MLOps Monitoring Practices with Prometheus & Grafana

Palani Karthikeyan
Sr.Technical Consultant, Krosum Labs
karthikeyan@krosum.com

Agenda

- * MLOps and Devops
- * Grafana Deep dive into Grafana
- * Prometheus
- * Mlfow Case studies

MLOps

- * Machine Learning Operations for Production, is a collection of defined methods for building, deploying, and governing the lifespan of machine learning models.
- * MLOps approaches also improve the ML systems' scalability, security, and reliability, resulting in faster development cycles and more revenues from ML initiatives.

MLOps

MLOps

- * MLOps is a methodology of operation that aims to facilitate the process of bringing an experimental Machine Learning model into production and maintaining it efficiently.
- * MLOps focus on bringing the methodology of DevOps used in the software industry to the Machine Learning model lifecycle.

Features of a MLOPs project

- Data and Model Versioning
- Feature Management and Storing
- * Automation of Pipelines and Processes
- * CI/CD for Machine Learning
- Continuous Monitoring of Models

Grafana

- * Grafana is an **open-source data visualization** and **analysis tool** which allows us to view our data in the form of **beautiful graphs.**
- * Grafana designed by Torkel Odegaard in January 2014.

Grafana

- * It enables us to create a dashboard for collecting, processing, storing, and analyzing data from various different sources.
- * It allows us to query, visualize, alert on, and understand our metrics.

Grafana

- * It includes a variety of visualization option that helps us to understand our data, beautifully.
- * Grafana is written in **Go** and **Node.js LTS** language with a strong API (Application Programming Interface).

Grafana Dashboard

- * Grafana Dashboard is used to pull data from various data sources such as Prometheus, Influx DB, Graphite, ElasticSearch, MysQL, PostgreSQL, CloudWatch, Microsoft SQL Server, and many more.
- * A Grafana Dashboard contains various visualization options such as heat maps, geomaps, histograms, tables, free text panels, and different types of charts & graphs to study and understand business data easily.

Why Grafana?

- * Easy virtualization
- Drag and Drop panels
- * Flexible to use
- * Supports different data source
- * Open source
- * Multi-platform support

Features of Grafana

- * Plugins Platform
- * Transformation
- * Dynamic Dashboards
- * Authentication
- Explore metrics and Logs
- * Alerting
- * Annotations
- * Mixed data sources

Installing Grafana

* To download the latest versions of Grafana, check out https://grafana.com/grafana/download

Install Grafana on Windows

Windows Installer (64 Bit) SHA256: 1435548c1f3939b45e69c9864e0f19260870dcfcdeab809aa22a9813d50c8361

Download the installer (grafana-enterprise-7.5.1.windows-amd64.msi) and run it.

Standalone Windows Binaries (64 Bit) SHA256: 3b5a445da4080d469a837718bb9fb20f5f2f594c7d9abe36f988e3cb4c92a54e Download the zip file (grafana-enterprise-7.5.1.windows-amd64.zip) and follow the instructions in the installation guide below.

- **Step 1:** Go to any web browser, copy-paste the below link, or simply click on the below link.
- * https://grafana.readthedocs.io/en/latest/sources/installation/windows.html
- * **Step 2:** Once the link is opened, the below window appears on the screen, in which click on the **grafana.4.4.1.windows**-**x64.zip**.

Connecting to the Grafana server

- Once you have installed and launched Grafana, open a browser page to access
- * the Grafana application. It can be found at http://localhost:3000

Log in with the admin username and the admin password

Grafana User Interface

- * The default Home dashboard
- * The sidebar menu.
- * Navigation hub, providing both quick access to simple creation pages and links to more complex functions, including data source creation, Explore mode, alert management, and server administration.

