Name:			
Roll Nu	mber:		

(Odd Semester 2021/22, IIT Kanpur)

INSTRUCTIONS

- 1. Write your **Name** and **Roll number** above.
- 2. This exam contains $\mathbf{4}\,+\,\mathbf{1}$ questions and is worth $\mathbf{40\%}$ of your grade.
- 3. Answer \mathbf{ALL} questions.

Page 2 MTH302A

Question 1. $[5 \times 2 \text{ Points}]$

For each of the following statements, determine whether it is **true or false**. No justification required.

- (i) For every infinite limit ordinal $\alpha < \omega_1$, there is an ordinal β such that $\alpha = \beta + \omega$.
- (ii) The set of irrationals numbers has the same cardinality as the set of real numbers.
- (iii) For every function $f: \mathbb{R} \to \mathbb{R}$, there are injective functions $g, h: \mathbb{R} \to \mathbb{R}$ such that f = g h.
- (iv) Let \mathcal{L} be a first order language, T be an \mathcal{L} -theory and ϕ, ψ be \mathcal{L} -sentences. Assume $T \vdash (\phi \lor \psi)$. Then either $T \vdash \phi$ or $T \vdash \psi$.
- (v) Every consistent first order theory has an infinite model.

Solution.

(i) False. For example, take $\alpha = \omega \cdot \omega$. Then

$$(\forall \gamma < \alpha)(\exists \delta)(\gamma < \delta < \alpha \text{ and } |\{\xi : \gamma < \xi < \delta\}| = \omega)$$

On the other hand,

$$(\forall \delta)(\beta < \delta < \beta + \omega \implies |\{\xi : \beta < \xi < \delta\}| < \omega)$$

So $\alpha \neq \beta + \omega$ for any β .

- (ii) True. Since $|\mathbb{R}| = \mathfrak{c} > \omega = |\mathbb{Q}|$.
- (iii) True. By Homework Problem (15), there are injective functions $g, h' : \mathbb{R} \to \mathbb{R}$ such that f = g + h'. Take h = -h'. Then h is also injective and f = g h.
- (iv) False. Take T to be the empty theory, $\phi \equiv (\exists x)(\exists y)(x \neq y)$ and $\psi \equiv \neg \phi$.
- (v) False. Let $T = \{(\forall x)(\forall y)(x = y)\}.$

Page 3 MTH302A

Question 2. [10 Points]

Let \mathcal{F} be the set of all bijections from ω to ω .

(a) [4 Points] Define $H: \mathcal{F} \to \mathcal{P}(\omega)$ by $H(f) = \{n < \omega : f(n) = n\}$. Show that

$$\operatorname{range}(H) = \mathcal{P}(\omega) \setminus \{\omega \setminus \{n\} : n < \omega\}.$$

- (b) [4 Points] Show that $|\mathcal{F}| \leq |\mathcal{P}(\omega)|$.
- (c) [2 Points] Show that $|\mathcal{F}| = \mathfrak{c}$.

Solution.

(a) We first show that $\mathsf{range}(H) \subseteq \mathcal{P}(\omega) \setminus \{\omega \setminus \{n\} : n < \omega\}$. Let $f : \omega \to \omega$ be a bijection. Then $H(f) \subseteq \omega$ and so $H(f) \in \mathcal{P}(\omega)$. Towards a contradiction, suppose $H(f) = \omega \setminus \{n\}$ for some n. Since f is a bijection on ω , $f(n) \notin \mathsf{range}(f \upharpoonright (\omega \setminus \{n\})) = \omega \setminus \{n\}$. So f(n) = n. But then $H(f) = \omega$ which is a contradiction.

Next fix $A \subseteq \omega$ such that $|\omega \setminus A| \neq 1$. We will find $f \in \mathcal{F}$ such that H(f) = A. If $A = \omega$, take f to be the identity function. So assume $A \neq \omega$. We consider two cases.

Case 1. $\omega \setminus A$ is finite. Let $\{n_1 < n_2 < \cdots < n_k\}$ list the members of $\omega \setminus A$ in increasing order. Note that $k \geq 2$. Define

$$f(n) = \begin{cases} n & \text{if } n \in A \\ n_{j+1} & \text{if } n = n_j \text{ and } 1 \le j < k \\ n_1 & \text{if } n = n_k \end{cases}$$

Then f is a bijection on ω and H(f) = A.

