College University: Principal Component Analysis

Table of Contents

Contents

Problem 2: Education PCA	3
Summary and Introduction	. 3
2.1 Perform Exploratory Data Analysis [both univariate and multivariate analysis to be	
performed]. What insight do you draw from the EDA?	. 5
2.2 Is scaling necessary for PCA in this case? Give justification and perform scaling	18
2.3 Comment on the comparison between the covariance and the correlation matrices from	
this data. [on scaled data]	. 19
2.4 Check the dataset for outliers before and after scaling. What insight do you derive here?	20
2.5 Extract the eigenvalues and eigenvectors. [Using Sklearn PCA Print Both]	. 21
2.6 Perform PCA and export the data of the Principal Component (eigenvectors) into a data	
frame with the original features	26
2.7 Write down the explicit form of the first PC (in terms of the eigenvectors. Use values wit	h
two places of decimals only). [hint: write the linear equation of PC in terms of eigenvectors a	and
corresponding features]	. 27
2.8 Consider the cumulative values of the eigenvalues. How does it help you to decide on the	e
optimum number of principal components? What do the eigenvectors indicate?	. 27
2.9 Explain the business implication of using the Principal Component Analysis for this case	
study. How may PCs help in the further analysis? [Hint: Write Interpretations of the Principa	l
Components Obtained]	. 28

Education Principal Component Analysis

The dataset contains information on various colleges. You are expected to do a Principal Component Analysis for this case study according to the instructions given

Basic Data Exploration

Sample of the dataset:

	Names	Apps	Accept	Enroll	Top10perc	Top25perc	F.Undergrad	P.Undergrad	Outstate	Room.Board	Books	Personal	PhD	Terminal	S.F.Ratio	perc.a
C	Abilene Christian University	1660	1232	721	23	52	2885	537	7440	3300	450	2200	70	78	18.1	
1	Adelphi University	2186	1924	512	16	29	2683	1227	12280	6450	750	1500	29	30	12.2	
2	Adrian College	1428	1097	336	22	50	1036	99	11250	3750	400	1165	53	66	12.9	
3	Agnes Scott College	417	349	137	60	89	510	63	12960	5450	450	875	92	97	7.7	
4	Alaska Pacific University	193	146	55	16	44	249	869	7560	4120	800	1500	76	72	11.9	

Figure 1. Education_Dataset_Sample

Let us check the basic info of the data frame.

