Assignment 2 due Feb 3, 2014

Exercise 1 (50 points).

Recall that a set S of logical operators is called a *functionally complete set* if every compound proposition is logically equivalent to a compound proposition that

- involves only logical operators from S, propositional variables, and parantheses
- and uses none of the constants true or false.

Consider the boolean operator NOR that has the following truth table.

$$\begin{array}{c|ccc} p & q & p \text{ NOR } q \\ \hline T & T & F \\ T & F & F \\ F & T & F \\ F & F & T \end{array}$$

Prove that NOR is functionally complete on its own, i.e., the set S that contains only the single logical operator NOR is a functionally complete set.

The following exercises in section 1.3 of the textbook can guide you: 42, 43, 45, 48, 49, 50.

Solution to Exercise 1.

Since the collection $\{\lor, \land, \lnot\}$ is functionally complete it suffices to express these three operators in terms of NOR. This can be done as follows: $\lnot p \equiv p$ NOR p, which can be readily checked with a truth table. $p \lor q \equiv \lnot(p \text{ NOR } q)$, and we already know that we can replace every \lnot with a NOR-construction, so this implies that we can also replace every \lor with a NOR-construction as well. We can get rid of \land in our formulas using De Morgan as follows: $p \land q \equiv \lnot(\lnot p \lor \lnot q)$ and we are done.

Exercise 2 (25 points).

The situation is as in the previous exercise, but we use \vee ("OR") instead of NOR. Prove that \vee is not functionally complete on its own.

Solution to Exercise 2.

Since \vee is associative, all formulas you can build using \vee and parantheses are large disjunctions. Hence for every formula, at least half of the entries of its truth table have truth value T. In particular, $p \wedge q$ (which has only a single truth value T) cannot be formed using only \vee and parantheses.

Exercise 3 (25 points). The compound proposition

$$\neg((p \vee \neg s) \wedge (q \vee \neg r \vee \neg s) \wedge \neg(t \wedge s)) \wedge (p \vee \neg p)$$

can be thought of as a list of 33 characters from the following table.

$$\neg \mid \lor \mid \land \mid p \mid q \mid r \mid s \mid t \mid (\mid \mid)$$

Write down a logically equivalent compound proposition using at most 14 characters of this table and prove the equivalence.

Operator precedence is important for this exercise. Note that by operator precedence we have $p \lor q \land r \equiv p \lor (q \land r)$, where the left hand side has 5 characters and the right hand side has 7.

Solution to Exercise 3.

$$\neg ((p \lor \neg s) \land (q \lor \neg r \lor \neg s) \land \neg (t \land s)) \land (p \lor \neg p)$$

$$\stackrel{(p \lor \neg p \equiv T)}{\equiv} \qquad \neg ((p \lor \neg s) \land (q \lor \neg r \lor \neg s) \land \neg (t \land s)) \land T$$

$$\stackrel{(A \land T \equiv A)}{\equiv} \qquad \neg ((p \lor \neg s) \land (q \lor \neg r \lor \neg s) \land \neg (t \land s))$$

$$\stackrel{\text{De Morgan}}{\equiv} \qquad \neg (p \lor \neg s) \lor \neg (q \lor \neg r \lor \neg s) \lor (t \land s)$$

$$\stackrel{\text{De Morgan}}{\equiv} \qquad (\neg p \land s) \lor (\neg q \land r \land s) \lor (t \land s)$$

$$\stackrel{\text{Distr.}}{\equiv} \qquad (\neg p \lor (\neg q \land r) \lor t) \land s$$

$$\stackrel{\text{Op. precedence}}{\equiv} \qquad (\neg p \lor \neg q \land r \lor t) \land s$$