4. Prädikatenlogik

4.1 Formeln der Prädikatenlogik (1. Stufe)

• Erweiterungen gegenüber der Aussagenlogik:

I Menge von **Individuen** (**Individuenbereich**)

K Menge von Symbolen für die Individuen

V Menge von **Variablen**

F Menge von Symbolen für **Operatoren** in *I*, d.h. es gibt für jedes dieser Symbole *f* eine natürliche Zahl *n* und eine Abbildung $f: I^n \to I$.

P Menge von Symbolen für die **Prädikate** in *I*, d.h. für jedes dieser Symbole *p* gibt es eine natürliche Zahl *n* und einen Abbildung $p: I^n \to \{0,1\}$.

Eine Variable steht für ein Individuum.

Es gibt auch **Quantoren** (s. u.)

• Basisterme

- (1) Jede Variable und jede Konstante $k \in K$ ist ein Basisterm.
- (2) Sind $z_1, z_2, \dots z_n$ Basisterme und ein f ein Operationssymbol mit der zugeordneten natürlichen Zahl n, dann ist die Zeichenkette $f(z_1, z_2, \dots z_n)$ auch ein Basisterm.
- (3) Eine Zeichenkette ist nur dann ein Basisterm, wenn sie dies auf grund von (1) oder (2) ist.

• Formeln der Prädikatenlogik

- (1) Ist p ein Symbol für ein Prädikat und n die zugeordnete natürliche Zahl und $z_1, z_2, \dots z_n$ sind Basisterme, dann ist $p(z_1, z_2, \dots z_n)$ eine prädikatenlogische Formel.
- (2) Sind z_1, z_2 Basisterme, so ist $z_1 = z_2$ eine prädikatenlogische Formel.
- (3) Sind x und y prädikatenlogische Formeln, dann sind es auch die Zeichenketten $\neg(x), (x \land y), (x \lor y), (x \to y), (x \leftrightarrow y)$.
- (4) Sei x eine prädikatenlogische Formel und v eine Variable. Falls in x keine der Teilzeichenketten $\exists v$ und $\forall v$ vorkommt, dann sind die Zeichenketten $\exists v$ und $\forall v$ (x) prädikatenlogische Formeln.
- (5) Eine Zeichenkette ist nur dann eine prädikatenlogische Formel, wenn sie dies auf grund von (1), (2), (3) oder (4) ist.

Bei der **Schreibweise** sind die gleichen Vereinfachungen bzw. Abkürzungen bzw. Prioritäten wie bei den aussagenlogischen Formeln zulässig und üblich.

4.2 Eigenschaften prädikatenlogischer Formeln

• Bezeichnungen der Quantoren

∀ Allquantor, Generalisator

∃ Existenzquantor, Partikularisator

• Belegung, Erfüllbarkeit und Allgemeingültigkeit (Identität, Tautologie) sind analog zur Aussagenlogik definiert.

• Zusätzlich:

- (1) Eine Formel der Gestalt $\forall x(H)$ heißt genau dann allgemeingültig, wenn H allgemeingültig ist.
- (2) Eine Formel der Gestalt $\exists x(H)$ heißt genau dann allgemeingültig, wenn es für x ein Individuum gibt, so dass H' allgemeingültig ist. H' entsteht aus H, indem an allen Stellen x durch das betreffende Individuum ersetzt wird.

• Sprechweisen:

 $\exists a(H)$ es gibt/existiert ein (Inividuum) a, so daß H gilt

es gibt/existiert mindestens ein Individuum a, so dass H gilt

 $\overline{\exists a(H)}$ es gibt kein (Individuum) a, so dass H gilt

für kein (Individuum) a gilt H

 $\forall a(H)$ für alle (Individuen) a gilt H

für jedes (Individuum) a gilt H

 $\overline{\forall a(H)}$ nicht für alle (Individuen) a gilt H

nicht für jedes (Individuum) a gilt H

• Gebunden und frei vorkommende Variable

Falls in der (Teil-)Formel H eine Variable x vorkommt, dann heißt sie in den Formeln $\forall x(H)$ und $\exists x(H)$ **gebunden vorkommend**. Eine nicht in einer Formel der Gestalt $\forall x(H)$ oder $\exists x(H)$ gebunden vorkommende Variable heißt innerhalb dieser Formel **frei vorkommend**.

Bsp.: $\exists x (x^2 + ax + b = 0)$

x gebunden vorkommend

a frei vorkommend

b frei vorkommend

4.3 Ableitregeln für allgemeingültige Formeln

• Die **Einsetzungsregel** der Aussagenlogik gilt auch in der Prädikatenlogik, allerdings mit einer Einschränkung:

Falls eine Variable gebunden vorkommt, dann darf für sie höchsten eine Variable eingesetzt werden, die in der Formel **überhaupt noch nicht** vorkommt.

