Solutions to Take-home portion of midterm March 21, 2008

- 1. Let $Z_{60} = \langle x \rangle$ be the cyclic group of order 60.
 - (a) Compute $\phi(60)$, and list all generators of 60.

Proof. Recall that the Euler-phi function $\phi(n)$ gives the number of positive integers a less than $n \in \mathbb{Z}^+$ that are relatively prime to n. Also, for prime numbers p we know that $\phi(p^a) = p^{a-1}(p-1)$. We also remember that $\phi(ab) = \phi(a)\phi(b)$ if a and b are relatively prime. Now $60 = 22 \cdot 3 \cdot 5$. Then $\phi(60) = \phi(2^2 \cdot 3 \cdot 5) = \phi(2^2)\phi(3)\phi(5) = 2^{2-1}(2-1) \cdot 3^{1-1}(3-1) \cdot 5^{1-1}(5-1) = 2 \cdot 2 \cdot 4 = 16$. These 16 integers are $k = 1, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59, and thus, <math>\langle x^k \rangle = \langle x \rangle$ for any of these values of k.

(b) List all elements of Z_{60} of order 6.

Proof. We begin by noticing that $|x^{10}| = 6$ in Z_{60} . We are looking for integers k such that $\frac{60}{\gcd(60,k)} = 6$. Therefore we need to have $\gcd(60,k) = 10$ for $1 \le k \le 60$. The k's that satisfy this equation are 10,50. So the elements of order 6 in Z_{60} are x^{10} and x^{50} .

COMMENTS: Generators are *elements* of the group Z_{60} , while $\langle x^{11} \rangle$ is a subgroup; indeed, it is the cyclic subgroup of Z_{60} generated by the element x^{11} .

2. Prove that the subset of elements of finite order in an Abelian group forms a subgroup. This group is known as the *torsion subgroup*. Is the same thing true for non-Abelian groups?

Proof. Let G be an Abelian group. Let $H = \{g \in G : g^n = e, n < \infty\}$. We begin by noting $e \in H$, so $H \neq \emptyset$.

Suppose $a, b \in H$. Then there exist $n, m < \infty$ such that $a^n = b^m = e$. Notice that $nm < \infty$ and $(ab)^{nm} = a^{nm}b^{nm}$ since G is Abelian. Since $a^n = b^m = e$ we have $(ab)^{nm} = e$. Hence $ab \in H$.

Assume that $a \in H$ and $a^n = e$ for some $n < \infty$. Then $(a^{-1})^n = (a^n)^{-1} = e^{-1} = e$. Hence $a^{-1} \in H$. By the two-step subgroup test $H \leq G$.

The same is not true for non-Abelian groups. Let $G = GL_2(\mathbb{R})$, the set of two-by-two matricies with non-zero determinant. Let H be defined as above. Consider $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 0.5 \\ 2 & 0 \end{bmatrix}$. Notice

that $A^2 = B^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. Therefore both A and B have finite order, so we have $A, B \in H$. However

 $AB = \begin{bmatrix} 2 & 0 \\ 0 & 0.5 \end{bmatrix}$. Now notice that $(AB)^n = \begin{bmatrix} 2^n & 0 \\ 0 & 0.5^n \end{bmatrix}$, which clearly does not have finite order. Therefore $AB \notin H$, hence H is not a subgroup.

COMMENTS: To establish the second part of this problem, namely that the result is false if the hypothesis that G be Abelian is dropped, you need to provide a counter-example. Many students pointed out where in their proof they used that G was Abelian. However, this only shows that your proof fails if G is non-Abelian.

3. The exponent of a group is the smallest positive integer n such that $x^n = e$ for all x in the group. Prove that every finite group has exponent that divides the order of the group.

Proof. Let |G| = k, for $k \in \mathbb{Z}^+$, and let n denote the exponent of G. By Lagrange's theorem, we know that

$$x^k = e$$
, for all $x \in G$.

It follows that the exponent $n \leq k$.

By the division algorithm for \mathbb{Z} , we have that there exists a quotient $q \in \mathbb{Z}$ and a remainder $r \in \mathbb{Z}$ so that

$$k = qn + r, \text{ for } 0 \le r < n. \tag{1}$$

For each $x \in G$,

$$e = x^k = x^{qn+r}$$

 $= x^{qn}x^r$
 $= (x^n)^q x^r$
 $= x^r \text{ since } n \text{ is the exponent of } G.$

However, since n is the least positive integer so that $x^n = e$ for all elements in G, we find that r = 0 in Equation 1. Thus, $n \mid k = |G|$, as needed.

