

语法分析V

《编译原理和技术(H)》、《编译原理(H)》

张昱

0551-63603804, yuzhang@ustc.edu.cn 中国科学技术大学 计算机科学与技术学院

3.6 LR解析器

(L-scanning from left to right; R- rightmost derivation in reverse)

- □ LR解析算法:效率高
- □ LR分析表的构造技术

简单的LR(SLR)、规范的LR、向前看LR(LALR)

\square LR(k)

- L是指从左向右扫描输入,
- R是指构造最右推导的逆,
- k是指在决定分析动作时向前查看的符号个数, (k)省略时,表示k是1

□ LR解析算法基于LR分析表,后者有三种构造技术

■ SLR: 简单的LR方法

■ LALR: 向前搜索的LR方法

■ LR: 规范的LR方法

三种方法能表达的文法范围如右图所示

LR解析算法: LR系列解析器的模型

□ 如何快速识别栈的顶部是否形成句柄? → 引入抽象的状态

LR解析算法: LR系列解析器的模型

LR解析: 基本概念

□ 活前缀 (viable prefix)

- 右句型的前缀 $\gamma\beta$,该前缀不超过最右句柄的右端 $S \Rightarrow^*_{rm} \gamma A w \Rightarrow_{rm} \gamma \beta w$
- $> \gamma \beta$ 的任何前缀(包括 ϵ 和 $\gamma \beta$ 本身)都是**活前缀**
- > w仅包含终结符

- 对应到LR解析模型上的特点
 - □ **活前缀**: 是LR解析栈中从栈底到 栈顶的**文法符号**连接形成的串
 - □ w: 输入缓冲区中剩余的记号串

University of Science and Technology of China

实际可不用移进

例 $E \rightarrow E + T/E \rightarrow T$

3.24 $T \rightarrow T * F / T \rightarrow E$

 $F \rightarrow (E) \mid F \rightarrow id$

LR分析表

si移进当前输	入符号和状态i

rj 按第j 个产生式进行归约

acc 接受

状态			动	作				转移	
10/10/	id	+	*	()	\$	E	T	F
0	s5			s4			1	2	3
1		s6				acc			
2		r2	s7		r2	r2			
3		r4	r4		r4	r4			
4	s5			s4			8	2	3
5		r6	r6		r6	r6			
6	s5			s4				9	3
7	s5			s4					10
8		s6			s11				
9		r1	s7		r1	r1			
10		r3	r3		r3	r3			
11		r5	r5		r5	r5			

				村	र्दे					输入	动	作
	0									id * id + id \$		
态			动	作				转移				
	id	+	*	()	\$	E	T	F			
0	s5			s4			1	2	3			
1 2		s6 r2	s7		r2	r2						
3		r4	r4		r4	r4						
4	s5	1-1	1-1	s4	1-1	1-1	8	2	3			
5		r6	r6		r6	r6			_			
6	s5			s4				9	3			
7	s5			s4					10			
8		s6			s11							
9		r1	s7		r1	r1						
10		r3	r3		r3	r3						
1		r5	r5		r5	r5				// / / / / / / / / / / / / / / / / / /	 	

11

r5 r5

r5 r5

				栈	È					输入	动	作
	0									id * id + id \$	移进 (5	查动作表)
	0 i	d	5							* id + id \$		
状态			动	作			!	转移				
	id	+	*	()	\$	E	T	F			
0	s5			s4			1	2	3			
1		s6				acc						
2		r2	s7		r2	r2						
3		r4	r4		r4	r4						
4	s5			s4			8	2	3			
5		r6	r6		r6	r6						
6	s5			s4				9	3			
7	s5			s4					10			
8		s6			s11							
9		r1	s7		r1	r1						
10		r3	r3		r3	r3						

栈	输入	动作
0	id * id + id \$	移进
0 id 5	* id + id \$	按F→id归约
0 F 3	* id + id \$	

状态			动	作				转移	
1776	id	+	*	()	\$	E	T	F
0	s5			s4			1	2	3
1		s6				acc			
2		r2	s7		r2	r2			
3		r4	r4		r4	r4			
4	s5			s4			8	2	3
5		r6	r6		r6	r6			
6	s5			s4				9	3
7	s5			s4					10
8		s6			s11				
9		r1	s7		r1	r1			
10		r3	r3		r3	r3			
11		r5	r5		r5	r5			

