B1

NUCLEAR FACTOR KAPPA B ACTIVATION INHIBITOR TARGETING TAK1, AND IDENTIFICATION THEREOF

Patent Number:

JP2000197500

Publication date:

2000-07-18

Inventor(s):

SUGITA NAOHISA; SAKURAI HIROAKI; KAGEYAMA NORIKO; HASEGAWA

HIROSHI

Applicant(s)::

TANABE SEIYAKU CO LTD

Requested

Patent:

☐ J<u>P2000197500</u> (JP00197500)

Application

Number:

JP19990026803 19990204

Priority Number

Classification:

(s):

IPC

C12Q1/48; A61P29/00; A61P37/06; A61K45/00; C12N5/10; C12N9/99; C12Q1/02;

G01N33/15 : G01N33/50 : G01N33/566

EC Classification:

Equivalents:

Abstract

PROBLEM TO BE SOLVED: To identify or screening NF-&kappa B activation inhibitor usable for treatment or the like of autoimmune disease by examining the modulating activities of a specimen to the function of TGF-&beta activated kinase 1(TAK1).

SOLUTION: NF-&kappa B(Nuclear Factor kappa B) activation inhibitor useful as a therapeutic agent, prophylactic or the like of autoimmune disease or intractable disease providing inflammatory symptom is identified or screened by examining the modulating activities of a specimen to the function of the TAK1. Preferably, the function of the TAK1 is the one selected from the interaction of the TAK1 and a TAK1binding protein 1, activation of IKK complex by the TAK1 in a cell, the NF-&kappa B activation induced by the TAK1, and the like.

Data supplied from the esp@cenet database - I2

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-197500 (P2000-197500A)

(43)公開日 平成12年7月18日(2000.7.18)

(51) Int.Cl.7		識別記号		FΙ				テーマコード(参考)
C12Q	1/48			C12Q	1/48		Z	2G045
A61P	29/00			A 6 1 K	31/00		629	4B024
	37/06						637D	4B063
A 6 1 K	45/00				45/00			4B065
C 1 2 N	5/10			C 1 2 N	9/99			4 C 0 8 4
			審查謝求	未請求 蔚	求項の数12	OL	(全 25 頁)	最終頁に続く
								

(21)出願番号	特願平11-26803	(71)出願人	000002956
(22)出顧日	平成11年2月4日(1999.2.4)		田辺製薬株式会社 大阪府大阪市中央区道修町3丁目2番10号
(CL) LIDER LI	一种 (11年2月4日(1555.6.4)	(72)発明者	杉田 尚久
(31)優先権主張番号	特願平10-26003		奈良県奈良市西登美ケ丘3丁目3番9号
(32)優先日	平成10年2月6日(1998.2.6)	(72)発明者	櫻井 宏明
(33)優先権主張国	日本 (JP)		兵庫県三田市すずかけ台4丁目6番地3番
(31)優先権主張番号	特願平10-309316		館602号
(32)優先日	平成10年10月30日 (1998. 10. 30)	(72)発明者	▲陰▼山 法子
(33)優先権主張国	日本 (JP)		茨城県日立市石名坂町 1 ~19-4-301
		(74)代理人	100076923
			弁理士 箕浦 繁夫
			最終質に続く

(54) 【発明の名称】 TAK1を標的とするNF-ルB活性化抑制薬及びその同定方法

(57)【要約】

【課題】 新しい伝達分子に焦点をあてたNF-κB活性化抑制薬、自己免疫疾患などの治療薬・予防薬、及び、それらの新規な同定方法及びスクリーニング方法を提供する。

【解決手段】 TAK1(TGF-Bアクチベーテッドキナーゼ1)の機能に対する被験物質の変調作用を検定する工程を含む、NF-κB活性化抑制薬の同定方法又はスクリーニング方法。NF-κB活性化経路におけるTAK1の機能に対する被験物質の変調作用を検定する工程を含む、自己免疫疾患又は炎症症状を呈する難治性疾患の治療薬及び/又は予防薬の同定方法又はスクリーニング方法。また、前記方法によって選択又は同定された新規なNF-κB活性化抑制薬、および、自己免疫疾患、炎症症状を呈する難治性疾患などの治療薬・予防薬。

【特許請求の範囲】

【請求項1】 $TAK1(TGF-8アクチベーテッドキナーゼ1)の機能に対する被験物質の変調作用を検定する工程を含む、<math>NF-\kappa$ B活性化抑制薬の同定方法又はスクリーニング方法。

【請求項2】 被験物質の変調作用が、TAK1の機能を阻害又は抑制する作用である請求項1記載の方法。

【請求項3】 TAK1の機能が、(1) TAK1とTAK1結合蛋白質1との相互作用、(2) TAK1のプロテインキナーゼ活性、(3) 細胞内のTAK1によるIKK複合体の活性化、及び(4) 細胞内のTAK1により誘導されるNF-κB活性化から選択されるものである、請求項2記載の方法。

【請求項4】 TAK1の機能が、TAK1のプロテインキナーゼ活性である請求項2記載の方法。

【請求項5】 TAK1の機能が、細胞内のTAK1によるIKK複合体の活性化である請求項2記載の方法。 【請求項6】 TAK1とTAK1結合蛋白質1とを発現増強させた試験用細胞を用い、試験用細胞を被験物質と共存させる工程を含む請求項1記載の方法。

【請求項7】 NF-κB活性化抑制薬が同時に自己免疫疾患又は炎症症状を呈する難治性疾患の治療薬及び/ 又は予防薬である、請求項1~6のいずれか1項記載の方法。

【請求項8】 請求項1~6のいずれか1項記載の方法により、選択又は同定された、NF-κB活性化抑制薬。

【請求項9】 TAK1の機能を変調させる薬物を主成分とするNF-ルB活性化抑制薬。

【請求項10】 NF-κB活性化経路におけるTAK 1の機能に対する被験物質の変調作用を検定する工程を含む、自己免疫疾患又は炎症症状を呈する難治性疾患の治療薬及び/又は予防薬の同定方法又はスクリーニング方法。

【請求項11】 請求項10の方法により、選択又は同 定された自己免疫疾患又は炎症症状を呈する難治性疾患 の治療薬及び/又は予防薬。

【請求項12】 NF-κB活性化経路におけるTAK 1の機能を阻害又は抑制する作用を有する薬物を主成分 とする、自己免疫疾患又は炎症症状を呈する難治性疾患 の治療薬及び/又は予防薬。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、NF-κB活性化抑制薬、および自己免疫疾患、炎症症状を呈する難治性疾患の治療薬・予防薬に関する。また、それらの新規なスクリーニング方法及び同定方法に関する。

[0002]

[0003]

【従来の技術】 転写因子の一つとして知られるNF-κ

B (Nuclear Factor kappa B) は、炎症や免疫応答に関 与する種々の遺伝子の転写調節において重要な役割を果 たしている。通常、NF-kBは、細胞質内では、制御 タンパク質であるI k Bと結合した不活性な複合体とし て存在しているが、細胞に一定の刺激が与えられると、 In Bが修飾・分解を受け複合体からはずれることによ り活性化される。このように活性化されたNF-κB は、核内へ移行し、ゲノムDNA上の種々の遺伝子の上 流域 (エンハンサー領域) に存在する特異塩基配列(約 10塩基からなるNF-κB結合配列)と結合して、遺伝 子の転写を活性化する。NF-κB結合配列は、免疫グ ロブリン遺伝子の他、IL-1、腫瘍壊死因子等の炎症 性サイトカイン、インターフェロン、細胞接着因子等の 遺伝子の上流域にも存在し、NF-kBは、これら遺伝 子の発現誘導を介して、炎症や免疫応答に関っている。 【0004】NF-κBは、自己免疫疾患や炎症性疾患 の病態形成にも関っており、NF-kBの活性化抑制作 用を有する薬物は、自己免疫疾患(慢性関節リウマチ、 全身性エリテマトーデス、全身性強皮症、ベーチェット 病、結節性動脈周囲炎、潰瘍性大腸炎、糸球体腎炎な ど)、炎症症状を呈する難治性疾患(変形性関節症、ア テローム硬化症、乾癬、アトピー性皮膚炎など)、各種 ウイルス性疾患、エンドトキシンショック、敗血症、な どの疾患の治療及び予防に効果を示すことが知られてい る。そして、これら疾患の治療・予防薬開発のために、 新規なNF-κBの活性化抑制薬の探索研究が進められ ている (Koppら、Science、第265巻、第956頁、1994 年; Baeuerleら、Advances in Immunology 第65巻、 第111~137頁、1997年; 特開平7-291859; 特開平9-227561)。

【0005】従来のNF-κB活性化抑制薬の探索研究においては、薬物のスクリーニング方法あるいは同定方法としては、インビトロで細胞を刺激の存在下(もしくは非存在下)、被験薬物の存在下もしくは非存在下に培養し、NF-κBの活性化を検出する方法が一般に用いられている。

【0006】しかしながら、細胞が一定の刺激(シグナル)を受けてから、NF- κ Bの活性化に至るまでのシグナル伝達経路には、プロテインキナーゼなどの各種伝達分子が関わる多くのステップの存在が考えられる。従って、より効率的な創薬研究のためには、主要な役割を果たす伝達分子を明らかにした上でそれらに焦点をしばった新しい薬物スクリーニング方法を確立することが望まれる。しかし、NF- κ Bの活性化のメカニズムは、幾つかの伝達因子(TRAF2(TNF- α receptor associated factor 2)、MAPKKKの一つであるNIK(NF- κ B-inducing kinase)、 $I\kappa$ Bキナーゼ(IKK)、ユビキチン共役酵素、268プロテオソーム等)が同定されるなど、少しずつ解明されつつあるものの(Nikolaiら、Nature、第385巻、第540~544頁;Ma

niatis、Science、第278巻、第818~819頁、1997年; Ba euerleら、Advances in Immunology 第65巻、第111~13 7頁、1997年)、いまだ不明な点が多く、より進んだメカニズムの解明と新しい伝達分子に焦点をあてたスクリーニング方法が望まれていた。

【0007】一方、 $TGF-\beta P 7 4$ ベーテッドキナーゼ1(Transforming growth factor- β -activated kinase 1; TAK1とも称する)は、哺乳動物のMAPKK K (mitogen-activated protein kinase kinase kinase e)の一つとして見出されたものである(Yamaguchi 6、Science、第270巻、第2008~2011頁、1995年;特開平9-163990)。<math>TAK1は、 $TGF-\beta$ (Transforming growth factor- β)によって制御されるTAI-1プロモータを活性化する。また、その命名の由来ともなっているように $TGF-\beta$ によって活性化を受けることから、 $TGF-\beta$ スーパーファミリーのメンバーによるシグナルの細胞内伝達経路において作用していると考えられてきた。

【0008】また、TAK1は、TAK1結合蛋白質1 (TAK1 binding protein 1; TAB1とも称する)と結合 (相互作用)することにより活性な形となり、シグナル伝達経路においてMAPKKKとして機能することが知られている (Shibuyaら、Science、第272巻、第1179~1182頁、1996年)。しかしながら、TAK1とNF- κ B活性化との関連については何ら知られていなかった。

[0009]

【発明が解決しようとする課題】本発明の目的は、新しい伝達分子に焦点をあてたNF-κB活性化抑制薬の同定方法およびスクリーニング方法を提供することにある。また、自己免疫疾患、炎症症状を呈する難治性疾患などの治療薬・予防薬の新規な同定方法およびスクリーニング方法を提供することにある。

【0010】さらに、前記方法によって得られる新規な NFールB活性化抑制薬、および自己免疫疾患、炎症症 状を呈する難治性疾患などの治療薬・予防薬を提供する ことにある。

[0011]

【課題を解決するための手段】本発明者らは、ヒトのTAK1cDNAの3つのアレル変異体(variant)を単離し、さらに、これらを用いた研究の中で、ヒトTAK1をTAB1と共に発現増強(over expression)させることにより、NF- κ Bの活性化が起こることを見出した。またTAK1は、TAB1と相互作用するとともに、IKK(1κ Bキナーゼ)複合体と相互作用しその活性化に関与すること、さらに、キナーゼ活性を失った変異型のTAK1は、NF- κ B活性化を阻害することを見出した。

【0012】これらの知見から、TAK1が、NF-K Bの活性化に至るシグナル伝達経路(NF-KB活性化 経路)の中の重要な伝達分子であり、TAK1の機能を 抑制する薬物はNFールBの活性化抑制薬となり得ることを見出し、本発明を完成するに至った。

【0013】すなわち、本発明は、TAK1(TGFβアクチベーテッドキナーゼ1)の機能に対する被験物 質の変調作用を検定する工程を含む、NF-κB活性化 抑制薬の同定方法又はスクリーニング方法である。

【0014】また、NF- κ B活性化経路におけるTA K 1の機能に対する被験物質の変調作用を検定する工程を含む、自己免疫疾患又は炎症症状を呈する難治性疾患の治療薬及び/又は予防薬の同定方法又はスクリーニング方法である。

【0015】さらに、前記方法によって選択又は同定された新規なNF-κB活性化抑制薬、および、自己免疫疾患、炎症症状を呈する難治性疾患などの治療薬・予防薬である。

[0016]

【発明の実施の形態】本発明において用いるTAK1は、いずれの種由来のものであってもよく、例えばヒト、マウス、ラット、ウサギ、ブタ、イヌ、サル、モルモットなどの哺乳動物由来のものが挙げられる。これらのうち、ヒトの治療薬の研究開発に利用する上ではヒト由来のものを用いることが好ましい。

【0017】TAK1のcDNA配列およびアミノ酸配列はすでに報告されている(Genbank/EMBL データベース Accession No. D76446; Yamaguchiら、Science、第270巻、第2008~2011頁、1995年)。また、後記配列表の配列番号3、4及び5には、発明者らが新たに見出したとトのTAK1cDNAの3つのアレル変異体(variant)のDNA配列及びそれらにコードされるTAK1のアミノ酸配列を示した。

