

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

補正あり

(11)特許出願公開番号

特開平6-237191

(43)公開日 平成6年(1994)8月23日

(51)Int.Cl.
H 04 B 1/40識別記号
8949-5K

F I

技術表示箇所

(21)出願番号 特願平5-44386
(22)出願日 平成5年(1993)2月10日

審査請求 未請求 請求項の数5 FD (全10頁)

(71)出願人 000006013
三菱電機株式会社
東京都千代田区丸の内二丁目2番3号
(72)発明者 三好 悅夫
尼崎市塚口本町8丁目1番1号 三菱電機
株式会社通信機製作所内
(74)代理人 弁理士 田澤 博昭 (外2名)

(54)【発明の名称】マイク切替装置

(57)【要約】

【目的】 1つのジャックをヘッドセットとイヤホンで共用する時に、ヘッドセットのマイクと内蔵マイクとの切り替えが自動的に行えるマイク切替装置を得る。

【構成】 ヘッドセットとイヤホンとで共用されるジャックに挿入されたプラグが、両者のうちどちらのものかを電気的に検出するマイク検出部と、その検出信号によって、無線機本体のマイクラインと、ジャックのマイクラインおよび内蔵マイクへのマイクラインとの接続を切り替える切替部を設け、また、その切替部に、ジャックにプラグが未挿入状態では無線機本体のマイクラインをジャックのマイクラインに接続しておく機能を持たせ、また、マイクラインの接続状況を表示する表示部を設けた。

【特許請求の範囲】

【請求項1】 ヘッドセットのプラグとイヤホンのプラグとが共通に挿入されるジャックと、前記ジャックに挿入されたプラグが、前記ヘッドセットのものであるか前記イヤホンのものであるかを、前記ジャックのマイクラインの状態に基づいて識別するマイク検出部と、前記マイク検出部の検出信号にしたがって、前記ジャックに挿入されたプラグが、前記ヘッドセットのものであれば前記ジャックのマイクラインを、前記イヤホンのものであれば内蔵マイクへのマイクラインを、それぞれ無線機本体のマイクラインに接続する切替部とを備えたマイク切替装置。

【請求項2】 前記切替部のスイッチング素子として、アナログスイッチを用いたことを特徴とする請求項1に記載のマイク切替装置。

【請求項3】 前記切替部のスイッチング素子として、リレースイッチを用いたことを特徴とする請求項1に記載のマイク切替装置。

【請求項4】 前記切替部が、前記ジャックにプラグが挿入されていない状態では、無線機本体のマイクラインを前記ジャックのマイクラインに接続しておく機能を有することを特徴とする請求項1ないし3のいずれか1項に記載のマイク切替装置。

【請求項5】 前記切替部によって、前記無線機本体のマイクラインに前記ジャックのマイクラインが接続されているか、前記内蔵マイクへのマイクラインが接続されているかを表示する表示部を設けたことを特徴とする請求項1ないし4のいずれか1項に記載のマイク切替装置。

【発明の詳細な説明】

【0001】

【産業上の利用分野】 この発明は、携帯用無線機などにおける、ヘッドセットのマイクと内蔵マイクとの切り替えを自動的に行うマイク切替装置に関するものである。

【0002】

【従来の技術】 図4は例えば特開平1-265727号公報に示された従来のマイク切替装置を示す回路図であり、図5はそれに接続される外部スピーカマイクの回路図、図6は同じくイヤホンの回路図である。

【0003】 図4において、26は無線機本体に内蔵されたマイク、27はそのマイク26に接続されて、送信時は導通状態、受信時は解放状態となるプレススイッチであり、38は無線機本体に内蔵されたスピーカである。29は前記外部マイクスピーカやイヤホンを接続するためのジャックで、ジャック端子29a～29eを有しており、通常はジャック端子29aと29d、ジャック端子29bと29eとがそれぞれ導通状態となり、ジャック端子29cは接地されている。また、ジャック端子29aはオーディオ出力信号ライン30に、ジャック端子29dはスピーカ28にそれぞれ接続され、ジャッ