Grafana's left sidebar

- To the left of the dashboard itself is the left sidebar.
- These icons lead to some of the most powerful of Grafana's impressive features.
- Search for dashboards
- Create and import dashboards and folders
- * Find dashboards
- * Manage dashboards, dashboard playlists, and dashboard snapshots
- * Explore data sources in a free-form fashion
- * Manage alert rules and notification channels
- * Configure data sources, users, and teams, download plugins, set
- preferences, and generate API keys
- * Administer Grafana users and organizations and view the server
- * settings and stats
- Return to the Home dashboard
- Set personal preferences
- Get help

The panel's UI

- * The panel's UI can be broken down into roughly three main functional areas:
- * 1. Panel display: Preview display, and time picker
- * 2. **Display settings**: Panel visualization type, styles, and links
- * 3. **Data configuration**: Data query, data transformation, and alerting

Dashboard

- * A dashboard is a kind of canvas upon which you can display one or more panels in a grid style arrangement.
- * It also serves as a web page, so you can bookmark or share it with a simple URL.
- * The entire dashboard can even be imported and exported in JSON text file format, making it easy to share, save, or transfer to another version of Grafana.

Unit (or) service file & Grafana server daemon

- * Windows: grafana-server.exe
- * Linux : grafana-server.service file
- * sudo systemctl daemon-reload
- * sudo systemctl start grafana-server
- * sudo systemctl status grafana-server
- * Configure the Grafana server to start at boot:
- * sudo systemctl enable grafana-server.service

Data Source

- * Grafana works with data, which must be stored in a database before it can be accessed by Grafana.
- There are several different kinds of databases.
- * Additionally, some other systems can be used to store data, even though their main purpose is not focused on data storage.
- * A Grafana data source is any place from which Grafana can pull data.

How to add a data source in Grafana

When you click the *Add data sources* button, you will see the list of officially supported data sources available for connection

ne series databases

Prometheus

Open source time series database & alerting

Graphite

Open source time series database

OpenTSDB

Open source time series database

InfluxDB

Open source time series database

Loki

Like Prometheus but for logs. OSS logging solution from Grafana Labs

Elasticsearch

Open source logging & analytics database

Influx DB with Grafana integration

Installing third-party data sources

Others TestData DB

SimpleJson

simple json datasource

Logz.io

Logz.io Data Source for Grafana

Generates test data in different forms

Find more data source plugins on grafana.com

☐ Docs ☐ Support Plans ☐ Community ☐ Grafana v6.3.2 (commit: 11dc114)

grafana-cli

-):\GRAFANA\grafana-enterprise-8.1.5.windows-amd64\grafana-8.1.5\bin>grafana-cli.exe plugins install grafana-simple-json-datasource
- -[32m]+[0m Downloaded grafana-simple-json-datasource v1.4.2 zip successfully
- -[32mPlease restart Grafana after installing plugins. Refer to Grafana documentation for instructions if necessary.

Name	Descripti	on	Status	Sta	rtup Type	Log On As
👊 Google Chrome El				Ma	anual	Local Syste
👊 Google Update Se	Keeps your			Au	tomatic (D	Local Syste
Google Update Se	Keeps your			Ma	anual	Local Syste
🤼 Grafana	Gra	Start			omatic	Local Syste
Group Policy Client	The				omatic	Local Syste
🥋 Health Key and Ce	Pro	Stop			nual	Local Syste
A HomeGroup Liste	Mal	Pause			nual	Local Syste
A HomeGroup Provi	Perf	rl Resume			nual	Local Service
HP LaserJet Service	A sy	Restart			omatic	Local Syste
AP SI Service					omatic	Local Syste
🥋 Human Interface	Ena	All Tasks		•	nual	Local Syste
🎎 IKE and AuthIP IPs	The	Refresh			nual	Local Syste
Intel(R) Content P	Inte				nual	Local Syste
🖳 Intel(R) Integrated	Inte	Properties			nual	Local Syste
🥋 Intel(R) Managem	Allc	Help			omatic (D	Local Syste
🦬 Intel(R) Managem	Inte				omatic (D	Local Syste

- D:\GRAFANA\grafana-enterprise-8.1.5.windows-amd64\grafana-8.1.5\bin>grafana-cli.
 exe plugins install grafana-simple-json-datasource
 -[32m□←[0m Downloaded grafana-simple-json-datasource v1.4.2 zip successfully
- -[32mPlease restart Grafana after installing plugins. Refer to Grafana documentation for instructions if necessary.

