ϕ (1680)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

ϕ (1680) MASS

e^+e^- PRODUCTION

VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT

1680 ± 20 OUR ESTIMATE

• • We do not use the following data for averages, fits, limits, etc. • •

1674±12± 6	6.2k	¹ LEES	14H	BABR	$e^+e^- \rightarrow \kappa_S^0 \kappa_I^0 \gamma$
$1733 \pm 10 \pm 10$		² LEES	12F		10.6 $e^+e^- \rightarrow \phi \pi^+\pi^- \gamma$
$1689 \pm 7 \pm 10$	4.8k	³ SHEN	09	BELL	10.6 $e^+e^- \to K^+K^-\pi^+\pi^-\gamma$
$1709 \pm 20 \pm 43$					10.6 $e^+e^- o hadrons$
1623 ± 20	948	⁵ AKHMETSHIN	03	CMD2	1.05–1.38 $e^+e^- \to K_I^0 K_S^0$
\sim 1500					$e^+e^- \rightarrow \pi^+\pi^-\pi^0$, $\omega\pi^+\pi^-$,
					K^+K^-
\sim 1900		⁷ ACHASOV	98н	RVUE	$e^{+}e^{-}\stackrel{K^{+}}{\rightarrow}\stackrel{K^{-}}{\kappa}_{S}^{0}\kappa^{\pm}\pi^{\mp}$
1700 ± 20		⁸ CLEGG	94	RVUE	$e^+e^- ightarrow \ ilde{K^+}K^-, \ ilde{K}^0_S K \pi$
1657 ± 27	367	BISELLO	91 C	DM2	$e^+e^- ightarrow \kappa^0_S \kappa^{\pm} \pi^{\mp}$
1655 ± 17		⁹ BISELLO	88 B	DM2	$e^+e^- \rightarrow K^+K^-$
1680 ± 10		¹⁰ BUON	82	DM1	$e^+e^- o$ hadrons
1677 ± 12		¹¹ MANE	82	DM1	$e^+e^- ightarrow \ K^0_S K \pi$
					_

¹ Using a vector meson dominance model with contribution from $\phi(1020)$, $\phi(1680)$, and higher mass excitations of $\rho(770)$ and $\omega(782)$.

PHOTOPRODUCTION

	DOCTION			
VALUE (MeV)	DOCUMENT ID	TE	CN	COMMENT
• • • We do n	ot use the following data for avera	ges, fits, I	imits	, etc. • • •
1753 ± 3	¹² LINK			20–160 $\gamma p \rightarrow K^+K^-p$
1726 ± 22	¹² BUSENITZ	89 TF	PS	$\gamma p \rightarrow K^+ K^- X$
1760 ± 20	¹² ATKINSON	85C O	ИEG	20–70 $\gamma p \rightarrow K\overline{K}X$
1690 ± 10	¹² ASTON	81F O	ИEG	25–70 $\gamma p \rightarrow K^+K^-X$
10				

¹²We list here a state decaying into K^+K^- possibly different from $\phi(1680)$.

 $^{^2\, \}rm Using$ events with $\pi\pi$ invariant mass less than 0.85 GeV.

³ From a fit with two incoherent Breit-Wigners.

⁴ From the simultaneous fit to the $K\overline{K}^*(892)+$ c.c. and $\phi\eta$ data from AUBERT 08S using the results of AUBERT 07AK.

⁵ From the combined fit of AKHMETSHIN 03 and MANE 81 also including ρ , ω , and ϕ . Neither isospin nor flavor structure known.

 $^{^6}$ Using data from IVANOV 81, BARKOV 87, BISELLO 88B, DOLINSKY 91, and AN_TONELLI 92.

⁷Using the data from BISELLO 91C.

⁸ Using BISELLO 88B and MANE 82 data.

⁹ From global fit including ρ , ω , ϕ and ρ (1700) assume mass 1570 MeV and width 510 MeV for ρ radial excitation.

 $^{^{10}}$ From global fit of $\rho,~\omega,~\phi$ and their radial excitations to channels $\omega\,\pi^+\,\pi^-,~K^+\,K^-,~K^0_S\,K^0_L,~K^0_S\,K^\pm\,\pi^\mp.$ Assume mass 1570 MeV and width 510 MeV for ρ radial excitations, mass 1570 and width 500 MeV for ω radial excitation.

¹¹ Fit to one channel only, neglecting interference with ω , $\rho(1700)$.

PP ANNIHILATION

VALUE (MeV) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

1700 ± 8 13 AMSLER 06 CBAR 0.9 $\overline{p}p \rightarrow K^+K^-\pi^0$

¹³ Could also be $\rho(1700)$.

