

From Automation to Autonomous Systems
Presented by Barkha Herman

AI JOURNEY SO FAR...

Is it a Cat or a Dog?
Classification
Problem

Rain or Sunshine? Prediction Problem

Fraud?
Anomaly
Detection

What Group?
Clustering
Problem

DRL - HOW IS IT DIFFERENT?

Supervised Learning

- Classification
- Prediction

Reinforcement Learning

• Sequential Actions

Unsupervised Learning

- Anomaly Detection
- Clustering

WHAT IS THE DIFFERENCE?

Supervised & Unsupervised Learning

- Based on Big Data
- Output is % Prediction

Reinforcement Learning

- Based on Environment & Agent
- Output is Next Action

THE BONSAI BRAIN

- •High-level model built by combining techniques in:
 - Deep reinforcement learning (DRL) simulations
 - Machine teaching
 - Used to generate optimization and control actions

(50AL HIGHEST AGENT

Deep Reinforcement Learning – Key Components

Learning by practicing in a real or simulated environment

4 = 10

REINFORCEMENT LEARNING

DRL ATARI VIDEO

NACHINE TEACHING

Machine Teaching

Subject matter expertise

Faster Training

Explainable Models

SIMULATIONS PROVIDE A SAFE AND SCALABLE TRAINING ENVIRONMENT

Safe and cost-effective data generation

Flexible to your custom environment

Faster training times with sim parallelization

BONSAI SERVICE

1. Machine Teaching injects subject matter expertise into brain training

3. Al Engine automates the generation and management of neural networks and DRL algorithms

2. Simulation tools for accelerated integration and scale of training

4. Flexible runtime to deploy and scale models in the real world

bonsai

DEMO

• ...

WHERE IS BONSAI BEING USED?

	MANUFACTURING YIELD OPTIMIZATION	CHEMICAL PROCESS OPTIMIZATION	BUILDING ENERGY MANAGEMENT	LOGISTICS & SUPPLY CHAIN OPTIMIZATION
Industries	Discrete Manufacturing, Mining, CPG, Pharma, Automobile, Retail, Medtech	Continuous Manuf, Oil and Gas, Pharma, Chemical & AgroChemicals	Smart Building/ City, CPG/ Retail, Healthcare, Manufacturing, Public Sector, IT	Discrete and Process Manufacturing, CPG/Retail, Energy Transportation
Example Customers	Pepsi	<u>SCG</u>	Microsoft	Delta Airlines

QUESTIONS?

RESOURCES

- Aka.ms/bonsai
- https://www.microsoft.com/en-us/ai/autonomous-systems-project-bonsai-how-it-work
- Internal: How Project Bonsai works (microsoft.com)
- Docs: Bonsai documentation Bonsai | Microsoft Docs
- Learn: <u>Introduction to Microsoft Project Bonsai Learn</u>

 <u>| Microsoft Docs</u>
- YouTube: <u>Microsoft Project Bonsai YouTube</u>

