A Graph Patrol Problem with Locally-Observable Random Attackers

Thomas Lowbridge and David Hodge

University Of Nottingham, UK

June 15, 2018

Outline

- Literature review
 - Introduction to Game
 - Pure game
 - Mixed game
 - Solved Graphs
 - Hamiltonian graphs
 - Line graph
- Problem with line graph strategy
- Correction of line graph strategy
- Extension of correction strategy
- Future work

Game with non-observed

A Patrolling game with random attackers, $G = G(Q, X, \lambda, c)$ is made of 4 major components

- A Graph, Q = (N, E), made of nodes, N (|N| = n), and a set of edges, E.
- A vector of attack times, $X = (X_1, ..., X_n)$.
- A vector of arrival rates, $\lambda = (\lambda_1, ..., \lambda_n)$.
- A vector of costs, $c = (c_1, ..., c_n)$

Game with non-observed

A Patrolling game with random attackers, $G=G(Q, \boldsymbol{X}, \boldsymbol{\lambda}, \boldsymbol{c})$ is made of 4 major components

- A Graph, Q = (N, E), made of nodes, N (|N| = n), and a set of edges, E.
- A vector of attack times, $X = (X_1, ..., X_n)$.
- A vector of arrival rates, $\lambda = (\lambda_1, ..., \lambda_n)$.
- A vector of costs, $c = (c_1, ..., c_n)$

The game is played over an infinite time horizon, $\mathcal{T}=0,1,...$ A patroller's policy in the game is a walk (with waiting) on the graph,

$$W: \mathcal{T} \to N$$

A deterministic, stationary policy, π is a subset of all the possible walks, we will focus on these types of policies [DO I NEED A REASON ???]