Hardening Cybersecurity Presentation - March 14, 2025

Benjamin Taylor

Slide 1: Title - "Hardening Cybersecurity"

What is Cybersecurity?

- Practice of protecting computer systems, networks, and data from cyberattacks
- Attacks can come from hackers, viruses, ransomware, and other malicious people

"Hardening Cybersecurity" Meaning

- Making a system more secure by reducing vulnerabilities
- Hardened cybersecurity makes it harder for hackers to break in, like a castle with thick walls and a moat

Slide 2: "How to Hack a Hospital" - The Reality of Cyber Attacks on Healthcare

Why are Hospitals a Target?

- Hospitals rely on tech heavily for patient records, medical devices, and communication
- If a hospital is hacked, lives are at risk they are more likely to pay the ransom to restore records
- Many hospitals use outdated software that is easy for hackers to break into

Slideshow Purpose

 Not to teach people how to hack but instead to help them understand how cybercriminals exploit hospitals so we can learn to stop them

Slide 3: Disclaimer

Why is this Important?

- Cybersecurity is very important, but it must be ethical
- Learning about attacks helps defend against them, but using the knowledge to hack would be illegal

Slide 4: Bruce Schneier Quote

"The internet is about to start killing people, and the government regulates things that kill people." – Bruce Schneier, 2019

What Does This Mean?

 Bruce Schneier is a cybersecurity expert who warns that as we connect more life-critical systems (hospitals, power grids, transportation, etc) to the internet, hackers could cause real-world harm, even deaths

How Could Cyber Attacks Harm Lives?

- 1. Hospital Systems: If ransomware locks medical records, doctors can't treat patients
- 2. Traffic Lights & Power Grids: Cause accidents or blackouts
- 3. Hacked Medical Devices: pacemakers, insulin pumps, ventilators, etc., can be remotely controlled and compromised

Slide 5: Purpose of Presentation

Aims to Explore Cybersecurity in Healthcare from:

- 1. Historical Perspective: Past cyberattacks on hospitals
- 2. Scientific Perspective: How attacks technically work
- 3. Ethical Perspective: What security measures are needed to protect people

Slide 6: WannaCry Ransomware Attack (May 12, 2017)

One of the most devastating cyberattacks in history

What is Ransomware?

- Ransomware is a type of malware (malicious software) that:
 - 1. Encrypts (locks) files on a computer
 - 2. Demands a ransom (money) in Bitcoin to unlock them

What Happened in the WannaCry Attack?

- 200,000+ computers in 150+ countries were infected
- Hospitals, businesses, and governments were affected
- Notable victims: UK's National Health Service (NHS), FedEx, Honda, and more

Slide 7: WannaCry Ransomware Attack (May 12, 2017)

The UK's National Health Service (NHS) was one of the hardest-hit victims

How WannaCry Affected NHS Hospitals

- 80+ hospitals affected computers stopped working
- 595 General Practitioner (GP) offices affected doctors couldn't access patient files
- Surgeries cancelled, ambulances diverted patients in need couldn't get immediate treatment
- Medical devices infected MRI scanners and blood storage refrigerators stopped working
- Ransom demand: \$300 per system in Bitcoin hackers demanded digital payments to unlock the files

Why is This So Serious?

- When hospitals go offline, lives are at risk
- Even non-hacked hospitals suffer since they must take in diverted patients
- Medical records and diagnostic tools are very important without them, doctors cannot properly treat people

Slide 8: Why are Hospitals Vulnerable / How WannaCry Spread

Hospitals were hit hard by WannaCry because of four major weaknesses:

- Outdated Systems: Many hospitals used Windows XP (released in 2001), which Microsoft no longer updated
- 2. **Interconnected IoT Devices:** Medical devices like MRI scanners were connected to the internet but had weak security
- 3. Lack of Cybersecurity Funding: Hospitals focused on patient care, not IT security
- 4. **Improper Data Backups:** Without backups, hospitals had no way to restore files after the attack took place

What Made WannaCry So Dangerous?

- EternalBlue Exploit (NSA leak) allowed hackers to break into computers
- Self-spreading worm once inside a network, it automatically spreads
- Data Encryption & Ransom files were locked, and a ransom demand appeared

EXPLANATION - EternalBlue Exploit (NSA Leak)

What is EternalBlue?

- A software vulnerability in Microsoft Windows (found in Windows XP, Windows 7, etc)
- Discovered by the National Security Agency (NSA) in the U.S.
- Instead of reporting to Microsoft, the NSA kept it secret to use for spying purposes
- Uses scanning with Nmap and Metasploit

What is an Exploit?

