# Mathematics for Computer Science Linear Algebra

Lecture 19: Singular value decomposition

Andrei Krokhin

March 14, 2021

# Matrix decompositions we've seen so far

- ullet LU-decomposition  $A=LU,\ L$  is lower triangular, U is upper triangular
  - Condition: A square, all principal minors non-0
- PLU-decomposition A = PLU, P is a permutation matrix, L and U as above
  - Condition: A square
- QR-decomposition A=QR, Q has orthonormal columns, R is invertible upper triangular
  - Condition: A has linearly independent columns
- Eigendecomposition  $A = PDP^{-1}$ , D is diagonal, P is invertible
  - Condition: A has size  $n \times n$  and n linearly independent eigenvectors
- Spectral decomposition  $A = QDQ^T$ , D is diagonal, Q is orthogonal
  - Condition: A is symmetric (equivalently, has n orthonormal eigenvectors)

## A and $A^T A$

#### Theorem

For any  $m \times n$  matrix A, the following holds:

- A and A<sup>T</sup> A have the same null space.
- ② A and  $A^TA$  have the same row space.
- $\bullet$  A and  $A^TA$  have the same rank.

### Proof.

We proved item (1) in lecture 16 (about least squares).

- (1) implies (2), since row space is the orthogonal complement of the null space.
- (3) follows immediately from (2), since rank is the dimension of the row space.

# Eigenvalues of $A^T A$

#### **Theorem**

For any  $m \times n$  matrix A, the eigenvalues of  $A^TA$  are non-negative.

(Symmetric matrices whose eigenvalues are all non-negative are called *positive* semidefinite.)

### Proof.

Since  $A^TA$  is symmetric, the spectral theorem says that  $\mathbb{R}^n$  has an orthonormal basis  $\{\mathbf{v}_1,\ldots,\mathbf{v}_n\}$  consisting of eigenvectors of  $A^TA$ .

Let  $\lambda_1, \ldots, \lambda_n$  be the corresponding eigenvalues. Then, for any  $1 \leq i \leq n$ , we have

$$||A\mathbf{v}_{i}||^{2} = \langle A\mathbf{v}_{i}, A\mathbf{v}_{i} \rangle = (A\mathbf{v}_{i})^{T}A\mathbf{v}_{i} = \mathbf{v}_{i}^{T}A^{T}A\mathbf{v}_{i} = \mathbf{v}_{i}^{T}(\lambda_{i}\mathbf{v}_{i}) = \lambda_{i}(\mathbf{v}_{i}^{T}\mathbf{v}_{i}) = \lambda_{i}\langle\mathbf{v}_{i}, \mathbf{v}_{i}\rangle = \lambda_{i}||\mathbf{v}_{i}||^{2} = \lambda_{i}.$$

Thus, 
$$\lambda_i = ||A\mathbf{v}_i||^2 \ge 0$$
.



### Singular values

#### **Definition**

If A is an  $m \times n$  matrix and  $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$  are the eigenvalues of  $A^TA$  then the singular values of A are the numbers

$$\sigma_1 = \sqrt{\lambda_1}, \ \sigma_2 = \sqrt{\lambda_2}, \ \dots \ , \ \sigma_n = \sqrt{\lambda_n}.$$

Example: Let

$$A = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{array}\right).$$

Then

$$A^T A = \left(\begin{array}{ccc} 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}\right) \left(\begin{array}{ccc} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{array}\right) = \left(\begin{array}{ccc} 2 & 1 \\ 1 & 2 \end{array}\right).$$

The eigenvalues of  $A^TA$  are  $\lambda_1=3$  and  $\lambda_2=1$ , so the singular values of A are

$$\sigma_1 = \sqrt{\lambda_1} = \sqrt{3}$$
 and  $\sigma_2 = \sqrt{\lambda_2} = 1$ .

