Lab1: Back-propagation

contributed by < tl32rodan >

Introduction

• Deep learning technique is trending nowadays. One of the reasons being powerful is the *gradient-based optimization*.

Most deep learning algorithms involve optimization of some sort. Optimization refers to the task of either minimizing or maximizing some function f(x) by altering

- x. ... We can reduce f(x) by moving x in small steps with opposite sign of the derivative. This technique is called **gradient descent**.
- Deep Learning (https://www.deeplearningbook.org/), Goodfellow et-al., MIT Press, 2016. Section 4.3
- To have a comprehensive knowledge of gradient-based optimization, this lab is for the purpose of implementing backpropagation of a simple two-layered feedforward network without using deep learning frameworks.

Lab Objective

- The purpose of this lab is to understand and implement simple neural networks with forwarding pass and backpropagation using two hidden layers.
- Only Numpy and the python standard libraries are available, any other framework (ex: Tensorflow, PyTorch) is not allowed in this lab.

Requirements

- Implement simple neural networks with two hidden layers.
- Use backpropagation in this neural network and can only use Numpy and other python standard libraries to implement.
- Plot comparison figure that show the predict result and the ground-truth

Experiment Setups

Sigmoid functions

Activation function

- A layer of a feedforward network is just a linear model of input X:
 f(x;w,b)=w^Tx+b
- If 2 linear layers form a network, then it is just another linear model, meaning that it's still not able to solve XOR problem

(https://medium.com/@jayeshbahire/the-xor-problem-in-neural-networks-50006411840b)

Suppose the network now contains two functions chained together: $h=f^{(1)}(x;W,c)$ and $y=f^{(2)}(h;w,b)$, with the complete model being $f(x;W,c,w,b)=f^{(2)}(f^{(1)}(x))$ Ignoring the intercept terms for the moment, suppose $f^{(1)}(x)=W^Tx$ and $f^{(2)}(h)=h^Tw$. Then $f(x)=w^TW^Tx$. We could represent this function as $f(x)=x^Tw$, where w=Ww-Deep Learning (https://www.deeplearningbook.org/), Goodfellow et-al., MIT Press, 2016. Section 6.1

● Activation function 能將 *nonlinear* 引入模型中, 使得模型能夠實現 nonlinear 的學習

Sigmoid function

One of the most common activation functions

• $\sigma(x) = 11 + \exp(-x)$

o Pros:

- 能將 layer output W^T X+b 轉為 [0,1] 之間的數值
- 處處可微; 代表將來做 gradient decent (https://hackmd.io /i9wkp10ZSsamwb7hJu044w?view#Introduction) 時,不會遇到無法更新的情況
- Sigmoid function 的微分為 $ddx \sigma(x) = \sigma(x)(1 \sigma(x))$, 所以在計算 backpropagation 時,有不錯的計算效率
 - sigmoid function 微分推導 (https://math.stackexchange.com/questions

/78575/derivative-of-sigmoid-function-sigma-x-frac11e-x)

Cons:

■ 由於要計算 exp(-x), 所以運算相對複雜

■ 有 saturation problem

The sigmoid function **saturates** when its argument is very positive or very negative, meaning that the function becomes very flat and insensitive to small changes in its input – *Deep Learning* (https://www.deeplearningbook.org/), Goodfellow et-al., MIT Press, 2016. *Section 3.10*

Not zero-centered

● 實現

```
class Sigmoid(Layer):
    def __init__(self):
        self.y = None

def forward(self, x):
    # 計算 sigmoid(x)
    self.y = 1.0 /(1.0 + np.exp(-x))
    return self.y

def backward(self, prev_grad,lr=0.1):
    # 計算 sigmoid(x) 的微分,並且做 backpropagation
    return prev_grad * np.multiply((1.0 - self.y) , seteration
```

Neural network

Deep feedforward networks

According to Chapeter 10 of the book Deep Learning
 (https://www.deeplearningbook.org/), Goodfellow et-al.

