

UNIVERSIDADE FEDERAL DO PARÁ GRADUAÇÃO EM ENGENHARIA MECÂNICA GERÊNCIA DE MANUTENÇÃO

Organização da Manutenção

Organização da Apresentação

- Introdução
- Objetivos
- Estrutura da organização da manutenção
- Projeto da organização da manutenção
- Gestão de materiais e peças de reposição
- Outros aspectos relevantes
- Referências

• Organizar é o processo de arranjar recursos (pessoas, materiais, tecnologia etc.) juntos para atingir as estratégias e objetivos da organização.

• Estrutura Organizacional (EO) = modo com que as várias partes de um sistema são arranjadas.

• Ex: Pensar na manutenção de uma casa.

• Essa estrutura envolve a interação de entradas e saídas.

Entradas

- Ferramentas
- Equipamentos
- Mão-de-obra
- Instrumentos de medição
- Peças/componentes
- Consumíveis

- Planejar
- Reparar
- Monitorar
- Ajustar ou trocar
- Examinar
- Providenciar recursos

Saídas

• Serviços da manutenção

• Sendo assim, a EO do DM é caracterizada por atribuições de tarefas, fluxo de trabalho, relatórios e canais de comunicação que unem o trabalho de diversos indivíduos e grupos.

• Essa divisão de trabalho é feita para facilitar a coordenação dos resultados de desempenho.

• No entanto, não existe uma estrutura que atenda às necessidades de todas as circunstâncias.

 As estruturas organizacionais devem ser vistas como entidades dinâmicas que evoluem continuamente para responder a mudanças em tecnologia, processos e ambiente.

• A organização da manutenção pode ser vista como uma das partes básicas do Gerenciamento de Manutenção (GM).

 A GM consiste em planejar, organizar, implementar e controlar atividades de manutenção.

A GM organiza, fornece recursos (pessoal, capital, ativos, material, hardware, etc.) e lidera para executar tarefas e atingir metas.

Organização da manutenção como função do processo de gestão

- A organização da manutenção e sua posição no sistema produtivo dependem:
 - Tipo de negócio (Ex: se é manufatura de bens ou prestação de serviço; se é de alta tecnologia; se requer uso intenso de mão de obra);
 - Objetivos (Ex: podem incluir maximização de lucro, aumento da participação de mercado e outros objetivos sociais);
 - Tipo de sistema produtivo (Em termos de manufatura: por projeto; jobbing; em lotes; em massa; contínua);
 - Cultura da organização;
 - Faixa de responsabilidade atribuída à manutenção.

• Para projetar a organização de manutenção, há vários aspectos e critérios importantes que devem ser considerados.

A partir deste ponto falaremos sobre eles.

- Os sistemas produtivos buscam um ou vários dos seguintes objetivos:
 - maximização do lucro;
 - nível de qualidade específico de serviço ou produtos;
 - minimização de custos;
 - ambiente seguro e limpo;
 - desenvolvimento de recursos humanos.

• Como esses objetivos são fortemente impactados pela manutenção, os objetivos da organização da manutenção precisam estar alinhados aos do sistema produtivo.

 Logo, a principal responsabilidade do departamento de manutenção é fornecer um serviço para permita o alcance dos objetivos do sistema produtivo (objetivo global).

- A organização da manutenção pode ter objetivos específicos para atender ao objetivo global do departamento, como:
 - Manter ativos e equipamentos em boas condições, bem configurados e seguros para desempenhar suas funções requeridas de forma eficiente e eficaz;
 - Executar todas as atividades de manutenção, incluindo preventiva, preditiva, corretiva, revisões, modificação de projeto e manutenção de emergência de forma eficiente e eficaz;
 - Conservar e controlar o uso de peças de reposição e materiais;
 - Comissionar novas plantas e expansões de plantas;
 - Economizar energia.

Estrutura da organização da manutenção

Estrutura

- As principais questões que devem ser abordadas ao formar a estrutura da organização de manutenção são:
 - O planejamento de capacidade;
 - Definição do tipo básico;
 - e manutenção interna vs terceirização.

Planejamento de Capacidade de Manutenção

 O ponto de partida para planejar a capacidade é determinar a demanda de serviços.

Fontes da carteira de serviços.

