Deep Architectures for POS Tagging

Quang-Vinh Dinh Ph.D. in Computer Science

Outline

- > What We Have from Text Classification?
- > Introduction to POS Tagging
- **POS Tagging Using Classification**
- > Using Different Model Archectures
- > PyTorch Implementation

NLP Applications

Building blocks of language and their applications

Practical Natural Language Processing by Sowmya Vajjala, Bodhisattwa Majumder, Anuj Gupta, Harshit Surana

Figure 1-2. NLP tasks organized according to their relative difficulty

Applications of Text Analysis

NLP Applications

Information Extraction

Part-Of-Speech Tagging

Larry went to the office by bus.

Named Entity Recognition

In the 19th century, there was something called the "cult of domesticity" for many American women. This meant that most married women were expected to stay in the home and raise children. As in other countries, American wives were very much under the control of their husband, and had almost no rights. Women who were not married had only a few jobs open to them, such as working in clothing factories and serving as maids. By the 19th century, women such as Lucretia Mott and Elizabeth Cady Stanton thought that women should have more rights. In 1848, many of these women met and agreed to fight for more rights for women, including voting. Many of the women involved in the movement for women's rights were also involved in the movement to end slavery.

Tag colors:

LOCATION

CONDITION

PROCESS

PEOPLE

Text Classification

❖ IMDB dataset

- 50,000 movie review for sentiment analysis
- Consist of: +25,000 movie review for training
 - + 25,000 movie review for testing
- Label: positive negative

"A wonderful little production. The filming technique is very unassuming- very old-time-BBC fashion and gives a comforting, and sometimes discomforting, sense of realism to the entire piece"	positive
"This show was an amazing, fresh & innovative idea in the 70's when it first aired. The first 7 or 8 years were brilliant, but things dropped off after that. By 1990, the show was not really funny anymore, and it's continued its decline further to the complete waste of time it is today"	negative
"I thought this was a wonderful way to spend time on a too hot summer weekend, sitting in the air conditioned theater and watching a light-hearted comedy. The plot is simplistic, but the dialogue is witty and the characters are likable (even the well bread suspected serial killer)"	positive
"BTW Carver gets a very annoying sidekick who makes you wanna shoot him the first three minutes he's on screen."	negative

Text Classification

Simple approach

index	0	1	2	3	4	5	6	7
word	[UNK]	pad	ai	a	are	cs	is	learning

- Example corpus

sample1: 'We are learning AI'

sample2: 'AI is a CS topic'

(1) Build vocabulary from corpus

```
We are learning AI AI is a CS topic

Standardize

we are learning ai ai is a cs topic
```

```
from torchtext.data.utils import get tokenizer
sample1 = 'We are learning AI'
sample2 = 'AI is a CS topic'
# Define tokenizer function
tokenizer = get_tokenizer('basic_english')
sample1_tokens = tokenizer(sample1)
sample2_tokens = tokenizer(sample2)
print(sample1_tokens)
print(sample2 tokens)
['we', 'are', 'learning', 'ai']
['ai', 'is', 'a', 'cs', 'topic']
```

index	0	1	2	3	4	5	6	7
word	[UNK]	pad	ai	a	are	cs	is	learning

Example corpus

sample1: 'We are learning AI'

sample2: 'AI is a CS topic'

(1) Build vocabulary from corpus

#different words are enormous

How to represent 'text' effectively?

