

Contrôle Visualisation de données (sans documents)

,

Exercice 1 : question de cours

Compléter le tableau ci-dessous pour caractériser chacune des méthodes vues en cours, en précisant le critère utilisé, et la nature de la méthode d'optimisation de ce critère.

	Critère	Méthode d'optimisation
ACP		
LDA		
MDS		
Laplacian Eigenmaps		
t-SNE		

Exercice 2: Locally Linear Embedding

On rappelle que le principe de la méthode Locally Linear Embedding (LLE) est d'approcher chaque point $X_i \in \mathbb{R}^n$ par une combinaison linéaire de ses K plus proches voisins X_{ij} . Si l'on note \tilde{X}_i l'approximation de X_i et $w_i = (w_{i1} \quad \cdots \quad w_{ik})^T$, alors on a la relation suivante

$$\tilde{X}_i = \sum_{j=1}^k w_{ij} X_{ij}$$
 avec $\sum_{j=1}^k w_{ij} = 1_k^T w_i = 1$ (1)

et l'erreur d'approximation totale des m points X_i s'écrit

$$\min_{w_1, w_i \dots w_m} \sum_{i} \left\| X_i - \sum_{j=1}^k w_{ij} X_{ij} \right\|^2$$
 (2)

On cherche alors les points projetés $Y_i \in \mathbb{R}^d$ avec d < n, qui satisfont la même contrainte d'approximation par les K plus proches voisins Y_{ij} dans l'espace projeté, c'est à dire les Y_i qui minimisent l'erreur suivante

$$\min_{Y_1, Y_1, \dots, Y_m} \sum_{i} \left\| Y_i - \sum_{j=1}^k w_{ij} Y_{ij} \right\|^2$$
 (3)

Question 1:

Si l'on note $N_i = (X_{i1} \dots X_{ik})$ la matrice de dimension (n,k) contenant les K plus proches voisins de X_i , montrez que la relation suivante est vérifiée, et donner l'expression de G_i

$$\varepsilon_i = \left\| X_i - \sum_{j=1}^k w_{ij} X_{ij} \right\|^2 = w_i^T G_i w_i \tag{4}$$

Question 2:

On détermine les vecteurs de poids w_i qui minimisent l'erreur d'approximation ε_i sous la contrainte $1_k^T w_i = 1$. Si l'on note λ_i le multiplicateur de Lagrange associé à cette contrainte, alors on doit minimiser le Lagrangien suivant

$$\mathcal{L}_i = w_i^T G_i w_i + \lambda_i (1 - 1_k^T w_i) \tag{5}$$

En dérivant par rapport à w_i , **montrer que**

$$w_i = \frac{1}{2}G_i^{-1}\lambda_i 1_k \tag{6}$$

En introduisant la contrainte $1_k^T w_i = 1$, **déduire que**

$$\lambda_i = \frac{2}{1_k^T G_i^{-1} 1_k} \tag{7}$$

Déduire de 6) et 7) l'expression finale des vecteurs w_i ci-dessous

$$w_i = \frac{G_i^{-1} 1_k}{1_k^T G_i^{-1} 1_k} \tag{8}$$

Question 3:

On cherche maintenant à déterminer les points projetés Y_i en minimisant l'expression (3). On montre que cette expression peut s'écrire

$$\sum_{i} \|Y^{T} 1_{i} - Y^{T} \widetilde{w}_{i}\|^{2} = \|Y^{T} (I - \widetilde{W}^{T})\|_{F}^{2}$$
 (9)

Donner l'expression, et préciser la dimension des matrices et vecteurs cidessous

$$Y^T$$
 1_i \widetilde{w}_i \widetilde{W}^T

Question 4:

On note M la matrice ci-dessous

$$M = (I - \widetilde{W}^T)^T (I - \widetilde{W}^T)$$
 (10)

Préciser la dimension de cette matrice

Les points Y_i rassemblés dans la matrice Y, qui minimisent l'expression (9) sous les contraintes $\frac{1}{m}Y^TY = I$, $Y^T1_m = 0_d$, sont déduits des vecteurs propres de la matrice M.

Préciser la dimension de chaque vecteur propre de M.

Combien y en a-t-il au maximum ?

En excluant celui de valeur propre nulle, quels sont les vecteurs propres qu'il faut retenir pour minimiser le critère lorsque que l'espace projeté recherché est de dimension d ?

Question 5:

On se place maintenant dans la situation où l'on cherche à exploiter les résultats de la méthode LLE optimisée sur un premier ensemble de points, pour déduire les projections de nouveaux points sans procéder à un réapprentissage.

Chaque nouveau point $X^t \in \mathbb{R}^n$ n'appartenant pas à l'ensemble d'apprentissage est projeté en $Y^t \in \mathbb{R}^d$ en exploitant uniquement les points X_i , $i=1,\ldots,m$ de l'ensemble d'apprentissage et leurs projections Y_i déterminées lors de l'apprentissage.

Proposer une méthode pour déterminer $Y^t \in \mathbb{R}^d$, et en préciser les étapes de calcul.