# 1 Simple Stuff

Prerequisites: control flow (branching, iteration), IO, arithmetic, atomic types.

## 1.1 The Good Old Days \*\*\*\*

**Input:** An integer 4.

Output: The word "Elephant".

## 1.2 Equation of a Line \*\*\*\*

**Input:** Two integers k and b,  $k \neq 0$ .

**Output:** Such value x, that it satisfies the equation kx + b = 0.

### 1.3 Wait, what? \*\*\*

Input: Two integers a and b.

Output: The product of a and b.

Note: You may not use the multiplication operation.

#### 1.4 Late'o'clock \*\*\*\*

**Input:** An integer  $0 \le h < 24$ . Hours on a clock.

**Note:** Convert the given time h to the 12-hour clock format.

 $\textbf{Output:} \quad \text{First the time $h$ in 12-hour clock format, then "am" or "pm" depend-} \\$ 

ing on the time.

## 1.5 Quadratic Equations \*\*\*\*

**Input:** Three integers a, b and c.

**Output:** Find all values of x, such that  $ax^2 + bx + c = 0$ .

**Note:** If there are no possible values of x output "NaN" (not a number). The values should not be repeated.

## 1.6 Qubic Equation ★★★☆

**Input:** Four integers a, b, c and d.

**Output:** Find all values of x, such that  $ax^3 + bx^2 + cx + d = 0$ .

Note: If there are no possible values of x output "NaN" (not a number). The

values should not be repeated. **Hint:** use Cardano's formula.

## 1.7 Euclid Approves \*\*\*\*

**Input:** Two integers a and b, sides of a right angled triangle. **Output:** The hypotenuse c of the aforementioned triangle.

### 1.8 Euclid Disapproves \*\*\*\*

**Input:** Two integers a and b, sides of a right angled triangle and an integer angle  $\theta$  (given in degrees) between them.

Output: The third side of the triangle.

Hint: You may use import math to get some functions you might want.

### 1.9 Everyone but Euclid Approves \*\*\*\*

**Input:** An integer n the amount of following lines,  $3 \le n \le 100$ . Each following line i contains a number  $-100 \le a_i \le 100$ , a component of the vector  $\hat{v} = \{a_1, a_2, \dots, a_n\}$ .

**Output:** The length of a vector  $||\hat{v}||$ .

#### 1.10 Minmaxed \*\*\*\*

**Input:** Two integers, a and b.

Output: Two integers, first the largest of them two, next the smallest.

#### 1.11 TreE ★★★☆

**Input:** An integer h, the height of the christmass tree.

**Output:** A christmas tree with total height h+1, 1 being the trunk of said tree and h all the result of it.

e
a a
e e e
a a a a
a

### 1.12 Sigma for Sum ★★☆☆

**Input:** An integer a such that  $1 \le a \le 10^{10^{10}}$ .

**Output:** The sum all the integers  $1 + 2 + \cdots + a$ .

Hint: Loop isn't the only way to go.

## 1.13 Factor!al \*\*\*\*

**Input:** An integer a such that  $1 \le b \le 10^5$ .

**Output:** The product all the integers  $1 \times 2 \times \cdots \times b$ .

**Hint:** Lookup the arguments for range in the official Python3.x documentation.

## 1.14 Minmaxed 2: The Sequel \*\*\*\*

**Input:** Two integers, a and b.

Output: Two integers, first the largest of them two, next the smallest.

**Note:** You may only use min() or max(), not both. You may not use branching.

## 1.15 Set Product \*\*\*\*

**Input:** Two integers, a and b where a > 0 and b > 0. They create sets of values:  $A = \{0, 1, ..., a - 1\}$  and  $B = \{0, 1, ..., b - 1\}$ .

Output: Print out the product of the two sets.

**Note:** A product of two sets is a mapping of every element of one set to every element of another, e.g. for sets  $C = \{1, 2\}$  and  $D = \{3, 4\}$  the product is  $C \times D = \{(1, 3), (1, 4), (2, 3), (2, 4)\}.$ 

## 2 Turtle or Tortoise?

Prerequisites: turtle module, the entire previous section.

## 2.1 Fair Square \*\*\*\*

**Input:** An integer A such that  $10 \le A \le 100$ .

Output: Using from turtle import Turtle's methods like forward and right draw a square of length A.

## 2.2 Fair Ngon \*\*\*\*

**Input:** Two integers, A such that  $10 \le A \le 100$  and N such that  $2 \le N \le 20$ . **Output:** Using Turtle draw a regular polygon (an N-gon) with N sides and side length 5A. Ensure that the turtle finishes in the same position as it started in. The turtle shouldn't draw over itself at any point.

Hint: Loops are your friend.

## 2.3 Trigonometry BFF \*\*\*\*

**Input:** Two integers, a and b.

**Output:** Using Turtle draw a graph of the function  $y = a * sin(\frac{\pi x}{10}) + b$ . From 0 to 200 and a graph of the function y = b. Print the final position of the turtle. **Hint:** You can get sin and  $\pi$  with from math import pi, sin, they are accurate enough for this purpose.

## 2.4 The Fair Ngon \*\*\*\*\*

**Input:** Two integers, A such that  $10 \le A \le 100$  and N such that  $2 \le N \le 20$ . **Output:** Using Turtle draw a regular polygon (an N-gon) with N sides and side length 10A. Ensure that the turtle finishes in the same position as it started in. You are only allowed to control the turtle with goto.

**Hint:** Trigonometry might help.