Evolution & Learning in GamesEcon 243B

Jean-Paul Carvalho

Lecture 10. Stochastic Dynamics

The Stochastic Evolutionary Process

- ► Now we shall directly analyze the stochastic evolutionary dynamic rather than its deterministic approximation.
- ► Let the population be *large but finite*, with *N* members.
- ► The set of feasible social states is then a discrete grid embedded in *X*:

$$\mathcal{X}^N = X \bigcap \frac{1}{N} \mathbb{Z}^n = \{ x \in X : Nx \in \mathbb{Z}^n \}.$$

Markov Property

Suppose choices depend only on current state x and current payoff vector π .

Then the stochastic evolutionary process $\{X_t^N\}$ is a continuous-time **Markov process** on the <u>finite</u> state space \mathcal{X}^N .

- ► The process is fully characterized by its transition probabilities $\{P_{xy}^N\}_{x,y\in\mathcal{X}^N}$.
- ► $P_{xy}^N(t)$ is the probability of transiting from state x to y in exactly one revision.
- ▶ If $P_{xy}^N(t)$ is independent of t, then the Markov process is *time homogenous*, and we write P_{xy}^N . This is the case we will be dealing with.

Transition Matrix

- ▶ P^N is a $|\mathcal{X}^N| \times |\mathcal{X}^N|$ matrix, called the *transition matrix*, whose elements are the transition probabilities.
- ► For all x, $\sum_{y \in \mathcal{X}^N} P_{xy}^N = 1$.
- ▶ This means that P^N is a *row stochastic matrix*, i.e. its row elements sum to one.
- ► For example, consider the following transition matrix for a two-state Markov process:

$$P^N = \left(\begin{array}{cc} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{4} & \frac{3}{4} \end{array}\right).$$

Representation

Another way to describe this process is via a graph:

Population Game Version

In the standard population game we have focussed on, strategy revisions are determined by independent rate 1 Poisson clocks and the learning protocol ρ :

- ▶ When an agent playing $i \in S$ receives a revision opportunity, it switches to j with probability ρ_{ij} .
- ► The probability that the next revision involves a switch from strategy i to j is then $x_i \rho_{ij}$.
- ► The transition involves one less agent playing i and one more agent playing j, i.e. the state is shifted by $\frac{1}{N}(e_j e_i)$.

Population Game Markov Process

Definition. A population game F, a revision protocol ρ , a revision opportunity arrival rate of one, and a population size N define a Markov process $\{X_t^N\}$ on the state space \mathcal{X}^N . This process is described by some initial state $X_0^N = x_0^N$ and the transition probabilities:

$$P_{x,x+z}^{N} = \begin{cases} x_i \rho_{ij} (F(x), x) & \text{if } z = \frac{1}{N} (e_j - e_i), i, j \in S, i \neq j \\ 1 - \sum_{i \in S} \sum_{j \neq i} x_i \rho_{ij} (F(x), x) & \text{if } z = \mathbf{0} \\ 0 & \text{otherwise} \end{cases}$$

Limiting Behavior

- ▶ Over finite-horizons, the focus is on the mean dynamic.
- ▶ In the long run, however, the object of interest is the **stationary distribution** μ of the process $\{X_t\}$ (we are now dropping the N superscript).
- ► The stationary distribution tells us the frequency distribution of visits to each state as $t \to \infty$, i.e. almost surely the process spends proportion $\mu(x)$ of the time in state x.
- ▶ Before analyzing stationary distributions, let us introduce some definitions.

Communication

- ► State *y* is **accessible** from *x* if there exists a *positive probability path* from *x* to *y*, i.e. a sequence of states beginning in *x* and ending in *y* in which each one step transition between states has positive probability under *P*.
- ► States *x* and *y* **communicate** if they are each accessible from the other.
- ▶ A set of states *E* is **closed** if the process cannot leave it, i.e. for all $x \in E$ and $y \notin E$, $P_{xy} = 0$.
- ► An **absorbing state** is a singleton closed set.
- ► Every state in \mathcal{X} is either transient or recurrent; and a state is **recurrent** if and only if it is a member of a *closed communication class*.

Recurrence

Theorem 9.1. Let $\{X_t\}$ be a Markov Process on a finite set \mathcal{X} .

Then starting from any state x_0 , the frequency distribution of visits to states converges to a stationary distribution μ , which solves $\mu P = \mu$. In such a vector, $\mu(x) = 0$ for all transient states.

► This is why closed communication classes are commonly called recurrence classes.

Stationary Distributions

- ► FACT: every non-negative row stochastic matrix has at least one left eigenvector with eigenvalue one, i.e. there exists a μ such that $\mu P = \mu$.
- ► In other words there exists at least one stationary distribution.

Theorem 9.2.

- (i) If a stationary distribution μ is unique, it is the long run frequency distribution independent of the initial state.
- (ii) If there are multiple stationary distributions, then the long run frequency distribution is among these, and can be any one of them.