Case 2. $\omega \setminus A$ is infinite. Let $\{n_0 < n_1 < n_2 < \dots\}$ list the members of $\omega \setminus A$ in increasing order and define

$$f(n) = \begin{cases} n & \text{if } n \in A \\ n_{2k+1} & \text{if } n = n_{2k} \\ n_{2k} & \text{if } n = n_{2k+1} \end{cases}$$

Then f is a bijection on ω and H(f) = A. It follows that $\mathcal{P}(\omega) \setminus \{\omega \setminus \{n\} : n < \omega\} \subseteq \mathsf{range}(H)$. Hence $\mathsf{range}(H) = \mathcal{P}(\omega) \setminus \{\omega \setminus \{n\} : n < \omega\}$.

- (b) Since $\mathcal{F} \subseteq \mathcal{P}(\omega \times \omega)$, we get $|\mathcal{F}| \leq |\mathcal{P}(\omega \times \omega)|$. Also, $|\omega \times \omega| = \omega$. So $|\mathcal{P}(\omega \times \omega)| = |\mathcal{P}(\omega)|$. It follows that $|\mathcal{F}| \leq |\mathcal{P}(\omega)|$.
- (c) By part (a), $\mathcal{F} \geq |\mathcal{P}(\omega) \setminus \{\omega \setminus \{n\} : n < \omega\}|$. Since $|\{\omega \setminus \{n\} : n < \omega\}| = \omega < |\mathcal{P}(\omega)| = \mathfrak{c}$, it follows that $|\mathcal{P}(\omega) \setminus \{\omega \setminus \{n\} : n < \omega\}| = \mathfrak{c}$. So $|\mathcal{F}| \geq \mathfrak{c}$. By part (b), $|\mathcal{F}| \leq |\mathcal{P}(\omega)| = \mathfrak{c}$. Hence $|\mathcal{F}| = \mathfrak{c}$.

Page 4 MTH302A

Question 3. [10 Points]

Suppose $f: \mathbb{R} \to \mathbb{R}$ satisfies: For every $x, y \in \mathbb{R}$,

$$f(x+y) = f(x) + f(y) + f(x)f(y)$$

- (a) [2 Points] Define h = 1 + f. Show that h(x + y) = h(x)h(y).
- (b) [8 Points] Suppose f is continuous and not identically equal to -1. Show that $f(x) = a^x 1$ for some a > 0.

Solution.

- (a) h(x+y) = 1 + f(x+y) = 1 + f(x) + f(y) + f(x)f(y) = (1+f(x))(1+f(y)) = h(x)h(y).
- (b) Since f is continuous, h = 1 + f is also continuous. Since f is not identically -1, h is not identically 0. By Homework Problem 16, it follows that $h(x) = a^x$ for some a > 0. Hence $f(x) = h(x) 1 = a^x 1$.

Page 5 MTH302A

Question 4. [10 Points]

Let $\mathcal{L} = \{ \prec \}$ where \prec is a binary relation symbol.

(a) [4 Points] Show that there is an \mathcal{L} -theory T such that for every \mathcal{L} -structure $\mathcal{M} = (M, \prec^{\mathcal{M}})$,

$$\mathcal{M} \models T$$
 iff " $(M, \prec^{\mathcal{M}})$ is a linear ordering".

(b) [6 Points] Show that there is no \mathcal{L} -theory T such that for every \mathcal{L} -structure $\mathcal{M} = (M, \prec^{\mathcal{M}})$,

$$\mathcal{M} \models T \text{ iff } "(M, \prec^{\mathcal{M}}) \text{ is a well-ordering"}.$$

Solution.

