Heart Disease Prediction UCI Study Data

Brad Doty December 2021

<u>Heart Disease Prediction Problem Statement</u>

- Find a classifier to predict the target.
 - Heart disease as measured by angiogram, based on the 13 diagnostic test results in this <u>UCI</u> dataset on Kaggle.
- 2. Identify which diagnostic tests in this study data, formulated as features in these classification models, carry the most predictive information for these models.

<u>UCI / Cleveland Clinic Study Data</u>

The <u>data at Kaggle</u> deviates from the data description in several columns.

Investigated at http://archive.ics.uci.edu/ml/machine-learning-databases/heart-disease/

- Study was conducted in 1988, analyzed by many papers over the years
- 76 attributes considered from
 - Cleveland Clinic, Long Beach VA Hospital, Hungary, and Switzerland
- Only 14 attributes reported at UCI, only from Cleveland Clinic
 - Target variable is binary indicator of cardiac artery blockage

Data Wrangling

- There was no null data, 303 full rows
- Some cardinality and values deviated from the data description
- Investigated an alternative dataset from Kaggle, but kept original
- Corrected values, improved naming based on UCI data dictionary

<u>O</u>	<u>riginal</u>	<u>R</u>	<u>enamed</u>
#	Column Non-Null Count Dtype	#	Column Non-Null Count Dtype
			Ago 202 pop pull int64
U	age 303 non-null int64		Age 303 non-null int64
1	sex 303 non-null int64		Sex 303 non-null int64
2	cp 303 non-null int64	2	ChestPain 303 non-null int64
3	trestbps 303 non-null int64	3	SystolicBP 303 non-null int64
4	chol 303 non-null int64	4	Chol 303 non-null int64
5	fbs 303 non-null int64	5	Glucose 303 non-null int64
6	restecg 303 non-null int64	6	RestECG 303 non-null int64
7	thalach 303 non-null int64	7	STMaxRate 303 non-null int64
8	exang 303 non-null int64	8	STPain 303 non-null int64
9	oldpeak 303 non-null float64	9	STWave 303 non-null int64
10	slope 303 non-null int64	10	STSlope 303 non-null int64
11	ca 303 non-null int64	11	NumColor 303 non-null int64
12	thal 303 non-null int64	12	2 Defects 303 non-null int64
13	target 303 non-null int64	13	3 AngioTgt 303 non-null int64
	pes: float64(1), int64(13)	dty	/pes: int64(14)

Data Wrangling 2

- Some categoricals showed trend vs. target, some values broke trend.
- Adjusted some values to make monotonic trends.

ChestPain: Raw and with 0 moved to 4.

Raw STWave and STWave binned to integers

Exploratory Data Analysis - Distributions

4 skewed, unimodal numeric distributions: Age, SystolicBP, Chol, STMaxRate 6 categoricals, 3 binaries, plus the binary target: AngioTgt

Exploratory Data Analysis - Correlations

Feature Engineering

- AngioTgt is binary target. Do single classification.
- No highly collinear variables. Used all 13.
- One-Hot Encoding, drop first category on STSlope and Defects
- Left some categoricals alone:
 - AngioTgt monotonically trends over ChestPain, RestECG, STWave, NumColor
 - o 3 binary features: Sex, Glucose, STPain
- Remapped values in Data Wrangling (pre-EDA) to make trends
 - NumColor 4 -> 0
 - \circ STWave 6->5
 - RestECG 2 -> 0
- Did 80/20 Training/Test Split
- Used Standard Scaler on continuous features for distance-based algos
 - Age, STMaxRate, SystolicBP, Chol

Modeling

- Built models using 5 supervised classification algorithms
 - o Logistic Regression, Decision Tree, Random Forest, k Nearest Neighbors, SVM
- Used scaled data for distance-based algorithms
 - o k Nearest Neighbors, SVM
- Selection criteria to find the best prediction model:
 - Recall is most important for medical diagnosis tool.
 - F1 for a balanced fit is a tiebreaker
 - AUC of ROC is second tiebreaker.
- Recorded Feature Attribution (feature importance or coefficients) where possible
 - Logistic Regression, Decision Tree, Random Forest, SVM Linear (not SVM RBF)

