PATENT ABSTRACTS OF JAPAN

(11) Publication number:

62-195392

(43)Date of publication of application: 28.08.1987

(51)Int.CI.

CO7F 9/58 A61K 31/675 A61K 31/675 A61K 31/675 A61K 31/675

(21)Application number : **61-036402**

(71)Applicant: NISSAN CHEM IND LTD

(22)Date of filing:

20.02.1986

(72)Inventor: KAMIKAWAJI MASUMASA

SETO KIYOTOMO SAKOTA RYOZO TANAKA SAKUYA

(54) DIHYDROPYRIDINE-5-PHOSPHONAMIDIC ACID COMPOUND

(57)Abstract:

NEW MATERIAL: The compound of formula I {X1 and X2 are H, nitro, trifluoromethyl, lower alkyl, (halogen-substituted) lower alkoxy, F or CI; R1 and R2 are H, 1W6C alkyl or R1 and R2 together form (substituted) 1,4-butylene; R3 is 1W10C alkyl or R3 and R2 together form (substituted) ethylene, etc.; Y is 1W4C alkyl, group of formula II [R5 and R6 are (substituted) 1W4C alkyl] or group of formula III} and its salt.

EXAMPLE: 5-(Ethoxy-N, N-dimethylamino-phosphinyl)-2,6-dimethyl-4-(3-chlorophe ny-l)--1,4-dihydropyridine-3-carboxylic acid 2-(N-benzyl-N-methylamino)-ethyl ester. USE: A remedy for circulatory diseases.

PREPARATION: The compound of formula IV is made to react with the comopund of formula V.

19日本国特許庁(JP)

⑩特許出願公開

⑩ 公 開 特 許 公 報 (A) 昭62 - 195392

⑤Int.Cl.⁴

識別記号

庁内整理番号

匈公開 昭和62年(1987)8月28日

C 07 F 9/58 A 61 K 31/675

AAY ABN ABS ABU 6917-4H 7252-4C

審査請求 未請求 発明の数 4 (全12頁)

図発明の名称 ジヒドロピリジンー5ーホスホンアミド酸類

②特 願 昭61-36402

愛出 願 昭61(1986)2月20日

⑫発 明 者 上 川 路 益 昌 船橋市坪井町722番地1 日産化学工業株式会社中央研究 所内

⑫発 明 者 瀬 戸 浄 智 船橋市坪井町722番地1 日産化学工業株式会社中央研究

所内

@発 明 者 迫 田 良 三 船橋市坪井町722番地1 日産化学工業株式会社中央研究

所内

⑫発 明 者 田 中 作 彌 埼玉県南埼玉郡白岡町大字白岡1470 日産化学工業株式会

社生物化学研究所内

⑪出 願 人 日産化学工業株式会社 東京都千代田区神田錦町3丁目7番地1

明細書

1. 発明の名称

ジヒドロピリジン-5-ホスホンアミド酸類

- 2. 特許請求の範囲
 - (1) 一般式(1)

$$\begin{pmatrix} R^{2} - N \\ R^{2} - 0 \end{pmatrix} \stackrel{\parallel}{\longrightarrow} \begin{pmatrix} C & H^{2} \\ C & 0 & Y \end{pmatrix}$$

(式中、X¹ , X² はお互いに同一または異なり、 水素原子、ニトロ基、トリフルオロメチル基、低 級アルキル基、ハロゲン原子で置換されていても よい低級アルコキシ基、フッ素原子、または塩素 原子を食味し:

R', R* はお互いに同一または異なり水素原子、炭素数1~6の直鎖もしくは分枝したアルキル基か、またはR'とR*が一緒になって、低級

アルキル基によって置換されてもよい 1.4-プチ レン基を意味し;

R[®] は炭素数 1 ~ 1 0 の直鎖のもしくは分枝したアルキル基か、または R[®] と R[®] が一緒になって低級アルキル基によって置換されてもよいエチレン基または 1.3 - プロピレン基を意味し;