- Use a limited number of words
- Get data sample-by-sample

```
from torchtext.data.utils import get_tokenizer
from torchtext.vocab import build_vocab_from_iterator
sample1 = 'We are learning AI'
sample2 = 'AI is a CS topic'
                                             vocab.get_stoi()
data = [sample1, sample2]
                                             {'<unk>': 0,
# Create a function to yield list of tokens
                                              '<pad>': 1,
tokenizer = get_tokenizer('basic_english')
                                              'ai': 2,
                                              'a': 3,
def yield_tokens(examples):
                                              'is': 6,
    for text in examples:
                                              'are': 4,
        yield tokenizer(text)
                                              'learning': 7,
                                              'cs': 5}
# Create vocabulary
vocab_size = 8
vocab = build_vocab_from_iterator(yield_tokens(data),
                                   max tokens=vocab size,
                                   specials=["<unk>",
                                             "<pad>"])
vocab.set_default_index(vocab["<unk>"])
```

index	0	1	2	3	4	5	6	7
word	[UNK]	pad	ai	a	are	cs	is	learning

'are'

'We'

- Example corpus
 - sample1: 'We are learning AI'
 - sample2: 'AI is a CS topic'
- (1) Build vocabulary from corpus
- (2) Transform text into features

```
      We are learning AI
      AI is a CS topic

      we are learning ai
      ai is a cs topic

      Vectorization

      0 4 7 2 1
      2 6 3 5 0
```

```
tokens = tokenizer(sample1)
print(tokens)
sample1_tokens = [vocab[token] for token in tokens]
print(sample1_tokens)
['we', 'are', 'learning', 'ai']
[0, 4, 7, 2]
tokens = tokenizer(sample2)
print(tokens)
sample2_tokens = [vocab[token] for token in tokens]
print(sample2_tokens)
['ai', 'is', 'a', 'cs', 'topic']
[2, 6, 3, 5, 0]
```

'learning' 'AI'

- Example corpus
 - sample1: 'We are learning AI'
 - sample2: 'AI is a CS topic'
- (1) Build vocabulary from corpus
- (2) Transform text into features


```
index01234567word[UNK]padaiaarecsislearning
```

```
def vectorize(text, vocab, seq len):
    tokens = tokenizer(text)
    tokens = [vocab[token] for token in tokens]
    num pads = sequence length - len(tokens)
    tokens = tokens[:sequence_length]
             + [vocab["<pad>"]]*num pads
    return torch.tensor(tokens, dtype=torch.long)
# Vectorize the samples
sequence length = 5
vectorized sample1 = vectorize(sample1, vocab,
                               sequence length)
vectorized sample2 = vectorize(sample2, vocab,
                               sequence length)
print("Vectorized Sample 1:", vectorized sample1)
print("Vectorized Sample 2:", vectorized sample2)
Vectorized Sample 1: tensor([0, 4, 7, 2, 1])
Vectorized Sample 2: tensor([2, 6, 3, 5, 0])
sample3 = 'AI topic in CS is difficult'
vectorized sample3 = vectorize(sample3, vocab,
                               sequence length)
print(vectorized sample3)
tensor([2, 0, 0, 5, 6])
```

Embedding Layer

index	word
0	[UNK]
1	[pad]
2	ai
3	a
4	are
5	cs
6	is
7	learning

We are learning AI

```
vocab_size = 8
embed dim = 4
embedding = nn.Embedding(vocab size,
                         embed dim)
Parameter containing:
tensor([[-0.1882, 0.5530, 1.6267, 0.7013],
       [ 1.7840, -0.8278, -0.2701, 1.3586],
        1.0281, -1.9094, 0.3182, 0.4211],
        [-1.3083, -0.0987, 0.7647, -0.3680],
        0.2293, 1.3255, 0.1318, 2.0501],
        [ 0.4058, -0.6624, -0.8745, 0.7203],
        [0.5582, 0.0786, -0.6817, 0.6902],
         0.4309, -1.3067, -0.8823, 1.5977],
```


Revisit input x

Convert from text to numbers

index	word
0	[UNK]
1	[pad]
2	ai
3	a
4	are
5	cs
6	is
7	learning

How to deal with this input?

