ROB311 Quiz 2

Hanhee Lee

April 13, 2025

Contents

. Ma	urkov
1.1	General
	1.1.1 Random Process
	1.1.2 Markov Process
1.2	Markov Chains (MCs)
	1.2.1 Bayesian Network
1.3	Markov Reward Processes (MRPs)
	1.3.1 Bayesian Network
1.4	Markov Decision Processes (MDPs)
	1.4.1 Setup
	1.4.2 Bayesian Network
	1.4.3 Intuition on Formulae
1.5	Canonical Examples
	1.5.1 Markov Chains
	1.5.2 Markov Reward Processes
	1.5.3 Markov Decision Processes

Single-Agent Decision Problems: Fully-Observable Single-Agent Decision Algorithms

1 Markov

1.1 General

1.1.1 Random Process

Definition: Time-varying random variables S_0, S_1, S_2, \ldots

1.1.2 Markov Process

Definition: Random process + depends on previous time step only (memoryless)

• w.l.o.g. states can contain history of previous states.

1.2 Markov Chains (MCs)

Summary: In a Markov Chain, we assume that:

- there are no agents
- state transitions occur automatically
- S_t is the state after transition t
- the state transition process is stochastic and memoryless:

$$S_t \perp S_0, \dots, S_{t-2} \mid S_{t-1}$$

- S_t is independent of all previous states given S_{t-1}

Name	Function:
initial state distribution	$p_0(s) := \mathbb{P}[S_0 = s]$
transition distribution	$p(s' s) := \mathbb{P}[S_{t+1} = s' S_t = s]$

transition distribution
$$p(s'|s) := \mathbb{P}[S_{t+1} = s'|S_t = s]$$
Prob. that state of the env. after T transitions is s
$$p_T(s) := \mathbb{P}[S_T = s]$$

$$= \sum_{s'} p_{T-1}(s')p(s|s')$$

- $p_{T-1}(s')$: Prob. s' at T-1 (given) - $p_0(s)$: Base case
- p(s|s'): Prob. s given s' (from graph)

1.2.1 Bayesian Network

Notes: S_0, S_1, S_2, \ldots form a Bayesian Network:

Figure 1

1.3 Markov Reward Processes (MRPs)

Summary: In a Markov Reward Process, we assume that:

- there is one agent
- state transitions occur automatically (i.e. agent has no control over actions)
- S_t is the state after transition t
- the state transition process is stochastic and memoryless:

$$S_t \perp S_0, \dots, S_{t-2} \mid S_{t-1}$$

- S_t is independent of all previous states given S_{t-1}
- R_t is the reward for transition t, i.e., $(S_{t-1}, \varnothing, S_t)$

Name	Function:
Initial state distribution	$p_0(s) := \mathbb{P}[S_0 = s]$
Transition distribution	$p(s' s) := \mathbb{P}[S_{t+1} = s' S_t = s]$
Reward function	$r(s, s') := \text{reward for transition } (s, \emptyset, s')$
Discount factor	$\gamma \in [0,1]$
Return after T transitions	$U_T = \sum_{t=1}^{T} \gamma^{t-1} R_t$ = $U_{T-1} + \gamma^{T-1} R_T$

- i.e. The (possibly discounted) sum of the rewards after T transitions (sequence of rewards)
- Why?
 - Future rewards are less valuable than immediate rewards.
 - Won't converge if sum goes to ∞ if $\gamma = 1$.

