Practical No: 7

Topics Covered: Pandas, Matplotlib

Name: Saloni Vishwakarma

Batch-Roll no: C1-13

A] Write the Python code apply Data Cleaning Techniques for the following.

1) Load the Toyota vehicle's data from a given csv file into a data frame and print it. (Toyota.csv)

```
In [28]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

```
In [29]: datafile="Toyota.csv"
```

```
In [30]: dataset=pd.read_csv(datafile)
dataset
```

Out[30]:

	Unnamed: 0	Price	Age	KM	FuelType	HP	MetColor	Automatic	СС	Doors	Weight
0	0	13500	23.0	46986	Diesel	90	1.0	0	2000	three	1165
1	1	13750	23.0	72937	Diesel	90	1.0	0	2000	3	1165
2	2	13950	24.0	41711	Diesel	90	NaN	0	2000	3	1165
3	3	14950	26.0	48000	Diesel	90	0.0	0	2000	3	1165
4	4	13750	30.0	38500	Diesel	90	0.0	0	2000	3	1170
1431	1431	7500	NaN	20544	Petrol	86	1.0	0	1300	3	1025
1432	1432	10845	72.0	??	Petrol	86	0.0	0	1300	3	1015
1433	1433	8500	NaN	17016	Petrol	86	0.0	0	1300	3	1015
1434	1434	7250	70.0	??	NaN	86	1.0	0	1300	3	1015
1435	1435	6950	76.0	1	Petrol	110	0.0	0	1600	5	1114

1436 rows × 11 columns

2) Replace all abnormal symbols such as '?' '***' etc. by Null values

```
In [55]: values=['?','??','***']
df=dataset.replace(values,np.NaN)
df
```

Out[55]:

	Unnamed: 0	Price	Age	KM	FuelType	HP	MetColor	Automatic	CC	Doors	Weight
0	0	13500	23.0	46986	Diesel	90	1.0	0	2000	three	1165
1	1	13750	23.0	72937	Diesel	90	1.0	0	2000	3	1165
2	2	13950	24.0	41711	Diesel	90	NaN	0	2000	3	1165
3	3	14950	26.0	48000	Diesel	90	0.0	0	2000	3	1165
4	4	13750	30.0	38500	Diesel	90	0.0	0	2000	3	1170
1431	1431	7500	60.0	20544	Petrol	86	1.0	0	1300	3	1025
1432	1432	10845	72.0	NaN	Petrol	86	0.0	0	1300	3	1015
1433	1433	8500	60.0	17016	Petrol	86	0.0	0	1300	3	1015
1434	1434	7250	70.0	NaN	NaN	86	1.0	0	1300	3	1015
1435	1435	6950	76.0	1	Petrol	110	0.0	0	1600	5	1114

1436 rows × 11 columns

3) Count the total number of null values present in each attribute (column)

```
In [32]: df.isnull().sum()
Out[32]: Unnamed: 0     0
```

Price 0 Age 100 ΚM 15 FuelType 100 ΗP 0 MetColor 150 Automatic 0 CCDoors 0 Weight 0 dtype: int64

4) Replace the NaN in Age column by median value.

