COMP 3318 – Operating Systems Spring 2015

Ahmet E Sonmez, Dr.

Class: M W 11:30 am - 1:00 pm Room: 815

Office: 808

Phone: (832) 230-5130

Office Hours:

MW: 2pm-3:30pm

Additional hours will be posted

aesonmez@na.edu

Course Description

 This course focuses on operating system structure and design techniques; process management, CPU and disk scheduling; process synchronization, concurrency, and memory and file management, virtual memory; mass storage and I/O systems and OS security.

Assessment Criteria

Quizzes	20%
HW	20%
Presentation	10%
Midterm	20%
Final	30%

A	96-100
A-	91-95
В+	86-90
В	81-85
B-	76-80
C+	71-75
C	66-70
C+ C C-	61-65
D+	56-60
D	50-55
F	Below 50

Important Dates

• MIDTERM :10/10/2016

• FINAL : To Be Announced

Understanding Operating Systems Sixth Editior

Chapter 1 Introducing Operating Systems

earning Objectives.

After completing this chapter, you should be able to describe:

- Innovations in operating systems development
- The basic role of an operating system
- The major operating system software subsystem managers and their functions
- The types of machine hardware on which operating systems run

Understanding Operating Systems, Sixth Edition

earning Obiectives (cont'd.

- The differences among batch, interactive, real-time, hybrid, and embedded operating systems
- Design considerations of operating systems designers

Introduction

- Operating systems
 - Manage computer system hardware and software
- We will explore:
 - What they are
 - How they work
 - What they do
 - Why they do it
- This chapter describes:
- How operating systems work
- · The evolution of operation systems

Vhat is an Operating Syste

- Computer System
 - Software (programs)
 - Hardware (physical machine and electronic components)
- Operating System
 - Part of computer system (software)
 - Manages all hardware and software
 - Controls every file, device, section of main memory and nanosecond of processing time
 - Controls who can use the system
 - · Controls how system is used

perating System

cont'd.) Works closely with other

Operating System Software (cont'd.)

Network Manager

- Coordinates the services required for multiple systems to work cohesively together
 - Shared network resources: memory space, processors, printers, databases, applications, etc.

Operating System Software (cont'd.)

Main Memory Management

- In charge of main memory
- · Random Access Memory (RAM)
- Responsibilities include:
 - Checking validity and legality of memory space request
 - Reallocating memory to make more useable space available
 - Deallocating memory to reclaim it
 - Protecting space in main memory occupied by operating system

Main Memory Management

- ▶ Read-only memory (ROM)
 - Another type of memory
 - · Critical when computer is powered on
 - · Holds firmware: programming code
 - When and how to load each piece of the operating system after the power is turned on
 - Non-volatile
 - · Contents lost when the power is turned off

Processor Management

- In charge of allocating Central Processing Unit (CPU)
- Tracks process status
- Program's "instance of execution"
- Two levels of responsibility:
 - · Handle jobs as they enter the system
 - · Handled by Job Scheduler
 - Manage each process within those jobs
 - · Handled by Process Scheduler

Device Management

- In charge of connecting with every available device
 - Printers, ports, disk drives, etc.
- Responsibilities include:
 - · Choosing most efficient resource allocation method
 - · Based on scheduling policy
 - · Identifying the device
 - Starting device operation
 - Monitoring device progress
 - Deallocating the device

File Management

- In charge of tracking every file in the system
 - Data files, program files, compilers, application programs
- Responsibilities include:
 - Enforcing user/program resource access restrictions
 - Uses predetermined access policies
 - · Controlling user/program modification restrictions
 - · Read-only, read-write, create, delete
 - Allocating resource
 - · Opening the file
 - · Deallocating file (by closing it)

Understanding Operating Systems, Sixth Edition

User Interface

- > Portion of the operating system
 - · Direct interaction with users
- Two primary types
 - Graphical user interface (GUI)
 - · Input from pointing device
 - · Menu options, desktops, and formats vary
 - Command line interface
 - · Keyboard-typed commands that display on a monitor
 - Strict requirements for every command: typed accurately; correct syntax; combinations of commands assembled correctly

