

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Курс «Методы машинного обучения»

Отчет по лабораторной работе №7: «Алгоритмы Actor-Critic»

Выполнила:

студентка группы ИУ5-24М

Мащенко Е. И.

Проверил:

Балашов А.М.

Цель работы

Ознакомление с базовыми методами обучения с подкреплением на основе алгоритмов Actor-Critic.

Задание

Реализуйте любой алгоритм семейства Actor-Critic для произвольной среды.

Выполнение работы

Для реализации алгоритма Actor-Critic была выбрана среда обучения с подкреплением Acrobot из библиотеки Gym.

Среда Acrobot состоит из двух звеньев, соединенных в цепь, один конец которой закреплен. Соединение между двумя звеньями приводится в действие. Цель состоит в том, чтобы приложить крутящий момент к приводимому в действие шарниру, чтобы поднять свободный конец цепи выше заданной высоты, начиная с исходного состояния:

Пространство действий представляет собой крутящий момент, приложенный к приводимому в действие соединению между двумя звеньями:

Num	Action	Unit
0	apply -1 torque to the actuated joint	torque (N m)
1	apply 0 torque to the actuated joint	torque (N m)
2	apply 1 torque to the actuated joint	torque (N m)

Пространство состояний представляет собой матрицу ndarray (6,), которая предоставляет информацию о двух углах соединения при вращении, а также об их угловых скоростях:

Num	Observation	Min	Max
0	Cosine of theta1	-1	1
1	Sine of theta1	-1	1
2	Cosine of theta2	-1	1
3	Sine of theta2	-1	1
4	Angular velocity of theta1	~ -12.567 (-4 * pi)	~ 12.567 (4 * pi)
5	Angular velocity of theta2	~ -28.274 (-9 * pi)	~ 28.274 (9 * pi)

