Dublin R Workshop on Time Series Analysis

Mick Cooney mickcooney@gmail.com

Autumn 2013

1. Basic Concepts

Time series occur in almost any field of study that produces quantitative data. Whenever quantities are measured over time, those measurements form a time-series, or more formally, a discrete-time stochastic process.

One reasonably famous example of a time-series is count of airline passengers in the US, as seen in Figure 1. This is a fairly simple time-series, with measurements taken on a monthly basis over a number of years, with each datum consisting of a single number, i.e. this time-series is *univariate*.

Figure 1: Example of a Time Series: Monthly Airline Passengers in the US

Before we begin trying to analyse data such as this, we need to first create some kind of mathematical framework to work in. Fortunately, we do not need anything too complicated, and for a finite time-series of length N, we model the time series as a sequence of N random variables, X_i , with i = 1, 2, ..., N.

It is important to realise that each individual X_i is a wholly separate random variable — analysing time series statistically is unusual as we only ever have a single measurement from which we can do

inference. In many cases we simplify this much further, but it is important to understand and appreciate that such simplifications are just that, and this is often the reason why time series can be very difficult to analyse.

Before we get to any of that though, and before we try to build any kind of models for the data, we always start with visualising the data. Often, a simple plot of the data helps use pick out aspects to analyse and incorporate into the models. For time series, one of the first things to do is the *time plot*, a simple plot of the data over time.

For the passenger data, a few aspects stand out that are very common in time series. It is apparent that the numbers increase over time, and this systematic change in the data is called the *trend*. Often, approximating the trend as a linear function of time is adequate for many data sets.

A repeating pattern in the data that occurs over the period of the data (in this case, each year), is called the *seasonal variation*, though a more general concept of 'season' is implied — it often will not coincide with the seasons of the calendar.

A slightly more generalised concept from the seasonality is that of *cycles*, repeating patterns in the data that do not correspond to the natural fixed periods of the model. None of these are apparent in the air passenger data, and accounting for them are beyond the scope of this introductory tutorial.

Finally, another important benefit of visualising the data is that it helps identify possible *outliers* and *erroneous* data.

Exercise 1.1 Load the air passengers data into your workspace and investigate the structure of the ts object using str(). How is a ts object different from a standard vector in R? Plot it using the default plot method.

Exercise 1.2 Using the data supplied in the file Maine.dat and the function read.table(), load the Maine unemployment data into your workspace and repeat the tasks above.

Exercise 1.3 Analyse the trend and seasonality for the air passenger data by using the aggregate() function. Create a boxplot for the data, segmenting the data by month.

Exercise 1.4 Repeat the above analysis for Maine unemployment data.

Exercise 1.5 Calculate the average monthly data for each of the above time series. Compare this to the actual monthly data and plot them together. What can we learn from this?

Exercise 1.6 Using the window() function, calculate quantitative values for the above.

2. Multivariate Time Series

In many cases, we will also be dealing with time series that have multiple values at all, many or some of the points in time.

Often, these values will be related in some ways, and we will want to analyse those relationships also. In fact, one of the most reliable methods of prediction is to find *leading indicators* for the value or values you wish to predict — you can often use the current values of the leading indicators to make inference on future values of the related quantities.

The fact that this is one of the best methods in time series analysis says a lot about the difficulty of prediction (Yogi Berra, a US baseball player noted for his pithy statements, once said "Prediction is difficult, especially about the future").

Exercise 2.1 Load in the multivariate data from the file cbe.dat. Investigate the object type and some sample data to get an idea of how it is structured. The R functions head() and tail() will be of use for this.

Exercise 2.2 Create time series objects for this data using ts(), and plot them beside each other.

cbind() is useful for creating all the plots together.

Exercise 2.3 Merge the electricity usage data with the US airline passenger data using ts.intersect and investigate any possible similarities between the two time series.

Exercise 2.4 Use the cor() function, investigate the correlation between the two time series. How plausible is a causal effect in this case?

3. Time Series Decomposition

Since many time series are dominated by trends or seasonal effects, and we can create fairly simple models based on these two components. The first of these, the *additive decompositional model*, is just the sum of these effects, with the residual component being treated as random:

$$x_t = m_t + s_t + z_t, (1)$$

where, at any given time t, x_t is the observed value, m_t is trend, s_t is the seasonal component, and z_t is the error term.

It is worth noting that, in general, the error terms will be a correlated sequence of values, something we will account for and model later.

In other cases, we could have a situation where the seasonal effect increases as the trend increases, modeling the values as:

$$x_t = m_t s_t + z_t. (2)$$

Other options also exist, such as modeling the log of the observed values, which does cause some non-trivial modeling issues, such as biasing any predicted values for the time series.

Various methods are used for estimating the trend, such as taking a *moving average* of the values, which is a common approach.

Exercise 3.1 Using the decompose() function in R, look at the trend and the seasonal variation for the airline passenger data. The output of this function can be plotted directly, and visually check the output. Does the output match your intuition about what you observed?

Exercise 3.2 Repeat this process for the CBE dataset.

Exercise 3.3 Try a multiplicative model for all of the above. decompose() allows the selection of this via the 'type' parameter. Is the multiplicative model better? In either case, explain why this might be.

Exercise 3.4 Repeat the above, but use the stl() R function instead of decompose(). Compare the output of the two.

4. Autocorrelation

Assuming we can remove the trend and the seasonal variation, that still leaves the random component, z_t . Unfortunately, analysing this is usually highly non-trivial. As discussed, we model the random component as a sequence of random variables, but no further assumptions we made.

To simplify the analysis, we often make assumptions like independent and identically distributed (i.i.d.) random variables, but this will rarely work well. Most of the time, the z_t are correlated.

The expected value or expectation of a random variable x, denoted E(x), is the mean value of x in the population. So, for a continuous x, we have

$$\mu = E(x) = \int p(x) x \, dx. \tag{3}$$

and the variance, σ^2 , is the expectation of the squared deviations,

$$\sigma^2 = E[(x - \mu)^2],\tag{4}$$

For bivariate data, each datapoint can be represented as (x, y) and we can generalise this concept to the covariance, $\gamma(x, y)$,

$$\gamma(x,y) = E[(x - \mu_x)(y - \mu_y)]. \tag{5}$$

Correlation, ρ , is the standardised covariance, dividing the covariance by the standard deviation of the two variables,

$$\rho(x,y) = \frac{\gamma(x,y)}{\sigma_x \sigma_y}. (6)$$

Autocorrelation, often referred to as serial correlation, is the correlation between the random variables at different time intervals. We can define the autocovariance function and the autocorrelation function as functions of the lag, k, as

$$\gamma_k = E[(x_t - \mu)(x_{t+k} - \mu)],$$
(7)

$$\gamma_k = E[(x_t - \mu)(x_{t+k} - \mu)], \qquad (7)$$

$$\rho_k = \frac{\gamma_k}{\sigma^2}. \qquad (8)$$

Be default, the acf() function plots the correlagram, which is a plot of the sample autocorrelation at r_k against the lag k.

Exercise 4.1 Using the function acf(), calculate the autocorrelations for all the time series we have looked at. Look at the structure of the output, and use the help system to see what options are provided.

Exercise 4.2 Plot the output of the acf() for the different time series. Think about what these plots are telling you. Do do these plots help the modelling process, if so, how?

Exercise 4.3 Decompose the air passenger data and look at the appropriate correlogram. What does this plot tell you? How does it differ from the previous correlogram you looked at?

Exercise 4.4 How can we use all that we have learned so far to assess the efficacy of the decompositional approach for time series.