QUIZ 2 SDOE (ME 794)

Comparative tests-II

<u>Date</u>: 08-Feb-2024 <u>Time</u>: 1 Hr <u>Maximum marks</u>: 30

- This is a closed-notes, closed-book, pen-and-paper exam. All necessary information and formulae are provided at the end of this question paper.
- You may make use of a scientific calculator. However, using a smartphone/smartwatch/laptop is strictly prohibited.
- Make suitable assumptions, if required. Clearly specify them.

- 1) To test the company claim that the mean viscosity of a liquid detergent is supposed to average 800 centistokes at 25°C. A random sample of 16 batches of detergent is collected, and the average viscosity is 812. Suppose we know that the standard deviation of viscosity is $\sigma = 25$ centistokes. [2+4+4 marks]
 - a) State the hypotheses in equation form that should be tested.
 - b) Test these hypotheses using $\alpha = 0.05$. What are your conclusions?
 - c) Find a 95 percent confidence interval on the mean.

a) . Ho:
$$M = 800$$
 H₁: $M \neq 800$ _ 2)

Test these hypothesis unit $R = 0.05$, what anyour conclusions?

 $R = \frac{y - u_0}{5} = \frac{812 - 800}{25} = \frac{12}{25} = 1.92$

Since $R_{12} = R_{0.025} = 1.96$, do not reject.

C) Find a 95% confidence intolar on the mean $\frac{y}{y} - \frac{x_1}{x_1} = \frac{5}{10} \leq M \leq \frac{y}{y} + \frac{5}{x_1} = \frac{1.92}{10}$
 $R_{12} - 12.25 \leq M \leq \frac{812 + 12.25}{4}$
 $R_{12} - 12.25 \leq M \leq \frac{824.25}{4}$

2) The time to repair an electronic instrument is a normally distributed random variable measured in hours. The repair time for 16 such instruments chosen at random are as follows

[2+4+4 marks]

	Hours													
159	280	101	212											
224	379	179	264											
222	362	168	250											
149	260	485	170											

- a) You wish to know if the mean repair time exceeds 225 hours. Set up appropriate hypotheses for investigating this issue.
- b) Test the hypotheses you formulated in part (a). What are your conclusions? Use $\alpha = 0.05$.
- c) Construct a 95 percent confidence interval on mean repair time.

a)
$$H_0: M = 225$$
 $H_1: M > 225$

b) $test$ hypothesis at $K = 0.05$
 $\overline{Y} = 241.5$
 $S^2 = \frac{146202}{16-1} = 9746.80$
 $S = \sqrt{9746.8} = 98.73$
 $t_0 = \overline{Y} - M_0 = 241.5 - 225 = 0.67$
 $Since to.05, 15 = 1.753$
 $Since to.05, 15 = 1.7$

- 3) Suppose you currently use a windows laptop and now wish to use an iOS-based MacBook; formulate the three ways to write the null hypothesis and alternate hypothesis on the laptop performance (you may choose ANY ONE performance parameter of your choice). [3 marks]
- 4) Answer the following:

[3+4 marks]

- a) What is replication? Why do we need replication in experiment? Explain with a suitable example.
- b) What are blocking and randomization in designing an experiment? Explain their need with a suitable example.

SUPPLEMENTARY INFORMATION

$$z = \frac{\bar{y} - \mu}{\sigma}$$

$$z_o = \frac{\bar{y} - \mu_0}{\sigma / \sqrt{n}}$$

$$z_0 = \frac{\overline{y_1} - \overline{y_2}}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

$$t_o = \frac{\bar{y} - \mu_0}{S/\sqrt{n}}$$

$$t_0 = \frac{\overline{y_1} - \overline{y_2}}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

$$t_0 = \frac{\overline{y_1} - \overline{y_2}}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$

$$\bar{y} - Z_{\alpha/2} \, \sigma / \sqrt{n} \, \leq \, \mu \, \leq \, \bar{y} + Z_{\alpha/2} \, \sigma / \sqrt{n}$$

$$\bar{y}_1 - \bar{y}_2 - Z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \ \leq \ \mu \ \leq \ \bar{y}_1 - \bar{y}_2 + Z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

