MA5216 Test

Nguyen Ngoc Khanh - A0275047B May 20, 2025

1 PROBLEM 1

Problem 1.1

Let $n \in \mathbb{N}$ and let R > 0 be a fixed positive number. Let

$$S^{n}(R) = \left\{ (x^{1}, ..., x^{n+1}) \in \mathbb{R}^{n} : \sum_{k=1}^{n+1} (x^{k})^{2} = R^{2} \right\}$$

be the n-sphere in \mathbb{R}^{n+1} centered at the origin and of radius R. Let $g_{S^n(R)}$ be the canonical Riemannian metric on $S^n(R)$ induced from the Euclidean metric $g_{\mathbb{R}^{n+1}}$ in \mathbb{R}^{n+1} , i.e. $g_{S^n(R)} = g_{\mathbb{R}^{n+1}}|_{S^n(R)}$. Similarly, consider the puncture Euclidean space $\mathbb{R}^{n+1}\setminus\{0\}$ and let $g_{\mathbb{R}^n\setminus\{0\}}$ be the Riemannian metric on $\mathbb{R}^n\setminus\{0\}$ induced from the Euclidean metric $g_{\mathbb{R}^{n+1}}$ on \mathbb{R}^{n+1} , i.e. $g_{\mathbb{R}^n\setminus\{0\}} = g_{\mathbb{R}^{n+1}}|_{\mathbb{R}^n\setminus\{0\}}$. Here with some abuse of notation, 0 also denotes the origin of \mathbb{R}^{n+1}

Consider the two maps $\mu:\mathbb{R}^{n+1}\setminus\{0\}\to(0,+\infty)$ and $\phi:\mathbb{R}^{n+1}\setminus\{0\}\to S^n(R)$ given as follows: For $x=(x^1,...,x^{n+1})\in\mathbb{R}^{n+1}\setminus\{0\}$

$$\mu(x) = \sqrt{(x^1)^2 + \dots + (x^{n+1})^2}$$

$$\phi(x) = \left(\frac{Rx^1}{\mu(x)}, \dots, \frac{Rx^{n+1}}{\mu(x)}\right)$$

- (a) Show that the map $\phi: \mathbb{R}^{n+1} \setminus \{0\} \to S^n(R)$ is not a Riemannian submersion with respect to the metric $g_{\mathbb{R}^{n+1} \setminus \{0\}}$ on $\mathbb{R}^{n+1} \setminus \{0\}$ and the metric $g_{S^n(R)}$ on $S^n(R)$
- (b) Does there exist a Riemannian metric g on $\mathbb{R}^{n+1}\setminus\{0\}$ so that the map $\phi:\mathbb{R}^{n+1}\setminus\{0\}\to S^n(R)$ is a Riemannian submersion with respect to the metric g on $\mathbb{R}^{n+1}\setminus\{0\}$ and the metric g on $S^n(R)$

1.1 a

Write $\phi(x)=(\phi_1(x),...,\phi_n(x))\in S^n(R)$ for every $x\in\mathbb{R}^{n+1}\setminus\{0\}$, each $\phi_i:\mathbb{R}^{n+1}\setminus\{0\}\to\mathbb{R}$ is defined by

$$\phi_i(x) = \frac{Rx^i}{\|x\|} = Rx^i((x^1)^2 + \dots + (x^{n+1})^2)^{-1/2}$$

For any $x \in \mathbb{R}^{n+1} \setminus \{0\}$, ϕ maps x into $y \in S^n(R)$. With respect to the canonical basis of $T_x \mathbb{R}^n$, $d\phi_x$ is a matrix in $\mathbb{R}^{n \times n}$ (index i for rows, index j for columns)

$$d\phi_x = \left[\frac{\partial \phi_i}{\partial x^j}|_x\right]_{1 \le i, j \le n} \in \mathbb{R}^{n \times n}$$