- **Simplest idea: Based on MLP**
- **Concatenate all the features**

A sample X

Transformer Models for Text Classification


```
class TransformerTextCls(nn.Module):
    def init (self, vocab size,
                 max_length, embed_dim,
                 num_heads, ff_dim,
                 dropout, device):
        super(). init ()
        self.embd layer = TokenAndPositionEmbedding(vocab size,
                                                    embed dim,
                                                    max_length)
        self.transformer layer = TransformerBlock(embed dim,
                                                  num heads,
                                                  ff dim)
        self.pooling = nn.AvgPool1d(kernel size=max length)
        self.fc = nn.Linear(in features=embed dim,
                             out features=2)
        self.relu = nn.ReLU()
    def forward(self, x):
        output = self.embd layer(x)
        output = self.transformer_layer(output, output, output)
        output = self.pooling(output.permute(0,2,1)).squeeze()
        output = self.fc(output)
        return output
```

AI VIETNAM All-in-One Course

Bidirectional Encoder Representations from Transformers

Outline

- > What We Have from Text Classification?
- > Introduction to POS Tagging
- **POS Tagging Using Classification**
- > Using Different Model Archectures
- > PyTorch Implementation

Conll2003 Dataset for Part-of-Speed Tagging

$Num_{classes} = 47$

Train

14041

Val

Test

3250

3453

0	"	Quotation mask
1		space
2	#	Hash
3	\$	Dolla
4	(Opening parenthesis
5)	Closing parenthesis
6	,	Comma
7	•	Dot
8	:	Colon
9	**	Apostrophe

10	CC	Coordinating conjunction
11	CD	Cardinal number
12	DT	Determiner
13	EX	Existential there
14	FW	Foreign word
15	IN	Preposition or subordinating conjunction
16	JJ	Adjective
17	JJR	Adjective, comparative
18	JJS	Adjective, superlative
19	LS	List item marker

20	MD	Modal
21	NN	Noun, singular or mass
22	NNP	Proper noun, singular
23	NNP S	Proper noun, plural
24	NNS	Noun, plural
25	NN S YM	Noun or Symbol
26	PDT	Predeterminer
27	POS	Possessive ending
28	PRP	Personal pronoun
29	PRP\$	Possessive pronoun

Conll2003 Dataset for Part-of-Speed Tagging

 $Num_{classes} = 47$

Example

Input tokens

["Cup", "qualifying", "round", ",", "second", "leg", "soccer", "matches", "on", "Thursday"]

Label

["NNP", "VBG", "RB", ",", "JJ", "NN", "NN", "NNS", "IN", "NNP"]

Label-encoded

[22, 39, 30, 6, 16, 21, 21, 24, 15, 22,]

30	RB	Adverb
30	KD	Auvero
31	RBR	Adverb, comparative
32	RBS	Adverb, superlative
33	RP	Particle
34	SYM	Symbol
35	ТО	to
36	UH	Interjection
37	VB	Verb, base form
38	VBD	Verb, past tense
39	VBG	Verb, gerund or present participle
40	VBN	Verb, past participle
41	VBP	Verb, non-3rd person singular present
42	VBZ	Verb, 3rd person singular present
43	WDT	Wh-determiner
44	WP	Wh-pronoun
45	WP\$	Possessive wh-pronoun
46	WRB	Wh-adverb

Part-of-speed Tagging

Index	Label
0	<unk></unk>
1	NN
2	IN
3	NNP
•••	•••
43	LS
44	FW
45	UH
46	SYM

Outline

- > What We Have from Text Classification?
- > Introduction to POS Tagging
- **POS Tagging Using Classification**
- > Using Different Model Archectures
- > PyTorch Implementation

Step-by-Step Example: Text Classification

Doc	Label
gậy ông đập lưng ông	0
có làm mới có ăn	1

Training data	
• negative (0)	building
• positive (1)	dictionary

V		
index	word	
0	[UNK]	
1	[pad]	
2	có	
3	ông	
4	gập	
5	làm	
6	lưng	
7	mới	

vocab size = 8 sequence length = 5

Step-by-Step Example: Text Classification

Doc	Label
gậy ông đập lưng ông	0
có làm mới có ăn	1

0	[-0.1882, 0.5530]
1	[1.7840, -0.8278]
2	[1.0281, -1.9094]
3	[-1.3083, -0.0987]
4	[0.2293, 1.3255]
5	[0.4058, -0.6624]
6	[0.5582, 0.0786]
7	[0.4309, -1.3067]