【0018】前記の通り、発明者らが独自に見出した知見によれば、TAK1は、NF-κB活性化経路において、主要な伝達分子として機能する。

【0019】TAK1は、細胞内でTAB1(TAK1結合蛋白質1)と相互作用(結合)することによって活性化され、プロテインキナーゼ活性(MAPKKK活性)を示す活性型となるが、この相互作用により自己リン化とTAB1のリン酸化を生じる。また、TAK1はIKK複合体とも機能的に相互作用する。活性化されたTAK1は、IKK複合体を活性化して、NF-κB活性化経路における伝達分子としての機能を発揮し、NF-κB活性化を誘導すると考えられる。

【0020】NF $-\kappa$ B活性化経路におけるTAK1の機能の模式図を図9に示した。

【0021】本発明においては、上記のようなTAK1の機能(特に $NF-\kappa$ Bの活性化経路における機能)に着目し、被験物質の作用(特に阻害又は抑制作用)を検定する。このような機能としては、より具体的には、例えば(1)TAK1とTAB1との相互作用(結合)、

(2) TAK1のプロテインキナーゼ活性、(3) 細胞内のTAK1によるIKK複合体の活性化、(4) 細胞内のTAK1により誘導されるNF-κB活性化、などが挙げられる。これら機能に対する被験物質の作用を検定する方法を以下に述べる。

【0022】(1) TAK1とTAB1との相互作用 (結合)に対する作用の検定

例えば、TAK1とTAB1との結合を直接検出する方法、共免疫沈降法(co-immunoprecipitation)法により検出する方法、あるいは、ツーハイブリッドシステム(two-hybrid system)(米国特許第5283173、およびProc.Natl.Acad.Sci. USA、第88巻、第9578-9582頁、1991年)などの方法を用いることができる。

【0023】TAK1とTAB1との結合を検出する際には、TAK1及びTAB1としてはそれらの全体を用いてもよいが、少なくとも両者の結合に関与する領域を含む部分ポリペプチドを用いてもよい。あるいは、それらに適当なタグ標識(グルタチオンーSートランスフェラーゼ、6×His、プロテインA、βーガラクトシダーゼ、マルトースーパインディングプロテイン、フラッグ抗原、Xpress抗原、HA抗原、Myc抗原などの部分ポリペプチドなど)を付加した融合タンパク質を用いてもよい。

【0024】TAK1とTAB1との結合を直接検出する場合は、例えばRIなどで標識したTAK1(もしくはTAB1)を用い、TAB1(もしくはTAK1)に必要に応じて適当な夕グ標識を付加した融合タンパク質との結合を、被験物質の存在下で直接的に検出する。

【0025】共免疫沈降法(co-immunoprecipitation)法による場合は、例えば、TAK1、TAB1、もしくはこれらに付加したタグ標識を認識する抗体を検出に用いる。まず、TAK1及びTAB1を発現している細胞から細胞溶解液を調製し、一方の蛋白質を認識する抗体を用いて細胞溶解液中のその蛋白質を免疫沈降させる。免疫沈降させた画分中に含まれるもう一方の蛋白質の存在を、免疫ブロッティング等の方法により検出することにより、細胞内での両蛋白質の相互作用(結合)を検出できる。

【0026】また、ツーハイブリッドシステムは、レポーター遺伝子の発現をマーカーとする方法である(米国特許第5283173、およびProc.Natl.Acad.Sci. USA、第88巻、第9578-9582頁、1991年)。

【0027】ツーハイブリッドシステムを利用する場合、具体的には例えば、(i)転写因子の第一領域(DNA結合領域又は転写活性化領域)とTAK1からなる第一の融合蛋白質をコードする遺伝子、(ii)転写因子の第二領域(転写活性化領域又はDNA結合領域)とTAB1からなる第二の融合蛋白質をコードする遺伝子、及び(ii)転写因子のDNA結合領域が結合し得る応答配列およびその下流に連結されたレポーター遺

伝子、を含む試験用細胞を用い、これを被験物質と共存させてインキュベートし、レポーター遺伝子の発現を指標として、TAK1とTAB1の結合に対する被験物質の作用を検定する。被験物質がTAK1とTAB1の結合を阻害する場合には、被験物質の存在によってレポーター活性の減少が認められる。

【0028】第一及び第二の融合蛋白質をコードする遺伝子は通常の遺伝子組換え技術を用いて、設計し構築することができる。

【0029】宿主細胞は、例えば、酵母細胞、昆虫細胞 及び哺乳動物細胞などが挙げられる。これらのうち、酵 母細胞は培養が容易で迅速に実施できる上、外来遺伝子 の導入など遺伝子組換え技術を適用するのが容易である 点で有利である。

【0030】転写因子は、宿主細胞内で機能するものであればよく、例えば、酵母のGAL4蛋白質(Keeganら、Science、第231巻、第699-704頁、1986年、Maら、Cell、第48巻、第847-853頁、1987年)、GCN4蛋白質(Hopeら、Cell、第46巻、第885-894頁、1986年)、ADR1蛋白質(Thukralら、Molecular and Cellular Biology、第9巻、第2360-2369頁、1989年)などが挙げられる。

【0031】応答配列は、転写因子に対応した応答配列を用いればよく、例えば、転写因子としてGAL4を用いる場合、応答配列としては、UASg(ガラクトース代謝遺伝子の上流域活性化部位: upstream activation site of galactose genes)と称されるGAL4特異的なDNA配列を用いることができる。

【0032】レポータ遺伝子も、特に限定されない。例えば、大腸菌由来のβーガラクトシダーゼ遺伝子(1 a c Z)、バクテリアトランスポゾン由来のクロラムフェニコールアセチルトランスフェラーゼ遺伝子(C A T)、ホタル由来のルシフェラーゼ遺伝子(Luc)等、安定でかつ活性の定量的測定が容易な酵素の遺伝子などを好適に用いることができる。

【0033】(2) TAK1のプロテインキナーゼ活性 に対する作用の検定

例えば、基質蛋白質を含む溶液に、TAK1及びTAB 1を含む溶液、及び、ATP(必要に応じてR1などで 標識したもの)を含む溶液を添加し、被験物質の存在下 もしくは非存在下で酵素反応を行い、基質蛋白質へのリ ン酸の取込みなどを指標としてプロテインキナーゼ活性 を測定し、被験物質の作用を検定する。

【0034】TAK1及びTAB1は、遺伝子組換え技術により適当な宿主細胞(酵母細胞、昆虫細胞及び哺乳動物細胞など)で発現させたもの等を用いることができる。また、TAK1のN末端領域がTAB1との結合に関与しており、N末端(N末端側22アミノ酸)が欠失したTAK1は、TAB1と結合しない場合にも活性型のシグナル伝達分子として作用することが知られている

(Yamaguchiら、Shi buyaら)ので、TAK1とTAB1の両者を用いる代わりに、N末端が欠失しTAB1非依存的に活性を示す活性変異型TAK1を用いてもよい。【0035】基質蛋白質としては、TAK1自体、TAB1、もしくはそれらの部分ペプチドを用いることができる。また、IKK及びIKK複合体と機能的に相互作用する分子又はそれらの部分ペプチドもまた基質蛋白質として用いることができる。

【0036】この他、アフリカツメガエルのXMEK2(SEK1)(Shibuyaら、Science、第272巻、第1179~1182頁、1996年)、ヒトMKK3(Derijardら、Science、第267巻、第682~685頁、1995年)、ヒトMKK6(MAPKK6)(Raingeaudら、Molecular and Cellular Biology、第16巻、第1247~1255頁、1996年; Moriguchiら、Journal of Biological Chemistry、第271卷、第13675~13679頁、1996年)などのMAPKK(mitogen activated protein kinase kinase)やそれらの部分ペプチドを基質として用いることもできる。基質としてMAPKKを用いる場合には、MAPKKの活性化(MAPK(mitogen activated protein kinase)に対するリン酸化活性の増大)を指標としてTAK1のプロテインキナーゼ活性を測定することもできる。

【0037】(3)細胞内のTAK1によるIKK複合体活性化に対する作用の検定

例えば、TAK1(より詳細には活性型のTAK1)を発現増強(over expression)させた細胞を試験用細胞として用いる。このような試験用細胞としては、TAK1及びTAB1を共に発現増強した細胞が挙げられ、TAK1及びTAB1の発現用ベクターを適当な宿主細胞中に導入することにより得られる。或いは、N末端が欠失しTAB1非依存的に活性を示す活性変異型TAK1を発現増強させた細胞を用いてもよい。

【0038】前記試験用細胞を、例えば、被験物質の存在下又は非存在下に培養する。培養後の細胞から、IK K複合体を含む画分を免疫沈降などにより取得し、これ を用いてIKKキナーゼ反応を行い、IKK複合体の活 性化を測定して、被験物質の作用を検定する。

【0039】(4) 細胞内のTAK1により誘導される NF-kB活性化に対する作用の検定

例えば、前記(3)と同様、活性型TAK1の発現増強 細胞を試験用細胞として用い、これを被験物質の存在下 又は非存在下に培養する。NF-κB活性化をゲルシフ トアッセイなどにより検出して、被験物質の作用を検定 する。

【0040】活性型TAK1の発現増強細胞は、コントロール細胞(ベクターのみを導入した細胞など)と比較するとシグナル伝達分子として働くTAK1の発現量が増加している。従って、TAK1に作用する被験薬物を選択したい場合の試験細胞として好適である。例えば、活性型TAK1を発現増強させた細胞及びコントロール

細胞の両者において、被験物質の存在によりNF-κB 活性化抑制作用が認められた場合には、該被験物質の作 用点はTAK1にある可能性が高いと判断される。

【0041】前記(1)~(4)の方法において、試験に用いる細胞としては、ヒトなどの哺乳動物由来の細胞株を好適に使用でき、例えば、ヒトHeLa細胞、ヒトJurkat細胞、ヒトTHP-1細胞、サルCOS-7細胞、チャイニーズハムスターCHO細胞などが挙げられ、このうち、ヒトHeLa細胞、ヒトJurkat細胞、ヒトTHP-1細胞等が好ましい。

【0042】前記(1)~(4)の方法において、TA K1、TAB1、もしくはこれらの融合蛋白質などを発 現増強させる場合、既知の配列情報と通常の遺伝子組換 え技術を用いて行うことができる。

【0043】TAK1の配列情報は、前記の通りであり、TAB1のcDNA配列およびアミノ酸配列もまた報告されている(Genbank/EMBL データベース Accession No.U49928; Shibuyaら、Science、第272巻、第1179~1182頁、1996年)。TAB1は、いずれの種由来のものであってもよく、例えばヒト、マウス、ラット、ウサギ、ブタ、イヌ、サル、モルモットなどの哺乳動物由来のものが挙げられる。これらのうち、ヒトの治療薬の研究開発に利用する上ではヒト由来のものを用いることが好ましい。

【0044】TAK1、TAB1などのcDNAあるいは遺伝子は、既知のアミノ酸配列や塩基配列の情報などをもとに設計し合成したプライマーやプローブを用い、通常のPCR(Polymerase Chain Reaction)法やRTーPCR法、あるいはDNAライブラリからのスクリーニングにより単離することができる。これらを適当なベクターに組み込んで発現用ベクターを構築できる。【0045】ベクターとしては、適当なプロモーター(例えば、CMVプロモーター、SV40プロモーター、LTRプロモーター、エロンゲーション1αプロモ

ー、LTRプロモーター、エロンゲーション1αプロモーター等)を含む動物細胞用のベクター (例えば、レトロウイルス系ベクター、パピローマウイルスベクター、ワクシニアウイルスベクター、SV40系ベクター等)を使用できる。

【0046】前記(1)~(4)のような検定方法により、TAK1の機能に対する阻害作用や抑制作用が認められた被験物質については、さらに $NF-\kappa$ B活性化に対する抑制作用を確認すればよい。あるいは、自己免疫疾患又は炎症症状を呈する難治性疾患の既知の病態モデル(in vitro又はin vivo)において治療及V/又は予防効果を確認すればよい。

【0047】NF-ĸB活性化は、既知のゲルシフトアッセイ法 (Sakuraiら、Journal of Neurochemistry 第59巻、第2067~2075頁、1992年; Sakuraiら、Biochimic a Biophysica Acta、第1316巻、第132~138頁、1996年)、レポーターアッセイ法 (Tanakaら、Journal of V

eterinary Medical Science、第59巻、第575-579頁、19 97年; EP-652290-A; 特開平7-2918 59; 特開平9-227561)等により調べること ができる。

【0048】自己免疫疾患又は炎症症状を呈する難治性 疾患の既知の病態モデル (in vitro又はin vivo) とし ては、ヒトT細胞株 (Jurkat細胞) を用いるPHA誘発 IL-2産生モデル (Wacholtzら、Cell Immunology、 第135巻、第285-298頁、1991年)、ヒトマクロファージ 系細胞RAW264.7を用いるLPS+IFN-7誘 発i NOs産生モデル (Xieら、Science、第256巻、第2 25-228頁、1992年)及びヒトHe La細胞を用いるTN $F - \alpha$ 誘発 I L - 6産生モデル等のin vitroモデル、ラ ットアジュバント関節炎モデル (Connorら、European J ournal of Pharmacology、第273巻、第15-24頁、1995 年)、トリニトロベンゼンスルホン酸誘発大腸炎モデル (Kissら、European Journal of Pharmacology、第336 巻、第219-224頁、1997年)及びラット馬杉腎炎モデル (Sakuraiら、Biochimica BiophysicaActa、第1316巻、 第132~138頁、1996年)等のin vivoモデルなどが挙げ られる。

【0049】以下、実施例をもって本発明をさらに詳しく説明するが、これらの実施例は本発明を制限するものではない。

【0050】なお、下記実施例において、各操作は特に明示がない限り、「モレキュラークローニング(Molecular Cloning)」(Sambrook, J., Fritsch, E.F.及びManiatis, T. 著、Cold Spring Harbor Laboratory Pressより1989年に発刊)に記載の方法により行うか、または、市販の試薬やキットを用いる場合には市販品の指示書に従って使用した。

