Examples IV for Time Series

"Stationary" is meant to mean second order stationary unless explicitly stated otherwise.

- 1. In this question, $\{\epsilon_t\}$ is a zero mean Gaussian white noise process with variance $\sigma_{\epsilon}^2 = 1$.
 - (a) Let $X_1, X_2, ..., X_{100}$ be a portion of the process

$$X_t = \mu + \epsilon_t + \frac{1}{2}\epsilon_{t-1} - \frac{1}{2}\epsilon_{t-2}$$

for some fixed μ . Find the distribution of

$$\bar{X} = \frac{1}{100} \sum_{i=1}^{100} X_i.$$

(b) Let X_1, X_2, X_3, X_4 be a portion of the process

$$X_t = \frac{1}{2}X_{t-1} + \epsilon_t.$$

Find the distribution of

$$\bar{X} = \frac{1}{4} \sum_{i=1}^{4} X_i.$$

2. Let X_1, \ldots, X_N be a sample from a stationary process $\{X_t\}$ with unknown mean μ and variance σ^2 . The so-called 'unbiased' and 'biased' autocovariance estimators are given, respectively, by

$$\hat{s}_{\tau}^{(u)} = \frac{1}{N - |\tau|} \sum_{t=1}^{N - |\tau|} (X_t - \bar{X})(X_{t+|\tau|} - \bar{X}) \text{ and } \hat{s}_{\tau}^{(p)} = \frac{1}{N} \sum_{t=1}^{N - |\tau|} (X_t - \bar{X})(X_{t+|\tau|} - \bar{X}).$$

(a) By writing the periodogram in terms of the biased autocovariance sequence estimator show that the integral of the periodogram is equal to the sample variance, i.e.,

$$\int_{-1/2}^{1/2} S^{(p)}(f) df = \sum_{t=1}^{N} (X_t - \overline{X})^2 / N.$$

(b) Also show that

$$E\{\hat{s}_0^{(p)}\} \equiv E\{\hat{s}_0^{(u)}\} = s_0 - \text{var}\{\overline{X}\},$$

and comment on this result.

- 3. Let $X_1,...,X_N$ be a sample of size N from a white noise process with unknown mean μ and variance σ^2 .
 - (a) Show that, for $0 < |\tau| < N 1$,

$$E\{\hat{s}_{\tau}^{(u)}\} = -\frac{\sigma^2}{N} \quad \text{and} \quad E\{\hat{s}_{\tau}^{(p)}\} = -\left(1-\frac{|\tau|}{N}\right)\frac{\sigma^2}{N}.$$

and hence that, for white noise, the magnitude of the bias of the 'biased' estimator $\hat{s}_{\tau}^{(p)}$ is less than that of the 'unbiased' estimator $\hat{s}_{\tau}^{(u)}$.

- (b) Show that the mean square error of $\hat{s}_{\tau}^{(p)}$ is less than that of $\hat{s}_{\tau}^{(u)}$ for $0 < |\tau| < N 1$.
- (c) By considering the row and diagonal sums of the $N \times N$ matrix having (u, v)th entry $(X_u \bar{X})(X_v \bar{X})$ for $1 \le u, v \le N$, show that $\sum_{\tau = -(N-1)}^{(N-1)} \hat{s}_{\tau}^{(p)} = 0$.

Hence deduce that $\hat{s}_{\tau}^{(p)}$ must be negative for some value(s) of τ .

- 4. Let a be a real-valued nonzero constant, and suppose that $\{a, 0, -a\}$ is a realization of length N=3 of a portion X_1, X_2, X_3 of a stationary process with a *known* mean of zero, spectral density function S(f) and autocovariance sequence $\{s_{\tau}\}$.
 - (a) Show the biased estimator $\{\hat{s}_{\tau}^{(p)}\}\$ of the autocovariance sequence for $\{X_t\}$ is given by

$$\hat{s}_{\tau}^{(p)} = \begin{cases} 2a^2/3, & \tau = 0; \\ 0, & |\tau| = 1; \\ -a^2/3, & |\tau| = 2; \\ 0, & |\tau| > 2. \end{cases}$$

Also determine the 'unbiased' estimator $\{\hat{s}_{\tau}^{(u)}\}$ of the autocovariance sequence.

(b) Use the fact that $\{\hat{s}_{\tau}^{(p)}\}\$ and the periodogram $\hat{S}^{(p)}(f)$ are a Fourier transform pair to show that

$$S^{(p)}(f) = \frac{2a^2}{3}[1 - \cos(4\pi f)], \qquad |f| \le 1/2.$$

(c) An equivalent way of obtaining the periodogram is via

$$\hat{S}^{(p)}(f) = \frac{1}{N} \left| \sum_{t=1}^{N} X_t e^{-i2\pi f t} \right|^2.$$

Verify that computing the periodogram in this alternative manner gives the same results as in part (a)(ii).

(d) The quantity

$$b(f) \equiv E\{\hat{S}^{(p)}(f)\} - S(f)$$

is the bias in the periodogram at frequency f. Use the fact that

$$E\{\hat{S}^{(p)}(f)\} = \int_{-1/2}^{1/2} \mathcal{F}(f - f') S(f') df',$$

where $\mathcal{F}(\cdot)$ is Féjer's kernel defined by

$$\mathcal{F}(f) = \left| \sum_{t=1}^{N} \frac{1}{\sqrt{N}} e^{i2\pi f t} \right|^2 = \frac{\sin^2(N\pi f)}{N \sin^2(\pi f)},$$

to show that the average value of the bias in the periodogram over the interval [-1/2,1/2] is zero. NOTE: If $g(\cdot)$ is a function defined over the interval [a,b], then, by definition, $[1/(b-a)]\int_a^b g(x)\mathrm{d}x$ is the average value of $g(\cdot)$ over [a,b].