Penalize Regression with R Package

Flexible Penalized Regression with Multiple Penalties and Solvers algorithm

JuHyun Kang

June 6, 2025

The Three Sisters of Newton School of Mathematics, Statistics and Data Science Sungshin Women's University

Outline

1 Introduction

2 Algorithms

3 R Package

4 Simulation

Introduction with Penalize Regression

 Penalized regression is a statistical technique that adds a regularization term to the loss function to prevent overfitting and enable variable selection by shrinking regression coefficients

$$\arg \min_{\beta} \left\{ \frac{1}{2n} \sum_{i=1}^n \left(y_i - x_i^{\intercal} \beta \right)^2 \ + \ \sum_{j=1}^p P_{\lambda}(|\beta_j|) \right\}$$

- ullet y_i represents the response variable for observation i
- \bullet x_i is the vector of predictor variables for observation i
- ullet β is the vector of regression coefficients
- ullet $P_{\lambda}(\cdot)$ is a penalty function parameterized by a regularization parameter λ

Penalize Regression Method

- Ridge
- Lasso
- Elastic Net
- MCP (Minimax Concave Penalty)
- SCAD (Smoothly Clipped Absolute Deviation)

Ridge Regression

 Uses an L2 norm penalty to shrink coefficients and reduce multicollinearity, though it does not perform variable selection

$$P_{\lambda}(\beta_j) = \frac{\lambda}{2}\beta_j^2$$

- The ridge objective function is strictly convex, which guarantees a unique global minimum and makes it well-suited for convex optimization methods
- Ridge regression has a closed-form solution given by:

$$\hat{\beta}_{\mathrm{ridge}} = (X^{\top}X + \lambda I)^{-1}X^{\top}Y$$

Lasso Regression

 Lasso regression uses an L1 norm penalty, which encourages sparsity by driving some coefficients exactly to zero, thereby performing effective variable selection

$$P_{\lambda}(\beta_j) = \lambda |\beta_j|$$

- The lasso objective function is convex but not strictly convex, which means it can have multiple solutions, especially when predictors are highly correlated
- The penalty term is not differentiable at $\beta_j = 0$, which requires specialized optimization algorithms such as coordinate descent or subgradient methods

Elastic Net Regression

• Elastic net combines the L1 and L2 penalties from lasso and ridge regression.

$$P_{\lambda}(\beta_j) = \lambda \left(\alpha |\beta_j| + \frac{1-\alpha}{2} \beta_j^2 \right)$$

- The elastic net objective function is convex. Under certain conditions, it guarantees a unique global minimum
- Elastic net is particularly effective when predictors are correlated, as it encourages a grouping effect while maintaining sparsity
 - $\alpha = 1$: equivalent to lasso
 - $\alpha = 0$: equivalent to ridge
 - $0 < \alpha < 1$: elastic net (a mixture of both)

Minimax Concave Penalty Regression (MCP)

 The minimax concave penalty (MCP) is a non-convex penalty function that aims to reduce estimation bias for large coefficients while maintaining sparsity

$$P_{\lambda}(\beta_j) = \begin{cases} \lambda |\beta_j| - \frac{\beta_j^2}{2\gamma}, & \text{if } |\beta_j| \leq \gamma \lambda, \\ \frac{\gamma \lambda^2}{2}, & \text{if } |\beta_j| > \gamma \lambda. \end{cases}$$

- The parameter γ controls the degree of concavity and non-linearity: As γ increases, the MCP penalty approaches the lasso penalty
- MCP enables variable selection and has desirable oracle properties under certain conditions

Smoothing Clipped Absolute Deviation Regression (SCAD)

 The smoothly clipped absolute deviation (SCAD) penalty is a non-convex function designed to reduce the estimation bias of large coefficients while preserving sparsity, addressing the limitations of the lasso

$$P_{\lambda}(\beta_j) = \begin{cases} \lambda |\beta_j|, & \text{if } |\beta_j| \leq \lambda, \\ \frac{-|\beta_j|^2 + 2a\lambda |\beta_j| - \lambda^2}{2(a-1)}, & \text{if } \lambda < |\beta_j| \leq a\lambda, \\ \frac{(a+1)\lambda^2}{2}, & \text{if } |\beta_j| > a\lambda. \end{cases}$$

- The parameter a controls the concavity of the penalty: commonly, a=3.7 is recommended
- SCAD encourages sparsity and satisfies the oracle property under suitable regularity conditions

Outline

1 Introduction

2 Algorithms

3 R Package

4 Simulation

Coordinate Descent Algorithm (CDA)

