

Dynamic Programming

Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.

Algorithmic Paradigms

Greed. Build up a solution incrementally, myopically optimizing some local criterion.

Divide-and-conquer. Break up a problem into two sub-problems, solve each sub-problem independently, and combine solution to sub-problems to form solution to original problem.

Dynamic programming. Carefully decompose the problem into a series of sub-problems, and build up correct solutions to larger and larger sub-problems.

Dangerously close to the edge of brute force search.

Systematically works through the set of possible solutions to the problem, it does this without ever examining all of them explicitly. It is a tricky technique and may need time to get used to.

Dynamic Programming History

Bellman. Pioneered the systematic study of dynamic programming in the 1950s.

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

Dynamic Programming Applications

Areas.

- Bioinformatics.
- Control theory.
- Information theory.
- Operations research.
- Computer science: theory, graphics, AI, systems,

Some famous dynamic programming algorithms.

- Viterbi for hidden Markov models.
- Unix diff for comparing two files.
- Smith-Waterman for sequence alignment.
- Bellman-Ford for shortest path routing in networks.
- Cocke-Kasami-Younger for parsing context free grammars.

6.1 Weighted Interval Scheduling

Weighted Interval Scheduling

Weighted interval scheduling problem.

- \blacksquare Job j starts at s_j , finishes at f_j , and has weight or value v_j .
- Two jobs compatible if they don't overlap.
- Goal: find maximum weight subset of mutually compatible jobs.

Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.

- Consider jobs in ascending order of finish time.
- Add job to subset if it is compatible with previously chosen jobs.

Observation. Greedy algorithm can fail spectacularly if arbitrary weights are allowed.

Weighted Interval Scheduling

Notation. Label jobs by finishing time: $f_1 \le f_2 \le ... \le f_n$. Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: p(8) = 5, p(7) = 3, p(2) = 0.

Dynamic Programming: Binary Choice

Notation. OPT(j) = value of optimal solution to the problem consisting of job requests 1, 2, ..., j.

- Case 1: OPT selects job j.
 - can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j 1 }
 - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., p(j)

 optimal substructure
- Case 2: OPT does not select job j.
 - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., j-1

$$OPT(j) = \int_{\hat{1}}^{\hat{1}} 0 \qquad \text{if } j = 0$$

$$OPT(j) = \int_{\hat{1}}^{\hat{1}} \max \{ v_j + OPT(p(j)), OPT(j-1) \} \text{ otherwise}$$

Weighted Interval Scheduling: Brute Force

Brute force algorithm.

```
Input: n, s_1,...,s_n, f_1,...,f_n, v_1,...,v_n

Sort jobs by finish times so that f_1 \leq f_2 \leq ... \leq f_n.

Compute p(1), p(2), ..., p(n)

Compute-Opt(j) {
   if (j = 0)
     return 0
   else
     return max(v_j + Compute-Opt(p(j)), Compute-Opt(j-1))
}
```

Running time: T(n) = T(p(n)) + T(n-1) + O(1) = ...

Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of redundant sub-problems \Rightarrow exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence.

Running time: $T(n) = T(p(n)) + T(n-1) + O(1) = T(n-2) + T(n-1) + O(1) = \theta(\phi^n)$ where $\phi = 1:618$ is the golden ratio

Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache; lookup as needed.

```
Input: n, s_1, ..., s_n, f_1, ..., f_n, v_1, ..., v_n
Sort jobs by finish times so that f_1 \le f_2 \le \ldots \le f_n.
Compute p(1), p(2), ..., p(n)
for j = 1 to n
   M[j] = empty \leftarrow global array
M[i] = 0
M-Compute-Opt(j) {
   if (M[j] is empty)
       M[j] = max(w_j + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
   return M[j]
```

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(n log n) time.

- Sort by finish time: O(n log n).
- Computing $p(\cdot)$: O(n) after sorting by start time.
- M-Compute-Opt(j): each invocation takes O(1) time and either
 - (i) returns an existing value M[j]
 - (ii) fills in one new entry M[j] and makes two recursive calls
- Progress measure Φ = # nonempty entries of M[].
 - initially Φ = 0, throughout $\Phi \leq n$.
 - (ii) increases Φ by 1 \Rightarrow at most 2n recursive calls, since there are only n entries to fill.
- Overall running time of M-Compute-Opt(n) is O(n). •

Remark. O(n) if jobs are pre-sorted by start and finish times.

