

Formas Indeterminadas do Tipo 0/0

Supondo que f e g são duas funções reais de uma variável real, recordamos que :

1) Teorema 2.1, item 4:

Se
$$\lim_{x \to a} f(x) = L$$
 e $\lim_{x \to a} g(x) = M$ e se $M \neq 0$, então

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = \frac{L}{M}.$$

2) Teorema 2.5:

Se
$$\lim_{x\to a} f(x) = L$$
 e $\lim_{x\to a} g(x) = M$ e se $L \neq 0$ e $M = 0$, então

$$\lim_{x \to a} \left| \frac{f(x)}{g(x)} \right| = +\infty.$$

3) **Teorema 2.7**, item 4:

Se
$$\lim_{x \to \pm \infty} f(x) = L$$
 e $\lim_{x \to \pm \infty} g(x) = M$ e se $M \neq 0$ então

$$\lim_{x \to \pm \infty} \frac{f(x)}{g(x)} = \frac{\lim_{x \to \pm \infty} f(x)}{\lim_{x \to \pm \infty} g(x)} = \frac{L}{M}.$$

Sejam f e g duas funções reais de uma variável real. Suponha que \lim representa um dos limites:

$$\lim_{x\to a}$$
, $\lim_{x\to a^+}$, $\lim_{x\to a^-}$, $\lim_{x\to +\infty}$ ou $\lim_{x\to -\infty}$,

Se $\lim f(x) = 0$ e $\lim g(x) = 0$, então denomina-se o limite

$$\lim \frac{f(x)}{g(x)}$$

de forma indeterminada do tipo 0/0.

Será que é *possível calcular* o valor de uma forma indeterminda 0/0 ?

É possível e já fizemos isto quando estudamos limites. Vamos recordar 2 exemplos.

Exemplo 7.1 (Exemplo 2.8)

Calcular
$$\lim_{x\to 7} \frac{x^2-49}{x-7}$$
.

Calcular
$$\lim_{x \to 7} \frac{x^2 - 49}{x - 7}$$
.

Forma indeterminada 0/0
$$\begin{cases} \lim_{x \to 7} (x^2 - 49) = 0, \\ \lim_{x \to 7} (x - 7) = 0. \end{cases}$$

Solução:

Notamos, em primeiro lugar, que

Teorema 2.1, prop. 4
$$\lim_{x \to 7} \frac{x^2 - 49}{x - 7} \neq \frac{\lim_{x \to 7} (x^2 - 49)}{\lim_{x \to 7} (x - 7)} \text{ pois } \lim_{x \to 7} (x - 7) = 7 - 7 = 0.$$

Entretanto,

$$\frac{x^2 - 49}{x - 7} = \frac{(x - 7)(x + 7)}{x - 7} = x + 7 \text{ e, portanto}, f(x) = g(x) \text{ para todo}$$

 $x \in \mathbb{R}$, exceto em x = 7. Logo, usado o Teorema 2.2 concluímos que:

$$\lim_{x \to 7} \frac{x^2 - 49}{x - 7} = \lim_{x \to 7} (x + 7).$$

Finalmente, $\lim_{x\to 7} (x+7) = 14$ (Teorema 2.3).

Exemplo 7.1 (Exemplo 2.9)

Calcular
$$\lim_{x\to 0} \frac{\sqrt{4+x}-2}{x}$$
.

Calcular
$$\lim_{x\to 0} \frac{\sqrt{4+x}-2}{x}$$
. Forma indeterminada 0/0
$$\lim_{x\to 0} \sqrt{4+x}-2=0,$$
 Solução:

Solução:

Observamos que:

$$\frac{\sqrt{4+x}-2}{x} = \frac{\left(\sqrt{4+x}-2\right)\left(\sqrt{4+x}+2\right)}{x\left(\sqrt{4+x}+2\right)}$$

$$= \frac{\left(\sqrt{4+x}\right)^2 - 2^2}{x\left(\sqrt{4+x}+2\right)} = \frac{4+x-4}{x\left(\sqrt{4+x}+2\right)}$$

$$= \frac{x}{x\left(\sqrt{4+x}+2\right)} = \frac{1}{\sqrt{4+x}+2} \text{ para } x \neq 0.$$

Logo, pelo Teorema 2.2:

$$\lim_{x \to 0} \frac{\sqrt{4+x}-2}{x} = \lim_{x \to 0} \frac{1}{\sqrt{4+x}+2} = \frac{1}{4} \text{ (Teorema 2.1, prop. 4).}$$

cederi

Teorema 7.1 – Teorema de L'Hôpital para forma 0/0:

Sejamf e g duas funções reais de uma variável real.

