Tabelle

A3: (Polardarstellung komplexer Zahlen)
Gib die folgenden komplexen Zahlen in Polardarstellung an und berechne jeweils Real und Imaginärteil.

Imaginarteil. a. 1+i b. $8\cos(\frac{\pi}{6}) + 8i\sin(\frac{\pi}{6})$ c. $-\sqrt{3} + 3i$ d. $(1+2i)\cdot(3-i)$ e. $i\cdot\overline{3-4i}$ f. $(1+i)^{20}$

a. $z = 1 + i \Rightarrow Re(z) = 1$, Im(z) = 1poler: $|z| = \sqrt{2}$ $arg(z) = \frac{\pi}{4} \Rightarrow z = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}\right)$

b. z = 8.cos = + 2: sm = polor: z = 8.(cos = + i sm =)

Re(z) = 8.23 = 4.73, In(z) = = 4

d. 2 = (1+2i)(3-i) = 3-i+6i+2 = 5+5i = 7 Re(3) = Im(3) = 5 $Polor: |2| = \sqrt{50}$, $2 = \sqrt{50} \cdot (\cos \frac{\pi}{4} + i \sin \frac{\pi}{4})$

e.
$$z = i \cdot 3 - 4i = i(3 + 4i) = 3i - 4 = 3$$
 Re(2)=-4, $\pm m(2) = 3$

Polar: $121 = \sqrt{16 + 9} = 5$ (as $d = \frac{4}{5} = 3$ $d = coi^{-1}(-\frac{4}{5}) \approx 2.452$
 $z = 5 \cdot (cosd + ismd)$

$$f = (1+i)^{20} \Rightarrow |z| = (\sqrt{z})^{20} = z^{10} = 1024$$
, $d = 20 \cdot \frac{\pi}{4} = 5\pi \Rightarrow arg(z) = \pi$
 $f = (1+i)^{20} \Rightarrow |z| = (\sqrt{z})^{20} = z^{10} = 1024$, $d = 20 \cdot \frac{\pi}{4} = 5\pi \Rightarrow arg(z) = \pi$