Seeking an Optimal Approach for Computer-aided Diagnosis of Pulmonary Embolism

Nahid Ul Islam¹, Zongwei Zhou¹, Shiv Gehlot¹, Michael B Gotway², and Jianming Liang¹

¹Arizona State University ²Mayo Clinic

Pulmonary Embolism

CT Pulmonary Angiography

RSNA Pulmonary Embolism Dataset

FUMPE Dataset

CAD-PE Challenge Dataset

In-house Dataset

RSNA Pulmonary Embolism Dataset

FUMPE Dataset

CAD-PE Challenge Dataset

In-house Dataset

Exams: 7,279

Slices: 1,790,624

Task:

Slice-level Classification Exam-level Diagnosis

Ground Truth:

Slice-level: PE present or not

Exam-level: 1. Negative Exam for PE 6. Left PE

2. Indeterminate

7. Right PE

3. Chronic PE

8. RV LV Ratio > 1

4. Acute & Chronic PE

9. RV LV Ratio < 1

5. Central PE

RSNA Pulmonary Embolism Dataset

FUMPE Dataset

CAD-PE Challenge Dataset

In-house Dataset

Exams: 35

Slices: 8,792

Task:

Slice-level Classification

Ground Truth:

RSNA Pulmonary Embolism Dataset

FUMPE Dataset

CAD-PE Challenge Dataset

In-house Dataset

Exams: 91

Slices: 41,256

Task:

Slice-level Classification

Ground Truth:

RSNA Pulmonary Embolism Dataset

FUMPE Dataset

CAD-PE Challenge Dataset

In-house Dataset

Exams: 121

Emboli: 326

Task:

False Positive Reduction

Ground Truth:

Clot level

Classification and Diagnosis Task

Exams: 7,279 (with 1,790,624 slices)

Ground Truth

1. PE present or not

PE present

Ground Truth

- 1. Negative Exam for PE
- 2. Indeterminate
- 3. Chronic PE
- 4. Acute & Chronic PE
- 5. Central PE

- 6. Left PE
- 7. Right PE
- 8. RV LV Ratio > 1
- 9. RV LV Ratio < 1

Classification and Diagnosis Task

Exams: 7,279 (with 1,790,624 slices)

InfoMin dinoBarlow Twins
DenseNet121 MoCoSNet154
clsapIRL DRN SeResNet50obow
imsiam ResNet101ResNet50 BYOLResNext50ResNet18Xception PCLSeResNext50SeResNet101 **SWAV SimCLR** SelaDeepCluster

InfoMin dinoBarlow Twins DenseNet121 MoCoSNet154 clsaPIRL DRN SeResNet50obow ResNet101ResNet50 PCLSeResNext50SeResNet101

InfoMin dinaBarlow Twins DenseNet121 McCoSNet154 clsapin DRN Servet50obow ResNet104ResNet50 BYOLResNext5@ResNet18Xception PCLSeResNext50SeResNet101 SWAVSinGLR

for computer-aided pulmonary embolism detection

First Stage

First Stage

First Stage

Convolutional Neural Networks

1. ResNet18

2. ResNet50

3. ResNext50

4. SeResNet50

5. SeResNext50

6. DRN-A-50

7. Xception

8. SeXception

9. DenseNet121

10. SeNet154

11. ResNet101

12. SeResNet101

Transformers Based Models

1. ViT

2. Swin

- Training from scratch
- Fine-tuning
 - Supervised pretrained models
 - Self-supervised pretrained models

Exam-level Classification

Self-supervised Methods

1. InsDis

2. InfoMin

3. MoCo-v1

4. BYOL

5. MoCo-v2

6. DeepCluster-v2

7. PCL-v1

8. SwAV

9. PCL-v2

10. SimCLR-v1

11. PIRL

12. SimCLR-v2

13. SeLa-v2

14. Barlow Twins

15. BYOL

16. SwAV

17. dino

18. clsa

19. obow

Transfer learning consistently improves performance across the 12 different CNN architectures

Self-supervised pre-training overtakes (fully) supervised pre-training

Backbone	Method	Pretrained Data	Slice-level AUC
SeXception	Supervised	ImageNet-1k	0.9634
	Random		0.8468
	Supervised	ImageNet-1k	0.9131
ViT-B	Supervised	ImageNet-21k	0.9119
	SimMIM	ImageNet-1k	0.9139
	MoBY	ImageNet-1k	0.9071

Vision Transformer

Vision transformer (ViT) underperform CNNs

Backbone	Method	Pretrained Data	Slice-level AUC
SeXception	Supervised	ImageNet-1k	0.9634
	Random		0.8468
	Supervised	ImageNet-1k	0.9131
ViT-B	Supervised	ImageNet-21k	0.9119
	SimMIM	ImageNet-1k	0.9139
	MoBY	ImageNet-1k	0.9071

Vision Transformer

Backbone	Method	Pretrained Data	Slice-level AUC
SeXception	Supervised	ImageNet-1k	┌ 0.9634
	Random		4 0.9063
	Supervised	upervised ImageNet-1k 🖔	0.9485
Swin-B	Supervised	ImageNet-21k	² 0.9458
	SimMIM	ImageNet-1k	0.9527
	MoBY	ImageNet-1k	0.9456

Swin Transformer

Swin Transformer demonstrates a slower convergence rate compared to CNN.

