Exercise Solutions for Math 20

Conics (Parabola and Ellipse)

Nile Jocson <novoseiversia@gmail.com> ${\it November~15,~2024}$

1

1.1 Determine the vertex and orientation of the following parabolas.

1.1.a $4y^2 + 4y + x = 2$

$$\Rightarrow 4y^{2} + 4y = -x + 2$$
 Isolate y .
$$\Rightarrow y^{2} + y = -\frac{x}{4} + \frac{2}{4}$$

$$\Rightarrow y^{2} + y = -\frac{x}{4} + \frac{1}{2}$$

$$\Rightarrow y^{2} + y + \frac{1}{4} = -\frac{x}{4} + \frac{1}{2} + \frac{1}{4}$$
 Complete the square.
$$\Rightarrow (y + \frac{1}{2})^{2} = -\frac{x}{4} + \frac{3}{4}$$

$$\Rightarrow (y + \frac{1}{2})^{2} = -\frac{1}{4}(x - 3)$$

$$\Rightarrow (y + \frac{1}{2})^{2} = 4(-\frac{1}{16})(x - 3)$$

$$\Rightarrow \text{Opening leftward, } (h, k) = (3, -\frac{1}{2})$$
 Final answer.

1.1.b $x^2 - 6x - 2y = 7$

$\Rightarrow x^2 - 6x = 2y + 7$	Isolate x .
$\Rightarrow x^2 - 6x + 9 = 2y + 7 + 9$	Complete the square.
$\Rightarrow (x-3)^2 = 2y + 16$	
$\Rightarrow (x-3)^2 = 2(y+8)$	
$\Rightarrow (x-3)^2 = 4(\frac{1}{2})(y+8)$	
\Rightarrow Opening upward, $(h,k) = (3,-8)$	Final answer.
	•

1.1.c $2y^2 - 6y - 9x = 0$

$$\Rightarrow 2y^2 - 6y = 9x$$

$$\Rightarrow y^2 - 3y = \frac{9}{2}x$$

$$\Rightarrow y^2 - 3y + \frac{9}{4} = \frac{9}{2}x + \frac{9}{4}$$

$$\Rightarrow (y - \frac{3}{2})^2 = \frac{9}{2}x + \frac{9}{4}$$

$$\Rightarrow (y - \frac{3}{2})^2 = \frac{9}{2}(x + \frac{9}{4} \cdot \frac{2}{9})$$

$$\Rightarrow (y - \frac{3}{2})^2 = \frac{9}{2}(x + \frac{18}{36})$$

$$\Rightarrow (y - \frac{3}{2})^2 = \frac{9}{2}(x + \frac{1}{2})$$

$$\Rightarrow (y - \frac{3}{2})^2 = \frac{9}{2}(x + \frac{1}{2})$$

$$\Rightarrow (y - \frac{3}{2})^2 = 4(\frac{9}{8})(x + \frac{1}{2})$$

$$\Rightarrow \text{Opening rightward, } (h, k) = (-\frac{1}{2}, \frac{3}{2})$$
Final answer.

1.2 Sketch the graph of the following parabolas.

1.2.a $3y^2 = 8x$

$\Rightarrow y^2 = 4(\frac{2}{3})x$	Rewrite in standard form.
$\Rightarrow V = (0,0)$	Identify important objects; this is a parabola opening rightward. $V=(h,k)$
$\Rightarrow F = (\frac{2}{3}, 0)$	F = (h + p, k)
$\Rightarrow B_1 = (\frac{2}{3}, -\frac{4}{3})$	$B_1 = (h+p, k-2p)$
$\Rightarrow B_2 = (\frac{2}{3}, \frac{4}{3})$	$B_2 = (h+p, k+2p)$
$\Rightarrow D \Rightarrow x = -\frac{2}{3}$	$D \Rightarrow x = h - p$
\Rightarrow See Figure 1.	Final answer. Graph the parabola.

Figure 1. Graph of $y^2 = 4(\frac{2}{3})x$.

