А	system of linear equa.
٠,٠	x+24+32=39
	x + 3y + 22 = 34
	, ,
	3x + 2y + 2 = 26

To solve for Ky, z, we need to transform the system into the form

ı	-/			_	ı
	7			=	
		V		_	
1		/			
			7	=	

in other words ! need to

(Deliminate terms that are off the diagonal

2) make the coefficients of the variables along the diagonal equal to 1

To do it step by step:

x+2y+32=39		x+ 2y +32 = 39
x + 3y + 27 = 34	-1st equation	y - 7 = -5
3x + 2y + 7 = 26	(简写为一亿)	3×+24+2=26

		•
7+24+32=39	_	x+2y+32=39
y - 2 = -5 $3x + 2y + 2 = 26$	(簡男为-3r(I))	y - 7 = -5
37 + 27 + 2 = 20	-3 x 130 equapore	-4y - 87 = -91

-2x2nd agnation	x +52=49
	y - 7 = -5
+4×2nd equation	-127 =-111
	-2×2nd equation +4×2nd equation

1	× +57 = 49	1	[x
	y-7 = -5	\longrightarrow	7 +52 = 49 y-2 = -5
	127 =111	÷12	z = 9.25

$$7 + 57 = 49$$
 -5 × 3rd equation $7 = 2075$
 $9 - 7 = -5$ + 3rd equation $9 = 40.25$
 $7 = 9.25$ $7 = 9.25$

Finally we check the sol by substituting xxxx into the original linear system. Happily in Linear Algebra it is easy to check.

ex | x+2y+37=0 4x+5y+67=3

17x +8y+92 =0

这是 common situation、然而还有下面这两个situation:

A system with infinitely many sols. A system without sols.

$$y = -2z - 1$$

generally, choose $z = t$,

The general solution is (x, y, z) = (t+2, -2t-1, t)

The general sol represents a line is space.

$$|x - 3 = 2 \\ y + 23 = 1$$

$$|x - 3 = 2 \\ y + 23 = 1$$

$$|x - 3 = 2 \\ y + 23 = 1$$

$$|x - 3 = 2 \\ y + 23 = 1$$

$$|x - 3 = 2 \\ y + 23 = 1$$

$$|x - 3 = 2 \\ y + 23 = 1$$

$$|x - 3 = 2 \\ y + 23 = 1$$

$$|x - 3 = 2 \\ y + 23 = 1$$

$$|x - 3 = 2 \\ y + 23 = 1$$

$$|x - 3 = 2 \\ y + 23 = 1$$

$$|x - 3 = 2 \\ |x - 3 = 1$$

$$|x - 3 = 2 \\ |x - 3 = 1$$

$$|x - 3 = 2 \\ |x - 3 = 1$$

$$|x - 3 = 2 \\ |x - 3 = 1$$

$$|x - 3 = 2 \\ |x - 3 = 1$$

$$|x - 3 = 2 \\ |x - 3 = 1$$

$$|x - 3 = 2 \\ |x - 3 = 1$$

$$|x - 3 = 2 \\ |x - 3 = 1$$

$$|x - 3 = 2 \\ |x - 3 = 1$$

$$|x - 3 = 2 \\ |x - 3 = 1$$

$$|x - 3 = 2 \\ |x - 3 = 1$$

$$|x - 3 = 2 \\ |x - 3 = 1$$

$$|x - 3 = 2 \\ |x - 3 = 1$$

$$|x - 3 = 2 \\ |x - 3 = 1$$

$$|x - 3 = 2 \\ |x - 3 = 1$$

$$|x - 3 = 2 \\ |x - 3 = 1$$

$$|x - 3 = 2 \\ |x - 3 = 1$$

$$|x - 3 = 2 \\ |x - 3 = 1$$

$$|x - 3 = 2 \\ |x - 3 = 1$$

$$|x - 3 = 2 \\ |x - 3 = 1$$

$$|x - 3 = 2 \\ |x - 3 = 1$$

$$|x - 3 = 2 \\ |x - 3 = 1$$

$$|x - 3 = 2 \\ |x - 3 = 1$$

$$|x - 3 = 2 \\ |x - 3 = 1$$

$$|x - 3 = 2 \\ |x - 3 = 1$$

$$|x - 3 = 2 \\ |x - 3 = 1$$

$$|x - 3 = 2 \\ |x - 3 = 1$$

$$|x - 3 = 2 \\ |x - 3 = 1$$

$$|x - 3 = 2 \\ |x - 3 = 1$$

$$|x - 3 = 2 \\ |x - 3 = 1$$

$$|x - 3 = 2 \\ |x - 3 = 1$$

$$|x - 3 = 2 \\ |x - 3 = 1$$

$$|x - 3 = 2 \\ |x - 3 = 1$$

$$|x - 3 = 2 \\ |x - 3 = 1$$

$$|x - 3 = 2 \\ |x - 3 = 1$$

$$|x - 3 = 2 \\ |x - 3 = 1$$

$$|x - 3 = 2 \\ |x - 3 = 1$$

$$|x - 3 = 2 \\ |x - 3 = 1$$

$$|x - 3 = 2 \\ |x - 3 = 1$$

$$|x - 3 = 2 \\ |x - 3 = 1$$

$$|x - 3 = 2 \\ |x - 3 = 1$$

$$|x - 3 = 2 \\ |x - 3 = 1$$

$$|x - 3 = 2 \\ |x - 3 = 1$$

$$|x - 3 = 2 \\ |x - 3 = 1$$

$$|x - 3 = 2 \\ |x - 3 = 1$$

$$|x - 3 = 2 \\ |x - 3 = 1$$

$$|x - 3 = 2 \\ |x - 3 = 1$$

$$|x - 3 = 2 \\ |x - 3 = 1$$

$$|x - 3 = 2 \\ |x - 3 = 1$$

$$|x - 3 = 2 \\ |x - 3 = 1$$

$$|x - 3 = 2 \\ |x - 3 = 1$$

$$|x - 3 = 2 \\ |x - 3 = 2$$

$$|x - 3 = 2 \\ |x - 3 = 2$$

$$|x - 3 = 2 \\ |x - 3 = 2$$

$$|x - 3 = 2 \\ |x - 3 = 2$$

$$|x - 3 = 2 \\ |x - 3 = 2$$

$$|x - 3 = 2 \\ |x - 3 = 2$$

$$|x - 3 = 2 \\ |x - 3 = 2$$

$$|x - 3 = 2 \\ |x - 3 = 2$$

$$|x - 3 = 2 \\ |x - 3 = 2$$

$$|x - 3 = 2 \\ |x - 3 = 2$$

$$|x - 3 = 2 \\ |x - 3 = 2$$

$$|x - 3 = 2 \\ |x - 3 = 2$$

$$|x - 3 = 2 \\ |x - 3 = 2$$

$$|x - 3 = 2 \\ |x - 3 = 2$$

$$|x - 3 = 2 \\ |x - 3$$

It Complement (Joy of sets); To say a set its close under some operation a, is to mean that als asses