

National University of Computer & Emerging Sciences MT-2005 Probability and Statistics

Hypothesis Tests for the Means of Two Populations with σ_1 and σ_2 are known

Critical-Value and P-Value Approach

$$z = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{(\sigma_1^2/n_1) + (\sigma_2^2/n_2)}},$$

Confidence Interval Approach

Confidence Interval for $\mu_1 - \mu_2$, σ_1^2 and σ_2^2 Known If \bar{x}_1 and \bar{x}_2 are means of independent random samples of sizes n_1 and n_2 from populations with known variances σ_1^2 and σ_2^2 , respectively, a $100(l-\alpha)\%$ confidence interval for $\mu_1 - \mu_2$ is given by

$$(\bar{x}_1 - \bar{x}_2) - z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} < \mu_1 - \mu_2 < (\bar{x}_1 - \bar{x}_2) + z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}},$$

where $z_{\alpha/2}$ is the z-value leaving an area of $\alpha/2$ to the right.

Question: Hotel Room Cost

A survey found that the average hotel room rate in New Orleans is \$88.42 and the average room rate in Phoenix is \$80.61. Assume that the data were obtained from two samples of 50 hotels each and that the standard deviations of the populations are \$5.62 and \$4.83, respectively. At $\alpha = 0.05$, can it be concluded that there is a significant difference in the rates?

Solution:

Step 1 State the hypotheses and identify the claim.

$$H_0$$
: $\mu_1 = \mu_2$ and H_1 : $\mu_1 \neq \mu_2$ (claim)

- **Step 2** Find the critical values. Since $\alpha = 0.05$, the critical values are +1.96 and -1.96.
- **Step 3** Compute the test value.

$$z = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} = \frac{(88.42 - 80.61) - 0}{\sqrt{\frac{5.62^2}{50} + \frac{4.83^2}{50}}} = 7.45$$

Step 4 Make the decision. Reject the null hypothesis at $\alpha = 0.05$, since 7.45 > 1.96. See Figure 9–3.

Confidence interval approach

Substitute in the formula, using $z_{\alpha/2} = 1.96$.

$$(\overline{X}_1 - \overline{X}_2) - z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} < \mu_1 - \mu_2$$

$$< (\overline{X}_1 - \overline{X}_2) + z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

$$(88.42 - 80.61) - 1.96 \sqrt{\frac{5.62^2}{50} + \frac{4.83^2}{50}} < \mu_1 - \mu_2$$

$$< (88.42 - 80.61) + 1.96 \sqrt{\frac{5.62^2}{50} + \frac{4.83^2}{50}}$$

$$7.81 - 2.05 < \mu_1 - \mu_2 < 7.81 + 2.05$$

$$5.76 < \mu_1 - \mu_2 < 9.86$$

Since the confidence interval does not contain zero, the decision is to reject the null hypothesis, which agrees with the previous result.

Step 5 Summarize the results. There is enough evidence to support the claim that the means are not equal. Hence, there is a significant difference in the rates.

2

Question: College Sports Offerings

A researcher hypothesizes that the average number of sports that colleges offer for males is greater than the average number of sports that colleges offer for females. A sample of the number of sports offered by colleges is shown. At $\alpha=0.10$, is there enough evidence to support the claim? Assume σ_1 and σ_2 3.3

Males						Females					
6	11	11	8	15		6	8	11	13	8	
6	14	8	12	18		7	5	13	14	6	
6	9	5	6	9		6	5	5	7	6	
6	9	18	7	6		10	7	6	5	5	
15	6	11	5	5		16	10	7	8	5	
9	9	5	5	8		7	5	5	6	5	
8	9	6	11	6		9	18	13	7	10	
9	5	11	5	8		7	8	5	7	6	
7	7	5	10	7		11	4	6	8	7	
10	7	10	8	11		14	12	5	8	5	

Solution:

Step 1 State the hypotheses and identify the claim.

$$H_0$$
: $\mu_1 = \mu_2$ and H_1 : $\mu_1 > \mu_2$ (claim)

Step 2 Compute the test value. Using a calculator or the formula in Chapter 3, find the mean for each data set.

For the males
$$\overline{X}_1 = 8.6$$
 and $\sigma_1 = 3.3$

For the females
$$\overline{X}_2 = 7.9$$
 and $\sigma_2 = 3.3$

Substitute in the formula.

$$z = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} = \frac{(8.6 - 7.9) - 0}{\sqrt{\frac{3.3^2}{50} + \frac{3.3^2}{50}}} = 1.06*$$

Step 3 Find the *P*-value. For z = 1.06, the area is 0.8554, and 1.0000 - 0.8554 = 0.1446, or a *P*-value of 0.1446.

Step 4 Make the decision. Since the *P*-value is larger than α (that is, 0.1446 > 0.10), the decision is to not reject the null hypothesis. See Figure 9–4.

Step 5 Summarize the results. There is not enough evidence to support the claim that colleges offer more sports for males than they do for females.

