천광 입지 선정 관련 설문조사 결과

1. 설문조사 정보

- 1) 설문조사 목적: 천광 입지 선정을 위한 건물 및 환경적 요인에 대한 전문가 의견 수립(설치 후보지 필터링 시, 참고)
- 2) 설문조사 기간: 2/4(화)~ 2/7(금) 17:30
- 3) 설문조사 대상: 국방/방산/건축 분야의 전문가(인원 제한 없음)

2. 설문조사 결과

2.1. 인구통계학적 특성

2.1.1. 성별

2.1.2. 연령

2.1.3. 분야

- 국방: 22명
- 건축 및 구조공학: 4명
- 방산: 6명

2.1.4. 종사기간

- 5년 미만: 4명
- 5~10년 미만: 3명
- 11~15년 미만: 3명
- 16~20년 미만: 7명
- 20년 이상: 15명

2.2. 건물 층수 및 용도

2.2.1. 천광 설치 시, 적합한 층수의 범위는 무엇이라고 생각하십니까?(본 연구에서는 옥상 설치를 전제로함)

천광 설치 시, 적합한 층수의 범위는 무엇이라고 생각하십니까? (본 연구에서는 옥상 설치를 전제로 함) 응답 32개

1~4층: 1명

5~9층: 3명

• 10~15층: 9명

16~20층: 2명

• 21층 이상: 17명

1~4층 (1명)	저고도 무인이동체 ~ 고고도까지 대응하기 위해
5~9층 (3명)	천광 자체가 무거움. 붕괴 시 인명피해 고려. 저층 설치 필요
10~15층 (9명)	무인기/드론 고려, 가시거리 확보, 산악지형 & 도심지 고층건물 고려, 유효사거리 고려, 노출 최소화
16~20층 (2명)	주변 엄폐물 등 고려
21층 이상 (17명)	레이저 위험성 & 적 피격 거리 고려, 고공에서 파괴, 차폐와 가시거리 확보, 사각으로 인한 사용제한 최소화, 레이저의 직진성 고려

2.2.2. 천광 설치 시, 가장 적합한 건물의 용도는 무엇이라고 생각하십니까?

천광 설치 시, 가장 적합한 건물의 용도는 무엇이라고 생각하십니까? 응답 32개

주거 (1명)	적 무인기 출현 시, 가장 효과적인 곳이 주거지역 ← 가장 활용성이 높을 것으로 판단
상업 시설 (2명)	-
산업 시설 (5명) (공장, 물류 센터, …)	민간인 접근이 어려워야 함. 충분한 전력 공급
공공기관 (19명)	통제 가능한 공간, 공공기관의 경비시스템 활용, 협조 가능성, 보안 문제, 주요시설 방호, 민원 고려, 사유재산에 대한 침해 우려
기반 시설 (12명)	붕괴 시 인명피해 최소화, 실시간 조치 용이, 설치 장소 확보 용이
의료 및 복지 (2명)	드론이 공격 목표로 할 수 있는 장소가 우선시 되어야 함
숙박 및 여가 (0명)	-
기타(교통, 방송, 종교) (3명)	-

2.3. 설치 면적 및 건물 생애주기

2.3.1. 천광의 설치 면적은 27㎡입니다. 추가적인 여유 공간은 어느 정도가 적합하다고 생각하십니까? (단위: 27㎡)

천광의 설치 면적은 27㎡입니다. 추가적인 여유 공간은 어느 정도가 적합하다고 생각하십니까? (단위: ㎡) 응답 31개

3~5	정비 등 활동공간 확보 필요
10	기타 장비 보관, 지원장비 설치 필요
27	유지관리 여건 보장, 주변 부대시설 설치 & 경계시설 설치
30	운용 요원들의 원활한 활동공간 확보
33	8평의 설치 면적, 2평 가량의 활동 구역 필
50	운용 및 정비 가능 구역 포함, 건물 하중 고려
54	설치 후 주변에 대한 경계 공간 필요
100	안전 확보
216	일반적으로, 옥상 구조물의 면적은 건설 면적이 1/8이어야 함.
6.6평	정비 등 인력 운용 시 공간 필요

2.3.2. 비주거용 건물에 천광을 설치하는 경우, 건물 생애주기(건물의 나이)는 최대 몇 년까지 가능하다고 생각하십니까?