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 777 entries, 0 to 776
Data columns (total 18 columns):
# Column Non-Null Count Dtype
                 777 non-null
   Names
                                     object
0
   Apps 777 non-null int64
Accept 777 non-null int64
Enroll 777 non-null int64
 1
 2
 3
   Top10perc 777 non-null int64
    Top25perc 777 non-null int64
   F.Undergrad 777 non-null int64
 6
    P.Undergrad 777 non-null int64
 7
 8
    Outstate
                  777 non-null int64
     Room.Board 777 non-null int64
10 Books 777 non-null int64
11 Personal 777 non-null int64
12 PhD 777 non-null int64
13 Terminal 777 non-null int64
14 S.F.Ratio 777 non-null float64
 15 perc.alumni 777 non-null int64
 16 Expend 777 non-null
                                     int64
 17 Grad.Rate 777 non-null
                                     int64
dtypes: float64(1), int64(16), object(1)
memory usage: 109.4+ KB
```

Figure 2. Education_Dataset_Info

	count	mean	std	min	25%	50%	75%	max
Apps	777.0	3001.638353	3870.201484	81.0	776.0	1558.0	3624.0	48094.0
Accept	777.0	2018.804376	2451.113971	72.0	604.0	1110.0	2424.0	26330.0
Enroll	777.0	779.972973	929.176190	35.0	242.0	434.0	902.0	6392.0
Top10perc	777.0	27.558559	17.640364	1.0	15.0	23.0	35.0	96.0
Top25perc	777.0	55.796654	19.804778	9.0	41.0	54.0	69.0	100.0
F.Undergrad	777.0	3699.907336	4850.420531	139.0	992.0	1707.0	4005.0	31643.0
P.Undergrad	777.0	855.298584	1522.431887	1.0	95.0	353.0	967.0	21836.0
Outstate	777.0	10440.669241	4023.016484	2340.0	7320.0	9990.0	12925.0	21700.0
Room.Board	777.0	4357.526384	1096.696416	1780.0	3597.0	4200.0	5050.0	8124.0
Books	777.0	549.380952	165.105360	96.0	470.0	500.0	600.0	2340.0
Personal	777.0	1340.642214	677.071454	250.0	850.0	1200.0	1700.0	6800.0
PhD	777.0	72.660232	16.328155	8.0	62.0	75.0	85.0	103.0
Terminal	777.0	79.702703	14.722359	24.0	71.0	82.0	92.0	100.0
S.F.Ratio	777.0	14.089704	3.958349	2.5	11.5	13.6	16.5	39.8
perc.alumni	777.0	22.743887	12.391801	0.0	13.0	21.0	31.0	64.0
Expend	777.0	9660.171171	5221.768440	3186.0	6751.0	8377.0	10830.0	56233.0
Grad.Rate	777.0	65.463320	17.177710	10.0	53.0	65.0	78.0	118.0

Figure 3. Education_Dataset_Statistical Summary

Data Cleanup

The column names will be checked for special characters ('.', '^', ',', '-') and make it uniform (either all in lowercase or uppercase)

Figure 4. Education_Dataset_Column Names

2.1 Perform Exploratory Data Analysis [both univariate and multivariate analysis to be performed]. What insight do you draw from the EDA?

Univariate Analysis

This analysis will display the statistical description of the numeric variable to view 5 point summary, histogram or distplot to view the distribution and the box plot to view outliers if any

Apps

Description of Apps					
count	777.000000				
mean	3001.638353				
std	3870.201484				
min	81.000000				
25%	776.000000				
50%	1558.000000				
75%	3624.000000				
max	48094.000000				
Names	Anno dtung. floated Distribution of Anno				

Name: Apps, dtype: float64 Distribution of Apps

Figure 5. Apps_EDA

Accept

Description of Accept			
count	777.000000		
mean	2018.804376		
std	2451.113971		
min	72.000000		
25%	604.000000		
50%	1110.000000		
75%	2424.000000		

Name: Accept, dtype: float64 Distribution of Accept

26330.000000

Figure 6. Accept_EDA

Enroll

Description of Enroll

count	777.000000	
mean	779.972973	
std	929.176190	
min	35.000000	
25%	242.000000	
50%	434.000000	
75%	902.000000	
max	6392.000000	

Name: Enroll, dtype: float64 Distribution of Enroll

valle. Elliott, desper riodeo4 biscribación or Elliott

Figure 7. Enroll_EDA

• Top10perc

Description of Top10perc

count	777.000000	
mean	27.558559	
std	17.640364	
min	1.000000	
25%	15.000000	
50%	23.000000	
75%	35.000000	
max	96.000000	
		63

Name: Top10perc, dtype: float64 Distribution of Top10perc

Figure 8. Top10perc_EDA

• Top25perc

Description of Top25perc

count	777.0000	90				
mean	55.7966	54				
std	19.8047	78				
min	9.00000	90				
25%	41.00000	90				
50%	54.00000	90				
75%	69.00000	90				
max	100.00000	90				
Namo :	Ton25nonc	dtvno.	float64	Distribution	of Ton25r	one

Name: Top25perc, dtype: float64 Distribution of Top25perc

Figure 9. Top25perc_EDA

• FUndergrad

Description of FUndergrad

count	777.000000
mean	3699.907336
std	4850.420531
min	139.000000
25%	992.000000
50%	1707.000000
75%	4005.000000
max	31643.000000
Mama	Fundanged dtune, floated Distribution of Fundanged

Name: FUndergrad, dtype: float64 Distribution of FUndergrad

Figure 10. FUndergrad_EDA

PUndergrad

Description of PUndergrad

