

Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

ANSI/IEEE Std. C95.1-1992 In accordance with the requirements of SAR Report and Order: ET Docket 93-62; FCC 47 CFR Part 2 (2.1093) RSS102 issue 5

SAR TEST REPORT

For

Product Name: 802.11a/b/g/n/ac RTL8821CE Combo module

Brand Name: REALTEK
Model No.: RTL8821CE
Series Model: N/A
FCCID: TX2-RTL8821CE
IC: 6317A-RTL8821CE

IC: 6317A-RTL8821CE Test Report Number: C170628R01-B-SF

Issued for

Realtek Semiconductor Corp.

No.2,Innovation Road II, Hsinchu Science Park, Hsinchu 300, Taiwan

Issued by

Compliance Certification Services Inc.

Kun shan Laboratory

No.10 Weiye Rd., Innovation park, Eco&Tec, Development Zone, Kunshan City, Jiangsu, China

TEL: 86-512-57355888

FAX: 86-512-57370818

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by A2LA or any government agencies. The test results in the report only apply to the tested sample.

Report No .: C170628R01-B-SF

Revision History

Revision	REPORT NO.	Date	Page Revise	Contents
Original	C170628R01-B-SF	August 22, 2017	N/A	N/A
			5	Update Antenna Specification.
	C170628R01-B-SF	September 8, 2017	38,39	Add the evaluation of the SAR exclusion of NB mode.
01			42	Add 5GHz and BT Simultaneously transmission SAR measurement.
			43	Update equipment list.
			45	Add FCC and ISED site No
02	C170628R01-B-SF	September 26, 2017	All Report	Add Main Ant test data.

Report No .: C170628R01-B-SF

TABLE OF CONTENTS

1.	CERTIFICATE OF COMPLIANCE (SAR EVALUATION)	4
2.	EUT DESCRIPTION	5
	2.1 MAXIMUM RF OUTPUT POWER WITH TEST CHANNEL	6
	2.2 STATEMENT OF COMPLIANCE	7
3.	REQUIREMENTS FOR COMPLIANCE TESTING DEFINED BY THE FCC OR IC	8
4.	TEST METHODOLOGY	8
5.	TEST CONFIGURATION	8
6.	DOSIMETRIC ASSESSMENT SETUP	9
	6.1 MEASUREMENT SYSTEM DIAGRAM	10
	6.2 SYSTEM COMPONENTS	11
7.	EVALUATION PROCEDURES	14
8.	MEASUREMENT UNCERTAINTY	18
9.	EXPOSURE LIMIT	20
10.	MEASUREMENT RESULTS	21
	10.1 TEST LIQUIDS CONFIRMATION	21
	10.2 LIQUID MEASUREMENT RESULTS	22
	10.3 SYSTEM PERFORMANCE CHECK	24
	10.4 EUT TUNE-UP PROCEDURES AND TEST MODE	26
	10.5 STANDALONE SAR TEST EXCLUSION	33
	10.6 SAR TEST CONFIGURATIONS	
	10.7 ANTENNA LOCATION	
	10.8 BODY TEST EXCLUSION THRESHOLDS	
	10.9 SAR MEASUREMENT RESULTS	
	10.10 REPEATED SAR MEASUREMENT	
	10.11 SAR MULTI XMITER ASSESSMENT	
11.		
	FACILITIES	
13.		
	LABORATORY ACCREDITATIONS AND LISTING	
	pendix A: DUT AND SAR SETUP Photo	
App	oendix B: Plots of Performance Check	51
App	pendix C: DASY Calibration Certificate	64
App	pendix D: Plots of SAR Test Result	64

Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

1. CERTIFICATE OF COMPLIANCE (SAR EVALUATION)

Product Name:	802.11a/b/g/n/ac RTL88210	CE Combo module				
Brand name:	REALTEK					
Model Name.:	RTL8821CE					
Series Model:	N/A					
Device Category:	PORTABLE DEVICES					
Exposure Category:	GENERAL POPULATION/L	JNCONTROLLED EXPOSURE				
Date of Test:	August 14, 2017 & August 15, 2017 September 24, 2017 & September 25, 2017					
Applicant:	Realtek Semiconductor Corp. No.2,Innovation Road II, Hsinchu Science Park, Hsinchu 300, Taiwan					
Manufacturer:	Realtek Semiconductor Corp. No.2,Innovation Road II, Hsinchu Science Park, Hsinchu 300, Taiwan					
Application Type:	Certification					
AP	PLICABLE STANDARDS A	ND TEST PROCEDURES				
STANDARDS AND	STANDARDS AND TEST PROCEDURES TEST RESULT					
IEEE 1 KDB KDB KDB KDB	Part 2 (2.1093) 528-2013 248227 865664 447498 616217 02 issue 5	No non-compliance noted				
Deviation from Applicable Standard						
None						

The device was tested by Compliance Certification Services Inc. in accordance with the measurement methods and procedures specified in KDB 865664 The test results in this report apply only to the tested sample of the stated device/equipment. Other similar device/equipment will not necessarily produce the

same results due to production tolerance and measurement uncertainties.

Approved by:

Jeff.fang RF Manager

Compliance Certification Services Inc.

Tested by:

Sam.ye Test Engineer

Compliance Certification Services Inc.

Sam. ye.

Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

2. EUT DESCRIPTION

Product Name:	802 11a/b/	n/n/ac RTI 882	1CE Combo mo	dule		
	802.11a/b/g/n/ac RTL8821CE Combo module					
Brand name:	REALTEK					
Model Name.:	RTL8821C	E				
Series Model:	N/A					
FCC ID:	TX2-RTL88	321CE				
IC:	6317A-RTL	_8821CE				
Power reduction:	YES					
DTM Description:	N/A					
Device Category:	Production	unit				
Frequency Range: Modulation Technique:	WLAN 2.4GHz Band: 2412 MHz ~ 2462 MHz WLAN 5.2GHz Band: 5180 MHz ~ 5240 MHz WLAN 5.3GHz Band: 5260 MHz ~ 5320 MHz WLAN 5.5GHz Band: 5500 MHz ~ 5700 MHz WLAN 5.8GHz Band: 5745 MHz ~ 5825 MHz Bluetooth: 2402 MHz ~ 2480 MHz 802.11a/b/g/n HT20/HT40/VHT20/VHT40/VHT80 Bluetooth:2.1 + EDR, 8-DPSK					
Operating Mode:	Bluetooth:4 Maximum c	ontinuous outp	ut			
			Ga	in(dBi)	3	
	Brand	2.4GHz	5GHz	2.4GHz	5GHz	
		ANT1	ANT1	ANT2	ANT2	
	INPAQ	2.44	1.49	2.35	2.11	
Antenna Specification:	Part Number	ANT1: 644	5120390050	ANT2: 6445120390060		
	South Star	1.76	2.42	0.86	1.74	
	Part Number	120390020				
	Note: ANT1 is Main Antenna; ANT2 is Aux Antenna.					

Tested System Details

reside dysicin betails							
Product	Manufacturer	Model No.					
Notebook / Tablet Computer	Lenovo	Model Name.: Lenovo MIIX 520-12IKB;81CG;20M3;20M4					

Note:

Model discrepancy only for market segment

Report No .: C170628R01-B-SF

2.1 MAXIMUM RF OUTPUT POWER WITH TEST CHANNEL

Band / Mode	Target Power(dBm)						
Dana / Wode	V2.1 + EDR, GFSK	V2.1 + EDR, π/4-DQPSK	V2.1 + EDR, 8-DPSK				
Bluetooth	6	6	6				

Band / Mode	Target Power(dBm)
Bariu / Woue	BLE4.0, GFSK
Bluetooth	8

Band / Mode	Channel	SISO Target Power (dBm)
802.11b	1 -11	14
802.11g	1-11	14
802.11n 20MHz	1-11	13
802.11n 40MHz	3-9	13
802.11 a U-NII-1	36-48	12
802.11 a U-NII-2A	52-64	12
802.11 a U-NII-2C	100-144	11.5
802.11 a U-NII-3	149-165	11
802.11 n20 U-NII-1	36-48	11.5
802.11 n20 U-NII-2A	52-64	11.5
802.11 n20 U-NII-2C	100-144	11
802.11 n20 U-NII-3	149-165	10.5
802.11 n40 U-NII-1	38-46	11.5
802.11 n40 U-NII-2A	54-62	11.5
802.11 n40 U-NII-2C	102-142	11
802.11 n40 U-NII-3	151-159	10.5
802.11 ac80 U-NII-1	42	11.5
802.11 ac80 U-NII-2A	58	11.5
802.11 ac80 U-NII-2C	106-138	11
802.11 ac80 U-NII-3	155	10.5

Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

2.2 STATEMENT OF COMPLIANCE

The maximum results of Specific Absorption Rate (SAR) found during testing for **802.11a/b/g/n/ac RTL8821CE Combo module**, **RTL8821CE**, are as follows.

		Highest SAR Summary				
Equipment Class	Frequency Band	Body 1g SAR (W/kg)	Simultaneous Transmission 1g SAR (W/kg)			
DTS	2.4GHz WLAN	1.063	Not supported			
	5.2GHz WLAN	1				
NII	5.3GHz WLAN	1.190	1.346			
INII	5.5GHz WLAN	1.179	1.340			
	5.8GHz WLAN	1.188				
DSSS(BT)	2.4GHz	0.156	1.346			

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013.

Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

3. REQUIREMENTS FOR COMPLIANCE TESTING DEFINED BY THE FCC or IC

The US Federal Communications Commission has released the report and order "Guidelines for Evaluating the Environmental Effects of RF Radiation", ET Docket No. 93-62 in August 1996. The order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 W/Kg for an uncontrolled environment and 8.0 W/Kg for an occupational/controlled environment as recommended by the ANSI/IEEE standard C95.1-1992; ; RSS-102 issue 5: 2015.

4. TEST METHODOLOGY

The Specific Absorption Rate (SAR) testing specification, method and procedure for this device is in accordance with the following standards:

- RSS-102 issue 5: 2015
- KDB 865664 D01v01r04 Measurement 100 MHz to 6 GHz
- KDB 865664 D02 v01r02 RF Exposure Reporting

5. TEST CONFIGURATION

During WLAN SAR testing EUT is configured with the WLAN continuous TX tool, and the transmission duty factor was monitored on the spectrum analyzer with zero-span setting For WLAN SAR testing, WLAN engineering test software installed on the EUT can provide continuous transmitting RF signal.

Duty cycle Form

Band	Mode	Duty cycle(100%)
	Bluetooth	100
	802.11b	100
2.4GHz	802.11g	100
	802.11n 20MHz	100
	802.11n 40MHz	100
	802.11a	100
5GHz	802.11 20MHz	100
SGHZ	802.11 40MHz	100
	802.11 ac80	100

Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

6. DOSIMETRIC ASSESSMENT SETUP

These measurements were performed with the automated near-field scanning system DASY 5 from ATTENNESSA. The system is based on a high precision robot (working range greater than 0.9 m), which positions the probes with a positional repeatability of better than ± 0.02 mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines to the data acquisition unit. The SAR measurements were conducted with the E-field PROBE EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe has been calibrated according to the procedure described in [7] with accuracy of better than ±10%. The spherical isotropy was evaluated with the procedure described in [8] and found to be better than ±0.25 dB. The phantom used was the SAM Twin Phantom as described in FCC supplement C, IEE P1528 and CENELEC EN 62209.

The following table gives the recipes for tissue simulating liquids.

Ingredients	Frequency (MHz)									
(% by weight)	450		835		915		1900		2450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Simulating Liquids for 5 GHz, Manufactured by SPEAG

Ingredients	(% by weight)
Water	78
Mineral oil	11
Emulsifiers	9
Additives and Salt	2

Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

6.1 MEASUREMENT SYSTEM DIAGRAM

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (St"aubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal
 multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision
 detection, etc. The unit is battery powered with standard or rechargeable batteries. The
 signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 7.
- DASY5 software.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing validating the proper functioning of the system.

Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

6.2 SYSTEM COMPONENTS

The DASY5 measurement server is based on a PC/104 CPU board with a 400MHz intel ULV celeron, 128MB chip-disk and 128 MB RAM. The necessary circuits for communication with either the DAE4(or DAE3) electronic box as well as the 16-bit AD-converter system for optical detection and digital I/O interface are contained on the DASY5 I/O-board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation.

The PC-operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with two expansion slots which are reserved for future applications. Please note that the expansion slots do not have a standardized pinout and therefore only the expansion cards provided by SPEAG can be inserted. Expansion cards from any other supplier could seriously damage the measurement server. Calibration: No calibration required.

Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE4) consists of a highly sensitive electrometer grade preamplifier with auto-zeroing, a channel and gainswitching multiplexer, a fast 16 bit AD converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection. The input impedance of the DAE4 box is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

EX3DV4 Isotropic E-Field Probe for Dosimetric Measurements

Construction: Symmetrical design with triangular core

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents,

e.g., DGBE)

Calibration: Basic Broad Band Calibration in air: 10-3000 MHz.

Conversion Factors (CF) for HSL 900 and HSL 1800 CF-Calibration for other liquids and frequencies upon

request.

Frequency: 10 MHz to > 6 GHz; Linearity: ± 0.2 dB (30 MHz to 3

GHz)

Directivity: ± 0.3 dB in HSL (rotation around probe axis)

± 0.5 dB in HSL (rotation normal to probe axis)

Dynamic Range: 10 µW/g to > 100 mW/g; Linearity: ± 0.2 dB

(noise: typically $< 1 \mu W/g$)

Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

Dimensions: Overall length: 337 mm (Tip: 9 mm)

Tip diameter: 2.5 mm (Body: 10 mm)
Distance from probe tip to dipole centers:

1 mm

Application: High precision dosimetric measurements

in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6

GHz with precision of better 30%.

Interior of probe

SAM Twin Phantom

Construction:

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528-200X, CENELEC 50360 and IEC 62209. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points with the robot.

Dimensions: Height: 850mm; Length: 1000mm; Width:

750mm

Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with the latest draft of the standard IEC 62209 Part II and all known tissue simulating liquids. ELI4 has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is supported by software version DASY4/DASY5.5 and higher and is compatible with all SPEAG dosimetric probes and dipoles

Shell Thickness: 2.0 ± 0.2 mm (sagging: <1%)

Filling Volume: Approx. 25 liters

Dimensions: Major ellipse axis: 600 mm

Minor axis: 400 mm 500mm

Report No .: C170628R01-B-SF Date of Issue: September 26, 2017

Device Holder for SAM Twin Phantom

Construction: In combination with the Twin SAM Phantom, the Mounting Device (made from POM) enables the rotation of the mounted transmitter in spherical coordinates, whereby the rotation point is the ear opening. The devices can be easily and accurately positioned according to IEC, IEEE, CENELEC, FCC or other specifications. The device holder can be locked at different phantom locations (left head, right head, and flat phantom).

System Validation Kits for SAM Twin Phantom

Construction: Symmetrical dipole with I/4 balun Enables

measurement of feedpoint impedance with NWA Matched for use near flat phantoms filled with brain simulating solutions Includes distance

holder and tripod adaptor.

Frequency: 900,1800,2450,5800 MHz

ReTune loss: > 20 dB at specified validation position **Power capability:** > 100 W (f < 1GHz); > 40 W (f > 1GHz)

D835V2: dipole length: 161 mm; overall height: 340 mm D1800V2: dipole length: 72.5 mm; overall height: 300 mm D1900V2: dipole length: 67.7 mm; overall height: 300 mm D2450V2: dipole length: 51.5 mm; overall height: 290 mm D5GHzV2: dipole length: 20.6 mm; overall height: 300mm

System Validation Kits for ELI4 phantom

Construction: Symmetrical dipole with I/4 balun Enables

> measurement of feedpoint impedance with NWA Matched for use near flat phantoms filled with brain simulating solutions Includes distance

holder and tripod adaptor.

Frequency: 900, 1800, 2450, 5800 MHz

ReTune loss: > 20 dB at specified validation position **Power capability:** > 100 W (f < 1GHz); > 40 W (f > 1GHz)

Dimensions:

D835V2: dipole length: 161 mm; overall height: 340 mm D1800V2: dipole length: 72.5 mm; overall height: 300 mm D1900V2: dipole length: 67.7 mm; overall height: 300 mm D2450V2: dipole length: 51.5 mm; overall height: 290 mm

D5GHzV2: dipole length: 20.6 mm; overall height: 300 mm

Compliance Certification Services (KunShan) Inc.

Date of Issue: September 26, 2017 Report No .: C170628R Report No .: C170628R01-B-SF

7. EVALUATION PROCEDURES

DATA EVALUATION

The DASY 5 post processing software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

> Probe parameters: - Sensitivity Normi, aio, ai1, ai2

> > - Conversion factor ConvF_i - Diode compression point dcpi

Device parameters: - Frequency

- Crest factor cf

Media parameters: - Conductivity σ

- Density

These parameters must be set correctly in the software. They can be found in the component documents or be imported into the software from the configuration files issued for the DASY 5 components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with V_i = Compensated signal of channel i(i = x, y, z)

U_i = Input signal of channel i (i = x, y, z)

cf = Crest factor of exciting field (DASY 5 parameter) dcp_i = Diode compression point (DASY 5 parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes:

$$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

H-field probes:

$$H_i = \sqrt{Vi} \cdot \frac{a_{i10} + a_{i11}f + a_{i12}f^2}{f}$$

= Compensated signal of channel i(i = x, y, z) with

 $Norm_i$ = Sensor sensitivity of channel i (i = x, y, z)

 $\mu V/(V/m)^2$ for E0field Probes

ConvF = Sensitivity enhancement in solution

= Sensor sensitivity factors for H-field probes

f = Carrier frequency (GHz)

= Electric field strength of channel i in V/m Εi

= Magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with SAR = local specific absorption rate in mW/g

 E_{tot} = total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

 ρ = equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

The power flow density is calculated assuming the excitation field as a free space field.

$$P_{pwe} = \frac{E_{tot}^2}{3770}$$
 or $P_{pwe} = H_{tot}^2 \cdot 37.7$

with P_{pwe} = Equivalent power density of a plane wave in mW/cm²

 E_{tot} = total electric field strength in V/m

 H_{tot} = total magnetic field strength in A/m

Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

SAR EVALUATION PROCEDURES

The procedure for assessing the peak spatial-average SAR value consists of the following steps:

Power Reference Measurement

The reference and drift jobs are useful jobs for monitoring the power drift of the device under test in the batch process. Both jobs measure the field at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method.

Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a finer measurement around the hot spot. The sophisticated interpolation routines implemented in DASY 5 software can find the maximum locations even in relatively coarse grids. The scan area is defined by an editable grid. This grid is anchored at the grid reference point of the selected section in the phantom. When the area scan's property sheet is brought-up, grid was at to 15 mm by 15 mm and can be edited by a user.

Zoom Scan

Zoom scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default zoom scan measures $5 \times 5 \times 7$ points within a cube whose base faces are centered around the maximum found in a preceding area scan job within the same procedure. If the preceding Area Scan job indicates more then one maximum, the number of Zoom Scans has to be enlarged accordingly (The default number inserted is 1).

Power Drift measurement

The drift job measures the field at the same location as the most recent reference job within the same procedure, and with the same settings. The drift measurement gives the field difference in dB from the reading conducted within the last reference measurement. Several drift measurements are possible for one reference measurement. This allows a user to monitor the power drift of the device under test within a batch process. In the properties of the Drift job, the user can specify a limit for the drift and have DASY 5 software stop the measurements if this limit is exceeded.

Z-Scan

The Z Scan job measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. A user can anchor the grid to the current probe location. As with any other grids, the local Z-axis of the anchor location establishes the Z-axis of the grid.

Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

SPATIAL PEAK SAR EVALUATION

The procedure for spatial peak SAR evaluation has been implemented according to the IEEE1529 standard. It can be conducted for 1 g and 10 g.

The DASY 5 system allows evaluations that combine measured data and robot positions, such as:

- · maximum search
- extrapolation
- · boundary correction
- · peak search for averaged SAR

During a maximum search, global and local maximum searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation.

Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Cube Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation. For a grid using 5x5x7 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1 g and 10 g cubes.

Boundary effect

For measurements in the immediate vicinity of a phantom surface, the field coupling effects between the probe and the boundary influence the probe characteristics. Boundary effect errors of different dosimetric probe types have been analyzed by measurements and using a numerical probe model. As expected, both methods showed an enhanced sensitivity in the immediate vicinity of the boundary. The effect strongly depends on the probe dimensions and disappears with increasing distance from the boundary. The sensitivity can be approximately given as:

$$S \approx S_o + S_b exp(-\frac{z}{a})cos(\pi \frac{z}{\lambda})$$

Since the decay of the boundary effect dominates for small probes ($a << \lambda$), the cos-term can be omitted. Factors Sb (parameter Alpha in the DASY 5 software) and a (parameter Delta in the DASY 5 software) are assessed during probe calibration and used for numerical compensation of the boundary effect. Several simulations and measurements have confirmed that the compensation is valid for different field and boundary configurations.

This simple compensation procedure can largely reduce the probe uncertainty near boundaries. It works well as long as:

- the boundary curvature is small
- the probe axis is angled less than 30 to the boundary normal
- the distance between probe and boundary is larger than 25% of the probe diameter
- the probe is symmetric (all sensors have the same offset from the probe tip)

Since all of these requirements are fulfilled in a DASY 5 system, the correction of the probe boundary effect in the vicinity of the phantom surface is performed in a fully automated manner via the measurement data extraction during post processing.

Report No .: C170628R01-B-SF

8. MEASUREMENT UNCERTAINTY

Measurement und	certainty for	30 MHz to 3	GHz a	veraged	over 1 gra	m
Uncertainty Component	Uncertainty	Prob.	Div.	C _{i (1g)}	Std. Unc. (1-g)	V _i or Veff
Measurement System						
Probe Calibration (k=1)	5.50	Normal	1	1	5.50	8
Probe Isotropy	4.70	Rectangular	√3	0.7	1.90	8
Modulation Response	2.40	Rectangular	√3	1	1.39	8
Hemispherical Isotropy	9.60	Rectangular	√3	0.7	3.88	8
Boundary Effect	1.00	Rectangular	√3	1	0.58	8
Linearity	4.70	Rectangular	√3	1	2.71	∞
System Detection Limit	1.00	Rectangular	√3	1	0.58	∞
Readout Electronics	0.30	Normal	1	1	0.30	∞
Response Time	0.80	Rectangular	√3	1	0.46	∞
Integration Time	2.60	Rectangular	√3	1	1.50	∞
RF Ambient Noise	3.00	Rectangular	√3	1	1.73	∞
RF Ambient Reflections	3.00	Rectangular	√3	1	1.73	∞
Probe Positioner	0.40	Rectangular	√3	1	0.23	∞
Probe Positioning	2.90	Rectangular	√3	1	1.67	∞
Max. SAR Evaluation	2.00	Rectangular	√3	1	1.15	∞
Test sample Related						
Test sample Positioning	2.9	Normal	1	1	2.9	145
Device Holder Uncertainty	3.6	Normal	1	1	3.6	5
Power drift	5	Rectangular	√3	1	2.89	∞
Power Scaling	0	Rectangular	√3	1	0.00	∞
Phantom and Tissue Param	eters					
Phantom Uncertainty	6.1	Rectangular	√3	1	3.52	∞
SAR correction	1.9	Rectangular	√3	1	1.10	∞
Liquid Conductivity (target)	5	Rectangular	√3	0.64	1.85	∞
Liquid Conductivity (meas)	2.74	Rectangular	√3	0.78	1.23	∞
Liquid Permittivity (target)	5	Rectangular	√3	0.6	1.73	∞
Liquid Permittivity (meas)	-3.49	Rectangular	√3	0.26	-0.52	∞
Temp. unc Conductivity	3.4	Rectangular	√3	0.78	1.53	8
Temp. unc Permittivity	0.4	Rectangular	√3	0.23	0.05	∞
Combined Std. Uncertainty		RSS			11.20	361
Expanded STD Uncertainty		<i>k</i> =2	k=2		22. 4	0%

