The Set Properties Generating Geometry and Physics

George. M. Van Treeck

ABSTRACT. Volume and the Minkowski distances/Lp norms (e.g., Manhattan and Euclidean distance) are derived from a set and limit-based foundation without referencing the primitives and relations of geometry. Sequencing a strict linearly ordered set in all n-at-a-time permutations via successor/predecessor relations is a cyclic set of at most 3 members. Therefore, all other interval lengths have different types from a cyclic set of 3 distance interval lengths. Unit-factoring ratios between different types of interval lengths and the set proofs provide simpler derivations of the spacetime, Newton's gravity, Coulomb's charge force, Planck-Einstein, quantum-relativity gravity equations and corresponding constants. All proofs are verified in Coq.

Contents

1.	Introduction	1
2.	Ruler measure and convergence	2
3.	Volume	3
4.	Distance	4
5.	Applications to physics	7
6.	Insights and implications	10
References		19

1. Introduction

Mathematical analysis can construct differential calculus from a set and limit-based foundation without referencing the primitives and relations of Euclidean geometry, like straight line, angle, shape, etc., which provides a more rigorous foundation to calculus. But volume in the Riemann integral, Lebesgue integral, measure theory, and distance in the vector magnitude and metric space criteria are definitions motivated by Euclidean geometry. [Gol76] [Rud76] Here, volume and distance are motivated and derived from a set and limit-based foundation.

A well-known set-based motivation of Euclidean volume is the set of Cartesian product n-tuples: $v_c = \prod_{i=1}^n |x_i|$, where $|x_i|$ is the cardinal of the countable, disjoint

²⁰¹⁰ Mathematics Subject Classification. Primary 28A75, 28E15. Secondary 03E75, 51M99. Copyright © 2023 George M. Van Treeck. Creative Commons Attribution License.

set, x_i . But, where each x_i is a set of subintervals of an interval, $[a_i, b_i] \subset \mathbb{R}$, and $s_i = b_i - a_i$, there have been no proofs that $v_c = \prod_{i=1}^n |x_i| \Rightarrow v = \prod_{i=1}^n s_i$, hence, volume has been defined rather than derived. In this article, $v_c = \prod_{i=1}^n |x_i| \Rightarrow v = \prod_{i=1}^n s_i$ is proved. Non-Euclidean volumes have the forms, $v_c = \alpha(n) \prod_{i=1}^n |x_i|$ and $v = \beta(n) \prod_{i=1}^n s_i$, where $\alpha(n), \beta(n) \neq 1$, for example, $\beta(n) = 2\pi n!/n^2$.

The sum of n-volumes is an n-volume: $\sum_{i=1}^{m} v_{c_i} = v_c \Rightarrow \sum_{i=1}^{m} v_i = v$. N-volumes of the same class, n, can be measured as a function of the average domain set size: $\forall \beta(n), s_i \exists d: d = \prod_{i=1}^{n} s_i/n \Rightarrow v = \beta(n)d^n = \beta(n)\prod_{i=1}^{n} s_i$. Where $\alpha(n) = \beta(n) = 1$, it will be proved that $v_c = \sum_{j=1}^{m} v_{c_i} \Rightarrow d^n = \sum_{i=1}^{m} d_i^n$. d is the L_p norm (Minkowski distance), which will be proved to have the metric space properties.

Sequencing a set, $\{x_1, \dots, x_n\}$, from i=1 to n, is a strict linear (total) order that set theory defines in terms of successor and predecessor functions. If a set can be sequenced in all n-at-a-time orders, then a "symmetry" constraint is required, where every set member is either a successor or predecessor to every other set member. A strict linearly ordered and symmetric set will be proved to be a cyclic set, where $n \leq 3$.

Therefore, if $\{x_1, x_2, x_3\}$ is a strict linearly ordered and symmetric set of 3 "distance" dimensions, then another dimension, x_4 , must have a different type (is a member of different set). Definite integrals divide domain intervals into the same number of subintervals, where each subinterval of a distance domain interval maps to a proportionate-sized subinterval of some other type of domain interval, which is expressed by a unit-factoring ratio, for example, meters/second.

Simpler and shorter derivations of the: spacetime, Newton's gravity, Coulomb's charge force, Planck-Einstein, quantum-relativity gravity equations, and their corresponding constants are provided using the constant ratios, $r = (r_c/t_c)t = (r_c/m_c)m = (r_c/q_c)q$, combined with the results of the volume, distance, and 3D proofs. Impacts on Einstein's field (general relativity) equations are also shown.

All the proofs in this article have been verified using using the Coq proof verification system [Coq23]. The formal proofs are in the Coq files, "euclidrelations.v" and "threed.v," at: https://github.com/treeck/RASRGeometry.

2. Ruler measure and convergence

Derivatives and integrals divide each domain interval into the same number of subintervals, where the size of the subintervals are proportionate to the size of the containing domain interval, which precludes using derivatives and integrals to directly express many-to-many (Cartesian product mappings) between same-sized, size κ , subintervals in different-sized domain intervals. Further, derivatives and integrals that define Euclidean volume and distance cannot be used to derive Euclidean volume and distance.

A ruler (measuring stick) measures the size of each interval approximately as the sum of the nearest integer number, p, of size κ subintervals. The ruler is both an inner and outer measure of an interval.

Definition 2.1. Ruler measure, $M = \sum_{i=1}^p \kappa = p\kappa$, where $\forall [a,b] \subset \mathbb{R}$, $s = b - a \land 0 < \kappa \leq 1 \land (p = floor(s/\kappa) \lor p = ceiling(s/\kappa))$.

