

Elementy elektroniczne

dr inż. Piotr Ptak

Politechnika Rzeszowska Wydział Elektrotechniki i Informatyki Katedra Podstaw Elektroniki

A-303, pptak@prz.edu.pl, tel. 178651113 konsultacje: pn. – cz. 11-12

Plan wykładu

Układy polaryzacji tranzystorów bipolarnych

- Wybór punktu pracy tranzystora
- Układy polaryzacji tranzystora
- Układ wzmacniający z tranzystorem
- Modele nieliniowe tranzystora

Elementy elektroniczne I

Punkt pracy tranzystora

Punkt pracy tranzystora:

- ustalone wartości prądów i napięć stałych zbiór takich wartości jednoznacznie określa zachowanie się elementu,
- decyduje o statycznym stanie elementu nieliniowego, od którego zależą jego właściwości dynamiczne,
- optymalny jego dobór i zapewnienie stałości w czasie jest podstawowym wstępnym etapem projektowania układów elektronicznych.

Elementy elektroniczne I – układy polaryzacji tranzystorów bipolarnych

^

Punkt pracy tranzystora – wzmacniacz WE

$$U_{CC} - I_B R_B - U_{BE} = 0$$

$$I_B = \frac{U_{CC} - U_{BE}}{R_B}$$

$$I_C = \beta \cdot I_B$$

Prosta pracy: $U_{CC} - I_C R_C - U_{CE} = 0$

$$U_{CE} = U_{CC} - I_C R_C$$

Punkt pracy tranzystora – wzmacniacz WE

Wybór punktu pracy – wpływ na właściwości wzmacniające wzmacniacza

Elementy elektroniczne I – układy polaryzacji tranzystorów bipolarnych

5

Punkt pracy tranzystora – wzmacniacz WE

Wybór punktu pracy – maksymalna dynamika zmian napięcia wyjściowego

Elementy elektroniczne I – układy polaryzacji tranzystorów bipolarnych

Punkt pracy tranzystora – wzmacniacz WE

Wybór punktu pracy – wejście wzmacniacza w zakres nasycenia

Elementy elektroniczne I – układy polaryzacji tranzystorów bipolarnych

7

Punkt pracy tranzystora – wzmacniacz WE

Wybór punktu pracy – wejście wzmacniacza w zakres odcięcia

Elementy elektroniczne I – układy polaryzacji tranzystorów bipolarnych

Punkt pracy tranzystora – wzmacniacz WE

Wybór punktu pracy – przesterowanie wzmacniacza

Elementy elektroniczne I – układy polaryzacji tranzystorów bipolarnych

a

Współczynniki stabilizacji I_C

Na zmiany punktu pracy tranzystora ($I_{\it C}$, $U_{\it CE}$) mają wpływ:

- · zmiany temperatury,
- rozrzut parametrów poszczególnych egzemplarzy,

które uwidaczniają się poprzez zmiany parametrów takich jak: β , U_{BE} .

$$U_{BE} \sim T; \quad \frac{\Delta U_{BE}}{\Delta T} \approx 2.3 \text{ mV/°C}$$

$$\frac{\Delta h_{21E}}{\Delta T} \sim \frac{1}{^{\circ}\text{C}}\Big|_{0 \div 50^{\circ}\text{C}}$$

 $I_{\it C} = f(\beta, U_{\it BE})$ – współczynniki stabilizacji prądu kolektora:

$$S_{\beta} = \frac{\partial I_{C}}{\partial \beta} \bigg|_{U_{R}}$$

$$S_U = \frac{\partial I_C}{\partial U_{BE}}$$

Im mniejsza wartość tych współczynników, tym lepsza stałość prądu kolektora.

Polaryzacja stałym prądem bazy

$$U_{CC} - I_B R_B - U_{BE} = 0$$

$$I_B = \frac{U_{CC} - U_{BE}}{R_B}$$

$$I_C = \beta \cdot \frac{U_{CC} - U_{BE}}{R_B}$$

$$S_{\beta} = \frac{U_{CC} - U_{BE}}{R_B} = 0.3 \text{m}$$

$$S_{CC} = I_{CC} - I_{CC} -$$

$$U_{CC} - I_B R_B - U_{BE} = 0$$

$$I_B = \frac{U_{CC} - U_{BE}}{R_B}$$

$$S_{\beta} = \frac{U_{CC} - U_{BE}}{R_{P}} = 0.3n$$

$$I_C = \beta \cdot \frac{U_{CC} - U_{BE}}{R_B}$$

$$S_U = \frac{-\beta}{R_B} = -2n$$

 $U_{CC} = 15$ V, $I_{C} = 30$ mA, $\beta = 100,$ $I_B = 0.3 \text{mA},$ $U_{CE} = 5 \text{V},$ $R_C = 333 \Omega,$ $R_p = 47.7 \text{k}\Omega$

