Third Einstein-Cartan-Evans (ECE) Conference Swansea and Aberystwyth, Wales July 2013

Stephen C. Bannister
Department of Economics
University of Utah
Salt Lake City, Utah 84112
USA

steve.bannister@econ.utah.edu

"All truth passes through three stages. First, it is ridiculed.
Second, it is violently opposed. Third, it is accepted as being self-evident." Schopenhauer

Agenda

- Economics what is it, what are our challenges?
- Intersection of physics and economics
 - Methodologies
 - Thermodynamics
 - Shared people
- South Wales industrial history
- My interests
- Importance of energy in economic systems; hence, the importance of ECE theory in future economic systems
- The role of AIAS in the next great positive supply shock

What do economists do?

- Attempt to model complex social systems Macroeconomics – equilibrium-based models
- Attempt to explain individual (consumer/firm) behaviour Microeconomics – constrained optimization
- Attempt to link them microfoundations of macroeconomics, network systems with emergent behaviours, stochastic agent-based models.
 - N.B. the "Fallacy of Composition" makes the emergent properties of network systems (graph theory) a very compelling methodology, at least in economics

Challenges of economics

- Macro models do not forecast well
- Macro models (DSGE) tend to have many adjustable parameters, are very complex
- Empirical (statistical) models offer some relief, but . . .
- Few repeatable experiments

Similarities/dissimilarities with physics

- Use maths in several ways (physics envy?)
 - Theory so use mostly the same algebras you do (especially linear), although so far no tensor calculus
 - Applied since difficult to repeat experiments, have evolved a wide set of statistical methods
 - Simulation
- Use scientific methods, processes (publish, etc.)
- Have models with many adjustable parameters Myron's admonitions apply equally well to economics
- Share people Fredrick Soddy, Wall Streen "quants"

Similarities/dissimilarities with physics

- Narrow vein of thermodynamicists (Sergei Podolinski, Georgescu-Roegen, Timothy Garrett) to whom economics is a thermodynamic system
- Must incorporate institutions and history
- Again, very little repeatability difficult to "rewind" a macroeconomy since people are involved

Customer

Century

Industrial history of South Wales

Company

16 th -17 th	Mineral and Battery Company	Tintern	brass, wire	woolcards
	Mines Royal	Cornwall	copper mining	
		Neath	copper smelting (coal)	
	various	Swansea,Tenby	coal mining	export
	various	Brecon, Monmouth	iron (charcoal)	
18 th (1 st half)	various	Pontypool	tinplate	
	Humphrey Mackworth	Melincryddan	lead,copper	
	John Lane	Landore	copper smelting	
	various	Swansea	copper smelting	
	various	Taibach	copper smelting	
	various (16)	various (small)	iron (charcoal)	
1750–1850	Powicke Forge	Hirwaun	iron (coal)	Seven Years' War
	Llanishen	Merthyr	mineral lease (iron)	Merthyr Furnace
	Merthyr Furnace	Dowalis	iron (coal)	war
	Cyfarthfa	Merthyr	mineral lease (iron)	war
	Pennydarren	Merthyr	mineral lease (iron)	war
	Plymouth Works	Merthyr	mineral lease (iron)	war
	Cyfartha Works	Merthyr	cannon	US Revolution
	Cyfartha Works	Merthyr	puddlling process	wrought iron
	various (4)	various	tramroad canals	transport
	Pen-y-Darren Ironworks	Merthyr Tydfil	steam engine	hammer
	Richard Trevithick (1804)		locomotive	transport
1815-1850	various	various	iron,tinplate,copper,coal	
1727-	Robert Morris, others	Swansea	non-ferrous smelting	input story
				cheap coal near ore

Location

Product

Pen-y-darren engine replica, National Waterfront Museum, Swansea

Blast furnaces 1709 (coke), Blists Hill, Coalbrookdale, Shropshire

Long time background physics interest, bemusement over great divide

¹A note on the University of Utah: one of the most heterodox economic programs in the world; also the home of Fleischmann and Pons experiments

- Long time background physics interest, bemusement over great divide
- Inet surfing ("unified field theory" or "TOE") on ↑ led me to Myron's site at least seven years ago

¹A note on the University of Utah: one of the most heterodox economic programs in the world; also the home of Fleischmann and Pons experiments

- Long time background physics interest, bemusement over great divide
- Inet surfing ("unified field theory" or "TOE") on ↑ led me to Myron's site at least seven years ago
- The details on spacetime resonance energy (UFT87) completely hooked me as it fed my other passion . . .

