Telecom Churn case Study

Ву

Manish Kumar Mansi Kaparwan Madhumita Tripathy

Business Problem Overview

• In the telecom industry, customers are able to choose from multiple service providers and actively switch from one operator to another. In this highly competitive market, the telecommunications industry experiences an average of 15-25% annual churn rate. Given the fact that it costs 5-10 times more to acquire a new customer than to retain an existing one, customer retention has now become even more important than customer acquisition.

For many incumbent operators, retaining high profitable customers is the number one business goal.

To reduce customer churn, telecom companies need to predict which customers are at high risk of churn.

In this project, you will analyse customer-level data of a leading telecom firm, build predictive models to identify customers at high risk of churn and identify the main indicators of churn.

Definitions of Churn 1

There are various ways to define churn, such as:

Revenue-based churn: Customers who have not utilised any revenue-generating facilities such as mobile internet, outgoing calls, SMS etc. over a given period of time. One could also use aggregate metrics such as 'customers who have generated less than INR 4 per month in total/average/median revenue'.

The main shortcoming of this definition is that there are customers who only receive calls/SMSes from their wage-earning counterparts, i.e. they don't generate revenue but use the services. For example, many users in rural areas only receive calls from their wage-earning siblings in urban areas.

Understanding the Business Objective and the Data

The dataset contains customer-level information for a span of four consecutive months - June, July, August and September. The months are encoded as 6, 7, 8 and 9, respectively.

The business objective is to predict the churn in the last (i.e. the ninth) month using the data (features) from the first three months

Understanding Customer Behavior During Churn

Customers usually do not decide to switch to another competitor instantly, but rather over a period of time (this is especially applicable to high-value customers). In churn prediction, we assume that there are three phases of customer lifecycle:

The 'good' phase: In this phase, the customer is happy with the service and behaves as usual.

The 'action' phase: The customer experience starts to sore in this phase, for e.g. he/she gets a compelling offer from a competitor, faces unjust charges, becomes unhappy with service quality etc. In this phase, the customer usually shows different behaviour than the 'good' months. Also, it is crucial to identify high-churn-risk customers in this phase, since some corrective actions can be taken at this point (such as matching the competitor's offer/improving the service quality etc.)

The 'churn' phase: In this phase, the customer is said to have churned. You define churn based on this phase. Also, it is important to note that at the time of prediction (i.e. the action months), this data is not available to you for prediction. Thus, after tagging churn as 1/0 based on this phase, you discard all data corresponding to this phase.

In this case, since you are working over a four-month window, the first two months are the 'good' phase, the third month is the 'action' phase, while the fourth month is the 'churn' phase.

Strategy

☐ Import data for Reading and Understanding ☐ Data Cleaning and Preparation for further analysis Handling Missing Values **Outlier Treatment Derive New Features** ■ Exploratory Data Analysis a) Univariate Analysis b) Bivariate Analysis ☐ Train Test split of data □ Performing Oversampling with SMOTE ☐ Feature Scaling □ PCA Test ■ Model Building ☐ Feature Importance and Model Interpretation

□ Conclusion

Univariate Analysis

Churn rate on the basis whether the customer decreased her/his MOU in action month

o Analysis

We can see that the churn rate is more for the customers, whose minutes of usage(mou) decreased in the action phase than the good phase.

Univariate Analysis

Churn rate on the basis whether the customer decreased her/his number of recharge in action month

Analysis

As expected, the churn rate is more for the customers, whose number of recharge in the action phase is lesser than the number in good phase.

Univariate Analysis

Churn rate on the basis whether the customer decreased her/his amount of recharge in action month

Analysis

Here also we see the same behaviour. The churn rate is more for the customers, whose amount of recharge in the action phase is lesser than the amount in good phase.

Univariate Analysis

Churn rate on the basis whether the customer decreased her/his volume-based cost in action month

Analysis

• Here we see the expected result. The churn rate is more for the customers, whose volume based cost in action month is increased. That means the customers do not do the monthly recharge more when they are in the action phase.

