Отбор признаков

Виктор Китов

victorkitov.github.io

Победитель конкурса VK среди курсов по IT

Курс поддержан фондом 'Интеллект'

Задача отбора признаков

- Отбор признаков (feature selection) выделение подмножества исходных признаков.
- Снижение размерности (dimensionality reduction) преобразование исходных признаков в пространство меньшей размерности.

Комментарии

- Применения отбора признаков:
 - ↑ точности прогнозов (убираем шумовые признаки)
 - ↑ вычислительной эффективности
 - ↑ интерпретируемости моделей
 - ↑ стабильности оценок параметров (лин. регрессия)
 - ↓ стоимости сбора данных (признаки оплачиваются!)
- Какие методы умеют самостоятельно отбирать признаки?

Встроенный отбор признаков

• линейная/нелинейная регрессия/классификация с L_1 регуляризацией

$$L(\mathbf{w}) \to L(\mathbf{w}) + \lambda ||\mathbf{w}||_1 = L(\mathbf{w}) + \lambda \sum_{i=1}^{I} |w_i|$$

$$L(\mathbf{w}) + \lambda R(\mathbf{w}) \to \min_{\mathbf{w}} \iff \begin{cases} L(\mathbf{w}) \to \min_{\mathbf{w}} \\ R(\mathbf{w}) \le \gamma \end{cases}$$

Оптимизация при L2 регуляризации

Оптимизация при L1 регуляризации

Встроенный отбор признаков

- решающие деревья и их ансамбли (бэггинг, RF, ERT, бустинг)
 - неинформативные признаки не выберутся
- orthogonal matching pursuit регрессия
 - жадное наращивание признаков, максимально скоррелированных с ошибкой прогноза

Типы признаков¹

f-признак, $G=\{f_1,f_2,...f_D\}$ -полный набор, $\tilde{G}=G\backslash\{f\}$.

• Сильно релевантный признак:

$$p(y|f, \tilde{G}) \neq p(y|\tilde{G})$$

• Слабо релевантный признак:

$$p(y|f,\tilde{G})=p(y|\tilde{G}), \text{ no } \exists S\subset \tilde{G}: \ p(y|f,S)
eq p(y|S)$$

• Нерелевантный признак:

$$\forall S \subset \tilde{G} : p(y|f,S) = p(y|S)$$

¹Приведите примеры признаков каждого типа.

Типы признаков¹

f-признак, $G=\{f_1,f_2,...f_D\}$ -полный набор, $\tilde{G}=G\backslash\{f\}$.

• Сильно релевантный признак:

$$p(y|f, \tilde{G}) \neq p(y|\tilde{G})$$

• Слабо релевантный признак:

$$p(y|f,\tilde{G})=p(y|\tilde{G}), \text{ no } \exists S\subset \tilde{G}: \ p(y|f,S)
eq p(y|S)$$

• Нерелевантный признак:

$$\forall S \subset \tilde{G} : p(y|f,S) = p(y|S)$$

Цель отбора признаков

Найти минимальный $G'\subset G$ такой, что $P(y|G')\approx P(y|G)$, т.е. оставить только сильно релевантные и минимальный набор слабо релевантных признаков.

 $^{^{1}}$ Приведите примеры признаков каждого типа.

Категоризация методов отбора признаков

Полнота перебора вариантов:

- Полный перебор: сложность $O(2^D)^2$
- Субоптимальный перебор: нет гарантии на глобальный оптимум
 - детерминированные
 - случайные (детерминированные со случайностью / полностью случайные)

Взаимосвязь с методом прогнозирования:

- независимые (filter methods)
- ullet использующие метод прогнозирования и ${\mathcal L}$ (wrapper methods)
- интегрированные в метод прогнозирования (embedded methods)

 $^{^{2}}$ метод ветвей и границ не перебирает все варианты (при некоторых предположениях на S(U)), но сложность все равно ${\cal O}(2^{D})$

Содержание

- Расчет важности признаков
 - Внешние оценки значимости признаков
 - Оценки значимости признаков по модели
- Методы поиска набора признаков

Расчет важности признаков

- Оценим значимости каждого признака $I(f_1), I(f_2), ... I(f_D)$.
- Далее можем:
 - отбирать признаки по значимости
 - ullet учитывать все признаки, но в разной степени, в зависимости от $I(\cdot)^3$.

