Phys 443 Computational Physics

Fitting
ML & Least Squares Methods

ML Linear Fit

- N experimental points have been taken. Each point is the measurement of a physical quantity y_i , i=1,...,N for N different values of another physical quantity x_i . We make the following assumptions:
 - o each measurement of y_i is characterized by a *Gaussian* pdf with a known variance σ_i^2 ;
 - \circ the x_i values are assumed to be known with **no or negligible uncertainty**;
 - o the y_i measurements are not correlated;
 - o we make the hypothesis that the two physics quantities y and x are related by

$$y = \alpha x + \beta$$

So, a set of measurements: $(x_1, y_1 \pm \sigma_1)$, $(x_2, y_2 \pm \sigma_2)$, ... $(x_n, y_n \pm \sigma_n)$ and the points are thought to come from a straight line. Find α and β

The likelihood function is:

$$L = \prod_{i=1}^{n} f(x_i, \alpha, \beta) = \prod_{i=1}^{n} \frac{1}{\sigma_i \sqrt{2\pi}} e^{-\frac{(y_i - q(x_i, \alpha, \beta))^2}{2\sigma_i^2}} = \prod_{i=1}^{n} \frac{1}{\sigma_i \sqrt{2\pi}} e^{-\frac{(y_i - \alpha - \beta x_i)^2}{2\sigma_i^2}}$$

Suppose we have a set of n measurements:

$$\begin{split} \frac{\partial \ln L}{\partial \alpha} &= \frac{\partial}{\partial \alpha} \sum_{i=1}^{n} \left[\ln \left(\frac{1}{\sigma_i \sqrt{2\pi}} \right) - \frac{(y_i - \alpha - \beta x_i)^2}{2\sigma_i^2} \right] = \sum_{i=1}^{n} \left[-\frac{2(y_i - \alpha - \beta x_i)(-1)}{2\sigma_i^2} \right] = 0 \\ \frac{\partial \ln L}{\partial \beta} &= \frac{\partial}{\partial \beta} \sum_{i=1}^{n} \left[\ln \left(\frac{1}{\sigma_i \sqrt{2\pi}} \right) - \frac{(y_i - \alpha - \beta x_i)^2}{2\sigma_i^2} \right] = \sum_{i=1}^{n} \left[-\frac{2(y_i - \alpha - \beta x_i)(-x_i)}{2\sigma_i^2} \right] = 0 \end{split}$$

Assume all σ 's are the same for simplicity:

$$\sum_{i=1}^{n} y_i - \sum_{i=1}^{n} \alpha - \sum_{i=1}^{n} \beta x_i = 0$$

$$\sum_{i=1}^{n} y_i x_i - \sum_{i=1}^{n} \alpha x_i - \sum_{i=1}^{n} \beta x_i^2 = 0$$

We now have two equations that are linear in the two unknowns α and β

$$\sum_{i=1}^{n} y_{i} = n\alpha + \beta \sum_{i=1}^{n} x_{i}$$

$$\sum_{i=1}^{n} y_{i} x_{i} = \alpha \sum_{i=1}^{n} x_{i} + \beta \sum_{i=1}^{n} x_{i}^{2}$$

$$\begin{bmatrix} \sum_{i=1}^{n} y_i \\ \sum_{i=1}^{n} y_i x_i \\ \sum_{i=1}^{n} y_i x_i \end{bmatrix} = \begin{bmatrix} n & \sum_{i=1}^{n} x_i \\ \sum_{i=1}^{n} x_i & \sum_{i=1}^{n} x_i^2 \\ \sum_{i=1}^{n} x_i & \sum_{i=1}^{n} x_i^2 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

$$\alpha = \frac{\sum_{i=1}^{n} y_i \sum_{i=1}^{n} x_i^2 - \sum_{i=1}^{n} y_i x_i \sum_{i=1}^{n} x_i}{n \sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2} \quad \text{and} \quad \beta = \frac{n \sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} y_i \sum_{i=1}^{n} x_i}{n \sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2}$$

EXAMPLE:

 A trolley moves along a track at constant speed. Suppose the following measurements of the time vs. distance were made. From the data find the best value for the speed (v) of the trolley.

Time t (seconds)	1.0	2.0	3.0	4.0	5.0	6.0
Distance d (mm)	11	19	33	40	49	61

Our model of the motion of the trolley tells us that:

$$d = d_0 + vt$$

We want to find v, the slope (β) of the straight line describing the motion of the trolley. We need to evaluate the sums listed in the above formula:

$$\sum_{i=1}^{n} x_{i} = \sum_{i=1}^{6} t_{i} = 21 \text{ s}$$

$$\sum_{i=1}^{n} y_{i} = \sum_{i=1}^{6} d_{i} = 213 \text{ mm}$$

$$\sum_{i=1}^{n} x_{i} y_{i} = \sum_{i=1}^{6} t_{i} d_{i} = 919 \text{ s} \cdot \text{mm}$$

$$\sum_{i=1}^{n} x_{i}^{2} = \sum_{i=1}^{6} t_{i}^{2} = 91 \text{ s}^{2}$$

$$v = \frac{n \sum_{i=1}^{n} x_{i} y_{i} - \sum_{i=1}^{n} y_{i} \sum_{i=1}^{n} x_{i}}{n \sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2}} = \frac{6 \times 919 - 21 \times 213}{6 \times 91 - 21^{2}} = 9.9 \text{ mm/s}$$

best estimate of the speed

$$d_0 = 0.8 \ mm$$

best estimate of the starting point

Exercise

Determining the Slope and Intercept with MLM σ's are NOT the same

• If all σ 's are NOT the same :

$$L = \prod_{i=1}^{n} f(x_i, \alpha, \beta) = \prod_{i=1}^{n} \frac{1}{\sigma_i \sqrt{2\pi}} e^{-\frac{(y_i - q(x_i, \alpha, \beta))^2}{2\sigma_i^2}} = \prod_{i=1}^{n} \frac{1}{\sigma_i \sqrt{2\pi}} e^{-\frac{(y_i - \alpha - \beta x_i)^2}{2\sigma_i^2}}$$

