Homework 2 CS 323 - Numerical Analysis

- 1. Given the polynomial $P(x) = x^4 + 5x^3 9x^2 85x 136$
 - (a) Use Newton's method with Horner to find a root with $\epsilon=10^{-5},$ starting from $x_0=-4$
 - (b) If x_r is the solution found before, find the polynomial $P_1(x)$ obtained by dividing the original polynomial by $x x_r$.
 - (c) Again use Newton's method with Horner to find a root of $P_1(x)$.
 - (d) Verify that the root found is also a root of P(x).
- 2. Use Newton's Method to find a solution of the equation $e^{6x} + 3(\ln 2)^2 e^{2x} e^{4x} \ln 8 (\ln 2)^3 = 0$ with error tolerance 10^{-5} , and that is in the interval $-1 \le x \le 0$.
- 3. Repeat the previous exercise using the Secant Method.
- 4. For each one of the following systems of linear equations:

I)

$$\begin{array}{rcl}
20 & = & 8x_1 + 3x_2 \\
30 & = & 12x_2 + 6x_3 \\
10 & = & x_1 + 10x_3
\end{array}$$

II)

$$2x_1 + x_2 + 5x_3 = 1$$
$$2x_1 + 2x_2 + 2x_3 = 1$$
$$4x_1 + x_2 = 2$$

III)

$$x_1 + x_2 - x_3 = -3$$

 $6x_1 + 2x_2 + 2x_3 = 2$
 $-3x_1 + 4x_2 + x_3 = 1$

- (a) Use Gaussian Elimination (2.0) with backward substitution to find the solution. Show the resulting matrices after each one of the matrix row operations.
- (b) Use Cramer's Rule to solve them. Compute the determinants using minors.