Understanding Operating

Cooperation Issues

- No single manager performs tasks in isolation
- Each element of an operating system
 - Performs individual tasks <u>and</u>
 - · Harmoniously interacts with other managers
 - Incredible precision required for operating system to work smoothly
 - · More complicated when networking is involved

Understanding Operating Systems, 21 7e

A Brief History of Machine Hardware

- Hardware: physical machine and electronic components
 - Main memory (RAM)
 - · Data/Instruction storage and execution
 - Input/Output devices (I/O devices)
 - · All peripheral devices in system
 - Printers, disk drives, CD/DVD drives, flash memory, and keyboards
 - Central processing unit (CPU)
 - · Controls interpretation and execution of instructions
 - Controls operation of computer system

Understanding Operating
Systems, Sixth Edition 2:

A Brief History of Machine Hardware (cont'd.)

- Computer classification
 - By capacity and price (until mid-1970s)
- Mainframe
 - Large machine
 - · Physical size and internal memory capacity
 - Classic Example: 1964 IBM 360 model 30
 - · CPU required 18-square-foot air-conditioned room
 - · CPU size: 5 feet high x 6 feet wide
 - · Internal memory: 64K
 - · Price: \$200,000 (1964 dollars)
 - · Applications limited to large computer centers

Understanding Operating Systems, Sixth Edition

Figure 1. IBM System/990 Model 40 Data Proceeding Systems System Systems Systems Systems Systems Systems Systems

A Brief History of Machine Hardware (cont'd.)

Minicomputer

- Developed for smaller institutions
- Compared to mainframe smaller in size and memory capacity
- Cheaper
- Example: Digital Equipment Corp. minicomputer
- Price: For PDP8 less than \$18,000
- · Video 1
- · Video 2
- Today
- · Known as midrange computers
- · Capacity between microcomputers and mainframes

Understanding Operating Systems, Sixth Edition

A Brief History of Machine Hardware (cont'd.)

Supercomputer

- Massive machine
- Developed for military operations and weather forecasting
- Example: Cray supercomputer
- 6 to 1000 processors
- Performs up to 2.4 trillion floating-point operations per second (teraflops)
- Uses:
 - · Scientific research Video
- · Customer support/product development

Understanding Operating Systems, Sixth Edition

A Brief History of Machine Hardware (cont'd.)

Microcomputer

- Developed for single users in the late 1970s
- Example: microcomputers by Tandy Corporation and Apple Computer, Inc.
- · Very little memory (by today's standards)
- 64K maximum capacity
- Microcomputer's distinguishing characteristic
- Single-user status

Understanding Operating Systems, Sixth Edition

A Brief History of Machine Hardware (cont'd.)

Workstations

- Most powerful microcomputers
- Developed for commercial, educational, and government enterprises
- Networked together
- Support engineering and technical users
- Massive mathematical computations
- · Computer-aided design (CAD)
- Applications
 - Requiring powerful CPUs, large main memory, and extremely high-resolution graphic displays

Understanding Operating Systems, Sixth Edition

A Brief History of Machine Hardware (cont'd.)

Servers

- Provide specialized services
 - To other computers or client/server networks
- · Perform critical network task
- Examples:
- Print servers
- Internet servers
- Mail servers

Understanding Operating Systems, Sixth Edition

A Brief History of Machine Hardware (cont'd.)

Advances in computer technology

- Dramatic changes
- · Physical size, cost, and memory capacity
- Networking
- · Integral part of modern computer systems
- Mobile society information delivery
- · Creating strong market for handheld devices
- New classification
- · By processor capacity, not memory capacity
- Moore's Law
 - · Computing power rises exponentially

Understanding Operating Systems, Sixth Edition

An Evolution of Computing Hardware (cont'd.)

- Computer classification
 - · At one time: based on memory capacity
- Current platforms

iOS, Windows
ac OS X, UNIX, Windows
ac OS X Server, UNIX, Windows Server
NIX, Windows, IBM z/OS
NIX

(table 1.1)
A brief list of platforms and a few of the operating systems designed to run on them, listed in alphabetical order.

Understanding Operating Systems, 7e

Types of Operating Systems

- Five categories
 - Batch
- Interactive
- Real-time
- Hybrid
- EmbeddedTwo distinguishing features
- Response time
- · How data enters into the system

Understanding Operating Systems, Sixth Edition

Types of Operating Systems (cont'd.)

