Introduction to Machine Learning

Mohinder Dick

Senior Software Architect UPMC Enterprises June 11, 2016

Goal

Breakdown the perception that machine learning is complex.

Address assumptions of what machine learning IS, and what it's NOT.

Demonstrate the basics of machine learning.

FIELD ENHANCEMENT: ON MAGNIFY: VAR WAVELENGTH:

020

©2015 UPMC Enterprises : PROPRIETARY

What we'll accomplish today

- Machine Learning Basics in 6 Slides
- How to get started
- Let's teach machines (Demo)
- Machine Learning in Healthcare
- Q & A
- References

Machine Learning in 8 Slides | Overview

Machine Learning in 8 Slides | **Key Terms**

Term	Description	
Machine Learning	Algorithms that automatically improve with data	
Model	Statistical representation of the algorithm's experience	
Supervised Learning	Algorithms that improves using labeled examples	
Linear Algorithm	Predictions are proportional to the feature/input values	
Feature	Data point that affect the target you are trying to predict.	
Target Variable	Data point that you are trying to predict	
Classification	Predicting a binary or categorical target variable	
Regression	Predicting a continuous target variable	

Machine Learning in 8 Slides | Supervised Models

- ML algorithms process "unseen" data to give predictions
- A model is a statistical representation of the algorithms experiences/training

How do you get a model?

Machine Learning in 8 Slides | Supervised Models

- Supervised ML algorithms get their name because they learn with help
- You have to provide them experience in labeled examples
- The algorithm translates that data into a representation called a model
- It can be used later to make predictions
- The more data the better

Machine Learning in 8 Slides | Linear Models

Linear Regression

Machine Learning in 8 Slides | Labels & Features

- During training features with labels are given to the algorithm to generate the model
- Both features and labels can be categorical or continuous
- The type of your target affects the flavor of algorithm you chose

Machine Learning in 8 Slides | Labels & Features

Facial Recognition

Geometric features called "Haars"

Is this a face?

Machine Learning in 8 Slides | Recap

Term	Description	
Machine Learning	Algorithms that automatically improve with data	
Model	Statistical representation of the algorithm's experience	
Supervised Learning	Algorithms that improves using labeled examples	
Linear Algorithm	Predictions are proportional to the feature/input values	
Feature	Data point that affect the <i>target</i> you are trying to predict.	
Target Variable	Data point that you are trying to predict	
Classification	Predicting a binary or categorical target variable	
Regression	Predicting a continuous target variable	

How to get started | Training, Data, Tools & Approaches

Data
Government Agencies
Vendors

Tools

Data Pipeline

Spark

Python

I TDVCVI W watersamerican

How to get started | Tool Details

Apache Spark

Cluster aware execution MLLib for machine learning

Python

Loosely typed language Libraries – scikit, pandas and numpy Statistical language, IDE ecosystem

How to get started | Tool Details

```
* train the model
val model = KMeans.train(train_data,CLUSTERS,ITERATIONS)
/**
 * score the data
val results = grouped model data.map(
  v => (
    v._1
    ,model.predict(
      Array.tabulate[Double](field_cnt)(
         i => zscore(v._2(i),sample_mean(i),sample_stddev(i))
 results.saveAsTextFile(output_path)
```

How to get started | Data Driven Approach

Problem

Hospital bed capacity

Data

- Admitting Hospital
- Patient diagnosis and demographics

Analysis

- Data representation
- Data analysis
- Evaluation

Policy

Increase capacity at hospitals with average patient age under 40

How to get started | Data Driven Approach

Let's teach machines

Demo

Machine Learning in Healthcare | Data Driven Approach

Project A

Uses ML and patient Records to predict negative patient outcomes

Project B

Uses user-feedback to innovatively improve the ML Model

Project C

 Grass roots ML project that yielded insight into factors that affect the length of a patients stay.

Machine Learning in Healthcare | Project A

- Hospitals already have digital records, because of the ACA
- Can use public algorithm and software to make predictions
- Predictions save lives and/or money

Machine Learning in Healthcare | Project B

- System uses proprietary model to make recommendations to clinicians
- Hospital decided to improve system by developing a way to incorporate feedback
- Hospital improves the model overtime without having to buy a new system

Machine Learning in Healthcare | Project C

- Interested individuals built a model using visit data
- Predictions were just OKAY
- BUT inspecting the model allowed the team to learn new factors that were unknown about the different factors affected the clincial outcomes

Questions

References

Resource	Location
Presentation link	
EDX Course list (see data)	https://www.edx.org/course
Coursera Course list	https://www.coursera.org/courses/?domains=data-science
Spark Download Page	http://spark.apache.org/downloads.html
Anaconda Python Install Page	http://docs.continuum.io/anaconda/install
R install page	https://cran.r-project.org/
R Studio install page	https://www.rstudio.com/products/rstudio/download/
Ebay Tech Blog on Spark	http://www.ebaytechblog.com/2014/05/28/using-spark-to-ignite-data-analytics/