Ontology Languages Description Logics

ANNA QUERALT, OSCAR ROMERO

(FACULTAT D'INFORMÀTICA DE BARCELONA)

Examples in this section are based on:

- D. Calvanese and D. Lembo (tutorial on DL @ISCW'07)
- F. Baader et al. The Description Logic Handbook

DESCRIPTION LOGICS HOW TO MODEL KNOWLEDGE AND ASSERT INSTANCES

Logics-Based Knowledge Representation

First-Order Logic (FOL)

- Suitable for knowledge representation
 - Classes as unary predicates
 - Properties / relationships as binary predicates
 - Constraints as logical formulas using those predicates
- Undecidability
 - In the general case, there is no algorithm that determines if a FOL formula implies another

Decidable Fragments of FOL

- Description Logics (binary predicates bounded number of variables)
- Datalog (Horn-clauses)

Decidable Subsets of FOL

	Datalog	Description Logics
Focus	Instances	Knowledge
Approach	Centralized	Decentralized
Reasoning	Closed-world assumption	Open-world assumption
Unique name	Unique name assumption	Non-unique name assumption

Description Logic (DL) Knowledge Base

Description Logics and Ontologies

Description Logics are used to assert **knowledge** and **instances**

- The knowledge is asserted in the TBOX (DL terminology)
- The instances are asserted in the ABOX (DL assertions)

A DL TBOX and ABOX is a decidable subset of FOL. DL defines accordingly reasoning services for DL KBs

We say a *knowledge base* is an ontology if:

- It defines the ontology terminology (TBOX)
- The asserted instances (ABOX) are complaint with the terminology (i.e., TBOX)
- It provides sound reasoning services

Thus:

- Any Description Logic KB is always an ontology
- A RDFS KB is an ontology if:
 - You define a TBOX
 - The RDFS ABOX is compliant with the TBOX
 - You use sound inference rules (e.g., those defined by the SPARQL community)

Description Logic: TBOX

A DL TBOX is characterized by a set of constructs for building complex concepts and roles from atomic concepts and roles:

- Concepts correspond to classes
- Roles correspond to relationships

Atomic concepts / roles:

Must be explicitly defined by the user (e.g., the person concept or the lectures role)

Complex concepts / roles:

- They are derived from atomic concepts or roles (e.g., a *lecturer* is a *person* who *lectures*)
- They must be derived using the pre-defined **concept and role constructs** provided by the description logic

It is called TBOX because it defines the **terminology** (of the domain)

It is equivalent to the metadata / schema layer we have used for RDFS

Description Logic: TBOX

A DL TBOX is characterized by a set of constructs for building complex concepts and roles from atomic concepts and roles:

- Concepts correspond to classes
- Roles correspond to relationships

A DL TBOX formal semantics are given in terms of interpretations:

An interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ consists of:

- a nonempty set $\Delta^{\mathcal{I}}$, the domain of \mathcal{I}
- an interpretation function .¹, which maps
 - each individual a to an element $a^{\mathcal{I}}$ of $\Delta^{\mathcal{I}}$
 - each atomic concept A to a subset $A^{\mathcal{I}}$ of $\Delta^{\mathcal{I}}$
 - each atomic role P to a subset $P^{\mathcal{I}}$ of $\Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$

Concept Constructs

Atomic concepts and roles are defined explicitly by the user!

Construct	Syntax	Example	Semantics	
atomic concept	A	Doctor	$A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$	
atomic role	P	hasChild	$P^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$	
atomic negation	$\neg A$	$\neg Doctor$	$\Delta^{\mathcal{I}} \setminus A^{\mathcal{I}}$	
conjunction	$C\sqcap D$	Hum □ Male	$C^{\mathcal{I}}\cap D^{\mathcal{I}}$	
(unqual.) exist. res.	$\exists R$	∃hasChild	$\{a \mid \exists b. (a,b) \in R^{\mathcal{I}} \}$	
value restriction	$\forall R.C$	∀hasChild.Male	$\{a \mid \forall b. (a,b) \in R^{\mathcal{I}} \to b \in C^{\mathcal{I}}\}$	
bottom			Ø	

(C, D denote arbitrary concepts and R an arbitrary role)

The above constructs form the basic language AL of the family of AL languages.

