Curso de Extensão

Ciência dos Dados em Administração

Gustavo Alexandre

- Gestão de Dados na UFF (<u>STI</u>)
- E-mail: gassantos@id.uff.br
- Linkedin: https://linkedin.com/in/gassantos
- GitHub: https://github.com/gassantos
- Curso: https://github.com/curso-extensao-uff

Aprendizado de Máquina

Agenda

- 1. Mercado
- 2. Aprendizado de Máquina (AM)
- 3. Cenários de Aprendizado de Máquina
- 4. Processo de Aprendizado de Máquina
- 5. Aprendizado Supervisionado
- 6. Técnicas
- 7. Avaliação

Mercado

"Há três tipos de mentiras: as mentiras, as mentiras descabeladas, e as estatísticas"

Benjamin Disraeli

As Maiores Empresas do Mundo em 2019

Segundo a Forbes, **Das trinta maiores empresas** do mundo, nove são empresas de tecnologia: Apple, AT&T, Samsung, Microsoft, Alphabet, Verizon, China Mobile e Amazon.

Fonte: Forbes Global 2000 (2019)

Os homens mais ricos do Mundo em 2019

Fonte: Forbes Global 2000 (2019)

Os homens mais ricos do Mundo em 2015

Top 100^[1] [edit]

No. ¢	Name \$	Citizenship +	Age +	Net Worth USD billion \$	Source(s) of wealth
1	Bill Gates	United States	59	79.20	Microsoft
2	Carlos Slim Helu	Mexico	75	77.10	Telecom
3	Warren Buffett	United States	84	72.70	Berkshire Hathaway
4	Amancio Ortega	Spain	78	64.50	Zara
5	Larry Ellison	United States	70	54.30	Oracle
6	Charles Koch	United States	79	42.90	Diversified
6	David Koch	United States	74	42.90	Diversified
8	Christy Walton	United States	60	41.70	Wal-Mart
9	Jim Walton	United States	67	40.60	Wal-Mart
10	Liliane Bettencourt	France	92	40.10	L'Oréal
11	Alice Walton	United States	65	39.40	Wal-Mart
12	S. Robson Walton	United States	71	39.10	Wal-Mart
13	Bernard Arnault	France	66	37.20	LVMH
14	Michael Bloomberg	United States	73	35.50	Bloomberg LP
15	Jeff Bezos	United States	51	34.80	Amazon.com
16	Mark Zuckerberg	United States	30	33.40	Facebook
17	Li Ka-shing	Hong Kong	86	33.30	Diversified
18	Sheldon Adelson	United States	81	31.40	Casinos
19	Larry Page	United States	41	29.70	Google
20	Sergey Brin	United States	41	29.20	Google

Fonte: Forbes Global 2000 (2015)

Apple

Microsoft

America Movil

Sansung

Facebook

Google

O Case Amazon

Transformação Digital

É o uso da tecnologia para resolver problemas tradicionais, baseando-se em soluções digitais, a fim de promover eficiência e automação aos procedimentos e atividades dos processos de negócio (Christian Matt et al., 2014)

Transformação de Negócio

É o processo de "reestruturação fundamental" dos sistemas, dos procedimentos, das pessoas e da tecnologia em toda uma empresa ou unidade de negócio, para alcançar melhorias mensuráveis em eficiência, eficácia e satisfação das partes interessadas (<u>Cruise</u>, 2017)

Leitura Complementar

- Estratégia Digital do Governo Federal 2017
- ☐ Information Economy Report 2015
- □ <u>Digital Transformation</u>
- Digital Transformation Strategies
- ☐ Industry 4.0
- Business Data Mining A Machine Learning Perspective
- Business Intelligence and Analytics: From Big Data to Big Impact

Conceitos

Segundo Arthur Samuel (1959), "é área de estudo que concede aos computadores a habilidade de aprender sem serem programados explicitamente." (Samuel, 1959)

