PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(OX) Intel IntelOuter 2 from Onto	ification 6:		(11) International Publication Number: WO 95/23874
C12Q 1/68		A1	(43) International Publication Date: 8 September 1995 (08.09.95)
08/209,172 10 08/299,849 1 1 08/346,774 30 (71) Applicant: LUDWIG IN	23 February 1995 (23 February 1995 (March 1994 (01.03.94) March 1994 (10.03.94) September 1994 (01.09.94) November 1994 (30.11.9) NSTITUTE FOR CANC STITUTE FOR CANC	(23.02.9 U U 4) U 94) U	7459, B-1200 Brussels (BE). BOON-FALLEUR, Thierry; Avenue Hippocrate 74, UCL 7459, B-1200 Brussels (BE). LETHE, Bernard; Avenue Hippocrate 74, UCL 7459, B- 1200 Brussels (BE). SZIKORA, Jean-Pierre; Avenue Hippocrate 74, UCL 7459, B-1200 Brussels (BE). DE SMET, Charles; Avenue Hippocrate 74, UCL 7459, B-1200 Brussels (BE). CHOMEZ, Patrick; Avenue Hippocrate 74, UCL 7459, B-1200 Brussels (BE). GAUGLER, Beatrice; Avenue Hippocrate 74, UCL 7459, B-1200 Brussels (BE). VAN DEN EYNDE, Benoit; Avenue Hippocrate 74, UCL 7459, B-1200 Brussels (BE). BRASSEUR, Francis; Avenue Hippocrate 74, UCL 7459, B-1200 Brussels (BE). PATARD, Let Market Market Microscott 74, UCL 7459, B-1200 Brussels (BE).
			1 18/34

(57) Abstract

A method for determining cancers is described. The method involves assaying for expression of a gene coding for at least one of MAGE tumor rejection antigen or its precursor expression product.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

ΑT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	<u> </u>	MW	
			Georgia		Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE.	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	T)	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	٧N	Viet Nam
GA	Gahon				

DETERMINATION OF CANCEROUS CONDITIONS BY MAGE GENE EXPRESSION

FIELD OF THE INVENTION

5

10

15

20

25

30

35

This invention relates to general methods for diagnosing cancers via determining expression of at least one member of the MAGE family of tumor rejection antigen precursors. More particularly, cancers such as lung adenocarcinoma, neck, squamous cell, prostate, and bladder cancers can be diagnosed by determining expression of one or more members of this family of genes. Also a part of the invention are primers which can be used in these methods, such as amplification methods, of which the polymerase chain reaction ("PCR") is the most well known.

BACKGROUND AND PRIOR ART

The study of the recognition or lack of recognition of cancer cells by a host organism has proceeded in many different directions. Understanding of the field presumes some understanding of both basic immunology and oncology.

Early research on mouse tumors revealed that these displayed molecules which led to rejection of tumor cells when transplanted into syngeneic animals. These are "recognized" by T-cells in the recipient molecules animal, and provoke a cytolytic T-cell response with lysis of the transplanted cells. This evidence was first obtained with tumors induced in vitro by chemical carcinogens, such as methylcholanthrene. The antigens expressed by the tumors and which elicited the T-cell response were found to be different for each tumor. Prehn, et al., J. Natl. Canc. Inst. 18: 769-778 (1957); Klein et al., Cancer Res. 20: 1561-1572 (1960); Gross, Cancer Res. 3: 326-333 (1943), Basombrio, Cancer Res. 30: 2458-2462 (1970) for general teachings on inducing tumors with chemical carcinogens and differences in cell surface antigens. This class of antigens has come to be known as

2

"tumor specific transplantation antigens" or "TSTAs". Following the observation of the presentation of such antigens when induced by chemical carcinogens, similar results were obtained when tumors were induced in vitro via ultraviolet radiation. See Kripke, J. Natl. Canc. Inst. 53: 333-1336 (1974).

5

10

15

20

25

30

35

While T-cell mediated immune responses were observed for the types of tumor described <u>supra</u>, spontaneous tumors were thought to be generally non-immunogenic. These were therefore believed not to present antigens which provoked a response to the tumor in the tumor carrying subject. See Hewitt, et al., Brit. J. Cancer 33: 241-259 (1976).

The family of tum antigen presenting cell lines are immunogenic variants obtained by mutagenesis of mouse tumor cells or cell lines, as described by Boon et al., J. Exp. Med. 152: 1184-1193 (1980), the disclosure of which is incorporated by reference. To elaborate, tum antigens are obtained by mutating tumor cells which do not generate an immune response in syngeneic mice and will form tumors (i.e., "tum+" cells). When these tum+ cells are mutagenized, they are rejected by syngeneic mice, and fail to form tumors (thus "tum"). See Boon et al., Proc. Natl. Acad. Sci. USA 74: 272 (1977), the disclosure of which is incorporated by reference. Many tumor types have been shown to exhibit this phenomenon. See, e.g., Frost et al., Cancer Res. 43: 125 (1983).

It appears that tum variants fail to form progressive tumors because they initiate an immune rejection process. The evidence in favor of this hypothesis includes the ability of "tum" variants of tumors, i.e., those which do not normally form tumors, to do so in mice with immune systems suppressed by sublethal irradiation, Van Pel et al., Proc. Natl. Acad. Sci. USA 76: 5282-5285 (1979); and the observation that intraperitoneally injected tum cells of mastocytoma P815 multiply exponentially for 12-15 days, and then are eliminated in only a few days in the midst of

3

an influx of lymphocytes and macrophages (Uyttenhove et al., J. Exp. Med. 152: 1175-1183 (1980)). Further evidence includes the observation that mice acquire an immune memory which permits them to resist subsequent challenge to the same tum variant, even when immunosuppressive amounts of radiation are administered with the following challenge of cells (Boon et al., Proc. Natl, Acad. Sci. USA 74: 272-275 (1977); Van Pel et al., supra; Uyttenhove et al., supra).

5

10

15

20

25

30

35

Later research found that when spontaneous tumors were subjected to mutagenesis, immunogenic variants were produced which did generate a response. Indeed, these variants were able to elicit an immune protective response against the original tumor. See Van Pel et al., J. Exp. Med. 157: 1992-2001 (1983). Thus, it has been shown that it is possible to elicit presentation of a so-called "tumor rejection antigen" in a tumor which is a target for a syngeneic rejection response. Similar results have been obtained when foreign genes have been transfected into spontaneous tumors. See Fearon et al., Cancer Res. 48: 2975-1980 (1988) in this regard.

A class of antigens has been recognized which are presented on the surface of tumor cells and are recognized by cytolytic T cells, leading to lysis. This class of antigens will be referred to as "tumor rejection antigens" or "TRAs" hereafter. TRAs may or may not elicit antibody The extent to which these antigens have been responses. studied, has been via cytolytic T cell characterization studies, in vitro i.e., the study of the identification of the antigen by a particular cytolytic T cell ("CTL" hereafter) subset. The subset proliferates recognition of the presented tumor rejection antigen, and cells presenting the antigen are the Characterization studies have identified CTL clones which specifically lyse cells expressing the antigens. Examples of this work may be found in Levy et al., Adv. Cancer Res. 24: 1-59 (1977); Boon et al., J. Exp. Med. 152: 1184-1193 (1980); Brunner et al., J. Immunol. 124: 1627-1634 (1980);

4

Maryanski et al., Eur. J. Immunol. 124: 1627-1634 (1980); Maryanski et al., Eur. J. Immunol. 12: 406-412 (1982); Palladino et al., Canc. Res. 47: 5074-5079 (1987). This type of analysis is required for other types of antigens recognized by CTLs, including minor histocompatibility antigens, the male specific H-Y antigens, and the class of antigens referred to as "tum-" antigens, and discussed herein.

5

10

15

20

25

30

35

A tumor exemplary of the subject matter described See DePlaen et al., Proc. Natl. supra is known as P815. Acad. Sci. USA 85: 2274-2278 (1988); Szikora et al., EMBO J 9: 1041-1050 (1990), and Sibille et al., J. Exp. Med. which disclosures of (1990), the 35-45 172: is a The P815 tumor by reference. incorporated with mouse in a DBA/2 induced mastocytoma, methylcholanthrene and cultured as both an in vitro tumor The P815 line has generated many tum and a cell line. variants following mutagenesis, including variants referred to as P91A (DePlaen, supra), 35B (Szikora, supra), and P198 (Sibille, supra). In contrast to tumor rejection antigens - and this is a key distinction - the tum antigens are only present after the tumor cells are mutagenized. rejection antigens are present on cells of a given tumor Hence, with reference to the without mutagenesis. literature, a cell line can be tum+, such as the line referred to as "P1", and can be provoked to produce tum variants. Since the tum phenotype differs from that of the parent cell line, one expects a difference in the DNA of tum cell lines as compared to their tum parental lines, and this difference can be exploited to locate the gene of interest in tum cells. As a result, it was found that genes of tum variants such as P91A, 35B and P198 differ from their normal alleles by point mutations in the coding regions of the gene. See Szikora and Sibille, supra, and Lurquin et al., Cell 58: 293-303 (1989). This has proved not to be the case with the TRAs of this invention.

5

10

15

20

25

30

35

papers also demonstrated that peptides derived from the tum antigen are presented by the L^d molecule for recognition by CTLs. P91A is presented by L^d , P35 by D^d and P198 by K^d .

PCT application PCT/US92/04354, filed on May 22, 1992 assigned to the same assignee as the subject application, teaches a family of human tumor rejection antigen precursor coding genes, referred to as the MAGE family, and their expression in various tumor types. Lung adenocarcinoma is not among these. Several of these genes are also discussed in van der Bruggen et al., Science 254: 1643 (1991). It is now clear that the various genes of the MAGE family are expressed in tumor cells, and can serve as markers for the diagnosis of such tumors, as well as for other purposes also Traversari discussed therein. See Immunogenetics 35: 145 (1992); van der Bruggen et al., Science 254: 1643 (1991). The mechanism by which a protein is processed and presented on a cell surface has now been fairly well documented. A cursory review of development of the field may be found in Barinaga, "Getting Some 'Backbone': How MHC Binds Peptides", Science 257: 880 (1992); also, see Fremont et al., Science 257: 919 (1992); Matsumura et al., Science 257: 927 (1992); Latron et al., These papers generally point to Science 257: 964 (1992). a requirement that the peptide which binds to an MHC/HLA molecule be nine amino acids long (a "nonapeptide"), and to the importance of the first and ninth residues of the nonapeptide.

Studies on the MAGE family of genes have now revealed that, in some cases a nonapeptide is presented on the surface of tumor cells, and that the presentation of the nonapeptide requires that the presenting molecule be HLA-A1. Complexes of the MAGE-1 tumor rejection antigen (the "TRA" or nonapeptide") leads to lysis of the cell presenting it by cytolytic T cells ("CTLs"). Additional research has correlated other nonapeptides derived from MAGE and genes to HLA-A1 and other MHC class I molecules.

6

Research presented in, e.g., U.S. patent application Serial No. 07/938,334 filed August 31, 1992, showed that, when comparing homologous regions of various MAGE genes to the region of the MAGE-1 gene coding for the relevant nonapeptide, there is a great deal of homology.

5

10

15

20

25

30

The nucleic acid sequences which code for the nonapeptides were also described therein. These nucleic acid molecules were described as also being useful as diagnostic probes for tumor presence.

The application also showed how it had been found that a cellular model could be used, wherein a non-human cell can be transfected with a nucleic acid sequence coding for a human HLA molecule. The resulting transfectant could then be used to test for nonapeptide specificity of the particular HLA molecule, or as the object of a second transfection with a MAGE gene. The co-transfectant could be used to determine whether the particular MAGE based TRA is presented by the particular HLA molecule.

Many of the references referred to supra present data on the expression pattern of various MAGE genes in different types of cell lines and tumor tissues. What is evident from these data is that there is no "unifying principle" which allows one to predict which MAGE gene will be expressed by a particular tumor type. Thus, while on one level one can say that MAGE genes are "markers" for tumors, on the level of specific tumor types, the correlation of marker and tumor type is not predictable, and must be determined empirically.

It has now been found that one can carry out cancer determination assays by assaying for expression of one or more members of the MAGE family of tumor rejection antigen precursors. How this is accomplished is shown in the examples which follow.

15

BRIEF DESCRIPTION OF THE FIGURES

Figures 1A and 1B depict detection of transfectants expressing antigen P815A.

Figure 2 shows the sensitivity of clones P1.HTR, PO.HTR, genomic transfectant P1A.T2 and cosmid transfectant P1A.TC3.1 to lysis by various CTLs, as determined by chromium release assays.

Figure 3 is a restriction map of cosmid C1A.3.1.

Figure 4 shows Northern Blot analysis of expression of gene 10 P1A.

Figure 5 sets forth the structure of gene P1A with its restriction sites.

Figure 6 shows the results obtained when cells were transfected with the gene for P1A, either isolated from P815 or normal cells and then tested with CTL lysis.

Figure 7 shows lytic studies using mast cell line L138. 8A.

Figure 8 is a map of subfragments of the 2.4 kb antigen E fragment which also express the antigen.

Figure 9 shows homology of sections of exon 3 from genes 20 mage 1, 2 and 3.

Figure 10 shows the result of Northern blots for MAGE genes on various tissues.

Figure 11 presents the data of Figure 13 in table form.

Figure 12 shows Southern Blot experiments using the various human melanoma cell lines employed in this application.

20

25

Figure 13 is a generalized schematic of the expression of MAGE 1, 2 and 3 genes by tumor and normal tissues.

Figure 14 shows results from a chromium release assay using CTL clone 20/38 on various cell lines.

Figure 15 presents the result of assays undertaken to determine antigenic specificity of CTL clone 20/38.

Figure 16 shows the results obtained when a TNF release assay was carried out on various transfected cells.

Figure 17 shows results secured from qualitative PCR assays for MAGE-1 in lung adenocarcinomas.

Figure 18 presents data pertaining to quantitative measurement of MAGE-1 expression in lung adenocarcinomas.

Figure 19 shows reverse transcription/PCR amplification production of mRNA extracted from the bladder tumor of a patient referred to as "HM15". This is shown in all lanes marked "R". In lanes marked "D", amplification products of the genomic DNA from the patient are shown.

Figure 20 displays the fraction of tumors expressing genes MAGE-1, 2, 3 and 4 among the superficial and invasive transitional cell carcinomas of the bladder.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Many different "MAGE" genes have been identified, as will be seen from the sequences which follow the application. The protocols described in the following examples were used to isolate these genes and cDNA sequences.

"MAGE" as used herein refers to a nucleic acid sequence isolated from human cells. The acronym "smage" is used to describe sequences of murine origin.

10

15

20

25

30

35

When "TRAP" or "TRAs" are discussed her in as being specific to a tumor type, this means that the molecule under consideration is associated with that type of tumor, although not necessarily to the exclusion of other tumor types.

Example 1

In order to identify and isolate the gene coding for antigen P815A, gene transfection was used. This approach requires both a source of the gene, and a recipient cell line. Highly transfectable cell line P1.HTR was the starting material for the recipient, but it could not be used without further treatment, as it presents "antigen A", one of four recognized P815 tumor antigens. See Van Pel et al., Molecular Genetics 11: 467-475 (1985). Thus, screening experiments were carried out to isolate cell lines which did not express the antigen and which nonetheless possessed P1.HTR's desirable qualities.

To do this, P1.HTR was screened with CTLs which were specific for each of tumor antigens A, B, C and D. Such CTLs are described by Uyttenhove et al., J. Exp. Med. 157: 1040-1052 (1983).

To carry out the selection, 106 cells of P1.HTR were mixed with 2-4x106 cells of the CTL clone in a round bottom tube in 2 ml of medium, and centrifuged for three minutes at 150xg. After four hours at 37°C, the cells were washed and resuspended in 10 ml of medium, following Maryanski et al., Eur. J. Immunol. 12: 406-412 (1982). Additional information on the CTL assay and screening protocol, in general may be found in Boon et al., J. Exp. Med. 152; 1184-1193 (1980), and Maryanski et al., Eur. J. Immunol. 406-412 (1982), the disclosures of which are incorporated by reference.

When these selections were carried out, a cell line variant was found which expressed neither antigen A or B. Additional selections with CTLs specific for antigen C then yielded a variant which also lacked antigen C. Please see

10

15

20

25

30

35

figure 2 for a summary of the results of these screenings. The variant PO.HTR is negative for antigens A, B and C, and was therefore chosen for the transfection experiments.

The cell line PO.HTR has been deposited in accordance with the Budapest Treaty at the Institute Pasteur Collection Nationale De Cultures De Microorganismes, 28, Rue de Docteur Roux, 75724 Paris France, and has accession number I-1117.

This methodology is adaptable to secure other cell lines which are variants of a cell type which normally presents at least one of the four recognized P815 tumor antigens, i.e., antigens A, B, C and D, where the variants present none of antigens A, B and C. P1.HTR is a mastocytoma cell line, so it will be seen that the protocol enables the isolation of biologically pure mastocytoma cell lines which express none of P815 antigens A, B and C, but which are highly transfectable. Other tumor types may also be screened in this fashion to secure desired, biologically pure cell lines. The resulting cell lines should be at least as transfectable with foreign DNA as is P1.HTR, and should be selected so as to not express a specific antigen.

Example 2

Previous work reported by DePlaen et al., Proc. Natl. Acad. Sci. USA 85: 2274-2278 (1988) the disclosure of which is incorporated by reference herein had shown the efficacy of using cosmid library transfection to recover genes coding for tum antigens.

Selective plasmid and genomic DNAs of P1.HTR were prepared, following Wölfel et al., Immunogenetics $\underline{26}$: 178-187 (1987). The transfection procedure followed Corsaro et al., Somatic Cell Molec. Genet 7: 603-616 (1981), with some modifications. Briefly, 60 μ g of cellular DNA and 3 μ g of DNA of plasmid pHMR272, described by Bernard et al., Exp. Cell. Biol. 158: 237-243 (1985) were mixed. This plasmid confers hygromycin resistance upon recipient cells,

10

15

20

25

30

35

and therefore provides a convenient way to screen for transfectants. The mixed DNA was combined with 940 ul of 1 mM Tris-HCl (pH 7.5), 0.1 mM EDTA, and 310 ul 1M CaCl2. The solution was added slowly, and under constant agitation to 1.25 ml of 50 mM Hepes, 280 mM NaCl, 1.5 mM Na₂HPO₄, adjusted to pH 7.1 with NaOH. Calcium phosphate - DNA precipitates were allowed to form for 30-45 minutes at room Following this, fifteen groups of PO.HTR temperature. cells (5x10⁶ per group) were centrifuged for 10 minutes at Supernatants were removed, and pellets were resuspended directly into the medium containing the DNA precipitates. This mixture was incubated for 20 minutes at 37°C, after which it was added to an 80 cm2 tissue culture flask containing 22.5 ml DMEM, supplemented with 10% fetal After 24 hours, medium was replaced. eight hours after transfection, cells were collected and Transfected cells were selected in mass culture counted. using culture medium supplemented with hygromycin B (350 ug/ml). This treatment selected cells for hygromycin resistance.

For each group, two flasks were prepared, each containing 8x10⁶ cells in 40 ml of medium. In order to estimate the number of transfectants, 1x10⁶ cells from each group were plated in 5 ml DMEM with 10% fetal calf serum (FCS), 0.4% bactoagar, and 300 ug/ml hygromycin B. The colonies were then counted 12 days later. Two independent determinations were carried out and the average taken. This was multiplied by 5 to estimate the number of transfectants in the corresponding group. Correction had to be made for the cloning efficiency of P815 cells, known to be about 0.3.

Example 3

Eight days after transfection as described in example 2, <u>supra</u>, antibiotic resistant transfectants were separated from dead cells, using density centrifugation with Ficoll-

12

Paqu . These cells were maintained in non-s lective medium The cells were plated in 96 w ll for 1 or 2 days. microplates (round bottom), at 30 cells/microwell in 200 ul of culture medium. Anywhere from 100-400 microwells were depending on the number of transfectants prepared, 5 Agar colony tests gave estimates of 500-3000. prepared. After 5 days, the wells contained about 6×10^4 cells and replicate plates were prepared by transferring 1/10 of the wells to microplates which were then incubated at 30°C. One day later, master plates were centrifuged, medium 10 removed, and 750 CTLs against P815 antigen A (CTL·P1:5) were added to each well together with 106 irradiated syngeneic feeder spleen cells in CTL culture medium containing 40 U/ml recombinant human IL-2, and HAT medium Six days later, plates were to kill stimulator cells. 15 examined visually to identify wells where CTLs had proliferating showed plates Where proliferated. microcultures, aliquots of 100 ul of the wells were transferred to another plate containing 51Cr labeled P1.HTR target cells $(2x10^3 - 4x10^3 per well)$, and chromium release 20 Replicate microcultures was measured after 4 hours. corresponding to those showing high CTL activity were expanded and cloned by limited dilution in DMEM with 10% Five days later, about 200 clones were collected and screened with the CTL.P1:5 cell line, described supra, in 25 a visual lysis assay. See figure 1A for these results.

In these experiments, three of the fifteen groups of transfectants yielded a few positive microcultures. These microcultures were tested for lytic activity against P1.HTR, as described <u>supra</u>. Most of the microcultures where proliferation was observed showed lytic activity. This activity was well above background, as shown in figure 1B. This figure summarizes data wherein two groups of cells (groups "5" and "14"), 400 and 300 microwells were seeded with 30 hygromycin resistant transfected cells. Amplification and duplication of the microcultures was followed by addition of anti-A CTL P1:5. Six days later,

30

35

13

lytic activity against P1.HTR was tested. In the figure, each point represents lytic activity of a single microculture.

Duplicate microcultures corresponding to several positive wells were subcloned, and more than 1% of the subclones were found to be lysed by anti-A CTL. Thus, three independent transfectants expressing P815A were obtained from 33,000 hygromycin resistant transfectants. One of these lines, referred to hereafter as P1A.T2 was tested further.

The relevant antigen profile of P1A.T2 is shown in figure 2, this being obtained via anti-CTL assays of the type described supra.

Example 4

5

10

15

20

25

30

35.

The CTL assays carried out for P1A.T2 demonstrated that it presented antigen A ("P815A"), and therefore had received the gene from P1.HTR. To that end, this cell line was used as a source for the gene for the antigen precursor in the following experiments.

Prior work had shown that genes coding for tum antigens could be recovered directly from transfectants obtained with a cosmid library. See DePlaen et al., Proc. Natl. Acad. Sci. USA 85: 2274-2278 (1988). This procedure was followed for recovery of the P815 gene.

Total genomic DNA of P1A.T2 was partially digested with restriction endonuclease Sau 3A1, and fractionated by NaCl density gradient ultracentrifugation to enrich for 35-50 kb DNA fragments, following Grosveld et al., Gene 10:6715-6732 (1982). These fragments were ligated to cosmid arms of C2RB, described by Bates et al., Gene 26: 137-146 (1983), the disclosure of which is incorporated by reference. These cosmid arms had been obtained by cleavage with SmaI and treatment with calf intestinal phosphatase, followed by digestion with BamHI. Ligated DNA was packaged into lambda phage components, and titrated on E. coli ED 8767, following Grosveld et al., supra. Approximately 9x105

10

15

20

25

35

ampicillin resistant colonies were obtained per microgram of DNA insert.

The cosmid groups were amplified by mixing 30,000 independent cosmids with 2 ml of ED 8767 in 10 mM MgCl₂, incubated 20 minutes at 37°C, diluted with 20 ml of Luria Bertani ("LB") medium, followed by incubation for one hour. This suspension was titrated and used to inoculate 1 liter of LB medium in the presence of ampicillin (50 ug/ml). At a bacterial concentration of 2×10^8 cells/ml ($OD_{600}=0.8$), a 10 ml aliquot was frozen, and 200 ug/ml chloramphenicol was added to the culture for overnight incubation. Total cosmid DNA was isolated by alkaline lysis procedure, and purified on CsCl gradient.

In these experiments, a library of 650,000 cosmids was prepared. The amplification protocol involved the use of 21 groups of approximately 30,000 cosmids.

Example 5

Using the twenty-one groups of cosmids alluded to supra, (60 uq) and 4 uq of pHMR272, described supra, groups of 5x106 PO.HTR cells were used as transfectant hosts. Transfection was carried out in the same manner as described in the preceding experiments. An average of 3000 transfectants per group were tested for antigen presentation, again using CTL assays as described. group of cosmids repeatedly yielded positive transfectants, of about 1/5,000 drug resistant at frequency transfectants. The transfectants, as with P1A.T2, also showed expression of both antigen A and B. The pattern of expression of transfectant P1A.TC3.1 is shown in figure 2,

30 Example 6

As indicated in Example 5, <u>supra</u>, three independent cosmid transfected cells presenting P815A antigen were isolated. The DNA of these transfectants was isolated and packaged directly with lambda phage extracts, following DePlaen et al., Proc. Natl. Acad. Sci. USA 85: 2274-2278

20

25

30

35

(1988). The resulting product was titrated on <u>E. coli</u> ED 8767 with ampicillin selection, as in Example 5. Similarly, amplification of the cosmids and transfection followed Example 5, again using PO.HTR.

High frequencies of transfection were observed, as described in Table 1, which follows:

Table 1. Transfer of the expression of antigen P815A by cosmids obtained by direct packaging

10	Transfectant obtained with the cosmid library	No. of cosmids obtained by direct packaging of 0.5 μ g of DNA	No. of transfectants expressing P815A / no. of HmB' transfectants
15	TC3.1	32	87/192
	TC3.2	32000	49/384
	тс3.3	44	25/72

The cosmids were analyzed with restriction enzymes and it was found that directly packaged transfectant P1A.TC3.1 contained 32 cosmids, 7 of which were different. Each of these 7 cosmids was transfected into PO.HTR, in the manner and again, following the protocols described supra, described above, transfectants were studied presentation of P815A. Four of the cosmid transfectants showed P815A presentation and, as with all experiments described herein, P815B was co-expressed.

Of the four cosmids showing presentation of the two antigens, cosmid C1A.3.1 was only 16.7 kilobases long, and was selected for further analysis as described <u>infra</u>.

The cosmid C1A.3.1 was subjected to restriction endonuclease analysis, yielding the map shown in Figure 3.

All EcoRI fragments were transfected, again using the above described protocols, and only the 7.4 kilobase fragment produced a transfectant that anti-A CTLs could lyse. Similar experiments were carried out on the PstI

10

15

20

25

30

35

fragments, and only a 4.1 kb fragment fully contained within the 7.4 kb EcoRI fragment produced lysable transfectants.

This fragment (i.e., the 4.1 kb PstI fragment), was digested with SmaI, giving a 2.3 kb fragment which also yielded host cells presenting antigens A and B after transfection. Finally, a fragment 900 bases long, secured with SmaI/XbaI, also transferred expression of the precursors of these two antigens, i.e., the transfected host cell presented both antigen A and antigen B.

Example 7

The 900 base fragment described above was used as a probe to detect the expression of the P815A gene in parent cell line P1.HTR. To accomplish this, total cellular RNA was first isolated using the guanidine-isothiocyanate procedure of Davis et al., <u>Basic Methods In Molecular Biology</u> (Elsevier Science Publishing Co, New York) (1986). The same reference was the source of the method used to isolate and purify polyA⁺ mRNA using oligodT cellulose column chromatography.

Samples were then subjected to Northern Blot analysis. RNA samples were fractionated on 1% agarose gels containing 0.66 M formaldehyde. The gels were treated with 10xSSC (SSC: 0.15 M NaCl; 0.015 M sodium citrate, pH 7.0) for 30 minutes before overnight blotting on nitrocellulose membranes. These were baked for two hours at 80°C, after which the membranes were prehybridized for 15 minutes at 60°C in a solution containing 10% dextran sulfate, 1% SDS and 1M NaCl. Hybridization was then carried out using denatured probe (the 900 base fragment), together with 100 ug/ml salmon sperm DNA.

When this protocol was carried out using P1.HTR poly A^+ RNA, a band of 1.2 kb and two fainter bands were identified, as shown in Figure 4, lane 1 (6 ug of the RNA).

The same probe was used to screen a cDNA library, prepared from poly-A+ RNA from the cell line. This yielded

10

20

25

30

a clone with a 1kb insert, suggesting a missing 5' end. The Northern blots for the cDNA are not shown.

Hybridization experiments in each case were carried out overnight at 60°C. The blots were washed twice at room temperature with 2xSSC and twice at 60°C with 2xSSC supplemented with 1% SDS.

The foregoing experiments delineated the DNA expressing the P815A antigen precursor sufficiently to allow sequencing, using the well known Sanger dideoxy chain termination method. This was carried out on clones generated using a variety of restriction endonucleases and by specific priming with synthetic oligonucleotide primers. The results for exons of the gene are set forth in SEQUENCE ID NO: 4.

15 Example 8

The Northern analysis described <u>supra</u> suggested that the 5' end of the cDNA was missing. To obtain this sequence, cDNA was prepared from P1.HTR RNA using a primer corresponding to positions 320-303. The sequence was then amplified using the polymerase chain reaction using a 3' primer corresponding to positions 286-266 and a 5' primer described by Frohman et al., Proc. Natl. Acad. Sci. USA 85: 8998-9002 (1988). A band of the expected size (270 bases) was found, which hybridized to the 900 bp SmaI/XbaI fragment described <u>supra</u> on a Southern blot. Following cloning into m13tg 130 and tg 131, the small, 270 bp fragment was sequenced. The sequence is shown in SEQUENCE ID NO: 1.

Example 9

Following the procurement of the sequences described in Examples 7 and 8 and depicted in SEQ ID NO: 4, a 5.7 kb region of cosmid C1A.3.1 was sequenced. This fragment was known to contain the 900 base fragment which expressed P815A in transfectants. This experiment permitted

5

10

15

20

25

30

35

18

delineation of introns and exons, since the cosmid is genomic in origin.

The delineated structure of the gene is shown in figure 5. Together with SEQ ID NO: 4, these data show that the gene for the antigen precursor, referred to as "P1A" hereafter, is approximately 5 kilobases long and contains 3 exons. An ORF for a protein of 224 amino acids starts in exon 1, ending in exon 2. The 900 base pair fragment which transfers expression of precursors for antigens A and B only contains exon 1. The promoter region contains a CAAT box, as indicated in SEQ ID NO: 1, and an enhancer sequence. This latter feature has been observed in promoters of most MHC class I genes, as observed by Geraghty et al., J. Exp. Med 171: 1-18 (1990); Kimura et al., Cell 44: 261-272 (1986).

A computer homology search was carried out, using program FASTA with K-triple parameters of 3 and 6, as suggested by Lipman et al., Science 227: 1435-1441 (1985), and using Genbank database release 65 (October 1990). homology was found except for a stretch of 95 bases corresponding to part of an acid region coded by exon 1 (positions 524-618), which is similar to sequences coding for acidic regions in mouse nucleolar protein NO38/B23, as described by Bourbon et al., Mol. Biol. 200: 627-638 (1988), and Schmidt-Zachmann et al., Chromosoma 96: 417-426 (1988). Fifty six of 95 bases were identical. In order to test whether these homologies were the reason for cross hybridizing, experiments were carried out using a mouse spleen cDNA library screened with the 900 base fragment. cDNA clones corresponding closely to the sizes of the cross hybridizing bands were obtained. These were partially sequenced, and the 2.6 kb cDNA was found to correspond exactly to reported cDNA sequence of mouse nucleolin, while the 1.5 kb cDNA corresponded to mouse nucleolar protein NO38/B23.

Analysis of the nucleotide sequence of the gene, referred to as "P1A" hereafter, suggests that its coded

10

15

20

25

30

35

product has a molecular mass of 25 kd. Analysis of the SEQUENCE ID NO: 4 shows a potential nuclear targeting signal at residues 5-9 (Dingwall et al., Ann. Rev. Cell Biol. 2: 367-390 (1986)), as well as a large acidic domain at positions 83-118. As indicated supra, this contains the region of homology between P1A and the two nucleolar proteins. A putative phosphorylation site can be found at position 125 (serine). Also, a second acidic domain is found close to the C-terminus as an uninterrupted stretch of 14 glutamate residues. A similar C-terminal structure has been found by Kessel et al. Proc. Natl. Acad. Sci. USA 84: 5306-5310 (1987), in a murine homeodomain protein having nuclear localization.

In studies comparing the sequence of gene PlA to the sequences for P91A, P35B and P198, no similarities were found, showing that PlA is indicative of a different class of genes and antigens.

Example 10

sequence in and the P1A probe With investigations were carried out to determine whether the gene present in normal tissue was identical to that expressed by the tumor. To do this, phage libraries were prepared, using lambda zapII 10 and genomic DNA of DBA/2 probe. murine kidney cells. P1A was used as Hybridization conditions were as described supra, and a hybridizing clone was found. The clone contained exons one and two of the P1A gene, and corresponded to positions -0.7 Following localization of this to 3.8 of figure 5. sequence, PCR amplification was carried out to obtain the sequence corresponding to 3.8 to 4.5 of figure 5.

Sequence analysis was carried out, and no differences were found between the gene from normal kidneys and the P1A gene as obtained from the P815 tumor cells.

In further experiments, the gene as found in DBA/2 kidney cells was transfected into PO.HTR, as described supra. These experiments, presented pictorially in figure

6, showed that antigens A and B w re expr ssed as efficiently by the kidney gene isolated from normal P815 cells as with the P1A gene isolated from normal kidney cells.

These experiments lead to the conclusion that the gene coding for the tumor rejection antigen precursor is a gene that does not result from a mutation; rather, it would appear that the gene is the same as one present in normal cells, but is not expressed therein. The ramifications of this finding are important, and are discussed <u>infra</u>.

In studies not elaborated upon herein, it was found that variants of the gene were available. Some cells were "PlAB+", rather than the normal "PlA". The only difference between these is a point mutation in exon 1, with the 18th triplet coding for Ala in the variant instead of Val.

Example 11

5

10

15

20

25

30

35

Additional experiments were carried out with other cell types. Following the protocols described for Northern blot hybridizations <u>supra</u>, RNA of normal liver and spleen cells was tested to determine if a transcript of the P1A gene could be found. The Northern blot data are presented in figure 4 and, as can be seen, there is no evidence of expression.

The murine P815 cell line from which P1A was isolated is a mastocytoma. Therefore, mast cell lines were studied to determine if they expressed the gene. Mast cell line MC/9, described by Nabel et al., Cell 23: 19-28 (1981), and short term cultures of bone marrow derived mast cells were tested in the manner described supra (Northern blotting), but no transcript was found. In contrast when a BALB/C derived IL-3 dependent cell line L138.8A (Hültner et al., J. Immunol. 142: 3440-3446 (1989)) was tested, a strong signal was found. The mast cell work is shown in figure 4.

It is known that both BALB/C and DBA/2 mice share H-2^d haplotype, and thus it was possible to test sensitivity to lysis using the CTLs described <u>supra</u>. Figure 7 shows these

10

15

20

30

results, which essentially prove that anti-A and anti-B CTLs lysed the cells strongly, whereas anti-C and anti-D lines did not.

Further tests were carried out on other murine tumor cell lines, i.e., teratocarcinoma cell line PCC4 (Boon et al., Proc. Natl. Acad. Sci. USA 74: 272-275 (1977), and leukemias LEC and WEHI-3B. Expression could not be detected in any of these samples.

Example 12

The actual presentation of the P1A antigen by MHC molecules was of interest. To test this, cosmid C1A.3.1 was transfected into fibroblast cell line DAP, which shows phenotype H-2^k. The cell lines were transfected with genes expressing one of the K^d, D^d, and L^d antigen. Following transfection with both the cosmid and the MHC gene, lysis with CTLs was studied, again as described supra. These studies, summarized in Table 2, show that L^d is required for presentation of the P1A antigens A and B.

Table 2. H-2-restriction of antigens P815A and P815B

Recip	ient cell"	No. of clones lysed by the CTL/no. of HmB' clones		
		CTL anti-A	CTL anti-B	
DAP (H-2 ^k)	0/208	0/194	
DAP +	K_q	0/165	0/162	
DAP +	$\mathbf{D}^{\mathbf{d}}$	0/157	0/129	
DAP +	L ^d	25/33	15/20	

^{*}Cosmid ClA.3.1 containing the entire PlA gene was transfected in DAP cells previously transfected with $H-2^d$ class I genes as indicated.

^{*}Independent drug-resistant colonies were tested by lysis by anti-A or anti-B CTL in a visual assay.

The observation that one may associate presentation of a tumor rejection antigen with a particular MHC molecule was confirmed in experiments with human cells and HLA molecules, as elaborated upon <u>infra</u>.

5 Example 13

10

15

20

25

30

Using the sequence of the P1A gene as well as the amino acid sequence derivable therefrom, antigenic peptides which were A⁺ B⁺ (i.e., characteristic of cells which express both the A and B antigens), and those which are AB⁺ were identified. The peptide is presented in SEQ ID NO: 26. This peptide when administered to samples of PO.HTR cells in the presence of CTL cell lines specific to cells presenting it, led to lysis of the PO.HTR cells, lending support to the view that peptides based on the product expressed by the gene can be used as vaccines.

Example 14

The human melanoma cell line referred to hereafter as MZ2-MEL is not a clonal cell line. It expresses four stable antigens recognized by autologous CTLs, known as antigens "D, E, F, and A". In addition, two other antigens "B" and "C" are expressed by some sublines of the tumor. CTL clones specific for these six antigens are described by Van den Eynde et al., Int. J. Canc. 44: 634-640 (1989). Among the recognized subclones of MZ2-MEL are MEL.43, MEL3.0 and MEL3.1. (Van den Eynde et al., supra). Cell line MEL3.1 expresses antigen E, as determined by CTL studies as described for P815 variants, supra, so it was chosen as a source for the nucleic acid sequence expressing the antigen precursor.

In isolating the pertinent nucleic acid molecule for a tumor rejection antigen precursor, the techniques developed <u>supra</u>, showed that a recipient cell is needed which fulfills two criteria: (i) the recipient cell must not express the TRAP of interest under normal conditions,

10

15

20

25

30

35

and (ii) it must express the relevant class I HLA molecule. Also, the recipient cell must have a high transfection frequency, i.e., it must be a "good" recipient.

In order to secure such a cell line, the clonal subline MEL3.1 was subjected to repeated selection with anti-E CTL 82/30 as described by Van den Eynde, <u>supra</u>. The repeated cycles of selection led to isolation of subclone MZ2-MEL-2.2 isc E. This subclone is also HPRT, (i.e., sensitive to HAT medium: 10⁴ M hypoxanthine, 3.8 x 10⁻⁷ aminopterine, 1.6 x 10⁻⁵ M 2-deoxythymidine). The subclone is referred to as "MEL-2.2" for simplicity hereafter.

Example 15

The genomic DNA of MEL3.0 was prepared following Wölfel et al., Immunogenetics 26: 178-187 (1987), the disclosure of which is incorporated by reference. The plasmid pSVtkneoß, as described by Nicolas et al., Cold Spring Harb., Conf. Cell Prolif. 10: 469-485 (1983) confers geneticin resistance, so it can be used as a marker for cotransfection, as it was in this experiment.

Following a procedure similar but not identical to that of Corsaro et al., Somatic Cell Molec. Genet 7: 603-(1981), total genomic DNA and the plasmid were cotransfected. The genomic DNA (60 μ g) and plasmid DNA (6 μ g) were mixed in 940 μ l of 1 mM Tris·HCl (pH 7.5), 0.1 mM EDTA, after which 310 μ l of 1M CaCl₂ was added. solution was slowly added, under constant agitation, to 1.25 ml of 2xHBS (50 mM HEPES, 280 mM Nacl 1.5 mM Na₂HPO₄, adjusted to pH 7.1 with NaOH). The calcium phosphate DNA precipitates were allowed to form for 30-45 minutes at room temperature, after which they were applied to 80 cm2 tissue culture flasks which had been seeded 24 hours previously with 3x106 MEL2.2 cells, in 22.5 ml of melanoma culture medium (Dulbecco's Modified Eagle's Medium) supplemented with 10% fetal calf serum. After 24 hours, the medium was replaced. Forty eight hours after transfection, the cells

10

15

20

25

30

35

were harvested and seeded at 4x10⁶ cells per 80 cm² flask in melanoma culture medium supplemented with 2 mg/ml of geneticin. The geneticin serves as a selection marker.

Example 16

Thirteen days after transfection, geneticin-resistant colonies were counted, harvested, and cultured in nonselective medium for 2 or 3 days. Transfected cells were then plated in 96-well microplates at 200 cells/well in 200 ul of culture medium with 20% fetal calf serum (FCS) in order to obtain approximately 30 growing colonies per well. The number of microcultures was aimed at achieving redundancy, i.e., such that every independent transfectant should be represented at least four times.

After 10 days, wells contained approximately 6×10^4 cells. These cells were detached, and 1/3 of each microculture was transferred to a duplicate plate. After 6 hours, i.e., after readherence, medium was removed and 1500 anti-E CTL (CTL 82/30), were added to each well in 100 μ l of CTL culture medium with 35 U/ml of IL-2. One day later, the supernatant (50 μ l) was harvested and examined for TNF concentration, for reasons set forth in the following example.

Example 17

The size of the mammalian genome is $6x10^6$ kb. As the average amount of DNA integrated in each drug-resistant transfectant was expected to be about 200 kb, a minimum of 30,000 transfectants would need to be examined to ascertain whether antigen E had been transfected. Prior work with murine cells had shown that when a CTL stimulation assay was used, groups containing only 3% of cells expressing the antigen of interested could be identified. This should reduce the number of assays by a factor of 30. While an anti-E CTL assay, as described supra, in mixed E+/E cells was helpful, it was not sufficient in that consistent results could not be obtained.

10

15

20

25

30

As a result, an alternative test was devis d. Stimulation of CTLs was studied by rel ase of tumor necrosis factor ("TNF") using well known methodologies which need not be repeated here. As described in Example 15, 1500 CTL 82/30 cells had been added per well of These CTLs were collected 6 days after stimulation. As indicated supra, after 1/3 of the cells in each well had been removed and the remaining 2/3 (4x104) had readhered, the CTLs and IL-2 were added thereto. of supernatant was removed 24 hours later and transferred to a microplate containing 3x104 W13 (WEHI-164 clone 13; Espevik et al., J. Immunol. Meth. 95: 99-105 (1986)) cells in 50 μ l of W13 culture medium (RPMI-1640, supplemented with L-arginine (116 mg/l), L-asparagine (36 mg/l), Lglutamine (216 mg/l), and 10% FCS supplemented with 2 μg of actinomycin D at 37°C in an 8% CO2 atmosphere. line W13 is a mouse fibrosarcoma cell line sensitive to Dilutions of recombinant TNF-B in RPMI 1640 were TNF. added to target cell controls.

The W13 cultures were evaluated after 20 hours of incubation, and dead cell percentage was measured using an adaptation of the colorimetric assay of Hansen et al., J. Immunol. Meth. 119: 203-210 (1989). This involved adding (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl ml of tetrazolium bromide at 2.5 mg/ml in PBS, followed by two hours of incubation at 37°C. Dark blue formazan crystals were dissolved by adding 100 μ l of lysis solution (1 volume N,N dimethyl formamide mixed at 37°C with two volumes of water containing 30% (w/v) sodium dodecyl sulphate, at pH 4.7 from 1.6% acetic acid and 2.5% 1N HCl). Plates were incubated at 37°C overnight, and ODs were taken at 570 nm using 650 nm as control. Dead cell percentage was determined via the formula:

35 100 x 1 -
$$\frac{100-(OD_{570} \text{ sample well})}{OD_{570} \text{ well + medium}}$$

10

15

20

25

30

following Espevik et al., J. Immunol. Meth. 95: 99-105 (1986). The results showed that even when the ratio of E^+/E^- cells was as low as 1/45, significant production of TNF was observed, thus showing active CTLs. This led to the decision to test the drug resistant transfectants in groups of 30.

Example 18

Cells were tested for TNF production as discussed in Example 17, supra. A total of 100 groups of E cells (4x106 cells/group) were tested following transfection, and 7x104 geneticin resistant transfectants independent obtained, for an average of 700 per group. Only one group of transfected cells led to a microculture which caused anti-E antigen CTL clone 82/30 to produce TNF. Of 300 These clones were then clones tested, 8 were positive. tested for lysis by anti-E CTL, using the standard 51Cr release assay, and were found to be lysed as efficiently as the original E+ cell line. The transfectant E.T1, discussed herein, had the same lysis pattern as did MEL2.2 for CTLs against antigens B,C,D and F.

The fact that only one transfectant presented the antigen out of 70,000 geneticin resistance transfectants may at first seem very low, but it is not. The work described <u>supra</u> for P815 showed an average frequency of 1/13,000. Human DNA recipient MEL2.2 appears to integrate 5 times less DNA than P1.HTR.

Example 19

Once transfectant E.T1 was found, analysis had to address several questions including whether an E⁺ contaminant of the cell population was the cause. The analysis of antigen presentation, described <u>supra</u>, shows that E.T1 is B and C, just like the recipient cell MEL2.2. It was also found to be HPRT, using standard selection

10

15

20

30

35

procedures. All E+ cells used in the work described herein, however, were HPRT+.

It was also possible that an E+ revertant of MEL2.2 was To test this, the observation by the source for E.T1. Perucho et al., Cell 22: 309-317 (1980), that cotransfected sequences usually integrate together at a single location If antigen E in a of recipient genome was employed. transfectant results from cotransfec-tion with pSVtkneoß, then sequences should be linked and deletion of the antigen might also delete the neighboring pSVtkneoß sequences. Wölfel et al., supra, has shown this to be true. normally E cell is transfected with pSVtkneoß, sequences should be linked and deletion of the antigen might also delete the neighboring pSVtkneoß sequences. If a normally E+ cell transfected with pSVtkneoß is E.T1, however, "co-deletion" should not take place. subjected to transfectant E.T1 was the immunoselection with 82/30, as described supra. Two antigen loss variants were obtained, which resisted lysis Neither of these had lost geneticin by this CTL. resistance; however, Southern blot analysis showed loss of several neor sequences in the variants, showing close linkage between the E gene and neor gene in E.T1, leading to the conclusion that E.T1 was a transfectant.

25 Example 20

The E⁺ subclone MZ2-MEL 43 was used as a source of DNA for preparation of a cosmid library. This library of nearly 700,000 cosmids was transfected into MZ2-MEL 2.2 cells, following the cosmid transfection protocols described <u>supra</u>.

By packaging the DNA of cosmid transfectants directly into lambda phage components, it is sometimes possible to retrieve cosmids that contain the sequences of interest. This procedure was unsuccessful here, so rescue of the transfected sequence was accomplished by ligating DNA of

10

15

20

25

30

35

the transfectant to appropriate restriction fragments of cosmid vector pTL6. This was tried with two transfectants and was successful with one of them. One cosmid, referred to as B3, was recovered from this experiment, and subjected to restriction endonuclease digestion via XmaI, or by BamHI digestion of a large, 12 kb XmaI transfected fragment. The fragments were cloned into vector pTZ 18R, and then transfected into MEL2.2. Again, TNF production was the measure by which successful transfection was determined. The experiments led to the determination of a gene sequence capable of transfecting antigen E on the 12 kb XmaI fragment, and then on the 2.4 kb fragment of BamHI digestion of the 12 kb segment.

The 2.4 kb fragment hybridizes with a 2.4 kb fragment from MZ2-MEL and with a T cell clone of patient MZ-2, as determined by Southern Blots (BamHI digested DNA). The band is absent from E antigen loss variants of MZ2-MEL, as seen in SEO ID NO: 7.

The sequence for the E antigen precursor gene has been determined, and is presented herein:

Example 21

After the 2.4 kb genomic segment had been identified, studies were carried out to determine if an "E+" subline expressed any homologous DNA. Cell line MZ2-MEL 3.0 was used as a source, and a cDNA library was prepared from its mRNA, using art known techniques. The 2.4 kb segment was used as a probe, and an mRNA of about 1.8 kb was identified as homologous, using Northern blot analysis. When cDNA was screened, clones were obtained showing almost complete identity to parts of the 2.4 kb fragment. Two exons were An additional exon was located upstream thus identified. of these, via sequencing segments of cosmid B3 located in front of the 2.4 kb BamHI fragment. The gene extends over about 4.5 kb, as shown in Figure 8. The starting point of the transcribed region was confirmed using PCR for the 5' end of the cDNA. The three exons comprise 65, 73, and 1551

10

15

20

25

30

35

base pairs. An ATG is located at position 66 of exon 3, followed by a 927 base pair reading frame.

Example 22

To determine if smaller segments of the 2.4 kb fragment could transfer the expression of antigen E, smaller pieces corresponding to the larger gene were prepared, using art recognized techniques, and transferred into E cells. Figure 8 shows the boundaries of the three segments.

Transfer of antigen expression in this manner indicates that the gene codes for the antigen precursor, rather than coding for a protein which activates the antigen.

Example 23

probing of CDNA described supra revealed, surprisingly, two different but closely related cDNAs. These cDNAs, when tested, did not transfer expression of antigen E, but they do show substantial homology to the first cDNA segment. The three segments, appear to indicate a newly recognized family of genes, referred to as "MAGE" for "melanoma antigen". In Figure 9, MAGE-1" directs expression of the antigen from MZ2 cells. Portions of the third exon of each gene are presented in Figure 9. second and third sequences are more closely related to each other than the first (18.1 and 18.9% difference compared to the first; 12% with each other). Out of 9 cDNA clones obtained, three of each type were obtained, suggesting equal expression. "MAGE" as used hereafter refers to a family of molecules, and the nucleic acids coding for them. These nucleic acids share a certain degree of homology and are expressed in tumor cells including several types of human tumor cells as well as in human tumors. The family is referred to as "MAGE" because the first members were identified in human melanoma cells. As the experiments which follow indicate, however, the members of the MAGE

10

15

20

25

30

35

family are not at all restricted to melanoma tumors; rather, MAGE refers to a family of tumor rejection antigen precursors and the nucleic acid sequences coding therefore. The antigens resulting therefrom are referred to herein as "MAGE TRAS" or "melanoma antigen tumor rejection antigens"

Example 24

Experiments with mouse tumors have demonstrated that new antigens recognized by T cells can result from point mutations that modify active genes in a region that codes for the new antigenic peptide. New antigens can also arise from the activation of genes that are not expressed in most normal cells. To clarify this issue for antigen MZ2-E, the MAGE-1 gene present in the melanoma cells was compared to that present in normal cells of patient M22. Amplification polymerase reaction chain (PCR) of DNA phytohemagglutinin-activated blood lymphocytes using primers surrounding a 1300 bp stretch covering the first half of the 2.4 kb fragment was carried out. a PCR product was obtained whereas none was obtained with the DNA of the E variant. The sequence of this PCR product proved identical to the corresponding sequence of the gene carried by the E+ melanoma cells. Moreover, it was found that antigen MZ2-E was expressed by cells transfected with the cloned PCR product. This result suggests that the activation of a gene normally silent is responsible for the appearance of tumor rejection antigen MZ2-E.

Example 25

In order to evaluate the expression of gene MAGE-1 by various normal and tumor cells, Northern blots were hybridized with a probe covering most of the third exon. In contrast with the result observed with human tumor cell line MZ2-MEL 3.0, no band was observed with RNA isolated from a CTL clone of patient MZ2 and phytohemagglutininactivated blood lymphocytes of the same patient. Also negative were several normal tissues of other individuals

(Figure 10 and Figure 11). Fourteen melanoma cell lines of other patients were tested. Eleven were positive with bands of varying intensities. In addition to these cultured cell lines, four samples of melanoma tumor tissue Two samples, including a metastasis of were analyzed. 5 patient MZ2, proved positive, excluding the possibility that expression of the gene represented a tissue culture A few tumors of other histological types, artefact. including lung tumors were tested. Most of these tumors were positive (Figures 10 and 11). These results indicated 10 that the MAGE gene family is expressed by many melanomas and also by other tumors. However, they provided no clear indication as to which of genes MAGE-1, 2 or 3 were cells, because the DNA probes these expressed by corresponding to the three genes cross-hybridized to a 15 To render this analysis considerable extent. specific. PCR amplification and hybridization with highly specific oligonucleotide probes were used. cDNAs were obtained and amplified by PCR using oligonucleotide primers corresponding to sequences of exon 3 that were identical 20 for the three MAGE genes discussed herein. products were then tested for their ability to hybridize to oligonucleotides that showed complete other three specificity for one of the three genes (Figure 9). Control experiments carried out by diluting RNA of melanoma MZ2-MEL 25 3.0 in RNA from negative cells indicated that under the conditions used herein the intensity of the signal decreased proportionally to the dilution and that positive signals could still be detected at a dilution of 1/300. The normal cells (lymphocytes) that were tested by PCR were 30 confirmed to be negative for the expression of the three MAGE genes, suggesting therefore a level of expression of less than 1/300th that of the MZ2 melanoma cell line (Figure For the panel of melanoma cell lines, the results clearly showed that some melanomas expressed MAGE genes 35 mage 1, 2 and 3 whereas other expressed only mage-2 and 3 Some of the other tumors also (Figures 11 and 10).

32

expressed all three genes whereas others expressed only MAGE-2 and 3 or only MAGE-3. It is impossible to exclude formally that some positive PCR results do not reflect the expression of one of the three characterized MAGE genes but that of yet another closely related gene that would share the sequence of the priming and hybridizing oligonucleotides. It can be concluded that the MAGE gene family is expressed by a large array of different tumors and that these genes are silent in the normal cells tested to this point.

Example 26

5

10

15

20

25

30

35

The availability of a sequence that transfects at high efficiency and efficiently expresses a TRAP made it associated search for the to possible histocompatibility complex (MHC) class I molecule. class I specificities of patient MZ2 are HLA-A1, A29, B37, B44 and C6. Four other melanomas of patients that had A1 in common with MZ2 were cotransfected with the 2.4 kb Three of them yielded neor fragment and pSVtkneoß. transfectants that stimulated TNF release by anti-E CTL clone 82/30, which is CD8+ (Figure 11). No E- transfectant was obtained with four other melanomas, some of which shared A29, B44 or C6 with MZ2. This suggests that the presenting molecule for antigen MZ2-E is HLA-A1. confirmation, it was found that, out of 6 melanoma cell lines derived from tumors of HLA-A1 patients, stimulated TNF release by anti-E CTL clone 82/30 of patient One of these tumor cell lines, MI13443-MEL, also showed high sensitivity to lysis by these anti-E CTL, These two melanomas were those that expressed MAGE-1 gene Eight melanomas of patients with HLA (Figure 11). haplotypes that did not include A1 were examined for their sensitivity to lysis and for their ability to stimulate TNF None was found to be positive. release by the CTL. ability of some human anti-tumor CTL to lyse allogeneic tumors sharing an appropriate HLA specificity with the

10

15

20

25

30

35

original tumor has been reported previously (Darrow, et al., J. Immunol. 142: 3329 (1989)). It is quite possible that antigenic peptides encoded by genes MAGE 2 and 3 can also be presented to autologous CTL by HLA-A1 or other class I molecules, especially in view of the similar results found with murine tumors, as elaborated upon supra.

Example 27

As indicated <u>supra</u>, melanoma MZ2 expressed antigens F, D and A', in addition to antigen E. Following the isolation of the nucleic acid sequence coding for antigen E, similar experiments were carried out to isolate the nucleic acid sequence coding for antigen F.

To do this, cultures of cell line MZ2-MEL2.2, an E cell line described <u>supra</u>, were treated with anti-F CTL clone 76/6, in the same manner described for treatment with anti-E CTL clones. This resulted in the isolation of an F antigen loss variant, which was then subjected to several rounds of selection. The resulting cell line, "MZ2-MEL2.2.5" was completely resistant to lysis by anti-F CTLs, yet proved to be lysed by anti-D CTLs.

Again, following the protocols set forth for isolation of antigen -E precursor DNA, the F variant was transfected with genomic DNA from F⁺ cell line MZ2-MEL3.0. The experiments yielded 90,000 drug resistant transfectants. These were tested for MZ2-F expression by using pools of 30 cells in the TNF detection assay elaborated upon supra. One pool stimulated TNF release by anti-F CTLs, and was cloned. Five of 145 clones were found to stimulate anti-F CTLs. Lysis assays, also following protocols described supra, confirmed (i) expression of the gene coding for antigen F, and (ii) presentation of antigen F itself.

Example 28

Following identification of F^+ cell lines, the DNA therefrom was used to transfect cells. To do this, a cosmid library of F^+ cell line MZ2-MEL.43 was prepared,

10

15

20

25

30

35

again using the protocols described <u>supra</u>. The library was divided into 14 groups of about 50,000 cosmids, and DNA from each group was transfected into MZ2-MEL2.2.5. Transfectants were then tested for their ability to stimulate TNF release from anti-F CTL clone 76/6. Of 14 groups of cosmids, one produced two independent transfectants expressing antigen F; a yield of two positives out of 17,500 geniticin resistant transfectants.

Example 29

The existence of a gene family was suggested by the pattern observed on the Southern blot (Figure 12). this, the 2.4 kb BamHI fragment, which transferred the expression of antigen MZ2-E, was labelled with 32p and used as a probe on a Southern Blot of BamHI digested DNA of E + cloned subclone MZ2-MEL2.2. Hybridization conditions included 50 μ l/cm² of 3.5xSSC, 1xDenhardt's solution; 25 mM sodium phosphate buffer (pH 7.0), 0.5% SDS, 2mM EDTA, where the 2.4 kb probes had been labelled with $[\alpha^{32}p]dCTP$ (2-3000 Hybridization was carried out Ci/mole), at 3x106 cpm/ml. for 18 hours at 65°C. After this, the membranes were washed at 65°C four times for one hour each in 2xSSC, 0.1% SDS, and finally for 30 minutes in 0.1xSSC, 0.1% SDS. identify hybridization, membranes were autoradiographed using Kodak X-AR film and Kodak X-Omatic fine intensifying screens.

In the following examples, whenever "hybridization" is referred to, the stringency conditions used were similar to those described <u>supra</u>. "Stringent conditions" as used herein thus refers to the foregoing conditions; subject to routine, art recognized modification.

Example 30

The cDNA coding for MAGE 4 was identified from a sample of the human sarcoma cell line LB23-SAR. This cell line was found to not express MAGE 1, 2 or 3, but the mRNA of the cell line did hybridize to the 2.4 kb sequence for

10

15

20

25

30

35

MAGE 1. To study this further, a cDNA library was prepared from total LB23-SAR mRNA, and was then hybridized to the 2.4 kb fragment. A cDNA sequence was identified as hybridizing to this probe, and is identified hereafter as MAGE 4.

Example 31

Experiments were carried out using PHA-activated lymphocytes from patient "MZ2", the source of the "MZ" cells discussed supra. An oligonucleotide probe which showed homology to MAGE 1 but not MAGE 2 or 3 was hybridized with a cosmid library derived from the PHA activated cells. The size of the hybridizing BamHI cosmid fragment, however, was 4.5 kb, thus indicating that the material was not mage 1; however, on the basis of homology to mage 1-4, the fragment can be referred to as "MAGE 5". The sequence of MAGE 5 is presented in SEQ ID NO: 16.

Example 32

Melanoma cell line LB-33-MEL was tested. Total mRNA from the cell line was used to prepare cDNA, which was then amplified with oligos CHO9: (ACTCAGCTCCTCCCAGATTT) (SEQ ID NO: 53), and CHO10: (GAAGAGGAGGGCCAAG) (SEQ ID NO: 54). These oligos correspond to regions of exon 3 that are common to previously described mage 1, 2 and 3.

To do this, 1 μ g of RNA was diluted to a total volume of 20 μ l, using 2 μ l of 10x PCR buffer, 2 μ l of each of 10 mM dNTP, 1.2 μ l of 25 mM MgCl₂, 1 μ l of an 80 mM solution of CHO9, described supra, 20 units of RNAsin, and 200 units of M-MLV reverse transcriptase. This was followed by incubation for 40 minutes at 42°C. PCR amplification followed, using 8 μ l of 10x PCR buffer, 4.8 μ l of 25 mM MgCl₂, 1 μ l of CHO10, 2.5 units of Thermus acquaticus ("Taq") polymerase, and water to a total volume of 100 μ l. Amplification was then carried out for 30 cycles (1 minute 94°C; 2 minutes at 52°C, 3 minutes at 72°C). Ten μ l of each reaction were then size fractionated on agarose gel,

10

15

20

25

30

35

followed by nitrocellulose blotting. The product was found hvbridize with oligonucleotide probe (TCTTGTATCCTGGAGTCC) (SEQ ID NO: 55). This probe identified mage 1 but not mage 2 or 3. However, the product did not hybridize to probe SEO (TTGCCAAGATCTCAGGAA) (SEQ ID NO: 56). This probe also binds mage 1 but not 2 and 3. This indicated that the PCR product contained a sequence that differed from MAGE 1, 2 Sequencing of this fragment also indicated differences with respect to MAGE 4 and 5. These results indicate a sequence differing from previously identified MAGE 1, 2, 3, 4 and 5, and is named MAGE 6.

