浙江大学 20<u>19</u> - 20<u>20</u> 学年<u>春夏</u>学期 《概率论与数理统计》期末考试试卷

课程号: _061B9090, 开课学院: _数学科学学院, 任课教师:

考试试卷: A卷√、B卷(请在选定项上打√)

1444	式卷拆3	开或撕页	1 如发生	主此情况	责任自负		_作业编号:	
题序	-	=	Ξ	Д	五	六	总分	
得分								
评卷人								
. 填空题(一盆中有 5 ·	每小格 3 个球,其	3 分,共 3 【中 3 个组	36分) L球,2个	白球,采	用不放回扣	抽样取3	γ, χ²_{0 σ5}(3) = 7个球, 则至少	
. 填空题(每小格 3 个球,其	3 分,共 3 【中 3 个组	36分) L球,2个	白球,采	用不放回扣	抽样取3	个球,则至少	
. 填空题(一盒中有 5 · 球的概率为 设 (X, Y)~1	每小格: 个球,身 V(1,1,1	3 分,共: t中 3 个组	36分) L球,2个 ,第2次 则P(X-	·白球,采 取到红球 -1 <1)=	用不放回扣的概率为。	±样取 3 _, Var	个球,则至少 · (<i>X - Y</i>) =	取到 2
. 填空题 (一盒中有 5 · 球的概率为 设 (X, Y)~1 设 X 与 Y均	每小格 3 个球, 身 W(1, 1, 1, 服从 0-1	3 分,共: t中 3 个约 , 4, 0.5),	36分) L球,2个 ,第2次 则 P(X-	·白球,采取到红球 -1 <1)=	用不放回抗 的概率为	±样取 3 _, Var	个球,则至少 ·	取到 2
. 填空题 (** 一盒中有 5 ·* 球的概率为 设 (X, Y)~1 设 X 与 Y 均 X=0, Y=1)=	每小格 3 个球, 身 W(1, 1, 1, 服从 0-1	3 分,共: 中 3 个 4 , 4, 0.5), 1 分布, —; (2)	36分) L球,2个 ,第2次 则P(X- P(X=1)=3 若X与1	· 白球,采 取到红球 - 1 < 1) = 3/4, P(X= Y 的协方割	用不放回扣 的概率为	生样取 3 _, Var 1/4. (1) 则 P(X=	个球,则至少 ——· (<i>X - Y</i>) = ·若 <i>X</i> 与 <i>Y</i> 独立	取到2
. 填空题 (** 一盒中有 5 ·* 球的概率为 设 (X, Y) ~ /* 设 X 与 Y 均 X=0, Y=1)= 设 X 与 Y 独	每小格: 个球,身 W(1,1,1,1 服从 0-1	3 分,共: 集中 3 个组 ,4,0.5), 1 分布, : (2) 以参数为	36分) L球,2个 ,第2次 则 P(\ X- P(X=1)=: 若X与1 11的指数	中白球,采取到红球 一1 < 1) = 3/4, P(X= Y的协方差 分布, Y 用	用不放回扣 的概率为	±样取 3 _, Var 1/4. (1) 则 P(X=	个球,则至少 · (<i>X - Y</i>) = 若 <i>X</i> 与 <i>Y</i> 独立 0, <i>Y</i> =1)=	取到 2 Z,则)=

二. (10 分)设某地区居民患有某种疾病的概率为 0.001,用于疾病检测的方法存在误判,设患病者检测结果呈阳性的概率为 0.95,未患病者检测为阳性的概率为 0.002。若在该地区随机选一人进行检测,结果呈阳性,求他的确患病的概率;若对他独立进行两次检测,且假设两次检测都处于相同的状态,如果结果都是阳性,求他患病的概率。(保留 3 位小数)

三. (14 分)设(X, Y)的联合密度函数 $f(x, y) = \begin{cases} \frac{3y}{2}, 0 < y < 2x < 2, \\ 0,$ 其他.

(2) 分别求X,Y的边际密度函数 $f_X(x)$, $f_Y(y)$: (3) 求 $P(Y > \frac{1}{2} | X = \frac{1}{2})$: (4) 判断X = Y是正相关,负相关,还是不相关? 说明理由.

著水平α=0.05下是否拒绝原假设并说明理由。答:

四. (15 分)设随机变量 X 的概率密度函数 $f(x) = \begin{cases} x^2, 0 < x < 1, \\ \frac{2}{3}, 1 < x < 2, \forall X 独立重复观测 n 次, \\ 0, 其他. \end{cases}$

结果记为 $X_1,...,X_n$. (1) 求X的分布函数F(x); (2) 若 $Y = \min\{X,1\}$, 求Y的分布函数 $F_Y(y)$; (3) 当 $n \to +\infty$ 时, $\frac{1}{n} \sum_{i=1}^n X_i$ 依概率收敛到何值? (4) 若n=450,Z 表示 450 次观 测中 $\{X_i < 1\}$ 出现的次数,求P(z > 160)的近似值.