Suponha que lim representa um dos limites:

$$\lim_{x\to a}$$
, $\lim_{x\to a^+}$, $\lim_{x\to a^-}$, $\lim_{x\to +\infty}$ ou $\lim_{x\to -\infty}$,

Se $\lim f(x) = 0$ e $\lim g(x) = 0$, se f e g são diferenciáveis e se

$$\lim \frac{f'(x)}{g'(x)}$$

tem um valor finito L ou se esse limite for $-\infty$ ou $+\infty$, então

$$\lim \frac{f(x)}{g(x)} = \lim \frac{f'(x)}{g'(x)}.$$

OBS: Guillaume François Antoine de L'Hôpital (1661-1704) – Matemático françês.

Calcular
$$\lim_{x\to 7} \frac{x^2-49}{x-7}$$
.

$$\begin{cases} \lim_{x \to 7} (x^2 - 49) = 0, \\ \lim_{x \to 7} (x - 7) = 0. \end{cases}$$

Solução:

Em primeiro lugar, vamos diferenciar o numerador e o denominador da expressão:

$$f(x) := x^2 - 49 \Rightarrow f'(x) = 2x$$
 e $g(x) := x - 7 \Rightarrow g'(x) = 1$.

Logo,

$$\lim_{x \to 7} f'(x) = \lim_{x \to 7} 2x = 2\lim_{x \to 7} x = 2(7) = 14 \quad \mathbf{e} \quad \lim_{x \to 7} g'(x) = \lim_{x \to 7} 1 = 1$$

portanto,

Teorem a 2.1, prop. 4
$$\lim_{x \to 7} \frac{f'(x)}{g'(x)} = \frac{\lim_{x \to 7} f'(x)}{\lim_{x \to 7} g'(x)} = \frac{14}{1},$$

e pelo Teorema de L'Hôpital

$$\lim_{x \to 7} \frac{x^2 - 49}{x - 7} = \lim_{x \to 7} \frac{2x}{1} = 14.$$

Calcular
$$\lim_{x\to 0} \frac{\sqrt{4+x}-2}{x}$$

$$\begin{cases}
\lim_{x \to 0} \sqrt{4 + x} - 2 = 0 \\
\lim_{x \to 0} x = 0.
\end{cases}$$

Solução:

Vamos diferenciar o numerador e o denominador da expressão:

$$f(x) := (4+x)^{\frac{1}{2}} - 2 \Rightarrow f'(x) = \frac{1}{2}(4+x)^{-\frac{1}{2}} \quad \mathbf{e} \quad g(x) := x \Rightarrow g'(x) = 1.$$

Logo,

$$\lim_{x \to 0} f'(x) = \lim_{x \to 0} \frac{1}{2\sqrt{4+x}} = \frac{1}{2} \lim_{x \to 0} \frac{1}{\sqrt{4+x}} = \frac{1}{2} \left(\frac{1}{\sqrt{4}}\right) = \frac{1}{4} \quad \mathbf{e} \quad \lim_{x \to 0} g'(x) = \lim_{x \to 0} 1 = 1$$
 portanto,

Teorema 2.1, prop. 4
$$\lim_{x \to 0} \frac{f'(x)}{g'(x)} = \frac{\lim_{x \to 0} f'(x)}{\lim_{x \to 0} g'(x)} = \frac{1}{4},$$

e pelo Teorema de L'Hôpital

$$\lim_{x \to 0} \frac{\sqrt{4+x} - 2}{x} = \lim_{x \to 0} \frac{\frac{1}{2\sqrt{4+x}}}{1} = \frac{1}{4}.$$