Let $x=(x^1,...,x^n)$, then for every $1 \le i,j \le n$ and $i \ne j$

$$\begin{split} \frac{\partial \phi_i}{\partial x^j}|_x &= R x^i (-1/2) ((x^1)^2 + \ldots + (x^{n+1})^2)^{-3/2} 2 x^j = -\frac{R}{\|x\|^3} x^i x^j \\ \frac{\partial \phi_i}{\partial x^i}|_x &= \frac{R}{\|x\|} - \frac{R}{\|x\|^3} (x^i)^2 = \frac{R}{\|x\|^3} (\|x\|^2 - (x^i)^2) \end{split}$$

Then

$$d\phi_x = \frac{R}{\|x\|^3} \begin{bmatrix} \|x\|^2 - (x^1)^2 & -x^1x^2 & \dots & -x^1x^n \\ -x^2x^1 & \|x\|^2 - (x^2)^2 & \dots & -x^2x^n \\ \dots & \dots & \dots & \dots \\ -x^nx^1 & -x^nx^2 & \dots & \|x\|^2 - (x^n)^2 \end{bmatrix} \in \mathbb{R}^{n \times n}$$

Let $x=(x^1,0,...,0)\in\mathbb{R}^{n+1}\setminus\{0\}$ for some $x^1>0$, then $\|x\|=x^1$, consider the tangent vector $v=(0,1,0,...,0)\in T_p(\mathbb{R}^{n+1}\setminus\{0\})\subseteq T_p\mathbb{R}^n$, then

$$g_{\mathbb{R}^{n+1}\setminus\{0\}}(v,v) = g_{\mathbb{R}^{n+1}}(v,v) = 1$$

Let $w = d\phi_x(v) \in T_yS^n(R) \subseteq T_y\mathbb{R}^n$, with respect to the canonical basis of $T_x\mathbb{R}^n$,

$$w = \frac{R}{\|x\|^3} \begin{bmatrix} \|x\|^2 - (x^1)^2 & -x^1 x^2 & \dots & -x^1 x^n \\ -x^2 x^1 & \|x\|^2 - (x^2)^2 & \dots & -x^2 x^n \\ \dots & \dots & \dots & \dots \\ -x^n x^1 & -x^n x^2 & \dots & \|x\|^2 - (x^n)^2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ \dots \\ 0 \end{bmatrix}$$

$$= \frac{R}{\|x\|^3} \begin{bmatrix} -x^1 x^2 \\ \|x\|^2 - (x^2)^2 \\ \dots \\ -x^n x^2 \end{bmatrix}$$

$$= \frac{R}{\|x\|^3} \begin{bmatrix} 0 \\ \|x\|^2 \\ \dots \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ R/\|x\| \\ \dots \\ 0 \end{bmatrix} \in T_q S^n(R)$$

Then

$$g_{S^n(R)}(w,w) = g_{\mathbb{R}^n}(w,w) = \left(\frac{R}{\|x\|}\right)^2$$

Pick $x^1=R/2$, then $\|x\|=R/2$, then $g_{S^n(R)}(w,w)=4\neq g_{\mathbb{R}^{n+1}\setminus\{0\}}(v,v)$. Hence, ϕ is not a Riemannian submersion

1.2 b

For any $v_1, v_2 \in T_x(\mathbb{R}^{n+1} \setminus \{0\})$, let $d\phi_x$ maps v_1, v_2 into $w_1, w_2 \in T_y(S^n(R))$ respectively. We want to pick g so that

$$g(v_1, v_2) = g_{S^n(R)}(w_1, w_2)$$

Let $I=(0,+\infty)\subseteq\mathbb{R}$ with the usual metric dr^2 induced from Euclidean space, consider the product metric $dr^2+g_{S^n(R)}$ in the product space $I\times S^n(R)$

$$\mathbb{R}^{n+1}\setminus\{0\} \xrightarrow{\psi} I\times S^n(R) \xrightarrow{\longrightarrow} S^n(R)$$

There is a canonical Riemannian submersion $I \times S^n(R) \to S^n(R)$ mapping $(i, s) \mapsto s$. Define the diffeomorphism

$$\psi: \mathbb{R}^{n+1} \setminus \{0\} \to I \times S^n(R)$$
$$x \mapsto \left(\|x\|, R \frac{x}{\|x\|}\right)$$

We write $\psi = (\chi, \phi)$ where $\chi : \mathbb{R}^{n+1} \setminus \{0\} \to I$ and $\phi : \mathbb{R}^{n+1} \setminus \{0\} \to S^n(R)$, then ϕ is precisely the function defined in the previous part.

