Data Divers

Data Science – Yellow Belt

Lecture 2

by Sebastian Sauer

Statistical Learning: What's that?

Big Picture

Lecture 2

Lecture 3

Learning goals

Let's explore the mathematical intricacies!

OK, but I'll throw in some background where and when needed.

No, this time we'll get our hands dirty with state-of-the-art casestudies.

The standard source of knowledge

ebook freely available

Building a machine learning pipeline, 101

- In break-out groups, work your way through this demonstration of a machine learning pipeline.
- Answer the following questions:
 - 1. What are model parameters?
 - 2. Which models tend to exhibit a strong bias?
 - 3. Why do overly-complex exhibit high variance?
 - 4. What's a way to balance the bias-variance tradeoff?
- Feel free to double check <u>part 1 of this demonstration</u>.

Explain bias-variance tradeoff in this diagram

Open your RStudio Cloud account

Log In Sign Up

RStudio Cloud

Do, share, teach and learn data science

GET STARTED FOR FREE

ALREADY A USER? LOG IN

If you already have an RStudio shinyapps.io account, you can log in using your existing credentials.

https://rstudio.cloud/

We'll use the "tidymodels" data science framework

Tidymodels

PACKAGES

GET STARTED

LEARN

HELP CONTRIBUTE

TIDYMODELS

The tidymodels framework is a collection of packages for modeling and machine learning using tidyverse principles.

Install tidymodels with:

install.packages("tidymodels")

https://www.tidymodels.org/

Here's our tutorial/case study

GET STARTED

- 1 Build a model
- 2 Preprocess your data with recipes
- 3 Evaluate your model with resampling
- 4 Tune model parameters
- 5 A predictive modeling case study

1 Build a model

- TIDYMODELS PACKAGES: broom, parsnip
 - INTRODUCTION
 - THE SEA URCHINS DATA
 - BUILD AND FIT A MODEL
 - USE A MODEL TO PREDICT
 - MODEL WITH A DIFFERENT ENGINE
 - WHY DOES IT WORK THAT WAY?
 - SESSION INFORMATION

INTRODUCTION &

How do you create a statistical model using tidymodels? In this article, we will walk you through the steps. We start with data for modeling, learn how to specify and train models with different engines using the parsnip package, and understand why these functions are designed this way.

To use code in this article, you will need to install the following packages: broom.mixed, readr, rstanarm, and tidymodels.

https://www.tidymodels.org/start/models/

Statistical Learning: Finding the pattern of Y and X

$$Y = f(X) + e$$

Finding patterns is our game

Why estimating f?

Prediction

Who cares about "why" as long you get accurate predictions!

Explanation

We need to understand what's going on.

Two types of errors: reducible and non-reducible

$$e = e_r + e_{nr}$$

$$E(Y - \hat{Y})^2 = E[f(X) + \epsilon - \hat{f}(X)]^2 = \underbrace{E[f(X) - \hat{f}(X)]^2}_{\text{reducible}} + \underbrace{Var(\epsilon)}_{\text{non-reducible}}$$

Here's the non-reducible error

Parametric and non-parametric models

Parametric model

Non-parametric Model

From too simple to too complex

Interpretability vs. flexibility

Supervised vs. unsupervised learning

supervised learning

unsupervised learning

Typical machine learning workflow

Learn and predict on new data

Model evaluation

Mean Square Error (MSE)

minimize
$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}(x_i))^2$$
$$MSE_{Test} = \frac{1}{n} \sum_{i=1}^{n} (y_0 - \hat{x}_o)^2$$

MSE Train ≠ MSE Test

Variance vs. bias

MSE = Bias + Variance

Model evaluation in classification models

$$e = \frac{1}{n} \sum_{i=1}^{n} I(y_i \neq \hat{y}_i)$$

Klassifikationsmodelle visuell beurteilen

Resampling

Train-Test split

Train-Test split yields highly variable Test MSE

k-fold cross-validation (k-fold cc)

$$CV_{(k)} = \frac{1}{k} \sum_{i=1}^{k} MSE_i$$

k-fold cross-validation (k-fold cc)

Bootstrap

Tree-based Methods

Minimize the error, be pure

Many Yes-No decisions yield a tree

Different visualisations of a tree

Bigger trees, better prediction?

More trees yield a less variable estimate

Bootstrapping

Random Forests

Random Forest

random sample of predictors at each split

Comparing different random forest models

Comparing trees, bagging and random forests

Variable importance