```
count
         777.000000
mean
          855.298584
std
         1522.431887
           1.000000
min
25%
           95.000000
50%
          353.000000
75%
          967.000000
        21836.000000
```

Name: PUndergrad, dtype: float64 Distribution of PUndergrad

Figure 11. PUndergrad_EDA

Outstate

Description of Outstate

count	777.000000			
mean	10440.669241			
std	4023.016484			
min	2340.000000			
25%	7320.000000			
50%	9990.000000			
75%	12925.000000			
max	21700.000000			
Namo	Outstate dtype.	f100+64	Distribution	of Outstate

Name: Outstate, dtype: float64 Distribution of Outstate

Figure 12. Outstate_EDA

RoomBoard

Description of RoomBoard

count	777.000000					
mean	4357.526384					
std	1096.696416					
min	1780.000000					
25%	3597.000000					
50%	4200.000000					
75%	5050.000000					
max	8124.000000					
Namo :	RoomRoand dtyne:	float64	Distribution	of	RoomRo	ar

Name: RoomBoard, dtype: float64 Distribution of RoomBoard

BoxPlot of RoomBoard RoomBoard RoomBoard

Figure 13. RoomBoard_EDA

Books

Description of Books

count	777.000000
mean	549.380952
std	165.105360
min	96.000000
25%	470.000000
50%	500.000000
75%	600.000000
max	2340.000000

Name: Books, dtype: float64 Distribution of Books

${\tt BoxPlot\ of\ Books}$

Figure 14. Books_EDA

Personal

Description of Personal

count	777.000000			
mean	1340.642214			
std	677.071454			
min	250.000000			
25%	850.000000			
50%	1200.000000			
75%	1700.000000			
max	6800.000000			
Name:	Personal, dtype:	float64	Distribution	of Personal

11

Figure 15. Personal_EDA

PhD

Description of PhD

count	777.000000	
mean	72.660232	
std	16.328155	
min	8.000000	
25%	62.000000	
50%	75.000000	
75%	85.000000	
max	103.000000	

Name: PhD, dtype: float64 Distribution of PhD

Figure 16. PhD_EDA

Terminal

Description of Terminal

count	777.000000					
mean	79.702703					
std	14.722359					
min	24.000000					
25%	71.000000					
50%	82.000000					
75%	92.000000					
max	100.000000					

Name: Terminal, dtype: float64 Distribution of Terminal

Figure 17. Terminal_EDA

SFRatio

Description of SFRatio

count	777.000000	
mean	14.089704	
std	3.958349	
min	2.500000	
25%	11.500000	
50%	13.600000	
75%	16.500000	
max	39.800000	

Name: SFRatio, dtype: float64 Distribution of SFRatio

BoxPlot of SFRatio

Figure 18. SFRatio_EDA

• Percalumni

Description of Percalumni

coun	t 777.000000				
mean	22.743887				
std	12.391801				
min	0.000000				
25%	13.000000				
50%	21.000000				
75%	31.000000				
max	64.000000				
		 	 	-	

Name: Percalumni, dtype: float64 Distribution of Percalumni

BoxPlot of Percalumni

Figure 19. Percalumni_EDA

Expend

Description of Expend

