

Lista de exercícios: Complexidade Computacional

I.	Marque (V	jeraaa	eiro ou (F)aiso.		
	(a) V	\Box F	O problema de verificar se um número x pertence a um conjunto de n números está em P .		
	(b) 🗆 V	\Box F	Se P \neq NP então nenhum problema NP pode ser resolvido em tempo polinomial.		
	(c) \Box V	\Box F	Se P \neq NP então nenhum problema NP-Completo pode ser resolvido em tempo polinomial.		
	(d) \square V	\Box F	O problema de verificar se uma fórmula booleana é satisfazível pertencente à classe NP.		
	(e) 🗆 V	\Box F	Se há um algoritmo de tempo $O(n^{100})$ para o problema de Subset-Sum, então $P=NP$.		
	(f) V	\Box F	Suponha que $X \in \text{NP}$. Se existir um algoritmo de tempo $O(\lg n)$ para X , então $P = \text{NP}$.		
	(g) \square V	\Box F	O problema de parada da Máquina de Turing é NP-Completo.		
			Se um problema X é NP-Completo, então existe um algoritmo de tempo polinomial não-deterer resolve X.		
2.	. Um problema X é NP-Difícil se e somente se existe um problema NP-Completo Y tal que Y \leq_p X. X não precisa estar em NP e nem ser um problemas de decisão. Seja S um problema NP-Completo, Q e R problemas que não sabemos se pertencem a NP. Se existe uma redução em tempo polinomial de Q para S e, S pode ser reduzido en tempo polinomial para R, assinale qual(is) sentença(s) é(são) verdadeira(s)?				
	□ R é NP-	Compl	leto \square R é NP-Difícil \square Q é NP-Completo \square Q é NP-Difícil		
3.	O algoritmo de programação dinâmica para o problema da Mochila-Binária é um algoritmo polinomial? Justifique sua resposta (CLRS 34.1-4).				
4.	Mostre um	exemp	olo em que um número polinomial de chamadas a subrotinas que executam em tempo polinomia		

- 4. Mostre um exemplo em que um número polinomial de chamadas a subrotinas que executam em tempo polinomia pode resultar em um algoritmo de tempo exponencial (CLRS 34.1-5).
- 5. Considere o problema de determinar se um número natural n é um quadrado perfeito, isto é, se existe um número natural x tal que $x^2 = n$ (Quadrado-Perfeito = $\{\langle n \rangle : \exists x \in \mathbb{N} \mid x^2 = n\}$). É verdade que o problema Quadrado-Perfeito \in P? Justifique. [Dica: Lembre-se que um número n representado na base b (b > 1) possui k dígitos, onde $k = \lfloor \log_b n \rfloor + 1$. A complexidade de um algoritmo é dada em função do tamanho da entrada.]
- 6. Mostre que se existe um problema L pertencente a NP e que não está em P, então nenhum problema NP-Completo está em P.
- 7. No problema N3DM (Numerical 3-dimensional matching) são dados três multiconjuntos de inteiros $X, Y \in Z$, cada um contendo k elementos, e um valor b. O objetivo é determinar se existe um subconjunto M de $X \times Y \times Z$ tal que cada inteiro em $X, Y \in Z$ ocorre exatamente uma vez e, para cada tripla (x,y,z) do subconjunto, x+y+z=b. Por exemplo, seja $X=\{3,4,4\}, Y=\{1,4,6\}, Z=\{1,2,5\}$ e b=10. Esta instância possui uma solução: $\{(3,6,1),(4,4,2),(4,1,5)\}$. Note que o subconjunto $\{(3,6,1),(3,4,2),(4,1,5)\}$ não é uma solução, pois viola várias condições (um $4 \in X$ não é usado, o $3 \in X$ é usado mais de uma vez, a segunda tripla não soma 10). Mostre que N3DM \in NP.
- 8. Um algoritmo verificador para um problema de decisão recebe dois objetos: uma instância do problema e um certificado. Ao receber esses dois objetos, o verificador pode responder SIM ou NÃO. Se responder SIM, dizemos que o verificador aceitou o certificado. Um verificador para um determinado problema de decisão é polinomial se: (i) para cada instância positiva do problema, existe um certificado que o verificador aceita em tempo limitado por uma função polinomial no tamanho da instância; (ii) para cada instância negativa do problema, não existe certificado que o verificador aceite. Dada esta definição, apresente um algoritmo verificador para o Problema de Cobertura de Vértice. [Dado um grafo G = (V, E), uma cobertura de vértices é um subconjunto de vértices $S \subseteq V$ tal que toda aresta $(u, v) \in E$ tem pelo menos uma ponta (u ou v) em S.]
- 9. Mostre que Vertex-Cover = $\{\langle G, k \rangle : G \text{ possui uma cobertura de vértices de tamanho } k \}$ é NP-Completo.
- 10. Um clique em um grafo G=(V,E) é um subgrafo completo de G (cada dois vértices do subconjunto são conectados por uma aresta). Encontrar um clique de tamanho máximo em um grafo é um problema de otimização para o qual não se conhece um algoritmo que o resolva em tempo polinomial. O problema de decisão que verifica se um grafo possui um clique de tamanho $\geq k$ é NP-Completo. Mas se P=NP, então mostre que:
 - (a) Existe um algoritmo que resolve o Problema do Clique Máximo em tempo polinomial (devolve o tamanho do Clique Máximo). [Note que, Assuma que $\mathrm{CLIQUE}(G,k)$ é o algoritmo que resolve este problema. Dica: desenvolva seu algoritmo de modo a fazer diversas consultas a $\mathrm{CLIQUE}(G,k)$.]

