VECTOR >

Functional Safety with ISO 26262

Dr. Christof Ebert, 18. October 2016

Vector Consulting Services

- ... supports clients worldwide in improving their product development and IT and with interim management
- ... with clients such as Accenture, Audi, BMW, Bosch, Daimler, Ford, Huawei, Hyundai, IBM, Lufthansa, Munich RE, Porsche, Siemens, Thales, Toyota and ZF
- ... offers with the Vector Group a portfolio of tools, software components and services
- ... is as Vector Group globally present with 1500 employees and well over 300 Mio. € sales
- www.vector.com/consulting

Automotive

Aerospace

IT & Finance

Medical

Industry

Railway

Agenda

Welcome

Challenges and Concepts Vector Safety Experiences

Conclusions and Outlook

Vector Client Survey on Industry Trends

Vector Client Survey 2016. Details: www.vector.com/trends. Sum > 100% because 3 answers per question were allowed. Results from all industries overlap and are thus compiled in this report. Validity big with >4% response rate of 1700 recipients.

Safety and security evolved since 2015 to a major challenge.

Functional Safety Challenge: Complexity and Competences

- ▶ Increasing number and complexity of functions
- ▶ More and more distributed development
- ▶ Rising safety, security and network requirements
- ▶ Quantity: Boost in number of systems

Gearbox control

Traction control

- ► Maturity: Inefficient processes and tools
- ▶ Quality: Lack of experts

Adaptive cruise control Lancessistant 6 b-/start automatic Hybrid powertrain Emergency break assist Electronic stability atrol Head-up display Active body control Electronic brake control Emergency call Tele dien Chics omPie Software Updates Electric power steering AUTOSAR FLEXRAY Hybrid powertrain Traction control Electronic stability control

Electric powertrain

Active body control ...

Car2Car, Car2X Cloud computing 5G mobile communication Fuel-cell technology Autonomous driving Brake-by-wire Steer-by-wire Security & safety Laser-sourced lighting 3D displays Gesture HMI Ethernet/IP backbone Electric powertrain Adaptive cruise control Lane assistant Stop-/start automatic Emergency break assist Head-up display Electronic brake control Tele diagnostics AUTOSAR ...

injection Anti-lock brake

1975

Electronic fuel

1985

CAN

injection

1995

2005

2015

2025

CAN bus ...

Functional Safety - Broad Exposure

ESP

Unintended, single-sided brake effect on straight lane

Electronic Park Brake

Unintended activation in motion

Collision Avoidance

3

Airbag

Delayed deployment after crash detection

Exposure of practically all E/E functions → Risk of liability

Functional Safety – Major Risk and Cost Driver

Problems With switch: Brake lights either don't light up or light up continuously Korean OEM

Problems with acceleration: Car unintentionally accelerates thus causing personal damage Japanese OEM

Problem with automatic gear control: Gear is unintentionally switched to neutral American OFM

Problems with airbag control: Airbags and seat belt pre-tensioner are not or too late activated German OEM

Source: autoservicepraxis.de

Increasing amount of incidents -> Risk of global visibility

Functional Safety – Wide Impact

Wide impact on entire life-cycle → Risk of gaps and inconsistencies

Functional Safety – Many Methods

Many methods and techniques → Risk of uninformed usage

Functional Safety - Complex Standard

10 Parts

43 Chapters

100 work products

180 engineering methods

500 pages

600 requirements

Source: ISO 26262

Complex standard → Risk of overheads and bureaucracy

VECTOR

Liability

Manufacturer's Liability

The manufacturer has to organize the company in a way that design, production and documentation faults are eliminated or detected by checks.

Reversal of Evidence

The manufacturer has to show that he is not responsible for a fault.

Product Liability

A product, that is put in service, must provide the level of safety which can be expected by general public.

Manufacturer's liability is excluded, if a failure can not be detected using current state of science and technology at the time the manufacturer put the product into market.

Legal Liability: State of the Practice

Functional Safety

Process

- Safety Management
- Project Management
- Risk Management
- Quality Assurance
- Requirements-Mgmt.
- Configuration-Mgmt.
- Test Management
- ...

Technology

- Measures against random HW failures
- Measures against systematic failures (System, HW, SW)
- Development of safety concepts
- Implementation of safety mechanisms
- ..

Methods

- FMEA, FTA
- FMEDA
- Analysis of dependent failures
- ASIL decomposition
- ..

