

Description

The VSM8N20 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

• V_{DS} =200V, I_D =8A $R_{DS(ON)}$ <300m Ω @ V_{GS} =10V (Typ: 260m Ω)

- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Low gate to drain charge to reduce switching losses

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

Schematic Diagram

Package Marking and Ordering Information

			<u> </u>			
	Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
	VSM8N20-T1	VSM8N20	TO-251	_	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	200	V	
Gate-Source Voltage	Vgs	±20	V	
Drain Current-Continuous	I _D	8	A A	
Drain Current-Continuous(T _C =100°ℂ)	I _D (100℃)	5.6		
Pulsed Drain Current	I _{DM}	20	А	
Maximum Power Dissipation	P _D	55	W	
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 150	$^{\circ}$	

Thermal Characteristic

Thermal Resistance, Junction-to-Case (Note 2)	R _{eJC}	2.3	°C/W	
---	------------------	-----	------	--

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics			•			
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250µA	200	215	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =200V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1	1.7	2.5	V
Drain-Source On-State Resistance	R _{DS(ON)}	V_{GS} =10V, I_D =4.5A	-	260	300	mΩ
Forward Transconductance	g FS	V _{DS} =25V,I _D =4.5A	3	-	-	S
Dynamic Characteristics (Note4)			•			
Input Capacitance	C _{lss}	V _{DS} =25V,V _{GS} =0V, F=1.0MHz		540		PF
Output Capacitance	Coss			90		PF
Reverse Transfer Capacitance	C _{rss}			35		PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}	V_{DD} =100V, I_{D} =4.5A V_{GS} =10V, R_{GEN} =5 Ω	-	6.4	-	nS
Turn-on Rise Time	t _r		-	11	-	nS
Turn-Off Delay Time	t _{d(off)}		-	20	-	nS
Turn-Off Fall Time	t _f		-	12	-	nS
Total Gate Charge	Qg	V _{DS} =160V,I _D =4.5A, V _{GS} =10V	-	16	-	nC
Gate-Source Charge	Q _{gs}		-	3.4	-	nC
Gate-Drain Charge	Q _{gd}	VGS-1UV	-	5.1	-	nC
Drain-Source Diode Characteristics						
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =4.5A	-	-	1.2	V
Diode Forward Current (Note 2)	Is		-	-	8	Α

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- **2.** Surface Mounted on FR4 Board, $t \le 10$ sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Vds Drain-Source Voltage (V)

Vgs Gate-Source Voltage (V)

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Vds Drain-Source Voltage (V) T_J-Junction Temperature (℃)

Figure 7 Capacitance vs Vds Figure 9 BV_{DSS} vs Junction Temperature

Normalized BVdss

BVDSS

(norm)

1.2

1.1

1.0

0.9

0.8

V_{GS}=0

l_D=250μA

Figure 8 Safe Operation Area

50

100

Tı(°C)

 T_J -Junction Temperature(${}^{\circ}\!\mathbb{C}$)

Figure 10 V_{GS(th)} vs Junction Temperature

Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance