Machine Learning Techniques

Karthik Thiagarajan

Data Structure

Data Structure

<u>Tree</u>

- Binary tree
- Q_i : feature < value
- L_i : label
- Depth = 3

Data Structure

<u>Tree</u>

- Binary tree
- Q_i : feature < value
- L_i : label
- Depth = 3

<u>Nodes</u>

- Root node: Q_1
- Internal nodes: Q_1, Q_2, Q_3, Q_4
 - left \rightarrow yes
 - right \rightarrow no
 - questions
- Leaves: L_1,L_2,L_3,L_4,L_5
 - predictions

$$h: \mathbb{R}^d \to \{0, 1\}$$
$$h(\mathbf{x}) = y$$

$$h: \mathbb{R}^d \to \{0, 1\}$$
$$h(\mathbf{x}) = y$$

x_1	x_2	y
3	4	
-2	5	
10	4	

$$h: \mathbb{R}^d \to \{0, 1\}$$
$$h(\mathbf{x}) = y$$

x_1	x_2	y
3	4	0
-2	5	
10	4	

$$h: \mathbb{R}^d \to \{0, 1\}$$
$$h(\mathbf{x}) = y$$

x_1	x_2	y
3	4	0
-2	5	1
10	4	

$$h: \mathbb{R}^d \to \{0, 1\}$$
$$h(\mathbf{x}) = y$$

x_1	x_2	y
3	4	0
-2	5	1
10	4	0

Function

$$h: \mathbb{R}^d \to \{0, 1\}$$
$$h(\mathbf{x}) = y$$

x_1	x_2	y
3	4	0
-2	5	1
10	4	0

Prediction

- Prediction \rightarrow Traversal from root to leaf
- Longer paths \rightarrow more complex decisions
- Interpretable

$$D_{\text{train}} = \{(\mathbf{x}_1, y_1), \; \cdots, (\mathbf{x}_n, y_n)\}$$

$$\mathbf{x}_i \in \mathbb{R}^d, \; y_i \in \{0, 1\}$$

x_1	x_2	y
1	1	1
2	3	1
3	6	1
4	4	1
6	3	0
6	5	0
7	6	0
8	2	0

- $x_1 < 5$
- $x_1 \leq 4$
- $x_1 < 6$
- $x_1 < a$, $a \in (4,6)$

- $x_1 < 5$
- $x_1 \leq 4$
- $x_1 < 6$
- $x_1 < a$, $a \in (4,6)$

Decision Stump

Node Purity

- $x_1 < 5$
- $x_1 \leq 4$
- $x_1 < 6$
- $x_1 < a$, $a \in (4,6)$

Decision Stump

- Q_1 partitions the dataset
- Decision stump
- Clean or "pure" partitions

$$L = \{1, 1, 1, 1\}, R = \{0, 0, 0, 0\}$$

$$p_{_L} = \frac{\sum\limits_{y_i \in L} \mathbf{1}[y_i = 1]}{|L|}$$

$$= \frac{4}{4}$$

$$= 1$$

$$p_{R} = \frac{\sum\limits_{y_{i} \in R} \mathbf{1}[y_{i} = 1]}{|R|}$$

$$= \frac{0}{4}$$

$$= 0$$

$$L = \{1, 1, 1\}, R = \{1, 0, 0, 0, 0\}$$

$$p_{_L} = \frac{\sum\limits_{y_i \in L} \mathbf{1}[y_i = 1]}{|L|}$$

$$= \frac{3}{3}$$

$$= 1$$

$$p_{_R} = rac{\sum\limits_{y_i \in R} \mathbf{1}[y_i = 1]}{|R|}$$
 $= rac{1}{5}$ $= 0.2$