비주거용 건물에 천광을 설치하는 경우, 건물 생애주기(건물의 나이)는 최대 몇 년까지 가능하다고 생각하십니까?

응답 31개

10년 미만 (6명)	오래된 건물은 하중고려 설계가 되어 있지 않을 것으로 판단. 건축물 옥상 무게 하중 고려, 최근 내진설계기준 적용 건물부터 가능할 것으로 판단.
10년 이상 ~ 20년 미만 (5명)	하중 및 기타 제반 고려, 천공 활용 환경변화에 대응 목적
20년 이상 (20명)	장기간 운용 가능한 건물 설치, 일반 주택 재건축 판단 기준은 30년, 관리 잘하면 오래감, 활용기간 고려 건축물의 골조에 따라 다를 듯 함. 장기적인 활용

2.3.3. 주거용 건물에 천광을 설치하는 경우, 건물 생애주기(건물의 나이)는 최대 몇 년까지 가능하다고 생각하십니까?

주거용 건물에 천광을 설치하는 경우, 건물 생애주기(건물의 나이)는 최대 몇 년까지 가능하다고 생각하십니까?

응답 30개

10년 미만 (6명)	최신식 건물이 하중 및 지진 고려 설계 및 건축 될 것으로 판단, 내진설계 기준 적용
10년 이상 ~ 20년 미만 (10명)	주거용 건물의 재건축 연한이 20년 내외, 건물 피로도 증가, 주거용 건물의 재건축 또는 리모델링 고려
20년 이상 (14명)	관리 잘하면 오래 감, 콘크리트 구조물 수명 고려, 안전

2.4. 건물 구조 및 하중 조건

2.4.1. 천광의 하중은 15t입니다. 이 물체를 옥상에 안전하게 설치할 수 있는 건물의 조건은 무엇이라고 생각하십니까? 예) 00층 이상, 00 구조 , \cdots

구조적 조건	 철근콘크리트 구조 / 철골철근 콘크리트 구조 선호 내진 설계 및 내력벽 구조 필요 하중을 버틸 수 있는 구조
층수 기준	 의견 다양: 10층 이상, 15층 이하, 20층 이상, 21층 이상, 층수 무관 등 일부는 5층 이상, 1~4층 가능(슬라브 구조인 경우) 등의 의견 존재
기타 고려 사항	 하중 분포: 면적당 하중과 지지 구조(기둥vs 슬래브)에 따라 달라짐 진동 고려: 공진 방지를 위한 설계 필요 전원 공급: 대량 전력 공급이 가능한 건물 필요

2.4.2. 천광 설치 시, 건물의 구조가 설치 안정성에 중요한 영향을 미친다고 생각하십니까? 그 이유는 무엇입니까?

구조 중요	 자중뿐만 아니라 운전하중도 고려 중량이 크므로 내진성이 높은 구조여야 함 기둥/보가 위치한 곳에 설치하는 것이 바람직 지진/외부 충격으로부터 방호 필요
군사적 측면	 적의 타격 목표가 될 가능성이 있어 안정성 확보 중요 건물이 일부 파괴되더라도 무기 운용이 가능해야 함
하중 및 설계 관련 고려사항	 건물 설계 시 발생 가능한 하중 고려 필요 기존 설계에 15톤 이상의 하중이 포함되지 않았을 수 있음 허용 하중의 2~3배 이내에서 장비 하중이 포함되는지 확인 필요

2.4.3. 천광 설치 시, 가장 적합한 건물 구조는 무엇이라고 생각하십니까?