	•				
1	本oction		*1_	- r6	112 95
1.	查action	υ,	·	– 1 U	ソーラソ

- 2. 按r6执行归约(F→id):
 - 从栈中弹出| id |个状态-符号对
- 将(F,3)入栈

栈	输入	动作
0	id * id + id \$	移进
0 id 5	* id + id \$	接 $F \rightarrow id$ 归约
0 F 3	* id + id \$	接 $T \rightarrow F$ 归约
0 T 2	* id + id \$	
	状态	动作 转移
	TAKES.	id + * () \$ E T 1
	0	s5 s4 1 2 3
		s6 acc
	2	r2 s7 r2 r2
	3	r4 r4 r4 r4

张昱:《编译原理和技术(H)》

1		s6				acc			
2		r2	s7		r2	r2			
3		r4	r4		r4	r4			
4	s5			s4			8	2	3
5		r6	r6		r6	r6			
6	s5			s4				9	3
7	s5			s4					10
8		s6			s11				
9		r1	s7		r1	r1			
10		r3	r3		r3	r3			
11		r5	r5		r5	r5			
									_

栈	输入				动	J	1	F				
0	id * id + id	\$	移	进								
0 id 5	* id + id	\$	按	\overline{F}	\rightarrow	• i(业	日约	j			
0 F 3	* id + id	\$	按	\overline{T}	\rightarrow	F	"归	的				
0 T 2	* id + id	\$	移	进								
0 T 2 * 7	id + id	か 一 状态	动作							转移		
		17/6	id	+	*	()	\$	E	T	F	
		0	s5			s4			1	2	3	
		1		s6				acc				
		3		r2 r4	s7 r4		r2 r4	r2 r4				
		4	s5	14	14	s4	14	14	8	2	3	
		5	50	r6	r6		r6	r6	+			
		6	s5			s4				9	3	
		7	s5			s4					10	
		8		s6			s11					
		9		r1	s7		r1	rl				
	张晃.《编译原理和技术(H)》语	10		r3	r3		r3	r3				

张昱:《编译原理和技术(H)》;

r5 r5

r5 r5

转移

2

动作

s4

状态

0

id s5

_		1		s6			acc		
杜	输入	3		r2 r4	s7 r4	r'. r'			
124	1111 /	4	s5	14	14	s4	+ 14	8	2
0	id * id + ic	5		r6	r6	r	5 r6	+	
U	10 * 10 + 10	6	s5			s4			9
0:15		7 8	s5	-6		s4	1	┿	
0 id 5	* id + id	9		s6 r1	s7	s1 r		+	
0.17.2		10		r3	r3	r.		+	
0 F 3	* id + ic	11		r5	r5	r.	5 r5		
0.77.2	4. 2.1 . 2.1	φ	工人	, 24	-				
0 T 2	* id + id	D	移	/ 足	Ľ				
0.7.2 * 7	:4 :4	Φ	移	<u> </u>	ŀ				
0 T 2 * 7	id + id	D	13	/ 足					
0 T 2 * 7 id 5	1.13	Ð							
012*/105	+ id	Þ							
							_	_	
	I								

转移

2

3

动作

s4

状态

0

id s5

		1	s6				acc			
栈	输入	3	r2 r4	s7 r4		r2 r4	r2 r4			
0	id * id + ic	5	s5 r6	r6	s4	r6	r6	8	2	3
		7	s5 s5		s4 s4				9	3 10
0 id 5	* id + id	8	s6 r1	s7		s11 r1	r1			
0 F 3	* id + ic	10 11	r3 r5	r3 r5		r3 r5	r3 r5			
0 T 2	* id + id	\$	移进	Ė						
0 T 2 * 7	id + id	\$	移进	ŧ						
0 T 2 * 7 id 5	+ id	\$	按F		> i	dy	日丝	勺		
0 T 2 * 7 F 10	+ id	\$								
										i

