A1.1

$$\partial E/\partial w(t) = 4*w(t)$$

$$m(t) = 0.9*m(t-1) + \partial E/\partial w(t-1) = 0.9*m(t-1) + 4*w(t-1)$$

$$w(t) = w(t-1)-0.1*m(t)$$

t	m(t)	w(t)
0	0	20
1	0.9*0+ 4*20 = 80	20-0.1*80 = 12
2	0.9*80+ 4*12 = 120	12-0.1*120 = 0

$$\rightarrow$$
 w(1) = 12, w(2) = 0

A1.2

	$\partial E/\partial w(1) < 0$	$\partial E/\partial w(1) > 0$
$\partial E/\partial w(0) < 0$	(+)	(-)
$\partial E/\partial w(0) > 0$	(-)	(+)

A1.3

- a) dies liegt daran, dass α zu groß gewählt wurde. Denn so wird das zuvor berechnete Momentum stärker gewichtet. Da dieses vor dem Überschreiten der 0 recht groß war, ist somit die Schrittweite zu groß und das Minimum wird überschritten.
- b) Das liegt daran, dass das Momentum deutlich stärker steigt als das Gewicht fällt.
- c) Zu Oszillationen kommt es, wenn α zu groß gewählt wird, z.B. α =1 (mit entsprechend vielen Iterationen --> t=600).
- d) Mit der Konstellation $(0.04242, 0.42, 18)^1$ haben wir den minimalen Fehler (-0.0015555, 0.001165) erreicht.

1

^{4.871318018713662%2}C4.431007562681689%5D&w2Range=%5B-