NASA Technical Memorandum 106123

P. 37

167939

P. 39

Explicit Robust Schemes for Implementation of General Principal Value-Based Constitutive Models_

S.M. Arnold
Lewis Research Center
Cleveland, Ohio

and

A.F. Saleeb, H.Q. Tan, and Y. Zhang

University of Akron

Akron, Ohio

_____May 1993

(NASA-TM-106123) EXPLICIT ROBUST SCHEMES FOR IMPLEMENTATION OF GENERAL PRINCIPAL VALUE-BASED CONSTITUTIVE MODELS (NASA) 29 p

N93-26947

Unclas

G3/59 0167939

	The state of the s	***			
	,				
 -					
					•
		a e e e e e e e e e e e e e e e e e e e		• • • • • • • • • • • • • • • • • • • •	- · · - · · · · ·
		·			
			<u> </u>	 	<u></u>
	<u></u>				

Explicit Robust Schemes for Implementation of General Principal Value-Based Constitutive Models

S. M. Arnold
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

A. F. Saleeb, H. Q. Tan, and Y. Zhang University of Akron Akron, Ohio 44325

Abstract

The issue of developing effective and robust schemes to implement general hyperelastic constitutive models is addressed. To this end, special purpose functions are used to symbolically derive, evaluate, and automatically generate the associated FORTRAN code for the explicit forms of the corresponding stress function and material tangent stiffness tensors. These explicit forms are valid for the entire deformation range (i.e., with both distinct and repeated principal-stretch values). The analytical form of these explicit expressions is given here for the case in which the strainenergy potential W is taken as a nonseparable polynomial function of the principle stretches.

1 Introduction

Recently, constitutive models of rubber hyperelasticity, using alternative representations in terms of the principal stretches as opposed to deformation invariants, have become increasingly popular in nonlinear finite element analyses [1-3]. Two of our recent publications have discussed in detail the theoretical development [4] and symbolic and numeric implementation [5] of explicit forms for the second Piola Kirchhoff stress tensor and the material tangent stiffness tensor. These forms correspond to a class of Ogden type hyperelastic constitutive models, based on principal-stretch values. These explicit expressions are

significant since they are valid for the entire deformation range, even though the main constituents of the deformation tensor (i.e., principle values and associated eigenvectors) are, in general, neither uniquely defined nor continuously differentiable over the entire range. The two specific forms of the Ogden-type strain energy functions addressed in reference 4 encompass many of the popular representations currently in use for rubber materials. However, those functions were restricted to special forms of nonseparable representations of the strain energy density functions, with the restricted nonseparable form given in reference 4, section 5, dealing with the important and practical case of incompressible and slightly compressible solids. To date, comparable treatments for the general nonseparable forms of the models are not available in the literature. Indeed, it is the extension of our earlier results [4] and recent developments [5] to deal with this latter case that constitutes our main objective in the present paper.

By cleverly applying symbolic manipulation packages so as to control expression growth new constitutive theories can be developed and applied (e.g., finite element; see, [6] and [7]). Symbolic computation uses numbers, formulas, vectors, matrices, equations and the like to compute exact solutions; whereas numerical computation uses floating-point numbers to compute approximate solutions to problems of practical interest. Here, we will utilize three recently developed [5] special purpose symbolic functions (SDIFF, SDIFFEV, and TEMPLATE) running under DOE MACSYMA [8]. These special purpose functions allow the derivation and automatic FORTRAN code generation of alternative generalized potential based constitutive models composed of principal values and their associated eigenvectors.

This paper begins by reviewing highlights of our previous work in developing the theory of explicit forms [4] and implementing them symbolically and numerically [5]. Following this review, the results of the derivation of the generalized expressions for the second Piola Kirchhoff stress tensor S_{ij} and the material moduli tensor D_{ijkl} are given. The paper then concludes with a discussion of the template files required to automatically generate the associated FORTRAN source code.

2 Background

The theoretical development of a singularity-free representation of principal value-based constitutive models has been discussed at length in reference [4]. Here, we will confine our discussion to hyperelastic isotropic materials whose strain energy function W is taken to be a general function of the principal stretches, that is,

$$W = W(\lambda_1, \lambda_2, \lambda_3) \tag{1}$$

where $\lambda_1, \lambda_2, \lambda_3$ are the principal values of the right Cauchy-Green deformation tensor C_{ij} . Denoting n_i (i = 1, 2, 3) to be the associated eigenvectors of C_{ij} , we

can define,

$$C_{ij} = \sum_{l=1}^{3} \lambda_{(l)} N_{ij}^{(l)} \tag{2}$$

where $N_{ij}^{(l)}$, which is often referred to as the (orthogonal) eigenprojection operator related to the associated eigenvectors of C_{ij} is defined as

$$N_{ii}^{(l)} = n_i^l n_i^l \tag{3}$$

Equation (2) is valid when all three eigenvalues (λ_i) are distinct. However, when two eigenvalues are the same (i.e, double coalescence, $\lambda_1 \neq \lambda_2 = \lambda_3 = \lambda$), we have

$$C_{ij} = (\lambda_1 - \lambda)N_{ij}^{(1)} + \lambda \delta_{ij} \tag{4}$$

And for the case of triple coalescence $(\lambda_1 = \lambda_2 = \lambda_3 = \lambda)$, we have

$$C_{ij} = \lambda \sum_{l=1}^{3} N_{ij}^{(l)} = \lambda \delta_{ij}. \tag{5}$$

Similarly, through suitable manipulation of equations (2) and (4), explicit expressions for $N_{ij}^{(r)}$ in terms of C_{ij} can be obtained for the case of three distinct eigenvalues,

$$N_{ij}^{(r)} = \frac{1}{(\lambda_r - \lambda_s)(\lambda_s - \lambda_t)} [(C_{ij} - \lambda_s \delta_{ij})(C_{ij} - \lambda_t \delta_{ij})]$$
 (6)

and for the case of double coalescence

$$N_{ij}^{(r)} = \frac{1}{(\lambda_r - \lambda)} (C_{ij} - \lambda \delta_{ij}). \tag{7}$$

In the preceding equations r, s, and t represent any cyclic permutation of (1, 2, or 3). These definitions will prove very useful in obtaining the pertinent singularity-free directional derivatives of both the potential W and the stress function $S_{ij} = S_{ij}(C_{ij})$.

