State Space Model (Dynamic model)

A/Prof Richard Yi Da Xu Yida.Xu@uts.edu.au Wechat: aubedata

https://github.com/roboticcam/machine-learning-notes

University of Technology Sydney (UTS)

July 24, 2018

Content

- Continous Dynamic Model: Kalman Filter and Extended KF
- ▶ Discrete Dynamic Model: Hidden Markov Model

What is time series?

- A collection of observations of well-defined data items obtained through repeated measurements over time.
- Examples of time series?

Continous Dynamic System: Kalman Filter

a primary school approach: We have a dynamic model: a robot that is travelling 0.2 meters every minute in both *x* and *y* directions:

- ▶ At previous time t 1, its position (state) is: x_{t-1}
- ▶ At current time t, its position (state) is: $x_t = x_{t-1} + \begin{bmatrix} 0.2 \\ 0.2 \end{bmatrix}$

Let's simulate a path:

State Transitions

However, nothing is perfect! The dynamic model always contains a random noise:

State Transitions

Very commonly, we have Gaussian noise in the **transition**:

$$x_t = F(x_{t-1}) + w_t$$
 $w_t \sim \mathcal{N}(0, Q_t)$

In the case of previous example,

$$x_t = x_{t-1} + w_t$$
 $w_t \sim \mathcal{N}(0, Q_t)$ where $F(x_{t-1}) = x_{t-1} + w_t$

Making the matter slightly complicated:

We can not measure the states directly, we have to estimate the states via some external measurements:

$$y_t = H(x_t) + v_t$$
 $v_t \sim \mathcal{N}(0, R_t)$

Note that x_t is now a **latent** variable.

A dynamic System

In a general Dynamic System (DS), we have the following equation:

$$x_t = F(x_{t-1})$$
$$y_t = H(x_t)$$

For Kalman Filter, we are interested in Linear Dynamic System (LDS), and Gaussian noises. We have the following equations:

$$x_t = Ax_{t-1} + B + w_t$$
 $w_t \sim \mathcal{N}(0, Q_t)$
 $y_t = Hx_t + C + v_t$ $v_t \sim \mathcal{N}(0, R_t)$

Motivating examples

- ► A truck on perfectly frictionless, infinitely long straight rails.
- Initially the truck is stationary at position 0, but it is buffeted this way and that by random acceleration, i.e., we assume $a_t \sim \mathcal{N}(0, \sigma^2)$. Of course, this does NOT imply $w_t \sim \mathcal{N}(0, \sigma^2)$
- ▶ We measure position of the truck every △t seconds, but these measurements are imprecise.
- We want to maintain a model of where the truck is and what its velocity.

$$\mathbf{x}_{t} = A\mathbf{x}_{t-1} + w_{t}$$

$$\begin{bmatrix} x_{t} \\ \dot{x}_{t} \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & \triangle t \\ 0 & 1 \end{bmatrix}}_{A_{t}} \underbrace{\begin{bmatrix} x_{t-1} \\ \dot{x}_{t-1} \end{bmatrix}}_{x_{t-1}} + \underbrace{\begin{bmatrix} \frac{1}{2}a_{t}(\triangle t)^{2} \\ a_{t}\triangle t \end{bmatrix}}_{w_{t}}$$

This is using simple high school physics:

$$x_t = x_{t-1} + \dot{x}_{t-1} \triangle t + \frac{1}{2} a_t (\triangle t)^2$$

 $\dot{x}_t = \dot{x}_{t-1} + a_t \triangle t$

How to compute Q_t

$$\mathbf{x}_{t} = \begin{bmatrix} x_{t} \\ \dot{x}_{t} \end{bmatrix} = \begin{bmatrix} 1 & \triangle t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_{t-1} \\ \dot{x}_{t-1} \end{bmatrix} + \underbrace{\begin{bmatrix} \frac{1}{2} a_{t} (\triangle t)^{2} \\ a_{t} \triangle t \end{bmatrix}}_{\mathbf{w}_{t}}$$

- ▶ Assume $a_t \sim \mathcal{N}(0, \sigma^2) \ \ \forall t \ \text{and} \ \textit{w}_t \sim \mathcal{N}(0, \textit{Q}_t)$
- ▶ What's *Q_t*?

$$\begin{split} Q_t &= \mathbb{COV}(\mathbf{x}_t) = \mathbb{COV}\left(\begin{bmatrix} 1 & \triangle t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_{t-1} \\ \dot{x}_{t-1} \end{bmatrix} + \begin{bmatrix} \frac{1}{2}a_t(\triangle t)^2 \\ a_t \triangle t \end{bmatrix}\right) \\ &= \mathbb{COV}\left(\begin{bmatrix} \frac{1}{2}a_t(\triangle t)^2 \\ a_t \triangle t \end{bmatrix}\right) \\ &= \mathbb{E}\left[\left(a_t\right)^2 \begin{bmatrix} \frac{1}{2}(\triangle t)^2 \\ \triangle t \end{bmatrix} \begin{bmatrix} \frac{1}{2}(\triangle t)^2 \triangle t \end{bmatrix}\right] \\ &= \sigma^2 \begin{bmatrix} \frac{1}{4}(\triangle t)^4 & \frac{1}{2}(\triangle t)^3 \\ \frac{1}{2}(\triangle t)^3 & (\triangle t)^2 \end{bmatrix} \end{split}$$

