1、基本指令集詳述

詳細的指令集說明如下列章節所述。Modbus RTU 為十六進位,在填寫時必須將十進位轉換成十六進位填入,包括暫存器位址等。協定中括弧內的指令位址為十進位,使用者在編寫指令時,必須將其轉換成十六進位,例如括弧內位址為 036,轉換成十六進位為 24。

1.1 模組位址(000)

當上位機連接 2 個或 2 個以上放大器/儀表時,必須將每個放大器/儀表設定成不同的位址。 指令格式: 01 10 00 00 00 01 02 00 02 27 91(使用前需解鎖)位址由 01 改為 02 時代碼格式

模組位址	功能代碼	暫存器	起始位址	暫存器	器數量	位元組數	暫存器	肾資料	CRC16	校驗
01	10	00	00	00	01	02	00	02	27	91

返回格式: 01 10 00 00 00 01 01 C9

模組位址	功能代碼	暫存器起		暫存器	器數量	CRC16	校驗
01	10	00	00	00	01	01	C9

1.2 串列傳輸速率設定(001)

放大器出廠時出廠串列傳輸速率為 0x03:9600, 修改為 0x07:115200,輸入格式如下

指令格式: 01 10 00 01 00 01 02 00 07 E6 43 , 手動發送指令後將系統串列傳輸速率選擇

到 115200 (使用前需解鎖)

模組位址	功能代碼	暫存器	起始位址	暫存器	器數量	位元組數	起數 暫存器資料 CRC16 校驗		校驗	
01	10	00	01	00	01	02	00	07	E6	43

返回格式: 01 10 00 01 00 01 50 09 (應答的資料是在放大器/儀表切換成新的串列傳輸速率後返回的,如果上位機未及時切換到新的串列傳輸速率,則無法收到資料)

模組位址	功能代碼	暫存器起	巴始位址	暫存器	器數量	CRC16 校驗		
01	10	00	01	00	01	50	09	

1.3 數據框架格式(002)

放大器出廠時預設為 05 (8 位元資料位元,無校驗,1 位元停止位元) 選項格式,修改為 6 (8 位元資料位元,無校驗,2 位元停止位元) 選項時

指令格式: 01 10 00 02 00 01 02 00 06 27 B0,手動發送指令後將校驗位元、資料位元、 停止位元在上位機上設定成 4 中內容(使用前需解鎖)

模組位址	功能代碼	暫存器	起始位址	暫存器	暫存器數量 位元組數		暫存器	肾資料	CRC16	校驗
01	10	00	02	00	01	02	00	06	27	В0

返回格式: 01 10 00 02 00 01 A0 09 (應答的資料是在轉換器切換成新的資料框架格式後返回的,如果上位機未及時切換到新的資料框架格式,則無法收到資料)

模組位址	功能代碼	暫存器起	巴始位址	暫存器	器數量	CRC16	校驗
01	10	00	02	00	01	A0	09

1.4 協議類型設定(003)

放大器/儀表出廠協定為 Modbus RTU,如將協定改為自由協定(使用前需解鎖)

指令格式: 01 10 00 03 00 01 02 00 00 A6 63

模組位址	功能代碼	暫存器	起始位址	暫存器	器數量	位元組數	暫存器	器資料	CRC16	校驗
01	10	00	03	00	01	02	00	00	A6	63

返回格式: 01 10 00 03 00 01 F1 C9

模組位址	功能代碼	暫存器起	已始位址	暫存器	器數量	CRC16	校驗
01	10	00	03	00	01	F1	C9

00 (自由協議), 01 (Modbus RTU), 02 (ASCII), 協議類型切換後, 保留之前修改的重

量校正參數和其他修改的參數,但數字框架格式將恢復成預設值。

1.5 指令應答延時設定(004)

當延時 10ms 時,轉換成十六進位為 0A。

指令格式: 01 10 00 04 00 01 02 00 0A 27 D3

模組位址	功能代碼	暫存器	起始位址	暫存器	器數量	位元組數	暫存器	器資料	CRC16	校驗
01	10	00	04	00	01	02	00	0A	27	D3

返回格式:01 10 00 04 00 01 40 08

模組位址	功能代碼	暫存器起	巴始位址	暫存器	器數量	CRC16	校驗
01	10	00	04	00	01	40	08

單位為 m Sec.,應答延時用於 RS485 通信,因為 RS485 是半雙工,只能發或收,不能同時發收。有些主機收發切換比較慢,導致應答指令遺失,所以通過合理設定應答延時時間可避免指令遺失。

1.6 鎖定/解鎖系統組態(005)

指令格式: 01 10 00 05 00 01 02 5A A5 5C DE

模組位址	功能代碼	暫存器	起始位址	暫存器	器數量	位元組數	暫存器	器資料	CRC1	6校驗
01	10	00	05	00	01	02	5A	A5	5C	DE

返回格式: 01 10 00 05 00 01 11 C8

模組位址	功能代碼	暫存器起	巴始位址	暫存器	器數量	CRC16	校驗
01	10	00	05	00	01	11	C8

防止模組使用過程中收到錯誤指令導致系統組態被意外修改。一旦配置被鎖定,模組將無法 接收外部串口命令進行修改,直到鎖定被解除。

包括:模組位址、串列傳輸速率、數位框架格式、協定類型、恢復出廠設定等暫存器。寫入0x5AA5解鎖系統組態;寫入其它任何值鎖定系統組態;讀此暫存器將返回0。

※放大器/儀表上電後預設為鎖定狀態。

1.7 軟體版本(006)

返回模組內部程式版本號給上位機,每個放大器/儀表的版本因型號和出廠時間不同而不同。

指令格式: 01 03 00 06 00 01 64 0B

ĺ	模組位址	功能代碼	暫存器起	暫存器起始位址		器數量	CRC16 校驗		
	01	03	00	06	00	01	64	0B	

返回格式: 01 03 02 01 6A 39 FB(016A 為版本號,轉換成十進位為 362,即 V3.62 版本)

模組位址	功能代碼	位元組數	第一組暫在	第一組暫存器資料		校驗
01	03	02	01	6A	39	FB

1.8 恢復出廠設定(007)

指令格式: 01 10 00 07 00 01 02 00 37 E6 31

模組位址	功能代碼	暫存器	起始位址	暫存智	暫存器數量		數 暫存器資料		CRC16 校驗	
01	10	00	07	00	01	02	00	37	E6	31

返回格式: 01 10 00 07 00 01 B0 08

模組位址	功能代碼	暫存器起	巴始位址	暫存器	器數量	CRC16 校驗		
01	10	00	07	00	01	В0	08	Ì

注意此操作將刪除放大器內部所有用戶設定參數和重量校正結果,並且不可恢復,請慎用!