The explicit singularity-free expressions for the second Piola Kirchhoff stress tensor $S_{ij}(C_{ij})$ are defined as

$$S_{ij} = 2 \frac{\partial W}{\partial C_{ij}} \equiv S_{ij}(C_{ij}) \tag{8}$$

Those for the material moduli tensor $D_{ijkl}(C_{ij})$ can then be obtained by applying the directional derivative formula to S_{ij} , that is,

$$D_{ijkl} = 2\frac{\partial S_{ij}}{\partial C_{kl}} = 4\frac{\partial^2 W}{\partial C_{ij}\partial C_{kl}} \equiv D_{ijkl}(C_{ij})$$
(9)

As a result, the explicit expressions for the tensors $S_{ij}(C_{ij})$ and $D_{ijkl}(C_{ij})$ can be obtained directly for the following three cases: case I - when all three eigenvalues are distinct; case II - when a single singularity is present $(\lambda_1 \neq \lambda_2 = \lambda_3 = \lambda$, i.e., double coalescence); or case III - when a double singularity is present $(\lambda_1 \neq \lambda_2 = \lambda_3 = \lambda$, i.e., triple coalescence).

The derivation and implementation process for the formulations described was recently automated [5] by constructing three special purpose functions (SD-IFF, SDIFFEV, and TEMPLATE), written at the MACSYMA command level, that can respectively,

- (1) <u>Derive</u> the explicit expressions for the stress tensor S_{ij} (eqs. (8)) and material tensor D_{ijkl} (eqs. (9)), given three, one or no distinct eigenvalues
- (2) Evaluate symbolically the expressions generated by SDIFF for a given strain-energy function W
- (3) Evaluate the expressions generated by SDIFF and automatically generate (using the built-in MACSYMA function gentran) the associated FORTRAN code needed to evaluate the expressions numerically for a given potential function, W

These three special purpose functions contain a list of built-in MACSYMA instructions (factor, expand, ev, ratsubst, diff, limit and for-loops, to name a few) arranged in a specific algorithmic order. Thus each special purpose function can be thought of as a macro command.

3 Symbolic Derivation

Let us begin by assuming that W is a nonseparable function of λ_1, λ_2 , and λ_3 . For example,

$$W = \sum_{n=1}^{p} [x_n(\lambda_1 + \lambda_2 + \lambda_3)^{\alpha_n} + y_n(\lambda_1\lambda_2 + \lambda_2\lambda_3 + \lambda_3\lambda_1)^{\beta_n} + z_n(\lambda_1\lambda_2\lambda_3)^{\gamma_n}]$$

As a result, when the special purpose function SDIFF is invoked, the scalar derivative of W with respect to each eigenvalue will no longer be a function of that eigenvalue only, as discussed in reference 5, but will instead be a function of all three eigenvalues, that is,

$$s_{(l)}(\lambda_1, \lambda_2, \lambda_3) = 2 \frac{\partial W}{\partial \lambda_{(l)}}.$$

Furthermore, in deriving D_{ijkl} , the mixed second derivatives $(\frac{\partial^2 W}{\partial \lambda_i \lambda_j})$ must also be taken into account in the procedure. To derive the generalized explicit expression for the three cases, one need only issue the command SDIFF upon invoking MACSYMA, as shown here:

• Case I -three distinct eigenvalues $(\lambda_1 \neq \lambda_2 \neq \lambda_3)$

• Case II - double coalescence $(\lambda_1 \neq \lambda_2 = \lambda_3 = \lambda)$

• Case III - triple coalescence $(\lambda_1 = \lambda_2 = \lambda_3 = \lambda)$

Note that the resulting derived expressions have been manipulated and condensed so as to streamline their reporting and to facilitate their comparison with previous work [4].

3.1 Results for Case I

The explicit expression for the second Piola Kirchhoff stress tensor is

$$S_{ij} = aC_{ik}C_{kj} + bC_{ij} + c\delta_{ij} \tag{10}$$

where δ_{ij} is the second order identity tensor and a,b, and c are defined as

$$a = -m[s_1(\lambda_2 - \lambda_3) + s_2(\lambda_3 - \lambda_1) + s_3(\lambda_1 - \lambda_2)]$$
 (11)

$$b = m[s_1(\lambda_2^2 - \lambda_3^2) + s_2(\lambda_3^2 - \lambda_1^2) + s_3(\lambda_1^2 - \lambda_2^2)]$$
 (12)

$$c = -m[s_1\lambda_2\lambda_3(\lambda_2 - \lambda_3) + s_2\lambda_3\lambda_1(\lambda_3 - \lambda_1) + s_3\lambda_1\lambda_2(\lambda_1 - \lambda_2)]$$
 (13)

and where

$$m = \frac{1}{(\lambda_1 - \lambda_2)(\lambda_2 - \lambda_3)(\lambda_3 - \lambda_1)} \tag{14}$$

