```
In [1]: import pandas as pd
   import sqlite3
   import matplotlib.pyplot as plt
   %matplotlib inline
```

In [2]: #Need to create a connection to sqlite3
 #Read sqlite tables with Pandas as a dataframe
 con = sqlite3.connect("/Users/josezavala/Mock_Restaurants_Sales.db")
 df = pd.read_sql_query("SELECT * FROM BWL_2018_Sales_Data", con)

```
In [3]: print(df)
```

	Year	Period	Name	Transactions	Price	Consumer spend
0	2018	1	BWL	8934	6.8	60751.2
1	2018	2	BWL	7998	6.8	54386.4
2	2018	3	BWL	7568	6.8	51462.4
3	2018	4	BWL	6879	6.8	46777.2
_						
4	2018	5	BWL	7821	6.8	53182.8
5	2018	6	BWL	8324	6.8	56603.2
6	2018	7	${\tt BWL}$	8478	6.8	57650.4
7	2018	8	${\tt BWL}$	8814	6.8	59935.2
8	2018	9	${\tt BWL}$	8631	6.8	58690.8
9	2018	10	${\tt BWL}$	7998	6.8	54386.4
10	2018	11	${\tt BWL}$	8213	6.8	55848.4
11	2018	12	${\tt BWL}$	9032	6.8	61417.6
12	2018	13	${\tt BWL}$	9213	6.8	62648.4

In [4]: df_2018_consumer_spend = df['Consumer_spend'].mean()
print(df_2018_consumer_spend)

56441.56923076923

In [5]: pd.read_sql_query('SELECT * FROM Items', con)

Out[5]:

	Abbreviation	Name	Price
0	BWL	Bowl	6.80
1	BWL_PR	Bowl_Premium	8.05
2	PL	Plate	8.30
3	PL_PR	Plate_Premium	9.55

In [6]: pd.read_sql_query('SELECT * FROM BWL_2018_Sales_Data UNION SELECT * FROM BW

Out[6]:

	Year	Period	Name	Transactions	Price	Consumer_spend
0	2018	1	BWL	8934	6.8	60751.2
1	2018	2	BWL	7998	6.8	54386.4
2	2018	3	BWL	7568	6.8	51462.4
3	2018	4	BWL	6879	6.8	46777.2
4	2018	5	BWL	7821	6.8	53182.8
5	2018	6	BWL	8324	6.8	56603.2
6	2018	7	BWL	8478	6.8	57650.4
7	2018	8	BWL	8814	6.8	59935.2
8	2018	9	BWL	8631	6.8	58690.8
9	2018	10	BWL	7998	6.8	54386.4
10	2018	11	BWL	8213	6.8	55848.4
11	2018	12	BWL	9032	6.8	61417.6
12	2018	13	BWL	9213	6.8	62648.4
13	2019	1	BWL	9724	6.8	66123.2
14	2019	2	BWL	8132	6.8	55297.6
15	2019	3	BWL	7981	6.8	54270.8
16	2019	4	BWL	6894	6.8	46879.2
17	2019	5	BWL	8345	6.8	56746.0
18	2019	6	BWL	8678	6.8	59010.4
19	2019	7	BWL	8245	6.8	56066.0
20	2019	8	BWL	9199	6.8	62553.2
21	2019	9	BWL	8832	6.8	60057.6
22	2019	10	BWL	8375	6.8	56950.0
23	2019	11	BWL	8627	6.8	58663.6
24	2019	12	BWL	9450	6.8	64260.0
25	2019	13	BWL	9678	6.8	65810.4

```
In [3]: MR_Sales = pd.read_sql_query('SELECT * FROM BWL_2018 Sales_Data_UNION_SELEC
         print(MR Sales)
                     Period
                              Name
                                     Transactions
                                                    Price
                                                           Consumer spend
               Year
         0
               2018
                          1
                               BWL
                                             8934
                                                     6.80
                                                                  60751.20
         1
               2018
                          2
                               BWL
                                              7998
                                                     6.80
                                                                  54386.40
         2
                          3
               2018
                               BWL
                                             7568
                                                     6.80
                                                                  51462.40
         3
               2018
                          4
                               BWL
                                              6879
                                                     6.80
                                                                  46777.20
                          5
         4
               2018
                               BWL
                                             7821
                                                     6.80
                                                                  53182.80
                . . .
                                . . .
                                               . . .
                                                      . . .
         99
               2019
                          9
                             PL_PR
                                             9674
                                                     9.55
                                                                  92386.70
         100
               2019
                             PL PR
                                             9879
                                                     9.55
                                                                  94344.45
                         10
         101
               2019
                         11
                             PL PR
                                             9904
                                                     9.55
                                                                  94583.20
                                                                  95156.20
         102
               2019
                         12
                             PL PR
                                             9964
                                                     9.55
         103
               2019
                         13
                             PL_PR
                                                     9.55
                                                                  97839.75
                                            10245
         [104 rows x 6 columns]
 In [4]: #I just finished the Pandas course from Kaggle and I will be doing the exer
 In [8]: #Select the 'Consumer spend' column from 'MR Sales' and assign to variable
         revenue = MR Sales['Consumer spend']
         print(revenue)
         type(revenue)
         0
                 60751.20
         1
                 54386.40
         2
                 51462.40
         3
                 46777.20
                 53182.80
                   . . .
         99
                 92386.70
                 94344.45
         100
         101
                 94583.20
         102
                 95156.20
         103
                 97839.75
         Name: Consumer spend, Length: 104, dtype: float64
 Out[8]: pandas.core.series.Series
         #Select the first value from the 'Consumer spend' column of `MR Sales`, ass
In [10]:
         first revenue = MR Sales['Consumer spend'][0]
         print(first revenue)
```

