## Лабораторна робота №7

Тема: Симплексний метод оптимізації

#### Мета роботи

Отримати практичні навички використання симплексного методу оптимізації процесу при виконанні факторного експерименту.

## Завдання на лабораторну роботу

1. Обчислити діапазон зміни факторів за формулою:

$$\Delta X_i = i + mod_3(N_{\text{ бригади}}) + 10$$

Кількість факторів дорівнює двом

Спосіб завдання симплекса вибирається згідно парності № бригади:

- 1-й спосіб, якщо № бригади не парне число;
- 2-й спосіб, якщо № бригади парне число

Основний рівень і-х факторів заповнити за допомогою генератора випадкових чисел в діапазоні від 10 до 100.

Вибрати з таблиці в додатку функцію відгуку.

- 2. Використовуючи симплексний метод оптимізації процесу, виконати факторний експеримент
- 3. Отримати значення довжини ребра симплекса і вивести його на екран
- 4. Побудувати програмою симплекс і показати на ньому точку оптимуму вказати її координати.

#### Короткі теоретичні відомості

Симплексний метод використовується в промислових умовах для пошуку оптимальних режимів технологічних процесів. Метод  $\epsilon$  активним, але не да $\epsilon$  інформації про вплив кожного фактора на вихідну величину.

Симплексом називається проста опукла геометрична фігура. У двомірному просторі (на площині) симплексом називається будь-який трикутник. Симплекс називається регулярним, якщо відстань між його точками (вершинами) однакова. Координати вершин визначаються залежно від способу завдання симплекса.

## Способи завдання симплексу

Спосіб 1. Одна з вершин симплексу розмішається в центрі координат, а інші розташовуються так, щоб ребра, які виходять з першої вершини, утворювали однакові кути з відповідними осями (рис.1). Координати вершин симплекса дані в таблиці 1.



Таблиця 1

| Номер   | Фактори                    |                            |                            |     |                            |
|---------|----------------------------|----------------------------|----------------------------|-----|----------------------------|
| вершини | X1                         | X2                         | X3                         | ••• | Xn                         |
| 1       | $X_1^0$                    | $X_2^0$                    | $X_3^0$                    | ••• | $X_n^0$                    |
| 2       | $X_1^0 + p\Delta X_1 \rho$ | $X_2^0 + q\Delta X_2 \rho$ | $X_3^0 + q\Delta X_3 \rho$ | ••• | $X_n^0 + q\Delta X_n \rho$ |
| 3       | $X_1^0 + q\Delta X_1 \rho$ | $X_2^0 + p\Delta X_2 \rho$ | $X_3^0 + q\Delta X_3 \rho$ | ••• | $X_n^0 + q\Delta X_n \rho$ |
| 4       | $X_1^0 + q\Delta X_1 \rho$ | $X_2^0 + q\Delta X_2 \rho$ | $X_3^0 + q\Delta X_3 \rho$ | ••• | $X_n^0 + q\Delta X_n \rho$ |
| •••     | •••                        | •••                        |                            | ••• |                            |
| n+1     | $X_1^0 + q\Delta X_1 \rho$ | $X_2^0 + q\Delta X_2 \rho$ | $X_3^0 + q\Delta X_3 \rho$ | ••• | $X_n^0 + p\Delta X_n \rho$ |

де:

 $\Delta X_i$  – інтервал варіювання i - го фактора;

 $\rho$  - довжина ребра симплекса, зазвичай  $\rho = 1$ ;

 $X_i^o$  - основний рівень i - го фактора,

p і q знаходяться за формулами:

$$p = \frac{1}{n\sqrt{2}} \left( n - 1 + \sqrt{n+1} \right),$$

$$q = \frac{1}{n\sqrt{2}} \left( \sqrt{n+1} - 1 \right)$$

Спосіб 2. Центр симплексу розміщується в центрі координат, (n+1) - а вершина на осі  $X_n$ . Інші вершини розташовуються симетрично відносно координатних осей (рис.2).



Координати вершин в цьому випадку наведені в таблиці 2.

Таблиця 2

| Номер   | Фактори                                   | f                                         |                                           |     |                                             |
|---------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-----|---------------------------------------------|
| вершини | X1                                        | X2                                        | X3                                        | ••• | Xn                                          |
| 1       | $X_1^0 - r_1 \cdot \Delta X_1 \cdot \rho$ | $X_2^0 - r_2 \cdot \Delta X_2 \cdot \rho$ | $X_3^0 - r_3 \cdot \Delta X_3 \cdot \rho$ | ••• | $X_n^0 - r_n \cdot \Delta X_{n} \cdot \rho$ |
| 2       | $X_1^0 - R_1 \cdot \Delta X_1 \cdot \rho$ | $X_2^0 - r_2 \cdot \Delta X_2 \cdot \rho$ | $X_3^0 - r_3 \cdot \Delta X_3 \cdot \rho$ |     | $X_n^0 - r_n \cdot \Delta X_n \cdot \rho$   |
| 3       | $X_1^{0}$                                 | $X_2^0 - R_2 \cdot \Delta X_2 \cdot \rho$ | $X_3^0 - r_3 \cdot \Delta X_3 \cdot \rho$ |     | $X_n^0 - r_n \cdot \Delta X_n \cdot \rho$   |
| •••     | •••                                       | •••                                       | •••                                       | ••• | •••                                         |
| n       | $X_1^{0}$                                 | $X_{2}^{0}$                               | $X_3^0$                                   |     | $X_n^0 - r_n \cdot \Delta X_n \cdot \rho$   |
| n+1     | $X_1^{0}$                                 | $X_{2}^{0}$                               | $X_3^0$                                   |     | $X_n^0 - R_n \cdot \Delta X_n \cdot \rho$   |

