МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСТИТЕТ «ЛЬВІВСЬКА ПОЛІТЕХНІКА»

Інститут комп'ютерних наук та інформаційних технологій Кафедра програмного забезпечення

3BIT

До лабораторної роботи №1

На тему: «Моделювання логічних елементів в середовищі Proteus. Синтез та моделювання простих логічних схем.»

3 дисципліни: «Архітектура комп'ютера»

Лектор: доц. кафедри ПЗ Крук О. Г. **Виконав:** ст. гр. ПЗ-22 Чаус О. М. **Прийняв:** доц. кафедри ПЗ Крук О. Г. « _____ » ____ 2022 р. ∑= _____:

Тема роботи: Моделювання логічних елементів в середовищі Proteus. Синтез та моделювання простих логічних схем.

Мета роботи: набути практичних навиків моделювання логічних елементів та схем в середовищі програми Proteus; закріпити вміння складати за таблицею істинності логічні функції в досконалій диз'юнктивній та кон'юктивній нормальній формі; опанувати синтез простих комбінаційних схем за логічними функціями.

Варіант 27

Теоретичні відомості

Proteus Design — пакет програм для автоматизованого проєктування електронних схем. Являє собою систему схемотехнічного моделювання, що базується на основі моделей електронних компонентів.

Виділяють три основних логічних елементи: НЕ (NOT), АБО (OR), І (AND).

1.	HE – логічне заперечення (у = \overline{x}). Позначення інвертор, NOT (Al	NSI): —
2.	I – множення(кон'юнкція) (у = x_1x_2). Позначення AND (ANSI):	\Rightarrow
3.	АБО – додавання(диз'юнкція)(у= $x_1 \vee x_2$). Позначення ОR (ANSI).	$\Rightarrow D$
	· · · · · · · · · · · · · · · · · · ·	

Також ϵ дві функції: Штрих Шеффера (**NAND**) та Стрілка Пірса (**NOR**).

- 4. І-НЕ таке ж, як і І, але результат інвертується (у = $\overline{x_1 x_2}$). Позначення **NAND**(ANSI):
- 5. AБО-HЕ заперечення диз'юнкції (у = $\overline{x_1 \vee x_2}$).

Позначення **NOR**(ANSI):

Хід роботи

Виконавши вказівки, описані в методичних матеріалах, я отримав таку схему.

Повне зображення схеми

Побудував графік **Invertory**, в якому зобразив сигнали з генераторів **G22_27_G1**, **G22_27_G2**, а також схем інвертора на елементах Пірса та Шеффера. Розрахував період $T=\frac{1}{f}=\frac{1}{142000}=0.00704$ с та задав кінцевий час моделювання $\mathbf{tk}=\mathbf{2T}=0.01408$. Ініціював моделювання і побудову графіка кривих.

Зображення графіка **Invertory**

Аналогічно побудував графік **Dyzjunktory**, на який вивів сигнали з генераторів **G22_27_G1**, **G22_27_G2**, з диз'юнктора **G22_27_E2**, зі схем диз'юнктора на елементах Пірса та Шеффера, з елемента Пірса і з елемента **XOR**

Зображення графіка **Dyzjunktory**

Аналогічно побудував графік **Konjunktory**, на який вивів сигнали з генераторів **G22_27_G1**, **G22_27_G2**, з кон'юнктора **G22_27_E3**, зі схем кон'юнктора на елементах Пірса та Шеффера, та з елемента Шеффера.

Зображення графіка **Konjunktory**

Зберіг проект на диск та створив новий з назвою **LR_1_b** Згідно з своїм варіантом для логічної функції, що задана таблицею істинності, записав функції $F_1(x_2, x_1, x_0)$ і $F_2(x_2, x_1, x_0)$ у формі ДДНФ та ДКНФ відовідно.

x_2	x_1	x_0	$F(x_1, x_2, x_3)$
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

 $F_{1}(ДДН\Phi) = \overline{x_{2}x_{1}x_{0}} \vee \overline{x_{2}}x_{1}\overline{x_{0}} \vee \overline{x_{2}}x_{1}x_{0} \vee x_{2}\overline{x_{1}x_{0}} \vee x_{2}x_{1}x_{0}$ $F_{2}(ДКН\Phi) = (x_{2} \vee x_{1} \vee \overline{x_{0}})(\overline{x_{2}} \vee x_{1} \vee \overline{x_{0}})(\overline{x_{2}} \vee \overline{x_{1}} \vee x_{0})$

Спроектував цифровий графік **Syntez**, на якому вивів сигнали з обох генераторів та виходів з обох систем, задавши кінцевий час моделювання $\mathbf{tk} = \mathbf{2T} = 0.01408$.

Зізставивши з графіком задані значення $F(x_1, x_2, x_3)$ можна переконатись, що схема працює коректно.

Висновок: під час виконання лабораторної роботи ознаймився з програмним середовищем **Proteus** та навчився використовувати елементарні логічні елементи, такі як **NOT**, **OR**, **AND**, **NOR**, **NAND**, **XOR**. Також навчився використовувати вимірювачі струму і створювати графіки з симуляцією роботи схеми. Повторив вивчений раніше матеріал, що стосується таблиць істинності, ДДНФ та ДКНФ та навчився за допомогою цих форм синтезувати власні схеми.