Yは炭素数1~4の直鎖のもしくは分枝したアルキル基か、

(式中R⁵, R⁶ は同一または異なり、1~2個のフェニル基によって置換されていてもよい炭素数1~4のアルキル基を意味する)か、

(式中R⁵は上記と同じ意味である)を意味する。) で表わされる化合物および塩形成能のある一般式 (I) で表わされる化合物の薬理学的に許容され る塩。

(2) 一般式(1)

$$\begin{pmatrix} R^{z} - N \\ R^{z} - 0 \end{pmatrix} \stackrel{\parallel}{=} \begin{pmatrix} X^{z} \\ C O_{2}Y \\ C H_{3} \end{pmatrix}$$

(式中、X¹, X²はお互いに同一または異なり、 水素原子、ニトロ基、トリフルオロメチル基、低 級アルキル基、ハロゲン原子で置換されていても よい低級アルコキシ基、フッ素原子、または塩素 原子を意味し:

R', R* はお互いに同一または異なり水素原子、炭素数 1~6の直鎖もしくは分枝したアルキル基か、または R'と R* が一緒になって、低級アルキル基によって置換されてもよい 1.4~ブチレン基を意味し;

R³は炭素数1~10の直鎖のもしくは分枝し

たアルキル基か、またはR³ とR³ が一緒になって低級アルキル基によって置換されてもよいエチレン基または 1.3-プロピレン基を意味し;

Yは炭素数1~4の直鎖のもしくは分枝したアルキル基か、

$$\frac{R^5}{R^4}$$
 > NCH₂CH₂-

(式中R⁵, R⁶ は同一または異なり、1~2個 のフェニル基によって置換されていてもよい炭素 数1~4のアルキル基を意味する)か、

(式中R[®]は上記と同じ意味である)を意味する。) で表わされる化合物および塩形成能のある一般式 (I) で表わされる化合物の薬理学的に許容され る塩を含有することを特徴とする循環器系疾病治 療のための組成物。(以下、余白)

(3) 一般式(1)

$$\begin{pmatrix} R^{2} - N \\ R^{2} - 0 \end{pmatrix} \stackrel{\parallel}{=} \begin{pmatrix} X^{2} \\ X^{2} \\ C & Y \end{pmatrix}$$

$$C & H_{3} & N \\ C & H_{3} & (1)$$

(式中、X¹, X² はお互いに同一または異なり、 水素原子、ニトロ基、トリフルオロメチル基、低 級アルキル基、ハロゲン原子で置換されていても よい低級アルコキシ基、フッ素原子、または塩素 原子を意味し;

R¹, R² はお互いに同一または異なり水素原子、炭素数 1~6の直鎖もしくは分枝したアルキル基か、または R¹ と R² が一緒になって、 低級 アルキル基によって置換されてもよい 1.4~ブチレン基を意味し;

R² は炭素数 1~10の直鎖のもしくは分枝したアルキル基か、または R² と R⁸ が一緒になって低級アルキル基によって置換されてもよいエチ

レン基または 1.3-プロピレン基を意味し;

Yは炭素数1~4の直鎖のもしくは分枝したアルキル基か、

(式中R⁵, R⁶ は同一または異なり、1~2個のフェニル基によって置換されていてもよい炭素数1~4のアルキル基を意味する)か、

(式中R³は上記と同じ意味である)を意味する。) で表される化合物の製造法において、

一般式(Ⅱ)

$$\begin{pmatrix} R^{2} - N & 0 \\ R^{3} - 0 & P - C = CH \\ C & 0 & CH \end{pmatrix}$$

(式中、X1, X2, R1, R1, R2 は一般式 (I) の

説明と同じである。〕で示される化合物に、

一般式(皿)

(式中、Yは一般式(!)の説明と同じ意味である。)で示される化合物を反応させることを特徴とする製造法。

#=

(4) 一般式(1)

$$\begin{pmatrix} R^{2} - N \\ R^{2} - 0 \end{pmatrix} \stackrel{\parallel}{\underset{H}{\bigvee}} C O_{2} Y$$