Univariate Analysis

Analysis of the average revenue per customer (churn and not churn) in the action phase

- Average revenue per user (ARPU) for the churned customers is mostly dense on the 0 to 900. The higher ARPU customers are less likely to be churned.
- ARPU for the not churned customers is mostly dense on the 0 to 1000.

Univariate Analysis

Analysis of the minutes of usage MOU (churn and not churn) in the action phase.

Minutes of usage(MOU) of the churn customers is mostly populated on the 0 to 2500 range. Higher the MOU, lesser the churn probability.

Bivariate Analysis

Analysis of churn rate by the decreasing recharge amount and number of recharge in the action phase

- Analysis
- We can see from the above plot, that the churn rate is more for the customers, whose recharge amount as well as number of recharge have decreased in the action phase than the good phase.

Bivariate Analysis

Analysis of churn rate by the decreasing recharge amount and volume based cost in the action phase

Analysis

Here, also we can see that the churn rate is more for the customers, whose recharge amount is decreased along with the volume-based cost is increased in the action month.

Bivariate Analysis

Analysis of recharge amount and number of recharge in action month

- Analysis
- We can see from the above pattern that the recharge number and the recharge amount are mostly proportional. More the number of recharge, more the amount of the recharge.

PCA Testing

Plotting scree plot

Number of Components Vs Cumulative Variance

We can see that 60 components explain almost more than 90% variance of the data. So, we will perform PCA with 60 components.

- Emphasize Sensitivity/Recall than Accuracy
- We are more focused on higher Sensitivity/Recall score than the accuracy.
- Because we need to care more about churn cases than the not churn cases. The main goal is to retain the customers, who have the possibility to churn. There should not be a problem, if we consider few not churn customers as churn customers and provide them some incentives for retaining them. Hence, the sensitivity score is more important here.

Logistic regression with PCA

Tuning hyperparameter C

C is the the inverse of regularization strength in Logistic Regression. Higher values of C correspond to less regularization.

Plot of C versus train and validation scores

Here Best Sore with Best C is

The highest test sensitivity is 0.8978916608693863 at C = 100

Prediction on the train set

Confusion matrix

[[17908 3517]

[2154 19271]]

Accuracy: - 0.8676546091015169

Sensitivity:- 0.899463243873979

Specificity:- 0.8358459743290548

Prediction on the test set

Confusion matrix

[[4452 896]

[36 157]]

Accuracy: - 0.8317993142032124

Sensitivity:- 0.8134715025906736

Specificity:- 0.8324607329842932

Model summary

Train set

Accuracy = 0.86

Sensitivity = 0.89

Specificity = 0.83

Test set

Accuracy = 0.83

Sensitivity = 0.81

Specificity = 0.83

Overall, the model is performing well in the test set, what it had learnt from the train set.

Support Vector Machine(SVM) with PCA

Plotting the accuracy with various C and gamma values

Printing the best score

The best test score is 0.9754959911159373 corresponding to hyperparameters {'C': 1000, 'gamma': 0.01}

From the above plot, we can see that higher value of gamma leads to overfitting the model. With the lowest value of gamma (0.0001) we have train and test accuracy almost same.

Also, at C=100 we have a good accuracy, and the train and test scores are comparable.

Though sklearn suggests the optimal scores mentioned above (gamma=0.01, C=1000), one could argue that it is better to choose a simpler, more non-linear model with gamma=0.0001. This is because the optimal values mentioned here are calculated based on the average test accuracy (but not considering subjective parameters such as model complexity).

We can achieve comparable average test accuracy (~90%) with gamma=0.0001 as well, though we'll have to increase the cost C for that. So to achieve high accuracy, there's a tradeoff between:

High gamma (i.e. high non-linearity) and average value of C

Low gamma (i.e. less non-linearity) and high value of C

We argue that the model will be simpler if it has as less non-linearity as possible, so we choose gamma=0.0001 and a high C=100.

