Predykaty geometryczne

Ryszard Pręcikowski Wtorek 14:40B

02.11.2020

Specyfikacja techniczna:

System operacyjny: Windows 10 64bit

Procesor: AMD Ryzen 3600 6-Core Processor

Opis realizacji ćwiczenia:

Doświadczenie polegało na wygenerowaniu czterech zestawów danych:

- a) 10⁵ losowych punktów o współrzędnych z przedziału [-1000, 1000]
- b) 10⁵ losowych punktów o współrzędnych z przedziału [-10¹⁴, 10¹⁴]
- c) 1000 losowych punktów leżących na okręgu o środku (0,0) i promieniu R=100
- d) 1000 losowych punktów o współrzędnych z przedziału [-1000, 1000] leżących na prostej wyznaczonej przez wektor (a, b), gdzie a = [-1.0, 0.0], b = [1.0, 0.1].

Punkty zostały wygenerowane na płaszczyźnie, natomiast ich współrzędne to liczby zmiennoprzecinkowe. Za generowanie punktów jest odpowiedzialna biblioteczna funkcja uniform (a, b) zwracająca losową liczbę rzeczywistą z przedziału [a, b].

W kolejnym kroku, dla każdego z zestawów danych, dokonujemy podziału punktów względem ich orientacji w stosunku do odcinka ab na punkty leżące po lewej, po prawej stronie oraz na punkty współliniowe.

Podziału dokonujemy używając wyznaczników:

$$\bullet \quad \det(a,b,c) = \begin{vmatrix} a_x & a_y & 1 \\ b_x & b_y & 1 \\ c_x & c_y & 1 \end{vmatrix}$$

•
$$det(a, b, c) = \begin{vmatrix} a_x - c_x & a_y - c_y \\ b_x - c_x & b_y - c_y \end{vmatrix}$$

Wartość dodatnia wyznacznika oznacza, że punkt znajduje się "na lewo" od odcinka, wartość ujemna, że "na prawo", natomiast wartość zerowa, że punkty są współliniowe.

Obliczenia wykonywane są za pomocą dwóch własnoręcznie zaimplementowanych funkcji liczących wyznacznik macierzy 2x2 oraz 3x3 oraz dwóch funkcji bibliotecznych (biblioteka numpy).

Z powodu natury obliczeń na liczbach zmiennoprzecinkowych na komputerach należy zbadać otrzymane wyniki dla różnej tolerancji zera.

Analiza wyników.

a) Zestaw danych a jest przedstawiony na rysunku poniżej (rysunek 1)

Rysunek 1 Zestaw danych a

anailan	det2x2				det3x3	3	2x2 vs	2x2 vs	3x3 vs
epsilon	left	right	collinear	left	right	collinear	3x3	numpy	numpy
0,0E+00	49961	50039	0	46661	50039	0	0	0	0
1,0E-14	49961	50039	0	49961	50039	0	0	0	0
1,0E-05	49961	50039	0	49961	50039	0	0	0	0
1,0E-02	49961	50039	0	49961	50039	0	0	0	0
1,0E+00	49935	50015	50	49935	50015	50	0	0	0
1,0E+01	49707	49796	497	49707	49796	497	0	0	0

Tabela 1 Wyniki doświadczenia dla zestawu a

Z tabeli 1 możemy odczytać, że dla każdej metody liczenia wyznacznika otrzymujemy identyczne wyniki dla danej tolerancji zera.

Dla wartości epsilonu od zera aż do 10^{-2} algorytm nie znajduje żadnych punktów leżących na prostej wyznaczonej przez odcinek ab, podział obrazuje rysunek 2.

Rysunek 2 Podział punktów według odcinka ab

b) Zestaw danych b jest przedstawiony na rysunku poniżej (rysunek 3).

Rysunek 3 Zestaw danych b

onsilon	det2x2				det3x3	3	2x2 vs	2x2 vs	3x3 vs
epsilon	left	right	collinear	left	right	collinear	3x3	numpy	numpy
0,0E+00	50065	49931	4	50066	49934	0	4	4	0
1,0E+00	50065	49931	4	50066	49934	0	4	4	0
1,0E+07	50065	49931	4	50066	49934	0	4	4	0
1,0E+10	50065	49929	6	50065	49929	6	2	5	0
1,0E+11	50040	49909	51	50039	49911	50	5	6	0
1,0E+12	49827	49679	494	49826	49679	495	5	10	0

Tabela 2Wyniki doświadczenia dla zestawu b

W tabeli 2 widzimy, że wyznacznik 2x2 implementowany samodzielnie jako jedyny znajduje punkty współliniowe (rysunek 4), natomiast reszta punktów jest przyporządkowywana tak samo dla tolerancji mniejszej niż 10⁷. Znaczące różnice obserwujemy dopiero gdy zwiększymy wartość tolerancji do poziomu 10¹⁰.