Let g be the unique pullback metric on $\mathbb{R}^{n+1}\setminus\{0\}$ from $dr^2+g_{S^n(R)}$ on $I\times S^n(R)$, then ϕ is a Riemannian submersion with respect to g and $g_{S^n(R)}$. In particular, in polar coordinate (r,s_n) of \mathbb{R}^{n+1} ,

$$g = dr^2 + r^2 ds_n$$
$$g_{S^n(R)} = R^2 ds_n$$

2 PROBLEM 2

Problem 2.1

Let (M,g) be a Riemannian manifold and let $f,h:M\to\mathbb{R}$ be smooth functions on M. Let X be a smooth vector field on M. Let $\phi:\mathbb{R}\to\mathbb{R}$ be a smooth function on R. Prove the following identities on M

(i)
$$\operatorname{div}(f \cdot X) = D_X f + f \cdot \operatorname{div} X$$

(ii)
$$\Delta(f \cdot h) = h \cdot \Delta f + f \cdot \Delta h + 2g(\nabla f, \nabla h)$$

(iii)
$$\operatorname{Hess}(f \cdot h) = h \cdot \operatorname{Hess} f + f \cdot \operatorname{Hess} h + df \otimes dh + dh \otimes df$$

(iv)
$$\operatorname{Hess}(\phi \circ f) = (\phi'' \circ f) \cdot df \otimes df + (\phi' \circ f) \cdot \operatorname{Hess} f$$

(v)
$$\Delta(\phi \circ f) = (\phi' \circ f) \cdot \Delta f + (\phi'' \circ f) \cdot |df|^2$$

where \cdot denotes the point-wise multiplication, \circ denotes function composition, |df| denotes the point-wise norm with respect to g

2.1 i

We use the definition $\operatorname{div} X = -\nabla^* \theta_X = \sum g(\nabla_{E_i} X, E_i)$ for some orthonormal frame E_i in proposition 2.2.7. We have

$$\begin{split} \operatorname{div}(f \cdot X) &= \sum g(\nabla_{E_i}(f \cdot X), E_i) \\ &= \sum g((\nabla_{E_i}f) \cdot X + f \cdot \nabla_{E_i}X, E_i) \\ &= \sum (\nabla_{E_i}f) \cdot g(X, E_i) + f \cdot g(\nabla_{E_i}X, E_i) \\ &= \left(\sum (\nabla_{E_i}f) \cdot g(X, E_i)\right) + f \cdot \operatorname{div}X \end{aligned} \qquad \text{(bilinearity of } g) \\ &= \left(\sum_{g(X, E_i) \cdot E_i} f + f \cdot \operatorname{div}X \right) \\ &= \nabla_{X}f + f \cdot \operatorname{div}X \end{aligned} \qquad \text{(prop 1)}$$

2.2 ii

We use the definition $\Delta f = -\nabla^* \nabla f = \sum (\nabla_{E_i} \nabla f)(E_i)$ for some orthonormal frame E_i . Consider f and h as (0,0)-tensors, for any vector field X

$$\nabla_X(f \cdot h) = (\nabla_X f) \otimes h + f \otimes \nabla_X h = h \cdot \nabla_X f + f \cdot \nabla_X h$$