Measurement Equation

- Suppose At each time step, a noisy measurement of the true position of the truck is made.
- Let us suppose the noise, v_t is also normally distributed, with mean 0 and standard deviation σ_z

$$\begin{aligned} y_t &= H \boldsymbol{x}_t + C + v_t & v_t \sim \mathcal{N}(0, R_t) \\ &= \begin{bmatrix} 1 & 0 \end{bmatrix} + v_t & v_t \sim \mathcal{N}(0, \sigma_z) \end{aligned}$$

State Space Models

Markov Property:

$$p(x_t|x_1,...,x_{t-1},y_1,...,y_{t-1}) = p(x_t|x_{t-1})$$

$$p(y_t|x_1,...,x_{t-1},x_t,y_1,...,y_{t-1}) = p(y_t|x_t)$$

Linear Gaussian Dynamic Model

$$\begin{aligned} \mathbf{x}_t &= A\mathbf{x}_{t-1} + B + w_t & w_t \sim \mathcal{N}(0, Q_t) \\ \Longrightarrow \mathbf{Transition \ probability:} & p(\mathbf{x}_t | \mathbf{x}_{t-1}) \sim \mathcal{N}(A\mathbf{x}_{t-1} + B, Q_t) \\ y_t &= H\mathbf{x}_t + v_t & v_t \sim \mathcal{N}(0, R_t) \\ \Longrightarrow \mathbf{Measurement \ probability:} & p(y_t | \mathbf{x}_t) \sim \mathcal{N}(H\mathbf{x}_t, R_t) \end{aligned}$$

- ▶ Kalman Filter can be used to in this Gaussian, Linear case.
- In general, there are many other Dyanmic models which are non-Gaussian, non-Linear. They can NOT be solved using Kalman Filter.

What do we want to compute?

Prediction:
$$p(x_t|\mathbf{y}_{1:t-1}) = \int_{x_{t-1}} p(x_t|x_{t-1})p(x_{t-1}|\mathbf{y}_{1:t-1})$$

Update: $p(x_t|\mathbf{y}_{1:t}) = \frac{p(y_t|x_t)p(x_t|\mathbf{y}_{1:t-1})}{\int_{S_t} p(y_t|S_t)p(dS_t|\mathbf{y}_{1:t-1})}$ (1)

This is because:

$$p(x_t|\mathbf{y}_{1:t}) \propto p(x_t, \mathbf{y}_{1:t})$$

$$\propto p(y_t|x_t)p(x_t|\mathbf{y}_{1:t-1})$$

$$= \frac{p(y_t|x_t)p(x_t|\mathbf{y}_{1:t-1})}{\int_{S_t}(y_t|s_t)p(ds_t|\mathbf{y}_{1:t-1})}$$
(2)

Kalman Filter - Prediction

Following marginal distribution of linear Gaussian (Bishop p.93), given:

- \triangleright $p(x) \sim \mathcal{N}(x|\mu, \Sigma)$
- $p(y|x) \sim \mathcal{N}(y|Ax+b,L)$

Marginal :
$$p(y) = \int_{x} p(y|x)p(x) \sim \mathcal{N}\left(y|A\mu + b, L + A\Sigma A^{T}\right)$$

$$\begin{aligned} \text{Prediction}: \quad & p(x_{t}|\mathbf{y}_{1:t-1}) \sim \mathcal{N}(\bar{\mu}_{t}, \bar{\Sigma}_{t}) = \int_{x_{t-1}} p(x_{t}|x_{t-1}) p(dx_{t-1}|\mathbf{y}_{1:t-1}) \\ & = \int_{x_{t-1}} \mathcal{N}(x_{t}|Ax_{t-1} + B, Q_{t}) \mathcal{N}(x_{t-1}|\hat{\mu}_{t-1}, \hat{\Sigma}_{t-1}) \\ & = \mathcal{N}\left(x_{t}|A\hat{\mu}_{t-1} + B, A\hat{\Sigma}_{t-1}A^{T} + Q_{t}\right) \end{aligned}$$

Question How abour **update**? Let's see an alternative method using Moment representation.

Moment Representation (1)

In order to compute **moments**, we introduce a zero-mean variable: $\triangle x_{t-1}$, i.e.,:

We attempt to write both $\triangle x_t$ and $\triangle y_t$ in terms of $\triangle x_{t-1}$:

$$\mathbf{x}_t = A\mathbf{x}_{t-1} + w_t$$
 $w_t \sim \mathcal{N}(0, Q_t) \implies x_t = A(\triangle x_{t-1} + \mathbb{E}[x_{t-1}]) + w_t$
$$= A\mathbb{E}x_{t-1} + \underbrace{A\triangle x_{t-1} + w_t}_{\triangle x_t}$$

$$y_{t} = H\mathbf{x}_{t} + v_{t} \qquad v_{t} \sim \mathcal{N}(0, R_{t}) \implies y_{t} = Hx_{t} + v_{t}$$

$$= H(A\mathbb{E}x_{t-1} + A\triangle x_{t-1} + w_{t}) + v_{t}$$

$$= HA\mathbb{E}x_{t-1} + \underbrace{HA\triangle x_{t-1} + Hw_{t} + v_{t}}_{\triangle y_{t}}$$
(3)

