Nonzero-sum adversarial hypothesis testing games

Sarath A Y, Patrick Loiseau (Grenoble)

25 Sep 2019

- Classification in the presence of an adversary:
 - ▶ Traditionally, nature is unaware of the classification algorithm.
 - ▶ An adversary generates data to mislead the classifier.
 - Classifier wants to detect the presence of the adversary and the adversary wants the classifier to make an error.

- Classification in the presence of an adversary:
 - ▶ Traditionally, nature is unaware of the classification algorithm.
 - ▶ An adversary generates data to mislead the classifier.
 - Classifier wants to detect the presence of the adversary and the adversary wants the classifier to make an error.
- Applications:
 - Network security
 - Multimedia forensics
 - Biometrics

- Classification in the presence of an adversary:
 - ▶ Traditionally, nature is unaware of the classification algorithm.
 - ▶ An adversary generates data to mislead the classifier.
 - Classifier wants to detect the presence of the adversary and the adversary wants the classifier to make an error.
- Applications:
 - Network security
 - Multimedia forensics
 - Biometrics
- Two rational agents: the adversary and the classifier.

- Classification in the presence of an adversary:
 - ▶ Traditionally, nature is unaware of the classification algorithm.
 - ▶ An adversary generates data to mislead the classifier.
 - Classifier wants to detect the presence of the adversary and the adversary wants the classifier to make an error.
- Applications:
 - Network security
 - Multimedia forensics
 - Biometrics
- ▶ Two rational agents: the adversary and the classifier.
- Propose and analyse a game-theoretic model in this context of adversarial classification.

- Classification in the presence of an adversary:
 - ► Traditionally, nature is unaware of the classification algorithm.
 - ▶ An adversary generates data to mislead the classifier.
 - Classifier wants to detect the presence of the adversary and the adversary wants the classifier to make an error.
- Applications:
 - Network security
 - Multimedia forensics
 - Biometrics
- Two rational agents: the adversary and the classifier.
- Propose and analyse a game-theoretic model in this context of adversarial classification.
- ► Adversarial hypothesis testing—adversary picks a distribution and data is generated from this.

▶ Bayesian setting: the external agent is an attacker with probability θ (H_1), and a normal user with probability $1 - \theta$ (H_0).

- ▶ Bayesian setting: the external agent is an attacker with probability θ (H_1), and a normal user with probability 1θ (H_0).
- Normal user is not strategic. Generates n i.i.d. samples from a distribution p on $\mathcal{X} = \{1, 2, \dots, d\}$.

- ▶ Bayesian setting: the external agent is an attacker with probability θ (H_1), and a normal user with probability 1θ (H_0).
- Normal user is not strategic. Generates n i.i.d. samples from a distribution p on $\mathcal{X} = \{1, 2, \dots, d\}$.
- ▶ Attacker picks a $q \in Q \subset M_1(\mathcal{X})$ (but there is a cost for this) and generates n i.i.d. samples from q.

- ▶ Bayesian setting: the external agent is an attacker with probability θ (H_1), and a normal user with probability 1θ (H_0).
- Normal user is not strategic. Generates n i.i.d. samples from a distribution p on $\mathcal{X} = \{1, 2, \dots, d\}$.
- ▶ Attacker picks a $q \in Q \subset M_1(\mathcal{X})$ (but there is a cost for this) and generates n i.i.d. samples from q.
- ▶ Defender: upon observing \mathbf{x}^n , decide H_0 or H_1 .

- ▶ Bayesian setting: the external agent is an attacker with probability θ (H_1), and a normal user with probability 1θ (H_0).
- Normal user is not strategic. Generates n i.i.d. samples from a distribution p on $\mathcal{X} = \{1, 2, \dots, d\}$.
- ▶ Attacker picks a $q \in Q \subset M_1(\mathcal{X})$ (but there is a cost for this) and generates n i.i.d. samples from q.
- ▶ Defender: upon observing \mathbf{x}^n , decide H_0 or H_1 .
- ► The attacker and defender are strategic—we propose a game-theoretic model for this problem.

