1.

SELECT THE CORRECT ALTERNATIVE (ONLY ONE CORRECT ANSWER)

The final product obtained when boric acid is heated to red heat is -

	(A) Metaboric acid	(B) Tetraboric acid	(C) Boron oxide	(D) Pyroboric acid
2.	Which of the following ca	n be detected by the bora	x-bead test ?	
	(A) Ni ²⁺	(B) Co ²⁺	(C) Pb ⁺²	(D) Both (A) & (B)
3.	Boric acid polymerizes du	e to -		
	(A) The presence of hydro	ogen bonds	(B) Its acidic nature	
	(C) Its geometry		(D) Its monobasic nautre	
4.	Aluminium is obtained by	_		
	(A) Reduction of Al_2O_3 wi	th coke		
	(B) Electrolysis of Al_2O_3 d	issolved in Na ₃ AlF ₆		
	(C) Reduction of Al_2O_3 wi	th chromium		
	(D) Heating cryolite and a			
5.	In thermite welding, alum			
_	(A) A solder	(B) A flux	(C) An oxidising agent	(D) A reducing agent
6.		ring can be prepared excep		(D) N DI
7	(A) B_2O_3	(B) H ₃ BO ₃	(C) $B_2(CH_3)_6$	(D) NaBH ₄
7.	The product formed in the			
	$BCl_3 + H_2O \longrightarrow Produ$		(C) P.H. + H.C.	(D) No was attack
_		(B) B ₂ O ₃ + HOCl	(C) $B_2H_6 + HCl$	(D) No reaction
8.	The hydrides of boron ar	e called		
	(A) Boron hydrogen com	pounds	(B) Hydrogen borides	
	(C) Boranes		(D) Hydroboric acids	
9.	Which one of the followin	g mixed sulphates is not ar	n alum ?	
	(A) K ₂ SO ₄ .Al ₂ (SO ₄) ₃ .24H	₂ O	(B) K ₂ SO ₄ .Cr ₂ (SO ₄) ₃ .24H	₂ O
	(C) Na ₂ SO ₄ .Fe(SO ₄) ₃ .24H	I_2 O	(D) CuSO ₄ .Al ₂ (SO ₄) ₃ .24H	₂ O
10.	Higher percentage of carb	oon is found in -		
	(A) Anthracite	(B) Lignite	(C) Bituminous	(D) Peat
11.	Silicones have the genera	ıl formula –		
	(A) SiO ₄ ⁴⁻	(B) Si ₂ O ₇ ⁶⁻	(C) $(R_2SiO)_n$	(D) $(SiO_3)_n^{2-}$
12.	In which of the following	there exists a $p\pi$ – $d\pi$ bond	ding –	
	(A) Diamond	(B) Graphite	(C) Dimethylamine	(D) Trisilylamines
13.	Glass or silica soluble in -			
	(A) HClO ₄	(B) HF	(C) Aqua-regia	(D) H ₂ SO ₄

14.	Producer gas is a mix	kture of -		
	(A) CO and ${\rm N_{\rm 2}}$	(B) CO_2 and H_2	(C) CO and H_2	(D) CO_2 and N_2
15.	Which variety of glass	s is used for manufacture of		
4.0	(A) Sodium glass	(B) Flint glass	(C) Ground glass	(D) Quartz
16.		by Co(II) compounds to gl		(D) D 1
17	(A) Green	(B) Deep-Blue	(C) Yellow	(D) Red
17.		in solution when CO_2 is di		
	(A) CO ₂ ,H ₂ CO ₃ , HCo (C) CO ₃ ²⁻ ,HCO ₃ ⁻	O_3^-, CO_3^-	(B) H ₂ CO ₃ ,CO ₃ ²⁻ (D) CO ₂ ,H ₂ CO ₃	
18.	P_2O_5 is used extensive	olu as a -	(D) CO ₂ , 11 ₂ CO ₃	
10.	(A) Dehydrating agen		(R) Catalytic agent	
		it	(B) Catalytic agent	
10	(C) Reducing agent	1 6	(D) Preservative	
19.				D_5 into orthophosphoric acid is -
	(A) 2	(B) 3	(C) 4	(D) 5
20.	In warfare smoke scr	reens are prepared from -		
	(A) PH ₃	(B) CaC ₂	(C) P_2O_5	(D) COCl ₂
21.	In Haber's process fo	or the manufacture of ammor	nia, the catalyst used is -	
	(A) Finely divided nic	kel	(B) Finely divided mo	lybdenum
	(C) Finely divided iron	1	(D) Finely divided pla	itinum
22.	Which one of the foll	owing nitrogen oxides is the	anhydride of nitrous acid	?
	(A) N ₂ O	(B) N_2O_3	(C) N_2O_4	(D) NO
23.	Which acts both an o	oxidising as well as reducing	agent –	
	(A) HNO ₃	(B) HNO ₂	(C) H ₂ SO ₄	(D) HCl
24.	NO ₂ is released by h	eating –		
	(A) Pb(NO ₃) ₂	(B) KNO ₃	(C) NaNO ₂	(D) NaNO ₃
25.	A deep brown gas is	formed by mixing two colou	ırless gases which are -	
	(A) NO_2 and O_2	(B) N_2O and NO	(C) NO and O ₂	(D) NH ₃ and HCl
26.	A metal X on heating	g in nitrogen gas gives Y. Y	on treatment with H_2O g	ives a colourless gas which when
	passed through CuSC	0_4 solution gives a blue colou	ır. Y is -	
	(A) Mg(NO ₃) ₂	(B) Mg_3N_2	(C) NH ₃	(D) MgO
27.	Oil of vitriol is -			
	(A) H ₂ SO ₄	(B) H ₂ SO ₃	(C) H ₂ S ₂ O ₉	(D) $H_2S_2O_8$
28.	The compound which	n gives off oxygen on moder	ate heating is -	
	(A) Cupric oxide	(B) Mercuric oxide	(C) Zinc oxide	(D) Aluminium oxide

29.	When conc. H_2SO_4 com	es in contact with sugar, it	becomes black due to -							
	(A) Hydrolysis	(B) Hydration	(C) Decolourisation	(D) Dehydration						
30.	Which one of the follow	ing reacts with conc. H ₂ SO	4 ?							
	(A) Au	(B) Ag	(C) Pt	(D) All						
31.	HCOOH reacts with con	nc.H ₂ SO ₄ to produce -								
	(A) CO	(B) CO ₂	(C) NO	(D) NO ₂						
32.	Chlorine is manufacture	d by -								
	(A) Brikland and Eyde's	process	(B) Deacon's process							
	(C) Bosch process		(D) Solvey's process							
33.	When chlorine water is kept in sunlight oxygen is evolved therefore –									
	(A) Affinity of hydrogen	for oxygen is less								
	(B) Affinity of hydrogen	for oxygen is more								
	(C) Affinity of hydrogen	for chlorine is more								
	(D) Hydrogen is a reduc	cing agent								
34.	The following acids have been arranged in the order of decreasing acid strength. Identify the correct order									
	ClOH(I)	BrOH(II)	IOH(III)							
	(A) I > II > III	(B) II > I > III	(C) III > II > I	(D) $I > III > II$						
35.	Sea weed are important	source of -								
	(A) Iron	(B) Chlorine	(C) Iodine	(D) Bromine						
36.	Euchlorine is a mixture	of –								
	(A) Cl_2 and SO_2	(B) Cl_2 and ClO_2	(C) Cl_2 and CO	(D) None of these						
37.	Which of the following	represents the correct order	of increasing pK _a values o	f the given acids –						
	(A) HClO ₄ < HNO ₃ < H	$I_2CO_3 < B(OH)_3$	(B) HNO ₃ < HClO ₄ < B($OH)_3 < H_2CO_3$						
	(C) $B(OH)_3 < H_2CO_3 < 1$	HClO ₄ < HNO ₃	(D) HClO ₄ < HNO ₃ < B	$(OH)_3 < H_2CO_3$						
38.	The word Argon means	-								
	(A) Noble(C) Strange		(B) Now (D) Lazy							
39.	lodine and hypo react to	o produce –								
	(A) Na ₂ S	(B) Na ₂ SO ₃	(C) Na ₂ SO ₄	(D) Na ₂ S ₄ O ₆						

СНЕ	СК ҮС	UR GR	ASP		ANSWER KEY					EXERCISE-1					
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	С	D	Α	В	D	С	Α	С	D	Α	С	D	В	Α	В
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	В	Α	Α	В	Α	С	В	В	Α	С	В	Α	В	D	В
Que.	31	32	33	34	35	36	37	38	39						
Ans.	Α	В	С	Α	С	В	А	D	D						

EXERCISE-02 BRAIN TEASERS

A mixutre of boric acid with ehtyl alcohol burns with green edged flame due to the formation of -

1.

