Pflichtenheft

Projekt Zwei-Gelenk-Roboter

Hochschule Heilbronn

25.10.2022

Status: Fertig

Freigabevermerk: Freigegeben

Winter Semester 2022/23

Marc Grosse (210233), Moritz Hoehnel (210258), Mattis Ritter (210265)

Zwei-Gelenkroboter

Inhaltsverzeichnis

Tal	bellarische Versionshistorie	. 3
	kürzungsverzeichnis	
	Einleitung	
	Allgemeine Beschreibung	
	Produktperspektive	
	Produktfunktionen	
c.	Benutzermerkmale	. 3
	Spezifische Anforderungen	
	funktionale Anforderungen	
	nicht funktionale Anforderungen	

Tabellarische Versionshistorie

Version	Datum
Version 1.0	17.10.2022
Version 1.1	19.10.2022
Version 1.2	20.10.2022
Version 1.3	22.10.2022
Version 1.4	03.11.2022

Abkürzungsverzeichnis

Kürzel	Bedeutung
Pr.	Priorität

1. Einleitung

Dieses Dokument legt die Pflichten für das Labor Modellbildung und Simulationstechnik (304143) Projekt Zwei-Gelenk-Roboter fest.

Es soll die Modellbildung und Simulation eines Zwei-Gelenk-Roboters durchgeführt werden.

2. Allgemeine Beschreibung

a. Produktperspektive

Es muss ein Roboter mit zwei aneinandergereihten Armen erstellt werden. Der Roboter ist fest mit dem Boden verankert. In dem Gelenk (Schulter) zwischen Boden und ersten Arm, als auch in dem Gelenk (Ellenbogen) zwischen ersten und zweiten Arm sind Motoren. Der Roboter wird zweidimensional betrachtet. Jedes Gelenk soll eine 360 Grad Drehung ausführen können. Die Längen der Arme sind konstant. Massen sind in den Gelenken und am Greifer punktuell konzentriert darzustellen.

Es soll eine visuelle Simulation erstellt werden. Diese muss auf einem PC laufen. Dabei sollen die zwei Roboter-Arme dargestellt werden. Eine Animation dieser Arme ist gefordert (diese sollen Bewegungen ausführen).

Der Nutzer soll die Simulation starten und stoppen können.

b. Produktfunktionen

Das Projektteam muss dazu ein dynamisches Modell erstellen. Danach müssen stationäre Gleichungen ermittelt werden. Schließlich werden die Gleichungen in ein Zustandsraummodell umgewandelt, dass diese in dem Simulationstool implementiert werden können.

c. Benutzermerkmale

Bei Benutzern wird die Bedienung der Software Matlab als auch Simulink vorausgesetzt. Die Nutzer verfügen darüber hinaus reglungstechnische Grundlagen und höhere Mathematische Kenntnisse.

3. Spezifische Anforderungen

Nr.	Q/T/B	Name	Beschreibung	Klassifizierung	Messkriterien	Pr.
A.1	Q	Massematrix	Es muss gezeigt werden, dass die Massenmatrix invertierbar ist	Ergebnisziel	Determinante der Matrix ist ungleich Null	А
A.2	Q	Stationäre Gleichungen	Bestimmen der allgemeinen stationären Gleichungen	Ergebnisziel	Ergebnis muss der Gleichung des Dynamischen Modells im Lastenheft entsprechen	A
A.3	Q	Umformen	Die stationäre Gleichung muss nach $\overline{\varphi_1}$ umgeformt werden	Ergebnisziel	Gleichung muss semantisch mit der Musterlösung übereinstimmen	Α
A.4	Q	Dimension	Es darf nicht im dreidimensionalen Raum gearbeitet werden	Nicht-Ziel		
A.5	Q	Linearisierung	Es wird keine Linearisierung der stationären Gleichungen durchgeführt	Nicht-Ziel		
A.6	Q	Eigenwert- berechnung	Es wird keine Eigenwert- berechnung der Massenmatrix durchgeführt	Nicht-Ziel		
A.7 a)	Q	Vorabgabe	Abgabe der in Nr. A.1-3 erstellten Aufschriebe	Ergebnisziel	Bestätigung der rechtzeitigen Abgabe durch	Α
A.7 b)	Т	Vorabgabe	09.11.2022	Vorgehensziel	Betreuer	Α
A.8	Q	Visualisierung	Graphische Oberfläche für den Benutzer	Ergebnisziel	Sichtprüfung ob Bauteile vorhanden	A
A.9	Q	Animation	Implementieren der Bewegungen der Arme, durch vorgegebene Bewegungsmuster	Ergebnisziel	Sichtprüfung, Arme müssen 2 Minuten lang rotieren	A
A.10	Q	Benutzer- eingabe	Nutzer kann Bewegung vorgeben	Ergebnisziel	Arme bewegen sich an Benutzer Wunschposition, Kontrolle durch Wunsch- zu Ist-Winkel	С

