5

10

We Claim:

1. An article comprising a wear resistant coating applied to a cemented carbide body wherein:

the cemented carbide body comprises WC with an average grain size of 0.5-4 μ m, 3.5 - 9 wt-% Co and <2 wt% carbides of Ta, Ti and Nb, said body further comprising a core containing finely distributed eta phase islands with a size of 1-15 μ m, the core containing 10 - 35 vol-% WC and Co binder phase, said body further comprising an intermediate zone 50-250 μ m thick and is essentially free of eta phase and with nominal Co-content, said body further comprising a 0-25 μ m thick surface zone free of eta phase with a Co content lower than the nominal Co-content of the body;

wherein the binder phase in the intermediate zone comprises a bimodal structure of smaller original binder phase islands and larger binder phase islands.

- 2. The article of claim 1, wherein the core further comprises gamma phase.
 - 3. The article of claim 1, wherein the coating comprises a layer of TiC_xN_y where x+y=1, x>0.3 and y>0.3, with a thickness of 5-10 μ m with columnar grains having a diameter of a size $<2 \mu$ m.
- 4. The article of claim 1, wherein the coating comprises at least one layer chosen from a smooth α -Al₂O₃ and κ -Al₂O₃ the layer having a grain size of 0.5-2 μ m with a thickness of 3-6 μ m.

5

10

15

25

- 5. The article of claim 1, wherein the coating comprises
- a first, innermost, layer of $TiC_xN_yO_z$ with x+y+z=1 and y>x and z<0.1 with a thickness of 0.1-2 μ m, and with equiaxed grains having a size $<0.5~\mu$ m;
- a second layer of TiC_xN_y where x+y=1, x>0.3 and y>0.3, with a thickness of 5-10 μ m with columnar grains having a diameter of a size <2 μ m;
- a third layer of $\text{TiC}_x N_y O_z$ where x+y+z=1, z<0.5 and x>y with a thickness of 0.1-2 μm and with equiaxed or needle-like grains having a size <0.5 μm ;
- a fourth layer of smooth μ - λ_2 O₃ having a grain size of 0.5-2 μ m with a thickness of 3-6 μ m; and finally
- an outermost layer of $TiC_xN_yO_z$ where x+y+z=1, z<0.05 with a thickness of 0.5-3 μm and a grain size $<1~\mu m$.
- 6. The article of claim 1, wherein the article comprises a cutting tool insert having at least one cutting edge and a clearance side.
 - 7. The insert of claim 6, wherein the outermost layer is removed along the cutting edge so that the Al_2O_3 layer is exposed along the cutting edge, and the outer layer of $TiC_xN_yO_z$ is exposed on the clearance side.
 - 8. A method of making a coated cemented carbide body, the body comprising a cemented carbide of WC with an average grain size of 0.5-4 μ m, 3.5-9 wt-% Co and <2 wt-% carbides of Ta, Ti and Nb and with a substoichiometric carbon content, the method comprising: sintering the body such that an eta phase containing structure is obtained in which the eta phase is finely distributed with a size of 1-15 μ m and a content of 10 vol-% to 35 vol-%, and subjecting the cemented carbide body to a gentle recarburisation such that the eta

phase in a 50-350 μ m wide intermediate zone is transformed to WC+Co without essentially changing its Co-content.