$$L = \{1, \}, R = \{1, 1, 1, 0, 0, 0, 0\}$$

$$p_{L} = \frac{\sum\limits_{y_{i} \in L} \mathbf{1}[y_{i} = 1]}{|L|}$$

$$= \frac{1}{1}$$

$$= 1$$

$$p_{R} = \frac{\sum\limits_{y_{i} \in R} \mathbf{1}[y_{i} = 1]}{|R|}$$

$$= \frac{3}{7}$$

$$= 0.43$$

$$L = \{1, 1, 0, 0\}, R = \{1, 1, 0, 0\}$$

$$p_{_L} = \frac{\sum\limits_{y_i \in L} \mathbf{1}[y_i = 1]}{|L|}$$

$$= \frac{2}{4}$$

$$= 0.5$$

$$p_{R} = \frac{\sum\limits_{y_{i} \in R} \mathbf{1}[y_{i} = 1]}{|R|}$$

$$= \frac{2}{4}$$

$$= 0.5$$

Node Impurity

Impurity measure

p	Impurity
Low	
Medium	
High	

Node Impurity

Impurity measure

p	Impurity
Low	Low
Medium	High
High	Low

Node Impurity

Impurity measure

Impurity

p	Impurity
Low	Low
Medium	High
High	Low

Misclassification Error

N is a node with label l

Misclassification Error

N is a node with label l

Impurity

$$\frac{\texttt{misclassification}}{\texttt{error (0-1 loss)}} = \frac{\sum\limits_{y_i \in N} \mathbf{1}[y_i \neq l]}{|N|}$$

$$= \begin{cases} p, & 0 \leqslant p \leqslant 0.5\\ 1-p, & 0.5$$

Misclassification Error

N is a node

with label l

Impurity

$$\frac{\texttt{misclassification}}{\texttt{error (0-1 loss)}} = \frac{\sum\limits_{y_i \in N} \mathbf{1}[y_i \neq l]}{|N|}$$

$$= \begin{cases} p, & 0 \leqslant p \leqslant 0.5 \\ 1-p, & 0.5
$$= 1 - \max(p, 1-p)$$$$

Misclassification Error

N is a node

with label l

$$\frac{\text{misclassification}}{\text{error (0-1 loss)}} = \frac{\sum\limits_{y_i \in N} \mathbf{1}[y_i \neq l]}{|N|}$$

$$= \begin{cases} p, & 0 \leqslant p \leqslant 0.5 \\ 1-p, & 0.5
$$= 1 - \max(p, 1-p)$$$$

Misclassification Error

N is a node

with label l $\frac{\texttt{misclassification}}{\texttt{error (0-1 loss)}} = \frac{\sum\limits_{y_i \in N} \mathbf{1}[y_i \neq l]}{|N|}$

$$= \begin{cases} p, & 0 \leqslant p \leqslant 0.5 \\ 1-p, & 0.5
$$= 1 - \max(p, 1-p)$$$$

$$p = \frac{2}{3}$$

$$l = 1$$

$$\operatorname{Imp}(N) = \frac{1}{3}$$

Entropy

$$\texttt{Entropy} = -p \log_2 p - (1-p) \log_2 (1-p)$$

Entropy

$$\mathsf{Entropy} = -p \log_2 p - (1-p) \log_2 (1-p)$$

- Base is 2.
- We take $0\log_2 0 = 0$.
- \bullet Entropy is between 0 and 1.

Entropy

$$\mathsf{Entropy} = -p \log_2 p - (1-p) \log_2 (1-p)$$

- Base is 2.
- We take $0\log_2 0 = 0$.
- \bullet Entropy is between 0 and 1.

Entropy

$$\mathsf{Entropy} = -p \log_2 p - (1-p) \log_2 (1-p)$$

- Base is 2.
- We take $0\log_2 0 = 0$.
- ullet Entropy is between 0 and 1.

$$\begin{split} |N| &= 6 \\ p &= \frac{2}{3} \\ l &= 1 \\ \mathbf{Imp}(N) &= 0.92 \end{split}$$

Gini Index

$$\mathbf{Gini}\ \mathbf{index} = 2p(1-p)$$

Gini Index

$$\mathbf{Gini}\ \mathbf{index} = 2p(1-p)$$

Gini Index

$$\mathbf{Gini}\ \mathbf{index} = 2p(1-p)$$

$$|N| = 6$$

$$p = \frac{2}{3}$$

$$l = 1$$

$$\mathbf{Imp}(N) = 0.44$$

Comparison

Source: ESL (309)

Comparison

- Gini index and entropy are differentiable.
- Better suited to numerical optimization.
- Gini index and entropy are more sensitive to changes in node probabilities.
- Use Gini index or **entropy** for growing a tree.

