Kombinatoryka & teoria grafów

by a fish

21.03.2137

SYLABUS - teoria grafów:

- 1. Basic concepts: graphs, paths and cycles, complete andbipartite graphs
- 2. Matchings: Hall's Marriage theorem and its variations
- 3. Forbidden subgraphs: complete bipartite and r-partite subgraphs, chromatic numbers, Tur"an's thorem, asymptotic behaviour og edge density, Erd"os-Stone theorem
- 4. Hamiltonian cycles (Dirac's Theorem), Eulerian circuits
- 5. Connectivity: connected and k-connected graphs, Menger's theorem
- 6. Ramsey theory: edge colourings of graphs, Ramsey's theorem and its variations, asymptotic bounds on Ramsey numbers
- 7. Planar graphs and colourings: statements of Kuratowski's and Four Colour theorems, proof of Five Colour theorem, graphs on other surfaces and Euler chracteristics, chromatic polynomial, edge colourings and Vizing's theorem
- 8. Random graphs: further asymptotic bounds on Ramsey numbers, Zarankiewicz numbers and their bounds, graphs of large firth and high chromatic number, cmplete subgraphs in random graphs.
- 9. Algebraic methods: adjavenvy matrix and its eigenvalues, strongly regular graphs, Moore graphs and their existence.

Contents

1	Structural properties	5
	1.1 Basic definitions	5
	1.2 Hall's Marriage Theorem	6
	1.3 Menger's Theorem	10

Structural properties

1.1 Basic definitions

Graph - an ordered pair G = (V, E): \hookrightarrow vertices := V [singular: vertex] \hookrightarrow edges := E, $\{v, w\} := vw$

For an edge vw, $v \neq w$ we say that v, w are its endpoints and that it is incident to v (or w).

Dla krawedzi vw, $v \neq w$ mowimy, ze v,w sa jej koncami i ze jest krawedzia padajaca na v (lub w).

Graphs G and H are isomorfic (G \simeq H) if there exists $f: V(G) \xrightarrow{1-1} onV(H)$ such that $(\forall v, w \in V(G)) \ vw \in E(G) \iff f(v)f(w) \in E(H)$ Meaning that edges are like an operation on a group of vertices

G is a subgraph of H $[G \leq H]$ if $V(G) \subseteq V(H)$ and $E(G) \subseteq E(H)$.

If G is H-free if it is has no subgraphs isomorfphic to H.

Grafy G i G sa izomorficzne, jezeli istnieje $f: V(G) \xrightarrow{na} V(H)$ takie, ze $(\forall v, w \in V(G)) vw \in E(G) \iff f(v)f(w) \in E(H)$

G jest podgrafem H $[G \le H]$ jezeli $V(G) \subseteq V(H)$ oraz $E(G) \subseteq E(H)$.

G jest H-free (wolny od H?), jezeli nie ma podgrafow izomorficznych z H.

A cycle of length $n \geq 3$ [C_n] is a graph with vertices

$$V(C_n) = [n]$$

and edges:

$$E(C_n) = \{i(i+1) : i \le i \le n-1\} \cup \{1n\}.$$

A path of length $n - 1 [P_{n-1}]$ is a graph with vertices

$$V(P_{n-1}) = [n]$$

and edges

$$E(P_{n-1}) = \{i(i+1) : 1 \le i \le n-1\}.$$

Cykl dlugosci n \geq 3 [C_n] to graf z wierzcholkami

$$V(C_n) = [n]$$

i krawiedziami:

$$E(C_n) = \{i(i+1) : i \le i \le n-1\} \cup \{1n\}.$$

Sciezka dlugosci n - 1 $[P_{n-1}]$ to graf z wierzcholkami

$$V(P_{n-1}) = [n]$$

i krawedziami

$$E(P_{n-1}) = \{i(i+1) : 1 \le i \le n-1\}.$$

An induced by $A \subseteq V(G)$ subgraph of G is $G[A] = (A, E_A)$

A connected component of G is a subgraph $\mathbb{G}[\mathtt{W}] \ \leq \ \mathbb{G}$ where $\mathtt{W} \subseteq \mathtt{V}$ is an equivalence class under \approx given by

 $v \approx w \iff \text{exists a path } v...w \text{ in } G$

A graph is connected if $v \approx w$ for every $v, w \in$

V (G has at most one connected component).