Expected return after
$$T$$
 transitions $\mathbb{E}[U_T] = \mathbb{E}[U_{T-1}] + \gamma^{T-1} \mathbb{E}[R_t]$
= $\mathbb{E}[U_{T-1}] + \gamma^{T-1} \sum_{s,s'} p_{T-1}(s) p(s'|s) r(s,s')$

- $p_{T-1}(s)p(s'|s)$: Prob. $s \to s'$
- r(s, s'): rwd $s \to s'$
- $\mathbb{E}[U_0] := 0$: Base case

1.3.1 Bayesian Network

Notes: $S_0, R_1, S_1, R_2, S_2, \ldots$ form a Bayesian Network:

Figure 2

Markov Decision Processes (MDPs)

1.4.1 Setup

Summary: In a Markov Decision Process (MDP), we assume that:

- there is one agent
- state transitions occur manually (after each action)
- S_t is the state after transition t
- A_t is the action inducing transition t
- the state transition process is stochastic and memoryless:

$$S_t \perp S_0, A_1, \dots, S_{t-2}, A_{t-1} \mid S_{t-1}, A_t$$

- S_t is independent of all previous states and actions given S_{t-1} and A_t
- R_t is the reward for transition t, i.e., (S_{t-1}, A_t, S_t)

Name	Function:
initial state distribution	$p_0(s) := \mathbb{P}[S_0 = s]$
transition distribution	$p(s' s,a) := \mathbb{P}[S_t = s' A_t = a, S_{t-1} = s]$
reward function	r(s, a, s') := reward for transition (s, a, s')
a time-invariant policy for choosing actions	$\pi(a s) := \mathbb{P}[A_t = a S_t = s]$
Maximum number of transitions	$T_{ m max}$

- A Markov Decision Process can be either:
 - **Finite**: T_{max} is finite
 - **Infinite**: T_{max} is infinite
 - * For infinite MDPs, we must have $\gamma < 1$.

Prob. that state of the env. after T transitions is s

$$p_T(s) = \sum_{a,s'} p_{T-1}(s)\pi(a|s')p(s|s',a)$$

- $p_{T-1}(s)$: Prob. s' at T-1
- $\pi(a|s')$: Action a from s'
- p(s|s',a): Prob. s given s',a

Expected return after T transitions

$$\mathbb{E}_{\pi}[U_T] = \mathbb{E}_{\pi}[U_{T-1}] + \gamma^{T-1}\mathbb{E}_{\pi}[R_t]$$

- $\mathbb{E}_{\pi}[R_t] = \sum_{s,a,s'} p_{T-1}(s)\pi(a \mid s)p(s' \mid s,a)r(s,a,s')$
- $\mathbb{E}_{\pi}[U_0] = 0$: Base case.

Future return after τ transitions

$$G_{\tau} = \sum_{t=\tau+1}^{T} \gamma^{t-(\tau+1)} R_t$$
$$= R_{\tau+1} + \gamma G_{\tau+1}$$

• Starting at $\tau + 1$ for the future return.

Expected future return after τ transitions given $S_{\tau} = s$ $\mathbb{E}_{\pi}[G_{\tau} \mid S_{\tau} = s] = \mathbb{E}_{\pi}[R_{\tau+1} \mid S_{\tau} = s] + \gamma \mathbb{E}_{\pi}[G_{\tau+1} \mid S_{\tau} = s]$ $= \sum_{a,s'} \pi(a \mid s) p(s' \mid s,a) \left(r(s,a,s') + \gamma \mathbb{E}_{\pi}[G_{\tau+1} \mid S_{\tau+1} = s']\right)$

• $\mathbb{E}_{\pi}[G_{T_{\max}} \mid S_{T_{\max}} = s] = 0$: Base case, $\mathbb{E}_{\pi}[G_{\tau+1} \mid S_{\tau+1} = s'] = 0$: Expected future return after $\tau + 1$.

