PROVE D'ESAME 2025-2024- 2023 RELATIVA ALLA PARTE DELLA SOLA ALGEBRA RELAZIONALE. [NO SQL]. PRESENTI ANCHE ESERCIZI DI RIVISTE ONLINE.

Documento a cura di Simone Remoli. Parte3.

Prova presa da dispense online.

Sia dato lo schema relazionale:

Missione(<u>Codice</u>, Città, DataPartenza, Scopo, DurataPrevista) Agente(<u>Codice</u>, Nome, Cognome, Specializzazione) Partecipa(CodiceMissione, CodiceAgente, Ruolo).

Query1: Determinare il codice delle missioni che hanno la minima durata prevista.

Effettuo una rinomina della tabella missione.

 $ho_{ ext{Codice1}, ext{ Città1}, ext{ DataPartenza1}, ext{ Scopo1}, ext{ DurataPrevista1} \leftarrow ext{Codice}, ext{ Città}, ext{ DataPartenza}, ext{ Scopo}, ext{ DurataPrevista} ext{ (Missione)}$

A questo punto effettuo una proiezione sul codice1.

 $\pi_{\text{Codice1}}\left(\rho_{\text{Codice1},\,\text{Città1},\,\text{DataPartenza1},\,\text{Scopo1},\,\text{DurataPrevista1}}\leftarrow\text{Codice},\,\,\text{Città},\,\,\text{DataPartenza},\,\,\text{Scopo},\,\,\text{DurataPrevista}(\text{Missione})\right)$

Ora posso effettuare una **self-join** tra quest'ultima e la tabella Missione con la condizione che DurataPrevista > DurataPrevista1.

 $Missione \bowtie_{DurataPrevista>DurataPrevista1} (\rho_{Codice1,\ Citt\`{a}1,\ DataPartenza1,\ Scopo1,\ DurataPrevista1} \leftarrow Codice,\ Citt\grave{a},\ DataPartenza,\ Scopo,\ DurataPrevista(Missione))$

Da tutto questo prendo il codice delle missioni massime.

 π_{Codice} (Missione $\bowtie_{\mathrm{DurataPrevista}>\mathrm{DurataPrevista1}}$ ($\rho_{\mathrm{Codice1,\,Citt\grave{a}1,\,DataPartenza1,\,Scopo1,\,DurataPrevista1}}$ \leftarrow Codice, Citt\grave{a}, DataPartenza, Scopo, DurataPrevista(Missione)))

E infine ottengo la query finale:

 $\pi_{\text{Codice}}(\text{Missione}) - \pi_{\text{Codice}}(\text{Missione} \bowtie_{\text{DurataPrevista}>\text{DurataPrevista1}} (\rho_{\text{Codice1, Città1, DataPartenza1, Scopo1, DurataPrevista1}} \leftarrow \text{Codice, Città, DataPartenza, Scopo, DurataPrevista(Missione))})$

Query2: Determinare il codice degli agenti che hanno partecipato con lo stesso ruolo ad almeno due missioni iniziate nell'anno 2002.

Creiamo lo scenario.

Tabella Missione

Codice	Città	DataPartenza	Scopo	DurataPrevista
1	*	2002	Militare	3 anni
2	*	2003	X	4 anni
3	*	2005	X1	X anni
4	*	2002	ХЗ	X anni

Tabella Agente

Codice	Nome	Cognome	Specializzazione
45	Alessio	Bianchi	Alpino
46	Marco	Neri	*
47	Giulia	Verdi	*
48	Bob	Arancioni	*

Tabella Partecipa

CodiceMissione	CodiceAgente	Ruolo
1	45	Generale
4	45	Generale
2	45	Comandante
2	46	Soldato
3	46	Fante
1	47	Generale
4	47	Generale
3	47	Soldato
1	48	Soldato
4	48	Cecchino

La query si concentra prevalentemente sulla tabella Partecipa in quanto sono già presenti i codici degli agenti.

Decido di rinominare la tabella partecipa.