Planejamento de Capacidade de Manutenção

Planejamento de Capacidade de Manutenção

- O planejamento da capacidade de manutenção determina os recursos necessários para a manutenção de acordo com a carteira de serviços. Isso inclui a definição do:
 - Tamanho e especialidades da equipe (aspectos críticos devido à incerteza da carteira de serviços);
 - Previsões de demanda precisas podem ajudar, mas para longo prazo é mais crítico.
 - Equipamentos e instrumento de medição;
 - Ferramentas;
 - e espaço necessários para executar a carga de manutenção de forma eficiente.

Tipos básicos de estrutura

 A decisão de organizar a manutenção de forma centralizada, descentralizada ou híbrida depende em grande medida da filosofia da organização, da carteira de serviços, do tamanho do sistema produtivo e das especialidades na equipe.

 Na forma centralizada, todas as operações são dirigidas e planejadas por um único departamento, ou seja, essa mesma equipe com diferentes áreas atende a todos os setores.

• Em uma organização de manutenção descentralizada, os departamentos são atribuídos a unidades específicas.

Estrutura centralizada

 Todos os ofícios e funções de manutenção se reportam a um gerente de manutenção central.

Vantagens da centralização

Maior eficiência - Fornece mais flexibilidade e melhora a utilização de recursos,
 tais como especialidades altamente qualificados e equipamentos especiais;

• Permite treinamento mais eficaz no trabalho;

• E permite a compra de equipamentos modernos.

Desvantagens da centralização

- Menor utilização da equipe, pois mais tempo é necessário para ir e voltar dos trabalhos;
- A supervisão da equipe se torna mais difícil e, como tal, menos controle de manutenção é alcançado;
- Menos especialização em equipamento complexo é alcançada, pois diferentes pessoas trabalham no mesmo equipamento;
- Mais custos de transporte são incorridos devido ao afastamento de alguns dos trabalhos de manutenção.

Estrutura descentralizada

 Todos os ofícios e funções de manutenção se reportam às operações ou à manutenção de uma área específica.

Vantagens e limitações da descentralização

• A especialização em equipamentos é um ponto forte dessa forma de manutenção, pois cada profissional cuida de uma área restrita.

 No fim, o que é vantagem na forma centralizada passa a ser desvantagem na forma descentralizada e vice-versa.

Estrutura híbrida

- Em alguns casos, uma solução que combina centralização e descentralização é melhor (tipo de híbrido).
- As especialidades são alocadas em alguma proporção às unidades de produção ou área de manutenção de maior demanda e uma função de manutenção central dá suporte a toda a planta ou organização. Dessa forma, as vantagens de ambos os sistemas podem ser colhidas.
- Essa estrutura faz com que os funcionários de manutenção experimentem autoridade dupla, o que pode ser frustrante e confuso, por isso pode ser demandado tempo e reuniões frequentes para resolução de conflitos.

Manutenção interna vs terceirização

 Neste nível, a gerência considera as fontes para construir a capacidade de manutenção (HH da carteira de serviços).

 As principais fontes ou opções disponíveis são internas por contratação direta, terceirização ou uma combinação de interna e terceirização.

 Os critérios para selecionar fontes para construir e manter a capacidade de manutenção incluem considerações estratégicas, fatores tecnológicos e econômicos.

Manutenção interna vs terceirização

Exemplo de condição híbrida:

Manutenção interna vs terceirização

- Os seguintes critérios podem ser empregados para selecionar as fontes da capacidade de manutenção:
 - Disponibilidade e confiabilidade dos serviços em termos de longo prazo;
 - Capacidade dos serviços de atingir os objetivos do sistema produtivo;
 - Custos de curto e longo prazo;
 - O sigilo organizacional para evitar vazamentos da informações;
 - Impacto de longo prazo na experiência do pessoal de manutenção;
 - Acordo especial do fabricante ou órgãos reguladores que definem certas especificações para manutenção e emissões ambientais.

Tarefas de manutenção normalmente terceirizadas

1. Trabalho para o qual a habilidade de especialistas é necessária rotineiramente e está prontamente disponível no mercado de forma competitiva. Ex:

2. Quando é mais barato do que recrutar sua própria equipe e acessível em um curto espaço de tempo.

Projeto da organização da manutenção

Projeto

 A organização da manutenção está sujeita a mudanças frequentes devido à incerteza (flutuações de demanda) e ao desejo por excelência na prestação de seus serviços.

• É necessário um método objetivo que atenda aos fatores que influenciam a eficácia e eficiência da organização da manutenção.

• O desenvolvimento de competências e a melhoria contínua devem ser as considerações motrizes por trás do projeto e do redesenho da organização da manutenção.