Conceitos

Tom Mitchell (1998): "Um programa de computador aprende com a experiência E em relação a tarefa T e alguma medida de desempenho P, se seu desempenho em T, medido por P, melhora com a experiência E." (Mitchell, 1998)

Conceitos

O **Aprendizado de Máquina (AM)** <u>explora</u> o estudo e a <u>construção</u> de algoritmos que podem <u>aprender</u> sobre <u>dados</u> e fazer <u>previsões</u>

Tipos de Aprendizado de Máquina

- Supervisionado
- Não-Supervisionado
- Semi-Supervisionado
- Profundo
- Por Reforço

Aprendizado Supervisionado

- (supervised learning) visa construir um modelo estatístico a partir de um conjunto de dados que contém as entradas e as saídas desejadas (rotuladas):
 - Classificação
 - Regressão

Aprendizado Não-Supervisionado

- (unsupervised learning) visa construir um modelo estatístico a partir de um conjunto de dados que contém apenas as informações de entradas e nenhuma identificação de saída (não rotulada):
 - Agrupamento
 - Sistemas de Recomendação
 - Filtragem

Aprendizado Semi-Supervisionado

 (semi-supervised learning) visa construir um modelo estatístico a partir de um conjunto de dados de treinamento incompletos, em que uma parte da amostra possui rótulos e a outra não (rotulados e não-rotulados)

Aprendizado Profundo

- (deep learning) compreende o uso das redes neurais artificiais em grandes volumes de dados (big data), ampliando continuamente sua capacidade de aprendizado, à medida que mais dados são processados
 - Visão Computacional
 - Reconhecimento de voz

Aprendizado por Reforço

 (reinforcement learning) compreende a técnica de aprendizado interativo sobre a forma como <u>agentes inteligentes</u> (multi-agent systems) aprendem a agir em determinados ambientes, de modo a maximizar a noção de recompensa perante a execução das tarefas

Leitura Complementar

- Introdução ao Aprendizado de Máquina LTC
- ☐ Livros:
 - Deep Learning
 - Python Data Science Handbook
- ☐ Cursos:
 - EdX Principles of Machine Learning
 - ☐ Google Machine Learning Crash Course

"Os fatos não deixam de existir apenas porque são ignorados"

Aldous Huxley

Exemplos

Detecção de spam

Reconhecimento de Voz

Exemplos

Reconhecimento de imagens

Reconhecimento de caracteres

Exemplos

Tradução Automática

Learning to rank

Identifique o problema de AM

Dado um exame, como identificar se um tumor é benigno ou maligno com base no seu tamanho e na idade do paciente?

Identifique o problema de AM

Dado um conjunto de dados sobre o tamanho de casas no mercado imobiliário, como vamos prever o preço de casas, já que algumas instâncias foram atribuídas como padrão A, B e C?

Identifique o problema de AM

Dada uma imagem de homem ou mulher, como podemos prever a sua idade com base em dados da imagem?

Identifique o problema de AM

❖ Dada uma coleção de milhares de pesquisas em uma universidade, como podemos encontrar uma maneira automática de agrupar estas pesquisas que são de alguma forma semelhantes por algumas variáveis, tais como a frequência das palavras, frases e contagem de páginas?

Leitura Complementar

- □ DSA Casos de Uso de AM
- □ Google AI <u>Education</u>
- ☐ Statmethods | Quick R
- ☐ Kaggle | *Machine Learning in R*
- □ Datacamp | *Introduction to R*

Aprendizado Supervisionado

- A máquina recebe as saídas identificadas
- Dois tipos (tarefas):
 - Classificação: prediz valor discreto
 - Regressão: prediz valor contínuo

Fluxo dos Dados

Terminologia

- Conjunto de Treinamento
- Conjunto de Teste
- Conjunto de Validação (Produção, Deploy)
- Alvo (Target, y) Vetor (Classes)
- Atributos (Features, X) Matriz (Variáveis)
- Modelo (Técnica)
- Algoritmo de Aprendizado

Ambiente (Toolbox)