Step-by-Step Example: Text Classification

Doc	Label
gậy ông đập lưng ông	0
có làm mới có ăn	1

0	[-0.1882, 0.5530]
1	[1.7840, -0.8278]
2	[1.0281, -1.9094]
3	[-1.3083, -0.0987]
4	[0.2293, 1.3255]
5	[0.4058, -0.6624]
6	[0.5582, 0.0786]
7	[0.4309, -1.3067]

Embedding

Example Text Classification

Doc	Label
gậy ông đập lưng ông	0
có làm mới có ăn	1

[-0.1882, 0.5530]
[1.7840, -0.8278]
[1.0281, -1.9094]
[-1.3083, -0.0987]
[0.2293, 1.3255]
[0.4058, -0.6624]
[0.5582, 0.0786]
[0.4309, -1.3067]

Embedding

Sample 1

Example Text Classification

Doc	Label
gậy ông đập lưng ông	0
có làm mới có ăn	1

 $\theta_t = \theta_{t-1} - \frac{|\dots \nabla_{\theta} L|}{\dots}$ update

Sample 1

0	[-2.882e-01, 4.530e-01]
1	[1.7840, -0.8278]
2	[1.0281, -1.9094]
3	[-1.208, 1.300e-03]
4	[3.293e-01, 1.225]
5	[0.4058, -0.6624]
6	[6.582e-01, -2.140e-02]
7	[0.4309, -1.3067]

Embedding

 $[-0.0716,\ 0.1968,\ 0.0740,\ 0.2251,\ 0.0718,\ -0.0825,\ -0.2817,\ 0.1483,\ 0.3338,\ 0.3985]$

Example **Text Classification**

[0.3108, 0.0926, 0.1760, 0.1325, -0.1518, -0.0876, 0.1194, 0.1378, -0.0790, 0.1982]W

[-0.0716, 0.1968, 0.0740, 0.2251, 0.0718, -0.0825, -0.2817, 0.1483, 0.3338, 0.3985]

[-0.0261, -0.5182]

[0.63, 0.37]

 \hat{y}_0 increases

 \hat{y}_1 reduces

[3.293e-01, 1.225] [-1.208, 1.300e-03] [-2.882e-01, 4.530e-01] [6.582e-01, -2.140e-02] [-1.208, 1.300e-03]

Embedding

Sample 1 vec.

Feed sample 1 for

the second time

Model is learning

POS Tagging (1): One-Word Input

vocab size = 7 word-based classification

POS Tagging (1): One-Word Input

Doc	Label
i want a dog	[0, 1, 2, 0]
books are expensive	[0, 1, 2]

0	[-0.1882, 0.5530, 1.6267, 0.7013]
1	[1.7840, -0.8278, -0.2701, 1.3586]
2	[1.0281, -1.9094, 0.3182, 0.4211]
3	[-1.3083, -0.0987, 0.7647, -0.3680]
4	[0.2293, 1.3255, 0.1318, 2.0501]
5	[0.4058, -0.6624, -0.8745, 0.7203]
6	[0.5582, 0.0786, -0.6817, 0.6902]

28

POS Tagging (1): One-Word Input

Doc	Label
i want a dog	[0, 1, 2, 0]
books are expensive	[0, 1, 2]

0	[-0.1882, 0.5530, 1.6267, 0.7013]
1	[1.7840, -0.8278, -0.2701, 1.3586]
2	[1.0281, -1.9094, 0.3182, 0.4211]
3	[-1.3083, -0.0987, 0.7647, -0.3680]
4	[0.2293, 1.3255, 0.1318, 2.0501]
5	[0.4058, -0.6624, -0.8745, 0.7203]
6	[0.5582, 0.0786, -0.6817, 0.6902]