Motivos para Mudança Organizacional

- 1. Insatisfação com o desempenho da manutenção;
- 2. Desejo por maior responsabilidade;
- 3. Desejo de minimizar os custos de fabricação. Ex: se possível, os recursos de manutenção podem ser movidos para se reportar a um supervisor de produção, eliminando assim a necessidade do supervisor de manutenção;
- 4. Quando a manutenção requer tempo excessivo para ser feito;
- 5. Quando os custos de manutenção parecem aumentar notavelmente. Ex: mais e mais contratados são trazidos para trabalhos maiores que costumavam ser feitos internamente.

Critérios para avaliar a eficácia organizacional

- É importante estabelecer um conjunto de critérios para identificar uma organização eficaz:
 - 1. Funções e responsabilidades são claramente definidas e atribuídas;
 - 2. A organização coloca a manutenção no lugar certo no sistema produtivo;
 - 3. O fluxo de informações é de cima para baixo e de baixo para cima;
 - 4. O alcance do controle é eficaz e apoiado por pessoal bem treinado;
 - 5. O trabalho de manutenção é efetivamente controlado;
 - 6. A melhoria contínua é construída na estrutura;
 - 7. Os custos de manutenção são minimizados;
 - 8. Motivação e cultura organizacional.

• Em organizações de grande ou médio porte, esta gestão pode ser independente da organização de manutenção. No entanto, em muitas circunstâncias, ela faz parte da manutenção.

 A responsabilidade desta gestão é garantir a disponibilidade de material e peças de reposição na qualidade e quantidade certas, no momento certo e com o custo mínimo.

• Estoques amortecedores de peças de reposição são usados para a proteção contra atrasos de fornecedores, quebras de máquinas e interrupção na produção.

• Contudo, um dimensionamento incorreto pode causar grande prejuízos porque os estoques não agregam valor aos produtos do sistema produtivo.

- Os deveres da gestão de materiais e peças de reposição incluem:
 - 1. Desenvolver em coordenação com a manutenção políticas de estoque eficazes para minimizar os custos de pedidos, retenção e escassez;
 - 2. Coordenar efetivamente com os fornecedores para maximizar os benefícios da organização;
 - 3. Manter boa entrada, recebimento e guarda segura de todos os suprimentos;
 - 4. Manter e atualizar registros;
 - 5. Manter os estoques organizados e limpos.

 A palavra inglesa Tag significa etiqueta de identificação, e o termo Tagueamento, nas indústrias de transformação, representa a identificação da localização das áreas operacionais e seus equipamentos.

 Segundo Viana [2], o tagueamento é a base da organização da manutenção, pois ele será o mapeamento da unidade fabril, orientando a localização de processos, e também de equipamentos para receber manutenção.

 Por meio de um tagueamento estruturado é possível planejar e programar a manutenção de forma mais rápida e racional.

 Além disso, há a possibilidade de extrair informações estratificadas por Tag, tais como indicadores associados a quantidade de falhas, disponibilidade, custos, etc.

- Norma Internacional: ISA 5.1 (International Society for Measurement and Control)
- NBR 8190:

• Sugestão de Viana [1] será apresentada a partir daqui.

- Uma empresa de médio ou grande porte poderá optar por cinco níveis de Tag para a estrutura de seu tagueamento, sendo reservados os níveis:
 - para as Gerências;
 - II. às áreas;
 - III. aos sistemas;
 - IV. aos aglutinadores,
 - V. e à posição dos equipamentos/conjuntos.

Fluxograma da cervejaria X.

Tagueamento - Nível I

• No contexto da Cervejaria X, temos a seguinte distribuição no Nível I:

GC → Gerência de Cerveja

GU → Gerência de Utilidades

GE → Gerência de Envase

Cada gerência terá desmembradas suas áreas, onde é necessário seguir a lógica de cada processo. Para a identificação correta das áreas, é preciso que verifiquemos detalhadamente o esquema de funcionamento da Empresa.

Tagueamento - Nível II

- As áreas (Nível II) e os Sistemas (Nível III) devem possuir Unidades de Propriedade
 (UP), que consistem em códigos de dois dígitos.
- O Tag Nível II será formado por três letras indicando a área, e três dígitos, o primeiro da esquerda para a direita, indicando a fase do projeto.
- Como a cervejaria X não expandiu suas instalações, este dígito será 0. Os dois dígitos seguintes serão a Unidade de Propriedade.