Właściwości punktu pracy:

- $U_{RF} \approx 0.7 \text{ V}$ tranzystor musi przewodzić,
- ullet ustalony stałym prądem bazy w dużym stopniu niezależny od zmian U_{RE} $(\Delta U_{BE} << U_{CC} \rightarrow S_{\beta} \approx const)$
- ullet stały prąd bazy jest wymuszony przez R_{B} oraz U_{CC} ,
- mocno zależy od β , które może mieć duży rozrzut oraz dość mocno zależy od T,
- ullet duże wartości $R_{\it B}$ duży szum na wejściu.

Elementy elektroniczne I – układy polaryzacji tranzystorów bipolarnych

11

Polaryzacja w pętli ujemnego napięciowego sprzężenia zwrotnego (ze sprzężeniem kolektorowym)

$$U_{CC} - I_B (1 + \beta) R_C - I_B R_B - U_{BE} = 0$$

$$I_R = I_B + I_C$$

$$S_{\beta} = \frac{(U_{CC} - U_{BE})(R_C + R_B)}{((1 + \beta)R_C + R_B)^2} = 90\mu$$

$$I_C = \beta \cdot \frac{U_{CC} - U_{BE}}{(1+\beta)R_C + R_B}$$

$$S_U = \frac{-\beta}{(1+\beta)R_C + R_B} = -2m$$

 $U_{CC} = 15$ V, $I_{C} = 30$ mA, $\beta = 100, I_B = 0.3 \text{mA},$ $U_{CE} = 5 \text{V}, R_C = 333 \Omega,$ $R_B = 14,3$ k Ω

Wpływ sprzężenia zwrotnego:

- ullet działa stabilizująco na $U_{C\!E}$ (zapobiega nasyceniu tranzystora): $\begin{array}{l} \overline{U_{CC}} = I_R R_C + U_{CE} \\ U_{CE} = I_B R_B + U_{BE} \end{array} \Rightarrow \begin{array}{l} I_C \Lambda \Rightarrow U_{RC} \Lambda \Rightarrow U_{CE} \lambda \Rightarrow I_B \lambda \Rightarrow I_C \lambda \\ I_C \lambda \Rightarrow U_{RC} \lambda \Rightarrow U_{CE} \Lambda \Rightarrow I_B \Lambda \Rightarrow I_C \Lambda \end{array}$ – zmiana I_C jest mniejsza niż gdyby u.s.z. nie było,
- ullet dla poprawy Q korzystnie jest, aby R_B =min, a R_C jak największe (ale zmniejsza to wzmocnienie wzmacniacza – potrzebny kompromis),
- C_R eliminuje s.z. dla prądu zmiennego.

Polaryzacja stałym prądem emitera (ze sprzężeniem emiterowym ujemnym)

$$I_{E} = \frac{U_{EE} - U_{BE}}{R_{E}} \approx \frac{U_{EE}}{R_{E}} \approx const \qquad (\text{dla } U_{EE} >> U_{BE})$$

$$I_{C} = \frac{\beta}{\beta + 1} \cdot \frac{U_{EE} - U_{BE}}{R_{E}}$$

$$U_{CE} = U_{CC} + U_{EE} - I_{C}(R_{C} + R_{E})$$

$$I_{C} = 30\text{mA}, \ \beta = 100, \ I_{E} = 0.3\text{mA}, \ U_{CE} = 5\text{V}, \ R_{E} = 481\Omega, R_{C} = 357\Omega$$

Stabilizacja Q tym lepsza, im większe $R_{E^{\star}}$

$$S_{\beta} = \frac{U_{EE} - U_{BE}}{R_E (\beta + 1)^2} = 3\mu$$

 $S_U = \frac{-\beta}{(\beta + 1)R_E} = -2m$

Wersja alternatywna:

- dodatkowe źródło napięcia U_{BB} i R_{B} ,
- dodatkowe źródło napięcia U_{BB} i R_{B} , ale bez U_{EE} .