- Die Ersetzungsregel der Aussagenlogik gilt auch in der Prädikatenlogik
- Weitere spezielle Schlussregeln:

(1) Abtrennregel

Wenn die Formeln H und $H \to G$ allgemeingültig sind, dann ist es auch die Formel G.

(2) Vordere Generalisierung

Wenn die Formel $H \to G$ allgmeingültig ist, dann ist auch die Formel $(\forall x(H)) \to G$ eine allgemeingültige Formel.

(3) Hintere Partikularisierung

Wenn die Formel $H \to G$ allgemeingültig ist, dann ist auch die Formel $H \to (\exists x(G))$ eine allgemeingültige Formel.

4.4 Rechenregeln /Identitäten

Vor.: In H_1 , H_2 , H sind die Variablen x und y höchstens ohne Quantoren enthalten. H*enthalte die Variable x nicht.

• Einfache allgemeingültige Ausdrücke:

$$H(x) \to H(x)$$

$$\forall x \Big(H(x) \Big) \to \exists x \Big(H(x) \Big)$$

$$\forall x H^* = H^*$$

$$\exists x H^* = H^*$$

Quantorenvertauschung:

$$\forall x \forall y \ H = \forall y \forall x \ H$$
$$\exists x \exists y \ H = \exists y \exists x \ H$$
$$\exists x \forall y \ H \rightarrow \forall y \exists x \ H$$

• Quantorenverteilung:

$$\forall x (H_1 \wedge H_2) = (\forall x H)_1 \wedge (\forall x H_2)$$
$$(\forall x H_1) \vee (\forall x H_2) \rightarrow \forall x (H_1 \vee H_2)$$
$$\exists x (H_1 \vee H_2) = (\exists x H_1) \vee (\exists x H_2)$$
$$\exists x (H_1 \wedge H_2) \rightarrow (\exists x H_1) \wedge (\exists x H_2)$$

DeMorgan:

$$\exists x \, \overline{H} = \overline{\forall x \, H}$$
$$\forall x \, \overline{H} = \overline{\exists x \, H}$$

• Quantorenverschiebung:

$$\forall x (H \wedge H^*) = (\forall x H) \wedge H^*$$

$$\forall x (H \vee H^*) = (\forall x H) \vee H^*$$

$$\forall x (H \to H^*) = (\exists x H) \to H^*$$

$$\forall x (H^* \to H) = H^* \to (\forall x H)$$

$$\exists x (H \wedge H^*) = (\exists x H) \wedge H^*$$

$$\exists x (H \vee H^*) = (\exists x H) \vee H^*$$

$$\exists x (H \to H^*) = (\forall x H) \to H^*$$

$$\exists x (H^* \to H) = H^* \to (\exists x H)$$

• Auflösen der Quantoren bei endlichen Individuenbereichen:

Seien $I = \{x_1, x_2, \cdots n_n\}$ der Individuenbereich (n>0) und H eine Formel. Dann gelten:

$$\forall x(H) = H(x_1) \land H(x_2) \land \cdots H(x_n) = \bigwedge_{i=1}^n H(x_i) \text{ und}$$

$$\exists x(H) = H(x_1) \lor H(x_2) \lor \cdots H(x_n) = \bigvee_{i=1}^n H(x_i)$$

Auflösen der Quantoren bei Einschränkung des Individuenbereiches auf die Wahrheitswerte:

Seien $I = \{0,1\}$ der Individuenbereich (n>0) und H eine Formel. Dann gelten:

$$\forall x(H) = H(0) \land H(1)$$
 und

$$\exists x(H) = H(0) \lor H(1)$$

Man beachte:

Bei Anwendungen möchte man sich oft nicht auf den gesamten Individuenbereich I, sondern nur auf eine Teilmenge $M \subseteq I$ beziehen. Deshalb benutzt man in der Literatur folgende Schreibweisen:

$$\forall x \in M(H)$$
 bzw. $\forall_{x \in M}(H)$ anstelle von $\forall x (x \in M \to (H))$
 $\exists x \in M(H)$ bzw. $\exists_{x \in M}(H)$ anstelle von $\exists x (x \in M \land (H))$

4.5 Weitere Quantoren

In der Literatur werden weitere prädikatenlogische Quantoren definiert und verwendet (Bspe.: $\exists ! x(H), \exists ! ! x(H), tx(H)$).

4.6 Prädikatenlogik 2. Stufe

Die Prädikatenlogik 1.Stufe wird wie folgt erweitert:

Variable stehen nicht nur für Individuen sondern auch für Prädikate und Operatoren.

Bsp.:
$$\forall p (\exists x \forall y (p(x,y) \rightarrow \forall y \exists x (p(x,y)))$$