Величини  $R_i$  і  $r_i$  визначаються за формулами:

$$R_i = \frac{1}{\sqrt{2(i+1)}};$$

$$r_i = \frac{1}{\sqrt{2i(i+1)}};$$

Пошук оптимуму виконується за наступним алгоритмом:

- 1. Обчислюється симплекс (за 1 або 2 способом) і реалізуються експерименти (число експериментів для n вимірного симплекса дорівнює n+1).
- 2. Відкидається точка плану з найменшим значенням вихідного параметра.
- 3. Будується новий симплекс, який включає решту вершин вихідного симплекса і нову вершину, яку отримуємо шляхом дзеркального відображення відкинутої вершини відносно центру ваги решти вершин. Знаходження нової точки у векторній формі можна записати так:

Нова  
Точка = 
$$\frac{2}{n}\sum_{i=1,i\neq j}^{n+1}$$
 Вершина $_i$  — Вершина $_j$ ,

де:

j - номер вершини, яка відкидається.

Вершина $_{i} = (x_{i1}, x_{i2}, \dots, x_{jk})$  – вектор j-ої вершини симплексу у k-вимірній системі координат.

Для знаходження координат нової точки потрібно знати координати кожної вершини.

- 4. Проводиться експеримент в новій точці плану.
- 5. Виконується послідовне переміщення симплекса, в процесі якого на кожному кроці відбувається відкидання вершини з найменшим значенням вихідної змінної. На рис. З зображено переміщення симплекса, при цьому найменшими вершинами були: 1, потім 2, і потім 3.



6. Якщо при переміщенні симплекса протягом (n+1) кроків одна з вершин зберігає свої координати, то симплекс робить оборот навколо цієї вершини. Це означає, що в даній точці знаходиться оптимум (рис.4).



- 7. Якщо вихідна змінна в новій вершині симплекса має менше значення, ніж в інших вершинах, повертаються до попереднього симплекс і вибирають вершину, яку відкинули і в якій вихідна змінна має значення наступне по порядку за найменшою вершиною симплекса.
- 8. Якщо нова вершина виходить за межі допустимої області планування, то потрібно провести дії, які описані в пункті 7. Допустима область планування визначається за допомогою інтервалів варіювання факторів, визначених за варіантом.



- 9. При досягненні оптимуму розмір симплекса зменшують (приблизно на ¼).
- 10. Оптимум  $\varepsilon$  досягнутим, якщо одна і та ж точка входить у послідовні симплекс N раз, де  $N=1,65~n+0,05~n^2$ .
- 11. При присутності дрейфу факторів необхідно в кожній точці робити кілька експериментів і застосовувати середнє значення вихідної змінної.

## Зміст звіту

- 1. Вихідні дані у відповідності з варіантом;
- 2. Таблиця факторного експерименту;
- 3. Побудований симплекс (і його параметри). Показати на ньому оптимум (вказати його координати);
- 4. Відповіді на контрольні питання.

#### Контрольні питання

- 1. Що таке симплекс?
- 2. Який симплекс називається регулярним?
- 3. Опишіть алгоритм переміщення симплекса?
- 4. Які дії робляться при появі дрейфу факторів?
- 5. Назвіть основні відмінності двох способів задання симплекса.
- 6. Критерій оптимальності експерименту.

#### Приклад виконання лабораторної роботи (1)

В якості досліджуваного об'єкта виберемо підсилювач.

Знайти оптимальний режим роботи підсилювача в залежності від температури X1 і коефіцієнт посилення X2, якщо діапазон зміни:

температури -  $10 \, ^{\circ} \, \mathrm{C} \, (\Delta \, \mathrm{X1} = 10);$ 

коефіцієнта підсилення - 10 ( $\Delta X2 = 10$ ).

За вихідну змінну прийнято вихідна напруга підсилювача у. Вихідні дані (основний рівень): коефіцієнт підсилення дорівнює 100 (X2= 100);

температура дорівнює  $20 \, ^{\circ} \, \text{C} \, (\text{X1} = 20)$ .

