

# APPENDIX A

**WACKER FINE CHEMICALS**

CYCLODEXTRINS ANOTHER TOOL FOR  
ENCAPSULATION OF LINOLEIC ACID

Regent Marlies, Kupka Michaela, Sigl Harald, F-I-P, March 2005

CREATING TOMORROW'S SOLUTIONS

LINOLEIC ACID, C<sub>17</sub>H<sub>31</sub>COOH,  
E.G. (Z,Z)-9,12-OCTADECA DIENOIC ACID



**Linoleic acid is the most  
frequently used essential fatty acid  
in cosmetic formulations.**

**One disadvantage of linoleic acid containing  
oils is there comparatively short shelf life**

(Essentielle Fettsäuren - Kosmetik on innen und außen,  
Dr. Hans Lautenschläger, 2003)

# FUNCTION, PHYSIOLOGICAL EFFECTS



- Belongs to the group of omega-6 fatty acids
- It cannot be synthesized by animals
- Linoleic acid is incorporated in the skin to the most important barrier-active "ceramide" (Essentielle Fettsäuren - Kosmetik von innen und außen, Dr. Hans Lautenschläger, 2003)
- Is essential for the human body

## FUNCTION, PHYSIOLOGICAL EFFECTS

- Is important for the synthesis of eicosanoids, which have a regulatory action in various tissues

(Technical Information BASF,  
„products for the food and pharmaceutical industry“, 2002)

- A lack of linoleic acid in the skin has e.g. the effect of:
  - barrier disruption of the skin
  - a higher rate of the trans-epidermal water-loss
  - the skin becomes dry, scaly and gets a unhealthy colour
- Acts both as a concentrated energy carrier and as a starting material for the synthesis of arachidonic acid (important component of cell membranes)  
(Technical Information BASF,  
„products for the food and pharmaceutical industry“, 2002)

## FUNCTION, PHYSIOLOGICAL EFFECTS

- Requirements / intake recommendations:  
the adult requirement of linoleic acid is 8 – 10g per day
- There is an increased requirement for essential fatty acids after severe accidents and in certain diseases

## PROPERTIES AND OCCURRENCE

- Is a colorless to straw colored liquid
- Insoluble in water, soluble in oil and fats
- Is the most common polyunsaturated fatty acid
- Linoleic acid also may convert to a isomeric unsaturated conjugated fatty-acid
- It is easily oxidized by air to peroxides that have undesirable biological effects
- Vegetable oils become rancid when exposed to air at room-temperature and can seriously spoil the taste, odor and stability of food products
- It is found in nature in plants and animal tissues

## OCCURRENCE



Walnut



peanut



soya



Corn

seeds of sunflower

## CONVERSION FROM LIQUID TO SOLID COMPLEX

**Left:**  
pure linoleic acid

**Right:**

CAVAMAX®W6/LINOLEIC  
ACID-COMPLEX



## APPLICATION

- As component in cosmetic formulations like
  - emulsion, cream
  - gel
  - lip-balm
- Colour cosmetic, like lip-stick
  - face powder
  - eye shadow
  - face mask
- As component in derma products linoleic acid helps to cure
  - Skin disease
  - Sun burn
  - burns
  - akne vulgaris

Schematic representation of an inclusion complex formation between cyclodextrin and linoleic acid



# CAVAMAX® W6/LINOLEIC ACID-COMPLEX, CHARACTERISTICS

## CAVAMAX®W6-Complex

|                 |                                                                   |
|-----------------|-------------------------------------------------------------------|
| appearance:     | white granulate/powder                                            |
| active content: | min. 7.5 % (NMR, GC)                                              |
| water content:  | max. 14%                                                          |
| INCI names      | cyclodextrin/linoleic acid                                        |
| patent pending  | DE 10253042.4-4; EP03026137.4; JP<br>2003-385675; KR 2003-0077579 |

## BENEFITS OF CAVAMAX® W6/ LINOLEIC ACID -COMPLEXES BY APPLICATION IN FORMULATIONS

- Improved stability of linoleic acid e.g. oxygen, UV-A and UV-B and temperature
- Controlled release
- No rancidness in finished products e.g. during application
- No need of a stabiliser in cosmetic formulations
- Preparation of cosmetic formulations is even possible at higher temperatures
- Easy handling

