Clustering & Self Organizing Maps

Outline

- Unsupervised Learning
- Clustering
 - Centroid-Based (k-means / ISODATA)
 - Distribution-Based (Gaussian Mixture Models)
 - Density-Based (DBSCAN / kNN)
 - Connectivity-Based (Hierarchical)
- Self Organizing Maps

Unsupervised Learning

- · All unlabeled data (usually because labels are expensive)
 - Learn from p(x) instead of p(y|x)
 - · Learn the structure of the data
- Problems:
 - Anomaly Detection
 - Density Estimation (next week)
 - Compression / Clustering

http://blog.serverdensity.com

http://en.wikipedia.org/wiki/Multivariate_kernel_density_estimation

http://home.deib.polimi.it/

Clustering

- Goal
 - Find which instances belong to locally grouped regions (i.e. instances of distinct similarity)
- Applications
 - Marketing
 - Biology
 - Big Data
 - Image Processing
- Common Parameters
 - Distance (spread) of data
 - Number of instances in a cluster
 - Number of clusters

Clustering Challenges

- Parameter Selection
- Scalability (Dimensionality & Cardinality)
- Feature types (nominal, ordinal, categorical)
- Arbitrarily shaped clusters
- Imbalanced Clusters

Centroid Based Clustering

- Assume all instances belong to one and only one "centroid"
- Each centroid represents a cluster
- Centroids lie in the center of the cluster they represent
- Implies circular clusters

k-means

- Input: k, number of clusters in data
- Procedure
 - I. Initialize k cluster centroids
 - 2. Repeat until convergence:
 - a. Assign all instances to their nearest cluster center
 - b. Reset cluster centers to the mean of all assigned instances

k-means (demo)

k-means

- Expectation
 - Determine which instances belong to which centroid
- Maximization
 - Maximize the likelihood that your centroid means represent their assigned data
- Free Parameters
 - k (number of centroids)
 - Distance Metric
 - Initial centroids

k-means (when it doesn't work)

Problems with k-means

- Number of clusters must be known
- May converge to incorrect solution (even when correct k is chosen)
- Highly dependent on initialization of centroids
- Complexity?
- Assumption that cluster center defines a cluster accurately

ISODATA

Iterative Self Organizing Data Analysis Technique yAy!

- Extension to k-means
 - No longer need exact number of clusters (just approximate)
- Procedure
 - I. Run like k-means
 - 2. Split clusters whose variance is above some threshold
 - 3. Merge clusters that are close enough (by some threshold)
 - 4. Repeat
- Free Parameters:
 - N_D desired (or approximate) number of clusters
 - N_{MIN_EX} minimum number of instances per cluster
 - σ_s^2 maximum spread of any cluster (for splitting)
 - D_{MERGE} minimum distance between two clusters (for merging)
 - N_{MERGE} maximum number of clusters that can be merged

ISODATA

- 1. Randomly initialize centroids and assign all instances to their closest centroid. Keep N_C up to date as current number of clusters
- 2. **Eliminate clusters** that contain less than $N_{MIN EX}$ examples. Reassign examples to their nearest clusters
- 3. Calculate Cluster Parameters: For each cluster, compute the center μ_k , the average distance, \mathbf{d}_k between all assigned examples and μ_k , and the cluster's axis variance $\sigma_k^2(d^*)$ where d^* is the axis with max variance
- 4. **Splitting:** For all clusters with $\sigma_k^2(d^*) > \sigma_s^2$
 - 1. If $d_k > d_{avg}$ AND $(N_K > 2N_{MIN_EX})$ OR $N_C < N_D / 2$ split cluster on d^* 1. $\mu_{kl}(d^*) = \mu_k(d^*) + \epsilon \sigma_k^2(d^*)$ $\mu_{kl}(d^*) = \mu_k(d^*) \epsilon \sigma_k^2(d^*)$ $0 < \epsilon < 1$
 - 2. Reassign examples to appropriate centers
- 5. **Merging:** Compute all distances between cluster centers, Dij. For all, Dij $< D_{MERGE}$
 - 1. If in this iteration, clusters i and j haven't already been merged AND (not more than N_{MERGE} merges have occurred OR $N_{C} > 2N_{D}$)
 - 1. Merge clusters i and j, compute new means, assign instances accordingly, and reassign instances
- 6. Repeat from step 2 until convergence

ISODATA

- Commonly used in image processing (remote sensing)
- Can eliminate clusters with few examples
- Can merge / divide clusters when needed
- Problems
 - Circular cluster assumption
 - · Lots of free parameters (on which performance is highly dependent)
 - Increased computational complexity from k-means
 - Convergence is not guaranteed
- Usually ISODATA is ran multiple times with different parameters and the clustering with minimum MSE is chosen

Distribution Based Clustering

- Assume each cluster follows a known distribution
- The parameters of the distribution are unknown and are to be estimated
- Each instance contributes to the location of all clusters

Gaussian Mixture Models

- · Assume now that each "centroid" represents a Gaussian distribution
 - We now have mean (μ) , covariance (Σ) , and mixing coefficient (π) , for each distribution
 - Instead of assigning each instance to a center, we calculate $p(x_i|\mu_k, \Sigma_k, \pi_k)$
- · Using expectation and maximization, we maximize the total likelihood

$$p(X|\theta) = \prod_{i=1}^N p(x_i|\theta) \quad \theta = \{\mu_k, \Sigma_k, \pi_k \forall k\}$$
 Why is this multiplied?