The game $\mathcal{G}^{B}(d, n)$

► Two players: the attacker and defender.

The game $\mathcal{G}^B(d,n)$

- Two players: the attacker and defender.
- Strategy spaces
 - lacktriangle Attacker: the set of probability distributions Q on $\mathcal X$
 - ▶ Defender: $\Phi_n = \{ \varphi : \mathcal{X}^n \to [0,1] \}; \ \varphi(\mathbf{x}^n) \ \text{denotes acceptance}$ probability of H_1 .

The game $\mathcal{G}^B(d,n)$

- Two players: the attacker and defender.
- Strategy spaces
 - lacksquare Attacker: the set of probability distributions Q on $\mathcal X$
 - ▶ Defender: $\Phi_n = \{ \varphi : \mathcal{X}^n \to [0,1] \}; \ \varphi(\mathbf{x}^n) \ \text{denotes acceptance}$ probability of H_1 .
- Utility function of the attacker:

$$u_n^A(q,\varphi) = \sum_{\mathbf{x}^n} (1 - \varphi(\mathbf{x}^n)) q(\mathbf{x}^n) - c(q).$$

The game $\mathcal{G}^B(d,n)$

- Two players: the attacker and defender.
- Strategy spaces
 - lacksquare Attacker: the set of probability distributions Q on $\mathcal X$
 - ▶ Defender: $\Phi_n = \{ \varphi : \mathcal{X}^n \to [0,1] \}; \ \varphi(\mathbf{x}^n) \ \text{denotes acceptance}$ probability of H_1 .
- Utility function of the attacker:

$$u_n^A(q,\varphi) = \sum_{\mathbf{x}^n} (1 - \varphi(\mathbf{x}^n)) q(\mathbf{x}^n) - c(q).$$

Utility function of the defender

$$u_n^D(q,\varphi) = -\left(\sum_{\mathbf{x}^n} (1 - \varphi(\mathbf{x}^n))q(\mathbf{x}^n) + \gamma \sum_{\mathbf{x}^n} \varphi(\mathbf{x}^n)p(\mathbf{x}^n)\right).$$

The game $\mathcal{G}^B(d, n)$

- Two players: the attacker and defender.
- Strategy spaces
 - lacktriangle Attacker: the set of probability distributions Q on $\mathcal X$
 - ▶ Defender: $\Phi_n = \{ \varphi : \mathcal{X}^n \to [0,1] \}$; $\varphi(\mathbf{x}^n)$ denotes acceptance probability of H_1 .
- Utility function of the attacker:

$$u_n^A(q,\varphi) = \sum_{\mathbf{x}^n} (1 - \varphi(\mathbf{x}^n)) q(\mathbf{x}^n) - c(q).$$

Utility function of the defender

$$u_n^D(q,\varphi) = -\left(\sum_{\mathbf{x}^n} (1 - \varphi(\mathbf{x}^n))q(\mathbf{x}^n) + \gamma \sum_{\mathbf{x}^n} \varphi(\mathbf{x}^n)p(\mathbf{x}^n)\right).$$

► Goal: analyse the above game. What is the most likely outcome of this game? How much revenue do each players get?

▶ Widely used solution concept for non-cooperative games.

- Widely used solution concept for non-cooperative games.
- ▶ Nash equilibrium (NE): unilateral deviations do not help.

