Balanced Trees

Tree Insertion Sorting

 Construct a binary search tree for all keys, an inorder traversal will visit the elements in sorted order.

Normal Binary Search Tree

A randomly generated 500-node tree

An Unbalanced BST

• After many *insert* and *delete*, we could end up with an unbalanced BST.

Can We Do Better?

- Balance is important to ensure that the tree does not degenerate into an unbalanced tree.
- Difficult as balancing a tree often requires the structure of the tree to be changed (take longer on average for updates).

Skewed Binary Search Tree

• Recall that this is also a BST, although it is a *skewed* one.

BST Operations

• In fact, the functions **FindNode**, **InsertNode**, and **DeleteNode** all run in O(H) time, where H is the height of the BST.

O(log N) vs O(N)

 Therefore, we like tree A more than tree B, although both trees have 7 nodes.

Balanced Binary Trees

 The *height* of n_i is the length of the longest path from n_i to a leaf.

- A binary tree is said to be balanced if
 - at each node, the *height* of its *left* and *right* subtrees differ by *at most one*.
- Examples

9

Unbalanced Binary Trees

An empty tree has height -1

• Examples of *un*balanced binary trees

Tree-balancing Strategy

- We want to avoid the O(N) time complexity associated with unbalanced BSTs.
- The idea is to keep a BST balanced as we build it.
 - During insertion, *rearrange* the nodes in the BST whenever it becomes out of balance.

Balance Factors

• To keep track of whether a BST is balanced, we associate with each node a *balance factor*, which is

Height(right subtree) - Height(left subtree)

Balance Factors

Height(right subtree) - Height(left subtree)

Simple cases

More general cases

Example

- For simplicity, we use numbers as keys.
- From an empty BST, insert the keys 8, 10, and 14.

Fixing the Imbalance

• To fix the imbalance, we *rearrange* the nodes.

- 1. Node 10 moves *up* to become the root.
- 2. Node 8 moves down to become the child of node 10.

Insertion Causes Imbalance

• In general, such kind of imbalance occurs when a node is inserted into the *right* subtree of the *right* child.

Single Rotation

• To fix such imbalance, we perform an operation called a *single rotation*.

Example

• We continue to insert the keys 4 and 2 into our rotated BST.

Single Rotation

• To fix the imbalance, we perform a *right rotation*.

- 1. Node 4 moves *up* to become the root of the subtree.
- 2. Node 8 moves *down* to become the child of node 4.

Insertion Causes Imbalance

• In general, such kind of imbalance occurs when a node is inserted into the *left* subtree of the *left* child.

Single Rotation

• A *right rotation* can fix such imbalance.

Summary So Far (Single Rotations)

Case 1:

Imbalance occurs when a node is inserted in the *right* substree of the right child.

Case 2:

Imbalance occurs when a node is inserted in the *left* subtree of the *left* child.

Solution: *Right* rotation

Both *left* and *right* rotations are single rotations.

Example

• Next, we insert the key 6.

Single Rotation Not Working

• Let's do a *right* rotation along the 10-4 axis.

Single Rotation Not Working

• The problem is, this imbalance occurs when a node is inserted into the *right* subtree of the *left* child.

• Single rotations *cannot* fix such imbalance.

Double Rotation

• We need a *double rotation* in this case.

Double Rotation: Step 1

• First, a *left* rotation on the *left* subtree.

Double Rotation: Step 2

• Second, a *right* rotation.

Double Rotation

• A *left-right rotation* is simply a *left* rotation (on the *left* subtree)

followed by a *right* rotation.

A *left-right* rotation fixes the imbalance caused by an insertion into the *right* subtree of the *left* child.

Example

- Let's go back to our example where key 6 is just inserted into the right subtree of the left child.
- We need to perform a *left-right* rotation.

Example

• Continue with the *left-right* rotation.

Step 2: *right* rotation

This double rotation is a *left-right rotation*.

Summary So Far

- Single rotations
 - *Left* rotations
 - Right rotations
- Double rotations
 - *Left-right* rotations

• As expected, there is a kind of double rotation called *right-left* rotation.

Example

• To illustrate the idea, we insert the key 12.

Such imbalance occurs when a node is inserted into the *left* subtree of the *right* child.

Double Rotation

• We need a *right-left rotation* in this case.

Double Rotation: Step 1

• First, a *right* rotation on the *right* subtree.

Double Rotation: Step 2

• Second, a *left* rotation.