# Full singular value decomposition (SVD)

#### **Theorem**

If A is an  $m \times n$  matrix of rank k then A can be decomposed as  $A = U \Sigma V^T =$ 

$$(\mathbf{u}_{1}|\dots|\mathbf{u}_{k}|\dots|\mathbf{u}_{m}) \begin{pmatrix} \sigma_{1} & 0 & \dots & 0 \\ 0 & \sigma_{2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & O_{k\times(n-k)} \\ 0 & 0 & \dots & \sigma_{k} & \\ \hline & O_{(m-k)\times k} & O_{(m-k)\times(n-k)} \end{pmatrix} \begin{pmatrix} \mathbf{v}_{1}^{T} \\ \vdots \\ \mathbf{v}_{k}^{T} \\ \vdots \\ \mathbf{v}_{n}^{T} \end{pmatrix}$$

where U,  $\Sigma$ , and V have sizes  $m \times m$ ,  $m \times n$  and  $n \times n$ , respectively, and

- $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_k$  are the non-zero singular values of A.
- $V = (\mathbf{v}_1 | \dots | \mathbf{v}_k | \dots | \mathbf{v}_n)$  is orthogonal, it orthogonally diagonalises  $A^T A$ .
- **3**  $U = (\mathbf{u}_1 | \dots | \mathbf{u}_k | \dots | \mathbf{u}_m)$  is orthogonal, it orthogonally diagonalises  $AA^T$ .
- $\mathbf{u}_i = \frac{A\mathbf{v}_i}{||A\mathbf{v}_i||} = \frac{1}{\sigma_i}A\mathbf{v}_i$  for  $i = 1, \dots, k$ .

### Remarks

- The number k of non-0 singular values  $(\sigma_1, \ldots, \sigma_k)$  is equal to the rank of A.
- The columns of V are orthonormal eigenvectors of  $A^TA$ , with  $\mathbf{v}_1, \ldots, \mathbf{v}_k$  ordered so that  $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_k$ .
- Vectors  $\mathbf{u}_1, \dots, \mathbf{u}_k$  are called the left singular vectors of A.
  - They form an orthonormal basis for the column space of A.
- Vectors  $\mathbf{v}_1, \dots, \mathbf{v}_k$  are called the right singular vectors of A.
  - They form an orthonormal basis for the row space of A.
- Vectors  $\mathbf{v}_{k+1}, \dots, \mathbf{v}_n$  form an orthonormal basis for the null space of A.
- Vectors  $\mathbf{u}_{k+1}, \dots, \mathbf{u}_m$  form an orthonormal basis for the null space of  $A^T$ .
- To compute SVD, first orthogonally diagonalise  $A^TA$  this gives V and  $\Sigma$ . Then find  $\mathbf{u}_1, \ldots, \mathbf{u}_k$  as in item (3) in the theorem, and then extend this set to an orthonormal basis of  $\mathbb{R}^m$  to complete U.
- There are other algorithms to compute SVD (or its most important parts)

### Example

Let

$$A = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{array}\right).$$

We already found eigenvalues  $\lambda_1=3$  and  $\lambda_2=1$  of  $A^TA$ , and  $\sigma_1=\sqrt{3},\sigma_2=1$ .

The corresponding eigenvectors of  $A^TA$  are  $\mathbf{v}_1=(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2})$  and  $\mathbf{v}_2=(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2})$ .

Now compute  $\mathbf{u}_1 = \frac{1}{\sigma_1} A \mathbf{v}_1 = (\frac{\sqrt{6}}{3}, \frac{\sqrt{6}}{6}, \frac{\sqrt{6}}{6})$  and  $\mathbf{u}_2 = \frac{1}{\sigma_2} A \mathbf{v}_2 = (0, -\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2})$ .

To extend  $\{\mathbf{u}_1,\mathbf{u}_2\}$  to an orthonormal basis of  $\mathbb{R}^3$ , can find an orthonormal basis in  $W^\perp$  where  $W=span(\mathbf{u}_1,\mathbf{u}_2)$ . One such basis is  $\{\mathbf{u}_3=(-\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}})\}$ .