We wish to find the α and β that maximizes the likelihood function L. Thus we need to take some derivatives:

$$\frac{\partial \ln L}{\partial \alpha} = \frac{\partial}{\partial \alpha} \sum_{i=1}^{n} \left[\ln \left(\frac{1}{\sigma_{i} \sqrt{2\pi}} \right) - \frac{(y_{i} - \alpha - \beta x_{i})^{2}}{2\sigma_{i}^{2}} \right] = \sum_{i=1}^{n} \left[-\frac{2(y_{i} - \alpha - \beta x_{i})(-1)}{2\sigma_{i}^{2}} \right] = 0$$

$$\frac{\partial \ln L}{\partial \beta} = \frac{\partial}{\partial \beta} \sum_{i=1}^{n} \left[\ln \left(\frac{1}{\sigma_{i} \sqrt{2\pi}} \right) - \frac{(y_{i} - \alpha - \beta x_{i})^{2}}{2\sigma_{i}^{2}} \right] = \sum_{i=1}^{n} \left[-\frac{2(y_{i} - \alpha - \beta x_{i})(-x_{i})}{2\sigma_{i}^{2}} \right] = 0$$

$$\frac{\partial \ln L}{\partial \alpha} = \sum_{i=1}^{n} \frac{y_{i}}{\sigma_{i}^{2}} - \alpha \sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}} - \beta \sum_{i=1}^{n} \frac{x_{i}}{\sigma_{i}^{2}} = 0$$

$$\sum_{i=1}^{n} \frac{y_{i}}{\sigma_{i}^{2}} = \sum_{i=1}^{n} \frac{x_{i}}{\sigma_{i}^{2}} = 0$$

$$\sum_{i=1}^{n} \frac{x_{i}}{\sigma_{i}^{2}} = \sum_{i=1}^{n} \frac{x_{i}}{\sigma_{i}^{2}} = 0$$

$$\sum_{i=1}^{n} \frac{x_{i}}{\sigma_{i}^{2}} = 0$$

We have to solve the two equations for the two unknowns, α and β . We can get an exact solution since these equations are linear in α and β . Just have to invert a matrix.

Determining the Slope and Intercept with MLM

$$\alpha = \frac{\sum_{i=1}^{n} \frac{y_i}{\sigma_i^2} \sum_{i=1}^{n} \frac{x_i^2}{\sigma_i^2} - \sum_{i=1}^{n} \frac{y_i x_i}{\sigma_i^2} \sum_{i=1}^{n} \frac{x_i}{\sigma_i^2}}{\sum_{i=1}^{n} \frac{1}{\sigma_i^2} \sum_{i=1}^{n} \frac{x_i}{\sigma_i^2} - (\sum_{i=1}^{n} \frac{x_i}{\sigma_i^2})^2} \quad \text{and} \quad \beta = \frac{\sum_{i=1}^{n} \frac{1}{\sigma_i^2} \sum_{i=1}^{n} \frac{x_i y_i}{\sigma_i^2} - \sum_{i=1}^{n} \frac{y_i}{\sigma_i^2} \sum_{i=1}^{n} \frac{x_i}{\sigma_i^2}}{\sum_{i=1}^{n} \frac{1}{\sigma_i^2} \sum_{i=1}^{n} \frac{x_i^2}{\sigma_i^2} - (\sum_{i=1}^{n} \frac{x_i}{\sigma_i^2})^2}$$

Let's calculate the error (covariance) matrix for α and β :

Let's calculate the error (covariance) matrix for
$$\alpha$$
 and β :
$$V_{ij} = -\left(\frac{\partial^{2} \ln L}{\partial \alpha_{i} \partial \alpha_{j}}\right)^{-1}$$

$$\frac{\partial^{2} \ln L}{\partial \alpha^{2}} = \frac{\partial}{\partial \alpha} \left(\sum_{i=1}^{n} \frac{y_{i}}{\sigma_{i}^{2}} - \alpha \sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}} - \beta \sum_{i=1}^{n} \frac{x_{i}}{\sigma_{i}^{2}}\right) = -\sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}}$$

$$\frac{\partial^{2} \ln L}{\partial \beta^{2}} = \frac{\partial}{\partial \beta} \left(\sum_{i=1}^{n} \frac{x_{i} y_{i}}{\sigma_{i}^{2}} - \alpha \sum_{i=1}^{n} \frac{x_{i}}{\sigma_{i}^{2}} - \beta \sum_{i=1}^{n} \frac{x_{i}^{2}}{\sigma_{i}^{2}}\right) = -\sum_{i=1}^{n} \frac{x_{i}^{2}}{\sigma_{i}^{2}}$$

$$\frac{\partial^{2} \ln L}{\partial \alpha \partial \beta} = \frac{\partial}{\partial \beta} \left(\sum_{i=1}^{n} \frac{y_{i}}{\sigma_{i}^{2}} - \alpha \sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}} - \beta \sum_{i=1}^{n} \frac{x_{i}}{\sigma_{i}^{2}}\right) = -\sum_{i=1}^{n} \frac{x_{i}}{\sigma_{i}^{2}}$$

$$\frac{\partial^{2} \ln L}{\partial \alpha \partial \beta} = \frac{\partial}{\partial \beta} \left(\sum_{i=1}^{n} \frac{y_{i}}{\sigma_{i}^{2}} - \alpha \sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}} - \beta \sum_{i=1}^{n} \frac{x_{i}}{\sigma_{i}^{2}}\right) = -\sum_{i=1}^{n} \frac{x_{i}}{\sigma_{i}^{2}}$$

$$\frac{\partial^{2} \ln L}{\partial \alpha \partial \beta} = \frac{\partial}{\partial \beta} \left(\sum_{i=1}^{n} \frac{y_{i}}{\sigma_{i}^{2}} - \alpha \sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}} - \beta \sum_{i=1}^{n} \frac{x_{i}}{\sigma_{i}^{2}}\right) = -\sum_{i=1}^{n} \frac{x_{i}}{\sigma_{i}^{2}}$$