Rysunek 4 Podział punktów według odcinka ab (det 2x2)

Z analizy rysunku 5 możemy odczytać, że wyznacznik biblioteczny wyznacznik 2x2 również znajduje 4 punkty współliniowe, jednak są one różne od własnej implementacji (kolory zielony i czerwony na rysunku).

Rysunek 5 Różnice między własnym wyznacznikiem 2x2 a bibliotecznym

c) Zestaw danych c jest przedstawiony na rysunku poniżej (rysunek 6).

Rysunek 6 Zestaw danych c

epsilon	det2x2				det	3x3	2x2 vs	2x2 vs	3x3 vs
	left	right	collinear	left	right	collinear	3x3	numpy	numpy
1,0E-14	501	499	0	501	499	0	0	0	0
1,0E-07	501	499	0	501	499	0	0	0	0
1,0E-02	501	499	0	501	499	0	0	0	0
1,0E+00	499	498	3	499	498	3	0	0	0

Tabela 3 Wyniki doświadczenia dla zestawu c

Z tabeli 3 możemy odczytać, że dla każdej metody liczenia wyznacznika otrzymujemy identyczne wyniki dla danej tolerancji zera.

Dla wartości epsilonu od zera aż do 10^{-2} algorytm nie znajduje żadnych punktów leżących na prostej wyznaczonej przez odcinek ab, podział obrazuje rysunek 7.

Rysunek 7 Podział punktów według odcinka ab

Dopiero dla tolerancji równej 1 widzimy, że punkty są określane jako współliniowe, jednak według wszystkich wyznaczników dokładnie w ten sam sposób.

d) Zestaw danych d jest przedstawiony na rysunku poniżej (rysunek 8).

Rysunek 8 Zestaw danych d

Zestaw danych d jest prostą wyznaczoną przez wektor ab, więc wszystkie punkty powinny zostać zakwalifikowane jako współliniowe.

epsilon	det2x2				det	3x3	2x2 vs	2x2 vs	3x3 vs
	left	right	collinear	left	right	collinear	3x3	numpy	numpy
0,0E+00	148	146	706	155	419	426	690	382	541
1,0E-16	148	145	707	155	432	432	687	382	537
1,0E-14	144	141	715	0	0	1000	285	372	121
1,0E-12	89	71	840	0	0	1000	160	244	0
1,0E-10	0	0	1000	0	0	1000	0	0	0

Tabela 4 Wyniki doświadczenia dla zestawu d

Z tabeli 4 możemy odczytać, że własny wyznacznik 3x3, przy tolerancji rzędu 10⁻¹⁴, klasyfikuje wszystkie punkty poprawnie, dla tolerancji mniejszej zachodzi zjawisko przydzielania prawie trzykrotnie większej ilości punktów po jednej stronie prostej (rysunek 9).

Przy tolerancjach mniejszych wyznacznik 2x2 generuje lepsze wyniki.

Rysunek 9 Podział punktów przez wyznacznik 3x3 dla e = 0

Wyznacznik własny 3x3 lepiej radzi sobie z prawidłowym przydzielaniem punktów niż wyznacznik biblioteczny, szczególnie dla większych wartości współrzędnych (rysunek 10).

Rysunek 10 Różnica w podziale punktów między wyznacznikiem 3x3 własnym, a bibliotecznym, dla $e=10^{-14}$

Wnioski.

Dla większości przypadków metoda liczenia wyznacznika nie ma wpływu (lub ma minimalny) na wyniki doświadczenia.

Największe różnice obserwujemy dla punktów, które leżą na prostej, ale z powodu niedokładności przechowywania oraz obliczeń na liczbach zmiennoprzecinkowych ich kwalifikacja jest różna dla małych tolerancji zera.

Dla przypadku ostatniego, najlepszym wyznacznikiem jest wyznacznik 3x3 własnej implementacji, pod warunkiem, że dobierzemy odpowiednią tolerancję dla zera.

Jeśli tolerancja będzie zbyt mała, to wyznacznik 2x2 generuje lepsze wyniki.