Gewöhnliche Differentialgleichungen und Integration auf Mannigfaltigkeiten WS2018/19

Dozent: Prof. Dr. Friedemann Schuricht

1. November 2018

In halts verzeichnis

VIII Integration auf Mannigfaltigkeiten			2	
1	1	Mannig	faltigkeiten	2
	1	1.1	Relativ topologie auf Teilmengen $M \subset \mathbb{R}^n$	3
	1	1.2	Mannigfaltigkeiten	3
2		ntegra:	tion auf Kartengebieten	11

Vorwort

Kapitel VIII

$Integration\ auf\ Mannigfaltigkeiten$

1. Mannigfaltigkeiten

Definition

Sei $\varphi \in C^q(V,\mathbb{R}^n), \ V \subset \mathbb{R}^d$ offen, $q \geq 1.$ φ heißt <u>regulär</u> in $x \in V$, falls

$$\varphi'(x): \mathbb{R}^d \to \mathbb{R}^n \text{ regulär}$$
 (1)

Falls φ regulär $\forall x \in V$ heißt φ regulär auf V bzw. reguläre C^q -Parametrisierung (auch C^q -Immersion). V heißt Parameterbereich und $\varphi(V)$ Spur von V.

Gleichung (1) impliziert

$$d \le n \tag{2}$$

und sei in Kapitel VIII stehts erfüllt. Folglich:

Gleichung (1)
$$\Leftrightarrow$$
 rang $\underbrace{\varphi'(x)}_{n \times d\text{-Matrix}} = d$ (1')

■ Beispiel 1.1

- 1) Reguläre Kurve: $\varphi \colon I \subset \mathbb{R} \to \mathbb{R}^n$, I offen, $\varphi'(x) \neq 0$ ($\varphi'(x)$ ist der Tangentialvektor)
- 2) $\varphi:(0,2\pi)\to\mathbb{R}^2,\,\varphi(t):=(\cos kt,\sin kt)^\mathsf{T},\,k\in\mathbb{N}_{\geq 2}$ (k-fach durchlaufener Einheitskreis)
- 3) $\varphi \colon (-\pi,\pi) \to \mathbb{R}^2, \, \varphi(t) = (1+2\cos t)(\cos t,\sin t)^\mathsf{T}$ mit den besonderen Werte

$$\varphi\left(\pm \frac{2}{3}\pi\right) = \begin{pmatrix} 0\\0 \end{pmatrix}, \quad \varphi(0) = \begin{pmatrix} 3\\0 \end{pmatrix}$$

Achtung: $\binom{1}{0}$ gehört <u>nicht</u> zur Kurve. φ ist regulär (ÜA)

- 4) $\varphi \colon (-1,1) \to \mathbb{R}^2$, $\varphi(t) = (t^3, t^2)^\mathsf{T}$ ist nicht regulär, da $\varphi'(0) = 0$.
- Beispiel 1.2 (Parametrisierung von Graphen)

Sei
$$f \in C^q(V, \mathbb{R}^{n-d}), V \subset \mathbb{R}^d$$
 offen.

Betrachte $\varphi \colon V \to \mathbb{R}^n$ mit $\varphi(x) := (x, f(x))$. Offenbar ist $\varphi \in C^q(V, \mathbb{R}^n)$ und $\varphi'(x) = (\mathrm{id}_{\mathbb{R}^d}, f'(x)) \in \mathbb{R}^{n \times d}$

 $\Rightarrow \varphi$ stets regulär.

1.1. Relativtopologie auf Teilmengen $M \subset \mathbb{R}^n$

Definition

 $U \subset M$ heißt offen bezüglich M genau dann wenn $\exists \tilde{U} \subset \mathbb{R}^n$ offen mit $U = \tilde{U} \cap M$.

 $U \subset M$ heißt Umgebung von $u \in M$ bezüglich M, falls $\exists U_0 \subset M$ offen bezüglich M mit $u \in U_0 \subset U$.

1.2. Mannigfaltigkeiten

Definition

 $M \subset \mathbb{R}^n$ heißt <u>d</u>-dimensionale C^q -Mannigfaltigkeit $(q \geq 1)$ falls $\forall u \in M$ existiert eine Umgebung U von u bezüglich M und $\varphi \colon V \subset \mathbb{R}^d \to \mathbb{R}^n$, V offen mit φ reguläre C^q -Parametrisierung und φ ist Homöomorphismus und $\varphi(V) = U$.

M heißt auch C^q -Untermannigfaltigkeit. Verwende Mannigfaltigkeit statt C^1 -Mannigfaltigkeit

Definition

 φ^{-1} bzw. (φ^{-1}, U) heißt <u>Karte</u> von M um $u \in M$. φ ist das zugehörige <u>Kartengebiet</u>, φ zugehörige Parameterisierung, V zugehöriger Parameterbereich.

Eine Menge $\{\varphi_{\alpha}^{-1} \mid \alpha \in A\}$ heißt Atlas von M, falls die zugehörigen Kartengebiete U_{α} die Mannigfaltigkeit überdecken (d.h. $\bigcup_{\alpha \in A} U_{\alpha} \supset M$).

Definition

Eine reguläre Parametrisierung $\varphi \colon V \subset \mathbb{R}^d \to U \subset \mathbb{R}^n$ heißt <u>Einbettung</u>, falls sie ein Homöomorphismus ist

<u>Vereinbarung:</u> Parametrisierungen in Verbindung mit Mannigfaltigkeiten sind <u>immer</u> Homöomorphismen (also Einbettungen).

■ Beispiel 1.3

- 1) Der Kreis aus Beispiel 1.1 ist eine eindimensionale C^{∞} -Mannigfaltigkeit (d.h. C^q -Mannigfaltigkeit $\forall q \in \mathbb{N}_{>1}$, obwohl mehrfach durchlaufen). Ein Atlas benötigt mindestens zwei Karten.
- 2) Kurven aus Beispiel 1.1 3), 4) sind keine Mannigfaltigkeiten
- 3) $M \subset \mathbb{R}^n$ offen ist n-dimensionale C^{∞} -Mannigfaltigkeit, {id} ist der zugehörige Atlas.

■ Beispiel 1.4

 $M := \operatorname{graph} f$ aus Beispiel 1.2.

 $M := \{ u \in D \mid f(u) = 0 \}$

Offenbar ist $\varphi \colon V \subset \mathbb{R}^d \to M \subset \mathbb{R}^n$ Homö
omorphismus und reguläre C^q -Parametrisierung $\Rightarrow M$ ist d-dimensionale C^q -Mannigfaltigkeit.