ク端子29bはプレススイッチ27に接続されたマイク信号ライン31に接続されている。32はプレススイッチ27とマイク信号ライン31に接続されたプレス信号検出回路で、出力側はプレス信号ライン33に接続されている。

【0004】 また、C₁、R₄はマイク26の出力端に接続されたコンデンサおよび抵抗であり、R₅はマイク信号ライン31に接続された抵抗、R₆はプレス信号ライン33に接続された抵抗である。V₄は抵抗R₅を通してマイク信号ライン31に印加される直流電源であり、V₅は抵抗R₆を通してプレス信号ライン33に印加される直流電源である。

【0005】 図5において、36は無線機本体に外部接続されるマイクであり、37は同じくスピーカである。38はこのマイク36、スピーカ37を無線機本体に接続するためのプラグで、プラグ端子38a～38cを有しており、プラグ端子38aはスピーカ37に接続され、プラグ端子38bはプレススイッチ39を介してマイク36に接続され、プラグ端子38cは接地されている。また、C₂、R₇はマイク36の出力端に接続されたコンデンサおよび抵抗である。

【0006】 図6において、41は無線機本体に外部接続されるイヤホンである。42はこのイヤホン41を無線機本体に接続するためのプラグで、プラグ端子42a～42cを有しており、プラグ端子42aと42cの間にイヤホン41が接続されており、プラグ端子42bはあきとなっている。

【0007】 次に動作について説明する。無線機本体に図5に示した外部スピーカマイクも、図6に示したイヤホンも接続されていない場合、図4において、オーディオ出力信号ライン30はジャック端子29a、29bを経て、内蔵されているスピーカ28につながっている。送信時には、プレススイッチ27は押すことにより導通状態になるので、内蔵されているマイク26からの信号がマイク信号ライン31につながり、プレス信号検出回路32の入力側の電圧レベルVは下記の(1)式で示されるものとなる。

【0008】

$$V = V_4 \cdot R_4 / (R_4 + R_5) \quad \dots \dots \quad (1)$$

【0009】 この入力レベルのとき、プレス信号検出回路32の出力側、すなわちプレス信号ライン33はLレベルとなる。一方、受信時には、開放されるプレススイッチ27によってプレス信号検出回路32の入力側の電圧レベルVがV₄となり、プレス信号ライン33はHレベルとなる。

【0010】 また、図5に示した外部スピーカマイクのプラグ38を無線機本体のジャック29に挿入すると、プラグ38のプラグ端子38a、38b、38cはそれぞれジャック29のジャック端子29a、29b、29cにつながり、ジャック端子29dおよび29eは開放

される。したがって、オーディオ信号出力ライン30は、ジャック端子29aおよびプラグ端子38aを経て外部スピーカマイクのスピーカ37につながり、本体のスピーカ28とは接続されなくなる。受信状態では、プレス信号検出回路32の入力側の電圧レベルVはV=V₄であるので、プレス信号ライン33はHレベルである。一方、送信時には、プレススイッチ39が導通するため、本体のプレススイッチ27を押したときと同様に、プレス信号ライン33はLレベルになる。このとき、外部スピーカマイクのマイク36からの信号はプレススイッチ39、プラグ端子38b、ジャック端子29bを経て、マイク信号ライン31につながる。無線機本体内に内蔵されたマイク26を使う場合には、外部スピーカマイク、イヤホンを無線機本体に接続しない場合と同様の動作をする。

【0011】また、図6に示したイヤホンのプラグ42を無線機本体のジャック29に挿入すると、ジャック29のマイク信号ライン31が接続されているジャック端子29bは開放される。そして、外部スピーカマイク接続時と同様に、オーディオ信号出力ライン30は、イヤホン41内の発音体につながり、無線機本体内蔵されたスピーカ28とは接続されなくなる。したがって、送信には無線機本体のプレススイッチ27と内蔵マイク26を使用し、外部スピーカマイクやイヤホンを無線機本体に接続しない場合と同様に動作する。

