

Theoretical aspects of Q-learning

Introduction

The environment

Value functions an the goal of RL

Value iterat

O-iteratio

Modellependent

Another subsection

Theoretical aspects of Q-learning

Masters thesis defense

Jacob Harder
Department of Mathematical Sciences
University of Copenhagen

26 June, 2020

Overview

Theoretical aspects of Q-learning

Introductio

Value functions and

Value ite

O functio

Q-iteration

dependent algorithms

Another subsection

Introduction

The environment

Value functions and the goal of RL

Value iteration

Q-functions

Q-iteration

2 Model-dependent algorithms

Q-learning as AI

Theoretical aspects of Q-learning

Introduction

The environment

Value functions an

Value ite

Q-function

O-iteratio

Modeldependen

dependen algorithm:

Machine learning

Theoretical aspects of Q-learning

Introduction

The environment
Value functions and
the goal of RL

. . .

O-iteratio

Modeldependen

Another subsection

Machine Learning is "the study of computer algorithms that improve automatically through *experience*".

- **Supervised learning**: Tasks are learned from data based on feedback from a *supervisor*. E.g. image classification.
- Unsupervised learning: Data is given without evaluatory feedback, general trends about the data are analysed. E.g. principal component analysis, and cluster analysis.
- →¹ Reinforcement learning: Algorithms which learns through interactions with an *environment*.

¹ " \rightarrow ": Our main area of focus in this thesis $\rightarrow 4$ $\rightarrow 4$

Challenges in RL

Theoretical aspects of Q-learning

Introduction

The environment
Value functions and the goal of RL

Q-function

Q-iteration

Modeldependent algorithms

Another subsection

Challenges in Reinforcement Learning include:

- Exploration-exploitation trade-off. Training and performing occurs simultaneously so one optimizes the total reward on some time horizon. This is studied in e.g. the multi-armed bandit problem.
- Deriving optimal policies. Training and performing is distinguished and emphasis is put on the expected performance of the final derived policy rather than rewards occurring during training.

The environment

Theoretical aspects of Q-learning

Introductio

The environment

the goal of RL

vuide itei

Q-TUTICLION

Q-iteration

Modeldependent

Another subsection

The **environment** in RL is often formalized as a **Markov decision process** (MDP), which consists of

- ${\cal S}$ a measurable space of states.
- ${\cal A}$ a measurable space of actions.
- $P: \mathcal{S} \times \mathcal{A} \leadsto \mathcal{S}$ a transition kernel².
- $R: \mathcal{S} \times \mathcal{A} \leadsto \mathbb{R}$ a reward kernel discounted by
- a discount factor $\gamma \in [0, 1)$.
- $\mathfrak{A}(s) \subseteq \mathcal{A}$ a set of admissable actions for each $s \in \mathcal{S}$.

²Here \rightsquigarrow denotes a *stochastic mapping* (to be defined soon) $\geqslant \qquad \geqslant \qquad >$ >

Examples of MDPs

Theoretical aspects of Q-learning

Introductio

The environment

the Sour or r

Value iteration

Q-functions

Q-iteration

Modeldependent

Anothor subsoction

Examples of Markov decision processes include

- Board games where one plays against a fixed opponent, e.g. *chess* where the set of states $\mathcal S$ is the set of all obtainable chess-positions.
- Time-descretized physics simulations with action inputs and reward outputs, including most single player video games and the classic *cartpole* example (balancing a stick).

The probability kernels

Theoretical aspects of Q-learning

Introduction

The environment

. . .

Q-iteration

Modeldependent

Another subsectio

Probability kernel

A **probability kernel** (also called a *stochastic mapping*, *stochastic kernel* or *Markov kernel*) $\kappa: \mathcal{X} \leadsto \mathcal{Y}$ is a collection of probability measures $\kappa(\cdot \mid x)$, one for each $x \in \mathcal{X}$ such that for any measurable set $B \subseteq \mathcal{Y}$ the function $x \mapsto \kappa(B \mid x)$ is measurable.