```
777.000000
count
         9660.171171
mean
std
          5221.768440
min
         3186.000000
25%
         6751.000000
50%
         8377.000000
75%
        10830.000000
max
        56233.000000
```

Name: Expend, dtype: float64 Distribution of Expend

Figure 20. Expend_EDA

GradRate

Description of GradRate

count	777.00000
mean	65.46332
std	17.17771
min	10.00000
25%	53.00000
50%	65.00000
75%	78.00000
max	118.00000

Name: GradRate, dtype: float64 Distribution of GradRate

BoxPlot of GradRate

Figure 21. GradRate_EDA

Multivariate Analysis

Figure 22. Education_Dataset_Pairplot

Correlation Heatmap

Figure 23. Education_Dataset_Correlation_1

Insights: --

- The dataset has 18 columns and 777 rows
- There are no Null values as indicated by non-null values
- 16 columns are of the integer data type, 1 each of object and float data type
- There are no duplicate rows in the dataset
- A lot of the features are right skewed (Apps, Accept, Enroll, FUndergrad, PUndergrad, Expend)
- A few features are left skewed (PhD, Terminal)
- A few features seem normally distributed (Top25perc, Outstate, RoomBoard, GradRate)
- All features apart from Top25perc have Outliers as demonstrated by the box plots
- There are a few columns with inconsistent name and need to be amended; F.Undergrad; P.Undergrad; Room.Board; S.F.Ratio have '.', perc.alumni starts with lowercase unlike others
- We have plotted scatter diagrams for all the numerical columns in the dataset. A scatter plot is a visual representation of the degree of correlation between any two columns
- We've also plotted a heatmap to display the numerical values of the degree of correlation between any two columns

2.2 Is scaling necessary for PCA in this case? Give justification and perform scaling

- Often the variables of the data set are of different scales i.e., one variable is in millions and other in only 100. For e.g., in our data set Applications is having values in thousands and PhD, Terminal, GradRate in just two digits. Since the data in these variables are of different scales, it is tough to compare these variables
- Feature scaling (also known as data normalization) is the method used to standardize the range of features of data. Since, the range of values of data may vary widely, it becomes a necessary step in data preprocessing
- In this method, we convert variables with different scales of measurements into a single scale and will be doing this only for the numerical variables
- StandardScaler normalizes the data using the formula (x-mean)/standard deviation
- We can either use StandardScaler for each and every feature or apply the z-score (both methods will give us the same result)
- Below is the dataset after applying the z-scores

	Apps	Accept	Enroll	Top10perc	Top25perc	FUndergrad	PUndergrad	Outstate	RoomBoard	Books	Personal	PhD	Terminal
0	-0.346882	-0.321205	-0.063509	-0.258583	-0.191827	-0.168116	-0.209207	-0.746356	-0.964905	-0.602312	1.270045	-0.163028	-0.115729
1	-0.210884	-0.038703	-0.288584	-0.655656	-1.353911	-0.209788	0.244307	0.457496	1.909208	1.215880	0.235515	-2.675646	-3.378176
2	-0.406866	-0.376318	-0.478121	-0.315307	-0.292878	-0.549565	-0.497090	0.201305	-0.554317	-0.905344	-0.259582	-1.204845	-0.931341
3	-0.668261	-0.681682	-0.692427	1.840231	1.677612	-0.658079	-0.520752	0.626633	0.996791	-0.602312	-0.688173	1.185206	1.175657
4	-0.726176	-0.764555	-0.780735	-0.655656	-0.596031	-0.711924	0.009005	-0.716508	-0.216723	1.518912	0.235515	0.204672	-0.523535
4													

Figure 24. Education_Dataset_Scaled

- 2.3 Comment on the comparison between the covariance and the correlation matrices from this data. [on scaled data]
 - Covariance is an indicator of the extent to which 2 random variables are dependent on each other. A higher number denotes higher dependency.
 - Correlation is a statistical measure that indicates how strongly two variables are related.
 The value of covariance lies in the range of -∞ and +∞
 - As we can see from the below 2 charts, both are same

Figure 25. Education_Dataset_ Correlation_2

Covariance matrix for the scaled data

Figure 26. Education_Dataset_ Covariance Matrix

2.4 Check the dataset for outliers before and after scaling. What insight do you derive here?

Figure 27. Education_Dataset_Outliers before Scaling

Figure 28. Education Dataset Outliers after Scaling

- We can see that the Outliers have reduced in magnitude after scaling
- This is due to applying the z-score
- Once the data is scaled the values are in the range of -3 to +3
- As we haven't treated the dataset for Outliers, we don't see this

2.5 Extract the eigenvalues and eigenvectors. [Using Sklearn PCA Print Both]

```
Eigen Values
```

%s [5.45052162 4.48360686 1.17466761 1.00820573 0.93423123 0.84849117 0.6057878 0.58787222 0.53061262 0.4043029 0.02302787 0.03672545 0.31344588 0.08802464 0.1439785 0.16779415 0.22061096]

Figure 29. Education_Dataset_Eigen Values

Figure 30. Education_Dataset_Scree Plot

 A scree plot always displays the eigenvalues in a downward curve, ordering the eigenvalues from largest to smallest

