

Introduction to IC

Instructor: NCTU

Outline

■ Introduction to Integrated Circuits (IC or Chip)

Chip Everywhere!

Wafer & Die & Packaging

Assembly/Packaging

Wafer

Integrated Circuits (ICs)

Modern System Engineering

IC Design History

In 1970's

- The layout was the design
- IC design was an ART
- No simulation, no verification

In 1980's

- Technology CMOS 2.0~1.0
- Design complexity 30K~400K transistors
- Daisy, DEC (2MB RAM, .5GB HD, 1MIPS)
- Logic simulation, Verification, CAD layout
- ASICs

In 1990's

- Technology CMOS 1.0~0.18
- Design complexity 400K~10M gates
- SUN Sparc, Pentium4 (4GB-16GB, 1 Terabyte HD)
- Synthesis, P&R
- ASICs, Processors, Embedded software, FPGA

In 2000's

Evolution of Microelectronics

- Today's Silicon process technology
 - 0.13μm CMOS
 - ~100 M of devices, 3GHz internal clock
- Yesterday's chips are today's function blocks

MOS (Metal Oxide Semiconductor)

- 小量的正電荷順著銘接頭進入電晶體,這些正電荷被導入由絕緣的二氧化矽包圍的複合矽導體。一般的砂子裡,就有很多這種複合矽導體,加州的矽谷也正因此而24名。
- 2 電晶體的底層是一大片 P 型矽膠,及兩小塊分離的 N 型矽膠;複合矽導體裡的正電荷,會吸引同為正極的 P 型矽膠負電荷。
- 3 P型矽膠裡的負電荷被複合矽導體裡的正電荷吸住時,所產生的電子真空狀態,由另一個稱為源極的導體引入電荷,這些電荷除了填補 P型矽膠的電子真空之外,還會流向另一端稱為漏極的導體,形成一個電路,也就是把電品體打開,代表一個 1 位元。如果把負電荷導入複合砂導體,來自源極的電荷就無法進入,因此電品體就是在腦的狀態。

電晶體構成晶片

薄薄的砂片裡,有數以干計的電晶體,外層以 塑膠或陶磁材料包裝,以接腳和外界連結。經 由接腳,外界的訊號流入晶片,內部的訊號也 經由接腳送給電腦的其他組件。

N-channel Metal-Oxide-Semiconductor

NMOS

- Gate poly
- Source, Drain n-type
- Substrate p-type
- Carrier electrons

MOS電晶體示意圖

SOC相關技術

- ■製程技術 (Process Technology)
- ■設計 (Design)
- ■測試 (Testing)
- ■封裝 (Packaging)
- ■輔助設計工具 (Electronic Design Automation, EDA tools)

VLSI-related Topics

VLSI design

Designs of layouts, circuits, logic gates, architectures, or behaviors

VLSI technology

Process technology of fabricating transistors in VLSI chips (UMC, TSMC)

VLSI testing

1/3 of total costs, design for testability

VLSI CAD

All the related EDA (electronic design automation) tools during VLSI designs

Feature Technology and Size

When compared to the 0.18-micron process, the new 0.13-micron process results in less than 60 percent the die size and nearly 70 percent improvement in performance

The 90-nm process will be manufactured on 300mm wafers

NEC devises low-k film for second-generation 65-nm process

IC設計與晶圓代工

IC Fabrication

Sawing a Wafer into Chips

IC and Die

Constructing Gates

Ground

- A transistor has three terminals
 - A source (feed with 5 volts)
 - A base
 - An emitter, typically connected to a ground wire
- If the base signal is high (close to +5 volts), the source signal is grounded and the output signal is low (0). If the base signal is low (close to 0 volts), the source signal stays high and the output signal is high (1)

Constructing Gates

It turns out that, because the way a transistor works, the easiest gates to create are the NOT, NAND, and NOR gates

