logica

- logica proposizionale
 - sintassi
 - dimostrazioni

logica proposizionale

- **A**(*x*, *y*): Tutti gli *x* sono *y*.
- **E**(x, y): Nessun x è y.
- I(x, y): Qualche $x \in y$.
- O(x, y): Qualche x non è y.

Figure 1: regole

sintassi

termini logici:

- A -> tutti
- E -> nessuno
- I -> qualche
- O -> non tutti

termini non logici:

- Abbiamo un insieme finito (vocabolario) V di termini non logici (e.g. "uomo", "mortale", eccetera) e tale che A, E, I, O non sono in V.

Un modello $M = (\Delta, \iota)$ per un vocabolario V è dato da:

- Un insieme non vuoto Δ di individui ("dominio del discorso");
- Una funzione ι che associa ogni termine non logico $x \in V$ a un insieme non vuoto $\iota(x) \subseteq \Delta, \ \iota(x) \neq \emptyset.$
 - Sia $V = \{uomo, mortale, mammifero, dio\}.$
 - Un possibile modello $\mathfrak{M}=(\Delta,\iota)$ per V può essere costruito come:
 - $\Delta = \{ Socrate, Fuffi, Polly, Zeus \};$
 - $\iota(\mathsf{uomo}) = \{\mathsf{Socrate}\};$
 - ι(mortale) = {Socrate, Fuffi, Polly};
 - ι(mammifero) = {Socrate, Fuffi, Zeus};
 - ι(dio) = {Zeus}.

Dato un modello $\mathfrak{M}=(\Delta,\iota)$ e una formula ϕ della nostra logica, diciamo che \mathfrak{M} soddisfa ϕ (e scriviamo $\mathfrak{M}\models\phi$) se ϕ è vera in \mathfrak{M} . Più precisamente, per $x,y\in V,x\neq y$:

- $\mathfrak{M} \models \mathbf{A}(x,y)$ se e solo se $\iota(x) \subseteq \iota(y)$ (tutti gli x sono y);
- $\mathfrak{M} \models \mathbf{E}(x, y)$ se e solo se $\iota(x) \cap \iota(y) = \emptyset$ (nessun $x \ni y$);
- $\mathfrak{M} \models \mathbf{I}(x, y)$ se e solo se $\iota(x) \cap \iota(y) \neq \emptyset$ (qualche $x \ni y$);
- $\mathfrak{M} \models \mathbf{O}(x, y)$ se e solo se $\iota(x) \not\subseteq \iota(y)$ (qualche x non è y).

Se Σ è un insieme di formule, scriviamo $\mathfrak{M}\models \Sigma$ se $\mathfrak{M}\models \phi$ per tutti gli $\phi\in \Sigma$.

- $\mathfrak{M} \models \mathbf{A}(\mathsf{uomo},\mathsf{mammifero})$, perchè $\iota(\mathsf{uomo}) \subseteq \iota(\mathsf{mammifero})$;
- $\mathfrak{M} \not\models \mathbf{A}$ (mortale, mammifero), perchè ι (mortale) $\not\subseteq \iota$ (mammifero);
- M ⊨ I(mortale, mammifero), perchè Socrate ∈ ι(mortale) ∩ ι(mammifero);
- $\mathfrak{M} \not\models \mathbf{I}(\mathsf{mortale}, \mathsf{dio}), \mathsf{perch}\grave{\epsilon} \iota(\mathsf{mortale}) \cap \iota(\mathsf{dio}) = \emptyset;$
- $\mathfrak{M} \models \mathbf{E}(\mathsf{dio}, \mathsf{mortale}), \mathsf{perch} \ \iota(\mathsf{mortale}) \cap \iota(\mathsf{dio}) = \emptyset;$
- $\mathfrak{M} \not\models \mathbf{E}(\text{mortale}, \text{mammifero}), \text{ perchè}$ Fuffi $\in \iota(\text{mortale}) \cap \iota(\text{mammifero});$
 - $\mathfrak{M} \models \mathbf{O}(\text{mammifero}, \text{mortale}), \text{ perchè}$ Zeus $\in \iota(\text{mammifero}), \text{Zeus} \not\in \iota(\text{mortale});$
 - $\mathfrak{M} \not\models \mathbf{O}(\mathsf{dio}, \mathsf{mammifero}), \mathsf{perch} \, \iota(\mathsf{dio}) \subseteq \iota(\mathsf{mammifero}).$

inferenze:

- If A is true, then E is false, I is true, O is false;
- If E is true, then A is false, I is false, O is true;
- If I is true, then E is false, A and O are indeterminate;
- If O is true, then A is false, E and I are indeterminate;
- If A is false, then O is true, E and I are indeterminate;
- If E is false, then I is true, A and O are indeterminate;
- If I is false, then A is false, E is true, O is true;
- If O is false, then A is true, E is false, I is true

dimostrazioni

dirette

leggi di conversione:

- C1: $E(x,y) \Rightarrow E(y,x)$
- C2: $A(x,y) \Rightarrow I(x,y)$
- C3: $I(x,y) \Rightarrow I(y,x)$

sillogismi perfetti:

- **PS1**: $A(y,z) \wedge A(x,y) \Rightarrow A(x,z)$
- **PS2**: $E(y,z) \wedge A(x,y) \Rightarrow E(x,z)$
- **PS3**: $A(y,z) \wedge I(x,y) \Rightarrow I(x,z)$
- **PS4**: $E(y,z) \wedge I(x,y) \Rightarrow O(x,z)$

indirette

contradditori:

- $\overline{A(x,y)} = O(x,y)$ $\overline{E(x,y)} = I(x,y)$ $\overline{I(x,y)} = E(x,y)$ $\overline{O(x,y)} = A(x,y)$ $\overline{\overline{\phi}} = \phi$