Processo de Aprendizado de Máquina

- 1) Carregar os dados
- 2) Explorar os dados
- 3) Particionar os dados
 - a) Treinamento
 - b) Teste
- **4)** Modelo => Ajustar os atributos (**model.fit**)
- 5) Modelo => Prever alvo (model.predict)

Carregando os Dados em R

- dados <- <u>data(mydata)</u>
- dados <- <u>read.table("mydata.txt")</u>
- dados <- <u>read.csv</u>("mydata.csv")
- dados <- <u>read.xls</u>("mydata.xls")

Fonte: Data Import | R Import

Explorando os Dados em R

- head(dados)
- nrow(dados)
- **summary**(dados)
- unique(dados)
- missing(dados)

Particionando os Dados em R

a) Treinamento

treino <- particiona(dados, percentual)

b) Teste

teste <- dados[-treino]

Ajustando os Dados em R

- "Fittar" os dados (fitting) é o procedimento de ajuste de dados ao modelo, analisando a precisão do ajuste. Podem ser usadas técnicas de equações matemáticas e métodos não paramétricos, para modelar os dados obtidos:
 - modelo <- model.fit (alvo, treino)

Prevendo com os Dados em R

- "Predição" com dados (predicting) é o procedimento de analisar dados para fazer previsões. Geralmente, usa-se análises estatísticas e técnicas de AM para criar um modelo capaz de prever eventos futuros:
 - resultado <- model.predict (modelo, teste)

Procedimento de Predição em AM Supervisionado

- 1. Identificar uma necessidade de negócio que possa ser resolvida com os dados disponíveis
- Traduzir essa necessidade em um problema de AM Supervisionado
- 3. Adequação de rótulos aos dados históricos

Leitura Complementar

- ☐ Kaggle Introduction to Machine Learning in R
- ☐ Livro An Introduction to Machine Learning with R
- ☐ Curso Introduction to TensorFlow
- □ Plataforma <u>Google Colaboratory</u>
- □ Plataforma <u>Jupyter Hub</u>

(Classificação)

"No futuro, o pensamento estatístico será tão necessário para a cidadania eficiente como saber ler e escrever" H.G.Wells

Classificação Binária

Exemplos

- Email: spam/ham (not spam)?
- Transações financeiras: fraudulenta/legítima?
- Tumor: maligno/benigno?

0: "classe negativa" (não é spam) $y \in \{0,1\}$ 1: "classe positiva" (spam)

Abordagem Binária

Procedimento Binário

- Em geral, para um problema de classificação com duas classes, os passos são:
 - Treinar um classificador para as classes com os dados de treinamento
 - Selecionar os dados de teste para testar o classificador nesta amostra.

Procedimento Binário

Classificação Multiclasse

Exemplos

- O Perfil político: Liberal, Conservador ou Socialista?
- Etnia/Raça: Negro, Branco, Amarelo ou Indígena?
- Clima: ensolarado, nublado ou chuvoso?

Abordagem Multiclasse

Procedimento Multiclasse

- Em geral, para um problema de classificação com n classes, os passos são:
 - Treinar um classificador para cada uma das n classes
 - Selecionar a classe que maximiza a hipótese correspondente, para testar o classificador na amostra de teste desta hipótese.

Procedimento Multiclasse

Estudo de Caso p/ Multiclasse

- Organização de um portal de notícias: esportes, humor, política
- Diagnose médica: alergia, resfriado, dengue
- Religião: católica, protestante, espírita ou pentecostal

Principais Pacotes para AM em R

library(dplyr) library(ggplot2)

library(Hmisc)library(mlbench)

library(e1071)library(rpart.plot)

library(caret)library(ROCR)

library(MASS)library(rpart)

Fonte: Top 20 Data Science Packages in R

Conjunto de Dados em R

Obtendo amostra de dados:

data(iris)data(Titanic)

data(economics)data(mtcars)

data(diamonds)data(Boston)