[0051]

【実施例】実施例1 ヒトTAK1及びTAB1のc DNA単離

(1) ヒトTAK1のcDNA単離

ヒト子宮けい癌由来細胞株HeLa(ATCC CCL 2)からボリ(A)RNAを調製した。これを鋳型と し、オリゴdTプライマーを用いて一本鎖cDNAを調 製した。

【0052】前記で得られた一本鎖cDNAを鋳型とし、PCR (polymerase chain reaction) 法により、ヒトTAK1のcDNA断片を取得した。PCRに用いるプライマーは、マウスTAK1のcDNA配列 (Genbank/EMBL データベース Accession No. D76446; Yamagu chiら、Science、第270巻、第2008~2011頁、1995年)を参考にして設計し、DNA合成機で合成した。センスプライマーとしては、制限酵素切断のための認識部位を含む配列 (10塩基) 及びマウスTAK1cDNAの翻訳開始コドンとその下流の配列 (20塩基) からなる30マーの合成プライマー (後記配列表の配列番号1)を

用い、アンチセンスプライマーとしては、制限酵素切断のための認識部位を含む配列(10塩基)及びマウスTAK1cDNAの終止コドンとその上流の相補配列(20塩基)からなる30マーの合成プライマー(後記配列表の配列番号2)を用いた。

【0053】前記PCRで得られた産物(約1.7kbのcDNA断片の混合物)をプローブとし、ヒト肺cDNAライブラリー(Clontech社製)をスクリーニングすることにより、2種のヒトTAK1の全コーディング領域を含むcDNA(hTAK1a-cDNA及びhTAK1b-cDNA)を取得した。

【0054】また、前記と同様にして調製したHeLaのmRNAを鋳型とし、RT-PCR (Reverse transcript - polymerase chain reaction) 法により、別途、とトTAK1の全コーディング領域を含むcDNA (hTAK1c-cDNA)を得た。プライマーとしては、前記と同様の合成プライマーを用いた。

【0055】得られた3種のcDNAについて、ダイデオキシ法により、そのDNA配列を決定した。各cDNA(hTAK1a-cDNA、hTAK1b-cDNA及びhTAK1c-cDNA)について、そのコーディング領域を含む領域のDNA配列およびそれらにコードされるヒトTAK1(hTAK1a、hTAK1b及びhTAK1c)のアミノ酸配列を、後記配列表の配列番号3、配列番号4、及び配列番号5に示した。

【0056】hTAK1a、hTAK1b及びhTAK1cのcDNA配列は、マウスTAK1のcDNA配列と比較すると、コーディング領域における相同性は、各々91.7%、87.6%及び86.8%であった。【0057】hTAK1aは、579アミノ酸残基からなる。マウスTAK1と比較すると4アミノ酸の置換が見られ、アミノ酸配列における相同性は99.3%であった。

【0058】 hTAK1bは、606アミノ酸残基からなり、hTAK1aと比較するとC末端側にスプライシング変異によって生じたと思われる27アミノ酸の挿入が見られる。また、hTAK1cは、567アミノ酸残基からなり、hTAK1aと比較すると、hTAK1bと同様C末端に27アミノ酸の挿入があり、さらにその下流(C末端側)に39アミノ酸の欠失が見られた。【0059】3種のヒトTAK1およびマウスTAK1のアミノ酸配列の比較を、図1に示した。

【0060】なお、特開平9-163990の配列番号 5に記載されたヒトT細胞株Jurkat由来のTAK1は、 hTAK1aのアミノ酸配列と比較すると、1アミノ酸 の置換(第372番目のArg→His)が見られ、ア レル変異体と考えられる。

【0061】(2) ヒトTAB1のcDNA単離 前項(1)と同様にしてHeLaから調製したポリ (A)RNAを鋳型とし、RT-PCRによりヒトTA B1のcDNAを得た。プライマーは、報告されている ヒトTAB1のcDNA配列 (Genbank/EMBL データベ ース Accession No. U49928; Shibuyaら、Science、第27 2巻、第1179~1182頁、1996年)を参考にして設計し、 DNA合成機で合成した。センスプライマーとしては、 制限酵素切断のための認識部位を含む配列(10塩基) 及びTAB1cDNAの翻訳開始コドンとその下流の配列(20塩基)からなる30マーの合成プライマー(後 記配列表の配列番号6)を用い、アンチセンスプライマーとしては、制限酵素切断のための認識部位を含む配列 (10塩基)及びTAB1cDNAの終止コドンとその 上流の相補配列(20塩基)からなる30マーの合成プライマー(後記配列表の配列番号7)を用いた。

【0062】得られたcDNA断片についてDNA配列を決定し、既知のヒトTAB1の全コーディング領域を含んでいることを確認した。

【0063】実施例2 TAK1の発現を増強させた細胞におけるNF-κB活性化の検出

(1) ヒトTAK1の発現を増強させた細胞の取得前記実施例1の(1)において取得した3種のヒトTAK1cDNAを用い、そのコーディング領域を含む部分断片(hTAK1a-cDNAのEcoRI-NheI断片、hTAK1b-cDNAのEcoRI-NheI断片及びhTAK1c-cDNAのEcoRI-XbaI断片)の各々を、真核細胞発現用ベクタープラスミドpcDNA3.1(+)(Invitro gen社製)のEcoRI-XbaI切断部位に組込んで、TAK1発現用組換えプラスミドを作製した。

【0064】また、前記実施例1の(2)にて取得した ヒトTAB1cDNAを用い、そのコーディング領域を 含む部分断片(HindIII-EcoRI断片)を、発現用ベクタ ープラスミドpcDNA3.1(+)のHindIII-EcoRI切 断部位に組込んで、TAB1発現用組換えプラスミドを 作製した。

【0065】前記TAK1発現用組換えプラスミドを、TAB1発現用組換えプラスミドと共に、もしくは単独で、HeLa細胞にトランスフェクション(一過性トランスフェクション; transient transfection)した。この時、トランスフェクションは、トランスフェクション用カチオン性リボソーム(商品名: LipofectAMINE、Life Technologies社製)を用いて行った。

【0066】かくしてTAK1発現増強細胞もしくはTAK1-TAB1共発現増強細胞を得た。これら細胞の培養は、10%ウシ胎児血清、ペニシリン(100単位/ml)及びストレプトマイシン(100μg/ml)を添加した高グルコース含有ダルベッコーイーグル培地(Gibco社製)中にて行った。

【0067】(2)ゲルシフトアッセイ 前項(1)で得られたTAK1発現増強細胞およびTA K1-TAB1共発現増強細胞を用い、文献(Sakurai ら、Journal of Neurochemistry 第59巻、第2067~2075 頁、1992年; Sakuraiら、Biochim. Biophys. Acta、 第1316巻、第132~138頁、1996年)記載の方法に準じ て、以下のようにゲルシフトアッセイを行った。すなわ ち、トランスフェクションの後、細胞を培養し24時間 後に細胞から核抽出液を調製した。

【0068】この核抽出液(5μg)とRI標識した検出用プローブとを結合緩衝液(20mHEPES (pH7.9), 0.3 mM EDTA, 0.2mM EGTA, 80mM NaCI, 10% グリセロール, 2μg/ml poly(dl-dC)) 中、室温で30分間結合反応させた後、反応液についてボリアクリルアミドゲル電気泳動を行った。ゲルを減圧乾燥させた後、オートラジオグラフィーにてプローブと結合したNFーκ Bを検出した。また、コントロールとしては、構成的に発現している転写因子であるOct-1 (Octamer-1) (Verrijzerら、Genes and Development、第4巻、第1964-1974頁、1990年)を検出した。

【0069】検出用プローブは、32 Pで標識した二本鎖の合成DNAを用いた。NF-κB検出用プローブの配列としては、HIVのLTR (Long Terminal Repeat)に存在するNF-κB結合配列と同様のものを用いた。また、Oct-1検出用プローブの配列としては、コンセンサス配列AGCTAAATを含むオリゴヌクレオチドを用いた。

【0070】前記のようにして、ゲルシフトアッセイによりNF-κBの核移行を指標としてNF-κB活性化を調べた結果、図2に示した通り、ヒトTAK1(hTAK1a、hTAK1b又はhTAK1c)をTAB1とともに発現増強させた場合には、NF-κBの核への移行が見られ、NF-κBの活性化が認められた。このような結果は、ヒトTAK1として、hTAK1a、hTAK1b及びhTAK1cのいずれを用いた場合にも認められたが、特にhTAK1bにおいて、NF-κBの活性化が顕著であった。

【0071】一方、ヒトTAK1のみを発現増強させた 細胞においては、NF-κBの活性化が認められなかった。また、コントロール蛋白質として検出したOct-1は、TAK1及び/又はTAB1の発現増強には影響を受けず、恒常的に発現が見られた。

【0072】このように、ヒトTAK1の作用の増強に伴って、NF-κBの活性化が観察されたことから、TAK1は、NF-кBの活性化に至るまでのシグナル伝達経路において、伝達分子として主要な働きをしていることがわかった。

【0073】(3)レポーターアッセイ(ルシフェラーゼアッセイ)

田中らの文献 (Tanakaら、Journal of Veterinary Medical Science、第59巻、第575-579頁、1997年) 記載の方法に準じ、以下のようにしてレポーターアッセイ (ルシフェラーゼアッセイ) を行った。

【0074】まず、NF-ĸB 結合配列 (GGGGACTTTC

C)を4個連結したオリゴヌクレオチドを ホタルルシフェラーゼ遺伝子 (Luc) の上流に組み込んで、レボータープラスミド (p(kB)4-Luc) を作製した。

【0075】次に、前項(1)記載の方法に準じ、TA K1発現用組換えプラスミドを、必要に応じてTAB1 発現用組換えプラスミドと共に、HeLa細胞にトランスフェクション(一過性トランスフェクション; transient transfection)した。但、トランスフェクションに際しては、前記で得られたレボータープラスミド(p(kB)4-Luc)を共に用いた。

【0076】かくしてレポータープラスミド及びTAK 1発現用組換えプラスミド(及びTAB1発現用組換え プラスミド)を含むトランスフェクタントを得た。得ら れたトランスフェクタントを48時間培養した後、細胞 を溶解して調製した抽出液について、ルシフェラーゼ活 性を測定した。ルシフェラーゼ活性は、ルシフェラーゼ アッセイキット、ピッカジーン(商品名、東洋インキ社 製)及び化学発光測定装置(Microlumant LB96P、ベル トールドジャパン株式会社製)を用いて測定した。

【0077】その結果、図3に示した通り、ヒトTAK 1(hTAK1a、hTAK1b又はhTAK1c)の みを発現増強させた細胞においては、ベクターのみを含む細胞と比較してルシフェラーゼ活性の増加(すなわち、NFーκBの活性化)はほとんど認められなかった。しかし、ヒトTAK1をTAB1とともに発現増強させた細胞では、ベクターのみを含む細胞と比較して、ルシフェラーゼ活性の顕著な増加(すなわち、NFーκBの活性化)が認められた。

【0078】このように、前記のゲルシフトアッセイ法と同様、レポーターアッセイ法 (ルシフェラーゼアッセイ法) によっても、ヒトTAK1の作用の増強に伴って、NF-κBの活性化が観察され、TAK1が伝達分子として主要な働きをしていることが確認された。

【0079】また、このようにTAK1発現増強細胞とコントロール細胞を用いるレポーターアッセイの系により、被験薬物のTAK1に対する作用とNF-κB活性化に対する作用を同時に検定することができると考えられる。

【0080】実施例3 ツーハイブリッドシステムを利用したTAK1とTAB1との結合検出系

前記実施例1の(1)で得たヒトTAK1cDNAの翻訳領域を切り出し、これを、転写因子GAL4のDNA結合領域(GAL4の1から147番目のアミノ酸残基)をコードするDNAを含む発現ベクターpGBT9(Clontech社製、酵母two-hybridシステム用ベクター)のマルチクローニング部位に挿入する。これにより、GAL4のDNA結合領域とヒトTAK1との融合タンパク質を発現するためのプラスミドpGBT9-TAK1を得る。

【0081】前記実施例1の(2)で得たヒトTABc DNAの翻訳領域を切り出し、これを、GAL4の転写活性 化領域(GAL4の768から881番目のアミノ酸残基)をコードするDNAを含む発現ベクターpGAD424 (Clontech社製、酵母two-hybridシステム用ベクター)のマルチクローニング部位に挿入する。これにより、GAL4の転写活性化部位とTAB1との融合蛋白質を発現するためのプラスミドpGAD424-TAB1を得る。

【0082】前記で得られる融合蛋白質発現プラスミドpGBT9-TAK1及びpGAD424-TAB1を宿主酵母細胞株SFY526(Clontech社製)に導入する。細胞株SFY526は、GAL1とlacZの融合遺伝子が染色体に組込まれており、GAL4遺伝子の欠損変異を有している細胞株である(Bartelら、BioTechniques、第14巻、第920-924頁、1993年)。形質転換は、それぞれのプラスミドの選択マーカーであるトリプトファン及びロイシンを欠乏させた合成培地にて培養することにより選別を行って、両プラスミドが導入された形質転換株を得る。

【0083】前記で得られる酵母形質転換株を、液体培地で培養する。培養の際、培地中には、被験物質を添加(もしくは無添加)する。4~5時間培養後、酵母菌体を遠心分離により回収し、β-ガラクトシダーゼ活性を指標として、TAK1とTAB1の結合(相互作用)を検出する。

【0084】被験物質の添加によって、濃度依存的にβ-ガラクトシダーゼ活性の減少が認められた場合には、その被験物質には、TAK1とTAB1の結合を阻害する作用を有すると考えられる。

