数学分析I习题课一

2022年9月20日

问题 1. 证明:

$$\bigcap_{n\in\mathbb{N}}\left\{x\in\mathbb{R}:x>\frac{n}{n+1}\right\}=\left\{x\in\mathbb{R}:x\geq1\right\}.$$

问题 2. 证明:

- $(1)(A\triangle B)\triangle C = A\triangle (B\triangle C);$
- $(2)(A\triangle B)\cap C=(A\cap C)\triangle(B\cap C);$
- $(3)(A_1 \cup A_2) \triangle (B_1 \cup B_2) \subset (A_1 \triangle B_1) \cup (A_2 \triangle B_2).$

其中 $A\triangle B=(A\setminus B)\cup(B\setminus A)$ 称为 A 与 B 的对称差, $A\setminus B=\{\omega|\omega\in A,\omega\notin B\}$ 称为 A 与 B 的差.

问题 3. 设 $\{A_n : n \in \mathbb{N}\}$ 是可数个集合构成的集合类.

(i) B 表示所有属于无限多个集合 A_n 元素构成的集合. 试证:

$$B = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k;$$

(ii) C 表示除了有限多个集合 A_n 外, 属于所有集合 A_n 的元素的全体. 试证:

$$C = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k.$$

问题 4. 对于上题中的 $\{A_n: n \in \mathbb{N}\}$,将 B 记为 $\limsup_{n \to \infty} A_n$,将 C 记为 $\liminf_{n \to \infty} A_n$. 再设 $\{B_n: n \in \mathbb{N}\}$ 是另一个可数个集合构成的集合类. 证明:

$$(\liminf_{n\to\infty} A_n) \cap (\limsup_{n\to\infty} B_n) \subset \limsup_{n\to\infty} (A_n \cap B_n).$$

1

问题 5. (i) 用 $\varepsilon - N$ 语言陈述 $\lim_{n \to \infty} x_n$ 极限存在, 但 $\lim_{n \to \infty} x_n \neq a$;

(ii) 用 $\varepsilon - N$ 语言陈述 $\lim_{n \to \infty} x_n$ 不存在.

问题 6. 用 $\varepsilon - N$ 语言证明:

$$\lim_{n \to \infty} \frac{1}{\sqrt[n]{n!}} = 0.$$

问题 7. 设 $\lim_{n\to\infty}x_n=a$, 又已知用 $\varepsilon-N$ 语言描述这个极限时, 可取 N 与 ε 无关, 问这样的数列 x_n 是否一定是常值数列? 如果不是, 又具有怎样的特性?

问题 8. 设 $x_n > 0, n \in \mathbb{N}$, $\lim_{n \to \infty} \frac{x_n}{x_{n+1} + x_{n+2}} = 0$, 证明数列 $\{x_n\}$ 无界。

问题 9. (1) 设 $\lim_{n\to\infty} x_n = a > 0$, 证明存在 N 使 $n \ge N$ 时, $x_n > 0$; (2) 设 $x_n > 0$, $n \in \mathbb{N}$ 且 $\lim_{n\to\infty} x_n = a$, 问是否有 a > 0.

(2) 设
$$x_n > 0, n \in \mathbb{N}$$
 且 $\lim_{n \to \infty} x_n = a$, 问是否有 $a > 0$