Building the model with optimal hyperparameters

SVC(C=100, gamma=0.0001)

Prediction on the train set

Confusion matrix

[[18376 3049]

[1585 19840]]

Accuracy: - 0.891855309218203

Sensitivity:- 0.9260210035005835

Specificity:- 0.8576896149358226

Prediction on the test set

Confusion matrix

[[4557 791]

[36 157]]

Accuracy:- 0.8507489622811767

Sensitivity:- 0.8134715025906736

Specificity:- 0.8520942408376964

Model summary

Train set

Accuracy = 0.89

Sensitivity = 0.92

Specificity = 0.85

Test set

Accuracy = 0.85

Sensitivity = 0.81

Specificity = 0.85

Decision tree with PCA

The optimal sensitivity score and hyperparameters

```
Best sensitivity:- 0.9004900816802801
DecisionTreeClassifier(max_depth=10, min_samples_leaf=50, min_samples_split=50)
```

Prediction on the train set

Confusion matrix

[[18913 2512] [1763 19662]]

Accuracy:- 0.9002333722287048 Sensitivity:- 0.9177129521586931 Specificity:- 0.8827537922987164

Prediction on the test set

Confusion matrix

[[4632 716] [58 135]]

Accuracy:- 0.8603140227395777 Sensitivity:- 0.6994818652849741 Specificity:- 0.8661181750186986

Model summary

Train set

Accuracy = 0.90

Sensitivity = 0.91

Specificity = 0.88

Test set

Accuracy = 0.86

Sensitivity = 0.70

Specificity = 0.87

We can see from the model performance that the Sensitivity has been decreased while evaluating the model on the test set. However, the accuracy and specificity is quite good in the test set.

* Random forest with PCA

The optimal accuracy score and hyperparameters

We can get accuracy of 0.8452042054330283 using {'max_depth': 5, 'max_features': 20, 'min_samples_leaf': 50, 'min_samples_split': 100, 'n_estimators': 100}

Prediction on the train set

Confusion matrix

[[17366 4059] [2434 18991]]

Accuracy:- 0.8484714119019837 Sensitivity:- 0.8863943990665111 Specificity:- 0.8105484247374563

Prediction on the test set

Confusion matrix

[[4293 1055] [46 147]]

Accuracy:- 0.8012994044396319 Sensitivity:- 0.7616580310880829 Specificity:- 0.8027299925205684

Model summary

Train set

Accuracy = 0.84 Sensitivity = 0.88

Specificity = 0.80

Test set

Accuracy = 0.80

Sensitivity = 0.75

Specificity = 0.80

We can see from the model performance that the Sensitivity has been decreased while evaluating the model on the test set. However, the accuracy and specificity is quite good in the test set.

Final conclusion with PCA

After trying several models, we can see that for achieving the best sensitivity, which was our ultimate goal, the classic Logistic regression or the SVM models preforms well. For both the models the sensitivity was approx 81%. Also, we have good accuracy of approx. 85%.