```
Eigen Vectors
%s [[-2.48765602e-01 3.31598227e-01 6.30921033e-02 -2.81310530e-01
   5.74140964e-03 1.62374420e-02 4.24863486e-02 1.03090398e-01
  9.02270802e-02 -5.25098025e-02 3.58970400e-01 -4.59139498e-01
  4.30462074e-02 -1.33405806e-01 8.06328039e-02 -5.95830975e-01
  2.40709086e-02]
 [-2.07601502e-01 3.72116750e-01 1.01249056e-01 -2.67817346e-01
   5.57860920e-02 -7.53468452e-03 1.29497196e-02 5.62709623e-02
  1.77864814e-01 -4.11400844e-02 -5.43427250e-01 5.18568789e-01
  -5.84055850e-02 1.45497511e-01 3.34674281e-02 -2.92642398e-01
  -1.45102446e-01]
 [-1.76303592e-01 4.03724252e-01 8.29855709e-02 -1.61826771e-01
  -5.56936353e-02 4.25579803e-02 2.76928937e-02 -5.86623552e-02
  1.28560713e-01 -3.44879147e-02 6.09651110e-01 4.04318439e-01
  -6.93988831e-02 -2.95896092e-02 -8.56967180e-02 4.44638207e-01
  1.11431545e-02
 [-3.54273947e-01 -8.24118211e-02 -3.50555339e-02 5.15472524e-02
  -3.95434345e-01 5.26927980e-02 1.61332069e-01 1.22678028e-01
  -3.41099863e-01 -6.40257785e-02 -1.44986329e-01 1.48738723e-01
  -8.10481404e-03 -6.97722522e-01 -1.07828189e-01 -1.02303616e-03
  3.85543001e-02]
 [-3.44001279e-01 -4.47786551e-02 2.41479376e-02 1.09766541e-01
  -4.26533594e-01 -3.30915896e-02 1.18485556e-01 1.02491967e-01
  -4.03711989e-01 -1.45492289e-02 8.03478445e-02 -5.18683400e-02
  -2.73128469e-01 6.17274818e-01 1.51742110e-01 -2.18838802e-02
  -8.93515563e-021
 [-1.54640962e-01 4.17673774e-01 6.13929764e-02 -1.00412335e-01
  -4.34543659e-02 4.34542349e-02 2.50763629e-02 -7.88896442e-02
  5.94419181e-02 -2.08471834e-02 -4.14705279e-01 -5.60363054e-01
 -8.11578181e-02 -9.91640992e-03 -5.63728817e-02 5.23622267e-01
  5.61767721e-02
 [-2.64425045e-02 3.15087830e-01 -1.39681716e-01 1.58558487e-01
  3.02385408e-01 1.91198583e-01 -6.10423460e-02 -5.70783816e-01
  -5.60672902e-01 2.23105808e-01 9.01788964e-03 5.27313042e-02
  1.00693324e-01 -2.09515982e-02 1.92857500e-02 -1.25997650e-01
