Appello – Parte 2

08/07/2021 — versione 1 —

32 pt - durata 1h 30' - MS Forms

Gli studenti aventi diritto a svolgere la **prova ridotta** del 30% secondo la L.170/2010 (indicazioni **Multichance** team) **NON** svolgono i quesiti contrassegnati con (***)

TEST - 15 pt

1 — 2 pt

Si consideri la funzione $f(x) = e^{2x}$ e il suo interpolante polinomiale $\Pi_5 f(x)$ su n+1=6 nodi equispaziati in [-1,1]. Senza costruire l'interpolante $\Pi_5 f(x)$, si fornisca una stima dell'errore di interpolazione $e_5(f) = \max_{x \in [-1,1]} |f(x) - \Pi_5 f(x)|$.

0.0807

2-1 pt (***) No Multichance

Il numero dei nuovi casi di positività al Covid 19 in Italia nel periodo 29 Giugno – 6 Luglio 2021 è riportato nel vettore seguente:

>> giorni = [1:8];

>> casi = [679 776 882 794 932 808 480 907];

Si stimi il valore dei nuovi casi di positività atteso per la giornata di oggi, 8 Luglio, utilizzando un polinomio di grado 2 che approssimi i dati nel senso dei minimi quadrati.

584.6429

3-1 pt

Si consideri la funzione $f(x) = e^{x/2}$ e il suo interpolante polinomiale quadratico a tratti $\Pi_2^H f(x)$ su 3 sottointervalli equispaziati di [0,3] e con tutti i nodi equispaziati. Si riporti il valore $\Pi_2^H f(0.75)$.

1.4563

4-2 pt

Si consideri la funzione $f(x)=e^x$ nell'intervallo [-1,2] e il suo interpolante polinomiale $\Pi_n f(x)$ di grado $n\geq 1$ su n+1 nodi equispaziati. Quanto vale l'approssimazione di $\int_{-1}^2 \Pi_n f(x)\,dx$ tramite la formula dei trapezi (semplice)?

11.6354

5-1 pt

Si consideri l'approssimazione dell'integrale $I(f) = \int_a^b f(x) dx$, dove $f \in C^{\infty}([a, b])$, tramite una formula di quadratura composita accurata di ordine p = 2. Sapendo che per $M_1 = 10$ sottointervalli equispaziati di [a, b] si ha un errore pari a $e_1(f) = 10^{-1}$, si stimi l'errore $e_2(f)$ commesso con $M_2 = 100$ sottointervalli.

 10^{-3}

$$6-2$$
 pt (***) No Multichance

Si consideri l'approssimazione dell'integrale doppio $I(f)=\int_a^b\int_c^df(x,y)\,dydx$ tramite la formula del punto medio composita, ovvero

$$I_{pm}^{c}(f) = \frac{\left(b-a\right)\left(d-c\right)}{M} \sum_{k=1}^{M} f(\overline{x}_{k}, \overline{y}_{k}),$$

dove M è il numero dei rettangoli di uguale area in cui è partizionato il rettangolo $[a,b]\times [c,d]$, mentre $(\overline{x}_k,\overline{y}_k)$ sono i corrispondenti punti medi.

Posti $a=c=0,\,b=d=1$ e $f(x,y)=e^{(2x+y)},$ si riporti il valore di $I^c_{pm}(f)$ per M=4.

5.2124

7-1 pt

Si consideri il seguente problema di Cauchy:

$$\begin{cases} y'(t) = -\sqrt{\frac{17 y(t)}{17 + t^2}} & t \in (0, 10), \\ y(0) = 9. \end{cases}$$

Utilizzando il metodo di Eulero in avanti con passo h > 0, si riporti il valore calcolato di u_1 in termini di h, ovvero l'approssimazione di $y(t_1)$, essendo $t_n = n h$ per $n = 0, \ldots, N_t$.

