Weak Law of Large Numbers

Let $\{X_n\}$ be a sequence of r.vs and let $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ be the mean of first n r.vs. The

weak laws deal with *limits of probabilities involving* \overline{X}_n . The strong laws deal with *probabilities involving limits of* \overline{X}_n .

Definition of Weak Law of Large Numbers

A sequence $\{X_n\}$ of r.vs is said to satisfy the **Weak Law of Large Numbers (WLLN)** if

$$\lim_{n\to\infty} P\left[\left|\frac{S_n}{n} - E\left(\frac{S_n}{n}\right)\right| < \epsilon\right] = 1$$

for any $\epsilon > 0$, where $S_n = \sum_{i=1}^n X_i$, $i.e., \frac{S_n}{n} \xrightarrow{P} E\left(\frac{S_n}{n}\right)$

Theorem1: Let $\{X_n\}$ be a sequence of r.vs and let $S_n=X_1+\cdots+X_n$ with $B_n=V(S_n)<\infty$. If $\frac{B_n}{n^2}\longrightarrow 0$ as $n\longrightarrow\infty$, then for any $\epsilon>0$,

$$\lim_{n\to\infty} P\left[\left|\frac{S_n}{n} - E\left(\frac{S_n}{n}\right)\right| < \epsilon\right] = 1$$

i. e., $\{X_n\}$ satisfies WLLN.

Proof: On applying Chebychev's inequality to the variable $\frac{S_n}{n}$, we have

$$P\left[\left|\frac{S_n}{n} - E\left(\frac{S_n}{n}\right)\right| \ge \epsilon\right] \le \frac{V\left(\frac{S_n}{n}\right)}{\epsilon^2} = \frac{V(S_n)}{n^2 \epsilon^2} = \frac{B_n}{n^2 \epsilon^2} \longrightarrow 0$$

as $n \to \infty$. Thus,

$$\lim_{n\to\infty} P\left[\left|\frac{S_n}{n} - E\left(\frac{S_n}{n}\right)\right| \ge \epsilon\right] = 0 \Longrightarrow \lim_{n\to\infty} P\left[\left|\frac{S_n}{n} - E\left(\frac{S_n}{n}\right)\right| < \epsilon\right] = 1$$

 $\Longrightarrow \{X_n\}$ satisfies WLLN.

Corollary: Let $\{X_n\}$ be a sequence of r.vs, $\overline{X_n}=\frac{S_n}{n}$ and $\mu=E\left(\frac{S_n}{n}\right)$. If $\{X_n\}$ satisfying WLLN. Then

$$\lim_{n\to\infty} P[\overline{X_n} \leq k] = \begin{cases} 0 & \text{if } k < \mu \\ 1 & \text{if } k > \mu \end{cases}$$

Proof: Since WLLN holds for $\{X_n\}$, we have

$$\lim_{n \to \infty} P[|\overline{X_n} - \mu| < \epsilon] = 1 \Longrightarrow \lim_{n \to \infty} P[|\overline{X_n} - \mu| \ge \epsilon] = 0 \qquad \dots (1)$$

Since $\{\overline{X_n} \le \mu - \epsilon\} \subset \{|\overline{X_n} - \mu| \ge \epsilon\}$, we have

$$P(\overline{X_n} \le \mu - \epsilon) \le P(|\overline{X_n} - \mu| \ge \epsilon)$$

$$\Rightarrow \lim_{n \to \infty} P(\overline{X_n} \le \mu - \epsilon) \le \lim_{n \to \infty} P(|\overline{X_n} - \mu| \ge \epsilon)$$

$$\Rightarrow \lim_{n \to \infty} P(\overline{X_n} \le \mu - \epsilon) = 0$$

$$\Rightarrow \lim_{n\to\infty} P(\overline{X_n} \le k) = 0$$
, where $k = \mu - \epsilon$, i.e., $k < \mu$ since $\epsilon > 0$

$$\Rightarrow \lim_{n \to \infty} P(\overline{X_n} \le k) = 0 \text{ if } k < \mu$$

Further, $P(\overline{X_n} \le \mu + \epsilon) + P(|\overline{X_n} - \mu| > \epsilon) \ge 1$, since the region is larger than sample space covered.

$$\Rightarrow \lim_{n \to \infty} P(\overline{X_n} \le \mu + \epsilon) \ge 1 \ \left(\because \lim_{n \to \infty} P(|\overline{X_n} - \mu| > \epsilon) = 0 \right)$$

$$\Rightarrow \lim_{n \to \infty} P(\overline{X_n} \le \mu + \epsilon) = 1$$

$$\Rightarrow \lim_{n\to\infty} P(\overline{X_n} \le k) = 1$$
 where $k = \mu + \epsilon i.e., k > \mu$ since $\epsilon > 0$

$$\Rightarrow \lim_{n \to \infty} P(\overline{X_n} \le k) = 1 \text{ if } k > \mu$$

Thus,
$$\lim_{n\to\infty} P(\overline{X_n} \le k) = \begin{cases} 0, & k < \mu \\ 1, & k > \mu \end{cases}$$

Variations of the WLLN

The following are some special cases of Theorem1 which are stated without proof.

