Normalizace a normální formy

Michal Valenta

Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické v Praze ©Michal Valenta, 2022

BI-DBS, LS 2021/2022

https://courses.fit.cvut.cz/BI-DBS/

Návrh relačního schématu

Existují dva přístupy:

- normalizační teorie
 Metoda návrhu pomocí funkčních závislostí.
- z konceptuálního schématu Metoda použití transformačních pravidel.

Poznámka: použijeme-li transformaci z konceptuálního schématu, nemáme zaručeno, že výsledné schéma bude normalizované! Samotné konceptuální schéma totiž nemusí být normalizované.

Praxe:

- konceptuální schéma (i zde je možné normalizovat)
- 2 transformace na relační schéma
- kontrola a případná normalizace (dekompozicí) nenormalizovaných relací

Kvalita schématu a normalizace

Uvažujme relaci:

PROGRAM(NAZEV_K, JMENO_F, ADRESA, DATUM)

Aktualizační anomálie (Codd)

- Změní-li se adresa kina, je nutné ji měnit víckrát,
- nehraje-li kino zrovna nic, ztrácíme jeho adresu,
- chceme-li přidat nové kino s adresou, lze to jen když se tam hraje nějaký film.

Jak to vyřešíme?

Normalizace dekompozicí

KINO(NAZEV_K, ADRESA)

MA_NA_PROGRAMU(<u>NAZEV_K, JMENO_F</u>, DATUM)

 $MA_NA_PROGRAMU[NAZEV_K] \subseteq KINO[NAZEV_K]$

Dekompozicí jsme se zbavili všech aktualizačních anomálií.

Funkční závislost – neformálně

Hodnoty některých atributů funkčně závisí na hodnotách jiných atributů. Například:

- Ke každému kinu existuje nejvýše jedna adresa.
- Pro každou dvojici {kino, film} existuje nejvýše jedno datum, kdy dané kino má daný film na programu.

Což budeme zapisovat:

- NAZEV_K → ADRESA
- ② {NAZEV_K,JMENO_F} → DATUM

A číst:

• "Atribut NAZEV_K (funkčně) určuje atribut ADRESA."

nebo:

- "Atribut ADRESA (funkčně) závisí na atributu NAZEV_K."
- "Dvojice (atributů) NAZEV_K,JMENO_F (funkčně) určuje atribut DATUM."

nebo:

"Atribut DATUM (funkčně) závisí na (dvojici atributů) NAZEV_K,JMENO_F."

Funkční závislosti – integritní omezení

- funkční závislosti (FZ) vyjadřují integritní omezení
- připomínka: integritní omezení (obecně) jsou tvrzení, které určují jaká data v databázi být mohou a jaká ne
- připomínka: schéma relační databáze je {R(A), I}
- FZ uvádí do souvislosti prvky z domén příslušných atributů, je to funkce $f: A_1 \rightarrow A_2$

Funkční závislosti jsou jeden ze způsobů vyjádření integritních omezení.

Všechna integritní omezení se nedají vyjádřit pomocí FZ.

Kvalita schématu - příklad

Mějme databázi s rozvrhem předmětů:

Rozvrh (Přednáška, Učitel, Místnost, Hodina, Student, Známka)

Nechť platí toto (vnitropodnikové) pravidlo (IO1): "Každá přednáška je přednášena nejvýše jedním učitelem."

Z pohledu relační teorie:

"K jedné hodnotě z **dom(Přednáška)** se přiřadí nejvýše jedna hodnota z **dom(Učitel)**."

Přednáška → Učitel

což budeme v dalším výkladu zkracovat:

 $P \rightarrow U$

Kvalita schématu – příklad

Pokud budou všechna data v **jedné relaci ROZVRH**, bude v ní zřejmě mnoho aktualizačních anomálií. Nahraďme relaci rozvrh několika jinými relacemi (schématem relační DB) tak, aby výsledek měl "**rozumné vlastnosti**".

výchozí relace: R(P, U, M, H, S, Z) (stručněji: PUMHSZ) možné náhrady:

```
S_{I} = \{PU, HMP, HUM, PSZ, HSM\}

S_{II} = \{PU, HSP, PSZ, HSM\}

S_{III} = \{PU, HSM, PSZ, HMP\}

S_{IV} = \{PU, HMP, PSZ, PSZ\}

S_{V} = \{HMPU, PSZ, HSM\}

S_{VI} = \{PU, HMP, PSZ\}

S_{VII} = \{PSUHM, PSZ\}
```

Které ze schémat $S_{I..}S_{VII}$ je nejlepší?