```
In [33]: dataset=pd.read_csv("Toyota.csv")
    x=dataset["Age"].median()
    print('Median=',x)
    dataset["Age"].fillna(x,inplace=True)
    dataset
```

Median= 60.0

Out[33]:

	Unnamed: 0	Price	Age	KM	FuelType	HP	MetColor	Automatic	CC	Doors	Weight
0	0	13500	23.0	46986	Diesel	90	1.0	0	2000	three	1165
1	1	13750	23.0	72937	Diesel	90	1.0	0	2000	3	1165
2	2	13950	24.0	41711	Diesel	90	NaN	0	2000	3	1165
3	3	14950	26.0	48000	Diesel	90	0.0	0	2000	3	1165
4	4	13750	30.0	38500	Diesel	90	0.0	0	2000	3	1170
1431	1431	7500	60.0	20544	Petrol	86	1.0	0	1300	3	1025
1432	1432	10845	72.0	??	Petrol	86	0.0	0	1300	3	1015
1433	1433	8500	60.0	17016	Petrol	86	0.0	0	1300	3	1015
1434	1434	7250	70.0	??	NaN	86	1.0	0	1300	3	1015
1435	1435	6950	76.0	1	Petrol	110	0.0	0	1600	5	1114

1436 rows × 11 columns

5) Replace the string value in column Door with number.

Out[34]:

	Unnamed: 0	Price	Age	KM	FuelType	HP	MetColor	Automatic	СС	Doors	Weight
0	0	13500	23.0	46986	Diesel	90	1.0	0	2000	3	1165
1	1	13750	23.0	72937	Diesel	90	1.0	0	2000	3	1165
2	2	13950	24.0	41711	Diesel	90	NaN	0	2000	3	1165
3	3	14950	26.0	48000	Diesel	90	0.0	0	2000	3	1165
4	4	13750	30.0	38500	Diesel	90	0.0	0	2000	3	1170
1431	1431	7500	NaN	20544	Petrol	86	1.0	0	1300	3	1025
1432	1432	10845	72.0	NaN	Petrol	86	0.0	0	1300	3	1015
1433	1433	8500	NaN	17016	Petrol	86	0.0	0	1300	3	1015
1434	1434	7250	70.0	NaN	NaN	86	1.0	0	1300	3	1015
1435	1435	6950	76.0	1	Petrol	110	0.0	0	1600	5	1114

1436 rows × 11 columns

6) Returns a Series containing counts of unique values for column 'FuelType' (Petrol, Diesel, CNG)

```
In [35]: print(df['FuelType'].value_counts())
```

Petrol 1177 Diesel 144 CNG 15

Name: FuelType, dtype: int64

7) Get the mode value of FuelType and fill NA/NaN values using the specified value of mode.

```
In [36]: m=df['FuelType'].mode()[0]
print(m)
df['FuelType'].fillna(m,inplace=True)
df
```

Petrol

Out[36]:

	Unnamed: 0	Price	Age	KM	FuelType	HP	MetColor	Automatic	СС	Doors	Weight
0	0	13500	23.0	46986	Diesel	90	1.0	0	2000	3	1165
1	1	13750	23.0	72937	Diesel	90	1.0	0	2000	3	1165
2	2	13950	24.0	41711	Diesel	90	NaN	0	2000	3	1165
3	3	14950	26.0	48000	Diesel	90	0.0	0	2000	3	1165
4	4	13750	30.0	38500	Diesel	90	0.0	0	2000	3	1170
1431	1431	7500	NaN	20544	Petrol	86	1.0	0	1300	3	1025
1432	1432	10845	72.0	NaN	Petrol	86	0.0	0	1300	3	1015
1433	1433	8500	NaN	17016	Petrol	86	0.0	0	1300	3	1015
1434	1434	7250	70.0	NaN	Petrol	86	1.0	0	1300	3	1015
1435	1435	6950	76.0	1	Petrol	110	0.0	0	1600	5	1114

1436 rows × 11 columns

8) Get the mode value of Metcolor and fill NA/NaN values using the specified value of mode.

