Curso 2019-2020

Soluciones Ejercicios Tabla Hash

1. Describe la colocación en una tabla hash con 7 celdas de tres registros de los números 49, 27, 5, 45, 50, 41, 17, 2, 23, 42, 24, 37, 1, 9, 33 introducidos por este orden usando la función de dispersión: $h(x) = x \mod 7$ sin desbordamiento indicando las colisiones y sinónimos que se presenten.

0	1	2	3	4	5	6
49	50	2	45		5	27
42	1	23	17		33	41
		37	24			

 $x = 49 -> h(49) = 49 \mod 7 = 0$

- No hay sinónimos ni colisiones

 $x=27 -> h(27) = 27 \mod 7 = 6$

 $x=5 -> h(5) = 5 \mod 7 = 5$

- No hay sinónimos ni colisiones

 $x=45 -> h(45) = 45 \mod 7 = 3$

- No hay sinónimos ni colisiones

 $x=50 \rightarrow h(50) = 50 \mod 7 = 1$

- No hay sinónimos ni colisiones

- No hay sinónimos ni colisiones

 $x=41 -> h(41) = 41 \mod 7 = 6$

- Sinónimo y colisión

 $x=17 -> h(17) = 17 \mod 7 = 3$

- Sinónimo y colisión

 $x=2 -> h(2) = 2 \mod 7 = 2$

- No hay sinónimos ni colisiones

 $x=23 -> h(23) = 23 \mod 7 = 2$

- Sinónimo y colisión

 $x=42 -> h(42) = 42 \mod 7 = 0$

- Sinónimo y colisión

 $x=24 \rightarrow h(24) = 24 \mod 7 = 3$

- Sinónimo y colisión

 $x=37 -> h(37) = 37 \mod 7 = 2$ $x=1 -> h(1) = 1 \mod 7 = 1$

- Sinónimo y colisión - Sinónimo y colisión

 $x=9 -> h(9) = 9 \mod 7 = 2$

- Sinónimo, colisión y desbordamiento

 $x=33 -> h(33) = 33 \mod 7 = 5$

- Sinónimo y colisión

Repetir el ejercicio con la misma función de dispersión si la tabla tiene 5 celdas de 4 registros.

0	1	2	3	4
5	41	27	23	49
45	1	17	33	24
50		2		9
		42		

 $x=49 \rightarrow h(49) = 49 \mod 5 = 4$

- No hay sinónimos ni colisiones

 $x=27 -> h(27) = 27 \mod 5 = 2$

- No hay sinónimos ni colisiones

 $x=5 -> h(5) = 5 \mod 5 = 0$

- No hay sinónimos ni colisiones

 $x=45 -> h(45) = 45 \mod 5 = 0$

- Sinónimo y colisión

 $x=50 \rightarrow h(50) = 50 \mod 5 = 0$

- Sinónimo y colisión

 $x=41 -> h(41) = 41 \mod 5 = 1$

- No hay sinónimos ni colisiones

 $x=17 -> h(17) = 17 \mod 5 = 2$

- Sinónimo y colisión

 $x=2 -> h(2) = 2 \mod 5 = 2$

 $x=23 \rightarrow h(23) = 23 \mod 5 = 3$

- Sinónimo y colisión

- No hay sinónimos ni colisiones

Escuela Superior de Ingeniería y Tecnología Universidad de La Laguna

Grado en Ingeniería Informática Algoritmos y Estructuras de Datos Avanzadas

Curso 2019-2020

```
x=42 -> h(42) = 42 \mod 5 = 2 - Sinónimo y colisión

x=24 -> h(24) = 24 \mod 5 = 4 - Sinónimo y colisión

x=37 -> h(37) = 37 \mod 5 = 2 - Sinónimo, colisión y desbordamiento

x=1 -> h(1) = 1 \mod 5 = 1 - Sinónimo y colisión

x=9 -> h(9) = 9 \mod 5 = 4 - Sinónimo y colisión

x=33 -> h(33) = 33 \mod 5 = 3 - Sinónimo y colisión
```