The explicit expression for the material moduli tensor $D_{ijkl}(C_{ij})$ is

$$D_{ijkl} = a_1 P(C_{kl}^2, C_{ij}^2) + a_2 [P(C_{kl}^2, C_{ij}) + P(C_{kl}, C_{ij}^2)]$$

$$+ a_3 [Q(C_{kl}^2 \delta_{ij}) + P(\delta_{kl}, C_{ij}^2)] + a_4 P(C_{kl}, C_{ij})$$

$$+ a_5 [Q(C_{kl}, \delta_{ij}) + Q(\delta_{kl}, C_{ij})] + 2a_6 I_{ijkl}$$

$$(15)$$

where two second order symmetric tensors P and Q have been introduced and are defined as

$$P_{ijkl}(G,H) = G_{ik}H_{jl} + G_{il}H_{jk}$$
(16)

$$Q_{ijkl}(G,H) = G_{ik}H_{jl} + G_{ij}H_{jk} + G_{jl}H_{ik} + G_{jk}H_{il}$$
 (17)

and the notation

$$I_{ijkl} = \frac{1}{2} [\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk}]$$
 (18)

$$C_{ij}^2 = C_{im}C_{mj} \tag{19}$$

has been used in equation (15). Here the coefficients $a_1, a_2, ..., a_6$ are defined as

$$a_1 = \sum_{r=1}^{3} \eta_r + \sum_{r=1}^{3} \sum_{s=1}^{3} \xi_{rs}$$
 (20)

$$a_2 = \sum_{r=1}^{3} (\lambda_r - I_1) \eta_r - \frac{1}{2} \sum_{r=1}^{3} \sum_{s=1, r \neq s}^{3} (2I_1 - \lambda_r - \lambda_s) \xi_{rs}$$
 (21)

$$a_3 = \sum_{r=1}^{3} \frac{I_3 \eta_r}{\lambda_r} + \frac{1}{2} \sum_{r=1}^{3} \sum_{s=1, r \neq s}^{3} (\lambda_r + \lambda_s) (I_1 - \lambda_r - \lambda_s) \xi_{rs}$$
 (22)

$$a_4 = \sum_{r=1}^{3} (I_1 - \lambda_r)^2 \eta_r + \frac{1}{2} \sum_{r=1}^{3} \sum_{s=1, r \neq s}^{3} (I_1 - \lambda_r)(I_1 - \lambda_s) \xi_{rs}$$
 (23)

$$a_5 = \sum_{r=1}^{3} (\mu_r + \frac{I_3 \eta_r (\lambda_r - I_1)}{\lambda_r}) - \frac{1}{2} \sum_{r=1}^{3} \sum_{s=1, r \neq s}^{3} (I_2 + \lambda_r \lambda_s) (I_1 - \lambda_r - \lambda_s) \xi_{rs}$$
 (24)

$$a_6 = \sum_{r=1}^{3} \left(\frac{I_3}{\lambda_r}\right)^2 \eta_r + (\lambda_r - I_1)\mu_r + \sum_{r=1}^{3} \sum_{s=1, r \neq s}^{3} I_3 (I_1 - \lambda_r - \lambda_s) \xi_{rs}$$
 (25)

where

$$\mu_r = \frac{s_r}{(\lambda_r - \lambda_s)(\lambda_r - \lambda_t)}$$

$$\eta_r = \frac{[s_{rr} + (\lambda_s - \lambda_r)(\mu_r + \mu_t) + (\lambda_t - \lambda_r)(\mu_r + \mu_s)]}{(\lambda_r - \lambda_s)^2(\lambda_r - \lambda_t)^2}$$

$$\xi_{rs} = \frac{s_{rs}}{(\lambda_r - \lambda_s)^2(\lambda_r - \lambda_t)(\lambda_s - \lambda_t)}$$

and

$$I_1 = \lambda_1 + \lambda_2 + \lambda_3$$

$$I_2 = \lambda_1 \lambda_2 + \lambda_2 \lambda_3 + \lambda_1 \lambda_3$$

$$I_3 = \lambda_1 \lambda_2 \lambda_3$$

Note that in the preceding expression the following differentiation notation has been introduced:

$$s_l = s_l(\lambda_1, \lambda_2, \lambda_3) = 2 \frac{\partial W}{\partial \lambda_{(l)}}$$
 (26)

and

$$s_{ij} = s_{ij} (\lambda_1, \lambda_2, \lambda_3) = \frac{\partial s_i(\lambda_1, \lambda_2, \lambda_3)}{\partial \lambda_i} = \frac{\partial^2 W}{\partial \lambda_i \lambda_j}$$
(27)

For example, $s_{11} = 2\frac{\partial^2 W}{\partial \lambda_1^2}$; $s_{22} = 2\frac{\partial^2 W}{\partial \lambda_2^2}$; $s_{33} = 2\frac{\partial^2 W}{\partial \lambda_3^2}$; $s_{12} = s_{21} = \frac{\partial^2 W}{\partial \lambda_1 \lambda_2}$; $s_{13} = s_{31} = \frac{\partial^2 W}{\partial \lambda_1 \lambda_3}$; $s_{23} = s_{32} = \frac{\partial^2 W}{\partial \lambda_2 \lambda_3}$. A comparison of the preceding expressions and those obtained earlier for the two special Ogden-type strain energy forms [4], shows that the expressions are identical except for the additional double-summation terms (containing the cross derivative terms) in the coefficients $a_1, a_2, ...a_6$ (see equations (20)-(25)) comprising the material moduli tensor D_{ijkl} . Thus the previous work is now merely a special case of the present generalized expressions.

3.2 Results for Case II

In this case, a single singularity $(\lambda_1 \neq \lambda_2 = \lambda_3 = \lambda)$ is analytically removed, thereby yielding

$$S_{ij} = \overline{a}C_{ij} + \overline{b}\delta_{ij} \tag{28}$$

with

$$\overline{a} = \frac{s_1 - s_2}{(\lambda_1 - \lambda)} \tag{29}$$

$$\bar{b} = -\frac{[s_1\lambda - s_2\lambda_1]}{(\lambda_1 - \lambda)} \tag{30}$$

and a reduced material moduli tensor

$$D_{ijkl} = b_1 P(C_{kl}, C_{ij}) + b_2 [Q(C_{kl}, \delta_{ij}) + Q(\delta_{kl}, C_{ij})] + b_3 I_{ijkl}$$
(31)

where

$$b_1 = \frac{1}{(\lambda_1 - \lambda_2)^3} \{ (\lambda_1 - \lambda_2)[s_{11} + s_{22} - 2s_{12}] - 2[s_1 - s_2] \}$$

$$b_2 = \frac{1}{(\lambda_1 - \lambda_2)^3} \{ (\lambda_2 - \lambda_1)[\lambda_2 s_{11} + \lambda_1 s_{22} - 2(\lambda_1 + \lambda_2) s_{12}] + (\lambda_1 + \lambda_2)[s_1 - s_2] \}$$

$$b_3 = \frac{1}{(\lambda_1 - \lambda_2)^3} \{ (\lambda_1 - \lambda_2)[\lambda_1^2 s_{22} + \lambda_2^2 s_{11} - 2\lambda_1 \lambda_2 s_{12}] - 2\lambda_1 \lambda_2 [s_1 - s_2] \}$$

Again, in comparing the coefficients a and b, and, b_1 , b_2 , and b_3 to those obtained in previous work [4], the only difference seen is the appearance of the cross derivative term (s_{12}) in coefficients b_1 , b_2 , and b_3 .