# BENEFITS OF CAVAMAX® W6/ LINOLEIC ACID-COMPLEXES BY APPLICATION IN FORMULATIONS

- Stable dispersion/emulsion
- Increase of texture of emulsions
- Efficient depot system
- Positive costs/benefit-factor
- Recommended dosage:  
**0.5 - 15% of CAVAMAX®W6/LINOLEIC ACID-COMPLEX**
- In food products: improved taste and odor stability

# THERMOSTABILITY OF CAVAMAX®/LINOLEIC ACID-COMPLEXES WITH VARIOUS MOLAR RATIO OF ACTIVE AT 45°C

Stability at 45°C, stored in open vessels (90 mm diameter, 3 mm layer)



# UV-STABILITY OF COMPLEXED AND UNCOMPLEXED LINOLEIC ACID IN GEL

Stability in Sun Screen Softgel (1.0 % linoleic acid. "Suntest" UV-A and UV-B, 45 °C)



# UV-STABILITY TEST IN SUN-TEST DEVICE: COMPARISON

SUN-Test device



“Sun-Bathing”



max. irradiation/day = 66 MJ/m<sup>2</sup>

irradiation/day (middle europe) = 5.7 MJ/m<sup>2</sup>

ratio (time lapse factor) =

11

1

# UV-A AND UV-B STABILITY TEST IN SUN-TEST EQUIPMENT

## Method

- Equipment SUNTEST CPS from ATLAS
- Radiation-source Xenon-Lampe
- Optical filter Solar Standard  
(filter referring to COLIPA\* and DIN 67501)  
max. determined inside-temperature = 45°C
- Air cooled sample room
- Maximum radiance  $E (300\text{nm} - 800\text{nm}) = 765\text{W/m}^2$
- Constant controlling of the irradiation via photodiode

(source: ATLAS-Material Testing Solutions)

## Sample preparation

- Solid substance like cyclodextrin-complex  
3 – 4 g substance between 2 layers of glass 10 x 10 cm  
(glass rim has to be covered with an adhesive tape )
- Soft substance like creams und pastes  
3 – 4 g in a PE-plastic bag 10 x 10 cm (melted rim)

# UV-STABILITY OF COMPLEXED AND UNCOMPLEXED LINOLEIC ACID IN CREAM

## Stability in Sun Screen Cream (1.0 % linoleic acid content, "suntest" UV-A and UV-B, 45 °C)



# LONG-TERM STABILITY OF 1% LINOLEIC ACID AS 4:1- ALPHA-CD/LA-COMPLEX AND UNCOMPLEXED IN CREAM

at room temperature after 12 months storage.

Sensory- and SPME/GC-Analysis of deteriorated linoleic acid e.g. as Hexanal



# DEGRADATION OF COMPLEXED AND UNCOMPLEXED LINOLEIC ACID BY PEROXIDE VALUE

Instability in Cream W/O stored at different temperatures,  
(1.0% linoleic acid content) determined by peroxide value



# LIGHT-STABILITY OF 1% LINOLEIC ACID AS 4:1-ALPHA-CD/LA-COMPLEX AND UNCOMPLEXED IN COLOR-COSMETICS

## “Sun-Test” UV-A and UV-B at 45 °C; GC-Analysis of Linoleic Acid-Content



# DETERMINATION OF LINOLEIC ACID IN CYCLODEXTRIN AND COSMETIC PRODUCTS

## Analytical Method

### Principle of the Method:

Silylation by MSHFBA, GC-Direct Injection,

### Internal Standard

Name of the analyte :

Retention times (min) :

Linoleic Acid

Analyte (Linoleic Acid)

Int.Std. (Eicosanoic Acid) 8,71

10,21 Cyclodextrin or Cosmetic Products

Solvent-Mix 80 % v/v Pyridine + 20 % v/v THF

Internal Standard ISTD

Eicosanoic Acid (C20) CAS - NR.: [530-30-9]

### Internal Standard solution

Prepare a concentrated (e.g. about 1100 ppm) stock solution of Eicosanoic Acid in the solvent mix. Add a small volume (about 0.8 g) of that stock solution to (about 5g) of the Silylating Reagent MSHFBA to get a ISTD-working solution:  
150 ppm ISTD in (MSHFBA > 95 %, < 5% solvent mix).

# DETERMINATION OF LINOLEIC ACID IN CYCLODEXTRIN AND COSMETIC PRODUCTS

## Sample preparation:

Dissolve the sample ( Cyclodextrin 0.1 %, Cosmetic Products 1 % ) in the solvent mix (rise in temperature, short ultrasonic agitation).

