UFRGS – INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma A - 2019/2Prova da área IIA

1 - 5	6	7	Total

Nome:	Cartã	o:

Regras Gerais:

- $\bullet\,$ Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas:

- Seja sucinto, completo e claro.
- $\bullet\,$ Justifique to do procedimento usado.
- Indique identidades matemáticas usadas, em especial, itens da tabela.
- Use notação matemática consistente.

Id	en	tid	lad	les

$\operatorname{sen}(x) = \frac{e^{ix} - e^{-ix}}{2i}$	$\cos(x) = \frac{e^{ix} + e^{-ix}}{2}$
$senh(x) = \frac{e^x - e^{-x}}{2}$	$\cosh(x) = \frac{e^x + e^{-x}}{2}$
$(a+b)^n = \sum_{j=0}^{\infty} \binom{n}{j} a^{n-j}$	$-jb^j$, $\binom{n}{j} = \frac{n!}{j!(n-j)!}$

$$sen(x+y) = sen(x)cos(y) + sen(y)cos(x)$$

$$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$$

Propr	iedades:	
1	Linearidade	$\mathcal{L}\left\{\alpha f(t) + \beta g(t)\right\} = \alpha \mathcal{L}\left\{f(t)\right\} + \beta \mathcal{L}\left\{g(t)\right\}$
2	Transformada da derivada	$\mathcal{L}\left\{f'(t)\right\} = s\mathcal{L}\left\{f(t)\right\} - f(0)$ $\mathcal{L}\left\{f''(t)\right\} = s^2\mathcal{L}\left\{f(t)\right\} - sf(0) - f'(0)$
3	Deslocamento no eixo s	$\mathcal{L}\left\{e^{at}f(t)\right\} = F(s-a)$
4	Deslocamento no eixo t	$\mathcal{L}\left\{u(t-a)f(t-a)\right\} = e^{-as}F(s)$ $\mathcal{L}\left\{u(t-a)\right\} = \frac{e^{-as}}{s}$
5	Transformada da integral	$\mathcal{L}\left\{\int_0^t f(\tau)d\tau\right\} = \frac{F(s)}{s}$
6	Filtragem da Delta de Dirac	$\int_{-\infty}^{\infty} f(t)\delta(t-a)dt = f(a)$
7	Transformada da Delta de Dirac	$\mathcal{L}\left\{\delta(t-a)\right\} = e^{-as}$
8	Teorema da Convolução	$\mathcal{L}\left\{(f*g)(t)\right\} = F(s)G(s),$ onde $(f*g)(t) = \int_0^t f(\tau)g(t-\tau)d\tau$
9	Transformada de funções periódicas	$\mathcal{L}\left\{f(t)\right\} = \frac{1}{1 - e^{-sT}} \int_0^T e^{-s\tau} f(\tau) d\tau$
10	Derivada da transformada	$\mathcal{L}\left\{tf(t)\right\} = -\frac{dF(s)}{ds}$
11	Integral da transformada	$\mathcal{L}\left\{\frac{f(t)}{t}\right\} = \int_{s}^{\infty} F(\hat{s})\hat{s}$

Séries:

Séries:
$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \dots, -1 < x < 1$
$\frac{x}{(1-x)^2} = \sum_{n=1}^{\infty} nx^n = x + 2x^2 + 3x^3 + \dots, -1 < x < 1$
$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots, -\infty < x < \infty$
$\ln(1+x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1}, -1 < x < 1$
$\arctan(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}, -1 < x < 1$
$sen(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}, -\infty < x < \infty$
$\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}, -\infty < x < \infty$
$senh(x) = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}, -\infty < x < \infty$
$\cosh(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}, -\infty < x < \infty$
$(1+x)^m = 1 + \sum_{n=1}^{\infty} \frac{m(m-1)\cdots(m-n+1)}{n!} x^n,$
$-1 < x < 1, m \neq 0, 1, 2, \dots$