$$\frac{\partial^{2} \ln L}{\partial \alpha \partial \beta} = \frac{\partial}{\partial \beta} \left(\sum_{i=1}^{n} \frac{y_{i}}{\sigma_{i}^{2}} - \alpha \sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}} - \beta \sum_{i=1}^{n} \frac{x_{i}}{\sigma_{i}^{2}}\right) = -\sum_{i=1}^{n} \frac{x_{i}}{\sigma_{i}^{2}}$$

$$\frac{\partial^{2} \ln L}{\partial \alpha \partial \beta} = \frac{\partial}{\partial \beta} \left(\sum_{i=1}^{n} \frac{y_{i}}{\sigma_{i}^{2}} - \alpha \sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}} - \beta \sum_{i=1}^{n} \frac{x_{i}}{\sigma_{i}^{2}}\right) = -\sum_{i=1}^{n} \frac{x_{i}}{\sigma_{i}^{2}}$$

$$\frac{\partial^{2} \ln L}{\partial \alpha \partial \beta} = \frac{\partial}{\partial \beta} \left(\sum_{i=1}^{n} \frac{y_{i}}{\sigma_{i}^{2}} - \alpha \sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}} - \beta \sum_{i=1}^{n} \frac{x_{i}}{\sigma_{i}^{2}}\right) = -\sum_{i=1}^{n} \frac{x_{i}}{\sigma_{i}^{2}}$$

$$\frac{\partial^{2} \ln L}{\partial \alpha \partial \beta} = \frac{\partial}{\partial \beta} \left(\sum_{i=1}^{n} \frac{y_{i}}{\sigma_{i}^{2}} - \alpha \sum_{i=1}^{n} \frac{y_{i}}{\sigma_{i}^{2}} - \beta \sum_{i=1}^{n} \frac{x_{i}}{\sigma_{i}^{2}}\right) = -\sum_{i=1}^{n} \frac{y_{i}}{\sigma_{i}^{2}}$$

Covariance is the measure the strength of the linear relationship between two random variables

Reminder: Inverse of a Matrix

Finding the Inverse of a 2x2 matrix $\begin{vmatrix} a & b \\ c & d \end{vmatrix}$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Step-1 First find what is called the Determinant

This is calculated as ad-bc

Step-2 Then swap the elements in the leading diagonal $\begin{vmatrix} d & b \\ c & a \end{vmatrix}$

Step-3 Then negate the other elements $\begin{vmatrix} d & -b \\ -c & a \end{vmatrix}$

Step-4 Then multiply the Matrix by 1/determinant

 $\frac{1}{ad-cb}\begin{vmatrix} d & -b \\ -c & a \end{vmatrix}$

Determining the Slope and Intercept with MLM

$$V = \begin{pmatrix} \sum_{i=1}^{n} \frac{x_{i}^{2}}{\sigma_{i}^{2}} / D & -\sum_{i=1}^{n} \frac{x_{i}}{\sigma_{i}^{2}} / D \\ -\sum_{i=1}^{n} \frac{x_{i}}{\sigma_{i}^{2}} / D & \sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}} / D \end{pmatrix} \text{ with } D = \sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}} \sum_{i=1}^{n} \frac{x_{i}^{2}}{\sigma_{i}^{2}} - (\sum_{i=1}^{n} \frac{x_{i}}{\sigma_{i}^{2}})^{2}$$

$$V = \begin{pmatrix} \sigma_{\alpha}^2 & \sigma_{\alpha\beta} \\ \sigma_{\alpha\beta} & \sigma_{\beta}^2 \end{pmatrix}$$
Note: We could also derive the variance of α and β just using propagation of errors on the formulas for α and β .

10

<u>Problem</u>: We have some measurements and would like some way to measure how "good" these measurements really are.

Solution: Consider calculating the " χ^2 " ("chi-square")

Assume:

- We have a set of measurements $\{x_1, x_2, \dots x_n\}$.
- We know the true value of each x_i (x_{t1} , x_{t2} , ... x_{tn}).
- Obviously the closer the $(x_1, x_2, \dots x_n)$'s are to the $(x_{t1}, x_{t2}, \dots x_{tn})$'s the better (or more accurate) the measurements.

Can we get more specific? Can we put a number (or probability) on how well they agree?

Assume:

- o The measurements are independent of each other.
- o The measurements come from a Gaussian distribution.
- \circ Let $(\sigma_1, \sigma_2 \dots \sigma_n)$ be the standard deviation associated with each measurement.

Consider the following two possible measures of the quality of the data:

$$R \equiv \sum_{i=1}^{n} \frac{x_i - x_{ti}}{\sigma_i} = \sum_{i=1}^{n} \frac{d_i}{\sigma_i}$$
$$\chi^2 \equiv \sum_{i=1}^{n} \frac{(x_i - x_{ti})^2}{\sigma_i^2} = \sum_{i=1}^{n} \frac{d_i^2}{\sigma_i^2}$$

Both measures give zero when the measurements are identical to the true values.

- Which of the above gives more information on the quality of the data?
- Both R and χ^2 are zero if the measurements agree with the true value.
 - R looks good because via the Central Limit Theorem as $n \to \infty$ the sum \to Gaussian.
 - However, χ^2 is better!

12

One can show (derive) that the probability distribution function for χ^2 is exactly:

$$p(\chi^{2}, n) = \frac{1}{2^{n/2} \Gamma(n/2)} [\chi^{2}]^{n/2-1} e^{-\chi^{2}/2} \quad 0 \le \chi^{2} \le \infty$$

This is called the "Chi Square" (χ^2) probability distribution function.