3.3 Results for Case III

Finally, in the case of a double singularity ($\lambda_1 = \lambda_2 = \lambda_3 = \lambda$), the explicit expression for the stress tensor becomes

$$S_{ij} = s_{\lambda}(\lambda)\delta_{ij} \tag{32}$$

whereas the material moduli tensor becomes

$$D_{ijkl} = 2s_{\lambda\lambda}(\lambda)\delta_{ijkl}. \tag{33}$$

These are identical to the previous results, as one would expect.

The value of automating the foregoing derivation procedure is apparent in that not only does this special purpose function SDIFF relieve the user of the tedious manual derivation process, but it also ensures analytical accuracy. This was illustrated prior to the publication of reference 4, in that a number of errors in the hand derivation were detected, verified, and corrected. Also, because the derivation process needs to be executed only once, except for the evaluation of the scalar derivatives in equations (26) and (27) for each new definition of W, a second special purpose function, SDIFFEV, as described in [5], was developed. This function is used to symbolically evaluate the foregoing expressions.

3.4 FORTRAN Code Generation

The function TEMPLATE is similar to the function SDIFFEV in that both functions will evaluate the explicit expressions obtained from SDIFF. TEMPLATE, however, will automatically generate the associated FORTRAN source code needed to numerically evaluate the expressions for a given potential function W. Code generation is accomplished by utilizing the MACSYMA built-in function gentran and a number of template files. The template files can be thought of as a framework for the FORTRAN generation of four subroutines (the main driving routine COMPSD and three subroutines, one each for case I, case II, and case III) and numerous functions. The template file for the main driving routine COMPSD is shown in appendix A. This subroutine is constructed for easy implementation into a finite element code. The input requirements are the strain tensor C_m (denoted as cmu) and its associated eigenvalues λ_1, λ_2 , and λ_3 (denoted by gl1, gl2, and gl3 respectively). The outputs are the stress tensor S_n (denoted as s) and the material moduli tensor D_{nm} (denoted as d). Here, n and m run from 1 to 6. Clearly, the only code generation required is that of subroutines COMPSD1, COMPSD2, and COMPSD3. Code generation is initiated by issuing the command gentranin, preceded by and followed by less than and greater than symbols, respectively.

The subroutines COMPSD1, COMPSD2, and COMPSD3 are associated with case I ($\lambda_1 \neq \lambda_2 \neq \lambda_3$), case II ($\lambda_1, \lambda = \lambda_2 = \lambda_3$), and case III ($\lambda = \lambda_1 = \lambda_2 = \lambda_3$), described in section 2.0. The template files corresponding to

these three cases are shown in appendices B,C and D, respectively. Note that in these routines, most of the FORTRAN code is automatically generated, since it pertains to the definition of coefficients a,b,c; $a_1,a_2,...,a_6$, and the first and second scalar derivatives of the strain energy function W, (i.e., $s_1, s_2, s_3, s_{11}, s_{22}$, and s_{33}). Also, the gentran commands are again preceded and followed by double inequality signs (that is, $\ll \gg$). All functions that are associated with a given case have been included in the corresponding appendix. As a result, with the appropriate template files, the FORTRAN source code associated with any general nonseparable or separable strain-energy function can easily be generated.

4 Summary of Results

Taken separately, the main constituents of the deformation tensor (i.e., the principal values and associated eigenvectors) are, in general, not uniquely defined and continuously differentiable functions. Careful consideration is thus called for in implementing constitutive models formulated in terms of these principal-strain measures. This difficulty was entirely bypassed by resorting to explicit symbolic derivations of appropriate forms of the material tangent-stiffness matrices which are valid for the entire deformation range. Furthermore, to enhance effective utilization and implementation of the present results, automatic FOR-TRAN code generation of the present generalized explicit expressions was pursued and achieved. As a result, nonseparable forms dealing with the important practical case of incompressible and slightly compressible solids can easily be generated. Finally, the generic analytical forms of these explicit expressions have been given for three cases: (1) distinct eigenvalues, (2) one distinct eigenvalue, and (3) no distinct eigenvalues.

In the future we will broaden our scope of application to include not only deformation constitutive models but also damage representations as well. An example that immediately comes to mind, where the above singularity-free representations will be important, is a maximum principle stress (or strain) damage formulation. Using this work as a building block, we can then envision moving to even more sophisticated damage formulations involving even higher tensorial representations.

References

- Finney, R.H.; and Kumar, A.: Development of Material Constants for Nonlinear Finite Element Analysis. <u>J. Rubber Chem. Tech.</u>, Vol.. 61, pp. 879-891, 1988.
- [2] Sussman, T.; and Bathe, K.J.: A Finite Element Formulation for Nonlinear Incompressible Elastic and Inelastic Analysis. <u>Comp. Struct.</u>, Vol. 26, pp. 357-409, 1987.