* Model building Without PCA

Logistic regression with No PCA

							offnet_mou_6	15.0883	3.365	4.484	0.000	8.494	21.683
Generalized Linear Model F	Regression Resu	ılts					offnet_mou_7	-1.7627	1.716		0.304	-5.126	1.601
Dep. Variable:	churn	No. Observations	: 42	850			offnet_mou_8	-0.5503	1.885	-0.292		-4.244	3.144
Model:	GLM	Df Residuals	: 42	720			roam_ic_mou_6	0.1622	0.036	4.487		0.091	0.233
Model Family:	Binomial	Df Mode	l:	129			roam_ic_mou_7	-0.0099	0.052		0.850	-0.112	0.092
Link Function:	Logit	Scale	: 1.0	000			roam_ic_mou_8	0.2041	0.044	4.662		0.118	0.29
Method:	IRLS	Log-Likelihood	l:	nan			roam_og_mou_6	-5.1508	1.132	-4.549	0.000	-7.370	-2.93
Date: Sat, 1	10 Jun 2023	Deviance	: 23	572.			roam_og_mou_7	0.8855	0.473	1.873	0.061	-0.041	1.81
Time:	00:10:12	Pearson chi2	2: 3.71e	+05			roam_og_mou_8	0.0929	0.531	0.175	0.861	-0.948	1.13
No. Iterations:	100 Ps	seudo R-squ. (CS)):	nan			loc_og_t2t_mou_6	-3303.0832	656.615	-5.030	0.000	-4590.024	-2016.14
Covariance Type:	nonrobust						loc_og_t2t_mou_7	-1474.6161	680.014	-2.169	0.030	-2807.419	-141.81
	coe	ef std err	z P	> z	[0.025 0.	9751	loc_og_t2t_mou_8	5516.0876	628.351	8.779	0.000	4284.542	6747.63
							loc_og_t2m_mou_6	-3342.7075	664.372	-5.031	0.000	-4644.852	-2040.56
	coef	f std err	z	P> z	[0.025	0.975]	loc_og_t2m_mou_7	-1392.1067	641.322	-2.171	0.030	-2649.075	5 -135.
cons	-90.6375	4452.242	-0.020	0.984	-8816.872	8635.597	loc_og_t2m_mou_8	5887.3427	670.474	8.781	0.000	4573.238	3 7201.
loc_og_t2o_mou	-3.08e-06	0.000	-0.022	0.982	-0.000	0.000	loc_og_t2f_mou_6	-285.2471	56.730	-5.028	0.000	-396.436	3 -174.
std_og_t2o_mou	-2.063e-06	0.000	-0.014	0.989	-0.000	0.000	loc_og_t2f_mou_7	-123.0164	56.696	-2.170	0.030	-234.138	3 -11.
loc_ic_t2o_mou		0.000	-0.021	0.983	-0.001	0.001	loc_og_t2f_mou_8	487.3958	55.536	8.776	0.000	378.548	3 596.
							loc_og_t2c_mou_6	0.0433	0.022	1.971	0.049	0.000	0.
arpu_6			-0.418			0.125	loc_og_t2c_mou_7	0.0099	0.021	0.462	0.644	-0.032	2 0.
arpu_7	0.0855	0.086	0.995	0.320	-0.083	0.254	loc_og_t2c_mou_8	0.0673	0.023	2.980	0.003	0.023	3 0
arpu_8	0.0909	0.110	0.828	0.408	-0.124	0.306	loc_og_mou_6	3756.6102	1269.528	2.959	0.003	1268.380	6244.
onnet_mou_6	15.5140	3.577	4.337	0.000	8.504	22.524	loc_og_mou_7	5686.6260	1330.779	4.273	0.000	3078.348	8294.
onnet_mou_7	-4.3249	9 1.811	-2.388	0.017	-7.875	-0.774	loc_og_mou_8	-265.7536	1351.526	-0.197	0.844	-2914.696	3 2383.
onnet_mou_8	2.3520	1.827	1.287	0.198	-1.229	5.933	std_og_t2t_mou_6	-1.309e+04	1867.608	-7.009	0.000	-1.68e+04	4 -9429.
							std_og_t2t_mou_7	-9674.3998	1822.532	-5.308	0.000	-1.32e+04	4 -6102.3

Model analysis

- 1.We can see that there are few features have positive coefficients and few have negative.
- 2. Many features have higher p-values and hence became insignificant in the model.

Coarse tuning (Auto+Manual)

We'll first eliminate a few features using Recursive Feature Elimination (RFE), and once we have reached a small set of variables to work with, we can then use manual feature elimination (i.e. manually eliminating features based on observing the p-values and VIFs).

