Soldering Basics

- Clean area
- Pre-tin wires and tip
- Clamp your work
- Apply heat to the wire and the pad
- · Add solder to the part not the iron
- Apply for \sim 5 sec.
- Should wet part and pad clearly
- Clear the flux residue

Review this:

Good !

BAD!

http://store.curiousinventor.com/guides/how_to_solder/

Review of Preliminaries - Soldering

Steps necessary for good soldering:

- Clean working area (if necessary)
- Pre-tin wires and tip
- Clamp your work
- Apply heat to the wire and the pad
- Add solder to the part not the iron
- Apply for \sim 5 sec.
- Should wet part and pad clearly
- Clean the flux residue (if necessary)

Review of Preliminaries - Soldering

Steps necessary for good soldering:

- Clean working area (if necessary)
- Pre-tin wires and tip
- Clamp your work
- Apply heat to the wire and the pad
 - Add solder to the part not the iron
- Apply for \sim 5 sec.
- Should wet part and pad clearly
- Clean the flux residue (if necessary)

Review of Preliminaries - Soldering

Steps necessary for good soldering:

solder

Soldering iron

- Clean working area (if necessary) Pre-tin wires and tip
- Clamp your work
- Apply heat to the wire and the pad
 - Add solder to the part not the iron
 - Apply for \sim 5 sec.
- Should wet part and pad clearly
- Clean the flux residue (if necessary)

DC Motors

Use to provide a torque to a shaft, capable of spinning the shaft to some velocity under the application of a DC current

DC Motors

Use to provide a torque to a shaft, capable of spinning the shaft to some velocity under the application of a DC current

 $\vec{F} = i\vec{l} \times \vec{B}$ $\tau = \vec{r}_1 \times \vec{F}_1 + \vec{r}_2 \times \vec{F}_2$

Lorenz Law

Fleming's left-hand rule for motors

- Left index finger is pointing in the direction of the magnetic field vector
- Left middle finger points in the direction of the current vector
 - Thumb indicates the direction of the force

DC Motors: commutator

DC Motors: commutator

DC Motors: commutator

DC Motors: torque ripple

DC Motors: torque ripple

4-segment commutator:

DC Motors: torque ripple

4-segment commutator:

DC Motors: torque ripple

4-segment commutator:

Now, greatly reduced torque ripple

DC Motors: torque ripple

4-segment commutator:

Motor: Electrical Equivalent Circuit

DC motor can be represented as an electrical element in a circuit diagram:

- V_m is the across element voltage (motor voltage) i_m is the through element current (motor current)

Motor: Electrical Equivalent Circuit

An equivalent circuit can be constructed to model the operation of the motor from an electrical perspective.

 $V_m = k_e \omega + i_m R_m$

Motor: Electrical Equivalent Circuit

DC motor can be represented as an electrical element in a circuit diagram:

- V_m is the across element voltage (motor voltage) i_m is the through element current (motor current)

Lorenz Law

Fleming's left-hand rule for motors

- Left index finger is pointing in the direction of the magnetic field vector
- Left middle finger points in the direction of the current vector
- Thumb indicates the direction of the force

Electromotive Force in a Wire moving through B-field

http://web.mit.edu/8.02t/www/materials/StudyGuide/guide10.pdf

Motor: Electrical Equivalent Circuit

The DC motor connected to the battery with a switch in between.

Motor: Electrical Equivalent Circuit

Combined equivalent circuit diagram for the simple battery – motor system.

Motor: Electrical Equivalent Circuit

Analysis

Motor: Electrical Equivalent Circuit

Analysis

Motor: Electrical Equivalent Circuit Analysis

Motor: Inductive Kickback

- Current though the motor interrupted inductive kickback
- Reversed-biased snubber diodes short the resulting voltage spike

Summary: DC Motors

- DC Motors provide actuation for many mechatronic systems such as electric cars
- A commutator ensures that the torque spins the shaft in one direction for a certain
- Back EMF generates a voltage across the winding, limiting the motor current, as a function of the angular velocity of the shaft (and winding)
- Two important implications of back EMF:
- It will limit the ultimate angular velocity of the shaft (if it didn't all unloaded DC motors would likely disintegrate: $\omega \to \infty$)
 - Can be used for velocity sensing
- Highest motor current at stall ($\omega = 0$). Motor controllers must be designed to handle stall
- Snubber diodes help to remove voltage spikes due to switching current through the

