1. Даны значения величины заработной платы заемщиков банка (zp) и значения их поведенческого кредитного скоринга (ks):

zp = [35, 45, 190, 200, 40, 70, 54, 150, 120, 110],

ks = [401, 574, 874, 919, 459, 739, 653, 902, 746, 832].

Найдите *ковариацию* этих двух величин с помощью элементарных действий, а затем с помощью функции соv из numpy. Полученные значения должны быть равны.

Найдите *коэффициент корреляции Пирсона* с помощью ковариации и среднеквадратичных отклонений двух признаков, а затем с использованием функций из библиотек numpy и pandas.

X	Y	X·Y	$cov = \overline{XY} - \overline{X} \cdot \overline{Y}$	n
35	401	14035		
45	574	25830		
190	874	166060		
200	919	183800		
40	459	18360		
70	739	51730	9157,84	10
54	653	35262		
150	902	135300		
120	746	89520		
110	832	91520		
\bar{X} =101,4	<u>V</u> =709,9	<i>XY</i> =81141,7		

$X - \bar{X}$	$Y - \overline{Y}$	$(X-\bar{X})^2$	$(Y - \overline{Y})^2$	σ_{X}	σ_{Y}	R _{XY}
-66,4	-308,9	4408,96	95419,21			
-56,4	-135,9	3180,96	18468,81			
88,6	164,1	7849,96	26928,81			
98,6	209,1	9721,96	43722,81			
-61,4	-250,9	3769,96	62950,81			
-31,4	29,1	985,96	846,81	59,11548	174,5534	0,88749
-47,4	-56,9	2246,76	3237,61			
48,6	192,1	2361,96	36902,41			
18,6	36,1	345,96	1303,21			
8,6	122,1	73,96	14908,41			
	Σ	34946,4	304688,9			

```
B [11]: import numpy as np import pandas as pd executed in 660ms, finished 18:58:31 2021-01-30

B [20]: zp = pd.Series([35, 45, 190, 200, 40, 70, 54, 150, 120, 110]) ks = pd.Series([401, 574, 874, 919, 459, 739, 653, 902, 746, 832]) executed in 17ms, finished 19:02:45 2021-01-30

B [25]: np_cov = np.cov(zp, ks, ddof=0) pd_cov = zp.cov(ks, ddof=0) np_cov[0, 1], pd_cov

executed in 7ms, finished 19:05:14 2021-01-30

Out[25]: (9157.840000000002, 9157.840000000002)
```

```
B [27]: pd_corr = zp.corr(ks)
np_corr = np.corrcoef(zp, ks)[0, 1]
pd_corr, np_corr
executed in 13ms, finished 19:06:54 2021-01-30

Out[27]: (0.8874900920739163, 0.8874900920739163)
```

2. Измерены значения IQ выборки студентов, обучающихся в местных технических вузах: 131, 125, 115, 122, 131, 115, 107, 99, 125, 111. Известно, что в генеральной совокупности IQ распределен нормально. Найдите доверительный интервал для математического ожидания с надежностью 0.95.

№	X	$X - \overline{X}$	X	$(X-\bar{X})^2$	S_0
1	131	12,9	118,1	166,41	10,54567
2	125	6,9		47,61	
3	115	-3,1		9,61	
4	122	3,9		15,21	
5	131	12,9		166,41	
6	115	-3,1		9,61	
7	107	-11,1		123,21	
8	99	-19,1		364,81	
9	125	6,9		47,61	
10	111	-7,1		50,41	

В случае, когда дисперсия распределения неизвестна.

$$T_{1,2} = \overline{X} \pm \frac{S_0}{\sqrt{n}} \cdot t$$

Где t берется из таблицы Стьюдента: $t = t(\gamma; n-1)$

t = 2.26

$$T_{1,2} = 118.1 \pm \frac{10,55}{\sqrt{10}} \cdot 2.26 = 118.1 \pm 7.54$$

Доверительный интервал [110.56, 125,64]

3. Известно, что рост футболистов в сборной распределен нормально с дисперсией генеральной совокупности, равной 25 кв.см. Объем выборки равен 27, среднее выборочное составляет 174.2. Найдите доверительный интервал для математического ожидания с надежностью 0.95.

В случае, когда дисперсия распределения известна и равна σ^2 , границы доверительного интервала имеют вид

$$T_{1,2} = \overline{X} \pm \frac{\sigma}{\sqrt{n}} \cdot t$$

Где t берется из таблицы распределения Лапласа по соотношению $\Phi(t) = \frac{\gamma}{2}$

t = 1.96

$$T_{1,2} = 174.2 \pm \frac{\sqrt{25}}{\sqrt{27}} \cdot 1.96 = 174.2 \pm 1.89$$

Доверительный интервал [172,31, 176.09]