29

POS Tagging (1): One-Word Input

Doc	Label
i want a dog	[0, 1, 2, 0]
books are expensive	[0, 1, 2]

0	[-0.1882, 0.5530, 1.6267, 0.7013]
1	[1.7840, -0.8278, -0.2701, 1.3586]
2	[1.0281, -1.9094, 0.3182, 0.4211]
3	[-1.3083, -0.0987, 0.7647, -0.3680]
4	[0.2293, 1.3255, 0.1318, 2.0501]
5	[0.4058, -0.6624, -0.8745, 0.7203]
6	[0.5582, 0.0786, -0.6817, 0.6902]

POS Tagging (1): One-Word Input

Doc	Label
i want a dog	[0, 1, 2, 0]
books are expensive	[0, 1, 2]

0	[-0.1882, 0.5530, 1.6267, 0.7013]
1	[1.7840, -0.8278, -0.2701, 1.3586]
2	[1.0281, -1.9094, 0.3182, 0.4211]
3	[-1.2083, -0.1987, 0.6647, -0.4680]
4	[0.2293, 1.3255, 0.1318, 2.0501]
5	[0.4058, -0.6624, -0.8745, 0.7203]
6	[0.5582, 0.0786, -0.6817, 0.6902]

POS Tagging (1): One-Word Input

Doc	Label
i want a dog	[0, 1, 2, 0]
books are expensive	[0, 1, 2]

[3]
86]
1]
80]
1]
03]
2]
)

POS Tagging (2): Sentence + MLP

1

sequence length = 4

POS Tagging (2): Sentence + MLP

Doc	Label
i want a dog	[0, 1, 2, 0]
books are quite expensive	[0, 1, 2, 2]

0	[0 1002 0 5520 1 6267 0 7012]
0	[-0.1882, 0.5530, 1.6267, 0.7013]
1	[1.7840, -0.8278, -0.2701, 1.3586]
2	[1.0281, -1.9094, 0.3182, 0.4211]
3	[-1.3083, -0.0987, 0.7647, -0.3680]
4	[0.2293, 1.3255, 0.1318, 2.0501]
5	[0.4058, -0.6624, -0.8745, 0.7203]
6	[0.5582, 0.0786, -0.6817, 0.6902]
7	[0.4309, -1.3067, -0.8823, 1.5977]

W

[0.3847, -0.4621, 0.1749, -0.0139]

[-0.3024, -0.1529, 0.4329, 0.4254]

[-0.4441, 0.4113, 0.0054, -0.3220]

Doc	Label
i want a dog	[0, 1, 2, 0]
books are quite expensive	[0, 1, 2, 2]

0	[-0.1882, 0.5530, 1.6267, 0.7013]
1	[1.7840, -0.8278, -0.2701, 1.3586]
2	[1.0281, -1.9094, 0.3182, 0.4211]
3	[-1.3083, -0.0987, 0.7647, -0.3680]
4	[0.2293, 1.3255, 0.1318, 2.0501]
5	[0.4058, -0.6624, -0.8745, 0.7203]
6	[0.5582, 0.0786, -0.6817, 0.6902]
7	[0.4309, -1.3067, -0.8823, 1.5977]

vocab size = 8 sequence length = 4

[0.35, 0.29, 0.36][0.36, 0.22, 0.42] V_1 $\mathbf{W}^T \mathbf{V_1} + \mathbf{b}$ [0.4058, -0.6624, -0.8745, 0.7203] V_2 $W^TV_2 + b$ [0.4309, -1.3067, -0.8823, 1.5977][-0.1882, 0.5530, 1.6267, 0.7013] $\sqrt{V^TV_3 + b}$ V_3 [-1.3083, -0.0987, 0.7647, -0.3680] $\mathbf{W}^T \mathbf{V}_4 + \mathbf{b}$ V_4 shape=(1,4,3)Softmax Output vec.