【0085】実施例4 TAK1のMAPKKK活性の 輸出系

ヒトTAK1(又はN末端(22アミノ酸)が欠失した ヒトTAK1)を、以下のようにして昆虫細胞の系で発 現させ精製する。すなわち、前記実施例1の(1)で得 たヒトTAK1cDNAの翻訳領域を用い、タグペプチ ド(6×His又はグルタチオンーSートランスフェラ ーゼ)を付加するために設計した適切なDNA配列を含 むパキュロウイルス発現ベクターpAcHLT又はpA cGHLT(ファーミンジェン社製)のマルチクローニ ング部位に挿入し、ヒトTAK1発現プラスミドを得 る。得られたプラスミドを宿主昆虫細胞SF21に導入 し得られた形質転換細胞を培養して、タグペプチドが付 加されたヒトTAK1(又はN末端欠失ヒトTAK1) を発現させ、細胞抽出液から、付加したタグペプチドを 利用するアフィニティークロマトグラフィーにより精製 する

【0086】また、前記と同様にして、ヒトTAB1を 昆虫細胞の系で発現させ精製する。

【0087】また、ヒトMKK3及びヒトMKK6を、以下のようにして発現させ精製する。まず、モリグチ (Moriguchi) らの方法 (Journal of Biological Chemi stry、第271巻、第13675~13679頁、1996年)に準じ、ヒトMKK3に関する配列情報 (Genbank/EMBL データ

ベース Accession No.L36719; Derijardら、Science、 第267巻、第682~685頁、1995年)及びヒトMKK6に 関する配列情報 (Genbank/EMBL データベース Accessio n No.U39656およびU39657; Raingeaudら、Molecularand Cellular Biology、第16巻、第1247~1255頁、1996 年)をもとにプライマーを設計し、これらを用いるPC R法により、ヒトMKK3及びヒトMKK6の全翻訳領 域を含むcDNA、又はTAK1によってリン酸化され るアミノ酸残基近傍の配列を含むcDNAを取得する。 これらcDNAを用い、タグペプチド(6×His又は グルタチオン-S-トランスフェラーゼ)を付加するた めに設計した適切なDNA配列を含む大腸菌発現ベクタ -pQE-30 (QIAGEN社製) 又はpGEX-2 T (ファルマシア社製) のマルチクローニング部位に挿 入して、ヒトMKK3発現プラスミド及びヒトMKK6 発現プラスミドを得る。得られるプラスミドを宿主大腸 菌(JM109株など)に導入し得られた形質転換細胞 を培養して、タグペプチドが付加されたヒトMKK3及 びヒトMKK6を各々発現させ、細胞抽出液から、付加 したタグペプチドを利用するアフィニティークロマトグ ラフィーにより精製する。

【0088】前記で得られるヒトTAK1(又はN末端欠失ヒトTAK1)を必要に応じてヒトTAB1と組み合わせて酵素(MAPKKK)として用い、ヒトMKK3もしくはヒトMKK6を基質として用いて、被験物質の存在下又は非存在下で酵素反応を行う。基質蛋白質は予めプレート上に固相化して用い、反応は32 P又は33 P標識ATP100μMを含むトリス緩衝液(20mM Tris-HC1, pH7.5, 2mM EGTA, 10mM MgCl2)中30℃にて行う。酵素反応後、プレートを洗浄した後シンチレーションカウンターにて32 P又は33 P標識ATPの取込みを測定してすることにより、酵素活性を測定し、被験物質による阻害の有無を判定する。

【0089】実施例5 変異型TAK1を発現させた細胞におけるNF-κB活性化の抑制

以下のようにして、キナーゼ活性を欠く変異型TAK1 (または野生型TAK1)を発現増強させた細胞を用い、NF-κB活性化の有無を検出した。

【0090】(1) TAK1及びTAB1の発現ベクター構築とトランスフェクション

ベクタープラスミドpFLAG-CMV2は、フラッグ 抗原のタグを付加した蛋白質を哺乳動物細胞中で発現さ せるためのベクターである。ヒトTAK1(ヒトTAK 1a)の全長cDNAを、pFLAG-CMV2(Ko dak社製)のEcoRI-XbaI制限酵素切断部位 に組み込むことにより、フラッグ付加された野生型TA K1(Flag-TAK1)の発現ベクターを得た。

【0091】また、変異導入用キット (QuickChange si te-directed mutagenesis kit; Stratagene社製)を用 い、前記Flag-TAK1発現ベクターのTAK1翻 訳領域に変異導入して各種変異発現ベクターを取得し、塩基配列を決定した。かくしてフラッグ付加された変異型TAK1(Flag-TAK1K63W)の発現ベクターを得た。この発現ベクターにより発現される変異型TAK1は、野生型TAK1の63番目のリジン残基がトリプトファン残基に置換されており、TAK1のキナーゼ活性を失っていた。

【0092】前記のフラッグ付加された野生型又は変異型TAK1(Flag-TAK1又はFlag-TAK1K63W)の発現ベクターを、単独あるいはTAB1発現ベクターとともにHeLa細胞にトランスフェクションし、一過性に発現させた。また、コントロールとして、TAK1発現ベクターにかえてベクターのみを用いた。トランスフェクションは、リポフェクトアミン試薬(Life Technologies社製)を用いて行い、TAB1の発現ベクターは前記実施例2(1)と同じものを用いた。

【0093】(2)ゲルシフトアッセイ

前記(1)で得た、フラッグ付加された変異型TAK1 (又は野生型TAK1)をTAB1とともに発現増強させた細胞を用い、実施例2(2)と同様にして、ゲルシフトアッセイを行った。

【0094】その結果、図4の(A)に示した通り、ベクターのみ導入した細胞と比較して、野生型TAK1(Flag-TAK1)をTAB1とともに発現増強させた細胞において、 $NF-\kappa$ Bの核移行が増強され、 $NF-\kappa$ B活性化が認められた。しかし、キナーゼ活性を欠く変異型TAK1(Flag-TAK1K63W)の場合は、TAB1とともに発現させても $NF-\kappa$ Bの核移行は増強されなかった。

【0095】(3)レポーターアッセイ(ルシフェラーゼアッセイ)

前記(1)で得た、変異型TAK1(F1ag-TAK1K63W)の発現ベクターをHeLa細胞にトランスフェクションした。但、トランスフェクションに用いる F1ag-TAK1K63W発現ベクターの量は、 $O\mu$ g、 $O.03\mu$ g及 $VO.1\mu$ gの3種類とし、トータルのDNA量が同じ($O.1\mu$ g)になるようベクタープラスミドで調整した。

【0096】また、トランスフェクションの際には、実施例2の(3)で得たレポータープラスミド (NF $-\kappa$ B結合配列とホタルルシフェラーゼ遺伝子を含むp (kB)4-Luc)を同時に加えてトランスフェクションした。

【0097】トランスフェクションの24時間後、培地中にTNF $-\alpha$ を最終濃度20ng/m」となるよう添加した(コントロールはTNF $-\alpha$ 無添加とした)。さらに、5時間培養後、実施例2の(3)と同様にして、細胞を溶解し、ルシフェラーゼ活性を測定した。

【0098】その結果を、図4(B)に示した(図中T

AK1K63Wの無印、+、++は、各々F1ag-T AK1K63W発現ベクターの添加量 $0\mu g$ 、0.03 μg 及び $0.1\mu g$ を各々表す。)。図4(B) に示した通り、 $TNF-\alpha$ 刺激によって誘導されたルシフェラーゼ活性の増加($NF-\kappa$ Bの活性化)は、トランスフェクトに用いた変異型TAK1発現ベクターの用量に依存して抑制された。

【0099】この結果から、キナーゼ活性を欠く変異型 TAK1は、細胞内で発現させることにより、NF-κ Bの活性化を抑制することがわかった。

【0100】このことは、前記(2)の結果と同様、NF-κB活性化経路においてTAK1が主要な働きをする分子であることを裏付けるとともに、TAK1のキナーゼ活性やTAK1の活性化を阻害する薬物が、NF-κBの活性化を抑制することを強く裏付けるものである。

【0101】実施例6 細胞内におけるTAK1とTA B1の相互作用

以下のようにして、TAK1をTAB1とともに発現増強させた細胞を用い、免疫沈降法により細胞内におけるTAK1とTAB1の相互作用(結合)を検出した。

【0102】(1)細胞のトランスフェクション まず、実施例5と同様にして、フラッグ付加された野生型TAK1(Flag-TAK1)又は変異型TAK1 (Flag-TAK1K63W)の発現ベクターを、単独もしくはTAB1発現ベクターとともに、HeLa細胞にトランスフェクションした。

【0103】(2)免疫沈降および免疫ブロッティング トランスフェクションの24時間後、細胞を回収し、以 下のようにして細胞溶解液 (cell lysate) を調製し た。すなわち、細胞を、細胞溶解緩衝液 (25mM HEPES(p H7.7) , 0.3M NaCl , 1.5mM MgCl , 0.2mM EDTA , 0.1% T riton X-100, 20mMβ - glycerophosphate, 0.1mM sodiu m orthovanadate, 0.5mM PMSF, 1mM DTT, 10 µg/ml apr otinin、10μg/ml leupeptine)を用いて溶解した後、 3倍に希釈し、10分間氷冷した。遠心後、上清を分取 し、これを細胞溶解液として以下の操作に用いた。 【0104】前記で得た細胞溶解液を、抗フラッグ抗体 (M5、コダック社製)とともに1.5時間氷冷インキュ ベートし、さらにプロテインGセファロース (Pharmaci a社製)を添加し、4℃、1.5時間緩やかに混合し て、免疫複合体をプロテインGセファロースビーズに吸 着させた。このビーズを遠心により回収した後、洗浄用 緩衝液 (20mM HEPES(pH7.7)、50mM NaCl、2.5mM MgC l₂、0.1mM EDTA、0.05% Triton X-100) で5回洗浄 し、これを免疫沈降画分として以下の操作に用いた。 【0105】前記ビーズ(免疫沈降画分)をSDSーポ リアクリルアミドゲル電気泳動に供した後、PVDF (polyvinylidene difluoride) 膜に転写し、免疫ブロ ッティングを行って、免疫沈降画分中に存在するTAB

1及びTAK1を検出した。TAK1及びTAB1を検出するための抗体としては、抗TAK1抗体(M-17) (Santa Cruz Biothechnology社製)及び抗一TAB1抗体(N-19) (Santa Cruz Biothechnology社製)を各々用いた。

【0106】抗フラッグ免疫沈降画分の免疫ブロッティングの結果を図5に示した。上段は、抗TAB1抗体での検出結果、また下段は抗TAK1抗体での検出結果である。

【0107】図5に示した通り、野生型TAK1(Flag-TAK1)を発現増強させた細胞の抗フラッグ免疫沈降画分中に、TAB1が共存していた。また、野生型にかえて変異型TAK1(Flag-TAK1K63W)を発現増強させた細胞においても同様に、免疫沈降画分中にTAB1が共存していた。

【0108】このように、TAB1はTAK1(野生型及び変異型)と共免疫沈降されたことから、TAK1とTAB1は細胞内で相互作用していることがわかる。

【0109】また、野生型TAK1とTAB1は、共発 現させた場合に両者ともSDSーポリアクリルアミドゲ ル電気泳動での移動度がやや減少する傾向が見られた が、キナーゼ活性を有しない変異型TAK1の場合には このような移動度の減少は見られなかった。このような 移動度の減少は、両蛋白質が、機能的な相互作用により リン酸化を受けたことを反映していると考えられた。

【0110】(3)被験物質の作用の検定

前記(1)と同様にして、TAK1をTAB1とともに 発現増強させた細胞を得、これを被験物質の存在下又は 非存在下に培養する。培養後の細胞について、前記

(2)と同様にして免疫沈降法によりTAK1とTAB1の相互作用(結合)を検出する。被験物質の存在によって、TAK1とTAB1の共免疫沈降が減少するかどうかを判定することにより、その被験物質のTAK1とTAB1の相互作用(結合)に対する被験物質の作用を検定する。

【0111】実施例7 TAK1による自己リン酸化と TAB1リン酸化

以下のようにして、TAK1をTAB1とともに発現増強させた細胞から免疫沈降させたTAK1について、キナーゼアッセイを実施し、TAK1による自己リン酸化とTAB1のリン酸化を検出した。

【0112】(1)細胞のトランスフェクション及び免疫沈降

まず、実施例5と同様にして、フラッグ付加された野生型TAK1 (Flag-TAK1)又は変異型TAK1 (Flag-TAK1K63W)の発現ベクターを、単独もしくはTAB1発現ベクターとともに、HeLa細胞にトランスフェクションした。トランスフェクション24時間後の細胞から、実施例6と同様にして細胞溶解液を調製し、抗フラッグ抗体による免疫沈降を行った。

【0113】(2)キナーゼアッセイ 前記で得た抗フラッグ免疫沈降画分を用い、以下のよう にして、インビトロのキナーゼ反応を行った。

【0114】すなわち、免疫沈降画分を、 30μ 1のキナーゼ緩衝液(20mM HEPES(pH7.6)、20mM MgCl $_2$ 、2mM D TT、 20μ MATP、20mM β —glycerophosphate、20mM diso dium p-nitrophenylphosphate、0.1mM sodium orthovanadate、 3μ Ci[γ -32P]ATP)に加え、30°、309間インキュベートした。反応終了後、反応液をSDSーボリアクリルアミドゲル電気泳動に供し、泳動後のゲルについてオートラジオグラフィーを実施した。

【0115】その結果、図6に示した通り、野生型TA K1 (Flag-TAK1)とTAB1の両者を発現増強させた細胞の抗フラッグ免疫沈降画分では、TAK1 のリン酸化 (自己リン酸化)及びTAB1のリン酸化が認められた。しかし、野生型TAK1のみを発現増強させた細胞の免疫沈降画分では、TAK1及びTAB1のいずれのリン酸化も認められなかった。また、キナーゼ活性を欠く変異型TAK1については、TAB1と共に発現増強させた場合でもリン酸化は認められなかった。【0116】これらのことから、TAK1はTAB1と

