

CMPS 460 – Spring 2022

MACHINE

LEARNING

Tamer Elsayed

Image hosted by. WittySparks.com | Image source: Pixabay.com

2

Limits of Learning

Chapter 2

Machine Learning is <u>NOT</u> magic!

Machine Learning will **NOT** always work!

What we will learn in this session ...

- Inductive Bias
- Why might ML fail?
- Overfitting/Underfitting
- How to test the model's generalizability

Inductive Bias

Examples of Class A

Examples of Class B

lass B

How about these?

Background in focus or not?

Inductive Bias

- In the absence of data that narrow down the relevant concept, what type of solutions are we more likely to prefer?
 - What we know before the data arrives!
- Many classifiers need assumptions about the nature of the relation between examples and classes.
- Some hypotheses are more probable than others.
 - e.g., nobody came up with the "background" classification.

Approaches differ primarily in the sort of inductive bias that they exhibit

Shallow DT: grow but with max depth d.

Is a Person Fit?

What's the inductive bias here?

Not Everything is Learnable

Not everything is learnable

ML might fail on a task for many reasons:

- Very small training data
- Noisy training data
 - Noise could be in features, or in labels
- Features are not useful or insufficient
- Some examples might not have single correct answer
- Mismatch between inductive bias of learner and concept we aim to learn.

Sources of error!

Overfitting/Underfitting

Evaluating the learned hypothesis h

- Assume we've learned a tree h using the top-down induction algorithm.
- And it fits the training data perfectly.

Are we done?

Can we guarantee we have found a good hypothesis?

Training error is not sufficient!

- Goal is <u>NOT</u> to build a model that gets 0% error on the training data.
 - this would be easy!
- A tree can classify training data perfectly, yet classify new examples incorrectly.

We care about generalization to new (unseen) examples

Overfitting ...

- Overfitting is when you pay too much attention to idiosyncracies of the training data, and aren't able to generalize well.
 - Often this means that your model is fitting noise, rather than whatever it is supposed to fit.

- Overfitting in DT?
- Overfitting in the student course understanding?

Underfitting

How about an empty tree?

- Underfitting
 - Learning algorithm had the opportunity to learn more from training data, but didn't.
 - Or didn't have sufficient data to learn from.

Example

Example

Proper Evaluation ...

Recall: Formalizing Induction

- Given
 - a loss function l
 - a sample from some unknown data distribution D

• Our task is to compute a function f that has low expected error over D with respect to l.

$$\mathbb{E}_{(x,y)\sim D}\{l(y,f(x))\} = \sum_{(x,y)} D(x,y)l(y,f(x))$$

Overfitting

- Consider a hypothesis h and its:
 - Error rate over training data $error_{train}(h)$:

$$error_{train}(h) = \sum_{n=1}^{N} \frac{1}{N} l(y^{(n)}, h(x^{(n)}))$$

- True error rate over all data $error_{true}(h)$:

$$error_{true}(h) = \mathbb{E}_{(x,y)\sim D}\{l(y,h(x))\} = \sum_{(x,y)} D(x,y)l(y,h(x))$$

- We say h overfits the training data if
 - $-error_{train}(h) < error_{true}(h)$
- Amount of overfitting $= error_{true}(h) error_{train}(h)$

BUT

We don't know $error_{true}(h)!$

Solution: Evaluate on Test Data

- Set aside a test set
 - some examples that will be used for evaluation

Don't look at them during training!

Cardinal rule of machine learning

Never ever touch your test data!

Solution: Evaluate on Test Data

- Set aside a test set
 - some examples that will be used for evaluation

- Don't look at them during training!
- After learning a DT, we calculate $error_{test}(h)$.

$$error_{test}(h) = \sum_{n=1}^{N} \frac{1}{N} l(y_{test}^{(n)}, h(x_{test}^{(n)}))$$

Overfitting

- Learned model overfits the training data when its accuracy on the training data goes up but its accuracy on unseen data goes down.
 - e.g., resulting tree doesn't generalize.
- Often this means that your model is fitting noise, rather than whatever it is supposed to fit.

Overfitting

Another way of putting it:

A hypothesis h is said to overfit the training data, if there is another hypothesis h', such that:

- -h has a smaller error than h' on the training data
- but h has larger error on the test data than h'.

Model, Parameters, and Hyper-parameters

Models & Parameters

- The model tells us what sort of things we can learn, and also tells us what our inductive bias is.
- For most models, there will be associated parameters.
 - we use the data to decide on.

DT parameters?

 The job of a learning algorithm is to take data and figure out a good set of parameter values.

Hyper-Parameters

- Many learning algorithms will have additional knobs that you can adjust.
 - In most cases, these knobs amount to tuning the inductive bias of the algorithm.
- Called hyper-parameters.
 - parameters that control other parameters of the model.

DT hyper-parameters?

- On training data?
- On testing data?

How?

Training Set		Test Set
Training Data	Dev Set	Test Set

Train/Dev/Test Sets

In practice, we always split examples into 3 distinct sets:

Training set

- Used to learn the parameters of the ML model
 - e.g., nodes and branches of the decision tree

Development set

- aka tuning set, aka validation set, aka held-out data
- Used to learn/tune hyper-parameters
 - e.g., max depth of decision tree

Test set

Used to evaluate how well we're doing on new unseen examples

Example: DT

Training Data	Dev Set	Test Set
_		
tree ₀	→ acc _{0,dev}	
tree ₁	→ acc _{1,dev}	
tree ₂	→ acc _{2,dev}	
tree ₃	→ acc _{3,dev}	→ acc _{3,test}
tree ₄	→ acc _{4,dev}	

The general approach ...

- 1. Split your data into 70% training data, 10% development data and 20% test data.
- 2. For each possible setting of your hyperparameters:
 - (a) Train a model using that setting of hyperparameters on the training data.
 - (b) Compute this model's error rate on the development data.
- From the above collection of models, choose the one that achieved the lowest error rate on development data.
- Evaluate that model on the test data to estimate future test performance.

جامعة قطر QATAR UNIVERSITY

What You Should Know So Far ...

- Decision Trees
 - What is a decision tree, and how to induce it from data
- Fundamental Machine Learning Concepts
 - Difference between memorization and generalization
 - What inductive bias is, and what its role in learning is
 - What underfitting and overfitting mean
 - How to take a task and cast it as a learning problem
- Why you should never ever touch your test data!!