ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФИЗТЕХ-ШКОЛА РАДИОТЕХНИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ

Работа 3.4.1. Диа- и парамагнетики

Работу выполнил:

Долгов Александр Алексеевич, группа Б01-106

Долгопрудный, 2022

Содержание

1	Аннотация	3
2	Теоретические сведения	3
3	Экспериментальная установка	4
4	Приборы и инструментальные погрешности	5
5	Измерения и обработка их результатов	6
	5.1 Калибровка электромагнита	6
	5.2 Определение магнитной восприимчивости	6
6	Вывод	7
7	Приложения	8
	7.1 Таблицы	8
	7.2 Графики	ç

1 Аннотация

В данной работе измеряется магнитная восприимчивость диа- и парамагнетиков методом Γ юи.

2 Теоретические сведения

Магнитная восприимчивость тел может быть определена путём измерения сил, которые действуют на тела в магнитном поле. Существуют два классических метода таких измерений: метод Фарадея и метод Гюи. В методе Фарадея исследуемые образцы, имеющие форму маленьких шариков, помещаются в область сильно неоднородного магнитного поля и измеряется сила, действующая на образец. В методе Гюи используется тонкий и длинный стержень, один из концов которого помещают в зазор электромагнита, а другой конец – вне зазора, где величиной магнитного поля можно пренебречь. В данной работе использовался метод Гюи.

Найдём выражение для магнитной силы, действующей на образец, помещённый в зазор электромагнита. Пусть площадь образца равна S, его магнитная проницаемость — μ , а индукция поля в зазоре равна B.

Расчёты проведём энергетическим методом. Сила, действующая на образец со стороны магнитного поля при постоянном токе в обмотке электромагнита может быть найдена по формуле:

$$F = \left(\frac{\partial W_{\rm m}}{\partial x}\right)_{\rm I},$$

где ось Ох направлена внутрь электромагнита. Магнитная энергия рассчитывается по формуле

$$W_{\rm m} = \frac{1}{2} \iiint HB dV = \frac{1}{2\mu_0} \iiint \frac{B^2}{\mu} dV,$$

где интеграл распространён на всё пространство. При смещении образца магнитная энергия меняется только в области зазора (в объёме Sdx), а

Рисунок 1.

около верхнего конца стержня остаётся неизменной, поскольку магнитного поля там практически нет. Принимая поле внутри стержня равным измеренному нами полю в зазоре B, получим

$$\begin{split} dW_{m} &= dW_{m}^{o6p} + dW_{m}^{sasop} = \frac{1}{2\mu_{0}} \frac{B_{2}^{2}}{\mu} S dx - \frac{1}{2\mu_{0}} B_{3}^{2} S dx = \\ &= \frac{1}{2\mu_{0}} \mu B_{0}^{2} S dx - \frac{1}{2\mu_{0}} B_{0}^{2} S dx = \frac{\mu - 1}{2\mu_{0}} B_{0}^{2} S dx \end{split}$$

Следовательно, на образец действует сила (в проекции на ось Ох):

$$\boxed{\mathsf{F}_{\mathsf{x}} = \frac{\mathsf{\chi}}{2\mu_0}\mathsf{B}^2\mathsf{S}} \tag{1}$$

Направление этой силы зависит от знака χ : образцы из парамагнитных материалов ($\chi>0$) втягиваются в зазор электромагнита, а диамагнитные образцы ($\chi<0$) выталкиваются из него.

3 Экспериментальная установка

Схема установки изображена на Рисунке 1. Магнитное поле создаётся в зазоре электромагнита, питаемого постоянным током. Это поле можно считать однородным, поскольку диаметр полюсов электромагнита значительно превосходит ширину зазора.

Рисунок 1. Схема экспериментальной установки

Установка связи между индукцией магнитного поля в зазоре электромагнита и силой тока в его обмотках (градуировка электромагнита) производится при помощи милливеберметра или датчика эффекта Холла.

При измерениях образцы поочерёдно подвешиваются к аналитическим весам так, что один конец образца оказывается в зазоре электромагнита, а другой - вне зазора. При помощи этих весов определяется сила, действующая на образец со стороны магнитного поля.

4 Приборы и инструментальные погрешности

Амперметр:

Абсолютная погрешность: $\sigma_I = 0.005I + 0.02$, [I] = A

Милливеберметр:

Абсолютная погрешность: $\sigma_{\Phi} = 0.015\Phi + 0.02, \, [\Phi] = \,$ мВб

Весы:

Абсолютная погрешность: $\sigma_{\rm m}=0.5~{\rm Mr}$

Штангенциркуль:

Абсолютная погрешность: $\sigma_d = 0.05 \ \text{мм}$

5 Измерения и обработка их результатов

5.1 Калибровка электромагнита

Для калибровки электромагнита было проведено 16 измерений потока вектора магнитной индукции через катушку и тока, протекающего по ней. Поскольку поток прямо пропорционален B, то была найдена зависимость B(I). Результаты измерений приведены в Таблице 1. По этим данным также построен График 2. Поскольку теория предсказывает, что модуль магнитной индукции B прямо пропорционален току I, то точки на графике аппроксимировались прямой линией по методу χ -квадрат.

