# IST-707-Final-Project-Code.R

#### theSaint

2020-03-21

library(pROC)

```
# https://s3-us-west-2.amazonaws.com/syr-mac/prod/IST+565+Data+Mining/PDFs/Assignments/P
roject-instructions-updated-11-27-2017.pdf
# https://archive.ics.uci.edu/ml/datasets/Forest+Fires
# https://towardsdatascience.com/beginners-guide-to-k-nearest-neighbors-in-r-from-zero-t
o-hero-d92cd4074bdb
# install.packages("ggvis")
# install.packages("plotrix")
# install.packages("ISLR")
# install.packages("ggplot2") # install.packages("plyr")
# install.packages("dplyr") # install.packages("class")# Load libraries
# install.packages("tidyverse")
# install.packages("cluster")
# install.packages("factoextra")
# install.packages("randomForest")
# install.packages("pROC")
# install.packages("FSelector")
# install.packages("GGally")
# install.packages("taRifx")
# install.packages("klar")
# install.packages("purrr")
library(purrr)
library(GGally)
## Loading required package: ggplot2
## Registered S3 method overwritten by 'GGally':
##
    method from
##
    +.gg ggplot2
library(taRifx)
## Attaching package: 'taRifx'
## The following object is masked from 'package:purrr':
##
##
       rep along
```

```
## Type 'citation("pROC")' for a citation.
##
## Attaching package: 'pROC'
## The following objects are masked from 'package:stats':
##
##
       cov, smooth, var
library(FSelector)
library(randomForest)
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
## The following object is masked from 'package:ggplot2':
##
##
       margin
library(readr)
library(ggplot2)
library(ISLR)
library(reshape2)
library(plyr)
##
## Attaching package: 'plyr'
## The following object is masked from 'package:purrr':
##
##
       compact
library(dplyr)
## Attaching package: 'dplyr'
```

```
The following objects are masked from 'package:plyr':
##
##
##
       arrange, count, desc, failwith, id, mutate, rename, summarise,
##
       summarize
  The following object is masked from 'package:randomForest':
##
##
       combine
  The following objects are masked from 'package:taRifx':
##
##
       between, distinct, first, last
##
  The following object is masked from 'package: GGally':
##
##
       nasa
##
  The following objects are masked from 'package:stats':
##
##
       filter, lag
##
  The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
##
library(class)
library(ggvis)
##
## Attaching package: 'ggvis'
## The following object is masked from 'package:ggplot2':
##
##
       resolution
library(readxl)
library(plotrix)
library(cluster)
library(factoextra)
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WB
а
# library(tidyverse)
library(gridExtra)
```

```
##
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
##
##
       combine
##
  The following object is masked from 'package:randomForest':
##
##
       combine
library(cluster)
library(reshape2)
library(tidyr)
##
## Attaching package: 'tidyr'
## The following object is masked from 'package:reshape2':
##
##
       smiths
library(rpart)
library(rpart.plot)
library(MASS)
##
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
##
##
       select
library(caTools)
library(sqldf)
## Loading required package: gsubfn
## Loading required package: proto
## Loading required package: RSQLite
library(corrplot)
```

```
## corrplot 0.84 loaded
library(corrgram)
## Registered S3 method overwritten by 'seriation':
##
     method
                    from
   reorder.hclust gclus
##
##
## Attaching package: 'corrgram'
## The following object is masked from 'package:plyr':
##
##
       baseball
library(e1071)
library(caret)
## Loading required package: lattice
## Attaching package: 'lattice'
## The following object is masked from 'package:corrgram':
##
       panel.fill
##
## Attaching package: 'caret'
## The following object is masked from 'package:purrr':
##
       lift
##
library(pROC)
library(CORElearn)
library(RWeka)
## Attaching package: 'RWeka'
```

```
## The following object is masked from 'package:caTools':
##
## LogitBoost
```

```
library(FSelector)

# Load files
forestfires <- read_csv("forestfires.csv")</pre>
```

```
## Parsed with column specification:
## cols(
##
    month = col_character(),
##
    day = col_character(),
##
    X = col_double(),
##
    Y = col_double(),
##
    FFMC = col_double(),
##
    DMC = col_double(),
##
    DC = col_double(),
##
    ISI = col_double(),
    temp = col_double(),
##
##
    RH = col_double(),
##
    wind = col_double(),
##
    rain = col_double(),
##
     area = col_double()
## )
```

```
forestfiresEX <-read_excel("ForestFiresWith.xlsx")
forestfires_na_factor <- read_csv("forestfires.csv")</pre>
```

```
## Parsed with column specification:
## cols(
   month = col_character(),
##
  day = col character(),
##
##
   X = col_double(),
    Y = col double(),
##
##
    FFMC = col_double(),
##
    DMC = col double(),
##
    DC = col_double(),
##
    ISI = col double(),
##
   temp = col double(),
    RH = col_double(),
##
    wind = col_double(),
##
##
    rain = col double(),
##
    area = col_double()
## )
```

```
# find mean for foest fires
mean(forestfires$area)
```

```
# Feature generation
## IF the area burned is greater than .1 , equals a significant fire
forestfires$fire_yes_no <- ifelse(forestfires$area>0.1,1,0)

# Create a new data frame for newly made significant fire data
#forestfiresmm <- forestfires %>% select(X,Y,month,day,FFMC,DMC,DC,ISI,temp,RH,wind,rai
n,area,fire_yes_no) %>% filter(forestfires$fire_yes_no == "1")
forestfiresmm <- forestfires %>% filter(forestfires$fire_yes_no == "1")
forestfiresmm
```

```
## # A tibble: 269 x 14
##
                   month day
                                                                          Х
                                                                                               Y FFMC
                                                                                                                                  DMC
                                                                                                                                                           DC
                                                                                                                                                                           ISI temp
                                                                                                                                                                                                                         RH wind rain
##
                    <chr> <chr> <dbl> <
## 1 jul
                                                                                                        85.8 48.3 313.
                                                                                                                                                                           3.9 18
                                                                                                                                                                                                                                          2.7
                                         tue
                                                                           9
                                                                                               9
                                                                                                                                                                                                                         42
                                                                                                                                                                                                                                                                      0
                                                                                                                                                                                                                                          2.2
## 2 sep
                                         tue
                                                                           1
                                                                                               4 91
                                                                                                                           130.
                                                                                                                                                693.
                                                                                                                                                                           7
                                                                                                                                                                                             21.7
                                                                                                                                                                                                                         38
                                                                                                                                                                                                                                                                      0
##
           3 sep
                                                                           2
                                                                                               5 90.9 126.
                                                                                                                                                686.
                                                                                                                                                                         7
                                                                                                                                                                                             21.9
                                                                                                                                                                                                                         39
                                                                                                                                                                                                                                         1.8
                                                                                                                                                                                                                                                                      0
                                        mon
           4 aug
                                                                           1
                                                                                               2 95.5 99.9 513.
                                                                                                                                                                    13.2 23.3
                                                                                                                                                                                                                                         4.5
##
                                        wed
                                                                                                                                                                                                                         31
##
         5 aug
                                        fri
                                                                           8
                                                                                         6 90.1 108
                                                                                                                                                530.
                                                                                                                                                                   12.5 21.2
                                                                                                                                                                                                                         51
                                                                                                                                                                                                                                      8.9
                                                                                        2 90
##
            6 jul
                                        sat
                                                                          1
                                                                                                                               51.3 296.
                                                                                                                                                                       8.7 16.6
                                                                                                                                                                                                                         53
                                                                                                                                                                                                                                          5.4
                                                                                                                                                                                                                                                                      0
          7 aug
                                                                       2
                                                                                         5 95.5 99.9 513.
                                                                                                                                                                  13.2 23.8
                                                                                                                                                                                                                                          5.4
##
                                        wed
                                                                                                                                                                                                                         32
                                                                                                                                                                                                                                                                      0
## 8 aug
                                        thu
                                                                           6 5 95.2 132. 579.
                                                                                                                                                                  10.4 27.4
                                                                                                                                                                                                                        22
                                                                                                                                                                                                                                          4
                                                                                                                                                                                                                                                                      0
                                                                           5
                                                                                              4 90.1 39.7 86.6 6.2 13.2
                                                                                                                                                                                                                        40
## 9 mar
                                        mon
                                                                                                                                                                                                                                          5.4
                                                                                                                                                                                                                                                                      0
## 10 sep
                                                                           8
                                                                                               3 84.4 73.4 672.
                                                                                                                                                                           3.2 24.2
                                                                                                                                                                                                                        28
                                                                                                                                                                                                                                          3.6
                                                                                                                                                                                                                                                                      0
                                        tue
## # ... with 259 more rows, and 2 more variables: area <dbl>,
                       fire yes no <dbl>
```

```
# Scale OG data frame
forestfires.scaled <- forestfires</pre>
forestfires.scaled$FFMC <- scale(forestfires$FFMC)</pre>
forestfires.scaled$DMC <- scale(forestfires$DMC)</pre>
forestfires.scaled$DC <- scale(forestfires$DC)</pre>
forestfires.scaled$ISI <- scale(forestfires$ISI)</pre>
forestfires.scaled$temp <- scale(forestfires$temp)</pre>
forestfires.scaled$RH <- scale(forestfires$RH)</pre>
forestfires.scaled$wind <- scale(forestfires$wind)</pre>
forestfires.scaled$rain <- scale(forestfires$rain)</pre>
forestfires.scaled$area <- scale(forestfires$area)</pre>
# Scale significant fire data frame
forestfiresmm.scaled <- forestfiresmm</pre>
forestfiresmm.scaled$FFMC <- scale(forestfiresmm.scaled$FFMC)</pre>
forestfiresmm.scaled$DMC <- scale(forestfiresmm.scaled$DMC)</pre>
forestfiresmm.scaled$DC <- scale(forestfiresmm.scaled$DC)</pre>
forestfiresmm.scaled$ISI <- scale(forestfiresmm.scaled$ISI)</pre>
forestfiresmm.scaled$temp <- scale(forestfiresmm.scaled$temp)</pre>
forestfiresmm.scaled$RH <- scale(forestfiresmm.scaled$RH)</pre>
forestfiresmm.scaled$wind <- scale(forestfiresmm.scaled$wind)</pre>
forestfiresmm.scaled$rain <- scale(forestfiresmm.scaled$rain)</pre>
forestfiresmm.scaled$area <- scale(forestfiresmm.scaled$area)</pre>
# View it
View(forestfires)
# Str
str(forestfires)
```

```
## Classes 'spec_tbl_df', 'tbl_df', 'tbl' and 'data.frame': 517 obs. of 14 variables:
##
   $ month
                : chr "mar" "oct" "oct" "mar" ...
                : chr
                       "fri" "tue" "sat" "fri" ...
##
   $ day
   $ X
##
                : num 7 7 7 8 8 8 8 8 8 7 ...
##
  $ Y
                : num 5 4 4 6 6 6 6 6 6 5 ...
                : num 86.2 90.6 90.6 91.7 89.3 92.3 92.3 91.5 91 92.5 ...
##
   $ FFMC
##
  $ DMC
                : num 26.2 35.4 43.7 33.3 51.3 ...
##
   $ DC
                : num 94.3 669.1 686.9 77.5 102.2 ...
               : num 5.1 6.7 6.7 9 9.6 14.7 8.5 10.7 7 7.1 ...
## $ ISI
##
   $ temp
                : num 8.2 18 14.6 8.3 11.4 22.2 24.1 8 13.1 22.8 ...
  $ RH
##
               : num 51 33 33 97 99 29 27 86 63 40 ...
##
  $ wind
                : num 6.7 0.9 1.3 4 1.8 5.4 3.1 2.2 5.4 4 ...
## $ rain
                : num 0 0 0 0.2 0 0 0 0 0 ...
                : num 0 0 0 0 0 0 0 0 0 0 ...
## $ area
   $ fire_yes_no: num 0 0 0 0 0 0 0 0 0 0 ...
##
##
   - attr(*, "spec")=
##
    .. cols(
##
         month = col_character(),
##
         day = col_character(),
##
         X = col_double(),
##
        Y = col_double(),
##
         FFMC = col double(),
##
     . .
         DMC = col_double(),
##
         DC = col_double(),
    . .
##
    . .
       ISI = col_double(),
##
        temp = col double(),
     . .
##
       RH = col double(),
    .. wind = col double(),
##
##
       rain = col double(),
##
         area = col double()
     . .
##
     .. )
```

```
# Descripitive Summary
summary(forestfires)
```

```
##
      month
                       day
                                         Х
                                                        Υ
   Length:517
                                    Min. :1.000 Min. :2.0
##
                   Length:517
##
   Class :character
                   Class :character
                                    1st Qu.:3.000 1st Qu.:4.0
   Mode :character
                                    Median:4.000 Median:4.0
##
                   Mode :character
##
                                    Mean :4.669
                                                  Mean :4.3
                                    3rd Qu.:7.000
                                                  3rd Qu.:5.0
##
##
                                    Max. :9.000 Max. :9.0
##
                     DMC
                                    DC
      FFMC
                                                 ISI
##
   Min. :18.70
                 Min. : 1.1
                              Min. : 7.9 Min. : 0.000
##
   1st Qu.:90.20
                 1st Qu.: 68.6
                               1st Qu.:437.7 1st Qu.: 6.500
   Median :91.60
                 Median :108.3
                               Median :664.2 Median : 8.400
##
##
   Mean :90.64
                 Mean :110.9
                               Mean :547.9
                                             Mean : 9.022
   3rd Qu.:92.90
                               3rd Qu.:713.9
##
                 3rd Qu.:142.4
                                             3rd Qu.:10.800
   Max. :96.20
                 Max. :291.3
##
                               Max. :860.6
                                             Max. :56.100
##
       temp
                      RH
                                    wind
                                                  rain
## Min. : 2.20
                 Min. : 15.00
                                Min. :0.400
                                              Min. :0.00000
## 1st Qu.:15.50
                 1st Qu.: 33.00
                                1st Qu.:2.700
                                              1st Qu.:0.00000
## Median :19.30
                 Median : 42.00
                                Median :4.000
                                              Median :0.00000
##
   Mean :18.89
                 Mean : 44.29
                                Mean :4.018
                                              Mean :0.02166
##
   3rd Qu.:22.80
                 3rd Qu.: 53.00
                                3rd Qu.:4.900
                                              3rd Qu.:0.00000
   Max. :33.30
                 Max. :100.00
                                Max. :9.400
                                              Max. :6.40000
##
##
                  fire yes no
       area
## Min. : 0.00 Min. :0.0000
##
   1st Qu.: 0.00 1st Qu.:0.0000
## Median : 0.52 Median :1.0000
##
   Mean : 12.85 Mean :0.5203
##
   3rd Qu.: 6.57 3rd Qu.:1.0000
   Max. :1090.84 Max. :1.0000
##
```

#### (head(forestfires, n=5))

```
## # A tibble: 5 x 14
## month day
                  X
                        Y FFMC
                                 DMC
                                       DC
                                            ISI temp
                                                        RH wind rain
## <chr> <dbl> <
                   7
                        5 86.2 26.2 94.3
                                                 8.2
                                                                  0
## 1 mar
         fri
                                            5.1
                                                        51
                                                            6.7
## 2 oct
         tue
                  7
                        4 90.6 35.4 669.
                                            6.7 18
                                                        33
                                                            0.9
## 3 oct
         sat
                  7
                        4 90.6 43.7 687.
                                            6.7 14.6
                                                        33
                                                            1.3
## 4 mar
         fri
                  8
                        6 91.7 33.3 77.5 9
                                                8.3
                                                        97
                                                            4
                                                                  0.2
## 5 mar
         sun
                  8
                        6 89.3 51.3 102.
                                            9.6 11.4
                                                        99
                                                            1.8
                                                                  0
## # ... with 2 more variables: area <dbl>, fire_yes_no <dbl>
```

```
# Save col names in a variable
colnamesff <- colnames(forestfires)

## EDA ##

# Plot unique variables 3d
slices <- c(1:14)
lbls <- colnamesff
#pie3D(slices,labels=lbls,explode=0.2,theta=1,radius = 1, main="Distribution of unique v
ariables")
pie3D(slices,labels=lbls,explode=0.2,theta=1,radius = 1, main="Distribution of unique va
riables")</pre>
```

### Distribution of unique variables



```
# Plot unique variables 2d
colors = c('#4286f4','#bb3af2','#ed2f52','#efc023','#ea7441')
pie(slices, lbls, main='Distribution of unique variables',density=30 ,col=colors, angle=
45)
```

### Distribution of unique variables



```
## Check for missing data and make sure no missing data
forestfires[!complete.cases(forestfires),]
```

```
## # A tibble: 0 x 14
## # ... with 14 variables: month <chr>, day <chr>, X <dbl>, Y <dbl>,
## # FFMC <dbl>, DMC <dbl>, DC <dbl>, ISI <dbl>, temp <dbl>, RH <dbl>,
## # wind <dbl>, rain <dbl>, area <dbl>, fire_yes_no <dbl>
```

```
sum(is.na(forestfires))
```

```
## [1] 0
```

```
# Create a scatter plot with variables FFMC and DC filled by month
## View difference between scaled and not scaled

forestfires_na_factor %>% ggvis(~FFMC, ~DC, fill = ~month) %>% layer_points() # possible
2 or 3 key clusters
```



forestfires.scaled %>% ggvis(~FFMC, ~DC,fill=~month)%>% layer\_points()



# Any cluster between Temp and DC?
forestfires.scaled %>% ggvis(~temp, ~DMC, fill = ~area) %>% layer\_points()



```
## Visual Clusters found in DC and FFMC !!
## 1 months aug, sep, nov
## 2 july, june, DEC
### 3 feb, march, april
# if chr, change to factor using dplyr
#cluster <- select_(forestfires.scaled,-c(X,Y,month,day))</pre>
# create a dataframe for clusting
## Only keep of interest variables and drop the rest of them !!
# cluster_scaled <- select(forestfiresmm.scaled,-c(X,Y,month,day,DMC,ISI,temp,RH,wind,ra
in,area,fire yes no))
cluster_scaled <- dplyr::select(forestfiresmm.scaled,c(5,7))</pre>
# use scaled data since k means is a distance measure
k1 = kmeans(cluster_scaled,centers = 2, nstart = 25)
k2 = kmeans(cluster_scaled,centers = 3, nstart = 25)
k3 = kmeans(cluster_scaled,centers = 4, nstart = 25)
k4 = kmeans(cluster scaled,centers = 5, nstart = 25)
k5 = kmeans(cluster_scaled,centers = 6, nstart = 25)
k6 = kmeans(cluster scaled,centers = 7, nstart = 25)
k7 = kmeans(cluster_scaled,centers = 8, nstart = 25)
# plot to compare
p1 <- fviz cluster(k1,geom = "point", cluster scaled)+ggtitle("k=2")
p2 <- fviz cluster(k2,geom = "point", cluster scaled)+ggtitle("k=3")
p3 <- fviz cluster(k3,geom = "point", cluster scaled)+ggtitle("k=4")
p4 <- fviz_cluster(k4,geom = "point", cluster_scaled)+ggtitle("k=5")
p5 <- fviz cluster(k5,geom = "point", cluster scaled)+ggtitle("k=6")
p6 <- fviz_cluster(k6,geom = "point", cluster_scaled)+ggtitle("k=7")
p7 <- fviz_cluster(k7,geom = "point", cluster_scaled)+ggtitle("k=8")
# for a grid layout
grid.arrange(p1,p2,p3,p4,p5,p6,p7,nrow=2)
```



grid.arrange(p1,p2,p3,nrow=1)



```
### Analyze the cluster results

# Function to compute total within cluster sum of square
wss = function(k) {kmeans(cluster_scaled,k,nstart = 10)$tot.withinss}

#Compute and plot wss for k = 1 to k = 15
k.values = 1:15

# Extract wsss for 2-15 clusters
wss_values = map_dbl(k.values,wss)

plot(k.values, wss_values,
    type = "b", pch = 19, frame = FALSE,
    main="Elbow Plot of K-Means Clustering",
    xlab="Number of Clusters K",
    ylab="Total within-clusters sum of squares")
```

## **Elbow Plot of K-Means Clustering**



```
# Silhoette scores
silhouette_score = function(k){
    km = kmeans(cluster_scaled, centers = k, nstart = 25)
    ss = silhouette(km$cluster,dist(cluster_scaled))
    mean(ss[,3])
}

k=2:10
avg_sil = sapply(k,silhouette_score)
plot(k,type = 'b',avg_sil,xlab = 'number of clusters',ylab = 'average silhouette scores'
, main="Silhouette Plot of K-Means Clustering",frame ='False')
```

