Zastosowanie algorytmu UCT do stworzenia sztucznej inteligencji grającej w Connect4 Dokumentacja końcowa

Patryk Fijałkowski Mateusz Burczaniuk 8 czerwca 2020 1 Opis problemu

2 Hipotezy badawcze

3 Wyniki eksperymentów

Średnie

- UCB-V 0.306
- UCB1 0.112
- \bullet UCB-Minimal -0.472

Wartość c	Ocena
2	0.552
1.41	0.529
1.7	0.484
1.6	0.425
1.5	0.415
1.45	0.401
1	0.153
0.09	-0.448
0.01	-0.563
0	-0.702

Tab. 1: Ocena algorytmu UCB1 w zależności od parametru eksploracji

Wartość c	Wartość ζ	Ocena
1.4	0.5	0.560
2	0.5	0.510
1.7	0.6	0.478
1.5	0.5	0.462
0.9	0.9	0.457
1	1	0.366
1.68	0.54	0.320
1.5	0.4	0.289
120	30	-0.007
0.1	0.05	-0.513

Tab. 2: Ocena algorytmu UCB-V w zależności od parametrów ci ζ

Wartość C_1	Wartość C_2	Ocena
11	1	-0.091
2.5	1	-0.272
2.9	1.4	-0.289
12	5	-0.297
8.4	1.8	-0.349
3	2	-0.366
1.8	8.4	-0.452
3	3	-0.508
26	26	-0.522
9.4	2.8	-0.556

Tab. 3: Ocena algorytmu UCB-Minimal w zależności od parametrów ${\cal C}_1$ i ${\cal C}_2$

4 Weryfikacja hipotez

Literatura

- [1] Victor Allis, A Knowledge-based Approach of Connect-Four, Department of Mathematics and Computer Science Vrije Universiteit Amsterdam, The Netherlands.
- [2] Levente Kocsis, Csaba Szepesvári, Bandit based Monte-Carlo Planning, European Conference on Machine Learning, Berlin, Germany, September 18–22, 2006.
- [3] Steven James, George Konidaris, Benjamin Rosman, An Analysis of Monte Carlo Tree Search, University of the Witwatersrand, Johannesburg, South Africa.
- [4] Francis Maes, Louis Wehenkel, Damien Ernst, Automatic Discovery of Ranking Formulas for Playing with Multi-armed Bandits, European Workshop on Reinforcement Learning, Athens, Greece, September 9–11, 2011.
- [5] Pierre Perick, David L. St-Pierre, Francis Maes, Damien Ernst, Comparison of Different Selection Strategies in Monte-Carlo Tree Search for the Game of Tron, IEEE Conference on Computational Intelligence and Games, Granada, Spain, September 12–15, 2012.
- [6] Jean-Yves Audibert, Remi Munos, Csaba Szepesvári, *Tuning Bandit Algorithms in Stochastic Environments*, Algorithmic Learning Theory 18th International Conference, Sendai, Japan, October 1–4, 2007.