(式中、X¹ , X² はお互いに同一または異なり、水素原子、ニトロ基、トリフルオロメチル基、低級アルキル基、ハロゲン原子で置換されていてもよい低級アルコキン基、フッ素原子、または塩

(式中R⁵は上記と同じ意味である)を意味する。) で表される化合物の製造法において、

〔式中 X ¹ , X ² , R ³ , Y は一般式 (I) の説明と同じ意味であり、 Z は水酸基か塩素原子を意味する。) で示される化合物に、

一般式 (V)

$$\frac{R^{\prime}}{R^{\prime}} > NH$$
 (V)

(式中、R', R'は一般式 (I)の説明と同じ意味である。)で示される化合物を反応させることを特徴とする製造法。

素原子を意味し;

R¹, R² はお互いに同一または異なり水素原子、炭素数1~6の直鎖もしくは分枝したアルキル基か、またはR¹ とR² が一緒になって、低級アルキル基によって置換されてもよい 1,4-ブチレン基を意味し:

R³ は炭素数 1 ~ 1 0 の直鎖のもしくは分枝したアルキル基か、または R³ と R² が一緒になって低級アルキル基によって置換されてもよいエチレン基または 1,3 – プロピレン基を意味し;

Yは炭素数1~4の直鎖のもしくは分枝したアルキル基か、

(式中R⁵, R⁶ は同一または異なり、1~2個のフェニル基によって置換されていてもよい炭素数1~4のアルキル基を意味する)か、

3. 発明の詳細な説明

(産業上の利用分野)

本発明は、新規な 1.4-ジヒドロピリジン-5 -ホスホンアミド酸誘導体、その製造法並びにこれらの化合物を含有することを特徴とする循環器系作用薬に関する。

(従来の技術)

1.4-ジヒドロピリジン類はカルシウム結抗作用により、平滑筋および心筋の収縮を抑制させるので、冠疾患、脳疾患、高血圧症および不整脈の治療に使用できることが知られている(A. Fleckenstein, Annu. Rev. Pharmacol. Toxicol., 17, 149~166(1977)参照)。 これらの化合物はジヒドロピリジン環の 3.5位にカルボン酸エステルに置換しても同様な活性を有することが報告された(特開昭 5 9 - 1 6 1 3 9 2)。 しかしながら、この中で具体的に示されているものはホスホン酸ジエステルのみである。

(発明が解決しようとする問題点、本発明化合物

の作用)

本発明者は新規な 1.4-ジヒドロピリジン-5 -ホスホンアミド酸誘導体を合成しその薬理活性 を試験したところ、強い降圧作用をもつことを見 い出した。しかもこれらの化合物は、経口投与し た場合作用が緩徐にあらわれ、心悸亢進が認めら れないという臨床的に有用な特長をもつことを発 見した。

(問題点を解決するための手段)

本発明は一般式(1)

$$\begin{pmatrix} R^{z} - N \\ R^{z} - 0 \end{pmatrix} \stackrel{\parallel}{\underset{H}{\bigvee}} C O_{z} Y$$

〔式中、X¹, X¹はお互いに同一または異なり、 水素原子、ニトロ基、トリフルオロメチル基、低 級アルキル基、ハロゲン原子によって置換されて

(式中R⁵は上記と同じ意味である。)を意味する。)で表わされる化合物および塩形成能のある一般式(1)で表わされる化合物の薬理学的に許容される塩に関する。

一般式(I)で表わされる化合物には、幾何異性体や光学異性体が存在し得るが、本発明はこれらおよびこれらのうちの塩形性能のある化合物の 薬理学的に許容される塩も包含する。

また本発明は上記一般式 (I) で表わされる化合物またその塩形性能のある化合物の薬理学的に許容されうる塩を含有することを特徴とする循環器系疾病治験のための組成物に関する。

また、本発明は一般式 (Ⅱ) (以下、余白)