Odhalení funkčních závislostí mezi atributy

Odhalení FZ mezi atributy schématu:

P	U	М	Н	S	Ζ
Programování	Kryl	S7	Po9	Novák	2
Programování	Kryl	S3	Út3	Novák	2
Programování	Kryl	S7	Po9	Volák	3
Programování	Kryl	S3	Út3	Volák	3
Systémy	Král	S4	Po7	Zíka	1
Systémy	Král	S4	Po7	Tupý	2
Systémy	Král	S4	Po7	Novák	2
Systémy	Král	S4	Po7	Bílý	1

? platí ? $U \to HM$! jistě neplatí !, tedy: $U \to HM$ zřejmě platí: $P \to U$, $HM \to P$, $HU \to M$, $HS \to M$

? a co toto ?: $PS \rightarrow Z$

X-hodnota (k formální definici funkční závislosti)

Mějme schéma R(A), uvažujme $X \subseteq A$

X-hodnota

Jsou-li atributy v **X** $\{X_1 : dom(X_1), ..., X_n : dom(X_n)\}$, pak **X-hodnotou** je libovolný prvek z kartézského součinu $dom(X_1) \times dom(X_2) \times ... \times dom(X_n)$.

x1	x2	х3	х4	х5	x6	x7	x8	х9
+								

Funkční závislost (formální definice)

Mějme schéma R(A).

Funkční závislost

Mějme množiny atributů $B\subseteq A$, $C\subseteq A$. Říkáme, že C závisí funkčně na B (nebo B funkčně určuje C), jestliže ke každé B-hodnotě existuje nejvýše jedna C-hodnota.

značíme:

$$B \rightarrow C$$

resp.:

$$B \nrightarrow C$$

Odvoditelnost FZ

Pozorování

$$PS \rightarrow S$$
 platí vždy

$$\begin{array}{c} \textit{PS} \rightarrow \textit{S} \\ \textit{PS} \rightarrow \textit{Z} \end{array} \} \Leftrightarrow \textit{PS} \rightarrow \textit{SZ}$$

Z výchozí množiny funkčních závislostí lze pomocí "určitých" **pravidel** odvozovat další FZ.

Sada "korektních" odvozovacích pravidel Měime R(A), nechť $X \subseteq A$, $Y \subseteq A$, $Z \subseteq A$.

Armstrongova pravidla

triviální funkční závislosti

jestliže
$$Y \subseteq X$$
, pak $X \to Y$ (FZ1)

př.: UM → U

tranzitivita

jestliže
$$X \to Y$$
 a $Y \to Z$, pak $X \to Z$ (FZ2)

př.: $HS \rightarrow HM$ a $HM \rightarrow P$, pak také platí $HS \rightarrow P$

kompozice pravé strany

jestliže
$$X \to Y$$
 a $X \to Z$, pak $X \to YZ$ (FZ3)

dekompozice pravé strany

jestliže
$$X \to YZ$$
, pak $X \to Y$ a $X \to Z$ (FZ4)

Použití odvozovacích pravidel

Mějme vstupní relaci R(M, H, U, P, S, Z) a sadu funkčních závislostí: $F = \{P \rightarrow U, HM \rightarrow P, HU \rightarrow M, PS \rightarrow Z, HS \rightarrow M\}$

Odvodíme:

- Podle (FZ1) platí $HM \rightarrow H$ a $HU \rightarrow H$.
- Podle (FZ3) z $HU \rightarrow H$ a $HU \rightarrow M$ odvodíme $HU \rightarrow HM$.
- Podle (FZ2) z $HM \rightarrow P$ a $P \rightarrow U$ odvodíme $HM \rightarrow U$.
- Podle (FZ3) z $HM \rightarrow H$ a $HM \rightarrow U$ odvodíme $HM \rightarrow HU$.

