Esempio

Se abbiamo una coppia di variabili casuali discrete, è possibile definire la funzione di massa di probabilità congiunta. Abbiamo visto che è possibile ricavare le funzioni di massa marginale.

coppie di v.c. discrete

$$(X, Y) \qquad X \in \{a_1, a_2, \dots a_m\}$$

$$Y \in \{y_1, y_2, \dots y_m\}$$

$$P(a,b) = P(X=a, Y=b)$$

$$P_X(a) = P(X=a, Y \leq +\infty) = \sum_{k=1}^{\infty} P(X=a, Y=b)$$

$$P_Y(b) = P(X \leq +\infty, Y=b) = \sum_{k=1}^{\infty} P(X=a_k, Y=b)$$

Perché bisogna fare la somma della funzione di massa per tutti valori che la variabile che non ci interessa assume? Partiamo da un punto di vista diverso e facciamo prima il calcolo delle funzioni marginali.

L'esempio ci permette di scrivere tutte le coppie che possono uscire nella prima e seconda estrazione senza reimmissione.

$$(1,2)$$
 $(1,3)$
 $(2,1)$ $(2,3)$
 $(3,1)$ $(3,2)$

$$X = \frac{3}{8}$$
 smm2 dei numeri
estretti $X \in \{3, 4, 5\}$

$$P_{X}(3) = P((1,2)J(2,1)) = P((1,2)) + P((2,1)) = \frac{1}{6} + \frac{1}{6} = \frac{2}{6}$$

$$P_{X}(4) = P((1,3)U(3,1)) = P((1,3)) + P((3,1)) = \frac{2}{6}$$

$$P_{X}(5) = P((2,3)U(3,2)) = P(2,3) + P((3,2)) = \frac{2}{6}$$

$$\begin{aligned}
&Y \in \{1,2,3\} \\
&P_{Y}(1) = P((1,2) \cup (1,3)) = P((1,2)) + P((1,3)) = \frac{2}{6} \\
&P_{Y}(2) = P((2,1) \cup (2,3)) = P((2,1)) + P((2,3)) = \frac{2}{6} \\
&P_{Y}(3) = P((3,1) \cup (3,2)) = P((3,1)) + P((3,2)) = \frac{2}{6}
\end{aligned}$$

Adesso costruiamo la funzione di massa di probabilità congiunta.

$$P(4,3) = P(X=4, Y=3) = P((3,1)) = \frac{1}{6}$$

$$P(3,3) = P(X=3, Y=3) = 0$$

$$P(5,3) = P(X=5, Y=3) = P((3,2)) = \frac{1}{6}$$

$$P(3,1) = P(X=3, Y=1) = P((1,2)) = \frac{1}{6}$$

$$P(3,2) = P(X=3, Y=2) = P(2,1) = \frac{1}{6}$$

$$P(3,3) = P(X=3, Y=3) = 0$$

$$P(5,1) = P(X=5, Y=1) = 0$$

$$P(5,2) = P(X=5, Y=2) = P((2,3)) = \frac{1}{6}$$

$$P(4,1) = P(X=4, Y=1) = P((1,3)) = \frac{1}{6}$$

$$P(4,2) = P(X=4, Y=2) = 0$$

Ora scriviamo la tabella.

YX.	3	4	5	
1	1	1	0	
2	16	0	6	
3	0	6	4	

Calcolo la funzione marginale di Y.

$$P_{X}(1) = P(Y=1) = P((1,2)U(1,3))$$

$$P_{Y}(2) = P(Y=2) = P((2,1)U(2,3))$$

$$P_{Y}(3) = P(Y=3) = P((3,1)U(3,2))$$

La somma è un modo per dire che quando mi riferisco a una sola variabile conto più casi che sono raggruppati nella funzione di massa congiunta in più valori diversi.