1.9 模組狀態(008)

Bit15---Bit12:全為 0 Bit11:0 峰值未檢測/1 檢測

Bit10:0 谷值未檢測/1 檢測 Bit9:0 正常/超載(V1.3)

Bit8:0 標準/1 智慧感測器 Bit7:0 非零/1 零點

Bit6:0 正常/1 溢出 Bit5:0 穩定/1 不穩

Bit4:0 開機未歸零/1 開機已歸零

Bit3:0 正號/1 負號 Bit2-0:小數點位置

(V1.1 版軟體以上支持)

指令格式: 01 03 00 08 00 01 05 C8

模組位址	功能代碼	暫存器起始位址		暫存器	器數量	CRC16 校驗		
01	03	00	08	00	01	05	C8	

返回格式: 01 03 02 08 02 3E 45

模組位址	功能代碼	位元組數	第一組暫在	字器資料	CRC16	校驗
01	03	02	80	02	3E	45

返回資料為 0802, 0802 為十六進位資料,將 0802 轉換成二進位,得到的資料為 000010000000010,

	Bit15-Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2-0
二進位資料	0000	1	0	0	0	0	0	0	0	0	010
對應十進位	0000	1	0	0	0	0	0	0	0	0	2
對應狀態		檢測	谷值未	正常	常規	非零	正常	穩定	開機未	正號	2位小
			檢測						歸零		數點

1.10 讀取測量值(030)

指令格式: 01 03 00 1E 00 02 A4 0D

模組位址	功能代碼	暫存器起	暫存器起始位址		器數量	CRC16 校驗		
01	03	00	1E	00	02	A4	0D	

返回格式: 01 03 04 00 00 01 62 7A 4A (資料根據實際情況變化)

模組位址	功能代碼	位元組數	第一組暫不	字器資料	第二組暫存	字器資料	CRC16	校驗
01	03	04	00	00	01	62	7A	4A

測量值為 AD 內碼值經零點和增益重量校正並轉換的值。

1.11 AD 轉換速度(032)

不同版本放大器的預設 AD 轉換速度不同,高速版 AD 轉換速度為 0x07:800,中速版為 0x04:120,低速版為 0x02:640,以低速版為例,當預設速度 0x02:640 改為 0x03:1280 時

指令格式: 01 10 00 20 00 01 02 00 02 20 F1

模組位址	功能代碼	暫存器	起始位址	暫存器	暫存器數量		暫存器資料		CRC16 校驗		
01	10	00	20	00	01	02	00	02	20	F1	

返回格式:01 10 00 20 00 01 00 03

模組位址	功能代碼	暫存器起始位址		暫存器	器數量	CRC16 校驗		
01	10	00	20	00	01	00	03	

類比信號到數位信號的轉換,簡稱 AD 轉換, AD 轉換速度越快,取樣精度越低。

AD 採樣速率就是秤重設備對秤台上物品重量的檢測速度,通常在每秒幾次至幾百次之間,高速的秤重應用,可達幾千次,對於一個既定的秤重設備,AD 速率越快,AD 檢測的資料精度會相對越差,而 AD 速率越慢,AD 檢測的精度會相對越高。因此應根據實秤重對速率的需要,合理選擇能滿足需要的最低檔的速率進行 AD 取樣,能最大限度提高檢測精度,從而在速度和精度上取得最佳平衡點。

1.12 拉壓雙向(033)

將雙向改為單向時

指令格式: 01 10 00 21 00 01 02 00 01 61 21

模組位址	功能代碼	暫存器	起始位址	暫存器	暫存器數量		暫存器	肾資料	CRC16 校驗	
01	10	00	21	00	01	02	00	01	61	21

返回格式: 01 10 00 21 00 01 51 C3

模組位址	功能代碼	暫存器起	巴始位址	暫存器	器數量	CRC16 校驗		
01	10	00	21	00	01	51	C3	

設定極性: 0x00:雙向(出廠); 0x01:單向

1.13 濾波類型(034)

出廠為 09:滑動平均濾波+一階濾波,改為 08:中位值濾波+一階濾波時

指令格式: 01 10 00 22 00 01 02 00 08 A1 14

模組位址	功能代碼	暫存器	起始位址	暫存器	器數量	位元組數	暫存器	肾 資料	CRC1	6 校驗
01	10	00	22	00	01	02	00	80	A1	14

返回格式: 01 10 00 22 00 01 A1 C3

模組位地	业 功能	能代碼 曹	暫存器起	始位址	暫存器	器數量	CRC16 校驗		
01		10	00	22	00	01	A1	C3	

根據不同應用場合選擇合適的濾波方式

0x00:不使用 0x01:平均值濾波

0x02:中位值濾波 0x03:一階濾波

0x04:滑動平均濾波 0x05:中位值平均濾波

0x06:滑動中位值平均濾波

0x07:平均值濾波 + 一階濾波

0x08:中位值濾波 + 一階濾波

0x09:滑動平均濾波 + 一階濾波

0x0A:中位值平均濾波 + 一階濾波

1.14 濾波強度(035)

濾波強度改為 10 時

指令格式: 01 10 00 23 00 01 02 00 10 A0 CF

模組位址	功能代碼	暫存器	起始位址	暫存器數量		位元組數	暫存器	器資料	CRC16 校驗		
01	10	00	23	00	01	02	00	10	A0	CF	

返回格式: 01 10 00 23 00 01 F0 03

	模組位址	功能代碼	暫存器起	巴始位址	暫存器	器數量	CRC16 校驗		
Ī	01	10	00	23	00	01	F0	03	

範圍:0~50,數字越大,濾波越強

濾波強度: AD 取樣後的資料,由於各種原因,往往會混雜各種來自於不同原因的雜訊在其中,為了得到一個盡可能接近真實的秤重資料,秤重設備會採用數位濾波的方式進行資料信號處理,而 AD 濾波強度,是這個資料處理的一個重要參數,一般地,濾波強度越小,資料輸出的信號回應速度越快,但是對雜訊濾除的效果也越差;而濾波強度越大,則輸出的信號回應速度越慢,但是對於雜訊濾除的效果會越好,在回應速度和濾波效果之間,合理取捨,尋找最佳平衡點,是用好一個秤重設備關鍵的一步,這個沒有確定的標準,需要使用者根據現場情況,做一個權衡取捨,究竟是速度優先,還是穩定優先,根據客戶實際需要而定。

1.15 零點內碼值(036)

指令格式: 01 10 00 24 00 02 04 7F FF FF FF 10 D8

模組位址	功能代碼	暫存器起始	暫存器數量	位元組	第一組暫存器資	第二組暫存器資	CRC16 校
		位址		數	料	料	驗

01	10	00	24	00	02	04	7F	FF	FF	FF	10	D8

返回格式: 01 10 00 24 00 02 01 C3

模組位址	功能代碼	暫存器起	暫存器起始位址		器數量	CRC16 校驗		
01	10	00	24	00	02	01	C3	

零點對應的 AD 內碼值;範圍:-8000000~8000000

寫入:0x7ffffff 將當前內碼設為零點內碼

零點就是秤重的基準點,在這個基準上增減的重量就是實際秤重的重量。<mark>零點重量校正</mark>,顧

名思義,就是在重量校正的時候,作為基準記錄的一個零點,然後在此基礎上做的重量校正。

1.16 零點砝碼重量(038)

指令格式: 01 10 00 26 00 02 04 00 00 00 00 71 9D

模組位址	功能代碼	暫存器	器起始	暫存器	子數量	位元組	第一組書	「存器資	第二組曹	有容器資	CRC1	6 校
		位	址			數	米	斗	米	斗	驗	į
01	10	00	26	00	02	04	00	00	00	00	71	9D