Funções especiais:

tunções especiais.		
Função Gamma	$\Gamma(k) = \int_0^\infty x^{k-1} e^{-x} dx$	
Propriedade da Função Gamma	$\Gamma(k+1) = k\Gamma(k), k > 0$ $\Gamma(n+1) = n!, n \in \mathbb{N}$	
Função de Bessel modificada de ordem ν	$I_{\nu}(x) = \sum_{m=0}^{\infty} \frac{1}{m!\Gamma(m+\nu+1)} \left(\frac{x}{2}\right)^{2m+\nu}$	
Função de Bessel de ordem 0	$J_0(x) = \sum_{m=0}^{\infty} \frac{(-1)^m}{m!^2} \left(\frac{x}{2}\right)^{2m}$	
Integral seno	$\operatorname{Si}(t) = \int_0^t \frac{\operatorname{sen}(x)}{x} dx$	

Integrais:

integrals:
$\int xe^{\lambda x} dx = \frac{e^{\lambda x}}{\lambda^2}(\lambda x - 1) + C$
$\int x^2 e^{\lambda x} dx = e^{\lambda x} \left(\frac{x^2}{\lambda} - \frac{2x}{\lambda^2} + \frac{2}{\lambda^3} \right) + C$
$\int x^n e^{\lambda x} dx = \frac{1}{\lambda} x^n e^{\lambda x} - \frac{n}{\lambda} \int x^{n-1} e^{\lambda x} dx + C$
$\int x \cos(\lambda x) dx = \frac{\cos(\lambda x) + \lambda x \sin(\lambda x)}{\lambda^2} + C$
$\int x \operatorname{sen}(\lambda x) dx = \frac{\operatorname{sen}(\lambda x) - \lambda x \cos(\lambda x)}{\lambda^{2}} + C$
$\int e^{\lambda x} \operatorname{sen}(w x) dx = \frac{e^{\lambda x} (\lambda \operatorname{sen}(w x) - w \cos(w x))}{\lambda^2 + w^2}$

Tabela	de	transformadas	de	Laplace:

Tabel	$F(s) = \mathcal{L}\{f(t)\}$	$f(t) = \mathcal{L}^{-1}\{F(s)\}$
1	$F(s) = \mathcal{L}\{f(t)\}\$ $\frac{1}{s}$	1
2	$\frac{1}{s^2}$	t
3	$\frac{1}{s^n}$, $(n = 1, 2, 3,)$	$\frac{t^{n-1}}{(n-1)!}$
4	1	$\frac{1}{\sqrt{\pi t}}$
5	$\frac{1}{s^{\frac{3}{2}}},$	$2\sqrt{\frac{t}{\pi}}$
6	$\frac{1}{s^k}, \qquad (k > 0)$	$\frac{t^{k-1}}{\Gamma(k)}$
7	$\frac{1}{s-a}$ 1	e^{at}
8	$\frac{1}{(s-a)^2}$	te^{at}
9	$\frac{1}{(s-a)^n}$, $(n=1,2,3)$	$\frac{1}{(n-1)!}t^{n-1}e^{at}$
10	$\frac{1}{(s-a)^k}, \qquad (k>0)$	$\frac{1}{\Gamma(k)}t^{k-1}e^{at}$
11	$\frac{1}{(s-a)(s-b)}, \qquad (a \neq b)$	$\frac{1}{a-b}\left(e^{at}-e^{bt}\right)$
12	$\frac{s}{(s-a)(s-b)}, \qquad (a \neq b)$	$\frac{1}{a-b}\left(ae^{at}-be^{bt}\right)$
13	1	$\frac{1}{w}\operatorname{sen}(wt)$
14	$\frac{s^2 + w^2}{s}$ $\frac{s}{s^2 + w^2}$	$\cos(wt)$
15	$\frac{1}{s^2 - a^2}$	$\frac{1}{a}\operatorname{senh}(at)$
16	$\frac{s}{s^2 - a^2}$	$\cosh(at)$
17	$\frac{1}{(s-a)^2 + w^2}$	$\frac{1}{w}e^{at}\operatorname{sen}(wt)$
18	$\frac{s-a}{(s-a)^2 + w^2}$	$e^{at}\cos(wt)$
19	$\frac{1}{s(s^2+w^2)}$	$\frac{1}{w^2}(1-\cos(wt))$
20	$\frac{1}{s^2(s^2+w^2)}$	$\frac{1}{w^3}(wt - \operatorname{sen}(wt))$
21	$\frac{1}{(s^2+w^2)^2}$	$\frac{1}{2w^3}(\operatorname{sen}(wt) - wt \cos(wt))$
22	$\frac{s}{(s^2+w^2)^2}$	$\frac{t}{2w}\operatorname{sen}(wt)$
23	$\frac{s}{(s^2 + w^2)^2}$ $\frac{s^2}{(s^2 + w^2)^2}$	$\frac{1}{2w}(\operatorname{sen}(wt) + wt \cos(wt))$
24	$\frac{s}{(s^2 + a^2)(s^2 + b^2)},$ $(a^2 \neq b^2)$	$\frac{1}{b^2 - a^2}(\cos(at) - \cos(bt))$
25	$\frac{1}{(s^4 + 4a^4)}$	$\frac{1}{4a^3}[\operatorname{sen}(at)\cosh(at) - \\ -\cos(at)\operatorname{senh}(at)]$
26	$\frac{s}{(s^4 + 4a^4)}$	$\frac{1}{2a^2}\operatorname{sen}(at)\operatorname{senh}(at))$
27	$\frac{1}{(s^4 - a^4)}$	$\frac{1}{2a^3}(\operatorname{senh}(at) - \operatorname{sen}(at))$
28	$\frac{s}{(s^4 - a^4)}$	$\frac{1}{2a^2}(\cosh(at) - \cos(at))$

