Multilevel Workshop

Andrew Grogan-Kaylor

2024-07-31

Table of contents

1	Multilevel Workshop	6
2	Two Level Cross Sectional; And Three Level Longitudinal Models	7
3	Cross Sectional Model 3.1 Get Data	8 8 8 9 9 10 11
4	Longitudinal Model 4.1 Setup 4.2 The Equation 4.3 Descriptive Statistics 4.4 Alternate Plot 4.5 Unconditional Model 4.5.1 Model 4.5.2 ICC 4.6 Full Model	13 13 13 14 14 14 15 15
5	Nice Table of Results	17
6	QUESTIONS???	19
7	Cross-Classified Models	20
8	Introduction	21
9	Setup	22
10	Cross Classified Model 10.1 Standard (Less Computationally Efficient) Syntax	23 23

	10.2 Cross Classified With Computationally Efficient Syntax	23
11	Three Level Model	26
12	Nice Table of Results of Three Level and Cross Classified Model	28
13	Verification of Syntax Equivalence for Cross Classified Model	29
14	QUESTIONS???	31

List of Figures

3.1	Spaghetti Plot of Outcome by Warmth by Country	9
4.1	Alternate Plot of Outcome by Time by Individual; First 10 Observations	14

List of Tables

1 Multilevel Workshop

Workshop materials for a workshop on Multilevel Modeling

2 Two Level Cross Sectional; And Three Level Longitudinal Models

3 Cross Sectional Model

3.1 Get Data

use "simulated_multilevel_data.dta", clear

3.2 The Equation

 ${\rm outcome}_{ij} = \beta_0 + \beta_1 {\rm parental~warmth} + \beta_2 {\rm physical~punishment} + \beta_3 {\rm time} +$

$$\beta_4 \mathrm{identity}_2 + \beta_5 \mathrm{intervention} + \beta_6 HDI +$$

$$u_{0j} + u_{1j} \times \text{parental warmth} + e_{ij}$$

3.3 Descriptive Statistics

summarize // descriptive statistics

Variable	l Obs	Mean	Std. dev.	Min	Max
country	3,000	15.5	8.656884	1	30
HDI	3,000	64.76667	17.24562	33	87
family	3,000	50.5	28.87088	1	100
id	0				
identity	3,000 +	.4976667	.5000779	0	1
intervention	3,000	.4843333	.4998378	0	1
physical_p~t	3,000	2.478667	1.360942	0	5

```
warmth | 3,000 3.521667 1.888399 0 7
outcome | 3,000 52.43327 6.530996 29.60798 74.83553
```

3.4 Spaghetti Plot

```
spagplot outcome warmth, id(country) scheme(stcolor)
graph export spagplot1.png, width(1000) replace
```


Figure 3.1: Spaghetti Plot of Outcome by Warmth by Country

3.5 Unconditional Model

3.5.1 Model

```
mixed outcome || country: // unconditional model
```

Performing EM optimization ...

Performing gradient-based optimization: Iteration 0: Log likelihood = -9802.8371 Iteration 1: Log likelihood = -9802.8371

Computing standard errors ...

Mixed-effects ML regression Group variable: country	Number of obs = 3,000 Number of groups = 30 Obs per group:
	min = 100
	avg = 100.0
	$\max = 100$
	Wald chi2(0) = .
Log likelihood = -9802.8371	Prob > chi2 = .
outcome Coefficient Std. err. z P> z	
_cons 52.43327 .3451217 151.93 0.000	51.75685 53.1097
Random-effects parameters Estimate Std. err	. [95% conf. interval]
country: Identity 3 178658 0226727	1 700EE0 E 6146E9
var(_cons) 3.178658 .9226737	1.79952 5.014658
var(Residual) 39.46106 1.024013	
LR test vs. linear model: chibar2(01) = 166.31	Prob >= chibar2 = 0.0000

3.5.2 ICC

estat icc

Intraclass correlation

Level	ICC	Std. err.	[95% conf.	interval]
country	.0745469	.0201254	.0434963	.1248696