9 - 3h

8-1 pt

Si consideri il seguente problema ai limiti:

$$\begin{cases} -u''(x) - 1000 u'(x) = \gamma & x \in (0,1), \\ u(0) = u(1) = 0, \end{cases}$$

dove $\gamma \in \mathbb{R}$ è un parametro. Si supponga di approssimare tale problema utilizzando il metodo delle differenze finite centrate e passo di discretizzazione h>0, ottenendo così la soluzione numerica $\{u_j\}_{j=0}^{N+1}$ nei corrispondenti nodi $\{x_j\}_{j=0}^{N+1}$. Assumendo che la soluzione esatta $u \in C^4([0,1])$ sia nota e che l'errore per $h=h_1=10^{-3}$ sia $E_{h_1}=\max_{j=0,\dots,N+1}|u(x_j)-u_j|=4\cdot 10^{-3}$, si riporti il valore stimato dell'errore E_{h_2} corrispondente alla scelta $h=h_2=5\cdot 10^{-4}$.

 10^{-3}

9-2 pt

Si consideri il seguente problema ai limiti:

$$\left\{ \begin{array}{ll} -u''(x) + 40 \, u'(x) = 0 & x \in (0,1), \\ u(0) = 3, \quad u(1) = 0. \end{array} \right.$$

Si approssimi il problema utilizzando il metodo delle differenze finite centrate con tecnica Upwind e passo di discretizzazione h=1/10 ottenendo la soluzione numerica $\{u_j\}_{j=0}^{N+1}$ nei corrispondenti nodi $\{x_j\}_{j=0}^{N+1}$ per (N+1)=10. Si risolva il problema e si riporti il valore della soluzione numerica u_9 , ovvero l'approssimazione di $u(x_9)$.

2.4

$10-2 ext{ pt}$ (***) No Multichance

Si consideri il seguente problema ai limiti:

$$\begin{cases} -(\mu(x) u'(x))' = 5 & x \in (0,1), \\ u(0) = u(1) = 0, \end{cases} \text{ dove } \mu(x) = \begin{cases} 1 & x \in (0,1/2), \\ 2 & x \in [1/2,1), \end{cases}$$

Dato il passo h > 0 e un generico nodo \overline{x} , il termine $-(\mu(x) u'(x))'$ può essere approssimato nel nodo \overline{x} tramite il seguente schema alle differenze finite

$$-\frac{1}{h^2}\left[\mu(\overline{x}+h/2)\left(u(\overline{x}+h)-u(\overline{x})\right)-\mu(\overline{x}-h/2)\left(u(\overline{x})-u(\overline{x}-h)\right)\right].$$

Si approssimi il problema ai limiti utilizzando il metodo delle differenze finite precedente con passo di discretizzazione h=1/2 ottenendo la soluzione numerica $\{u_j\}_{j=0}^{N+1}$ nei corrispondenti nodi $\{x_j\}_{j=0}^{N+1}$ per (N+1)=2. Si risolva il problema e si riporti il valore della soluzione numerica u_1 , ovvero l'approssimazione di u(0.5).

$$\frac{5}{12} = 0.4167$$

ESERCIZIO – 17 pt

Si consideri il seguente sistema di Equazioni Differenziali Ordinarie del primo ordine nella forma

$$\begin{cases}
\frac{d\mathbf{y}}{dt}(t) = A\mathbf{y}(t) + \mathbf{g}(t) & t \in (0, t_f), \\
\mathbf{y}(0) = \mathbf{y}_0,
\end{cases}$$
(1)

dove $\mathbf{y}(t) = (y_1(t), y_2(t), \dots, y_m(t))^T$, $A \in \mathbb{R}^{m \times m}$, $\mathbf{g}(t) : (0, t_f) \to \mathbb{R}^m$ e $\mathbf{y}_0 \in \mathbb{R}^m$, per $m \ge 1$.

In particolare, consideriamo m = 9 e A = tridiag(5/2, -2, -1/2).

Punto 1) — 2 pt (***) No Multichance

Con riferimento al generico sistema di Equazioni Differenziali Ordinarie nella forma (1), si riporti la definizione di zero-stabilità in relazione al metodo di Eulero in avanti. Si definisca tutta la notazione utilizzata.

