

```
In []: # Load all the necessary libraries for the exploratory data analysis
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
    import plotly.express as px
    import warnings
    warnings.filterwarnings('ignore')

In [12]: # Load/Read actual data

data = pd.read_csv("C:/Users/VIVEK CHAUHAN/Desktop/electric_vehicle_analytics.csv")
data
```

]:	Vehicle_II) Make	Model	Year	Region	Vehicle_Type	Battery_Capacity_kWh	Battery_Health_%	Range_km	Charging_Power_I
	0	1 Nissan	Leaf	2021	Asia	SUV	101.7	75.5	565	15
	1	2 Nissan	Leaf	2020	Australia	Sedan	30.1	99.8	157	15
	2	3 Hyundai	Kona Electric	2021	North America	SUV	118.5	84.0	677	17
	3	4 Audi	Q4 e- tron	2022	Europe	Hatchback	33.1	97.3	149	16
	4	5 Tesla	Model 3	2022	Australia	Truck	81.3	85.6	481	21
	•••		•••		•••					
299)5 299	6 Mercedes	EQS	2021	North America	SUV	57.2	84.0	239	10
299	299	7 Ford	Mustang Mach-E	2022	Europe	Hatchback	98.4	83.1	498	16
299)7 299	8 Kia	Niro EV	2024	Europe	Truck	35.1	82.1	189	1
299	98 299	9 Mercedes	EQC	2015	North America	Truck	69.4	98.4	336	9
299	99 300	O Audi	Q4 e- tron	2023	North America	Hatchback	70.2	82.6	387	23
3000) rows × 25 c	olumns								
4										•

Data Analysis

Out[14]:		Vehicle_ID	Make	Model	Year	Region	Vehicle_Type	Battery_Capacity_kWh	Battery_Health_%	Range_km	Charging_Power_kW	•••
	0	1	Nissan	Leaf	2021	Asia	SUV	101.7	75.5	565	153.6	
	1	2	Nissan	Leaf	2020	Australia	Sedan	30.1	99.8	157	157.2	
	2	3	Hyundai	Kona Electric	2021	North America	SUV	118.5	84.0	677	173.6	
	3	4	Audi	Q4 e- tron	2022	Europe	Hatchback	33.1	97.3	149	169.3	
	4	5	Tesla	Model	2022	Australia	Truck	81.3	85.6	481	212.8	

5 rows × 25 columns

In [15]: # print last 5 data from the dataset

data.tail()

Out[15]:		Vehicle_ID	Make	Model	Year	Region	Vehicle_Type	Battery_Capacity_kWh	Battery_Health_%	Range_km	Charging_Power_k			
	2995	2996	Mercedes	EQS	2021	North America	SUV	57.2	84.0	239	102			
	2996	2997	Ford	Mustang Mach-E	2022	Europe	Hatchback	98.4	83.1	498	160			
	2997	2998	Kia	Niro EV	2024	Europe	Truck	35.1	82.1	189	18			
	2998	2999	Mercedes	EQC	2015	North America	Truck	69.4	98.4	336	92			
	2999	3000	Audi	Q4 e- tron	2023	North America	Hatchback	70.2	82.6	387	23%			
	5 rows	× 25 columi	ns											
	4										•			
In [16]:	# Print the all the columnn names from the dataset													
	data.columns													
Out[16]:	<pre>Index(['Vehicle_ID', 'Make', 'Model', 'Year', 'Region', 'Vehicle_Type',</pre>													
In [17]:	# Prin	nt the over	rall statis	stics from	n the	dataset								
	data.d	lescribe().	Т											