Backbone	Method	Pretrained Data	SI	ice-level AUC
SeXception	Supervised	ImageNet-1k		┌ 0.9634
	Random	-14	0.9063	
	Supervised	ImageNet-1k 2		0.9485
Swin-B	Supervised	ImageNet-21k	p=2	0.9458
	SimMIM	ImageNet-1k		0.9527
	MoBY	ImageNet-1k		0.9456

Swin Transformer

A = SeResNext50 B = Xception C = SeXception

E-ViT outperforms BGRU at the exam level

VS.

VS.

VS.

VS.

VS.

			Random	ImageNet	Models Genesis
ard	2D	Slice-based Input	0.6303	0.6329	0.7211
Standard	2.5D	Orthogonal Input	0.7881	0.8136	0.8534
Sta	3D	Volume-based Input	0.8007	N/A	0.8766
	2D	Slice-based Input	0.8602	0.8581	0.8674
VOIR	2.5D	Orthogonal Input	0.8651	0.8729	0.8908
>	3D	Volume-based Input	0.9135	N/A	0.9248

3D data offer higher performance than 2D and 2.5D data

			Random	ImageNet	Models Genesis
ard	2D	Slice-based Input	0.6303	0.6329	0.7211
nda	2.5D	Orthogonal Input	0.7881	0.8136	0.8534
Sta	3D	Volume-based Input	1 0.8007	N/A	1 0.8766
~	2D	Slice-based Input	0.8602	0.8581	0.8674
VOIR	2.5D	Orthogonal Input	0.8651	0.8729	0.8908
	3D	Volume-based Input	1 0.9135	N/A	1 0.9248

VOIR is more informative than the standard image representation, bosting performance across image dimensions

			Random		ImageNet		Models Genesi		esis	
ard	2D	Slice-based Input		C 0.6303		0.6329			0.7211	
ındaı	2.5D	Orthogonal Input	Γ	0.7881	Г	0.8136	Г	•	0.8534	
Stal	3D	Volume-based Input		0.8007 -		N/A			0.8766	Ш
	2D	Slice-based Input		0.8602		0.8581	\exists		0.8674	
VOIR	2.5D	Orthogonal Input	L	0.8651	L	0.8729	ı	•	0.8908	
	3D	Volume-based Input		0.9135 -		N/A			0.9248	

			Random	ImageNet	Models Genesis
ard	2D	Slice-based Input	0.6303	0.6329	0.7211
ındard	2.5D	Orthogonal Input	0.7881	0.8136	0.8534
Stal	3D	Volume-based Input	0.8007	N/A	0.8766
	2D	Slice-based Input	0.8602	0.8581	0.8674
VOIR	2.5D	Orthogonal Input	0.8651	0.8729	0.8908
	3D	Volume-based Input	0.9135	N/A	0.9248

Same domain transfer learning with self-supervised pre-training enhances performance across image representations and dimensions

			Random	ImageNet	Models Genesis
ard	2D	Slice-based Input	0.6303	0.6329	0.7211
Standard	2.5D	Orthogonal Input	0.7881	0.8136	0.8534
Sta	3D	Volume-based Input	0.8007	N/A	0.8766
	2D	Slice-based Input	0.8602	0.8581	0.8674
VOIR	2.5D	Orthogonal Input	0.8651	0.8729	0.8908
	3D	Volume-based Input	0.9135	N/A	0.9248

Contributions

Contributions

Contributions

Convolutional neural networks

Vision transformer

Swin transformer

Sequential learning model Proposed E-ViT

Paradienns Preprocessing Phitializations

Standard image representation

Vessel oriented image representation

Random initialization
Supervised pre-training
Self-supervised pre-training

Conclusions

SeXception performs optimally for slice-level classification task

Our proposed E-ViT significantly improves performance for exam-level diagnosis

VOIR is more informative than the standard image representation, boosting performance across image dimensions

2D
 2.5D
 3D

$$63.03\% \Rightarrow 86.02\%$$
 $78.81\% \Rightarrow 86.51\%$
 $80.07\% \Rightarrow 91.35\%$
 22.99%
 7.70%
 11.28%

Seeking an Optimal Approach for Computer-aided Diagnosis of Pulmonary Embolism

View PDF

https://github.com/JLiangLab/CAD_PE

