

Mathematisch-Naturwissenschaftliche Fakultät

Institut für Theoretische Physik

Prof. Dr. Igor Lesanovsky PD Dr. Davide Campagnari

Tutorial Advanced Quantum Mechanics

Winter semester 2021/2022

Tübingen, 2nd November 2021

Problem Set 3

Problem 9 (Harmonic oscillator)

(6 points)

The Hamilton operator of the one-dimensional harmonic oscillator reads

$$H = \frac{p^2}{2m} + \frac{1}{2}m\omega^2x^2 = \hbar\omega\left(a^{\dagger}a + \frac{1}{2}\right)$$

with

$$x=rac{x_0}{\sqrt{2}}(a^\dagger+a), \qquad p=rac{\mathrm{i}\,\hbar}{x_0\sqrt{2}}(a^\dagger-a), \qquad x_0=\sqrt{rac{\hbar}{m\omega}}.$$
 (9.1)

The ladder operators satisfy the commutation relation $[a, a^{\dagger}] = \hat{1}$. The eigenstates and the corresponding eigenenergies are given by

$$|n\rangle = \frac{1}{\sqrt{n!}} (a^{\dagger})^n |0\rangle, \qquad E_n = \hbar \omega (n + \frac{1}{2}),$$

whilst the ground state $|0\rangle$ obeys $a|0\rangle = 0$.

- **a.** (3 points) Evaluate the uncertainties $(\Delta x)^2$ and $(\Delta p)^2$ in an arbitrary oscillator eigenstate $|n\rangle$. For which n is the product of uncertainties minimal?
- **b.** (3 points) At t = 0 the oscillator is in the state

$$|\psi(0)\rangle = C(2|0\rangle + |1\rangle).$$

Determine the normalization constant C such that $\langle \psi(0)|\psi(0)\rangle=1$. Calculate the expectation values of the ladder operators a and a^{\dagger} as a function of time and use this result to show that the position and momentum operators obey the Ehrenfest theorem.

Problem 10 (Transition probability)

(14 points)

A one-dimensional harmonic oscillator is subject to a perturbation restricted to a finite time interval

$$V(x,t) = e \mathcal{E} x [1 - (t/\tau)^2] \Theta(\tau - |t|)$$

with constants e, \mathcal{E} and $\tau > 0$. At an initial time $t_i < -\tau$ the oscillator is prepared in an energy eigenstate $|n\rangle$; at a later time $t_f > \tau$ we perform an energy measurement.

a. (3 points) Show that the transition probability $w_{n\to k}$ of finding the oscillator in a state $|k\rangle$ is given by the squared modulus of the transition amplitude

$$\mathcal{A}_{n \to k} \equiv \langle k | U_{\mathsf{D}}(au, - au) | n
angle,$$

where U_D is the time-evolution operator in the interaction picture.

b. (2 points) Show that the transition amplitude $A_{n\to k}$ has the perturbative expression

$$egin{aligned} \mathcal{A}_{ extit{ extit{n}} o k} &= \delta_{ extit{ extit{k}} o r} \int_{- au}^{ au} \mathrm{d}t \,\, \mathrm{e}^{\mathrm{i}\omega_{ extit{k}} o t} \langle k|V(t)|n
angle \ &- rac{1}{\hbar^2} \sum_{oldsymbol{\ell}} \int_{- au}^{ au} \mathrm{d}t_1 \int_{- au}^{t_1} \mathrm{d}t_2 \,\, \mathrm{e}^{\mathrm{i}\omega_{ extit{k}} o t^1_1} \langle k|V(t_1)|\ell
angle \,\, \mathrm{e}^{\mathrm{i}\omega_{ extit{ℓ}} o t^2_2} \,\, \langle \ell|V(t_2)|n
angle + \cdots \end{aligned}$$

where $\hbar\omega_{kn}=E_k-E_n$.

- **c.** (4 points) Evaluate the transition probability $w_{n\to k\neq n}$ of finding the oscillator in a *different* state $|k\rangle$ at order $\mathcal{O}(e^2)$.
- **d.** (1 point) Evaluate the persistence probability $w_{n\to n}$ at order $\mathcal{O}(e^2)$.
- **e.** (4 points) Evaluate the transition probability $w_{0\rightarrow 2}$ at order $\mathcal{O}(e^4)$.

Problem 11 (Periodic perturbation)

(4 points)

In Problems 7 and 8 we investigated a two-level system subject to a periodic perturbation of the form

$$V(t) = egin{pmatrix} 0 & \gamma \, \mathrm{e}^{\mathrm{i}\omega t} \ \gamma^* \, \mathrm{e}^{-\mathrm{i}\omega t} & 0 \end{pmatrix}.$$

The transition probability 1 \rightarrow 2 was found in first-order perturbation theory to be

$$w_{1\to 2}(t) = \frac{4|\gamma|^2}{\hbar^2(\omega - \omega_{21})^2} \sin^2(\frac{\omega - \omega_{21}}{2}t), \qquad \hbar\omega_{21} = E_2 - E_1.$$

It has been shown in the lecture that the transition *rate* in case of a generic periodic perturbation $V(t) = V_0 e^{-i\omega t} + V_0^{\dagger} e^{i\omega t}$ is given by

$$\Gamma_{n o k} = rac{2\pi}{\hbar} \Big[|V_{kn}|^2 \, \delta(E_k - E_n - \hbar\omega) + |V_{nk}|^2 \, \delta(E_k - E_n + \hbar\omega) \Big]$$

with $V_{nk} = \langle n|V_0|k\rangle$. Check explicitly that

$$\lim_{t\to\infty} w_{1\to 2}(t)\approx t\,\Gamma_{1\to 2}.$$

Hint: Note that $\frac{\varepsilon}{\pi} \frac{\sin^2(x/\varepsilon)}{x^2}$ is a nascent Dirac delta for $\varepsilon \to 0$.