Exercise 3: Linear Transformations and Matrices

Problem 1: Linear Transformations

Which of the following functions/transformations are linear? Prove your answer by showing that the two criteria for linearity are met (in the case of linear functions), or by giving an example which contradites a criterion or a property of linear functions (in the case of non linear functions).

1.
$$f(x) = |x|$$
.

2.
$$\operatorname{sgn}(x) = \begin{cases} 1 & \text{if } x > 0, \\ 0 & \text{if } x = 0, \\ -1 & \text{if } x < 0. \end{cases}$$

3.
$$T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} y \\ x \end{pmatrix}$$
.

4.
$$T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3x \\ 2y \end{pmatrix} + \begin{pmatrix} 1 \\ -5 \end{pmatrix}$$
.

5.
$$T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 3x + y^2 - z$$
.

Problem 2: Matrices

1. The following matrices are defined:

$$A = \begin{pmatrix} 1 & 3 & 7 \\ 0 & -4 & 1 \\ 2 & 2 & 5 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 0 & 2 \\ 3 & 7 & 0 \end{pmatrix}, \qquad C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

- (a) Calculate the following: A + B, A C, $A \cdot B$, $B \cdot A$, $A \cdot C$, $C \cdot A$.
- (b) For each matrix write its transpose.

2. Which of the following products $A \cdot B = C$ are defined? Calculate the product if it is possible.

(a)
$$\begin{pmatrix} 1 & 2 \\ -5 & 8 \end{pmatrix} \cdot \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$

(b)
$$\begin{pmatrix} 1 & 2 & 6 \\ -5 & 8 & 6 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 & -2 \\ 1 & 0 & 1 \\ 3 & 7 & 2 \end{pmatrix}$$

(c)
$$\begin{pmatrix} 2 & 2 \\ 7 & 1 \\ 0 & 5 \end{pmatrix} \cdot \begin{pmatrix} 2 & 0 \\ 1 & -1 \\ 8 & 1 \end{pmatrix}$$

$$(d) \begin{pmatrix} 2 & 2 \\ 7 & 1 \\ 0 & 5 \end{pmatrix} \cdot \begin{pmatrix} 2 & 0 \\ 1 & -1 \\ 8 & 1 \end{pmatrix}^{\top}$$

(e)
$$\begin{pmatrix} 7 & 0 & 4 \end{pmatrix} \cdot \begin{pmatrix} -3 \\ 1 \\ 8 \end{pmatrix}$$

(f)
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 5 \\ 5 \end{pmatrix}$$

Problem 3: Matrix-Vector Multiplication

- 1. The matrix $R_{\theta} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$ is a 2D-rotation matrix: it rotates any 2D-vector $\vec{v} = \begin{pmatrix} x \\ y \end{pmatrix}$ by the angle θ counter clockwise.
 - (a) What do you expect the determinant of R_{θ} to be? Check your answer via direct calculation.
 - (b) Show that for $\theta = 180^{\circ}$ applying the matrix on a vector $\vec{v} = \begin{pmatrix} x \\ y \end{pmatrix}$ inverts the vector.
 - (c) Show that for a vector $\vec{v} = \begin{pmatrix} x \\ y \end{pmatrix}$ the resulting rotation by $\pm 90^{\circ}$ using R is orthogonal to \vec{v} .
 - (d) Show that applying R_{θ} to a 2D-vector \vec{v} indeed results in a rotation of \vec{v} by θ .
- 2. What operation does the following matrix perform? $A = \begin{pmatrix} N & 0 \\ 0 & N \end{pmatrix}$
- 3. Construct a 2×2 matrix that scales a vector by 2 and then rotates it by 30° .