The Independence assumptions:

$$ightharpoonup \mathbb{COV}(x_{t-1}, w_t) = 0$$
 $\mathbb{COV}(x_{t-1}, v_t) = 0$ $\mathbb{COV}(w_t, v_t) = 0$

Moment Representation (2)

$$\mathbb{E}[\triangle x_t(\triangle x_t)^T | y_{1:t-1}] = \mathbb{E}[(A\triangle x_{t-1} + w_t)(A\triangle x_{t-1} + w_t)^T]$$

$$= A\widehat{\Sigma}_{t-1}A^T + Q_t = \overline{\Sigma}_t$$

$$\mathbb{E}[\triangle y_t(\triangle x_t)^T | y_{1:t-1}] = \mathbb{E}\left[(HA\triangle x_{t-1} + Hw_t + v_t)(A\triangle x_{t-1} + Hw_t)(A\triangle x_{t-1} +$$

$$\mathbb{E}[\triangle y_t(\triangle x_t)^T | y_{1:t-1}] = \mathbb{E}\left[(HA\triangle x_{t-1} + Hw_t + v_t)(A\triangle x_{t-1} + w_t)^T \right]$$

$$= H\left(A\widehat{\Sigma}_{t-1}A^T + Q_t\right) = H\overline{\Sigma}_t$$

$$\implies \mathbb{E}[\triangle x_t(\triangle y_t)^T | y_{1:t-1}] = \overline{\Sigma}_t H^T$$

$$\mathbb{E}[\triangle y_t(\triangle y_t)^T | y_{1:t-1}] = \mathbb{E}\left[(HA\triangle x_{t-1} + Hw_t + v_t)(HA\triangle x_{t-1} + Hw_t + v_t)^T \right]$$
$$= H\left(A\hat{\Sigma}_{t-1}A^T + Q_t\right)H^T + R_t = H(\bar{\Sigma}_t)H^T + R_t$$

$$\mathbb{E}[y_t|y_{1:t-1}] = HA\mathbb{E}[x_{t-1}] = HA\hat{\mu}$$

$$\mathbb{E}[x_t|y_{1:t-1}] = A\mathbb{E}[x_{t-1}] = A\hat{\mu}$$

Kalman Filter Prediction (alternative): $p(x_t|y_1, \dots y_{t-1}) = \mathcal{N}(\bar{\mu}_t, \bar{\Sigma}_t)$

mean:
$$\bar{\mu}_t = \mathbb{E}[x_t|y_{1:t-1}]$$
:
$$\mathbb{E}[Ax_{t-1} + w_t|y_{1:t-1}]$$
$$= A\mathbb{E}[x_{t-1}|y_{1:t-1}] + \mathbb{E}[w_t]$$
$$= A\hat{\mu}_{t-1}$$

covariance:

$$\begin{split} \bar{\Sigma}_t &= \mathbb{E}[(\triangle x_t)(\triangle x_t)^T] \\ &= \mathbb{E}[(A\triangle x_t + \triangle w_t)(A\triangle x_t + \triangle w_t)^T] \\ &= A\mathbb{E}[\triangle x\triangle x_t]A^T + A\mathbb{E}[\triangle x_t(\triangle w_t)^T] + \mathbb{E}[(\triangle x_t)^T\triangle w_t]A^T + \mathbb{E}[\triangle w_t(\triangle w_t)^T] \\ \text{Since the noises } x \text{ and } w \text{ are assumed independent } \mathbb{E}[\triangle x_t(\triangle w_t)^T] = 0 : \\ &= A\hat{\Sigma}_{t-1}A^T + Q_t \end{split}$$

Kalman Filter Update: $p(x_t|y_1,...y_t) = \mathcal{N}(\hat{\mu}_t,\hat{\Sigma}_t)$ (1)

Update
$$p(x_t|y_1, \dots y_t) \sim \mathcal{N}(\hat{\mu}_t, \hat{\Sigma}_t)$$

 $\propto p(y_t|x_t)p(x_t|\mathbf{y}_{1:t-1})$
 $= \mathcal{N}(y_t|Hx_t, R_t)\mathcal{N}(x_t|\bar{\mu}_t, \bar{\Sigma}_t)$

- Say $p(u) = \mathcal{N}(\mu_u, \Sigma_{uu})$ $p(v) = \mathcal{N}(\mu_v, \Sigma_{vv})$
- ► Think $p(u) \equiv p(x_t|y_1, \dots, y_{t-1}) \sim \mathcal{N}(x_t|\bar{\mu}_t, \bar{\Sigma}_t)$ $p(v) \equiv p(y_t|y_1, \dots y_{t-1})$
- We are after $p(u|v) \equiv p(x_t|y_t, y_1, \dots, y_{t-1})$