もよい低級アルコキシ基、フッ素原子、または塩 素原子を意味し;

R¹. R² はお互いに同一または異なり水素原子、炭素数 1~6の直鎖もしくは分枝したアルキル基か、または R¹ と R² が一緒になって、低級アルキル基によって置換されてもよい 1.4~ブチレン基を意味し;

R * は炭素数 1 ~ 1 0 の直鎖のもしくは分枝したアルキル基、または R * と R * が一緒になって低級アルキル基によって置換されてもよいエチレン基または 1.3 - プロピレン基を意味し;

Yは炭素数1~4の直額のもしくは分枝したアルキル基か、

(式中R[®], R[®] は同一または異なり、1~2個のフェニル基によって置換されてもよい炭素数1~4のアルキル基を意味する)か、

(以下、余白)

$$\begin{pmatrix} R^{2} - N \\ R^{3} - 0 \end{pmatrix} \stackrel{\parallel}{P} - C = C H \longrightarrow \begin{pmatrix} R^{3} \\ C H_{3} \end{pmatrix} \begin{pmatrix} I \\ X^{4} \end{pmatrix}$$

(式中、 X ', X *, R ', R *, R * は一般式 (1) の 説明と同じである。) で示される化合物に、

一般式(四)

$$H_{2}N - C = CHCO_{2}Y$$
 (II)

(式中、Yは一般式 (I) の説明と同じ意味である。) で示される化合物を反応させることを特徴とする上述の一般式 (I) で示される化合物の製法に関する。(以下、余白)

(式中X', X^{*}, R^{*}, Yは一般式(I)の説明と同じ意味であり、 Z は水酸基か塩素原子を意味する。)で示される化合物に、

一般式 (V)

$$\binom{R'}{p*} > NH$$
 (V)

(式中、R¹, R²は一般式(I)の説明と同じ意味である。)で示される化合物を反応させることを特徴とする上述の一般式(I)で示される化合物の製法に関する。

以下に更に詳細に説明する。

一般式 (I) で表わされる本発明化合物は下記 のスキーム 1 もしくは 2 の方法によって合成され

$$(\lambda + - \lambda 2)$$

$$\begin{array}{c|c}
Z & \downarrow & \downarrow & \downarrow & \downarrow \\
R & O & \downarrow & \downarrow & \downarrow & \downarrow \\
C & H & 2 & \downarrow & \downarrow & \downarrow \\
C & H & 2 & \downarrow & \downarrow & \downarrow \\
C & H & 2 & \downarrow & \downarrow & \downarrow \\
C & H & 2 & \downarrow & \downarrow & \downarrow \\
C & H & 2 & \downarrow & \downarrow & \downarrow \\
C & H & 2 & \downarrow & \downarrow & \downarrow \\
C & H & 2 & \downarrow & \downarrow & \downarrow \\
C & H & 2 & \downarrow & \downarrow & \downarrow \\
C & H & 2 & \downarrow & \downarrow & \downarrow \\
C & H & 2 & \downarrow & \downarrow & \downarrow \\
C & H & 2 & \downarrow & \downarrow \\
C & H & 2 & \downarrow & \downarrow \\
C & H & 2 & \downarrow & \downarrow \\
C & H & 2 & \downarrow & \downarrow \\
C & H & 2 & \downarrow & \downarrow \\
C & H & 2 & \downarrow & \downarrow \\
C & H & 2 & \downarrow & \downarrow \\
C & H & 2 &$$

$$+ \left\langle \begin{array}{c} R \\ \end{array} \right\rangle N H \longrightarrow (1)$$

$$(V)$$

(スキーム中、X¹, X², R¹, R², R²,Y, 2は上述の意味と同じ意味である。)(以下、余白)

る.

$$(x \neq - \Delta 1)$$

$$R^{z} - N$$

$$R^{z} - N$$

$$P - C = C H$$

$$C O C H_{z}$$

$$(II)$$

$$+ H_{z}N - C = C H C O_{z}Y \longrightarrow (I)$$

$$C H_{z}$$

(以下、余白)