Theorem 2.2. Ruler convergence: $M = \lim_{\kappa \to 0} p\kappa = s$.

The formal proof, "limit_c_0_M_eq_exact_size," is in the file, euclidrelations.v.

Proof. (epsilon-delta proof)

By definition of the floor function, $floor(x) = max(\{y: y \le x, y \in \mathbb{Z}, x \in \mathbb{R}\})$:

 $(2.1) \quad \forall \ \kappa > 0, \ p = floor(s/\kappa) \ \land \ 0 \leq |floor(s/\kappa) - s/\kappa| < 1 \ \Rightarrow \ |p - s/\kappa| < 1.$

Multiply both sides of inequality 2.1 by κ :

$$(2.2) \forall \kappa > 0, |p - s/\kappa| < 1 \Rightarrow |p\kappa - s| < |\kappa| = |\kappa - 0|.$$

$$(2.3) \quad \forall \ \epsilon = \delta \quad \land \quad |p\kappa - s| < |\kappa - 0| < \delta$$

$$\Rightarrow \quad |\kappa - 0| < \delta \quad \land \quad |p\kappa - s| < \epsilon \quad := \quad M = \lim_{\kappa \to 0} p\kappa = s. \quad \Box$$

The following is an example of ruler convergence for the interval, $[0,\pi]$: $s = \pi - 0$, and $p = floor(s/\kappa) \Rightarrow p \cdot \kappa = 3.1_{\kappa = 10^{-1}}, \ 3.14_{\kappa = 10^{-2}}, \ 3.141_{\kappa = 10^{-3}}, ..., \pi_{\lim_{\kappa \to 0}}$.

LEMMA 2.3. $\forall n \geq 1, \quad 0 < \kappa < 1 \quad \Rightarrow \quad \lim_{\kappa \to 0} \kappa^n = \lim_{\kappa \to 0} \kappa.$

Proof. The formal proof , "lim_c_to_n_eq_lim_c," is in the Coq file, euclid relations.v.

$$(2.4) \quad n \ge 1 \quad \land \quad 0 < \kappa < 1 \quad \Rightarrow \quad 0 < \kappa^n < \kappa \quad \Rightarrow \quad |\kappa - \kappa^n| < |\kappa| = |\kappa - 0|.$$

$$(2.5) \quad \forall \ \epsilon = \delta \quad \land \quad |\kappa - \kappa^n| < |\kappa - 0| < \delta$$

$$\Rightarrow \quad |\kappa - 0| < \delta \quad \land \quad |\kappa - \kappa^n| < \delta = \epsilon \quad := \quad \lim_{\kappa \to 0} \kappa^n = 0.$$

(2.6)
$$\lim_{\kappa \to 0} \kappa^n = 0 \quad \wedge \quad \lim_{\kappa \to 0} \kappa = 0 \quad \Rightarrow \quad \lim_{\kappa \to 0} \kappa^n = \lim_{\kappa \to 0} \kappa.$$

3. Volume

DEFINITION 3.1. A countable n-volume is the number of ordered combinations (n-tuples), v_c , of the members of n number of disjoint, countable domain sets, x_i :

(3.1)
$$\exists n \in \mathbb{N}, v_c \in \{0, \mathbb{N}\}, x_i \in \{x_1, \dots, x_n\} : \bigcap_{i=1}^n x_i = \emptyset \land v_c = \prod_{i=1}^n |x_i|.$$

Theorem 3.2. Euclidean volume,

(3.2)
$$\forall [a_i, b_i] \in \{[a_1, b_1], \dots [a_n, b_n]\}, [v_a, v_b] \subset \mathbb{R}, s_i = b_i - a_i, v = v_b - v_a : v_c = \prod_{i=1}^n |x_i| \Rightarrow v = \prod_{i=1}^n s_i.$$

The formal proof, "Euclidean_volume," is in the Coq file, euclidrelations.v. PROOF.

$$(3.3) \ v_c = \prod_{i=1}^n |x_i| \Leftrightarrow v_c \kappa = \left(\prod_{i=1}^n |x_i|\right) \kappa \Leftrightarrow \lim_{\kappa \to 0} v_c \kappa = \lim_{\kappa \to 0} \left(\prod_{i=1}^n |x_i|\right) \kappa.$$

Apply the ruler (2.1) and ruler convergence (2.2) to equation 3.3:

$$(3.4) \quad \exists \ v, \kappa \in \mathbb{R}: \ v_c = floor(v/\kappa) \quad \Rightarrow \quad v = \lim_{\kappa \to 0} v_c \kappa = \lim_{\kappa \to 0} (\prod_{i=1}^n |x_i|) \kappa.$$

Apply lemma 2.3 to equation 3.4:

(3.5)
$$v = \lim_{\kappa \to 0} (\prod_{i=1}^n |x_i|) \kappa = \lim_{\kappa \to 0} (\prod_{i=1}^n |x_i|) \kappa^n = \lim_{\kappa \to 0} (\prod_{i=1}^n |x_i| \kappa).$$

Apply the ruler (2.1) and ruler convergence (2.2) to s_i :

$$(3.6) \exists s_i, \kappa \in \mathbb{R} : floor(s_i/\kappa) = |x_i| \Rightarrow \lim_{\kappa \to 0} (|x_i|\kappa) = s_i.$$

$$(3.7) v = \lim_{\kappa \to 0} \left(\prod_{i=1}^{n} |x_i| \kappa \right) \wedge \lim_{\kappa \to 0} \left(|x_i| \kappa \right) = s_i \Rightarrow v = \prod_{i=1}^{n} s_i$$