Kalman Filter Update: $p(x_t|y_1,...y_t) = \mathcal{N}(\hat{\mu}_t,\hat{\Sigma}_t)$ (2)

$$\begin{aligned} \text{mean:} \quad \hat{\mu}_t &= \mathbb{E}[x_t | y_{1:t}]: \\ \mu_u &+ \Sigma_{uv} \Sigma_{vv}^{-1} (v - \mu_v) \\ &= \mathbb{E}[x_t] + \mathbb{E}[\triangle x_t (\triangle y_t)^T] \mathbb{E}[\triangle y_t (\triangle y_t)^T]^{-1} (y_t - \mathbb{E}[y_t]) \\ &= A \hat{\mu}_{t-1} + \bar{\Sigma}_t^T H (H \bar{\Sigma}_t H^T + R_t)^{-1} (y_t - H A \hat{\mu}_{t-1}) \end{aligned}$$

$$\begin{aligned} \text{covariance:} \quad \hat{\Sigma}_t &= \mathbb{COV}[x_t | y_{1:t}]: \\ \Sigma_{uu} &- \Sigma_{uv} \Sigma_{vv}^{-1} \Sigma_{vu} \\ &= \mathbb{E}[\triangle x_t (\triangle x_t)^T] - \mathbb{E}[\triangle x_t (\triangle y_t)^T] \mathbb{E}[\triangle y_t (\triangle y_t)^T]^{-1} \mathbb{E}[\triangle y_t (\triangle x_t)^T] \\ &= \bar{\Sigma}_t - \underbrace{\bar{\Sigma}_t H^T (H (\bar{\Sigma}_t) H^T + R_t)^{-1}}_{K} H \bar{\Sigma}_t \end{aligned}$$

$$= (I - KH) \bar{\Sigma}_t$$

Kalman Filter Demo:

Notice of the **smoothing** effect:

Kalman Filter Update:(3) 1-d case

mean:
$$\hat{\mu}_t = \mathbb{E}[x_t|y_{1:t}]$$
:

k-d:
$$\hat{\mu}_{t} = A\hat{\mu}_{t-1} + \bar{\Sigma}_{t}^{T} H (H\bar{\Sigma}_{t}H^{T} + R_{t})^{-1} (y_{t} - HA\hat{\mu}_{t-1})$$
1-d:
$$\hat{\mu}_{t} = a\hat{\mu}_{t-1} + \frac{\bar{\sigma}_{t}^{2} h (y_{t} - ha\hat{\mu}_{t-1})}{h^{2}\bar{\sigma}_{t}^{2} + R_{t}} = \frac{a\hat{\mu}_{t-1} (h^{2}\bar{\sigma}_{t}^{2} + R_{t}) + \bar{\sigma}_{t}^{2} h (y_{t} - ha\hat{\mu}_{t-1})}{h^{2}\bar{\sigma}_{t}^{2} + R_{t}}$$

$$= \frac{a\hat{\mu}_{t-1} R_{t} + \bar{\sigma}_{t}^{2} h y_{t}}{h^{2}\bar{\sigma}_{t}^{2} + R_{t}}$$

covariance: $\hat{\Sigma}_t = \mathbb{COV}[x_t|y_{1:t}]$:

$$\begin{array}{ll} \text{k-d:} & \hat{\Sigma}_t = \bar{\Sigma}_t - \bar{\Sigma}_t H^T (H(\bar{\Sigma}_t) H^T + R_t)^{-1} H \bar{\Sigma}_t \\ \text{1-d:} & \hat{\sigma}_t = \frac{\bar{\sigma}_t^2 (h^2 \bar{\sigma}_t^2 + R_t) - (\bar{\sigma}_t^2)^2 h^2}{h^2 \bar{\sigma}_t^2 + R_t} = \frac{\bar{\sigma}_t^2 (h^2 \bar{\sigma}_t^2 + R_t) - (\bar{\sigma}_t^2)^2 h^2}{h^2 \bar{\sigma}_t^2 + R_t} = \frac{\bar{\sigma}_t^2 R_t}{h^2 \bar{\sigma}_t^2 + R_t} \\ \end{array}$$

Extended Kalman Filter: Non-Linear Dynamic System and Gaussian model

Kalman Filter: Linear Guassian Model:

$$\mathbf{x}_t = A\mathbf{x}_{t-1} + B + w_t \qquad w_t \sim \mathcal{N}(0, Q_t)$$

$$y_t = H\mathbf{x}_t + v_t \qquad v_t \sim \mathcal{N}(0, R_t)$$

Extended Kalman Filter: Non-Linear Guassian Model:

$$\mathbf{x}_t = F(x_{t-1}) + w_t \quad w_t \sim \mathcal{N}(0, Q_t)$$

 $y_t = H(\mathbf{x}_t) + v_t \quad v_t \sim \mathcal{N}(0, R_t)$

Extended Kalman Filter: State Equation

$$\begin{aligned} \mathbf{x}_t &= F(\mathbf{x}_{t-1}) + w_t & w_t \sim \mathcal{N}(\mathbf{0}, Q_t) \\ y_t &= H(\mathbf{x}_t) + v_t & v_t \sim \mathcal{N}(\mathbf{0}, R_t) \end{aligned}$$

Taylor Expansion:

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \text{ High order terms}$$

Expand $F(\mathbf{x}_{t-1})$ around a particular point x_{t-1}^p :

$$x_t = F(x_{t-1}^p) + F'(x_{t-1}^p) \left(x_{t-1} - x_{t-1}^p\right) + \text{ High order terms} + w_t$$

Let
$$J_p \equiv F'(x_{t-1}^p)$$
:

$$x_{t} = F(x_{t-1}^{p}) + J_{p}\left(x_{t-1} - x_{t-1}^{p}\right) + \text{ High order terms} + w_{t}$$

$$\approx \underbrace{J_{p}}_{A} x_{t-1} + \underbrace{\left(F(x_{t-1}^{p}) - J_{p} x_{t-1}^{p}\right)}_{B} + w_{t}$$

