Дисциплина Основы машинного обучения и нейронные сети

Лекция 6 Искусственные нейронные сети

Линейные модели классификации и регрессии

Обучающая выборка: $X^{\ell}=(x_i,y_i)_{i=1}^{\ell}$, объекты $\mathbf{x}_i\in\mathbb{R}^d$, ответы y_i Задача регрессии: $Y=\mathbb{R}$

 $a(\mathbf{x}, \mathbf{w}) = \langle \mathbf{w}, \mathbf{x}_i \rangle$ — линейная модель регрессии

$$Q(\mathbf{w}, X^{\ell}) = \sum_{i=1}^{\ell} (\sigma(\langle \mathbf{w}, \mathbf{x}_i \rangle - y_i))^2 \to \min_{\mathbf{w}}$$

Задача классификации с двумя классами: $Y = \{\pm 1\}$ $a(\mathbf{x}, \mathbf{w}) = \mathrm{sign}\langle \mathbf{w}, \mathbf{x}_i \rangle$ — линейная модель классификации $\mathcal{L}(M)$ — невозрастающая функция отступа, например,

$$\mathcal{L}(M) = \ln(1 + e^{-M}), (1 - M)_+, e^{-M}, \frac{1}{1 + e^{-M}}$$
 и др.

$$Q(\mathbf{w}, X^{\ell}) = \sum_{i=1}^{\ell} \mathcal{L} \underbrace{(\langle \mathbf{w}, \mathbf{x}_i \rangle y_i)}_{M_i(\mathbf{w})} \to \min_{\mathbf{w}}$$

Линейная модель нейрона МакКаллока-Питтса (1943)

 $f_i: X \to \mathbb{R}, j = 1, ..., d$ — числовые признаки;

$$a(\mathbf{x}, \mathbf{w}) = \sigma(\langle \mathbf{w}, \mathbf{x} \rangle) = \sigma\left(\sum_{j=1}^{d} w_j f_j(\mathbf{x}) - w_0\right),$$

 w_j – синаптические веса признаков, $\sigma(z)$ - ф- активации, $x^j=f_j(\mathbf{x})$

Насколько богатый класс функций реализуется нейроном? А сетью (суперпозицией) нейронов?

Однослойная сеть

 $f_i: X \to \mathbb{R}, \quad j = 1, ..., d$ — числовые признаки $x^j = f_j(\mathbf{x})$ — вектор описания объекта (признаковое описание)

Однослойная сеть, или нейрон, определяется выражением

$$a(\mathbf{x}, \mathbf{w}) = \sigma(\langle \mathbf{w}, \mathbf{x} \rangle) = \sigma\left(\sum_{j=1}^{d} w_j f_j(\mathbf{x}) + w_0\right),$$

 ${f w}$ — синаптические веса признаков, $\sigma(z)$ - функция активации (непрерывная, монотонная и, желательно, дифференцируемая)

Функция активации

Функция активации преобразует значение суммы в выходное значение нейрона.

- пороговая ф-я Хевисайда (H),
- сигмоидная функция (S)

$$a(\mathbf{x}, \mathbf{w}) = \sigma(\mathbf{w}^T \mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^T \mathbf{x})},$$

- гиперболический тангенс (T) $th(x) = \frac{\exp(2x)-1}{\exp(2x)+1},$
- логарифмическая ф-я (L),
- гауссовская функция (G),
- линейная функция (Z), в .т.ч. тожденственная $a(\mathbf{x}, \mathbf{w}) = \mathbf{w}^T \mathbf{x}$.

Нейронная реализация логических функций

Функции И, ИЛИ, НЕ бинарных переменных (признаков) x^1, x^2 :

$$x^{1} \wedge x^{2} = \left[x^{1} + x^{2} - \frac{3}{2} > 0\right];$$

$$x^{1} \vee x^{2} = \left[x^{1} + x^{2} - \frac{1}{2} > 0\right];$$

$$x^{1} = \left[-x^{1} + \frac{1}{2} > 0\right];$$

$$x^{2} = \left[-x^{1} + \frac{1}{2} > 0\right];$$

$$x^{2} = \left[-x^{1} + \frac{1}{2} > 0\right];$$

$$x^{2} = \left[-x^{1} + \frac{1}{2} > 0\right];$$

$$x^{1} = \left[-x^{1} + \frac{1}{2} > 0\right];$$

$$x^{2} = \left[-x^{2} + \frac{1}{2} > 0\right];$$

Логическая функция XOR (исключающее ИЛИ)

