Project Development Phase Model Performance Test

Date	10 November 2022
Team ID	PNT2022TMID15358
Project Name	STATISTICAL MACHINE LEARNING APPROACHES TO LIVER DISEASE PREDICTION
Maximum Marks	10 Marks

Model Performance Test

S.No.	Parameter	Values	Screenshot
1.	Metrics	Classification Model: Accuracy Score- & Classification Report	Random Forest Algorithm, Gradient Boost Algorithm, AdaBoost Algorithm
2.	Tune the model	Hyperparameter Tuning method	Confusion Matrix

The screenshots are provided below for the above-mentioned table.

1. Metrics

Model: Random Forest Algorithm

There is no need of Standardization and Normalization of our dataset, as we using Ensemble Technique.

GradientBoost Algorithm

```
# GradientBoostingClassifier:
from sklearn.ensemble import GradientBoostingClassifier
GradientBoost = GradientBoostingClassifier()
GradientBoost = GradientBoost.fit(X_train,y_train)
# Predictions:
y_pred = GradientBoost.predict(X_test)
 # Performance:
print('Accuracy:', accuracy_score(y_test,y_pred))
print(confusion_matrix(y_test,y_pred))
print(classification_report(y_test,y_pred))
Accuracy: 0.8220338983050848
[[ 91 23]
 [ 19 103]]
            precision recall f1-score support
         1
                 0.83 0.80 0.81
               0.82 0.84 0.83
         2
                                           122
             0.82
0.82 0.82 0.82
0.82 0.82 0.82
                                          236
   accuracy
                                              236
  macro avg
weighted avg
                                             236
```

AdaBoost Algorithm

```
# AdaBoostClassifier:
from sklearn.ensemble import AdaBoostClassifier
AdaBoost = AdaBoost.fit(X_train,y_train)

# Predictions:
y_pred = AdaBoost.predict(X_test)

# Performance:
print('Accuracy:', accuracy_score(y_test,y_pred))
print(confusion_matrix(y_test,y_pred))
print(classification_report(y_test,y_pred))

Accuracy: 0.7457627118644068
[[88 26]
[34 88]]

precision recall f1-score support

1 0.72 0.77 0.75 114
2 0.77 0.75 122

accuracy 0.75 236
macro avg 0.75 0.75 0.75 236
weighted avg 0.75 0.75 0.75 236
weighted avg 0.75 0.75 0.75 236
```

2. Tune the model

Confusion Matrix

```
# Importing Performance Metrics:
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report

# RandomForestClassifier:
from sklearn.ensemble import RandomForestClassifier
RandomForest = RandomForestClassifier()
RandomForest = RandomForest.fit(X_train,y_train)

# Predictions:
y_pred = RandomForest.predict(X_test)

# Performance:
print('Accuracy:', accuracy_score(y_test,y_pred))
print(confusion_matrix(y_test,y_pred))
print(classification_report(y_test,y_pred))
```