$\iiint \left(\frac{1}{6}\left(6\ \mathcal{A}^{\alpha\beta\chi}\ \sigma_{\alpha\beta\chi}+6\ f^{\alpha\beta}\ \tau\left(\Delta+\mathcal{K}\right)_{\alpha\beta}+8\ r.\ \partial_{\beta}\mathcal{A}_{\alpha_{l}\theta}\right)^{\theta}\mathcal{A}^{\alpha\beta_{l}}-4\ r.\ \partial_{\beta}\mathcal{A}_{\alpha_{\theta_{l}}}\partial^{\theta}\mathcal{A}^{\alpha\beta_{l}}+4\ r.\ \partial_{\beta}\mathcal{A}_{_{l}\theta\alpha}\partial^{\theta}\mathcal{A}^{\alpha\beta_{l}}-2\ r.\ \partial_{_{l}}\mathcal{A}_{_{\alpha\beta\theta}}\partial^{\theta}\mathcal{A}^{\alpha\beta_{l}}+2\ r.\ 2\ r.$ $\partial_{\theta}\mathcal{R}_{\alpha\beta_{l}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{l}} - 4r_{2}\partial_{\theta}\mathcal{R}_{\alpha_{l}\beta_{l}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{l}} + 4t_{2}\mathcal{R}_{\beta_{l}\alpha_{l}}\partial^{\theta}f^{\alpha_{l}} + 2t_{2}\partial_{\alpha}f_{\beta_{l}}\partial^{\theta}f^{\alpha_{l}} - t_{2}\partial_{\alpha}f_{\beta_{l}}\partial^{\theta}f^{\alpha_{l}} - t_{2}\partial_{\alpha}f_{\alpha_{l}}\partial^{\theta}f^{\alpha_{l}} + 2t_{2}\partial_{\alpha}f_{\beta_{l}}\partial^{\theta}f^{\alpha_{l}} - t_{2}\partial_{\alpha}f_{\beta_{l}}\partial^{\theta}f^{\alpha_{l}} - t_{2}\partial_{\alpha}f_{\alpha_{l}}\partial^{\theta}f^{\alpha_{l}} + 2t_{2}\partial_{\alpha}f_{\beta_{l}}\partial^{\theta}f^{\alpha_{l}} - t_{2}\partial_{\alpha}f_{\beta_{l}}\partial^{\theta}f^{\alpha_{l}} - t_{2}\partial_{\alpha}f^{\alpha_{l}}\partial^{\theta}f^{\alpha_{l}} - t_{2}$ $t_{2} \frac{\partial_{\theta} f_{\alpha_{l}}}{\partial^{\theta}} \frac{\partial^{\theta} f^{\alpha_{l}}}{\partial^{\theta}} - t_{2} \frac{\partial_{\theta} f_{\alpha_{l}}}{\partial^{\theta}} \frac{\partial^{\theta} f^{\alpha_{l}}}{\partial^{\theta}} - 4t_{2} \frac{\mathcal{A}_{\alpha\theta_{l}}}{\mathcal{A}_{\alpha\theta_{l}}} \left(\mathcal{A}^{\alpha_{l}\theta} + \partial^{\theta} f^{\alpha_{l}} \right) + 2t_{2} \frac{\mathcal{A}_{\alpha_{l}\theta}}{\mathcal{A}_{\alpha_{l}\theta}} \left(\mathcal{A}^{\alpha_{l}\theta} + 2 \partial^{\theta} f^{\alpha_{l}} \right) - 12r_{2} \frac{\partial_{\theta} \mathcal{A}_{\alpha_{l}\lambda}}{\partial^{\theta}} \frac{\partial^{\kappa} \mathcal{A}^{\alpha_{l}\theta}}{\partial^{\kappa}} - \frac{2r_{2}^{2} \mathcal{A}_{\alpha_{l}\theta}}{\partial^{\theta}} \left(\mathcal{A}^{\alpha_{l}\theta} + 2 \partial^{\theta} f^{\alpha_{l}} \right) - 