- Batch Systems (1955-1965)
 - Input relied on punched cards or tape
 - · Efficiency measured in throughput

Types of Operating Systems (cont'd.)

Interactive Systems

- Faster turnaround than batch systems
- Slower than real-time systems
- Introduced to provide fast turnaround when debugging programs
- Time-sharing software developed for operating system

Types of Operating Systems (cont'd.)

Real-time systems

- · Reliability is critical
- Fast and time limit sensitive
- Used in time-critical environments
- Space flights, airport traffic control, high-speed aircraft
- Industrial processes
- · Sophisticated medical
- equipment
- · Distribution of electricity
- · Telephone switching
- Must be 100% responsive, 100%

of the time

Understanding Operating Systems, Sixth Edition

Hard vs. Soft Real-Time Application

Worst-Case Time

Example: Hard Real Time Syten

Hard real-time systems

- Must guarantee that all deadlines will always be met
- Any failure could have catastrophic consequences:
 - The reactor could overheat and explode
 - The rocket could be lost

Understanding Operating Systems, Sixth Edition

Example: Soft Real Time System

Soft real-time systems

- Guarantee that most deadlines will be met
- A DVD decoder that miss a deadline will spoil our viewing pleasure for a fraction of a second

Types of Operating Systems (cont'd.)

Hybrid systems

- · Combination of batch and interactive
- · Accept and run batch programs in the background
- · Interactive load is light

Embedded systems

- · Computers placed inside other products
- Adds features and capabilities
- Operating system requirements
- Perform specific set of programs
- Not interchangeable among systems
- · Small kernel and flexible function capabilities

Understanding Operating Systems, Sixth Edition

Brief History of Operating Systems Development

1940s: first generation

- · Computers based on vacuum tube technology
- No standard operating system software
- Typical program included every instruction needed by the computer to perform the tasks requested
- Poor machine utilization
- CPU processed data and performed calculations for fraction of available time
- Early programs
- · Designed to use the resources conservatively
- Understandability is not a priority

Brief History of Operating Systems Development (cont'd.)

- 1950s: second generation
 - Focused on cost effectiveness
 - Computers were expensive
 - IBM 7094: \$200,000
 - · Two widely adopted improvements
 - Computer operators: humans hired to facilitate machine operation
 - Concept of job scheduling: group together programs with similar requirements
 - Expensive time lags between CPU and I/O devices

Types of Interrupts

- > I/O completion interrupts
 - Notify the OS that an I/O operation has completed,
- Timer interrupts
 - Notify the OS that a task has exceeded its quantum of CPU time,
- Traps
 - Notify the OS of a program error (division by zero, illegal op code, illegal operand address, ...) or a hardware failure
- System calls
 - Notify OS that the running task wants to submit a request to the OS

Brief History of Operating Systems Development (cont'd.)

- ▶ 1950s: second generation (cont'd.)
 - I/O device speed gradually became faster
 - · Tape drives, disks, and drums
 - (Tape drives are still in use LTO 6)
 - Records blocked before retrieval or storage
 - Buffer between I/O and CPU introduced
 - Reduced speed discrepancy
 - Timer interrupts developed
 - · Allowed job-sharing
 - · Prevent infinite loops in programs

Interrupts

- When an interrupt occurs:
 - The current state of the CPU (program counter, program status word, contents of registers, and so forth) is saved, normally on the top of a stack
 - b) A new CPU state is fetched
- New state includes a new hardware-defined value for the program counter

Context Switches

- Each interrupt will result into two context switches:
 - One when the running task is interrupted
 - Another when it regains the CPU
- Context switches are not cheap
- The overhead of any simple system call is two context switches

Prioritizing Interrupts

- Interrupt requests may occur while the system is processing another interrupt
- All interrupts are not equally urgent (as it is also in real life
 - Some are more urgent than other
 - Also true in real life

Example in Real life

- Let us try to prioritize
 - Phone is ringing
 - Washer signals end of cycle
 - Dark smoke is coming out of the kitchen

٠..