3.6 Full Model

```
mixed outcome warmth physical_punishment identity i.intervention HDI || country: warmth // m
est store crosssectional // store estimates
Performing EM optimization ...
Performing gradient-based optimization:
Iteration 0: Log likelihood = -9626.6279
Iteration 1: Log likelihood = -9626.607
Iteration 2: Log likelihood = -9626.607
Computing standard errors ...
                                               Number of obs = 3,000
Mixed-effects ML regression
Group variable: country
                                               Number of groups =
                                               Obs per group:
                                                          min = 100
                                                          avg = 100.0
                                                         max =
                                               Wald chi2(5) = 334.14
Log likelihood = -9626.607
                                              Prob > chi2 = 0.0000
         outcome | Coefficient Std. err. z P>|z| [95% conf. interval]
------
           warmth | .8345368 .0637213 13.10 0.000
                                                        .7096453
                                                                   .9594282
physical_punishment | -.9916657 .0797906 -12.43 0.000 -1.148052 -.8352791
         identity | -.3004767 .2170295 -1.38 0.166 -.7258466 .1248933
ervention | .6396427 .2174519 2.94 0.003 .2134448 1.065841
    1.intervention | .6396427 .2174519 2.94 0.003
              HDI | -.003228 .0199257
                                         -0.16 0.871
                                                        -.0422817
                                                                   .0358256
            _cons | 51.99991 1.371257 37.92 0.000
                                                         49.3123 54.68753
```

	+	 -				
	var(Residual)		34.97499	.9097109	33.23668	36.80422
LR test vs.	linear model: chi2	2(2) = 205.74		 Prob > chi	2 = 0.0000

Note: LR test is conservative and provided only for reference.

4 Longitudinal Model

4.1 Setup

use "simulated_multilevel_longitudinal_data.dta", clear

4.2 The Equation

 ${\rm outcome}_{ij} = \beta_0 + \beta_1 {\rm parental~warmth} + \beta_2 {\rm physical~punishment} + \beta_3 {\rm time} +$

$$\beta_4 \mathrm{identity}_2 + \beta_5 \mathrm{intervention} + \beta_5 HDI +$$

$$u_{0j} + u_{1j} \times \text{parental warmth} +$$

$$v_{0i} + v_{1i} \times t + e_{ii}$$

4.3 Descriptive Statistics

summarize // descriptive statistics

Variable	1	Obs Me	ean Std.	dev. Min	n Max
country	9,	000 15	5.5 8.65	5922	1 30
HDI	1 9,	000 64.766	667 17.	2437 33	3 87
family	1 9,	000 50	0.5 28.8	6767	1 100
id	1	0			
identity	1 9,	000 .49766	.500	0223	0 1

	+-					
intervention	· 	9,000	.4843333	.4997823	0	1
t		9,000	2	.8165419	1	3
physical_p~t		9,000	2.485333	1.373639	0	5
warmth		9,000	3.514222	1.8839	0	7
outcome		9,000	53.37768	6.572285	29.60798	79.02199

4.4 Alternate Plot

```
encode id, generate(idNUMERIC) // numeric version of id

* spagplot outcome t if idNUMERIC <= 10, id(idNUMERIC) scheme(stcolor)

twoway (lfit outcome t) (scatter outcome t) if idNUMERIC <= 10, by(idNUMERIC) scheme(stcolor)

graph export spagplot2.png, width(1000) replace</pre>
```


Figure 4.1: Alternate Plot of Outcome by Time by Individual; First 10 Observations

4.5 Unconditional Model

4.5.1 Model

```
mixed outcome || country: || id: // unconditional model
```

4.5.2 ICC

```
Estat icc

Intraclass correlation

Level | ICC Std. err. [95% conf. interval]

country | .0748336 .0190847 .0450028 .1219141
id|country | .3462837 .0171461 .3134867 .3806097
```

4.6 Full Model

```
mixed outcome t warmth physical_punishment i.identity i.intervention HDI || country: warmth
est store longitudinal // store estimates
```

Performing EM optimization ...

```
{\tt Performing\ gradient-based\ optimization:}
```

Iteration 0: Log likelihood = -28523.49
Iteration 1: Log likelihood = -28499.987
Iteration 2: Log likelihood = -28499.739
Iteration 3: Log likelihood = -28499.604
Iteration 4: Log likelihood = -28499.603

Computing standard errors ...

