Econometrics October 21, 2023

Topic 5: Two-Way Cluster-Robust (TWCR) Standard Errors

by Sai Zhang

Key points: The validity of Two-Way Cluster-Robust (TWCR) standard errors

Disclaimer: This note is compiled by Sai Zhang.

5.1 One-Way Clustering

First, consider the case of one-way clustering. The linear model with one-way clustering

$$y_{ig} = \mathbf{x}_{ig}\boldsymbol{\beta} + u_{ig}$$

where i denotes the ith of the N individuals in the sample, j denotes the gth of the G clusters, assume that

- $\mathbb{E}\left[u_{ig} \mid \mathbf{x}_{ig}\right] = 0$
- error independence across clusters: for $i \neq j$

$$\mathbb{E}\left[u_{ig}u_{jg'}\mid\mathbf{x}_{ig},\mathbf{x}_{jg'}\right]=0\tag{5.1}$$

unless g = g', that is, errors for individuals within the same cluster may be correlated.

Grouping observations by cluster, get

$$\mathbf{y}_g = \mathbf{X}_g \boldsymbol{\beta} + \mathbf{u}$$

and stacking over cluster, get the matrix form of the model

$$y = X\beta + u$$

with \mathbf{y} , \mathbf{u} being $N \times 1$ vectors, \mathbf{X} being an $N \times K$ matrix. OLS estimator gives

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}' \mathbf{y} = \left(\sum_{g=1}^{G} \mathbf{X}'_{g} \mathbf{X}_{g}\right)^{-1} \sum_{g=1}^{G} \mathbf{X}'_{g} \mathbf{y}_{g}$$
 (5.2)

Chiang and Sasaki (2023) (Menzel, 2021) Cameron et al. (2011)

References

- A Colin Cameron, Jonah B Gelbach, and Douglas L Miller. Robust inference with multiway clustering. *Journal of Business & Economic Statistics*, 29(2):238–249, 2011.
- Harold D Chiang and Yuya Sasaki. On using the two-way cluster-robust standard errors. *arXiv preprint arXiv*:2301.13775, 2023.
- Konrad Menzel. Bootstrap with cluster-dependence in two or more dimensions. *Econometrica*, 89(5):2143–2188, 2021.