Deep feedforward networks, also often called **feedforward neural networks**, or **multilayer perceptrons** (MLPs), are the quintessential deep learning models. The goal of a feedforward network is to approximate some function f^* . A feedforward network defines a mapping $y=f(x;\theta)$ and learns the value of the parameters θ that result in the best function approximation.

They are called *feedforward* because information flows through the function being evaluated from x, through the intermediate computations used to define f, and finally to the output y. There are **no feedback connections** in which outputs of the model are fed back into itself.

When feedforward neural networks are extended to include feedback connections, they are called **recurrent neural networks**

Implementing Details

Implementation Details: x_1 Loss Function \hat{y} x_2 x_3 x_4 x_5 $x_$

Figure 2. Forward pass

- In the figure 2, we used the following definitions for the notations:
 - $1. \ \ x_1, x_2: nerual \ network \ inputs$
 - 2. $X : [x_1, x_2]$
 - 3. y: nerual network outputs
 - 4. \hat{y} : ground truth
 - 5. $L(\theta)$: loss function
 - 6. W_1, W_2, W_3 : weight matrix of network layers
- 依據上面的架構圖,實現程式碼如下:

```
class TLNN(object):
   def __init__(self):
       # 用 collection.OrderedDict 依序存放 layer
       # 以便於 forward & backward呼叫
        self.layers = OrderedDict()
       self.layers['linear_1'] = Linear(2,4,bias=True)
       self.layers['sigmoid_1'] = Sigmoid()
       self.layers['linear_2'] = Linear(4,4,bias=True)
       self.layers['sigmoid_2'] = Sigmoid()
        self.layers['output'] = Linear(4,1,bias = False)
       self.layers['sigmoid_3'] = Sigmoid()
        self.loss_func = MSE()
   def forward(self, x):
       # 把計算的值"順向"傳遞 -> "forward"
       for layer in self.layers.values():
            x = layer.forward(x)
        return x
   def cal_loss(self, y, ground_truth):
       # 計算 loss
        return self.loss_func.forward(y,ground_truth)
   def backward(self,lr=0.05):
       dy = self.loss_func.backward()
       # Reverse the layers list for easily conducting ba
       back_layers = list(self.layers.values())
        back_layers.reverse()
       # 把 gradient "逆向"傳遞 -> "forward"
       for layer in back_layers:
            dy = layer.backward(dy,lr=lr)
```

說明

- Input 為二維的資料; output 僅為 0 或 1
- Hidden layers 皆為 4 個 units
- Activation function 皆為 sigmoid function (https://hackmd.io

/ i9wkp 10 ZS samwb 7h Ju O 44 w#Sigmoid-function)

Loss function 採用 MSE(Mean Square Error)

In statistics, the mean squared error (MSE) or mean squared deviation (MSD) of an estimator (of a procedure for estimating an unobserved quantity) measures the average of the squares of the errors—that is, the average squared difference between the estimated values and the actual value. — *Wilipedia* (https://en.wikipedia.org /wiki/Mean_squared_error)

• 非常簡單

Backpropagation

• Definition:

The back-propagation algorithm (Rumelhart et al., 1986a) (http://www.cs.toronto.edu/~hinton/absps/naturebp.pdf), often simply called

backprop, allows the information from the cost to then flow backwards through the network, in order to compute the gradient.

Deep Learning (https://www.deeplearningbook.org/), Goodfellow et-al., MIT Press, 2016. Section

- 對於 backpropagation 的誤解
 - 1. Backpropagation 不是 neural network 的 learning algorithm
 - back-propagation refers only to the method for computing the gradient, while another algorithm, such as stochastic gradient descent, is used to perform learning using this gradient.
 - 2. Backpropagation 不是 只能用在 multi-layer neural network 上
 - 任何計算 gradient $\nabla_x f(x,y)$ for an arbitrary function f 的過程,皆可稱之。
 - X is a set of variables whose derivatives are desired
 - y is an additional set of variables that are inputs to the function but whose derivatives are not required

• 實作想法

- 對於每一層 layer of neural network, 都定義一個 memeber function backward()
- 接收後面傳回來的 gradient prev_grad 為 input,
- ○計算 weight w 的權重
- 。回傳 gradient w.r.t 該 layer 的 input X, i.e. ∂L(θ)∂x, 其中 L(θ) 為 loss function value
- Example:

○ 補充說明:

- 若 $\mathbf{Y} = \mathbf{X}\mathbf{W} + \mathbf{b}$, 則 $\partial L(\theta)\partial \mathbf{X} = \partial \mathbf{Y} \partial \mathbf{X} \partial L(\theta)\partial \mathbf{Y} = \partial L(\theta)\partial \mathbf{Y} \cdot \mathbf{W}^{\mathsf{T}}$
- - ∂L(θ)∂Y 即為後面傳回來的 gradient prev_grad

Training Dataset

- Left: A set of linearly seperatable data. Easy
- Right: XOR data, which is a little more difficult to train

Linear data

● 預設訓練 10000 次

```
data_x, data_y = generate_linear(n=100)
pred_y, loss_list = run_Net(data_x, data_y)
# Comparison graph
show_result(data_x, data_y, pred_y)
```


XOR data

● 由於 XOR 較難訓練且資料不多,索性訓練 500000 次

Prediction Accuracy

- 計算方法:
 - 由於我們的 neural network 的輸出未必為整數,所以簡單以 0.5 為分界: 大於 0.5 就算 1,小於 0.5 就算 0;簡單粗 暴

○ 程式碼:

```
def acc(ground_truth, y):
    print ('Accuracy = ',100* (ground_truth[ground_truth]));
```

• Linear data accuracy

```
pred_y[pred_y>0.5] = 1
pred_y[pred_y<0.5] = 0
acc(data_y,pred_y)

Accuracy = 100.0 %</pre>
```

XOR data accuracy

```
pred_y[pred_y>0.5] = 1
pred_y[pred_y<0.5] = 0
acc(data_y,pred_y)

Accuracy = 100.0 %</pre>
```

Learning curves

loss/epoch curve

● 透過 loss 對 epoch 做的 curve, 我們可以觀察訓練過程中, loss function 收斂的情況

• Linear data

• XOR data

顯然, XOR 需要更多的 epochs 來使loss 收斂, 這大致上表示 XOR dataset

Discussion

Train with different learning rates

- The choose of learning rate is essential in training neural network
- We will train with Ir = 1, 0.75, 0.5, 0.1, 0.05, 0.01, and see how they affect the training process:
 - 。此實驗以 linear data 為例

 According to the figure above, when the learning rate is too small(for example, 0.01 in this case), the loss may not converge quick enough.

Train with different numbers of hidden units

- 上述的實驗皆僅用了 2 層 4 units 的 hidden layers
- 接下來我們嘗試不同的 hidden layer units 數來訓練,觀察其對訓練 過程的影響
- Linear data

○ 可以看到, 雖然增加到 6 或 8 units 可以加快收斂速度, 但並不是越多越好. 一個可能的原因是題目太簡單, 使用 capacity 較高的 model, 反而可能要花更多時間達到收斂

Train without sigmoid function

- 在課堂中及 Deep Learning (https://www.deeplearningbook.org/), Goodfellow et-al.
 書中皆有提到, neural network 的強大, 有一部份是來自於 activation function 能 fit nonlinear function; 若把 activation function 移除, 則神經網路只能學到 linear function; 這裡我們就試 著把 sigmoid 層拿到, 來檢驗是否如此
- 程式碼

```
class TLNN(object):
    def __init__(self, layer_1_units = 4, layer_2_units =
        self.layers = OrderedDict()
        self.layers['linear_1'] = Linear(2,layer_1_units,!
        #self.layers['sigmoid_1'] = Sigmoid()
        self.layers['linear_2'] = Linear(layer_1_units,layers['linear_2'] = Sigmoid()
        self.layers['sigmoid_2'] = Sigmoid()
        self.layers['output'] = Linear(layer_2_units,1,biaself.layers['sigmoid_3'] = Sigmoid()
        self.loss_func = MSE()
        ...
```