返回格式: 01 10 00 26 00 02 A0 03

	模組位址	功能代碼	暫存器起	巴始位址	暫存器	器數量	CRC16 校驗		
Ī	01	10	00	26	00	02	A0	03	

1.17 增益內碼值(040)

指令格式: 01 10 00 28 00 02 04 7F FF FF FF 45 D8

模組位址	功能代碼	暫存	器起始	暫存器	暫存器數量 位元組 第		第一組書	有容器資	第二組曹	第二組暫存器資 料		6校
		位	址			數	數料		第二組暫存器資 料 FF FF		驗	į
01	10	00	28	00	02	04	7F	FF	FF	FF	45	D8

返回格式: 01 10 00 28 00 02 C1 C0

模組位址	功能代碼	暫存器起	巴始位址	暫存器	器數量	CRC16 校驗		
01	10	00	28	00	02	C1	C0	

增益對應的 AD 內碼值;範圍:-8000000~8000000

寫入:0x7ffffff 將當前內碼作為增益內碼

1.18 增益砝碼重量(042)

指令格式: 01 10 00 2A 00 02 04 4E 20 27 10 16 7D

模組位址	功能代碼	暫存器	器起始	暫存器	數量	位元組	第一組曹	香存器資	第二組暫存器資		CRC16 校	
		位	址			數	米	斗	料		驗	ŧ
01	10	00	2A	00	02	04	4E	20	27	10	16	7D

返回格式: 01 10 00 2A 00 02 60 00

模組位址	功能代碼	暫存器起	暫存器起始位址 暫存		器數量	CRC16 校驗		
01	10	00	2A	00	02	60	00	

放上砝碼,輸入砝碼重量值,比如放 1KG 砝碼到 10KG 秤重感應器上,設定砝碼重量值為 1000。當重量校正好後,放置 2KG 的砝碼到秤重感應器上,讀取的測量值為 2000。

1.19 讀取 AD 內碼(044)

指令格式: 01 03 00 2C 00 02 05 C2

模組位址	功能代碼	暫存器起	巴始位址	暫存器	器數量	CRC1	6 校驗
01	03	00	2C	00	02	05	C2

坂回格式: 01 03 04 00 19 3B 67 79 2E (資料根據實際情況變化)

~		()(111/4/3/2/10)								
模組位址	功能代碼	位元組數	第一組暫在	存器資料	第二組暫石	字器資料	CRC16	校驗		
01	03	04	00	19	3B	67	79	2E		

模組返回當前 AD 內碼值給主機。

1.20 感測器靈敏度(046)

如感測器的靈敏度為 2.000mv/V,則寫入 20000 (小數點後保留 4 位),20000 轉成十六進 位為 4E20。

指令格式: 01 10 00 2E 00 02 04 00 00 4E 20 44 43

模組位址	功能代碼	暫存	器起始	暫存器	影數量	位元組	第一組書	有容器資	第二組曹	有器資	CRC16 校	
		位	址			數	米	斗	料		驗	į
01	10	00	2E	00	02	04	00	00	4E	20	44	43

返回格式: 01 10 00 2E 00 02 21 C1

	模組位址	功能代碼	暫存器起始位址		暫存器	器數量	CRC16 校驗		
Ī	01	10	00	2E	00	02	21	C1	

1.21 感測器量程(048)

如感測器量程為 100kg, 要精確到 1g, 則輸入 100000, 100000 轉成十六進位為 186A0

指令格式: 01 10 00 30 00 02 04 00 01 86 A0 C3 63

模組位址	功能代碼	暫存器	器起始	暫存器	器數量	位元組	第一組曹	有器資	第二組曹	有器資	CRC16 核	
		位	址			數	米	斗	米	斗	驗	į
01	10	00	30	00	02	04	00	01	86	A0	C3	63

返回格式: 01 10 00 30 00 02 41 C7

模組位址	功能代碼	暫存器起始位址		暫存器	器數量	CRC16 校驗		
01	10	00	30	00	02	41	C7	

1.22 多點修正關閉(060)

指令格式: 01 10 00 3C 00 01 02 00 01 62 AC

模組位址	功能代碼	暫存器起	已始位址	暫存器數量		位元組數	暫存署	暫存器資料		6 校驗
01	10	00	3C	00	01	02	00	01	62	AC

返回格式: 01 10 00 3C 00 01 C1 C5

模組位址	暫存器起始位址		暫存器	器數量	CRC16 校驗			
01	00	3C	00	01	C1	C5		

此暫存器為只寫,寫入任何非零值關閉多點修正,讀此暫存器將返回0

1.23 多點修正數量(061)

指令格式: 01 03 00 3D 00 01 15 C6

模組位址	功能代碼	暫存器起	暫存器起始位址		器數量	CRC16 校驗		
01	03	00	3D	00	01	15	C6	

返回格式: 01 03 02 00 00 B8 44

模組位址	功能代碼	位元組數	暫存器	資料	CRC16	校驗
01	03	02	00	00	B4	44

此暫存器為唯讀,讀取此暫存器返回內部多點修正的數量,寫此暫存器無效

1.24 第 N 點內碼值(062)

指令格式: 01 10 00 3E 00 02 04 7F FF FF FF 59 63

模組位址	功能代碼	暫存	器起始	暫存器	器數量	位元組	第一組曹	有器資	第二組曹	有器資	CRC16 校	
		位	址			數	米	斗	料		驗	į
01	10	00	3E	00	02	04	7F	FF	FF	FF	59	63

返回格式: 01 10 00 3E 00 02 20 04

模組位址	功能代碼	暫存器起始位址	暫存器數量	CRC16 校驗
> (\-12 \data \	79/401 4 . 0		13 00 200	12 5 5 7 7

01	10	00	3F	00	02	20	04
O I	10	00	J_	00	02	20	U -

第 N 點對應的 AD 內碼值;範圍:-8000000~8000000;如果對本暫存器寫入 0x7fffffff,則用當前的 AD 內碼值替代;

1.25 第 N 點重量值(064)

指令格式: 01 10 00 40 00 02 04 00 01 00 00 A6 5F

模組位址	功能代碼	暫存得	器起始	暫存器	器數量	位元組	第一組曹	哲存器資	第二組曹	哲存器資	CRC16 校	
		位	址			數	米	斗	料		驗	È
01	10	00	40	00	02	04	00	01	00	02	A6	5F

返回格式:01 10 00 40 00 02 40 1C

模組位址	功能代碼	暫存器起	巴始位址	暫存器	器數量	CRC16 校驗		
01	10	00	40	00	02	40	1C	

第 N 點對應的測量值範圍:-8000000~8000000;

1.26 插入修正值(066)

指令格式: 01 10 00 42 00 01 02 00 01 68 B2

模組位址	功能代碼	暫存器起	已始位址	暫存器數量		位元組數	第一組曹	有器資料	CRC16 校驗	
01	10	00	42	00	01	02	00	01	68	B2