60751.2

Year 2018
Period 1
Name BWL
Transactions 8934
Price 6.8
Consumer_spend 60751.2
Name: 0, dtype: object

In [17]: #Select the first 10 values from the 'Consumer_spend' column in 'MR_Sales' MR_Sales.Consumer_spend.iloc[:10]

Out[17]: 0 60751.2

1 54386.4

2 51462.4

3 46777.2

4 53182.8

5 56603.2

6 57650.4

7 59935.2

8 58690.8 9 54386.4

Name: Consumer_spend, dtype: float64

In [19]: #Select the records with index labels 1, 2, 3, 5, and 8
#iloc is only numeric index and columns
MR_Sales.iloc[[1, 2, 3, 5, 8], :]

Out[19]:

	Year	Period	Name	Transactions	Price	Consumer_spend
1	2018	2	BWL	7998	6.8	54386.4
2	2018	3	BWL	7568	6.8	51462.4
3	2018	4	BWL	6879	6.8	46777.2
5	2018	6	BWL	8324	6.8	56603.2
8	2018	9	BWL	8631	6.8	58690.8

In [26]: #Select the Year, Name, Transactions, and Consumer_spend columns of the reco #loc is for numeric and string MR_Sales.loc[[0,1,10,100], ['Year', 'Name', 'Transactions', 'Consumer_spend'

Out[26]:

	Year	Name	Transactions	Consumer_spend
0	2018	BWL	8934	60751.20
1	2018	BWL	7998	54386.40
10	2018	BWL	8213	55848.40
100	2019	PL_PR	9879	94344.45

In [30]: #Select the Name and Transactions columns of the first 100 records
MR_Sales.loc[:99, ['Name', 'Transactions']]

Out[30]:

	Name	Transactions
0	BWL	8934
1	BWL	7998
2	BWL	7568
3	BWL	6879
4	BWL	7821
95	PL_PR	8890
96	PL_PR	8735
97	PL_PR	9342
98	PL_PR	9579
99	PL_PR	9674

100 rows × 2 columns

In [61]: #Select sales for 'Bowls'
MR_Sales.loc[MR_Sales.Name == 'BWL']

Out[61]:

	Year	Period	Name	Transactions	Price	Consumer_spend
0	2018	1	BWL	8934	6.8	60751.2
1	2018	2	BWL	7998	6.8	54386.4
2	2018	3	BWL	7568	6.8	51462.4
3	2018	4	BWL	6879	6.8	46777.2
4	2018	5	BWL	7821	6.8	53182.8
5	2018	6	BWL	8324	6.8	56603.2
6	2018	7	BWL	8478	6.8	57650.4
7	2018	8	BWL	8814	6.8	59935.2
8	2018	9	BWL	8631	6.8	58690.8
9	2018	10	BWL	7998	6.8	54386.4
10	2018	11	BWL	8213	6.8	55848.4
11	2018	12	BWL	9032	6.8	61417.6
12	2018	13	BWL	9213	6.8	62648.4
13	2019	1	BWL	9724	6.8	66123.2
14	2019	2	BWL	8132	6.8	55297.6
15	2019	3	BWL	7981	6.8	54270.8
16	2019	4	BWL	6894	6.8	46879.2
17	2019	5	BWL	8345	6.8	56746.0
18	2019	6	BWL	8678	6.8	59010.4
19	2019	7	BWL	8245	6.8	56066.0
20	2019	8	BWL	9199	6.8	62553.2
21	2019	9	BWL	8832	6.8	60057.6
22	2019	10	BWL	8375	6.8	56950.0
23	2019	11	BWL	8627	6.8	58663.6
24	2019	12	BWL	9450	6.8	64260.0
25	2019	13	BWL	9678	6.8	65810.4

