Lenguajes formales autómatas

Gramaticas

- Describe la estructura de las frases y de las palabras de un lenguaje mediante reglas.
- Permiten expresar lenguajes infinitos en forma finita
- Las reglas definen ciertos términos en función de otros y se representan mediante la siguiente notación:
 - {termino que se está definiendo} ::= {definición}

Reglas de producción:

- <oracion> ::= <sujeto> <predicado>
- <sujeto> ::= <determinante> <sustantivo>
- complemento>
- <complemento> ::= <determinante> <sustantivo>

Reglas morfológicas:

- <sustantivo> ::= "hombre"
- <sustantivo> ::= "libro"
- <determinante> ::= "el"
- <determinante> ::= "un"
- <verbo> ::= "lee"

- ullet Derivación directa u o v
 - Es la aplicación de una regla para obtener una palabra a partir de otra
 - Se dice que v deriva directamente de u, si u = xyz, aplicando la regla y ::= w se llega a v = xwz
- Derivación $u \rightarrow^+ v$
 - Es la aplicación de más de una regla para obtener una palabra a partir de otra
 - Se dice que v deriva de u, si $u=u_0 \to u_1 \to u_2 \to u_n = v$
- Relación de Thue $u \rightarrow^* v$
 - Existe una relación de Thue entre u y v si **u = v** o $u \rightarrow v$

Definición formal de gramática

- Se llama gramática formal a la cuádrupla: $G = (\Sigma_T, \Sigma_N, S, P)$
- Donde:
 - Σ_T es el alfabeto de símbolos de **Terminales**
 - \bullet Σ_N es el alfabeto de símbolos de No Terminales
 - ullet S es el elemento distinguido o axioma
 - P es un conjunto finito de producciones

Notación de Backus (BNF)

• notación abreviada para reglas que comparten la parte izquierda

u ::= v	u ::= v w
u ::= w	

Forma sentencial

• Sea una palabra $x\in (\Sigma_T\bigcup \Sigma_N)^*$, donde $S\to^* x$; x es una forma sentencial

Sentencia

• Sea una palabra $x \in \Sigma_T^*$, donde $S \to {}^*x$; x es una sentencia

- \bullet Lenguaje asociado a una gramática \circ lenguaje generado por una gramática
 - Se denomina así al conjunto de todas las sentencias de G
 - $L(G) = \{x | x \in \Sigma_T^* \land S \to x\}$
 - Dos gramáticas son equivalentes cuando describen el mismo lenguaje

Recursividad

- una producción es recursiva si posee la forma U ::= x U y
- Si $x = \lambda$ la gramatica es **recursiva a izquierda**
- Si y = λ la gramatica es recursiva a derecha
- Si un lenguaje es infinito, la gramática que lo representa tiene que ser recursiva.

Clasificación de Chomsky

- Tipo 0: Gramática sin restricciones
 - $\bullet u := v$
 - $u = xAy, x, y, v \in (\Sigma_T \bigcup \Sigma_N)^* y A \in \Sigma_N$
- Tipo 1: Gramática sensible al contexto
 - $\bullet \; xAy \colon := xvy, \; x,y \in (\Sigma_T \bigcup \Sigma_N)^* \; ,v \in (\Sigma_T \bigcup \Sigma_N)^+ \; \; y \; A \; \in \Sigma_N$
 - ullet No se admiten derivaciones en λ
- Tipo 2: Gramática independiente al contexto
 - $A ::= v, v \in (\Sigma_T \bigcup \Sigma_N)^* y A \in \Sigma_N$
 - ullet No se admiten derivaciones en λ

- Tipo 3: Gramática regular o linear
 - Aceptan 3 tipos de producciones
 - Lineales por la izquierda
 - $\bullet A ::=a$
 - $\bullet A ::= Va$
 - $\bullet S ::= \lambda$
 - Lineales por la derecha
 - $\bullet A : := a$
 - $\bullet A : := aV$
 - $\bullet S ::= \lambda$

Arbol de derivación

Representación gráfica de las derivaciones para gramáticas de tipo 1, 2 o 3

- La raíz del árbol se etiqueta con el axioma de la gramática.
- Por cada derivación directa, desde el nodo etiquetado con el símbolo terminal que se sustituye se hace surgir un conjunto de arcos que se dirigen a nodos etiquetados con los símbolos de la cadena por que se sustituye.
- Se denomina subárbol a una parte del árbol de derivación que pende de un nodo asociado a un no terminal que incluye todos los nodos que descienden del mismo
 - 1. $E \rightarrow E + E$
 - 2. $E \rightarrow E * E$
 - 3. $E \rightarrow x$
 - 4. $E \rightarrow y$