Modeling Metrics

Model	Recall	F1	AUC of ROC	Precision	Accuracy	R ²
Logistic Regression	79%	85%	92%	92%	87%	.474
Decision Tree	66%	73%	77%	83%	77%	.080
Random Forest (max d=9, gini, 100 trees)	79%	82%	91%	85%	84%	.343
#4. Random Forest CV1 (md=5, entropy, 75 trees, mxfeat=5, minsplit=5)	83%	83%	89%	83%	84%	.343
#3. Random Forest CV2 (md=4, gini, mxfeat=4, 130 trees, minsplit=3)	83%	83%	91%	83%	84%	.343
#2. K Nearest Neighbors k=7	83%	86%	90%	89%	87%	.474
#1. Support Vector Machine (RBF kernel)	83%	86%	91%	89%	87%	.474
Support Vector Machine (linear kernel)	79%	81%	92%	82%	82%	.277

4 models tied on Recall SVM RBF, KNN, RF2, RF1 at 83%

F1 tiebreak: SVM RBF, KNN

ROC AUC tiebreak:

SVM RBF

SVM RBF wins!

Support Vector Machine w/ RBF Kernel

Hyperparameters:

{'C': 1.0, 'break_ties': False, 'cache_size': 200, 'class_weight': None, 'coef0': 0.0, 'decision_function_shape': 'ovr', 'degree': 3, 'gamma': 'scale', 'kernel': 'rbf', 'max_iter': -1, 'probability': False, 'random_state': 21, 'shrinking': True, 'tol': 0.001, 'verbose': False}

	pred	cisior	n re	call	f1-s	core	supp	ort
C)	0.85	0	.91	0.	88	32	
1		0.89	0	.83	0.	86	29	
accur	асу					3.0	37	61
macro	avg		0.87	(0.87	0.0	37	61
weighte	d av	9	0.87	(0.87	0.	87	61

Feature Attribution

	LogReg	LR_rank	RF0	RF0_rank	RFcv1	RFcv1_rank	RFcv2	RFcv2_rank	SVM	SVM_rank
NumColor	-1.19	1	0.14	1	0.14	1	0.17	1	-0.81	1
Sex	-1.12	2	0.03	13	0.03	11	0.02	13	-0.43	7
STPain	-0.96	3	0.06	10	0.07	7	0.07	6	-0.77	2
Defects_2	0.78	4	0.09	4	0.10	4	0.12	3	0.75	3
Defects_3	-0.71	5	0.08	5	0.10	5	0.11	4	-0.45	6
STSlope_1	-0.68	6	0.03	11	0.02	13	0.04	11	-0.55	5
Glucose	0.56	7	0.01	15	0.01	15	0.00	15	0.38	8
Defects_1	0.53	8	0.00	16	0.00	16	0.00	16	0.69	4
ChestPain	-0.36	9	0.11	2	0.13	2	0.14	2	-0.17	12
STSlope_2	0.33	10	0.03	12	0.03	12	0.04	10	0.22	10
STWave	-0.19	11	0.06	9	0.05	8	0.04	8	-0.23	9
RestECG	0.16	12	0.02	14	0.01	14	0.01	14	0.14	14
STMaxRate	0.03	13	0.11	3	0.12	3	0.10	5	NaN	NaN
SystolicBP	-0.02	14	0.07	8	0.05	9	0.04	9	NaN	NaN
Age	0.02	15	0.08	6	0.09	6	0.06	7	NaN	NaN
Chol	-0.00	16	0.08	7	0.05	10	0.04	12	NaN	NaN
STMaxRate_SS	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	0.21	11
SystolicBP_SS	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	-0.17	13
Chol_SS	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	-0.01	16
Age_SS	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	0.10	15

#1 SVM RBF & #2 KNN do not yield attribution.

Is there a consensus among others?

No. NumColor is + for RF and - for Log & SVM Lin.

#3 RF2 & #4 RF3 agree:

NumColor, ChestPain, Defect 2 & 3, STMaxRate