Detailed Explanation of the Code: Translation Quality Checker (Team-TechTribe)

Purpose of the Code

The provided code implements a comprehensive *Translation Quality Checker* that evaluates the quality of machine translation by comparing a machine-generated translation with a human translation and the source text. It employs several metrics to generate both individual and aggregate scores, providing valuable insights into translation accuracy and quality.

Components and Functionality

1. Libraries Used and Their Purpose

- o **Transformers**: Used to load the MarianMT model and tokenizer, which provide a robust and domain-independent machine translation framework.
- NLTK: Utilized for natural language processing tasks, such as tokenization and computing BLEU and METEOR scores.
- ROUGE: Provides ROUGE scores to evaluate the overlap of text units between generated and reference translations.
- Levenshtein: Computes the edit distance between two texts, quantifying the difference.
- Sentence Transformers (SBERT): Used for semantic similarity computation, allowing deeper understanding beyond lexical comparisons.
- Scikit-learn: Enables feature extraction and pairwise cosine similarity computation.
- o **Gensim**: Assists in semantic analysis through pre-trained word vectors.
- Gradio: Facilitates building a user-friendly interface to test and showcase the Translation Quality Checker.

2. Why MarianMT (Helsinki-NLP) Over Other Translation APIs

- Independence: Unlike Google Translate or Amazon Translate, MarianMT is opensource and can be fine-tuned for specific needs.
- Cost-effectiveness: It avoids usage charges associated with APIs like Google Translate.
- Customization: Provides more control for researchers and developers to train or modify models for niche applications.

3. Why SBERT for Sentence Embedding?

- Efficiency: SBERT is optimized for computational efficiency compared to BERT, enabling faster embeddings and better scalability.
- Accuracy: Captures sentence-level semantics effectively, making it a superior choice for similarity tasks.

4. Metrics Explained

- BLEU (Bilingual Evaluation Understudy): Measures precision by comparing n-grams in the generated and reference texts.
- ROUGE (Recall-Oriented Understudy for Gisting Evaluation): Evaluates recall by identifying overlaps of text units like words or phrases.
- METEOR (Metric for Evaluation of Translation with Explicit ORdering): Considers exact matches, stemming, and synonyms for a holistic comparison.
- Levenshtein Distance: Quantifies the number of edits required to convert one text into another.
- Cosine Similarity: Measures textual similarity based on vector representations of texts
- Sentence Embedding Similarity: Uses SBERT to compare high-dimensional embeddings of sentences for semantic similarity.

5. Weighted Average Sum

- Weighted aggregation of metrics allows flexibility to emphasize certain scores over others depending on the task (e.g., translation vs. summarization).
- Rationale: Predefined weights are used as an initial approach. Due to the complexity
 of determining optimal weights, advanced analytics like grid search or machine
 learning optimization are reserved for future iterations.

6. Interface via Gradio

- Why Radio Instead of Classical HTML/CSS: Gradio simplifies building interactive UIs with minimal code, offering faster deployment and prototyping.
- o **Advantages**: Built-in components for inputs and outputs reduce the need for frontend development and ensure smooth integration with Python code.

7. Translation Model Logic

 The model performs forward translation (source to target) and backward translation (target back to source), allowing deeper evaluation of translation quality.

Motivation Behind the Problem Statement

- The growing importance of multilingual communication has highlighted the need for reliable and interpretable machine translation systems.
- Current solutions like Google Translate often provide "black-box" results without offering metrics for quality, which is critical for academic and professional use cases.
- The project seeks to bridge this gap by providing a metric-driven evaluation framework.

- Advanced Weight Optimization: Utilize advanced data analytics or machine learning to determine optimal weights for aggregate scoring.
- **Enhanced Metrics**: Explore additional metrics such as TER (Translation Error Rate) and BERTScore for nuanced evaluations.
- **Custom Model Fine-tuning**: Train the MarianMT model for specific domains to improve contextual accuracy.
- **Incorporating Feedback**: Leverage user feedback to refine the interface and scoring methodologies.

_		
Con	C	lusion

We deeply appreciate the panel's engagement and constructive feedback on our project. Your insights will guide us as we work to implement the suggested changes, ensuring the tool evolves to
meet its full potential. Thank you for your invaluable support!
Thank you