³ Как контролировать вклад признаков в прогноз для K-NN, линейных моделей, случайного леса?

Отбор признаков по значимости

• Упорядочим признаки по значимости I(f):

$$I(f_1) \ge I(f_2) \ge \dots \ge I(f_D)$$

ullet выбрать топ m

$$\hat{F} = \{f_1, f_2, ... f_m\}$$

- ullet выбрать по порогу: $f_i:\ I(f_i) \geq threshold$
- выбрать лучший набор из:

$$U = \{\{f_1\}, \{f_1, f_2\}, ... \{f_1, f_2, ... f_D\}\}\$$

$$\hat{F} = \arg\max_{F \in U} S(F)$$

- Комментарии:
 - легко реализовать, вычислительно простые методы
 - будет включено много слабо релевантных зависимых признаков

Внешние оценки значимости признаков

- 1 Расчет важности признаков
 - Внешние оценки значимости признаков
 - Оценки значимости признаков по модели

Корреляция Пирсона

• Регрессия или бинарная классификация:

$$I(f) = \frac{\sum_{i} (f_i - \bar{f})(y_i - \bar{y})}{\left[\sum_{i} (f_i - \bar{f})^2 \sum_{i} (y_i - \bar{y})^2\right]^{1/2}} = \frac{a}{b}$$

• Многоклассовая классификация:

$$I(f) = \frac{1}{C} \sum_{c=1}^{C} \frac{a_c}{b_c}, \quad I(f) = \max_{c} \left\{ \frac{a_c}{b_c} \right\}$$

- Свойства корреляции Пирсона:
 - легко вычисляется
 - выделяет только линейную зависимость
 - ullet корреляцияeqпричинно-следственная связь.

Выделение только линейной зависимости

• Корреляция Пирсона выделяет только лин. зависимость:

- Рассмотрим сл. признак f с симметричной (четной) плотностью распределения.
 - ullet тогда $\mathbb{E} f = 0,\, \mathbb{E} f^3 = 0$
 - ullet f и $y=f^2$ зависимы, но $\mathrm{corr}(f,y)=0!$

Выделение монотонных зависимостей

• Рассмотрим наблюдения сл. величин:

$$X = (X_1, X_2, ... X_N), \quad Y = (Y_1, Y_2, ... Y_N)$$

• Заменим значения их рангами (ранговое кодирование):

$$X \to R(X), \quad Y \to R(Y)$$

IQ, X_i	Hours of TV per week, $Y_i $	$\operatorname{rank} x_i ullet$	$\operatorname{rank} y_i \blacklozenge $
86	2	1	1
97	20	2	6
99	28	3	8
100	27	4	7
101	50	5	10
103	29	6	9
106	7	7	3
110	17	8	5
112	6	9	2
113	12	10	4

13/61

Ранговая корреляция Спирмена

• Ранговая корреляция Спирмена:

$$corr_{Spearman}(X, Y) = corr(R(X), R(Y))$$

- Рассмотрим $X = [0, 0.01, 0.02, ...1], Y = X^{\alpha}$.
- Существует монотонная зависимость между X и Y, но корреляция \downarrow при $\alpha \uparrow$:

• При этом

$$corr_{Spearman}(X, Y) = corr([1, 2, ...], [1, 2, ...]) = 1$$

Ранговая корреляция Кендалла

- Ранговая корреляция Кендалла:
 - согласующиеся пары (concordant pairs) $C = \{[(X_i,Y_i),(X_j,Y_j)]: (X_j-X_i)\,(Y_j-Y_i)>0\}$
 - несогласующиеся пары (discordant pairs) $D = \{[(X_i,Y_i),(X_j,Y_j)]: (X_j-X_i)\,(Y_j-Y_i) < 0\}$

$$\operatorname{corr}_{Kendall}(X,Y) = \frac{|C| - |D|}{\binom{N}{2}}$$

- Вместо самой корреляции можно судить о значимости признака по $p\left(\mathrm{corr}\left(X,Y\right)=0\right)$.
 - это уровень значимости теста с H_0 : corr(X,Y) = 0

