

Lossy Circular Waveguide

In mode analysis it is usually the primary goal to find a *propagation constant*. This quantity is often, but not always, real valued; if the analysis involves some lossy part, such as a nonzero conductivity or an open boundary, the eigenvalue is complex. In such situations, the real and imaginary parts have separate interpretations:

- The real part is the propagation constant
- The imaginary part is the attenuation constant, measuring the damping in space

Model Definition

The mode analysis study for electromagnetic waves solves the eigenvalue problem

$$\nabla \times (\mu^{-1} \nabla \times \mathbf{E}) - \lambda \mathbf{E} = 0$$

where

$$\lambda = k_0^2 \left(\varepsilon_{\rm r} - \frac{j\sigma}{\omega} \right)$$

is the eigenvalue. For time-harmonic problems, the electric field for out-of-plane propagation can be written as

$$\mathbf{E}(\mathbf{r},t) = \operatorname{Re}(\tilde{\mathbf{E}}(\mathbf{r})e^{j\omega t - \alpha z})$$

where z is the known out-of-plane direction.

The spatial parameter, $\alpha = \delta_z + j\beta = -\lambda$, can have a real part and an imaginary part. The propagation constant is equal to the imaginary part, and the real part, δ_z , represents the damping along the propagation direction.

VARIABLES INFLUENCED BY MODE ANALYSIS

The following table lists the variables that are influenced by the mode analysis in terms of the eigenvalue lambda:

NAME	EXPRESSION	CAN BE COMPLEX	DESCRIPTION
beta	imag(-lambda)	No	Propagation constant
dampz	real(-lambda)	No	Attenuation constant

NAME	EXPRESSION	CAN BE COMPLEX	DESCRIPTION
dampzdB	20*log10(exp(1))* dampz	No	Attenuation constant per meter, dB
neff	j*lambda/k0	Yes	Effective mode index

This two-dimensional model finds the modes of a circular waveguide with walls made of a nonperfect conductor, which is copper in this case. The losses in the walls lead to attenuation of the propagating wave. The propagation constant β is obtained as the imaginary part of $\alpha = -\lambda$ and the damping δ_z is obtained as the real part. Since the wave in the waveguide is attenuated in the z direction as $e^{-\delta zz}$, the attenuation in dB scale is calculated using the formula

$$\Delta_{dB} = 20\delta_z \log e$$

Results and Discussion

The eigenvalue solver returns six eigenvalues. Table 1 shows the six effective mode indices, n_{eff} , closest to 1, where

$$n_{\rm eff} = j \frac{\lambda}{k_0}$$

and k_0 is the wave number in vacuum. The table also lists the propagation constant and damping in dB/m for each eigenmode.

TABLE I: EFFECTIVE MODE INDICES, PROPAGATION CONSTANTS, AND ATTENUATION.

Effective mode index	Propagation constant (I/m)	Attenuation constant per meter (dB/m)
0.9308 - 2.2082·10 ⁻⁶ i	19.5071	4.0199·10 ⁻⁴
0.9733 - 2.1116·10 ⁻⁶ i	20.3992	3.844·10 ⁻⁴
0.9566 - 1.7954·10 ⁻⁶ i	20.0486	3.2684·10 ⁻⁴
0.9566 - 1.7954·10 ⁻⁶ i	20.0486	3.2684·10 ⁻⁴
0.9844 - 9.38·10 ⁻⁷ i	20.6324	1.7076·10 ⁻⁴
0.9844 - 9.38·10 ⁻⁷ i	20.6324	1.7076·10 ⁻⁴

The default surface plot shows the norm of the electric field for the effective mode index $0.9308 - 2.208 \cdot 10^{-6} j$. This plot is shown in Figure 1.

Figure 1: The surface plot visualizes the norm of the electric field for the effective mode index $0.9308 - 2.208 \cdot 10^{-6}$ j.

Application Library path: RF_Module/Transmission_Lines_and_Waveguides/ lossy_circular_waveguide

Modeling Instructions

From the File menu, choose New.

NEW

In the New window, click Model Wizard.

MODEL WIZARD

I In the Model Wizard window, click **2** 2D.

- 2 In the Select Physics tree, select Radio Frequency>Electromagnetic Waves, Frequency Domain (emw).
- 3 Click Add.
- 4 Click Study.
- 5 In the Select Study tree, select Preset Studies for Selected Physics Interfaces> Mode Analysis.
- 6 Click M Done.

GEOMETRY I

Circle I (c1)

- I In the Geometry toolbar, click Circle.
- 2 In the Settings window for Circle, locate the Size and Shape section.
- 3 In the Radius text field, type 0.5.
- 4 Click Build All Objects.

ADD MATERIAL

- I In the Home toolbar, click **Add Material** to open the Add Material window.
- 2 Go to the Add Material window.
- 3 In the tree, select Built-in>Air.
- 4 Click Add to Component in the window toolbar.

MATERIALS

Air (mat1)

By default the first material you add apply for all domains.

Next, specify copper as the material on the boundaries.

ADD MATERIAL

- I Go to the Add Material window.
- 2 In the tree, select Built-in>Copper.
- **3** Click **Add to Component** in the window toolbar.
- 4 In the Home toolbar, click **Add Material** to close the Add Material window.

MATERIALS

Copper (mat2)

- I In the Settings window for Material, locate the Geometric Entity Selection section.
- 2 From the Geometric entity level list, choose Boundary.
- 3 From the Selection list, choose All boundaries.

ELECTROMAGNETIC WAVES, FREQUENCY DOMAIN (EMW)

Impedance Boundary Condition I

- I In the Model Builder window, under Component I (compl) right-click Electromagnetic Waves, Frequency Domain (emw) and choose the boundary condition Impedance Boundary Condition.
- 2 In the Settings window for Impedance Boundary Condition, locate the Boundary Selection section.
- 3 From the Selection list, choose All boundaries.

MESH I

- I In the Model Builder window, under Component I (compl) click Mesh I.
- 2 In the Settings window for Mesh, locate the Physics-Controlled Mesh section.
- 3 In the table, clear the Use check box for Electromagnetic Waves, Frequency Domain (emw).

Solve for the 6 effective mode indices closest to 1.

STUDY I

Steb 1: Mode Analysis

- I In the Model Builder window, under Study I click Step I: Mode Analysis.
- 2 In the Settings window for Mode Analysis, locate the Study Settings section.
- 3 Select the Desired number of modes check box.
- 4 In the Home toolbar, click **Compute**.

RESULTS

Electric Field (emw)

The default plot shows the electric field norm for the lowest mode found; compare with Figure 1.

Calculate the propagation constant and the attenuation constant (in dB) for each effective mode index.

Global Evaluation 1

- I In the Results toolbar, click (8.5) Global Evaluation.
- 2 In the Settings window for Global Evaluation, click Replace Expression in the upper-right corner of the Expressions section. From the menu, choose Component I (compl)> Electromagnetic Waves, Frequency Domain>Global>emw.beta - Propagation constant rad/m.
- 3 Click **= Evaluate**. Compare the results with those in the second column of Table 1.
- 4 Click Replace Expression in the upper-right corner of the Expressions section. From the menu, choose Component I (compl)>Electromagnetic Waves, Frequency Domain>Global> emw.dampzdB - Attenuation constant per meter, dB - dB/m.
- 5 Click **= Evaluate**. Compare with the third column of Table 1.