Process Maturity

Application of methodological Frameworks Automotive SPICE® or CMMI

Product Development Process

ISO/TS 16949

ISO 9001

A Structured Approach

Source: ISO 26262-1:2011

Basic Concept of ISO 26262: Risk Classification by "ASIL"

Automotive Safety Integrity Level

(= required integrity of a function)

Severity Exposure

Controllability

necessary Integrity

Source: IEC 61508:2010

Development – Example Classification Brake-by-wire-System

Failure Mode	Vehicle State	Road Condition	Environment Condition	E	С	S	ASIL
No Braking Effect	> 100 km/h	Wet	Highway	E3	C3	S3	С
Unexpected Braking Effect	> 50 km/h < 100 km/h	Dry	Main Road	E4	C2	S3	С
Asymmetric Braking Effect	Parking < 10 km/h	Dry	Side Road	E4	C2	S1	А

Exposure:

► E3: 1-10% of average operating time

► E4: >10% of average operation time

Controllability (Average Driver):

C2: Hazardous situation is usually controllable

C3: Hazardous situation is usually not controllable

Severity:

S1: Light to moderate injuries

► S3: Critical injuries

Approaches to Risk Reduction

Goals: Avoid failures - Make unavoidable failures safe

Fail-safe vs. Fail-operational

- Bring the system into the failsafe state to avoid any hazard.
- Two approaches:
 - Fail-safe by design (default)
 - Failure mitigation and transition to fail-safe state
- Sufficient for most "classic" automotive systems, often with mechanical back-up

- System remains operational
- E.g. degraded but safe operation mode.
- Availability of elements assuring the required safety
- Diverse / redundant architecture
- Required for continuous and automated safe operation

The safety related system has always to be in one safe state!

Agenda

Welcome

Challenges and Concepts

Vector Safety Experiences

Conclusions and Outlook

Vector Experiences – Support Throughout the Life-Cycle

Consistently plan and systematically maintain safety artefacts

Vector Experiences – Including the Customer and Supplier

- Often insufficient information shared between OEM and Tier-1 supplier and Tier-1 and Tier-2 suppliers concerning safety-critical functions and related hazards
- Risk that system and component design is not optimized to balance safety and costs
- Our experience shows that companies which tried more intense suppliercollaboration, continue to do so for all critical interfaces

Perform joint workshops on requirements and design

Vector Experiences – Development Interface Agreement (DIA)

Use the DIA for comprehensive definition of the customer/supplier interfaces. Extend the usage to not safety related artefacts

Vector Experiences – Performing Audits and Assessments

Safety Audit

- Purpose: Evaluate implementation of the processes required for functional safety
- Perform periodic audits in projects
- Combine with SPICE assessments
- Perform short supplier audits before nomination, and comprehensive audits in B sample stage

Safety Assessment

- Purpose: Evaluate achieved functional safety within the defined item for product and process
- Continuously compile the safety case as basis for the assessment
- ▶ If the OEM requests assessment by a third party, involve the third party early

Demand audit and assessment results from suppliers, consider the independency requirements for auditors and assessors

Vector Experiences – Efficient Traceability and Consistency

	Technical Safety Requirements					
Ţ	Technical Safety Requirements Technical Safety Requirements					
_ '	Т	TSR 1.1	FSR 1	ASIL B	HW/SW	Tech. Safety Req. 1.1
		TSR 1.2	FSR 1	ASIL B	HW/SW	Tech. Safety Req. 1.2

Tests	Testspecification			
TC 1	Test description			
TC 2	Test description			

Vector Experiences – Systematic Analysis and Design

Support by Vector Consulting Services and PREEvision tool:

- Single source for item definition, based on features, requirements, operating scenarios, dependencies
- Model-based design of functional and technical safety concept, including ASIL decomposition and requirement based tests

Vector Experiences – Master Necessary Analysis Methods

Level	Safety Analyses	Dependent Failure Analyses		
Functional Safety Concept	Definition of FSR "can be supported" safety analyses	Redundancy and independence "can be checked" by DFA		
Technical Safety Concept	 Avoidance of systematic failures External sources Internal sources Validation of the technical safety concepts (TSC) 	 Independence Common cause failures and cascading failures Safety function from safety mechanism ASIL-decomposition 		
Hardware	 Qualitative analyses (from part 9): Verification of hardware design Effectiveness of safety mechanisms (B), C, D: Quantitative analysis: Random hardware failures 	 Allocation and design decisions Freedom from interference Cascading failures only Partitioning 		
Software Architecture Effectiveness Error detection Error handling				
General Requirement	Complete safety itemConfirmation reviewsVerification reviews	Focused analysesNo requirements on reviews		

Vector Experiences – Thorough Hazard & Risk Analysis

Support by Vector Consulting Services and PREEvision tool:

- Predefined operation scenarios and operating modes
- Automatic ASIL calculation
- Traceability of safety goals to requirements and design artefacts