Then, as (0,1)-tensors, we have $\nabla(f\cdot h)=h\cdot\nabla f+f\cdot\nabla h$, then

$$\begin{split} &\Delta(f \cdot h) \\ &= \sum \nabla_{E_i} \nabla(f \cdot h)(E_i) \\ &= \sum \nabla_{E_i} (h \cdot \nabla f + f \cdot \nabla h)(E_i) \\ &= \sum \nabla_{E_i} (h \cdot \nabla f)(E_i) + \sum \nabla_{E_i} (f \cdot \nabla h)(E_i) \\ &= 2 \sum \nabla_{E_i} h \cdot \nabla_{E_i} f + h \cdot \sum \nabla_{E_i} \nabla f(E_i) + f \cdot \sum \nabla_{E_i} \nabla h(E_i) \\ &= 2 \Big(\sum \nabla_{E_i} h \cdot \nabla_{E_i} f \Big) + h \cdot \Delta f + f \cdot \Delta h \end{split} \tag{definition}$$

Finally, $\nabla_{E_i}h, \nabla_{E_i}f$ are directional derivative, then $\nabla_{E_i}h = g(E_i, \nabla f)$ and $\nabla_{E_i}f = g(E_i, \nabla h)$, hence

$$\sum \nabla_{E_i} h \cdot \nabla_{E_i} f = \sum g(E_i, \nabla f) g(E_i, \nabla h) = g(\nabla f, \nabla h)$$

We obtain

$$\Delta(f \cdot h) = 2q(\nabla f, \nabla h) + h \cdot \Delta f + f \cdot \Delta h$$

2.3 iii

We use the definition $\mathrm{Hess}\, f(X,Y) = \nabla^2_{X,Y} f = \nabla_X \nabla_Y f - \nabla_{\nabla_X Y} f$, then

$$\operatorname{Hess}(f \cdot h)(X, Y) = \nabla_X \nabla_Y (f \cdot h) - \nabla_{\nabla_X Y} (f \cdot h)$$

We have

$$\nabla_{X}\nabla_{Y}(f \cdot h)$$

$$= \nabla_{X}(f \cdot \nabla_{Y}h + h \cdot \nabla_{Y}f)$$

$$= \nabla_{X}(f \cdot \nabla_{Y}h) + \nabla_{X}(h \cdot \nabla_{Y}f)$$

$$= f \cdot \nabla_{X}\nabla_{Y}h + \nabla_{X}f \cdot \nabla_{Y}h + h \cdot \nabla_{X}\nabla_{Y}f + \nabla_{X}h \cdot \nabla_{Y}f$$

We also have $\nabla_{\nabla_X Y}(f \cdot h) = f \cdot \nabla_{\nabla_X Y} h + h \cdot \nabla_{\nabla_X Y} f$, then

$$\operatorname{Hess}(f \cdot h)(X, Y) = f \cdot \operatorname{Hess} h(X, Y) + h \cdot \operatorname{Hess}(X, Y) + \nabla_X f \cdot \nabla_Y h + \nabla_X h \cdot \nabla_Y f$$

 $abla_X f \cdot
abla_Y h$ is precisely $(df \otimes dh)(X,Y)$ since by definition

$$(df \otimes dh)(X,Y) = df(X) \cdot dh(Y) = \nabla_X f \cdot \nabla_Y h$$

Similarly, $\nabla_X h \cdot \nabla_Y f = (dh \otimes df)(X, Y)$, we obtain

$$\operatorname{Hess}(f \cdot h) = h \cdot \operatorname{Hess} f + f \cdot \operatorname{Hess} h + df \otimes dh + dh \otimes df$$

2.4 iv

By proposition 2.2.6

$$\operatorname{Hess} f(X,Y) = g(\nabla_X \nabla f, Y) = (\nabla_X df)(Y)$$

Chain rule for $\phi \circ f$, for any $p \in M$, $d(\phi \circ f)_p = d\phi_{f(p)} df_p$, we can rewrite it as product of functions $TM \to \mathbb{R}$

