$$A_{1} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \quad A_{2} = \begin{bmatrix} 1+j2 & 2+j3 \\ 3+j4 & 4+j5 \end{bmatrix} \stackrel{?}{=} D A_{1}^{T} = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} \quad Cosyngothe$$

$$A_{1} = \begin{bmatrix} 1-j2 & 2-j3 \\ 3-j4 & 4-j5 \end{bmatrix} \stackrel{?}{=} \begin{bmatrix} 1-j2 & 3-j4 \\ 2-j3 & 4-j5 \end{bmatrix} \quad A_{1}A_{2}^{H} = \begin{bmatrix} 2-j2 & 5-j4 \\ 5-j3 & 8-j5 \end{bmatrix}$$

$$A_{1}A_{2} = \begin{bmatrix} 5-j4 & 5-j3 \\ 5-j3 & 8-j5 \end{bmatrix} \stackrel{?}{=} \begin{bmatrix} 2+j2 & 5+j3 \\ 5+j3 & 8+j5 \end{bmatrix} \stackrel{?}{=} \begin{bmatrix} 2+j2 & 5+j3 \\ 5+j3 & 8+j5 \end{bmatrix} \stackrel{?}{=} \begin{bmatrix} 2+j2 & 5+j3 \\ 5+j3 & 8+j5 \end{bmatrix} \stackrel{?}{=} \begin{bmatrix} 2+j4 & 8+j5 \end{bmatrix}$$

$$A_{1}B_{2} = \begin{bmatrix} 5-5 & 11 \\ 1-2+11 \\ 3-6+7 \\ 2-1+4 \end{bmatrix} \quad A_{2}B_{3} = \begin{bmatrix} 1-3-1 \\ 5-5-3 \\ 3-2-5 \end{bmatrix} \stackrel{?}{=} \begin{bmatrix} 3-1 \\ 5-3-3 \\ 3-2-5 \end{bmatrix}$$

$$A_{1}B_{2} = \begin{bmatrix} 3-1 & 3-1 \\ 3-6-7 \\ 2-1+4 \end{bmatrix} \stackrel{?}{=} \begin{bmatrix} 2-1 & 4 \\ 5-1 & 3-1 \\ 3-1 & 2-1 \end{bmatrix} \stackrel{?}{=} \begin{bmatrix} 3-1 & 3-1 \\ 3-1 & 2-1 \\ 4-2+20 & 2-1+12 \end{bmatrix} \stackrel{?}{=} \begin{bmatrix} 3+j4+64-95 \\ 4-2+20 & 2-1+12 \end{bmatrix} \stackrel{?}{=} \begin{bmatrix} 3+j4+64-95 \\ 4-2+20 & 2-1+12 \end{bmatrix} \stackrel{?}{=} \begin{bmatrix} 3+j4+64-95 \\ 3-3-3-1 \end{bmatrix} \stackrel{?}{=} \begin{bmatrix} 3-1 & 3-1 \\ 3-5-5-3 \\ 3-2-5 \end{bmatrix} \stackrel{?}{=} \begin{bmatrix} 3-1 & 3-1 \\ 3-2-6 \end{bmatrix} \stackrel{?}{=} \begin{bmatrix} 3-1 & 3-1 \\ 3-1-2+10 \end{bmatrix} \stackrel{?}{=}$$

$$A = \begin{bmatrix} 1/2 & -1/2 \\ -1/2 & 1/2 \end{bmatrix} \quad \text{compute } A^2, A^3, A^{\frac{1}{2}}? \quad \text{(Doubly in Cyrical 6)}$$

$$A^2 = \begin{bmatrix} \alpha & -\alpha \\ -\alpha & \alpha \end{bmatrix} \begin{bmatrix} \alpha & -\alpha \\ -\alpha & \alpha \end{bmatrix} = \begin{bmatrix} 2\alpha^2 & -2\alpha^2 \\ -2\alpha^2 & 2\alpha^2 \end{bmatrix} = \begin{bmatrix} 1/2 & -1/2 \\ -1/2 & 1/2 \end{bmatrix}$$

$$A^3 = A^2A = \begin{bmatrix} 2\alpha^2 & -2\alpha^2 \\ -2\alpha^2 & 2\alpha^2 \end{bmatrix} \begin{bmatrix} \alpha & -\alpha \\ -\alpha & \alpha \end{bmatrix} = \begin{bmatrix} 4\alpha^3 & -4\alpha^3 \\ -4\alpha^3 & 4\alpha^3 \end{bmatrix} = \begin{bmatrix} 1/2 & -1/2 \\ -1/2 & 1/2 \end{bmatrix}$$

$$A^n = \begin{bmatrix} 2^{n-1}\alpha & -2^{n-1}\alpha \\ -2^{n-1}\alpha & 2^{n-1}\alpha \end{bmatrix} = \begin{bmatrix} 1/2 & -1/2 \\ -1/2 & 1/2 \end{bmatrix}$$

Q3 Anse	ers			
a =				
16 10 6 0	8 18 -4 14	-6 16 -2 10	8 -14 8 8	
b =				
5 8 3 2	1 9 -6 8	-2 23 -9 6	14 5 9 6	
c =				
25 1 6 -6	-3 -2 8 11	-9 -29 22 7	-22 -50 -27 2	
d =				
25 -3 -9 -22	1 -2 -29 -50	6 8 22 –27	-6 11 7 2	
e =				
-16 -14 -15 29		36 9 -19 69	61 168 -3 137	