■ Beispiel 1.5

Sei
$$f: D \subset \mathbb{R}^n \to \mathbb{R}^{n-d}$$
, D offen, $f \in C^q$ $(q \ge 1)$, rang $f'(x) = n - d \ \forall u \in D$. Definiere

Fixiere $\tilde{u} = (\tilde{x}, \tilde{y}) \in M$, wobei $\tilde{u} = (x_1, \dots, x_d, y_1, \dots, y_{n-d}) \in \mathbb{R}^n$.

$$\star \Rightarrow f_y(\tilde{x}, \tilde{y}) \in \mathbb{R}^{(n-d) \times (n-d)}$$
 regulär

 $\xrightarrow{\text{implizite}} \exists \text{ Umgebung } V \subset \mathbb{R}^d \text{ von } \tilde{x}, \text{ Umgebung } W \subset \mathbb{R}^{n-d} \text{ von } \tilde{y} \text{ und } \psi \in C^q(V, W) \text{ mit } (x, \psi(x)) \in M, \psi \colon V \to W$

- $\Rightarrow \varphi \colon V \subset \mathbb{R}^d \to \mathbb{R}^n$ mit $\varphi(x) := (x, \psi(x))$ ist reguläre C^q -Parametrisierung, Homöomorphismus und $\varphi(V)$ ist Umgebung von $\tilde{u} \in M$ bezüglich M
- $\Rightarrow M$ ist d-dimensionale $C^q\text{-Mannigfaltigkeit}$

Bemerkung: M = graph f und $M = \{f = 0\}$ sind grundlegende Konstruktionen von Mannigfaltigkeiten. Jede Mannigfaltigkeit hat – lokal – diese Eigenschaft.

Satz 1.6 (lokale Darstellung einer Mannigfaltigkeit als Graph)

Es gilt

 $M\subset\mathbb{R}^n$ ist d-dimensionale \Leftrightarrow $\forall u\in M$ \exists Umgebung U von u bezüglich $M,W\subset\mathbb{R}^d$ offen, $f\in C^q(W,\mathbb{R}^{n-d})$ und Permutation Π von Koordinaten in \mathbb{R}^n , sodass $\psi(W)=U \text{ und } \psi(u)=\Pi(w,f(w)) \ \forall w\in W$ (d.h. U ist Graph von f).

Somit: M ist C^q -Mannigfaltigkeit genau dann wenn M lokal Graph einer C^{∞} -Funktion ist.

Remeis

- (\Rightarrow) Klar nach z.B. Beispiel 1.2
- (\Leftarrow) Sei M Mannigfaltigkeit. Fixiere $\tilde{u} \in M$. Sei $\varphi \colon \tilde{V} \subset \mathbb{R}^d \to \tilde{U} \subset \mathbb{R}^n$ zugehörige C^q -Parametrisierung von $\tilde{u} = \varphi(\tilde{x})$.

 $\varphi'(x)$ ist regulär $\Rightarrow \varphi_I'(\tilde{x}) \in \mathbb{R}^{d \times d}$ regulär für die Zerlegung von φ in

$$\varphi(x) = \Pi \begin{pmatrix} \varphi_{\mathrm{I}}(x) \\ \varphi_{\mathrm{II}}(x) \end{pmatrix}, \quad \varphi_{\mathrm{I}}(x) \in \mathbb{R}^{d}, \quad \varphi_{\mathrm{II}}(x) \in \mathbb{R}^{n-d}$$

Zerlege ebenso $u = \Pi(v, w), v \in \mathbb{R}^d, w \in \mathbb{R}^{n-d}$ (d.h. auch $\tilde{u} = \Pi(\tilde{v}, \tilde{w})$)

Satz 1.7 (Charakterisierung von Mannigfaltigkeiten über umgebenden Raum)

Es gilt:

 $M \subset \mathbb{R}^n$ ist d-dimensionale Man- $\Leftrightarrow \forall u \in M \exists$ Umgebung \tilde{U} von u bezüglich dem \mathbb{R}^n , $\tilde{V} \subset \mathbb{R}^n$ nigfaltigkeit offen sowie

$$\tilde{\psi} \colon \tilde{U} \to \tilde{V}$$
 mit $\tilde{\psi}$ ist C^q -Diffeomorphismus und
$$\tilde{\psi}(\tilde{U} \cap M) = \tilde{V} \cap (\underbrace{\mathbb{R}^d \times \{0\}}_{\in \mathbb{R}^n})$$

<u>Bemerkung:</u> Die Charakterisierung von Mannigfaltigkeiten benutzt den umgebenden Raum und wird häufig als Definition für Mannigfaltigkeiten angegeben.

Beweis.

- (\Leftarrow) $\tilde{\psi}$ eingeschränkt auf $\tilde{U} \cap M$ liefert Karten \Rightarrow Behauptung
- (\Rightarrow) Fixiere $\tilde{u} \in M$. Wähle $U \subset M$, $W \subset \mathbb{R}^d$ sowie $f \in C^q(W, \mathbb{R}^{n-d})$ gemäß Satz 1.6 und sei oBdA $\Pi = \mathrm{id}$. Zerlege nach dem Schema $u = (v, w) \in \mathbb{R}^d \times \mathbb{R}^{n-d}$ obiges $\tilde{u} = (\tilde{v}, f(\tilde{v}))$.

Definiere $\hat{U}:=W\times\mathbb{R}^{n-d}=:\hat{V}$ und $\tilde{\varphi}\colon\hat{V}\to\hat{U}$ mit $\tilde{\varphi}(v,w):=(v,f(v)+w)$

$$\Rightarrow \tilde{\varphi} \in C^q, \, \tilde{\varphi}'(\tilde{v}, 0) = \begin{pmatrix} \mathrm{id}_d & 0 \\ f'(v) & \mathrm{id}_{n-d} \end{pmatrix} \text{ ist regul\"ar}$$

 $\xrightarrow[\text{Funktion}]{\text{implizite}} \exists \text{ Umgebung } \tilde{U} \subset \hat{U} \text{ von } \tilde{u}, \text{ Umgebung } \tilde{V} \subset \hat{V} \text{ von } (\tilde{v}, 0), \text{ sodass } \tilde{\psi} := \tilde{\varphi}^{-1} \in C^q(\tilde{U}, \tilde{V}) \text{ existiert.}$ $\text{Wegen } \tilde{\varphi}(\tilde{V} \cap (\mathbb{R}^d \times \{0\})) = \tilde{U} \cap M \text{ folgt die Behauptung.}$

Folgerung 1.8

Sei $M\subset\mathbb{R}^n$ d-dimensionale C^q -Mannigfaltigkeit und $\varphi\colon V\subset\mathbb{R}^d\to U\subset M$ eine Parametrisierung von U

 $\Rightarrow \exists \tilde{U}, \ \tilde{V} \subset \mathbb{R}^n \text{ offen und } \tilde{\varphi} \colon \tilde{V} \to \tilde{U} \text{ mit } U \subset \tilde{U} \text{ und } V \times \{0\} \subset \tilde{V} \text{ sowie } \tilde{\varphi} \text{ ist } C^q\text{-} \text{Diffeomorphismus mit } \tilde{\varphi}(x,0) = \varphi(x) \ \forall x \in V.$

Beweis. Folgt aus den Beweisen von Satz 1.6 und Satz 1.7.