Gramáticas ambiguas

- Una gramática es ambigua si posee al menos una sentencia ambigua
- Una sentencia es ambigua cuando es posible obtenerla mediante más de un árbol de derivación. (Ver fig. anterior)
- Un lenguaje es **inherentemente ambiguo** si no es posible representarlo mediante una gramática no ambigua

Gramáticas limpias y bien formadas

- 1. Regla de producción innecesaria
 - Es de la forma U::=U
 - Hacen la gramática ambigua y no aportan a la generación de palabras
 - Estas reglas deben eliminarse

2. Símbolo inaccesible desde el axioma

- No es el axioma y no aparece en la parte derecha de ninguna de las reglas alcanzables desde el axioma
- Todo símbolo σ accesible desde el axioma cumple que $S \mathop{\to}^* x \sigma y; x,y \in \!\! \Sigma^*$
- 2.1. Hacer una lista de los símbolos de la gramática (T y NT) y marcar el distinguido
- 2.2. Por cada regla de la forma U::=u , donde \emph{U} está marcado, marcar todos los símbolos de la derecha
- 2.3. Repetir 2.2 hasta que no se marque ningún símbolo
- 2.4. Eliminar todos los símbolos no marcados de los alfabetos
- 2.5. Eliminar todas las producciones que contengan alguno de estos símbolos

3. No terminal no generativo

- Cuando el lenguaje generado a partir de ese símbolo es el vacío
- un simbolo **U** no es **no generativo** si $U \! \to {}^+ u; u \! \in \! \Sigma_T^*$
- toda regla que contenga un símbolo no generativo se denomina regla superflua
- 3.1. Hacer una lista de los símbolos no terminales de la gramática
- 3.2. Por cada regla de la forma $U\!:=\!u$, donde u está formada únicamente por terminales y no terminales marcados, marcar ${\bf U}$
- 3.3. Repetir 2.2 hasta que no se marque ningún símbolo
- 3.4. Eliminar todos los símbolos no marcados del conjunto de no terminales
- 3.5. Eliminar todas las producciones que contengan alguno de estos símbolos

- 4. Gramática **reducida** es aquella que no posee símbolos inaccesibles desde el axioma, símbolos no generativos ni reglas superfluas.
- 5. Una gramática está **limpia** si es **reducida** y no posee reglas innecesarias.

Ejemplo (el desarrollo está en el libro)

Gramática original	Gramática limpia
S ::= PQ aSb S P R P ::= aPQ a Q ::= Qb \(\lambda\) R ::= Rb U ::= aP b	S ::= PQ aSb P P ::= aPQ a Q ::= Qb λ

- 6. Las reglas de la forma U : : = λ son **reglas no generativas**
 - Si el lenguaje no posee la palabra vacía, se pueden eliminar todas, sino solo hay que dejar la palabra vacía en el axioma
 - 6.1. Tomar una regla de la forma U: $= \lambda$ y eliminarla de la gramática
 - 6.2. Por cada regla de la gramática donde U aparece en la parte derecha, V:=xUy, añadir la regla V:=xy (a menos que esta exista)
 - 6.3. Repetir hasta que no haya reglas que deriven en lambda o solo quede una, siendo el axioma la parte izquierda de la misma

Ejemplo anterior	Sin reglas no generativas
S ::= PQ aSb P	S ::= PQ aSb P
P ::= aPQ a	P ::= aPQ aP a
Q ::= Qb λ	Q ::= Qb b

- 7. Las reglas de la forma U::=Vson reglas de redenominación
 - 7.1. Tomar una regla de la forma $U\!:\,=\!V$ y eliminarla de la gramática
 - 7.2. Por cada regla de la gramática de la forma $V\!::=\!x$, añadir la regla $U\!::=\!x$ (a menos que esta exista)
 - 7.3. Repetir hasta que no haya reglas de redenominación
 - Este algoritmo puede introducir reglas innecesarias.

Ejemplo anterior	Gramática limpia
S ::= PQ aSb P	S ::= PQ aSb aPQ aP a
P ::= aPQ aP a	P ::= aPQ aP a
Q ::= Qb b	Q ::= Qb b

8. Gramática **bien formada** es aquella que está limpia y no posee reglas no generativas o de redenominación.

Bibliografía y enlaces útiles.

 Alfonseca Cubero y otros - Teoría de autómatas y lenguajes formales -McGRAW-HILL