[17]:		count	mean	std	min	25%	50%	75%	max
	Vehicle_ID	3000.0	1500.500000	866.169729	1.00	750.7500	1500.500	2250.2500	3000.00
	Year	3000.0	2019.499667	2.848047	2015.00	2017.0000	2020.000	2022.0000	2024.00
	Battery_Capacity_kWh	3000.0	74.810100	25.734079	30.00	53.0000	74.850	96.9000	120.00
	Battery_Health_%	3000.0	85.030000	8.589526	70.00	77.7750	85.250	92.3000	100.00
	Range_km	3000.0	374.414667	137.184112	121.00	260.0000	371.000	476.2500	713.00
	Charging_Power_kW	3000.0	129.301000	68.742745	11.10	70.9000	126.700	187.9750	250.00
	Charging_Time_hr	3000.0	1.203570	1.421866	0.14	0.4600	0.720	1.2925	12.14
	Charge_Cycles	3000.0	1107.009667	510.834590	200.00	674.7500	1116.000	1535.2500	1997.00
	Energy_Consumption_kWh_per_100km	3000.0	18.589740	3.767421	12.00	15.3200	18.700	21.8300	24.99
	Mileage_km	3000.0	125209.685667	70465.774772	5046.00	65140.5000	125965.000	184764.7500	249987.00
	Avg_Speed_kmh	3000.0	65.674067	20.305364	30.00	48.0000	65.600	83.5250	100.00
	Max_Speed_kmh	3000.0	190.678333	35.184232	130.00	159.0000	191.500	222.0000	249.00
	Acceleration_0_100_kmh_sec	3000.0	6.707073	1.880355	3.50	5.0800	6.720	8.3100	10.00
	Temperature_C	3000.0	14.794133	14.407087	-10.00	2.4000	14.550	27.5000	40.00
	CO2_Saved_tons	3000.0	15.025163	8.455850	0.61	7.8175	15.115	22.1700	30.00
	Maintenance_Cost_USD	3000.0	1104.199000	521.530356	200.00	652.0000	1109.000	1569.0000	1999.00

In [18]: # Print all the information about the datasets

Insurance_Cost_USD

Electricity_Cost_USD_per_kWh 3000.0

Monthly_Charging_Cost_USD 3000.0

Resale_Value_USD 3000.0

3000.0

1495.469333

0.216467

418.814683

22257.038000

585.919978

312.389226

0.078383

500.00

0.08

7.99

5594.979382 8506.00 17813.0000

984.7500

175.4850

0.1500

1496.000

0.220

347.285

22154.000

2019.2500

0.2800

595.1525

26732.7500

2498.00

1643.70

35521.00

0.35

data.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 3000 entries, 0 to 2999 Data columns (total 25 columns): Column # Non-Null Count Dtype -----Vehicle ID 3000 non-null int64 1 Make 3000 non-null object 2 Model 3000 non-null object 3 Year 3000 non-null int64 4 3000 non-null object Region 3000 non-null 5 Vehicle Type object Battery Capacity kWh 3000 non-null float64 7 Battery Health % 3000 non-null float64 8 3000 non-null Range km int64 Charging Power kW 3000 non-null float64 10 Charging Time hr 3000 non-null float64 3000 non-null 11 Charge Cycles int64 12 Energy Consumption kWh per 100km 3000 non-null float64 13 Mileage km 3000 non-null int64 14 Avg Speed kmh 3000 non-null float64 15 Max Speed kmh 3000 non-null int64 16 Acceleration 0 100 kmh sec 3000 non-null float64 17 Temperature C 3000 non-null float64 18 Usage Type 3000 non-null object 19 CO2 Saved tons 3000 non-null float64 20 Maintenance Cost USD 3000 non-null int64 21 Insurance Cost USD 3000 non-null int64 22 Electricity Cost USD per kWh 3000 non-null float64 23 Monthly Charging Cost USD float64 3000 non-null 24 Resale Value USD int64 3000 non-null dtypes: float64(11), int64(9), object(5) memory usage: 586.1+ KB In [19]: # Print the shape of the data

