

Markscheme

November 2016

Chemistry

Standard level

Paper 2

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

a	i	$ \text{«}K_{c} = \text{»} \frac{[HOCH_{2}CH_{2}OH]}{[CO]^{2} \times [H_{2}]^{3}} $			
а		$[CO]^2 \times [H_2]^3$	✓		1
	ii	Position of equilibrium:	OR favours product ✓		2
		K_c :	no change OR is a constant at constant temperature ✓		
а	iii	3462 «kJ» ✓ Bonds formed: 2(C–O) -	+ 2(O-H) + 4(C-H) + (C-C) / 2(358 kJ mol ⁻¹) +		3
		«Enthalpy change = bor –182 «kJ» ✓	ids broken – bonds formed = 3462 kJ – 3644 kJ =»	Award [3] for correct final answer. Award [2 max] for «+»182 «kJ».	
а	iv	OR products are in different OR conversion of gas to liqu OR conversion of liquid to gas OR	states iid is exothermic as is endothermic	Accept product is «now» a liquid. Accept answers referring to bond enthalpies being means/averages.	1
			a iv in (a)(iii) gas is formed a OR conversion of gas to liquid to gas or OR	favours product ✓ K _c : no change OR is a constant at constant temperature ✓ a iii Bonds broken: 2C=O + 3(H-H) / 2(1077 kJ mol ⁻¹) + 3(436 kJ mol ⁻¹) / 3462 «kJ» ✓ Bonds formed: 2(C-O) + 2(O-H) + 4(C-H) + (C-C) / 2(358 kJ mol ⁻¹) + 2(463 kJ mol ⁻¹) + 4(414 kJ mol ⁻¹) + 346 kJ mol ⁻¹ / 3644 «kJ» ✓ «Enthalpy change = bonds broken - bonds formed = 3462 kJ - 3644 kJ =» -182 «kJ» ✓ iv in (a)(iii) gas is formed and in (a)(iv) liquid is formed OR products are in different states OR conversion of gas to liquid is exothermic OR conversion of liquid to gas is endothermic	favours product ✓ K _c : no change OR is a constant at constant temperature ✓ a iii Bonds broken: 2C≡O + 3(H−H) / 2(1077 kJ mol⁻¹) + 3(436 kJ mol⁻¹) / 3462 «kJ» ✓ Bonds formed: 2(C−O) + 2(O−H) + 4(C−H) + (C−C) / 2(358 kJ mol⁻¹) + 2(463 kJ mol⁻¹) + 4(414 kJ mol⁻¹) + 346 kJ mol⁻¹ / 3644 «kJ» ✓ «Enthalpy change = bonds broken − bonds formed = 3462 kJ − 3644 kJ =» −182 «kJ» ✓ a iv in (a)(iii) gas is formed and in (a)(iv) liquid is formed OR products are in different states OR conversion of gas to liquid is exothermic OR conversion of liquid to gas is endothermic OR conversion of liquid to gas is endothermic OR

(Question	Answers	Notes	Total
1.	b	Ethene: −2 ✓ Ethane-1,2-diol: −1 ✓	Do not accept 2–, 1– respectively.	2
1.	C	ethane-1,2-diol can hydrogen bond to other molecules «and ethene cannot» OR ethane-1,2-diol has «significantly» greater van der Waals forces ✓ hydrogen bonding is «significantly» stronger than other intermolecular	Accept converse arguments. Award [0] if answer implies covalent bonds are broken.	2
1.	d	forces ✓ acidified «potassium» dichromate«(VI)» / H ⁺ AND K ₂ Cr ₂ O ₇ / H ⁺ AND Cr O ²⁻	Accept H_2SO_4 or H_3PO_4 for H^+ .	
		Cr ₂ O ₇ ²⁻ OR «acidified potassium» manganate(VII) / «H ⁺ » KMnO ₄ / «H ⁺ » MnO ₄ - ✓	Accept "permanganate" for "manganate(VII)".	1

C	Question		Answers	Notes	Total
2.	а		Weak acid: partially dissociated/ionized «in solution/water» AND Strong acid: «assumed to be almost» completely/100% dissociated/ionized «in solution/water» ✓	Accept answers relating to pH, conductivity, reactivity if solutions of equal concentrations stated.	1
2.	b		«log scale» reduces a wide range of numbers to a small range OR simple/easy to use OR converts exponential expressions into linear scale/simple numbers ✓	Do not accept "easy for calculations".	1
2.	С	i			1
2.	С	ii	$\frac{1}{2}$ × 1.40 × 10 ⁻³ =» 7.00 × 10 ⁻⁴ «mol» ✓		1