The transition probability measure $P(\cdot \mid s, a)$ of the pair $(s, a) \in \mathcal{S} \times \mathcal{A}$ determines what states are likely to follow after *being* in state s and *choosing* action a. Similarly from the reward kernel R one obtains the measure $R(\cdot \mid s, a)$ determining the reward distribution following the timestep (s, a).

Policies

Theoretical aspects of Q-learning

Introductio

The environment

Value functions and

Value it

. . .

Modeldependent

Another subsection

Given a Markov decision process one can define a **policy** π by sequence of probability kernels $\pi = (\pi_1, \pi_2, \dots)$ where $\pi_i : \mathcal{H}_i \leadsto \mathcal{A}$ and $\mathcal{H}_i = \mathcal{S} \times \mathcal{A} \times \dots \times \mathcal{S}$ is the *history space* at the *i*th timestep.

Stochastic processes

Theoretical aspects of Q-learning

Introductio

The environment

Value functions and the goal of RL

Value iter

Q-functions

Modeldependent

Another subsection

An MDP $(\mathcal{S},\mathcal{A},P,R,\gamma)$ together with a policy $\pi=(\pi_1,\pi_2,\dots)$ and a distribution μ on \mathcal{S} give rise to a stochastic process $(S_1,A_1,S_2,A_2,\dots)\sim\kappa_\pi\mu$ such that for any $i\in\mathbb{N}$ we have $(S_1,A_1,\dots,S_i)\sim P\pi_{i-1}\dots P\pi_1\mu$ where $P\pi_{i-1}\dots P\pi_1$ denotes the *kernel-composition* of the probability kernels P,π_1,\dots,π_{i-1} . We denote by \mathbb{E}_s^π expectation over $\kappa_\pi\mu$ where $\mu=\delta_s$, that is, $S_1=s$ a.s.

Policy evaluation

Theoretical aspects of Q-learning

Introduction

Value functions and

the goal of RL

Q-IUIICHO

Q-iteratio

Modeldependent

Another subsectio

Policy evaluation

Denote by $r(s,a)=\int x\;\mathrm{d}R(x\mid s,a)$ the expected reward function. We define the **policy evaluation function** by

For a policy π we can define the policy evaluation function:

$$V_{\pi}(s) = \mathbb{E}_{s}^{\pi} \sum_{i=1}^{\infty} \gamma^{i-1} r \circ \rho_{i}$$

where ρ_i is projection onto (S_i, A_i) .

This an example of a (state-) value function, as it assigns a real number to every state $s \in \mathcal{S}$.

Finite policy evaluation

Theoretical aspects of Q-learning

Introduction

Value functions and

the goal of RL

0 6............

Q-iteration

Modeldependent algorithms

Another subsection

Similar to the infinite horizon policy evaluation we can also consider a finite horizon version:

Definition: Finite policy evaluation

We define the function $V_{n,\pi}:\mathcal{S}\to\mathbb{R}$ by

$$V_{n,\pi}(s) = \mathbb{E}_s^{\pi} \sum_{i=1}^n \gamma^{i-1} r \circ \rho_i$$

called the kth finite policy evaluation^a.

^aWhen n=0 we say $V_{0,\pi}=V_0:=0$ for any $\pi.$

Optimal value function

Theoretical aspects of Q-learning

Introduction

The environment

Value functions and the goal of RL

the goal of RE

Q-IUIICU

Q-iteratio

iviodeidependen algorithm

Another subsectio

Definition: Optimal value functions

$$V_n^*(s) := \sup_{\pi \in R\Pi} V_{n,\pi}(s) = \sup_{\pi \in R\Pi} \mathbb{E}_s^{\pi} \sum_{i=1}^n r_i$$

$$V^*(s) := \sup_{\pi \in R\Pi} V_{\pi}(s) = \sup_{\pi \in R\Pi} \mathbb{E}_s^{\pi} \sum_{i=1}^{\infty} r_i$$

This is called the **optimal value function** (and the nth optimal value function). A policy $\pi^* \in R\Pi$ for which $V_{\pi^*} = V^*$ is called an **optimal policy**. If $V_{n,\pi^*} = V_n^*$ then π^* is called n-optimal.

