Homework #4: Due: tentatively Oct. 24, 2019

***** (about lecture #3) *****

Problem 1. Consider the 1D harmonic oscillator $\hat{H}_0 = \frac{\hat{p}^2}{2m} + \frac{m\omega^2}{2}\hat{x}^2 = -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + \frac{m\omega^2}{2}x^2$. Here \hat{x} is position operator, \hat{p} is momentum operator, $[\hat{x},\hat{p}] = i\hbar$, and in position representation $\hat{p} = -i\hbar\frac{\partial}{\partial x}$. Define $\hat{b} = \sqrt{\frac{m\omega}{2\hbar}}(\hat{x} + i\frac{1}{m\omega}\hat{p}) = \sqrt{\frac{m\omega}{2\hbar}}(x + \frac{\hbar}{m\omega}\frac{\partial}{\partial x})$. Then $[\hat{b},\hat{b}^{\dagger}] = 1$ and $\hat{H}_0 = \hbar\omega\,(\hat{b}^{\dagger}\hat{b} + \frac{1}{2})$. It has a unique ground state $|0\rangle$ with $\hat{b}|0\rangle = 0$, and excited states $|n\rangle \equiv \frac{1}{\sqrt{n!}}(\hat{b}^{\dagger})^n|0\rangle$ with energy $E_n = (n + \frac{1}{2})\hbar\omega$.

- (a) (5pts) Let $\hat{H}' = \hat{H}_0 f \cdot \hat{x}$, where f is a real constant. \hat{H}' is related to \hat{H}_0 by $\hat{U} \cdot \hat{H}' \cdot \hat{U}^{\dagger} = \hat{H}_0 + c$. Here c is a real constant, $\hat{U} = \exp(-iX\hat{p} iP\hat{x})$ is a unitary operator with real parameters X and P. Solve X and P and c in terms of f, m, ω, \hbar .
- (b) (5pts) Denote the normalized ground state of \hat{H}' by $|0'\rangle$. Evaluate $\langle 0'|\hat{x}|0'\rangle$ and $\langle 0'|\hat{p}|0'\rangle$. [Hint: result of (a) may help.]
- (c) (5pts) At t = 0, let the state $|\psi(t = 0)\rangle = |0'\rangle$, evolve this state under \hat{H}_0 , namely $|\psi(t)\rangle = \exp(-\frac{i}{\hbar}\hat{H}_0 \cdot t)|\psi(t = 0)\rangle$. Evaluate $\langle \psi(t)|\hat{x}|\psi(t)\rangle$ and $\langle \psi(t)|\hat{p}|\psi(t)\rangle$. [Hint: you can use either Schrödinger or Heisenberg picture, you can directly use the Heisenberg equations of motion for \hat{x} and \hat{p} and their solutions for harmonic oscillator]
- (d) (5pts) Define two Hermitian operators: $\hat{O}_1 = m^2 \omega^2 \hat{x}^2 \hat{p}^2$, $\hat{O}_2 = m \omega (\hat{x} \hat{p} + \hat{p} \hat{x})$. Their Heisenberg picture under \hat{H}_0 are $\hat{O}_{i,H}(t) = \exp(\frac{i}{\hbar} \hat{H}_0 \cdot t) \cdot \hat{O}_i \cdot \exp(-\frac{i}{\hbar} \hat{H}_0 \cdot t)$. Write down the Heisenberg equations of motion, $\frac{d}{dt} \hat{O}_{i,H}(t) = \dots$ for i = 1, 2. The right-hand side of these equations should be expressed in terms of $\hat{O}_{j,H}(t)$ with j = 1, 2.
 - (e) (5pts) Solve the equations in (d). Namely solve $\hat{O}_{i,H}(t)$ in terms of $\hat{O}_{j,H}(t=0)$.
- 2. Consider a spin-1/2 moment. Its state belongs to a two-dimensional Hilbert space, with complete orthonormal basis $|\uparrow\rangle$ and $|\downarrow\rangle$ (spin up and down). Consider a periodic magnetic

field B(t) with period T>0, $B(t)=\begin{cases} B, & \text{if } n<\frac{t}{T}< n+\frac{1}{2} \text{ for some integer } n;\\ -B, & \text{if } n+\frac{1}{2}<\frac{t}{T}< n+1 \text{ for some integer } n. \end{cases}$ Here B is a positive constant. The Hamiltonian is $\hat{H}(t)=-B(t)\cdot\sigma_3$, where $\sigma_3=\begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}$ is Pauli matrix.