# Silhouette Plot of K-Means Clustering



```
# Gap statistic
fviz_nbclust(cluster_scaled,kmeans,method = "gap_stat")
```





```
# --> shows 2 optimal clusters

## View stats within a cluster

cluster_2 <- kmeans(cluster_scaled,centers = 2,nstart = 10)

cluster_2$cluster <- as.factor(cluster_2$cluster)

cluster_2</pre>
```

```
## K-means clustering with 2 clusters of sizes 60, 209
##
## Cluster means:
##
      FFMC
## 1 -1.2621146 -1.5100174
## 2 0.3623295 0.4334978
##
## Clustering vector:
##
  ## [36] 2 2 2 1 2 2 2 2 1 1 2 2 2 2 1 2 1 1 1 2 2 2 2 2 2 2 2 2 2 2 1 2 1 1 2 1 2 2 2 2
## [211] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 2 2 2
## Levels: 1 2
##
## Within cluster sum of squares by cluster:
## [1] 151.7523 85.1491
## (between_SS / total_SS = 55.8 %)
##
## Available components:
##
## [1] "cluster"
            "centers"
                     "totss"
                             "withinss"
## [5] "tot.withinss" "betweenss"
                    "size"
                             "iter"
## [9] "ifault"
```

```
cluster_3 <- kmeans(cluster_scaled,centers = 3,nstart = 10)
cluster_3$cluster <- as.factor(cluster_3$cluster)
cluster_3</pre>
```

```
## K-means clustering with 3 clusters of sizes 207, 23, 39
##
## Cluster means:
##
    FFMC
## 1 0.3603208 0.4487290
## 2 -2.3744327 -0.7942261
## 3 -0.5121656 -1.9133255
##
## Clustering vector:
##
 ## Levels: 1 2 3
##
## Within cluster sum of squares by cluster:
## [1] 80.03692 65.03808 25.18623
 (between_SS / total_SS = 68.2 %)
##
## Available components:
##
## [1] "cluster"
         "centers"
                "totss"
                      "withinss"
## [5] "tot.withinss" "betweenss"
                "size"
                      "iter"
## [9] "ifault"
```

```
cluster_4 <- kmeans(cluster_scaled,centers = 4,nstart = 10)
cluster_4$cluster <- as.factor(cluster_4$cluster)
cluster_4</pre>
```

```
## K-means clustering with 4 clusters of sizes 23, 72, 137, 37
##
## Cluster means:
##
       FFMC
## 1 -2.3744327 -0.79422614
## 2 0.8120772 0.05189641
## 3 0.1259658 0.63404748
## 4 -0.5706735 -1.95496878
##
## Clustering vector:
##
  [1] 1 3 3 2 3 4 2 2 4 1 2 2 2 4 2 2 3 2 3 3 3 3 4 2 4 3 3 4 3 2 4 2 3 1 3
## [36] 3 3 3 1 3 3 3 1 4 3 2 3 4 3 4 4 4 2 2 3 2 2 1 3 3 1 3 4 4 3 4 3 2 3
## [211] 3 3 3 3 3 3 2 3 3 3 3 2 3 3 4 3 2 3 3 2 3 3 1 1 1 4 4 4 4 4 4 4 2 2 2
## [246] 2 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 1 1 1
## Levels: 1 2 3 4
##
## Within cluster sum of squares by cluster:
## [1] 65.03808 22.60481 24.33197 21.45854
## (between_SS / total_SS = 75.1 %)
##
## Available components:
##
                                    "withinss"
## [1] "cluster"
               "centers"
                          "totss"
                          "size"
                                     "iter"
## [5] "tot.withinss" "betweenss"
## [9] "ifault"
```

```
cluster_5 <- kmeans(cluster_scaled,centers = 5,nstart = 10)
cluster_5$cluster <- as.factor(cluster_5$cluster)
cluster_5</pre>
```

```
## K-means clustering with 5 clusters of sizes 4, 141, 64, 49, 11
##
## Cluster means:
##
        FFMC
## 1 -4.7720552 -1.702911773
## 2 0.1830428 0.622243620
## 3 0.8338975 -0.007036539
## 4 -0.8641367 -1.765087342
## 5 -1.6134145 0.546810450
##
## Clustering vector:
##
  [1] 4 2 2 3 2 4 3 3 4 5 3 3 3 4 3 3 2 3 2 2 2 2 4 3 4 2 2 4 2 3 4 3 2 5 2
## [36] 2 2 2 4 2 2 2 5 4 2 3 2 4 2 4 4 4 3 3 2 3 3 4 2 2 1 2 4 4 2 4 2 3 2
## [176] 2 2 5 2 2 2 2 2 2 2 2 2 3 2 3 2 2 2 2 3 4 2 2 4 2 2 3 2 5 5 2 4 3 3 3
## [246] 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 5 5 5
## Levels: 1 2 3 4 5
##
## Within cluster sum of squares by cluster:
## [1] 16.174952 21.818887 20.189557 44.367355 5.760022
##
  (between_SS / total_SS = 79.8 %)
##
## Available components:
##
## [1] "cluster"
                "centers"
                           "totss"
                                      "withinss"
## [5] "tot.withinss" "betweenss"
                          "size"
                                     "iter"
## [9] "ifault"
```

```
cluster_6 <- kmeans(cluster_scaled,centers = 6,nstart = 10)
cluster_6$cluster <- as.factor(cluster_6$cluster)
cluster_6</pre>
```

```
## K-means clustering with 6 clusters of sizes 36, 6, 17, 49, 58, 103
##
## Cluster means:
##
         FFMC
## 1 -0.5728355 -1.99253193
## 2 -4.0364254 -1.88103378
## 3 -1.7878471 -0.41064697
## 4 -0.1374781 0.32913614
## 5 0.8904067 0.00130322
## 6 0.2944356 0.71645722
##
## Clustering vector:
##
   [1] 3 4 4 5 4 1 5 5 1 3 5 6 5 1 4 5 6 5 6 6 6 6 1 5 1 6 4 1 6 5 1 5 6 3 4
## [36] 4 4 4 2 4 4 4 6 3 1 6 5 4 1 4 1 1 1 5 5 6 5 5 2 6 4 2 4 1 1 4 1 6 5 4
## [71] 6 6 4 5 5 1 1 1 6 4 6 1 4 6 1 1 4 6 6 5 6 5 6 6 4 3 6 4 6 4 6 5 6 6 5
## [176] 6 6 4 6 6 6 6 6 6 6 6 5 4 5 6 6 4 6 5 1 6 6 1 6 4 5 6 4 4 6 1 5 5 5
## [211] 6 4 4 4 6 6 6 4 4 6 6 6 6 6 1 6 5 4 4 6 6 6 2 2 2 1 1 1 1 1 1 1 5 5 5
## [246] 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 3 3 3
## Levels: 1 2 3 4 5 6
##
## Within cluster sum of squares by cluster:
## [1] 19.572879 23.049495 9.977696 11.341690 16.239870 10.868578
## (between_SS / total_SS = 83.0 %)
##
## Available components:
##
## [1] "cluster"
                   "centers"
                                "totss"
                                             "withinss"
## [5] "tot.withinss" "betweenss"
                               "size"
                                             "iter"
## [9] "ifault"
```

```
cluster_7 <- kmeans(cluster_scaled,centers = 7,nstart = 10)
cluster_7$cluster <- as.factor(cluster_7$cluster)
cluster_7</pre>
```

```
## K-means clustering with 7 clusters of sizes 129, 24, 26, 1, 11, 61, 17
##
## Cluster means:
##
         FFMC
                    DC
## 1 0.1002921 0.6386159
## 2 0.2472720 -0.6657184
## 3 -0.3675930 -2.0570902
## 4 -7.4095568 0.4121876
## 5 -2.4550662 -2.3112612
## 6 0.9097359 0.3126691
## 7 -1.7878471 -0.4106470
##
## Clustering vector:
   [1] 7 1 1 6 2 2 6 6 3 7 6 6 2 2 2 6 6 6 6 1 1 1 3 6 3 1 1 5 1 6 3 6 1 7 1
## [36] 1 1 1 5 1 1 1 1 7 3 1 6 1 3 1 3 3 3 6 6 1 6 6 5 1 1 4 1 3 5 1 3 1 6 1
## [71] 1 6 1 6 6 3 3 3 1 1 1 1 3 1 6 3 3 1 6 1 2 6 2 1 6 1 7 1 1 1 1 1 6 1 1 2
## [176] 1 1 1 1 1 1 1 1 1 1 1 6 2 1 6 1 1 1 1 6 5 1 1 5 1 1 2 1 1 1 1 5 2 6 6
## [211] 1 1 1 1 1 6 1 1 1 6 1 6 1 1 3 1 6 1 1 6 1 1 5 5 5 3 3 3 3 3 3 2 2 2
## [246] 2 2 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 1 1 1 7 7 7
## Levels: 1 2 3 4 5 6 7
##
## Within cluster sum of squares by cluster:
## [1] 21.487796 5.950791 6.588888 0.000000 10.730567 7.930224 9.977696
  (between SS / total SS = 88.3 %)
##
##
## Available components:
##
## [1] "cluster"
                   "centers"
                                "totss"
                                             "withinss"
## [5] "tot.withinss" "betweenss"
                                             "iter"
                                "size"
## [9] "ifault"
```

```
# cluster_2df <- as.data.frame.complex(cluster_2)
# ggplot(cluster_2, aes(color=cluster_2$cluster))+geom_point()
# ggplot(cluster_3, aes(W1,W44,color =cluster_3$cluster)) +geom_point()
# View counts within cluster
group1 = data.frame(t(cluster_scaled[cluster_3$cluster == 3,]))
summary(sapply(group1, mean))</pre>
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -2.1284 -1.5222 -1.1758 -1.2127 -0.9731 -0.2859
```

```
\label{eq:hist}  \mbox{hist(sapply(group1, mean), main = "Histogram of Group 3", xlab = "Number of observation s")}
```

### **Histogram of Group 3**



```
## Create a training a test set with scaled data
ind <- sample(2, nrow(forestfires.scaled), replace=TRUE, prob=c(0.67, 0.33)) # Randomize
(SHUFFLE) data
forestfires.scaled.training <- forestfires.scaled[ind==1, 4:11]
forestfires.scaled.test <- forestfires.scaled[ind==2, 4:11]
forestfires.scaled.trainLabels <- forestfires.scaled[ind==1, 3]
forestfires.scaled.testLabels <- forestfires.scaled[ind==2, 3]

## MORE TRANSFORMATION of the data using DPLYR

# Change OG data into factor
# if numeric, change to factor using dplyr
forestfires <- forestfires %>%
    mutate_if(is.numeric,funs(as.factor))
```

```
## Warning: funs() is soft deprecated as of dplyr 0.8.0
## Please use a list of either functions or lambdas:
##
##
    # Simple named list:
##
    list(mean = mean, median = median)
##
##
    # Auto named with `tibble::lst()`:
    tibble::lst(mean, median)
##
##
##
    # Using lambdas
    list(~ mean(., trim = .2), ~ median(., na.rm = TRUE))
##
## This warning is displayed once per session.
```

#### str(forestfires)

```
## Classes 'spec_tbl_df', 'tbl_df', 'tbl' and 'data.frame': 517 obs. of 14 variables:
                 : chr "mar" "oct" "oct" "mar" ...
## $ month
                 : chr "fri" "tue" "sat" "fri" ...
## $ day
                 : Factor w/ 9 levels "1","2","3","4",..: 7 7 7 8 8 8 8 8 8 7 ...
## $ X
                 : Factor w/ 7 levels "2", "3", "4", "5", ...: 4 3 3 5 5 5 5 5 5 4 ...
## $ Y
## $ FFMC
                 : Factor w/ 106 levels "18.7", "50.4",...: 29 57 57 68 47 74 74 66 61 76
. . .
## $ DMC
                 : Factor w/ 215 levels "1.1", "2.4", "3",...: 38 50 57 49 67 94 99 168 150
96 ...
                 : Factor w/ 219 levels "7.9", "9.3", "15.3", ...: 42 145 157 34 47 92 93 11
## $ DC
9 162 165 ...
                 : Factor w/ 119 levels "0", "0.4", "0.7", ...: 30 43 43 65 69 103 60 77 45
## $ ISI
46 ...
                 : Factor w/ 192 levels "2.2", "4.2", "4.6",..: 13 86 56 14 31 126 145 12
## $ temp
43 132 ...
                 : Factor w/ 75 levels "15", "17", "18",...: 35 17 17 73 74 13 11 67 47 24
## $ RH
. . .
## $ wind
                 : Factor w/ 21 levels "0.4", "0.9", "1.3", ..: 15 2 3 9 4 12 7 5 12 9 ...
                 : Factor w/ 7 levels "0", "0.2", "0.4", ...: 1 1 1 2 1 1 1 1 1 1 ...
## $ rain
                 : Factor w/ 251 levels "0", "0.09", "0.17", ...: 1 1 1 1 1 1 1 1 1 1 1 ...
## $ area
## $ fire yes no: Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
```

```
# if chr, change to factor using dplyr
forestfires <- forestfires %>%
  mutate_if(is.character,funs(as.factor))
str(forestfires)
```

```
## Classes 'spec_tbl_df', 'tbl_df', 'tbl' and 'data.frame': 517 obs. of 14 variables:
                 : Factor w/ 12 levels "apr", "aug", "dec",..: 8 11 11 8 8 2 2 2 12 12 ...
## $ month
                 : Factor w/ 7 levels "fri", "mon", "sat",..: 1 6 3 1 4 4 2 2 6 3 ...
## $ day
                 : Factor w/ 9 levels "1", "2", "3", "4", ...: 7 7 7 8 8 8 8 8 7 ...
## $ X
## $ Y
                 : Factor w/ 7 levels "2", "3", "4", "5", ...: 4 3 3 5 5 5 5 5 5 4 ...
                 : Factor w/ 106 levels "18.7", "50.4",..: 29 57 57 68 47 74 74 66 61 76
## $ FFMC
                 : Factor w/ 215 levels "1.1", "2.4", "3",..: 38 50 57 49 67 94 99 168 150
## $ DMC
96 ...
## $ DC
                 : Factor w/ 219 levels "7.9", "9.3", "15.3", ...: 42 145 157 34 47 92 93 11
9 162 165 ...
## $ ISI
                 : Factor w/ 119 levels "0","0.4","0.7",..: 30 43 43 65 69 103 60 77 45
46 ...
## $ temp
                 : Factor w/ 192 levels "2.2","4.2","4.6",..: 13 86 56 14 31 126 145 12
43 132 ...
## $ RH
                 : Factor w/ 75 levels "15", "17", "18", ...: 35 17 17 73 74 13 11 67 47 24
. . .
                 : Factor w/ 21 levels "0.4", "0.9", "1.3", ..: 15 2 3 9 4 12 7 5 12 9 ...
## $ wind
## $ rain
                 : Factor w/ 7 levels "0", "0.2", "0.4", ..: 1 1 1 2 1 1 1 1 1 1 ...
                 : Factor w/ 251 levels "0","0.09","0.17",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ area
## $ fire_yes_no: Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
```

```
# Nice viz to view any null values

# R for Loop , for value in sequence :: names gives name of a set of object
#:: CAT concatenate and print :: sum, values that are na, in subset of data
colnames(forestfires)
```

```
## [1] "month" "day" "X" "Y" "FFMC"

## [6] "DMC" "DC" "ISI" "temp" "RH"

## [11] "wind" "rain" "area" "fire_yes_no"
```

```
colname <- colnames(forestfires)

for(colname in names(forestfires)){
   cat("\n","\n Looking at column...", colname)
   NAcount <- sum(is.na(forestfires[colname]))
   cat("\nThe num of missing values in column ", colname, "is ", NAcount)
}</pre>
```

```
##
##
##
   Looking at column... month
## The num of missing values in column month is
##
   Looking at column... day
##
## The num of missing values in column day is
##
   Looking at column... X
##
## The num of missing values in column X is
##
##
   Looking at column... Y
## The num of missing values in column Y is
##
   Looking at column... FFMC
##
## The num of missing values in column FFMC is
##
##
   Looking at column... DMC
## The num of missing values in column DMC is
##
  Looking at column... DC
##
## The num of missing values in column DC is
##
   Looking at column... ISI
##
## The num of missing values in column ISI is
##
  Looking at column... temp
##
## The num of missing values in column temp is
##
##
   Looking at column... RH
## The num of missing values in column RH is
##
##
   Looking at column... wind
## The num of missing values in column wind is
##
   Looking at column... rain
##
## The num of missing values in column rain is
##
##
   Looking at column... area
## The num of missing values in column
##
  Looking at column... fire yes no
##
## The num of missing values in column fire_yes_no is
```

```
##### Melt data frame ######
# Drop useless coloumns
forestfires.scaled <- dplyr::select(forestfires.scaled,c(-1,-2))
mdata <- melt(forestfiresmm.scaled,id=c("month","day"))</pre>
```

```
## Warning: attributes are not identical across measure variables; they will
## be dropped
```

mdata %>% drop\_na()

| ##             | month | day        | variable | value                      |
|----------------|-------|------------|----------|----------------------------|
| ## 1           | jul   | _          | Х        | 9.000000000                |
| ## 2           | sep   |            | Х        | 1.000000000                |
| ## 3           | sep   | mon        | Х        | 2.0000000000               |
| ## 4           | aug   | wed        | Х        | 1.000000000                |
| ## 5           | aug   | fri        | Х        | 8.000000000                |
| ## 6           | jul   | sat        | Х        | 1.000000000                |
| ## 7           | aug   | wed        | Х        | 2.0000000000               |
| ## 8           | aug   | thu        | Х        | 6.000000000                |
| ## 9           | mar   | mon        | Х        | 5.000000000                |
| ## 10          | sep   | tue        | Х        | 8.000000000                |
| ## 11          | aug   | tue        | X        | 2.0000000000               |
| ## 12          | sep   | thu        | X        | 8.000000000                |
| ## 13          | jun   | fri        | Х        | 6.000000000                |
| ## 14          | jul   | sun        | X        | 9.000000000                |
| ## 15          | jul   | sat        | X        | 3.000000000                |
| ## 16          | sep   | fri        | X        | 5.000000000                |
| ## 17          | sep   | sat        | X        | 1.0000000000               |
| ## 18          | aug   | sun        | X        | 7.0000000000               |
| ## 19          | sep   | sat        | Х        | 2.0000000000               |
| ## 20          | aug   | wed        | X        | 2.0000000000               |
| ## 21          | aug   | wed        | Х        | 2.0000000000               |
| ## 22          | sep   | fri        | X        | 7.0000000000               |
| ## 23          | mar   | mon        | X        | 7.000000000                |
| ## 24          | aug   | thu        | X        | 6.000000000                |
| ## 25          | mar   | sat        | X        | 6.000000000                |
| ## 26          | sep   | sat        | X        | 8.000000000                |
| ## 27          | sep   | sun        | X        | 8.000000000                |
| ## 28          | mar   | thu        | X        | 6.000000000                |
| ## 29          | aug   | wed        | X        | 6.000000000                |
| ## 30          | aug   | wed        | X        | 6.0000000000               |
| ## 31          | mar   | fri        | X        | 6.000000000                |
| ## 32          | aug   | thu        | X        | 8.000000000                |
| ## 33          | _     | wed        | X        | 5.000000000                |
| ## 34          | aug   | wed        | Х        | 8.000000000                |
| ## 35          | aug   | sun        | X        | 7.000000000                |
| ## 36          | sep   | mon        | X        | 4.000000000                |
| ## 37          | aug   |            | Х        | 1.000000000                |
| ## 38          | aug   |            | X        | 1.000000000                |
| ## 39          | apr   |            | Х        | 6.000000000                |
| ## 40          | aug   |            | Х        | 2.000000000                |
| ## 41          | _     | wed        | Х        | 2.000000000                |
| ## 42          | aug   |            | X        | 8.0000000000               |
| ## 43          | -     | sun        | Х        | 1.000000000                |
| ## 44          | oct   |            | Х        | 8.0000000000               |
| ## 45          | feb   |            | X        | 5.0000000000               |
| ## 46          | oct   |            | X        | 7.0000000000               |
| ## 47          | aug   |            | X        | 8.000000000                |
| ## 48          | sep   |            | X        | 2.0000000000               |
| ## 49<br>## 50 | mar   | sun        | X        | 8.000000000<br>1.000000000 |
| ## 50          | sep   |            | X<br>X   | 6.0000000000               |
| ## 51          | mar   | sat<br>sun | X        | 7.0000000000               |
| ππ 32          | mar   | Sull       | Λ        | , • 0000000000             |

| ## 53  | mar fri | X | 6.0000000000 |
|--------|---------|---|--------------|
| ## 54  | aug thu | X | 2.0000000000 |
| ## 55  | aug tue | X | 2.0000000000 |
| ## 56  | sep wed | X | 4.0000000000 |
| ## 57  | aug tue | X | 2.0000000000 |
| ## 58  | aug fri | X | 2.0000000000 |
| ## 59  | apr thu | X | 6.0000000000 |
| ## 60  | sep thu | X | 4.0000000000 |
| ## 61  | sep tue | X | 3.0000000000 |
| ## 62  | sep mon | X | 2.0000000000 |
| ## 63  | sep tue | X | 1.0000000000 |
| ## 64  | mar sun | X | 6.0000000000 |
| ## 65  | feb sun | X | 7.0000000000 |
| ## 66  | oct wed | X | 8.0000000000 |
| ## 67  | mar sat | X | 5.0000000000 |
| ## 68  | sep thu | X | 4.0000000000 |
| ## 69  | aug sat | X | 2.0000000000 |
| ## 70  | sep tue | X | 7.0000000000 |
| ## 71  | sep fri | Х | 6.0000000000 |
| ## 72  | sep thu | Х | 8.0000000000 |
| ## 73  | oct sat | Х | 4.0000000000 |
| ## 74  | aug sat | Х | 7.0000000000 |
| ## 75  | sep fri | Х | 7.0000000000 |
| ## 76  | mar mon | Х | 7.0000000000 |
| ## 77  | mar sat | Х | 4.0000000000 |
| ## 78  | mar sat | X | 4.0000000000 |
| ## 79  | sep sun | X | 4.0000000000 |
| ## 80  | sep mon | X | 1.0000000000 |
| ## 81  | sep wed | X | 4.0000000000 |
| ## 82  | mar mon | X | 6.0000000000 |
| ## 83  | aug sun | X | 8.0000000000 |
| ## 84  | sep fri | X | 3.0000000000 |
| ## 85  | mar mon | X | 4.0000000000 |
| ## 86  | jul fri | X | 2.0000000000 |
| ## 87  | sep wed | X | 7.0000000000 |
| ## 88  | sep sun | X | 4.0000000000 |
| ## 89  | oct mon | X | 7.0000000000 |
| ## 90  | aug sat | X | 8.0000000000 |
| ## 91  | sep sun | X | 4.0000000000 |
| ## 92  | aug sat | X | 8.0000000000 |
| ## 93  | sep wed | X | 4.0000000000 |
| ## 94  | sep sun | X | 1.0000000000 |
| ## 95  | sep tue | X | 6.0000000000 |
| ## 96  | sep tue | X | 9.0000000000 |
| ## 97  | sep sat | X | 4.0000000000 |
| ## 98  | aug sun | X | 8.0000000000 |
| ## 99  | sep sat | X | 2.0000000000 |
| ## 100 | sep tue | X | 1.0000000000 |
| ## 101 | sep sat | X | 6.0000000000 |
| ## 102 | aug sun | Х | 2.0000000000 |
| ## 103 | aug sun | Х | 2.0000000000 |
| ## 104 | aug sun | Х | 3.0000000000 |
| ## 105 | aug wed | X | 2.0000000000 |
| ## 106 | aug wed | X | 3.0000000000 |
|        |         |   |              |

| ## 107 | aug wed | X | 8.0000000000 |
|--------|---------|---|--------------|
| ## 108 | aug wed | X | 8.0000000000 |
| ## 109 | aug wed | Х | 6.0000000000 |
| ## 110 | aug thu | Х | 7.0000000000 |
| ## 111 | aug thu | Х | 6.0000000000 |
| ## 112 | aug sat | Х | 8.0000000000 |
| ## 113 | aug sat | Х | 4.0000000000 |
| ## 114 | aug sat | Х | 7.0000000000 |
| ## 115 | aug mon | Х | 2.0000000000 |
| ## 116 | aug fri | Х | 3.000000000  |
| ## 117 | aug fri | Х | 2.0000000000 |
| ## 118 | aug fri | Х | 6.0000000000 |
| ## 119 | aug fri | Х | 4.0000000000 |
| ## 120 | aug tue | Х | 4.0000000000 |
| ## 121 | aug tue | Х | 6.0000000000 |
| ## 122 | aug tue | Х | 4.0000000000 |
| ## 123 | aug tue | Х | 2.0000000000 |
| ## 124 | aug tue | Х | 8.0000000000 |
| ## 125 | aug tue | Х | 2.0000000000 |
| ## 126 | dec sun | Х | 4.0000000000 |
| ## 127 | dec wed | Х | 8.0000000000 |
| ## 128 | dec thu | Х | 4.0000000000 |
| ## 129 | dec mon | Х | 4.0000000000 |
| ## 130 | dec mon | Х | 3.000000000  |
| ## 131 | dec mon | Х | 4.0000000000 |
| ## 132 | dec mon | Х | 4.0000000000 |
| ## 133 | dec fri | Х | 4.0000000000 |
| ## 134 | dec tue | Х | 6.0000000000 |
| ## 135 | feb wed | Х | 3.000000000  |
| ## 136 | feb fri | Х | 5.0000000000 |
| ## 137 | jul sat | Х | 9.0000000000 |
| ## 138 | jul fri | Х | 4.0000000000 |
| ## 139 | jul tue | Х | 7.0000000000 |
| ## 140 | jul tue | Х | 8.0000000000 |
| ## 141 | jun sun | Х | 6.0000000000 |
| ## 142 | jun mon | Х | 6.0000000000 |
| ## 143 | sep sun | Х | 7.0000000000 |
| ## 144 | sep sun | Х | 3.000000000  |
| ## 145 | sep sun | Х | 6.0000000000 |
| ## 146 | sep wed | Х | 4.0000000000 |
| ## 147 | sep thu | Х | 4.0000000000 |
| ## 148 | sep thu | Х | 5.0000000000 |
| ## 149 | sep thu | Х | 6.0000000000 |
| ## 150 | sep thu | Х | 1.0000000000 |
| ## 151 | sep thu | Х | 6.0000000000 |
| ## 152 | sep thu | Х | 3.000000000  |
| ## 153 | sep thu | Х | 6.0000000000 |
| ## 154 | sep sat | Х | 4.0000000000 |
| ## 155 | sep sat | Х | 3.000000000  |
| ## 156 | sep sat | Х | 7.0000000000 |
| ## 157 | sep sat | Х | 4.0000000000 |
| ## 158 | sep mon | Х | 1.0000000000 |
| ## 159 | sep mon | Х | 6.0000000000 |
| ## 160 | sep mon | Х | 8.0000000000 |
|        |         |   |              |

