $\delta > 0$ и C > 0, что $|f(x)| \le C$ при каждом $x \in D \cap B_{\delta}(a)$; 4) если $f(a) \ne 0$, то найдется такое $\delta > 0$, что $|f(x)| > \frac{|f(a)|}{2}$ при $x \in D \cap B_{\delta}(a)$.

Предложение 7. Пусть $f: D \to K \subset \mathbb{R}$ и $g: K \to \mathbb{R}$, причем f непрерывна в точке $a \in D$ по множеству D, a q непрерывна в точке f(a) по множеству K. Тогда функция $q \circ f$ непрерывная в точке а по множеству D, где $q \circ f(x) := q(f(x))$.

Доказательство. Пусть $x_n \in D, x_n \to a$. Тогда $f(x_n) \to f(a), f(x_n) \in K$, и значит $g(f(x_n)) \to g(f(a)).$

Определение 8. Точка $a \in D$ называется точкой разрыва функции $f: D \to \mathbb{R}$, если f не является непрерывной в точке a.

Из определения следует, что точка разрыва это такая предельная точка множества D, что предел $\lim f(x)$ либо существует, но не совпадает с f(a) (такую точку называют точкой устранимого разрыва), либо вообще не существует. Во втором случае принято рассматривать наличие односторонних пределов. Предположим, что точка a оказалась предельной для множеств $D_a^- = D \cap (-\infty,a)$ и $D_a^+ = D \cap (a,+\infty)$. Если пределы функции f в точке a по множествам D_a^- и D_a^+ существуют, но различны, то точка a называется точкой разрыва первого рода. Если же хотя бы один из односторонних пределов не существует, то точка a называется точкой разрыва **второго** рода.

Пример 9. Пусть $f(x) = \sin \frac{1}{x}$. Тогда точка x = 0 — разрыв второго рода для функции f, $\exists a \partial a$ нной на всем множестве \mathbb{R} .

Предложение 10. Пусть f — монотонная на интервале (a,b) функция $(m.e.\ f)$ либо не убывает, либо не возрастает). Тогда f может иметь разрывы только первого рода на интервале (a,b).

Доказательство. Не ограничивая общности, считаем, что f не убывает. Пусть $x_0 \in (a,b)$. По теореме Вейерштрасса

$$\lim_{x \to x_0 - 0} f(x) = \sup_{x < x_0} f(x) \le f(x_0) \le \inf_{x > x_0} f(x) = \lim_{x \to x_0 + 0} f(x).$$

T.е. для точки разрыва x_0 односторонние пределы существуют по теореме Вейерштрасса.