3.876 0.000 2894.213 8815.371 -7.009 0.000 -1.55e+04 -8748.260

2950.497

-326.775

-292.530

70.391

-0.001

-0.001

-0.000

8644.702

1.5e+04

-184.077

-134.673

214.523 0.001

0.001

0.000

2.03e+04

2.71e+04

3.878 0.000

-7.017 0.000

3.874 0.000

0.020 0.984

-0.021 0.983

0.021 0.983

4.873 0.000

6.782 0.000

40.270 -5.304 0.000

std_og_t2t_mou_8 5854.7918 1510.527

std_og_t2m_mou_6 -1.214e+04 1732.558

std_og_t2m_mou_8 5966.0464 1538.574

142.4566

std_og_mou_6 1.446e+04 2967.405

std_og_mou_7 2.105e+04 3104.376

std_og_t2f_mou_6 -255.4260

std_og_t2f_mou_7 -213.6015

std_og_t2c_mou_6 8.329e-06

std_og_t2c_mou_7 -7.681e-06

std_og_t2c_mou_8 3.308e-06

std_og_t2f_mou_8

std_og_t2m_mou_7 -9439.1294 1777.871 -5.309 0.000 -1.29e+04

36.403

36.769

0.000

0.000

0.000

std_og_mou_8 7815.2301 2768.567 2.823 0.005 2388.938

Without PCA

Feature Selection Using RFE

Model-1 with RFE selected columns

Create a dataframe that will contain the names of all the feature variables and their respective VIFs

Generalized Linear N	nodel Reg	ression F	Results					
Dep. Variable:		churn	No. O	oservation	ns:	42850		
Model:		GLM	D	f Residua	ls:	42834		
Model Family:		Binomial		Df Mod	el:	15		
Link Function:		Logit		Sca	le:	1.0000		
Method:		IRLS	Log	-Likelihoo	od:	nan		
Date:	Sat, 10	Jun 2023		Devian	ce:	30008.		
Time:		00:11:21	Pe	earson ch	i 2: 4.	49e+06		
No. Iterations:		41	Pseudo	R-squ. (C	S):	nan		
Covariance Type:	n	onrobust						
		coef	std err	z	P> z	[0.02	25	0.975]
	nst -{	53.0128	4235.111	-0.013		-		8247.653
offnet mou		0.6096	0.026			0.58		0.661
offnet mou	_	-3.2532	0.106			-3.46		-3.045
roam og mou	_	1.2482	0.032			1.18		1.310
std og t2m mou	_	2.4408	0.094	26.101	0.000	2.25	58	2.624
isd_og_mou	1_8 _	-1.0212	0.194	-5.271	0.000	-1.40	01	-0.641
og_others	_ s_7	-1.1915	0.862	-1.382	0.167	-2.88	31	0.498
og_others	s_8 -378	30.7240	3.08e+05	-0.012	0.990	-6.08e+0	05 6	6.01e+05
loc_ic_t2f_mou	ı_8	-0.7547	0.072	-10.487	0.000	-0.89	96	-0.614
loc_ic_mou	ı_8	-1.9744	0.066	-30.078	0.000	-2.10	03	-1.846
std_ic_t2f_mou	ı_8	-0.7922	0.075	-10.607	0.000	-0.93	39	-0.646
ic_others	s_ 8	-1.4913	0.132	-11.305	0.000	-1.78	50	-1.233
total_rech_nun	1_8	-0.4840	0.018	-26.977	0.000	-0.5	19	-0.449
monthly_2g	<u>j_</u> 8	-0.9031	0.043	-20.851	0.000	-0.98	38	-0.818
monthly_3g	<u>_</u> 8	-0.9871	0.043	-22.711	0.000	-1.07	72	-0.902
decrease vbc act	ion	-1.3078	0.073	-17.956	0.000	-1.48	51	-1.165

	Features	VIF
1	offnet_mou_8	7.45
3	std_og_t2m_mou_8	6.27
0	offnet_mou_7	1.92
8	loc_ic_mou_8	1.68
7	loc_ic_t2f_mou_8	1.21
11	total_rech_num_8	1.19
2	roam_og_mou_8	1.16
14	decrease_vbc_action	1.08
13	monthly_3g_8	1.06
6	og_others_8	1.05
12	monthly_2g_8	1.05
5	og_others_7	1.04
9	std_ic_t2f_mou_8	1.02
10	ic_others_8	1.02
4	isd_og_mou_8	1.01

