M66310P/FP

16-BIT LED DRIVER WITH SHIFT REGISTER AND LATCH

DESCRIPTION

M66310P/FP is a LED array driver having a 16bit serial-input and parallel output shiftregister function with direct coupled reset input and output latch function.

This product guarantees the output electric current of 24mA which is sufficient for cathode common LED drive, capable of flowing 16bits continuously at the same time.

Parallel output is open drain output.

In addition, as this product has been designed in complete CMOS, power consumption can be greatly reduced when compared with conventional BIPOLAR or Bi-CMOS products.

Furthermore, pin lay-out ensures the realization of an easy printed circuit.

FEATURES

- Cathode common LED drive
- High output current

all parallel output I_{OH}=-24mA simultaneous lighting available

Low power dissipation : 100μW/package (max)

(V_{CC} =5V, Ta=25°C, quiescent state)

High noise margin

schmitt input circuit provides responsiveness to a long line length.

- Equipped with direct-coupled reset
- Open drain output

(except serial data output)

Wide operating temperature range

 Pin lay-out facilitates printed circuit wiring. (This lay-out facilitates cascade connection and LED connection.)

APPLICATION

LED array drive of BUTTON TELEPHONE LED array drive of ERASER of a PPC copier Other various LED modules

16-BIT LED DRIVER WITH SHIFT REGISTER AND LATCH

FUNCTIONAL DESCRIPTION

As M66310P/FP uses silicon gate CMOS process, it realizes high-speed and high-output currents sufficient for LED drive while maintaining low power consumption and allowance for high noises.

Each bit of a shiftregister consists of two flip-flops having independent clocks for shifting and latching.

As for clock input, shift clock input CKs and latch clock input CK_L are independent from each other, shift and latch operations being made when "L" changes to "H".

Serial data input A is the data input of the first-step shiftregister and the signal of A shifts shifting registers one by one when a pulse is impressed to CK_S. When A is "L", the signal of "L" shifts.

When the pulse is impressed to CK_L , the contents of the

shifting register at that time are stored in a latching register, and they appear in the outputs from $Q_A{\sim}Q_P$.

Outputs from Q_A~Q_P are open drain outputs.

To extend the number of bits, use the serial data output SQ_P which shows the output of the shifting register of the 16th bit.

If CK_S and CK_L are connected, the state of the shifting register with one clock delay is outputted to $Q_A \sim Q_P$.

When reset input \overline{R} is changed to "L", $Q_A \sim Q_P$ and SQ_P are reset. In this case, shifting and latching registers are reset. If "H" is impressed to output enable input \overline{OE} , $Q_A \sim Q_P$ reaches the high impedance state, but SQ_P does not reach the high impedance state. Furthermore, change in \overline{OE} does not affect shift operation.

FUNCTION TABLE (Note: 1)

Operation mode		Input				PARALLEL DATA Output										Serial data	D							
		Ř	CKs	CKL	Α	ΟE	Q_A	Q _B	Qc	Q_{D}	QE	QF	Q _G	Q _H	Qı	QJ	Qĸ	Q_L	Q _M	Q _N	Qo	Qp	SQP	Remarks
Re	Reset		Х	Х	Х	Х	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	L	
Shift latch operation	Shift t1	Н	1	Х	н	L	Q_A^0	Q_B^0	Q _C ⁰	Q_D^0	Q _E ⁰	Q_F^0	Q _G ⁰	Q _H ⁰	Q_1^0	Q_{J^0}	Q _K ⁰	Q_L^0	Q _M ⁰	Q_N^0	Q _O 0	Q _P ⁰	q _o o	Output
	Latch t2	Н	Х	1	Х	L	Н	q _A ⁰	q _B ⁰	qc0	q_D^0	q _E ⁰	q _F ⁰	q_{G}^{0}	q _H ⁰	q_i^0	q ₀	q _K ⁰	q _L ⁰	q _M 0	q _N ⁰	q _o ⁰	q _o ⁰	lighting "H"
	Shift t1	Н	1	Х	L	L	Q_A^0	Q _B ⁰	Q _C ⁰	Q_D^0	Q _E ⁰	Q _F ⁰	Q _G ⁰	Q _H ⁰	Q_1^0	QJº	Qĸº	Q_L^0	Q _M ⁰	Q_N^0	Qo°	Q _P ⁰	qo ⁰	Output
	Latch t2	Н	Х	†	Х	L.	Z	q _A o	q _B ⁰	qcº	q _D ⁰	q _E ⁰	q _F ⁰	q _G ⁰	qнo	q ₁ 0	qJo	q _K ⁰	q _L o	q _M o	q _N ⁰	qo°	qo°	fights-out "L"
Output disable		Х	Х	Х	X	Н	Z	Z	Z	Z	z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	q _P	