- 我們留下了最後一層的 sigmoid function, 否則似乎會變成無法更新 weight: 剛開始訓練就出現 loss 為 nan 的情況
- Training result First Try
 - 使用各 6 個 hidden units 來訓練

```
(dl) ubuntu@ec037-003:~/dl/Lab1$ python3 train_XOR.py
/home/ubuntu/dl/Lab1/TLNN.py:84: RuntimeWarning: overflow encountered in squar
  return np.mean((self.y-self.ground_truth)**2)
train_XOR.py:20: RuntimeWarning: invalid value encountered in greater
  pred_y[pred_y>0.5] = 1
train_XOR.py:21: RuntimeWarning: invalid value encountered in less
  pred_y[pred_y<0.5] = 0
Accuracy = 0.0 %</pre>
```

- 由於我們使用 MSE 作為 loss function, 在計算的時候出現了 overflow, 導致輸出為 0
- Training result Second Try

- 顯然, 即使我們訓練了 500000 次, 仍不見我們的神經網路有" 學到東西"
- 總結第一次沒成功的原因, 應該是 batch size 過大, 導致 MSE 計算產生 overflow (https://en.wikipedia.org/wiki/Integer_overflow) (雖然我們只設定 batch size = 20)

Train with different loss functions

Cross-Entropy

In information theory, the *cross entropy* between two probability distributions **p** and **q** over the same underlying set of events measures the average number of bits needed to identify an event drawn from the set if a coding scheme used for the set is optimized for an estimated probability distribution **q**, rather than the true distribution **p**.

The cross entropy of the distribution **q** relative to a distribution **p** over a given set is defined as follows:

```
H(p,q)=-E_p[logq]
```

-Wikipedia (https://en.wikipedia.org/wiki/Cross_entropy)

○ 建議搭配 softmax 作為 output function 服用; Binary crossentropy 則適合搭配溫開水 sigmoid output function

```
class Binary_Cross_Entropy(Layer):
def __init__(self):
    self.y = None
    self.ground_truth = None
def forward(self, y, ground_truth):
   # 使此 function 可以處理 batch ,也可以處理 single data
    if y.ndim == 1:
        ground_truth = ground_truth.reshape(1, ground_
        y = y.reshape(1, y.size)
   batch_size = y.shape[0]
    self.y = y
    self.ground_truth = ground_truth
    # To avoid -inf; 重要!!
    delta = 1e-7
    return (-1/ batch_size)*np.sum(self.ground_truth *
def backward(self,prev_grad=1,lr=0.1):
        prev_grad, 1r: pseudo parameters
    1 1 1
    batch_size = self.y.shape[0]
    # To avoid -inf;
    delta = 1e-7
    dx = - (np.divide(self.ground_truth, self.y + delt
    return dx
```

○ 實驗設定

- Dataset: XOR data
- Activation function: sigmoid()
- Loss function : Binary cross-entropy

○ 實驗結果

- 左圖是以 MSE 作為 loss function; 而右圖則是以 binary cross-entropy 作為 loss function
- 可以見到兩個的收斂範圍都在 100000 次左右達到穩定,

Train with different activation function

ReLU

```
\circ A simple function : f(x)=max(0,x)
```

○ 其微分為 ∂f(x)∂x ={

1, f(x)>00, otherwise

。 程式碼實做

```
class ReLU(Layer):
    def __init__(self):
        self.mask = None
        self.y = None

def forward(self, x):
        self.mask = (x <= 0)
        self.y = x.copy()
        self.y[self.mask] = 0
        return self.y

def backward(self, prev_grad,lr=0.1):
    # Return prev_grad * derivative of sigmoid fur
        grad = prev_grad
        grad[self.mask] = 0
        return grad</pre>
```

○ 實驗設定

■ Dataset: XOR data

■ Activation function: ReLU()

■ Loss function : Mean square error

○ 實驗結果

○ 從圖中我們可以很明顯地發現,使用 ReLU function 在這個條件下, loss function 的收斂速度確實較快

Train with ReLU & Binary Cross-Entropy

● 接著, 我們把 activation function 跟 loss function 都換掉試試看

• 實驗設定

o Dataset: XOR data

Activation function: ReLU()