4. Prove that every group of order 77 is cyclic.

Proof. Let G be a group of order 77.

More on Wednesday..... For a model proof, you can look at Example 16 in Chapter 10.

5. Let N be a normal subgroup of G and let $H \leq G$. (H is not necessarily normal.) Prove that NH is a subgroup of G. Give an example to show that NH might not be a subgroup of G if neither N nor H is normal.

Proof. Let $NH = \{nh \mid n \in N, h \in H\}$. We begin by noting that both N and H are subgroups and therefore non-empty. Hence $e \in N, H$, so $e = e \cdot e \in NH$. Hence $NH \neq \emptyset$.

Suppose $nh \in NH$. Then $(nh)^{-1} = h^{-1}n^{-1} \in h^{-1}N$. Since N is normal, left and right cosets are equal: $h^{-1}N = Nh^{-1}$. In particular, $h^{-1}n^{-1} = n'h^{-1}$ for some $n' \in N$. Therefore, $(nh)^{-1} = n'h^{-1} \in NH$.

Next we assume n_1h_1 , $n_2h_2 \in NH$. Since $N \triangleleft G$, we have $h_1N = Nh_1$. In particular, the element $h_1n_2 = n'h_1$ for some $n' \in N$.

Now we see that

$$(n_1h_1)(n_2h_2) = n_1(h_1n_2)h_2 = n_1(n'h_1)h_2 = (n_1n')(h_1h_2).$$

Notice that $n_1n' \in N$ and $h_1h_2 \in H$. Therefore $(n_1h_1)(n_2h_2) = (n_1n')(h_1h_2) \in NH$.

By the two-step subgroup test $NH \leq G$.

To show the statement does not hold when N and H are not normal consider $G = S_4$ and take $N = \{e, (12)\}, H = \{e, (13)\}.$ Then, with a little computation, we see that

$$NH = \{e, (13), (12), (132)\},\$$

and we notice that NH is not a subgroup. For example, the element (132) has no inverse in NH. Also, the product $(13)(12) = (123) \notin NH$. Therefore NH is not a subgroup of G.

COMMENTS: Look carefully at the third (or second) paragraph in the proof above. Several students incorrectly asserted that $h_1n_2 = n_2h_1$. This would mean that the elements h_1 and n_2 commute, which may not be true. Since $N \triangleleft G$, we know that right and left cosets are equal: $h_1N = Nh_1$. From this you obtain, that there exists some $n' \in N$ with $h_1n_2 = n'h_1$, but this n' may not be equal to n_2 .

6. (a) Chapter 9, # 37: Let G be a finite group and let H be a normal subgroup of G. Prove that the order of an element gH in G/H must divide the order of g in G.

Proof. Let $g \in G$. Then $|g| = n < \infty$ and by Lagrange's theorem $n \mid |G|$. Let k be the order of $(gH) \in G/H$. Notice that $(gH)^n = g^nH$ since H is normal. But $g^n = e$ so $(gH)^n = eH = H$. By Corollary 2 to Theorem 4.1 the order k of gH in G/H divides gH.

(b) Chapter 10, # 4: Prove that the mapping given in Example 11 is a homomorphism. What is the kernel of this homomorphism?

Proof. Let $\phi: S_n \to \mathbb{Z}_2$ where

$$\phi(\sigma) = \begin{cases} 0 & \text{if } \sigma \text{ is even} \\ 1 & \text{if } \sigma \text{ is odd.} \end{cases}$$

Let E denote any even permutation and O any odd permutation. We have a few cases to consider to show ϕ is a homomorphism. Notice that EE = E, OO = E and OE = EO = O. Now,

$$\begin{split} \phi(EE) &= \phi(E) = 0 = 0 + 0 = \phi(E) + \phi(E), \\ \phi(EO) &= \phi(O) = 1 = 0 + 1 = \phi(E) + \phi(O), \\ \phi(OO) &= \phi(E) = 0 = (1 \bmod 2) + (1 \bmod 2) = \phi(O) + \phi(O). \end{split}$$

Hence ϕ is a homomorphism.