¹A note on the University of Utah: one of the most heterodox economic programs in the world; also the home of Fleischmann and Pons experiments

- Long time background physics interest, bemusement over great divide
- Inet surfing ("unified field theory" or "TOE") on ↑ led me to Myron's site at least seven years ago
- The details on spacetime resonance energy (UFT87) completely hooked me as it fed my other passion . . .
- Instead of retirement, I decided to complete my Ph.D. in economics to pursue {energy, development, growth}.

¹A note on the University of Utah: one of the most heterodox economic programs in the world; also the home of Fleischmann and Pons experiments

- Long time background physics interest, bemusement over great divide
- Inet surfing ("unified field theory" or "TOE") on ↑ led me to Myron's site at least seven years ago
- The details on spacetime resonance energy (UFT87) completely hooked me as it fed my other passion . . .
- Instead of retirement, I decided to complete my Ph.D. in economics to pursue {energy, development, growth}. Along the way, I learned to "surrender" to the maths

¹A note on the University of Utah: one of the most heterodox economic programs in the world; also the home of Fleischmann and Pons experiments

- Long time background physics interest, bemusement over great divide
- Inet surfing ("unified field theory" or "TOE") on ↑ led me to Myron's site at least seven years ago
- The details on spacetime resonance energy (UFT87) completely hooked me as it fed my other passion . . .
- Instead of retirement, I decided to complete my Ph.D. in economics to pursue {energy, development, growth}. Along the way, I learned to "surrender" to the maths
- Last year I "came out of the heterodox closet" by writing Myron on cold fusion; I am humbled by the response and truly feel I am on the sidelines of a revolution

¹A note on the University of Utah: one of the most heterodox economic programs in the world; also the home of Fleischmann and Pons experiments

main

- Long time background physics interest, bemusement over great divide
- Inet surfing ("unified field theory" or "TOE") on ↑ led me to Myron's site at least seven years ago
- The details on spacetime resonance energy (UFT87) completely hooked me as it fed my other passion . . .
- Instead of retirement, I decided to complete my Ph.D. in economics to pursue {energy, development, growth}. Along the way, I learned to "surrender" to the maths
- Last year I "came out of the heterodox closet" by writing Myron on cold fusion; I am humbled by the response and truly feel I am on the sidelines of a revolution
- So, onto the importance of energy in economic systems: ¹

¹A note on the University of Utah: one of the most heterodox economic programs in the world; also the home of Fleischmann and Pons experiments

English Industrial Revolution, 1590 - 1876

- Modern economic growth
- Unconstrained quantity of fossil carbon energy an energy revolution (in fact two!) led by a demand revolution
- Little statistical space for institutional or cultural events except to explain structural breaks

Taxonomy of EIR explanations

Label	Examples
English exceptionalists	Landes (1969), McCloskey (2010), Mokyr (1992,2010)
Partial culturalists	Cipolla (1966), Pomeranz (2001), Allen (2009)
Primarily energetic	Cottrell (1955), Wrigley (1988,2010), Malanima (2010), Nef (1932)
Thermodynamicists	Georgescu-Roegen (1975), Ayres (2003), Garrett (2009)

Author/time-span series of energy consumption, GDP, and population

English real gross domestic product, levels and per-capita

English real gross domestic product, log levels and log per-capita

Structural break comparison

Coal and wood energy sources Source: Pearson & Fouquet

Energy consumption vs. standarized GDP

Scatterplot of energy consumption vs. GDP

No "Solow" residual

Granger tests of energy/GDP dynamics

Era	Energy ~ GDP Pr(>F)	GDP ~ Energy Pr(>F)	AS/AD regime
1300 – 1500	0.0106	0.0003	EMP ² , Black Death:
			increasing wages,
			family income
1500 – 1600	0.1939	0.6126	Positive demand shock
1600 – 1750	0.3529	0.5185	Energy supply constraint
1750 – 1873	0.0024	0.1100	Positive supply shock:
			"virtuous" macro
			feedback cycle
1300 – 1873	0.0002	0.0361	Total study period

²European marriage pattern (Hajnal)

Energy/GDP era two AD - AS, 1500 - 1600

Aggregate Supply - Aggregate Demand Four energy/GDP regimes

Energy/GDP era one AD - AS 1300 - 1500

Desaguliers manuscript

rection P p, and a Quantity of the property of the property of the point at P. This may be done 15 or 16 times in a be lifted up, and run out at P. This may be done 15 or 16 times in a Minute, because each Man would pull down but 30 Pounds at a time, after the manner that People ring Bells. But as no Time is to be lost, lest the Mine be overshow'd by the Springs below, there must be 100 more the Mine be overshow'd by the Springs below, there must be 15 more than the property of the propert

468

FIRE-ENGINE.