Extended Kalman Filter: Prediction $p(x_t|y_1, \dots y_{t-1}) = \mathcal{N}(\bar{\mu}_t, \bar{\Sigma}_t)$

Kalman Filter:
$$x_t = Ax_{t-1} + w_t$$
 $w_t \sim \mathcal{N}(B, Q_t)$

- ▶ mean: $\bar{\mu}_t = \mathbb{E}[x_t|y_{1:t-1}] = A\hat{\mu}_{t-1} + B$
- **covariance**: $\bar{\Sigma}_t = \mathbb{E}[(\triangle x_t)(\triangle x_t)^T] = A\hat{\Sigma}_{t-1}A^T + Q_t$

Extended Kalman Filter:
$$x_t \approx \underbrace{J_\rho}_A x_{t-1} + w \qquad w_t \sim \mathcal{N}\left(\underbrace{\left(F(x_{t-1}^\rho) - J_\rho x_{t-1}^\rho\right)}_B, Q_t\right)$$

- ▶ mean: $\bar{\mu}_t = \mathbb{E}[x_t|y_{1:t-1}] = J_p\hat{\mu}_{t-1} + \left(F(x_{t-1}^p) J_px_{t-1}^p\right)$
- **covariance**: $\bar{\mu}_t = \mathbb{E}[(\triangle x_t)(\triangle x_t)^T] = J_p \hat{\Sigma}_{t-1} J_p^T + Q_t$

Extended Kalman Filter: Removing x_p

- ▶ mean: $\bar{\mu}_t = \mathbb{E}[x_t|y_{1:t-1}] = J_p\hat{\mu}_{t-1} + \left(F(x_{t-1}^p) J_px_{t-1}^p\right)$
- **covariance**: $\bar{\Sigma}_t = \mathbb{E}[(\triangle x_t)(\triangle x_t)^T] = J_p \hat{\Sigma}_{t-1} J_p^T + Q_t$

Too complicated, lets simplify it using a trick: x_p is just an arbitary point. So we can choose it to be anything we like. Why not let $x_0 = \hat{\mu}_{t-1}$:

mean:

$$\bar{\mu}_t = \mathbb{E}[x_t|y_{1:t-1}] = F'(\hat{\mu}_{t-1})\hat{\mu}_{t-1} + (F(\hat{\mu}_{t-1}) - F'(\hat{\mu}_{t-1})\hat{\mu}_{t-1}) = F(\hat{\mu}_{t-1})$$

covariance: $\bar{\Sigma}_t = \mathbb{E}[(\triangle x_t)(\triangle x_t)^T] = F'(\hat{\mu}_{t-1})\hat{\Sigma}_{t-1}F'(\hat{\mu}_{t-1})^T + Q_t$

Extended Kalman Filter: Update $p(x_t|y_1,...y_t) = \mathcal{N}(\hat{\mu}_t,\hat{\Sigma}_t)$

Taylor Expansion:

$$f(x) = f(a) + \frac{f'(a)}{1!}(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \text{ High order terms}$$

Measurement Equation: $y_t = H(x_t) + v_t \quad v_t \sim \mathcal{N}(0, R_t)$

$$y_t = H(x_t^p) + H'(x_t^p) (x_t - x_t^p) + \text{ High order terms} + v_t \qquad v_t \sim \mathcal{N}(0, R_t)$$

Let
$$J_p \equiv H'(x_t^p)$$
:

$$y_t = H(x_t^\rho) + J_\rho \left(x_t - x_t^\rho \right) + \text{ High order terms} + v_t$$

$$\approx H(\bar{x}_t) + J_\rho (x_t - \bar{x}_t) + v_t \quad \text{ let } x_t^\rho = \bar{x}_t$$

$$\implies \underbrace{y_t - H(\bar{x}_t) + J_\rho \bar{x}_t}_{\mathbb{Y}_t} \approx \underbrace{J_\rho x_t + v_t}_{H}$$

The rest are just following the standard Kalman Filter

Discrete States Dynamic Model: Hidden Markov Model

Simple Stock Market:

Speech Recognition:

Hidden Markov Model

Discrete Transition Probability:

$$p(q_t|q_1,\ldots,q_{t-1},y_1,\ldots,y_{t-1})=p(q_t|q_{t-1})$$

Continous/Discrete Measurement probability:

$$p(y_t|q_1,\ldots,q_{t-1},q_t,y_1,\ldots,y_{t-1})=p(y_t|q_t)$$

HMM's Transition Probability

HMM's Transition Probability must be discrete

$$A = \begin{bmatrix} 0.6 & 0.2 & 0.2 \\ 0.5 & 0.3 & 0.2 \\ 0.4 & 0.1 & 0.5 \end{bmatrix}$$