Example 33

In additional experiments using cosmid libraries from PHA-activated lymphocytes of MZ2, the 2.4 kb MAGE 1 fragment was used as a probe and isolated a complementary fragment. This clone, however, did not bind to oligonucleotides specific for MAGE 1, 2, 3 or 4. The sequence obtained shows some homology to exon 3 of mage 1, and differs from MAGES 1-6. It is referred to as mage 7 hereafter. Additional screenings yielded MAGE 8-11. All MAGE sequences identified are presented as SEQ ID's.

Example 34

The usefulness of the TRAPs, as well as TRAs derived therefrom, was exemplified by the following.

Exon 3 of MAGE 1 was shown to transfer expression of antigen E. As a result, it was decided to test whether synthetic peptides derived from this exon 3 could be used to confer sensitivity to anti-E CTL.

To do this, and using standard protocols, cells normally insensitive to anti-E/CTLs were incubated with the synthetic peptides derived from Exon 3.1. Using the CTL lytic assays described <u>supra</u> on P815A, and a peptide concentration of 3 mM, the peptide Glu-Ala-Asp-Pro-Thr-Gly-His-Ser-Tyr (SEQ ID NO: 26) was shown to be best. The

10

15

20

25

30

assay showed lysis of 30%, indicating conferring of sensitivity to the anti-E CTL.

Example 35

Nucleic acid sequences referred to as "smage" were isolated from murine cells. Using the protocols described supra, a cosmid library was prepared from the DNA of normal DBA/2 kidney cells, using cosmid vector C2RB. As a probe, the 2.4 kb BamHI fragment of MAGE-1 was used. The DNA was blotted to nylon filters, and these were washed in 2xSSC at 65°C to identify the smage material.

Example 36

Further tissue samples were tested for the presence of MAGE genes, using the protocols discussed <u>supra</u>. Some of these results follow.

There was no expression of the MAGE genes in brain or kidney tumor tissue. Colon tumor tissue showed expression of MAGE 1, 2, 3 and 4, although not all tumors tested showed expression of all MAGE genes. This is also true for pancreatic tumor (MAGE 1); non-small cell lung (MAGE 1, 2, 3 and 4), prostate (MAGE 1), sarcomas (MAGE 1, 2, 3 and 4), breast (MAGE 1, 2 and 3), and larynx (MAGE 1 and 4).

Example 37

A cytolytic CTL clone "20/38" was obtained from peripheral blood lymphocytes of melanoma patient MZ2. This clone is described by Van den Eynde et al., Int. J. Cancer 44: 634-640 (1989), the disclosure of which is incorporated by reference. The CTL clone was isolated following Herin et al., Int. J. Cancer 39: 390-396 (1987), which is incorporated by reference. The assay is described herein, however. Autologous melanoma cells were grown in vitro, and then resuspended at 10^7 cells/ml in DMEM, supplemented with 10^8 HEPES and 30 mM FCS, and incubated for 45 minutes at 37° C with 200 μ Ci/ml of Na(51 Cr)O₄. Labelled cells were washed three times with DMEM, supplemented with 10 mM

10

15

20

25

30

HEPES. These were then resuspended in DMEM supplemented with 10 mM HEPES and 10% FCS, after which 100 μ l aliquots containing 10³ cells, were distributed into 96 well microplates. Samples of the CTL clone were added in 100 ul of the same medium, and assays were carried out in duplicate. Plates were centrifuged for four minutes at 100g, and incubated for four hours at 37°C in a 5.5% CO₂ atmosphere.

Plates were centrifuged again, and 100 ul aliquots of supernatant were collected and counted. Percentage of ⁵¹Cr release was calculated as follows:

$$% SICr release = (ER-SR) \times 100$$
(MR-SR)

where ER is observed, experimental ⁵¹Cr release, SR is spontaneous release measured by incubating 10³ labeled cells in 200 ul of medium alone, and MR is maximum release, obtained by adding 100 ul 0.3% Triton X-100 to target cells.

Those mononuclear blood samples which showed high CTL activity were expanded and cloned via limiting dilution, and were screened again, using the same methodology.

The same method was used to test target K562 cells. When EBV-B cells were used, the only change was the replacement of DMEM medium by Hank's medium, supplemented with 5% FCS.

These experiments led to isolation of CTL clone 20/38.

Figure 14 presents the results of these assays. Specifically, it will be seen that the CTL clone lysed autologous melanoma cell line MZ2-MEL.3.0, but did not lyse EBV-B cell lines, fibroblasts, K562 or non-autologous melanoma cell line SK-MEL-29.

Example 38

Once the CTL clone was recognized as being specific for the autologous cell line, it was tested for antigenic

10

15

2.0

25

30

35

sp cificity. To do this, antigen loss variants derived from melanoma cell line MEL-MZ2 were tested in the same type of chromium release assay described above. These target lines were MZ2-MEL 3.0, which is D⁺, E⁺, F⁺, A⁺, MZ2-MEL.61, which is D⁻, MZ2-MEL 2.2, which is E, and MZ2-MEL.4, which is F. In addition to CTL clone 20/38, clones which are known to be anti-A (CTL 28/336), anti-F (CTL 76/6), and anti-E (CTL 22/13) were tested.

These results are set forth in figure 15. It will be seen that CTL clone 20/38 lysed all the cell lines leading to chromium release except D cell line MZ2-MEL.61, thus indicating that the CTL clone is anti-D. This result was confirmed, in experiments not included herein, by experiments where TNF release by the CTL clone was observed only in the presence of melanoma lines presenting antigen D.

Example 39

Once antigen D was identified as the target molecule, studies were carried out to determine the HLA type which presented it. The experiments described in example 38 showed that antigen D was presented by MZ2-MEL, and this cell line's HLA specificity is known (i.e., A1, A29, B37, B44, Cw6, C.cl.10). It was also known, however, that a variant of MZ2-MEL which had lost HLA molecules A29, B44 and C.cl.10 still expressed antigen D, so these could be eliminated from consideration. Studies were not carried out on lines expressing B37, as none could be found.

In all, 13 allogeneic lines were tested, which expressed either HLA-Al (10 of 13), or Cw6 (3 of 13). The cell lines were tested for their ability to stimulate release of TNF by CTL clone 20/38, using the method of Traversari et al., Immunogenetics 35: 145-152 (1992), the disclosure of which is incorporated by reference. This assay measures TNF release via testing toxicity of supernatants on WEHI 164-13 cells.

In the assays, cell samples (3000, 10,000 or 30,000 cells) from the allogeneic lines were cultured in the presence of 1500 cells of the CTL clone, and 25 u/ml of IL-2. Twenty-four hours later, the supernatant from the culture was tested against the WEHI cells for toxicity. The results are presented in Table 3, which follows.

Eight cell lines were found to stimulate TNF release from the CTL clone 20/38. All of these lines were HLA-A1. None of the Cw6 presenting lines did so.

The cell lines were also assayed to determine MAGE expression. All eight of the lines which stimulated TNF release expressed MAGE-3, whereas the two HLA-Al lines which were negative did not.

Table 3

			Table			Punuaccion	Propositor
Melanoma			TNF	pg/m	1	of Mage-3	Expression of HLA-A-1
	Number of Cells		xp 1		Exp 2		
			+CTL 20/38		+CTL 20/3E	1	
MZ2-MEL.61.2	50000		1		4	 +++	+
M22-MEL-ET1	50000 1666		>120 66		>120 >120	+++	+
LY-1-MEL	30000 10000 3000	1 <1	>120 >120 114	1 2	>120 >120 >120	+++	•
KI-10221	30000 10000 3000	<1 <1 <1	>120 71 74			+++	+
LY-2-MEL	30000 10000 3000	1 1 1	57 86 91			+++	+
LY-4-MEL	30000 10000 3000	1 1	>120 >120 >120			+++	+
SK23-MEL	30000 10000 3000	1	112 116 105			+++	+
MI-665/2-MEL	30000 10000 3000	1	3 2 5,2	2 2 1	4 5 5	-	+ .
LE34-MEL	30000 10000 3000	1	>120 >120 >120			+++	+
LB45-MEL	30000 10000 3000	1	11 6 2	1 <1	30 12 7	-	+
NA-6-PEL	30000 10000 3000	1	77 104 110	5 5 4	98 >120 >120	+++	+
MI-13443-MEL	30000 10000 3000	1 1 1	>120 >120 >120			+++	+
LES-MEL	30000 10000 3000	1 <1 <1	8 5 5	4 4 1	9 11 5	+	-
SK64-PEL	30000 10000 3000	1 1 1	4 2 1	2 1 1	5 5 4	?	-
LE33-MEL	30000 10000 3000			1 1 1	3,5 4 3	+++	-
LB73-MEL	50000		16			-	-

1500 CTL 20/38 and $25\mu/\text{ml}$ IL2 were mixed with the indicated number of cells of the different allogeneic melanomas. 24 hours later, the amount of TNF pres nt in the supernatant was assayed by testing its sytotoxicity for WEHI-164-13 cells.

10

15

20

25

30

35

Example 40

In view of the results set forth in example 39, experiments were carried out to determine if antigen D was in fact a tumor rejection antigen derived from MAGE-3. do this, recipient COS-7 cells were transfected with 100ng of the gene for HLA-A1 cloned into pcDNA I/Amp, and 100 ng of one of (a) cDNA for MAGE-1 cloned into pcDNA I/Amp, (b) cDNA for MAGE-2 cloned into pcDSRa, or (c) cDNA for MAGE-3 The transfecting sequences were cloned into pcDSRa. ligated into the plasmids in accordance with manufacturer's Samples of COS-7 cells were seeded, at instructions. culture flat cells/well into tissue 15,000 microwells, in Dulbeco's modified Eagles Medium ("DMEM") supplemented with 10% fetal calf serum. The cells were incubated overnight at 37°C, medium was removed and then replaced by 30 μ l/well of DMEM medium containing 10% Nu serum, 400 μg/ml DEAE-dextran, 100 μM chloroquine, and the Following four hours of plasmids described above. incubation at 37°C, the medium was removed, and replaced by 50 μ l of PBS containing 10% DMSO. This medium was removed after two minutes and replaced by 200 μ l of supplemented with 10% of FCS.

Following this change in medium, COS cells were incubated for 24 hours at 37°C. Medium was then discarded, and 1500 cells of CTL clone 20/38 were added, in 100 µl of Iscove's medium containing 10% pooled human serum, supplemented with 25 u/ml of IL-2. Supernatant was removed after 24 hours, and TNF content was determined in an assay on WEHI cells, as described by Traversari et al., Immunogenetics 35: 145-152 (1992), the disclosure of which is incorporated by reference. These results are shown in figure 16.

It will be seen that the CTL clone was strongly stimulated by COS-7 cells transfected with HLA-A1 and MAGE-3, but not by the cells transfected with the other Mage genes. This leads to the conclusion that antigen D is a tumor rejection antigen derived from the tumor rejection

15

20

25

30

35

antigen precursor coded by gene MAGE-3, and that this TRA is presented by HLA-A1 molecul s.

Example 41

It is well known that different alleles of genes may produce different proteins. This principle should extend to the MAGE family of genes as well, and is an important consideration in view of diagnostic and therapeutic ramifications. Thus, polymorphism in the MAGE family was studied.

address the issue of polymorphism, lymphocytes of ten individuals were collected, and genomic DNA extracted. This DNA was subjected to Southern blotting in accordance with James et al., Canc. Res. 48: 5546-5551 (1988), incorporated by reference. Briefly, the labelled 2.4 kb genomic DNA fragment of MAGE-1, containing the last two exons of MAGE-1, described supra, was hybridized with the filter carrying the digested DNA, at 42°C for at least 16 hours, in 50% formamide, 5% dextran sulfate, 6xSSC, 1% SDS and 0.1 mg/ml heterologous DNA. The hybridization filters were washed, consecutively, in 2xSSC, 0.1% SDS (room temperature, 15 minutes), and twice in 0.1xSSC, 0.1% SDS at 67°C for 30 minutes, each wash. Autoradiography was carried out at -70°C for 7-10 days, using standard film.

A pattern of 13 hybridizing bands was observed, which was conserved over all individuals. One individual did show an additional band, but also showed the 13 band pattern.

Example 42

It was of interest to determine which chromosome or chromosomes bear the MAGE genes. To ascertain this, a panel of hamster/human somatic cell hybrids was used. The hybrids were obtained either from the Human Genetic Mutant Cell Repository ("GM" prefix), or from Johns Hopkins University (" A_3 " prefix). Each hybrid was cytogenetically studied to determine human chromosome content.

Total genomic DNA of the hybrids was probed in the same manner described in Example 41, supra (the conditions of stringency used prevented cross hybridization with hamster DNA).

Table 4, which follows, summarizes the result of the probe work. Analysis of the data led to the conclusion that the pattern of hybridization was only concordant with location of MAGE-1 on the X chromosome.

Ş

TABLE 4	ŧ	Segregation of MAGE-1 with human chromosomes in human-hamster hybrid cell DN	d	Σ̈́	ğ	구	κit	h h	TIME I	5	Ę	ĕ	Ę	es	ä	þ	Ban	축	mst	ë	È	, Liq	ਯ	ě	ă
Hybrid		MAGE-1	Hur	Human chromosome	hror	1080	ne ne														I				
			۱ _ ۱	7		4	8	7	∞	6	으	=	2	=	=	2	2	2	∞	2	20	12	[디	>	ı
GM06317	17	1	١,	١,	١,		[۱	١,	,	١,	١,	١,	Ι,	١.	L	L					ı
GM06318B	88	+	,	i	ı	•	1		1	1	1	ł	1	ı	1	4	,					, ,		+ 1	
GM07300	00	+	ı	ı	ı		+		+	!	ı	+	ı	ŧ	ı	,	ı	1			·		- 4	•	
GM07301	=	+	ı	ı	ı	•	'	'	1	ŀ	1	1	+	ı	ı	,	,		,	•	,	•		•	
GM08854	54	ı	ı	ı	,		,	•	ŀ	١.	ŧ	ı	ı	ı	ı	ı	ı	ı	•	ĺ		·		•	
GM09142	12	1	ı	ı	+		<u>'</u>		ı	ı	t	1	ı	ŧ	,	1	,	1		·				ı	
GM10095	35	+	i	ı	,	,	,		ı	٣	1	ı	1	•	4	1	ı	1	·	·			· 寸	ı	
GM10115	<u>5</u>	1	1		ı		•	1	1	ı	ı	ı	1	ı	ı	,	1			į	i	,		ì	
GM10156B	26B	,	1	1	ı	ı			+	١	ı	1	ı	,	ı	1	1							•	
GM10253	53	ı	ŧ	ı	+	·	'		ŀ	ŀ	1	ı	١	1	ı	ı	,	,		į		,	'	1	
GM10322	22	1	,	ı	ı			1	ı	ı	ŧ	ŧ	ı	ı	1	1	1		į		,	· +		ŧ	
GM10478	82	ı	1	•	ı	+	'		,	ı	ł	•	•	1	ı	ı	1		٠,					ŀ	
GM10479	6/	1	ı	1			,		1	1	ı	1	1	ı	+	1			,			,	•	,	
GM10498	86	1	ţ	ı			'	'	•	ı	ı	ı	ı	,	ı	ı	ı	+	į	·		•		ı	
CM10567	57	ı	1	1	1		•	1	1	ı	ı	ı	1	ı	•	,	+	,	i					ı	
GM10611	=	ı	ı	ı	1	,	1	1	1	+	ŀ	ı	ı	1	1	,			,		•	,		1	
GM10612	12	,	1	1	,	•	,		,	ı	ı	1	ı	ı	,	,	,	,					'	ŧ	
GM10629	62	1	1	,		•	+	'	ŀ	1	ı	ı	ı	1	ı	ı	ı		,		į			1	
GM10791	=	ı	ı	ı	ı	•		+	١	1	ı	ı	ı	1	F	ı	ı	,	į		i			t	
GM10880	0.2	ı	+	1	ı	·		,	•	ı	ı	ı	ı	+	+	ı	ı	,						1	
GM10888	œ	,	ı	1	1		,		•	1	ı	ı	ı	1	1	1	1	,			1			•	
A3ADA ID12	1012	1	+	ı	+		·		+	1	1	ı	+	+	+	ı	+			i		+		+	
A ₃ ADA6F5	6F5	+	+	+	,		+	+	+	1	ı	ı	+	+	+	+	,	+	+		į		+	+	
A3ADA13	13	+	+		+		,	+	+	ł	ı	+	+	+	+	+	+1				·		• +	- +	
A3ADA14	<u> </u>	ı	ı	1	+		·	1	+	•	+	+	+	+	+	+	1					+		+	
A ₃ G1		+	,	1	+	·	Ψ.	1	+1	+	+	ŧ	1	1	ı	+1	,	+	i	+	•		+	+	
A ₃ HR20			1	ı	+		+		1	+	ı	+	ŧ	ı	+	,	,	+					· 1	. 1	
P _g Me4		+	i	~	+	,	+	+	+	ı	•	+	+	+	+	+	ı	+			+1	· ·	T1	+	
Number of	of	(+/+)	7	_	m	7	_	س	~	7	-	"	4	m	•	•	0	•	_	2	_	~	_	α	
concord	concordant hybrids	-	11	13	4	4	.5		9 2	7	<u>∞</u>	7	1	9	7	· <u>∞</u>	1	17 17	. 6	• ∞	10	ュュ	5 -	000	
Number of	of	(+	9	9	~	9	7	m		9	7	٠	4	8	~	4	-	•	7	~	œ	v	æ	~	
discorda	discordant hybrids	(+/-)	7	0	'n	S	4	7		~	-	7	7	6	ν,	0	~	7	0	,	, m	'n	'n		
Percent	Percent discordancy		디	23	38	37 (41 2	24 22	23	30	30	92	22	3	37	91	33	56	27	23	35	37	36	0 26	
					ļ				-				į												

+ = chromosome present; - = chromosome absent;

+ = very faint bands, indicating that only a small percentage of the cells discontained the chromosome (not included in calculation of percent discordancy contains only part of chromosomes X and 21, der 21 1(X;21)

1,2 - GM09142 contains only part of chromosomes X and 21, der 21 1(X;21)

3,4 - GM10095 contains only part of chromosomes X and 9, der 9 1(X;9)

613;634

5 - PgMe4 contains a deleted chromosome 2 and is missing 2p23-p24

6 - A3G1 contains only the q arm of chromosome 6

Example 43

In this experiment, a study was carried out to determine if all twelve known MAGE genes were located on the X chromosome. This was accomplished via the use of polymerase chain reaction ("PCR") technology.

RNA purification and cDNA synthesis were first carried out, in accordance with Weynants et al., Int. J. Cancer 56: 826-829 (1994), incorporated by reference herein. Next, 1/20 of the cDNA produced from 2 ug of total RNA was supplemented with 5 ul of PCR buffer (500 mM KCl, 100 mM Tris pH 8.3), 1 ul each of 10 mM dNTPs, 25 pmoles of each primer (see below), 3 ul of 25 mM MgCl₂, and 1.25 units of Taq polymerase, with water added to final volume of 50 ul.

The primers were as follows:

- MAGE-3: 5'-TGGAGGACCAGAGGCCCCC, 5'-GGACGATTATCAGGAGGCCTGC (725 bp) (SEQ ID NOS: 27 AND 28)
 - MAGE-4: 5'-GAGCAGACAGGCCAACCG, 5'-AAGGACTCTGCGTCAGGC (446 bp) (SEQ ID NOS; 29 AND 30)
 - MAGE-5: 5'CTAGAGGAGCACCAAAGGAGAAG, 5'-TGCTCGGAACACAGACTCTGG
- 20 (413 bp) (SEQ ID NOS: 31 AND 32)
 - MAGE-6: 5'-TGGAGGACCAGAGGCCCCC, 5'-CAGGATGATTATCAGGAAGCCTGT (727 bp) (SEQ ID NOS: 33 AND 34)
 - MAGE-7: 5'-CAGAGGAGCACCGAAGGAGAA, 5'-CAGGTGAGCGGGGTGTGTC (405 bp) (SEQ ID NOS: 35 AND 36)
- 25 MAGE-8: 5'-CCCCAGAGAAGCACTGAAGAAG, 5'-GGTGAGCTGGGTCCGGG (399 bp) (SEQ ID NOS: 37 AND 38)
 - MAGE-9: 5'-CCCCAGAGCAGCACTGACG, 5'-CAGCTGAGCTGGGTCGACC (391 bp) (SEQ ID NOS: 39 AND 40)
 - MAGE-10: 5'-CACAGAGCAGCACTGAAGGAG, 5'-CTGGGTAAAGACTCACTGTCTGG
- 30 (485 bp) (SEQ ID NOS: 41 AND 42)
 - MAGE-11: 5'-GAGAACCCAGAGGATCACTGGA, 5'-GGGAAAAGGACTCAGGGTCTATC (422 bp) (SEQ ID NOS: 43 AND 44)
 - MAGE-12: 5'-GGTGGAAGTGGTCCGCATCG, 5'-GCCCTCCACTGATCTTTAGCAA (392 bp) (SEQ ID NOS: 45 AND 46)
- Amplification was carried out for 30 cycles (MAGE-3, 4, 6, 12) or 32 cycles (MAGE-5, 7-11), where a cycle was one minute at 94°C followed by two minutes at 65°C for MAGE-5, 7-12, or two

minutes at 68°C (MAGE-4), or two minutes at 71°C (MAGE-3 and MAGE-6); followed by three minutes at 72°C (MAGE-3, 5-12), or two minutes at 72°C (MAGE-4). The analysis was carried out on hybrid cell line GM 10868, which contains human chromosome 12, and GM 07301, which contains chromosome 12 and the X-chromosome. All assays were negative with the human GM 10868 line, and all were positive with the GM 07301 cell line, which indicated that all 12 genes are found on the X-chromosome.

Example 44

20

25

30

The sizes of mRNAs for the different MAGE genes are similar, and thus Northern blot analysis cannot be used to determine expression of the various MAGE genes in different tissues, both normal and tumor. PCR analysis, along the lines of the study in example 43, <u>supra</u>, however, was believed to be useful.

To this end, a series of various tumors and normal tissues were tested for expression of MAGE genes.

Total RNA of the cells tested was extracted, and was then oligo dT primed, following art known techniques. The resulting material was then subjected to PCR, following the protocols of example 43, <u>supra</u>. For MAGE-1 and MAGE-2, the protocols of Brasseur et al., Int. J. Cancer. 52: 839-841 (1992), and DeSmet et al., Immunogenetics 39: 121-120 (1994), both of which are incorporated by reference, were used.

Table 5, which follows, elaborates these results, with a representative but by no means exhaustive listing of tissues tested. Each of MAGE 1-4, 6 and 12 showed significant expression in a number of tumors of varied tissue types. MAGE-5 and 8-11 were expressed very weakly in all tissues tested, whereas MAGE-7 RNA was not detectable at all. With respect to normal tissues, including tissues taken from a >20 week fetus, all were negative for MAGE RNA but for testis and placenta. Testis expressed all MAGE genes but MAGE-7, while placenta expressed MAGE-3, 4, and 8-11.

TABLE 5. Expression of Mage-1, 2, 3, 4, 6 and -12 by tumors and normal tissues

	MAGE 1	MAGE 2	MAGE 3	MAGE 4	MAGE 6	MAGE 12
COLON CARCINOMAS	3					
MZ-CO-2 ¶	++	++	+	•	-	+
SK-CO-11 ¶	-	++	+++	•	+	++
LB150	-	-	•	+	•	-
HSR 320 ¶	•	+++	+++	+	++	+++
LEUKEMIAS						
K562 ¶	-	++	+++	•	++	+++
MELANOMAS						
MI10221 ¶	•	+++	+++	+++	+++	+++
MZ2-MEL 3.0 ¶	+++	+++	+++	-	+++	+
LB265 **	-	++	-	•	•	+
LG7 **	•	++	-	-	-	•
LG11 **	++	++	++	-	•	+++
LB271	-	++	+++	-	++	+++
LUNG CANCERS						
LB178 (NSCLC) **	++	-	-	+++	-	•
LB175 (NSCLC) **	-	++	+++	+++	-	+++
LB11 (SCLC) ¶	++	+++	+++	-	•	+++
LB12 (SCLC) ¶	-	+++	+++	-	-	+++
SARCOMAS						
LB23 ¶	-	-	-	++	-	-
LB408 **	-	-	•	++	•	-
LB258 **.	+	++	+ .	_	-	++
BREAST CARCINOMA	S					
LB280	++	-	++	-	-	+
LS284 **	++	++	++	+	-	++
Stomach	-	-	<i>,</i>	•	•	-
Lung	-	-	-	-	-	-
Breast	-	-	•	•		
Colon	•	-	-	-	-	-
Skin	•	-	-	•	-	•
Uterus	-	•	-	-	-	-
Testis	++	++	++	++	++	++
Thymocytes	-	-	-	•	-	-
EBV-lymphocytes	-	-	-	-	-	•
Foetal liver	-	•	-	•	-	•
				_	_	_
Foetal brain	-	•	-	-	_	_

RNA from tumor cell lines (1), tumor samples (**) and normal tissues were tested by RT-PCR for the expression of MAGE genes. PCR primers were chosen as indicated in methods. For MAGE-12, PCR amplification of RNA in the absence of reverse transcription indicated that in our conditions the contamination by genomic DNA was negligible. The level of expression evaluated by band intensity of PCR products fractionated in agarose gels is represented by +++, ++, +. Absence of product is indicated by -.

10

15

20

25

30

Exampl 45

The expression of the MAGE-1, 2 and 3 genes in various tumors and normal tissues was evaluated, using both reverse transcription and polymerase chain reaction To perform these assays, the total RNA of amplification. the cells of interest was extracted via the well known quanidine-isothiocyanate procedure of Davis et al., Basic Methods in Molecular Biology, 1986 (New York, Elsevier, pp. 130), which is incorporated by reference in its entirety. cDNA was then synthesized, by taking 2 ug of the RNA, diluting it with water, and then adding the following materials: 4 ul of 5X reverse transcriptase buffer, 1 ul each of each dNTP (10 mM), 1 ul of a 40 μ M solution of oligo dT(15), 20 units of RNAsin, 2 ul of 0.1 M units of MoMLV reverse and 200 dithiothreitol, transcriptase. All materials were mixed in a 20 ul reaction volume, and incubated at 42°C for 60 minutes and diluted to 100 ul with water.

Presence or absence of each of MAGE-1, -2, and -3 cDNA was detected via PCR amplification, in separate reactions, using oligonucleotide primers located in different exons of the MAGE gene of interest. For MAGE-1, the primers were:

5'-CGGCCGAAGGAACCTGACCCAG-3'
(SEQ ID NO: 47)

5'-GCTGGAACCCTCACTGGGTTGCC-3'
(SEQ ID NO: 48)

These are described by Brasseur et al., Int. J. Cancer 52: 839-841 (1992).

For MAGE-2, the primers were:

5'-AAGTAGGACCCGAGGCACTG-3'
(SEQ ID NO: 49)

5'-GAAGAGGAAGAAGCGGTCTG-3'
(SEQ ID NO: 50)

(DeSmet et al., Immunogenetics 39: 121-129 (1994)).

10

15

20

50

For MAGE-3, the primers were:

5'-TGGAGGACCAGAGGCCCCC-3'
(SEQ ID NO: 27)

5'-GGACGATTATCAGGAGGCCTGC-3'
(SEQ ID NO: 28)

(Serial No. 08/204,727 filed March 1, 1994 to Gaugler et al. incorporated by reference).

For each PCR reaction, 5 ul of cDNA were supplemented with 5 ul of 10XPCR buffer, 1 ul of each dNTP (10 mM), 1 ul each of 40 μ M primer solutions, 1.25 units of Taq polymerase, and water, to a total volume of 50 ul. Each mixture was heated for five minutes at 94°C. Amplification was then carried out for 30 cycles (MAGE-1: 1 minute at 94°C, 3 minutes at 72°C; MAGE-2: 1 minute at 94°C, 2 minutes at 67°C; MAGE-3: 1 minute at 94°C, 4 minutes at 72°C). Cycling was concluded, in each case, with a final extension at 72°C for 15 minutes. A 10 ul sample of each reaction was run on a 1% agarose gel, and visualized by ethidium bromide fluorescence. To ensure that RNA was not degraded, a PCR assay with primers specific for B-actin was carried out, following the listed protocols, except that only 20 cycles were carried out with the annealing step at 65°C. Date are summarized in the Table which follows:

Table 6 Expression of gene MAGE-1, 2 and 3 in lung tumors

	Prop	ortion of positiv	e samples	
	MAGE-1	MAGE-2	MAGE-3	
Non-small cell lung cancer	16/46	16/46	14/46	
squamous cell carcinoma adenocarcinoma large cell carcinoma	8/26 8/18 0/2	6/26 9/18 1/2	7/26 7/18 0/2	
Small cell cancer	1/3	2/3	2/3	
Normal lung samples	0/B	0/8	0/8	

Example 46

5

10

15

The previous example showed how to identify expression of various MAGE genes. This example explains quantitation of the expression.

First, cDNA was synthesized in the same way described in example 1, except that the oligo dT consisted solely of dT15, and the reaction mixture was preincubated at room temperature for 10 minutes to optimize annealing. Also, following the incubation, the transcriptase activity was terminated by heating the mixture at 95°C for 15 minutes. PCR amplification was carried out, by combining 5 ul of 10x PCR buffer, 0.5 ul of a 2.5 mM dNTP mix, 0.2 μ Ci of α^{32} P-dCTP, 0.5 ul of each primer (40 μ M solution), 1.25 units of Taq polymerase, and water, to a total of 50 ul. The mixtures were chilled on ice, and then 5 ul of chilled cDNA solution (100 ng total RNA) were added thereto. The

10

15

30

35

mixture was heated to 94°C for five minutes, and 24 cycles of amplification were carried out (one minute at 94°C, three minutes at 72°C per cycle). Cycling concluded with a final extension at 72°C, for 15 minutes. A 15 ul sample of PCR product was run on an agarose gel which was then fixed in 10% trichloroacetic acid for 30 minutes, dried, and then exposed to a phospho-screen for 90 minutes before scanning by Phosphor-Imager to measure incorporated ³²P. This was compared to the incorporations from various dilutions of RNA of reference melanoma cell line MZ2-MEL-3.0.