- (a). (5pts) Write down the explicit form of time-evolution operator $\hat{U}(t)$, in terms of Pauli matrices. [Hint: although \hat{H} is time-dependent, \hat{H} at different time commute]
- (b). (5pts) Given the state at t=0 as $|\psi(t=0)\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix}$ under the above basis. Compute the time-dependent expectation values $\langle \psi(t)|\sigma_1|\psi(t)\rangle$, $\langle \psi(t)|\sigma_2|\psi(t)\rangle$, $\langle \psi(t)|\sigma_3|\psi(t)\rangle$.
- (c). (5pts) Compute the "retarded Green's function", the Fourier transform of $\hat{U}(t)$ over t>0, $\hat{G}(\omega)=i\int_0^\infty {\rm Tr}[\hat{U}(t)]\,e^{i\omega t}\,{\rm d}t$. Find out the "energy spectrum" namely the poles of $\hat{G}(\omega)$. Here Tr is the (matrix) trace. [Hint: to make this integral absolutely convergent, you can add an infinitesimal positive imaginary part to ω , namely compute $\tilde{G}(\omega+i\delta)$ and eventually take $\delta\to +0$ limit]

(NOT REQUIRED) At any instant of time, $\hat{H}(t)$ has the same eigenvalues $\pm B$. However these are not the poles of $\tilde{G}(\omega)$ solved in (c). When the period $T \to +\infty$, will the spectrum in (c) goes back to the spectrum of a time-independent Hamiltonian with only two poles at $\omega = \pm B/\hbar$?

- 3. Consider the spin-1/2 moment defined in Problem 2. Under the $|\uparrow\rangle$, $|\downarrow\rangle$ basis, the Hamiltonian at time t is $\hat{H}(t) = -B\cos(\omega t)\sigma_1 B\sin(\omega t)\sigma_2$. Here B, ω are positive constants, $\sigma_{1,2}$ are Pauli matrices.
- (a). (5pts) The time evolution operator $\hat{U}(t)$ satisfies $i\hbar \frac{d}{dt}\hat{U}(t) = \hat{H}(t) \cdot \hat{U}(t)$, and $\hat{U}(t=0) = \hat{\mathbb{1}}$, and is a 2 × 2 matrix under the $|\uparrow\rangle, |\downarrow\rangle$ basis. Assume that B is a small parameter, compute $\hat{U}(t)$ up to B^2 order by the Dyson series.

(b). (DIFFICULT) (5pts) The time evolution can be solved exactly. Assume the solution to the Schrödinger equation, $i\hbar \frac{d}{dt}|\psi,t\rangle = \hat{H}(t)|\psi,t\rangle$, is $|\psi,t\rangle = c_1(t)|\uparrow\rangle + c_2(t)e^{i\omega\cdot t}|\downarrow\rangle$. Solve $c_1(t)$ and $c_2(t)$ in terms of the initial values $c_1(t=0)$ and $c_2(t=0)$, and therefore solve the unitary time evolution operator $\hat{U}(t)$ as a 2×2 matrix under $|\uparrow\rangle,|\downarrow\rangle$ basis. [note that $\begin{pmatrix} c_1(t) \\ c_2(t)e^{i\omega\cdot t} \end{pmatrix} = \hat{U}(t) \cdot \begin{pmatrix} c_1(t=0) \\ c_2(t=0) \end{pmatrix}$ under the time-independent basis $|\uparrow\rangle,|\downarrow\rangle$]