SELECT THE CORRECT ALTERNATIVES (ONE OR MORE THEN ONE CORRECT ANSWERS)

	(A) Ethyl borax	(B) Ethyl borate	(C) Methyl borax	(D) Methyl borate					
2.	${\sf AlCl}_3$ on hydrolysis gives	_							
	(A) $Al_2O_3.H_2O$	(B) Al(OH) ₃	(C) Al_2O_3	(D) AlCl ₃ .6H ₂ O					
3.	When a solution of sodium	n hydroxides is added in ex	ccess to the solution of pota	ash alum, we obtain -					
	(A) A white precipitate		(B) Bluish white precipitat	e					
	(C) A clear solution		(D) A crystalline mass						
4.	BCl ₃ does not exist as dis	mer but BH_3 exist as dime	r (B ₂ H ₆) because –						
	(A) Chlorine is more elec	tronegative than hydrogen							
	(B) There is $p\pi - p\pi$ back	k bonding in BCl ₃ but BH ₃	does not contain such mu	ltiple bonding					
	(C) Large sized chlorine a atoms get fitted in between		n the small boron atoms w	rhereas small sized hydrogen					
	(D) None of the above								
5.	Amorphous boron on burn	ning in air forms –							
	(A) B(OH) ₃		(B) Mixutre of $\mathrm{B_2O_3}$ and	BN					
	(C) Only B ₂ O ₃		(D) Only BN						
6.	Which of the following sta	atements is correct?							
	(A) BCl_3 and AlCl_3 are bo	oth Lewis acids and BCl ₃ is	s stronger than AlCl ₃						
	(B) BCl_3 and AlCl_3 both Lewis acids and AlCl_3 is stronger that BCl_3								
	(C) BCl_3 and AlCl_3 are both equally strong Lewis acids								
	(D) Both BCl_3 and AlCl_3	are not Lewis acids.							
7.	Which one of the followin	g does not exist in the free	form ?						
	(A) BF ₃	(B) BCl ₃	(C) BBr ₃	(D) BH ₃					
8.	Thermite is a mixture of	_							
	(A) 3 Parts of powdered A	Al and 1 part of Fe_2O_3	(B) 1 part of powdered A	l and 3 parts of Fe ₂ O ₃					
	(C) 1 part of powdered A	l and 1 part of Fe_2O_3	(D) 2 Parts of powdered A	Al and 1 part of Fe_2O_3					
9.	Borax is used as cleansing	g agent because on dissolvi	ng in water it gives –						
	(A) Alkaline solution	(B) Acidic solution	(C) Bleching solution	(D) Colloidal solution					
10.	Trisilylamine $[\stackrel{\bullet}{\mathbf{N}}(\mathrm{SiH}_3)_3]$ h	as a -							
	(A) Planar geometry		(B) Tetrahedral geometry						
	(C) Pyramidal geometry		(D) None of these						

11.	The halide that is not hydrolysed is -									
	(A) SiCl ₄	(B) SiF ₄	(C) CCl ₄	(D) PbCl ₄						
12.	What is false about $N_2^{\rm C}$	5 ?								
	(A) It is anhydride of HN	O ₃	(B) It is a powerful oxidi	zing agent						
	(C) Solid N_2O_5 is called	nitronium nitrate	(D) Structure of N_2O_5 contains no [N \rightarrow O] bond							
13.	${\rm SbCl}_3$ and ${\rm BiCl}_3$ on hyd	rolysis gives -								
	(A) $\mathrm{Sb^{+3}}$ and $\mathrm{Bi^{+3}}$		(B) $Sb(OH)_3$ and $Bi(OH)_3$	3						
	(C) SbOCl and BiOCl		(D) None							
14.	The percentage of nitrog	gen in urea is about -								
	(A) 70	(B) 63	(C) 47	(D) 28						
15.	Sequence of acidic char-	acter is –								
	(A) $SO_2 > CO_2 > CO >$	N_2O_5	(B) $SO_2 > N_2O_5 > CO$	> CO ₂						
	(C) $N_2O_5 > SO_2 > CO$	> CO ₂	(D) $N_2O_5 > SO_2 > CO_2$, > CO						
16.	Tip of saftymatch stick a	are made up of –								
	(A) Sulphur and potassiu	ım	(B) Sulphur							
	(C) Sulphur, dichromate	and phosphorus	(D) Sulphur, dichromate	and potassium						
17.	Of the following, which has three electron bond in its structure ?									
	(A) Nitrous oxide		(B) Nitric oxide							
	(C) Dinitrogen trioxide		(D) Nitrogen pentoxide							
18.	Which of the following l	eaves no residue on heating	3 ?							
	(A) Pb(NO ₃) ₂	(B) NH ₄ NO ₃	(C) Cu(NO ₃) ₂	(D) NaNO ₃						
19.	H ₂ SO ₄ has very high co	rrosive action on skin beca	iuse -							
	(A) it reacts with protein	S								
	(B) it acts as an oxidising	g agent								
	(C) it acts as a dehydrat	ng agent								
	(D) it acts as dehydrating	g agent and absorption of	water is highly exothermic							
20.	A black sulphide when t	reated with ozone becomes	white. The white compoun	nd is -						
	(A) ZnSO ₄	(B) CaSO ₄	(C) BaSO ₄	(D) PbSO ₄						
21.	Which of the following d	oes not react with AgCl –								
	(A) $Na_2S_2O_3$	(B) NH ₄ OH	(C) NaNO ₃	(D) NH ₃						

22.	By passing H_2S gas	in acidified $KMnO_4$ solution, w	ve get -						
	(A) K ₂ S	(B) S	(C) K ₂ SO ₃	(D) MnO ₂					
23.	Chloride of lime is -								
	(A) CaOCl ₂	(B) Ca(OCl) ₂	(C) CaCl ₂	(D) (CaO) ₂ Cl					
24.	Which one of the fol	lowing oxy acid of fluorine exis	ts ?						
	(A) HOF	(B) HFO ₃	(C) HFO ₄	(D) HFO_2					
25.	Chromyl chloride tes	t is performed for the confirma	ation of the presence o	f the following in mixture -					
	(A) SO ₄ ²⁻	(B) Cr ⁺⁺⁺	(C) Cl-	(D) Cr^{+++} and Cl^{-}					
26.	Iodine gas turns strad	ch iodide paper –							
	(A) Blue	(B) Red	(C) Colourless (D) Yellow						
27.	Essential trace element	nt involved in physiology of th	thyroid glands -						
	(A) K	(B) Mg	(C) Ni (D) I_2						
28.	When chlorine is pas	ssed over dry slaked lime at ro	om temperature, the m	nain reaction product is -					
	(A) $Ca(ClO_2)_2$	(B) CaCl ₂	(C) CaOCl ₂	(D) $Ca(OCl_2)_2$					
29.		n KI reacts with a solution of -							
	(A) ZnSO ₄	(B) CuSO ₄	(C) FeSO ₄	(D) $(NH_4)_2SO_4$					
30.	Which amongst the following reactions cannot be used for the preparation of the halogen acid?								
	(A) $2KBr + H_2SO_4(Conc.) \longrightarrow K_2SO_4 + 2HBr$								
	(B) $2NaCl + H_2SO_4(Conc.) \longrightarrow NaHSO_4 + HCl$								
	(C) NaHSO ₄ + NaCl \longrightarrow Na ₂ SO ₄ + HCl								
	(D) $CaF_2 + H_2SO_4(c)$	onc.) \longrightarrow CaSO ₄ + 2HF							
31.	HI can be prepared by all the following methods except -								
	(A) $Pl_3 + H_2O$		(B) KI + H_2SO_4						
	(C) $H_2 + I_2 \longrightarrow$		(D) $I_2 + H_2S$						
32.	When ${\rm I_2}$ is passed th	rough KCl, KF, KBr solution –							
	(A) Cl_2 and Br_2 are	evolved	(B) Cl_2 is evolved						
	(C) Cl_2 , Br_2 , F_2 are	evolved	(D) None of these						
33.	Which two of the fo	ollowing salts are used for pr	eparing iodized salt-						
	(i) KIO ₃	(ii) KI	(iii) I ₂	(iv) HI					
	(A) (i) and (ii)	(B) (i) and (iii)	(C) (ii) and (iv)	(D) (iii) and (iv)					
34.	Helium is obtained fr	rom which of the following.?							
	(A) Natural gases tra	pped under rock formations.	(B) Liquid air						
	(C) Radioactive deca	у	(D) Gasoline						
35.		n prompted Neil Bartlett to pr	epare the first noble ga	s compound was -					
	(A) Xe-F bond has hi								
	(B) F_2 has exceptions (C) PtF_6 is a strong of								
	_	Xe atom have very similar ion	nization energies.						

- **36.** Pick out the correct statement for XeF_6
 - (A) XeF_6 is hydrolysed partially to form $XeOF_4$
 - (B) It react with SiO_2 to form $XeOF_4$
 - (C) On complete hydrolysis, it forms XeO3
 - (D) All
- **37.** The molecular shapes of diborane is shown:

Consider the following statements for diborane

- 1. Boron is approximately sp^3 hybridised
- 2. B-H-B angle is 180°
- 3. There are two terminal B-H bonds for each boron atom
- 4. There are only 12 bonding electrons available
- Of these statements -
- (A) 1, 3 and 4 are correct
- (B) 1, 2 and 3 are correct
- (C) 2, 3 and 4 are correct
- (D) 1, 2 and 4 are correct
- Borax is actually made of two tetrahedral and two triangular units joined together and should be written as : $Na_2 [B_4O_5(OH)_4] 8H_2O$.

Consider the following statements about borax:

- 1. Each boron atom has four B-O bonds
- 2. Each boron atom has three B-O bonds
- 3. Two boron atoms have four B-O bonds while other two have three B-O bonds
- 4. Each boron atom has one-OH groups

Select correct statement(s) -

- (A) 1, 2
- (B) 2, 3
- (C) 3, 4
- (D) 1, 3
- 39. Three allotropes (A), (B) and (C) of phosphorous in the following change are respectively -

- (A) White, black, red
- (B) Black, white, red
- (C) Red, black, white
- (D) Red, violet, black
- 40. One mole of calcium phosphide on reaction with excess of water gives -
 - (A) One mole of phosphine

(B) Two moles of phosphoric acid

(C) Two moles of phosphine

(D) One mole of phosphorus penta-oxide

41. Ca + $C_2 \longrightarrow CaC_2 \xrightarrow{N_2} A$

Compound (A) is used as a/an -

- (A) Fertilizer
- (B) Dehydrating agent
- (C) Oxidising agent
- (D) Reducing agent
- **42.** Which one of the following statements is not true regarding diborane?
 - (A) It has two bridging hydrogens and four perpendicular to the rest.
 - (B) When methylated, the product is Me₄B₂H₂
 - (C) The bridging hydrogens are in a plane perpendicular to the rest.
 - (D) All the B-H bond distances are equal.