Побудуємо симплекс за першим способом. Тоді p = 0.965, q = 0.258,  $\rho = 1$ . Матриця планування буде такою:

| Номер  | Фактори        |                |     |  |
|--------|----------------|----------------|-----|--|
| експер | X <sub>1</sub> | X <sub>2</sub> | у   |  |
| 1      | 20             | 100            | 9,1 |  |
| 2      | 29,6           | 102,6          | 9,0 |  |
| 3      | 22,6           | 109,6          | 9,2 |  |

Проведемо три експерименти. Другий експеримент має найгірше значення у. Відкидаємо вершину 2 і будуємо новий симплекс 1 - 3 - 4. Четверта вершина буде мати такі координати:

$$X_1^4 = \frac{2}{2}(20 + 22,6) - 29,6 = 13,0$$
  
 $X_2^4 = \frac{2}{2}(100 + 109,6) - 102,6 = 107,0$ 

Матриця планування, отримана в результаті руху симплекса:

| Номе             |      | Фактори |      |
|------------------|------|---------|------|
| р<br>експе<br>р. | X1   | X2      | у    |
| 1                | 20   | 100     | 9,1  |
| 2                | 29,6 | 102,6   | 9,0  |
| 3                | 22,6 | 109,6   | 9,2  |
| 4                | 13,0 | 107,0   | 9,5  |
| 5                | 15,6 | 116,6   | 10,0 |
| 6                | 6,0  | 114,0   | 9,6  |
| 7                | 8,0  | 123,6   | 9,7  |
| 8                | 18,2 | 126,2   | 9,8  |
| 9                | 25,2 | 119,2   | 9,9  |
| 10               | 22,6 | 109,6   | 9,2  |

Рух симплекса зображено на рис.5. Точка 5  $\epsilon$  оптимальною. Таким чином, коли t  $^\circ$  = 15,6  $^\circ$  C і коефіцієнт підсилення X = 116,6, робота підсилювача буде оптимальною.



## Приклад виконання лабораторної роботи (2)

## Виконання роботи:

$$x_1^0 = 0$$

$$x_2^0 = 60$$

$$\Delta x_1 = 11$$

$$\Delta x_1 = 12$$

Функція відгуку: у = x1 + 10 \* x2 - рівномірний рух зі швидкістю 10 м / с Спосіб завдання симплекса: 1



```
X1
     x2
            Y
    0,00 60,00 600,00
0.
   10,62 63,10
               641,58
1.
   2,84 71,58
               718,64
2.
                      < 0 1
   -7,78 68,48 677,06
                      < 0 2 3 >
   -10,62 56,90 558,43 < 0 3 4 >
   -2,84 48,42 481,36
                      < 0 4 5 >
   7,78 51,52 522,94
                      < 0 5 6 >
6.
   10,62 63,10 641,58
```

Оптимум знайдений - це точка 0.

# Додаток

| <b>№</b><br>бригади | Функція відгуку                                                                                  | $x_1^0$ | $x_2^0$ |
|---------------------|--------------------------------------------------------------------------------------------------|---------|---------|
| 101                 | y = x1 +10 * x2 - рівномірний рух зі<br>швидкістю 10 м / с                                       | 0       | 60      |
| 102                 | $y=x1*(x2)^2$ -Вільне падіння в плині $x2$ з з прискоренням $x1$                                 | 9,8     | 10      |
| 103                 | y = x1/x2 - прискорення тіла масою $x2$ при впливі сили $x1$                                     | 20      | 5.      |
| 104                 | $y=(x1)^2/x2$ - прискорення при русі тіла зі швидкістю $x1$ по колу радіуса $x2$                 | 15      | 30      |
| 105                 | y = x1 * x2 - швидкість тіла при кутовий швидкості $x1$ і радіусі кривизни траєкторії $x2$       | 12      | 15      |
| 106                 | $y=5*x1/(x2)^2$ - Сила тяжіння тіла масою $x1$ на відстані $x2$ до іншого                        | 8       | 2       |
| 107                 | $y=\sqrt{x1*x2}$ - Космічна швидкість планети радіусом x1 і силою тяжіння x2                     | 5.      | 12,8    |
| 108                 | y = 1/x1 +1 / x2 - еквівалентна провідність паралельного з'єднання 2 резисторів                  | 10      | 20      |
| 109                 | y = x1 * x2 / (x1 + x2) - еквівалентний опір паралельного з'єднання 2 резисторів                 | 0,15    | 0,2     |
| 110                 | y = x1-x2 - різниця потенціалів між двома точками (напруга)                                      | 440     | 220     |
| 111                 | $y=5*x1/(x2)^2$ - Сила тяжіння тіла масою $x1$ на відстані $x2$ до іншого                        | 2.5.    | 5.      |
| 112                 | y = √x1/x2 - Час руху тіла по визначеному шляху із заданим прискоренням                          | 150     | 37,5    |
| 113                 | $y = 4x_1^2 + x_2$ - Повна енергія тіла швидкістю x1 і кінетичної енергією x2                    | 3       | 12      |
| 114                 | $y = \frac{x_1}{x_2}$ - Сила струму з напругою х1 і опором х2                                    | 32      | 16      |
| 115                 | $y = \frac{x_1 x_2^2}{2}$ - Енергія струму, з магнітною індукцією х1 і силою струму х2           | 0,3     | 0,1     |
| 116                 | $y = 4(\frac{1}{x_1} - \frac{1}{x_2})$ - Оптична сила лінзи х1 і х2                              | 3.2.    | 4.3.    |
| 117                 | $y = x_1(10 - x_2)$ - Вага тіла в прискореному рухомому ліфті з масою х1 і прискоренням ліфта х2 | 3       | 7       |
| 118                 | y = x1 +10 * x2 - рівномірний рух зі<br>швидкістю 10 м / с                                       | 12,3    | 15      |
| 119                 | $y=x1*(x2)^2$ - Вільне падіння в плині $x2$ з з прискоренням $x1$                                | 9,2     | 1       |