Theorem 2: (Bernoulli's WLLN)

Let $\{X_n\}$ be a sequence of Bernoulli trials with probability of success equal to p. If S_n is the number of successes in n trials, then

$$\lim_{n \to \infty} P\left[\left| \frac{S_n - np}{n} \right| < \epsilon \right] = 1, \ \forall \ \epsilon > 0$$

Theorem 3: (Khinchine's WLLN)

Let $\{X_n\}$ be a sequence of i.i.d.r.vs with $E(X_i) = \mu < \infty$, i = 1,2,..., then the WLLNs holds i.e.,

$$\lim_{n \to \infty} P\left[\left| \frac{S_n}{n} - \mu \right| > \epsilon \right] = 0$$

Theorem 4: (Bernstein's WLLN)

Let $\{X_n\}$ be a sequence of random variables for which $var(X_n) = {\sigma_n}^2 < k$, $\forall i$, where k is independent of n. If $\sigma_{ij} = cov(X_i, X_j) \to 0$ as $|i-j| \to \infty$ (Asymptotic uncorrelatedness) then the WLLN holds.

Example 1: Let $\{X_n\}$ be i.i.d.r.vs with mean μ and variance σ^2 , if

$$\frac{{X_1}^2 + {X_2}^2 + \dots + {X_n}^2}{n} \xrightarrow{P} c$$

as $n \to \infty$ for some constant $c(0 \le c < \infty)$, then find c.

Solution: Here $E(X_i) = \mu$ and $V(X_i) = \sigma^2 \ \forall \ i$.

Let
$$S_n = {X_1}^2 + {X_2}^2 + \dots + {X_n}^2$$
. Then

$$E(S_n) = nE(X_1^2)$$
 (: Xs are i.i.d.r.vs)

$$= n \left[V(X_1) + \left(E(X_1) \right)^2 \right]$$

$$\Rightarrow E(S_n) = n(\sigma^2 + \mu^2)$$

Since $E(X^2) = V(X) + (E(X))^2 = \sigma^2 + \mu^2$ exists for each X^2 in S_n , by Khinchine's WLLN, we have

$$\frac{S_n}{n} = \frac{X_1^2 + X_2^2 + \dots + X_n^2}{n} \quad E(X_1^2) = \mu^2 + \sigma^2$$

Thus, $c = \mu^2 + \sigma^2$.

Example 2: If the i.i.d. r.vs $X_k(k=1,2,...)$ assume the value $2^{r-2\ln r}$ with probability $\frac{1}{2^r}$, examine if the WLLN holds for the sequence $\{X_k\}$.

Solution:

$$E(X_k) = \sum_{r=1}^{\infty} 2^{r-2\ln r} \cdot \frac{1}{2^r} = \sum_{r=1}^{\infty} \left(2^{-2}\right)^{\ln r} = \sum_{r=1}^{\infty} \left(\frac{1}{4}\right)^{\ln r}$$

$$= \sum_{r=1}^{\infty} (r)^{\ln \left(\frac{1}{4}\right)} \left(\because a^{\ln n} = n^{\ln a}\right)$$

$$= \sum_{r=1}^{\infty} \left(\frac{1}{r}\right)^{\ln 4} \text{ converges since } \ln 4 = 1.39 > 1 \quad \left(\sum_{n=1}^{\infty} \frac{1}{n^p} \text{ converges if } p > 1\right)$$
Thus $E(X_k) < \infty$

Since $\{X_k\}$ are i.i.d.r.vs with $E(X_k) < \infty$, the WLLN holds for the sequence, by Khinchine's theorem.

Example 3: Let $\{X_n\}$ be a sequence of i.i.d U(0,1) r.vs. For the geometric mean $G_n=(X_1.X_2....X_n)^{\frac{1}{n}}$, show that $G_n\overset{P}{\longrightarrow}c$ where c is some constant. Find c.

