

Programación III Práctica Calificada 2 Pregrado 2023-1

Profesor: José A. Chávez Álvarez

Lab 1.01

Indicaciones específicas:

- Esta evaluación contiene 9 páginas (incluyendo esta página) con 4 preguntas. El total de puntos son 20.
- El tiempo límite para la evaluación es 100 minutos.
- Cada pregunta deberá ser respondida en un solo archivo con el número de la pregunta.
 - − p1.cpp
 - − p2.cpp
 - − p3.cpp
 - p4.cpp
- Deberás subir estos archivos directamente a www.gradescope.com, uno en cada ejercicio. También puedes crear un .zip

Calificación:

Tabla de puntos (sólo para uso del professor)

Question	Points	Score
1	5	
2	5	
3	5	
4	5	
Total:	20	

1. (5 points) Functors

Crear el Functor Transformer el cual se encargue de realizar una transformación en una matriz de enteros. La transformación consiste en aplicar una operación matemática a cada elemento de la matriz y producir un nuevo valor. El functor debe admitir diferentes modos y especificar una constante para aplicar en la transformación.

El functor Transformer debe implementar la siguiente interfaz:

- Constructor: Recibe un modo de transformación (SUMA, RESTA, MULTIPLICACION y DIVISION) y un valor constante (int). La constante se utilizará en la operación de transformación.
- Operador (): Recibe un entero y devuelve el resultado de aplicar la transformación al entero según el modo y la constante especificados en el constructor.

En la función principal aplique a una matriz de 3×3 las siguientes transformaciones:

- transoformer1: Que sume el valor de 3 a cada elemento.
- transoformer2: Que reste el valor de 1 a cada elemento.
- transoformer3: Que multiplique el valor de 2 a cada elemento.
- transoformer4: Que divida entre 3 a cada elemento.

Implemente, además, la funcion 'modificar_matriz' la cual aplique una determinada transformación a cada elemento de una matriz dinámica. Finalmente implemente la función 'print' que imprima la matriz. El ejercicio debe ser validado con la siguiente función principal:

```
int main(){
    int** M = new int*[3];
   for(int i = 0; i < 3; i++)
       M[i] = new int[3];
   M[0][0] = 1; M[0][1] = 2; M[0][2] = 3;
   M[1][0] = 4; M[1][1] = 5; M[1][2] = 6;
   M[2][0] = 7; M[2][1] = 8; M[2][2] = 9;
   Transformer transformer1("SUMAR", 3);
                                            // Paso 1
                                             // Paso 2
   modificar_matriz(M, transformer1);
                                             // Paso 3
   print(M);
   // Implemente los tres pasos para cada transformacion
   for(int i = 0; i < 3; i++)
        delete[] M[i];
   delete[] M;
```

Salida:

4	5	6
7	8	9
	11	
	_	
3	4	5
	7	
9	10	11
6	8	10
	14	
18	20	22
2	2	3
4		
6	6	7

Criterio		Excelente	Adecuado	Mínimo	Insuficiente
Librería E	Es-	Selección del	Selección del	Selección del	No se selección
tandar		contenedor de	contenedor	contenedor	ni el contene-
		acuerdo con lo	correcto, estruc-	correcto, estruc-	dor ni se de-
		solicitado, uso	turas genéricas	turas genéricas	sarrolló algorit-
		adecuado de	basados en	basados en	mos y estruc-
		los iteradores,	contenedores.	contenedores,	turas genéricas.
		estructuras	(4pts)	errores en el	(1pts)
		genéricas basa-		funcionamiento	
		dos en contene-		pasa algunas	
		dores. (5pts)		pruebas. (2pts).	

