

BEST AVAILABLE COPY

BREVET D'INVENTION

CERTIFICAT D'UTILITÉ - CERTIFICAT D'ADDITION

COPIE OFFICIELLE

Le Directeur général de l'Institut national de la propriété industrielle certifie que le document ci-annexé est la copie certifiée conforme d'une demande de titre de propriété industrielle déposée à l'Institut.

Fait à Paris, le 09 NOV. 2004

-Pour le Directeur général de l'Institut
national de la propriété industrielle
Le Chef du Département des brevets

Martine PLANCHE

DOCUMENT DE PRIORITÉ

PRÉSENTÉ OU TRANSMIS
CONFORMÉMENT À LA RÈGLE
17.1. a) OU b)

INSTITUT
NATIONAL DE
LA PROPRIETE
INDUSTRIELLE

SIEGE
26 bis, rue de Saint-Petersbourg
75800 PARIS cedex 08
Téléphone : 33 (0)1 53 04 53 04
Télécopie : 33 (0)1 53 04 45 23
www.inpi.fr

BREVET D'INVENTION CERTIFICAT D'UTILITÉ

26bis, rue de Saint-Pétersbourg
75800 Paris Cédex 08
Téléphone: 01 53.04.53.04 Télécopie: 01.42.94.86.54

Code de la propriété intellectuelle-livre VI

REQUÊTE EN DÉLIVRANCE

DATE DE REMISE DES PIÈCES: N° D'ENREGISTREMENT NATIONAL: DÉPARTEMENT DE DÉPÔT: DATE DE DÉPÔT:	Philippe CONAN L'AIR LIQUIDE SA 75 Quai d'Orsay 75321 PARIS CEDEX 07 France
Vos références pour ce dossier: S6356FR - PHC/NS	

1 NATURE DE LA DEMANDE

Demande de brevet

2 TITRE DE L'INVENTION

Ajout d'agent(s) bloquant(s) dans une membrane céramique pour bloquer la croissance cristalline des grains lors du frittage sous atmosphère

3 DECLARATION DE PRIORITE OU REQUETE DU BENEFICE DE LA DATE DE DEPOT D'UNE DEMANDE ANTERIEURE FRANCAISE

Pays ou organisation Date N°

4-1 DEMANDEUR

Nom	L'AIR LIQUIDE, SOCIÉTÉ ANONYME À DIRECTOIRE ET CONSEIL DE SURVEILLANCE POUR L'ÉTUDE ET L'EXPLOITATION DES PROCÉDÉS GEORGES CLAUDE
Suivi par	Philippe CONAN
Rue	75 Quai d'Orsay
Code postal et ville	75321 PARIS CEDEX 16
Pays	France
Nationalité	France
Forme juridique	Société anonyme
N° SIREN	552 096 281
Code APE-NAF	241A
N° de téléphone	01 40 62 56 91
N° de-télécopie	01 40 62 56 95
Courrier électronique	philippe.conan@airliquide.com

5A MANDATAIRE

Nom	CONAN
Prénom	Philippe
Qualité	Liste spéciale, Pouvoir général: PG10568
Cabinet ou Société	L'AIR LIQUIDE SA
Rue	75 Quai d'Orsay
Code postal et ville	75321 PARIS CEDEX 07
N° de téléphone	01 40 62 56 91
N° de télécopie	01 40 62 56 95
Courrier électronique	philippe.conan@airliquide.com

6 DOCUMENTS ET FICHIERS JOINTS

	Fichier électronique	Pages	Détails
Texte du brevet	textebrevet.pdf	19	D 11, R 7, AB 1
Dessins	dessins.pdf	6	page 6, figures 7
Désignation d'inventeurs			
Pouvoir général			

7 MODE DE PAIEMENT

Mode de paiement	Prélèvement du compte courant
Numéro du compte client	516

8 RAPPORT DE RECHERCHE

Etablissement immédiat	
------------------------	--

9 REDEVANCES JOINTES	Devise	Taux	Quantité	Montant à payer
062 Dépôt	EURO	0.00	1.00	0.00
063 Rapport de recherche (R.R.)	EURO	320.00	1.00	320.00
068 Revendication à partir de la 11ème	EURO	15.00	17.00	255.00
Total à acquitter	EURO			575.00

La loi n°78-17 du 6 janvier 1978 relative à l'informatique aux fichiers et aux libertés s'applique aux réponses faites à ce formulaire.
Elle garantit un droit d'accès et de rectification pour les données vous concernant auprès de l'INPI.

Signé par

Signataire: FR, L'Air Liquide SA, P.Conan

Emetteur du certificat: DE, D-Trust GmbH, D-Trust for EPO 2.0

Fonction

L'AIR LIQUIDE, SOCIÉTÉ ANONYME À DIRECTOIRE ET CONSEIL DE SURVEILLANCE POUR L'ETUDE ET L'EXPLOITATION DES
PROCÉDÉS GEORGES CLAUDE (Demandeur 1)

BREVET D'INVENTION CERTIFICAT D'UTILITE

Réception électronique d'une soumission

Il est certifié par la présente qu'une demande de brevet (ou de certificat d'utilité) a été reçue par le biais du dépôt électronique sécurisé de l'INPI. Après réception, un numéro d'enregistrement et une date de réception ont été attribués automatiquement.

Demande de brevet : X

Demande de CU :

DATE DE RECEPTION	6 novembre 2003	Dépôt en ligne: X
TYPE DE DEPOT	INPI (PARIS) - Dépôt électronique	Dépôt sur support CD:
N° D'ENREGISTREMENT NATIONAL ATTRIBUE PAR L'INPI	0350802	
Vos références pour ce dossier	S6356FR - PHC/NS	

DEMANDEUR

Nom ou dénomination sociale	L'AIR LIQUIDE, SOCIÉTÉ ANONYME À DIRECTOIRE ET CONSEIL DE SURVEILLANCE POUR L'ETUDE ET L'EXPLOITATION DES PROCÉDÉS GEORGES CLAUDE
Nombre de demandeur(s)	1
Pays	FR

TITRE DE L'INVENTION

Ajout d'agent(s) bloquant(s) dans une membrane céramique pour bloquer la croissance cristalline des grains lors du fritage sous atmosphère

DOCUMENTS ENVOYES

package-data.xml	Requetefr.PDF	fee-sheet.xml
Design.PDF	ValidLog.PDF	textebrevet.pdf
FR-office-specific-info.xml	application-body.xml	request.xml
dessins.pdf	indication-bio-deposit.xml	