| ## 161 | sep mon | X | 2.0000000000  |
|--------|---------|---|---------------|
| ## 162 | sep mon | X | 2.0000000000  |
| ## 163 | sep mon | X | 8.0000000000  |
| ## 164 | sep mon | X | 6.0000000000  |
| ## 165 | sep mon | X | 2.0000000000  |
| ## 166 | sep mon | X | 1.0000000000  |
| ## 167 | sep fri | X | 5.0000000000  |
| ## 168 | sep fri | X | 5.0000000000  |
| ## 169 | sep fri | X | 4.0000000000  |
| ## 170 | sep fri | X | 7.0000000000  |
| ## 171 | sep fri | X | 7.0000000000  |
| ## 172 | sep fri | X | 7.0000000000  |
| ## 173 | sep fri | X | 4.0000000000  |
| ## 174 | sep fri | X | 4.0000000000  |
| ## 175 | sep fri | X | 1.0000000000  |
| ## 176 | sep fri | X | 6.0000000000  |
| ## 177 | sep fri | X | 4.0000000000  |
| ## 178 | sep fri | X | 7.0000000000  |
| ## 179 | sep tue | Х | 4.0000000000  |
| ## 180 | sep tue | Х | 6.0000000000  |
| ## 181 | sep tue | X | 6.0000000000  |
| ## 182 | sep tue | X | 4.0000000000  |
| ## 183 | sep sat | Х | 6.0000000000  |
| ## 184 | sep sun | Х | 7.0000000000  |
| ## 185 | sep fri | X | 6.0000000000  |
| ## 186 | sep sat | Х | 6.0000000000  |
| ## 187 | aug sat | X | 2.0000000000  |
| ## 188 | jul wed | X | 5.0000000000  |
| ## 189 | aug thu | X | 8.0000000000  |
| ## 190 | aug wed | X | 8.0000000000  |
| ## 191 | aug thu | Х | 9.0000000000  |
| ## 192 | aug sat | Х | 8.0000000000  |
| ## 193 | aug sun | Х | 2.0000000000  |
| ## 194 | sep sun | Х | 3.0000000000  |
| ## 195 | aug fri | Х | 6.0000000000  |
| ## 196 | feb mon | Х | 7.0000000000  |
| ## 197 | sep fri | Х | 8.0000000000  |
| ## 198 | sep sun | Х | 1.0000000000  |
| ## 199 | feb sun | Х | 4.0000000000  |
| ## 200 | sep sun | Х | 4.0000000000  |
| ## 201 | aug sun | Х | 5.0000000000  |
| ## 202 | jun wed | Х | 9.0000000000  |
| ## 203 | sep thu | Х | 3.0000000000  |
| ## 204 | sep wed | X | 2.0000000000  |
| ## 205 | sep sat | Х | 6.0000000000  |
| ## 206 | sep fri | Х | 4.0000000000  |
| ## 207 | feb fri | X | 7.0000000000  |
| ## 208 | jul mon | X | 9.0000000000  |
| ## 209 | aug thu | X | 8.0000000000  |
| ## 210 | jul tue | X | 6.0000000000  |
| ## 211 | aug sun | X | 2.00000000000 |
| ## 212 | aug sun | X | 2.0000000000  |
| ## 213 | aug wed | X | 8.0000000000  |
| ## 214 | jul sun | X | 8.0000000000  |
| "" 214 | Jur Dun | Λ | 3.000000000   |

| ## 215           | sep sat            | X | 1.0000000000                 |
|------------------|--------------------|---|------------------------------|
| ## 216           | aug sat            | Х | 8.0000000000                 |
| ## 217           | aug mon            | X | 2.0000000000                 |
| ## 218           | aug sun            | X | 3.0000000000                 |
| ## 219           | aug sat            | X | 1.0000000000                 |
| ## 220           | aug sun            | Х | 2.0000000000                 |
| ## 221           | aug mon            | Х | 8.0000000000                 |
| ## 222           | aug sat            | Х | 2.0000000000                 |
| ## 223           | sep fri            | Х | 1.0000000000                 |
| ## 224           | aug mon            | Х | 8.0000000000                 |
| ## 225           | apr mon            | Х | 6.0000000000                 |
| ## 226           | sep fri            | Х | 2.0000000000                 |
| ## 227           | aug wed            | Х | 4.0000000000                 |
| ## 228           | aug fri            | Х | 1.0000000000                 |
| ## 229           | aug wed            | Х | 1.0000000000                 |
| ## 230           | aug sat            | Х | 8.0000000000                 |
| ## 231           | aug sat            | Х | 7.0000000000                 |
| ## 232           | sep sun            | Х | 1.0000000000                 |
| ## 233           | feb tue            | Х | 6.0000000000                 |
| ## 234           | feb tue            | Х | 6.0000000000                 |
| ## 235           | feb sat            | Х | 2.0000000000                 |
| ## 236           | mar mon            | Х | 6.0000000000                 |
| ## 237           | mar wed            | X | 3.0000000000                 |
| ## 238           | mar thu            | X | 6.0000000000                 |
| ## 239           | apr sun            | X | 6.0000000000                 |
| ## 240           | may fri            | X | 4.0000000000                 |
| ## 241           | jun mon            | X | 8.0000000000                 |
| ## 242           | jun sat            | X | 9.0000000000                 |
| ## 242           | jun sac<br>jun thu | X | 4.0000000000                 |
| ## 243<br>## 244 | jun thu            | X | 2.0000000000                 |
| ## 245           | juh thu<br>jul thu | X | 4.0000000000                 |
| ## 245           | jul sun            | X | 4.0000000000                 |
| ## 240           | jul sun            | X | 7.0000000000                 |
| ## 247           | jul sun<br>jul mon |   | 7.0000000000                 |
| ## 248<br>## 249 | _                  | X | 9.0000000000                 |
| ## 249           | jul thu<br>aug sun | X | 3.0000000000                 |
|                  | •                  | X |                              |
| ## 251<br>## 252 | aug sun            | X | 2.0000000000                 |
|                  | aug mon            | X | 2.0000000000<br>5.0000000000 |
|                  | aug tue            | X |                              |
| ## 254<br>## 255 | aug tue            | X | 5.000000000                  |
| ## 255           | aug tue            | X | 4.0000000000                 |
| ## 256           | aug fri            | X | 1.000000000                  |
| ## 257           | aug sat            | X | 6.0000000000                 |
| ## 258           | aug mon            | Х | 4.0000000000                 |
| ## 259           | aug tue            | X | 3.000000000                  |
| ## 260           | aug tue            | X | 6.000000000                  |
| ## 261           | aug tue            | X | 7.0000000000                 |
| ## 262           | aug wed            | Х | 2.0000000000                 |
| ## 263           | aug wed            | X | 4.000000000                  |
| ## 264           | aug thu            | X | 1.000000000                  |
| ## 265           | aug fri            | Х | 5.000000000                  |
| ## 266           | aug fri            | Х | 6.000000000                  |
| ## 267           | aug sun            | Х | 4.000000000                  |
| ## 268           | aug sun            | X | 2.0000000000                 |
|                  |                    |   |                              |

| ## 269           | aug sun | X | 7.0000000000 |
|------------------|---------|---|--------------|
| ## 270           | jul tue | Y | 9.000000000  |
| ## 271           | sep tue | Y | 4.0000000000 |
| ## 272           | sep mon | Y | 5.0000000000 |
| ## 273           | aug wed | Y | 2.0000000000 |
| ## 274           | aug fri | Y | 6.0000000000 |
| ## 275           | jul sat | Y | 2.0000000000 |
| ## 276           | aug wed | Y | 5.0000000000 |
| ## 277           | aug thu | Y | 5.0000000000 |
| ## 278           | mar mon | Y | 4.0000000000 |
| ## 279           | sep tue | Y | 3.000000000  |
| ## 280           | aug tue | Y | 2.0000000000 |
| ## 281           | sep thu | Y | 6.0000000000 |
| ## 282           | jun fri | Y | 5.0000000000 |
| ## 283           | jul sun | Y | 9.0000000000 |
| ## 284           | jul sat | Y | 4.0000000000 |
| ## 285           | sep fri | Y | 4.0000000000 |
| ## 286           | sep sat | Y | 5.0000000000 |
| ## 287           | aug sun | Y | 4.0000000000 |
| ## 288           | sep sat | Y | 4.0000000000 |
| ## 289           | aug wed | Y | 2.0000000000 |
| ## 290           | aug wed | Y | 4.0000000000 |
| ## 291           | sep fri | Y | 4.0000000000 |
| ## 292           | mar mon | Y | 4.0000000000 |
| ## 293           | aug thu | Y | 4.0000000000 |
| ## 294           | mar sat | Y | 3.0000000000 |
| ## 295           | sep sat | Y | 6.0000000000 |
| ## 296           | sep sun | Y | 5.0000000000 |
| ## 290<br>## 297 | mar thu | Y | 5.0000000000 |
| ## 298           | aug wed | Y | 5.0000000000 |
| ## 298<br>## 299 | aug wed | Y | 5.0000000000 |
| ## 300           | mar fri | Y | 5.0000000000 |
| ## 300<br>## 301 | aug thu | Y | 6.0000000000 |
| ## 301<br>## 302 | sep wed | Y | 4.0000000000 |
| ## 302<br>## 303 | -       |   | 6.0000000000 |
|                  | aug wed | Y |              |
| ## 304           | aug sun | Y | 4.0000000000 |
| ## 305           | sep mon | Y | 4.0000000000 |
| ## 306           | aug sat | Y | 4.0000000000 |
| ## 307           | aug sat | Y | 4.000000000  |
| ## 308           | apr thu | Y | 5.000000000  |
| ## 309           | aug sun | Y | 5.0000000000 |
| ## 310           | sep wed | Y | 5.000000000  |
| ## 311           | aug tue | Y | 6.000000000  |
| ## 312           | sep sun | Y | 3.000000000  |
| ## 313           | oct mon | Y | 6.000000000  |
| ## 314           | feb sun | Y | 4.000000000  |
| ## 315           | oct mon | Y | 4.000000000  |
| ## 316           | aug fri | Y | 6.000000000  |
| ## 317           | sep tue | Y | 5.000000000  |
| ## 318           | mar sun | Y | 6.000000000  |
| ## 319           | sep mon | Y | 5.000000000  |
| ## 320           | mar sat | Y | 4.000000000  |
| ## 321           | mar sun | Y | 4.000000000  |
| ## 322           | mar fri | Y | 5.000000000  |
|                  |         |   |              |

| ## 323 | aug thu | Y | 5.0000000000 |
|--------|---------|---|--------------|
| ## 324 | aug tue | Y | 2.0000000000 |
| ## 325 | sep wed | Y | 5.0000000000 |
| ## 326 | aug tue | Y | 2.0000000000 |
| ## 327 | aug fri | Y | 5.0000000000 |
| ## 328 | apr thu | Y | 5.0000000000 |
| ## 329 | sep thu | Y | 5.0000000000 |
| ## 330 | sep tue | Y | 4.0000000000 |
| ## 331 | sep mon | Y | 4.0000000000 |
| ## 332 | sep tue | Y | 5.0000000000 |
| ## 333 | mar sun | Y | 5.0000000000 |
| ## 334 | feb sun | Y | 4.0000000000 |
| ## 335 | oct wed | Y | 6.0000000000 |
| ## 336 | mar sat | Y | 6.0000000000 |
| ## 337 | sep thu | Y | 5.0000000000 |
| ## 338 | aug sat | Y | 2.0000000000 |
| ## 339 | sep tue | Y | 5.0000000000 |
| ## 340 | sep fri | Y | 5.0000000000 |
| ## 341 | sep thu | Y | 3.0000000000 |
| ## 342 | oct sat | Y | 4.0000000000 |
| ## 343 | aug sat | Y | 4.0000000000 |
| ## 344 | sep fri | Y | 4.0000000000 |
| ## 345 | mar mon | Y | 3.0000000000 |
| ## 346 | mar sat | Y | 4.0000000000 |
| ## 347 | mar sat | Y | 4.0000000000 |
| ## 348 | sep sun | Y | 4.0000000000 |
| ## 349 | sep mon | Y | 3.000000000  |
| ## 350 | sep wed | Y | 5.0000000000 |
| ## 351 | mar mon | Y | 5.0000000000 |
| ## 352 | aug sun | Y | 6.0000000000 |
| ## 353 | sep fri | Y | 4.0000000000 |
| ## 354 | mar mon | Y | 3.0000000000 |
| ## 355 | jul fri | Y | 2.0000000000 |
| ## 356 | sep wed | Y | 4.0000000000 |
| ## 357 | sep sun | Y | 4.0000000000 |
| ## 358 | oct mon | Y | 5.0000000000 |
| ## 359 | aug sat | Y | 6.0000000000 |
| ## 360 | sep sun | Y | 6.0000000000 |
| ## 361 | aug sat | Y | 6.0000000000 |
| ## 362 | sep wed | Y | 4.0000000000 |
| ## 363 | sep sun | Y | 5.0000000000 |
| ## 364 | sep tue | Y | 4.0000000000 |
| ## 365 | sep tue | Y | 4.0000000000 |
| ## 366 | sep sat | Y | 5.0000000000 |
| ## 367 | aug sun | Y | 6.0000000000 |
| ## 368 | sep sat | Y | 2.0000000000 |
| ## 369 | sep tue | Y | 2.0000000000 |
| ## 370 | sep sat | Y | 5.0000000000 |
| ## 371 | aug sun | Y | 4.000000000  |
| ## 372 | aug sun | Y | 4.0000000000 |
| ## 373 | aug sun | Y | 4.0000000000 |
| ## 374 | aug wed | Y | 4.000000000  |
| ## 375 | aug wed | Y | 4.0000000000 |
| ## 376 | aug wed | Y | 5.000000000  |
|        |         |   |              |

| ## 377 | aug wed | Y | 5.0000000000 |
|--------|---------|---|--------------|
| ## 378 | aug wed | Y | 5.0000000000 |
| ## 379 | aug thu | Y | 4.0000000000 |
| ## 380 | aug thu | Y | 3.000000000  |
| ## 381 | aug sat | Y | 6.0000000000 |
| ## 382 | aug sat | Y | 3.0000000000 |
| ## 383 | aug sat | Y | 4.0000000000 |
| ## 384 | aug mon | Y | 4.0000000000 |
| ## 385 | aug fri | Y | 4.0000000000 |
| ## 386 | aug fri | Y | 4.0000000000 |
| ## 387 | aug fri | Y | 3.0000000000 |
| ## 388 | aug fri | Y | 4.0000000000 |
| ## 389 | aug tue | Y | 4.0000000000 |
| ## 390 | aug tue | Y | 5.0000000000 |
| ## 391 | aug tue | Y | 4.0000000000 |
| ## 392 | aug tue | Y | 2.0000000000 |
| ## 393 | aug tue | Y | 6.0000000000 |
| ## 394 | aug tue | Y | 5.0000000000 |
| ## 395 | dec sun | Y | 6.0000000000 |
| ## 396 | dec wed | Y | 6.0000000000 |
| ## 397 | dec thu | Y | 6.0000000000 |
| ## 398 | dec mon | Y | 4.0000000000 |
| ## 399 | dec mon | Y | 4.0000000000 |
| ## 400 | dec mon | Y | 4.0000000000 |
| ## 401 | dec mon | Y | 4.0000000000 |
| ## 402 | dec fri | Y | 6.0000000000 |
| ## 403 | dec tue | Y | 5.0000000000 |
| ## 404 | feb wed | Y | 4.0000000000 |
| ## 405 | feb fri | Y | 4.0000000000 |
| ## 406 | jul sat | Y | 4.0000000000 |
| ## 407 | jul fri | Y | 5.0000000000 |
| ## 408 | jul tue | Y | 6.0000000000 |
| ## 409 | jul tue | Y | 6.0000000000 |
| ## 410 | jun sun | Y | 4.0000000000 |
| ## 411 | jun mon | Y | 5.0000000000 |
| ## 412 | sep sun | Y | 4.0000000000 |
| ## 413 | sep sun | Y | 4.0000000000 |
| ## 414 | sep sun | Y | 3.000000000  |
| ## 415 | sep wed | Y | 4.0000000000 |
| ## 416 | sep thu | Y | 4.0000000000 |
| ## 417 | sep thu | Y | 4.0000000000 |
| ## 418 | sep thu | Y | 3.000000000  |
| ## 419 | sep thu | Y | 4.0000000000 |
| ## 420 | sep thu | Y | 5.0000000000 |
| ## 421 | sep thu | Y | 5.0000000000 |
| ## 422 | sep thu | Y | 5.0000000000 |
| ## 423 | sep sat | Y | 3.000000000  |
| ## 424 | sep sat | Y | 3.000000000  |
| ## 425 | sep sat | Y | 4.000000000  |
| ## 426 | sep sat | Y | 4.000000000  |
| ## 427 | sep mon | Y | 4.000000000  |
| ## 428 | sep mon | Y | 3.000000000  |
| ## 429 | sep mon | Y | 6.000000000  |
| ## 430 | sep mon | Y | 4.0000000000 |
|        |         |   |              |

| ## 431 | sep mon | Y | 5.0000000000 |
|--------|---------|---|--------------|
| ## 432 | sep mon | Y | 6.0000000000 |
| ## 433 | sep mon | Y | 3.0000000000 |
| ## 434 | sep mon | Y | 2.0000000000 |
| ## 435 | sep mon | Y | 4.0000000000 |
| ## 436 | sep fri | Y | 4.0000000000 |
| ## 437 | sep fri | Y | 4.0000000000 |
| ## 438 | sep fri | Y | 4.0000000000 |
| ## 439 | sep fri | Y | 4.0000000000 |
| ## 440 | sep fri | Y | 4.0000000000 |
| ## 441 | sep fri | Y | 4.0000000000 |
| ## 442 | sep fri | Y | 4.0000000000 |
| ## 443 | sep fri | Y | 4.0000000000 |
| ## 444 | sep fri | Y | 4.0000000000 |
| ## 445 | sep fri | Y | 5.0000000000 |
| ## 446 | sep fri | Y | 3.0000000000 |
| ## 447 | sep fri | Y | 4.0000000000 |
| ## 448 | sep tue | Y | 3.0000000000 |
| ## 449 | sep tue | Y | 5.0000000000 |
| ## 450 | sep tue | Y | 5.0000000000 |
| ## 451 | sep tue | Y | 5.0000000000 |
| ## 452 | sep sat | Y | 5.0000000000 |
| ## 453 | sep sun | Y | 4.0000000000 |
| ## 454 | sep fri | Y | 5.0000000000 |
| ## 455 | sep sat | Y | 5.0000000000 |
| ## 456 | aug sat | Y | 2.0000000000 |
| ## 457 | jul wed | Y | 4.0000000000 |
| ## 458 | aug thu | Y | 6.0000000000 |
| ## 459 | aug wed | Y | 6.0000000000 |
| ## 460 | aug thu | Y | 6.0000000000 |
| ## 461 | aug sat | Y | 4.0000000000 |
| ## 462 | aug sun | Y | 4.0000000000 |
| ## 463 | sep sun | Y | 4.0000000000 |
| ## 464 | aug fri | Y | 4.0000000000 |
| ## 465 | feb mon | Y | 4.0000000000 |
| ## 466 | sep fri | Y | 6.0000000000 |
| ## 467 | sep sun | Y | 3.0000000000 |
| ## 468 | feb sun | Y | 5.0000000000 |
| ## 469 | sep sun | Y | 3.000000000  |
| ## 470 | aug sun | Y | 6.0000000000 |
| ## 471 | jun wed | Y | 5.0000000000 |
| ## 472 | sep thu | Y | 4.0000000000 |
| ## 473 | sep wed | Y | 4.0000000000 |
| ## 474 | sep sat | Y | 5.0000000000 |
| ## 475 | sep fri | Y | 3.0000000000 |
| ## 476 | feb fri | Y | 4.0000000000 |
| ## 477 | jul mon | Y | 4.0000000000 |
| ## 478 | aug thu | Y | 6.0000000000 |
| ## 479 | jul tue | Y | 3.0000000000 |
| ## 480 | aug sun | Y | 4.0000000000 |
| ## 481 | aug sun | Y | 5.0000000000 |
| ## 482 | aug wed | Y | 8.0000000000 |
| ## 483 | jul sun | Y | 6.0000000000 |
| ## 484 | sep sat | Y | 3.0000000000 |
|        | -       |   |              |

| ## 485           | aug sat            | Y      | 6.0000000000 |
|------------------|--------------------|--------|--------------|
| ## 486           | aug mon            | Y      | 4.0000000000 |
| ## 487           | aug sun            | Y      | 4.0000000000 |
| ## 488           | aug sat            | Y      | 3.0000000000 |
| ## 489           | aug sun            | Y      | 4.0000000000 |
| ## 490           | aug mon            | Y      | 6.0000000000 |
| ## 491           | aug sat            | Y      | 5.0000000000 |
| ## 492           | sep fri            | Y      | 3.0000000000 |
| ## 493           | aug mon            | Y      | 6.0000000000 |
| ## 494           | apr mon            | Y      | 5.0000000000 |
| ## 495           | sep fri            | Y      | 5.0000000000 |
| ## 496           | aug wed            | Y      | 5.0000000000 |
| ## 497           | aug fri            | Y      | 4.0000000000 |
| ## 498           | aug wed            | Y      | 4.0000000000 |
| ## 499           | aug sat            | Y      | 6.0000000000 |
| ## 500           | aug sat            | Y      | 4.0000000000 |
| ## 501           | sep sun            | Y      | 4.0000000000 |
| ## 502           | feb tue            | Y      | 5.0000000000 |
| ## 503           | feb tue            | Y      | 4.0000000000 |
| ## 504           | feb sat            | Y      | 2.0000000000 |
| ## 505           | mar mon            | Y      | 5.0000000000 |
| ## 506           | mar wed            | Y      | 4.0000000000 |
| ## 507           | mar thu            | Y      | 5.0000000000 |
| ## 508           | apr sun            | Y      | 3.0000000000 |
| ## 509           | may fri            | Y      | 3.0000000000 |
| ## 510           | jun mon            | Y      | 3.0000000000 |
| ## 511           | jun sat            | Y      | 4.0000000000 |
| ## 512           | jun thu            | Y      | 3.0000000000 |
| ## 513           | jun thu            | Y      | 5.0000000000 |
| ## 514           | jul thu            | Y      | 3.0000000000 |
| ## 515           | jul sun            | Y      | 3.0000000000 |
| ## 516           | jul sun            | Y      | 4.0000000000 |
| ## 517           | jul mon            | Y      | 4.0000000000 |
| ## 518           | jul thu            | Y      | 9.0000000000 |
| ## 519           | aug sun            | Y      | 4.0000000000 |
| ## 520           | aug sun            | Y      | 5.0000000000 |
| ## 521           | aug mon            | Y      | 4.0000000000 |
| ## 522           | aug tue            | Y      | 4.0000000000 |
| ## 523           | aug tue            | Y      | 4.0000000000 |
| ## 524           | aug tue            | Y      | 4.0000000000 |
| ## 525           | aug fri            | Y      | 3.0000000000 |
| ## 526           | aug sat            | Y      | 6.0000000000 |
| ## 527           | aug mon            | Y      | 5.0000000000 |
| ## 528           | aug tue            | Y      | 4.0000000000 |
| ## 529           | aug tue            | Y      | 5.0000000000 |
| ## 530           | aug tue            | Y      | 5.0000000000 |
| ## 530<br>## 531 | aug cue<br>aug wed | Y      | 4.0000000000 |
| ## 531           | aug wed            | Y      | 3.0000000000 |
| ## 532           | aug wed<br>aug thu | Y      | 2.0000000000 |
| ## 534           | aug thu<br>aug fri | Y      | 4.0000000000 |
| ## 534           | aug fri            | Y      | 5.0000000000 |
| ## 535           | aug III<br>aug sun | Y      | 3.0000000000 |
| ## 536<br>## 537 | _                  | Y<br>Y | 4.0000000000 |
| ## 537<br>## 538 | aug sun            |        | 4.0000000000 |
| $\pi\pi$ 536     | aug sun            | Y      | ±.0000000000 |