Additional Concept and Role Constructs

Construct	\mathcal{AL}	Syntax	Semantics
disjunction	\mathcal{U}	$C \sqcup D$	$C^{\mathcal{I}} \cup D^{\mathcal{I}}$
top		Т	$\Delta^{\mathcal{I}}$
qual. exist. res.	\mathcal{E}	$\exists R.C$	$\{a \mid \exists b. (a,b) \in R^{\mathcal{I}} \land b \in C^{\mathcal{I}} \}$
(full) negation	C	$\neg C$	$\Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$
number	\mathcal{N}	$(\geq k R)$	$\{ a \mid \#\{b \mid (a,b) \in R^{\mathcal{I}}\} \ge k \}$
restrictions		$(\leq k R)$	$\{ a \mid \#\{b \mid (a,b) \in R^{\mathcal{I}}\} \le k \}$
qual. number	Q	$(\geq k R.C)$	$\{ a \mid \#\{b \mid (a,b) \in R^{\mathcal{I}} \land b \in C^{\mathcal{I}}\} \ge k \} $
restrictions		$(\leq k R.C)$	$\{ a \mid \#\{b \mid (a,b) \in R^{\mathcal{I}} \land b \in C^{\mathcal{I}}\} \le k \}$
inverse role	\mathcal{I}	R^-	$\{ (a,b) \mid (b,a) \in R^{\mathcal{I}} \}$
role closure	reg	\mathcal{R}^*	$(R^{\mathcal{I}})^*$

Understanding DL Axioms

What is the meaning of these axioms? Write the **interpretation** corresponding to each axiom

```
∀hasChild.(Doctor ⊔ Lawyer)
                           ∃hasChild.Doctor
  \neg(\mathsf{Doctor} \sqcup \mathsf{Lawyer})
            (\geq 2 \text{ hasChild}) \sqcap (\leq 1 \text{ sibling})
                          (\geq 2 \text{ hasChild. Doctor})
∀hasChild<sup>-</sup>.Doctor
                            ∃hasChild*.Doctor
```

TBOX Definition

A DL TBOX only includes terminological axioms of the following form

- o Inclusion $C_1 \sqsubseteq C_2$ is satisfied by \mathcal{I} if $C_1^{\mathcal{I}} \subseteq C_2^{\mathcal{I}}$ (subsumption) $R_1 \sqsubseteq R_2$ is satisfied by \mathcal{I} if $R_1^{\mathcal{I}} \subseteq R_2^{\mathcal{I}}$
 - Example: PhDStudent \square Student \square Researcher
- Equivalence $C_1 \sqsubseteq C_2, \ C_2 \sqsubseteq C_1$
 - Example: $PhDStudent \equiv Student \sqcap Researcher$

Description Logics: ABOX

Defines instances in terms of the terminological axioms defined in the TBOX

- Concept assertions
 - Student(Pere)
- Role assertions
 - Teaches(Oscar, Pere)

We **cannot** assert instances for a concept not defined previously in the TBOX

We can assert instances of both atomic and complex concepts / roles

It is called ABOX because it defines **assertions** on the TBOX concepts and roles

It is equivalent to the instance layer we have used for RDFS

Example of DL Knowledge Base

TBox assertions:

• Inclusion assertions on concepts:

```
Father \equiv Human \sqcap Male \sqcap \existshasChild HappyFather \sqsubseteq Father \sqcap \forallhasChild.(Doctor \sqcup Lawyer \sqcup HappyPerson) HappyAnc \sqsubseteq \foralldescendant.HappyFather \lnot Doctor \sqcap \lnotLawyer
```

• Inclusion assertions on roles:

ABox membership assertions:

Teacher(mary), hasFather(mary, john), HappyAnc(john)

Exercise

Represent as concept expressions the following UML diagram


```
TBox \mathcal{T}: \existshasFather \sqsubseteq Person \existshasFather \sqsubseteq Person \sqsubseteq \existshasFather
```

Exercise II

Represent as concept expressions the following UML diagram


```
Manager
                    Employee
AreaManager
                    Manager
TopManager
                    Manager
    Manager
                    AreaManager ⊔
                    TopManager
AreaManager
                    \negTopManager
   Employee
                    ∃salary
    ∃salary<sup>-</sup>
                    Integer
   ∃worksFor
                    Employee
 ∃worksFor<sup>-</sup>
                    Project

    ∃worksFor
    ¬

     Project
                    \geq 3 worksFor
    Employee
```

Exercise III

Create a DL KB capturing as much constraints as possible from the following graph:

Oscar Romero 19

Examples in this section are based on:

- D. Calvanese and D. Lembo (tutorial on DL @ISCW'07)
- F. Baader et al. The Description Logic Handbook

DESCRIPTION LOGICSREASONING

Model of a DL Ontology

Model of a DL knowledge base

An interpretation \mathcal{I} is a model of $\mathcal{O} = \langle \mathcal{T}, \mathcal{A} \rangle$ if it satisfies all assertions in \mathcal{I} and all assertions in \mathcal{A} .

O is said to be satisfiable if it admits a model.

The fundamental reasoning service from which all other ones can be easily derived is . . .