 Γ is the "Gamma Function".

$$\Gamma(x) \equiv \int_0^\infty e^{-t} t^{x-1} dt \quad x > 0$$

$$\Gamma(n+1) = n! \quad (n = 1, 2, 3...)$$

$$\Gamma(1/2) = \sqrt{\pi}$$

13

■ This is a continuous probability distribution that is a function of <u>two</u> variables:

 χ^2 and n = number of degrees of freedom (DOF).

DOF = n = (# of data points) - (# of parameters calculated from the data points)

- Suppose we have *n* data points (x_i, y_i, σ_i) .
 - Assume that we know a functional relationship between the points,

$$y = f(x, a, b...)$$

- Assume that for each y_i we know x_i exactly.
- The parameters a, b, \dots are constants that we wish to determine from out data.
- A procedure to obtain a and b is to minimize the following χ^2 with respect to a and b.

$$\chi^{2} = \sum_{i=1}^{n} \frac{[y_{i} - f(x_{i}, a, b)]^{2}}{\sigma_{i}^{2}}$$

• This is very similar to the Maximum Likelihood Method.

For the Gaussian case MLM and LS are identical.

- Technically this is a χ^2 distribution only if the y's are from a Gaussian distribution.
- Since most of the time the y's are not from a Gaussian we call it "least squares" rather than χ^2 .

Example: We have a function with one unknown parameter:

$$f(x,b)=1+bx$$

Find b using the least squares technique.

We need to minimize the following:

$$\chi^{2} = \sum_{i=1}^{n} \frac{[y_{i} - f(x_{i}, a, b)]^{2}}{\sigma_{i}^{2}} = \sum_{i=1}^{n} \frac{[y_{i} - 1 - bx_{i}]^{2}}{\sigma_{i}^{2}}$$

• To find the *b* that minimizes the above function, we do the following:

$$\frac{\partial \chi^{2}}{\partial b} = \frac{\partial}{\partial b} \sum_{i=1}^{n} \frac{[y_{i} - 1 - bx_{i}]^{2}}{\sigma_{i}^{2}} = \sum_{i=1}^{n} \frac{-2[y_{i} - 1 - bx_{i}]x_{i}}{\sigma_{i}^{2}} = 0$$

$$\sum_{i=1}^{n} \frac{y_{i}x_{i}}{\sigma_{i}^{2}} - \sum_{i=1}^{n} \frac{x_{i}}{\sigma_{i}^{2}} - \sum_{i=1}^{n} \frac{bx_{i}^{2}}{\sigma_{i}^{2}} = 0$$

Solving for b we find:

$$b = \frac{\sum_{i=1}^{n} \frac{y_i x_i}{\sigma_i^2} - \sum_{i=1}^{n} \frac{x_i}{\sigma_i^2}}{\sum_{i=1}^{n} \frac{x_i^2}{\sigma_i^2}}$$

16

- Here each measured data point (y_i) is allowed to have a different standard deviation (σ_i) .
- The LS technique can be generalized to two or more parameters for simple and complicated (e.g. non-linear) functions.
- One especially nice case is a polynomial function that is linear in the unknowns (a_i) :

$$f(x,a_1...a_n) = a_1 + a_2x + a_3x^2 + a_nx^{n-1}$$

- We can always recast problem in terms of solving n simultaneous linear equations.
- We use the techniques from linear algebra and invert an $n \times n$ matrix to find the a_i 's!
- Example: Given the following data perform a least squares fit to find the value of b.

х	1.0	2.0	3.0	4.0
у	2.2	2.9	4.3	5.2
σ	0.2	0.4	0.3	0.1

• Using the above expression for b we calculate:

$$b = 1.05$$

Next is a plot of the data points and the line from the least squares fit:

18

- If we assume that the data points are from a Gaussian distribution,
- we can calculate a χ^2 and the probability associated with the fit.

$$\chi^2 = \sum_{i=1}^n \frac{[y_i - 1 - 1.05x_i]^2}{\sigma_i^2} = \left(\frac{2.2 - 2.05}{0.2}\right)^2 + \left(\frac{2.9 - 3.1}{0.4}\right)^2 + \left(\frac{4.3 - 4.16}{0.3}\right)^2 + \left(\frac{5.2 - 5.2}{0.1}\right)^2 = 1.04$$

The probability to get $\chi^2 \ge 1.04$ for 3 degrees of freedom $\approx 80\%$. We call this a "good" fit since the probability is close to 100%.

Thus we say that the probability of getting $\chi^2 \ge 1.04$ with 3 degrees of freedom by chance is about 80%

If however the χ^2 was large (e.g. 15), the probability would be small ($\approx 0.2\%$ for 3 dof). We would say this was a "bad" fit.

RULE OF THUMB A "good" fit has $\chi^2 / \text{dof} \le 1$

TABLE D

Chi-Square: fit goodness

• However, often times the y_i 's are NOT from a gaussian *pdf*. In these instances we call this technique " χ^2 fitting" or "Least Squares Fitting".

$$\chi^{2} = \sum_{i=1}^{n} \frac{[y_{i} - f(x_{i}, a, b, ...)]^{2}}{\sigma_{i}^{2}}$$

• We can only use a χ^2 probability table when y is from a gaussian pdf. However, there are many instances where even for non-gaussian pdf's the above sum approximates χ^2 pdf.

We discussed how we can fit our data points to a linear function (straight line) and get the "best" estimate of the slope and intercept.

However, we did not discuss two important issues:

- I) How to estimate the uncertainties on our slope and intercept obtained from a LSQF?
- II) How to apply the LSQF when we have a non-linear function?

Estimation of Errors on parameters determined from a LSQF

Assume we have data points that lie on a straight line:

$$y = \alpha + \beta x$$

Assume we have *n* measurements of the x's and y's.

For simplicity, assume that each y measurement has the same error, σ .

Assume that *x* is known much more accurately than *y*.

 \Rightarrow ignore any uncertainty associated with x.