| ## 539 | jul tue | FFMC $-1.4078948383$ |
|--------|---------|----------------------|
| ## 540 | sep tue | FFMC -0.0084041477   |
| ## 541 | sep mon | FFMC $-0.0353174302$ |
| ## 542 | aug wed | FFMC 1.2026935653    |
| ## 543 | aug fri | FFMC $-0.2506236903$ |
| ## 544 | jul sat | FFMC -0.2775369728   |
| ## 545 | aug wed | FFMC 1.2026935653    |
| ## 546 | aug thu | FFMC 1.1219537178    |
| ## 547 | mar mon | FFMC -0.2506236903   |
| ## 548 | sep tue | FFMC -1.7846807934   |
| ## 549 | aug tue | FFMC 1.0143005877    |
| ## 550 | sep thu | FFMC 0.7182544801    |
| ## 551 | jun fri | FFMC 0.3952950900    |
| ## 552 | jul sun | FFMC -0.2506236903   |
| ## 553 | jul sat | FFMC -0.2506236903   |
| ## 554 | sep fri | FFMC 0.8797341752    |
| ## 555 | sep sat | FFMC 0.6375146326    |
| ## 556 | aug sun | FFMC 1.0143005877    |
| ## 557 | sep sat | FFMC 0.6375146326    |
| ## 558 | aug wed | FFMC 0.2876419599    |
| ## 559 | aug wed | FFMC 0.2876419599    |
| ## 560 | sep fri | FFMC 0.3683818075    |
| ## 561 | mar mon | FFMC -0.2506236903   |
| ## 562 | aug thu | FFMC 1.1219537178    |
| ## 563 | mar sat | FFMC -0.1160572777   |
| ## 564 | sep sat | FFMC 0.3952950900    |
| ## 565 | sep sun | FFMC -0.3582768203   |
| ## 566 | mar thu | FFMC -1.6501143809   |
| ## 567 | aug wed | FFMC 0.2876419599    |
| ## 568 | aug wed | FFMC 1.3372599779    |
| ## 569 | mar fri | FFMC 0.0454224173    |
| ## 570 | aug thu | FFMC 1.1219537178    |
| ## 571 | sep wed | FFMC 0.5029482200    |
| ## 572 | aug wed | FFMC -1.4617214033   |
| ## 573 | aug sun | FFMC 0.0992489823    |
| ## 574 | sep mon | FFMC -0.0353174302   |
| ## 575 | aug sat | FFMC -0.2237104078   |
| ## 576 | aug sat | FFMC -0.2237104078   |
| ## 577 | apr thu | FFMC -2.5651659863   |
| ## 578 | aug sun | FFMC -0.2237104078   |
| ## 579 | sep wed | FFMC -0.2506236903   |
| ## 580 | aug tue | FFMC -0.6004963629   |
| ## 581 | sep sun | FFMC 0.3683818075    |
| ## 582 | oct mon | FFMC -1.6501143809   |
| ## 583 | feb sun | FFMC -1.1387620132   |
| ## 584 | oct mon | FFMC 0.1799888299    |
| ## 585 | aug fri | FFMC 0.7720810451    |
| ## 586 | sep tue | FFMC -0.0084041477   |
| ## 587 | mar sun | FFMC -0.4659299504   |
| ## 588 | sep mon | FFMC -0.0353174302   |
| ## 589 | mar sat | FFMC -0.0622307127   |
| ## 590 | mar sun | FFMC -0.0891439952   |
| ## 591 | mar fri | FFMC 0.0454224173    |
| ## 592 | aug thu | FFMC 1.1219537178    |
|        |         |                      |

| ı      |         |                      |
|--------|---------|----------------------|
| ## 593 | aug tue | FFMC 1.0143005877    |
| ## 594 | sep wed | FFMC 0.5029482200    |
| ## 595 | aug tue | FFMC 1.0143005877    |
| ## 596 | aug fri | FFMC 0.7720810451    |
| ## 597 | apr thu | FFMC -2.5651659863   |
| ## 598 | sep thu | FFMC 0.5029482200    |
| ## 599 | sep tue | FFMC -0.0084041477   |
| ## 600 | sep mon | FFMC -7.4095568383   |
| ## 601 | sep tue | FFMC -0.0084041477   |
| ## 602 | mar sun | FFMC -0.2506236903   |
| ## 603 | feb sun | FFMC -1.9192472060   |
| ## 604 | oct wed | FFMC 0.0992489823    |
| ## 605 | mar sat | FFMC -0.1160572777   |
| ## 606 | sep thu | FFMC 0.5029482200    |
| ## 607 | aug sat | FFMC 0.6644279151    |
| ## 608 | sep tue | FFMC -0.0084041477   |
| ## 609 | sep fri | FFMC 0.3683818075    |
| ## 610 | sep thu | FFMC 0.7182544801    |
| ## 611 | oct sat | FFMC -0.1160572777   |
| ## 612 | aug sat | FFMC 0.6644279151    |
| ## 613 | sep fri | FFMC 0.8797341752    |
| ## 614 | mar mon | FFMC -0.9234557531   |
| ## 615 | mar sat | FFMC 0.1799888299    |
| ## 616 | mar sat | FFMC 0.1799888299    |
| ## 617 | sep sun | FFMC 0.3683818075    |
| ## 618 | sep mon | FFMC $-0.6543229280$ |
| ## 619 | sep wed | FFMC 0.5029482200    |
| ## 620 | mar mon | FFMC -0.2506236903   |
| ## 621 | aug sun | FFMC -0.2237104078   |
| ## 622 | sep fri | FFMC 0.6106013501    |
| ## 623 | mar mon | FFMC -0.9234557531   |
| ## 624 | jul fri | FFMC -0.7350627755   |
| ## 625 | sep wed | FFMC -0.2506236903   |
| ## 626 | sep sun | FFMC 0.6644279151    |
| ## 627 | oct mon | FFMC 0.1799888299    |
| ## 628 | aug sat | FFMC 0.3145552424    |
| ## 629 | sep sun | FFMC 0.6644279151    |
| ## 630 | aug sat | FFMC 0.3145552424    |
| ## 631 | sep wed | FFMC 0.5029482200    |
| ## 632 | sep sun | FFMC 0.6644279151    |
| ## 633 | sep tue | FFMC -0.0084041477   |
| ## 634 | sep tue | FFMC -1.7846807934   |
| ## 635 | sep sat | FFMC 0.3952950900    |
| ## 636 | aug sun | FFMC 0.0992489823    |
| ## 637 | sep sat | FFMC 0.3952950900    |
| ## 638 | sep tue | FFMC -0.0084041477   |
| ## 639 | sep sat | FFMC 0.3952950900    |
| ## 640 | aug sun | FFMC 0.8528208927    |
| ## 641 | aug sun | FFMC 0.2069021124    |
| ## 642 | aug sun | FFMC 0.2069021124    |
| ## 643 | aug wed | FFMC 0.3145552424    |
| ## 644 | aug wed | FFMC 0.5567747850    |
| ## 645 | aug wed | FFMC 0.5567747850    |
| ## 646 | aug wed | FFMC 0.5567747850    |

| ## 647 | aug wed | FFMC 0.5567747850    |
|--------|---------|----------------------|
| ## 648 | aug thu | FFMC 0.2338153949    |
| ## 649 | aug thu | FFMC 0.1530755474    |
| ## 650 | aug sat | FFMC 0.8528208927    |
| ## 651 | aug sat | FFMC 0.8528208927    |
| ## 652 | aug sat | FFMC 0.2069021124    |
| ## 653 | aug mon | FFMC 0.6913411976    |
| ## 654 | aug fri | FFMC 0.1530755474    |
| ## 655 | aug fri | FFMC 0.1530755474    |
| ## 656 | aug fri | FFMC 0.0185091348    |
| ## 657 | aug fri | FFMC 0.8797341752    |
| ## 658 | aug tue | FFMC 0.7182544801    |
| ## 659 | aug tue | FFMC 0.8797341752    |
| ## 660 | aug tue | FFMC 0.2876419599    |
| ## 661 | aug tue | FFMC 0.2876419599    |
| ## 662 | aug tue | FFMC 0.2876419599    |
| ## 663 | aug tue | FFMC 0.2876419599    |
| ## 664 | dec sun | FFMC -1.7846807934   |
| ## 665 | dec wed | FFMC -1.8923339235   |
| ## 666 | dec thu | FFMC -1.7308542284   |
| ## 667 | dec mon | FFMC -1.5155479683   |
| ## 668 | dec mon | FFMC -1.5155479683   |
| ## 669 | dec mon | FFMC -1.5155479683   |
| ## 670 | dec mon | FFMC -1.5155479683   |
| ## 671 | dec fri | FFMC -1.7039409459   |
| ## 672 | dec tue | FFMC -1.5155479683   |
| ## 673 | feb wed | FFMC -1.1118487307   |
| ## 674 | feb fri | FFMC -1.5693745333   |
| ## 675 | jul sat | FFMC 0.1530755474    |
| ## 676 | jul fri | FFMC 0.1530755474    |
| ## 677 | jul tue | FFMC 0.5567747850    |
| ## 678 | jul tue | FFMC 0.3414685249    |
| ## 679 | jun sun | FFMC -0.1698838428   |
| ## 680 | jun mon | FFMC -0.1698838428   |
| ## 681 | sep sun | FFMC - 0.3851901029  |
| ## 682 | sep sun | FFMC - 0.3851901029  |
| ## 683 | sep sun | FFMC 0.3683818075    |
| ## 684 | sep wed | FFMC 0.4222083725    |
| ## 685 | sep thu | FFMC 0.3683818075    |
| ## 686 | sep thu | FFMC 0.4760349375    |
| ## 687 | sep thu | FFMC 0.4760349375    |
| ## 688 | sep thu | FFMC 0.4760349375    |
| ## 689 | sep thu | FFMC 0.4760349375    |
| ## 690 | sep thu | FFMC - 0.0891439952  |
| ## 691 | sep thu | FFMC $-0.7888893405$ |
| ## 692 | sep sat | FFMC 0.3145552424    |
| ## 693 | sep sat | FFMC 0.3145552424    |
| ## 694 | sep sat | FFMC 0.0454224173    |
| ## 695 | sep sat | FFMC 0.0454224173    |
| ## 696 | sep mon | FFMC 0.2876419599    |
| ## 697 | sep mon | FFMC 0.1530755474    |
| ## 698 | sep mon | FFMC 0.1530755474    |
| ## 699 | sep mon | FFMC 0.1530755474    |
| ## 700 | sep mon | FFMC 0.1530755474    |
|        |         |                      |

| ## 701 | sep mon | FFMC 0.1261622649  |
|--------|---------|--------------------|
| ## 702 | sep mon | FFMC 0.1261622649  |
| ## 703 | sep mon | FFMC 0.1261622649  |
| ## 704 | sep mon | FFMC 0.1261622649  |
| ## 705 | sep fri | FFMC 0.2876419599  |
| ## 706 | sep fri | FFMC 0.2876419599  |
| ## 707 | sep fri | FFMC 0.2876419599  |
| ## 708 | sep fri | FFMC 0.2876419599  |
| ## 709 | sep fri | FFMC 0.2876419599  |
| ## 710 | sep fri | FFMC 0.2876419599  |
| ## 711 | sep fri | FFMC 0.2876419599  |
| ## 712 | sep fri | FFMC 0.2876419599  |
| ## 713 | sep fri | FFMC 0.3952950900  |
| ## 714 | sep fri | FFMC 0.3952950900  |
| ## 715 | sep fri | FFMC 0.3952950900  |
| ## 716 | sep fri | FFMC -0.7619760580 |
| ## 717 | sep tue | FFMC 0.2338153949  |
| ## 718 | sep tue | FFMC 0.2338153949  |
| ## 719 | sep tue | FFMC 0.2338153949  |
| ## 720 | sep tue | FFMC 0.0185091348  |
| ## 721 | sep sat | FFMC 0.0454224173  |
| ## 722 | sep sun | FFMC -0.0084041477 |
| ## 723 | sep fri | FFMC -0.1967971253 |
| ## 724 | sep sat | FFMC 0.0454224173  |
| ## 725 | aug sat | FFMC 0.7182544801  |
| ## 726 | jul wed | FFMC 0.7182544801  |
| ## 727 | aug thu | FFMC -0.0891439952 |
| ## 728 | aug wed | FFMC 1.1219537178  |
| ## 729 | aug thu | FFMC 0.1530755474  |
| ## 730 | aug sat | FFMC 0.1530755474  |
| ## 731 | aug sun | FFMC 0.1530755474  |
| ## 732 | sep sun | FFMC -0.1429705603 |
| ## 733 | aug fri | FFMC 1.0143005877  |
| ## 734 | feb mon | FFMC -1.7039409459 |
| ## 735 | sep fri | FFMC 0.0185091348  |
| ## 736 | sep sun | FFMC -0.0084041477 |
| ## 737 | feb sun | FFMC -1.6232010984 |
| ## 738 | sep sun | FFMC -0.1429705603 |
| ## 739 | aug sun | FFMC 0.1530755474  |
| ## 740 | jun wed | FFMC 0.6106013501  |
| ## 741 | sep thu | FFMC 0.0185091348  |
| ## 742 | sep wed | FFMC -0.8427159055 |
| ## 743 | sep sat | FFMC -1.0580221656 |
| ## 744 | sep fri | FFMC -0.1967971253 |
| ## 745 | feb fri | FFMC -1.7308542284 |
| ## 746 | jul mon | FFMC 0.3414685249  |
| ## 747 | aug thu | FFMC 1.0143005877  |
| ## 748 | jul tue | FFMC 0.4491216550  |
| ## 749 | aug sun | FFMC 0.2607286774  |
| ## 750 | aug sun | FFMC 0.1530755474  |
| ## 751 | aug wed | FFMC 0.1799888299  |
| ## 752 | jul sun | FFMC -0.5735830804 |
| ## 753 | sep sat | FFMC 0.0454224173  |
| ## 754 | aug sat | FFMC 0.7182544801  |
|        |         |                    |

| ## 755 | aug mon | FFMC 0.2876419599   |
|--------|---------|---------------------|
| ## 756 | aug sun | FFMC 0.1530755474   |
| ## 757 | aug sat | FFMC 0.2876419599   |
| ## 758 | aug sun | FFMC 0.6913411976   |
| ## 759 | aug mon | FFMC 0.2876419599   |
| ## 760 | aug sat | FFMC 0.7182544801   |
| ## 761 | sep fri | FFMC 0.0185091348   |
| ## 762 | aug mon | FFMC 0.2876419599   |
| ## 763 | apr mon | FFMC -0.8427159055  |
| ## 764 | sep fri | FFMC -0.1967971253  |
| ## 765 | aug wed | FFMC 1.1219537178   |
| ## 766 | aug fri | FFMC -0.1429705603  |
| ## 767 | aug wed | FFMC 0.1799888299   |
| ## 768 | aug sat | FFMC 0.7182544801   |
| ## 769 | aug sat | FFMC 0.1530755474   |
| ## 770 | sep sun | FFMC -0.0084041477  |
| ## 771 | feb tue | FFMC -4.2876160670  |
| ## 772 | feb tue | FFMC -4.2876160670  |
| ## 773 | feb sat | FFMC -3.1034316365  |
| ## 774 | mar mon | FFMC -1.0311088831  |
| ## 775 | mar wed | FFMC -0.2237104078  |
| ## 776 | mar thu | FFMC 0.0723356998   |
| ## 777 | apr sun | FFMC -0.0084041477  |
| ## 778 | may fri | FFMC -0.3851901029  |
| ## 779 | jun mon | FFMC -0.7619760580  |
| ## 780 | jun sat | FFMC - 0.1429705603 |
| ## 781 | jun thu | FFMC 0.5298615025   |
| ## 782 | jun thu | FFMC 0.7182544801   |
| ## 783 | jul thu | FFMC 0.6644279151   |
| ## 784 | jul sun | FFMC 0.7182544801   |
| ## 785 | jul sun | FFMC 0.7182544801   |
| ## 786 | jul mon | FFMC -0.4928432329  |
| ## 787 | jul thu | FFMC 0.5836880675   |
| ## 788 | aug sun | FFMC 1.0412138702   |
| ## 789 | aug sun | FFMC 1.0412138702   |
| ## 790 | aug mon | FFMC 1.0681271527   |
| ## 791 | aug tue | FFMC 1.0950404353   |
| ## 792 | aug tue | FFMC 1.0950404353   |
| ## 793 | aug tue | FFMC 1.0950404353   |
| ## 794 | aug fri | FFMC 1.3103466953   |
| ## 795 | aug sat | FFMC 1.3372599779   |
| ## 796 | aug mon | FFMC 1.3910865429   |
| ## 797 | aug tue | FFMC 1.3641732604   |
| ## 798 | aug tue | FFMC 1.3641732604   |
| ## 799 | aug tue | FFMC 1.3641732604   |
| ## 800 | aug wed | FFMC 0.9335607402   |
| ## 801 | aug wed | FFMC 0.9335607402   |
| ## 802 | aug thu | FFMC -0.0084041477  |
| ## 803 | aug fri | FFMC -0.0084041477  |
| ## 804 | aug fri | FFMC -0.0084041477  |
| ## 805 | aug sun | FFMC -2.5382527037  |
| ## 806 | aug sun | FFMC -2.5382527037  |
| ## 807 | aug sun | FFMC -2.5382527037  |
| ## 808 | jul tue | DMC -1.0710782994   |
|        |         |                     |

| ## 809 | sep tue | DMC 0.2430235288  |
|--------|---------|-------------------|
| ## 810 | sep mon | DMC 0.1944729687  |
| ## 811 | aug wed | DMC -0.2360086647 |
| ## 812 | aug fri | DMC -0.1049221523 |
| ## 813 | jul sat | DMC -1.0225277393 |
| ## 814 | aug wed | DMC -0.2360086647 |
| ## 815 | aug thu | DMC 0.2786272729  |
| ## 816 | mar mon | DMC -1.2102565719 |
| ## 817 | sep tue | DMC -0.6648719461 |
| ## 818 | aug tue | DMC -0.1000670963 |
| ## 819 | sep thu | DMC -0.5434955457 |
| ## 820 | jun fri | DMC -0.9399917870 |
| ## 821 | jul sun | DMC -0.7425528424 |
| ## 822 | jul sat | DMC -1.0241460913 |
| ## 823 | sep fri | DMC -0.4755247615 |
| ## 824 | sep sat | DMC 0.5003414977  |
| ## 825 | aug sun | DMC -0.1000670963 |
| ## 826 | sep sat | DMC 0.5003414977  |
| ## 827 | aug wed | DMC -0.0531348881 |
| ## 828 | aug wed | DMC -0.0531348881 |
| ## 829 | sep fri | DMC 0.0552946962  |
| ## 830 | mar mon | DMC -1.2102565719 |
| ## 831 | aug thu | DMC 0.2786272729  |
| ## 832 | mar sat | DMC -1.0419479634 |
| ## 833 | sep sat | DMC 0.1070819604  |
| ## 834 | sep sun | DMC -0.3962255133 |
| ## 835 | mar thu | DMC -1.5582022530 |
| ## 836 | aug wed | DMC -0.0531348881 |
| ## 837 | aug wed | DMC 0.2041830807  |
| ## 838 | mar fri | DMC -1.0710782994 |
| ## 839 | aug thu | DMC 0.2786272729  |
| ## 840 | sep wed | DMC 0.3045209050  |
| ## 841 | aug wed | DMC -0.3897521052 |
| ## 842 | aug sun | DMC 0.4517909375  |
| ## 843 | sep mon | DMC 0.1944729687  |
| ## 844 | aug sat | DMC -0.2845592249 |
| ## 845 | aug sat | DMC -0.2845592249 |
| ## 846 | apr thu | DMC -1.7054722855 |
| ## 847 | aug sun | DMC -0.2408637208 |
| ## 848 | sep wed | DMC -0.5111285056 |
| ## 849 | aug tue | DMC 0.5310901858  |
| ## 850 | sep sun | DMC 0.1556325205  |
| ## 851 | oct mon | DMC -1.3219228603 |
| ## 852 | feb sun | DMC -1.6002794052 |
| ## 853 | oct mon | DMC -1.0678415954 |
| ## 854 | aug fri | DMC 0.3433613531  |
| ## 855 | sep tue | DMC 0.2430235288  |
| ## 856 | mar sun | DMC -1.0225277393 |
| ## 857 | sep mon | DMC 0.1944729687  |
| ## 858 | mar sat | DMC -1.1746528278 |
| ## 859 | mar sun | DMC -1.1406674357 |
| ## 860 | mar fri | DMC -1.0710782994 |
| ## 861 | aug thu | DMC 0.2786272729  |
| ## 862 | aug tue | DMC -0.1000670963 |
|        |         |                   |

