PRIMER PARCIAL	Física 2		08/04/2015					
Apellido:	Nombres:	1	2	3	4	5	Nota	
Matrícula:								
Hojas entregadas (con ésta):								

- 1) En la figura adjunta se muestra un arreglo formado por dos esferas dieléctricas: la izquierda es sólida y está cargada con $\rho>0$ mientras que la derecha es hueca pero se desconoce su σ .
- a) Calcular la relación entre ρ y σ para que en el punto "a" el *Campo Eléctrico <u>neto</u>* no tenga componente horizontal.
- b) Con la condición hallada en a) calcular el *Potencial absoluto* en el punto "b".

- 2) Sea un capacitor de placas paralelas horizontales de áreas "A" separadas una distancia "d" ($d^2 << A$), construido de forma tal que el volumen contenido por las placas permite contener un líquido dieléctrico homogéneo e isotrópico de permitividad " ϵ " (ver gráfico de abajo, parte izquierda). Suponiendo: que éste líquido ocupa la mitad del volumen interno, que el resto del volumen es ocupado por aire (" ϵ_0 "), que el capacitor se carga con una carga de valor "Q" y que luego queda aislado:
- a) calcular la capacidad eléctrica del dispositivo y la diferencia de potencial entre sus placas.
- b) calcular nuevamente la diferencia de potencial entre las placas si este capacitor se lo rota 90° como se indica en la derecha del gráfico. Explique el resultado obtenido.

- 3) En la derecha se muestra una silueta construida a partir de una varilla de material dieléctrico cargada uniformemente con λ >0. Los tramos semicirculares tienen radios "R" y "2R" respectivamente.
- a) Calcular el *Campo Eléctrico* en el punto "p", localizado en el centro de los semicírculos.
- b) Calcular el potencial en ese mismo punto.

4) Ley de Gauss: escriba su ecuación integral con todo detalle matemático y explique su significado físico. Nota: que su explicación sea lo que físicamente se entiende por Ley de Gauss, más que una descripción literal de la ecuación.

- 5) Cuestiones teóricas para responder brevemente (y en la misma hoja).
- a) Prediga como será \vec{F} en dirección y sentido, en el punto medio situado entre las varillas dieléctricas.

b) Encuentre el punto del espacio sobre la línea de puntos en que el *Potencial Eléctrico* es nulo debido a las dos cargas –q y +2q:

c) Trace el diagrama de líneas de fuerza de *Campo Eléctrico* y su correspondiente mapa de *Potencial Eléctrico* para el caso de dos esferas conductoras concéntricas cargadas como se muestra a continuación:

d) La figura de más abajo muestra una línea infinita cargada positivamente con una densidad lineal homogénea y constante " $\lambda>0$ ". Se quiere calcular el trabajo por unidad de carga para desplazarse desde el punto "A" al punto "B". ¿Por cual de los tres caminos será menor? ¿Por que?