- Widely used solution concept for non-cooperative games.
- Nash equilibrium (NE): unilateral deviations do not help. $(\hat{q}, \hat{\varphi})$ is a NE of $\mathcal{G}^B(d, n)$ if

$$u_n^A(\hat{q},\hat{\varphi}) \ge u_n^A(q,\hat{\varphi}) \ \forall q \in Q, \text{ and}$$

 $u_n^D(\hat{q},\hat{\varphi}) \ge u_n^D(\hat{q},\varphi) \ \forall \varphi \in \Phi_n.$

- Widely used solution concept for non-cooperative games.
- Nash equilibrium (NE): unilateral deviations do not help. $(\hat{q}, \hat{\varphi})$ is a NE of $\mathcal{G}^B(d, n)$ if

$$u_n^A(\hat{q},\hat{\varphi}) \ge u_n^A(q,\hat{\varphi}) \ \forall q \in Q, \text{ and}$$

 $u_n^D(\hat{q},\hat{\varphi}) \ge u_n^D(\hat{q},\varphi) \ \forall \varphi \in \Phi_n.$

But they may not always exist.

- Widely used solution concept for non-cooperative games.
- Nash equilibrium (NE): unilateral deviations do not help. $(\hat{q}, \hat{\varphi})$ is a NE of $\mathcal{G}^B(d, n)$ if

$$\begin{aligned} u_n^A(\hat{q},\hat{\varphi}) &\geq u_n^A(q,\hat{\varphi}) \; \forall q \in Q, \text{ and} \\ u_n^D(\hat{q},\hat{\varphi}) &\geq u_n^D(\hat{q},\varphi) \; \forall \varphi \in \Phi_n. \end{aligned}$$

- ▶ But they may not always exist.
- ▶ However mixed equilibria always exist for $\mathcal{G}^B(d, n)$.

- Q is equipped with the standard Euclidean topology.
- $ightharpoonup \Phi_n$ is equipped with the "sup-norm" distance

$$d_n(\varphi_1, \varphi_2) = \max_{\mathbf{x}^n \in \mathcal{X}^n} |\varphi_1(\mathbf{x}^n) - \varphi_2(\mathbf{x}^n)|,$$

- Q is equipped with the standard Euclidean topology.
- $ightharpoonup \Phi_n$ is equipped with the "sup-norm" distance

$$d_n(\varphi_1, \varphi_2) = \max_{\mathbf{x}^n \in \mathcal{X}^n} |\varphi_1(\mathbf{x}^n) - \varphi_2(\mathbf{x}^n)|,$$

- Assume:
 - ▶ (A1) Q is closed in $M_1(\mathcal{X})$.
 - (A2) c is continuous on Q.

- Q is equipped with the standard Euclidean topology.
- $ightharpoonup \Phi_n$ is equipped with the "sup-norm" distance

$$d_n(\varphi_1, \varphi_2) = \max_{\mathbf{x}^n \in \mathcal{X}^n} |\varphi_1(\mathbf{x}^n) - \varphi_2(\mathbf{x}^n)|,$$

- Assume:
 - ▶ (A1) Q is closed in $M_1(\mathcal{X})$.
 - ▶ (A2) c is continuous on Q.
- ▶ Both Q and Φ_n are compact metric spaces.

- Q is equipped with the standard Euclidean topology.
- $ightharpoonup \Phi_n$ is equipped with the "sup-norm" distance

$$d_n(\varphi_1, \varphi_2) = \max_{\mathbf{x}^n \in \mathcal{X}^n} |\varphi_1(\mathbf{x}^n) - \varphi_2(\mathbf{x}^n)|,$$

- Assume:
 - ▶ (A1) Q is closed in $M_1(\mathcal{X})$.
 - \blacktriangleright (A2) c is continuous on Q.
- ▶ Both Q and Φ_n are compact metric spaces.
- ▶ Define randomisations over them: $M_1(Q)$ and $M_1(\Phi_n)$ denote the spaces of probability measure on Q and Φ_n , respectively.

