VE320 – Summer 2022

Introduction to Semiconductor Devices

Instructor: Yaping Dan (但亚平) yaping.dan@sjtu.edu.cn

Chapter 4 The Semiconductor in Equilibrium

Outline

- 4.1 Charge carriers in semiconductors
- 4.2 Dopant atoms and energy levels
- 4.3 The extrinsic semiconductor
- 4.4 Statistics of donors and acceptors
- 4.5 Charge neutrality
- 4.6 Position of Fermi energy level

Outline

4.1 Charge carriers in semiconductors

- 4.2 Dopant atoms and energy levels
- 4.3 The extrinsic semiconductor
- 4.4 Statistics of donors and acceptors
- 4.5 Charge neutrality
- 4.6 Position of Fermi energy level

The n_0 and p_0 equations

$$n_0 = \int_{E_c}^{\infty} g_c(E) f_F(E) dE$$

$$p_0 = \int_{-\infty}^{E_v} g_v(E) [1 - f_F(E)] dE$$

The n_0 and p_0 equations

$$if \exp(\eta - \eta_F) > 10 \Leftrightarrow \frac{E - E_F}{kT} > 3 \Leftrightarrow E - E_F > 3kT$$

(2nd time approximation)

$$f_F(E) = \frac{1}{1 + \exp(\frac{E - E_F}{kT})}$$

$$f_F(E) = \exp(\frac{E_F - E}{kT})$$

Fermi-Dirac Distribution

$$if \exp(\eta - \eta_F) > 10 \Leftrightarrow \frac{E - E_F}{kT} > 3 \Leftrightarrow E - E_F > 3kT$$

$$f_F(E) = \frac{1}{1 + \exp(\frac{E - E_F}{kT})}$$

Fermi-Dirac Distribution

$$f_F(E) = \exp(\frac{E_F - E}{kT})$$

$$if \exp(\eta - \eta_F) > 10 \Leftrightarrow \frac{E - E_F}{kT} > 3 \Leftrightarrow E - E_F > 3kT$$

$$f_F(E) = \frac{1}{1 + \exp(\frac{E - E_F}{kT})}$$

Fermi-Dirac Distribution

$$f_F(E) = \exp(\frac{E_F - E}{kT})$$

$$if \exp(\eta - \eta_F) > 10 \Leftrightarrow \frac{E - E_F}{kT} > 3 \Leftrightarrow E - E_F > 3kT$$

$$f_F(E) = \frac{1}{1 + \exp(\frac{E - E_F}{kT})}$$

Fermi-Dirac Distribution

$$f_F(E) = \exp(\frac{E_F - E}{kT})$$

$$if \exp(\eta - \eta_F) > 10 \Leftrightarrow \frac{E - E_F}{kT} > 3 \Leftrightarrow E - E_F > 3kT$$

electron conduction band
$$n_0 = \frac{2(2\pi m_n * kT)^{\frac{3}{2}}}{h^3} \exp\left(\frac{E_F - E_c}{kT}\right) = N_c \exp\left(\frac{E_F - E_c}{kT}\right)$$

$$p_0 = \frac{2(2\pi m_p^* kT)^{\frac{3}{2}}}{h^3} \exp\left(\frac{E_v - E_F}{kT}\right) = N_v \exp\left(\frac{E_v - E_F}{kT}\right)$$

The intrinsic carrier concentration

$$n_0 \sim N_c N_v \exp\left(\frac{E_v - E_c}{kT}\right) \Rightarrow n_i = \sqrt{N_c N_v} \exp\left(\frac{E_g}{2kT}\right)$$

$$\underline{n_0} = N_c \exp(\frac{E_F - E_C}{kT}) \qquad p_0 = N_v \exp(\frac{E_v - E_F}{kT}) \qquad \underbrace{N_c \sim 10^{19} cm^{-3}}_{N_v \sim 10^{19} cm^{-3}} \quad \text{300} \, \text{k}$$

$$N_c \sim 10^{19} cm^{-3}$$
 300k

The equations are universal for doped and undoped semiconductors

Check your understanding

Problem Example #1 T = 300k = 0.0259 × $\frac{200}{300}$ Determine the thermal-equilibrium concentrations of electrons and

holes in silicon at T = 300K if the Fermi energy level E_E is 0.215eV above the valence band energy E_V. $N_C = 2.8 \times 10^{19}$ cm⁻³

and
$$N_V = 1.04 \times 10^{19} \text{ cm}^{-3}$$
. $E_g = 1.12 \text{ eV for Si}$.