原料化合物(II)は新規の化合物であるが、既存の技術(例えば、D. W. White, J. Am. Chem. Soc., 92, 7125~7135(1970)を参照。)を応用することにより合成できる。また、原料化合物である一般式(IV)も新規の化合物であるが、2が水酸基であるものは2がシアノエトキシ基であるものを加水分解することによって得ることができる。

(特願昭 5 9 - 1 4 8 9 7 9 を参照) また Z が塩素原子であるものは、 Z が水酸基である化合物にオキザリルクロリドなどの塩素化剤を処理して得ることができる。

本発明化合物は、平滑筋および心筋の収縮を抑制させる作用があるので、人間およびほ乳動物の 冠疾患、脳疾患、高血圧症の治療に有用である。

本発明化合物を上記疾患の治療に使用する場合、 本発明化合物と薬学的に許容しうる希釈剤または 担体とからなる薬学的または獣医学的組成物に形成される。

これらの組成物は経口投与に適した形例えば錠 剤、液剤、散剤またはカプセル剤、経皮投与に適 した形例えば軟膏または湿布剤、吸入剤に適した 形例えばスプレーに適したエアロゾールまたは溶 液、非経口投与に適した形例えば注射剤として使 用するのに適した無菌の水溶液剤、または肛門ま たは膣、直腸等内に使用するのに適した坐剤の形 で使用することができる。

本発明化合物を含有する上記の薬学的または獣 医学的組成物は、全組成物の重量に対して、本発 明化合物を約0.1~99.5%、好ましくは約0.5 ~95%を含有する。

本発明化合物にまたは本発明化合物を含有する 組成物に加えて、他の薬学的にまたは獣医学的に 活性な化合物を含ませることができる。また、こ れらの組成物は本発明化合物の複数を含ませるこ とができる。

本発明化合物を含有する薬物の1日当たりの投薬型は、治療する症状の種類と程度および個人差(年令、性別、感受性等)によって差がある。静脈内投与による1日当たりの投薬量は、体重1kg当たり活性成分0.0001~10m以好ましくは

注射用の滅菌組成物は、活性物質を注射用の水、 胡麻油、やし油、落花生油、綿実油などのような 天然にある植物油、または、オレイン酸エチルな どのような合成脂肪ベヒクルに溶解または懸濁す ることによって、普通の製薬操作により処方する ことができる。必要に応じて殺衝剤、防腐剤、酸 化防止剤などを混合することができる。 0.00005~1 mgである。経口投与および経皮投与による1日当たりの投薬量は同様に、体重1 kg 当たり活性成分 0.001~100mg、好ましくは0.005~100mg、確認等内に坐薬の形で投与する場合の1日当たりの投薬量は同様に、体重1 kg 当たり活性成分 0.001~200mg、好ましくは0.005~100mgである。吸入初の活性成分の含有量は 0.1~10%好ましば0.1~2%である。これら1日当たりの投薬量を必要に応じて、1日当たり2回以上に分けて投与することができる。

本発明化合物を含有する上記組成物は、常法で 製造することができ、かつ常用の賦形剤を配合す ることができる。

錠剤、カプセルなどに混合できる補助剤の例は 結合剤例えばトラガントゴム、アラピアゴム、と うもろこし澱粉またはゼラチン、賦形剤例えば燥 酸ニカルシウム、崩壊剤例えばとうもろこし澱粉、 馬鈴薯澱粉、アルギン酸など、潤滑剤例えばステ アリン酸マグネシウム、甘味剤例えばシェクロー

(実施例、作用と効果(試験例))

以下に本発明を実施例および試験例により更に 具体的に説明する。なお、本発明はこれらに限定 されるものではない。

実施例1 (合成法A)

5 - (エトキシーN. N-ジメチルアミノーホスフィニル) - 2,6-ジメチル-4-(3-クロロフェニル) - 1,4-ジヒドロピリジン-3-カルボン酸 2-(N-ベンジル-N-メチルアミノ) -エチルエステルの合成

