NASA TECH BRIEF

NASA Tech Briefs are issued to summarize specific innovations derived from the U. S. space program and to encourage their commercial application. Copies are available to the public from the Clearinghouse for Federal Scientific and Technical Information, Springfield, Virginia 22151.

Queuing Register Uses Fluid Logic Elements

The problem:

To design a queuing register (a multistage bit-shifting device) using a series of pure fluid elements to perform the required logic operations.

The solution:

Connect several stages of three-state pure fluid elements in combination with two-input NOR gates.

How it's done:

Each fluid logic model of the queuing register consists of a three-state fluid element and a two-input NOR gate. Fluid supplied to the system is represented by R_{in}. Two of the (1,0) outputs, 1_{out} and 0_{out}, of the three-state element are branched to the inputs of the two-input NOR gate, which is connected to a pres-

(continued overleaf)

sure source. If either l_{out} or 0_{out} goes high (fluid pressure available from control-signal inputs l_{in} or 0_{in}), the NOR gate will switch off and output R_{out} will be low. When R_{in} goes high (fluid flowing in input channel) in the absence of the control-signal inputs, the output fluid is discharged into the dump connected to the three-state element, and the outputs l_{out} and 0_{out} remain low. If either l_{in} or 0_{in} goes high while R_{in} remains high, the corresponding outputs l_{out} or 0_{out} will go high.

A five-element register with data 110 stored in elements (1), (3), and (5), respectively, is illustrated. As soon as the bit in element (5) has been passed on, its input (R_{in}) goes low and its output R_{out} goes high. As a consequence, element (4) exhibits high R_{in} and l_{out} and low R_{out} , and element (3) exhibits low l_{out} and l_{out} outputs. This process continues until the input information is consumed. More elements

become available for new information as the bits progressively shift to the right.

Note:

Inquiries concerning this invention may be directed to:

Technology Utilization Officer Marshall Space Flight Center Huntsville, Alabama, 35812 Reference: B66-10100

Patent status:

Inquiries about obtaining rights for the commercial use of this invention may be made to NASA, Code GP, Washington, D.C., 20546.

Source: UNIVAC Division of Sperry Rand Corporation under contract to Marshall Space Flight Center (M-FS-317)