If v is a vertex in graph G, we say that its neighbourhood is $N_G(v) = \{w \in G : vw \in E(G)\}.$ Furthermore, the degree of v is $|N_G(v)|$.

If
$$A \subseteq V$$
, then $N(A) := \bigcup_{v \in A} N(v)$.

We define:

- \hookrightarrow minimal degree $\delta(G) = \min_{v \in G} d(v)$
- \hookrightarrow maximal degree $\Delta(G) = \max_{v \in G} d(v)$
- \hookrightarrow average degree $d(G) = \frac{\sum d(v)}{|G|}$.

If there exists an r > 0 such that

$$\delta(G) = \Delta(G) = d(G) = r$$

then we say that the graph is r-regular or, more generally, it is regular for some r.

Handshaking Lemma: for any graph G we have $e(G) = \frac{1}{2} \sum d(v) = \frac{|G|}{2} d(G)$

1.2 Hall's Marriage Theorem

Graph G is bipartite with vertex classes U and W if $V = U \cup W$ so that every edge has form uw for some $u \in U$ and $w \in W$.

G is bipartite iff it has no cycles of odd length.

Graf G jest dwudzielny z klasami wierz-cholkow U i W, jesli V = U \cup W takimi, ze kazda krawedz jest formy uw dla pewnych u \in U oraz w \in W.

G jest dwudzielny wtw kiedy nie ma cykli o nieparzystej dlugosci.

[💥]

 \Longrightarrow

Let U,W be the vertex classes and v_1,v_2,\ldots,v_n,v_1 be a cycle in G. WLG suppose that $v_1\in U$. Then $v_2\in W$ etc. Specifically we have $v_i\in U$ if i is odd and $v_i\in W$ if i is even. Then, we have v_nv_i , so n must be even.

 \Leftarrow

Suppose G has no cycles of odd length. WLOG, assume that $V(G) \neq \emptyset$ and that G is connected, because G will be bipartite if all its connected components are bipartite. Fix $v \in G$ and for all other $w \in G$ define distance dist(v,w) as the smallest $n \geq 0$ such that there exists a path $v \dots w$ in G of length n.

Now, let $V_n := \{w \in G : dist(v, w) = n\}$ and set

$$U = V_0 \cup V_2 \cup V_4 \cup \dots$$
$$W = V_1 \cup V_3 \cup V_5 \cup \dots$$

We want to show that there are no edges in G of the form v'v'' where $v',v''\in U$ or $v',v''\in W$. Suppose that $v'v''\in E(G)$ with $v'\in V_m$, $v''\in V_n$ and $m\leq n$. Then, we have a path

$$v \dots v'v'' \in G$$

of length m+1, implying that

$$n \in \{m, m+1\}.$$

Supose that n=m. Let $v_0'v_1'\ldots v_m'$ and $v_0''v_1''\ldots v_m''$ be paths in G with $v=v_0'=v_0''$, $v'=v_m'$ and $v''=v_m''$. Note that v_i' , $v_i''\in V_i$ for $0\leq i\leq m$. Let $k\geq 0$ be largest such that

$$v'_k = v''_k$$

and note that $k \le m-1$ as $v' \ne v''$. Then

$$v'_k v'_{k+1} \dots v'_m v''_m v''_{m-1} \dots v''_k$$

is a cycle of odd length, which is a contradiction.

Therefore, we can only have n=m+1 and then exactly one of n,m is even meaning that exactly one of v' and v'' is in U as required for G to be bipartite.