## Silylating Reaction:

200 mg of the sample solution are diluted with 700 mg THF + 100 mg ISTD-working solution = 1000 mg reaction solution with 15 ppm ISTD. Heat the reaction mixture (70 °C, about 15 min) --- Alu Block Heater.

# DETERMINATION OF LINOLEIC ACID IN CYCLODEXTRIN AND COSMETIC PRODUCTS

## Calibration Range:

Analyte: 5 to 20 mg/kg solvent  
ISTD: 15 mg/kg solvent

## Calibration solutions:

Prepare solutions of linoleic acid and eicosanoic acid in the pyridine/THF-solvent mix separately and store them in a refrigerator (< 1 month, without silylation).

Dilute and mix the separate solutions to get  $\geq 5$  linoleic acid-calibration levels within the calibration range 5-20 ppm with constant 15 ppm ISTD-concentration for all levels.

## Silylating Reaction:

Add 10 % (w / w) of the silylating reagent to the calibration solutions. Heat the calibration mixtures (70°C, about 15 min) --- Alu Block Heater.

## Reagents:

THF p.A.  
Pyridine  
MSHFBA, N-Methyl-N-trimethylsilylheptafluorbutyramid (Macherey-Nagel)

# DETERMINATION OF LINOLEIC ACID IN CYCLODEXTRIN AND COSMETIC PRODUCTS

## GC - Operating Conditions

|                              |                                                            |             |                  |            |  |
|------------------------------|------------------------------------------------------------|-------------|------------------|------------|--|
| Instrument:                  | Gaschromatograph HP 6890 equipped with FID and autosampler |             |                  |            |  |
| Column:                      | 30 m x 0.32 mm ID fused silica capillary column            |             |                  |            |  |
| Stationary phase:            | HP-5 Methyl-Polysiloxan with 5 % Phenyl-Polysiloxan        |             |                  |            |  |
| Film Thickness:              | df = 0,23 µm                                               |             |                  |            |  |
| Supplier :                   | Agilent                                                    |             |                  |            |  |
| Column temperature:          | Initial temp.                                              | 60 °C       | Initial Time     | 1. 0 min   |  |
| Temp. program :              | Program Rate A                                             | 30 °C / min | Program Rate B   | - °C / min |  |
|                              | Final Temp.                                                | 250 °C      | Final Temp.      | - °C       |  |
|                              | Final Hold Time:                                           | 7.0 min     | Final Hold Time: | - min      |  |
|                              | Analysis Time:                                             | min         |                  |            |  |
| Carrier gas:                 | Helium                                                     |             |                  |            |  |
| Column Head Pressure:        | 117 kPa                                                    |             |                  |            |  |
| Flow Rate:                   | 1,5 ml / min                                               |             |                  |            |  |
| Electronic pressure control: | Constant Pressure                                          |             |                  |            |  |
| Injection:                   | Direct Injection with autosampler HP 7673 A,               |             |                  |            |  |
|                              | Splitless mode                                             |             |                  |            |  |

# DETERMINATION OF LINOLEIC ACID IN CYCLODEXTRIN AND COSMETIC PRODUCTS

Inject samples:

Silylation reaction mixture of the calibration solutions and of the sample solution, respectively.

Injektionvolume ( $\mu\text{L}$ ):

Inlet:

Temperature:  
Split Flow:

Split/Splitless capillary inlet with EPC

300 °C  
100 ml / min      Purge B off      0 min  
                        Purge B on      0,9 min

Septum Purge :

Detector:

Hydrogen:

Air :

Make up gas:

Data acquisition and  
quantitation software:

Appendix:

Representative GC-Run: Linoleic acid with Int. Standard Eicosanoic Acid after Silylation

PE Turbochrome

Representative chromatogram

# DETERMINATION OF LINOLEIC ACID IN CYCLODEXTRIN AND COSMETIC PRODUCTS

## Representative GC-Run:

Linoleic Acid with Internal Standard Eicosanoic Acid after Silylation



**WACKER**

**FINE CHEMICALS**

CYCLODEXTRINS ANOTHER TOOL FOR ENCAPSULATION OF LINOLEIC ACID  
Regert Mariës, F-I-P, February 2007, Slide 26

