K-Nearest Neighbor Graph

Hirakata

July 22, 2015

読んだ論文

W. Dong, C. Moses, K. Li: "Efficient K-Nearest Neighbor Graph Construction for Generic Similarity Measures" in *WWW 2011*

- http://dl.acm.org/citation.cfm?id=1963487
- http://www.cs.princeton.edu/cass/papers/www11.pdf

最(k)近傍探索問題

点集合 $V = \{v_1 \dots v_n\}$ が与えられたとき、 全ての v_i に就いて、その最近傍 (あるいは k 位まで) の点を 列挙せよ

全ての点対の距離を調べる: $O(n^2)$

k近傍グラフ (kNN Graph)

点集合 V が与えられたとき

notation

点 $v(\in V)$ の k 位までの近傍点集合を $B_k(v)$ と書く

V を頂点集合とし, $v \rightarrow u \ (u \in B_k(v))$ を有向枝とするグラフを kNN Graph という. 実質的には グラフは (V, B_k) で表現される

uを近隣とする点集合

$$R_k(u) = \{v : u \in B_k(v)\}$$

他の近傍点探索アルゴリズム

- tree-based data structure
 - kd 木
 - wavelet 木 とか
- Locality Sensitive Hashing

└ Properties

Efficient kNN Graph Construction: W.Dong, M.Charikar, K.Li

- kNN Graph はナイーブに作ると $O(n^2)$
- ullet (経験的に) $O(n^{1.14})$ なアルゴリズムを紹介する
- 距離空間に依存しないことを目指す
- ただし、近似的なグラフ
- C++で実質的に 200 行以下

└ Properties

他諸々

Definition

距離空間 V に就いて.

点 $v \in V$ を中心とする半径 r の閉集合 (r 閉近傍) を

$$B_r(v) = \{u \in V : d(v,u) \leq r\}$$

と書く. ある定数 c を用いて

$$|B_{2r}(v)| \leq c \cdot |B_r(v)|$$

と書けるとき, V を growth-restricted metric space というまた, 上を満たす最小の c を growing constant という

基本のアイデア

- 厳密な kNN (V, B_k) ではなく近似グラフを構成する
- $B_k(v), R_k(v)$ の近似 B[v], R[v]
 - $U[v] := B[v] \cup R[v]$
- 近傍の近傍は近傍(であり易い)
- 近似 B[v] を逐次改善することを考える

N.B.

以降 $B.(\cdot)$ を r 閉近傍 (添字は距離) とし、 $B[\cdot]$ を近似の近傍点集合 (大きさは k) とする

The Basic Algorithm

近傍の近傍

適当な kNN Graph の近似 B が与えられたとき 点 v の近傍の近傍とは,

$$B'[v] = \bigcup_{v' \in B[v]} B[v']$$

- |B[v]| = k とすると
- $|B'[v]| \leq k^2$

Prop

 $B[v] \cup B'[v]$ から v の近傍 k 点を選ぶと, v との最長距離は一定の確率以上で半減する (後述)

└ The Basic Algorithm

アルゴリズム

procedure ApproximateKNNGraph(V, d)

```
B[v] にランダムな k 点を割り当て loop B[] から R[] を構成 (逆辺を張る) U[] \leftarrow B[] \cup R[] for v \in V do for v' \in U[v], u \in U[v'] do B[v] \leftarrow Update(B[v], u) Update される B[v] がなくなったら終了
```

- Update は1点を追加して距離の小さい k 点に更新する操作
- アルゴリズム中で距離の計算 (d) をするのはここだけ
- *B*[] を近傍点とその距離の組のコレクションだとし、ヒープ等で予め距離でソートしておけばこれは *O*(log *n*)

☐ The Basic Algorithm

距離が半減する確率

kNN Graph の近似 B の於ける v と B[v] との最長距離を r とする

$$u \in B'[v] \iff \exists v' (v' \in B[v] \land u \in B[v'])$$

ある $u \in R_{r/2}(v)$, $v' \in R_{r/2}(v)$ に就いて $v' \in B[v] \land u \in B[v']$ がなる確率を考える

- $Pr\{v' \in B[v]\} \ge k/|B_r(v)|$
- $Pr\{u \in B[v']\} \ge k/|B_r(v')|$

これは、B[v] が $B_r(v)$ から一様に選ばれた集合であると仮定してる 2 式目は三角不等式から u が v から距離 r 以下にあることを使う

距離が半減する確率 cont

$$v' \in B[v]$$
 と $u \in B[v']$ とが独立だとして

$$Pr\{v' \in B[v] \land u \in B[v']\} \ge \frac{k^2}{|B_r(v)||B_r(v')|}$$

点集合 V が 定数 c で growth restrected な距離空間だと仮定すると $(|B_r(v)| \le c \cdot |B_{r/2}(v)|)$

$$Pr\{v' \in B[v] \land u \in B[v']\} \ge \frac{k^2}{c^3|B_{r/2}(v)|}$$

The Basic Algorithm

距離が半減する確率 cont

 $Pr\{v' \in B[v] \land u \in B[v']\} \ge p$ という下限が見積もれた更に $\exists v' (v' \in R_{r/2}(v))$ を考えれば

$$Pr\{u \in B'[v]\} \ge 1 - (1-p)^{|B_{r/2}|}$$

 $pprox rac{k^2}{c^3|B_{r/2}(v)|}$

$$r \rightarrow$$
小, $B_{r/2}(v) \rightarrow$ 小, $Pr \rightarrow$ 大(直感に反する?)