Mixed-effects ML regression

Number of obs = 9,000

Grouping information

I	No. of	Observ	ations per	group
Group variable	groups	Minimum	Average	Maximum

country		30	300	300.0	300
id		3,000	3	3.0	3

Wald chi2(6) = 1096.15Log likelihood = -28499.603 Prob > chi2 = 0.0000

outcome	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
t		.0658716	14.33	0.000	.814758	1.07297
warmth	.9134959	.0423732	21.56	0.000	.830446	.9965459
physical_punishment	-1.007897	.0497622	-20.25	0.000	-1.105429	9103647
1.identity	1276926	.1515835	-0.84	0.400	4247908	.1694057
1.intervention	.8589966	.1519095	5.65	0.000	.5612596	1.156734
HDI	0005657	.0196437	-0.03	0.977	0390666	.0379352
_cons	50.46724	1.338318	37.71	0.000	47.84418	53.09029

Random-effects parameters				
country: Independent				
var(warmth)	.0107586	.0127845	.0010478	.1104703
-	3.167085		1.798154	5.578181
id: Independent	 			
var(t)	3.58e-09	7.06e-07	3.5e-177	3.7e+159
-	8.387275		7.510631	9.366242
var(Residual)	26.02733	.4753701	25.11211	26.97592
LR test vs. linear model: chi2(4) = 1247.03			Prob > chi	2 = 0.0000

Note: LR test is conservative and provided only for reference.

5 Nice Table of Results

```
est table crosssectional longitudinal, ///
b(%9.3f) star stats(N 11 chi2) ///
varwidth(20) modelwidth(15)
```

Variable	crosssectional	longitudinal
outcome	 	
warmth	0.835***	0.913***
physical_punishment	-0.992***	-1.008***
identity	-0.300	
	<u> </u>	
intervention		
1	0.640**	0.859***
HDI	 -0.003	-0.001
t	l 0.000	0.944***
Ü		0.011
identity		
1		-0.128
_cons	52.000***	50.467***
	+ '	
lns1_1_1	1 000 totals	0. 000 total
_cons	-1.892***	-2.266***
lns1_1_2	,	
_cons	0.543***	0.576***
	+	
lnsig_e		
_cons	1.777***	1.630***
	+	
lns2_1_1	<u> </u>	
_cons		-9.724

lns2_1_2	+ _cons		1.063***
Statistics	 N 11 chi2	3000 -9626.607 334.143	9000 -2.85e+04 1096.148

Legend: * p<0.05; ** p<0.01; *** p<0.001

6 QUESTIONS???

7 Cross-Classified Models

8 Introduction

A two level multilevel model imagines that $Level\ 1$ units are nested in $Level\ 2$ units. A three level multilevel model imagines that $Level\ 1$ units are nested in $Level\ 2$ units, which are in turn nested in $Level\ 3$.

A cross-classified model imagines that the nesting is not hierarchical, but rather that there are two sets of clusters or nestings in which individuals may be nested.

9 Setup

use "simulated_multilevel_longitudinal_data.dta", clear

10 Cross Classified Model

We can treat these random effects as being cross classified.

This might be useful if we had data where individuals lived in different countries at different times.

However, because id is in fact nested inside country, in this case, estimating the random effects as cross classified will be more time consuming, but will give us equivalent results to a three level model.

10.1 Standard (Less Computationally Efficient) Syntax

The below syntax will take a very long time to run with the full sample, and thus we have commented it out.

```
* mixed outcome t warmth physical_punishment || _all: R.country || _all: R.id
* est store crossed1
```

The documentation notes that we can use a much more computationally efficient version of the above command, which is what we do in these notes. The user can verify that both versions of the command will produce equivalent results.

In fact, at the end of handout we verify the similarity of both sets of syntax using a random sample.

10.2 Cross Classified With Computationally Efficient Syntax

```
mixed outcome t warmth physical_punishment || _all: R.country || id:
est store crossed2 // store crossed effects result
```

Performing EM optimization ...

Performing gradient-based optimization:

Iteration 0: Log likelihood = -28516.314
Iteration 1: Log likelihood = -28516.277
Iteration 2: Log likelihood = -28516.277

Computing standard errors ...

