Dijkstra's algorithm

Single-Source Shortest Path Problem

Single-Source Shortest Path Problem - The problem of finding shortest paths from a source vertex *v* to all other vertices in the graph.

Dijkstra's algorithm

<u>Dijkstra's algorithm</u> - is a solution to the single-source shortest path problem in graph theory.

Works on both directed and undirected graphs. However, all edges must have nonnegative weights.

Approach: Greedy

Input: Weighted graph G={E,V} and source vertex *v*∈V, such that all edge weights are nonnegative

Output: Lengths of shortest paths (or the shortest paths themselves) from a given source vertex *v*∈V to all other vertices

Dijkstra's algorithm - Pseudocode

```
DIJKSTRA(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 S = \emptyset

3 Q = G.V

4 while Q \neq \emptyset

5 u = \text{EXTRACT-MIN}(Q)

6 S = S \cup \{u\}

7 for each vertex v \in G.Adj[u]

8 RELAX(u, v, w)
```

```
INITIALIZE-SINGLE-SOURCE (G, s)

1 for each vertex v \in G.V

2 v.d = \infty

3 v.\pi = \text{NIL}
```

 $4 \quad s.d = 0$

```
RELAX(u, v, w)

1 if v.d > u.d + w(u, v)

2 v.d = u.d + w(u, v)

3 v.\pi = u
```

Relaxation. If the new path from s to v is shorter than d[v], then update d[v] to the length of this new path.

Step 0: Initialization.

v	S	а	b	С	d
d[v]	0	∞	∞	∞	∞
pred[v]	nil	nil	nil	nil	nil
color[v]	W	W	W	W	W

Priority Queue: $\begin{array}{c|ccccc} v & \mathsf{s} & \mathsf{a} & \mathsf{b} & \mathsf{c} & \mathsf{d} \\ \hline d[v] & \mathsf{0} & \infty & \infty & \infty & \infty \end{array}$

Step 1: As $Adj[s] = \{a,b\}$, work on a and b and update information.

v	S	a	b	C	d
d[v]	0	2	7	∞	∞
pred[v]	nil	S	S	nil	nil
color[v]	В	W	W	W	W

Step 2: After Step 1, a has the minimum key in the priority queue. As $Adj[a] = \{b, c, d\}$, work on b, c, d and update information.

v	S	a	b	C	d
d[v]	0	2	5	10	7
pred[v]	nil	S	a	a	a
color[v]	В	В	W	W	W

Priority Queue:
$$\begin{array}{c|cccc} v & \mathsf{b} & \mathsf{c} & \mathsf{d} \\ \hline d[v] & \mathsf{5} & \mathsf{10} & \mathsf{7} \\ \end{array}$$

Step 3: After Step 2, b has the minimum key in the priority queue. As $Adj[b] = \{a, c\}$, work on a, c and update information.

v	S	a	b	C	d
d[v]	0	2	5	6	7
pred[v]	nil	S	a	b	а
color[v]	В	В	В	W	W

Priority Queue:
$$\frac{v}{d[v]}$$
 6 7

Step 4: After Step 3, c has the minimum key in the priority queue. As $Adj[c] = \{d\}$, work on d and update information.

v	S	a	b	С	d
d[v]	0	2	5	6	7
pred[v]	nil	S	а	b	a
color[v]	В	В	В	В	W

Priority Queue:
$$\frac{v}{d[v]} \frac{\mathsf{d}}{7}$$

Step 5: After Step 4, d has the minimum key in the priority queue. As $Adj[d] = \{c\}$, work on c and update information.

v	S	a	b	C	d
d[v]	0	2	5	6	7
pred[v]	nil	s	а	b	а
color[v]	В	В	В	В	В

Priority Queue: $Q = \emptyset$.

We are done.

Example:

v	S	а	b	C	d
d[v]	0	2	5	6	7
pred[v]	nil	S	а	b	а

Shortest Path from A to H, A to C, C to D, D to E, E to G, G to F, F to H End