Provided such an optimal policy π^* exists, obtaining such a policy is the ultimate goal of Reinforcement Learning.

Greediness

Theoretical aspects of Q-learning

Introductio

I he environment

Value functions a

Value iteration

O function

Q-iteratio

Modeldependen

Another subsection

In order to show existence of optimal policies and talk about algorithms which can determine such policies, we define the concept of *greediness*.

Greedy actions

Theoretical aspects of Q-learning

Introduction

ne goal of RL

Value iteration

Q-iteration

Modeldependen algorithm:

Another subsection

The purpose of (most) value functions $V: \mathcal{S} \to \mathbb{R}$ is to give an estimate on how good a certain state is, in terms of the rewards one may expect after visiting it.

This give rise to the idea of *greedy actions*, that is, actions leading to states high *values* (according to V).

Definition greedy actions

Let $V:\mathcal{S} \to \mathbb{R}$ be a measurable value-function. We define

$$G_V(s) = \operatorname*{argmax}_{a \in \mathfrak{A}(s)} T_a V(s) \subseteq \mathfrak{A}(s)$$

as the set of greedy actions w.r.t. V.

Greedy policies

Theoretical aspects of Q-learning

Greedy actions leads to greedy policies:

Introduction

Value functions and

Value iteration

Q IUIICLIOI

Q-iteratio

Modeldependent

Another subsection

Definition: Greedy policy

Let $V:\mathcal{S}\to\mathbb{R}$ be a measurable value-function and let $\tau:\mathcal{S}\leadsto\mathcal{A}\in S\Pi$ be a stationary policy. If there exists a measurable $G_V^{\tau}(s)\subseteq G_V(s)$ such that

$$\tau(G_V^{\tau}(s) \mid s) = 1$$

for every $s \in \mathcal{S}$, then τ is called greedy w.r.t. V. We will often denote a V-greedy policy by τ_V .

Existence of greedy policies

Theoretical aspects of Q-learning

Introduction

The environment

Value functions and

Value iteration

O function

Q-iteration

Modeldependent

Another subsection

Theorem (Existence of greedy policies)

Suppose $V: \mathcal{S} \to \mathbb{R}$ is upper semicontinuous and that

- 1. \mathcal{S} and \mathcal{A} are standard Borel.
- 2. The set of admissable actions $\mathfrak{A}(s) \subseteq \mathcal{A}$ is compact for all $s \in \mathcal{S}$ and $\Gamma = \{(s, a) \in \mathcal{S} \times \mathcal{A} \mid a \in \mathfrak{A}(s)\}$ is a closed subset of $\mathcal{S} \times \mathcal{A}$.
- 3. The transition kernel P is continuous.
- 4. The expected reward function $r = \int r' dR(r' \mid \cdot)$ is upper semicontinuous and bounded from above.

Then there exists a deterministic policy π_V which is greedy for V.

If assumptions 1.-4. hold we will say that the MDP is *greedy*.

Policy iteration

Theoretical aspects of Q-learning

Introduction

The environment

the goal of RL

Q-IUIICLIOII

Q-iteration

Modeldependen

Another subsection

Using the concepts we have defined one can get the following idea: Iteratively generate value functions by picking greedy policies and then evaluating these policies. This is called *policy iteration*.

Policy iteration is a well studied algorithm and can be shown to converges to optimum for a variety of environments. We will however move on to talk about a related concept called *value iteration*.