Stationary Distributions

- ► In our previous example, $\mu = (\frac{1}{3}, \frac{2}{3})$ (check by showing that μ solves $\mu P = \mu$).
- ► Consider the following Markov process:

► The solutions to the stationarity equation are:

$$\mu_1 = (\frac{1}{3}, \frac{2}{3}, 0, 0), \mu_2 = (0, 0, 0, 1),$$

or any convex combination of μ_1 and μ_2 .

Irreduciblity

▶ A Markov Process is **irreducible** if there is a positive probability path from each state to every other, i.e. if all states in \mathcal{X} communicate, or equivalently if \mathcal{X} forms a single recurrent class.

Theorem 9.3. If the Markov process $\{X_t\}$ is irreducible then it has a unique stationary distribution, and this stationary distribution is independent of the initial state.

In this case, we say that the process $\{X_t\}$ is **ergodic**, its long-run behavior does not depend on initial conditions.

k-Step Ahead Probabilities

- ▶ We may not only want to know the proportion of time the process spends in each state (given by μ), but also the probability of being in a given state at some future point in time.
- ► Recall that $\mathbb{P}(X_1 = y | X_0 = x) = P_{xy}$ is a one step transition probability.
- ► Two step transition probabilities are computed by multiplying *P* by itself:

$$\begin{split} \mathbb{P}(X_2 = y | X_0 = x) &= \sum_{z \in \mathcal{X}} \mathbb{P}(X_2 = y, X_1 = z | X_0 = x) \\ &= \sum_{z \in \mathcal{X}} \mathbb{P}(X_1 = z | X_0 = x) \mathbb{P}(X_2 = y | X_1 = z, X_0 = x) \\ &= \sum_{z \in \mathcal{X}} P_{xz} P_{zy} \\ &= \left(P^2\right)_{xy}. \end{split}$$

Aperiodicity

▶ By induction, the *t*-step transition probabilities are given by the entries of the *t*th power of the transition matrix:

$$\mathbb{P}(X_t = y | X_0 = x) = (P^t)_{xy}.$$

- ▶ Let \mathcal{T}_x be the set of all positive integers T such that there is a positive probability of moving from x to x in exactly T periods.
- ▶ The process is **aperiodic** if for every $x \in \mathcal{X}$, the greatest common denominator of \mathcal{T}_x is 1.

This holds whenever the probability of remaining in each state is positive, i.e. $P_{xx} > 0$ for all $x \in \mathcal{X}$.

Aperiodicity

▶ If $\{X_t\}$ is *irreducible* and *aperiodic*, then with probability one:

for all
$$x_0, x \in \mathcal{X}$$

$$\lim_{t \to \infty} (P^t)_{x_0 x} = \mu(x).$$

- ▶ Therefore, from any initial state x_0 both the proportion of time the process spends in each state up through time t and the probability of being in each state at time t converge to the stationary distribution μ .
- ► Hence the stationary distribution provides a lot of information about the long run behavior of the process.

Full Support Revision Protocols

- ► Irreducibility and aperiodicity are desirable properties of a Markov process.
- ► They are both generated by full support revision protocols, i.e. revision protocols in which all strategies are chosen with positive probability.
- ► Let us consider two examples which are extensions of best response protocols.

Full Support Revision Protocols

▶ Best response with mutations:

- ▶ A revising agent switches to its current best response with probability 1ε , and chooses a strategy uniformly (mutates) with probability $\varepsilon > 0$.
- ▶ Let us refer to this protocol as $BRM(\varepsilon)$.
- ▶ In case of best response ties, it is often assumed that a non-mutating agent sticks with its current strategy if it is a best response; otherwise it chooses at random among from the set of best responses.

Full Support Revision Protocols

► Logit Choice:

$$\rho_{ij}(\pi) = \frac{exp(\eta^{-1}\pi_j)}{\sum_{k \in S} exp(\eta^{-1}\pi_k)}.$$

- ► We can define $ε^{-1} = \exp(η^{-1})$, where ε is an increasing function of η. As $η \to 0$, $ε \to 0$.
- ► In this way, we can rewrite the revision protocol as follows:

$$\rho_{ij}(\pi) = \frac{\varepsilon^{-\pi_j}}{\sum_{k \in S} \varepsilon^{-\pi_k}}.$$

Stationary Distributions

- ► There are two problems:
 - ► It may not be possible to compute the stationary distribution explicitly,
 - ► Even if it is possible to do so, the stationary distribution may spread weight widely over the state space.

Analyzing Large-Dimensional Markov Processes

- ► In this lecture:
 - ► We shall study a class of **reversible** Markov processes whose stationary distributions are easy to compute;
- ► In the next lecture, we shall:
 - ► Introduce the concept of **stochastic stability**, which can drastically reduce the number of states which attract positive weight in the stationary distribution.

Reversible Markov Processes

- ▶ Reversible Markov processes permit easy computation of μ even if the state space \mathcal{X} , and hence the $|\mathcal{X}| \times |\mathcal{X}|$ transition matrix P, is large.
- ▶ A process $\{X_t\}$ is **reversible** if it admits a *reversible distribution*, i.e. a probability distribution μ on \mathcal{X} that satisfies the following *detailed balance conditions*:

$$\mu_x P_{xy} = \mu_y P_{yx}$$
 for all $x, y \in X$. (1)

► Such a process is reversible in the sense that it looks the same whether time is run forward or backward.

