Universidad Francisco Marroquín Facultad de Ciencias Económicas Computer Science Catedrático: Luis Fernando Leal

Lunes y Miercoles 19:00

Programa de curso

Machine Learning

Objetivos del curso

- Conocer los campos y áreas de aplicación de Machine Learning
- Conocer los fundamentos científicos detrás de los algoritmos de Machine Learning
- Identificar potenciales aplicaciones de Machine Learning en la práctica
- Aprender los diferentes sub-tipos de algoritmos de Machine Learning e identificar el mejor tipo para una aplicación especifica.
- Aprender como transformar un conjunto de datos, en insumo para un algoritmo de Machine Learning y obtener un modelo a partir de esto.
- Conocer las diferentes métricas para evaluar la calidad de las tareas y aplicaciones de Machine Learning.
- Aplicar estas técnicas y conceptos en Python

Oportunidades del curso

El alumno aprenderá a derivar inteligencia a partir de un conjunto de datos, y aplicar esta para crear herramientas predictivas ,y encontrar patrones . Aprenderá como aplicar y que método aplicar para aplicaciones y tareas específicas , como evaluar la calidad de sus algoritmos y modelos, y como transformar los datos para hacer esto posible.

Reglamento del curso

El curso sera impartido de manera virtual , a través de sesiones interactivas entre profesor y alumnos utilizando herramientas de Google como "Google Hangouts on Air", el alumno puede en todo momento interactuar y/o preguntar ya sea por micrófono o por el chat de la sesión y puede solicitar tomar el control de la sesión para mostrar su pantalla en caso de querer mostrar o preguntar algo respecto a su trabajo. La sesión sera almacenada automáticamente en Youtube para futuros repasos y/o referencia.

Habrá sesiones presenciales en casos específicos tales como exámenes , exposiciones ,o proyectos/exámenes prácticos

Descripción de 18 semanas 2 veces por semana sesiones de 1.20 - horas cada una

Tema	Lecturas y Contenido (secuencias y temas específicos)	Aplicaciones Prácticas (hands-on)	Tareas asignadas este día para la siguiente sesión
1	 Introducción del profesor y auxiliar Introducción de los alumnos , background, intereses, experiencia, etc 	Examen de ubicación(no tiene nota en el curso, es para evaluar conocimiento en programación, matematica y estadística)	
2	 Bienvenidos a machine learning!:ejemplos, casos de uso conocidos, motivación, experiencias, antecedentes, industria y actualidad. 		
3	 Introducción y descripción a las herramientas del curso. Repaso básico: matemática(Calculo) para ML 		 Instalación de herramientas Crear cuenta en Github
4	 Repaso básico: matemática(álgebra lineal) . Repaso básico: estadística y probabilidad 		
5	Programación con Python:	Programación básica	

6	Que es machine learning? :	Ejercicio: que es y que	Ensayo: Investigar o
	definiciones y explicación intuitiva	no es ML entre una lista	proponer 2
	de las definiciones y su relación con estadística tradicional.	de ejemplos? Ejemplo e	aplicaciones de en áreas de tu interés o
	Relación con data	introducción a	que llamen tu
	engineering/data science,big data	Jupyter notebooks	atención.
	y business intelligence Y otras		
	disciplinas .DS process.		
	Jupyter notebooks para data		
	science		
7	Tipos básicos: aprendizaje	Ejercicio Numpy	Ejercicios Python y
	supervisado, aprendizaje no		Numpy en Jupyter
	supervisado, aprendizaje por		
	refuerzo, otros. • Aprendizaje supervisado		
	NumPy		
	. tunn y		
8	 Aprendizaje supervisado: 	Ejercicio: identificar	
	regresión	regresión y	
	 Aprendizaje supervisado: clasificación. 	clasificación	
	MatplotLib y seaborn		
9	Aprendizaje no supervisado		
	Aprendizaje no supervisado:		
	reducción de dimensionalidad		
	• Pandas		
10	Aprendizaje no supervisado:		
	clustering and retrieval		
	 Aprendizaje no supervisado: deteccion de anomalias 		
11	Aprendizaje por refuerzo		Seleccionar 5
	Otros tipos de aprendizaje:		aplicaciones o ideas
	sistemas de		de interés y
	recomendación,aprendizaje de		clasificar a que tipo
	reglas de asociación, aprendizaje		de aprendizaje pertenecen.
	semi-supervisado, modelos generativos,one-shot learning		Recolectar datos
	generativos,one-snot learning		analizarlos con
			numpy/pandas y
			graficarlos en
12	Examen Parcial 1 - Tipos	: de anrendizaie v ro	jupyter.
13	Tu primer algoritmo de ML como base del	ue aprendizaje y reg	gresion (13 pts.)
	resto de algoritmos(regresión lineal		
	sencilla): utilizaremos como caso base		
	una regresión lineal sencilla para tratar		
	temas que serán comunes en la mayoría		
	de algoritmos de ML que veremos tales		