Niech U,W beda klasami wierzcholkow oraz niech v_1,v_2,\ldots,v_n,v_1 niech bedzie cyklem w G. BSO $\texttt{zalozmy, ze} \ \ \texttt{v}_1 \ \in \ \ \texttt{U}. \quad \ \texttt{W} \ \ \texttt{takim} \ \ \texttt{razie, v}_2 \ \in \ \ \texttt{W} \ \ \texttt{etc.} \quad \ \texttt{W} \ \ \texttt{szczegolnosci, mamy} \ \ \texttt{v}_i \ \in \ \ \texttt{U} \ \ \texttt{jezeli} \ \ i \ \ \texttt{jest}$ nieparzyste oraz $v_i \in W$ jezeli i jest parzyste. W takim razie, skoro $v_n v_1$, to n musi byc parzyste.

Zalozmy, ze G nie ma cykli o nieparzystej dlugosci. BSO zalozmy, ze $V(G) \neq \emptyset$ i ze G jest spojny, poniewaz G bedzie dwudzielny, wtw gdy wszystkie jego skladowe spojne (????) beda dwudzielne. Ustalmy $v \in G$ i dla kazdego innego $w \in G$ zdefiniujmy dystans dist(v, w) jako najmniejsze n \geq 0 takie, ze istnieje sciezka v...w w G o dlugosci n.

Niech $V_n := \{w \in G : dist(v, w) = n\}$ i zbiory

$$U = V_0 \cup V_2 \cup V_4 \cup \dots$$
$$V = V_1 \cup V_3 \cup V_5 \cup \dots$$

Chcemy pokazac, ze nie istnieja w G krawedzie postaci v'v'', gdzie $v',v''\in U$ lub $v',v''\in W$. Zalozmy, ze $v'v'' \in E(G)$ z $v' \in V_m$, $v'' \in V_n$ oraz $m \le n$. Wtedy istnieje sciezka

$$v \dots v' v'' \in G$$

dlugosci m + 1, co implikuje, ze

$$n \in \{m, m+1\}.$$

Zalozmy, ze n = m. Niech $v_0'v_1'\ldots v_m'$ oraz $v_0''v_1''\ldots v_m''$ sa sciezkami w G takimi, ze $v=v_0'v_0''$, $v'=v_m'$ oraz $v''=v_m''$. Zauwazmy, ze v_1' , $v_1''\in V_1$ dla $0\leq i\leq m$. Niech $k\geq 0$ bedzie najwiksze takie, ze

$$v'_k = v''_k$$

i zauwazmy, ze k \leq m - 1 poniewaz $v' \neq v''$. Wtedy

$$v'_{k}v'_{k+1}...v'_{m}v'''_{m}v'''_{m-1}...v''_{k}$$

jest cyklem o nieparzystej dlugosci, co daje nam sprzecznosc.

W takim raize, mozemy miec tylko n = m + 1 i wtedy dokladnie jedno z n,m moze byc parzystem, co daje nam dokladnie jedno z v' i v'' w U tak, jak jest wymagane zeby to byl graf dwudzielny.

$$\{w \lor_{W} : w \in W'\} \subseteq E(G)$$

for some v_w \in M such that w \neq w' $v_w \neq v_{w'}$. A partial matching from W to M is called a matching.

Sufficient condition:

$$|N(A)| \ge |A| \quad (\clubsuit)$$

for every $A \subseteq W$

If G is a bipartite graph with V = W \cup M and Jesli G jest grafem dwudzielnym z V = W \cup M ${\tt W}' \subseteq {\tt W}$, a partial matching in ${\tt G}$ from ${\tt W}'$ to ${\tt M}$ oraz ${\tt W}' \subseteq {\tt W}$, wtedy czesciowe skojarzenie w ${\tt G}$ z W' do M to

$$\{w \lor_w : w \in W'\} \subseteq E(G)$$

dla pewnych v_w \in M takich, ze w \neq w' \Longrightarrow $v_w \neq v_{w'}$. Czesciowe kojarzenie z W do M jest nazywane kojarzeniem.