$$d(\phi \circ f) = (\phi' \circ f) \cdot df$$

Similarly,

$$d(\phi' \circ f) = (\phi'' \circ f) \cdot df$$

Then

$$\begin{aligned} &\operatorname{Hess}(\phi \circ f)(X,Y) \\ &= (\nabla_X d(\phi \circ f))(Y) \\ &= (\nabla_X ((\phi' \circ f) \cdot df))(Y) \\ &= ((\phi' \circ f) \cdot \nabla_X df + (\nabla_X (\phi' \circ f)) \cdot df)(Y) \\ &= (\phi' \circ f) \cdot (\nabla_X df)(Y) + (\nabla_X (\phi' \circ f)) \cdot df(Y) \\ &= (\phi' \circ f) \cdot \operatorname{Hess} f(X,Y) + (\nabla_X (\phi' \circ f)) \cdot df(Y) \\ &= (\phi' \circ f) \cdot \operatorname{Hess} f(X,Y) + d(\phi' \circ f)(X) \cdot df(Y) \end{aligned} \qquad \text{(directional derivative)} \\ &= (\phi' \circ f) \cdot \operatorname{Hess} f(X,Y) + (\phi'' \circ f) \cdot df(X) \cdot df(Y) \\ &= (\phi' \circ f) \cdot \operatorname{Hess} f(X,Y) + (\phi'' \circ f) \cdot df(X) \cdot df(Y) \end{aligned} \qquad \text{(chain rule)}$$

Hence,

$$\operatorname{Hess}(\phi \circ f) = (\phi' \circ f) \cdot \operatorname{Hess} f + (\phi'' \circ f) \cdot df \otimes df$$

2.5 v

We use the definition $\Delta f = -\nabla^* \nabla f = \sum_i \nabla^2_{E_i, E_i} f = \sum_i \operatorname{Hess} f(E_i, E_i)$ for some orthonormal frame E_i , we have

$$\Delta f$$

$$= \sum_{i} \operatorname{Hess}(\phi \circ f)(E_{i}, E_{i})$$

$$= \sum_{i} (\phi' \circ f) \cdot \operatorname{Hess} f(E_{i}, E_{i}) + (\phi'' \circ f) \cdot df(E_{i})^{2}$$

$$= (\phi' \circ f)\Delta f + (\phi'' \circ f) \cdot \sum_{i} df(E_{i})^{2}$$

$$= (\phi' \circ f)\Delta f + (\phi'' \circ f) \cdot |df|$$

3 PROBLEM 3

Problem 3.1

Let (M,g) be a Riemannian manifold. Let S be a smooth (1, 1)-tensor field on M, and let X be a smooth vector field on M. Let ∇ denote the Riemannian connection on M

(a) Prove that

$$\operatorname{tr}(\nabla_X S) = \nabla_X \operatorname{tr} S$$

Here $\operatorname{tr} S$ denotes the trace of the (1,1)-tensor S.

(b) Consider the (0,2)-tensor T given by

$$T(Y,Z) = g(S(Y),Z)$$

for any smooth vector fields Y and Z on M. Prove that

$$(\nabla_X T)(Y, Z) = g((\nabla_X S)(Y), Z)$$

for any smooth vector fields Y and Z on M

3.1 a

For any $(1,1)\text{-tensor }S=S^i_jE_i\otimes\sigma^j, \ \mathrm{tr}\, S$ is defined by

$$\operatorname{tr} S = S_i^i$$

If $S = Y \otimes \omega$ for some vector field $Y = Y^i E_i \in TM$ and covector field $\omega = \omega_j \sigma^j \in T^*M$, then

$$\operatorname{tr} S = \operatorname{tr}(Y^i \sigma_i E_i \otimes \sigma^j) = Y^i \omega_i = \omega(Y)$$

Any (1,1)-tensor can be written as a sum of $\{Y \otimes \omega\}$, so we just need to prove for the case of basic tensor

$$\begin{split} \operatorname{tr} \nabla_X (Y \otimes \omega) \\ &= \operatorname{tr} (\nabla_X Y \otimes \omega + Y \otimes \nabla \omega) \\ &= \operatorname{tr} (\nabla_X Y \otimes \omega) + \operatorname{tr} (Y \otimes \nabla_X \omega) \\ &= \omega (\nabla_X Y) + (\nabla_X \omega) (Y) \\ &= \nabla_X (\omega(Y)) \\ &= \nabla_X \operatorname{tr} (Y \otimes \omega) \end{split} \tag{page 57, def of } \nabla_X T)$$