[0.3548, -0.2819, -0.0579]

[0.58, 0.26, 0.16]

[0.47, 0.44, 0.09]

y = [0,1, 2, 0]; shape=(1,4)

ŷ

[0.3847, -0.4621, 0.1749, -0.0139] [-0.3024, -0.1529, 0.4329, 0.4254]

 $[-0.4441,\ 0.4113,\ 0.0054,\ -0.3220]$

b [0.3548, -0.2819, -0.0579]

Doc	Label
i want a dog	[0, 1, 2, 0]
books are quite expensive	[0, 1, 2, 2]

0	[-0.1882, 0.5530, 1.6267, 0.7013]
1	[1.7840, -0.8278, -0.2701, 1.3586]
2	[1.0281, -1.9094, 0.3182, 0.4211]
3	[-1.3083, -0.0987, 0.7647, -0.3680]
4	[0.2293, 1.3255, 0.1318, 2.0501]
5	[0.4058, -0.6624, -0.8745, 0.7203]
6	[0.5582, 0.0786, -0.6817, 0.6902]
7	[0.4309, -1.3067, -0.8823, 1.5977]

vocab size = 8 sequence length = 4

(0.58, 0.47, 0.35, 0.36) (0.26, 0.44, 0.29, 0.22) (0.16, 0.22, 0.36, 0.42)

[0.4058, -0.6624, -0.8745, 0.7203][0.4309, -1.3067, -0.8823, 1.5977][-0.1882, 0.5530, 1.6267, 0.7013] [-1.3083, -0.0987, 0.7647, -0.3680]

vec.

Shape of logits = (N, C, d)Shape of target = (N, d)

pytorch requirement

[0.3847, -0.4621, 0.1749, -0.0139] [-0.3024, -0.1529, 0.4329, 0.4254] [-0.4441, 0.4113, 0.0054, -0.3220]

b [0.3548, -0.2819, -0.0579]

Doc	Label
i want a dog	[0, 1, 2, 0]
books are quite expensive	[0, 1, 2, 2]

0	[-0.1882, 0.5530, 1.6267, 0.7013]
1	[1.7840, -0.8278, -0.2701, 1.3586]
2	[1.0281, -1.9094, 0.3182, 0.4211]
3	[-1.3083, -0.0987, 0.7647, -0.3680]
4	[0.2293, 1.3255, 0.1318, 2.0501]
5	[0.4058, -0.6624, -0.8745, 0.7203]
6	[0.5582, 0.0786, -0.6817, 0.6902]
7	[0.4309, -1.3067, -0.8823, 1.5977]

vocab size = 8 sequence length = 4

nn.CrossEntropyLoss() embedding = nn.Embedding(8, 4) fc = nn.Linear(4, 3) torch.optim.Adam(model.parameters(), lr=0.1) # forward x = embedding(x)x = fc(x) V_1 x = x.permute(0, 2, 1) $\mathbf{W}^T \mathbf{V_1} + \mathbf{b}$ [0.4058, -0.6624, -0.8745, 0.7203] V_2 $\mathbf{W}^T \mathbf{V}_2 + \mathbf{b}$ [0.4309, -1.3067, -0.8823, 1.5977][-0.1882, 0.5530, 1.6267, 0.7013] $W^TV_3 + b$ V_3 [-1.3083, -0.0987, 0.7647, -0.3680] $W^{T}V_4 + b$ V_4 shape=(1,3,4)Problem? Softmax Output vec. loss y = [0, 1, 2, 0]

POS Tagging (3): Using Padding

Doc	Label
i want a dog	[0, 1, 2, 0]
books are expensive	[0, 1, 2]

building dictionary

index	word
0	[UNK]
1	[pad]
2	a
3	are
4	books
5	dog
6	expensive
7	i
8	want

vocab size = 9 sequence length = 4

POS Tagging (3): Using Padding

Doc	Label
i want a dog	[0, 1, 2, 0]
books are expensive	[0, 1, 2]

building dictionary

index	word
0	[UNK]
1	[pad]
2	a
3	are
4	books
5	dog
6	expensive
7	i
8	want

vocab size = 9 sequence length = 4

POS Tagging (3): Using Padding

Doc	Label
i want a dog	[0, 1, 2, 0]
books are expensive	[0, 1, 2]