Vidíme, že HM a HU jsou funkčně ekvivalentní: HM ↔ HU

Tranzitivní uzávěr, klíč relace

Tranzitivní uzávěr množiny atributů X+ vzhledem k F

je množina všech atributů funkčně závislých na X. Označujeme jej X^+ .

Výpočet X⁺ (slovní popis):

- Do X⁺ přidáme X.
- Procházíme F, je-li levá strana FZ již v X+, přidáme stranu pravou.
- Opakujeme předchozí bod dokud do X⁺ něco přibývá.

Klíč relace

Mějme R(A), nechť $K \subseteq A$.

K je klíčem schématu R(A), jestliže splňuje dvě vlastnosti:

- \bigcap $K \to A$
- 2 neexistuje $K' \subset K$ taková, že $K' \to A$.

Příklad – nalezení klíče relace

Mějme vstupní relaci R(M, H, U, P, S, Z) a sadu funkčních závislostí: $F = \{P \rightarrow U, HM \rightarrow P, HU \rightarrow M, PS \rightarrow Z, HS \rightarrow M\}$ Úkol: najděte alespoň jeden klíč relace R vzhledem k F.

```
Výpočet:
```

```
\begin{array}{l} P^+ = \{P,U\} \\ HM^+ = \{H,M,P,U\} \\ HU^+ = \{H,U,M,P\} \\ PS^+ = \{P,S,Z,U\} \\ HS^+ = \{H,S,M,P,Z,U\} \mbox{ (tranzitivní uzávěr HS obsahuje celou relaci R) } \\ (\text{test minimality}) \mbox{ Protože } H^+ = \{H\} \mbox{ a } S^+ = \{S\}, \mbox{ je } HS \mbox{ klíčem relace } R. \end{array}
```

Postup slovně:

- Do klíče určitě patří atributy, které nejsou v žádné FZ.
- Idea: Atribut z levé strany nějaké FZ by mohl do klíče patřit.
 - Vezmeme nějakou FZ a spočítáme tranzitivní uzávěr levé strany.
 - ▶ Obsahuje celou relaci? ANO: Je minimální? ANO: máme klíč
 - ► NE: Zkusíme jinou FZ nebo něco přidáme.
 - Opakujeme dokud klíč nenajdeme.
 - Klíčů může být více, tento postup nezaručí, že najdeme všechny.

Normální formy – motivační příklad 1/2 (CK->N)

PROGRAM	NÁZEV_K	JMÉNO_F	ADRESA	DATUM
	Blaník	Top gun	Václavské nám. 4	29.03.94
	Blaník	Kmotr	Václavské nám. 4	08.03.94
	Mír	Nováček	Starostrašnická 3	10.03.94
	Mír	Top gun	Starostrašnická 3	09.03.94
	Mír	Kmotr	Starostrašnická 3	08.03.94

Integritní omezení:

- IO1: Klíčem schématu je NÁZEV_K, JMÉNO_F.
- IO2: Každé kino má právě jednu adresu.

Relace obsahuje redundance a mohou nastat aktualizační anomálie.

Normální formy – motivační příklad 1/2 (CK->N)

Intuitivním řešením je dekompozice ADRESÁŘ(<u>NÁZEV_K</u>,ADRESA), PROGRAMY(<u>NÁZEV_K</u>, <u>JMÉNO_F</u>, DATUM)

PROGRAMY

NÁZEV_K	JMÉNO_F	DATUM
Blaník	Top gun	29.03.94
Blaník	Kmotr	08.03.94
Mír	Nováček	10.03.94
Mír	Top gun	09.03.94
Mír	Kmotr	08.03.94

۸ ٦	RES	٠Á	ň
Aυ	KES	ъΑ	н

ADITEOAIT	
NÁZEV_K	ADRESA
Blaník	Václavské nám. 4
Mír	Starotrašnická 3

- adresa kina je pouze jednou (odstraněna redundance)
- Ize evidovat i kino, kde se (právě) nic nehraje (nehrozí ztráta informace o kinu, když bude 'stát')

podstata řešení: odstraněna závislost neklíče (adresa) na pouhém podklíči(Název_k)

Normální formy – motivační příklad 2/2 (N1->N2)

FILM1	JMÉNO_F	HEREC	OBČANSTVÍ	ROK
	Černí baroni	Landovský	CZ	94
	Top gun	Cruise	USA	86
	Kmotr	Brando	USA	72
	Nováček	Brando	USA	90
	Vzorec	Brando	USA	80

Integritní omezení:

- IO1: Klíčem schématu je JMÉNO_F.
- IO2: Každý herec má právě jedno občanství

Relace obsahuje redundance a mohou nastat aktualizační anomálie.