- Q is equipped with the standard Euclidean topology.
- $ightharpoonup \Phi_n$ is equipped with the "sup-norm" distance

$$d_n(\varphi_1, \varphi_2) = \max_{\mathbf{x}^n \in \mathcal{X}^n} |\varphi_1(\mathbf{x}^n) - \varphi_2(\mathbf{x}^n)|,$$

- Assume:
 - ▶ (A1) Q is closed in $M_1(\mathcal{X})$.
 - ► (A2) c is continuous on Q.
- ▶ Both Q and Φ_n are compact metric spaces.
- ▶ Define randomisations over them: $M_1(Q)$ and $M_1(\Phi_n)$ denote the spaces of probability measure on Q and Φ_n , respectively.
- ► Mixed strategy: $(\sigma^A, \sigma^D) \in M_1(Q) \times M_1(\Phi_n)$. $u_n^A(\sigma^A, \sigma^D) = \int u_n^A(q, \varphi) \sigma^A(dq) \sigma^D(d\varphi)$; similarly u_n^D .

- Q is equipped with the standard Euclidean topology.
- $ightharpoonup \Phi_n$ is equipped with the "sup-norm" distance

$$d_n(\varphi_1, \varphi_2) = \max_{\mathbf{x}^n \in \mathcal{X}^n} |\varphi_1(\mathbf{x}^n) - \varphi_2(\mathbf{x}^n)|,$$

- Assume:
 - (A1) Q is closed in $M_1(\mathcal{X})$.
 - ▶ (A2) *c* is continuous on *Q*.
- ▶ Both Q and Φ_n are compact metric spaces.
- ▶ Define randomisations over them: $M_1(Q)$ and $M_1(\Phi_n)$ denote the spaces of probability measure on Q and Φ_n , respectively.
- Mixed strategy: $(\sigma^A, \sigma^D) \in M_1(Q) \times M_1(\Phi_n)$. $u_n^A(\sigma^A, \sigma^D) = \int u_n^A(q, \varphi) \sigma^A(dq) \sigma^D(d\varphi)$; similarly u_n^D .
- A strategy $(\hat{\sigma}^A, \hat{\sigma}^D)$ is a mixed strategy Nash equilibrium if

$$u_n^A(\hat{\sigma}^A, \hat{\sigma}^D) \ge u_n^A(\sigma^A, \hat{\sigma}^D) \ \forall \sigma^A \in M_1(Q), \text{ and}$$

 $u_n^D(\hat{\sigma}^A, \hat{\sigma}^D) \ge u_n^D(\hat{\sigma}_A, \sigma^D) \ \forall \sigma^D \in M_1(\Phi_n).$

Existence and partial characterisation of mixed NE

Proposition

Assume (A1) and (A2). Then, there exists a mixed strategy Nash equilibrium for $\mathcal{G}^B(d,n)$. If $(\hat{\sigma}_n^A,\hat{\sigma}_n^D)$ is a NE, then so is $(\hat{\sigma}_n^A,\hat{\varphi}_n)$ where $\hat{\varphi}_n$ is the likelihood ratio test given by

$$\hat{\varphi}_{n}(\mathbf{x}^{n}) = \begin{cases} 1, & \text{if } q_{\hat{\sigma}_{n}^{A}}(\mathbf{x}^{n}) - \gamma p(\mathbf{x}^{n}) > 0, \\ \varphi_{\hat{\sigma}_{n}^{D}}, & \text{if } q_{\hat{\sigma}_{n}^{A}}(\mathbf{x}^{n}) - \gamma p(\mathbf{x}^{n}) = 0, \\ 0, & \text{if } q_{\hat{\sigma}_{n}^{A}}(\mathbf{x}^{n}) - \gamma p(\mathbf{x}^{n}) < 0, \end{cases}$$

where
$$q_{\hat{\sigma}_n^A}(\mathbf{x}^n) = \int q(\mathbf{x}^n) \hat{\sigma}_n^A(dq)$$
, and $\varphi_{\hat{\sigma}_n^D} = \int \varphi(\mathbf{x}^n) \hat{\sigma}_n^D(d\varphi)$.