Let $K = \{ \sigma \mid \sigma \text{ is even} \}$. Clearly if $\sigma \in K$ we know $\phi(\sigma) = 0$ and then we have $\sigma \in \ker \phi$. Therefore, $K \subseteq \ker \phi$. Suppose $\sigma \in \ker \phi$. Then $\phi(\sigma) = 0$. By definition of ϕ we know that σ is even. Hence $\sigma \in K$ and $\ker \phi \subseteq K$. Therefore $\ker \phi$ is the set of all even permutations; that is, $\ker(\phi) = A_n$.

Since kernels of homomorphisms are normal, we comment that this proves additionally that $\ker(\phi) = A_n \lhd S_n$.

7. Chapter 10

6 Let G be the group of all polynomials with real coefficients under addition. For each f in G let $\int f$ denote the antiderivative of f that passes through the point (0,0). Show that the mapping $f \mapsto \int f$ from G to G is a homomorphism. What is the kernel of this mapping? Is this mapping a homomorphism if $\int f$ denotes the antiderivative that passes through (0,1)?

Proof. Let G be the group of all polynomials with real coefficients under addition. Define $\phi: G \to G$ were $f \mapsto \int f$. (Where $\int f$ passes through the point (0,0).) Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ and $g(x) = b_m x^m + b_{m-1} x^{m-1} + \cdots + b_1 x + b_0$ be polynomials in G. Without loss of generality we assume $n \ge m$. Now,

$$\phi(f(x) + g(x)) = \phi((a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0)$$

$$+ (b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0))$$

$$= \phi(a_n x^n + \dots + (a_{n-m} + b_{n-m}) x^{n-m} + \dots + (a_1 + b_1) x + (a_0 + b_0))$$

$$= \int (a_n x^n + \dots + (a_{n-m} + b_{n-m}) x^{n-m} + \dots + (a_1 + b_1) x + (a_0 + b_0))$$

$$= \frac{a_n}{n+1} x^{n+1} + \dots + \frac{(a_{n-m} + b_{n-m})}{n-m+1} x^{n-m+1} + \dots + \frac{(a_1 + b_1)}{2} x^2 + (a_0 + b_0) x$$

$$= \left(\frac{a_n}{n+1} x^{n+1} + \frac{a_{n-1}}{n} x^n + \dots + a_0 x\right) + \left(\frac{b_m}{m+1} x^{m+1} + \frac{b_{m-1}}{m} x^m + \dots + b_0 x\right)$$

$$= \phi(f(x)) + \phi(g(x)).$$

Hence ϕ is a homomorphism.

Notice that the ker $\phi = \{f \in G \mid \phi(f) = 0\}$. Notice that any non-zero polynomial will map to a non-zero element under ϕ . Hence ker $\phi = \{0\}$.

Let ψ be the mapping above where $f\mapsto \int f$ and $\int f$ passes through (0,1). Take f(x)=x. Then $\psi(f(x))=\int f(x)=\frac{x^2}{2}+1$. Notice that $\psi(f(x)+f(x))=\psi(2x)=x^2+1$. However, $\psi(f(x))+\psi(f(x))=\frac{x^2}{2}+1+\frac{x^2}{2}+1=x^2+2$. Then $\psi(f(x)+f(x))\neq\psi(f(x))+\psi(f(x))$. Therefore ψ is not a homomorphism.

9 Prove that the mapping from $G \oplus H$ to G given by $(g,h) \to g$ is a homomorphism. What is the kernel? This mapping is called the *projection* of $G \oplus H$ onto G.

Proof. Let $\phi: G \oplus H$ by $(g,h) \mapsto g$. Suppose $(g,h), (a,b) \in G \oplus H$. Then

$$\phi((g,h) + (a,b)) = \phi((g+a,h+b))$$

= g + a
= $\phi((g,h)) + \phi((a,b))$.

Hence ϕ is a homomorphism.

Let $K = \{(0,h) \mid h \in H\}$. We claim that $K = \ker \phi$. Indeed, if $(0,h) \in K$ then $\phi((0,h)) = 0$. Hence $K \subseteq \ker \phi$. Suppose $(g,h) \in \ker \phi$. Then $\phi(g,h) = g = 0$. Hence $(g,h) = (0,h) \in K$. Therefore $\ker \phi \subseteq K$. Together we have $\ker \phi = \{(0,h) \mid h \in H\}$.