	$\mathbf{V_1} \; \mathbf{V_2} \; \mathbf{V_{out}}$	$\mathbf{V_1} \ \mathbf{V_2} \ \mathbf{V_{out}}$
$\mathbf{V_{in}} \ \mathbf{V_{out}}$	0 0 1	0 0 1
0 1	0 1 1	0 1 0
1 0	1 0 1	1 0 0
	1 1 0	1 1 0

0.8µm CMOS

Technology:	$0.8 \mu \mathbf{m}$	$0.18 \mu m$	$0.07 \mu \mathbf{m}$
# of Metal layers:	2~3	6	8-9
G.W. Aspect ratio (t/w):	~0.8	~1.8	~2.7
Wire length(m/chip):	~130	~1,480	~10,000

0.18µm CMOS

Interconnects Start to Dominates Cost and Performance

Interconnect starts to be main design constraints

Source: L.-R. Zheng, KTH

Moore's Law in Action

Example:

Intel Pentium 4 microprocessor evolution

- 0.18 micro technology
 - 42M transistors
 - Die size: 217 mm²

- 55M transistors
- Die size: 146 mm²

Source: Intel

Snapshot

■ 30mm wafer and Pentium 4TM

製程技術演進與預測

Expectation By SRC Roadmap

Year of first DRAM shipment	1995	1998	2001	2004	2007	2010
Minimum feature of size (mm)	0.35	0.25	0.18	0.13	0.10	0.07
Memory in bits/chip (DRAM/FLASH)	64M	256M	1G	4G	16G	64G
Microprocessor transistor per chip (2.3 times per generation)	12M	28M	64M	150M	350M	800M
ASIC (gate per chip)	5M	14M	26M	50M	210M	430M
Chip frequency (MHz) for a high-performance on-chip clock	300	450	600	800	1,000	1,100
Maximum number of wiring levels (logic), on chip	4-5	5	5-6	6	6-7	7-8
Power supply voltage (V) for desktop	3.3	2.5	1.8	1.5	1.2	0.9
Maximum power for high performance with heat sink (W)	80	100	120	140	160	180

Source: SIA (Semiconductor Industry Association) road map

System Development Flow

Marketing

Routing

IC Designers

Who	What to do		
System Design Engineer	Specification Definition		
ASIC Design Engineer	Behavioral Design and Simulation		
IP Design Engineer Circuit Design Engineer	Register Transfer Level (RTL) Design, Simulation and Testing		
CAD Engineer Test Engineer	Gate/Switch/Circuit Level Design, Simulation and Testing		
IC Layout Engineer	Physical Layout Layout Verification Post-layout Verification (Simulation)		

SoC: System on Chip

System

A collection of all kinds of components and/or subsystems that are appropriately interconnected to perform the specified functions for end users.

- A SoC design is a "product creation process" which
 - Starts at identifying the end-user needs (or system)
 - Hardware
 - Software
 - Ends at delivering a product with enough functional satisfaction to overcome the payment from the end-user

SoC Evolution

What is SoC in your mind?

Definition: integration of a complete system onto a single IC

SoC Architecture

SOC is industry trend

System-Board

IP/System-Board

Tomorrow

Integration

SOC

Example: Mobile Phone

Yesterday

- Voice only; 2 processors
- 4 year product life cycle
- Short talk time

Today

Single Chip

- 5~8 Processors
- Memory
- Graphics
- Bluetooth
- GPS
- Radio
- WLAN

- Voice, data, video, SMS
- <12 month product life cycle</p>
- Lower power; longer talk time

Cystems

Source: EI-SONICS

VLSI Applications

- Microprocessors or microcontroller
 - Pentium, ARM, DSP processors
- Memory
 - DRAM, SRAM, ROM, ..
- Special purpose processors
 - Audio, image or video compression
 - Image: JPEG, JPEG2000
 - Video: MPEG1,2,4,7, H.26x
 - Audio: MP3, AC3,
 - Communication (wired or wireless)
- Information Appliance (IA)