Motor Controllers

>^E

- Motor controller is an amplifier which converts the weak signals from microcontroller GPIO ports to high current that drive the motor.
- Solid-state using Power FET technology (e.g. NDP7060L)
 - Fast switching time
 - Large currents

Field Effect Transistor: A Review

- Can be n-channel or p-channel
 - Most common n-chanel
- Fabricated on a doped silicon substrate
- Has four terminals: Source, Drain, Gate, and Body.
- connected to Source

Field Effect Transistor: A Review

FET Operation (n-channel)

- source/body is usually connected to
- drain is connected to V_{dd}
- Initially source and drain isolated through a dual PN junction

Field Effect Transistor: A Review

FET Operation (n-channel)

- To switch transistor on, gate is connected to positive voltage
- Accumulation of **positive** charges on charges just underneath the gate, in the gate electrode attracts negative the channel region

Field Effect Transistor: A Review

gate

FET Operation (n-channel)

- When the density of negative charges threshold, the channel becomes in the channel reaches a certain conductive
- Above gate threshold voltage
- Initially, channel acts like a resistor, FET operates in the linear region

Field Effect Transistor: A Review

FET Operation (n-channel)

- As drain to source voltage (V_{ds})
 increases, the channel gets pinched off
 at the drain, limiting the drain to
 source current (i_{ds})
- FET is now operating in the saturation

Field Effect Transistor: A Review

I/V characteristics for a NDP7060L Power FET

sheet NDP 7060L

Summary: Field Effect Transistors

- Power FETs are used as solid state switches in a motor controller
- In an n-channel FET, positive charges on the gate form a n-type channel between the source and the drain
- Once on, a FET operates in either linear or saturated region

Motor Controllers: FETS as switches

- Switch is now replaced with a FET
- Single FET motor controller – Only turn in one direction
- Motor and battery resistance in series
- Analyze for maximum (i.e. stall) current

single transistor controller

Motor Controllers: FETS as switches

- Modify electric diagram for stall (ω = 0)
- No inductive component
- Load-line analysis

single transistor controller

Motor Controllers: FETS as switches

battery

motor

- E.g. assume
- $V_{b,ini} = 5 \text{ V, R}_m = 0.06 \Omega, R_b = 0.01 \Omega$
 - $V_{\rm gs}$ provided by the MCU

MCU

I/V characteristics for a NDP7060L Power FET

single transistor controller

Motor Controllers: FETS as switches

- E.g. assume
- $V_{b,ini}$ = 5 V, R_m = 0.06 Ω , R_b = 0.01 Ω
 - V_{gs} provided by the MCU

I/V characteristics for a NDP7060L Power FET

single transistor controller

Motor Controllers: FETS as switches

- E.g. assume
- $V_{b,ini} = 5 \text{ V, R}_m = 0.06 \Omega, R_b = 0.01 \Omega$ - $V_{\rm gs}$ provided by the MCU

I/V characteristics for a NDP7060L Power FET

single transistor controller

Motor Controllers: FETS as switches

- E.g. assume
- $V_{b,ini}$ = 5 V, R_m = 0.06 Ω , R_b = 0.01 Ω
 - V_{gs} provided by the MCU

Datasheet NDP 7060L I/V characteristics for a NDP7060L Power FET

single transistor controller

Motor Controllers: FETS as

battery

motor

switches E.g. assume

- $V_{b,ini} = 5 \text{ V, R}_m = 0.06 \Omega, R_b = 0.01 \Omega$
 - V_{gs} provided by the MCU

Z O

MCU

single transistor controller

I/V characteristics for a NDP7060L Power FET

Motor Controllers: FETS as switches

Motor Controllers: the need for FET

drivers

battery

E.g. assume

Typical Operating Circuit

state, $V_{\rm gs}$ must be as high as possible (up to gate voltage breakdown)

To reduce the power dissipation in ON

3.3 V output from GPIO not high enough

V_{gs} may be above V_{dd}

I/V characteristics for a NDP7060L Power FET

E.g. MAX 621elevates ON output voltage by

11 V above V_{dd}.

In some cases much higher than V_{dd}

voltage to a higher ON level.

