Solution to Practice 3s

B1(a) Let $A = \begin{bmatrix} 1 & -5 \\ 1 & -3 \end{bmatrix}$. First we need to find the eigenvalues for A, and to do that we need to compute the characteristic polynomial det $(A - \lambda I)$:

$$\det (A - \lambda I) = \det \begin{bmatrix} 1 - \lambda & -5 \\ 1 & -3 - \lambda \end{bmatrix}$$
$$= (1 - \lambda)(-3 - \lambda) + 5$$
$$= -3 - \lambda + 3\lambda + \lambda^2 + 5$$
$$= 2 + 2\lambda + \lambda^2$$

We can use the quadratic formula to find the roots of this equation:

$$\lambda = \frac{-2 \pm \sqrt{4 - 4(1)(2)}}{2(1)} = \frac{-2 \pm \sqrt{-4}}{2} = -1 \pm i$$

This means that the eigenvalues for A are $\lambda=-1+i$ and $\overline{\lambda}=-1-i$, and thus that $D=\begin{bmatrix} -1+i & 0 \\ 0 & -1-i \end{bmatrix}$, and that $\begin{bmatrix} -1 & 1 \\ -1 & -1 \end{bmatrix}$ is a real canonical form for A

To find a change of coordinates matrix P that brings A into real canonical form, we need to find an eigenvector for one of our eigenvalues, say $\lambda = -1 + i$. To do this, we will go ahead and find the eigenspace for -1+i, by finding the nullspace for $\begin{bmatrix} 1-(-1+i) & -5 \\ 1 & -3-(-1+i) \end{bmatrix} = \begin{bmatrix} 2-i & -5 \\ 1 & -2-i \end{bmatrix}$. And we do this by row reducing our matrix:

$$\left[\begin{array}{ccc} 2-i & -5 \\ 1 & -2-i \end{array}\right] \ R_1 \updownarrow R_2 \ \sim \left[\begin{array}{ccc} 1 & -2-i \\ 2-i & -5 \end{array}\right] \ R_2 + (-2+i)R_1 \ \sim \left[\begin{array}{ccc} 1 & -2-i \\ 0 & 0 \end{array}\right].$$

So the eigenvectors for -1+i satisfy the equation $z_1+(-2-i)z_2=0$, or $z_1=(2+i)z_2$. If we set $z_2=1$, then we see that $\begin{bmatrix} 2+i\\1 \end{bmatrix}=\begin{bmatrix} 2\\1 \end{bmatrix}+i\begin{bmatrix} 1\\0 \end{bmatrix}$ is an eigenvector for -1+i. This means that $P\begin{bmatrix} 2&1\\1&0 \end{bmatrix}$ is a change of coordinates matrix such that $P^{-1}AP=\begin{bmatrix} -1&1\\-1&-1 \end{bmatrix}$.

A NOTE ON DOUBLE-CHECKING YOUR WORK: An obvious way to double check your answer for this question would be to go ahead and find P^{-1} (its $\begin{bmatrix} 0 & 1 \\ 1 & -2 \end{bmatrix}$) and do the calculation $P^{-1}AP$ to verify that it does in fact equal $\begin{bmatrix} -1 & 1 \\ -1 & -1 \end{bmatrix}$. This isn't too bad in the 2 × 2 case, but even in these small

matrices we usually end up dealing with fractions, and I certainly think its a pain to find the inverse of a 3×3 matrix. Instead, I trust in the theory, but verify that I really do have the correct eigenvectors. A simple check that $A\vec{z}=\lambda\vec{z}$ is all you need, and you only need to do it for one of the complex eigenvalues (and your real eigenvalue in the 3×3 case). Even though you end up looking at complex vectors, since A only has real entries, $A\vec{z}$ is pretty easy to compute, so $\lambda\vec{z}$ is the only hard part. Obviously, you're preferences (and thoughts as to what constitutes "easy") may be different from mine.

