My special pleasure in mathematics rested particularly on its purely speculative part - Bernard Bolzano

1 Review Topics

Open and closed sets, limits of functions

2 Exercises

- 2.1 Classify the following sets as open, closed, or neither in $\mathbb R$ and provide a brief argument.
 - $(-\infty, 0] \cup [1, \infty)$.
 - $\bigcup_{n=2}^{\infty} A_n$, where $A_n = \left[\frac{1}{n}, 1 \frac{1}{n}\right]$
 - Q

2.2 Let F be a closed set and E be an open set in a metric space X. Prove that $F \setminus E$ is closed and $E \setminus F$ is open.

2.3 Show that any open set in $\mathbb R$ can be re-written as the countable union of disjoint open intervals

2.4 If $\lim_{x\to x_0} f(x) = 0$, and g(x) is bounded, show $\lim_{x\to x_0} f(x) g(x) = 0$.

2.5 Compute $\lim_{x\to 0} x \sin\left(\frac{1}{x}\right)$.

2.6 Prove that if $f(x) \le g(x) \le h(x)$ for all x, and $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = y_0$, then $\lim_{x \to x_0} g(x) = y_0$.

2.7 Consider the function $f(x) = x \mathbb{1}_{\mathbb{Q}}(x)$, where $\mathbb{1}_{A}(x)$ is equal to 1 if $x \in A$, 0 otherwise. Show that for any $p \neq 0$, $\lim_{x \to p} f(x)$ does not exist.