Variabili casuali identicamente distribuite

$$(X_{1}, X_{2}, ... \times N)$$

$$(X_{2}, X_{3}) = \mu \quad \text{K=1,...} N$$

$$(X_{2}, X_{3}) = \mu \quad \text{K=1,...} N$$

$$(X_{3}, X_{4}) = \mu \quad \text{K=1,...} N$$

$$(X_{4}, X_{2}, ... \times N)$$

$$(X_{5}, X_{4}) = \mu \quad \text{K=1,...} N$$

$$(X_{5}, X_{5}) = \mu \quad \text{Modiz can pionevior } N$$

$$(X_{5}, X_{5}) = \mu \quad \text{Modiz can pionevior } N$$

$$(X_{5}, X_{5}) = \mu \quad \text{Modiz can pionevior } N$$

$$(X_{5}, X_{5}) = \mu \quad \text{Modiz can pionevior } N$$

$$(X_{5}, X_{5}) = \mu \quad \text{Modiz can pionevior } N$$

$$(X_{5}, X_{5}) = \mu \quad \text{Modiz can pionevior } N$$

$$(X_{5}, X_{5}) = \mu \quad \text{Modiz can pionevior } N$$

$$(X_{5}, X_{5}) = \mu \quad \text{Modiz can pionevior } N$$

$$(X_{5}, X_{5}) = \mu \quad \text{Modiz can pionevior } N$$

$$(X_{5}, X_{5}) = \mu \quad \text{Modiz can pionevior } N$$

$$(X_{5}, X_{5}) = \mu \quad \text{Modiz can pionevior } N$$

$$(X_{5}, X_{5}) = \mu \quad \text{Modiz can pionevior } N$$

$$(X_{5}, X_{5}) = \mu \quad \text{Modiz can pionevior } N$$

$$(X_{5}, X_{5}) = \mu \quad \text{Modiz can pionevior } N$$

$$(X_{5}, X_{5}) = \mu \quad \text{Modiz can pionevior } N$$

$$(X_{5}, X_{5}) = \mu \quad \text{Modiz can pionevior } N$$

$$(X_{5}, X_{5}) = \mu \quad \text{Modiz can pionevior } N$$

$$(X_{5}, X_{5}) = \mu \quad \text{Modiz can pionevior } N$$

$$(X_{5}, X_{5}) = \mu \quad \text{Modiz can pionevior } N$$

$$(X_{5}, X_{5}) = \mu \quad \text{Modiz can pionevior } N$$

$$(X_{5}, X_{5}) = \mu \quad \text{Modiz can pionevior } N$$

$$(X_{5}, X_{5}) = \mu \quad \text{Modiz can pionevior } N$$

$$(X_{5}, X_{5}) = \mu \quad \text{Modiz can pionevior } N$$

$$(X_{5}, X_{5}) = \mu \quad \text{Modiz can pionevior } N$$

$$(X_{5}, X_{5}) = \mu \quad \text{Modiz can pionevior } N$$

$$(X_{5}, X_{5}) = \mu \quad \text{Modiz can pionevior } N$$

$$(X_{5}, X_{5}) = \mu \quad \text{Modiz can pionevior } N$$

Questo spiega perché in un esperimento facciamo tante misurazioni. Il valor medio teorico rimane lo stesso, ma la varianza (misura di quanto i dati si allontanano dal valor medio) cala e cala 1/N.

Cosa vuol dire la media della media campionaria? La media della media campionaria è il valore teorico che si vuole misurare, immaginando un errore che può essere positivo o negativo. Mu è il valore teorico e sigma quadro misura l'errore al quadrato e quanto si allontana dal valor medio. Mu è quello che con gli esperimenti vogliamo arrivare a stimare. Il fatto che la media campionaria abbia lo stesso valor medio, significa che può essere usata per stimare mu come possono essere usate le singole misure, con il vantaggio che l'errore è stato ridotto (sommando tanti valori insieme si riduce l'errore).

Tutto ciò è alla base della legge dei grandi numeri. Ma per dimostrarla e dimostrare il corollario di Bernoulli che sono alla base della parte sperimentale della definizione frequentista di probabilità, bisogna introdurre dei teoremi molto facili da dimostrare.