# PREPARATION OF A SUN SCREEN SOFT STICK WITH (0.30 WW%) LINOLEIC ACID

|                                                           | Ingredients                          | INCI-Names | w/w    | Supplier         |
|-----------------------------------------------------------|--------------------------------------|------------|--------|------------------|
| A) Vaseline                                               | Petrolatum                           |            | 68,9%  |                  |
|                                                           | Stearoxy Dimethicone,<br>Dimethicone |            | 25,0%  | Wacker-Chemie AG |
| B) CAVAMAX® W6/LINOLEIC ACID-COMPLEX (7.4% linoleic acid) | Cyclodextrin/Linoleic acid           |            | 4,0%   | Wacker-Chemie AG |
|                                                           | Butyl Methoxydibenzoylmethane        |            | 2,0%   | Givaudan         |
| Parson 1789                                               | Methylchloroisothiazolinone          |            | 0,1%   | Rohm&Haas        |
|                                                           | , Methylisothiazolinone              |            |        |                  |
| Kathon CG                                                 |                                      |            | 100,0% |                  |

# PREPARATION OF A SUN SCREEN SOFT STICK WITH (0.30 W/W%) LINOLEIC ACID

## Calculation:

7.4g linoleic acid are related to 100g complex, 0.296g Linoleic acid related to x g complex

$$\frac{100\text{g} \times 0.296\text{g}}{7.4\text{g}} = 4.0\text{g}$$

## Preparation:

Heat A to approx. 60°C and mix well, add B at approx. 45°C under stirring for about 15 minutes.

The content of linoleic acid in the formulation is detected by GC.

# PREPARATION OF A SUN SCREEN SOFT GEL WITH (0.30 W/W%) LINOLEIC ACID

| Ingredients                                           | INCI-Names                                            | w/w    | Supplier         |
|-------------------------------------------------------|-------------------------------------------------------|--------|------------------|
| A) Water, dd                                          | Aqua                                                  | 86,8%  |                  |
| CAVAMAX®W6/LINOLEIC ACID-COMPLEX (7.4% linoleic acid) | Cyclodextrin/linoleic acid                            | 4,0%   | Wacker-Chemie AG |
| Carbopol 940                                          | Carbomer 940                                          | 2,5%   | Noveon           |
| Wacker Belsil® PDM 20                                 | Phenyl Trimethicone                                   | 4,5%   | Wacker-Chemie AG |
| Parsol MCX                                            | Ethylhexyl Methoxycinnamate                           | 2,0%   | Givaudan         |
| Kathon CG                                             | Methylchloroisothiazolinone,<br>Methylisothiazolinone | 0,20%  | Rohm&Haas        |
|                                                       |                                                       | 100,0% |                  |

## PREPARATION OF A SUN SCREEN SOFT GEL WITH (0.30 W/W%) LINOLEIC ACID

### Calculation:

7.4g linoleic acid are related to 100g complex, 0.296g Linoleic acid related to x g complex

$$\frac{100\text{g} \times 0.296\text{g}}{7.4\text{g}} = 4.0\text{g}$$

### Preparation:

Mix all ingredients at approx. 40°C.

The content of linoleic acid in the formulation is detected by GC.

# PREPARATION OF A SUN SCREEN CREAM WITH (0.30 WW%) LINOLEIC ACID

| Ingredients                                           | INCI-Names                                            | w/w    | Supplier         |
|-------------------------------------------------------|-------------------------------------------------------|--------|------------------|
| A) Water, dd                                          | Aqua                                                  | 60,7%  |                  |
| CAVAMAX®W6/LINOLEIC ACID-COMPLEX (7.4% linoleic acid) | Cyclodextrin/linoleic acid                            | 4,0%   | Wacker-Chemie AG |
| Carbopol 934 Polymer (1% solution)                    | Carbomer                                              | 5,0%   | Noveon           |
| Tetrasodium EDTA                                      | Tetrasodium EDTA                                      | 0,20%  |                  |
| Glycerine                                             | Glycerine                                             | 2,5%   |                  |
| Triethanolamine                                       | Triethanolamine                                       | 1,0%   |                  |
| B) Wacker Belsil® DM 350                              | Dimethicone                                           | 2,0%   | Wacker-Chemie AG |
| Isopropyl Myristate                                   | Isopropyl Myristate                                   | 9,0%   |                  |
| Stearyl Alkohol                                       | Stearyl Alkohol                                       | 9,5%   |                  |
| Cetyl Alkohol                                         | Cetyl Alkohol                                         | 0,50%  |                  |
| Stearic Acid                                          | Stearic Acid                                          | 3,0%   |                  |
| Sodium Stearat                                        | Sodium Stearat                                        | 1,0%   |                  |
| Parsol MCX                                            | Ethylhexyl methoxycinnamate                           | 1,5%   | Givaudan         |
| C) Kathon CG                                          | Methylchloroisothiazolinone,<br>Methylisothiazolinone | 0,10%  | Rohm&Haas        |
|                                                       |                                                       | 100,0% |                  |

