My Kaggle Journey

Angie Sheng

Two Kaggle Competitions So Far...

Google QUEST Q&A Labeling - Silver Medal

Improving automated understanding of complex question answer content

M5 Forecasting - Accuracy - Top 11%

Estimate the unit sales of Walmart retail goods

Google Q&A Labeling - A Glimpse of the Data

56	qa_id	question_title	question_body	question_user_name	question_user_page	answer	answer_user_name
o	0	What am I losing when using extension tubes in	After playing around with macro photography on	ysap	https://photo.stackexchange.com/users/1024	I just got extension tubes, so here's the skin	rfusca
1	1	What is the distinction between a city and a s	I am trying to understand what kinds of places	russellpierce	https://rpg.stackexchange.com/users/8774	It might be helpful to look into the definitio	Erik Schmidt

6071 question & answer pairs, asked by 3215 different users and answered by 4114 different users

Google Q&A Labeling - A Glimpse of the Data

answer_user_page	url		category					
https://photo.stackexchange.com/users/1917	http://photo.stackexchange	.com/questions/9169	/ LIFE_ARTS	LIFE_ARTS				
	question_well_written	answer_helpful	answer_level_of_information	answer_plausible				
https://rpg.stackexchange.com/users/1871	1.000000	1.000000	0.666667	1.000000				
Ratings based on Q&A pair (30 dimensions)	0.888889	0.888889	0.55556	0.888889				


```
train df['host'].unique()
Categorical Features
                                              array(['photo.stackexchange.com', 'rpg.stackexchange.com',
                                                     'electronics.stackexchange.com', 'judaism.stackexchange.com',
                                                     'graphicdesign.stackexchange.com', 'stackoverflow.com',
One-hot Encoding
                                                     'askubuntu.com'. 'gaming.stackexchange.com', 'serverfault.com',
                                                                                              ge.com',
train_df['category'].unique()
                                                                                              ackexchange.com',
                                                                                              ange.com',
array(['LIFE ARTS', 'CULTURE', 'SCIENCE', 'STACKOVERFLOW', 'TECHNOLOGY'],
                                                                                              ackexchange.com',
                                                                                              change.com',
       dtype=object)
                                                                                              stackexchange.com',
                                                                                              com',
train df['category'].nunique()
                                                                                              xchange.com',
                                                                                              ange.com',
5
                                                                                              xchange.com',
                                                     raspperrypi.stackexcnange.com , academia.stackexchange.com',
train_df['host'].nunique()
                                                     'bicycles.stackexchange.com', 'android.stackexchange.com',
                                                     'mathoverflow.net', 'boardgames.stackexchange.com',
                                                     'movies.stackexchange.com', 'anime.stackexchange.com',
63
                                                     'apple.stackexchange.com', 'webmasters.stackexchange.com',
                                                     'div.stackexchange.com', 'gis.stackexchange.com',
                                                     'stats.stackexchange.com', 'ux.stackexchange.com',
                                                     'english.stackexchange.com', 'scifi.stackexchange.com',
                                                     'gamaday stackaychanga com' 'cs stackaychanga com'
```


Targets could be put into two groups, which means we could train 2 models for each group

```
train df.columns[11:32] #targets that are related to question and question body
Index(['question asker intent understanding', 'question body critical',
       'question conversational', 'question expect short answer',
       'question fact seeking', 'question has commonly accepted answer',
       'question interestingness others', 'question interestingness self',
       'question_multi_intent', 'question_not really a question'.
       'question_opinion_seeking', 'question_type_choice',
       'question_type_compare', 'question type consequence'.
       'question type definition', 'question type entity',
       'question type instructions', 'question type procedure',
                                                                21 for title-body pair
       'question type reason explanation', 'question type spelli
                                                                          model
       'question well written'],
      dtvpe='object')
train df.columns[32:] #targets that are related to answers
Index(['answer helpful', 'answer level of information', 'answer plausible',
       'answer relevance', 'answer satisfaction', 'answer type instructions',
       'answer type procedure', 'answer type reason explanation',
       'answer well written'],
      dtype='object')
                                                                9 for title-answer
                                                                    pair model
```