| впливі сили х1  121                                                                                                                                                                                                                                                       | 5   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 121 $y = \frac{(x!)^2}{X2}$ - прискорення при русі тіла зі швидкістю х1 по колу радіуса х2     15       122 $y = x1 * x2$ - швидкість тіла при кутовий швидкості х1 і радіусі кривизни траєкторії х2     1       123 $y = 5*x1/(x2)^2$ - Сила тяжіння тіла масою х1     5 |     |
| швидкості х1 і радіусі кривизни траєкторії х2  123 у=5*х1/(х2)² - Сила тяжіння тіла масою х1 5 6                                                                                                                                                                          | 2   |
|                                                                                                                                                                                                                                                                           | 1.3 |
| на відстані ха до іншого                                                                                                                                                                                                                                                  | 5.7 |
| 124 $y = \sqrt{x^* x^*}$ - Космічна швидкість планети радіусом х1 і силою тяжіння х2                                                                                                                                                                                      | 6.  |
|                                                                                                                                                                                                                                                                           | 15  |
|                                                                                                                                                                                                                                                                           | ,33 |
|                                                                                                                                                                                                                                                                           | 34  |
|                                                                                                                                                                                                                                                                           | 1.2 |
|                                                                                                                                                                                                                                                                           | 7,5 |
|                                                                                                                                                                                                                                                                           | 15  |
| $y = \frac{x_1}{x_2}$ - Сила струму з напругою х1 і                                                                                                                                                                                                                       | 23  |
| опором х2                                                                                                                                                                                                                                                                 | 10  |
| $y = \frac{x_1 x_2^2}{2}$ - Енергія струму, з магнітною індукцією х1 і силою струму х2                                                                                                                                                                                    | 10  |
|                                                                                                                                                                                                                                                                           | 2   |
| рухомому ліфті з масою х1 і прискоренням ліфта х2                                                                                                                                                                                                                         | 5.  |
| 201                                                                                                                                                                                                                                                                       | 50  |
| 202 у=x1*(x2)²-Вільне падіння в плині x2 з з 9,8 прискоренням x1                                                                                                                                                                                                          | 10  |
|                                                                                                                                                                                                                                                                           | 5.  |
|                                                                                                                                                                                                                                                                           | 30  |
|                                                                                                                                                                                                                                                                           | 15  |
| 206                                                                                                                                                                                                                                                                       | 2   |

|     | на відстані х2 до іншого                                                               |      |      |
|-----|----------------------------------------------------------------------------------------|------|------|
| 207 | $y = \sqrt{x1 * x2}$ - Космічна швидкість планети                                      | 5.   | 12,8 |
|     | радіусом x1 і силою тяжіння x2                                                         |      |      |
| 208 | y = 1/x1 + 1 / x2 - еквівалентна провідність                                           | 10   | 20   |
|     | паралельного з'єднання 2 резисторів                                                    |      |      |
| 209 | y = x1 * x2 / (x1 + x2) - еквівалентний опір                                           | 0,15 | 0,2  |
| 210 | паралельного з'єднання 2 резисторів                                                    | 1.10 | 220  |
| 210 | y = x1-x2 - різниця потенціалів між двома точками (напруга)                            | 440  | 220  |
| 211 | $y=x1/\sqrt{1-(x2/10)^2}$ - Відносна маса тіла по                                      | 2.5. | 5.   |
|     | Ейнштейну                                                                              |      |      |
| 212 | $y = \sqrt{x^4/x^2}$ - Час руху тіла по визначеному                                    | 150  | 37,5 |
|     | шляху із заданим прискоренням                                                          |      |      |
| 213 | $y = 4x_1^2 + x_2$ - Повна енергія тіла швидкістю                                      | 3    | 12   |
|     | х1 і кінетичної енергією х2                                                            |      |      |
| 214 | $y = \frac{x_1}{x_2}$ - Сила струму з напругою х1 і                                    | 32   | 16   |
|     | опором х2                                                                              |      |      |
| 215 | $y = \frac{x_1 x_2^2}{2}$ - Енергія струму, з магнітною                                | 0,3  | 0,1  |
|     | індукцією х1 і силою струму х2                                                         |      |      |
| 216 | $y = 4(\frac{1}{x_1} - \frac{1}{x_2})$ - Оптична сила лінзи х1 і х2                    | 3.2. | 4.3. |
| 217 | $y = x_1(10 - x_2)$ - Вага тіла в прискореному                                         | 3    | 7    |
|     | рухомому ліфті з масою х1 і прискоренням ліфта х2                                      |      |      |
| 218 | y = x1 +10 * x2 - рівномірний рух зі<br>швидкістю 10 м / с                             | 12,3 | 15   |
| 219 | $y=x1*(x2)^2$ - Вільне падіння в плині $x2$ з з                                        | 9,2  | 1    |
| 219 |                                                                                        | 9,2  | 1    |
| 220 | прискоренням $x1$ $y = x1/x2$ - прискорення тіла масою $x2$ при                        | 20   | 5    |
| 220 | у – x1/x2 - прискорення тыа масою x2 при<br>впливі сили x1                             | 20   | J    |
| 221 | $y = \frac{(x_1)^2}{2} / X2$ - прискорення при русі тіла зі                            | 15   | 30   |
|     | $y = \frac{\sqrt{X^2 - npuckopenns npu pyci тіла 31}}{msuдкістю x1 по колу радіуса x2$ |      |      |
| 222 | y = x1 * x2 - швидкість тіла при кутовий                                               | 1    | 4.3. |
|     | швидкості х1 і радіусі кривизни траєкторії                                             | 1    | т.Ј. |
|     | x2                                                                                     |      |      |
| 223 | $y=5*x1/(x2)^2$ - Сила тяжіння тіла масою x1                                           | 5.   | 6.7  |
|     | на відстані х2 до іншого                                                               |      |      |
| 224 | $y = \sqrt{X^{1} * X^{2}}$ - Космічна швидкість планети                                | 5.3. | 16   |
|     | y = Космічна швидкість планети радіусом х1 і силою тяжіння х2                          |      |      |
| 225 | y = 1/x1 + 1/x2 - еквівалентна провідність                                             | 12   | 15   |
|     | паралельного з'єднання 2 резисторів                                                    |      | -    |
| 226 | y = x1 * x2 / (x1 + x2) - еквівалентний опір                                           | 0,54 | 0,33 |
|     | паралельного з'єднання 2 резисторів                                                    |      |      |
| 227 | y = x1-x2 - різниця потенціалів між двома                                              | 54   | 34   |
|     | точками (напруга)                                                                      |      |      |