3.2 b

$$\begin{array}{l} (\nabla_X T)(Y,Z) \\ = \nabla_X (T(Y,Z)) - T(\nabla_X Y,Z) - T(Y,\nabla_X Z) \\ = \nabla_X g(S(Y),Z) - g(S(\nabla_X Y),Z) - g(S(Y),\nabla_X Z) \\ = g(\nabla_X S(Y),Z) + g(S(Y),\nabla_X Z) - g(S(\nabla_X Y),Z) - g(S(Y),\nabla_X Z) \\ = g(\nabla_X S(Y),Z) - g(S(\nabla_X Y),Z) \\ = g(\nabla_X S(Y) - S(\nabla_X Y),Z) \\ = g((\nabla_X S)(Y),Z) \end{array} \tag{page 57, def of } \nabla_X T)$$

4 PROBLEM 4

Definition 4.1 (totally geodesic, normal vector)

The hypersurface H is said to be *totally geodesic* if its second fundamental form $II:TH\times TH\to\mathbb{R}$ vanishes. For a point $p\in H$, a vector $v\in T_pM$ is said to be normal vector to H if $v\perp T_pH$

Problem 4.2

(a) Let V be a vector space and let \langle,\rangle be an inner product on V. Let $B:V\times V\to\mathbb{R}$ be a symmetric bilinear form on V such that

$$B(v,w)=0$$
 for all $v,w\in V$ satisfying $\langle v,w\rangle=0$

Show that B is a multiple of the inner product, that is, there exists a constant c such that

$$B(v, w) = c \cdot \langle v, w \rangle$$

- (b) Let (M,g) be a Riemmannian manifold, and fix a point $p\in M$. Show that there exists a constant k such that $\sec(\pi)=k$ for all planes $\pi\subseteq T_pM$ if and only if R(v,w)z=0 for all mutually orthogonal $v,w,z\in T_pM$
- (c) Let (M,g) be a Riemmannian manifold of dimension $n \geq 3$. Suppose that for any point $p \in M$ and any tangent vector $v \in T_pM$, v is a normal vector to a totally geodesic hypersurface H of M containing p. Show that (M,g) has constant sectional curvature

4.1 a

(assume V is a Hilbert space) For any nonzero $v \in V$, B(-,v) is a linear, by Riesz representation theorem, there exists a nonzero $\bar{v} \in V$ so that

$$B(u,v) = \langle u, \bar{v} \rangle$$

for every $u \in V$. We can write $\bar{v} = \bar{v}^{\perp} + cv$ for some $\bar{v}^{\perp} \in (\operatorname{span} v)^{\perp}$ and $c \in \mathbb{R}$. For any nonzero $u \in V$, we have

$$\langle u, \bar{v} \rangle = \langle u, \bar{v}^{\perp} \rangle + c \langle u, v \rangle$$

Let $u = \bar{v}^{\perp}$, then

$$\langle u, v \rangle = 0 \implies \langle u, \bar{v} \rangle = 0 \implies \langle \bar{v}^{\perp}, \bar{v}^{\perp} \rangle = 0 \implies \bar{v}^{\perp} = 0$$

So

$$B(u, v) = c\langle u, v \rangle$$

4.2 b

Lemma 4.3 (proposition 3.1.3 - Riemann, 1954)

The following properties are equivalent

- 1. $\sec \pi = k$ for all 2-planes in T_pM
- 2. $R(v_1, v_2)v_3 = -k(v_1 \wedge v_2)(v_3)$

where k is a constant

(\Longrightarrow) If $\sec \pi = k$ for all planes $\pi \subseteq T_pM$, let v, w, z mutually orthogonal, then

$$R(v, w)z$$

$$= -k(v \wedge w)(z)$$

$$= -k(g(v, z)w - g(w, z)v)$$

$$= 0$$

(←) Consider curvature tensor as a symmetric bilinear map

$$R: \wedge^2 TM \times \wedge^2 TM \to \mathbb{R}$$
$$(x \wedge y, v \wedge w) \mapsto R(x \wedge y, v \wedge w) = R(x, y, w, v) = g(R(x, y)w, v)$$

Sectional curvature is defined by

$$\sec(\operatorname{span}\{v,w\}) = \frac{g(R(w,v)v,w)}{g(v \wedge w, v \wedge w)} = \frac{R(w \wedge v, w \wedge v)}{g(w \wedge v, w \wedge v)}$$

From now, R and g are restricted to the tangent space T_pM . It suffices to show that if $g(\tilde{v},\tilde{w})=0$ for some vectors $\tilde{v},\tilde{w}\in \wedge^2T_pM$, then $R(\tilde{v},\tilde{w})=0$.