Formas Indeterminadas do Tipo ∞/∞

Notação simplificada:

$$\lim_{x \to a^{+}} f(x) = \infty \quad \text{significa} \quad \lim_{x \to a^{+}} f(x) = +\infty \quad \text{ou} \quad \lim_{x \to a^{+}} f(x) = -\infty$$

$$\lim_{x \to +\infty} f(x) = \infty \quad \text{significa} \quad \lim_{x \to +\infty} f(x) = +\infty \quad \text{ou} \quad \lim_{x \to +\infty} f(x) = -\infty$$

$$\lim_{x \to a} f(x) = \infty \quad \text{significa} \quad \lim_{x \to a} f(x) = \pm \infty \quad \text{e} \quad \lim_{x \to a} f(x) = \pm \infty$$

Sejam f e g duas funções reais de uma variável real. Suponha que \lim representa um dos limites:

$$\lim_{x\to a}$$
, $\lim_{x\to a^+}$, $\lim_{x\to a^-}$, $\lim_{x\to +\infty}$ ou $\lim_{x\to -\infty}$,

Se $\lim f(x) = \infty$ e $\lim g(x) = \infty$, então denomina-se o limite

$$\lim \frac{f(x)}{g(x)}$$

de forma indeterminada do tipo ∞/∞ .

Teorema 7.2 – Teorema de L'Hôpital para forma ∞/∞ :

Sejamf e g duas funções reais de uma variável real.

Suponha que lim representa um dos limites:

$$\lim_{x\to a}$$
, $\lim_{x\to a^+}$, $\lim_{x\to a^-}$, $\lim_{x\to +\infty}$ ou $\lim_{x\to -\infty}$,

Se $\lim f(x) = \infty$ e $\lim g(x) = \infty$, se f e g são diferenciáveis e se

$$\lim \frac{f'(x)}{g'(x)}$$

tem um valor finito L ou se esse limite for $-\infty$ ou $+\infty$, então

$$\lim \frac{f(x)}{g(x)} = \lim \frac{f'(x)}{g'(x)}.$$

Calcular
$$\lim_{x\to 0^+} \frac{1-\ln x}{e^{1/x}}$$
. Forma indeterminada ∞/∞
$$\begin{cases} \lim_{x\to 0^+} 1-\ln x = +\infty, \\ \lim_{x\to 0^+} e^{1/x} = +\infty. \end{cases}$$

Solução:

Diferenciando o numerador e o denominador da expressão obtemos:

$$f(x) := 1 - \ln x \Rightarrow f'(x) = -\frac{1}{x} \mathbf{e} \quad g(x) := e^{\frac{1}{x}} \Rightarrow g'(x) = -\frac{e^{\frac{1}{x}}}{x^2}.$$

Logo,

1)
$$\frac{f'(x)}{g'(x)} = \frac{-\frac{1}{x}}{-\frac{e^{\frac{1}{x}}}{x^2}} = \left(-\frac{1}{x}\right)\left(-\frac{x^2}{e^{\frac{1}{x}}}\right) = \frac{x}{e^{\frac{1}{x}}} = (x)\left(\frac{1}{e^{\frac{1}{x}}}\right),$$

2)
$$\lim_{x \to 0^+} x = 0$$
 e $\lim_{x \to 0^+} \frac{1}{e^{\frac{1}{x}}} = 0$,

portanto,

$$\lim_{x \to 0^{+}} \frac{f'(x)}{g'(x)} = \lim_{x \to 0^{+}} \left(x \frac{1}{e^{\frac{1}{2}}} \right) = \left(\lim_{x \to 0^{+}} x \right) \left(\lim_{x \to 0^{+}} \frac{1}{e^{\frac{1}{2}}} \right) = (0)(0) = 0,$$

Teorema 2.1, prop. 3

Do Teorema de L'Hôpital concluímos que:

$$\lim_{x \to 0^+} \frac{1 - \ln x}{e^{1/x}} = \lim_{x \to 0^+} \frac{f'(x)}{g'(x)} = 0. \quad \blacksquare$$

$$\begin{cases} \lim_{x \to +\infty} e^x = +\infty, \\ \lim_{x \to +\infty} x^2 = +\infty. \end{cases}$$

Solução:

Diferenciando o numerador e o denominador da expressão 2 vezes obtemos:

$$f(x) := e^x \Rightarrow f'(x) = f''(x) = e^x \quad \mathbf{e} \quad g(x) := x^2 \Rightarrow g'(x) = 2x \Rightarrow g''(x) = 2.$$