Solid-state circuits that elevate ON output

Solution: FET Drivers

single transistor controller

Summary: Motor Controllers

- Motor controllers are used to control the actuation of a motor using one or more FETs
- Load-line analysis is used to determine power dissipated in a FET in a motor
- $\bullet \quad \text{To lower dissipated power in FET, $\ensuremath{V_{gs}}$ needs to be as high as possible }$
- A FET driver is used to elevate $V_{\rm gs}$ above $V_{\rm dd} ensuring proper switching$

Motor Controllers Topologies

- Single FET motor controllers have the simplest topology
- Can only accelerate, and coast to stop
- Other topologies allow for:
 - Breaking
- Backwards motion
- Most common, full H-bridge
- Possible to use a half-bridge to simplify the controller design

single transistor controller

Motor Controllers Topology: Single FET

• FET ON

Accelerates

single transistor controller

Motor Controllers Topology: Single FET

FET OFF

Coasts (open connectors) to stop

single transistor controller

Motor Controllers Topology: Half-Bridge

- It is possible to accelerate breaking by use the concept of **dynamic breaking**
- The V_{emf} generated by the motor is used to drive current through armature to cause breaking of the motor
- Required additional FET

Motor Controllers Topology: Half-Bridge

Accelerate:A ON, B OFF

Half-bridge

Motor Controllers Topology: Half-Bridge

Dynamic Breaking: – A OFF, B ON

 The most versatile motor controller topology is an H-

Motor Controllers Topology – H-Bridge

- bridge
- Requires four (4) FETs per motor

Motor Controllers Topology – H-Bridge

Motor Controllers Topology – H-Bridge

- The most versatile motor controller topology
- Requires four (4) FETs per motor
- Supports:
- Motion forward

- The most versatile motor controller topology
- Requires four (4) FETs per motor
- Supports:
- Motion forward
- Motion backward

Motor Controllers Topology – H-Bridge

- The most versatile motor controller topology
- Requires four (4) FETs per motor
- Supports:
- Motion forward
- Breaking
- Motion backward

Motor Controllers Topology – H-Bridge

- The most versatile motor controller topology
- Requires four (4) FETs per motor
 - Supports:
- Motion forward
- Motion backward Breaking
- Caution H-bridge can short V_{dd} and ground

Motor Controllers Topology – H-Bridge

- The most versatile motor controller topology
- Requires four (4) FETs per motor
- Supports:
- Motion forward
- Motion backward
 - Breaking
- $\label{eq:caution} \textbf{Caution} \textbf{H-bridge can short} \\ \textbf{V}_{\text{dd}} \text{ and ground}$
- Kick-back snubber diodes

Motor Controllers

- Motor controller is an amplifier which converts the weak signals from microcontroller GPIO ports to high current that drive the motor.
- Solid-state using Power FET technology (e.g. NDP7060L)
 - Fast switching time
 - Large currents

Summary: Motor Controller Topology

- Single FET controller allows for acceleration (ON) or coasting (OFF)
- Half-bridge allows for acceleration, breaking, and coasting
- The most versatile motor controller configuration is an H-bridge
- H-bridge allows for
- Motor actuation both back and forth
- Dynamic breaking
- Careful not to short battery terminals in H-bridge!

Field Effect Transistor: A Review

I/V characteristics for a NDP7060L Power FET

atasheet NDP 7060

Motor Controllers: the need for FET drivers

Motor Controllers: FETS as switches

battery

- To reduce the power dissipation in ON state, $V_{\rm gs}$ must be as high as possible (up to gate voltage breakdown)
- V_{gs} may be above V_{dd}
- 3.3 V output from GPIO not high enough
- Solution: FET Drivers
- Solid-state circuits that elevate ON output voltage to a higher ON level.
- In some cases much higher than V_{dd}
- E.g. MAX 621elevates ON output voltage by

FET driver

S

 $-V_{b,ini}=5$ V, $R_m=0.06$ Ω , $R_b=0.01$ Ω

E.g. assume

V_{gs} provided by the MCU

 $V_{gs} = 14.3 V$

MC

single transistor controller

I/V characteristics for a NDP7060L Power FET

Summary: Motor Controller Topology

- Single FET controller allows for acceleration (ON) or coasting (OFF)
- Half-bridge allows for acceleration, breaking, and coasting
- The most versatile motor controller configuration is an H-bridge
- H-bridge allows for
- Motor actuation both back and forth
- Dynamic breaking
- Careful not to short battery terminals in H-bridge!

Control for Autonomous Car Actuation

- Autonomous car contains two main actuators
- DC Motors: provide forward propulsion
- Servos: provide steering
- Pulse-width modulation (PWM) allows for control of both

Pulse-Width Modulation (PWM): DC Motors

Pulse-Width Modulation (PWM) is used to vary torque produced by a motor while still using a driver FET only in either completely off or completely on states.