## PREPARATION OF A SUN SCREEN CREAM WITH (0.30 WW%) LINOLEIC ACID

### Calculation:

7.4g linoleic acid are related to 100g complex, 0.296 g linoleic acid related to x g complex

$$\frac{100\text{ g} \times 0.296\text{ g}}{7.4\text{ g}} = 4.0\text{ g}$$

### Preparation:

- mix the components of phase A) at 70°C
- mix the components of phase B) at 70°C
- than pour phase A) in phase B) under intense stirring
- after cool down to 45°C add finally phase C)

The content of linoleic acid in the formulation is detected by GC as described

# PREPARATION OF A BELSIL FOUNDATION WITH (0.30 WW%) LINOLEIC ACID

| Ingredients                                           | INCI-Names                                                   | w/w    | Supplier         |
|-------------------------------------------------------|--------------------------------------------------------------|--------|------------------|
| A) Wacker Belsil® DM 1 plus                           | Dimethicone                                                  | 10,00% | Wacker-Chemie AG |
| Wacker Belsil® CM 7026 VP                             | C26-28 Alkyl Methicone                                       | 2,70%  | Wacker-Chemie AG |
| Wacker Belsil® SPG 128 VP                             | Cyclopentasiloxane and Caprylyl Dimethicone Ethoxy Glucoside | 11,0%  | Wacker-Chemie AG |
| Wacker Belsil® DM 5                                   | Cyclomethicone                                               | 2,30%  | Wacker-Chemie AG |
| Hostacerin DGI                                        | Polyglyceryl-2 Sesquiosostearate                             | 2,40%  | Clariant         |
| Wacker Belsil® TMS 803                                | Trimethylsiloxysilicate                                      | 1,50%  | Wacker-Chemie AG |
| B) Mixture of ferric oxide and titanium dioxide       |                                                              | 8,50%  |                  |
| Talc                                                  | Talc                                                         | 5,00%  | Grolman          |
| C) Water, dd                                          | Aqua                                                         | 50,2%  |                  |
| Sodium chloride                                       | Sodium Chloride                                              | 2,00%  | Merck            |
| CAVAMAX®W6/LINOLEIC ACID-COMPLEX (7.4% linoleic acid) | Cyclodextrin / linoleic acid                                 | 4,00%  | Wacker-Chemie AG |
| D) Fragrance                                          | Perfume                                                      | 0,30%  |                  |
| Kathon CG                                             | Methylchloroisothiazolinone, Methylisothiazolinone           | 0,10%  | Rohm&Haas        |
|                                                       |                                                              | 100,0% |                  |

## PREPARATION OF A BELSIL FOUNDATION WITH (0.30 WW%) LINOLEIC ACID

### Calculation:

7.4g linoleic acid are related to 100g complex, 0.296 g linoleic acid related to x g complex

$$\frac{100\text{ g} \times 0.296 \text{ g}}{7.4 \text{ g}} = 4.0 \text{ g}$$

### Preparation:

- mix the components of phase A) at 75°C
- mix the components of phase B) and add to A) under intense stirring
- disperse the complex in phase C) at 50°C
- than pour slowly phase C) to the mixture of phase A) and B)
- after cool down to 45°C add finally phase D)
- than stir till the mixture is homogenous

The content of linoleic acid in the formulation is detected by GC

## SUPPLEMENTS

- Page 27, 28, 29, 30, 31, 32 ,33 and 34 on 15.03 2006, adapted formulation recipe
- Page Wacker AG 27, 29, 31 ,33 on 10.08.2006, adapted formulation recipe
- Page 18 revised
- Page 33 and 34 revised

## CAVAMAX®W6/LINOLEIC ACID - COMPLEX

**Consumer expect just high-quality skincare products with  
extraordinary performance**