 $\alpha - 7 セチル - 3 - 0 ロロスチリルホスホンア$ ミド酸 <math>O - x チル - N, N - ジメチル x - 3ル 1,0 g と 3 - 7 ミノクロトン酸 2 - (N - 4) ンジル-N-メチルアミノ)-エチルエステル1.0 gをトルエン20 m & に溶解し、15時間還流した。減圧下トルエンを留去した後残渣をシリガケルクロマトグラフィー(溶離液:酢酸エチル/エタノール=9/1(v/v)、Rf=0.5) に付し表記化合物を得た。

同様にして実施例 2 ~ 3 3 の化合物を合成した。 表 1 - (1) ~ (6) に化合物の構造、収率、性状、M S スペクトルデータをまとめて記載した。

実施例34(合成法B)

5 - (n - ヘキシロキシーアミノーホスフィニル) - 2,6-ジメチル-4-(3-クロロフェニル) - 1,4-ジヒドロピリジン-3-カルボン酸2-(N-ベンジル-N-メチルアミノ) - エチルエステルの合成

(以下、余白)

マトグラフィー (溶離液;酢酸エチル/エタノール=9/1,v/v, R f=0.5) に付し衷配化合物を得た。

同様にして実施例35~37の化合物を合成した。表1~(7)に化合物の構造、収率、性状、MSスペクトルデータをまとめて記載した。

试验例1.

(1) カルシウム拮抗作用

モルモット摘出盲脳紐を栄養液中に1gの張力をかけてつるし、安定するを待つ。栄養液をカルシウムフリー高カリウム溶液に置換し10~20分後塩化カルシウム10mMを加えて収縮させ、張力が安定してから被検薬を累積的に投与し、50%弛級させるのに必要な被検薬の濃度IDso(M)を求めその逆対数根(p I D so)を算出した。その結果を表2に記載した。

(2) 降圧作用

本発明化合物の血圧降下作用をウレレタンーα -クロラロースで麻酔したSIIR (自然発生高血 圧ラット)を用いて試験した。この試験は、3~

5 - (n - 2.6 - ジロキシー 4 - (3 - 2.6 - ジロキシー 4 - (3 - 3 - 2.6 - ジレー 4 - ジメチレー (3 - 3 - 2.6 - ジメチレー (3 - 3 - 2.6 - ジメチレー (3 - 3 - 2.6 - 3.7 - 4 - ジレー (N - 4 - ジレー N - 4 - 3 - 2 - (N - 4 - 3.0 + 4 - 3.0

5 匹のSHRを一群とし、各ラットの大腿動脈における血圧を観血的に測定した。各化合物は3 %ツィーン(tween)8 0 -生理食塩水に溶解し大腿動脈に注入した。薬量と最大降圧率の相関から30 %降圧するのに要する薬量ED₃。(g/㎏)を求めた。結果を表2 に記載した。

(以下、余白)

実施例	Х'	Χz	Y	収率 (%)	性 状(mp)	合成法	MS (m/e)
1	C £	н	CH: CH: N < CH: -phenyl	8 1	黄色油状物	A	134(83), 147(100), 545(4,n°)
2	NO:	н	CHz CHz N CHz - phenyl	7 1	黄色油状物	A	134(100), 147(93), 556(5.M°)
3	н	C £	CH ₂ CH ₂ N $<$ CH ₃ CH ₂ -phenyl	8 1	黄色油状物	A	134(100), 147(88), 545(4.M°)
4	C £.	C &	CH2 CH2 N CH2 -phenyl	7 1	黄色油状物	A	134(90), 147(100), 579(4,N°)
5	н	C £	CH2 CH2 N N CH (phenyl):	7 9	淡 黄 色 油 状 物	A	44(73), 167(100), 676(4.M°)
6	Н	C &	СНз	3 8	黄色固体	A	347 (37), 375 (100), 412 (2. 11*)

(表 1 -(2))