转移

2

3

动作

s4

状态

0

id s5

		I	1							
		1	s6				acc			
栈	输入	2	r2	s7		r2	r2			
1%		3	s5	r4	s4	r4	r4	8	2	3
	2.1 2.1 . 2.		r6	r6	54	r6	r6	-		
0	id * id + ic	6	s5		s4				9	3
0.12	. • 1	7	s5		s4					10
0 id 5	* id + ic	8	s6 r1	s7		sll rl	r1			
0.70	A 7 A	10	r3	r3		r3	r3			
0 F 3	* id + ic	11	r5	r5		r5	r5			\mathcal{I}
0.77.3		ι Φ	1夕 1	+						
0 T 2	*id + id	13	移过	土						
0 T 2 * 7	;d	ι¢	移过	1.						
U 1 4 * /	id + id	ГФ	多以	<u> </u>						l
0 T 2 * 7 id 5	+ id	Φ.	按F	, ۲		lik	74	4		
012*/IU3	<u> </u>	Ψ	1341	-	7 10	uy	15	<u> </u>		
0 T 2 * 7 F 10	+ id	Φ .	按T	, <u> </u>	. 7	□		14	4	
	T 10	Ψ	15/1	-			<u> </u>	1=	<u>, </u>	
• • •	• • •		• • •							
										1
										l

							_	_
		1		6		acc		
 	tea \	2		2 s7		r2		
1文	输入	3	s5	4 r4	s4	r4	8	2
0	• 1 . • 1	5		6 r6	r6	r6	0	
0	id * id + ic	6	s5	0 10	s4	10		9
		7	s5		s4]
0 id 5	* id + ic	8		6	s11			
		9		$\frac{1}{2}$ s7	r1	<u>r1</u>		
0 F 3	*id + ic	10		3 r3 5 r5	r3 r5	r3 r5		
01 5	· Id · It	11	1	3 13	13	13		
0 T 2	* id + id	\$	移	进				
0 T 2 * 7	id + id	\$	移	进				
0 T 2 * 7 id 5	+ id	\$	按	F –	→ id	归约	约	
0 T 2 * 7 F 10	+ id	\$	按2	T –	<i>→ T</i> *.	F	3约	\int
归约为 开始符号]		5	完成 f	合法输.	入串	的分	析 T
0 E 1		\$	接	受				

LR解析: 基本概念

- □ LR文法(LR grammar)
 - 能为之构造出所有条目(若存在)都唯一的LR分析表
- □ LR分析表
 - 移进+goto (转移函数):本质上是识别活前缀的DFA

状态				动	f	乍		转	移	
	id	+	*	()	\$	E	T	F	
0	s 5			s 4			1	2	3	
1		s 6				acc				
2		<i>r</i> 2	s7		<i>r</i> 2	<i>r</i> 2				
3		<i>r</i> 4	r4		r4	r4				
4	s 5			s4			8	2	3	

LR方法与LL方法的比较

	LR(1)方法	LL(1)方法
建立解析树的方式	自下而上	自上而下
归约还是推导	规范归约	最左推导
决定使用产生式的时机		

 $S \Rightarrow \dots \Rightarrow \delta A \ b \ w \Rightarrow \delta \frac{l}{\uparrow} \beta b \ w$

 $A \rightarrow l\beta$

LL(1)决定用该 产生式的位置

LR方法与LL方法的比较

	LR(1)方法	LL(1)方 法
建立解析树的方式	自下而上	自上而下
归约还是推导	规范归约	最左推导
决定使用产生式的时机		

LR方法与LL方法的比较

	LR(1)方法	LL(1)方 法
建立解析树的方式	自下而上	自上而下
归约还是推导	规范归约	最左推导
决定使用产生式的时机	看见产生式右部推 出的整个终结符串 后,才确定用哪个 产生式归约	看见产生式右部推 出的第一个终结符 后,便要确定用哪 个产生式推导