五. (10 分)为了解某县粮食产量情况,随机调查该县 64 个乡当年的粮食产量,得到样本均值为 1120 吨,样本方差 108900,设乡粮食产量(单位,吨) $X\sim N(\mu,\sigma^2)$, μ,σ^2 未知. (1)在显著水平 0.05 下检验假设 $H_{\rm G}:\mu\leq 1000$, $H_{\rm I}:\mu>1000$,并计算相应的 p-值; (2)求 σ 的置信度为 90%的双侧置信区间. (保留 1 位小数)

六. (15 分) 设总体 X 的分布律为 P(X=0)=1-p, P(X=1)=p/2, P(X=2)=p/3, P(X=3)=p/6, 其中 $p \in (0, 1)$ 是未知参数, $X_1, ..., X_n$ 是总体 X 的简单随机样本,设其中 "0"、"1"、"2"、"3" 出现的次数分别为 n_0 , n_1 , n_2 , n_3 . (1)求 p 的矩估计量 \hat{p}_1 ,并判断其是否为 p 的无偏估计,说明理由; (2)求 p 的极大似然估计量 \hat{p}_2 ,并判断其是否为 p 的无偏估计,说明理由; (3)分别计算这两个估计量的方差,并比较哪个更小.

浙江大学 20<u>19</u> - 20<u>20</u> 学年<u>春夏</u>学期 《概率论与数理统计》期末考试试卷

课程号: _(<u>61B9090</u> ,开课学院: <u>数学科学学院</u> ,任课教师:	_
考试试卷:	A 卷 √、B 卷 (请在选定项上打 √)	
考试形式:	闭√、开卷(请在选定项上打√),允许带 <u>无存储功能计算器</u> 入场	
水)。	2020 年 9 日 1 日 孝ば时间。 120 分钟	

诚信考试, 沉着应考, 杜绝违纪。

请注意:本试卷共六大题,四页,两大张。 请勿将试卷拆开或撕页!如发生此情况责任自负!

TXIAI _			7		_ 4 35.		_11-34-34
题序	-	Ξ	Ξ	四	五	六	总分
得分							
评卷人							

备用数据: $\Phi(1) = 0.8413$, $\Phi(2) = 0.9772$, $t_{0.05}(63) = 1.669$, $t_{0.025}(63) = 1.998$, $t_{0.0025}(63) = 2.909$, $\chi_{0.95}^2(63) = 45.7$, $\chi_{0.05}^2(63) = 82.5$, $\chi_{0.05}^2(2) = 5.99$, $\chi_{0.05}^2(3) = 7.82$. 一. 填空题 (每小格 3 分,共 36 分)

2. $\Re(X,Y) \sim N(1,1,1,4,0.5)$, $\Re(X-1) < 1 = 0.6826$, Var(X-Y) = 3

3. 设 X 与 Y 均服从 0-1 分布, P(X=1)=3/4, P(X=1, Y=1)=1/4. (1)若 X 与 Y 独立,则 P(X=0, Y=1)= 1/2 . (2) 若 X 与 Y 的协方差为-1/16,则 P(X=0, Y=1)= 1/4

4. 设X与Y独立,X 服从参数为1的指数分布,Y 服从(0,1)上均匀分布,则 $E(X^2Y^2) = 2/3$.

5. 设总体 X 服从参数为 λ 的泊松分布, X_1, X_2 是 X 的简单随机样本, \overline{X}, S^2 分别是样本均

值和样本方差. 则 $P(X_1=1|\overline{X}=1)=$ $\underline{\sqrt{2}}$. $E(\overline{X}^2)=\lambda^2+\lambda/2$. $E(S^2)=\underline{\lambda}$

二. (10 分)设某地区居民患有某种疾病的概率为 0.001, 用于疾病检测的方法存在误判,设患病者检测结果呈阳性的概率为 0.95, 未患病者检测为阳性的概率为 0.002。若在该地区随机选一人进行检测,结果呈阳性,求他的确患病的概率;若对他独立进行两次检测,且假设两次检测都处于相同的状态,如果结果都是阳性,求他患病的概率。(保留 3 位小数)

沒A舊床患病, B1、B2分别意床第1、2次检测即性. 则 P(A)=0,001, P(B1A)=P(B21A)=0.95, P(B1A)=P(B21A)=0.002.

