FARE UN SENSORE DI INCLINAZIONE

CON L'ACCELEROMETRO

#R1AS09

- 1 cavo USB Micro-B
- 1 set di LED
- 1 Set di resistenze
- 1 Breadboard
- Fili del ponticello

OBIETTIVI DI APPRENDIMENTO

- Utilizzare un accelerometro leggendo il valore dell'accelerazione su ogni asse
- Reagire alle scosse con gli eventi
- Rilevare la situazione di caduta libera

FARE UN SENSORE DI INCLINAZIONE CON L'ACCELEROMETRO

L'accelerazione fa girare il mondo - letteralmente! È la forza che causa il movimento come un'auto che accelera lontano da un semaforo o un oggetto che cade a terra per gravità quando viene lasciato cadere.

Per scoprire il potenziale di questo sensore di movimento, scriveremo un sensore di inclinazione che accende un led quando l'accelerazione è troppo forte. Questo tipo di dispositivo è utile se si vuole evitare di barare sul classico vecchio **flipper**.

Risorsa: https://en.wikipedia.org/wiki/Pinball

L'accelerometro a 3 assi è già incorporato nella scheda, quindi non è necessario collegare nulla per utilizzarlo!

PASSO 1 - ASSEMBLAGGIO DEI COMPONENTI

Cablaggio di tre LED alla scheda

Utilizzando una breadboard, collegate tre semplici LED ai pin della scheda:

- LED verde al pin A0
- LED **blu** al pin A1
- LED rosso al pin A2

Collegare la scheda al computer

Con il tuo cavo USB, collega la scheda al tuo computer utilizzando il **connettore micro-USB ST-LINK** (nell'angolo destro della scheda). Se tutto va bene dovresti vedere un nuovo drive sul tuo computer chiamato **DIS_L4IOT**. Questo drive è usato per programmare la scheda semplicemente copiando un file binario.

Aprire MakeCode

Vai all'editor Let's STEAM MakeCode. Nella home page, crea un nuovo progetto cliccando sul pulsante "Nuovo progetto". Dai un nome al tuo progetto più espressivo di "Senza titolo" e lancia il tuo editor.

Risorsa: makecode.lets-steam.eu

Programma la tua scheda

All'interno del MakeCode Javascript Editor, copia/incolla il codice disponibile nella sezione Codice qui sotto. Se non è già stato fatto, pensa a dare un nome al tuo progetto e clicca sul pulsante "Scarica". Copia il file binario sul drive DIS_L4IOT, aspetta che la scheda finisca di lampeggiare e il tuo primo programma è pronto!

Eseguire, modificare, giocare

Il tuo programma verrà eseguito automaticamente ogni volta che lo salvi o resetti la tua scheda (premi il pulsante etichettato RESET). Cercate di capire l'esempio e iniziate a modificarlo cambiando le soglie per testare la sensibilità con cui dovete calibrare il vostro sensore di inclinazione. Per testare il vostro sensore di inclinazione, mettete la scheda su un tavolo e date un piccolo calcio al tavolo. Se il tuo led si accende, l'accelerazione del tuo calcio è abbastanza forte!

Cablaggio di tre LED sulla scheda

FARE UN SENSORE DI INCLINAZIONE CON L'ACCELEROMETRO

PASSO 2 - CODICE -

```
function turnOffLEDs() {
  pins.A0.digitalWrite(false) // Verde
  pins.A1.digitalWrite(false) // Blu
  pins.A2.digitalWrite(false) // Rosso
}
forever(function () {
  turnOffLEDs()
   // asse X: verde L
  if (Math.abs(input.acceleration(Dimension.X)) > 700)
     pins.A0.digitalWrite(true)
  // Asse Y: LED blu
  if (Math.abs(input.acceleration(Dimension.Y)) > 700)
     pins.A1.digitalWrite(true)
  // asse Z: LED rosso
  if (Math.abs(input.acceleration(Dimension.Z)) > 700)
     pins.A2.digitalWrite(true)
  pause(500)
})
```

Come funziona?

Il programma consiste nell'accendere un LED lungo l'asse sul quale viene rilevata l'accelerazione (-1g) dovuta alla gravità.

La forza g di un oggetto è la sua accelerazione relativa alla caduta libera. Sulla Terra, questo è 1g, o 9,8 metri al secondo quadrato (m/s^2). Gli astronauti sperimentano forze g insolitamente alte e basse. La forza G può essere vista anche sulle montagne russe. Quando le montagne russe scendono, si viene spinti indietro nel proprio sedile a causa della forza g.

Ecco la configurazione degli assi di accelerazione / colori LED:

- Asse X: LED verde
- Asse Y: LED blu
- Asse Z: LED rosso

Leggere il valore di accelerazione

Per leggere il valore dell'accelerazione, MakeCode fornisce la funzione acceleration(). Il valore è di default in mg. Usiamo la funzione valore assoluto abs() per ignorare la direzione dell'accelerazione. Per rilevare la condizione di "tilt", usiamo una soglia di 700mg. Per spegnere tutti e tre i LED contemporaneamente e migliorare l'espressività del nostro codice, definiamo una funzione turnOffLEDs().

Una funzione è un blocco di codice che esegue un compito specifico. Come una variabile, ha un nome da usare in molti punti del vostro programma. È molto utile per semplificare il codice e rendere un blocco di codice più espressivo dando un nome che spieghi il vostro intento.

FARE UN SENSORE DI INCLINAZIONE CON L'ACCELEROMETRO

PASSO 3 - MIGLIORARE -

Cosa succede se aumentate il tempo di pausa() all'interno del vostro ciclo? Come migliorate la reattività del vostro sensore di inclinazione?

Usando il valore dell'accelerazione della gravità (1g accelerazione Z-Axis orientata), potete determinare l'orientamento della vostra tavola (sul lato sinistro, sul lato inferiore, sul lato superiore, sul lato inferiore)?

Usando la conoscenza che quando un solido è in caduta libera, il valore dell'accelerazione diventa vicino a zero molto rapidamente, puoi modificare il programma per rilevare questa situazione?

How can you detect if the board is shaked?

ANDARE OLTRE

Accelerometro - Scopri i principi della fisica e le applicazioni dell'accelerometro. https://en.wikipedia.org/wiki/Accelerometer

Free Fall Detection Using 3-Axis Accelerometer

- Il metodo semplice per determinare il rilevamento della caduta libera con l'aiuto di un semplice accelerometro a 3 assi. https://www.hackster.io/RVLAD/free-fall-detection-using-3-axis-accelerometer-06383e

Level Platform Using Accelerometer - Utilizza un accelerometro per livellare una piattaforma. https://www.hackster.io/mtashiro/level-platform-using-accelerometer-80a343

Fogli di attività collegati

R1AS12 - Allarme di rilevamento del movimento