- Follows from the Glicksberg fixed point theorem.
- ▶ Randomisation over Φ_n is needed so show existence of NE.
- $q_{\hat{\sigma}_A^A}$ need not be a product of elements from Q.

- $(\hat{\sigma}_n^A, \hat{\sigma}_n^D)$ is a NE. What can we say about $u_n^A(\hat{\sigma}_n^A, \hat{\sigma}_n^D)$ and $u_n^D(\hat{\sigma}_n^A, \hat{\sigma}_n^D)$?
- ► Consider the classification error: $e_n(\hat{\sigma}_n^A, \hat{\sigma}_n^D) = -u_n^D(\hat{\sigma}_n^A, \hat{\sigma}_n^D)$.

- $(\hat{\sigma}_n^A, \hat{\sigma}_n^D)$ is a NE. What can we say about $u_n^A(\hat{\sigma}_n^A, \hat{\sigma}_n^D)$ and $u_n^D(\hat{\sigma}_n^A, \hat{\sigma}_n^D)$?
- ► Consider the classification error: $e_n(\hat{\sigma}_n^A, \hat{\sigma}_n^D) = -u_n^D(\hat{\sigma}_n^A, \hat{\sigma}_n^D)$.
- ▶ Decision rule φ^{δ} : accept H_0 when the empirical distribution of $\mathbf{x}^n(\mathcal{P}_{\mathbf{x}^n})$ falls in a δ -neighbourhood of p. (Picture on board)

- $(\hat{\sigma}_n^A, \hat{\sigma}_n^D)$ is a NE. What can we say about $u_n^A(\hat{\sigma}_n^A, \hat{\sigma}_n^D)$ and $u_n^D(\hat{\sigma}_n^A, \hat{\sigma}_n^D)$?
- ► Consider the classification error: $e_n(\hat{\sigma}_n^A, \hat{\sigma}_n^D) = -u_n^D(\hat{\sigma}_n^A, \hat{\sigma}_n^D)$.
- ▶ Decision rule φ^{δ} : accept H_0 when the empirical distribution of $\mathbf{x}^n(\mathcal{P}_{\mathbf{x}^n})$ falls in a δ -neighbourhood of p. (Picture on board)
- ▶ By the law of large numbers, one expects that $e_n(\hat{\sigma}_n^A, \varphi^\delta) \to 0$ as $n \to \infty$.

- $(\hat{\sigma}_n^A, \hat{\sigma}_n^D)$ is a NE. What can we say about $u_n^A(\hat{\sigma}_n^A, \hat{\sigma}_n^D)$ and $u_n^D(\hat{\sigma}_n^A, \hat{\sigma}_n^D)$?
- ► Consider the classification error: $e_n(\hat{\sigma}_n^A, \hat{\sigma}_n^D) = -u_n^D(\hat{\sigma}_n^A, \hat{\sigma}_n^D)$.
- ▶ Decision rule φ^{δ} : accept H_0 when the empirical distribution of $\mathbf{x}^n(\mathcal{P}_{\mathbf{x}^n})$ falls in a δ -neighbourhood of p. (Picture on board)
- ▶ By the law of large numbers, one expects that $e_n(\hat{\sigma}_n^A, \varphi^\delta) \to 0$ as $n \to \infty$.
- ▶ We have $e_n(\hat{\sigma}_n^A, \hat{\sigma}_n^D) \leq e_n(\hat{\sigma}_n^A, \varphi^\delta) \to 0$ as $n \to \infty$.