考えられた。 【0117】実施例8 細胞内におけるTAK1とIK Kとの相互作用。

共存することにより活性化されて、TAK1の自己リン

酸化及びTAK1によるTAB1のリン酸化が起こると

以下のようにして、TAK1をIKKとともに発現増強させた細胞を用い、免疫沈降法により細胞内におけるTAK1とIKKとの相互作用(結合)を検出した。

【0118】(1) 細胞のトランスフェクション まず、ヒトIΚΚαおよびヒトIΚΚβの各cDNA を、ベクタープラスミドρcDNA3.1(+) His B(Invitrogen社製) に組込むことによりI KKの発現ベクターを取得した。ヒトIKKα (Genban k/EMBL accessionNo.AF012890; Cell、第90巻、第373-383頁、1997年)、およびヒトIKKβ (Genbank/EMBL accession No.AF029684; Science、第278巻、第866-86 9頁、1997年)のcDNAは、ヒト単球由来細胞株(T HP-1)のmRNAから逆転写PCR (Reverse tran scriptase-polymerase chain reaction) により取得し たものを用いた。

【0119】これらIKK発現ベクター($IKK\alpha$ 発現ベクター及び $IKK\beta$ 発現ベクター)により、Xpressタグポリペプチドが付加された $IKK(Xpress-IKK\alpha$ または $Xpress-IKK\beta$)を発現させることができる。

【0120】次に、実施例5と同様にして、フラッグ付加した野生型TAK1(Flag-TAK1)の発現ペクターを、単独又はTAB1発現ベクターとともにHeしa細胞にトランスフェクションした。この際、前記で

得た IKK ($Xpress-IKK \alpha$ または $Xpress-IKK \beta$) の発現ベクターも同時に添加(又は非添加) してトランスフェクションした。

【0121】(2)免疫沈降及び免疫ブロッティングトランスフェクションの24時間後の細胞から、実施例6と同様にして、細胞溶解液を調製、抗フラッグ抗体による免疫沈降を行った。免疫沈降画分及び細胞溶解液についてSDSーポリアクリルアミド電気泳動を行った後、免疫ブロッティングを行って、IKK及びTAK1を検出した。

【0122】IKK (Xpress-IKKα及びβ) 及びTAK1を検出するための抗体としては、抗Xpress抗体 (M-21) (Santa Cruz Biothechnology 社製)及び抗-TAK1抗体 (M-17) (Santa Cruz Biothechnology社製)を各々用いた。

【0123】抗フラッグ免疫沈降画分の免疫ブロッティングの結果を図7に示した。

【0124】上段は、抗フラッグ免疫沈降画分の抗Xpress抗体による検出結果、中段は、細胞溶解液の抗Xpress抗体による検出結果、また下段は、抗フラッグ免疫沈降画分の抗TAK1抗体による検出結果である。

【O125】図7に示した通り、TAK1(F1ag-TAK1)とIKK($Xpress-IKK\alpha$ 又は $Xpress-IKK\alpha$ 又は $Xpress-IKK\beta$)を発現増強させTAB1は発現増強させなかった細胞では、抗フラッグ免疫沈降画分中にIKKが検出された。このようにIKK($IKK\alpha$ 及び β)がTAK1と共免疫沈降されたことから、TAK1とIKK($IKK\alpha$ 及び β)は細胞内で相互作用していることがわかった。

【0126】しかし、TAK1、IKKとともにTAB 1も発現増強させた細胞では、抗フラッグ免疫沈降画分中にIKKは検出されなかった。このことから、TAK 1は、活性化されていない状態では細胞内でIKKと安定な結合を生じるが、TAB1により活性化された状態では、細胞内でのIKKとの結合との安定な結合が見られないと考えられた。

【O127】また、細胞溶解液の免疫抽出液の免疫プロッティングの結果、TAK1及びIKKとともにTAB1も発現増強させた細胞においては、IKK(IKKα及びβ)のSDS-ポリアクリルアミドゲル電気泳動での移動度がやや減少する傾向が認められた。一方、このような傾向は、TAB1を発現増強させなかった細胞においては見られなかった。

【0128】これらのことから、TAB1で活性化されたTAK1の存在によって、IKKの両サブユニット($IKK\alpha$ 及び β)は細胞内でリン酸化を受けるものと考えられた。すなわち、TAK1は、NIK(Regnier et al., 1997;Woronicz et al., 1997)と同様に、IKK(又はIKK複合体と機能的に相互作用する分子)を

リン酸化して、IKKのキナーゼ活性を促進することにより、NF-κB活性化を誘導すると考えられる。

【0129】実施例9 TAK1によるIKK複合体の 活性化

以下のようにして、TAK1をTAB1とともに発現増強させた細胞から免疫沈降させたIKK複合体について、IkBを基質とするキナーゼ反応(IKKキナーゼアッセイ)を実施し、IKK複合体の活性化を検出した。

【 O 1 3 O 】 (1) 細胞のトランスフェクション及び免疫沈降

まず、実施例5と同様にして、フラッグ付加された野生型TAK1 (Flag-TAK1)又は変異型TAK1 (Flag-TAK1K63W)の発現ベクターを、単独もしくはTAB1発現ベクターとともに、HeLa細胞にトランスフェクションした。

【0131】また、外来性 I K K を発現増強させる系では、実施例8と同様に、Xpress P が付加された I K K (Xpress I K K Q X Q

【0132】トランスフェクションの24時間後の細胞から、実施例6と同様にして、細胞溶解液を調製し、免疫沈降を行った。但、免疫沈降に用いる抗体は、内在性IKK複合体を免疫沈降させるためには抗IKK α 抗体(H-744)(Santa Cruz Biotechnology社製)を用い、また外来性IKKの免疫沈降のためには抗Xpress抗体(M-21)(Santa Cruz Biotechnology社製)を用いた。用いた抗IKK α 抗体は、IKK α と同様IKK β も認識する。

【0133】(2) IKKキナーゼアッセイ 前記で得られた免疫沈降画分について、実施例7と同様 にして、インビトロのキナーゼ反応を行った。但、基質 として、組換え I κ B (2.5 μg)を反応系に添加し た。反応終了後、反応液をSDSーポリアクリルアミド ゲル電気泳動に供し、泳動後のゲルについてオートラジ オグラフィーを実施した。

【0134】反応基質とする組換え $I \times B$ としては、G ST (グルタチオン-S-トランスフェラーゼ)のC末端にヒト $I \times B \alpha$ の第1から54番目までのアミノ酸残基からなる部分ポリペプチドを連結した融合ペプチド (以下、 $GST-I \times B \alpha 1-54$)を用いた。

【 O 1 3 5 】 組換え I κ Bは、大腸菌宿主にGST-I κ B α 1-54の発現ベクターを導入した形質転換株の培養物から調製した。GST-I κ B α 1-54の発現ベクターは、ヒト I κ B α (Genbank/EMBL accession No. M69043; Cell、第65巻、第1281-1289頁、1991年)の c D N A のうち第 1 から 5 4番目までのアミノ酸残基をコードする c D N A 部分を、ベクタープラスミド p G E X - 2 T (Pharmacia 社製)の B a m H I - E c o R I 切断部位

に挿入して作製した。

【0136】IKKキナーゼアッセイの結果を図8に示した。(A)は、内在性IKK複合体(抗IKKα抗体による免疫沈降画分)のキナーゼアッセイの結果であり、(B)は、外来性IKK(抗Xpress抗体による免疫沈降画分)のキナーゼアッセイの結果である。【0137】図8(A)に示した通り、フラッグ付加した野生型TAK1(Flag-TAK1)およびTAB1を共に発現増強させた場合、内在性IKK複合体のIKKキナーゼ活性は顕著に増加した。一方、キナーゼ活性を欠く変異型TAK1(Flag-TAK1K63W)はIKK活性を促進しなかった。

【0138】また、外来性IKKを発現させた細胞においても、図8(B)に示した通り、野生型TAK1をTAB1と共に発現増強させた場合、外来性IKKα及びβのIKKキナーゼ活性が増大したが、変異型TAK1ではTAB1と共に発現増強させてもIKKキナーゼ活性は増大しなかった。

【0139】これらの結果は、TAB1により活性化されたTAK1は、 $IKK\alpha$ 及び $IKK\beta$ を活性化することにより $NF-\kappa$ Bを活性化することを裏付ける。

【0140】(3)被験物質の作用の検定

前記と同様の系を用い、TAK1によるIKK複合体活性化に対する被験物質の作用を検定することができる。すなわち、TAK1をTAB1とともに発現増強した細胞を得、これを被験物質の存在下又は非存在下に培養する。培養後の細胞について、前記と同様にしてIKK複合体画分を免疫沈降させ、免疫沈降画分のIKKキナーゼ活性を測定して、被験物質の存在によりIKKキナーゼ活性が減少するかどうかを判定する。

[0141]

【発明の効果】本発明の方法は、新しい伝達分子に焦点をあてたNF-κB活性化抑制薬の同定方法およびスクリーニング方法となる。本発明によれば、TAK1に作用点を有する、新しいタイプのNF-κB活性化抑制薬を得ることができる。また、本発明の方法は、自己免疫疾患、炎症症状を呈する難治性疾患などの疾患の治療薬及び/又は予防薬の同定方法及びスクリーニング方法としても有用である。

【0142】本発明の方法により選択された薬物、あるいは同定された薬物は、作用点が明らかとなっているので、医薬品としての開発に有利である。

【0143】また、TAK1の機能を阻害又は抑制する作用を有する薬物は、新しいタイプのNF- κB活性化抑制薬となるほか、自己免疫疾患(慢性関節リウマチ、全身性エリテマトーデス、全身性強皮症、ベーチェット病、結節性動脈周囲炎、潰瘍性大腸炎、糸球体腎炎など)、炎症症状を呈する難治性疾患(変形性関節症、アテローム硬化症、乾癬、アトピー性皮膚炎など)、各種ウイルス性疾患、エンドトキシンショック、敗血症など

の疾患の治療薬及び/又は予防薬となる。 【0145】配列番号:2 配列の長さ:30 [0144] 【配列表】配列番号:1 配列の型:核酸 配列の長さ:30 鎖の数:一本鎖 トポロジー:直鎖状 配列の型:核酸 配列の種類:他の核酸(合成プライマー) 鎖の数:一本鎖 トポロジー:直鎖状 GCGCAGATCT TCATGAAGTG CCTTGTCGTT 配列の種類:他の核酸(合成プライマー) 配列 [0146] GGCCAGATCT ATGTCGACAG CCTCCGCCGC 配列番号:3 配列の長さ:2785 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類: cDNA to mRNA 配列 GGACACGGCT GTGGCCGCTG CCTCTACCCC CGCCACGGAT CGCCGGGTAG TAGGACTGCG 60 CGGCTCCAGG CTGAGGGTCG GTCCGGAGGC GGGTGGGCGC GGGTCTCACC CGGATTGTCC 120 GGGTGGCACC GTTCCCGGCC CCACCGGGCG CCGCGAGGGA TC 162 ATG TCT ACA GCC TCT GCC GCC TCC TCC TCC TCC TCG TCT TCG GCC 207 Met Ser Thr Ala Ser Ala Ala Ser Ser Ser Ser Ser Ser Ser Ala 5 1 10 GGT GAG ATG ATC GAA GCC CCT TCC CAG GTC CTC AAC TTT GAA GAG 252 Gly Glu Met Ile Glu Ala Pro Ser Gln Val Leu Asn Phe Glu Glu 20 25 ATC GAC TAC AAG GAG ATC GAG GTG GAA GAG GTT GTT GGA AGA GGA 297 Ile Asp Tyr Lys Glu Ile Glu Val Glu Glu Val Val Gly Arg Gly GCC TTT GGA GTT GTT TGC AAA GCT AAG TGG AGA GCA AAA GAT GTT 342 Ala Phe Gly Val Val Cys Lys Ala Lys Trp Arg Ala Lys Asp Val 55 GCT ATT AAA CAA ATA GAA AGT GAA TCT GAG AGG AAA GCG TTT ATT 387 Ala Ile Lys Gln Ile Glu Ser Glu Ser Glu Arg Lys Ala Phe Ile 70 65 GTA GAG CTT CGG CAG TTA TCC CGT GTG AAC CAT CCT AAT ATT GTA 432 Val Glu Leu Arg Gln Leu Ser Arg Val Asn His Pro Asn Ile Val 80 85 AAG CTT TAT GGA GCC TGC TTG AAT CCA GTG TGT CTT GTG ATG GAA 477 Lys Leu Tyr Gly Ala Cys Leu Asn Pro Val Cys Leu Val Met Glu 95 100 TAT GCT GAA GGG GGC TCT TTA TAT AAT GTG CTG CAT GGT GCT GAA 522 Tyr Ala Glu Gly Gly Ser Leu Tyr Asn Val Leu His Gly Ala Glu 110 115 CCA TTG CCA TAT TAT ACT GCT GCC CAC GCA ATG AGT TGG TGT TTA 567