Normální formy – motivační příklad 2/2 (N1->N2)

Intuitivním řešením je dekompozice OSOBNÍ_ÚDAJE(<u>HEREC</u>, OBČANSTVÍ) FILM2(<u>JMÉNO_F</u>, HEREC, ROK)

OSOBNÍ ÚDAJE

0000111_00/102			
HEREC	OBČANSTVÍ		
Landovský	CZ		
Cruise	USA		
Brando	USA		

FILM2

ΓILIVI∠		
JMÉNO_F	HEREC	ROK
Černí baroni	Landovský	94
Top gun	Cruise	86
Kmotr	Brando	72
Nováček	Brando	90
Vzorec	Brando	80

- občanství herce je pouze jednou (odstraněna redundance)
- Ize evidovat i občanství herce, jehož filmy vypadly z db (nehrozí ztráta informace o občanství herce, který "stojí")

podstata řešení: odstraněna závislost neklíče (občanství) na jiném neklíči (herec)

Normální formy – motivační příklady – rozbor, 3NF

V obou předchozích příkladech byly neklíčové atributy závislé na klíči. Některé z nich však nepřímo - tranzitivně.

V prvním případě šlo o tranzitivitu:

V druhém případě šlo o tranzitivitu:

Jsou-li všechny **neklíčové atributy závislé na klíči přímo** a nikoliv tranzitivně, pak je **relace ve 3. normální formě (3NF)**.

Poznámka1: Má-li schéma více klíčů (klíč1↔klíč2), nebude nám vadit klíč1→klíč2→neklíč.

Poznámka2: Jsou-li všechny atributy schématu součástí nějakého klíče, je schéma ve 3NF.

Tranzitivní závislost, 3NF – definice

Tranzitivní závislost

Mějme R(A) Nechť $X \subset A$, $Y \subset A$ a $C \in A$, $C \notin X$ a $C \notin Y$.

Nechť dále $X \to Y \to C$ a neplatí, že $Y \to X$.

Pak říkáme, že C je tranzitivně závislý na X.

Třetí normální forma (3NF)

Říkáme, že schéma relace R je ve 3. normální formě (3NF), jestliže žádný neklíčový atribut schématu R není tranzitivně závislý na žádném klíči schématu.

3NF (jinými slovy)

Každý neklíčový atribut je na (každém) klíči schématu závislý přímo, nikoliv tranzitivně.

Poznámka: závislost dvou podklíčů 3NF neřeší, tomu se věnuje BCNF (viz dále).

BCNF - motivační příklad

Mějme ROZVRH(MHUP) a platí $HU \rightarrow M$, $HM \rightarrow P$, $P \rightarrow U$ Lze odvodit klíče: HU, HM, HP.

 $P \rightarrow U$ je závislost mezi dvěma podklíči. ROZVRH vyhovuje kritériu pro 3NF. Proč?

... a přeci je v datech redundance!

ROZVRH	PREDNASKA	UCITEL	MISTNOST	HODINA
	Systémy	Král	S4	Po7
	Programování	Kryl	S7	Po9
	Programování	Kryl	S3	Ut11

BCNF – motivační příklad

Existuje zde závislost část_ klíče1 \rightarrow část_klíče2. V našem případě: $P \rightarrow U$.

Dekompozice: OBS(P,U) ROZVRH1(HMP)

Opět platí, že:

- zmizela redundance v atributu U
- neztratí se informace, že Kryl přednáší Programování,když toto vypadne z rozvrhu

Řešení spočívá v odstranění závislosti části jednoho klíče na části druhého klíče.

BCNF - definice

BCNF

Říkáme, že schéma relace R je v Boyce - Coddově normální formě (BCNF), jestliže pro každou netriviální závislost $X \to Y$ platí, že X obsahuje klíč schématu R.