- $(\hat{\sigma}_n^A, \hat{\sigma}_n^D)$ is a NE. What can we say about $u_n^A(\hat{\sigma}_n^A, \hat{\sigma}_n^D)$ and $u_n^D(\hat{\sigma}_n^A, \hat{\sigma}_n^D)$?
- ► Consider the classification error: $e_n(\hat{\sigma}_n^A, \hat{\sigma}_n^D) = -u_n^D(\hat{\sigma}_n^A, \hat{\sigma}_n^D)$.
- ▶ Decision rule φ^{δ} : accept H_0 when the empirical distribution of $\mathbf{x}^n(\mathcal{P}_{\mathbf{x}^n})$ falls in a δ -neighbourhood of p. (Picture on board)
- ▶ By the law of large numbers, one expects that $e_n(\hat{\sigma}_n^A, \varphi^\delta) \to 0$ as $n \to \infty$.
- ▶ We have $e_n(\hat{\sigma}_n^A, \hat{\sigma}_n^D) \leq e_n(\hat{\sigma}_n^A, \varphi^\delta) \to 0$ as $n \to \infty$.
- ▶ Thus, we anticipate that $\hat{\sigma}^A$ to concentrate on the set $\{q^* \in Q : c(q^*) \le c(q) \, \forall q \in Q\}.$

Concentration of NE

- ▶ To proceed further, we need another assumption:
 - ▶ (A3) There exists a unique $q^* \in Q$ such that

$$q^* = \arg\min_{q \in Q} c(q).$$

Concentration of NE

- ▶ To proceed further, we need another assumption:
 - ▶ (A3) There exists a unique $q^* \in Q$ such that

$$q^* = \arg\min_{q \in Q} c(q).$$

Lemma

Assume (A1)-(A3). Then, $\hat{\sigma}_n^A \to \delta_{q^*}$ weakly as $n \to \infty$:

$$\int_Q f(q) \hat{\sigma}_n^A(dq) o f(q^*)$$

for all bounded continuous functions $f: Q \to \mathbb{R}$.

Concentration of NE

- ▶ To proceed further, we need another assumption:
 - ▶ (A3) There exists a unique $q^* \in Q$ such that

$$q^* = \arg\min_{q \in Q} c(q).$$

Lemma

Assume (A1)-(A3). Then, $\hat{\sigma}_n^A \to \delta_{q^*}$ weakly as $n \to \infty$:

$$\int_Q f(q) \hat{\sigma}_n^A(dq) o f(q^*)$$

for all bounded continuous functions $f: Q \to \mathbb{R}$.

▶ Proof idea: Subsequential limits of $\{\hat{\sigma}_n^A\}_{n\geq 1}$ exist (Prohorov). Use $e_n(\hat{\sigma}_n^A,\hat{\sigma}_n^D) \to 0$ and the fact that $(\hat{\sigma}_n^A,\hat{\sigma}_n^D)$ is a NE to show that every limit point coincides with δ_{q^*} .

Support of $\hat{\sigma}_n^A$

- ▶ Lemma 1 does not imply that $\operatorname{dist}(supp(\hat{\sigma}_n^A), q^*) \to 0$. (Picture on board)
- One more assumption: (A4) The point p is distant from the set Q relative to the point q*, i.e.,

$$\{\mu \in M_1(\mathcal{X}) : D(\mu||p) \leq D(\mu||q^*)\} \cap Q = \emptyset.$$

Lemma

Assume (A1)-(A4). Let $(q_n)_{n\geq 1}$ be a sequence such that $q_n \in supp(\hat{\sigma}_n^A)$ for each $n \geq 1$. Then, $q_n \to q^*$ as $n \to \infty$.

▶ Proof idea: Show that $\sup_{q \in Q} e_n(q, \hat{\sigma}_n^D) \to 0$. Then use uniqueness of q^* .