- Coordinate Descent is an iterative optimization algorithm that updates one parameter at a time while keeping the others fixed
- It is particularly efficient for problems where each coordinate update has a closed-form solution, such as in Lasso and Elastic Net regressions
- The algorithm is simple to implement and well-suited for high-dimensional problems
- For the following objective,

$$\arg \min_{\beta} \left\{ \frac{1}{2n} \sum_{i=1}^n \left(y_i - x_i^{\intercal} \beta \right)^2 \ + \ \sum_{j=1}^p P_{\lambda} (|\beta_j|) \right\}$$

the coordinate-wise update step is given by:

$$\beta_j^{(k+1)} \leftarrow \arg\min_{\beta_j} \left\{ \frac{1}{2n} \sum_{i=1}^n \left(y_i - x_{ij} \beta_j - \sum_{k \neq j} x_{ik} \beta_k^{(k+1)} \right)^2 + P_{\lambda}(|\beta_j|) \right\}$$

where $\beta_{-j}^{(k+1)}$ denotes the current estimates for all parameters except β_j

Fast Iterative Soft-Thresholding Algorithm (FISTA)

- Fast iterative soft-thresholding algorithm (FISTA) is an accelerated version of the proximal gradient descent method, based on Nesterov's acceleration scheme, and is designed to solve optimization problems with non-smooth penalties such as the Lasso.
- It achieves faster convergence compared to the standard iterative soft-thresholding algorithm.
- FISTA is widely used in sparse regression models, including Lasso and Elastic Net, due to its efficiency and simplicity.

FISTA Algorithm with Objective function

Consider the following objective function:

$$\min_{\beta} \{ f(\beta) + P_{\lambda}(\beta) \}$$

where $f(\beta)$ is convex and differentiable, and $P_{\lambda}(\beta)$ s convex but possibly non-smooth.

• FISTA updates proceed as follows:

$$\begin{split} \beta_{k+1} &= \operatorname{prox}_{\eta P_{\lambda}} \left(y^k - \eta \nabla f(y^k) \right), \\ t_{k+1} &= \frac{1 + \sqrt{1 + 4t_k^2}}{2}, \\ y^{k+1} &= \beta_{k+1} + \frac{t_k - 1}{t_{k+1}} \left(\beta_{k+1} - \beta_k \right), \end{split}$$

where $\text{prox}_{\eta P_{\lambda}}$ is the proximal operator (often implemented as a soft-thresholding function when P_{λ} is the ℓ_1 norm as in the Lasso)

Local Linear Approximation Algorithm (LLA)

- The Local Linear Approximation (LLA) algorithm is used to handle non-convex penalties, such as SCAD and MCP, by approximating the penalty function locally with a linear function
- This transforms the original non-convex optimization problem into a series of convex problems, which are easier to solve
- LLA is known to achieve desirable statistical properties, including the oracle property

LLA Algorithm with SCAD Example

 For example, the SCAD penalty can be locally approximated at the k-th iteration as follows:

$$P_{\lambda}(|\beta_j|) \approx P_{\lambda}(|\beta_j^{(k)}|) + P_{\lambda}'(|\beta_j^{(k)}|)(|\beta_j| - |\beta_j^{(k)}|)$$

• Hence, the optimization problem at iteration k+1 becomes:

$$\min_{\boldsymbol{\beta}} \left\{ \frac{1}{2n} \sum_{i=1}^n \left(y_i - \boldsymbol{x}_i^{\intercal} \boldsymbol{\beta} \right)^2 \ + \ \sum_{j=1}^p w_j^{(k)} |\beta_j| \right\}$$

where

$$w_j^{(k)} = P_\lambda'(|\beta_j^{(k)}|).$$

Outline

1 Introduction

2 Algorithms

3 R Package

4 Simulation

Penalize Regression Function (Part 1)

Penalized Regression Function (Part 2)

```
if (algorithm == "cda") {
  return(perform_CDA(X, y, method, lambda, learning_rate,
                     max iter. alpha. gamma))
} else if (algorithm == "fista") {
  return(perform_FISTA(X, y, method, lambda, learning_rate,
                       max iter, alpha, gamma))
} else if (algorithm == "lla") {
  return(perform_LLA(X, y, method, lambda, learning_rate,
                     max iter, gamma))
} else {
  stop("Unknown algorithm selected.")
```