Model-2

Generalized Linear Mo	del Regress	ion Resul	lts			
Dep. Variable:	cl	hurn I	No. Obsei	rvations	s: 42	2850
Model:	(GLM	Df Re	esiduals	s: 42	2835
Model Family:	Bino	mial		f Mode	l:	14
Link Function:	L	_ogit		Scale	: 1.0	0000
Method:	I	RLS	Log-Lik	elihood	l: -15	034.
Date: S	Sat, 10 Jun 2	2023	D	eviance	: 30	068.
Time:	00:1	1:22	Pears	on chi2	2: 4.51e	e+06
No. Iterations:		11 Ps	eudo R-s	qu. (CS)): 0.4	1957
Covariance Type:	nonro	bust				
	coef	std err	z	P> z	[0.025	0.975
cons	t -1.1052	0.031	-35.342	0.000	-1.167	-1.044
offnet_mou_	7 0.6081	0.026	23.427	0.000	0.557	0.659
offnet_mou_	8 -3.2557	0.106	-30.603	0.000	-3.464	-3.047
roam_og_mou_	8 1.2491	0.031	39.747	0.000	1.188	1.311
std_og_t2m_mou_	8 2.4428	0.093	26.146	0.000	2.260	2.626
isd_og_mou_	8 -1.0982	0.196	-5.590	0.000	-1.483	-0.713
og_others_	7 -1.8793	0.818	-2.299	0.022	-3.482	-0.277
loc_ic_t2f_mou_	8 -0.7548	0.072	-10.491	0.000	-0.896	-0.614
loc_ic_mou_	8 -1.9714	0.066	-30.058	0.000	-2.100	-1.843
std_ic_t2f_mou_	8 -0.8020	0.075	-10.727	0.000	-0.949	-0.655
ic_others_	8 -1.4871	0.132	-11.278	0.000	-1.746	-1.229
total_rech_num_	8 -0.4864	0.018	-27.146	0.000	-0.522	-0.451
monthly_2g_	8 -0.9066	0.043	-20.866	0.000	-0.992	-0.821
monthly_3g_	8 -0.9862	0.043	-22.700	0.000	-1.071	-0.901
decrease_vbc_actio	n -1.3097	0.073	-17.994	0.000	-1.452	-1.167

Checking VIF for Model-2

	Features	VIF
1	offnet_mou_8	7.45
3	std_og_t2m_mou_8	6.27
0	offnet_mou_7	1.92
7	loc_ic_mou_8	1.68
6	loc_ic_t2f_mou_8	1.21
10	total_rech_num_8	1.19
2	roam_og_mou_8	1.16
13	decrease_vbc_action	1.08
12	monthly_3g_8	1.06
11	monthly_2g_8	1.05
8	std_ic_t2f_mou_8	1.02
4	isd_og_mou_8	1.01
9	ic_others_8	1.01
5	og_others_7	1.00

As we can see from the model summary that all the variables p-values are significant and offnet_mou_8 column has the highest VIF 7.45. Hence, deleting offnet_mou_8 column.