Density Based Clustering

- Assume clusters are above some density threshold
- Connect instances in regions where the density does not fall below this threshold
- · Different clusters are separated by areas of low density

DBSCAN

- · Connect instances to nearby instances if there are enough of them in a neighborhood
- Parameters: minimum number of instances required in a neighborhood (n), and neighborhood radius (r)

Procedure:

- I. Initialize X_U , the set of unchecked instances, as all of the data, X
- 2. Create a "neighborhood" centered at a test instance $x_T \in X_U$ containing the set of instances X_N within distance r of x_T
 - a. Remove x_T from X_U
 - b. If the number of instances in X_N is larger than n, connect all $x \in X_N$ to x_T
 - c. Recursively repeat step 2 for all $x \in X_N \cap X_U$ until all connected instances are checked
- 3. Repeat step 2 with a new test instance $x_T \in X_U$

DBSCAN

- Directly density reachable
- Density reachable
- Density connected

http://en.wikipedia.org/wiki/DBSCAN

DBSCAN

Free parameters:

- r radius of neighborhood
- n number of instances in local region to propagate cluster

Benefits

- Don't need to know number of clusters
- No assumptions on shape of clusters (what is the primary assumption?)

Problems

- Accidentally joining clusters that should be separate (noise) how is this alleviated?
- Need to approximate spread of the data
- Complexity?

KNN?

Hierarchical

- Types
 - Agglomerative (bottom-up)
 - Divisive (top-down)
- · Initially consider all instances as "clusters"
- Parameter: distance measure between two clusters d(ci, ci)
 - Single linkage (distance between nearest two instances)
 - Complete linkage (distance between farthest two instances)
 - Group Average (average distance between all instances)
- · Group the most similar clusters, one at a time, based on d

Dendrogram

Hierarchical Agglomerative

- How do we decide actual clustering?
- The dendrogram needs to be cut somewhere, because a bunch of different possible clusterings doesn't tell us much
- Cut criterion
 - Threshold $d(c_i, c_j)$ or combination similarity
 - Specify number of clusters
 - $K = \underset{K'}{arg min}[RSS(K') + \lambda K']$
- Problems with Hierarchical Agglomerative Clustering?

Self Organizing Maps (SOMs)

- Teuvo Kohonen (University of Finland 1982)
- · Clustering, Visualization, & Dimensionality Reduction
- Neural Network (sort of)
 - · Contains a lattice of artificial "neurons" with input weights
 - Iteratively trained like a neural network
 - No back propagation
 - No output labels
 - No activation functions
- · Translate the instances in the feature space to nodes in the lattice space

SOMs

- Connected lattice of nodes ("neurons")
- Each node has a position
 - x, y coordinate in lattice
- · Each node has a weight vector
 - Initialized randomly
 - Same dimensionality as the data
 - Map the feature space to the lattice

SOM Procedure

In General:

- I. Randomly initialize the weight of each node
- 2. Sample a random instance, x_T
- 3. Determine which node's weight is closest to x_T . This node is the best matching unit (BMU)
- 4. Create a kernel function, $\theta(t)$, centered at the BMU with radius σ_t

$$\theta(t) = e^{-\frac{d^2}{2\sigma_t^2}} \qquad \qquad \sigma_t = \sigma_0 e^{-\frac{t}{\lambda}}$$

5. Update all nodes within σ_t of the BMU

$$w_i(t+1) = w_i(t) + \theta(t)L(t)(x_T - w_i(t))$$
 $L(t) = L_0 e^{-\frac{t}{\lambda}}$

6. Return to step 2 and repeat N times

SOMs

- Maps data from a continuous input space to a low dimensional discrete output space
- Preserves topological structure of data
- Competitive & Cooperative
- Can be used to classify new data into the lattice
- Parameters:
 - Number of nodes and dimensionality of lattice (usually 2D)
 - Initial neighborhood radius
 - Neighborhood Kernel function
 - Time decay constant λ
 - Initial learning rate
 - Distance measures
 - Number of iterations

SOMs for Visualization

http://www.cis.hut.fi/research/som-research/worldmap.html

References

Clustering

- http://home.deib.polimi.it/matteucc/Clustering/tutorial_html/
- http://www.cs.unc.edu/~lazebnik/fall09/ clustering_techniques_and_applications.pptx
- http://research.cs.tamu.edu/prism/lectures/pr/pr_115.pdf
- http://www.cs.princeton.edu/courses/archive/spr08/cos424/slides/ clustering-2.pdf
- Self Organizing Maps
 - http://www.cs.bham.ac.uk/~jxb/NN/II6.pdf
 - http://www.ai-junkie.com/ann/som/som/.html
 - http://davis.wpi.edu/~matt/courses/soms/