Check Algorithm Compatability Function

```
# check algorithm
check_algorithm_compatibility <- function(method, algorithm) {</pre>
  method <- tolower(method)</pre>
  algorithm <- tolower(algorithm)</pre>
  if (method == "ridge" && algorithm == "cda") {
    warning("CDA may not be the most appropriate choice for Ridge penalty.")
  if (method %in% c("scad", "mcp") && algorithm == "fista") {
    stop("FISTA is not recommended for non-convex penalties
         like SCAD or MCP.")
  if (!method %in% c("scad", "mcp") && algorithm == "lla") {
    warning("LLA is primarily designed for SCAD or MCP penalties and
            may not be optimal for Ridge, Lasso, or Elastic Net.")
```

Coordinate Descent Algorithm (CDA) Function

```
perform_CDA <- function(X, y, method, lambda, learning_rate = 0.01,</pre>
                           max_iter = 1000, alpha = 0.5, gamma = 3.7) {
  n \leftarrow nrow(X)
  p \leftarrow ncol(X)
  beta \leftarrow rep(0, p)
  XV < -t(X) %*% V
  XX < - colSums(X^2)
  soft threshold <- function(z, t) {
    sign(z) * pmax(0, abs(z) - t)
  for (iter in 1:max iter) {
    for (j in 1:p) {
      r_{j} \leftarrow y - X \% *\% beta + X[, j] * beta[j]
      rho_j \leftarrow sum(X[, j] * r_j)
```

CDA Function - Penalty Updates (Part 1)

```
if (method == "lasso") {
  beta[j] <- soft_threshold(rho_j / XX[j], lambda / XX[j])</pre>
} else if (method == "ridge") {
  beta[i] <- rho i / (XX[i] + 2 * lambda)
} else if (method == "elasticnet") {
  z \leftarrow rho j / XX[i]
  beta[j] <- soft_threshold(z, lambda * alpha / XX[j]) /</pre>
    (1 + lambda * (1 - alpha) / XX[i])
} else if (method == "scad") {
  z \leftarrow rho i / XX[i]
  if (abs(z) \le lambda) {
    beta[j] <- soft_threshold(z, lambda / XX[j])</pre>
  } else if (abs(z) <= gamma * lambda) {</pre>
    beta[j] <- soft_threshold(z, gamma * lambda / (gamma - 1) / XX[j])</pre>
  } else {
    beta[i] <- z}
```

CDA Function - Penalty Updates (Part 2)

```
} else if (method == "mcp") {
      z \leftarrow rho_j / XX[j]
      abj \leftarrow abs(z)
      if (abj <= gamma * lambda) {</pre>
        beta[j] <- soft_threshold(z, lambda / XX[j]) / (1 - 1 / gamma)</pre>
      } else {
        beta[i] <- z
    } else {
      stop("Unsupported method in CDA.")
return(beta)
```

Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) Function

```
perform_FISTA <- function(X, y, method, lambda, learning_rate = 1e-3,</pre>
                             max_iter = 1000, alpha = 0.5, gamma = 3.7) {
  n \leftarrow nrow(X)
  p \leftarrow ncol(X)
  beta \leftarrow rep(0, p)
  beta_old <- beta
  t < -1
  soft threshold <- function(z, t) {
    sign(z) * pmax(0, abs(z) - t)
  grad <- function(beta) {</pre>
    -t(X) %*% (v - X %*% beta) / n
```

FISTA Function - Gradient Calculation by Penalty

```
penalty_grad <- function(beta_j) {</pre>
 if (method == "lasso") {
    return(lambda * sign(beta_j))
  } else if (method == "ridge") {
    return(2 * lambda * beta j)
  } else if (method == "elasticnet") {
    return(lambda * (alpha * sign(beta_j) + 2 * (1 - alpha) * beta_j))
  } else if (method == "scad") {
    abi <- abs(beta i)
    if (abi <= lambda) {</pre>
      return(lambda * sign(beta_j))
    } else if (abj <= gamma * lambda) {</pre>
      return(((gamma * lambda - abj) / (gamma - 1)) * sign(beta_j))
    } else {
      return(0)
```

FISTA Function - Gradient for MCP Penalty

```
} else if (method == "mcp") {
    abj <- abs(beta_j)</pre>
    if (abi <= gamma * lambda) {
      return(lambda * (1 - abj / (gamma * lambda)) * sign(beta_j))
    } else {
      return(0)
  } else {
    stop("Unsupported method.")
for (k in 1:max iter) {
  z \leftarrow beta + ((t - 1) / (t + 2)) * (beta - beta old)
  grad_z <- grad(z)</pre>
  beta new <- numeric(p)</pre>
```

