Let \mathcal{X} be a finite set and $x \in \mathcal{X}$. We use $x \leftarrow \mathcal{X}$ to denote that x is chosen uniformly at random from \mathcal{X} .

We are interested whether it is possible to improve bound stated in Theorem 1.1. We show that the bound achieved in Theorem 1.1 is asymptotically optimal.

Definition 1.1 (Black-box reduction)

Definition 1.2 (One way permutation) How to generate random permutation in the fly? How to efficiently find a permutation using only n bits of randomness

Let us define the following problem poser for a dynamic weakly verifiable puzzle.

Poser $\Pi_{DWVP}(r_{\pi})$

Input: A bitstring $r_{\pi} \in \{0,1\}^n$.

Send 1^n to the problem solver.

Pick a random permutation $\pi: \{0,1\}^n \to \{0,1\}^n$

Generate hint and verification circuits such that:

 $\Gamma_H(q)$ on input $q \in \{0,1\}^n$.

 $\Gamma_V(q,y)$ on input $q \in \{0,1\}^n$ returns 1 if $\pi(q) = y$ and 0 otherwise.

We denote by $\Pi_{DWVP}^{(k)}$ the k-wise direct product of Π_{DWVP} . Furthermore, let the hint circuit for $\Pi_{DWVP}^{(k)}$ be as follows

$$\Gamma_H^{(k)}(q) := (\Gamma_H^1(q), \dots, \Gamma_H^k(q))$$

and the verification circuit

$$\Gamma_V^{(k)}(q,(y_1,\ldots,y_k)) := \prod_{i=1}^k \Gamma_V^i(q,y_i).$$

We give the description of the following inefficient algorithm Breaker that helps to break the k-wise direct product of Π_{DWVP} .

Algorithm Breaker $\Gamma_H^{(k)}(x, r_B)$

Oracle: A hint circuit $\Gamma_H^{(k)}$ for the k-wise direct product of DWVP.

Input: A bitstring $r_B \in \{0,1\}^*$ and $x \in \{0,1\}^n$.

 $q \leftarrow \{0,1\}^n$ for all $q_i' \in \{0,1\}^n \setminus \{q\}$ do:
 Ask a hint query on q' using oracle Γ_H Let $(y_1', \dots, y_k') := \Gamma_H^{(k)}(q_i)$ if $(y_1', \dots, y_k') \notin \{0,1\}^n$ then
 return \bot if $\exists j < i : \Gamma_H^{(k)}(q_i) = \Gamma_H^{(k)}(q_j)$ then
 return \bot

With probability δ^k ask a verification query $(q, (y_1, \ldots, y_k))$ where (y_1, \ldots, y_k) is such that $\forall q' \in \{0,1\}^n \setminus q : \Gamma_H^k(q_i) \neq (y_1, \ldots, y_k)$.

Finally, we define the following polynomial time algorithm A with oracle access to Breaker that solves the k-wise direct product of Π_{DWVP} .

Solver algorithm $A^{\operatorname{Breaker},\Gamma_H^{(k)},\Gamma_V^{(k)}}$ Oracle: A hint circuit $\Gamma_H^{(k)}$ and a verification circuit $\Gamma_V^{(k)}$ for $\Pi_{DWVP}^{(k)}$, an algorithm Breaker.

Input: Bitstrings $x \in \{0,1\}^n$ and $\rho \in \{0,1\}^*$ Let $(q,(y_1,\ldots,y_k)) := \operatorname{Breaker}^{\Gamma_H^{(k)}}(x,\rho)$.

if $(q,(y_1,\ldots,y_k)) \neq \bot$ then ask a verification query $(q,(y_1,\ldots,y_k))$ to $\Gamma_V^{(k)}$.

It is clear that the success probability of A in solving a puzzle defined by $\Pi_{DWVP}^{(k)}$ is δ^k .

Theorem 1.3 There exists no black-box reduction from solving the k-wise direct product $\Pi_{DWVP}^{(k)}$ with probability δ^k to solving a dynamic weakly verifiable puzzle defined by Π_{DWVP} with probability at least δ .

Lemma 1.4 Let S be a solver for Π_{DWVP} with oracle access to Breaker and hint and verification oracles for