Quantitative measurements of β -actin messenger and "GAPDH" (i.e., glyceraldehyde 3-phosphate dehydrogenase) was carried out on each cDNA sample, under similar conditions. The one difference was that only 18 amplification cycles were carried out. A separate PCR reaction was set up with primers for β -actin and GAPDH, with only β -actin used for normalization. Results were expressed via formula:

where: S = product from tumor sample
MEL = product from MZ2-MEL 3.0

The results obtained were comparable to those obtained previously with melanoma tumors. Level of expression varied, from 1 to 160% of the amount expressed by the reference cell line. Figure 2 presents some of these results (i.e., normalized results, relative to levels of Bactin expression). Values are percent of the level of MAGE-1 expression measured with RNA of the reference line

MZ2-MEL-3.0. Values are for MAGE-1 positive tumors of Table 2). Table 7, which follows, summarizes patterns of expression for various tumors.

Table 7. Pattern of expression of genes MAGE-1,2 and 3 by MAGE-positive lung tumor samples

	MAGE-1°	MAGE-2	MAGE-3
Squamous cell carcinoma			
LB 175	++	++	+++
LB 178	++	-	•
LB 182 (A1)*	•	+	-
LB 195	+	++	+++
LB 206	+++	+	++
LB 321	+	-	-
LB 323	+++	+	+++
LB 424	+	•	+
LB 425	•	-	+
LB 498 (A1)	+++	-	-
LB 557	-	+++	+++
Adenocarcinoma			
LB 117 (A1)	+	++	++
LB 212	++	+	•
LB 264 (A1)	+++	++	+++
LB 292	•	++	+++
LB 306	++	+	++
LB 322	-	+	+
LB 474 (A1)	+	++	•
LB 497	++	+++	+++
LB 510	+++	•	-
LB 558 (A1)	+	+	+
Large cell carcinoma			
LB 259	•	+	•
Small cell lung cancer			
LB 444		++	+++
LB 648 (A1)	+	++	+++

10

15

20

25

30

54

Example 47

The expression of the MAGE-3 gene in various tumors and normal tissues was evaluated, using both reverse transcription and polymerase chain reaction amplification. To perform these assays, the total RNA of the cells of interest was extracted via the well known quanidine-isothiocyanate procedure of Davis et al., Basic Methods in Molecular Biology, 1986 (New York, Elsevier, pp. 130), which is incorporated by reference in its entirety. cDNA was then synthesized, by taking 2 ug of the RNA, diluting it with water, and then adding the following materials: 4 ul of 5X reverse transcriptase buffer, 1 ul each of each dNTP (10 mM), 2 ul of a 20 μ M solution of oligo dT, 20 units of RNAsin, 2 ul of 0.1 M dithiothreitol, and 200 units of MoMLV reverse transcriptase. All materials were mixed in a 20 ul reaction volume, and incubated at 42°C for 60 minutes. For the amplification reaction, 1/20 of the CDNA reaction product supplemented with 5 ul of PCR buffer, 0.5 ul of each of the dNTPs (10 mM), 1 ul each of 20 µM solutions of primer (see infra), and 1.25 units of Taq polymerase. Water was added to a final volume of 50 uls. The primers used for MAGE-3 were:

5'-TGGAGGACCAGAGGCCCCC-3'
(SEQ ID NO: 27)

5'-GGACGATTATCAGGAGGCCTGC-3'
(SEQ ID NO: 28)

These correspond to a sense sequence in exon 2 of the gene (SEQ ID NO: 27), and an antisense sequence in exon 3 (SEQ ID NO: 28).

PCR was performed for 30 cycles (one minute at 94°C, four minutes at 72°C). PCR products were size fractionated on a 1% agarose gel, and then analyzed. The results are presented in the table which follows. These data confirm

PCT/US95/02203

55

some results obtained previously, but also show the expr ssion of MAGE-3 in head and neck squamous cell carcinomas, a result not suggested by previous work.

Expression of gene MAGE-3 by tumoral, normal and fetal tissues. Table 8.

TUMORS			NORMAL TISSUES	
IIISTOLOGICAL TYPE	Number of		HISTOLOGICAL TYPE	MAGE-3
	cell lines	tumors samples	ADULT TISSUES	
			Drain	•
Melanomas	50/62 (81%)	72/105 (69%)	Colon	•
		!	Stomach	•
Head and neck squamous cell carcinomas	•	20/36 (56%)	Liver	•
Lung carcinomas			Ovary Skin	, ,
NSCFC #	1/2	14/46 (30%)	Lung	3
SCIC	18/22 (82%)	2/3	Kidney	•
			Brenst	•
Colorectal carcinomas	3/16	(%91) (16%)	Testis	‡
Mammary carcinomas	2/6	16/132 (12%)	FETAL TISSUES	
Bladder tumors	•	2/6	Brain 1 iver	• •
Sarcomas	1/4	3/10	Spleen	
Prostatic carcinomas	,	3/20		
Renal carcinomas	6/5	0/38		
Leukemias	2/6	0/20		
Lymphomas	9/0	5/0		

*Expression of gene MAGE-3 was tested by RT-PCR amplification on total RNA, with the primers described in methods. These primers distinguish MAGE-3 from the 11 other MAGE genes that have been identified. ‡ NSCLC are non-small cell lung carcinomas, SCLC are small cell lung carcinomas.

10

15

20

25

Example 48

Bladder tumor specimens were collected at surg ry. They were divided into two portions, one of which was used for routine histopathological evaluation. The other portion was frozen in liquid nitrogen immediately after transurethral resection, or radical cystectomy. These frozen samples were stored at -80°C until used for RNA extraction. Normal bladder tissue was obtained by biopsies of cadavers from donors in an organ transplant program.

Total RNA was extracted from the samples by the classic quanidine-isothiocyanate/cesium chloride method of Davis et al, Basic Methods in Molecular Biology, pp. 130-135, Elsevier, New York (1986). Synthesis of cDNA was then carried out by extension with oligo(dT) using 2 ug of RNA in a 20 ul reaction volume following DeSmet et al., Immunogenetics 39: 121-129 (1994), incorporated Following incubation at 42°C for one reference herein. hour, the cDNA reaction mixture was diluted to 100 ul with Separate polymerase chain reaction amplification were then carried out to determine whether any of MAGE-1, 2, 3 or 4 cDNA were present. The amplifications were carried out using oligonucleotide primers different exons of the MAGE genes. PCR amplification was also carried out using primers for HLA-A1.

The primers used were the following: 5'-TGGAGGACCAGAGGCCCCC-3 (sense, exon 2) (SEQ ID NO: 27) and

5'-GGACGATTATCAGGAGGCCTGC-3' (antisense, exon 3) (SEQ ID NO: 28) for MAGE-3

5'-CGGCCGAAGGAACCTGACCCAG-3' (sense, exon 1) (SEQ ID NO: 47) and

5'GCTGGAACCCTCACTGGGTTGCC-3' (anti-sense, exon 3) (SEQ ID NO: 48) for MAGE-1

5'-AAGTAGGACCCGAGGCACTG-3' (sense, exon 2) (SEQ ID NO: 49) and

5'-GAAGAGGAAGAGCGGTCTG-3' (anti-sense, exon 3) (SEQ ID NO: 50) for MAGE-2

15

20

25

30

35

5'-GAGCAGACAGGCCAACCG-3' (sense, exon 2) (SEQ ID NO: 29) and

5'-AAGGACTCTGCGTCAGGC-3' (anti-sense, exon 3) (SEQ ID NO: 30) for MAGE-4

5'-GGGACCAGGAGACACGGAATA-3' (sense, exon 2) (SEQ ID NO: 51) and

5'-AGCCCGTCCACGCACCG-3' (anti-sense, exon 3) (SEQ ID NO: 52) for HLA-A1

SEQ ID NOS: 27 and 28 are described by Weynants et al., Int. J. Cancer 56: 826-829 (1994). SEQ ID NOS: 47 and 48 are described in Brasseur et al., Int. J. Cancer 52: 839-841 (1992). SEQ ID NOS: 49 and 50 are disclosed in DeSmet et al., Immunogenetics 39: 121-129 (1994). SEQ ID NOS: 29 and 30 are disclosed in copending application Serial No. 08/299,849 filed September 1, 1994 to DePlaen et al., and incorporated by reference. SEQ ID NOS: 51 and 52 are found in Gaugler et al., J. Exp. Med. 179: 921-930 (1994), as well as the above-identified parent application. All of these references are incorporated by reference.

The amplification protocol was as follows. Each PCR reaction used 5 ul of cDNA, supplemented with 5 ul of 10x PCR buffer, 1 ul each of 10 mM dNTP, 0.5 ul each of 80 uM solutions of primers, 1.25 units of Taq DNA polymerase, and water to achieve a total volume of 50 ul. The mixtures for minutes, to 94°C 5 followed were heated by amplification in a thermal cycler, for 30 cycles. MAGE-1, 1 cycle was one minute at 94°C followed by three minutes at 72°C. For MAGE-2, one cycle was 94°C for one minute, followed by two minutes at 67°C and two minutes at For MAGE-3, one cycle was one minute at 94°C; followed by four minutes at 72°C. For MAGE-4, one cycle was one minute at 94°C, two minutes at 68°C, and two minutes at 72°C. The cycle for HLA-A1 was the same as that for MAGE-4. A 10 ul sample of each reaction was run on a 1% agarose gel, and then visualized by ethidium bromide In order to provide a control for RNA fluorescence.

10

15

20

25

30

35

integrity, a 20 cycle PCR assay, using primers specific for B actin, was carried out in each case, following Weynants et al., supra.

The protocols described were developed with certain Primers were selected so as to be in goals in mind. different exons, thus preventing false positives due to DNA contamination of the RNA preparations. Under the conditions used, DNA generates either no PCR product, or longer products which are readily distinguishable from amplified cDNA. This is shown by figure 19. In figure 19, a bladder tumor sample from a patient, referred to as "HM15" is shown in each "R" lane. Lanes marked "D" show products obtained from amplification of the patients' The PCR products were run on a 2.5% low genomic DNA. melting agarose gel, but the assays were identical to the protocol of this example in all other ways. Size markers are on the left hand side. There was no band in the MAGE-1 reaction, because of the large intron between the two primers.

Table 10, which follows, shows the results obtained for a number of tumors (nomenclature is explained below). Of 57 samples of primary transitional cell carcinoma, 21% expressed MAGE-1, 30% expressed MAGE-2, 35% expressed MAGE-3, and 33% expressed MAGE-4. Ta tumors and low grade T1 tumors expressed none of these, or expressed only a single gene, at low levels. Higher stage tumors, in contrast, frequently expressed high levels of several genes. It was also found that the fraction of invasive tumors which expressed MAGE genes was 2-5 times higher than the fraction observed with superficial tumors, as is depicted in figure 2 (this figure is based upon data from Table 10). expressing at least one of the four MAGE genes accounted for 61% of the 28 invasive tumors studied. Among the 29 superficial tumors, the proportion was only 28%. paralleled other results reported previously for melanoma, in that all but one of the tumors expressing MAGE-1 also expressed MAGE-3.

10

15

20

25

30

None of the six biopsies of normal bladder examined expressed any of the MAGE genes discussed herein.

In some instances, several tumor samples were obtained from the same patient. The analysis of these patients is set out in Table 9. Patient HM61 had a primary tumor and an invaded lymph node. They displayed a very similar pattern of expression of MAGE-1, 2, and 3, with MAGE-1 Normal mucosa adjacent to the tumor was predominating. completely negative for MAGE-2 and MAGE-3, with a very low level of MAGE-1 expression, which was probably due to the In patient "HM25", the presence of a few tumor cells. initial tumor, and an early recurrence, both expressed MAGE-1, 2, 3 and 4. A recurrence which occurred two years after the first displayed a very different pattern, expressing only MAGE-2 and MAGE-3. A similar discordance between primary tumor and recurrence was observed with patient "HM20". Patients HM30 and LB526 showed differences in the pattern of MAGE-expression in different samples of the same primary tumor.

In the tables which follow, "Ta" stands for a superficial lesion, limited to bladder mucosa (also known "Stage T1", or "T1" is used for as "stage Ta"). superficial lesions limited to subepithelial connective tissue. "Stages T2-T4", or "T2-T4" refer to tumors which have invaded bladder muscle. The nomenclature "G1", "G2" and "G3" refers to the degree of differentiation, or histopathological grade. "G1" superficial tumor is well differentiated, while a "G3" tumor is poorly differentiated. See Mostofi et al., "Histological Typing of Urinary Bladder Tumors. WHO International Histological Classification of Tumors" (1973).

TABLE 9 - EXPRESSION OF GENES MAGE-1, 2, 3 AND 4 IN MULTIPLE SAMPLES FROM BLADDER CARCINOMA PATIENTS

Patients	Tumor stage Samples	and grade MAGE-1 MAGE-2 MAGE-3 MAGE-4	MAGE-1	MAGE-2	MAGE-3	MAGE-4
нм 61	Primary tumor Metastatic iliac lymph node Mucosa adjacent to the tumor	T2 G3	* * * *	++1	++1	111
HM 25	Primary tumor Tumor recurrence after 1 month Tumor recurrence after 2 years	T2 G2 T2 G2 T1 G2	+ ‡ 1	* * * *	*:‡	‡‡'
НМ 20	Primary tumor Tumor recurrence after 2 months	T1 G1	+ 1	1 1	1 1	1 1
НМ 30	Primary tumor, 1st sample Primary tumor, 2nd sample	T2 G2 T2 G2	1 1	1 1	‡ 1 .	1 1
LB 526	Primary tumor, radical cystectomy Primary tumor, 9-day pre-operative blopsy	T3 G2 PBy T3 G2	++	++	‡+	+ 1

Table 10. EXPRESSION OF GENES MAGE-1.2.3 AND 4 IN BLADDER TRANSITIONAL-CELL CARCINOMA SAMPLES

Tumor Stage and		Patients		MAGE-1	MAGE-2	MAGE-3	MAGE-4
Superiiciai tumori							
Ta (n=7)	G1	HM 7		•	•	•	-
		HM 32	(A1)*	•	≥• .	-	-
		HM 33	(A1)	-	•	-	-
		HM 49		-	•	-	-
	G2	LB 523		•	•	-	•
		LB 817		-	-	-	-
51 / 55		LB 818		-	-	-	-
T1 (n=22)	G1	HM 2	***	-	•	-	•
		HM 6 HM 17	(A1)	<u>-</u>	-	-	•
		HM 20		•	-	-	•
		HM 22		-	-	-	-
		HM 34		-	•	-	-
		HM 35		-	-	-	•
	G2	HM 4		-	•	•	•
		HM 5 HM 9		•	•	-	-
		HM 27		-	•	-	•
		HM 37		-	•	•	+++
		HM 37 HM 38	(A1)	•	•		-
		HM 39		-	•	•	•
		HM 40	(A1)	•	-	-	•
		HM 41		•	•	-	•
	G3	HM 14		**	***	***	++
		HM 23 HM 26		-	-	-	-
		HM 42	(A1)	-	+++	+++	+++
		HM 53	V ,	-	•	-	-
		LB 767	(A1)			-	•
nvasive tumors (n T2 (n=15)	=28) C2	нм в					
• • (N-15)		HM 13	(A1)	-	-	-	• .
		HM 24	(A1)	+	***		-
		HM 25		•	**	•	**
		HM 30		•	•	++	-
		LB 796		•	•	-	•
	C3	HM 3	(A1)	-	-	•	-
		HM 10 HM 12		-	+	**	**
		HM 15			*	*	•
		HM 61	(A1)	**	***	***	***
		LB 524	(A1)	-	-	***	•
		LB 824 LB 825		-	**	***	•
		LB 831		•	+ +	•	•
T3 (n=11)	G2	HM 44		•	**	***	**
15 (11-11)	02	HM 45		-	-	•	-
		HM 46	(A1)	•	-	***	-
		LB 526	••	•	•	++	•
	G3	HM 11		**	•		
		HM 18		•	•	-	•
		HM 21		•	•	•	•
		HM 47 HM 48		***	***	***	+++
		HM 50		•	•	•	•
		HM 52	(A1)	-		***	•
T4 (n=2)	C3	HM 1	,	_	-	-	•
• · · · · · ·		HM 51		•	•	-	+

10

15

20

25

30

35

The foregoing examples show that expression of MAGE tumor rejection antigen precursors is correlated to various One aspect of the invention, then, is a method for determining these cancers by assaying a sample for expression of at least one MAGE tumor rejection antigen As MAGE genes are nearly without exception expressed only by tumor cells, there can be no question but that expression of a MAGE gene or genes is indicative of The fact that the cancer is a particular type, such as lung adenocarcinoma, is easily ascertainable, as adenocarcinoma cells have distinct morphologies which are identifiable by the skilled artisan. Similarly, the fact that the tumor of interest is a lung adenocarcinoma as compared to a tumor from a different body part is self evident; one does not find lung adenocarcinoma in, e.g., large intestine tissue. Analogous statements can be made for bladder and other cancers.

The assay for the MAGE genes can take many forms. Most preferably, the assay is done via determining gene expression, such as by determining mRNA transcription products. For example, amplification protocols, including but not being limited to polymerase chain reaction (PCR), and ligase chain reaction (LCR), are preferred. The assay can also be carried out using nucleic acid molecule probes, which are labelled or unlabelled, and which specifically hybridize to sequences characteristic of the MAGE gene of interest. Labelling nucleotide probes is well known to the labels including radioactive, art, chromophoric, magnetic, and other identifiable materials. haptens such as biotin, (strept) avidin, Antibodies, digoxin, digoxigenin, and so forth, can all be used. In such a case, the labelled probes can also be used. probes will form a double stranded molecule with their Any remaining single stranded material can be enzymatically digested, and when something remains, it is a sign of MAGE expression. For the case of polymerase chain reaction or other methodologies where a primer or

10

15

20

primers are required, the molecules represented by SEQ ID NO: 47 and SEQ ID NO: 48 are especially preferred for MAGE-1, SEQ ID NO: 49 and 50 for MAGE-2, SEQ ID NOS: 27 and 28 for MAGE-3 and SEQ ID NOS: 29 and 30 for MAGE-4. Similarly, these molecules are preferred as probes.

Quantitation of MAGE expression is shown herein as well. This is an important feature of the invention because in a given tumor sample (as compared to tumor cell lines) there will always be an undetermined proportion of normal cells.

One may also assay for the expression product of the MAGE gene, e.g., the tumor rejection antigen precursor protein, via assays such as immunoassays. See, e.g., U.S. Patent Application Serial No. 08/190,411 filed February 1, 1994, and Chen, et al., Proc. Natl. Acad. Sci. USA 91(3): 1004-1008 (1994), both of which are incorporated by reference, teaching MAGE-1 specific mAbs.

The terms and expressions which have been employed are used as terms of description and not of limitation, and there is no intention in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, it being recognized that various modifications are possible within the scope of the invention.

GENERAL INFORMATION: (1)

- APPLICANTS: De Plaen, Etienn ; Boon-Falleur, Thierry; Lethé, Bernard; Szikora, Jean-Pierre; De Smet, Charles; Chomez, Patrick; Weynants, P.; Brasseur, Francis; Marchand, M.; Gaugler, Béatrice; Van den Eynde, Benoit; van der Bruggen, Pierre; Patard, Jean-Jacques
- (ii) TITLE OF INVENTION: Method For Determining A Cancerous Condition by Assaying For Expression Of One Or More Mage Tumor Rejection Antigen Precursors
- (iii) NUMBER OF SEQUENCES: 56
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Felfe & Lynch
 - (B) STREET: 805 Third Avenue
 - (C) CITY: New York City (D) STATE: New York

 - (F) ZIP: 10022
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Diskette, 5.25 inch, 360 kb storage
 - (B) COMPUTER: IBM
 - (C) OPERATING SYSTEM: PC-DOS (D) SOFTWARE: Wordperfect
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: (B) FILING DATE:

 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Hanson, Norman D.
 - (B) REGISTRATION NUMBER: 30,946
 - (C) REFERENCE/DOCKET NUMBER: LUD 5356-PCT
- (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (212) 688-9200
 - (B) TELEFAX: (212) 838-3884

INFORMATION FOR SEQUENCE ID NO: 1: (2) (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 462 base pairs

(B) TYPE: nucleic acid

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

ACCACAGGAG	AATGAAAAGA	ACCCGGGACT	CCCAAAGACG	CTAGATGTGT	50
GAAGATCCTG	ATCACTCATT	GGGTGTCTGA	GTTCTGCGAT	ATTCATCCCT	100
CAGCCAATGA	GCTTACTGTT	CTCGTGGGGG	GTTTGTGAGC	CTTGGGTAGG	150
AAGTTTTGCA	AGTTCCGCCT	ACAGCTCTAG	CTTGTGAATT	TGTACCCTTT	200
CACGTAAAAA	AGTAGTCCAG	AGTTTACTAC	ACCCTCCCTC	CCCCCTCCCA	250
CCTCGTGCTG	TGCTGAGTTT	AGAAGTCTTC	CTTATAGAAG	TCTTCCGTAT	300
AGAACTCTTC	CGGAGGAAGG	AGGGAGGACC	CCCCCCTTT	GCTCTCCCAG	350
CATGCATTGT	GTCAACGCCA	TTGCACTGAG	CTGGTCGAAG	AAGTAAGCCG	400
CTAGCTTGCG	ACTCTACTCT	TATCTTAACT	TAGCTCGGCT	TCCTGCTGGT	450
ACCCTTTGTG	CC				462

- INFORMATION FOR SEQUENCE ID NO: 2: (2)
 - (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 675 base pairs

 (B) TYPE: nucleic acid

 (D) TOPOLOGY: linear

 (ii) MOLECULE TYPE: genomic DNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

ATC.	TCT	СЪТ	220	AAG	444	CCA	GAC	444	GCC	CAC	AGT	GGC	TCA	CCT	CCT	48
	Ser															
Mec	Ser	wab	ABII	rys	Lys	FLU	veħ	гур	10	HTD	SEL	GIY	DEL	15	GIY	
	GGT	~~~		2	3.00	maa		mm »		~~	000	ma c	maa		C22	96
																30
Asp	Gly	Asp	-	Asn	Arg	Сув	ABN		Leu	HIB	Arg	Tyr		ren	GIU	
			20					25					30			
	ATT															144
Glu	Ile		Pro	Tyr	Leu	Gly		Leu	Val	Phe	Ala		Val	Thr	Thr	
		35					40					45				
	TTT															192
Ser	Phe	Leu	Ala	Leu	Gln	Met	Phe	ľle	Asp	Ala	Leu	Tyr	Glu	Glu	Gln	
	50					55					60					
TAT	GAA	AGG	GAT	GTG	GCC	TGG	ATA	GCC	AGG	CAA	AGC	AAG	CGC	ATG	TCC	240
Tvr	Glu	Ara	Asp	Val	Ala	Trp	Ile	Ala	Arg	Gln	Ser	Lys	Arq	Met	Ser	
65			•		70	•			_	75		-	_		80	
	GTC	GAT	GAG	GAT	GAA	GAC	GAT	GAG	GAT	GAT	GAG	GAT	GAC	TAC	TAC	288
	Val															_
001				85		F	F		90	E		E		95	-1-	
CAC	GAC	CAC	CAC		CAC	CAC	CAT	CCC		ጥልጥ	CAT	CAT	CAC		CAT	336
	Asp															230
Авр	Asp	GIU		Asp	MSP	wab	Asb	105	File	TAT	Asb	ивр	110	мвр	veb	
			100		~~~				~~~			mar		~ m	~~~	304
	GAA															384
Glu	Glu		Glu	Leu	Glu	Asn		Met	Asp	Asp	GIU		Glu	Asp	GIu	
		115				4	120					125				
	GAA															432
Ala	Glu	Glu	Glu	Met	Ser	Val	Glu	Met	Gly	Ala	Gly	Ala	Glu	Glu	Met	
	130					135					140					
	GCT															480
Gly	Ala	Gly	Ala	Asn	Cys	Ala	Сув	Val	Pro	Gly	His	His	Leu	Arg	Lys	
145		-			150		-			155				_	160	
AAT	GAA	GTG	AAG	TGT	AGG	ATG	ATT	TAT	TTC	TTC	CAC	GAC	CCT	AAT	TTC	528
	Glu															
11011	J_4	,	_, _	165	9			-1-	170					175		
COTIC	GTG	TOT.	እ T እ		GTG	AAC	ССТ	AAC		CAA	ATC	CAC	ጥርጥ		ጥርጥ	576
	Val															3,0
Leu	vai	ser		Pro	AGI	ASII	FFO	_	GIU	GIII	net	GIU	_	nr g	Cys	
			180					185					190			

GAA	AAT	GCT	GAT	GAA	GAG	GTT	GCA	ATG	GAA	GAG	GAA	GAA	GAA	GAA	GAG	624
Glu	Asn	Ala	Asp	Glu	Glu	Val	Ala	Met	Glu							
		195					200				210					
GAG	GAG	GAG	GAG	GAA	GAG	GAA	ATG	GGA	AAC	CCG	GAT	GGC	TTC	TCA	CCT	672
Glu	Met	Gly	Asn	Pro	Asp	Gly	Phe	Ser	Pro							
220					225					230					235	
TAG																675

- INFORMATION FOR SEQUENCE ID NO: 3: (2)
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 228 base pairs
 (B) TYPE: nucleic acid
 (D) TOPOLOGY: linear
 (ii) MOLECULE TYPE: genomic DNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

GCATGCAGTT GCAAAGCCCA GAAGAAGAA ATGGACAGCG GAAGAAGTGG TTGTTTTTT TTCCCCTTCA TTAATTTTCT AGTTTTTAGT AATCCAGAAA ATTTGATTTT GTTCTAAAGT 120 TCATTATGCA AAGATGTCAC CAACAGACTT CTGACTGCAT GGTGAACTTT CATATGATAC 180 ATAGGATTAC ACTTGTACCT GTTAAAAATA AAAGTTTGAC TTGCATAC 228

- INFORMATION FOR SEQUENCE ID NO: 4: (2)
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1365 base pairs
 (B) TYPE: nucleic acid
 (D) TOPOLOGY: linear
 (ii) MOLECULE TYPE: genomic DNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

ACCACAGGAG AATGAAAAGA ACCCGGG	ACT CCCAAAGACG	CTAGATGTGT	50
GAAGATCCTG ATCACTCATT GGGTGTC	TGA GTTCTGCGAT	ATTCATCCCT	100
CAGCCAATGA GCTTACTGTT CTCGTGG	GGG GTTTGTGAGC	CTTGGGTAGG	150
AAGTTTTGCA AGTTCCGCCT ACAGCTC	TAG CTTGTGAATT	TGTACCCTTT	200
CACGTAAAAA AGTAGTCCAG AGTTTAC	TAC ACCCTCCCTC	CCCCTCCCA	250
CCTCGTGCTG TGCTGAGTTT AGAAGTC			300
AGAACTCTTC CGGAGGAAGG AGGGAGG	ACC CCCCCCTTT	GCTCTCCCAG	350
CATGCATTGT GTCAACGCCA TTGCACT	GAG CTGGTCGAAG	AAGTAAGCCG	400
CTAGCTTGCG ACTCTACTCT TATCTTA	ACT TAGCTCGGCT	TCCTGCTGGT	450
ACCCTTTGTG CC			462
ATG TCT GAT AAC AAG AAA CCA G	AC AAA GCC CAC	AGT GGC TCA	504
GGT GGT GAC GGT GAT GGG AAT A	GG TGC AAT TTA	TTG CAC CGG	546
TAC TCC CTG GAA GAA ATT CTG C			588
TTC GCT GTT GTC ACA ACA AGT T			630
ATA GAC GCC CTT TAT GAG GAG C			672
TGG ATA GCC AGG CAA AGC AAG C			714
	AG GAT GAC TAC		756
GAG GAC GAC GAC GAT GCC T	TC TAT GAT GAT	GAG GAT GAT	798
GAG GAA GAA GAA TTG GAG AAC C			840
GAT GAG GCC GAA GAA GAG ATG A	GC GTG GAA ATG	GGT GCC GGA	882
GCT GAG GAA ATG GGT GCT GGC G	CT AAC TGT GCC	TGT GTT CCT	924
GGC CAT CAT TTA AGG AAG AAT G			966
TAT TTC TTC CAC GAC CCT AAT T	TC CTG GTG TCT	ATA CCA GTG	1008
AAC CCT AAG GAA CAA ATG GAG T			1050
GAA GAG GTT GCA ATG GAA GAG G	AA GAA GAA GAA	GAG GAG GAG	1092
GAG GAG GAA GAG GAA ATG GGA A	AC CCG GAT GGC	TTC TCA CCT	1134
TAG			1137
GCATGCAGTT GCAAAGCCCA GAAGAAA	GAA ATGGACAGCG	GAAGAAGTGG	1187
TTGTTTTTT TTCCCCTTCA TTAATTT	TCT AGTTTTTAGT	AATCCAGAAA	1237
ATTTGATTTT GTTCTAAAGT TCATTAT	GCA AAGATGTCAC	CAACAGACTT	1287
CTGACTGCAT GGTGAACTTT CATATGA	TAC ATAGGATTAC	ACTTGTACCT	1337
GTTAAAAATA AAAGTTTGAC TTGCATA	.C		1365

INFORMATION FOR SEQUENCE ID NO: 5: (2)

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 4698 base pairs (B) TYPE: nucleic acid

- (D) TOPOLOGY: linear
 (ii) MOLECULE TYPE: genomic DNA
 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