Определения

• **Энтропия** сл. величины Y:

$$H(Y) := -\sum_{y} p(y) \ln p(y)$$

• Условная энтропия Y при условии сл. величины X:

$$H(Y|X) := -\sum_x p(x) \sum_y p(y|x) \ln p(y|x)$$

- Расстояние Кульбака-Лейблера между распределениями:
 - дискретные исходы, P(x), Q(x) вероятности исхода x:

$$KL(P||Q) := \sum_{x} P(x) \ln \frac{P(x)}{Q(x)}$$

• непрерывные исходы, p(x), q(x) - плотности вероятности:

$$KL(p||q) = \int p(x) \ln \frac{p(x)}{q(x)} dx$$

Взаимная информация

Взаимная информация измеряет насколько много общей информации между сл. вел. X и Y:

$$MI(X,Y) := \sum_{x,y} p(x,y) \ln \left[\frac{p(x,y)}{p(x)p(y)} \right] = KL\left(p(x,y) || p(x)p(y) \right)$$

Свойства:

- MI(X,Y) = MI(Y,X)
- $MI(X,Y) = KL(p(x,y)||p(x)p(y)) \ge 0$
- ullet X,Y- независимы <=> MI(X,Y)=0
- MI(X,Y) = H(Y) H(Y|X)
- $MI(X,Y) \le \min\{H(X),H(Y)\}$
- ullet X однозначно определяет Y=>MI(X,Y)=H(Y)< H(X)

Нормированная взаимная информация

• Нормированная взаимная информация

$$NMI(X,Y) = \frac{MI(X,Y)}{H(Y)} \in [0,1]$$

- NMI(X,Y)=0 при независимости X и Y.
- \bullet NMI(X,Y)=1, когда X однозначно определяет Y.
- Свойства MI и NMI:
 - выделяют зависимости любого вида
 - ullet требуют оценки p(X), p(Y) и p(X,Y).

Важность в задаче классификации

О взаимосвязи признака f и y можно судить по

$$\rho\left(p(f|y=i),p(f|y=j)\right)$$

пример:
$$\int |p(f|y=1) - p(f|y=0)| df$$

Метрическая оценка I(f): relief критерий для 1-NN

ВХОД:

Обучающая выборка $(x_1,y_1),(x_2,y_2),...(x_N,y_N)$ Функция расстояния $\rho(x,x')$ # обычно Евклидова

для каждого объекта x_n, y_n :

найти ближайшего соседа $x_{s(n)}$ своего класса y_n найти ближайшего соседа $x_{d(n)}$ чужого класса $\neq y_n$

для каждого признака $f_i \in \{f_1, f_2, ... f_D\}$:

рассчитать значимость
$$I(f_i) = \frac{1}{N} \sum_{n=1}^N \frac{|x_n^i - x_{d(n)}^i|}{|x_n^i - x_{d(n)}^i|}$$

выхол:

значимости признаков $I(f_1),...I(f_D)$

Метрическая оценка I(f): relief критерий для K-NN

ВХОД:

Обучающая выборка $(x_1,y_1),(x_2,y_2),...(x_N,y_N)$ Функция расстояния $\rho(x,x')$ # обычно Евклидова Число соседей K

для каждого объекта x_n, y_n :

найти K ближайших соседей своего класса y_n :

$$x_{s(n,1)}, x_{s(n,2)}, ... x_{s(n,K)}$$

найти K ближайших соседей чужого класса $\neq y_n$:

$$x_{d(n,1)}, x_{d(n,2)}, ... x_{d(n,K)}$$

для каждого признака $f_i \in \{f_1, f_2, ... f_D\}$:

