Ejercicios Recurrencia

- 1. Un sistema de señales permite emitir ceros, unos y espacios en blanco. Los ceros van de dos en dos y los unos también. Encuentra y resuelve la recurrencia que calcula el número de señales que se pueden emitir de longitud n.
- 2. El número a_n de euros de activo de una compañía se incrementa cada año cinco veces lo que se incrementó el año anterior. Si $a_0 = 3$ y $a_1 = 7$, calcula a_n .
- 3. Halla y resuelve una recurrencia a_n el número de secuencias de longitud n en el alfabeto $\{0,1,2\}$ que tienen un número par de ceros.
- 4. Sea a_r el número de aristas de un grafo completo de r vértices. Halla una relación de recurrencia para a_r en términos de a_{r-1} y halla su solución.
- 5. En muchos lenguajes de programación podemos considerar que las expresiones aritméticas válidas, sin paréntesis, están formadas por los dígitos, $0,1,2,\ldots,9$ y los símbolos de las operaciones binarias $+,\cdot$ y /. Por ejemplo, 2+3/5 es una expresión aritmética válida y $8+\cdot 9$ no lo es. Encuentra una recurrencia para el número de expresiones aritméticas válidas de longitud n.
- 6. Demuestra, por inducción, que si a_n es la sucesión definida por $a_0 = 3$, $a_1 = 3$ y $a_{n+2} = 6a_{n+1} 9a_n$ para $n \ge 0$, entonces se cumple $a_n = (3-2n)3^n$ para todo natural n.
- 7. Demuestra, por inducción, que si a_n es la sucesión definida por $a_1=3$, $a_2=5$ y $a_n=3a_{n-1}-2a_{n-2}$ para todo $n\geq 3$, entonces $a_n=2^n+1$ para todo natural.
- 8. Resuelve cada una de las siguientes relaciones de recurrencia lineales homogéneas:
 - $4a_n 5a_{n-1} = 0$, si n > 1, y $a_0 = 2$.
 - $2a_{n+2} 11a_{n+1} + 5a_n = 0$, si $n \ge 0$, $a_0 = 2$ y $a_1 = -8$.
 - $a_n 6a_{n-1} + 9a_{n-2} = 0$, si $n \ge 2$, $a_0 = 5$ y $a_1 = 12$.
- 9. Para cada una de las siguientes relaciones de recurrencia lineales homogéneas, halla una solución general e indica la relación que deben cumplir los coeficientes que aparecen en ella en función de las condiciones iniciales dadas.
 - $a_n = 6a_{n-1} 11a_{n-2} + 6a_{n-3}$ para $n \ge 3$, sujeta a las condiciones iniciales $a_0 = 2$, $a_1 = 5$ y $a_2 = 15$ (sus raíces características son $r_1 = 1, r_2 = 2, r_3 = 3$).
 - $a_{n+3} 7a_{n+2} + 16a_{n+1} 12a_n = 0$ para $n \ge 0$, sujeta a las condiciones iniciales $a_i = i$, i = 0, 1, 2 (sus raíces características son $r_1 = r_2 = 2, r_3 = 3$).
 - $a_n = 8a_{n-2} 16a_{n-4}$, con las condiciones iniciales $a_0 = 1$, $a_1 = 4$, $a_2 = 28$ y $a_3 = 32$ (sus raíces características son $r_1 = r_2 = 2$, $r_3 = r_4 = -2$).
- 10. Resuelve las siguientes relaciones de recurrencia
 - $a_n 2a_{n-1} = 3^n$ para $n \ge 1$ y $a_0 = 6$.
 - $a_n = 2a_{n-1} a_{n-2} + 2^n$ para $n \ge 2$ y $a_0 = 5$, $a_1 = 3$.

• $a_n = 3a_{n-1} - 2a_{n-2} + 2^n$ para $n \ge 2$, con $a_0 = a_1 = 1$.

• $a_n = 2a_{n-1} + n$ para $n \ge 1$ y cierto a_0 .

• $a_n = 4a_{n-1} - 3$ para $n \ge 1$ y con $a_0 = 2$.

• $a_n = 4a_{n-1} - 4a_{n-2} - 1$ para $n \ge 2$ y con $a_0 = a_1 = 3$.