Satz 1.9 (lokale Darstellung von Mannigfaltigkeiten als Niveaumenge)

Es gilt

 $M \subset \mathbb{R}^n$ ist d-dimensionale $\Leftrightarrow \forall u \in M \exists \text{ Umgebung } \tilde{U} \text{ von } u \text{ bezüglich dem } \mathbb{R}^n \text{ und } f \in$ $C^q(\tilde{U},\mathbb{R}^{n-d})$ mit rang f'(u)=n-d und $\tilde{U}\cap M=\{\tilde{u}\in\tilde{U}\mid$ Mannigfaltigkeit $f(\tilde{u}) = 0\}.$

Somit: M ist C^q -Mannigfaltigkeit genau dann wenn M lokal Niveaumenge einer C^q -Funktion ist.

Definition

 $c \in \mathbb{R}^{n-d}$ heißt regulärer Wert von $f \in C^q(\tilde{U}, \mathbb{R}^{n-d}), \tilde{U} \subset \mathbb{R}^n$ offen, falls rang $f'(u) = n - d \ \forall u \in \tilde{U}$ mit f(u) = c.

Folglich ist $M = \{u \in \tilde{U} \mid f(u) = c\}$ d-dimensionale Mannigfaltigkeit falls c regulärer Wert von f ist.

Beweis.

- (⇐) Gemäß Beispiel 1.5 erhält man eine lokale Parametrisierung ⇒ Behauptung
- (\Rightarrow) Fixiere $\tilde{u} \in M$. Wähle $\tilde{U}, \tilde{V} \subset \mathbb{R}^n, \tilde{\psi} \colon \tilde{U} \to \tilde{V}$ gemäß Satz 1.7. Sei $f := (\tilde{\psi}_{d+1}, \dots, \tilde{\psi}_n)$. Offenbar ist $f \in C^q(\tilde{U}, \mathbb{R}^{n-d})$. Mit $\tilde{\varphi}$ aus Satz 1.7 folgt, dass $\tilde{\psi}'(\tilde{u}) = \varphi'(\tilde{v}, 0)^{-1}$ regulär ist $\Rightarrow f'(u)$ hat vollen Rang, d.h. rang f'(u) = n - d

 - \Rightarrow nach Konstruktion ist $\{\tilde{u} \in \tilde{U} \mid f(\tilde{u}) = 0\} = \tilde{U} \cap M$ \Rightarrow Behauptung.

Kartenwechsel: Offenbar sind die Karten / der Atlas für Mannigfaltigkeiten nicht eindeutig, daher ist gelegentlich ein Wechsel der Karten sinnvoll.

Lemma 1.10 (Kartenwechsel)

Sei $M \subset \mathbb{R}^n$ d-dimensionale \mathbb{C}^q -Mannigfaltigkeit und φ_1^{-1} , φ_2^{-1} Karten mit Kartengebieten $U_1 \cap$ $U_2 \neq \emptyset$.

 $\Rightarrow \varphi_2^{-1}\circ\varphi_1\colon \varphi_1^{-1}(U_1\cap U_2)\to \varphi_2^{-1}(U_1\cap U_2) \text{ ist } C^q\text{-Diffeomorphismus}.$

Beweis. Ersetzte φ_1 und φ_2 mit $\tilde{\varphi_1}$, $\tilde{\varphi_2}$ gemäß Folgerung 1.8. Einschränkung von $\varphi_2^{-1} \circ \varphi_1$ liefert die Behauptung.

Definition

Sei $M \subset \mathbb{R}^n$ d-dimensionale Mannigfaltigkeit. Ein Vektor $v \in \mathbb{R}^n$ heißt Tangentialvektor von $u \in M$, falls eine stetig differentierbare Kurve $\gamma : (-\delta, \delta) \to M \ (\delta > 0)$ existiert mit $\gamma(0) = u$ und $\gamma'(0) = v$.

Die Menge aller Tangentialvektoren heißt Tangentialraum .

Satz 1.11

Sei $M \subset \mathbb{R}^n$ d-dimensionale C^q -Mannigfaltigkeit, $u \in M$, $\varphi \colon V \to M$ zugehörige Parametrisierung von u.

 $\Rightarrow T_u M$ ist d-dimensionale (\mathbb{R} -) Vektorraum und

$$T_u M = \underbrace{\varphi'(x)}_{\in L(\mathbb{R}^d, \mathbb{R}^n)} \cdot (\mathbb{R}^d) \tag{3}$$

mit $x := \varphi^{-1}(u)$, wobei $T_u M$ unabhängig von spezieller Parametrisierung φ ist.

Beweis. Sei
$$\gamma \colon (-\delta, \delta) \to M$$
 C^1 -Kurve mit $\gamma(0) = u$
 $\Rightarrow g := \varphi^{-1} \circ \gamma$ ist C^1 -Kurve $g \colon (-\delta, \delta) \to \mathbb{R}^d$ mit $g(0) = x$ und

$$\gamma'(0) = \varphi'(x) \cdot g'(0), \quad \varphi'(x) \text{ ist regulär.}$$

Offenbar liefert jede C^1 -Kurve g im \mathbb{R}^d durch x eine C^1 -Kurve γ in M mit ???. Die Menge aller Tangentialvektoren g'(0) von C^1 -Kurven g im \mathbb{R}^d ist offenbar \mathbb{R}^d .

$$\Rightarrow$$
 Gleichung (3) $\xrightarrow{\varphi'(x)}$ $\dim(T_uM) = d$.

Da ??? für jede Parametrisierung gilt, ist $T_u M$ unabhängig von φ .

Bemerkung: Man bezeichnet auch $(u, T_u M) \subset M \times \mathbb{R}^n$ als Tangentialraum und $TM := \bigcup_{u \in M} (u, T_u M) \subset M \times \mathbb{R}^n$ als Tangentialbündel.

■ Beispiel 1.12

Sei $M \subset \mathbb{R}^n$ offen $\Rightarrow M$ ist n-dimensionale Mannigfaltigkeit und $T_u M = \mathbb{R}^n \ \forall u \in M$.

Definition

Sei $M \subset \mathbb{R}^n$ d-dimensionale Mannigfaltigkeit. Vektoren $w \in \mathbb{R}^n$ heißen Normalenvektor in $u \in M$ an M, falls

$$\langle w, v \rangle = 0 \quad \forall v \in T_n M.$$

Die Menge aller Normalenvektoren $N_uM := (T_uM)^{\perp}$ heißt Normalenraum von M in u.

Satz 1.13

Sei $f \in C^1(V, \mathbb{R}^{n-d}), V \subset \mathbb{R}^n$ offen, $c \in \mathbb{R}^{n-d}$ regulärer Wert von f.

 $\Rightarrow M := \{u \in V \mid f(u) = c\}$ ist d-dimensionale Mannigfaltigkeit mit

$$T_u M = \{ v \in \mathbb{R}^n \mid f'(u) \cdot v = 0 \}$$
 (ker $f'(u)$) $\forall u \in M$

$$N_u M = \{ w \in \mathbb{R}^n \mid w = f'(u)^\mathsf{T} \cdot v, \ v \in \mathbb{R}^{n-d} \}$$
 $\forall u \in M$

d.h. die Spalten von $f'(u)^{\mathsf{T}}$ bilden eine Basis von $N_u M$.

