## Module 5: Unsupervised Learning

# Supervised learning vs. unsupervised learning

- Supervised learning: discover patterns in the data that relate data attributes with a target (class) attribute.
  - These patterns are then utilized to predict the values of the target attribute in future data instances.
- Unsupervised learning: The data have no target attribute.
  - We want to explore the data to find some intrinsic structures in them.

## Clustering

- Clustering is a technique for finding **similarity groups** in data, called **clusters**. i.e.,
  - it groups data instances that are similar to (near) each other in one cluster and data instances that are very different (far away) from each other into different clusters.
- Clustering is often called an **unsupervised learning** task as no class values denoting an *a priori* grouping of the data instances are given, which is the case in supervised learning.
- Due to historical reasons, clustering is often considered synonymous with unsupervised learning.
  - In fact, association rule mining is also unsupervised

### An illustration

• The data set has three natural groups of data points, i.e., 3 natural clusters.



## What is clustering for?

- Let us see some real-life examples
- Example 1: groups people of similar sizes together to make "small", "medium" and "large" T-Shirts.
  - **Tailor-made for each person: too expensive**
  - One-size-fits-all: does not fit all.
- Example 2: In marketing, segment customers according to their similarities
  - To do targeted marketing.

## What is clustering for? (cont...)

- Example 3: Given a collection of text documents, we want to organize them according to their content similarities,
  - To produce a topic hierarchy
- In fact, clustering is one of the most utilized data mining techniques.
  - It has a long history, and used in almost every field, e.g., medicine, psychology, botany, sociology, biology, archeology, marketing, insurance, libraries, etc.
  - In recent years, due to the rapid increase of online documents, text clustering becomes important.

## Types of Clustering

- Hierarchical algorithms: these find successive clusters using previously established clusters.
  - 1. Agglomerative ("bottom-up"): Agglomerative algorithms begin with each element as a separate cluster and merge them into successively larger clusters.
    - 2. Divisive ("top-down"): Divisive algorithms begin with the whole set and proceed to divide it into successively smaller clusters.
- Partitional clustering: Partitional algorithms determine all clusters at once. They include:
  - K-means and derivatives
  - Fuzzy c-means clustering
  - QT clustering algorithm

## Aspects of clustering

- ♠ A distance (similarity, or dissimilarity) function
- Clustering quality
  - **№** Inter-clusters distance ⇒ maximized
  - Intra-clusters distance ⇒ minimized
- The quality of a clustering result depends on the algorithm, the distance function, and the application.

## K-means clustering

- K-means is a partitional clustering algorithm
- Let the set of data points (or instances) D be

$$\{X_1, X_2, ..., X_n\},\$$

- where  $x_i = (x_{i1}, x_{i2}, ..., x_{ir})$  is a vector in a real-valued space  $X \in \mathbb{R}^r$ , and r is the number of attributes (dimensions) in the data.
- The k-means algorithm partitions the given data into k clusters.
  - Each cluster has a cluster center, called centroid.
  - k is specified by the user

## K-means algorithm

- Given *k*, the *k-means* algorithm works as follows:
  - 1. Randomly choose *k* data points (seeds) to be the initial centroids, cluster centers
  - 2. Assign each data point to the closest centroid
  - 3. Re-compute the centroids using the current cluster memberships.
  - 4. If a convergence criterion is not met, go to 2).

## Stopping/convergence criterion

- no (or minimum) re-assignments of data points to different clusters,
- 2. no (or minimum) change of centroids, or
- minimum decrease in the sum of squared error (SSE), k

$$SSE = \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} dist(x, m_j)^2$$
 (1)

 $C_i$  is the jth cluster,  $\mathbf{m}_j$  is the centroid of cluster  $C_j$  (the mean vector of all the data points in  $C_j$ ), and  $dist(\mathbf{x}, \mathbf{m}_j)$  is the distance between data point  $\mathbf{x}$  and centroid  $\mathbf{m}_j$ .

## An example



(A). Random selection of k centers



Iteration 1: (B). Cluster assignment



(C). Re-compute centroids

## An example (cont ...)



Iteration 2: (D). Cluster assignment



Iteration 3: (F). Cluster assignment



(E). Re-compute centroids



(G). Re-compute centroids

# Numerical Example : K- Means Clustering (K = 2)

| Individual | Variable 1 | Variable 2 |
|------------|------------|------------|
| 1          | 1.0        | 1.0        |
| 2          | 1.5        | 2.0        |
| 3          | 3.0        | 4.0        |
| 4          | 5.0        | 7.0        |
| 5          | 3.5        | 5.0        |
| 6          | 4.5        | 5.0        |
| 7          | 3.5        | 4.5        |

#### Step 1:

<u>Initialization</u>: Randomly we choose following two centroids (k=2) for two clusters.