Previously we showed that the solution for the intercept α and slope β is:

$$\alpha = \frac{\sum_{i=1}^{n} y_{i} \sum_{i=1}^{n} x_{i}^{2} - \sum_{i=1}^{n} x_{i} y_{i} \sum_{i=1}^{n} x_{i}}{n \sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2}} \text{ and } \beta = \frac{n \sum_{i=1}^{n} x_{i} y_{i} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}}{n \sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2}}$$

Since α and β are functions of the measurements $(y_i|s)$ we can use the <u>Propagation of Errors</u> technique to estimate σ_{α} and σ_{β} .

$$\sigma_{Q}^{2} = \sigma_{x}^{2} \left(\frac{\partial Q}{\partial x} \right)^{2} + \sigma_{y}^{2} \left(\frac{\partial Q}{\partial y} \right)^{2} + 2\sigma_{xy} \left(\frac{\partial Q}{\partial x} \right) \left(\frac{\partial Q}{\partial y} \right)$$

Assume that: a) Each measurement is independent of each other ($\sigma_{xy}=0$).

- b) We can neglect any error (σ) associated with x.
- c) Each y measurement has the same σ , i.e. $\sigma_i = \sigma$.

$$\sigma_Q^2 = \sigma_x^2 \left(\frac{\partial Q}{\partial x}\right)^2 + \sigma_y^2 \left(\frac{\partial Q}{\partial y}\right)^2$$

assumption a)

$$\sigma_Q^2 = \sigma_y^2 \left(\frac{\partial Q}{\partial y} \right)^2$$

assumption b)

$$\sigma_{\alpha}^{2} = \sum_{i=1}^{n} \sigma_{y_{i}}^{2} \left(\frac{\partial \alpha}{\partial y_{i}} \right)^{2} = \sigma^{2} \sum_{i=1}^{n} \left(\frac{\partial \alpha}{\partial y_{i}} \right)^{2}$$
 assumption c)

$$\frac{\partial \alpha}{\partial y_i} = \frac{\partial}{\partial y_i} \frac{\sum_{i=1}^n y_i \sum_{j=1}^n x_j^2 - \sum_{i=1}^n x_i y_i \sum_{j=1}^n x_j}{n \sum_{i=1}^n x_i^2 - (\sum_{i=1}^n x_i)^2} = \frac{\sum_{j=1}^n x_j^2 - x_i \sum_{j=1}^n x_j}{n \sum_{i=1}^n x_i^2 - (\sum_{i=1}^n x_i)^2}$$
plugging our formula for α

$$\sigma_{\alpha}^{2} = \sigma^{2} \sum_{i=1}^{n} \left(\frac{\sum_{j=1}^{n} x_{j}^{2} - x_{i} \sum_{j=1}^{n} x_{j}}{n \sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2}} \right)^{2} = \sigma^{2} \sum_{i=1}^{n} \left(\frac{(\sum_{j=1}^{n} x_{j}^{2})^{2} + x_{i}^{2} (\sum_{j=1}^{n} x_{j})^{2} - 2x_{i} \sum_{j=1}^{n} x_{j} \sum_{j=1}^{n} x_{j}^{2}}{(n \sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2})^{2}} \right)$$

$$\sigma_{\alpha}^{2} = \sigma^{2} \frac{n(\sum_{j=1}^{n} x_{j}^{2})^{2} + \sum_{i=1}^{n} x_{i}^{2}(\sum_{j=1}^{n} x_{j})^{2} - 2(\sum_{j=1}^{n} x_{j})^{2} \sum_{j=1}^{n} x_{j}^{2}}{(n\sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2})^{2}} = \sigma^{2} \frac{n(\sum_{j=1}^{n} x_{j}^{2})^{2} - \sum_{i=1}^{n} x_{i}^{2}(\sum_{j=1}^{n} x_{j})^{2}}{(n\sum_{i=1}^{n} x_{i}^{2} - (\sum_{j=1}^{n} x_{i})^{2})^{2}}$$

$$= \sigma^{2} \frac{n(\sum_{j=1}^{n} x_{j}^{2})^{2} - \sum_{i=1}^{n} x_{i}^{2}(\sum_{j=1}^{n} x_{j})^{2}}{(n\sum_{i=1}^{n} x_{i}^{2} - (\sum_{j=1}^{n} x_{i})^{2})^{2}}$$

$$= \sigma^{2} \frac{n(\sum_{j=1}^{n} x_{j}^{2})^{2} - \sum_{i=1}^{n} x_{i}^{2}(\sum_{j=1}^{n} x_{j})^{2}}{(n\sum_{j=1}^{n} x_{j}^{2} - (\sum_{j=1}^{n} x_{j})^{2}}$$

$$= \sigma^{2} \sum_{j=1}^{n} x_{j}^{2} \frac{n \sum_{j=1}^{n} x_{j}^{2} - (\sum_{j=1}^{n} x_{j})^{2}}{(n \sum_{i=1}^{n} x_{i}^{2} - (\sum_{j=1}^{n} x_{i})^{2})^{2}}$$

$$\sigma_{\alpha}^{2} = \sigma^{2} \frac{\sum_{j=1}^{n} x_{j}^{2}}{n \sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2}}$$

variance in the intercept

We can find the variance in the slope (β) using exactly the same procedure:

$$\sigma_{\beta}^{2} = \sum_{i=1}^{n} \sigma_{y_{i}}^{2} \left(\frac{\partial \beta}{\partial y_{i}}\right)^{2} = \sigma^{2} \sum_{i=1}^{n} \left(\frac{\partial \beta}{\partial y_{i}}\right)^{2} = \sigma^{2} \sum_{i=1}^{n} \left(\frac{nx_{i} - \sum_{j=1}^{n} x_{j}}{n\sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2}}\right)^{2}$$

$$= \sigma^{2} \frac{n^{2} \sum_{j=1}^{n} x_{j}^{2} + n(\sum_{j=1}^{n} x_{j})^{2} - 2n \sum_{i=1}^{n} x_{i} \sum_{j=1}^{n} x_{j}}{(n \sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2})^{2}}$$

$$\sigma_{\beta}^{2} = \frac{n\sigma^{2}}{n\sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2}}$$
 variance in the slope