- D:\GRAFANA\grafana-enterprise-8.1.5.windows-amd64\grafana-8.1.5\bin>grafana-cliplugins install marcusolsson-csv-datasource
 +[32m0+[0m Downloaded marcusolsson-csv-datasource v0.6.1 zip successfully
- +[32mPlease restart Grafana after installing plugins. Refer to Grafana documentation for instructions if necessary.

Prometheus

- * Prometheus is an open source, metrics-based monitoring system.
- * Prometheus is primarily written in Go and licensed under the Apache 2.0 license.
- * In 2016 the Prometheus project became the second member of the Cloud Native Computing Foundation (CNCF).

Categories of Monitoring

- Receiving a HTTP request
- Sending a HTTP 400 response
- Entering a function
- Reaching the else of an if statement
- Leaving a function
- * A user logging in
- Writing data to disk
- Reading data from the network
- Requesting more memory from the kernel

Prometheus main features

- * A multidimensional data model with time series data identified by metric name and key/value pairs.
- * A flexible query language to leverage this dimensionality.
- * No reliance on distributed storage; single server nodes are autonomous.

Prometheus main components

- * The Prometheus server which scrapes and stores time series data.
- * Client libraries for instrumenting application code.
- * The Alert manager.
- * A push gateway for supporting short lived jobs (optional)

Prometheus data model

- * Prometheus fundamentally stores all data as time series: streams of time stamped values belonging to the same metric and the same set of labeled dimensions.
- * Besides stored time series, Prometheus may generate temporary derived time series as the result of queries.

Prometheus Architecture

Prometheus Alert Manager

- * The Promtheus Alertmanager handles alerts sent by client applications such as the Prometheus server.
- * It takes care of de-duplicating, grouping, and routing them to the correct receiver integration such as email, PagerDuty, or OpsGenie.

Prometheus Alert Manager

- * AlertManager is also capable of silencing and inhibition of alerts.
- * In this context, inhibition means suppressing notifications for certain alerts if certain other alerts are already firing.

promQL

- * PrometheusQueryLanguage(promQL)
- * Provides built in operators and functions
- vector-based calculations like Excel
- * Expressions over time-series vectors

Expression

Instant Vector-set of time series containing single sample for each time series, all sharing same timestamp.

Examples:-

```
http_request_count
http_request_count {status = "200"}
http_request_count {status != "200"}
```

- * Range Vector set of time series containing a range of data points over time for each series
- * http_request_count[5m]
- * scalar as a literal and as result of an expression
- * string only currently as a literal in an expression

Time Series Selectors

- * Instant Vector Selectors
- * num_nodes
- * num nodes{role="backend"}
- * Range Vector Selectors(s,m,h,d,w,y)
- * num_nodes{role="backend"}[5m]
- * Offset Modifier
- * num_nodes{role="backend"}[5m} offset 1w

Prometheus metric types

- * The four Prometheus metric types
- * Counters
- * Gauges
- * Histograms
- * Summaries

Node exporter

- * Set up and configured Node Exporter to collect Linux system metrics like CPU load and disk I/O.
- * Node Exporter will expose these as Prometheusstyle metrics.
- * Configured Prometheus to scrape Node Exporter metrics and optionally ship them to Grafana Cloud.

Node exporter

- * Set up a preconfigured and curated set of recording rules to cache frequent queries.
- * Imported Grafana dashboards to visualize your metrics data.
- * Set up Prometheus alerting rules to alert on your metrics data.