Spazio per risposta lunga

Punto 2) — 3 pt

Per il problema (1) con $t_f = +\infty$ e $\mathbf{g} = \mathbf{0}$ si ricavi la condizione di assoluta stabilità per il metodo di Eulero in avanti. Si illustri la procedura seguita.

0 < h < 0.4693

Spazio per risposta lunga

Punto 3) — 3 pt

Si pongano ora $t_f = 10$, $\mathbf{g}(t) = (1 + 2\sin(\pi t))$ 1 e $\mathbf{y}_0 = \mathbf{2}$ per il problema (1).

Si approssimi tale problema tramite il metodo di Eulero in avanti con passo di discretizzazione h=0.1 utilizzando la funzione Matlab[®] eulero_avanti_sistemi.m. Dopo aver indicato i tempi discreti $t_n=n\,h$ per $n=0,1,\ldots,N_h$ e $h=\frac{t_f}{N_h}$, si riportino:

- i valori delle approssimazioni $u_{5,1}$ e u_{5,N_h} rispettivamente di $(\mathbf{y}(t_1))_5$ e $(\mathbf{y}(t_f))_5$;
- il valore minimo $u_{5,min} = \min_{n=0,\dots,N_h} u_{5,n}$ e il tempo discreto $t_{5,min} = \operatorname{argmin}_{n=0,\dots,N_h} u_{5,n} \text{ corrispondente a } u_{5,min}.$

 $u_{5,1} = 2.1000$, $u_{5,N_b} = 1.1223$, $u_{5,min} = 1.0721$, $t_{5,min} = 8.1$

Spazio per risposta breve

Punto 4) — 2 pt

Con i dati di cui al Punto 3) e assumendo che la soluzione esatta al tempo $t_f=10$ del problema (1) nella componente 5 sia

$$y_5(t_f) = (\mathbf{y}(10))_5 = 1.01702435,$$

si calcolino gli errori $E_h=|u_{5,N_h}-y_5(t_f)|$ ottenuti con il metodo di Eulero in avanti e corrispondenti ai passi $h_1=10^{-2},\,h_2=5\cdot 10^{-3},\,h_3=2.5\cdot 10^{-3}$ e $h_4=1.25\cdot 10^{-3}$. Si riportino i valori E_{h_i} per $i=1,\ldots,4$.

0.0063, 0.0030, 0.0015, 0.0007

Spazio per risposta breve

Punto 5) — 2 pt

Si utilizzino gli errori E_{h_i} ottenuti al Punto 4) per stimare algebricamente l'ordine di convergenza p del metodo di Eulero in avanti. Si giustifichi la risposta data e la si motivi alla luce della teoria.

$$p = 1.0171$$

Spazio per risposta lunga

Punto 6) — 2 pt

Si vuole ora approssimare il sistema di Equazioni Differenziali Ordinarie (1) con i dati di cui al Punto 3) tramite il metodo di *Eulero all'indietro* con passo h=0.1. Si riporti il valore dell'approssimazione $u_{5,1}$ di $(\mathbf{y}(t_1))_5$ così ottenuta.

$$u_{5,1} = 2.1610$$

Spazio per risposta breve

Punto 7) — 3 pt (***) No Multichance

Si vuole ora applicare al sistema di Equazioni Differenziali Ordinarie nella forma (1) il metodo di Runge-Kutta associato alla seguente tabella di Butcher

$$\begin{array}{c|cccc}
1/4 & 1/4 & 0 \\
3/4 & 1/2 & 1/4 \\
\hline
0 & 1/2 & 1/2
\end{array}$$

Si implementi in Matlab[®] il metodo precedente e lo si utilizzi per risolvere il sistema di Equazioni Differenziali Ordinarie (1) con i dati di cui al Punto 3) usando il passo h=0.1. Si riportino i valori delle approssimazioni $u_{5,1}$ e u_{5,N_h} così ottenute.

$$u_{5,1} = 2.1312, \quad u_{5,N_h} = 1.0171$$

Spazio per risposta breve