■ Beispiel 1.14

Sei $f = \binom{f_1}{f_2} \in C^1(\mathbb{R}^3, \mathbb{R}^2)$, $0 \in \mathbb{R}^2$ regulärer Wert von f. $\Rightarrow M := \{u \in \mathbb{R}^3 \mid f_1(u) = 0 = f_2(u)\}$ ist 1-dimensionale Mannigfaltigkeit.

Der Gradient $f'_i(u)^\mathsf{T}$ steht senkrecht auf $\{f_i = 0\}$.

$$\Rightarrow f_1'(u)^\mathsf{T}, f_2'(u)^\mathsf{T}$$
 sind Normalen zu M in u.

$$\Rightarrow f_i'(u)^\mathsf{T} \cdot v = 0, i = 1, 2 \text{ für Tangentenvektor } v.$$

Beweis. M ist d-dimensionale Mannigfaltigkeit, vgl. Satz 1.9.

Sei
$$\gamma$$
 C^1 -Kurve auf M , $\gamma(0) = u$, $\gamma'(0) = v \Rightarrow f(\gamma(t)) = c \ \forall t$.

$$\Rightarrow f'(\gamma(0)) \cdot \gamma'(0) = f'(u) \cdot v = 0.$$

Wegen rang f'(u) = n - d folgt dim ker f'(u) = d

 \Rightarrow Behauptung für T_uM wegen dim $T_uM = d$.

Sei
$$w = f'(u)^\mathsf{T} \tilde{v}$$
 und $v \in T_u M \Rightarrow \langle w, v \rangle = \langle \tilde{v}, f(u)v \rangle = 0 \Rightarrow w \in N_u M$.

Da rang $f'(u)^{\mathsf{T}} = n - d$ und dim $N_u M = n - d$ folgt die Behauptung.

■ Beispiel 1.15

Sei $M := O(n) = \{A \in \mathbb{R}^{n \times n} \mid A^{\mathsf{T}}A = \mathrm{id}\}$ die orthogonale Gruppe. Dann ist M eine $\frac{n(n-1)}{2}$ -dimensionale Mannigfaltigkeit von $\mathbb{R}^{n \times n}$ mit

$$T_{\mathrm{id}}M = \{B \in \mathbb{R}^{n \times n} \mid B + B^{\mathsf{T}} = 0\}, \quad \text{(schiefsymmetrische Matrizen)}$$

Beweis.

- Betrachte $f : \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}_{\text{sym}}$ mit $f(A) = A^{\mathsf{T}}A$ $\Rightarrow f$ ist stetig differenzierbar mit $f'(A)B = A^{\mathsf{T}}B + B^{\mathsf{T}}A \in \mathbb{R}^{n \times n}_{\text{sym}} \ \forall B \in \mathbb{R}^{n \times n}$.
- id ist ein regulärer Wert von f, denn sei $f(A) = \operatorname{id}, S \in \mathbb{R}^{n \times n}_{\operatorname{sym}}$ $\Rightarrow f'(A)B = S$ hat die Lösung $B = \frac{1}{2}AS$, denn $\frac{1}{2}A^{\mathsf{T}}AS + \frac{1}{2}SA^{\mathsf{T}}A = S$, d.h. f'(A) hat vollen Rang $\xrightarrow{\operatorname{Satz} 1.9} M$ ist d-dimensionale Mannigfaltigkeit mit $d = \dim \mathbb{R}^{n \times n} - \dim \mathbb{R}^{n \times n}_{\operatorname{sym}} = n^2 - \frac{n(n+1)}{2} = \frac{n(n-1)}{2}$.

•
$$T_{id}M = \{B \in \mathbb{R}^{n \times n} \mid id^T B + B^T id = 0\}$$

Bemerkung:

- $A \in O(n) \Rightarrow A$ erhält das Skalarprodukt: $\langle Ax, Ay \rangle = \langle A^{\mathsf{T}}Ax, y \rangle = \langle x, y \rangle$.
- auch $A^{\mathsf{T}} \in O(n)$, somit stehts $A^{-1} = A^{\mathsf{T}}$.

Definition

(n-1)-dimensionale Mannigfaltigkeit heißt Hyperfläche .

Die Abbildung $\nu \colon M \to \mathbb{R}^n$, $M \subset \mathbb{R}$ Mannigfaltigkeit, heißt <u>Einheitsnormalenfeld</u>, falls $\nu(n) \in N_u M$, $\|\nu(u)\| = 1 \ \forall u \in M \ \text{und} \ \nu$ stetig auf M.

Lemma 1.16

Sei $M \subset \mathbb{R}^n$ zusammenhängende Hyperfläche

 \Rightarrow Es existiert kein Einheitsnormalenfeld oder genau 2.

Beweis.

a) Falls ν Einheitsnormalenfeld auf M, dann auch $-\nu$.

b) Seien ν , $\tilde{\nu}$ Einheitsnormalenfelder auf M

$$\Rightarrow s(u) := \langle \nu(u), \tilde{\nu}(\nu) \rangle = \pm 1.$$

Mit dim $N_u M = 1$, ν stetig auf M und M zusammenhängend

$$\Rightarrow s(u) = 1 \text{ oder } s(u) = -1 \ \forall u \in M$$

$$\Rightarrow \tilde{\nu} = \nu \text{ oder } \nu = -\tilde{\nu}$$

■ Beispiel 1.17

Das Möbius-Band: klebe die Enden eines 2d-Streifens verdreht zusammen

 \Rightarrow besitzt kein Einheitsnormalenfeld.

Definition

Eine Hyperfläche $M \subset \mathbb{R}^n$ heißt <u>orientierbar</u>, falls ein Einheitsnormalenfeld $\nu \colon M \to \mathbb{R}^n$ existiert. ν heißt Orientierung , (M, ν) orientierte Mannigfaltigkeit .

■ Beispiel 1.18

Konstruiere ein Einheitsnormalenfeld für Hyperfläche $M = \{f = 0\}.$

Sei $f \in C^1(V, \mathbb{R}), V \subset \mathbb{R}^n, 0$ regulärer Wert von f. Dann ist

$$M := \{ u \in V \mid f(u) = 0 \}$$

eine Hyperfläche.

Offenbar ist $\nu(u) = \frac{f'(u)}{|f'(u)|}$ Einheitsnormalenfeld auf M, denn der Gradient f'(u) steht senkrecht auf Niveaumengen von f.

Definition

Seien $a_1, \ldots, a_{n-1} \in \mathbb{R}^n$, $A = (a_1 | \ldots | a_{n-1}) \in \mathbb{R}^{n \times (n-1)}$ und $A_k \in \mathbb{R}^{(n-1) \times (n-1)}$ sei Matrix A ohne k-te Zeile. Dann heißt

$$a_1 \wedge \ldots \wedge a_{n-1} := \alpha = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \in \mathbb{R}^n$$

mit $\alpha_k := (-1)^{k-1} \det A_k$ <u>äußeres Produkt</u> von a_1, \ldots, a_{n-1} .