(,	•	
ACCACAGGAG AATGAAAAGA ACCCGGGACT CCCAAAGACG	CTAGATGTGT	50
GAAGATCCTG ATCACTCATT GGGTGTCTGA GTTCTGCGAT	ATTCATCCCT	100
CAGCCAATGA GCTTACTGTT CTCGTGGGGG GTTTGTGAGG	CTTGGGTAGG	150
AAGTTTTGCA AGTTCCGCCT ACAGCTCTAG CTTGTGAATT	TGTACCCTTT	200
CACGTAAAAA AGTAGTCCAG AGTTTACTAC ACCCTCCCTC	CCCCCTCCCA	250
CCTCGTGCTG TGCTGAGTTT AGAAGTCTTC CTTATAGAAG	TOTOLOGICO	300
AGAACTCTTC CGGAGGAAGG AGGGAGGACC CCCCCCTTT	COTOTOGIAL	350
AGAACTCTTC CGGAGGAAGG AGGGAGGACC CCCCCCTTT	A DOUGLO DO	400
CATGCATTGT GTCAACGCCA TTGCACTGAG CTGGTCGAAC	MAGIMAGCCG	450
CTAGCTTGCG ACTCTACTCT TATCTTAACT TAGCTCGGCT	TCCTGCTGGT	
ACCCTTTGTG CC		462
ATG TCT GAT AAC AAG AAA CCA GAC AAA GCC CAC	AGT GGC TCA	504
GGT GGT GAC GGT GAT GGG AAT AGG TGC AAT TTA	TTG CAC CGG	546
TAC TCC CTG GAA GAA ATT CTG CCT TAT CTA GGG	TGG CTG GTC	588
TTC GCT GTT GTC ACA ACA AGT TTT CTG GCG CTC	CAG ATG TTC	630
ATA GAC GCC CTT TAT GAG GAG CAG TAT GAA AGG	GAT GTG GCC	672
TGG ATA GCC AGG CAA AGC AAG CGC ATG TCC TCT	GTC GAT GAG	714
GAT GAA GAC GAT GAG GAT GAG GAT GAC TAG	TAC GAC GAC	756
GAG GAC GAC GAC GAT GCC TTC TAT GAT GAT	GAG GAT GAT	798
GAG GAA GAA GAA TTG GAG AAC CTG ATG GAT GAT	GAA TCA GAA	840
GAT GAG GCC GAA GAA GAG ATG AGC GTG GAA ATG	GGT GCC GGA	882
GCT GAG GAA ATG GGT GCT GGC GCT AAC TGT GCC	· m	916
GTGAGTAACC CGTGGTCTTT ACTCTAGATT CAGGTGGGG	י כראיייריייא	966
CTCTTGCCCA CATCTGTAGT AAAGACCACA TTTTGGTTGC	CCCTCATTCC	1016
TGGAGCCATT CCTGGCTCTC CTGTCCACGC CTATCCCCGC	TOCOTOCO ATO	1066
CCCCACTCCT TGCTCCGCTC TCTTTCCTTT TCCCACCTTC	COMONGORO	1116
CCCCACTCCT TGCTCCGCTC TCTTTCCTTT TCCCACCTTC	- CCICIOGAGC	1166
TTCAGTCCAT CCTGCTCTGC TCCCTTTCCC CTTTGCTCTC	CITGCICCCC	1216
TCCCCCTCGG CTCAACTTTT CGTGCCTTCT GCTCTCTGA		
TTCAGGCTTC CCCATTTGCT CCTCTCCCGA AACCCTCCCC		1266
CCTTTTCGCG CCTTTTCTTT CCTGCTCCCC TCCCCCTCCC		1316
TCACCAGCTT TGCTCTCCCT GCTCCCCTCC CCCTTTTGC		1366
TCCTGCTCCC CTCCCCTCC CCTCCCTGTT TACCCTTCAC	CGCTTTTCCT	1416
CTACCTGCTT CCCTCCCCT TGCTGCTCCC TCCCTATTTC		1466
TGCTCCTCCC TCCCCCTCCC CCTCCCTCCC TATTTGCAT	TTCGGGTGCT	1516
CCTCCCTCCC CCTCCCCAGG CCTTTTTTTT TTTTTTTTTT		1566
TTGGTTTTTC GAGACAGGGT TTCTCTTTGT ATCCCTGGC		1616
TCACTCTGTA GACCAGGCTG GCCTCAAACT CAGAAATCTC		1666
CCTCCCAAAT GCTGGGATTA AAGGCTTGCA CCAGGACTG	CCCAGTGCAG	1716
GCCTTTCTTT TTTCTCCTCT CTGGTCTCCC TAATCCCTT	TCTGCATGTT	1766
AACTCCCCTT TTGGCACCTT TCCTTTACAG GACCCCCTC		1816
TTCCCTTCCG GCACCCTTCC TAGCCCTGCT CTGTTCCCT	TCCCTGCTCC	1866
CCTCCCCTC TTTGCTCGAC TTTTAGCAGC CTTACCTCT		1916
GCCCGTTCC CCTTTTTGT GCCTTTCCTC CTGGCTCCC		1966
AGCTCACCTT TTTGTTTGTT TGGTTGTTTG GTTGTTTGG	r TTCCTTTTTT	2016
TTTTTTTTTT GCACCTTGTT TTCCAAGATC CCCCTCCCC	7 TCCCCCCTTCC	2066
CCTCTGTGTG CCTTTCCTGT TCCCTCCCC TCGCTGGCT	- CCCCTCCCTT	2116
TCTGCCTTTC CTGTCCCTGC TCCCTTCTCT GCTAACCTT	r maamcccctt	2166
		2216
CTTTTCTAGA CTCCCCCCTC CAGGCTTGCT GTTTGCTTC		
CCTGACCCTG CTCCCCTTCC CCTCCCAGCT CCCCCCTCT		2266 2316
CCTTTCTCCA GCCTGTCACC CCTCCTTCTC TCCTCTCTG	TTCTCCCACT	
TCCTGCTTCC TTTACCCCTT CCCTCTCCT ACTCTCCTC	CIGCUIGUIG	2366
GACTTCCTCT CCAGCCGCCC AGTTCCCTGC AGTCCTGGA	TCTTTCCTGC	2416
CTCTCTGTCC ATCACTTCCC CCTAGTTTCA CTTCCCTTT	CACTCTCCCCT	2466
ATGTGTCTCT CTTCCTATCT ATCCCTTCCT TTCTGTCCC		2516
CCATCACCTC TCTCCTCCCT TCCCTTTCCT CTCTCTTCC	A TTTTCTTCCA	2566
CCTGCTTCTT TACCCTGCCT CTCCCATTGC CCTCTTACC	r ttatgcccat	2616
TCCATGTCCC CTCTCAATTC CCTGTCCCAT TGTGCTCCC		2666
ATTTCCCTCT TTCTCCCTTA GCCTCTTCTT CCTCTTCTC		2716
==		

100

TTCCCTTTGC TTCTCCCTCC TCCTTTCCC	CC TTCCCCTATG CCCTCTACTC 2760
TACTTGATCT TCTCTCCTCT CCACATACO	CC TTTTTCCTTT CCACCCTGCC 281
CTTTGTCCCC AGACCCTACA GTATCCTGT	rg cacaggaagt gggaggtgcc 286
ATCAACAACA AGGAGGCAAG AAACAGAGG	CA AAATCCCAAA ATCAGCAGGA 2910
AAGGCTGGAT GAAAATAAGG CCAGGTTCT	
AAGTGGCTCC TATAACCCTA AGTACCAAG	G GAGAAAGTGA TGGTGAAGTT 3010
CTTGATCCTT GCTGCTTCTT TTACATATO	FT TGGCACATCT TTCTCAAATG 3060
CAGGCCATGC TCCATGCTTG GCGCTTGCT	C AGCGTGGTTA AGTAATGGGA 3110
GAATCTGAAA ACTAGGGGCC AGTGGTTTG	ST TTTGGGGACA AATTAGCACG 3160
TAGTGATATT TCCCCCTAAA AATTATAAC	CA AACAGATTCA TGATTTGAGA 3210
TCCTTCTACA GGTGAGAAGT GGAAAAATT	rg tcactatgaa gttcttttta 3260
GGCTAAAGAT ACTTGGAACC ATAGAAGCC	ST TGTTAAAATA CTGCTTTCTT 3310
TTGCTAAAAT ATTCTTTCTC ACATATTCA	AT ATTCTCCAG 3355
GT GTT CCT GGC CAT CAT TTA AGG	AAG AAT GAA GTG AAG TGT 3390
AGG ATG ATT TAT TTC TTC CAC GAC	C CCT AAT TTC CTG GTG TCT 3438
ATA CCA GTG AAC CCT AAG GAA CAA	A ATG GAG TGT AGG TGT GAA 3480
AAT GCT GAT GAA GAG GTT GCA ATG	GAA GAG GAA GAA GAA 3522
GAG GAG GAG GAA GAG GAA	A ATG GGA AAC CCG GAT GGC 3564
TTC TCA CCT TAG	3576
GCATGCAGGT ACTGGCTTCA CTAACCAAC	CC ATTCCTAACA TATGCCTGTA 3626
GCTAAGAGCA TCTTTTTAAA AAATATTAT	
TCTTTTTACA TTAATAAGTA TTAAATTAA	AT CCAGTATACA GTTTTAAGAA 3726
CCCTAAGTTA AACAGAAGTC AATGATGTC	CT AGATGCCTGT TCTTTAGATT 3776
GTAGTGAGAC TACTTACTAC AGATGAGAR	
GACCAGTAAA AGATCATGCA GTGAAATGT	
TTCTTATAGT ACCTTTGAGA CAGCTGATA	
TTCAAGAAAG ATCACACGCC ATGGTTCAC	
TTCTGATTTT TTTCATTTCT AGACCTGTG	
CTTAAAATTT CCTTCATCTT TAATTTTCC	
TAGAATTCAA TTCAAATTCT TAATTCAAT	
AATGTTTTTT AAAAAAAATG CAAATCTC	
GTAACTGGGG GGCTTAGGGA ATCTGTAGG	
GTTCTGGTCT CTGAGAAGCA GTCAGAGAG	
CAGTAGGTTA GTGAGGTTGA TATGATCAG	
ATAAATACTC TAACAGCTAA GGATCTCTC	
ATTTTAGTTT CTCCTTGAGA AACAATGAG	
AGTCAGGAGT GTATTCTAAT AAGTGTTGC	
AGTTGCAAAG CCCAGAAGAA AGAAATGGA	
TTTTTTCCCC TTCATTAATT TTCTAGTTT	
TTTTGTTCTA AAGTTCATTA TGCAAAGAT	
GCATGGTGAA CTTTCATATG ATACATAGG	
AATAAAAGTT TGACTTGCAT AC	4698

(2) INFORMATION FOR SEQUENCE ID NO: 6:

- (i) SEQUENCE CHARACTERISTICS:
- (1) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 9 amino acids

 (B) TYPE: amino acid

 (D) TOPOLOGY: linear

 (ii) MOLECULE TYPE: protein

 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

Leu Pro Tyr Leu Gly Trp Leu Val Phe

- INFORMATION FOR SEQUENCE ID NO: 7: (2)
 - (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 2418 base pairs
 - (B) TYPE: nucleic acid
 (D) TOPOLOGY: linear
 (ii) MOLECULE TYPE: genomic DNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

GGATCCAGGC CCTGCCAGGA AAAATATAAG GGCCCTGCGT GAGAACAGAG GGGGTCATCC ACTGCATGAG AGTGGGGATG TCACAGAGTC CAGCCCACCC

TCCTGGTAGC	ACTGAGAAGC	CAGG CTGTG		CACCCTGAG	150
GGCCCGTGGA	TTCCTCTTCC	TGGAGCTCCA		AGTGAGGCCT	200
TGGTCTGAGA	CAGTATCCTC	AGGTCACAGA	GCAGAGGATG	CACAGGGTGT	250
GCCAGCAGTG	AATGTTTGCC	CTGAATGCAC	ACCAAGGGCC	CCACCTGCCA	300
CAGGACACAT	AGGACTCCAC	AGAGTCTGGC	CTCACCTCCC	TACTGTCAGT	350
CCTGTAGAAT	CGACCTCTGC	TGGCCGGCTG	TACCCTGAGT	ACCCTCTCAC	400
TTCCTCCTTC	AGGTTTTCAG	GGGACAGGCC	AACCCAGAGG	ACAGGATTCC	450
CTGGAGGCCA	CAGAGGAGCA	CCAAGGAGAA	GATCTGTAAG	TAGGCCTTTG	500
TTAGAGTCTC	CAAGGTTCAG	TTCTCAGCTG	AGGCCTCTCA	CACACTCCCT	550
CTCTCCCCAG	GCCTGTGGGT	CTTCATTGCC	CAGCTCCTGC	CCACACTCCT	600
GCCTGCTGCC	CTGACGAGAG	TCATCATGTC	TCTTGAGCAG	AGGAGTCTGC	650
ACTGCAAGCC	TGAGGAAGCC	CTTGAGGCCC	AACAAGAGGC	CCTGGGCCTG	700
GTGTGTGTGC	AGGCTGCCAC	CTCCTCCTCC	TCTCCTCTGG	TCCTGGGCAC	750
CCTGGAGGAG	GTGCCCACTG	CTGGGTCAAC	AGATCCTCCC	CAGAGTCCTC	800
AGGGAGCCTC	CGCCTTTCCC	ACTACCATCA	ACTTCACTCG	ACAGAGGCAA	850
CCCAGTGAGG	GTTCCAGCAG	CCGTGAAGAG	GAGGGGCCAA	GCACCTCTTG	900
TATCCTGGAG	TCCTTGTTCC	GAGCAGTAAT	CACTAAGAAG	GTGGCTGATT	950
TGGTTGGTTT	TCTGCTCCTC	AAATATCGAG	CCAGGGAGCC	AGTCACAAAG	1000
GCAGAAATGC	TGGAGAGTGT	CATCAAAAAT	TACAAGCACT	GTTTTCCTGA	1050
GATCTTCGGC	AAAGCCTCTG	AGTCCTTGCA	GCTGGTCTTT	GGCATTGACG	1100
TGAAGGAAGC	AGACCCCACC	GGCCACTCCT	ATGTCCTTGT	CACCTGCCTA	1150
GGTCTCTCCT	ATGATGGCCT	GCTGGGTGAT	AATCAGATCA	TGCCCAAGAC	1200
AGGCTTCCTG	ATAATTGTCC	TGGTCATGAT	TGCAATGGAG	GGCGGCCATG	1250
CTCCTGAGGA	GGAAATCTGG	GAGGAGCTGA	GTGTGATGGA	GGTGTATGAT	1300
GGGAGGGAGC	ACAGTGCCTA	TGGGGAGCCC	AGGAAGCTGC	TCACCCAAGA	1350
TTTGGTGCAG	GAAAAGTACC	TGGAGTACGG	CAGGTGCCGG	ACAGTGATCC	1400
CGCACGCTAT	GAGTTCCTGT	GGGGTCCAAG	GGCCCTCGCT	GAAACCAGCT	1450
ATGTGAAAGT	CCTTGAGTAT	GTGATCAAGG	TCAGTGCAAG	AGTTCGCTTT	1500
TTCTTCCCAT	CCCTGCGTGA	AGCAGCTTTG	AGAGAGGAGG	AAGAGGGAGT	1550
CTGAGCATGA	GTTGCAGCCA	AGGCCAGTGG	GAGGGGGACT	GGGCCAGTGC	1600
ACCTTCCAGG	GCCGCGTCCA	GCAGCTTCCC	CTGCCTCGTG	TGACATGAGG	1650
CCCATTCTTC	ACTCTGAAGA	GAGCGGTCAG	TGTTCTCAGT	AGTAGGTTTC	1700
TGTTCTATTG	GGTGACTTGG	AGATTTATCT	TTGTTCTCTT	TTGGAATTGT	1750
TCAAATGTTT	TTTTTTAAGG	GATGGTTGAA		CATCCAAGTT	1800
TATGAATGAC	AGCAGTCACA	CAGTTCTGTG	TATATAGTTT	AAGGGTAAGA	1850
GTCTTGTGTT	TTATTCAGAT	TGGGAAATCC	ATTCTATTTT	GTGAATTGGG	1900
ATAATAACAG	CAGTGGAATA	AGTACTTAGA		ATGAGCAGTA	1950
AAATAGATGA	GATAAAGAAC	TAAAGAAATT	AAGAGATAGT	CAATTCTTGC	2000
CTTATACCTC	AGTCTATTCT	GTAAAATTTT	TAAAGATATA	TGCATACCTG	2050
GATTTCCTTG	GCTTCTTTGA	GAATGTAAGA		CTGAATAAAG	2100
AATTCTTCCT	GTTCACTGGC	TCTTTTCTTC	TCCATGCACT	GAGCATCTGC	2150
TTTTTGGAAG	GCCCTGGGTT	AGTAGTGGAG	ATGCTAAGGT	AAGCCAGACT	2200
CATACCCACC	CATAGGGTCG		GAGCTGCAGT	CACGTAATCG	2250
AGGTGGCAAG	ATGTCCTCTA		GAAAAGTGAG	AGAGGGGTGA	2300
GGGTGTGGGG		GAGTGGTGGA		CCTGAGCTGG	2350
GGCATTTTGG		ACTGCAGTTC	CTTCTGGGGG	AGCTGATTGT	2400
AATGATCTTG	GGTGGATCC				2418

- INFORMATION FOR SEQUENCE ID NO: 8:

 (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 5724 base pairs

 (B) TYPE: nucleic acid

 (D) TOPOLOGY: linear

 (ii) MOLECULE TYPE: genomic DNA

 (ix) FEATURE: (2)

 - (A) NAME/KEY: MAGE-1 gene
 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

CCCGGGGCAC CACTGGCATC	CCTCCCCCTA	CCACCCCAA	TCCCTCCCTT	50
TACGCCACCC ATCCAAACAT	CTTCACGCTC	ACCCCCAGCC	CAAGCCAGGC	100
AGAATCCGGT TCCACCCCTG				150
ATGTGACGCC ACTGACTTGA				200
CGGTCTGAGG GGCGGCTTGA				250

TAAGGAGGCA	AGGTGACATG	CTGAGGGAGG	ACTGAGGACC	CACTTACCCC	300
AGATAGAGGA	CCCCAAATAA	TCCCTTCATG	CCAGTCCTGG	ACCATCTGGT	350
GGTGGACTTC	TCAGGCTGGG	CCACCCCAG	CCCCCTTGCT	GCTTAAACCA	400
CTGGGGACTC	GAAGTCAGAG	CTCCGTGTGA	TCAGGGAAGG	GCTGCTTAGG	450
AGAGGGCAGC	GTCCAGGCTC	TGCCAGACAT	CATGCTCAGG	ATTCTCAAGG	500
AGGGCTGAGG	GTCCCTAAGA	CCCCACTCCC	GTGACCCAAC	CCCCACTCCA	550
ATGCTCACTC	CCGTGACCCA	ACCCCCTCTT	CATTGTCATT	CCAACCCCCA	600
CCCCACATCC	CCCACCCCAT	CCCTCAACCC	TGATGCCCAT	CCGCCCAGCC	650
ATTCCACCCT	CACCCCCACC	CCCACCCCCA	CGCCCACTCC	CACCCCCACC	700
CAGGCAGGAT	CCGGTTCCCG	CCAGGAAACA	TCCGGGTGCC	CGGATGTGAC	750
GCCACTGACT	TGCGCATTGT	GGGGCAGAGA	GAAGCGAGGT	TTCCATTCTG	800
AGGGACGGCG	TAGAGTTCGG	CCGAAGGAAC	CTGACCCAGG	CTCTGTGAGG	850
AGGCAAGGTG	AGAGGCTGAG	GGAGGACTGA	GGACCCCGCC	ACTCCAAATA	900
GAGAGCCCCA	AATATTCCAG	CCCCCCCTT	GCTGCCAGCC	CTGGCCCACC	950
CGCGGGAAGA	CGTCTCAGCC	TGGGCTGCCC	CCAGACCCCT	GCTCCAAAAG	1000
CCTTGAGAGA	CACCAGGTTC	TTCTCCCCAA	GCTCTGGAAT	CAGAGGTTGC	1050
TGTGACCAGG	GCAGGACTGG	TTAGGAGAGG	GCAGGGCACA	GGCTCTGCCA	1100
GGCATCAAGA	TCAGCACCCA	AGAGGGAGGG	CTGTGGGCCC	CCAAGACTGC	1150
ACTCCAATCC	CCACTCCCAC	CCCATTCGCA	TTCCCATTCC	CCACCCAACC	1200
CCCATCTCCT	CAGCTACACC	TCCACCCCCA	TCCCTACTCC	TACTCCGTCA	1250
CCTGACCACC	ACCCTCCAGC	CCCAGCACCA	GCCCCAACCC	TTCTGCCACC	1300
TCACCCTCAC	TGCCCCCAAC	CCCACCCTCA	TCTCTCTCAT	GTGCCCCACT	1350
CCCATCGCCT	CCCCCATTCT	GGCAGAATCC	GGTTTGCCCC	TGCTCTCAAC	1400
CCAGGGAAGC	CCTGGTAGGC	CCGATGTGAA	ACCACTGACT	TGAACCTCAC	1450
AGATCTGAGA	GAAGCCAGGT	TCATTTAATG	GTTCTGAGGG	GCGGCTTGAG	1500
ATCCACTGAG	GGGAGTGGTT	TTAGGCTCTG	TGAGGAGGCA	AGGTGAGATG	1550
CTGAGGGAGG	ACTGAGGAGG	CACACACCCC	AGGTAGATGG	CCCCAAAATG	1600 1650
ATCCAGTACC	ACCCCTGCTG	CCAGCCCTGG	ACCACCCGGC	CAGGACAGAT	1700
GTCTCAGCTG	GACCACCCCC	CGTCCCGTCC	CACTGCCACT	CCTCACCACACA	1750
GGCAATCTGT	AGTCATAGCT	TATGTGACCG	CCCCCCCAT	TACCCTCACC	1800
GGCAGGGCCC	AGGCATCAAG	GTCCAGCATC GTTCCCCACC	CACACCUCTC	でしてかてみずしずし	1850
ACCCTGGGAG	GGAACTGAGG	TCCCATACCT	CHCHCCIGIC	CCCAACCTCA	1900
CACCGCCACC	CCACTCACAT	TCAACCCACG	ACCCCTACC	CARTCCCCC	1950
TCTTGTCAGA	ATCCCTGCTG	TCCCCATCCA	CCCTCTCATC	CACCCAACCC	2000
CAGGCACTCG	GATCTTGACG	GAGCAGAGGG	ACCCCCCTAC	TCCCACATCA	2050
GCTTGAACAG	ACACCACCCA	GCACCCTAGG	ACACCCCACC	CCTCTCTCAC	2100
COGGAGGCCTC	AGAGGACCCA CONCERCOCC	CCTCAAGAAT	CACAACCATC	CCCACTCAGA	2150
MUCCAUCCC	CTCCCACCCA	GGCCTGCAAG	CAGAACGATG	AGGAAGAGGA	2200
CCCACCACTC	ACCCCACCTT	GGAATCCAGA	TCAGTGTGGA	CCTCGGCCCT	2250
CACACCTCCA	CCCCACCCTC	GCCACATATG	GCCCATATTT	CCTGCATCTT	2300
TCACCTCACA	GGACAGAGCT	GTGGTCTGAG	AAGTGGGGCC	TCAGGTCAAC	2350
AGAGGGAGGA	GTTCCAGGAT	CCATATGGCC	CAAGATGTGC	CCCCTTCATG	2400
AGGACTGGGG	ATATCCCCGG	CTCAGAAAGA	AGGGACTCCA	CACAGTCTGG	2450
CTGTCCCCTT	TTAGTAGCTC	TAGGGGGACC	AGATCAGGGA	TGGCGGTATG	2500
TTCCATTCTC	ACTTGTACCA	CAGGCAGGAA	GTTGGGGGGC	CCTCAGGGAG	2550
ATGGGGTCTT	GGGGTAAAGG	GGGGATGTCT	ACTCATGTCA	GGGAATTGGG	2600
GGTTGAGGAA	GCACAGGCGC	TGGCAGGAAT	AAAGATGAGT	GAGACAGACA	2650
AGGCTATTGG	AATCCACACC	CCAGAACCAA	AGGGGTCAGC	CCTGGACACC	2700
TCACCCAGGA	TGTGGCTTCT	TTTTCACTCC	TGTTTCCAGA	TCTGGGGCAG	2750
GTGAGGACCT	CATTCTCAGA	GGGTGACTCA	GGTCAACGTA	GGGACCCCCA	2800
TCTGGTCTAA	AGACAGAGCG	GTCCCAGGAT	CTGCCATGCG	TTCGGGTGAG	2850
GAACATGAGG	GAGGACTGAG	GGTACCCCAG	GACCAGAACA	CTGAGGGAGA	2900
CTGCACAGAA	ATCAGCCCTG	CCCCTGCTGT	CACCCCAGAG	AGCATGGGCT	2950
GGGCCGTCTG	CCGAGGTCCT	TCCGTTATCC	TGGGATCATT	GATGTCAGGG	3000
ACGGGGAGGC	CTTGGTCTGA	GAAGGCTGCG	CTCAGGTCAG	TAGAGGGAGC	3050
GTCCCAGGCC	CTGCCAGGAG	TCAAGGTGAG	GACCAAGCGG	GCACCTCACC	3150
CAGGACACAT	TAATTCCAAT	GAATTTTGAT	ATCTCTTGCT	GCCCTTCCCC	3200
AAGGACCTAG	GCACGTGTGG	CCAGATGTTT	GTCCCCTCCT	GTCCTTCCAT	3250
TCCTTATCAT	GGATGTGAAC	TCTTGATTTG	GATTTCTCAG	ACCAGCAAAA	3300
GGGCAGGATC	CAGGCCCTGC	CAGGAAAAAT	ATAAGGGCCC	TGCGTGAGAA	3350
CAGAGGGGGT	CATCCACTGC	ATGAGAGTGG	GGATGTCACA	GAGTCCAGCC	3400
CACCCTCCTG	GTAGCACTGA	GAAGCCAGGG	CTGTGCTTGC	GGTCTGCACC	3450
CTGAGGGCCC	GTGGATTCCT	CTTCCTGGAG	CTCCAGGAAC	CAGGCAGTGA	3500
GGCCTTGGTC	TGAGACAGTA	TCCTCAGGTC	ACAGAGCAGA	GGATGCACAG	3550
GGTGTGCCAG	CAGTGAATGT	TTGCCCTGAA	TGCACACCAA	GGGCCCCACC	3600

TGCCACAGGA CACATAGGAC TCCACAGAGT CTGGCCTCAC	CTCCCTACTG	3650
TCAGTCCTGT AGAATCGACC TCTGCTGGCC GGCTGTACCC !	TGAGTACCCT	3700
CTCACTTCCT CCTTCAGGTT TTCAGGGGAC AGGCCAACCC		3750
		3800
ATTCCCTGGA GGCCACAGAG GAGCACCAAG GAGAAGATCT		
CTTTGTTAGA GTCTCCAAGG TTCAGTTCTC AGCTGAGGCC !		3850
TCCCTCTCTC CCCAGGCCTG TGGGTCTTCA TTGCCCAGCT	CCTGCCCACA	3900
CTCCTGCCTG CTGCCCTGAC GAGAGTCATC		3930
ATG TCT CTT GAG CAG AGG AGT CTG CAC TGC AAG	CCT GAG GAA	3972
GCC CTT GAG GCC CAA CAA GAG GCC CTG GGC CTG	CTC TCT CTC	4014
GUC UTT GAG GUC CAA CAA GAG GUC CTG GGC CTG	GIG 1G1 GIG	4056
CAG GCT GCC ACC TCC TCC TCC TCT CTG GTC	CTG GGC ACC	
CTG GAG GAG GTG CCC ACT GCT GGG TCA ACA GAT		4098
AGT CCT CAG GGA GCC TCC GCC TTT CCC ACT ACC		4140
ACT CGA CAG AGG CAA CCC AGT GAG GGT TCC AGC	AGC CGT GAA	4182
GAG GAG GGG CCA AGC ACC TCT TGT ATC CTG GAG	TCC TTG TTC	4224
CGA GCA GTA ATC ACT AAG AAG GTG GCT GAT TTG	GTT GGT TTT	4266
CTG CTC CTC AAA TAT CGA GCC AGG GAG CCA GTC		4308
GAA ATG CTG GAG AGT GTC ATC AAA AAT TAC AAG	CAC TGT TTT	4350
CCT GAG ATC TTC GGC AAA GCC TCT GAG TCC TTG	CAG CTG GTC	4392
TTT GGC ATT GAC GTG AAG GAA GCA GAC CCC ACC	GGC CAC TCC	4434
TAT GTC CTT GTC ACC TGC CTA GGT CTC TCC TAT	GAT GGC CTG	4476
CTG GGT GAT AAT CAG ATC ATG CCC AAG ACA GGC !		4518
ATT GTC CTG GTC ATG ATT GCA ATG GAG GGC GGC		4560
ATT GTC CTG GTC ATG ATT GCA ATG GAG GGC GGC G	CAI GCI CCI	4602
GAG GAG GAA ATC TGG GAG GAG CTG AGT GTG ATG		
GAT GGG AGG GAG CAC AGT GCC TAT GGG GAG CCC		4644
CTC ACC CAA GAT TTG GTG CAG GAA AAG TAC CTG	GAG TAC GGC	4686
AGG TGC CGG ACA GTG ATC CCG CAC GCT ATG AGT !	TCC TGT GGG	4728
GTC CAA GGG CCC TCG CTG AAA CCA GCT ATG TGA		4761
AAGTCCTTGA GTATGTGATC AAGGTCAGTG CAAGAGTTC		4800
GCTTTTCTT CCCATCCCTG CGTGAAGCAG CTTTGAGAGA	CCACCAACAC	4850
		4900
GGAGTCTGAG CATGAGTTGC AGCCAAGGCC AGTGGGAGGG		
AGTGCACCTT CCAGGGCCGC GTCCAGCAGC TTCCCCTGCC !		4950
TGAGGCCCAT TCTTCACTCT GAAGAGAGCG GTCAGTGTTC		5000
GTTTCTGTTC TATTGGGTGA CTTGGAGATT TATCTTTGTT	CTCTTTTGGA	5050
ATTGTTCAAA TGTTTTTTTT TAAGGGATGG TTGAATGAAC	TTCAGCATCC	5100
AAGTTTATGA ATGACAGCAG TCACACAGTT CTGTGTATAT		5150
TAAGAGTCTT GTGTTTTATT CAGATTGGGA AATCCATTCT		5200
TTGGGATAAT AACAGCAGTG GAATAAGTAC TTAGAAATGT		5250
		5300
CAGTAAAATA GATGAGATAA AGAACTAAAG AAATTAAGAG		
CTTGCCTTAT ACCTCAGTCT ATTCTGTAAA ATTTTTAAAG		5350
ACCTGGATTT CCTTGGCTTC TTTGAGAATG TAAGAGAAAT	TAAATCTGAA	5400
TAAAGAATTC TTCCTGTTCA CTGGCTCTTT TCTTCTCCAT	GCACTGAGCA	5450
TCTGCTTTTT GGAAGGCCCT GGGTTAGTAG TGGAGATGCT	AAGGTAAGCC	5500
AGACTCATAC CCACCCATAG GGTCGTAGAG TCTAGGAGCT		5550
AATCGAGGTG GCAAGATGTC CTCTAAAGAT GTAGGGAAAA		5600
GGTGAGGGTG TGGGGCTCCG GGTGAGAGTG GTGGAGTGTC		5650
GCTGGGGCAT TTTGGGCTTT GGGAAACTGC AGTTCCTTCT	GGGGAGCTG	5700
ATTGTAATGA TCTTGGGTGG ATCC		5724

- INFORMATION FOR SEQUENCE ID NO: 9: (2)
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4157 base pairs
 (B) TYPE: nucleic acid
 (D) TOPOLOGY: linear
 (ii) MOLECULE TYPE: genomic DNA
 - (ix) FEATURE:

 - (A) NAME/KEY: MAGE-2 gene (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

СССАТССАСА	TCCCCATCCG	CCCAGAATCC	GGTTCCACCC	TTCCCCTCAA	50
	TCACGGGCCC				100
					150
0010	CAGCGAGATT				
GAGGGAAGCA	GGCGCAGGCT	CCGTGAGGAG	GCAAGGTAAG	ACGCCGAGGG	200
ACCACTCACC	CCCCCCTCAC	CCCAGACAGA	GGGCCCCCAA	TTAATCCAGC	250

			•	
GCTGCCTCTG CTGCCGGG	CC TGGACCACCC	TGCAGGGGAA	GACTTCTCAG	300
GCTCAGTCGC CACCACCT	CA CCCCGCCACC	CCCCGCCGCT	TTAACCGCAG	350
GGAACTCTGG CGTAAGAG	CT TTGTGTGACC	AGGGCAGGGC	TGGTTAGAAG	400
TGCTCAGGGC CCAGACTC	AG CCAGGAATCA	AGGTCAGGAC	CCCAAGAGGG	450
GACTGAGGGC AACCCACC	CC CTACCCTCAC	TACCAATCCC	ATCCCCCAAC	500
ACCAACCCCA CCCCCATC	CC TCAAACACCA	ACCCCACCCC	CAAACCCCAT	550
TCCCATCTCC TCCCCCAC	CA CCATCCTGGC	AGAATCCGGC	TTTGCCCCTG	600
CAATCAACCC ACGGAAGC	TC CGGGAATGGC	GGCCAAGCAC	GCGGATCCTG	650
ACGTTCACAT GTACGGCT	AA GGGAGGGAAG	GGGTTGGGTC	TCGTGAGTAT	700
GGCCTTTGGG ATGCAGAG	GA AGGGCCCAGG	CCTCCTGGAA	GACAGTGGAG	750
TCCTTAGGGG ACCCAGCA	rg ccaggacagg	GGGCCCACTG	TACCCCTGTC	800
TCAAACTGAG CCACCTTT	TC ATTCAGCCGA	GGGAATCCTA	GGGATGCAGA	850
CCCACTTCAG GGGGTTGG				900
AAGAGGAGG ACTGAGGG				950
GCTGGGGGAT CCTGGGCA				1000
CTTCAGGGTG ACAGAGAG				1050
GGTCAGCAGA GGGAGGAA				1100
CTTCATGAGG ACTCCCCA				1150
AGTCTGGAAG TAAATTGT		GGGAACCTGA		1200
CCCTAAGTGA CAATCTCA				1250
CAGGGAGATA AGGTGTTG				1300
GGTTCCCCCT TGAGAAAG				1350
CCACAGGAGG CCATCATA				1400
GGACAACGCA CGTGGGGT				1450
CAGATCTCAG GGAGTTGA				1500
ACAGGGGCC CTCTGGTC				1550
ATCAGGTGG AGAGCCTG				1600
GCAGCAAGGG GGCCCCAT				1650
AGACCTGGG CAGGGCTG				1700
TGATGTCAGG GAAGGGGA				1750
GTAGAGGGAG GGTCTCAG				1800
GACTCGTCAC CCAGGACA				1850
GTCCTTCGCG GAGGACCT				1900
TCTCCTTCTG TACCATAT				1950
CAAGCCAGCA AAAGGGTG				2000
CCTGAGTGAG CACAGAGG				2050
CGGAGTCTGG CCAACCCT				2100
GCAGTCTGCA CACTGAAG				2150
TCCAGGAACC AGGCAGTG				2200
AGAGCAGAGG GGACGCAG				2250
CACACCAAGG GCCCCACC			-	2300
GCCTCACCCT CCCTATTC				2350
CTGTACCCTG AGGTGCCC			i i	2400
AGGCTGACAA GTAGGACC				2450
CTGTAAGTAA GCCTTTGT				2500
TAAGGCCTCA CACACGCT				2550
CCCAGCTCCT GCCCGCAC				2597
ATG CCT CTT GAG CAG				2639
GGC CTT GAG GCC CGA	-			2681
CAG GCT CCT GCT ACT				2723
TCT ACT CTA GTG GAA				2765
GAC TCA CCG AGT CCT				2807
TTC TCG ACT ACC ATC				2849
GAG GGC TCC AGC AAC				2891
CCC GAC CTG GAG TCC				2933
ATG GTT GAG TTG GTT				2975
AGG GAG CCG GTC ACA				3017
AGA AAT TGC CAG GAC				3059
TCC GAG TAC TTG CAG				3101
GTG GTC CCC ATC AGC				3143
GGC CTC TCC TAC GAT				3143
CCC AAG ACA GGC CTC				
				3227
ATA GAG GGC GAC TGT				3269
CTG AGT ATG TTG GAG	ANG OFF THE	DAU DUA DUU	GAC AGT GTC	3311
TTC GCA CAT CCC AGG	AAG CTG CTC	ATG CAA GAT	CTG GTG CAG	3353
GAA AAC TAC CTG GAG			3 AM A3 E CC-	3395

					~~~	maa	CCT	CCA	300	CCC	COTIC	አ ጥጥ	GAA	34	37
GCA	TGC	TAC	GAG	TTC	CIG	1.66									
ACC	AGC	TAT	GTG	AAA	GTC	CTG	CAC	CAT	ACA	CTA	AAG	ATC	GGT		79
GGA	GAA	CCT	CAC	ATT	TCC	TAC	CCA	CCC	CTG	CAT	GAA	CGG	GCT	35	21
TTG	AGA	GAG	GGA	GAA	GAG	TGA								35	42
			ATGT			AGGG	CCAG	r GG	GAGG	GGT	CTG	GGCCZ	AGT	35	92
					,		GCTT		CTGC	משרכם	ጥርጭ	GATA'	rca	36	42
GCAC	CTT	CA	GGGC	JULA:											
GGCC	CAT:	rcc	TGCC:	CTT:	rg a	AGAG:	AGCAC	TC	AGCA'	TCT	TAG	CAGT	3AG		92
TTTC	TGT	CT	GTTG	BATG	AC T	TTGA	GATT1	TA 1	CTTT	CTTT	CCT	GTTG(	<b>GAA</b>	37	42
TTG	TCA	TAA	GTTC	CTTT	ra a	CAAA'	TGGT?	r GG	ATGA	ACTT	CAG	CATC	CAA	37	192
	PATG		GACA	TAG'	C A	CACA	TAGTO	CT	GTTT	TATA	AGT:	TTAG	GGG	38	142
	AGT		GTTT'			AGAT	TGGG	AA'	TCCA'	TTCC	ATT:	TTGT	GAG	38	192
			ATAA				TATG		TTGC	TAT	ATT	GTGA	ACG	39	42
														20	92
AATT	PAGC/	AGT	AAAA:	raca:	rg a	TAÇA	<b>AGGA</b>	CT	CAAA	AGAT	AGT	TAAT	ICI		
TGC	CTTA:	rac	CTCAC	STCT	AT T	ATGT	AAAA?	TA	AAAA!	<b>IATG</b>	TGT	ATGT:	rtt	40	142
TGCT	TCT.	PTG	AGAA'	rgca	AA AA	GAAA'	TTAA	A TC	TGAA'	<b>FAAA</b>	TTC	TTCC	<b>IGT</b>	40	92
	CTGG		ATTT	сттт	AC C	ATTC	ACTC	A GC	ATCT	GCTC	TGT	GGAA	GGC	41	42
			GTGG				<b>-</b>			_				41	57
CCI	GTA(	JIM	GIGG	3											

- INFORMATION FOR SEQUENCE ID NO: 10: (2)
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 662 base pairs
  - (B) TYPE: nucleic acid
    (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: genomic DNA
    (ix) FEATURE:
  - - (A) NAME/KEY: MAGE-21 gene
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

GGATCCCCAT	GGATCCAGGA	AGAATCCAGT	TCCACCCCTG	CTGTGAACCC	50
AGGGAAGTCA			CTGACTTGCG		100
CAGAGAACAG	CGAGATTCTC	GCCCTGAGCA	ACGGCCTGAC	GTCGGCGGAG	150
GGAAGCAGGC	GCAGGCTCCG	TGAGGAGGCA	AGGTAAGATG	CCGAGGGAGG	200
ACTGAGGCGG	GCCTCACCCC	AGACAGAGGG	CCCCCAATAA	TCCAGCGCTG	250
			GGGGAAGACT		300
AGTCGCCACC	ACCTCACCCC	GCCACCCCC	GCCGCTTTAA	CCGCAGGGAA	350
CTCTGGTGTA	AGAGCTTTGT	GTGACCAGGG	CAGGGCTGGT	TAGAAGTGCT	400
CAGGGCCCAG	ACTCAGCCAG	GAATCAAGGT	CAGGACCCCA	AGAGGGGACT	450
GAGGGTAACC	CCCCGCACC	CCCACCACCA	TTCCCATCCC	CCAACACCAA	500
CCCCACCCC	ATCCCCCAAC	ACCAAACCCA	CCACCATCGC	TCAAACATCA	550
ACGGCACCCC	CAAACCCCGA	TTCCCATCCC	CACCCATCCT	GGCAGAATCG	600
GAGCTTTGCC	CCTGCAATCA	ACCCACGGAA	GCTCCGGGAA	TGGCGGCCAA	650
GCACGCGGAT					662

- INFORMATION FOR SEQUENCE ID NO: 11: (2)
  - (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1640 base pairs
    (B) TYPE: nucleic acid
    (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: cDNA to mRNA
  - (ix) FEATURE:
    - (A) NAME/KEY: cDNA MAGE-3
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

GCCGCGAGGG AAGCCGGCCC AGGCTCGGTG AGGAGGCAAG GTTCTGAGGG	50
GACAGGCTGA CCTGGAGGAC CAGAGGCCCC CGGAGGAGCA CTGAAGGAGA	100
AGATCTGCCA GTGGGTCTCC ATTGCCCAGC TCCTGCCCAC ACTCCCGCCT	150
GTTGCCCTGA CCAGAGTCAT C	171
ATG CCT CTT GAG CAG AGG AGT CAG CAC TGC AAG CCT GAA GAA	213
GGC CTT GAG GCC CGA GGA GAG GCC CTG GGC CTG GTG GGT GCG	255
CAG GCT CCT GCT ACT GAG GAG CAG GAG GCT GCC TCC TCT	297
TOT ACT CTA GTT GAA GTC ACC CTG GGG GAG GTG CCT GCT GCC	339

GAG	TCA	CCA	GAT	CCT	CCC	CAG	AGT	CCT	CAG	GGA	GCC	TCC	AGC	381
CTC	CCC	ACT	ACC	ATG	AAC	TAC	CCT	CTC	TGG	AGC	CAA	TCC	TAT	423
GAG	GAC	TCC	AGC	AAC	CAA	GAA	GAG	GAG	GGG	CCA	AGC	ACC	TTC	465
CCT	GAC	CTG	GAG	TCC	GAG	TTC	CAA	GCA	GCA	CTC	AGT	AGG	AAG	507
GTG	GCC	GAG	TTG	GTT	CAT	TTT	CTG	CTC	CTC	AAG	TAT	CGA	GCC	549
AGG	GAG	CCG	GTC	ACA	AAG	GCA	GAA	ATG	CTG	GGG	AGT	GTC	GTC	591
GGA	AAT	TGG	CAG	TAT	TTC	TTT	CCT	GTG	ATC	TTC	AGC	AAA	GCT	633
	AGT	TCC	TTG	CAG	CTG	GTC	TTT	GGC	ATC	GAG	CTG	ATG	GAA	675
GTG	GAC	CCC	ATC	GGC	CAC	TTG	TAC	ATC	TTT	GCC	ACC	TGC	CTG	717
GGC	CTC	TCC	TAC	GAT	GGC	CTG	CTG	GGT	GAC	AAT	CAG	ATC	ATG	759
CCC	AAG	GCA	GGC	CTC	CTG	ATA	ATC	GTC	CTG	GCC	ATA	ATC	GCA	801
AGA	CAC	GGC	GAC	TGT	GCC	CCT	GAG	GAG	AAA	ATC	TGG	GAG	GAG	843
CTC	ACT	CTC	TTA	GAG	GTG	TTT	GAG	GGG	AGG	GAA	GAC	AGT	ATG	885
Date:	CCC	CAT	CCC	AAG	AAG	CTG	CTC	ACC	CAA	CAT	TTC	GTG	CAG	927
110	770	TAC	CTG	CAC	TAC	CGG	CAG	GTC	CCC	GGC	AGT	GAT	CCT	969
GCA		TAU	CIG	THE CASE	CTG	TGG	GGT	CCA	AGG	GCC	CTC	GTT	GAA	1011
BCA	101	TOT	CTC	770	GTC	CTG	CAC	CAT	ATG	GTA	AAG	ATC	AGT	1053
ACC	AGC	COM	GIG	PALL	TCC	TAC	CCA	CCC	CTG	CAT	GAG	TGG	GTT	1095
			GGG				00							1116
TIG	AUA Orana	מאט י	מטט יייטטעט	ימרטי מרטים	2C C	ACCC!	CCAG	r GG	CAGG	gggt	CTG	GGCC	AGT	1166
GIC	COMM.	CCC	CCCC	CCD	יים כו	מחידים	CTTO.	C CA	CTGC	CTCC	TGT	GACG'	TGA	1216
GCA		TOT !	TCAC'	hCddd,	rc A	ACCC	AGCA	TC	AGCA'	TTCT	TAG	TAGT	GGG	1266
mmm	COMI	TCI	CTTC	EDTC:	ייי טע	TTCA	CATT	A TT	CTTT	GTTT	CCT	GTTG	GAG	1316
111	MWGY.	YEAR !	CTTG		מ מיז	CCCD.	TCCT.	T GA	ATGA	GCGT	CAG	CATC	CAG	1366
TIG	TICH.	NAT '	GIIC	CTIC	רר א	ימיז מי	TAGT	G CT	CTTT	TATA	AGT	TTAG	GAG	1416
GII	CACE	WWI .	ロナナか	TATE	CT C	ידעעע	Tagg	A AA	TCCA	TTCC	ATT	TTGT	GAA	1466
TAA	GMG I	VLV.	DEPT.	LYCC.	AG T	CCTA	PAPC	T AT	TTGC	TTAA	AAT	TGTG	AGC	1516
TIG	TONC	WIW .	22 2 2 C	TUGC	DT C	DCDT.	מאמע מ	CAA	CAAA	TCAA	AAG	ATAG	TTG	1566
GAA	TAG	CAA	THAC	COMO	יט בה	CAD A.	TOTO	T AA	ידיד מ מ	AAAC	AAA	TATC	CAA	1616
							1010		MIL A					1640
ACC	AGGA	TTT	CCTT	GMCI	TC I	110								

- INFORMATION FOR SEQUENCE ID NO: 12: (i) SEQUENCE CHARACTERISTICS: (2)
  - (A) LENGTH: 943 base pairs
    (B) TYPE: nucleic acid
    (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: genomic DNA

  - (ix) FEATURE:

    (A) NAME/KEY: MAGE-31 gene
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

GGATCCTCC	A C	CCCA	GTAG	A GI	'GGGG	ACCT	CAC	AGAG	TCT	GGCC	CAACC	CT	5	-
CCTGACAGT		TGGG	AATC	C GI	GGC1	GCGT	TTG	CTGI	CTG	CAC	TTGG	GG	10	_
GCCCGTGGA													15	0
AGGACTTGG	T C	TGAG	GCAG	T GI	CCTC	AGGT	CAC	AGAG	TAG	AGGG	GgC1	CA	20	0
GATAGTGC	'A A	CGGT	GAAG	G TI	TGC	TTGG	ATT	CAAA	CCA	AGG	cccc	CAC	25	0
CTGCCCCAC	20 0	CACA	TGGA	C TC	CAG	AGCGC	CTG	GCCI	CAC	CCTC	CAATA	CT	30	0
TTCAGTCCT	rg C	AGCC	TCAG	C AT	GCGC	TGGC	: CGG	ATGI	ACC	CTG	AGGTO	CC	35	0
CTCTCACT	rc c	TCCT	TCAG	G TI	CTG	AGGGG	ACA	AGGCT	GAC	CTG	BAGG	CC	40	0
AGAGGCCC	70 6	GAGG	AGCA	C TO	AAGO	AGAA	GAT	CTGI	AAG	TAAC	CCT1	TG	45	0
TTAGAGCC	פס כ	חממי	TTCC	יים אי	CAG	PACTO	: AGC	TGAC	GTC	TCT	CACAT	rgc	50	0
TCCCTCTC	rc c	CCAC	GCC	G TO	GGT	CTCCA	TTC	CCCA	GCT	CCT	CCCI	ACA	55	0
CTCCCGCC													58	0
ATG CCT	-mm	CAC	CAG	AGG	AGT	CAG	CAC	TGC	AAG	CCT	GAA	GAA	62	2
GGC CTT (	276	GCC	CCA	GGA	GAa	GCC	CTG	GGC	CTG	GTG	GGT	GCG	66	4
CAG GCT	OUT.	CCT	አርጥ	DAD	GAG	CAG	GAG	GCT	GCC	TCC	TCC	TCT	70	6
TCT AGT	רעד.	CTT	CDD	GTC	ACC	CTG	GGG	GAG	GTG	CCT	GCT	GCC	74	8
GAG TCA	GUN GIW	CAT	CCT	CCC	CAG	ACT	CCT	CAG	GGA	GCC	TCC	AGC	79	0
CTC CCC		GUI	D TO I	770	TAC	CCT	CTC	TCC	AGC	CAA	TCC	TAT	83	12
GAG GAC	ACT	ACC	AIG	CAA	TWC	CAC	CAC	CCC	CCA	AGC	ACC	TTC	87	_
CCT GAC	TCC	AGC	MAC	CAA	TO TO TO	CAA	CCD	CCA	CTC	AGT	AGG	AAG	91	_
								GUA	010	AGI	2133		94	
GTG GCC	AAG	TTG	GTT	CAT	TTT	CIG	CIC						,	

INFORMATION FOR SEQUENCE ID NO: 13: (2) (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2531 base pairs

(B) TYPE: nucleic acid

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

- (ix) FEATURE:
- (A) NAME/KEY: MAGE-4 gene (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

GGATCCAGGC CCTGCCTGGA GAAATGTGAG GGCCCTGAGT		50
GGGATCATCC ACTCCATGAG AGTGGGGACC TCACAGAGTC	CAGCCTACCC	100
TCTTGATGGC ACTGAGGGAC CGGGGCTGTG CTTACAGTCT		150
GGCCCATGGA TTCCTCTCCT AGGAGCTCCA GGAACAAGGC	AGTGAGGCCT	200
TGGTCTGAGA CAGTGTCCTC AGGTTACAGA GCAGAGGATG	CACAGGCTGT	250
GCCAGCAGTG AATGTTTGCC CTGAATGCAC ACCAAGGGCC		300
CAAGACACAT AGGACTCCAA AGAGTCTGGC CTCACCTCCC		350
CCTGCAGAAT CGACCTCTGC TGGCCGGCTA TACCCTGAGG		400
CTTCCTCCTT CAGGTTCTGA GCAGACAGGC CAACCGGAGA		450
TGGAGGCCAC AGAGGAGCAC CAAGGAGAAG ATCTGTAAGT		500
TAGAGCCTCT AAGATTTGGT TCTCAGCTGA GGTCTCTCAC		550
TCTCCGTAGG CCTGTGGGTC CCCATTGCCC AGCTTTTGCC		600
CCTGCTGCCC TGACCAGAGT CATC	IGCACICITG	624
	00m 010 011	666
ATG TCT TCT GAG CAG AAG AGT CAG CAC TGC AAG		
GGC GTT GAG GCC CAA GAA GAG GCC CTG GGC CTG		708
CAG GCT CCT ACT ACT GAG GAG CAG GAG GCT GCT		750
TCC TCT CCT CTG GTC CCT GGC ACC CTG GAG GAA		792
GCT GAG TCA GCA GGT CCT CCC CAG AGT CCT CAG		834
GCC TTA CCC ACT ACC ATC AGC TTC ACT TGC TGG		876
AAT GAG GGT TCC AGC AGC CAA GAA GAG GAG GGG		918
TCG CCT GAC GCA GAG TCC TTG TTC CGA GAA GCA		960
AAG GTG GAT GAG TTG GCT CAT TTT CTG CTC CGC		1002
GCC AAG GAG CTG GTC ACA AAG GCA GAA ATG CTG		1044
ATC AAA AAT TAC AAG CGC TGC TTT CCT GTG ATC		1086
GCC TCC GAG TCC CTG AAG ATG ATC TTT GGC ATT		1128
GAA GTG GAC CCC GCC AGC AAC ACC TAC ACC CTT		1170
CTG GGC CTT TCC TAT GAT GGC CTG CTG GGT AAT		1212
TTT CCC AAG ACA GGC CTT CTG ATA ATC GTC CTG	GGC ACA ATT	1254
GCA ATG GAG GGC GAC AGC GCC TCT GAG GAG GAA	ATC TGG GAG	1296
GAG CTG GGT GTG ATG GGG GTG TAT GAT GGG AGG	GAG CAC ACT	1338
GTC TAT GGG GAG CCC AGG AAA CTG CTC ACC CAA	GAT TGG GTG	1380
CAG GAA AAC TAC CTG GAG TAC CGG CAG GTA CCC	GGC AGT AAT	1422
CCT GCG CGC TAT GAG TTC CTG TGG GGT CCA AGG	GCT CTG GCT	1464
GAA ACC AGC TAT GTG AAA GTC CTG GAG CAT GTG		1506
AAT GCA AGA GTT CGC ATT GCC TAC CCA TCC CTG	CGT GAA GCA	1548
GCT TTG TTA GAG GAG GAA GAG GGA GTC TGA		1578
GCATGAGTTG CAGCCAGGGC TGTGGGGAAG GGGCAGGGCT	GGGCCAGTGC	1628
ATCTAACAGC CCTGTGCAGC AGCTTCCCTT GCCTCGTGTA	ACATGAGGCC	1678
CATTCTTCAC TCTGTTTGAA GAAAATAGTC AGTGTTCTTA		1728
TCTATTTGT TGGATGACTT GGAGATTTAT CTCTGTTTCC		1778
GTTGAAATGT TCCTTTTAAT GGATGGTTGA ATTAACTTCA		1828
TTATGAATCG TAGTTAACGT ATATTGCTGT TAATATAGTT		1878
AGTCTTGTTT TTTATTCAGA TTGGGAAATC CGTTCTATTT		1928
GGACATAATA ACAGCAGTGG AGTAAGTATT TAGAAGTGTG		1978
GAAATAGGTG AGATAAATTA AAAGATACTT AATTCCCGCC		2028
GTCTATTCTG TAAAATTTAA AAATATATAT GCATACCTGG		2078
CTTCGTGAAT GTAAGAGAAA TTAAATCTGA ATAAATAATT		2128
ACTGGCTCAT TTCTTCTCTA TGCACTGAGC ATCTGCTCTG		2178
		2228
AGGATTAGTA GTGGAGATAC TAGGGTAAGC CAGACACACA		
GGGTATTAAG AGTCTAGGAG CGCGGTCATA TAATTAAGGT		2278
CCTCTAAGAT GTAGGGGAAA AGTAACGAGT GTGGGTATGG		2328
GAGAGTGGTC GGGTGTAAAT TCCCTGTGTG GGGCCTTTTG		2378
AACTGCATTT TCTTCTGAGG GATCTGATTC TAATGAAGCT		2428
AGGGCCAGAT TCTCAGAGGG AGAGGGAAAA GCCCAGATTG	GAAAAGTTGC	2478

77

TCTGAGCAGT TCCTTTGTGA CAATGGATGA ACAGAGAGGA GCCTCTACCT 2528 2531 GGG

INFORMATION FOR SEQUENCE ID NO: 14: (2)

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2531 base pairs
  (B) TYPE: nucleic acid
  (D) TOPOLOGY: linear
  (ii) MOLECULE TYPE: genomic DNA
- (ix) FEATURE:
- (A) NAME/KEY: MAGE-41 gene (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

GGATCCAGGC CCTGCCTGGA GAAATGTGAG GGCCG	CTGAGT GAACACAGTG 50
GGGATCATCC ACTCCATGAG AGTGGGGACC TCAC	AGAGTC CAGCCTACCC 100
TCTTGATGGC ACTGAGGGAC CGGGGCTGTG CTTAG	CAGTCT GCACCCTAAG 150
GGCCCATGGA TTCCTCTCCT AGGAGCTCCA GGAAG	CAAGGC AGTGAGGCCT 200
TGGTCTGAGA CAGTGTCCTC AGGTTACAGA GCAG	AGGATG CACAGGCTGT 250
GCCAGCAGTG AATGTTTGCC CTGAATGCAC ACCA	AGGGCC CCACCTGCCA 300
CAAGACACAT AGGACTCCAA AGAGTCTGGC CTCAG	CCTCCC TACCATCAAT 350
CCTGCAGAAT CGACCTCTGC TGGCCGGCTA TACC	CTGAGG TGCTCTCTCA 400
CTTCCTCCTT CAGGTTCTGA GCAGACAGGC CAAC	CGGAGA CAGGATTCCC 450
TGGAGGCCAC AGAGGAGCAC CAAGGAGAAG ATCT	GTAAGT AAGCCTTTGT 500
TAGAGCCTCT AAGATTTGGT TCTCAGCTGA GGTC	TCTCAC ATGCTCCCTC 550
TCTCCGTAGG CCTGTGGGTC CCCATTGCCC AGCT	TTTGCC TGCACTCTTG 600
CCTGCTGCCC TGAGCAGAGT CATC	624
ATG TCT TCT GAG CAG AAG AGT CAG CAC TO	GC AAG CCT GAG GAA 666
GGC GTT GAG GCC CAA GAA GAG GCC CTG G	GC CTG GTG GGT GCG 708
CAG GCT CCT ACT ACT GAG GAG CAG GAG	CT GCT GTC TCC TCC 750
TCC TCT CCT CTG GTC CCT GGC ACC CTG G	AG GAA GTG CCT GCT 792
GCT GAG TCA GCA GGT CCT CCC CAG AGT C	CT CAG GGA GCC TCT 834
GCC TTA CCC ACT ACC ATC AGC TTC ACT TO	GC TGG AGG CAA CCC 876
AAT GAG GGT TCC AGC AGC CAA GAA GAG G	AG GGG CCA AGC ACC 918
TCG CCT GAC GCA GAG TCC TTG TTC CGA G	AA GCA CTC AGT AAC 960
AAG GTG GAT GAG TTG GCT CAT TTT CTG C	TC CGC AAG TAT CGA 1002
GCC AAG GAG CTG GTC ACA AAG GCA GAA A	TG CTG GAG AGA GTC 1044
ATC AAA AAT TAC AAG CGC TGC TTT CCT G	TG ATC TTC GGC AAA 1086
GCC TCC GAG TCC CTG AAG ATG ATC TTT G	GC ATT GAC GTG AAG 1128
GAA GTG GAC CCC ACC AGC AAC ACC TAC A	CC CTT GTC ACC TGC 1170
CTG GGC CTT TCC TAT GAT GGC CTG CTG G	GT AAT AAT CAG ATC 1212
TTT CCC AAG ACA GGC CTT CTG ATA ATC G	TC CTG GGC ACA ATT 1254
GCA ATG GAG GGC GAC AGC GCC TCT GAG G	
GAG CTG GGT GTG ATG GGG GTG TAT GAT G	GG AGG GAG CAC ACT 1338
GTC TAT GGG GAG CCC AGG AAA CTG CTC A	CC CAA GAT TGG GTG 1380
CAG GAA AAC TAC CTG GAG TAC CGG CAG G	TA CCC GGC AGT AAT 1422
CCT GCG CGC TAT GAG TTC CTG TGG GGT C	CA AGG GCT CTG GCT 1464
GAA ACC AGC TAT GTG AAA GTC CTG GAG C	AT GTG GTC AGG GTC 1506
AAT GCA AGA GTT CGC ATT GCC TAC CCA T	CC CTG CGT GAA GCA 1548
GCT TTG TTA GAG GAG GAA GAG GGA GTC T	GA 1578
GCATGAGTTG CAGCCAGGGC TGTGGGGAAG GGGC	AGGGCT GGGCCAGTGC 1628
ATCTARCAGE CETGTGCAGE AGETTECETT GEET	CGTGTA ACATGAGGCC 1678
CATTCTTCAC TCTGTTTGAA GAAAATAGTC AGTG	TTCTTA GTAGTGGGTT 1728
TCTATTTTGT TGGATGACTT GGAGATTTAT CTCT	GTTTCC TTTTACAATT 1778
GTTGAAATGT TCCTTTTAAT GGATGGTTGA ATTA	ACTTCA GCATCCAAGT 1828
TTATGAATCG TAGTTAACGT ATATTGCTGT TAAT	ATAGTT TAGGAGTAAG 1878
AGTCTTGTTT TTTATTCAGA TTGGGAAATC CGTT	CTATTT TGTGAATTTG 1928
GGACATAATA ACAGCAGTGG AGTAAGTATT TAGA	AGTGTG AATTCACCGT 1978
GAAATAGGTG AGATAAATTA AAAGATACTT AATT	CCCGCC TTATGCCTCA 2028
GTCTATTCTG TAAAATTTAA AAATATATAT GCAT	ACCTGG ATTTCCTTGG 2078
CTTCGTGAAT GTAAGAGAAA TTAAATCTGA ATAA	ATAATT CTTTCTGTTA 2128
ACTGGCTCAT TTCTTCTCTA TGCACTGAGC ATCT	GCTCTG TGGAAGGCCC 2178
ACTGGCTCAT TTCTTCTCTA TGCACTGAGC ATCT AGGATTAGTA GTGGAGATAC TAGGGTAAGC CAGA	CACACA CCTACCGATA 2228
AGGATTAGTA GTGGAGATAC TAGGGTAAGC CAGA	ICACACA CCIACCGAIA 2220

GGGTATTAAG	AGTCTAGGAG	CGCGGTCATA	TAATTAAGGT	GACAAGATGT	2278
CCTCTAAGAT	GTAGGGGAAA	AGTAACGAGT	GTGGGTATGG	GGCTCCAGGT	2328
GAGAGTGGTC	GGGTGTAAAT	TCCCTGTGTG	GGGCCTTTTG	GGCTTTGGGA	2378
AACTCCATTT	TCTTCTGAGG	GATCTGATTC	TAATGAAGCT	TGGTGGGTCC	2428
AGGGCCAGAT	TCTCAGAGGG	AGAGGGAAAA	GCCCAGATTG	GAAAAGTTGC	2478
TCTGAGCGGT	TCCTTTGTGA	CAATGGATGA	<b>ACAGAGAGGA</b>	GCCTCTACCT	2528
GGG					2531

