Ejercicio 2

Se parte de la siguiente función expresada en maxtérminos:

$$f(d, c, b, a) = \prod (M_0, M_1, M_5, M_7, M_8, M_{10}, M_{14}, M_{15})$$

Tomando como variables de entrada lógicas a d, c, b, a. Por simplicidad, se expresa la misma función en minitérminos para operar luego:

$$f(d, c, b, a) = \sum (m_2, m_3, m_4, m_6, m_9, m_{11}, m_{12}, m_{13})$$

A partir de esta, construimos la función sin simplificar:

$$f(d,c,b,a) = (\overline{d} \cdot \overline{c} \cdot b \cdot \overline{a}) + (\overline{d} \cdot \overline{c} \cdot b \cdot a) + (\overline{d} \cdot c \cdot \overline{b} \cdot \overline{a}) + (\overline{d} \cdot c \cdot \overline{b} \cdot \overline{a}) + (\overline{d} \cdot \overline{c} \cdot \overline{b} \cdot a) + (\overline{d} \cdot \overline{c} \cdot \overline{b} \cdot a) + (\overline{d} \cdot \overline{c} \cdot \overline{b} \cdot \overline{a}) + (\overline{d} \cdot \overline{c}$$

Agrupamos por factor común en forma conveniente:

$$f(d,c,b,a) = \underbrace{(\overline{d} \cdot \overline{c} \cdot b \cdot \overline{a}) + (\overline{d} \cdot \overline{c} \cdot b \cdot a)}_{(\underline{d} \cdot c \cdot \overline{b} \cdot \overline{a}) + (\underline{d} \cdot c \cdot \overline{b} \cdot \overline{a})} + \underbrace{(\underline{d} \cdot \overline{c} \cdot \overline{b} \cdot a) + (\underline{d} \cdot \overline{c} \cdot b \cdot a)}_{(\underline{d} \cdot c \cdot \overline{b} \cdot \overline{a}) + (\underline{d} \cdot c \cdot \overline{b} \cdot a)} + \underbrace{(\underline{d} \cdot \overline{c} \cdot \overline{b} \cdot a) + (\underline{d} \cdot \overline{c} \cdot b \cdot a)}_{(\underline{d} \cdot c \cdot \overline{b} \cdot \overline{a}) + (\underline{d} \cdot c \cdot \overline{b} \cdot a)}$$

$$f(d,c,b,a) = [\overline{d} \cdot \overline{c} \cdot b \cdot \underbrace{(\overline{a} + a)}_{1}] + [\overline{d} \cdot c \cdot \overline{a} \cdot \underbrace{\overline{b} + b}_{1}] + [d \cdot \overline{c} \cdot a \cdot \underbrace{(\overline{b} + b)}_{1}] + [d \cdot c \cdot \overline{b} \cdot \underbrace{(\overline{a} + a)}_{1}]$$

$$\boxed{f(d,c,b,a) = (\overline{d} \cdot \overline{c} \cdot b) + (\overline{d} \cdot c \cdot \overline{a}) + (d \cdot c \cdot \overline{b}) + (d \cdot \overline{c} \cdot a)}$$

Análogamente, a partir de la expresión en miniterminos reducimos la función mediante un mapa de Karnaugh:

dc b	a ₀₀	01	11	10
00	0	0	1	1
01	1	0	0	1
11	1	1	0	0
10	0	1	1	0

Del primer grupo (primer fila) se tene que d, c y b quedan constantes, por lo que el primer factor queda de la forma $\overline{d}\overline{c}b$.

Del segundo grupo (segunda fila) se tiene que d, c y a son constantes, por lo que dicho factor queda de la forma $\overline{d} c \overline{a}$.

Del tercer grupo (tercer fila) quedan constantes d, c y b, por lo que este factor queda de la forma $dc\overline{b}$.

Finalmente, de la última fila, en el grupo se mantienen constantes d, c y a, por lo que este último factor queda de la forma $d\overline{c}a$.

Sumando los términos parciales se obtiene la función buscada:

$$f(d,c,b,a) = (\overline{d} \cdot \overline{c} \cdot b) + (\overline{d} \cdot c \cdot \overline{a}) + (d \cdot c \cdot \overline{b}) + (d \cdot \overline{c} \cdot a)$$

Verificando asi que se llega a la misma expresión.