Paper 1MA1: 1H				
Question	Working	Answer		Notes
1 a		y(y+27)	B1	
þ		t^6	B1	
၁		$\mathcal{W}^{\mathcal{S}}$	B1	
2	16÷4	w o	P1	Using side lengths of 4
	$\frac{1 \times 4}{2} = 2 \text{ or } \frac{1 \times 1}{2} = \frac{1}{8}$ $\frac{2 \times 4}{2} = 4 \text{ or } \frac{1 \times 1}{2} = \frac{1}{4}$	0	P1	Method to find fraction or area for one unshaded triangle
	$\frac{1\times4}{2} + \frac{2\times4}{2} = 6 \text{ or } \frac{1\times\frac{1}{2} + \frac{1}{2}\times\frac{1}{2} = \frac{3}{8}}{2}$		P1	Method to complete fraction or area for total unshaded region
	$16 - 6 = 10 \text{ or } 1 - \frac{3}{8} = \frac{5}{8}$		P1	Method to find total fraction or area for shaded region
			A1	for $\frac{5}{8}$ oe or 0.625

Paper 1MA1: 1H				
Question	Working	Answer		Notes
3 a	$\frac{\frac{1}{6} \times \frac{1}{5} \times 30 \times 5 = 5}{(\frac{5}{6} \times \frac{1}{5} + \frac{1}{6} \times \frac{4}{5} + \frac{1}{6} \times \frac{1}{5}) \times 30 \times 2}$ $30 - 5 - 20$	5	P1 P1 P1 A1	for identifying correct process to find probabilities for winning scores. May include use of tree diagram or sample space for correct process to find prize money for completing correct process to find profit
þ		Explanation	C1	for appropriate comment to interpret result eg probability so only likelihood not certainty, other than 30 may play, £5 is small difference.
4		No with reasoning	M1 M1 A1 C1	Derive $AC=9$ cm and identify as hypotenuse $4^2 + 7^2$ for using eg $AC = \sqrt{4^2 + 7^2}$ or 65 and 81 for concluding explanation that ABC is not a right-angled triangle with evidence.
5		500g	P1 P1 A1 B1	$\frac{1}{8} \times 160 \ (=20)$ '20' × 25 500 (or 0.5) Correct units g (or kg)

Paper 1MA1: 1H	A1: 1H		
Question	Working	Answer	Notes
6 а		$7\frac{1}{2}$	M1 $\frac{9}{4} \times \frac{10}{3}$ oe M1 $\frac{90}{12}$ oe
			A1 $7\frac{1}{2}$
q		$5\frac{1}{4} + 6\frac{2}{3} \text{ or}$ $5\frac{2}{3} + 6\frac{1}{4}$	B1 $5\frac{1}{4} + 6\frac{2}{3}$ or $5\frac{2}{3} + 6\frac{1}{4}$
7	$\frac{90}{2} \times 3 = 135$	Combination with reason	P1 Links either $\frac{2}{3}$ with 90 and 60% with 84
	$\frac{84}{60} \times 100 = 140$		Process to find original price of microwave oven eg $\frac{90}{2} \times 3 \ (=135)$
			P1 Process to find original price of combination oven eg $\frac{84}{2} \times 100 \ (=140)$
			A1 Correct original prices £135 and £140 with interpretation of results to conclude that
			combination oven had greater normal price.
∞		4 - 4.5	B1 Rounds appropriately using two of 5, 2 or 7
			M1 $\sqrt{19}$ A1 4-4.5