Fonte: <u>Exemplos de Conjunto de Dados</u>

Análise Exploratória dos Dados em R

- head(iris)
- nrow(Titanic)
- summary(economics)
- unique(mtcars)
- missing(diamonds)
- plot(Boston)¹

¹ Fonte: R Documentation Plot Function

Pré-Processamento de Dados em R

- Conjuntos de dados:
 - Treinamento (train) e Teste (test)
 - part<-sample_frac(dados, 0.8)</p>
 - treino<-as.numeric(rownames(part))</p>
 - teste<dados[-treino,]</p>

Pré-Processamento de Dados em R

- Treinamento (*train*) e Teste (*test*)
 - part<-sample(nrow(dados), round(nrow(dados)*0.8))
 - treino<-dados[part,]
 - teste<-dados[-part,]

Pré-Processamento de Dados em R

- Treinamento (*train*) e Teste (*test*)
 - library(caret)
 - treino<-createDataPartition(y=dados\$alvo, p=0.8, list=FALSE)
 - teste<-dados[-treino,]

Fonte: RPubs | Introduction to Machine Learning in R

Aplicar Modelo aos Dados em R

- Ajuste dos dados:
 - "Fitting" (*fit*)
 - modelo <- model.fit(dados\$alvo, treino)</p>

- Prevendo com os dados:
 - <u>"Predicting"</u> (*predict*)
 - resultado <- model.predict(modelo, teste)</p>

Algoritmos

"Não são tanto as coisas que não sabemos que nos metem em confusões. São as coisas que pensamos que sabemos." *Artemus Ward*

Aprendizado de Máquina Supervisionado

 Aprendizado de máquina (AM) é o estudo científico de algoritmos e modelos estatísticos que os sistemas de computador usam para realizar uma tarefa específica sem usar instruções explícitas, confiando em padrões e inferência

Algoritmos de Classificação

 Constróem um modelo matemático com base nos dados de amostra e seus rótulos, para fazer previsões ou conduzir decisões sem ser explicitamente programado para executar as tarefas

Algoritmos de Classificação

- Naive Bayes
- Árvore de Decisão
- Regressão Logística
- Florestas Aleatórias
- Aprendizado baseado em instância
- Seleção de Atributos
- Máquina de Vetor de Suporte

Naive Bayes

Naive Bayes

- É um algoritmo probabilístico simples baseado no teorema de Bayes
- Utiliza dados de treino para formar um modelo baseado na evidência dos atributos nos dados
- Supõe que há uma independência entre os atributos do modelo

Naive Bayes em R

- install.packages("e1071")
- library(e1071)
- modelo <- nayveBayes(alvo~., data=dados)
- result <-predict(modelo, dados)
- table(result, dados\$alvo) #Matriz de Confusão

Árvore de Decisão

Árvore de Decisão

- É um modelo interpretável com gráfico no formato de árvore e demonstra visualmente as regras e probabilidades até os resultados
- Este algoritmo funciona tanto para problemas de classificação quanto para regressão

Exemplo: RPubs | Árvore de Decisão por Fabrício Barth

Árvore de Decisão em R

- install.packages("rpart")
- library(rpart)
- install.packages("rpart.plot")
- library(rpart.plot)
- fitDTree <- rpart(alvo~., treino)
- rpart.plot(fitDTree) #Gera a Árvore

Regressão Logística

- É um algoritmo estatístico muito utilizado para modelagem de saídas binárias
- Quando se quer medir a relação de uma variável dependente binária com uma ou mais variáveis independentes, é comum utilizar esta técnica

Regressão Logística em R

- library(stats)
- modelo <- glm(alvo~., data=treino, family="binomial")
- result <- predict(modelo, teste, type="response")
- summary(result)

Florestas Aleatórias (Random Forest)

- É um modelo comum em <u>classificação</u> e <u>regressão</u> que permite construir um aglomerado de **árvores** de decisão durante o treinamento
- Tem como resultado uma melhor configuração, dadas as árvores avaliadas

Florestas Aleatórias (Random Forest) em R

- install.packages("randomForest")
- library(randomForest)
- modelo <- randomForest(alvo~., data=dados, importance=TRUE, proximity=TRUE)

Aprendizagem Baseada em Instâncias (KNN)

- Esse tipo de técnica armazena o conjunto de treinamento ao prever um valor (ou classe) para uma nova instância
- Utilizam-se de métricas de distância e similaridade durante o processo de treinamento
- Algoritmos: KNN, máquinas de Kernel, redes RBF

Aprendizagem Baseada em Instâncias (KNN) em R

- install.packages("caret")
- library(caret)
- modelo <- trainControl(method="cv", number=5)
- fitKNN <- train(alvo~., data=dados, method= "knn", metric="Accuracy", trControl=modelo)

Seleção de Atributos

- Aplicar seleção de atributos nos dados que podem conter atributos redundantes ou irrelevantes
- A remoção desse atributos não deve promover perdas significativas

Seleção de Atributos em R

- install.packages("caret")
- library(caret)
- modelo <- trainControl(method="cv", number=10)
- modelFS <- train(alvo~., data=dados, method="lvq", preProcess="scale", trControl=modelo)
- selecAtributos <- varImp(modelFS, scale=FALSE)

Máquina de Vetor de Suporte (SVM)

 O SVM é um classificador linear binário não probabilístico

 SVM busca um hiperplano entre os dados a serem classificados e visa maximizar a distância entre os pontos, separando cada uma das classes

Máquina de Vetor de Suporte (SVM)

Máquina de Vetor de Suporte (SVM) em R

- install.packages("e1071")
- library(**e1071**)
- modelo <- svm(formula=alvo~., data=treino, type='C-classification', kernel='linear')
- resultado = predict(modelo, newdata=test)

Fonte: R Documentation | SVM Function

Leitura Complementar

- ☐ Livro R to Data Science
- ☐ Livro <u>Hands-On Programming with R</u>
- Coursera <u>Machine Learning: Classification</u>
- ☐ Google Machine Learning Problem Framing
- ☐ Blog do Curso <u>UFF | Estatística com R</u>
- ☐ Colabora Dados Para iniciar em Data Science

Avaliação

"No futuro, o pensamento estatístico será tão necessário para a cidadania eficiente como saber ler e escrever" H.G.Wells

Avaliação de Modelo

 A avaliação dos classificadores binários compara dois métodos de atribuição de um atributo binário, um dos quais é geralmente um método padrão e o outro está sendo investigado

Avaliação de Modelo

 Existem muitas métricas que podem ser usadas para medir o desempenho de um classificador ou preditor e áreas diferentes têm preferências diferentes para métricas específicas devido aos seus objetivos

Avaliação de Modelo

• Exemplo de preferências:

- Na medicina, <u>sensibilidade</u> e <u>especificidade</u> são frequentemente usadas
- Na ciência da computação, a <u>precisão</u> e a <u>recordação</u> são preferidas

Definições

- TP = Verdadeiro Positivo (*True Positive*)
- TN = Verdadeiro Negativo (*True Negative*)
- **FP** = Falso Positivo (*False Positive*)
- FN = Falso Negativo (False Negative)

Métricas de Avaliação (Classificação)

- Acurácia
- Medida F1 (*F-Score*)
- Matriz de Confusão
- Curva ROC

Acurácia

- Segundo a Física, é a exatidão de uma medição ou de um instrumento de medição
- Para o AM, é uma métrica para avaliar modelos de classificação

Acurácia

- Pode-se dizer, informalmente, que acurácia é a fração de predições que nosso modelo acertou.
- Formalmente, a <u>acurácia</u> tem a seguinte definição:

Acuracia = (TP + TN)/(TP+TN+FP+FN)

Acurácia em R

- devtools::install_github("selva/InformationValue")
- library(InformationValue)

- result <- predict(modelo, newdata=teste, type="response")
- y_pred <- ifelse(result>0.5, True, False)
- accuracy <- mean(y_pred == dados\$alvo)

Medida F1 (F-Score)

- É a métrica com melhor aceitação dentre a avaliação de um teste de classificação
- Tem sido muito utilizada em <u>NLP</u> nos casos de <u>Reconhecimento de Entidade Nomeada</u>
 - Specificity = TP / (TP + FP)
 - Sensibility = TN / (TN + FN)

Medida F1 (F-Score)

- É uma média harmônica (Specificity e Sensibility) em que a pontuação atinge seu melhor valor em 1 e a pior em 0.
- Formalmente, F1 tem a seguinte definição:

F-Score =
$$\frac{2 \times (Specificity \times Sensibility)}{(specificity + sensibility)}$$

Medida F1 (F-Score) em R

library(InformationValue)

- result <- predict(modelo, newdata=teste, type="response")
- y_pred <- ifelse(result>0.5, True, False)
- InformationValue::fscore(dados\$alvo, y_pred)

Matriz de Confusão

 É também conhecida como "Matriz de Erro", a qual permite a visualizar o desempenho em Aprendizado Supervisionado (classificação)

 Em Aprendizado Não-Supervisionado, é geralmente chamada de "Matriz de Correspondência", com duas dimensões e classes em ambas as dimensões

Matriz de Confusão

		Valor Previsto	
		Positivo	Negativo
Valor Verdadeiro	Positivo	TP Verdadeiro Positivo	FN Falso Negativo
	Negativo	FP Falso Positivo	TN Verdadeiro Negativo

Fonte: Linkedin | Artigo sobre Machine Learning

Matriz de Confusão em R

- Dica: Use o Modelo gerado na Regressão Logística
- Exemplo 1 (Matriz de Confusão somente):
 - matriz <- ifelse(result > 0.5, "True", "False")
 - table(matriz, teste\$alvo)
- Exemplo 2 (Matriz de Confusão e outras métricas):
 - confusionMatrix(factor(matriz), teste\$alvo))

Curva ROC

- É uma representação gráfica que ilustra o desempenho de um classificador binário e como o seu limiar de discriminação é variado
- A curva ROC foi desenvolvida na Segunda Guerra Mundial para detecção de objetos inimigos nas batalhas

Curva ROC

- Atualmente auxilia na psicologia, medicina, radiologia, aprendizado de máquina, mineração de dados, entre outros
- É obtida pela representação da fração de Positivos Verdadeiros dos Positivos Totais (TPR=PV/P) versus a fração de Positivos Falsos dos Negativos Totais (FPR=PF/N), em várias configurações do limite

Curva ROC

 Graficamente, a Curva ROC é expressa da seguinte forma:

Curva ROC em R

- install.packages("ROCR")
- library(ROCR)
- pred <- prediction(dados, dados\$alvo)
- perf <- performance(pred,"tpr","fpr")
- plot(perf)

Fonte: R Documentation | ROCR Prediction

Curva ROC em R

- install.packages("caTools")
- library(caTools)

caTools::colAUC(p, teste["alvo"], plotROC=True)

Fonte: Seção 5.4.2 | ROC Curve

Leitura Complementar

- Kohavi, Ron; Provost, Foster. Glossary of terms.
 Machine Learning.
- ☐ Coursera Evaluation Metrics in Classification (IBM)
- Machine Learning Plus | <u>Evaluation Metrics</u>
- Curso <u>Introduction to Data Visualization</u>
- ☐ Profissional | Peter Aldhous (Data Journalist)

Bibliografia Recomendada (em R)

Bibliografia Recomendada (em Python)

Muito Obrigado!

Referências Bibliográficas

- □ Lantz, B. (2013). **Machine learning with R**. Packt Publishing Ltd.
- □ CONWAY, Drew; WHITE, John. (2012). **Machine learning for hackers**. O'Reilly Media, Inc.
- ☐ ZUMEL, Nina; MOUNT, John. (2014). Practical data science with R.