Transition Probability:

$$p(q_t = 1|q_{t-1} = 1) = 0.6$$

$$p(q_t = 2|q_{t-1} = 1) = 0.2$$

$$p(q_t = 3|q_{t-1} = 1) = 0.2$$

$$p(q_t = 1 | q_{t-1} = 2) = 0.5$$

$$p(q_t = 2|q_{t-1} = 2) = 0.3$$

$$\rho(q_t = 3|q_{t-1} = 2) = 0.2$$

$$p(q_t = 1|q_{t-1} = 3) = 0.4$$

$$p(q_t = 2|q_{t-1} = 3) = 0.1$$

$$p(q_t = 3|q_{t-1} = 3) = 0.5$$

HMM's Measurement Probability

HMM's Measurement Probability can be both discrete or continous

$$B = \begin{bmatrix} 0.7 & 0.1 & 0.2 \\ 0.1 & 0.6 & 0.3 \\ 0.3 & 0.3 & 0.4 \end{bmatrix}$$

- ► Let Bull = 1, Bear = 2, Even = 3:
- ► Let Up = 1, Down = 2, Uneven = 3:

$$p(y_t = 1|q_t = 1) = 0.7$$

$$p(y_t = 2|q_t = 1) = 0.1$$

$$\rho(y_t = 3|q_t = 1) = 0.2$$

$$p(y_t = 1|q_t = 2) = 0.1$$

$$p(y_t = 2|q_t = 2) = 0.6$$

$$p(y_t = 3|q_t = 2) = 0.3$$

$$p(y_t = 1|q_t = 3) = 0.3$$

$$p(y_t = 2|q_t = 3) = 0.3$$

$$p(y_t = 3|q_t = 3) = 0.4$$

Hidden Markov Model

The HMM Parameter λ (discrete measurement case) contains:

$$\lambda = \{A, B, \pi\}$$

 π is the probability of the initial state , i.e., $p(q_1)$. We use $\pi_i \equiv p(q_1 = i)$. Let $Q = q_1, \dots, q_T$ and $Y = y_1, \dots, y_T$:

Three major operations of HMM:

$$\begin{aligned} & \text{Evaluate } p(Y|\lambda) \\ & \lambda_{\text{MLE}} = \arg\max_{\lambda} p(Y|\lambda) \\ & \arg\max_{Q} p(Y|Q,\lambda) \end{aligned}$$

We will discuss Evaluation first.

Evaluate $p(Y|\lambda)(1)$

The usual way to compute this:

$$p(Y|\lambda) = \sum_{Q} [p(Y, Q|\lambda)] = \sum_{q_{1}=1}^{k} \dots, \sum_{q_{T}=1}^{k} [p(y_{1}, \dots, y_{T}, q_{1}, \dots q_{T}|\lambda)]$$

$$= \sum_{q_{1}=1}^{k} \dots, \sum_{q_{T}=1}^{k} [p(y_{1}, \dots, y_{T}, q_{0}, q_{1}, \dots q_{T}|\lambda)]$$

$$= \sum_{q_{1}=1}^{k} \dots, \sum_{q_{T}=1}^{k} p(q_{1})p(y_{1}|q_{1})p(q_{2}|q_{1}) \dots p(q_{t}|q_{t-1})p(y_{t}|q_{t})$$

$$= \sum_{q_{1}=1}^{k} \dots, \sum_{q_{T}=1}^{k} \pi(q_{1}) \prod_{t=2}^{T} a_{q_{t-1}, q_{t}} b_{q_{t}}(y_{t})$$

- ▶ We let transition probability: $p(q_t = j | q_{t-1} = i) \equiv a_{i,j}$ and
- ▶ We let measurement probability $p(y_t|q_t = j) \equiv b_j(y_t)$
- ▶ There are k^T possible values of Q!. We need simpler methods

Forward Algorithm:

Backward Algorithm:

Evaluate $p(Y|\lambda)$ (2) Forward and Backward Formula

Therefore, we define forward procedure:

$$\alpha_i(t) = p(y_1, y_2, \dots, y_t, q_t = i|\lambda) \implies p(Y|\lambda) = \sum_{i=1}^k \alpha_i(T)$$

This is the propbality of partial sequnce y_1, \ldots, y_t and ending up in state i at time t. Looking at the following recursion:

$$\alpha_{j}(1) = p(y_{1}, q_{1} = i|\lambda) = p(q_{1})p(y_{1}|q_{1}) = \pi_{j}b_{j}(y_{1})$$

$$\alpha_{j}(2) = p(y_{1}, y_{2}, q_{2} = j|\lambda) = \sum_{i=1}^{k} \underbrace{p(q_{1} = i)p(y_{1}|q_{1} = i)}_{\alpha_{j}(1)} \underbrace{p(q_{2} = i|q_{1} = i)}_{a_{j}, j} \underbrace{p(y_{2}|q_{2} = j)}_{b_{j}(y_{2})} = \left[\sum_{i=1}^{k} \alpha_{i}(1)a_{i,j}\right] b_{j}(y_{2})$$
...

$$\alpha_j(t+1) = \left[\sum_{i=1}^k \alpha_i(t)a_{i,j}\right]b_j(y_{t+1})$$

. . .

$$\alpha_j(T) = \left[\sum_{i=1}^k \alpha_i(T-1)a_{i,j}\right]b_j(y_T)$$

We have now, $k \times T$ summations!

