2.4.2 简化Newton法(平行弦法)

迭代公式:

$$x_{k+1} = x_k - cf(x_k)$$
 (c\neq 0, k=0,1,....)

迭代函数:
$$\varphi(x) = x - cf(x)$$

- 若 $| \varphi(x)| = |1-cf(x)| < 1$,即取0 < cf(x) < 2在x*附近成立,则收敛.
- •若取 $c=1/f(x_0)$,则称简化Newton法.

2.4.3 弦截法 (割线法)

在Newton迭代格式中,用差商近似导数,

$$f'(x_k) \approx \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$

得

$$x_{k+1} = x_k - \frac{f(x_k)}{f(x_k) - f(x_{k-1})} (x_k - x_{k-1})$$

称弦截法.

弦截法的几何意义:

弦线 $P_k P_{k-1}$ 的方程:

$$y = f(x_k) + \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}} (x - x_k)$$

y=f(x)

当 y = 0时,

$$x_{k+1} = x_k - \frac{f(x_k)}{f(x_k) - f(x_{k-1})} (x_k - x_{k-1})$$

例 用简化的Newton迭代法和弦截法计算方程 x^3 -3x+1=0的根.

解: 设 $f(x)=x^3-3x+1$, 则 $f`(x)=3x^2-3$ 由简化的Newton法, 得

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_0)} = x_k - \frac{x_k^3 - 3x_k + 1}{3x_0^2 - 3}$$

由弦截法,得 $x_{k+1} = x_k - \frac{f(x_k)}{f(x_k) - f(x_{k-1})} (x_k - x_{k-1})$ $= x_k - \frac{x_k^3 - 3x_k + 1}{x_k^2 + x_k x_{k-1} + x_{k-1}^2 - 3}$

简化Newton法

$$x_0 = 0.5$$

$$x_1 = 0.33333333333$$

$$x_2 = 0.3497942387$$

$$x_3 = 0.3468683325$$

$$x_4 = 0.3473702799$$

$$x_5 = 0.3472836048$$

$$x_6 = 0.3472985550$$

$$x_7 = 0.3472959759$$

$$x_8 = 0.3472964208$$

$$x_9 = 0.3472963440$$

$$x_{10} = 0.3472963572$$

$$x_{11} = 0.3472963553$$

弦截法

$$x_0 = 0.5$$
;

$$x_1 = 0.4;$$

$$x_2 = 0.3430962343$$

$$x_3 = 0.3473897274$$

$$x_4 = 0.3472965093$$

$$x_5 = 0.3472963553$$

$$x_6 = 0.3472963553$$

要达到精度10-8, 简化

Newton法迭代11次,弦截

法迭代5次, Newton迭代

法迭代4次.

无论前面哪种迭代法:

(Newton迭代法、简化Newton法、弦截法) 是否收敛均与初值的位置有关.

如
$$f(x) = \arctan(x) = 0$$
 精确解为 $x = 0$

收敛

Newton迭代法 $x_{k+1} = x_k - \arctan x_k \cdot (1 + x_k^2)$

取初值
$$x_0 = 1$$

$$x_0 = 1$$

$$x_1 = -0.5708$$

$$x_2 = 0.1169$$

$$x_3 = -0.0011$$

$$x_4 = 7.9631e-010$$

$$x_5 = 0$$

取初值
$$x_0 = 2$$

$$x_0 = 2$$

$$x_1 = -3.54$$

$$x_2 = 13.95$$

$$x_3 = -279.34$$

发散

$$x_4 = 122017$$

2.4.4 Newton下山法

- •为防止Newton法发散,可增加一个条件: $|f(x_{k+1})| < |f(x_k)|$, 满足该条件的算法称下山法.
- ·可用下山法保证收敛, Newton法加快速度.

$$\overline{x}_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

$$x_{k+1} = \lambda \overline{x}_{k+1} + (1 - \lambda)x_k \qquad (0 < \lambda \le 1, --$$
下山因子)

$$x_{k+1} = x_k - \lambda \frac{f(x_k)}{f'(x_k)}$$

称Newton下山法.