| ## 863 | sep wed | DMC 0.3045209050  |
|--------|---------|-------------------|
| ## 864 | aug tue | DMC -0.1000670963 |
| ## 865 | aug fri | DMC 0.3433613531  |
| ## 866 | apr thu | DMC -1.7054722855 |
| ## 867 | sep thu | DMC 0.3643999292  |
| ## 868 | sep tue | DMC 0.2430235288  |
| ## 869 | sep mon | DMC -0.7069490983 |
| ## 870 | sep tue | DMC 0.2430235288  |
| ## 871 | mar sun | DMC -1.2442419640 |
| ## 872 | feb sun | DMC -1.7119456935 |
| ## 873 | oct wed | DMC -1.2393869080 |
| ## 874 | mar sat | DMC -1.0419479634 |
| ## 875 | sep thu | DMC 0.3643999292  |
| ## 876 | aug sat | DMC 0.4032403773  |
| ## 877 | sep tue | DMC 0.2430235288  |
| ## 878 | sep fri | DMC 0.0552946962  |
| ## 879 | sep thu | DMC -0.5434955457 |
| ## 880 | oct sat | DMC -1.1455224917 |
| ## 881 | aug sat | DMC 0.4032403773  |
| ## 882 | sep fri | DMC -0.4755247615 |
| ## 883 | mar mon | DMC -1.0079625712 |
| ## 884 | mar sat | DMC -1.2733723001 |
| ## 885 | mar sat | DMC -1.2733723001 |
| ## 886 | sep sun | DMC 0.1556325205  |
| ## 887 | sep mon | DMC -0.3670951772 |
| ## 888 | sep wed | DMC 0.3045209050  |
| ## 889 | mar mon | DMC -1.2102565719 |
| ## 890 | aug sun | DMC -0.2408637208 |
| ## 891 | sep fri | DMC 0.4323707134  |
| ## 892 | mar mon | DMC -1.0079625712 |
| ## 893 | jul fri | DMC 0.5796407459  |
| ## 894 | sep wed | DMC -0.5111285056 |
| ## 895 | sep sun | DMC 0.5634572259  |
| ## 896 | oct mon | DMC -1.0678415954 |
| ## 897 | aug sat | DMC -0.5289303777 |
| ## 898 | sep sun | DMC 0.5634572259  |
| ## 899 | aug sat | DMC -0.5289303777 |
| ## 900 | sep wed | DMC 0.3045209050  |
| ## 901 | sep sun | DMC 0.5634572259  |
| ## 902 | sep tue | DMC 0.2430235288  |
| ## 903 | sep tue | DMC -0.6648719461 |
| ## 904 | sep sat | DMC 0.1070819604  |
| ## 905 | aug sun | DMC 0.4517909375  |
| ## 906 | sep sat | DMC 0.1070819604  |
| ## 907 | sep tue | DMC 0.2430235288  |
| ## 908 | sep sat | DMC 0.1070819604  |
| ## 909 | aug sun | DMC 0.1265021844  |
| ## 910 | aug sun | DMC 0.9809920432  |
| ## 911 | aug sun | DMC 0.9809920432  |
| ## 912 | aug wed | DMC -0.3703318812 |
| ## 913 | aug wed | DMC 0.6929253863  |
| ## 914 | aug wed | DMC 0.6929253863  |
| ## 915 | aug wed | DMC 0.6929253863  |
| ## 916 | aug wed | DMC 0.6929253863  |
|        |         |                   |

| ## 917           | aug thu            | DMC -0.0855019282                      |
|------------------|--------------------|----------------------------------------|
| ## 918           | aug thu            | DMC 0.3822018013                       |
| ## 919           | aug sat            | DMC 0.0439662322                       |
| ## 920           | aug sat            | DMC 0.0439662322                       |
| ## 921           | aug sat            | DMC 0.9130212590                       |
| ## 922           | aug mon            | DMC -0.2683757048                      |
| ## 923           | aug fri            | DMC -0.0337146641                      |
| ## 924           | aug fri            | DMC -0.0337146641                      |
| ## 925           | aug fri            | DMC 0.4307523614                       |
| ## 926           | aug fri            | DMC 0.8596156428                       |
| ## 927           | aug tue            | DMC -0.1987865686                      |
| ## 928           | aug tue            | DMC 0.2786272729                       |
| ## 929           | aug tue            | DMC 0.6168628420                       |
| ## 930           | aug tue            | DMC 0.6168628420                       |
| ## 931           | aug tue            | DMC 0.6168628420                       |
| ## 932           | aug tue            | DMC 0.6168628420                       |
| ## 933           | dec sun            | DMC -1.4125505726                      |
| ## 934           | dec wed            | DMC -1.4028404605                      |
| ## 935           | dec thu            | DMC -1.4254973886                      |
| ## 936           | dec mon            | DMC -1.4416809087                      |
| ## 937           | dec mon            | DMC -1.4416809087                      |
| ## 938           | dec mon            | DMC -1.4416809087                      |
| ## 939           | dec mon            | DMC -1.4416809087                      |
| ## 940           | dec fri            | DMC -1.4206423326                      |
| ## 941           | dec tue            | DMC -1.4416809087                      |
| ## 942           | feb wed            | DMC -1.7459310856                      |
| ## 943           | feb fri            | DMC -1.7734430697                      |
| ## 944           | jul sat            | DMC -0.1664195285                      |
| ## 945           | jul fri            | DMC -0.2311536087                      |
| ## 946           | jul tue            | DMC 1.0667646995                       |
| ## 947           | jul tue            | DMC -0.4156457373                      |
| ## 948           | jun sun            | DMC -0.4043172733                      |
| ## 949           | jun mon            | DMC -0.3428198971                      |
| ## 950           | sep sun            | DMC -0.4917082816                      |
| ## 951           | sep sun            | DMC -0.4917082816                      |
| ## 952           | sep sun            | DMC -0.1405258964                      |
| ## 953           | sep wed            | DMC 0.0148358961                       |
| ## 954           | sep thu            | DMC -0.2958876889                      |
| ## 955           | sep thu            | DMC 0.0730965683                       |
| ## 956<br>## 057 | sep thu            | DMC 0.0730965683                       |
| ## 957<br>## 059 | sep thu            | DMC 0.0730965683<br>DMC 0.0730965683   |
| ## 958           | sep thu            |                                        |
| ## 959           | sep thu            | DMC 0.3627815772                       |
| ## 960           | sep thu            | DMC -0.9901606992                      |
| ## 961           | sep sat            | DMC -0.1971682166                      |
| ## 962<br>## 963 | sep sat            | DMC -0.1971682166                      |
| ## 963<br>## 964 | sep sat            | DMC 0.1604875766<br>DMC 0.1604875766   |
| ## 964<br>## 965 | sep sat            | DMC 0.1604875766<br>DMC -0.4334476094  |
| ## 965<br>## 966 | sep mon            | DMC -0.4334476094<br>DMC -0.0984487443 |
| ## 966<br>## 967 | sep mon            | DMC -0.0984487443                      |
| ## 967           | sep mon<br>sep mon | DMC -0.0984487443                      |
| ## 969           | sep mon            | DMC -0.0984487443                      |
| ## 970           | sep mon            | DMC 0.2527336409                       |
| ## 310           | ach mon            | Dric 0.232/330409                      |

| ## 971  | sep mon | DMC 0.2527336409  |
|---------|---------|-------------------|
| ## 972  | sep mon | DMC 0.2527336409  |
| ## 973  | sep mon | DMC 0.2527336409  |
| ## 974  | sep fri | DMC -0.2505738328 |
| ## 975  | sep fri | DMC -0.2505738328 |
| ## 976  | sep fri | DMC -0.2505738328 |
| ## 977  | sep fri | DMC -0.2505738328 |
| ## 978  | sep fri | DMC -0.2505738328 |
| ## 979  | sep fri | DMC -0.2505738328 |
| ## 980  | sep fri | DMC -0.2505738328 |
| ## 981  | sep fri | DMC -0.2505738328 |
| ## 982  | sep fri | DMC 0.1216471284  |
| ## 983  | sep fri | DMC 0.1216471284  |
| ## 984  | sep fri | DMC 0.1216471284  |
| ## 985  | sep fri | DMC -0.9594120111 |
| ## 986  | sep tue | DMC -0.0450431281 |
| ## 987  | sep tue | DMC -0.0450431281 |
| ## 988  | sep tue | DMC -0.0450431281 |
| ## 989  | sep tue | DMC 0.2883373850  |
| ## 990  | sep sat | DMC -0.3266363770 |
| ## 991  | sep sun | DMC 2.6187642725  |
| ## 992  | sep fri | DMC 2.8404784973  |
| ## 993  | sep sat | DMC -0.3266363770 |
| ## 994  | aug sat | DMC 1.8872691662  |
| ## 995  | jul wed | DMC -0.2133517367 |
| ## 996  | aug thu | DMC 1.2884789242  |
| ## 997  | aug wed | DMC 1.6704099975  |
| ## 998  | aug thu | DMC 2.1672440631  |
| ## 999  | aug sat | DMC 2.5783054724  |
| ## 1000 | aug sun | DMC 1.0813298675  |
| ## 1001 | sep sun | DMC -0.2877959289 |
| ## 1002 | aug fri | DMC 1.8209167339  |
| ## 1003 | feb mon | DMC -1.6989988775 |
| ## 1004 | sep fri | DMC -0.3751869372 |
| ## 1005 | sep sun | DMC 2.6187642725  |
| ## 1006 | feb sun | DMC -1.7070906375 |
| ## 1007 | sep sun | DMC -0.2877959289 |
| ## 1008 | aug sun | DMC 1.0813298675  |
| ## 1009 | jun wed | DMC -1.0516580754 |
| ## 1010 | sep thu | DMC -0.4253558494 |
| ## 1011 | sep wed | DMC -0.4803798175 |
| ## 1012 | sep sat | DMC 2.8615170733  |
| ## 1013 | sep fri | DMC 2.8404784973  |
| ## 1014 | feb fri | DMC -1.8009550538 |
| ## 1015 | jul mon | DMC -0.3622401211 |
| ## 1016 | aug thu | DMC 1.7464725417  |
| ## 1017 | jul tue | DMC 0.8029733226  |
| ## 1018 | aug sun | DMC 1.4357489567  |
| ## 1019 | aug sun | DMC 1.0813298675  |
| ## 1020 | aug wed | DMC 1.2447834201  |
| ## 1021 | jul sun | DMC 2.4051418078  |
| ## 1022 | sep sat | DMC -0.3266363770 |
| ## 1023 | aug sat | DMC 1.8872691662  |
| ## 1024 | aug mon | DMC 1.4972463329  |
|         |         |                   |

| ## 1025 | aug sun | DMC 1.0813298675  |
|---------|---------|-------------------|
| ## 1026 | aug sat | DMC 1.0279242514  |
| ## 1027 | aug sun | DMC 1.9520032464  |
| ## 1028 | aug mon | DMC 1.4972463329  |
| ## 1029 | aug sat | DMC 1.8872691662  |
| ## 1030 | sep fri | DMC -0.3751869372 |
| ## 1031 | aug mon | DMC 1.4972463329  |
| ## 1032 | apr mon | DMC -1.4497726687 |
| ## 1033 | sep fri | DMC 2.8404784973  |
| ## 1034 | aug wed | DMC 1.6704099975  |
| ## 1035 | aug fri | DMC 1.3321744284  |
| ## 1036 | aug wed | DMC 1.2447834201  |
| ## 1037 | aug sat | DMC 1.8872691662  |
| ## 1038 | aug sat | DMC 2.5783054724  |
| ## 1039 | sep sun | DMC 2.6187642725  |
| ## 1040 | feb tue | DMC -1.7815348298 |
| ## 1041 | feb tue | DMC -1.7815348298 |
| ## 1042 | feb sat | DMC -1.7944816458 |
| ## 1043 | mar mon | DMC -1.6083711652 |
| ## 1044 | mar wed | DMC -1.5533471970 |
| ## 1045 | mar thu | DMC -1.5193618049 |
| ## 1046 | apr sun | DMC -1.6164629252 |
| ## 1047 | may fri | DMC -1.4416809087 |
| ## 1048 | jun mon | DMC -0.2958876889 |
| ## 1049 | jun sat | DMC -0.8639292428 |
| ## 1050 | jun thu | DMC -0.1728929365 |
| ## 1051 | jun thu | DMC 0.1167920724  |
| ## 1052 | jul thu | DMC -0.4722880575 |
| ## 1053 | jul sun | DMC -0.2133517367 |
| ## 1054 | jul sun | DMC -0.2133517367 |
| ## 1055 | jul mon | DMC -0.1712745845 |
| ## 1056 | jul thu | DMC -0.0013476240 |
| ## 1057 | aug sun | DMC 0.2559703449  |
| ## 1058 | aug sun | DMC 0.2559703449  |
| ## 1059 | aug mon | DMC 0.3401246491  |
| ## 1060 | aug tue | DMC 0.4339890654  |
| ## 1061 | aug tue | DMC 0.4339890654  |
| ## 1062 | aug tue | DMC 0.4339890654  |
| ## 1063 | aug fri | DMC 0.7042538503  |
| ## 1064 | aug sat | DMC 0.8013549706  |
| ## 1065 | aug mon | DMC 0.9874654512  |
| ## 1066 | aug tue | DMC 1.0780931635  |
| ## 1067 | aug tue | DMC 1.0780931635  |
| ## 1068 | aug tue | DMC 1.0780931635  |
| ## 1069 | aug wed | DMC 0.4032403773  |
| ## 1070 | aug wed | DMC 0.4032403773  |
| ## 1071 | aug thu | DMC 0.7884081546  |
| ## 1072 | aug fri | DMC 0.8482871788  |
| ## 1073 | aug fri | DMC 0.8482871788  |
| ## 1074 | aug sun | DMC -0.9351367310 |
| ## 1075 | aug sun | DMC -0.9351367310 |
| ## 1076 | aug sun | DMC -0.9351367310 |
| ## 1077 | jul tue | DC -1.1159993929  |
| ## 1078 | sep tue | DC 0.5307425565   |
|         |         |                   |

| ## 1079 | sep mon | DC 0.5042522456  |
|---------|---------|------------------|
| ## 1080 | aug wed | DC -0.2478988768 |
| ## 1081 | aug fri | DC -0.1762447572 |
| ## 1082 | jul sat | DC -1.1902591169 |
| ## 1083 | aug wed | DC -0.2478988768 |
| ## 1084 | aug thu | DC 0.0365462647  |
| ## 1085 | mar mon | DC -2.1009178374 |
| ## 1086 | sep tue | DC 0.4408492064  |
| ## 1087 | aug tue | DC 0.3331508933  |
| ## 1088 | sep thu | DC 0.4986067695  |
| ## 1089 | jun fri | DC -0.5953127902 |
| ## 1090 | jul sun | DC -0.9344756232 |
| ## 1090 | jul sat | DC -0.6352653903 |
| ## 1091 | _       |                  |
|         | sep fri |                  |
| ## 1093 | sep sat | DC 0.6558115653  |
| ## 1094 | aug sun | DC 0.3331508933  |
| ## 1095 | sep sat | DC 0.6558115653  |
| ## 1096 | aug wed | DC 0.3635496107  |
| ## 1097 | aug wed | DC 0.3635496107  |
| ## 1098 | sep fri | DC 0.4239127782  |
| ## 1099 | mar mon | DC -2.1009178374 |
| ## 1100 | aug thu | DC 0.0365462647  |
| ## 1101 | mar sat | DC -2.0409889373 |
| ## 1102 | sep sat | DC 0.4517058912  |
| ## 1103 | sep sun | DC 0.5819861088  |
| ## 1104 | mar thu | DC -2.2381463332 |
| ## 1105 | aug wed | DC 0.3635496107  |
| ## 1106 | aug wed | DC 0.0005020712  |
| ## 1107 | mar fri | DC -2.0522798895 |
| ## 1108 | aug thu | DC 0.0365462647  |
| ## 1109 | sep wed | DC 0.5611412739  |
| ## 1110 | aug wed | DC 0.1703006214  |
| ## 1111 | aug sun | DC 0.1346906953  |
| ## 1112 | sep mon | DC 0.5042522456  |
| ## 1113 | aug sat | DC 0.2337036606  |
| ## 1114 | aug sat | DC 0.2337036606  |
| ## 1115 | apr thu | DC -2.2372777984 |
| ## 1116 | aug sun | DC 0.2641023780  |
| ## 1117 | sep wed | DC 0.7179118024  |
| ## 1118 | aug tue | DC 0.1915797236  |
| ## 1119 | sep sun | DC 0.4790647369  |
| ## 1120 | oct mon | DC 0.4074106173  |
| ## 1121 | feb sun | DC -2.2672422484 |
| ## 1122 | oct mon | DC 0.5459419152  |
| ## 1123 | aug fri | DC 0.0708533887  |
| ## 1124 | sep tue | DC 0.5307425565  |
| ## 1125 | mar sun | DC -2.0331721243 |
| ## 1126 | sep mon | DC 0.5042522456  |
| ## 1127 | mar sat | DC -2.0887583504 |
| ## 1128 | mar sun | DC -2.0757303287 |
| ## 1129 | mar fri | DC -2.0522798895 |
| ## 1130 | aug thu | DC 0.0365462647  |
| ## 1131 | aug tue | DC 0.3331508933  |
| ## 1132 | sep wed | DC 0.5611412739  |
|         |         |                  |

|   | ## 1133 | aug tue | DC 0.3331508933  |
|---|---------|---------|------------------|
|   | ## 1134 | aug fri | DC 0.0708533887  |
|   | ## 1135 | apr thu | DC -2.2372777984 |
|   | ## 1136 | sep thu | DC 0.5906714566  |
|   | ## 1137 | sep tue | DC 0.5307425565  |
|   | ## 1138 | sep mon | DC 0.4121875586  |
|   | ## 1139 | sep tue | DC 0.5307425565  |
|   | ## 1140 | mar sun | DC -2.1135115917 |
|   | ## 1141 | feb sun | DC -2.3375935659 |
|   | ## 1142 | oct wed | DC 0.4491002869  |
|   | ## 1143 | mar sat | DC -2.0409889373 |
|   | ## 1144 | sep thu | DC 0.5906714566  |
|   | ## 1145 | aug sat | DC 0.1034234431  |
|   | ## 1146 | sep tue | DC 0.5307425565  |
|   | ## 1147 | sep fri | DC 0.4239127782  |
|   | ## 1148 | sep thu | DC 0.4986067695  |
|   | ## 1149 | oct sat | DC 0.5059893152  |
|   | ## 1150 | aug sat | DC 0.1034234431  |
|   | ## 1151 | sep fri | DC 0.5294397544  |
|   | ## 1152 | mar mon | DC -2.0262238460 |
|   | ## 1153 | mar sat | DC -2.1261053461 |
|   | ## 1154 | mar sat | DC -2.1261053461 |
|   | ## 1155 | sep sun | DC 0.4790647369  |
|   | ## 1156 | sep mon | DC 0.6058708153  |
|   | ## 1157 | sep wed | DC 0.5611412739  |
|   | ## 1158 | mar mon | DC -2.1009178374 |
|   | ## 1159 | aug sun | DC 0.2641023780  |
|   | ## 1160 | sep fri | DC 0.6232415110  |
|   | ## 1161 | mar mon | DC -2.0262238460 |
|   | ## 1162 | jul fri | DC -1.1311987516 |
|   | ## 1163 | sep wed | DC 0.7179118024  |
|   | ## 1164 | sep sun | DC 0.6870788176  |
|   | ## 1165 | oct mon | DC 0.5459419152  |
|   | ## 1166 | aug sat | DC -0.3890357792 |
|   | ## 1167 | sep sun | DC 0.6870788176  |
|   | ## 1168 | aug sat | DC -0.3890357792 |
|   | ## 1169 | sep wed | DC 0.5611412739  |
|   | ## 1170 | sep sun | DC 0.6870788176  |
|   | ## 1171 | sep tue | DC 0.5307425565  |
|   | ## 1172 | sep tue | DC 0.4408492064  |
|   | ## 1173 | sep sat | DC 0.4517058912  |
|   | ## 1174 | aug sun | DC 0.1346906953  |
|   | ## 1175 | sep sat | DC 0.4517058912  |
|   | ## 1176 | sep tue | DC 0.5307425565  |
|   | ## 1177 | sep sat | DC 0.4517058912  |
|   | ## 1178 | aug sun | DC 0.0847499452  |
|   | ## 1179 | aug sun | DC 0.5659182153  |
|   | ## 1180 | aug sun | DC 0.5659182153  |
|   | ## 1181 | aug wed | DC -0.2900228138 |
|   | ## 1182 | aug wed | DC 0.4182673021  |
|   | ## 1183 | aug wed | DC 0.4182673021  |
|   | ## 1184 | aug wed | DC 0.4182673021  |
|   | ## 1185 | aug wed | DC 0.4182673021  |
|   | ## 1186 | aug thu | DC -0.0212112984 |
| 1 |         |         |                  |

| ## 1187 | aug thu | DC 0.2228469758  |
|---------|---------|------------------|
| ## 1188 | aug sat | DC 0.0465344147  |
| ## 1189 | aug sat | DC 0.0465344147  |
| ## 1190 | aug sat | DC 0.5294397544  |
| ## 1191 | aug mon | DC -0.1232641354 |
| ## 1192 | aug fri | DC 0.0113587560  |
| ## 1193 | aug fri | DC 0.0113587560  |
| ## 1194 | aug fri | DC 0.2549827628  |
| ## 1195 | aug fri | DC 0.4951326304  |
| ## 1196 | aug tue | DC -0.0872199419 |
| ## 1197 | aug tue | DC 0.1594439366  |
| ## 1198 | aug tue | DC 0.3813545738  |
| ## 1199 | aug tue | DC 0.3813545738  |
| ## 1200 | aug tue | DC 0.3813545738  |
| ## 1201 | aug tue | DC 0.3813545738  |
| ## 1202 | dec sun | DC -0.9418581688 |
| ## 1203 | dec wed | DC -0.9370812275 |
| ## 1204 | dec thu | DC -0.9483721797 |
| ## 1205 | dec mon | DC -0.9583603297 |
| ## 1206 | dec mon | DC -0.9583603297 |
| ## 1207 | dec mon | DC -0.9583603297 |
| ## 1208 | dec mon | DC -0.9583603297 |
| ## 1200 | dec mon | DC -0.9457665754 |
| ## 1210 | dec tue | DC -0.9583603297 |
| ## 1210 | feb wed | DC -2.3957853964 |
|         |         |                  |
| ## 1212 | feb fri | DC -2.4083791507 |
| ## 1213 | jul sat | DC -0.4146575553 |
| ## 1214 | jul fri | DC -0.4520045510 |
| ## 1215 | jul tue | DC -0.6061694750 |
| ## 1216 | jul tue | DC -0.5623084685 |
| ## 1217 | jun sun | DC -1.2141438235 |
| ## 1218 | jun mon | DC -1.1824423039 |
| ## 1219 | sep sun | DC 0.6249785805  |
| ## 1220 | sep sun | DC 0.6249785805  |
| ## 1221 | sep sun | DC 0.8151876981  |
| ## 1222 | sep wed | DC 0.8976985025  |
| ## 1223 | sep thu | DC 0.7339796959  |
| ## 1224 | sep thu | DC 0.9254916156  |
| ## 1225 | sep thu | DC 0.9254916156  |
| ## 1226 | sep thu | DC 0.9254916156  |
| ## 1227 | sep thu | DC 0.9254916156  |
| ## 1228 | sep thu | DC 1.0961587006  |
| ## 1229 | sep thu | DC 0.6796962719  |
| ## 1230 | sep sat | DC 0.7865260503  |
| ## 1231 | sep sat | DC 0.7865260503  |
| ## 1232 | sep sat | DC 0.9767351678  |
| ## 1233 | sep sat | DC 0.9767351678  |
| ## 1234 | sep mon | DC 0.6545087632  |
| ## 1235 | sep mon | DC 0.8408094742  |
| ## 1236 | sep mon | DC 0.8408094742  |
| ## 1237 | sep mon | DC 0.8408094742  |
| ## 1238 | sep mon | DC 0.8408094742  |
| ## 1239 | sep mon | DC 1.0279787201  |
| ## 1240 | sep mon | DC 1.0279787201  |
| ==10    | r       |                  |

