CyberDisplay® 113K LV

Low-Voltage, Ultra-Compact Color AMLCD

FramelessPart No. KCD-QWNF-AA

1 GENERAL DESCRIPTION

The CyberDisplay® 113K LV is a color-filter active-matrix liquid crystal display with 113K color dot resolution. The display utilizes high-performance single-crystal silicon transistors, and is the smallest (0.16" diagonal) transmissive AMLCD for the resolution. The transmissive AMLCD allows the use of simple and thin optics for compact system size.

The CyberDisplay 113K LV features Kopin's patent-pending low-voltage architecture for low power consumption and compatibility with CMOS driver ICs. The input video levels are reduced to half the typical values for other LCDs because the capacitively coupled interface effectively doubles the voltage written to pixels while the integrated switch circuitry restores the DC level. Bidirectional horizontal and vertical scanner circuits are integrated. A sleep mode is provided to simplify system power management.

Figure 1-1 shows the pixel array layout. The active array of 521 × 218 dots is surrounded by opaque dummy pixels, for a total array size of 531 × 222 dots. Alternate rows are shifted horizontally by 1½ dots to produce a delta pixel arrangement.

The CyberDisplay 113K LV is available in a frameless package (KCD-QWNF-AA) for integration into a view-finder module.

1.1 Applications

The ultra-compact CyberDisplay 113K LV is ideal for camcorder viewfinders or entry-level consumer applications.

1.2 Key Specifications

- 521 × 218 active color dot resolution (113,578 dots)
- 531 × 222 total color dot resolution (117,882 dots)
- 6.3 (H) × 11.3 (V) µm dot pitch
- Ultra-compact (0.16" diagonal)
- Active pixel area (3.28 mm × 2.46 mm)
- Same form factor as monochrome CyberDisplay 320
- · Parallel RGB analog input
- Simple 3.3-volt interface for CMOS compatible driver chip
- Power-saving sleep mode
- · Integrated low voltage detect
- · Integrated horizontal and vertical scanners
- Bidirectional vertical and horizontal scanning

PS-0045 0726200t

2 ELECTRICAL SPECIFICATIONS

A block diagram of the CyberDisplay 113K LV is shown in Figure 2-1. External capacitors couple the RGB component signals to the display's six video inputs, with one pair of high and low inputs for each primary color (red, green, and blue). The row inversion drive scheme requires that video polarity be inverted on alternating, with the INV signal selecting the high or low inputs.

Integrated scanners drive the active matrix pixel array. The horizontal and vertical scan directions are mask-programmable, and the display is available in up or down, left or right, scanning configurations.

2.1 Interface Signals

A 15-pin flex cable provides electrical connection to the CyberDisplay 113K LV. The interface signals are listed in Table 2-1.

2.2 Inversion

To preserve DC balance in the liquid crystal, each pixel must be driven with alternating high and low video. The CyberDisplay 113K LV uses row inversion, in which all pixels of each row have the same polarity, but successive rows have alternating polarity. The INV signal indicates the polarity of each row (see timing diagrams of §2.5). The row inversion

phases must be inverted with successive fields. For example, if one field is driven with row 0 low, row 1 high, and row 2 low, then the following field must have row 0 high, row 1 low, and row 2 high.

Pin	Symbol	Description
1	VEE	Supply = 0V
2	VIDRH	High red video input
3	VIDGH	High green video input
4	VIDBH	High blue video input
5	VIDRL	Low red video input
6	VIDGL	Low green video input
7	VIDBL	Low blue video input
8	HS	Horizontal sync
9	VS	Vertical sync
10	INV	Inversion polarity
11	SLEEP*	Sleep mode
12	CK0	Clock
13	CK1	Clock
14	VDD	Supply
15	VSS	Supply

^{*} Signal is active low

Table 2-1: Supply and Interface Voltage Levels

Figure 2-1: Block Diagram

2.3 Sleep Mode

The CyberDisplay 152K LV features a sleep mode to simplify system power management. When the SLEEP* pin is driven low, all scanners are disabled and the pixel array is driven to the white state.

The display may remain powered and will draw minimal current while in sleep mode. The backlight may be turned off.

The display will also enter sleep mode when the integrated low voltage detect circuit determines that power has been removed.

2.4 Electrical Characteristics

Permanent damage to the display may result if the Absolute Maximum Ratings in Table 2-2 are exceeded. The Absolute Maximum Ratings are not typical operating conditions.

Parameter/Condition	Symbol	Min	Max	Units
Supply voltage — source	V _{DD}	- 0.5	5.0	V
Supply voltage — sink	V _{ss}	- 7.0	0.5	V
All inputs	V _I	V _{SS} - 0.5	V _{DD} + 0.5	V

Note: All voltages relative to V_{EE} =0.