$$\bar{y} - t_{\alpha/2,n-1} S/\sqrt{n} \, \leq \, \mu \, \leq \, \bar{y} + t_{\alpha/2,n-1} S/\sqrt{n}$$

$$\bar{y}_1 - \bar{y}_2 - t_{\alpha/2, n_1 + n_2 - 1} \, S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \, \, \leq \, \, \mu \, \, \leq \, \, \bar{y}_1 - \bar{y}_2 + t_{\alpha/2, n_1 + n_2 - 1} \, S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

$$s^{2} = \sum_{i=1}^{n} \frac{(y_{i} - \bar{y})^{2}}{n - 1}$$

$$\sigma^2 = \sum_{i=1}^N \frac{(y_i - \bar{y})^2}{N}$$

$$\bar{y} = \sum_{k=1}^{n} \frac{y_i}{n}$$

$$\mu = \sum_{k=1}^{N} \frac{y_i}{N}$$

Cumulative Probability for Standard Normal Distribution (z-scores)	
Cumulative Probability for Standard Normal Distribution (2-Scores)	

	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
)	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
A	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

II Percentage Points of the t Distribution^a

να	0.40	0.25	0.10	0.05	0.025	0.01	0.005	0.0025	0.001	0.0005
1	0.325	1.000	3.078	6.314	12.706	31.821	63.657	127.32	318.31	636.62
2	0.289	0.816	1.886	2.920	4.303	6.965	9.925	14.089	23.326	31.598
3	0.277	0.765	1.638	2.353	3.182	4.541	5.841	7.453	10.213	12.924
4	0.271	0.741	1.533	2.132	2.776	3.747	4.604	5.598	7.173	8.610
5	0.267	0.727	1.476	2.015	2.571	3.365	4.032	4.773	5.893	6.869
6	0.265	0.727	1.440	1.943	2.447	3.143	3.707	4.317	5.208	5.959
7	0.263	0.711	1.415	1.895	2.365	2.998	3.499	4.019	4.785	5.408
8	0.262	0.706	1.397	1.860	2.306	2.896	3.355	3.833	4.501	5.041
9	0.261	0.703	1.383	1.833	2.262	2.821	3.250	3.690	4.297	4.781
10	0.260	0.700	1.372	1.812	2.228	2.764	3.169	3.581	4.144	4.587
11	0.260	0.697	1.363	1.796	2.201	2.718	3.106	3.497	4.025	4.437
12	0.259	0.695	1.356	1.782	2.179	2.681	3.055	3.428	3.930	4.318
13	0.259	0.694	1.350	1.771	2.160	2.650	3.012	3.372	3.852	4.221
14	0.258	0.692	1.345	1.761	2.145	2.624	2.977	3.326	3.787	4.140
15	0.258	0.691	1.341	1.753	2.131	2.602	2.947	3.286	3.733	4.073
16	0.258	0.690	1.337	1.746	2.120	2.583	2.921	3.252	3.686	4.015

$$\begin{split} H_0: \sigma_1^2 &= \sigma_2^2 \qquad H_1: \sigma_1^2 \neq \sigma_2^2 \quad F_0 = \frac{S_1^2}{S_2^2} \\ H_0: \sigma_1^2 &= \sigma_2^2 \qquad H_1: \sigma_1^2 < \sigma_2^2 \quad F_0 = \frac{S_2^2}{S_1^2} \\ \end{split}$$