```
In [37]: m=df['MetColor'].mode()[0]
print(m)
df['MetColor'].fillna(m,inplace=True)
df
```

1.0

Out[37]:

	Unnamed: 0	Price	Age	KM	FuelType	HP	MetColor	Automatic	CC	Doors	Weight
0	0	13500	23.0	46986	Diesel	90	1.0	0	2000	3	1165
1	1	13750	23.0	72937	Diesel	90	1.0	0	2000	3	1165
2	2	13950	24.0	41711	Diesel	90	1.0	0	2000	3	1165
3	3	14950	26.0	48000	Diesel	90	0.0	0	2000	3	1165
4	4	13750	30.0	38500	Diesel	90	0.0	0	2000	3	1170
1431	1431	7500	NaN	20544	Petrol	86	1.0	0	1300	3	1025
1432	1432	10845	72.0	NaN	Petrol	86	0.0	0	1300	3	1015
1433	1433	8500	NaN	17016	Petrol	86	0.0	0	1300	3	1015
1434	1434	7250	70.0	NaN	Petrol	86	1.0	0	1300	3	1015
1435	1435	6950	76.0	1	Petrol	110	0.0	0	1600	5	1114

1436 rows × 11 columns

9) Replace the value of FuelType as for Petrol replaces with 0, diesel with 1 and CNG with 2.

In [15]: df['FuelType'].replace({'petrol':0,'diesel':1,'CNG':2},inplace=True)
df

Out[15]:

	Unnamed: 0	Price	Age	KM	FuelType	HP	MetColor	Automatic	CC	Doors	Weight
0	0	13500	23.0	46986	Diesel	90	1.0	0	2000	0	1165
1	1	13750	23.0	72937	Diesel	90	1.0	0	2000	3	1165
2	2	13950	24.0	41711	Diesel	90	1.0	0	2000	3	1165
3	3	14950	26.0	48000	Diesel	90	0.0	0	2000	3	1165
4	4	13750	30.0	38500	Diesel	90	0.0	0	2000	3	1170
1431	1431	7500	NaN	20544	Petrol	86	1.0	0	1300	3	1025
1432	1432	10845	72.0	??	Petrol	86	0.0	0	1300	3	1015
1433	1433	8500	NaN	17016	Petrol	86	0.0	0	1300	3	1015
1434	1434	7250	70.0	??	Petrol	86	1.0	0	1300	3	1015
1435	1435	6950	76.0	1	Petrol	110	0.0	0	1600	5	1114

1436 rows × 11 columns

B] Analysis of Automobile dataset (Automobile_data.csv)

1. Load the Automobile data from a given csv file into a data frame and print the shape of the data, type of the data and first and last 4 rows of dataset. (Automobile_data.csv)

Out[16]:

	symboling	normalized- losses	make	fuel- type	aspiration	num- of- doors	body- style	drive- wheels	engine- location	whe ba
0	3	?	alfa- romero	gas	std	two	convertible	rwd	front	88
1	3	?	alfa- romero	gas	std	two	convertible	rwd	front	88
2	1	?	alfa- romero	gas	std	two	hatchback	rwd	front	94
3	2	164	audi	gas	std	four	sedan	fwd	front	9(
4	2	164	audi	gas	std	four	sedan	4wd	front	9(
200	-1	95	volvo	gas	std	four	sedan	rwd	front	109
201	-1	95	volvo	gas	turbo	four	sedan	rwd	front	109
202	-1	95	volvo	gas	std	four	sedan	rwd	front	109
203	-1	95	volvo	diesel	turbo	four	sedan	rwd	front	109
204	-1	95	volvo	gas	turbo	four	sedan	rwd	front	109

205 rows × 26 columns

In [17]: #to print first 4 rows
dataset.head(4)

Out[17]:

	symboling	normalized- losses	make	fuel- type	aspiration	num- of- doors	body- style	drive- wheels	engine- location	wheel- base
0	3	?	alfa- romero	gas	std	two	convertible	rwd	front	88.6
1	3	?	alfa- romero	gas	std	two	convertible	rwd	front	88.6
2	1	?	alfa- romero	gas	std	two	hatchback	rwd	front	94.5
3	2	164	audi	gas	std	four	sedan	fwd	front	99.8

4 rows × 26 columns

In [18]: #to print last 4 rows
dataset.tail(4)

Out[18]:

	symboling	normalized- losses	make	fuel- type	aspiration	num- of- doors	body- style	drive- wheels	engine- location	wheel- base	
201	-1	95	volvo	gas	turbo	four	sedan	rwd	front	109.1	
202	-1	95	volvo	gas	std	four	sedan	rwd	front	109.1	
203	-1	95	volvo	diesel	turbo	four	sedan	rwd	front	109.1	
204	-1	95	volvo	gas	turbo	four	sedan	rwd	front	109.1	

4 rows × 26 columns

In [19]: #to check the type of data
dataset.dtypes

Out[19]: symboling

normalized-losses object object make fuel-type object object aspiration num-of-doors object body-style object drive-wheels object engine-location object wheel-base float64 length float64 width float64 float64 height curb-weight int64 engine-type object num-of-cylinders object int64 engine-size object fuel-system bore object stroke object compression-ratio float64 horsepower object object peak-rpm int64 city-mpg int64 highway-mpg price object dtype: object

int64

In [20]: #to check the shape of data

dataset.shape

Out[20]: (205, 26)

2. Replace the abnormal symbols i.e. ??, ## to null value i.e., NaN

