Examen millora nota 2n Batxillerat Tecnologia industrial

1. (3 pts)

En una habitació amb poca ventilació un extractor ha d'estar en marxa només quan la porta està tancada i el llum encès. Per descriure l'estat del sistema s'utilitzen les variables binàries:

porta
$$p = \begin{cases} 1 \text{ oberta} \\ 0 \text{ tancada} \end{cases}$$
; Ilum $I = \begin{cases} 1 \text{ encès} \\ 0 \text{ apagat} \end{cases}$; extractor $e = \begin{cases} 1 \text{ en marxa} \\ 0 \text{ aturat} \end{cases}$.

 a) Escriviu la taula de veritat del sistema i determineu la funció lògica entre les variables d'estat. Dibuixeu l'esquema de contactes equivalent.
 [1,5 punts]

Per evitar que l'extractor estigui en marxa quan no hi ha ningú dintre de l'habitació s'afegeix al sistema anterior un sensor de presència que subministra la variable:

$$s = \begin{cases} 1 & \text{presència} \\ 0 & \text{no presència} \end{cases}$$

 b) Determineu la nova taula de veritat i la nova funció lògica. Dibuixeu l'esquema de portes lògiques.
 [1,5 punts]

2. (2 pts)

El cilindre hidràulic de la figura és alimentat per una bomba que subministra una pressió p_0 . Si el fregament és negligible:

- a) Determineu la força màxima, en mòdul i sentit, que pot fer la tija segons si l'alimentació està connectada a l'entrada 1 o a l'entrada 2. [1 punt]
- b) Dibuixeu el gràfic, indicant les escales, de la força que pot fer la tija segons la pressió d'alimentació aplicada a l'entrada 1. [0,5 punts]
- c) Determineu la potència hidràulica de la bomba si el cabal que proporciona és q=0.6 l/min. [0,5 punts]

3. (1 pt)

En una línia de producció amb dues estacions, s'han de realitzar sobre cada unitat tres operacions de durada t_1 = 20 s, t_2 = 30 s i t_3 = 50 s. Si l'ordre de les operacions pot ser qualsevol i en cada estació es poden realitzar simultàniament dues operacions, la següència en la qual una unitat estarà el temps mínim en la línia és:

	Estació 1	Estació 2
a)	t_1 i t_2	t_3
b)	t ₂	$t_{\scriptscriptstyle 1}$ i $t_{\scriptscriptstyle 3}$
c)	t ₃	$t_{\scriptscriptstyle 1}$ i $t_{\scriptscriptstyle 2}$
d)	t_2 i t_3	t_1

4. (2 pts)

La barra cilíndrica d'acer de la figura no pot variar de llargada a causa dels topalls que hi ha als seus extrems. Si se n'augmenta la temperatura en Δt = 40 °C, determineu:

- a) L'increment de llargada que tindria sense els topalls.
- b) La força que fan els topalls (igual a la força necessària per disminuir l'increment de llargada anterior).

5. (2 pts)

Un captador fotovoltaic està format per 60 cèl·lules de diàmetre d = 100 mm i rendiment η = 10 %. Si la densitat superficial de potència radiant és de φ = 800 W/m² i aquest captador alimenta un circuit a 12 V, determineu:

a) La potència elèctrica generada.

[1 punt]

[1 punt]

b) La intensitat generada.

[0,5 punts]

Si cada cèl·lula dóna una tensió de 0,4 V quan genera 1,6 A,

c) Com estan connectades en el captador?

[1 punt]

6. (2 pts)

En la grua de la construcció esquematitzada a la figura, el motor acciona el tambor d'enrotllament de cable a través d'un reductor de relació de transmissió $\tau_{\rm red}$ = 0,02 i de rendiment $\eta_{\rm red}$ = 85 %.

Quan puja una determinada càrrega, el motor subministra una potència $P_{\rm mot}$ = 2 kW i gira a $n_{\rm mot}$ = 1450 min⁻¹.

Determineu:

- a) La velocitat de rotació del tambor i la velocitat vertical de la càrrega.
- b) La potència subministrada pel reductor.

[0,5 punts]

[1 punt]

c) La massa de la càrrega.

[0,5 punts]

7. (1 pt)

$$L_1 = (10 \pm 0.1) \text{ mm}$$

$$L_2 = (25 \pm 0.2) \text{ mm}$$

Per raons funcionals, en un plànol s'ha acotat una peça tal com s'indica a la figura. La seva llargada total *s* és:

- a) $(35 \pm 0,1)$ mm
- b) (35 ± 0.17) mm
- c) (35 ± 0.2) mm
- d) $(35 \pm 0,3)$ mm

8. (2,5 pts)

$$R_3 = 200 \ \Omega$$
 $R_4 = 300 \ \Omega$ $U = 220 \ V$

L'esquema de la figura correspon a un calefactor de quatre potències que s'alimenta a U = 220 V. Determineu:

- a) Les combinacions d'interruptors que situen les dues resistències en sèrie i en paral·lel. Dibuixeu els esquemes resultants.
- b) La resistència equivalent quan R_3 i R_4 estan en sèrie i en paral·lel. [1 punt]
- c) La potència del calefactor en els casos anteriors. [0,5 punts]

9. (2,5 pts)

En una planta de tractament de residus s'utilitza la combustió de biomassa (residus vegetals i animals) per produir aigua calenta. La planta rep diàriament $m_{\rm b}$ = 30 t de biomassa de poder calorífic $p_{\rm b}$ = 9 MJ/kg, que crema al llarg de tot el dia. El rendiment de la instal·lació és η = 0,60. La calor específica de l'aigua és $c_{\rm e}$ = 4,18 J/(g °C) i cal incrementar la seva temperatura en Δt = 50 °C. Determineu:

- a) L'energia diària E_{dia} , en kW·h, i la potència mitjana, en kW, produïdes per la combustió de la biomassa. [1 punt]
- b) La quantitat m d'aigua diària escalfada.

[1 punt]

c) El cabal mitjà q, en l/s, d'aigua calenta que es produeix.

[0,5 punts]

10. (2,5 pts)

Un motor-reductor està format per un motor elèctric de rendiment $\eta_{\rm mot}$ = 0,85 i un reductor de rendiment $\eta_{\rm red}$ = 0,62 i de relació de transmissió $\tau = \omega_{\rm s}/\omega_{\rm e}$ = 1/54. En règim de funcionament nominal consumeix una potència elèctrica $P_{\rm elec}$ = 3,3 kW i l'eix de sortida gira a $n_{\rm s}$ = 26,5 min⁻¹. Determineu:

a) La potència P_{motor} i el parell Γ_{motor} a l'eix de sortida del motor.

[1 punt]

b) La potència $P_{
m sortida}$ i el parell $\Gamma_{
m sortida}$ a l'eix de sortida del reductor.

[1 punt]

c) La potència total dissipada $P_{
m dissipada}$ en el motor-reductor.

[0,5 punts]