Solution: Let $Y = -\ln X$ where $X \sim U(0,1)$. The c.d.f. of Y is given by

$$F_Y(y) = P(Y \le y) = P(-\ln X \le y) = P(X \ge e^{-y}) = \int_{e^{-y}}^1 1 \, dx = 1 - e^{-y}$$

 \Rightarrow $F_Y(y) = 1 - e^{-y}$ and the p.d.f of Y is given by

$$f_Y(y) = \frac{d}{dx}(F_Y(y)) = e^{-y}$$
 for $y > 0$.

Then E(Y) = V(Y) = 1.

Thus, the sequence $\{Y_n\}$ is iid with finite mean $E(Y_n)=1$. Hence, by Khinchine's WLLN

$$\sum_{i=1}^{n} \frac{Y_i}{n} \xrightarrow{P} E(Y_1) = 1 \qquad \dots (1)$$

But
$$\ln G_n = \sum_{i=1}^n \ln \frac{X_i}{n} = -\sum_{i=1}^n \frac{Y_i}{n}$$

$$\Rightarrow \sum_{i=1}^{n} \frac{Y_i}{n} = -\ln G_n \qquad \dots (2)$$

From (1) and (2), we have

$$-\ln G_n \stackrel{P}{\longrightarrow} 1$$
 i.e., $G_n \stackrel{P}{\longrightarrow} e^{-1}$

Thus, $c = \frac{1}{e}$.

Example 4: Show that the sequence $P(X_k = \pm 2^k) = \frac{1}{2}$ of independent r.vs does not obey the WLLN.

Solution: Here $E(X_k) = 2^k \frac{1}{2} - 2^k \frac{1}{2} = 0$ and

$$V(X_k) = E(X_k^2) = 2^{2k} \frac{1}{2} + 2^{2k} \frac{1}{2} = 2^{2k} = 4^k.$$

Let
$$S_n = X_1 + \cdots + X_n$$
. Then $E(S_n) = 0$ and $V(S_n) = \sum_{k=1}^n V(X_k)$

(: Xs are independent)

$$\Rightarrow B_n = V(S_n) = \sum_{k=1}^n 4^k = (4 + 4^2 + \dots + 4^n) = \frac{4(4^n - 1)}{4 - 1} = \frac{4}{3}(4^n - 1)$$

Now,
$$\lim_{n \to \infty} \frac{B_n}{n^2} = \frac{4}{3} \lim_{n \to \infty} \left(\frac{4^{n-1}}{n^2} \right) \qquad \left(\frac{\infty}{\infty} form \right)$$
$$= \frac{4}{3} \lim_{n \to \infty} \frac{4^n \ln 4}{2n} = \frac{4}{3} (\ln 4)^2 \frac{1}{2} \lim_{n \to \infty} 4^n \to \infty$$

Since $\frac{B_n}{n^2} \to \infty$ as $n \to \infty$, WLLN does not hold.

Example 5: Show that the following sequence of independent r.vs does not obey WLLN:

$$P\left[X_k = \pm (2k-1)^{\frac{1}{2}}\right] = \frac{1}{2}$$

Solution:
$$E(X_k) = (2k-1)^{\frac{1}{2}} \cdot \frac{1}{2} - (2k-1)^{\frac{1}{2}} \cdot \frac{1}{2} = 0$$

$$V(X_k) = E(X_k^2) = (2k-1) \cdot \frac{1}{2} + (2k-1) \cdot \frac{1}{2} = 2k-1$$

Let
$$S_n = \sum_{k=1}^n X_k$$
 . Then

$$B_n = V(S_n) = \sum_{k=1}^n V(X_k) \qquad (\because X_n) = \sum_{k=1}^n (2k-1) = n^2$$

$$\Rightarrow B_n = n^2 \Rightarrow \frac{B_n}{n^2} = 1$$

$$\Rightarrow \lim_{n \to \infty} \frac{B_n}{n^2} = 1$$

Thus, it follows that $\{X_k\}$ does not hold WLLN.

Example 6: Let X_i can have only two values i^{α} and $-i^{\alpha}$ with equal probabilities. If $\{X_i\}$ is a sequence of independent r.vs, then show that WLLN holds if $\alpha < \frac{1}{2}$.