 -6.35360730e-02]
```

```
[-2.94736419e-01 -2.49643522e-01 -4.65988731e-02 -1.31291364e-01
 2.22532003e-01 3.00003910e-02 -1.08528966e-01 -9.84599754e-03
 4.57332880e-03 -1.86675363e-01 5.08995918e-02 -1.01594830e-01
 1.43220673e-01 -3.83544794e-02 -3.40115407e-02 1.41856014e-01
 -8.23443779e-01]
[-2.49030449e-01 -1.37808883e-01 -1.48967389e-01 -1.84995991e-01
 5.60919470e-01 -1.62755446e-01 -2.09744235e-01 2.21453442e-01
 -2.75022548e-01 -2.98324237e-01 1.14639620e-03 2.59293381e-02
 -3.59321731e-01 -3.40197083e-03 -5.84289756e-02 6.97485854e-02
 3.54559731e-01]
[-6.47575181e-02 5.63418434e-02 -6.77411649e-01 -8.70892205e-02
 -1.27288825e-01 -6.41054950e-01 1.49692034e-01 -2.13293009e-01
 1.33663353e-01 8.20292186e-02 7.72631963e-04 -2.88282896e-03
 3.19400370e-02 9.43887925e-03 -6.68494643e-02 -1.14379958e-02
 -2.81593679e-02]
4.25285386e-02 2.19929218e-01 -4.99721120e-01 2.30710568e-01
 -2.22311021e-01 3.31398003e-01 -6.33790064e-01 2.32660840e-01
 9.44688900e-02 -1.36027616e-01 -1.11433396e-03 1.28904022e-02
 -1.85784733e-02 3.09001353e-03 2.75286207e-02 -3.94547417e-02
 -3.92640266e-02]
[-3.18312875e-01 5.83113174e-02 1.27028371e-01 5.34724832e-01
 1.40166326e-01 -9.12555212e-02 1.09641298e-03 7.70400002e-02
 1.85181525e-01 1.23452200e-01 1.38133366e-02 -2.98075465e-02
 4.03723253e-02 1.12055599e-01 -6.91126145e-01 -1.27696382e-01
 2.32224316e-02]
[-3.17056016e-01 4.64294477e-02 6.60375454e-02 5.19443019e-01
  2.04719730e-01 -1.54927646e-01 2.84770105e-02 1.21613297e-02
 2.54938198e-01 8.85784627e-02 6.20932749e-03 2.70759809e-02
 -5.89734026e-02 -1.58909651e-01 6.71008607e-01 5.83134662e-02
 1.64850420e-02]
[ 1.76957895e-01 2.46665277e-01 2.89848401e-01 1.61189487e-01
 -7.93882496e-02 -4.87045875e-01 -2.19259358e-01 8.36048735e-02
 -2.74544380e-01 -4.72045249e-01 -2.22215182e-03 2.12476294e-02
 4.45000727e-01 2.08991284e-02 4.13740967e-02 1.77152700e-02
 -1.10262122e-02]
```