In this case the 2 centroid are: m1=(1.0,1.0) and m2=(5.0,7.0).

| Individual | Variable 1 | Variable 2 |
|------------|------------|------------|
| 1          | 1.0        | 1.0        |
| 2          | 1.5        | 2.0        |
| 3          | 3.0        | 4.0        |
| 4          | 5.0        | 7.0        |
| 5          | 3.5        | 5.0        |
| 6          | 4.5        | 5.0        |
| 7          | 3.5        | 4.5        |

| Individual | Mean Vector          |
|------------|----------------------|
| 1          | (1.0, 1.0)           |
| 4          | (5.0, 7.0)           |
|            | Individual<br>1<br>4 |

### **Step 2:**

Thus, we obtain two clusters containing:

 $\{1,2,3\}$  and  $\{4,5,6,7\}$ .

Their new centroids are:

$$m_1 = (\frac{1}{3}(1.0 + 1.5 + 3.0), \frac{1}{3}(1.0 + 2.0 + 4.0)) = (1.83, 2.33)$$

$$m_2 = (\frac{1}{4}(5.0 + 3.5 + 4.5 + 3.5), \frac{1}{4}(7.0 + 5.0 + 5.0 + 4.5))$$
  
= (4.12,5.38)

| Individual   | Centrold 1 | Centrold 2 |
|--------------|------------|------------|
| 1            | 0          | 7.21       |
| 2 (1.5, 2.0) | 1.12       | 6.10       |
| 3            | 3.61       | 3.61       |
| 4            | 7.21       | 0          |
| 5            | 4.72       | 2.5        |
| 6            | 5.31       | 2.06       |
| 7            | 4.30       | 2.92       |

$$d(m_1, 2) = \sqrt{|1.0 - 1.5|^2 + |1.0 - 2.0|^2} = 1.12$$
  
 $d(m_2, 2) = \sqrt{|5.0 - 1.5|^2 + |7.0 - 2.0|^2} = 6.10$ 

#### Step 3:

Now using these centroids we compute the Euclidean distance of each object, as shown in table.

Therefore, the new clusters are:

{1,2} and {**3**,4,5,6,7}

Next centroids are: m1=(1.25,1.5) and m2=(3.9,5.1)

| Individual | Centroid 1 | Centroid 2 |
|------------|------------|------------|
| 1          | 1.57       | 5.38       |
| 2          | 0.47       | 4.28       |
| 3          | 2.04       | 1.78       |
| 4          | 5.64       | 1.84       |
| 5          | 3.15       | 0.73       |
| 6          | 3.78       | 0.54       |
| 7          | 2.74       | 1.08       |

#### <u>Step 4</u>:

The clusters obtained

are:

{1,2} and {3,4,5,6,7}

Therefore, there is no change in the cluster.

Thus, the algorithm comes to a halt here and final result consist of 2 clusters {1,2} and {3,4,5,6,7}.

| Individual | Centroid 1 | Centroid 2 |
|------------|------------|------------|
| 1          | 0.56       | 5.02       |
| 2          | 0.56       | 3.92       |
| 3          | 3.05       | 1.42       |
| 4          | 6.66       | 2.20       |
| 5          | 4.16       | 0.41       |
| 6          | 4.78       | 0.61       |
| 7          | 3.75       | 0.72       |

## Example



## Strengths of k-means

#### Strengths:

- Simple: easy to understand and to implement
- ❖ Efficient: Time complexity: *O*(*tkn*),
  where *n* is the number of data points, *k* is the number of clusters, and *t* is the number of iterations.
- **♥** Since both *k* and *t* are small. *k*-means is considered a linear algorithm.
- K-means is the most popular clustering algorithm.
- Note that: it terminates at a local optimum if SSE is used. The global optimum is hard to find due to complexity.

## Weaknesses of k-means

- The algorithm is only applicable if the mean is defined.
  - For categorical data, *k*-mode the centroid is represented by most frequent values.
- The user needs to specify k.
- The algorithm is sensitive to outliers
  - Outliers are data points that are very far away from other data points.
  - Outliers could be errors in the data recording or some special data points with very different values.

## Weaknesses of k-means: Problems with outliers



(A): Undesirable clusters



(B): Ideal clusters

## Weaknesses of k-means: To deal with outliers

- One method is to remove some data points in the clustering process that are much further away from the centroids than other data points.
  - To be safe, we may want to monitor these possible outliers over a few iterations and then decide to remove them.
- Another method is to perform random sampling. Since in sampling we only choose a small subset of the data points, the chance of selecting an outlier is very small.
  - Assign the rest of the data points to the clusters by distance or similarity comparison, or classification

### Weaknesses of k-means (cont ...)

The algorithm is sensitive to initial seeds.



(A). Random selection of seeds (centroids)



(B). Iteration 1



(C). Iteration 2

## Weaknesses of k-means (cont ...)

If we use different seeds: good results



There are some methods to help choose good seeds

(A). Random selection of k seeds (centroids)





(C). Iteration 2

### K-means summary

- Despite weaknesses, k-means is still the most popular algorithm due to its simplicity, efficiency and
  - other clustering algorithms have their own lists of weaknesses.
- No clear evidence that any other clustering algorithm performs better in general
  - although they may be more suitable for some specific types of data or applications.
- Comparing different clustering algorithms is a difficult task. No one knows the correct clusters!