FISTA Function - Updating Coefficients

```
for (j in 1:p) {
 if (method == "ridge") {
    # Ridge not need to soft-thresholding
    beta_new[j] \leftarrow z[j] - learning_rate * (grad_z[j] + 2 * lambda * z[j])
 } else if (method %in% c("lasso", "elasticnet")) {
    # In elasticnet, threshold value is learning_rate * lambda * alpha
    thresh <- learning rate * lambda * alpha
    # Soft thresholding Gradient step
    beta_new[j] <- soft_threshold(z[j] - learning_rate * grad_z[j],</pre>
                                   thresh)
 } else if (method %in% c("scad", "mcp")) {
    # Compute threshold: learning rate * | penalty gradient
    pen_grad_val <- penalty_grad(z[j])</pre>
    thresh <- learning rate * abs(pen grad val)
    # If the threshold is 0, soft-thresholding has no effect
    # so set threshold to 0
                                                                            26/39
```

FISTA Function - Convergence Check and Output

```
beta new[j] <- soft_threshold(z[j] - learning rate * grad z[j],
                                     thresh)
    } else {
      stop("Unsupported method in FISTA.")
  }
  beta_old <- beta
  beta <- beta_new
  t < -t + 1
  # Optional: Check for convergence - stop if changes are small
 if (sqrt(sum((beta - beta_old)^2)) < 1e-6) break</pre>
return(beta)
```

Local Linear Approximation (LLA) Function

```
perform LLA <- function(X, y, method, lambda, learning rate = 0.01,
                           max iter = 100, alpha = 0.5, gamma = 3.7) {
  n \leftarrow nrow(X)
  p \leftarrow ncol(X)
  beta \leftarrow rep(0, p)
  tol <- 1e-4
  for (iter in 1:max iter) {
    weights \leftarrow rep(1, p)
    for (j in 1:p) {
      bj <- beta[j]</pre>
      if (method == "lasso") {
         weights[i] <- 1
      } else if (method == "ridge") {
         weights[j] \leftarrow 2 * abs(bj)
      } else if (method == "elasticnet") {
         weights[j] \leftarrow alpha + 2 * (1 - alpha) * abs(bj)
```

LLA Function - Calculating Weights for Each Penalty

```
} else if (method == "scad") {
  abi <- abs(bi)
  if (abj <= lambda) {</pre>
    weights[j] <- 1
  } else if (abj <= gamma * lambda) {</pre>
    weights[j] <- (gamma * lambda - abj) / ((gamma - 1) * lambda)</pre>
  } else {
    weights[i] <- 0
} else if (method == "mcp") {
  abj <- abs(bj)
  if (abj <= gamma * lambda) {</pre>
    weights[j] <- 1 - abj / (gamma * lambda)</pre>
  } else {
    weights[j] <- 0
} else {
  stop("Unsupported method in LLA.")
```

LLA Function - Updating Coefficients

```
for (j in 1:p) {
     r_{j} \leftarrow y - X \% *\% beta + X[, j] * beta[j]
     rho_j \leftarrow sum(X[, j] * r_j)
     XX_j \leftarrow sum(X[, j]^2)
     beta[j] \leftarrow sign(rho\ j) * max(0, abs(rho\ j) - lambda * weights[j]) /
      XX_{j}
return(beta)
```

Outline

1 Introduction

2 Algorithms

3 R Package

4 Simulation

Boston Dataset for Penalize Regression

```
library(MASS)
data("Boston")
# response variable (medv)
y <- scale(Boston[, ncol(Boston)])</pre>
# predict variables
X <- scale(Boston[, -ncol(Boston)])</pre>
head(Boston.3)
```

```
crim zn indus chas
                                rm age dis rad tax ptratio black lstat
##
                         nox
## 1 0.00632 18 2.31 0 0.538 6.575 65.2 4.0900 1 296 15.3 396.90 4.98
## 2 0.02731 0 7.07 0 0.469 6.421 78.9 4.9671 2 242 17.8 396.90 9.14
## 3 0.02729 0 7.07 0 0.469 7.185 61.1 4.9671 2 242 17.8 392.83 4.03
##
    medv
## 1 24.0
## 2 21.6
## 3 34.7
```