Wystarczajacy warunek:

$$|N(A)| \ge |A| \quad (\clubsuit)$$

dla kazdego $A \subseteq W$

A bipartite graf G contains a matching from W to M iff (G, W) satisfies Hall's condition (👛) .

Dwudzielny graf G zawiera kojarzeniem iff gdy (G, W) zadowala warunek Halla (🖐).

Trivial.

Using induction on |W|. For |W| = 0, 1 it is trivial.

We gonna break it into parts: |N(A)| > |A| and |N(A)| = |A|

Suppose that |N(A)| > |A| for every non-empty subset $A \subsetneq W$. Take any $w \in W$ and $v \in N(w)$ and construct a new graph

$$G_{\emptyset} = G - \{w, v\}.$$

For any non-empty $B \subseteq W - \{w\}$ we have

$$N_{G_{o}}(B) = N_{G}(B) - \{v\}$$

and therefore

$$|N_{G_{\Omega}}(B)| \ge |N_{G}(B)| - 1 \ge |B|$$

and so $(G_0, W - \{w\})$ satisfies Hall's condition. From induction we have a matching P in G_0 from $W - \{w\}$ to $M - \{v\}$ and so $P \cup \{wv\}$ is a matching from W to M.

Now, suppose that |N(A) = |A| for some non-empty subset $A \subsetneq W$. Let

$$G_1 = G[A \cup N(A)]$$

and

$$g_2 = G[(W-A) \cup (M-N(A))].$$

We will show that both those graphs satisfy Hall's condition. Let us take any B \subseteq A in G1. We have

$$N_G(B) \subseteq N_G(A) \subseteq V(G_1)$$

$$|N_{G_1}(B)| = |N_G(B)| \ge |B|$$

and so graph G_1 satisfies Hall's condition.

Now, let us take any $B \subseteq W - A$ in G_2 . We know that $N_{G_2}(B) \subseteq M - N(A)$ so

$$N_{G_2}(B) = N_G(B) - N_G(A) = N_G(A \cup B) - N_G(A)$$

$$|N_{G_2}(B)| = |N_G(A \cup B) - N_G(A)| \ge |N_G(A \cup B)| - |N_G(A)| \ge |A \cup B| - |A| = |A| + |B| - |A| = |B|$$

Therefore, graph G_2 also satisfies Hall's condition.

Using inductive hypothesis, we have that there exists a matching P_1 in G_1 and a matching P_2 in G_2 . The first one is from A to $N_G(A)$ while the second is from W - A to M - $N_G(A)$, so they are disjoint. Therefore, $P_1 \cup P_2$ is a matching in G from W to M.

 \Longrightarrow

Trywialne.

 \Leftarrow

Uzyjemy indukcji na |W|. Dla |W| = 0,1 jest trywialne.

Podzielimy dowod na dwie czesci: |N(A)| > |A| oraz |N(A)| = |A|.

Zalozmy, że |N(A)| > |A| dla kazdego niepustego podzbioru $A \subsetneq W$. Wezmy dowolne $w \in W$ oraz $v \in N(w)$ i skonstruujmy nowy graf

$$G_{\emptyset} = G - \{w, v\}.$$

Dla kazdego niepustego $B \subseteq W - \{w\}$ mamy

$$N_{G_{\varnothing}}(B) = N_{G}(B) - \{v\}$$

i w takim razie

$$|N_{G_0}(B)| \ge |N_G(B)| - 1 \ge |B|,$$

czyli $(G_0,W-\{w\})$ spelnia warunek Halla. Z zalozenia indukcyjnego istnieje kojarzenie P w G_0 z $W-\{w\}$ do $M-\{v\}$, w takim razie $P\cup\{wv\}$ jest kojarzeniem z W do M.

Zalozmy teraz, ze |N(A) = A| dla pewnego niepustego podzbioru $A \subseteq W$. Niech

$$G_1 = G[A \cup N(A)]$$

oraz

$$g_2 = G[(W - A) \cup (M - N(A))].$$

Pokazemy, ze oba te grafy zaspokajaja warunek Halla. Wezmy dowolny $B \subseteq A \ w \ G_1$. Mamy

$$N_{G}(B) \subseteq N_{G}(A) \subseteq V(G_{1})$$

 $|N_{G_{4}}(B)| = |N_{G}(B)| \ge |B|$

a wiec graf G_1 zaspokaja warunek Halla.