4

Summary:

Name Function: $v_{\pi}(s,T) := \mathbb{E}_{\pi}[G_{T_{\max}-T} \mid S_{T_{\max}-T} = s]$ $= \sum_{a,s'} \pi(a \mid s)p(s' \mid s,a) \left(r(s,a,s') + \gamma v_{\pi}(s',T-1)\right)$

- Value of state s under the policy π with T transitions remaining.
 - i.e. How good the state is at time T (e.g. If v(s,T)=5, then the expected future return at T is 5).
- v(s,0) = 0 for all s: Base case

Optimal action
$$a^*(s,T) = \arg\max_{a \in \mathcal{A}(s)} \sum_{s'} p(s' \mid s,a) \left(r(s,a,s') + \gamma v_{\pi^*}(s',T-1) \right)$$
$$= \arg\max_{a \in \mathcal{A}(s)} q^*(s,a,T)$$

Optimal policy
$$\pi^*(a \mid s, T) = \arg\max_{\pi(a \mid s, T)} \mathbb{E}_{\pi}[G_{\tau} \mid S_{\tau} = s] = \begin{cases} 1 & \text{if } a = a^*(s, T) \\ 0 & \text{otherwise} \end{cases}$$

- Choose $\pi(\cdot \mid s)$ to maximize the expected future return after T transitions given $S_{\tau} = s$.
- Note: Policy always depends on transitions remaining so may omit.

Optimal value function
$$v^*(s,T) = \max_{a} \sum_{s'} p(s' \mid a, s) \left(r(s, a, s') + \gamma v^*(s', \tau + 1) \right)$$

- Assume we use an optimal policy π^* .
- $v^*(s,0) = 0$ for all s: Base case.

Q function (quality)
$$q_{\pi}(s, a, T) := \mathbb{E}_{\pi}[G_{T_{\max}-T} \mid S_{T_{\max}-T} = s, A_{T_{\max}-(T-1)} = a]$$
$$= \sum_{s'} p(s' \mid s, a) \left(r(s, a, s') + \gamma \sum_{a'} \pi(a' \mid s') q_{\pi}(s', a', T-1) \right)$$

- Quality of move (s, a) under policy π with T transitions remaining.
- $q_{\pi}(s, a, 0) = 0$ for all s, a: Base case.

• $q^*(s, a, 0) = 0$ for all s, a: Base case.

1.4.2 Bayesian Network

Notes: $S_0, A_1, R_1, S_1, A_2, R_2, S_2, \ldots$ form a Bayesian Network:

Figure 3

1.4.3 Intuition on Formulae

Notes:

1. Expected immediate reward at $\tau + 1$ given $S_{\tau} = s$, following policy π :

$$\mathbb{E}_{\pi}[R_{\tau+1} \mid S_{\tau} = s] = \sum_{a,s'} \pi(a \mid s) p(s' \mid a, s) r(s, a, s')$$

- $\pi(a \mid s)p(s' \mid a, s)$: Prob. of getting to s' from s w/ action a
- r(s, a, s'): Reward of getting to s' from s w/ action a
- 2. Expected future return at $\tau + 1$ given $S_{\tau} = s$, following policy π :

$$\mathbb{E}_{\pi}[G_{\tau+1} \mid S_{\tau} = s] = \sum_{a,s'} \pi(a \mid s) p(s' \mid a,s) \mathbb{E}_{\pi}[G_{\tau+1} \mid S_{\tau+1} = s']$$

- $\pi(a \mid s)p(s' \mid a, s)$: Prob. of getting to s' from $s \le a$
- $\mathbb{E}_{\pi}[G_{\tau+1} \mid S_{\tau+1} = s']$: Expected future return at $\tau + 1$ from s' at $\tau + 1$.
- $\sum_{a,s'}$: Sum over all possible future states and current actions to get expected future return at $\tau+1$ from s at τ .

1.5 Canonical Examples

1.5.1 Markov Chains

Example:

1. Given: Caveman needs to predict the weather, W, which is either sunny or rainy. Suppose the weather tomorrow depends on the weather today:

Figure 4

2. **Problem:** Caveman wants to predict the weather on a given day.

1.5.2 Markov Reward Processes

Example:

1. Given: Caveman needs to predict the weather, W, which is either sunny or rainy. Suppose the weather tomorrow depends on the weather today:

Figure 5

- Depending on the transition, caveman may feel happier/sadder. This is quantified w/ the rewards.
- 2. Problem: Caveman wants to predict the weather on a given day that maximizes his happiness.