Theorem 3.3. Sum of volumes:

(3.8)
$$\forall x_{i,j} \in \{x_{i_1}, \dots, x_{i_m}\} = x_i : v_c = \prod_{i=1}^n |x_i| \land v_{c_j} = \prod_{i=1}^n |x_{i,j}| \land v_c = \sum_{j=1}^m v_{c_j} \Rightarrow \exists s_i, s_{i,j} \in \mathbb{R} : \prod_{i=1}^n s_i = \sum_{j=1}^m (\prod_{i=1}^n s_{i,j}).$$

The formal proof, "sum_of_volumes," is in the Coq file, euclidrelations.v.

PROOF. From the Euclidean volume theorem (3.2):

(3.9)
$$v_c = \prod_{i=1}^n |x_i| \Rightarrow v = \prod_{i=1}^n s_i \wedge v_{c_i} = \prod_{i=1}^n |x_{i,j}| \Rightarrow v_j = \prod_{i=1}^n s_{i,j}.$$

Apply the ruler (2.1) and ruler convergence (2.2):

$$(3.10) \quad \exists \ v, v_j, \kappa \in R: \quad v_c = floor(v/\kappa) \quad \wedge \quad v_{c_j} = floor(v_i/\kappa) \\ \Rightarrow \quad v = \lim_{\kappa \to 0} v_c \kappa \quad \wedge \quad v_i = \lim_{\kappa \to 0} v_{c_j} \kappa.$$

$$(3.11) v_c = \sum_{j=1}^m v_{c_j} \Leftrightarrow v = \lim_{\kappa \to 0} v_c \kappa = \lim_{\kappa \to 0} (\sum_{j=1}^m v_{c_j}) \kappa.$$

Apply lemma 2.3 to equation 3.11:

$$(3.12) \quad \lim_{\kappa \to 0} \kappa^n = \lim_{\kappa \to 0} \kappa \wedge v = \lim_{\kappa \to 0} (\sum_{j=1}^m v_{c_j}) \kappa \wedge v_i = \lim_{\kappa \to 0} v_{c_j} \kappa$$

$$\Rightarrow \quad v = \lim_{\kappa \to 0} (\sum_{j=1}^m v_{c_j}) \kappa^n = \lim_{\kappa \to 0} \sum_{j=1}^m (v_{c_j} \kappa) = \sum_{j=1}^m v_j.$$

(3.13)
$$v = \prod_{i=1}^{n} s_{i} \wedge v_{j} = \prod_{i=1}^{n} s_{i,j} \wedge v = \sum_{j=1}^{m} v_{j}$$

 $\Rightarrow \prod_{i=1}^{n} s_{i} = \sum_{i=1}^{m} \prod_{j=1}^{n} s_{i,j}. \square$

4. Distance

4.1. Minkowski distance (L_p norm).

Theorem 4.1. Minkowski distance $(L_p norm)$:

$$v_c = \prod_{i=1}^n |x_i| = \sum_{j=1}^m (\prod_{i=1}^n |x_{i,j}|) = \sum_{j=1}^m v_{c_i} \quad \Rightarrow \quad d^n = \sum_{i=1}^m d_i^n.$$

The formal proof, "Minkowski_distance," is in the Coq file, euclidrelations.v.

PROOF. From the sum of volumes proof (3.3), where all subintervals of all intervals are the same size, κ :

(4.1)
$$\prod_{i=1}^{n} |x_i| = \sum_{j=1}^{m} (\prod_{i=1}^{n} |x_{i,j}|) \quad \Rightarrow \quad \prod_{i=1}^{n} s_i = \sum_{j=1}^{m} (\prod_{i=1}^{n} s_{i,j})$$

(4.2)
$$\forall s_i, s_{i,j} \in \mathbb{R} \ \exists \ d, d_i \in \mathbb{R} : \ d = (\sum_{i=1}^n s_i)/n \quad \land \quad d_i = (\sum_{j=1}^m s_{i,j})/n$$

$$\Rightarrow \quad d^n = \prod_{i=1}^n s_i = \sum_{j=1}^m (\prod_{i=1}^n s_{i,j}) = \sum_{i=1}^m d_i^n. \quad \Box$$

4.2. Distance inequality. The formal proof, distance_inequality, is in the Coq file, euclidrelations.v.

THEOREM 4.2. Distance inequality

$$\forall n \in \mathbb{N}, \ v_a, v_b \ge 0: \ (v_a + v_b)^{1/n} \le v_a^{1/n} + v_b^{1/n}.$$

PROOF. Expand $(v_a^{1/n} + v_b^{1/n})^n$ using the binomial expansion:

$$(4.3) \quad \forall \ v_a, v_b \ge 0: \quad v_a + v_b \le v_a + v_b + \\ \sum_{i=1}^n \binom{n}{k} (v_a^{1/n})^{n-k} (v_b^{1/n})^k + \sum_{i=1}^n \binom{n}{k} (v_a^{1/n})^k (v_b^{1/n})^{n-k} = (v_a^{1/n} + v_b^{1/n})^n.$$

Take the n^{th} of both sides of the inequality 4.3:

$$(4.4) \ \forall \ v_a, v_b \ge 0, n \in \mathbb{N} : v_a + v_b \le (v_a^{1/n} + v_b^{1/n})^n \Rightarrow (v_a + v_b)^{1/n} \le v_a^{1/n} + v_b^{1/n}. \quad \Box$$

4.3. Distance sum inequality. The formal proof, distance_sum_inequality, is in the Coq file, euclidrelations.v.

Theorem 4.3. Distance sum inequality

$$\forall m, n \in \mathbb{N}, \ a_i, b_i \ge 0: \ (\sum_{i=1}^m (a_i^n + b_i^n))^{1/n} \le (\sum_{i=1}^m a_i^n)^{1/n} + (\sum_{i=1}^m b_i^n)^{1/n}.$$

PROOF. Apply the distance inequality (4.2):

$$(4.5) \quad \forall m, n \in \mathbb{N}, \ v_a, v_b \ge 0: \quad v_a = \sum_{i=1}^m a_i^n \quad \land \quad v_b = \sum_{i=1}^m b_i^n \quad \land$$

$$(v_a + v_b)^{1/n} \le v_a^{1/n} + v_b^{1/n} \quad \Rightarrow \quad ((\sum_{i=1}^m a_i^n) + (\sum_{i=1}^m b_i^n))^{1/n} =$$

$$(\sum_{i=1}^m (a_i^n + b_i^n))^{1/n} < (\sum_{i=1}^m a_i^n)^{1/n} + (\sum_{i=1}^m b_i^n)^{1/n}. \quad \Box$$

4.4. Metric Space. All Minkowski distances (L_p norms) have the properties of metric space.

The formal proofs: triangle_inequality, symmetry, non_negativity, and identity_of_indiscernibles are in the Coq file, euclidrelations.v.

Theorem 4.4. Triangle Inequality:

$$d(s_1, s_2) = (\sum_{i=1}^2 s_i^p)^{1/p} \implies d(u, w) \le d(u, v) + d(v, w).$$

PROOF. $\forall p \geq 1$, k > 1, $u = s_1$, $w = s_2$, v = w/k:

$$(4.6) (u^p + w^p)^{1/p} \le ((u^p + w^p) + 2v^p)^{1/p} = ((u^p + v^p) + (v^p + w^p))^{1/p}.$$

Apply the distance inequality (4.2) to the inequality 4.6:

$$(4.7) \quad (u^{p} + w^{p})^{1/p} \leq ((u^{p} + v^{p}) + (v^{p} + w^{p}))^{1/p} \wedge (v_{a} + v_{b})^{1/n} \leq v_{a}^{1/n} + v_{b}^{1/n}$$

$$\wedge \quad v_{a} = u^{p} + v^{p} \wedge v_{b} = v^{p} + w^{p}$$

$$\Rightarrow \quad (u^{p} + w^{p})^{1/p} \leq ((u^{p} + v^{p}) + (v^{p} + w^{p}))^{1/p} \leq (u^{p} + v^{p})^{1/p} + (v^{p} + w^{p})^{1/p}$$

$$\Rightarrow \quad d(u, w) = (u^{p} + w^{p})^{1/p} \leq (u^{p} + v^{p})^{1/p} \leq (u^{p} + v^{p})^{1/p} + (v^{p} + w^{p})^{1/p} = d(u, v) + d(v, w). \quad \Box$$

Theorem 4.5. Symmetry: $d(s_1, s_2) = (\sum_{i=1}^2 s_i^p)^{1/p} \implies d(u, v) = d(v, u)$.

PROOF. By the commutative law of addition:

(4.8)
$$\forall p : p \ge 1$$
, $d(s_1, s_2) = (\sum_{i=1}^2 s_i^p)^{1/p} = (s_1^p + s_2^p)^{1/p}$
 $\Rightarrow d(u, v) = (u^p + v^p)^{1/p} = (v^p + u^p)^{1/p} = d(v, u)$. \square

Theorem 4.6. Non-negativity: $d(s_1, s_2) = (\sum_{i=1}^2 s_i^p)^{1/p} \implies d(u, w) \ge 0$.

PROOF. By definition, the length of an interval is always ≥ 0 :

$$(4.9) \forall [a_1, b_1], [a_2, b_2], u = b_1 - a_1, v = b_2 - a_2, \Rightarrow u \ge 0, v \ge 0.$$

(4.10)
$$p \ge 1, u, v \ge 0 \implies d(u, v) = (u^p + v^p)^{1/p} \ge 0.$$

Theorem 4.7. Identity of Indiscernibles: d(u, u) = 0.

PROOF. From the non-negativity property (4.6):

$$(4.11) \quad d(u,w) \ge 0 \quad \land \quad d(u,v) \ge 0 \quad \land \quad d(v,w) \ge 0$$
$$\Rightarrow \quad \exists d(u,w) = d(u,v) = d(v,w) = 0.$$

$$(4.12) d(u,w) = d(v,w) = 0 \Rightarrow u = v.$$

$$(4.13) d(u,v) = 0 \wedge u = v \Rightarrow d(u,u) = 0.$$

4.5. The properties limiting a set to at most 3 members.

Definition 4.8. Totally ordered set:

$$\forall i \ n \in \mathbb{N}, \ i \in [1, n-1], \ \forall x_i \in \{x_1, \dots, x_n\},$$

$$successor \ x_i = x_{i+1} \ \land \ predecessor \ x_{i+1} = x_i.$$

Definition 4.9. Symmetry (every set member is sequentially adjacent to every other member):

$$\forall i, j, n \in \mathbb{N}, \forall x_i, x_j \in \{x_1, \dots, x_n\}, successor x_i = x_j \Leftrightarrow predecessor x_j = x_i.$$

Theorem 4.10. A strict linearly ordered and symmetric set is a cyclic set.

$$i = n \land j = 1 \Rightarrow successor x_n = x_1 \land predecessor x_1 = x_n.$$

The formal proof, "ordered_symmetric_is_cyclic," is in the Coq file, threed.v.

