Improving Low-Resource Neural Machine Translation

Leon Cheung

University of California San Diego

8 September 2017

Contents

- 1 What Can Happen at a Critical Point?
 - What Does g'(c) > 0 Mean?

2 Conclusion

The Usual Suspects

jsdf	0.23
aaaa	0.54

sdf

sdffff

You might think that if f'(0) = 0 (and f is not a constant function) then at x = 0, f must have

The Usual Suspects

jsdf	0.23
aaaa	0.54

sdf

sdffff

You might think that if f'(0) = 0 (and f is not a constant function) then at x = 0, f must have

■ a local maximum, or

The Usual Suspects

jsdf	0.23
aaaa	0.54

sdf

sdffff

You might think that if f'(0) = 0 (and f is not a constant function) then at x = 0, f must have

- a local maximum, or
- a local minimum, or

A Counterexample

Consider the function

$$f(x) = \begin{cases} x^2 \sin(1/x), & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$$

What Really Happens at x = 0?

But f(x) oscillates wildly as $x \to 0$, so even though f'(0) = 0, f has neither max, min, nor inflection point at x = 0.

What Really Happens at x = 0?

But f(x) oscillates wildly as $x \to 0$, so even though f'(0) = 0, f has neither max, min, nor inflection point at x = 0.

Figure 1: caption

What Really Happens at x = 0?

Figure 2: caption

Contents

- 1 What Can Happen at a Critical Point?
 - What Does g'(c) > 0 Mean?

2 Conclusion

The function f(x) introduced earlier has other interesting properties, one of which is the fact that while f'(0) exists, f'(x) is discontinuous at x = 0.

We leave it to you to work this out for yourself and to explore this interesting function further.

Thank you for your attention today.