Logo,

$$\lim_{x\to +\infty} \frac{f'(x)}{g'(x)} = \lim_{x\to +\infty} \frac{e^x}{2x}$$
 é uma forma indeterminada ∞/∞ ,

porque $\lim_{x \to +\infty} e^x = +\infty$ e $\lim_{x \to +\infty} 2x = +\infty$, e portanto, pelo Teorema 7.2,

$$\lim_{x\to +\infty} \frac{f'(x)}{g'(x)} = \lim_{x\to +\infty} \frac{f''(x)}{g''(x)} = \lim_{x\to +\infty} \frac{e^x}{2} = +\infty.$$

Aplicando o Teorema 7.2 novamente concluímos que:

$$\lim_{x \to +\infty} \frac{e^x}{x^2} =: \lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)} = +\infty. \quad \blacksquare$$

Formas Indeterminadas do Tipo 0.∞

Notação simplificada:

$$\lim_{\substack{x \to a^+ \\ x \to a^-}} f(x) = \infty \quad \text{significa} \quad \lim_{\substack{x \to a^+ \\ x \to +\infty}} f(x) = +\infty \quad \text{ou} \quad \lim_{\substack{x \to a^+ \\ x \to +\infty}} f(x) = -\infty$$

$$\lim_{\substack{x \to a \\ x \to a}} f(x) = \infty \quad \text{significa} \quad \lim_{\substack{x \to +\infty \\ x \to a}} f(x) = \pm\infty \quad \text{e} \quad \lim_{\substack{x \to a \\ x \to a}} f(x) = \pm\infty$$

Sejam $f \in g$ duas funções reais de uma variável real. Suponha que \lim representa um dos limites:

$$\lim_{x\to a}$$
, $\lim_{x\to a^+}$, $\lim_{x\to a^-}$, $\lim_{x\to +\infty}$ ou $\lim_{x\to -\infty}$,

Se $\lim f(x) = 0$ e $\lim g(x) = \infty$, então denomina-se o limite

$$\lim [f(x)g(x)]$$

de forma indeterminada do tipo 0.∞

OBS: Sejam $f \in g$ duas funções reais de uma variável real. Suponha que \lim representa um dos limites:

$$\lim_{x\to a}$$
, $\lim_{x\to a^+}$, $\lim_{x\to a^-}$, $\lim_{x\to +\infty}$ **OU** $\lim_{x\to -\infty}$,

Se $\lim f(x) = a$, sendo a um número diferente de zero, e $\lim g(x) = \infty$ então

$$\lim \left[f(x)g(x) \right] = \infty.$$

(Rever o último exemplo apresentado.)

Procedimento para calcular formas indeterminadas do tipo $0 \cdot \infty$:

reescrever a expressão f(x)g(x) como

$$\frac{g(x)}{1/f(x)}$$
 ou $\frac{f(x)}{1/g(x)}$,

o que conduz a forma indeterminada do tipo 0/0 ou ∞/∞ , conforme seja mais conveniente.

Calcular
$$\lim_{x\to 0^+} x^2 \ln x$$
.

Calcular
$$\lim_{x\to 0^+} x^2 \ln x$$
. Forma indeterminada $\infty \cdot 0$
$$\begin{cases} \lim_{x\to 0^+} x^2 = 0, \\ \lim_{x\to 0^+} \ln x = -\infty. \end{cases}$$
 olução:

Solução:

Notamos que:

para todo
$$x \ge 0$$
, $x^2 \ln x = \frac{\ln x}{x^{-2}} \Rightarrow \lim_{x \to 0^+} x^2 \ln x = \lim_{x \to 0^+} \frac{\ln x}{x^{-2}}$.