返回格式: 01 10 00 42 00 01 A1 DD

	模組位址	功能代碼	暫存器起	已始位址	暫存器	器數量	CRC16 校驗		
Ī	01	10	00	42	00	01	A1	DD	

先將AD內碼寫入第N點內碼值暫存器;再寫N點重量值到暫存器;然後寫0x01到本暫存器,模組會將資料插入到內部的多點修正資料表中;資料表最多支持50個點(基本型為10點),暫存器為只寫;讀取返回0

1.27 讀取毛重(080)

指令格式: 01 03 00 50 00 02 C4 1A

模組位址	功能代碼	暫存器起	巴始位址	暫存器	器數量	CRC16 校驗		
01	03	00	50	00	02	C4	1A	

返回格式: 01 03 04 00 00 00 84 FA 50 (資料根據實際情況變化)

模組位址	功能代碼	位元組數	第一組暫在	字器資料	第二組暫存	字器資料	CRC16	校驗
01	03	04	00	00	00	84	FA	50

毛重=淨重+扣重

1.28 讀取淨重(082)

指令格式: 01 03 00 52 00 02 65 DA

模組位址	功能代碼	暫存器走	已始位址	暫存器	器數量	CRC16 校驗		
01	03	00	52	00	02	65	DA	

返回格式: 01 03 04 FF FF C1 EF EA 0B(資料根據實際情況變化)

模組位址	功能代碼	位元組數	第一組暫在	存器資料	第二組暫存	字器資料	CRC16 校驗		
01	03	04	FF	FF	C1	EF	EA	ОВ	

淨重=毛重-扣重

1.29 扣重(084)

指令格式: 01 10 00 54 00 02 04 00 00 00 64 F6 8B (假設扣重為 100)

模組位址	功能代碼	暫存	器起始	暫存器	器數量	位元組	第一組曹	首存器資	第二組曹	有器資	CRC1	6校
		位	址			數	米	斗	料		驗	ŧ
01	10	00	54	00	02	04	00	00	00	64	F6	8B

返回格式:01 10 00 54 00 02 00 18

模組位址	功能代碼	暫存器起	暫存器起始位址		器數量	CRC16 校驗		
01	10	00	54	00	02	00	18	

扣重值;範圍:-8000000~8000000;寫入 0x7fffffff 執行自動扣重

當設備秤重的物品有包裝箱時,如果我們只需要秤重物品自身的重量,就要把包裝物作為扣重預先去除。可以把包裝實物直接放在秤台上,然後扣重,寫入 0x7ffffff 執行自動扣重。如果包裝不便分開,而且已知包裝的重量,則可以通過發送指令把扣重重量輸入秤重設備,這個就是所謂的數字扣重。

1.30 設定最大秤量(086)

指令格式: 01 10 00 56 00 02 04 00 00 27 10 6C 85 (假設輸入 10000)

模組位址	功能代碼	暫存	器起始	暫存器	器數量	位元組	第一組書	有器資	第二組暫存器資		CRC1	6 校
		位	址			數	米	斗	米	斗	驗	į
01	10	00	56	00	02	04	00	00	27	10	6C	85

返回格式: 01 10 00 56 00 02 A1 D8

模組位址	功能代碼	暫存器起	巴始位址	暫存器數量		CRC16 校驗		
01	10	00	56	00	02	A1	D8	

舉例說明:有一個秤重設備,它最大能秤重的重量是 100.00KG,秤重時數位跳動變化的最小數位是 0.02KG,那麼這個秤的最大秤重,就是 100.00KG,也就是說 100.00KG 是這個秤能秤的最大秤量,最小刻度就是 0.02KG,使用秤台功能前需先設定最大秤量和最小刻度。

1.31 秤台最小刻度(088)

指令格式: 01 10 00 58 00 01 02 00 09 6B 4E(設定為 0x09:0.1)

模組位址	功能代碼	暫存	器起始位址	暫存器	數量	位元組數	暫存智	肾	CRC16 校驗	
01	10	00	58	00	01	02	00	09	6B	4E

返回格式: 01 10 00 58 00 01 80 1A

模組位址	功能代碼	暫存器起	暫存器起始位址		器數量	CRC16 校驗		
01	10	00	58	00	01	80	1A	

秤台最小刻度;使用秤台功能前需先設定此值。

0x00:0.0001 0x01:0.0002 0x02:0x0005 0x03:0.001 0x04:0.002 0x05:0.005 0x06:0.01 0x07:0.02 0x08;0.05 0x09:0.1 0x0A:0.2 0x0B:0.5 0x0C:1 0x0D:2 0x0E:5 0x0F:10 0x11:50 0x10:20

1.32 手動歸零範圍(093)

指令格式: 01 10 00 5D 00 01 02 00 32 2A C8 (設定 50%)

模組位址	功能代碼	暫存器趙	已始位址	暫存	暫存器數量		暫存器	肾資料	CRC16 校驗	
01	10	00	5D	00	01	02	00	32	2A	C8

返回格式: 01 10 00 5D 00 01 90 1B

模組位址	功能代碼	暫存器起始位址		暫存器	器數量	CRC16 校驗		
01	10	00	5D	00	01	90	1B	

手動歸零就是通過外部按鍵或者命令讓秤重設備把當前的秤重資料直接作為當前零點,只要當前秤重的重量值不超過手動歸零的範圍,執行手動歸零時秤重設備就會立即顯示歸零。

1.33 執行手動歸零(094)

指令格式: 01 10 00 5E 00 01 02 00 01 6A EE

模組位址	功能代碼	暫存器趙	已始位址	暫存	器數量	位元組數	暫存器	暫存器資料		6 校驗
01	10	00	5E	00	01	02	00	01	6A	EE

返回格式: 01 10 00 5E 00 01 60 1B

模組位址	功能代碼	暫存器起始位址		暫存器	器數量	CRC16 校驗		
01	10	00	5E	00	01	60	1B	

多通道放大器同時歸零時,指令為 01 10 00 5E 00 01 02 00 FF EB 6E

模組位址	功能代碼	暫存器起	已始位址	暫存	器數量	位元組數	暫存器	暫存器資料		6 校驗
01	10	00	5E	00	01	02	00	FF	EB	6E

返回格式: 01 10 00 5E 00 01 60 1B

模組位址	功能代碼	暫存器起始位址		暫存器	器數量	CRC16 校驗		
01	10	00	5E	00	01	60	1B	

1.34 開機歸零範圍(095)

指令格式: 01 10 00 5F 00 01 02 00 64 AB 14 (設定 100%)

模組位址	功能代碼	暫存器起	2始位址	暫存	器數量	數量 位元組數		暫存器資料		CRC16 校驗	
01	10	00	5F	00	01	02	00	64	AB	14	

返回格式: 01 10 00 5F 00 01 31 DB

模組位址	功能代碼	暫存器起	巴始位址	暫存器	器數量	CRC16 校驗		
01	10	00	5F	00	01	31	DB	

1.35 設定自動零點追蹤範圍(096)

指令格式: 01 10 00 60 00 01 02 00 64 AE 1B(設定 100d 時)

模組位址	功能代碼	暫存器起	2始位址	暫存	器數量	位元組數	暫存器		CRC1	6 校驗
01	10	00	60	00	01	02	00	64	ΑE	1B

返回格式: 01 10 00 60 00 01 01 D7

模組位址	功能代碼	暫存器起始位址		暫存器	器數量	CRC16 校驗		
01	10	00	60	00	01	01	D7	

參數範圍:0~10000;單位:0.1d;設定0時關閉零點追蹤功能

開機使用中的秤重設備,會因為 AD 溫飄, 感應器溫飄蠕變等各種原因, AD 信號輸出會發生漂移現象,設備內的零點追蹤校準程式會對這個非常緩慢的漂移做自動追蹤,抵消這個漂移,但是這個零點追蹤的方式是有速度和範圍的。

1.36 設定自動零點追蹤時間(097)

指令格式: 01 10 00 61 00 01 02 00 0A 2E 26 (設定 1 Sec.時, 1s=10*0.1 Sec.)

