Regression Line

$$Y = a + bX + e$$

$$\hat{Y} = a + bX$$

$$Y = \hat{Y} + e$$

Residuals

$$e = Y - \hat{Y}$$

OLS Estimation

Using calculus, we obtain

$$b = \frac{\sum[(X - M_X)(Y - M_Y)]}{\sum(X - M_X)^2} = \frac{SS_{XY}}{SS_X}$$
$$a = M_Y - bM_X$$

OLS Estimation

$$b = r\left(\frac{S_Y}{S_X}\right)$$

The Standardized Model

$$\hat{z}_Y = \beta z_X$$

Standard Error of the Estimate

$$s_e = \sqrt{\frac{SSE}{df}}$$

- where df = n 2 for simple linear regression
- Recall from ANOVA: $MSE = \frac{SSE}{df}$
 - Thus, s_e is sometimes called root MSE

Coefficient of Determination

- Coefficient of determination: r^2 or R^2
 - Proportion of variance in Y that is accounted for by X

Hypothesis Test for ρ^2

F-statistic:

TABLE 16.4 The *F* Table for an Analysis of Regression

Formulas for Completing the Analysis of Regression				
Source of Variation	SS	df	MS	F _{obt}
Regression	r^2SS_{γ}	1	$\frac{SS_{\text{regression}}}{df_{\text{regression}}}$	MS _{regression} MS _{residual}
Residual (error)	$(1-r^2)SS_{\gamma}$	n – 2	$\frac{SS_{\text{residual}}}{df_{\text{residual}}}$	
Total	$SS_{regression} + SS_{residual}$	<i>n</i> – 1		

Hypothesis Test for α^* and β^*

t-statistic

$$t = \frac{a}{S_a} \qquad \qquad t = \frac{b}{S_b}$$

- where
 - a is the parameter estimate for the intercept and s_a is the estimated standard error for the slope
 - b is the parameter estimate for the intercept and s_b is the estimated standard error for the slope

Confidence Intervals

$$a \pm t_{cv}(s_a)$$

$$b \pm t_{cv}(s_b)$$

 If 0 is contained in the CI, then fail to reject the null hypothesis

Hypothesis Testing

$$F = t^2$$

*For SLR only