Thus, one singular value decomposition of A is

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} \sqrt{6}/3 & 0 & -1/\sqrt{3} \\ \sqrt{6}/6 & -\sqrt{2}/2 & 1/\sqrt{3} \\ \sqrt{6}/6 & \sqrt{2}/2 & 1/\sqrt{3} \end{pmatrix} \begin{pmatrix} \sqrt{3} & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \sqrt{2}/2 & \sqrt{2}/2 \\ \sqrt{2}/2 & -\sqrt{2}/2 \end{pmatrix}$$

# (Sketch of) the proof of the SVD theorem

Choose  $V = [\mathbf{v}_1 | \dots | \mathbf{v}_n]$  so that it orthogonally diagonalises  $A^T A$  - this means that  $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$  is an orthonormal set of eigenvectors of  $A^T A$ .

If needed, order that the vectors  $\mathbf{v}_1, \dots, \mathbf{v}_n$  so that the corresponding eigenvalues of  $A^TA$  satisfy  $\lambda_1 \geq \ldots \geq \lambda_n$ . We proved earlier (slide 4) that  $||A\mathbf{v}_i||^2 = \lambda_i$ .

Since 
$$rank(A^TA) = rank(A) = k$$
, we have  $\lambda_1 \ge ... \ge \lambda_k > \lambda_{k+1} = ... = \lambda_n = 0$ .

Let  $\sigma_i$ 's and  $\mathbf{u}_i$ 's  $(1 \le i \le k)$  be as in the theorem. Then

- we have  $\sigma_i \mathbf{u}_i = A\mathbf{v}_i$  and  $||\mathbf{u}_i|| = 1$   $(1 \le i \le k)$  by the choice of  $\mathbf{u}_i$ 's
- we have  $A\mathbf{v}_i = \mathbf{0}$   $(k+1 \le i \le n)$  because  $||A\mathbf{v}_i||^2 = \lambda_i = 0$  for  $i \ge k+1$ .

It follows that  $A = U \Sigma V^T$ , since this is equivalent to

$$U\Sigma = [\sigma_1 \mathbf{u}_1 | \dots | \sigma_k \mathbf{u}_k | \mathbf{0} | \dots | \mathbf{0}] = [A\mathbf{v}_1 | \dots | A\mathbf{v}_k | \dots | A\mathbf{v}_n] = AV.$$

Finally, show that  $\{\mathbf{u}_1,\ldots,\mathbf{u}_k\}$  is an orthonormal basis in the column space of A, and if we add to it any orthonormal basis  $\{\mathbf{u}_{k+1},\ldots,\mathbf{u}_m\}$  for the null space of  $A^T$  then  $U=(\mathbf{u}_1|\ldots|\mathbf{u}_k|\ldots|\mathbf{u}_m)$  orthogonally diagonalises  $AA^T$  (in the practical!).

### Reduced SVD

The matrix  $\Sigma$  in full SVD has three all-0 submatrices. We can get rid of them:

$$A = U_k \Sigma_k V_k^T = (\mathbf{u}_1 | \dots | \mathbf{u}_k) \begin{pmatrix} \sigma_1 & 0 & \dots & 0 \\ 0 & \sigma_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sigma_k \end{pmatrix} \begin{pmatrix} \mathbf{v}_1^T \\ \vdots \\ \mathbf{v}_k^T \end{pmatrix}.$$

This is called a reduced singular value decomposition of A.

Here  $U_k$ ,  $\Sigma_k$ , and  $V_k$  and have sizes  $m \times k$ ,  $k \times k$  and  $k \times n$ , respectively.

Note that the diagonal elements of  $\Sigma_k$  are all positive, so  $\Sigma_k$  is invertible.

Multiplying out matrices in the reduced SVD above, we get

$$A = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T + \sigma_2 \mathbf{u}_2 \mathbf{v}_2^T + \ldots + \sigma_k \mathbf{u}_k \mathbf{v}_k^T,$$

which is called a reduced singular value expansion of A.