EFFECTUE PAR

Effectué par:	P. Conan
Date et heure de réception électronique:	6 novembre 2003 17:12:22
Empreinte officielle du dépôt	CF:99:16:35:1F:07:86:A0:46:62:6B:63:05:88:F8:9C:F2:57:01:8B

/ INPI PARIS, Section Dépôt /

SIEGE SOCIAL
 INSTITUT 29 bis, rue du Saint Polisbourg
 NATIONAL DE 75800 PARIS cedex 08
 LA PROPRIETE Télèphone : 01 63 04 53 04
 INDUSTRIELLE Télécopie : 01 42 93 59 30

La présente invention a pour objet un matériau composite conducteur mixte, électronique et d'anions O²⁻, son procédé de préparation et son utilisation comme électrolyte solide dans un réacteur catalytique membranaire destiné notamment à la production de gaz de synthèse par reformage du méthane ou du gaz naturel.

5 Les réacteurs catalytiques membranaires (Catalytic Membrane Reactor en langue anglaise), dénommés ci-après CMR, élaborés à partir de matériaux céramiques, permettent la séparation de l'oxygène de l'air par diffusion de cet oxygène sous forme ionique à travers le matériau céramique et la réaction chimique de ce dernier avec du gaz naturel (principalement du méthane) sur des sites catalytiques (particules de Ni ou de métaux 10 nobles) déposés en surface sur la membrane. La transformation du gaz de synthèse en carburant liquide par le procédé GTL (Gas To Liquid), nécessite un ratio molaire H₂/CO égal à 2. Or ce ratio de 2 peut être obtenu directement par un procédé mettant en œuvre un CMR.

15 Cependant les matériaux céramiques ont un comportement fragile et des propriétés mécaniques directement dépendantes de la microstructure (taille et forme des grains, phases secondaires, porosité). Toutes choses égales par ailleurs, la résistance mécanique d'un matériau céramique utilisé en tant que CMR augmente lorsque la taille des grains qui le compose diminue. La taille des grains peut augmenter lors du fonctionnement en température et limiter la durée de vie du système. Différentes publications divulguent des solutions 20 destinées à améliorer cette durée de vie.

Les brevets américains US 5,306,411 et US 5,478,444 divulguent des matériaux composites constitués d'un mélange d'un matériau conducteur électronique et d'un matériau conducteur ionique ce qui constitue ainsi un électrolyte solide de conductivité mixte.

25 Le brevet américain US 5,911,860 divulgue un matériau constitué essentiellement d'un conducteur mixte ou ionique et d'un constituant de nature chimique différente du conducteur mixte, préférentiellement un métal à hauteur de 0 à 20 % massique. Cette publication met en relief la nécessité d'une deuxième phase pour limiter la fissuration du matériau lors du frittage et augmenter ainsi ses propriétés mécaniques tout en améliorant son efficacité de catalyseur.

30 Le brevet américain US 6,187,157 divulgue des systèmes multi phasés comprenant une phase conductrice mixte ionique et électronique ou ionique seule et une deuxième phase conductrice électronique afin d'améliorer les propriétés catalytiques du matériau. La phase secondaire est généralement métallique et occupe 13 % du volume du matériau.

Le brevet américain US 6,332,964 divulgue, soit une membrane dense, soit un support poreux constitué d'une phase comprenant un oxyde métallique mixte ayant une conductivité ionique de type $M\text{CeO}_x$, $M\text{ZrO}_x$ (M : famille des lanthanides) ou mixte (LaSrGaMgO_x) et d'une seconde phase ayant une conductivité électronique (métal, alliage métallique ou oxyde mixte de type LaSrMO_x avec M : élément de transition), ladite seconde phase étant comprise entre 1 et 30% vol. de la matrice. La demande de brevet américain US 2002/0022568 divulgue un matériau de formule $\text{Ln}_{1-x}\text{Sr}_y\text{Ca}_{x-y}\text{MO}_{3-\delta}$ (Ln : famille des lanthanides et yttrium ou mélange des deux; M : métal de transition ou mélange de métaux de transition) ayant une conductivité mixte élevée, un coefficient d'expansion thermique bas et des propriétés mécaniques améliorées. Le brevet américain US 6,471,921 divulgue un matériau multiphasé conducteur mixte dont les phases secondaires ne participent pas significativement à la conduction mais permettent d'accroître les propriétés mécaniques du matériau. Les phases secondaires sont issues d'un écart au mélange stœchiométrique des précurseurs utilisés pour synthétiser le conducteur mixte et sont donc des sous produits de la réaction. La teneur en phases secondaires est comprise entre 0,1 et 20 % en masse. Le matériau principal est une phase Brown-Millerite de structure $A_xA'^{x'}A''^{(2-x-x')}B_yB'_yB''^{(2-y)}O_{5+z}$, les phases secondaires sont de compositions $(AA')_2(B,B')O_4$, $A'^2(B,B')O_4$, $(A,A')(B,B')_2O_4$,etc. Toutes ces phases secondaires sont issues de la réaction de synthèse du matériau. Elles ne sont pas ajoutées avant la mise en forme du matériau.

La demanderesse a cherché à développer un matériau composite qui présente une structure fine et homogène avec des grains ayant une taille proche du micron et qui garantie de ce fait des propriétés mécaniques élevées et durables.

C'est pourquoi selon un premier aspect, l'invention a pour objet un matériau composite (M) comprenant :

- au moins 75 % en volume d'un composé conducteur mixte électronique et d'anions oxygène O^{2-} (C_1) choisi parmi les oxydes céramiques dopés qui, à la température d'utilisation, sont sous forme d'un réseau cristallin présentant des lacunes en ions oxydes et plus particulièrement sous forme de phase cubique, de phase fluorite, de phase perovskite, de type aurivillius, de phase Brown - Millerite ou de phase pyrochlore, et

- de 0,01 % à 25 % en volume d'un composé (C_2), différent du composé (C_1) choisi parmi des matériaux céramiques de type oxyde, les matériaux céramiques de type non-oxyde, les métaux, les alliages métalliques ou des mélanges de ces différents types de ma-

tériaux, et de 0% en volume à 2,5 % en volume d'un composé (C_3) produit d'au moins une réaction chimique représentée par l'équation:

équation dans laquelle F_{C1} , F_{C2} et F_{C3} , représentent les formules brutes respectives des 5 composés C_1 , C_2 et C_3 et x , y et z représentent des nombres rationnels supérieurs ou égaux à 0.