```
In [23]: values=['?','??','##','***']
df=dataset.replace(values,np.NaN)
df
```

Out[23]:

	symboling	normalized- losses	make	fuel- type	aspiration	num- of- doors	body- style	drive- wheels	engine- location	whe ba
0	3	NaN	alfa- romero	gas	std	two	convertible	rwd	front	88
1	3	NaN	alfa- romero	gas	std	two	convertible	rwd	front	88
2	1	NaN	alfa- romero	gas	std	two	hatchback	rwd	front	94
3	2	164	audi	gas	std	four	sedan	fwd	front	9(
4	2	164	audi	gas	std	four	sedan	4wd	front	9(
200	-1	95	volvo	gas	std	four	sedan	rwd	front	109
201	-1	95	volvo	gas	turbo	four	sedan	rwd	front	109
202	-1	95	volvo	gas	std	four	sedan	rwd	front	109
203	-1	95	volvo	diesel	turbo	four	sedan	rwd	front	109
204	-1	95	volvo	gas	turbo	four	sedan	rwd	front	109

205 rows × 26 columns

3. Describe the dataset, and find number of observations, missing values and nan values.

In [18]: #to describe the dataset
print(dataset.describe)

	und method NDF ^E uel-type aspi		e of	symbo	ling	normalized	l-losses	ma
0	3	,	?	alfa-romer	0	gas	std	
1	3		?	alfa-romer	0	gas	std	
2	1		?	alfa-romer	' O	gas	std	
3	2	-	164	aud	li	gas	std	
4	2		164	aud		gas	std	
	• • •					•••		
200	-1		95	volv		gas	std	
201	-1		95	volv		gas	turbo	
202	-1		95	volv		gas	std	
203	-1		95	volv		diesel	turbo	
204	-1		95	volv		gas	turbo	
,	num-of-doors	body-style	driv	e-wheels e	ngine	-location	wheel-base	· · · ·
\ 0	two	convertible		rwd		front	88.6	·
1	two	convertible		rwd		front	88.6	·
2	two	hatchback		rwd		front	94.5	
3	four	sedan		fwd		front	99.8	3
4	four	sedan		4wd		front	99.4	٠
•••		• • •		• • •				
200	four	sedan		rwd		front	109.1	
201	four	sedan		rwd		front	109.1	
202	four	sedan		rwd		front	109.1	
203	four	sedan		rwd		front	109.1	
204	four	sedan		rwd		front	109.1	• • •
	engine-size	fuel-system			compr		io horsepow	
0	130	mpfi						.11
1	130	mpfi						.11
2	152	mpfi						.54
3	109	mpfi						.02
4	136	mpfi	3.1	9 3.4		8	3.0 1	.15
• •	• • •	• • •	• •					• •
200	141	mpfi	3.7					.14
201	141	mpfi						.60
202	173	mpfi						.34
203	145	idi						.06
204	141	mpfi	3.7	8 3.15		g	9.5 1	.14
	•	y-mpg highway		•				
0	5000	21	27					
1	5000	21	27					
2	5000	19	26					
3	5500	24	30					
4	5500	18	22					
 200	5400	23	28	 16845				
201	5300	19	25					
202	5500	18	23					
203	4800	26	27					
204	5400	19	25					

[205 rows x 26 columns]>

In [19]: #to count the number of observations

len(dataset)

Out[19]: 205

In [38]: dataset.isnull()

Out[38]:

	Unnamed: 0	Price	Age	KM	FuelType	HP	MetColor	Automatic	CC	Doors	Weigh
0	False	False	False	False	False	False	False	False	False	False	Fals
1	False	False	False	False	False	False	False	False	False	False	Fals
2	False	False	False	False	False	False	True	False	False	False	Fals
3	False	False	False	False	False	False	False	False	False	False	Fals
4	False	False	False	False	False	False	False	False	False	False	Fals
1431	False	False	False	False	False	False	False	False	False	False	Fals
1432	False	False	False	False	False	False	False	False	False	False	Fals
1433	False	False	False	False	False	False	False	False	False	False	Fals
1434	False	False	False	False	True	False	False	False	False	False	Fals
1435	False	False	False	False	False	False	False	False	False	False	Fals

1436 rows × 11 columns

0

0 0

In [39]: dataset.isnull().sum()

Out[39]: Unnamed: 0
Price
Age
KM

KM 0
FuelType 100
HP 0
MetColor 150
Automatic 0
CC 0
Doors 0
Weight 0

dtype: int64

4. View basic statistical details like percentile, mean, std deviation, mode, variance, skewness of Automobile data