Question Answers	Notes	Total
2. c iii ALTERNATIVE 1: «mass of pure hydrated ethanedioic acid in each titration = $7.00 \times 10^{-4} \text{ mol} \times 126.08 \text{ g mol}^{-1} = \text{» } 0.0883 / 8.83 \times 10^{-2} \text{ «g» } \checkmark$ mass of sample in each titration = $\frac{25}{1000} \times 5.00 \text{ g} = \text{» } 0.125 \text{ «g» } \checkmark$ «% purity = $\frac{0.0883 \text{ g}}{0.125 \text{ g}} \times 100 = \text{» } 70.6 \text{ «%» } \checkmark$ ALTERNATIVE 2: «mol of pure hydrated ethanedioic acid in 1 dm³ solution = $7.00 \times 10^{-4} \times \frac{1000}{25} = \text{» } 2.80 \times 10^{-2} \text{ «mol» } \checkmark$ «mass of pure hydrated ethanedioic acid in sample = $2.80 \times 10^{-2} \text{ mol } \times 126.08 \text{ g mol}^{-1} = \text{» } 3.53 \text{ «g» } \checkmark$ «% purity = $\frac{3.53 \text{ g}}{5.00 \text{ g}} \times 100 = \text{» } 70.6 \text{ «%» } \checkmark$ ALTERNATIVE 3: mol of hydrated ethanedioic acid (assuming sample to be pure) = $\frac{5.00 \text{ g}}{126.08 \text{ g mol}^{-1}} = 0.03966 \text{ «mol »} \checkmark$ actual amount of hydrated ethanedioic acid = $(7.00 \times 10^{-4} \times \frac{1000}{25} = \text{» } 2.80 \times 10^{-2} \text{ «mol »} \checkmark$ «% purity = $\frac{2.80 \times 10^{-2}}{2.80 \times 10^{-2}} \times 100 = \text{» } 70.6 \text{ «%»} \checkmark$		Total

C	Question		Answers	Notes	Total
2.	d		electrons delocalized «across the O–C–O system» OR	Accept delocalized π -bond(s).	
			resonance occurs ✓	Accept any answer in the range 123 «pm» to 142 «pm».	2
			122 «pm» < C−O < 143 «pm» ✓	Accept "bond intermediate between single and double bond" or "bond order 1.5".	

3.	а	H ₂ O AND (l) ✓	Do not accept H₂O (aq).	1
	b	SO₂ (g) is an irritant/causes breathing problems OR SO₂ (g) is poisonous/toxic ✓	Accept $SO_2(g)$ is acidic, but do not accept "causes acid rain". Accept $SO_2(g)$ is harmful. Accept $SO_2(g)$ has a foul/pungent smell.	1
	С	$n(HCl) = \frac{10.0}{1000} dm^3 \times 2.00 mol dm^{-3} = 0.0200 / 2.00 \times 10^{-2} emol mol mo$	Accept answers based on volume of solutions required for complete reaction. Award [2] for second marking point. Do not award M2 unless factor of 2 (or half) is used.	2

Q	Questi	ion	Answers	Notes	Total
3.	f	ii	greater proportion of molecules have $E \ge E_a$ or $E > E_a$ or $E > E_a$ or $E > E_a$ greater area under curve to the right of the $E_a \checkmark$ greater frequency of collisions «between molecules» OR more collisions per unit time/second \checkmark	Accept more molecules have energy greater than E _a . Do not accept just "particles have greater kinetic energy". Accept "rate/chance/probability/likelihood/" instead of "frequency". Accept suitably shaded/annotated diagram. Do not accept just "more collisions".	2
3.	g		shorter reaction time so larger «%» error in timing/seeing when mark disappears ✓	Accept cooling of reaction mixture during course of reaction.	1

Question		Answers	Notes	Total
4.	а	²⁶ ₁₂ Mg ✓		1
4.	b	« A_r =» $\frac{24 \times 78.60 + 25 \times 10.11 + 26 \times 11.29}{100}$ ✓ «= 24.3269 =» 24.33 ✓	Award [2] for correct final answer. Do not accept data booklet value (24.31).	2
4.	С	$\begin{array}{c} MgO(s) + H_2O(l) \to Mg(OH)_2(s) \\ \textbf{\textit{OR}} \\ MgO(s) + H_2O(l) \to Mg^{2+}(aq) + 2OH^{-}(aq) \checkmark \end{array}$	Accept ⇌.	1
4.	d	from basic to acidic ✓ through amphoteric ✓	Accept "alkali/alkaline" for "basic". Accept "oxides of Na and Mg: basic AND oxide of Al: amphoteric" for M1. Accept "oxides of non-metals/Si to Cl acidic" for M2. Do not accept just "become more acidic".	2
4.	е	Mg₃N₂ ✓	Accept MgO ₂ , Mg (OH) ₂ , Mg (NOx) ₂ , MgCO ₃ .	1
4.	f	«3-D/giant» regularly repeating arrangement «of ions» OR lattice «of ions» ✓ electrostatic attraction between oppositely charged ions OR	Accept "giant" for M1, unless "giant covalent" stated. Do not accept "ionic" without description.	2
		electrostatic attraction between Mg ²⁺ and O ^{2−} ions ✓		
4.	g	Anode (positive electrode): $2Cl^- \rightarrow Cl_2(g) + 2e^- \checkmark$ Cathode (negative electrode): $Mg^{2^+} + 2e^- \rightarrow Mg(l) \checkmark$	Penalize missing/incorrect state symbols at Cl ₂ and Mg once only. Award [1 max] if equations are at wrong electrodes. Accept Mg (g).	2

C	Questi	on	Answers	Notes	Total
5.	а		Propane: H		1
5.	b	i	$C_3H_8 + Br_2 \rightarrow C_3H_7Br + HBr \checkmark$ «sun»light/UV/ hv OR high temperature \checkmark	Do not accept "reflux" for M2.	2
5.	b	ii	$C_3H_6 + Br_2 \rightarrow C_3H_6Br_2 \checkmark$		1
5.	b	iii	Propane: «free radical» substitution / S _R	Award mark even if incorrect type of substitution/addition given.	1