Installation

- Step 1: Setting up Node Exporter
- * In this step you'll set up Node Exporter on your Linux machine to collect and expose system metrics.
- * To begin, log in to your machine and download the relevant Node Exporter binary. In this guide we'll use linux-amd64 but you should choose the one corresponding to your system's OS and architecture:
- * wget https://github.com/prometheus/node_exporter/releases/d ownload/v1.1.1/node_exporter-1.1.1.linux-amd64.tar.gz
- * https://prometheus.io/docs/guides/node-exporter/

- Unzip the tarball and cd into the directory:
- tar xvfz node_exporter-*.*-amd64.tar.gz cd
 node_exporter-*.*-amd64 Run the Node Exporter binary:
- * ./node_exporter
- * If you see the above output, you successfully ran Node Exporter.
- * Node Exporter publishes your system metrics in Prometheus format on port 9100.
- * You can test this using curl. You will need to open a new SSH session or background the Node Exporter process to use curl.
- * curl http://localhost:9100/metrics

- * Step 2: Scraping Node Exporter using Prometheus
- Node Exporter is up and running on your machine, you can configure a Prometheus scrape job to collect and store Node Exporter metrics.
- * Add the following scrape job config to the scrape_configs section of your prometheus.yml configuration file:

```
- job_name:node static_configs:- targets:['linux machine IP address:9100']
```

Prometheus Push gateway

- * The Prometheus Pushgateway exists to allow ephemeral and batch jobs to expose their metrics to Prometheus.
- * Since these kinds of jobs may not exist long enough to be scraped, they can instead push their metrics to a Pushgateway.
- * The Pushgateway then exposes these metrics to Prometheus

pushgateway

- * The Pushgateway is explicitly not an aggregator or distributed counter but rather a metrics cache.
- * The metrics pushed are exactly the same as you would present for scraping in a permanently running program.
- * The Pushgateway is not an event store. While you can use Prometheus as a data source for Grafana annotations, tracking something like release events has to happen with some event-logging framework.

Install Prometheus Push Gateway by executing following commands

sudo useradd -M -r -s /bin/false pushgateway

wget

https://github.com/prometheus/pushgateway/releases/download/v1.2.o/pushgateway-1.2.o.linux-amd64.tar.gz

tar xvfz pushgateway-1.2.0.linux-amd64.tar.gz

sudo cp pushgateway-1.2.0.linux-amd64/pushgateway /usr/local/bin/

sudo chown pushgateway:pushgateway /usr/local/bin/pushgateway

/etc/systemd/system/pushgateway.service

- Create a systemd unit file named /etc/systemd/system/pushgateway.service with following content:
- * [Unit]
 Description=Prometheus Pushgateway
 Wants=network-online.target
 After=network-online.target[Service]
 User=pushgateway
 Group=pushgateway
 Type=simple
 ExecStart=/usr/local/bin/pushgateway[Install]
 WantedBy=multi-user.target

- * Start PushGateway service by executing following commands:
- * sudo systemctl enable pushgateway sudo systemctl start pushgateway sudo systemctl status pushgateway

- * To configure Pushgateway as a Scrape Target for Prometheus Server.
- * Add following lines at the end of /etc/prometheus/prometheus.yml file
- * job_name: 'Pushgateway' honor_labels: true static_configs: - targets: ['localhost:9091']

pushgateway build_info query in Prometheus expression browser.

Remove Graph

Add Graph

- * Service discovery is designed to integrate with the machine and service databases.
- * Prometheus 2.2.1 has support for Azure, Consul, DNS, EC2, OpenStack, File, Kubernetes, Marathon, Nerve, Serverset, and Triton service discovery in addition to the static discovery you have already seen.

- * A good service discovery mechanism will provide you with metadata.
- * Metadata is what you will convert into target labels.

MLflow

- * MLflow is an open source platform for managing machine learning workflows.
- * MLflow REST API allows you to create, list, and get experiments and runs, and allows you to log parameters, metrics, and artifacts.
- * It is used by MLOps teams and data scientists.
- * It Tracking ML experiments to record and compare model parameters, evaluate performance, and manage artifacts

Components of MLflow

- * Tracking
- * Projects
- * Models
- * Model Registry

MLflow

ML WORKFLOW AND PERSONAS

Reference

- * https://grafana.com/docs/
- * https://prometheus.io/docs/introduction/overview/
- * https://ml-ops.org/content/mlops-principles
- * https://docs.h2o.ai/mlops/

Thank you