Loss function : Binary cross-entropy

Learning rate: 0.01

• 第一次實驗結果

- 未達收斂!
- 分析原因: 即使視同一個 dataset, 不同的 loss function, 適用的 learning rate 可能也不同. 可能因此而導致 model 訓練未果
- 進行第二次實驗
- 第二次實驗設定
 - * Dataset: XOR data
 - * Activation function: ReLU()
 - * Loss function: Binary cross-entropy
 - * Learning rate: 0.001
- 第二次實驗結果

- 。 結果非常成功
- 由此實驗可知, learning rate 的調整是非常值得注意的環節; 這可能也是 optimizer 值得研究的原因之一

Bonus: Train with Different Learning Rate (II)

- 由於在上個實驗中, learning rate 確實扮演了重要的角色, 所以再度 做了跟 learning rate 有關的實驗
- 我們手動調整 learning rate 的值, 希望找到接近發散與收斂的臨界值
- 實驗設定 (I)

o Dataset: XOR data

Activation function: ReLU()

Loss function : Binary cross-entropy

Learning rate: 0.001490625

● 實驗結果 (I)

。可以見到 loss 成功收斂, 沒有問題

● 實驗設定 (II)

o Dataset: XOR data

Activation function: ReLU()

Loss function : Binary cross-entropy

Learning rate: 0.001490626

● 實驗結果 (II)

- 重複做了幾次, 也改變了 random seed, 但當 learning rate 增加 1e-9 , 結果卻大不相同
- o 猜測原因大概就是浮點數的限制 (https://hackmd.io/@sysprog/c-floating-point)
- 正因如此, 進行 neural network 實做的我們, 才更應該掌握這些計算機架構的背景知識, 以免徒耗心力
- 相關連結:軟體缺失導致的危害 (https://hackmd.io/@sysprog/software-failure)

Problem Discussions

Input & output dimension

- 一開始定義 Linear layer 的時候,我用的是 y=W X+b 的形式
 - 在計算 ∂L∂W 時,結果將會是 ∂L∂y 'X^T
 - 但當 X 是長度為 n 的vector, numpy 不會將其轉為 (1,n) 的 matrix, 而是保留原長度
 - 解決方法:
 - 1. 可以透過判斷 X 的 shape 並手動更改
 - 2. 將上述式子改為 y=XW+b, 並計算 $\partial L\partial y \cdot X^T$ 的結果
 - Pros: 可以無須對 X 作轉置,且為通常使用的方法
 - Cons: 跟 Lineaer Algebra 通常把 input 放後面的寫法不一樣了,個人私心不想這麼做(最後妥協了^^)
 - 3. 直接改為丟 mini batch 進去
 - 雖然成功解決了 X 為 vector 無法轉置的問題(因為變成 matrix 了),但後續在計算 y=W X+b 時, b 也遇到了相同的情形,而無法做 broadcast 加法

(https://numpy.org/doc/stable/user/basics.broadcasting.html)

■ 結果: 放棄, 改用上述 2. 的作法

RuntimeWarning: invalid value encountered in log2

- 發生在以 ReLU 作為 output function, binary cross-entropy 時產
 生的
 - ReLU 是一種 activation function, 並非用來當作 output function 使用
 - 原因: Output function 通常是根據問題的類別來定義的.
 如:學習 Bernoulli distrubution (https://en.wikipedia.org/wiki
 /Bernoulli_distribution)(二元分類問題) 的 model 通常以 sigmoid
 或 tanh 作為 output function, 因為 ground truth 為 0
 或 1;而 Multinoulli Distribution (https://en.wikipedia.org
 /wiki/Categorical_distribution) 則常用 softmax 作為 output function
 - np.log2 的 input 值必須大於 0. 摁, 國中數學,但被我忘了
- 解決方法: 用 sigmoid 作為 output function, 只改變 hidden layer 的 activation function 為 ReLU
- 另外, 由於 $log_2(0)=-\infty$, 所以實做時, 記得加上一個 delta=1e-7 來避免這種情況的產生