Model-3

Generalized Linear Mo	del Regress	sion Resu	lts			
Dep. Variable:	С	hurn	No. Obsei	vations	: 42	2850
Model:		GLM	Df Re	siduals	: 42	2836
Model Family:	Bino	mial	0	f Model	:	13
Link Function:	1	Logit		Scale	: 1.0	0000
Method:	I	RLS	Log-Lik	elihood	: -15	720.
Date:	Sat, 10 Jun 2	2023	D	eviance	: 31	440.
Time:	00:1	1:22	Pears	on chi2	3.926	+06
No. Iterations:		11 Ps	eudo R-s	qu. (CS)	: 0.4	1793
Covariance Type:	nonro	bust				
	coef	std err	z	P> z	[0.025	0.975]
cons	st -1.2058	0.032	-37.536	0.000	-1.269	-1.143
offnet_mou_	7 0.3665	0.022	16.456	0.000	0.323	0.410
roam_og_mou_	8 0.7135	0.024	29.260	0.000	0.666	0.761
std_og_t2m_mou_	8 -0.2474	0.022	-11.238	0.000	-0.291	-0.204
isd_og_mou_	8 -1.3811	0.212	-6.511	0.000	-1.797	-0.965
og_others_	7 -2.4711	0.872	-2.834	0.005	-4.180	-0.762
loc_ic_t2f_mou_	8 -0.7102	0.075	-9.532	0.000	-0.856	-0.564
loc_ic_mou_	8 -3.3287	0.057	-58.130	0.000	-3.441	-3.216
std_ic_t2f_mou_	8 -0.9503	0.078	-12.181	0.000	-1.103	-0.797
ic_others_	8 -1.5131	0.129	-11.771	0.000	-1.765	-1.261
total_rech_num_	8 -0.5060	0.018	-28.808	0.000	-0.540	-0.472
monthly_2g_	8 -0.9279	0.044	-21.027	0.000	-1.014	-0.841
monthly_3g_	8 -1.0943	0.046	-23.615	0.000	-1.185	-1.004
decrease_vbc_actio	n -1.3293	0.072	-18.478	0.000	-1.470	-1.188

Checking VIF for Model-2

	Features	VIF
2	std_og_t2m_mou_8	1.87
0	offnet_mou_7	1.72
6	loc_ic_mou_8	1.33
5	loc_ic_t2f_mou_8	1.21
9	total_rech_num_8	1.17
12	decrease_vbc_action	1.07
1	roam_og_mou_8	1.06
11	monthly_3g_8	1.06
10	monthly_2g_8	1.05
7	std_ic_t2f_mou_8	1.02
3	isd_og_mou_8	1.01
8	ic_others_8	1.01
4	og_others_7	1.00

Now from the model summary and the VIF list we can see that all the variables are significant and there is no multicollinearity among the variables.

Hence, we can conclused that Model-3 log_no_pca_3 will be the final model.

Model performance on the train set

Creating a data frame with the actual churn and the predicted probabilities

	churn	churn_prob	CustID
0	0	2.687411e-01	0
1	0	7.047483e-02	1
2	0	8.024370e-02	2
3	0	3.439222e-03	3
4	0	5.253815e-19	4

Finding Optimal Probability Cutoff Point

	churn	churn_prob	CustID	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9
0	0	2.687411e-01	0	1	1	1	0	0	0	0	0	0	0
1	0	7.047483e-02	1	1	0	0	0	0	0	0	0	0	0
2	0	8.024370e-02	2	1	0	0	0	0	0	0	0	0	0
3	0	3.439222e-03	3	1	0	0	0	0	0	0	0	0	0
4	0	5.253815e-19	4	1	0	0	0	0	0	0	0	0	0

Plotting accuracy, sensitivity and specificity for different probabilities

Analysis of the above curve

Accuracy - Becomes stable around 0.6

Sensitivity - Decreases with the increased probability.

Specificity - Increases with the increasing probability.

At point 0.6 where the three parameters cut each other, we can see that there is a balance between sensitivity and specificity with a good accuracy.

Here we are intended to achieve better sensitivity than accuracy and specificity. Though as per the above curve, we should take **0.6** as the optimum probability cutoff, we are taking **0.5** for achieving higher sensitivity, which is our main goal

Model performance on the train set

Metrics

Confusion metrics

[[16978 4447] [2232 19193]]

Accuracy:- 0.8441306884480747 Sensitivity:- 0.8958226371061844 Specificity:- 0.792438739789965

We have got good accuracy, sensitivity and specificity on the train set prediction.