• If we don't know the true value of σ , we can estimate the variance using the spread between the measurements $(y_i$'s) and the fitted values of y:

$$\sigma^{2} \approx \frac{1}{n-2} \sum_{i=1}^{n} (y_{i} - y_{i}^{fit})^{2} = \frac{1}{n-2} \sum_{i=1}^{n} (y_{i} - \alpha - \beta x_{i})^{2}$$

n-2 = number of degree of freedom

= number of data points – number of parameters (α, β) extracted from the data

• If each y_i measurement has a different error σ_i :

$$\sigma_{\alpha}^{2} = \frac{1}{D} \sum_{i=1}^{n} \frac{x_{i}^{2}}{\sigma_{i}^{2}}$$

$$\sigma_{\beta}^{2} = \frac{1}{D} \sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}}$$

$$D = \sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}} \sum_{i=1}^{n} \frac{x_{i}^{2}}{\sigma_{i}^{2}} - (\sum_{i=1}^{n} \frac{x_{i}}{\sigma_{i}^{2}})^{2}$$

weighted slope and intercept

The above expressions simplify to the "equal variance" case.

Don't forget to keep track of the "n's" when factoring out equal σ 's. For example:

$$\sum_{i=1}^{n} \frac{1}{\sigma_i^2} = \frac{n}{\sigma^2} \quad not \quad \frac{1}{\sigma^2}$$

Example: Decay of a radioactive substance. Fit the following data to find N_0 and τ :

$$N(t) = N_0 e^{-t/\tau}$$

- $\blacksquare N$ represents the amount of the substance present at time t.
- $\bullet N_0$ is the amount of the substance at the beginning of the experiment (t = 0).
- $\bullet \tau$ is the lifetime of the substance.

i	1	2	3	4	5	6	7	8	9	10
t_i	0	15	30	45	60	75	90	105	120	135
N_{i}	106	80	98	75	74	73	49	38	37	22
$y_i = \ln N_i$	4.663	4.382	4.585	4.317	4.304	4.290	3.892	3.638	3.611	3.091

Least Squares Fitting Example

$$N(t) = N(0)e^{-t/\tau}$$

As written the above pdf is not linear in τ . We can turn this into a linear problem by taking the natural log of both sides of the pdf.

$$ln(N(t)) = ln(N(0)) - t/\tau \Rightarrow y = C - Dt$$

$$D = \frac{n\sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} y_i \sum_{i=1}^{n} x_i}{n\sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2} = \frac{10 \times 2560.41 - 40.773 \times 675}{10 \times 64125 - (675)^2} = -0.01033$$

$$\tau = -1/D = 96.80$$
 seconds

■ The intercept is given by: $C = 4.77 = \ln A$ or A = 117.9

31

Example: Find the values A and τ taking into account the uncertainties in the data points.

- The uncertainty in the number of radioactive decays is governed by Poisson statistics.
- The number of counts N_i in a bin is assumed to be the average (μ) of a Poisson distribution: $\mu = N_i = \text{Variance}$
- The variance of y_i (= ln N_i) can be calculated using propagation of errors:

$$\sigma_y^2 = \sigma_N^2 (\partial y / \partial N)^2 = (N) (\partial \ln N / \partial N)^2 = (N) (1/N)^2 = 1/N$$

The slope and intercept from a straight line fit that includes uncertainties in the data points:

$$\alpha = \frac{\sum_{i=1}^{n} \frac{y_{i}}{\sigma_{i}^{2}} \sum_{i=1}^{n} \frac{x_{i}^{2}}{\sigma_{i}^{2}} - \sum_{i=1}^{n} \frac{x_{i}y_{i}}{\sigma_{i}^{2}} \sum_{i=1}^{n} \frac{x_{i}}{\sigma_{i}^{2}}}{\sigma_{i}^{2}} \text{ and } \beta = \frac{\sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}} \sum_{i=1}^{n} \frac{x_{i}y_{i}}{\sigma_{i}^{2}} - \sum_{i=1}^{n} \frac{x_{i}}{\sigma_{i}^{2}} \sum_{i=1}^{n} \frac{y_{i}}{\sigma_{i}^{2}}}{\sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}} \sum_{i=1}^{n} \frac{x_{i}^{2}}{\sigma_{i}^{2}} - (\sum_{i=1}^{n} \frac{x_{i}}{\sigma_{i}^{2}})^{2}}{\sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}} \sum_{i=1}^{n} \frac{x_{i}^{2}}{\sigma_{i}^{2}} - (\sum_{i=1}^{n} \frac{x_{i}}{\sigma_{i}^{2}})^{2}}$$

If all the σ 's are the same then the above expressions are identical to the unweighted case.

$$\alpha$$
=4.725 and β = -0.00903
 τ = -1/ β = -1/0.00903 = 110.7 sec

• To calculate the error on the lifetime (t), we first must calculate the error on b:

$$\sigma_{\beta}^{2} = \frac{\sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}}}{\sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}} \sum_{i=1}^{n} \frac{x_{i}^{2}}{\sigma_{i}^{2}} - (\sum_{i=1}^{n} \frac{x_{i}}{\sigma_{i}^{2}})^{2}} = \frac{652}{652 \times 2684700 - (33240)^{2}} = 1.01 \times 10^{-6}$$

$$\sigma_{\tau}^{2} = \sigma_{\beta}^{2} (\partial \tau / \partial \beta)^{2} \Rightarrow \sigma_{\tau} = \sigma_{\beta} (1/\beta^{2}) = \frac{1.005 \times 10^{-3}}{(9.03 \times 10^{-3})^{2}} = 12.3$$

The experimentally determined lifetime is: $\tau = 110.7 \pm 12.3$ sec.

