

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Выпускная квалификационная работа бакалавра на тему:

«Метод анализа активности пользователей системы автоматизированного проектирования с использованием поиска последовательных шаблонов.»

Студент: Пронин Арсений Сергеевич

Группа: ИУ7-82Б

Руководитель: Никульшина Татьяна Александровна

Актуальность

Показатели САПР по итогам 2021 года:

- Объем мирового рынка \$9,4 млрд
- 7,31 млн пользователей

Решаемые задачи:

- Повышения эффективности использования системы
- Оптимизация процесса разработки САПР
- Выявления проблем взаимодействия пользователя с интерфейсом и ошибок в системе

Цель и задачи

Цель: разработать и программно реализовать метод анализа активности пользователей САПР с использованием поиска последовательных шаблонов.

Задачи:

- 1) рассмотреть существующие решения в области анализа активности пользователей, выбрать для них критерии оценки и сравнить;
- 2) формализовать задачу в виде IDEF0-диаграммы;
- 3) разработать метод анализа активности пользователей САПР с использованием поиска последовательных шаблонов;
- 4) разработать программное обеспечение, реализующее описанный метод;
- 5) исследовать характеристики разработанного метода.

Сравнение рассмотренных методов

Метод	Требование к входным данным	Учет времени транз-ий	Сложность алгоритма
Мат. модель пользов. актив. ПО	Множество событий, функция классификации событий, множество сессий, множество последовательных шаблонов	Нет	$O(n \cdot m)$, где n – кол-во шаблонов, m – кол-во сессий
Apriori	Транзакции с набором элементов и минимальный уровень поддержки	Нет	$O(D \cdot I \cdot 2^{ I }),$ где $ D $ – кол-во транзакций, $ I $ – общее число предметов
GSP	База данных с полями: id последовательности, id и время транзакции, набор элементов и минимальный уровень поддержки	Да	$O(I ^l)$, где $ I $ – общее число предметов, l – длина наибольшей ЧВП
GOMS	Последова <mark>тель</mark> ность действий	Нет	O(n), где $n-$ число действий в послед-ти

Формализованная постановка задачи

Ограничения на входные данные:

- Данные о выполненных командах должны содержать информацию об их последовательности
- Пользовательские параметры:
 - Минимальный уровень поддержки от 0 до 1
 - Минимальный и максимальный временной разрыв между командами (в секундах) от 0 до INT_MAX (2147483647)

Уровень поддержки

Сессия 1:

Время	Команда	
7	1	
8	2	
9	3	

Сессия 2:

Время	Команда
7	3
8	1
9	2

Сессия 3:

Время	Команда	
7	1	
8	3	
9	2	

Сессия 4:

Время	Команда	
7	2	
8	3	
9	1	

При минимальном и максимальном временном разрыве между командами от 0 до 2 секунд, три первые сессии содержат последовательность <1, 2>, поэтому ее поддержка = $\frac{3}{4}$ = 0.75

Последовательность	Поддержка
<1, 2>	0.75

Коэффициент зависимости

Пусть поддержка последовательности <1, 2, 3> равна 0.5, а последовательностей <1>, <2> и <3> равны 0.6, 0.8 и 1 соответственно В таком случае, коэффициент зависимости = $\frac{0.5}{0.6 \times 0.8 \times 1} \approx 1.042$

Если коэффициент <= 1, то команды в последовательности независимы Если коэффициент > 1, то зависимость есть

Генерация последовательностей

Проверка поддержки последовательности сессией

Структура программного обеспечения

Сравнительный анализ времени выполнения этапов метода

Сравнительный анализ времени выполнения метода в зависимости от параметров

Заключение

По итогу проделанной работы была достигнута цель - разработан и программно реализован метод анализа активности пользователей САПР с использованием поиска последовательных шаблонов.

Также были решены все поставленные задачи, а именно:

- 1) рассмотрены существующие решения в области анализа активности пользователей, выбраны для них критерии оценки и проведено сравнение;
- 2) формализована задача в виде IDEF0-диаграммы;
- 3) разработан метод анализа активности пользователей САПР с использованием поиска последовательных шаблонов;
- 4) разработано программное обеспечение, реализующее описанный метод;
- 5) исследованы характеристики разработанного метода.

Перспективы дальнейшего развития

• Возможность предсказания следующей команды

• Подсчет процента содержания найденных последовательностей в сессиях

• Оценка времени, необходимого для выполнения последовательности