Report No .: C170628R01-B-SF

Measurement uncertainty for 3 GHz to 6 GHz averaged over 1 gram									
Uncertainty Component	Uncertainty	Prob.	Div.	C _{i (1g)}	Std. Unc. (1- g)	V _i or Veff			
Measurement System									
Probe Calibration (k=1)	6.55	Normal	1	1	6.55	∞			
Probe Isotropy	4.70	Rectangular	√3	0.7	1.90	8			
Modulation Response	2.40	Rectangular	√3	1	1.39	8			
Hemispherical Isotropy	9.60	Rectangular	√3	0.7	3.88	∞			
Boundary Effect	2.00	Rectangular	√3	1	1.15	∞			
Linearity	4.70	Rectangular	√3	1	2.71	8			
System Detection Limit	1.00	Rectangular	√3	1	0.58	∞			
Readout Electronics	0.30	Normal	1	1	0.30	∞			
Response Time	0.80	Rectangular	√3	1	0.46	∞			
Integration Time	2.60	Rectangular	√3	1	1.50	∞			
RF Ambient Noise	3.00	Rectangular	√3	1	1.73	∞			
RF Ambient Reflections	3.00	Rectangular	√3	1	1.73	∞			
Probe Positioner	0.80	Rectangular	√3	1	0.46	∞			
Probe Positioning	6.70	Rectangular	√3	1	3.87	∞			
Max. SAR Evaluation	4.00	Rectangular	√3	1	2.31	∞			
Test sample Related	1								
Test sample Positioning	2.9	Normal	1	1	2.9	145			
Device Holder Uncertainty	3.6	Normal	1	1	3.6	5			
Power drift	5	Rectangular	√3	1	2.89	∞			
Power Scaling	0	Rectangular	√3	1	0.00	∞			
Phantom and Tissue Paran	neters								
Phantom Uncertainty	4	Rectangular	√3	1	2.31	8			
SAR correction	1.9	Rectangular	√3	1	1.10	8			
Liquid Conductivity (target)	5	Rectangular	√3	0.64	1.85	∞			
Liquid Conductivity (meas)	2.95	Rectangular	√3	0.78	1.33	∞			
Liquid Permittivity (target)	5	Rectangular	√3	0.6	1.73	∞			
Liquid Permittivity (meas)	-1.5	Rectangular	√3	0.26	-0.23	∞			
Temp. unc Conductivity	3.4	Rectangular	√3	0.78	1.53	∞			
Temp. unc Permittivity	0.4	Rectangular	√3	0.23	0.05	8			
Combined Std. Uncertainty		RSS			12.18	748			
Expanded STD Uncertainty		k=2			24. 36%				
Expanded STD Uncertainty		k=2			1.	89dB			

Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

9. EXPOSURE LIMIT

(A). Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

(B). Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles			
0.08	1.6	4.0			

Note: Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

<u>Population/Uncontrolled Environments</u> are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

<u>Occupational/Controlled Environments</u> are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

NOTE
GENERAL POPULATION/UNCONTROLLED EXPOSURE
PARTIAL BODY LIMIT
1.6 W/kg

Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

10. MEASUREMENT RESULTS

10.1 TEST LIQUIDS CONFIRMATION

SIMULATED TISSUE LIQUID PARAMETER CONFIRMATION

The dielectric parameters were checked prior to assessment using the SPEAG DAK3.5 dielectric probe kit. The dielectric parameters measured are reported in each correspondent section.

IEEE SCC-34/SC-2 P1528 RECOMMENDED TISSUE DIELECTRIC PARAMETERS

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in P1528

Target Frequency	He		Body		
(MHz)	$\epsilon_{\rm r}$	σ (S/m)	ϵ_{r}	σ (S/m)	
150	52.3	0.76	61.9	0.80	
300	45.3	0.87	58.2	0.92	
450	43.5	0.87	56.7	0.94	
835	41.5	0.90	55.2	0.97	
900	41.5	0.97	55.0	1.05	
915	41.5	0.98	55.0	1.06	
1450	40.5	1.20	54.0	1.30	
1610	40.3	1.29	53.8	1.40	
1800-2000	40.0	1.40	53.3	1.52	
2450	39.2	1.80	52.7	1.95	
3000	38.5	2.40	52.0	2.73	
5800	35.3	5.27	48.2	6.00	

 $(\varepsilon_r = \text{relative permittivity}, \sigma = \text{conductivity and } \rho = 1000 \text{ kg/m}^3)$

Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

10.2 LIQUID MEASUREMENT RESULTS

The following table show the measuring results for simulating liquid:

Liquid Type	Liquid Temp. (°C)	Parameters	Target	Measured	Deviation (%)	Limited (%)	Measured Date	
Body2402	21.5	Permitivity(ε)	52.76	51.54	-2.32	± 5	2017-8-14	
B00y2 102	21.0	Conductivity(σ)	1.89	1.94	2.74	± 5	2017 0 11	
Body2412	21.5	Permitivity(ε)	52.75	51.54	-2.29	± 5	2017-8-14	
BodyZ+1Z	21.0	Conductivity(σ)	1.90	1.94	2.06	± 5	2017 0 14	
Body2437	21.5	Permitivity(ε)	52.72	51.67	-1.99	± 5	2017-8-14	
BodyZ-101	21.0	Conductivity(σ)	1.93	1.94	0.57	± 5	2017 0 14	
Body2440	21.5	Permitivity(ε)	52.71	51.68	-1.97	± 5	2017-8-14	
B00y2440	21.5	$Conductivity(\sigma)$	1.94	1.94	0.25	± 5	2017-0-14	
Body2462	21.5	Permitivity(ε)	52.68	51.60	-2.06	± 5	2017-8-14	
D00y2402	21.5	Conductivity(σ)	1.97	1.95	-0.66	± 5	2017-0-14	
Body2480	21.5	Permitivity(ε)	52.66	51.52	-2.17	± 5	2017-8-14	
B00y2400	21.3	Conductivity(σ)	1.99	1.98	-0.76	± 5	2017-0-14	
Body5260	21.5	Permitivity(ε)	48.95	48.68	-0.56	± 5	2017-8-15	
B00y3200	21.5	Conductivity(σ)	5.42	5.32	-1.88	± 5		
Body5280	21.5	Permitivity(ε)	48.92	48.68	-0.50	± 5	2017-8-15	
B00y3200	21.5	Conductivity(σ)	5.44	5.35	-1.71	± 5	2017-0-15	
Body5320	21.5	Permitivity(ε)	48.87	48.61	-0.53	± 5	2017-8-15	
B00y3320	21.5	Conductivity(σ)	5.49	5.38	-1.98	± 5	2017-0-13	
Body5500	21.5	Permitivity(ε)	48.62	48.20	-0.86	± 5	2017-8-15	
Бойуээоо	21.5	Conductivity(σ)	5.68	5.63	-0.88	± 5	2017-6-15	
Body5580	21.5	Permitivity(ε)	48.51	47.97	-1.11	± 5	2017-8-15	
Бойуээво	21.5	Conductivity(σ)	5.77	5.75	-0.36	± 5	2017-6-15	
Body5640	21.5	Permitivity(ε)	48.42	47.85	-1.19	± 5	2017-8-15	
B00y3040	21.5	Conductivity(σ)	5.83	5.81	-0.44	± 5	2017-0-13	
Body5745	21.5	Permitivity(ε)	48.28	47.63	-1.34	± 5	2017-8-15	
Бойу5745	21.5	Conductivity(σ)	5.94	5.96	0.31	± 5	2017-6-15	
Body5785	21.5	Permitivity(ε)	48.22	47.50	-1.50	± 5	2017 9 15	
Douy5765	21.0	Conductivity(σ)	5.98	6.04	0.91	± 5	2017-8-15	
Body5825	21.5	Permitivity(ε)	47.99	47.51	-0.99	± 5	2017-8-15	
B00y5625	21.0	Conductivity(σ)	6.03	6.10	1.28	± 5	2017-0-10	

Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

Liquid Type	Liquid Temp. (°C)	Parameters	Target	Measured	Deviation (%)	Limited (%)	Measured Date
Body2402	21.5	Permitivity(ε)	52.76	51.16	-3.04	± 5	2017-9-24
B00y2402	21.5	Conductivity(σ)	1.89	1.93	2.21	± 5	2017-9-24
Body2412	21.5	Permitivity(ε)	52.75	51.14	-3.05	± 5	2017-9-24
D00y2412	21.5	Conductivity(σ)	1.90	1.94	2.06	± 5	2017-9-24
Body2437	21.5	Permitivity(ε)	52.72	51.13	-3.02	± 5	2017-9-24
B00y2437	21.5	Conductivity(σ)	1.93	1.96	1.35	± 5	2017-9-24
Body2440	21.5	Permitivity(ε)	52.71	51.12	-3.03	± 5	2017-9-24
B00y2440	21.5	Conductivity(σ)	1.94	1.96	1.18	± 5	2017-9-24
Body2462	21.5	Permitivity(ε)	52.68	50.96	-3.27	± 5	2017-9-24
B00y2402	21.5	Conductivity(σ)	1.97	1.99	1.02	± 5	2017-9-24
Body2480	21.5	Permitivity(ε)	52.66	50.83	-3.49	± 5	2017-9-24
B00y2460	21.5	Conductivity(σ)	1.99	2.02	1.50	± 5	2017-9-24
Body5260	21.5	Permitivity(ε)	48.95	48.77	-0.38	± 5	2017-9-25
B00y5200	21.5	Conductivity(σ)	5.42	5.52	1.76	± 5	2017 0 20
Body5280	21.5	Permitivity(ε)	48.92	48.90	-0.04	± 5	2017-9-25
B00y3200	21.5	Conductivity(σ)	5.44	5.53	1.64	± 5	2017-9-25
Body5320	21.5	Permitivity(ε)	48.87	48.76	-0.22	± 5	2017-9-25
B00y3320	21.5	Conductivity(σ)	5.49	5.46	-0.43	± 5	2017-9-25
Body5500	21.5	Permitivity(ε)	48.62	48.59	-0.05	± 5	2017-9-25
Бойуээоо	21.5	Conductivity(σ)	5.68	5.72	0.67	± 5	2017-9-25
Body5580	21.5	Permitivity(ε)	48.51	48.09	-0.87	± 5	2017-9-25
Body5560	21.5	Conductivity(σ)	5.77	5.91	2.45	± 5	2017-9-23
Body5640	21.5	Permitivity(ε)	48.42	48.03	-0.82	± 5	2017-9-25
B00y3040	21.5	Conductivity(σ)	5.83	5.86	0.52	± 5	2017-9-23
Pody5745	21.5	Permitivity(ε)	48.28	47.79	-1.00	± 5	2017 0 25
Body5745	21.0	Conductivity(σ)	5.94	6.04	1.67	± 5	2017-9-25
Body5785	21.5	Permitivity(ε)	48.22	47.64	-1.22	± 5	2017-9-25
	21.0	Conductivity(σ)	5.98	6.12	2.20	± 5	2017-9-20
Body5825	21.5	Permitivity(ε)	47.99	47.95	-0.07	± 5	2017-9-25
D0uy3023	21.5	Conductivity(σ)	6.03	6.20	2.95	± 5	2017-9-20

Note:

^{1.} Since the maximum deviation of dielectric properties of the tissue simulating liquid is within 5%, SAR correction is evaluated in the measurement uncertainty shown on section 8 of this report.

Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

10.3 SYSTEM PERFORMANCE CHECK

The system performance check is performed prior to any usage of the system in order to guarantee reproducible results. The system performance check verifies that the system operates within its specifications of $\pm 10\%$. The system performance check results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.

SYSTEM PERFORMANCE CHECK MEASUREMENT CONDITIONS

- The measurements were performed in the flat section of the SAM twin phantom filled with head and body simulating liquid of the following parameters.
- The DASY5 system withan E-fileld probe EX3DV4 SN: 905 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below
 the center marking of the flat phantom section and the dipole was oriented parallel to the body
 axis (the long side of the phantom). The standard measuring distance was
 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 10mm was aligned with the dipole.
- Special 7x7x7 fine cube was chosen for cube integration (dx= 5 mm, dy= 5 mm, dz= 5 mm).
- Distance between probe sensors and phantom surface was set to 2 mm.
- The dipole less than 3G input power was 250mW±3%.
- The dipole above than 3G input power was 100mW±3%.
- The results are normalized to 1 W input power.

Note: For SAR testing, the liquid depth is 15cm shown above

Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

SYSTEM PERFORMANCE CHECK RESULTS

Liquid Type	Ambient Temp. (° C)	Liquid Temp. (°C)	Input Power (W)	Measured SAR1g (W/Kg)	1W Target SAR _{1g} (W/Kg)	Hommanzea	Deviatio n (%)	Limited (%)	Date
Body2450	22	21.5	0.25	12.80	51.50	51.20	-0.58	± 10	2017-8-14
Body5200	22	21.5	0.1	7.72	74.50	77.2	3.62	± 10	2017-8-15
Body5300	22	21.5	0.1	7.84	77.20	78.4	1.55	± 10	2017-8-15
Body5500	22	21.5	0.1	7.95	81.10	79.5	-1.97	± 10	2017-8-15
Body5600	22	21.5	0.1	7.87	79.80	78.7	-1.38	± 10	2017-8-15
Body5800	22	21.5	0.1	7.68	77.20	76.8	-0.52	± 10	2017-8-15

Liquid Type	Ambient Temp. (° C)	Liquid Temp. (°C)	Input Power (W)	Measured SAR1g (W/Kg)	1W Target SAR _{1g} (W/Kg)	1W Normalized SAR _{1g} (W/Kg)	Deviatio n (%)	Limited (%)	Date
Body2450	22	21.5	0.25	12.60	51.50	50.40	-2.14	± 10	2017-9-24
Body5200	22	21.5	0.1	7.26	74.50	72.6	-2.55	± 10	2017-9-25
Body5300	22	21.5	0.1	7.68	77.20	76.8	-0.52	± 10	2017-9-25
Body5500	22	21.5	0.1	7.96	81.10	79.6	-1.85	± 10	2017-9-25
Body5600	22	21.5	0.1	7.92	79.80	79.2	-0.75	± 10	2017-9-25
Body5800	22	21.5	0.1	7.81	77.20	78.1	1.17	± 10	2017-9-25

Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

10.4 EUT TUNE-UP PROCEDURES AND TEST MODE

Conducted output power(dBm):

General Note:

- 1 Power must be measured at each transmit antenna port according to the DSSS and OFDM transmission configurations in each standalone and aggregated frequency band.
- 2 Power measurement is required for the transmission mode configuration with the highest maximum output power specified for production units.
 - 1) When the same highest maximum output power specification applies to multiple transmission modes, the largest channel bandwidth configuration with the lowest order modulation and lowest data rate is measured.
 - 2) When the same highest maximum output power is specified for multiple largest channel bandwidth configurations with the same lowest order modulation or lowest order modulation and lowest data rate, power measurement is required for all equivalent 802.11 configurations with the same maximum output power.
- 3 For each transmission mode configuration, power must be measured for the highest and lowest channels; and at the mid-band channel(s) when there are at least 3 channels. For configurations with multiple mid-band channels, due to an even number of channels, both channels should be measured.
- 4 Apply the default power measurement procedures to measure maximum output power for each standalone and aggregated frequency band.
 - a) When band gap channels between U-NII-2C band and U-NII-3 band or §15.247 5.8 GHz band are supported and the bands are aggregated for SAR testing according to KDB 248227D01 sections 2.3 and 3.3, apply the following to determine high, middle and low channels for power measurement and SAR test reduction.
 - i) channels in U-NII-2C band below 5.65 GHz are considered as one band
 - ii) channels above 5.65 GHz, together with channels in 5.8 GHz U-NII-3 or §15.247 band, are considered as a separate band
 - b) The maximum output power of band gap channels is limited to the lowest maximum output power certified for the adjacent bands regardless of whether band aggregation is applied for SAR testing.
 - c) The measured maximum output power results are used to reduce the number of channels that need testing.

WLAN 2.4G Chain0

Mode	Channel	Frequency (MHZ)	Chain0 Target power(dBm)	Tune up tolerance (dBm)	Maximum Tune up power (dBm)	Average power (dBm)
	1	2412	13	±1	14	13.77
802.11 b	6	2437	13	±1	14	13.82
	11	2462	13	±1	14	13.74
	1	2412	13	±1	14	
802.11 g	6	2437	13	±1	14	
	11	2462	13	±1	14	
000.44	1	2412	12	±1	13	NI-4
802.11 n 20MHz	6	2437	12	±1	13	Not required
20.71112	11	2462	12	±1	13	roquirou
000.44	3	2422	12	±1	13	
802.11 n 40MHz	6	2437	12	±1	13	
70111112	9	2452	12	±1	13	

Report No .: C170628R01-B-SF

WLAN 2.4G Chain1

Mode	Channel	nnel Frequency (MHZ) Chain1 Target power(dBm) Tune up tolerance (dBm)		tolerance	Maximum Tune up power (dBm)	Average power (dBm)
	1	2412	13	±1	14	14.00
802.11 b	6	2437	13	±1	14	13.72
	11	2462	13	±1	14	13.25
	1	2412	13	±1	14	
802.11 g	6	2437	13	±1	14	
	11	2462	13	±1	14	
000.44	1	2412	12	±1	13	NI.
802.11 n 20MHz	6	2437	12	±1	13	Not required
2011112	11	2462	12	±1	13	roquirou
000.44	3	2422	12	±1	13	
802.11 n 40MHz	6	2437	12	±1	13	
	9	2452	12	±1	13	

Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

WLAN Conducted output power(dBm):

U-NII-1 Chain0

Mode	Channel	Frequency (MHZ)	Chain0 Target power(dBm)	Tune up tolerance (dBm)	Maximum Tune up power (dBm)	Average Power (dBm)
	36	5180	11	±1	12	11.54
802.11 a	40	5200	11	±1	12	11.75
602.11 a	44	5220	11	±1	12	11.58
	48	5240	11	±1	12	11.17
	36	5180	10.5	±1	11.5	
802.11 n 20MHz	40	5200	10.5	±1	11.5	
002.11 11 20W112	44	5220	10.5	±1	11.5	
	48	5240	10.5	±1	11.5	Not required
802.11 n 40MHz	38	5190	10.5	±1	11.5	
002.111140WITZ	46	5230	10.5	±1	11.5	
802.11 ac80	42	5210	10.5	±1	11.5	

U-NII-1 Chain1

Mode	Channel	Frequency (MHZ)	Chain1 Target power(dBm)	Tune up tolerance (dBm)	Maximum Tune up power (dBm)	Average Power (dBm)
	36	5180	11	±1	12	11.86
802.11 a	40	5200	11	±1	12	11.99
602.11 a	44	5220	11	±1	12	11.93
	48	5240	11	±1	12	11.90
	36	5180	10.5	±1	11.5	
802.11 n 20MHz	40	5200	10.5	±1	11.5	
002.11 11 20WITZ	44	5220	10.5	±1	11.5	
	48	5240	10.5	±1	11.5	Not required
802.11 n 40MHz	38	5190	10.5	±1	11.5	
	46	5230	10.5	±1	11.5	
802.11 ac80	42	5210	10.5	±1	11.5	

Report No .: C170628R01-B-SF

U-NII-2A Chain0

Mode	Channel	Frequency (MHZ)	Chain0 Target power(dBm)	Tune up tolerance (dBm)	Maximum Tune up power (dBm)	Average Power (dBm)
	52	5260	11	±1	12	12.00
802.11 a	56	5280	11	±1	12	12.00
002.11 a	60	5300	11	±1	12	11.64
	64	5320	11	±1	12	11.89
	52	5260	10.5	±1	11.5	
802.11 n 20MHz	56	5280	10.5	±1	11.5	
002.11 11 20W112	60	5300	10.5	±1	11.5	
	64	5320	10.5	±1	11.5	Not required
802.11 n 40MHz	54	5270	10.5	±1	11.5	
	62	5310	10.5	±1	11.5	
802.11 ac80	58	5290	10.5	±1	11.5	

U-NII-2A Chain1

Mode	Channel	Frequency (MHZ)	Chain1 Target power(dBm)	Tune up tolerance (dBm)	Maximum Tune up power (dBm)	Average Power (dBm)
	52	5260	11	±1	12	12.00
802.11 a	56	5280	11	±1	12	12.00
002.11 a	60	5300	11	±1	12	11.95
	64	5320	11	±1	12	12.00
	52	5260	10.5	±1	11.5	
802.11 n 20MHz	56	5280	10.5	±1	11.5	
ου2.11 11 20 WIΠ2	60	5300	10.5	±1	11.5	
	64	5320	10.5	±1	11.5	Not required
802.11 n 40MHz	54	5270	10.5	±1	11.5	
002.11 /1 40WITZ	62	5310	10.5	±1	11.5	
802.11 ac80	58	5290	10.5	±1	11.5	

Report No .: C170628R01-B-SF

U-NII-2C Chain0

Mode	Channel	Frequency (MHZ)	Chain0 Target power(dBm)	Tune up tolerance (dBm)	Maximum Tune up power (dBm)	Average Power (dBm)
	100	5500	10.5	±1	11.5	11.36
802.11 a	112	5560	10.5	±1	11.5	11.21
002.11 a	116	5580	10.5	±1	11.5	11.39
	128	5640	10.5	±1	11.5	11.24
	100	5500	10	±1	11	
802.11 n 20MHz	112	5560	10	±1	11	
	116	5580	10	±1	11	
	128	5640	10	±1	11	
	102	5510	10	±1	11	
	110	5550	10	±1	11	Not required
802.11 n 40MHz	118	5590	10	±1	11	Not required
	126	5630	10	±1	11	
	134	5670	10	±1	11	
802.11 ac80	106	5530	10	±1	11	
	122	5610	10	±1	11	
	138	5690	10	±1	11	

II-NII-2C Chain1

U-NII-2C Chain1								
Mode	Channel	Frequency (MHZ)	Chain1 Target power(dBm)	Tune up tolerance (dBm)	Maximum Tune up power (dBm)	Average Power (dBm)		
	100	5500	10.5	±1	11.5	11.12		
802.11 a	112	5560	10.5	±1	11.5	11.26		
002.11 a	116	5580	10.5	±1	11.5	11.27		
	128	5640	10.5	±1	11.5	11.21		
	100	5500	10	±1	11			
802.11 n 20MHz	112	5560	10	±1	11			
802.11 II ZUWINZ	116	5580	10	±1	11			
	128	5640	10	±1	11			
	102	5510	10	±1	11			
	110	5550	10	±1	11	Not required		
802.11 n 40MHz	118	5590	10	±1	11	Not required		
	126	5630	10	±1	11			
	134	5670	10	±1	11			
802.11 ac80	106	5530	10	±1	11			
	122	5610	10	±1	11			
	138	5690	10	±1	11			