52.	Select corect statement	about B ₂ H ₆ -							
	(A) Bridging groups are	electron-deficient with 12	valence electrons						
	(B) It has 2c-2e B-H bor	nds							
	(C) It has 3c-2e B-H-B be	onds							
	(D) All of above are corn	rect statements							
53.	Which of the following is	s/are correct for group 14	elements -						
	(A) The stability of dihali	des are in the order CX_2 <	$\mathrm{SiX}_2 < \mathrm{GeX}_2 < \mathrm{SnX}_2 < \mathrm{F}$	PbX ₂					
	(B) The ability to form p	π-p $π$ multiple bonds among	themselves increases dow	n the group					
	(C) The tendency for cat	enation decreases down the	e group						
	(D) They all form oxides	with the formula MO_2							
54.	The solubility of anhydro	us $AlCl_3$ and hydrous $AlCl_3$	ous ${\rm AlCl}_3$ in diethyl ether are ${\rm S}_1$ and ${\rm S}_2$ respectively. Then –						
	(A) $S_1 = S_2$	(B) $S_1 > S_2$	(C) $S_1 < S_2$	(D) $S_1 < S_1$ but not $S_1 = S_2$					
55.	Concentrated HNO ₃ read	ets with iodine to give -							
	(A) HI	(B) HOI	(C) HOIO ₂	(D) HOIO ₃					
56.	Conc. H ₂ SO ₄ cannot be	used to prepare HBr from	om NaBr because it –						
	(A) Reacts slowly with Na	aBr	(B) Oxidises HBr						
	(C) Reduces HBr		(D) Disproportionates HBr						
	. С								
57.	CH,	$\xrightarrow{P_4O_{10},150^{\circ}C}$ X. Compound (2)	X) is -						
	² COOH		,						
	(A) Malonic acid	(B) Carbon suboxide	(C) Tartaric acid	(D) Acetic acid					
58.	$H_3BO_3 \xrightarrow{T_1} X \xrightarrow{T_2} Y^{-1}$	$\xrightarrow{\text{red hot}} B_2 O_2 \text{ if } T_1 \leq T_2 \text{ then } T_2 \leq T_2 $	hen X and Y respectively a	re –					
	(A) $X = Metaboric acid a$								
	(B) X = Tetraboric acid a								
	(C) $X = Borax$ and $Y = 1$								
	(D) X = Tetraboric acid a	and Y = Borax							
59.	In a molecule of phospho	orus (V) oxide, there are –							
	(A) 4P - P, 10P - O and	4P = O bonds	(B) $12P - O$ and $4P = O$	bonds					
	(C) $2P - O$ and $4P = P$	ponds	(D) 6P - P, 12P - O and	4P = P bonds					
60.	Conc. HNO ₃ is yellow co	oloured liquid due to –							
	(A) Dissolution of NO in	conc. HNO ₃							
	(B) Dissolution of NO ₂ in	conc. HNO ₃							
	(C) Dissolution of N_2O in								
	(D) Dissolution of N_2O_3	_							
61.			ution of a potassium halide i	n the presence of chloroform,					
	a voilet colouration is o	btained. On passing more	of chlorine water, the voil	et colour is disappeared and					
		ess. This test confirms the							
	(A) Chlorine	(B) Fluorine	(C) Bromine	(D) Iodine					

- 62. An inorganic salt (A) is decomposed at about 523 K to give products (B) and (C). compound (C) is a liquid at room temperature and is neutral to litmus paper while oxide (B) on burning with white phosphorous, given a dehydrating agent (D). compounds (A), (B), (C) and (D) will be identified as
 - (A) NH₄NO₃, N₂O, H₂O, P₂O₅
 - (B) NH_4NO_2 , N_2O , H_2O , P_2O_5
 - (C) CaCO₃, CaO, H₂O, CaCl₂
 - (D) CaCO₃, CaO, H₂O, Ca(OH)₂
- 63. Aqueous solution of borax reacts with 2 mol of acids. This is because of -
 - (A) Formation of 2 mol of $B(OH)_3$ only.
 - (B) Formation of 2 mol of $[B(OH)_4]^-$ only.
 - (C) Formation of 1 mol each of B(OH)₃ and [B(OH)₄]
 - (D) Formation of 2 mol each of $[B(OH)_4]^-$ and $B(OH)_3$, of which only $[B(OH)_4]^-$ reacts with acid
- 64. Borax is used as a buffer since -
 - (A) Its aqueous solution contains equal amount of weak acid and its salt
 - (B) It is easily available
 - (C) Its aqueous solution contains equal amount of strong acid and its salt
 - (D) Statement that borax is a buffer, is wrong.
- 65. When fluoride is heated with conc. H_2SO_4 and MnO_2 the gas evolved is -
 - (A) HF
 - (B) F₂
 - (C) SF₄
 - (D) None

B	BRAIN TEASERS					ANSWER KEY					EXERCISE-2				
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	В	В	С	С	В	Α	D	В	Α	Α	С	D	С	С	D
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	С	В	В	D	D	С	В	Α	Α	С	Α	D	С	В	Α
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	В	D	Α	A,C	D	D	Α	С	Α	С	Α	D	В	В	В
Que.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	D	A,B,C	B,C	A,B,C	A,B,D	A,B,C,D	B,C	A,C,D	В	С	В	В	Α	В	В
Que.	61	62	63	64	65										
Ans.	D	Α	D	Α	Α										

TRUE / FALSE

- 1. Goldschmidt thermite process is used in the extraction of aluminium.
- **2.** Cryolite is added to alumina as to lower the fusion temperature and make the mass good conductor of electricity.
- 3. Nitrous acid acts both as an oxidising and a reducing agent.
- **4.** NF_3 is stable but NCl_3 and NI_3 are explosive in nature.
- 5. Bleaching action of SO_2 is due to reduction and temporary.
- 6. Mercury in presence of ozone is oxidised to mercuric oxide.
- 7. Hydrofluoric acid cannot be kept in glass vessels.
- 8. The amount of chlorine obtained from a sample of bleaching powder by treatment with excess of dilute acid or CO_2 is called available chlorine.

FILL IN THE BLANKS

- 1. The increase in solubility of iodine in an aqueous solution of KI is due to the formation of
- 2. Silver fluoride is fairly.....in water.
- 3. HI cannot be prepared by the action of conc. H_2SO_4 on KI because H_2SO_4 is anagent.
- 4. Antichlor is a compound which convertsinto
- 5. Iodine reacts with hot NaOH solution giving the products as NaI and
- 6. In the known interhalogen compounds, the maximum number of halogen atom is
- 7. Conc. HNO₃ reacts with iodine to give
- 8. The only halogen that is not found in nature is
- 9. Tincture of iodine contains I_2 ,.....and.....and....
- 10. Iodine deficiency in diet is known to cause.....

MATCH THE COLUMN

1.		<u>Column-I</u>	<u>Column-II</u>					
	(A)	Hypo phosphoric acid	(p)	All hydrogen are ionizable in water				
	(B)	(B) Pyro phosphoric acid		Lewis acid				
	(C)	Boric acid	(r)	Monobasic in water				
	(D)	Hypo phosphorus acid	(s)	${ m sp}^3$ hybridized central atom				

ASSERTION & REASON QUESTIONS

These questions contains, Statement I (assertion) and Statement II (reason).

- (A) Statement-I is true, Statement-II is true; Statement-II is correct explanation for Statement-I.
- (B) Statement-I is true, Statement-II is true; Statement-II is not a correct explanation for statement-I
- (C) Statement-I is true, Statement-II is false
- (D) Statement-I is false, Statement-II is true
- 1. Statement -I : Silicones are very inert polymers.

Because

Statement -II : Both Si-O and Si-C bond energies are very high.

2. Statement -I : Chlorine gas disproportionates in hot & conc. NaOH solution

Because

- Statement -II : NaCl and NaOCl are formed in the above reaction.
- 3. Statement -I : $Al(OH)_3$ is amphoteric in nature.

Because

- Statement -II : It can not be used as an antacid.
- 4. Statement -I : Oxygen is more electronegative than sulphur, yet H_2S is acidic, while H_2O is neutral.

Because

- Statement -II : H-S bond is weaker than O-H bond.
- 5. Statement -I : Conc. H_2SO_4 can not be used to prepare pure HBr from NaBr.

Because

- Statement -II : It reacts slowly with NaBr.
- 6. Statement -I : Aluminium and zinc metal evolve H_2 gas from NaOH solution.

Because

- $\textbf{Statement -II} \quad : \quad \text{Several non-metals such as P, S, Cl, etc. yield a hydride instead of H_2 gas from NaOH}$
- 7. Statement -I : Borax bead test is applicable only to coloured salt.

Because

- Statement -II : In borax bead test, coloured salts are decomposed to give coloured metal metaborates.
- 8. Statement -I : Cl₂ gas bleaches the articles permanently.

Because

- $\textbf{Statement -II} \quad : \quad \text{Cl}_2 \text{ is a strong reducing agent.}$
- 9. Statement -I : HClO is stronger acid than HBrO

Because

Statement -II: Greater is the electronegativity of the halogen, greater will be attraction of electron pair towards it and hence more easily the H⁺ ion will be released.

COMPREHENSION BASED QUESTIONS

Comprehension # 1

The name 'Silica' covers an entire group of minerals, which have the general formula SiO_2 , The most common of which is quartz. Quartz is a framework silicate with SiO_4 tetrahedral arranged in spirals. the spirals can turn in a clockwise or anticlockwise direction – a feature that results in there being two mirror images, optically active, varieties of quartz.