Dans l'exposé qui suit, le composé (C_2) est souvent dénommé agent bloquant, en ce que sa présence dans le matériau objet de la présente invention, inhibe la croissance cristalline des grains de composé (C_1) lors de l'une ou de plusieurs des étapes du procédé pour sa 10 fabrication. Les grains de l'agent bloquant ont de préférence une forme inscriptible dans une sphère de diamètre compris entre 0,1 μm et 5 μm et de préférence inférieur à 1 μm , qu'il s'agisse d'une forme équiaxe ou encore de grains aciculaires, de longueur inférieure ou égale à 5 μm .

Par composé (C_1) ou (C_2), on indique que le matériau composite tel que défini précédemment peut comprendre :

- soit un composé (C_1) en mélange avec un seul composé (C_2),
- soit une association de plusieurs composés (C_1) en mélange avec un seul composé (C_2),
- soit un composé (C_1) en mélange avec une association de plusieurs composés (C_2),
- soit une association de plusieurs composés (C_1) en mélange avec une association de plusieurs composés (C_2)

Par proportion volumique, on entend dans la définition du matériau objet de la présente invention la proportion volumique dans le matériau final.

Selon un premier mode préféré de la présente invention, la proportion volumique en 25 composé (C_3) dans le matériau est inférieure ou égale à 1,5 % en volume et elle est plus particulièrement inférieure ou égale à 0,5 % en volume.

Selon un aspect particulier de ce mode préféré, le composé (C_2) est essentiellement chimiquement inerte vis à vis du composé (C_1), dans la plage de température comprise entre la température ambiante et la température de frittage, cette plage incluant la température 30 de fonctionnement et la proportion volumique du composé (C_3) dans le matériau tend vers 0.

Selon un deuxième aspect préféré de la présente invention, la proportion volumique en composé (C_2) est supérieure ou égale à 0,1 % et inférieure ou égale à 10 % et plus particulièrement, la proportion volumique en composé (C_2) est inférieure ou égale à 5 %.

Dans le matériau tel que défini ci-dessus, le composé (C_2) est principalement choisi

5 soit parmi les matériaux céramiques de type oxyde comme par exemple, l'oxyde de magnésium (MgO), l'oxyde de calcium (CaO), l'oxyde d'aluminium (Al_2O_3), l'oxyde de zirconium (ZrO_2), l'oxyde de titane (TiO_2), les oxydes mixtes de strontium et d'aluminium

$SrAl_2O_4$ ou $Sr_3Al_2O_6$, les oxydes mixtes de structure perovskite comme par exemple $Ba-TiO_3$ ou $CaTiO_3$ ou, plus particulièrement de structure $ABO_{3-\delta}$ comme par exemple

10 $La_{0,5} Sr_{0,5} Fe_{0,9} Ti_{0,1} O_{3-\delta}$ ou $La_{0,6} Sr_{0,4} Fe_{0,9} Ga_{0,1} O_{3-\delta}$,

soit parmi des matériaux de type non oxyde (carbure, nitride, borure) comme par exemple le carbure de silicium (SiC), le nitride de bore (BN) ou,

soit parmi des métaux comme par exemple le nickel, le platine, le palladium ou le rhodium.

15 Selon un premier aspect particulier du matériau tel que défini ci-dessus, le composé (C_1) est choisi parmi les oxydes de formule (I) :

dans laquelle :

20 R_a représente au moins un atome trivalent ou tétravalent principalement choisi parmi, le bismuth (Bi), le cérium (Ce), le zirconium (Zr), le thorium (Th), le gallium (Ga) ou l'hafnium (Hf), a et b sont tels que la structure R_aO_b est électriquement neutre,

25 R_c représente au moins un atome divalent ou trivalent choisi principalement parmi le magnésium (Mg), le calcium (Ca), le baryum (Ba), le strontium (Sr), le gadolinium (Gd), le scandium (Sc), l'ytterbium (Yb), l'yttrium (Y), le samarium (Sm), l'erbium (Er), l'indium (In), le niobium (Nb) ou le lanthane (La), c et d sont tels que la structure R_cO_d est électriquement neutre,

et dans laquelle x est généralement compris entre 0,05 et 0,30 et plus particulièrement, entre 0,075 et 0,15.

30 Comme exemples d'oxyde de formule (I), il y a les zircons, les gallates ou les oxydes de cérium stabilisés.

Selon ce premier aspect particulier le composé (C_1) est de préférence choisi parmi les zircons stabilisées de formule (Ia) :

dans laquelle x est compris entre 0,05 et 0,15.

Selon un deuxième aspect particulier du matériau tel que défini ci-dessus, le composé (C_1) est choisi parmi les perovskites de formule (II) :

5 dans laquelle,

- Ma représente un atome choisi parmi le scandium, l'yttrium ou dans les familles des lanthanides, des actinides ou des métaux alcalino-terreux ;

- Ma' différent de Ma, représente un atome choisi parmi le scandium, l'yttrium ou dans les familles des lanthanides, des actinides ou des métaux alcalino-terreux ;

10 - Ma'' différent de Ma et de Ma', représente un atome choisi parmi l'aluminium (Al), le gallium (Ga), l'indium (In), le thallium (Tl) ou dans la famille des métaux alcalino-terreux ;

- Mb représente un atome choisi parmi les métaux de transition ;

15 - Mb' différent de Mb, représente un atome choisi parmi les métaux de transition, l'aluminium (Al), l'indium (In), le gallium (Ga), le germanium (Ge), l'antimoine (Sb), le bismuth (Bi), l'étain (Sn), le plomb (Pb) ou le titane (Ti) ;

- Mb'' différent de Mb et de Mb', représente un atome choisi parmi les métaux de transition, les métaux de famille des alcalino-terreux, l'aluminium (Al), l'indium (In), le gallium (Ga), le germanium (Ge), l'antimoine (Sb), le bismuth (Bi), l'étain (Sn) le plomb 20 (Pb) ou le titane (Ti) ;

$$0 < x \leq 0,5 ;$$

$$0 \leq u \leq 0,5 ;$$

$$(x + u) \leq 0,5 ;$$

$$0 \leq y \leq 0,9 ;$$

25 0 ≤ v ≤ 0,9 ;

$$0 \leq (y + v) \leq 0,9$$

et w est tel que la structure en cause est électriquement neutre.

