Étude d'un transformateur en monophasé

A – Introduction:

- Le transformateur étudié est un transformateur démontable. Le primaire est constitué par une bobine comportant $N_1 = 500$ spires ; le secondaire comporte $N_2 = 1000$ spires . Définir puis calculer le rapport de transformation théorique m.
- Le circuit magnétique commun aux deux enroulements est feuilleté; expliquer pourquoi. Observer l'empilement des tôles et en déduire l'allure des lignes de champ dans ce dispositif (faire un schéma).
- On appelle P_1 la puissance reçue par le primaire et P_2 la puissance disponible aux bornes du secondaire. Définir puis exprimer le rendement η de ce transformateur.
 - A quoi sont dues les pertes ? Comment les évalue-t-on ?

B – Étude du transformateur en charge :

1°) Montage:

Choisir une fréquence proche de 50 Hz.

Remarques:

- Le milliwattmètre utilisé permet les affichages **simultanés** de la puissance absorbée P_1 , des valeurs efficaces de la tension (U_1) et de l'intensité (I_1) ce qui rend inutile l'utilisation d'un ampèremètre et d'un voltmètre à « l'entrée » du dispositif.
- Respecter la position de l'ampèremètre par rapport au voltmètre (en « sortie »).
- Bien observer et respecter le branchement du milliwattmètre!

Le milliwattmètre utilisé est très cher! Prenez-en soin!

Sélectionner la fonction « milliwattmètre » <u>avant</u> de relier l'appareil au circuit!

Faire vérifier votre montage avant la mise sous tension!

2°) Mesures:

Régler la tension délivrée par le G.B.F. à son maximum.

Modifier la valeur R de la résistance de charge (sans mesurer R qui sera calculée ultérieurement par le rapport U $_2$ / I $_2$!) et sans modifier U $_1$. On fera varier R de $10\,\Omega$ à $10\,k\Omega$.

L'exploitation des mesures doit se faire en même temps que leur relevé!

Pour chaque réglage de R, effectuer les mesures suivantes :

- La valeur efficace I₁ de l'intensité qui traverse l'enroulement primaire ;
- la valeur efficace U₁ de la tension imposée au primaire ;
- la puissance reçue par le primaire P₁;
- la valeur efficace I 2 de l'intensité qui traverse l'enroulement secondaire ;
- la valeur efficace U₂ de la tension aux bornes du secondaire.

3°) Exploitation:

Les grandeurs suivantes sont calculées à l'aide du logiciel Regressi!

- Arr R = $\frac{U_2}{I_2}$ R : résistance de charge (potentiomètres) ;
- \rightarrow $m_U = \frac{U_2}{U_1}$ m_U : rapport des tensions;
- \rightarrow m_I = $\frac{I_1}{I_2}$ m_I : rapport des intensités ;
- ho P₂ = U₂I₂ P₂ : puissance consommée dans la charge ;
- $\eta = \frac{P_2}{P_1}$ η : rendement du transformateur.

Rapports de transformation :

Tracer $m_U = f(\log R)$, $m_I = f(\log R)$ et $m = f(\log R)$ avec des couleurs différentes. Superposer les graphes (mêmes abscisses, mêmes ordonnées).

Améliorer l'allure des courbes en réalisant d'autres mesures (voir remarques en page 3).

Imprimer le tableau et les graphes.

Rendement:

Tracer $\eta = f(\log R)$.

Les points devront être suffisamment nombreux pour que l'on puisse obtenir un lissage satisfaisant de la courbe $\eta = f(\log R)$.

Imprimer le graphe correspondant.

Rendement et rapports de transformation :

Superposer tous ces graphes (l'échelle du rendement sera à droite alors que l'échelle des rapports de transformation sera à gauche).

Remarques importantes:

- Sauver fréquemment votre travail!
- Veiller à répartir au mieux les points expérimentaux. On pourra, par exemple, choisir, dans un premier temps, des valeurs de R proches des valeurs proposées et compléter le tableau, ensuite, de façon à obtenir une répartition judicieuse des points expérimentaux. Il est donc impératif de ne pas modifier le montage tant que l'exploitation de l'étude en charge n'est pas terminée!

Suggestions pour R (première série de mesures) :

Les points expérimentaux devront toujours rester apparents (croix).