1. The following pictures represent various silicate anions. Their formulae are respectively -

- (A) SiO_3^{2-}
- $Si_3O_7^2$

- (B) SiO_4^{4-}
- $Si_3O_{10}^{8-}$

- (C) SiO₄²⁻
- $Si_2O_0^2$

- (D) SiO_3^{4-}
- $Si_3O_7^8$

2. $Si_3O_9^{6-}$ (having three tetrahedral) is represented as -

- (B)
- (C) Both
- (D) None of these
- 3. The silicate anion in the mineral kaolinite is a chain of three SiO_4 tetrahedral that share corners with adjacent tetrahedral. The mineral also contains Ca^{2+} ions, Cu^{2+} ions, and water molecules in a 1:1:1 ratio. Mineral is represented as
 - (A) CaCuSi₃O₁₀ H₂O

(B) $CaCuSi_3O_{10}$ $2H_2O$

(C) Ca₂Cu₂Si₃O₁₀ 2H₂O

(D) None of these

Comprehension # 2

Silicons are synthetic polymers containing repeating R_2SiO units. Since, the empirical formula is that of a ketone (R_2CO), the name silicone has been given to these materials. Silicones can be made into oils, rubbery elastomers and resins. they find a variety of applications because of their chemical inertness, water repelling nature, heat-resistance and good electrical insulating property.

Commercial silicon polymers are usually methyl derivatives and to a lesser extent phenyl derivatives and are synthesised by the hydrolysis of

 R_2SiCl_2 [R = methyl (Me) or phenyl (ϕ)]

1. If we mix Me₃SiCl with Me₂SiCl₂, we get silicones of the type -

(C) Both of the above

(D) None of the above

- 2. If we start with $MeSiCl_3$ as the starting material, silicones formed is -

 - (C) Both of the above
 - (D) None of the above

MIS	SCELLANEOUS TYPE	QUESTION		ANSWER	KEY			EXERCISE -3
•	<u>True / False</u>							
	1 . F 2. T	3. T	4. T	5. T	6. F	7. T	8. T	
•	Fill in the Blank	<u>s</u>						
	1 .KI ₃ 2 .Soluble	3. Oxidisin	4. Cl ₂ , I	Hydrochloric ac	id 5. NaIC	6. Eight	7. HIO ₃	8. At
	9. KI, Reactified spir	it 10 . Goit	er					
•	Match the Colum	<u>nn</u>						
	1. (A) \rightarrow p,s; (B) \rightarrow	$s : (C) \rightarrow q,r$	$;(D)\to r,s$					
•	Assertion - Reas	on Questi	<u>ons</u>					
	1 .A 2. C	3. C	4 .A	5. C	6. B	7. A	8. C	9 .A
•	Comprehension	Based Qu	uestions					
	Comprehension #	1 : 1 . B	2. B	3. C				
	Comprehension #	2 : 1.A	2. B					

- 1 Colourless salt (A) + NaOH (excess) $\xrightarrow{\Delta}$ gas (B) giving white fumes with HCl + alkaline solution (C)
 - (C) + $Zn \longrightarrow gas$ (B)
 - (A) $\xrightarrow{\Delta}$ gas (D) + liquid (E)
 - D,E Both triatomic
 - Identify (A,B,C,D) and (E)
- 2 Complete and balance the following reactions-
 - (a) Cu + dil. $HNO_3 \longrightarrow NO + \dots + \dots$
 - (b) Pb $(NO_3)_2 \xrightarrow{heat} PbO + \dots + \dots$

 - (d) AgCl + NH_4 OH \longrightarrow
- 3 Aqua-regia dissolves gold. Write reaction.
- 4 Precipitation of second group sulphides in qualitative analysis is carried out with H_2S in presence of HCl and not nitric acid. Why?
- 5 $KMnO_4$ should not be dissolved in conc. H_2SO_4 . Why?
- 6 What happens when H₂S gas is passed through nitric acid?
- 7 What happens when -
 - (1) Hydrogen sulphide is bubbled through an aqueous solution of sulphur dioxide.
 - (2) Hydrogen sulphide is passed through acidified ferric chloride solution.
 - (3) Sulphur is boiled with caustic soda solution.
- Sodium salt (A) of a dibasic acid \xrightarrow{HCl} gas (B) and clear solution gas (B) and clearsom turns $K_2 Cr_2 O_7$ to green and also lime water milky. identify (A) and (B).
- 9 A certain salt 'X' gives the following test.
 - (i) Its aqueous solution is alkaline to litmus.
 - (ii) On strongly heating it swells to give glassy bead.
 - (iii) When concentrated $H_2 SO_4$ is added to solution of 'X', white crystals of a weak acid. seperate out. Identify 'X' and write down all reaction.
- 10 SnCl₂ gives white precipitate with HgCl₂ which turns grey later on, but SnCl₄ does not. Explain why?
- 11 Identify A and B (Compound/reaction condition)

PbS
$$\xrightarrow{\text{Heat}}$$
 A + PbS $\xrightarrow{\text{B}}$ Pb + SO₂

- 12 A bottle of liquor ammonia should be cooled before opening. Why?
- 13 lodine is liberated in the reaction between Kl and Cu^{2+} but chlorine is not liberated when KCl is added to Cu^{2+} . Why?
- What happens when an aqueous solution of hydrazine reacts with:
 - (i) An aqueous solution of I₂
 - (ii) An alkaline solution fo copper sulphate
 - (iii) An aqueous alkaline solution of potassium ferricyanide
 - (iv) an ammoniacal solution of silver nitrate.

An acid (A) is pale-blue. The potassium salt of this acid does not give any reaction with BaCl₂ but gives white crystalline precipitate (B) with Ag⁺ ions. The acid (A) reacts with urea to liberate two gases (C) and (D). Gas (D) is used in synthesis of Urea also. On adding thiourea in acid (A) followed by addition of FeCl₃/dilute HCl red coloured substance (E) is obtained. Identify substances (A) to (E).

CON	СЕРТ	UAL SUBJECTIVE	EXERCISE	ANSWER	KEY		EXERCISE	-4(A)
1.	(A)	$\mathrm{NH_4\ NO_3}$ $\mathrm{H_2O}$	(B) NH ₃	(C) (NaNO ₃	+NaOH)	(D) N ₂ O		(E)
2.	(a)	$2HNO_3 \rightarrow H_2$	O + 2NO +3(O)					
		3Cu +3(O) +6H	$NO_3 \rightarrow 3Cu$ (NC	₃) ₂ +3H ₂ O				
		3Cu + 8HNO ₃ -	→ 3Cu (NO ₃) ₂ +	2NO + 4H ₂ O				
	(b)	$2Pb(NO_3)_2 \rightarrow$	2PbO + 4NO ₂ +0	\mathcal{D}_2				
	(c)		$OH \to Cu \; (OH_2$					
		$Cu (OH_2) + (NH_2)$	$H_4)_2 SO_4 + 2NH_4$	$OH \rightarrow [Cu(NH_3)]$	3) ₄] SO ₄ +4H ₂	₂ O		
	(g)	AgCl + NH ₄ OH	$H \rightarrow AgOH + NH$	4 Cl				
		AgOH + NH ₄ (CI +NH ₄ OH \rightarrow A	Ag (NH $_3$) $_2$ Cl+2H	H_2 O			
		A - C1 + QNILL OLI		. 911 0				
		AgCI +ZNH4OH	$I \rightarrow Ag(NH_3)_2 Cl$	+ 2H ₂ U				

3. Noble metals like gold, platinum, iridium, rhodium etc., do not react with nitric acid. However, these metals dissolve in aqua-regia (3 parts conc. HCl and one part conc. HNO₃). Aqua-regia gives nacent chlorine which attacks these metals. Gold:

$$[\mathrm{HNO_3} + 3\mathrm{HCl} \rightarrow \mathrm{NOCl} + 2\mathrm{H_2O} + 2\mathrm{Cl}] \quad 3$$
 Nitrosyl chloride

$$[Au + 3Cl \rightarrow AuCl_3] \quad 2$$

$$[AuCl_3 + HCl \rightarrow HAuCl_4] \quad 2$$

2Au + 3HNO
$$_3$$
 + 11 HCl \rightarrow 2HAuCl $_4$ + 3NOCl + 6H $_2$ O Chloroauric acid

4. HNO $_3$, a strong oxidant, will oxidise H_2 S to give colloidal sulphur. Thus precipitation of second group sulphide will not occur.

$$H_2 \stackrel{[O]}{\longrightarrow} H_2 O +S$$

 ${\bf 5}$. KMnO₄ forms explosive covalent compound,Mn₂ O₇ with conc. H₂ SO₄ .

$$2KMnO_4 + H_2 SO_4$$
 conc. $\longrightarrow K_2 SO_4 + Mn_2 O_7 + H_2 O_4$

However, it can be dissolved in dil. $H_2 SO_4$ to give nascent oxygen if it is to be used as oxidant.