- An exploit is a method hackers use to take advantage of security weaknesses
- In this case, EternalBlue allowed hackers to break into computers remotely

How Was It Leaked?

- A hacking group called the Shadow Brokers stole EternalBlue from the NSA
- They released it online in April 2017, a month before the WannaCry attack

How WannaCry Used EternalBlue

- 1. A hacker sends malware to an unpatched computer
- 2. EternalBlue lets the hacker take full control of the computer
- 3. The ransomware installs itself and spreads to other computers automatically

Slide 9: NotPetya (June 27, 2017) - Even More Destructive

A different cyberattack one month after WannaCry, but even worse

How NotPetya Was Different

- Also used the EternalBlue exploit (like WannaCry)
- Not ransomware, but it did pretend to be. Instead, permanently deleted files
- Major victims shipping companies, pharmaceuticals, FedEx, and even Chernobyl's radiation monitoring stations
- \$10 billion in damages one of costliest cyberattacks ever

Slide 10: Real-World Consequences

Cyberattacks aren't just about stolen passwords/leaked emails; they affect real people, disrupt life-saving treatments, and cost billions of dollars

1. Immediate Impact on Hospitals

- Over 19,000 Appointments and Surgeries Canceled
 - If the scheduling system is hacked, doctors and nurses can't see when patients are coming in
 - Life-threatening delays: some people who need urgent surgery may not be treated in time to save them
 - Surgeries relying on digital medical imaging (X-rays, MRIs, CT scans) may be impossible without computer access
- Ambulances Diverted
 - Hospitals rely on digital systems to track which ER rooms are available
 - If computers stop working, hospitals cannot handle new patients, forcing ambulances to drive further to uncompromised hospitals
 - This costs lives, especially when it comes to heart attacks, strokes, etc., where seconds matter
- Locked Out of Patient Records
 - Medical records contain everything about a patient's history allergies, medications, test results, etc.
 - When a hospital is hit with ransomware, these files are encrypted (locked), so doctors cannot access them
 - This means they don't know how to treat their patients safely
- Inoperable Medical Devices
 - Many modern medical devices rely on computers, so they can be hacked: MRI machines, CT scanners, blood storage refrigerators, IV pumps, ventilators, heart monitors, pacemakers
 - If these devices stop working, it can lead to misdiagnosis or failure to treat critically ill patients

2. Financial & Operational Costs

- Approx. \$4 Billion Lost in Recovery and Services
 - Hospitals had to pay ransom demands, buy new equipment, and spend months restoring data
 - Lost revenue: while systems were down, hospitals couldn't bill patients or insurance companies
 - Hiring IT experts for recovery costs millions
- Massive Delays in Patient Treatment
 - Even after a cyberattack is stopped, it can take weeks to restore all systems
 - Doctors are forced to use paper records, slowing down treatments
 - Hospital staff must manually check everything, increasing error risk
- Data Restoration Took Weeks
 - If a hospital doesn't have backups, it may lose all patient records permanently
 - Even with backups, it takes time to restore every system

3. Long-Term Consequences

- Increased Investment in Cybersecurity Awareness & IT Infrastructure
 - After WannaCry, hospitals had to spend millions updating security systems
 - Stronger firewalls, better backups, and cybersecurity training became priorities
 - Hospitals already have tight budgets
 - Investing in cybersecurity means less money for patient care
 - Many hospitals are still vulnerable to this day
- New Government Regulations for Healthcare Cybersecurity Compliance
 - Governments have started passing laws to improve hospital cybersecurity
 - Example: U.S. CISA now requires hospitals to meet certain security standards
 - Hospitals that don't comply face penalties
- More Ransomware Attacks on Hospitals
 - Hospitals continue to be attacked by newer ransomware:
 - Ryuk (2018) targeted hospitals in the U.S., demanding millions in Bitcoin
 - Conti (2020-2022) forced hospitals to shut down, delaying cancer treatments and surgeries
 - Attacks keep happening because hackers know hospitals will pay ransoms when lives are at risk
 - New malware is constantly evolving, and it's a never-ending arms race between hackers and cybersecurity teams

Slide 11: How to Prevent Another WannaCry

Keep Software Up to Date (Turn on Automatic Updates)

- Software updates fix security weaknesses that hackers can exploit
- Microsoft released a security patch for EternalBlue in March 2017, two months before the WannaCry attack
- Many hospitals never installed the update, leaving them vulnerable (sometimes in fear that updating could break their existing systems)