12r_{2} \frac{\partial_{\theta} \mathcal{A}_{\alpha_{l}\lambda}}{\partial^{\kappa}} \frac{\partial^{\kappa} \mathcal{A}^{\alpha_{l}\theta}}{\partial^{\kappa}} - \frac{2r_{2}^{2} \mathcal{A}_{\alpha_{l}\theta}}{\partial^{\theta}} \left(\mathcal{A}^{\alpha_{l}\theta} + 2 \partial^{\theta} f^{\alpha_{l}} \right) - 12r_{2} \frac{\partial_{\theta} \mathcal{A}_{\alpha_{l}\lambda}}{\partial^{\kappa}} \frac{\partial^{\kappa} \mathcal{A}^{\alpha_{l}\theta}}{\partial^{\kappa}} - \frac{2r_{2}^{2} \mathcal{A}_{\alpha_{l}\theta}}{\partial^{\kappa}} \left(\mathcal{A}^{\alpha_{l}\theta} + 2 \partial^{\theta} f^{\alpha_{l}} \right) - 12r_{2} \frac{\partial_{\theta} \mathcal{A}_{\alpha_{l}\lambda}}{\partial^{\kappa}} \frac{\partial^{\kappa} \mathcal{A}^{\alpha_{l}\theta}}{\partial^{\kappa}} - \frac{2r_{2}^{2} \mathcal{A}_{\alpha_{l}\theta}}{\partial^{\kappa}} \left(\mathcal{A}^{\alpha_{l}\theta} + 2 \partial^{\theta} f^{\alpha_{l}} \right) - 12r_{2} \frac{2r_{2}^{2} \mathcal{A}_{\alpha_{l}\theta}}{\partial^{\kappa}} \frac{\partial^{\kappa} \mathcal{A}^{\alpha_{l}\theta}}{\partial^{\kappa}} - \frac{2r_{2}^{2} \mathcal{A}^{\alpha_{l}\theta}}{\partial^{\kappa}} \frac{\partial^{\kappa} \mathcal{A}^{\alpha_{l}\theta}}{\partial^{\kappa}} - \frac{2r_{2}^{2} \mathcal{A}^{\alpha_{l}\theta}}{\partial^{\kappa}} \frac{\partial^{\kappa} \mathcal{A}^{\alpha_{l}\theta}}{\partial^{\kappa}} - \frac{2r_{2}^{2} \mathcal{A}^{\alpha_{l}\theta}}{\partial^{\kappa}} \frac{\partial^{\kappa} \mathcal{A}^{\alpha_{l}\theta}}{\partial^{\kappa}} \frac{\partial^{\kappa} \mathcal{A}^{\alpha_{l}\theta}}{\partial^{\kappa}} - \frac{2r_{2}^{2} \mathcal{A}^{\alpha_{l}\theta}}{\partial^{\kappa}} \frac{\partial^{\kappa} \mathcal{A}^$ $12 r_{\underline{i}} \partial_{\alpha} \mathcal{A}^{\alpha \theta \kappa} \partial_{\lambda} \mathcal{A}_{\kappa \ \theta}^{\ \lambda} + 24 r_{\underline{i}} \partial^{\kappa} \mathcal{A}^{\alpha \theta}_{\ \alpha} \partial_{\lambda} \mathcal{A}_{\kappa \ \theta}^{\ \lambda} - 24 r_{\underline{i}} \partial_{\beta} \mathcal{A}_{\imath \lambda \alpha} \partial^{\lambda} \mathcal{A}^{\alpha \beta \imath}))[t, \, x, \, y, \, z] \, dz \, dy \, dx \, dt$ **Wave operator** $0.^{+}f^{\parallel} 0.^{+}f^{\perp}$ $^{0}\mathcal{F}^{\parallel}$ $0.^{+}f^{\parallel}$ † $0.^{+}f^{\perp}$ † $k^2 r_1 + t_2$ $^{1^{+}_{\boldsymbol{\cdot}}\mathcal{H}^{\parallel}{}_{\alpha\beta}}$ 0 ^{0.} A[∥] †