B1(b) Let $A = \begin{bmatrix} 1 & -5 \\ 1 & 3 \end{bmatrix}$. First we need to find the eigenvalues for A, and to do that we need to compute the characteristic polynomial det $(A - \lambda I)$:

$$\det (A - \lambda I) = \det \begin{bmatrix} 1 - \lambda & -5 \\ 1 & 3 - \lambda \end{bmatrix}$$
$$= (1 - \lambda)(3 - \lambda) + 5$$
$$= 3 - \lambda - 3\lambda + \lambda^2 + 5$$
$$= 8 - 4\lambda + \lambda^2$$

We can use the quadratic formula to find the roots of this equation:

$$\lambda = \frac{4 \pm \sqrt{16 - 4(1)(8)}}{2(1)} = \frac{4 \pm \sqrt{-16}}{2} = 2 \pm 2i$$

This means that the eigenvalues for A are $\lambda=2+2i$ and $\overline{\lambda}=2-2i$, and thus that $D=\begin{bmatrix}2+2i&0\\0&2-2i\end{bmatrix}$, and that $\begin{bmatrix}2&2\\-2&2\end{bmatrix}$ is a real canonical form for A

To find a change of coordinates matrix P that brings A into real canonical form, we need to find an eigenvector for one of our eigenvalues, say $\lambda=2+2i$. To do this, we will go ahead and find the eigenspace for 2+2i, by finding the nullspace for $\begin{bmatrix} 1-(2+2i) & -5 \\ 1 & 3-(2+2i) \end{bmatrix} = \begin{bmatrix} -1-2i & -5 \\ 1 & 1-2i \end{bmatrix}$. And we do this by row reducing our matrix:

$$\left[\begin{array}{cc} -1-2i & -5 \\ 1 & 1-2i \end{array} \right] \ R_1 \updownarrow R_2 \ \sim \left[\begin{array}{cc} 1 & 1-2i \\ -1-2i & -5 \end{array} \right] \ R_2 + (1+2i)R_1 \ \sim \left[\begin{array}{cc} 1 & 1-2i \\ 0 & 0 \end{array} \right].$$

So the eigenvectors for 2+2i satisfy the equation $z_1+(1-2i)z_2=0$, or $z_1=(-1+2i)z_2$. If we set $z_2=1$, then we see that $\begin{bmatrix} -1+2i\\1 \end{bmatrix}=\begin{bmatrix} -1\\1 \end{bmatrix}+i\begin{bmatrix} 2\\0 \end{bmatrix}$ is an eigenvector for 2+2i. This means that $P\begin{bmatrix} -1&2\\1&0 \end{bmatrix}$ is a change of

coordinates matrix such that $P^{-1}AP = \begin{bmatrix} 2 & 2 \\ -2 & 2 \end{bmatrix}$.

B1(c) Let $A = \begin{bmatrix} 0 & -2 & 1 \\ 2 & 2 & -1 \\ 0 & -2 & 2 \end{bmatrix}$. First we need to find the eigenvalues for A, and to do that we need to compute the characteristic polynomial det $(A - \lambda I)$:

$$\det (A - \lambda I) = \det \begin{bmatrix} -\lambda & -2 & 1\\ 2 & 2 - \lambda & -1\\ 0 & -2 & 2 - \lambda \end{bmatrix}$$

$$= -\lambda \begin{vmatrix} 2 - \lambda & -1\\ -2 & 2 - \lambda \end{vmatrix} - 2 \begin{vmatrix} -2 & 1\\ -2 & 2 - \lambda \end{vmatrix} + 0$$

$$= -\lambda (4 - 2\lambda - 2\lambda + \lambda^2 - 2) - 2(-4 + 2\lambda + 2)$$

$$= -\lambda (2 - 4\lambda + \lambda^2) - 2(-2 + 2\lambda)$$

$$= -2\lambda + 4\lambda^2 - \lambda^3 + 4 - 4\lambda$$

$$= 4 - 6\lambda + 4\lambda^2 - \lambda^3$$

A little "guess and check" shows that $\lambda = 2$ is a root of this polynomial. If we factor out $(2 - \lambda)$, we are left with $2 - 2\lambda + \lambda^2$, and we can use the quadratic formula to find the roots of this equation:

$$\lambda = \frac{2 \pm \sqrt{4 - 4(1)(2)}}{2(1)} = \frac{2 \pm \sqrt{-4}}{2} = 1 \pm i$$

This means that the eigenvalues for A are $\mu=2,~\lambda=1+i$ and $\overline{\lambda}=1-i,$ and thus that $D=\begin{bmatrix}2&0&0\\0&1+i&0\\0&0&1-i\end{bmatrix},$ and that $\begin{bmatrix}2&0&0\\0&1&1\\0&-1&1\end{bmatrix}$ is a real canonical form for A

To find a change of coordinates matrix P that brings A into real canonical form, we need to find an eigenvector for $\mu = 2$ and for one of our eigenvalues, say $\lambda = 1 + i$. To do this, we will go ahead and find the eigenspaces.