Selon ce deuxième aspect particulier, le composé (C_1) est plus particulièrement choisi parmi les composés de formule (II) dans laquelle u est égal à zéro ou bien parmi les 30 composés de formule (II) dans laquelle u est différent de zéro ou bien parmi les composés de formule (II) dans laquelle la somme (y + v) est égale à zéro ou bien parmi les composés de formule (II) dans laquelle la somme (y + v) est différente de zéro.

Dans la formule (II) telle que définie précédemment, Ma est plus particulièrement choisi parmi La, Ce, Y, Gd, Mg, Ca, Sr ou Ba. Dans ce cas, le composé (C₁) est de préférence un composé de formule (IIa) :

- 5 correspondant à la formule (II), dans laquelle Ma représente un atome de lanthane.

Dans la formule (II) telle que définie précédemment, Ma' est plus particulièrement choisi parmi La, Ce, Y, Gd, Mg, Ca, Sr ou Ba. Dans ce cas, le composé (C₁) est de préférence un composé de formule (IIb) :

- 10 correspondant à la formule (II), dans laquelle Ma' représente un atome de strontium.

Dans la formule (II) telle que définie précédemment, Mb est plus particulièrement choisi parmi Fe, Cr, Mn, Co, Ni ou Ti. Dans ce cas, le composé (C₁) est de préférence un composé de formule (IIc) :

- 15 correspondant à la formule (II), dans laquelle Mb représente un atome de fer.

Dans la formule (II) telle que définie précédemment, Mb' est plus particulièrement choisi parmi Co, Ni, Ti ou Ga et Mb'' est plus particulièrement choisi parmi Ti ou Ga.

Dans ce cas, le composé (C₁) est de préférence un composé de formule (IId) :

- 20 correspondant à la formule (II), dans laquelle u = 0, y = 0, Mb représente un atome de fer, Ma un atome lanthane et Ma' un atome de strontium. Dans la formule (II) telle que définie précédemment, Ma'' est plus particulièrement choisi parmi Ba, Ca, Al ou Ga. Dans le matériau objet de la présente invention, le composé (C₁) est plus particulièrement un composé de formule :

La_(1-x) Sr_x Fe_(1-v) Ga_v O_{3-δ} ou La_(1-x) Sr_x Fe O_{3-δ} et plus particulièrement un des composés suivants : La_{0,6} Sr_{0,4} Fe_{0,9} Ga_{0,1} O_{3-δ}, ou La_{0,5} Sr_{0,5} Fe_{0,9} Ti_{0,1} O_{3-δ}.

Parmi les composés de structure cristalline de type perovskite et de formule (II) que l'on préfère mettre en œuvre dans le matériau objet de la présente invention sont ceux de formule (II') :

5 formule (II) dans laquelle :

a, a-1, a'', b, (b+1), (b+β) et b'' sont des nombres entiers représentant les valences respectives des atomes Ma, Ma', Ma'', Mb, Mb' et Mb'' ;

a, a'', b, b'', β, x, y, s, u, v et δ sont tels que la neutralité électrique du réseau cristallin est conservée,

10 a > 1,

a'', b et b'' sont supérieurs à zéro ;

-2 ≤ β ≤ 2 ;

a + b = 6 ;

0 < s < x ;

15 0 < x ≤ 0,5 ;

0 ≤ u ≤ 0,5 ;

(x + u) ≤ 0,5 ;

0 ≤ y ≤ 0,9 ;

0 ≤ v ≤ 0,9 ;

20 0 ≤ (y + v + s) ≤ 0,9

$$[u.(a'' - a) + v.(b'' - b) - x + s + \beta y + 2\delta] = 0$$

et $\delta_{\min} < \delta < \delta_{\max}$ avec

$$\delta_{\min} = [u.(a - a'') + v.(b - b'') - \beta y] / 2 \text{ et}$$

$$\delta_{\max} = [u.(a - a'') + v.(b - b'') - \beta y + x] / 2$$

25 et Ma, Ma', Ma'', Mb, Mb' et Mb'' sont tels que définis précédemment Mb représentant un atome choisi parmi les métaux de transition aptes à exister sous plusieurs valences possibles ;

Selon un troisième aspect particulier du matériau tel que défini ci-dessus, le composé (C₁) est choisi parmi les matériaux de la famille des Brown - Millerites de formule (III) :

dans laquelle,

Mc représente un atome choisi le scandium, l'yttrium ou dans les familles des lanthanides, des actinides ou des métaux alcalinoterreux ;

Mc' différent de Mc, représente un atome choisi parmi le scandium, l'yttrium ou dans les familles des lanthanides, des actinides ou des métaux alcalino-terreux ;

Md représente un atome choisi parmi les métaux de transition ; et

5 Md' différent de Md représente un atome choisi parmi les métaux de transition, l'aluminium (Al), l'indium (In), le gallium (Ga), le germanium (Ge), l'antimoine (Sb), le bismuth (Bi), l'étain (Sn), le plomb (Pb) ou le titane (Ti) ;
x et y sont supérieurs ou égaux à 0 et inférieurs ou égaux à 2 et w est tel que la structure en cause est électriquement neutre.

Selon ce troisième aspect particulier du matériau objet de la présente invention, le 10 composé (C₁) est plus particulièrement de formule (IIIa) :

un composé de formule (IIIb) :

et plus particulièrement un composé de formule (IIIc) :

comme par exemple les composés de formules :

20 Sr_{1,4} La_{0,6} Ga Fe O_{5,3}, Sr_{1,6} La_{0,4} Ga_{1,2} Fe_{0,8} O_{5,3}, Sr_{1,6} La_{0,4} Ga Fe O_{5,2},
Sr_{1,6} La_{0,4} Ga_{0,8} Fe_{1,2} O_{5,2}, Sr_{1,6} La_{0,4} Ga_{0,6} Fe_{1,4} O_{5,2}, Sr_{1,6} La_{0,4} Ga_{0,4} Fe_{1,6} O_{5,2},
Sr_{1,6} La_{0,4} Ga_{0,2} Fe_{1,8} O_{5,2}, Sr_{1,6} La_{0,4} Fe₂ O_{5,2}, Sr_{1,7} La_{0,3} Ga Fe O_{5,15},
Sr_{1,7} La_{0,3} Ga_{0,8} Fe_{1,2} O_{5,15}, Sr_{1,7} La_{0,3} Ga_{0,6} Fe_{1,4} O_{5,15}, Sr_{1,7} La_{0,3} Ga_{0,4} Fe_{1,6} O_{5,15},
Sr_{1,7} La_{0,3} Ga_{0,2} Fe_{1,8} O_{5,15}, Sr_{1,8} La_{0,2} Ga Fe O_{5,1}, Sr_{1,8} La_{0,2} Ga_{0,4} Fe_{1,6} O_{5,1} ou
Sr_{1,8} La_{0,2} Ga_{0,2} Fe_{1,8} O_{5,1}.