【0012】

【発明が解決しようとする課題】従来の無線機のマイク切替装置は以上のように構成されているので、無線機本体のマイク信号ライン31にマイクを接続するには、無線機本体のプレススイッチ27か外部スピーカマイクのプレススイッチ39を選択して使用しなければならず、またプレススイッチ27、39がプレス信号ライン33とマイク信号ライン31を1つの共用ラインに接続されているので、プレススイッチ27、39をオン／オフと手動で操作しなければならず、またプレススイッチ27、39をオンにしなければマイク26、36が接続されず、さらに回路も複雑になるばかりか無線機本体内蔵されたマイク26と外部スピーカマイクのマイク36はマイク信号ライン31で並列に接続されているので、無線機本体のプレススイッチ27と外部スピーカマイクのプレススイッチ39を誤操作で両方同時にオンになると、両方のマイク26と36から音声が入力され、混信で不明瞭な音声を通話の相手方に送出することになるため、プレススイッチ27、39を操作する時には、片方のプレススイッチ27または39のみがオンであることを確認しなければならず、無線機本体のプレススイッチ27と外部スピーカマイクのプレススイッチ39の位置は通常離れているのでプレススイッチ27、39の操作確認がしにくく、操作性を悪いものとするなどの問題点があった。

【0013】この発明は上記のような問題点を解消するためになされたもので、無線機本体のジャックにヘッドセットまたはイヤホンのプラグを挿入することで、無線機本体のマイクラインにヘッドセットのマイクラインと内蔵マイクへのマイクラインを自動的に切り替えて片方のみ接続できる取扱いの簡単なマイク切替装置を得ることを目的とする。

【0014】

【課題を解決するための手段】請求項1の発明に係るマイク切替装置は、1つのジャックをヘッドセットとイヤホンとで共用し、挿入されたプラグがヘッドセットに接続されたものかイヤホンに接続されたものかを電気的に検出するマイク検出部と、その検出信号に基づいて、無線機本体のマイクラインと、ジャックのマイクラインおよび内蔵マイクへのマイクラインとの接続を切り替える切替部を設けたものである。

【0015】また、請求項2の発明に係るマイク切替装置は、切替部のスイッチング素子にアナログスイッチを用いたものである。

【0016】また、請求項3の発明に係るマイク切替装置は、切替部のスイッチング素子にリレースイッチを用いたものである。

【0017】また、請求項4の発明に係るマイク切替装置は、ジャックにプラグが挿入されていない状態では、無線機本体のマイクラインをジャックのマイクラインに接続しておく機能を、切替部に持たせたものである。

【0018】また、請求項5の発明に係るマイク切替装置は、無線機本体のマイクラインがジャックのマイクラインに接続されているか、内蔵マイクのマイクラインに接続されているかを表示する表示部を設けたものである。

【0019】

【作用】請求項1の発明におけるマイク検出部は、ヘッドセットとイヤホンとで共用されるジャックに挿入されたプラグが、ヘッドセットに接続されたものかイヤホンに接続されたものかを電気的に検出し、その検出信号によって切替部を制御し、無線機本体のマイクラインと、ジャックのマイクラインおよび内蔵マイクへのマイクラインとの接続を切り替えることにより、ヘッドセットのマイクと内蔵マイクとの切り替えが自動的に行えるマイク切替装置を実現する。

【0020】また、請求項2の発明における切替部は、アナログスイッチによるスイッチング素子により、無線機本体のマイクラインにジャックのマイクラインと内蔵マイクへのマイクラインを切り替え接続する。

【0021】また、請求項3の発明における切替部は、リレースイッチによるスイッチング素子により、無線機本体のマイクラインにジャックのマイクラインと内蔵マイクへのマイクラインを切り替え接続する。