For 2, the eigenspace is the nullspace for $\begin{bmatrix} -2 & -2 & 1 \\ 2 & 2-2 & -1 \\ 0 & -2 & 2-2 \end{bmatrix} = \begin{bmatrix} -2 & -2 & 1 \\ 2 & 0 & -1 \\ 0 & -2 & 0 \end{bmatrix}.$

And we find this by row reducing our matrix:

$$\begin{bmatrix} -2 & -2 & 1 \\ 2 & 0 & -1 \\ 0 & -2 & 0 \end{bmatrix} \sim \begin{bmatrix} 2 & 0 & -1 \\ 0 & -2 & 0 \\ -2 & -2 & 1 \end{bmatrix} \sim \begin{bmatrix} 2 & 0 - 1 \\ 0 & 1 & 0 \\ 0 & -2 & 0 \end{bmatrix} \sim \begin{bmatrix} 2 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

So the eigenvectors for $\mu = 2$ satisfy the equations $2z_1 - z_3 = 0$ and $z_2 = 0$. If we set $z_1 = 1$, then we see that $\begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$ is an eigenvector for $\mu = 2$.

For 1+i, the eigenspace is the null space for $\begin{bmatrix} -1-i & -2 & 1 \\ 2 & 2-1-i & -1 \\ 0 & -2 & 2-1-i \end{bmatrix} =$

 $\begin{bmatrix} -1-i & -2 & 1 \\ 2 & 1-i & -1 \\ 0 & -2 & 1-i \end{bmatrix}$. And we find this by row reducing our matrix:

$$\begin{bmatrix} -1-i & -2 & 1 \\ 2 & 1-i & -1 \\ 0 & -2 & 1-i \end{bmatrix} (1/2)(-1+i)R_1 \sim \begin{bmatrix} 1 & 1-i & -\frac{1}{2} + \frac{1}{2}i \\ 2 & 1-i & -1 \\ 0 & -2 & 1-i \end{bmatrix} R_2 - 2R_1$$

$$\sim \begin{bmatrix} 1 & 1-i & -\frac{1}{2} + \frac{1}{2}i \\ 0 & -1+i & -i \\ 0 & -2 & 1-i \end{bmatrix} (1/2)(-1-i)R_2 \sim \begin{bmatrix} 1 & 1-i & -\frac{1}{2} + \frac{1}{2}i \\ 0 & 1 & -\frac{1}{2} + \frac{1}{2}i \\ 0 & -2 & 1-i \end{bmatrix} \begin{bmatrix} R_1 + (-1+i)R_2 \\ R_3 + 2R_2 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 0 & -\frac{1}{2} - \frac{1}{2}i \\ 0 & 1 & -\frac{1}{2} + \frac{1}{2}i \\ 0 & 0 & 0 \end{bmatrix}$$

So the eigenvectors for 1+i satisfy the equations $z_1+(-1/2)(1+i)z_3=0$ and $z_2+(-1/2)(1-i)z_3=0$. If we set $z_3=2$, then we see that $\begin{bmatrix} 1+i\\1-i\\2 \end{bmatrix}=\begin{bmatrix} 1\\1\\2 \end{bmatrix}+i\begin{bmatrix} 1\\-1\\0 \end{bmatrix}$ is an eigenvector for 1+i.

And we now see that $P\begin{bmatrix}1&1&1\\0&1&-1\\2&2&0\end{bmatrix}$ is a change of coordinates matrix such that $P^{-1}AP=\begin{bmatrix}2&0&0\\0&1&1\\0&-1&1\end{bmatrix}$.

B1(d) Let $A = \begin{bmatrix} -1 & 2 & -2 \\ -2 & -1 & -1 \\ 4 & -2 & 5 \end{bmatrix}$. First we need to find the eigenvalues for A, and to do that we need to compute the characteristic polynomial det $(A - \lambda I)$:

$$\det (A - \lambda I) = \det \begin{bmatrix} -1 - \lambda & 2 & -2 \\ -2 & -1 - \lambda & -1 \\ 4 & -2 & 5 - \lambda \end{bmatrix}$$

$$= (-1 - \lambda) \begin{vmatrix} -1 - \lambda & -1 \\ -2 & 5 - \lambda \end{vmatrix} - 2 \begin{vmatrix} -2 & -1 \\ 4 & 5 - \lambda \end{vmatrix} - 2 \begin{vmatrix} -2 & -1 - \lambda \\ 4 & -2 \end{vmatrix}$$

$$= (-1 - \lambda)(-5 + \lambda - 5\lambda + \lambda^2 - 2) - 2(-10 + 2\lambda + 4) - 2(4 + 4 + 4\lambda)$$

