Question 1. Define the predicates

P(n): For any set A, if |A| = n then $|\mathcal{P}(A)| = 2^n$

$$Q(A, n) \colon |A| = n \Longrightarrow |\mathcal{P}(A)| = 2^n$$

a) Prove $\forall n \in \mathbb{N}, P(n)$.

Proof. Base Case. To show P(0), consider any set A such that |A| = 0. Then $A = \emptyset$ and its only subset is \emptyset . Thus $|\mathcal{P}(A)| = 1 = 2^0$, verifying that P(0) is true.

Induction Step. Suppose P(k) holds for some $k \in \mathbb{N}$. Now P(k+1) will be proven to hold. Let A be a set such that |A| = k+1. k+1 is at least 1, so A possesses at least one element, which will be denoted as a.

Consider the set $A \setminus \{a\}$. Since $|A \setminus \{a\}| = k$, by the induction hypothesis,

$$|\mathcal{P}(A \setminus \{a\})| = 2^k$$

Notice that $\mathcal{P}(A \setminus \{a\})$ contains all the subsets of A that do not contain a. The remaining subsets must all contain a. The remaining subsets of A can be obtained by taking every individual element in $\mathcal{P}(A \setminus \{a\})$ and unioning it with $\{a\}$. Thus A contains twice as many subsets as $A \setminus \{a\}$. In mathematical terms,

$$|\mathcal{P}(A)| = 2 \cdot |\mathcal{P}(A \setminus \{a\})| = 2 \cdot 2^k = 2^{k+1}$$

It has been shown that P(k+1) holds.

By the principle of simple induction, $\forall n \in \mathbb{N}, P(n)$.

b) Prove that for every set $A, \forall n \in \mathbb{N}, Q(n)$.