| ## 1241 | sep mon | DC 1.0279787201  |
|---------|---------|------------------|
| ## 1242 | sep mon | DC 1.0279787201  |
| ## 1243 | sep fri | DC 0.7596014720  |
| ## 1244 | sep fri | DC 0.7596014720  |
| ## 1245 | sep fri | DC 0.7596014720  |
| ## 1246 | sep fri | DC 0.7596014720  |
| ## 1247 | sep fri | DC 0.7596014720  |
| ## 1248 | sep fri | DC 0.7596014720  |
| ## 1249 | sep fri | DC 0.7596014720  |
| ## 1250 | sep fri | DC 0.7596014720  |
| ## 1251 | sep fri | DC 0.9524161939  |
| ## 1252 | sep fri | DC 0.9524161939  |
| ## 1253 | sep fri | DC 0.9524161939  |
| ## 1254 | sep fri | DC 0.7031467110  |
| ## 1255 | sep tue | DC 0.8681683199  |
| ## 1256 | sep tue | DC 0.8681683199  |
| ## 1257 | sep tue | DC 0.8681683199  |
| ## 1258 | sep tue | DC 1.0496920896  |
| ## 1259 | sep sat | DC 0.7556930654  |
| ## 1260 | sep sun | DC 1.1061468506  |
| ## 1261 | sep fri | DC 1.2372956029  |
| ## 1262 | sep sat | DC 0.7556930654  |
| ## 1263 | aug sat | DC 0.6284527197  |
| ## 1264 | jul wed | DC -0.4845746053 |
| ## 1265 | aug thu | DC 0.3153459302  |
| ## 1266 | aug wed | DC 0.5194516043  |
| ## 1267 | aug thu | DC 0.7965142003  |
| ## 1268 | aug sat | DC 1.0800908071  |
| ## 1269 | aug sun | DC 0.1850657127  |
| ## 1270 | sep sun | DC 0.7821833763  |
| ## 1271 | aug fri | DC 0.5919742588  |
| ## 1272 | feb mon | DC -2.2238155092 |
| ## 1273 | sep fri | DC 0.7283342198  |
| ## 1274 | sep sun | DC 1.1061468506  |
| ## 1275 | feb sun | DC -2.2298952527 |
| ## 1276 | sep sun | DC 0.7821833763  |
| ## 1277 | aug sun | DC 0.1850657127  |
| ## 1278 | jun wed | DC -1.1841793734 |
| ## 1279 | sep thu | DC 0.7005411067  |
| ## 1280 | sep wed | DC 0.6718794588  |
| ## 1281 | sep sat | DC 1.2603117746  |
| ## 1282 | sep fri | DC 1.2372956029  |
| ## 1283 | feb fri | DC -2.2876528158 |
| ## 1284 | jul mon | DC -0.5570972598 |
| ## 1285 | aug thu | DC 0.5567986000  |
| ## 1286 | jul tue | DC 0.0235182430  |
| ## 1287 | aug sun | DC 0.4087134195  |
| ## 1288 | aug sun | DC 0.1850657127  |
| ## 1289 | aug wed | DC 0.2845129454  |
| ## 1290 | jul sun | DC 0.9793407722  |
| ## 1291 | sep sat | DC 0.7556930654  |
| ## 1292 | aug sat | DC 0.6284527197  |
| ## 1293 | aug mon | DC 0.4438890782  |
| ## 1294 | aug sun | DC 0.1850657127  |
|         |         |                  |

| ## 1295 | aug sat  | DC 0.1516271235                      |
|---------|----------|--------------------------------------|
| ## 1296 | aug sun  | DC 0.6631941110                      |
| ## 1297 | aug mon  | DC 0.4438890782                      |
| ## 1298 | aug sat  | DC 0.6284527197                      |
| ## 1299 | sep fri  | DC 0.7283342198                      |
| ## 1300 | aug mon  | DC 0.4438890782                      |
| ## 1301 | apr mon  | DC -2.2963381637                     |
| ## 1302 | sep fri  | DC 1.2372956029                      |
| ## 1303 | aug wed  | DC 0.5194516043                      |
| ## 1304 | aug fri  | DC 0.3453103803                      |
| ## 1305 | aug wed  | DC 0.2845129454                      |
| ## 1306 | aug sat  | DC 0.6284527197                      |
| ## 1307 | aug sat  | DC 1.0800908071                      |
| ## 1308 | sep sun  | DC 1.1061468506                      |
| ## 1309 | feb tue  | DC -2.4066420812                     |
| ## 1310 | feb tue  | DC -2.4066420812                     |
| ## 1311 | feb sat  | DC -2.4105504877                     |
| ## 1312 | mar mon  | DC -2.3167487311                     |
| ## 1313 | mar wed  | DC -2.2985095006                     |
| ## 1314 | mar thu  | DC -2.2880870832                     |
| ## 1315 | apr sun  | DC -2.3658209463                     |
| ## 1313 | may fri  | DC -2.1569383309                     |
| ## 1310 | _        | DC -2.1309383309<br>DC -1.4825210715 |
|         | jun mon  | DC -1.4823210713<br>DC -1.3800339671 |
|         | jun sat  |                                      |
| ## 1319 | jun thu  | DC -1.1016685690                     |
| ## 1320 | jun thu  | DC -0.9561889928                     |
| ## 1321 | jul thu  | DC -0.7616372013                     |
| ## 1322 | jul sun  | DC -0.6383052620                     |
| ## 1323 | jul sun  | DC -0.6383052620                     |
| ## 1324 | jul mon  | DC -0.6026953359                     |
| ## 1325 | jul thu  | DC -0.0450960049                     |
| ## 1326 | aug sun  | DC 0.0725904582                      |
| ## 1327 | aug sun  | DC 0.0725904582                      |
| ## 1328 | aug mon  | DC 0.1125430583                      |
| ## 1329 | aug tue  | DC 0.1537984605                      |
| ## 1330 | aug tue  | DC 0.1537984605                      |
| ## 1331 | aug tue  | DC 0.1537984605                      |
| ## 1332 | aug fri  | DC 0.2745247954                      |
| ## 1333 | aug sat  | DC 0.3153459302                      |
| ## 1334 | aug mon  | DC 0.3969881999                      |
| ## 1335 | aug tue  | DC 0.4378093347                      |
| ## 1336 | aug tue  | DC 0.4378093347                      |
| ## 1337 | aug tue  | DC 0.4378093347                      |
| ## 1338 | aug wed  | DC 0.5155431978                      |
| ## 1339 | aug wed  | DC 0.5155431978                      |
| ## 1340 | aug thu  | DC 0.7556930654                      |
| ## 1341 | aug fri  | DC 0.7913029916                      |
| ## 1342 | aug fri  | DC 0.7913029916                      |
| ## 1343 | aug sun  | DC 0.4134903608                      |
| ## 1344 | aug sun  | DC 0.4134903608                      |
| ## 1345 | aug sun  | DC 0.4134903608                      |
| ## 1346 | jul tue  | ISI -1.2688290456                    |
| ## 1347 | sep tue  | ISI -0.5210189239                    |
| ## 1348 | sep mon  | ISI -0.5210189239                    |
| "" 1340 | DCP MOII | 101 -0.0210107233                    |

| ## 1349 | aug wed | ISI 0.9746013193  |
|---------|---------|-------------------|
| ## 1350 | aug fri | ISI 0.8057409693  |
| ## 1351 | jul sat | ISI -0.1109295024 |
| ## 1352 | aug wed | ISI 0.9746013193  |
| ## 1353 | aug thu | ISI 0.2991599191  |
| ## 1354 | mar mon | ISI -0.7140021811 |
| ## 1355 | sep tue | ISI -1.4376893956 |
| ## 1356 | aug tue | ISI 1.8912717910  |
| ## 1357 | sep thu | ISI 2.1083779553  |
| ## 1358 | jun fri | ISI -0.4968960168 |
| ## 1359 | jul sun | ISI -0.4727731096 |
| ## 1360 | jul sat | ISI -0.7140021811 |
| ## 1361 | sep fri | ISI 1.6259198124  |
| ## 1362 | sep sat | ISI -0.2556669453 |
| ## 1363 | aug sun | ISI 1.8912717910  |
| ## 1364 | sep sat | ISI -0.2556669453 |
| ## 1365 | aug wed | ISI 0.1061766620  |
| ## 1366 | aug wed | ISI 0.1061766620  |
| ## 1367 | sep fri | ISI 0.7333722478  |
| ## 1368 | mar mon | ISI -0.7140021811 |
| ## 1369 | aug thu | ISI 0.2991599191  |
| ## 1370 | mar sat | ISI -0.3280356667 |
| ## 1371 | sep sat | ISI -0.1350524095 |
| ## 1372 | sep sun | ISI -1.0517228812 |
| ## 1373 | mar thu | ISI -1.4859352099 |
| ## 1374 | aug wed | ISI 0.1061766620  |
| ## 1375 | aug wed | ISI 1.7706572553  |
| ## 1376 | mar fri | ISI 0.8057409693  |
| ## 1377 | aug thu | ISI 0.2991599191  |
| ## 1378 | sep wed | ISI 0.0096850334  |
| ## 1379 | aug wed | ISI -0.6175105525 |
| ## 1380 | aug sun | ISI 0.3474057334  |
| ## 1381 | sep mon | ISI -0.5210189239 |
| ## 1382 | aug sat | ISI -0.0626836881 |
| ## 1383 | aug sat | ISI -0.0626836881 |
| ## 1384 | apr thu | ISI -1.5583039313 |
| ## 1385 | aug sun | ISI -0.6898792740 |
| ## 1386 | sep wed | ISI -0.7140021811 |
| ## 1387 | aug tue | ISI -0.0385607809 |
| ## 1388 | sep sun | ISI -0.1591753167 |
| ## 1389 | oct mon | ISI -1.4859352099 |
| ## 1390 | feb sun | ISI -1.2688290456 |
| ## 1391 | oct mon | ISI 0.4680202692  |
| ## 1392 | aug fri | ISI 1.4329365552  |
| ## 1393 | sep tue | ISI -0.5210189239 |
| ## 1394 | mar sun | ISI 0.1061766620  |
| ## 1395 | sep mon | ISI -0.5210189239 |
| ## 1396 | mar sat | ISI -0.3039127596 |
| ## 1397 | mar sun | ISI -0.8828625312 |
| ## 1398 | mar fri | ISI 0.8057409693  |
| ## 1399 | aug thu | ISI 0.2991599191  |
| ## 1400 | aug tue | ISI 1.8912717910  |
| ## 1401 | sep wed | ISI 0.0096850334  |
| ## 1402 | aug tue | ISI 1.8912717910  |
|         |         |                   |

| ## 1403 | aug fri | ISI 1.4329365552  |
|---------|---------|-------------------|
| ## 1404 | apr thu | ISI -1.5583039313 |
| ## 1405 | sep thu | ISI 0.0096850334  |
| ## 1406 | sep tue | ISI -0.5210189239 |
| ## 1407 | sep mon | ISI -2.0166391672 |
| ## 1408 | sep tue | ISI -0.5210189239 |
| ## 1409 | mar sun | ISI -0.4727731096 |
| ## 1410 | feb sun | ISI -1.7030413742 |
| ## 1411 | oct wed | ISI -0.9552312526 |
| ## 1412 | mar sat | ISI -0.3280356667 |
| ## 1413 | sep thu | ISI 0.0096850334  |
| ## 1414 | aug sat | ISI 2.6873277269  |
| ## 1415 | sep tue | ISI -0.5210189239 |
| ## 1416 | sep fri | ISI 0.7333722478  |
| ## 1417 | sep thu | ISI 2.1083779553  |
| ## 1418 | oct sat | ISI -0.5933876454 |
| ## 1419 | aug sat | ISI 2.6873277269  |
| ## 1420 | sep fri | ISI 1.6259198124  |
| ## 1421 | mar mon | ISI -1.0034770669 |
| ## 1422 | mar sat | ISI -0.3280356667 |
| ## 1423 | mar sat | ISI -0.3280356667 |
| ## 1424 | sep sun | ISI -0.1591753167 |
| ## 1425 | sep mon | ISI -0.4968960168 |
| ## 1426 | sep wed | ISI 0.0096850334  |
| ## 1427 | mar mon | ISI -0.7140021811 |
| ## 1428 | aug sun | ISI -0.6898792740 |
| ## 1429 | sep fri | ISI 1.1434616694  |
| ## 1430 | mar mon | ISI -1.0034770669 |
| ## 1431 | jul fri | ISI -0.5692647382 |
| ## 1432 | sep wed | ISI -0.7140021811 |
| ## 1433 | sep sun | ISI -0.2556669453 |
| ## 1434 | oct mon | ISI 0.4680202692  |
| ## 1435 | aug sat | ISI 0.6610035264  |
| ## 1436 | sep sun | ISI -0.2556669453 |
| ## 1437 | aug sat | ISI 0.6610035264  |
| ## 1438 | sep wed | ISI 0.0096850334  |
| ## 1439 | sep sun | ISI -0.2556669453 |
| ## 1440 | sep tue | ISI -0.5210189239 |
| ## 1441 | sep tue | ISI -1.4376893956 |
| ## 1442 | sep sat | ISI -0.1350524095 |
| ## 1443 | aug sun | ISI 0.3474057334  |
| ## 1444 | sep sat | ISI -0.1350524095 |
| ## 1445 | sep tue | ISI -0.5210189239 |
| ## 1446 | sep sat | ISI -0.1350524095 |
| ## 1447 | aug sun | ISI 0.9022325979  |
| ## 1448 | aug sun | ISI 1.1193387622  |
| ## 1449 | aug sun | ISI 1.1193387622  |
| ## 1450 | aug wed | ISI 0.1061766620  |
| ## 1451 | aug wed | ISI 1.0469700408  |
| ## 1452 | aug wed | ISI 1.0469700408  |
| ## 1453 | aug wed | ISI 1.0469700408  |
| ## 1454 | aug wed | ISI 1.0469700408  |
| ## 1455 | aug thu | ISI -0.2797898524 |
| ## 1456 | aug thu | ISI -0.6898792740 |
|         |         |                   |

| ## 1457 | aug sat | ISI 0.4438973620  |
|---------|---------|-------------------|
| ## 1458 | aug sat | ISI 0.4438973620  |
| ## 1459 | aug sat | ISI 1.0952158551  |
| ## 1460 | aug mon | ISI 1.2640762051  |
| ## 1461 | aug fri | ISI -0.0626836881 |
| ## 1462 | aug fri | ISI -0.0626836881 |
| ## 1463 | aug fri | ISI -0.4968960168 |
| ## 1464 | aug fri | ISI 0.9263555050  |
| ## 1465 | aug tue | ISI 1.3123220194  |
| ## 1466 | aug tue | ISI 3.2662774985  |
| ## 1467 | aug tue | ISI 1.2399532980  |
| ## 1468 | aug tue | ISI 1.2399532980  |
| ## 1469 | aug tue | ISI 1.2399532980  |
| ## 1470 | aug tue | ISI 1.2399532980  |
| ## 1471 | dec sun | ISI -0.5692647382 |
| ## 1472 | dec wed | ISI -0.9311083455 |
| ## 1473 | dec thu | ISI -1.7271642814 |
| ## 1474 | dec mon | ISI -1.5824268385 |
| ## 1475 | dec mon | ISI -1.5824268385 |
| ## 1476 | dec mon | ISI -1.5824268385 |
| ## 1477 | dec mon | ISI -1.5824268385 |
| ## 1478 | dec fri | ISI -1.2205832313 |
| ## 1479 | dec tue | ISI -1.5824268385 |
| ## 1480 | feb wed | ISI -1.4376893956 |
| ## 1481 | feb fri | ISI -0.6898792740 |
| ## 1482 | jul sat | ISI -0.0385607809 |
| ## 1483 | jul fri | ISI -0.6898792740 |
| ## 1484 | jul tue | ISI 0.4438973620  |
| ## 1485 | jul tue | ISI -0.1591753167 |
| ## 1486 | jun sun | ISI -0.6657563668 |
| ## 1487 | jun mon | ISI -0.4004043882 |
| ## 1488 | sep sun | ISI -0.8346167169 |
| ## 1489 | sep sun | ISI -0.8346167169 |
| ## 1490 | sep sun | ISI 0.1785453834  |
| ## 1491 | sep wed | ISI -0.0868065952 |
| ## 1492 | sep thu | ISI -0.1350524095 |
| ## 1493 | sep thu | ISI -0.4004043882 |
| ## 1494 | sep thu | ISI -0.4004043882 |
| ## 1495 | sep thu | ISI -0.4004043882 |
| ## 1496 | sep thu | ISI -0.4004043882 |
| ## 1497 | sep thu | ISI -0.5692647382 |
| ## 1498 | sep thu | ISI -0.9069854383 |
| ## 1499 | sep sat | ISI -0.1832982238 |
| ## 1500 | sep sat | ISI -0.1832982238 |
| ## 1501 | sep sat | ISI -0.1591753167 |
| ## 1502 | sep sat | ISI -0.1591753167 |
| ## 1503 | sep mon | ISI 0.0820537548  |
| ## 1504 | sep mon | ISI -0.7140021811 |
| ## 1505 | sep mon | ISI -0.7140021811 |
| ## 1506 | sep mon | ISI -0.7140021811 |
| ## 1507 | sep mon | ISI -0.7140021811 |
| ## 1508 | sep mon | ISI -0.4004043882 |
| ## 1509 | sep mon | ISI -0.4004043882 |
| ## 1510 | sep mon | ISI -0.4004043882 |