Teraz, wezmy dowolny $B \subseteq W - A \times G_2$. Wiemy, ze $N_{G_2}(B) \subseteq M - N(A)$, a wiec

$$N_{G_2}(B) = N_G(B) - N_G(A) = N_G(A \cup B) - N_G(A)$$

$$|N_{G_2}(B)| = |N_G(A \cup B) - N_G(A)| \ge |N_G(A \cup B)| - |N_G(A)| \ge |A \cup B| - |A| = |A| + |B| - |A| = |B|$$

W takim razie G_2 spelnia warunek Halla.

Z zalozenia indukcyjnego wiemy, ze istnieje kojarzenie P_1 w G_1 oraz P_2 w G_2 . Pierwsze jest z A do $N_G(A)$, natomiast drugie jest z W-A do M- $N_G(A)$, czyli sa rozlaczne. W takim razie $P_1 \cup P_2$ jest kojarzeniem w G z W do M.

subgroup with $\frac{|G|}{|H|} = k$, then $g_1H \cup \ldots \cup g_kH = G = Hg_1 \cup \ldots \cup Hg_k$ for some $g_1, \ldots, g_k \in G$.

Let G be a finite group and let H $\,\leq\,$ G be a $\,$ Niech G bedzie skonczona grupa i niech H $\,\leq\,$ G bedzie podgrupa z $\frac{|G|}{|H|} = k$, wtedy $g_1 H \cup \ldots \cup g_k H = G = Hg_1^{\prime\prime\prime} \cup \ldots \cup Hg_k$ fdla pewnych $g_1, \ldots, g_k \in G$.

Oznaczmy

$$L = \{a_1H, ..., a_kH\}$$

 $R = \{Hb_1, ..., Hb_k\}$

jako zbiory odpowiednio lewych i prawych wrastw H w G. Niech K bedzie grafem dwudzielnym z klasami wierzcholkow L i R. Wprowadzmy na K relacje rownowaznosci

$$a_i H \sim Hb_i \iff a_i H \cap Hb_i \neq \emptyset w G.$$

Dla dowolnego podzbioru A⊆L zachodzi

$$|\bigcup_{U \in A} U| = |A| \cdot |H|$$

jako podzbiorow G. Chodzi o to, ze kazda warstwa ma moc |H|, a mamy ich |A| sztuk w zbiorze |A|. Wiec jak bedziemy je dodawac, to one sa rozlaczne, wiec smiga.

Dla kazdego V \in R mamy |V| = |H| bo kazda warstwa ma te sama moc co H, a wiec $\bigcup_{U \in A} U$ thie sie niepusto z co najmniej |A| elementami z R. Z tego wynika, ze

$$|N_K(A)| \geq |A|$$
,

wiec istnieje kojarzenie P w K z L do R. Wezmy wiec dowolny g_i w $a_i H \cap Hb_i \neq \emptyset$. Wtedy jest czescia krawedzi $(a_iH)(Hb_j)$ w P dla $1 \le i \le k$. Mamy wiec $a_iH = g_iH$ oraz $Hb_j = Hg_i$.

Let G be a bipartite graph with vertex classes W and M, and let $d \ge 1$. Then G contains a partial matching from W'to M for some $W' \subseteq W$ with $|W'| \ge |W| - d$ iff $|N(A)| \ge |A| - d$ for every $A \subseteq W$.