Source: ESL (309)

Entropy of children

$$rac{1}{\sqrt{3.5}}$$

$$L = \{1, 1, 1\}$$
$$R = \{1, 0, 0, 0, 0\}$$

Entropy of children

$$L = \{1, 1, 1\}$$

$$R = \{1, 0, 0, 0, 0\}$$

$$p_L = 1, \ p_R = \frac{1}{5}$$

$$L = \{1, 1, 1\}$$
$$R = \{1, 0, 0, 0, 0\}$$

$$p_L = 1, \ p_R = \frac{1}{5}$$

$$\begin{split} \boldsymbol{E}_{_{\boldsymbol{L}}} &= -\,\boldsymbol{p}_{_{\boldsymbol{L}}} \log \boldsymbol{p}_{_{\boldsymbol{L}}} - (1-\boldsymbol{p}_{_{\boldsymbol{L}}}) \mathrm{log} (1-\boldsymbol{p}_{_{\boldsymbol{L}}}) \\ &= 0 \end{split}$$

$$L = \{1, 1, 1\}$$
$$R = \{1, 0, 0, 0, 0\}$$

$$p_L = 1, \ p_R = \frac{1}{5}$$

$$\begin{split} \boldsymbol{E}_{_{\boldsymbol{L}}} &= -\,\boldsymbol{p}_{_{\boldsymbol{L}}} \log \boldsymbol{p}_{_{\boldsymbol{L}}} - (1-\boldsymbol{p}_{_{\boldsymbol{L}}}) \mathrm{log} (1-\boldsymbol{p}_{_{\boldsymbol{L}}}) \\ &= 0 \end{split}$$

$$\begin{split} E_{_{R}} &= -\,p_{_{R}} \log p_{_{R}} - (1-p_{_{R}}) {\rm log} (1-p_{_{R}}) \\ &= 0.722 \end{split}$$

Entropy of children

$$L = \{1, 1, 1\}$$
$$R = \{1, 0, 0, 0, 0\}$$

$$p_L = 1, \ p_R = \frac{1}{5}$$

$$\begin{split} \boldsymbol{E}_{_{\boldsymbol{L}}} &= -\,\boldsymbol{p}_{_{\boldsymbol{L}}} \log \boldsymbol{p}_{_{\boldsymbol{L}}} - (1-\boldsymbol{p}_{_{\boldsymbol{L}}}) \mathrm{log} (1-\boldsymbol{p}_{_{\boldsymbol{L}}}) \\ &= 0 \end{split}$$

$$\begin{split} E_{_{R}} &= -\,p_{_{R}} \log p_{_{R}} - (1-p_{_{R}}) {\rm log} (1-p_{_{R}}) \\ &= 0.722 \end{split}$$

$$E_{LR} = \frac{3}{8}E_{L} + \frac{5}{8}E_{R}$$
$$= 0.451$$

Information Gain

$$P = \{1, 1, 1, 1, 0, 0, 0, 0\}$$

$$L = \{1, 1, 1\}$$

$$R = \{1, 0, 0, 0, 0\}$$

$$p_{_{P}} = \frac{1}{2}, p_{_{L}} = 1, p_{_{R}} = \frac{1}{5}$$

$$P = \{1, 1, 1, 1, 0, 0, 0, 0\}$$

$$L = \{1, 1, 1\}$$

$$R = \{1, 0, 0, 0, 0\}$$

$$p_{_{P}} = 1/_{2}, p_{_{L}} = 1, p_{_{R}} = 1/_{5}$$

$$\begin{split} E_{_{P}} &= \, -\, p_{_{P}} \log p_{_{P}} - (1-p_{_{P}}) {\rm log} (1-p_{_{P}}) \\ &= 1 \end{split}$$

$$P = \{1, 1, 1, 1, 0, 0, 0, 0\}$$

$$L = \{1, 1, 1\}$$

$$R = \{1, 0, 0, 0, 0\}$$

$$p_{_{P}} = 1/_{2}, p_{_{L}} = 1, p_{_{R}} = 1/_{5}$$

$$\begin{split} E_{_{P}} &= -\,p_{_{P}} \log p_{_{P}} - (1-p_{_{P}}) {\rm log} (1-p_{_{P}}) \\ &= 1 \end{split}$$

$$IG = E_{_{P}} - E_{_{LR}}$$

$$= 1 - 0.451$$

$$= 0.549$$

Best question

Best question

 $\overline{G(f,s)}$

Growing a Tree Best question $|x_f < s|$ $\overline{IG}(f,s)$ IG(1,s)5

Best question

IG(1,s)

