Supplementary Material

Occlusion-Robust Relative Pose Estimation for Multi-Robot Systems via Geometric-Aware Diffusion Matching

I. EXPERIMENTAL RESULT

As described in the main paper, the overall loss is formulated as:

$$\mathcal{L}_{total} = \mathcal{L}_{diff} + \lambda_1 \mathcal{L}_{match} + \lambda_2 \mathcal{L}_{geom}. \tag{1}$$

To determine the appropriate weights, we evaluate average ATE across different combinations of (λ_1, λ_2) , as shown in Fig. 1. This grid search–style analysis visualizes the impact of each hyperparameter choice, where each cell corresponds to a particular setting of (λ_1, λ_2) and lower values indicate better pose accuracy. To ensure robustness, we report both overall accuracy and per-occlusion performance, allowing us to identify hyperparameters that remain stable across varying occlusion rates. From these results, we select $\lambda_1=1$ and $\lambda_2=0.1$, which consistently yield low ATE without overemphasizing either the matching or geometric-consistency term.

Fig. 1. ATE heatmaps across different (λ_1, λ_2) settings. Each cell represents a specific hyperparameter pair, with color intensity reflecting pose accuracy (lower is better). Both overall and per-occlusion results are reported to guide stable parameter selection under varying occlusion levels.

II. RESULTS ON THE EXTENDED TUM-RGBD DATASET

Fig. 2. Extension of the TUM-RGBD dataset to simulate the perception of a ground-robot pair for evaluating relative pose estimation.

TABLE I

EVALUATION RESULTS USING ATE RMSE (M) ON EXTENDED TUM DATASETS ACROSS DIFFERENT OCCLUSION RATES.

Occ Rate	Method	desk_with_person	large_no_loop	large_with_loop	pioneer_slam	pioneer_slam2	pioneer_slam3	long_office_household	structure_notexture_far	structure_texture_far
0%	CoViS-Net	0.57	1.29	1.25	1.55	1.47	1.45	0.93	0.71	0.5
	ORB-BF	0.06	0.45	0.3	0.35	0.22	0.19	0.06	0.18	0.03
	Ours	0.03	0.17	0.15	0.08	0.06	0.08	0.04	0.03	0.02
22%	CoViS-Net	0.67	1.39	1.37	1.54	1.52	1.51	0.96	0.5	0.62
	ORB-BF	0.06	0.43	0.28	0.22	0.2	0.23	0.09	0.04	0.04
	Ours	0.03	0.18	0.17	0.07	0.08	0.09	0.05	0.02	0.02
25%	CoViS-Net	0.68	1.46	1.26	1.55	1.54	1.53	0.98	0.59	0.58
	ORB-BF	0.07	0.48	0.31	0.25	0.2	0.27	0.11	0.14	0.04
	Ours	0.03	0.2	0.15	0.08	0.08	0.1	0.05	0.02	0.02
37.5%	CoViS-Net	1.02	1.63	1.52	1.58	1.58	1.63	1.04	0.55	0.69
	ORB-BF	0.07	0.56	0.28	0.24	0.22	0.33	0.11	0.14	0.06
	Ours	0.03	0.19	0.17	0.08	0.09	0.1	0.05	0.03	0.02

TABLE II

EVALUATION RESULTS USING ARE RMSE (DEG) ON EXTENDED TUM DATASETS ACROSS DIFFERENT OCCLUSION RATES.

Occ Rate	Method	desk_with_person	large_no_loop	large_with_loop	pioneer_slam	pioneer_slam2	pioneer_slam3	long_office_household	structure_notexture_far	structure_texture_far
0%	CoViS-Net	18.97	31.93	28.03	50.46	42.61	45.01	31.65	37.63	11.71
	ORB-BF	1.56	5.76	2.42	6.03	2.91	2.57	1.43	3.88	0.68
	Ours	0.68	2.26	1.42	1.57	1.23	1.66	1.09	0.74	0.56
22%	CoViS-Net	25	33.23	33.54	45.56	44.5	39.84	32.09	18.77	12.16
	ORB-BF	1.56	5.76	2.42	6.03	2.91	2.57	1.43	3.88	0.68
	Ours	0.74	2.45	1.56	1.26	1.39	1.61	1.2	0.52	0.61
25%	CoViS-Net	26.42	36.98	25.16	46.73	44.71	45.05	32.66	27.68	10.82
	ORB-BF	1.56	6.2	2.57	3.2	2.69	3.45	2.56	2.48	0.8
	Ours	0.72	2.7	1.46	1.32	1.66	1.69	1.27	0.53	0.58
37.5%	CoViS-Net	42.03	44.27	28.85	44.59	44.88	44.85	33.58	20.62	11.49
	ORB-BF	1.84	7.2	2.19	3.09	2.72	4.38	2.23	2.49	1.11
	Ours	0.75	2.63	1.46	1.28	1.48	1.79	1.08	0.59	0.62

We additionally evaluate our approach on the widely used TUM-RGBD dataset [1], which features full 3D motion captured with a handheld RGB-D camera across diverse environments, including textureless surfaces and dynamic objects. To adapt this single-camera SLAM dataset for multi-robot relative pose estimation, we construct paired sequences by introducing a 1-second temporal offset between trajectories. Fig. 2 illustrates the evaluation setup.

Tables I and II summarize the translation error (ATE) and rotation error (ARE), respectively. Our method achieves consistently higher accuracy than both CoViS-Net and ORB-BF across occlusion rates. At 0% occlusion, our approach achieves an average ATE of 0.07 m compared to 1.08 m for CoViS-Net and 0.20 m for ORB-BF. Even at 37.5% occlusion, our ATE remains stable at 0.08 m, while CoViS-Net degrades to 1.25 m and ORB-BF to 0.22 m. Similarly, for rotation, our ARE is 1.24° at 0% occlusion versus 33.11° for CoViS-Net and 3.03° for ORB-BF. At 37.5% occlusion, our ARE remains nearly unchanged at 1.30°, while CoViS-Net worsens to 35.02° and ORB-BF stays at 3.03°.

We visualize the performance of different methods in Fig. 3 (a) and (b) using sample sequences containing dynamic obstacles and full 3D handheld motion. Our method maintains consistent alignment with ground truth despite occlusions and scene clutter. ORB-BF frequently fails under such conditions, which can be seen as many missing pose estimates. On the other hand, CoViS-Net occasionally achieves reasonable accuracy but suffers from significant drift in the presence of dynamic objects in the scene.

Fig. 3. Visualization of map-free pose estimation shown in the global coordinate frame, obtained from offline evaluation of TUM-RGBD dataset.

REFERENCES

[1] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, "A benchmark for the evaluation of rgb-d slam systems," in *IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, 2012.