改良ポイント

- Local Join
- Incremental Search
- Sampling
- Early Termination

Local Join

- 2重ループのメモリアクセスの局所性を増やす
- v を固定したループ:
 - \blacksquare for $v \in V$
 - for $v' \in U[v]$, $u \in U[v']$

だったのを

v' を固定した2重ループ:

- \blacksquare for $v' \in V$
 - for $v \in U[v']$, $u \in U[v']$

とするだけ

Incremental Search

更新した U[] (近傍リスト) だけチェックする

2重ループで前回のループで U[v'] が更新されてないとき

• for $v \in U[v']$, $u \in U[v']$

を飛ばす

Sampling

$$|B[v]| = k$$
 であるが $|U[v]|$ に制限はない
ただし $\sum_{v} |U[v]| = 2 \sum_{v} |B[v]| = 2nk$

3重ループ

for
$$v' \in V$$
 do for $v \in U'$, $u \in U'$ do ...

のループ数 $(\sum_{v} |U[v]|^2)$ は

- 最良で O(nk²),
- 最悪で O(n²k²).

Sampling

$$|B[v]| = k$$
 であるが $|U[v]|$ に制限はない
ただし $\sum_v |U[v]| = 2 \sum_v |B[v]| = 2nk$

3重ループ

for
$$v' \in V$$
 do for $v \in U'$, $u \in U'$ do ...

のループ数 $(\sum_{v} |U[v]|^2)$ は

- 最良で *O(nk²)*,
- 最悪で O(n²k²).

そもそも「近隣の近隣」は重複しやすいため 全て調べるのは無駄

Sampling cont

U[v'] から ρK だけサンプリングして使う $(\rho \leq 1)$

3重ループ

```
for v' \in V do U' \leftarrow SAMPLE(U[v'], \rho K) for v \in U', u \in U' do \cdots
```

ループ数は $O(nk^2)$

Early Termination

全体の loop を完全に収束する前に、早めに切り上げる

```
loop
for ··· do
···
if Update される点の数が δKN 以下 then
return
```

└ Improvement

計算量

以上の改良をした上で全体の計算量は 全体のループ数 $\times O(nk^2 \log n)$

└ Improvement

計算量

以上の改良をした上で全体の計算量は 全体のループ数 $\times O(nk^2 \log n)$

で、ループ数は...?

└ Improvement

計算量

以上の改良をした上で全体の計算量は 全体のループ数 $\times O(nk^2 \log n)$

で、ループ数は...? ⇒ 実験で示します

実験

- 5つの(現実の)データセットと種々の距離尺度を使う
 - Corel: Corel 画像データベース
 - Audio: DARPA TIMIT collection. 英語文を読み上げた 音声
 - Shape: 3D モデル
 - DBLP: 書物に関するデータベース (テキスト). 著者の 名前とか出版物のリストとか
 - Flicker: 画像

Dense vectors

■ Corel: 14 次元

Audio: 192次元

🛮 Shape: 544 次元

のベクトルとして, それぞれ表す

距離に *L*₁, *L*₂ の 2 つを使う

$$L_p = \sum_i |\delta x_i|^p$$

Text Data

DBLP

語のベクトル, 多重集合で表現して, 類似度に cosine と Jaccard を使う

$$cosine(x,y) = \frac{x \cdot y}{||x|| \cdot ||y||}$$

$$Jaccard(x,y) = \frac{|x \cap y|}{|x \cup y|}$$

類似度のマイナスを距離とする

Earth Mover's Distance

Flicker には EMD を使う

重み付きの素性ベクトル $\{\langle w_i, v_i \rangle\}_i$ $(\sum_i w_i = 1)$ どうしの距離を測る

画像 → 領域への切り分け

→ 領域ごとの素性ベクトルと、領域の広さ (重み)

評価尺度: 近似の良さ, 計算効率

recall と scan rate を考える 各頂点について:

真の kNN Graph で正しく張られてる (枝数) / k

を計算して、全頂点のそれの平均をグラフ全体の recall とする

ナイーブには距離の計算は N(N-1)/2 回必要 実験で実際に行った計算の回数の割合を scan rate とする

パラメータ

- K = 20
 - DBLP (テキスト) だけ *K* = **50**
 - K は大きいほど有利
 - K を変更した場合の挙動もあとで見せます
- $\rho = 0.5, 1.0$
- $\delta = 0.001$

結果 - recall

横軸はループ回数 全て11以下で終了している

結果 - rate scan

小さいほど良い

Kを変えた時の挙動

K は大きいほど recall は高くなる

└ Improvement

計算量は K² に比例

データ数 vs scan rate

Empirical complexity

Dataset & Measure	Empirical Complexity
$Corel/l_2$	$O(n^{1.11})$
Audio/l_2	$O(n^{1.14})$
Shape/l_2	$O(n^{1.11})$
DBLP/cos	$O(n^{1.11})$
Flickr/EMD	$O(n^{1.14})$

└ Improvement

まとめ

- kNN Graph の乱択による近似的な構成
- recall の scan rate のトレードオフ
- 全体計算量はデータセットによらず同じ傾向にあった