Pro Leu Pro Tyr Tyr Thr Ala Ala His Ala Met Ser Trp Cys Leu

CAG TGT TCC CAA GGA GTG GCT TAT CTT CAC AGC ATG CAA CCC AAA

Gln Cys Ser Gln Gly Val Ala Tyr Leu His Ser Met Gln Pro Lys

130

612

125

450	
140 145 150	657
GCG CTA ATT CAC AGG GAC CTG AAA CCA CCA AAC TTA CTG CTG GTT	657
Ala Leu Ile His Arg Asp Leu Lys Pro Pro Asn Leu Leu Leu Val	
155 160 165	702
GCA GGG GGG ACA GTT CTA AAA ATT TGT GAT TTT GGT ACA GCC TGT	102
Ala Gly Gly Thr Val Leu Lys Ile Cys Asp Phe Gly Thr Ala Cys	
170 175 180	747
GAC ATT CAG ACA CAC ATG ACC AAT AAC AAG GGG AGT GCT GCT TGG Asp Ile Gln Thr His Met Thr Asn Asn Lys Gly Ser Ala Ala Trp	171
185 190 195	
ATG GCA CCT GAA GTT TTT GAA GGT AGT AAT TAC AGT GAA AAA TGT	792
Met Ala Pro Glu Val Phe Glu Gly Ser Asn Tyr Ser Glu Lys Cys	
200 205 210	
GAC GTC TTC AGC TGG GGT ATT ATT CTT TGG GAA GTG ATA ACG CGT	837
Asp Val Phe Ser Trp Gly Ile Ile Leu Trp Glu Val Ile Thr Arg	
215 220 225	
CGG AAA CCC TTT GAT GAG ATT GGT GGC CCA GCT TTC CGA ATC ATG	882
Arg Lys Pro Phe Asp Glu lle Gly Gly Pro Ala Phe Arg Ile Met	
230 235 240	
TGG GCT GTT CAT AAT GGT ACT CGA CCA CCA CTG ATA AAA AAT TTA	927
Trp Ala Val His Asn Gly Thr Arg Pro Pro Leu Ile Lys Asn Leu	
245 250 255	
CCT AAG CCC ATT GAG AGC CTG ATG ACT CGT TGT TGG TCT AAA GAT	972
Pro Lys Pro 11e Glu Ser Leu Met Thr Arg Cys Trp Ser Lys Asp	
260 265 270	4045
CCT TCC CAG CGC CCT TCA ATG GAG GAA ATT GTG AAA ATA ATG ACT	1017
Pro Ser Gln Arg Pro Ser Met Glu Glu IIe Val Lys IIe Met Thr	
275 280 285	1062
CAC TTG ATG CGG TAC TTT CCA GGA GCA GAT GAG CCA TTA CAG TAT	1062
His Leu Met Arg Tyr Phe Pro Gly Ala Asp Glu Pro Leu Gln Tyr 290 295 300	
290 295 300 CCT TGT CAG TAT TCA GAT GAA GGA CAG AGC AAC TCT GCC ACC AGT	1107
Pro Cys Gln Tyr Ser Asp Glu Gly Gln Ser Asn Ser Ala Thr Ser	220.
305 310 315	
ACA GGC TCA TTC ATG GAC ATT GCT TCT ACA AAT ACG AGT AAC AAA	1152
Thr Gly Ser Phe Met Asp Ile Ala Ser Thr Asn Thr Ser Asn Lys	
320 325 330	
AGT GAC ACT AAT ATG GAG CAA GTT CCT GCC ACA AAT GAT ACT ATT	1197
Ser Asp Thr Asn Met Glu Gln Val Pro Ala Thr Asn Asp Thr lle	
335 340 345	
AAG OGC TTA GAA TCA AAA TTG TTG AAA AAT CAG GCA AAG CAA CAG	1242
Lys Arg Leu Glu Ser Lys Leu Leu Lys Asn Gln Ala Lys Gln Gln	
350 355 360	
AGT GAA TCT GGA CGT TTA AGC TTG GGA GCC TCC CGT GGG AGC AGT	1287
Ser Glu Ser Gly Arg Leu Ser Leu Gly Ala Ser Arg Gly Ser Ser	
365 370 375	1220
GTG GAG AGC TTG CCC CCA ACC TCT GAG GGC AAG AGG ATG AGT GCT	1332
Val Glu Ser Leu Pro Pro Thr Ser Glu Gly Lys Arg Met Ser Ala	
380 385 390	1377
GAC ATG TCT GAA ATA GAA GCT AGG ATC GCC GCA ACC ACA GGC AAC	1011

Asp Met Ser Glu IIe Glu Ala Arg IIe Ala Ala Thr Thr Gly Ash	
395 400 405	1.400
GGA CAG CCA AGA CGT AGA TCC ATC CAA GAC TTG ACT GTA ACT GGA	1422
Gly Gln Pro Arg Arg Ser 11e Gln Asp Leu Thr Val Thr Gly	
410 415 420	1.467
ACA GAA CCT GGT CAG GTG AGC AGT AGG TCA TCC AGT CCC AGT GTC	1467
The Glu Pro Gly Gln Val Ser Ser Arg Ser Ser Ser Pro Ser Val	
425 430 435 AGA ATG ATT ACT ACC TCA GGA CCA ACC TCA GAA AAG CCA ACT CGA	1512
Arg Met 11e Thr Thr Ser Gly Pro Thr Ser Glu Lys Pro Thr Arg	1512
440 445 450	
AGT CAT CCA TGG ACC CCT GAT GAT TCC ACA GAT ACC AAT GGA TCA	1557
Ser His Pro Trp Thr Pro Asp Asp Ser Thr Asp Thr Ash Gly Ser	1001
455 460 465	
GAT AAC TCC ATC CCA ATG GCT TAT CTT ACA CTG GAT CAC CAA CTA	1602
Asp Asn Ser Ile Pro Met Ala Tyr Leu Thr Leu Asp His Gln Leu	1005
470 475 480	
CAG CCT CTA GCA CCG TGC CCA AAC TCC AAA GAA TCT ATG GCA GTG	1647
Gln Pro Leu Ala Pro Cys Pro Asn Ser Lys Glu Ser Met Ala Val	
485 490 495	
TTT GAA CAG CAT TGT AAA ATG GCA CAA GAA TAT ATG AAA GTT CAA	1692
Phe Glu Gln His Cys Lys Met Ala Gln Glu Tyr Met Lys Val Gln	
500 505 510	
ACA GAA ATT GCA TTG TTA TTA CAG AGA AAG CAA GAA CTA GTT GCA	1737
Thr Glu Ile Ala Leu Leu Cln Arg Lys Gln Glu Leu Val Ala	
515 520 525	
GAA CTG GAC CAG GAT GAA AAG GAC CAG CAA AAT ACA TCT CGC CTG	1782
Glu Leu Asp Gln Asp Glu Lys Asp Gln Gln Asn Thr Ser Arg Leu	
530 535 540	
GTA CAG GAA CAT AAA AAG CTT TTA GAT GAA AAC AAA AGC CTT TCT	1827
Val Gln Glu His Lys Lys Leu Leu Asp Glu Asn Lys Ser Leu Ser	
545 550 555	1070
ACT TAC TAC CAG CAA TGC AAA AAA CAA CTA GAG GTC ATC AGA AGT	1872
Thr Tyr Tyr Gln Gln Cys Lys Lys Gln Leu Glu Val I le Arg Ser 560 565 570	
560 565 570 CAG CAG CAG AAA CGA CAA GGC ACT TCA	1900
Gin Gin Lys Arg Gin Gly Thr Ser	1899
575 579	
TGATTCTCTG GGACCGTTAC ATTTTGAAAT ATGCAAAGAA AGACTTTTTT TTTAAG	GAAA 1959
GGAAAACCTT ATAATGACGA TTCATGAGTG TTAGCTTTTT GGCGTGTTCT GAATGC	
TGCCTATATT TGCTGCATTT TTTTCATTGT TTATTTTCCT TTTCTCATGG TGGACA	
ATTITACTGT TTCATTGCAT AACATGGTAG CATCTGTGAC TTGAATGAGC AGCACT	
AACTTCAAAA CAGATGCAGT GAACTGTGGC TGTATATGCA TGCTCATTGT GTGAAG	
GCCTAACAGA ACAGGAGGTA TCAAACTAGC TGCTATGTGC AAACAGCGTC CATTTT	
TATTAGAGGT GGAACCTCAA GAATGACTTT ATTCTTGTAT CTCATCTCAA AATATT	'AATA 2319
ATTITITICC CAAAAGATGG TATATACCAA GTTAAAGACA GGGTATTATA AATTTA	GAGT 2379
GATTGGTGGT ATATTACGGA AATACGGAAC CTTTAGGGAT AGTTCCGTGT AAGGGC	TTTG 2439
ATGCCAGCAT CCTTGGATCA GTACTGAACT CAGTTCCATC CGTAAAATAT GTAAAG	GTAA 2499
GTGGCAGCTG CTCTATTTAA TGAAAGCAGT TTTACCGGAT TTTGTTAGAC TAAAAT	TTGA 2559
TTGTGATACA TTGAACAAAA TGGAACTCAT TTTTTTTTAA GGAGTAAAGA TTTTTA	ATTC 2619

_							_						TTT	CTTCCTGCAG	2739
IUA	11(1)	i uu	ATTG	1111	CI C	41017	41110	J AA	AAAA	WANA	AAA	HAA			2785
٠															
配列配列銀の	Jの型)数:	そさ: 型:材 二本	2 8 酸		•										
配列	の種	類:	cDN/	A to	mRN	4									
配列	1														
GGA	CACGO	GCT (GTGG	CCGC	rg c	CTCT	ACCC	C CG(CCAC	GAT	CGC(CGGG'	TAG '	TAGGACTGCG	60
CGG(CTCC/	AGG (CTGA	GGT	og gi	rccg	GAGG	C GG(GTGG	GCGC	GGG	rctc.	ACC	CGGATTGTCC	120
GGGT	rggc/	ACC (GTTC	CCGG	CC C	CACC	GGGC(s ca	GCGA	GGGA	TC				162
ATG	TCT	ACA	GCC	TCT	GCC	GCC	TCC	TCC	TCC	TCC	TCG	TCT	TCG	GCC	207
Met	Ser	Thr	Ala	Ser	Ala	Ala	Ser	Ser	Ser	Ser	Ser	Ser	Ser	Ala	
1				5					10					15	
GGT	GAG	ATG	ATC	GAA	GCC	CCT	TCC	CAG	GTC	CTC	AAC	TTT	GAA	GAG	252
Gly	Glu	Met	He	Glu	Ala	Pro	Ser	Gln	Val	Leu	Asn	Phe	Glu	Glu	
				20					25					30	
ATC	GAC	TAC	AAG	GAG	ATC	GAG	GTG	GAA	GAG	GTT	GTT	GGA	AGA	GGA	297
He	Asp	Tyr	Lys	Glu	He	Glu	Val	Glu	Glu	Val	Val	Gly	Arg	Gly	
				35					40					45	
GCC	TTT	GGA	GTT	GTT	TGC	AAA	GCT	AAG	TGG	AGA	GCA	AAA	GAT	GTT	342
Ala	Phe	Gly	Val	Val	Cys	Lys	Ala	Lys	Trp	Arg	Ala	Lys	Asp	Val	
				50					55					60	
GCT	ATT	AAA	CAA	ATA	GAA	AG T	GAA	TCT	GAG	AGG	AAA	GCG	TTT	ATT	387
Ala	He	Lys	Gln	He	Glu	Ser	Glu	Ser	Glu	Arg	Lys	Ala	Phe	lle	
				65					70					75	
GTA	GAG	CTT	CGG	CAG	TTA	TCC	CGT	GTG	AAC	CAT	CCT	AAT	ATT	GTA	432
Val	Glu	Leu	Arg	Gln	Leu	Ser	Arg	Val	Asn	His	Pro	Asn	He	Val	
				80					85					90	
AAG	CTT	TAT	GGA	GCC	TGC	TTG	AAT	CCA	GTG	TGT	CTT	GTG	ATG	GAA	477
Lys	Leu	Tyr	Gly	Ala	Cys	Leu	Asn	Pro	Val	Cys	Leu	Val	Met	Glu	
				95					100					105	
TAT	GCT	GAA	GGG	GGC	TCT	TTA	TAT	AAT	GTG	CTG	CAT	GGT	GCT	GAA	522
Tyr	Ala	Glu	Gly	Gly	Ser	Leu	Tyr	Asn	Val	Leu	His	Gly	Ala	Glu	
				110					115					120	
CCA	TTG	CCA	TAT	TAT	ACT	GCT	GCC	CAC	GCA	ATG	AGT	TGG	TGT	TTA	567
Pro	Leu	Pro	Tyr	Tyr	Thr	Ala	Ala	His	Ala	Met	Ser	Trp	Cys	Leu	
				125					130					135	
CAG	TGT	TCC	CAA	GGA	GTG	GCT	TAT	CTT	CAC	AGC	ATG	CAA	CCC	AAA	612
Pro	Leu	Pro	Tyr	Tyr	Thr	Ala	Ala	His	Ala	Met	Ser	Trp	Cys	Leu	
				140					145					150	
GCG	CTA	ATT	CAC	AGG	GAC	CTG	AAA	CCA	CCA	AAC	TTA	CTG	CTG	GTT	657
Ala	Leu	lle	His	Arg	Asp	Leu	Lys	Pro	Pro	Asn	Leu	Leu	Leu	Val	
				155					160					165	
GCA	GGG	GGG	ACA	GTT	CTA	AAA	ATT	TGT	GAT	TTT	GGT	ACA	GCC	TGT	702
Ala	Gly	Gly	Thr	Val	Leu	Lys	He	Cys	Asp	Phe	Gly	Thr	Ala	Cys	

TGTGATTGTG TGTATGTGTG TTGAAACTGT AAAGCTTTTA TGACTCTAAT ATTAATCTCT 2679

[0147]

				170					175					180	
GAC	ATT	CAG	ACA		ATG	ACC	AAT	AAC		GGG	AGT	GCT	GCT		747
								Asn							
•				185					190					195	
ATG	GCA	CCT	GAA	GTT	TTT	GAA	GGT	AGT	AAT	TAC	AGT	GAA	AAA	TGT	792
Met	Ala	Pro	Glu	Val	Phe	Glu	Gly	Ser	Asn	Tyr	Ser	Glu	Lys	Cys	
				200					205					210	
								CTT							837
Asp	Val	Phe	Ser	Trp	Gly	He	He	Leu	Trp	Glu	Val	He	Thr	Arg	
				215					220					225	200
								GGC							882
Arg	Lys	Pro	Phe		Glu	He	Gly	Gly		Ala	Phe	Arg	He		
				230			~~.		235	cmc	ATD A		A A T	240	007
								CCA							927
Trp	Ala	Val	HIS		GIY	ınr	Arg	Pro	250	Leu	116	LyS	ASII	255	
CCT	AAC	ccc	ለጥጥ	245	ACC	CTG	ATY:	ACT		тст	TGG	TCT	AAA		972
								Thr							7.2
110	Lys	110	110	260	Ju	LCu	rice	1111	265				2,0	270	
CCT	TCC	CAG	CGC		TCA	ATG	GAG	GAA			AAA	ATA	ATG		1017
								Glu							
				275					280					285	
CAC	TTG	ATG	CGG	TAC	TTT	CCA	GGA	GCA	GAT	GAG	CCA	TTA	CAG	TAT	1062
								Ala							
				290					295					300	
CCT	TGT	CAG	TAT	TCA	GAT	GAA	GGA	CAG	AGC	AAC	TCT	GCC	ACC	AGT	1107
Pro	Cys	Gln	Tyr	Ser	Asp	Glu	Gly	Gln	Ser	Asn	Ser	Ala	Thr	Ser	
				305					310					315	
								TCT							1152
Thr	Gly	Ser	Phe			He	Ala	Ser			Thr	Ser	Asn		
	~.~			320		C4.4	COM	CCT	325			CAT	A CT	330	1197
								CCT							1171
Ser	ASP	ınr	Asn			GIII	vai	Pro	340		HSI	i nop	, 1111	345	
AAC	ccc	ተተለ	CAA	335 . TCA		TTG	TTG	AAA			GCA	AAG	CAA		1242
								Lys							
Lys	UI E	LCC	010	350		LCC	LCC	,.	355	_		,.		360	
AGT	GAA	TCI	` GGA			AGC	TTO	GGA			CGT	. GGG	i AGC	AGT	1287
								ı Gly							
				365					370					375	
GTG	GAG	i AGO	TTO	cco	CCA	ACC	TC	GAG	GGC	CAAC	G AGO	ATC	G AGT	GCT	1332
Val	Glu	ı Sei	Lei	Pro	Pro	Thr	- Sei	Glu	Gly	Lys	s Arg	g Met	. Sei	· Ala	
				380					385					390	
														CTAT	1377
Asp	Met	: Sei	r Glu	ı Ile	e Glu	ı Ala	Arg	g Ile	: Ala	a Ala	a Thi	Thu	· Ala	Tyr	
				395					400					405	
														C AAC	1422
Ser	Lys	s Pro) Lys			/ His	s Ar	g Lys			a 5e1	r rn e	: 61	y Asn 420	
. ma	· (411/		p /~m4	410		• ልጥ	_ጉ උጥ	ዮ ልሞን	419 TC		r .a.a.	ר ממי	ላ ርላ		
ATT	CT(υA	เป็	. uti	ιUAL	a AT	เปล	L AIF	1 IU	יטטי	U HAI	uu.	, UAI	G CCA	1401

Ile Leu Asp Val Pro Glu lle Val lle Ser Gly Asn Gly Gln Pro	
425 430 435	
AGA OGT AGA TCC ATC CAA GAC TTG ACT GTA ACT OGA ACA GAA CCT	1512
Arg Arg Arg Ser lle Gln Asp Leu Thr Val Thr Gly Thr Glu Pro	
440 445 450	
GGT CAG GTG AGC AGT AGG TCA TCC AGT CCC AGT GTC AGA ATG ATT	1557
Gly Gln Val Ser Ser Arg Ser Ser Ser Pro Ser Val Arg Met Ile	
455 460 465	1602
ACT ACC TCA GGA CCA ACC TCA GAA AAG CCA ACT CGA AGT CAT CCA Thr Thr Ser Gly Pro Thr Ser Glu Lys Pro Thr Arg Ser His Pro	1602
470 475 480	
TGG ACC CCT GAT GAT TCC ACA GAT ACC AAT GGA TCA GAT AAC TCC	1647
Trp Thr Pro Asp Asp Ser Thr Asp Thr Asn Gly Ser Asp Asn Ser	
485 490 495	
ATC CCA ATG GCT TAT CTT ACA CTG GAT CAC CAA CTA CAG CCT CTA	1692
Ile Pro Met Ala Tyr Leu Thr Leu Asp His Gln Leu Gln Pro Leu	
500 505 510	
GCA CCG TGC CCA AAC TCC AAA GAA TCT ATG GCA GTG TTT GAA CAG	1737
Ala Pro Cys Pro Asn Ser Lys Glu Ser Met Ala Val Phe Glu Gln	
515 520 525	
CAT TGT AAA ATG GCA CAA GAA TAT ATG AAA GTT CAA ACA GAA ATT	1782
His Cys Lys Met Ala Gln Glu Tyr Met Lys Val Gln Thr Glu Ile	
530 535 540	4000
GCA TTG TTA TTA CAG AGA AAG CAA GAA CTA GTT GCA GAA CTG GAC	1827
Ala Leu Leu Leu Gln Arg Lys Gln Glu Leu Val Ala Glu Leu Asp	
. 545 550 555 CAG GAT GAA AAG GAC CAG CAA AAT ACA TCT CGC CTG GTA CAG GAA	1072
Gln Asp Glu Lys Asp Gln Gln Asn Thr Ser Arg Leu Val Gln Glu	1872
560 565 570	
CAT AAA AAG CTT TTA GAT GAA AAC AAA AGC CTT TCT ACT TAC TAC	1917
His Lys Lys Leu Leu Asp Glu Asn Lys Ser Leu Ser Thr Tyr Tyr	
575 580 585	
CAG CAA TGC AAA AAA CAA CTA GAG GTC ATC AGA AGT CAG CAG CAG	1962
Gln Gln Cys Lys Lys Gln Leu Glu Val lle Arg Ser Gln Gln Gln	
590 595 600	
AAA CGA CAA GGC ACT TCA	1980
Lys Arg Gln Gly Thr Ser	
605 606	
TGATTCTCTG GGACCGTTAC ATTTTGAAAT ATGCAAAGAA AGACTTTTTT TTTAAGGAAA	2040
GGAAAACCTT ATAATGACGA TTCATGAGTG TTAGCTTTTT GGCGTGTTCT GAATGCCAAC	2100
TGCCTATATT TGCTGCATT TTTTCATTGT TTATTTTCCT TTTCTCATGG TGGACATACA	2160
ATTITACIGT TICATIGCAT AACATGGTAG CATCIGTGAC TIGAATGAGC AGCACTITGC	2220
AACTTCAAAA CAGATGCAGT GAACTGTGGC TGTATATGCA TGCTCATTGT GTGAAGGCTA GCCTAACAGA ACAGGAGGTA TCAAACTAGC TGCTATGTGC AAACAGCGTC CATTTTTTCA	2280 2340
TATTAGAGGT GGAACCTCAA GAATGACTTT ATTCTGTAT CTCATCTCAA AATATTAATA	2400
ATTITITIC CAAAAGATGG TATATACCAA GTTAAAGACA GGGTATTATA AATTITAGAGT	2460
GATTGGTGGT ATATTACGGA AATACGGAAC CTTTAGGGAT AGTTCCGTGT AAGGGCTTTG	2520
ATGCCAGCAT CCTTGGATCA GTACTGAACT CAGTTCCATC CGTAAAATAT GTAAAGGTAA	2580
GTGGCAGCTG CTCTATTTAA TGAAAGCAGT TTTACCGGAT TTTGTTAGAC TAAAATTTGA	2640
TTGTGATACA TTGAACAAAA TGGAACTCAT TTTTTTTTAA GGAGTAAAGA TTTTTAATTC	2700