- [3] Chang, T.Y.; Saleeb, A.F.; and Li, G.: Large Strain Analysis of Rubber-Like Materials by a Mixed Finite Element. <u>Computational Mech.</u>, Vol. 8, No.4, pp. 221-233, 1991.
- [4] Saleeb.A.F.; and Arnold, S.M.: Explicit Robust Schemes for Implementation of a Class Of Principle Value-Based Constitutive Models: Theoretical Development. NASA TM 105345, 1991.
- [5] Arnold, S.M.; et al.: Explicit Robust Schemes for Implementation of a Class of Principal Value-Based Constitutive Models: Symbolic and Numeric Implementation. NASA TM 106124, 1993.
- [6] Arnold, S.M.; and Tan, H.Q.: Symbolic Derivation of Potential Based Constitutive Equations. Computational Mech., Vol. 6, pp. 237-246, 1990.
- [7] Arnold, S.M.; Tan, H.Q.; and Dong, X.: Application of Symbolic Computations to The Constitutive Modeling of Structural Materials. Symbolic Computations and Their Impact on Mechanics, Noor, A.K., Elishakoff, I. and Hulbert, G., eds., PVP-Vol. 205, ASME, pp.215-229.,1990.
- [8] MATHLAB Group: MACSYMA Reference Manual. Version 10. Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 1984.

APPENDIX A: Template File Associated With COMPSD The Main Driver Routine

```
This is the template subroutine to calculate
C
        tensor S and D. inputs are eigenvalues gl1,gl2,gl3,
С
        and cmu(6). cmu is assumed to be engineering strain(e),
С
        e.g. the Cauchy-green deformation tensor cm(3,3) is related
С
        to cmu(6) in the following fashion:
С
        cm(1,1)=cmu(1), cm(2,2)=cmu(2), cm(3,3)=cmu(3),
С
        cmu(4)=2*cm(1,2), cm(5)=2*cm(2,3), cmu(6)=2*cm(1,3).
С
        The outputs are the second order tensor S(6)
C
        and forth order tensor D(6,6) are related in the
C
        following way:
C
        S=D*C
С
        S(1,1) = S(1)
С
        S(2,2) = S(2)
C
        S(3,3) = S(3)
С
        S(1,2) = S(4)
С
        S(2,3) = S(5)
¢
        S(3,1) = S(6)
C
С
        C(1,1) = C(1)
        C(2,2) = C(2)
C
        C(3,3) = C(3)
C
        C(1,2) = C(4)
С
        C(2,3) = C(5)
С
        C(3,1) = C(6)
С
C
        subroutine compsd(gl1,gl2,gl3,cmu,s,d)
        real*8 gl1,gl2,gl3,ts(3,3),td(3,3,3,3)
        real*8 delt(3,3),delt4(3,3,3,3),s(6),d(6,6)
        real*8 cmu(6),cm(3,3)
С
        converts cmu(6) to matrix cm(3,3) in a way that
С
        cm(1,2)=cm(2,1)=cmu(4), cm(2,3)=cm(3,2)=cmu(5),
        cm(1,3)=cm(3,1)=cmu(6).
С
С
```

```
do 5 i=1,3
           do 5 j=1,3
             if (i.eq.j) then
               iq=i
               cm(i,j)=cmu(iq)
             else if (i.ne.j) then
                if((i+j).eq.3) iq=4
                if((i+j).eq.4) iq=6
                if((i+j).eq.5) iq=5
                cm(i,j)=cmu(iq)/2
             end if
            continue
5 continue
C
        Initiates the second identity tensor delt(3,3) which
C
        is a 2X2 identity matrix.
C
C
        do 6 i=1,3
           delt(i,i)=1.0
        continue
6
С
        Computes the forth order identity tensor delt4(3,3,3,3)
C
        by definition.
С
C
        do 7 i=1,3
         do 7 j=1,3
           delt4(i,j,i,j)=delt(i,i)*delt(j,j)+delt(i,j)*delt(j,i)
           delt4(i,j,j,i)=delt4(i,j,i,j)
7
       continue
C
        For different eigenvalues gl1,gl2,gl3 the computation
C
        is different. case1 is gl1#gl2#gl3 call subroutine comsd1.
С
        case2 is gl3=gl2#gl1 or gl1=gl3#gl2 or gl1=gl2#gl3 then
        call subroutine compsd2. case3 is gl1=gl2=gl3 call subroutine
C
        compsd3.
        if ((gl1.ne.gl2).and.(gl2.ne.gl3).and.(gl1.ne.gl3)) then
        call compsd1(gl1,gl2,gl3,delt,delt4,cm,ts,td)
        else if((gl2.eq.gl3).and.(gl1.ne.gl3)) then
```

```
call compsd2(gl1,gl2,delt,delt4,cm,ts,td)
        else if((gl1.eq.gl2).and.(gl3.ne.gl2)) then
             gl1=gl3
             call compsd2(gl1,gl2,delt,delt4,cm,ts,td)
        else if((gl1.eq.gl3).and.(gl2.ne.gl3)) then
             gl1=gl2
             g12=g13
             call compsd2(gl1,gl2,delt,delt4,cm,ts,td)
        else
        call compsd3(gl1,delt,delt4,ts,td)
        end if
C
        Rewrite the tensor ts(i,j) td(i,j,k,l)to S(i) and D(i,j)
С
        respectively by using the symetric property.
C
        converts ts(3,3) s(6) and td(3,3,3,3) to D(6,6)
С
С
        do 8 i=1,3
          do 8 j=i,3
               if (i.eq.j) iq=i
       if (i.eq.1.and.j.eq.2) iq=4
       if (i.eq.2.and.j.eq.3) iq=5
       if (i.eq.1.and.j.eq.3) iq=6
               s(iq)=ts(i,j)
          continue
8
        continue
        do 9 i=1.3
          do 9 j=i,3
             d(i,j)=td(i,i,j,j)
          continue
 9
        continue
        do 10 i=1,3
           d(i,4)=td(i,i,1,2)+td(i,i,2,1)
           d(i,5)=td(i,i,2,3)+td(i,i,3,2)
           d(i,6)=td(i,i,3,1)+td(i,i,1,3)
 10
         continue
        d(4,4)=(td(1,2,1,2)+td(1,2,2,1)+td(2,1,1,2)+td(2,1,2,1))/2.
        d(4,5)=(td(1,2,2,3)+td(1,2,3,2)+td(2,1,2,3)+td(2,1,3,2))/2.
        d(4,6)=(td(1,2,1,3)+td(1,2,3,1)+td(2,1,1,3)+td(2,1,3,1))/2.
        d(5,5)=(td(2,3,2,3)+td(2,3,3,2)+td(3,2,2,3)+td(3,2,3,2))/2.
        d(5,6)=(td(2,3,1,3)+td(2,3,3,1)+td(3,2,1,3)+td(3,2,3,1))/2.
```

```
d(6,6)=(td(3,1,1,3)+td(3,1,3,1)+td(1,3,1,3)+td(1,3,3,1))/2.
        do 11 i = 1,6
          do 11 j = 1,6
             d(i,j) = d(j,i)
11
        continue
С
        prints out the inputs gl1,gl2,gl3,cmu(6) and outputs S and D
С
C
        print*, 'gl1=', gl1
        print*, 'gl2=', gl2
        print*, 'gl3=', gl3
        print*, 'Input tensor C(6):'
        print*, (cmu(i), i = 1,6)
        print*,"second order tensor S(6):"
        print*, (s(i), i=1,6)
        print*, "The forth order tensor D(6,6):"
        do 101 i=1,6
            print*,(d(i,j),j=1,6)
 101
        continue
        return
        end
С
        subroutine compsd1(gl1,gl2,gl3,delt,delt4,cm,ts,td)
<<
        gentranin("case1.tem")$
>>
        subroutine compsd2(gl1,gl2,delt,delt4,cm,ts,td)
<<
        gentranin("case2.tem")$
>>
        subroutine compsd3(gl1,delt,delt4,ts,td)
<<
        gentranin("case3.tem")$
>>
```

```
С
        This subroutine computes P and Q forth order tensors
С
        which we define in tensor D.
С
С
        subroutine pqcom(cm1,cm2,p,q)
        real*8 cm1(3,3),cm2(3,3), p(3,3,3,3),q(3,3,3,3)
        do 100 i=1,3
         do 100 j=1,3
          do 100 k=1,3
           do 100 1=1,3
            p(i,j,k,l)=cm1(i,k)*cm2(j,l)+cm1(i,l)*cm2(j,k)
            q(i,j,k,1)=p(i,j,k,1)+cm1(j,1)*cm2(i,k)+cm1(j,k)*cm2(i,1)
 100
        continue
        return
        end
С
        This subroutine computes matrix product cmXcm.
С
С
        subroutine product(mat1,cmm)
        real *8 mat1(3,3),cmm(3,3),sum
        do 25 i=1,3
        do 25 j=1,3
          sum=0.0
          do 26 k=1,3
           sum=sum+mat1(i,k)*mat1(k,j)
 26
          continue
          cmm(i,j)=sum
 25
      continue
        return
        end
```

