Data Prep - Summer Temperatures

Libraries

```
library(sf)
library(tidyverse)
library(spmodel)
library(data.table)
library(ggplot2)
library(StreamCatTools)
library(tigris)
library(prism)
```

Data Development

Stream Temperature (st) Observations

- These data represent raw daily mean values from USGS loggers/stations
- We applied QA/QC process to flag and remove records that can represent a variety of issues (see QA documentation in SI)
- This code does the following:
- 1. Reads raw flagged data; removes those that are flagged to be removed
- 2. Calculates mean monthly values for July and August for sites with >20 days of record for those months
- 3. Converts data to simple feature spatial object

Map observed values

Map temperature sites and color by number of observations (months with data)


```
ggsave(file = '../figures/number_summer_temperature_obs.png',
    width = 8,
    height = 5,
    units = 'in',
    dpi = 600)
```

Summary of model data table

```
# Number of monthly observations across all sites
nrow(st)
```

[1] 16157

```
# Number of records for July and August
table(st$month)
```

7 8 8051 8106

```
# Number of records for each year
```

```
table(st$year)
```

```
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 1177 1322 1322 1499 1739 1766 1661 1716 2041 1914
```

```
# Summary of data
summary(st)
```

```
SITECODE
                     year
                                   month
                                                wtmp mo
Length:16157
                 Min.
                       :1999
                               Min.
                                     :7.000 Min.
                                                   : 3.60
                               1st Qu.:7.000 1st Qu.:18.31
Class :character
                 1st Qu.:2002
Mode :character
                 Median :2004
                               Median :8.000 Median :22.26
                               Mean :7.502 Mean :21.72
                 Mean :2004
                 3rd Qu.:2006
                               3rd Qu.:8.000 3rd Qu.:25.63
                 Max. :2008
                               Max. :8.000 Max. :33.92
   count
                       geometry
     :20.00
              POINT
Min.
                          :16157
1st Qu.:31.00
             epsg:5070
Median :31.00
              +proj=aea ...:
Mean :30.24
3rd Qu.:31.00
Max.
     :31.00
```

USGS flow metrics

- Modeled monthly (July and August) flow estimates for each site (source: USGS).
- Data not easily accessible for new sites.
- We used table to filter stations with data issues that were identified by USGS.

NHDPlus flow metrics

Modeled monthly (July and August) flow estimates from NHDPlus

- Data available for calibration sites and USGS/EPA fish sites.
- Flow values are very correlated with USGS estimates of flow from above.
- USGS values included some very large values, but inspection of streams in Google Maps suggested that NHDPlus flow estimates of river size were more accurate.

```
nhd_dir <- 'C:/Users/RHill04/WorkFolder/GIS/NHDPlusV21/NHDPlusNationalData/NHDPlusV21_National_Sea
nhd_flow <-
    st_read(dsn = paste0(nhd_dir),
        layer = 'NHDFlowline_Network') %>%
```

Reading layer `NHDFlowline_Network' from data source

```
`C:\Users\RHill04\WorkFolder\GIS\NHDPlusV21\NHDPlusNationalData\NHDPlusV21_National_Seamless_Flat
tened_Lower48.gdb'
    using driver `OpenFileGDB'
Simple feature collection with 2691339 features and 137 fields
Geometry type: MULTILINESTRING
Dimension: XYZM
Bounding box: xmin: -124.7332 ymin: 24.63052 xmax: -66.94983 ymax: 49.37661
z_range: zmin: 0 zmax: 0
m_range: mmin: -2.35e-05 mmax: 100
Geodetic CRS: NAD83
```

StreamCat (sc) static metrics

Static watershed/local catchment metrics:

- Elevation (Cat)
- Calcium oxide content of underlying lithology (Ws)
- Base flow index (Ws)
- Water table depth (Ws)
- Watershed area (Ws)
- Runoff (ws)
- Clay soil content (Ws)
- Sand soil content (Ws)
- Topographic wetness index (Ws)
- National Anthropogenic Barriers dam density (screened dams of NID) (Ws)
- Hydrologic conductivity (HydrlCond) (Ws)

```
comids <- flow$COMID %>%
    na.omit() %>%
    unique()

#Pull in static watershed metrics
sc <-
    sc_get_data(metric = 'HydrlCond,Runoff,Clay,Sand,WtDep,WetIndex,NABD_Dens,NABD_NRMSTOR,BFI,PREC:
    aoi = 'catchment,watershed',
        comid = comids) %>%

dplyr::select(COMID, ELEVCAT, CAOWS, BFIWS, WTDEPWS,
        WSAREASQKM, RUNOFFWS, CLAYWS, SANDWS, WETINDEXWS,
        NABD_DENSCAT, NABD_DENSWS, NABD_NRMSTORWS,
        PRECIP8110WS, HYDRLCONDWS) %>%
```

