

TD de Systèmes à Microcontrôleurs (3DN)

Table des matières

	Étude de cartes à STM32	
	1.1 Braids de Mutable instruments	2
	1.1.1 Le microcontrôleur	2
	1.1.2 Les composants annexes	
	1.1.3 L'alimentation	2
	1.2 La carte NUCLEO-L476RG	2
_	Méthode de choix de composants : Exemple du Hacheur	-

TD 1 Étude de cartes à STM32

L'objectif de ce TD est d'analyser, à travers une série de questions, la conception de différentes cartes utilisant des STM32.

Braids de Mutable instruments 1.1

Dans cette partie, nous analysons un module de synthétiseur numérique de norme Eurorack. Toutes les informations sont disponibles à l'adresse suivante : https://mutable-instruments. net/modules/braids/

Le schéma du module est disponible ici : https://mutable-instruments.net/modules/braids/ downloads/braids v50.pdf. STM32F103CBT6:

Mainstream Performance line, Arm Cortex-M3 MCU with 128 Kbytes of Flash memory, 72 MHz CPU, motor control, USB and CAN

- 1.1.1 Le microcontrôleur
 - 1. Quel est le microcontrôleur utilisé? Quelles sont ses caractéristiques?
 - 2. À quelle fréquence est-il cadencé?
 - 3. Que faut-t-il prévoir pour programmer le microprocesseur? Stlink-V3
 - 4. Justifiez le câblage des switches RESET et BOOT FLASH

1.1.2 Les composants annexes

- Quels sont les rôles des composants suivants : DAC8551 et MCP3204?
- 2. Expliquer le fonctionnement de l'affichage
- 3. Le câblage de EC12E est-il suffisant? (pourquoi/comment?)

1.1.3 L'alimentation

- 1. Quel est le courant maximal que peut fournir l'alimentation 3.3V
- 2. À quoi sont dues les indications 200µA et 3.5mA
- 3. Quel est le rôle des différents condensateurs présents sur les 3 pages?

1.2 La carte NUCLEO-L476RG

Dans cette partie, nous nous intéressons à la manière dont sont programmés les microcontrôleurs des cartes de développement à STM32. Nous prenons le cas particulier de la carte NUCLEO-L476RG. Les schémas sont disponibles sur moodle.

- 1. Il n'y a gu'un seul manuel utilisateur pour l'ensemble des cartes Nucleo-64. Pourquoi?
- 2. Quels sont les composants utilisés pour l'alimentation? Quelles sont leurs caractéristiques?
- 3. Pourquoi y a-t-il deux microcontrôleurs différents sur la carte?
- 4. Quelle est la nature des composants commençant par SB?
- 5. Lister les différents quartz. Quels sont leur but? Justifier le choix des condensateurs.
- 6. Quels sont les signaux impliqués dans la programmation du microcontrôleur?

TD 2 Méthode de choix de composants : Exemple du Hacheur

Dans ce TD, nous cherchons à piloter un moteur à courant continu FIT0521 de chez DFRobot à l'aide d'un hacheur quatre quadrants. Le codeur incrémental du moteur sera utilisé pour mesurer la vitesse du moteur et réaliser un asservissement.

- 1. Quels éléments vont determiner le choix du hacheur?
- 2. Nous voulons propulser un robot mobile avec les deux moteurs FIT0521 de chez DFRobot. Quelles sont les caractéristiques du hacheur? Quels compromis peut-on faire?
- 3. Lister les différents constructeurs de circuits intégrés.
 - (a) Quels sont les critères pour le choix d'un constructeur?
- 4. Lister les différents distributeurs de composants électroniques.
 - (a) Quels sont les critères pour le choix d'un distributeur?
- 5. Proposer un schéma de câblage du hacheur (ou des hacheurs) avec le microcontrôleur STM32L451RET6.
- 6. Question Bonus : Écrire les fonctions permettant de faire varier la vitesse des moteurs.