1.2.b $x^2 - 8x + 4y = -10$

$\Rightarrow x^2 - 8x = -4y - 10$	Rewrite in standard form.
$\Rightarrow x^2 - 8x + 16 = -4y - 10 + 16$	Complete the square.
$\Rightarrow (x-4)^2 = -4y + 6$	
$\Rightarrow (x-4)^2 = 4(-1)(y-\frac{3}{2})$	
$\Rightarrow V = (4, \frac{3}{2})$	Identify important objects; this is a parabola opening
	downward. $V = (h, k)$
$\Rightarrow F = (4, \frac{1}{2})$	F = (h, k+p)
$\Rightarrow B_1 = (6, \frac{1}{2})$	$B_1 = (h - 2p, k + p)$
$\Rightarrow B_2 = (2, \frac{1}{2})$	$B_2 = (h + 2p, k + p)$
$\Rightarrow D \Rightarrow y = \frac{5}{2}$	$D \Rightarrow y = k - p$
\Rightarrow See Figure 2.	Final answer. Graph the parabola.

1.3 Sketch the graph of $y = -x^2 + 6x - 8$. Label the vertex, x- and y-intercept(s).

$$\Rightarrow -x^2 + 6x = y + 8$$

$$\Rightarrow x^2 - 6x = -y - 8$$

$$\Rightarrow x^2 - 6x + 9 = -y - 8 + 9$$

$$\Rightarrow (x - 3)^2 = -y + 1$$

$$\Rightarrow (x - 3)^2 = 4(-\frac{1}{4})(y - 1)$$

$$\Rightarrow (x - 3)^2 = 4(\frac{1}{4})(-1)$$

$$\Rightarrow (x - 3)^2 = 4(\frac{1}{4})$$

$$\Rightarrow (x - 3)^2 = 1$$

$$\Rightarrow x - 3 = \pm 1$$

$$\Rightarrow x - 3 = \pm 1$$

$$\Rightarrow x = \pm 1 + 3$$

$$\Rightarrow x = \pm 1 + 3$$

$$\Rightarrow x = 1 + 3, x = -1 + 3$$

$$\Rightarrow x_i \in \{2, 4\}$$

$$\Rightarrow (0 - 3)^2 = 4(-\frac{1}{4})(y - 1)$$

$$\Rightarrow (-3)^2 = 4(-\frac{1}{4})(y - 1)$$

$$\Rightarrow 9 = -(y - 1)$$

$$\Rightarrow 9 = -(y - 1)$$

$$\Rightarrow 9 = -y + 1$$

$$\Rightarrow y = 1 - 9$$

$$\Rightarrow y_i = -8$$

$$\Rightarrow \text{ See Figure 3.}$$

Rewrite in standard form.

Rewrite in standard form.

2.1 Sketch the graph of the following ellipses.

2.1.a
$$\frac{x^2}{4} + \frac{(y-1)^2}{9} = 1$$

$\Rightarrow \frac{x^2}{2^2} + \frac{(y-1)^2}{3^2} = 1$	Rewrite in standard form.
$\Rightarrow C = (0,1)$	Identify important objects; this is an ellipse with a vertical major axis.
	C = (h, k)
$\Rightarrow c = \sqrt{5}$	$c = \sqrt{b^2 - a^2}$
$\Rightarrow V_1 = (0, -2)$	$V_1 = (h, k - b)$
$\Rightarrow V_2 = (0,4)$	$V_2 = (h, k+b)$
$\Rightarrow B_1 = (-2, 1)$	$B_1 = (h - a, k)$
$\Rightarrow B_2 = (2,1)$	$B_2 = (h + a, k)$
$\Rightarrow F_1 = (0, 1 - \sqrt{5})$	$F_1 = (h, k - c)$
$\Rightarrow F_2 = (0, 1 + \sqrt{5})$	$F_2 = (h, k + c)$
\Rightarrow See Figure 4.	Final answer. Graph the ellipse.

2.1.b
$$\frac{(x-3)^2}{25} + \frac{y^2 + 4y + 4}{9} = 1$$

$\Rightarrow \frac{(x-3)^2}{25} + \frac{(y+2)^2}{9} = 1$	Factor by grouping.
$\Rightarrow \frac{(x-3)^2}{5^2} + \frac{(y+2)^2}{3^2} = 1$	Rewrite in standard form.
$\Rightarrow C = (3, -2)$	Identify important objects; this is an ellipse with a horizontal major axis. $C = (h, k)$
$\Rightarrow c = 4$	$c = \sqrt{a^2 - b^2}$
$\Rightarrow V_1 = (-2, -2)$	$V_1 = (h - a, k)$
$\Rightarrow V_2 = (8, -2)$	$V_2 = (h + a, k)$
$\Rightarrow B_1 = (3, -5)$	$B_1 = (h, k - b)$
$\Rightarrow B_2 = (3,1)$	$B_2 = (h, k+b)$
$\Rightarrow F_1 = (-1, -2)$	$F_1 = (h - c, k)$
$\Rightarrow F_2 = (7, -2)$	$F_2 = (h + c, k)$
\Rightarrow See Figure 5.	Final answer. Graph the ellipse.

