TD 1 Analyse numérique (B1-TP1)

Ibrahim ALAME

25/01/2024

1

Interpolation : On veut calculer, par trois méthodes distinctes, le polynôme d'interpolation de de la fonction $f(x) = \sin(x)$ en les 3 points $x_i = i\frac{\pi}{2}$ pour i = 0, 1, 2. On cherche donc $p(x) \in \mathbb{R}[x]$ tel que $p(x_i) = \sin(x_i)$ pour i = 0, 1, 2. Utiliser pour cela les trois méthodes suivantes :

- 1. Méthode directe : Poser $P(x) = ax^2 + bx + c$ puis résoudre le système linéaire $p(x_i) = \sin(x_i)$ pour i = 0, 1, 2.
- 2. Méthode de Lagrange : Appliquer $P(x) = \sum_{i=0}^{2} \sin(x_i) L_i(x)$ après avoir calculer les polynôme $L_i(x)$ pour i = 0, 1, 2.
- 3. Méthode de Newton : Appliquer $P(x) = \sum_{i=0}^2 \Delta_i \Pi_{k=0}^{i-1}(x-x_k)$ après avoir calculer les différences divisées Δ_i pour i=0,1,2.

Maintenant on veut calculer le polynôme d'interpolation en ajoutant le nouveau point d'interpolation $x_3 = \frac{3\pi}{2}$. Appliquer les trois méthodes précédentes et conclure.

 $\mathbf{2}$

Convergence de l'interpolation de Lagrange : Soit L_n le polynôme d'interpolation de Lagrange de la fonction définie par :

$$f(x) = \frac{1}{x - \alpha}, \qquad -1 \le x \le 1$$

aux n+1 points distincts $x_0,...,x_n$ de l'intervalle [-1,1].

- 1. Calculer les dérivées successives de la fonction f.
- 2. Montrer que si $\alpha > 3$, et si les n+1 points $x_0, ..., x_n$ sont équidistants, nous avons alors

$$\lim_{n \to \infty} ||f - L_n||_{\infty} = 0$$

- 3. Écrire l'approximation spline linéaire, f_n de f.
- 4. Montrer que si $\alpha \notin [-1,1]$, nous avons

$$||f - f_n||_{\infty} \le \frac{c}{n^2}$$

et donc que f_n converge uniformément vers f lorsque n tend vers l'infini.

3

Moindre carrés discrets : Nous recherchons le polynôme P de degré 2 qui approche le mieux le nuage de points $(x_i, y_i)_{1 \le i \le 6}$ suivant :

$$(-2,5), (-1,1), (0,-3), (1,-3), (2,-2), (3,1)$$

- 1. Tracer le nuage de points.
- 2. On pose $P(x) = ax^2 + bx + c$. les inconnues a, b et c sont solution du système :

$$\left(\begin{array}{ccc}
1 & \overline{x} & \overline{x^2} \\
\overline{x} & \overline{x^2} & \overline{x^3} & \overline{x^4}
\end{array}\right) \left(\begin{array}{c} c \\ b \\ a \end{array}\right) = \left(\begin{array}{c} \overline{y} \\ \overline{xy} \\ \overline{x^2y} \end{array}\right)$$

3. Résoudre le système et tracer la solution du problème.

4

Intégration numérique : On considère l'intégrale

$$I = \int_{1}^{2} \frac{1}{x} \mathrm{d}x$$

- 1. Calculer la valeur exacte de I.
- 2. Évaluer numériquement cette intégrale par la méthode des trapèzes avec n=3 sous-intervalles.
- 3. Pourquoi la valeur numérique obtenue à la question précédente est-elle supérieure à $\ln(2)$? Est-ce vrai quelque soit n? Justifier la réponse. (On pourra s'aider par un dessin.)
- 4. Quel nombre de sous-intervalles n faut-il choisir pour avoir une erreur inférieure à 10^{-4} ? On rappelle que l'erreur de quadrature associée s'écrit, si $f \in C^2([a,b])$.

$$E = \left| \frac{(b-a)^4}{12n^2} f''(\xi) \right| \qquad \xi \in]a,b[$$

5

Voici le relevé de la vitesse d'écoulement de l'eau v dans un conduit cylindrique en fonction du temps t :

t(s)	0	10	20	30	40	50	60
$v(\mathrm{m/s})$	2	1.98	1.7	1.44	1.32	1.20	1.02

La vitesse moyenne de l'eau en écoulement dans le conduit cylindrique peut être calculée par la relation suivante :

$$\overline{v} = \frac{1}{60} \int_0^{60} v(t) dt$$

- 1. Calculer la vitesse moyenne de l'eau \overline{v} par la méthode des rectangles à droite.
- 2. Calculer la vitesse moyenne de l'eau \overline{v} par la méthode des trapèzes.
- 3. Peut-on déterminer la vitesse moyenne de l'eau \overline{v} par la méthode de Simpson? Justifier rigoureusement votre réponse.