| 228 | $y=5*x1/(x2)^2$ - Сила тяжіння тіла масою $x1$ на відстані $x2$ до іншого                                    | 2,8  | 4.2. |
|-----|--------------------------------------------------------------------------------------------------------------|------|------|
| 229 | y = √x1/x2 - Час руху тіла по визначеному шляху із заданим прискоренням                                      | 133  | 27,5 |
| 230 | $y = 4x_1^2 + x_2$ - Повна енергія тіла швидкістю x1 і кінетичної енергією x2                                | 3    | 45   |
| 231 | $y = \frac{x_1}{x_2}$ - Сила струму з напругою х1 і                                                          | 4,8  | 23   |
|     | опором х2                                                                                                    |      |      |
| 232 | $y = \frac{x_1 x_2^2}{2}$ - Енергія струму, з магнітною                                                      | 30   | 10   |
|     | індукцією x1 і силою струму x2                                                                               |      |      |
| 233 | $y = 4(\frac{1}{x_1} - \frac{1}{x_2})$ - Оптична сила лінзи х1 і х2                                          | 12   | 2    |
| 234 | $x_1$ $x_2$ $y = x_1(10 - x_2)$ - Вага тіла в прискореному рухомому ліфті з масою х1 і прискоренням ліфта х2 | 3.6. | 5.   |
| 301 | y = x1 +10 * x2 - рівномірний рух зі<br>швидкістю 10 м / с                                                   | 0    | 60   |
| 302 | $y=x1*(x2)^2$ -Вільне падіння в плині $x2$ з з прискоренням $x1$                                             | 9,8  | 10   |
| 303 | y = x1/x2 - прискорення тіла масою x2 при впливі сили x1                                                     | 20   | 5.   |
| 304 | $y=(x1)^2/x2$ - прискорення при русі тіла зі швидкістю $x1$ по колу радіуса $x2$                             | 15   | 30   |
| 305 | y = x1 * x2 - швидкість тіла при кутовий швидкості x1 і радіусі кривизни траєкторії x2                       | 12   | 15   |
| 306 | $y=5*x1/(x2)^2$ - Сила тяжіння тіла масою x1 на відстані x2 до іншого                                        | 8    | 2    |
| 307 | $y = \sqrt{x1 * x2}$ - Космічна швидкість планети радіусом x1 і силою тяжіння x2                             | 5.   | 12,8 |
| 308 | y = 1/x1 +1 / x2 - еквівалентна провідність паралельного з'єднання 2 резисторів                              | 10   | 20   |
| 309 | y = x1 * x2 / (x1 + x2) - еквівалентний опір паралельного з'єднання 2 резисторів                             | 0,15 | 0,2  |
| 310 | y = x1-x2 - різниця потенціалів між двома точками (напруга)                                                  | 440  | 220  |
| 311 | $y=x1/\sqrt{1-(x2/10)^2}$ - Відносна маса тіла по Ейнштейну                                                  | 2.5. | 5    |
| 312 | y = √x1 /x2 - Час руху тіла по визначеному шляху із заданим прискоренням                                     | 150  | 37,5 |
| 313 | $y = 4x_1^2 + x_2$ - Повна енергія тіла швидкістю х1 і кінетичної енергією х2                                | 3    | 12   |
| 314 | $y = \frac{x_1}{x_2}$ - Сила струму з напругою х1 і                                                          | 32   | 16   |

