Feuille d'exercice n° 12 : Limite d'une fonction

Exercice 1 () Déterminer les limites suivantes, en justifiant vos calculs.

1.
$$\lim_{x \to 0^+} \frac{x+2}{x^2 \ln x}$$

$$2. \lim_{x \to 0^+} 2x \ln(x + \sqrt{x})$$

3.
$$\lim_{x \to +\infty} \frac{x^3 - 2x^2 + 3}{x \ln x}$$

$$4. \lim_{x \to +\infty} \frac{e^{\sqrt{x}+1}}{x+2}$$

5.
$$\lim_{x \to 0^+} \frac{\ln(3x+1)}{2x}$$

6.
$$\lim_{x \to 0^+} \frac{x^x - 1}{\ln(x+1)}$$

7.
$$\lim_{x \to -\infty} \frac{2}{x+1} \ln \left(\frac{x^3+4}{1-x^2} \right)$$

8.
$$\lim_{x \to (-1)^+} (x^2 - 1) \ln(7x^3 + 4x^2 + 3)$$

9.
$$\lim_{x \to 2^+} (x-2)^2 \ln(x^3-8)$$

10.
$$\lim_{x \to 0^+} \frac{x(x^x - 1)}{\ln(x + 1)}$$

11.
$$\lim_{x \to +\infty} (x \ln x - x \ln(x+2))$$

12.
$$\lim_{x \to +\infty} \frac{e^x - e^{x^2}}{x^2 - x}$$

13.
$$\lim_{x \to 0^+} (1+x)^{\ln x}$$

14.
$$\lim_{x \to +\infty} \left(\frac{x+1}{x-3}\right)^x$$

15.
$$\lim_{x \to +\infty} \left(\frac{x^3 + 5}{x^2 + 2} \right)^{\frac{x+1}{x^2 + 1}}$$

16.
$$\lim_{x \to +\infty} \left(\frac{e^x + 1}{x + 2} \right)^{\frac{1}{x+1}}$$

17.
$$\lim_{x \to 0^+} (\ln(1+x))^{\frac{1}{\ln x}}$$

18.
$$\lim_{x \to +\infty} \frac{x^{(x^{x-1})}}{x^{(x^x)}}$$

19.
$$\lim_{x \to +\infty} \frac{(x+1)^x}{x^{x+1}}$$
20.
$$\lim_{x \to +\infty} \frac{x\sqrt{\ln(x^2+1)}}{1 + e^{x-3}}$$

Exercice 2 Étudier la limite en 0 des applications (avec $a, b \in \mathbb{R}_+^*$) $x \mapsto \frac{x}{a} \left\lfloor \frac{b}{x} \right\rfloor$ et $x \mapsto \frac{a}{x} \left\lfloor \frac{x}{b} \right\rfloor$.

Exercice 3 () Soit f une fonction de \mathbb{R} dans \mathbb{R} croissante, telle que $\lim_{n\to+\infty} f(u_n) = +\infty$, où (u_n) est la suite de terme général n. Montrer que $\lim_{x\to+\infty} f(x) = +\infty$.

Exercice 4 Montrer, en revenant à la définition de la limite, que $\lim_{x \to +\infty} \frac{x^2 + \sin x}{(x+1)^2} = 1$.

Exercice 5 () Déterminer la limite en $+\infty$ de $x \mapsto x^{\alpha} \ln\left(1 + \frac{1}{x^{\beta}}\right)$, avec $\alpha, \beta \in \mathbb{R}_{+}^{\star}$.

Exercice 6 (Montrer que toute fonction périodique et non constante n'admet pas de limite en $+\infty$.

Exercice 7 Soient $f, g : \mathbb{R} \to \mathbb{R}$ telles que f a une limite finie en $+\infty$, g est périodique et f + g est croissante. Montrer que g est constante.

