Midterm Examination

Date: November 15, 2023; Duration: 90 minutes Close book; Offline, One note (A4 size) is allowed.

SUBJECT: Name of course (ID:	EE051IU) Principles of Electrical
Engineering I	
Approval by the School Signature	Lecturer: Signature
	Sw
Full name: Vo Tan Phuoc	Full name: Tran Van Su
Proctor 1	Proctor 2
Signature	Signature
Full name:	Full name:
STUDENT INFO	
Student name:	
Student ID:	

INSTRUCTIONS: the total of point is 100 (equivalent to 30% of the course)

1. Purpose:

- Test your knowledge in understanding circuit variables, and resistive circuits (G1.1)
- Test your knowledge in understanding the fundamental of techniques of circuit analysis in DC (G1.2)
- Examine your skill in applying the techniques of circuit analysis to solve electrical circuits with DC sources. (G2.1)

2. Requirement:

- Read carefully each question and answer it following the requirements.
- Write the answers and draw models CLEAN and TIDY directly in the exam paper.

.

QUESTIONS

Question 1 (20 Marks)

- a. Use node-voltage method to find the voltage at nodes 1 and 2. (10 Marks)
- b. Determine the current I. (5 Marks)
- c. Compute the power of the current source 5A. (5 Marks)

Question 2 (20 Marks)

In the circuit shown below, $I_1 = I(A)$, $I_2 = (2A)$, $R_1 = 2\Omega$, $R_2 = I(\Omega)$ and $R_3 = I(\Omega)$.

- a. Use mesh-current method to find i_1 , i_2 , and i_3 . (10 Marks)
- b. Compute the power of the current source I_1 . (5 Marks)
- c. Calculate total power dissipated in all resistors in the circuit. (5 Marks)

Question 3 (20 Marks)

- a. Use source transformation to find V_o. (10 Marks)
- b. What is the power of the voltage source 30 V. (10 Marks)

- a. Find Thevenin equivalent circuit at terminal a,b. (10 Marks)
- b. Compute the power dissipated in 20 Ω resistor using Thevenin equivalent circuit in (a). (5 Marks)
- c. Is the maximum power of the source transferred to 20Ω ? Explain your answer? (5 Marks)

Question 5 (20 Marks)

It is given that the power supplies for the opamp in the circuit are $+V_{CC} = 12V$ and $-V_{CC} = -12V$.

- a. Find V_{out} if $V_o = 3V$, $V_1 = 1V$ and $V_2 = 0.5V$. (10 Marks)
- b. Find the range of V_2 to avoid amplifier saturation if $V_0 = 3V$, $V_1 = 1V$. (5 Marks)
- c. What is V_{out} if $V_o = V_1 = V_2 = 8V$. (5 Marks)