- 8. Chapter 10
 - # 14 Explain why the correspondence $x \to 3x$ from \mathbb{Z}_{12} to \mathbb{Z}_{10} is not a homomorphism.

Proof. Notice that $\phi(6+7) = \phi(1) = 3 \mod 10$, since $13 \mod 12 \equiv 1$. However,

$$\phi(6) + \phi(7) = (3 \cdot 6 \mod 10) + (3 \cdot 7 \mod 10)$$

$$= (18 \mod 10) + (21 \mod 10)$$

$$= (8 \mod 10) + (1 \mod 10)$$

$$= 9 \mod 10.$$

Since $\phi(6+7) \neq \phi(6) + \phi(7)$, we see that ϕ is not a homomorphism.

15 Suppose that ϕ is a homomorphism from \mathbb{Z}_{30} to \mathbb{Z}_{30} and ker $\phi = \{0, 10, 20\}$. If $\phi(23) = 9$ determine all elements that map to 9.

Proof. Recall $\phi^{-1}(9) = \{x \in \mathbb{Z}_{30} \mid \phi(x) = 9\}$. Using property 6 of Theorem 10.1 we know that $\phi^{-1}(9) = 23 + \ker \phi$. Hence the set of all elements that map to 9 are given by $\phi^{-1}(9) = \{23, 3, 13\}$.

16 Prove that there is no homomorphism from $\mathbb{Z}_8 \oplus \mathbb{Z}_2$ onto $\mathbb{Z}_4 \oplus \mathbb{Z}_4$.

Proof. Note that the element $(1,0) \in \mathbb{Z}_8 \oplus \mathbb{Z}_2$ has order 8. However, given any $(a,b) \in \mathbb{Z}_4 \oplus \mathbb{Z}_4$ we see that $4(a,b) = (4a,4b) \equiv (0,0)$. Therefore the order of $(a,b) \leq 4$. Since $(a,b) \in \mathbb{Z}_4 \oplus \mathbb{Z}_4$ was arbitrary we can conclude that the maximum order of any element in $\mathbb{Z}_4 \oplus \mathbb{Z}_4$ is 4. Hence $\mathbb{Z}_4 \oplus \mathbb{Z}_4$ has no element of order 8. Since homomorphisms preserve orders of elements and there is not an element of order 8 in $\mathbb{Z}_4 \oplus \mathbb{Z}_4$ we conclude that there is no homomorphism from $\mathbb{Z}_8 \oplus \mathbb{Z}_2$ to $\mathbb{Z}_4 \oplus \mathbb{Z}_4$.

QUESTION: A number of students indicated that if ϕ in the last problem were a homomorphism, then $\ker(\phi)$ must be $\langle (4,1) \rangle$, $\langle (0,1) \rangle$, or $\langle (4,0) \rangle$, (or some variation thereof). I did not follow your reasoning here.

9. Chapter 10 # 23 Suppose ϕ is a homomorphism from \mathbb{Z}_{36} to a group of order 24.

(a) Determine all the possible homomorphic images.

Proof. By property 2 of Theorem 10.1, a homomorphism is completely specified by the image of 1. So, if $1 \mapsto a$, then $x \mapsto xa$. By Lagrange's Theorem and property 7 of Theorem 10.1, we need |a| to divide 36 and 24. Thus |a| = 1, 2, 3, 4, 6, 12. Then possible homomorphic images are $\operatorname{Im}(\phi_1) \cong \mathbb{Z}_1$, $\operatorname{Im}(\phi_2) \cong \mathbb{Z}_2$, $\operatorname{Im}(\phi_3) \cong \mathbb{Z}_3$, $\operatorname{Im}(\phi_4) \cong \mathbb{Z}_4$, $\operatorname{Im}(\phi_6) \cong \mathbb{Z}_6$ and $\operatorname{Im}(\phi_{12}) \cong \mathbb{Z}_{12}$.

(b) For each image in part a, determine the corresponding kernel of ϕ .