Ridge Regression with Boston Dataset

##

penalized regression(X, v, method="ridge", algorithm="cda")

```
## [6] 0.2928666357 0.0007757563 -0.3320626430 0.2747593206 -0.2120429740
penalized regression(X, y, method="ridge", algorithm="fista")
[7] -0.03079502 -0.02038188 -0.02068400 -0.04793745 -0.09603274 0.04874783
## [13] -0.14758457
penalized regression(X, v, method="ridge", algorithm="lla")
## Warning in check algorithm compatibility(method, algorithm): LLA is primarily
## designed for SCAD or MCP penalties and may not be optimal for Ridge, Lasso, or
## Flastic Net.
  [1] -0.0992520661 0.1144912234 0.0103660543 0.0749141210 -0.2178957342
##
  [6] 0.2928666357 0.0007757563 -0.3320626430 0.2747593206 -0.2120429740
## [11] -0.2225045953 0.0923399477 -0.4046479170
```

[1] -0.0992520661 0.1144912234 0.0103660543 0.0749141210 -0.2178957342

Lasso Regression with Boston Dataset

penalized regression(X, v, method="lasso", algorithm="cda")

```
[7] 0.00000000 -0.32754924 0.25576045 -0.19334872 -0.22034164 0.09053869
## [13] -0.40569871
penalized regression(X, y, method="lasso", algorithm="fista")
  [1] 0.00000000 0.00000000
                             0.00000000 0.00000000 0.00000000 0.07858555
   [7] 0.00000000 0.00000000
                             ## [13] -0.18852509
penalized regression(X, v, method="lasso", algorithm="lla")
## Warning in check algorithm compatibility(method, algorithm): LLA is primarily
## designed for SCAD or MCP penalties and may not be optimal for Ridge, Lasso, or
## Flastic Net.
  [1] -0.09547432 0.10913508 0.00000000 0.07444264 -0.21027610 0.29354573
   [7] 0.00000000 -0.32754924 0.25576045 -0.19334872 -0.22034164 0.09053869
## [13] -0.40569871
```

[1] -0.09547432 0.10913508 0.00000000 0.07444264 -0.21027610 0.29354573

Elastic Net Regression with Boston Dataset

[13] -0.40552475

penalized regression(X, v, method="elasticnet", algorithm="cda")

penalized_regression(X, y, method="elasticnet", algorithm="fista")

```
[1] 0.00000000 0.00000000
                            0.00000000 0.00000000 0.00000000 0.07858555
   [7] 0.00000000 0.00000000
                            ## [13] -0.18852509
penalized regression(X, v, method="elasticnet", algorithm="lla")
## Warning in check algorithm compatibility(method, algorithm): LLA is primarily
## designed for SCAD or MCP penalties and may not be optimal for Ridge, Lasso, or
## Flastic Net.
  [1] -0.08329111 0.09568474 0.00000000 0.07188826 -0.19734098 0.29783985
   [7] 0.00000000 -0.30657550 0.20645410 -0.15278811 -0.21687523 0.08604270
## [13] -0.41149174
```

[1] -0.09785179 0.11242987 0.00488148 0.07460145 -0.21492289 0.29276585 [7] 0.00000000 -0.33182677 0.26841639 -0.20522069 -0.22168907 0.09146410

MCP Regression with Boston Dataset

```
penalized regression(X, v, method="mcp", algorithm="cda")
   [1] -1.3176462 3.7210956 2.9544747 -0.4952345 -4.0229037 -2.8002490
   [7] 2.6712131 -4.8408153 4.1973330 -4.5548273 -0.6704180 -0.5486739
## [13] -4.5074292
penalized_regression(X, y, method="mcp", algorithm="fista")
## Error in check algorithm compatibility(method, algorithm): The FISTA is not
   recommended for non-convex penalties like SCAD or MCP.
penalized_regression(X, y, method="mcp", algorithm="lla")
   [1] -0.09571331 0.10948056 0.00000000 0.07439100 -0.21082761 0.29330031
   [7] 0.00000000 -0.32850565 0.25738882 -0.19467159 -0.22050792 0.09054474
## [13] -0.40597901
```

SCAD Regression with Boston Dataset

```
penalized regression(X, v, method="scad", algorithm="cda")
  [1] -0.09547432 0.10913508 0.00000000 0.07444264 -0.21027610 0.29354573
## [7] 0.00000000 -0.32754924 0.25576045 -0.19334872 -0.22034164 0.09053869
## [13] -0.40569871
penalized_regression(X, y, method="scad", algorithm="fista")
## Error in check algorithm compatibility(method, algorithm): The FISTA is not
   recommended for non-convex penalties like SCAD or MCP.
penalized_regression(X, y, method="scad", algorithm="lla")
   [1] -0.09547432 0.10913508 0.00000000 0.07444264 -0.21027610 0.29354573
   [7] 0.00000000 -0.32754924 0.25576045 -0.19334872 -0.22034164 0.09053869
## [13] -0.40569871
```

Q & A

Thank you:)