Left XII that Thought must be laid aside. We'll consider therefore what can be done by Horses. As an Horse is equal to five Men, we must work 20. Horses at a time to raise the Water required; and as Horses must be reliev'd even more than Men, about 50 Horses must be kept to carry on this Work constantly, and bring down the End of the Beam b, 16 times in a Minute, and make the number of Strokes required in the Pump, the Weight of whose Rod after every Stroke will bring down the End b 2, by drawing along the Tangent i H. It is plain to any body, that tho' the Horses may be had cheaper than Men, yet that will be a very expensive way. For the next Contrivance, we'll suppose a Philosopher to come, and find a means to bring down the End of the Beam, without Men or Horses, in this manner. To the Chain H L he fixes a

Real wage to energy ratios Source: Robert Allen (2009)

Microeconomic theory

$$\frac{\text{Marginal Revenue Product}_{\text{organic energy joule}}}{\text{Price}_{\text{organic energy joule}}} = \frac{\text{Marginal Revenue Product}_{\text{fossil energy joule}}}{\text{Price}_{\text{fossil energy joule}}}$$

English wood energy supply constraint

The role of AIAS in future economic systems

 There is no (economic) activity without energy input, it is the only non-substitutable input

- There is no (economic) activity without energy input, it is the only non-substitutable input
- Spacetime energy, essentially unlimited and free, will propel us into a new economic regime

- There is no (economic) activity without energy input, it is the only non-substitutable input
- Spacetime energy, essentially unlimited and free, will propel us into a new economic regime
- Andrea Rossi may be able to commercialize LENR without theoretical support, but such support will affect the speed of acceptance

- There is no (economic) activity without energy input, it is the only non-substitutable input
- Spacetime energy, essentially unlimited and free, will propel us into a new economic regime
- Andrea Rossi may be able to commercialize LENR without theoretical support, but such support will affect the speed of acceptance
- At the moment, I am trying to be the economic historian who best explains the EIR, on my way to being the economist of space-energy economics

- There is no (economic) activity without energy input, it is the only non-substitutable input
- Spacetime energy, essentially unlimited and free, will propel us into a new economic regime
- Andrea Rossi may be able to commercialize LENR without theoretical support, but such support will affect the speed of acceptance
- At the moment, I am trying to be the economic historian who best explains the EIR, on my way to being the economist of space-energy economics
- What can I do to help?

Figure: Standardized English energy intensity of GDP

Figure: Log of GDP, with structural breaks

Figure: Log of population, with structural breaks

Data Sources

Year range	Geography	Source
1300 – 1873	England/Wales	Roger Fouquet (2008)
1300 – 1700	England	Graeme Snooks (1994)
1741 – 1873	England/Wales	Lawrence Officer (2009)
1300 – 1540	England	Graeme Snooks (1994)
1541 – 1800	England	B. R. Mitchell (1988)
1801 – 1873	England/Wales	B. R. Mitchell (1988)
	1300 - 1700 1741 - 1873 1300 - 1540 1541 - 1800	1300 – 1873 England/Wales 1300 – 1700 England 1741 – 1873 England/Wales 1300 – 1540 England 1541 – 1800 England

Table: growth rates by century

Year	1300	1400	1500	1600	1700	1801	1873	Total
GDP Million								
2005 GBP	3114.7541	815.1288	994.4571	6031.953	8361.5911	18110	102811	
Century-over-century								
rate of growth		-0.738	0.220	5.066	0.386	1.166	4.677	32.008
Compounded annual								
rate of growth		-0.013	0.002	0.018	0.003	0.008	0.024	0.006
Energy consumption	1.7	1	1.3	2.2	3.6	11.6	66.1	
Century-over-century								
rate of growth		-0.412	0.300	0.692	0.636	2.222	4.698	37.882
Compounded annual								
rate of growth		-0.005	0.0026	0.005	0.005	0.012	0.024	0.006
Per-capita GDP								
2005 GBP	542	329	421	1,484	1,663	1,999	4,392	
Century-over-century								
rate of growth		-0.393	0.282	2.521	0.121	0.202	1.198	7.108
Compounded annual								
rate of growth		-0.005	0.002	0.013	0.001	0.002	0.011	0.004

Table: Energy and GDP fit tests

Test	Statistic	p-value
Pearson's correlation	0.998	
Paired t-test	5.592	4.991e-07
Chi-square	2864	0.0004998