ANÀLISI MATEMÀTICA (AMA)

UT5 - Problemes proposats: CONCEPTES GENERALS I SUMA DE SÈRIES

- 1. Donada la sèrie numèrica $\sum_{n=1}^{+\infty} \left(\frac{1}{\sqrt{n}} \frac{1}{\sqrt{n+1}} \right)$ determina la successió de sumes parcials i la seua suma.
- 2. Considera la sèrie $\sum_{n\geq 1} (-1)^n \left(\frac{1}{n} + \frac{1}{n+1}\right)$:
 - a) Troba les sumes parcials s_3 i s_4
 - b) A partir del concepte de suma parcial, verifica que la sèrie convergeix i suma -1.
- 3. Es conegut que $s_n = \frac{3n+2}{n+4}$ és la successió de sumes parcials associada a la srie $\sum_{n\geq 1} a_n$:
 - a) Troba el terme a_1
 - b) Calcula el terme general a_n
 - c) Suma la serie $\sum_{n\geq 1} a_n$, si convergeix
- 4. Justifica la resposta a cada una de les qüestions:
 - a) Si $a_n \to 0$, pot ser convergent $\sum_{n\geq 1} a_n$? I divergent?
 - b) Si $s_n \to 0$, pot ser divergent $\sum_{n>1} a_n$?
 - c) Si $\sum_{n\geq 1} a_n$ és de termes positius, com es comporta la successió de sumes parcials s_n ?
 - d) Si $\sum_{n\geq 1} a_n$ és convergent, pot ser convergent $\sum_{n\geq 1} \frac{a_{n+1}+1}{2-a_n}$? I divergent?
- 5. A partir de cada s_n , determina la suma de la sèrie $\sum_{n\geq 1} a_n$, en cas de convergència:
 - $a) s_n = \frac{2n}{3n+1}$
 - b) $s_n = \frac{n^2}{n+1}$
 - c) $s_n = \frac{1}{3^n}$
 - d) $s_n = 3^n$
 - e) $s_n = \log(2n+1)$
- 6. Calcula la suma de les sèries (geomètriques o reductibles a elles):
 - a) $\sum_{n\geq 2} \frac{2^n + (-1)^{n+1} 3^n}{6^n}$
 - b) $\sum_{n\geq 2} \frac{2^n+1}{3^{n-1}}$
 - $c) \sum_{n \ge 1} \left(\frac{5}{4^n} \frac{4}{5^n} \right)$
 - d) $\sum_{n>1} \frac{(-1)^n 2^{3n}}{7^{2n}}$

7. Suma las sèries (reductibles a telescòpiques):

a)
$$\sum_{n\geq 1} \frac{1}{(2n-1)(2n+1)}$$

b)
$$\sum_{n>1} \frac{2}{(4n-3)(4n+1)}$$

c)
$$\sum_{n>2} \log \left(\frac{n^2}{n^2 - 1} \right)$$

8. Justifica la convergència o divergència de cada una de les sèries:

a)
$$\sum_{n>1} \sqrt[n]{n} \left(1 - \frac{1}{n}\right)^n$$

b)
$$\sum_{n>1} \frac{3^n}{1+2^n}$$

c)
$$\sum_{n>1} \frac{(-1)^n 2n}{(n+1)!}$$

d)
$$\sum_{n>1} \frac{(-1)^n 3^n}{5^{n-1}}$$

e)
$$\sum_{n \ge 1} \frac{(-1)^n \sqrt{n}}{3n - 1}$$

f)
$$\sum_{n>2} \frac{1}{n^2 + n - 2}$$

9. Considera les sèries alternades:

$$\sum_{n\geq 1} \frac{(-1)^{n+1}}{2n^2 - 1} \qquad \text{i} \qquad \sum_{n\geq 1} \frac{(-1)^n}{3^n n^3}.$$

Aproxima la suma de cada sèrie amb tres decimals exactes, almenys, i indica si l'aproximació és per defecte o per excés. Calcula, a més a més, el màxim error comés quan la suma de cada una d'elles s'aproxima mitjançant s_{30} . Quina convergeix més ràpidament? Per què?

