Assignment 16, Data-Structures

Oleg Sivokon

<2016-05-25 Wed>

Contents

1	Pro	oblems														3								
	1.1	Proble	em 1		•											•	•		•	•	•			3
		1.1.1	Answer 1		•	•							•											3
		1.1.2	Answer 2		•	•							•											3
		1.1.3	Answer 3													•	•		•	•	•			4
	1.2	Proble	em 2													•	•		•	•	•			4
		1.2.1	Answer 4		•											•	•		•	•	•			4
		1.2.2	Answer 5													•	•		•	•	•			4
	1.3	Proble	em 3		•											•	•		•	•	•			4
		1.3.1	Answer 6																					5

	1.3.2	Answer 7			•	•	•		•	٠		•	٠	•		•		•	•	5
	1.3.3	Answer 8	•																	5
1.4	Proble	em 4					•			•			•							5
	1.4.1	Answer 9																		6
	1.4.2	Answer 10) .																	6

1 Problems

1.1 Problem 1

- 1. Given a hash-table with chaining of initial capacity m. What is the probability four elements inserted will end up in the same bucket?
- 2. Given a hash-table with open addressing and elements k_1 , k_2 and k_3 inserted in that order, what is the chance of performing three checks when inserting the third element?
- 3. Given hash-table s.t. its density is $1 \frac{1}{\lg n}$. Provided the table uses open addressing, what is the expected time of failed search as a function of n?

1.1.1 Answer 1

Our simplifying assumption is that we draw hashing functions at random from a universe of hashing functions allows us to say that a probability of a key being hashed to a slot in the table of m slots is $\frac{1}{m}$. Using product law we can conclude that the probability of four keys being mapped to the same slot is $\frac{1}{m} \times \frac{1}{m} \times \frac{1}{m} = \frac{1}{m^3}$.

1.1.2 Answer 2

Using the same simplifying assumption as before, we see that for the element k_3 to be places only after three checks it has to first collide with k_1 and then with k_2 . Using product law gives the probability of $\frac{1}{m} \times \frac{1}{m} = \frac{1}{m^2}$.

1.1.3 Answer 3

Recall that the average time needed for failed search in a hash table with open addressing is $\frac{1}{1-\alpha}$. Substituting $1-\frac{1}{\lg n}$ in place of α obtains:

$$\frac{1}{1-\alpha} = \frac{1}{1-\frac{1}{\lg n}}$$
$$= \frac{\lg n}{\lg n - 1}$$

1.2 Problem 2

Given a set of rational numbers S and a rational number z,

- 1. write an algorithm that finds two distinct summands of z with running time $\Theta(n)$.
- 2. Same as in (2), but for four summands and time $\Theta(n^2)$.

1.2.1 Answer 4

1.2.2 Answer 5

1.3 Problem 3

Given a binary search tree with n nodes there are n+1 left and right nilpointers. After performing the following on this tree: If left[z] = nil, then left[z] = tree-predecessor(z), and if right[z] = nil, then right[z] = tree-cussessor(z). The tree built in this way is called "frying pan" (WTF?), and the arcs are called "threads".

- 1. How can one distinguish between actual arcs and "threads"?
- 2. Write procedures for inserting and removing elements from this tree.
- 3. What is the benefit of using "threads"?

1.3.1 Answer 6

Search tree invariant implies that left pointer must point at a node with a value less than the node holding the pointer, but predecessor would have a value larger than the node holding the pointer. The situation for right node is symmetrical.

1.3.2 Answer 7

1.3.3 Answer 8

None what so ever. Whoever wrote this question is a brainless moron, who has no idea of how computers work. He seems to believe that it matters whether the node stores a null pointer or a pointer to some other node in terms of amount of memory used, which is absolute bullshit.

1.4 Problem 4

Given array $A[1 \dots n]$ s.t.

$$A[1] > \dots > A[p]$$

 $A[p+1] > \dots > A[q]$
 $A[q+1] > \dots > A[n]$
 $A[1] < A[q]$
 $A[p+1] < A[n]$

insert it into binary tree.

- 1. What is the height of the resulting tree?
- 2. Erase A[p+1] and insert it anew: how will the height and the shape of the tree change?

- 1.4.1 Answer 9
- 1.4.2 Answer 10