University of Mumbai Examination June						
2021 Examination: 9th June 2021						
Program: Computer Engineering						
Curriculum Scheme: Rev2016 Examination: TE Semester VI Course Code: CSC604 Course Name: CSS						
				Time:1Hour20Minutes Max. Marks:		
				40(Descriptive)		
Total points 36/40 ?						
TE Comp						
Email *						
mailofvivekanand@gmail.com						
Name of Student						
Vivekanand Kumar						
Seat Number						

~	1 defines a security service as a service that is provided by a protocol layer of communicating open systems and that ensures adequate security of the systems or of data transfers.	2/2
•) X.800	✓
С) X.809	
С) X.832	
С) X.802	
~	2are fundamental to a number of public-key algorithms, including and the digital signature algorithm (DSA).	2/2
•) Discrete logarithms	✓
С	Chinese remainder theorem	
С) Fermat's theorem	
С	Miller and Rabin algorithm	
~	3. Plain text message is: "meet me after the toga party" with a rail fence of depth 2. Compute cipher text.	2/2
•) MEMATRHTGPRYETEFETEOAAT	✓
C) MEMATRHTGPRYETEFETFOAAT	
С) MEMATRHTHPRYETEFETEOAAT	
С) MEMATRHTGPRYETEFFTEOAOT	

4. In mode, the same plaintext value will always result in the sam cipher text value.	e 2/2
Cipher Block Chaining	
Cipher Feedback	
Electronic code book	✓
Output Feedback	
5. DES encrypting the plaintext as block of bits.	2/2
6 4	✓
O 56	
O 128	
O 32	
 ✓ 6 is a symmetric block cipher that is intended to replace DES as the approved standard for a wide range of applications. 	5 2/2
AES	✓
RSA	
O MD5	
O RC5	

7. The number of rounds in RC5 can range from 0 to	2/2
O 127	
O 63	
O 31	
255	✓
✓ 8. How many rounds does the AES-192 perform?	2/2
O 10	
O 14	
O 16	
12	✓
9. For the Knapsack: {1 6 8 15 24}, Find the cipher text value for the plain text 10011.	2/2
40	✓
O 15	
O 14	
O 39	

X 10. Which of the following is not possible through hash value?	0/2
Password check Data integrity check	
Data retrievalDigital signature	×
✓ 11. Which of the following is not an element/field of the X.509 certificates?	2/2
O Issuer Name	
Serial Modifier	✓
Issue unique identifier	
Signature	
12 is responsible for distributing keys to pairs of users (hosts, processes, applications) as needed	2/2
Key distribution center	✓
Company Key analysis center	
UKey storing center	
HKey storing center	

★ 16. Which of the following does authorization aim to accomplish?.	0/2
Restrict what operations/data the user can access Determine if the user is an attacker	
Flag the user if he/she misbehaves	
Determine who the user is	×
✓ 17 operates in the transport mode or the tunnel mode.	2/2
IPSec	✓
○ SSL	
PGP	
BGP	
✓ 18. When a hash function is used to provide message authenticati hash function value is referred to as	on, the 2/2
Message Field	
Message Digest	~
Message Score	
Message Leap	

/	19. Which of the following tool would NOT be useful in figuring out what spyware or viruses could be installed on a client's computer?	2/2
•	Wireshark	✓
0	Malware Bytes	
0	HighjackThis	
0	HitmanPro	
✓	20. What is honey pot attack?	2/2
•	dummy device put into the network to attract attackers	✓
0	single line threat	
0	Ip spoofing bypass	
0	recognition attack	

This content is neither created nor endorsed by Google. - <u>Terms of Service</u> - <u>Privacy Policy</u>

Google Forms