模組位址	功能代碼	暫存器起	已始位址	暫存	器數量	位元組數	暫存器	肾資料	CRC1	6 校驗
01	10	00	61	00	01	02	00	0A	2E	26

返回格式:01 10 00 61 00 01 50 17

模組位址	功能代碼	暫存器起	巴始位址	暫存器	器數量	CRC16	校驗
01	10	00	61	00	01	50	17

1.37 判穩範圍(098)

指令格式: 01 10 00 62 00 01 02 00 64 AF F9 (設定 100d 時)

模組位址	功能代碼	暫存器起	已始位址	暫存	器數量	位元組數	暫存器	肾資料	CRC1	6 校驗
01	10	00	62	00	01	02	00	64	AF	F9,1S =

返回格式: 01 10 00 62 00 01 A0 17

	模組位址	功能代碼	暫存器誌	巴始位址	暫存器	器數量	CRC16 校驗		
Ī	01	10	00	62	00	01	A0	17	

1.38 判穩時間(099)

指令格式: 01 10 00 63 00 01 02 00 0A 2F C4 (設定 1 Sec.時, 1s=10*0.1 Sec.)

模組位址	功能代碼	暫存器起	2始位址	暫存	器數量	位元組數	暫存器資料		CRC16 校驗	
01	10	00	63	00	01	02	00	0A	2F	C4

返回格式: 01 10 00 63 00 01 F1 D7

模組位址	功能代碼	暫存器起	巴始位址	暫存器	器數量	CRC16	校驗	
01	10	00	63	00	01	F1	D7	

1.39 零點範圍(100)

指令格式: 01 10 00 64 00 02 04 00 00 0A 74 73 (設定 10 時)

模組位址	功能代碼	暫存器起	2始位址	暫存	器數量	位元組數	位元組數 暫存器資料		CRC16 校驗	
01	10	00	64	00	02	04	00	0A	74	73

返回格式: 01 10 00 64 00 02 00 17

模組位址	功能代碼	暫存器起	巴始位址	暫存器	器數量	CRC1	6 校驗
01	10	00	64	00	02	00	17

1.40 蠕變追蹤範圍(102)

指令格式: 01 10 00 66 00 01 02 00 64 AE 7D (設定 10d 時)

模組位址	功能代碼	暫存器起	已始位址	暫存	器數量	位元組數	暫存器	肾資料	CRC16 校驗	
01	10	00	66	00	01	02	00	64	AE	7D

返回格式: 01 10 00 66 00 01 E1 D6

模組位址	功能代碼	暫存器起	巴始位址	暫存器	器數量	CRC16 校驗		
01	10	00	66	00	01	E1	D6	

1.41 蠕變追蹤時間(103)

指令格式: 01 10 00 67 00 01 02 00 0A 2E 40 (設定 1s 時)

模組位址	功能代碼	暫存器起	已始位址	暫存	器數量	位元組數	暫存器	肾資料	CRC16 校驗	
01	10	00	67	00	01	02	00	0A	2E	40

返回格式:01 10 00 67 00 01 B0 16

模組位址	功能代碼	暫存器起	巴始位址	暫存器數量		CRC1	6 校驗
01	10	00	67	00	01	В0	16

1.42 重量單位(104)

指令格式: 01 10 00 68 00 01 02 00 01 6F 78 (設定 1-g 時)

模組位址	功能代碼	暫存器起	2始位址	暫存	器數量	位元組數	暫存器	肾資料	CRC16 校驗	
01	10	00	68	00	01	02	00	01	6F	78

返回格式: 01 10 00 68 00 01 80 15

模組位址	功能代碼	暫存器起	巴始位址	暫存器	器數量	CRC1	6 校驗
01	10	00	68	00	01	80	15

1.43 類比輸出類型(130)

指令格式: 01 10 00 82 00 01 02 00 00 B8 72 (設定 4~20mA 時)

模組位址	功能代碼	暫存器起	2始位址	暫存	器數量	位元組數	暫存器	肾資料	CRC1	6 校驗
01	10	00	82	00	01	02	00	00	B8	72

返回格式: 01 10 00 82 00 01 A1 E1

模組位址	功能代碼	暫存器起	巴始位址	暫存器	器數量	CRC1	6 校驗
01	10	00	82	00	01	A1	E1

1.44 輸出資料類型(131)

指令格式: 01 10 00 83 00 01 02 00 01 78 63 (設定毛重值時)

模組位址	功能代碼	暫存器起	出始位址	暫存	器數量	位元組數	暫存器	肾 資料	CRC1	6 校驗
01	10	00	83	00	01	02	00	01	78	63

返回格式: 01 10 00 83 00 01 F0 21

模組位址	功能代碼	暫存器起	已始位址	暫存器	器數量	CRC1	6 校驗
01	10	00	83	00	01	F0	21

1.45 第一點類比輸出量(132)

指令格式: 01 10 00 84 00 01 02 0F A0 BD 9C (設定 4mA 時,填 4000)

模組位址	功能代碼	暫存器趙	已始位址	暫存	器數量	位元組數	暫存器	肾資料	CRC1	6 校驗
01	10	00	84	00	01	02	0F	A0	BD	9C

返回格式: 01 10 00 84 00 01 41 E0

模組位址	功能代碼	暫存器起	巴始位址	暫存器	器數量	CRC1	6 校驗
01	10	00	84	00	01	41	E0

1.46 第一點類比輸出量修正(133)

指令格式: 01 10 00 85 00 01 02 00 64 B8 2E (設定 0.1mA 時,填 100)

模組位址	功能代碼	暫存器趙	已始位址	暫存	器數量	位元組數	暫存器	器資料	CRC16 校驗	
01	10	00	85	00	01	02	00	64	B8	2E

返回格式: 01 10 00 85 00 01 10 20

模組位址	功能代碼	暫存器起	巴始位址	暫存器	器數量	CRC1	6 校驗
01	10	00	85	00	01	10	20

1.47 第一點重量值(134)

指令格式: 01 10 00 86 00 02 04 00 00 00 7B E5 (設定滿量程 0g 時)

模組位址	功能代碼	暫存器誌	巴始位址	暫存器數量		位元組	第一組	第一組暫存器		第二組暫存器		6 校驗
						數	資	料	資	料		
01	10	00	86	00	02	04	00	00	00	00	7B	E5