ϕ (1680) WIDTH

e^+e^- PRODUCTION

/ALUE (MeV) EVTS DOCUMENT ID TECN COMMENT

150±50 OUR ESTIMATE This is only an educated guess; the error given is larger than the error on the average of the published values.

• • • We do not use the following data for averages, fits, limits, etc. • • •

$165 \pm 38 \pm 70$	6.2k	¹⁴ LEES	14H	BABR	$e^+e^- ightarrow~\kappa^0_S\kappa^0_I\gamma$
$300 \pm 15 \pm 37$		¹⁵ LEES			10.6 $e^+e^- \rightarrow \phi \pi^+\pi^-\gamma$
$211 \pm 14 \pm 19$	4.8k	¹⁶ SHEN	09	BELL	10.6 $e^+e^- \rightarrow K^+K^-\pi^+\pi^-\gamma$
$322\pm77\pm160$		¹⁷ AUBERT			$10.6~e^+e^- ightarrow ext{hadrons}$
$139\!\pm\!60$	948	¹⁸ AKHMETSHIN	l 03	CMD2	1.05–1.38 $e^+e^- \to K_I^0 K_S^0$
$300\!\pm\!60$		¹⁹ CLEGG			$e^+e^- \rightarrow K^+K^-, K_S^0K\pi$
146 ± 55	367	BISELLO	91 C	DM2	$e^+e^- ightarrow~\kappa^0_{\c S}\kappa^\pm\pi^\mp$
207 ± 45		²⁰ BISELLO	88B	DM2	$e^+e^- \rightarrow K^+K^-$
185 ± 22		²¹ BUON	82	DM1	$e^+e^- o$ hadrons
$102\!\pm\!36$		²² MANE	82	DM1	$e^+e^- ightarrow~K^0_SK\pi$

¹⁴ Using a vector meson dominance model with contribution from ϕ (1020), ϕ (1680), and higher mass excitations of ρ (770) and ω (782).

PHOTOPRODUCTION

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT			
ullet $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$							
122 ± 63 121 ± 47 80 ± 40 100 ± 40	23 LINK 23 BUSENITZ 23 ATKINSON 23 ASTON	89 85C	TPS OMEG	20–160 $\gamma p \rightarrow K^+ K^- p$ $\gamma p \rightarrow K^+ K^- X$ 20–70 $\gamma p \rightarrow K \overline{K} X$ 25–70 $\gamma p \rightarrow K^+ K^- X$			

²³We list here a state decaying into K^+K^- possibly different from $\phi(1680)$.

 $^{^{15}}$ Using events with $\pi\pi$ invariant mass less than 0.85 GeV.

¹⁶ From a fit with two incoherent Breit-Wigners.

¹⁷ From the simultaneous fit to the $K\overline{K}^*(892)+$ c.c. and $\phi\eta$ data from AUBERT 08S using the results of AUBERT 07AK.

¹⁸ From the combined fit of AKHMETSHIN 03 and MANE 81 also including ρ , ω , and ϕ . Neither isospin nor flavor structure known.

 $^{^{19}}$ Using BISELLO 88B and MANE 82 data.

²⁰ From global fit including ρ , ω , ϕ and ρ (1700)

²¹ From global fit of ρ , ω , ϕ and their radial excitations to channels $\omega\pi^+\pi^-$, K^+K^- , $K^0_SK^0_L$, $K^0_SK^\pm\pi^\mp$. Assume mass 1570 MeV and width 510 MeV for ρ radial excitations, mass 1570 and width 500 MeV for ω radial excitation.

²² Fit to one channel only, neglecting interference with ω , $\rho(1700)$.

pp ANNIHILATION

VALUE (MeV) DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • ²⁴ AMSLER CBAR $0.9 \, \overline{p}p \rightarrow K^+ K^- \pi^0$

²⁴ Could also be $\rho(1700)$.

ϕ (1680) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	$K\overline{K}^*(892) + \text{c.c.}$	dominant
Γ_2	$K_{\underline{S}}^{\underline{0}}K\pi$	seen
Гз	KK	seen
	$K_L^0 K_S^0$	
Γ_5	e^+e^-	seen
•	$\omega\pi\pi$	not seen
Γ ₇	$\phi\pi\pi$	
U	$K^+K^-\pi^+\pi^-$	seen
Γ ₉	$\eta\phi$	seen
Γ ₁₀	$\eta \gamma \ extstyle{K^+ K^- \pi^0}$	seen
Γ ₁₁	κ κ π	

$\phi(1680) \Gamma(i)\Gamma(e^+e^-)/\Gamma(total)$

This combination of a partial width with the partial width into $e^+e^$ and with the total width is obtained from the integrated cross section into channel (I) in e^+e^- annihilation. We list only data that have not been used to determine the partial width $\Gamma(I)$ or the branching ratio $\Gamma(I)/\text{total}$.

