Machine Learning

CS 539
Worcester Polytechnic Institute
Department of Computer Science
Instructor: Prof. Kyumin Lee

Upcoming Schedule

- Project Proposal
 - https://canvas.wpi.edu/courses/58900/assignments/355606
 - Due date is June 25

- HW 3
 - https://canvas.wpi.edu/courses/58900/assignments/356655
 - Due date is July 2

Deep Learning

What is Deep Learning (DL)?

A machine learning subfield of learning representations of data. Exceptional effective at learning patterns.

Deep learning algorithms attempt to learn (multiple levels of) representation by using a hierarchy of multiple layers

If you provide the system tons of information, it begins to understand it and respond in useful ways.

Deep Neural Network

Deep Net Activation Functions

Activation: Sigmoid

Takes a real-valued number and "squashes" it into range between 0 and 1.

$$R^n \rightarrow [0,1]$$

- + Nice interpretation as the **firing rate** of a neuron
 - 0 = not firing at all
 - 1 = fully firing
- Sigmoid neurons saturate and kill gradients, thus NN will barely learn
 - when the neuron's activation are 0 or 1 (saturate)
 - gradient at these regions almost zero
 - almost no signal will flow to its weights
 - if initial weights are too large then most neurons would saturate

Activation: Tanh

Takes a real-valued number and "squashes" it into range between -1 and 1.

$$R^n \rightarrow [-1,1]$$

- Like sigmoid, tanh neurons saturate
- Unlike sigmoid, output is zero-centered
- Tanh is a scaled sigmoid: tanh(x) = 2sigm(2x) 1

Activation: ReLU

Takes a real-valued number and thresholds it at zero f(x) = max(0, x)

$$R^n \to R^n_+$$

Most Deep Networks use ReLU nowadays

- Trains much faster
 - accelerates the convergence of SGD
 - due to linear, non-saturating form
- Less expensive operations
 - compared to sigmoid/tanh (exponentials etc.)
 - implemented by simply thresholding a matrix at zero

Prevents the gradient vanishing problem

Hardware Power

a single-core 2.5 GHz CPU has a theoretical performance of 10 billion FLOPS = 10 GFLOPS

1 CPU core = 10 GFlops

THOUSANDS OF CORES

What is Flops?

FLoating-point Operations Per Second

measure of computer performance, useful in fields of scientific computations that require floating-point calculations

Loan: 325,000

Interest Rate(APR): 2.225%

Term: 1 year

Interest Paid: ?

7,312.5

CPU vs GPU

GeForce RTX 4090

BEYOND FAST

The NVIDIA® GeForce RTX™ 4090 is the ultimate GeForce GPU. It brings an enormous leap in performance, efficiency, and Al-powered graphics. Experience ultra-high performance gaming, incredibly detailed virtual worlds, unprecedented productivity, and new ways to create. It's powered by the NVIDIA Ada Lovelace architecture and comes with 24 GB of G6X memory to deliver the ultimate experience for gamers and creators.

Starting at \$1599.00

See All Buying Options

	RTX 4090	RTX 3090 Ti	RTX 3090
Architecture	Ada Lovelace	Ampere	Ampere
GPU	AD102	GA102	GA102
Process node	5nm TSMC	8nm Samsung	8nm Samsung
CUDA cores	16,384	10,752	10,496
RT cores	144 3rd- generation	84	82
Tensor cores	576 4th-gen	336	328
Base clock	2235MHz	1560MHz	1395Mhz
Boost clock	2520MHz	1860MHz	1695MHz
Memory	24GB GDDR6X	24GB GDD6X	24GB GDDR6X
Memory speed	21Gbps	21Gbps	19.5Gbps
	83 TFLOPS	40 TFLOPS	36 TFLOPS

Deep Learning Software

Deep Learning Software

Figure 3.2 Google web search interest for different deep-learning frameworks over time

Deep Learning Software

Figure 3.2 Google web search interest for different deep-learning frameworks over time

Number of articles mentioning deep learning frameworks indexed on Google Scholar by week (exponential moving average)

Convolutional Neural Network (CNN)

Convolution:

Convolution is a mathematical operation on two functions to produce a third function that expresses how the shape of one is modified by the other. It is a term that the neural network community (Hinton, specifically) adopted from the signal and image processing communities to architect the "feature detection" layers of "deep" neural networks.

Convolutional Neural Network

Convolutional Neural Network

A simple ConvNet

http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/

• Filter
$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Convoluted Image

Input Image

Inspired by the neurophysiological experiments conducted by Hubel and Wiesel 1962.

http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution

Convolution operation captures the local dependencies in the ordinal image

Pooling Layer

- Pooling reduces the dimensionality of each feature map
 - Max pooling: reports the maximum output within a rectangular neighborhood.
 - Average pooling: reports the average output of a rectangular neighborhood.

1	3	5	3
4	2	3	1
3	1	1	3
0	1	0	4

Input Matrix

MaxPool with 2X2 filter with stride of 2

4	5
3	4

Output Matrix

Fully Connected Layers

A simple ConvNet

http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/

32x32x3 image -> preserve spatial structure

32x32x3 image

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

consider a second, green filter

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

Pooling Layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

Assume pool with 2x2 filters and stride 2

Convolutional Neural Network

A simple ConvNet

http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/

[Zeiler, M. D., ECCV 2014]

[Zeiler, M. D., ECCV 2014]

The most basic classifiers

[Zeiler, M. D., ECCV 2014]

The most basic classifiers

Use 1st layer as module to build classifiers

[Zeiler, M. D., ECCV 2014]

Too many weights in a dense network!

6 x 6 image

The whole CNN