Use Strong and Unique Passwords

- Many cyberattacks start because people use easy-to-guess passwords
- Hackers use brute-force attacks, where they try millions of password combinations per second to break into accounts

Enable Two-Factor Authentication (2FA)

- Adds an extra layer of security beyond a password
- How does 2FA work?
 - You enter your password, and the system asks for a second factor
 - One-time code, fingerprint scan, security key, etc
- Even if hacker gets your password, they cannot log in without the second factor

Don't Click on Suspicious Links (Avoid Phishing Attacks)

- Phishing is a trick used by hackers to steal passwords and personal information by pretending to be someone trustworthy
- How Phishing Works:
 - You receive an email that looks real (Microsoft Support, Your Bank, etc)
 - The email asks you to click a link and log in
 - The link takes you to a fake website that looks real
 - When you enter your username and password, the hacker steals it

Slide 12: Video

Slide 13-14: Hardening Cybersecurity

Zero Trust Security Model

- Traditional cybersecurity assumes that if you're inside a network, you can be trusted. In the Zero Trust Model, no one is trusted by default
- How Does Zero Trust Work?
 - Every request is verified every time
 - Only necessary access is given to users
 - Constant monitoring makes sure there is no unauthorized access
- Multi-Factor Authentication (MFA), Least Privilege Access, Micro-Segmentation

- If a hacker breaks into one computer, cannot move across the network
- · Essential for remote work and cloud security

Network Segmentation

- Separate Networks for Different Devices
 - Medical devices (MRI machines, ventilators) are on their own network
 - Office computers and email systems are separate
 - Guests and visitors use a separate Wi-Fi network
- Firewall Rules Between Segments
 - Even if two systems need to communicate, a firewall controls what data is allowed to pass
 - Example: A hospital billing system can talk to the appointment system but not to MRI machines.
- Monitoring Traffic Between Segments
 - If suspicious activity is detected in one segment, it can be locked down before spreading

Continuous Monitoring & Threat Detection

- Security software constantly scans for threats (unusual logins, malware activity)
- Al and machine learning detect suspicious behavior
- Alerts notify IT teams immediately when a cyberattack is detected
- Cyberattacks happen fast, and without monitoring, hackers can steal data or install ransomware before anyone notices

Regular Security Audits & Compliance

- Like a cybersecurity check-up, where it examines how well an organization is protected
- During an audit, experts search for weaknesses and suggest fixes before hackers find them
- Types of Security Audits:
 - Penetration Testing
 - Compliance Audits
 - Vulnerability Scans
- Audits are important because they catch security weaknesses early before hackers exploit them, ensure compliance with government regulations, and improve cyber resilience by regularly testing defenses

Slide 15: IoT Everywhere is at Risk

What is IoT?

- The Internet of Things (IoT) refers to smart devices that connect to the internet and can communicate with each other (Alexa, Tesla, pacemakers, traffic lights, etc)
- Vulnerable because most IoT devices do not have strong security

Smart Cities

- Use connected technology to improve the services they provide, such as transportation, electricity, and public safety
- Attackers could change traffic lights, shut down electricity, and disable police radios all causing risk-situations

Smart Homes

- Many homes today use internet-connected devices that control lights, security systems, and even refrigerators
- Hackers can hijack smart locks, smart cameras, and thermostats to cause harm or damage property

Smart Vehicles

- Modern cars have Wi-Fi, Bluetooth, GPS, and even autopilot systems, and if they are hacked, the consequences can be deadly
- Hackers can remotely control brakes or accelerators, disable safety features, and even track the real-time location of car

Slide 16: Moving Forward

What Needs to Happen Next to Improve Cybersecurity

- Invest in Stronger Security Practices
 - Hospitals, businesses, and even individual users must proactively improve cybersecurity instead of waiting for an attack to happen.
 - Organizations must increase cybersecurity budgets instead of treating it as an afterthought.
 - Cybersecurity teams should have full-time staff monitoring threats 24/7.
- Raise Awareness & Educate People
 - Most cyberattacks start with human error people clicking on phishing emails, using weak passwords, or ignoring security warnings
 - Make cybersecurity training mandatory for healthcare workers, employees, and the general public
 - Run awareness campaigns to educate older adults and non-tech users about online scams
- Advocate for Better Regulations & Policies
 - Many companies cut corners on security because cybersecurity improvements cost money. Governments must enforce regulations to ensure organizations follow security best practices
 - Governments must pass stricter cybersecurity laws for hospitals, banks, and IoT devices
 - o Enforce compliance through fines and regular security audits