Report No .: C170628R01-B-SF

U-NII-3 Chain0

Mode	Channel	Frequency	Chain0 Target power(dBm)	Tune up tolerance (dBm)	Maximum Tune up power (dBm)	Average power (dBm)
	149	5745	10	±1	11	10.95
802.11 a	157	5785	10	±1	11	10.92
	165	5825	10	±1	11	10.86
	149	5745	9.5	±1	10.5	
802.11 n 20MHz	157	5785	9.5	±1	10.5	
2011112	165	5825	9.5	±1	10.5	Not required
802.11 n	151	5755	9.5	±1	10.5	Not required
40MHz	159	5795	9.5	±1	10.5	
802.11 ac80	155	5775	9.5	±1	10.5	

U-NII-3 Chain1

Mode	Channel	Frequency	Chain1 Target power(dBm)	Tune up tolerance (dBm)	Maximum Tune up power (dBm)	Average power (dBm)
	149	5745	10	±1	11	10.78
802.11 a	157	5785	10	±1	11	10.97
	165	5825	10	±1	11	10.99
000 44	149	5745	9.5	±1	10.5	
802.11 n 20MHz	157	5785	9.5	±1	10.5	
2011112	165	5825	9.5	±1	10.5	Not required
802.11 n	151	5755	9.5	±1	10.5	i Not required
40MHz	159	5795	9.5	±1	10.5	
802.11 ac80	155	5775	9.5	±1	10.5	

Report No .: C170628R01-B-SF

Bluetooth Chain0

Band	Mode	Channel	Frequency	Averaged Power (dBm)
	Divista ette DD	0	2402	5.30
	Bluetooth BR (GFSK)	39	2441	4.71
	(Of Oit)	78	2480	4.26
	Divista ette EDDO	0	2402	4.82
	Bluetooth EDR2 (π/4-DQPSK)	39	2441	4.25
2.4 GHz	(11/4-DQ1 3K)	78	2480	3.78
2.4 GHZ	Divista ette EDD0	0	2402	4.79
	Bluetooth EDR3 (8-DPSK)	39	2441	4.20
	(0-51 011)	78	2480	3.82
		0	2402	7.27
	Bluetooth LE	19	2440	7.71
		39	2480	6.99

Bluetooth Chain1

Bidetootii Oliaiiii							
Band	Mode	Channel	Frequency	Averaged Power (dBm)			
	Divista ette DD	0	2402	5.75			
	Bluetooth BR (GFSK)	39	2441	5.17			
	(01010)	78	2480	4.79			
	DI ALAUK EDDO	0	2402	5.18			
	Bluetooth EDR2 (π/4-DQPSK)	39	2441	4.79			
2.4 GHz	(11/4-DQ1 3K)	78	2480	4.39			
2.4 GHZ	DL . ((l. EDD0	0	2402	5.15			
	Bluetooth EDR3 (8-DPSK)	39	2441	4.77			
	(0-D1 314)	78	2480	4.36			
		0	2402	7.67			
	Bluetooth LE	19	2440	7.30			
		39	2480	6.88			

Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

10.5 STANDALONE SAR TEST EXCLUSION

According to KDB447498 D01:The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation distances* ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance,

mm)] $\cdot [\sqrt{f_{(GHz)}}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR,24 where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation25
- The result is rounded to one decimal place for comparison
- 3.0 and 7.5 are referred to as the numeric thresholds in the step 2 below
- If the test separation distance (antenna-user) is < 5mm, 5mm is used for excluded SAR calculation

	Wireless Interface	Bluetooth	
Tı	8		
Tun	e-up Maximum rated power (mW)	6.310	
	Antenna to user (mm)	5	
Body	Frequency(GHz)	2402	
	SAR exclusion threshold	1.956	

Per KDB 447498 D01 exclusion thresholds is 1.956 < 3, Bluetooth RF exposure evaluation is not required.

Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

According to RSS102-2015:

SAR evaluation for this device was performed with a separation distance of 5 mm. Observing the SAR evaluation exemption limit table (Table 1, see below) found in § 2.5.1 of RSS102:2015 , it was determined that the SAR exemption limit for this device is 4 mW for 2.4GHz transmission. No Wi-Fi mode qualified for test exemption as all power levels were above the stated thresholds. On the contrary, Bluetooth, with a frequency of 2440 MHz and a maximum output power of 11.07 mW (10.44 dBm, tune-up tolerance accounted for), is Higher than the exemption threshold and therefore exempt from SAR evaluation for either the intended user or bystanders. So Bluetooth RF exposure evaluation is required

Table 1: SAR evaluation – Exemption limits for routine evaluation based on frequency and separation distance

Frequency		Exe	mption Limits (n	nW)	
(MHz)	At separation	At separation	At separation	At separation	At separation
	distance of	distance of	distance of	distance of	distance of
	≤5 mm	10 mm	15 mm	20 mm	25 mm
≤300	71 mW	101 mW	132 mW	162 mW	193 mW
450	52 mW	70 mW	88 mW	106 mW	123 mW
835	17 mW	30 mW	42 mW	55 mW	67 mW
1900	7 mW	10 mW	18 mW	34 mW	60 mW
2450	4 mW	7 mW	15 mW	30 mW	52 mW
3500	2 mW	6 mW	16 mW	32 mW	55 mW
5800	1 mW	6 mW	15 mW	27 mW	41 mW
Frequency		Exe	mption Limits (n	nW)	
(MHz)	At separation	At separation	At separation	At separation	At separation
	distance of	distance of	distance of	distance of	distance of
	30 mm	35 mm	40 mm	45 mm	≥50 mm
≤300	223 mW	254 mW	$284~\mathrm{mW}$	315 mW	345 mW
450	141 mW	159 mW	177 mW	195 mW	213 mW
835	$80~\mathrm{mW}$	92 mW	$105 \; \mathrm{mW}$	117 mW	130 mW
1900	99 mW	153 mW	225 mW	316 mW	431 mW
2450	83 mW	123 mW	173 mW	235 mW	309 mW
3500	86 mW	124 mW	$170~\mathrm{mW}$	225 mW	290 mW
5800	56 mW	71 mW	85 mW	97 mW	106 mW

Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

10.6 SAR TEST CONFIGURATIONS

<Tablet>

This EUT was tested in Two different positions. They are rear side of tablet, Edge 1.In these positions, the surface of EUT is touching with phantom 0cm.

Fig Illustration for Lap-touching Position

Front View

Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

<Tablet>

Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

Device dimensions for Tablet mode (H x W): 300 x 205 mm

Antennas	Wireless Interface
Bluetooth &WLAN Antenna	WLAN 2.4GHz WLAN 5.2GHz WLAN 5.3GHz WLAN 5.5GHz WLAN 5.8GHz Bluetooth
Main Antenna	WLAN TX/RX 2.4GHz/5GHz+ Bluetooth
Aux Antenna	WLAN TX/RX 2.4GHz/5GHz+ Bluetooth

Test	M	0	de.

IEEE 802.11	Data transmission mode(802.11a;802.11b; Bluetooth GFSK)
-------------	---

Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

10.8 BODY TEST EXCLUSION THRESHOLDS

<Tablet>

The following SAR test exclusion Thresholds based on KDB 447498 D01 General RF Exposure Guidance v06 4.3.1

	ng SAR test exclusion I	WLAN	WLAN	WLAN	WLAN	Bluetooth	Bluetooth
	Wireless Interface	802.11 b	802.11 b	802.11 a	802.11 a	GFSK	GFSK
Exposure		Main	Aux	Main	Aux	Main	Aux
Position	Maximum power	14	14	12	12	8	8
	Maximum rated power(mW)	25.12	25.12	15.85	15.85	6.31	6.31
	Antenna to user (mm)	5	5	5	5	5	5
Rear view	SAR exclusion threshold	9.58	9.58	6.23	6.23	9.58	9.58
	SAR testing required?	Yes	Yes	Yes	Yes	No	No
	Antenna to user (mm)	4	4	4	4	4	4
Edge1	SAR exclusion threshold	7.67	7.67	4.98	4.98	7.67	7.67
	SAR testing required?	Yes	Yes	Yes	Yes	No	No
	Antenna to user (mm)	85	245	85	245	85	245
Edge2	SAR exclusion threshold	446	2046	412.28	2012.28	446	2046
	SAR testing required?	No	No	No	No	No	No
	Antenna to user (mm)	189	189	189	189	189	189
Edge3	SAR exclusion threshold	1486	1486	1452.28	1452.28	1486	1486
	SAR testing required?	No	No	No	No	No	No
	Antenna to user (mm)	183	23	183	23	183	23
Edge4	SAR exclusion threshold	1426	44.08	1392.28	28.65	1426	44.08
	SAR testing required?	No	No	No	No	No	No

Note:

- Maximum power is the source-based time-average power and represents the maximum RF output power among production units
- 2. Per KDB 447498 D01v06, for larger devices, the test separation distance of adjacent edge configuration is determined by the closest separation between the antenna and the user.
- 3. Per KDB 447498 D01v06, standalone SAR test exclusion threshold is applied; If the distance of the antenna to the user is < 5mm, 5mm is used to determine SAR exclusion threshold
- 4. Per KDB 447498 D01v06, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation distances* ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR

f(GHz) is the RF channel transmit frequency in GHz

Power and distance are rounded to the nearest mW and mm before calculation

The result is rounded to one decimal place for comparison

For < 50 mm distance, we just calculate mW of the exclusion threshold value (3.0) to do compare.

This formula is [3.0] / [$\sqrt{f(GHz)}$] · [(min. test separation distance, mm)] = exclusion threshold of mW.

- 5. Per KDB 447498 D01v06, at 100 MHz to 6 GHz and for test separation distances > 50 mm, the SAR test exclusion threshold is determined according to the following
 - a) [Threshold at 50 mm in step 1) + (test separation distance 50 mm)·(f(MHz)/150)] mW, at 100 MHz to 1500 MHz
 - b) [Threshold at 50 mm in step 1) + (test separation distance 50 mm)·10] mW at > 1500 MHz and ≤ 6 GHz
- 6. When the minimum *test separation distance* is < 5 mm, a distance of 5 mm according to 5) in section 4.1 is applied to determine SAR test exclusion.

Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

The following SAR test exclusion Thresholds based on RSS102 issue5 2.5.1

		WLAN	WLAN	WLAN	WLAN	Bluetooth	Bluetooth
Exposure	Wireless Interface	802.11 b Main	802.11 b Aux	802.11 a Main	802.11 a Aux	GFSK Main	GFSK Aux
Position	Maximum power	14	14	12	12	8	8
	Maximum rated power(mW)	25.12	25.12	15.85	15.85	6.31	6.31
	Antenna to user (mm)	5	5	5	5	5	5
Rear view	SAR exclusion threshold	4	4	1	1	4	4
	SAR testing required?	Yes	Yes	Yes	Yes	Yes	Yes
	Antenna to user (mm)	4	4	4	4	4	4
Edge1	SAR exclusion threshold	4	4	1	1	4	4
	SAR testing required?	Yes	Yes	Yes	Yes	Yes	Yes
	Antenna to user (mm)	85	245	85	245	85	245
Edge2	SAR exclusion threshold	309	309	106	106	309	309
	SAR testing required?	No	No	No	No	No	No
	Antenna to user (mm)	189	189	189	189	189	189
Edge3	SAR exclusion threshold	309	309	106	106	309	309
	SAR testing required?	No	No	No	No	No	No
	Antenna to user (mm)	183	23	183	23	183	23
Edge4	SAR exclusion threshold	309	30	106	27	309	30
	SAR testing required?	No	No	No	No	No	No

Note:

SAR evaluation is required if the separation distance between the user and/or bystander and the antenna and/or radiating element of the device is less than or equal to 20 cm, except when the device operates at or below the applicable output power level (adjusted for tune-up tolerance) for the specified separation distance defined in Table 1.

Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

<Notebook> Mode1

The following SAR test exclusion Thresholds based on KDB 447498 D01 General RF Exposure Guidance v06 4.3.1

Exposure		WLAN	WLAN	WLAN	WLAN	Bluetooth	Bluetooth
	Wireless Interface	802.11 b Main	802.11 b Aux	802.11 a Main	802.11 a Aux	GFSK Main	GFSK Aux
Position	Maximum power	14	14	12	12	8	8
	Maximum rated power(mW)	25.12	25.12	15.85	15.85	6.31	6.31
	Antenna to user (mm)	175	175	175	175	175	175
Bottom view	SAR exclusion threshold	1312.28	1312.28	1346	1346	1312.28	1312.28
	SAR testing required?	No	No	No	No	No	No

The following SAR test exclusion Thresholds based on RSS102 issue5 2.5.1

		WLAN	WLAN	WLAN	WLAN	Bluetooth	Bluetooth
Exposure	Wireless Interface	802.11 b Main	802.11 b Aux	802.11 a Main	802.11 a Aux	GFSK Main	GFSK Aux
Position	Maximum power	14	14	12	12	8	8
	Maximum rated power(mW)	25.12	25.12	15.85	15.85	6.31	6.31
	Antenna to user (mm)	175	175	175	175	175	175
Bottom view	SAR exclusion threshold	309	309	106	106	309	309
	SAR testing required?	No	No	No	No	No	No

Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

Mode 2

The following SAR test exclusion Thresholds based on KDB 447498 D01 General RF Exposure Guidance v06 4.3.1

Exposure		WLAN	WLAN	WLAN	WLAN	Bluetooth	Bluetooth
	Wireless Interface	802.11 b Main	802.11 b Aux	802.11 a Main	802.11 a Aux	GFSK Main	GFSK Aux
Position	Maximum power	14	14	12	12	8	8
	Maximum rated power(mW)	25.12	25.12	15.85	15.85	6.31	6.31
	Antenna to user (mm)	55	55	55	55	55	55
Bottom view	SAR exclusion threshold	112.28	112.28	146	146	112.28	112.28
	SAR testing required?	No	No	No	No	No	No

The following SAR test exclusion Thresholds based on RSS102 issue5 2.5.1

		WLAN	WLAN	WLAN	WLAN	Bluetooth	Bluetooth
Exposure	Wireless Interface	802.11 b Main	802.11 b Aux	802.11 a Main	802.11 a Aux	GFSK Main	GFSK Aux
Position	Maximum power	14	14	12	12	8	8
	Maximum rated power(mW)	25.12	25.12	15.85	15.85	6.31	6.31
	Antenna to user (mm)	55	55	55	55	55	55
Bottom view	SAR exclusion threshold	309	309	106	106	309	309
	SAR testing required?	No	No	No	No	No	No

Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

10.9 SAR MEASUREMENT RESULTS

Note:

- 1. Per KDB 447498 D01, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
 - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.
 - b. For WLAN: Reported SAR(W/kg)= Measured SAR(W/kg)* Duty Cycle scaling factor * Tune-up scaling factor
- 2. Per KDB 447498 D01, for each exposure position, if the highest output channel reported SAR ≤0.8W/kg, other channels SAR testing is not necessary.
- 3. Per KDB 447498 D01, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the *reported* 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - · ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
 - ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
 - · ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

2.4GHz SAR Results for Test Records

Band	Mode	Configure	Test Position	Dist. (mm)	Freq. (MHZ)	Ant	max Power (dBm)	Tune-Up Limit (dBm)	Scaling Factor	Power Drift (dB)	Duty Cycle Scaling Factor	SAR1g (mW/g)	Scaled SAR1g (mW/g)
		ТВ	Rear	0	2412	Main	13.77	14	1.054	0.06	1	0.951	1.003
		ТВ	Rear	0	2437	Main	13.82	14	1.042	-0.03	1	1.02	1.063
		ТВ	Rear	0	2462	Main	13.74	14	1.062	0.07	1	0.858	0.911
WLAN 2.4Ghz	802.11b	ТВ	Edge 1	0	2412	Main	13.82	14	1.042	-0.16	1	0.244	0.254
	6U2.11D	ТВ	Rear	0	2412	Aux	14.00	14	1.000	0.02	1	1.03	1.030
		ТВ	Rear	0	2437	Aux	13.72	14	1.067	0.11	1	0.891	0.950
		ТВ	Rear	0	2462	Aux	13.25	14	1.189	0.08	1	0.742	0.882
		ТВ	Edge 1	0	2412	Aux	14.00	14	1.000	-0.12	1	0.315	0.315
		ТВ	Rear	0	2402	Main	7.27	8	1.183	0.04	1	0.106	0.125
		ТВ	Rear	0	2440	Main	7.71	8	1.069	0.04	1	0.129	0.138
		ТВ	Rear	0	2480	Main	6.99	8	1.262	-0.05	1	0.124	0.156
2.4Ghz	ВТ	ТВ	Edge 1	0	2402	Main	7.71	8	1.069	-0.01	1	0.0577	0.062
2.46112	GFSK	ТВ	Rear	0	2402	Aux	7.67	8	1.079	0.14	1	0.097	0.105
		ТВ	Rear	0	2440	Aux	7.30	8	1.175	0.07	1	0.0934	0.110
		ТВ	Rear	0	2480	Aux	6.88	8	1.294	-0.09	1	0.107	0.138
	_	ТВ	Edge 1	0	2402	Aux	7.67	8	1.079	0.05	1	0.0587	0.063

Remark: SAR is not required for the following 2.4 GHz OFDM conditions.

- 1) When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration.
- 2) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

The highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg. So 2.4 GHz OFDM mode is not required.

Repeated SAR Test Records for 2.4GHz

							max	Tune-Up			Duty		Scaled
Band	Mode	Configure	Test Position	Dist. (mm)	Freq. (MHZ)	Chain	Power (dBm)	Limit (dBm)	Scaling Factor	Power Drift (dB)	Cycle Factor	SAR1g (mW/g)	SAR1g (mW/g)
WLAN 2.4Ghz	802.11b	ТВ	Rear	0	2437	Main	13.82	14.00	1.042	-0.01	1	1.02	1.063
WLAN 2.4Ghz	802.11b	ТВ	Rear	0	2412	Aux	14.00	14.00	1.000	-0.05	1	1.04	1.040

Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

5GHz SAR Results for Test Records

Band	Mode	Configure	Test Position	Dist. (mm)	Freq. (MHZ)	Chain	max Power (dBm)	Tune-Up Limit (dBm)	Scaling Factor	Power Drift (dB)	Duty Cycle Factor	SAR1g (mW/g)	Scaled SAR1g (mW/g)
U-NII-2A		ТВ	Rear	0	5260	Main	12.00	12.00	1.000	0.04	1	0.632	0.632
U-NII-2A		ТВ	Rear	0	5280	Main	12.00	12.00	1.000	-0.03	1	0.725	0.725
U-NII-2A		ТВ	Rear	0	5320	Main	11.89	12.00	1.026	-0.12	1	0.540	0.554
U-NII-2C		ТВ	Rear	0	5500	Main	11.36	11.50	1.033	0.10	1	0.660	0.682
U-NII-2C		ТВ	Rear	0	5580	Main	11.39	11.50	1.026	0.06	1	0.601	0.616
U-NII-2C		ТВ	Rear	0	5640	Main	11.24	11.50	1.062	-0.01	1	0.621	0.659
U-NII-3		ТВ	Rear	0	5745	Main	10.95	11.00	1.012	-0.03	1	0.852	0.862
U-NII-3		ТВ	Rear	0	5785	Main	10.92	11.00	1.019	0.09	1	1.04	1.059
U-NII-3	802.11a	ТВ	Rear	0	5825	Main	10.86	11.00	1.033	-0.09	1	0.816	0.843
U-NII-2A	002.11a	ТВ	Rear	0	5260	Aux	12.00	12.00	1.000	0.04	1	1.06	1.060
U-NII-2A		ТВ	Rear	0	5280	Aux	12.00	12.00	1.000	-0.04	1	1.19	1.190
U-NII-2A		ТВ	Rear	0	5320	Aux	12.00	12.00	1.000	0.13	1	1.12	1.120
U-NII-2C		ТВ	Rear	0	5500	Aux	11.12	11.50	1.091	0.10	1	1.08	1.179
U-NII-2C		ТВ	Rear	0	5580	Aux	11.27	11.50	1.054	0.02	1	1.10	1.160
U-NII-2C		ТВ	Rear	0	5640	Aux	11.21	11.50	1.069	-0.09	1	0.921	0.985
U-NII-3		ТВ	Rear	0	5745	Aux	10.78	11.00	1.052	0.04	1	1.10	1.157
U-NII-3		ТВ	Rear	0	5785	Aux	10.97	11.00	1.007	0.04	1	1.18	1.188
U-NII-3		ТВ	Rear	0	5825	Aux	10.99	11.00	1.002	0.05	1	1.10	1.103
U-NII-2A		ТВ	Edge1	0	5280	Main	12.00	12.00	1.000	-0.08	1	0.292	0.292
U-NII-2C		ТВ	Edge1	0	5580	Main	11.39	11.50	1.026	0.02	1	0.215	0.221
U-NII-3		ТВ	Edge1	0	5745	Main	10.95	11.00	1.012	0.16	1	0.403	0.408
U-NII-2A		ТВ	Edge1	0	5320	Aux	12.00	12.00	1.000	-0.10	1	0.750	0.750
U-NII-2C		ТВ	Edge1	0	5580	Aux	11.27	11.50	1.054	0.06	1	0.457	0.482
U-NII-3		ТВ	Edge1	0	5825	Aux	10.99	11.00	1.002	0.09	1	0.620	0.621

Remark: For devices that operate in both U-NII-1 and U-NII-2A bands using the same transmitter and antenna(s), SAR test reduction is determined according to the following

The highest reported SAR for Main Antenna is adjusted by the ratio of U-NII-1 to U-NII-2A specified maximum output power and the adjusted SAR is $\leq 1.2 \text{ W/kg}$. So Main Antenna U-NII-1 mode is not required.

¹⁾ When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements. If the highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration (802.11 mode and exposure condition); otherwise, each band is tested independently for SAR.

²⁾ When different maximum output power is specified for the bands, begin SAR measurement in the band with higher specified maximum output power. The highest reported SAR for the tested configuration is adjusted by the ratio of lower to higher specified maximum output power for the two bands. When the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for the band with lower maximum output power in that test configuration; otherwise, each band is tested independently for SAR.

Compliance Certification Services (KunShan) Inc. Date of Issue: September 26, 2017 Report No .: C170628Re

Report No .: C170628R01-B-SF

Repeated SAR Test Records for 5GHz

Band	Mode	Configure	Test Position	Dist. (mm)	Freq. (MHZ)	Chain	max Power (dBm)	Tune-Up Limit (dBm)	Scaling Factor	Power Drift (dB)	Duty Cycle Factor	SAR1g (mW/g)	Scaled SAR1g (mW/g)
U-NII-3	- 802.11a	ТВ	Rear	0	5745	Main	10.95	11	1.012	0.10	1	1.02	1.032
U-NII-2A		ТВ	Rear	0	5280	Aux	12.00	12.00	1.000	0.01	1	1.18	1.180
U-NII-2C		ТВ	Rear	0	5580	Aux	11.27	11.50	1.054	-0.15	1	1.11	1.170
U-NII-3		ТВ	Rear	0	5785	Aux	10.97	11	1.007	0.02	1	1.17	1.178

Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

10.10 REPEATED SAR MEASUREMENT

Note:

- 1. Per KDB 865664 D01v01,for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥ 0.8W/Kg
- 2. Per KDB 865664 D01v01,if the ratio of largest to smallest SAR for the original and first repeated measurement is ≤1.2 and the measured SAR <1.45W/Kg,only one repeated measurement is required.
- 3. The ratio is the difference in percentage between original and repeated measured SAR.

