Семинар 1.

Вводное занятие.

- 1. Проверочная работа №1 (время выполнения 30 минут).
- 2. Пусть $a = (a_1, \ldots, a_n)$ и $b = (b_1, \ldots, b_n)$ два произвольных вектора. Определите, какие равенства справедливы:
 - (a) $\sum_{i=1}^{n} (a_i \bar{a}) = 0;$
 - (b) $\sum_{i=1}^{n} (a_i \bar{a})^2 = \sum_{i=1}^{n} (a_i \bar{a})a_i;$
 - (c) $\sum_{i=1}^{n} (a_i \bar{a})(b_i \bar{b}) = \sum_{i=1}^{n} (a_i \bar{a})b_i;$
 - (d) $\sum_{i=1}^{n} (a_i \bar{a})(b_i \bar{b}) = \sum_{i=1}^{n} a_i b_i;$
 - (e) $\sum_{i=1}^{n} a_i = n\bar{a};$
 - (f) $\sum_{i=1}^{n} (a_i \bar{a})^2 = \sum_{i=1}^{n} a_i^2 n\bar{a}^2$;
 - (g) $\sum_{i=1}^{n} a_i^2 = (\sum_{i=1}^{n} a_i)^2$;
 - (h) $\sum_{i=1}^{n} a_i^2 = (n\bar{a})^2$;
 - (i) $\sum_{i=1}^{n} \bar{a} = n\bar{a};$
 - (j) $\sum_{i=1}^{n} a_i \bar{a} = n \bar{a}^2$;
 - (k) $\sum_{i=1}^{n} (a_i \bar{a})b_i = 0.$

Решение:

(а) Верно:

$$\sum_{i=1}^{n} (a_i - \bar{a}) = \sum_{i=1}^{n} a_i - n \cdot \bar{a} = \sum_{i=1}^{n} a_i - \sum_{i=1}^{n} a_i = 0.$$

(b) Верно:

$$\sum_{i=1}^{n} (a_i - \bar{a})^2 = \sum_{i=1}^{n} (a_i - \bar{a})(a_i - \bar{a}) = \sum_{i=1}^{n} (a_i - \bar{a})a_i - \bar{a} \underbrace{\sum_{i=1}^{n} (a_i - \bar{a})}_{0} = \sum_{i=1}^{n} (a_i - \bar{a})a_i.$$

(с) Верно:

$$\sum_{i=1}^{n} (a_i - \bar{a})(b_i - \bar{b}) = \sum_{i=1}^{n} (a_i - \bar{a})b_i - \bar{b}\underbrace{\sum_{i=1}^{n} (a_i - \bar{a})}_{=0} = \sum_{i=1}^{n} (a_i - \bar{a})b_i.$$

- (d) Неверно (следует из предыдущего пункта).
- (е) Верно:

$$\sum_{i=1}^{n} a_i = n\bar{a}.$$

(f) Верно:

$$\sum_{i=1}^{n} (a_i - \bar{a})^2 = \sum_{i=1}^{n} (a_i^2 - 2\bar{a}a_i + \bar{a}^2) = \sum_{i=1}^{n} a_i^2 - 2\bar{a}(\bar{a}n) + n\bar{a}^2 = \sum_{i=1}^{n} a_i^2 - n\bar{a}^2$$

- (g) Неверно
- (h) Неверно
- (і) Верно
- (і) Верно:

$$\sum_{i=1}^{n} a_i \bar{a} = \frac{n}{n} \bar{a} \sum_{i=1}^{n} a_i = n \bar{a} \frac{\sum_{i=1}^{n} a_i}{n} = n \bar{a}^2$$

- (k) Неверно (см. пункт (c)).
- 3. Пусть $x = (x_1, ..., x_n)$ произвольный вектор. Упростите выражения:
 - (a) $n\overline{x} \sum_{i=1}^{n} x_i$
 - (b) $\sum_{i=1}^{n} (x_i \overline{x}) \overline{x}$
 - (c) $\sum_{i=1}^{n} (x_i \overline{x})^2 + n\overline{x}^2$

Решение:

- (a) $n\overline{x} \sum_{i=1}^{n} x_i = n\overline{x} n\overline{x} = 0$
- (b) $\sum_{i=1}^{n} (x_i \overline{x}) \overline{x} = \overline{x} \sum_{i=1}^{n} x_i \sum_{i=1}^{n} \overline{x}^2 = n \overline{x}^2 n \overline{x}^2 = 0.$
- (c) $\sum_{i=1}^{n} (x_i \overline{x})^2 + n\overline{x}^2 = \sum_{i=1}^{n} (x_i^2 2x_i \overline{x} + \overline{x}^2) + n\overline{x}^2 = \sum_{i=1}^{n} x_i^2 2n\overline{x}^2 + n\overline{x}^2 + n\overline{x}^2 = \sum_{i=1}^{n} (x_i^2 2x_i \overline{x} + \overline{x}^2) + n\overline{x}^2 = \sum_{i=1}^{n} x_i^2 2n\overline{x}^2 + n\overline{x}^2 + n\overline{x}^2 = \sum_{i=1}^{n} x_i^2 2n\overline{x}^2 +$
- 4. Перед нами два золотых слитка и весы, производящие взвешивания с ошибками. Взвесив первый слиток, мы получили результат 300 грамм, взвесив второй слиток 200 грамм, взвесив оба слитка 400 грамм. Оцените вес каждого слитка методом наименьших квадратов.