返回格式: 01 10 00 86 00 02 A0 21

模組位址	功能代碼	暫存器起	巴始位址	暫存器	器數量	CRC1	6 校驗
01	10	00	86	00	02	A0	21

1.48 第二點類比輸出量(136)

指令格式: 01 10 00 88 00 01 02 4E 20 8C A0 (設定滿量程 20mA 時,填 20000)

模組位址	功能代碼	暫存器起	已始位址	暫存器數量		位元組數	暫存器	肾資料	CRC16 校驗	
01	10	00	88	00	01	02	4E	20	8C	A0

返回格式: 01 10 00 88 00 01 81 E3

模組位址	址 功能代碼		暫存器起始位址		器數量	CRC16 校驗		
01	10	00	88	00	01	81	E3	

1.49 第二點類比輸出量修正(137)

指令格式: 01 10 00 89 00 01 02 00 64 B8 E2 (設定滿量程 0.1mA 時,填 100)

模組位址	功能代碼	暫存器起	已始位址	暫存	器數量	位元組數	暫存器	肾資料	CRC16 校驗	
01	10	00	89	00	01	02	00	64	B8	E2

返回格式: 01 10 00 89 00 01 D0 23

模組位址	功能代碼	暫存器起	巴始位址	暫存器	器數量	CRC1	6 校驗
01	10	00	89	00	01	D0	23

1.50 第二點重量值(138)

指令格式: 01 10 00 8A 00 02 04 00 00 27 10 61 8C (設定滿量程 10000g 時)

模組位址	功能代碼	暫存器起	巴始位址	暫存器數量		位元組	第一組暫存器		第二組暫存器		CRC16 校駁	
						數	資	料	資	料		
01	10	00	8A	00	02	04	00	00	27	10	61	8C

返回格式: 01 10 00 8A 00 02 60 22

模	組位址	功能代碼	暫存器起	已始位址	暫存器	器數量	CRC1	6 校驗
	01	10	00	8A	00	02	60	22

1.58 讀輸入埠(200)

指令格式: 01 03 00 C8 00 01 05 F4

模組位址	功能代碼	暫存器起	暫存器起始位址		器數量	CRC16 校驗		
01	03	00	C8	00	01	05	F4	

返回格式: 01 03 02 00 00 B8 44 (資料根據實際情況變化)

模組位址	功能代碼 位元組數 第一組暫存器資料		第一組暫存器資料		校驗	
01	03	02	00	00	В8	44

1.59 讀輸出埠(220)

指令格式: 01 03 00 DC 00 01 45 F0

模組位址	功能代碼	暫存器起	巴始位址	暫存器	器數量	CRC16 校驗		
01	03	00	DC	00	01	45	F0	

返回格式: 01 03 02 00 00 B8 44 (資料根據實際情況變化)

模組位址	功能代碼	位元組數第一組暫存器資料		第一組暫存器資料		6 校驗
01	03	02	00	00	B8	44

1.60 寫輸出埠(240)

指令格式: 01 10 00 F0 00 01 02 00 01 73 60 (舉例 0x01:歸零)

模組位址	功能代碼	暫存器趙	已始位址	暫存	暫存器數量		暫存器	肾資料	CRC16 校驗	
01	10	00	F0	00	01	02	00	01	73	60

返回格式: 01 10 00 F0 00 01 01 FA

模組位址	功能代碼	暫存器起始位址		暫存器	器數量	CRC16 校驗		
01	10	00	F0	00	01	01	FA	

1.61 輸出埠 n 功能設定(260)

指令格式: 01 10 01 04 00 01 02 00 04 B6 D7 (舉例 0x04;警報)

模組位址	功能代碼	暫存器起	已始位址	暫存署	器數量	位元組數	暫存器	肾資料	CRC16 校驗	
01	10	01	04	00	01	02	00	04	В6	D7

返回格式: 01 10 01 04 00 01 41 F4

模組位址	功能代碼	暫存器起	已始位址	暫存器	器數量	CRC16 校驗		
01	10	01	04	00	01	41	F4	

1.62 輸入埠濾波時間(280)

指令格式: 01 10 01 18 00 01 02 00 0A 35 4F (舉例時間為 10)

模組位址	功能代碼	暫存器赳	已始位址	台位址 暫存器數量		位元組數	位元組數 暫存器		CRC1	6 校驗
01	10	01	18	00	01	02	00	0A	35	4F

返回格式: 01 10 01 18 00 01 80 32

模組位址	功能代碼	暫存器起始位址		暫存智	器數量	CRC16 校驗		
01	10	01	18	00	01	80	32	

1.63 清除峰.谷值(290)

指令格式: 01 10 01 22 00 01 02 00 01 71 D2

模組位址	功能代碼	暫存器趙	已始位址	暫存器數量		位元組數	暫存器	肾資料	CRC16 校驗	
01	10	01	22	00	01	02	00	01	71	D2

返回格式: 01 10 01 22 00 01 A0 3F

模組位址	功能代碼		暫存器起始位址		器數量	CRC16 校驗		
01	10	01	22	00	01	A0	3F	

1.64 讀取峰值(291)

指令格式: 01 03 01 23 00 02 34 3D

模組位址	功能代碼	暫存器起始位址		暫存器	8數量	CRC16 校驗		
01	03	01	23	00	02	34	3D	

返回格式: 01 03 04 00 00 00 20 FB EB (資料根據實際情況變化)

模組位址	功能代碼	位元組數	第一組暫在	第一組暫存器資料		字器資料	CRC16 校驗	
01	03	04	00	00	00	20	FB	EB

1.65 讀取谷值(293)

指令格式: 01 03 01 25 00 02 D4 3C

模組位址	功能代碼	暫存器起	暫存器起始位址		器數量	CRC16 校驗		
01	03	01	25	00	02	D4	3C	

返回格式: 01 03 04 00 00 00 FA 33 (資料根據實際情況變化)

			• • • • • • • • • • • • • • • • • • • •					
模組位址	功能代碼	位元組數	第一組暫在	存器資料	第二組暫存	字器資料	CRC1	6 校驗
01	03	04	00	00	00	00	FA	33

1.66 峰值檢測使能方式(295)

指令格式: 01 10 01 28 00 01 02 00 01 71 78 (舉例 1: 力值超過峰值閥值後啟動峰值檢測)

模組位址	功能代碼	暫存器起	已始位址	暫存	器數量	位元組數	暫存器	肾資料	CRC1	6校驗
01	10	01	28	00	01	02	00	01	71	78

返回格式: 01 10 01 28 00 01 80 3D

模組位址	功能代碼	暫存器起	巴始位址	暫存器	器數量	CRC16	校驗
01	10	01	28	00	01	80	3D

1.67 谷值檢測使能方式(296)

指令格式: 01 10 01 28 00 01 02 00 01 71 78 (舉例 1: 力值超過谷值閥值後啟動谷值檢測)

模組位址	功能代碼	暫存器趙	已始位址	暫存	器數量	位元組數	暫存器	肾	CRC1	6 校驗
01	10	01	28	00	01	02	00	01	71	78

返回格式: 01 10 01 28 00 01 80 3D

İ	模組位址	功能代碼	暫存器起	巴始位址	暫存器	器數量	CRC16	校驗
	01	10	01	28	00	01	80	3D

1.68 峰值閥值(297)