4°) Conclusion:

- Qu'est-ce qu'un transformateur « parfait » ? Calculer le rendement d'un tel transformateur et exprimer de différentes façons le rapport de transformation théorique m.
- Le transformateur étudié est-il parfait ? Justifier la réponse.
- Que représente le rapport de transformation d'un transformateur réel ? Faire le lien entre les indications habituellement portées sur la plaque signalétique d'un transformateur et les résultats obtenus expérimentalement. Ce rapport de transformation permet-il de connaître l'intensité de court-circuit ?

C - Évaluation des pertes (méthode des pertes séparées) :

Choisir, dans le tableau précédent, un point de fonctionnement correspondant à un « bon » rendement du transformateur (U_1,I_2) $(U_1$ aux alentours de 5-6 V, par exemple).

Dans l'essai à vide, on choisira : $U_{1,v} = U_1$ et dans l'essai en court-circuit, on choisira : $I_{2,cc} = I_2$.

1°) Essai à vide:

Réaliser le montage schématisé ci-dessous.

- Donner à U₁ la valeur choisie (voir ci-dessus).
- Mesurer, alors : $I_{1,v}$; $P_{1,v}$; $U_{2,v}$.
- Comparer $U_{2,v}$ à U_1 .

Discussion:

Aucune puissance n'est consommée au secondaire!

La puissance absorbée $P_{1,v}$ représente, alors, la somme des pertes dans le fer (P_{fer}) et des pertes par effet Joule $P_{J,v} = r_1 \, I_{1,v}^2$ dans le primaire.

Les pertes « fer » s'écrivent, alors : $P_{fer} = P_{1,v} - r_1 I_{1,v}^{2}$.

A partir des mesures précédentes, calculer les pertes « fer » (r₁ figure sur la bobine).

Remarques:

Vérifier que les pertes par effet Joule peuvent être négligées devant les pertes « fer »...

Habituellement, on estime les pertes « fer » comme étant égales à P_{1,v}!

2°) Essai en court-circuit :

- La tension délivrée par le G.B.F. est très fortement réduite avant de mettre le secondaire en courtcircuit.
- Réaliser le montage schématisé ci-dessous.

- Relever la tension délivrée par le générateur B.F. de façon à obtenir $I_{2,cc} = I_2$
- Mesurer: $I_{1,cc}$; $U_{1,cc}$; $P_{1,cc}$.
- Comparer $I_{1,cc}$ à la valeur efficace de l'intensité au primaire (I_1) correspondant au point de fonctionnement choisi.

Discussion : Au primaire, la puissance absorbée $(P_{1,cc})$ correspond à la somme des pertes dans le fer $(P_{fer,cc})$ et des pertes par effet Joule $(P_{J,cc})$.

L'essai en court-circuit ayant lieu sous tension réduite, on peut négliger les pertes « fer » (qui ne dépendent pas de la charge mais uniquement de la tension au primaire) devant les pertes par effet Joule.

On a:
$$P_{1,cc} \cong P_{J,cc}$$

Compte tenu de ce qui précède et des mesures effectuées, calculer les pertes par effet Joule.

Remarque: Vérifier que le résultat correspond sensiblement à la valeur $r_1 I_{1,cc}^2 + r_2 I_{2,cc}^2$ (on néglige la résistance interne de l'ampèremètre!)

Habituellement, les résistances des enroulements ne sont pas connus....

3) Retour sur le transformateur en charge:

Nous considérons toujours le point de fonctionnement particulier choisi.

Discussion:

Dans l'essai en court-circuit, les valeurs efficaces des intensités ont été prises égales aux valeurs efficaces des intensités au point de fonctionnement considéré.

Dans ces conditions :
$$P_J \cong P_{1,cc}$$

 \triangleright Dans l'essai en court-circuit, la tension au primaire est égale à celle du point de fonctionnement. Les pertes dans le fer, qui ne dépendent que de U_1 (f étant inchangée), sont les mêmes.

Dans ces conditions :
$$P_{fer} \cong P_{1,v}$$

- Exprimer le rendement η du transformateur à l'aide de P_J , P_{fer} et P_2 .
- Calculer le rendement en utilisant les données fournies par les « pertes séparées » (η_0) . Comparer ce rendement à celui que l'on obtient par le rapport P_2 / P_1 .
- La méthode des « pertes séparées » est-elle concluante pour ce point de fonctionnement ?

Remarque:

pour une étude plus complète du transformateur, on pourra aller visiter le site

http://www.sciences.univ-nantes.fr/physique/perso/cortial/transfo/transfo_index.html