|     | опором х2                                                                                          |      |      |
|-----|----------------------------------------------------------------------------------------------------|------|------|
| 315 | $y = \frac{x_1 x_2^2}{2}$ - Енергія струму, з магнітною                                            | 0,3  | 0,1  |
|     | індукцією x1 і силою струму x2                                                                     |      |      |
| 316 | $y = 4(\frac{1}{x_1} - \frac{1}{x_2})$ - Оптична сила лінзи х1 і х2                                | 3.2. | 4.3  |
| 317 | $y = x_1(10 - x_2)$ - Вага тіла в прискореному рухомому ліфті з масою х1 і прискоренням ліфта х2   | 3    | 7    |
| 318 | y = x1 +10 * x2 - рівномірний рух зі<br>швидкістю 10 м / с                                         | 12,3 | 15   |
| 319 | $y=x1*(x2)^2$ - Вільне падіння в плині $x2$ з з прискоренням $x1$                                  | 9,2  | 1    |
| 320 | y = x1/x2 - прискорення тіла масою x2 при впливі сили x1                                           | 20   | 5.   |
| 321 | $y = \frac{(x_1)^2}{X^2}$ X2 - прискорення при русі тіла зі швидкістю х1 по колу радіуса х2        | 15   | 30   |
| 322 | y = x1 * x2 - швидкість тіла при кутовий швидкості $x1$ і радіусі кривизни траєкторії $x2$         | 1    | 4.3  |
| 323 | $y=5*x1/(x2)^2$ - Сила тяжіння тіла масою $x1$ на відстані $x2$ до іншого                          | 5.   | 6.7  |
| 324 | $y = \sqrt{A1 * A^2}$ - Космічна швидкість планети радіусом х1 і силою тяжіння х2                  | 5.3. | 16   |
| 325 | y = 1/x1 + 1 / x2 - еквівалентна провідність паралельного з'єднання 2 резисторів                   | 12   | 15   |
| 326 | y = x1 * x2 / (x1 + x2) - еквівалентний опір паралельного з'єднання 2 резисторів                   | 0,54 | 0,33 |
| 327 | y = x1-x2 - різниця потенціалів між двома точками (напруга)                                        | 54   | 34   |
| 328 | $y=x1/\sqrt{1-(x2/10)^2}$ - Відносна маса тіла по Ейнштейну                                        | 2,8  | 4.2. |
| 329 | y = √x1/x2 - Час руху тіла по визначеному шляху із заданим прискоренням                            | 133  | 27,5 |
| 330 | $y = 4x_1^2 + x_2$ - Повна енергія тіла швидкістю x1 і кінетичної енергією x2                      | 3    | 45   |
| 331 | $y = \frac{x_1}{x_2}$ - Сила струму з напругою х1 і опором х2                                      | 4,8  | 23   |
| 332 | $y = \frac{x_1 x_2^2}{2}$ - Енергія струму, з магнітною                                            | 30   | 10   |
| 333 | індукцією x1 і силою струму x2 $y = 4(\frac{1}{x_1} - \frac{1}{x_2}) - Оптична сила лінзи x1 і x2$ | 12   | 2    |
| 334 | $y = x_1(10 - x_2)$ - Вага тіла в прискореному рухомому ліфті з масою х1 і прискоренням            | 3.6. | 5.   |

|     | ліфта х2                                                                                           |      |      |
|-----|----------------------------------------------------------------------------------------------------|------|------|
| 401 | y = x1 +10 * x2 - рівномірний рух зі<br>швидкістю 10 м / с                                         | 0    | 60   |
| 402 | $y=x1*(x2)^2$ -Вільне падіння в плині $x2$ з з прискоренням $x1$                                   | 9,8  | 10   |
| 403 | y = x1/x2 - прискорення тіла масою x2 при впливі сили x1                                           | 20   | 5.   |
| 404 | $y=(x1)^2/x2$ - прискорення при русі тіла зі швидкістю $x1$ по колу радіуса $x2$                   | 15   | 30   |
| 405 | у = x1 * x2 - швидкість тіла при кутовий швидкості x1 і радіусі кривизни траєкторії x2             | 12   | 15   |
| 406 | $y=5*x1/(x2)^2$ - Сила тяжіння тіла масою $x1$ на відстані $x2$ до іншого                          | 8    | 2    |
| 407 | $y = \sqrt{x1 * x2}$ - Космічна швидкість планети радіусом x1 і силою тяжіння x2                   | 5.   | 12,8 |
| 408 | y = 1/x1 +1 / x2 - еквівалентна провідність паралельного з'єднання 2 резисторів                    | 10   | 20   |
| 409 | y = x1 * x2 / (x1 + x2) - еквівалентний опір паралельного з'єднання 2 резисторів                   | 0,15 | 0,2  |
| 410 | y = x1-x2 - різниця потенціалів між двома точками (напруга)                                        | 440  | 220  |
| 411 | $y=x1/\sqrt{1-(x2/10)^2}$ - Відносна маса тіла по Ейнштейну                                        | 2.5. | 5.   |
| 412 | y = √x1/x2 - Час руху тіла по визначеному шляху із заданим прискоренням                            | 150  | 37,5 |
| 413 | $y = 4x_1^2 + x_2$ - Повна енергія тіла швидкістю х1 і кінетичної енергією х2                      | 3    | 12   |
| 414 | $y = \frac{x_1}{x_2}$ - Сила струму з напругою х1 і опором х2                                      | 32   | 16   |
| 415 | $y = \frac{x_1 x_2^2}{2}$ - Енергія струму, з магнітною                                            | 0,3  | 0,1  |
| 416 | індукцією x1 і силою струму x2 $y = 4(\frac{1}{x_1} - \frac{1}{x_2}) - Оптична сила лінзи x1 і x2$ | 3.2. | 4.3. |
| 417 | $y = x_1(10 - x_2)$ - Вага тіла в прискореному рухомому ліфті з масою х1 і прискоренням ліфта х2   | 3    | 7    |
| 418 | y = x1 +10 * x2 - рівномірний рух зі<br>швидкістю 10 м / с                                         | 12,3 | 15   |
| 419 | $y=x1*(x2)^2$ - Вільне падіння в плині $x2$ з з прискоренням $x1$                                  | 9,2  | 1    |
| 420 | y = x1/x2 - прискорення тіла масою x2 при впливі сили x1                                           | 20   | 5.   |
| 501 | $y = \frac{(x^{1})^{\frac{3}{2}}}{X^{2}} X^{2}$ - прискорення при русі тіла зі                     | 15   | 30   |