In [62]: #Select sales for 'Bwl' and 'BWL_PR' from the Year 2018 with Transaction ov
MR_Sales.loc[MR_Sales.Name.isin(['BWL', 'BWL_PR']) & (MR_Sales.Year == 2018

Out[62]:

	Year	Period	Name	Transactions	Price	Consumer_spend
0	2018	1	BWL	8934	6.80	60751.20
1	2018	2	BWL	7998	6.80	54386.40
2	2018	3	BWL	7568	6.80	51462.40
4	2018	5	BWL	7821	6.80	53182.80
5	2018	6	BWL	8324	6.80	56603.20
6	2018	7	BWL	8478	6.80	57650.40
7	2018	8	BWL	8814	6.80	59935.20
8	2018	9	BWL	8631	6.80	58690.80
9	2018	10	BWL	7998	6.80	54386.40
10	2018	11	BWL	8213	6.80	55848.40
11	2018	12	BWL	9032	6.80	61417.60
12	2018	13	BWL	9213	6.80	62648.40
31	2018	6	BWL_PR	7103	8.05	57179.15
32	2018	7	BWL_PR	7293	8.05	58708.65
33	2018	8	BWL_PR	7673	8.05	61767.65
34	2018	9	BWL_PR	7132	8.05	57412.60
36	2018	11	BWL_PR	7434	8.05	59842.70
37	2018	12	BWL_PR	7521	8.05	60544.05
38	2018	13	BWL_PR	7741	8.05	62315.05

In [60]: #Select sales from PL_PR with Transactions above 10,000
MR_Sales.loc[MR_Sales.Name.isin(['PL_PR']) & (MR_Sales.Transactions >= 1000

Out[60]:

_		Year	Period	Name	Transactions	Price	Consumer_spend
-	90	2018	13	PL_PR	10032	9.55	95805.60
	91	2019	1	PL_PR	10126	9.55	96703.30
	103	2019	13	PL_PR	10245	9.55	97839.75

In [70]: #Compare sales for 'BWL' from 2018 to 2019 with transactions over 8,000
MR_Sales.loc[MR_Sales.Name.isin(['BWL']) & (MR_Sales.Transactions >= 8000)]

Out[70]:

	Year	Period	Name	Transactions	Price	Consumer_spend
0	2018	1	BWL	8934	6.8	60751.2
5	2018	6	BWL	8324	6.8	56603.2
6	2018	7	BWL	8478	6.8	57650.4
7	2018	8	BWL	8814	6.8	59935.2
8	2018	9	BWL	8631	6.8	58690.8
10	2018	11	BWL	8213	6.8	55848.4
11	2018	12	BWL	9032	6.8	61417.6
12	2018	13	BWL	9213	6.8	62648.4
13	2019	1	BWL	9724	6.8	66123.2
14	2019	2	BWL	8132	6.8	55297.6
17	2019	5	BWL	8345	6.8	56746.0
18	2019	6	BWL	8678	6.8	59010.4
19	2019	7	BWL	8245	6.8	56066.0
20	2019	8	BWL	9199	6.8	62553.2
21	2019	9	BWL	8832	6.8	60057.6
22	2019	10	BWL	8375	6.8	56950.0
23	2019	11	BWL	8627	6.8	58663.6
24	2019	12	BWL	9450	6.8	64260.0
25	2019	13	BWL	9678	6.8	65810.4

```
In [4]: #What is the median of the Consumer_spend column
MR_Sales.Consumer_spend.median()
```

Out[4]: 72703.65

```
In [5]: #What items are represented in the dataset?
MR_Sales.Name.unique()
```

Out[5]: array(['BWL', 'BWL_PR', 'PL', 'PL_PR'], dtype=object)

```
In [7]: #How often does each item appear in the dataset?
         MR Sales.Name.value counts()
Out[7]: PL PR
                    26
         BWL
                    26
         BWL PR
                    26
         PL
                   26
         Name: Name, dtype: int64
In [10]: #Create variable centered_price containing a version of the Consumer_spend
         centered consumer spend = MR Sales.Consumer spend - MR Sales.Consumer spend
         print(centered consumer spend)
         0
               -15499.432692
         1
               -21864.232692
         2
               -24788.232692
         3
               -29473.432692
               -23067.832692
                     . . .
         99
                16136.067308
         100
                18093.817308
         101
                18332.567308
         102
                18905.567308
         103
                21589.117308
         Name: Consumer_spend, Length: 104, dtype: float64
In [17]: #What is the most expensive/inexpensive item
         expensive item = MR Sales.loc[MR Sales.Price.idxmax(), 'Name']
         inexpensive item = MR Sales.loc[MR Sales.Price.idxmin(), 'Name']
         print(expensive item)
         print(inexpensive item)
         PL PR
         BWL
In [ ]:
```