tables

Ave Bisesi

2023-03-09

Basic model parameters

Table 1: Model parameters, default values, and descriptions.

Parameter	Default Value	Description
$\alpha_{ m j,i}$	1.0	Cooperation coefficient, benefit of host species i to host species j
$eta_{\mathbf{j},\mathbf{i}}$	0.9	Competition coefficient, effect of host species i on host species j
$\mu_{ m i}$	0.5	Intrinsic growth rate of host species i
$\gamma_{\mathrm{i,x}}$	20	Efficiency of predator with range x on host species i
$\zeta_{\mathrm{i,x}}$	0.001	Consumption rate of predator with range x on host species i
$\delta_{ m i}$	0.03	Natural rate of death for species i
$\kappa_{ m i}$	1.0	Half-saturation Monod constant of species i
R	1.0 (coop) or 2.0	System carrying capacity
	(comp)	

Parameter combinations tested

Morris and Sobol Screening Parameters

Table 2: Parameter trade-offs tested in our model.

Trade-off	Parameter Combinations	Significance
None	$\gamma_{i,2} = \gamma_{i,1}$ and $\zeta_{i,2} = \zeta_{i,1}$	Generalist and specialist predators are parametrically identical
Cost of generalism	$\gamma_{i,2} \neq \gamma_{i,1} \text{ or } \zeta_{i,2} \neq \zeta_{i,1}$	Specialist and generalist predators differ in their ability to kill hosts
Interaction outcome	$\mu_{i} \neq \mu_{j} \text{ or } \beta_{i,j} \neq \beta_{j,i} \text{ or } \alpha_{i,j} \neq \alpha_{j,i}$	Prey species coexistence in the absence of predators is biased or impossible
Cost of generalism and interaction outcome	$\gamma_{i,2} \neq \gamma_{i,1}$ and $\mu_i \neq \mu_j$ or $\gamma_{i,2} \neq \gamma_{i,1}$ and $\beta_{i,j} \neq \beta_{j,i}$ or $\gamma_{i,2} \neq \gamma_{i,1}$ and $\alpha_{i,j} \neq \alpha_{j,i}$ or $\zeta_{i,2} \neq \zeta_{i,1}$ and $\mu_i \neq \mu_j$ or $\zeta_{i,2} \neq \zeta_{i,1}$ and $\beta_{i,j} \neq \beta_{j,i}$ or $\zeta_{i,2} \neq \zeta_{i,1}$ and $\alpha_{i,j} \neq \alpha_{j,i}$	Specialist and generalist predators differ in their ability to kill hosts and prey species co- existence in the absence of predators is biased or impossible

 Table 3: Morris screening and Sobol' variance sensitivity analysis parameter ranges.

Parameter	Minimum	Maximum
$\alpha_{\rm j,i}$	0.1	2.5
$eta_{\mathbf{j},\mathbf{i}}$	0.1	2.5
$\mu_{ m i}$	0.1	2.5
$\gamma_{\mathrm{i,x}}$	15	65
$\zeta_{\mathrm{i,x}}$	0.0009	0.01
$\delta_{ m i}$	0.0009	0.1
$\kappa_{ m i}$	0.1	10
R	0	5