FMI, Mate, Anul I Logică matematică

Seminar 3

(S3.1) Demonstrați că dacă α și β sunt cardinale cu α infinit și $\beta \leq \alpha$, atunci $\alpha + \beta = \alpha$. Demonstrație: Obținem

$$\alpha = \alpha + \mathbf{0}$$
 din Propoziția 2.20.(i)
 $\leq \alpha + \beta$ din Propoziția 2.20.(iii), deoarece, conform Propoziției 2.8.(iv), $\mathbf{0} \leq \beta$
 $\leq \alpha + \alpha$ din Propoziția 2.20.(iii), deoarece, din ipoteză, $\beta \leq \alpha$
 $= \alpha$ din Propoziția 2.21, deoarece, din ipoteză, α este infinit.

(S3.2) Demonstrați următoarele proprietăți ale produsului cardinalelor.

- (i) $\mathbf{0} \cdot \alpha = \alpha \cdot \mathbf{0} = \mathbf{0}$ pentru orice cardinal α .
- (ii) ${f 1}$ este element neutru al lui \cdot .
- (iii) Pentru orice cardinale α , β , γ ,

$$\beta \le \gamma$$
 implică $\alpha \cdot \beta \le \alpha \cdot \gamma$.

- (iv) Pentru orice cardinale α , β a.î. $\beta \neq \mathbf{0}$, $\alpha \leq \alpha \cdot \beta$.
- (v) Operația \cdot este comutativă, asociativă și distributivă față de +.

Demonstrație: Fie $\alpha = |A|$, $\beta = |B|$ și $\gamma = |C|$.

- (i) Avem că $\mathbf{0} \cdot \alpha = |\emptyset \times A| = |\emptyset| = \mathbf{0}$ și $\alpha \cdot \mathbf{0} = |A \times \emptyset| = |\emptyset| = \mathbf{0}$.
- (ii) Deoarece, conform (i), $\mathbf{1} \cdot \mathbf{0} = \mathbf{0} \cdot \mathbf{1} = \mathbf{0}$, putem prespune că $\alpha \neq \mathbf{0}$, deci că A este nevidă. Atunci funcțiile

$$f:A\rightarrow A\times\{0\},\,f(a)=(a,0)$$
 și $g:A\rightarrow\{0\}\times A,\,g(a)=(0,a)$

sunt bijecții, deci $A \sim A \times \{0\} \sim \{0\} \times A.$ Obținem

$$\alpha \cdot \mathbf{1} = |A \times \{0\}| = |A| = \alpha \text{ si } \mathbf{1} \cdot \alpha = |\{0\} \times A| = |A| = \alpha.$$

1

(iii) Dacă $\alpha = \mathbf{0}$ sau $\beta = \mathbf{0}$, atunci $\alpha \cdot \beta \stackrel{(i)}{=} \mathbf{0} \le \alpha \cdot \gamma$. Dacă $\gamma = \mathbf{0}$, atunci trebuie să avem $\beta = \mathbf{0}$, deci, din (i), $\alpha \cdot \beta = \mathbf{0} = \alpha \cdot \gamma$. Presupunem că α , β , γ sunt nenuli, deci că mulțimile A, B, C sunt nevide. Deoarece $\beta \le \gamma$, există o funcție injectivă $f: B \to C$. Definim

$$g: A \times B \to A \times C, \quad g(a,b) = (a, f(b)).$$

Se observă uşor că g este injectivă. Prin urmare,

$$\alpha \cdot \beta = |A \times B| \le |A \times C| = \alpha \cdot \gamma.$$

(iv) Deoarece $\beta \neq 0$, avem, conform Propoziției 2.8.(v), că $1 \leq \beta$. Obținem

$$\alpha \stackrel{(ii)}{=} \alpha \cdot \mathbf{1} \stackrel{(iii)}{\leq} \alpha \cdot \beta.$$

(v) Dacă A sau B este vidă, atunci $\alpha = \mathbf{0}$ sau $\beta = \mathbf{0}$, deci $\alpha \cdot \beta = \beta \cdot \alpha = \mathbf{0}$. Presupunem că A și B sunt nevide. Definim $f: A \times B \to B \times A$, f(a,b) = (b,a). Atunci f este bijecție, prin urmare

$$\alpha \cdot \beta = |A \times B| = |B \times A| = \beta \cdot \alpha.$$

Avem că

$$(\alpha \cdot \beta) \cdot \gamma = |A \times B| \cdot \gamma = |(A \times B) \times C| = |A \times (B \times C)| = \alpha \cdot |B \times C| = \alpha \cdot (\beta \cdot \gamma).$$