λ的选取:

从 $\lambda=1$ 开始,逐次减半计算.

即按
$$\lambda = 1, \frac{1}{2}, \frac{1}{2^2}, \frac{1}{2^3}, \dots$$

的顺序,直到使下降条件 $|f(x_{k+1})| < |f(x_k)|$ 成立为止.

例: 求解方程

$$\frac{x^3}{3} - x = 0$$

要求达到精度 $|x_n - x_{n-1}| \le 10^{-5}$,取 $x_0 = -0.99$.

解: 先用Newton迭代法: $f`(x)=x^2-1$

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = x_k - \frac{x_k^3 - 3x_k}{3(x_k^2 - 1)}$$

$$x_1 = x_0 - \frac{x_0^3 - 3x_0}{3(x_0^2 - 1)} = 32.505829$$

$$x_2$$
=21.69118 x_3 =15.15689 x_4 = 9.70724 x_5 = 6.54091 x_6 = 4.46497 x_7 = 3.13384 x_8 = 2.32607 x_9 = 1.90230 x_{10} = 1.75248

 $x_{11} = 1.73240$ $x_{12} = 1.73205$ $x_{13} = 1.73205$

需迭代13次才 达到精度要求 ·用Newton下山法,结果如下:

$$x_{k+1} = x_k - \lambda \frac{f(x_k)}{f'(x_k)}$$

\boldsymbol{k}	下山因子	$\boldsymbol{x_k}$	$f(x_k)$
k=0		$x_0 = -0.99$	$f(x_0) = 0.666567$
k = 1		$x_1 = 32.505829$	f(x) = 11416.4
	$\lambda = 0.5$	$x_1 = 15.757915$	f(x) = 1288.5
	$\lambda = 0.25$	$x_1 = 7.383958$	f(x) = 126.8
	$\lambda = 0.125$	$x_1 = 3.196979$	f(x) = 7.69
	$\lambda = 0.0625$	$x_1 = 1.103489$	f(x) = -0.655
k = 2		$x_2 = 4.115071$	f(x) = 19.1
	$\lambda = 0.5$	$x_2 = 2.60928$	f(x)=3.31
	$\lambda = 0.25$	$x_2 = 1.85638$	f(x) = 0.27
k = 3		$x_3 = 1.74352$	f(x)=0.023
k = 4		$x_4 = 1.73216$	f(x)=0.00024
k = 5		$x_5 = 1.73205$	f(x)=0.00000
k = 6		$x_6 = 1.73205$	f(x)=0.000000

2.4.5 重根情形

设 $f(x)=(x-x^*)^m g(x)$, $m \ge 2$, m为整数, $g(x^*)\ne 0$, 则 x^* 为方程f(x)=0的m重根.

此时有

$$f(x^*)=f(x^*)=\dots=f^{(m-1)}(x^*)=0, f^{(m)}(x^*)\neq 0$$

《方法一》只要 $f`(x_k) \neq 0$,仍可用Newton法计算,此时为线性收敛。

《方法二》若取

$$x_{k+1} = x_k - m \frac{f(x_k)}{f'(x_k)}$$

$$\varphi(x) = x - m \frac{f(x)}{f'(x)}$$

则 $\varphi(x^*)=0$,用迭代法求m重根,具2阶收敛,但要知道m.

《方法三》修正的牛顿迭代法

$$\mu(x) = \frac{f(x)}{f'(x)}$$

$$\mu(x) = \frac{(x - x^*)g(x)}{mg(x) + (x - x^*)g'(x)}$$

故x*是 $\mu(x)=0$ 的单根,对 $\mu(x)$ 用Newton法,可得

$$x_{k+1} = x_k - \frac{\mu(x_k)}{\mu'(x_k)} = x_k - \frac{f(x_k)f'(x_k)}{\left[f'(x_k)\right]^2 - f(x_k)f''(x_k)}$$

它是二阶收敛的.

THE END