指令格式: 01 03 01 29 00 02 14 3F

模組位址	功能代碼	暫存器起	字器起始位址 暫存器數量		CRC1	6 校驗	
01	03	01	29	00	02	14	3F

返回格式: 01 03 04 00 00 00 00 FA 33

模	組位址	功能代碼	位元組數	第一組暫存器資料	第二組暫存器資料	CRC16 校驗
12 1		75/321 4 15		>10 NATE IN 14 BB > < 1 1	>10 (ALL 11)	12 4771

01 03 04	00 00	00	00	FA	33
----------	-------	----	----	----	----

1.69 谷值閥值(299)

指令格式: 01 03 01 2B 00 02 B5 FF

模組位址	功能代碼	暫存器起	暫存器起始位址 暫存器數量		器數量	CRC16 校驗		
01	03	01	2B	00	02	B5	FF	

返回格式: 01 03 04 00 00 00 00 FA 33

模組位址	功能代碼	位元組數	第一組暫存器資料		第二組暫存器資料		CRC16 校驗	
01	03	04	00	00	00	00	FA	33

1.70 峰值回差(301)

指令格式: 01 03 01 2D 00 02 55 FE

模組位址	功能代碼	暫存器起	巴始位址	暫存器	器數量	CRC1	6 校驗
01	03	01	2F	00	02	F4	3E

返回格式: 01 03 04 00 00 00 00 FA 33

模組位址	功能代碼	位元組數	第一組暫存器資料		第二組暫存	字器資料	CRC16 校驗	
01	03	04	00	00	00	00	FA	33

1.71 谷值回差(303)

指令格式: 01 03 01 2F 00 02 F4 3E

模	組位址	功能代碼	暫存器起	已始位址	暫存器	器數量	CRC16 校驗		
	01	03	01	2F	00	02	F4	3E	

返回格式: 01 03 04 00 00 00 00 FA 33

模組位址	功能代碼	位元組數	第一組暫存器資料		第二組暫存	字器資料	CRC16 校驗		
01	03	04	00	00	00	00	FA	33	

1.72 峰.谷值間隔時間(305)

指令格式: 01 10 01 31 00 01 02 00 32 33 64 (設定時間為 50)

模組位址	功能代碼	暫存器起	出始位址	暫存	暫存器數量		暫存署	肾資料	CRC16 校驗	
01	10	01	31	00	01	02	00	32	33	64

返回格式: 01 10 01 31 00 01 51 FA

模組位址	功能代碼	暫存器起	暫存器起始位址		器數量	CRC16 校驗		
01	10	01	31	00	01	51	FA	

1.73 比較器 0 使能方式(310)

指令格式: 01 10 01 36 00 01 02 00 01 72 C6 (舉例 1: 通電即啟動比較器)

模組位址	功能代碼	暫存器起	2始位址	暫存	暫存器數量		暫存器	肾資料	CRC16 校驗	
01	10	01	36	00	01	02	00	01	72	C6

返回格式: 01 10 01 36 00 01 E0 3B

模組位址	功能代碼	暫存器起	巴始位址	暫存器	器數量	CRC16 校驗		
01	10	01	36	00	01	E0	3B	

1.74 比較器 0 判斷方式(311)

指令格式: 01 10 01 37 00 01 02 00 00 B2 D7 (舉例: 0x00: 力值≥上限)

	模組位址	功能代碼	暫存器起	已始位址	暫存器數量		位元組數	暫存器	肾 科	CRC16 校驗	
ĺ	01	10	01	37	00	01	02	00	00	B2	D7

返回格式: 01 10 01 37 00 01 B1 FB

模組位址	功能代碼	暫存器起	暫存器起始位址		器數量	CRC16 校驗		
01	10	01	37	00	01	B1	FB	

1.75 比較器 0 資料來源(312)

指令格式: 01 10 01 38 00 01 02 00 01 73 E8 (舉例 0x01: 毛重)

	模組位址	功能代碼	暫存器起	已始位址	暫存署	暫存器數量		暫存器	肾資料	CRC16 校驗	
ſ	01	10	01	38	00	01	02	00	01	73	E8

返回格式: 01 10 01 38 00 01 81 F8

模組位址	功能代碼	暫存器起	已始位址	暫存器	器數量	CRC16 校驗	
01	10	01	38	00	01	81	F8

1.76 比較器 0 判斷延時(313)

指令格式: 01 10 01 39 00 01 02 00 0A 33 FE (舉例 1s, 1s=10*0.1s, 所以填 10)

模組位址	功能代碼	暫存器起	2始位址	暫存器數量		位元組數	暫存器資料		CRC16 校驗	
01	10	01	39	00	01	02	00	0A	33	FE

返回格式: 01 10 01 39 00 01 D0 38

模組位址	功能代碼	暫存器起始位址		暫存器	器數量	CRC16 校驗		
01	10	01	39	00	01	D0	38	

1.77 設定比較器上限值(314)

指令格式: 01 10 01 3A 00 02 04 00 00 26 48 67 02 (舉例上限值為 9800)

模組位	功能代	暫存器赳	已始位址	暫存器	數量	位元組	第一組	暫存器	第二組	暫存器	CRC1	6 校驗
址	碼					數	資	料	資料			
01	10	01	3A	00	02	04	00	00	26	48	67	02

返回格式: 01 10 01 3A 00 02 60 39

模組位址	功能代碼	暫存器起	巴始位址	暫存器	器數量	CRC1	6 校驗
01	10	01	3A	00	02	60	39

1.78 設定比較器中限值(316)

指令格式: 01 10 01 3C 00 02 04 00 00 13 88 F0 28 (舉例上限值為 5000)

模組位	功能代	暫存器起	2始位址	暫存器	數量	位元組	第一組	暫存器	第二組	暫存器	CRC1	6 校驗
址	碼					數	資	料	資料			
01	10	01	3C	00	02	04	00	00	13	88	F0	28

返回格式: 01 10 01 3C 00 02 80 38

模組位址	功能代碼	暫存器起	已始位址	暫存器	器數量	CRC1	6 校驗
01	10	01	3C	00	02	80	38

1.79 設定比較器下限值(318)

指令格式: 01 10 01 3E 00 02 04 00 00 03 E8 7C 19 (舉例上限值為 1000)

模組位	功能代	暫存器制	已始位址	暫存器	數量	位元組	第一組	暫存器	第二組	暫存器	CRC1	6 校驗
址	碼					數	資	料	資料			
01	10	01	3E	00	02	04	00	00	03	E8	7C	19

返回格式: 01 10 01 3E 00 02 21 F8

模組位址	功能代碼	暫存器起	巴始位址	暫存器	器數量	CRC1	6 校驗
01	10	01	3E	00	02	21	F8

1.80 讀比較器 0 結果(320)

指令格式: 01 03 01 40 00 01 84 22

模組位址	功能代碼		暫存器起始位址		器數量	CRC16 校驗		
01	03	01	40	00	01	84	22	

返回格式: 01 03 02 00 00 B8 44 (資料根據實際情況變化)