6. Yellow colloidal sulphur is formed.

$$2HNO_3 + H_2 S \longrightarrow 2NO_2 + 2H_2 O + S$$

- 7. (1) (Moist) $SO_2 + 2H_2 S \longrightarrow 3S + 2H_2 O$
 - (2) 2 FeCl₃ + H₂ S \longrightarrow 2FeCl₂ + 2HCl+S
 - (3) $4S + 6NaOH \longrightarrow Na_2 S_2 O_3 + 2Na_2S + 3H_2O \xrightarrow{excess sulphur} Na_2S_5$

9. Na₂ B₄ O₇. 10H₂ O $Na_2 B_4O_7 + 7 H_2 O \longrightarrow 2NaOH + 4H_3 BO_3$ Weak Due to presence of NaOH. the aqueous solution is alkaline to litmus. $Na_2 B_4 O_7$. $10H_2 O \xrightarrow{\Delta} Na_2 B_4 O_7 \longrightarrow (2NaBO_2 + B_2O_3)$ Glassy Bead $\mathsf{Na}_2 \; \mathsf{B}_4 \; \mathsf{O}_7 \; + \; \mathsf{H}_2 \; \mathsf{SO}_4 \; + \; \mathsf{5H}_2 \mathsf{O} \longrightarrow \quad \mathsf{Na}_2 \mathsf{SO}_4 \; + \; \mathsf{4H}_3 \; \mathsf{BO}_3 \; .$ 10. $SnCl_2$ is strong reducing agent and reduces $HgCl_2$ to Hg_2Cl_2 (white) which is further reduced to Hg(grey). $SnCl_2 + HgCl_2 \rightarrow SnCl_4 + Hg_2 Cl_2$ $SnCl_2 + Hg_2Cl_2 \rightarrow SnCl_4 + 2Hg$ $A = PbO \text{ or } PbSO_4$ 11. B = high temperature12. It should be cooled to lower the pressure of NH3 inside the bottle, otherwise NH3 will bump out of the bottle. 13. The I on acts as strong reducing agent where as Cl acts as reductant only in presence of strong oxidant and therefore Kl reduces Cu2+ to Cu+ $Cu^{2+} + 4Kl \longrightarrow Cu_2 I_2 + I_2 + 4K^+$ **14**. (i) $N_2H_4 + 2I_2 \longrightarrow N_2 + 4HI$ (ii) $N_2H_4 + 2 CuSO_4 + 4KOH \longrightarrow N_2 + 2Cu + 2K_2SO_4 + 4H_2O_4$ (iii) $4K_3 [Fe(CN)_6] + 4KOH + N_2H_4 \longrightarrow 4K_4[Fe(CN)_6] + 4H_2O + N_2$ (iv) $N_2H_4 + 2NH_4OH + 2AgNO_3 \longrightarrow N_2 + 2Ag + 2NH_4NO_3 + 2H_2O$ 15. (A) = HNO₂(Nitrous acid); (B) = $AgNO_2$ (Silver nitrite) $(C) = N_2 ;$ (D) = CO_2 ; (E) = $Fe(SCN)_3$ (Ferric thiocyanate) $KNO_2 + Ag^+ \longrightarrow AgNO_2 + K^+$ (B) Silver nitrite $2HNO_2 + NH_2CONH_2 \longrightarrow 2N_2 + CO_2 + 3H_2O$ (ii) (A) (Urea) (C) (D) $HNO_2 + NH_2CSNH_2 \longrightarrow N_2 \uparrow +H^+ + SCN^- + 2H_2O$ (A) Thioureao $FeCl_3 + 3SCN^- \longrightarrow [Fe(SCN)_3] + 3Cl^-$ (E) Ferric thiocyanate

- 1. A white crystalline comp. 'A' Swell up on heating and gives violet coloured flame on bunsen flame Its, aq. solution gives the following reaction.
 - (i) A white ppt. with BaCl2 in presence of HCl.
 - (ii) When treated with excess of NH₄ OH it gives white gelatinous ppt., which dissolve in NaOH.
- 2. A binary salt (A) on reaction with H_2 O gives (B) aq. and (C) hydrocarbon. (C) gas on passing into ammonical $AgNO_3$ gives white ppt. (D). CO_2 gas turns (B) aq. milky. Identify (A), (B), (C) and (D).
- 3. FeCl $_3$ solution gives blood red colour with NH $_4$ SCN. If H $_2$ S gas is passed and filtered then filtrate does not give red colour with NH $_4$ SCN Explain.
- 4. How will you obtain the following from sulphuric acid.
 - (a) SO_2
- (b) SO_3
- (c) SO_2 Cl_2
- **5.** Complete the following reactions:

$$\xrightarrow{CH_2} \xrightarrow{\text{(i) B}_2H_6} A$$

- An inorganic compound (A) of S, Cl and oxygen has vapour density 67.5. It reacts with water to form two acids (B) and (C). (A) also reacts with $KOH_{(aq)}$ to forms two salts (D) and (E). (D) and (E) gives white precipitate with $AgNO_3$ and $BaCl_2$ solutions respectively. What are (A) to (E)?
- 7. A certain compound (X) gives brick red flame on performing the flametest and shows the following reactions.
 - (i) When KI is added to an aqueous suspension of (X) containing acetic acid, iodine is liberated.
 - (ii) When CO_2 is passed through an aqueous suspension of (X) the turbidity transforms to a ppt.
 - (iii) When a paste of (X) in water is heated with ethyl alcohol, a product of anaesthetic use is obtained. Identify (X) and write down chemical equations for reactions at step (i), (ii) and (iii).

1. $A : K_2SO_4 Al_2(SO_4)_3 24 H_2O$

$$Al_2 (SO_4)_3 + 6NH_4 OH \longrightarrow 2Al(OH)_3 + 3(NH_4)_2 SO_4$$

↓ NaOH

2. (A): CaC_2 (Ca^{2+} , C_2^{2-} binary)

(B) : Ca(OH) 2

 $(C): C_2 H_2$

(D) : $C_2 Ag_2$

3. FeCl₃ on reacting with NH_4 SCN gives complex ion [Fe(SCN)]²⁺ which is of red colour.

$$\mathsf{FeCl}_3 + \mathsf{NH}_4 \, \mathsf{SCN} \longrightarrow \left[\mathsf{Fe}(\mathsf{SCN})\right] \mathsf{Cl}_2 + \, \mathsf{NH}_4 \, \mathsf{Cl}_2$$

blood red colour

FeCl₃ while reacting with H₂S, gives FeCl₂ which is not reacting with NH₄SCN. So no colour is obtained.

 $oldsymbol{4}$. (a) SO_2 is obtained by heating copper with conc. $H_2 SO_4$

$$Cu + 2H_2SO_4 \longrightarrow CuSO_4 + SO_2 + 2H_2O$$

It can also be obtained by boiling sulphur with conc. H_2SO_4 .

$$S + 2H_2SO_4 \xrightarrow{\Delta} 3SO_2 + 2H_2O$$

(b) When treated with $P_2O_5H_2SO_4$ loses water and forms SO_3

$$H_2 SO_4 + P_2 O_5 \longrightarrow 2HPO_3 + SO_3$$

(c) $SO_2 Cl_2$ is formed when conc. $H_2 SO_4$ is treated with excess of PCl_5 .

$$H_2 SO_4 + 2PCl_5 \longrightarrow SO_2 Cl_2 + 2POCl_3 + 2HCl$$

5.
$$CH_2 \longrightarrow (C_6H_{12}CH_2)_3B_2$$

$$\xrightarrow{\text{(ii) H}_2\text{O}_2/\text{OH}} \xrightarrow{\text{CH}_2\text{OH}}$$

6. Vapour density of S, Cl and oxygen compound = 67.5

:. Molecular weight of compound = 135

the molecular, weight suggest it may be SO₂Cl₂

The give reaction are

(i) $SO_2Cl_2 + 2H_2O \longrightarrow 2HCl + H_2SO_4$

(A)

(B) (C)

(ii)
$$SO_2Cl_2 + 4KOH \longrightarrow K_2SO_4 + 2KCl + 2H_2O$$

(D) (E

(iii)
$$K_2SO_4 + BaCl_2 \longrightarrow BaSO_4 + 2KCl$$

(D) Insoluble

$$KCl + AgNO_3 \longrightarrow AgCl + KNO_3$$

(E) Insoluble

7. (X) gives brick red flame so, it contains Ca^{2+} . Reactions (i), (ii) and (iii) suggest that the probable compound is bleaching powder ($CaOCl_2$).

$$Rx^{n}$$
 (i) $CaOCl_{2} + H_{2}O \longrightarrow Ca(OH)_{2} + Cl_{2}\uparrow$

smell

(ii)
$$CaOCl_2 + 2CH_3COOH \longrightarrow Ca(CH_3COO)_2 + Cl_2 + H_2O$$
(X)

$$2KI + Cl_2 \longrightarrow 2KCl + l_2$$

(iii)
$$CaOCl_2(aq.) + CO_2 \longrightarrow CaCO_3 + Cl_2$$

Turbid white ppt

(iv)
$$CaOCl_2 + H_2O \longrightarrow Ca(OH)_2 + Cl_2$$

(X)

$$\mathrm{C_2H_5OH} + \mathrm{Cl_2} \longrightarrow \mathrm{CH_3CHO} + \mathrm{2HCl}$$

$$CH_5CHO + 3Cl_2 \longrightarrow CCl_3$$
 CHO + 3HCl

$$Ca(OH)_2 + 2CCl_3CHO \longrightarrow 2CHCl_3 + (HCOO)_2Ca$$

(Anaesthetic)

EXERCISE-05 [A]