0.138

0.311

0.549

0.311

0.138

Best question

ullet D: dataset at the parent

- ullet D: dataset at the parent
- $x_f < s$: question

- ullet D: dataset at the parent
- $x_f < s$: question
- $D_{_L}$ and $D_{_R}$: partitions

- ullet D: dataset at the parent
- $x_f < s$: question
- $D_{_L}$ and $D_{_R}$: partitions
- $p_{_{P}}, p_{_{L}}, p_{_{R}}$: proportions at P, L, R

- D: dataset at the parent
- $x_f < s$: question
- $D_{_L}$ and $D_{_R}$: partitions
- $p_{_{P}}, p_{_{L}}, p_{_{R}}$: proportions at P, L, R
- γ : proportions of points in L

- *D*: dataset at the parent
- $x_f < s$: question
- $D_{_L}$ and $D_{_R}$: partitions
- $p_{_{P}}, p_{_{L}}, p_{_{R}}$: proportions at P, L, R
- γ : proportions of points in L
- $E_{_{p}}$: entropy of P
- $E_{\scriptscriptstyle L}$: entropy of L
- $E_{_{\!R}}$: entropy of R

- *D*: dataset at the parent
- $x_f < s$: question
- $D_{_L}$ and $D_{_R}$: partitions
- $p_{_{P}}, p_{_{L}}, p_{_{R}}$: proportions at P, L, R
- γ : proportions of points in L
- $E_{_{p}}$: entropy of P
- $E_{\scriptscriptstyle L}$: entropy of L
- $E_{\scriptscriptstyle R}$: entropy of R
- IG: information gain

- D: dataset at the parent
- $x_f < s$: question
- $D_{_L}$ and $D_{_R}$: partitions
- $p_{_{P}}, p_{_{L}}, p_{_{R}}$: proportions at P, L, R
- γ : proportions of points in L
- $E_{_{p}}$: entropy of P
- $E_{\scriptscriptstyle L}$: entropy of L
- $E_{\scriptscriptstyle P}$: entropy of R
- IG: information gain

$$n_{_{P}}=n_{_{L}}+n_{_{R}}$$

- ullet D: dataset at the parent
- $x_f < s$: question
- $D_{_L}$ and $D_{_R}$: partitions
- $p_{_{P}}, p_{_{L}}, p_{_{R}}$: proportions at P, L, R
- γ : proportions of points in L
- E_{p} : entropy of P
- $E_{\scriptscriptstyle L}$: entropy of L
- $E_{\scriptscriptstyle R}$: entropy of R
- IG: information gain

$$n_{_{P}}=n_{_{L}}+n_{_{R}} \qquad \gamma=rac{n_{_{L}}}{n_{_{P}}}$$

- *D*: dataset at the parent
- $x_f < s$: question
- D_{L} and D_{R} : partitions
- $p_{_{P}}, p_{_{L}}, p_{_{R}}$: proportions at P, L, R
- γ : proportions of points in L
- $E_{_{\scriptscriptstyle D}}$: entropy of P
- $E_{\scriptscriptstyle L}$: entropy of L
- $E_{\scriptscriptstyle P}$: entropy of R
- *IG*: information gain

$$n_{_{P}}=n_{_{L}}+n_{_{R}} \qquad \gamma=rac{n_{_{L}}}{n_{_{P}}}$$

$$E = -p\log p - (1-p)\log(1-p)$$

•
$$D$$
: dataset at the parent

- $x_f < s$: question
- $D_{_{I}}$ and $D_{_{B}}$: partitions
- $p_{_{P}}, p_{_{L}}, p_{_{R}}$: proportions at P, L, R
- γ : proportions of points in L
- $E_{_{\scriptscriptstyle D}}$: entropy of P
- $E_{\scriptscriptstyle L}$: entropy of L
- $E_{\scriptscriptstyle B}$: entropy of R
- IG: information gain

$$n_{_{P}}=n_{_{L}}+n_{_{R}} \qquad \gamma=rac{n_{_{L}}}{n_{_{P}}}$$

$$E = -p\log p - (1-p)\log(1-p)$$

$$IG = E_{_{P}} - [\gamma E_{_{L}} + (1-\gamma)E_{_{R}}]$$