【0022】また、請求項4の発明における切替部は、

ジャックにプラグが挿入されていない状態では、無線機本体のマイクライインをジャックのマイクライインに接続することにより、イヤホン接続時以外は内蔵マイクのマイクライインが無線機本体のマイクライインに接続されないようにする。

【0023】また、請求項5の発明における表示部は、無線機本体のマイクライインがジャックのマイクライインに接続されているか、内蔵マイクのマイクライインに接続されているかを表示することにより、より操作性のよいマイク切替装置を実現する。

(0024)

【实施例】

実施例1、以下、この発明の一実施例を図について説明する。図1において、1は無線機本体であり、2はこの無線機本体1に外部接続されるヘッドセット、3は同じくイヤホンである。4はヘッドセット2のマイクであり、5はヘッドセット2のスピーカである。6はこのヘッドセット2を無線機本体1に接続するためのプラグで、プラグ端子6 a～6 cとそれらの相互を絶縁する絶縁体6 d、6 eとを備えている。また、7はイヤホン3のスピーカである。8はこのイヤホン3を無線機本体1に接続するためのプラグで、プラグ端子8 a、8 cとそれらを絶縁する絶縁体8 eとを備えている。

【0025】また、9は無線機本体1に取り付けられた前記ヘッドセット2のプラグ6とイヤホン3のプラグ8によって共用されるジャックで、ジャック端子9a～9cを有しており、そのジャック端子9aは接地されている。10はこの無線機本体1の受信機、11は同じく送信機であり、12はこの送信機11に接続されている無線機本体1のマイクラインである。13はこの無線機本体1が内蔵している内蔵スピーカ、14はこの内蔵スピーカ13へのマイクラインであり、15はジャック端子9b、プラグ端子6bを経てヘッドセット2のマイク4に接続されるジャック9のマイクラインである。

【0026】16はジャック9のマイクライン15の状態に基づいて、ジャック9にヘッドセット2のプラグ6が挿入されたか、イヤホン3のプラグ8が挿入されたかを電気的に検出するマイク検出部であり、端子16a～16dを備えている。このマイク検出部16内において、V₁は当該マイク検出部16で検出に必要な電圧を得るための直流電源、R₁はその直流電源V₁に接続された抵抗、Iはこの抵抗R₁を流れる電流であり、V₂は抵抗R₁を介してジャック9のマイクライン15に印加されるマイク検出直流電圧である。また、17はこのマイク検出直流電圧V₂の電圧レベルによってオン／オフするインバータであり、その出力は端子16dに接続されている。

【0027】18は前記マイク検出部16の検出信号に

$$I = V_1 / (R_1 + r)$$

$$V_2 = V_1 - R_1 \left[V_1 / (R_1 + r) \right] = V_1 \left[r / (R_1 + r) \right] \quad (4)$$

したがって、前記ジャック 9 にヘッドセット 4 のプラグ 6 が挿入されている場合にはジャック 9 のマイクライン 15 を、イヤホン 3 のプラグ 8 が挿入されている場合には内蔵マイク 13 へのマイクライン 14 を、それぞれ無線機本体 1 のマイクライン 12 に接続する切替部である。この切替部 18 内において、19 はマイク検出部 16 の端子 16 b からの信号にしたがって、ジャック 9 のマイクライン 15 と無線機本体 1 のマイクライン 12 の接続をオン／オフするアナログスイッチ、20 はマイク検出部 16 の端子 16 d からの信号にしたがって、内蔵マイク 13 のマイクライン 14 と無線機本体 1 のマイクライン 12 の接続をオン／オフするアナログスイッチである。

