Investigation of SAEAs' metamodel samples for computationally expensive optimization problems

Supplementary material

Mônica A. C. Valadão¹, André L. Maravilha² and Lucas S. Batista³ monica.valadao@ict.ufvjm.edu.br, andre.maravilha@cefetmg.br, lusoba@ufmg.br

¹Science and Technology Institute, Universidade Federal dos Vales do Jequitinhonha e Mucuri ²Department of Informatics, Management and Design, Centro Federal de Educação Tecnológica de Minas Gerais ³Department of Electrical Engineering, Universidade Federal de Minas Gerais

1 Introduction

This document contains a supplementary material related to the paper "Investigation of SAEAs' metamodel samples for computationally expensive optimization problems", in which it is performed an investigative study to compare five different strategies to define the metamodel sample in a SAEA Framework (SAEA/F). Each strategy (S1, S2, S3, S4 and S5) was incorporated into the SAEA/F, which was used to solve a set of analytical functions of single-objective optimization problems presented in Table 1. The Table 2 and Figure 1 show results related to each dimension $n \in \{2, 5, 10, 15, 20\}$. Table 2 presents mean values and standard deviation of the objective function regarding the best solution found. The results in this table provide an estimate to the accuracy of the metamodel. Figure 1 shows the convergence curves obtained by the mean improvement over the best solution from the initial population in function to the percentage of the budget used for function evaluations.

Table 1: Analytic functions used in the computational experiment.

Table 1: Analytic functions used in the computational experiment.									
Function	Characteristics	Definition							
Ackley	Multimodal	$y_1(\mathbf{x}) = -20 \exp\left(-0.2\sqrt{\frac{1}{n}\sum_{i=1}^n x_i^2}\right) - \exp\left(\frac{1}{n}\sum_{i=1}^n \cos(2\pi x_i)\right) +20 + \exp(1)$ $x_i \in [-32.768, 32.768]$							
Dixon-Price	$Multimodal \ (valley\mbox{-}shaped)$	$\mathbf{y}_2(\mathbf{x}) = (x_1 - 1)^2 + \sum_{i=1}^n i(2x_i^2 - x_{i-1})^2$ $x_i \in [-10, 10]$							
Ellipsoid	Unimodal	$\mathbf{y}_{3}(\mathbf{x}) = \sum_{i=1}^{n} i \cdot x_{i}^{2}$ $x_{i} \in [-5.12, 5.12]$							
Griewank	Multimodal	$\begin{aligned} \mathbf{y}_{4}(\mathbf{x}) &= 1 + \sum_{i=1}^{n} \frac{x_{i}^{2}}{4000} - \prod_{i=1}^{n} \cos\left(\frac{x_{i}}{\sqrt{i}}\right) \\ x_{i} &\in [-600, 600] \end{aligned}$							
Levy	Multimodal	$y_5(\mathbf{x}) = \sin^2(\pi w_i) + \sum_{i=1}^{n-1} (w_i - 1)^2 [1 + 10\sin^2(\pi w_i + 1)] $ $+ (w_n - 1)^2 [1 + \sin^2(2\pi w_n)] $ $x_i \in [-10, 10], \ w_i = 1 + (x_i - 1)/4, \ i = i, \dots, n$							
Rastrigin	Multimodal	$y_6(\mathbf{x}) = 10n + \sum_{i=1}^{n} [x_i^2 - 10\cos(2\pi x_i)]$ $x_i \in [-5.12, 5.12]$							
Rosenbrock	$Multimodal \ (narrow\ valley)$	$y_7(\mathbf{x}) = \sum_{i=1}^n [100(x_{i+1} - x_i^2)^2 + (1 - x_i^2)^2]$ $x_i \in [-2.048, 2.048]$							
$Styblinski ext{-}Tang$	Multimodal	$y_8(\mathbf{x}) = \frac{1}{2} \sum_{i=1}^{n} (x_i^4 - 16x_i^2 + 5x_i)$ $x_i \in [-5, 5]$							
$\it Zakharov$	$Multimodal \ (plate-shaped)$	$y_9(\mathbf{x}) = \sum_{i=1}^n x_i^2 + \left(\sum_{i=1}^n 0.5ix_i\right)^2 + \left(\sum_{i=1}^n 0.5ix_i\right)^4$ $x_i \in [-5, 10]$							

Table 2: Mean and standard deviation of the value of objective function of the best solution returned by the SAEA/F with each strategy over all test functions and number of variables.