		15-(22
	$F(s) = \mathcal{L}\{f(t)\}$	$f(t) = \mathcal{L}^{-1}\{F(s)\}$
29	$\sqrt{s-a} - \sqrt{s-b}$	$\frac{1}{2\sqrt{\pi t^3}}(e^{bt} - e^{at})$
30	$\frac{1}{\sqrt{s+a}\sqrt{s+b}}$	$e^{\frac{-(a+b)t}{2}}I_0\left(\frac{a-b}{2}t\right)$
31	$\frac{1}{\sqrt{s^2 + a^2}}$	$J_0(at)$
32	$\frac{s}{(s-a)^{\frac{3}{2}}}$	$\frac{1}{\sqrt{\pi t}}e^{at}(1+2at)$
33	$\frac{1}{(s^2 - a^2)^k}, \qquad (k > 0)$	$\frac{\sqrt{\pi}}{\Gamma(k)} \left(\frac{t}{2a}\right)^{k-\frac{1}{2}} I_{k-\frac{1}{2}}(at)$
34	$\frac{1}{s}e^{-\frac{k}{s}}, \qquad (k>0)$	$J_0(2\sqrt{kt})$
35	$\frac{1}{\sqrt{s}}e^{-rac{k}{s}}$	$\frac{1}{\sqrt{\pi t}}\cos(2\sqrt{kt})$
36	$\frac{1}{s^{\frac{3}{2}}}e^{\frac{k}{s}}$	$\frac{1}{\sqrt{\pi t}} \operatorname{senh}(2\sqrt{kt})$
37	$e^{-k\sqrt{s}}, \qquad (k>0)$	$\frac{k}{2\sqrt{\pi t^3}}e^{-\frac{k^2}{4t}}$
38	$\frac{1}{s}\ln(s)$	$-\ln(t) - \gamma, \qquad (\gamma \approx 0, 5772)$
39	$\ln\left(\frac{s-a}{s-b}\right)$	$\frac{1}{t}\left(e^{bt} - e^{at}\right)$
40	$\ln\left(\frac{s^2+w^2}{s^2}\right)$	$\frac{2}{t}\left(1-\cos(wt)\right)$
41	$\ln\left(\frac{s^2 - a^2}{s^2}\right)$	$\frac{2}{t}\left(1-\cosh(at)\right)$
42	$\tan^{-1}\left(\frac{w}{s}\right)$	$\frac{1}{t}\operatorname{sen}(wt)$
43	$\frac{1}{s}\cot^{-1}(s)$	$\mathrm{Si}\left(t ight)$
44	$\frac{1}{s}\tanh\left(\frac{as}{2}\right)$	Onda quadrada $f(t) = \begin{cases} 1, & 0 < t < a \\ -1, & a < t < 2a \end{cases}$ $f(t+2a) = f(t), t > 0$
45	$\frac{1}{as^2}\tanh\left(\frac{as}{2}\right)$	Onda triangular $f(t) = \begin{cases} \frac{t}{a}, & 0 < t < a \\ -\frac{t}{a} + 2, & a < t < 2a \end{cases}$ $f(t+2a) = f(t), t > 0$
46	$\frac{w}{(s^2+w^2)\left(1-e^{-\frac{\pi}{w}s}\right)}$	Retificador de meia onda $f(t) = \begin{cases} sen(wt), & 0 < t < \frac{\pi}{w} \\ 0, & \frac{\pi}{w} < t < \frac{2\pi}{w} \end{cases}$ $f\left(t + \frac{2\pi}{w}\right) = f(t), t > 0$
47	$\frac{w}{s^2 + w^2} \coth\left(\frac{\pi s}{2w}\right)$	Retificador de onda completa $f(t) = \operatorname{sen}(wt) $
48	$\frac{1}{as^2} - \frac{e^{-as}}{s\left(1 - e^{-as}\right)}$	Onda dente de serra $f(t) = \frac{t}{a}, \qquad 0 < t < a$ $f(t) = f(t-a), t > a$