Note 1 : † : Change from low-level to high-level

Q⁰ : Output state Q before CK_L changed

X : Irrelevant

q° : Contents of shift register before CK_s changed

q : Contents of shift register t₁, t₂ : t₂ is set after t₁ is set Z : High impedance

16-BIT LED DRIVER WITH SHIFT REGISTER AND LATCH

ABSOLUTE MAXIMUM RATINGS (Ta=-40~+85°C, unless otherwise noted)

Symbol	Parameter		Conditions	Ratings	Unit	
Vcc	Supply voltage			-0.5~+7.0	V	
Vı	Input voltage			-0.5~V _{cc} +0.5	V	
Vo	Output voltage			-0.5~V _{cc} +0.5	V	
			V ₁ < 0V	-20		
I _{IK} Input protection diode current			V _I > V _{CC}	20	mA	
•	Output pagaritic diada surrent		V _o < 0V	-20	1	
юк	Output parasitic diode current		$V_{\rm O} > V_{\rm GC}$	20	mA	
	Output august and autout air	Q _A ~Q _P		50		
lo	Output current per output pin	SQ₽		±25	⊢ mA	
Icc	Supply/GND current		V _{CC} , GND	-410, +20	mA	
Pd	Power dissipation		(Note 2)	500	mW	
Tstg	Storage temperature range			-65~+150	°C	

Note 2 : M66310FP ; $T_a = -40 \sim +70 \degree$ C, $T_a = 70 \sim 85 \degree$ C are derated at $-6 \text{mW}/\degree$ C.

RECOMMENDED OPERATING CONDITIONS (Ta=-40~+85°C, unless otherwise noted)

Symbol	Parameter				
- Cynnbor	Faiameter	Min	Тур	Max	Unit
Vcc	Supply voltage	4.5	5	5. 5	V
Vı	Input voltage	0		Vcc	V
Vo	Output voltage	0		V _{CC}	V
Topr	Operating temperature range	40		+85	℃

ELECTRICAL CHARACTERISTICS (V_{CC} =4.5~5.5V, unless otherwise noted)