Disuguaglianza di Markov

Disuguzzionez di Merkov
Dete une v.c.
$$X \ge 0$$
 con $E[X] = \mu$ e une
costante $a > 0$
 $P(X > a) \le \frac{\mu}{a}$

Dobbiamo guardare due aspetti di questo enunciato: il significato di come si usa questa disuguaglianza e la dimostrazione.

Mu/a è interessante, da informazioni al problema, solo se è più piccolo di 1. Altrimenti, la probabilità che X sia maggiore di a è minore o uguale di un numero più grande, non da niente di nuovo.

Finora è solo una definizione. Ricordiamoci che X non è negativo.

$$\begin{array}{l}
+\infty \\
\times = \int_{\infty} \pi f(x) dx \\
\downarrow \\
\times \neq 0 \\
> f(x) = 0 \text{ se } x < 0
\end{array}$$

$$= \int_{\alpha} x f(x) dx + \int_{\alpha} x f(x) dx \ge \int_{\alpha} x f(x) dx$$

$$= \int_{\alpha} x f(x) dx + \int_{\alpha} x f(x) dx \ge \int_{\alpha} x f(x) dx$$

$$= \int_{\alpha} x f(x) dx + \int_{\alpha} x f(x) dx \ge \int_{\alpha} x f(x) dx$$

$$= \int_{\alpha} x f(x) dx + \int_{\alpha} x f(x) dx \ge \int_{\alpha} x f(x) dx$$

$$= \int_{\alpha} x f(x) dx + \int_{\alpha} x f(x) dx = \int_{\alpha} x f(x) dx$$

$$= \int_{\alpha} x f(x) dx + \int_{\alpha} x f(x) dx = \int_{\alpha} x f(x) dx$$

$$= \int_{\alpha} x f(x) dx + \int_{\alpha} x f(x) dx = \int_{\alpha} x f(x) dx$$

$$= \int_{a \ge a}^{+\infty} f(a) dn \ge \int_{a}^{+\infty} a f(a) dx = a \int_{a}^{+\infty} f(a) dx = a \int_{a}^{+\infty} f(a) dx = a \int_{a}^{+\infty} f(a) da = a \int_{a}^{+\infty} f(a$$

$$= a P(X_{\geq a}a)$$

$$M \geq a P(X \geq a)$$

$$\Rightarrow P(X \geq a) \leq M$$

CASO DISCRETO SIMILE

Disuguaglianza di Cebycev

DISUGUAGUANZA DI ČEBYČEV

Data una v.c. X con E[X]=M e $Ver(X)=e^2$ e Seta V>0 $P(|X-E[X]|\geq r)\leq Ver(X)$

DIM
$$P(|X - E(X)| \ge r) = P(|X - \mu|^2 z^2) =$$

$$= P((X - \mu)^2 \ge r^2) \leq E((X - \mu)^2)$$

$$= P((X - \mu)^2 y^2 x^2) \leq \sum_{(X - \mu)^2 y \in X} \frac{1}{2} \sum_{($$

$$=\frac{\sqrt{ar(x)}}{r^2}$$

N.B. Le due disug. precedenti denno delle stime signi ficetire delle probabilità solo se

Mc1 per disug. di Markov

G2 <1 per disug. di Čabyčev

N.B. Le disug. si possono usare anche nel caso in cui di X si conosca solo E[x] o/e Ver (x)

es. 1 Vnz cztenz di produzione produce in mediz 50 pezzi 2 settimenz.

1) Stimere le prob. che nelle proseime settimene il numero di pezzi prodotti non sie inferiore a 75

 $X = n^{\circ}$ pera produti la prossima settimana > 0 $P(X \ge 75) \le \frac{E[X]}{75} = \frac{50}{75} = \frac{2}{3}$ DISUG.
DI MARKOV

2) Se si suppone che Ver(x)=25, cos2 si può dire della probabilità P(40 = x <60)?