Reversible Markov Processes

ightharpoonup Recall that a stationary distribution μ satisfies:

$$\sum_{x \in \mathcal{X}} \mu_x P_{xy} = \mu_y \quad \text{ for all } y \in X.$$
 (2)

ightharpoonup Summing (1) over x we get:

$$\sum_{x \in \mathcal{X}} \mu_x P_{xy} = \sum_{x \in \mathcal{X}} \mu_y P_{yx}$$

$$= \mu_y \sum_{x \in \mathcal{X}} P_{yx}$$

$$= \mu_y.$$
(3)

► Therefore, a reversible distribution is also a stationary distribution.

Reversible Markov Processes

- ► There are two contexts in which the stochastic evolutionary process $\{X_t\}$ is known to be reversible:
 - 1. two-strategy games (under arbitrary revision protocols),
 - 2. potential games under exponential protocols.
- ► We shall now study the first and leave the second to later.

Two-Strategy Games

- ▶ Let $F: X \to \mathbb{R}^2$ be a two strategy game, with strategy set $\{0,1\}$, full support revision protocol $\rho: \mathbb{R}^2 \times X \to \mathbb{R}^{2\times 2}$, and finite population size N.
- ► This defines an irreducible and aperiodic Markov Process $\{X_t\}$ on the state space \mathcal{X}^N .
- ► For this class of games, let $x \equiv x_1$. The state of the process is fully described by x.
- ► Therefore, the state space is $\mathcal{X}^N = \{0, \frac{1}{N}, \dots, 1\}$, a uniformly spaced grid embedded in the unit interval.

Birth and Death Processes

- Because revision opportunities arrive independently in continuous time, agents switch strategies sequentially.
- This means that transitions are always between adjacent states.
- ► If in addition the state space is linearly ordered (which it is in a two-strategy game), then we refer to the Markov process as a birth and death process.
- ► We shall now show that a stationary distribution for such processes can be calculated in a straightforward way.

Birth and Death Processes

▶ In a birth and death process, there are vectors $p, q \in \mathbb{R}^{|\mathcal{X}|}$ with $p_1 = q_0 = 0$ such that the transition matrix takes the following form:

$$P_{xy} \equiv \begin{cases} p_x & \text{if } y = x + \frac{1}{N}, \\ q_x & \text{if } y = x - \frac{1}{N}, \\ 1 - p_x - q_x & \text{if } y = x, \\ 0 & \text{otherwise} \end{cases}$$

► The process is *irreducible* if $p_x > 0$ for all x < 1 and $q_x > 0$ for all x > 0, which is what we shall assume.

Birth and Death Processes

► Because of the "local" structure of transitions, the reversibility condition reduces to:

$$\mu_x q_x = \mu_{x-1/N} p_{x-1/N}$$

for all x > 0.

► Applying the formula inductively, we have:

$$\mu_x q_x q_{x-1/N} \dots q_{1/N} = \mu_0 p_0 p_{1/N} p_{2/N} \dots p_{x-1/N}.$$

► That is, the process running 'down' from state *x* to zero should look like the process running 'up' from zero to state *x*.

Stationary Distribution

► Rearranging, we see that the stationary distribution satisfies:

$$\frac{\mu_x}{\mu_0} = \prod_{j=1}^{Nx} \frac{p_{(j-1)/N}}{q_{j/N}} \quad \text{for all } x \in \{\frac{1}{N}, \dots, 1\}.$$
 (4)

► For a full support revision protocol ρ , the upward and downward probabilities are given by:

$$p_x = (1 - x)\rho_{01}(F(x), x) q_x = x\rho_{10}(F(x), x).$$
 (5)

Stationary Distribution

► Substituting the expressions in (5) into (4) yields:

$$\frac{\mu_{x}}{\mu_{0}} = \prod_{j=1}^{Nx} \frac{p_{(j-1)/N}}{q_{j/N}} = \prod_{j=1}^{Nx} \frac{1 - \frac{j-1}{N}}{\frac{j}{N}} \cdot \frac{\rho_{01}\left(F\left(\frac{j-1}{N}\right), \frac{j-1}{N}\right)}{\rho_{10}\left(F\left(\frac{j}{N}\right), \frac{j}{N}\right)}$$
 (6)

30/31

Stationary Distribution

Simplifying, we have the following result:

Theorem 9.4. Suppose that a population of N agents plays the two-strategy game F using the full support revision protocol ρ . Then the stationary distribution for the evolutionary process $\{X_t^N\}$ on \mathcal{X}^N is given by:

$$\frac{\mu_x}{\mu_0} = \prod_{j=1}^{Nx} \frac{N - j + 1}{j} \cdot \frac{\rho_{01}\left(F(\frac{j-1}{N}), \frac{j-1}{N}\right)}{\rho_{10}\left(F(\frac{j}{N}), \frac{j}{N}\right)} \quad \text{for } x \in \left\{\frac{1}{N}, \dots, 1\right\}, \quad (7)$$

with μ_0 determined by the requirement that $\sum_{x \in \mathcal{X}} \mu_x = 1$.