Least Squares Fitting Example

We can calculate the χ^2 to see how "good" the data fits an exponential decay distribution:

For this problem: $lnA=4.725 \rightarrow A=112.73$ and $\tau=110.7$ sec

$$\chi^{2} = \sum_{i=1}^{10} \frac{(N_{i} - Ae^{-t_{i}/\tau})^{2}}{\sigma_{i}^{2}} = \sum_{i=1}^{10} \frac{(N_{i} - Ae^{-t_{i}/\tau})^{2}}{Ae^{-t_{i}/\tau}} = 15.6$$
Poisson approximation
$$A \text{ good fit has } \chi^{2}/\text{DOF} \leq 1$$

The chi sq per dof is 1.96 The chi sq prob. is 4.9 %

This is not such a good fit since the probability is only ~4.9%.

35

Least Squares Fitting: quadratic function

• Let's now allow a curved line of polynomial form

$$y(x) = a + bx + cx^2 + dx^3 + ...$$

which is the curve we want to fit to the data.

• For simplicity, let's consider a second-degree polynomial (quadratic). The chisquare for this situation is

$$\chi^{2} = \sum \left[\frac{y_{i} - y(x)}{\sigma_{i}} \right]^{2} = \sum \left[\frac{1}{\sigma_{i}} \left(y_{i} - a - bx - cx^{2} \right) \right]^{2}$$

• Following exactly the same approach as before, we end up with three equations in three unknowns (the parameters a, b and c):

$$\frac{\partial}{\partial a} \chi^{2} = \frac{\partial}{\partial a} \sum \left[\frac{1}{\sigma_{i}} \left(y_{i} - a - bx_{i} - cx_{i}^{2} \right) \right]^{2} = -2 \sum \left[\frac{1}{\sigma_{i}^{2}} \left(y_{i} - a - bx_{i} - cx_{i}^{2} \right) \right] = 0,$$

$$\frac{\partial}{\partial b} \chi^{2} = \frac{\partial}{\partial b} \sum \left[\frac{1}{\sigma_{i}} \left(y_{i} - a - bx_{i} - cx_{i}^{2} \right) \right]^{2} = -2 \sum \left[\frac{x_{i}}{\sigma_{i}^{2}} \left(y_{i} - a - bx_{i} - cx_{i}^{2} \right) \right] = 0,$$

$$\frac{\partial}{\partial c} \chi^{2} = \frac{\partial}{\partial c} \sum \left[\frac{1}{\sigma_{i}} \left(y_{i} - a - bx_{i} - cx_{i}^{2} \right) \right]^{2} = -2 \sum \left[\frac{x_{i}^{2}}{\sigma_{i}^{2}} \left(y_{i} - a - bx_{i} - cx_{i}^{2} \right) \right] = 0.$$

Least Squares Fitting: quadratic function

• The solution, then, can be found from the same determinant technique we used before, except now we have 3 x 3 determinants:

$$a = \frac{1}{\Delta} \begin{bmatrix} \sum \frac{y_i}{\sigma_i^2} & \sum \frac{x_i}{\sigma_i^2} & \sum \frac{x_i^2}{\sigma_i^2} \\ \sum \frac{x_i y_i}{\sigma_i^2} & \sum \frac{x_i^2}{\sigma_i^2} & \sum \frac{x_i^3}{\sigma_i^2} \end{bmatrix}, \qquad b = \frac{1}{\Delta} \begin{bmatrix} \sum \frac{1}{\sigma_i^2} & \sum \frac{y_i}{\sigma_i^2} & \sum \frac{x_i^2}{\sigma_i^2} \\ \sum \frac{x_i y_i}{\sigma_i^2} & \sum \frac{x_i^3}{\sigma_i^2} & \sum \frac{x_i^4}{\sigma_i^2} \end{bmatrix}$$

$$c = \frac{1}{\Delta} \begin{bmatrix} \sum \frac{1}{\sigma_i^2} & \sum \frac{x_i y_i}{\sigma_i^2} & \sum \frac{x_i^4}{\sigma_i^2} \\ \sum \frac{x_i y_i}{\sigma_i^2} & \sum \frac{x_i^2 y_i}{\sigma_i^2} & \sum \frac{x_i^4}{\sigma_i^2} \end{bmatrix}$$

$$where \Delta = \begin{bmatrix} \sum \frac{1}{\sigma_i^2} & \sum \frac{x_i}{\sigma_i^2} & \sum \frac{x_i^2}{\sigma_i^2} \\ \sum \frac{x_i}{\sigma_i^2} & \sum \frac{x_i^2}{\sigma_i^2} & \sum \frac{x_i^3}{\sigma_i^2} \\ \sum \frac{x_i^2}{\sigma_i^2} & \sum \frac{x_i^2}{\sigma_i^2} & \sum \frac{x_i^3}{\sigma_i^2} \end{bmatrix}$$

You can see that extending to arbitrarily high powers is straightforward

37

Superimpose the 2nd order polnomial to the given data

$p(t) = \alpha + \beta t + \gamma t^2$	Calendar year	Computational year	Temperature deviation
		t_i	y_i
	1991	1	0.29
Minimizing	1992	2	0.14
	1993	3	0.19
10	1994	4	0.26
$F(\alpha, \beta, \gamma) = \sum_{i} (\alpha + \beta t_i + \gamma t_i^2 - y_i)^2$	1995	5	0.28
i=1	1996	6	0.22
	1997	7	0.43
$\frac{\partial F}{\partial x} = \frac{\partial F}{\partial x} = \frac{\partial F}{\partial x} = 0$	1998	8	0.59
$\frac{\partial \alpha}{\partial \alpha} = \frac{\partial \beta}{\partial \beta} = \frac{\partial \gamma}{\partial \gamma} = 0$	1999	9	0.33
σα σρ σγ	2000	10	0.29