$$E_{c}-E_{f}=1,12eV-0.215eV$$
 $E_{c}-E_{f}=1,12eV-0.215eV$
 $E_{c}-E_{f}=0.025eV$
 $E_{c}-$

VE320 Yaping D

=
$$|.04\times10^{19} exp(\frac{-0.215}{0.0058}) = 2.58\times10^{14}$$

The intrinsic carrier concentration

300K

Table 4.1 | Effective density of states function and density of states effective mass values

	N_c (cm ⁻³)	N_v (cm ⁻³)	m_n^*/m_0	$m_p^*/\underline{m_0}$
Silicon	2.8×10^{19}	1.04×10^{19}	1.08	0.56
Gallium arsenide	4.7×10^{17}	7.0×10^{18}	0.067 M	0.48
Germanium	1.04×10^{19}	6.0×10^{18}	0.55	0.37

Table 4.2 | Commonly accepted values of

Silicon
$$n_i = 1.5 \times 10^{10} \text{ cm}^{-3}$$

Gallium arsenide $n_i = 1.8 \times 10^6 \text{ cm}^{-3}$
Germanium $n_i = 2.4 \times 10^{13} \text{ cm}^{-3}$

Check your understanding

Problem Example #2

Calculate the <u>intrinsic carrier</u> concentration in silicon at T=250K and at 400K.

$$||F||_{T=280 \, \text{K}} = 0.0259 \, \times \frac{250}{300} = 0.0259 \, \times \frac{5}{6} = 0.0215$$

$$||F||_{T=280 \, \text{K}} = 0.0259 \, \times \frac{400}{300} = 0.043 \, \times 5$$

$$||F||_{T=400 \, \text{K}} = 0.0259 \, \times \frac{400}{300} = 0.08663 \, \times 4 = 0.0345$$

$$||F||_{T=400 \, \text{K}} = 0.0259 \, \times \frac{400}{300} = 0.08663 \, \times 4 = 0.0345$$

$$||F||_{T=400 \, \text{K}} = 0.0259 \, \times \frac{400}{300} = 0.0259 \, \times \frac{5}{6} = 0.0215$$

$$||F||_{T=400 \, \text{K}} = 0.0259 \, \times \frac{5}{300} = 0.0259 \, \times \frac{5}{6} = 0.0215$$

$$||F||_{T=400 \, \text{K}} = 0.0259 \, \times \frac{5}{300} = 0.0259 \, \times \frac{5}{6} = 0.0215$$

$$||F||_{T=400 \, \text{K}} = 0.0259 \, \times \frac{5}{300} = 0.0259 \, \times \frac{5}{6} = 0.0215$$

$$||F||_{T=400 \, \text{K}} = 0.0259 \, \times \frac{5}{300} = 0.0259 \, \times \frac{5}{6} = 0.0215$$

$$||F||_{T=400 \, \text{K}} = 0.0259 \, \times \frac{5}{300} = 0.0259 \, \times \frac{5}{6} = 0.0215$$

$$||F||_{T=400 \, \text{K}} = 0.0259 \, \times \frac{5}{300} = 0.0259 \, \times \frac{5}{6} = 0.0215$$

$$||F||_{T=400 \, \text{K}} = 0.0259 \, \times \frac{5}{300} = 0.0259 \, \times \frac{5}{6} = 0.0215$$

$$||F||_{T=400 \, \text{K}} = 0.0259 \, \times \frac{5}{300} = 0.0259 \, \times \frac{5}{6} = 0.0215$$

$$|F||_{T=400 \, \text{K}} = 0.0259 \, \times \frac{5}{300} = 0.0259 \, \times \frac{5}{6} = 0.0215$$

$$|F||_{T=400 \, \text{K}} = 0.0259 \, \times \frac{5}{300} = 0.0259 \, \times \frac{5}{6} = 0.0259$$

Outline

4.1 Charge carriers in semiconductors

4.2 Dopant atoms and energy levels

- 4.3 The extrinsic semiconductor
- 4.4 Statistics of donors and acceptors
- 4.5 Charge neutrality
- 4.6 Position of Fermi energy level

Figure 4.3 | Two-dimensional representation of the intrinsic silicon lattice.