Selon un aspect tout particulier de la présente invention, celui-ci a pour objet un matériau tel que défini précédemment dans lequel le composé (C₁) est choisi parmi les 25 composés de formule :

et le composé (C₂) est choisi parmi l'oxyde de magnésium (MgO), l'oxyde d'aluminium (Al₂O₃), l'oxyde mixte de strontium et d'aluminium Sr₃Al₂O₆, l'oxyde mixte de barium ou de titane (BaTiO₃).
30

Selon un deuxième aspect, l'invention a pour objet un procédé de préparation du matériau tel que défini précédemment, caractérisé en ce qu'il comprend au moins une étape de frittage d'un mélange de poudres de composé (C₁) et de composé (C₂) en contrôlant la

pression partielle en oxygène (pO_2) de l'atmosphère gazeuse environnant le milieu réactionnel.

Dans le procédé tel que défini ci-dessus la température de frittage du matériau est comprise entre 800 °C et 1 500 °C, préférentiellement entre 1000 °C et 1300 °C.

Le frittage inclut deux phénomènes simultanés qui sont généralement en concurrence, la densification du matériau par élimination de la porosité et la croissance granulaire. Si la densification du matériau doit être maximale pour son usage en tant que conducteur mixte, la croissance cristalline est, elle, dommageable pour ses propriétés mécaniques. L'étape de frittage doit donc être adaptée pour conduire à la densification de la pièce tout en minimisant la croissance des grains. Toutefois, il est souvent difficile de remplir ces deux conditions selon la nature des matériaux utilisés ou des conditions de frittage imposées. La présence d'une quantité adaptée de composé (C_2) dans le conducteur mixte permet d'assurer une densification satisfaisante en limitant voire en empêchant la croissance cristalline du conducteur (C_1).

Le procédé tel que défini ci-dessus est plus particulièrement mis en œuvre de telle sorte que l'étape de frittage est réalisée sous atmosphère gazeuse comprenant une pression partielle d'oxygène inférieure ou égale à 0,1 Pa.

Selon un autre aspect particulier, le procédé tel que défini précédemment est caractérisé en ce que le mélange de poudres de composé (C_1) et de composé (C_2) est préalablement mis en forme puis délianté avant l'étape de frittage.

Selon un autre aspect, l'invention a pour objet l'utilisation du matériau tel que défini précédemment, comme matériau conducteur mixte d'un réacteur catalytique membranaire, destiné à être mis en œuvre pour synthétiser du gaz de synthèse par oxydation catalytique du méthane ou du gaz naturel et/ou comme matériau conducteur mixte d'une membrane céramique, destinée à être mise en œuvre pour séparer l'oxygène de l'air.

L'invention a enfin pour objet un procédé pour inhiber et/ou contrôler la croissance cristalline des grains de composés conducteurs mixtes électronique et par ions oxydes lors de l'étape de frittage dans la préparation d'un réacteur catalytique membranaire, caractérisé en ce qu'il comprend une étape préalable d'un mélange de 75% à 99,99% en volume de conducteur mixte (C_1) et de 0,01 % à 25 % en volume de composé (C_2).

Partie expérimentale

Fabrication du matériau multiphasé

L'agent bloquant est généralement issu d'une poudre commerciale de grande pureté ou d'un mélange de poudres. Il peut également être synthétisé à partir de précurseurs oxydes et/ou nitrates et/ou carbonates mélangés et homogénéisés de manière adéquate. Ce mélange de précurseur est alors calciné à des hautes températures comprises entre 800°C et 1400°C pour réagir et former le ou les matériaux souhaités ce qui est contrôlé par diffraction des rayons X. La poudre de précurseur est broyée si nécessaire, de préférence par attrition, pour resserrer la distribution granulométrique et réduire la taille des grains à 0,5µm par exemple. Les étapes de mise en forme du matériau composite constitué du mélange homogène de particules (C_2) dans la matrice (C_1) et de déliantage sont identiques à celles du conducteur mixte (C_1) seul.

Le traitement thermique à haute température est généralement adapté à la présence de l'agent bloquant qui facilite le frittage.

15 Exemple 1 : Membrane céramique MgO (5% vol.) / $\text{La}_{0,5}\text{Sr}_{0,5}\text{Fe}_{0,9}\text{Ti}_{0,1}\text{O}_{3-\delta}$ (95% vol.)

L'exemple présenté est un mélange selon le protocole décrit précédemment constitué par 5 % volumique de magnésie (MgO) (composé C_2) et 95% volumique de matériau céramique $\text{La}_{0,5}\text{Sr}_{0,5}\text{Fe}_{0,9}\text{Ti}_{0,1}\text{O}_{3-\delta}$. (Composé C_1) Le frittage est effectué sous azote à 1150 °C durant 1,5 h.

20 La figure 1 représente deux images obtenue par microscopie électronique à balayage (Figure 1) avec deux grossissements différents (Figure 1a : $\times 8000$ et Figure 1b : $\times 10\,000$). Ces images montrent apparaître que les grains de MgO sont répartis de manière homogène dans la matrice, de taille < 1 µm. Les grains de $\text{La}_{0,5}\text{Sr}_{0,5}\text{Fe}_{0,9}\text{Ti}_{0,1}\text{O}_{3-\delta}$ sont tous inférieurs à 2 µm.

25 Une membrane $\text{La}_{0,5}\text{Sr}_{0,5}\text{Fe}_{0,9}\text{Ti}_{0,1}\text{O}_{3-\delta}$ exempte de MgO et frittée dans les mêmes conditions (sous azote à 1150°C pendant 1 heure et demie) présente des tailles de grains compris entre 2 et 3µm).