実施例	Χ¹	X ²	Y	収率 (%)	性 状(mp)	合成法	MS (m/e)
7	н	C &	CH ₂ CH ₃ N CH ₃ -phenyl	1 5	橙色油状物	A	148(100), 425(68), 573(27,M°)
8	C £	Н	CH ₂ CH ₂ N $< \frac{\text{CH}_2}{\text{CH}_2} - \text{phenyl}$	4 8	黄色油状物	A	134(53), 147(100), 573(6,8°)
8の 異性体	•	-		2 3-	黄色油状物	A	134(70), 147(100), 573(12,H°)
9	NO:	н	CH CH N CH - Phenyl	5 3	橙色油状物	A	134(68), 147(100), 584(15,M°)
1 0	н	CF,	CH CH N CH - phenyl	1 6	黄色油状物	A	148(100), 462(62), 607(9.M°)
1 1	C &	:: H	CH;	1 2	黄色油状物	Α.	260(33), 329(100), 367(93), 440(6)
11の 異性体		•	•	3 9	黄色固体 (192~ 194℃)	Α	216(18), 367(100), 438(16.M°)

実施例	χ·	X ²	Y	収率 (%)	性 状(ap)	合成法	MS (m/e)
1 2	н	C £	СН₃	2 0	黄色固体 (267~ 269℃)	A	未 測 定
1 3	н	C £	CH _z CH _z N $<$ CH _z -phenyl	1 5	黄色油状物	A	148(100), 329(37), 439(24), 588(15)
1 4	C £	Н	CH; CH; N CH; -phenyl	.7	黄色油状物	A	147(100), 329(25), 587(5,M°)
14の 異性体		,	•	2 0	黄色油状物	A	147(100), 329(15), 587(2.M°)
1 5	NO:	Н	CH ₂ CH ₃ N CH ₃ - phenyl	7	黄色油状物	A	147(100). 581(7), 598(2,M°)
15の 異性体	-	•	•	2 9	贯色油状物	A	147(100), 329(3), 581(15)
1 6	C £	C &	CH & CH & N < CH & - phenyl	1 3	黄色油状物	A	147(100), 329(20), 620(2,H°)

実施例	Х'	Χ·	Y	収率 (%)	性 状(sp)	合成法	MS (m/e)
1 7	C £	н	CH _z CH _z N $<$ CH _z -phenyl	6 0	黄色油状物	A	147(100), 299(15), 557(6,n°)
1 8	NO:	Н	CH ₁ CH ₂ N $<$ CH ₂ -phenyl	6 1	黄色油状物	A	147(100). 551(20). 568(8.H°)
1 9	C 2	C &	CH & CH & N CH & - phenyl	3 8	黄色油状物	A	147(100), 299(15), 591(3, H°)
2 0	н	C &	CH CH N CH - phenyl	1 0	黄色油状物	A	134(100),148(98),409(27),557(7,11)
2 1	н	C &	CH; CH; N N CH (phenyl);	1 8	黄色油状物	A	167(100), 409(10), 688(5,H°)

爽施例	۱ X	Χż	Y	収率 (%)	性 状(mp)	合成法	MS (m/e)
2 2	н	C &	C H 3	-36	黄色油状物	A	166(100), 299(54), 410(8,M°)
2 3	NO.	Н	CH ₂ CH ₂ N $< \frac{\text{CH}_2}{\text{CH}_2} - \text{phenyl}$	3 0	黄色油状物	A	134(100), 147(90), 554(3, M°)
2 4	C £		CH: CH: N < CH: -phenyl	·	黄色油状物	A	134(100), 147(71), 543(3,8°)
2 5	н	C &	$CH_{\Sigma}CH_{\Sigma}N < \frac{CH_{\Sigma}}{CH_{\Sigma}-phenyl}$	2 9	黄色油状物,	A	134(93), 147(100), 543(7, n°)
2 6	C &	C &	CH: CH: N CH: -phenyl	2 2	黄色油状物	A	134(100), 147(63), 577(1, M°)
2 7	н	C £	CH 2 CH 2 N N CH (phenyl) 2	2 6	黄色油状物	A	167(100), 379(45), 674(22,M°)