 With vectorized interrupts, a phone call will never interrupt another phone call

Smoke in the kitchen

Phone is ringing

End of washer cycle

More low-priority stuff

Lecture Notes from On Paris, University of Houston

Brief History of Operating Systems Development (cont'd.)

1960s: third generation

- Faster CPUs
- Speed caused problems with slower I/O devices
- Multiprogramming
- · Allowed loading many programs at one time
- Passive multiprogramming: interrupts
- · Active multiprogramming: time slicing
- Program scheduling
- · Initiated with second-generation systems
- Continues today
- Few advances in data management

system customization

ds

Understanding Operating Systems, Sixth Edition

Brief History of Operating Systems Development (cont'd.)

1970s

- Faster CPUs
- Speed caused problems with slower I/O devices
- Main memory physical capacity limitations
- Multiprogramming schemes used to increase CPU usage
- · Virtual memory developed to solve physical limitation
- Database management software
 - · Became a popular tool
- A number of query systems introduced
- Programs started using English-like words, modular structures, and standard operations

Understanding Operating Systems, Sixth Edition

Multiprogramming

- With multiprogramming, a computer lets its CPU divide its time among different tasks: the CPU works for, say, one tenth of a second on a given program, then for another tenth of a second on another one and so forth.
- Note that a single-core CPU is only working on one single task at any given time.
- The major direct benefit of multiprogramming is that the CPU does not waste any time waiting for the completion of an I/O because it can use the free time to work on another task.

Brief History of Operating Systems Development (cont'd.)

1980s

- Cost/performance ratio improvement of computer components
- More flexible hardware (upgrades made possible)
- Multiprocessing
- · Allowed parallel program execution
- Evolution of personal computers
- $^{\circ}$ Evolution of high-speed communications
- Distributed processing and networked systems introduced

Multiprocessor Systems

- These systems are designed for multiprocessor architectures
- Two major approaches:
- master-slave system: all system functions are performed by one processor; the other processors can only execute user programs;
- symmetric system: any processor can perform all functions; there can be multiple copies of the OS running in parallel and we must prevent them from interfering with

Brief History of Operating Systems Development (cont'd.)

1990s

- Demand for Internet capability
 - · Sparked proliferation of networking capability
- · Increased networking
- Increased tighter security demands to protect hardware and software
- Multimedia applications
- Demanding additional power, flexibility, and device compatibility for most operating systems

Brief History of Operating Systems Development (cont'd.)

> 2000s

- Primary design features support:
- · Multimedia applications
- · Internet and Web access
- · Client/server computing
- Computer systems requirements
- Increased CPU speed
- High-speed network attachments
- · Increased number and variety of storage devices
- Virtualization
- · Single server supports different operating systems

Object–Oriented Design

- Driving force in system architecture improvements
 - Kernel (operating system nucleus)
 - Resides in memory at all times, performs essential tasks, and protected by hardware
 - Kernel reorganization
 - Memory resident: process scheduling and memory allocation
 - · Modules: all other functions
 - Advantages
 - Modification and customization without disrupting integrity of the remainder of the system
 - Software development more productive

Understanding Operating Systems, Sixth Edition

Summary

- Operating system overview
- Functions of OS
 - Manages computer system
 - Hardware and software
 - Four essential managers
 - Work closely with the other managers and perform unique role
 - · Network Manager
 - · Operating systems with networking capability
 - Essential hardware components
 - · Memory chips, I/O, storage devices, and CPU

Summary (cont'd.)

- Five categories of operating systems
 - Batch, interactive, real-time, hybrid, and embedded
- Use of object-oriented design improves the system architecture
- > Several ways to perform OS tasks
- Designer determines policies to match system's environment
- Next:
 - Explore details of operating system components

Summary (cont'd.

- Evolution of OSs
 - · Run increasingly complex computers
 - Run increasingly complex computer systems
 - Prior to mid-1970s
 - · Computers classified by capacity and price
 - Dramatic changes over time
 - Moore's Law: computing power rises exponentially
 - · Physical size, cost, and memory capacity
- Mobile society information delivery
 - Creates strong market for handheld devices
 - Integral in modern computer systems

Understanding Operating Systems, Sixth Edition

References

- Understanding Operating Systems, Sixth Edition
- J. F. Paris, University of Houston Computer Science, Lecture Notes.