A.11	Q	Bedienungs- anleitung	Es kann eine Bedienungsanleitung für die Anwendung der Simulation erstellt werden, der Nutzer wurde in 2.c. Benutzermerkmale. Es ist eine stichwortartige Ablaufbeschreibung gewünscht	Ergebnisziel	Unter 2.c. definierter Proband muss Software mit Bedienungs- anleitung in Betrieb nehmen können	С
A.12	Q	Dokumentation	Es muss eine PDF mit Inhalten der Vorabgabe, Eingangs-, Ausgangs- und Zustandsgrößen in einer Tabelle, Zusammenschrift Formeln und Architektur des Simulink-Modells abgegeben werden	Ergebnisziel	Kontrolle ob Texte/Tabelle vorhanden	A
A.13	Q	Upload final	Abgabe Simulink Modell	Ergebnisziel	Abgabe via .zip file in Ilias Ordner	Α
a) A.13 b)	Q	Upload final	Abgabe Parametrierungs- Datei	Ergebnisziel	wird durch Betreuer bestätigt	A
A.13 c)	Q	Upload final	Abgabe Matlabfunction für die Animation	Ergebnisziel	_	А
A.13 d)	Q	Upload final	Abgabe der Matlab Datei	Ergebnisziel		Α
A.13 e)	Q	Upload final	Abgabe eine Dokumentation in PDF Format	Ergebnisziel		А
A.13 f)	Т	Upload final	10.01.2022	Vorgehensziel		Α
A.14	Т	Abschluss- Präsentation	17.01.2022	Vorgehensziel	Termin eingehalten	А
A.15	В	Leistungs- anerkennung	Jeder Projektmitarbeiter erhält 4 ECTS	Vorgehensziel	ECTS müssen bis 05.03.2023 in Studentenportal erscheinen	A
A.16	В	Arbeitszeit	Jedes Projekt- Mitglied soll 100 Stunden arbeiten	Vorgehensziel	Dokumentation der Arbeitszeiten via Excel-Liste	Α
A.17	В	Arbeitszeit	Jedes Projekt- Mitglied soll nicht mehr als 100 Stunden arbeiten	Vorgehensziel		С

B.6 Q

Ebene

Die Parteien bestätigen hiermit das Pflichtenheft.

ausgeben lassen

Koordinaten

Es gibt nur x und y

Α

				I		
A.18	В	Budget	Es dürfen weder für	Vorgehensziel	Keine Ausgaben	Α
			Auftragsgeber noch		vorhanden	
			für Auftragsnehmer			
			Kosten entstehen			

a. funktionale Anforderungen Q/T/B Beschreibung Klassifizierung Nr. Name Messkriterien Pr. **B.1** Q Masse m₁ Ergebnisziel Masse in Software Α 10kg ausgeben lassen **B.2** | Q Ergebnisziel Masse m₂ 10kg Masse in Software Α ausgeben lassen Länge des ersten Armes l₁ Länge in Software **B.3** Q Länge l₁ Ergebnisziel = 0.8 mausgeben lassen Länge des zweiten Armes Ergebnisziel **B.4** Q Länge l₂ Länge in Software A $I_2 = 0.7 m$ ausgeben lassen B.5 Q Rotation der Gelenke **Ergebnisziel** Winkel in Software A Rotation

Ergebnisziel

unbegrenzt

Das Modell soll 2D sein

	b. nicht funktion ale Anforderungen							
			<u> </u>					
Nr.	Q/T/B	Name	Beschreibung	Klassifizierung	Messkriterien	Pr.		
C.1	Q	Software	Verwendung MATLAB	Vorgehensziel	Alle Rechner	Α		
			R2021a		werden vor			
C.2	Q	Toolboxen	Verwendung von Control	Vorgehensziel	Nutzung	A		
	•		Systems Toolbox und		kontrolliert, dass			
			Symbolic Math Toolbox		richtige Version			
C.3	Q	Software	Es muss der Real-Time-	Vorgehensziel	erstellt wurde	A		
			Pacer verwendet werden					
C.4	Q	Toolbox	Es soll Simulink	Vorgehensziel		Α		
			verwendet werden]				
			·					

Datum, Unterschrift Projektteam Stellvertreter

03.10.2022

Datum, Unterschrift Auftraggeber