Izhikevhic Approximate Architecture

Constants

- Limiting the implementation to only 4 patterns* simplifies constant multiplication
- Constant multiplication can be realized using shifts and adds/ approximate adds
- A table for the constants, their approximations, and their representation as

*Not all patterns have been tested, this architecture may be capable of producing all of them with some tweaks

Constant	Pattern A	PatternC	PatternE	PatternF
a	0.02	0.02	0.02	0.01
b	0.2	0.2	0.2	0.2
C	-65	-50	-55	-55
d	6	2	4	4
tau	0.25	0.25	0.25	0.25

	Approximation	Representation
a (0.02)	0.0195	2^-6 + 2^-8
a (0.01)	0.0117	2^-7 + 2^-9
b (0.2)	0.2188	2^-2 - 2^-5
tau	0.25	2^-2

Note on patternC

- There was an additional spike that was not take into account when calculating MERRt
- This is because that this spike does not correspond to another spike in the exact pattern

$$ERRt = \left| \frac{\Delta t_p - \Delta t_o}{\Delta t_o} \right| \times 100, where \Delta t = t_{apex2} - t_{apex1} (16)$$

$$MERRt = \frac{1}{n} \sum_{i}^{n} ERRt_i$$
(17)

Where Δt_p and Δt_o represent the time intervals between two consecutive spikes in approximated and original models respectively.

Note on pattern E

- Approximate pattern E is faster than the exact pattern
- To calculate MERRt and RSEE the last spike was omitted by limiting simulation time from 160 ms to 140 ms

V equation implementation

- 4X 18 bit adder
- 1X 16 bit subtractor
- 1X 16 bit adder
- 1X 9 bit adder
- 1X ETM-8 multiplier
- 1X 16bit approximation unit
- 4X 14 bit approximation unit

u equation implementation

- 2 16 bit subtractors
- 2 16 bit adders

Spike Detection Circuit

- 1 16 bit Adder
- 2 Muxes with 16bit bit width
- 2 16 bit registers
- 1 Constant Comparator (implementation to be realized using dc compiler)