30 La figure 2 est une cartographie des éléments constituant la membrane issue d'une analyse EDS. On constate que tous les éléments sont répartis de manière homogène. Cette cartographie met clairement en évidence une non réactivité chimique de l'agent bloquant MgO vis à vis de $\text{La}_{0,5}\text{Sr}_{0,5}\text{Fe}_{0,9}\text{Ti}_{0,1}\text{O}_{3-\delta}$.

Exemple 2 : Membrane céramique MgO (5% vol.) / $\text{La}_{0,6}\text{Sr}_{0,4}\text{Fe}_{0,9}\text{Ga}_{0,1}\text{O}_{3-\delta}$ (95% vol.)

L'exemple présenté est un mélange selon le protocole décrit précédemment constitué par 5 % volume de magnésie (MgO) (composé C₂) et 95% de matériau céramique La_{0,6}Sr_{0,4}Fe_{0,9}Ga_{0,1}O_{3-δ}. (surnommé dans les figures LSFG ; composé C₁). Le frittage est effectué sous azote à 1 235°C durant deux heures.

La figure 3 met en évidence par diffraction X le fait que le mélange MgO (40% vol.)/La_{0,6}Sr_{0,4}Fe_{0,9}Ga_{0,1}O_{3-δ} (60% vol.) n'aboutit pas après calcination 1200 °C/qq heures sous azote à de nouveaux composés. Le diagramme de diffraction RX ne révèle pas de réactivité chimique entre l'agent bloquant MgO et la matrice céramique La_{0,6}Sr_{0,4}Fe_{0,9}Ga_{0,1}O_{3-δ}.

La figure 4 met en évidence par diffraction X le fait que le mélange BaTiO₃ (40% vol.) / La_{0,6}Sr_{0,4}Fe_{0,9}Ga_{0,1}O_{3-δ}. (60% vol.) n'aboutit pas après calcination sous azote à 1200 °C/qq heures à de nouveaux composés. Le diagramme de diffraction RX ne révèle pas de réactivité chimique entre l'agent bloquant BaTiO₃ et la matrice céramique La_{0,6}Sr_{0,4}Fe_{0,9}Ga_{0,1}O_{3-δ}.

La figure 5 est une micrographie MEB réalisée en électrons secondaires du matériau ne contenant pas d'agent bloquant (grossissement : x 3 000 ; taille des grains entre 2 et 10 μm). L'étape de frittage a été réalisée sous azote pendant 2 heures à 1235 °C . (matériau de l'état de la technique)

La figure 6 est une micrographie MEB réalisée en électrons secondaires du matériau La_{0,6}Sr_{0,4}Fe_{0,9}Ga_{0,1}O_{3-δ}, contenant 5% vol de oxyde de magnésium comme agent bloquant (grossissement : x 20 000 ; taille des grains entre 0,1 et 1 μm). L'étape de frittage a été réalisée sous azote pendant 2 heures à 1235 °C .

La figure 7 est une micrographie MEB réalisée en électrons secondaires du matériau La_{0,6}Sr_{0,4}Fe_{0,9}Ga_{0,1}O_{3-δ} contenant 5% vol d'oxyde de magnésium comme agent bloquant (grossissement : x 50 000 ; taille des grains entre 0,2 et 1,6 μm). L'étape de frittage a été réalisée sous azote pendant 2 heures à 1300°C).

Revendications

1. Matériau composite (M) comprenant :
 - au moins 75 % en volume d'un composé conducteur mixte électronique et d'anions oxygène O²⁻ (C₁) choisi parmi les oxydes céramiques dopés qui, à la température d'utilisation, sont sous forme d'un réseau cristallin présentant des lacunes en ions oxydes et plus particulièrement sous forme de phase cubique, de phase fluorite, de phase perovskite, de type aurivillius, de phase Brown - Millerite ou de phase pyrochlore, et
 - de 0,01 % à 25 % en volume d'un composé (C₂), différent du composé (C₁), choisi parmi des matériaux céramiques de types oxyde, les matériaux céramiques de type non-oxyde, les métaux, les alliages métalliques ou des mélanges de ces différents types de matériaux et,
 - de 0 % en volume à 2,5 % en volume d'un composé (C₃) produit d'au moins une réaction chimique représentée par l'équation:
- 15 $xF_{C1} + yF_{C2} \longrightarrow zF_{C3}$,
- équation dans laquelle F_{C1}, F_{C2} et F_{C3}, représentent les formules brutes respectives des composés (C₁), (C₂) et (C₃) et x, y et z représentent des nombres rationnels supérieurs ou égaux à 0.
2. Matériau tel que défini à la revendication 1, dans lequel les grains de composé (C₂) ont une forme équiaxe de diamètre compris entre 0,1 µm et 5 µm et de préférence inférieur à 1 µm.
 3. Matériau tel que défini à l'une des revendications 1 ou 2, dans lequel la proportion volumique en composé (C₃) est inférieure ou égale à 1,5 % et plus particulièrement inférieure ou égale à 0,5 % en volume.
 - 25 4. Matériau tel que défini à la revendication 3, dans lequel la proportion volumique du composé (C₃) dans le matériau tend vers 0.
 5. Matériau tel que défini à l'une des revendications 1 à 4, dans lequel la proportion volumique en composé (C₂) est supérieure ou égale à 0,1 % et inférieure ou égale à 10 %.
 - 30 6. Matériau tel que défini à la revendication 5, dans lequel la proportion volumique en composé (C₂) est inférieure ou égale à 5 %.
 7. Matériau tel que défini à l'une des revendications 1 à 6, dans lequel le composé (C₂) est choisi parmi les matériaux de type oxyde et de préférence parmi l'oxyde de

magnésium (MgO), l'oxyde de calcium (CaO), l'oxyde d'aluminium (Al_2O_3), l'oxyde de zirconium (ZrO_2), l'oxyde de titane (TiO_2), les oxydes mixtes de strontium et d'aluminium $SrAl_2O_4$ ou $Sr_3Al_2O_6$, l'oxyde mixte de baryum et de titane ($BaTiO_3$), l'oxyde mixte de calcium et de titane ($CaTiO_3$), $La_{0,5} Sr_{0,5} Fe_{0,9} Ti_{0,1} O_{3-\delta}$ ou $La_{0,6} Sr_{0,4} Fe_{0,9} Ga_{0,1} O_{3-\delta}$.

