Gaussian mixture models

Toby Dylan Hocking

Visualize iris data with labels

Visualize iris data without labels

- ▶ Let $X \in \mathbb{R}^{n \times p}$ be the data matrix (input for clustering).
- **Example** iris n = 150 observations, p = 2 dimensions.

##		Petal.Width	Petal.Length
##	[1,]	0.2	1.4
##	[2,]	0.2	1.4
##	[3,]	0.2	1.3
##	[4,]	0.2	1.5

Gaussian mixture model parameters and EM algorithm

Need to fix number of clusters K, then for every $k \in \{1, \ldots, K\}$ we have cluster-specific parameters $\theta_k = [\mu_k, S_k, \pi_k]$ which are updated during M step,

- ightharpoonup mean vector $\mu_k \in \mathbb{R}^p$,
- covariance matrix $S_k \in \mathbb{R}^{p \times p}$, (must be symmetric, positive definite, next slides show optional additional constraints)
- ▶ prior weight $\pi_k \in [0,1]$ (sum over all clusters k must equal one).

During E step we compute the probability matrix $T \in [0,1]^{n \times K}$, where each row i sums to 1 and each entry T_{ik} is probability that data i is in cluster k.

spherical, equal volume

c1 c1 c2 c2 c3 c3 ## width 0.1077 0.0000 0.1077 0.0000 0.1077 0.0000 ## length 0.0000 0.1077 0.0000 0.1077 0.0000 0.1077

spherical, unequal volume

c1 c1 c2 c2 c3 c3 ## width 0.0202 0.0000 0.1298 0.0000 0.1837 0.0000 ## length 0.0000 0.0202 0.0000 0.1298 0.0000 0.1837

diagonal, equal volume and shape

c1 c1 c2 c2 c3 c3 ## width 0.036 0.0000 0.036 0.0000 0.036 0.0000 ## length 0.000 0.1878 0.000 0.1878 0.000 0.1878

diagonal, varying volume, equal shape

c1 c1 c2 c2 c3 c3 ## width 0.0091 0.0000 0.0457 0.0000 0.0732 0.0000 ## length 0.0000 0.0367 0.0000 0.1837 0.0000 0.2944

diagonal, equal volume, varying shape

c1 c1 c2 c2 c3 c3 ## width 0.0494 0.0000 0.0317 0.0000 0.0368 0.0000 ## length 0.0000 0.1341 0.0000 0.2089 0.0000 0.1802

diagonal, varying volume and shape

c1 c1 c2 c2 c3 c3 ## width 0.0109 0.0000 0.0352 0.0000 0.0709 0.0000 ## length 0.0000 0.0296 0.0000 0.2243 0.0000 0.3008

ellipsoidal, equal volume, shape, and orientation

c1 c1 c2 c2 c3 c3 ## width 0.0358 0.0425 0.0358 0.0425 0.0358 0.0425 ## length 0.0425 0.2005 0.0425 0.2005 0.0425 0.2005

ellipsoidal, varying volume, shape, and orientation

c1 c1 c2 c2 c3 c3 ## width 0.0109 0.0059 0.0428 0.0813 0.0727 0.0482 ## length 0.0059 0.0296 0.0813 0.2438 0.0482 0.3065

Compare two clusters to labels

Compare three clusters to labels

Compare four clusters to labels

Compute ARI for several clusterings

▶ Which K is best? Clear peak at 3 clusters, which makes sense since there are three species in these data.

Visualization of log likelihood

- Darker red means larger density value from learned model.
- ► The total redness in the data points represents the log likelihood, which is what the EM algorithm attempts to maximize.

Visualize density using level curves

Compute log likelihood for several clusterings

Model selection via error curve analysis (negative log likelihood)

- ► These error values can be computed using only the input data (labels/outputs are not required).
- ▶ In general, for any problem/data set, making this plot and then locating the "kink in the curve" is a good rule of thumb for selecting the number of clusters.

Visualize clusters using two random seeds

- ▶ Different seeds used for initial assignment based on K-means.
- ► EM solution quality depends on random seed (not much variation in these simple data though).

EM algo update rules

Let $f(x, \mu, S)$ be the (multivariate) normal density for a feature vector $x \in \mathbb{R}^p$, a mean vector $\mu \in \mathbb{R}^p$, and a covariance matrix $S \in \mathbb{R}^{p \times p}$.

In the E step we update the probability matrix,

$$T_{ik} \leftarrow \frac{\pi_k f(x_i, \mu_k, S_k)}{\sum_{k=1}^K \pi_k f(x_i, \mu_k, S_k)}$$

.

In the M step we update the cluster parameters,

$$\pi_{k} \leftarrow \frac{1}{n} \sum_{i=1}^{n} T_{i,k},$$

$$\mu_{k} \leftarrow \frac{\sum_{i=1}^{k} T_{i,k} \times_{i}}{\sum_{i=1}^{k} T_{i,k}},$$

$$S_{k} \leftarrow \frac{\sum_{i=1}^{k} T_{i,k} (x_{i} - \mu_{k}) (x_{i} - \mu_{k})^{\mathsf{T}}}{\sum_{i=1}^{k} T_{i,k}}.$$

EM algo starting with K-means assignments

Compute weights, means, covariance matrices

Cluster probabilities updated

Compute new cluster parameters

Compute new cluster/data probabilities

Compute cluster parameters iteration 3

Compute probabilities iteration 3

Compute cluster parameters iteration 4

Compute probabilities iteration 4

Compute cluster parameters iteration 5 (no change = stop)