```
In [50]:
         dataset.count()
Out[50]: Unnamed: 0
                        1436
         Price
                        1436
         Age
                        1436
         ΚM
                        1436
         FuelType
                        1336
         ΗP
                        1436
         MetColor
                        1286
         Automatic
                        1436
         CC
                        1436
         Doors
                        1436
         Weight
                        1436
         dtype: int64
In [23]: #to find the mean
         print(dataset.mean())
         symboling
                                  0.834146
         wheel-base
                                 98.756585
         length
                                174.049268
         width
                                 65.907805
         height
                                 53.724878
         curb-weight
                               2555.565854
         engine-size
                                126.907317
         compression-ratio
                                 10.142537
         city-mpg
                                 25.219512
         highway-mpg
                                 30.751220
         dtype: float64
```

C:\Users\salon\AppData\Local\Temp\ipykernel_4484\3796844437.py:2: FutureWarni ng: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

print(dataset.mean())

0

1

25.0

NaN

[2 rows x 26 columns]

?

NaN

```
#to find the standard deviation
In [24]:
         print(dataset.std())
          symboling
                                 1.245307
         wheel-base
                                 6.021776
         length
                                12.337289
         width
                                 2.145204
         height
                                 2.443522
         curb-weight
                               520.680204
         engine-size
                                41.642693
          compression-ratio
                                 3.972040
                                 6.542142
          city-mpg
         highway-mpg
                                 6.886443
          dtype: float64
         C:\Users\salon\AppData\Local\Temp\ipykernel_4484\1149059033.py:2: FutureWarni
         ng: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=
         None') is deprecated; in a future version this will raise TypeError. Select
         only valid columns before calling the reduction.
            print(dataset.std())
In [25]: #to find the mode
         print(dataset.mode())
             symboling normalized-losses
                                             make fuel-type aspiration num-of-doors
         0
                   0.0
                                        ?
                                           toyota
                                                         gas
                                                                    std
                                                                                 four
         1
                   NaN
                                              NaN
                                                                    NaN
                                      NaN
                                                        NaN
                                                                                 NaN
            body-style drive-wheels engine-location wheel-base
                                                                        engine-size
          0
                 sedan
                                fwd
                                               front
                                                             94.5
                                                                                 92
                                                                   . . .
          1
                                                                                122
                   NaN
                                NaN
                                                 NaN
                                                              NaN
                                                                   . . .
             fuel-system
                          bore
                                stroke compression-ratio horsepower
                                                                       peak-rpm city-mpg
          ١
         0
                                                      9.0
                    mpfi
                          3.62
                                   3.4
                                                                   68
                                                                           5500
                                                                                     31.0
         1
                                                      NaN
                                                                                      NaN
                     NaN
                           NaN
                                   NaN
                                                                  NaN
                                                                            NaN
            highway-mpg price
```

In [26]: #to find the variance print(dataset.var())

symboling 1.550789 wheel-base 36.261782 length 152.208688 width 4.601900 height 5.970800 curb-weight 271107.874319 engine-size 1734.113917 compression-ratio 15.777104 42.799617 city-mpg highway-mpg 47.423099

dtype: float64

C:\Users\salon\AppData\Local\Temp\ipykernel_4484\1526402557.py:2: FutureWarni ng: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only= None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

print(dataset.var())

In [27]: #to find the skewness of data print(dataset.skew())

> symboling 0.211072 wheel-base 1.050214 length 0.155954 width 0.904003 height 0.063123 curb-weight 0.681398 engine-size 1.947655 compression-ratio 2.610862 city-mpg 0.663704 highway-mpg 0.539997 dtype: float64

C:\Users\salon\AppData\Local\Temp\ipykernel_4484\2158001515.py:2: FutureWarni ng: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only= None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

print(dataset.skew())

5. Find the most expensive car company name.