- (2) INFORMATION FOR SEQUENCE ID NO: 15:
  - (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1068 base pairs
    (B) TYPE: nucleic acid
    (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: cDNA to mRNA
  - (ix) FEATURE:
    - (A) NAME/KEY: cDNA MAGE-4
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:

G	GGG	CCA	AGC	ACC	TCG	CCT	GAC	GCA	GAG	TCC	TTG	TTC	CGA	40
GAA	GCA	CTC	AGT	AAC	AAG	GTG	GAT	GAG	TTG	GCT	CAT	TTT	CTG	82
CTC	CGC	AAG	TAT	CGA	GCC	AAG	GAG	CTG	GTC	ACA	AAG	GCA	GAA	124
ATG	CTG	GAG	AGA	GTC	ATC	AAA	AAT	TAC	AAG	CGC	TGC	TTT	CCT	166
GTG	ATC	TTC	GGC	AAA	GCC	TCC	GAG	TCC	CTG	AAG	ATG	ATC	TTT	208
GGC	ATT	GAC	GTG	AAG	GAA	GTG	GAC	CCC	GCC	AGC	AAC	ACC	TAC	250
ACC	CTT	GTC	ACC	TGC	CTG	GGC	CTT	TCC	TAT	GAT	GGC	CTG	CTG	292
GGT	AAT	AAT	CAG	ATC	TTT	CCC	AAG	ACA	GGC	CTT	CTG	ATA	ATC	334
GTC	CTG	GGC	ACA	ATT	GCA	ATG	GAG	GGC	GAC	AGC	GCC	TCT	GAG	376
GAG	GAA	ATC	TGG	GAG	GAG	CTG	GGT	GTG	ATG	GGG	GTG	TAT	GAT	418
GGG	AGG	GAG	CAC	ACT	GTC	TAT	GGG	GAG	CCC	AGG	AAA	CTG	CTC	460
ACC	CAA	GAT	TGG	GTG	CAG	GAA	AAC	TAC	CTG	GAG	TAC	CGG	CAG	502
GTA	CCC	GĆC	AGT	AAT	CCT	GCG	CGC	TAT	GAG	TTC	CTG	TGG	GGT	544
CCA	AGG	GCT	CTG	GCT	GAA	ACC	AGC	TAT	GTG	AAA	GTC	CTG	GAG	586
CAT	GTG	GTC	AGG	GTC	AAT	GCA	AGA	GTT	CGC	ATT	GCC	TAC	CCA	628
TCC	CTG	CGT	GAA	GCA	GCT	TTG	TTA	GAG	GAG	GAA	GAG	GGA	GTC	670
TGA	CATO	GAG ?	rtgc:	AGCC1	G G	CTG	rgggg	AAC	GGGG	CAGG	GCT	GGC	CAG	720
TGC	ATCT	AAC A	AGCC	CTGT	C AC	CAG	CTTCC	CTI	rgcc:	<b>PCGT</b>	GTA	ACATO	₽AG	770
GCC	CATTO	CTT (	CACT	CTGT	rt Gi	AAGAI	<b>LTAAL</b>	GTO	CAGTO	STTC	TTAC	FTAG	rgg	820
GTT:	rcta:	TTT :	rgtt	GAT	A C	rtgg?	AGAT1	TAT	CTC	rgtt	TCC	TTTT?	ACA	870
ATT	STTG!	AAA :	rg <b>tt</b> (	CTT?	K T	ATGG	ATGGT	TG	ATTI	AACT	TCAC	CATO	CCA	920
AGT'	TAT(	GAA !	rcgt/	AGTT	AA CO	STAT	ATTGO	TG1	CAATT	<b>EATA</b>	GTT	PAGG!	\GT	970
AAG	AGTC1	rtg :	rttt:	TAT:	C AC	SATTO	GGA!	ATC	CCGT	CTA	TTTT	rgtg <i>i</i>	LAT	1020
TTG	<b>GAC</b>	ATA A	ATAA	CAGC	AG TO	GAG1	[AAG]	TA 1	CTAG?	AAGT	GTG	ATTO	3	1068

- (2) INFORMATION FOR SEQUENCE ID NO: 16:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 2226 base pairs (B) TYPE: nucleic acid
  - (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA
  - (ix) FEATURE:
  - (A) NAME/KEY: MAGE-5 gene (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:

GGATCCAGGC CTTGCCAGGA	GAAAGGTGAG	GGCCCTGTGT	GAGCACAGAG	50
GGGACCATTC ACCCCAAGAG	GGTGGAGACC	TCACAGATTC	CAGCCTACCC	100
TCCTGTTAGC ACTGGGGGCC	TGAGGCTGTG	CTTGCAGTCT	GCACCCTGAG	150
GGCCCATGCA TTCCTCTTCC	AGGAGCTCCA	GGAAACAGAC	ACTGAGGCCT	200
TGGTCTGAGG CCGTGCCCTC	AGGTCACAGA	GCAGAGGAGA	TGCAGACGTC	250
TAGTGCCAGC AGTGAACGTT	TGCCTTGAAT	GCACACTAAT	GGCCCCCATC	300

GCCCCAGAAC ATATGGGACT CCAGAGCACC TGGCCTCACC	CTCTCTACTG	350
TCAGTCCTGC AGAATCAGCC TCTGCTTGCT TGTGTACCCT (	GAGGTGCCCT	400
CTCACTTTTT CCTTCAGGTT CTCAGGGGAC AGGCTGACCA	GGATCACCAG	450
GAAGCTCCAG AGGATCCCCA GGAGGCCCTA GAGGAGCACC	AAAGGAGAAG	500
ATCTGTAAGT AAGCCTTTGT TAGAGCCTCC AAGGTTCAGT	TTTTAGCTGA	550
GGCTTCTCAC ATGCTCCCTC TCTCTCCAGG CCAGTGGGTC	TCCATTGCCC	600
AGCTCCTGCC CACACTCCTG CCTGTTGCGG TGACCAGAGT	CGTC	644
ATC TCT CTT GAG CAG AAG AGT CAG CAC TGC AAG	CCT GAG GAA	684
CTC CTC TGG TCC CAG GCA CCC TGG GGG AGG TGC	CTG CTG CTG	728
GGT CAC CAG GTC CTC TCA AGA GTC CTC AGG GAG	CCT CCG CCA	770
TCC CCA CTG CCA TCG ATT TCA CTC TAT GGA GGC	aat cca tta	812
AGG GCT CCA GCA ACC AAG AAG AGG AGG GGC CAA	GCA CCT CCC	854
CTG ACC CAG AGT CTG TGT TCC GAG CAG CAC TCA	GTA AGA AGG	896
TGG CTG ACT TGA		908
TTCATTTCT GCTCCTCAAG TATTAAGTCA AGGAGCTGGT	CACAAAGGCA	958
	TTCCTGAGAT	1008
	ATTGACGTGA	1058
	CTGCCTGGGA	1108
	CCCAAGACGG	1158
	CAAATGCGTC	1208
	TGTATGTTGG	1258
	ACCCAAGATT	1308
	CAGTGATCCC	1358
	CTTGAAAGTA	1408
	CCTACCCATC	1458
	TGAGCATGAG	1508
	CCTTCCAGGG	1558
	CCCATTCTTC	1608
	TCTGTTCTAT	1658
	GTTCAAATGT	1708
	TTATGAATGA	1758
	AGAGTCTTGT	1808
	GGGACATAGT	1858
	GCAGTAAAAC	1908
TGATGACATA AAGAAATTAA AAGATATTTA ATTCTTGCTT	ATACTCAGTC	1958
TATTCGGTAA AATTTTTTTT AAAAAATGTG CATACCTGGA	TTTCCTTGGC	2008
TTCTTTGAGA ATGTAAGACA AATTAAATCT GAATAAATCA	TTCTCCCTGT	2058
TCACTGGCTC ATTTATTCTC TATGCACTGA GCATTTGCTC	TGTGGAAGGC	2108
CCTGGGTTAA TAGTGGAGAT GCTAAGGTAA GCCAGACTCA	CCCCTACCCA	2158
CAGGGTAGTA AAGTCTAGGA GCAGCAGTCA TATAATTAAG	GTGGAGAGAT	2208
GCCCTCTAAG ATGTAGAG		2226

- INFORMATION FOR SEQUENCE ID NO: 17: (2)
  - (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 2305 base pairs
    (B) TYPE: nucleic acid
    (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: genomic DNA
    (ix) FEATURE:
  - - (A) NAME/KEY: MAGE-51 gene
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

GGATCCAGGC	CTTGCCAGGA	GAAAGGTGAG	GGCCCTGTGT	GAGCACAGAG	50
	ACCCCAAGAG				100
	ACTGGGGGCC				150
	TTCCTCTTCC				200
	CCGTGCCCTC				250
	AGTGAACGTT				300
	ATATGGGACT				350
TCAGTCCTGC	AGAATCAGCC	TCTGCTTGCT	TGTGTACCCT	GAGGTGCCCT	400
	CCTTCAGGTT				450
	AGGATCCCCA				500
ATCTGTAAGT	AAGCCTTTGT	TAGAGCCTCC	AAGGTTCAGT	TTTTAGCTGA	550

GGCTTCTCAC ATGCTCCCTC TCTCTCCAGG CCAGTGGGTC		600
	CGTC	644
ATG TCT CTT GAG CAG AAG AGT CAG CAC TGC AAG GGC CTT GAC ACC CAA GAA GAG CCC TGG GCC TGG		686
	TGG GTG TGC	728
22 22 22 22 22 22 22 22 22 22 22 22 22	CCT CCT CCT	770
		812
GGT CAC CAG GTC CTC TCA AGA GTC CTC AGG GAG TCC CCA CTG CCA TCG ATT TCA CTC TAT GGA GGC		854
	AAT CCA TTA	896
AGG GCT CCA GCA ACC AAG AAG AGG AGG GGC CAA		938
CTG ACC CAG AGT CTG TGT TCC GAG CAG CAC TCA TGG CTG ACT TGA	GTA AGA AGG	980
		992
TTCATTTTCT GCTCCTCAAG TATTAAGTCA AGGAGCCGGT		1042
	TTCCTGAGAT	1092
	ATTGACGTGA	1142
	CTGCCTGGGA	1192
	GACGGGCCTC	1242
	GCGTCCCTGA	1292
	GTTGGGAGGG	1342
AGCACAGTGT CTGTGGGGAG CCCAGGAAGC TGCTCACCCA		1392
	TCCCATATGC	1442
TATGAGTTAC TGTGGGGTCC AAGGGCACTC GCTGCTTGAA		1492
	CATCCCTGCA	1542
	TGAGCTGCAG	1592
	AGGGCTCCGT	1642
	CTTCTCTCTT	1692
· ·	CTATTGGATG	1742
ACTITGAGAT TIGICITIGI TICCITITGG AATIGITCAA	ATGTTCCTTT	1792
TAATGGGTGG TTGAATGAAC TTCAGCATTC AAATTTATGA	ATGACAGTAG	1842
	TTGTTTTTA	1892
	TAGTTACAGC	1942
AGTGGAATAA GTATTCATTT AGAAATGTGA ATGAGCAGTA	AAACTGATGA	1992
	CAGTCTATTC	2042
	TTGGCTTCTT	2092
	CCTGTTCACT	2142
GGCTCATTTA TTCTCTATGC ACTGAGCATT TGCTCTGTGG	AAGGCCCTGG	2192
	ACCCACAGGG	2242
TAGTAAAGTC TAGGAGCAGC AGTCATATAA TTAAGGTGGA	GAGATGCCCT	2292
CTAAGATGTA GAG		2305

- (2) INFORMATION FOR SEQUENCE ID NO: 18:
  - (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 225 base pairs
    (B) TYPE: nucleic acid
    (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: cDNA
  - (ix) FEATURE:
  - (A) NAME/KEY: MAGE-6 gene (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:

TAT	TTC	TTT	CCT	GTG	ATC	TTC	AGC	AAA	GCT	TCC	GAT	TCC	TTG	42
CAG	CTG	GTC	TTT	GGC	ATC	GAG	CTG	ATG	GAA	GTG	GAC	CCC	ATC	84
			TAC											126
GAT	GGC	CTG	CTG	GGT	GAC	AAT	CAG	ATC	ATG	CCC	AGG	ACA	GGC	168
			ATC											210
TGT	GCC	CCT	GAG	GAG										225

```
INFORMATION FOR SEQUENCE ID NO: 19:
(2)
       (i) SEQUENCE CHARACTERISTICS:
              (A) LENGTH: 1947 base pairs (B) TYPE: nucleic acid
```

(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: genomic DNA
- (ix) FEATURE:
  - (A) NAME/KEY: MAGE-7 gene
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:

TGAATGGACA ACAAGGGCCC CACACTCCCC AGAACACAAG GGACTCCAGA	50
GAGCCCAGCC TCACCTTCCC TACTGTCAGT CCTGCAGCCT CAGCCTCTGC	100
	150
	200
	250
	300
0011011011010101010101010101010101010101	350
	400
<b>UNIONICE CONTROL CONT</b>	450
GATGCCTTGA GGCCCAAGGA CAGGAGGCTC TGGGCCTGGT GGGTGCGCAG	500
GCTCCCGCCA CCGAGGAGCA CGAGGCTGCC TCCTCCTTCA CTCTGATTGA	550
AGGCACCCTG GAGGAGGTGC CTGCTGCTGG GTCCCCCAGT CCTCCCTGA	
GTCTCAGGGT TCCTCCTTTT CCCTGACCAT CAGCAACAAC ACTCTATGGA	600
GCCAATCCAG TGAGGGCACC AGCAGCCGGG AAGAGGAGGG GCCAACCACC	650
TAGACACACC CCGCTCACCT GGCGTCCTTG TTCCA	685
ATG GGA AGG TGG CTG AGT TGG TTC GCT TCC TGC TGC ACA AGT	727
ATC GAG TCA AGG AGC TGG TCA CAA AGG CAG AAA TGC TGG ACA	769
GTG TCA TCA AAA ATT ACA AGC ACT AGT TTC CTT GTG ATC TAT	811
GGC AAA GCC TCA GAG TGC ATG CAG GTG ATG TTT GGC ATT GAC	853
ATG AAG GAA GTG GAC CCC GCG GCC ACT CCT ACG TCC TTG TCA	895
CCT GCT TGG GCC TCT CCT ACA ATG GCC TGC TGG GTG ATG ATC	937
AGA GCA TGC CCG AGA CCG GCC TTC TGA	964
TTATGGTCTT GACCATGATC TTAATGGAGG GCCACTGTGC CCCTGAGGAG	1014
GCAATCTGGG AAGCGTTGAG TGTAATGGTG TATGATGGGA TGGAGCAGTT	1064 1114
TCTTTGGGCA GCTGAGGAAG CTGCTCACCC AAGATTGGGT GCAGGAAAAC	
TACCTGCAAT ACCGCCAGGT GCCCAGCAGT GATCCCCCGT GCTACCAGTT	1164 1214
CCTGTGGGGT CCAAGGGCCC TCATTGAAAC CAGCTATGTG AAAGTCCTGG	
AGTATGCAGC CAGGGTCAGT ACTAAAGAGA GCATTTCCTA CCCATCCCTG	1264 1314
CATGAAGAGG CTTTGGGAGA GGAGGAAGAG GGAGTCTGAG CAGAAGTTGC	
AGCCAGGGCC AGTGGGGCAG ATTGGGGGGAG GGCCTGGGCA GTGCACGTTC	1364
CACACATCCA CCACCTTCCC TGTCCTGTTA CATGAGGCCC ATTCTTCACT	1414
CTGTGTTTGA AGAGAGCAGT CAATGTTCTC AGTAGCGGGG AGTGTGTTGG	1464
GTGTGAGGGA ATACAAGGTG GACCATCTCT CAGTTCCTGT TCTCTTGGGC	1514
GATTTGGAGG TTTATCTTTG TTTCCTTTTG CAGTCGTTCA AATGTTCCTT	1564
TTAATGGATG GTGTAATGAA CTTCAACATT CATTTCATGT ATGACAGTAG	1614
GCAGACTTAC TGTTTTTAT ATAGTTAAAA GTAAGTGCAT TGTTTTTAT	1664
TTATGTAAGA AAATCTATGT TATTTCTTGA ATTGGGACAA CATAACATAG	1714
CAGAGGATTA AGTACCTTTT ATAATGTGAA AGAACAAAGC GGTAAAATGG	1764
GTGAGATAAA GAAATAAAGA AATTAAATTG GCTGGGCACG GTGGCTCACG	1814
CCTGTAATCC CAGCACTTTA GGAGGCAGAG GCACGGGGAT CACGAGGTCA	1864
GGAGATCGAG ACCATTCTGG CTAACACAGT GAAACACCAT CTCTATTAAA	1914
AATACAAAAC TTAGCCGGGC GTGGTGGCGG GTG	1947

- INFORMATION FOR SEQUENCE ID NO: 20: (2)
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 1810 base pairs
    - (B) TYPE: nucleic acid (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: genomic DNA
  - (ix) FEATURE:
  - (A) NAME/KEY: MAGE-8 gene
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:

GAGCTCCAGG AACCAGGCTG TGAGGTCTTG GTCTGAGGCA GTATCTTCAA 50 TCACAGAGCA TAAGAGGCCC AGGCAGTAGT AGCAGTCAAG CTGAGGTGGT 100

GTTTCCCCTG TATGTATACC AGAGGCCCCT CTGGCATCAG		150
	TGGAGCCTTG	200
GCCTTTGCCA GGAGGCTGCA CCCTGAGATG CCCTCTCAAT	TTCTCCTTCA	250
GGTTCGCAGA GAACAGGCCA GCCAGGAGGT CAGGAGGCCC	CAGAGAAGCA	300
CTGAAGAAGA CCTGTAAGTA GACCTTTGTT AGGGCATCCA	GGGTGTAGTA	350
CCCAGCTGAG GCCTCTCACA CGCTTCCTCT CTCCCCAGGC	CTGTGGGTCT	400
CAATTGCCCA GCTCCGGCCC ACACTCTCCT GCTGCCCTGA	CCTGAGTCAT	450
C		451
ATG CTT CTT GGG CAG AAG AGT CAG CGC TAC AAG	GCT GAG GAA	493
GGC CTT CAG GCC CAA GGA GAG GCA CCA GGG CTT	ATG GAT GTG	535
CAG ATT CCC ACA GCT GAG GAG CAG AAG GCT GCA	TCC TCC TCC	577
TCT ACT CTG ATC ATG GGA ACC CTT GAG GAG GTG	ACT GAT TCT	619
GGG TCA CCA AGT CCT CCC CAG AGT CCT GAG GGT	GCC TCC TCT	661
TCC CTG ACT GTC ACC GAC AGC ACT CTG TGG AGC		703
GAG GGT TCC AGC AGC AAT GAA GAG GAG GGG CCA	AGC ACC TCC	745
CCG GAC CCA GCT CAC CTG GAG TCC CTG TTC CGG	GAA GCA CTT	787
	CTC CGC AAA	829
TAT CAA ATT AAG GAG CCG GTC ACA AAG GCA GAA	ATG CTT GAG	871
AGT GTC ATC AAA AAT TAC AAG AAC CAC TTT CCT		913
AGC AAA GCC TCT GAG TGC ATG CAG GTG ATC TTT		955
GTG AAG GAA GTG GAC CCT GCC GGC CAC TCC TAC		997
ACC TGC CTG GGC CTC TCC TAT GAT GGC CTG CTG		1039
CAG AGT ACG CCC AAG ACC GGC CTC CTG ATA ATC		1081
ATG ATC TTA ATG GAG GGC AGC CGC GCC CCG GAG		1123
TGG GAA GCA TTG AGT GTG ATG GGG GCT GTA TGA	3 35	1156
TGGGAGGGAG CACAGTGTCT ATTGGAAGCT CAGGAAGCTG	CTCACCCAAG	1206
AGTGGGTGCA GGAGAACTAC CTGGAGTACC GCCAGGCGCC		1256
CCTGTGCGCT ACGAGTTCCT GTGGGGTCCA AGGGCCCTTG		1306
CTATGTGAAA GTCCTGGAGC ATGTGGTCAG GGTCAATGCA		1356
TTTCCTACCC ATCCCTGCAT GAAGAGGCTT TGGGAGAGGA		1406
TGAGCAGGAG TTGCAGCTAG GGCCAGTGGG GCAGGTTGTG		1456
GGCCAGTGCA CGTTCCAGGG CCACATCCAC CACTTTCCCT		1506
ATGAGGCCCA TTCTTCACTC TGTGTTTGAA GAGAGCAGTC	ACAGTTCTCA	1556
GTAGTGGGGA GCATGTTGGG TGTGAGGGAA CACAGTGTGG	ACCATCTCTC	1606
AGTTCCTGTT CTATTGGGCG ATTTGGAGGT TTATCTTTGT		1656
AATTGTTCCA ATGTTCCTTC TAATGGATGG TGTAATGAAC	TTCAACATTC	1706
ATTTTATGTA TGACAGTAGA CAGACTTACT GCTTTTTATA	TAGTTTAGGA	1756
GTAAGAGTCT TGCTTTTCAT TTATACTGGG AAACCCATGT		1806
ATTC		1810

- (2) INFORMATION FOR SEQUENCE ID NO: 21:

  - (i) SEQUENCE CHARACTERISTICS:

    (A) LENGTH: 1412 base pairs

    (B) TYPE: nucleic acid

    (D) TOPOLOGY: linear

    (ii) MOLECULE TYPE: genomic DNA

  - (ix) FEATURE:

    (A) NAME/KEY: MAGE-9 gene
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:

TCTGAGACAG TGTCCTCAGG TCGCAGAGCA GAGGAGACCC AGGCAGTGTC	50
AGCAGTGAAG GTGAAGTGTT CACCCTGAAT GTGCACCAAG GGCCCCACCT	100
GCCCCAGCAC ACATGGGACC CCATAGCACC TGGCCCCATT CCCCCTACTG	150
TCACTCATAG AGCCTTGATC TCTGCAGGCT AGCTGCACGC TGAGTAGCCC	200
TCTCACTTCC TCCCTCAGGT TCTCGGGACA GGCTAACCAG GAGGACAGGA	250
GCCCCAAGAG GCCCCAGAGC AGCACTGACG AAGACCTGTA AGTCAGCCTT	300
TGTTAGAACC TCCAAGGTTC GGTTCTCAGC TGAAGTCTCT CACACACTCC	350
CTCTCTCCCC AGGCCTGTGG GTCTCCATCG CCCAGCTCCT GCCCACGCTC	400
CTGACTGCTG CCCTGACCAG AGTCATC	427
ATG TCT CTC GAG CAG AGG AGT CCG CAC TGC AAG CCT GAT GAA	469
GAC CTT GAA GCC CAA GGA GAG GAC TTG GGC CTG ATG GGT GCA	511
CAG GAA CCC ACA GGC GAG GAG GAG ACT ACC TCC TCT	553
GAC AGC AAG GAG GAG GTG TCT GCT GCT GGG TCA TCA AGT	595

CCT	CCC	CAG	AGT	CCT	CAG	GGA	GGC	GCT	TCC	TCC	TCC	ATT	TCC	637
GTC		TAC					CAA				GGC			679
AGT				GAA	GAG	CCA	AGC	TCC	TCG	GTC	GAC	CCA	GCT	721
CAG	CTG	GAG		ATG								AAG	GTG	763
GCT	GAG	TTG	GTT	CAT	TTC	CTG	CTC	CAC	AAA	TAT	CGA	GTC	AAG	805
GAG	CCG	GTC	ACA	AAG	GCA	GAA	ATG	CTG	GAG	AGC	GTC	ATC	AAA	847
AAT		AAG		TAC					TTC					889
GAG	TTC	ATG	CAG	GTG	ATC	TTT	GGC	ACT	GAT	GTG	AAG	GAG	GTG	931
GAC	CCC	GCC	GGC	CAC	TCC	TAC	ATC	CTT	GTC	ACT	GCT	CTT	GGC	973
CTC	TCG	TGC	GAT	AGC	ATG	CTG	GGT	GAT	GGT	CAT	AGC	ATG	CCC	1015
AAG	GCC	GCC	CTC	CTG	ATC	ATT	GTC	CTG	GGT	GTG	ATC	CTA	ACC	1057
AAA	GAC	AAC	TGC	GCC	CCT	GAA	GAG	GTT	ATC	TGG	GAA	GCG	TTG	1099
AGT	GTG	ATG	GGG	GTG	TAT	GTT	GGG	AAG	GAG	CAC	ATG	TTC	TAC	1141
GGG	GAG	CCC	AGG	AAG	CTG	CTC	ACC	CAA	GAT	TGG	GTG	CAG	GAA	1183
AAC	TAC	CTG	GAG	TAC	CGG	CAG	GTG	CCC	GGC	AGT	GAT	CCT	GCG	1225
CAC	TAC	GAG	TTC	CTG	TGG	GGT	TCC	AAG	GCC	CAC	GCT	GAA	ACC	1267
AGC	TAT	GAG	AAG	GTC	ATA	AAT	TAT	TTG	GTC	ATG	CTC	AAT	GCA	1309
AGA	GAG	CCC	ATC	TGC	TAC	CCA	TCC	CTT	TAT	GAA	GAG	GTT	TTG	1351
GGA	GAG	GAG	CAA	GAG	GGA	GTC	TGA							1375
GCA	CCAG	CCG	CAGC	CGGG	GC C	AAAG!	rttg:	r GG(	GCTC	A				1412

#### INFORMATION FOR SEQUENCE ID NO: 22: (2)

- INFORMATION FOR SEQUENCE ID NO: 22:

  (i) SEQUENCE CHARACTERISTICS:

  (A) LENGTH: 920 base pairs

  (B) TYPE: nucleic acid

  (D) TOPOLOGY: linear

  (ii) MOLECULE TYPE: genomic DNA

  (ix) FEATURE:

  (A) NAME/KEY: MAGE-10 gene

  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:

ACCTGCTCCA GGACAAAGTG GACCCCACTG CATCAGCTCC AC	CTACCCTA 5	50
CTGTCAGTCC TGGAGCCTTG GCCTCTGCCG GCTGCATCCT GA		00
CTCTCACTTC CTTCTTCAGG TTCTCAGGGG ACAGGGAGAG CA	AGAGGTCA 15	50
AGAGCTGTGG GACACCACAG AGCAGCACTG AAGGAGAAGA CO		00
GGCCTTTGTT AGAACCTCCA GGGTGTGGTT CTCAGCTGTG GC		50
CCCTCCCTCT CTCCCCAGGC CTGTGGGTCC CCATCGCCCA AG		00
ACACTCCCAC CTGCTACCCT GATCAGAGTC ATC	33	33
ATG CCT CGA GCT CCA AAG CGT CAG CGC TGC ATG CC	,	75
GAT CTT CAA TCC CAA AGT GAG ACA CAG GGC CTC GA		17
CAG GCT CCC CTG GCT GTG GAG GAG GAT GCT TCA TC		59
TCC ACC AGC TCC TCT TTT CCA TCC TCT TTT CCC TC		01
TCT TCC TCC TCC TCC TCC TGC TAT CCT CTA ATA CC		43
CCA GAG GAG GTT TCT GCT GAT GAT GAG ACA CCA AF		B5
CAG AGT GCT CAG ATA GCC TGC TCC TCC CCC TCG GT		27
TCC CTT CCA TTA GAT CAA TCT GAT GAG GGC TCC AG		69
AAG GAG GAG AGT CCA AGC ACC CTA CAG GTC CTG CC		11
GAG TCT TTA CCC AGA AGT GAG ATA GAT GAA AAG GT		53
TTG GTG CAG TTT CTG CTC TTC AAG TAT CAA ATG AA		95
ATC ACA AAG GCA GAA ATA CTG GAG AGT GTC ATA A		37
GAR GAC CAC 110 CO1 110 110 111 1101 CILL CO		79
ATC CTC CTC GTC TTT GGC ATT GAT GTA AAG GAA GI	IG GAT CC 9:	20

INFORMATION FOR SEQUENCE ID NO: 23: (2) (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1107 base pairs
(B) TYPE: nucleic acid
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: genomic DNA

(ix) FEATURE: (A) NAME/KEY: MAGE-11 gene

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:

AGAGAACAGG	CCAAC	CCTGG	A GO	ACAG	GAGT	ccc	AGG	AGAA	CCC	AGAGO	AT	50
CACTGGAGGA	GAAC	AAGTG	T A	GTAG	GCCI	TTC	TTAC	FATT	CTC	CATGO	TT	100
CATATCTCAT	CTGAC				CCTC							150
GGCCCCATCA	CCCAC	GATAT	T TC	CCAC	CAGTI	CGG	CCTC	CTG	ACC	CAACC	CAG	200
AGTCATCATG	CCTC	<b>PTGAG</b>	C A	AGAZ	AGTCA	GCF	CTG	CAAG	CCT	SAGG	<b>LAG</b>	250
CCTTCAGGCC	CAAG	AAGAA	G AC	CTG	GCCI	GG1	rggg?	rgca	CAG	3CTC1	CC	300
AAGCTGAGGA	GCAG	GAGGC	T GO	CTTC	CTTCI	CCI	CTAC	CTCT	GAA?	CTGC	GC	350
ACTCTAGAGG	AGTT	CCTG	C TO	CTG	AGTCA	CCI	AAGT	CTC	CCC	AGAGI	CC	400
TCAGGAAGAG	TCCT	rctci	C CC	CACTO	CCAT	GG	ATGC	CATC	TTTC	GGAG	CC	450
TATCTGATGA	GGGC'	rctgg	C AC	CCA	AGAAA	AGG	AGGG	GCC	AAG	[ACC]	CG	500
CCTGACCTGA	TAGA	CCCTG	A G	CCTT	TTTCC	CA	<b>GAT</b>	ATAC	TAC	ATGAC	:AA:	550
GATAATTGAT	TTGG:	<b>PTCAT</b>	T T	ATTC1	rccgc	: AAC	TAT	CGAG	TCA	AGGGG	CT	600
GATCACAAAG	GCAG	AA										616
ATG CTG GGG	G AGT	GTC	ATC	AAA	AAT	TAT	GAG	GAC	TAC	TTT	CCT	658
GAG ATA TT												700
GGC ATT GAT												742
GTC CTT GT	CACC	TCC	CTC	AAC	CTC	TCT	TAT	GAT	GGC	ATA	CAG	784
TGT AAT GAG	CAG	AGC	ATG	CCC	AAG	TCT	GGC	CTC	CTG	ATA	ATA	826
GTC CTG GG	r gta	ATC	TTC	ATG	GAG	GGG	AAC	TGC	ATC	CCT	GAA	868
GAG GTT ATO		GAA										910
GGA AGG GAG	G CAC											952
ACC CAA AA		GTG			AAG					CGG		994
GTG CCC GG	CACT	GAT			TGC						GGT	1036 1078
CCA AGG GC	CAC	GCT	GAG	ACC	AGC	AAG	ATG	AAA	GTT	CTT	GAG	11078
TAC ATA GC	C AAT	GCC	AAT	GGG	AGG	GAT	CC					1101