APPENDIX B: Template File Associated With COMPSD1 Valid For Three Distinct Eigenvalues

```
real*8 gl1,gl2,gl3,ts(3,3),td(3,3,3,3)
        real *8 \text{ cm}(3,3), \text{delt}(3,3), \text{delt}(3,3,3,3), p(3,3,3,3)
        real*8 q(3,3,3,3),cmm(3,3),p1(3,3,3,3),p21(3,3,3,3)
        real*8 p31(3,3,3,3),q11(3,3,3,3),q12(3,3,3,3),p22(3,3,3,3)
        real*8 q21(3,3,3,3),q22(3,3,3,3),a,b,c,a1,a2,a3,a4,a5,a6
С
        Obtains cmm(3,3)=cm(3,3)*cm(3,3) from subroutine product
С
C
        call product(cm, cmm)
        Uses the formula we derived in code to compute second order
С
        tensor ts(3,3).
С
<<
        gentran(for i:1 thru 3 do
         (for j:1 thru 3 do
           (ts[i,j]:a(gl1,gl2,gl3)*cmm[i,j]+b(gl1,gl2,gl3)
             *cm[i,j]+c(gl1,gl2,gl3)*delt[i,j])))$
>>
        Call subroutine to compute all the functions we defined
С
        when we derived forth order tenosor td, namely P(i,j,k,1)
С
        and Q(i,j,k,1) which are the functions of cm(3,3) and
С
        the matrix product cmm(3,3).
C
c
        call pqcom(cmm,cmm,p1,q)
        call pqcom(cmm,cm,p21,q)
        call pqcom(cm,cmm,p22,q)
        call pqcom(cm,cm,p31,q)
        call pqcom(cmm,delt,p,q11)
        call pqcom(delt,cmm,p,q12)
        call pqcom(cm,delt,p,q21)
        call pqcom(delt,cm,p,q22)
```

```
С
        Computes forth order tensor td(i,j,k,l)
С
С
<<
        gentran(for i:1 thru 3 do
         (for j:1 thru 3 do
          (for k:1 thru 3 do
           (for 1:1 thru 3 do
            (td[i,j,k,1]:a1(gl1,gl2,gl3)*p1[i,j,k,1]+a2(gl1,gl2,gl3)
            *(p21[i,j,k,1]+p22[i,j,k,1])+a4(g11,g12,g13)*p31[i,j,k,1]
            +a3(gl1,gl2,gl3)*(q11[i,j,k,l]+q12[i,j,k,l])
            +a5(gl1,gl2,gl3)*(q21[i,j,k,l]+q22[i,j,k,l])
            +a6(gl1,gl2,gl3)*delt4[i,j,k,l])))))$
>>
        return
        end
С
        a,b,c,a1-a6 are the coefficients we derived in code.
С
С
<<
        gentran(a(gl1,gl2,gl3):=block(type(function,a),
                                      type("real*8",gl1,gl2,gl3),
                                      type("real*8",a,s1,s2,s3),
                                      a:eval(ta)))$
>>
<<
        gentran(b(gl1,gl2,gl3):=block(type(function,b),
                                      type("real*8",b,gl1,gl2,gl3),
                                      type("real*8",s1,s2,s3),
                                      b:eval(tb)))$
>>
<<
        gentran(c(gl1,gl2,gl3):=block(type(function,c),
                                      type("real*8",c,gl1,gl2,gl3),
                                      type("real*8",s1,s2,s3),
                                      c:eval(tc)))$
>>
```

```
<<
        gentran(a1(gl1,gl2,gl3):=block(type(function,a1),
                                    type("real*8",a1,gl1,gl2,gl3),
                        type("real*8",s1,s2,s3,s11,s22,s33,s21,s32,s31),
                         a1:eval(a1)))$
>>
<<
        gentran(a2(gl1,gl2,gl3):=block(type(function,a2),
                        type("real*8",a2,gl1,gl2,gl3),
                        type("real*8",s1,s2,s3,s11,s22,s33,s21,s32,s31),
                        a2:eval(a2)))$
>>
<<
        gentran(a3(gl1,gl2,gl3):=block(type(function,a3),
                        type("real*8",a3,gl1,gl2,gl3),
                        type("real*8",s1,s2,s3,s11,s22,s33,s21,s32,s31),
                        a3:eval(a3)))$
>>
<<
        gentran(a4(gl1,gl2,gl3):=block(type(function,a4),
                        type("real*8",a4,gl1,gl2,gl3),
                        type("real*8",s1,s2,s3,s11,s22,s33,s21,s32,s31),
                        a4:eval(a4)))$
>>
<<
        gentran(a5(gl1,gl2,gl3):=block(type(function,a5),
                        type("real*8", a5, gl1, gl2, gl3),
                        type("real*8",s1,s2,s3,s11,s22,s33,s21,s32,s31),
                        a5:eval(a5)))$
>>
<<
        gentran(a6(gl1,gl2,gl3):=block(type(function,a6),
                        type("real*8",a6,gl1,gl2,gl3),
                        type("real*8",s1,s2,s3,s11,s22,s33,s21,s32,s31),
                        a6:eval(a6)))$
>>
```

```
С
        The s1,s2,s3,s11,s22,s33,s21,s32,s31 are derivatives of W
С
С
        function s1(gl1,gl2,gl3)
        <<cut(var);>>
<<
        gentran(type( "real*8",s1,gl1,gl2,gl3),
                        s1:2*eval(diff(w,'gl1,1)))$
>>
        return
        end
С
        function s2(gl1,gl2,gl3)
        <<cut(var);>>
<<
                         "real*8",s2,gl1,gl2,gl3),
        gentran(type(
                          s2:2*eval(diff(w,'gl2,1)))$
>>
        return
        end
С
        function s3(gl1,gl2,gl3)
        <<cut(var);>>
<<
        gentran(type(
                        "real*8",s3,gl1,gl2,gl3),
                         s3:2*eval(diff(\(\varphi\),'gl3,1)))$
>>
        return
        end
С
        function s11(gl1,gl2,gl3)
        <<cut(var);>>
<<
        gentran(type(
                        "real*8", s11, g11, g12, g13),
                         s11:2*eval(diff(w,'gl1,2)))$
>>
        return
        end
```

```
C
        function s22(gl1,gl2,gl3)
        <<cut(var);>>
<<
        gentran(type("real*8",s22,g11,g12,g13),
                      s22:2*eval(diff(w,'g12,2)))$
>>
        return
        end
С
        function s33(gl1,gl2,gl3)
        <<cut(var);>>
<<
        gentran(type( "real*8",s33,g11,g12,g13),
                       s33:2*eval(diff(w,'g13,2)))$
>>
        return
        end
Ç
        function s21(gl1,gl2,gl3)
        <<cut(var);>>
<<
        gentran(type( "real*8",s21,g11,g12,g13),
                       s21:2*eval(diff(w,'gl2,1,'gl1,1)))$
>>
        return
        end
C
        function s31(gl1,gl2,gl3)
        <<cut(var);>>
<<
        gentran(type( "real*8",s31,gl1,gl2,gl3),
                       s31:2*eval(diff(w,'gl3,1,'gl1,1)))$
>>
        return
        end
```

