高等数学A1 2004年

1.	. 单项选择题(每小题2分,共10分)	
	(1) $f(x)$ 在 a 点连续,且 $\lim_{x\to a} \frac{f(x)-f(a)}{(x-a)^m} = c > 0$,其中 m 是偶数,则 (B)	
	A. a 是 $f(x)$ 的极大值点;	
	C. a 不是 $f(x)$ 的极值点;	
	(2) $f(x)$, $g(x)$ 均为恒不为零的可微函数, 且 $f'(x)g(x) - g'(x)f(x) > 0$, 则当 $x > a$ 时, 成立(A)	
	A.f(x)g(a) > f(a)g(x);	B. $f(x)g(x) > f(a)g(a)$;
	C.f(a)g(x) > f(x)g(a);	
	(3) 函数 $f(x) = \lim_{n \to \infty} \sqrt[n]{1 + x^{2n}} \Phi(-\infty, +\infty)$ 连续且 ()	
	A.处处可导;	B. 仅有一个不可导点;
	C.仅有两个不可导点;	D.至少有三个不可导点.
	$(4) \int_{-1}^{1} \frac{1 + x \sin^2 x}{1 + x^2} dx =$	(B)
	A. $\frac{\pi}{4}$; B. $\frac{\pi}{2}$; C. π ; D.0.	
	(5)下列反常积分收敛的是 (D)	
	A. $\int_3^{+\infty} \frac{\ln x}{x} dx$ B. $\int_3^{+\infty} \frac{dx}{x\sqrt{\ln x}}$	C. $\int_3^{+\infty} \frac{dx}{x \ln x}$ D. $\int_3^{+\infty} \frac{dx}{x (\ln x)^2}$
2. (每小题2分, 共10分)填空题		
	$(1) 若 f(x) = \begin{cases} \ln(1 + ax^b), & x \ge 0 \\ \frac{e^{x^2} - 1}{\sin 2x}, & x < 0 \end{cases} $	
	(2)设函数 $y = y(x)$ 由方程 $y = \int_0^{2x+y} \sin t^2 dt - \int_0^{x^2} e^{-\sqrt{t}} dx$ (其中 $x > 0$)所确定,则其导数 $\frac{dy}{dx} =$	
	(3) $\int_0^2 x^4 \sqrt{4 - x^2} dx = $	
	(4) 当 $x \to 0$ 时, $\int_0^{x^3} \sin \sqrt[3]{t} dt$ 是 βx^{α} 的等价无穷小,则 $\alpha = $	
	(5)设 $f(x)$ 为连续函数, $F(x) = \int_0^{2x} f(x+t)dt$,则 $F'(x) =$	
3.	3. (10分) 求极限(每小题5分, 共10分)	
	$(1)\lim_{x\to 0} \frac{\int_{\cos x}^{1} e^{t^2} dt}{x^2}; \qquad (2)\lim_{x\to 0^+} (\sin x)^x.$	
4.	4. (10分) 求导数或微分(每小题5分, 共10分)	
	(1) 设函数 $y = f(x)$ 由 $\begin{cases} x = 2t + 3t^2 \\ y = t^2 + 2t^3 \end{cases}$ 所确定,求 $\frac{d^2y}{dx^2}$;	
	(2) 设 $y = \arctan \frac{1+x}{1-x}$,求 dy .	

5. 计算下列积分(每小题5分, 共10分) $(1) \int x(e^x + \ln x) dx; \qquad (2) \int_0^\pi \frac{dx}{2 + \cos x}$

- 6. (10分) 解下列方程(每小题5分, 共10分)
- 7. 微分学应用题(每小题5分,共10分)
 - (a)确定常数a,b,c, 使三次曲线 $y=ax^3+bx^2+cx$ 有拐点(1,2),且在该拐点处的切线斜率为-1.
 - (b)欲制造一个容积为 $2\pi m^3$ 的圆柱形带盖的封闭储油桶,试问它的半径r和高h各为多少时才能用料最省?说明理由.
- 8. 积分学应用题(每小题5分,共10分)
 - (a) 求心脏线 $r = a(1 + \cos \theta)(a > 0)$ 上对应 $0 \le \theta \le \frac{\pi}{2}$ 的弧线段的长度.
 - (b)D是由抛物线y = 2x(2-x) 与x 轴所围成的区域,直线y = kx 将区域D分为面积相等的两部分,求k的值.