MATH 624 HW2

David Zhu

October 6, 2024

Problem 1b

Suppose U_f is not empty. Let $W = \{a \in V : k(a) | k \text{ is a finite algebraic extension}\}$, which corresponds to the vanishing locus of maximal ideals of k[V]. Clearly $W \subset V(\overline{k})$, so it suffices to show that $W \cap U_f$ is dense in in U_f for every f, which is equivalent to every open U_f containing a point in W. To see this, consider a maximal ideal in $k[V]_f$, which must be the image of a maximal ideal in k[V] under localization: suppose otherwise, then every maximal ideal of k[V] contains f, which implies f is in the Jacobson radical of k[V]. However, k[V] has trivial Jacobson radical since k[X] is Jacobson, which implies f = 0 and U_f is empty, and contradiction. Then, the locus of the maximal ideal is contyained in $U_f \cap W$.

Problem 2b

A representative of \tilde{O}_a is given by a pair $(W_1, \frac{f_1}{g_1})$, with $g_1 \neq 0$ on W_1 , and $(W_1, \frac{f_1}{g_1}) \sim (W_2, \frac{f_2}{g_2})$ iff there exists a open $U_{h'} \subset W_1 \cap W_2$ such that $\frac{f_1}{g_1} = \frac{f_2}{g_2}$ on $U_{h'}$. On the other hand, a representative of $k[V]_{\mathfrak{p}_a}$ is given by some $\frac{f}{g}$, where $g(a) \neq 0$. By continuity, there exists a basic open U_h containing a on which g does not vanish. We define the k-algebra homomorphism:

$$i: k[V]_{\mathfrak{p}_a} \to \tilde{O}_a \quad \frac{f}{g} \mapsto (U_h, \frac{f}{g})$$

Surjectivity is obvious by construction, so there are two things to check: well-definedness (it is clearly that this will be a k-algebra morphism once we check well-definedness) and injectivity.

Well-definedness: suppose $\frac{f}{g} \sim \frac{f'}{g'}$ in $k[V]_{\mathfrak{p}_a}$, which means there exists some $h' \in K[V]$ such that h'(fg' - f'g) = 0, which implies $\frac{f}{g} = \frac{f'}{g'}$ on $U_{h'}$. Thus, both will be mapped to the equivalence class $(U_{h'}, \frac{f}{g})$.

Injectivity: suppose $i(\frac{f}{g}) = (U_h, \frac{f}{g})$ represents the 0 element. WLOG, we may assume that f vanishes on U_h , for otherwise we may replace U_h with a smaller basic open. Then, $\frac{f}{g} \sim \frac{0}{1}$ in $k[V]_{\mathfrak{p}_a}$ since $h(f \cdot 1 - g \cdot 0)$ is identically 0 on V.

Problem 3b

By problem 2b, the stalk is isomorphic to $k[V]_{p_a}$, which is always local. In regards to when $k[V]_{p_a}$ is a not a domain, it will be when there exists an $x \in p_a$ such that $\exists y \in p_a$ and xy = 0, but $xz \neq 0$ for every non-zero $z \notin p_a$. For example, let V = V(xy). Then, k[V] = k[x,y]/(xy). Take a = (0,0), then $p_a = (x,y)$, and we have xy = 0 but $xz \neq 0$ for every non-zero z not in (x,y).

Note that a reduced Noetherian ring is integral iff it has a unique minimal prime. Another method of detection for integrality is iff p_a contains a unique minimal prime of k[V] (because it is reduced Notherian), which corresponds to a belonging to a unique irreducible component.

Problem 4

(a)

V is irreducible iff I(V) is prime iff k[V] is a domain iff k(V) is a field. The Krull dimension of k(V) and the trascendence degree are the same by Noether normalization.

(b)

Take the finite set of minimal primes $\{p_1,...,p_n\}$ of k[V], and recall that the union of the minimal primes is precisely the zero-divisors of k[V], and the intersection is the trivial nilradical. Then, localize at $S = k[V] \setminus \cup p_i$, and $S^{-1}k[V]$ has unique maximal primes $S^{-1}p_1,...,S^{-1}p_n$, which are coprime. By chinese remainder, we have

$$k(V) = S^{-1}k[V]/(0) = S^{-1}k[V]/\cap S^{-1}p_i \cong \prod k(V_i)$$

- (c)
- (d)

Problem 5