- 2. Considerar una tabla hash con cinco celdas de cuatro registros. Determinar la posición, hasta que se produzca desbordamiento, de los registros correspondientes a los siguientes DNIs al introducirlos en este orden: 42834324-K, 54043675-T, 78324834-J, 83428934-E, 32734234-J, 78453615-G, 43732543-K, 78384844-Q, 43032543-A, 43232553-M, 78432154-S.
 - a. Usando la función de dispersión del DNI (sin letra) basada en el resto de la división entera.
 - b. Usando la función de dispersión del DNI (sin letra) basada en la antepenúltima cifra.
 - c. Usando la función de dispersión del DNI (sin letra) basada en la suma de sus dígitos.
 - d. Usando la función de dispersión del DNI (sin letra) basada en la suma con plegado por desplazamiento de grupos de tres cifras.

a)

0	1	2	3	4
54043675-T			43732543-K	42834324-K
78453615-G			43032543-A	78324834-J
			43232553-M	83428934-E
				32734234-J

Curso 2019-2020

b)

0	1	2	3	4
43732543-K	54043675-T	32734234-J	42834324-K	83428934-E
43032543-A	78453615-G		78324834-J	
43232553-M	78432154-S		78384844-Q	

 $h(x) = x_2 \mod 5$ $3 \mod 5 = 3$ 42834324 $6 \mod 5 = 1$ 54043675 $8 \mod 5 = 3$ 78324834 $9 \mod 5 = 4$ 83428934 32734234 $2 \mod 5 = 2$ $6 \mod 5 = 1$ 78453615 43732543 $5 \mod 5 = 0$ $8 \mod 5 = 3$ 78384844 43032543 $5 \mod 5 = 0$ 43232553 $5 \mod 5 = 0$ 78432154 $1 \mod 5 = 1$

c)

0	1	2	3	4
42834324-K	83428934-E	43232553-M	32734234-J	54043675-T
	43732543-K			78324834-J
	78384844-Q			78453615-G
				43032543-A

$h(x) = \sum x_i \mod 5$

```
42834324
          4+2+8+3+4+3+2+4 = 30 \mod 5 = 0
          5+4+0+4+3+6+7+5 = 34 \mod 5 = 4
54043675
          7+8+3+2+4+8+3+4 = 39 \mod 5 = 4
78324834
          8+3+4+2+8+9+3+4 = 41 \mod 5 = 1
83428934
32734234
          3+2+7+3+4+2+3+4 = 28 \mod 5 = 3
78453615
          7+8+4+5+3+6+1+5 = 39 \mod 5 = 4
          4+3+7+3+2+5+4+3 = 31 \mod 5 = 1
43732543
78384844
          7+8+3+8+4+8+4+4 = 46 \mod 5 = 1
43032543
          4+3+0+3+2+5+4+3 = 24 \mod 5 = 4
43232553
          4+3+2+3+2+5+5+3 = 27 \mod 5 = 2
          7+8+4+3+2+1+5+4 = 34 \mod 5 = 4  Desbordamiento
78432154
```


Curso 2019-2020

d)

0	1	2	3	4
42834324-K	78324834-J	54043675-T	43732543-K	78432154-S
83428934-E	78453615-G		43032543-A	
32734234-J	78384844-Q		43232553-M	

 $h(x) = \sum x_{i,i+1,i+2} \mod 5$ (Plegado por desplazamiento)

```
42+834+324 = 1200 \mod 5 = 0
42834324
          54+043+675 = 772 \mod 5 = 2
54043675
78324834
          78+324+834 = 1236 \mod 5 = 1
83428934
          83+428+934 = 1445 \mod 5 = 0
32734234
          32+734+234 = 1000 \mod 5 = 0
          78+453+615 = 1146 \mod 5 = 1
78453615
43732543
          43+732+543 = 1318 \mod 5 = 3
78384844
          78+384+844 = 1306 \mod 5 = 1
43032543
          43+032+543 = 618 \mod 5 = 3
          43+232+553 = 828 \mod 5 = 3
43232553
          78+432+154 = 664 \mod 5 = 4
78432154
```

3. La disposición de los elementos en una tabla hash de 7 celdas de 3 registros con el DNI como clave es:

0	1	2	3	4	5	6
	CARLOS	FRANCO		MARIA	BEATRIZ	JUAN
	DAVID				GERARDO	PEDRO
						ALICIA

Determinar la disposición de la tabla al introducir usando una función de dispersión basada en el módulo y exploración cuadrática las fichas de las siguientes personas, en el orden en que aparecen aquí:

EVARISTO: 49007023 EDUARDO: 56070033 LILIANA: 42077015 ALEJANDRO: 420007705 ANTONIO: 49777778 ABELARDO: 42000037

NOTA: Los DNI están formados con múltiplos de 7 excepto las dos últimas cifras para que sólo haya que dividir por 7 estas dos últimas cifras para obtener el resto.