PREVIOUS YEARS QUESTIONS

	ERCIGE-05 [A]	PREVIOU	I LANS QU	ESTIONS				
1.	Aluminium is industrially prepared by:			[AIEEE-2002				
	(1) Fused cryolite (2) Bauxite ore	(3) Alunite	(4) Borax					
2.	In case of nitrogen NCl_3 is possible but not NCl_5 whi	le in case of phosphorous,	PCl ₃ as well as PC	₅ are possible				
	This is due to :-			[AIEEE-200				
	(1) Availability of vacant d-orbitals in P butnot in N	I						
	(2) Lower electronegativity of P than N							
	(3) Lower tendency of H-bond formation in P than	N						
	(4) Occurence of P in solid while N in gaseous sta	ate at room temperature						
3.	Which products are expected from the disproporti	onation of hypochlorous a	cid :	[AIEEE-2002				
	(1) HClO ₃ and Cl ₂ O	(2) HClO ₂ and HClO						
	(3) HCl and Cl ₂ O	(4) HCl and HClO ₃						
4.	Identify the incorrect statement among the following	ŭ		[AIEEE-2002				
	(1) Ozone reacts with SO_2 to give SO_3							
	(2) Silicon reacts with NaOH(aq.) in the presence of air to give Na ₂ SiO ₃ and H ₂ O							
	(3) Cl_2 reacts with excess of NH_3 to give N_2 and F_3		1 H O					
_	(4) Br ₂ reacts with hot and strong NaOH solution		u п ₂ O					
5.	In XeF_2 , XeF_4 , XeF_6 the number of lone pairs on X		(4) 0.0.1	[AIEEE-2002				
_	(1) 2,3,1 (2) 1,2,3	(3) 4, 1, 2	(4) 3,2,1					
6.	What may be expected when phosphine gas is mi			[AIEEE-2003				
	(1) PCl ₅ and HCl are formed and mixture cools down							
	(2) PH ₃ .Cl ₂ is formed with warming up							
	(3) The mixture only cools down							
	(4) PCl ₃ and HCl are formed and the mixture wa	rms up						
7.	For making good quality mirrors, plates of float gl	ass are used. These are o	btained by floating	molten glas				
	over a liquid metal which does not solidify before	e glass. The metal used c	an be :	[AIEEE-2003				
	(1) Sodium (2) Magnesium	(3) Mercury	(4) Tin					
8.	Graphite is a soft solid lubricant extremely difficult graphite :	to melt. The reason for t	his anomalous bel	aviour is tha [AIEEE-2003]				
	(1) Has molecules of variable molecular masses li	ike polymers						
	(2) Has carbon atoms arranged in large plated of rings of strongly bonded carbon atoms with weak interplat bonds							
	(3) Is a non crystalline substance							
	(4) Is an allotropic form of diamond							
9.	Concentrated hydrochloric acid when kept in ope	en air sometimes produces	a cloud of white	fumes Thi				
· .	is due to :	ir air comeinnes produces	a cloud of wine	[AIEEE-2003				
		sults in forming of droplets	of liquid solution i					
	(1) Strong affinity of HCl gas for moisture in air results in forming of droplets of liquid solution which appear like a cloudy smoke							
	(2) Due to strong affinity for water, conc. HCl pulls of water and hence the cloud	s moisture of air towards s	elf. The moisture f	orms droplet				
	(3) Conc. HCl emits strongly smelling HCl gas all t	the time						
	(4) Oxygen in air reacts with emitted HCl gas to fe							
10.	Aluminium chloride exists as dimer, Al_2Cl_6 in solid	_	n of non-nolar so	lvents such a				
		state at wen at in solution	01 11011 50101 30.					
	benzene. When dissolved in water, it gives- (1) Al ³⁺ + 3Cl ⁻	(2) $[Al(H_2O)_6]^{3+} + 3Cl^{-1}$		[AIEEE-2004				
	(1) Al + 3Cl (3) $[Al(OH)_c]^{3-} + 3HCl$	(2) $[Al(H_2O)_6]$ + 3Cl (4) Al_2O_2 + 6HCl						

11.	The soldiers of Napolean army while at Alps during freezing winter suffered a serious proble to the tin buttons of their uniforms. White Metallic tin buttons get converted to grey powder. This is related to:-	
	(1) An interaction with water vapour contained in humid air	
	(2) A change in crystalline structure of tin	
	(3) A change in the partial pressure of O_2 in air	
	(4) An interaction with N_2 of air at low temperature	
12.	Which one of the following statements regarding helium is incorrect (1) It is used to produce and sustain powerful superconducting magnets (2) It is used as a cryogenic agent for carrying out experiments at low temperatures (3) It is used to fill gas balloons instead of hydrogen because it is lighter then hydrogen and non- (4) It is used in gas-cooled nuclear reactors	[AIEEE-2004] inflammable
13.	The structure of diborane contains	[AIEEE- 2005]
	(1) Four 2c-2e bonds and four 3c-2e bonds	
	(2) Two 2c-2e bonds and two 3c-2e bonds	
	(3) Two 2c-2e bonds and four 3c-2e bonds	
	(4) Four 2c-2e bonds and two 3c-2e bonds	
14.	Heating an aqueous solution of aluminium chloride to dryness will give :- (1) $AlCl_3$ (2) Al_2Cl_6 (3) Al_2O_3 (4) $Al(OH)Cl_2$	[AIEEE-2005]
15.	Which one of the following is the correct statement	[AIEEE-2005]
	(1) Boric acid is a protonic acid	
	(2) Beryllium exhibits coordination number of six	
	(3) Chlorides of both beryllium and aluminium have bridged chloride structures in solid phase	
	(4) B ₂ H ₆ , 2NH ₃ is known as "inorganic benzene"	
16.	In silicon dioxide :	[AIEEE-2005]
	(1) Each silicon atom is surrounded by four oxygen atoms and each oxygen atom is bonded atoms	to two silicon
	(2) Each silicon atom is surrounded by two oxygen atoms and each oxygen atom is bonded atoms	to two silicon
	(3) Silicon atom is bonded to two oxygen atoms	
	(4) There are double bonds between silicon and oxygen atoms	
17.	The number of hydrogen atoms attached to phosphorus atom in hypophosphorous acid is : (1) Zero (2) Two (3) One (4) Three	[AIEEE-2005]
18.	The correct order of the thermal stability of hydrogen halide (H-X) is :	[AIEEE-2005]
	(1) HI > HBr > HCl > HF	
	(2) HF > HCl > HBr > HI (3) HCl < HF > HBr < HI	
	(4) HI > HCl < HF > HBr	
19.	The stability of dihalides of Si, Ge, Sn and Pb increases steadily in the sequence:	[AIEEE-2007]
	(1) $GeX_2 \ll SiX_2 \ll SnX_2 \ll PbX_2$	
	$(2) \operatorname{SiX}_{2} << \operatorname{GeX}_{2} << \operatorname{PbX}_{2} << \operatorname{SnX}_{2}$	
	(3) SiX ₂ << GeX ₂ << SnX ₂ << PbX ₂ (4) PbX ₂ << SnX ₂ << GeX ₂ << SiX ₂	
	$(1/1011_2 \cdot \cdot \cdot \cdot 0111_2 \cdot \cdot \cdot \cdot 0111_2 \cdot \cdot \cdot 011_2 \cdot \cdot \cdot 0111_2 \cdot \cdot \cdot 0111_2 \cdot \cdot \cdot 0111_2 \cdot \cdot \cdot 0111_2 \cdot \cdot \cdot 011_2 \cdot \cdot 011_2 \cdot \cdot 01$	

20.	Regular use of which of the following fertilizer increases the acidity of soil :								
	(1) Potassium nitrate								
	(2) Urea								
	(3) Superphosphate of lime								
	(4) Ammonium sulphate								
21.	Four species are listed below	':			[AIEEE-2008]				
	(i) HCO_3^-	(ii) H ₃ O ⁺	(iii) HSO_4^-	(iv) HSO ₃ F					
	Which one of the following is	s the correct sequence of th	neir acid strength?						
	(1) iv < ii < iii < i		(2) ii < iii < i < iv						
	(3) i < iii < ii < iv		(4) $iii \le i \le iv \le ii$						
22.	Among the following substi	tuted silanes the one which	ch will give rise to cross	linked silicone	polymer on [AIEEE-2008]				
	(1) R _a Si	(2) RSiCl ₃	(3) R ₂ SiCl ₂	(4) R ₃ SiCl					
23.	Which one of the following (1) $2XeF_2 + 2H_2O \rightarrow 2Xe$ (2) $XeF_6 + RbF \rightarrow Rb[XeF_7]$ (3) $XeO_3 + 6HF \rightarrow XeF_6 +$	+ 4HF + O ₂	L L	J	[AIEEE-2009]				
	$(4) 3XeF_4 + 6H_2O \rightarrow 2Xe^{-4}$	+ XeO ₃ + 12HF + 1.5O ₂							
24.	Boron cannot form which or	ne of the following anions	?		[AIEEE-2011]				
	(1) B(OH) ₄	(2) BO_2^-	(3) BF_6^{3-}	(4) BH_4^-					
25.	In view of the signs of Δ_rG PbO ₂ + Pb \rightarrow 2 PbO, Δ_rG SnO ₂ + Sn \rightarrow 2 SnO, Δ_rG	< 0 > 0,			[AIEEE-2011]				
	Which oxidation states are more characteristic for lead and tin? (1) For lead + 4, for tin + 2 (2) For lead + 2, for tin + 2 (3) For lead + 4, for tin + 4								
26.	(4) For lead $+ 2$, for tin $+ 4$. Which of the following state				[AIEEE-2011]				
	Which of the following statement is wrong? (1) Single N-N bond is weaker than the single P-P bond (2) N_2O_4 has two resonance structures (3) The stability of hydrides increases from NH_3 to BiH_3 in group 15 of the periodic table (4) Nitrogen cannot form $d\pi$ - $p\pi$ bond								
27.	Which of the following state	ments regarding sulphur is	incorrect ?		[AIEEE-2011]				
	(1) At 600 C the gas mainly	consists of S_2 molceules							
	(2) The oxidation state of sulphur is never less than +4 in its compounds								

PREVIOUS YEARS QUESTIONS							ANSWER KEY EXERCI			ERCISE	CISE -5[A]				
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans	2	1	4	4	4	1	3	2	3	2	2	3	4	3	3
Que.	16	17	18	19	20	21	22	23	24	25	26	27			
Ans	1	2	2	3	4	3	2	3	3	4	3	2			

(3) S_2 molecule is paramagnetic

(4) The vapour at 200 C consists mostly of $\ensuremath{S_8}$ rings

EXERCISE-05 [B]

