Corso di Laurea in Informatica - A.A. 2011 - 2012 Scritto di Fisica - 10/07/2012

Esercizio 1

Siano dati due vettori in componenti cartesiane: $\vec{a} = 3\vec{i}$ e $\vec{b} = -6\vec{i} + 3\vec{j}$. Detto $\vec{s} = \vec{a} + \vec{b}$ il vettore somma, si determini il modulo di \vec{s} e l'angolo che questo forma con l'asse X.

Esercizio 2

Si considerino due conduttori piani A e B di superficie $S=10^4$ m², paralleli tra loro e posti ad una distanza d=0.1 m. Sui due piani sono depositate rispettivamente le cariche $Q_A=+4$ mC e $Q_B=+2$ mC. Determinare:

- a) se questo sistema è un condensatore;
- b) l'andamento del campo elettrico, in prossimità dei conduttori, nelle regioni x < 0, 0 < x < d e x > d;
- c) l'andamento del potenziale elettrico nella regione 0 < x < d assumendo che il potenziale sia nullo sul piano B;
- d) la velocità minima che un corpo puntiforme di carica q_0 =-10 μ C e massa m=0.1 kg posto in x=d/4 deve avere per raggiungere il piano B.

Esercizio 3

Nel circuito in figura i resistori valgono rispettivamente R_1 =100 Ω , R_2 =600 Ω e R_3 = R_4 =300 Ω , il condensatore C=144 μ F e la f.e.m.=6 V. Deteminare, in condizioni di stazionarietà:

- a) l'energia immagazzinata nel condensatore
- b) nel caso in cui il condensatore fosse sostituito da un induttore, il valore di L che questo dovrebbe avere per immagazzinare la stessa energia.