APPENDIX C: Template File Associated With COMPSD2 Valid For Double Coalesence Case

```
real*8 gl1,gl2,ts(3,3),td(3,3,3,3)
        real*8 cm(3,3),delt(3,3),delt4(3,3,3,3),p1(3,3,3,3)
        real*8 q2(3,3,3,3),q1(3,3,3,3),p(3,3,3,3),q(3,3,3,3)
        real*8 b1,b2,b3, abar,bbar
C
        Computes second order tensor ts(i,j) based on the formula
С
        derived in code.
С
С
<<
        gentran(for i:1 thru 3 do
         (for j:1 thru 3 do
          (ts[i,j]:abar(gl1,gl2)*cm[i,j]+bbar(gl1,gl2)*delt[i,j])))$
>>
С
        Call subroutine to get P, Q which are defined in code.
С
C
        call pqcom(cm,cm,p1,q)
        call pqcom(cm,delt,p,q1)
        call pqcom(delt,cm,p,q2)
C
        Computes tensor td(i,j,k,l).
С
С
<<
        gentran(for i:1 thru 3 do
        (for j:1 thru 3 do
         (for k:1 thru 3 do
          (for 1:1 thru 3 do
            (td[i,j,k,1]:b1(gl1,gl2)*p1[i,j,k,1]+b2(gl1,gl2)*
            (q1[i,j,k,1]+q2[i,j,k,1])+b3(g11,g12)*delt4[i,j,k,1]))))
>>
        return
        end
```

```
С
        abar, bbar are b1, b2, b3 functions derived in code.
С
С
<<
        gentran(abar(gl1,gl2):=block(type(function,abar),
                                      type("real*8",abar,gl1,gl2),
                                      type("real*8", ss1,ss2),
                                      abar:eval(abar)))$
>>
<<
        gentran(bbar(gl1,gl2):=block(type(function,bbar),
                                      type("real*8",bbar,gl1,gl2),
                                      type("real*8", ss1,ss2),
                                      bbar:eval(bbar)))$
>>
<<
        gentran(b1(gl1,gl2):=block(type(function,b1),
                                     type("real*8",b1,gl1,gl2),
                                     type("real*8", ss1,ss2,ss11,ss22,ss21),
                                     b1:eval(b1)))$
>>
<<
        gentran(b2(gl1,gl2):=block(type(function,b2),
                                     type("real*8",b2,g11,g12),
                                     type("real*8", ss1,ss2,ss11,ss22,ss21),
                                     b2:eval(b2)))$
>>
<<
        gentran(b3(gl1,gl2):=block(type(function,b3),
                                     type("real*8",b3,gl1,gl2),
                                     type("real*8", ss1,ss2,ss11,ss22,ss21),
                                     b3:eval(b3)))$
>>
<<
        neww:subst(['gl3='gl2],w)$
>>
```

```
С
        ss1,ss2,ss11,ss22,ss21 are derivatives of W.
С
С
        function ss1(gl1,gl2)
        <<cut(var);>>
<<
        gentran(type("real*8",ss1,gl1,gl2),
                     ss1:2*eval(diff(neww,'gl1,1)))$
>>
        return
        end
C
        function ss2(gl1,gl2)
        <<cut(var);>>
<<
        gentran(type("real*8",ss2,gl1,gl2),
                     ss2:2*eval(diff(neww,'gl2,1)))$
>>
        return
        end
C
        function ss11(gl1,gl2)
        <<cut(var);>>
<<
        gentran(type("real*8",ss11,gl1,gl2),
                     ss11:2*eval(diff(neww,'gl1,2)))$
>>
        return
        end
C
        function ss21(gl1,gl2)
        <<cut(var);>>
<<
        gentran(type("real*8",ss21,gl1,gl2),
                ss21:2*eval(diff(neww,'gl2,1,'gl1,1)))$
>>
        return
        end
```

