Hyunji Moon (2015-13196) Industrial Engineering, SNU

Corporate Diversification and the Value of Individual Firms: a Bayesian Approach

By Tyson B. Mackey, Jay B. Barney, and Jeffrey P. Dotson Strategic Management Journal 38: 322-341 (2017)

INDEX

- Introduction
- Theory and hypothesis
- Methods
- Results
- Discussion and Conclusion

Mismatch between

theoretical diversification literature (diversification-firm performance relationship for individual firm)
empirical diversification literature (average relationship between diversification-firm performance)

'Hierarchical Bayesian Modeling' enables estimation of this relationship at the firms level

Re-examine relationship between **firm's diversification strategy** and its **performance** with Hierarchical Bayesian Modeling.

CONTENTS OF THE CONTENTS OF THE

2.1 Theoretical diversification literature explains...

- -conditions under which a firm can enhance its economic value by related, unrelated diversification or by remaining undiversified.
- -conditions under which a firm may abandon its profit-maximizing objectives in choosing its diversification strategy.

Related diversification

Unrelated diversification

Remain focused

Optimal strategy depends on each firm's resources and situation

Hypothesis:

"A profit maximizing firm will tend to pursue that corporate diversification strategy that enhances its economic value"

O CONTENTS 02 Theory and Hypothesis

2.2 Empirical diversification literature Explains...

- positive average effect of diversification on firm value (Campa and Kedia, 2002).
 - ✓ average value created: diversification > a portfolio of focused firms
 - ✓ does not mean that remaining focused is not the most value strategy.
- related diversification > unrelated diversification (Miller, 2006)
 - ✓ firms that have related knowledge assets are more likely to create value through diversification.
 - ✓ does not mean that unrelated diversification is not the most value creating strategy

Testing hypothesis in this article requires the examination of the relationship between a particular firm's diversification and value across a firm.

CONTENTS, 03 Method

3.1 To remove **heterogeneity**...

use fixed or random effects models.

- estimate firm-specific relationships.
 - ✓ apply contingency studies and mixed effects modeling.
 - ✓ random coefficient models, hierarchical linear models can be used to estimate average coefficient plus an individual specific deviation from the average coefficient.

3.2 Hierarchical Bayesian model: beneficial to strategy research because...

- estimates a distribution for firm-specific parameter.
- **improves precision** by imposing a common distribution between the firm-specific coefficients.

non-Bayesian

- Point estimation for the firm-specific parameter.
- Weak confidence on firmspecific parameter.

Bayesian

- Estimates a distribution for each coefficient.
- Estimates impact-prob. of independent variable on dependent variable.

Hierarchical Bayesian

- Distinct modeling approach that estimates firm-specific parameters.
- Adequately model heterogeneity in the value of diversification.

O CONTENTS 03 Method

3.3 How are **Data and Sample** collected?

- Firms in the Compustat Industry Segment file.
- From year 1985 to 1996.
- Remove firms with less than five observations.
- Total of 7,442 observations on 838 firms.

CONTENTS. 03 Method

3.4 Research model

Independent Variables

Corporate diversification

- % shares owned by dominant shareholders
- % shares owned by institutions
- % shares owned by insiders
- % of outsider directors

Dependent Variables

Excess value

Tobin's q

Control Variables

Firm size
Firm growth
Capital intensity
Level of R&D
Level of firm
profitability

CONTENTS. 03 Method

3.5 Model development

Impact of diversification on firm performance

$$y_{it} = \beta_{0i} + \rho_i y_{it-1} + \beta_{Di} D_{it} + \sum_k \gamma_k \widetilde{x}_{kit} + \varepsilon_{it}.$$

 y_{it} Measure of performance(firm i, time period t)

 D_{it} Diversification state (firm i, time period t)