SOLUCION:

Curso 2019-2020

0	1	2	3	4	5	6
	CARLOS	FRANCO	ANTONIO	MARIA	BEATRIZ	JUAN
	DAVID	EVARISTO	ABELARDO		GERARDO	PEDRO
	LILIANA	ALEJANDRO			EDUARDO	ALICIA

 $h(x) = x \mod 7$ $g(x,i) = i*i (h(x) + g(x,i)) \mod 7$

EVARISTO: 49007023 h(x) = 2 se inserta en 2 EDUARDO: 56070033 h(x) = 5 se inserta en 5 LILIANA: 42077015 h(x) = 1 se inserta en 1 ALEJANDRO: 42007705 h(x) = 5 desbordamiento

g(x,1) = 1 (5 + 1) mod 7 = 6 desbordamiento

g(x,2) = 4 (5 + 4) mod 7 = 2 se inserta en 2

ANTONIO: 49777778 h(x) = 1 desbordamiento

g(x,1) = 1 $(1 + 1) \mod 7 = 2$ desbordamiento g(x,2) = 4 $(1 + 4) \mod 7 = 5$ desbordamiento

 $g(x,3) = 9 (1 + 9) \mod 7 = 3$ se inserta en 3

ABELARDO: 42000037 h(x) = 2 desbordamiento

g(x,1) = 1 (2 + 1) mod 7 = 3 se inserta en 3

4.- La disposición de los elementos en una tabla hash con el DNI como clave, con función de dispersión basada en la operación del módulo $(f(x) = x \mod 5)$ y con exploración por dispersión doble basada en la suma de los 4 dígitos centrales:

0	1	2	3	4
LUIS	ALBA	ABEL	INES	
JAIME	ANA	JUAN	PABLO	
	PEDRO		JAVIER	

Determinar la disposición de la tabla al introducir las fichas de las siguientes personas, en este orden:

 JOSÉ:
 56824375
 RAUL:
 54014656

 LIDIA:
 78364821
 PABLO:
 43428733

 SARA:
 52344273
 PILI:
 75755641

SOLUCIÓN:

0	1	2	3	4
LUIS	ALBA	ABEL	INES	PILI
JAIME	ANA	JUAN	PABLO	
JOSÉ	PEDRO	SARA	JAVIER	
PABLO	RAÚL		LIDIA	

Curso 2019-2020

 $h(x) = x \mod 5$ $f(x)=1+(x_2+x_3+x_4+x_5) \mod 4$ g(x,i)=i*f(x)JOSÉ: 56824375 h(x) = 0se inserta en 0 RAUL: 54014656 h(x) = 1se inserta en 1 LIDIA: 78364821 h(x) = 1desbordamiento en 1 $f(x)=1+(3+6+4+8) \mod 4=2$ g(x,1)=1*2=2 $(1+2) \mod 5 = 3$ se inserta en 3 PABLO: 43428733 h(x) = 3desbordamiento en 3 $f(x)=1+(4+2+8+7) \mod 4 = 2$ g(x,1)=1*2=2 $(3+2) \mod 5 = 0$ se inserta en 0 SARA: 52344273 h(x) = 3desbordamiento en 3 $f(x)=1+(3+4+4+2) \mod 4 = 2 \ g(x,1)=1*2=2$ $(3+2) \mod 5 = 0$ desbordamiento en 0 q(x,2)=2*2=4 $(3+4) \mod 5 = 2$ se inserta en 2 PILI: 75755641 h(x) = 1desbordamiento en 1 $f(x)=1+(7+5+5+6) \mod 4 = 4 \ g(x,1)=1*4=4$ $(1+4) \mod 5 = 0$ desbordamiento en 0 q(x,2)=2*4=8 $(1+8) \mod 5 = 4$ se inserta en 4.