(表1-(6))

実施例	χ¹	X 2	Υ	収率 (%)	性 状(mp)	合成法	MS (m/e)
2 8	н	C &	СН₃	5 4	黄色固体	A	58(100), 327(73), 438(18,M°)
2 9	NOz	н	CH CH N CH CH - phenyl	6 9	橙色油状物	A	44(100); 58(59), 582(1.M°)
29の 異性体	•	•	•	7 0	橙色固体	A	134(80), 147(100), 582(6, M°)
3 0	C £	C &	CH2 CH2 N CH2 - phenyl	5 4	投色固体	A	44(100), 147(51), 605(1, 11°)
3 1	н	C.E	CH CH N CH Phenyl	6 0	橙色菌体	A	134(100), 147(96), 571(7.H°)
3 2	C £	н	CH: CH: N < CH: -phenyl	7 7	植色固体	A	134(72), 147(100), 571(11.8°)
3 3	н	C e	CH CH N N CH (phenyl) ;	4 5	黄色固体	A	40(51), 167(100), 702(2,N°)

(麦1~77)

実施例 .	R '	R ²	収率 (%)	性 状(mp)	合成法	MS (m/e)
3 4	н	Н	2 7	無色固体 (60℃)	В	134(76), 147(100), 573(5.M°)
3 5	н	сн,	4 7	黄色油状物	В	134(59), 147(100), 587(5,H°)
3 6	сн,	CH:	. 2 5	黄色油状物	В	134(71), 147(100), 601(9,M°)
36の 異性体			2 0	黄色油状物	В	134(78), 147(100), 601(4, m°)
3 7	Et	Eŧ	2 0	黄色油状物	В	134(85), 147(100), 629(4.M°)

表2 カルシウム拮抗作用(pIDso)と 降圧作用 (ED10)

被検化合物	p I D so	E D 30
実施例1の化合物の塩酸塩	7. 4	0. 2 6
実施例13の化合物の塩酸塩	7. 4	1. 4
実施例17の化合物	8. 5	0.77
実施例27の化合物の塩酸塩	8. 0	0. 1 7

製剤例1:锭 剤			
成分 (1000錠)			
実施例1の化合物の塩酸塩			5. 0 (g)
乳糖	1	9	0. 0
コーンスターチ		7	5. 0
微結晶セルロース		2	5. 0
メチルセルロース			3. 0
ステアリン酸マグネシウム	_		2. 0
	3	0	0. 0
上記成分分量を計り、V型混合機	に	入	れ、均一

上記成分分量を計り、V型混合機に入れ、均一

に混合する。この混合粉末を直接打錠法で錠剤と する。一錠当たりの重量は300mである。

製剤例2:カプセル剤

成分(1000錠) 5 (g) 実施例1の化合物の塩酸塩 コーンスターチ 1 4 5 微結晶セルロース ステアリン酸マグネシウム

に混合する。この混合粉末を硬カプセルに充填す る。1カプセル当りの内容物は300mである。

製剤例3:シロップ剤 成分(2%液) 2. 0 (g) 実施例1の化合物の塩酸塩 3 0. 0 白糖 5. 0 グリセリン

0. 1 香 味 剂

96%エタノール

1 0. 0

pーオキシ安息香酸メチル

0.03

蒸 留 水 全量 1 0 0.0 g に する量

白糖および実施例1の化合物の塩酸塩を60gの温水に溶解した後、冷却後、グリセリンおよびエタノールに溶解した香味剤溶液を加えた。ついでこの混合物に水を加えて全量100.0gにした。

製剤例4:散剤

実施例1の化合物の塩酸塩1.0(g)乳糖88.0微結晶セルロース10.0メチルセルロース1.0

1 0 0. 0

上記成分分量を計り、V型混合機に入れ、均一に混合した。

特許出願人 日産化学工業株式会社