Poznámky:

Každé schéma, které je v BCNF, je také ve 3NF. Obrácené tvrzení obecně neplatí.

Má-li ale schéma jediný klíč, nebo jednoduché klíče, potom je-li ve 3NF je také v BCNF.

BCNF - (další) příklad

Uvažujme schéma relace:

ADRESÁŘ(MĚSTO, ULICE, DUM, PSČ)

 $\mathsf{F} \colon \{\mathsf{M}\check{\mathsf{E}}\mathsf{STO},\,\mathsf{ULICE}\} \to \mathsf{PS}\check{\mathsf{C}},\,\mathsf{PS}\check{\mathsf{C}} \to \mathsf{M}\check{\mathsf{E}}\mathsf{STO}$

 $\begin{tabular}{ll} $\{M\Bright Esto, ULICE, DUM\}$ je klíčem (\to\{PS\Bright Esto, ULICE, DUM\}$) \\ $\{PS\Bright Cs, ULICE, DUM\}$ je klíčem (\to\{PS\Bright Esto, ULICE, DUM\}$) \\ \end{tabular}$

Schéma nemá žádný neklíčový atribut a je tedy ve 3NF. Nikoliv však v BCNF.

ADRESÁŘ lze nahradit dekompozicí.

dekompozice1: dekompozice2:

A1(PSČ, MĚSTO)

B1(PSČ, ULICE, DUM)

A2(MĚSTO, ULICE, PSČ)

B2(MĚSTO, ULICE, DUM)

Ani jedna dekompozice v tomto případě není optimální, viz dále.

Normální formy – shrnutí

- Přehled normálních forem:
 - 1NF atributy jsou atomické (nemáme strukturované a vícehodnotové atributy)
 - 2NF žádný neklíčový atribut není závislý na části klíče (vždy závisí na celém klíči)
 - 3NF neklíčové atributy závisí na klíči přímo (nikoliv tranzitivně)
 - BCNF levá strana každé (netriviální) FZ obsahuje klíč schématu (nepřipouští se závislost typu "část klíče 1" → "část klíče 2")
 - teoreticky existují i další NF, ale pro základní seznámení stačí tyto
- Jak zjistíme, jestli je relace ve 3NF? Pro každou FZ platí (jedno z následujících tvrzení):
 - ▶ závislost je triviální ($A \rightarrow A, AB \rightarrow A, ...$)
 - na levé straně FZ je (některý) z klíčů relace
 - na pravé straně je část (některého) klíče relace
- Jak zjistím, že relace je v BCNF? Jako výše, jen bez poslední podmínky.
- Pokud je relace ve 3NF, je i ve 2NF.
- K čemu je dobrá normalizace? Snižuje redundanci a riziko aktualizačních anomálií.

Normalizace dekompozicí

Normalizace je eliminace aktualizačních anomálií převedením relačního schématu do 3NF, resp. BCNF.

Dekompozice

Původní schéma:

U je množina atributů relace R, F je množina FZ, které na R platí.

Dekomponované schéma:

$$\{R_i(U_i, F_i)\}_{i=1}^n, kde \cup_{i=1}^n U_i = U$$

Dekompozicí vznikne množina relací. Každá ma své atributy a FZ.

Požadavky na kvalitu dekompozice:

P1: Neztratíme žádnou FZ, která platila na původní relaci.

Formálně: $F^+ = (\bigcup_{i=1}^n F_i)^+$

P2: Spojením nově vzniklých relací nevzniknou nové n-tice.

Formálně: $R = *_{i=1}^{n} R_{i}[A_{i}]$, kde * znamená přirozené spojení definované v RA.