- Alternative (Bad approach):
- Use the FET as a variable resistor
- Large power dissipation by the FET
- Recall that: $\tau = k_t i_m$
- Pulse i_m by switching it fast on and off
- Solid-state switch

Pulse-Width Modulation (PWM): DC Motors

Pulse-Width Modulation (PWM) is used to vary torque produced by a motor while still using a driver FET only in either completely off or completely on states.

- Alternative (Bad approach):
- Use the FET as a variable resistor
- Large power dissipation by the FET
- Recall that: $\tau = k_t i_m$
- Duty cycle: $d = \frac{t_{on}}{T}$
- $\overline{i_m} = d \cdot i_m$ $\overline{\tau} = k_{\rm r} \cdot \overline{i_m}$

RC Servo: Introduction

- RC servos
- Initially developed for position control in radio-controlled RC applications
- Low precision combination of DC motor and position feedback.
- Currently used for other than RC applications in robotics, mechatronics

https://www.hackmeister.dk/2010/07/controlling-an-rc-servo-withan-fpga/

RC Servo: Control

- Servo operation:
- Most RC servo has three wires, almost universally color coded accordingly
- » RED supply voltage (Vin), 5 V.
 - » BLACK Ground (GND)
 » WHITE Signal (S)
- Servo can typically rotate +/- 90 deg.
- Signal (S) causes the output shaft to rotate to a set position.
- Position encoded in a pulse train provided
- Period of 20 30 ms (typical)
 - Pulse 0.5 3 ms (typical)

RC Servo: PWM

Note: PWM in servo control different than for PWM in motors!

PWM using MCU / KL25Z128

- Usually MCUs have ability to configure PWM for use with the GPIOs
- Using timers to provide output PWM signal to both motors and servo
- Independent channels per timer
- Must be configured to assign timer and channel to a desired GPIO for output
- Configure the PWM from a timer component in Processor Expert
- Drag down configure to output to a
 - Be careful of timer usage certain pin
- Can combine
- Use methods to adjust for:

– Duty-cycle (motor)

Pulse (servo)

Review: Power Supply for Autonomous Car

- Different power needs for various sub-systems
- Drive the motors (large currents)

On-board power supply needed to:

- Drive the servo (moderate currents)
- Power the MCU (low currents, voltage stability)
- Power the sensors (low currents, voltage stability
- Battery is the main reservoir of on-board power
- Many battery types
- Most common types for electric vehicles are Lithium ion batteries (high energy density, moderate cost, large discharge/charge cycle life)

Summary: PWM Motor and Servo Control

- Pulse-width modulation (PWM) is an efficient way of controlling power, and thus torque, of the motors
- Can be used for velocity control
 - Avoids power drop over the FETs
- PWM duty-cycle control the power
- Servos use an input pulse-train to control the direction of the output shaft
 - Can use PWM for control the direction of the servo
- PWM pulse duration controls the direction

Review: Power Supply for Autonomous Car

Schematic of the required power supply for the sub-systems

Regulator

Power Supply 1: Linear Voltage

- Reduces the supply voltage to a stable value set value
- Output voltage less than input voltage
 - A variable (controlled) resistor
 - Key parameters
- Output voltage (e.g. 5 V)
 - Input voltage range
- Output current
- Dropout
- E.g.: LM2940CT-5.0/NOPB
- 500mV Dropout
 - 0V to 26V input 1 A max output

Power Supply 1: Linear Voltage Regulator

Review: Power Supply for Autonomous Car

Schematic of the required power supply for the sub-systems

Review: Power Supply for Autonomous Car

Schemati \mathfrak{g}_{0} of the required power supply for the sub-systems \mathfrak{g}_{0}

Power Supply II: Boost Converter

- Used to boost the input voltage
- Uses a storage inductor as the storage element for the boost stage

Power Supply II: DC/DC Converter

- Must elevate the voltage to provide a stable power supply (say 5 V)
- This can be down using switching power supplies
- Switching power supply:
- Uses capacitors or inductors to store energy
- Switches between a charge and discharge cycle
- During the discharge cycle the energy is added or subtracted from the input voltage
- Boost converter adds the stored voltage to boost supply voltage
- Buck converters subtract the stored voltage to decrease the supply voltage
- This class will design a boost converter

Power Supply II: Boost Converter – 1 Charge Stage

- The switch is closed
- The inductor starts storing magnetic energy by conserving current passing through