(D) Precipitate cationic species

PREVIOUS YEARS QUESTIONS

1.	The number of P-O-P bonds in cyclic metaphosphoric acid is -							
	(A) Zero	(B) Two	(C) Three	(D) Four				
2.	The correct order of ac	idic strength is -		[IIT- 200	00]			
	(A) $Cl_2O_7 > SO_2 < P_4$	O ₁₀	(B) $CO_2 > N_2O_5 > SO_3$					
	(C) $Na_2O > MgO > Al_2O$	$_{2}O_{3}$	(D) $K_2O > CaO > MgO$					
3.	Amongst H_2O , H_2S , H_2Se and H_2Te , the one with the highest boiling point is -							
	(A) H_2O because of hyd (C) H_2S because of hyd		(B) H ₂ Te because of hig (D) H ₂ Se because of low					
4.	Ammonia can be dried	by -		[IIT- 200	00]			
	(A) Conc. H_2SO_4	(B) P ₄ O ₁₀	(C) CaO	(D) Anhydrous CaCl ₂				
5.	Which of the following	are hydrolysed –		[REE 200	00]			
	(A) NCl ₃	(B) BCl ₃	(C) CCl ₄	(D) SiCl ₄				
6.	The set with correct ord	ler of acidity is -		[IIT- 200	01]			
	(A) $HClO < HClO_2 < H$	HClO₃ < HClO₄	(B) $HClO_4 < HClO_3 < HClO_2 < HClO$					
	(C) $HClO < HClO_4 < HClo_5 <$	HClO ₃ < HClO ₂	(D) $HClO_4 < HClO_2 < HClO_3 < HClO_4 < HClO_4 < HClO_4 < HClO_5 < HClO_5 < HClO_6 < HClO_6 < HClO_6 < HClO_6 < HClO_7 < HClo_7$	HClO ₃ < HClO				
7.	The reaction, 3ClO- (aq) \longrightarrow ClO_3^- (aq) + $2Cl^-$ (ac	q) is an example of -	[IIT- 200	01]			
	(A) Oxidation reaction		(B) reduction reaction					
	(C) Disproportionation reaction (D) Decomposition reaction							
8.	The number of S-S bor	nds in sulphur trioxide trime	r, (S_3O_9) is -	[IIT- 200	01]			
	(A) Three	(B) Two	(C) One	(D) Zero				
9.	Statement-I : Between	SiCl_4 and CCl_4 , only SiCl_4	reacts with water	[IIT- 200	01]			
	Because :							
	$Statement-II: SiCl_4$ is	ionic and CCl ₄ is covalent						
	(A) If both assertion and	d reason are correct and rea	ason is the corect explanati	on of the assertion				
	(B) If both assertion and	d reason are correct, but rea	ason is not the correct exp	anation of the assertion				
	(C) If assertion is correct	t, but reason is incorrect						
	(D) If assertion is incorr	ect, but reason is correct.						
10.	Specify the coordination geometry around and hybridisation of N and B atoms in a $1:1$ complex of BF_3 and NH_3 -							
	(A) N: tetrahedral sp^3 ; B: tetrahedral sp^3							
	(B) N: pyramidal sp^3 ; B: pyramidal sp^3							
	(C) N: pyramidal sp^3 ; B: planar sp^2							
	(D) N: pyramidal sp³ ; B : tetrahedral sp³ d							
11.	Polyphosphates are use	d as water softening agents	because they -	[IIT- 200	02]			
	(A) Form soluble compl	exes with anionic species						
	(B) Precipitate anionic species							
	(C) Form soluble complexes with cationic species							

12.	Identity, the correct order of acidic strength of CO_2 , CuO , CaO , H_2O –							
	(A) CaO < CuO < H	$_2$ O < CO $_2$	(B) $H_2O < CuO <$	CaO < CO ₂				
	(C) CaO < H ₂ O < C	uO < CO ₂	(D) $H_2O < CO_2 <$	CaO < CuO				
13.	Identify the correct order of solubility of $\mathrm{Na_2S}$, CuS , and ZnS in aqueous medium -							
	(A) $CuS > ZnS > Na_2S$ (B) $ZnS > Na_2S > Cus$							
	(C) $Na_2S > Cus > ZnS$ (D) $Na_2S > ZnS > CuS$							
14.	H_3BO_3 is -				[IIT- 2002]			
	(A) Monobasic acid a		(B) Monobasic and (D) Tribasic and w	weak Bronsted acid eak Bronsted acid				
15.	$(Me)_2$ SiCl $_2$ on hydro	olysis will produce -			[IIT- 2003]			
	(A) $(Me)_2$ Si $(OH)_2$		(B) $(Me)_2$ Si = O					
	(C) [—O—(Me) ₂ Si–							
16.	When I^- is oxidised $\mathfrak l$	by MnO_4^- in alkaline medi	um, I converts into -		[IIT- 2003]			
	(A) IO ₃	(B) I ₂	(C) IO ₄	(D) IO ⁻				
17.	Which is the most thermodynamically stable allotropic form of phosphorus?							
	(A) Red	(B) White	(C) Black	(D) Yellow				
18.	Which of the following is not oxidised by O_3 ?							
	(A) KI	(B) FeSO ₄	(C) KMnO ₄	(D) K_2MnO_4				
19.	Which blue-liquid is	obtained on reacting equin	nolar amounts of two gase	es at - 30°C ?	[IIT- 2005]			
	(A) N ₂ O	(B) N ₂ O ₃	(C) N_2O_4	(D) N ₂ O ₅				
20.	Name of the structur	^{4–} are shared is –	[IIT- 2005]					
	(A) Pyrosilicate		(B) Sheet silicate					
	(C) Linear chain silic	ate	(D) Three dimension	onal silicate				
21.	B(OH) ₃ + NaOH \rightleftharpoons direction ?	\sim NaBO ₂ + Na[B(OH) ₄] + H_2O how can this rea	ction is made to proce	ed in forward [IIT- 2006]			
	(A) Addition of cis 1,	2 diol	(B) Addition of bor	(B) Addition of borax				
	(C) Addition of trans	1, 2 diol	(D) Addition of Na	(D) Addition of Na ₂ HPO ₄				
22.	The percentage of p	-character in the orbitals fo	orming P-P bonds in P ₄ is	s –	[IIT- 2007]			
	(A) 25	(B) 33	(C) 50	(D) 75				
23.	Among the following		[IIT- 2007]					
	(A) Na ₂ O ₂	(B) O ₃	(C) N ₂ O	(D) KO ₂				
24.	Draw the structure of	of a cyclic silicate, (Si ₃ O ₉) ⁶	6- with proper labelling -	TII]	-1998, 4 M]			
25.	Complete and balan	Complete and balance the following chemical equations –						
	(i) P ₄ O ₁₀ + PCl ₅ —	→ (ii) SnCl ₄ +	$C_2H_5Cl + Na \longrightarrow$					
26.	Work out the follow	ng using chemical equatio	ns	TII]	- 1998, 2M]			
	"Chlorination of calcium hydroxide produces bleaching powder"							

41. Statement-I: In water, orthoboxric acid behaves as a weak monobasic acid. [IIT- 2007]

Because:

Statement-II: In water, orthoboric acid acts as a proton donor.

- (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I
- (B) Statement-I is true, Statement-II is True; Statement-II is not a correct explanation for Statement-I
- (C) Statement-I is True, Statement-II is flase
- (D) Statement-I is False, Statement-II is True.

Comprehension # 1 (Q-42, 43, 44)

The noble gases have closed-shell electronic configuration and are monoatomic gases under normal conditions. The low boiling point of the lighter noble gases are due to weak dispersion forces between the atoms and the absence of other interatomic interactions. The direct reaction of xenon with fluorine leads to a series of compounds with oxidation number +2, +4 and +6. XeF_4 reacts violently with water to give XeO_3 . The compounds of xenon exhibit rich stereochemistry and their geometries can be deduced considering the total number of electron pairs in the valence shell.

- 42. Argon is used in arc welding because of its -
 - (A) Low reactivity with metal

(B) Ability to lower the melting point of metal

(C) Flammability

(D) High calorific value

- **43**. The structure of XeO_3 is -
 - (A) Linear
- (B) Planar
- (C) Pyramidal
- (D) T-shaped

- **44.** XeF_4 and XeF_6 are expected to be -
 - (A) Oxidising
- (B) Reducing
- (C) Unreactive
- (D) Strongly basic

Comprehension # 2 (Q-45, 46, 47)

There are some deposits of nitrates and phosphates in earth's crust. Nitrates are more soluble in water. Nitrates are difficult to reduce under the laboratory conditions but microbes do it easily. Ammonia forms large number of complexes with transition metal ions. Hybridization easily explains the ease of sigma donation capability of NH_3 and PH_3 . Phosphine is a flammable gas and is prepared from white phosphorous.

[IIT- 2008]

- **45.** Among the following, the correct statement is :-
 - (A) Phosphates have no biological significance in humans
 - (B) Between nitrates and phosphates, phosphates are less abundant in earth's crust
 - (C) Between nitrates and phosphates, nitrates are less abundant in earth's crust
 - (D) Oxidation of nitrates is possible in soil
- **46.** Among the following, the correct statement is :-
 - (A) Between NH₃ and PH₃, NH₃ is a better electron donor because the lone pair of electrons occupies spherical 's' orbital and is less directional
 - (B) Between NH_3 and PH_3 , PH_3 is a better electron donor because the lone pair of electrons occupies sp^3 orbital and is more directional
 - (C) Between NH_3 and PH_3 , NH_3 is a better electron donor because the lone pair of electrons occupiessp³ orbital and is more directional
 - (D) Between NH₃ and PH₃. PH₃ is a better electron donor because the lone pair of electrons occupies spherical 's' orbital and is less directional.