- (a) Let T consist of the following axioms.
 - $(1) (\forall x)(\neg(x \prec x))$
 - $(2) (\forall x)(\forall y)(\forall z)((x \prec y \land y \prec z) \implies (x \prec z))$
 - (3) $(\forall x)(\forall y)((x=y) \lor (x \prec y) \lor (y \prec x))$
- (b) Towards a contradiction suppose T is such a theory. Let \mathcal{L}' be the language obtained by adding the constant symbols $\{c_n : n < \omega\}$ to \mathcal{L} . Define an \mathcal{L} -theory S as follows

$$S = T \cup \{c_{n+1} \prec c_n : n < \omega\}$$

We claim that every finite subset of S has a model. Suppose F is a finite subset of T. Fix m large enough so that for every constant symbol c_k that occurs in some sentence in F, we have k < m. Let $\mathcal{M} = (\omega, <)$ be the \mathcal{L} -structure where \prec is interpreted as the usual ordering < on ω . By assumption, $\mathcal{M} \models T$. Define an \mathcal{L}' -structure $\mathcal{N} = (\omega, <, \{c_n^{\mathcal{N}} : n < \omega\})$ as follows: For $k \leq m$, $c_k^{\mathcal{N}} = m - k$ and for k > m, $c_k^{\mathcal{N}} = 0$. It is clear that $\mathcal{N} \models F$.

By compactness theorem, it follows that S has a model $\mathcal{A} = (A, \prec^{\mathcal{A}}, \{c_n^{\mathcal{A}} : n < \omega\})$. Put $\mathcal{B} = (A, \prec^{\mathcal{A}})$. Since $T \subseteq S$, we have $\mathcal{B} \models T$ and hence $(A, \prec^{\mathcal{A}})$ must be a well-ordering. But this is impossible since $\{c_n^{\mathcal{N}} : n < \omega\}$ does not have $\prec^{\mathcal{A}}$ -least member (as $\mathcal{A} \models c_{n+1} \prec c_n$ for every $n < \omega$).

Page 6 MTH302A

Bonus Question [5 Points]

Let $\mathcal{L}_{PA} = (0, S, +, \cdot)$ be the language of Peano Arithmetic. Let $\mathcal{M} = (\omega, 0, S, +, \cdot)$. Show that there is a countable \mathcal{L} -structure \mathcal{N} such that \mathcal{M} is a **proper** elementary submodel of \mathcal{N} . This means that $\mathcal{M} \leq \mathcal{N}$ and $\mathcal{M} \neq \mathcal{N}$.

Solution. Let $\mathcal{L} = \mathcal{L}_{PA} \cup \{c\}$ where c is a new constant symbol. Define an \mathcal{L} -theory

$$T = TA \cup \{c \neq S^n(0) : n < \omega\}$$

Note that every finite subset of T has a model. By compactness theorem, T has a model

$$\mathcal{A} = (A, 0^{\mathcal{A}}, S^{\mathcal{A}}, +^{\mathcal{A}}, \cdot^{\mathcal{A}}, c^{\mathcal{A}})$$

By replacing the interpretations of $S^n(0)$ in \mathcal{A} by n, we can assume that $\omega \subseteq A$, $0^{\mathcal{A}} = 0$, $S^{\mathcal{A}} \upharpoonright \omega = S$, $+^{\mathcal{A}} \upharpoonright (\omega \times \omega) = +$ and $\cdot^{\mathcal{A}} \upharpoonright (\omega \times \omega) = \cdot$. Put $\mathcal{N} = (A, 0^{\mathcal{A}}, S^{\mathcal{A}}, +^{\mathcal{A}}, \cdot^{\mathcal{A}})$ and note that $\mathcal{M} = (\omega, 0, S, +, \cdot)$ is a proper substructure of \mathcal{N} .

We claim that \mathcal{M} is also an elementary submodel of \mathcal{N} . Let ϕ be any \mathcal{L}_{PA} -formula whose free variables are among x_1, x_2, \ldots, x_n and suppose k_1, k_2, \ldots, k_n are in ω . Then $\mathcal{M} \models \phi(k_1/x_1, \ldots, k_n/x_n)$ iff $\mathcal{M} \models \phi(S^{k_1}(0)/x_1, \ldots, S^{k_n}(0)/x_n)$. Since $\phi(S^{k_1}(0)/x_1, \ldots, S^{k_n}(0)/x_n) \in TA = Th(\mathcal{M})$, it follows that $\mathcal{M} \models \phi(S^{k_1}(0)/x_1, \ldots, S^{k_n}(0)/x_n)$ iff $\mathcal{N} \models \phi(S^{k_1}(0)/x_1, \ldots, S^{k_n}(0)/x_n)$ iff $\mathcal{N} \models \phi(k_1/x_1, \ldots, k_n/x_n)$. Hence $\mathcal{M} \preceq \mathcal{N}$.