Però attenzione, prima ricordiamoci di selezionare le tuple delle missioni iniziate nel 2002 e di proiettarne il codice dalla rispettiva tabella.

$$\pi_{\text{Codice}}\left(\sigma_{\text{DataPartenza}='2002'}(\text{Missione})\right)$$

Codice	Città	DataPartenza	Scopo	DurataPrevista
1	*	2002	Militare	3 anni
2	*	2003	X	4 anni
3	*	2005	X1	X anni
4	*	2002	ХЗ	X anni

Out: **{1,4}**.

Ora effettuo un Join con la tabella partecipa sul codice della missione.

$$\pi_{\text{Codice}}\left(\sigma_{\text{DataPartenza}='2002'}(\text{Missione})\right)\bowtie_{\text{Codice}=\text{CodiceMissione}} \text{Partecipa}$$

A questo punto questa tabella va rinominata per effettuare un join stringente:

$$ho_{ ext{CodiceMissione1, CodiceAgente1, Ruolo1}} \leftarrow \pi_{ ext{Codice}}\left(\sigma_{ ext{DataPartenza}='2002'}(ext{Missione})
ight) oots_{ ext{Codice}= ext{CodiceMissione}} ext{Partecipa}$$

Ora arriva il punto focale: Self-Join.

Esso viene effettuato tra quest'ultima rinomina e la sua stessa tabella non rinominata.

La condizione di selezione è che CodiceAgente=CodiceAgente1, Ruolo=Ruolo1 e CodiceMissione!= CodiceMissione1.

$$(\pi_{\text{Codice}}(\sigma_{\text{DataPartenza}='2002'}(\text{Missione})) \bowtie_{\text{Codice}=\text{CodiceMissione}} \text{Partecipa})$$

$$igwedge ext{CodiceAgente=CodiceAgente1} \ \land ext{Ruolo=Ruolo1} \ \land ext{CodiceMissione}
eq ext{CodiceMissione1}$$

 $(\rho_{\text{CodiceMissione1, CodiceAgente1, Ruolo1}} \leftarrow \pi_{\text{Codice}}\left(\sigma_{\text{DataPartenza}='2002'}(\text{Missione})\right) \bowtie_{\text{Codice}=\text{CodiceMissione}} \text{Partecipa})$

Questa è la query finale.

Prova presa da dispense online.

Sia dato lo schema relazionale:

Computer(<u>Codice</u>, Descrizione, Marca)

Riparazione(CodiceComputer, Data, Guasto, Costo)

Query1: Determinare i dati dei computer di marca 'COMPAQ' che hanno subito almeno 3 riparazioni.

ATTENZIONE: QUESTA TIPOLOGIA NON È MAI CAPITATA. *ALMENO 3 RIPARAZIONI*

Intanto simuliamo ciò che sta succedendo.

Codice	Descrizione	Marca
1	Pc per giochi da tavolo	COMPAQ
2	Pc per programmare	Marca2
3	Pc per sviluppare istruzioni z64	COMPAQ
4	Pc per romperlo	COMPAQ

Non sono importanti i dati.

La tabella riparazione è la seguente:

CodiceComputer	Data	Guasto	Costo
1	Х		
1	X1		
1	X2		
2	X5		
2	X6		
2	X7		
2	X8		
1	Х3		
4	X4		

CodiceComputer	Data	Guasto	Costo
4	X5		
4	X6		

Il risultato sono il computer 1 e il computer 4.

Ora procediamo tramite l'algebra relazionale.

Intanto, come primo passo, mi preoccupo di selezionare le righe della tabella computer che hanno la marca pari a COMPAQ ed effettuo il JOIN con la tabella riparazione.

RIPARAZIONE $\bowtie_{\text{Codice}=\text{CodiceComputer}} (\sigma_{\text{Marca}='COMPAQ'}(\text{COMPUTER}))$

Ottengo tutte le riparazioni effettuate su computer di marca COMPAQ.

CodiceComput er	Data	Guasto	Costo	Descrizione	Marca
1	Х			Pc per giochi da tavolo	COMPAQ
1	X1			Pc per giochi da tavolo	COMPAQ
1	X2			Pc per giochi da tavolo	COMPAQ
1	Х3			Pc per giochi da tavolo	COMPAQ
4	X4			Pc per romperlo	COMPAQ
4	X5			Pc per romperlo	COMPAQ
4	X6			Pc per romperlo	COMPAQ

Non possiamo usare il metodo della self-join perché ci chiede almeno 3 riparazioni, non 2.