- (b) Considerando a solução do item anterior, apresente um algoritmo que devolve em tempo polinomial os vértices que fazem parte do Clique Máximo.
- 11. Um conjunto independente de um grafo G=(V,E) é um conjunto de vértices $S\subseteq V$ tal que não existem dois vértices adjacentes contidos em S.
 - (a) Mostre que o problema de encontrar um conjunto independente de tamanho k em um grafo é um problema NP-Completo.
 - (b) E o problema de encontrar em um grafo um conjunto independente contendo exatamente 3 vértices? Também é um problema NP-Completo? Justifique.
- 12. Mostre que Solve e NP. No problema Solve são dados uma tupla de inteiros A[1..n] e um valor k. O objetivo é determinar se existe uma expressão aritmética

$$A[1] \odot_1 A[2] \odot_2 \ldots \odot_{n-1} A[n] = k,$$

tal que \odot_i $(1 \le i \le n-1)$ substituído por algum dos operadores elementares $\{+,-\}$ resulta no valor k. Por exemplo, as instâncias $\langle \{1,1,1,1,1\};10 \rangle$ e $\langle \{1,1,1,1,1\};0 \rangle$ resultam em rejeição; as instâncias $\langle \{1,2,3,4\};2 \rangle$ e $\langle \{2,3,5\};4 \rangle$ resultam em aceitação.

- 13. Seu amigo apresentou a seguinte "prova" de que $P \neq NP$: "Para verificar se uma fórmula booleana com n variáveis é satisfazível, podemos construir uma tabela verdade e verificar ao todo 2^n atribuições de valores para as variáveis. Isto leva tempo exponencial, portanto, o problema de satisfazibilidade de fórmulas booleanas (SAT) não pertence a P. Como SAT está em NP, logo, podemos concluir que $P \neq NP$." Explique qual o equívoco na demonstração de seu amigo.
- 14. Dados os problemas:
 - Subset-Sum = $\{\langle S, t \rangle : \text{existe } S' \subseteq S \text{ tal que } t = \sum_{s \in S'} s \}$
 - Busca-Inteiro = $\{\langle A, r \rangle : r \in A\}$

Considere a seguinte redução de Subset-Sum para Busca-Inteiro: (1) enumere todos os subconjuntos de S e compute a soma dos elementos de cada um destes subconjuntos; (2) a soma dos elementos destes subconjuntos são elementos do conjunto A; (3) seja r=t. Por exemplo, para $S=\{1,2,3\}$ e t=5, teríamos $A=\{1,2,3,3,4,5,6\}$ e r=5. Note que existe um subconjunto S' que soma t se e somente se o conjunto A possui o elemento r.

