ERIC ADAMSON

BIODIVERSITY FOR THE NATIONAL PARKS

SYNOPSIS OF DATA

	category	scientific_name	common_names	conservation_status
0	Mammal	Clethrionomys gapperi gapperi	Gapper's Red-Backed Vole	NaN
1	Mammal	Bos bison	American Bison, Bison	NaN
2	Mammal	Bos taurus	Aurochs, Aurochs, Domestic Cattle (Feral), Dom	NaN
3	Mammal	Ovis aries	Domestic Sheep, Mouflon, Red Sheep, Sheep (Feral)	NaN
4	Mammal	Cervus elaphus	Wapiti Or Elk	NaN

Data file (species_info.csv) consists of the following fields relating to various species observed within national parks:

- Category of species: Mammal, Bird,
 Reptile, Amphibian, Fish, Vascular
 Plant, Nonvascular Plant
- Scientific name (SN) of species (5,541 unique) Bos bison, Ovis aries, etc.
- **Common name of species** American bison, Domestic sheep, etc.
- Conservation status: Species of Concern (151 SNs), Threatened (10 SNs), Endangered (15 SNs), In Recovery (4 SNs), NaN (5363 SNs, subsequently mapped to 'No Intervention')

COMPARISON OF CONSERVATION STATUS

- Dataset was sorted by species and tabulated according to protection status and percent protected.
- This allowed for construction of $\frac{\text{contingency tables}}{\text{contingency tables}}$ required for χ^2 test.
- χ^2 test was utilized to investigate significance of variation in percent of species protected (assuming p>0.05 indicates significance).
- Mammal vs Bird: $p \approx 0.69$ Not Significant Reptile vs Mammal: $p \approx 0.038$ Significant!

	category	not_protected	protected	percent_protected
0	Amphibian	72	7	0.088608
1	Bird	413	75	0.153689
2	Fish	115	11	0.087302
3	Mammal	146	30	0.170455
4	Nonvascular Plant	328	5	0.015015
5	Reptile	73	5	0.064103
6	Vascular Plant	4216	46	0.010793

	protected	not protected	
Mammal	?	?	
Bird	?	?	

Recommendation: divert conservation efforts away from reptiles and focus on Mammals and Birds

ANALYSIS OF SHEEP OBSERVATIONS

Merging the data in species_info.csv with the observations of sheep within Bryce, Great Smoky Mountains, Yellowstone, and Yosemite National Parks over 7 days yields the following:

Yellowstone has more than 2x as many sheep observations over tis period than does Bryce.

ANALYSIS OF REQUIRED SAMPLE SIZE

Based on the information provided:

Baseline conversion rate: 15%

Min detectable effect: 100 * (.05/.15) = 33.333

Statistical significance: 90%

and utilizing the provided sample size calculator yields:

Baseline conversion rate: 15 %
Statistical significance: 85% 90% 95%
Minimum detectable effect: 33.33 © %
Sample size: 870

Thus, based on the number of observations at each park per week:

- Number of weeks to reach required sample size:
 - Bryce: 870 sheep / 250 (sheep/wk) = 3.5 weeks
 - Yellowstone: 810 sheep / 507 (sheep/wk)= 1.5 weeks