2.1.c $2x^2 + 3y^2 + 16x - 18y = 13$

$\Rightarrow 2x^2 + 16x + 3y^2 - 18y = 13$	Group terms.
$\Rightarrow 2(x^2 + 8x) + 3(y^2 - 6y) = 13$	
$\Rightarrow 2(x^2 + 8x + 16) + 3(y^2 - 6y) = 13 + 2(16)$	Complete the square.
$\Rightarrow 2(x^2 + 8x + 16) + 3(y^2 - 6y) = 13 + 32$	
$\Rightarrow 2(x^2 + 8x + 16) + 3(y^2 - 6y) = 45$	
$\Rightarrow 2(x+4)^2 + 3(y^2 - 6y) = 45$	
$\Rightarrow 2(x+4)^2 + 3(y^2 - 6y + 9) = 45 + 3(9)$	Complete the square.
$\Rightarrow 2(x+4)^2 + 3(y^2 - 6y + 9) = 45 + 27$	
$\Rightarrow 2(x+4)^2 + 3(y^2 - 6y + 9) = 72$	
$\Rightarrow 2(x+4)^2 + 3(y-3)^2 = 72$	
$\Rightarrow \frac{2(x+4)^2}{72} + \frac{3(y-3)^2}{72} = 1$	
$\Rightarrow \frac{(x+4)^2}{\frac{26}{26}} + \frac{(y-3)^2}{\frac{24}{24}} = 1$	
30 24	D 1 1.6
$\Rightarrow \frac{(x+4)^2}{6^2} + \frac{(y-3)^2}{(\sqrt{24})^2} = 1$	Rewrite in standard form.
$\Rightarrow \frac{(x+4)^2}{6^2} + \frac{(y-3)^2}{(\sqrt{4}\sqrt{6})^2} = 1$	
$\Rightarrow \frac{(x+4)^2}{6^2} + \frac{(y-3)^2}{(2\sqrt{6})^2} = 1$	
$\Rightarrow C = (-4,3)$	Identify important objects; this is an ellipse with a
	horizontal major axis. $C = (h, k)$
$\Rightarrow c = 2\sqrt{3}$	$c = \sqrt{a^2 - b^2}$
$\Rightarrow V_1 = (-10, 3)$	$V_1 = (h - a, k)$
$\Rightarrow V_2 = (2,3)$	$V_2 = (h+a,k)$
$\Rightarrow B_1 = (-4, 3 - 2\sqrt{6})$	$B_1 = (h, k - b)$
$\Rightarrow B_2 = (-4, 3 + 2\sqrt{6})$	$B_2 = (h, k+b)$
$\Rightarrow F_1 = (-4 - 2\sqrt{3}, 3)$	$F_1 = (h - c, k)$
$\Rightarrow F_2 = (-4 + 2\sqrt{3}, 3)$	$F_2 = (h + c, k)$
\Rightarrow See Figure 6.	Final answer. Graph the ellipse.
	_

12

2.2 Find an equation of the parabola that opens downward and whose vertex and focus are the vertices of the ellipse $4(x-2)^2 + (y+1)^2 = 1$

.

$\Rightarrow \frac{(x-2)^2}{\frac{1}{4}} + \frac{(y+1)^2}{1} = 1$	Rewrite in standard form.
$\Rightarrow \frac{(x-2)^2}{\frac{1}{2}^2} + \frac{(y+1)^2}{1^2} = 1$	Since $a < b$, this is an ellipse with a vertical major axis.
$\Rightarrow V_1 = (2, -2)$	$V_1 = (h, k - b)$
$\Rightarrow V_2 = (2,0)$	$V_2 = (h, k+b)$
$\Rightarrow V = (2,0), F = (2,-2)$	Derive the vertex and focus. Since this is a parabola opening downward, the lower point is the focus.
$\Rightarrow 0+p=-2$	Derive p ; $F = (h, k + p)$
$\Rightarrow p = -2$	
$\Rightarrow (x-2)^2 = 4(-2)y$	Final answer. Write the parabola equation using (h, k) and p .