Shortest Path Planning Computational Intelligence, Lecture 13

by Sergei Savin

Spring 2023

CONTENT

SHORTEST PATH ON A GRAPH

If we want to plan a path on a 2D map, we can represent obstacle-free space regions as a nodes, and possible transitions between the obstacle-free space regions as graph edges.

Figure 1: Path planning as graph search; Credit: https://demonstrations.wolfram.com/ProbabilisticRoadmapMethod/

SHORTEST PATH ON A GRAPH

Consider a directed graph (each edge has a direction assigned to it):

Figure 2: Directed graph; Credit: https://github.com/HQarroum/directed-graph

How can we find a shortest path from a start node to a finish node on it?

SPP as LP

SHORTEST PATH (1)

We assign index variable x_i to *i*-th edge; each index variable is positive $x_i \geq 0$.

If $x_i = 1$ the edge is part of the path. We assume that otherwise $x_i = 0$ (which will be enforced by the other constraints). Adding a cost d_i associated with each edge (e.g. Euclidean distance) we get a linear cost $l(\mathbf{x})$:

$$l(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} \mathbf{d} \tag{1}$$

SHORTEST PATH (2)

Since each edge connects one node (e.g. node u) to another (e.g. node v), we can label all index variables x with superscripts, denoting nodes that they connect - $x^{u,v}$.

Our goal will be to count how many path segments enter and leave each node. For any normal node the number will be equal:

$$-\sum_{\forall i} x^{i,v} + \sum_{\forall j} x^{v,j} = 0 \tag{2}$$

SHORTEST PATH (3)

We know that for the starting node s, there will only be one path segment leaving it:

$$-\sum_{\forall i} x^{i,s} + \sum_{\forall j} x^{s,j} = 1 \tag{3}$$

For the finishing node f we have only one path segment entering it:

$$-\sum_{\forall i} x^{i,f} + \sum_{\forall j} x^{f,j} = -1 \tag{4}$$

SHORTEST PATH (4)

Together the problem becomes:

minimize
$$\mathbf{x}^{\top} \mathbf{d}$$
,

subject to
$$\begin{cases}
-\sum_{\forall i} x^{i,v} + \sum_{\forall j} x^{v,j} = 0, & \forall v \\
-\sum_{\forall i} x^{i,s} + \sum_{\forall j} x^{s,j} = 1, \\
-\sum_{\forall i} x^{i,f} + \sum_{\forall j} x^{f,j} = -1, \\
\mathbf{x} \ge 0.
\end{cases}$$
(5)

And with that, the problem can be solved as an LP.

SPP CODE (1)

```
0 \mid n = 5; V = randn(n, 2);
 % Connectivity:
_{2}|C = [1, 2; \%edge 1]
  1, 3; %edge 2
4 2, 3; %edge 3
 2, 4; %edge 4
6 3, 5; %edge 5
 4, 5];%edge 6
| \text{nc} = \text{size}(C, 1);
  d = zeros(nc, 1); \%cost - distance
10 \mid \text{for i} = 1:\text{nc}
    d(i) = norm(V(C(i, 2), :) - V(C(i, 1), :));
12 end
```

SPP CODE (2)

```
o cvx_begin
  variable x(nc, 1)
|\mathbf{z}| minimize (\mathbf{dot}(\mathbf{d}, \mathbf{x}))
  subject to
4 \times = zeros(nc, 1);
 |x(1) + x(2)| = 1;\%v 1
6 | -x(5) - x(6) = -1;\% v 5
|-x(1) + x(3) + x(4) = 0; \%v 2
 -x(2) - x(3) + x(5) = 0; %v 3
                 == 0:\%v 4
|-x(4) + x(6)|
  cvx_end
```

SPP via A* algorithm

A STAR SEARCH

Another popular shortest path planning method for graphs is A star (A^*) . Unlike the previous method it does not involve optimization, but it requires a heuristic.

To study A* we once more consider a graph whose edges have cost associated with them.

Let p be a node of the graph that the program found a path to. Point p has a predecessor point a(p) - the last node in the path towards p. Since each predecessor knows its predecessor, it means we can recursively reconstruct the path from the point p to the start.

A STAR SEARCH

Finding a path from the start to the point p we construct a sequence of edges that we need to travel through - e_1 , e_2 , ..., e_n . Each of these edges has a cost associated with them - c_1 , c_2 , ..., c_n . So, the cost of reaching a node p is $g(p) = \sum_{i=1}^n c_i$.

If we have a heuristic h(p) that (while more or less accurate) always underestimates the cost to reaching goal from the node p, we can use A^* to choose the next node in the path. We choose the node that minimizes the following cost function:

$$p_{next} = \underset{p}{\operatorname{argmin}}(g(p) + h(p)) \tag{6}$$

A STAR SEARCH - IMPLEMENTATION

In practice, when we can compute g(p) much simpler. Given a new node p_{next} and its predecessor p_a , and the cost associated with the edge connecting them c_a , we can assign the value of $g(p_{next})$ as:

$$g(p_{next}) := g(p_a) + c_a \tag{7}$$

Heuristic might be difficult to formulate in general, but as long as each node has coordinates on a plane associated with it, Euclidean distance provides a suitable heuristic.

A STAR SEARCH - IMPLEMENTATION

A grid can easily be seen as a graph, where adjacency implies connection.

Figure 3: Example of a grid with obstacles. Credit: geeksforgeeks.org

Lecture slides are available via Github, links are on Moodle

 $You\ can\ help\ improve\ these\ slides\ at: github.com/SergeiSa/Computational-Intelligence-Slides-Spring-2023$

