Causal Machine Learning – Fall 2023 Week 4: Nonparametrics

Max H. Farrell & Sanjog Misra

Topics to cover

1. Crash Course in Nonparametrics

Definitions

What does it mean for a model to be

- 1. Parametric
- 2. Nonparametric
- 3. Semiparametric

Examples:

- ▶ OLS
- ► ML
- **?**

Motivation: flexibility in first stage

Last class:

$$\mathbb{E}[Y(1)] = \mathbb{E}\left[\mathbb{E}\left[Y \mid T = 1, X\right]\right] \quad \Rightarrow \quad \frac{1}{n} \sum_{i=1}^{n} \hat{\mu}_{1}(x_{i}), \ \hat{\mu}_{1}(x_{i}) = x_{i}' \hat{\beta}_{1}$$

- ▶ Today: Make $\hat{\mu}_1(x_i)$ more flexible
- Later: How that messes up the second step

- ▶ Smoothness means that f(x) "can't change too fast"
- ► Fundamental idea underpinning most (all?) nonparametrics.
- ▶ The function $f(x): \Re \to \Re$ is smooth means

$$x_1 \approx x_2 \quad \Rightarrow \quad f(x_1) \approx f(x_2)$$

Formalize with a Taylor approximation. If $f(x): \Re \to \Re$ has p derivatives, then:

$$f(x_2) = f(x_1) + f'(x_1)(x_2 - x_1) + f^{(2)}(x_1)(x_2 - x_1)^2 / 2$$

$$+ \dots + f^{(p)}(x_1)(x_2 - x_1)^p / p!$$

Multivariate version is the same, just more notation.

How bad can a linear regression approximation be?

- ▶ Imagine $Y = f(X) + \varepsilon$ and you fit $Y = \beta_0 + \beta_1 X + \varepsilon$
- ▶ The true function is

$$f(x) = f(0) + f'(0)(x - 0) + f^{(2)}(0)(x - 0)^{2}/2 + \cdots$$

$$= f(0) + f'(0)x + \frac{f^{(2)}(0)}{2}x^{2} + \cdots$$

$$=: \beta_{0} + \beta_{1}x + \beta_{2}x^{2} + \cdots$$

Estimate $\hat{f}(x) = \hat{\beta}_0 + \hat{\beta}_1 x$

Errors in
$$f(x)$$
 versus $\hat{f}(x) = \hat{\beta}_0 + \hat{\beta}_1 x$

- 1. $\hat{\beta}_j \neq \beta_j$
 - We already know that $\hat{\beta} \beta = O_p(1/\sqrt{n})$. Why?
- 2. $f(x) \neq \beta_0 + \beta_1 x$
 - Because we left off all those other derivatives
 - Because x is not 0

Tuning parameter choice

- $\hat{f}(x) f(x) = \sqrt{\frac{J}{n}} + J^{-1}$
- ightharpoonup Bigger J (smaller bins) ightarrow better approximation, higher variance
- lacktriangle Bigger polynomial ightarrow better approximation, higher variance
- $I^* \simeq n^{1/3}$
- lackbox Optimal for estimating $f \neq$ optimal for two-step

Curse of dimensionality

ightharpoonup For $x \in \mathbb{R}^d$:

$$\hat{f}(x) - f(x) = \sqrt{\frac{J^d}{n}} + J^{-1}$$

Exponentially worse!

Other classical nonparametric estimators are very similar

- Polynomial K in J bins: $\sqrt{\frac{J^d}{n}} + J^{-K-1}$
- $\blacktriangleright \text{ Kernelsof order P: } \frac{1}{\sqrt{nh^d}} + h^P$
- ► Series: $\sqrt{\frac{K}{n}} + K^{-\alpha}$
- ► In general:

$$\mbox{Var} = \frac{1}{\mbox{effective sample size}} = \frac{\# \mbox{ params}}{n}$$

$$\mbox{Bias} = (\# \mbox{ params})^{-(\mbox{smoothness})}$$

High Dimensional Models

What to do if $d = \dim(X)$ is "large"?

- ▶ Asymptotics: d fixed, $d \to \infty$, $d/n \to ?$
- ▶ Generic version: $f(x) = f_n(x) + \text{bias}$
- ► NP version: local/simple + bias
- ▶ High-Dim version: need a functional form assumption for $f_n(x)$
- Lasso: $f_n(x) = x'\beta$, for $\beta \in \mathbb{R}^d$, $\|\beta\|_0 = s = o(n)$
- rate: $\frac{\# \text{ params}}{n} = \frac{s}{n}$.
- ▶ Don't know **which** s terms, search cost $=\frac{s \log(d)}{n}$.