PROOF. A total order (4.8) assigns a unique label to each set member and assigns unique successors and predecessors for all set members except for the successor of x_n and the predecessor of x_1 . Therefore, the only member that can be a successor of x_n , without creating a contradiction, is x_1 . And the only member that can be a predecessor of x_1 , without creating a contradiction, is x_n . Applying the symmetry property (4.9):

$$(4.14) i = n \land j = 1 \land successor x_i = x_j \Rightarrow successor x_n = x_1.$$

Applying the definition of the symmetry property (4.9) to conclusion 4.14:

$$(4.15) \ successor \ x_i = x_j \ \Rightarrow \ predecessor \ x_j = x_i \ \Rightarrow \ predecessor \ x_1 = x_n. \quad \ \Box$$

Theorem 4.11. An ordered and symmetric set is limited to at most 3 members.

The formal proofs in the Coq file threed.v are:

Lemmas: adj111, adj122, adj212, adj123, adj133, adj233, adj213, adj313, adj323, and not_all_mutually_adjacent_gt_3.

The following proof uses Horn clauses (a subset of first order logic), which makes it clear which facts satisfy a proof goal.

Proof.

It was proved that an ordered and symmetric set is a cyclic set (4.10).

Definition 4.12. (Cyclic) Successor of m is n:

$$(4.16) \ Successor(m,n,setsize) \leftarrow (m=setsize \land n=1) \lor (n=m+1 \le setsize).$$

Definition 4.13. (Cyclic) Predecessor of m is n:

$$(4.17) \quad Predecessor(m, n, setsize) \leftarrow (m = 1 \land n = setsize) \lor (n = m - 1 \ge 1).$$

DEFINITION 4.14. Adjacent: member m is sequentially adjacent to member n if the successor of m is n or the predecessor of m is n. Notionally: (4.18)

 $Adjacent(m, n, setsize) \leftarrow Successor(m, n, setsize) \lor Predecessor(m, n, setsize).$

Prove that every member is adjacent to every other member, where $setsize \in \{1, 2, 3\}$:

$$(4.19) Adjacent(1,1,1) \leftarrow Successor(1,1,1) \leftarrow (m = setsize \land n = 1).$$

$$(4.20) Adjacent(1,2,2) \leftarrow Successor(1,2,2) \leftarrow (n=m+1 \leq setsize).$$

$$(4.21) Adjacent(2,1,2) \leftarrow Successor(2,1,2) \leftarrow (n = setsize \land m = 1).$$

$$(4.22) Adjacent(1,2,3) \leftarrow Successor(1,2,3) \leftarrow (n=m+1 \le setsize).$$

$$(4.23) Adjacent(2,1,3) \leftarrow Predecessor(2,1,3) \leftarrow (n=m-1 > 1).$$

$$(4.24) Adjacent(3,1,3) \leftarrow Successor(3,1,3) \leftarrow (n = setsize \land m = 1).$$

$$(4.25) Adjacent(1,3,3) \leftarrow Predecessor(1,3,3) \leftarrow (m=1 \land n=setsize).$$

$$(4.26) \qquad Adjacent(2,3,3) \leftarrow Successor(2,3,3) \leftarrow (n=m+1 \leq setsize).$$

$$(4.27) \qquad Adjacent(3,2,3) \leftarrow Predecessor(3,2,3) \leftarrow (n=m-1 \geq 1).$$

Member 2 is the only successor of member 1 for all setsize > 3, which implies member 3 is not (\neg) a successor of member 1 for all setsize > 3:

$$(4.28) \quad \neg Successor(1, 3, set size > 3) \\ \leftarrow Successor(1, 2, set size > 3) \leftarrow (n = m + 1 < set size).$$

Member n = setsize > 3 is the only predecessor of member 1, which implies member 3 is not (\neg) a predecessor of member 1 for all setsize > 3:

$$(4.29) \quad \neg Predecessor(1, 3, setsize > 3) \\ \leftarrow Predecessor(1, setsize, setsize > 3) \leftarrow (m = 1 \land n = setsize > 3).$$

For all setsize > 3, some elements are not (\neg) sequentially adjacent to every other element (not symmetric):

$$\begin{array}{ll} (4.30) & \neg Adjacent(1,3,set size > 3) \\ & \leftarrow \neg Successor(1,3,set size > 3) \land \neg Predecessor(1,3,set size > 3). & \Box \end{array}$$

5. Applications to physics

From the 3D proof (4.11), dividing a set of domain intervals into the same number of subintervals, a 3-dimensional distance subinterval length, r, maps to proportionately sized subinterval lengths of other types, t, m, and q, where:

(5.1)
$$r = (r_c/t_c)t = (r_c/m_c)m = (r_c/q_c)q.$$

5.1. Spacetime equations. From the volume proof (3.2), two disjoint distance intervals, [0, r] and [0, r'], define a 2-volume. From the Minkowski distance proof (4.1), the distance interval lengths, r and r', are inverse functions of two 2-volumes, v and v' having the sizes, $v = r^2$ and $v' = r'^2$. And if r and r' are independent, then $\exists r_{Total} : r_{Total}^2 = r^2 + r'^2$. And if dependent, then either $\exists r_{\nu} : r^2 = r'^2 + r_{\nu}^2$ or $r'^2 = r^2 + r_{\nu}^2$. The same spacetime equations result from any case – only the notation differs. For traditional notation, the $r^2 = r'^2 + r_{\nu}^2$ case is chosen. Combined with the 3D proof (4.11):

Local (proper) distance, r', contracts relative to coordinate distance, r, as $\nu \to \mu$:

(5.3)
$$r' = \mu t \sqrt{1 - (\nu/\mu)^2} \quad \land \quad \mu t = r \quad \Rightarrow \quad r' = r \sqrt{1 - (\nu/\mu)^2}.$$

From equation 5.2, coordinate length, t, dilates relative to local length, t', as $\nu \to \mu$:

(5.4)
$$\mu t = r' / \sqrt{1 - (\nu/\mu)^2} \quad \land \quad r' = \mu t' \quad \Rightarrow \quad t = t' / \sqrt{1 - (\nu/\mu)^2}.$$

One form of the flat Minkowski spacetime event interval is:

(5.5)
$$dr^2 = dr'^2 + dr_{\nu}^2 \wedge dr_{\nu}^2 = dx_1^2 + dx_2^2 + dx_3^2 \wedge d(\mu t) = dr$$

$$\Rightarrow dr'^2 = d(\mu t)^2 - dx_1^2 - dx_2^2 - dx_3^2.$$

5.2. Newton's gravity force and the constant, G. From equation 5.1:

(5.6)
$$\forall m_1, m_2, m, r \in \mathbb{R} : m_1 m_2 = m^2 \land m = (m_c/r_c)r$$

 $\Rightarrow m_1 m_2 = ((m_c/r_c)r)^2 \Rightarrow (r_c/m_c)^2 m_1 m_2/r^2 = 1.$

(5.7)
$$r = (r_c/t_c)t = ct \implies mr = (m_c/r_c)(ct)^2 \implies ((r_c/m_c)/c^2)mr/t^2 = 1.$$

(5.8)
$$((r_c/m_c)/c^2)mr/t^2 = 1 \quad \land \quad (r_c/m_c)^2 m_1 m_2/r^2 = 1$$

$$\Rightarrow \quad F := mr/t^2 = ((r_c/m_c)c^2)m_1 m_2/r^2 = Gm_1 m_2/r^2,$$

where Newton's constant, $G = (r_c/m_c)c^2$, conforms to the SI units: $m^3 \cdot kg^{-1} \cdot s^{-2}$.

5.3. Coulomb's charge force and constant, k_e . From equation 5.1:

(5.9)
$$\forall q_1, q_2, q, r \in \mathbb{R} : q_1 q_2 = q^2 \land q = (q_c/r_c)r$$

 $\Rightarrow q_1 q_2 = ((q_c/r_c)r)^2 \Rightarrow (r_c/q_c)^2 q_1 q_2/r^2 = 1.$

(5.10)
$$r = (r_c/t_c)t = ct \Rightarrow mr = (m_c/r_c)(ct)^2 \Rightarrow ((r_c/m_c)/c^2)mr/t^2 = 1.$$

(5.11)
$$((r_c/m_c)/c^2)mr/t^2 = 1$$
 \wedge $(r_c/q_c)^2q_1q_2/r^2 = 1$
 \Rightarrow $F := mr/t^2 = ((m_c/r_c)c^2)(r_c/q_c)^2q_1q_2/r^2.$

$$(5.12) r_c/t_c = c \wedge F = ((m_c/r_c)c^2)(r_c/q_c)^2q_1q_2/r^2$$

$$\Rightarrow F = (m_c(r_c/t_c^2))(r_c/q_c)^2q_1q_2/r^2 = k_eq_1q_2/r^2,$$

where Coulomb's constant, $k_e = (m_c(r_c/t_c^2))(r_c/q_c)^2$, conforms to the SI units: $N \cdot m^2 \cdot C^{-2}$.

5.4. 3 fundamental constants. c_t , c_m , and c_q .

(5.13)
$$c_t = r_c/t_c \approx 2.99792458 \cdot 10^8 m \ s^{-1}.$$

(5.14)
$$G = (r_c/m_c)c_t^2 \quad \Rightarrow \quad c_m = r_c/m_c \approx 7.4261602691 \cdot 10^{-28} m \ kg^{-1}.$$

$$(5.15) \quad k_e = ((m_c/r_c)c_t^2)(r_c/q_c)^2 \Rightarrow \quad c_q = r_c/q_c \approx 8.6175172023 \cdot 10^{-18} m \ C^{-1}.$$

5.5. Principle of conservation. An amount of distance corresponds to an inversely proportionate amount of another type of measure. The ratios c_t/c_m and c_t/c_q yields 3 conservation constants, k_t , k_m , and k_q that are the basis of particle-wave behavior:

(5.16)
$$c_t/c_m = (m_c/r_c)(r_c/t_c) = (m_c r_c)/(t_c r_c) = k_m/k_t.$$

(5.17)
$$c_t/c_q = (q_c/r_c)(r_c/t_c) = (q_cr_c)/(t_cr_c) = k_q/k_t.$$

5.6. Planck-Einstein equation: Applying both the relative measure ratios 5.1 and the conservation ratios 5.5:

$$(5.18) m(ct)^2 = mr^2 \wedge mr = m_c r_c = k_m \Rightarrow m(ct)^2 = k_m r.$$

(5.19)
$$m(ct)^2 = k_m r$$
 \wedge $r_c/t_c = r/t = c$
 \Rightarrow $E := mc^2 = k_m r/t^2 = (k_m(r/t)) (1/t) = (k_m c)(1/t) = hf,$

where the Planck constant $h = k_m c$ and the frequency f = 1/t.