Tagueamento - Nível II

O desmembramento das áreas será o seguinte, com suas respectivas UP's e Tag's:

		GU – Gerência de Utilidades		
GC - Gerência de Cerveja		UP	Tag	Área
UP Tag	Área	04	CAL-004	Caldeiras
01 BRS-001	Brassagem	05	CPR-005	Compressores de ar
02 FRM-002	Fermentação e maturação	06	CPA-006	Compressores de amônia
03 FLT-003	Filtração	07	ETA-007	Estação de tratamento de água
		08	ETE-008	Estação de tratamento de efluentes

GE -	Gerên	cia	de	Envase
GE -	Geren	luia	uc	LIIVASC

UP	Tag	Área
09	LIE-009	Linha de envase 1
10	LIE-010	Linha de envase 2

Tagueamento - Nível III

• Passando aos sistemas (Nível III), tomaremos a área LIE-009 da Gerência de envase como exemplo, porque é no envase que está a maior diversidade de equipamentos.

A LIE-009 é dividida em vários sistemas.

Tagueamento - Nível III

A disposição será da seguinte forma:

Tag	Sistema
DPL-009	Despaletizadora
DCX-009	Desencaixotadora
LVA-009	Lavadora
IGV-009	Inspetor de garrafas vazias
ECH-009	Enchedora/arrolhador/inspetor de garrafas cheias
PST-009	Pasteurizador
RTL-009	Rotuladora/encaixotadora
PAL-009	Paletizadora

Tagueamento - Nível IV

• Com os sistemas definidos, deve-se determinar os aglutinadores de cada um deles (Nível IV).

 O aglutinador será o Tag responsável por reunir vários equipamentos/conjuntos no mesmo endereço.

Tagueamento - Nível IV

Tomando o sistema ECH-009 como exemplo, definiremos os seus aglutinadores, e os seus tags serão o do sistema, acrescido de um sequencial de três números.

Tag	Aglutinador
ECH-009-001	Enchedora
ECH-009-002	Rinser
ECH-009-003	Arrolhador
ECH-009-004	Inspetor de garrafas cheias
ECH-009-005	Transporte de garrafas vazias inspecionadas
ECH-009-006	Transporte de garrafas cheias inspecionadas
ECH-009-007	Transporte de retorno para a lavadora

Tagueamento - Nível V

 Para fechar o tagueamento, basta agora determinar as posições dos equipamentos/conjuntos dentro do aglutinador (Nível V).

A função deste tag será a do endereço básico.

Tagueamento - Nível V

Para exemplificar tomaremos o ECH-009-001 e discriminaremos suas posições, que terão seu tag igual ao aglutinador, acrescido de um sequencial de três números.

Tag	Posição
ECH-009-001-001	Estrutura da enchedora
ECH-009-001-002	Motor principal da enchedora
ECH-009-001-003	Redutor principal da enchedora
ECH-009-001-004	Bomba de vácuo
ECH-009-001-005	Válvulas de enchimento
ECH-009-001-006	Macacos de elevação
ECH-009-001-007	HDE
ECH-009-001-008	Painel de controle
ECH-009-001-009	Instrumentação

GE - Gerência de Envase UP Tag Área 09 LIE-009 Linha de envase 1 10 LIE-010 Linha de envase 2

Tag	Aglutinador
ECH-009-001	Enchedora
ECH-009-002	Rinser
ECH-009-003	Arrolhador
ECH-009-004	Inspetor de garrafas cheias
ECH-009-005	Transporte de garrafas vazias inspecionadas
ECH-009-006	Transporte de garrafas cheias inspecionadas
ECH-009-007	Transporte de retorno para a lavadora

	Tag	Sistema
	DPL-009	Despaletizadora
	DCX-009	Desencaixotadora
7	LVA-009	Lavadora
	IGV-009	Inspetor de garrafas vazias
	ECH-009	Enchedora/arrolhador/inspetor de garrafas cheias
	PST-009	Pasteurizador
	RTL-009	Rotuladora/encaixotadora
	PAL-009	Paletizadora

Tag	Posição
ECH-009-001-001	Estrutura da enchedora
ECH-009-001-002	Motor principal da enchedora
ECH-009-001-003	Redutor principal da enchedora
ECH-009-001-004	Bomba de vácuo
ECH-009-001-005	Válvulas de enchimento
ECH-009-001-006	Macacos de elevação
ECH-009-001-007	HDE
ECH-009-001-008	Painel de controle
ECH-009-001-009	Instrumentação

Fazendo uma analogia, podemos dizer que o Tagueamento é o endereçamento dos

itens:

- Nível I (Gerências) = UF;
- Nível II (Áreas) = Cidade;
- Nível III (Sistemas) = Bairro;
- Nível IV (Aglutinadores) = Rua;
- Nível V (Posições) = Número.