Operators on value functions

Theoretical aspects of Q-learning

Before defining value iteration we introduce some operators

The T-operators

For a stationary policy $\tau \in S\Pi$ and a value function

 $V:\mathcal{S}
ightarrow \mathbb{R} \in \mathcal{L}_{\infty}(\mathcal{S})$ we define the operators

The policy evaluation operator:

$$T_{\tau}V := s \mapsto \int r(s, a) + \gamma V(s') d(P\tau)(a, s' \mid s)$$

The Bellman optimality operator:

$$TV := s \mapsto \sup_{a \in \mathfrak{A}(s)} \left(r(s, a) + \gamma \int V(s') dP(s' \mid s, a) \right)$$

Value functions and

Value iteration

Q-iteration

Modeldependent algorithms

Properties of the T-operators

Theoretical aspects of Q-learning

Introductio

The environment

Value functions and

Value iteration

0 6........

Q-iteration

Modeldependent algorithms

Another subsectio

Proposition (Properties of the T-operators)

$$V_{k,\pi} = T_{\tau_1} V_{k-1,(\tau_2,\dots)} = T_{\tau_1} \dots T_{\tau_k} V_0.$$

$$V_{\pi} = \lim_{k \to \infty} T_{\tau_1} \dots T_{\tau_k} V_0$$

For the stationary policy au we have $T_{ au}V_{ au}=V_{ au}.$

T and T_{τ} are γ -contractive on $\mathcal{L}_{\infty}(\mathcal{S})$.

 V_{τ} is the unique bounded fixed point of T_{τ} in $\mathcal{L}_{\infty}(\mathcal{S})$.

This way T_{τ} can be interpreted as a 'one-step policy evaluation'. On the other hand T can be interpreted as a 'one-step evaluation, when always choosing greedy actions'.

Value iteration

Theoretical aspects of Q-learning

Introduction

Value functions and

Value iteration

Q-functions

Q-iteration

Modeldependent algorithms

Another subsection

Value iteration is the iterative application of the T-operator. The following theorem show why value iteration is a central idea Reinforcement Learning³.

Theorem (Existence optimal policies & convergence of value iteration)

Given a greedy MDP we have that

$$V_k^* = T^k V_0 = T_{\tau_{k-1}}^* \dots T_{\tau_0^*} V_0 = V_{k,(\tau_{k-1}^*,\dots,\tau_0^*)}$$

The policy $(\tau_{k-1}^*,\ldots,\tau_0^*)$ is a deterministic k-optimal policy where $\tau_k^*=\tau_{T^kV_0}$ is any deterministic greedy policy for T^kV_0 for any $k\in\mathbb{N}$. Furthermore $V^*=\lim_{k\to\infty}T^kV_0^*$, the greedy policy $\tau^*=\tau_{V^*}$ exists and an optimal policy.

Convergence rates

Theoretical aspects of Q-learning

Introduction

The environment

Value functions and

Value iteration

. . .

Q-iteratio

Modeldependent algorithms

Another subsection

We can also show that the optimal value function V^* is a fixed point of the Bellman optimality operator T.

$$TV^* = V^*$$

This is often called *Bellman's optimality equation*. Recalling that T is γ -contractive, by Banach's fixed point theorem we get exponential convergence rates for value iteration:

$$||T^kV - V^*|| \le \gamma^k ||V - V^*||_{\infty} = \mathcal{O}(\gamma^k)$$

Theoretical aspects of Q-learning

Introduction

Value functions and

Value iteration

O-function

Q-iteration

Modeldependent

Another subsection

The gridworld MDP consist of 25 states $\mathcal{S} = [5]^2$ and 4 actions $\mathcal{A} = \{U, D, L, R\}$ for up, down, left and right and moves the agent 1 square up, down, left or right. A reward of 0 is given by default, except when

	Α		В	
	\	+	-5)	
+	10		B'	
	A'			

- hitting the boundary a reward of -1 is given
- when in A=(2,1) any action moves to $A^\prime=(2,5)$ and is rewarded 10.
- when in B=(4,1) any action moves to $B^\prime=(4,3)$ and is rewarded 5.

Finally $\gamma=0.9$ is the standard value of the discount factor in this example.