Функция $x^1 \oplus x^2 = [x^1 \neq x^2]$ не реализуема одним нейроном. Два способа реализации:

• Добавлением нелинейного признака:

$$x^1 \oplus x^2 = [x^1 + x^2 - 2x^1x^2 - \frac{1}{2} > 0];$$

• Сетью (двухслойной суперпозицией) функций И, ИЛИ, НЕ: $x^1 \oplus x^2 = [(x^1 \lor x^2) - (x^1 \land x^2) > 0].$

Любую ли функцию можно представить нейросетью?

- Двухслойная сеть в $\{0,1\}^d$ позволяет реализовать произвольную булеву функцию (ДНФ).
- Линейный нейрон в \mathbb{R}^d позволяет отделить полупространство гиперплоскостью. Двухслойная сеть в \mathbb{R}^d позволяет отделить многогранную область, не обязательно выпуклую и связную.
- С помощью линейных операций и одной нелинейной *функции активации* σ можно приблизить любую непрерывную функцию с любой желаемой точностью (теорема Горбаня, 1998).

Практические выводы:

- Двух слоёв достаточно для аппроксимации функций.
- Глубокая сеть это обучаемое преобразование признаков.

Нейронная сеть – универсальная модель

Способна аппроксимировать любые поверхности

Теорема Колмогорова (1957)

Каждая непрерывная функция $a(\mathbf{x})$, заданная на единичном кубе d -мерного пространства, представима в виде

$$a(\mathbf{x}) = \sum_{i=1}^{2d+1} \sigma_i \left(\sum_{j=1}^d f_{ij}(x_j) \right),$$

где $\mathbf{x}=(x_1,\dots,x_d)^T$ — вектор описания объекта, функции $\sigma_i(\cdot)$ и $f_{ij}(\cdot)$ являются непрерывными, а f_{ij} ј не зависят от выбора a.

В теореме не указан конкретный вид функций функции $\sigma_i(\cdot)$ и $f_{ij}(\cdot)$. Проблема конструирования нейронной сети остается сложной задачей до сих пор.

Двухслойные сети – аппроксиматоры непрерывных функций

Функция $\sigma(z)$ — сигмоида, если $\lim_{z\to -\infty}\sigma(z)=0$ и $\lim_{z\to +\infty}\sigma(z)=1$.

Теорема Цыбенко (1989)

Если $\sigma(z)$ непрерывная сигмоида, то для любой непрерывной на $[0,1]^d$ функции $f(\mathbf{x})$ существуют такие значения параметров $H,\,\alpha_h\in\mathbb{R},\mathbf{w}_h\in\mathbb{R}^d,w_0\in\mathbb{R},$ что двухслойная сеть

$$a(\mathbf{x}) = \sum_{h=1}^{H} \alpha_h \sigma(\langle \mathbf{x}, \mathbf{w}_h \rangle - w_0)$$

равномерно приближает $f(\mathbf{x})$ с любой точностью ε : $|a(\mathbf{x}) - f(\mathbf{x})| < \varepsilon$, для всех $\mathbf{x} \in [0,1]^d$.

George Cybenko. Approximation by Superpositions of a Sigmoidal function. Mathematics of Control, Signals, and Systems. 1989.

Обобщение: полносвязная нейронная сеть с *L* слоями

Архитектура сети: H_l — число нейронов в l-м слое, l=1,...,L $\mathbf{x}^0=\mathbf{x}=(f_j(\mathbf{x}))_{j=0}^d$ — вектор признаков на входе сети, $H_0=n$ $\mathbf{x}^l=(x_h^l)_{h=0}^{H_l}$ — вектор признаков на выходе l-го слоя, $x_0^l=-1$ $\mathbf{x}^L=a(\mathbf{x})=(a_m(\mathbf{x}))_{m=0}^M$ — выходной вектор сети, $H_L=M$ $\mathbf{W}^l=(w_{kh}^l)$ — матрица весов l-го слоя, размера $(H_{l-1}+1)\times H_l$

- Входной слой
- Скрытый слой
- Выходной слой

Двухслойная нейронная сеть с *п*-мерным входом и *М*-мерным выходом

Пусть для общности $Y = \mathbb{R}^M$, для простоты слоёв только два.