Пусть зависимость B(I) аппроксимируется прямой B=kI, тогда из метода χ -квадрат получаем, что:

$$k = (305 \pm 5) \frac{\text{MTA}}{A} \tag{2}$$

5.2 Определение магнитной восприимчивости

В зазор электромагнита подвешивалось 2 образца: из алюминия и из меди. Для каждого из этих образцов измерялись сила, действующая на него, и ток, текущий через катушки электромагнита. По измеренной силе тока с помощью формулы (2) находилась величина B^2 Погрешность величины B^2 вычислялась по формуле:

$$\sigma_{B^2} = 2B\sigma_{kI} = 2B\sqrt{\left(\frac{\sigma k}{k}\right)^2 + \left(\frac{\sigma I}{I}\right)^2}$$

Результаты измерений приведены в Таблице 2. По этим данным также построены График 2 (алюминий), График 3 (медь) и График 4 (оба материала на одном графике).

Экспериментальные зависимости были аппроксимированы прямыми по методу χ -квадрат. Пусть зависимость $|\Delta P|(B^2)$ задаётся уравнением $|\Delta P|=\tilde{k}B^2$, тогда получаем, что:

$$\tilde{k}_{Al} = (550 \pm 20) \frac{MKH}{T_{\Lambda}^2}$$
 (3)

$$\tilde{k}_{Cu} = (220 \pm 11) \frac{MKH}{T_{\Lambda}^2}$$
 (4)

Также были измерены диаметры образцов:

$$d_{Al} = d_{Cu} = (10.00 \pm 0.05)_{MM}$$

Из формулы (1) получаем способ вычисления магнитной восприимчивости:

$$\chi = \frac{2\mu_0}{S}\tilde{k}$$

Если выразить площадь сечения образцов, через их диаметры d, то получим формулу, пригодную для вычислений:

$$\chi = \frac{8\mu_0}{\pi} \frac{\tilde{k}}{d^2}$$
 (5)

Из формулы (5) ясно, что погрешность магнитной восприимчивости находится по формуле:

$$\sigma_{X} = \chi \sqrt{\left(\frac{\sigma_{\tilde{k}}}{\tilde{k}}\right)^{2} + 2\left(\frac{\sigma_{d}}{d}\right)^{2}}$$

Окончательно получаем:

$$\chi_{A1} = (176 \pm 7) \cdot 10^{-7}$$

$$\chi_{Cu} = (70 \pm 4) \cdot 10^{-7}$$

6 Вывод

7 Приложения

7.1 Таблицы

Таблица 1. Зависимость магнитного потока через катушку от тока в ней.

I, A	σ _I , A	Ф, мВб	σφ, мВб В, мТл		σ _В , мТл
0.23	0.02	0.50	0.01	69	1
0.44	0.02	1.00	0.02	139	2
0.57	0.02	1.20	0.02	167	3
0.71	0.02	1.60	0.02	222	3
0.86	0.02	1.90	0.03	264	4
1.02	0.03	2.30	0.03	319	5
1.23	0.03	2.75	0.04	382	6
1.37	0.03	3.05	0.05	424	6
1.51	0.03	3.40	0.05	472	7
1.65	0.03	3.70	0.06	514	8
1.84	0.03	4.05	0.06	563	8
1.96	0.03	4.30	0.06	597	9
2.12	2 0.03 4.60		0.07	639	10
2.29	0.03	4.90	0.07	681	10
2.38	2.38 0.03 5.10		0.08	708	11
2.41	2.41 0.03 5.15		0.08	715	11

Таблица 2. Зависимость силы, действующей на образец от индукции магнитного поля.

$ \Delta P $, мк H		$\sigma_{\Delta P}$, мкН	I, A	σ- Λ	B ² , Τλ ²	σ_{B^2} , $T\lambda^2$
Al	Cu	UΔP, MKII	1, A	$\sigma_{\rm I},{\rm A}$	D , IЛ	0B2, 1A
20	10	5	0.5	0.02	0.023	0.002
69	29		1.0	0.03	0.093	0.006
137	59		1.5	0.03	0.21	0.01
226	98		2.0	0.03	0.37	0.02
363	147		2.5	0.03	0.58	0.02
461	186		3.0	0.04	0.84	0.03

7.2 Графики

График 1. Зависимость магнитной индукции от тока

График 2. $|\Delta P| = f(B^2)$ для алюминия

 Γ рафик 3. $|\Delta P| = f(B^2)$ для меди

График 4. $|\Delta P| = f(B^2)$ для алюминия и меди