Vector Experiences – Consistent Support for FMEA

Support by Vector Consulting Services and PREEvision tool:

- System requirements and design data with full traceability, thus avoiding to replicate system structure in a separate FMEA tool, while achieving significant cost savings
- Automatic consistency checks to ensure coverage

Vector Experiences – Security Directly Impacts Safety

Functional Safety (IEC 61508, ISO 26262)

- Hazard and risk analysis
- Functions and risk mitigation
- Safety engineering

Security only implicitly addressed

- + Security (ISO 15408, J3061)
- ► Threat and risk analysis
- Abuse, misuse, confuse cases
- Security engineering

Security and Safety are interacting and demand holistic systems engineering

For fast start security engineering should be connected to safety framework

Safety and Security must be addressed in parallel

Innovative functionality...

- Distributed systems
- Complex feature interaction
- High data volume
- External interfaces (V2X; vehicle as IP node)

... Drives new challenges

- Fail-operational robust behaviors
- High-performance micro-controllers
- Software development for critical systems
- Safety functions must be secured against attacks
- Cost-effective evolution and support over the entire life-cycle

Apply holistic systems engineering for safety and security

Agenda

Welcome
Challenges and Concepts
Vector Safety Experiences

Conclusions and Outlook

Success Factor – Change Towards Safety Culture

Classic Development Culture	Safety Culture
Insufficient budget and time for relevant safety measures	Necessary measures are planned according to safety analysis – and reliably implemented
Shadow organization of safety experts and staff teams	Safety expertise is embedded into the regular line and project organization
Risk analysis is done superficially for documentation purposes and not maintained	Risk analysis and FMEA are developed at the beginning of system development and are continuously updated
System architecture is not considered in safety goals and requirements	System architecture explicitly covers the safety goals and requirements
Changes are accepted at any time for practically all system parts	Changes are analyzed with respect to their effects on functional safety using a strict change management
Safety audits are conducted only sporadically	Safety audits are established as a normal and standardized behavior

Implementing functional safety implies a profound culture change

ISO26262 Experience

Increasing functional safety capabilities

- Majority of OEM's include ISO26262 compliance in their contracts
- Independent audits and assessments are performed
- Methods for qualitative and quantitative analysis are available
- ► ASIL D capable MCU's are available

▶ But...

- Many suppliers do not have full ISO26262 compliance because they develop based on legacy systems
- Suppliers and OEMs need to further improve field observation and abilities to efficiently maintain a safety case
- New suppliers, e.g. for electric powertrain or ADAS, struggle with ramping up a safety process
- Security risks increasingly hamper functional safety
- Functional safety processes in many cases create overheads
 - which could be done at much lower cost

Functional safety can be efficiently achieved on the basis of mature development processes together with a competent partner.

ISO26262 Will Further Evolve

Committee Draft (CD) on 17. Dec. 2015

Release ISO26262 ed. 2

Evolution – Some Topics

- 1. Extension of scope by 50% to 729 pages
- 2. Application to commercial vehicles and motor cycles
- 3. Fully new section on semiconductors
- 4. Improved Safety Analysis Methods for software
- 5. Support for safety case for ADAS, fail-operational, diversified redundancy
- 6. "Objective" Assessment and Audit process improvement

Vector with its partners contributes to the evolution of ISO 26262

Vector – Complete Safety Solution Portfolio

Introduction of Safety Processes (Examples)

- ▶ Introducing ISO 26262, starting with analysis of the current state, including technical and process measures and building up safety culture
- Training und coaching for functional safety and safety culture
- ▶ Implementing consistent tool support, such as PREEvision

Safety Management (Examples)

- Operationally supporting with interim safety managers
- Performing safety audits and supplier safety audits

Safety Engineering (Examples)

- Providing software components and platforms, such as MICROSAR Safe
- Developing and reviewing safety concepts and safety analyses
- Combined safety and cyber security concepts

Vector Safety Portfolio

Safety Solutions

- Consulting Vector Safety Check, Interim Safety Manager, ...
- ► Tools
 PLM with PREEvision, Test, Diagnosis, ...
- ► Software AUTOSAR up to ASIL-D...
- www.vector.com/safety

Trainings and media

- ▶ Training "Functional Safety with ISO 26262" Stuttgart, continuously <u>www.vector.com/training-safety</u>
- ▶ In-house trainings tailored to your needs available worldwide
- ▶ Free white papers... <u>www.vector.com/media-safety</u>

Thank you for your attention.

Contact us for further support on functional safety, cyber security, and product development.

Passion. Partner. Value.

Vector Consulting Services

Phone +49 711 80670-0 Fax +49 711 80670-444 www.vector.com/consulting consulting-info@vector.com