Алгоритм SG (Stochastic Gradient)

Минимизация средних потерь на обучающей выборке:

$$Q(w) = \frac{1}{\ell} \sum_{i=1}^{\ell} \mathcal{L}_i(\mathbf{W}) \to \min_{\mathbf{W}}$$

Вход: выборка $(\mathbf{x}_i, y_i)_{i=1}^\ell$; темп обучения η ; параметр λ ; Выход: вектор весов всех слоёв $\mathbf{W} = (\mathbf{W}^1, ..., \mathbf{W}^L)$; инициализировать веса \mathbf{W} и текущую оценку $Q(\mathbf{W})$; повторять

выбрать объект \mathbf{x}_i ; из X^ℓ (например, случайно); вычислить функцию потерь $\mathcal{L}_i := \mathcal{L}_i(\mathbf{W})$; градиентный шаг: $\mathbf{W} := \mathbf{W} - \eta \nabla \mathcal{L}_i(\mathbf{W})$; оценить значение функционала: $Q := (1 - \lambda)Q + \lambda \mathcal{L}_i$; пока значение Q и/или веса и не стабилизируются;

Задача дифференцирования суперпозиции функций

l - номер слоя, h - номер нейрона в l-м слое, S_h^l - рез-т работы сумматора Вычисление сети по входному вектору \mathbf{x} , рекуррентно по слоям:

$$x_h^l = \sigma_h^l(S_h^l), \qquad S_h^l = \sum_{k=0}^{H_{l-1}} w_{kh}^l x_k^{l-1}, \qquad h = 1, \dots, H_l, \qquad l = 1, \dots, L,$$

то же самое в матричной записи: $\mathbf{x}^l = \sigma^l(\mathbf{W}^l \mathbf{x}^{l-1})$.

Функция потерь на объекте \mathbf{x}_i (в общем виде и квадратичная):

$$\mathcal{L}_{i}(\mathbf{w}) = \sum_{m=1}^{M} \mathcal{L}(a_{m}(\mathbf{x}_{i}, \mathbf{w}), y_{im}) = \sum_{m=1}^{M} \frac{1}{2} (a_{m}(\mathbf{x}_{i}, \mathbf{w}), y_{im})^{2}$$

По формуле дифференцирования суперпозиции функций:

$$\frac{\partial \mathcal{L}_{\mathbf{i}}(\mathbf{w})}{\partial w_{kh}^{l}} = \frac{\partial \mathcal{L}_{\mathbf{i}}(\mathbf{w})}{\partial x_{h}^{l}} \frac{\partial x_{h}^{l}}{\partial w_{kh}^{l}}, \qquad k = 0, \dots, H_{l-1}, \qquad h = 1, \dots, H_{l}$$

Рекуррентное вычисление частных производных

Найдём сначала частные производные $\mathcal{L}_i(\mathbf{w})$ по $x_h^l \equiv a_h(\mathbf{x}_i, \mathbf{w})$:

$$\frac{\partial \mathcal{L}_{i}(\mathbf{w})}{\partial x_{h}^{l}} = \frac{\partial \mathcal{L}(x_{h}^{l}, y_{ih})}{\partial x_{h}^{L}} = a_{h}(\mathbf{x}_{i}, \mathbf{w}) - y_{ih} \equiv \boldsymbol{\varepsilon_{ih}^{L}};$$