Решение:

Обозначив вес первого слитка за β_1 , вес второго слитка за β_2 , а показания весов за y_i , получим, что

$$y_1 = \beta_1 + \varepsilon_1, \ y_2 = \beta_2 + \varepsilon_2, \ y_3 = \beta_1 + \beta_2 + \varepsilon_3$$

Тогда

$$(300 - \hat{\beta}_1)^2 + (200 - \hat{\beta}_2)^2 + (400 - \hat{\beta}_1 - \hat{\beta}_2)^2 \to \min_{\hat{\beta}_1, \hat{\beta}_2}$$
$$\hat{\beta}_1 = \frac{800}{3}, \ \hat{\beta}_2 = \frac{500}{3}$$

5. При помощи метода наименьших квадратов найдите оценку неизвестного параметра θ в следующих моделях:

(a)
$$y_i = \theta + \theta x_i + \varepsilon_i$$
;

(b)
$$y_i = 1 + \theta x_i + \varepsilon_i$$
;

(c)
$$y_i = \theta/x_i + \varepsilon_i$$
;

(d)
$$y_i = \theta x_i + (1 - \theta)z_i + \varepsilon_i$$
.

Решение:

Рассмотрим подробное решение пункта (а). Остальные пункты попробуйте решить самостоятельно.

(a)
$$\hat{\theta} = \sum y_i (1 + x_i) / \sum (1 + x_i)^2$$

Стандартная процедура МНК:

$$RSS = \sum_{i} e_{i}^{2} = \sum_{i} \left(y_{i} - \hat{\theta} - \hat{\theta} x_{i} \right)^{2} \to \min_{\hat{\theta}}$$

$$\frac{\partial RSS}{\partial \hat{\theta}} = 2 \sum_{i} \left(y_{i} - \hat{\theta} - \hat{\theta} z_{i} \right) (-1 - x_{i})$$

$$\sum_{i} \left(y_{i} - \hat{\theta} - \hat{\theta} x_{i} \right) (-1 - x_{i}) = 0$$

$$\sum_{i} y_{i} (-1 - x_{i}) + \hat{\theta} \sum_{i} (-1 - x_{i})^{2} = 0$$

$$\hat{\theta} = \frac{\sum_{i} y_{i} (1 + x_{i})}{\sum_{i} (1 + x_{i})^{2}}$$

(b)
$$\hat{\theta} = \sum ((y_i - 1)x_i) / \sum x_i^2$$

(c)
$$\hat{\theta} = \sum (y_i/x_i) / \sum (1/x^2)$$

(d)
$$\hat{\theta} = \sum ((y_i - z_i)(x_i - z_i)) / \sum (x_i - z_i)^2$$

6. Рассмотрите модели $y_i = \alpha + \beta(y_i + z_i) + \varepsilon_i$, $z_i = \gamma + \delta(y_i + z_i) + \varepsilon_i$.

- (a) Как связаны между собой МНК оценки $\hat{\alpha}$ и $\hat{\gamma}$?
- (b) Как связаны между собой МНК оценки $\hat{\beta}$ и $\hat{\delta}$?

Решение:

Рассмотрим регрессию суммы $(y_i + z_i)$ на саму себя. Естественно, в ней

$$\widehat{y_i + z_i} = 0 + 1 \cdot (y_i + z_i).$$

Отсюда получаем, что $\hat{\alpha}+\hat{\gamma}=0$ и $\hat{\beta}+\hat{\delta}=1.$

7. Как связаны МНК оценки параметров α,β и γ,δ в моделях $y_i=\alpha+\beta x_i+\varepsilon_i$ и $z_i=\gamma+\delta x_i+v_i,$ если $z_i=2y_i?$

Решение:

Исходя из условия, нужно оценить методом МНК коэффициенты двух следующих моделей:

$$y_i = \alpha + \beta x_i + \varepsilon_i$$
$$y_i = \frac{\gamma}{2} + \frac{\delta}{2} x_i + \frac{1}{2} v_i$$

Заметим, что на минимизацию суммы квадратов остатков коэффициент 1/2 не влияет, следовательно:

$$\hat{\gamma} = 2\hat{\alpha}, \ \hat{\delta} = 2\hat{\beta}.$$