|     | швидкістю x1 по колу радіуса x2                                                                  |      |      |
|-----|--------------------------------------------------------------------------------------------------|------|------|
| 502 | y = x1 * x2 - швидкість тіла при кутовий швидкості x1 і радіусі кривизни траєкторії x2           | 1    | 4.3. |
| 503 | $y = 5 * x1 / (x^2)^2$ - Сила тяжіння тіла масою x1 на відстані x2 до іншого                     | 5.   | 6.7  |
| 504 | $y = \sqrt{x^* x^*}$ - Космічна швидкість планети радіусом x1 і силою тяжіння x2                 | 5.3. | 16   |
| 505 | y = 1/x1 +1 / x2 - еквівалентна провідність паралельного з'єднання 2 резисторів                  | 12   | 15   |
| 506 | y = x1 * x2 / (x1 + x2) - еквівалентний опір паралельного з'єднання 2 резисторів                 | 0,54 | 0,33 |
| 507 | y = x1-x2 - різниця потенціалів між двома точками (напруга)                                      | 54   | 34   |
| 508 | $y=x1/\sqrt{1-(x2/10)^2}$ Відносна маса тіла по Ейнштейну                                        | 2,8  | 4.2. |
| 509 | $y = \sqrt{x^2/x^2}$ - Час руху тіла по визначеному шляху із заданим прискоренням                | 133  | 27,5 |
| 510 | $y = 4x_1^2 + x_2$ - Повна енергія тіла швидкістю х1 і кінетичної енергією х2                    | 3    | 45   |
| 511 | $y = \frac{x_1}{x_2}$ - Сила струму з напругою х1 і опором х2                                    | 4,8  | 23   |
| 512 | $y = \frac{x_1 x_2^2}{2}$ - Енергія струму, з магнітною індукцією х1 і силою струму х2           | 30   | 10   |
| 513 | $y = 4(\frac{1}{x_1} - \frac{1}{x_2})$ - Оптична сила лінзи х1 і х2                              | 12   | 2    |
| 514 | $y = x_1(10 - x_2)$ - Вага тіла в прискореному рухомому ліфті з масою х1 і прискоренням ліфта х2 | 3.6. | 5    |
| 515 | y = x1 +10 * x2 - рівномірний рух зі<br>швидкістю 10 м / с                                       | 0    | 60   |
| 516 | y = x1 * (x²)² - Вільне падіння в плині x2 з<br>з прискоренням x1                                | 9,8  | 10   |
| 517 | y = x1/x2 - прискорення тіла масою x2 при впливі сили x1                                         | 20   | 5    |
| 518 | $y = \frac{(M)^2}{X^2} / X^2$ - прискорення при русі тіла зі швидкістю х1 по колу радіуса х2     | 15   | 30   |
| 519 | у = x1 * x2 - швидкість тіла при кутовий швидкості x1 і радіусі кривизни траєкторії x2           | 12   | 15   |
| 520 | $y = 5 * x1 / \frac{(x^2)^2}{}$ - Сила тяжіння тіла масою x1 на відстані x2 до іншого            | 8    | 2    |