	M	lulti-lahel C	lassification	train_df	iloc[:,11:].nunique()	
Range: [0,1]	7	Post-Proce			_asker_intent_understanding _body_critical	9 9
Ratings are discrete				auestion	_conversational	5
mamige and anderese	train df ilo	c[:,11:].max	()		_expect_short_answer	5
	crain_arrii	,c[.,±±.].max	()		_fact_seeking	5
	question_ask	er_intent_un	derstanding		_has_commonly_accepted_answer	5
	question_bod	y_critical		1.000000	_interestingness_others	9
	question_con	versational		1.000000	_interestingness_self	9
			<i>i</i> er		_multi_intent	5
train_df.iloc[:,11:].min()			and the second of the second of the second	1.000000	_not_really_a_question	5
question_asker_intent_unde	nstanding	0.333333	pted_answer	1.000000	_opinion_seeking	5
question_body_critical	Scanding	0.333333	thers	1.000000	_type_choice	5
question_body_critical question_conversational		0.000000	elf	1.000000	_type_compare	5
			tion	1 000000	_type_consequence	5
question_expect_short_answ	er	0.000000	CION	1.000000	_type_definition	5
question_fact_seeking		0.000000		1 999999	_type_entity	5
question_has_commonly_acce		0.000000		1.000000	_type_instructions	5
question_interestingness_o		0.333333		1.000000	_type_procedure	5
question_interestingness_s	elf	0.333333		1.000000	_type_reason_explanation	5
question_multi_intent		0.000000			_type_spelling	3
question not really a ques	tion	0.000000	0		well written	٥


```
train df['question title length'] = train df['question title'].str.split(' ').map(lambda x: len(x))
train df['question body length'] = train df['question body'].str.split(' ').map(lambda x: len(x))
train df['answer length'] = train df['answer'].str.split(' ').map(lambda x:len(x))
train df['total length'] = train df['question title length'] + train df['answer length']
train df['total length'].describe()
        6079.000000
count
         152.744695
mean
std
         206.109610
                                           Max input length for BERT & RoBERTa -> 512
min
         7.000000
25%
          57.000000
50%
         100,000000
                                           Need to trim!
75%
         180.000000
        8177.000000
max
Name: total length, dtype: float64
```


Google Q&A Labeling - Feature Engineering

1. One-hot encoding for url & category

TITLE TO DIO TO CONTRACTOR OF THE PROPERTY OF

```
find = re.compile(r"^[^.]*")
                                                                         1 train['netloc'].unique()
       train['netloc'] = train['url'].apply(lambda x: re.findall(fi
                                                                        array(['photo', 'rpg', 'electronics', 'judaism', 'graphicdesign',
                                                                                'stackoverflow', 'askubuntu', 'gaming', 'serverfault', 'uni
     1 train[['netloc', 'url']]
                                                                                'dba', 'codereview', 'crypto', 'tex', 'travel', 'webapps',
                                                                                'mechanics', 'physics', 'math', 'programmers', 'biology',
                                                                                'wordpress', 'superuser', 'music', 'blender', 'dsp', 'drupa
              netloc
                                                        url
                                                                                'meta', 'security', 'raspberrypi', 'academia', 'bicycles',
                     http://photo.stackexchange.com/guestions/9169/...
      0
                                                                               'android', 'mathoverflow', 'boardgames', 'movies', 'anime',
                                                                                'apple', 'webmasters', 'diy', 'gis', 'stats', 'ux', 'englis
                     http://rpg.stackexchange.com/questions/47820/w...
                                                                                'scifi', 'gamedev', 'cs', 'cooking', 'sharepoint', 'mathema
                      http://electronics.stackexchange.com/guestions...
            electronics
                                                                                'salesforce', 'expressionengine', 'magento', 'christianity'
                                                                                'chemistry', 'money', 'ell', 'robotics', 'softwarerecs'],
train df['category'].unique()
                                                                              dtype=object)
array(['LIFE ARTS', 'CULTURE', 'SCIENCE', 'STACKOVERFLOW', 'TECHNOLOGY'],
     dtvpe=object)
                                                                            train['netloc'].nunique()
train_df['category'].nunique()
                                                                        59
```


Google Q&A Labeling - Feature Engineering

2. Universal Sentence Encoder -> Cosine Similarities & L2 Distance

The Universal Sentence Encoder (USE) encodes text into high dimensional vectors that can be used for diverse tasks. The input is the variable-length English text, and the output is a 512-dimensional vector.