APPENDIX D: Template File Associated With COMPSD3 Valid For The Triple Coalesence Case

```
C
        real*8 gl1,ts(3,3),td(3,3,3,3),delt(3,3),delt4(3,3,3,3)
        real*8 cc1,abbar
С
<<
        gentran(for i:1 thru 3 do
          (for j:1 thru 3 do
           (ts[i,j]:abbar(gl1)*delt[i,j])))$
>>
<<
        gentran(for i:1 thru 3 do
         (for j:1 thru 3 do
          (for k:1 thru 3 do
           (for 1:1 thru 3 do
           (td[i,j,k,l]:cc1(gl1)*delt4[i,j,k,l])))))$
>>
        return
        end
<<
        gentran(abbar(gl1):=block(type(function,abbar),
                            type("real*8", abbar,gl1),
                            abbar:eval(abbar)))$
>>
<<
        gentran(cc1(gl1):=block(type(function,cc1),
                           type("real*8", cc1,gl1),
                           cc1:eval(cc1)))$
>>
<<
        www:subst(['gl3='gl1, 'gl2='gl1],w)$
>>
```

```
С
        function sss1(gl1)
        <<cut(var);>>
<<
        gentran(type("real*8",sss1,gl1),
          sss1:2*eval(diff(www,'gl1,1)))$
>>
        return
        end
C
        function sss11(gl1)
        <<cut(var);>>
<<
        gentran(type("real*8",sss11,gl1),
                sss11:2*eval(diff(www,'gl1,2)))$
>>
        return
        end
```

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

Davis riigiway, Suite 1204, Alington, 4A 223			<u> </u>				
1. AGENCY USE ONLY (Leave blank)			es covered al Memorandum				
	April 1993		FUNDING NUMBERS				
4. TITLE AND SUBTITLE		1	FUNDING NUMBERS				
	or Implementation of General Pri	ncipal					
Value-Based Constitutive M	lodeis						
6. AUTHOR(S)			WU-510-01-50				
	70 m 13/71						
S.M. Arnold, A.F. Saleeb, H	I.Q. lan, and Y. Zhang						
- PERSONAL ORGANIZATION N	PERFORMING ORGANIZATION						
7. PERFORMING ORGANIZATION N.	REPORT NUMBER						
National Aeronautics and S							
Lewis Research Center		E-7787					
Cleveland, Ohio 44135-31							
		45	OF CHICARIA MANUTARING				
9. SPONSORING/MONITORING AGE	NCY NAME(S) AND ADDRESS(ES)	10.	SPONSORING/MONITORING AGENCY REPORT NUMBER				
National Aeronautics and S	nace Administration						
Washington, D.C. 20546-0		NASA TM-106123					
,							
11. SUPPLEMENTARY NOTES	Research Center, Cleveland, Oh	io: A F Saleeh University	of Akron. Department of Civil				
Engineering, Akron, Ohio 4	14325; and H.Q. Tan and Y. Zhar	ng, University of Akron, De	epartment of Mathematical				
Sciences, Akron, Ohio, 433	25. Responsible person, S.M. A.	nold, (216) 433–3334.					
12a. DISTRIBUTION/AVAILABILITY	STATEMENT	12t	DISTRIBUTION CODE				
Unclassified - Unlimited							
Subject Category #9 59							
13. ABSTRACT (Maximum 200 word	is)						
The issue of developing eff	ective and robust schemes to im	olement general hyperelasti	ic constitutive models is				
The issue of developing effective and robust schemes to implement general hyperelastic constitutive models is addressed. To this end, special purpose functions are used to symbolically derive, evaluate, and automatically generate							
the associated FORTRAN of	code for the explicit forms of the	corresponding stress funct	ion and material tangent				
stiffness tensors. These exp	licit forms are valid for the entire	e deformation range (i.e., v	vith both distinct and repeated				
principal-stretch values). The	he analytical form of these explic	cit expressions is given her	e for the case in which the				
strain-energy potential W is	s taken as a nonseparable polyno	mial function of the princip	pie stretches.				
·							
14. SUBJECT TERMS			15. NUMBER OF PAGES				
	29						
Hyperelastic; Constitutive 1	16. PRICE CODE A03						
	18. SECURITY CLASSIFICATION	19. SECURITY CLASSIFICATION					
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	OF ABSTRACT	m en municipal of contino				
Unclassified	 Unclassified 	Unclassified					