0	[-0.1882, 0.5530, 1.6267, 0.7013]
1	[1.7840, -0.8278, -0.2701, 1.3586]
2	[1.0281, -1.9094, 0.3182, 0.4211]
3	[-1.3083, -0.0987, 0.7647, -0.3680]
4	[0.2293, 1.3255, 0.1318, 2.0501]
5	[0.4058, -0.6624, -0.8745, 0.7203]
6	[0.5582, 0.0786, -0.6817, 0.6902]
7	[0.4309, -1.3067, -0.8823, 1.5977]
8	[0.3058, -0.7624, -0.7745, 0.6203]

vocab size = 9 sequence length = 4

W	[-0.3875, -0.3519, -0.1275, -0.1719]
VV	[0.4391, 0.0455, -0.1566, -0.2897]
	[0.1777, -0.1178, -0.3101, -0.2451]
	[0.3730, 0.0996, -0.3004, 0.2219]

Doc	Label
i want a dog	[0, 1, 2, 0]
books are expensive	[0, 1, 2]

0	[-0.1882, 0.5530, 1.6267, 0.7013]
1	[1.7840, -0.8278, -0.2701, 1.3586]
2	[1.0281, -1.9094, 0.3182, 0.4211]
3	[-1.3083, -0.0987, 0.7647, -0.3680]
4	[0.2293, 1.3255, 0.1318, 2.0501]
5	[0.4058, -0.6624, -0.8745, 0.7203]
6	[0.5582, 0.0786, -0.6817, 0.6902]
7	[0.4309, -1.3067, -0.8823, 1.5977]
8	[0.3058, -0.7624, -0.7745, 0.6203]

vocab size = 9 sequence length = 4

[0.26, 0.09, 0.16, 0.49][0.3548, -0.2819, -0.0579, 0.5113]ŷ [0.27, 0.13, 0.19, 0.41][0.29, 0.15, 0.21, 0.35]Label [0.24, 0.13, 0.19, 0.44]0: (pro)noun 2: others V_1 1: verb 3: <pad> $\mathbf{W}^T \mathbf{V_1} + \mathbf{b}$ [0.4058, -0.6624, -0.8745, 0.7203] V_2 $W^TV_2 + b$ [0.3058, -0.7624, -0.7745, 0.6203][1.0281, -1.9094, 0.3182, 0.4211] $\sqrt{V^TV_3 + b}$ V_3 [0.4058, -0.6624, -0.8745, 0.7203] $\mathbf{W}^T \mathbf{V_4} + \mathbf{b}$ V_4 shape=(1, 4, 4)(N, d, C)Softmax Output vec. y = [0,1, 2, 0]; shape=(1,4)

	Dog	Lobol
	[0.3730, 0.0996, -0.3	3004, 0.2219]
	[0.1777, -0.1178, -0.3	3101, -0.2451]
VV	[0.4391, 0.0455, -0.1	566, -0.2897]
TX 7	[-0.3875, -0.3519, -0.3	1275, -0.1719]

Doc	Label
i want a dog	[0, 1, 2, 0]
books are expensive	[0, 1, 2]

```
embedding = nn.Embedding(9, 4)
fc = nn.Linear(4, 4)

# forward
x = embedding(x)
x = fc(x)
x = x.permute(0, 2, 1)
```


vocab size = 9 sequence length = 4

VX/	[-0.3875, -0.3519, -0.1275, -0.1719]
VV	[0.4391, 0.0455, -0.1566, -0.2897]
	[0.1777, -0.1178, -0.3101, -0.2451]
	[0.3730, 0.0996, -0.3004, 0.2219]