Quando un esercizio richiede di trovare entità coinvolte in almeno 3 eventi (o tuple), il metodo della self-join non è più adatto o quantomeno non è il più efficiente né elegante.

Quindi si procede con l'opzione del prodotto cartesiano.

Questa tabella sopra viene rinominata 2 volte.

A questo punto si effettua il prodotto cartesiano di tutte e tre le tabelle.

```
\pi_{\text{CodiceComputer, Data}}\left(\text{RIPARAZIONE} \bowtie_{\text{Codice=CodiceComputer}}\left(\sigma_{\text{Marca='}COMPAQ'}(\text{COMPUTER})\right)\right) \times \\ \rho_{\text{CodiceComputer1, Data1}} \leftarrow \text{CodiceComputer, Data}\left(\text{RIPARAZIONE} \bowtie_{\text{Codice=CodiceComputer}}\left(\sigma_{\text{Marca='}COMPAQ'}(\text{COMPUTER})\right)\right) \\ \times \rho_{\text{CodiceComputer2, Data2}} \leftarrow \text{CodiceComputer, Data}\left(\text{RIPARAZIONE} \bowtie_{\text{Codice=CodiceComputer}}\left(\sigma_{\text{Marca='}COMPAQ'}(\text{COMPUTER})\right)\right)
```

Ma, di questo prodotto cartesiano, dobbiamo imporre dei vincoli molto stringenti. Serve che Data != Data1 e Data1 != Data2 e Data!=Data2 ma anche che CodiceComputer = CodiceComputer1 = CodiceComputer2.

Quindi seleziono le tuple dove tutti e 3 i PC hanno lo stesso codice ma data di riparazione diversa.

Ma, di tutto questo prodotto cartesiano, bisogna proiettare il codice del computer.

$$\pi_{\text{CodiceComputer}} \left(\sigma_{\text{CodiceComputer} = \text{CodiceComputer} 1} \left(\pi_{\text{CodiceComputer}, \text{ Data}} \left(\text{RIPARAZIONE} \right) \bowtie_{\text{Codice} = \text{CodiceComputer}} \right) \\ \wedge \text{Data} \neq \text{Data1} \\ \wedge \text{Data} \neq \text{Data2} \\ \wedge \text{Data1} \neq \text{Data2} \right) \\ (\sigma_{\text{Marca} = 'COMPAQ'}(\text{COMPUTER}))) \times \rho_{\text{CodiceComputer}, \text{ Data1}} \leftarrow \text{CodiceComputer}, \text{ Data} \left(\text{RIPARAZIONE} \bowtie_{\text{Codice} = \text{CodiceComputer}} \right) \\ (\sigma_{\text{Marca} = 'COMPAQ'}(\text{COMPUTER}))) \times \rho_{\text{CodiceComputer}, \text{ Data2}} \leftarrow \text{CodiceComputer}, \text{ Data} \left(\text{RIPARAZIONE} \bowtie_{\text{Codice} = \text{CodiceComputer}} \right) \right) \\ (\sigma_{\text{Marca} = 'COMPAQ'}(\text{COMPUTER}))) \times \rho_{\text{CodiceComputer}, \text{ Data2}} \leftarrow \text{CodiceComputer}, \text{ Data} \left(\text{RIPARAZIONE} \bowtie_{\text{Codice} = \text{CodiceComputer}} \right) \right)$$

Questa è la query finale.

Query2: Determinare i codici dei computer di marca 'IBM' che hanno subito delle riparazioni esclusivamente per malfunzionamento alla scheda video (guasto = 'video').

Simuliamo ciò che sta succedendo.

Codice	Descrizione	Marca
1	Pc per giochi da tavolo	IBM
2	Pc per programmare	IBM
3	Pc per sviluppare istruzioni z64	IBM
4	Pc per romperlo	MARCA2

CodiceComputer	Data	Guasto	Costo
1	Х	Video	
1	X1	Guasto1	
1	X2	Guasto2	
2	X5	Video	
2	X6	Video	
3	Х3	Video	
4	X4	Video	
4	X5	Guasto3	
4	X6	Guasto4	

I computer che hanno subito delle riparazioni esclusivamente per malfunzionamento alla scheda video sono rispettivamente il 2 e il 3.

