

Demand Forecasting

Forecasts for Product Demand - Make Accurate Forecasts for Different Products Alunos:
Gilberto Filho

Wanderson Torres

AGENDA

O Problema

PREVISÃO DE DEMANDA COM BASE EM DADOS HISTÓRICOS

A empresa está em período de reformulação de estratégias e de práticas de como fazer a previsão de demanda de seus produtos. Atualmente, os dados históricos do ano anterior servem como previsão de demanda para o ano seguinte...

Melhorar o processo de previsão de demanda, pois o método atual é ultrapassado e gera perdas para a empresa.

A OPORTUNIDADE

O Dataset

Características:

- Frequência de Demanda: Diária;
- Séries temporais intermitentes: Sim, porém sem inclusão de zeros;
- Informações de hierarquias de negócio (código do produto, categorias de produto, centros de distribuição);
- Variáveis exógenas: Nenhuma.

→ Tamanho: 1.048.575 linhas x 5 colunas

→ Categoria de Produtos: 33

Produtos: 2160

Centros de Distribuição: 4

Análise Exploratória dos Dados (EDA)

Análise da Série Temporal (Produto 1359)

Gráfico Diário

Análise da Série Temporal (Produto 1359)

Decomposição da Série Temporal (Diário)

Teste de Estacionariedade (Diário)

Results of Dickey-Fuller Test:
Test Statistic -1.040075e+01
p-value 1.912366e-18
#Lags Used 2.500000e+01
Number of Observations Used 1.803200e+03
Critical Value (1%) -3.433982e+00
Critical Value (5%) -2.863144e+00
Critical Value (10%) -2.567624e+00
Strong evidence against the null hypothesis
Reject the null hypothesis
Data has no unit root and is stationary

Sazonalidade não identificada pela decomposição da série temporal do Produto 1359

Base Model

NAIVE

Previsão é o valor da última observação

MAE: 284522.63374

RMSE: 405853.3407

R2 SCORE: -1.42124

Modelos Clássicos

ARIMA

ORDEM (p, d, q): (3, 0, 2)

MAE: 156869.74047

RMSE: 242612.48257

R2 SCORE: 0.14856

A estacionariedade da série foi identificada em teste, por isso de fato estamos diante do modelo ARMA (d=0)

Sazonalidade x SARIMAX

Modelagem ML

RANDOM FOREST

+ Interpretável/Explicável

Trabalha melhor com dados escassos

Modelo mais leve (Consumo computacional)

Abordagem Diferente

Modelagem ML

Feature Engineering

LAGS [2, 4, 7, 15, 30, 60]

Interpretação do Modelo

Avaliação do Modelo

Resultados

Previsão de Demanda 2º Semestre 2016

MAE: 24012.1581

RMSE: 78467.2199

R2 SCORE: 0.93

Erros dos Modelos

Conclusão

<u>Trabalhamos com:</u>

- Data Cleaning, EDA, Séries Temporais, Modelos Estatísticos, Feature Engineering e Modelos de Machine Learning.
- Principais Ferramentas: Power Bl, Statsmodel, Scikitlearn, Pandas, Numpy, Pycaret.

Dificuldades:

Capacidade computacional

<u>Trabalhos Futuros:</u>

- Análises individuais de cada série temporal + Testes AutoML
- Cross-learning

Gilberto Filho

Wanderson Torres

https://www.linkedin.com/in/wanderson-torres -31049522/