2. (5 points) Contenedores

Implementar la funcion 'contarPares' que cuente la cantidad de pares de elementos de un vector de enteros cuya diferencia sea igual a k. Los pares de elementos no se deben repetir. Y además, la función debe tener complejidad $\mathcal{O}(n)$. Cualquier otra solución obtendrá 0 puntos.

```
int main(){
   vector<int> vec = {1,5,3,2,4};
   int k = 2;
   int resultado = contarPares(vec, k);
   cout << "El_resultado_es:_" << resultado << endl;
}</pre>
```

Salida:

```
El resultado es: 3 // 5-3,1-3,2-4
```

Criterio	Excelente	Adecuado	Mínimo	Insuficiente
Librería Es-	Selección del	Selección del	Selección del	No se selección
tandar	contenedor de	contenedor	contenedor	ni el contene-
	acuerdo con lo	correcto, estruc-	correcto, estruc-	dor ni se de-
	solicitado, uso	turas genéricas	turas genéricas	sarrolló algorit-
	adecuado de	basados en	basados en	mos y estruc-
	los iteradores,	contenedores.	contenedores,	turas genéricas.
	estructuras	(4pts)	errores en el	(1pts)
	genéricas basa-		funcionamiento	
	dos en contene-		pasa algunas	
	dores. (5pts)		pruebas. (2pts).	

3. (5 points) Pregunta 3

El siguiente algoritmo calcula el segundo elemento mínimo de una secuencia de números A. Es decir, si ordenamos la secuencia de menor a mayor, sin considerar las repeticiones, esta función calcularía el segundo elemento de la secuencia ordenada.

```
1.
   ENCONTRAR-SEGUNDO-MINIMO(A)
2.
   min1 = \infty
   min2 = \infty
   for i = 0, \dots, size(A) - 1
      if A[i] < min1
5.
6.
        min2 = min1
7.
        min1 = A[i]
8.
      else if A[i] < min2 and A[i] \neq min1
9.
        min2 = A[i]
10.
     return min2
```

Para este problema:

- Describa el Invariante de Bucle.
- Utilice el Invariante de Bucle para demostrar el algoritmo:
 - Inicialización: ¿El I.B. se cumple en la primera iteración?¿Como?
 - Mantenimiento: Asumiendo que el I.B. se cumple al comenzar la iteración *i*, ¿Este se mantiene al terminar la iteración?; Como?
 - Terminación: Al terminar el bucle, utilice el I.B. para demostrar el algoritmo.
- Envíe su solución con el nombre de la pregunta, el formato puede ser PDF o imagen. No es necesario implementar el algoritmo en C++, pero puede hacerlo para verificarlo.

Criterio	Excelente	Adecuado	Mínimo	Insuficiente
Complejidad Al-	Buen nivel de	Buen nivel de	Programa no	Se intento pero
gorítmica	abstracción, el	abstracción,	funciona ade-	no se logró que
	problema logro	el problema	cuadamente,	funcione lo solic-
	realizar con la	logro realizar	bajo nivel de	itado. (1pts)
	complejidad al-	lo solicitado sin	abstracción,	
	gorítmica solic-	lograr alcanzar	más de 3 er-	
	itado, funciona	la complejidad	rores, nivel de	
	correctamente	algorítmica	complejidad	
	y sin errores.	solicitado,	algorítmica in-	
	(5pts)	funciona correc-	correcta. (2pts)	
		tamente y sin		
		errores. (4pts)		

4. (5 points) Pregunta 4

La función "findMax" encuentra el máximo elemento en un vector de números enteros. Utilizando la librería thread, implemente otra función llamada "findMaxParallel" que realice el mismo trabajo pero con 4 hilos.

Salida:

```
Elemento Maximo: 18
Elemento Maximo (Paralelo): 18
```

Criterio	Excelente	Adecuado	Mínimo	Insuficiente
Programación	Buen nivel de	Buen nivel de	Programa no	Contiene errores
Concurrente	abstracción,	abstracción, el	funciona, bajo	que no hace que
	el problema	problema no se	nivel de ab-	funcione el pro-
	se desarrolla	utiliza la can-	stracción, más	grama. (1pts)
	utilizando la	tidad de hilos	de 3 errores	
	cantidad de	solicitados, no	visibles , no se	
	hilos solicitados,	se controla los	usa los hilos	
	se controla ade-	race condition	adecuadamente	
	cuadamente los	adecuadamente,	ni un control de	
	race condition,	funciona correc-	race condition.	
	funciona correc-	tamente y sin	(2pts)	
	tamente y sin	errores. (4pts)		
	errores. (5pts)			