【0028】次に動作について説明する。無線機本体1のジャック9にヘッドセット2またはイヤホン3を接続しない場合、無線機本体1内のマイク検出部16の端子16aにおけるマイク検出直流電圧 V_2 の電圧レベルは下記の(2)式で示すものとなる。

$$[0\ 0\ 2\ 9] \quad v_2 = v_1 - R_1 \quad \dots \dots \quad (2)$$

20 【0030】いま、ジャック端子9 bが開放されているので、電流Iはほぼ“0”であり、マイク検出直流電圧V₂は直流電源V₁の電圧にほぼ等しいHレベルとなる。マイク検出直流電圧V₂がHレベルのとき、端子16 bの信号もHレベルとなり、切替部18のアナログスイッチ19がオンとなる。これに連動してインバータ17の端子16 dに出力する信号がLレベルとなってアナログスイッチ20をオフにする。すなわち送信機11に接続されている無線機本体1のマイクライン12は、アナログスイッチ19を介してジャック9のマイ克拉イン15に接続されて、内蔵マイク13のマイ克拉イン14はアナログスイッチ20で非接続となる。なお、受信機10の信号はジャック端子9 cで開放となり出力されない。

【0031】 次に、無線機本体1のジャック9にヘッドセット2を接続した場合について説明する。この場合、無線機本体1のジャック9とヘッドセット2のプラグ6の間で、ジャック端子9aとプラグ端子6a、ジャック端子9bとプラグ端子6b、ジャック端子9cとプラグ端子6cがそれぞれつながる。これにより、マイク検出部16の抵抗 R_1 を流れる電流Iはジャック端子9bからプラグ端子6bを通り、ヘッドセット2のマイク4を経由してプラグ端子6aを通り、ジャック端子9aを通って接地へ流れ。したがって、その電流Iの値は下記の(3)式で示される“0”より充分大きなものとなるが、マイク検出直流電圧 V_2 の電圧レベルは下記の(4)式で与えられるHレベルとなる。なお、式中のrはマイク4の内部抵抗である。

[0032]

..... (3)

【0033】マイク検出直流電圧 V_2 がHレベルになると、マイク検出部16の端子16bの信号もHレベルとなり、アナログスイッチ19がオンとなる。これに連動してインバータ17の端子16dに出力する信号がLレベルとなってアナログスイッチ20をオフにする。すなわち送信機11に接続されている無線機本体1のマイクライン12はヘッドセット2のマイク4からの信号が、ジャック9のマイクライン15からアナログスイッチ19を経由して接続され、内蔵マイク13へのマイクライン14はアナログスイッチ20で非接続となる。一方、受信機10の信号はジャック端子9cよりプラグ端子6cを通り、ヘッドセット2のスピーカ5で出力されて、プラグ端子6aよりジャック端子9aを通って接地となる。

$$I = V_1 / R_1$$

$$V_2 = V_1 - R_1 \cdot (V_1 / R_1)$$

【0036】マイク検出直流電圧 V_2 がLレベルになるとマイク検出部16の端子16bの信号もLレベルとなり、アナログスイッチ19がオフとなる。これに連動してインバータ17の端子16dに出力する信号がHレベルとなってアナログスイッチ20をオンにする。すなわち送信機11に接続されている無線機本体1のマイクライン12とジャック9のマイクライン15とはアナログスイッチ19で非接続となり、内蔵マイク13のマイクライン14はアナログスイッチ20を経由して無線機本体1のマイクライン12と接続される。そのとき、受信機10の信号はジャック端子9cよりプラグ端子8cを通り、イヤホン3のスピーカ7で出力されて、プラグ端子8aよりジャック端子9aを通って接地となる。

【0037】実施例2. なお、上記実施例1では、切替部18におけるスイッチング素子としてアナログスイッチ19, 20を用いた場合について説明したが、スイッチング素子としてリースイッチを用いてもよく、上記実施例と同様の効果を奏する。図2はそのような実施例を示す回路図で、相当部分には図1と同一符号を付してその説明を省略する。図において、21はマイク検出部16の端子16bからの信号で動作するリレー、21aは無線機本体1のマイクライン12とジャック9のマイクライン15との接続をオン／オフするこのリレー21のリースイッチであり、22はマイク検出部16の端子16dからの信号で動作するリレー、22aは無線機本体1のマイクライン12と内蔵マイク13のマイクライン14との接続をオン／オフするこのリレー22のリースイッチである。