3.5 LR解析器

(L-scanning from left to right; R- rightmost derivation in reverse)

- □ LR解析算法:效率高
- □ LR分析表的构造技术

简单的LR(SLR)、规范的LR、向前看LR(LALR)

LR(1)分析表的构造

- □ 文法的LR(0)项目与LR(1)项目
 - 产生式右部加点以刻画分析所处的位置 $E \rightarrow E + T$
 - 1: 是引入长度为1的搜索符, 指示产生式右部之后的符号 $[E \rightarrow E + T, S/+]$
- □ SLR方法: 简单的LR
 - 构造LR(0) 项目集规范族→形成DFA状态→SLR分析表
- □ LR方法: 规范的LR
 - 构造LR(1) 项目集规范族→形成DFA状态→LR分析表
- □ LALR方法: 向前搜索的LR
 - 构造LR(1) 项目集规范族→形成DFA状态→合并同心项目集→LALR分析表

LR(0)项目和LR(1)项目

□ LR(0) 项目

- 在右部的某个地方加点的产生式
- 加点的目的是用来表示分析过程 所处的位置 - 刻画分析的状态

$$E \rightarrow E + T$$

例 $A \rightarrow XYZ$ 对应有四个LR(0)项目 $A \rightarrow XYZ$ $A \rightarrow XYZ$ $A \rightarrow XYZ$ $A \rightarrow XYZ$ · $A \rightarrow E$ 只有一个项目和它对应 $A \rightarrow \cdot$

活前

缀

LR(0)项目和LR(1)项目

□ LR(0) 项目

- 在右部的某个地方加点的产生式
- 加点的目的是用来表示分析过程 所处的位置 - 刻画分析的状态

$$T \rightarrow T \cdot *F$$

LR(0)项目和LR(1)项目

□ LR(0) 项目

 I_0 :

新增产生式和 新的开始符号

■ 文法拓广:旨在指示解析器

何时开始分析、何时完成分析

$$[S' \rightarrow \cdot S]$$
 $[S' \rightarrow S \cdot]$ 初始项目 结束项目

 $S' \rightarrow \cdot S$

 $S \rightarrow \cdot BB$

 $B \rightarrow \cdot bB$

 $B \rightarrow \cdot a$

核心项目

- 1) 初始项目;
 - 2) 点不在最左端的项目

非核心项目

非初始项目且点在最左端的项目

可通过对核心项目求闭包来获得 为节省存储空间, 可省去

$S' \rightarrow S$ $S \rightarrow BB$ $B \rightarrow bB/a$

满足该语言的句子有:

aa

baa

baba

求LR(0)项目集的闭包closure(I)图3.24

- I中的每个项目都加入到closure(I)
- $[A \rightarrow \alpha \ B\beta] \in I$

 $\forall B \rightarrow \gamma : [B \rightarrow \gamma] \in \operatorname{closure}(I)$

LR(0)项目和LR(1)项目

□ LR(0)项目集规范族

初始项目: $[S' \rightarrow \cdot S]$

结束项目: $[S' \rightarrow S \cdot]$

$$S' \to S$$

$$S \to BB$$

$$B \to bB/a$$

 I_0 :

$$S' \rightarrow \cdot S$$

 $S \rightarrow \cdot BB$

 $B \rightarrow \cdot bB$

 $B \rightarrow \cdot a$

LR(1) 项目: $[A \rightarrow \alpha \beta, a]$ 表示A之后紧跟a. 如果 $S \Rightarrow^*_{rm} \delta A w \Rightarrow_{rm} \delta \alpha \beta w$, 则a是v的第一个符号,

或者 w 是 E且a是\$

求LR(0)项目集的闭包closure(I)