Google Q&A Labeling - Feature Engineering

3. Summary of Data Engineering

- a. One-hot encoding of URL & Category (64)
- b. Universal Sentence Encoder (512+512)
- c. Cosine Similarities (1)
- d. L2 Distance (1)

1090 new features in total

Google Q&A Labeling - Pre-Processing

q tail = 508 - q head - t new len

```
def trim input(title, question, max sequence length,
                t max len=100, head=128, tail=281, Q=True, q max len=239, a max len=239):
    t = tokenizer.tokenize(title)
                                                                                                     Trimming:
    q = tokenizer.tokenize(question)
    # a = tokenizer.tokenize(answer)
                                                                                                     Q Title + Q Body/Answer < 508
    t len = len(t)
    q len = len(q)
    \# a len = len(a)
                                                                                                     Strategy: Head + Tail
    if (t len + q len + 4) > max sequence length:
        if t max len > t len:
                                            token = \lceil "\langle s \rangle" \rceil + title + \lceil "\langle /s \rangle" \rceil + \lceil "\langle /s \rangle" \rceil + question + \lceil "\langle /s \rangle" \rceil
            t new_len = t_len
            q head = head
            q tail = 508 - q head - t new len
        else:
            t new len = t max len
            if (t new len + q len + 4) > max sequence length:
                q head = head
```


Google Q&A Labeling - Model Structure

batch_size x 512 x 768 (batch_size x maxseqlen x emb_size)

Google Q&A Labeling - Training & Prediction

Customized Learning Rate: A customized scheduler inherited from PolynomialDecay was used here to change the learning rate dynamically.

GroupKFold: Did 8-fold cv for 8 epochs and saved the training weights with the highest cv scores.

Optimizer: Adam optimizer with mixed-precision data types, which dynamically and automatically adjusting the scaling to prevent Inf or NaN values and saved training time.

Post-Processing: Discretization based on different target (For Competition Purpose!)

The Final Predictions are the average of 8 pairs of Roberta models (8-fold).

M5 Forecasting

The goal:

• To **predict sales data** provided by the retail giant Walmart **28 days** into the future.

The data:

- 1. We are working with **30,490 hierarchical time series**. The data were obtained in the 3 US states of California (CA), Texas (TX), and Wisconsin (WI). The sales information reaches back from Jan 2011 to June 2016.
- 2. In addition to the sales numbers, we are also given corresponding data on prices, promotions, and holidays.

M5 Forecasting - A Glimpse of Data

id			item_	id	dept_id		cat_id		store_id		state_ic		
HOBBIES_1_001_CA_1_validation			HOBBIES_1_001		HOBBIES_1		HOBBIES		CA_1		CA		
HOBBIES_1_002_CA_1_validation			НОВ	BIES_1_002	HOBBIES_1		HOBBIES CA_		CA_1		CA		
HOBBIES_1_003_	d_1905	d_1		d_1907	d_1908		1909		1910	d	1_1911	d_1912	d_1913
HOBBIES_1_004_	3	0		1	1	1		3		0)	1	1
HOBBIES_1_005_	0	0		0	0	1		0		0)	0	0
	1	2		1	1	1		0		1		1	1

sales_train.csv: The data comprises 3049 individual products from *3 categories* and *7 departments*, sold in *10 stores* in *3 states*. It has 1 column for each of the 1941 days from 2011-01-29 and 2016-05-22. The number of rows is 30490 for all combinations of 3049 items and 10 stores.

M5 Forecasting - A Glimpse of Data

store_id	item_id	wm_yr_wk	sell_price
CA_1	HOBBIES_1_001	11325	9.58
CA_1	HOBBIES_1_001	11326	9.58
CA_1	HOBBIES_1_001	11327	8.26
CA_1	HOBBIES_1_001	11328	8.26

call sell_prices.csv: Provides the store and item IDs together with the sales price of the item as a weekly average.

