Федеральное государственное автономное образовательное учреждение высшего образования «Московский физико-технический институт (национальный исследовательский университет)»

Передовая инженерная школа радиолокации, радионавигации и программной инженерии Кафедра Аэрофизики и летательных аппаратов

Алгоритм предиктивного анализа отказов системы видеоаналитики в режиме реального времени по данным от систем мониторинга

Студент: Боровец Н.В.

Научный руководитель: Гришин Н.А.

Содержание

В ходе доклада будут рассмотрены следующие ключевые этапы работы:

- 1. Введение: Актуальность, цель и задачи исследования.
- 2. Постановка задачи и анализ данных: Описание архитектуры системы и выводы по данным.
- 3. Методология: Подходы к инженерии признаков, выбору моделей и валидации.
- 4. Результаты: Сравнительный анализ моделей и выбор лучшей.
- **5. Заключение:** Основные итоги и выводы по работе.
- 6. Дальнейшее развитие: Перспективы и направления для будущих исследований.

Цели и задачи

Цель работы: разработать метод предиктивного анализа для прогнозирования сквозной задержки в конвейере видеоаналитики.

Задачи:

- 1. Провести аналитический обзор литературы.
- 2. Выполнить анализ данных, выявить корреляции и признаки.
- 3. Провести сравнительный анализ методов (статистика, ML, DL).
- 4. Выбрать и реализовать 3 ключевые модели.
- 5. Спроектировать и реализовать MLOps-конвейер.
- 6. Провести экспериментальное исследование моделей.
- 7. Сформулировать практические рекомендации.

Актуальность

- Рост сложности систем видеоаналитики для критической инфраструктуры.
- **Недостатки традиционного мониторинга:** статические уведомления (алерты) в Grafana реагируют на сбои постфактум.
- Необходимость предиктивного подхода: заблаговременное выявление проблем для предотвращения деградации сервиса.

Архитектура системы

Объект исследования:

многокомпонентный конвейер видеоаналитики.

Личный вклад:

участие в разработке backend-части в ПИШ РПИ.

Постановка задачи

- **Данные**: 16 дней метрик из Prometheus (интервал 15 сек).
- **Цель:** спрогнозировать задержку *common_event_delay*.
- Горизонт: 3.75 часа.
- **Требование:** МАРЕ < 10%.

Анализ данных

- **Сильная корреляция** с задержкой в **Kafka** (+0.58).
- Выраженная **суточная сезонность** и **нелинейный тренд.**

25.06.2025 г. Жуковский, 2025

Анализ данных

Автокорреляция (АСГ/РАСГ):

- ACF (медленное затухание) -> нестационарность.
- PACF (пики на лагах 1, 60, 120...)
 - > AR(1) + сезонность (s=60).

Методология и модели

1. Инженерия признаков:

• Календарные, циклические, лаговые, признаки на основе скользящих окон.

2. Выбор моделей для сравнения:

- **SARIMA:** классическая статистика.
- CatBoost: гибридный градиентный бустинг.
- **LSTM:** рекуррентная нейронная сеть.
- Доп. исследование: N-BEATS, Transformer-модели, AutoTS.

3. Валидация и предотвращение утечек данных:

- Критическая проблема: утечка данных из-за некорректной генерации признаков.
- Решение: комплексный подход (*TimeSeriesSplit* + генерация признаков строго на train-фолдах).

Результаты экспериментов

Модель	MAE	RMSE	MAPE, %
Наивный прогноз (Baseline)	121.5	153.2	31.52
SARIMA	44.1	51.4	11.06
CatBoost	36.0	41.1	8.90
LSTM	3.7	4.5	0.89

Вывод: Модели **LSTM** и **CatBoost** выполнили техническое требование по точности.

Анализ и сравнение результатов

- **LSTM -** MAPE **0.89%**. Эффективно улавливает тренды и локальные пики.
- CatBoost MAPE 8.90%. Хорошо ловит общую динамику, но сглаживает пики.
- **SARIMA** MAPE **11.06**%. Линейная модель не справляется со сложной динамикой.

25.06.2025

11

Заключение

Цель работы достигнута: разработан метод предиктивного анализа задержек, позволяющий прогнозировать состояние видеоконвейера на 3.75 часа вперед.

Результаты по задачам:

- 1. Обзор литературы: сформирована теоретическая база.
- 2. Анализ данных: выявлены сезонность и ключевые признаки.
- 3. Сравнение методов: подтверждена перспективность ML/DL подходов.
- 4. Реализация моделей: реализованы SARIMA, CatBoost, LSTM.
- **5. MLOps:** реализована методология, решена проблема утечки данных.
- **6. Эксперименты: LSTM** лучшая модель (МАРЕ **0.89**%).
- 7. Рекомендации: сформулированы для внедрения.

Дальнейшее развитие работы

1. Улучшение модели:

- Интерпретируемость (SHAP): Понять, почему модель делает прогноз.
- Root Cause Analysis: Определить *источник* будущей проблемы.

2. Развитие MLOps:

• **Production-внедрение:** CI/CT/CD, мониторинг дрейфа данных.

3. Расширение функционала:

• Проактивное управление: Автомасштабирование ресурсов на основе прогнозов.

Спасибо за внимание!

Готов ответить на ваши вопросы.