Por outro lado $\lim_{x\to 0^+} \frac{\ln x}{x^{-2}}$ é uma forma indeterminada do tipo ∞/∞ , um vez que

$$\lim_{x\to 0^+} \ln x = -\infty \text{ e } \lim_{x\to 0^+} \frac{1}{x^2} = +\infty.$$

Além disso, como para todo x > 0, $D_x \left[\ln x \right] = \frac{1}{y}$ e $D_x \left[x^{-2} \right] = -2x^{-3}$ concluímos que

$$\lim_{x \to 0^{+}} \frac{D_{x} \left[\ln x \right]}{D_{x} \left[x^{-2} \right]} = \lim_{x \to 0^{+}} \frac{x^{-1}}{-2x^{-3}} = -\frac{1}{2} \lim_{x \to 0^{+}} x^{-1+3} = -\frac{1}{2} \lim_{x \to 0^{+}} x^{2} = 0.$$

Logo, aplicando o Teorema de L'Hôpital (Teorema 7.2) podemos afirmar que

$$\lim_{x \to 0^+} \frac{\ln x}{x^{-2}} = \lim_{x \to 0^+} \frac{D_x [\ln x]}{D_x [x^{-2}]} = 0.$$

Formas Indeterminadas do Tipo $\infty - \infty$

Sejam f e g duas funções reais de uma variável real. Suponha que $\underline{\lim}$ representa um dos limites:

$$\lim_{x\to a}$$
, $\lim_{x\to a^+}$, $\lim_{x\to a^-}$, $\lim_{x\to +\infty}$ ou $\lim_{x\to -\infty}$.

1) Se
$$\lim f(x) = +\infty$$
 e $\lim g(x) = +\infty$ ou

se
$$\lim f(x) = -\infty$$
 e $\lim g(x) = -\infty$ então denomina-se o limite
$$\lim [f(x) - g(x)]$$

de forma indeterminada do tipo $\infty - \infty$.

2) Se
$$\lim f(x) = +\infty$$
 e $\lim g(x) = -\infty$ ou

se
$$\lim f(x) = -\infty$$
 e $\lim g(x) = +\infty$ então denomina-se o limite
$$\lim [f(x) + g(x)]$$

também de forma indeterminada do tipo $\infty - \infty$.

OBS: Sejam $f \in g$ duas funções reais de uma variável real. Suponha que \lim representa um dos limites:

$$\lim_{x\to a}$$
, $\lim_{x\to a^+}$, $\lim_{x\to a^-}$, $\lim_{x\to +\infty}$ ou $\lim_{x\to -\infty}$.

- 1) Se $\lim f(x) = +\infty$ e $\lim g(x) = +\infty$, então $\lim [f(x) + g(x)] = +\infty$.
- 2) Se $\lim f(x) = -\infty$ e $\lim g(x) = -\infty$, então $\lim [f(x) + g(x)] = -\infty$.
- 3) Se $\lim f(x) = +\infty$ e $\lim g(x) = -\infty$, então $\lim [f(x) g(x)] = +\infty$.
- 4) Se $\lim f(x) = -\infty$ e $\lim g(x) = +\infty$, então $\lim [f(x) g(x)] = -\infty$.

Procedimento para calcular formas indeterminadas do tipo $\infty - \infty$:

tentar reescrever a expressão $f(x) \pm g(x)$ visando produzir uma forma indeterminada do tipo 0/0 ou ∞/∞ .

Calcular
$$\lim_{x \to 0^+} \left(\csc x - \frac{1}{x} \right)$$
Forma indeterminada $\infty - \infty$

$$\begin{cases} \lim_{x \to 0^+} \csc = \infty, \\ \lim_{x \to 0^+} \frac{1}{x} = \infty. \end{cases}$$

$$\lim_{x \to 0^+} \csc = \infty,$$

$$\lim_{x \to 0^+} \frac{1}{x} = \infty.$$

Solução:

Notamos que para todo x > 0, esc $x = \frac{1}{1}$ e

$$\csc x - \frac{1}{x} = \frac{1}{\sec x} - \frac{1}{x} = \frac{x - \sec x}{x \sec x} \implies \lim_{x \to 0^+} \left(\csc x - \frac{1}{x} \right) = \lim_{x \to 0^+} \left(\frac{x - \sec x}{x \sec x} \right).$$

 $\lim_{x\to 0^+} \left(\frac{x - \sin x}{x \sin x} \right)$ também é uma forma indeterminada do tipo 0/0, uma vez que

$$\lim_{x\to 0^+} (x - \sec x) = 0$$
 e $\lim_{x\to 0^+} x \sec x = 0$.

Para todo x > 0, $D_x[x - \sin x] = 1 - \cos x$ e $D_x[x \sin x] = \sin x + x \cos x$ e portanto

$$\lim_{x \to 0^+} \frac{D_x \left[x - \operatorname{sen} x \right]}{D_x \left[x \operatorname{sen} x \right]} = \lim_{x \to 0^+} \frac{1 - \cos x}{\operatorname{sen} x + x \cos x}$$

é uma uma forma indeterminada do tipo 0/0, pois

$$\lim_{x \to 0^+} (1 - \cos x) = 0 \quad \text{e} \quad \lim_{x \to 0^+} (\sin x + x \cos x) = 0.$$

Por outro lado, como para todo x > 0, $D_x[1 - \cos x] = \sin x$ e

$$\lim_{x \to 0^+} \frac{D_x \left[1 - \cos x \right]}{D_x \left[\sec x + x \cos x \right]} = \lim_{x \to 0^+} \frac{\sec x}{2\cos x - x \sec x} = 0$$

uma vez que $\lim_{x\to 0^+} \operatorname{sen} x = 0$ e

$$\lim_{x \to 0^+} (2\cos x - x \sin x) = 2 \lim_{x \to 0^+} \cos x - \left(\lim_{x \to 0^+} x\right) \left(\lim_{x \to 0^+} \sec x\right) = 2.$$

Logo, aplicando 2 vezes o Teorema de L'Hôpital (Teorema 7.2) concluimos que

$$\lim_{x \to 0^+} \left(\csc x - \frac{1}{x} \right) = \lim_{x \to 0^+} \left(\frac{x - \sec x}{x \sec x} \right) = \lim_{x \to 0^+} \frac{1 - \cos x}{\sec x + x \cos x} = \lim_{x \to 0^+} \frac{\sec x}{2 \cos x - x \sec x} = 0.$$

ceder

Formas Indeterminadas do Tipo 0^0 , ∞^0 e 1^∞

Sejamf e g duas funções reais de uma variável real. Suponha que \lim representa um dos limites:

$$\lim_{x\to a}$$
, $\lim_{x\to a^+}$, $\lim_{x\to a^-}$, $\lim_{x\to +\infty}$ ou $\lim_{x\to -\infty}$.

1) Se $\lim f(x) = 0$ e $\lim g(x) = 0$ então denomina-se o limite

$$\lim f(x)^{g(x)}$$

de forma indeterminada do tipo 0^0 .

2) Se $\lim f(x) = \pm \infty$ e $\lim g(x) = 0$ então denomina-se o limite

$$\lim f(x)^{g(x)}$$

de forma indeterminada do tipo ∞^0 .

3) Se $\lim f(x) = 1$ e $\lim g(x) = \pm \infty$ então denomina-se o limite

$$\lim f(x)^{g(x)}$$

de forma indeterminada do tipo 1^{∞} .

Procedimento para calcular formas indeterminadas do tipo 0^0 , ∞^0 e 1^∞ :

 $\operatorname{se} f(x) > 0$, para todo x em um intervalo apropriado para cada caso, então

- 1) calculamos o limite $\lim [g(x) \ln f(x)]$
- 2) se este limite existir, isto é, se o limite $\lim [g(x) \ln f(x)] = L$ no qual L é um número real, então

$$\lim f(x)^{g(x)} = e^{I}.$$

OBS:

Sejam f e g duas funções reais de uma variável real. Quando f(x) > 0, por definição (ver função exponencial com base diferente de e),

$$f(x)^{g(x)} := e^{g(x)\ln f(x)} \quad \Rightarrow \quad \lim f(x)^{g(x)} = \lim e^{g(x)\ln f(x)} = e^{\lim[g(x)\ln f(x)]}$$

sendo a última igualdade verdadeira se $\lim [g(x) \ln f(x)]$ existir.

Calcular
$$\lim_{x\to 0^+} (\csc x)^{\sec x}$$
.