(5.20)
$$k_m = m_c r_c = h/c \approx 2.21022 \cdot 10^{-42} \ kg \ m.$$

(5.21)
$$k_t = t_c r_c = k_m / (c_t / c_m) \approx 5.47493 \cdot 10^{-78} \text{ s m}.$$

(5.22)
$$k_q = q_c r_c = (c_t/c_q)k_t \approx 1.90466 \cdot 10^{-52} \ C \ m.$$

5.7. Quantum-special relativity gravity force. The total mass of a particle is $m = \sqrt{m_0^2 + m_{ke}^2}$, where m_0 is the rest mass and m_{ke} is the kinetic energy-equivalent mass (energy imparted by photons and gravitons). Applying both the relative measure ratios 5.1 and the conservation ratios 5.5:

(5.23)
$$m_0 = (m_c/r_c)r$$
 \wedge $m_{ke} = m_c r_c/r$ \wedge $m = \sqrt{m_0^2 + m_{ke}^2}$ \Rightarrow $m = \sqrt{((m_c/r_c)r)^2 + ((m_c r_c)/r)^2}.$

Applying equation 5.23 to equation 5.6:

(5.24)
$$\exists m : m_1 m_2 = m^2 = ((m_c/r_c)r)^2 + ((m_c r_c)/r)^2$$

 $\Rightarrow m_1 m_2 / (((m_c/r_c)r)^2 + ((m_c r_c)/r)^2) = 1.$

The gravity force in the proper (local) frame of reference comes from equation 5.2:

(5.25)
$$r' = \sqrt{(ct)^2 - (vt)^2} \quad \Rightarrow \quad m_0 r' = (m_c/r_c)((ct)^2 - (vt)^2).$$

$$(5.26) m_0 r' = (m_c/r_c)((ct)^2 - (vt)^2) \Rightarrow ((r_c/m_c)/(c^2 - v^2))m_0 r'/t^2 = 1.$$

5.8. Quantum-special relativity charge force. Applying $m = (m_c/q_c)q$ to the quantum-relativistic gravity equation (5.7):

(5.28)
$$F = (m_c/q_c)^2 (m_c/r_c)(c^2 - v^2)q_1q_2/(((m_c/r_c)r)^2 + ((m_cr_c)/r)^2).$$

6. Insights and implications

- (1) Volume and distance derived from the same abstract, countable set of n-tuples provides a unifying and more rigorous set and limit-based foundation under integration, measure theory, the vector magnitude, and the metric space axioms without using the geometric primitives and relations required in Euclidean geometry [Joy98], axiomatic geometry [Lee10], and vector analysis [Wey52].
- (2) The definition of a complete metric space is insufficient to exclude functions that are not based on the bijective relation between distance and volume. A sufficient definition of a distance measure is a function that can be reduced to a Minkowski distance $d: d^n = \sum_{i=1}^m d_i^n$. Vector fields and Riemann manifolds are inner product spaces, which is the n=2 case of Minkowski distance with \pm -signed interval lengths.
- (3) Euclid's proof that Euclidean distance is the smallest distance between two distinct points equate Euclidean distance to a straight line, where it is assumed that the straight line length is the smallest distance [Joy98]. And proofs that the straight line length is the smallest distance equate the straight line length to Euclidean distance.

All distance measures of an Euclidean 2-volume (area) are Minkowski distances (4.1), where $n \in \{1,2\}$. n=1 is the Manhattan (largest) distance case, $d = \sum_{i=1}^m s_i$. n=2 is the Euclidean (smallest) distance case, $d = (\sum_{i=1}^m s_i^2)^{1/2}$. Hilbert spaces allow non-integer values of n (fractals). In that case, $1 \le n \le 2$ and d decreases monotonically as $n \to 2$.

(4) The left side of the distance sum inequality (4.3),

(6.1)
$$(\sum_{i=1}^{m} (a_i^n + b_i^n))^{1/n} \le (\sum_{i=1}^{m} a_i^n)^{1/n} + (\sum_{i=1}^{m} b_i^n)^{1/n},$$

differs from the left side of Minkowski's sum inequality [Min53]:

(6.2)
$$(\sum_{i=1}^{m} (a_i^n + b_i^n)^{\mathbf{n}})^{1/n} \le (\sum_{i=1}^{m} a_i^n)^{1/n} + (\sum_{i=1}^{m} b_i^n)^{1/n}.$$

The two inequalities only intersect where n=1. The distance sum inequality is a more fundamental inequality because its proof does not require convexity and Hölder's inequality that are required to prove the Minkowski sum inequality. And the distance sum inequality is derived from the definitions of volume and distance, which makes it more directly related to geometry.

(5) The gravity (5.8), charge (5.12), and Planck (5.19) constants were all derived from more fundamental constants, $(r_c/t_c) = c_t$, $(r_c/m_c) = c_m$, $(r_c/q_c) = c_q$, and $m_c r_c = k_m$. And all depend on the speed of light constant, c_t : For example, $G = c_m c_t^2$, $k_e = (c_q^2/c_m)c_t^2$, and $k_e = k_m c_t$.