### Example

From an earlier example, we have a singular value decomposition  $A = U\Sigma V^T$ 

$$\left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{array}\right) = \left(\begin{array}{ccc} \sqrt{6}/3 & 0 & -1/\sqrt{3} \\ \sqrt{6}/6 & -\sqrt{2}/2 & 1/\sqrt{3} \\ \sqrt{6}/6 & \sqrt{2}/2 & 1/\sqrt{3} \end{array}\right) \left(\begin{array}{ccc} \sqrt{3} & 0 \\ 0 & 1 \\ 0 & 0 \end{array}\right) \left(\begin{array}{ccc} \sqrt{2}/2 & \sqrt{2}/2 \\ \sqrt{2}/2 & -\sqrt{2}/2 \end{array}\right)$$

Its reduced form  $A = U_2 \Sigma_2 V_2^T$  is

$$\left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{array}\right) = \left(\begin{array}{cc} \sqrt{6}/3 & 0 \\ \sqrt{6}/6 & -\sqrt{2}/2 \\ \sqrt{6}/6 & \sqrt{2}/2 \end{array}\right) \left(\begin{array}{cc} \sqrt{3} & 0 \\ 0 & 1 \end{array}\right) \left(\begin{array}{cc} \sqrt{2}/2 & \sqrt{2}/2 \\ \sqrt{2}/2 & -\sqrt{2}/2 \end{array}\right)$$

The corresponding singular value expansion  $A = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T + \sigma_2 \mathbf{u}_2 \mathbf{v}_2^T$  is

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} = (\sqrt{3}) \begin{pmatrix} \sqrt{6}/3 \\ \sqrt{6}/6 \\ \sqrt{6}/6 \end{pmatrix} \begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \sqrt{6}/6 \end{pmatrix} + (1) \begin{pmatrix} 0 \\ -\sqrt{2}/2 \\ \sqrt{2}/2 \end{pmatrix} \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \sqrt{2}/2 \end{pmatrix}$$

(In different sources, SVD can mean any of these three forms).

## Application: Rank-r approximation

- For an  $m \times n$  matrix A of rank k, its SVD expansion  $A = \sum_{i=1}^k \sigma_i \mathbf{u}_i \mathbf{v}_i^T$  consists of k(1+m+n) numbers, which can be much smaller than mn.
- For  $r \leq k$ , the following matrix  $A_r$  is called the rank-r approximation of A

$$A_r = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T + \sigma_2 \mathbf{u}_2 \mathbf{v}_2^T + \ldots + \sigma_r \mathbf{u}_r \mathbf{v}_r^T.$$

If  $\sigma_1, \ldots, \sigma_r$  are much larger than  $\sigma_{r+1}, \ldots, \sigma_k$  then  $A_r$  can be thought of as the "core data" in A, while the rest (i.e.  $A - A_r$ ) is the "noise".

### Theorem (Eckart-Young theorem)

For any  $m \times n$  matrix A, its rank-r approximation  $A_r$  has rank r and we have

$$||A - B||_F \ge ||A - A_r||_F = \sqrt{\sigma_{r+1}^2 + \ldots + \sigma_k^2}$$

for all  $m \times n$  matrices B of rank at most r.

 $||...||_F$  is the Frobenius norm of a matrix: if  $X=(x_{ij})$  then  $||X||_F=\sqrt{\sum_{i,j}x_{ij}^2}$ 

## Low rank approximation in image compression



The images are created by using the svd class of Python's numpy.linalg module

# Stability: Singular values vs. eigenvalues

#### Consider two square matrices:

$$\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)$$

Eigenvalues: 
$$\lambda = 0, 0, 0, 0$$

Singular values: 
$$\sigma = 3, 2, 1$$

$$Rank = 3$$

$$\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0
\end{array}\right) \qquad \left(\begin{array}{ccccc}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3 \\
\frac{1}{60000} & 0 & 0 & 0
\end{array}\right)$$

Eigenvalues: 
$$\lambda=\frac{1}{10},-\frac{1}{10},\frac{i}{10},-\frac{i}{10}$$

Singular values: 
$$\sigma=3,2,1,\frac{1}{60000}$$

$$Rank = 4$$

- A small change in a matrix can significantly change eigenvalues.
- Singular values of any matrix are stable: they don't change more than we change the matrix. They can determine the "effective" rank of a matrix.

# What we learnt today

- Singular value decomposition, in three forms
- Application: Rank-r approximation

#### Next time:

• General linear transformations