Out[19]: (3000, 25)

data.shape

```
In [20]: # Print all the dtypes of the dataset
         data.dtypes
Out[20]: Vehicle ID
                                               int64
          Make
                                              object
         Model
                                              object
          Year
                                               int64
         Region
                                              object
         Vehicle Type
                                              object
         Battery Capacity kWh
                                             float64
         Battery Health %
                                             float64
         Range km
                                               int64
         Charging Power kW
                                             float64
         Charging Time hr
                                             float64
         Charge Cycles
                                               int64
         Energy Consumption kWh per 100km
                                             float64
         Mileage km
                                               int64
         Avg_Speed_kmh
                                             float64
         Max Speed kmh
                                               int64
         Acceleration 0 100 kmh sec
                                             float64
         Temperature C
                                             float64
                                              object
         Usage Type
         CO2 Saved tons
                                             float64
         Maintenance Cost USD
                                               int64
         Insurance Cost USD
                                               int64
         Electricity Cost USD per kWh
                                             float64
         Monthly Charging Cost USD
                                             float64
         Resale_Value_USD
                                               int64
         dtype: object
In [21]: # check is there any null values is present in our dataset or not
         data.isnull().sum()
```

```
Out[21]: Vehicle ID
          Make
          Model
          Year
         Region
         Vehicle Type
         Battery Capacity kWh
         Battery Health %
         Range km
         Charging Power kW
         Charging Time hr
         Charge Cycles
          Energy_Consumption_kWh_per_100km
         Mileage km
         Avg Speed kmh
         Max Speed kmh
         Acceleration 0 100 kmh sec
         Temperature C
         Usage Type
         CO2 Saved tons
         Maintenance Cost USD
         Insurance Cost USD
         Electricity Cost USD per kWh
         Monthly_Charging_Cost_USD
         Resale Value USD
         dtype: int64
In [22]: # check is there any duplicate values is present in our dataset or not
         data.duplicated().sum()
Out[22]: 0
```

Uni-Variate Analysis

```
In [24]: # Distribution of Battery Health
    plt.figure(figsize=(8,5))
    sns.histplot(data['Battery_Health_%'], kde=True, color="green")
```


The distribution of Battery Health (%) deviates from a normal bell-shaped curve, indicating possible skewness or irregular wear patterns across vehicles.

```
sns.histplot(data['Range_km'], kde=True, color="blue")
sns.rugplot(data['Range_km'], color="black")
plt.title("Distribution of Vehicle Range (km)")
plt.show()
```


The distribution of Vehicle Range is left-skewed, with higher frequencies on the lower end and a gradual decline towards longer ranges, suggesting most vehicles have shorter range capabilities.

```
In [28]: import plotly.express as px

fig = px.treemap(
    data,
    path=['Region','Vehicle_Type'],
    title="Vehicle Distribution by Region & Type",
    color='Vehicle_Type', # color by vehicle type
    color_discrete_sequence=px.colors.qualitative.Set1 # attractive color palette
)
fig.update_layout(margin=dict(t=50, l=25, r=25, b=25))
fig.show()
```

Vehicle Distribution by Region & Type

The treemap highlights regional vehicle trends: Hatchbacks are most prevalent in Asia and Australia, while SUVs dominate in North America, reflected by the larger tiles in these regions.

```
In [30]:
    data['Usage_Type'].value_counts().plot.pie(
        autopct="%1.1f%",
        figsize=(6,6),
        colors=sns.color_palette("tab10"),  # bold vibrant colors
        shadow=True,
        explode=[0.08,0.05,0.1,0.07][:data['Usage_Type'].nunique()],  # uneven explode for "noise" effect
        wedgeprops={'edgecolor':'black','linewidth':1.2}
)
    plt.title("Usage Type Distribution", fontsize=14, fontweight='bold')
    plt.ylabel("")
    plt.show()
```

Usage Type Distribution

The pie chart indicates that Personal usage constitutes the largest segment of the dataset, followed by Commercial and Fleet categories, highlighting the predominance of individual vehicle ownership over business or fleet operations.