Markov Decision Processes

Process:

- 1. Set up the base case for $q^*(s, a, 0) = 0$ for all s, a.
- 2. Set up the second base case $q^*(s, a, 1) = \sum_{s'} p(s' \mid s, a) \left(r(s, a, s') \right)$ for all s, a.

 3. Set up the recursive case $q^*(s, a, T) = \sum_{s'} p(s' \mid s, a) \left(r(s, a, s') + \gamma \max_{a'} q^*(s', a', T 1) \right)$ for all s, a, T.
- 4. Select the best action for a given state and last time step by selecting the maximum $q^*(s, a, T)$ for a particular
- 5. Write 1 if the action is the best action and 0 otherwise.

Warning:

- $q^*(s, a, T) = \sum_{s'} p(s' \mid s, a) \left(r(s, a, s') + \gamma \max_{a'} q^*(s', a', T 1) \right)$

- $-q^*(s, a, 0) = 0 \text{ for all } s, a \text{: Base case.}$ $\bullet \ a^*(s, T) = \arg \max_{a \in \mathcal{A}(s)} q^*(s, a, T)$ $\bullet \ \pi^*(a \mid s, T) = \begin{cases} 1 & \text{if } a = a^*(s, T) \\ 0 & \text{otherwise} \end{cases}$

Warning:

- Be careful with the problems. Verify the answers. Go up to at least 2 steps since that tests everything.
- Be able to go through the formula quickly.
- 1st question on the quiz.

Example:

1. Given:

Figure 6

- \bullet Solid straight line: Outcome of action a from state s.
- ullet Dotted straight line: Choice of action (policy) from state s.
 - If policy known, then reduced to MRP.
- Squiggly line: Reward for action a from state s to state s'.
- $\bullet\,$ Assume uniform probability.
 - Since $\sum p = 1$, therefore count # of arrows going out of s and divide by 1 to get p.
- Same states have the same connections (i.e. all can use them just to hard to draw)
- 2. **Problem:** Find the optimal policy for $\gamma = 1$ and $T_{\text{max}} = 5$.
- 3. **Soln:**

Example:

$$T s a q^*(s, a, T) = \sum_{s'} p(s' \mid s, a) \left(r(s, a, s') + \gamma \max_{a'} q^*(s', a', T - 1) \right)$$

0 - - 0

• Best Action: $a^*(s,0) = NA$

1 seed wait
$$q^*(\text{seed, wait}, 1) = \underbrace{0.5(-2+0)}_{s'=\text{seed}} + \underbrace{0.5(0+0)}_{s'=\text{res}} = -1$$

• Best Action: $a^*(\text{seed}, 1) = \text{wait}$

1 ga wait
$$q^{*}(ga, wait, 1) = \underbrace{0.25(-2+0)}_{s'=ga} + \underbrace{0.5(0+0)}_{s'=rea} + \underbrace{0.25(0+0)}_{s'=rea} = -0.5$$
1 ga eat
$$q^{*}(ga, eat, 1) = \underbrace{0.1(0+0)}_{s'=dead} + \underbrace{0.9(6+0)}_{s'=seed} = 5.4$$
1 ga hunt
$$q^{*}(ga, hunt, 1) = \underbrace{0.5(24+0)}_{s'=dead} + \underbrace{0.5(0+0)}_{s'=seed} = 12$$

• Best Action: $a^*(ga, 1) = hunt$

1 rea eat
$$q^*(\text{rea}, \text{eat}, 1) = \underbrace{1(12+0)}_{\prime} = 12$$

• Best Action: $a^*(rea, 1) = eat$

1 roa eat
$$q^*(\text{roa}, \text{eat}, 1) = \underbrace{0.25(0+0)}_{s'=\text{dead}} + \underbrace{0.75(2+0)}_{s'=\text{seed}} = 1.5$$
1 roa hunt $q^*(\text{roa}, \text{hunt}, 1) = \underbrace{0.5(0+0)}_{s'=\text{dead}} + \underbrace{0.5(18+0)}_{s'=\text{seed}} = 9$