Figure 4.4 | Two-dimensional representation of the silicon lattice doped with a phosphorus atom.

Figure 4.6 | Two-dimensional representation of a silicon lattice (a) doped with a boron atom and (b) showing the ionization of the boron atom resulting in a hole.

Figure 4.7 | The energy-band diagram showing (a) the discrete acceptor energy state and (b) the effect of an acceptor state being ionized.

$$E_{\text{ionization}} = E_c - E_d$$

Ionization energy

Table 4.3 | Impurity ionization energies in silicon and germanium

	Ionization energy (eV)	
Impurity	Si	Ge
Donors		
Phosphorus	0.045	0.012
Arsenic	0.05 22	0.012 - 0.0127 - 0.0127
Acceptors		
Boron -	0.045	0.0104
Aluminum	0.06 mile	0.0102

Outline

- 4.1 Charge carriers in semiconductors
- 4.2 Dopant atoms and energy levels

 4.3 The extrinsic semiconductor Intrinsic Seconductor
- 4.4 Statistics of donors and acceptors
- 4.5 Charge neutrality
- 4.6 Position of Fermi energy level

 $f_{E}(E) = 1$

 $f_E(E) = 0$

Equilibrium distribution of electrons and holes

Equilibrium distribution of electrons and holes

The n_0p_0 product

$$h_{o} = N_{c} \exp\left(\frac{E_{F} - E_{c}}{kT}\right) \quad P_{i} = N_{i} \exp\left(\frac{E_{V} - E_{C}}{kT}\right) = constant(T)$$

$$h_{o} \cdot P_{o} = N_{c} \cdot N_{V} \quad \exp\left(\frac{E_{V} - E_{C}}{kT}\right) = constant(T)$$

$$h_{o} \cdot P_{o} = N_{i} \cdot P_{o} \Rightarrow h_{o} \cdot P_{o} = h_{i} \cdot P_{o} \cdot$$

Degenerate and nondegenerate semiconductors

Degenerate semiconductors:

- Extremely high doping concentration
- Fermi level in the band
- Electron cloud in dopants overlap,
- dopant energy level splitting

Check your understanding

Problem Example #3

Determine the thermal-equilibrium concentrations of electrons and holes in silicon at T = 300 K if the Fermi energy level E_F is 0.215 eV above the valence band energy E_V . $N_V = 1.04 \times 10^{19}$ cm⁻³, $n_i = 1.5 \times 10^{10}$ cm⁻³.

Outline

- 4.1 Charge carriers in semiconductors
- 4.2 Dopant atoms and energy levels
- 4.3 The extrinsic semiconductor

4.4 Statistics of donors and acceptors

- 4.5 Charge neutrality
- 4.6 Position of Fermi energy level

4.4 Statistics of donors and acceptors

Probability function

4.4 Statistics of donors and acceptors

E_F

Probability function

The concentration of holes on these acceptors is n_d

$$p_{a} = N_{a} - N_{a}^{-}$$

$$= \frac{N_{d}}{1 + \exp(\frac{E_{d} - E_{F}}{kT})}$$

$$(g=4 \text{ for Si, GaAs ...})$$

Given the concentration of acceptors is N_a

4.4 Statistics of donors and acceptors

4.4 Statistics of donors and acceptors

Complete freeze-out

Outline

- 4.1 Charge carriers in semiconductors
- 4.2 Dopant atoms and energy levels
- 4.3 The extrinsic semiconductor
- 4.4 Statistics of donors and acceptors
- 4.5 Charge neutrality
- 4.6 Position of Fermi energy level

