

CSE 543 Information Assurance and Security

Security Strategies

Professor Stephen S. Yau

Stephen S. Yau CSE 543

Security Strategies

Obscurity Strategy

Perimeter Defense Strategy

Defense in Depth Strategy

Security by Obscurity Strategy (Stealth)

- If the existence of an organization's IA baseline and critical objects is *unknown*, the organization might not be subject to threats
- Intent to secure the system by *hiding* the details of security mechanisms
- IA involves use of obscurity strategy to a certain extent

Stephen S. Yau CSE 543

Perimeter Defense Strategy

- Focus on threats from *outsiders*
- Intent to control the flow of information between organization's internal trusted network and the un-trusted external internet
- Not much IA capabilities is allocated to secure the *internal* system
- Examples: Firewall, security access keys, access codes

Perimeter Defense Strategy (cont.)

- Two critical weaknesses:
 - Very little or nothing to protect against attacks by an inside user
 - If the perimeter defenses fail, then the internal systems are open to attack

Stephen S. Yau CSE 543 5

Defense in Depth Strategy

- Define a number of operationally interoperable and complementary technical and non-technical IA *layers* of defense
- Separate organization network into enclaves
 - An *enclave* is an environment under control of a single authority with personnel and physical security measures.
- Perimeter defense for each enclave
- Complicated and multiple *connections* among enclaves and between an enclave and outside
- Need multiple layers and different solution for each connection

Defense in Depth Strategy

--- Layered Architecture Model

Layer 4-10 (Non-technical IA Infrastructure)

Layer 3: IA Architecture (Technical IA Infrastructure)

Layer 2: IA Management

Layer 1: IA Policies

IA Baseline

Critical Objects

Defense in Depth Strategy (cont.) --- Layered Architecture Model

- -Core consists of critical objects and IA baseline that collect, input, process, store, output, and communicate with any element in core.
- -IA Policies (Layer 1) define the actions and behavior required to accomplish the organization's IA needs.
- -IA Management (Layer 2) monitors and controls implementation of the IA policies.
- -IA Architecture (Layer 3) provides a means to allocate and integrate technical and non-technical controls

Defense in Depth Strategy (cont.) --- Layered Architecture Model

- Layers 4 to 10 involve non-technical implementations of IA policies, and provide *infrastructure* in support of IA Architecture
 - Layer 4 Operational security administration
 - Layer 5 Configuration management
 - Layer 6 Life-cycle security
 - Layer 7 Contingency planning
 - Layer 8 IA education, training, awareness
 - Layer 9 IA policy Compliance Oversight
 - Layer 10 IA incident response and reporting

Layer 3: IA Architecture

- Ensure that at least the minimum level of interoperability and services is available to authorized users to perform their tasks, to coordinate with other users, and to exchange information securely
- Integrates three types of security:
 - Physical security
 - Procedure security
 - Logical security

Layer 4: Operational Security Administration

- People:
 - Users: general and privileged
 - Separation of roles
 - Prevention
 - Limitation
 - Accountability
 - Detection
 - Deterrence
 - Outsourcing
- Security operations, such as encryption, hashing, access control, auditing

Layer 5: Configuration Management

- Provide a mechanism to ensure documentation of all changes
- Identify anticipated effects of changes on cost/schedule as a basis for approving or disapproving proposed changes
- Maintain integrity of schedule
- Maintain updated documentation on status of each proposed change
- Ensure all changes communicated to appropriate personnel

Layer 6: Life-Cycle Security

- Security is involved in each state of the system's life cycle:
 - Initiation
 - Definition
 - Design
 - Acquisition
 - Development and implementation
 - Operation and maintenance
 - Destruction and disposal

Layer 7: Contingency Plan

- Planning for the worst
 - Backups
 - Power outage
 - Emergency action and disaster recovery plan
 - Continuity of operations plan

Stephen S. Yau CSE 543 14

Layer 8: IA Education, Training, and Awareness

- IA support services
- IA awareness programs
- IA curriculum development, certification and accreditation
- IA compliance inspection and validation
- Workshop, conference and symposia support

Stephen S. Yau CSE 543 15

- Provide a means of detecting, reporting, and correcting noncompliance with the IA policies
- Implementation can be performed both internally and by external parties
- Mechanisms
 - Intrusion detection systems
 - Scanners
 - Probing vulnerabilities of network to prevent attacks
 - Specifying IP addresses to check origins of communication (OS, servers, routers, firewalls,...)
 - Automated auditing
 - Malware detection tools
 - Periodic assessments of IA management and vulnerabilities

- No perfect prevention systems, and incidents are expected
- General incident handling procedures:
 - Determine appropriate response
 - Collect and safeguard the information
 - Contain the situation
 - Assemble the incident management team
 - Create evidence disks and printouts
 - Eradicate/clean up/recover
 - Prepare preliminary status report for management and other authorities
 - Document and report all activities
 - Lesson learned: make improvements