Introductory Computational Mathematics

Semester 2, 2022

Dr Elliot Carr

Tarang Janawalkar

Contents

Contents				
1	Preliminaries			
	1.1	Errors	3	
	1.2	Floati	ng Point Arithmetic	
		1.2.1	Representing Real Numbers as Floating Point Numbers	
		1.2.2	Converting between Floating Point Number Systems	
		1.2.3	IEEE Floating Point Standard	

1 Preliminaries

1.1 Errors

Errors in calculations are a common problem in numerical analysis. We can quantify the magnitude of such an error by two measures.

Definition 1.1 (Absolute and relative error). Let \tilde{x} be an approximation of x. Then the **absolute** error is given by

absolute error =
$$|\tilde{x} - x|$$
.

The **relative error** is given by

relative error =
$$\frac{|\tilde{x} - x|}{|x|}$$
.

It is important to realise that the absolute error can be misleading when comparing different sizes of errors, i.e., it is always small for small values of x and \tilde{x} .

1.2 Floating Point Arithmetic

The set of real numbers \mathbb{R} contains uncountably many elements. Computers have a limited number of bits, and can therefore only represent a small subset of these elements.

The most common approximation of real arithmetic used in computers is known as **floating point** arithmetic.

Definition 1.2 (Floating point number system). A floating point number system $\mathbb{F}(\beta, k, m, M)$ is a *finite subset* of the real number system characterised by the parameters:

- $\beta \in \mathbb{N}$: the base
- $k \in \mathbb{N}$: the number of digits in the significand
- $m \in \mathbb{Z}$: the minimum exponent
- $M \in \mathbb{Z}$: the maximum exponent

Definition 1.3 (Floating point numbers). The floating point numbers $f \in \mathbb{F}(\beta, k, m, M)$ are real numbers expressible in the form

$$f = \pm (d_1.d_2d_3 \dots d_k)_{\beta} \times \beta^e$$

where $e \in \mathbb{Z}$ is the **exponent** satisfying $m \leq e \leq M$. The quantity $d_1.d_2d_3...d_k$ is known as the **significand**, where d_i are base- β digits, with $d_1 \neq 0$ unless f = 0, to ensure a unique representation of f.

Computers primarily use floating point number systems with base $\beta = 2$ (binary), other common bases include $\beta = 10$ (decimal¹) and $\beta = 16$ (hexadecimal).

 $^{^1\}mathrm{Note}$ that for base-10, we do not need to include the subscript in the significand.

To illustrate the finiteness of the floating point number system, consider the following example:

$$\begin{split} \mathbb{F}\left(10,\ 3,\ -1,\ 1\right) &= \left\{0,\right. \\ &\qquad \qquad \pm 1.00 \times 10^{-1}, \quad \pm 1.01 \times 10^{-1}, \quad \dots, \quad \pm 9.99 \times 10^{-1}, \\ &\qquad \qquad \pm 1.00 \times 10^{0}, \quad \pm 1.01 \times 10^{0}, \quad \dots, \quad \pm 9.99 \times 10^{0}, \\ &\qquad \qquad \pm 1.00 \times 10^{1}, \quad \pm 1.01 \times 10^{1}, \quad \dots, \quad \pm 9.99 \times 10^{1} \right\} \\ &= \left\{0,\right. \\ &\qquad \qquad \pm 0.100, \quad \pm 0.101, \quad \dots, \quad \pm 0.999, \\ &\qquad \qquad \pm 1.00, \quad \pm 1.01, \quad \dots, \quad \pm 9.99, \\ &\qquad \qquad \pm 10.0, \quad \pm 10.1, \quad \dots, \quad \pm 9.99 \right\} \end{split}$$

Note that the numbers in this set are not equally spaced, (smaller spacing for smaller exponents).

Definition 1.4 (Overflow and underflow). Consider the value $x \in \mathbb{R}$, if x is too small in magnitude to be represented in \mathbb{F} , an **underflow** occurs which typically causes the number to be replaced by zero.

Similarly, if x is too large in magnitude to be represented in \mathbb{F} , an **overflow** occurs which typically causes the number to be replaced by infinity.

Corollary 1.2.0.1. The smallest and largest values (in magnitude) of \mathbb{F} are given by

$$\begin{split} & \min_{f \in \mathbb{F}} |f| = \beta^m \\ & \max_{f \in \mathbb{F}} |f| = \left(1 - \beta^{-k}\right) \beta^{M+1}. \end{split}$$

The cardinality of the positive elements in \mathbb{F} , is given by

$$|\{f \in \mathbb{F} : f > 0\}| = (M - m + 1)(\beta - 1)\beta^{k-1}$$

so that by including negative numbers and zero, the cardinality of \mathbb{F} is given by

$$|\mathbb{F}| = 2|\{f \in \mathbb{F} : f > 0\}| + 1.$$

1.2.1 Representing Real Numbers as Floating Point Numbers

If we wish to represent a real number 2 x that is not exactly representable in \mathbb{F} , we can **round** the number to the nearest *representable* number.

The error committed by this process is known as the **roundoff error**.

1.2.2 Converting between Floating Point Number Systems

Consider $fl: \mathbb{R} \to \mathbb{F}(\beta, k, m, M)$, defined as function which maps real numbers x to the nearest element in \mathbb{F} . To determine fl(x):

- 1. Express x in base β .
- 2. Express x in scientific form.

 $^{^{2}}x$ must satisfy min $(\mathbb{F}) \leq x \leq \max(\mathbb{F})$.

- 3. Verify that $m \leq e \leq M$:
 - If e > M, then $x = \infty$.
 - If e < m, then x = 0.
 - Otherwise, round the significand to k digits.

The relative error produced by rounding x to fl(x) is bounded according to

$$\frac{\left|x-fl\left(x\right)\right|}{\left|x\right|}\leq\frac{1}{2}\beta^{1-k}.$$

Definition 1.5 (Unit roundoff). The unit roundoff or machine precision u of a floating point number system $\mathbb{F}(\beta, k, m, M)$ is given by

$$u = \frac{1}{2}\beta^{1-k}.$$

1.2.3 IEEE Floating Point Standard

IEEE 754 is the standard for floating point arithmetic used by most modern computers. It is a binary format, with several variants. The most common variant is **IEEE double precision**, which is based on $\mathbb{F}(2, 53, -1022, 1023)$.

The basic properties of this format are summarised in the following table.

Unit roundoff	$u = 1.11 \times 10^{-16}$
Largest representable positive number	1.80×10^{308}
Smallest representable positive number	2.23×10^{-308}
Special values	$\pm 0,\pm \infty,\mathtt{NaN}$