$$= (-1 - \lambda)(-7 - 4\lambda + \lambda^2) - 2(-6 + 2\lambda) - 2(8 + 4\lambda)$$

$$= 7 + 4\lambda - \lambda^2 + 7\lambda + 4\lambda^2 - \lambda^3 + 12 - 4\lambda - 16 - 8\lambda$$

$$= 3 - \lambda + 3\lambda^2 - \lambda^3$$

A little "guess and check" shows that $\lambda = 3$ is a root of this polynomial. If we factor out $(3 - \lambda)$, we are left with $1 + \lambda^2$, which factors as $(i - \lambda)(-i - \lambda)$. This means that the eigenvalues for A are $\mu = 3$, $\lambda = i$ and $\overline{\lambda} = -i$, and thus that

means that the eigenvalues for
$$A$$
 are $\mu = 3$, $\lambda = i$ and $\overline{\lambda} = -i$, and thus that $D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & i & 0 \\ 0 & 0 & -i \end{bmatrix}$, and that $\begin{bmatrix} 3 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$ is a real canonical form for A

To find a change of coordinates matrix P that brings A into real canonical form, we need to find an eigenvector for $\mu=3$ and for one of our eigenvalues, say $\lambda=i$. To do this, we will go ahead and find the eigenspaces.

For 3, the eigenspace is the nullspace for $\begin{bmatrix} -1-3 & 2 & -2 \\ -2 & -1-3 & -1 \\ 4 & -2 & 5-3 \end{bmatrix} = \begin{bmatrix} -4 & 2 & -2 \\ -2 & -4 & -1 \\ 4 & -2 & 2 \end{bmatrix}.$

And we find this by row reducing our matrix:

$$\begin{bmatrix} -4 & 2 & -2 \\ -2 & -4 & -1 \\ 4 & -2 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & -\frac{1}{2} & \frac{1}{2} \\ 0 & -5 & 0 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -\frac{1}{2} & \frac{1}{2} \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

So the eigenvectors for $\mu = 3$ satisfy the equations $z_1 + (1/2)z_3 = 0$ and $z_2 = 0$.

If we set $z_3 = -2$, then we see that $\begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}$ is an eigenvector for $\mu = 2$.

For i, the eigenspace is the null space for $\begin{bmatrix} -1-i & 2 & -2 \\ -2 & -1-i & -1 \\ 4 & -2 & 5-i \end{bmatrix}$. And we

find this by row reducing our matrix:

$$\begin{bmatrix} -1-i & 2 & -2 \\ -2 & -1-i & -1 \\ 4 & -2 & 5-i \end{bmatrix} (1/2)(-1+i)R_1 \sim \begin{bmatrix} 1 & -1+i & 1-i \\ -2 & -1-i & -1 \\ 4 & -2 & 5-i \end{bmatrix} R_2 + 2R_1$$

$$\sim \begin{bmatrix}
1 & -1+i & 1-i \\
0 & -3+i & 1-2i \\
0 & 2-4i & 1+3i
\end{bmatrix} (1/10)(-3-i)R_2 \sim \begin{bmatrix}
1 & -1+i & 1-i \\
0 & 1 & -\frac{1}{2}+\frac{1}{2}i \\
0 & 2-4i & 1+3i
\end{bmatrix} R_1 + (1-i)R_2$$

$$\sim \begin{bmatrix}
1 & 0 & 1 \\
0 & 1 & -\frac{1}{2}+\frac{1}{2}i \\
0 & 0 & 0
\end{bmatrix}$$

So the eigenvectors for i satisfy the equations $z_1 + z_3 = 0$ and $z_2 + (-1/2)(1$ $i)z_3 = 0$. If we set $z_3 = 2$, then we see that $\begin{bmatrix} -2 \\ 1-i \\ 2 \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 2 \end{bmatrix} + i \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}$ is an eigenvector for i.

And we now see that $P\begin{bmatrix} 1 & -2 & 0 \\ 0 & 1 & -1 \\ -2 & 2 & 0 \end{bmatrix}$ is a change of coordinates matrix such that $P^{-1}AP = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$.