$\Gamma(K_I^0 K_S^0) \times \Gamma(e^+ e^-) / \Gamma_{\text{total}}$

 $\Gamma_4\Gamma_5/\Gamma$

TECN COMMENT DOCUMENT ID • • • We do not use the following data for averages, fits, limits, etc. • • • 14H BABR $e^+e^- \rightarrow K_S^0 K_I^0 \gamma$

²⁵ LEES 6.2k $14.3 \pm 2.4 \pm 6.2$

²⁵ Using a vector meson dominance model with contribution from $\phi(1020)$, $\phi(1680)$, and higher mass excitations of $\rho(770)$ and $\omega(782)$.

$\Gamma(\phi\pi\pi) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$

 $\Gamma_7\Gamma_5/\Gamma$

DOCUMENT ID TECN COMMENT ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

 $4.2 \pm 0.2 \pm 0.3$

LEES

12F BABR 10.6 $e^{+}e^{-} \rightarrow \phi \pi^{+}\pi^{-}\gamma$

$\phi(1680) \Gamma(i)\Gamma(e^+e^-)/\Gamma^2(total)$

This combination of a branching ratio into channel (i) and branching ratio into e^+e^- is directly measured and obtained from the cross section at the peak. We list only data that have not been used to determine the branching ratio into (i) or e^+e^- .

$\Gamma(K_I^0 K_S^0)/\Gamma_{\text{total}} \times \Gamma(e^+ e^-)/\Gamma_{\text{total}}$ $\Gamma_4/\Gamma \times \Gamma_5/\Gamma$ VALUE (units 10^{-6}) EVTSDOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • ²⁶ AKHMETSHIN 03 CMD2 1.05–1.38 $e^+e^- \rightarrow \kappa_L^0 \kappa_S^0$ 26 From the combined fit of AKHMETSHIN 03 and MANE 81 also including ho, ω , and ϕ . Neither isospin nor flavor structure known. Recalculated by us. $\Gamma(K\overline{K}^*(892) + \text{c.c.})/\Gamma_{\text{total}} \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$ $\Gamma_1/\Gamma \times \Gamma_5/\Gamma$ VALUE (units 10^{-6}) EVTSDOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • 08S BABR 10.6 $e^{+}e^{-} \to K\overline{K}^{*}(892)\gamma +$ ²⁷ AUBERT $1.15 \pm 0.16 \pm 0.01$ 1.35–2.40 $e^+e^- \to K_S^0 K^{\pm} \pi^{\mp}$ 367 ²⁸ BISELLO 91c DM2 3.29 ± 1.57 27 From the simultaneous fit to the $K\overline{K}^*(892)+$ c.c. and $\phi\eta$ data from AUBERT 08S using the results of AUBERT 07AK. ²⁸ Recalculated by us with the published value of B($K\overline{K}^*(892) + \text{c.c.}$) × $\Gamma(e^+e^-)$. $\Gamma(\phi\pi\pi)/\Gamma_{\text{total}} \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$ $\Gamma_7/\Gamma \times \Gamma_5/\Gamma$ VALUE (units 10^{-7}) EVTSDOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • ²⁹ SHEN 09 BELL 10.6 $e^+e^- \to K^+K^-\pi^+\pi^-\gamma$ $1.86 \pm 0.14 \pm 0.21$ 4.8k ²⁹ Multiplied by 3/2 to take into account the $\phi \pi^0 \pi^0$ mode. Using B($\phi \to K^+ K^-$) = $(49.2 \pm 0.6)\%$. $\Gamma(\eta\phi)/\Gamma_{\text{total}} \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$ $\Gamma_9/\Gamma \times \Gamma_5/\Gamma$ VALUE (units 10^{-6}) DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • ³⁰ AUBERT 08S BABR 10.6 e⁺e⁻ $\rightarrow \phi \eta \gamma$ $0.43 \pm 0.10 \pm 0.09$ 30 From the simultaneous fit to the $K\overline{K}^*(892)+$ c.c. and $\phi\eta$ data from AUBERT 08S using the results of AUBERT 07AK. ϕ (1680) BRANCHING RATIOS $\Gamma(K\overline{K}^*(892) + \text{c.c.})/\Gamma(K_S^0K\pi)$ VALUE MANE dominant $\Gamma(K\overline{K})/\Gamma(K\overline{K}^*(892)+c.c.)$ Γ_3/Γ_1 DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc.