Prima cosa da fare banalissima: seleziono tutti i computer di marca 'IBM' e di questi mi prendo il codice per effettuare il JOIN con RIPARAZIONE.

RIPARAZIONE
$$\bowtie_{\text{Codice}=\text{Codice}\text{Computer}} (\pi_{\text{Codice}\text{Computer}} (\sigma_{\text{Marca}='IBM'}(\text{COMPUTER})))$$

Adesso ho questa tabella:

CodiceComputer	Data	Guasto	Costo
1	Х	Video	
1	X1	Guasto1	
1	X2	Guasto2	
2	X5	Video	
2	X6	Video	
3	Х3	Video	

Ora di tutta questa devo prendere i codici dei computer dove il guasto != Video.

 $\pi_{\text{CodiceComputer}}\left(\sigma_{\text{Guasto} \neq' Video'}\left(\text{RIPARAZIONE} \ \bowtie_{\text{CodiceComputer} = \text{CodiceComputer}}\left(\pi_{\text{CodiceComputer}}\left(\sigma_{\text{Marca} =' IBM'}(\text{COMPUTER})\right)\right)\right)\right)$

CodiceComputer	Data	Guasto	Costo
1	X1	Guasto1	
1	X2	Guasto2	

A questo punto eseguo una *semplicissima* sottrazione insiemistica.

$\pi_{\text{CodiceComputer}}(\text{RIPARAZIONE})$ –

 $\pi_{\text{CodiceComputer}}\left(\sigma_{\text{Guasto} \neq' Video'}\left(\text{RIPARAZIONE} \bowtie_{\text{CodiceComputer} = \text{CodiceComputer}}\left(\pi_{\text{CodiceComputer}}\left(\sigma_{\text{Marca}='IBM'}\left(\text{COMPUTER}\right)\right)\right)\right)\right)$

Questa è la query finale.

Prova presa da dispense online.

Sia dato lo schema relazionale:

Persona(<u>CF</u>, Nome, Cognome, Stipendio)
Lavora(CFPersona, PIvaDitta, Anzianità)
Dirige(CFPersona, PIvaDitta)
Ditta(PIVA, Denominazione, Numero_Dipendenti)

Query1: Determinare nome e cognome dei dirigenti che percepiscono lo stipendio più alto.

Innanzitutto creiamo lo scenario.

Tabella Persona.

CF	Nome	Cognome	Stipendio
1	Alessio	Bianchi	1500
2	Francesca	Neri	1780
3	Alessia	Marini	1450
4	Giulio	Andreotti	27000

Tabella Dirige.

CFPersona	PlvaDitta
1	200
2	234

I dirigenti sono solo il CF 1 e 2 poichè sono gli unici che compaiono nella tabella DIRIGE.

Ora procediamo alla loro estrazione.

Persona $\bowtie_{CFPersona=CF} (\pi_{CFPersona}(Dirige))$

Quindi ho le informazioni solo dei dirigenti.

CF	Nome	Cognome	Stipendio
1	Alessio	Bianchi	1500
2	Francesca	Neri	1780

Ora questa tabella viene clonata.

 $\rho_{\text{CF1, Nomel, Cognomel, Stipendio1, PIvaDitta1}} \leftarrow \text{CF, Nome, Cognome, Stipendio, PIvaDitta} \\ \left(\text{Persona} \bowtie_{\text{CFPersona} = \text{CF}} \left(\pi_{\text{CFPersona}}(\text{Dirige}) \right) \right)$

Ora effettuo una self join basata su Stipendio < Stipendio1.

A questo punto ho i valori non massimi.