Bi-Variate analysis

```
In [33]: # Battery Capacity vs Range
plt.figure(figsize=(8,6))
sns.scatterplot(x="Battery_Capacity_kWh", y="Range_km", hue="Vehicle_Type", size="Battery_Health_%", data=data)
plt.title("Battery Capacity vs Range (colored by Vehicle Type)")
plt.show()
```

Battery Capacity vs Range (colored by Vehicle Type) Vehicle Type 700 SUV Sedan Hatchback 600 Truck Battery_Health_% 70 500 100 300 200

60

100

40

The scatter plot demonstrates a positive relationship between Battery Capacity and Vehicle Range, indicating that vehicles with higher battery capacities generally achieve longer ranges.

100

120

80

Battery Capacity kWh

```
In [35]: # Charging Time by Vehicle Type
plt.figure(figsize=(10,6))
sns.boxplot(x="Vehicle_Type", y="Charging_Time_hr", data=data, palette="Set2")
plt.title("Charging Time across Vehicle Types")
plt.show()
```

Charging Time across Vehicle Types

The boxplot shows that Charging Time is relatively consistent across different Vehicle Types, with a similar range of variation observed in each category.

The bubble chart illustrates a positive relationship between Mileage and CO2 Saved, showing that vehicles with higher mileage tend to save more CO2. The lavender-colored points

indicate the regional distribution, highlighting concentration in specific regions.

Multi-Variate Analysis

```
In [40]: # Pairplot for performance metrics
sns.pairplot(data[["Range_km","Avg_Speed_kmh","Max_Speed_kmh","Acceleration_0_100_kmh_sec"]], diag_kind="kde")
plt.suptitle("Performance Metrics Pairplot", y=1.02)
plt.show()
```


The pairplot of performance metrics shows consistent relationships across Range, Average Speed, Maximum Speed, and Acceleration, indicating similar distribution patterns among the vehicles for these key performance indicators.

```
In [42]: # Parallel Coordinates for key cost factors
    from pandas.plotting import parallel_coordinates
    subset = data[["Usage_Type","Maintenance_Cost_USD","Insurance_Cost_USD","Monthly_Charging_Cost_USD"]].dropna()
    plt.figure(figsize=(12,6))
    parallel_coordinates(subset, class_column="Usage_Type", colormap=plt.get_cmap("Set2"))
    plt.title("Cost Comparison across Usage Types")
    plt.show()
```


The parallel coordinates plot indicates that Insurance Costs are generally higher than Maintenance Costs, while Monthly Charging Costs tend to decrease, highlighting the relative scale of key expenses across vehicles.

plt.title("Correlation Heatmap of EV Features")
plt.show()

Correlation Heatmap of EV Features - 1.0 Range_km -1.00 0.94 0.00 -0.01 -0.02 -0.01 - 0.8 Battery_Capacity_kWh -0.94 1.00 -0.01 -0.01 -0.02 -0.01 - 0.6 Charging Power kW --0.01 0.01 -0.01 0.01 0.00 1.00 Mileage km --0.01 -0.01 0.01 1.00 0.03 1.00 - 0.4 Battery Health % --0.02 -0.02 -0.01 1.00 0.03 - 0.2 CO2_Saved_tons --0.01 -0.01 0.01 1.00 0.03 1.00 - 0.0 CO2_Saved_tons -Range_km tery_Capacity_kWh harging_Power_kW Mileage_km Battery_Health_%

The correlation heatmap reveals a strong positive correlation (0.94) between Battery Capacity and Range, indicating that vehicles with larger batteries tend to achieve longer ranges. Other features show relatively weaker correlations.

```
In [46]: # Boxplot for Monthly Charging Cost by Usage Type
plt.figure(figsize=(10,6))
sns.boxplot(x="Usage_Type", y="Monthly_Charging_Cost_USD", data=data, palette="Set2")
plt.title("Monthly Charging Cost across Usage Types")
plt.show()
```

Monthly Charging Cost across Usage Types

The boxplot shows that Personal vehicles generally incur higher Monthly Charging Costs compared to Commercial and Fleet vehicles.