P1: pokrytí původní množiny funkčních závislostí

Původní schéma a schémata získaná dekompozicí musí mít stejné funkční závislosti.

$$F^+ = (\cup_{i=1}^n F_i)^+$$

Příklad 1

ADRESÁŘ(MĚSTO, ULICE, DUM, PSČ) $F = \{ \{ \text{MĚSTO, ULICE} \} \rightarrow \text{PSČ, PSČ} \rightarrow \text{MĚSTO} \}$

Dekompozice:

SEZNAM_POŠT(PSČ, MĚSTO), F1 = { PSČ \rightarrow MĚSTO } POŠTOVNÍ_RAJON(PSČ, ULICE, DUM), F2 = { }

 $\mbox{FZ} \ \{\mbox{M\BrightESTO}, \mbox{ULICE}\} \rightarrow \mbox{PS\BrightC} \ \ \mbox{z} \ \mbox{F} \ \mbox{z} \ \mbox{f} \ \mbox{z} \ \mbox{f} \ \mbox{z} \ \mbox{depokryta není}.$

Dekompozice nesplňuje podmínku P1 (pokrytí množiny FZ)

P1: pokrytí původní množiny funkčních závislostí

```
Příklad 2:
FILM1(JMÉNO F. HEREC, PŘÍSLUŠNOST)
F = \{ HEREC \rightarrow PŘÍSLUŠNOST, JMÉNO F \rightarrow HEREC. \}
     JMÉNO F → PŘÍSLUŠNOST }
Dekompozice podle HEREC → PŘÍSLUŠNOST:
OSOBNÍ ÚDAJE(HEREC, PŘÍSLUŠNOST),
                F1 = { HEREC → PŘÍSLUŠNOST }
FILM2(JMÉNO F, ROK, HEREC), F2 = { JMÉNO F → HEREC }
FZ JMÉNO F → PŘÍSLUŠNOST z F zdánlivě pokryta není.
Je ji ale možné odvodit z F1 a F2 pomocí Armstrongových pravidel.
```

Dekompozice splňuje podmínku P1 (pokrytí množiny FZ)

Poznámka: z množiny FZ F vyplývá, že klíčem schématu FILM1 je atribut JMÉNO_F.

P2: bezztrátová dekompozice

- Spojením nově vzniklých relací nesmí vzniknout žádné nové n-tice, které nebyly v relaci původní. Tedy, nové relace musí obsahovat stejná data jako měla relace původní.
- Používá se také pojem "bezztrátové spojení" (loseless join).

O dekompozici schématu můžeme (z pohledu dat) uvažovat jako o několika projekcích původní relace. Každá projekce definuje novou relaci. Spojením všech dílčích relací pak musíme dostat stejná data jako měla relace původní.

$$R = *_{i=1}^n R_i[A_i]$$

Poznámka: na následujícím slide je příklad špatně provedené dekompozice.

Špatná dekompozice – příklad

Dekomponujme relaci ZKOUSENI: ZAPIS (PREDN, STUDENT) a HODNOCENI (PREDN, ZNAMKA).

ZAPIS := ZKOUSENI[PREDN,STUDENT]

PREDN	STUDENT
Programování	Novák
Programování	Volák
Systémy	Zika
Systémy	Tupý
Systémy	Novák
Systémy	Bílý

ZKOUSENI

PREDN	STUDENT	ZNAMKA
Programování	Novák	2
Programování	Volák	3
Systémy	Zika	1
Systémy	Tupý	2
Systémy	Novák	2
Systémy	Bílý	1

HODNOCENI := ZKOUSENI[PREDN,ZNAMKA]

PREDN	ZNAMKA
Programování	2
Programování	3
Systémy	1
Systémy	2
Systémy	2
Systémy	1

Spojení HODNOCENI*ZAPIS nebude stejné jako ZKOUSENI.
Bude navíc obsahovat n-tice (Programování, Novák, 3) a
(Programování, Volák, 2), které v relaci ZKOUSENI nejsou.

Dostaneme více entic, ale informace je méně, protože nevíme co platí. Tato dekompozice není BEZZTRÁTOVÁ (loseless).

Normalizace bezztrátovou dekompozicí

Normalizace dekompozicí – postup

- určíme klíče schématu
- anajdeme libovolnou FZ, která porušuje 3NF/BCNF
- Odle této FZ bezztrátová dekompozice
- výsledné realace otestujeme na 3NF/BCNF
- je-li třeba pokračujeme v dekompozici

Normalizace dekompozicí – výsledek

- výsledné relace jsou ve 3NF/BCNF
- P2 bezztrátovost zaručena
- P1 pokrytí FZ zaručena není

Bezztrátová dekomp.