• Best Action: $a^*(roa, 1) = hunt$

1 dead -
$$q^*(\text{dead}, -, 1) = \underbrace{1(0+0)}_{s'=\text{end}} = 0$$

• Best Action: $a^*(s,1) = -$

• Optimal Policy w/ 1 Transition Remaining: $\pi^*(a \mid s, 1) = \begin{cases} 1 & \text{if } a = a^*(s, 1) \\ 0 & \text{otherwise} \end{cases}$

Example:

$$T s a q^*(s, a, T) = \sum_{s'} p(s' \mid s, a) \left(r(s, a, s') + \gamma \max_{a'} q^*(s', a', T - 1) \right)$$

2 seed wait
$$q^*(\text{seed}, \text{wait}, 2) = \underbrace{0.5(-2 - 1)}_{s' = \text{seed}} + \underbrace{0.5(0 + 12)}_{s' = \text{ga}} = 4.5$$

• Best Action: $a^*(\text{seed}, 2) = \text{wait}$

2 ga wait
$$q^*(ga, wait, 2) = 0.25(-2 + 12) + 0.5(0 + 12) + 0.25(0 + 9) = 10.75$$

2 ga eat
$$q^*(ga, eat, 2) = 0.1(0+0) + 0.9(6-1) = 4.5$$

$$2 \quad \text{ga} \quad \text{hunt} \qquad q^*(\text{ga}, \text{hunt}, 2) = \underbrace{0.5(24-1)}_{s' = \text{seed}} + \underbrace{0.5(0+0)}_{s' = \text{dead}} = 11.5$$

• Best Action: $a^*(ga, 2) = hunt$

2 rea eat
$$q^*(\text{rea}, \text{eat}, 2) = \underbrace{1(12-1)}_{s'=\text{seed}} = 11$$

• Best Action: $a^*(rea, 2) = eat$

2 roa eat
$$q^*(\text{roa}, \text{eat}, 2) = 0.25(0+0) + 0.75(2-1) = 0.75$$

2 roa hunt
$$q^*(\text{roa}, \text{hunt}, 2) = \underbrace{0.5(0+0)}_{s'=\text{dead}} + \underbrace{0.5(18-1)}_{s'=\text{seed}} = 8.5$$

• Best Action: $a^*(roa, 2) = hunt$

2 dead -
$$q^*(\text{dead}, -, 2) = \underbrace{1(0+0)}_{s' = \text{end}} = 0$$

• Best Action: $a^*(s,2) = -$

• Optimal Policy w/ 2 Transitions Remaining: $\pi^*(a \mid s, 2) = \begin{cases} 1 & \text{if } a = a^*(s, 2) \\ 0 & \text{otherwise} \end{cases}$

Example:

$$T s a q^*(s, a, T) = \sum_{s'} p(s' \mid s, a) \left(r(s, a, s') + \gamma \max_{a'} q^*(s', a', T - 1) \right)$$

3 seed wait
$$q^*(\text{seed, wait, 3}) = \underbrace{0.5(-2 + 4.5)}_{s' = \text{seed}} + \underbrace{0.5(0 + 11.5)}_{s' = \text{ga}} = 7$$

• Best Action: $a^*(\text{seed}, 3) = \text{wait}$

3 ga wait
$$q^*(ga, wait, 3) = 0.25(-2 + 11.5) + 0.5(0 + 11) + 0.25(0 + 8.5) = 10$$

3 ga eat
$$q^*(ga, eat, 3) = 0.1(0+0) + 0.9(6+4.5) = 9.45$$

3 ga hunt
$$q^*(ga, hunt, 3) = \underbrace{0.5(24 + 4.5)}_{s' = \text{seed}} + \underbrace{0.5(0 + 0)}_{s' = \text{dead}} = 14.25$$