Automated Memoization

Automated memoization. Many functional programming languages (e.g., Lisp) have built-in support for memoization.

Q. Why not in imperative languages (e.g., Java)?

A. compiler's job is easier in pure functional languages since no side effects

```
(defun F (n)
  (if
    (<= n 1)
    n
    (+ (F (- n 1)) (F (- n 2)))))</pre>
```

Lisp (efficient)

```
static int F(int n) {
   if (n <= 1) return n;
   else return F(n-1) + F(n-2);
}</pre>
```

Java (exponential)

Weighted Interval Scheduling: Finding a Solution

- Q. Dynamic programming algorithms computes optimal value. What if we want the solution itself?
- A. Do some post-processing.

```
Run M-Compute-Opt(n)
Run Find-Solution(n)

Find-Solution(j) {
   if (j = 0)
      output nothing
   else if (v<sub>j</sub> + M[p(j)] > M[j-1])
      print j
      Find-Solution(p(j))
   else
      Find-Solution(j-1)
}
```

• # of recursive calls \leq n \Rightarrow O(n).

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

```
Input: n, s_1,...,s_n, f_1,...,f_n, v_1,...,v_n

Sort jobs by finish times so that f_1 \leq f_2 \leq ... \leq f_n.

Compute p(1), p(2), ..., p(n)

Iterative-Compute-Opt {

M[0] = 0

for j = 1 to n

M[j] = max(v_j + M[p(j)], M[j-1])
}
```

Dynamic Programming Overview

Dynamic Programming = Recursion + Memoization

- 1 Formulate problem recursively in terms of solutions to polynomially many sub-problems
- 2 Solve sub-problems bottom-up, storing optimal solutions

6.3 Segmented Least Squares

Segmented Least Squares

Least squares.

- Foundational problem in statistic and numerical analysis.
- Given n points in the plane: $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$.
- Find a line y = ax + b that minimizes the sum of the squared error:

$$SSE = \mathop{\text{a}}_{i=1}^{n} (y_i - ax_i - b)^2$$

Solution. Calculus \Rightarrow min error is achieved when

$$a = \frac{n \mathring{a}_{i} x_{i} y_{i} - (\mathring{a}_{i} x_{i}) (\mathring{a}_{i} y_{i})}{n \mathring{a}_{i} x_{i}^{2} - (\mathring{a}_{i} x_{i})^{2}}, \quad b = \frac{\mathring{a}_{i} y_{i} - a \mathring{a}_{i} x_{i}}{n}$$

Segmented Least Squares

Segmented least squares.

- Points lie roughly on a sequence of several line segments.
- Given n points in the plane $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$ with
- $x_1 < x_2 < ... < x_n$, find a sequence of lines that minimizes f(x).

Q. What's a reasonable choice for f(x) to balance accuracy and parsimony?

number of lines

Segmented Least Squares

Segmented least squares.

- Points lie roughly on a sequence of several line segments.
- Given n points in the plane $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$ with
- $x_1 < x_2 < ... < x_n$, find a sequence of lines that minimizes:
 - the sum of the sums of the squared errors E in each segment
 - the number of lines L
- Tradeoff function: E + c L, for some constant c > 0.

Structure of Optimal Solution

Suppose the last point $p_n = (x_n; y_n)$ is part of a segment that starts at $pi = (x_i; y_i)$

Then optimal solution is optimal solution for $\{p_1...p_{i-1}\}$ plus (best) line through $\{p_i ...p_n\}$

Let:

Opt(j): the cost of the first j points
e(j; k) the error of the best line through points j to k

Then:

$$Opt(n) = e(i; n) + C + Opt(i-1)$$

Dynamic Programming: Multiway Choice

Notation.

- OPT(j) = minimum cost for points $p_1, ... p_i p_{i+1}, ..., p_j$
- e(i, j) = minimum sum of squares for points $p_i, p_{i+1}, \ldots, p_j$.