рассчитать значимость
$$I(f_i) = \frac{1}{N} \sum_{n=1}^N \sum_{k=1}^K \frac{|x_n^i - x_{d(n,k)}^i|}{|x_n^i - x_{s(n,k)}^i|}$$

выход:

значимости признаков $I(f_1),...I(f_D)$

- 1 Расчет важности признаков
 - Внешние оценки значимости признаков
 - Оценки значимости признаков по модели

Важность признаков по линейной модели

- ullet В линейных моделях важность x^i можно считать по $|w_i|$.
 - при условии, что признаки приведены к единой шкале
 - clf.coef_ в scikit-learn
- Учитывает линейную зависимость, как корреляция.

Важность признаков: mean decrease in impurity

- Важность признаков по изменению критерия информативности (mean decrease in impurity, MDI).
 - ullet рассмотрим признак f
 - пусть T(f)-множество всех вершин, использующих f в функции ветвления
 - эффективность разбиения в t:

$$\Delta\phi(t) = \phi(t) - \frac{n(t_L)}{n(t)}\phi(t_L) - \frac{n(t_R)}{n(t)}\phi(t_R)$$

ullet значимость f:

$$\frac{1}{N} \sum_{t \in T(f)} N(t) \Delta \phi(t)$$

 Поощряет признаки с большим количеством уникальных значений.

Важность признаков: mean decrease in impurity

B sklearn: model.feature_importances_

- доступен для композиций деревьев: RF, ERT, boosting.
- недостатки:
 - вычисляется на обучающей выборке
 - если модель переобучается на признаке, важность высока, но вклад в точность прогнозов мал.

Permutation feature importance (PMI)

- Важность признаков по изменению критерия качества (permutation feature importance, PMI)
- Важность: разница/отношение качества прогнозов на:
 - исходной выборке
 - $oldsymbol{2}$ исходной выборке, где значения j-го признака перемешаны

$$L(X^j,Y)-L(X,Y)$$
 либо $\dfrac{L(X^j,Y)}{L(X,Y)}$

Применение PMI

- Значение рандомизированное => пересчитать несколько раз и усреднить.
- Стат. значимость: 95% доверит. интервал не содержит
 - 0 для $L(X^{j},Y) L(X,Y)$
 - 1 для $L(X^j,Y)/L(X,Y)$
- Высокая важность на валидации => признак усиливает обобщающую способность модели
- Высокая важность на обучении, но низкая на валидации
 на заданном признаке модель переобучается

Особенность РМІ

- ullet Показывает важность для заданных $\widehat{y}=f(x),\; \mathcal{L}(\widehat{y},y).$
 - для плохой модели важный признак может оказаться неважным!
- Если признаки <u>скоррелированы</u>, то при перемешивании одного признака модель имеет доступ к информации через другой
 - поэтому важность скоррелированных признаков занижена
 - исключать скоррелированные признаки синхронно.

Содержание

- Расчет важности признаков
- 2 Методы поиска набора признаков
 - Метод последовательной модификации набора признаков
 - Лучевой поиск (beam search)
 - Генетические алгоритмы

Поиск набора признаков

- Рассмотрим субоптимальные методы поиска подмножества признаков
 - ullet вместо полного перебора со сложностью $O(2^D)$
- ullet Пусть S(U) -критерий качества набора признаков U.
 - ullet например, точность модели на U
 - либо качество работы на U+штраф за сложность.
 - информационные критерии⁴:

$$AIC = 2K - 2\log P(Y|X)$$

$$BIC = K \ln N - 2\log P(Y|X)$$

⁴Это меры качества или потерь?

- 2 Методы поиска набора признаков
 - Метод последовательной модификации набора признаков
 - Лучевой поиск (beam search)
 - Генетические алгоритмы

Метод последовательного включения признаков

- Метод последовательного включения признаков (sequential) forward selection) реализует последовательное жадное добавление признаков один за другим, максимально увеличивающие S(U).
- BXOД:
 - ullet максимальное #признаков K
 - ullet критерий качества S(U) для наборов признаков U
- ВЫХОД:
 - локально оптимальный набор U, |U| < K.

