AS/AD Model

Prof. Lutz Hendricks

Econ520

January 3, 2016

Objectives

In this section you will learn

- 1. how to put IS/LM and labor market clearing together
- 2. how to derive aggregate supply and demand curves
- 3. how to analyze policies and shocks
- 4. why the economy tends towards potential output in the long run

Aggregate Supply (AS)	

Aggregate Supply

- ► The aggregate supply curve is simply the labor market clearing condition
- Recall
 - wage setting

$$W = P^e F(u, z) \tag{1}$$

with u = 1 - Y/L

price setting

$$P = (1+m)W \tag{2}$$

Combine the two:

$$W/P = \frac{1}{1+m} = \frac{P^e}{P} F(1 - Y/L, z)$$
 (3)

How to think about AS

The key exogenous piece is the markup

$$W/P \leftarrow \frac{1}{1+\mathbf{m}} \to \frac{P^e}{P} F(1-Y/L,z) \tag{4}$$

- ▶ Price setting: markup → real wage
- Wage setting: markup → employment + output
 - mediated by price expectation errors
 - that generate wage setting errors

The logic behind AS

AS captures this idea:

- ▶ Workers expect P^e and set $W = P^e \times \text{real}$ wage target that is consistent with "full employment" (whatever that means)
- ▶ If $P < P^e$, the resulting real wage is "too high"
- ▶ Since labor demand is downward sloping in W/P, it falls short of full employment

The logic behind AS

Our model does not quite work like this

- because of the linear production function Y = N, the marginal product of labor is always 1
- ▶ labor demand is not downward sloping but flat at W/P = 1/(1+m)
- the real wage is fixed

The story why price expectations affect employment is not clear.

- ▶ Somehow workers don't know that W/P is fixed.
- ▶ When $P < P^e$ they look at W and think W/P is low.

Properties of AS

```
Holding constant P^e: Y \uparrow \Longrightarrow P \uparrow Intuition:
```

Holding constant $Y: P^e \uparrow \Longrightarrow P \uparrow$ Intuition:

When $P = P^e$: $Y = Y_n$ and $u = u_n$ these values define Y_n, u_n .

Aggregate Supply

Aggregate	Demand	(AD)	

Aggregate Demand

- AD combines IS and LM
- ► Recall:
 - ► IS: Y = C(Y T) + I(Y, i) + G
 - ▶ LM: M/P = YL(i)
- Combine the two, so that i is eliminated

AD:
$$Y = Y(M/P, G, T)$$
 (5)

- ▶ This is downward sloping: $P \uparrow \Longrightarrow Y \downarrow$
- ▶ Intuition: ...

Deriving AD

- ▶ The linear case:
 - ► IS: $Y = Y_0 + a_1 Y a_2 i$
 - ► LM: $M/P = L_0 \alpha i$
- ► LM: $i = (L_0 M/P)/\alpha$
- AD

$$Y(1-a_1) = Y_0 - a_2(L_0 - M/P)/\alpha$$
 (6)

$$Y = \frac{Y_0 + a_2(M/P - L_0)}{1 - a_1} \tag{7}$$

Deriving AD Graphically

Trace out intersection of IS/LM as $P \uparrow$.

AD Shifters

- Anything that shifts IS or LM left shifts AD left (towards lower Y)
- Examples

```
    IS: G ↓, T ↑, C<sub>0</sub> ↓
    LM: M ↓
```

- ► These are exactly the shocks that reduce *Y* in the short-run model
- ▶ AD really collects all short-run equilibria, one for each *P*.

Equilibrium

Equilibrium summary

Curve	Equation	Shifters
AS	$P = (1+m)P^{e}F(1-Y/L,z)$	$m\uparrow,P^e\uparrow,z$
AD	Y = C(Y - T) + G + I(Y, i) M/P = YL(i)	$M/P\uparrow,G\uparrow,T\downarrow$

Short run: P^e given.

Medium run: $P^e \rightarrow P$.

Short-run Equilibrium

Clear all markets for a given P^e

Transition Towards Medium-run

Expectations adjust towards $P^e = P$ AS shifts up $Y \rightarrow Y_n$

Analyzing the Model

1. Start with the medium run:

```
1.1 Y = Y_n, u = u_n, P = P^e
1.2 W/P = 1/(1+m) = F(u_n, z)
```

- 2. Apply a shock
 - 2.1 find the new medium run $(P^e = P)$
 - 2.2 Y_n only changes if m or z were shocked
 - 2.3 find the new short-run (P^e unchanged)
- 3. Transition
 - 3.1 AS curve shifts towards new medium run equilibrium

Applications

Monetary Expansion

The shock: $M \uparrow$.

Medium run:

Short run:

Transition:

 \triangleright AS shifts toward Y_n .

Monetary Expansion

Result

Money is neutral in the medium run:

- ► *M* affects prices, but not any real variables
- Doubling M doubles P

This is why we could ignore money in the long-run growth analysis.

Intuition

 $M \uparrow \Longrightarrow i \downarrow \Longrightarrow I \uparrow$ With fixed $P: A \to B$ (IS/LM) $P \uparrow$ dampens the short-run effect

Empirical Evidence

Estimated macro models imply:

- the peak effect of monetary policy hits after nearly 1 year
- it takes several years for the real effects to wear off

Deficit Reduction

- ▶ The shock: $G \downarrow$.
- ► Medium run:
 - AS:
 - ► AD:
- Short run:
 - AS:
 - AD:
- ► Transition:
 - \triangleright AS shifts towards Y_n

Deficit Reduction

Deficit Reduction

Short run:

- Y ↓
- ▶ I ambiguous $(Y \downarrow \text{ but } i \downarrow)$

Medium run:

- Y returns to natural level
- I↑: crowding in

Long run:

 $K \uparrow \Longrightarrow Y \uparrow$

This is the source of current disagreement: how to trade off the short run pain against the long run gain.

Adverse Supply Shock

- Example: permanent increase in the price of oil
- ▶ Main effect: given wages, prices must rise
- ▶ Model as increase in markup: $m \uparrow$.

Adverse Supply Shock

Medium run:

Short run:

Transition: AS shifts towards Y_n .

Medium Run: Labor Market

- $VW/P = 1/(1+m) \downarrow$
- Lower real wage reduces employment.

Adverse Supply Shock

Stabilization Policy

How should policy respond to recessions?

Case 1: Adverse demand shock

Stabilization Policy

Case 2: Adverse supply shock

Stabilization Policy

What happens if policy makers misdiagnose the source of the shock?

Historical examples?

Summary

	Short run		Medium run			
	Y	i	P	Y	i	P
$M \uparrow$	↑	↓		_	_	↑
$G \uparrow$	↑	1	↑	_	↑	↑

Short-run effects of shocks differ from medium-run effects.

Intuition: In the short run, wages do not fully adjust (b/c P^e is sticky).

Reading

Blanchard/Johnson, Macroeconomics, 6th ed, ch. 7