	S1		S2		S3		S4		S5	
n	Mean	Std.	Mean	Std.	Mean	Std.	Mean	Std.	Mean	Std.
\overline{Ackley}										
2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
5	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.3628	0.7562	0.0000	0.0000
10	0.0578	0.2583 0.4911	0.1157	0.5176	0.1155	$0.3555 \\ 0.7441$	0.8350	0.9105 1.7248	0.0578	0.2583
15 20	$0.2011 \\ 0.0000$	0.4911	0.0949 0.0413	0.2905 0.1735	0.6069 0.0000	0.7441	2.1377 0.3624	0.5654	0.2023 0.0000	0.3805 0.0000
		0.0000	0.0413	0.1733	0.0000	0.0000	0.3024	0.3034	0.0000	0.0000
Dixon-		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0000	0.0000
2 5	$0.0000 \\ 0.0337$	$0.0000 \\ 0.1490$	$0.0000 \\ 0.0894$	$0.0000 \\ 0.2215$	$0.0000 \\ 0.0670$	$0.0000 \\ 0.2051$	$0.0000 \\ 0.3031$	$0.0001 \\ 0.3161$	$0.0000 \\ 0.0000$	0.0000 0.0000
10	0.6667	0.0000	0.6933	0.0642	0.6687	0.0090	6.1594	20.2895	0.6001	0.2052
15	0.9298	0.4992	1.9161	3.9310	0.8989	0.4015	5.2942	10.4357	1.3914	2.7785
20	0.8459	0.2969	2.3633	5.1687	0.7556	0.2049	3.5767	5.7895	0.6890	0.0807
Ellipson	id									
2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
5	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
10	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0013	0.0053	0.0000	0.0000
15	0.0005	0.0020	0.0005	0.0019	0.0359	0.1595	0.2609	1.1474	0.0004	0.0015
20	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0087	0.0209	0.0000	0.0000
Griewa										
2 5	0.0094	0.0073	0.0322	0.0164	0.0096	0.0070	0.0381	0.0321	0.0044	0.0045
5 10	$0.0658 \\ 0.0383$	0.0342 0.0255	0.0897 0.0364	0.0611 0.0298	$0.0704 \\ 0.0676$	0.0394 0.0570	$0.1200 \\ 0.0827$	0.0707 0.0493	$0.0658 \\ 0.0417$	0.0241 0.0267
15	0.0383	0.0253 0.0252	0.0304	0.0423	0.0379	0.0577	0.0783	0.0493 0.1047	0.0304	0.0506
20	0.0099	0.0111	0.0076	0.0060	0.0072	0.0129	0.0163	0.0127	0.0082	0.0107
\overline{Levy}										
$\frac{Levy}{2}$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
5	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.2288	0.5658	0.0000	0.0000
10	0.0361	0.1037	0.0361	0.1037	0.0134	0.0328	0.8612	1.6802	0.0272	0.1025
15	0.1402	0.3082	0.7554	0.7978	0.3569	0.6764	1.1044	0.8479	0.1226	0.1754
20	0.1133	0.2497	0.2358	0.3013	0.1449	0.2403	1.1808	1.7168	0.0861	0.2215
Rastrig	in									
2	0.0041	0.0103	0.0015	0.0033	0.0006	0.0017	0.5472	0.6018	0.0000	0.0000
5	1.9402	1.8110	4.1291	2.9809	2.4376	1.7226	4.4773	2.4900	3.3829	1.9741
10	11.6908 19.8868	6.1999	13.0678 23.6615	6.1244 10.4629	$10.5119 \\ 19.5420$	4.3065 5.2859	11.8995 24.5625	3.7340 10.8525	9.1600	3.3185
15 20	21.7914	8.7546 7.1368	30.2937	15.0465	24.0986	16.9873	36.4161	17.1783	18.0880 23.2262	5.9917 9.2057
-		1.12000	00.200.	10.0100	21.0000	10.00.0	00.1101	11.11.00	20.2202	0.2001
Rosenb 2	rock 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0310	0.0607	0.0000	0.0000
5	0.2169	0.4576	0.5136	1.1364	0.0003	0.0013	2.1565	1.4777	0.0004	0.0000
10	7.8640	3.9833	8.9284	5.8097	6.9615	0.8459	12.1593	13.4468	4.7810	2.2030
15	13.0383	3.8129	17.2529	11.7964	13.7343	3.1542	21.0908	17.5326	12.6438	1.6122
20	17.5239	1.1078	20.1859	11.8879	17.2072	1.5400	17.9645	1.4129	17.4264	1.3101
Styblins	ski-Tang									
2	0.0004	0.0000	0.0004	0.0000	0.0004	0.0000	0.0004	0.0000	0.0004	0.0000
5	1.4128	4.3512	2.1196	5.1790	1.4128	4.3512	7.7743	8.5500	0.0009	0.0000
10	29.6854	17.0999	36.7537	18.5741	28.9786	11.6710	30.3991	16.7049	22.6515	12.4530
15 20	50.2482 61.4912	17.4350 26.0567	50.9234 70.6977	24.8786 23.3832	42.5931 69.9732	20.4015 19.1732	53.5489 69.2664	23.6295 29.3325	41.0455 51.5956	15.8099 22.5978
		20.0507	10.0911	23.3632	09.9132	19.1132	09.2004	29.3323	31.3930	44.0910
Zakhare		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2 5	$0.0000 \\ 0.0001$	$0.0000 \\ 0.0001$	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	$0.0000 \\ 0.0045$	$0.0000 \\ 0.0129$	$0.0000 \\ 0.0000$	0.0000 0.0000
10	4.1863	3.5674	5.7906	10.5196	1.5220	6.5757	0.6039	1.2889	0.4376	0.6401
15	8.7745	8.2888	8.7970	10.9481	5.8560	9.4002	5.6822	6.9749	6.4023	4.9395
20	75.0373	23.7355	26.0338	12.2657	62.1064	29.0018	60.9728	18.8453	64.7967	22.8925

Figure 1: Convergence curves calculated as the mean improvement over the best solution of the initial population in function of the percentage of the budget used for function evaluations. Plots are discretized by function (vertical) and number of variables (horizontal). 4