Отчёт по лабораторной работе №6

Разложение чисел на множители

Бирюкова Анастасия

Содержание

1	Цель работы	4									
2	Теоретические сведения 2.1 р-алгоритм Поллрада	5									
3	Выполнение работы 3.1 Реализация алгоритма на языке Python										
4	1 Выводы										
Сп	исок литературы	11									

List of Figures

3.1	Работа алгоритма														9

1 Цель работы

Изучение задачи разложения на множители, изучение р-алгоритма Поллрада.

2 Теоретические сведения

Разложение на множители — предмет непрерывного исследования в прошлом; и такие же исследования, вероятно, продолжатся в будущем. Разложение на множители играет очень важную роль в безопасности некоторых криптосистем с открытым ключом.

Согласно Основной теореме арифметики любое положительное целое число больше единицы может быть уникально записано в следующей главной форме разложения на множители, где $p_1, p_2, ..., p_k$ — простые числа и $e_1, e_2, ..., e_k$ — положительные целые числа.

$$n = p_1^{e_1} * p_2^{e_2} * \dots * p_k^{e_k}$$

Поиск эффективных алгоритмов для разложения на множители больших составных чисел ведется давно. К сожалению, совершенный алгоритм для этого пока не найден. Хотя есть несколько алгоритмов, которые могут разложить число на множители, ни один не способен провести разложение достаточно больших чисел в разумное время. Позже мы увидим, что это хорошо для криптографии, потому что современные криптографические системы полагаются на этот факт. В этой секции мы даем несколько простых алгоритмов, которые проводят разложение составного числа. Цель состоит в том, чтобы сделать процесс разложения на множители менее трудоёмким.

В 1974 г. Джон Поллард разработал метод, который находит разложение числа p на простые числа. Метод основан на условии, что $p\!-\!1$ не имеет сомножителя, большего, чем заранее определенное значение B, называемое границей. Алго-

ритм Полларда показывает, что в этом случае

$$p = GCD(2^{B!} - 1, n)$$

Сложность. Заметим, что этот метод требует сделать B-1 операций возведения в степень $a=a^e mod n$. Есть быстрый алгоритм возведения в степень, который выполняет это за $2*1og_2B$ операций. Метод также использует вычисления НОД, который требует n^3 операций. Мы можем сказать, что сложность — так или иначе больше, чем O(B) или $O(2^n)$, где n_b — число битов в B. Другая проблема — этот алгоритм может заканчиваться сигналом об ошибке. Вероятность успеха очень мала, если B имеет значение, не очень близкое к величине \sqrt{n} .

2.1 р-алгоритм Поллрада

- Вход. Число n, начальное значение c, функция f, обладающая сжимающими свойствами.
- Выход. Нетривиальный делитель числа n.
- 1. Положить a = c, b = c
- 2. Вычислить a = f(a)(modn), b = f(b)(modn)
- 3. Найти d=GCD(a-b,n)
- 4. Если 1 < d < n, то положить p = d и результат: p. При d = n результат: ДЕЛИТЕЛЬ НЕ НАЙДЕН. При d = 1 вернуться на шаг 2.

3 Выполнение работы

3.1 Реализация алгоритма на языке Python

```
from math import gcd
ag = 1
bg = 1
def f(x, n):
    return (x*x+5)%n
def fu(n,a, b, d):
    a = f(a, n) \% n
   b = f(f(b, n), n) %n
    d = gcd(a-b, n)
    if 1<d<n:
        p = d
        print(p)
        exit()
    if d == n:
        print("He найдено")
    if d == 1:
        global ag
```

```
def main():
    n = 1359331
    c = 1
    a = c
    b = c
    a = f(a, n) % n
    b = f(a,n) % n
    d = gcd(a-b, n)
    if 1<d<n:
        p = d
        print(p)
        exit()
    if d == n:</pre>
```

pass

fu(n, a, b, d)

if d == 1:

ag = b

fu(n, a, b, d)

3.2 Контрольный пример

```
23
           24
          25 def main():
                   n = 1359331
          26
                   c = 1
           27
           28
           29
                   b = c
                   a = f(a, n) \% n
           30
                   b = f(a,n) % n
           31
                  d = gcd(a-b, n)
if 1<d<n:</pre>
          32
           33
           34
                       p = d
                       print(p)
           35
           36
                       exit()
                   if d == n:
           37
           38
                       pass
           39
                   if d == 1:
           40
                       fu(n, a, b, d)
           1 main()
In [26]:
          1181
```

Figure 3.1: Работа алгоритма

4 Выводы

Изучили задачу разложения на множители и р-алгоритм Поллрада.

Список литературы

- 1. Алгоритмы тестирования на простоту и факторизации
- 2. Р-метод Полларда