| 601 | $y = \sqrt{X^{1} * X^{2}}$ - Космічна швидкість планети радіусом х1 і силою тяжіння х2           | 5.   | 12,8 |
|-----|--------------------------------------------------------------------------------------------------|------|------|
| 602 | y = 1/x1 + 1 / x2 - еквівалентна провідність паралельного з'єднання 2 резисторів                 | 10   | 20   |
| 603 | y = x1 * x2 / (x1 + x2) - еквівалентний опір паралельного з'єднання 2 резисторів                 | 0,15 | 0,2  |
| 604 | y = x1-x2 - різниця потенціалів між двома точками (напруга)                                      | 440  | 220  |
| 605 | $y=x1/\sqrt{1-(x2/10)^2}$ Відносна маса тіла по Ейнштейну                                        | 2.5. | 5.   |
| 606 | $y = \sqrt{x^1/x^2}$ - Час руху тіла по визначеному шляху із заданим прискоренням                | 150  | 37,5 |
| 607 | $y = 4x_1^2 + x_2$ - Повна енергія тіла швидкістю x1 і кінетичної енергією x2                    | 3    | 12   |
| 608 | $y = \frac{x_1}{x_2}$ - Сила струму з напругою х1 і опором х2                                    | 32   | 16   |
| 609 | $y = \frac{x_1 x_2^2}{2}$ - Енергія струму, з магнітною індукцією х1 і силою струму х2           | 0,3  | 0,1  |
| 610 | $y = 4(\frac{1}{x_1} - \frac{1}{x_2})$ - Оптична сила лінзи х1 і х2                              | 3.2. | 4.3. |
| 611 | $y = x_1(10 - x_2)$ - Вага тіла в прискореному рухомому ліфті з масою х1 і прискоренням ліфта х2 | 3    | 7    |
| 612 | y = x1 +10 * x2 - рівномірний рух зі<br>швидкістю 10 м / с                                       | 12,3 | 15   |
| 613 | $y = x1 * (x^2)^2$ - Вільне падіння в плині $x2$ з з прискоренням $x1$                           | 9,2  | 1    |
| 614 | y = x1/x2 - прискорення тіла масою $x2$ при впливі сили $x1$                                     | 20   | 5.   |
| 615 | $y = \frac{(x_1)^2}{X^2}$ X2 - прискорення при русі тіла зі швидкістю х1 по колу радіуса х2      | 15   | 30   |
| 616 | у = x1 * x2 - швидкість тіла при кутовий швидкості x1 і радіусі кривизни траєкторії x2           | 1    | 4.3  |
| 617 | $y = 5 * x1 / (x^2)^2$ - Сила тяжіння тіла масою x1 на відстані x2 до іншого                     | 5.   | 6.7  |
| 618 | $y = \sqrt{x^{1} * x^{2}}$ - Космічна швидкість планети радіусом х1 і силою тяжіння х2           | 5.3. | 16.  |
| 619 | y = 1/x1 + 1 / x2 - еквівалентна провідність паралельного з'єднання 2 резисторів                 | 12   | 15   |
| 620 | y = x1 * x2 / (x1 + x2) - еквівалентний опір паралельного з'єднання 2 резисторів                 | 0,54 | 0,33 |

| 701 | $y = \sqrt{x^{1} * x^{2}}$ - Космічна швидкість планети радіусом x1 і силою тяжіння x2           | 5.   | 12,8 |
|-----|--------------------------------------------------------------------------------------------------|------|------|
| 702 | y = 1/x1 + 1 / x2 - еквівалентна провідність паралельного з'єднання 2 резисторів                 | 10   | 20   |
| 703 | y = x1 * x2 / (x1 + x2) - еквівалентний опір паралельного з'єднання 2 резисторів                 | 0,15 | 0,2  |
| 704 | y = x1-x2 - різниця потенціалів між двома точками (напруга)                                      | 440  | 220  |
| 705 | $y=5*x1/(x2)^2$ - Сила тяжіння тіла масою x1 на відстані x2 до іншого                            | 2.5. | 5    |
| 706 | y = √x1/x2 - Час руху тіла по визначеному шляху із заданим прискоренням                          | 150  | 37,5 |
| 707 | $y = 4x_1^2 + x_2$ - Повна енергія тіла швидкістю х1 і кінетичної енергією х2                    | 3    | 12   |
| 708 | $y = \frac{x_1}{x_2}$ - Сила струму з напругою х1 і опором х2                                    | 32   | 16   |
| 709 | $y = \frac{x_1 x_2^2}{2}$ - Енергія струму, з магнітною індукцією х1 і силою струму х2           | 0,3  | 0,1  |
| 710 | $y = 4(\frac{1}{x_1} - \frac{1}{x_2})$ - Оптична сила лінзи х1 і х2                              | 3.2. | 4.3  |
| 711 | $y = x_1(10 - x_2)$ - Вага тіла в прискореному рухомому ліфті з масою х1 і прискоренням ліфта х2 | 3    | 7    |
| 712 | y = x1 +10 * x2 - рівномірний рух зі<br>швидкістю 10 м / с                                       | 12,3 | 15   |
| 713 | $y = x1 * (x^{-1})^{2}$ - Вільне падіння в плині x2 з з прискоренням x1                          | 9,2  | 1    |
| 714 | y = x1/x2 - прискорення тіла масою $x2$ при впливі сили $x1$                                     | 20   | 5    |
| 715 | $y = \frac{(x_1)^2}{X^2}$ X2 - прискорення при русі тіла зі швидкістю х1 по колу радіуса х2      | 15   | 30   |
| 716 | y = x1 * x2 - швидкість тіла при кутовий швидкості x1 і радіусі кривизни траєкторії x2           | 1    | 4.3  |
| 717 | $y = 5 * x1 / (x2)^2$ - Сила тяжіння тіла масою x1 на відстані x2 до іншого                      | 5.   | 6.7  |
| 718 | $y = \sqrt{x^{1} * x^{2}}$ - Космічна швидкість планети радіусом х1 і силою тяжіння х2           | 5.3. | 16.  |
| 719 | y = 1/x1 +1 / x2 - еквівалентна провідність паралельного з'єднання 2 резисторів                  | 12   | 15   |
| 720 | y = x1 * x2 / (x1 + x2) - еквівалентний опір паралельного з'єднання 2 резисторів                 | 0,54 | 0,33 |