Elementy elektroniczne I – układy polaryzacji tranzystorów bipolarnych

13

Potencjometryczne zasilanie bazy ze sprzężeniem emiterowym

Wpływ sprzężenia zwrotnego:

- stabilizuje zmiany I_E : $I_E \lor \to U_{RE} \lor \to U_{BE} \land \to I_B \land \to I_E \land \quad -I_E \text{ zmaleje mniej niż bez s.z.,}$
- $C_{\!\scriptscriptstyle E}$ eliminuje s.z. dla prądu zmiennego,
- cztery rezystory dwa z nich można wybrać (w pewnym zakresie) optymalizacja np. stałości Q lub wzmocnienia kompromis.

Potencjometryczne zasilanie bazy ze sprzężeniem emiterowym

$$\begin{split} U_{BB} &= I_{B}R_{B} + U_{BE} + I_{E}R_{E} \\ I_{C} &= \beta \cdot \frac{U_{BB} - U_{BE}}{R_{B} + (\beta + 1)R_{E}} \\ U_{CE} &= U_{CC} - I_{C}(R_{C} + R_{E}) \end{split} \qquad S_{\beta} = \frac{I_{C}(R_{B} + R_{E})}{\beta(R_{E}(\beta + 1) + R_{B})} \\ S_{U} &= \frac{-\beta}{R_{E}(\beta + 1) + R_{B}} \end{split}$$

Elementy elektroniczne I – układy polaryzacji tranzystorów bipolarnych

15

Układ wzmacniający z tranzystorem – WE

$$y = a \cdot x + b \implies U_{WY} = -\beta \cdot \frac{R_C}{R_B} U_{WE} + \beta \cdot \frac{R_C}{R_B} U_{BE} + U_{CC}$$

W stanie zatkania? W stanie nasycenia?

Układ wzmacniający z tranzystorem – WE

Elementy elektroniczne I – układy polaryzacji tranzystorów bipolarnych

Układ wzmacniający z tranzystorem – WE

Właściwości wzmacniające

Wzmacniacz w układzie WE

Elementy elektroniczne I – układy polaryzacji tranzystorów bipolarnych

19

Wzmacniacz w układzie WB

Wzmacniacz w układzie WC

Elementy elektroniczne I – układy polaryzacji tranzystorów bipolarnych

21

Sposoby analizy pracy tr. bipolarnego

Praca tranzystora:

- nieliniowa:
 - statyczna,
- (i) duże sygnały
- dynamiczna,
- (ii) duże s
- liniowa (małe sygnały m. i d. cz.). (iii)
- (i) Praca nieliniowa statyczna związki między stałymi napięciami i prądami na końcówkach tranzystora.
- (ii) Procesy przejściowe przy przełączaniu tranzystora z **Z** do **N** (włączanie) i odwrotnie (wyłączanie).
- (iii) Tranzystor jest spolaryzowany w określonym punkcie pracy i sterowany małym sygnałem prądu zmiennego (o takiej amplitudzie, że tranzystor zachowuje się jak element liniowy).

Modele nieliniowe statyczne

Tranzystor – dwa złącza połączone szeregowo przeciwstawnie (połączenie dwóch diod), np. n-p i p-n w tranzystorze **npn**:

$$I_D = I_S \left[\exp(U_D/U_T) - 1 \right]$$

- Nie uwzględnia wzajemnego oddziaływania obu złącz (wstrzykiwania nośników ze złącza E-B do złącza B-C) – tylko stan zatkania.

strzałka wskazuje kierunek przewodzenia

– $lpha_{\!\scriptscriptstyle N} I_{\!\scriptscriptstyle DE}$ – uwzględnia wstrzykiwanie (w st. aktywnym)

 $lpha_N$ – współczynnik wzmocnienia normalnego

Elementy elektroniczne I – modele tranzystora bipolarnego

23

Modele nieliniowe statyczne

Model Ebersa-Molla (wariant iniekcyjny – zmienne niezależne: prądy wstrzykiwane przez E i C)

- $lpha_{\!I}I_{\!D\!C}$ kolektor wstrzykuje nośniki do bazy (w st. nasycenia i inwersyjnym)

$$lpha_{I}$$
 – współczynnik wzmocnienia inwersyjnego $I_{DE}=I_{ES}ig[\expig(U_{BE}/U_{T}ig)-1ig]$

$$I_{DC} = I_{CS} \left[\exp(U_{BC}/U_T) - 1 \right]$$

- $-I_{ES}$ prąd wsteczny nasycenia złącza emiterowego przy zawartym złączu kolektorowym,
- $-I_{CS}$ prąd wsteczny nasycenia złącza kolektorowego przy zawartym złączu emiterowym.

$$I_E = I_{DE} - \alpha_I I_{DC}$$

$$I_C = \alpha_N I_{DE} - I_{DC}$$

Tranzystor **nie** działa symetrycznie: $\beta_N >> \beta_I$.