Table 2-2: Absolute Maximum Ratings

Parameter	Symbol	Min	Тур	Max	Units
Supply voltage — source	V _{DD}	3.0	3.5	3.6	V
Supply voltage — sink	V _{ss}	- 5.5	- 5.0	- 4.5	V
Operating current — source	I _{DD}		0.4		mA
Operating current — sink	I _{ss}		0.4		mA
Operating current	I _{EE}	- 100		100	μA
VID[RGB]H high black level	V _{HK}		3.3		V
VID[RGB]H high white level	V _{HW}		0		V
VID[RGB]L low white level	V _{LW}		0		V
VID[RGB]L low black level	V _{LK}		- 3.3		V
Digital input high	V _{IH}				V
Digital input low	V _{IL}				V
Input current	I,	– 10		10	μΑ
Input capacitance: video inputs	C _{VID}		15	20	pF
Input capacitance: CK0 & CK1	C _c		8	12	pF
Input capacitance: other inputs	C		5	10	pF

Note: All voltages relative to $V_{\rm EE}$ =0.

Table 2-3: Electrical Characteristics and Recommended DC Operating Conditions

2.5 Timing Specification

The parameters of Table 2-4 are defined in the timing diagrams of this section.

Parameter	Symbol	Min	Тур	Max	Units
Field period	t _v		16.7–20.0		ms
Field rate	1/t _/		50–60		Hz
Line period	t _H		64		μs
Line rate	1/t _H		15.6–15.7		kHz
Clock period	t _{CP}		543-547		ns
HS high pulse width	t _{HH}	5			μs
HS to CK0 pulse 0 delay	t _{FD}	1			μs
CK1 pulse 239 to HS delay	t _{BD}	1			μs
Clock high pulse width	t _{ch}	120			ns
CK0 to CK1 delay	t _{CD}	$(t_{CP}/2)-5$	t _{CP} /2	$(t_{CP}/2)+5$	ns
CK0 and CK1 non-overlap	t _{NOL}	0	5		ns
White hold after HS	t _{wh}	400			ns
White setup before HS	t _{ws}	200			ns
Video setup	t _{vs}	80			ns
Video hold	t _{vH}	50			ns
INV setup before HS	t _{is}	100			ns
INV hold after HS	t _{IH}	100			ns
VS high pulse width	t _{vsh}	1			μs
VS low pulse width	t _{vsl}	1			μs
VS to HS delay	t _{vhD}	1			μs
HS to VS delay	t _{HVD}	1			μs

Table 2-4: Electrical Characteristics and Recommended AC Operating Conditions

Figure 2-2: Vertical Timing, Top-to-Bottom Scan

Figure 2-3: Vertical Timing, Bottom-to-Top Scan

Figure 2-4: Horizontal Timing, Left-to-Right Scan, Odd Rows High

Figure 2-5: Horizontal Timing-Left-to-Right Scan, Odd Rows Low

Figure 2-6: Horizontal Timing, Right-to-Left Scan, Odd Rows High

Figure 2-7: Horizontal Timing, Right-to-Left Scan, Odd Rows Low

2.6 Line Skipping

Simple vertical scaling may be accomplished by line skipping. For example, to display PAL video with the correct aspect ratio, one of every six lines should be skipped. As illustrated in Figure 2-8, the HS pulse

should be extended to remain high during the skipped line. This technique mimimizes visible artifacts by preserving the same HS-video timing in the rows before and after the skipped line.

Figure 2-8: Line Skipping Timing Diagram

3 OPTICAL SPECIFICATIONS

3.1 Optical Characteristics

Item		Symbol	Notes	Min	Тур.	Max	Unit	
Contrast ratio $V \text{sig} = 0 \pm 3.3V$		CR _{3.3} 25	1	30	60			
Optical Transmittance 25°C		25°C	T	2	1.2	1.5	1.9	%
Chromaticity	W	X	Wx	3	0.20	0.30	0.34	CIE standards
		Υ	Wy		0.27	0.31	0.35	
	R	Χ	Rx		0.51	0.55	0.59	
		Υ	Ry		0.27	0.31	0.35]
	G	Χ	Gx		0.25	0.28	0.32]
		Υ	Gy		0.51	0.55	0.59	
	В	Χ	Вх		0.11	0.15	0.19]
		Υ	Ву		0.10	0.14	0.18	
V-T characteristics	V ₉₀	25°C	V ₉₀₋₂₅	4	0.4	0.7	1.1	V
	V ₅₀	25°C	V ₅₀₋₂₅		1.0	1.3	1.7	
	V ₁₀	25°C	V ₁₀₋₂₅		1.7	2.0	2.6	
Response time		25°C	ton ₂₅	5		10	20	ms
	OFF time	25°C	toff ₂₅		1	30	40	
Flicker			F	6			-40	dB

Table 3-1: Optical Characteristics

Notes On Measurement Conditions:

- 1. $CR_{3,3}25 = (Luminance White)/(Luminance Black)$. System I
- 2. T = (Luminance White)/(Luminance Backlight). System I
- 3. CIE Standard 1931. White backlight: 7500K. System II
- 4. V-T is relationship of signal amplitude to transmittance.

System I

- 5. 0% to 90% transmittance. System I + Oscilloscope
- 6. 20log(AC/DC) @ 50% transmittance. System I + Spectrum Analyzer

4 MECHANICAL SPECIFICATIONS

4.1 Interconnect

The flexible PC cable is strain relieved, but tugging forces should be limited to less than 0.5 kg perpendicular to the display and less than 1 kg parallel to the display. The minimum inside bend radius for the cable is .03 inches. Repeated reformings are not recommended.

4.2 Mechanical drawings

Figure 4-1: CyberDisplay 152K LV Display and Pixel Array Area

