UMA033-Numerical and Statistical Methods (Only for Electrical and Electrical Instrumentation and Control (ELE & EIE) branches)

L T P Cr 3 0 2 4.0

Prerequisite(s): None

Course Objective: The main objective of this course is to understand and implement various numerical and statistical methods to solve engineering, physical and real life problems.

Basic of Errors: Floating-point representation, rounding and chopping errors.

Non-Linear Equations: Bisection, fixed-point iteration, Newton - Raphson's method for simple and multiple roots and order of convergence.

Linear Systems and Eigen-Values: Gauss elimination method using partial pivoting, Gauss--Seidel method, Rayleigh's power method for eigen-values and eigen-vectors.

Interpolation and Approximations: Lagrange (with error analysis) and Newton's divided difference interpolation formulas, Newton's forward interpolation.

Numerical Integration: Newton-Cotes quadrature formulae (Trapezoidal and Simpson's rules), Gauss - Legendre quadrature formulae.

Differential Equations: Solution of initial value problems using Euler's, Modified Euler's and Runge-Kutta methods (fourth-order).

Curve Fitting: Curve fitting by the method of least squares- fitting of straight lines, second degree parabolas and more general curves.

Probability Distribution: Random variables, Mathematical expectations, Definition of probability distribution (Probability Mass Function and Probability Density Function), Binomial, Poisson, Geometric, Uniform and Normal distributions

Correlation and Regression: Bivariate distribution, correlation coefficients, regression lines, formula for regression coefficients.

Laboratory Work: Lab experiments will be set in consonance with materials covered in the theory using **Matlab**.

Course Outcomes: Upon successful completion of the course, the students will be able to

- 1. learn how to obtain numerical solution of nonlinear equations using bisection, Newton, and fixed-point iteration methods.
- 2. solve system of linear equations numerically using direct and iterative methods.
- 3. analyze the correlated data using the least square and regression curves.
- 4. solve integration and initial value problems numerically. .
- 5. Solve real life problems using various probability distributions.
- 6. Approximate the data and functions using interpolating polynomials.

Texts books:

1. K. Atkinson and W. Han, Elementary Numerical Analysis, 3rd Edition, John Willey &Sons, 2004.

- 2. Brian Bradie, A friendly Introduction to Numerical Analysis, prentice Hall, 2007
- 3. Richard L. Burden and J. Douglas Faires, Numerical Analysis, 8th edition, Brooks Cole,
- Richards A. Johnson, Probability and Statistics for Engineers, 8th edition, PHI learning, 2011.
 Meyer, P. L., Introductory Probability and Statistical applications, 2nd edition, Oxford, 1970

References:

- 2. Curtis F. Gerald and Patrick O. Wheatley, Applied Numerical Analysis, 7th Edition, Pearson,
- 3. Walpole, Ronald E., Myers, Raymond H., Myers, Sharon L., and Keying, Ye, Probability and Statistics for Engineers and Scientists, 8th edition Pearson Education, 2007
- 4. Steven C. Chapara, Applied Numerical Methods with MATLAB for Engineers and Scientist, 2nd edition, McGraw Hill publishing, 2007

Evaluation Scheme:

Sr.No.	Evaluation Elements	Weight age (%)
1.	MST	25
2.	EST	40
3.	Sessionals (May include assignments/quizzes)	15
4.	Laboratory evaluation	20