# These aren't the SNPs you're looking for: Jedi deepMIND tricks for eye color prediction

STR Crazy

James Talwar and Adam Klie

#### Phenotype prediction with SNPs

## Current approaches often rely on linear, additive models of SNPs based on GWAS statistics

- Capture only a subset of the heritable variation
- Miss interplay between SNPs (epistasis), low effect size SNPs

## Deep neural networks have potential to overcome these limitations

- Potential to handle larger number of SNPs
- Can capture complex, non-linear interactions

#### STR Crazy











Walsh, Susan, et al. "IrisPlex: A Sensitive DNA Tool for Accurate Prediction of Blue and Brown Eye Colour in the Absence of Ancestry Information."

# Goal: Train a feedforward network to predict a phenotype with high accuracy







Motivation Methods Results Summary

#### **Neural Network Architecture:**

#### Z-Scored SNPs







### How the *Magic* Happens:



#### STR Crazy





#### What's in the Box?: Hyperparameter Searching - All SNPs

| Model               | #<br>Hidden | Layer Widths          | Train<br>Accuracy | Validation<br>Accuracy | Aodel Let_It_Be: Loss on training set and holdout set vs. number of ep |
|---------------------|-------------|-----------------------|-------------------|------------------------|------------------------------------------------------------------------|
| Let It Be           | 3           | 512; 128; 32          | 98.5%             | 93.4%                  | 0.04 -                                                                 |
| Double<br>Trouble   | 2           | 1024; 512             | 97.9%             | 93.4%                  | 0.02 -<br>0.01 -                                                       |
| Dos Equis           | 2           | 512; 256              | 98.7%             | 93.4%                  | 0.00 - 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 Epochs                 |
| Winter Is<br>Coming | 3           | 512; 256; 256         | 98.6%             | 93.4%                  | del Let_lt_Be: Accuracy on training set and holdout set vs. number of  |
| Cinco De<br>Mayo    | 5           | 512; 256; 128; 64; 32 | 97.8%             | 93.4%                  | - 8.0<br>- 6.0                                                         |
| STR Crazy           |             |                       |                   |                        | 0.2                                                                    |

Methods

Results

Summary

Motivation

What's in the Box?: Hyperparameter Searching - 1000 SNPs

| Model                 | #<br>Hidden | Layer Widths          | Train<br>Accuracy | Validation<br>Accuracy |
|-----------------------|-------------|-----------------------|-------------------|------------------------|
| Cinco De<br>Mayo 1000 | 5           | 512; 256;128; 64; 32  | 96.4%             | 96.4%                  |
| Trisomy<br>1000       | 3           | 512; 256; 128         | 98.2%             | 95.8%                  |
| George<br>1000        | 1           | 128                   | 99.5%             | 95.8%                  |
| Paul 1000             | 1           | 512                   | 99.8%             | 95.8%                  |
| Glaucoma<br>1000      | 5           | 512; 512; 512;<br>512 | 97.8%             | 95.6%                  |
| STR Crazy             | I           |                       |                   |                        |

Motivation

Methods

Results

Summary









#### Make It (T)rain: Top Models vs. Irisplex on OpenSNP



All SNPs Test Accuracy: 55.1%

**Brown** 54.2%; **Blue** 80.4%; **Other** 0% STR Crazy

IrisPlex Test Accuracy: 81.2%

Brown 90.7%; Blue 98.5%; Other 6%

1000 SNPs Test Accuracy: 68.6%

**Brown** 76.6%; **Blue** 85.6%; **Other** 0%



# The Test Set STRikes Back: Limitations and Challenges

- No ground truth training labels: Training was based on IrisPlex labels for most probable class as opposed to true labels
- Test set labels were self-reported and messy
- Test set Inconsistencies in SNPs across genotyping arrays:
  - Tradeoffs between filtering and number of SNPs available for training
  - Missing SNP problem: If no SNP reported we ignored contributions of that SNP in the prediction for that individual





#### The Return of the Jedi: Summary and Future Directions

#### **Summary:**

 We constructed a flexible neural network architecture for multi-class prediction that can be generalized and adapted to any task

#### **Future Directions:**

- Gauge performance of our proof of conSNPt idea on a large phenotyped dataset
- Broader SNP selection (i.e., Use p-value in hyperparameter search)
- Adapt model to handle noise in inputs to prevent poor performance when certain SNPs aren't reported for an individual

STR Crazy



### **Acknowledgments**



Dr. Gymrek

Shubham





Questions?





"60% of the time, this model works every time"

- James Talwar

"I never want to see a panda again"

- Adam Klie



# Supplementary Slides





## Non-linear Transformation







# Curves or metrics comparing accuracy on IrisPlex vs the accuracy of our model