Double Rotation

• A *right-left rotation* is simply a *right* rotation (on the *right* subtree) followed by a *left* rotation.

Example

• Do a *right-left* rotation after inserting key 12.

Summary of Imbalance

Steps of Fixing Imbalance

- Find the lowest node that is imbalanced, i.e., the lowest node that has a balanced factor <= -2 or >= 2, after an insertion
- Determine which case
- Perform the rotation accordingly

AVL Trees

Observation

An imbalance caused by insertion can always be fixed by performing one operation, either a single or double rotation.

 A balanced tree maintained by single or double rotations is called an AVL tree.

Example

• To complete the example, we insert the key 13, 16, and 15.

Left Rotation

Key 15 is inserted to the *right* subtree of the *right* child (of node 12).
 A *left* rotation is required. (Case 1)

Left Rotation

Example

• Finally, insert key 11.

Which is the lowest node

Right-Left Rotation

• Key 11 is inserted to the *left* subtree of the *right* child. A *right-left* rotation is required. (Case 4)

Right-Left Rotation

• Key 11 is inserted to the *left* subtree of the *right* child. A *right-left* rotation is required. (Case 4)

AVL Tree as an ADT

Reusing the BST ADT Interface

 AVL Trees can be seen as an extension to BSTs. We can reuse the interface of the BST ADT.

```
#include "treenode.h"

typedef struct bstCDT *bstADT;

bstADT EmptyBST();
int BSTIsEmpty(bstADT t);

bstADT MakeBST(treeNodeADT root, bstADT left, bstADT right);

treeNodeADT Root(bstADT t);
bstADT LeftSubtree(bstADT t);
bstADT RightSubtree(bstADT t);
treeNodeADT FindNode(bstADT t, char *key);
bstADT InsertNode(bstADT t, treeNodeADT n);
bstADT DeleteNode(bstADT t, char *key);
```

Implementation of AVL Trees

We modify the representation to explicitly store the height of a BST.

```
#include <stdio.h>
#include <stdlib.h>
#indlude <string.h>
#include "bst.h"

struct bstCDT {
    treeNodeADT root;
    bstADT left;
    bstADT right;
    int height;
};
```

avltree.c (continue)

```
// a private function
int Height(bstADT t) {
   if (BSTIsEmpty(t))
      return -1;
   else
      return t->height;
}
bstADT MakeBST(treeNodeADT root, bstADT left, bstADT right) {
  bstADT t;
   int lh, rh;
   t = (bstADT)malloc(sizeof(struct bstCDT));
  t->root = root;
  t->left = left;
  t->right = right;
  lh = Height(left);
   rh = Height(right);
   if (1h < rh)
      t->height = rh + 1;
   else
      t->height = lh + 1;
   return t;
```

Implementation of AVL Trees

 The functions EmptyBST, BSTIsEmpty, Root, LeftSubtree, RightSubtree, and FindNode are exactly the same as those in bst.c.

```
bstADT EmptyBST() { ... }
int BSTIsEmpty(bstADT t) { ... }

treeNodeADT Root(bstADT t) { ... }

bstADT LeftSubtree(bstADT t) { ... }

bstADT RightSubtree(bstADT t) { ... }

treeNodeADT FindNode(bstADT t, char *key) { ... }
```

Rotation Functions

- Next, we have to write (private) functions for the rotation operations.
 - Single Rotations
 - bstADT RotateLeft(bstADT t)
 - bstADT RotateRight(bstADT t)
 - Double Rotations
 - bstADT RotateLeftRight(bstADT t)
 - bstADT RotateRightLeft(bstADT t)

Single Rotation: RotateLeft

```
avltree.c (continue)
bstADT RotateLeft(bstADT t) {
   treeNodeADT newRoot;
                                                   T_1
   bstADT newLeft, newRight;
   newRoot = Root(RightSubtree(t));
   newLeft = MakeBST(Root(t), LeftSubtree(t),
                                 LeftSubtree(RightSubtree(t));
   newRight = RightSubtree(RightSubtree(t));
   return MakeBST(newRoot, newLeft, newRight);
                                                               new root
                        (N_2)
                                                                new right
                                                                subtree
     Tree t
                            T<sub>3</sub>
                                                                            61
                                                     new left subtree
```

Single Rotation: RotateRight

```
avltree.c (continue)
bstADT RotateRight(bstADT t) {
                    (Entirely symmetrical to RotateLeft.)
                           (Leave as an exercise.)
                                                                     new root
                                                                     new right
                                                                      subtree
      Tree t
                 T_1
                                    new left subtree
```

Double Rotation: RotateLeftRight

Double Rotation: RotateRightLeft

```
avltree.c (continue)
bstADT RotateRightLeft(bstADT t) {
              (Entirely symmetrical to RotateLeftRight.)
                        (Leave as an exercise.)
}
    (N_1)
     Tree t
                               Tree tmpTree
```

64

AVL Node Insertion

- All the rotation functions are very easy and logical to understand.
- They all execute in O(1) time.
- With the rotation functions, we are now ready to implement the **InsertNode** function, which is itself also very easy and logical.