Proof. By the First Isomorphism Theorem we know $G/\ker\phi\cong \operatorname{Im}(\phi)$. Then for each ϕ_i we have $\mathbb{Z}_{36}/\ker(\phi_i)\cong \operatorname{Im}(\phi_i)$. We then see that $\ker(\phi_1)=\mathbb{Z}_{36}$, $\ker(\phi_2)=\langle 2\rangle\cong\mathbb{Z}_{18}$, $\ker(\phi_3)=\langle 3\rangle\cong\mathbb{Z}_{12}$, $\ker(\phi_4)=\langle 4\rangle\cong\mathbb{Z}_9$, $\ker(\phi_6)=\langle 6\rangle\cong\mathbb{Z}_6$, and $\ker(\phi_{12})=\langle 12\rangle\cong\mathbb{Z}_3$.

10. Chapter 10

35 Prove that the mapping $\phi : \mathbb{Z} \oplus \mathbb{Z} \to \mathbb{Z}$ given by $(a,b) \to a-b$ is a homomorphism. What is the kernel of ϕ ? Describe the set $\phi^{-1}(3)$, that is the set of all elements that map to 3.

Proof. Let $\phi: \mathbb{Z} \oplus \mathbb{Z} \to \mathbb{Z}$ by $(a,b) \mapsto a-b$. Suppose $(a,b), (c,d) \in \mathbb{Z} \oplus \mathbb{Z}$. Then

$$\phi((a,b) + (c,d)) = \phi((a+c,b+d))$$

$$= a + c - (b+d)$$

$$= a + c - b - d$$

$$= (a-b) + (c-d)$$

$$= \phi(a,b) + \phi(c,d).$$

Therefore ϕ is a homomorphism.

Let $K = \{(a,a) \mid (a,a) \in \mathbb{Z} \oplus \mathbb{Z}\}$. We show that $K = \ker \phi$. Suppose $(a,a) \in K$. Then $\phi(a,a) = a - a = 0$. Hence $(a,a) \in \ker \phi$ and $K \subseteq \ker \phi$. Suppose $(a,b) \in \ker \phi$. Then $\phi(a,b) = a - b = 0$. Hence a - b = 0 or a = b. Then $(a,b) = (a,a) \in K$. Now $\ker \phi \subseteq K$. Therefore $\ker \phi = K$.

Let $T = \phi^{-1}(3) = \{(a+3,a) | a \in \mathbb{Z}\}$. Given $(a+3,a) \in T$, we see $\phi(a+3,a) = a+3-a=3$. Hence $(a+3,a) \in \ker \phi$. Next we assume $(a,b) \in \phi^{-1}(3)$. Hence $\phi(a,b) = a-b=3$ or a=b+3. Hence (a,b) = (b+3,b) and $(a,b) \in T$. Therefore $T = \phi^{-1}(3)$.

38 For each pair of positive integers m and n, we can define a homomorphism from \mathbb{Z} to $\mathbb{Z}_m \oplus \mathbb{Z}_n$ by $x \to (x \mod m, x \mod n)$. What is the kernel when (m, n) = (3, 4) What is the kernel when (m, n) = (6, 4)?

Proof. Let $\phi : \mathbb{Z} \to \mathbb{Z}_3 \oplus \mathbb{Z}_4$ be given by $x \mapsto (x \mod 3, x \mod 4)$.

CLAIM. $\ker \phi = \langle 12 \rangle$.

If $a \in \langle 12 \rangle$ we know a = 12k for some $k \in \mathbb{Z}$. Then $\phi(a) = \phi(12k) = (12k \mod 3, 12k \mod 4) = (0,0)$. Hence $a \in \ker \phi$. Therefore $\langle 12 \rangle \subseteq \ker \phi$.

Suppose $x \in \ker \phi$. Then $\phi(x) = (x \mod 3, x \mod 4) = (0, 0)$, and we have both $0 \equiv x \mod 3$ and $0 \equiv x \mod 4$. Therefore, $x = 3 \cdot 4 \cdot k$ for some $k \in \mathbb{Z}$. Hence, $x \in \langle 12 \rangle$ and $\ker \phi \subseteq \langle 12 \rangle$. It follows that $\ker \phi = \langle 12 \rangle$, and the claim is established.