Niech G bedzie grafem dwudzielnym z klasami wierzcholkow W i M i niech $d \ge 1$. Wtedy G zaiwera kojarzenie z W' do M dla pewnego W' \subseteq Wz |W'| \geq |W| - d iff $|N(A)| \ge |A| - d$ dla kazdego $A \subseteq W$.


```
I WILL GET TO IT SOMEDAY
[ ■ ]

⇒
```

Trywialne :3

 \leftarrow

Zapoznajmy panie z d wyobrazonymi idealnymi dla kazdej pani kawalerami. Wtedy twierdzenie Halla jest spelnione, wiec mozemy ozenic kazda kobiete do odpowiedniego, prawdziwego czy wyobrazonego, meza. W prawdziwym zyciu, co najwyzej d kobiet jest niezameznych.

Hall's Polygamous Marriage Theorem

Let G be a bipartite graph with vertex classes W and M, and let $d \ge 1$. Then G contains a subgraph H with W \subset V()

Then G contains a subgraph H with W \subseteq V(H) in which each w \in W has degree d and each v \in M \cap V(H) has degree 1 iff $|N(A)| \ge d|A|$ for every A \subseteq W

Twierdzenie Halla o polimalzenstwach

Niech G bedzie grafem dwudzielnym z klasami wierzcholkow W i M i niech d ≥ 1 . Wtedy G zaiwera podgraf H z W \subseteq V(H) w ktorym kazdy w \in W ma stopien d i kazdy v \in M∩V(H) ma stopien 1 iff |N(A)| \geq d|A| dla kazdego A \subseteq W

```
[ ﷺ ] [ ➡ ]
[ ﷺ ]
I WILL GET TO IT SOMEDAY
[ ➡ ]

⇒
```

Trywialne :3

 \leftarrow

Sklonujmy kazda kobiete d - 1 razy. Wtedy warunek Halla jest zaspokojony, wiec mozemy kazda z nich ozenic (klony i oryginaly) do odpowiednich mezow. Teraz scisnijmy klony z oryginalami do jednej osoby. Koniec!

1.3 Menger's Theorem

Cut vertex v is a vertex in a connected graph G such that $G - \{v\}$ is not connected.

Graph G is a k-connected graph if for any $A \subseteq V(G)$, |A| < k, G-A is connected.

Complete graph has all vertices connected by an edge, that is for all v, w $\in G$ v \neq w we have vw $\in G.$

Thacy wierzcholek v jest wierzcholkiem w spojnym grafie G takim, ze $G-\{v\}$ jest niespojny.

Graf G jest k-spojnym grafem, jezeli dla kazdego $A \subseteq V(G)$, |A| < k, G-A jest spojny.

Graf pelny ma wszystkie wierzcholki polaczone krawedzia, to znaczy dla kazdego v,w \in G, v \neq w mamy vw \in G.

(A,B)-path is a path in G for some A,B \subseteq V of the form a...b for some a \in A and b \in B. (A,B)-cut in G is C \subseteq V such that G - C contains no (A-C,B-C)-paths.

If we take vertices a, v \in V we call an ({a}, {b})-path an (a, b)-path. Given a collection of (a, b)-paths

$$P(1)$$
 $P(k)$

we say such a collection is independent if $P^{(i)}$ - {a,b} and $P^{(j)}$ - {a,b} have no common vertices for $i \neq j$.

(A,B)-sciezka to sciezka w G dla pewnych A,B \subseteq V postaci a...b dla jakis a \in A i b \in B. (A,B)-ciecie w G to C \subseteq V takie, ze G-C nie zawiera zadnych (A-C,B-C)-sciezek.

Jesli wezmiemy wierzcholki a,v ∈ V, to ({a}, {b})-sciezke nazywamy (a,b)-sciezka. Jesli dana jest kolekcja (a,b)-sciezek

$$P^{(1)} \dots P^{(k)}$$

mowimy, ze ta kolekcja jest niezalezna, jezeli $P^{(i)}$ - $\{a,b\}$ i $P^{(j)}$ - $\{a,b\}$ nie maja wspolnych wierzcholkow dla i \neq j.

Given A, B, C \subseteq V(G) and if A \subseteq C or B \subseteq C, Dla danych A, B, C \subseteq V(G), jezeli A \subseteq C then C is an (A, B)-cut and if C is an (A, B)cut then $A \cap B \subseteq C$.

