Lectures 14 and 15

Summary

These lectures were on the method of induction.

We note how implications are proved versus used:

To *prove* an implication, you may assume the antecedent, and under that assumption, prove the consequence.

To use an implication you need additional information. If you know both p and $p \Rightarrow q$, you can conclude q (modus ponens, if you like Latin). If you know both $\neg q$ and $p \Rightarrow q$, you can conclude $\neg p$ (modus tollens).

If $\{p_n \mid n \in \mathbb{Z}\}$ is is a set of statements, the *method of induction* is a way to show

$$\bigwedge_{n=0}^{\infty} p_n$$

by showing

$$p_0 \wedge \left[\bigwedge_{n=0}^{\infty} (p_n \Rightarrow p_{n+1}) \right]$$

 p_0 is called the *Base Case*.

The *Induction Step* is proving for any particular n that $(p_n \Rightarrow p_{n+1})$. In proving implication $(p_n \Rightarrow p_{n+1})$ we assume the antecedent, p_n , and under that assumption prove the consequence p_{n+1} . The assumption of p_n is called the *Induction Hypothesis*.

We did several examples.

In particular, we showed that if |X| = n, them

$$|\mathcal{P}_k(X)| = \frac{n!}{k!(n-k)!}$$

Exercises on Lectures 14 and 15

- 1. Show that $1+2+3+4+\cdots+n=n(n+1)/2$ is true for all $n\geq 0$ by induction.
- 2. Show that $1+3+5+7+\cdots+(2n+1)=(n+1)^2$ is true for all $n\geq 0$ by induction.
- 3. Show that $1^3 + 2^3 + 3^3 + 4^3 + \dots + n^3 = [n(n+1)/2]^2$ is true for all $n \ge 0$ by induction.
- 4. Show that $n^2 n$ is even for all $n \in \mathbb{Z}$ by induction on |n|.
- 5. Show that $4^n + 15n 1$ is evenly divisible by 9 for all $n \ge 0$.
- 6. Show that if n > 0 and n is odd, then $n^2 1$ is divisible by 8. [Note the the next odd number after n is n + 2].

- 7. Show that if $2^n \le n!$ for all but finitely many values of n. [Hint: Find a value n_0 and show $2^n \le n!$ for all $n \ge n_0$, with n_0 as the "base case".]
- 8. Let $\epsilon > 0$ be given. Show that $(1 + \epsilon)^n \ge 1 + n\epsilon$ for all $n \ge 0$.
- 9. Show that for all $n \geq 1$ that the polynomial $p_n = x^n 3^n$ can always be written as $(x-3)q_n(x)$, where $q_n(x)$ is a polynomial with only integer coefficients.