Now let $\psi: \mathbb{Z} \to \mathbb{Z}_6 \oplus \mathbb{Z}_4$ where $x \mapsto (x \mod 6, x \mod 4)$. Again, we claim that $\ker \phi = \langle 12 \rangle$. Suppose $a \in \langle 12 \rangle$. Then a = 12k for some $k \in \mathbb{Z}$. Then $\phi(a) = \phi(12k) = (12k \mod 6, 12k \mod 4) = (0,0)$. Assume $x \in \ker \phi$. Then $\phi(x) = (x \mod 6, x \mod 4) = (0,0)$. Hence $0 \equiv x \mod 6$ and $0 \equiv x \mod 4$. So x must be a multiple of both 6 and 4. Stated otherwise, x = k lcm(6,4) = k12. Therefore $\ker \phi \subseteq \langle 12 \rangle$. We conclude $\ker \phi = \langle 12 \rangle$.

Notice that the general statement for $m, n \in \mathbb{Z}^+$ is that $\ker(\phi) = \langle \operatorname{lcm}(m, n) \rangle$.

OTHER COMMENTS: If $\phi : \mathbb{Z}_m \to \mathbb{Z}_n$, it is customary to write $\phi(a) + \phi(b)$ using a "+", since the operation in the group is addition.

COMMENTS ON THE IN-CLASS EXAM:

- 1. (a) A non-cyclic Abelian group A. $\mathbb{Z} \oplus \mathbb{Z}$, but not \mathbb{Z} .
 - (b) A group G and two elements $a, b \in G$ with $|a| < \infty$ and $|b| = \infty$. a = 0 and b = 1 in \mathbb{Z} .
 - (c) A normal subgroup N of D_4 .

Several students cleverly wrote $\{e\}$ or D_4 . I should have asked for a proper normal subgroup of D_4 that is not trivial. The subgroup $\langle R_{90} \rangle \triangleleft D_4$ is one such subgroup.

- (d) A group G whose only subgroups are $\{e\}$ and G. \mathbb{Z}_{11} or \mathbb{Z}_p for p prime.
- (e) Three non-isomorphic groups of order 34.

This is impossible, since any group of order 34 must be isomorphic to \mathbb{Z}_{34} (in which case it is cyclic) or D_{17} (in which case it is not cyclic).

- (f) An element of order 6 in S_5 . (123)(45) or any product of a disjoint 3-cycle and transposition.
- (g) An element of order 6 in A_5 . There are not any. Why?
- 2. (3 pts.) Consider the permutation group S_6 , and let $\sigma = (123)(45)(56)(13)$.

Give in disjoint cycle notation the element $\sigma^{100} = [(123)(45)(56)(13)]^{100}$

First, compute σ as a product of *disjoint* cycles, $\sigma = (23)(456)$. The order of σ then is 6. Now noticing that $100 \equiv 4 \mod 6$, then

$$\sigma^{100} = \sigma^4 = (23)^4 (456)^4$$
, since disjoint cycles commute.

Thus, $\sigma^{100} = (456)$.

- 3. Consider the quotient group $G = 4\mathbb{Z}/24\mathbb{Z}$.
 - (a) What is the order of G? List all elements of G.

The order is six and the elements are cosets:

$$4\mathbb{Z}/24\mathbb{Z} = \{24\mathbb{Z}, 4 + 24\mathbb{Z}, 8 + 24\mathbb{Z}, 12 + 24\mathbb{Z}, 16 + 24\mathbb{Z}, 20 + 24\mathbb{Z}\}.$$

- (b) Is G cyclic? Justify your answer by computing the order of elements in G. Yes, G is cyclic because you can compute that $|4 + 24\mathbb{Z}| = |20 + 24\mathbb{Z}| = 6 = |G|$.
- 4. Consider the cyclic group C_{24} of order 24 generated by x, $C_{24} = \langle x \rangle$.

Students did very well on this problem.

5. Fix $n \in \mathbb{Z}^+$ with n > 2. Prove that $SL(n, \mathbb{R}) \triangleleft GL(n, \mathbb{R})$.

Quick outline of proof: Define the determinant map from $GL(n, \mathbb{R})$ to the multiplicative group of non-zero real numbers \mathbb{R}^* ,

$$\det: \mathrm{GL}(n,\mathbb{R}) \to \mathbb{R}^*.$$

Show that det is a homomorphism with $\ker(\det) = \mathrm{SL}(n,\mathbb{R})$. Therefore, $\mathrm{SL}(n,\mathbb{R}) \triangleleft \mathrm{GL}(n,\mathbb{R})$.

6. Prove that any group A of order 4 is Abelian. Then classify (describe up to isomorphism) all groups of order 4.

Write a solution to this problem and hand it in with your HW on Wednesday.