для квадратичной функции потерь это ошибка выходного слоя. Частные производные по x_h^l будем вычислять рекуррентно, по уровням справа налево, $l=L,\ldots,2$:

$$\frac{\partial \mathcal{L}_{l}(\mathbf{w})}{\partial x_{k}^{l-1}} = \sum_{h=0}^{H_{l}} \frac{\partial \mathcal{L}_{l}(\mathbf{w})}{\partial x_{h}^{l}} \underbrace{\left(\sigma_{h}^{l}\right)'\left(S_{h}^{l}\right) w_{kh}^{l}}_{Z_{lh}^{l}} = \sum_{h=0}^{H_{l}} \varepsilon_{lh}^{l} z_{lh}^{l} w_{kh}^{l} = \varepsilon_{lk}^{l-1}$$

— формально назовём это ошибкой скрытого слоя.

$$\sum_{i=1}^{\ell} \mathcal{L} \underbrace{(\langle \mathbf{w}, \mathbf{x}_i \rangle y_i)}_{M_i(\mathbf{w})} \to \min_{\mathbf{w}}$$

Замечание: функция активации σ_h^l и её производная $\left(\sigma_h^l\right)'$ вычисляются в одной и той же точке $S_{lh}^l = \sum_{k=0}^{H_{l-1}} w_{kh}^l x_{lk}^{l-1}$

Быстрое вычисление градиента

Рекуррентная формула записана так, будто сеть запускается «задом наперёд», чтобы вычислять ε_{ik}^{l-1} по ε_{ih}^{l} :

Теперь, имея частные производные $\mathcal{L}_i(\mathbf{W})$ по всем x_h^l , легко найти градиент $\mathcal{L}_i(\mathbf{W})$ по вектору весов \mathbf{W} :

$$\frac{\partial \mathcal{L}_{i}(\mathbf{W})}{\partial w_{kh}^{l}} = \frac{\partial \mathcal{L}_{i}(\mathbf{W})}{\partial x_{h}^{l}} \frac{\partial x_{h}^{l}}{\partial w_{kh}^{l}} = \varepsilon_{ih}^{l} z_{ih}^{l} x_{ik}^{l-1}$$

Алгоритм обратного распространения ошибки BackProp (1974, А.И.Галушкин, Пол Дж Вербос)

```
Вход: выборка (\mathbf{x}_i, y_i)_{i=1}^{\ell}, архитектура (H_l)_{l=1}^{L}, параметры \eta, \lambda;
Выход: матричный вектор весов всех слоёв \mathbf{W} = (W^1, ..., W^L);
инициализировать веса \mathbf{W};
повторять
      выбрать объект \mathbf{x}_i из X^{\ell} (например, случайно);
      прямой ход: для всех l=1,...,L,\ h=1,...,H_l
                S_{ih}^{l} := \sum_{k=0}^{H_{l-1}} w_{kh}^{l} x_{ik}^{l-1}; \quad x_{ih}^{l} := \sigma_h^{l}(S_{ih}^{l}); \quad z_{ih}^{l} := (\sigma_h^{l})'(S_{ih}^{l});
                \varepsilon_{hi}^L := \frac{\partial \mathcal{L}_i(\mathbf{W})}{\partial x_h^L}, \quad h = 1, \dots, H_L; \quad Q := (1 - \lambda)Q + \lambda \mathcal{L}_i(\mathbf{W});
      обратный ход: для всех l=L,\ldots,2,\,k=0,\ldots,H_{l-1}
                                             \varepsilon_{ik}^{l-1} := \sum_{h=0}^{H_l} \varepsilon_{ih}^l z_{ih}^l w_{kh}^l;
      градиентный шаг: для всех l=1,...,L,\,k=0,...,H_{l-1},\,h=1,...H_l
                                     w_{kh}^{l} := w_{kh}^{l} - \eta \varepsilon_{ih}^{l} z_{ih}^{l} x_{ik}^{l-1};
пока значения Q и/или веса W не стабилизируются;
```

Алгоритм BackProp: преимущества и недостатки

Преимущества:

- время вычисления градиента $O(\dim \mathbf{W})$ вместо $O(\dim^2 \mathbf{W})$
- обобщение на любые σ , \mathcal{L} и любое число слоёв
- возможность динамического (потокового) обучения
- сублинейное обучение на сверхбольших выборках (когда части объектов \mathbf{x}_i уже достаточно для обучения)
- возможно распараллеливание

Недостатки — все те же, свойственные SG:

- медленная сходимость
- застревание в локальных экстремумах
- «паралич сети» из-за горизонтальных асимптот σ
- проблема переобучения
- подбор комплекса эвристик является искусством

Метод накопления инерции (momentum)

Momentum — экспоненциальное скользящее среднее градиента по $\approx \frac{1}{1-\gamma}$ последним итерациям [Б.Т.Поляк, 1964]:

$$v := \gamma v + (1 - \gamma) \mathcal{L}'_i(w)$$
$$w := w - \eta v$$

NAG (Nesterov's accelerated gradient) — стохастический градиент с инерцией [Ю.Е.Нестеров, 1983]:

$$v := \gamma v + (1 - \gamma) \mathcal{L}'_i(w - \eta \gamma \nu)$$
$$w := w - \eta \nu$$

Адаптивные градиенты

RMSProp (running mean square) — выравнивание скоростей изменения весов скользящим средним по $\approx \frac{1}{1-\alpha}$ итерациям, ускоряет обучение по весам, которые пока мало изменялись:

$$G := \alpha G + (1 - \alpha) \mathcal{L}'_i(\mathbf{W}) \odot \mathcal{L}'_i(\mathbf{W})$$
$$\mathbf{W} := \mathbf{W} - \eta \mathcal{L}'_i(\mathbf{W}) \oslash (\sqrt{G} + \varepsilon)$$

где \odot и \oslash — покоординатное умножение и деление векторов. AdaDelta (adaptive learning rate) — двойная нормировка приращений весов, после которой можно брать $\eta = 1$:

$$G := \alpha G + (1 - \alpha) \mathcal{L}'_{i}(\mathbf{W}) \odot \mathcal{L}'_{i}(\mathbf{W})$$

$$\delta := \mathcal{L}'_{i}(\mathbf{W}) \odot \frac{\sqrt{\Delta} + \varepsilon}{\sqrt{G} + \varepsilon}$$

$$\Delta := \alpha \Delta + (1 - \alpha) \delta \odot \delta$$

$$\mathbf{W} := \mathbf{W} - \eta \delta$$

Комбинированные градиентные методы

Adam (adaptive momentum) = инерция + RMSProp:

$$v := \gamma v + (1 - \gamma) \mathcal{L}'_{i}(\mathbf{W}) \qquad \hat{v} := v (1 - \gamma^{k})^{-1}$$

$$G := \alpha G + (1 - \alpha) \mathcal{L}'_{i}(\mathbf{W}) \odot \mathcal{L}'_{i}(\mathbf{W}) \qquad \hat{G} := G (1 - \alpha^{k})^{-1}$$

$$\mathbf{W} := \mathbf{W} - \eta \hat{v} \oslash (\sqrt{\hat{G}} + \varepsilon)$$

Калибровка \hat{v} , \hat{G} увеличивает v, G на первых итерациях, где k — номер итерации; $\gamma=0.9$, $\alpha=0.999$, $\varepsilon=10^{-8}$

Nadam (Nesterov-accelerated adaptive momentum): те же формулы для v, \hat{v} , G, \hat{G} ,

$$\mathbf{W} \coloneqq \mathbf{W} - \eta \left(\gamma \hat{v} + \frac{1 - \gamma}{1 - \gamma^k} \mathcal{L}'_i(\mathbf{W}) \right) \oslash \left(\sqrt{\hat{G}} + \varepsilon \right)$$

Timothy Dozat. Incorporating Nesterov Momentum into Adam. ICLR-2016.

Сравнение сходимости методов

Alec Radford's animation:

https://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

Проблема взрыва градиента и эвристика gradient clipping

Проблема взрыва градиента (gradient exploding)

Эвристика Gradient Clipping: если $||g|| > \theta$ то $g := g\theta/||g||$

При грамотном подборе γ проблема взрыва градиента не возникает, и эвристика Gradient Clipping не нужна.

