Digital Logic Systems – Synchronous Sequential Logic -III

Assist. Prof. Özge ÖZTİMUR KARADAĞ ALKÜ

Previously..

- Analysis of Synchronous Sequential Circuit
 - Circuit → State Table / Diagram
 - State Reduction
 - State Asignment
 - Flip-flop excitation tables
- Design of Synchronous Sequential Circuit
 - Design of a circuit whose behaviour is described by text..
 - Design of a circuit whose state diagram is given..
 - An example with JK Flip-flops.

Example

- Given the state table, design the corresponding sequential circuit using D flip-flops:
- Flip-flop inputs as sum of products:
 - $DA(A, B, x) = \sum (2,4,5,6)$

	00	01	11	10
0				1
1	1	1		1

$$=AB'+Bx'$$

•
$$DB(A, B, x) = \sum (1,3,5,6)$$

	00	01	11	10
0		1	1	
1		1		1

$$= A'x + B'x + ABx'$$

•
$$y = \sum (1,5)$$

	00	01	11	10
0		1		
1		1		

$$= B'x$$

Curren	Current State		Next	Output	
Α	В	x	А	В	У
0	0	0	0	0	0
0	0	1	0	1	1
0	1	0	1	0	0
0	1	1	0	1	0
1	0	0	1	0	0
1	0	1	1	1	1
1	1	0	1	1	0
1	1	1	0	0	0

Design with Unused States

- There will be 2^m possible states with m flip-flops.
- But there can be unused states.
- Unused states are considered as don't care conditions.

Example

Q(t)	Q(t+1)	S	R
0	0	0	Χ
0	1	1	0
1	0	0	1
1	1	X	0

S	R	Q(t+1)	R		
0	0	Q(t)	No chnage		
0	1	0	Reset		
1	0	1	Set		
1	1	?	0		

Curren	Current State Input				Next State			Flip-flop Inputs					
Α	В	С	X	Α	В	С	SA	RA	SB	RB	SC	RC	У
0	0	1	0	0	0	1							0
0	0	1	1	0	1	0							0
0	1	0	0	0	1	1							0
0	1	0	1	1	0	0							0
0	1	1	0	0	0	1							0
0	1	1	1	1	0	0							0
1	0	0	0	1	0	1							0
1	0	0	1	1	0	0							1
1	0	1	0	0	0	1							0
1	0	1	1	1	0	0							1

Example...

- Unused States:
 - 000,110,111

Şimdiki durum Gir iş				Sonraki durum			Flip-flop girişleri						çık ış
Α	В	С	х	Α	В	С	SA	RA	SB	RB	SC	RC	У
0	0	1	0	0	0	1	0	Χ	0	Χ	Χ	0	0
0	0	1	1	0	1	0	0	Χ	1	0	0	1	0
0	1	0	0	0	1	1	0	Χ	Χ	0	1	0	0
0	1	0	1	1	0	0	1	0	0	1	0	Χ	0
0	1	1	0	0	0	1	0	Χ	0	1	Χ	0	0
0	1	1	1	1	0	0	1	0	0	1	0	1	0
1	0	0	0	1	0	1	Χ	0	0	Χ	1	0	0
1	0	0	1	1	0	0	Χ	0	0	Χ	0	Χ	1
1	0	1	0	0	0	1	0	1	0	Χ	Χ	0	0
1	0	1	1	1	0	0	Χ	0	0	Χ	0	1	1

- Combinational Circuit:
 - SA,RA,SB,RB,SC,RC,y

Example...

Curre	ent Stat	te	Input	Next	Next State Flip-flop inputs				output				
Α	В	С	x	Α	В	С	SA	RA	SB	RB	SC	RC	у
0	0	1	0	0	0	1	0	Х	0	Χ	Χ	0	0
0	0	1	1	0	1	0	0	Х	1	0	0	1	0
0	1	0	0	0	1	1	0	Χ	Χ	0	1	0	0
0	1	0	1	1	0	0	1	0	0	1	0	X	0
0	1	1	0	0	0	1	0	Χ	0	1	Χ	0	0
0	1	1	1	1	0	0	1	0	0	1	0	1	0
1	0	0	0	1	0	1	Χ	0	0	Χ	1	0	0
1	0	0	1	1	0	0	Χ	0	0	Χ	0	Х	1
1	0	1	0	0	0	1	0	1	0	Χ	Χ	0	0
1	0	1	1	1	0	0	Х	0	0	Χ	0	1	1

Initial State of Sequential Circuits

- It is not possible to know in advance in which state the circuit will be when the energy in given.
- In general, a reset or set is applied to all flip-flops in the beginning.
- In order to be sure that the circuit is not stuck in some unused state, it is safe to put the circuit in an initial state.

Design of Counters

- A counter is a sequential circuit which goes through previously defined states as input signal is applied.
- State diagram of a 3 bit binary counter:
 - Note that the arrows are not signed with input/output values.