```
In [39]: df1=dataset[['price']][df.price==df['price'].max()]
df1
```

Out[39]:

	price
9	?
44	?
45	?
129	?
44 45	?

6. Print all Toyota cars available.

In [34]: all_toyota=dataset.groupby('make') toyotaDf=all_toyota.get_group('toyota') toyotaDf

Out[34]:

	symboling	normalized- losses	make	fuel- type	aspiration	num- of- doors	body- style	drive- wheels	engine- location	whee bas
150	1	87	toyota	gas	std	two	hatchback	fwd	front	95
151	1	87	toyota	gas	std	two	hatchback	fwd	front	95
152	1	74	toyota	gas	std	four	hatchback	fwd	front	95
153	0	77	toyota	gas	std	four	wagon	fwd	front	95
154	0	81	toyota	gas	std	four	wagon	4wd	front	95
155	0	91	toyota	gas	std	four	wagon	4wd	front	95
156	0	91	toyota	gas	std	four	sedan	fwd	front	95
157	0	91	toyota	gas	std	four	hatchback	fwd	front	95
158	0	91	toyota	diesel	std	four	sedan	fwd	front	95
159	0	91	toyota	diesel	std	four	hatchback	fwd	front	95
160	0	91	toyota	gas	std	four	sedan	fwd	front	95
161	0	91	toyota	gas	std	four	hatchback	fwd	front	95
162	0	91	toyota	gas	std	four	sedan	fwd	front	95
163	1	168	toyota	gas	std	two	sedan	rwd	front	94
164	1	168	toyota	gas	std	two	hatchback	rwd	front	94
165	1	168	toyota	gas	std	two	sedan	rwd	front	94
166	1	168	toyota	gas	std	two	hatchback	rwd	front	94
167	2	134	toyota	gas	std	two	hardtop	rwd	front	98
168	2	134	toyota	gas	std	two	hardtop	rwd	front	98
169	2	134	toyota	gas	std	two	hatchback	rwd	front	98
170	2	134	toyota	gas	std	two	hardtop	rwd	front	98
171	2	134	toyota	gas	std	two	hatchback	rwd	front	98
172	2	134	toyota	gas	std	two	convertible	rwd	front	98
173	-1	65	toyota	gas	std	four	sedan	fwd	front	102
174	-1	65	toyota	diesel	turbo	four	sedan	fwd	front	102
175	-1	65	toyota	gas	std	four	hatchback	fwd	front	102
176	-1	65	toyota	gas	std	four	sedan	fwd	front	102
177	-1	65	toyota	gas	std	four	hatchback	fwd	front	102
178	3	197	toyota	gas	std	two	hatchback	rwd	front	102
179	3	197	toyota	gas	std	two	hatchback	rwd	front	102
180	-1	90	toyota	gas	std	four	sedan	rwd	front	104

29-01-2023, 17:25 17 of 21

symboling	normalized- losses	make	fuel- type	aspiration	num- of- doors	body- style	 engine- location	whee bas
			٠.		goors	•		

7. Find for each company's highest price car

```
In [37]: dataset.groupby('make')
  dataset[['make','price']][df.price==df['price'].max()]
```

Out[37]:

	make	price
9	audi	?
44	isuzu	?
45	isuzu	?
129	porsche	?

8. Find the average mileage of each car making company.