【0038】次に動作について説明する。リレー21は、実施例1で説明した過程でマイク検出部16の端子16aがHレベルになるとオフとなってそのリースイッチ21aが接続状態となり、端子16aがLレベルになるとオフとなってそのリースイッチ21aが非接続状態となる。一方、リレー22は、マイク検出部16の

【0034】次に、無線機本体1のジャック9にイヤホン3を接続した場合について説明する。この場合には無線機本体1のジャック9とイヤホン3のプラグ8の間で、ジャック端子9aとプラグ端子8a、ジャック端子9bとプラグ端子8b、ジャック端子9cとプラグ端子8cがそれぞれつながる。これにより、マイク検出部16の電流Iは抵抗 R_1 よりジャック端子9bを通り、プラグ端子8aからジャック端子9aを通って接地へ流れ。したがって、その電流Iの値は下記の(5)式で示されるものとなり、マイク検出直流電圧 V_2 の電圧レベルは下記の(6)式で示すようにほぼ“0”のLレベルとなる。

【0035】

$$\dots \dots \dots \quad (5)$$

$$= 0 \dots \dots \quad (6)$$

端子16dがLレベルになるとオフとなってそのリースイッチ22aが非接続状態となり、端子16dがHレベルになるとオフとなってそのリースイッチ22aが接続状態となる。したがって、送信機11に接続されている無線機本体1のマイクライン12は、無線機本体1のジャック9にヘッドセット2およびイヤホン3のいずれもが接続されていない場合には、ジャック9のマイクライン15に接続されて、内蔵マイク13へのマイクライン14は非接続となる。また、ジャック9にヘッドセット2が接続されると、無線機本体1のマイクライン12とジャック9のマイクライン15が接続されて内蔵マイク13へのマイクライン14は非接続となり、ジャック9にイヤホン3が接続されると、無線機本体1のマイクライン12とジャック9のマイクライン15は非接続となって、内蔵マイク13へのマイクライン14が接続となる。

【0039】実施例3. 次に、この発明の実施例3を図について説明する。図3はこの発明の実施例3を示す回路図であり、相当部分には図2と同一符号を付して説明を省略する。図において、23は無線機本体1のマイクライン12にジャック9のマイクライン15が接続されているか、内蔵マイク13へのマイクライン14が接続されているかを可視的に表示する表示部である。また、40この表示部23内において、24, 25は前記マイクラインの接続状態を可視表示する発光ダイオード等の表示器であり、 V_3 はその直流電源、 R_2 , R_3 は各表示器24, 25を直流電源 V_3 に接続する抵抗である。21a, 22bは表示器24, 25の発光をオン／オフするリレー21または22のリースイッチである。

【0040】次に動作について説明する。表示部23の表示器24は、マイク検出部16からの信号に連動してリレー21がオフとなり、そのリースイッチ21bが導通状態となると発光して、無線機本体1のマイクライン12がジャック9のマイクライン15に接続されてい

ることを示す表示を行う。一方、表示器 24 は、マイク検出部 16 からの信号に連動してリレー 22 がオンとなり、そのリレースイッチ 22b が導通状態となると発光して、無線機本体 1 のマイクライイン 12 が内蔵マイク 13 のマイクライイン 14 に接続されていることを示す表示を行う。すなわち無線機本体 1 のジャック 9 にヘッドセット 2 を接続した時には表示器 24 が発光し、ジャックにイヤホン 3 を接続した時には表示器 25 が発光する。

