WHAT IS CLAIMED IS:

1

24

2	1. A channel noise estimating method applied to a multi-carrier system
3	consisting of K subchannels over which original data symbols $(X_k[n])$ (where n is
4	the discrete time index, $k \in \{1,2,,K\}$ is the subchannel index) are transmitted in
5	a frequency-domain from a transmitting unit to a receiving unit, the noise
6	estimating method comprising the acts of:
7	reconstructing simulated input data symbols $(X'_k[n])$ that simulate the
8	original data symbols $(X_k[n])$;
9	delaying the actual received data symbols $(R_k[n])$ such that the delayed
10	actual received data symbols $(Q_k[n])$ are synchronous to the simulated input data
11	symbols $(X'_k[n])$;
12	calculating a channel response estimate $(W_k[n])$ of one subchannel k
13	based on said delayed actual received data symbols $(Q_k[n])$ and said simulated
14	input data symbols $(X'_k[n])$ according to the Least Mean Square algorithm;
15	estimating virtual received data symbols $(Y_k[n])$ based on said channel
16	response estimate $(W_k[n])$ and the simulated input data symbol $(X'_k[n])$; and
17	calculating a different quantity $(e_k[n])$ between the delayed actual
18	received data symbol $(Q_k[n])$ and the estimated virtual received data symbols
19	$(Y_k[n])$ to represent the channel noise of said subchannel k .
20	2. The method as claimed in claim 1, in the simulated input data symbols
21	$(X'_k[n])$ reconstructing act, the original data symbols $(X_k[n])$ being taken as the
22	simulated input data symbols $(X'_k[n])$ while the original data symbols $(X_k[n])$ are
23	exactly known to the receiving unit.

3. The method as claimed in claim 1, the simulated input data symbols

- 1 $(X'_{k}[n])$ reconstructing act further having:
- de-mapping and decoding the actual received data symbols $(R_k[n])$ on
- 3 each subchannel k to extract bit-stream data; and
- 4 encoding and mapping said bit-stream data to reconstruct said simulated
- 5 input data symbols $(X'_k[n])$.
- 4. The method as claimed in claim 3, wherein the simulated input data
- 7 symbols $(X'_k[n])$ reconstructing act further has a de-interleaving act after the
- 8 actual received data symbols $(R_k[n])$ de-mapping act, and an interleaving act
- 9 after the bit-stream data encoding act.
- 5. The method as claimed in claim 1, in the simulated input data symbols
- 11 $(X'_k[n])$ reconstructing act, said actual received data symbols (R[n]) on the
- subchannel k being directly mapped to form the simulated input data symbol
- 13 $(X'_k[n])$ for said subchannel k.
- 6. A channel noise estimating apparatus applied to a multi-carrier system
- 15 consisting of K subchannels over which original data symbols $(X_k[n])$ (where n is
- 16 the discrete time index, $k \in \{1,2,...,K\}$ is the subchannel index) are transmitted in
- a frequency-domain from a transmitting unit to a receiving unit, the noise
- 18 estimating apparatus comprising:
- a reconstructing unit for generating simulated input data symbols $(X'_{k}[n])$
- that simulate the original data symbols $(X_k[n])$;
- a D-tap delay line provided to delay actual received data symbols $(R_k[n])$
- 22 that are received by the receiving unit such that the delayed actual received data
- symbols $(Q_k[n])$ are synchronous to the simulated input data symbols $(X'_k[n])$,
- 24 wherein D is an integer greater than or equal to zero;

a channel response estimating unit, which estimates a channel response estimate $(W_k[n])$ of one subchannel k based on said delayed actual received data symbols $(Q_k[n])$ and said simulated input data symbols $(X_k[n])$ according to the Least Mean Square algorithm; a channel noise calculating unit corresponding to said channel response

estimating unit, where the channel noise calculating unit estimates virtual received data symbols $(Y_k[n])$ based on said channel response estimate $(W_k[n])$ and the simulated input data symbol $(X'_k[n])$;

wherein the channel noise calculating unit further calculates a different quantity $(e_k[n])$ between the delayed actual received data symbol $(Q_k[n])$ and the estimated virtual received data symbols $(Y_k[n])$ to represent the channel noise of said subchannel k.

- 7. The apparatus as claimed in claim 6, wherein while the original data symbols $(X_k[n])$ are exactly known to the receiving unit, the reconstructing unit takes the original data symbols $(X_k[n])$ as the simulated input data symbols $(X'_k[n])$, and the actual received data symbols are directly passed through the delay line without a delaying process.
- 8. The apparatus as claimed in claim 6, wherein the reconstructing unit based on the actual received data symbols $R_k[n]$ on each subchannel k generates simulated input data symbols $(X'_k[n])$.
- 9. The apparatus as claimed in claim 8, the reconstructing unit having: a bit-stream data extractor, which de-maps and decodes the actual received data symbols $R_k[n]$ on each subchannel k to construct the bit-stream data of the actual received data symbol; and

- a constructor, which encodes, and maps said bit stream data to
- 2 reconstruct said simulated input data symbols $(X'_k[n])$ for each subchannel k.
- 3 10. The apparatus as claimed in claim 9, said bit-stream data extractor
- 4 further including a de-interleaver, and said constructor further including an
- 5 interleaver.
- 6 11. The apparatus as claimed in claim 8, wherein the reconstructing unit
- 7 directly maps said actual received data symbols $(R_k[n])$ on the subchannel k to
- form the simulated input data symbol $(X'_{k}[n])$ for said subchannel k.