Лабораторная работа №7

```
B [1]: ▶ ! pip install gymnasium
                            import gymnasium as gym
import numpy as np
                            from itertools import count
                            from collections import namedtuple
                           import torch.nn as nn
                            import torch.nn.functional as F
                           import torch.optim as optim
from torch.distributions import Categorical
                            WARNING: You are using pip version 20.1.1; however, version 23.1.2 is available.

You should consider upgrading via the 'c:\user\uper\appdata\local\programs\python\python38\python.exe -m pip install --upgr
                            Requirement already satisfied: gymnasium in c:\users\user\appdata\local\programs\python\python38\lib\site-packages (0.28.1) Requirement already satisfied: farama-notifications>=0.0.1 in c:\users\user\appdata\local\programs\python\python38\lib\site-packages (0.28.1)
                            packages (from gymnasium) (0.0.4)
Requirement already satisfied: jax-jumpy>=1.0.0 in c:\users\user\appdata\local\programs\python\python38\lib\site-packages (f
                            rom gymnasium) (1.0.0)
                            Requirement already satisfied: importlib-metadata>=4.8.0; python_version < "3.10" in c:\users\user\appdata\local\programs\py
                            thon\python38\lib\site-packages (from gymnasium) (6.6.0)

Requirement already satisfied: numpy>=1.21.0 in c:\users\user\appdata\local\programs\python\python38\lib\site-packages (from
                            \label{eq:gymnasium} \begin{tabular}{ll} $gymnasium & (1.24.3) \\ Requirement already satisfied: $cloudpickle>=1.2.0 in $c:\langle properties | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.24.3) | (1.2
                            (from gymnasium) (1.3.0)
                            Requirement already satisfied: typing-extensions>=4.3.0 in c:\users\user\appdata\local\programs\python\python38\lib\site-pac
                            kages (from gymnasium) (4.6.3)
Requirement already satisfied: zipp>=0.5 in c:\users\user\appdata\local\programs\python\python38\lib\site-packages (from imp ortlib-metadata>=4.8.0; python_version < "3.10"->gymnasium) (3.15.0)
B [2]: ▶ !pip install pygame
                           import os
os.environ['SDL_VIDEODRIVER']='dummy'
                           pygame.display.set_mode((640,480))
                            Requirement already satisfied: pygame in c:\users\user\appdata\local\programs\python\python38\lib\site-packages (2.4.0)
                           WARNING: You are using pip version 20.1.1; however, version 23.1.2 is available.

You should consider upgrading via the 'c:\users\user\appdata\local\programs\python\python38\python.exe -m pip install --upgrade pip' command.
       Out[2]: <Surface(640x480x32 SW)>
```

```
B [3]: M
# Cart Pole
               CONST_ENV_NAME = 'Acrobot-v1'
               env = gym.make(CONST_ENV_NAME)
GAMMA = 0.99
               SavedAction = namedtuple('SavedAction', ['log_prob', 'value'])
 B [4]: H class Policy(nn.Module):
                  def __init__(self):
    super(Policy, self).__init__()
    self.affine1 = nn.Linear(6, 128)
                     # actor's Laver
                    self.action_head = nn.Linear(128, 3)
                    # critic's layer
self.value_head = nn.Linear(128, 1)
                    # action & reward buffer
                    self.saved_actions = []
                    self.rewards = []
                  def forward(self, x):
    x = F.relu(self.affine1(x))
                     # actor: choses action to take from state s_t
                    # by returning probability of each action
action_prob = F.softmax(self.action_head(x), dim=-1)
                     # critic: evaluates being in the state s t
                    state_values = self.value_head(x)
                    # return values for both actor and critic as a tuple of 2 values: # 1. a list with the probability of each action over the action space # 2. the value from state s\_t
                    return action_prob, state_values
 B [5]: M model = Policy()
optimizer = optim.AdamW(model.parameters(), lr=1e-3)
                eps = np.finfo(np.float32).eps.item()
# create a categorical distribution over the list of probabilities of actions
                m = Categorical(probs)
                 # and sample an action using the distribution
                action = m.sample()
                 # save to action buffer
                 model.saved_actions.append(SavedAction(m.log_prob(action), state_value))
                 # the action to take (left or right)
                return action.item()
B [7]: M def finish_episode():
                 Training code. Calculates actor and critic loss and performs backprop.
                 R = 0
                saved_actions = model.saved_actions
policy_losses = [] # list to save actor (policy) loss
value_losses = [] # list to save critic (value) loss
returns = [] # list to save the true values
                # calculate the true value using rewards returned from the environment
for r in model.rewards[::-1]:
    # calculate the discounted value
    R = r + GAMMA * R
                   returns.insert(0, R)
                 returns = torch.tensor(returns)
                 returns = (returns - returns.mean()) / (returns.std() + eps)
```

```
for (log_prob, value), R in zip(saved_actions, returns):
    advantage = R - value.item()

# calculate actor (policy) loss
policy_losses.append(-log_prob * advantage)

# calculate critic (value) loss using L1 smooth loss
value_losses.append(F.smooth_l1_loss(value, torch.tensor([R])))

# reset gradients
optimizer.zero_grad()

# sum up all the values of policy_losses and value_losses
loss = torch.stack(policy_losses).sum() + torch.stack(value_losses).sum()

# perform backprop
loss.backward()
optimizer.step()

# reset rewards and action buffer
del model.rewards[:]
del model.saved_actions[:]
```

```
B [8]: | running_reward = -500
                # run infinitely many episodes
                for i_episode in count(1):
                  #print(running_reward)
# reset environment and episode reward
                  state, _ = env.reset()
ep_reward = 0
                  # for each episode, only run 9999 steps so that we don't
# infinite loop while learning
                  for t in range(1, 99999):
    # select action from policy
                     action = select_action(state)
                     # take the action
                     state, reward, done, truncated , _ = env.step(action)
                     model.rewards.append(reward)
                     ep_reward += reward
                     if done or truncated:
                        break
                  print(ep_reward)
                   # update cumulative reward
                  running_reward = 0.05 * ep_reward + (1 - 0.05) * running_reward
# perform backprop
                   finish_episode()
                   # log results
                  if i_episode % 10 == 0:
                  if i_episode % 10 == 0:
    print(f"Episode {i_episode}\tLast reward: {ep_reward:.2f}\tAverage reward: {running_reward:.2f}")
# check if we have "solved" the cart pole problem
if running_reward > env.spec.reward_threshold*2:
    print(f"Solved! Running reward is now {running_reward} and the last episode runs to {t} time steps!")
                     break
                env2 = gym.make(CONST_ENV_NAME, render_mode='human')
               # reset environment and episode reward
state, _ = env2.reset()
ep_reward = 0
                # for each episode, only run 9999 steps so that we don't
               # infinite loop while learning
for t in range(1, 10000):
# select action from policy
                  action = select action(state)
                     take the action
                  state, reward, done, _, _ = env2.step(action)
model.rewards.append(reward)
                 ep_reward += reward
if done:
                    break
              Episode 2870
                                     Last reward: -203.00 Average reward: -209.34
               -173.0
               -151.0
               -244.0
               -161.0
               -150.0
               -172.0
               -220.0
               -365.0
               -177.0
               -181.0
```

Last reward: -181.00 Average reward: -206.40

Solved! Running reward is now -199.18003893689894 and the last episode runs to 127 time steps!

Episode 2880

-139.0 -126.0