Examen Final IL. 1a part: Lògica Prop. Gener 2008

Cognoms, Nom:

DNI: Temps: 80 min.

Entrega exercicis diferents en fulls separats.

Publicació notes: 23 gen. Revisió: 29 gen. amb sol·licitud prèvia via mail raonat fins el 25 gen.

1: (5 punts) És cert que per tota fórmula F existeix una altra fórmula lògicament equivalent G les úniques connectives lògiques de la qual siguin el \wedge i el \neg ?

Demostra formalment la teva resposta. Utilitza (sense necessitat de demostració) el Lema de Substitució i algunes de les propietats bàsiques següents: associativitat, commutativitat, lleis de De Morgan, o doble negació.

Solució:

Cert. Per inducció sobre el nombre de connectives n(F) de la fórmula F. Si n(F) = 0, aleshores F és un símbol proposicional, i prenent G com F es compleix trivialment l'enunciat. Si n(F) > 0, aleshores distingim dos casos:

- a) Si F és de la forma $F_1 \wedge F_2$, aleshores tenim que $n(F_1) < n(F)$ i $n(F_2) < n(F)$. Per hipòtesi d'inducció, existeixen G_1 i G_2 amb només \wedge i \neg tals que $F_1 \equiv G_1$ i $F_2 \equiv G_2$. Aleshores pel Lema de Substitució, tenim que $F_1 \wedge F_2 \equiv G_1 \wedge G_2$. Podem prendre G com la fórmula $G_1 \wedge G_2$, ja que només hi apareixen \wedge i \neg , i satisfà $F \equiv G$.
- b) Si F és de la forma $F_1 \vee F_2$, aleshores tenim que $n(F_1) < n(F)$ i $n(F_2) < n(F)$. Per hipòtesi d'inducció, existeixen G_1 i G_2 amb només \wedge i \neg tals que $F_1 \equiv G_1$ i $F_2 \equiv G_2$. Aleshores pel Lema de Substitució i les lleis de doble negació i de De Morgan, es té $F_1 \vee F_2 \equiv G_1 \vee G_2 \equiv \neg G_1 \vee \neg G_2 \equiv \neg (\neg G_1 \wedge \neg G_2)$. Podem prendre G com la fórmula $\neg (\neg G_1 \wedge \neg G_2)$, ja que només hi apareixen \wedge i \neg , i satisfà $F \equiv G$.
- 2: (5 punts) Tenim un país amb n aeroports i volem que en cada vol hi hagi un control antidroga a l'aeroport de sortida o al d'arribada o als dos. Si ens donen la llista dels m vols existents, on cada vol amb origen l'aeroport i i destinació l'aeroport j es representa com un parell (i,j) amb $1 \le i,j \le n$ i disposem $com\ a\ màxim$ de E equips de policia, en quins aeroports hem de situar aquests equips?

Resol aquest problema mitjançant SAT, expressant-lo com una CNF utilitzant els símbols de predicat $p_{k,i}$ que signifiquen "el k-èsim equip de policia ha d'anar a l'aeroport i".

Solució:

Un conjunt de clàusules que codifica el problema en SAT és el següent:

- Cada equip és enviat com a molt a un aeroport. Per cada k amb $1 \le k \le E$ i per cada parell de vèrtexs i i j amb $1 \le i < j \le n$, tenim la clàusula $\neg p_{k,i} \lor \neg p_{k,j}$.
- Cada vol té equip de policia a almenys un dels dos aeroports. Per cadascun dels m vols (i, j), tenim la clàusula $p_{1,i} \vee p_{1,j} \ p_{2,i} \vee p_{2,j} \ \vee \ldots \vee \ p_{E,i} \vee p_{E,j}$.

Examen Final IL. 2a part: LPO i Prog. Lògica Gener 2008

Cognoms, Nom:

DNI: Temps: 80 min.

Entrega exercicis diferents en fulls separats.

Publicació notes: 23 gen. Revisió: 29 gen. amb sol·licitud prèvia via mail raonat fins el 25 gen.

1: (3.5 punts) Sigui F la fórmula $\exists z \ p(z) \land \forall x \ \Big(p(x) \to \exists y \ \big(\neg p(y) \land q(x, f(y, y)) \ \big) \Big)$.

a) Sigui I la interpretació amb domini $D_I = \mathbb{R}$ i on es té que $f_I(x,y) = x \cdot y$ i que

$$p_I(x) = \begin{cases} 1 & \text{si } x > 0 \\ 0 & \text{altrament} \end{cases}$$
 $q_I(x,y) = \begin{cases} 1 & \text{si } x = y \\ 0 & \text{altrament} \end{cases}$

Es compleix que $I \models F$? Justifica la teva resposta informalment, sense utilitzar $eval_I$.

b) Sigui I' la mateixa interpretació que I, llevat que $p_{I'}(x)=\left\{\begin{array}{ll} 1 & \text{si} & x<0 \\ 0 & \text{altrament} \end{array}\right.$

Es compleix que $I' \models F$? Justifica la teva resposta informalment, sense utilitzar $eval_{I'}$.

c) Si I'' és un model de F, quants elements té com a mínim $D_{I''}$? Demostra-ho.