(später: $\alpha \perp \alpha_i \ \forall j, \ |\alpha| = \text{Volumen des von } \alpha_1, \ldots, \alpha_1 n - 1 \text{ aufgespannten Parallelisotops.}$)

■ Beispiel 1.19

Für n = 3 ist $a_1 \wedge a_2 = a_1 \times a_2$ das Kreuzprodukt.

Lemma 1.20

Seien $a_1, \ldots, a_{n-1} \in \mathbb{R}^n$. $\Rightarrow \langle b, a_1 \wedge \ldots \wedge a_{n-1} \rangle = \det(b \mid a_1 \mid \ldots \mid a_{n-1}) \quad \forall b \in \mathbb{R}^n$ $a_1 \wedge \ldots \wedge a_{n-1} \perp a_j \quad \forall j \in 1, \ldots, n-1$ $a_1 \wedge \ldots \wedge a_{n-1} = \begin{cases} = 0 & \text{falls } a_j \text{ linear abhängig,} \\ \neq 0, & \text{falls } a_j \text{ linear unabhängig} \end{cases}$ (4)

Beweis. Für Gleichung (4) entwickle $\det(\dots)$ nach erster Spalte b. $b = a_j$ in Gleichung (4) liefert zweite Behauptung, (4) liefert auch 3. Behauptung.

■ Beispiel 1.21

Konstruiere ein Einheitsnormalenfeld mittels Parametrisierung φ . Sei $M=\varphi(V)$ Hyperfläche mit zugehöriger Parametrisierung $\varphi\colon V\subset\mathbb{R}^{n-1}\to\mathbb{R}^n,\,V$ offen.

$$\Leftrightarrow \frac{\partial}{\partial x_i}\varphi(x) = \varphi'(x)e_j \in T_{\varphi(x)}M \ \forall x \in V, j = 1, \dots, n-1. \ (\text{beachte: } \varphi_{x_j}(x) \in \mathbb{R}^n)$$

$$\Rightarrow N(x) := \varphi_{x_i}(x) \wedge \ldots \wedge \varphi_{x_{n-1}}(x) \in N_{\varphi(x)}M \ \forall x \in V$$

$$\Rightarrow \nu(x) := \frac{N(x)}{|N(x)|}$$
ist Einheitsnormalenfeld auf M (beachte: φ' regulär $\forall x)$

2. Integration auf Kartengebieten

Frage: Oberflächeninhalt bzw. d-dimensionaler Inhalt auf Mannigfaltigkeit M?

Idee: Approximiere durch stückweise "ebene" Mannigfaltigkeit.

a) (d=2) Verbinde Punkte auf M zu Dreiecken (einbeschriebene Approximation).

Fläche $M = \sup \sum_{\wedge}$ Dreiecksflächen

- \to funktioniert nur für Kurven und nicht für d>1. Z.B. Zylinderoberfläche in $M\subset\mathbb{R}^3\Rightarrow$ Fläche $M=\infty$, siehe dazu auch Hildebrandt: Analysis 2, Kapitel 6.1 (Schwarz'scher Stiefel)
- b) (d=2) Nehme tangentiale Parallelogramme (äußere Approximation).

Fläche
$$M = \lim_{\text{Feinheit} \to \infty} \sum_{j} \text{Fläche}(\varphi'(x_j)(Q_j)).$$

Hinweis: Eine allgemeine Theorie für den d-dimensionalen Inhalt liefert das Hausdorff-Maß \mathcal{H}^d .

Definition

Seien $a_1, \ldots, a_d \in \mathbb{R}^n$ $(d \leq n)$. Dann heißt die Menge

$$P(a_1, \dots, a_d) := \left\{ \sum_{j=1}^n t_j a_j \mid t_j \in [0, 1], \ j = 1, \dots, d \right\}$$

das von a_1, \ldots, a_d aufgespannte Parallelotop (auch d-Spat).

Wiederhole: Lebesgue-Maß \mathcal{L}^n in \mathbb{R}^n .

Satz 2.1

Seien $a_1, \ldots, a_n \in \mathbb{R}^n$ und das Volumen $v(a_1, \ldots, a_n) := \mathcal{L}^n(p(a_1, \ldots, a_n))$.

- \Rightarrow i) $v(a_1, \ldots, \lambda a_n, \ldots, a_n) = |\lambda| v(a_1, \ldots, a_n) \ \forall \lambda \in \mathbb{R}$
 - ii) $v(a_1,\ldots,a_k+a_j,\ldots,a_n)=v(a_1,\ldots,a_n)$ falls $k\neq j$ (Prinzip des Cavalieri)
 - iii) $v(a_1,\ldots,a_n)=1$ falls $\{a_1,\ldots,a_n\}$ ein Orthonormalensystem im \mathbb{R}^n bilden
 - iv) $v(a_1, \ldots, a_n) = |\det A|$ wenn $A = (a_1 \mid \ldots \mid a_n) \in \mathbb{R}^{n \times n}$, d.h. die Determinante liefert das Volumen

beachte: Eigenschaften i) – iii) implizieren bereits iv) (argumentiere wie bei det)

Beweis.

- a) a_1, \ldots, a_n linear abhängig: $\Rightarrow P(a_1, \ldots, a_n)$ ist flach $\Rightarrow v(a_1, \ldots, a_n) = 0$ $\Rightarrow \text{iv}) \Rightarrow \text{i})$, ii) richtig
- b) a_1, \ldots, a_n linear unabhängig: Sei $\{e_1, \ldots, e_n\}$ das Standard-Orthonormalensystem, damit ist iii) wahr nach der Defintion des Lebegue-Maßes.

Sei
$$U := P(e_1, \dots, e_n), V := P(a_1, \dots, a_n)$$

 \Rightarrow A: int $U \to \text{int } V$ ist Diffeomorphismus. Offenbar ist $A'(y) = A \ \forall y$.

$$\xrightarrow[\text{satz}]{\text{Trafo-}} \mathcal{L}(V) = \int_{V} dx = \int_{U} |\det A| \, dy = |\det A| \underbrace{\mathcal{L}(U)}_{=1} = |\det A|$$

$$\Rightarrow$$
 iv) \Rightarrow i), ii), iii) nach Eigenschaften der Determinante

Ziel: d-dimensionaler Inhalt $v_d(P(a_1, \ldots, a_n))$

<u>Idee:</u> Betrachte $P(a_1, ..., a_d)$ als Teilmenge eines d-dimensionalen Vektorraumes X und nehme d-dimensionales Lebesgue-Maß in X.