•	$0.025, \nu_1, \iota$

/	ν_1							Degre	es of Fro	eedom f	or the N	umerato	or (v ₁)							
ν_2	\setminus	1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	∞
	1 2	647.8 38.51	799.5 39.00	864.2 39.17	899.6 39.25	921.8 39.30	937.1 39.33	948.2 39.36	956.7 39.37	963.3 39.39	968.6 39.40	976.7 39.41	984.9 39.43	993.1 39.45	997.2 39.46	1001 39.46	1006 39.47	1010 39.48	1014 39.49	1018 39.50
	3	17.44	16.04	15.44	15.10	14.88	14.73	14.62	14.54	14.47	14.42	14.34	14.25	14.17	14.12	14.08	14.04	13.99	13.95	13.90
	4	12.22	10.65	9.98	9.60	9.36	9.20	9.07	8.98	8.90	8.84	8.75	8.66	8.56	8.51	8.46	8.41	8.36	8.31	8.26
	5	10.01	8.43	7.76	7.39	7.15	6.98	6.85	6.76	6.68	6.62	6.52	6.43	6.33	6.28	6.23	6.18	6.12	6.07	6.02
	6	8.81	7.26	6.60	6.23	5.99	5.82	5.70	5.60	5.52	5.46	5.37	5.27	5.17	5.12	5.07	5.01	4.96	4.90	4.85
(\nu_2)	7 8	8.07 7.57	6.54	5.89 5.42	5.52 5.05	5.29 4.82	5.12 4.65	4.99 4.53	4.90 4.43	4.82	4.76 4.30	4.67 4.20	4.57	4.47	4.42 3.95	4.36 3.89	4.31 3.84	4.25 3.78	4.20 3.73	4.14 3.67
inator (10	7.21 6.94	5.71	5.08 4.83	4.72	4.48	4.32	4.20 3.95	4.10 3.85	4.03 3.78	3.96	3.87	3.77	3.67 3.42	3.61	3.56	3.51	3.45	3.39	3.33
Denom	11	6.72	5.26	4.63	4.28	4.04	3.88	3.76	3.66	3.59	3.53	3.43	3.33	3.23	3.17	3.12	3.06	3.00	2.94	2.88
	12	6.55	5.10	4.47	4.12	3.89	3.73	3.61	3.51	3.44	3.37	3.28	3.18	3.07	3.02	2.96	2.91	2.85	2.79	2.72
	13	6.41	4.97	4.35	4.00	3.77	3.60	3.48	3.39	3.31	3.25	3.15	3.05	2.95	2.89	2.84	2.78	2.72	2.66	2.60
for the	14	6.30	4.86	4.24	3.89	3.66	3.50 3.41	3.38	3.29	3.21	3.15	3.05	2.95 2.86	2.84	2.79	2.73	2.67 2.59	2.61	2.55 2.46	2.49
of Freedom for the Denominator	16	6.12	4.69	4.08	3.73	3.50	3.34	3.22	3.12	3.05	2.99	2.89	2.79	2.68	2.63	2.57	2.51	2.45	2.38	2.32
	17	6.04	4.62	4.01	3.66	3.44	3.28	3.16	3.06	2.98	2.92	2.82	2.72	2.62	2.56	2.50	2.44	2.38	2.32	2.25
es of Fr	18	5.98	4.56	3.95	3.61	3.38	3.22	3.10	3.01	2.93	2.87	2.77	2.67	2.56	2.50	2.44	2.38	2.32	2.26	2.19
	19	5.92	4.51	3.90	3.56	3.33	3.17	3.05	2.96	2.88	2.82	2.72	2.62	2.51	2.45	2.39	2.33	2.27	2.20	2.13
Degrees	20	5.87	4.46	3.86	3.51	3.29	3.13	3.01	2.91	2.84	2.77	2.68	2.57	2.46	2.41	2.35	2.29	2.22	2.16	2.09
	21	5.83	4.42	3.82	3.48	3.25	3.09	2.97	2.87	2.80	2.73	2.64	2.53	2.42	2.37	2.31	2.25	2.18	2.11	2.04
	22	5.79	4.38	3.78	3.44	3.22	3.05	2.93	2.84	2.76	2.70	2.60	2.50	2.39	2.33	2.27	2.21	2.14	2.08	2.00
	23	5.75	4.35	3.75	3.41	3.18	3.02	2.90	2.81	2.73	2.67	2.57	2.47	2.36	2.30	2.24	2.18	2.11	2.04	1.97
	24	5.72	4.32	3.72	3.38	3.15	2.99	2.87	2.78	2.70	2.64	2.54	2.44	2.33	2.27	2.21	2.15	2.08	2.01	1.94