AVL Node Insertion

```
avltree.c (continue)
bstADT InsertNode(bstADT t, treeNodeADT n) {
   int sign;
                                                         Same cases
   bstADT tmpTree;
                                                          as in bst.c.
   if (BSTIsEmpty(t))
      return MakeBST(n, EmptyBST(), EmptyBST());
   sign = strcmp(GetNodeKey(n), GetNodeKey(Root(t)));
   if (sign == 0)
      return MakeBST(n, LeftSubtree(t), RightSubtree(t));
   else if (sign < 0) { // insert to left subtree</pre>
                    (See page 67)
   } else {
               // insert to right subtree
                    (See page 70)
```

```
avltree.c (continue)
if (sign == 0)
else if (sign < 0) { // insert to left subtree
   tmpTree = MakeBST(Root(t), InsertNode(LeftSubtree(t), n),
                                 RightSubtree(t));
                                                           Check if the
   if (Height(LeftSubtree(tmpTree))
                                                         insertion causes
        - Height(RightSubtree(tmpTree)) == 2) {
                                                           imbalance.
       if (strcmp(GetNodeKey(n),
                  GetNodeKey(Root(LeftSubtree(tmpTree)))) < 0)</pre>
          return RotateRight(tmpTree); // case 2
      else
          return RotateLeftRight(tmpTree); // case 3
   } else
                                      tmpTree is balanced, simply return it.
       return tmpTree; ———
} else { // insert to right subtree
                                                 If tmpTree is unbalanced,
                                                  then determine whether
                       Tree tmpTree
                                                   it is case 2 or case 3.
Tree t
                      node n
```


AVL Node Insertion

```
avltree.c (continue)
bstADT InsertNode(bstADT t, treeNodeADT n) {
   int sign;
   bstADT tmpTree;
   if (BSTIsEmpty(t))
      return MakeBST(n, EmptyBST(), EmptyBST());
   sign = strcmp(GetNodeKey(n), GetNodeKey(Root(t)));
   if (sign == 0)
      return MakeBST(n, LeftSubtree(t), RightSubtree(t));
   else if (sign < 0) { // insert to left subtree</pre>
                  (Shown in page 67)
   } else {
                 insert to right subtree
                  (Shown in page 70)
```

```
avltree.c (continue)
if (sign == 0)
else if (sign < 0) { // insert to left subtree</pre>
} else { // insert to right subtree
   tmpTree = MakeBST(Root(t), LeftSubtree(t),
                                  InsertNode (RightSubtree(t), n));
   if (Height(RightSubtree(tmpTree))
                                                       Check if the insertion causes imbalance.
        - Height(LeftSubtree(tmpTree)) == 2) {
       if (strcmp(GetNodeKey(n),
                   GetNodeKey(Root(RightSubtree(tmpTree)))) > 0)
          return RotateLeft(tmpTree); // case 1
       else
          return RotateRightLeft(tmpTree); // case 4
    } else
                                        tmpTree is balanced, simply return it.
       return tmpTree;
                                                   If tmpTree is unbalanced,
                                                   then determine whether
                       Tree tmpTree
                                                     it is case 1 or case 4.
Tree t
                                                      node n
```


Why lowest node?

- Find the lowest node that is imbalanced, i.e., the lowest node that has a balanced factor <= -2 or >= 2, after an insertion
- Can we perform the rotation at any node that has a balanced factor
 <= -2 or >= 2, after an insertion?

Consider this case

- Let's insert 11, and perform the rotation at node 13 and 10, respectively
- Do we get a balanced tree for both cases?

Correctness of InsertNode

• Does **InsertNode** find the lowest node that is imbalanced, i.e., the lowest node that has a balanced factor <= -2 or >= 2, after an insertion?

Deletion in AVL Trees

• Deleting a node from an AVL tree can also cause imbalance, which has to be fixed also.

• The deletion algorithm will not be covered here.