

Enabling Sustainable Solar Energy Business through Advanced Regeneration Technology

July 2021

Company Background

- ► Innovative circular advanced panel regeneration technology → World's 1st
- ► Maximize power output and prolong lifespan of solar panels
- ► Co-founders with solar PV R&D expertise and industry backgrounds

ETAVOLT Management Team

Dr Stanley Wang
Co-Founder
Chief Executive Officer

- 15 yrs in solar research, manufacturing & tech transfer
- PI EDB-SCRP & Programme Director ERI@N, NTU
- 7 years with REC Solar Singapore with managerial role

UNSW PhD, Photovoltaic Eng.

Dr Andy So Co-Founder Chief Technology Officer

- 15 yrs in solar research & industry, BIPV and automotive production process (BOSCH)
- 7 years with Bosch Singapore with managerial role
- Certified PM & Agile Master; Customer PoC; Start-up & innovation mgt.
- UNSW PhD, Photovoltaic Eng.

Problem Statement

Current global solar energy economical losses ~ US\$ 7.2 Billions *conservative at 7% degradation

Problem

- ► P-type silicon solar panels (90% market) suffer from light induced degradation (LID)
- ▶ Power reduction up to 25% during panel lifespan
- ▶ Degraded panels lead to early decommission and increasing e-waste disposal and landfills

Source: https://www.paradisesolarenergy.com/

Solar capacity growing at unprecedented rate!

Source: IRENA, IEA-PVPS. END-OF-LIFE MANAGEMENT: Solar Photovoltaic Panels, 2016.

Current Technology Barriers & Status

- ► Current state of hydrogenation technology is only possible at solar cell level, with factory furnace based type
- ► Prolonged (>10 mins) panel lamination manufacturing step require >150°C (reversible effect)
- ► EVA melting point (167 °C) makes high temperature based process technologies not applicable

Etavolt's Innovation & Novelty

Novel advanced panel regeneration technology

Prototype system design

Current Achievements

- ► Solved LID, achieved stable state with efficiency improvements
- >10,000 solar cells processed & >1600 panels built in field
- ► Regeneration performance validation on field degraded solar cell
- ► The current prototype needs to be modified & upgraded for module level, part of the POC WP

Competitive Landscape & Propriety Technology

Cutting edge advanced regeneration technology

High illumination based technology

- ► State of the art, first in the market
- ► Applicable for cell and module level
- ► Higher light intensity for better charge passivation state control
- ► Provide best regeneration performance for LID
- ► Portability feasible

Technology Comparisons Parameters	Laser illumination	Furnace process (Belt furnace process)	Current Induced Process		
Light Intensity	≥30 Suns	20 Suns	-		
Duration (per module)	3-5 s	10 minutes	15-30 minutes [8]		
Temperature (Degree Celsius)	50 - 100	850	200		
Application at module level (1m x2m)	Yes	No	No		
Cooling rate	>20 degrees/s	40-50 degrees/s	N/A		

Competitive Advantages										
	Etavolt Technology (Laser based) First in the market	Asia Neotech (LED- Belt furnace)	China in house (Current Induced)							
LID degradation recovery rate at module level (%)	≥5%	Not suitable on module level	Not suitable on module level							
Relative efficiency recovery on cell level (%)	≥8%	≥5%	3% to 5%							
Throughput	6000 cells/hr 60 modules/hr (Pilot unit POC is lower)	6000 cells/hr N/A with module	2000 cells/hr N/A with module							
Market	Applicable on-field	Stationary	Stationary							
Footprint/Size of the device (kW)	100cm (Width) x 120 cm (Length) x120 cm (Height)	100cm (Width) x429 cm (Length) x132 cm (Height)	N/A							

Note: 1 sun is defined as equal to 100 mW/cm² of irradiance

Customer Prefer EtaVolt's Regeneration Solution

<u>Case Study 1: Degraded Panels vs Regen Solution</u>
(100MW Solar Farm)

Solar Farm System Age	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Degradation rate (%) w/o regen	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Degradation rate (%) w/regen	5	5	5	5	5	5	5	5	6	6	6	6	6	6	6	6
Extra power gain (MW) Power (w/o regen)- Power (w/regen)	5	6	7	8	9	10	11	12	12	13	14	15	16	17	18	19

Market Potential & Commercialization

Potential Regen Market Size

Market Strategy & Commercialization

- Potential revenue streams: 1) revenue split, 2) service fee, 3) subcontract
- Initial strategy to partner local pilot customer for small-scale PV panels regeneration demo (various LOI signed)
- Engage oversea solar farm PV customers, e.g. owners or PV asset management through Singapore demo project portfolios (supporting by BD consultant)

Expected Benefits to Singapore

Relevance and importance of module advanced regeneration technologies

Technology Impacts

New Business

 Enable blue ocean opportunities to open up new marketplace and business model for solar panel performance recovery

Innovations

- World's first solar panel regeneration, make SGP brand visible on global arena
- Locally registered IP and up to 2 future ones improve competitive advantage

Commercialization

- Achieve >5% solar panel performance recovery is major breakthrough
- Disruptive technology to create global impact in renewable industry and reduce environmental impacts

Solar Panel Advanced Regeneration

Social Impacts

Sustainable Cities

- Increase energy efficiency and reduce greenhouse emission
- Support Singapore customers to achieve sustainable solar energy access

Economic Growth

- Hiring local professional team and develop local technical talents
- Develop business and collaboration among local companies and start-ups in SGP

Circular Economy

 Maximize power output and prolong lifespan of degraded panels to reduce solar e-waste or landfill