Mějme schéma $\mathbf{R}(\mathbf{A},\mathbf{B},\mathbf{C})$, kde A, B, C jsou disjunktní množiny atributů a funkční závislost $\mathbf{B} \to \mathbf{C}$.

Rozložíme-li R na schémata R1(B,C) a R2(A,B), je takto provedená dekompozice bezztrátová (loseless).

$$R(A,B,C)$$

$$B \to C$$

$$R1(\underline{B},C)$$

$$R2(A,B)$$

Poznámka: možných výsledků je více. Záleží na výběru FZ pro dekompozici.

Normalizace bezztrátovou dekompozicí – příklad 1

Rozvrh (Předmět, Učitel, Místnost, Hodina, Student, Známka) R(PUM<u>HS</u>Z), F = { P \rightarrow U, HM \rightarrow P, HU \rightarrow M, PS \rightarrow Z, HS \rightarrow M }

Výsledné relace jsou ve 3NF (zde dokonce v BCNF).
Schéma je normalizované, tj: v relacích, které nahradily původní jednu, jsme snížili redundanci a vyloučili aktualizační anomálie.
Jedná se o schéma $S_{III} = \{PU, HSM, PSZ, HMP\}$ ze slide Kvalita schématu – příklad.
Cenou je, že občas budeme v dotazech spojovat.

Nesplněna podmínka pokrytí FZ (P1). HU \rightarrow M nelze z G = { P \rightarrow U, HM \rightarrow P, PS \rightarrow Z, HS \rightarrow M } odvodit ($F^+ \neq (\cup_{i=1}^n F_i)^+$). Splněna podmínka bezztrátového spojení (P2) ($R = *_{i=1}^n R_i[A_i]$).

Normalizace bezztrátovou dekompozicí – příklad 2

Rozvrh (Předmět, Učitel, Místnost, Hodina, Student, Známka) R(PUMHSZ), F = { $P \rightarrow U$, $HM \rightarrow P$, $HU \rightarrow M$, $PS \rightarrow Z$, $HS \rightarrow M$ }

FZ PH \rightarrow M lze pro dekompozici použít, patří totiž do F^+ (z F je odvoditelná). Výsledek je ve 3NF i BCNF. Schema je tedy normalizované. Jedná se o schéma $S_{IV} = \{PU, HMP, PSZ, PHS\}$ ze slide Kvalita schématu – příklad. Cenou je, že občas budeme v dotazech spojovat.

Nesplněna (P1). {HM \rightarrow P, HU \rightarrow M, HS \rightarrow M} nelze z G = { P \rightarrow U, PH \rightarrow M, PS \rightarrow Z} odvodit ($F^+ \neq (\bigcup_{i=1}^n F_i)^+$). Splněna podmínka bezztrátového spojení (P2) ($R = *_{i=1}^n R_i[A_i]$).

Normalizace dekompozicí – shrnutí

- Normalizace bezztrátovou dekompozicí:
 - zaručuje bezztrátové spojení (podmínka P2),
 - nezaručuje pokrytí množiny funkčních závislostí (podmínka P1).
- Existuje metoda (algoritmus), která zaručuje platnost obou podmínek – Bernsteinův algoritmus syntézy. Je však náročnější na výpočet, vyžaduje spočítat tzv. "minimální pokrytí".
- Nebudu ho přednášet ani vyžadovat.
- Protože normalizace bezztrátovou dekompozicí v praktických případech postačuje dost dobře.

Shrnutí

- Cílem normalizace je minimalizovat redundanci dat a aktualizační anomálie. To je důležité zejména u "write intensive"
 (Insert/Update/Delete) databází. U "read only" databází se někdy vyplatí denormalizovat zavést redundanci kvůli snížení odezvy na (komplexní) dotazy. Normalizovaná databáze má více tabulek při komplexních dotazech musíme více spojovat, což může být dražší.
- Kritériem jsou normální formy v praxi se snažíme o 3NF nebo BCNF.
- Pomůckou jsou funkční závislosti a Armstrongova pravidla a definice a postupy:
 - klíč schématu
 - nalezení tranzitivního úzávěru množiny atributů
 - bezztrátová dekompozice
- Praktický přístup k normalizaci: článek od Joe Celka (anglicky)