【0041】

【発明の効果】以上のように、請求項 1～3 の発明によれば、ヘッドセットとイヤホンとで共用されるジャックに挿入されたプラグが、ヘッドセットに接続されたものかイヤホンに接続されたものかを電気的に検出し、無線機本体のマイクライインと、ジャックのマイクライインおよび内蔵マイクへのマイクライインとの接続を、その検出信号に応じて切り替えるように構成したので、ヘッドセットのマイクと内蔵マイクとの切り替えを自動的に行うことが可能となって、操作性を大幅に向上させることができ、誤操作などによって、ヘッドセットのマイクと内蔵マイクとが同時に無線機本体のマイクライインに接続されることもなくなることによって、通話品質を劣化させることはなくなり、さらに、無線機本体のマイクライインに内蔵マイクやヘッドセットのマイクを手動で接続操作するためのプレススイッチも不要となって、操作性の改善および回路構成の簡略化がかかるマイク切替装置が得られる効果がある。

【0042】また、請求項 4 の発明によれば、ジャックにプラグが挿入されていない状態では無線機本体のマイクライインをジャックのマイクライインに接続するように構成したので、イヤホン接続時以外には内蔵マイクのマイクライインが無線機本体のマイクライインに接続されることではなく、内蔵マイクからの音声が送信機に無用に入力されず、通話品質の高いマイク切替装置が得られる効果が

ある。

【0043】また、請求項 5 の発明によれば、無線機本体のマイクライインにどちらのマイクライインが接続されているかを可視表示するように構成したので、無線機本体にヘッドセットのマイクが接続されているか内蔵マイクが接続されているかが一目でわかり、さらに操作性の高いマイク切替装置が得られる効果がある。

【図面の簡単な説明】

【図 1】この発明の実施例 1 による自動マイク切替装置を示す回路図である。

【図 2】この発明の実施例 2 を示す回路図である。

【図 3】この発明の実施例 3 を示す回路図である。

【図 4】従来のマイク切替装置を示す回路図である。

【図 5】従来のマイク切替装置にて用いられるスピーカ・マイクを示す回路図である。

【図 6】従来のマイク切替装置にて用いられるイヤホンを示す回路図である。

【符号の説明】

1 無線機本体

2 ヘッドセット

3 イヤホン

6 ヘッドセットのプラグ

8 イヤホンのプラグ

9 ジャック

12 無線機本体のマイクライイン

13 内蔵マイク

14 内蔵マイクのマイクライイン

15 ジャックのマイクライイン

16 マイク検出部

18 切替部

19, 20 アナログスイッチ

21a, 22a リレースイッチ

23 表示部

【図 4】

【図 5】

【図1】

1: 無線機本体	13: 内蔵マイク
6: ベッドセットのプラグ	14: 内蔵マイクのマイクライン
8: イヤホンのプラグ	15: シャックのマイクライン
9: ジャック	18: カップ部
12: 無線機本体のマイクライン	19, 20: アナログスイッチ

8e イヤホン

【図2】

【図3】

【図6】

【公報種別】特許法第17条の2の規定による補正の掲載
 【部門区分】第7部門第3区分
 【発行日】平成10年(1998)11月4日

【公開番号】特開平6-237191
 【公開日】平成6年(1994)8月23日
 【年通号数】公開特許公報6-2372
 【出願番号】特願平5-44386
 【国際特許分類第6版】
 H04B 1/40
 【F I】
 H04B 1/40

【手続補正】

【提出日】平成9年4月22日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】0034

【補正方法】変更

【補正内容】

【0034】次に、無線機本体1のジャック9にイヤホン3を接続した場合について説明する。この場合には無線機本体1のジャック9とイヤホン3のプラグ8の間で、ジャック端子9aとプラグ端子8a、ジャック端子9bとプラグ端子8a、ジャック端子9cとプラグ端子8cがそれぞれつながる。これにより、マイク検出部1

