Problem 01: This problem considers two compled ODEs with different timescales & and &:

$$\frac{dz}{dt} = \frac{1}{61} \left[-z(t) + y(t) + I(t) \right]$$

$$\frac{dz}{dt} = \frac{1}{62} \left[-z(t) + z(t) + z(t) \right]$$

Paret (a): it means $\frac{dx}{dt}$ envolves much faster. Than $\frac{dy}{dt}$. Thus, we assume alt) trapidly neaches a steady state relative to yet), leading to $\frac{dx}{dt} \approx 0$.

From the equation $e_1^{-1}\left[-x(t)+y(t)+I(t)\right]\approx 0$

substituting
$$x(t)$$
 in the equation for $y(t)$:

Substituting $x(t)$ in the equation for $y(t)$:

$$\frac{dy}{dt} = \tilde{\epsilon}_2 \left[-y(t) + (y(t) + F(t)) + A \right]$$

This differ from the provided equation (4), suggesting that if there was an enrior in interpreting the steady-state condition on the simplefication.

Part (b): if $E_2 \ll t_1$ then dy/dt envolves fastern than dx/dt suggesting $dy/dt \approx 0$: From the equation $E_2^1 \left[-y(t) + x(t) + A \right] = 0$.

substituting y(t) in the equation for
$$x(t)$$
:

$$\frac{1}{2} = \frac{1}{2} \left[-x(t) + x(t) + A + I(t) \right]$$

$$\frac{1}{2} = \frac{1}{2} \left[-x(t) + x(t) + A + I(t) \right]$$

This nesults in an approximation closers to equation (5) including that simplification based on EXXE1 is consistent.

Part(c): if E1 << E2, then an none of the approximations leading to equations (4) or (5) would hold because both variables envolve on the same timescale, preventing any simplification based on timescale separcation.

Problem 020

Given the channel equation:

And the influence on the voltage: $\frac{dR}{dt} = \vec{E_1} \left[-R(t) + R_0(V(t)) \right]$ $\frac{dR}{dt} = \vec{E_2} \left[-V(t) - V_0 + R(t) A \right]$

Pareta: if E2 KE1 then V(t) rapidly adjusts, leading to dydt & o implying: ~ (t) & - Vo + R(t) ~A

This dimension reduction allows us to describe V(t) in terms of R(t), making it a consistent simplification if f(t)

Part (b): if (1 % (2), it becomes impossible to simplify on nederce dimensions based on the timescale because both R(t) and v(t) expressions at similar trates.

Paret (0): if E_ KK E_2, R(+) stabilizes queckly; R(A) × Po (V(A))

This feedback impacts dy/dt, allowing. v(t) to be described in terms of R(+), Simplifying the system.