Con valor medio e varianza non si può stimare la probabilità (servirebbe la funzione di massa o di ripartizione).

$$P(40 < X < 60) = P(40 - 50 < X - 50 < 60 - 50) =$$

$$= P(-10 < X - 50 < 10)$$

$$= P(|X - 50| < 10)$$

Come usare la disuguaglianza di Cebycev in questo caso? Considero il complementare.

$$= 1 - P(|X - 50| \ge 10) \ge 1 - \frac{|V_{er}(X)|}{|00|} = 1 - \frac{25}{|00|} = \frac{1-3}{10}$$

$$P(|X - 50| \ge 10) \le \frac{|V_{er}(X)|}{|00|} = P(|X - 50| \ge 10) \ge - \frac{|V_{er}(X)|}{|00|}$$

$$D_{1SUG},$$

$$D_{1} \in By \in V$$

$$= 1 - P(|X - E|X| \ge a) = 1 - \frac{|V_{er}(X)|}{|00|} \ge 1 - \frac{|V_{er}(X)|}{|00|}$$

Questa stima viene impiegata abbastanza di frequente in statistica quando si conosce soltanto il valor medio e la varianza, ma anche nello studio della probabilità non si conosce la funzione densità o di massa. Capiterà negli esercizi.

Legge dei grandi numeri

È uno dei pilastri della teoria della probabilità ed è un collegamento tra probabilità e statistica, ma la dimostrazione è banale. Quindi un grande risultato con una cosa semplice.

Date una successione di v. c.
$$X_1, X_2, ... X_N$$
 i.i.d.

con $E[X_K] = \mu e \ Ver(X_K) = e^2 \ (K=1,--N), |e|$

loro media (campionaria) eritmetica converge

in probabilità al valor medio μ , ovvero $\forall E > 0$

$$P(|X-\mu| \ge E) \xrightarrow{N} V$$

con $X = \underbrace{\sum_{K=1}^{N} X_K}_{N}$

Cosa vuol dire? La probabilità che il valore assoluto della media campionaria meno la media teorica sia maggiore o uguale ad eplison, cioè i loro valori differiscano di più di epsilon, va a 0 se considero infinite variabili, infiniti esperimenti.

La probabilità a 0 non vuol dire sempre impossibilità, vuol dire anche che è così raro che non ci si aspetti che capiti.

La convergenza in probabilità (cioè il valore assoluto della media campionaria – mu maggiore o uguale di epsilon) non è la convergenza di analisi. Non sto dimostrando che la variabile campionaria tenda a mu, non si può dimostrare, la media campionaria è una variabile casuale, non possiamo essere in grado di dire che sicuramente la media campionaria fa mu. Dico che la probabilità che la media campionaria non faccia mu quando N va a infinito è 0, perché epsilon si può prendere piccolo a piacere (anche miliardesimi di miliardesimi) e la probabilità resta a 0.

Un concetto nuovo: la convergenza in probabilità. Non siamo nel mondo della certezza, dell'analisi, ma nel mondo dell'incertezza. Non possiamo dimostrare che una cosa tenda ad un'altra nel mondo della probabilità e della statistica.

DIM
$$E[X] = \mu e Var(X) = \frac{6^2}{N}$$
 (per lezione precedente)

 $|X - E[X]| = |X - \mu|$
 $P(|X - \mu| \ge \epsilon) = P(|X - E[X]| \ge \epsilon) \le \frac{Var(X)}{\epsilon \epsilon \delta y \epsilon v} = \frac{6^2}{N \epsilon^2}$
 $= \frac{6^2}{N \epsilon^2}$
 $P(|X - \mu| \ge \epsilon) \le \frac{6^2}{N \epsilon^2} = \frac{6^2}{N \epsilon^2}$
 $P(|X - \mu| \ge \epsilon) \le 0 \le N \to +\infty$
 $P(|X - \mu| \ge \epsilon) \le 0 \le N \to +\infty$
 $P(|X - \mu| \ge \epsilon) \le 0 \le N \to +\infty$
 $P(|X - \mu| \ge \epsilon) \le 0 \le N \to +\infty$