Theoretical aspects of Q-learning

Introductio

The environment

Value functions at the goal of RL

Value iteration

Q-functio

Q-iteratio

Modeldependen

Another subsectio

-0.50	10.00	-0.25	5.00	-0.50		
-0.25	0.00	0.00	0.00	-0.25		
-0.25	0.00	0.00	0.00	-0.25		
-0.25	0.00	0.00	0.00	-0.25		
-0.50	-0.25	-0.25	-0.25	-0.50		
V _{1, τ,}						

3.31	8.79	4.43	5.32	1.49			
1.52	2.99	2.25	1.91	0.55			
0.05	0.74	0.67	0.36	-0.40			
-0.97	-0.44	-0.35	-0.59	-1.18			
-1.86	-1.35	-1.23	-1.42	-1.98			
V ₄₀₀ , τ _r							

Figure: Policy evaluations of the gridworld environment. Note that $V_{\rm max}\cdot\gamma^{400}=100\cdot(0.9)^{400}\approx 4.97\cdot10^{-17}$ so $V_{\tau_r,400}$ are very close to the true infinite horizon value functions V_{τ_r} (providing numerical errors are insignificant).

Theoretical aspects of Q-learning

ntroduction

The environment
Value functions and

Value iteration

Q-function

o :. .:

Modeldependent

Another subsection

					_
9.00	10.00	9.00	5.00	4.50	2
8.10	9.00	8.10	4.50	4.05	19
0.00	8.10	0.00	4.05	0.00	17
0.00	0.00	0.00	0.00	0.00	16
0.00	0.00	0.00	0.00	0.00	14
		V_3^*			

21.98	24.42	21.98	19.42	17.48	
19.78	21.98	19.78	17.80	16.02	
17.80	19.78	17.80	16.02	14.42	
16.02	17.80	16.02	14.42	12.98	
14.42	16.02	14.42	12.98	11.68	
V**					

Figure: Optimal value functions of the gridworld environment. By the same upper bound as before we have $\|V^* - V_{400}^*\|_{\infty} < 4.97 \cdot 10^{-17}$.

Theoretical aspects of Q-learning

Introductio

The environment

the goal of RL

Value iteration

Q-function

Q-iteratio

Modeldependen

Another subsection

Convergence of gridworld value functions compared with the theoretical bounds. The black dashed line is the general theoretical bound for both T and T_{τ} by Banachs fixed point theorem and the maximum value $V_{\rm max}=R_{\rm max}/(1-\gamma)$. The dotted blue and orange uses $\left|V_k^*\right|$ and $\left|V_{\tau,k}\right|$ respectively, which might not be available. ($\gamma=0.9$).

Q-functions

Theoretical aspects of Q-learning

Introductio

Value functions and

Value ite

Q-functions

Q-iteration

Modeldependent

Another subsection

A **Q-function** is simply any function assigning a real number to every state-action pair. They are also called (state-) *action* value functions.

A **Q-learning** algorithm is any algorithm which uses Q-functions to derive a policy for an environment⁴.

⁴Some authors refer to Q-learning as a specific variation of temporal difference learning, but this fails to capture many algorithms which are also referred to as Q-learning algorithms.

Motivation for Q-functions

Theoretical aspects of Q-learning

Introductio

Value functions and

V-I... it---ti---

Q-functions

. . .

Q-iteration

Modeldependent algorithms

Another subsection

A clear advantage of working with Q-function $Q: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ rather than a value function $V: \mathcal{S} \to \mathbb{R}$, is that finding the optimal action $a^* \in \mathfrak{A}(s)$ at state s requires only a maximization over the Q-function itself: $a^* = \operatorname{argmax}_{a \in \mathfrak{A}(s)} Q(s, a)$. This should be compared to

finding an optimal action according to a value function V:

 $a^* = \operatorname{argmax}_{a \in \mathfrak{A}(s)} r(s, a) + \gamma \mathbb{E}_{P(\cdot | s, a)} V.$

Greed with Q-functions

Theoretical aspects of Q-learning

Introductio

Value functions an

the goal of RL

Q-functions

Q-iteratio

Modeldependent algorithms

Another subsectio

Formally we define greedy actions and policies w.r.t. a Q-function as Let $Q: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ be a measurable Q-function and $\tau: \mathcal{S} \leadsto \mathcal{A}$ be a (stationary) policy.