 $[A \rightarrow \alpha \ B\beta] \in I$

 $\forall B \rightarrow \gamma : [B \rightarrow \gamma] \in I$

□ LR(1)项目集规范族

初始项目: $[S' \rightarrow \cdot S, \$]$

结束项目: $[S' \rightarrow S \cdot, \$]$

 I_0 :

$$S' \rightarrow \cdot S$$
, §

 $B \rightarrow bB \sqrt{a/b}$

 $B \rightarrow a, a/b$

$$S' \rightarrow \cdot S$$
,\$
$$S \rightarrow \cdot BB$$
,\$
if it is a a \$
$$B \rightarrow \cdot bB$$

$$B \rightarrow \cdot bB$$

$$B \rightarrow baba$$

 $FIRST(B) = \{a, b\}$

求LR(1)项目集的闭包closure(I)

 $[A \rightarrow \alpha \ B\beta, a] \in I$

 $\forall B \rightarrow \gamma : [B \rightarrow \gamma, b] \in I, b \in FIRST(\beta a)$

问题: LR(1)项目数量庞大 =>状态数偏多

LR分析表的构造

1. 拓广文法

$$S' \to S$$

$$S \to BB$$

$$B \to bB / a$$

2. 构造LR(0) 项目集规范族或LR(1)项目集规范族

=>构造识别活前缀的DFA

活前缀:某个右句型的一个前缀,该前缀不超过该右句型的最右句柄的右端

右句型: 通过最右推导得到的句型

- LALR解析(LookAhead LR)
 - □ 通过合并同心的LR(1)项目集,得到和SLR同样数量的状态
- 3. 从上述DFA构造LR分析表

注: LR(0)项目集规范族 => SLR分析表

LR(1)项目集规范族 => 规范的LR分析表

合并同心的LR(1)项目集规范族 => LALR分析表

构造识别活前缀的DFA

(以LR(1)项目集为例)

$$S' \to S$$

$$S \to BB$$

$$B \to bB / a$$

构造识别活前缀的DFA

(以LR(1)项目集为例)

构造识别活前缀的DFA

(以LR(1)项目集为例)

构造识别活前缀的DFA (以LR(1)项目集为例)

规范的LR vs. SLR 解析

University of Science and Technology of China

University of Science and Technology of China

□ 项目对活前缀的有效性

■ LR(0)项目 $[A \rightarrow \alpha \beta]$ 对活前缀 $\gamma = \delta \alpha$ 有效: 如果存在推导 $S' \Rightarrow^*_{rm} \delta Aw \Rightarrow_{rm} \delta \alpha \beta w$

■ LR(1)项目[A→ α β , α]对活前缀 γ = $\delta\alpha$ 有效: 如果存在推导 S' ⇒ $^*_{rm}$ δAw ⇒ $^*_{rm}$ $\delta \alpha \beta$ w,

 \square *a*是w的第一个符号,或者 w 是ε 且*a*是\$

□ 项目与活前缀之间的关系

- 活前缀是DFA中从初始状态到项目所在状态路径上的文法符号串联形成的串
- 一个活前缀γ的有效项目集是从这个DFA的初态出发,沿着标记为γ的路径 到达的那个项目集(状态)

- LR(1)项目[$A \rightarrow \alpha \beta, a$]对活前缀 $\gamma = \delta \alpha$ 有效: 如果存在着推导 $S' \Rightarrow^*_{rm} \delta A w \Rightarrow_{rm} \delta \alpha \beta w$, 其中:
 - \square *a* 是 w 的 第一个 符号, 或者 w 是 ε 且 a 是 \$

□ 项目与活前缀之间的关系

 $S' \Rightarrow S \Rightarrow BB \Rightarrow BbB \Rightarrow BbbB$

bB 是最右句柄

- BbbB 的所有前缀(活前缀)都可接受
 - □ $I_0[B \rightarrow bB; \$]$ 对活前缀BbbB是有效的
 - □ $I_6[B \rightarrow b B, \$]$ 对活前缀Bbb是有效的
 - □ I_2 和 I_6 中的[$B \rightarrow \cdot bB$,\$]分别对活前缀 $B \setminus Bb$ 有效
- 活前缀B有多个有效项目

从LR(0)项目 $A \rightarrow \alpha \beta$ 或LR(1)项目 $[A \rightarrow \alpha \beta, \alpha]$ 对活前缀 $\delta \alpha$ 有效可以知道