```
[-2.05082369e-01 -2.46595274e-01 1.46989274e-01 -1.73142230e-02 -2.16297411e-01 4.73400144e-02 -2.43321156e-01 -6.78523654e-01 2.55334907e-01 -4.22999706e-01 -1.91869743e-02 -3.33406243e-03 -1.30727978e-01 8.41789410e-03 -2.71542091e-02 -1.04088088e-01 1.82660654e-01]
[-3.18908750e-01 -1.31689865e-01 -2.26743985e-01 -7.92734946e-02 7.59581203e-02 2.98118619e-01 2.26584481e-01 5.41593771e-02 4.91388809e-02 -1.32286331e-01 -3.53098218e-02 4.38803230e-02 6.92088870e-01 2.27742017e-01 7.31225166e-02 9.37464497e-02 3.25982295e-01]
[-2.52315654e-01 -1.69240532e-01 2.08064649e-01 -2.69129066e-01 -1.09267913e-01 -2.16163313e-01 -5.59943937e-01 5.33553891e-03 -4.19043052e-02 5.90271067e-01 -1.30710024e-02 5.00844705e-03 2.19839000e-01 3.39433604e-03 3.64767385e-02 6.91969778e-02 1.22106697e-01]]
```

Figure 31. Education_Dataset_Eigen Vectors

2.6 Perform PCA and export the data of the Principal Component (eigenvectors) into a data frame with the original features

	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	PC10	PC11	PC12	PC13
Apps	0.248766	0.331598	-0.063092	0.281311	0.005741	-0.016237	-0.042486	-0.103090	-0.090227	0.052510	0.043046	0.024071	0.595831
Accept	0.207602	0.372117	-0.101249	0.267817	0.055786	0.007535	-0.012950	-0.056271	-0.177865	0.041140	-0.058406	-0.145102	0.292642
Enroll	0.176304	0.403724	-0.082986	0.161827	-0.055694	-0.042558	-0.027693	0.058662	-0.128561	0.034488	-0.069399	0.011143	-0.444638
Top10perc	0.354274	-0.082412	0.035056	-0.051547	-0.395434	-0.052693	-0.161332	-0.122678	0.341100	0.064026	-0.008105	0.038554	0.001023
Top25perc	0.344001	-0.044779	-0.024148	-0.109767	-0.426534	0.033092	-0.118486	-0.102492	0.403712	0.014549	-0.273128	-0.089352	0.021884
FUndergrad	0.154641	0.417674	-0.061393	0.100412	-0.043454	-0.043454	-0.025076	0.078890	-0.059442	0.020847	-0.081158	0.056177	-0.523622
PUndergrad	0.026443	0.315088	0.139682	-0.158558	0.302385	-0.191199	0.061042	0.570784	0.560673	-0.223106	0.100693	-0.063536	0.125998
Outstate	0.294736	-0.249644	0.046599	0.131291	0.222532	-0.030000	0.108529	0.009846	-0.004573	0.186675	0.143221	-0.823444	-0.141856
RoomBoard	0.249030	-0.137809	0.148967	0.184996	0.560919	0.162755	0.209744	-0.221453	0.275023	0.298324	-0.359322	0.354560	-0.069749
Books	0.064758	0.056342	0.677412	0.087089	-0.127289	0.641055	-0.149692	0.213293	-0.133663	-0.082029	0.031940	-0.028159	0.011438
Personal	-0.042529	0.219929	0.499721	-0.230711	-0.222311	-0.331398	0.633790	-0.232661	-0.094469	0.136028	-0.018578	-0.039264	0.039455
PhD	0.318313	0.058311	-0.127028	-0.534725	0.140166	0.091256	-0.001096	-0.077040	-0.185182	-0.123452	0.040372	0.023222	0.127696
Terminal	0.317056	0.046429	-0.066038	-0.519443	0.204720	0.154928	-0.028477	-0.012161	-0.254938	-0.088578	-0.058973	0.016485	-0.058313
SFRatio	-0.176958	0.246665	-0.289848	-0.161189	-0.079388	0.487046	0.219259	-0.083605	0.274544	0.472045	0.445001	-0.011026	-0.017715
Percalumni	0.205082	-0.246595	-0.146989	0.017314	-0.216297	-0.047340	0.243321	0.678524	-0.255335	0.423000	-0.130728	0.182661	0.104088
Expend	0.318909	-0.131690	0.226744	0.079273	0.075958	-0.298119	-0.226584	-0.054159	-0.049139	0.132286	0.692089	0.325982	-0.093746
GradRate	0.252316	-0.169241	-0.208065	0.269129	-0.109268	0.216163	0.559944	-0.005336	0.041904	-0.590271	0.219839	0.122107	-0.069197

PC14	PC15	PC16	PC17
0.080633	0.133406	0.459139	0.358970
0.033467	-0.145498	-0.518569	-0.543427
-0.085697	0.029590	-0.404318	0.609651
-0.107828	0.697723	-0.148739	-0.144986
0.151742	-0.617275	0.051868	0.080348
-0.056373	0.009916	0.560363	-0.414705
0.019286	0.020952	-0.052731	0.009018
-0.034012	0.038354	0.101595	0.050900
-0.058429	0.003402	-0.025929	0.001146
-0.066849	-0.009439	0.002883	0.000773
0.027529	-0.003090	-0.012890	-0.001114
-0.691126	-0.112056	0.029808	0.013813
0.671009	0.158910	-0.027076	0.006209
0.041374	-0.020899	-0.021248	-0.002222
-0.027154	-0.008418	0.003334	-0.019187
0.073123	-0.227742	-0.043880	-0.035310
0.036477	-0.003394	-0.005008	-0.013071

Figure 32. Education_Dataset_PCA

2.7 Write down the explicit form of the first PC (in terms of the eigenvectors. Use values with two places of decimals only). [hint: write the linear equation of PC in terms of eigenvectors and corresponding features]

