# CUSTOMER CART ABANDONMENT



# **INTRODUCTION:**

Customer cart Abandonment can be referred as an e-commerce term to describe a visitor who leaves the web page before completing the purchase. Shopping cart abandonment is one of the most crucial problems for online businesses to overcome. Examples of abandonment include shopping cart abandonment, referring to visitors who add items to their online shopping cart, but exit without completing the purchase.

## **DATASET:**

We have used Python as our primary software for the analysis part; here our first step is to import the dataset. After importing the dataset we have explored features of our dataset.

```
dataset.shape
(4284, 13)
```

The dataset used contains 4284 rows and 13 columns.

The dataset consists of following 13 attributes:

| S.No. | Name                      | Description                                                    |  |
|-------|---------------------------|----------------------------------------------------------------|--|
| 1     | ID                        | The session id of the customer                                 |  |
| 2     | Is_Product_Details_Viewed | Whether the customer is viewing the product details or not     |  |
| 3     | Session_Activity_Count    | How many times a customer is going to the different pages.     |  |
| 4     | No_Items_Added_InCart     | Number of items in cart                                        |  |
| 5     | No_Items_Removed_FromCart | Number of items removed from the cart                          |  |
| 6     | No_Cart_Viewed            | How many times the customer is going to the cart page.         |  |
|       |                           |                                                                |  |
| 7     | No_Checkout_Confirmed     | How many times the checkout has been confirmed successfully    |  |
|       |                           | by the customer.                                               |  |
| 8     | No_Checkout_Initiated     | How many times the checkout(successful as well as unsuccess)   |  |
|       |                           | is being done by the user                                      |  |
| 9     | No_Cart_Items_Viewed      | How many times a user is viewing the product from cart         |  |
| 10    | No_Customer_Login         | Number of times the customer had did log in                    |  |
| 11    | No_Page_Viewed            | Number of pages viewed by the customer                         |  |
| 12    | Customer_Segment_Type     | The customer falls under which category,i.e, 0 for Target      |  |
|       |                           | Customer, 1 for Loyal Customer, and 2 for Untargeted customer  |  |
| 13    | Cart_Abandoned            | Whether the customer is doing cart abandonment or not. This is |  |
|       |                           | the target variable that we need to predict                    |  |

## EXPLORATORY DATA ANALYSIS

Here we have performed both univariate as well as bivariate analysis to infer sights from our dataset. We have divided all numerical as well as categorical variables.

```
num=dataset.select_dtypes(include=["float64","int64"])
cat=dataset.select_dtypes(include=["object","category"]).drop(["ID"],axis=1)
```

## <u>UNIVARIATE ANALYSIS</u>

Target variable – Cart Abandoned



It can be clearly seen that the data is an example of imbalanced dataset.

Count plot for categorical attributes –
 Is\_Product\_Details\_viewed & Customer\_Segment\_Type



Here we can observe that there are very few sessions in which the product details have been viewed by the user. And we can also observe that our targeted customers (0) are very high compared to untargeted (2) customers.

• Histogram for numerical attributes -



Here we can see that our data unevenly spread.

## **BIVARIATE ANALYSIS**

- FOR CATEGORICAL
  - 1. Is\_Product\_Details\_viewed Vs. Cart\_Abandoned
  - 2. Customer\_Segment\_Type Vs. Cart\_Abandoned

If a customer is viewing the product details then what is the chance that he is doing cart abandonment? How does customer segment type (0 for target customer, 1 for loyal customer, and 2 for untargeted customer) affect cart abandonment?





Here we can see that cart abandonment is seen more when the product details are not viewed.

#### FOR NUMERICAL

1. Numerical Attributes Vs. Cart\_Abandoned: By Boxplot



Here we can see that we have many outliers

## 2. Correlation plot of independent attributes



Here we can observe that our attributes are mostly independent of each other.

# **DATA PRE-PROCESSING**

Checking for missing values

Imputing missing values

```
null_col = data.columns[data.isna().any()].tolist()
null_col
data['No_Cart_Viewed'].mean()
data['No Items Added InCart'].mean()
data['No_Items_Added_InCart'].fillna(3.48,inplace=True)
data['No_Cart_Viewed'].fillna(1.44,inplace=True)
data[null_col] = data[null_col].astype("int64")
data.isna().sum()
Is_Product_Details_viewed
Session_Activity_Count
No_Items_Added_InCart
No_Items_Removed_FromCart
No_Cart_Viewed
No_Checkout_Confirmed
                                       0
No_Checkout_Initiated
                                       0
No_Cart_Items_Viewed
No_Customer_Login
                                       0
No_Page_Viewed
Customer_Segment_Type
                                       0
Cart Abandoned
dtype: int64
```

• Taking care of outliers by normalizing data - By BoxCox Normalization





Here we can see that our data is almost normally distributed. Now we are ready to go to the next step i.e., feature selection.

## FEATURE SELECTION

Here we have taken two models through which we will get feature importance, by comparing the feature importance's of both models we will select our best feature.