$$I = V_1 / R_1$$

$$V_2 = V_1 - R_1 \cdot (V_1 / R_1) = 0 \quad \dots \quad (6)$$

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】0036

【補正方法】変更

【補正内容】

【0036】マイク検出直流電圧 V_2 がLレベルになるとマイク検出部16の端子16bの信号もLレベルとなり、アナログスイッチ19がオフとなる。これに連動してインバータ17の端子16dに出力する信号がHレベルとなってアナログスイッチ20をオンにする。すなわち送信機11に接続されている無線機本体1のマイクライン12とジャック9のマイクライン15とはアナログスイッチ19で非接続となり、内蔵マイク13のマイクライン14はアナログスイッチ20を経由して無線機本体1のマイクライン12と接続される。そのとき、受信機10の信号はジャック端子9cよりプラグ端子8cを通り、イヤホン3のスピーカ7で出力されて、プラグ端子8aよりジャック端子9aを通って接地となる。

6の電流Iは抵抗 R_1 よりジャック端子9bを通り、プラグ端子8aからジャック端子9aを通って接地へ流れれる。したがって、その電流Iの値は下記の(5)式で示されるものとなり、マイク検出直流電圧 V_2 の電圧レベルは下記の(6)式で示すようにはほぼ“0”的レベルとなる。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0035

【補正方法】変更

【補正内容】

【0035】

$$\dots \quad \dots \quad \dots \quad (5)$$

$$V_2 = 0 \quad \dots \quad (6)$$

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】0040

【補正方法】変更

【補正内容】

【0040】次に動作について説明する。表示部23の表示器24は、マイク検出部16からの信号に連動してリレー21がオンとなり、そのリースイッチ21bが導通状態となると発光して、無線機本体1のマイクライン12がジャック9のマイクライン15に接続されていることを示す表示を行う。一方、表示器25は、マイク検出部16からの信号に連動してリレー22がオンとなり、そのリースイッチ22bが導通状態となると発光して、無線機本体1のマイクライン12が内蔵マイク13のマイクライン14に接続されていることを示す表示を行う。すなわち無線機本体1のジャック9にヘッドセット2を接続した時には表示器24が発光し、ジャック9にイヤホン3を接続した時には表示器25が発光する。

Document 4

(57) [Abstract]

[Objective] To provide a microphone switch-over apparatus which can attain automatic switch-over between a microphone of a headset and a built-in microphone in case that one jack is used in common to the headset and an earphone.

[Structure] A microphone detecting unit for electrically detecting which of plugs of the headset and the earphone is put in to the jack used in common to the both, and a switch-over unit for switching over, according to a detection signal of the microphone detecting unit, connection between a microphone line of a radio transceiver body and microphone lines of the jack and the built-in microphone are arranged. The switch-over unit is also arranged to have a function of keeping connection between the microphone line of the radio transceiver body and the microphone line of the jack in case that the plug is not put into the jack, and include a display unit which displays a connection state of the microphone lines.

[0019] The microphone detecting unit recited in claim 1 electrically detects which of plugs of the headset and the earphone is put into the jack used in common to the both, and the switch-over unit is controlled in accordance with a detection signal of the microphone detecting unit to switch over connection between a microphone line of the radio transceiver body and the microphone lines of the jack and the built-in microphone, thereby attaining a microphone switch-over apparatus which can switch automatically between the microphone of the headset and the built-in microphone.

[0020] The switch-over unit recited in claim 2 attains switch-over between the microphone line of the radio transceiver body and the microphone lines of the jack and the built-in microphone, using a switching element of an

analog switch.

[0021] The switch-over unit recited in claim 3 attains switch-over between the microphone line of the radio transceiver body and the microphone lines of the jack and the built-in microphone, using a switching element of a relay switch.

[0022] The switch-over unit recited in claim 4 connects the microphone line of the radio transceiver body to the microphone line of the jack in case that the plug is not put in to the jack, thereby avoiding connecting the microphone line of the built-in microphone to the microphone of the radio transceiver body except when the plug of the earphone is put into the jack.

[0023] The display unit recited in claim 5 displays whether the microphone line of the radio transceiver body is connected to the microphone line of the jack or the built-in microphone, thereby attaining the microphone switch-over apparatus which is easy to operate.