Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

OKład graficzny © CKE 2013

KOD PESEL

Miejsce na naklejkę z kodem

EGZAMIN MATURALNY Z INFORMATYKI

POZIOM ROZSZERZONY

CZĘŚĆ I

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 8 stron. Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania i odpowiedzi zamieść w miejscu na to przeznaczonym.
- 3. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 4. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 5. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie.
- 6. Wpisz obok zadeklarowane (wybrane) przez Ciebie na egzamin środowisko komputerowe, kompilator języka programowania oraz program użytkowy.
- 7. Jeżeli rozwiązaniem zadania lub jego części jest algorytm, to zapisz go w wybranej przez siebie notacji: listy kroków, schematu blokowego lub języka programowania, który wybrałeś/aś na egzamin.
- 8. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

11 MAJA 2020

Godzina rozpoczęcia: 14:00

WYBRANE	
---------	--

(środowisko)
(kompilator)
(program użytkowy)

Czas pracy: 90 minut

Liczba punktów do uzyskania: 20

MIN-R1_**1**P-202

Zadanie 1. Algorytm

Dane są dodatnia parzysta liczba całkowita n oraz n liczb zapisanych w tablicy A[0..n-1]. Przeanalizuj niżej podany algorytm.

```
Algorytm:
     i \leftarrow 0
     dopóki i< n-1 wykonuj
         jeżeli A[i] > A[i+1] wykonuj
(*)
                  pom \leftarrow A[i]
                  A[i] \leftarrow A[i+1]
                  A[i+1] \leftarrow pom
         i \leftarrow i+2
     i \leftarrow 0
     x \leftarrow A[i]
     y \leftarrow A[i+1]
     dopóki i<n-3 wykonuj
(*)
         jeżeli A[i+2] < x wykonuj x←A[i+2]
(*)
         jeżeli A[i+3] > y wykonuj y \leftarrow A[i+3]
         i \leftarrow i+2
```

Zadanie 1.1. (2 pkt)

Jakie wartości przyjmą zmienne x i y po wykonaniu powyższego algorytmu dla danych z tablicy A = [5, 8, 10, 14, 20, 12, 19, 23, 38, 30]?

Odpowiedź:

Miejsce na obliczenia

Zadanie 1.2. (2 pkt)

W każdym z podpunktów a) i b) wybierz i zaznacz poprawne stwierdzenie.

- a) Po wykonaniu algorytmu z zadania 1. wartością x jest
 - A. najmniejsza liczba w tablicy A.
 - B. największa liczba w tablicy A.
- b) Po wykonaniu algorytmu z zadania 1. wartością y jest
 - A. najmniejsza liczba w tablicy A.
 - B. największa liczba w tablicy A.

Zadanie 1.3. (2 pkt)

Łączna liczba porównań w wierszach oznaczonych (*), wykonywanych w podanym algorytmie, jest równa (podkreśl właściwą odpowiedź)

- **A.** *n*
- **B.** 2*n*
- C. $\frac{3}{2}n$
- **D.** $\frac{3}{2}n-2$

Miejsce na obliczenia

	Nr zadania	1.1.	1.2.	1.3.
Wypełnia	Maks. liczba pkt.	2	2	2
egzaminator	Uzyskana liczba pkt.			

Zadanie 2. BCD

Kodem BCD nieujemnej liczby całkowitej L nazywamy ciąg binarny powstały przez zamianę każdej cyfry w zapisie dziesiętnym liczby L na jej czterobitowy kod binarny.

Przykład:

 $3768_{(10)} = 0011\ 0111\ 0110\ 1000 = 0011011101101000_{(BCD)}$

Zadanie 2.1. (4 pkt)

Uzupełnij tabelę.

Liczba L w zapisie dziesiętnym	Kod BCD liczby L	Liczba jedynek w zapisie BCD liczby <i>L</i>
259 ₍₁₀₎		
	001000000010111	5
	001000110101011110100	9
15893 ₍₁₀₎		

Miejsce na obliczenia

Zadanie 2.2. (4 pkt)

W wybranej przez siebie notacji (schemat blokowy, pseudokod, lista kroków, język programowania) napisz algorytm zgodny z poniższą specyfikacją.