• Best Action: $a^*(ga, 3) = hunt$

3 rea eat
$$q^*(\text{rea}, \text{eat}, 3) = \underbrace{1(12+4.5)}_{s' = \text{seed}} = 16.5$$

• Best Action: $a^*(rea, 3) = eat$

3 roa eat
$$q^*(\text{roa}, \text{eat}, 3) = 0.25(0+0) + 0.75(2+4.5) = 4.875$$

3 roa hunt
$$q^*(\text{roa}, \text{hunt}, 3) = \underbrace{0.5(0+0)}_{s'=\text{dead}} + \underbrace{0.5(18+4.5)}_{s'=\text{seed}} = 11.25$$

• Best Action: $a^*(roa, 3) = hunt$

3 dead -
$$q^*(\text{dead}, -, 3) = \underbrace{1(0+0)}_{s'=\text{end}} = 0$$

• Best Action: $a^*(s,3) = -$

• Optimal Policy w/ 3 Transitions Remaining:
$$\pi^*(a \mid s, 3) = \begin{cases} 1 & \text{if } a = a^*(s, 3) \\ 0 & \text{otherwise} \end{cases}$$

Example:

$$T s a q^*(s, a, T) = \sum_{s'} p(s' \mid s, a) \left(r(s, a, s') + \gamma \max_{a'} q^*(s', a', T - 1) \right)$$

4 seed wait
$$q^*(\text{seed, wait}, 4) = \underbrace{0.5(-2+7)}_{s'=\text{seed}} + \underbrace{0.5(0+14.25)}_{s'=\text{ga}} = 9.625$$

• Best Action: $a^*(\text{seed}, 4) = \text{wait}$

4 ga wait
$$q^*(ga, wait, 4) = 0.25(-2 + 14.25) + 0.5(0 + 16.5) + 0.25(0 + 11.25) = 14.125$$

4 ga eat
$$q^*(ga, eat, 4) = 0.1(0+0) + 0.9(6+7) = 11.7$$

4 ga hunt
$$q^*(ga, hunt, 4) = \underbrace{0.5(24+7)}_{s' = \text{seed}} + \underbrace{0.5(0+0)}_{s' = \text{dead}} = 15.5$$

• Best Action: $a^*(ga, 4) = hunt$

4 rea eat
$$q^*(\text{rea}, \text{eat}, 4) = \underbrace{1(12+7)}_{'} = 19$$

• Best Action: $a^*(rea, 4) = eat$

4 roa eat
$$q^*(\text{roa}, \text{eat}, 4) = 0.25(0+0) + 0.75(2+7) = 6.75$$

4 roa hunt
$$q^*(\text{roa}, \text{hunt}, 4) = \underbrace{0.5(0+0)}_{s' = \text{dead}} + \underbrace{0.5(18+7)}_{s' = \text{seed}} = 12.5$$

• Best Action: $a^*(roa, 4) = hunt$

4 dead -
$$q^*(\text{dead}, -, 4) = \underbrace{1(0+0)}_{s'=\text{end}} = 0$$

• Best Action: $a^*(s,4) = -$

• Optimal Policy w/ 4 Transitions Remaining: $\pi^*(a \mid s, 4) = \begin{cases} 1 & \text{if } a = a^*(s, 4) \\ 0 & \text{otherwise} \end{cases}$

Example:

$$T \qquad s \qquad \qquad a \qquad \qquad q^*(s, a, T) = \sum_{s'} p(s' \mid s, a) \left(r(s, a, s') + \gamma \max_{a'} q^*(s', a', T - 1) \right)$$

5 seed wait
$$q^*(\text{seed, wait, 5}) = \underbrace{0.5(-2 + 9.625)}_{s' = \text{seed}} + \underbrace{0.5(0 + 15.5)}_{s' = \text{ga}} = 11.5625$$

• Best Action: $a^*(\text{seed}, 5) = \text{wait}$

5 ga wait
$$q^*(ga, wait, 5) = 0.25(-2 + 15.5) + 0.5(0 + 19) + 0.25(0 + 12.5) = 16$$