Метод последовательного включения признаков

Алгоритм жадного добавления признаков:

- ullet инициализируем: $U = \{\}$
- пока $|U| \le K 1$:
 - $f^* = \arg \max_{f \in F \setminus S} S(U \cup \{f\})$
 - если $S(U \cup \{f^*\}) < S(U)$: выход
 - $\bullet \ \ U = U \cup \{f^*\}$
- ullet вернуть U

Сложность $O(D\,|U|)$ без учета сложности расчета S(U). Не добавляет слабо релевантные признаки.

Модификации алгоритма

Модификации алгоритма:

- последовательное исключение признаков (sequential backward selection)⁵
- последовательное включение лучшей группы из $\leq p$ признаков
- последовательное исключение худшей группы из $\leq p$ признаков
- композиция подходов добавления/удаления:
 - на каждом шаге пробовать удалить или добавить, что лучше (аналог GD)
 - на каждом шаге добавить, потом циклически удалять, пока приводит к $\uparrow S(U)$

⁵Что вычислительно эффективнее? Последовательное включения или исключения, если только 50% признаков релевантны?

Отбор признаков - Виктор Китов Методы поиска набора признаков Лучевой поиск (beam search)

- 2 Методы поиска набора признаков
 - Метод последовательной модификации набора признаков
 - Лучевой поиск (beam search)
 - Генетические алгоритмы

Лучевой поиск

- Лучевой поиск (beam search): при последовательном добавлении будем сохранять не один, а K лучших вариантов.
 - реализует жадный поиск в ширину (breadth first)
- Аналогично возможны обобщения последовательного исключения.

Принцип неоконченных решений Габора

Принимая решение, следует оставлять свободу выбора последующих решений.

Комментарии

- Оптимизация: перебирать только признаки с максимальной информативностью.
- Для реализации нужна очередь с приоритетом (priority queue) с методами
 - push(elements, scores): загрузить варианты с их оценками качества
 - getKbest(K): выгрузить K лучших вариантов
- Сложность и полнота перебора:
 - Предположим, коэффициент ветвления B постоянный, а древо поиска сбалансированное глубины D.
 - Тогда сложность поиска O(KBD).
 - При достаточно большом K ($K \ge B^{D-1}$) превращается в полный перебор.

- Метод последовательной модификации набора признаков
- Лучевой поиск (beam search)
- Генетические алгоритмы

Генетические алгоритмы

- Каждый набор признаков $U = \{f_{i(1)}, f_{i(2)}, ... f_{i(K)}\}$ кодируется бинарным вектором $b = [b_1, b_2, ... b_D]$, где $b_i = \mathbb{I}[f_i \in U]$
- Жадное добавление/исключение работает быстро, но как аналог GD сходится к локальному оптимуму.
- ullet Полный перебор сложность $O(2^D)$.
 - Как увеличить широту перебора, не скатываясь к полному перебору?

Генетические алгоритмы

- Каждый набор признаков $U = \{f_{i(1)}, f_{i(2)}, ... f_{i(K)}\}$ кодируется бинарным вектором $b = [b_1, b_2, ... b_D]$, где $b_i = \mathbb{I}[f_i \in U]$
- Жадное добавление/исключение работает быстро, но как аналог GD сходится к локальному оптимуму.
- Полный перебор сложность $O(2^D)$.
 - Как увеличить широту перебора, не скатываясь к полному перебору?

Гипотеза составного решения (building block hypothesis)

Хорошее решение состоит из комбинации других хороших решений.

• Генетические алгоритмы осуществляют поиск, комбинируя хорошие решения.

Операции скрещивания и мутации

Генетические алгоритмы Операции скрещивания и мутации⁶

- $mutation(b^1)=b$, где $b_i=\begin{cases} b_i^1 & \text{с вероятностью }1-\alpha\\ \neg b_i^1 & \text{с вероятностью }\alpha\end{cases},\ \alpha\in(0,1),\ \alpha\approx0$
- $crossover(b^1,b^2) = b$, где

uniform crossover:
$$b_i = egin{cases} b_i^1 & \text{c} \text{ вероятностью } \frac{1}{2} \\ b_i^2 & \text{иначе} \end{cases}$$

single point crossover:
$$b_i = \begin{cases} b_i^1 & i \leq i^* \\ b_i^2 & i > i^* \end{cases}$$
, i^* случайно

• Биологическая аналогия: модификации генетических цепочек.

