COMP 546

Lecture 9

binocular disparity & disparity space defocus blur

Thurs. Feb. 9, 2019

Recall: Binocular disparity and depth

Let x_l and x_r be visual direction to a 3D point.

(In lecture 1, we used the notation θ_l and θ_r for this.)

disparity
$$\equiv x_l - x_r = \frac{T_x}{Z_0}$$

(Take f = 1 in lecture 1, if you are uncomfortable.)

$$\leftarrow$$
 T_{χ}

Recall: Binocular vergence

Suppose the eyes rotate to look at this 3D point.

After the eyes rotate to look at this 3D point, then $x_l = 0$ and $x_r = 0$ for this point.

disparity
$$\equiv x_l - x_r = 0$$

Crossed disparity

A 3D point that is closer than the vergence point is in direction x_l and x_r in the left and right eyes. We say it has crossed disparity.

disparity
$$\equiv x_l - x_r > 0$$

Uncrossed disparity

A 3D point that is farther than the vergence point is in direction x_l and x_r in the left and right eyes. We say it has uncrossed disparity.

disparity $\equiv x_l - x_r < 0$

Recall disparity and depth

$$disparity = T_x \left| \frac{1}{Z} - \frac{1}{Z_v} \right|$$

(X,Z)

How to study binocular stereo vision?

Neuroscience

• Show animals (cats, monkeys) or people different images to the left and right eyes and measure brain activity.

Computer Vision

 Write a computer program that finds matching points in left and right images

Psychology

• Show people different images to the left and right eyes and measure how well they judge depth.

"Autostereogram"

These are typically not used in vision science, as they are relatively complicated to construct and explain.

Random Dot Stereogram

Bela Julesz, "Binocular depth perception without familiarity cues" Science 1964.

left eye image

right eye image

How to make a random dot stereogram?

image for image for left eye right eye 1.) shift patch left 2.) Fill empty patch

Q: where are the eyes verging?

Q: where are the eyes verging?

A: at (0,0) in disparity space, by definition

How to study binocular stereo vision?

Neuroscience

• Show animals (cats, monkeys) or people different images to the left and right eyes and measure brain activity.

Computer Vision

 Write a computer program that finds matching points in left and right images

Psychology

 Show people different images to the left and right eyes and measure how well they judge depth.

Computational models of perception (biological vision)

• Write a computer program that finds matching points in left and right images which is based on the operations performed in the brain.

Each binocular cell has receptive field location centered at (x_l, y_l) and (x_r, y_r) in the two eyes.

Q: How to visualize a "population" of such disparity tuned cells?

Cells tuned to zero disparity

Cells tuned to different disparities

Disparity Tuned Cells

Binocular Fusion ("Cyclopean Vision")

If disparity is *sufficiently* small, then we fuse the left and right eye images.

Otherwise, we perceive two images ("diplopia").

Panum's fusional area and d_{max}

Panum's fusional area in disparity space

Panum's fusional area is believed to be due to the limited range of disparities of disparity tuned cells.

Recall defocus blur and depth

Depth of Field

Depth of field is the range of depths that are *perceived* to be in focus. (In fact, only one depth is in perfect focus.)

blur width = aperture
$$\frac{1}{Z_{focalplane}} - \frac{1}{Z_0}$$

accommodation

In focus

Accommodation and vergence systems are coupled.

(We tend to verge at the same depth as we focus even if one eye is closed.)

Monocular

Binocular

Accommodation-vergence conflict for 3D displays