Somit sollte $v_d : \underbrace{\mathbb{R}^n \times \ldots \times \mathbb{R}^n}_{d\text{-tach}} \to \mathbb{R}$ folgende Eigenschaften innehaben:

(V1)
$$v_d(a_1,\ldots,\lambda a_k,\ldots,a_d) = |\lambda|v_d(a_1,\ldots,a_d)$$

(V2)
$$v_d(a_1, ..., a_k + a_j, ..., a_d) = v_d(a_1, ..., a_d) \ \forall k \neq j$$

(V3)
$$v_d(a_1,\ldots,a_d)=1$$
 falls a_1,\ldots,a_n orthonormal

Satz 2.2

 v_d ist eindeutig bestimmt und es gilt

$$v_d(a_1, \dots, a_d) = \sqrt{\det(A^{\mathsf{T}}A)} \text{ mit } A = (a_1 \mid \dots \mid a_d)$$
 (1)

▶ Bemerkung

- 1) Für d = n liefert (1) iv) in beweis 11
- 2) $A^{\mathsf{T}}A$ ist symmetrisch und positiv definit und somit auch $\det(A^{\mathsf{T}}A) \geq 0$
- 3) $v_d(a_1, \ldots, a_d) = 0 \Leftrightarrow a_1, \ldots, a_d$ linear abhängig

Beweis. Sei $\alpha_1 ij = \langle \alpha_i, \alpha_j \rangle$, dann ist

$$A^{\mathsf{T}}A = \begin{pmatrix} \alpha_{11} & \dots & \alpha_{1d} \\ \vdots & & \vdots \\ \alpha_{d1} & \dots & \alpha_{dd} \end{pmatrix}.$$

Die Eigenschaften der Determinante implizieren, dass die rechte Seite in (1) (V1) bis (V3) erfüllt. Wie bei der Determinante zeigt man auch, dass (V1) bis (V3) v_d eindeutig bestimmen (Zurückführen von v_d auf eine Orthonormalbasis mittels i), ii) liefert eindeutigen Wert).

■ Beispiel 2.3

Sei
$$d = n - 1$$
. Seien $a_1, \ldots, a_{n-1} \in \mathbb{R}^n$, $a := a_1 \wedge \ldots \wedge a_{n-1}$
 $\Rightarrow v_{n-1}(a_1, \ldots, a_d) = |a|_2$ (2)

(d.h. euklidische Norm des äußeren Produktes liefert das Volumen)

Denn wegen $\langle a, a_j \rangle = 0$ und A wie in (1) folgt

$$\left(\frac{a^{\mathsf{T}}}{A^{\mathsf{T}}}\right) \cdot (a \mid A) = \begin{pmatrix} \langle a, a \rangle & 0\\ 0 & A^{\mathsf{T}}A \end{pmatrix}$$

$$\Rightarrow |a|^2 \cdot \det(A^{\mathsf{T}}A) = [\det(a \mid A)]^2 \stackrel{1.9}{=} |a|^4$$

$$\Rightarrow \det(A^{\mathsf{T}}A) = |a|^2$$

Frage: Für Mannigfaltigkeit M: Ist für die Transformation $v_d(\text{Quader}Q) \xrightarrow{\varphi'(A)} v_d(\text{Paralleltotop}P)$ für Quader $Q = P(b_1, \dots, b_d) \subset \mathbb{R}^d$ das $P(a_1, \dots, a_d) \subset T_u(M) \subset \mathbb{R}^n$ das zugehörige Parallelotop falls $a_j = \varphi'(x)b_j$ $j = 1, \dots, d$?

Satz 2.4

Sei $M \subset \mathbb{R}^n$ d-dimensionale Mannigfaltigkeit, φ Parametrisierung mit $\varphi(x) = u \ \forall u \in M$ und ist $Q = P(a_1, \dots, a_d) \subset \mathbb{R}^d$ Quader und $a_j := \varphi'(x) \cdot b_j$

$$\Rightarrow v_d(a_1, \dots, a_d) = \sqrt{\det(\varphi'(x)^\mathsf{T} \varphi'(x)) \cdot v_d(b_1, \dots, b_d)}$$
(3)

 $\varphi'(x)^{\mathsf{T}}\varphi'(x)$ heißt <u>Maßtensor</u> von φ in x und $g^{\varphi}(x) = \det(\varphi'(x)^{\mathsf{T}}\varphi'(x))$ heißt <u>Gram'sche Determinante</u> von φ in x.

$$\begin{array}{l} \textit{Beweis.} \ \ \textit{Sei} \ B = (b_1 \mid \ldots \mid b_d), \ A = (a_1 \mid \ldots \mid a_d) \\ \stackrel{(1)}{\Longrightarrow} v_d(a_1, \ldots, a_d) = \sqrt{\det(A^\mathsf{T} A)} = \sqrt{\det\left((\varphi'(x)B)^\mathsf{T}(\varphi'(x)B\right)} = \sqrt{\det(\varphi'(x)^\mathsf{T} \varphi'(x)} \cdot \sqrt{\det(B^\mathsf{T} B)} \\ \end{array} \quad \Box$$

Definition

Sei $M \subset \mathbb{R}^n$ d-dimensionale Mannigfaltigkeit, $\varphi \colon V \to U$ lokale Parametrisierung, $f \colon U \to \mathbb{R}$ eine Funktion auf dem Kartengebiet U. Motiviert durch das Riemann-Integral

$$\sum f(U_i) \cdot v_d(P_i) = \sum f(\varphi(x_i)) \cdot \sqrt{g^{\varphi}(x)} \cdot v_d(Q_i)$$

setzt man

$$\int_{U} f \, \mathrm{d}a := \int_{V} f(\varphi(x)) \cdot \sqrt{g^{\varphi}(x)} \, \mathrm{d}x \tag{4}$$

als Integral von f über dem Kartengebiet U falls dieses existiert. f heißt dann integrierbar auf U.

▶ Bemerkung

- Die rechte Seite in (4) ist Lebesgue-Integral im \mathbb{R}^d .
- Damit definiert (4) sinnvoll ist, sollte die rechte Seite unabhängig von φ sein.
- Mittels des Hausdorff-Maßes \mathcal{H}^d kann $\int_U f da$ vollkommen analog zum Lebesgue-Integral definiert werden
- Für *n*-dimensionale Mannigfaltigkeit $M \subset \mathbb{R}^n$: $\int_U f da$ = Lebesgue-Integral $\int_U f dx$.

Satz 2.5

Sei $M \subset \mathbb{R}^n$ d-dimensionale Mannigfaltigkeit, $U \subset M$ ein Kartengebiet und $f \colon U \to \mathbb{R}$ sowie $\varphi \colon V_i \to U \ (i=1,2)$ seien zugehörige Parametrisierungen

$$\Rightarrow \int_{V_1} f(\varphi_1(x)) \sqrt{g^{\varphi_1}(x)} \, \mathrm{d}x = \int_{V_2} f(\varphi_2(x)) \sqrt{g^{\varphi_2}(x)} \, \mathrm{d}x$$