5.- La disposición de los elementos en una tabla hash con el DNI como clave, con función de dispersión basada en la suma de los cuatro últimos dígitos y con exploración por dispersión doble basada en la suma de los cuatro dígitos centrales es:

0	1	2	3	4	5	6
JAIME		PACO		LUIS	ANABEL	
JUAN		MANUEL		JAVIER	HELEN	
		JESÚS			RAFAEL	

Determinar la disposición de la tabla al introducir las fichas de las siguientes personas, en este orden:

BERNI: 57834577 ARACELI: 54024589 PEDRO: 78564534 DAVID: 44328935 ANA: 53344275 LINO: 75665643

SOLUCIÓN:

0	1	2	3	4	5	6
JAIME	PEDRO	PACO	LINO	LUIS	ANABEL	
JUAN		MANUEL		JAVIER	HELEN	
		JESÚS		DAVID	RAFAEL	
		BERNI		ANA	ARACELI	

Curso 2019-2020

 $h(x) = (x_0 + x_1 + x_2 + x_3) \mod 7$ $f(x)=1+(x_2+x_3+x_4+x_5) \mod 6$ g(x,i)=i*f(x)

BERNI: $h(x)=(4+5+7+7) \mod 7 = 2$ se inserta en 2 57834577 ARACELI: 54024589 $h(x)=(4+5+8+9) \mod 7 = 5$ se inserta en 5 $h(x)=(4+5+3+4) \mod 7 = 2$ PEDRO: 78564534 desbordamiento en $f(x) = 1 + (5 + 6 + 4 + 5) \mod 6 = 3$ q(x,1)=1*3=3 $(2+3) \mod 7 = 5$

desbordamiento en 5

g(x,2)=2*3=6

 $(2+6) \mod 7 = 1$ se inserta en 1

DAVID: 44328935 $h(x)=(8+9+3+5) \mod 7 = 4$ se inserta en 4 $h(x)=(4+2+7+5) \mod 7 = 4$ ANA: 53344275 se inserta en 4

 $h(x)=(5+6+4+4) \mod 7 = 5$ LINO: 75665644 desbordamiento en 5 $f(x) = 1 + (6 + 6 + 5 + 6) \mod 6 = 6$ g(x,1)=1*6=6 $(5+6) \mod 7 = 4$ desbordamiento en 4

> g(x,2)=2*6=12 $(5+12) \mod 7 = 3$

se inserta en 3

6.- La disposición de los elementos en una tabla hash con el DNI como clave, con función de dispersión basada en la suma de los tres últimos dígitos y con exploración cuadrática:

0	1	2	3	4	5
INES		LUIS	ALBA	ABEL	
PABLO		JOHN	ANA	JOHN	
JACK		ALFREDO	PEDRO		

Determinar la disposición de la tabla al introducir las fichas de las siguientes personas, en este orden:

JOSÉ: 56834376 RAUL: 54014654 75755645 LIDIA: 78464834 ALI: SARA: 52344275 PACO: 43328930

SOLUCIÓN:

0	1	2	3	4	5
INES	LIDIA	LUIS	ALBA	ABEL	
PABLO		JOHN	ANA	JOHN	
JACK		ALFREDO	PEDRO	JOSÉ	
PACO		SARA	RAÚL	ALI	

 $h(x) = (x_0 + x_1 + x_2) \mod 6$ g(x,i)=i*i

JOSÉ: 56834376 h(x)=(3+7+6) mod 6=4se inserta en 4 RAUL: 54014654 h(x) = (6+5+4) mod 6=3se inserta en 3

Curso 2019-2020

ALI:	75755645	$h(x)=(6+4+5) \mod 6=3$	desbordamiento en 3
		$g(x,1) = 1 (3 + 1) \mod 6 = 4$	se inserta en 4
LIDIA	78464834	$h(x)=(8+3+4) \mod 6 = 3$	desbordamiento en 3
		$g(x,1) = 1 (3 + 1) \mod 6 = 4$	desbordamiento en 4
		$g(x,2) = 4 (3 + 4) \mod 6 = 1$	se inserta en 1
SARA:	52344275	$h(x)=(2+7+5) \mod 6 = 2$	se inserta en 2
PACO:	43328930	$h(x)=(9+3+2) \mod 6 = 2$	desbordamiento en 2
		$g(x,1) = 1 (2 + 1) \mod 6 = 3$	desbordamiento en 3
		$a(x.2) = 4 (2 + 4) \mod 6 = 0$	se inserta en 0