Presupunem că B și C sunt disjuncte. Obținem că

$$\alpha \cdot (\beta + \gamma) = \alpha \cdot |B \cup C| = |A \times (B \cup C)| = |(A \times B) \cup (A \times C)| = |A \times B| + |A \times C|$$
$$= \alpha \cdot \beta + \alpha \cdot \gamma. \quad \Box$$

(S3.3) Fie A o mulţime infinită. Demonstraţi că $\left|\bigcup_{n\in\mathbb{N}^*}A^n\right|=|A|$. Demonstraţie: Deoarece $A=A^1\subseteq\bigcup_{n\in\mathbb{N}^*}A^n$, avem că

$$|A| \le \left| \bigcup_{n \in \mathbb{N}^*} A^n \right|.$$

Conform Propoziției 2.28, avem că $|A^n|=|A|^n=|A|$ pentru orice $n\in\mathbb{N}^*$. Rezultă că

$$\begin{array}{lll} \left|\bigcup_{n\in\mathbb{N}^*}A^n\right| & \leq & |A|\cdot|\mathbb{N}^*| & \text{din Propoziția 2.38} \\ & = & |A|\cdot\aleph_0 & \text{din Propoziția 2.16} \\ & = & \max\{|A|,\aleph_0\} & \text{din Propoziția 2.29} \\ & = & |A| & \text{din Propoziția 2.14}. \end{array}$$

Aplicăm Teorema Cantor-Schröder-Bernstein pentru a obține că $|\bigcup_{n\in\mathbb{N}^*}A^n|=|A|$.

(S3.4) Fie α , β , γ cardinale arbitrare. Demonstrați următoarele:

- (i) $\alpha^{\beta+\gamma} = \alpha^{\beta} \cdot \alpha^{\gamma}$, $(\alpha \cdot \beta)^{\gamma} = \alpha^{\gamma} \cdot \beta^{\gamma}$ si $(\alpha^{\beta})^{\gamma} = \alpha^{\beta \cdot \gamma}$.
- (ii) Dacă $\alpha \leq \beta$, atunci $\alpha^{\gamma} \leq \beta^{\gamma}$.

Demonstrație:

(i) Fie $\alpha=|A|,\,\beta=|B|$ și $\gamma=|C|$ cu $B\cap C=\emptyset.$ Aplicăm Lema 2.34 pentru a obține

$$\begin{array}{rcl} \alpha^{\beta+\gamma} &=& |Fun(B\cup C,A)| = |Fun(B,A)\times Fun(C,A)| \\ &=& |Fun(B,A)|\cdot |Fun(C,A)| = \alpha^{\beta}\cdot\alpha^{\gamma}, \\ (\alpha\cdot\beta)^{\gamma} &=& |Fun(C,A\times B)| = |Fun(C,A)\times Fun(C,B)| \\ &=& |Fun(C,A)|\cdot |Fun(C,B)| = \alpha^{\gamma}\cdot\beta^{\gamma}, \\ (\alpha^{\beta})^{\gamma} &=& |Fun(C,Fun(B,A))| = |Fun(C\times B,A)| = \alpha^{|C\times B|} = \alpha^{\gamma\cdot\beta} = \alpha^{\beta\cdot\gamma} \\ &=& \text{deoarece} \cdot \text{este comutativă.} \end{array}$$

(ii) Deoarece $\alpha \leq \beta$, există o injecție $f: A \to B$. Definim funcția

$$\Phi: Fun(C, A) \to Fun(C, B), \quad \Phi(h) = f \circ h.$$

Demonstrăm că Φ este injectivă. Fie $h_1, h_2 : C \to A$. Atunci $\Phi(h_1) = \Phi(h_2)$ $\iff f(h_1(c)) = f(h_2(c))$ pentru orice $c \in C \iff h_1(c) = h_2(c)$ pentru orice $c \in C$ (deoarece f este injectivă) $\iff h_1 = h_2$.

Rezultă că
$$\alpha^{\gamma} = |Fun(C, A)| \le |Fun(C, B)| = \beta^{\gamma}$$
.

(S3.5) Fie α , β cardinale astfel încât cel puţin unul dintre ele este infinit. Demonstraţi că $\alpha + \beta = \max\{\alpha, \beta\}$.

Demonstrație: Presupunem fără a restrânge generalitatea că α este infinit. Deoarece \leq este totală, avem următoarele două cazuri:

- (i) $\beta \leq \alpha$. Atunci $\max\{\alpha, \beta\} = \alpha$ și $\alpha + \beta = \alpha$, conform Propoziției 2.22.
- (ii) $\alpha \leq \beta$. Atunci β este, de asemenea, infinit, $\max\{\alpha,\beta\} = \beta$ şi $\alpha + \beta = \beta + \alpha = \beta$, conform Propoziției 2.22.