HTTP://PDG.LBL.GOV

 0.07 ± 0.01

Page 4

82 DM1

BUON

$\Gamma(\omega\pi\pi)$	/Γ(<i>K</i> K '	*(892)+c	.c.)				Γ_6/Γ_1
VALUE	-		DOCUMENT IL)	TECN	COMMENT	
<0.10			BUON	82	DM1	e^+e^-	
$\Gamma(\eta\phi)/\Gamma$	- total						Γ ₉ /Γ
<u>VALUE</u>		EVTS	DOCUMENT ID		TECN	COMMENT	
seen		35	³¹ ACHASOV	14	SND	$1.15-2.00 e^{+}$	$e^- o \eta \gamma$
31 From $\phi(168)$	a phenom 0) masses	nenological and widths	model based on ve from the PDG 12.	ctor m	eson do	minance with $ ho$	(1450) and
$\Gamma(\eta\phi)/\Gamma$	(K <u>K</u> *(8	892) + c.c	.)				Γ_9/Γ_1
VALUE			DOCUMENT ID		TECN	COMMENT	
• • • We	do not us	se the follov	ving data for averag	ges, fit	s, limits,	etc. • • •	
≈ 0.37			³² AUBERT	08 S	BABR	10.6 $e^+e^ \rightarrow$	hadrons
32 From	the fit inc	luding data	from AUBERT 07/	λK.			
$\Gamma(\eta\gamma)/\Gamma$	total						Γ ₁₀ /Γ
VALUE		<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT	
seen		35	³³ ACHASOV	14	SND	$1.15-2.00 e^{+}$	$e^- o \eta \gamma$
33 From $\phi(168)$	a phenom 0) masses	nenological and widths	model based on versifrom the PDG 12.	ctor m	eson do	minance with $ ho$	(1450) and
			ϕ (1680) REFER	RENC	ES		
ACHASOV LEES LEES PDG SHEN AUBERT AUBERT AMSLER	14H F 12F F 12 F 09 F 08S F 07AK F	PR D90 03200 PR D89 09200 PR D86 01200 PR D86 01000 PR D80 03110 PR D77 09200 PR D76 01200 PL B639 165	 J.P. Lees <i>et</i> J.P. Lees <i>et</i> J. Beringer <i>et</i> C.P. Shen <i>et</i> B. Aubert <i>et</i> 	al. al. et al. t al. t al. t al.		(BÀBAR (BABAR (PDG (BELLE (BABAR (BABAR	Collab.) Collab.) Collab.) Collab.)

R.R. Akhmetshin et al.

N.N. Achasov, A.A. Kozhevnikov

A.B. Clegg, A. Donnachie

J.M. Link et al.

A. Antonelli et al.

S.I. Dolinsky et al.

J.K. Busenitz et al.

D. Bisello et al.

D. Bisello et al.

L.M. Barkov et al.

M. Atkinson et al.

P.M. Ivanov et al.

J. Buon et al.

F. Mane et al.

F. Mane et al.

D. Aston

E.V. Anashkin, V.M. Aulchenko, R.R. Akhmetshin

(Novosibirsk CMD-2 Collab.)

(FNAL FOCUS Collab.)

(PADO, CLÈR, FRAS+)

(BONN, CERN, GLAS+)

Created: 5/30/2017 17:21

(BONN, CERN, EPOL, GLAS, LANC+)

(LANC, MCHS)

(LALO, MONP)

(DM2 Collab.) (DM2 Collab.)

> (NOVO) (ILL, FNAL)

> > (NOVO)

(LALO)

(NOVO)

(ORSAY)

AKHMETSHIN 03

02K

98H

94

92

91

91C

88B

87

85C

82

82

81

81

81F

Also

ACHASOV

ANTONELLI

LINK

CLEGG

BISELLO

DOLINSKY

BUSENITZ

BISELLO

BARKOV

BUON

MANE

ASTON

IVANOV

MANE

ATKINSON

PL B551 27

PAN 65 1222

PL B545 50

PR D57 4334

ZPHY C62 455

ZPHY C56 15

ZPHY C52 227

PRPL 202 99

ZPHY C39 13

JETPL 46 164

ZPHY C27 233

PL 118B 221

PL 112B 178

PL 104B 231

PL 107B 297

PL 99B 261

PR D40 1

Translated from YAF 65 1255.

Translated from ZETFP 46 132.