Como Subset-Sum \in NP-Completo e Busca-Inteiro \in P, pela redução acima é possível concluir que P = NP? Justifique.

- 15. Vimos um algoritmo de Programação Dinâmica que resolve uma variante do problema de soma de subconjuntos Subset-Sum = $\{\langle S,t\rangle: \text{existe } S'\subseteq S \text{ tal que } t=\sum_{s\in S'}s\}$ em tempo $O(|S|\cdot t)$, dado que t e todos os elementos em S são positivos. Mostre que a versão em que S pode conter números negativos não é mais difícil que a versão vista em aula, isto é, que há uma redução em tempo polinomial desta versão com números negativos para aquela vista em aula.
- 16. Um quadrado latino ($latin\ square$) de ordem n é uma matriz $n \times n$ preenchida com n diferentes símbolos de tal maneira que estes ocorrem no máximo uma vez em cada linha ou coluna. A Figura (a) apresenta um exemplo de quadrado latino. Dada uma matriz $n \times n$ parcialmente preenchida, é possível formar um quadrado latino? As Figuras (b) e (c) apresentam configurações em que isto é possível e não é possível respectivamente.

A	B	C				
B	C	A				
C	A	В				
(a)						

A	В				
B	C				
C		В			
(b)					

A	В				
B	A				
C		B			
(c)					

Considerando o problema Latin-Square = $\{\langle M_{n\times n}, \Sigma \rangle \mid M \text{ \'e uma matriz parcialmente preenchida com símbolos do alfabeto } \Sigma$ em que é possível formar um quadrado latino}. Mostre que Latin-Square \in NP.

- 17. Mostre que 4-Sat ∈ NP-Completo. [Problema de satisfazibilidade de fórmula booleana na qual a fórmula está na forma normal conjuntiva e possui 4 literais por cláusula.]
- 18. Mostre que 4-Sat \leq_p 3-Sat. Se sabemos que 3-Sat é NP-Completo, podemos afirmar que 4-Sat também é NP-Completo por meio desta redução? Justifique.

- 19. Sabe-se que 3-Sat é NP-Completo e que existe um algoritmo de tempo polinomial para o problema 2-Sat. Se for provado que $P \neq NP$, então é possível termos 3-Sat $\leq_p 2$ -Sat? Justifique. [Dica: a questão envolve diversos conceitos (NP-Completo, $P \neq NP$ e redução em tempo polinomial) que precisam estar bem definidos para se ter uma justificativa consistente. Certifique-se de que sua resposta explica o que são estes conceitos e deixa claro o porquê da possibilidade ou impossibilidade da redução.]
- 20. O problema da mochila binária é um problema de otimização cujo objetivo é escolher itens para se colocar na mochila, de modo a maximizar a soma dos valores dos itens, não ultrapassando a capacidade de peso da mochila. A versão de decisão equivalente deste problema consiste em saber se existe uma subcoleção dos itens que não excede o peso W e cuja soma dos valores é maior ou igual a k, isto é:

$$\text{Mochila-Dec} = \{ \langle A, W, k \rangle : \exists S \subseteq A | \sum_{s \in S} w_s \leq W, \sum_{s \in S} v_s \geq k \}.$$

Suponha que alguém demonstrou que Mochila-Dec $\in P$. Assuma que todos os valores dos itens são inteiros. Descreva um algoritmo que faz uso de Mochila-Dec e resolve o problema de otimização. Podemos afirmar que o problema de otimização também pertence à P? Justifique.

- 21. Mostre que Mochila-Dec é NP-Completo.
- 22. O problema de partição de conjunto recebe como entrada um conjunto S de números. A questão é determinar se os números podem ser particionados em dois subconjuntos A e $\overline{A} = S \setminus A$ tal que $\sum_{x \in A} x = \sum_{x \in \overline{A}} x$. Mostre que SET-PARTITION é NP-Completo.
- 23. Defina a classe de problemas co-NP. Mostre um exemplo de problema que pertence a esta classe.
- 24. É verdade que se NP \neq co-NP, então P \neq NP? Justifique.