Band	Mode	Test Position		Freq (MHZ)	Original Measured SAR1g (mW/g)	1st Repeated SAR1g (mW/g)	Ratio	Original Measured SAR1g (mW/g)	2nd Repeated SAR1g (mW/g)	Ratio	
WLAN 2.4Ghz	802.11b	ТВ	Rear	Main	2437	1.02	1.02	1.000			-
U-NII-3	802.11a	ТВ	Rear	Main	5745	1.04	1.02	1.020			
WLAN 2.4Ghz	802.11b	ТВ	Rear	Aux	2412	1.03	1.04	1.010			
U-NII-2A	802.11a	ТВ	Rear	Aux	5280	1.19	1.18	1.008			
U-NII-2C	802.11a	ТВ	Rear	Aux	5580	1.10	1.11	1.009			
U-NII-3	802.11a	ТВ	Rear	Aux	5785	1.18	1.17	1.009			

Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

10.11 SAR MULTI XMITER ASSESSMENT

	Position	Applicable Combination
Simultaneous Transmission	Body	WLAN 5GHz+ Bluetooth

Note:

- 1. The EUT supports the Main antenna with TX/RX diversity function for WLAN and Bluetooth, the Auxiliary antenna with TX/RX diversity function for WLAN and Bluetooth.
- 2. WLAN 2.4GHz and Bluetooth will not be transmitting at same time.
- 3. WLAN 2.4GHz and WLAN 5GHz will not be transmitting at same time.
- 4. The reported SAR summation is calculated based on the same configuration and test position.
- 5. Per KDB 447498 D01v06, simultaneous transmission SAR is compliant if,
 - 1) Scalar SAR summation < 1.6W/kg.
 - 2) SPLSR = (SAR1 + SAR2)1.5 / (min. separation distance, mm), and the peak separation distance is determined from the square root of [(x1-x2)2 + (y1-y2)2 + (z1-z2)2], where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the extrapolated peak SAR locations in the zoom scan
 - If SPLSR ≤ 0.04, simultaneously transmission SAR is compliant
 - 3) Simultaneously transmission SAR measurement, and the reported multi-band SAR < 1.6W/kg

SUM ∑SA				
D. W.	Distance	Stand alone S	SUM SAR(1g)[W/kg]	
Position	[mm]	Main Antenna WLAN 5G	Main Antenna Bluetooth	Main ant 5G+ Main ant BT
Rear	0	1.059	0.156	1.215
Edge 1	0	0.408	0.062	0.470

SUM ∑SA				
Decition	Distance	Stand alone S	SUM SAR(1g)[W/kg]	
Position	[mm]	Aux Antenna WLAN 5G	Aux Antenna Bluetooth	Aux ant 5G+ Aux ant BT
Rear	0	1.190	0.138	1.328
Edge 1	0	0.750	0.063	0.813

SUM ∑SA				
Position	Distance	Stand alone S	SUM SAR(1g)[W/kg]	
	[mm]	Main Antenna WLAN 5G	Aux Antenna Bluetooth	Main ant 5G+ Aux ant BT
Rear	0	1.059	0.138	1.197
Edge 1	0	0.408	0.063	0.471

SUM ∑SA				
Position	Distance	Stand alone S	SUM SAR(1g)[W/kg]	
1 Osition	[mm]	Aux Antenna WLAN 5G	Main Antenna Bluetooth	Aux ant 5G+ Main ant BT
Rear	0	1.190	0.156	1.346
Edge 1	0	0.750	0.062	0.812

Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

11. EQUIPMENT LIST & CALIBRATION STATUS

Name of Equipment	Manufacturer	Type/Model	Serial Number	Last Calibration	Calibration Due
PC	HP	Core(rm)3.16G	CZCO48171H	N/A	N/A
Signal Generator	Agilent	E8257C	US37101915	11/01/2016	10/31/2017
S-Parameter Network Analyzer	Agilent	E5071B	MY42301382	02/28/2017	02/27/2018
Power meter	Anritsu	ML2495A	1445010	02/28/2017	02/27/2018
Power sensor	Anritsu	MA2411B	1339220	02/28/2017	02/27/2018
E-field PROBE	SPEAG	EX3DV4	3820	06/27/2017	06/26/2018
DAE	SPEAG	DEA4	905	06/20/2017	06/19/2018
Temperature meter	TES	TES 1360	050907372	02/15/2017	02/14/2018
Electro Thermometer	DTM	DTM3000	3030	01/04/2017	01/03/2018
DIPOLE 2450MHZ ANTENNA	SPEAG	D2450V2	817	05/31/2016	05/30/2017
DIPOLE 2450MHZ ANTENNA	SPEAG	D2450V2	817	05/30/2017	05/29/2018
DIPOLE 5GHZ ANTENNA	SPEAG	D5GHzV2	1095	05/25/2016	05/24/2017
DIPOLE 5GHZ ANTENNA	SPEAG	D5GHzV2	1095	05/23/2017	05/22/2018
DUMMY PROBE	SPEAG	DP_2	SPDP2001AA	N/A	N/A
SAM PHANTOM (ELI4 v4.0)	SPEAG	QDOVA001BB	1102	N/A	N/A
Twin SAM Phantom	SPEAG	QD000P40CD	1609	N/A	N/A
ROBOT	SPEAG	TX60	F10/5E6AA1/A101	N/A	N/A
ROBOT KRC	SPEAG	CS8C	F10/5E6AA1/C101	N/A	N/A
LIQUID CALIBRATION KIT	ANTENNESSA	41/05 OCP9	00425167	N/A	N/A

Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

12. FACILITIES

All measurement facilities used to collect the measurement data are located at

No.10, Weiye Rd., Innovation Park, Eco & Tec. Development Part, Kunshan City, Jiangsu Province, China.

13. REFERENCES

- [1] Federal Communications Commission, \Report and order: Guidelines for evaluating the environ-mental effects of radiofrequency radiation", Tech. Rep. FCC 96-326, FCC, Washington, D.C. 20554, 1996.
- [2] David L. Means Kwok Chan, Robert F. Cleveland, \Evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields", Tech. Rep., Federal Communication Commission, O_ce of Engineering & Technology, Washington, DC, 1997.
- [3] Thomas Schmid, Oliver Egger, and Niels Kuster, \Automated E-_eld scanning system for dosimetric assessments", IEEE Transactions on Microwave Theory and Techniques, vol. 44, pp. 105{113, Jan. 1996.
- [4] Niels Kuster, Ralph K.astle, and Thomas Schmid, \Dosimetric evaluation of mobile communications equipment with known precision", IEICE Transactions on Communications, vol. E80-B, no. 5, pp. 645{652, May 1997.
- [5] CENELEC, \Considerations for evaluating of human exposure to electromagnetic fields (EMFs) from mobile telecommunication equipment (MTE) in the frequency range 30MHz 6GHz", Tech. Rep., CENELEC, European Committee for Electrotechnical Standardization, Brussels, 1997.
- [6] ANSI, ANSI/IEEE C95.1-1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, The Institute of Electrical and Electronics Engineers, Inc., New York, NY 10017, 1992.
- [7] Katja Pokovic, Thomas Schmid, and Niels Kuster, \Robust setup for precise calibration of E-_eld probes in tissue simulating liquids at mobile communications frequencies", in ICECOM _ 97, Dubrovnik, October 15{17, 1997, pp. 120{124.
- [8] Katja Pokovic, Thomas Schmid, and Niels Kuster, \E-_eld probe with improved isotropy in brain simulating liquids", in Proceedings of the ELMAR, Zadar, Croatia, 23{25 June, 1996, pp. 172{175.
- [9] Volker Hombach, Klaus Meier, Michael Burkhardt, Eberhard K. uhn, and Niels Kuster, \The dependence of EM energy absorption upon human head modeling at 900 MHz", IEEE Transactions on Microwave Theory and Techniques, vol. 44, no. 10, pp. 1865{1873, Oct. 1996.
- [10] Klaus Meier, Ralf Kastle, Volker Hombach, Roger Tay, and Niels Kuster, \The dependence of EM energy absorption upon human head modeling at 1800 MHz", IEEE Transactions on Microwave Theory and Techniques, Oct. 1997, in press.
- [11] W. Gander, Computermathematik, Birkhaeuser, Basel, 1992.
- [12] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recepies in C, The Art of Scientific Computing, Second Edition, Cambridge University Press, 1992..Dosimetric Evaluation of Sample device, month 1998 9
- [13] NIS81 NAMAS, \The treatment of uncertainty in EMC measurement", Tech. Rep., NAMAS Executive, National Physical Laboratory, Teddington, Middlesex, England, 1994.
- [14] Barry N. Taylor and Christ E. Kuyatt, \Guidelines for evaluating and expressing the uncertainty of NIST measurement results", Tech. Rep., National Institute of Standards and Technology, 1994. Dosimetric Evaluation of Sample device, month 1998 10

Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

14. LABORATORY ACCREDITATIONS AND LISTING

FCC -Designation Number: CN1172.

Compliance Certification Services Inc. Kun shan Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files and the Designation Number: CN1172.

In addition, the test facilities are listed with Industry Canada, Certification and Engineering Bureau, 2324E for SAR chamber.

Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

APPENDIX A: DUT AND SAR SETUP PHOTO

APPENDIX B: PLOTS OF PERFORMANCE CHECK

The plots are showing as followings.

Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

Date: 8/14/2017

Test Laboratory: Compliance Certification Services Inc.

SystemPerformanceCheck-Body D2450

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: 817

Communication System: UID 0, CW; Communication System Band: D2450 (2450.0 MHz); Frequency:

2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.945 \text{ S/m}$; $\varepsilon_r = 51.682$; $\rho = 1000 \text{ kg/m}^3$

Room Ambient Temperature: 22°C; Liquid Temperature: 21.5°C

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

- Probe: EX3DV4 SN3820; ConvF(7.1, 7.1, 7.1); Calibrated: 6/27/2017;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 6/20/2017
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:xxxx
- DASY52 52.8.8(1222);
- SEMCAD X Version 14.6.10 (7331)

System Performance Check at Frequencies above 1 GHz/Pin=250 mW, dist=10mm (EX-Probe)/Area Scan (9x10x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 20.5 W/kg

System Performance Check at Frequencies above 1 GHz/Pin=250 mW, dist=10mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 109.5 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 34.1 W/kg

SAR(1 g) = 12.8 W/kg; SAR(10 g) = 6.18 W/kg Maximum value of SAR (measured) = 22.2 W/kg

0 dB = 22.2 W/kg = 13.46 dBW/kg

Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

Date: 8/15/2017

Test Laboratory: Compliance Certification Services Inc.

SystemPerformanceCheck-Body D5200

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1095

Communication System: UID 0, CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz);

Frequency: 5200 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5200 MHz; σ = 5.233 S/m; ε_r = 48.913; ρ = 1000 kg/m³

Room Ambient Temperature: 22°C; Liquid Temperature: 21.5°C

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

- Probe: EX3DV4 SN3820; ConvF(4.59, 4.59, 4.59); Calibrated: 6/27/2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905: Calibrated: 6/20/2017
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:xxxx
- DASY52 52.8.8(1222);
- SEMCAD X Version 14.6.10 (7331)

System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5200 MHz 2/Area Scan (10x10x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 20.5 W/kg

System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5200 MHz 2/Zoom Scan (4x4x1.4mm, graded), dist=1.4mm (7x7x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 70.45 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 39.5 W/kg

SAR(1 g) = 7.72 W/kg; SAR(10 g) = 2.24 W/kg

0 dB = 20.5 W/kg = 13.12 dBW/kg

Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

Date: 8/15/2017

Test Laboratory: Compliance Certification Services Inc.

