Unsupervised learning for news summarization

how to automatically extract the most important information

Jakub Kubajek

Agenda

- 1. Introduction
- 2. Words' importance
- 3. Embeddings
- 4. Clustering
- 5. Summarization

Introduction

Why unsupervised learning?

- · Lack of pre-trained models for Polish
- Shortage of training data in Polish
- Low computing resources
- · Multi-document problem hundreds of articles every day

Definitions of key words

- · Token word
- Lemmatization reducing word to its basic grammar form
- TF matrix a matrix that describes the frequency of terms occuring in a set of documents
- · IDF Inverse Document Frequency
- Embedding numeric (vector) representation of a word
- Cosine similarity a measure of similarity between two vectors

$$cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|}$$

3

Model's overview

Words' importance

Dunning's measure

General information

- It measures whether token's frequency on a particular day is statistically different from that in the reference period
- · Likelihood ratio test
- No normality assumption binomial distribution
- Proper measure for rare events

Dunning's measure

General information

- It measures whether token's frequency on a particular day is statistically different from that in the reference period
- · Likelihood ratio test
- No normality assumption binomial distribution
- Proper measure for rare events

Equation

$$\lambda = \frac{L(p, k_0, n_0) L(p, k_1, n_1)}{L(p_0, k_0, n_0) L(p_1, k_1, n_1)}$$
(1)

$$L(p,k,n) = p^{k} (1-p)^{n-k}$$
 (2)

where, $p=\frac{k_0+k_1}{n_0+n_1}$, $p_i=\frac{k_i}{n_i}$ and $-2log\lambda$ has χ^2 distribution with one degree of freedom. k_0 is the number of a word's occurrences **except** for those on a particular day, k_1 is the word's count on a particular day.

5

Model's implementation

Modification of Dunning measure

• Multiplication by –1, when $p_1 < p_0$

Selecting words for clustering

- $-2log\lambda \ge 10$
- Token count (k_i) larger than the value of 90^{th} percentile of all counts

Embeddings

Latent Semantic Analysis (LSA)

- Singular Value Decomposition (SVD) of TF matrix composed of both paragraphs and articles
- · No need for training algebra
- · Dimensionality reduction
- Capturing **semantic** relation between words

Clustering

Clustering

Agglomerative hierarchical clustering

- Start with N topics
- Find the two most similar topics cosine between embeddings
- Merge the two topics set the new embedding as a sum of the two
- Stop when there is 1 topic
- Return the optimal clustering determined by the silhouette algorithm

Silhouette algorithm

It aims to find clusters in which objects inside the groups are the most **similar** to each other and **dissimilar** to objects from other clusters.

Equation

$$a(i) = cos(e_i, e_{C_k} - e_i)$$

$$b(i) = \min_{l \neq k} cos(e_i, e_{C_l})$$

$$s(i) = \begin{cases} \frac{b(i) - a(i)}{max\{b(i), a(i)\}}, & \text{if } |C_k| > 1\\ 0, & \text{otherwise} \end{cases}$$

$$(3)$$

where a(i) and b(i) are inner and outer similarity respectively, e_i is an embedding of i^{th} token, e_{C_k} is the topic's embedding where $i \in C_k$.

Example

Summarization

LexRank

An extractive summarization algorithm, based on Google's **PageRank**, aiming to select sentences that are highly linked (by common words) to other highly linked sentences.

- PageRank
 - · Used to rank web pages
 - Ranking equal to the **steady state** of Markov chain
 - Markov matrix obtained as a weighted mean of a normalized matrix of **links** between pages and a **random** matrix ($\frac{1}{N}$ in every cell)
- LexRank
 - · Cosine similarity between sentences
 - Uses the TF-IDF matrix

Modifications

• Filtering articles - minimal topic words' frequency

- Filtering articles minimal topic words' frequency
- Filtering sentences x% of the most simillar sentences to the topic
- · Weights of words
 - · TF
 - Modified **Dunning** measure
 - $log(D_i + 3)$ when $D_i \ge -2$
 - 0 otherwise

- Filtering articles minimal topic words' frequency
- Filtering sentences x% of the most simillar sentences to the topic
- · Weights of words
 - · TF
 - Modified **Dunning** measure
 - $log(D_i + 3)$ when $D_i \ge -2$
 - · 0 otherwise
- Sentences' embeddings

- Filtering articles minimal topic words' frequency
- Filtering sentences x% of the most simillar sentences to the topic
- · Weights of words
 - · TF
 - Modified **Dunning** measure
 - $log(D_i + 3)$ when $D_i \ge -2$
 - · 0 otherwise
- Sentences' embeddings
- Scaling the ranking $F_i = \frac{log(w_i^T)}{log(w_i)}$
 - where F_i is a scaling factor, w_i^T is the number of unique topic words and w_i the number of all words in i^{th} sentence
 - Upscale when a sentence has many topic words
 - **Downscale** long sentences

- Filtering articles minimal topic words' frequency
- Filtering sentences x% of the most simillar sentences to the topic
- Weights of words
 - TF
 - Modified **Dunning** measure
 - $log(D_i + 3)$ when $D_i \ge -2$
 - · 0 otherwise
- Sentences' embeddings
- Scaling the ranking $F_i = \frac{log(w_i^T)}{log(w_i)}$
 - where F_i is a scaling factor, w_i^T is the number of unique topic words and w_i the number of all words in i^{th} sentence
 - Upscale when a sentence has many topic words
 - · Downscale long sentences
- Non-duplicated sentences ($cos(\theta) > 0.5$)

Example

Summary

- Two days later, Mr Musk wrote a series of tweets including one describing Mr Unsworth as a "pedo guy".
- Mr Unsworth's legal team have described Mr Musk's now-deleted tweet as "vile and false" and are seeking unspecified punitive damages.
- On Thursday, Mr Unsworth told the **court** that Mr Musk's tweet had left him feeling "humiliated".

jkubajek/News_Selector

Bibliography i

E. Altszyler, M. Sigman, and D. F. Slezak.

Comparative study of LSA vs word2vec embeddings in small corpora: a case study in dreams database.

CoRR, abs/1610.01520, 2016.

T. Dunning.

Accurate methods for the statistics of surprise and coincidence.

COMPUTATIONAL LINGUISTICS, 19(1):61-74, 1993.

G. Erkan and D. R. Radev.

Lexrank: Graph-based lexical centrality as salience in text summarization.

Journal of artificial intelligence research, 22:457–479, 2004.

Bibliography ii

P. J. Liu, M. Saleh, E. Pot, B. Goodrich, R. Sepassi, L. Kaiser, and N. Shazeer.

Generating wikipedia by summarizing long sequences. arXiv preprint arXiv:1801.10198, 2018.

R. Mihalcea and P. Tarau.

Textrank: Bringing order into text.

In Proceedings of the 2004 conference on empirical methods in natural language processing, pages 404–411, 2004.

L. Page, S. Brin, R. Motwani, and T. Winograd.

The pagerank citation ranking: Bringing order to the web.

Technical report, Stanford InfoLab, 1999.

Bibliography iii

G. Rossiello, P. Basile, and G. Semeraro.

Centroid-based text summarization through compositionality of word embeddings.

In Proceedings of the MultiLing 2017 Workshop on Summarization and Summary Evaluation Across Source Types and Genres, pages 12–21, 2017.