Voltage across an inductor: $V_i = L \frac{dl_{i,j}}{dt}$

Power Supply II: Boost Converter – 2 Step-up Stage

- The switch opens
- Inductor "attempts" to maintain current and thus throws large inversed voltage to maintain current i_L
- The current i_L passes through diode D and charges up capacitor C

Review: Power Supply for Autonomous

Car

Schematic of the required power supply for the sub-systems

Review: Power Supply for Autonomous Car

- Different power needs for various sub-systems
- On-board power supply needed to:
- Drive the motors (large currents)
- Drive the servo (moderate currents)
- Power the MCU (low currents, voltage stability)
- Power the sensors (low currents, voltage stability
- Battery is the main reservoir of on-board power

Many battery types

 Most common types for electric vehicles are Lithium ion batteries (high energy density, moderate cost, large discharge/charge cycle life)

Power Supply 1: Linear Voltage

Regulator

- Reduces the supply voltage to a stable value set value
- Output voltage less than input voltage A variable (controlled) resistor
 - Key parameters
- Output current Input voltage range

Output voltage (e.g. 5 V)

- Dropout
- E.g.: LM2940CT-5.0/NOPB
- 0V to 26V input

Input Voltage

- 500mV Dropout
- Output Voltage (e.g. 5 V) Linear Voltage Regulator

Review: Power Supply for Autonomous Car

Schematic of the required power supply for the sub-systems

Review: Power Supply for Autonomous Car

Power Supply II: DC/DC Converter

- Must elevate the voltage to provide a stable power supply (say 5 V)
- This can be down using switching power supplies
- Switching power supply:
- Uses capacitors or inductors to store energy
- Switches between a charge and discharge cycle
- During the discharge cycle the energy is added or subtracted from the input voltage
 - Boost converter adds the stored voltage to boost supply voltage
- Buck converters subtract the stored voltage to decrease the supply voltage
- This class will design a boost converter

Power Supply II: Boost Converter

- Used to boost the input voltage
- Uses a storage inductor as the storage element for the boost stage

Power Supply II: Boost Converter – 1 Charge Stage

- The switch is closed
- The inductor starts storing magnetic energy by conserving current passing through
- Voltage across an inductor: $V_i = L \frac{di_L}{dt}$ $V_i = \frac{di_L}{t}$

Power Supply II: Boost Converter – 2 Step-up Stage

- The switch opens
- Inductor "attempts" to maintain current and thus throws large inversed voltage to maintain current i_t.
 - The current i_L passes through diode D and charges up capacitor C

Power Supply II: Boost Converter – 2 Step-up Stage

- The switch opens
- Inductor "attempts" to maintain current and thus throws large inversed voltage to maintain current i₁.
- The current i_L passes through diode D and charges up capacitor C

Power Supply II: Boost Converter – 2 Step-up Stage

- The step-up current (slope) through the inductor is now: $\frac{V_1-V_O}{I}$
- Inductor is discharging

Power Supply II: Boost Converter – **Charge Step Revisited**

Power Supply II: Boost Converter –

Step-Up Step Revisited

The inductor is charging up. After t_1 we open the switch (Sw \Rightarrow OFF).

charging and transferring the charge to capacitor C for the

ر م_ر

The inductor is now dis-

The inductor is charging up. After t_1 we open the switch $(Sw \rightarrow OFF)$.

Power Supply II: Boost Converter – LT1370

- Solid state solution switching regula
- Maximum 6A output current
- 12 V boost converter Typical application:
- Use low ESR capacitors

Datasheet, LT1370, Linear Technology

Power Supply II: Boost Converter – Step-Up Step Revisited

charging and transferring charge to capacitor C for the duration of t₂, The inductor is charging up. After t_1 we open the switch $(Sw \rightarrow OFF)$. The inductor is now disAt steady state:

Power Supply for Autonomous Car – **Entire System**

- Two-component stable power-supply:
- Boost converter to make sure input voltage to linear regulator is always > 5 V + V_{dropout}
- E.g. 12 V
- 5.