B1(e) Let $A = \begin{bmatrix} 6 & 0 & -4 \\ 0 & 1 & 1 \\ 8 & -1 & -5 \end{bmatrix}$. First we need to find the eigenvalues for A, and to do that we need to compute the characteristic polynomial det $(A - \lambda I)$:

$$\det (A - \lambda I) = \det \begin{bmatrix} 6 - \lambda & 0 & -4 \\ 0 & 1 - \lambda & 1 \\ 8 & -1 & -5 - \lambda \end{bmatrix}$$

$$= (6 - \lambda) \begin{vmatrix} 1 - \lambda & 1 \\ -1 & -5 - \lambda \end{vmatrix} + 0 + 8 \begin{vmatrix} 0 & -4 \\ 1 - \lambda & 1 \end{vmatrix}$$

$$= (6 - \lambda)(-5 - \lambda + 5\lambda + \lambda^2 + 1) + 8(4 - 4\lambda)$$

$$= (6 - \lambda)(-4 + 4\lambda + \lambda^2) + 8(4 - 4\lambda)$$

$$= -24 + 24\lambda + 6\lambda^2 + 4\lambda - 4\lambda^2 - \lambda^3 + 32 - 32\lambda$$

$$= 8 - 4\lambda + 2\lambda^2 - \lambda^3$$

A little "guess and check" shows that $\lambda = 2$ is a root of this polynomial. If we factor out $(2-\lambda)$, we are left with $4+\lambda^2$, which factors as $(2i-\lambda)(-2i-\lambda)$. This means that the eigenvalues for A are $\mu=2, \lambda=2i$ and $\overline{\lambda}=-2i$, and thus that $D=\begin{bmatrix}2&0&0\\0&2i\\0&0&-2i\end{bmatrix}$, and that $\begin{bmatrix}2&0&0\\0&0&2\\0&-2&0\end{bmatrix}$ is a real canonical form

that
$$D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2i \\ 0 & 0 & -2i \end{bmatrix}$$
, and that $\begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & -2 & 0 \end{bmatrix}$ is a real canonical form for A

To find a change of coordinates matrix P that brings A into real canonical

form, we need to find an eigenvector for $\mu = 2$ and for one of our eigenvalues, say $\lambda = 2i$. To do this, we will go ahead and find the eigenspaces.

For 2, the eigenspace is the nullspace for $\begin{bmatrix} 6-2 & 0 & -4 \\ 0 & 1-2 & 1 \\ 8 & -1 & -5-2 \end{bmatrix} = \begin{bmatrix} 4 & 0 & -4 \\ 0 & -1 & 1 \\ 8 & -1 & -7 \end{bmatrix}.$

And we find this by row reducing our matrix:

$$\begin{bmatrix} 4 & 0 & -4 \\ 0 & -1 & 1 \\ 8 & -1 & -7 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

So the eigenvectors for $\mu = 2$ satisfy the equations $z_1 - z_3 = 0$ and $z_2 - z_3 = 0$.

If we set $z_1 = 1$, then we see that $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ is an eigenvector for $\mu = 2$.

For 2i, the eigenspace is the nullspace for $\begin{bmatrix} 6-2i & 0 & -4 \\ 0 & 1-2i & 1 \\ 8 & -1 & -5-2i \end{bmatrix}$. And

we find this by row reducing our matrix:

we find this by row reducing our matrix:
$$\begin{bmatrix} 6-2i & 0 & -4 \\ 0 & 1-2i & 1 \\ 8 & -1 & -5-2i \end{bmatrix} \frac{(1/40)(6+2i)R_1}{(1/5)(1+2i)R_2} \sim \begin{bmatrix} 1 & 0 & -\frac{3}{5} - \frac{1}{5}i \\ 0 & 1 & \frac{1}{5} + \frac{2}{5}i \\ 8 & -1 & -5-2i \end{bmatrix} R_3 + 8R_1 + R_2$$
$$\sim \begin{bmatrix} 1 & 0 & -\frac{3}{5} - \frac{1}{5}i \\ 0 & 1 & \frac{1}{5} + \frac{2}{5}i \\ 0 & 0 & 0 \end{bmatrix}$$

So the eigenvectors for 2i satisfy the equations $z_1 + (-1/5)(3+i)z_3 = 0$ and

$$z_2 + (-1/5)(-1-2i)z_3 = 0$$
. If we set $z_3 = 5$, then we see that $\begin{bmatrix} 3+i\\ -1-2i\\ 5 \end{bmatrix} =$

$$\begin{bmatrix} 3 \\ -1 \\ 5 \end{bmatrix} + i \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}$$
 is an eigenvector for $1 + i$.

And we now see that $P\begin{bmatrix}1&3&1\\1&-1&-2\\1&5&0\end{bmatrix}$ is a change of coordinates matrix such that $P^{-1}AP=\begin{bmatrix}2&0&0\\0&0&2\\0&-2&0\end{bmatrix}$.

that
$$P^{-1}AP = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & -2 & 0 \end{bmatrix}$$
.