					Limits							
Symbol	Parameter	Test	-	r _a =25°	2	Ta=-40	Unit					
					Min	Тур	Max	Min	Max			
V _T +	Positive-going threshold voltage $ \begin{array}{c} V_{O}=0.1 \text{V, } V_{CC}-0.1 \text{V} \\ 1_{O} =20 \mu \text{A} \end{array} $				0.35×V _{cc}		0.7×V _{cc}	0.35×v _{cc}	0.7×V _{cc}	٧		
V _T _	Negative-going threshold voltage	age $V_0 = 0.1V, V_{CC} = 0.1V$ $ I_0 = 20\mu A$			0.2×V _{cc}		0.55×v _{cc}	0.2×V _{cc}	0.55×V _{cc}	٧		
		V _I =V _{T+} , V _{T-}		$I_{OH} = -20\mu A$	V _{CC} -0.1			V _{CC} -0.1				
V_{OH}	High-level output voltage Q _A ~Q _P	V _{CC} =4.5V		I _{OH} =-24mA	3.83			3.66		V		
		V ₀₀ 4.5V	Note3	1 _{OH} =-40mA	3.50			3. 25				
VoH	High-level output voltage SQ _P	$V_{l}=V_{T+}, V_{T-}$	I _{OH} =-2		V _{CC} -0.1			V _{CC} -0.1				
	mg. reter sarpar tomage sup	V _{GC} =4.5V		I _{OH} =-4mA	3.83			3.66		٧		
Vol	Low-level output voltage SQ _P	$V_i = V_{T+}, V_{T-}$		I _{OL} =20μA			0.1		0.1			
- 02		V _{cc} =4.5V		I _{OL} =4mA			0.44		0.53	V		
l _{IH}	High-level input current	V _I =V _{CC} , V _{CC} =5.5V					0.5		5.0	μΑ		
IIL	Low-level input current	V _I =GND, V _{CC} =5.5	SV.				-0.5		-5.0	μΑ		
lo	Maximum output leakage current Q _A ~Q _P	$V_i = V_{T+}, V_{T-}$		v _o =v _{cc}			1.0		10.0			
٥٠		V _{cc} =5.5V		Vo=GND			-1.0		-10.0	μ A		
Icc	Quiescent supply current	VI=VCC, GND, VCC	=5.5V				20.0		200.0	μΑ		

Note 3 : M66310 is used under the condition of an output current I_{OH} = -40mA, the number of simultaneous drive outputs is restricted as shown in the Duty Cycle—I_{OH} of Standard characteristics.

16-BIT LED DRIVER WITH SHIFT REGISTER AND LATCH

SWITCHING CHARACTERISTICS (Vcc=5 V)

Symbol								
	Parameter	Test conditions		Ta=25℃	;	T _a =-40~+85℃		Unit
			Min	Тур	Max	Min	Max	
fmax	Maximum clock frequency		5			4		MHz
t _{PLH}	Low-level to high-level and high-level to low-level				100		130	ns
t _{PHL}	output propagation time (CK _S -SQ _P)				100	1	130	ns
t _{PHL}	High-level to low-level output propagation time (R-SQ _P)	C _L =50pF	-		100		130	ns
t _{PHZ}	High-level to low-level output propagation time (R-QA~QP)	R _L = 1 kΩ			150	1	200	ns
t _{PZH}	Low-level to high-level and high-level to low-level	(), (*)			100		130	ns
t _{PHZ}	output propagation time (CK _L -Q _A ~Q _P)	(Note 5)			150		200	ns
t _{PZH}	Output enable time to low-level and high-level				100		130	ns
t _{PHZ}	(OE−Q _A ~Q _P)				150		200	ns
C ₁	Input Capacitance				10		10	рF
Co	Output Capacitance	ŌE=V _{CC}		<u> </u>	15		15	pF
C _{PD}	Power dissipation Capacitance (Note 4)			11				pF

Note 4 : C_{PD} is the internal capacitance of the IC calculated from operation supply current under no-load conditions. (per latch) The power dissipated during operation under no-load conditions is calculated using the following formula: $P_D = C_{PD} \cdot V_{CC}^2 \cdot f_1 + I_{CC} \cdot V_{CC}$

TIMING REQUIREMENTS (Vcc=5 V)

Symbol	Parameter	Test conditions		Ta=25℃		Ta=-40	Unit	
			Min	Тур	Max	Min	Max	
t _w	CK _s , CK _L , R pulse width		100			130		ns
t _{su}	A setup time with respect to CKs	1	100			130		ns
t _{su}	CK _S setup time with respect to CK _L	(Note 5)	100			130		ns
th	A hold time with respect to CK _S		10			15		ns
trec	R, recovery time with respect to CKs, CKL		50			70		ns

Note 5 : Test Circuit

Note 5 : Test Circuit

- (1) The pulse generator (PG) has the following characteristics ($10\%\sim90\%$): tr =6ns, tf=6ns
- (2) The capacitance C_L includes stray wiring capacitance and the probe input capacitance.

TYPICAL CHARACTERISTICS

TIMING DIAGRAM