Main result: error exponents

Define

$$\Lambda_0(\lambda) = \log \sum_{i \in \mathcal{X}} \exp \left(\lambda \frac{q^*(i)}{p(i)}\right) p(i), \ \lambda \in \mathbb{R},$$

the log-moment generating function of $\frac{q^*(X)}{p(X)}$ under H_0 , i.e., when $X \sim p$, and its convex dual

$$\Lambda_0^*(x) = \sup_{\lambda \in \mathbb{R}} \{\lambda x - \Lambda_0(\lambda)\}, \ x \in \mathbb{R}.$$

Main result: error exponents

Define

$$\Lambda_0(\lambda) = \log \sum_{i \in \mathcal{X}} \exp \left(\lambda \frac{q^*(i)}{p(i)}\right) p(i), \ \lambda \in \mathbb{R},$$

the log-moment generating function of $\frac{q^*(X)}{p(X)}$ under H_0 , i.e., when $X \sim p$, and its convex dual

$$\Lambda_0^*(x) = \sup_{\lambda \in \mathbb{R}} \{\lambda x - \Lambda_0(\lambda)\}, \ x \in \mathbb{R}.$$

Theorem

Assume (A1)-(A4). Then,

$$\lim_{n\to\infty}\frac{1}{n}\log e_n(\hat{\sigma}_n^A,\hat{\sigma}_n^D)=-\Lambda_0^*(0).$$

▶ Lower bound: let the attacker play the strategy q^* .

- ▶ Lower bound: let the attacker play the strategy q^* .
- ▶ Upper bound: let the defender play a fixed decision rule and make use of the concentration properties of NE.

- ▶ Lower bound: let the attacker play the strategy q^* .
- ▶ Upper bound: let the defender play a fixed decision rule and make use of the concentration properties of NE.
- ▶ The result holds for all NE $(\hat{\sigma}_n^A, \hat{\sigma}_n^D)$.

- ▶ Lower bound: let the attacker play the strategy q^* .
- Upper bound: let the defender play a fixed decision rule and make use of the concentration properties of NE.
- ▶ The result holds for all NE $(\hat{\sigma}_n^A, \hat{\sigma}_n^D)$.
- We obtain this result without explicitly computing the structure of NE.

- ▶ Lower bound: let the attacker play the strategy q^* .
- Upper bound: let the defender play a fixed decision rule and make use of the concentration properties of NE.
- ▶ The result holds for all NE $(\hat{\sigma}_n^A, \hat{\sigma}_n^D)$.
- We obtain this result without explicitly computing the structure of NE.
- ▶ The error exponent is the same as that of classical binary hypothesis testing between p and q^* .

Proof sketch

- Lower bound:
- Define

$$u_n^{eq}(q,\varphi) = \sum_{\mathbf{x}^n} (1 - \varphi(\mathbf{x}^n)) q(\mathbf{x}^n) + \gamma \sum_{\mathbf{x}^n} \varphi(\mathbf{x}^n) p(\mathbf{x}^n) - c(q).$$

- $\mathcal{G}^B(d,n)$ is equivalent to the zerosum game with utility e_n^{eq} .
- $u_n^{eq}(\hat{\sigma}_n^A, \hat{\sigma}_n^D) \ge u_n^{eq}(q^*, \hat{\sigma}_n^D).$
- Can show (using the uniqueness of q*)

$$e_n(\hat{\sigma}_n^A,\hat{\sigma}_n^D) \geq \sum_{\mathbf{x}^n} \left((1 - \varphi_n^*(\mathbf{x}^n)) q^*(\mathbf{x}^n) + \gamma \varphi_n^*(\mathbf{x}^n) p(\mathbf{x}^n) \right).$$

▶ Use the error exponent for classical testing of p versus q^* :

$$\liminf_{n\to\infty}\frac{1}{n}\log e_n(\hat{\sigma}_n^A,\hat{\sigma}_n^D)\geq -\Lambda_0^*(0).$$

Proof sketch

Upper bound:

$$\varphi_n'(\mathbf{x}^n) = \left\{ egin{array}{ll} 1, & ext{if } rac{q^*(\mathbf{x}^n)}{p(\mathbf{x}^n)} \geq 1, \\ 0, & ext{otherwise.} \end{array}
ight.$$