Uwaga: w zapisie możesz wykorzystać tylko operacje arytmetyczne (dodawanie, odejmowanie, mnożenie, dzielenie, dzielenie całkowite, reszta z dzielenia), odwoływanie się do pojedynczych elementów tablicy, porównywanie liczb, instrukcje sterujące i przypisania do zmiennych lub samodzielnie napisane funkcje zawierające wyżej wymienione operacje.

Dane:

L – dodatnia liczba całkowita

Wynik:

w – liczba jedynek w kodzie BCD liczby L

	Nr zadania	2.1.	2.2.
Wypełnia	Maks. liczba pkt.	4	4
egzaminator	Uzyskana liczba pkt.		

Zadanie 3. Test

Oceń, prawdziwość poniższych zdań. Zaznacz **P**, jeśli zdanie jest prawdziwe, albo **F**, jeśli jest fałszywe. W każdym zadaniu punkt uzyskasz tylko za komplet poprawnych odpowiedzi.

Zadanie 3.1. (1 pkt)

W poniższym algorytmie *n* jest nieujemną liczbą całkowitą, *mod* to operator reszty z dzielenia, *div* to operator dzielenia całkowitego.

$$w \leftarrow 0$$

dopóki $n \neq 0$ **wykonuj**
 $w \leftarrow w + (n \mod 10)$
 $n \leftarrow n \text{ div } 10$

1.	Po wykonaniu algorytmu dla $n = 45778$ zmienna w przyjmuje wartość 30.	P	F
2.	Po wykonaniu algorytmu dla liczby <i>n</i> wartością zmiennej <i>w</i> jest suma cyfr liczby <i>n</i> w zapisie dziesiętnym.	P	F
3.	Podczas wykonywania algorytmu dla $n = 1234$ w kolejnych iteracjach pętli <i>dopóki</i> zmienna w przyjmuje wartości 1, 3, 6, 10.	P	F
4.	Po wykonaniu algorytmu dla $n = 11111$ zmienna w przyjmuje wartość 5.	P	F

Zadanie 3.2. (1 pkt)

Urządzenie sieciowe, którego głównym zadaniem jest łączenie ze sobą różnych sieci, w celu umożliwienia im wzajemnej komunikacji oraz określanie ścieżki przepływu danych pomiędzy sieciami na podstawie adresu IP, to

1.	host.	P	F
2.	hub.	P	F
3.	switch.	P	F
4.	router.	P	F

Zadanie 3.3. (1 pkt)

1.	CSS to skrót określający Kaskadowe Arkusze Stylów.	P	F
2.	CSS stworzono w celu oddzielenia struktury dokumentu od formy jego prezentacji.	P	F
3.	CSS stosuje się w arkuszach kalkulacyjnych do warunkowego formatowania komórek.	P	F
4.	CSS to język służący do opisu prezentacji stron WWW.	P	F

Zadanie 3.4. (1 pkt)

Liczba 101101011012 zapisana w systemie binarnym jest równa:

1.	154010	P	F
2.	2311214	P	F
3.	26558	P	F
4.	5AD ₁₆	P	F

Zadanie 3.5. (1 pkt)

1.	Stos to struktura danych, z której dane pobierane są w takiej samej kolejności, w jakiej zostały wstawione.	P	F
2.	Stos to struktura danych, w której dane dokładane są na wierzchołek stosu i z jego wierzchołka są pobierane.	P	F
3.	Stos to struktura danych, w której każdy element jest bezpośrednio dostępny.	P	F
4.	Wszystkie elementy w stosie muszą być różne.	P	F

Zadanie 3.6. (1 pkt)

Dana jest konfiguracja interfejsu sieciowego komputerów A i B.

Dla komputera A:

Adres IPv4: 192.168.10.65 Maska sieci: 255.255.255.0

Dla komputera B:

Adres IPv4: 192.168.10.128 Maska sieci: 255.255.255.0

1.	Komputer A i komputer B są w tej samej sieci.	P	F
2.	Adresem sieci dla komputera A jest adres 192.168.10.0.	P	F
3.	Dla maski 255.255.255.0 są dostępne 254 adresy hostów.	P	F
4.	Adres rozgłoszeniowy sieci, do której należy komputer B, to 192.168.255.255	P	F

	Nr zadania	3.1.	3.2.	3.3.	3.4.	3.5.	3.6.
Wypełnia egzaminator	Maks. liczba pkt.	1	1	1	1	1	1
	Uzyskana liczba pkt.						

BRUDNOPIS (nie podlega ocenie)