Doc	Label
i want a dog	[0, 1, 2, 0]
books are expensive	[0, 1, 2]

```
embedding = nn.Embedding(9, 4)
fc = nn.Linear(4, 4)

# forward
x = embedding(x)
x = fc(x)
x = x.permute(0, 2, 1)
```

vocab size = 9 sequence length = 4

Shape of logits = (N, C, d)[0.3548, -0.2819, -0.0579, 0.5113]Shape of target = (N, d)pytorch requirement Label 0: (pro)noun 2: others x.permute(0, 2, 1) V_1 1: verb 3: <pad> $\mathbf{W}^T \mathbf{V_1} + \mathbf{b}$ [0.4058, -0.6624, -0.8745, 0.7203] V_2 $W^TV_2 + b$ [0.3058, -0.7624, -0.7745, 0.6203][1.0281, -1.9094, 0.3182, 0.4211] $W^TV_3 + b$ V_3 [0.4058, -0.6624, -0.8745, 0.7203] $\mathbf{W}^T \mathbf{V}_4 + \mathbf{b}$ V_4 shape=(1, 4, 4)(N, C, d)Softmax Output vec. y = [0, 1, 2, 0]; shape=(1,4)

Cross Entropy Loss

Optional Section for Wednesday

Doc	Label
i want a dog	[0, 1, 2, 0]
books are expensive	[0, 1, 2]

Label	Meaning
0	Noun/Pronoun
1	Verb
2	Others

building	
dictionary	
\longrightarrow	
vocab size = 9	
sequence length $= 4$	

index	word
0	[UNK]
1	[pad]
2	a
3	are
4	books
5	dog
6	expensive
7	i
8	want

0	[-0.1882, 0.5530,, 0.7013]
1	[1.7840, -0.8278,, 1.3586]
2	[1.0281, -1.9094,, 0.4211]
3	[-1.3083, -0.0987,, -0.3680]
4	[0.2293, 1.3255,, 2.0501]
5	[0.4058, -0.6624,, 0.7203]
6	[0.5582, 0.0786,, 0.6902]
7	[0.4309, -1.3067,, 1.5977]
8	[0.3058, -0.7624,, 0.6203]

Dictionary

Embedding

Model Pipeline

embed dim)

num classes)

Using MLP

[0.4058, -0.6624, ..., 0.7203]

[0.3058, -0.7624, ..., 0.6203]

. . .

[0.4058, -0.6624, ..., 0.7203]

(N, seq_len, embed_dim)

Using CNN

This pipeline is wrong. Let's find out!

Using CNN

shape=(N, seq_len, embed_dim)

Vectorization

shape=(N, C, seq_len)

```
| (N, seq_len, embed_dim) | (N, embed_dim, seq_len) | x = self.conv1d(x) | x = self.conv1d(x)
```


Using RNN

Using RNN: Implementation

```
embedding = nn.Embedding(vocab_size, emb_dim)
recurrent = nn.RNN(emb_dim, num_classes, batch_first=True)

# forward
x = embedding(x)
output, _ = recurrent(x)
x = output.permute(0, 2, 1)
```


Using RNN + Linear

Similar to LSTM/GRU

```
embedding = nn.Embedding(vocab_size, emb_dim)
recurrent = nn.RNN(emb_dim, hidden_size, batch_first=True)
fc = nn.Linear(hidden_size, num_classes)

# forward
x = embedding(x)
output, _ = recurrent(x)
x = fc(output)
x = x.permute(0, 2, 1)
```


embedding = nn.Embedding(vocab_size, 4)

transformer = TransformerBlock(4, 1, 4)

embed dim, num heads, ff dim

x = self.transformer(x, x, x)

x = self.embedding(x)

forward

Using Transformer + Linear

```
embedding = nn.Embedding(vocab_size, embed_dim)
transformer = TransformerBlock(embed_dim, 1, embed_dim)
fc = nn.Linear(embed_dim, num_classes)

# forward
x = self.embedding(x)
x = self.transformer(x, x, x)
x = self.fc(x)
x = x.permute(0, 2, 1)
```