| ## 1511 | sep mon | ISI -0.4004043882 |
|---------|---------|-------------------|
| ## 1512 | sep fri | ISI 0.1061766620  |
| ## 1513 | sep fri | ISI 0.1061766620  |
| ## 1514 | sep fri | ISI 0.1061766620  |
| ## 1515 | sep fri | ISI 0.1061766620  |
| ## 1516 | sep fri | ISI 0.1061766620  |
| ## 1517 | sep fri | ISI 0.1061766620  |
| ## 1518 | sep fri | ISI 0.1061766620  |
| ## 1519 | sep fri | ISI 0.1061766620  |
| ## 1520 | sep fri | ISI 0.2509141048  |
| ## 1521 | sep fri | ISI 0.2509141048  |
| ## 1522 | sep fri | ISI 0.2509141048  |
| ## 1523 | sep fri | ISI 0.5886348049  |
| ## 1524 | sep tue | ISI -0.6416334597 |
| ## 1525 | sep tue | ISI -0.6416334597 |
| ## 1526 | sep tue | ISI -0.6416334597 |
| ## 1527 | sep tue | ISI 0.8057409693  |
| ## 1528 | sep sat | ISI -0.1832982238 |
| ## 1529 | sep sun | ISI -0.4968960168 |
| ## 1530 | sep fri | ISI -0.4245272953 |
| ## 1531 | sep sat | ISI -0.1832982238 |
| ## 1532 | aug sat | ISI -0.1832982238 |
| ## 1533 | jul wed | ISI 0.6610035264  |
| ## 1534 | aug thu | ISI -0.5692647382 |
| ## 1535 | aug wed | ISI 2.1325008625  |
| ## 1536 | aug thu | ISI -0.6898792740 |
| ## 1537 | aug sat | ISI -0.3521585739 |
| ## 1538 | aug sun | ISI -0.3762814810 |
| ## 1539 | sep sun | ISI 0.5403889906  |
| ## 1540 | aug fri | ISI 0.6851264335  |
| ## 1541 | feb mon | ISI -1.2205832313 |
| ## 1542 | sep fri | ISI -0.4727731096 |
| ## 1543 | sep sun | ISI -0.4968960168 |
| ## 1544 | feb sun | ISI -1.3653206742 |
| ## 1545 | sep sun | ISI 0.5403889906  |
| ## 1546 | aug sun | ISI -0.3762814810 |
| ## 1547 | jun wed | ISI 1.1675845765  |
| ## 1548 | sep thu | ISI -0.2074211310 |
| ## 1549 | sep wed | ISI -1.3170748599 |
| ## 1550 | sep sat | ISI -1.2447061384 |
| ## 1551 | sep fri | ISI -0.4245272953 |
| ## 1552 | feb fri | ISI -1.4135664885 |
| ## 1553 | jul mon | ISI 0.1544224762  |
| ## 1554 | aug thu | ISI 1.1434616694  |
| ## 1555 | jul tue | ISI -0.0626836881 |
| ## 1556 | aug sun | ISI -0.2556669453 |
| ## 1557 | aug sun | ISI -0.3762814810 |
| ## 1558 | aug wed | ISI -0.3280356667 |
| ## 1559 | jul sun | ISI -0.9552312526 |
| ## 1560 | sep sat | ISI -0.1832982238 |
| ## 1561 | aug sat | ISI -0.1832982238 |
| ## 1562 | aug mon | ISI -0.2315440381 |
| ## 1563 | aug sun | ISI -0.3762814810 |
| ## 1564 | aug sat | ISI 0.1061766620  |
|         |         |                   |

```
## 1565
                           ISI 0.2267911977
          aug sun
## 1566
                           ISI -0.2315440381
          aug mon
## 1567
                           ISI -0.1832982238
          aug sat
## 1568
                           ISI -0.4727731096
          sep fri
## 1569
          aug mon
                           ISI -0.2315440381
## 1570
          apr mon
                           ISI -1.3170748599
## 1571
          sep fri
                           ISI -0.4245272953
## 1572
                           ISI 2.1325008625
          aug wed
## 1573
          aug fri
                           ISI 1.7224114410
## 1574
          aug wed
                           ISI -0.3280356667
## 1575
                           ISI -0.1832982238
          aug sat
## 1576
                           ISI -0.3521585739
          aug sat
## 1577
                           ISI -0.4968960168
          sep sun
## 1578
                           ISI -1.7512871885
          feb tue
## 1579
          feb tue
                           ISI -1.7512871885
## 1580
          feb sat
                           ISI -1.7754100957
## 1581
                           ISI -0.4968960168
          mar mon
## 1582
          mar wed
                           ISI -0.4486502025
## 1583
                           ISI -0.1591753167
          mar thu
## 1584
          apr sun
                           ISI
                               0.7574951550
## 1585
                           ISI -0.8346167169
          may fri
## 1586
                           ISI -1.0758457884
          jun mon
## 1587
          jun sat
                           ISI
                               0.0579308477
## 1588
          jun thu
                           ISI
                                0.3956515477
## 1589
          jun thu
                           ISI
                                2.1325008625
## 1590
          jul thu
                           ISI 0.1785453834
## 1591
          jul sun
                           ISI
                                1.3364449266
## 1592
          jul sun
                           ISI 1.3364449266
## 1593
                           ISI -0.6657563668
          jul mon
## 1594
          jul thu
                           ISI
                               0.0820537548
## 1595
          aug sun
                           ISI
                               1.1917074837
## 1596
                           ISI 1.1917074837
          aug sun
## 1597
                           ISI
                                2.9285567984
          aug mon
          aug tue
## 1598
                           ISI
                                2.0601321410
## 1599
          aug tue
                           ISI 2.0601321410
## 1600
          aug tue
                           ISI 2.0601321410
## 1601
                           ISI 0.5162660835
          aug fri
## 1602
          aug sat
                           ISI
                               1.1675845765
## 1603
          aug mon
                           ISI 1.8430259767
## 1604
          aug tue
                           ISI
                               1.2399532980
          aug tue
## 1605
                           ISI
                                1.2399532980
## 1606
                           ISI 1.2399532980
          aug tue
## 1607
          aug wed
                           ISI 2.6149590055
## 1608
                           ISI 2.6149590055
          aug wed
## 1609
          aug thu
                           ISI 0.2267911977
## 1610
                           ISI -0.4968960168
          aug fri
## 1611
          aug fri
                           ISI -0.4968960168
## 1612
                           ISI -1.7512871885
          aug sun
## 1613
          aug sun
                           ISI -1.7512871885
## 1614
          aug sun
                           ISI -1.7512871885
                          temp -0.2083578670
## 1615
          jul tue
## 1616
          sep tue
                          temp
                                0.3904829792
## 1617
                                0.4228527546
          sep mon
                          temp
## 1618
                          temp
                                0.6494411829
          aug wed
```

```
## 1619
          aug fri
                                 0.3095585405
                           temp
## 1620
           jul sat
                           temp - 0.4349462953
## 1621
          aug wed
                           temp
                                 0.7303656216
## 1622
                                 1.3130215800
          aug thu
                           temp
## 1623
          mar mon
                           temp - 0.9852324782
## 1624
           sep tue
                           temp
                                 0.7951051725
##
  1625
                           temp - 0.3054671934
           aug tue
## 1626
           sep thu
                           temp
                                 0.7141807338
## 1627
           jun fri
                                 0.6332562952
                           temp
## 1628
           jul sun
                                 0.8922144989
                           temp
## 1629
           jul sat
                                 0.8598447234
                           temp
## 1630
          sep fri
                                 0.1315247754
                           temp
## 1631
                                 1.6690891101
           sep sat
                           temp
## 1632
           aug sun
                           temp - 0.4673160707
## 1633
           sep sat
                           temp
                                 1.5072402328
## 1634
                           temp -0.1436183161
           aug wed
## 1635
           aug wed
                           temp
                                 0.1962643263
## 1636
                           temp - 0.0465089897
          sep fri
## 1637
          mar mon
                           temp - 0.5158707339
## 1638
           aug thu
                           temp
                                0.1638945509
## 1639
                           temp - 0.6615347235
          mar sat
## 1640
           sep sat
                           temp -0.2407276425
## 1641
          sep sun
                           temp - 0.2407276425
## 1642
          mar thu
                           temp -2.2638386092
## 1643
           aug wed
                           temp -0.4349462953
## 1644
          aug wed
                           temp 0.6656260706
## 1645
          mar fri
                           temp - 0.7586440499
                                 0.2286341018
## 1646
           aug thu
                           temp
## 1647
           sep wed
                           temp
                                 0.4228527546
## 1648
           aug wed
                           temp - 0.3054671934
## 1649
           aug sun
                           temp
                                 0.1315247754
## 1650
                           temp -0.2569125302
          sep mon
## 1651
                           temp -0.8233836009
          aug sat
          aug sat
## 1652
                           temp 0.1638945509
## 1653
           apr thu
                           temp -2.1829141705
## 1654
          aug sun
                           temp -0.0141392142
## 1655
           sep wed
                           temp -0.1598032038
## 1656
           aug tue
                           temp - 0.7910138254
## 1657
           sep sun
                           temp 0.7465505093
## 1658
          oct mon
                           temp - 0.0303241019
## 1659
           feb sun
                           temp -1.1147115801
## 1660
          oct mon
                           temp - 0.4025765198
## 1661
          aug fri
                           temp 0.2448189895
## 1662
          sep tue
                           temp - 0.2730974179
## 1663
                           temp -1.2603755697
          mar sun
## 1664
                           temp 0.2771887650
           sep mon
## 1665
                           temp - 0.9690475905
          mar sat
## 1666
          mar sun
                           temp -1.2603755697
## 1667
          mar fri
                           temp -1.2280057942
## 1668
          aug thu
                           temp
                                 0.7951051725
          aug tue
## 1669
                           temp
                                 0.8598447234
          sep wed
## 1670
                           temp
                                 0.8112900602
## 1671
                                 0.8598447234
          aug tue
                           temp
## 1672
          aug fri
                           temp
                                 0.6818109584
```

```
## 1673
                           temp -2.1829141705
          apr thu
## 1674
                                 0.3581132037
          sep thu
                           temp
## 1675
          sep tue
                           temp - 0.8719382641
## 1676
                                 0.5361469688
           sep mon
                           temp
## 1677
           sep tue
                           temp
                                 0.3742980914
          mar sun
                           temp -1.1147115801
## 1678
##
  1679
           feb sun
                           temp -1.6973675385
## 1680
          oct wed
                           temp
                                 0.1477096631
## 1681
          mar sat
                           temp -0.6777196113
## 1682
          sep thu
                           temp
                                 0.4552225301
## 1683
                                 0.5847016320
           aug sat
                           temp
## 1684
                                 0.2286341018
           sep tue
                           temp
## 1685
                                 0.0506003367
           sep fri
                           temp
## 1686
           sep thu
                           temp
                                 0.6332562952
##
  1687
          oct sat
                           temp -0.1436183161
## 1688
                           temp -2.2962083847
           aug sat
## 1689
           sep fri
                           temp 0.1315247754
## 1690
                           temp -1.3413000084
          mar mon
## 1691
          mar sat
                           temp - 0.3702067443
## 1692
          mar sat
                           temp -0.3702067443
## 1693
                           temp - 0.3863916321
           sep sun
## 1694
           sep mon
                           temp -1.1147115801
## 1695
          sep wed
                           temp 0.0182305613
## 1696
          mar mon
                           temp - 0.6615347235
## 1697
           aug sun
                           temp -0.4996858462
## 1698
                           temp -0.1112485406
           sep fri
## 1699
                           temp -1.3413000084
          mar mon
## 1700
           jul fri
                           temp -0.9528627028
## 1701
           sep wed
                           temp -0.6291649481
## 1702
           sep sun
                           temp
                                 0.5847016320
## 1703
          oct mon
                           temp - 0.5158707339
## 1704
           aug sat
                           temp
                                 0.1315247754
## 1705
           sep sun
                           temp
                                 1.4586855696
          aug sat
## 1706
                           temp - 0.4673160707
## 1707
           sep wed
                           temp
                                 1.1511727026
## 1708
                           temp
                                 1.3777611309
          sep sun
## 1709
           sep tue
                           temp -0.0950636529
## 1710
           sep tue
                           temp
                                 0.8112900602
## 1711
           sep sat
                           temp -0.2569125302
## 1712
           aug sun
                           temp
                                 0.0506003367
## 1713
           sep sat
                           temp - 0.1759880915
## 1714
           sep tue
                           temp -0.0788787651
## 1715
           sep sat
                           temp
                                 0.9407691621
## 1716
          aug sun
                           temp -0.6291649481
## 1717
                                 0.5037771933
          aug sun
                           temp
## 1718
           aug sun
                           temp
                                 1.2159122536
## 1719
                                 0.2286341018
           aug wed
                           temp
## 1720
           aug wed
                           temp
                                 0.3904829792
## 1721
          aug wed
                           temp
                                 1.2159122536
## 1722
          aug wed
                           temp
                                 0.7627353970
## 1723
          aug wed
                           temp
                                 0.4552225301
          aug thu
## 1724
                           temp
                                 0.3419283160
## 1725
          aug thu
                           temp -0.0626938774
          aug sat
## 1726
                           temp
                                 0.7465505093
```

```
## 1727
                                 0.3419283160
          aug sat
                           temp
## 1728
           aug sat
                                 0.7141807338
                           temp
## 1729
           aug mon
                           temp
                                 1.4586855696
## 1730
           aug fri
                           temp -1.3089302329
## 1731
           aug fri
                           temp
                                 0.3419283160
## 1732
           aug fri
                           temp
                                 0.0020456735
##
  1733
           aug fri
                                 0.4066678669
                           temp
## 1734
           aug tue
                           temp
                                 0.4552225301
          aug tue
## 1735
                                 0.0182305613
                           temp
## 1736
          aug tue
                           temp - 0.0303241019
## 1737
                                 0.4066678669
           aug tue
                           temp
## 1738
                                 0.1315247754
           aug tue
                           temp
## 1739
                                 0.1477096631
           aug tue
                           temp
## 1740
          dec sun
                           temp -2.3447630479
##
  1741
          dec wed
                           temp -2.2962083847
##
  1742
          dec thu
                           temp -2.2962083847
## 1743
          dec mon
                           temp -2.3771328233
          dec mon
## 1744
                           temp -2.3771328233
## 1745
          dec mon
                           temp -2.3771328233
## 1746
          dec mon
                           temp -2.3771328233
## 1747
          dec fri
                           temp - 2.7655701289
## 1748
                           temp -2.2962083847
          dec tue
## 1749
           feb wed
                           temp -1.6973675385
##
  1750
           feb fri
                           temp -1.9077710790
## 1751
           jul sat
                           temp
                                 0.9731389376
## 1752
           jul fri
                                 0.5847016320
                           temp
## 1753
           jul tue
                           temp
                                 1.2320971413
## 1754
           jul tue
                           temp -0.3540218566
## 1755
           jun sun
                           temp -0.8071987131
## 1756
           jun mon
                           temp - 0.0303241019
## 1757
           sep sun
                           temp -0.3540218566
## 1758
                           temp
                                 0.7303656216
          sep sun
## 1759
                                 0.8922144989
           sep sun
                           temp
## 1760
           sep wed
                           temp
                                 0.0667852245
## 1761
           sep thu
                           temp -0.0141392142
## 1762
          sep thu
                                 0.3742980914
                           temp
## 1763
           sep thu
                           temp -0.0626938774
          sep thu
## 1764
                           temp -0.4025765198
## 1765
           sep thu
                           temp - 0.4025765198
## 1766
           sep thu
                           temp -1.0337871414
          sep thu
## 1767
                           temp - 0.9043080396
## 1768
           sep sat
                           temp
                                 0.6818109584
## 1769
           sep sat
                           temp
                                 0.7951051725
## 1770
                                 0.3581132037
           sep sat
                           temp
## 1771
                           temp -0.3540218566
           sep sat
## 1772
                           temp -0.1921729793
           sep mon
## 1773
                                 0.6008865197
           sep mon
                           temp
## 1774
           sep mon
                           temp
                                 0.5523318565
## 1775
                                 0.1800794386
           sep mon
                           temp
## 1776
          sep mon
                           temp
                                 0.0020456735
## 1777
                           temp - 0.5482405094
           sep mon
## 1778
           sep mon
                           temp -1.1470813556
## 1779
                           temp -0.4025765198
          sep mon
## 1780
                           temp
                                 0.3257434282
           sep mon
```

```
## 1781
          sep fri
                           temp -1.0499720292
## 1782
          sep fri
                           temp -1.4869639980
## 1783
          sep fri
                           temp - 0.6291649481
## 1784
           sep fri
                                  0.2124492141
                           temp
## 1785
           sep fri
                           temp
                                  0.0829701122
                           temp -0.0950636529
##
  1786
           sep fri
##
  1787
           sep fri
                                  0.2448189895
                           temp
##
  1788
                                  0.2448189895
           sep fri
                           temp
## 1789
           sep fri
                                  0.2933736528
                           temp
## 1790
           sep fri
                           temp -0.1436183161
  1791
                           temp -0.3216520811
##
           sep fri
## 1792
           sep fri
                           temp - 0.6615347235
## 1793
                           temp -0.5482405094
           sep tue
## 1794
           sep tue
                           temp
                                 0.2933736528
##
  1795
           sep tue
                           temp
                                  0.0506003367
##
  1796
                           temp -0.5482405094
           sep tue
##
  1797
          sep sat
                           temp - 0.4025765198
## 1798
                           temp -0.8881231518
           sep sun
## 1799
           sep fri
                           temp -1.4545942225
## 1800
           sep sat
                           temp -0.6291649481
## 1801
                           temp
                                 0.4228527546
           aug sat
## 1802
                                  0.0020456735
           jul wed
                           temp
## 1803
           aug thu
                           temp -0.4996858462
## 1804
           aug wed
                                  1.4425006819
                           temp
## 1805
           aug thu
                           temp
                                  0.1962643263
## 1806
           aug sat
                                  0.3257434282
                           temp
## 1807
                                  0.2610038773
           aug sun
                           temp
## 1808
           sep sun
                           temp
                                  0.2124492141
## 1809
           aug fri
                           temp
                                  0.6494411829
## 1810
           feb mon
                           temp -1.9077710790
## 1811
           sep fri
                           temp
                                  0.2286341018
## 1812
           sep sun
                           temp
                                  0.4228527546
## 1813
           feb sun
                           temp -1.4869639980
## 1814
           sep sun
                           temp
                                  0.1800794386
## 1815
           aug sun
                           temp
                                  0.8112900602
## 1816
           jun wed
                           temp
                                  1.4101309064
## 1817
           sep thu
                           temp
                                  0.5685167442
## 1818
           sep wed
                           temp
                                  0.4066678669
## 1819
           sep sat
                           temp - 0.3702067443
## 1820
           sep fri
                           temp
                                  0.0991549999
## 1821
           feb fri
                           temp -1.7944768649
## 1822
           jul mon
                                  0.5685167442
                           temp
## 1823
           aug thu
                           temp
                                  1.3292064677
## 1824
           jul tue
                                  1.1349878149
                           temp
## 1825
           aug sun
                                  0.9083993866
                           temp
## 1826
                                  0.8922144989
           aug sun
                           temp
## 1827
          aug wed
                                  1.1188029272
                           temp
## 1828
           jul sun
                           temp
                                  1.6205344469
## 1829
           sep sat
                           temp
                                  0.4875923056
## 1830
          aug sat
                           temp
                                  1.2320971413
## 1831
          aug mon
                           temp
                                  1.3939460187
## 1832
           aug sun
                           temp
                                  0.8598447234
## 1833
           aug sat
                           temp
                                  0.6494411829
## 1834
                           temp
                                  0.2610038773
           aug sun
```

```
## 1835
                                 1.2159122536
          aug mon
                           temp
## 1836
                                  0.6979958461
           aug sat
                           temp
##
  1837
                           temp - 0.0303241019
          sep fri
## 1838
                                 1.0055087130
           aug mon
                           temp
## 1839
           apr mon
                           temp -1.3574848961
           sep fri
                           temp - 0.4996858462
##
  1840
##
  1841
                                 0.6656260706
           aug wed
                           temp
##
  1842
           aug fri
                           temp -1.2118209065
## 1843
          aug wed
                                 0.0991549999
                           temp
## 1844
           aug sat
                           temp - 0.0626938774
  1845
##
                           temp -0.6129800603
           aug sat
## 1846
                           temp - 0.7748289377
           sep sun
## 1847
                           temp -2.3771328233
           feb tue
##
  1848
           feb tue
                           temp -2.2962083847
##
  1849
           feb sat
                           temp -2.3771328233
##
  1850
                           temp -1.4707791102
          mar mon
##
  1851
          mar wed
                           temp -1.3089302329
##
  1852
                           temp - 0.9690475905
          mar thu
## 1853
           apr sun
                           temp - 0.9043080396
## 1854
          may fri
                           temp - 0.2083578670
##
  1855
           jun mon
                           temp - 0.8071987131
##
  1856
           jun sat
                           temp
                                  0.8436598357
## 1857
           jun thu
                           temp
                                  1.1511727026
##
  1858
           jun thu
                                  0.5523318565
                           temp
          jul thu
##
  1859
                           temp
                                  1.2806518045
## 1860
          jul sun
                                  1.1026180394
                           temp
## 1861
                           temp - 0.1759880915
           jul sun
## 1862
           jul mon
                           temp
                                  0.5361469688
## 1863
           jul thu
                                  1.7661984365
                           temp
## 1864
           aug sun
                           temp
                                  0.6656260706
## 1865
          aug sun
                           temp
                                  2.2355601808
## 1866
                                  1.8309379875
          aug mon
                           temp
##
  1867
                                  0.7789202848
           aug tue
                           temp
          aug tue
## 1868
                           temp
                                  1.1511727026
## 1869
           aug tue
                           temp
                                  0.0182305613
## 1870
          aug fri
                                  1.3292064677
                           temp
## 1871
           aug sat
                           temp
                                  1.8633077629
## 1872
           aug mon
                           temp
                                  2.1546357421
## 1873
           aug tue
                           temp
                                  2.1060810789
##
  1874
           aug tue
                           temp
                                  2.2679299563
          aug tue
## 1875
                           temp
                                  1.2968366922
  1876
##
           aug wed
                           temp
                                  1.6043495592
## 1877
          aug wed
                           temp
                                  1.5557948960
## 1878
           aug thu
                           temp
                                  1.1997273658
## 1879
           aug fri
                                  0.2933736528
                           temp
## 1880
           aug fri
                           temp - 0.1759880915
          aug sun
## 1881
                           temp
                                  1.3777611309
## 1882
           aug sun
                           temp
                                  0.4228527546
## 1883
           aug sun
                           temp
                                  0.3095585405
## 1884
           jul tue
                             RH -0.1159142113
## 1885
          sep tue
                             RH -0.3807203501
## 1886
           sep mon
                             RH -0.3145188154
## 1887
                             RH -0.8441310930
           aug wed
## 1888
                                0.4798996010
          aug fri
                             RH
```

|   | ## 1889 | jul sat | RH 0.6123026703  |
|---|---------|---------|------------------|
|   | ## 1890 | aug wed | RH -0.7779295583 |
|   | ## 1891 | aug thu | RH -1.4399449052 |
|   | ## 1892 | mar mon | RH -0.2483172807 |
|   | ## 1893 | sep tue | RH -1.0427356971 |
|   | ## 1894 | aug tue | RH -0.0497126766 |
|   | ## 1895 | sep thu | RH -1.2413403011 |
|   | ## 1896 | jun fri | RH -0.3145188154 |
|   | ## 1897 | jul sun | RH -0.9765341624 |
|   | ## 1898 | jul sat | RH -0.0497126766 |
|   | ## 1899 | sep fri | RH 0.2150934622  |
|   | ## 1900 | sep sat | RH -1.1089372317 |
|   | ## 1901 | aug sun | RH 0.2150934622  |
|   | ## 1902 | sep sat | RH -1.1089372317 |
|   | ## 1903 | aug wed | RH 0.0826903928  |
|   | ## 1904 | aug wed | RH -0.5793249542 |
|   | ## 1905 | sep fri | RH -0.6455264889 |
|   | ## 1906 | mar mon | RH -0.9765341624 |
|   | ## 1907 | aug thu | RH -0.1821157460 |
|   | ## 1908 | mar sat | RH -0.8441310930 |
|   | ## 1909 | sep sat | RH 0.8109072744  |
|   | ## 1910 | sep sun | RH 1.5391241561  |
|   | ## 1911 | mar thu | RH 1.7377287602  |
|   | ## 1912 | aug wed | RH 0.2150934622  |
|   | ## 1913 | aug wed | RH -0.7117280236 |
|   | ## 1914 | mar fri | RH -1.1751387664 |
|   | ## 1915 | aug thu | RH 0.0826903928  |
|   | ## 1916 | sep wed | RH -0.5793249542 |
|   | ## 1917 | aug wed | RH 0.4136980663  |
|   | ## 1918 | aug sun | RH -0.3145188154 |
|   | ## 1919 | sep mon | RH -0.3145188154 |
|   | ## 1920 | aug sat | RH 0.6123026703  |
|   | ## 1921 | aug sat | RH -0.3145188154 |
|   | ## 1922 | apr thu | RH 0.6785042050  |
|   | ## 1923 | aug sun | RH 0.0164888581  |
|   | ## 1924 | sep wed | RH 0.0826903928  |
|   | ## 1925 | aug tue | RH 1.4729226214  |
|   | ## 1926 | sep sun | RH -0.7779295583 |
|   | ## 1927 | oct mon | RH -0.7779295583 |
|   | ## 1928 | feb sun | RH 0.6123026703  |
|   | ## 1929 | oct mon | RH 0.0826903928  |
|   | ## 1930 | aug fri | RH -0.6455264889 |
|   | ## 1931 | sep tue | RH 0.1488919275  |
|   | ## 1932 | mar sun | RH -0.3145188154 |
|   | ## 1933 | sep mon | RH -0.1159142113 |
|   | ## 1934 | mar sat | RH -0.1159142113 |
|   | ## 1935 | mar sun | RH 1.0757134132  |
|   | ## 1936 | mar fri | RH -0.7117280236 |
|   | ## 1937 | aug thu | RH -1.0427356971 |
|   | ## 1938 | aug tue | RH -1.4399449052 |
|   | ## 1939 | sep wed | RH -1.2413403011 |
|   | ## 1940 | aug tue | RH -1.4399449052 |
|   | ## 1941 | aug fri | RH -0.5131234195 |
|   | ## 1942 | apr thu | RH 0.6785042050  |
| 1 |         |         |                  |

| ## 1943 | sep thu | RH -1.9033556481 |
|---------|---------|------------------|
| ## 1944 | sep tue | RH 1.0095118785  |
| ## 1945 | sep mon | RH -0.3807203501 |
| ## 1946 | sep tue | RH -0.7117280236 |
| ## 1947 | mar sun | RH 0.6785042050  |
| ## 1948 | feb sun | RH 1.6053256908  |
| ## 1949 | oct wed | RH -0.4469218848 |
| ## 1950 | mar sat | RH 1.3405195520  |
| ## 1951 | sep thu | RH -0.6455264889 |
| ## 1952 | aug sat | RH -0.8441310930 |
| ## 1953 | sep tue | RH -0.4469218848 |
| ## 1954 | sep fri | RH -0.7117280236 |
| ## 1955 | sep thu | RH -1.1751387664 |
| ## 1956 | oct sat | RH -1.2413403011 |
| ## 1957 | aug sat | RH 3.4589686623  |
| ## 1958 | sep fri | RH 0.2150934622  |
| ## 1959 | mar mon | RH 0.1488919275  |
| ## 1960 | mar sat | RH -1.1089372317 |
| ## 1961 | mar sat | RH -1.1089372317 |
| ## 1962 | sep sun | RH 1.0757134132  |
| ## 1963 | sep mon | RH 1.9363333643  |
| ## 1964 | sep wed | RH -1.6385495093 |
| ## 1965 | mar mon | RH -1.1089372317 |
| ## 1966 | aug sun | RH 1.0095118785  |
| ## 1967 | sep fri | RH 0.3474965316  |
| ## 1968 | mar mon | RH 0.1488919275  |
| ## 1969 | jul fri | RH 2.3335425724  |
| ## 1970 | sep wed | RH 0.8771088091  |
| ## 1971 | sep sun | RH -0.3145188154 |
| ## 1972 | oct mon | RH 0.0164888581  |
| ## 1973 | aug sat | RH -0.6455264889 |
| ## 1974 | sep sun | RH -1.1751387664 |
| ## 1975 | aug sat | RH -0.0497126766 |
| ## 1976 | sep wed | RH -1.5061464399 |
| ## 1977 | sep sun | RH -1.1089372317 |
| ## 1978 | sep tue | RH -0.0497126766 |
| ## 1979 | sep tue | RH -0.5131234195 |
| ## 1980 | sep sat | RH -1.2413403011 |
| ## 1981 | aug sun | RH -0.1821157460 |
| ## 1982 | sep sat | RH 0.1488919275  |
| ## 1983 | sep tue | RH -0.2483172807 |
| ## 1984 | sep sat | RH -1.1089372317 |
| ## 1985 | aug sun | RH 1.4729226214  |
| ## 1986 | aug sun | RH 0.6785042050  |
| ## 1987 | aug sun | RH -0.3807203501 |
| ## 1988 | aug wed | RH 1.7377287602  |
| ## 1989 | aug wed | RH -0.2483172807 |
| ## 1990 | aug wed | RH -1.2413403011 |
| ## 1991 | aug wed | RH -0.5131234195 |
| ## 1992 | aug wed | RH -0.4469218848 |
| ## 1993 | aug thu | RH -0.3807203501 |
| ## 1994 | aug thu | RH -0.1821157460 |
| ## 1995 | aug sat | RH -0.1821157460 |
| ## 1996 | aug sat | RH 0.0164888581  |
| = 2,2,0 | , ====  | 2.2.2.3.200001   |