Solució:

- a) Efectivament $I \models F$, perquè hi ha nombres reals positius (per exemple, z = 1); i per tot nombre real positiu x existeix una arrel quadrada negativa y de x, és a dir, un nombre y tal que y < 0 i $y^2 = x$.
- b) No, no es compleix: per exemple, si prenem x = -1, aleshores x és negatiu, però no existeix cap nombre no negatiu que sigui la seva arrel quadrada, perquè el quadrat de tot nombre real és no negatiu.
- c) En primer lloc vegem que no hi ha models de cardinal 1. Si J és una interpretació amb domini $D_J = \{a\}$, tenim que $J \models \exists z \ p(z)$ implica que $p_J(a) = 1$. Però aleshores per a x = a, com que D_J té un sol element, no pot existir y tal que $\neg p(y)$ s'avalui a cert.

Considerem ara la següent interpretació: definim $D_{J'} = \{a, b\}, f_{J'}(x, y) = a, q_{J'}(x, y) = 1$ i

$$p_{J'}(x) = \begin{cases} 1 & \text{si } x = a \\ 0 & \text{altrament} \end{cases}$$

Aleshores $J' \models F$: per a z = a tenim que es compleix p(z); i per tot x, existeix un y = b tal que $\neg p(y) \land q(x, f(y, y))$.

Com que hem trobat un model de cardinal 2, tot model de F té almenys 2 elements.

2: (3.5 punts) En un poble el barber afaita a tots els homes que no s'afaiten a sí mateixos, i només a aquests. Formalitzant el barber amb una constant, demostra usant resolució que de la frase es dedueix que el barber és una dona.

Nota: encara que la formalització estigui malament, es poden obtenir punts per la resta de l'exercici si no dóna lloc a contradiccions òbvies amb l'enunciat.

Solució:

En primer lloc definim el vocabulari. Considerem la constant b^0 que representa el barber, el símbol de predicat af^2 on af(x,y) significa "x afaita a y", i el símbol de predicat h^1 on h(x) significa "x és un home". Aleshores podem formalitzar la frase amb la fórmula F següent:

$$\forall x \ (af(b,x) \leftrightarrow (h(x) \land \neg af(x,x)))$$

Per veure que el barber és una dona, hem de demostrar que $F \models \neg h(b)$. Per fer-ho, veurem que $h(b) \land F$ és insatisfactible. Amb aquesta finalitat calculem en primer lloc una CNF equisatisfactible a $h(b) \land F$:

(1) Eliminació de \leftrightarrow i \rightarrow :

$$h(b) \wedge \forall x \; ((\neg af(b,x) \; \vee \; (h(x) \wedge \neg af(x,x))) \wedge (af(b,x) \; \vee \; \neg (h(x) \wedge \neg af(x,x))))$$

(2) Moviment de les negacions cap endins:

$$h(b) \wedge \forall x \left((\neg af(b,x) \lor (h(x) \wedge \neg af(x,x)) \right) \wedge (af(b,x) \lor \neg h(x) \lor af(x,x)) \right)$$

(3) Moviment de quantificadors cap enfora:

$$\forall x \ (h(b) \land (\neg af(b,x) \lor (h(x) \land \neg af(x,x))) \land (af(b,x) \lor \neg h(x) \lor af(x,x)))$$

(4) Propietat distributiva:

$$\forall x (h(b) \land (\neg af(b,x) \lor h(x)) \land (\neg af(b,x) \lor \neg af(x,x)) \land (af(b,x) \lor \neg h(x) \lor af(x,x)))$$

Finalment doncs queda el conjunt de clàusules (després de renombrar les variables convenientment):

- (a) h(b)
- $(b) \neg af(b,x) \lor h(x)$
- $(c) \neg af(b,x') \lor \neg af(x',x')$
- (d) $af(b,x'') \vee \neg h(x'') \vee af(x'',x'')$

Com que, com es mostra a continuació, es pot deduir la clàusula buida, $h(b) \wedge F$ és insatisfactible:

Clàusules
Resolvent utilitzades Unificador

(e)
$$af(b,b)$$
 $d+a$ $\{x''=b\}$
(f) $\neg af(b,b)$ $e+c$ $\{x'=b\}$
(g) \square $f+e$ $\{\}$

Per tant $F \models \neg h(b)$.

- 3: (3 punts) Un jutge ha de formar un jurat amb N persones, de manera que cap membre del jurat conegui a cap altre membre. Per això disposa de M persones candidates (identificades amb nombres de 1 a M) i d'una llista d'aquells parells de persones que \mathbf{no} es coneixen, expressada com un programa Prolog format per clàusules $\mathbf{no_coneix}(P_i, P_j)$., on $1 \le P_i < P_j \le M$. Es tracta que ajudis el jutge a formar el jurat, utilitzant aquest predicat $\mathbf{no_coneix}$.
 - a) Fes un predicat compatible(X, L) que signifiqui "la persona X no coneix a cap de les persones de la llista L".
 - b) Utilitzant l'apartat anterior, fes un predicat valid(L) que signifiqui "cap membre de la llista L coneix cap altre membre de la llista".
 - c) Assumeix que M=10. Fes un predicat jurat (N) que escrigui per pantalla un possible jurat amb N persones.

Nota: pots usar els predicats

```
subconjunt([], []).
subconjunt([_|C], S) :-subconjunt(C, S).
subconjunt([X|C], [X|S]):-subconjunt(C, S).
long([], 0).
long([_|L], M):- long(L, N), M is N+1.
```

Solució:

```
compatible(_, []).
  compatible(X, [Y|L]) :- no_coneix(X, Y), compatible(X, L).
  compatible(X, [Y|L]) :- no_coneix(Y, X), compatible(X, L).

b)
  valid([]).
  valid([X|L]) :-compatible(X, L), valid(L).

c)
  jurat(N) :-
      subconjunt([1,2,3,4,5,6,7,8,9,10], S),
      long(S, N),
      valid(S),
      write(S).
```