 \Rightarrow Somit: (4) unabhängig von φ :

$$f(\cdot)$$
 integrierbar auf $U \Leftrightarrow f(\varphi(\cdot))\sqrt{g^{\varphi}(x)}$ integrierbar auf V (5)
für eine Parametrisierung $\varphi \colon U \to V$

$$\begin{array}{l} \textit{Beweis.} \;\; \psi \colon \varphi_1^{-1} \circ \varphi_2 \colon V_2 \to V_1 \;\; \text{ist Diffeomorphismus nach Lemma 1.10} \\ \xrightarrow{\text{Trafo-}} \;\; \int_{V_1} f(\varphi_1(x)) \sqrt{g^{\varphi_1}(x)} \; \mathrm{d}x = \int_{V_2} f(\varphi_1(\psi(y))) \cdot \underbrace{\sqrt{\det\left(\varphi_1'(\psi(y)) \cdot \varphi_1'(\psi(y))\right)} \cdot \det(\psi'(y))}_{=\sqrt{\det(\psi'T \cdot \varphi_1'T \varphi_1' \cdot \psi'))} = \sqrt{\det(\varphi_1'(\psi')^{\mathsf{T}}(\varphi_1\psi))} } \mathrm{d}y \\ \xrightarrow{\text{extited}} \;\; \int_{V_1} f(\varphi_1(x)) \sqrt{g^{\varphi_1}(x)} \; \mathrm{d}x = \int_{V_2} f(\varphi_1(\psi(y))) \cdot \underbrace{\sqrt{\det\left(\varphi_1'(\psi(y)) \cdot \varphi_1'(\psi(y))\right)} \cdot \det(\psi'(y))}_{=\sqrt{\det(\psi'T \cdot \varphi_1'T \varphi_1' \cdot \psi'))} = \sqrt{\det((\varphi_1'(\psi'))^{\mathsf{T}}(\varphi_1\psi))} \\ \xrightarrow{\text{extited}} f(\varphi_1(x)) \sqrt{g^{\varphi_1}(x)} \; \mathrm{d}x = \int_{V_2} f(\varphi_1(\psi(y))) \cdot \underbrace{\sqrt{\det\left(\varphi_1'(\psi(y)) \cdot \varphi_1'(\psi(y))\right)} \cdot \det(\psi'(y))}_{=\sqrt{\det(\psi'T \cdot \varphi_1'T \varphi_1' \cdot \psi'))} = \sqrt{\det((\varphi_1'(\psi(y))^{\mathsf{T}}(\varphi_1\psi))} \\ \xrightarrow{\text{extited}} f(\varphi_1(\psi(y))) \cdot \underbrace{\sqrt{\det\left(\varphi_1'(\psi(y)) \cdot \varphi_1'(\psi(y)\right)} \cdot \det(\psi'(y))}_{=\sqrt{\det(\psi'T \cdot \varphi_1'T \varphi_1' \cdot \psi'))} \\ \xrightarrow{\text{extited}} f(\varphi_1(\psi(y))) \cdot \underbrace{\sqrt{\det\left(\varphi_1'(\psi(y)) \cdot \varphi_1'(\psi(y)\right)} \cdot \det(\psi'(y))}_{=\sqrt{\det(\psi'T \cdot \varphi_1'T \varphi_1' \cdot \psi')}} \\ \xrightarrow{\text{extited}} f(\varphi_1(\psi(y))) \cdot \underbrace{\sqrt{\det\left(\varphi_1'(\psi(y)) \cdot \varphi_1'(\psi(y)\right)} \cdot \det(\psi'(y))}_{=\sqrt{\det(\psi'T \cdot \varphi_1'T \varphi_1' \cdot \psi')}} \\ \xrightarrow{\text{extited}} f(\varphi_1(\psi(y))) \cdot \underbrace{\sqrt{\det\left(\varphi_1'(\psi(y)) \cdot \varphi_1'(\psi(y)\right)} \cdot \det(\psi'(y))}_{=\sqrt{\det(\psi'T \cdot \varphi_1'T \varphi_1' \cdot \psi')}} \\ \xrightarrow{\text{extited}} f(\varphi_1(\psi(y))) \cdot \underbrace{\sqrt{\det\left(\varphi_1'(\psi(y)) \cdot \varphi_1'(\psi(y)\right)} \cdot \det(\psi'(\psi(y))}_{=\sqrt{\det(\psi'T \cdot \varphi_1'T \varphi_1' \cdot \psi')}} \\ \xrightarrow{\text{extited}} f(\varphi_1(\psi(y))) \cdot \underbrace{\sqrt{\det\left(\varphi_1'(\psi(y)) \cdot \varphi_1'(\psi(y)\right)}}_{=\sqrt{\det(\psi'T \cdot \varphi_1'T \varphi_1' \cdot \psi')}} \\ \xrightarrow{\text{extited}} f(\varphi_1(\psi(y))) \cdot \underbrace{\sqrt{\det\left(\varphi_1'(\psi(y)) \cdot \varphi_1'(\psi(y)\right)}}_{=\sqrt{\det(\psi'T \cdot \varphi_1'T \varphi_1' \cdot \psi')}} \\ \xrightarrow{\text{extited}} f(\varphi_1(\psi(y))) \cdot \underbrace{\sqrt{\det\left(\varphi_1'(\psi(y)) \cdot \varphi_1'(\psi(y)\right)}}_{=\sqrt{\det(\psi'T \cdot \varphi_1'T \varphi_1' \cdot \psi')}} \\ \xrightarrow{\text{extited}} f(\varphi_1(\psi(y))) \cdot \underbrace{\sqrt{\det\left(\varphi_1'(\psi(y)) \cdot \varphi_1'(\psi(y)\right)}}_{=\sqrt{\det(\psi'T \cdot \varphi_1'T \varphi_1' \cdot \psi')}} \\ \xrightarrow{\text{extited}} f(\varphi_1(\psi(y))) \cdot \underbrace{\sqrt{\det\left(\varphi_1'(\psi(y)) \cdot \varphi_1'(\psi(y)\right)}}_{=\sqrt{\det(\psi'T \cdot \varphi_1'T \varphi_1' \cdot \psi')}} \\ \xrightarrow{\text{extited}} f(\varphi_1(\psi(y))) \cdot \underbrace{\sqrt{\det(\psi'T \cdot \varphi_1'T \varphi_1' \cdot \psi')}}_{=\sqrt{\det(\psi'T \cdot \varphi_1'T \varphi_1' \cdot \psi')}} \\ \xrightarrow{\text{extited}} f(\varphi_1(\psi(y))) \cdot \underbrace{\sqrt{\det(\psi'T \cdot \varphi_1' \cdot \psi')}}_{=\sqrt{\det(\psi'T \cdot \varphi_1' \cdot \psi')}}$$

Wegen
$$\varphi_2(y) = \varphi_1(\psi(y)) \xrightarrow{\text{Ketten}} \varphi_2'(y) = \varphi_1'(\psi(y)) \cdot \psi'(y)$$

Definition

Falls f=1 integrierbar über einem Kartengebiet $U\subset M$ ist, dann heißt

$$v_d(U) = \int_U 1 da \tag{6}$$

der d-dimensionale Inhalt von U . $\sqrt{g^{\varphi}(x)}$ heißt Flächenelement von U bezüglich U.

▶ Bemerkung

- 1) $v_d(U) = \mathcal{H}^d(U)$, d.h. der d-dimensionale Inhalt stimmt für Kartengebiete mit dem Hausdorff-Maß überein.
- 2) Nach (4): $v_d(U) = 0 \Leftrightarrow \mathcal{L}^d \varphi^{-1}(U) = 0$

■ Beispiel 2.6

Sei $M:=\{u=(u_1,u_2,u_3)\in\mathbb{R}^3\mid |u|=r,u_1>0\}$ (Halbsphäre mit Radius r). Berechne $\int_M f\mathrm{d}a$.