Метод случайных отключений нейронов (Dropout)

Этап обучения: делая градиентный шаг $\mathcal{L}_i(\mathbf{W}) o \min_{\mathbf{W}}$

отключаем h-й нейрон l-го слоя с вероятностью p_l :

$$x_{hi}^l = \xi_h^l \sigma_h^l \left(\sum_k w_{kh}^l x_{ki}^{l-1} \right), \qquad P(\xi_h^l = 0) = p_l$$

Этап применения: включаем все нейроны, но с поправкой:

$$x_{hi}^{l} = (1 - p_{l})\sigma_{h}^{l}(\sum_{k} w_{kh}^{l} x_{ki}^{l-1})$$

N.Srivastava, G.Hinton, A.Krizhevsky, I.Sutskever, R.Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting. 2014.

Интерпретации Dropout

- 1. Аппроксимируем простое голосование по 2^N сетям с общим набором из N весов, но с различной архитектурой связей
- 2. Регуляризация: из всех сетей выбираем более устойчивую к утрате р*N* нейронов, моделируя надёжность мозга
- 3. Сокращаем переобучение, заставляя разные части сети решать одну и ту же исходную задачу вместо того, чтобы подстраивать их под компенсацию ошибок друг друга

Обратный Dropout и L_2 -регуляризация

На практике чаще используют не Dropout, a *Inverted Dropout*.

Этап обучения:

$$x_{hi}^{l} = \frac{1}{1-p_{l}} \xi_{h}^{l} \sigma_{h}^{l} \left(\sum_{k} w_{kh}^{l} x_{ki}^{l-1} \right), \qquad P(\xi_{h}^{l} = 0) = p_{\ell}$$

Этап применения не требует ни модификаций, ни знания p_{ℓ} :

$$x_{hi}^l = \sigma_h^l \left(\sum_k w_{kh}^l x_{ki}^{l-1} \right)$$

 L_2 -регуляризация предотвращает рост параметров на обучении:

$$\mathcal{L}_i(\mathbf{w}) + \frac{\lambda}{2} ||\mathbf{w}||^2 \to \min_{\mathbf{w}}$$

Градиентный шаг с Dropout и L_2 -регуляризацией:

$$\mathbf{w} \coloneqq \mathbf{w}(1 - \eta \lambda) - \eta \frac{1}{1 - p_l} \xi_h^l \mathcal{L}_i'(\mathbf{W})$$

Функции активации ReLU и PReLU

градиентов или «параличу сети» Функция положительной срезки (rectified linear unit)

$$ReLU(y) = \max\{0, y\}; \quad PReLU(y) = \max\{0, y\} + \alpha \min\{0, y\}$$

Пакетная нормализация данных (Batch Normalization)

 $B = \{x_i\}$ пакеты (mini-batch) данных. Усреднение градиентов $\mathcal{L}_i(\mathbf{W})$ по пакету ускоряет сходимость. $B^l = \{x_i^l\}$ — векторы объектов x_i на выходе l-го слоя.

Batch Normalization:

1. Нормировать каждую h-ю компоненту вектора x_i^l по пакету:

$$\hat{x}_{hi}^{l} = \frac{x_{hi}^{l} - \mu_{h}}{\sqrt{\sigma_{h}^{2} + \varepsilon}}; \quad \mu_{h} = \frac{1}{|B|} \sum_{x_{i} \in B} x_{hi}^{l}; \quad \sigma_{h}^{2} = \frac{1}{|B|} \sum_{x_{i} \in B} (x_{hi}^{l} - \mu_{h})^{2}.$$

2. Добавить линейный слой с настраиваемыми весами:

$$\tilde{x}_{hi}^l = \gamma_h^l \hat{x}_{hi}^l + \beta_h^l$$

3. Параметры γ_h^l и β_h^l настраиваются BackProp.

S.loffe, C.Szegedy (Google) Batch normalization: accelerating deep network training by reducing internal covariate shift. 2015.

