Predicting COVID-19 Using Demographic Data

Caroline Clark, Feras Altwal, James Lee October 30th, 2020

Can we predict COVID-19 severity using demographic data?

Project Pipeline

DATA COLLECTION

DATA PRE-PROCESSING

DATA VISUALIZATION

MODELING

MAKING THE DATA INTERACTIVE

Data Collection

County-Level

Area

Population Density

Demographics

Age

Gender

Race

Economic Indicators

Income Per Capita

Health Insurance

Household Income

COVID-19

Total Tests

Total Cases

Total Deaths

Health Indicators

Obesity Rates

Five States with the Most COVID-19 Data

COVID-19 Statistics Vary Widely Among Counties

High COVID Counties Likely to be Younger, Have Lower Income Per Capita

Low COVID Counties Likely to have Insurance Coverage, Lower Population Density

Modeling Successes and Challenges

Region	Best Regression R2 Score	Best Classification Accuracy Score	Classification Baseline
All Five States	47%	63%	42%
California	75%	93%	66%
Florida	76%	71%	71%
Illinois	32%	73%	54%
New York	81%	94%	81%
Texas	49%	59%	40%

Population Density and Income Strongest Factors when Modeling All Five States

Predictors Varied in State-Level Models

Conclusions and Key Challenges

Ongoing event

Widely varying data

More features

Kenosha tago Rapids Gary Iowa City Evansville Clarksville

Demo: Interacting with Demographic Data and Classification Model

Thank you

Appendix

In California, Testing and Race Emerged as Strongest Predictors

In Florida, Race Emerged as Strongest Predictors

In Illinois, Age and Being Insured Emerged as Strongest Predictors

In New York, Race and Age Emerged as Strongest Predictors

In Texas, Race and Income Emerged as Strongest Predictors

Highest Death Rate Counties

Highest COVID Case Counties Overall

Lowest COVID Case Counties Overall

