

CLAIMS

What is claimed is:

1. A method for deriving barycentric coordinates for a point \mathbf{p} within an
5 n-sided polygon, wherein, for a particular coordinate w_j , corresponding to a vertex \mathbf{q}_j ,
the method embodies a formula which may be expressed as follows:

$$w_j = \frac{\cot(\gamma_j) + \cot(\delta_j)}{\|\mathbf{p} - \mathbf{q}_j\|^2}$$

where δ_j and γ_j are adjacent angles to the edge $\mathbf{p}\mathbf{q}_j$ at the vertex \mathbf{q}_j .

2. The method of claim 1 tangibly embodied on or in a memory.
10 3. The method of claim 2 wherein a series of instructions or program
code embodying the method is stored in a memory.
15 4. A method for deriving weights w_{ij} for expressing a vertex \mathbf{q}_i in a mesh
representation of an object surface in terms of its one-ring neighbors \mathbf{q}_j , $\forall j \in N(i)$,
wherein, for a particular weight w_{ij} , corresponding to a vertex \mathbf{q}_j , the method
embodies a formula which may be expressed as follows:

$$w_{ij} = \frac{\cot(\gamma_j) + \cot(\delta_j)}{\|\mathbf{q}_i - \mathbf{q}_j\|^2}$$

where δ_j and γ_j are adjacent angles to the edge $\mathbf{q}_i\mathbf{q}_j$ at the vertex \mathbf{q}_j .

5. The method of claim 4 tangibly embodied on or in a memory.
20 6. The method of claim 5 wherein a series of instructions or program
code embodying the method is stored in a memory.
7. A method of parameterizing a mesh representation of an object surface
comprising the steps of:

for one or more vertices \mathbf{q}_i of the mesh representation, computing for one or
more of its one-ring neighbors \mathbf{q}_j , $\forall j \in N(i)$, a weight w_{ij} in accordance with the
25 following formula:

$$w_{ij} = \frac{\cot(\gamma_j) + \cot(\delta_j)}{\|\mathbf{q}_i - \mathbf{q}_j\|^2}$$

where δ_j and γ_j are adjacent angles to the edge $q_i q_j$ at the vertex q_j ; and responsive to one or more of the weights w_{ij} determined in the foregoing step, determining the parameterized coordinates of one or more of the vertices of the mesh representation.

5. 8. The method of claim 7 further comprising fixing the positions of one or more boundary vertices in parameter space.

9. The method of claim 8 further comprising assigning each of these vertices a position on a fixed boundary C , where the position on the fixed boundary C assigned to a vertex i may be referred to as C_{u_i} .

10. 10. The method of claim 9 further comprising solving the following system of linear equations in order to derive the parameterization of the mesh representation:

$$\forall i, i \in [1 \dots n] \left\{ \begin{array}{ll} \sum_{j \in N(i)} w_{ij} (u_i - u_j) = 0 & \text{if } i \text{ is an interior vertex} \\ u_i = C_{u_i} & \text{if } i \text{ is a boundary vertex} \end{array} \right\}$$

15. where u_i is the vertex i in parameter space (and u_j is the vertex j in parameter space), and C_{u_i} is the boundary position in parameter space assigned to the boundary vertex i .

11. 11. A method of parameterizing a mesh representation of an object surface comprising the steps of:

20. a step for computing, for one or more vertices q_i of the mesh representation and one or more of its one-ring neighbors q_j , $\forall j \in N(i)$, a weight w_{ij} in accordance with the following formula:

$$w_{ij} = \frac{\cot(\gamma_j) + \cot(\delta_j)}{\|q_i - q_j\|^2}$$

where δ_j and γ_j are adjacent angles to the edge $q_i q_j$ at the vertex q_j ; and

25. a step for determining, responsive to one or more of the weights w_{ij} determined in the foregoing step, the parameterized coordinates of one or more of the vertices of the mesh representation.

12. The methods of any of claims 1-11 tangibly embodied on or in a memory.
13. The memory of claim 12 wherein the method is embodied as a series of instructions or program code stored in the memory.