Systems Thinking for Design

Session 7

INDIAN INSTITUTE OF INFORMATION TECHNOLOGY, DESIGN AND MANUFACTURING, KANCHEEPURAM

Dr. Karthik Chandrasekaran

Session outline

Diagnosing the system's ability to change (Cybernetics)

Examples

Principles of complex systems (3/8): Cybernetics

Principles of complex systems (4/8): Cybernetics

Guidelines for adding polarity to relations

Symbol	Interpretation	Mathematics	Examples	
X T	All else equal, if X increases (decreases), then Y increases (decreases) above what it would have been. In the case of accumulations, X adds to Y.	$\partial Y/\partial X > 0$ In the case of accumulations, $Y = \int_{t_0}^{t} (X +) ds + Y_{t_0}$	Effort Re	ales esults opulation
X Y	All else equal, if X increases (decreases), then Y decreases (increases) below what it would have been. In the case of accumulations, X subtracts from Y.	$\partial Y/\partial X < 0$ In the case of accumulations, $Y = \int_{t_0}^{t} (-X +) ds + Y_{t_0}$	Frustration	ales esults opulation

Identifying loops affecting system behavior

It takes several negative feedback loops to keep human body stable

Identifying and designing appropriate negative feedback loops to support bio-mechanics is a key principle in robotics ... self-balancing bicycle etc.

Multiple loops shape system behavior

Water Resources

Management: A

complex system of

balancing &

reinforcing loops

Delays and errors can make the system unstable ... and sometimes produce counter-intuitive behaviors

Source: Shahin et al (2020); Developing a Preliminary Causal Loop Diagram for Understanding the Wicked Complexity of the COVID-19 Pandemic, Systems, 8 (20)

Multi-level feedback is critical for Learning and adaptation

Implications for human-machine interfaces

Source: Public (Internet)

A general developmental robotics architecture.

Constraints & loops that fueled Industrialization

Innovative designs through use of feedback

Innovative solutions/designs can emerge by adding new linkages that connect unique elements in the context through negative or positive feedback loops

For example, soft rock chair powered by energy harvesting

... and some complicated ones for human productivity

Exercise 7

- Identify the feedback loops in the model
- List down those loops that keep the system stable
- List down those loops that have potential to de-stabilize or change the system
- Identify critical intervention points

Appreciate unique aspects of the problem

Reflect on today's session and post your comments.