Evaluate $p(Y|\lambda)$ (3) Forward and Backward Formula

We also define a backward procedure:

$$\beta_i(t) = p(y_{t+1}, \dots, y_T | q_t = i, \lambda) \implies \sum_{i=1}^k \beta_i(1) \pi_i b_i(y_1) = p(Y | \lambda)$$

Propbality of partial sequnce $y_{1+1}, y_{t+2}, \dots y_T$ given started at state i at time t:

$$\begin{split} &\beta_{i}(T)=1\\ &\beta_{i}(T-1)=\rho(y_{T}|q_{T-1}=i)=\sum_{j=1}^{k}\rho(q_{T}=j|q_{T-1}=i)\rho(y_{T}|q_{T}=j)=\sum_{j=1}^{k}a_{i,j}b_{j}(T)\\ &\beta_{i}(T-2)=\rho(y_{T},y_{T-1}|q_{T-2}=i)\\ &=\sum_{j=1}^{k}\sum_{l=1}^{k}\rho(q_{T}=l|q_{T-1}=j)\rho(y_{T}|q_{T}=l)\underbrace{\rho(q_{T-1}=j|q_{T-2}=i)}_{a_{i,j}}\underbrace{\rho(y_{T-1}|q_{T-1}=j)}_{b_{j}(T-1)}=\sum_{j=1}^{k}a_{i,j}b_{j}(y_{T-1})\beta_{j}(T-1) \end{split}$$

. . .

$$\beta_i(t) = \sum_{j=1}^k a_{i,j} b_j(y_{t+1}) \beta_j(t+1)$$

. . .

$$\beta_i(1) = \sum_{j=1}^k a_{i,j} b_j(y_2) \beta_j(2)$$

The probability of being at a particular state

The probability of being in state *i* at time *t* for a sequence *Y*:

$$p(q_t = i|Y, \lambda) = \frac{p(Y, q_t = i|\lambda)}{p(Y|\lambda)} = \frac{p(Y, q_t = i|\lambda)}{\sum_{j=1}^k p(Y, q_t = j|\lambda)} = \frac{\alpha_i(t)\beta_i(t)}{\sum_{j=1}^k \alpha_j(t)\beta_j(t)}$$

$$\begin{aligned} p(Y,q_t=i|\lambda) &= p(Y|q_t=i)p(q_t=i)\\ &= p(y_1,\ldots y_t|q_t=i)p(y_{t+1},\ldots y_T|q_t=i)p(q_t=i) \quad \text{by its graphical model}\\ &= p(y_1,\ldots y_t,q_t=i)p(y_{t+1},\ldots y_T|q_t=i) \quad \text{re-arrange}\\ &= \alpha_i(t)\beta_i(t) \end{aligned}$$

Parameter Learning

Looking at the E-M algorithm:

$$\Theta^{(g+1)} = \operatorname*{arg\,max}_{\Theta} \left[Q(\Theta, \Theta^{(g)}) \right] = \operatorname*{arg\,max}_{\Theta} \left(\int_{\mathcal{Z}} \log \left(p(X, Z | \Theta) \right) p(Z | X, \Theta^{(g)}) \mathrm{d}z \right)$$

In HMM, we write it as:

$$\lambda^{(g+1)} = \operatorname*{arg\,max}_{\lambda} \left(\underbrace{\int_{q \in Q} \ln \left(p(Y, q | \lambda) \right) p(q, Y | \lambda^{(g)})}_{\mathcal{Q}(\lambda, \lambda^{(g)})} \right)$$

$$Q(\lambda, \lambda^{(g)}) = \int_{q \in Q} \ln(p(Y, q|\lambda)) p(q, Y|\lambda^{(g)})$$

$$= \sum_{q_0=1}^{k} \cdots \sum_{q_T=1}^{k} \left(\ln \pi_0 + \sum_{t=1}^{T} \ln a_{q_{t-1}, q_t} + \sum_{t=1}^{T} \ln b_{q_t}(y_t) \right) p(q, Y|\lambda^{(g)})$$

Parameter Learning: First term

$$\mathcal{Q}^{\text{term 1}} = \sum_{q_0=1}^k \cdots \sum_{q_T=1}^k \ln \pi_{q_0} \rho(q, Y | \lambda^{(g)}) = \sum_{i=1}^k \ln \pi_i \rho(q_0 = i, Y | \lambda^{(g)})$$

 $\arg \max(\mathcal{Q}^{\text{term 1}})$ with $\sum_{i=1}^{k} \pi_i = 1$, using Lagrange Multiplier:

$$\mathbb{L}\mathbb{M}^{\text{term 1}} = \sum_{i=1}^{k} \ln \pi_{i} \rho(q_{0} = i, Y | \lambda^{(g)}) + \tau \left(\sum_{i=1}^{k} \pi_{i} - 1\right)$$

$$\frac{\partial \mathbb{L}\mathbb{M}^{\text{term 1}}}{\partial \pi_{i}} = \frac{\rho(q, Y | \lambda^{(g)})}{\pi_{i}} + \tau = 0$$

$$\frac{\partial \mathbb{L}\mathbb{M}^{\text{term 1}}}{\partial \tau} = \sum_{i=1}^{k} \pi_{i} - 1 = 0$$

$$\begin{split} & p(q_0=i,Y|\lambda^{(g)}) = -\tau \pi_i \\ & \text{sum both sides: } \sum_{i=1}^k p(q_0=i,Y|\lambda^{(g)}) = -\tau \sum_{i=1}^k \pi_i = -\tau \\ & \text{substitute: } \pi_i = \frac{p(q_0=i,Y|\lambda^{(g)})}{-\tau} \implies \pi_i = \frac{p(q_0=i,Y|\lambda^{(g)})}{\sum_{i=1}^k p(q_0=i,Y|\lambda^{(g)})} \end{split}$$