5 ga eat
$$q^*(ga, eat, 5) = 0.1(0+0) + 0.9(6+9.625) = 14.0625$$

5 ga hunt
$$q^*(ga, hunt, 5) = \underbrace{0.5(24 + 9.625)}_{s' = seed} + \underbrace{0.5(0 + 0)}_{s' = dead} = 16.8125$$

• Best Action: $a^*(ga, 5) = hunt$

5 rea eat
$$q^*(\text{rea}, \text{eat}, 5) = \underbrace{1(12 + 9.625)}_{\text{c'} - \text{eart}} = 21.625$$

• Best Action: $a^*(rea, 5) = eat$

5 roa eat
$$q^*(\text{roa}, \text{eat}, 5) = 0.25(0+0) + 0.75(2+9.625) = 8.71875$$

5 roa hunt
$$q^*(\text{roa}, \text{hunt}, 5) = \underbrace{0.5(0+0)}_{s'=\text{dead}} + \underbrace{0.5(18+9.625)}_{s'=\text{seed}} = 13.8125$$

• Best Action: $a^*(roa, 5) = hunt$

5 dead -
$$q^*(\text{dead}, -, 5) = \underbrace{1(0+0)}_{s'=\text{end}} = 0$$

• Best Action: $a^*(s,5) = -$

• Optimal Policy w/ 5 Transitions Remaining:
$$\pi^*(a \mid s, 5) = \begin{cases} 1 & \text{if } a = a^*(s, 5) \\ 0 & \text{otherwise} \end{cases}$$

Example: 1. Given:

 $Figure \ 7$

- 2. **Problem:** What is the optimal policy for cavemen with T=3 w/ $\gamma=1$?
- 3. Solution:

s	a	$q^*(s, a, 0)$	$q^*(s, a, 1)$	$q^*(s, a, 2)$	$q^*(s, a, 3)$	$a^*(s,2)$	$\pi^*(a \mid s, 2)$
empty empty	$\frac{\mathrm{hunt}}{\mathrm{seed}}$	0 0	2 0	2 1	$\begin{array}{c} 2 \\ 2.1 \end{array}$	seed	0 1
 q q q q	*(empty *(empty *(empty *(empty *(empty	(0, 800, 1) = 1 (0, 1, 1) = 1	(0+0) = 0 0.5(4+0) + (0+1 \cdot 1) =	$\underbrace{0.5(0+0)}_{s'=\text{dead}} =$	2		
ga ga	grab clock	0	1 0	1 2.1	1 2.1	clock	0 1
 q q q q	*(ga, cloo *(ga, gra *(ga, cloo *(ga, gra	(b, 2) = 1(1 - ck, 2) = 0.7(ck, 3) = 1(1 - ck, 3)	0+0) + 0.3(+0) = 1 0+3) + 0.3(+0) = 1	(0+0) = 0 $(0+0) = 2.1$ $(0+0) = 2.1$			
dead	_	0	$\frac{1}{2}$ =ra s'	=roa 0	0	_	1
• q	*(dead, -	(-,1) = 1(0 + (-,2) = 1(0 + (-,3) = 1(0 +	(-0) = 0				
full	-	0	0	0	0	-	1
• q	*(full, -,	$ \begin{array}{l} 1) = 1(0 + 0) \\ 2) = 1(0 + 0) \\ 3) = 1(0 + 0) \end{array} $	0) = 0				
ra	grab	0	3	3	3	grab	1
• q	*(ra, gra	$b, 1) = 1(3 + 3)$ $b, 2) = 1(3 + 3)$ $b, 3) = \underbrace{1(3 + 3)}_{s' = 1}$	$ \begin{array}{c} -0 \\ -0 \end{array} = 3 $				
roa	grab	0	0	0	0	grab	1
	*(roa gr	ab, 1) = 1(0	+0) = 0				