Greedy policy

Define the set of greedy actions by $G_Q(s) := \operatorname{argmax}_{a \in \mathfrak{A}(s)} Q(s,a)$. If there exist a measurable set $G_Q^{\tau}(s) \subseteq G_Q(s)$ for every $s \in \mathcal{S}$ such that

$$\tau\left(G_Q^{\tau}(s) \mid s\right) = 1$$

then τ is said to be **greedy** with respect to Q and is denoted τ_Q .

Q-function operators

Theoretical aspects of Q-learning

Operators for Q-functions

Introduction

The environment

Value functions an

...

Q-functions

Q-iteratio

Modeldenender

dependen algorithm:

Another subsectio

For any stationary policy $\tau \in S\Pi$ and integrable Q-function $Q: \mathcal{S} \times \mathcal{A} \to \mathbb{R} \in \mathcal{L}_{\infty}(\mathcal{S} \times \mathcal{A})$ we define

Moreover we define T-operators similar to ones for value functions

Next-step operator:

$$P_{\tau}Q(s,a) = \int Q(s',a') d\tau P(s',a' \mid s,a)$$

Policy evaluation operator:

$$T_{\tau}Q(s,a) = r(s,a) + \gamma \int Q(s',a') d\tau P(s',a' \mid s,a)$$

Bellman optimality operator:

$$TQ(s, a) = r(s, a) + \gamma \int \max_{a' \in \mathcal{A}} Q(s', a') \, dP(s' \mid s, a)$$

where $T_a = T_{\delta_a}$.

Relation between value- and Q-functions

Theoretical aspects of Q-learning

Introduction

The

Value functions and

Value ite

Q-functions

Q-iteratio

Modeldependent algorithms

Another subsection

Theorem (Relations between Q- and value functions)

Let $\pi=(\tau_1,\tau_2,\dots)\in M\Pi$ be a Markov policy and $\tau\in S\Pi$ stationary.

Then

- Policy evaluations are related by $\mathbb{E}_{\tau(\cdot|s)}Q_{k,\pi} = V_{k+1,(\tau,\pi)}(s)$.
- T_{τ} -operators are related by $T_{\tau}Q_{k,\pi}(s,a)=r+\gamma\mathbb{E}_{P(\cdot|s,a)}T_{\tau}V_{k,\pi}$.
- au is greedy for $Q_{k,\pi}$ if and only if au is greedy for $V_{k,\pi}$ and au is greedy for Q_{π} if and only if au is greedy for V_{π} .
- Optimal policies are related by $\max_{a \in \mathfrak{A}(s)} Q^*(s,a) = V^*(s)$ and

$$Q_k^*(s, a) = r(s, a) + \gamma \mathbb{E}_{P(\cdot | s, a)} V_k^*, \quad Q^*(s, a) = r(s, a) + \gamma \mathbb{E}_{P(\cdot | s, a)} V^*$$

Properties of Q-functions

Theoretical aspects of Q-learning

Because of the close relations many properties are inherited from value function to Q-functions:

Introduction

Value functions and

Value iteration

Q-functions

Q-iteratio

Modeldependent algorithms

Another subsection

Proposition (Properties of Q-functions)

Let $\pi=(\tau_1,\tau_2,\dots)\in M\Pi$ be a Markov policy and $\tau\in S\Pi$ stationary. Then

$$Q_{k,\pi} = T_{\tau_1} \dots T_{\tau_k} Q_0$$
 and $Q_k^* = T^k Q_0^*$.

$$Q_{\pi} = \lim_{k \to \infty} Q_{k,\pi}$$
 and $Q^* = \lim_{k \to \infty} Q_k^*$.

