CP-414 Winter 2025

Assignment 1

Due: Wednesday, January 29 (11:30 PM)

- **1.** Give a **state transition diagram** of **DFA**s recognizing the following languages (the alphabet is **{0,1}**):
 - a) L1 =the set of all strings that start with 1 or have odd length
 - b) L2 =the set of all strings that start with $\mathbf{0}$ and have even length
 - c) L3 =the set of all strings that end with 1 and have even length
 - d) L1 ∩ L2
 - e) L2UL3
 - f) L2 ∩ L3
 - g) The set of all strings such that every occurrence of 1 is followed by at least two 0s, e.g., 0001000100, 100, 0, 000000001000000100100 are in this language, but 1011, 1, 101 are not.
 - h) The set of all strings that does not contain pattern **0110**.
 - i) The set of all strings except 100 and 01.

2. For each **NFA** below:

(1) start state q₁, accepting state q₂

	0	1	3
-> q ₁	$\{q_2\}$	$\{q_1,q_2\}$	Ø
* q2	{q ₁ }	Ø	Ø

(2) start state q₁, accepting state q₂

	0	1	3
-> q ₁	Ø	Ø	$\{q_3\}$
* q2	$\{q_2, q_3\}$	{q ₃ }	Ø
q ₃	{q ₃ }	$\{q_{2}\}$	{q ₃ }

- a) provide **NFA** state transition diagram
- b) use the construction given in **Theorem 1.39** to convert the **NFA** to equivalent **DFA**. **Show your work** (including **ALL** intermediate steps).
- **3.** Give nondeterministic finite automata accepting the set of strings of **0**'s and **1**'s such that there are two **1**'s separated by a number of positions that is a multiple of 3. (Note: 0 is not an allowable multiple of 3, so **11** is not in language while **0100110** is). Try to take advantage of nondeterminism as much as possible.
- **4.** Let $D = \{w \mid w \text{ contains an even number of } \mathbf{0}\text{'s \& an odd number of } \mathbf{1}\text{'s \& does not contain the substring } \mathbf{01}\}$. Give a **DFA** with five states that recognizes D. Hint: describe D more simply. Justify that the simpler description defines the same language.
- **5.** Problem **1.27** from the text.

Submit single PDF file to A1 drop box on MyLearningSpace.