M5 Forecasting - A Glimpse of Data

date	wm_yr_wk	weekday	wday	month	year	d	event_name_1	event_type_1	event_name_2	event_type_2	snap_CA	snap_TX	snap_WI
2011- 01-29	11101	Saturday	1	1	2011	d_1	NA	NA	NA	NA	0	0	0
2011- 01-30	11101	Sunday	2	1	2011	d_2	NA	NA	NA	NA	0	0	0
2011- 01-31	11101	Monday	3	1	2011	d_3	NA	NA	NA	NA	0	0	0
2011-	11101	Tuesday	4	2	2011	d_4	NA	NA	NA	NA	1	1	0

02-01

2011-

calendar.csv: The calendar data gives us date features such as weekday, month, or year; alongside 2 different event features and a SNAP* food stamps flag.

*SNAP: federal nutrition assistance program for low-income individuals and families)

M5 Forecasting - Feature Engineering

Lag and sliding window features:

```
def create_fea(dt):
    lags = [7, 28]
    lag_cols = [f"lag_{lag}" for lag in lags ]
    for lag, lag_col in zip(lags, lag_cols):
        dt[lag_col] = dt[["id","sales"]].groupby("id")["sales"].shift(lag)

wins = [7, 28]
    for win in wins :
        for lag, lag_col in zip(lags, lag_cols):
            dt[f"rmean_{lag}_{win}"] = dt[["id", lag_col]].groupby("id")[lag_col].transform(lambda x : x.rolling(win).mean())
```


M5 Forecasting - Feature Engineering

*For simplicity a month is 28 days

- How the sales were last friday compared to this friday?
- How the sales were first weekend of the last month compared to first weekend of this month?
- Comparing last saturday to this saturday is too specific. We want to capture the whole week/month and not just a single day sale comparison, bringing the lag_7 or lag_28 value into "better weekly/monthly context"

- rmean_7_7: the sales of the whole *previous week ending 7 days in the past*
- rmean_7_28: the sales of the entire previous 4 weeks ending 7 days in the past
- rmean_28_7: the sales of the whole previous week ending 4 weeks in the past
- rmean_28_28: the sales of the entire previous 4 weeks ending 4 weeks in the past

M5 Forecasting - Data for Training

	id	002_CA_1_validation								item_id	dept_id	store_	id	d cat_id		ate_id		
0	HOBBIES_1_0			1	0	0	0		0									
1	HOBBIES_1_0	event_name_1	ne_1 event_		event_n	ame_2	event_type_2		_2	snap_CA	snap_TX	snap_WI						
2	HOBBIES_1_0	_0 0 0			0			0		0.0	1.0	0.0						
3	HOBBIES_1_0	0	0		0)		0		0.0	1.0	0.0						
4	HOBBIES_1_0	0	0		0		0		0.0	1.0	0.0							
		0	0		0		0			0.0	1.0	0.0						
	0 0		0		0		0			0.0	1.0	0.0						

d	sales	date	wm_yr_	wk	k weekd		wday	month	year	week	qu	arter	mday
d_350	0.0	2012- 01-13	11150		0		7	1	2012	2 2	1		13
d_350	2.0	2012- 01-13	11150		0		7	1	2012	2 2	1		13
d_350	0.0	sell_price	lag_7	lag_7 lag_		rmea	n_7_7	_7_7 rmean_28_7 NaN		rmean_7_28		rmean_28_28	
	27.3.2.	3.97	NaN	NaN	laN NaN					NaN	VaN		NaN
d_350	0.0	NOTE AND ADDRESS OF THE PARTY AND ADDRESS OF T								170 870		27.77	
d_350	4.34 2.0		NaN	NaN		NaN		NaN		NaN		NaN	
u_550	2.0	2.48	NaN	NaN		NaN		NaN		NaN		NaN	
		0.50	NaN	NaN	NaN Na			NaN		NaN NaN		NaN NaN	
		1.77	NaN	NaN	1	NaN		NaN					

M5 Forecasting - Model

- Model: A single LightGBM with Tweedie as Loss Function
- Recursive Multi-step Forecast

```
prediction(t+1) = model(obs(t-1), obs(t-2), ..., obs(t-n))

prediction(t+2) = model(prediction(t+1), obs(t-1), ..., obs(t-n))
```