Tolgo a tutti i valori quelli non massimi e ottengo il massimo.

$$\pi_{ ext{Nome, Cognome}} \left(ext{Persona} oxtimes_{ ext{CFPersona} = ext{CF}} \left(\pi_{ ext{CFPersona}}(ext{Dirige}) \right)
ight) \ - \pi_{ ext{Nome, Cognome}} \left(\left(ext{Persona} oxtimes_{ ext{CFPersona} = ext{CF}} \left(\pi_{ ext{CFPersona}}(ext{Dirige}) \right) \right) oxtimes_{ ext{Stipendio} < ext{Stipendio} } \ \left(
ho_{ ext{CF1, Nome1, Cognome1, Stipendio1, PIvaDitta1}} \leftarrow ext{CF, Nome, Cognome, Stipendio,} \ ext{PIvaDitta} \left(ext{Persona} oxtimes_{ ext{CFPersona} = ext{CF}} \left(\pi_{ ext{CFPersona}}(ext{Dirige}) \right) \right) \right)
ight)$$

Questa è la query finale.

Query2: Determinare la denominazione delle ditte in cui esiste almeno un lavoratore che percepisce uno stipendio maggiore di quello di almeno un dirigente della stessa ditta.

Tabella ditta.

PIVA	Denominazione	Numero_Dipendenti
Α	Denominazione A	*
В	Denominazione B	*
С	Denominazione C	*
D	Denominazione D	*

Tabella Dirige.

CFPersona	PlvaDitta
1	A
1	В
2	С

Tabella Persona.

CF	Nome	Cognome	Stipendio
1	Alessio	Bianchi	1500
2	Francesca	Neri	1780
3	Alessia	Marini	1450
4	Giulio	Andreotti	27000

Tabella Lavora:

CFPersona	PlvaDitta	Anzianità
3	A	
4	A	
4	В	

Nella ditta A esiste un lavoratore (3) che guadagna di più di almeno un dirigente di A (ossia 1).

Nella ditta B esiste un lavoratore (4) che guadagna di più di almeno un dirigente di B (ossia 1).

Quindi i risultati corretti sono Denominazione1 e Denominazione2, rispettivamente della DittaA e della DittaB.

La prima cosa da fare è fare una join dei lavoratori.

 $\pi_{ ext{Stipendio, PIvaDitta, Denominazione}}\left(ext{Persona} \ \bowtie_{ ext{CF=CFPersona}} \ ext{Lavora} \ \bowtie_{ ext{PIvaDitta=PIVA}} \ ext{Ditta}
ight)$

Poi la join con I dirigenti.

 $\pi_{ ext{Stipendio, PIvaDitta, Denominazione}}\left(ext{Persona} \ oxtimes_{ ext{CF=CFPersona}} \ ext{Dirige} \ oxtimes_{ ext{PIvaDitta=PIVA}} \ ext{Ditta}\right)$

Ora le rinomino entrambe.

```
\rho_{\text{s1, p1, d1}} \leftarrow \text{Stipendio, PIvaDitta, Denominazione} \left(\pi_{\text{Stipendio, PIvaDitta, Denominazione}} \left(\text{Persona} \bowtie_{\text{CF=CFPersona}} \text{Lavora} \bowtie_{\text{PIvaDitta=PIVA}} \text{Ditta}\right)\right)

\rho_{\text{s2, p2, d2}} \leftarrow \text{Stipendio, PIvaDitta, Denominazione} \left(\pi_{\text{Stipendio, PIvaDitta, Denominazione}} \left(\text{Persona} \bowtie_{\text{CF=CFPersona}} \text{Dirige} \bowtie_{\text{PIvaDitta=PIVA}} \text{Ditta}\right)\right)
```

A questo punto posso fare una SELF-JOIN tra le due con una proiezione di d1 e la condizione di selezione è che p1=p2 e s1 > s2.

 π_{d1} ($\rho_{s1, p1, d1} \leftarrow$ Stipendio, PIvaDitta, Denominazione ($\pi_{\text{Stipendio}, \text{PIvaDitta}, \text{Denominazione}}$ (Persona $\bowtie_{\text{CF}=\text{CFPersona}}$ Lavora $\bowtie_{\text{PIvaDitta}=\text{PIVA}}$ Ditta)) $\bowtie_{p1=p2 \land s1>s2} \rho_{s2, p2, d2} \leftarrow$ Stipendio, PIvaDitta, Denominazione ($\pi_{\text{Stipendio}, \text{PIvaDitta}, \text{Denominazione}}$ (Persona $\bowtie_{\text{CF}=\text{CFPersona}}$ Dirige $\bowtie_{\text{PIvaDitta}=\text{PIVA}}$ Ditta)))

Questa è la query finale.