• Ao chegar ao nível V, há a necessidade de codificar também os equipamentos do conjunto.

• Essa codificação visa individualizar o equipamento para receber manutenção, bem como para o acompanhamento de sua vida útil, o seu histórico de quebras, intervenções, custos, etc.

Tal codificação é anexada ao equipamento, usando placas de identificação resistentes o suficiente para acompanhar o mesmo onde for utilizado, com objetivo de garantir sua rastreabilidade.

 A sugestão dada por Viana [1] é a de admitir um padrão composto de três letras, um hífen e quatro algarismos, da seguinte forma:

XXX-9999

- Os três caracteres iniciais deverão conter a informação que designe o equipamento, como por exemplo: MOT Motor, RED Redutor e GAV Gaveta Elétrica.
- Os quatro últimos números correspondem a sequência, dentro da designação de cada equipamento.

 Logo, podemos ter 9.999 posições para uma família de subconjunto, e podemos exemplificar o conceito da seguinte forma:

Código	Descrição do Equipamento
MOT-0001	Motor Elétrico de 25 CV
MOT-0002	Motor Diesel
GAV-0001	Gaveta Elétrica
GAV-0002	Gaveta Elétrica
RED-0001	Redutor SEW
RED-0002	Redutor SEW
VEC-0001	Válvula de Enchimento
VEC-0002	Válvula de Enchimento
VAT-0001	Válvula Termostática

 O equipamento será posicionado sempre nos tags de último nível, servindo como um "compartimento da casa" do equipamento.

Cada um destes tags poderá ter capacidades distintas para recebê-los.

 Também é recomendável termos um tag Nível V, para a oficina, pois poderão ser movimentados vários equipamentos para este endereço, em decorrência da realização de uma recuperação mais demorada.

Outros aspectos relevantes

Estabelecimento de Responsabilidades e Relatórios

• O controle administrativo geral geralmente fica com o departamento de manutenção, com seu chefe se reportando à alta gerência.

• Os relacionamentos e responsabilidades de cada divisão/seção de manutenção devem ser claramente especificados junto com os canais de relatórios.

Cada cargo deve ter uma descrição das qualificações e a experiências necessárias para o trabalho, além dos canais de relatórios para o trabalho.

Liderança e Supervisão

• A organização, os procedimentos e as práticas instituídas para regular as atividades de manutenção e as demandas em um empreendimento industrial não são, por si só, garantia de resultados satisfatórios.

Da boa liderança decorre o trabalho em equipe, que é a essência do sucesso em qualquer empreendimento. Talento e habilidade devem ser reconhecidos e fomentados, o bom trabalho deve ser notado e elogiado, e o descuido deve ser abordado e corrigido.

Incentivos

 O planejamento antecipado do trabalho de manutenção pode, às vezes, levar a um acordo de pagamento de incentivo, com base na conclusão de tarefas conhecidas em um determinado período, mas deve-se tomar cuidado para garantir que os padrões de trabalho exigidos não sejam comprometidos.

• Em alguns casos, desde que ocorra a continuidade da produção e o alcance de metas, os incentivos de manutenção podem ser incluídos em bônus tanto para o pessoal de produção quanto para o de manutenção.

Educação e treinamento

 A gerência não deve apenas selecionar e designar o pessoal para serviços, mas também promover o aprendizado e treinamento posteriores, de modo a aumentar a proficiência individual e fornecer recrutas para os níveis de supervisão e sênior.

 Para funcionários seniores, deve-se atentar a cursos de atualização e incentivar o intercâmbio de ideias e discussões.

Para jovens mantenedores e operadores, recomenda-se o treinamento formal (sempre que necessário), reforçado por instruções de supervisores experientes.

Educação e treinamento

- Diretrizes para desenvolver a eficácia do programa de treinamento:
 - Medir o desempenho atual do pessoal;

Avaliar a análise da necessidade de treinamento;

Projetar o programa de treinamento;

Implementar o programa;

e avaliar a eficácia do programa.

Referências

- [1] Haroun, A., Duffuaa, S. (2009). Maintenance Organization. In: Ben-Daya, M., Duffuaa, S., Raouf, A., Knezevic, J., Ait-Kadi, D. (eds) Handbook of Maintenance Management and Engineering. Springer, London. https://doi.org/10.1007/978-1-84882-472-0_1
- [2] Viana, HRG. Planejamento e controle de Manutenção. 2002.