1. By RFE(Recursive Feature Elimination), the features selected are –

```
feature_selected = [X[X.columns[l[i]]].name for i,x in enumerate(l)]
feature_selected

['No_Checkout_Confirmed',
  'No_Checkout_Initiated ',
  'No_Customer_Login',
  'No_Page_Viewed',
  'Is_Product_Details_viewed']
```

2. By Random forest classifier, the features selected are-

```
sorted_feature_weightage_dict = sorted(feature_weightage_dict.items(), key=lambda kv: kv[1], reverse = True)
sorted_feature_weightage_dict

[('No_Checkout_Confirmed', 0.7341868777064404),
    ('No_Customer_Login', 0.05604221107820115),
    ('Session_Activity_Count', 0.05052857005529642),
    ('No_Checkout_Initiated', 0.0441808380652188),
    ('No_Page_Viewed', 0.027120211503535017),
    ('No_Items_Added_InCart', 0.025547984898027527),
    ('No_Cart_Items_Viewed', 0.018703955749515146),
    ('No_Cart_Jiewed', 0.017810335296951977),
    ('No_Items_Removed_FromCart', 0.010172300692196705),
    ('Is_Product_Details_viewed', 0.009764913736069736),
    ('Customer_Segment_Type', 0.0059418012185472185)]
```

Hence on selecting common features from both models, we get the following features to build our model and predict the outcome.

### OVER-SAMPLING USING SMOTE

Since our dataset wasn't balanced so we decided to use SMOTE technique (Amongst the 3 techniques namely under sampling, over Sampling and SMOTE) to balance it first.

```
sm = SMOTE(random_state=2,k_neighbors=5)
X_train, y_train =sm.fit_resample(X_train,y_train)

Train-Validation Split after SMOTE

X_train_new, X_test_new, y_train_new, y_test_new = train_test_split(X_train, y_train, test_size=0.40, random_state=0)
```

## MODEL BUILDING AND PREDICTION

```
lr1 = LogisticRegression()
lr1.fit(X_train_new,y_train_new)

LogisticRegression()

y_pred_new = lr1.predict(X_test_new) #### For SMOTE validation samples
y_pred=lr1.predict(X_test)##### For actual validation samples
```

## MODEL EVALUATION

```
print(" accuracy is %2.3f" % accuracy_score(y_test_new, y_pred_new))
print(" Kappa is %f" %cohen_kappa_score(y_test_new, y_pred_new))
 accuracy is 0.988
 Kappa is 0.976122
print(" accuracy is %2.3f" % accuracy_score(y_test, y_pred))
print(" Kappa is %f" %cohen_kappa_score(y_test, y_pred))
 accuracy is 0.984
 Kappa is 0.936154
from \ sklearn.metrics \ import \ accuracy\_score, confusion\_matrix, classification\_report
print(confusion_matrix( y_test_new ,y_pred_new ))
print(accuracy_score( y_test_new ,y_pred_new ))
print(classification_report( y_test_new ,y_pred_new ))
[[880]]
 [ 20 858]]
0.9880613985218875
               precision recall f1-score support
                   0.98 1.00 0.99
1.00 0.98 0.99
                                                               878
accuracy
macro avg 0.99 0.99
weighted avg 0.99 0.99
                                                   0.99
                                                                1759
                                                   0.99
```

We can see clearly that our model has predicted the outcomes with an accuracy of 98.4%. As our kappa score is also high we can conclude that our model will give the same accuracy with other data.

## **DEPLOYMENT**

We have built an app for our model whose link is given below. Using this link one can predict whether the cart will be abandoned or not.

https://cartabandonment.herokuapp.com/

Step 1 – Open the link on browser.

| Cart Abandonment Prediction |                       |                       |                   |                |         |  |
|-----------------------------|-----------------------|-----------------------|-------------------|----------------|---------|--|
| No_Items_Added_InCart       | No_Checkout_Confirmed | No_Checkout_Initiated | No_Customer_Login | No_Page_Viewed | Predict |  |

Step 2 – Assign values of your choice to each feature. Refer to the table below. The possible values of the features affecting cart abandonment can be –

| Features              | Description                        | Possible Values  |
|-----------------------|------------------------------------|------------------|
| No_Items_Added_InCart | Number of items in cart            |                  |
| No_Checkout_Confirmed | How many times the checkout has    |                  |
|                       | been confirmed successfully by     |                  |
|                       | the customer.                      |                  |
| No_Checkout_Initiated | How many times the                 |                  |
|                       | checkout(successful as well as     | A la la la       |
|                       | unsuccessful) is being done by the | Any whole number |
|                       | user                               |                  |
| No_Customer_Login     | Number of times the customer had   |                  |
|                       | did log in                         |                  |
| No_Page_Viewed        | Number of pages viewed by the      |                  |
|                       | customer                           |                  |

| Cart Abandonment Prediction |   |   |   |   |         |  |  |
|-----------------------------|---|---|---|---|---------|--|--|
| 2                           | 1 | 1 | 2 | 5 | Predict |  |  |

Step 3 – Click the predict tab.

After assigning the values of choice to each feature the app will automatically predict whether cart abandonment has happened or not using the above model.

If the cart abandonment has happened then it will predict Cart\_Abandonment 1 otherwise Cart\_Abandonment 0.

| Cart Abandonment Prediction                 |                       |                   |                |         |  |
|---------------------------------------------|-----------------------|-------------------|----------------|---------|--|
| No_Items_Added_InCart No_Checkout_Confirmed | No_Checkout_Initiated | No_Customer_Login | No_Page_Viewed | Predict |  |
| Cart_Abandonment 0                          |                       |                   |                |         |  |

# **CONCLUSION**

By using this analysis we can predict whether a customer will do abandonment or not in the future. So that customers can be given some offers to complete the checkout successfully and avoid cart abandonment.