Power Supply for Autonomous Car – **Entire System**

- Redundancy:
- Reliability through redundancy can disconnect the DC-DC converter and still most likely be ok.
 - Can avoid high current conditions in SW

Power Supply for Autonomous Car – **Entire System**

- Two-component stable power-supply:
- 1. Boost converter to make sure input voltage to linear regulator is always $> 5 \text{ V} + \text{V}_{\text{dropout}}$
- E.g. 12 V
- Linear regulator to provide stable 5 V supply

Power Supply for Autonomous Car – **Entire System**

- Finishing it up:
- 1. Fuse (battery protection)
 - **Emergency stop switch**

Power Supply for Autonomous Car – **Entire System**

bypass switch 3. Disconnect the DC-DC converter Finishing it up:

Power Supply for Autonomous Car – **Entire System**

Finishing it up:

bypass switch

Power Supply for Autonomous Car – **Entire System**

Finishing it up:

Inductor - Review

- Stores magnetic energy
- Resist changes in current
- Henry (H) in SI units (weber/ampere)
- Not purely inductive (L), but also contains resistive component (R)

Inductor - Review

Inductor - Review

$V_L = L \frac{di_L}{dt}$

Not purely inductive (L), but also contains resistive component (R)

$$V_L = IR + L \frac{di_L}{dt}$$

Inductor - Review

$$I_{(t)} = \frac{V}{R} \left(1 - e^{-Rt/L} \right)$$
 (A) tau = L/R

tau = L/R $I_{(t)} = \frac{V}{R} \Big[1 - e^{\text{-Rt/L}} \Big] \text{ (A)}$ $V_L = L rac{di_L}{dt}$

Summary: Power Supply for **Autonomous Car**

- Reliable supply necessary to provide different voltage or current to car sub-systems
 - Output battery voltage can vary as a function of current
- Can cause problems at stall, turning
- Linear Voltage Regulator can provide a stable output voltage
- As long and $V_{out} > V_{in} + V_{dropout}$
- A switching (DC-DC) converter can both reduce or increase the voltage a desired
- A DC-DC boost converter, together with one or more linear voltage regulator, can provide a stable supply voltage

Sensors - An Introduction

- Obtains the information about the environment
- Provides transduction between the physical (mechanical) and electrical
- Transduction: Conversion of energy between energy domains

Review – Operational Amplifiers

- Operational Amplifiers (OpAmps) are commonly used to amplify (precondition) sensing signal for input to a microcontrollers
- OpAmps are analyzed as ideal

Ideal OP-Amp: $V_{out} = A(V^+ - V^-)$

Review – Operational Amplifiers

Two main configurations:

Inverting Amplifier

Non-inverting Amplifier

Review – Operational Amplifiers

Non-Inverting OpAmp

Review – Operational Amplifiers

Inverting OpAmp

$$V_{out} = -\frac{R_2}{R_1} V_{in}$$

Review – Operational Amplifiers

Inverting OpAmp as charge integrator

$$V_{out}(t') = -\int_0^{t'} \frac{V_{in}(t)}{RC} dt + V_{out}(0)$$

Review – Operational Amplifiers

- Single supply inverting OpAmp
- Need to create a virtual ground at ½ Vdd

Summary: Sensors and Operational **Amplifiers**

- Sensors provide information about the state of the Environment to the microcontroler
- Operational Amplifiers (OpAmps) are often used to amplify the sensing signal OpAmps come in two flavors
- Gain of a non-inverting amplifier is always > 1
- A virtual ground can be used if an amplifier is used as single supply

Optical Rotary Encoders and Velocity Sensing

Optical Rotary Encoders and Velocity

Sensing

Can be purchased enclosed, or can be build onto the car wheel base

Basics of operations:

Non-contact way to measure rotation/angular velocity

Optical Rotary Encoders:

Velocity sensing is necessary for a car to reach a set velocity

To reach the desired velocity, the car has to accelerate, i.e. increase i_m

Once desired velocity is reach the car has to coast, reducing in to counteract friction and drag

- $I_{\rm m}$ must be larger to maintain same velocity if traversing an incline

Velocity = distance / time

Assuming a no-slip condition:

 $\frac{\Delta x}{\Delta t} = \frac{\Delta \theta}{\Delta t} \cdot r = \omega \cdot r$ Resulting velocity:

$3\pi/4$ п/2 7/4 Photodiode Output ♠

Optical Rotary Encoders and Velocity

Sensing

- Two ways to measure velocity:
- Measure time between two transitions, i.e. the width of pulse or valley. Count number of transitions (edges) within a fixed amount of time.
- Depends on the number of transitions v.s. sampling rate

Optical Rotary Encoders and Velocity Sensing

Count number of edges in a fixed amount of time:

$$v = \frac{n\Delta \theta_{e-e}}{t_s} \cdot r$$

where t_s is sampling time, n is the number of transitions, and θ_{e^-e} is the angle between transitions, in this case Tr/4.

