Lecture 32 (Gravitation, Potential Energy and Gauss's Law)

Physics 160-01 Fall 2012 Douglas Fields

Gravitational Force

- Up until now, we have said that the gravitational force on a mass m is just mg.
- But remember that we always said that there is a condition on this, that we are at the earth's surface.
- What is the general form of the force due to gravity?

$$F_G = G \frac{m_1 m_2}{r^2}$$

- That is, two particles with mass will attract each other proportionately to their masses and inverse proportionately to the square of the distance between them
- The proportionality constant, G, is known as the universal gravitational constant.

Gravitational Force

- The gravitational force is very weak (?)...
- For two masses each of 1kg, separated by 1m:

$$F_G = G \frac{m_1 m_2}{r^2} = G \frac{1kg \cdot 1kg}{(1m)^2} = 6.6742 \times 10^{-11} N$$

- That is, the proportionately constant, $G = 6.6742 \times 10^{-11} \text{Nm}^2/\text{kg}^2$.
- So why is it that we feel such a strong force on us?
- The earth's mass = $5.98 \times 10^{24} \text{kg}!!$

Why $1/r^2$?

 Consider water flowing out of a hole in a level surface, and spreading out evenly along the surface...

Why $1/r^2$?

 Now, in three dimensions, we examine the flux passing through the surface of a sphere...

Superposition of Force

 Remember that if two (or more) forces are acting on a body, the net force is just the (vector) sum of all the forces:

The same is true for gravitational forces.

Example

$$F_{1} = \frac{\begin{bmatrix} (6.67 \times 10^{-11} \,\mathrm{N} \cdot \mathrm{m}^{2}/\mathrm{kg}^{2}) \\ \times (8.00 \times 10^{30} \,\mathrm{kg}) (1.00 \times 10^{30} \,\mathrm{kg}) \end{bmatrix}}{(2.00 \times 10^{12} \,\mathrm{m})^{2} + (2.00 \times 10^{12} \,\mathrm{m})^{2}}$$

$$= 6.67 \times 10^{25} \,\mathrm{N}$$

$$F_{2} = \frac{\begin{bmatrix} (6.67 \times 10^{-11} \,\mathrm{N} \cdot \mathrm{m}^{2}/\mathrm{kg}^{2}) \\ \times (8.00 \times 10^{30} \,\mathrm{kg}) (1.00 \times 10^{30} \,\mathrm{kg}) \end{bmatrix}}{(2.00 \times 10^{12} \,\mathrm{m})^{2}}$$

$$= 1.33 \times 10^{26} \,\mathrm{N}$$

$$F_{1x} = (6.67 \times 10^{25} \,\mathrm{N})(\cos 45^{\circ}) = 4.72 \times 10^{25} \,\mathrm{N}$$

$$F_{1y} = (6.67 \times 10^{25} \,\mathrm{N})(\sin 45^{\circ}) = 4.72 \times 10^{25} \,\mathrm{N}$$

$$F_{2x} = 1.33 \times 10^{26} \,\mathrm{N}$$

$$F_{2y}=0$$

$$F_x = F_{1x} + F_{2x} = 1.81 \times 10^{26} \,\mathrm{N}$$

$$F_{\rm y} = F_{\rm 1y} + F_{\rm 2y} = 4.72 \times 10^{25} \,\rm N$$

$$F = \sqrt{F_x^2 + F_y^2} = \sqrt{(1.81 \times 10^{26} \,\mathrm{N})^2 + (4.72 \times 10^{25} \,\mathrm{N})^2}$$

= 1.87 × 10²⁶ N

$$\theta = \arctan \frac{F_y}{F_x} = \arctan \frac{4.72 \times 10^{25} \,\mathrm{N}}{1.81 \times 10^{26} \,\mathrm{N}} = 14.6^{\circ}$$

Spherically Symmetric Bodies

 We can do the same thing for continuous distributions of mass.

Spherically Symmetric Bodies

For a spherically symmetric distribution, the net force is pointed to the center, and has the magnitude as if all the mass was located at the center:

Search For Oil

 If the mass is not spherically symmetric, this is no longer the case:

 This can be used to look for non-uniform densities in the earth's crust (oil, uranium, etc.).

Shell Theorem

$$F_G = G \frac{m_1 m_2}{r^2}$$

Weight and "Little g"

 So, what is the force due to gravity on a mass m, at the surface of the earth?

$$F_G = G \frac{m_E m}{r_E^2} = \frac{G m_E}{r_E^2} m = \frac{\left(6.67 \times 10^{-11} \, N \cdot m^2 / kg^2\right) \left(5.98 \times 10^{24} \, kg\right)}{\left(6.38 \times 10^6 \, m\right)^2} m = \left(9.8 \frac{N}{kg}\right) m$$

- Recognize the factor in front of the object's mass?
- Also notice that as the object goes farther from the earth's center, the force of gravity from the earth gets less...

Astronaut's Weight

Gravitational Potential Energy

 Remember that we defined the gravitational potential energy as being the work done by gravity when an object is moved from one point to another:

$$\Delta U_g = -W_g = -\int_1^2 \vec{F}_g \cdot d\vec{r}$$

Near the earth's surface, you can take the force to be constant = mg, so the change in potential is just mg (r_2-r_1) = mgh

Gravitational Potential Energy

 Now, we have a force that varies with distance:

$$\Delta U_g = -W_g = \int_{r_1}^{r_2} \frac{Gm_1m_2}{r^2} dr = \frac{Gm_1m_2}{r_1} - \frac{Gm_1m_2}{r_2}$$

 If we define the zero of the potential now to be at infinity, we can set values for the potential:

$$U_g = -\frac{Gm_1m_2}{r}$$

Gravitational Potential Energy

Escape Velocity

From Conservation of energy:

$$\frac{1}{2}mv_1^2 + \left(-\frac{Gm_Em}{R_E}\right) = 0 + 0$$

$$v_1 = \sqrt{\frac{2Gm_E}{R_E}}$$

$$= \sqrt{\frac{2(6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2)(5.97 \times 10^{24} \text{ kg})}{6.38 \times 10^6 \text{ m}}}$$

$$= 1.12 \times 10^4 \text{ m/s} (= 40,200 \text{ km/h} = 25,000 \text{ mi/h})$$

Gravitational Potential Energy From More Than One Object

 Since potential energy is just a scalar, it adds just like any other quantity adds:

$$U_{g1} = -\frac{Gm_1m_2}{r_{12}} - \frac{Gm_1m_3}{r_{13}} - \frac{Gm_1m_4}{r_{14}} \dots$$