 \bullet Questão 1 (1.0 ponto) Considere as seguintes funções, gráficos de funções e transformadas de Laplace:

$$q(t) = 2u(t-1) + \delta(t-3) - 2u(t-5)$$

$$r(t) = \delta(t-1) + 2u(t-3) - 2u(t-5)$$

$$s(t) = -(t-3)u(t-1) + 2(t-3)u(t-3) - (t-3)u(t-5)$$

$$u(t) = (t-1)u(t-1) - 2(t-3)u(t-3) + (t-5)u(t-5)$$

$$V(s) = \frac{e^{-s} - 2e^{-3s} + e^{-5s}}{s^2}$$

$$W(s) = \frac{se^{-s} + 2e^{-3s} - 2e^{-5s}}{s}$$

$$X(s) = \frac{2e^{-s} + se^{-3s} - 2e^{-5s}}{s}$$

$$Z(s) = \frac{(2s - 1)e^{-s} + 2e^{-3s} - (2s + 1)e^{-5s}}{s^2}$$

Assinale as alternativas que relacionam corretamente os gráficos e as funções e os gráficos e as transformadas de Laplace, respectivamente.

()
$$f(t) = q(t)$$
; $g(t) = r(t)$; $h(t) = s(t)$; $p(t) = u(t)$.

()
$$\mathcal{L}{f(t)} = V(s); \mathcal{L}{g(t)} = W(s);$$

 $\mathcal{L}{h(t)} = X(s); \mathcal{L}{p(t)} = Z(s).$

()
$$f(t) = u(t)$$
; $g(t) = r(t)$; $h(t) = s(t)$; $p(t) = q(t)$.

(X)
$$\mathcal{L}{f(t)} = V(s); \mathcal{L}{g(t)} = X(s);$$

 $\mathcal{L}{h(t)} = Z(s); \mathcal{L}{p(t)} = W(s).$

()
$$f(t) = s(t)$$
; $g(t) = r(t)$; $h(t) = u(t)$; $p(t) = q(t)$.

()
$$\mathcal{L}{f(t)} = Z(s); \mathcal{L}{g(t)} = W(s);$$

 $\mathcal{L}{h(t)} = X(s); \mathcal{L}{p(t)} = V(s).$

()
$$f(t) = s(t)$$
; $g(t) = q(t)$; $h(t) = u(t)$; $p(t) = r(t)$.

()
$$\mathcal{L}\lbrace f(t)\rbrace = Z(s); \mathcal{L}\lbrace g(t)\rbrace = X(s);$$

 $\mathcal{L}\lbrace h(t)\rbrace = W(s); \mathcal{L}\lbrace p(t)\rbrace = V(s).$

(X)
$$f(t) = u(t)$$
; $g(t) = q(t)$; $h(t) = s(t)$; $p(t) = r(t)$.

()
$$\mathcal{L}{f(t)} = X(s); \mathcal{L}{g(t)} = V(s);$$

 $\mathcal{L}{h(t)} = Z(s); \mathcal{L}{p(t)} = W(s).$

• Questão 2 (1.0 ponto) Considere a função

$$F(s) = \frac{6s^2 - 22s + 18}{(s-1)(s-2)(s-3)}$$

Assinale as alternativas que indicam respectivamente uma expressão equivalente para F(s) e $f(t) = \mathcal{L}^{-1}{F(s)}$.