- (6) Algebraic manipulation of Coulomb's constant, $k_e = (r_c/q_c)^2((m_c/r_c)c^2)$ = $(m_c(r_c/t_c^2))(r_c/q_c)^2$, contains the term, r_c/t_c^2 , which suggests there might be a maximum acceleration constant.
- (7) The derivations of the spacetime equations, in this article (5.1), differ from other derivations.
 - (a) The derivations, here, do not rely on the Lorentz transformations or Einsteins' postulates [Ein15]. The derivations do not even require the notion of light.
 - (b) The derivations, here, rely only on geometry: the Euclidean volume proof (3.2), the Minkowski distances proof (4.1), and the 3D proof (4.11), which provides the insight that the properties of physical space creates a maximum speed, and the spacetime equations.
 - (c) The derivations are valid for spacetime, spacemass, and spacecharge.
- (8) Applying the ratios to derive Newton's gravity force (5.2) and Coulomb's charge force (5.3) equations provide:
 - (a) Derivations that do not assume the inverse square law or Gauss's flux divergence theorem. Note: the components of the Ricci and metric tensors in Einstein's field equations have the units, 1/distance² [Wey52], which is an assumption of the inverse square law.
 - (b) The first derivations to show that the inverse square law and the property of force as mass times acceleration are the result of the conversion ratios, $r = (r_c/t_c)t = (r_c/m_c)m$. And the derivation of the inverse square law does not rely on Gauss's flux divergence.

The quantum-special relativity extension to Newton's gravity equation (5.26) makes empirically verifiable predictions.

- (a) In Newton's gravity force, Gauss's gravity law, and Einstein's field (general relativity) equations, the force, $F \to \infty$ as the distance, $r \to 0$. But, in the quantum-special relativity extension to Newton's gravity equation, $F \to 0$ as $r \to 0$. Where the distance between point-like particles is less than approximately $10^{-6}~m$, the gravity force should be measurably smaller than at $10^{-4}~m$, which implies larger black hole radii and maybe allows black hole evaporation. An approximation in Einstein's field equations adds a second metric tensor, where the tensor components have the units, "distance²."
- (b) Further, Newton's gravity constant, G, Gauss's constant, $4\pi G$, and Einstein's gravity constant, $k = 8\pi G/c^4$, [Wey52], are only valid where the local velocity, v = 0. At relativistic speeds, G should be replaced with " $((m_c/r_c)(c^2-v^2))$ ". In the local (proper) frame of reference, for example, an observer on a body passing near a star at relativistic speeds will measure a slower gravitational acceleration than predicted by a constant G. But, in the coordinate frame of reference, for example, an observer on earth looking at the body passing the distant star would measure a faster gravitational acceleration of that body than predicted by G.
- (9) There is no unit-factoring ratio converting a discrete state value to a continuously varying interval length. Therefore, the spin states of two quantum entangled particles and the polarization states of two quantum entangled photons are independent of distance and time interval lengths.

(10) The inner product space in linear algebra, vector analysis, Riemann manifolds, etc. assumes any number of possible dimensions. For example, the Gram-Schmidt process is a method to find an orthogonal vector for any *n*-dimensional vector [Coh21]. None of those disciplines have exposed the properties that can limit a geometry to 3 dimensions.

But the set-based, first-order logic proof that a strict linearly ordered and symmetric set is a cyclic set of at most 3 members (4.11) is the simplest and most logically rigorous explanation for observing only 3 dimensions of physical space: simpler and more rigorous than parallel dimensions that cannot be detected and simpler and more rigorous than extra dimensions rolled up into infinitesimal balls that are too small to detect.

- (a) If there are higher dimensions of ordered and symmetric geometric space, then there is a set of at most three members (4.11), each member being an ordered and symmetric set of 3 dimensions (three 3-dimensional balls).
- (b) Each of 3 ordered and symmetric dimensions of space can have at most 3 sequentially ordered and symmetric state values, for example, an ordered and symmetric set of 3 vector orientations, {-1,0,1}, per dimension of space and at most 3 spin states per plane, etc. If the states are not sequentially ordered (a bag of states), then the states are indeterminate (superimposed) until a state is pulled from the bag (like Schrodinger's cat being both alive and dead until the box is opened). In other words, there is no "axiom of choice" to select a particular state.

References

[Coh21] M. Cohen, Linear algebra: Theory, intuition, code, Amazon Kindle, 2021. †12

[Coq23] Coq, Coq proof assistant, 2023. https://coq.inria.fr/documentation. \dagger2

[Ein15] A. Einstein, Relativity, the special and general theory, Princeton University Press, 2015.

[Gol
76] R. R. Goldberg, Methods of real analysis, John Wiley and Sons, 1976.
 $\uparrow 1$

[Joy98] D. E. Joyce, Euclid's elements, 1998. http://aleph0.clarku.edu/~djoyce/java/elements/elements.html. ↑10

[Lee10] J. M. Lee, Axiomatic geometry, American Mathematical Society, 2010. †10

[Min53] H. Minkowski, Geometrie der zahlen, Chelsea, 1953. reprint. †10

[Rud76] W. Rudin, Principles of mathematical analysis, McGraw Hill Education, 1976. ↑1

[Wey52] H. Weyl, Space-time-matter, Dover Publications Inc, 1952. ↑10, 11

George Van Treeck, 668 Westline Dr., Alameda, CA 94501