Modele nieliniowe statyczne

Model Ebersa-Molla (wariant transportowy – zmienne niezależne: prądy zbierane przez E i C)

$$I_{E} = I_{N} / \alpha_{N} - I_{I}$$

$$I_{C} = I_{N} - I_{I} / \alpha_{I}$$

$$I_{N} = \alpha_{N} I_{ES} \left[\exp(U_{BE} / U_{T}) - 1 \right]$$

$$I_{I} = \alpha_{I} I_{CS} \left[\exp(U_{BC} / U_{T}) - 1 \right]$$

W modelu Ebersa-Molla wszystkie zależności prądowo-napięciowe można wyznaczyć znając tylko cztery parametry: I_{ES} , I_{CS} , α_N , α_I , które są łatwe do zmierzenia.

 $lpha_N I_{ES} = lpha_I I_{CS}$ – liczbę parametrów można zmniejszyć do trzech. Równanie to nie jest słuszne jeśli uwzględnić zależność $lpha_N$ $lpha_I = f(I_E, I_C)$.

Elementy elektroniczne I – modele tranzystora bipolarnego

25

Modele nieliniowe statyczne

Model Ebersa-Molla – poprawa dokładności modelu

Możliwości poprawy dokładności modelu poprzez uwzględnienie:

- zależności $\alpha_N = f(I_E, U_{BC}), \alpha_I = f(I_C, U_{BE}),$
- η_{E} , η_{C} współczynników nieidealności (emisji) złącz,
- $-r_{bb}$, r_{ee} , r_{cc} rezystancji szeregowych (doprowadzeń i obszarów obojętnych; poza warstwami zaporowymi).

Elementy elektroniczne I – modele tranzystora bipolarnego

Model nieliniowy dynamiczny

Model Ebersa-Molla (wariant transportowy)

Pojemności reprezentują zjawiska ładowania (rozładowania) obu warstw zaporowych i obszarów neutralnych (głównie obszaru bazy).

- C_{je} , C_{jc} pojemności złączowe E i C warstwa zaporowa zawiera ładunek przestrzenny \mathcal{Q} zachowuje się jak kondensator nieliniowy $\mathcal{Q}(U)$,
- C_{de} , C_{dc} pojemności dyfuzyjne E i C wynikają ze zmian ładunku nośników mniejszościowych nadmiarowych pod wpływem napięcia. W st. Z nie występują.

$$i_{E} = I_{N} / \alpha_{N} - I_{I} + (C_{je} + C_{de}) \frac{dU_{BE}}{dt}$$

$$i_{C} = I_{N} - I_{I} / \alpha_{I} + (C_{jc} + C_{dc}) \frac{dU_{BC}}{dt}$$

 $U_{BE} \quad \begin{cases} \mathbf{T}^{B} \dot{U}_{BC} \\ \mathbf{B} \end{cases}$ $C_{je} = C_{je0} \left(1 - \frac{U_{BE}}{\varphi_{E}} \right)^{-m_{E}}$ $C_{jc} = C_{je0} \left(1 - \frac{U_{BC}}{\varphi_{C}} \right)^{-m_{C}}$ $C_{d} = \frac{\Delta Q}{\Delta U}$

Elementy elektroniczne I – modele tranzystora bipolarnego

27

Model małosygnałowy

Tranzystor jest elementem nieliniowym

Elementy elektroniczne I – modele tranzystora bipolarnego

Model małosygnałowy

Układ wzmacniający z tranzystorem – WE

Elementy elektroniczne I – modele tranzystora bipolarnego

20

Model małosygnałowy

Układ wzmacniający z tranzystorem – WE

Elementy elektroniczne I – modele tranzystora bipolarnego

Model małosygnałowy

Model z elementów

liniowych

Elementy elektroniczne I – modele tranzystora bipolarnego

 $\bigvee U_{BE}$

31

Model małosygnałowy

Układ wzmacniający z tranzystorem – WE składowa zmienna (małosygnałowa) składowa stała $i_C = I_C + i_c$ $I_B + i_b$ $I_B + i_b$ $I_B + i_b$ $I_B + i_b$ Dla sygnałów zmiennych o małej amplitudzie tranzystor zastępuje się czwórnikiem liniowym. $U_{BE} + u_{be}$ Punkt pracy w zakresie aktywnym

Elementy elektroniczne I – modele tranzystora bipolarnego