Suppose $\tilde{v}, \tilde{w} \in \wedge^2 T_p M$ so that $g(\tilde{v}, \tilde{w}) = 0$, each vector in $\wedge^2 T_p M$ corresponds to a 2-plane in $T_p M$, let $\tilde{v} = v_1 \wedge v_2$ for some orthogonal vectors $v_1, v_2 \in T_p M$. Similarly, let $\tilde{w} = w_1 \wedge w_2$ for some vectors $w_1, w_2 \in T_p M$ (not neccessarily orthogonal). $g(\tilde{v}, \tilde{w}) = 0$ implies

$$g(\tilde{v}, \tilde{w}) = g(v_1 \wedge v_2, w_1 \wedge w_2) = \det \begin{bmatrix} g(v_1, w_1) & g(v_1, w_2) \\ g(v_2, w_1) & g(v_2, w_2) \end{bmatrix} = 0$$

We want to pick a nonzero vector $w = aw_1 + bw_2 \in \text{span}\{w_1, w_2\}$ so that $g(v_1, w) = g(v_2, w) = 0$. This is possible since a, b satisfies the following system of equations

$$\begin{bmatrix} g(v_1, w_1) & g(v_1, w_2) \\ g(v_2, w_1) & g(v_2, w_2) \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} g(v_1, w) \\ g(v_2, w) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

and the nullspace of $\begin{bmatrix} g(v_1,w_1) & g(v_1,w_2) \\ g(v_2,w_1) & g(v_2,w_2) \end{bmatrix}$ is non-trivial. That is, there exists a vector in $\mathrm{span}\{w_1,w_2\}$ that is orthogonal to both v_1 and v_2 , let that vector be w_1' and pick another vector $w_2' \in \mathrm{span}\{w_1,w_2\}$ so that $w_1' \wedge w_2' = w_1 \wedge w_2 = \tilde{w}$. Now

$$R(\tilde{v}, \tilde{w}) = R(v_1 \wedge v_2, w_2' \wedge w_1') = g(R(v_1, v_2)w_1', w_2')$$

Since v_1, v_2, w_1' are mutually orthogonal, $R(\tilde{v}, \tilde{w}) = 0$. From part 1, we have

$$R = kq$$

for some constant k as symmetric bilinear forms $\wedge^2 T_p M \times \wedge^2 T_p M \to \mathbb{R}$. Hence

$$\sec(\operatorname{span}\{v,w\}) = \frac{g(R(w,v)v,w)}{g(v \wedge w,v \wedge w)} = \frac{R(w \wedge v,w \wedge v)}{g(w \wedge v,w \wedge v)} = k$$

4.3 c

Let nonzero $v, w, z \in T_pM$ be mutually orthogonal. Let z be normal to totally geodesic hypersurface H, its second fundamental form is identically zero, then by theorem 3.2.5

$$g(R(V, W)Y, Z) = 0$$

for some tangent vector field $V, W, Y \in TH$ and normal vector field Z. Pick V, W, Z so that V(p) = v, W(p) = w, Z(p) = z and let y = W(p), then

$$g(R(v, w)y, z) = 0$$

Note that, the choice of Y was arbitrary. We have

$$g(R(v,w)z,y) = -g(R(v,w)y,z) = 0$$

for every vector $y \in T_pH$, so R(v,w)z must be parallel to z. However, g(R(v,w)z,z)=0 due to symmetry of curvature tensor. So R(v,w)z=0. From part 2, (M,g) has constant sectional curvature.