- \checkmark 如果 β ≠ε,应该移进
- \checkmark 如果 β =ε,应该用产生式 $A\rightarrow \alpha$ 归约

LR(0)项目:向前看Follow(A)中的符号

LR(1)项目: 向前看LR(1) 项目中第2元的符号

 $Follow(B) = \{a, b, \$\}$

对于输入a\$:

LR(0)项目 $B \rightarrow a$: 面临a/b/\$归约

LR(1)项目[$B \rightarrow a ; b/a$]: 面临a/b归约

从DFA构造SLR分析表

- □ 状态 i 从LR(0)项目集 I_i 构造,按如下方法确定action 函数:
 - ① 移进: 如果 $[A \rightarrow \alpha \ a\beta]$ 在 I_i 中,并且 $goto(I_i, a) = I_i$,那么置action[i, a]为sj
 - ② 归约:如果 $[A \rightarrow \alpha]$ 在 I_i 中,那么对Follow(A)中所有的a,置action[i,a]为rj,j是产生式 $A \rightarrow \alpha$ 的编号
 - ③ 接受:如果 $[S' \rightarrow S \cdot]$ 在 I_i 中,那么置action[i, \$]为acc如果出现动作冲突,那么该文法就不是SLR(1)的
 - 构造状态i 的goto函数
 - □ 对所有的非终结符A, 如果 $goto(I_i, A) = I_j$, 则goto[i, A] = j
 - 不能由上面两步定义的条目都置为error
 - \blacksquare 解析器的初始状态:包含 $[S' \rightarrow S]$ 的项目集对应的状态

构造规范的LR分析表

- \square 构造LR分析表,状态 i 的action 函数按如下确定
 - ① 如果 $[A \rightarrow \alpha \alpha \beta, b]$ 在 I_i 中,且 $goto(I_i, a) = I_i$,那么置action[i, a]为sj
 - ② 如果 $[A \rightarrow \alpha \cdot, a]$ 在 I_i 中,且 $A \neq S'$,那么置action[i, a]为rj
 - ③ 如果 $[S' \rightarrow S; \$]$ 在 I_i 中,那么置action[i, \$] = acc如果用上面规则构造,出现了冲突,则文法就不是LR(1)的
 - goto函数的确定: 如果 $goto(I_i, A) = I_j$, 那么goto[i, A] = j
 - 用上面规则未能定义的所有条目都置为error
 - 初始状态是包含[$S' \rightarrow S$, \$]的项目集对应的状态

SLR是根据Follow(A)来确定归约动作 这里是根据搜索符(上下文信息)来确定

 $S \rightarrow BB$, I_5

□ 同心的LR(1)项目集

两个项目集在略去搜索符后是相同的集合 右图有 3 对同心项目集 (I3和I6、I4和I7、I8和I9)

(规范的)LR

□ LALR分析表构造方法

■ 通过合并同心的LR(1)项目集来得到

 $B \rightarrow \underline{b \cdot B}$, b/a/\$ $B \rightarrow \cdot \underline{bB}$, b/a/\$

 $B \rightarrow a, b/a/$

 $B \rightarrow a$, b/a/\$

 $S' \rightarrow S'$, \$

 $B \rightarrow bB$, b/a/\$

SLR vs. LR vs. LALR解析

 $S \rightarrow BB \cdot ,$ \$ I_5 S'→·S, \$ S $S' \rightarrow S'$, \$ $S \rightarrow BB$, § $B \rightarrow bB, b/a$ $B \rightarrow a, b/a$ $S \rightarrow B \cdot B$, \$ $B \rightarrow \underline{b} \cdot \underline{B}, \$$ $B \rightarrow bB$, \$ $B \rightarrow bB$, \$ $B \rightarrow a, \$$ (规范的) $B \rightarrow a, \$$ LR $B \rightarrow b \cdot B$, b/a $B \rightarrow bB$, I_0 $B \rightarrow bB, b/a$ $B \rightarrow a, b/a I_3$ $B \rightarrow a$, I_7 \boldsymbol{a} $B \rightarrow a$, b/a $B \rightarrow bB$, b/a I_8

