Statistical-Modelling-Project

By: Ibadet Azemi

PROJECT/GOALS:

Determine the strength of the relationship between number of bikes + POI's (Characteristics: reviews, ratings, distance, location)

VISUALIZATIONS: EDA

PAIRPLOT:

- No correlation was found
- R-Squared: is weak

VISUALIZATIONS:EDA

Visual EDA Analysis:

- There does not seem to be a relationship
- There are outliers

VISUALIZATIONS:EDA

Visual EDA Analysis:

- There does not seem to be a relationship
- ☐ There are outliers

VISUALIZATIONS:EDA

Visual EDA Analysis:

☐ There does appear to be a relationship☐ Outliers

Step 4.) Model Building

OLS REGRESSION RESULTS:

Interpretation

Based on the interpretation of the results, it seems that the regression model that was built to predict number of bikes, ratings and distance is performing very well.

The low R-squared value appears to reflect that there is a strong correlation

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified

		0LS Re	gression Re	sults		
Dep. Variable Model: Method: Date: Time: No. Observate Df Residuals Df Model: Covariance T	Mo ions:	lumber of Bil Least Squa on, 21 Aug 20 05:11	DLS Adj. I res F-sta 223 Prob :46 Log-L: 19 AIC: 16 BIC:	ared: R-squared: tistic: (F-statistic ikelihood:	c):	0.097 -0.016 0.8584 0.442 -72.294 150.6 153.4
	coef	std err	t	P> t	[0.025	0.975]
	2.3139 4.2563 -0.0886	4.387	0.970	0.346	-39.729 -5.045 -0.304	
Omnibus: 0.875 Prob(Omnibus): 0.646 Skew: 0.399 Kurtosis: 2.339			546 Jarque 399 Prob(S			2.087 0.850 0.654 331.

R-SQUARED/ADJ R. SQUARED & F-STATISTICS

R-squared: 0.097
Adj. R-squared: -0.016
F-statistic: 0.8584
Prob (F-statistic): 0.442
Log-Likelihood: -72.294
AIC: 150.6
BIC: 153.4

R-SQUARED: Is a weak correlation

ADJ. R-SQUARED: Shows model is good at predicting as is equal to R-squared

F-STATISTIC: Is greater that Prob(F-Statistic)

Prob (F-Statistic): Is less than F-Statistic

COEFF & P-VALUE

	coef	std err	t	P> t	[0.025	0.975]
const	2.3139	19.832	0.117	0.909	-39 . 729	44.357
Ratings	4.2563	4.387	0.970	0.346	-5.045	13.557
Distance	-0.0886	0.102	-0.871	0.396	-0.304	0.127

<> Coefficient: Is positive and has a positive affect on Y

<> T-Statistic: Strong coefficient

<> P-Value: Significance of each and is a strong coefficient

CHALLENGES:

- ☐ Time consuming for a large city
- □ 1119 bike stations in NYC
- ☐ Lack of bikes
- ☐ Limited calls for Yelp
- Limited API calls
- ☐ Learning and understanding API's
- ☐ Converting json response to csv
- ☐ Combining multiple data frames/csv

RESULTS:

- <> Coefficient: Is positive and has a positive affect on Y
- <> T-Statistic: Strong coefficient
- <> P-Value: Significance of each and is a strong coefficient

The regression model that was built to predict number of bikes, ratings and distance is performing very well.

The low R-squared value appears to reflect that there is a strong correlation

FUTURE GOALS:

- More data cleaning
- ☐ Going more in depth with the process
- More POI's
- Better/more visualizations(EDA)

THANK YOU!

