Electricity Load and Price Forecasting with MATLAB®

Ameya Deoras

The Need for Accurate Load & Price Forecasts

- Utilities
- System Operators
- Generators
- Power Marketers

Case Study: Short-term Load Forecaster

Goal:

 Implement a tool for easy and accurate computation of dayahead system load forecast

Requirements:

- Easy to use interface
- Accurate predictive model

Challenges in Implementing a Load & Price Forecasting System

Traditional Approaches	Challenges
Off-the-shelf software	Inability to customize
Third-party consulting	Lack of transparency
In-house development with traditional languages	Long development time

Case Study: Short-term Load Forecaster

Goal:

 Implement a tool for easy and accurate computation of dayahead system load forecast

Requirements:

- Easy to use interface
- Accurate predictive model

Model Architecture

Step 1: Access Historical Data

Step 2: Select & Calibrate Model

Step 3: Run Model Live

Model Development Workflow

Modeling Tasks

Step 1: Access Historical Data

- Interactively import, visualize and explore data
- Auto-generate MATLAB code

Step 2: Select & Calibrate Model

- Leverage numerous built-in functions
- Focus on modeling not programming
- Capture as-you-go and automate the process

Step 3: Run Model Live

- Royalty-free deployment
- Point-and-click workflow

Forecasting Electricity Loads

Forecasting Electricity Prices

MATLAB Solutions

Traditional Approaches	Challenges
Off-the-shelf software	Inability to customize
Third-party consulting	Lack of transparency
In-house development with traditional languages	Long development time

MATLAB Solutions

Challenges	Solutions
Inability to customize	 Flexible modeling Complete development environment Libraries of customizable functions
Lack of transparency	White-box modelingViewable-source functionsInteractive debugging
Long development time	 Quick prototyping Focus on modeling not programming Point-and-click deployment

Additional Resources

- Upcoming webinars:
 - Sept 14: Analyze, Model and Simulate Energy Risk with MATLAB a SAP Integration at RWE
 - Sept 15: Investigating Reactive Power Management of Mixed-Technology Wind Farms Using Modeling and Simulation
 - and other recorded webinars, at http://mathworks.com/events

User stories:

- Horizon Wind Energy Develops Revenue Forecasting and Risk Analysis Tools for Wind Farms
- GAS NATURAL FENOSA Predicts Energy Supply and Demand Using MathWorks Tools
- and others, at http://mathworks.com/energy-production

Questions?