Error: $\pm \frac{\Delta \theta_{e-e}}{\Gamma} \cdot r$

Optical Rotary Encoders and Velocity Sensing

Measure time between transitions:

$$v = \frac{\Delta \theta_{e-e}}{t_2 - t_1} \cdot r$$

where t_1 is the time of first transition, t_2 is the time of second transition θ_{e-e} is the angle between transitions, in this case TI/4.

or:
$$\pm \frac{\Delta heta_{e^{-e}}}{t_s} \cdot r$$

where t_e is the sampling interval.

Summary: Optical Rotary Encoders and Velocity Sensing

- Non-contact way of measuring rotation, can be integrated on the wheel
- Assuming no-slip conditions, wheel rotation corresponds to distance traveled
- An optical rotary encoder wheel can be used to measure rotation
- Two approaches:
- Measure time between transitions
- Count number of transitions within a time interval
- Which approach to chose depends on: velocity, sampling time, allowable error
- Other approaches, such as sensing back EMF or hall effect (magnetic) sensing can be used to estimate the velocity

Velocity Sensing – Alternative Approaches

- Optical encoder is just one way to measure velocity
- Other approaches include:
- Back EMF from the motors
- Other types of proximity sensors to mark a revolution of the wheel Good example is Hall-effect sensors

Optical Line Camera and Line Following

- A vision system is a key component in any autonomously driving car
- Optical camera projects an image onto a surface composed of light sensitive
- Charge Coupled Device (CCD) image sensor:
- An array of light sensitive pixels fabricated on a silicon chip, used to detect proje
 2D array an essential component in many digital cameras
- Sophisticated image reconstruction algorithms usually need
- Line or edge following can be constructed using a 1D CCD array, and a simplified

Optical Line Camera and Line Following

- Line camera contains
- 1D CCD array (line)
- Lens to focus the image across the CCD array
- Image still projected on a plane Within the image plane
- Only one line of image detected

Simple algorithms to detect line locations — Pixel counting focal plane

Optical Line Camera and Line Following

- Detecting line center
- Thresholding an effective method NOTE: need to adjust the level of thresholding as well as the exposure level
- Pixels (image elements) as array of 1's and 0's

distance to center

Optical Line Camera and Line Following

- Recommended line camera: TAOS TSL1401CL
- 128 x 1 linear optical sensor array
 - $3-5 \text{ V V}_{dd}$ power supply

Optical Line Camera and Line Following

Sensor functionality:

$$AO = V_{out} = V_{drk} + R_e \cdot E_e \cdot t_{int}$$

- The pixels are serially read
- SI marks the start of the readout sequence
- Each clock pulse marks the transition to a new pixel, accessible through AO
- During reading, pixels are in parallel exposed
- Exposure time (integration time):

$$t_{\text{int}} = (129 - 18) \cdot t_{CLK} + t_{qt}$$

Dain Trim Optical Line Camera and Line Pixel 1 Following o1 Integrator Output Optical Line Camera and Line Pixel 1 Following

Following

Pan Prim

Optical Line Camera and Line Following

Exposure Adjustment

- Exposure should be adjusted to maximize dynamic range
 - Can be done online during line following
- Can be done during the control loop

Exposure Adjustment

$$AO = V_{out} = V_{dix} + R_e \cdot E_e \cdot t_{\rm int}$$
 Recap sensor functionality: $t = t/120 - 18$

functionality:
$$A = t_{out} - t_{out} + t_{e} \cdot L_{e}$$
$$t_{int} = (129 - 18) \cdot t_{CLK} + t_{qt}$$

- Note exposure time is proportional to $t_{\mathrm int}$
- Can adjust exposure by adjusting the integration time!
- Lower CLK frequency (readout) in low-light conditions

5 KHz < f_{clock} < 8 MHz

- Higher CLK frequency (readout) in high-light conditions
- Potential problem
- Slow down control loop
- CLK exceeds the ADC frequency
- Solution:
- Two cycles, 1) exposure and 2) readout.
- 1. Fast sequence expose only, ignore readout on AO
- Slow sequence readout only, read stored data in cycle 1)

Summary: Optical Line Camera and **Line Following**

- A 2D light-sensitive pixel array is used in cameras for image capture
- A 1D pixel array (line) can be used for line detection line camera
- Can be used for optical line following
- Focus sensor on the line
- Thresholding can be used to determine the center of the line
- Line camera provided with the kit uses TAOS TSL1401CL sensor
- Variable integration (exposure) time
- Sequential (serial) output via AO, controlled through CLK and SI
- Exposure can be varied to accommodate changes in lighting conditions
- Changing the CLK frequency
- Can be done dynamically to account for changes in light conditions