Paper 1MA1: 1H	A1: 1H			
Question	Working	Answer		Notes
6	$x \times 2x \times 3x =$	Reasoning to reach $x \le 5$	M1	Starts reasoning to find volume in terms of x
		1	M1	Gives inequality $6x^3 \le 900$
				or substitutes 5 and 6 into $6x^3$
			M	Completes reasoning to show $x \le 5$
10		6	M1	Finds constant $36 \times 1.5 = 54$) or $\frac{6}{15} = 4$
			M	$54 \div 6 \text{ or } 36 \div 4$
			A1	9 cao
11	$\frac{4}{2.2}\pi x^3 + \frac{4}{2}\pi x^3 = 2\pi x^3$	$h = \frac{x}{2}$	P1	Process to find volume of cone or hemisphere
) ()	1	P1	Process to total volume of solid
	$(2x)^2 \pi h = 4x^2 \pi h$		P1	Process to find volume of cylinder
	$4x^2 \pi h = 2 \pi x^3$		P1	Equates 2 volumes
			A1	Reaches $h = \frac{x}{2}$
12		Complete proof	M1	Begins proof BAE=ACD and ABE=EDC
			M	AB = DC because opposite sides of a
				parallelogram are equal
			Cl	Completes proof with all reasons eg alternate
				angles are equal and reference to ASA

	Notes	C1 Makes reference to different numbers of girls and bovs	C1 Completes reasoning eg there are more (boys) with 80% than (girls) with 70% or correct mean $(700+1200)\div25=76$	M1 Expansion of $(4 - \sqrt{3})(4 + \sqrt{3})$ with at least 3 terms out of 4 correct or $4^2 - \sqrt{3} \times \sqrt{3}$ C1 for $\sqrt{13}$ from correct working	B1 $200 \text{ or } 2 \times 10^2$	B1 $12 \text{ and } \frac{1}{4}$ A1 3 cao	M1 $81 = 3^4$ or $\frac{1}{8^4} = 3^{-4}$	Al cao	C1 Statement that events are independent
	Answer	more than		Completes N reasoning C	200 E	3 E			Events C independent
	Ans	more		Compressor	2(-2		Eve
A1: 1H	Working								
Paper 1MA1: 1H	Question	13		14	15 a	þ	ပ		16

Paper 1MA1: 1H	A1: 1H			
Question	Working	Answer		Notes
17		$3 \pm \sqrt{17}$	M	For $(x-3)^2 - 9 - 8 = 0$ or
				$(x =) \frac{-(-6)\pm\sqrt{(-6)^2-4(1)(-8)}}{2(1)}$ allow sign error for b
			M1	For $x - 3 = \pm \sqrt{17}$ or $x = \frac{6 \pm \sqrt{68}}{2}$
			A1	cao
10		OF	2	TI O . O II M. CALL
18		δ4	F1	Denotities that $16 \div 8 - 2$ so $FL = 2NF$ Process to find area of $LMN \times (2+1)^2 (=72)$
			P1	Completes process to find area of LQM
				,72,-16-8
			A1	48 cao
19 i		18	M1	Uses frequency density for under 80 bar eg 7÷10
			M	Completes method to find over 105 minutes
				frequency eg 1.2 ×15 or $\frac{3}{4}$ ×(1.2×20)
			A1	18 cao
:=		Reasoning	C1	Correct explanation about grouped data so actual values between 100 and 120 unknown

Paper 1MA1: 1H	1: 1H			
Question	Working	Answer		Notes
		3x	M1	Factorising numerator and denominator of first fraction $\frac{3(x+2)}{}$ $(=\frac{3}{})$
			M	Factorising denominator of second fraction $(x-5)(x+2) = (x-5)(x+2)$
			M1	$\frac{x(x+5)(x-5)}{\text{Multiplication by reciprocal}} \left(= \frac{x(x-5)}{x(x+5)} \right)$ $\frac{3(x+2)}{(x-5)(x+2)} \times \frac{x(x+5)(x-5)}{(x+5)}$
			A1	g algeb
		x < -3, x > 6	M I I I I I I I I I I I I I I I I I I I	Rearrange to $x^2 - 3x - 18 > 0$ Correct method to solve $x^2 - 3x - 18 = 0$ Establish critical values -3 and 6 x < -3, x > 6
		09	P1 P	process to start problem eg draw diagram and find gradient of OA (= 3) process to find equation of tangent with $m=-1/3$, process to find x -axis intercept of tangent process to find area of triangle cao