SympyFOC

August 21, 2021

```
[1]: from sympy import *

0.1 A small example: K_t recursive equation
```

- [2]: $\begin{bmatrix} K_{11} & K_{12} \\ K_{12} & K_{22} \end{bmatrix}$
- [3]: A
- [3]: $\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & 1 a_{21} \end{bmatrix}$
- [4]: B
- [4]: $\begin{bmatrix} -a_{11} a_{12} + 1 \\ 0 \end{bmatrix}$
- [5]: K_sol = simplify(A.T *(K K*B*(B.T * K * B).inv() * B.T * K.T) * A + Q)
 K_sol

[5]:
$$\begin{bmatrix} K_{22}a_{21}^2 + 1 - \frac{K_{12}^2a_{21}^2}{K_{11}} & \frac{a_{21}\left(-K_{11}K_{22}a_{21} + K_{11}K_{22} + K_{12}^2a_{21} - K_{12}^2\right)}{K_{11}} \\ \frac{a_{21}\left(-K_{11}K_{22}a_{21} + K_{11}K_{22} + K_{12}^2a_{21} - K_{12}^2\right)}{K_{11}} & K_{22}a_{21}^2 - 2K_{22}a_{21} + K_{22} + 1 - \frac{K_{12}^2a_{21}^2}{K_{11}} + \frac{2K_{12}^2a_{21}}{K_{11}} - \frac{K_{12}^2}{K_{11}} \end{bmatrix}$$
 So this says that K_{t+1} , which is:

- [6]: K
- [6]: $\begin{bmatrix} K_{11} & K_{12} \\ K_{12} & K_{22} \end{bmatrix}$ leads to K_t via the following expression for K_t as a function of K_{t+1} :
- [7]: K_sol
- [7]:

$$\begin{bmatrix} K_{22}a_{21}^2 + 1 - \frac{K_{12}^2a_{21}^2}{K_{11}} & \frac{a_{21}\left(-K_{11}K_{22}a_{21} + K_{11}K_{22} + K_{12}^2a_{21} - K_{12}^2\right)}{K_{11}} \\ \frac{a_{21}\left(-K_{11}K_{22}a_{21} + K_{11}K_{22} + K_{12}^2a_{21} - K_{12}^2\right)}{K_{11}} & K_{22}a_{21}^2 - 2K_{22}a_{21} + K_{22} + 1 - \frac{K_{12}^2a_{21}^2}{K_{11}} + \frac{2K_{12}^2a_{21}}{K_{11}} - \frac{K_{12}^2a_{21}^2}{K_{11}} \end{bmatrix}$$

(Note that indeed this is a symmetric matrix).

Then for example I can do comparative statics with respect to variables:

[8]:
$$K_{22}a_{21}^2 + 1 - \frac{K_{12}^2a_{21}^2}{K_{11}}$$

Remember that K here is K_{t+1} , which is

[9]:
$$\begin{bmatrix} K_{11} & K_{12} \\ K_{12} & K_{22} \end{bmatrix}$$
 and A is:

[10]:
$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & 1 - a_{21} \end{bmatrix}$$

If we factor out a_{21}^2 , we get that the upper left entry of K_t is:

$$a_{21}^2(K_{22} - \frac{K_{12}^2}{K_{11}}) + 1$$

From this (where K is K_{t+1}), we have that the upper left entry is increasing in K_{22} , increasing in K_{11} and decreasing in K_{12} . If $K_{22} > \frac{K_{12}^2}{K_{11}}$, then it is increasing in a_{21} , otherwise it is decreasing.

[11]:
$$\underline{a_{21} \left(K_{11} K_{22} \left(1 - a_{21} \right) + K_{12}^2 a_{21} - K_{12}^2 \right) }_{K_{11}}$$

This is the bottom left and upper right corner of K_t . Without going into too many details, the effect of a_{21} appears to be increasing. The only decreasing term is $(1 - a_{21})$ which expands out as $K_{11}K_{22}(a_{21}-a_{21}^2)$ and $a_{21} \ge a_{21}^2$ since $a_{21} \le 1$.

[12]:
$$\frac{K_{11} \left(K_{22} a_{21}^2 - 2K_{22} a_{21} + K_{22} + 1\right) - K_{12}^2 a_{21}^2 + 2K_{12}^2 a_{21} - K_{12}^2}{K_{11}}$$
This is the bottom right corner of K_t .

[13]:
$$K_{11} \left(2K_{22}a_{21} - 2K_{22} \right) - 2K_{12}^2a_{21} + 2K_{12}^2$$

 $\frac{K_{11}\left(2K_{22}a_{21}-2K_{22}\right)-2K_{12}^2a_{21}+2K_{12}^2}{K_{11}}$ This is its derivative with respect to a_{21} , which shows the condition required for the original function to be increasing.