5 8. Matériau tel que défini à l'une des revendications 1 à 6, dans lequel le composé (C_2) est choisi parmi des matériaux de type non oxyde et de préférence parmi le carbone de silicium (SiC), le nitre de bore (BN), le nickel (Ni), le platine (Pt), le palladium (Pd) ou le rhodium (Rh).

10 9. Matériau tel que défini à l'une des revendications 1 à 8, dans lequel le composé (C_1) est choisi parmi les oxydes de formule (I) :

dans laquelle :

15 R_a représente au moins un atome trivalent ou tétravalent principalement choisi parmi le bismuth (Bi), le cérium (Ce), le zirconium (Zr), le thorium (Th), le gallium (Ga) ou l'hafnium (Hf), a et b sont tels que la structure R_aO_b est électriquement neutre,

20 R_c représente au moins un atome divalent ou trivalent choisi principalement parmi le magnésium (Mg), le calcium (Ca), le baryum (Ba), le strontium (Sr), le gadolinium (Gd), le scandium (Sc), l'ytterbium (Yb), l'yttrium (Y), le samarium (Sm), l'erbium (Er), l'indium (In), le niobium (Nb) ou le lanthane (La), c et d sont tels que la structure R_cO_d est électriquement neutre,

et dans laquelle x est généralement compris entre 0,05 et 0,30 et plus particulièrement, entre 0,075 et 0,15.

10. Matériau tel que défini à la revendication 9, dans lequel le composé (C_1) est choisi parmi les zircons stabilisées de formule (Ia) :

dans laquelle x est compris entre 0,05 et 0,15.

11. Matériau tel que défini à l'une des revendications 1 à 8, dans lequel le composé (C_1) est choisi parmi les oxydes perovskites de formule (II) :

30 dans laquelle,

- Ma représente un atome choisi parmi le scandium, l'yttrium ou dans les familles des lanthanides, des actinides ou des métaux alcalino-terreux ;

- Ma' différent de Ma, représente un atome choisi parmi le scandium, l'yttrium ou dans les familles des lanthanides, des actinides ou des métaux alcalino-terreux ;

- Ma" différent de Ma et de Ma', représente un atome choisi parmi l'aluminium (Al), le gallium (Ga), l'indium (In), le thallium (Tl) ou dans la famille des métaux alcalino-
5 terreux ;

- Mb représente un atome choisi parmi les métaux de transition ;

- Mb' différent de Mb, représente un atome choisi parmi les métaux de transition, l'aluminium (Al), l'indium (In), le gallium (Ga), le germanium (Ge), l'antimoine (Sb), le bismuth (Bi), l'étain (Sn), le plomb (Pb) ou le titane (Ti) ;

10 - Mb" différent de Mb et de Mb', représente un atome choisi parmi les métaux de transition, les métaux de famille des alcalino-terreux, l'aluminium (Al), l'indium (In), le gallium (Ga), le germanium (Ge), l'antimoine (Sb), le bismuth (Bi), l'étain (Sn) le plomb (Pb) ou le titane (Ti) ;

$0 < x \leq 0,5$;

15 $0 \leq u \leq 0,5$;

$(x + u) \leq 0,5$;

$0 \leq y \leq 0,9$;

$0 \leq v \leq 0,9$;

$0 \leq (y + v) \leq 0,9$

20 et w est tel que la structure en cause est électriquement neutre.

12. Matériau tel que défini à la revendication 11, dans lequel le composé (C₁) est choisi parmi les composés de formule (IIa) :

correspondant à la formule (II), dans laquelle Ma représente un atome de lanthane.

25 13. Matériau tel que défini à l'une des revendications 11 ou 12, dans lequel le composé (C₁) est choisi parmi les composés de formule (IIb) :

correspondant à la formule (II), dans laquelle Ma' représente un atome de strontium.

14. Matériau tel que défini à l'une des revendications 11 à 13, dans lequel le composé (C₁) est choisi parmi les composés de formule (IIc) :

correspondant à la formule (II), dans laquelle Mb représente un atome de fer.

15. Matériau tel que défini à l'une des revendications 11 à 14, dans lequel le composé (C_1) est choisi parmi les composés de formule (II d) :

correspondant à la formule (II), dans laquelle $u = 0$, $y = 0$, Mb représente un atome de fer,

5 Ma un atome lanthane et Ma' un atome de strontium.

16. Matériau tel que défini à l'une des revendications 11 à 15, dans lequel le composé (C_1) est un composé de formule :

10 $\text{La}_{(1-x)} \text{Sr}_x \text{Fe}_{(1-y)} \text{Ti}_v \text{O}_{3-\delta},$

17. Matériau tel que défini à la revendication 16 de formule :

15 $\text{La}_{0.6} \text{Sr}_{0.4} \text{Fe}_{0.9} \text{Ga}_{0.1} \text{O}_{3-\delta}$, ou

$\text{La}_{0.5} \text{Sr}_{0.5} \text{Fe}_{0.9} \text{Ti}_{0.1} \text{O}_{3-\delta}$.

18. Matériau tel que défini à l'une des revendications 11 à 17, dans lequel le composé (C_1) est choisi parmi ceux de formule (II') :

20 formule (II') dans laquelle : a, a-1, a'', b, (b+1), (b+ β) et b'' sont des nombres entiers représentant les valences respectives des atomes Ma, Ma', Ma'', Mb, Mb' et Mb'' ; a, a'', b, b'', β , x, y, s, u, v et δ sont tels que la neutralité électrique du réseau cristallin est conservée, a > 1,

a'', b et b'' sont supérieurs à zéro ;

$-2 \leq \beta \leq 2$;

$a + b = 6$;

$0 < s < x$;

5 $0 < x \leq 0,5$;

$0 \leq u \leq 0,5$;

$(x + u) \leq 0,5$;

$0 \leq y \leq 0,9$;

$0 \leq v \leq 0,9$;

10 $0 \leq (y + v + s) \leq 0,9$

$$[u.(a'' - a) + v.(b'' - b) - x + s + \beta y + 2\delta] = 0$$

et $\delta_{\min} < \delta < \delta_{\max}$ avec

$$\delta_{\min} = [u.(a - a'') + v.(b - b'') - \beta y] / 2 \text{ et}$$

$$\delta_{\max} = [u.(a - a'') + v.(b - b'') - \beta y + x] / 2$$

15 et Ma, Ma', Ma'', Mb, Mb' et Mb'' sont tels que définis précédemment Mb représentant un atome choisi parmi les métaux de transition aptes à exister sous plusieurs valences possibles ;