```
0.249 * Apps 0.208 * Accept 0.176 * Enroll 0.354 * Top10perc 0.344 * Top25perc 0.155 * FUndergrad 0.026 * PUndergrad 0.2 95 * Outstate 0.249 * RoomBoard 0.065 * Books -0.043 * Personal 0.318 * PhD 0.317 * Terminal -0.177 * SFRatio 0.205 * Percalumni 0.319 * Expend 0.252 * GradRate
```

Figure 33. Education_Dataset_PCA_Linear Equation

2.8 Consider the cumulative values of the eigenvalues. How does it help you to decide on the optimum number of principal components? What do the eigenvectors indicate?

```
Cumulative Variance Explained [ 32.0206282 58.36084263 65.26175919 71.18474841 76.67315352 81.65785448 85.21672597 88.67034731 91.78758099 94.16277251 96.00419883 97.30024023 98.28599436 99.13183669 99.64896227 99.86471628 100. ]
```


Figure 34. Education_Dataset_Cumulative Explained Variance

- PCA is a method that:
 - Measures how each variable is associated with one another using a Covariance matrix
 - Understands the directions of the spread of our data using Eigenvectors
 - Brings out the relative importance of these directions using Eigenvalues

- Eigenvalues are coefficients applied to eigenvectors that give the vectors their length or magnitude
- The Cumulative values of the eigen values explain how much of the variance is explained by each component
- As we can see from the above table and chart, the first 7 components explain 85.22% of the variance
- Hence, although we have 17 features, we only need 7 of them to explain the variance in the dataset without losing too much information

2.9 Explain the business implication of using the Principal Component Analysis for this case study. How may PCs help in the further analysis? [Hint: Write Interpretations of the Principal Components Obtained]

PCA Summary:--

- PCA forms the basis of multivariate data analysis
- Principal Component Analysis (PCA) is a dimensionality reduction technique, which is used for identification of a smaller number of uncorrelated variables known as Principal Components from a larger set of data
- PCA is important as it not only helps in cleaning up the data, but also in reducing the number of features used to observe trends, clusters, outliers and draw conslusions from a dataset
- It uncovers the relationships between observations and variables, and among the variables
- The column names are all different; some have '.' in them and some are in lowercase; getting them in a uniform format is a good start to analysing the data
- Once the data clean-up is done, we create another dataframe with only the numeric columns (float and integer data type) as columns with text don't really help
- However Categorical data which are repetitive in nature can be used; e.g. Gender, Blood type, Country, Education
- With this new dataframe we check for any duplicate records, null values in any of the columns and treat it for Outliers
- We now scale the data so all columns are in a uniform format and easily comparable
- Now, we can get the eigen values and eigen vectors, chart the Scree plot; Cumulative explained variance and individual explained variance vs Principal Components
- As depicted by the eigenvalues, 7 out of the 17 components explain 85.22% of the variance and we'll only need these 7 features to observe trends and patterns

Business Implications:--

- The first 3 columns 'No. of applications', 'No. of students accepted', 'No. of students enrolled' is a good place to start
 - o 67% of the applicants are accepted into the colleges
 - o 26% of the applicants and 39% of the accepted students are new, which is a good sign
 - Thereby Accept(0.94) and Enroll(0.85) are highly correlated with Apps

- The business should look at ways to increase the number of new applicants by offerring more scholarships, providing testimonials and case studies, placement history and opportunities are good measures
- Enroll, Top10perc and Top25perc are inter-related as the latter two are part of the new students enrolled; one can drop the latter 2 or all 3 columns before proceeding with scaling the data
- There seem to be 1 part-time student for every 4 full-time graduate student, which is reasonable
- The 'Outstate' is another column that can be removed from our analysis for 2 reasons
 - The number is way higher than the applications received suggesting that this value is for the overall students in a college rather than the new applicants
 - o This data is unrelated to our analysis which focusses more on new applicants
- The next 3 columns, RoomBoard, Books and Personal are vital to our research as these are important considerations for a student before taking up a course
 - The colleges should help students by providing various jobs within the campus, give recommendation letters, ensure food is available at reasonable prices
- The next 2 columns 'PhD' and 'Terminal' are again inter-related as PhD is the highest achievable degree in most academic fields; either of the 2 columns may be dropped in this case before proceeding with scaling the data
 - 73% of the faculty have a PhD and 80% have a terminal degree, which bodes really well for the colleges as these are high numbers
- The Student/faculty ratio is again a good criteria to evaluate a college from the students perspective
 - 14 students for every professor seems to be the average, and 75% of the values are below 17 students
 - Both are reasonable ratios, however there is scope for improvement here to get this closer to 10
- The percalumni, the percentage of alumni who donate is good at 23%; however the colleges could do more to increase this average above the 30% mark
- The Instructional expenditure per student, Expend is a measure of the public investment that a country devotes annually, on average, to each student's education
 - The average of 9,660 is really good and indicates it's in the best interests of the country to spend on educating it's people
- The Graduation rate at 65%, although good, can be improved upon by the colleges
 - A more in-depth research needs to be conducted on the reasons for students to not graduate
 - The colleges can set-up counselling sessions for students to help manage their time better, have doubt clearing sessions from seniors and professors and assign mentors who can guide the students to do well in their assignments