Let G be a graph, A, B \subseteq V(G) and k \ge 0. Suppose that for every (A, B)-cut C in G we have $|C| \geq k$.

Then G contains a collection of k vertexdisjoint (A, B)-paths.

albo B \subseteq C, to C jest (A, B)-cieciem i jesli C jest (A, B)-cieciem, to $A \cap B \subseteq C$.

Niech G bedzie grafem, A,B \subseteq V(G) i k \ge 0. Zalozmy, ze dla kazdego (A,B)-ciecia C w Gjest $|C| \ge k$.

Wtedy G zawiera zbior k rozlacznych wierzcholkami (A,B)-sciezek.

Uzyjemy indukcji na e(G) [definicja dla debila].

Jako przypadek bazowy mamy $e(G) = \emptyset$, wtedy $A \cap B$ jest (A, B)-cieciem i w takim razie $k \leq |A \cap B|$, ale kazdy wierzcholek A \cap B jest (A, B)-sciezka dlugosci 0 i wszystkie z nich sa rozlaczne, tak jak wymagamy.

Zalozmy, ze $e(G) \ge 1$, wybiezmy krawedz $e \in E(G)$ i niech $H = G - \{e\}$.

Jesli dla kazde (A,B)-ciecie w H ma stopien co najmniej k, to przez hipoteze indukcyjna sa one k wierzcholkowo rozlacznymi (A,B)-sciezkami w H i w takim razie w G, wiec koniec.

Zalozmy teraz, bez starty ogolnosci, ze w H istnieje co najmniej jedno (A,B)-ciecie C takie, ze |C| < k. W takim razie C nie jest (A, B)-cieciem w G, wiec G - C zawiera co najmniej jedna (A, B)-sciezke postaci

dla pewnych $a \in A$, $b \in B$, gdzie $v, w \in G$ sa koncami e. Co wiecej, kazda (A, B)-sciezka $w \in G$ zawiera wierzcholek v, co implikuje ze

$$C' = C \cup \{v\}$$

jest (A,B)-cieciem w G. Co wiecej, $|C'| = |C| + 1 \ge k$. Poniewaz a...vw...b bylo jedyna sciezka ktora blokowala C przed zostaniem (A,B)-cieciem w G, ale juz |C'| nim jest, to |C| = k-1i mozemy przyjac, ze

$$C = \{c_1, \ldots, c_{k-1}\}$$

Teraz, poniewaz v \in C', to kazde (A,C')-ciecie D w H jest takze (A,C')-cieciem w G. Poniewaz kazda (A, B)-sciezka w G zawiera wierzcholek C', to D jest takze (A, B)-cieciem w G i dlatego $|\mathsf{D}| \geq \mathsf{k}$. Korzystajac wiec z hipotezy indukcyjnej, wiemy, ze istnieja rozlaczne wierzcholkami (A,C')-sciezki

$$P^{(1)}, \ldots, P^{(k-1)}, P^{(k)}$$

 $\text{w H konczace sie odpowiednio w } c_1, \ldots, c_{k-1}, \text{v.} \quad \text{Niech } C'' \ = \ C \ \cup \ \{\text{w}\}. \quad \text{Wtedy analogicznie, mamy}$ takie (C'', B)-sciezki

$$Q^{(1)}, \ldots, Q^{(k-1)}, Q^{(k)}$$

w H zaczynające sie od odpowiednio wierzcholkow c_1, \ldots, c_{k-1}, v . Co wiecej, poniewaz C' jest (A,B)-cieciem w G, to $P^{(i)}$ oraz $Q^{(j)}$ nie moga miec wspolnego wierzcholka u poza przypadkiem $i = j \le k-1$ i $u = c_i$. To sugeruje, ze

$$P^{(1)}Q^{(1)}, \ldots, P^{(k-1)}Q^{(k-1)}, P^{(k)}eQ^{(k)}$$

sa k rozlacznymi wzgledem wierzcholkow (A,B)-sciezkami w G. Koniec.