实验报告

mux的波形如下:

波形分析:

mux 模块完成题目要求的功能,输入有使能enable、选择select, 数据input_a, input_b,输出为 led。从上述波形可以看出:

- 1. enable为0, input_a, input_b, select无论为多少,输出led均为为f(4'b1111),符合预期;
- 2. 同上
- 3. enable=1, select=0(input a + input b), input a=1, input b=0, 输出led=1, 符合预期;
- 4. enable=1, select=0(input_a + input_b), input_a=1, input_b=1, 输出led=2, 符合预期;
- 5. enable=1, select=0(input_a + input_b), input_a=8, input_b=4, 输出led=12(0xc), 符合预期;
- 6. enable=1, select=0(input_a + input_b), input_a=4, input_b=1, 输出led=5, 符合预期;
- 7. enable=1, select=1(input_a input_b), input_a=1, input_b=0, 输出led=1, 符合预期;
- 8. enable=1, select=1(input_a input_b), input_a=1, input_b=1, 输出led=0, 符合预期;
- 9. enable=1, select=1(input_a input_b), input_a=8, input_b=4, 输出led=4, 符合预期;
- 10. enable=1, select=1(input_a input_b), input_a=4, input_b=1, 输出led=3, 符合预期;

故根据上述分析, mux模块实现了以下功能:

```
1  if (enable){
2    if (select) {
3        let = input_a - input_b
4    } else {
5        let = input_a + input_b
6    }
7  } else {
8    led = 4'b1111
9  }
```

RTL

综合

test1

synthesis

RTL

test2

仿真

synthesis

RTL

test3

仿真

synthesis

RTL

综上

- RTL: 可以看到, 三张图RTL得到的网表是相同的, 毕竟这三个test的效果是一样的
- 综合: 这里是用了一些fpga的元件, 查表表等, 因为select有两位, 将两位分开, 然后分别进行查找表, 然后根据每一位的查找表, 得到data_out中的高低位
- 仿真: 可以看到, test2中应该是出现了错误, 在select = 1, 2, 3的时候, date_out一直只是1, 问题应该是他最后的if else, 而不是像test3那样, 最后只有一个else, 这是因为综合出了latch