SystemPerformanceCheck-Body D5300

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1095

Communication System: UID 0, CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz);

Frequency: 5300 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5300 MHz; σ = 5.364 S/m; ε_r = 48.673; ρ = 1000 kg/m³

Room Ambient Temperature: 22°C; Liquid Temperature: 21.5°C

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

- Probe: EX3DV4 SN3820; ConvF(4.39, 4.39, 4.39); Calibrated: 6/27/2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905: Calibrated: 6/20/2017
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:xxxx
- DASY52 52.8.8(1222);
- SEMCAD X Version 14.6.10 (7331)

System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5300 MHz /Area Scan (10x10x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 22.2 W/kg

System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5300 MHz /Zoom Scan (4x4x1.4mm, graded), dist=1.4mm (7x7x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 70.43 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 42.8 W/kg

SAR(1 g) = 7.84 W/kg; SAR(10 g) = 2.34 W/kg

Maximum value of SAR (measured) = 21.4 W/kg

0 dB = 21.4 W/kg = 13.30 dBW/kg

Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

Test Laboratory: Compliance Certification Services Inc. Date: 8/15/2017

SystemPerformanceCheck-Body D5500

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1095

Communication System: UID 0, CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz);

Frequency: 5500 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5500 MHz; σ = 5.632 S/m; ε_r = 48.202; ρ = 1000 kg/m³

Room Ambient Temperature: 22°C; Liquid Temperature: 21.5°C

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

- Probe: EX3DV4 SN3820; ConvF(3.94, 3.94, 3.94); Calibrated: 6/27/2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 6/20/2017
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:xxxx
- DASY52 52.8.8(1222);
- SEMCAD X Version 14.6.10 (7331)

System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5500 MHz/Area Scan (10x10x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 22.3 W/kg

System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5500 MHz/Zoom Scan (4x4x1.4mm, graded), dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dv=4mm, dz=1.4mm

Reference Value = 74.51 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 43.7 W/kg

SAR(1 g) = 7.95 W/kg; SAR(10 g) = 2.37 W/kg Maximum value of SAR (measured) = 24.7 W/kg

0 dB = 24.7 W/kg = 13.93 dBW/kg

Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

Date: 8/15/2017

Test Laboratory: Compliance Certification Services Inc.

SystemPerformanceCheck-Body D5600

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1095

Communication System: UID 0, CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz);

Frequency: 5600 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5600 MHz; σ = 5.773 S/m; ϵ_r = 47.973; ρ = 1000 kg/m³

Room Ambient Temperature: 22°C; Liquid Temperature: 21.5°C

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

- Probe: EX3DV4 SN3820; ConvF(3.8, 3.8, 3.8); Calibrated: 6/27/2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 6/20/2017
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:xxxx
- DASY52 52.8.8(1222);
- SEMCAD X Version 14.6.10 (7331)

System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5600 MHz 2/Area Scan (10x10x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 24.0 W/kg

System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5600 MHz 2/Zoom Scan (4x4x1.4mm, graded), dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dv=4mm, dz=1.4mm

Reference Value = 73.50 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 46.9 W/kg

SAR(1 g) = 7.87 W/kg; SAR(10 g) = 2.41 W/kg Maximum value of SAR (measured) = 26.3 W/kg

0 dB = 26.3 W/kg = 14.20 dBW/kg

Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

Date: 8/15/2017

Test Laboratory: Compliance Certification Services Inc.

SystemPerformanceCheck-Body D5800

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1095

Communication System: UID 0, CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz);

Frequency: 5800 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5800 MHz; σ = 6.071 S/m; ε_r = 47.521; ρ = 1000 kg/m³

Room Ambient Temperature: 22°C; Liquid Temperature: 21.5°C

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

- Probe: EX3DV4 SN3820; ConvF(4.04, 4.04, 4.04); Calibrated: 6/27/2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 6/20/2017
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:xxxx
- DASY52 52.8.8(1222);
- SEMCAD X Version 14.6.10 (7331)

System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5800 MHz 2/Area Scan (10x10x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 21.5 W/kg

System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5800 MHz 2/Zoom Scan (4x4x1.4mm, graded), dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dv=4mm, dz=1.4mm

Reference Value = 70.54 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 45.8 W/kg

SAR(1 g) = 7.68 W/kg; SAR(10 g) = 2.29 W/kg Maximum value of SAR (measured) = 24.6 W/kg

0 dB = 24.6 W/kg = 13.91 dBW/kg

Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

Date: 9/24/2017

Test Laboratory: Compliance Certification Services Inc.

SystemPerformanceCheck-Body D2450

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: 817

Communication System: UID 0, CW; Communication System Band: D2450 (2450.0 MHz); Frequency:

2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; σ = 1.969 S/m; ε_r = 51.052; ρ = 1000 kg/m³

Room Ambient Temperature: 22°C; Liquid Temperature: 21.5°C

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

- Probe: EX3DV4 SN3820; ConvF(7.1, 7.1, 7.1); Calibrated: 6/27/2017;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 6/20/2017
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:xxxx
- DASY52 52.8.8(1222);
- SEMCAD X Version 14.6.10 (7331)

System Performance Check at Frequencies above 1 GHz/Pin=250 mW, dist=10mm (EX-Probe)/Area Scan (9x10x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 19.7 W/kg

System Performance Check at Frequencies above 1 GHz/Pin=250 mW, dist=10mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 105.5 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 30.2 W/kg

SAR(1 g) = 12.6 W/kg; SAR(10 g) = 6.17 W/kg Maximum value of SAR (measured) = 22.4 W/kg

0 dB = 22.4 W/kg = 13.50 dBW/kg

Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

Date: 9/25/2017

Test Laboratory: Compliance Certification Services Inc.

SystemPerformanceCheck-Body D5200

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: 1095

Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz);

Frequency: 5200 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5200 MHz; σ = 5.346 S/m; ε_r = 49.145; ρ = 1000 kg/m³

Room Ambient Temperature: 22°C; Liquid Temperature: 21.5°C

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

- Probe: EX3DV4 SN3820; ConvF(4.59, 4.59, 4.59); Calibrated: 6/27/2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 6/20/2017
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:xxxx
- DASY52 52.8.8(1222);
- SEMCAD X Version 14.6.10 (7331)

System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5200 MHz 20/Area Scan (10x10x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 16.1 W/kg

System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5200 MHz 20/Zoom Scan (4x4x1.4mm, graded), dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dv=4mm, dz=1.4mm

Reference Value = 72.75 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 40.9 W/kg

SAR(1 g) = 7.26 W/kg; SAR(10 g) = 2.28 W/kg Maximum value of SAR (measured) = 22.1 W/kg

0 dB = 22.1 W/kg = 13.44 dBW/kg

Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

Date: 9/25/2017

Test Laboratory: Compliance Certification Services Inc.

SystemPerformanceCheck-Body D5300

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: 1095

Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz);

Frequency: 5300 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5300 MHz; σ = 5.482 S/m; ϵ_r = 48.939; ρ = 1000 kg/m³

Room Ambient Temperature: 22°C; Liquid Temperature: 21.5°C

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

- Probe: EX3DV4 SN3820; ConvF(4.39, 4.39, 4.39); Calibrated: 6/27/2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 6/20/2017
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:xxxx
- DASY52 52.8.8(1222);
- SEMCAD X Version 14.6.10 (7331)

System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5300 MHz 19.6/Area Scan (9x10x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 16.7 W/kg

System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5300 MHz 19.6/Zoom Scan (4x4x1.4mm, graded), dist=1.4mm (8x8x7)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 70.69 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 39.5 W/kg

SAR(1 g) = 7.68 W/kg; SAR(10 g) = 2.31 W/kgMaximum value of SAR (measured) = 21.1 W/kg

0 dB = 21.1 W/kg = 13.24 dBW/kg

Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

Date: 9/25/2017

Test Laboratory: Compliance Certification Services Inc.

SystemPerformanceCheck-Body D5500

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: 1095

Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz);

Frequency: 5500 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5500 MHz; σ = 5.72 S/m; ε_r = 48.593; ρ = 1000 kg/m³

Room Ambient Temperature: 22°C; Liquid Temperature: 21.5°C

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

- Probe: EX3DV4 SN3820; ConvF(3.94, 3.94, 3.94); Calibrated: 6/27/2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 6/20/2017
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:xxxx
- DASY52 52.8.8(1222);
- SEMCAD X Version 14.6.10 (7331)

System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5500 MHz/Area Scan (9x10x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 21.8 W/kg

System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5500 MHz/Zoom Scan (4x4x1.4mm, graded), dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dv=4mm, dz=1.4mm

Reference Value = 73.72 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 39.6 W/kg

SAR(1 g) = 7.96 W/kg; SAR(10 g) = 2.39 W/kg Maximum value of SAR (measured) = 21.7 W/kg

0 dB = 21.7 W/kg = 13.36 dBW/kg

Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

Date: 9/25/2017

Test Laboratory: Compliance Certification Services Inc.

SystemPerformanceCheck-Body D5600

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: 1095

Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz);

Frequency: 5600 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5600 MHz; σ = 5.909 S/m; ε_r = 48.306; ρ = 1000 kg/m³

Room Ambient Temperature: 22°C; Liquid Temperature: 21.5°C

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

- Probe: EX3DV4 SN3820; ConvF(3.8, 3.8, 3.8); Calibrated: 6/27/2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 6/20/2017
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:xxxx
- DASY52 52.8.8(1222);
- SEMCAD X Version 14.6.10 (7331)

System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5600 MHz/Area Scan (9x10x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 21.2 W/kg

System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5600 MHz/Zoom Scan (4x4x1.4mm, graded), dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dv=4mm, dz=1.4mm

Reference Value = 72.17 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 41.8 W/kg

SAR(1 g) = 7.92 W/kg; SAR(10 g) = 2.35 W/kg Maximum value of SAR (measured) = 22.5 W/kg

0 dB = 22.5 W/kg = 13.52 dBW/kg

Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

Date: 9/25/2017

Test Laboratory: Compliance Certification Services Inc.

SystemPerformanceCheck-Body D5800

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: 1095

Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz);

Frequency: 5800 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5800 MHz; σ = 6.148 S/m; ε_r = 47.841; ρ = 1000 kg/m³

Room Ambient Temperature: 22°C; Liquid Temperature: 21.5°C

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

- Probe: EX3DV4 SN3820; ConvF(4.04, 4.04, 4.04); Calibrated: 6/27/2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 6/20/2017
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:xxxx
- DASY52 52.8.8(1222);
- SEMCAD X Version 14.6.10 (7331)

System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5800 MHz/Area Scan (9x10x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 21.2 W/kg

System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5800 MHz/Zoom Scan (4x4x1.4mm, graded), dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dv=4mm, dz=1.4mm

Reference Value = 68.39 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 43.3 W/kg

SAR(1 g) = 7.81 W/kg; SAR(10 g) = 2.38 W/kg Maximum value of SAR (measured) = 22.3 W/kg

0 dB = 22.3 W/kg = 13.48 dBW/kg

Date of Issue: September 26, 2017 Report No .: C170628R01-B-SF

APPENDIX C: DASY CALIBRATION CERTIFICATE

The DASY Calibration Certificates are showing in the file named Appendix C DASY **Calibration Certificate.**

APPENDIX D: PLOTS OF SAR TEST RESULT

The plots are showing in the file named Appendix D Plots of SAR Test Result

END REPORT