

planetmath.org

Math for the people, by the people.

completeness theorem for propositional logic

 ${\bf Canonical\ name} \quad {\bf Completeness Theorem For Propositional Logic 1}$

Date of creation 2013-03-22 19:32:47 Last modified on 2013-03-22 19:32:47

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 21

Author CWoo (3771) Entry type Theorem Classification msc 03B05 The completeness theorem of propositional logic is the statement that a wff is tautology iff it is a theorem. In symbol, we have

$$\models A \text{ iff } \vdash A$$

for any wff A. The "if" part of the statement is the soundness theorem, and is proved http://planetmath.org/TruthValueSemanticsForPropositionalLogicIsSoundhere. We will prove the "only if" part, which is also known as the completeness portion of the theorem. We will give a constructive proof of this. Before proving this, we state and prove some preliminary facts:

- 1. $A, B \vdash A \rightarrow B$
- 2. $A, \neg B \vdash \neg (A \rightarrow B)$
- 3. $\neg A, B \vdash A \rightarrow B$
- 4. $\neg A, \neg B \vdash A \rightarrow B$
- 5. Let v be a valuation. For any wff A, let v[A] be defined as follows:

$$v[A]$$
 is
$$\begin{cases} A & \text{if } v(A) = 1, \\ \neg A & \text{if } v(A) = 0. \end{cases}$$

Suppose p_1, \ldots, p_n are the propositional variables in A. Then

$$v[p_1], \ldots, v[p_n] \vdash v[A].$$

6. if $\Delta, A \vdash B$ and $\Delta, \neg A \vdash B$, then $\vdash B$.

Proof. Facts 1 and 3 come from the axiom schema $B \to (A \to B)$. From $\vdash B \to (A \to B)$, we have $C \vdash B \to (A \to B)$, so $C, B \vdash A \to B$. If C is A, we have fact 1, and if C is $\neg A$, we have fact 3.

Fact 2: this is proved http://planetmath.org/SubstitutionTheoremForPropositionalLogi Fact 4: By ex falso quodlibet, $\vdash \bot \to B$, so $A \vdash \bot \to B$, and therefore $\vdash A \to (\bot \to B)$ by the deduction theorem. Now, $(A \to (\bot \to B)) \to ((A \to \bot) \to (A \to B))$ is an axiom instance, so $\vdash (A \to \bot) \to (A \to B)$, or $\lnot A \to (A \to B)$, or $\lnot A \to A \to B$, and

$$\neg A, \neg B \vdash A \rightarrow B$$

all the more so.

Fact 5: by induction on the number n of occurrences of \to in A. If n=0, then A is either \bot or a propositional variable p. In the first case, v[A] is $\neg \bot$, and from $\bot \vdash \bot$, we get $\vdash \bot \to \bot$, or $\vdash \neg \bot$. In the second case, $v[p] \vdash v[p]$. Now, suppose there are n+1 occurrences of \to in A. Let p_1, \ldots, p_m be the propositional variables in A. By unique readability, A is $B \to C$ for some unique wff's B and C. Since each B and C has no more than n occurrences of \to , by induction, we have

$$v[p_{i(1)}], \dots, v[p_{i(s)}] \vdash v[B]$$
 and $v[p_{j(1)}], \dots, v[p_{j(t)}] \vdash v[C],$

where the propositional variables in B are $p_{i(1)}, \ldots, p_{i(s)}$, and in C are $p_{j(1)}, \ldots, p_{j(t)}$. So

$$v[p_1], \dots, v[p_m] \vdash v[B]$$
 and $v[p_1], \dots, v[p_m] \vdash v[C]$.

Next, we want to show that $v[B], v[C] \vdash v[B \to C]$. We break this into four cases:

- if v[B] is B and v[C] is C: then $v[B \to C]$ is $B \to C$, and use Fact 1
- if v[B] is B and v[C] is $\neg C$: then $v[B \to C]$ is $\neg (B \to C)$, and use Fact 2
- if v[B] is $\neg B$ and v[C] is C: then $v[B \to C]$ is $B \to C$, and use Fact 3
- if v[B] is $\neg B$ and v[C] is $\neg C$: then $v[B \to C]$ is $B \to C$, and use Fact 4.

In all cases, we have by applying modus ponens,

$$v[p_1], \ldots, v[p_m] \vdash v[B \to C].$$

 $Fact\ 6\ is\ proved\ \texttt{http://planetmath.org/SubstitutionTheoremForPropositionalLogichered}$

Theorem 1. Propositional logic is complete with respect to truth-value semantics.

Proof. Suppose A is a tautology. Let p_1, \ldots, p_n be the propositional variables in A. Then

$$v[p_1], \ldots, v[p_n] \vdash v[A]$$

for any valuation v. Since v[A] is A. We have

$$v[p_1], \ldots, v[p_n] \vdash A.$$

If n = 0, then we are done. So suppose n > 0. Pick a valuation v such that $v(p_n) = 1$, and a valuation v' such that $v'(p_i) = v(p_i)$ and $v'(p_n) = 0$ Then

$$v[p_1], \ldots, v[p_{n-1}], p_n \vdash A$$
 and $v[p_1], \ldots, v[p_{n-1}], \neg p_n \vdash A$,

where the first deducibility relation comes from v and the second comes from v'. By Fact 6 above,

$$v[p_1], \ldots, v[p_{n-1}] \vdash A.$$

So we have eliminated $v[p_n]$ from the left of $v[p_1], \ldots, v[p_n] \vdash A$. Now, repeat this process until all of the $v[p_i]$ have been eliminated, and we have $\vdash A$. \square

The completeness theorem can be used to show that certain complicated wff's are theorems. For example, one of the distributive laws

$$\vdash (A \land B) \lor C \leftrightarrow (A \lor C) \land (B \lor C)$$

To see that this is indeed a theorem, by the completeness theorem, all we need to show is that it is true using the truth table:

(A	\wedge	B)	\vee	C	\leftrightarrow	(A	\vee	C)	\wedge	(B	\vee	C)
Т	Τ	Τ	Τ	Τ	Τ	Τ	Τ	Τ	Τ	Τ	Τ	Τ
T	\mathbf{T}	${\rm T}$	\mathbf{T}	\mathbf{F}	\mathbf{T}	${\rm T}$	\mathbf{T}	\mathbf{F}	Τ	${\rm T}$	\mathbf{T}	\mathbf{F}
T	\mathbf{F}	\mathbf{F}	\mathbf{T}	Τ	T	${\rm T}$	\mathbf{T}	Τ	Τ	F	\mathbf{T}	\mathbf{T}
T	F	F	F	\mathbf{F}	T	Τ	Τ	F	F	F	F	F
\mathbf{F}	\mathbf{F}	${\rm T}$	\mathbf{T}	T	T	\mathbf{F}	\mathbf{T}	Τ	Τ	Τ	\mathbf{T}	\mathbf{T}
F	F	T	\mathbf{F}	\mathbf{F}	T	F	\mathbf{F}	F	\mathbf{F}	Τ	\mathbf{T}	\mathbf{F}
F	F	F	Τ	\mathbf{T}	T	F	Τ	Τ	Τ	F	Τ	Τ
F	F	F	\mathbf{F}	\mathbf{F}	T	F	\mathbf{F}	F	\mathbf{F}	F	F	\mathbf{F}

Similarly, one can show $\vdash (A \lor B) \land C \leftrightarrow (A \land C) \lor (B \land C)$.