47.	White phosphorus on reaction with NaOH gives PH_3 as one of the products. This is a :-							
	(A) dimerization re		(B) disproportional					
	(C) condensation r		(D) precipitation r					
48.	The reaction of P_4	[JEE 2009]						
	(A) Dry O ₂	, 3	(B) A mixture of (
	(C) Moist O ₂			ence of aqueous NaOH				
49.	-	e(s) that contain(s) N-N box	2	[JEE 2009]				
	(A) N ₂ O	(B) N_2O_3	(C) N ₂ O ₄	(D) N_2O_5				
50.	In the reaction	(/ 2 3	7 2 4	[JEE 2009]				
		$2X + B_2H_6 \longrightarrow [BH_2(X)_2]^+[BH_4]^-$						
	the amine(s) X is (are)							
	(A) NH ₃	(B) CH ₂ NH ₂	(C) (CH ₃) ₂ NH	(D) (CH ₃) ₃ N				
51.	The reaction of white phosphorus with aqueous NaOH gives phosphine along with another phosphorus containing compound. The reaction type; the oxidation states of phosphorus in phosphine and the other product are respectively [JEE 2012]							
	(A) redox reaction; -3 and -5							
	(B) redox reaction; $+3$ and $+5$							
	(C) disproportional	disproportionation reaction ; -3 and +1						
	(D) disproportionation reaction ; -3 and +3							
52.	Bleaching powder oxoacid is :	contains a salt of an ox	coacid as one of its con	nponents. The anhydride of that [JEE 2012]				
	(A) Cl ₂ O	(B) Cl_2O_7	(C) ClO ₂	(D) Cl_2O_6				
53.	With respect to gr	aphite and diamond, which	h of the statement(s) give	n below is (are) correct ?				
	(A) Graphite is harder than diamond. [JEE 2012]							
	(B) Graphite has higher electrical conductivity than diamond.							
	(C) Graphite has higher thermal conductivity than diamond.							
	(D) Graphite has h	nigher C–C bond order tha	an diamond.					

PREVIOUS YEA	ARS QUESTION	S	ANSWER KEY			EXERCISE -5[B]		
• 1. C	2. A	3 . A	4. C	5 . B,D	6 . A	7 . C		
8 . D	9 . C	10 . A	11 . C	12 . A	13 . D	14 .A		
15 . C	16 .A	17 .C	18 .C	19 .B	20 .B	21 .A		
22 . D	23 . D							

24. In cyclic $(Si_3O_9)^{6-}$, three tetrahedral of SiO_4 are joined together by sharing of two oxygen atoms per tetrahedral.

Structure of $(Si_3O_9^{6-})$

In it dark circles () represent Si and open circles (O) represent oxygen atom or iron.

25. (i)
$$P_4O_{10} + 6PCl_3 \longrightarrow 10POCl_3$$

(ii)
$$SnCl_4 + 2C_2H_5Cl + 2Na \longrightarrow Na_2SnCl_6 + C_4H_{10}$$

26.
$$3Ca(OH)_2 + 2Cl_2 \longrightarrow Ca(OCl)_2 + Ca(OH)_2 CaCl_2 2H_2O$$

Bleaching powder is a mixture of $CaOCl_2$ and hydrated basic calcium chloride.

27. When H_2O_2 acts as oxidizing agent, therefore, following reaction takes place:

$$H_2O_2 + 2e^- \longrightarrow 2OH^-$$

while, regarding is action on reducing agent, the following reaction takes place:

$$H_2O_2 + 2OH^- \longrightarrow O_2 + 2H_2O + 2e^-$$

Oxidizing character:

$$2Cr(OH)_3 + 4NaOH + 3H_2O_2 \longrightarrow 2Na_2CrO_4 + 8H_2O$$

Reducing character:

$$2K_3$$
 [Fe(CN)₆] + 2KOH + $H_2O_2 \longrightarrow 2K_4$ [Fe(CN)₆] + $2H_2O + O_2$

 ${\bf 28.}~{\rm BeCl_2}$ is hydrolysed due to high polarising power and presence of vacant p-orbitals in Be atom.

(Be =
$$1s^2$$
, $2s^2$, $2p_x^1$, $2p_y^0$, $2p_z^0$)

29. In $SO_3 + H_2O \longrightarrow H_2SO_4$ reaction, H_2SO_4 is obtained in misty form and reaction is explosive (highly exothermic). By adding H_2SO_4 the above reaction is prevented.

$$H_2SO_4 + SO_3 \longrightarrow H_2S_2O_7$$
 (oleum)

$$H_2S_2O_7 + H_2O \longrightarrow 2H_2SO_4$$

The catalyst used is V_2O_5 and K_2O is used as promotor for the oxidation of SO_2 into SO_3 .

30. $2I^-$ (aqueous) + $Cl_2 \longrightarrow I_2 + 2Cl^-$ (aqueous)

(i)
$$2I^-$$
 (aqueous) $\longrightarrow I_2$ (s) + $2e^-$

(ii)
$$Cl_2$$
 (g) + $2e^- \longrightarrow 2Cl^-$ (aq)

Thus, \bar{I} is oxidised into I_2 by Cl_2 due to higher oxidised potential of Cl_2 than I_2

31. Unreacted AgBr is removed by hypo $(Na_2S_2O_3)$

$$AgBr + 2Na_2S_2O_3 \longrightarrow Na_3[Ag(S_2O_3)_2] + NaBr$$

32.

In it Xe is sp^3d -hybrid but its shape is linear due to involvent of VSEPR theory. (i.e., due to presence of three free pair of electrons, geometry of XeF_2 is distorted from trigonal bipyramidal to linear).

In it Xe is sp^3d^2 -hybrid but its shape is square planar due to involvement of VSEPR theory. (i.e., due to presence of two free pair of electrons, geometry of XeF_4 is distorted from octahedral to square planer).

In it Xe is sp^3 d-hybrid but its geometry is planar due to involvement of VSEPR theory. (i.e., due to presence of a free pair of electron, its geometry is distorted from trigonal bipyramidal to planar).

33. In nitrogen, d-orbitals are not present, so in it the possiblity of intramolecular multiplicity exists which leads to the completion of octet through π -bond between two nitrogen atoms.

In phosphorus, d-orbitals are present, so in it due to large size of P, the P-P bonds are longer and hence intramolecular multiplicity is ruled out. So, for the completion of octet, it forms the bonds with three other $^{\rm P'}$ atoms. Hence due to this reason it shows molecular formula as $^{\rm P}_4$.

$$\begin{array}{c} Y: B_2H_6 \\ 4BCl_3 + 3LiAlH_4 \longrightarrow 3AlCl_3 + 3LiCl + 2B_2H_6 \\ X \\ B_2H_6 + 3O_2 \longrightarrow B_2O_3 + 3H_2O \text{ (exothermic)} \\ V \end{array}$$

$$\mathbf{35}$$
. (i) 3 SiCl₄ + 4Al \longrightarrow 3Si + 4AlCl₃ (in one step)

(ii) SiCl₄ + 2Mg
$$\longrightarrow$$
 2MgCl₂ + Si
Si + Cu \longrightarrow Si - Cu
2CH₃Cl + Si- Cu \longrightarrow (CH₃)₂ SiCl₂ + Cu
(CH₃)₂SiCl₂ + 2H₂O \longrightarrow (CH₃)₂Si(OH)₂ + 2HCl

$$2(CH_3)_2Si(OH)_2 \xrightarrow{\Delta} H-O-Si-O-Si-OH$$

$$CH_3 CH_3$$

$$H-O-Si-O-Si-OH$$

$$CH_3 CH_3$$

(iii)
$$SiCl_4 + 4H_2O \longrightarrow Si(OH)_4 + 4HCl$$

 $Si(OH)_4 \longrightarrow SiO_2 + 2H_2O$
 $SiO_2 + Na_2CO_3 \xrightarrow{\Delta} Na_2SiO_3 + CO_2$

36. ¹⁴CO₂

(ii) CaNCN +
$$3H_2O \longrightarrow CaCO_3 + 2NH_3$$

(iii)
$$BF_3 + 3H_2O \longrightarrow H_3BO_3 + 3HF$$

 $3HF + 3BF_3 \longrightarrow 3HBF_4$

$$4\mathsf{BF}_3 + 3\mathsf{H}_2\mathsf{O} \longrightarrow \mathsf{H}_3\mathsf{BO}_3 + 3\mathsf{HBF}_4$$

38. Oxidation state

$$(A)$$
: NaHSO₃ + 4

(B) :
$$Na_2SO_3$$
 + 4

(C):
$$Na_2S_2O_3$$
 + 2

(D):
$$Na_2S_4O_6$$
 + 2.5

39.
$$Cl_2O_7 < SO_3 < CO_2 < B_2O_3 < BaO$$

40. Thus, Q and R

(A) :
$$Bi^{3+} + H_2O \longrightarrow BiO^+ + 2H^+$$
 thus ((Q) and S)

(B) :
$$AlO_2^- + H_3O^+ \longrightarrow Al(OH)_3 \downarrow thus (R)$$

(C):
$$2\operatorname{SiO}_4^{4-} + 2\operatorname{H}^+ \longrightarrow \operatorname{Si}_2\operatorname{O}_7^{6-}$$
 thus (R)

(D) :
$$B_4O_7^{2-} \xrightarrow{H^+} B(OH)_3$$

$$B_4O_7^{2-} \xrightarrow{H_2O} B(OH)_3$$

Thus, (Q) and (R)

41. (C)

Comprehension # 1

42.. (A) 43. (C) **44**. (A)

Comprehension # 2

45. (C) 46. (C) **47**. (B)

48. (B) **49.** (A, B, C) **50**. (B, C)

51. (C) **52**. (A) **53.** (B, D)