

Eric S. Chung, Michael Papamichael, Eriko Nurvitadhi,
James C. Hoe, Babak Falsafi, Ken Mai
Computer Architecture Lab at Carnegie Mellon
jhoe@ece.cmu.edu

- with funding from NSF CCF-0811702, NSF CNS-0509356, FCRP/C2S2, Sun Microsystems/OpenSPARC, Intel and IBM
- with equipment, tools and answers from Xilinx, Intel and Bluespec
- with interactions and advising from the RAMP colleagues

The ProtoFlex Simulator

History

 Project started (circa 2007) to build scalable, full-system multiprocessor simulators using FPGAs

Key Features

- Functional simulator for N-way UltraSPARC III server (~50-90 MIPS)
- Using hybrid simulation, runs real server apps + Solaris OS
- Employs multithreading to virtualize # CPUs per FPGA core

Virtualization

The Road Travelled

PROTOFLEX

- Systematic methodology for FPGA emulator development
 - Rely on validated component-based simulators for reference
 - Create equivalent RTL piece-wise—validate with co-simulation

Software-only simulation reference system

Verification of RTL with co-simulation

- Advantages
 - Gradual SW to HW transition
 - Concurrent RTL development of agreed reference model
 - Subsystem characterization

Sandbox Platform

Combining simulators & FPGAs

- Simulators already provide full-system
 - → why not simulate infrequent behaviors (e.g., I/O devices)?

Advantages

- avoid impl. infreq. behaviors → lowers full-system development
- low impact on scalability & perf. on FPGA

Migration

3 ways to map target object to host

FPGA-only (1)

Simulation-only (2)

Migratable 3

Migratable objects

- e.g., impl. 80% target behavior in FPGA, 100% in simulator Research Color of the Eric S. Chung

It Really Works

= "SUN 3800 Server" (1x UltraSPARC III, Solaris 8)

developed in 6 m NARR ETIC

Multiprocessor Host Interleaving

Advantages:

- Trade away FPGA throughput for smaller implementation
- Decouple logical simulated size from FPGA host size
- Host processor in FPGA can be made very simple

4-to-1 host interleaving

BlueSPARC host microarchitecture

64-bit ISA, SW-visible MMU, complex memory

→ high # of pipeline stages

10 ISFPGA 2008 / Eric S. Chung

ProtoFlex Instrumentation

Open Sourcing ProtoFlex

Why open source?

- Demonstration of FPGAs as viable architecture research vehicle
- Facilitate adoption of hybrid simulation & host multithreading
- Encourage building on top of our work

What are we releasing?

 Bluespec source HDL, Verilog and pre-generated netlists for SPARCV9 CPU model + interfaces

- XUPV5 Reference Design for EDK 10.1
- Virtutech Simics plug-ins for hybrid simulation
- Top-level SW controller, user command-line interface
- Documentation through online wiki

The Road Travelled

FIST Approach

- Treat each hop as a delay vs. load curve
 - Trade-off between model complexity and fidelity
- Keep track of load at each node

CAMP Daparnic

Transactional Datapath Specification (T-spec)

Unpipelined RTL Datapath

T-spec: captures transaction abstraction

Free from pipelining complexity (as simple as non-pipe city) (© Eriko Nurvitadhi

CORAM: FPGAs for Computing

Problems with programming today's FPGAs

- FPGAs today are meant to be ASIC-replacements (not compute)
- RTL development effort requires more time
- A major fraction of development effort goes into optimizing offand on-chip interfaces to bring data to where it needs to be
- Lack of portability of designs (interfaces usually must be respun)

Our observation

For any application running on any computing architecture---how memory is organized, optimized, and delivered is nearly as important as optimizing for the compute logic

The Road Travelled

CARL'2010 Workshop

http://www.ece.cmu.edu/calcm/carl2010

- Workshop on the Intersections of Computer Archtecture and Reconfigurable Logic (CARL)
- Bring reconfigurable logic and reconfigurable computing to the computer architecture audience
 - 4~6 pages on any topic computer architects should care about
 - it is okay if the paper has been published in noncomputer architecture forums
 - paper submission on October 1st
- Co-located with MICRO-43, Atlanta, December 5
- Organized by Derek, Joel and James; many familiar names on the TPC