Parametrisierung von M (Kugelkoordinaten):

$$\varphi(x_1, x_2) = r \cdot \begin{pmatrix} \cos x_2 \cdot \cos x_1 \\ \cos x_2 \cdot \sin x_1 \\ \sin x_2 \end{pmatrix}$$

für
$$(x_1, x_2) \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) = V.$$

Offenbar ist $\varphi \colon V \to M \in C^1,$ regulär und Homö
omorphismus.

 $\Rightarrow \varphi$ ist Parametrisierung von M, d.h. M ist Mannigfaltigkeit und M auch Kartengebiet.

$$\varphi'(x) = r \cdot \begin{pmatrix} -\cos x_2 \cdot \sin x_1 & -\sin x_2 \cdot \cos x_1 \\ \cos x_2 \cdot \cos x_1 & -\sin x_2 \cdot \sin x_1 \\ 0 & \cos x_2 \end{pmatrix}$$
$$\varphi'(x)^\mathsf{T} \cdot \varphi(x) = r^2 \begin{pmatrix} \cos^2 x_2 & 0 \\ 0 & 1 \end{pmatrix}, \quad \sqrt{g^{\varphi}(x)} = \cos^2 x_2$$

Damit lässt sich dann obiges Integral berechnen:

$$\int_{M} f da = r^{2} \int_{V} f(\varphi(x)) \cdot \cos^{2} x_{2} dx = r^{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos x_{2} \cdot \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(\varphi(x_{1})) dx_{1} dx_{2}$$

z.B. mit $f(u) = u_1^2 + u_2^2$:

$$\begin{split} \int_{M} u_{1}^{2} + u_{2}^{2} \mathrm{d}a &= r^{4} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^{3} x_{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \mathrm{d}x_{1} \mathrm{d}x_{2} = \pi r^{4} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^{3} x_{2} \mathrm{d}x_{2} = \left[\sin x_{2} - \frac{1}{3} \sin^{3} x_{2} \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \\ &= \pi r^{4} \left(1 - \frac{1}{3} \right) \cdot 2 = \frac{4}{3} \pi r^{4}, \end{split}$$

z.B. für f = 1:

$$v_d(U) = \int_M da = \pi r^2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos x_2 = \pi r^2 [\sin x_2]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = 2\pi r^2 \quad \Rightarrow \quad \text{Kugeloberfläche im } \mathbb{R}^3 \colon 4\pi r^2$$

Satz 2.7 (Integration über n-1-dimensionale Graphen)

Sei $g: V \subset \mathbb{R}^{n-1} \to \mathbb{R}$ stetig differenzierbar, V offen, $\Gamma = \{(x, g(x)) \in \mathbb{R}^n \mid x \in V\}$.

$$\Rightarrow \text{ für } f \colon \Gamma \to \mathbb{R} \text{ gilt:} \int_{\Gamma} f \, \mathrm{d}a = \int_{V} f(x, g(x)) \sqrt{1 + (g'(x))^{2}} \, \mathrm{d}x, \text{ falls die rechte Seite ex.}$$
 (7)

Beweis. Γ ist (n-1)-dimensionale Mannigfaltigkeit und auch Kartengebiet bezüglich der Parametrisierung $\varphi \colon V \to \Gamma$ mit $\varphi(x) = (x, g(x))$.

Offenbar ist
$$\gamma = \sqrt{\det(\varphi'(x)^{\mathsf{T}} \cdot \varphi'(x)} \stackrel{(1)}{=} v_{n-1}(\varphi_{x_1}(x), \dots, \varphi_{x_{n-1}}(x)) \stackrel{(2)}{=} |\varphi_{x_1} \wedge \dots \wedge \varphi_{x_{n-1}}(x)|$$

Wegen
$$\varphi_{x_1}(x) \wedge \ldots \wedge \varphi_{x_{n-1}}(x) = (-1)^n {g'(x) \choose -1} \in \mathbb{R}^n$$

$$\Rightarrow \gamma = \sqrt{1 + |g'(x)|^2} \text{ (euklidische Norm)} \xrightarrow{\text{(4)}} \int_{\Gamma} f da = \int_{V} f(\varphi(x)) \cdot \sqrt{1 + |g'(x)|^2} dx$$

Flächeninhalt: von Γ ist somit

$$v_{n-1}(\Gamma) = \int_{V} \sqrt{1 + |g'(x)|^2} \, \mathrm{d}x$$
 (8)

■ Beispiel 2.8

Halbspähre $S_{+}^{n-1} = \{x \in \mathbb{R}^n \mid |x| = 1, x_4 > 0\}.$

Offenbar ist S^{n-1}_+ Graph von $g(x) = \sqrt{1-|x|^2} \ \forall x \in B_1(0)$

$$\Rightarrow v_{n-1}(S_+^{n-1}) = \int_{B_1(0)} \sqrt{1 + \frac{|x|^2}{1 - |x|^2}} \, \mathrm{d}x = \int_{B_1(0)} \frac{1}{\sqrt{1 - x^2}} \, \mathrm{d}x$$

$$f(x) = \sqrt{\frac{1}{1-|x|^2}}$$
 ist rotationssymmetrisch auf $B_1(0)$, d.h. $f(x) = \tilde{f}(x)$ für $\tilde{f} : [0, \infty] \to \mathbb{R}$.

Königsberger 2:

$$\int_{B_r(0)} f(x) dx = n \cdot \kappa_n \int_0^r \tilde{f}(\gamma) \gamma^{n-1} d\gamma$$
(9)

für
$$B_r(0) \subset \mathbb{R}^n$$
, $\kappa_n = \mathcal{L}^n(B_1(0))$

$$\frac{\frac{n-1}{\text{statt }n}}{\text{statt }n} v_{n-1}(S_{+}^{n-1}) = (n-1)\kappa_{n-1} \int_{0}^{1} \frac{r^{n-2}}{\sqrt{1-r^{2}}} dr = (n-1)\kappa_{n-1} \int_{0}^{1} r^{n} \frac{1}{r^{2}\sqrt{1-r^{2}}} dr$$

$$\stackrel{\text{part.}}{\underset{\text{Int.}}{=}} n \cdot (n-1)\kappa_{n-1} \int_{0}^{1} r^{n-1} \frac{\sqrt{1-r^{2}}}{r} dr \stackrel{(9)}{=} n \cdot \underbrace{\int_{B_{1}(0)} \sqrt{1-|x|^{2}} d\gamma}_{\text{Volumen unter Halbsphäre}}$$

$$=\sum_{n=1}^{n}\kappa_{n}$$

 $=\sum_{n=1}^n\kappa_n$ Sei $\omega_n=v_{n-1}(S_{n-1})=2v_{n-1}(S_+^{n-1})$ Oberfläche, dann $\omega_n=n\cdot\kappa_n$, z.B.

$$n=2: \ 2\pi = 2 \cdot \pi$$

$$n=3: 4\pi = 3 \cdot \frac{4}{3}\pi$$