(1)
$$P(B_1) = P(A)P(B_1|A) + P(\overline{A})P(B_1|\overline{A}) = 0.002948$$

 $P(A|B_1) = \frac{P(A)P(B_1|A)}{P(B_1)} = 0.322$

(2)
$$P(B_1B_2) = P(A)P(B_1B_2|A) + P(\overline{A})P(B_1B_2|A)$$

 $= 0.001 \times 0.95^2 + 0.999 \times 0.002^2 = 0.000906496$
 $P(A|B_1B_2) = \frac{P(A)P(B_1B_2|A)}{P(B_1B_2)} \approx 0.996$

三. (14 分) 设(X, Y)的联合密度函数
$$f(x,y) = \begin{cases} \frac{3y}{2}, & 0 < y < 2x < 2, \\ 0, & 其他. \end{cases}$$
 (1)求 $P(\max(X, Y) < 1)$;

(2) 分别求 X, Y 的边际密度函数 $f_X(x)$, $f_Y(y)$: (3) 求 $P(Y > \frac{1}{2} | X = \frac{1}{2})$: (4) 判断 X = Y 是正相关,负相关,还是不相关?说明理由.

(1)
$$P(\max(x,Y) < 1) = P(x < 1, Y < 1)$$

$$= \int_{0}^{1} dy \int_{\frac{1}{2}}^{1} \frac{3y}{2} dx = \frac{1}{2}$$
(2) $f_{x}(x) = \int_{0}^{2x} \frac{3y}{2} dy = 3x^{2}, 0 < x < 1$

$$f_{y}(y) = \int_{0}^{2x} \frac{3y}{2} dx = \frac{3y}{2} - \frac{3y^{2}}{4}, 0 < y < 1$$

$$f_{y}(y) = \int_{0}^{2x} \frac{3y}{2} dx = \frac{3y}{2} - \frac{3y^{2}}{4}, 0 < y < 1$$

$$f_{y}(y) = \int_{0}^{2x} \frac{3y}{2} dx = \frac{3y}{2} - \frac{3y^{2}}{4}, 0 < y < 1$$

$$f_{y}(y) = \int_{0}^{2x} \frac{3y}{2} dx = \frac{3y}{2} - \frac{3y^{2}}{4}, 0 < y < 1$$

$$f_{y}(y) = \int_{0}^{2x} \frac{3y}{2} dx = \frac{3y}{2} - \frac{3y^{2}}{4}, 0 < y < 1$$

$$f_{y}(y) = \int_{0}^{2x} \frac{3y}{2} dx = \frac{3y}{2} - \frac{3y^{2}}{4}, 0 < y < 1$$

$$f_{y}(y) = \int_{0}^{2x} \frac{3y}{2} dx = \frac{3y}{2} - \frac{3y^{2}}{4}, 0 < y < 1$$

$$f_{y}(y) = \int_{0}^{2x} \frac{3y}{2} dx = \frac{3y}{2} - \frac{3y^{2}}{4}, 0 < y < 1$$

$$f_{y}(y) = \int_{0}^{2x} \frac{3y}{2} dx = \frac{3y}{2} - \frac{3y^{2}}{4}, 0 < y < 1$$

$$f_{y}(y) = \int_{0}^{2x} \frac{3y}{2} dx = \frac{3y}{2} - \frac{3y^{2}}{4}, 0 < y < 1$$

$$f_{y}(y) = \int_{0}^{2x} \frac{3y}{2} dx = \frac{3y}{2} - \frac{3y^{2}}{4}, 0 < y < 1$$

$$f_{y}(y) = \int_{0}^{2x} \frac{3y}{2} dx = \frac{3y}{2} - \frac{3y^{2}}{4}, 0 < y < 1$$

$$f_{y}(y) = \int_{0}^{2x} \frac{3y}{2} dx = \frac{3y}{2} - \frac{3y^{2}}{4}, 0 < y < 1$$

$$f_{y}(y) = \int_{0}^{2x} \frac{3y}{2} dx = \frac{3y}{2} - \frac{3y^{2}}{4}, 0 < y < 1$$

$$f_{y}(y) = \int_{0}^{2x} \frac{3y}{2} dx = \frac{3y}{2} - \frac{3y^{2}}{4}, 0 < y < 1$$

$$f_{y}(y) = \int_{0}^{2x} \frac{3y}{2} dx = \frac{3y}{2} - \frac{3y^{2}}{4}, 0 < y < 1$$

