CZ

Fall, 2014

Definitions

 $\begin{pmatrix} Var(y_1) & Cov(y_1, y_2) & \cdots & Cov(y_1, y_n) \\ Cov(y_2, y_1) & Var(y_2) & \cdots & Cov(y_2, y_n) \\ \vdots & \vdots & \ddots & \vdots \\ & \vdots & \ddots & \vdots \\ & Cov(y_n, y_1) & Cov(y_n, y_2) & \cdots & Var(y_n) \end{pmatrix}$

$$Var(\mathbf{y}) = (\sigma_{ij})_{n \times n}$$

$$= E[(\mathbf{y} - E(\mathbf{y}))(\mathbf{y} - E(\mathbf{y}))^T]$$

$$= E[(y_i - \mu_i)(y_j - \mu_j)]_{n \times n}$$

 y_i independent of $y_j \Rightarrow Cov(y_i, y_j) = 0$

• $\mathbf{y} = (y_1, \ldots, y_n)^T$: $n \times 1$

• $E(y_i) = \mu_i$

• $Cov(y_i, y_j) = \sigma_{ij}$

• $E(y) = (E(y_1), ..., E(y_n))^T = (\mu_1, ..., \mu_n)^T$: $n \times 1$

Basic Properties

 $oldsymbol{A} = (a_{ij})_{m \times n}, oldsymbol{b} = (b_1, \dots, b_m)^T, oldsymbol{c} = (c_1, \dots, c_n)^T$ i $E(oldsymbol{A}_{m \times n} oldsymbol{y}_{n \times 1} + oldsymbol{b}) = oldsymbol{A}E(oldsymbol{y}) + oldsymbol{b}$

ii $Var(\mathbf{y}_{n\times 1} + \mathbf{c}) = Var(\mathbf{y})$

iii $Var(\boldsymbol{A}_{m \times n} \boldsymbol{y}_{n \times 1}) = \left(\boldsymbol{A} Var(\boldsymbol{y}) \boldsymbol{A}^T\right)_{? \times ?}$

iv $Var(\boldsymbol{A}_{m \times n} \boldsymbol{y}_{n \times 1} + \boldsymbol{b}) = ?$

Derivatives

i
$$f = f(\mathbf{y}) = f(y_1, \dots, y_n)$$

$$\frac{d}{d\mathbf{y}} = \left(\frac{d}{dy_1}f, \dots, \frac{d}{dy_n}f\right)$$
ii $f = \mathbf{c}^T \mathbf{y} = \sum_{c_i y_i} c_i y_i$ then $\frac{d}{d\mathbf{y}} f = \mathbf{c}$
 $\mathbf{f} = \mathbf{A}\mathbf{y}$ then $\frac{df}{d\mathbf{y}} = \mathbf{A}^T$

ii
$$f = c^T y = \sum_{c_i y_i}$$
 then $\frac{d}{dy} f = c$
 $f = Ay$ then $\frac{df}{dy} = A^T$

iii
$$f = \mathbf{y}^T \mathbf{A} \mathbf{y}$$
, where $\mathbf{A} = (a_{ij})_{m \times m}$ and $a_{ij} = a_{ji}$ $\frac{df}{d\mathbf{y}} = 2\mathbf{A} \mathbf{y}$ Verify (ii) and (iii).

Some Useful Results

v Eigenvalues & Eigenvectors of a square matrix

A non-zero vector ${m x}_{m imes 1}$ is called an eigenvector of ${m A}_{m imes m}$ if there exists a real number λ such that ${m A}{m x}=\lambda{m x}$, and we call λ the eigenvalue (with respect to x)

