Pairs Trading Strategies the Optimization in Decision-making Processes

Hungwei Chang Jiaxin Li Tianpei Zhu Xiaohan Cheng Yanlin Chen Yuanhang Zhao

Duke University

April 30, 2021

- Introduction
- Stage Optimization
 - Pairs Selection
 - Hedge Ratio & Spread Calculation
 - Risk Management and Optimization
 - Risk Management
 - Risk Management
 - Optimization
 - Sub Strategy
 - Live Trading

Introduction

Summary

Pairs Trading Strategy

- Pairs Selection
- Parameters Calculation
- Risk Management
- Performance
- Sub Strategy Hedge Macro Risks
- O Data
 - S&P Components
 - ETFs
 - China Concept Shares

Pair Selection

- PCA&Clustering
 Find the clusters in the Ticker set.
- 2. Filtered by Criteria

Correlation
Cointegration
Hurst
Fundamental Data

Parameters

- 1. OLS
- 2. Kalman Filter Get the **DYNAMIC** Hedge Ratio.

Risk Management

- 1. Margin Constraits
- 2. Stop-loss Limit 3. VaR

Performance

- 1. Sharpe Ratio
- 2. Total Return
- 3. Max Drawdown

Pairs Selection - PCA & Clustering

DBSCAN

Figure: Clustering Result by DBSCN

Pairs Selection - Clustering Methodologies

OPTICS

Figure: Clustering Result by OPTICS

Pairs Selection - Clustering Methodologies

OPTICS

Figure: Clusters

Pairs Selection - Other Criteria

Correlation

Pairs	Correlaition
DHR, TMO	0.994439
DNB, MHP	0.992253
CMS, WPH	0.984816
AEE, CMS	0.976660
ESS, UDR	0.975056

Table: Ranked by Correlation

Cointegration

Pairs	P-Value
MCHP, MXIM	0.000904
CHV, XON	0.002567
ALK, LUV	0.004910
DHR, TMO	0.007147
P, XON	0.007320

Pairs Selection - Other Criteria

Hurst Exponent

Hurst Exponent	Time Series
H = 0.5	random walk
H < 0.5	mean reversion
<i>H</i> > 0.5	persistent trend

Table: Hurst Exponent Criterion

Filter out pairs for which the half-life takes extreme values: less than one day or more than one year.

Pairs Selection - Other Criteria

Dollar Volume

Symbol	Number of Days on the top 500 List
KLAC	10
CSCO	10
EBAY	10
PLTR	10
PINS	10

Table: Company Classification

Pairs Selection - Other Criteria

Fundamental Sector

Old Index	Symbol	Liquidity Count	Sector	Sector String
38	AEP	4	207	Utilities
39	CMS	2	207	Utilities
44	AEP	4	207	Utilities
45	ETR	1	207	Utilities
80	CMS	2	207	Utilities
81	ETR	1	207	Utilities
208	DHI	10	102	ConsumerCyclical
209	LEN	6	102	ConsumerCyclical

Table: Selected Pairs from Fundamental Persepective

One method in Spread Calculation - Kalman Filter

A Three-step Process of Prediction, Observation, and Correction

corrected state = predicted state + k (observation - prediction)

- (observation prediction) is called the observation innovation. A
 fraction of the observation innovation is added as a correction to
 the predicted state. The value of this fraction k is known as the
 Kalman gain.
- k is decided such that the corrected state has the least amount of error variance associated with it.
- k is indeed optimal in the case where the mathematical models of state and observation are both linear and the errors are drawn from independent Gaussian distributions.

One method in Spread Calculation - Kalman Filter

• Evaluate $\hat{X}_{t|t-1}$ and $\hat{P}_{t|t-1}$ using the state equation.

$$\hat{X}_{t|t-1} = A\hat{X}_{t-1|t-1}$$

$$\hat{P}_{t|t-1} = A\hat{P}_{t-1|t-1}A^{T}$$

Find the observation Y_t and R by observing the system. Note we have the matrix H defined as follows:

$$Y_t = HX_t + v_t$$

3 Compute the Kalman gain K_t .

$$K_t = \hat{P}_t H^T (H\hat{P}_t H^T + R)^{-1}$$

1 Evaluate $\hat{X}_{t|t}$ given by

$$\hat{X}_{t|t} = \hat{X}_{t|t-1} + K_t(Y_t - H\hat{X}_{t|t-1})$$

5 Evaluate $\hat{P}_{t|t}$

One method in Spread Calculation - Kalman Filter

Figure: Illustration of Kalman Filter

Risk Management

Margin Constraints: 50%

2 Stop-loss Limit: $|Z| \ge 4$ or 15% of loss

3 Value-at-Risk: no more than 30,000

Sharpe Ratio

$$SR = \frac{R - R_f}{\sigma_i}$$

2 Total Return:

$$TR = \frac{V_t}{V_0} - 1$$

Max Drawdown:

$$\textit{MaxDD}_t = \textit{max}_{u \in [0,t]}(\textit{M}_u - \textit{S}_u)$$

Optimization

Grid Research

Our optimization method is grid research. We backtest all the combinations of parameters to maximize the Sharpe Ratio with in-sample data from 2018/01/02 to 2021/04/15.

Parameter	Min	Max	Step Size
enter	1	3	0.5
exit	0	0.5	0.1

Table: Grid Research Detail

Optimization

Figure: Optimization on Parameters

Optimization

Method	Sharpe Ratio	Enter	Exit	Return	MaxDD
OLS	1.427	2.0	0.1	16.479%	2.9%
Kalman	1.334	1.0	0.5	25.314%	4.0%

Table: In Sample: Optimal Back-testing Statistics on Selected SP500 Pairs

Figure: In Sample: Optimal Back-testing Result with OLS(left) Kalman(right)

Optimization

Method	Sharpe Ratio	Enter	Exit	Return	MaxDD
OLS	0.549	2.0	0.1	3.345%	3.1%
Kalman	1.485	1.0	0.5	10.420%	2.9%

Table: Out of Sample: Back-testing Statistics with Optimized Parameters

Figure: Out of Sample: Back-testing Result with OLS(left) Kalman(right)

Optimization

Figure: Rolling Portfolio Beta

Figure: Covid-19 Pandemic 2020

Sub Strategy

Gold Trading

In order to **increase** returns and **hedge macro risks**, we have added a gold trading sub-strategy: **long** gold when the $\frac{gold}{S\&P}$ ratio is greater than the 5-day exponential moving average of the ratio and **long** S&P 500 index when the $\frac{gold}{S\&P}$ ratio is lower than the 5-day exponential moving average of the ratio.

Sub Strategy

Gold Trading

Method	Sharpe Ratio	Enter	Exit	Return	MaxDD
OLS	1.629	2.0	0.0	25.79%	5.6%
Kalman Filter	1.491	2.0	0.5	23.38%	4.1%

Table: In Sample: Optimal Back-testing Statistics on Selected SP500 Pairs with Gold Trading Strategy

Figure: In Sample: Optimal Back-testing Result with Gold Trading Strategy using OLS

Sub Strategy

Gold Trading

Method	Sharpe Ratio	Enter	Exit	Return	MaxDD
OLS	1.431	2.0	0.0	10.62%	2.9%
Kalman Filter	2.025	2.0	0.5	13.74%	2.1%

Table: Out of Sample: Back-testing Statistics with Optimized Parameters and Gold Trading Strategy

Figure: Out of Sample: Optimal Back-testing Result with Gold Trading Strategy using Kalman Filter

Live Trading

Go Live

Figure: Live Trading Result