Solution: Here
$$E(X_i) = i^{\alpha} \frac{1}{2} - i^{\alpha} \frac{1}{2} = 0$$
 and
$$V(X_i) = E(X_i^2) = i^{2\alpha} \frac{1}{2} + i^{2\alpha} \frac{1}{2} = i^{2\alpha}$$

Let
$$S_n = \sum_{k=1}^n X_k$$
 . Then

$$B_n = V(S_n) = \sum_{i=1}^n V(X_i) \qquad (\because X_i \text{s are independent})$$

$$= \sum_{i=1}^n i^{2\alpha} = 1^{2\alpha} + 2^{2\alpha} + \dots + n^{2\alpha}$$

$$= \int_0^n x^{2\alpha} dx \quad (\text{Euler - Maclaurion formula})$$

$$\Rightarrow B_n = \frac{n^{2\alpha+1}}{2\alpha+1} \Rightarrow \frac{B_n}{n^2} = \frac{n^{2\alpha+1}}{2\alpha+1} \to 0 \text{ as } n \to \infty \text{ if } \alpha < \frac{1}{2}$$
Thus, $\frac{B_n}{n^2} \to 0 \text{ as } n \to \infty \text{ when } \alpha < \frac{1}{2}$

Therefore, $\{X_n\}$ holds WLLN when $\alpha < \frac{1}{2}$.

Example 7: Let X_i be i.i.d. r.vs, i=1,2,... with mean μ and variance $\sigma^2<\infty$ and let $S_n=X_1+\cdots+X_n$. Show that the WLLN does not hold for the sequence $\{S_n\}$, but it holds for the sequence $\{a_nS_n\}$ provided $na_n\to 0$.

Solution: Let
$$T_n = S_1 + S_2 + \dots + S_n$$
, then
$$T_n = X_1 + (X_1 + X_2) + (X_1 + X_2 + X_3) + \dots + (X_1 + X_2 + \dots + X_n)$$
$$= nX_1 + (n-1)X_2 + \dots + 2X_{n-1} + X_n$$
$$\therefore B_n = V(T_n) = n^2\sigma^2 + (n-1)^2\sigma^2 + \dots + 2^2\sigma^2 + \sigma^2$$

$$= (1^2 + 2^2 + \dots + (n-1)^2 + n^2)\sigma^2$$

$$\Longrightarrow B_n = \frac{n(n+1)(2n+1)}{6}\sigma^2 \Longrightarrow \frac{B_n}{n^2} \longrightarrow \infty \text{ as } n \longrightarrow \infty.$$

Since $\frac{B_n}{n^2} \not\to 0$, *WLLN* does not hold for $\{S_n\}$.

For the sequence $\{a_nS_n\}$, we have

$$\begin{split} T_n &= a_1 S_1 + a_2 S_2 + \dots + a_n S_n \\ &= a_1 X_1 + a_2 (X_1 + X_2) + a_3 (X_1 + X_2 + X_3) + \dots + a_n (X_1 + X_2 + \dots + X_n) \\ &= (a_1 + a_2 + \dots + a_n) X_1 + (a_2 + a_3 + \dots + a_n) X_2 + \dots + (a_{n-1} + a_n) X_{n-1} + a_n X_n \\ \text{and } B_n &= V(T_n) = (a_1 + a_2 + \dots + a_n)^2 \sigma^2 + (a_2 + \dots + a_n)^2 \sigma^2 + \dots \\ &\qquad \qquad + (a_{n-1} + a_n)^2 \sigma^2 + a_n^2 \sigma^2 \\ &= \left[a_1^2 + 2a_2^2 + \dots + na_n^{22} + 2(a_1 a_2 + \dots + a_1 a_n) + \right] \end{split}$$

 $4(a_2a_2 + \cdots + a_2a_n) + \cdots + 2(n-1)a_{n-1}a_n]\sigma^2$

...(1)

Since $na_n \to 0$, by Cauchy theorem $\lim_{n \to \infty} \left[\frac{a_1 + 2a_2 + \dots + na_n}{n} \right] = 0$

Again $na_n \to 0 \implies a_n = \frac{\epsilon}{n}$ so that $a_n \to 0$ as $n \to \infty$ and hence

$$\lim_{n\to\infty} \left[\frac{a_1 + a_2 + \dots + a_n}{n} \right] = 0 \text{ (by Cauchy theorem)}$$

Let
$$\theta_n = \frac{(a_1 + a_2 + \dots + a_n)(a_1 + 2a_2 + \dots + na_n)}{n^2}$$

$$= \frac{\left[\left(\sum_{i=1}^{n} i a_i^2\right) + 3a_1 a_2 + 4a_1 a_3 + \dots + (n+1)a_1 a_n + \dots + (2n-1)a_{n-1} a_n\right]}{n^2} \dots (2)$$

By two preceding limits, $\theta_n \to 0$ as $n \to \infty$.

Hence from (1) and (2), we have $\frac{B_n}{n^2} < \theta_n \sigma^2 \longrightarrow 0$ as $n \longrightarrow \infty$

Therefore, WLLN holds for the sequence $\{a_nS_n\}$ provided $na_n \to 0$.