- INFORMATION FOR SEQUENCE ID NO: 24: (2)
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 2150 base pairs
  - (B) TYPE: nucleic acid
    (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: genomic DNA
  - (ix) FEATURE:
    - (A) NAME/KEY: smage-I
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:

TCTGTCTGCA TATGCCTCCA CTTGTGTGTA GCAGTCTCAA ATGGATCTCT	50
CTCTACAGAC CTCTGTCTGT GTCTGGCACC CTAAGTGGCT TTGCATGGGC	100
ACAGGTTTCT GCCCCTGCAT GGAGCTTAAA TAGATCTTTC TCCACAGGCC	150
TATACCCCTG CATTGTAAGT TTAAGTGGCT TTATGTGGAT ACAGGTCTCT	200
GCCCTTGTAT GCAGGCCTAA GTTTTTCTGT CTGCTTAACC CCTCCAAGTG	250
AAGCTAGTGA AAGATCTAAC CCACTTTTGG AAGTCTGAAA CTAGACTTTT	300
ATGCAGTGGC CTAACAAGTT TTAATTTCTT CCACAGGGTT TGCAGAAAAG	350
AGCTTGATCC ACGAGTTCAG AAGTCCTGGT ATGTTCCTAG AAAG	394
ATG TTC TCC TGG AAA GCT TCA AAA GCC AGG TCT CCA TTA AGT	436
CCA AGG TAT TCT CTA CCT GGT AGT ACA GAG GTA CTT ACA GGT	478
TGT CAT TCT TAT CCT TCC AGA TTC CTG TCT GCC AGC TCT TTT	520
ACT TCA GCC CTG AGC ACA GTC AAC ATG CCT AGG GGT CAA AAG	565
AGT AAG ACC CGC TCC CGT GCA AAA CGA CAG CAG TCA CGC AGG	604
GAG GTT CCA GTA GTT CAG CCC ACT GCA GAG GAA GCA GGG TCT	646
TCT CCT GTT GAC CAG AGT GCT GGG TCC AGC TTC CCT GGT GGT	688

TCT	GCT	CCT					ACC			TCT	TTT	GGT	GCA	730
<b>GGT</b>	GTA	TCC	TGC				GGT					AAT	-	772
GCT	GTC	CTG					AGT					CAG		814
GGG	ACT	TCC					CTG							856
AAG	GCT	AGT					TTC						AAG	898
ATG	AAA	GAA	GCA	GTT	ACA	AGG	AGT	GAA	ATG	CTG	GCA	GTA	GTT	940
		AAG					TTC		GAG	ATC	CTC	AGG	AGA	982
ACT	TCT	GCA	CGC	CTA	GAA	TTA	GTC	TTT	GGT	CTT	GAG	TTG	AAG	1024
	ATT						TCC	TAT	TTG	CTG	GTA	GGC	AAA	1066
	GGT							TTG	AGT	AGT	AAC	TGG	GGG	1108
TTG	CCT	AGG	ACA	GGT	CTC	CTA	ATG	TCT	GTC	CTA	GGT	GTG	ATC	1150
TTC	ATG	AAG	GGT	AAC	CGT	GCC	ACT	GAG	CAA	GAG	GTC	TGG	CAA	1192
TTT	CTG	CAT	GGA	GTG	GGG	GTA	TAT	GCT	GGG	AAG	AAG	CAC	TTG	1234
ATC	TTT			CCT					AGA				CGG	1276
	AAT			GAG			CAG	GTA	CCT	GGC	AGT	GAT	CCC	1314
	AGC						GGA					GCT	GAA	1360
							GAA			GCT		GTC	AAT	1402
							CCT		CTC	TAC	CAG	TTG	GCT	1444
COTT	ACA	CAT	CAG	GCA	CGA	GGG	GTG	CCA	AGA	AGG	AGA	GTT	CAA	1486
CII	ADA	CCT	CTT	CAT	TCC	AAC	GCC	CCA	TCC	CAA	AAG	TCC	TCT	1528
	ATG		GII	Chi	100		-							1537
MAC	AIG	TAG	mamai	<u> ምም</u> ረም	- Tr	TCAA:	AAAC	ል ርጥ	CACC	TTCC	TAA'	rcag'	TAG	1587
TTG	AGTC:	IGI :	CCCT	TIGI	ST T		CATG	TAT	CCAT	гстт	GGC	CTGT		1637
							TGTT		TTTC			rgtt'	TAA	1687
	AACA						CTTG'		ACTG					1737
	CACT						TTTG'		TTTG					1787
							TTGT		ACAT'					1837
	TGTC						ACAG'		TGAA					1887
				GTTA			AAAT'		ATGA			TGCT		1937
	AAGT			TTGT.			TAAGʻ		AATA			ATTT		1987
	TTTT						TAAA'		TAAA					2037
							CATT		TATC		_			2087
	TTTT						TATC							2137
				AGTA	IG W	WWIG	INIC	1 AG	TUIN	GGCA	CIG	nong	-011	2150
GTT	ATCA	GAG	TCT											2130

- INFORMATION FOR SEQUENCE ID NO: 25: (2) INFORMATION FOR SEQUENCE ID NO: 25:

  (i) SEQUENCE CHARACTERISTICS:

  (A) LENGTH: 2099 base pairs

  (B) TYPE: nucleic acid

  (D) TOPOLOGY: linear

  (ii) MOLECULE TYPE: genomic DNA

  (ix) FEATURE:

  - (A) NAME/KEY: smage-II
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:

ACCTTATTGG	GTCTGTCTGC	ATATGCCTCC	ACTTGTGTGT	AGCAGTCTCA	50
AATGGATCTC	TCTCTACAGA	CCTCTGTCTG	TGTCTGGCAC	CCTAAGTGGC	100
TTTGCATGGG	CACAGGTTTC	TGCCCCTGCA	TGGAGCTTAA	ATAGATCTTT	150
CTCCACAGGC	CTATACCCCT	GCATTGTAAG	TTTAAGTGGC	TTTATGTGGA	200
TACAGGTCTC	TGCCCTTGTA	TGCAGGCCTA	AGTTTTTCTG	TCTGCTTAGC	250
CCCTCCAAGT	GAAGCTAGTG	AAAGATCTAA	CCCACTTTTG	GAAGTCTGAA	300
ACTAGACTTT	TATGCAGTGG	CCTAACAAGT	TTTAATTTCT	TCCACAGGGT	350
TTGCAGAAAA	GAGCTTGATC	CACGAGTTCG	GAAGTCCTGG	TATGTTCCTA	400
GAAAGATGTT	CTCCTGGAAA	GCTTCAAAAG	CCAGGTCTCC	ATTAAGTCCA	450
AGGTATTCTC	TACCTGGTAG	TACAGAGGTA	CTTACAGGTT	GTCATTCTTA	- 500
TCTTTCCAGA	TTCCTGTCTG	CCAGCTCTTT	TACTTCAGCC	CTGAGCACAG	550
TCAACATGCC	TAGGGGTCAA	AAGAGTAAGA	CCCGCTCCCG	TGCAAAACGA	600
CAGCAGTCAC	GCAGGGAGGT	TCCAGTAGTT	CAGCCCACTG	CAGAGGAAGC	650
AGGGTCTTCT	CCTGTTGACC	AGAGTGCTGG	GTCCAGCTTC	CCTGGTGGTT	700
CTGCTCCTCA	GGGTGTGAAA	ACCCCTGGAT	CTTTTGGTGC	AGGTGTATCC	750
TGCACAGGCT	CTGGTATAGG	TGGTAGAAAT	GCTGCTGTCC	TGCCTGATAC	800
AAAAAGTTCA	GATGGCACCC		TTCCATTCAG	CACACACTGA	850
AAGATCCTAT			TGATAGAATT	CCTGCTAGAT	900
WIGHTOCHIA					

86

AAGTTTAAGA	TGAAAGAAGC	AGTTACAAGG	AGTGAAATGC	TGGCAGTAGT	950
TAACAAGAAG	TATAAGGAGC	<b>AATTCCCTGA</b>	GATCCTCA G	AGAACTTCTG	1000
CACGCCTAGA	ATTAGTCTTT	GGTCTTGAGT	TGAAGGAAAT	TGATCCCAGC	1050
ACTCATTCCT	ATTTGCTGGT	AGGCAAACTG	GGTCTTTCCA	CTGAGGGAAG	1100
TTTGAGTAGT	AACTGGGGGT	TGCCTAGGAC	AGGTCTCCTA	ATGTCTGTCC	1150
TAGGTGTGAT	CTTCATGAAG	GGTAACCGTG	CCACTGAGCA	AGAGGTCTGG	1200
CAATTTCTGC	ATGGAGTGGG	GGTATATGCT	GGGAAGAAGC	ACTTGATCTT	1250
TGGCGAGCCT	GAGGAGTTTA	TAAGAGATGT	AGTGCGGGAA	AATTACCTGG	1300
<b>AGTACCGCCA</b>	GGTACCTGGC	<b>AGTGATCCCC</b>	CAAGCTATGA	GTTCCTGTGG	1350
<b>GGACCCAGAG</b>	CCCATGCTGA	<b>AACAACCAAG</b>	ATGAAAGTCC	TGGAAGTTTT	1400
<b>AGCTAAAGTC</b>	AATGGCACAG	TCCCTAGTGC	CTTCCCTAAT	CTCTACCAGT	1450
TGGCTCTTAG	<b>AGATCAGGCA</b>	GGAGGGGTGC	CAAGAAGGAG	AGTTCAAGGC	1500
AAGGGTGTTC	ATTCCAAGGC	CCCATCCCAA	<b>AAGTCCTCTA</b>	ACATGTAGTT	1550
GAGTCTGTTC	TGTTGTGTTT	GAAAAACAGT	CAGGCTCCTA	ATCAGTAGAG	1600
<b>AGTTCATAGC</b>	CTACCAGAAC	CAACATGCAT	CCATTCTTGG	CCTGTTATAC	1650
<b>ATTAGTAGAA</b>	TGGAGGCTAT	TTTTGTTACT	TTTCAAATGT	TTGTTTAACT	1700
AAACAGTGCT	TTTTGCCATG	CTTCTTGTTA	ACTGCATAAA	GAGGTAACTG	1750
TCACTTGTCA	GATTAGGACT	TGTTTTGTTA	TTTGCAACAA	ACTGGAAAAC	1800
ATTATTTTGT	TTTTACTAAA	<b>ACATTGTGTA</b>	ACATTGCATT	GGAGAAGGGA	1850
TTGTCATGGC	AATGTGATAT	CATACAGTGG	TGAAACAACA	GTGAAGTGGG	1900
<b>AAAGTTTATA</b>	TTGTTAGTTT	TGAAAATTTT	ATGAGTGTGA	TTGCTGTATA	1950
CTTTTTTCTT	TTTTGTATAA	TGCTAAGTGA	AATAAAGTTG	GATTTGATGA	2000
CTTTACTCAA	ATTCATTAGA	AAGTAAATCA	TAAAACTCTA	TTACTTTATT	2050
ATTTTCTTCA	ATTATTAATT	AAGCATTGGT	TATCTGGAAG	TTTCTCCAG	2099

- INFORMATION FOR SEQUENCE ID NO: 26: (2)
  - (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 9 amino acids
    (B) TYPE: amino acids
    (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: protein
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:

Glu Ala Asp Pro Thr Gly His Ser Tyr

- INFORMATION FOR SEQUENCE ID NO: 27: (2)
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid

    - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:

TGGAGGACCA GAGGCCCCC

19

- (2) INFORMATION FOR SEQUENCE ID NO: 28:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid

    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:

GGACGATTAT CAGGAGGCCT GC

(2)	INFORMATION FOR SEQUENCE ID NO: 29:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 18 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:	
GAGCA	GACAG GCCAACCG	18
(2)	INFORMATION FOR SEQUENCE ID NO: 30:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 18 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:	
AAGGA	CTCTG CGTCAGGC	18
(2)	INFORMATION FOR SEQUENCE ID NO: 31:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 23 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:	
CTAGAC	GGAGC ACCAAAGGAG AAG	23
(2)	INFORMATION FOR SEQUENCE ID NO: 32:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 21 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:	
TGCTC	GGAAC ACAGACTCTG G	21
(2)	INFORMATION FOR SEQUENCE ID NO: 33:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 19 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:	
TGGAG	GACCA GAGGCCCCC	19

INFORMATION FOR SEQUENCE ID NO: 34:

(2)	INFORMATION FOR SEQUENCE ID NO: 34:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 24 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34:	
CAGGA'	TGATT ATCAGGAAGC CTGT	24
(2)	INFORMATION FOR SEQUENCE ID NO: 35:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 21 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:	
CAGAG	GAGCA CCGAAGGAGA A	21
(2)	INFORMATION FOR SEQUENCE ID NO: 36:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 19 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36:	
CAGGT	GAGCG GGGTGTGTC	19
(2)	INFORMATION FOR SEQUENCE ID NO: 37:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 22 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:	
CCCCA	GAGAA GCACTGAAGA AG	22
(2)	(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 17 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
<del>ርር</del> ጥር ን	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:	17
COTON	410000	

	(2)	INFORMATION FOR SEQUENCE ID NO: 39:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 19 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39:	
•	CCCCAC	GAGCA GCACTGACG	19
	(2)	INFORMATION FOR SEQUENCE ID NO: 40:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 19 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40:	
	CAGCTO	GAGCT GGGTCGACC	19
	(2)	INFORMATION FOR SEQUENCE ID NO: 41:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 21 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 41:	
	CACAGI	AGCAG CACTGAAGGA G	21
	(2)	INFORMATION FOR SEQUENCE ID NO: 42:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 23 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 42:	
	CTGGGT	TAAAG ACTCACTGTC TGG	23
	(2)	INFORMATION FOR SEQUENCE ID NO: 43:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 22 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43:	
	CACAAC	TOTAG AGGATCACTG GA	22

PCT/US95/02203

(2)	(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 23 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44:	
GGGAA	AAGGA CTCAGGGTCT ATC	23
(2)	INFORMATION FOR SEQUENCE ID NO: 45:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 20 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 45:	
GGTGG	AAGTG GTCCGCATCG	20
(2)	INFORMATION FOR SEQUENCE ID NO: 46:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 22 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46:	22
(2)	INFORMATION FOR SEQ ID NO: 47:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 22 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 47:	
CGGCC	EGAAGG AACCTGACCC AG	22
(2)	INFORMATION FOR SEQ ID NO: 48:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 23 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear  (**xi) SEQUENCE DESCRIPTION: SEQ ID NO: 48:	
GCTGG	BARCCC TCACTGGGTT GCC	23

WO 95/23874 PCT/US95/02203

91

(2)	(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 20 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49:	
AAGTA	GGACC CGAGGCACTG	20
(2)	INFORMATION FOR SEQ ID NO: 50:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 20 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 50:	
GAAGA	GGAAG AAGCGGTCTG	20
(2)	INFORMATION FOR SEQ ID NO: 51:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 19 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 51:	
TGGAGG	GACCA GAGGCCCCC	19
(2)	INFORMATION FOR SEQ ID NO: 52:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 22 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 52:	
GGACG	ATTAT CAGGAGGCCT GC	22
(2)	<pre>INFORMATION FOR SEQ ID NO: 53: (i) SEQUENCE CHARACTERISTICS:      (A) LENGTH: 20 base pairs      (B) TYPE: nucleic acid      (C) STRANDEDNESS: single      (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 53:</pre>	

20

ACTCAGCTCC TCCCAGATTT

(2) INFORMATION FOR SEQ ID NO: 54:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 17 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54:	
GAAGAGGAGG GGCCAAG	17
(2) INFORMATION FOR SEQ ID NO: 55:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 18 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 55:	
TCTTGTATCC TGGAGTCC	18
(2) INFORMATION FOR SEQ ID NO: 56: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 56:	
TTGCCAAGAT CTCAGGAA	18

### Claims:

- 1. Isolated nucleic acid molecule useful as a primer in specifically determining expression of a member of the MAGE family of tumor rejection antigen precursor.
- The isolated nucleic acid molecule of claim 1, selected from the group consisting of one of SEQ ID NOS: 27-48.
- 3. A kit useful in determining expression of a MAGE tumor rejection antigen precursor, comprising at least one part of SEQ ID NOS: 27 and 28, 29 and 30, 31 and 32, 33 and 34, 35 and 36, 37 and 38, 39 and 40, 41 and 42, 43 and 44, 45 and 46, and 47-48.
- 4. Method for determining expression of a MAGE tumor rejection antigen precursor in a cell comprising contacting said cell sample with at least one of the nucleic acid molecules of claim 2 and determining hybridization of said nucleic acid molecule to a target as a determination of expression of MAGE tumor rejection antigen precursor.
- 5. Method of claim 3, wherein said expression of said tumor rejection antigen precursor is a determination of presence, regression of spread of cancer.
- 6. The method of claim 5, wherein said cancer is melanoma.
- 7. The method of claim 5, wherein said cancer is lung adenocarcinoma, said method comprising contacting said sample with a pair of: SEQ ID NOS: 27 and 28, SEQ ID NOS: 47 and 48, or SEQ ID NOS: 49 and 50.

- 8. The method of claim 4, wherein said cancer is a head squamous cell carcinoma, a neck squamous cell carcinoma, a prostate carcinoma, and a bladder tumor, the method comprising contacting sample with SEQ ID NOS: 27 AND 28, SEQ ID NOS: 29 and 30, SEQ ID NOS: 47 and 48, or SEQ ID NOS: 49 and 50.
- 9. The method of claim 4, wherein said cancer is a bladder tumor, the method comprising contacting said sample with SEQ ID NOS: 47 and 48, SEQ ID NOS: 49 and 50, or SEQ ID NOS: 51 and 52, followed by amplification.
- 10. The method of claim 4, wherein said MAGE tumor rejection antigen precursor is MAGE-1, MAGE-2, MAGE-3 or MAGE-4.

## AMENDED CLAIMS

[received by the International Bureau on 27 June 1995 (27.06.95); original claims 1-10 replaced by amended claims 1,9 (2 pages)]

- Isolated nucleic acid molecule useful as a primer in specifically determining expression of a member of the MAGE group of tumor rejection antigen precursors, selected from the group consisting of SEQ ID NOS: 27-46.
- 2. Kit useful in determining expression of a MAGE tumor rejection antigen precursor, comprising at least one pair of:

 SEQ
 ID
 NOS:
 27
 and
 28

 SEQ
 ID
 NOS:
 29
 and
 30

 SEQ
 ID
 NOS:
 31
 and
 32

 SEQ
 ID
 NOS:
 33
 and
 34

 SEQ
 ID
 NOS:
 35
 and
 36

 SEQ
 ID
 NOS:
 37
 and
 38

SEQ ID NOS: 39 and 40 SEQ ID NOS: 41 and 42 SEQ ID NOS: 43 and 44

SEQ ID NOS: 45 and 46.

- 3. Method for determining expression of a MAGE tumor rejection antigen precursor in a cell comprising contacting said cell sample with at least one isolated nucleic acid molecule of claim 1 and determining hybridization of said nucleic acid molecule to a target as a determination of expression of MAGE tumor rejection antigen precursor.
- 4. The method of claim 3, wherein said expression of said tumor rejection antigen precursor is a determination of presence, regression of spread of cancer.
- 5. The method of claim 4, wherein said cancer is melanoma.

- 6. The method of claim 4, comprising contacting said sample with SEQ ID NOS: 27 and 28.
- 7. The method of claim 4, wherein said cancer is a bead squamous cell carcinoma, a neck squamous cell carcinoma, a prostate carcinoma and a bladder tumor, the method comprising contacting said sample with SEQ ID NOS: 27 and 28 or SEQ ID NOS: 29 and 30.
- 8. The method of claim 4, wherein said cancer is a bladder tumor, said method comprising contacting said sample with SEQ ID NOS: 51 and 52, followed by amplification.
- 9. The method of claim 4, wherein said MAGE tumor rejection antigen precursor is MAGE-1, MAGE-2, MAGE-3 or MAGE-4.

FIG. 1A







SUBSTITUTE SHEET (RULE 26)

FIG. 2



SUBSTITUTE SHEET (RULE 26)

FIG. 3





SUBSTITUTE SHEET (RULE 26)

PCT/US95/02203



SUBSTITUTE SHEET (RULE 26)

FIG. 6



8/22 **FIG. 7** 



FIG. 8



SUBSTITUTE SHEET (RULE 26)

GGTCĮTTIGGCATTGACGTGAAGGAAGCAGACCCCACCCGGCCACTCCTAGTCCTTGTCACCTGGGTCTCTCCTATGATGATGATGGCCTGGTGGTGATAAT. 525 CAGATCATGCCCAAGACAGGCTTCCTGATAATTGTCCTGGTCATGATTGCAATGGAGGGCGGCCATGCTTGAGGAGGAAATCTGGGAGAGGAGGAGCTGAGTG 625 III CAGATCATGCCCAAGGCAGGCCTCCTGATAATcGTCCTGGcCATaATcGCAAgaGGGCGaCtgTGCcCCTGAGGAGAAAATCTGGGAGGAGGAGTG H CAGGICATGCCCAAGACAGGCGICCIGATAATGGIC-TGGCCATAATGGCAATAGAGGGCGACTGTGCCCCTGAGGAAAATCTGGGAGGAGCTGAGTA GGTCTTTGGCATcGAgcTGAtGGAAGtgGACCCCAtCGGCCACTtgTAcaTCtTTGcCACCTGCCTgGGcCTCTCCTAcGATGGCCTGCTGGGTGAcAAT H generategagenegtegaagtgelecteceateageeaetagearettagaateetieneateetigeeeeteeteetagaategaegaegagagaaaat GEGAGCCAGTCACAAAGGCAGAAATGCTGGAGAGTGTCATCAAAAATTACAAGCACTGTTTTCCTGAGATCTTCGGCAAAGCCTCTGAGTCCTTGCAGCT
 425 CCTCCCAGAGTCCTCAGGGAGCCTCCGCCTTTCCCACTTACCATCAACTTCGACAGAGGCAACCCAGTGAGGGTTTCCAGCAGCCGTGAAGAGGAGGAGG GGCCAAGCACCTtcccTgaCC-TGGAGTCCgaGTTCCaAGCAGcACTCAgTAgGAAGGTGGCcGAgTTGGTTcaTTTTCTGCTCCTCAAgTATCGAGCCA GGCCAAGAAtgTtTcccgaCCtTGGAGTCCGAGTTCCAAGCAGcAATCAgTAgGAAGaTGGtTGAgTTGGTTcaTTTTCTGCTCCTCAAgTATCGAGCCA GGGAGCCGGTCACAAAGGCAGAAATGCTGGGGAGTGTCGTCGGAAATTTGGCAGŁAŁTŁCTTTCCTGŁGATCTTCAGCAAAGCŁTCcagŁTCCTTGCAGCT GGGAGCCGGTCACAAAGGCAGAAATGCTGGAGAGTGTCCTCAGAAATTGCCAGGACTtcTTTCCCGtGATCTTCAGCAAAGCCTCcGAGTaCTTGCAGCT MAGE-3 III CCTCCCCAGAGTCCTCAGGGAGCCTCCAGCACTACCATGAACTACCTCtctgGAGcCAAtCCtaTGAGGacTCCAGCAACCaaGAAGAGGAGG MAGE-2 MAGE-1



SUBSTITUTE SHEET (AULE 26)

	Expression of antigen MZ2-E after transfection**		11/22	++  +
RECOGNITION BY ANI-E CTL		+ 1		1 1 1 + 1 1
	tested by: TNF release‡ Lysis§	+ 1		+ 1 1 + 1 1
EXPRSSION OF MAGE GENE FAMILY	probed with becific for: MAGE-3†	###,,	11111	‡,‡‡‡‡
	cDNA-PCR product probed with oligonucleotide specific for: MAGE-1 MAGE-2 MAGE-3†	###	11111	‡,;‡‡‡
		‡‡,,,	11111	‡,,‡,,
	Northern blot probed with cross-reactive MAGE-1 probe*	22-MEL.3.0 + 982) + 722-MEL.2.2 + 32/30 –	11111	+ 1 + + + +
FIG. 11A		melanoma cell line MZ2-MEL.3.0 tumor sample MZ2 (1982) antigen-loss variant MZ2-MEL.2.2 CTL clone MZ2-CTL.82/30 PHA-activated blood lymphocytes	Liver Muscle Skin Lung Brain Kidney	LB34-MEL MI665/2-MEL MI10221-MEL MI13443-MEL SK33-MEL SK23-MEL
•		Cells of patient MZ2	Normal tissues	Melanoma cell lines of HLA-A1 patients

Data obtained in the conditions of figure 5.

Data obtained as described in figure 6.

TNF release by CTL 82/30 after stimulation with the tumor cells as described in (11).

Lysis of 51 Cr labelled target by CTL 82/30 in the conditions of figure 1.

Cells transfected with the 2.4 kb fragment of gene MAGE-1 were tested for their ability to stimulate TNF release by CTL 82/30.

SUBSTITUTE SHEET (RULE 25)

	Expression of antigen MZ2-E after transfection**	12/22	
RECOGNITION BY ANI-E CTL	tested by: TNF anti		
EXPRSSION OF MAGE GENE FAMILY	cDNA-PCR product probed with oligonucleotide specific for:		1 1
	Northern blot probed with cross-reactive MAGE-1 probe*	rcinoma LB37 + + + + + + + + + + + + + + + + + + +	-
FIG. 11B		LB17-MEL LB33-MEL LB33-MEL LB41-MEL MI4024-MEL SK29-MEL MZ3-MEL MZ5-MEL BB5-MEL Small cell lung cancer H209 small cell lung cancer H345 small cell lung cancer H510 small cell lung cancer LB11 bronchial squamous cell carcinoma LB37 thyroid medullary carcinoma TT colon carcinoma LB31 colon carcinoma LS411	chronic myeloid leukemia LLC5 acute myeloid leukemia TA
		Melanoma cell lines of other patients  Melanoma tumor sample  Other tumor cell lines	Other tumor samples

^{*} Data obtained in the conditions of figure 5. † Data obtained as described in figure 6. ‡ TNF release by CTL 82/30 after stimulation with the tumor cells as described in (11). § Lysis of 51 Cr labelled target by CTL 82/30 in the conditions of figure 1. **Cells transfected with the 2.4 kb fragment of gene MAGE-1 were tested for their ability fo stimulate TNF release by CTL 82/30

FIG. 12

MZ2-CTL 82/30 MZ2-MEL.3.0 (E+ MZ2-MEL.2.2 (E-)



SUBSTITUTE SHEET (RULE 26)

FIG. 13

:7





**SUBSTITUTE SHEET (RULE 26)** 

16/22

**FIG. 15A** 



**FIG. 15B** 



SUBSTITUTE SHEET (RULE 26)

PCT/US95/02203

17/22 **FIG. 15C** 



**FIG. 15D** 





SUBSTITUTE SHEET (RULE 26)

18/22

19/22



SUBSTITUTE SHEET (RULE 26)

FIG. 18



## FIG. 19



FIG. 20



Superficial tumors (stages Ta-T1); n= 29

Invasive tumors (stages T2-T4); n= 28

## INTERNATIONAL SEARCH REPORT

International application No. PCT/US95/02203

A. CLASSIFICATION OF SUBJECT MATTER  [PC(6) :C12Q 1/68.						
US CL: 435/6 According to International Patent Classification (IPC) or to both national classification and IPC						
	o International Patent Classification (IPC) or to both r DS SEARCHED	national classification and IPC				
D	ocumentation searched (classification system followed	by classification symbols)				
U.S. :		by value in by income,				
Documentat	ion searched other than minimum documentation to the	extent that such documents are included	in the fields searched			
			·			
Electronic d	ata base consulted during the international search (nar	me of data base and, where practicable,	search terms used)			
CAS, BI	OSIS, APS					
	·					
C. DOC	UMENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.			
Υ	IMMUNOGENETICS, VOLUME 39,	ISSUED 1994, SMET ET	1-10			
	AL. "SEQUENCE AND EXPRESSIO	N PATTERN OF HUMAN				
	MAGE2 GENE", PAGES 121-129,	SEE ENTIRE DOCUMENT.				
Υ	INTERNATIONAL JOURNAL OF (	CANCER ISSUED 1994	1-10			
'	WEYNANTS ET AL, "EXPRESSIO					
	NON-SMALL-CELL LUNG CARCING					
	SEE ENTIRE DOCUMENT.					
v	   WO, A, 92/20356 (BOON ET AL) 2	S NOVEMBER 1992 SEE	1-10			
Υ	ENTIRE DOCUMENT.	O NO VEINBER 1992, SEE	1-10			
		, in the second				
A,P	US, A, 5,342,774 (BOON ET AL),	, 30 AUGUST 1994, SEE	1-10			
	ENTIRE DOCUMENT.					
		•				
Further documents are listed in the continuation of Box C. See patent family annex.						
	pecial categories of cited documents:	"I" later document published after the inte date and not in conflict with the applic	ation but cited to understand the			
'A' do to	cument defining the general state of the art which is not considered be of particular relevance	"X" document of particular relevance; th				
1	rlier document published on or after the international filing date ocument which may throw doubts on priority claim(s) or which is	considered novel or cannot be considered when the document is taken alone				
cit	ocument which may unlow doubts on priority cannot to which is ted to establish the publication date of another citation or other social reason (as specified)	"Y" document of particular relevance; the				
.0. de	ocument referring to an oral disclosure, use, exhibition or other	considered to involve an inventive combined with one or more other suc being obvious to a person skilled in t	h documents, such combination			
"P" de	course published prior to the international filing date but later than be priority date claimed	"&" document member of the same patent				
Date of the actual completion of the international search  Date of mailing of the international search report						
01 MAY	1995	24MAY1995				
	mailing address of the ISA/US	Authorized officer	Free for			
Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231		EGGERTON CAMPBELL	1			
Washington, D.C. 20231  Enceimile No. (703) 305-3730		Telephone No. (703) 308-0196				