# Firewalls and Intrusion Detection Systems: Part 8

Gaurav S. Kasbekar

Dept. of Electrical Engineering

IIT Bombay

# NPTEL

## References

- J. Kurose, K. Ross, "Computer Networking: A Top Down Approach", Sixth Edition, Pearson Education, 2012
- B.L. Menezes, R. Kumar, "Cryptography, Network Security, and Cyber Laws", Cengage Learning India Pvt. Ltd., 2018
- C. Kaufman, R. Perlman, M. Speciner, "Network Security: Private Communication in a Public World", Pearson Education, 2nd edition, 2002

### **DDoS** Detection

- Egress filtering and DRF are preventive mechanisms
- Alternative approach: detect the onset of DoS and then take remedial action
- Recall:
  - TCP connection initiated by three-way handshake in which SYN, SYNACK, and ACK packets are sent
  - ☐TCP connection closed by each side by sending a FIN, which is ACKed by other side
- So for legitimate connections, a server receives SYN packets and FIN packets in pairs
- But in a SYN flood attack, the victim receives much larger number of SYN packets than FIN packets
- This fact can be used to detect SYN flood attack by a victim as we explain next

# DDoS Detection (contd.)

- Fig. shows two horizontal timelines:
  - ☐ top line shows the times of SYN packet arrivals
  - □ bottom line shows corresponding FIN arrivals
- Time is slotted into fixed-length "observation intervals":
  - $\Box T_1, T_2, T_3, ...$  on the SYN timeline, during which we record the number of SYN arrivals
  - $\Box T'_1, T'_2, T'_3$ , ... on the FIN timeline, during which we record the number of FIN arrivals
- The observation intervals for FINs are shifted to the right relative to those for SYNs by the average duration of a TCP

connection



- DDoS Detection (contd.)
   To construct an anomaly detection system, we define the following variables:
  - $\square S_i$ : no. of SYN packet arrivals in i'th observation interval
  - $\square F_i$ : no. of FIN packet arrivals in i'th observation interval

$$\square D_i = \frac{S_i - F_i}{F_i}$$

- $\square \mathcal{T}$ : threshold for detection
- Consider the time series:

$$\square D_1, D_2, D_3, \dots$$

 Next, we discuss various algorithms that attempt to detect onset of a SYN flooding attack by monitoring above series



### DDoS Detection (contd.)

#### • Algorithm 1:

- Raise an alert if the most recently computed decision variable  $D_i$  exceeds the threshold, i.e., if  $D_i > \mathcal{T}_1$
- Shortcomings of Algorithm 1:
- The IDS may raise many false alarms since it bases its decision on point values
  - E.g., at time =  $\frac{16}{10}$  in fig. (a), the value of  $D_i$  rises to  $\frac{102}{100}$ , triggering an alarm
  - O However, this alarm is unwarranted since the  $D_i$  values at neighboring points (around time = 16) are well below the threshold  $\mathcal{T}_1$
  - o A modest spike in  $D_i$  at just one point is unlikely to result in memory exhaustion, but it causes IDS to raise an alarm
- ☐ The IDS may fail to raise alarms when an attack occurs
  - o In fig. (a), the values of  $D_i$  between time 28 and 33 are just below the threshold  $\mathcal{T}_1$
  - Cumulative effect of the attack packets across the interval will result in memory exhaustion, but the algorithm does not raise an alarm



#### DDoS Detection (contd.)

#### Algorithm 2:

- $\square$  Raise an alert if the exponentially smoothed average of the values of  $D_i$  exceeds the threshold
- Let  $S_i = \alpha D_i + (1 \alpha) S_{i-1}$ , where  $\alpha \in (0,1)$ , e.g.,  $\alpha = 0.4$
- An alarm will be raised if  $S_i > T_2$ , where  $T_2$  is a threshold
- Value of  $\mathcal{T}_2$  set based on empirical data
  - ☐ If it is set too low (respectively, high), then will result in a lot of false positives (respectively, false negatives)
- Another design parameter is  $\alpha$ :
  - $\Box$  If it is too close to 1, it will give disproportionate importance to the most recent value of  $D_i$
  - $\Box$  The closer to zero it gets, the more even are the weights assigned to all values of  $D_i$



#### Algorithm 3:

- $\Box$  Define a modified cumulative sum of the previous values of  $D_i$
- Raise an alert if this value exceeds a threshold

- **DDoS Detection** (contd.)
- During normal operation, the number of FINs will balance the number of SYNs and hence  $D_i = \frac{S_i - F_i}{r}$  will be close to 0
- Let u be an upper bound on the mean of  $D_i$  during normal operations
- Let  $D'_i = D_i u$
- Let  $M_i = (M_{i-1} + D'_i)^+$ , with  $M_0 = 0$ ,
- The IDS sounds an alarm at the end of the j'th interval if  $M_i > T_3$ , where  $T_3$  is a threshold that is determined empirically
- Fig. (b) shows  $M_i$  versus time with  $T_3 = 150$
- Between time 2 and 6,  $D_i$  is slightly above u, so  $M_i$ increases monotonically
- Between time 7 and 12,  $D_i$  falls below u, so  $M_i$  decreases to 0 and remains there until time 12
- Between time 27 and 33,  $D_i$  is consistently above  $u_i$
- although it is below the threshold  $\mathcal{T}_1=90$ This causes  $M_i$  to increase and it overshoots the threshold of  $\mathcal{T}_3=150$ ; this causes an alarm to be raised
  - this is a true positive due to cumulative build-up of SYN attack packets
- Thus, false positive and false negative encountered with Algorithm 1 are both avoided with Algorithm 3

