Homework 1

Christopher Achenbach

Problem 1

Show that $|A| = \infty$ if and only if $|\mathcal{P}(A)| = \infty$.

Suppose $|A| = \infty$. The definition of a powerset states that $\mathcal{P}(A) = \{x : x \subseteq A\}$. Since there are an infinite number of elements in A, we could create infinite subsets consisting of only 1 element each,

$$\{a_k\} \in \mathcal{P}(A)$$
 for any $k \in \mathbb{N}$

Since there will be infinite elements in $\mathcal{P}(A)$, we can conclude that: If $|A| = \infty$, Then $|\mathcal{P}(A)| = \infty$.

Suppose $|\mathcal{P}(A)| = \infty$, and suppose |A| = n, such that n is finite. Since |A| = n, this would conclude that $|\mathcal{P}(A)| = 2^n$, but this is impossible because 2^n is finite, and our supposition says that $|\mathcal{P}(A)|$ is infinite. Thus, If $|P(A)| = \infty$, Then $|A| = \infty$ must also be true.

Problem 2.

Suppose |A| = m and |B| = n. Since the definition of union is

$$A \cup B = \{x : x \in A \text{ or } x \in B\}$$

There is a possibility that all elements from A and from B are included in the union:

$$|A \cup B| \le |A| + |B| = m + n$$

For the intersection,

$$A \cap B = \{x : x \in A \text{ and } x \in B\}$$

each element x must be in both sets, so the cardinality can exceed neither m nor n,

$$|A \cap B| \le m$$
 and $|A \cap B| \le n$

Which can be rewritten in the form,

$$|A \cap B| \le \min(m, n)$$

Other Problems

1.4.4.
$$\mathcal{P}(\{\mathbb{R}, \mathbb{Q}\}) = \{\{\}, \{\mathbb{R}\}, \{\mathbb{Q}\}, \{\mathbb{R}, \mathbb{Q}\}\}$$

1.4.14.
$$|\mathcal{P}(\mathcal{P}(A))| = 2^{2^m}$$

1.4.15.
$$|\mathcal{P}(A \times B)| = 2^{m \cdot n}$$

1.4.20.
$$|\{X \subseteq \mathcal{P}(A) : |X| \le 1\}| = m + 1$$

1.5.1.a.
$$A \cup B = \{1, 3, 4, 5, 6, 7, 8, 9\}$$

1.5.1.b.
$$A \cap B = \{4, 6\}$$

1.5.1.c.
$$A - B = \{1, 3, 9, 7\}$$

1.5.3.a.
$$(A \times B) \cap (B \times B) = \{(1,2), (1,1)\}$$

1.5.3.g.
$$\mathcal{P}(A) - \mathcal{P}(B) = \{\{0\}, \{0, 1\}\}$$