$0.^+ \tau^{\parallel} 0.^+ \tau^{\perp}$ $0.^{+}\tau^{\parallel}$ † 0 0 0 0 $0.^{+}\tau^{\perp}$ † $0.\sigma^{\parallel}$ † 0 0

0	0	0			
0	0	0			
0	0	0			
0	0	0			
0	0	0			
0	0	0	$^{2.^{+}}\sigma^{\parallel}{}_{\alpha\beta}$	$2^+_{\cdot} \tau^{\parallel}_{\alpha\beta}$	$2^{-}\sigma^{\parallel}_{\alpha\beta\lambda}$
		$^{2^+}\sigma^{\parallel}$ † $^{\alpha\beta}$	$ \begin{array}{c c} 1 \\ k^2 (-2r, +r,) \\ 0 \\ 0 \end{array} $	0	0
		2^+ τ^{\parallel} $\dagger^{\alpha\beta}$	0	0	0
		$2^{-}\sigma^{\parallel} + \alpha^{\alpha\beta\chi}$	0	0	0
				Multipl	icities
				1	
				1	
				3	
				3	

 $2^+f^{\parallel}_{\alpha\beta}$ $2^-\mathcal{A}^{\parallel}_{\alpha\beta\chi}$

0

0

Spin-parity form

 $0^+_{\cdot}\tau^{\perp}==0$

 $0.^+\tau^{\parallel}==0$

Source constraints

Covariant form

 $\partial_{\beta}\partial_{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}==0$

 $\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha}$

PSALTer results panel

1. r. a == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta}$	3
1 τ " == O	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3
$1 \sigma^{\perp} = 0$	$\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi} == 0$	3
$1 \cdot \sigma^{\parallel^{\alpha}} == 0$	$\partial_{\delta}\partial^{\alpha}\sigma_{\chi}^{\chi}{}^{\delta} + \partial_{\delta}\partial^{\delta}\sigma_{\chi}^{\chi\alpha}{}_{\chi} == \partial_{\delta}\partial_{\chi}\sigma^{\chi\alpha\delta}$	3
$\overline{i} k \stackrel{1^+}{\cdot} \sigma^{\perp}{}^{\alpha\beta} + \stackrel{1^+}{\cdot} \tau^{\parallel}{}^{\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}+\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha}+\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta}+2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta}==$	3
	$\partial_{\chi}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau \left(\Delta + \mathcal{K}\right)^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	
$2 \sigma^{\parallel \alpha \beta \chi} == 0$	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\alpha} \sigma^{\delta \beta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\alpha} \sigma^{\delta \beta}_{ \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\chi \alpha \delta} +$	5
	$2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\beta}\sigma^{\delta\alpha\chi} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\beta\alpha\delta} + 4\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\delta\alpha\beta} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\sigma^{\alpha\beta\chi} +$	
	$3 \eta^{\beta\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\alpha} \sigma^{\delta}_{\delta}^{\epsilon} + 3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\delta} \sigma^{\delta\beta\epsilon} + 3 \eta^{\beta\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\delta\alpha}_{\delta} = =$	
	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\beta} \sigma^{\delta \alpha \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\beta} \sigma^{\delta \alpha}_{ \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi \beta \delta} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\delta \beta \chi} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\beta \alpha \chi} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\chi \alpha \beta} +$	
	$3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\beta} \sigma^{\delta}_{ + 3 \eta^{\beta\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\delta} \sigma^{\delta\alpha\epsilon} + 3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\delta\beta}_{ $	
$2^+_{\cdot} \tau^{\parallel^{\alpha\beta}} == 0$	$4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi}_{\chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\beta \alpha} +$	5
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau (\Delta + \mathcal{K})^{\chi\delta} = 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\beta\chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi\beta} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\alpha \chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\chi \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau (\Delta + \mathcal{K})^{\chi}_{\chi}$	
Total expected gauge generators:		

(No particles)

Unitarity conditions r. < 0 && t. > 0