Endogenous diversification

$$V_{it} = \alpha_0 + \alpha_1 \left(\beta_{Di} / \left(1 - \rho_i \right) \right) + \sum_k \delta_k x_{kit} + \xi_{it}.$$

$$V_{it}$$
 Function for the value

$$\beta_{Di}/\left(1-\rho_i\right)$$
 Expected, long-term impact of diversification on performance

$$pr\{D_{it}=1\}=\frac{e^{V_{it}}}{1+e^{V_{it}}}.$$

$$pr\{D_{it}=1\}$$
 Probability that the firm will diversify

CONTENTS. 04 Results

4.1 Empirical implementation of the theory in this article is...

Divide the distribution of the firm specific diversification coefficients into

focused + related diversifiers + unrelated diversifiers!

Effects of diversification on excess value and Tobin's q for diversified and undiversified firms.

→ Diversified firms have an expected increase in value through diversification.

81

Focused firms are generally expected decrease in value through diversification.

CONTENTS. 04 Results

4.2 What affects the relationship between diversification and firm value?

Independent, controlled variable analysis

- Expected value of diversification has a strong effect on the diversification choice.
- Larger firm size increases diversification's effect on excess value with 48.3 percent probability.
- Faster **growth rate** increases the value of diversification with 0 percent probability.
- Higher capital intensity increases the value of diversification with 13.4 percent probability.
- Higher R&D intensity are less likely to diversify successfully.
 - → Governance has little impact on the value of diversification.

Table 4. Determinants of firm-specific parameters affecting excess value and Tobin's q

	Excess value				Tobin's q			
	Diversification effect		Intercept		Diversification effect		Intercept	
	Mean	% > 0	Mean	% > 0	Mean	% > 0	Mean	% > 0
Intercept	-0.087	0.0%	-0.256	0.0%	-0.095	0.0%	0.131	98.0%
Size	0.016	100.0%	-0.005	27.9%	0.018	100.0%	-0.002	37.8%
Profitability	-0.010	48.3%	1.204	100.0%	0.022	64.2%	0.012	55.7%
Capital intensity	-0.041	13.4%	0.007	51.2%	-0.032	15.9%	-0.042	26.9%
R&D/sales	-0.234	0.0%	0.431	97.5%	-0.244	0.5%	0.412	99.0%
Growth	-0.122	0.0%	0.582	100.0%	-0.149	0.0%	-0.021	40.8%
% of shares held by dominant shareholders	-0.043	9.5%	0.152	98.5%	-0.064	0.5%	0.003	52.2%
% of shares held by insiders	- 0.007	38.3%	0.120	95.5%	0.005	57.7%	-0.004	50.2%
% of shares held by institutions	0.003	53.2%	-0.065	13.9%	-0.029	14.4%	0.110	99.0%
% of board composed of outsiders	-0.055	3.5%	0.243	100.0%	-0.037	9.5%	0.042	80.1%

CONTENTS. 05 Discussion and Conclusion

5.1 **Summary**

What?

Relationship between a firm's diversification strategy and its performance for individual firms.

How?

Hierarchical Bayesian modeling approach that allowed for firm-level estimates.

- ✓ Firms tend to be profit-maximizing in their choice of diversification strategy.
- ✓ Diversification has a higher expected value for related diversifiers than unrelated diversifiers, but that diversification also has a highest expected value that focus for unrelated diversifiers as well.

CONTENTS. 05 Discussion and Conclusion of

5.2 Implication for strategy scholarship and practice

- Incorporating firm heterogeneity into the analysis of the effects of diversification could be assimilated into other topics.
- One example is governance and diversification and it was noted that poor governance does not affect the value of diversification.

- Mismatch between
 - ✓ strategic management theory (individual firms, resources and capabilities to maximize value)
 - ✓ strategic management research methods (average relationship models).

- Results should not be interpreted as a rule for riches suggesting that all firms should pursue this particular strategy.
- Overall relationship between strategy and firm value require strategic management for new methodological approaches.

- The END