The violin plot indicates that Resale Values are fairly consistent across all regions, with similar distributions observed for each, suggesting limited regional variation in vehicle resale prices.

Advanced Analysis

The scatter plot with regression lines shows that Trucks exhibit a positive trend, where higher Range corresponds to higher Mileage, while other Vehicle Types display a slight decreasing trend.

The stacked bar plot shows that Australia has a higher count across most Vehicle Types compared to other regions, indicating a more diverse vehicle presence in that region.

The heatmap of average monthly charging costs shows that Commercial vehicles incur the highest cost with Hatchbacks (\approx 454), followed by Sedans, Trucks, and SUVs. For Fleet usage, Sedans show the highest cost (\approx 438). In Personal usage, Trucks have the highest cost (\approx 448), while Hatchbacks incur the lowest (\approx 425).

The jointplot shows that most vehicles have a Charging Time between 0 to 2 hours, and as Battery Capacity increases, the Charging Time also tends to rise.

The stripplot indicates that Insurance Costs are fairly similar in scale across regions such as Asia, Australia, North America, and Europe, with no major regional variations observed.

Insights

III Key Insights from Electric Vehicle Data Analysis

Battery & Range Insights

- Vehicles with **higher battery capacities achieve longer ranges**, showing a strong positive correlation (**0.94**).
- Battery Health (%) distribution is not bell-shaped, suggesting varying wear patterns.
- Trucks show a clear positive trend between range and mileage, while other vehicle types show a slight decline.

Vehicle Type & Regional Trends

- Australia leads with higher counts across almost all vehicle types.
- SUVs dominate in North America, while Hatchbacks dominate in Asia and Australia.
- Resale values are fairly consistent across regions, with no major differences.

Charging & Performance Insights

- Most vehicles complete charging in **0–2 hours**, with charging time increasing as battery capacity grows.
- Charging Time remains relatively uniform across vehicle types.
- Performance metrics (range, speed, acceleration) show similar scatter patterns, indicating comparable characteristics across models.

Usage Type Insights

- Personal usage dominates, followed by Commercial and Fleet vehicles.
- Personal vehicles incur higher monthly charging costs.
- Commercial Hatchbacks show the highest average charging cost (~454 USD).

• Fleet Sedans show the highest charging cost (~438 USD).

Cost & Efficiency Insights

- Insurance costs are higher than maintenance costs, while charging costs remain relatively lower.
- Insurance costs remain consistent across regions.
- Higher mileage leads to greater CO₂ savings, underlining the environmental impact of EVs.

Recommendations

Recommendations for Electric Vehicle Strategy

Battery & Range

- Invest in larger battery capacities to improve range, as capacity and range show a strong positive correlation.
- Focus on **battery health monitoring programs** to minimize performance drops and resale value impact.

Wehicle Type & Regional Focus

- Expand SUV offerings in North America, where demand is strong.
- Promote hatchbacks in Asia and Australia, aligning with consumer preferences.
- Maintain consistent resale strategies across regions, as resale values show minimal variation.

Charging & Infrastructure

- Develop **fast-charging solutions**, since most vehicles already charge within 0–2 hours, but higher-capacity batteries need faster support.
- Encourage standardized charging networks across regions to reduce variability in user experience.

Usage Patterns & Costs

- Design **personal-use focused EV models**, as personal vehicles dominate usage.
- Optimize charging costs for commercial fleets (especially hatchbacks and sedans) to attract business buyers.
- Offer insurance + maintenance bundles to provide cost predictability and attract cost-sensitive customers.

Strategic Outlook

- Highlight environmental benefits (CO₂ savings) in marketing to strengthen EV adoption.
- Leverage data-driven insights to tailor product portfolios region-wise and usage-wise.
- Continue analyzing **fleet vehicle costs** to identify opportunities for efficiency improvements.