Logical implication

 \mathcal{O} logically implies and assertion α , written $\mathcal{O} \models \alpha$, if α is satisfied by all models of \mathcal{O} .

TBOX Reasoning

- Concept Satisfiability: C is satisfiable wrt T, if there is a model T of T such that C^T is not empty, i.e., $T \not\models C \equiv \bot$.
- Subsumption: C_1 is subsumed by C_2 wrt \mathcal{T} , if for every model \mathcal{I} of \mathcal{T} we have $C_1^{\mathcal{I}} \subseteq C_2^{\mathcal{I}}$, i.e., $\mathcal{T} \models C_1 \sqsubseteq C_2$.
- Equivalence: C_1 and C_2 are equivalent wrt \mathcal{T} if for every model \mathcal{I} of \mathcal{T} we have $C_1^{\mathcal{I}} = C_2^{\mathcal{I}}$, i.e., $\mathcal{T} \models C_1 \equiv C_2$.
- Disjointness: C_1 and C_2 are disjoint wrt \mathcal{T} if for every model \mathcal{I} of \mathcal{T} we have $C_1^{\mathcal{I}} \cap C_2^{\mathcal{I}} = \emptyset$, i.e., $\mathcal{T} \models C_1 \sqcap C_2 \equiv \bot$.
- Functionality implication: A functionality assertion (funct R) is logically implied by T if for every model T of T, we have that $(o, o_1) \in R^T$ and $(o, o_2) \in R^T$ implies $o_1 = o_2$, i.e., $T \models (\text{funct } R)$

Reasoning Complexity

Complexity of concept satisfiability: [DLNN97]		
AL, ALN	PTIME	
ALU, ALUN	NP-complete	
ALE	coNP-complete	
ALC, ALCN, ALCI, ALCQI	PSPACE-complete	

Observations:

- Two sources of complexity:
 - union (*U*) of type NP,
 - existential quantification (\mathcal{E}) of type coNP.

When they are combined, the complexity jumps to PSPACE.

• Number restrictions (N) do not add to the complexity.

Ontology Reasoning

- Ontology Satisfiability: Verify whether an ontology \mathcal{O} is satisfiable, i.e., whether \mathcal{O} admits at least one model.
- Concept Instance Checking: Verify whether an individual c is an instance of a concept C in \mathcal{O} , i.e., whether $\mathcal{O} \models C(c)$.
- Role Instance Checking: Verify whether a pair (c_1, c_2) of individuals is an instance of a role R in \mathcal{O} , i.e., whether $\mathcal{O} \models R(c_1, c_2)$.
- Query Answering:

The certain answers to $q(\vec{x})$ over $\mathcal{O} = \langle \mathcal{T}, \mathcal{A} \rangle$, denoted $\operatorname{cert}(q, \mathcal{O})$, ... are the tuples \vec{c} of constants of \mathcal{A} such that $\vec{c} \in q^{\mathcal{I}}$, for every model \mathcal{I} of \mathcal{O} .

Example

 $Researcher \sqsubseteq \neg Professor$ TBOX: $Researcher \sqsubseteq \neg Lecturer$ $\exists TeachesTo^- \sqsubseteq Student$ $Student \sqcap \neg Undergrad \sqsubseteq GraduateStudent$ \exists TeachesTo.Undergrad \sqsubseteq Professor \sqcup Lecturer **TBOX Inferences:** $Researcher \sqsubseteq \forall \ Teaches To. Graduate Student$ concept subsumption TeachesTo(dupond, pierre) **ABOX:** ¬ GraduateStudent(pierre) ¬ Professor(dupond) Lecturer(dupond) concept instance checking Ontology Inferences:

Open-World Assumption

Something evaluates false only if it contradicts other information in the ontology

hasSon(Iokaste,Oedipus)
hasSon(Iokaste,Polyneikes)
hasSon(Oedipus,Polyneikes)
hasSon(Polyneikes,Thersandros)
patricide(Oedipus)
¬patricide(Thersandros)

Query $\equiv \exists$ hasSon.(patricide $\sqcap \exists$ hasSon. \neg patricide) ABox \models Query(lokaste)?

Modeling with Description Logics

It is hard to build good ontologies with DL

- The names of the classes are irrelevant.
- Classes are overlapping by default
- Domain and range definitions are axioms, not constraints
- Open world assumption
 - Anything might be true unless explicit asserted knowledge contradicts it (negation)
- Non-unique name assumption
 - Although families such as the DL-Lite family assume the unique name assumption

In this course, we aim at modeling usual data models and we will solely focus on modeling UML-like TBOXes (like the examples we have seen during this lecture)

Summary

Description Logics

- TBOX
 - Constructs
 - Formal Semantics
- ABOX
- Reasoning
 - Open-World Assumption