$$f_{y}(y) = \int_{0}^{2x} \frac{3y}{2} dx = \frac{3y}{2} - \frac{3y^{2}}{4}, 0 < y < 1$$

$$f_{y}(y) = \int_{0}^{2x} \frac{3y}{2} dx = \frac{3y}{2} - \frac{3y}{4}, 0 < y < 1$$

$$f_{y}(y) = \int_{0}^{2x} \frac{3y}{2} dx = \frac{3y}{2} - \frac{3y}{4}, 0 < y < 1$$

$$f_{y}(y) = \int_{0}^{2x} \frac{3y}{2} dx = \frac{3y}{2} - \frac{3y}{4}, 0 < y < 1$$

$$f_{y}(y) = \int_{0}^{2x} \frac{3y}{2} dx = \frac{3y}{2} - \frac{3y}{4}, 0 < y < 1$$

$$f_{y}(y) = \int_{0}^{2x} \frac{3y}{2} dx = \frac{3y}{2} - \frac{3y}{4}, 0 < y < 1$$

$$f_{y}(y) = \int_{0}^{2x} \frac{3y}{2} dx = \frac{3y}{2} - \frac{3y}{4}, 0 < y < 1$$

$$f_{y}(y) = \int_{0}^{2x} \frac{3y}{2} dx = \frac{3y}{2} - \frac{3y}{4}, 0 < y < 1$$

$$f_{y}(y) = \int_{0}^{2x} \frac{3y}{2} dx = \frac{3y}{2} - \frac{3y}{4}, 0 < y < 1$$

$$f_{y}(y) = \int_{0}^{2x} \frac{3y}{2} dx = \frac{3y}{2} - \frac{3y}{4}, 0 < y < 1$$

$$f_{y}(y) = \int_{0}^{2x} \frac{3y}{2$$

 $E(X) = \int_{0}^{1} dx \int_{0}^{2X} x \cdot \frac{3y}{2} dy = \int_{0}^{1} 3x^{3} dx = \frac{3}{4}$ $E(Y) = \int_{0}^{1} dx \int_{0}^{2X} y \cdot \frac{3y}{2} dy = \int_{0}^{1} y \cdot \frac{3}{4} y(2-y) dy = 1$ $E(XY) = \int_{0}^{1} dx \int_{0}^{2X} x \cdot y \cdot \frac{3y}{2} dy = \frac{4}{5}$ $(O(X,Y) = E(XY) - E(X)E(Y) = \frac{1}{20} > 0$ $X \le Y \notin \mathbb{E} \xrightarrow{\text{Tab}} \chi.$

四. (15 分)设随机变量
$$X$$
 的概率密度函数 $f(x) = \begin{cases} x^2, 0 < x < 1, \\ \frac{2}{3}, 1 < x < 2, \forall X 独立重复观测 n 次 0, 其他.$

结果记为 $X_1,...,X_n$. (1) 求X的分布函数F(x); (2) 若 $Y = \min\{X,1\}$, 求Y的分布函数

 $F_r(y)$: (3) 当 $n \to +\infty$ 时, $\frac{1}{n} \sum_{i=1}^n X_i$ 依 概率收敛到何值? (4) 若 n=450, Z 表示 450 次观

测中{X_i<1}出现的次数,求P(≥160)的近似值.

$$(1) F(x) = \int_{0}^{x} f(t) dt = \begin{cases} 0 & 1 & 1 \\ \int_{0}^{x} t^{2} dt = \frac{x^{3}}{3} & 1 & 1 \\ \int_{0}^{1} t^{2} dt + \int_{1}^{x} \frac{x^{2}}{3} dt = \frac{3}{3}x - \frac{1}{3}, 1 & 1 \\ 1 & 1 & 1 \end{cases}$$

$$(2) F(x) = \int_{0}^{x} f(t) dt = \int_{0}^{1} x^{3} dx + \int_{1}^{x} \frac{x^{2}}{3} dx = \frac{5}{4}$$

$$(3) F(x) = \int_{0}^{1} x^{3} dx + \int_{1}^{x} \frac{x^{2}}{3} dx = \frac{5}{4}$$

$$(4) P = P(x < 1) = \int_{0}^{1} x^{3} dx = \frac{5}{4}$$

(2)
$$f_{Y}(y) = P(min(x,1) \le y)$$

= $P(min(x,1) \le y, x < 1) + P(min(x,1) \le y, x > 1)$
= $P(X \le y, x < 1) + P(1 \le y, X > 1)$
= $P(X \le y) + 0 = 0 + 0 = 0$, $y < 0$
= $P(X \le y) + 0 = \int_{0}^{y} x^{2} dx = \frac{x^{3}}{3}$, $0 \le y < 1$
 $P(X < 1) + 1 \times \frac{2}{3} = \frac{1}{3} + \frac{2}{3} = 1$, $9 \ge 1$

五. (10 分)为了解某县粮食产量情况,随机调查该县 64 个乡当年的粮食产量,得到样本均值为 1120 吨,样本方差 108900,设乡粮食产量(单位:吨) $X\sim N(\mu,\sigma^2)$, μ,σ^2 未知.