The global annual mean temperature deviation measured in °C for years 1991-2000

$$\frac{\partial F}{\partial \alpha} = 2 \sum_{i=1}^{10} \left(\alpha + \beta t_i + \gamma t_i^2 - y_i \right) = 0$$

$$10\alpha + \left(\sum_{i=1}^{10} t_i\right)\beta + \left(\sum_{i=1}^{10} t_i^2\right)\gamma = \sum_{i=1}^{10} y_i$$

$$\frac{\partial F}{\partial \beta} = 2\sum_{i=1}^{10} \left(\alpha + \beta t_i + \gamma t_i^2 - y_i \right) t_i = 0$$

$$\left(\sum_{i=1}^{10} t_i\right) \alpha + \left(\sum_{i=1}^{10} t_i^2\right) \beta + \left(\sum_{i=1}^{10} t_i^3\right) \gamma = \sum_{i=1}^{10} y_i t_i$$

$$\frac{\partial F}{\partial \gamma} = 2\sum_{i=1}^{10} \left(\alpha + \beta t_i + \gamma t_i^2 - y_i\right) t_i^2 = 0$$

$$\left(\sum_{i=1}^{10} t_i^2\right) \alpha + \left(\sum_{i=1}^{10} t_i^3\right) \beta + \left(\sum_{i=1}^{10} t_i^4\right) \gamma = \sum_{i=1}^{10} y_i t_i^2$$

$$\sum_{i=1}^{10} t_i = 55, \qquad \sum_{i=1}^{10} t_i^2 = 385, \qquad \sum_{i=1}^{10} t_i^3 = 3025,$$

$$\sum_{i=1}^{10} t_i^4 = 25330, \qquad \sum_{i=1}^{10} y_i = 3.12, \qquad \sum_{i=1}^{10} t_i y_i = 20,$$

$$\sum_{i=1}^{10} t_i^2 y_i = 138.7,$$

Which leads to linear system

$$\begin{pmatrix} 10 & 55 & 385 \\ 55 & 385 & 3025 \\ 385 & 3025 & 25330 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = \begin{pmatrix} 3.12 \\ 20 \\ 138.7 \end{pmatrix}$$

Solving the linear system

$$\alpha \approx -0.4078,$$
 $\beta \approx 0.2997,$ $\gamma \approx -0.0241.$

$$F(t) = -0.4078 + 0.2997t - 0.0241t^2$$

In Class Exercise

Write a python code which does the straigth line fit to the given data.

- Calculate fit parameters (α and β) using Least Squares
- o Calculate error on the fit parameters
- O Superimose the line on the data points
- Calculate the χ^2 of the fit, is it good/bad fit?

x	1.0	2.0	3.0	4.0
У	2.2	2.9	4.3	5.2
σ	0.2	0.4	0.3	0.1

In Class Exercise

 χ^2 =0.65 for 2 degrees of freedom $P(\chi^2>0.65 \text{ for 2 dof}) = 72\%$ "good fit"

Back up

Question: If we have a set of measurements of the same quantity:

$$x_1 \pm \sigma_1$$
 $x_2 \pm \sigma_2 \dots x_n \pm \sigma_n$

What's the best way to combine these measurements?

How to calculate the variance once we combine the measurements?

Assuming Gaussian statistics, the Maximum Likelihood Method says combine the

measurements as:

$$x = \frac{\sum_{i=1}^{n} x_i / \sigma_i^2}{\sum_{i=1}^{n} 1 / \sigma_i^2}$$
 weighted average

If all the variances ($\sigma_1^2 = \sigma_2^2 = \sigma_3^2$...) are the same:

$$x = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 unweighted average

The variance of the weighted average can be calculated using propagation of errors:

The variance of the weighted average can be calculated using propagation of errors:

$$\sigma_x^2 = \sum_{i=1}^n \left[\frac{\partial}{\partial x_i} x \right]^2 \sigma_i^2 \qquad \text{And the derivatives are:} \qquad \frac{\partial}{\partial x_i} x = \frac{1/\sigma_i^2}{\sum_{i=1}^n 1/\sigma_i^2}$$

$$\sigma_{x}^{2} = \sum_{i=1}^{n} \left[\frac{\partial}{\partial x_{i}} x \right]^{2} \sigma_{i}^{2} = \sum_{i=1}^{n} \frac{1/\sigma_{i}^{4}}{\left[\sum_{i=1}^{n} 1/\sigma_{i}^{2} \right]^{2}} \sigma_{i}^{2} = \frac{1}{\left[\sum_{i=1}^{n} 1/\sigma_{i}^{2} \right]^{2}} \sum_{i=1}^{n} 1/\sigma_{i}^{2} = \frac{1}{\sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}}}$$

$$\sigma_x^2 = \frac{1}{\sum_{i=1}^n \frac{1}{\sigma_i^2}}$$

$$\sigma_x = \text{error in the weighted mean}$$

If all the variances are the same:
$$\sigma_x^2 = \frac{1}{\sum_{i=1}^{n} 1/\sigma_i^2} = \frac{\sigma^2}{n}$$

The error in the mean (σ_x) gets smaller as the number of measurements (n) increases. Don't confuse the error in the mean (σ_x) with the standard deviation of the distribution (σ) ! If we make more measurements:

The standard deviation (σ) of the (gaussian) distribution remains the same, BUT the error in the mean (σ_x) decreases

Example: Two experiments measure the mass of the proton:

Experiment 1 measures $m_p = 950 \pm 25 \text{ MeV}$

Experiment 2 measures $m_p = 936 \pm 5 \text{ MeV}$

Using just the average of the two experiments we find:

$$m_p = (950 + 936)/2 = 943 MeV$$

Using the weighted average of the two experiments we find:

$$m_p = (950/25^2 + 936/5^2)/(1/25^2 + 1/5^2) = 936.5 \text{MeV}$$

and the variance:

$$\sigma^2 = 1/(1/25^2 + 1/5^2) = 24 \text{ MeV}^2$$

 $\sigma = 4.9 \text{ MeV}$

Since experiment 2 was more precise than experiment 1 we would expect the final result to be closer to experiment 2's value.

$$m_p = (936.5 \pm 4.9) \text{ MeV}$$