```
In [40]: avg_mileage=df.groupby('make')
avg_mileage=avg_mileage['make','highway-mpg'].mean()
avg_mileage
```

C:\Users\salon\AppData\Local\Temp\ipykernel_4484\1284515093.py:2: FutureWarni ng: Indexing with multiple keys (implicitly converted to a tuple of keys) wil l be deprecated, use a list instead.

avg_mileage=avg_mileage['make','highway-mpg'].mean()

Out[40]:

highway-mpg

make	
alfa-romero	26.666667
audi	24.142857
bmw	25.375000
chevrolet	46.333333
dodge	34.111111
honda	35.461538
isuzu	36.000000
jaguar	18.333333
mazda	31.941176
mercedes-benz	21.000000
mercury	24.000000
mitsubishi	31.153846
nissan	32.944444
peugot	26.636364
plymouth	34.142857
porsche	26.000000
renault	31.000000
saab	27.333333
subaru	30.750000
toyota	32.906250
volkswagen	34.916667
volvo	25.818182

9. Sort all cars by price column.

```
In [41]: df=dataset.sort_values(by=['price'])
df
```

Out[41]:

	symboling	normalized- losses	make	fuel- type	aspiration	num- of- doors	body- style	drive- wheels	engine- location	w
147	0	89	subaru	gas	std	four	wagon	fwd	front	
62	0	115	mazda	gas	std	four	sedan	fwd	front	
40	0	85	honda	gas	std	four	sedan	fwd	front	
42	1	107	honda	gas	std	two	sedan	fwd	front	
61	1	129	mazda	gas	std	two	hatchback	fwd	front	
188	2	94	volkswagen	gas	std	four	sedan	fwd	front	
45	0	?	isuzu	gas	std	four	sedan	fwd	front	
44	1	?	isuzu	gas	std	two	sedan	fwd	front	
129	1	?	porsche	gas	std	two	hatchback	rwd	front	
9	0	?	audi	gas	turbo	two	hatchback	4wd	front	

205 rows × 26 columns

10. Create the horizontal bar plot for Automobile dataset

```
In [43]: df1=pd.DataFrame(np.random.rand(10,3),columns=['a','b','c'])
print(df1)
```

```
a b c
0 0.765909 0.507744 0.904466
1 0.247291 0.810380 0.033680
2 0.662060 0.415940 0.050235
3 0.930562 0.572470 0.629153
4 0.241792 0.960058 0.638245
5 0.933473 0.864184 0.251297
6 0.434384 0.635849 0.914356
7 0.335788 0.011190 0.076124
8 0.256613 0.083312 0.777009
9 0.437438 0.132157 0.277054
```

```
In [48]: df1.plot.barh(stacked=False)
```

Out[48]: <AxesSubplot:>

11. Create a pair plot.

```
sns.pairplot(dataset)
In [47]:
Out[47]: <seaborn.axisgrid.PairGrid at 0x277206a1a30>
          12. Print correlation matrix for this Automobile dataset and show heatmap.
In [53]:
         corr_matrix=df.corr()
         print(corr_matrix)
                                                                                  CC
                     Unnamed: 0
                                     Price
                                                      MetColor
                                                                Automatic
                                                 Age
         Unnamed: 0
                       1.000000 -0.738289 0.907090 -0.069409
                                                                 0.066299 -0.184490
         Price
                                  1.000000 -0.878407
                                                                 0.033081 0.165067
                       -0.738289
                                                      0.100920
         Age
                       0.907090 -0.878407
                                            1.000000 -0.088232
                                                                 0.032573 -0.120706
         MetColor
                       -0.069409
                                  0.100920 -0.088232
                                                      1.000000
                                                                -0.011450 0.032108
         Automatic
                       0.066299
                                  0.033081 0.032573 -0.011450
                                                                 1.000000 -0.069321
         CC
                       -0.184490
                                  0.165067 -0.120706 0.032108
                                                                -0.069321 1.000000
         Weight
                       -0.414577
                                  0.581198 -0.464299 0.046614
                                                                 0.057249 0.651450
                       Weight
         Unnamed: 0 -0.414577
         Price
                     0.581198
         Age
                    -0.464299
         MetColor
                     0.046614
         Automatic
                     0.057249
         CC
                     0.651450
         Weight
                     1.000000
         sns.heatmap(corr_matrix,annot=True)
In [54]:
Out[54]: <AxesSubplot:>
 In [ ]:
```