L1-MIASH - ALGÈBRE LINÉAIRE I

FEUILLE DE TRAVAUX DIRIGÉS N° 2

Espaces vectoriels

Enseignant : H. El-Otmany

A.U.: 2013-2014

Exercice n°1 On définit sur $E = \mathbb{R}^2$:

1. l'addition \oplus par

$$(x,y) \oplus (x',y') = (x+x',y+y').$$

2. la multiplication externe \odot , ayant \mathbb{R} comme corps des scalaires, par

$$\lambda \odot (x,y) = (2x,0).$$

E muni de ces deux lois est-il un espace vectoriel sur \mathbb{R} ?

Exercice n°2 Pour x et y alors \mathbb{R}_+^* et λ réel, on pose

$$x \oplus y = xy \text{ et } \lambda \odot x = x^{\lambda}.$$

Montrer que (R_+^*, \oplus, \odot) est un \mathbb{R} -espace vectoriel.

Exercice n°3 Étudier la dépendance linéaire des vecteurs de \mathbb{R}^2 suivants :

- 1. $v_1 = (2, -3), v_2 = (-1, 1).$
- 2. $v_1 = (-3, 1), v_2 = (3, -1).$
- 3. $v_1 = (6, -4), v_2 = (12, -8).$

Exercice n°4 Les familles de \mathbb{R}^3 suivantes sont-elles libres ou liées?

- 1. $u_1 = (1, 1, 1), u_2 = (1, 1, -1).$
- 2. $u_1(1,0,-1), u_2=(-1,1,0), u_3=(0,-1,1).$
- 3. $u_{1}(1,1,0)$, $u_{2}=(0,1,1)$, $u_{3}=(1,0,1)$, $u_{4}=(-1,1,1)$.
- 4. $u_{1}(2,1,1), u_{2}=(3,1,-3), u_{3}=(-1,2,1).$
- 5. $u_{1}(9, -18, 27), u_{2} = (2, -4, 6).$

Les familles données ci-dessus sont-elles génératrices de \mathbb{R}^3 ? Lorsque que la réponse est négative on déterminera le sous-espace engendré et sa nature géométrique.

Exercice n°5

- 1. Montrer que $\mathbb C$ est un espace vectoriel sur $\mathbb C$ et sur $\mathbb R$.
- 2. $\mathbb R$ est-il un sous-espace du $\mathbb C$ -espace vectoriel $\mathbb C$?
- 3. Même question pour $\{\lambda(a+bi)|\lambda\in\mathbb{R}\}\$ où $a+bi\in\mathbb{C}$ est fixé.

Exercice n°6 Soit E le \mathbb{R} -espace vectoriel \mathbb{C} .

- 1. Montrer que E est engendré
 - par les vecteurs 1 et i.

- par les vecteurs 1 et j.
- 2. Déterminer des systèmes générateurs de E_2 et E_3 .
- 3. Que peut-on dire si l'on considère \mathbb{C} comme espace vectoriel sur \mathbb{C} ?

Exercice n°7 Soit E un \mathbb{R} -espace vectoriel. Soient F et G deux sous-espaces vectoriels de E.

- 1. Démontrer : $F \cup G$ est un s.e.v. de $E \iff F \subset G$ ou $G \subset F$.
- 2. En déduire que si $F \neq E$ et $G \neq E$, alors $F \cup G \neq E$.

Exercice n°8 Dans l'espace vectoriel \mathbb{R}^3 , les sous-ensembles suivants sont-ils des sous-espaces vectoriels?

- 1. $A = \{(x, y, z) \in \mathbb{R}^3 \mid x + y 4z = 0\}.$
- 2. $B = \{(x, y, z) \in \mathbb{R}^3 \mid x 2y + z = 0\}.$
- 3. $C = \{(x, y, z) \in \mathbb{R}^3 \mid xy z = 0\}.$
- 4. $D = \{(x, y, z) \in \mathbb{R}^3 \mid x 2y = 0 \text{ et } z x = 0\}.$
- 5. $E = \{(x, y, x) \mid x, y \in \mathbb{R}\}.$
- 6. $F_{\alpha} = \{(x + \alpha, -x, x + z) \mid x, z \in \mathbb{R}\}$ avec α fixé.

Déterminer (s'il y a lieu) des systèmes générateurs, décider si le sous-espace est une droite ou un plan de \mathbb{R}^3 , donner les équations paramétriques et cartésiennes.

Exercice n°9

- 1. Soit E le sous-espace de \mathbb{R}^4 engendré par les vecteurs : u=(-1,-2,1,1) et v=(-4,-6,0,2). Calculer la dimension de E.
- 2. Soit F le sous-ensemble de \mathbb{R}^4 formé des vecteurs (x_1, x_2, x_3, x_4) tels que $x_1 \frac{1}{3}x_3 = 0$ et $-x_1 x_3 + x_4 = 0$. Montrer que F est un sous-espace vectoriel de \mathbb{R}^4 .
- 3. Calculer les dimensions de $E \cap F$ et du sous-espace vectoriel de \mathbb{R}^4 , E + F, engendré par $E \cup F$.