()
$$F(s) = \frac{1}{s-1} + \frac{3}{s-2} + \frac{2}{s-3}$$

()
$$F(s) = \frac{2}{s-1} + \frac{3}{s-2} + \frac{1}{s-3}$$

(X)
$$F(s) = \frac{1}{s-1} + \frac{2}{s-2} + \frac{3}{s-3}$$

()
$$F(s) = \frac{3}{s-1} + \frac{1}{s-2} + \frac{2}{s-3}$$

()
$$F(s) = \frac{2}{s-1} + \frac{1}{s-2} + \frac{3}{s-3}$$

()
$$f(t) = e^{-t} + 3e^{-2t} + 2e^{-3t}$$

()
$$f(t) = 2e^{-t} + 3e^{-2t} + e^{-3t}$$

()
$$f(t) = 3e^t + e^{2t} + 2e^{-3t}$$

(X)
$$f(t) = e^t + 2e^{2t} + 3e^{3t}$$

()
$$f(t) = 2e^t + e^{2t} + 3e^{3t}$$

()
$$f(t) = e^{-t} + 2e^{-2t} + 3e^{-3t}$$

• Questão 3 (1.0 ponto) Assinale as alternativas que indicam as transformadas de Laplace das funções $f(t) = e^{-2t} - e^{-3t}$ e $g(t) = \delta(t-1)f(t)$, respectivamente.

(X)
$$\frac{1}{(s+2)(s+3)}$$

$$() \frac{1}{(s-2)(s-3)}$$

$$() e^{-2} - e^{-3}$$

$$() \frac{s}{(s+2)(s+3)}$$

() 0
(X)
$$e^{-s-2} - e^{-s-3}$$

$$(\) \frac{s}{(s-2)(s-3)}$$

$$() e^{s-2} - e^{s-3}$$

$$\left(\ \right) - \frac{1}{(s+2)(s+3)}$$

$$() e^{-}$$

• Questão 4 (1.0 ponto) Assinale as alternativas que indicam as transformadas inversas das funções $F(s) = \frac{4se^{-s}}{(s^2+4)^2} \text{ e } G(s) = \frac{4(s-1)e^{-s}}{((s-1)^2+4)^2}, \text{ respectivamente.}$

 $() \dot{t} \operatorname{sen}(t)$

() $u(t-1)(t-1)e^{1-t}\operatorname{sen}(2(t-1))$

() t sen(2t)

(X) $u(t-1)(t-1)e^{t-1}\operatorname{sen}(2(t-1))$

() $u(t-1)t\operatorname{sen}(2t)$

- $() te^{-t} \operatorname{sen}(t)$
- (X) $u(t-1)(t-1) \operatorname{sen}(2(t-1))$
- () $te^{1-t}\operatorname{sen}(2t)$

() $u(t-1)(t-1)\sin(2t)$

- () $u(t-1)te^{1-t} \operatorname{sen}(2t)$
- () $u(t-1)(t-1)e^{t-1}\operatorname{sen}(2(t-1))$
- () $u(t-1)(t-1)e^{1-t} \operatorname{sen}(2t)$

• Questão 5 (1.0 ponto) Considere os seguintes gráficos de funções e transformadas de Laplace:

$$V(s) = \frac{-2s + 2e^{-s} - (s+1)e^{-3s} - e^{-5s}}{s^2}, \qquad W(s) = \frac{-2s + 2e^{-s} - 2se^{-3s} - 2e^{-5s}}{s^2}, \qquad (1)$$

$$X(s) = \frac{-2s + 2e^{-s} + se^{-3s} - 2e^{-5s}}{s^2}, \qquad Z(s) = \frac{-2s + 2e^{-s} - 2se^{-5s} - 2e^{-5s}}{s^2}. \qquad (2)$$

-1

3 4 5 6

Assinale as alternativas que relacionam corretamente os gráficos entre si os gráficos e as transformadas de Laplace, respectivamente.

