QFT Lecture 18

Matei Ionita

March 28, 2013

Non-abelian (internal) symmetries

Reference: ch. 24

$$S = \int d^4x \sum \left(-\frac{1}{2} (\partial \phi_i)^2 - \frac{1}{2} m^2 \phi_i^2 \right) + \lambda \left(\sum \phi_i^2 \right)^2$$

Invariant under $\phi_i = R_{ij}\phi_j$, where $R_{ij} \in O(n)$. Lie algebra of O(n) given by T^a such that:

$$[T^a, T^b] = if^{abc}T^c$$

Renormalization schemes and renormalization group

Reference: chapter 27, 28

Define $\alpha = g^2/4\pi$. Then:

$$\pi(k^2) = -\frac{\alpha}{2} \left(\frac{k^2}{6} + m^2 \right) \left(\frac{2}{\epsilon} + 1 - \gamma + \ln(4\pi) \right) - (Ak^2 + Bm^2) + \frac{\alpha}{2} \int dx D \ln \frac{D}{\mu^2}$$

Renormalization scheme so far is called the on-shell (OS) scheme: $\pi(-m^2) = 0$ and $\pi'(-m^2) = 0$. This is one way of fixing A and B. Sometimes we don't want to do this. Consider the case m = 0, for which the two above conditions hold automatically (independent of A and B). For example, look at modified minimal substraction scheme: \overline{MS} . Minimal substraction means removing only the diverging term. Modified if also remiving the γ and logarithm. Thus, for \overline{MS} :

$$\pi(k^2) = -\frac{\alpha}{2} \left(\frac{k^2}{6} + m^2 \right) + \frac{\alpha}{2} \int dx D \ln \frac{D}{\mu^2}$$

Let's see what this implies about m and the physical mass. The physical mass is the pole $\tilde{\Delta}(-m_{\rm phys}^2)=0$. So:

$$m_{\rm phys}^2 = m^2 - \pi(m_{\rm phys}^2)$$

Notice that the last term is of order α , thus small. So we can use $m = m_{\rm phys}$ in the expression of π . (And then proceed iteratively if we have nothing better to do.)

$$m_{\rm phys}^2 = m^2 \left[1 - \frac{\alpha}{2} \int dx (1 - x + x^2) \ln \frac{m^2}{\mu^2} - \frac{\alpha}{2} \{ \text{some numbers} \} \right]$$

$$m_{\rm phys}^2 = m^2 \left[1 + \frac{5}{12} \alpha \ln \frac{\mu^2}{m^2} + \frac{5}{12} \alpha c' + O(\alpha^2) \right]$$

$$\ln \frac{m_{\rm phys}}{m} = \frac{5}{12} \alpha \ln \frac{\mu}{m} + \frac{5}{24} \alpha c' + O(\alpha^2)$$

Since we introduced μ just for the purposes of dimensional regularization, the physical mass at low energies should be independent of μ at high energies. (HW shows that μ is a sort of ultraviolet cutoff.)

$$0 = \frac{d(\ln m)}{d(\ln \mu)} + \frac{5\alpha}{12} + \frac{5}{12} \frac{d\alpha}{d(\ln \mu)} - \frac{5\alpha}{12} \frac{d(\ln m)}{d(\ln \mu)} + \frac{5}{24} c' \frac{d\alpha}{d(\ln \mu)}$$

Will show at some point that the last 3 terms are $O(\alpha^2)$. Therefore the anomalous dimension of mass is:

$$\gamma_m(\alpha) = \frac{d(\ln m)}{d(\ln \mu)} = -\frac{5\alpha}{12}$$

Note that in $2\rightarrow 2$ scattering we have eq. 27.22:

$$|\mu|^2 \sim \left(1 - \frac{3}{2}\alpha \ln \frac{s}{\mu^2} + \dots\right)$$

One way to think about this: α has a logarithmic dependence of energy. Another way to think about this is that we need to have $s \sim \mu^2$ such that the expansion doesn't diverge.

Let's briefly talk about the renormalization group:

$$\mathcal{L} = \frac{1}{2} Z_{\phi} (\partial \phi)^2 - \frac{1}{2} Z_m m^2 \phi^2 + \frac{1}{6} Z_g g \mu^{\epsilon/2} \phi^3 + Y \phi + \Lambda$$

$$A = Z_{\phi} - 1 = -\frac{\alpha}{6\epsilon} + \{\text{finite}\} + O(\alpha^2)$$

$$B = Z_m - 1 = -\frac{\alpha}{\epsilon} + \{\text{finite}\} + O(\alpha^2)$$

$$C = Z_g - 1 = -\frac{\alpha}{6\epsilon} + \{\text{finite}\} + O(\alpha^2)$$

The idea is that all renormalization schemes remove the divergence, so they give basically the same result, up to the finite terms.