StreamCat Year-Specific NLCD data

Riparian forest cover (catchment)

- 1. Extracts yrs. 2001-2008 NLCD from StreamCat for riparian (~100m buffer) watersheds.
- 2. Filters data to just CONIF, DECID, or MXFST types.
- 3. Pivots table to include year of NLCD and % riparian forest column.

Crop cover (watershed)

Same process as riparian forest cover, but for NLCD type CROP.

Urban cover (watershed)

Same process as riparian forest cover, but for NLCD type PCTURBLO, PCTURBMD, or PCTURBHI.

```
mutate(year = as.integer(
    str_replace_all(tmpcol, 'PCTURBLO|PCTURBMD|PCTURBHI|WS', ''))) %>%
group_by(COMID, year) %>%
summarise(PCTURBXXXXWS = sum(PCTURBXXXXWS))
```

Lake/Reservoir (open water) in watershed (watershed)

Same process as riparian forest cover, but for NLCD type PCTOW.

Variable added to interact with dam presence/absence to account for stations that occur below natural lakes or man made reservoirs.

PRISM Climate Data

Air temperature

```
25%
 ==========
                                                  30%
 |===========
                                                  35%
                                                  40%
   _____
 _____
                                                  45%
                                                   50%
                                                  55%
                                                  60%
  65%
                                                  70%
                                                 75%
                                                  80%
   ______
                                                 85%
 ______
                                                  90%
                                                  95%
    |-----| 100%
# Create stack of PRISM climate rasters to extract values
tmn <- pd_stack((prism_archive_subset("tmean", "monthly",</pre>
                         years = years,
                         mon = 7:8)))
# Extract tmean at sample points and massage data
tmn <- terra::extract(tmn,</pre>
              # Transform pts to CRS of PRISM on the fly
                st_transform(crs = st_crs(tmn))) %>%
 # Add site IDs to extracted values
 data.frame(SITECODE = pts$SITECODE, .) %>%
 # Remove front and back text from PRISM year/month in names
 rename_with( ~ stringr::str_replace_all(., 'PRISM_tmean_stable_4kmM3_|_bil', '')) %>%
```

|-----

20%

Precipitation

```
0%
                                         5%
                                         10%
=======
                                         15%
                                         20%
=========
                                         25%
                                         30%
______
                                        35%
|============
                                         40%
===============
                                         45%
______
                                         50%
                                         55%
_____
                                         60%
                                         65%
                                         70%
```

Combine data for modeling

- Code creates crosswalk that matches the closest temperature years and NLCD years.
- All geospatial metrics are then joined to location (COMID)/month/year combinations of observed water temperatures.

```
st <- st %>%
 left_join(nearest, join_by(year)) %>%
 left_join(tmn,
            join_by(SITECODE, year, month)) %>%
 left_join(ppt,
            join_by(SITECODE, year, month)) %>%
 left_join(flow, join_by(SITECODE)) %>%
 left_join(sc, join_by(COMID)) %>%
 left_join(riparian_forest,
            join_by(COMID == COMID,
                    nlcd_year == year)) %>%
 left_join(crop,
            join_by(COMID == COMID,
                    nlcd_year == year)) %>%
 left_join(urban,
            join_by(COMID == COMID,
                    nlcd_year == year)) %>%
 left_join(water,
            join_by(COMID == COMID,
                    nlcd_year == year)) %>%
 left_join(nhd_flow,
            join_by(COMID == COMID,
                    month == month)) %>%
 mutate(q_mn = ifelse(month == 7,
                       July.Q.mn,
                       August.Q.mn),
        q_md = ifelse(month == 7,
                       July.Q.md,
                       August.Q.md)) %>%
 dplyr::select(-July.Q.mn:-August.Q.md)
# Write output file for modeling
write_rds(st,
         file = '../data/summer_data.2024.08.08.rds',
          compress = "xz")
```