()
$$f(t) = q'(t); \ g(t) = r'(t); \ h(t) = s'(t);$$
 () $\mathcal{L}\{q(t)\} = X(s); \ \mathcal{L}\{r(t)\} = Z(s);$ $p(t) = u'(t).$ () $\mathcal{L}\{g(t)\} = X(s); \ \mathcal{L}\{g(t)\} = Z(s);$ $\mathcal{L}\{g(t)\} = Z(s); \ \mathcal{L}\{g(t)\} = Z(s);$

3 4 5 6

()
$$f(t) = r'(t); g(t) = q'(t); h(t) = s'(t);$$
 (X) $\mathcal{L}\{q(t)\} = W(s); \mathcal{L}\{r(t)\} = Z(s);$ $p(t) = u'(t).$ (X) $\mathcal{L}\{g(t)\} = W(s); \mathcal{L}\{u(t)\} = Z(s).$

$$\begin{array}{ll} (\ \) \ f(t) = r'(t); \ g(t) = s'(t); \ h(t) = u'(t); \\ p(t) = q'(t). \end{array} \qquad \begin{array}{ll} (\ \) \ \mathcal{L}\{q(t)\} = Z(s); \ \mathcal{L}\{r(t)\} = X(s); \\ \mathcal{L}\{s(t)\} = V(s); \ \mathcal{L}\{u(t)\} = W(s) \end{array}$$

$$\begin{array}{ll} ({\rm X}) \ f(t) = r'(t); \ g(t) = u'(t); \ h(t) = q'(t); \\ p(t) = s'(t). \end{array} \qquad \begin{array}{ll} (\) \ \mathcal{L}\{q(t)\} = Z(s); \ \mathcal{L}\{r(t)\} = W(s); \\ \mathcal{L}\{s(t)\} = X(s); \ \mathcal{L}\{u(t)\} = V(s) \end{array}$$

• Questão 6 (2.5 ponto) Resolva a seguinte equação integro-diferencial:

$$\begin{cases} f''(t) + 2f'(t) + 2f(t) + 4 \int_0^t f(\tau)d\tau = 1 - 3e^{-2t}, \\ f(0) = 0, \\ f'(0) = 1. \end{cases}$$

Solução:

• Questão 7 (2.5) Considere o seguinte problema de valor inicial:

$$x'(t) = -2x(t) + y(t)$$

$$y'(t) = \alpha x(t) - 2y(t)$$

Com x(0) = 0 e y(0) = 3, onde α é uma constante real.

- a) (0.5) Assinale a alternativa que indica o tipo de amortecimento do sistema dado para os valores de α dados respectivamente por -1, 0, 1 e 2:
 - () Sem amortecimento, subamortecido, criticamente amortecido e superamortecido.
 - () Subamortecido, subamortecido, criticamente amortecido e superamortecido.
 - (X) Subamortecido, criticamente amortecido, superamortecido e superamortecido.
 - () Superamortecido, superamortecido, criticamente amortecido e subamortecido.
 - () Superamortecido, criticamente amortecido, subamortecido e subamortecido.
 - () Superamortecido, criticamente amortecido, subamortecido e sem amortecimento.
- b) (2.0) Use a técnica da Transformada de Laplace para encontrar uma expressão para x(t) e y(t) quando $\alpha = 1$. Reproduza abaixo as expressões encontradas:

$$X(s) = Y(s) = y(t) =$$

Solução:

$$(s+2)X - Y = 0$$
 e $-X + (s+2)Y = 3$ \downarrow $(s+2)X - Y = 0$ e $-(s+2)X + (s+2)^2Y = 3(s+2)$.

Somando as duas equações, temos:

$$((s+2)^{2}-1)Y = 3(s+2)$$

$$V = \frac{3(s+2)}{((s+2)^{2}-1)}$$

$$= \frac{3(s+2)}{s^{2}+4s+3}$$

$$= \frac{3(s+2)}{(s+1)(s+3)}$$

$$= \frac{3}{2} \left(\frac{1}{s+1} + \frac{1}{s+3}\right).$$

Também,

$$(s+2)X - Y = 0$$
 e $-X + (s+2)Y = 3$ \downarrow $(s+2)^2X - (s+2)Y = 0$ e $-X + (s+2)Y = 3$.

Somando as duas equações, temos:

Calculamos as transformadas inversas para obter:

$$x(t) = \frac{3}{2} (e^{-t} + e^{-3t})$$

$$y(t) = \frac{3}{2} (e^{-t} - e^{-3t}).$$