 T, T_{τ} are γ -contractive on $\mathcal{L}_{\infty}(\mathcal{S} \times \mathcal{A})$ and Q^*, Q_{τ} are their unique fixed points.

$$Q^* = Q_{\tau^*}$$

Q-iteration

Theoretical aspects of Q-learning

Introduction

Value functions an

the goal of RL

0...

o :. .:

Q-iteration

Modeldependent algorithms

Another subsection

Q-iteration is the analogue of value-iteration for Q-function. It can be stated in the form of an algorithm as follows:

Algorithm (Q-iteration)

Data: MDP (S, A, P, R, γ) , number of iterations K

Initialize expected reward function $r \leftarrow \int x \; \mathrm{d}R(x \mid \cdot)$ and $\widetilde{Q}_0 \leftarrow r$.

for
$$k = 0, 1, ... K - 1$$
 do

$$\widetilde{Q}_{k+1} \leftarrow T\widetilde{Q}_k$$

end

Output: \widetilde{Q}_K

In the context of a greedy MDP we immedially have that the output of the Q-iteration algorithm $\widetilde{Q}_K=Q_K^*$ is K-optimal.

Value iteration with Q-functions

Theoretical aspects of Q-learning

Introduction

Value functions and

Value iterat

Q-functions

Q-iteration

Modeldependent algorithms

Another subsection

Similar to value-iteration we can use Banach fixed point theorem with the contractive properties of the T-operator for Q-functions to obtain exponential convergence of Q-iteration:

Proposition (Convergence of Q-iteration)

Suppose the Q-iteration algorithm is run with a greedy MDP. $\stackrel{\sim}{\sim}$

Then the output
$$\widetilde{Q}_K = Q_K^*$$
 satisfy

$$\|Q^* - Q_K^*\|_{\infty} \leq \gamma^K V_{\text{max}}$$

Why are we not done?

Theoretical aspects of Q-learning

Introductio

Value functions and

...

. . .

Q-iteration

Modeldependent

Another subsection

We have exponential convergence for the broad class of problems expressible as a greedy MDP. This class includes highly difficult environments such as control problems in time-descretized simulation environments such as computer games, including the game of *chess*. Are we then done?

Problems of Q-iteration

- 1. It is assumed that we know how to integrate over P and R.
 - The distributions of ${\cal P}$ and ${\cal R}$ might be impractical to work with in a computer.
 - It is common in RL to assume that P and R are unknown, thus including a variety of environments, which we have not yet considered.
- 2. It is assumed that we know how to represent ${\cal Q}$ functions in a feasible way in a computer.

Example: Chess

Theoretical aspects of Q-learning

Introductio

The environment

Value functions and
the goal of RI

Q-Iunction

Q-iteration

Modeldependent algorithms

Another subsection

The state space of chess is very large (roughly $|\mathcal{S}_{chess}| \ge 10^{43}$). This means that if we were to use Q-iteration naively (with finite implementation as in the gridworld example) then we would have to store a vector of roughly $N \cdot 10^{43}$ real numbers for each Q-function we define, where N is the average number of admissable actions at each state $\mathfrak{A}(s), s \in \mathcal{S}$ which has been estimated to around $N \approx 35$ for chess. This requires roughly $1.4 \cdot 10^{45}$ bytes, if each number is stored as a single precision floating point number (4 bytes). For comparison the entire digital data capacity in the world is estimated less than 10^{23} bytes as of 2020. Needless to say this is beyond any practical relevance

What have we done so far?

Theoretical aspects of Q-learning

Introductio

The environmer

Value functions an

Value itera

Q-functions

Q-iteration

Modeldependent

algorithms

Model-dependent algorithms

Theoretical aspects of Q-learning

Introduction

The environmen

the goal of RL

Value iter

Q-function

Q-iteration

Modeldependent algorithms

Another frame

Theoretical aspects of Q-learning

Introductio

The environmen

Value functions and

Value itera

Q-function:

Q-iteration

Modeldependen

aepenaent algorithms