□ 同心集的合并不会引起新的 移进-归约冲突

项目集1

项目集2

 $[A \rightarrow \alpha ; a]$ $[B \rightarrow \beta a \gamma, b]$

 $S \rightarrow BB$, $S I_5$ S'→S·,\$ S'→·S,\$ 开始**/S →·BB**,\$ $B \rightarrow bB$, b/a $B \rightarrow a, b/a$ **LALR** $S \rightarrow B \cdot B$, \$ $B \rightarrow bB$, \$ $B \rightarrow a, \$$ $B \rightarrow b \cdot B$, b/a/\$ b $B \rightarrow bB$, b/a/\$ *B*→·*a*, *b*/*a*/\$ $B \rightarrow a$, b/a/\$ $B \rightarrow bB$, b/a/\$ $I_{\underline{89}}$

若合并后有冲突

SLR vs. LR vs. LALR解析

University of Science and Technology of China

同心集的合并不会引起新的 移进-归约冲突

项目集1

项目集2

 $[A \rightarrow \alpha ; a]$ $[B \rightarrow \beta a \gamma, b]$

则合并前就有冲突

 $[B \rightarrow \beta \alpha \gamma, c]$ $[A \rightarrow \alpha; d]$

LALR vs. LR 解析

- □ 同心的LR(1)项目集
 - 两个项目集在略去搜索符后是相同的集合
- □ 同心集的合并不会引起新的移进-归约冲突
- □ 同心集的合并有可能产生新的归约-归约冲突

$$S' \rightarrow S$$
 $S \rightarrow aAd \mid bBd \mid$
 $aBe \mid bAe$
 $A \rightarrow c$
 $B \rightarrow c$

对ac有效的项目集

$$A \rightarrow c ; d$$

 $B \rightarrow c ; e$

合并同心集之后

$$A \to c ; d/e$$

$$B \to c ; d/e$$

对bc有效的项目集

$$A \to c \; ; e \\ B \to c \; ; d$$

该文法是LR(1)的, 但不是LALR(1)的

SLR(1)文法的描述能力有限

该文法并不是二义的

$$S \Longrightarrow V = E \$ \Rightarrow *E = E \$$$

 $S \$ \Rightarrow V = E \$$ 无右句型 $E = E \otimes$
 $S \$ \Rightarrow E \$ \Rightarrow V \$$

 I_2 :
项目 $S \to V := E$ 使得
action[2,=]=s6项目 $E \to V \cdot$ 使得
action[2,=]为按 $E \to V$ 归约,
因为Follow(E) = {=, \$}
产生移进-归约冲突

不是SLR(1)但是LR(1)的文法

$$S \rightarrow V = E$$

$$S \rightarrow E$$

$$V \rightarrow *E$$

$$V \rightarrow id$$

$$E \rightarrow V$$

$$S \Longrightarrow V = E \$ \Rightarrow *E = E \$$$

 $S \$ \Rightarrow V = E \$$ 先句型 $E = E \$$
 $S \$ \Rightarrow E \$ \Rightarrow V \$$

LR(1)解析 无移进-归约冲突

非LR的上下文无关结构

若自左向右扫描的移进-归约解析器能及时识别出现在栈顶的句柄,那么相应的文法就是LR(指规范的LR)的。

语言
$$L = \{ww^R \mid w \in (a \mid b)^*\}$$
的文法

$$S \rightarrow aSa \mid bSb \mid \varepsilon$$

不是LR的

ababbbbaba

语言
$$L = \{w c w^R \mid w \in (a \mid b)^*\}$$
的文法

$$S \rightarrow aSa \mid bSb \mid c$$

是LR的

ababbcbbaba

非LR的上下文无关结构

若自左向右扫描的移进-归约解析器能及时识别出现在栈顶的句柄,那么相应的文法就是LR(指规范的LR)的。

语言
$$L = \{ww^R \mid w \in (a \mid b)^*\}$$
的文法
$$S \rightarrow aSa \mid bSb \mid \varepsilon$$