19. Matériau tel que défini à l'une des revendications 1 à 8, dans lequel le composé (C₁) est choisi parmi les oxydes de formule (III) :

dans laquelle :

Mc représente un atome choisi le scandium, l'yttrium ou dans les familles des lanthanides, des actinides ou des métaux alcalino-terreux ;

25 Mc' différent de Mc, représente un atome choisi parmi le scandium, l'yttrium ou dans les familles des lanthanides, des actinides ou des métaux alcalino-terreux ;

Md représente un atome choisi parmi les métaux de transition ; et

Md' différent de Md représente un atome choisi parmi les métaux de transition, l'aluminium (Al), l'indium (In), le gallium (Ga), le germanium (Ge), l'antimoine (Sb), le bismuth (Bi), l'étain (Sn), le plomb (Pb) ou le titane (Ti) ;

30 x et y sont supérieurs ou égaux à 0 et inférieurs ou égaux à 2 et w est tel que la structure en cause est électriquement neutre.

20. Matériau tel que défini à la revendication 19, dans lequel le composé (C₁) est de formule (IIIa) :

un composé de formule (IIIb) :

et plus particulièrement un composé de formule (IIIc) :

21. Matériau tel que défini à la revendication 20, dans lequel le composé (C_1) est de formule :

22. Matériau tel que défini l'une des revendications 7 et 17 dans lequel
25 le composé (C_1) est choisi parmi les composés de formule :

et le composé (C_2) est choisi parmi l'oxyde de magnésium (MgO), l'oxyde d'aluminium (Al_2O_3), l'oxyde mixte de strontium et d'aluminium $\text{Sr}_3\text{Al}_2\text{O}_6$, l'oxyde mixte de baryum ou
30 de titane (BaTiO_3).

23. Procédé de préparation du matériau tel que défini à l'une des revendications
1 à 22, caractérisé en ce qu'il comprend au moins une étape de frittage d'un mélange de

poudres de composé (C_1) et de composé (C_2) en contrôlant la pression partielle en oxygène (pO_2) de l'atmosphère gazeuse environnant le milieu réactionnel.

24. Procédé tel que défini à la revendication 23, dans lequel l'étape de frittage est réalisée sous atmosphère gazeuse comprenant une pression partielle d'oxygène inférieure ou égale à 0,1 Pa.

5 25. Procédé tel que défini à l'une des revendications 23 ou 24, dans lequel le mélange de poudres de composé (C_1) et de composé (C_2) est préalablement mis en forme puis délianté avant l'étape de frittage.

10 26. Utilisation du matériau tel que défini à l'une des revendications 1 à 22, comme matériau conducteur mixte d'un réacteur catalytique membranaire, destiné à être mis en œuvre pour synthétiser du gaz de synthèse par oxydation catalytique du méthane ou du gaz naturel et/ou comme matériau conducteur mixte d'une membrane céramique, destinée à être mise en œuvre pour séparer l'oxygène de l'air.

15 27. Procédé pour inhiber et/ou contrôler la croissance cristalline des grains de composés conducteurs mixtes électronique et par ions oxydes lors de l'étape de frittage dans la préparation d'un réacteur catalytique membranaire, caractérisé en ce qu'il comprend une étape préalable d'un mélange de 75% à 99,99% en volume de conducteur mixte (C_1) et de 0,01 % à 25 % en volume de composé (C_2).

Figure 1a

Figure 1b

Figure 1: Ajout de MgO (5% volumique) dans une matrice céramique,
 $\text{La}_{0,5}\text{Sr}_{0,5}\text{Fe}_{0,9}\text{Ti}_{0,1}\text{O}_{3-\delta}$ fritté sous azote à 1 150 °C/1,5 hr
[grossissements : x 8000 (figure 1a) ; x 10 000 (figure 1b)].

Figure 2: Cartographie des éléments (Mg, Sr, La, Fe, Ti) dans la matrice céramique après frittage sous azote/1 150 °C/1,5 h

Figure 3: Diagramme de diffraction par rayons X du matériau composite LSFG/MgO; les deux phases coexistent et aucune phase secondaire n'apparaît.

Figure 4: Diagramme de diffraction d'un composite LSFG/BaTiO₃; les deux phases coexistent et aucune phase secondaire n'apparaît.

Figure 5

Figure 6

6/6

Figure 7

BREVET D'INVENTION CERTIFICAT D'UTILITÉ

Désignation de l'inventeur

Vos références pour ce dossier	S6356FR - PHC/NS
N°D'ENREGISTREMENT NATIONAL	
TITRE DE L'INVENTION	
Ajout d'agent(s) bloquant(s) dans une membrane céramique pour bloquer la croissance cristalline des grains lors du frittage sous atmosphère	
LE(S) DEMANDEUR(S) OU LE(S) MANDATAIRE(S): DESIGNE(NT) EN TANT QU'INVENTEUR(S):	
Inventeur 1	
Nom	ETCHEGOYEN
Prénoms	Grégory
Rue	SPCTS UMR 6638 Ecole Nationale Supérieure des Céramiques Industrielles Université de Limoges 47-73 avenue Albert Thomas
Code postal et ville	87065 LIMOGES
Société d'appartenance	
Inventeur 2	
Nom	CHARTIER
Prénoms	Thierry
Rue	7 rue de la Colline
Code postal et ville	87220 FEYTIAT
Société d'appartenance	
Inventeur 3	
Nom	DEL GALLO
Prénoms	Pascal
Rue	19C avenue de Chateaudun
Code postal et ville	91410 DOURDAN
Société d'appartenance	

La loi n°78-17 du 6 janvier 1978 relative à l'informatique aux fichiers et aux libertés s'applique aux réponses faites à ce formulaire.
Elle garantit un droit d'accès et de rectification pour les données vous concernant auprès de l'INPI.

Signé par

Signataire: FR, L'Air Liquide SA, P.Conan

Emetteur du certificat: DE, D-Trust GmbH, D-Trust for EPO 2.0

Fonction

L'AIR LIQUIDE, SOCIÉTÉ ANONYME À DIRECTOIRE ET CONSEIL DE SURVEILLANCE POUR L'ETUDE ET L'EXPLOITATION DES
PROCÉDÉS GEORGES CLAUDE (Demandeur 1)

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.