Grundbegriffe der Informatik Aufgabenblatt 11

Matr.nr.:		
Nachname:		
Vorname:		
Tutorium:	Nr. Name des Tutor	's:
Ausgabe:	13. Januar 2010	
Abgabe:	22. Januar 2010, 13:00 Uhr im Briefkasten im Untergeschoss von Gebäude 50.34	
rechtzeitin Ihrer emit diese	eigenen Handschrift, er Seite als Deckblatt und beren linken Ecke zusammengehefte	t
Vom Tutor au	ıszufüllen:	
erreichte Pui	nkte	
Blatt 11:	/ 19	
Blätter 1 – 11	1: / 213	

Aufgabe 11.1 (3+4 Punkte)

Geben Sie für die folgenden Sprachen L_i jeweils einen Endlichen Akzeptor A_i , einen Regulären Ausdruck R_i und eine Rechtslineare Grammatik G_i an, so dass für $i \in \{1, 2\}$ gilt: $L(A_i) = \langle R_i \rangle = L(G_i) = L_i$.

- a) $L_1 = \{w \in \{a, b\}^* \mid w \text{ enthält das Teilwort abb}\}.$
- b) $L_2 = \{ w \in \{ a, b \}^* \mid w \notin L_1 \}.$

Aufgabe 11.2 (2 Punkte)

Geben Sie einen Regulären Ausdruck R an, so dass gilt:

 $\langle R \rangle = \{ w \in \{0,1\}^* \mid Num_2(w) \text{ ist durch 3 teilbar} \}.$

Hinweis: Überlegen Sie sich, wie der Endliche Akzeptor aussieht, der $\langle R \rangle$ erkennt.

Aufgabe 11.3 (1+1+2+1+1 Punkte)

In dieser Aufgabe geht es um reguläre Ausdrücke über dem Alphabet $A = \{a, b\}$.

- a) Wie viele Regex-Bäume gibt es, die die Höhe 0 haben?
- b) Wie viele Regex-Bäume gibt es, die die Höhe 1 haben?
- c) Wie viele Regex-Bäume gibt es, die die Höhe 2 haben?
- d) Was ist die geringste Anzahl an Knoten, die ein Regex-Baum der Höhe n besitzen kann?
- e) Was ist die höchste Anzahl an Knoten, die ein Regex-Baum der Höhe n besitzen kann?

Aufgabe 11.4 (2+2 Punkte)

Gegeben sei ein Mealy-Automat $A_1 = (Z_1, z_1, X, f_1, Y, g)$ und ein Endlicher Akzeptor $A_2 = (Z_2, z_2, X, f_2, F)$.

a) Geben Sie eine rechtslineare Grammatik $G_1 = (N_1, T_1, S_1, P_1)$ an, so dass gilt: $L(G_1) = \{g^{**}(z_1, w) \mid w \in X^*\}.$

(Hinweis: Wählen Sie $N = Z_1$ und $S = z_1$.)

b) Die Grammatik $G_2 = (N_2, T_2, S_2, P_2)$ sei definiert durch

$$\begin{split} N_2 &= Z_1 \times Z_2, T_2 = Y, S = (z_1, z_2) \text{ und} \\ P &= \{ (s_1, s_2) \to g(s_1, x) (f_1(s_1, x), f_2(s_2, x)) \mid s_1 \in Z_1 \land s_2 \in Z_2 \land x \in X \} \cup \\ \{ (s_1, s_2) \to \epsilon \mid s_1 \in Z_1 \land s_2 \in F \} \end{split}$$

Geben Sie eine mathematisch präzise Beschreibung für $L(G_2)$ an.