Note: If x is an eigenvector of A, so is cx for any real number $c \neq 0$

Some Useful Results

- $tr(\boldsymbol{B}_{m \times n} \boldsymbol{C}_{n \times m}) = tr(\boldsymbol{C}_{n \times m} \boldsymbol{B}_{m \times n})$ i **Trace**: $tr(\pmb{A}_{m \times m}) = \sum a_{ii}$
- ii Rank of a Matrix: rank(A) = # of linearly independent columns/rows
- iii Vectors $\mathbf{y}_1,\dots,\mathbf{y}_m$ are linearly independent if and only if $c_1 \mathbf{y}_1 + \cdots + c_m \mathbf{y}_m = \mathbf{0} \Rightarrow c_1 = \cdots = c_m = 0$
 - iv Orthogonal Vectors and Matrices
- ightharpoonup Two vectors \mathbf{x} and \mathbf{y} are orthogonal if $\mathbf{x}^T\mathbf{y}=0$
- $A_{m \times m}$ is an orthogonal matrix if $A^T A = AA^T = I$ and $A^T = A^{-1}$

Some Useful Results

vi Decomposition of a symmetric matrix

 $oldsymbol{A}_{m imes m}$ is symmetric if $oldsymbol{A}^T = oldsymbol{A}$

If ${m A}_{m imes m}$ is symmetric and real, then all its eigenvalues $\lambda_1, \dots, \lambda_m$ are real, and there exits an orthogonal matrix ${m P}$ such that ${m A} = {m P}{m A}{m P}^T$, where ${f A}$ is diagonal with eigenvalues of ${f A}$ on the diagonal

$$oldsymbol{\lambda} = \left(egin{array}{cccc} \lambda_1 & 0 & 0 \ 0 & \ddots & 0 \ 0 & 0 & \lambda_m \end{array}
ight)$$

 $m{P} = \left[m{x}_1, \dots, m{x}_m
ight]$, where $m{x}_i$ is the eigenvalue corresponding to λ_i ;

Some Useful Results

Note: For a symmetric matrix **A**, if \mathbf{x}_1 corresponds to λ_1 , \mathbf{x}_2 corresponds to λ_2 , and $\lambda_1 \neq \lambda_2$, then \mathbf{x}_1 and \mathbf{x}_2 are orthogonal

vii Idempotent Matrix

 $oldsymbol{A}_{m imes m}$ is idempotent if $oldsymbol{A}^2 = oldsymbol{A}$

Note: If \boldsymbol{A} is idempotent, then all its eigenvalues are either 1 or 0

Multivariate Normal Distributions

- i We also write $\mathbf{y} \sim MVN(\boldsymbol{\mu}, \Sigma)$.
- ii Marginal normality: $y_i \sim N(\mu_i, \sigma_{ii})$.
- iii y_1, \ldots, y_n are independent if and only if Σ is diagonal.
 - iv If $\mathbf{y} \sim MVN(\mu, \Sigma)$ and $\mathbf{z}_{m \times 1} = \mathbf{A}_{m \times n} \mathbf{y}_{n \times 1}$, then $\mathbf{z} \sim MVN(\mathbf{A}\mu, \mathbf{A}\Sigma\mathbf{A}^T)$.
 - v If $\mathbf{y} \sim MVN(\mathbf{0}, \sigma^2 \mathbf{I}_{n \times n})$, then $\frac{1}{\sigma^2} \mathbf{y}^T \mathbf{y} \sim \chi_{(n)}^2$.
- vi If $m{y} \sim MVN(\mu, \Sigma)$, then $m{Ay}$ and $m{By}$ are independent if and only if $m{A} \Sigma m{B}^T = m{0}$.

Multivariate Normal Distributions

Why normal? Central limit theorem + nice properties.

The random vector $m{y}=(y_1,\dots,y_n)^T$ follows a multivariate normal distribution with pdf

$$f(\mathbf{y}) = \left(\frac{1}{2\pi}\right)^{n/2} |\Sigma|^{-1/2} \exp\{-\frac{1}{2}(\mathbf{y} - \boldsymbol{\mu})^T \Sigma^{-1}(\mathbf{y} - \boldsymbol{\mu})\},$$

where $\mu = E(oldsymbol{y})_{n imes 1}$ and $\Sigma = Var(oldsymbol{y}) = (\sigma_{ij})_{n imes n}.$

CZ U Waterloo Fall, 2U14 10