10. Fent ús de la cota d'error associada al criteri de Leibniz, troba el valor de N necessari per a que la suma parcial s_N ens proporcione dos decimals exactes de

$$\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n \cdot 3^n} .$$

Calcula també aquesta suma parcial.

- 11. Considera la sèrie numèrica $\sum_{n=1}^{+\infty} \frac{(-1)^{n+1} \cdot n}{3^{n+1}}$. Es demana:
 - a) Verificar que la successió $\{a_n\} = \left\{\frac{n}{3^{n+1}}\right\}_{n \geq 1}$ és decreixent.
 - b) Comprovar, mitjançant el criteri de Stolz, que $\lim_{n\to+\infty}\frac{n}{3^{n+1}}=0$.
 - c) Deduïr dels apartats anteriors que la sèrie inicial és convergent.
 - d) Determinar el valor de N necessari per a que la suma parcial s_N aproxime la suma de la sèrie amb (almenys) dues xifres decimals correctes. Calcula eixa aproximació.

- 12. Un ciclista en plena marxa retira els peus dels pedals. La roda davantera gira 200 vegades els primers 10 segons. Posteriorment, en cada periode de 10 segons, la roda gira 4/5 parts de les vegades que va girar en el periode anterior.
 - a) Quantes vegades gira la roda en els primers 30 segons després de retirar el peus dels pedals?
 - b) Quant de temps serà necessari per a que la roda gire 900 vegades?
 - c) Quantes vegades gira la roda abans de parar?
- 13. Troba el valor de N necessari per a que la suma parcial s_N proporcione cinc decimals exactes de

$$\sum_{n=1}^{+\infty} \frac{(-1)^{n+1} \cdot 2^{n-1}}{5^{n+1}}$$

i calcula la suma exacta.

14. Troba el valor de N necessari per a que la suma parcial s_N proporcione cinc decimals exactes de

$$\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{2^{2n+1} \cdot 3^n}$$

i calcula la suma exacta.

15. Troba el valor de N necessari per a que la suma parcial s_N proporcione tres decimals exactes de

$$\sum_{n=1}^{+\infty} \frac{(-2)^{n+1}}{3^{2n}}$$

i calcula el valor exacte d'aquesta suma.

- 16. Considera la sèrie $\sum_{n\geq 1} \frac{n^{\alpha}}{2^{n+1}} \beta^n$, depenent dels paràmetres $\alpha,\,\beta\in\mathbb{R}$
 - a) Suma la sèrie quan $\alpha=0$ i β qualsevol dels valors que la fan convergent, que trobaràs previament
 - b) Si $\alpha = -2$ i $\beta = -1$, troba el valor de *n* necessari per aproximar la suma de la sèrie mitjançant la suma parcial s_n , amb tres decimals exactes, almenys. Calcula eixa aproximació.
- 17. Considera la sèrie $\sum_{n\geq 1} \frac{(-1)^n \alpha^n}{2^n (3n-1)}$, segons $\alpha \in \mathbb{R}$. Per a $\alpha=1$ i $\alpha=2$, troba n tal que la suma parcial s_n aproxime la suma de la sèrie amb tres decimals exactes, almenys. Calcula l'aproximació en cada cas.

