

Outil de simulation pseudo temps-réel de micro-réseau énergétiques DC

Maxime Félix

Professeur : Mauro Carpita Mandant : Daniel Siemaszko

Tables des matières

- Descriptif
- Logiciel
- Modélisation
- Programmation
- Interface
- Démonstration
- Questions

Source décentralisée Descriptif TB Livrable Réseau DC Simulation pseudo temps-réel Interface utilisateur

Start-up canadienne

• Électronique de puissance

Rapide et précis

Python

Logiciel Simba - Python

- Tutoriel
- Ouvrir un projet
- Afficher simulation

Getting Started with Simba

In this tutorial, we walk you through setting up Simba and give an overview of the basic features.

Python API

Modélisation Source

- **Exemple Step-Down**
- Équation causalité dérivée

$$U_L = L \cdot \frac{dI_L}{dt}$$

$$I_c = C \cdot \frac{dU_c}{dt}$$

Modélisation Source

- Schéma simplifié
- Équation causalité intégrale

Modélisation Source

Représentation correct

Commutation

Source Nombre de convertisseurs

Circuit Nombre de convertisseurs Fréquence de commutation

3 convertisseurs a 100 kHz

Modélisation Bloc réseau

- Exemple
- Batterie sur réseau

Modélisation Bloc - DC Bus

- Fonctionnement
- Source tension/courant

Logiciel

Modélisation Essai 1

- Idée du réseau
- Réalisation scénario

Modélisation Essai 1

- Scénario d'une journée
- Réalisation scénario

Modélisation Essai 1 -> Problématique

Stabilité

Réglage actif

Modélisation Essai 2 -> Résultats ISOP

Stabilité

Modélisation Essai 2 -> Scénario

- Batterie
- Gestion intelligente


```
// Verification etat de la batterie
if (SOC_batt < (hi_limit)){</pre>
    SOC_plein = 0;
else {
    SOC_plein = 1;
// calcul courant batterie
if (((nuit || PV)&&(not SOC_plein))==1) { // charge
    data.current_batt = -val_batt;
else if (((not nuit) && (not PV) && (LOAD))==1) { // décharge
    data.current_batt = val_batt;
else { // état neutre
    data.current_batt = 0;
outputs[0] = data.current_batt;
```

Modélisation Simulations -> Python

- Fonctionnalité
- Aperçu des simulations

Descriptif

Programmation Animation

- Nombre de points
- Affichage bout a bout

Programmation Dynamique

- Axe glissant
- Présentation

Programmation Problème Lenteur

Optimisation

Programmation Problème identifié

- Mémoire 个
- Consommation

^			55%		
Nom		Statut	Mémoire	Consommation d'énergie	Tendance de c
Applications (9)					
> Explorateur Windows			49.0 Mo	Très faible	Très faible
> MG Gestionnaire des tâches			36.1 Mo	Très faible	Très faible
> © Google Chrome (8)			299.2 Mo	Modéré	Très faible
>			97.9 Mo	Très faible	Très faible
> Microsoft Word (32 bits)			17.3 Mo	Très faible	Très faible
> Paint		4.2 Mo	Très faible	Très faible	
> 🖺 PyCharm			1 228.9 Mo	Très faible	Très faible
> 🌅 Python (2)			530.6 Mo	Très élevé	Faible
> 😭 SIMBA	SIMBA		21.2 Mo	Très faible	Très faible

Programmation Problème 1

- Simulation en boucle
- Anciennes valeurs

Initial End Time 0.01696149999999812 status:3
Final End Time 0.02723008996047263 status:3
Final End Time 0.04228008996048144 status:3

Programmation Solution 1

- Changement d'API
- Suppression buffer
- Aide de Simba

Programmation Problème 2

- Ralentissement tardif
- Affichage hors du graphe

Programmation Solution 2

Actualisation des données

Tableau glissant

Simulation	Suppression	Act	Ajout		
1	-	t1	t2	t3	t4
2	t1	t2	t3	t4 🖊	t5
3	t2	t3	t4	t5 🖊	t6

Programmation Regroupement

- **Gestion Batterie**
- Code c logique

```
// Verification etat de la batterie
if (SOC_batt < (hi_limit)){</pre>
    SOC_plein = 0;
else {
    SOC plein = 1;
// calcul courant batterie
if (((nuit || PV)&&(not SOC_plein))==1) { // charge
    data.current_batt = -val_batt;
else if (((not nuit) && (not PV) && (LOAD))==1) { // décharge
    data.current batt = val batt;
else { // état neutre
    data.current batt = 0;
outputs[0] = data.current_batt;
```


Descriptif

Programmation Regroupement

- Batterie
- Code c en logique

```
if (data.SOC >= hi_limit && current_sp >= 0) {
    data.SOC = hi_limit;
    data.current_batt = 0;
else if (data.SOC <= low_limit && current_sp <= 0) {</pre>
    data.SOC = low limit;
    data.current_batt = 0;
else {
    data.SOC = data.SOC + (current_sp*q_batt*time_step);
    data.current_batt = current_sp;
outputs[0] = data.current batt;
outputs[1] = data.SOC;
```


Interface Début

idée

Avant réalisation

27/32

Interface Essai 1

Fonctionnel

Amélioration

Interface Essai 1

- Didactique
- Affichage flexible

Interface Fini

- Représentation d'une journée
- État de charge

30/32

Démonstration

Questions?