CLASSIFYING THE MS AND IR SPECTRA OF FRUIT USING K-MEANS CLUSTERING AND SUPPORT VECTOR MACHINES

András Vékássy CHEM6164 X May 2023

Structure

- Exploratory Data Analysis
- Dimensionality Reduction
- Clustering
- Support vector classification
- Conclusion & Future Work
- Q&A

<u>Title</u>

Key message

■ A

EDA

PCA

<u>Dimensionality Reduction - MS</u>

KM

- 90% of variance captured by 150 PCs
- No distinct clusters along PC1
- PC2 and PC3 separated orange from lemon and lime clusters

<u>Dimensionality Reduction - IR</u>

Significantly sparser dataset

- First 10 PCs capture almost all variance
- PC1 separated tomato from citrus fruits
- PC3 distinguished lime

CLUSTERING

Clustering - MS

Not seeing the forest for the trees

- Clustering was misled by PC1
- Number of PCs had no influence on accuracy
- Lime-lemon pair remained unresolved even when using more clusters (n>4)

<u>Clustering – IR</u>

The more clusters, the better?

- Silhouette scores increased with less PCs
- Combining clusters is a valid strategy for classifying tomatoes

SVM

<u>SVM</u>

Success metrics

■ Accuracy: (TP+TN)/A

■ F1 score: (2 x precision x recall)/(precision+recall)

■ Precision: TP/(TP+FP)

■ Recall: TP/(TP+FN)

Confusion matrix

SVM - MS

Key message

Separable pair: orange-tomato

- Accuracy and F1 scores all 1.0
- RBF failed to classify

Non-separable pair: lime-lemon

- Great separation using C=0.01
- Varying the number of PCs lowered recall

#PCs	Accuracy	F1 score	Precision	Recall
2.0	0.472222	0.000000	0.000000	0.000000
3.0	0.694444	0.645161	0.833333	0.526316
5.0	0.916667	0.923077	0.900000	0.947368
10.0	0.972222	0.972973	1.000000	0.947368
20.0	1.000000	1.000000	1.000000	1.000000
50.0	0.916667	0.918919	0.944444	0.894737
100.0	0.916667	0.923077	0.900000	0.947368

The confusion matrix of the SVM model using C=0.01 for distinguishing limes and lemons (left) and the SVM's dependence on the number of PCs (right).

SVM - IR

PCs matter

Separable pair: orange-tomato

- Accuracy and F1 scores all 1.0
- RBF made a better attempt

Non-separable pair: lemon-orange

- Softer margin improved results
- Large dependence on the number of PCs

#PCs	Accuracy	F1 score	Precision	Recall
1.0	0.416667	0.400000	0.411765	0.388889
2.0	0.611111	0.681818	0.576923	0.833333
3.0	0.583333	0.705882	0.545455	1.000000
4.0	0.527778	0.679245	0.514286	1.000000
5.0	0.555556	0.692308	0.529412	1.000000
6.0	0.555556	0.692308	0.529412	1.000000
7.0	0.555556	0.692308	0.529412	1.000000
8.0	0.555556	0.692308	0.529412	1.000000
9.0	0.750000	0.800000	0.666667	1.000000
10.0	0.833333	0.857143	0.750000	1.000000

CONCLUSION & FUTURE WORK

Conclusion & Future Work

When life gives you lemons...

- PCA reduced dimensionality by up to two magnitudes
- k-means clustering struggled with overlapping data
- SVMs tackled non-separable classes very well

Next steps:

- Finetune SVM's parameters with gradient search
- Try alternative algorithms: tree-based models, neural networks (CNNs, transfer learning)
- Explain the models

REFERENCES

References

- (1) R. Houhou and T. Bocklitz, *Anal. Sci. Adv.*, 2021, **2**, 128–141.
- (2) N. S. Eyke, B. A. Koscher and K. F. Jensen, *Trends Chem.*, 2021, **3**, 120–132.
- (3) M. D. Wilkinson et al. *Sci. Data*, 2016, **3**, 1–9.
- (4) Aurélien Géron, *Hands-On Machine Learning* with Scikit-Learn, Keras, and TensorFlow, 2nd Edition, O'Reilly Media, Inc., 2019.
- (5) C. A. Peña-Solórzano, D. W. Albrecht, R. B. Bassed, M. D. Burke and M. R. Dimmock, *Forensic Sci. Int.*, DOI:10.1016/j.forsciint.2020.110538.
- (6) Y. Alkhalifah et al. *Anal. Chem.*, 2020, **92**, 2937–2945.
- (7) R. Houhou and T. Bocklitz, *Anal. Sci. Adv.*, 2021, **2**, 128–141.

- (8) Y. Pérez, M. Casado, D. Raldúa, E. Prats, B. Piña, R. Tauler, I. Alfonso and F. Puig-Castellví, *Anal. Bioanal. Chem.*, 2020, **412**, 5695–5706.
- (9) L. Xu, Y. Liu, J. Yu, X. Li, X. Yu, H. Cheng and J. Li, *J. Neurosci. Methods*, 2020, **331**, 108538.
- (10) K. Weiss, T. M. Khoshgoftaar and D. Wang, *J. Big Data*, 2016, **3**, 9.
- (11) R. Guidotti, A. et al. *ACM Comput. Surv.*, DOI:10.1145/3236009.
- (12) R. G. Buttery, R. Teranishi and L. C. Ling, *J. Agric. Food Chem.*, 1987, **35**, 540–544.
- (13) C. Molnar, *Interpretable Machine Learning*, 2nd edn., 2022.
- (14) S. M. Lundberg, G. G. Erion and S.-I. Lee, *arXiv Prepr. arXiv1802.03888*.

A&Q

<u>Title</u>

Key message

■ A

CONCLUSION & FUTURE WORK

QSAR

TRAVEL DESIGN

Digital Nomad Guide:

The better way to enjoy your world as a nomad

How to Start Being a Digital Nomad

Reduce and Eliminate Expenses

Decide on a Location

Set Goals and Create a Plan

Common Travel Seasons

THANK YOU

someone@example.com