Coding Test (RA/JRF) - Cross-dataset Applications

Image Analysis & Computer Vision Lab, EE, IISc Bangalore

¹May, 2021

Please include appropriate comments in the script and share your implementation (Py-Torch / Keras) through a GitHub repository.

Question

Let's consider the problem of cross-domain adaptation of a classification model, which consists of a feature-extractor \mathcal{F} (ResNet-18, pre-trained with ImageNet data) and a classifier \mathcal{C} (Linear layer with relevant number of output nodes, initialized randomly), which can classify C-number of object categories.

You may consider the PACS-dataset for this experiment. It contains samples of 7-object classes (C=7) from 4-different domains (Image, Art-painting, Sketch and Carton). This dataset can be accessed here. Consider the RGB images as the *Source*-domain samples $\mathcal{S}=\{\mathbf{x},y\}$ for this problem and the *Target*-domain consists of the unlabeled samples from Sketch-domain, $\mathcal{T}=\{\mathbf{x}\}$.

- 1. 10% of the Source samples are to be used as the validation set to decide on the best set of model-parameters during training. The test set should contain all the samples from the Target-domain. Both the labeled Source data and unlabeled Target data can be used during training. Please implement the dataloader with transformations required for the input samples during training and evaluation.
- 2. Please incorporate the following loss functions:
 - (a) standard cross-entropy loss computed on the Labeled Source dataset as $\mathcal{L}_{CE}(\mathbf{x}, y)$, for $\mathbf{x} \in \mathcal{S}$.
 - (b) weighted cross-entropy loss function computed on the unlabeled Target data, satisfying the condition mentioned here. Let's say the soft-max output for class-c of an input sample $\mathbf{x} \in \mathcal{T}$ is $\sigma_c(\mathbf{x})$. Then, compute:

$$\sigma_{max}(\mathbf{x}) = \max_{c \in C} \sigma_c(\mathbf{x})$$

$$y_{pred}(\mathbf{x}) = \arg\max_{c \in C} \sigma_c(\mathbf{x})$$

$$\mathcal{L}_{weighted-CE}(\mathbf{x}) = \sigma_{max}(\mathbf{x}).\mathcal{L}_{CE}(\mathbf{x}, y_{pred}(\mathbf{x})), \text{ if } \sigma_{max}(\mathbf{x}) \geq 0.95$$

$$= 0. \text{ otherwise}$$

- (c) entropy loss computed on the unlabeled Target data as $\mathcal{H}(\mathbf{x})$, for $\mathbf{x} \in \mathcal{T}$.
- 3. The model should be optimized by jointly minimizing the total loss $\mathcal{L} = \lambda_1 \mathcal{L}_{CE} + \lambda_2 \mathcal{L}_{weighted-CE} + \lambda_3 \mathcal{H}$, where λ_j 's, j = 1, 2, 3 are the hyper-parameters, and can be obtained according to the classification accuracy on validation set.
- 4. Please generate a graph tracking the status of individual loss components as the training progresses.
- 5. Please report the classification accuracy on the test set.