Design of Counter

Q(t)	Q(t+1)	Т	Т	Q(t+1)
0	0	0	0	0(1)
0	1	1	Ü	Q(t) No change
1	0	1	1	Q'(t) Complement
1	1	0		- (-)

• 3 bit binary counter

• Excitation Table?

Current State			Next Sta	te		Flip-flop Inputs		
A2	A1	Α0	A2	A1	A0	TA2	TA1	TA0
0	0	0	0	0	1			
0	0	1	0	1	0			
0	1	0	0	1	1			
0	1	1	1	0	0			
1	0	0	1	0	1			
1	0	1	1	1	0			
1	1	0	1	1	1			
1	1	1	0	0	0			

Desing of Counter

• Flip-flop input functions?

Current S	Current State			te		Flip-flop Inputs			
A2	A1	A0	A2	A1	A0	TA2	TA1	TA0	
0	0	0	0	0	1	0	0	1	
0	0	1	0	1	0	0	1	1	
0	1	0	0	1	1	0	0	1	
0	1	1	1	0	0	1	1	1	
1	0	0	1	0	1	0	0	1	
1	0	1	1	1	0	0	1	1	
1	1	0	1	1	1	0	0	1	
1	1	1	0	0	0	1	1	1	

Design of Counter

Other Counters

Q(t)	Q(t+1)	J	К
0	0	0	Χ
0	1	1	Χ
1	0	X	1
1	1	Χ	0

J	K	Q(t+1)	R
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q'(t+1)	0

- A counter with n flip-flops may have less then 2ⁿnumber of states.
- Ex:

Current State			Next S	State		Flip-flop inputs					
Α	В	С	Α	В	С	JA	KA	JB	KB	JC	KC
0	0	0	0	0	1						
0	0	1	0	1	0						
0	1	0	1	0	0						
1	0	0	1	0	1						
1	0	1	1	1	0						
1	1	0	0	0	0						

Ex: Other Counters

- Flip-flop inputs:
 - JA=B KA=B
 - JB=C KB=1
 - JC=B' KC=1

Current state Sonraki durum			Flip-flop girişleri								
Α	В	С	А	В	С	JA	KA	JB	КВ	JC	KC
0	0	0	0	0	1	0	Χ	0	X	1	Χ
0	0	1	0	1	0	0	Χ	1	X	Χ	1
0	1	0	1	0	0	1	Χ	Χ	1	0	Χ
1	0	0	1	0	1	Χ	0	0	Χ	1	Χ
1	0	1	1	1	0	Χ	0	1	Χ	Χ	1
1	1	0	0	0	0	Χ	1	X	1	0	Χ

- What happens when the circuit is in state 011?
 - JA=KA=1
 - JB=KB=1
 - JC=0, KC=1
 - Next State: 100

State Diagram of the Counter:

Problem

 A sequential circuit with two D flip-flops A and B, two inputs x and y and an output z is defined with the following next state and output functions:

- A(t+1)=x'y+xA
- B(t+1)=x'B+xA
- z=B
- Draw the logic diagram for this circuit.
- Write the state table.
- Draw the state diagram.

Problem...

- A(t+1)=x'y+xA
- B(t+1)=x'B+xA
- z=B

• The logic diagram of the circuit:

Problem...

• State Table

Present State		Inputs		Next State		Output
Α	В	х	у	Α	В	Z
0	0	0	0			
0	0	0	1			
0	0	1	0			
0	0	1	1			
0	1	0	0			
0	1	0	1			
0	1	1	0			
0	1	1	1			
1	0	0	0			
1	0	0	1			
1	0	1	0			
1	0	1	1			
1	1	0	0			
1	1	0	1			
1	1	1	0			
1	1	1	1			

Problem...

• State Diagram:

Present	state	Immite	CHA ALT	Next	mdmO z 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1	
A 0 0 0 0 0 0 0 1 1 1 1 1	\boldsymbol{B}	X	y	A	\boldsymbol{B}	Z
0	0	0	0	0 1 0	0	0
θ	0	0		1	0	0
θ	0	1	0	0	0	0
0	0	1	1	0	0	0
0	0 1 1	0	0	0	1	1
0	1	0	1	1	1	1
0	1	1	0	0	0	1
0	1 1	0 1 1 0 0 1 1	1 0 1 0 1 0 1 0 1 0 1	$\frac{0}{0}$	$\frac{\theta}{\theta}$	1
1	0	0	0	0	0	0
1	0		1	1	0	0
1		1	0	1	1	0
1	0 0	0 1 1	1	1	1	0
1	1	0	0	0	1	1
1	1	0	1	1	1	1
1	1	1	0 1	1	1	1
1	1	1	1	1	1	1

References

• Morris Mano, Digital Design.