

Benchmarking statistical methods for mass-spectrometry-based proteomics

Tushita Gupta with Devon Kohler Advisor: Professor Olga Vitek

Introduction

- Our research compares statistical methods for analyzing mass spectrometry proteomics data to help biologists choose the best method for their specific scenario.
- This is important due to the various processing tools and biological variations that can affect the results, making it challenging to choose an appropriate method.
- By providing insights into the comparative performance of different methods, we aim to assist biologists in making informed decisions in their data analysis.

Data Overview

- The datasets used in our research are summarized in Table 1.
- Two controlled mixtures and one biological mixture were employed representing the DDA data acquisition strategy.
- To compare the impact of preprocessing tools on the data, different preprocessing tools were used to generate multiple datasets from a single raw dataset.

Dataset	Comparison	Number of Conditions	Number of Biological Replicates	Number of Technical Replicates	Data Processing Tool
Dataset1-DDA ControlledMix	Group	5	1	3	Skyline MaxQuant Progenesis P.D.
Dataset2- DDA:Choi2017	Group	4	1	3	Skyline MaxQuant Progenesis
Dataset3- DDA:Meierhofer2016	Paired	2	6	2	MaxQuant

Methodology Workflow

- The research compared the performance of eight different statistical methods, namely MSstats, MSqRob2, DEqMS, pmartR, DEP, proDA, prolfqua, and limma.
- The statistical methods were evaluated using controlled mixtures and biological experiments to assess their performance in different scenarios.

Practical details of the existing workflows used in the evaluation

	MSstats	PmartR	DEP	ProDA	DeqMS	MSqRob2	Prolfqua	Limma			
Input File	Two options used: 1. Native preprocessing 2. MSstats Converter preprocessing										
Filtering	Based on shared peptides, decoy proteins	Based on proteins, statistical fitting	Based on missing values	None	None	Based on number of peptides	Based on Intensity, number of peptides	None			
Normalization	equalizeM edians	Median	Variance stabilizing transformation	Median	None	Median	Robust z- score	None			
Imputation	AFT model	None	MinProb	None	None	None	None	None			
Summarization	TMP	Roll up	Already Summarized Experiment object	Matrix with column per sample and row per protein	None	Aggregate peptides for each protein	None	None			
Statistical model	Linear Mixed effect Model	Anova Model	Protein-wise linear models and empirical Bayes statistics using limma	Linear probabili stic dropout model	Limma workflow and a function to moderate variance based on feature counts	Linear mixed- effects model with Empirical Bayes moderation	Linear Model	Linear model fit with Bayes moderation			

Results

1. Processing tool affects the performance of statistical methods

2. Upstream processing affects the performance of statistical methods

3. Biological variation affects the performance of statistical methods

Thank you