Introduction to Feedback Control

- Control System:
- System that describes the control algorithm and the interaction with the environment
- Control System Diagram:
- Symbolic description of the control system

Modeling Autonomous Car

- Controlling the autonomous car requires modeling of its physics
- Simplified control problem:
- Velocity Control: Consider the dynamics of motion, drag, and torque affecting the forward motion of the car, but disregard effects due to steering
- Steering Control: Consider line following, subject to non-holonomic constraints associated with steering, but no dynamics (quasi-static system only)
- Nonholonomic Constrains (for Autonomous Car):
- Constrains that prevent motion in all directions. The car cannot move sideways.
- Configuration Space (C-space):
- Parameters used to completely define the coordinates of the autonomous car.

Velocity Control

Implementing velocity control:

Modeling Autonomous Car – Velocity Control

- Controlling the autonomous car requires understanding of its physics
- Recall that velocity control handled through PWM

 $F = m\alpha = m\ddot{x} = \frac{\tau}{r}$

Requires friction (resulting in Fr)

Modeling Autonomous Car – Velocity Control - Friction

- Both dynamic and static friction are present in slip-less rolling

Modeling Autonomous Car – Velocity Control

• In addition, while in motion, there is friction/drag

$$F = \frac{\tau}{r} = m\ddot{x} + F_D = m\ddot{x} + B\dot{x}$$

Modeling Autonomous Car – Velocity Control - Friction

Modeling Autonomous Car – Velocity Control

In addition, while in motion, there is friction/drag

$$F = \frac{\tau}{r} = m\ddot{x} + F_D = m\ddot{x} + B\dot{x}$$

Modeling Autonomous Car – Velocity Control

- Recall that $\vec{r} = \vec{k_t} \cdot \vec{i_m}$ which depends on the battery voltage and back EMF
- Both add to error in $\bar{\tau}$

$$F = \frac{\tau}{r} = m\ddot{x} + F_D = m\ddot{x} + B\dot{x} \qquad \qquad \bar{\tau} = k_t \cdot \overline{l_m} = k_t \left(\frac{V_B - k_e \dot{\theta}}{R_m}\right)$$

Velocity Control

Implementing velocity control:

Modeling Autonomous Car – Velocity Control

External disturbances due to drag, friction, battery voltage, back EMF, and incline suggest closed-loop control of PWM for velocity

- Recommend closed-loop control law:
- V_{desired} > V_{actual}, PWM is increased

Steering Control - Introduction

- Objective for Steering Control:
- Keep the track centered on the trackTrack is assumed a black centerline

Modeling Autonomous Car - Non-Holonomic System

- holonomic constrains of its motion. This means that it cannot move in all An autonomous car is non-holonomic, i.e. its motion is subject to non-
- Only move forward and turn
- Simplified Systems: Unicycle

Modeling Autonomous Car - Non-Holonomic System

- holonomic constrains of its motion. This means that it cannot move in all An autonomous car is non-holonomic, i.e. its motion is subject to non-
- Only move forward and turn →rotation for steering wheel is important

Autonomous Car

- Configuration: $\vec{q} =$

Modeling Autonomous Car - Non-Holonomic System

- Line (track) following
- Keep line in the center of car
- Disturbances will perturb the car from being over the center of the car

Modeling Autonomous Car - Non-Holonomic System

- Proportional control for steering
- Recall Proportional velocity control: PWM = Kp(Vdesired Vactual)
- y distance between center of chassis (a) and imaginary center line (b)

Line Following – Proportional Control

- Proportional control for steering
- Purely proportional steering poses a problem (oscillation, overshoot)

Steering Control

Implementing steering control:

Line Following – Proportional/Derivative Control

- Proportional derivative control for steering
- Adding a derivative term can dampen the overshoot.

PID Control - Review

- Proportional Integral Derivative (PID) Controller
- Feedback control algorithm
- Originates from industrial control systems

$$u(t) = K_p e(t) + K_t \int_0^t e(\tau) d\tau + K_d \frac{de(t)}{dt}$$
Proportional Integral Derivative term term

- · Proportional Term: Main contributor to reducing the error. Drawback, will always have an error
- Integral Term: Accounts for past error, for example if output is not strong enough to reduce

error. Accumulating error will increase u(t)

- Derivative Term: Accounts for future (trends in) error. (rate of change)