 $0.05, \nu_1, \nu_2$

	$ \sqrt{\nu_1} $ Degrees of Freedom for the Numerator (ν_1)																			
ν_2		1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	∞
of Freedom for the Denominator (1/2)	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	161.4 18.51 10.13 7.71 6.61 5.99 5.59 5.32 5.12 4.96 4.84 4.75 4.67 4.60 4.54 4.49 4.45 4.41	199.5 19.00 9.55 6.94 5.79 5.14 4.74 4.46 4.26 4.10 3.98 3.89 3.81 3.74 3.68 3.63 3.59 3.55	215.7 19.16 9.28 6.59 5.41 4.76 4.35 4.07 3.86 3.71 3.59 3.49 3.41 3.34 3.29 3.24 3.20 3.16 3.13	224.6 19.25 9.12 6.39 5.19 4.53 4.12 3.84 3.36 3.26 3.18 3.11 3.06 3.01 2.96 2.93 2.90	230.2 19.30 9.01 6.26 5.05 4.39 3.97 3.69 3.48 3.33 3.20 3.11 3.03 2.96 2.80 2.81 2.77 2.74	234.0 19.33 8.94 6.16 4.95 4.28 3.87 3.58 3.37 3.22 3.09 2.92 2.85 2.79 2.70 2.66 2.63	236.8 19.35 8.89 6.09 4.88 4.21 3.79 3.50 3.29 3.14 3.01 2.91 2.83 2.76 2.71 2.66 2.61 2.58 2.54	238.9 19.37 8.85 6.04 4.82 4.15 3.73 3.44 3.23 3.07 2.95 2.85 2.77 2.70 2.64 2.59 2.55 2.51	240.5 19.38 8.81 6.00 4.77 4.10 3.68 3.39 3.18 3.02 2.90 2.80 2.71 2.65 2.59 2.54 2.49 2.46 2.42	241.9 19.40 8.79 5.96 4.74 4.06 3.35 3.14 2.98 2.85 2.75 2.60 2.54 2.49 2.45 2.41 2.38	243.9 19.41 8.74 5.91 4.68 4.00 3.57 3.28 3.07 2.91 2.79 2.69 2.60 2.53 2.48 2.42 2.38 2.34 2.31	245.9 19.43 8.70 5.86 4.62 3.94 3.51 3.22 3.01 2.85 2.72 2.62 2.53 2.46 2.40 2.35 2.31 2.27	248.0 19.45 8.66 5.80 4.56 3.87 3.44 3.15 2.94 2.77 2.65 2.54 2.46 2.39 2.33 2.28 2.23 2.19 2.16	249.1 19.45 8.64 5.77 4.53 3.84 3.41 3.12 2.90 2.74 2.61 2.51 2.42 2.35 2.29 2.24 2.19 2.15 2.11	250.1 19.46 8.62 5.75 4.50 3.81 3.38 3.08 2.86 2.70 2.57 2.47 2.38 2.31 2.25 2.19 2.15 2.11	251.1 19.47 8.59 5.72 4.46 3.77 3.34 2.83 2.66 2.53 2.43 2.27 2.20 2.15 2.10 2.06	252.2 19.48 8.57 5.69 4.43 3.74 3.30 2.79 2.62 2.49 2.38 2.30 2.22 2.16 2.11 2.06 2.02 1.98	253.3 19.49 8.55 5.66 4.40 3.70 3.27 2.97 2.75 2.58 2.45 2.34 2.25 2.11 2.06 2.01 1.97	254.3 19.50 8.53 5.63 4.36 3.67 3.23 2.93 2.71 2.54 2.40 2.30 2.21 2.13 2.07 2.01 1.96 1.92 1.88
Degrees	20 21 22 23 24	4.35 4.32 4.30 4.28 4.26	3.49 3.47 3.44 3.42 3.40	3.10 3.07 3.05 3.03 3.01	2.87 2.84 2.82 2.80 2.78	2.71 2.68 2.66 2.64 2.62	2.60 2.57 2.55 2.53 2.51	2.51 2.49 2.46 2.44 2.42	2.45 2.42 2.40 2.37 2.36	2.39 2.37 2.34 2.32 2.30	2.35 2.32 2.30 2.27 2.25	2.28 2.25 2.23 2.20 2.18	2.20 2.18 2.15 2.13 2.11	2.12 2.10 2.07 2.05 2.03	2.08 2.05 2.03 2.01 1.98	2.04 2.01 1.98 1.96 1.94	1.99 1.96 1.94 1.91 1.89	1.95 1.92 1.89 1.86 1.84	1.90 1.87 1.84 1.81 1.79	1.84 1.81 1.78 1.76 1.73