Ghana Mathematical Olympiad Team Selection Program

Test 1

26th June, 2020

(4.) Let $\triangle ABC$ be a triangle with circumcenter at O, i.e. $\omega(ABC)$ is centered at O, orthocenter at H, and AB < BC. Consider a point D on OB such that O is between D and B and $\angle ADC = \angle ABC$. A ray starting at H that is parallel to BO, which intersect AC, meets $\omega(ABC)$ at E. Show that BH = DE.

Solution.

Consider the quadrilateral AHCD:

$$\angle AHC + \angle ADC = (180^{\circ} - \angle ACH - \angle HAC) + \angle ABC$$

= $(180^{\circ} - (90^{\circ} - \alpha) - (90^{\circ} - \gamma)) + \beta$
= $(180^{\circ} - \beta) + \beta$
= 180° .

Therefore, AHCD is cyclic, meaning its vertices lie on a same circle.

Now, let O' be a reflection of O over AC. Then,

$$O'A = O'B$$

 $\angle AO'B = \angle AOB = 2\beta = 2\angle ADC.$

So, O' is the circimcenter of $\omega(ADC)$.

By Law of Sine, the radius of the circumcircles $\omega(ABC)$ and $\omega(ADC)$ are same:

$$2R = \frac{AC}{\sin \angle ABC} = \frac{AC}{\sin \angle ADC}.$$

The quadrilateral $BHO^{\prime}O$ is a parallelogram because:

$$HO' = OB$$

 $BH \perp AC$ and $OO' \perp AC \Longrightarrow BH \parallel OO'$.

So, $O' \in HE$.

Also, the quadrilateral OO'ED is isosceles trapezoid since:

$$O'E \parallel OD$$

 $R = O'D = OE$.

Hence, BH = OO' = DE.