				GGCA									TT C	TTCCTGCAG	2820 2866
配列 鎖の トポ	の長 の型 数 ロジ	さ: :核 二本 :-:	17 酸 鎖 直鎖	絥											
		類:	CDNA	\ to	mKNA	•									
配列 ATG		ACA	GCC	TCT	GCC	GCC	TCC	TCC	TCC	TCC	TCG	TCT	TCG	GCC	45
				Ser											
1		•		5					10					15	
GGT	GAG	ATG	ATC	GAA	GCC	CCT	TCC	CAG	GTC	CTC	AAC	TTT	GAA	GAG	90
Gly	Glu	Met	lle	Glu	Ala	Pro	Ser	Gln		Leu	Asn	Phe	Glu	Glu	
				20					25		comm.	~~1	101	30	425
				GAG											135
He	Asp	Tyr	Lys	Glu	He	Giu	vai	61u	40	vai	vai	ыу	Arg	45	
ccc	ттт	CCA	СТТ	35 GTT	TGC	ΔΔΔ	GCT	AAG		AGA	GCA	AAA	GAT		180
				Val											
,,,,,	1	0.,		50	0,0	-,-		-,-	55			•	•	60	
GCT	ATT	AAA	CAA	ATA	GAA	AGT	GAA	TCT	GAG	AGG	AAA	GCG	TTT	ATT	225
				lle											
				65					70					75	
				CAG											270
Val	Glu	Leu	Arg	Gln	Leu	Ser	Arg	Val		His	Pro	Asn	He		
	~~~	m . m	CC.4	80	mcc	mmc	4 470	ccı	85 CTC	ጥርጥ	CTT TD	ርሞር	ATC	90	315
				GCC Ala											717
Lys	Leu	ıyr	GIY	95	CyS	Leu	ASII	FIU	100	Cys	Leu	V (3.1	ricc	105	
TAT	GCT	GAA	GGG	GGC	TCT	TTA	TAT	AAT		CTG	CAT	GGT	GCT		360
				Gly											
_				110					115					120	
CCA	TTG	CCA	TAT	TAT	ACT	GCT	GCC	CAC	GCA	ATG	AGT	TGG	TGT	TTA	405
Pro	Leu	Pro	Tyr	Tyr	Thr	Ala	Ala	His	Ala	Met	Ser	Trp	Cys	Leu	
				125				~~~	130		ım.c	C	ccc	135	450
														AAA Lug	450
GIN	Lys	Ser	GIN	Gly		Ala	ıyr	Leu	145		met	GIII	rio	150	
r.m.	ſΤΔ	ΔΤΤ	CAC	140 AGG		CTG	AAA	CCA			TTA	CTG	CTG		495
				Arg											
	200			155			_•		160					165	
GCA	GGG	GGG	ACA			AAA	ATT	TGT	GAT	TTT	GGT	ACA	GCC	TGT	540
Ala	Gly	Gly	Thr	Val	Leu	Lys	He	Cys	Asp	Phe	Gly	Thr	Ala	Cys	
				170					175					180	
														TGG	585
Asp	lle	Gln	Thr	His	Met	Thr	Asn	Asn	Lys	Gly	Ser	Ala	Ala	Trp	

TGTGATTGTG TGTATGTGTG TTGAAACTGT AAAGCTTTTA TGACTCTAAT ATTAATCTCT 2760

[0148]

				185					190					195	
ATG	GCA	ССТ	GAA		TTT	GAA	GGT	AGT		TAC	AGT	GAA	AAA		630
			Glu												
				200					205	•				210	
GAC	GTC	TTC	AGC		GGT	ATT	ATT	CTT	TGG	GAA	GTG	ATA	ACG	CGT	675
Asp	Val	Phe	Ser	Trp	Gly	lle	He	Leu	Trp	Glu	Val	He	Thr	Arg	
•				215					220					225	
CGG	AAA	CCC	TTT	GAT	GAG	ATT	GGT	GGC	CCA	GCT	TTC	CGA	ATC	ATG	720
Arg	Lys	Pro	Phe	Asp	Glu	lle	Gly	Gly	Pro	Ala	Phe	Arg	He	Met	
				230					235					240	
TGG	GCT	GTT	CAT	AAT	GGT	ACT	CGA	CCA	CCA	CTG	ATA	AAA	AAT	TTA	765
Trp	Ala	Val	His	Asn	Gly	Thr	Arg	Pro	Pro	Leu	lle	Lys	Asn	Leu	
				245					250					255	
			ATT												810
Pro	Lys	Pro	He		Ser	Leu	Met	Thr		Cys	Trp	Ser	Lys		
				260	mar	A TO C	C.4.C	~	265	CTC		A TP A	ልጥሮ	270	855
			CGC												600
Pro	ser	GIN	Arg		ser	met	GIU	GIU	280	Val	Lys	116	MEL	285	
CAC	ጥጥር	ATC	CGG	275	ጥጥጥ	CCA	CCA	CCA		CVC	CCA	ттΔ	CAG		900
			Arg												<b>700</b>
1112	LCu	PICC	мъ	290	1110	110	uly	mu	295	014	110	Dog	<b></b>	300	
CCT	TGT	CAG	TAT		GAT	GAA	GGA	CAG		AAC	TCT	GCC	ACC		945
			Tyr												
				305	_				310					315	
ACA	GGC	TCA	TTC	ATG	GAC	ATT	GCT	TCT	ACA	AAT	ACG	AGT	AAC	AAA	990
Thr	Gly	Ser	Phe	Met	Asp	lle	Ala	Ser	Thr	Asn	Thr	Ser	Asn	Lys	
				320					325					330	
AGT	GAC	ACT	AAT	ATG	GAG	CAA	GTT	CCT	GCC	ACA	AAT	GAT	ACT	ATT	1035
Ser	Asp	Thr	Asn	Met	Glu	Gln	Val	Pro	Ala	Thr	Asn	Asp	Thr	lle	
				335					340					345	
			GAA												1080
Lys	Arg	Leu	Glu			Leu	Leu	Lys		Gln	Ala	Lys	Gln		
A CIM		m cen	ccı	350			TTC	CCA	355	TCC	CCT	ccc	ACC	360	1125
			GGA												1125
Ser	ыu	Ser	Gly	Arg 365		ser	Leu	uiy	370		Arg	GIY	Sei	375	
стс	CAG	۸GC	TTG			۸۲۲	TCT	GAG			AGG	ATG	AGT		1170
														Ala	1110
101	uru	JCI	LCu	380		, ,,,,,	<i>5</i> 4	u.u	385			1100		390	
GAC	ATG	TCT	GAA			GCT	AGG	ATC			ACC	ACA	GCC	TAT	1215
														Tyr	
••				395					400					405	
TCC	AAG	CCT	AAA	CGG	GGC	CAC	CGI	AAA	ACT	GCT	TCA	TTT	GGC	: AAC	1260
														Asn	
				410					415					420	
														CCA	1305
Ile	Leu	Asp	Val			lle	. Val	He			Asn	Gly	Glr	Pro	
				425					430					435	405-
AGA	CGT	AGA	TCC	ATO	CAA	GAC	TTG	ACT	GTA	ACT	GGA	ACA	GA/	CCT	1350

Arg Arg Arg Ser lle Gln Asp Leu Thr Val Thr Gly Thr Glu Pro	
440 445 450	
GGT CAG GTG AGC AGT AGG TCA TCC AGT CCC AGT GTC AGA ATG ATT	1395
Gly Gln Val Ser Ser Arg Ser Ser Ser Pro Ser Val Arg Met Ile	
455 460 465	
ACT ACC TCA GGA CCA ACC TCA GAA AAG CCA ACT CGA AGT CAT CCA	1440
Thr Thr Ser Gly Pro Thr Ser Glu Lys Pro Thr Arg Ser His Pro	
470 475 480	
TGG ACC CCT GAT GAT TCC ACA GAT ACC AAT GGA TCA GAT AAC TCC	1485
Trp Thr Pro Asp Asp Ser Thr Asp Thr Asn Gly Ser Asp Asn Ser	
485 490 495	
ATC CCA ATG GCT TAT CTT ACA CTG GAT CAC CAA CTA CAG CAA GAA	1530
lle Pro Met Ala Tyr Leu Thr Leu Asp His Gln Leu Gln Gln Glu	
500 505 510	
CTA GTT GCA GAA CTG GAC CAG GAT GAA AAG GAC CAG CAA AAT ACA	1575
Leu Val Ala Glu Leu Asp Gln Asp Glu Lys Asp Gln Gln Asn Thr	
515 520 525	
TCT CGC CTG GTA CAG GAA CAT AAA AAG CTT TTA GAT GAA AAC AAA	1620
Ser Arg Leu Val Gln Glu His Lys Lys Leu Leu Asp Glu Asn Lys	
530 535 540	
GGC CTT TCT ACT TAC TAC CAG CAA TGC AAA AAA CAA CTA GAG.GTC	1665
Gly Leu Ser Thr Tyr Tyr Gln Gln Cys Lys Lys Gln Leu Glu Val	
545 ** 550 555	
ATC AGA AGT CAG CAG CAG AAA CGA CAA GGC ACT TCA TGA	1704
lle Arg Ser Gln Gln Gln Lys Arg Gln Gly Thr Ser	

【0149】配列番号:6

配列の長さ:30 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状

配列の種類:他の核酸(合成プライマー)

配列

TTCCAAGCTT ATGGCGGCGC AGAGGAGGAG

【0150】配列番号:7

配列の長さ:30 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状

配列の種類:他の核酸(合成プライマー)

配列

TCCGGAATTC CTACGGTGCT GTCACCACGC

【図面の簡単な説明】

【図1】 マウスTAK1及び3種のヒトTAK1(hTAK1a、hTAK1b及びhTAK1c)のアミノ 酸配列の比較を示す図。

【図2】 ヒトTAK1をTAB1とともに発現増強させた細胞のNF-ルB活性化(ゲルシフトアッセイにお

けるNF $-\kappa$ Bの核移行)を示す電気泳動の結果を示した図。

【図3】 ヒトTAK1をTAB1とともに発現増強させた細胞のNF-κB活性化(レポーターアッセイにおけるルシフェラーゼ活性)を示した図。

【図4】 変異型ヒトTAK1を発現させた細胞におけるNF-κB活性化の抑制 (ゲルシフトアッセイ (A)及びレボーターアッセイ (B)の結果)を示した図。

【図5】 ヒトTAK1を発現増強させた細胞から得た TAK1を含む免疫沈降画分の免疫ブロッティングの結果(細胞内でのTAK1とTAB1の相互作用)を示した図。

【図6】 ヒトTAK1を発現増強させた細胞から得た TAK1を含む免疫沈降画分のキナーゼアッセイの結果 (TAK1による自己リン酸化TAB1のリン酸化)を 示した図。

【図7】 ヒトTAK1を発現増強させた細胞から得た TAK1を含む免疫沈降画分および細胞溶解液の免疫ブロッティングの結果(細胞内でのTAK1とIKKの相互作用)を示した図。

【図8】 ヒトTAK1を発現増強させた細胞から得た IKKを含む免疫沈降画分のIKKキナーゼアッセイの 結果(TAK1によるIKK複合体の活性化)を示した

## 図.

## 能を示した模式図。

## 【図9】 NF-κB活性化経路におけるTAK1の機

# 【図1】

		N .	
mTAKL	:	MSTASAASSSSSSASEMI EAPSQVLNFEELDYKELEVEEVVGRGAFGVVCKAKNRAKDV	60
hTAKla	:	MSTASAASSSSSSAGEMTEAPSQVLNPEBIDYKETEVEEVVGRGAFGVVCKAKWRAKOV	60
hTAK1b		MSTASAASSSSSSAGEMIEAPSOVLMPERIDYKELEVEEVVGRGAFGVVCKAKWRAKDV	60
hTAKIC	:	MSTASAASSSSSSAGEMI EAPSQVLNFBBIDYKEI EVEEVVORGAFGVVCKAKWRAKDV	60
	•	AUNIMAKANA AB JADADA AGAGA TATA TATA TATA TATA TATA TAT	ou
mTAK1		AIRQIESESERKAPIVELRQLSRVNHPNIVKLYGACLNPVCLVMEYAEGGSLYNVLHGAE	. 120
hTAX1a	:	ATTOTECHNOLOGY TO CHARLEST THE CONTROL OF THE CONTR	
hTAK1b	•		120
	•	AIKQIESESERKAPIVELRQLSRVNHPHIVKLYGACIAPVCLVMEYAEGGSLYMVLHGAE	120
hTAK1c	:	AIKQIESESERKAFIVELRQLSRVNHPNIVKLYGACINPVCLVMEYAEGGSLYNVLHGAE	120
mTAK1	:	PLPYYTAAHAMSWCLQCSQGVAYLHSMQPKALIHRDLKPPNLLLVAGGTVLKICDFGTAC	180
hTAKla		PLPYYTAAHAMSWCLQCSQGVAYLHSMQPKALIHRDLKPPNLLLVAGGTVLKICDFGTAC	180
hTAK1b	:	PLPYYTAAHAMENCLQCSQGVAYLHSMQFKALIHRDLKPPNLLLVAGGTVLKICDFGTAC	
bTAKlc	:	PLPYYTAAHAMSWCLQCSQGVAYLHSMQPKALIHRDLKPPNLLLVAGGTVLKICDFGTAC	180
HIMAIC	•	FEET 1 1 MANAGEMENT OF STREET	180
mTAK1	:	DIQIHMINNKGSAANMAPEVFEGSNYSEKCDVFSWGIILHEVITREKPFDEIGGPÄFRIM	240
hTAKla	:	DIQTHMINNKGSAANMAPEVPEGSNYSEKCDVFSWGIILWEVITREKPFDBIGGPAFRIM	240
hTAK1b	•	DIQTHMTNNKGSAANMAPEVFEGSNYSEKCDVFSMGIILMEVITRREPFDBIGGPAPRIM	240
hTAKIC	:	DIGTHMINNKGSAAWMAPEVFEGSNYSEKCDVFSWGIILWEVITRRKPFDBIGGPAFRIM	240
	٠	The state of the s	240
mTAK1		WAVHIGTREPLIKNLEKPIESLMTRCWSKDPSORPSMEEIVKIMTHLMRYFPGADEPLOY"	300
hTAK1a	:	MINISTRU TO THE PROPERTY OF TH	
	•	WAVHNGTROPLIONLPRPIESLMTRCWSKOPSORPSMEETVKIMTHLMRYFPOXDEPLOY	300
hTAKIb	:	WAVHNGTRPPLIKNLPKPIESLNTRCWSKDPSORPSMEBIVKINTHLNRYPPCADEPLOY	300
hTAK1c	:	wavingtrppliknlprpiesintrcwskdpscrpsmebivkinthlnryppgadbploy	300
mTAK1		PCQYSDEGQSNSATSTGSFMDIASTNTSNKSDTMEQVPATNOTIKRLESKLLKNQAKOO	360
hTAK1a	:	PCQYSDEGQSNSATSTGSFMDIASTNTSNRSDTNHEQVPATNDTIRRLESKLLKNOAKOO	360
hTAK1b	:	PCQYSDEGQSNSATSTGSFMDIASTNTSNKSDTAMEQVPATNDTIKKLESKLLKNQAKQQ	
hTAKLC	:	POOVEDBOOM STATES OF THE TRANSPORMENT OF THE PROPERTY OF THE P	360
HIMALO	•	PCQYSDEGQSN8ATSTGSYMDIASTMTSNKSDTNMEQVPATWDTIKRLBSKLLKNQAKQQ	360
mTAK1	:	SESGRLSLGASRGSSVESLPPTSEGKRMSADMSETEARINATA	403
hTAKla		SESGRLSLGASRGSSVESLPPTSECKRMSADMSEIEARIAATT	403
hTAK1b	÷	SESGRLSLGASRGSSVESLPPTSEGKRMSADMSEIEARIAATTAYSKPKRGHRKTASFGM.	420
hTAKle	:	SESGRLSLGASRGSSVESLPPTSEGRRMSADMSRIEARIAATTAYSRPKRGHRKTASFGN	
	•	DESCRIBE TO SECURE ALIANTA SERVICE SER	420
mTAK1	:	CNCQPRRRSIQDLTVTGTEPGQVSSRSSSPSVRMITTSGPTSEKEARSHP	453
hTAK1a	:	GNGQPRRRSIQDLTVTGTEPGQVSSRSSSPSVRMITTSGPTSEXPTRSHP	453
hTAK1b	•	ILDVPEIVISGNGQPRRRSIQDLTVTGTEPGQVSSRSSSPSVRMITTSGPTSEXPTRSHP	480
hTAKle	:	ILDVPEIVISGNGQPRRRSIQDLTVTGTEPGQVSSRSSSPSVRNITTSGPTSERPTRSHP	480
	·	and the state of t	400
mTAK1	:	WTPDDSTDTNGSDNSIPMAYLTLDHQLQPLAPCPNSKESMAVFEQHCKMAQEYMKVQTEI	513
hTAKLa	:	WTPDDSTDTNGSDNSIPMAYLTLDHQLQPLAPCPNSKESNAVFEQHCKMAQEYMKVQTEI	513
hTAK1b	:	WTPDDSTDTNGSDNSIPMAYLITLDHQLQPLAPCPNSKESMAVFEQHCKMAQEYMKVQTEI	540
hTAKlc	:	WTPDDSTDTNGSDNSIPMAYITLDHQLQ	508
		the state of the s	
mTAK1		ALLLQRKQELVAELDQDEKDQQNTSRLVQEHKKLLDENKSLSTYYQQCKKQLEVIRSQQQ	573
htakla	:	ALLLQRKQELVAELDQDEKDQQNTSRLVQEHKILLDENKSLSTYYQQCKKQLEVIRSQQQ	573
htakib	:	ALLLQRKQELVARLDQDEKDQQNTSRLVQEHKKLLDENKSLSTYYQQCKKQLEVIRSQQQ	600
htakle	:	QELVABLDQDEKDQQNTSRLVQEHKKLLDENKSLSTYYQQCKKQLEVIRSQQQ	561
mTAK1		KROGTS	
	:		579
hTAKla	1	KRQCTS	579
hTAK1b	:	KRQGTS	606
hTAK1c	:	KRQGTS	567

(mTAK1はマウスTAK1を表す。)





図7 TAK1とIKKの相互作用

上段:抗Flag免疫沈隣国分/抗Xpress 抗体よるブロッティング 中段:観胞溶解液/抗Xpress 抗体よるブロッティング 下段:抗Flag免疫沈降節分/抗TAK1 抗体よるブロッティング

## 【図8】

(A)



図8 TAK1によるIKK複合体の活性化

# 【図9】

#### NF-κB活性化経路におけるTAK1の機能



(TRAF2: TMF-α receptor associated factor 2

IKK : I x B kinase

NIK: NF- x B inducing kinase NEMO: NF- x B essential modulator IKAP: IKK complex essociated protein)

## フロントページの続き

(51) Int. Cl. ⁷	,	識別記号	FI			テーマコード(参考)
C12N	9/99		C12Q	1/02		
C12Q	1/02		G 0 1 N	33/15	Z	
G01N	33/15			33/50	ZNAP	
	33/50	ZNA		33/566		
	33/566		C12Q	1/68	ZNAA	
// C12N	15/09	ZNA	C12N	5/00	В	
C12Q	1/68	ZNA		15/00	ZNAA	
(C12N	15/0 <del>9</del>	ZNA				
C12R	1:91)					

## (72)発明者 長谷川 浩

大阪府大阪市淀川区三津屋中1丁目5番9

号

Fターム(参考) 2G045 AA40 CB01 DA20 FB03

4B024 AA01 AA11 CA01 CA11 DA06

DA12 EA04 HA08 HA11

4B063 QA01 QA05 QA18 QQ08 QQ22

QQ27 QQ42 QQ52 QQ91 QQ95

QR07 QR33 QR48 QR55 QR57

QR59 QR62 QR76 QR80 QS02

QS16 QS24 QS25 QX07

4B065 AA93Y AB01 CA44 CA46

4C084 AA17 ZB071 ZB072 ZB111

ZB112 ZC202