Exercice n°10 Dans \mathbb{R}^4 , comparer les sous-espaces F et G suivants :

$$F = \text{Vect}\{(1,0,1,1), (-1,-2,3,-1), (-5,-3,1,-5)\}; \quad G = \text{Vect}\{(-1,-1,1,-1), (4,1,2,4)\}.$$

Exercise n°11 Soient $u_1 = (1, 1, 1)$, $u_2 = (2, -2, -1)$ et $u_3 = (1, 1, -1)$. Soient $E = \{(x, y, z) \in \mathbb{R}^3, y + z = 0\}$ et $F = \text{Vect}\{u_1, u_2\}$.

- 1. Montrer que E est un sous-espace vectoriel de \mathbb{R}^3 . Déterminer une base de E.
- 2. La famille (u_1, u_2, u_3) est-elle libre? Est-ce que $u_3 \in F$?
- 3. Est-ce que $u_3 \in E$?
- 4. Donner une base de $E \cap F$.
- 5. Soit $u_4 = (-1, 7, 5)$, est-ce que $u_4 \in E$? est-ce que $u_4 \in F$?

Exercice n°12 Soit E l'espace vectoriel des suites de nombres réels et $\mathcal{E} \subset E$ l'ensemble des suites $(u_n)_{n\geqslant 0}$ vérifiant la relation de récurrence :

$$u_{n+2} = u_{n+1} + 2u_n.$$

- 1. Montrer que \mathcal{E} est un sous-espace vectoriel de E.
- 2. Montrer que les suites de terme général $a_n = (-1)^n$ et $b_n = 2^n$ forment une famille libre de \mathcal{E} .
- 3. Tenant compte du fait qu'une suite (u_n) est entièrement déterminée par la donnée de u_0 et u_1 , montrer que (a_n) et (b_n) forment une base de \mathcal{E} .
- 4. Déterminer les suites (u_n) de \mathcal{E} telles que $u_0 = 1$ et $u_1 = -2$.

Exercice n°13 Soient $E = \text{Vect}\{u_1, u_2, u_3\}$ un sous-espace vectoriel de \mathbb{R}^3 avec $u_1 = (4, -2, -2)$; $u_2 = (-3, 6, 9)$; $u_3 = (1, 4, 7)$; $u_4 = (-1, -1, -2)$

- 1. Est-ce que (u_1, u_2, u_3, u_4) est une base de \mathbb{R}^3 ?
- 2. Montrer que (u_1, u_2) est une base de E.
- 3. Déterminer une ou plusieurs équations caractérisant E.
- 4. Compléter une base de E en une base de \mathbb{R}^3

Exercice n°14 Soit $E = \{P(X) \in \mathbb{R}_3[X], P(-1) = 0, P(1) = 0\}$

- 1. Montrer que E est un sous-espace vectoriel de $\mathbb{R}_3[X]$.
- 2. Déterminer une base et la dimension de E.

Exercice n°15 Dans le \mathbb{R} -espace vectoriel $\mathcal{C}^{\infty}([a,b],\mathbb{R})$ des applications de classe \mathcal{C}^{∞} de [a,b] dans \mathbb{R} , montrer que les familles suivantes sont libres :

- 1. $\{x, e^x\}$
- 2. $\{e^x, e^{2x}\}$
- 3. $\{x, \sin(x)\}$
- 4. $\{\sin(x), \cos(x)\}$

Exercice n°16 Soit $E = \{(x, y, z, t) \in \mathbb{R}^4 : x + y + z + t = 0, x + 2y - z + t = 0, -x - y + 2z + 2t = 0\}$ et $F = \{(x, y, z, t) \in \mathbb{R}^4 : x + 3y + 4t = 0\}$.

- 1. Donner une base de ces deux sous-espaces vectoriels de \mathbb{R}^4 .
- 2. A-t-on $E \oplus F = \mathbb{R}^4$?
- 3. Soit $a=(1,3,0,4)\in\mathbb{R}^4$ et on pose $G=\mathrm{Vect}\{a\}$, a-t-on $G\oplus F=\mathbb{R}^4$?

Exercice n°17 Soient $E = \{(x, y, z, t) \in \mathbb{R}^4 : x + z = 0, y + t = 0, \}$ et $F = \text{Vect}\{u_1, u_2, u_3\}$ tel que $u_1 = (1, 1, 1, 1), u_2 = (1, -1, 1, -1)$ et $u_3 = (1, 0, 1, 0).$

On admettra que E est un espace vectoriel.

- 1. Donner une base de E et en déduire sa dimension.
- 2. Déterminer une base de F.
- 3. Donner une (ou plusieurs) équation(s) qui caractérise(nt) F.
- 4. Donner une famille génératrice de E + F.
- 5. Montrer que : $E \oplus F = \mathbb{R}^4$