Calcular
$$\lim_{x\to 0^+} (\csc x)^{\sec x}$$
. Forma indeterminada ∞^0
$$\begin{cases} \lim_{x\to 0^+} \csc = \infty, \\ \lim_{x\to 0^+} \sec x = 0. \end{cases}$$
 Solução:

$$\begin{cases} \lim_{x \to 0^+} \csc = \infty, \\ \lim_{x \to 0^+} \sec x = 0. \end{cases}$$

Solução:

Notamos que para todo
$$x > 0$$
, esc $x = \frac{1}{\sin x}$ e portanto

$$\left(\csc x\right)^{\operatorname{sen} x} = \left(\frac{1}{\operatorname{sen} x}\right)^{\operatorname{sen} x} \implies \lim_{x \to 0^{+}} \left(\csc x\right)^{\operatorname{sen} x} = \lim_{x \to 0^{+}} \left(\frac{1}{\operatorname{sen} x}\right)^{\operatorname{sen} x}.$$

Vamos calcular o limite $\lim_{x\to 0^+} \left[\operatorname{sen} x \ln \left(\frac{1}{\operatorname{sen} x} \right) \right]$. Em primeiro lugar observamos que:

$$\ln\left(\frac{1}{\operatorname{sen} x}\right) = \ln 1 - \ln \operatorname{sen} x = 0 - \ln \operatorname{sen} x \Rightarrow \lim_{x \to 0^+} \left[\operatorname{sen} x \ln\left(\frac{1}{\operatorname{sen} x}\right)\right] = \lim_{x \to 0^+} \left(-\operatorname{sen} x \ln \operatorname{sen} x\right).$$

Mas:

$$-\lim_{x\to 0^+} \sec x = 0$$
 e $\lim_{x\to 0^+} (\ln \sec x) = \ln (\lim_{x\to 0^+} \sec x) = -\infty$

ou seja, $\lim_{x\to 0^+} (-\sin x \ln \sin x)$ é uma forma indeterminada do tipo $0\cdot \infty$.

Vamos reescrever a example -sen x ln sen x da seguinte forma:
$$\frac{-\ln \text{sen } x}{\underline{1}}$$
.

Logo
$$\lim_{x\to 0^+} (-\sin x \ln \sin x) = \lim_{x\to 0^+} \frac{-\ln \sin x}{\frac{1}{\sin x}}$$
, sendo este último limite uma forma

indeterminada do tipo ∞/∞ . Por outro lado, como para todo x > 0,

$$D_x \left[-\ln \operatorname{sen} x \right] = -\frac{\cos x}{\operatorname{sen} x} e D_x \left[\frac{1}{\operatorname{sen} x} \right] = -\frac{\cos x}{\left(\operatorname{sen} x \right)^2}, \text{ portanto}$$

$$\lim_{x \to 0^+} \frac{D_x \left[-\ln \operatorname{sen} x \right]}{D_x \left[\frac{1}{\operatorname{sen} x} \right]} = \lim_{x \to 0^+} \left(-\frac{\cos x}{\operatorname{sen} x} \right) \left[-\frac{\left(\operatorname{sen} x \right)^2}{\cos x} \right] = \lim_{x \to 0^+} \operatorname{sen} x = 0.$$

Logo, aplicando o Teorema de L'Hôpital (Teorema 7.2) concluimos que

$$\lim_{x \to 0^{+}} \left[\operatorname{sen} x \ln \left(\frac{1}{\operatorname{sen} x} \right) \right] = \lim_{x \to 0^{+}} \left(-\operatorname{sen} x \ln \operatorname{sen} x \right) = \lim_{x \to 0^{+}} \frac{-\ln \operatorname{sen} x}{\frac{1}{\operatorname{sen} x}} = \lim_{x \to 0^{+}} \frac{D_{x} \left[-\ln \operatorname{sen} x \right]}{D_{x} \left[\frac{1}{\operatorname{sen} x} \right]} = 0.$$

Teorema de L'Hôpital

cederi

 $\operatorname{sen} x$

Finalmente, uma
$$\lim_{x\to 0^+} \left[\operatorname{sen} x \ln \left(\frac{1}{\operatorname{sen} x} \right) \right] = 0,$$

$$\lim_{x\to 0^+} \left(\csc x\right)^{\operatorname{sen} x} = \lim_{x\to 0^+} \left(\frac{1}{\operatorname{sen} x}\right)^{\operatorname{sen} x} = e^{\lim_{x\to 0^+} \left[\operatorname{sen} x \ln\left(\frac{1}{\operatorname{sen} x}\right)\right]} = e^0 = 1.$$

Resumo

· Formas Indeterminadas:

Tipo 0/0;

Tipo ∞/∞ ;

Tipo 0⋅∞;

Tipo $\infty - \infty$;

Tipo $0^{\infty}, \infty^0$ e 1^{∞} .