To compute OPT(j):

- Last segment uses points p_i , p_{i+1} , ..., p_j for some i.
- Cost = e(i, j) + c + OPT(i-1).

$$OPT(j) = \begin{cases} 0 & \text{if } j = 0 \\ \min_{1 \le i \le j} \{ e(i, j) + c + OPT(i - 1) \} & \text{otherwise} \end{cases}$$

Segmented Least Squares: Algorithm

```
INPUT: p_1, \dots, p_N c
Segmented-Least-Squares() {
   M[0] = 0
   for j = 1 to n
      for i = 1 to j
          compute the least square error eij for
          the segment p_i, ..., p_j
   for j = 1 to n
      M[j] = \min_{1 \le i \le j} (e_{ij} + c + M[i-1])
   return M[n]
```

Running time. $O(n^3)$. \checkmark can be improved to $O(n^2)$ by pre-computing various statistics

■ Bottleneck = computing e(i, j) for $O(n^2)$ pairs, O(n) per pair using previous formula.

6.4 Knapsack Problem

Knapsack Problem

Knapsack problem.

- Given n objects and a "knapsack."
- Item i weighs $w_i > 0$ kilograms and has value $v_i > 0$.
- Knapsack has capacity of W kilograms.
- Goal: fill knapsack so as to maximize total value.

Ex: { 3, 4 } has value 40.

W = 11

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Greedy: repeatedly add item with maximum ratio v_i / w_i .

Ex: $\{5, 2, 1\}$ achieves only value = $35 \Rightarrow \text{greedy not optimal.}$

Dynamic Programming: False Start

Def. OPT(i) = max profit subset of items 1, ..., i.

- Case 1: OPT does not select item i.
 - OPT selects best of { 1, 2, ..., i-1 }
- Case 2: OPT selects item i.
 - accepting item i does not immediately imply that we will have to reject other items
 - without knowing what other items were selected before i, we don't even know if we have enough room for i

Conclusion. Need more sub-problems!

Dynamic Programming: Adding a New Variable

Def. OPT(i, w) = max profit subset of items 1, ..., i with weight limit w.

- Case 1: OPT does not select item i.
 - OPT selects best of { 1, 2, ..., i-1 } using weight limit w
- Case 2: OPT selects item i.
 - new weight limit = w wi
 - OPT selects best of { 1, 2, ..., i-1 } using this new weight limit

$$OPT(i, w) = \begin{cases} 0 & \text{if } i = 0 \\ OPT(i-1, w) & \text{if } w_i > w \\ \max \{ OPT(i-1, w), v_i + OPT(i-1, w-w_i) \} \text{ otherwise} \end{cases}$$

Knapsack Problem: Bottom-Up

Knapsack. Fill up an n-by-W array.

```
Input: n, w_1, ..., w_N, v_1, ..., v_N
for w = 0 to W
  M[0, w] = 0
for i = 1 to n
   for w = 1 to W
      if (w_i > w)
          M[i, w] = M[i-1, w]
      else
          M[i, w] = \max \{M[i-1, w], v_i + M[i-1, w-w_i]\}
return M[n, W]
```

Knapsack Algorithm

W + 1

		0	1	2	3	4	5	6	7	8	9	10	11
n + 1	ф	0	0	0	0	0	0	0	0	0	0	0	0
	{ 1 }	0	1	1	1	1	1	1	1	1	1	1	1
	{ 1, 2 }	0	1	6	7	7	7	7	7	7	7	7	7
	{1,2,3}	0	1	6	7	7	18	19	24	25	25	25	25
	{1,2,3,4}	0	1	6	7	7	18	22	24	28	29	29	40
	{1,2,3,4,5}	0	1	6	7	7	18	22	28	29	34	34	40

OPT: { 4, 3 }

value = 22 + 18 = 40

W = 11

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Knapsack Problem: Running Time

Running time. $\Theta(n W)$.

- Not polynomial in input size!
- "Pseudo-polynomial."
- Decision version of Knapsack is NP-complete. [Chapter 8]

Knapsack approximation algorithm. There exists a polynomial algorithm that produces a feasible solution that has value within 0.01% of optimum. [Section 11.8]