(1)在显著水平 0.05 下检验假设 H_0 : $\mu \le 1000$, H_1 : $\mu > 1000$,并计算相应的 p-值; (2)求 σ 的置信度为 90%的双侧置信区间. (保留 1 位小数)

(1) H。: 片奶 = 000, H。:
$$M > M_0$$
 取 短 经 统 计 量 $t = \frac{\nabla - M_0}{5/J_{IR}}$ Ho 的 产 论 包 $t = \frac{\nabla - M_0}{5/J_{IR}} = \frac{1120 - 1000}{5/J_{IR}} = \frac{1120 - 1000}{5/$

共4页第3页

(2)
$$\sqrt{x} + \sqrt{x} + \sqrt{x} = \frac{(n+1)S^2}{0^2} \sim \chi^2(n-1)$$

 $\sqrt{x} + \sqrt{x} = \frac{(n+1)S^2}{0^2} < \chi^2 = (n+1) = 1 - x$
 $\sqrt{x} = \sqrt{x} = \frac{(n+1)S^2}{\sqrt{x}} < \sqrt{x} = \frac{(n+1)S^2}{\sqrt{x}} > \frac{(n+1)S^2}$

六. (15 分) 设总体 X 的分布律为 P(X=0)=1-p. P(X=1)=p/2. P(X=2)=p/3. P(X=3)=p/6. 其中 $p\in(0,1)$ 是未知参数. $X_1,...,X_n$ 是总体 X 的简单随机样本,设其中 "0"、"1"、

"2"、"3" 出现的次数分别为 n_0 , n_1 , n_2 , n_3 . (1)求 p 的矩估计量 \hat{p}_1 , 并判断其是否为 p

的无偏估计,说明理由: (2)求p的极大似然估计量 \hat{p}_2 ,并判断其是否为p的无偏估计,说明理由: (3)分别计算这两个估计量的方差,并比较哪个更小。

- $E(\hat{p}_{1}) = E(\hat{s}_{1}) = \hat{s}_{1} + 2 \times \hat{s}_{1} + 3 \times \hat{s}_{2} = \hat{s}_{1}^{2}, \quad \hat{p}_{1} = \hat{s}_{2}^{2} \times \hat{p}_{1}$
- (2) $L(p) = (i-p)^{n_0} (p/2)^{n_1} (p/3)^{n_2} (p/6)^{n_3} = c \cdot p^{n-n_0} (i-p)^{n_0}$, C是常数 $LnL(p) = lnc + (n-n_0) lnp + n_0 ln(i-p)$, $dlnL(p) = o + \frac{n-n_0}{P} \frac{n_0}{I-P} \stackrel{\text{$\stackrel{\circ}{=}$}}{=} 0$, $\Rightarrow \stackrel{\circ}{P} = \frac{n-n_0}{I}$.
- · No~B(n, rp), E(P)=E(-n-no)=小(n-E(no))=小(n-n(1-p))=p.
 · P2也主 Pho元倫佑什.
- (3) $E(\chi^{2}) = 1 \times \frac{P}{2} + 4 \times \frac{P}{3} + 9 \times \frac{P}{6} = \frac{10P}{3}$. $Var(\chi) = E(\chi^{2}) - [E(\chi)]^{2} = \frac{5(6-5P)P}{9}$. $Var(\hat{P}_{1}) = \frac{9}{25} Var(\chi) = \frac{9}{25N} Var(\chi) = \frac{1}{N} (\frac{6}{5}P - P^{2})$ $Var(\hat{P}_{2}) = Var(\frac{n_{0}}{N}) = Var(\frac{n_{0}}{N}) = \frac{1}{N^{2}} Var(n_{0}) = \frac{1}{N^{2}} N(1-P)P = \frac{P^{2}P^{2}}{N}$ $Var(\hat{P}_{1}) - Var(\hat{P}_{2}) = \frac{1}{N} (\frac{6}{5}P - P^{2}) - \frac{P - P^{2}}{N} = \frac{P}{5N} > 0$. $\therefore P = \frac{1}{N} + \frac{1}{N} \sqrt{\frac{2}{N}} + \frac{1}{N} \sqrt$