ANÀLISI MATEMÀTICA (AMA)

UT5 - Exercicis addicionals: CONCEPTES GENERALS I SUMA DE SÈRIES

1. Estudia el caràcter, i calcula la suma quan siga possible, de les sèries:

a)
$$\sum_{n>1} \frac{(-1)^n (\alpha+1)^n}{6^{2n+1}}$$

$$b) \sum_{n>1} \left(\frac{1+2i}{3}\right)^n$$

- *c) Calcula $\sum_{n\geq 1} c_n$, si c_n és el complex que es troba en la intersecció de la bisectriu del primer quadrant amb la circumferència d'equació $x^2+y^2=2^{1-2n}$.
- 2. A partir d'un triangle equilàter de costat 1m, connectem els punts mitjans dels tres costats per a obtenir un nou triangle. Repetint el procés obtindrem una successió decreixent de triangles. Calcula el valor de la suma de les àrees de tots.
- 3. Una granota intenta creuar un estany. El seu primer bot és de 1m i, com a consequència del cansament, la longitud de cada bot és la meitat de l'anterior. Determina el nombre de bots que necessitarà per a creuar l'estany, de 1.95m de diàmetre. Quina serà la màxima amplària que pot recòrrer la granota?
- 4. Expressa en forma de fracció el nombre decimal q=0,324242424...=0.324. Suggerència: comença per expressar q com una suma infinita. Suma després la sèrie geomètrica corresponent.
- *5. Calcula la suma de la sèrie $\sum_{n\geq 2} \log\left(\frac{n^2}{(n+1)(n-1)}\right)$. Suggerència: comença per simplificar a_n fent ús de les propietats del logaritme.
- *6. Calcula la suma de la sèrie (aritmètico-geomètrica) $\sum_{n\geq 1} \frac{n}{2^n}$. Suggerència: aplica la tècnica que permet trobar la suma d'una sèrie geomètrica. Generalitza per a sumar $\sum_{n\geq 1} \frac{n^2}{2^n}$.
 - 7. Raona com a l'exercici anterior i calcula la suma de les sèries:

a)
$$\sum_{n>1} \frac{(-1)^{n+1}n}{2^n}$$

b)
$$\sum_{n>1} \frac{n+1}{3^n}$$

c)
$$\sum_{n>1} \frac{(-1)^n (n+1)}{3^n}$$

d)
$$\sum_{n>2} \frac{2n+3(-1)^{n+1}}{5^n}$$
.

8. Suma las sèries (reductibles a telescòpiques):

a)
$$\sum_{n\geq 2} \frac{5}{(3n+1)(3n-2)}$$

b)
$$\sum_{n\geq 2} \frac{2n+1}{n^2(n+1)^2}$$
.

*9. Sabem que
$$\sum_{n\geq 1}\frac{1}{n^2}=\frac{\pi^2}{6} \quad \text{.Determina el valor de } \frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{3^2}-\frac{1}{4^2}+\frac{1}{5^2}-\frac{1}{6^2}+\ \ldots=\sum_{n\geq 1}\frac{(-1)^{n+1}}{n^2}.$$

- *10. a) Sabent que $\sum_{n\geq 0} \frac{1}{n!} = e$ i tenim en compte que $n^2+1=n(n-1)+n+1$, comprova que $\sum_{n\geq 1} \frac{n^2+1}{n!} = 3e-1$.
 - b) A partir de factoritzacions semblants dels numeradors, calcula la suma de les sèries:

$$\sum_{n>0} \frac{(n+1)(n+2)}{n!} \quad i \quad \sum_{n>1} \frac{3n^2 - 1}{(n+1)!}.$$

- *11. Es conegut que la sèrie $\sum_{n\geq 1} \left(\frac{n+3}{6n-5}\right)^n$ és convergent
 - a) Troba $n_0 \in \mathbb{N}$ tal que $n \ge n_0 \Rightarrow a_n < \frac{1}{2^n}$
 - b) Utilitza la desigualtat de a) per tal d'acotar l'error comés en aproximar la suma de la sèrie mitjançant la suma parcial s_{10} .
- *12. Troba n per tal d'aproximar la suma, $s = \sum_{n \geq 1} \frac{1}{2^n (3n-1)}$, mitjançant s_N amb tres decimals exactes, almenys. Com a suggerència, acota previament la cua de la sèrie:

$$|s - s_N| = a_{N+1} + a_{N+2} + \cdots$$

per una sèrie geomètrica convergent adequada. Efectua l'aproximació en questió.