Parameter Learning: Second term

$$\mathcal{Q}^{\text{term 2}} = \sum_{q_0 = 1}^k \cdots \sum_{q_T = 1}^k \sum_{t = 1}^T \ln a_{q_{t-1}, q_t} \rho(q, Y | \lambda^{(g)}) = \sum_{i = 1}^k \sum_{j = 1}^k \sum_{t = 1}^T \ln a_{i, j} \rho(q_{t-1} = i, q_t = j, Y | \lambda^{(g)})$$

$$\begin{split} \mathbb{LM}^{\text{term 2}} &= \sum_{i=1}^k \sum_{j=1}^k \sum_{t=1}^T \ln a_{i,j} p(q_{t-1} = i, q_t = j, Y | \lambda^{(g)}) + \sum_{i=1}^k \tau_i \left(\sum_{j=1}^k a_{i,j} - 1 \right) \\ \frac{\partial \mathbb{LM}^{\text{term 2}}}{\partial a_{i,j}} &= \frac{\sum_{t=1}^T p(q_{t-1} = i, q_t = j, Y | \lambda^{(g)})}{a_{i,j}} + \sum_{i=1}^k \tau_i = 0 \\ \frac{\partial \mathbb{LM}^{\text{term 2}}}{\partial \tau_i} &= \sum_{i=1}^k a_{i,j} - 1 = 0 \end{split}$$

$$\begin{split} &\sum_{t=1}^{T} p(q_{t-1}=i,q_{t}=j,Y|\lambda^{(g)}) = -a_{i,j} \sum_{i=1}^{k} \tau_{i} \implies a_{i,j} = \frac{\sum_{t=1}^{T} p(q_{t-1}=i,q_{t}=j,Y|\lambda^{(g)})}{-\sum_{i=1}^{k} \tau_{i}} \\ &\text{sum both sides: } \sum_{j=1}^{k} \sum_{t=1}^{T} p(q_{t-1}=i,q_{t}=j,Y|\lambda^{(g)}) = \sum_{j=1}^{k} -a_{i,j} \sum_{i=1}^{k} \tau_{i} = -\sum_{i=1}^{k} \tau_{i} \sum_{j=1}^{k} a_{i,j} = -\sum_{i=1}^{k} \tau_{i} \\ &\text{substitute: } a_{i,j} = \frac{\sum_{t=1}^{T} p(q_{t-1}=i,q_{t}=j,Y|\lambda^{(g)})}{\sum_{j=1}^{k} \sum_{t=1}^{T} p(q_{t-1}=i,q_{t}=j,Y|\lambda^{(g)})} = \frac{\sum_{t=1}^{T} p(q_{t-1}=i,q_{t}=j,Y|\lambda^{(g)})}{\sum_{t=1}^{T} p(q_{t-1}=i,Y|\lambda^{(g)})} \end{split}$$

Parameter Learning: Third term

$$\begin{split} \mathcal{Q}^{\mathsf{term}\,3} &= \sum_{q_0=1}^k \cdots \sum_{q_T=1}^k \sum_{t=1}^T \ln b_{q_t}(y_t) p(q,Y|\lambda^{(g)}) = \sum_{j=1}^k \sum_{t=1}^T \ln b_j(y_t) p(q_t=j,Y|\lambda^{(g)}) \\ & \mathbb{L}\mathbb{M}^{\mathsf{term}\,3} = \sum_{j=1}^k \sum_{t=1}^T \ln b_j(y_t) p(q_t=j,Y|\lambda^{(g)}) + \tau \left(\sum_{j=1}^k b_j(y_t) - 1\right) \\ & \frac{\partial \mathbb{L}\mathbb{M}^{\mathsf{term}\,3}}{\partial b_j(y_t)} &= \frac{\sum_{t=1}^T p(q_t=j,Y|\lambda^{(g)})}{b_j(y_t)} + \sum_{i=1}^k \tau = 0 \\ & \frac{\partial \mathbb{L}\mathbb{M}^{\mathsf{term}\,3}}{\partial \tau} = \sum_{i=1}^k b_j(y_t) - 1 = 0 \end{split}$$

$$\sum_{t=1}^{T} p(q_t = j, Y | \lambda^{(g)}) = -b_j(y_t)\tau \implies b_j(y_t) = \frac{\sum_{t=1}^{T} p(q_t = j, Y | \lambda^{(g)})}{-\tau}$$

sum both sides: (can't use index j): $\sum_{l=1}^{k} \sum_{t=1}^{T} p(q_t = j, Y = v_l | \lambda^{(g)}) = -\tau \sum_{l=1}^{k} b_j (y_t = v_l) = -\tau$

substitute:
$$b_j(y_t = v_l) = \frac{\sum_{t=1}^T p(q_t = j, Y = v_l | \lambda^{(g)})}{\sum_{j=1}^k \sum_{t=1}^T p(q_t = j, Y = v_l | \lambda^{(g)})} = \frac{\sum_{t=1}^T p(q_t = j, Y | \lambda^{(g)}) \delta_{y_t, v_l}}{\sum_{t=1}^T p(q_t = j, Y | \lambda^{(g)})}$$