6

On souhaite déterminer une valeur approchée de

$$I = \int_0^1 e^{-x^2} \mathrm{d}x$$

en subdivisant l'intervalle [0,1] en N=10 sous-intervalles.

- 1. Majorer l'erreur commise en utilisant les différentes méthodes usuelles (rectangle à gauche, rectangle à droite, point milieu, trapèzes, Simpson).
- 2. Proposer une approche permettant de déterminer une valeur approchée de I à 10^{-10} près. (On pourra envisager une autre valeur de N).

7

On rappelle que l'erreur commise par la méthode des trapèzes pour une fonction f de classe $C^2([a,b])$ est majorée ainsi :

$$|I(f, a, b) - I_N(f, a, b)| \le \frac{(b - a)M_2}{12}h^2$$

où $M_2 = \sup_{a \le x \le b} |f(2)(x)|$. Combien faut-il de subdivisions de [0,1] pour évaluer l'intégrale

$$I = \int_0^1 x e^{-x} \mathrm{d}x$$

à 10^{-6} près?

On considère f une fonction de classe C^2 sur un intervalle J=[a,b], que l'on subdivise en N sous-intervalles. On note respectivement I_{RG} , I_{RD} , I_{T} , I_{PM} , I_{S} les approximations données par les méthodes usuelles (rectangles à gauche, rectangle à droite, trapèzes, point milieu, Simpson) de l'intégrale $I=\int_a^b f(x) \mathrm{d}x$.

- 1. Montrer que $I_T = \frac{I_{RG} + I_{RD}}{2}$
- 2. Exprimer I_S en fonction de I_{PM} et I_T .
- 3. Lorsque l'on connaît I_{RG} comment calculer rapidement I_{RD} ?
- 4. On suppose que f est une fonction croissante. Montrer que l'on a les inégalités $I_{RG} \leq I \leq I_{RD}$.
- 5. On suppose maintenant que f est une fonction convexe. Montrer que $I_{PM} \leq I \leq I_T$.

9

1. Déterminer par la méthode des rectangles à gauche et à droite puis celle des trapèzes la valeur de $I = \int_a^b f(x) dx$. sur la base des valeurs données dans le tableau suivant

ſ	\boldsymbol{x}	0	0, 1	0, 2	0, 3	0,4	0,5
ſ	f(x)	0	0,0993346	0,1947091	0,2823212	0,3586780	0,4207354

2. Ces points sont ceux donnant $f(x) = \sin(t)\cos(t)$. Comparer alors les résultats obtenus avec la valeur exacte. Conclure.

10

Le but de l'exercice est de calculer une valeur approchée de l'intégrale $I = \int_0^1 x^3 e^{-x} dx$. et la comparer avec sa valeur exacte. Pour cela, on découpe l'intervalle [0,1] en N=10 sous intervalle de même longueur.

- 1. Calculer la valeur du pas h.
- 2. Donner la valeur exacte de l'intégrale I.
- 3. (a) Calculer I par la méthode des rectangles à gauche.
 - (b) Calculer I par la méthode des rectangles du point milieu.
 - (c) Calculer I par la méthode des trapèzes.
- 4. Déterminer numériquement l'erreur relative commise par chaque méthode. Conclure.

11

Formule de Quadrature : Considérons la formule de quadrature suivante

$$\int_{-1}^{1} f(x) dx = \omega_1 f(-\alpha) + \omega_2 f(\alpha)$$

Où $\alpha \in]0;1].$

- 1. Déterminer les poids pour que cette formule de quadrature soit exacte pour les polynômes de $\mathbb{R}_1[X]$
- 2. On adopte désormais les poids déterminés à la question précédente. Quelle est la formule obtenue lorsque $\alpha = 1$? Est-elle exacte pour les polynômes de $\mathbb{R}_2[X]$?
- 3. Montrer que cette formule de quadrature est exacte sur $\mathbb{R}_2[X]$ pour une et une seule valeur de α , à déterminer.
- 4. On adopte la valeur de déterminée à la question précédente. La formule est-elle exacte sur $\mathbb{R}_3[X]$? sur $\mathbb{R}_4[X]$?
- 5. Adapter la formule obtenue à une intégrale $\int_0^1 f(x) dx$, puis à une intégrale $\int_a^b f(x) dx$.
- 6. Exprimer la formule composite obtenue lorsque l'on subdivise l'intervalle [a;b] en N sous-intervalles.