▶ Decision region of φ'_n (in terms of empirical distribution):

$$\Gamma' = \{ \nu \in M_1(\mathcal{X}) : D(\nu||q^*) - D(\nu||p) > 0 \}.$$

- $e_n(\hat{\sigma}_n^A, \hat{\sigma}_n^D) \leq e_n(\hat{\sigma}_n^A, \varphi_n').$
- Easy to check:

$$e_n(\hat{\sigma}_n^A, \varphi_n') = \int q(\mathcal{P}_{\mathbf{x}^n} \in \Gamma') \hat{\sigma}_n^A(dq) + p(\mathcal{P}_{\mathbf{x}^n} \in (\Gamma')^c).$$

We can show that

$$q(\mathcal{P}_{\mathbf{x}^n} \in \Gamma') \leq (n+1)^d e^{-n\inf_{\nu \in \Gamma'} D(\nu||q)}.$$

Proof sketch

▶ Using the concentration of $\hat{\sigma}_n^A$, we have, for any $\varepsilon > 0$,

$$D(\nu || q) \ge D(\nu || q^*) - \varepsilon$$
 for all $q \in \text{supp}(\hat{\sigma}_n^A)$.

for sufficiently large n.

- ▶ Thus, $q(\mathcal{P}_{\mathbf{x}^n} \in \Gamma') \le (n+1)^d e^{-n(\inf_{\nu \in \Gamma'} D(\nu || q^*) \varepsilon)}$
- Similarly,

$$p(\mathcal{P}_{\mathbf{x}^n} \in (\Gamma')^c) \le (n+1)^d e^{-n(\inf_{\nu \notin \Gamma'} D(\nu \| \rho) - \varepsilon)}$$

- Exercise: $\inf_{\nu \notin \Gamma'} D(\nu \| p) = \inf_{\nu \in \Gamma'} D(\nu \| q^*) = \Lambda_0^*(0)$.
- Thus,

$$\limsup_{n\to\infty}\frac{1}{n}\log e_n(\hat{\sigma}_n^A,\hat{\sigma}_n^D)\leq -\Lambda_0^*(0).$$

Numerical examples: No pure NE

Figure:
$$Q = [0.7, 0.9], c(q) = |q - 0.8|, n = 200$$

Numerical examples: Pure NE

Figure: Q = [0.7, 0.9], c(q) = |q - 0.8|, n = 250

► This suggest that pure NE exists for large *n*.

Numerical examples: Error exponent

Figure: $Q = [0.7, 0.9], c(q) = |q - 0.8|, \Lambda_0^*(0) \approx 0.054$

Numerical examples: Error exponent

Figure: $Q = [0.6, 0.9], c(q) = 3|q - 0.9|, \Lambda_0^*(0) \approx 0.111$

▶ A game-theoretic model to study adversarial classification.

- ▶ A game-theoretic model to study adversarial classification.
- Results:
 - Existence and partial characterisation of mixed NE in these games.
 - Concentration properties of NE.
 - Error exponents associated with classification error.

- A game-theoretic model to study adversarial classification.
- Results:
 - Existence and partial characterisation of mixed NE in these games.
 - Concentration properties of NE.
 - Error exponents associated with classification error.
- Future work:
 - ► Characterisation of all NE and algorithms to compute them.
 - ▶ Relax assumptions. What if c has multiple minima? A weaker assumption than (A4)?
 - Sequential hypothesis testing game.
 - Conditions of existence of pure NE.

- A game-theoretic model to study adversarial classification.
- Results:
 - Existence and partial characterisation of mixed NE in these games.
 - Concentration properties of NE.
 - Error exponents associated with classification error.
- Future work:
 - ► Characterisation of all NE and algorithms to compute them.
 - ▶ Relax assumptions. What if c has multiple minima? A weaker assumption than (A4)?
 - Sequential hypothesis testing game.
 - Conditions of existence of pure NE.
- Acknowledgment: Cisco-IISc Research Fellowship Grant.

Thank you