Эвристики для начального приближения

1. Выравнивание дисперсий выходов в разных слоях:

$$w_{kh} := \text{uniform}\left(-\frac{1}{\sqrt{H_l}}, \frac{1}{\sqrt{H_l}}\right)$$

2. Выравнивание дисперсий градиентов в разных слоях:

$$w_{kh} := \operatorname{uniform} \left(-\frac{6}{\sqrt{H_{l-1} + H_l}}, \frac{6}{\sqrt{H_{l-1} + H_l}} \right),$$

где H_{l-1} , H_l — число нейронов в предыдущем и текущем слое

- 3. Послойное обучение нейронов как линейных моделей:
 - либо по случайной подвыборке $X' \subseteq X^{\ell}$;
 - либо по случайному подмножеству входов;
- либо из различных случайных начальных приближений; тем самым обеспечивается различность нейронов.
- 4. Инициализация весами предобученной модели
- 5. Инициализация случайным ортогональным базисом

Прореживание сети (OBD - Optimal Brain Damage) (1/2)

Пусть **W** — локальный минимум $Q(\mathbf{W})$, тогда $Q(\mathbf{W})$ можно аппроксимировать квадратичной формой:

$$Q(\mathbf{W} + \delta) = Q(\mathbf{W}) + \frac{1}{2}\delta^T Q''(\mathbf{W})\delta + o(\|\delta\|^2),$$

где
$$Q''(\mathbf{W}) = \left(\frac{\partial^2 Q(\mathbf{W})}{\partial w_{kh} \partial w_{k'h'}}\right)$$
 — гессиан, размера $\dim^2(\mathbf{W})$.

Эвристика. Пусть гессиан $Q''(\mathbf{W})$ диагонален, тогда

$$\delta^T Q''(\mathbf{W})\delta = \sum_{l=1}^L \sum_{k=0}^{H_{l-1}} \sum_{h=1}^{H_l} \delta_{kh}^2 \frac{\partial^2 Q(\mathbf{W})}{\partial w_{kh}^2}$$

Хотим обнулить вес: $w_{kh} + \delta_{kh} = 0$. Как изменится $Q(\mathbf{W})$? Определение. Значимость (salience) веса w_{kh} — это изменение функционала $Q(\mathbf{W})$ при его обнулении: $S_{kh} = w_{kh}^2 \frac{\partial^2 Q(\mathbf{W})}{\partial w_{kh}^2}$

Yann LeCun, John Denker, Sara Solla. Optimal Brain Damage. 1989

Прореживание сети (OBD — Optimal Brain Damage) (2/2)

- 1. В BackProp вычислять вторые производные $\frac{\partial^2 Q}{\partial w_{kh}^2}$.
- 2. Если процесс минимизации $Q(\mathbf{W})$ пришёл в минимум, то
 - упорядочить на каждом уровне веса по убыванию S_{kh} ;
 - удалить N связей с наименьшей значимостью;
 - снова запустить BackProp.
- 3. Если $Q(\mathbf{W}, X^{\ell})$ или $Q(\mathbf{W}, X^{k})$ существенно ухудшился, то вернуть последние удалённые связи и выйти.

Отбор признаков с помощью OBD — аналогично.

Суммарная значимость признака: $S_j = \sum_{h=1}^{H_1} S_{jh}$.

Эмпирический опыт: результат постепенного прореживания обычно лучше, чем BackProp изначально прореженной сети.

Резюме

- Нейрон = линейная классификация или регрессия.
- Нейронная сеть = суперпозиция нейронов с нелинейной функцией активации. Теоретически двух-трёх слоёв достаточно для решения очень широкого класса задач.
- Глубокие нейросети автоматизируют выделение признаков из сложно структурированных данных (feature extraction)
- BackProp = быстрое дифференцирование суперпозиций.
 Позволяет обучать сети практически любой архитектуры.
- Некоторые меры по улучшению сходимости и качества:
 - адаптивный градиентный шаг
 - функции активации типа ReLU
 - регуляризация и DropOut
 - пакетная нормализация (batch normalization)
 - инициализация нейронов как отдельных алгоритмов

Соколов Е.А. доц., руководитель департамента больших данных и информационного поиска ВШЭ

http://wiki.cs.hse.ru/Основы_машинного_обучения/2023 Материалы курса «Основы машинного обучения», ВШЭ, майнор ИАД (доп. профиль «Интеллектуальный анализ данных)

Воронцов К.В. д.ф.-м.н., проф., ВМиК МГУ, МФТИ, ВЦ РАН им. Дородницына, Яндекс, ВШЭ

http://www.MahineLearning.ru/wiki
«Машинное обучение (курс лекций, К.В.Воронцов)»

25.12.2023