	como: modelo e hipótesis,parámetros entrenables, función de costo , proceso de "aprendizaje" / entrenamiento y gradient descent,learning rate, proceso de inferencia o predicción , preprocesamiento de datos y feature engineering(feature scaling and normalization)		
14	 Regresion lineal multivariable Regresion polinomial Solucion analitica: ecuacion normal 		Ejercicio de regresion utilizando scikit-learn y jupyter.
15	 Clasificacion: diferencia con regresión, modelo/hipotesis, frontera de decisión Naive Bayes classifier K-nearest neighbors Desicion trees 		
16	Primer algoritmo de clasificación por GD: regresión logística, su función de costo, gradient descent y clasificación multiclase(overview de softmax)		
17	 Segundo algoritmo de clasificación por GD: support vector machines, objetivo de optimizacion, intuicion "large margin" Kernels 		Ejercicio de clasificacion usando scikit-learn y jupyter.
18	Overview de deep learning y redes neuronales: breve introducción a deep learning, redes neuronales, aplicaciones especiales y similitudes con los algoritmos vistos hasta el momento		Investigar 5 avances recientes de deep learning. Proponer 1 caso de uso no comun o aun no explotado.
19	Problemas comunes: overview underfitting, overfitting, como identificarlos y posibles soluciones(regularización)		
20	Examen Parcial 2- Regr	esión y Clasificación	(15 pts.)
21	 Clustering: k-means Reducción de dimensionalidad: PCA 	,	Ejercicio en scikit- learn y jupyter.
22	Deteccion de anomalias		Ejercicio en scikit- learn, scipy y jupyter
23	Sistemas de recomendación		
24	Aprendizaje por refuerzo:		
	- 1		

	RL: proceso de decisión	
	markoviano y cadenas de markov	
25	RL: q-table e introduccion a q-learning	Investigacion: OpenAl gym
26	 Modelos generativos :overview y ejemplos (neural-style transfer, text generators, GANs, text embeddings) Semi-supervised learning: overview y ejemplos 	Proponer 5 casos de uso o aplicaciones de modelos generativos.
27	One-shot learning: descripcion , motivación y ejemplo aplicado a computer vision: face recognition	
28	 Mejorando el performance y,consejos y diseño(tuning de hyperparametros, optimización,y otras técnicas): explicaremos que posibles opciones tiene un desarrollador para mejorar el performance de su sistema, y como priorizar sus siguientes pasos. Evaluacion de un modelo y seleccion de modelos a traves de 	Ejercicio k-fold cross validation en scikit- learn y jupyter
	cross-validation, k-fold cross valiation	
29	 Metricas de performance: accuracy, error, confusion matrix, precicion, recall, f1-score Diagnosticando bias(underfitt) y variance(overfitt) Curvas de aprendizaje 	
30	 Regularizacion: I1 regularization, I2 regularization, dropout, artificial data synthesis Analisis del error 	Ejercicio feature engineering.
	 Introduction to Feature engineering, feature engineering vs end-to-end ML y big data en ML 	
	Examen Parcial 3- Aprendizaje no supervisad	lo v MI nerformance (15 nts)

34	Examen y proyecto final	- 40 puntos
33	 Machine learning pipeline Cierre del curso 	Proponer un caso/ejemplo de machine learning pipeline e implementarlo con scikit-learn
32	parámetros(Xavier initialization) Priorizando y decidiendo tareas: ceiling analysis Ensembling,boosting, bagging Otros algoritmos de optimización: stochastic gradient descent, minibach gradient descent, momentum, rmsprop, adagrad, adam. Large Scale ML: procesamiento distribuido, map reduce y otros frameworks o técnicas, GPUs	
31	Inicialización de parémetros (Yayior initialization)	Ejercicio ensembling

Bibliografía

- Se proporcionara material de apoyo y referencias a lo largo del curso.
- Curso interactivo gratuito para Python: https://www.codecademy.com/learn/learn-python
- Tutorial Python: https://www.tutorialspoint.com/python/
- Notas del curso "Machine Learning" impartido en Stanford : http://www.holehouse.org/mlclass/
- · Grokking Deep Learning, Andrew Trask,
- Manipulación de datos con Pandas: <u>https://www.datacamp.com/community/tutorials/pandas-tutorial-dataframe-python</u>

Evaluación

Parcial 1	15 pts
Parcial 2	15 pts
Parcial 3	15 pts
Tareas , y ejercicios	15 pts
Proyecto final	20 pts
Examen final	20 pts