- $N_d > N_a$: n-type compensated (N_d-N_a)
- $N_a > N_d$: p-type compensated (N_a-N_d)
- $N_d = N_a$: completely compensated, like intrinsic semiconductors

Equilibrium electron and hole concentration

Charge neutrality:

$$n_0 + N_a = N_d^+ + p_0$$

Or

$$n_0 = N_d^+ - N_a^- + p_0$$

$$n_0 = N_d - N_a + p_0$$

$$\int n_0 p_0 = n_i^2$$

Net
$$p_0 = \frac{n}{n}$$

$$n_0 = \frac{N_d^+ + \sqrt{(N_d^+)^2 + 4n_i^2}}{2}$$
 (but N_d^+ unknown)

①
$$n_i >> N_d^+ \Rightarrow T \text{ very high}$$

$$n_0 = p_0 = n_i = \sqrt{N_c N_v} \exp(-\frac{E_g}{2kT})$$

Check your understanding

Problem Example #4

Determine the thermal-equilibrium electron and hole concentrations in silicon at T = 300K for given doping concentrations on the assumption of 100% ioniztion of dopants. (a) Let $N_d = 10^{11} \text{cm}^{-3}$ and $N_a = 0$. (b) Let $N_d = 10^{12} \text{cm}^{-3}$ and $N_a = 0$. (c) Let $N_d = 5 \times 10^{15} \text{ cm}^{-3}$ and $N_a = 2 \times 10^{15} \text{ cm}^{-3}$.

Equilibrium electron and hole concentration

$$n_0 = \frac{N_d^+ + \sqrt{(N_d^+)^2 + 4n_i^2}}{2}$$
 (but N_d^+ unknown)

(1) $n_i \gg N_d^+ \Rightarrow T \text{ very high}$

$$n_0 = p_0 = n_i = \sqrt{N_c N_v} \exp(-\frac{E_g}{2kT})$$

 $n_i << N_d^+ \Rightarrow T \ not \ very \ high$ (meaning charge carriers mostly come from dopants, which is often true for a doped semiconductor) $n_0 = N_d^+$

$$2\exp\left(\frac{E_A}{kT}\right)n_0^2 + N_c n_0 - N_d N_c = 0$$

$$n_0 = N_c \times \frac{-1 + \sqrt{1 + \frac{8N_d}{N_c} \exp(\frac{E_A}{kT})}}{4\exp(\frac{E_A}{kT})}$$

Ionization of dopants

Outline

- 4.1 Charge carriers in semiconductors
- 4.2 Dopant atoms and energy levels
- 4.3 The extrinsic semiconductor
- 4.4 Statistics of donors and acceptors
- 4.5 Charge neutrality
- 4.6 Position of Fermi energy level

4.6 Position of Fermi energy level

Mathematical Derivation

$$n_0 = N_c \times \frac{-1 + \sqrt{1 + \frac{8N_d}{N_c} \exp(\frac{E_A}{kT})}}{4\exp(\frac{E_A}{kT})}$$

$$n_0 = N_c \exp\left(\frac{E_F - E_c}{kT}\right) \Rightarrow \exp\left(\frac{E_F - E_c}{kT}\right) = \frac{-1 + \sqrt{1 + \frac{8N_d}{N_c}} \exp(\frac{E_A}{kT})}{4\exp(\frac{E_A}{kT})}$$

$$E_F = E_c + kT ln(\frac{\sqrt{1 + \frac{8N_d}{N_c} \exp(\frac{E_A}{kT})} - 1}{4\exp(\frac{E_A}{kT})})$$

4.6 Position of Fermi energy level

Mathematical Derivation

$$E_F = E_c + kT ln(\frac{\sqrt{1 + \frac{8N_d}{N_c} \exp(\frac{E_A}{kT})} - 1}{4\exp(\frac{E_A}{kT})}) = \begin{cases} \frac{E_c + E_D}{2} + \frac{kT}{2} ln \frac{N_d}{2N_c} & T \text{ small} \\ E_c - kT ln \frac{N_c}{N_d} & T \text{ big} \end{cases}$$