12

On propose dans un premier temps de construire la formule de quadrature à deux points

$$\int_{-1}^{1} f(x) dx = \frac{4}{3} f\left(-\frac{\xi}{2}\right) + \frac{2}{3} f(\xi)$$

- 1. Déterminer ξ pour que la formule de quadrature soit exacte pour toute fonction f polynomiale de degré $m \ge 1$ et donner la plus grande valeur de m.
- 2. À l'aide d'un changement de variable affine, en déduire une formule de quadrature pour l'intégrale :

$$\int_{a}^{b} f(x) \mathrm{d}x$$

3. En déduire une formule de quadrature composite à 2n+1 points, pour le calcul approché de $\int_a^b f(x) dx$.

13

Soit $f \in C^1([0;1])$. On considère la formule de quadrature élémentaire

$$\int_{0}^{1} f(x) dx \simeq \omega_{0} f(0) + \omega_{1} f'(0) + \omega_{2} f'(\xi)$$

où $\xi \in]0;1]$ et ω_0 , ω_1 et ω_2 sont des réels. On pose

$$E(f) = \int_0^1 f(x)dx - [\omega_0 f(0) + \omega_1 f'(0) + \omega_2 f'(\xi)]$$

- 1. Déterminer les paramètres ξ , ω_0 , ω_1 et ω_2 pour que la formule de quadrature soit exacte si f est un polynôme de degré inférieur ou égal à 3.
- 2. Les paramètres ξ , ω_0 , ω_1 et ω_2 étant ainsi fixés, calculer $E(x \mapsto x^4)$ et en déduire l'ordre de la méthode.
- 3. A l'aide d'un changement de variable, construire une méthode de quadrature élémentaire sur un intervalle [a, b].

14

1. Soit la formule de quadrature

$$\int_0^1 f(x) dx = \omega_1 f(0) + \omega_2 f(\alpha)$$

Où $\alpha \in]0;1]$.

- (a) Déterminer les poids pour que la formule soit exacte sur $\mathbb{R}_1[X]$.
- (b) Déterminer α pour que la méthode soit exacte pour les polynômes de degré ≤ 2 .
- (c) Adapter la formule obtenue à un intervalle [0; h].
- 2. On va dans le cas de cette formule pour une intégrale $\int_0^h f(x) dx$ prouver une estimation de l'erreur commise par la formule de quadrature pour une fonction f supposée de classe C^3 sur [0;h].

On notera $I(f) = \int_0^h f(x) dx$, Q(f) l'approximation donnée par la formule de quadrature, et enfin E(f) = I(f) - Q(f).

(a) Soit $M_3 = \sup_{0 \le x \le h} \left| f^{(3)}(x) \right|$. Montrer que l'on peut écrire f(x) = P(x) + R(x) avec P un polynôme de degré 2, que l'on précisera et R une fonction vérifiant

$$\forall x \in [0, h], \quad |R(x)| \le \frac{M_3}{6} x^3$$

- (b) Majorer en fonction de M_3 et de h les valeurs de |I(R)|, de |Q(R)|, de |E(R)|.
- (c) En déduire une majoration de |E(f)|.
- 3. (a) Donner la formule composite pour le calcul d'une intégrale $\int_a^b f(x) dx$ associée à la formule de quadrature élémentaire étudiée.
 - (b) Donner une majoration de l'erreur lorsqu'on utilise cette formule composite.

15

Soit une formule de quadrature élémentaire à p points. Montrer que cette formule ne peut pas être exacte pour tous les polynômes de $\mathbb{R}_{2p}[X]$. (Indication : considérer le polynôme $Q(x) = \prod_{i=1}^{p} (x - \alpha_i)^2$)

16

Soit p un entier avec p > 1. La formule à p points définie par

$$\int_0^1 f(x) dx = \frac{1}{p} \sum_{i=1}^p \left(\frac{i-1}{p-1} \right)$$

est-elle exacte sur $\mathbb{R}_1[X]$? Sur $\mathbb{R}_2[X]$?

17 Polynômes orthogonaux

Soit $E = \mathbb{R}[X]$. On munit E du produit scalaire

$$(P|Q) = \int_{-1}^{+1} P(t)Q(t)dt$$

1. Pour $n \in \mathbb{N}$, on pose

$$P_n(X) = \frac{1}{n!2^n} \frac{\mathrm{d}^n}{\mathrm{d}X^n} \left[\left(X^2 - 1 \right)^n \right]$$

- (a) Montrer que la famille $(P_n)_{n\in\mathbb{N}}$ est une famille orthogonale de E.
- (b) Déterminer $||P_n||$ pour $n \in \mathbb{N}$.
- 2. Déterminer P_0 , P_1 , P_2 et P_3 .
- 3. Déterminer les paramètres ξ_i et $\omega_i, i=1,2,3$ de la formule de quadrature

$$\int_{-1}^{1} f(x) dx \simeq \omega_1 f(\xi_1) + \omega_2 f(\xi_2) + \omega_3 f(\xi_3)$$

4. En déduire la formule composite de la méthode de Gauss-Legendre pour approcher à l'ordre 3 la valeur de l'intégral

$$\int_{a}^{b} f(x) \mathrm{d}x$$