Plotting the ROC Curve (Trade off between sensitivity & specificity)

Testing the model on the test set

Predictions on the test set with final mode

	CustID	churn	churn_prob
0	5704	0	0.034015
1	64892	0	0.000578
2	39613	0	0.513564
3	93118	0	0.020480
4	81235	0	0.034115

CustID	churn	churn_prob	test_predicted
5704	0	0.034015	0
64892	0	0.000578	0
39613	0	0.513564	1
93118	0	0.020480	0
81235	0	0.034115	0
	5704 64892 39613 93118	5704 0 64892 0 39613 0 93118 0	64892 0 0.000578 39613 0 0.513564 93118 0 0.020480

Metrics

Confusion matrix

[[4190 1158] [34 159]]

Accuracy:- 0.7848763761053962 Sensitivity:- 0.8238341968911918 Specificity:- 0.7834704562453254

Model summary

Train set

Accuracy = 0.84

Sensitivity = 0.81

Specificity = 0.83

Test set

Accuracy = 0.78

Sensitivity = 0.82

Specificity = 0.78

Overall, the model is performing well in the test set, what it had learnt from the train set.

Final conclusion with no PCA

We can see that the logistic model with no PCA has good sensitivity and accuracy, which are comparable to the models with PCA. So, we can go for the more simplistic model such as logistic regression with PCA as it explains the important predictor variables as well as the significance of each variable. The model also helps us to identify the variables which should be act upon for making the decision of the to be churned customers. Hence, the model is more relevant in terms of explaining to the business.

Top predictors

variables	Coefficients
loc_ic_mou_8	-3.3287
og_others_7	-2.4711
ic_others_8	-1.5131
isd_og_mou_8	-1.3811
decrease_vbc_action	-1.3293
monthly_3g_8	-1.0943
std_ic_t2f_mou_8	-0.9503
monthly_2g_8	-0.9279
loc_ic_t2f_mou_8	-0.7102
roam_og_mou_8	0.7135

We can see most of the top variables have negative coefficients. That means, the variables are inversely correlated with the churn probability.

- E.g.:-
- If the local incoming minutes of usage (loc_ic_mou_8) is lesser in the month of August than any other month, then there is a higher chance that the customer is likely to churn.

Recommendations to predict the churn customers and for better business:

- > Target the customers, whose minutes of usage of the incoming local calls and outgoing ISD calls are less in the action phase (mostly in the month of August).
- Target the customers, whose outgoing others charge in July and incoming others in August are less.
- > Also, the customers having value-based cost in the action phase increased are more likely to churn than the other customers. Hence, these customers may be a good target to provide offer.
- > Customers, who's monthly 3G recharge in August is more, are likely to be churned.
- > Customers having decreasing STD incoming minutes of usage for operators T to fixed lines of T for the month of August are more likely to churn.
- Customers decreasing monthly 2G usage for August are most probable to churn.
- > Customers having decreasing incoming minutes of usage for operators T to fixed lines of T for August are more likely to churn.
- > roam_og_mou_8 variables have positive coefficients (0.7135). That means for the customers, whose roaming outgoing minutes of usage is increasing are more likely to churn.
- > For the customers classified as a probable churn, provide the customers with attractive offers they cannot resist and retain them.
- Provide offers on long term plans so that the customer would be loyal.
- Provide the customers offers based on their usage and profile.

- **❖** Plotting important predictors for churn and non churn customers
- > Plotting loc_ic_mou_8 predictor for churn and not churn customers

We can see that for the churn customers the minutes of usage for the month of August is mostly populated on the lower side than the non churn customers.

> Plotting isd_og_mou_8 predictor for churn and not churn customers

We can see that the ISD outgoing minutes of usage for the month of August for churn customers is densed approximately to zero. On the other hand for the non churn customers it is little more than the churn customers

> Plotting monthly_3g_8 predictor for churn and not churn customers

The number of monthly 3g data for August for the churn customers are very much around 1, whereas of non churn customers it spreaded across various numbers.

Similarly, we can plot each variables, which have higher coefficients, churn distribution.