⁶ Какая модификация этих операций приведет к аналогу градиентного подъема?

Генетический алгоритм

```
ВХОД:
```

размер популяции B и расширенной популяции B' параметры мутации и скрещивания макс. число итераций T, мин. изменение качества ΔS

АЛГОРИТМ:

сгенерировать B наборов признаков $U_1,U_2,...U_B$ случайно. инициализировать t=0 , $P^0=\{S_1,S_2,...S_B\}$, $S^0=\max_{U\in P^0}S(U)$

пока
$$t <= T$$
 и $S^t - S^{t-1} > \Delta S$:
$$t = t+1$$
 мутировать и скрещивать наборы из P^{t-1} :
$$U_1', U_2', ... U_{B'}' = \operatorname{modify}(P^{t-1}|\theta)$$
 упорядочить наборы по убыванию качества:
$$S(U_{i(1)}^t) \geq S(U_{i(2)}^t) \geq ... S(U_{i(B')}^t)$$
 загрузить в следующую популяцию B лучших наборов:
$$P^t = \{U_{i(1)}', U_{i(2)}', ... U_{i(B)}'\}$$
 оценить качество по лучшему набору $S^t = \max_{U \in P^t} S(U)$

ВЫХОД: лучший набор признаков $\hat{U} = \arg\max_{U \in P^t} S(U)$

Отбор признаков - Виктор Китов Методы поиска набора признаков Генетические алгоритмы

Улучшения генетического алгоритма

- Добавлять и случайные наборы: иначе вырождение популяции!
- Ускорение: мутация с $p \propto I(f)$.
- Удлинить процесс оптимизации:
 - прерывать процесс только если нет улучшения несколько итераций подряд.
 - при стагнации ↑ вероятность мутации
- Бережнее изменять хорошие наборы/признаки:
 - ullet дополнять P^t лучшими наборами из P^{t-1} .
 - \downarrow вероятность мутации для хороших признаков (часто встречающиеся в наборах P^{t-1}).
 - \uparrow вероятность мутации для плохих признаков (редко встречающиеся в наборах P^{t-1}).
- Увеличить широту поиска:
 - ullet скрещивание между > 2 наборами
 - вести несколько популяций из разных начальных условий, скрещивание лучших представителей между популяциями.

Генетические алгоритмы

Важность признаков в контексте

Признаки могут влиять на y не по отдельности, а совместно:

$$p(y|x^1) = p(y), \quad p(y|x^2) = p(y)$$

$$p(y|x^1, x^2) \neq p(y)$$

Определение признаков, влияющих в контексте

Какие из методов могут определять признаки, влияющие в контексте?

- \bullet $corr(x^1, y)$, $corr(x^1, y)$
- $\bullet \ MI(x^1,y), \ MI(x^1,y)$
- $MI([x^1, x^2], y)$
- критерий relief
- последовательное включение одного признака
- последовательное исключение одного признака
- важности признаков по дереву
 - дерево с ранней остановкой
 - дерево с обрезкой [prunning]

Заключение

- Отбор признаков позволяет быстрее настраивать модели.
 - модели точнее, если много шумовых признаков
- Предпочтение методам со встроенным отбором признаков.
- Методы отбора признаков, упорядоченные по сложности:
 - отбирать признаки по значимости
 - последовательное включение/исключение 1 признака
 - последовательное включение/исключение группы признаков
 - ullet лучевой поиск с поддержкой K лучших групп признаков
 - генетический алгоритм генерации наборов
 - полный перебор
- Последовательное включение/исключение, лучевой поиск, генетический алгоритм применимы и для др. задач дискретной оптимизации (например подбор архитектуры нейросети).