模組位址	功能代碼	位元組數	第一組暫在	字器資料	CRC16 校驗		
01	03	02	00	00	B8	44	

1.82 多通道轉換器各個通道毛重值讀取

毛重1

指令格式: 01 03 01 C2 00 02 64 0B

模組位址	功能代碼	暫存器起	暫存器起始位址		器數量	CRC16 校驗		
01	03	01	C2	00	02	64	0B	

返回格式: 01 03 04 00 00 00 00 FA 33 (暫存器資料 00 00 00 為重量,轉十進位為 0)

模組位址	功能代碼	位元組數	第一組暫在	字器資料	第二組暫不	字器資料	CRC16 校驗	
01	03	04	00	00	00	00	FA	33

毛重2

指令格式: 01 03 01 C4 00 02 84 0A

模組位址	功能代碼	暫存器起	暫存器起始位址		器數量	CRC16 校驗		
01	03	01	C4	00	02	84	0A	

返回格式: 01 03 04 00 00 00 09 3A 35 (暫存器資料 00 00 09 為重量,轉十進位為 9)

模組位址	功能代碼	位元組數	第一組暫在	存器資料	第二組暫存	字器資料	CRC16 校驗		
01	03	04	00	00	00	09	3A	35	

毛重3

指令格式: 01 03 01 C6 00 02 25 CA

模組位址	功能代碼	暫存器誌	暫存器起始位址		器數量	CRC16 校驗		
01	03	01	C6	00	02	25	CA	

返回格式: 01 03 04 00 00 00 00 FA 33 (暫存器資料 00 00 00 為重量,轉十進位為 0)

模組位址	功能代碼	位元組數	第一組暫	第一組暫存器資料		第二組暫存器資料		CRC16 校驗	
01	03	04	00	00	00	00	FA	33	

毛重4

指令格式: 01 03 01 C8 00 02 44 09

模組位址	功能代碼	暫存器起	巴始位址	暫存器	器數量	CRC16 校驗		
01	01 03 01		C8	00	02	44	09	
					20 00 00 V	T = ++ 1 \	() () () () ()	

返回格式: 01 03 04 00 00 00 00 FA 33 (暫存器資料 00 00 00 00 為重量,轉十進位為 0)

模組位址	功能代碼	位元組數	第一組暫不	存器資料	第二組暫存	字器資料	CRC1	6 校驗
01	03	04	00	00	00	00	FA	33

毛重5

指令格式: 01 03 01 CA 00 02 E5 C9

模組位址	功能代碼	暫存器誌	暫存器起始位址		器數量	CRC1	
01	03	01	CA	00	02	E5	C9

返回格式: 01 03 04 00 00 00 01 3B F3 (暫存器資料 00 00 01 為重量,轉十進位為 1)

模組位址	功能代碼	位元組數	第一組暫存器資料		第二組暫存	字器資料	CRC16 校驗	
01	03	04	00	00	00	01	3B	F3

毛重 6

指令格式: 01 03 01 CC 00 02 05 C8

ï	模組位址	功能代碼	暫存器起始位址		l	器數量	CRC16 校驗		
	01	03	01	01 CC		02	05	C8	

返回格式: 01 03 04 00 00 00 00 FA 33 (暫存器資料 00 00 00 為重量,轉十進位為 0)

模組位址	功能代碼	位元組數	第一組暫在	字器資料	第二組暫存	字器資料	CRC16 校驗	
01	03	04	00	00	00	00	FA	33

毛重7

指令格式: 01 03 01 CE 00 02 A4 08

模組位址	功能代碼	暫存器起始位址		暫存器	器數量	CRC16 校驗		
01	03	01	CE	00	02	A4	08	

返回格式: 01 03 04 00 00 00 00 FA 33 (暫存器資料 00 00 00 00 為重量,轉十進位為 0)

模組位址	功能代碼	位元組數	第一組暫存器資料		第二組暫不	字器資料	CRC16 校驗	
01	03	04	00	00	00	00	FA	33

毛重8

指令格式: 01 03 01 D0 00 02 C4 0E

·	模組位址	功能代碼	暫存器起始位址			8數量	CRC16 校驗		
	01	03	01	D0	00	02	C4	0E	

模組位址	功能代碼	位元組數	第一組暫存器資料		第二組暫不	字器資料	CRC16 校驗	
01	03	04	FF	FF	F0	C2	3F	86

多通道模組的暫存器位址計算方法:40001(000)+500×n(n為通道編號減1)+暫存器列表中的位址偏移,通道從1開始編號,如要讀取第6通道的毛重,毛重在暫存器列表中的位址偏移為080,那麼第六通道的暫存器位址為:40001(000)+500×(6-1)+80=42581(2580)

多通道轉換器讀取各個通道的毛重值可通過 2 種途徑,一種是直接通過毛重 1 到毛重 8 的暫存器讀取,另一種是通過計算通道號的暫存器位址讀取。

除了讀取毛重外,其它需要讀寫各個通道號的資料時,必須通過 40001(000) + 500 × n(n 為通道編號減 1)+暫存器列表中的位址偏移計算出暫存器位址。

例如6通道的轉換器要讀取第4通道的毛重時,通過暫存器位址計算方法,

000+500x(4-1)+80=1580,1580的十六進制為62C

模組位址	組位址 功能代碼 暫存器起始位址		巴始位址	暫存器	器數量	CRC16 校驗		
01	03	06	2C	00	02	05	4A	

也可直接通過暫存器位址讀取,毛重 4 的地 456 的十六進位為 1C8

模組位址	功能代碼	暫存器起始位址		暫存器	器數量	CRC16 校驗		
01	03	01	C8	00	02	44	09	

如果要同時讀取 8 個通道的毛重時,毛重 1 的起始位址為 450,450 的十六進位為 1C2,6 個 通道的暫存器數量為 8x2=16,16 的十六進位為 10。

同時讀取 8 個通道的指令格式: 01 03 01 C2 00 10 E4 06

模組位址	功能代碼	暫存器起	巴始位址	暫存器	器數量	CRC1	6 校驗
01	03	01	C2	00	10	E4	06

模組位址	功能代碼	位元組數	第一組暫不	字器資料	第二組暫存	字器資料	第三組暫	存器資料
01	03	20	00	00	00	01	00	00

第四組暫存器資料	第五組暫存器資料	第六組暫存器資料	第七組暫存器資料	第八組暫存器資料

		00	09	00	00	00	00	00	00	00	00
--	--	----	----	----	----	----	----	----	----	----	----

第九組暫不	字器資料	第十組暫	存器資料	第十一組製	存器資料	第十二組轄	哲存器資料	第十三組暫	存器資料
00	09	00	01	FF	FF	FF	FF	00	00

第十四組暫	存器資料	第十五組暫	存器資料	第十六組曹	存器資料	CRC16	6 校驗
00	00	FF	FF	F0	C2	7F	F9

通道 1 重量: 00 00 00 01; 通道 2 重量: 00 00 00 09; 通道 3 重量: 00 00 00 00; 通道 4 重量: 00 00 00; 通道 5 重量: 00 09 00 01; 通道 6 重量: FF FF FF FF; 通道 7 重量:

00 00 00 00; 通道 8 重量: FF FF F0 C2