천광 설치 시, 가장 적합한 건물 구조는 무엇이라고 생각하십니까? 응답 32개

- 철근 콘크리트(RC): 튼튼하고 오래가며 불
- 철골 콘크리트(SC): 조립식으로 지진에 강
- 철골-철근 콘크리트(SRC): 기둥을 작게 만 들 수 있고 지진/화재에 강함
- 프리캐스트 콘크리트(PC): 공장에서 만들어 빨리 짓고 환경친화적
- 일반 철골(Steel): 가볍고 넓게 지을 수 있지 만 녹슬기 쉬움

철근 콘크리트 (20명)	적에 대한 피해 고려, 적의 타격 목표가 될 수 있으므로, 튼튼하고 오래가며 불에 강해야 함. 내화구조에 가장 튼튼한 구조, 내구성 견고성 탁월, 건물 강도, 일체식 구조로 내진에 적합
철골 콘크리트(2명)	내진 반영
철골 철근 콘크리트(10명)	화재 발생 시 강한 건물이어야 함. 전반적인 강도와 내구성이 좋음. 무너지지 않을 장소여야 함, 건물 견고 필요
프리캐스트 콘크리트 (0명)	-
일반 철골 (0명)	-

2.4.4. 천광 설치 지점 선정 시, 내진 설계가 얼마나 중요하게 작용한다고 생각하십니까?

천광 설치 지점 선정 시, 내진 설계가 얼마나 중요하게 작용한다고 생각하십니까? 응답 32개

매우 중요함 (22명)	지진에 안전한 나라가 아님, 군용시설에 대한 안정성 담보 필수, 미구비 시 치명적, 고층/고중량으로 작은 진동에도 취약, 건물 붕괴 위험 대비
상당히 중요함 (5명)	무기체계의 견고성 고려, 고장나면 세금 낭비, 건물 강도
보통 (5명)	지진의 영향성이 크지 않을 듯, 지반만 견고할 시 효과 유지 가능(불필요한 예산낭비 예방)
덜 중요함 (0명)	-
전혀 중요하지 않음 (0명)	-

2.5. 군사적 요인

2.5.1. 아래 표에 적힌 시설 외에 추가적으로 서울 외곽 지역의 방어해야 할 주요 시설은 어디라고 생각하십니까? 예시) 방송국, 대피소

5회 언급	다중이용시설
3회 언급	정수장, 원자력발전소, 댐 및 수력발전소, 군사 중요시설, 방산시설
1회 언급	통신업체, 지하철 역사, 반도체 공장, 대형 종교시설, 학교, 대형 복합 시설(마트 등), 방송국, 공항, 상수도시설, 원자력 연구원, 헬기패드, 비행장 등

2.5.2. 서울 외곽 지역에서 무인기를 방어한다고 할 때, 어느 지역에서 방어하는 것이 효과적이라고 생각하십니까?

서울 외곽 지역에서 무인기를 방어한다고 할 때, 어느 지역에서 방어하는 것이 효과적이라고 생각하십니까? 응답 32개

(+) 답변에 대한 이유

А	적정세력의 위치와 최단거리 고려, 적 침투 예상 위협이 큰 지역, 주요 축선 고려
В	산악보다는 서부로 방향으로의 진입가능성 높음, 주요 침투 사례 참고
С	무인기의 경우 어디서든 공격가능, 사주방어필요
D	접근 용이, 북 무인기 예상 침투 경로, 지형적 특성
E	드론은 어디서든 접근이 가능
F	
G	
Н	

2.5.3. 천광 설치 시, 사거리 내에 고층 건물이 많으면 무인기 탐지에 방해가 된다고 생각하십니까?

네	29회
아니요	1회
이유	LOS(Line of Sight) 손실 우려, 유리창 반사 영향 가능성, 가시거리 확보 필요

2.6. 추가 의견

설치 위치 및 운영 방안	 도시 외곽 설치 군사적 요충지, 중요 건물 및 지역에 설치 대공 방어망과 연계 필요 주요 시설 및 야산에 설치 필요 서울뿐만 아니라 지방 주요 시설에도 설치 필요 개별 운용이 아닌 통합(set) 운용
설치 환경 및 기술적 고려 사항	 가장 높은 곳(옥상) 설치가 적절 옥상 설치 시 이동 방법 확인 필요 레이저 무기는 안개, 연무 등 기상 영향 고려 필요
기타	 전문가 토의 및 신뢰성 있는 의견 수렴 필요 전문가 초청 의견 교류 기회 마련 희망