Mixed-effects ML regression

Number of obs = 9,000

Grouping information

Group variable	No. of groups	Obser Minimum	vations per Average	group Maximum
_all id	1 3,000	9,000	9,000.0	9,000

Wald chi2(3) = 1168.69Log likelihood = -28516.277 Prob > chi2 = 0.0000

outcome	 Coefficient +				[95% conf. interval]
t warmth	.9434605	.065866	14.32 23.80	0.000	.8143654 1.072556 .8308277 .9799572
physical_punishment _cons		.0499354 .4123007	-20.31 123.28	0.000	-1.112257916514 50.022 51.63819

	s parameters				_
_all: Identity v	ar(R.country)	3.429974	.930313	2.015668	5.836634
id: Identity		8.608872	. 4757699	7.725107	9.59374
	var(Residual)		.4752444	25.11363	26.97695

LR test vs. linear model: chi2(2) = 1260.84 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

11 Three Level Model

```
mixed outcome t warmth physical_punishment || country: || id: // 3 level w/ random intercept est store threelevel // store random intercept model
```

Performing EM optimization ...

Performing gradient-based optimization:

Iteration 0: Log likelihood = -28516.314
Iteration 1: Log likelihood = -28516.277
Iteration 2: Log likelihood = -28516.277

Computing standard errors ...

Mixed-effects ML regression

Number of obs = 9,000

Grouping information

Group variable	 	No. of groups	Obser Minimum	vations per Average	group Maximum
country id		30 3,000	300	300.0	300

Log likelihood = -28516.277

Wald chi2(3) = 1168.69Prob > chi2 = 0.0000

outcome	Coefficient					_
·	.9434605					
warmth	.9053924	.0380439	23.80	0.000	.8308277	.9799572
physical_punishment	-1.014385	.0499354	-20.31	0.000	-1.112257	916514

_cons	50.8301	.4123007	123.28	0.000	50.022	51.63819

Random-effects parameters				
country: Identity	 3.429974	.930313	2.015668	5.836634
id: Identity	 8.608872	. 4757699	7.725107	9.59374
var(Residual)			25.11363	26.97695
LR test vs. linear model: chi:	2(2) = 1260.8	 4	Prob > chi	2 = 0.0000

Note: LR test is conservative and provided only for reference.

12 Nice Table of Results of Three Level and Cross Classified Model

```
est table threelevel crossed2, ///
b(%9.3f) star stats(N ll chi2) ///
varwidth(20) modelwidth(15)
```

Variable	threelevel	crossed2
outcome	!	
t	0.943***	0.943***
warmth	0.905***	0.905***
physical_punishment	-1.014***	-1.014***
_cons	50.830***	50.830***
lns1_1_1	† 	
_cons	0.616***	0.616***
lns2_1_1	 	
_cons	1.076***	1.076***
lnsig_e	 	
_cons	1.630***	1.630***
Statistics	† 	
N	9000	9000
11	-2.85e+04	-2.85e+04
chi2	1168.689	1168.689

Legend: * p<0.05; ** p<0.01; *** p<0.001

13 Verification of Syntax Equivalence for Cross Classified Model

```
keep if family <= 5 // random sample of families
quietly mixed outcome t warmth physical_punishment || _all: R.country || _all: R.id
est store crossed1A // less efficient syntax
quietly mixed outcome t warmth physical_punishment || _all: R.country || id:
est store crossed2A // more efficient syntax
est table crossed1A crossed2A, ///
b(%9.3f) star stats(N ll chi2) ///
varwidth(20) modelwidth(15)</pre>
```

(8,550 observations deleted)

Variable	crossed1A +	crossed2A
outcome	I	
t	0.745**	0.745**
warmth	0.871***	0.871***
physical_punishment	-1.262***	-1.262***
_cons	51.755***	51.755***

lns1_1_1			
_con	0.40	0.404	_
lns1_2_1	i		
_con	s 0.84	46*** 	_
lnsig_e	i		
_con	1.58	31*** 1.581***	_
lns2_1_1	I		
_con	s +	0.846***	_
Statistics	İ		
	I 45	50 450	
1	-1398.62	26 -1398.626	
chi	2 72.57 	75 72.575 	_

Legend: * p<0.05; ** p<0.01; *** p<0.001

14 QUESTIONS???