不是LR的

ababbbbaba

存在移进-归约冲突 故不是SLR(1)文法

例题 写不同的文法

为语言 $L = \{a^m b^n | n > m \ge 0\}$ 写三个文法,它们分别是LR(1)的、二义的和非二义且非LR(1)的。

- □ LR(1)文法: $S \rightarrow AB$ $A \rightarrow aAb \mid \varepsilon$ $B \rightarrow Bb \mid b$
 - \square A是每个a有个唯一的匹配的b, 形成中心对称
 - □ B是剩余(n-m)个b

例题 写不同的文法

University of Science and Technology of China

为语言 $L = \{a^m b^n | n > m \ge 0\}$ 写三个文法,它们分别是LR(1)的、二义的和非二义且非LR(1)的。

- □ LR(1)文法: $S \rightarrow AB$ $A \rightarrow aAb \mid \varepsilon$ $B \rightarrow Bb \mid b$
- □ 非二义且非LR(1)的文法: $S \rightarrow aSb \mid B$ $B \rightarrow Bb \mid b$
 - \square 多出来的(n-m)个b位于中间,每个a有唯一配对的b
 - □ 移进-归约冲突:面临第2个b起

例题 写不同的文法

为语言 $L = \{a^m b^n | n > m \ge 0\}$ 写三个文法,它们分别是LR(1)的、二义的和非二义且非LR(1)的。

- □ LR(1)文法: $S \rightarrow AB$ $A \rightarrow aAb \mid \varepsilon$ $B \rightarrow Bb \mid b$
- □ 非二义且非LR(1)的文法: $S \rightarrow aSb \mid B$ $B \rightarrow Bb \mid b$
- □ 二义的文法: $S \rightarrow aSb \mid Sb \mid b$
 - □ 每个a可有多个配对的b

试说明下面文法不是LR(1)的:

$$L \rightarrow MLb \mid a$$

$$M \rightarrow \epsilon$$

面临a 时,不知道该做多少次空归约 $M \rightarrow \epsilon$

句子abbb的分析树


```
下面的文法不是LR(1)的,对它略做修改,使之成为一个等价的SLR(1)文法

program → begin declist; statement end
```

 $declist \rightarrow d$; $declist \mid d$ $statement \rightarrow s$; $statement \mid s$

该文法产生的句子的形式是 begin d;d;...;d;s;s;...;s end

修改后的文法如下:

program → begin declist statement end declist → d; declist | d; statement → s; statement | s

一个C语言的文件如下, 第四行的if误写成fi:

```
long gcd(p,q)
long p,q;
{
    fi (p%q == 0)
        return q;
    else
        return gcd(q, p%q);
}
```

基于LALR(1)方法的一个编译器的报错情况如下: parse error before 'return' (line 5).

是否违反了LR解析的活前缀性质?

LR项目与LR文法小结

- □ LR(0)项目[$A \rightarrow \alpha \beta$]、LR(1)项目[$A \rightarrow \alpha \beta \alpha$]
 - 数字表示向前搜索的符号个数, 0表示不向前搜索符号
- □ SLR(k)解析技术与SLR(k)文法
 - SLR(1)解析的状态: LR(0)项目集
 - k是指向前看输入缓冲区的k个符号
- □ [规范的]LR(k)解析技术与LR(k)文法
 - LR(1)解析的状态: LR(1)项目集
- □ LALR(k)解析技术与LALR(k)文法
 - LR(1)解析的状态: LR(1)项目集+同心项目集合并

LR项目与LR文法小结

不向前看时,

移进-归约

冲突

- □ 不是SLR(0)文法,但是SLR(1)文法
 - Ø: S → a | ε
- □ SLR(0)文法

$$\blacksquare S \rightarrow a \qquad S \rightarrow a \mid b$$

- □ 理解LR(1)项目与LR(1)文法中的1
 - 搜 索 ■ 若栈顶状态包含LR(1)项目 $[A \rightarrow \alpha \beta, \alpha']$!

下期预告: 二义文法的应用

至此,本课程最抽象且 难以理解的部分已学完