| ı                  |                    |                                      |
|--------------------|--------------------|--------------------------------------|
| ## 1997            | aug sat            | RH -0.2483172807                     |
| ## 1998            | aug mon            | RH -0.7779295583                     |
| ## 1999            | aug fri            | RH 2.6645502459                      |
| ## 2000            | aug fri            | RH -0.1159142113                     |
| ## 2001            | aug fri            | RH -0.3145188154                     |
| ## 2002            | aug fri            | RH 0.6123026703                      |
| ## 2003            | aug tue            | RH 0.6785042050                      |
| ## 2004            | aug tue            | RH 0.7447057397                      |
| ## 2005            | aug tue            | RH 0.6123026703                      |
| ## 2006            | aug tue            | RH 0.8109072744                      |
| ## 2007            | aug tue            | RH 0.9433103438                      |
| ## 2008            | aug tue            | RH 0.2150934622                      |
| ## 2009            | dec sun            | RH 0.8771088091                      |
| ## 2010            | dec wed            | RH 1.1419149479                      |
| ## 2011            | dec thu            | RH 1.1419149479                      |
| ## 2012            | dec mon            | RH -1.5061464399                     |
| ## 2013            | dec mon            | RH -1.5061464399                     |
| ## 2014            | dec mon            | RH -1.5061464399                     |
| ## 2015            | dec mon            | RH -1.5061464399                     |
| ## 2016            | dec fri            | RH 1.0095118785                      |
| ## 2017            | dec tue            | RH -1.3075418358                     |
| ## 2018            | feb wed            | RH -0.5793249542                     |
| ## 2019            | feb fri            | RH 0.1488919275                      |
| ## 2020            | jul sat            | RH -0.3145188154                     |
| ## 2021            | jul fri            | RH -0.2483172807                     |
| ## 2022            | jul tue            | RH -1.0427356971                     |
| ## 2023            | jul tue            | RH 1.5391241561                      |
| ## 2024            | jun sun            | RH 0.1488919275                      |
| ## 2025            | jun mon            | RH -0.3145188154                     |
| ## 2026            | sep sun            | RH 0.6123026703                      |
| ## 2027            | sep sun            | RH -0.5793249542                     |
| ## 2028            | sep sun            | RH -1.0427356971                     |
| ## 2029            | sep wed            | RH -0.1821157460                     |
| ## 2030            | sep thu            | RH -1.3075418358                     |
| ## 2031            | sep thu            | RH -1.0427356971                     |
| ## 2032            | =                  | RH -0.6455264889                     |
| ## 2033            | sep thu            | RH -1.0427356971                     |
| ## 2034            | sep thu            | RH -1.0427356971                     |
| ## 2035            | sep thu            | RH -0.3145188154                     |
| ## 2036            | sep thu            | RH 0.8109072744<br>RH -1.1089372317  |
| ## 2037<br>## 2038 | sep sat            | RH -1.1089372317<br>RH -1.1089372317 |
| ## 2038            | sep sat            | RH -1.0427356971                     |
| ## 2039            | sep sat            | RH -0.1821157460                     |
| ## 2040            | sep sat            | RH 0.6785042050                      |
| ## 2041            | sep mon<br>sep mon | RH -0.6455264889                     |
| ## 2042            | -                  | RH -0.5793249542                     |
| ## 2043            | sep mon<br>sep mon | RH -0.1821157460                     |
| ## 2044            | sep mon            | RH 0.0164888581                      |
| ## 2045            | sep mon            | RH 0.4798996010                      |
| ## 2040            | sep mon            | RH 1.4729226214                      |
| ## 2047            | sep mon            | RH -0.0497126766                     |
| ## 2049            | sep mon            | RH -0.5793249542                     |
| ## 2049            | sep mon<br>sep fri | RH 1.3405195520                      |
| ,,,, 2030          | ach III            | 1/11 1.0400190020                    |

| ## 2051 | sep fri | RH 2.0687364337  |
|---------|---------|------------------|
| ## 2052 | sep fri | RH 0.6123026703  |
| ## 2053 | sep fri | RH -0.0497126766 |
| ## 2054 | sep fri | RH 0.2150934622  |
| ## 2055 | sep fri | RH 0.4136980663  |
| ## 2056 | sep fri | RH -0.5793249542 |
| ## 2057 | sep fri | RH -0.5793249542 |
| ## 2058 | sep fri | RH -0.3145188154 |
| ## 2059 | sep fri | RH -0.1159142113 |
| ## 2060 | sep fri | RH 0.0826903928  |
| ## 2061 | sep fri | RH 1.3405195520  |
| ## 2062 | sep tue | RH 0.6123026703  |
| ## 2063 | sep tue | RH -0.5793249542 |
| ## 2064 | sep tue | RH 0.0826903928  |
| ## 2065 | sep tue | RH -0.3807203501 |
| ## 2066 | sep sat | RH 0.2150934622  |
| ## 2067 | sep sun | RH 2.2011395031  |
| ## 2068 | sep fri | RH 2.2673410377  |
| ## 2069 | sep sat | RH 0.8771088091  |
| ## 2070 | aug sat | RH -0.1159142113 |
| ## 2071 | jul wed | RH -0.3145188154 |
| ## 2072 | aug thu | RH 1.2743180173  |
| ## 2073 | aug wed | RH -0.9765341624 |
| ## 2074 | aug thu | RH 0.9433103438  |
| ## 2075 | aug sat | RH 0.0164888581  |
| ## 2076 | aug sun | RH 0.4136980663  |
| ## 2077 | sep sun | RH 0.7447057397  |
| ## 2078 | aug fri | RH -0.6455264889 |
| ## 2079 | feb mon | RH 1.8039302949  |
| ## 2080 | sep fri | RH 0.1488919275  |
| ## 2081 | sep sun | RH -0.0497126766 |
| ## 2082 | feb sun | RH 1.2081164826  |
| ## 2083 | sep sun | RH 0.7447057397  |
| ## 2084 | aug sun | RH -0.7117280236 |
| ## 2085 | jun wed | RH -0.6455264889 |
| ## 2086 | sep thu | RH 0.1488919275  |
| ## 2087 | sep wed | RH -0.6455264889 |
| ## 2088 | sep sat | RH 1.5391241561  |
| ## 2089 | sep fri | RH 0.0164888581  |
| ## 2090 | feb fri | RH 0.6123026703  |
| ## 2091 | jul mon | RH -1.1089372317 |
| ## 2092 | aug thu | RH -1.1089372317 |
| ## 2093 | jul tue | RH -0.3145188154 |
| ## 2094 | aug sun | RH -0.1159142113 |
| ## 2095 | aug sun | RH -0.5131234195 |
| ## 2096 | aug wed | RH -0.5131234195 |
| ## 2097 | jul sun | RH -1.1089372317 |
| ## 2098 | sep sat | RH 0.2812949969  |
| ## 2099 | aug sat | RH -0.8441310930 |
| ## 2100 | aug mon | RH -0.7117280236 |
| ## 2101 | aug sun | RH 0.0164888581  |
| ## 2102 | aug sat | RH -0.2483172807 |
| ## 2103 | aug sun | RH 1.4729226214  |
| ## 2104 | aug mon | RH -0.5793249542 |
|         |         |                  |

| 1       |         |                    |
|---------|---------|--------------------|
| ## 2105 | aug sat | RH 0.6123026703    |
| ## 2106 | sep fri | RH 0.1488919275    |
| ## 2107 | aug mon | RH -0.9765341624   |
| ## 2108 | apr mon | RH 1.3405195520    |
| ## 2109 | sep fri | RH 0.9433103438    |
| ## 2110 | aug wed | RH 0.3474965316    |
| ## 2111 | aug fri | RH 2.9293563847    |
| ## 2112 | aug wed | RH 0.4136980663    |
| ## 2113 | aug sat | RH 1.3405195520    |
| ## 2114 | aug sat | RH 1.8701318296    |
| ## 2115 | sep sun | RH 2.1349379684    |
| ## 2116 | feb tue | RH 2.5321471765    |
| ## 2117 | feb tue | RH 2.2011395031    |
| ## 2118 | feb sat | RH 1.0095118785    |
| ## 2119 | mar mon | RH 0.0826903928    |
| ## 2120 | mar wed | RH -0.1821157460   |
| ## 2121 | mar thu | RH -1.1089372317   |
| ## 2122 | apr sun | RH -0.7117280236   |
| ## 2123 | may fri | RH -0.2483172807   |
| ## 2124 | jun mon | RH 2.3335425724    |
| ## 2125 | jun sat | RH 0.4136980663    |
| ## 2126 | jun thu | RH -0.5793249542   |
| ## 2127 | jun thu | RH -0.2483172807   |
| ## 2128 | jul thu | RH -1.0427356971   |
| ## 2129 | jul sun | RH 0.0826903928    |
| ## 2130 | jul sun | RH 2.5321471765    |
| ## 2131 | jul mon | RH 0.8771088091    |
| ## 2132 | jul thu | RH -1.2413403011   |
| ## 2133 | aug sun | RH -0.2483172807   |
| ## 2134 | aug sun | RH -1.2413403011   |
| ## 2135 | aug mon | RH -1.0427356971   |
| ## 2136 | aug tue | RH -0.0497126766   |
| ## 2137 | aug tue | RH -0.6455264889   |
| ## 2138 | aug tue | RH 1.8039302949    |
| ## 2139 | aug fri | RH -0.9765341624   |
| ## 2140 | aug sat | RH -0.9103326277   |
| ## 2141 | aug mon | RH -1.1751387664   |
| ## 2142 | aug tue | RH -1.1089372317   |
| ## 2143 | aug tue | RH -1.1751387664   |
| ## 2144 | aug tue | RH 1.2743180173    |
| ## 2145 | aug wed | RH -0.9103326277   |
| ## 2146 | aug wed | RH -0.9765341624   |
| ## 2147 | aug thu | RH -0.5793249542   |
| ## 2148 | aug fri | RH 1.8039302949    |
| ## 2149 | aug fri | RH 1.2081164826    |
| ## 2150 | aug sun | RH -0.7779295583   |
| ## 2151 | aug sun | RH 1.8039302949    |
| ## 2152 | aug sun | RH 1.7377287602    |
| ## 2153 | jul tue | wind -0.7464731398 |
| ## 2154 | sep tue | wind -1.0115223408 |
| ## 2155 | sep mon | wind -1.2235617015 |
| ## 2156 | -       | wind 0.2077039835  |
| ## 2157 | aug fri | wind 2.5401369516  |
| ## 2158 | jul sat | wind 0.6847925451  |

| ı                  |                    |                                          |
|--------------------|--------------------|------------------------------------------|
| ## 2159            | aug wed            | wind 0.6847925451                        |
| ## 2160            | aug thu            | wind -0.0573452174                       |
| ## 2161            | mar mon            | wind 0.6847925451                        |
| ## 2162            | sep tue            | wind -0.2693845782                       |
| ## 2163            | aug tue            | wind 1.3739204675                        |
| ## 2164            | sep thu            | wind 0.2077039835                        |
| ## 2165            | jun fri            | wind 0.6847925451                        |
| ## 2166            | jul sun            | wind -1.0115223408                       |
| ## 2167            | jul sat            | wind -1.2235617015                       |
| ## 2168            | sep fri            | wind 0.4197433442                        |
| ## 2169            | sep sat            | wind -0.7464731398                       |
| ## 2170            | aug sun            | wind -1.4886109024                       |
| ## 2171            | sep sat            | wind -1.0115223408                       |
| ## 2172            | aug wed            | wind -0.2693845782                       |
| ## 2173            | aug wed            | wind -0.0573452174                       |
| ## 2174            | sep fri            | wind 0.8968319059                        |
| ## 2175            | mar mon            | wind -0.5344337791                       |
| ## 2176            | aug thu            | wind -0.0573452174                       |
| ## 2177            | mar sat            | wind 2.3280975908                        |
| ## 2178            | sep sat            | wind -1.2235617015                       |
| ## 2179            | sep sun            | wind -1.0115223408                       |
| ## 2180            | mar thu            | wind 0.2077039835                        |
| ## 2181            | aug wed            | wind -1.7006502631                       |
| ## 2182            | aug wed            | wind 0.2077039835                        |
| ## 2183            | mar fri            | wind 2.8051861525                        |
| ## 2184            | aug thu            | wind -1.0115223408                       |
| ## 2185            | sep wed            | wind -1.2235617015                       |
| ## 2186            | aug wed            | wind -0.0573452174                       |
| ## 2187            | aug sun            | wind 0.6847925451                        |
| ## 2188            | sep mon            | wind -1.0115223408                       |
| ## 2189            | aug sat            | wind -1.2235617015                       |
| ## 2190            | aug sat            | wind 0.4197433442                        |
| ## 2191            | apr thu            | wind 0.8968319059                        |
| ## 2192            | aug sun            | wind -0.7464731398<br>wind -1.0115223408 |
| ## 2193            | sep wed            |                                          |
| ## 2194            | aug tue            | wind 0.6847925451<br>wind 1.3739204675   |
| ## 2195            | sep sun            | wind -0.0573452174                       |
| ## 2196<br>## 2197 | oct mon            | wind -0.03/34321/4<br>wind -1.0115223408 |
|                    | feb sun            | wind -1.0113223408<br>wind 0.2077039835  |
| ## 2198            | oct mon<br>aug fri | wind 0.2077039833<br>wind 0.4197433442   |
| ## 2199            | sep tue            | wind -0.5344337791                       |
| ## 2200            | mar sun            | wind 0.8968319059                        |
| ## 2201            | sep mon            | wind -1.0115223408                       |
| ## 2203            | mar sat            | wind -1.7006502631                       |
| ## 2204            | mar sun            | wind -0.0573452174                       |
| ## 2205            | mar fri            | wind -0.0573452174<br>wind -0.0573452174 |
|                    | aug thu            | wind -0.7464731398                       |
| ## 2200            | aug tue            | wind 0.2077039835                        |
| ## 2207            | sep wed            | wind -0.0573452174                       |
| ## 2209            | aug tue            | wind 0.2077039835                        |
| ## 2210            | aug fri            | wind 0.6847925451                        |
| ## 2211            | apr thu            | wind 0.8968319059                        |
| ## 2212            | sep thu            | wind -1.7006502631                       |
| "" 2212            | Sop cha            | wind 1.7000302031                        |

| ## 2213            | sep tue            | wind 1.1618811068                        |
|--------------------|--------------------|------------------------------------------|
| ## 2214            | sep mon            | wind -0.2693845782                       |
| ## 2215            | sep tue            | wind -1.0115223408                       |
| ## 2216            | mar sun            | wind $-0.2693845782$                     |
| ## 2217            | feb sun            | wind -1.0115223408                       |
| ## 2218            | oct wed            | wind $-0.7464731398$                     |
| ## 2219            | mar sat            | wind $-0.0573452174$                     |
| ## 2220            | sep thu            | wind -1.2235617015                       |
| ## 2221            | aug sat            | wind 1.6389696684                        |
| ## 2222            | sep tue            | wind -1.0115223408                       |
| ## 2223            | sep fri            | wind 1.1618811068                        |
| ## 2224            | sep thu            | wind 0.4197433442                        |
| ## 2225            | oct sat            | wind -0.5344337791                       |
| ## 2226            | aug sat            | wind 0.8968319059                        |
| ## 2227            | sep fri            | wind 0.4197433442                        |
| ## 2228            | mar mon            | wind 0.8968319059                        |
| ## 2229            | mar sat            | wind 0.4197433442                        |
| ## 2230            | mar sat            | wind 0.4197433442                        |
| ## 2231            | sep sun            | wind -1.4886109024                       |
| ## 2232            | sep mon            | wind 1.1618811068                        |
| ## 2233            | sep wed            | wind -1.4886109024                       |
| ## 2234            | mar mon            | wind -0.5344337791                       |
| ## 2235            | aug sun            | wind -0.5344337791                       |
| ## 2236            | sep fri            | wind -0.2693845782                       |
| ## 2237            | mar mon            | wind 0.8968319059                        |
| ## 2238            | jul fri            | wind -0.2693845782                       |
| ## 2239            | sep wed            | wind 0.2077039835                        |
| ## 2240            | sep sun            | wind 0.4197433442                        |
| ## 2241            | oct mon            | wind -0.0573452174                       |
| ## 2242            | aug sat            | wind 0.2077039835                        |
| ## 2243            | sep sun            | wind -0.5344337791                       |
| ## 2244            | aug sat            | wind -0.0573452174                       |
| ## 2245            | sep wed            | wind 0.2077039835                        |
| ## 2246            | sep sun            | wind -0.5344337791                       |
| ## 2247            | sep tue            | wind -0.7464731398                       |
| ## 2248            | sep tue            | wind -0.5344337791                       |
| ## 2249            | sep sat            | wind -0.5344337791                       |
| ## 2250            | aug sun            | wind 0.8968319059                        |
| ## 2251            | sep sat            | wind -1.2235617015                       |
| ## 2252            | sep tue            | wind -1.0115223408                       |
| ## 2253            | sep sat            | wind -0.0573452174<br>wind -0.0573452174 |
| ## 2254            | aug sun            |                                          |
| ## 2255            | aug sun            | wind 1.8510090292                        |
| ## 2256            | aug sun            | wind 1.1618811068<br>wind -1.0115223408  |
| ## 2257<br>## 2258 | aug wed            | wind -1.9656994641                       |
|                    | aug wed            |                                          |
| ## 2259<br>## 2260 | aug wed<br>aug wed | wind -0.5344337791<br>wind -0.5344337791 |
| ## 2260            | aug wed<br>aug wed | wind -0.2693845782                       |
| ## 2261            | aug wed<br>aug thu | wind -0.7464731398                       |
| ## 2262            | aug thu            | wind -0.7404731398<br>wind -0.5344337791 |
| ## 2263            | =                  | wind -0.3344337791<br>wind -1.0115223408 |
| ## 2265            | aug sat            | wind -0.7464731398                       |
| ## 2266            | aug sat            | wind -0.7404731338<br>wind -1.2235617015 |
| "" 2200            | aug sat            | WING -1.223301/013                       |

| ## 2267 | aug mon      | wind -0.0573452174 |
|---------|--------------|--------------------|
| ## 2268 | aug fri      | wind 1.8510090292  |
| ## 2269 | aug fri      | wind -0.5344337791 |
| ## 2270 | aug fri      | wind -0.2693845782 |
| ## 2271 | aug fri      | wind -0.5344337791 |
| ## 2272 | aug tue      | wind 1.8510090292  |
| ## 2273 | aug tue      | wind -0.0573452174 |
| ## 2274 | aug tue      | wind -0.7464731398 |
| ## 2275 | aug tue      | wind -0.5344337791 |
| ## 2276 | aug tue      | wind 0.2077039835  |
| ## 2277 | aug tue      | wind -0.0573452174 |
| ## 2278 | dec sun      | wind 2.3280975908  |
| ## 2279 | dec wed      | wind 2.0630483899  |
| ## 2280 | dec thu      | wind 0.4197433442  |
| ## 2281 | dec mon      | wind 2.3280975908  |
| ## 2282 | dec mon      | wind 2.3280975908  |
| ## 2283 | dec mon      | wind 2.3280975908  |
| ## 2284 | dec mon      | wind 2.3280975908  |
| ## 2285 | dec fri      | wind 0.4197433442  |
| ## 2286 | dec tue      | wind 2.3280975908  |
| ## 2287 | feb wed      | wind -0.5344337791 |
| ## 2288 | feb fri      | wind 2.0630483899  |
| ## 2289 | jul sat      | wind -1.7006502631 |
| ## 2290 | jul fri      | wind -1.4886109024 |
| ## 2291 | jul tue      | wind 0.6847925451  |
| ## 2292 | jul tue      | wind -0.2693845782 |
| ## 2293 | jun sun      | wind -1.2235617015 |
| ## 2294 | jun mon      | wind 0.6847925451  |
| ## 2295 | sep sun      | wind 0.6847925451  |
| ## 2296 | sep sun      | wind -0.2693845782 |
| ## 2297 | sep sun      | wind -1.2235617015 |
| ## 2298 | sep wed      | wind -1.2235617015 |
| ## 2299 | sep thu      | wind 0.4197433442  |
| ## 2300 | sep thu      | wind 1.1618811068  |
| ## 2301 | sep thu      | wind 1.6389696684  |
| ## 2302 | =            | wind -0.0573452174 |
| ## 2303 | sep thu      | wind -0.0573452174 |
| ## 2304 | sep thu      | wind -0.7464731398 |
| ## 2305 | sep thu      | wind -1.2235617015 |
| ## 2306 | sep sat      | wind -0.0573452174 |
| ## 2307 | sep sat      | wind -0.5344337791 |
| ## 2308 | sep sat      | wind 0.2077039835  |
| ## 2309 | sep sat      | wind -1.0115223408 |
| ## 2310 | sep mon      | wind -0.5344337791 |
| ## 2311 | sep mon      | wind -1.0115223408 |
| ## 2312 | sep mon      | wind -1.0115223408 |
| ## 2313 | sep mon      | wind -1.2235617015 |
| ## 2314 | sep mon      | wind -1.0115223408 |
| ## 2315 | sep mon      | wind 0.2077039835  |
| ## 2316 | sep mon      | wind 0.4197433442  |
| ## 2317 | sep mon      | wind -0.5344337791 |
| ## 2318 | <del>-</del> | wind -1.0115223408 |
| ## 2319 | sep fri      | wind -0.2693845782 |
| ## 2320 | sep fri      | wind -0.2693845782 |
|         |              |                    |

```
## 2321
          sep fri
                          wind 1.1618811068
## 2322
          sep fri
                          wind -0.2693845782
## 2323
                          wind -0.7464731398
          sep fri
## 2324
          sep fri
                          wind -1.0115223408
## 2325
          sep fri
                          wind
                               0.4197433442
## 2326
          sep fri
                          wind
                               0.4197433442
## 2327
          sep fri
                          wind -1.0115223408
## 2328
                          wind -1.0115223408
          sep fri
## 2329
          sep fri
                          wind -0.0573452174
## 2330
          sep fri
                          wind -0.5344337791
## 2331
                          wind -1.0115223408
          sep tue
## 2332
                          wind -0.7464731398
          sep tue
## 2333
                          wind -0.5344337791
          sep tue
## 2334
          sep tue
                          wind
                               0.6847925451
## 2335
          sep sat
                          wind
                                0.4197433442
## 2336
                          wind
                                1.8510090292
          sep sun
## 2337
          sep fri
                          wind -0.0573452174
## 2338
                          wind 0.4197433442
          sep sat
## 2339
          aug sat
                          wind -1.0115223408
## 2340
          jul wed
                          wind 1.6389696684
## 2341
                          wind -0.7464731398
          aug thu
## 2342
                          wind -1.2235617015
          aug wed
## 2343
                          wind -0.7464731398
          aug thu
## 2344
          aug sat
                          wind 0.2077039835
## 2345
          aug sun
                          wind -1.0115223408
## 2346
                          wind 0.6847925451
          sep sun
## 2347
                          wind -0.5344337791
          aug fri
## 2348
                          wind 1.1618811068
          feb mon
                          wind -0.7464731398
## 2349
          sep fri
## 2350
          sep sun
                          wind -0.0573452174
## 2351
          feb sun
                          wind -1.2235617015
## 2352
          sep sun
                          wind 0.4197433442
## 2353
                          wind -0.2693845782
          aug sun
## 2354
          jun wed
                          wind 0.2077039835
## 2355
          sep thu
                          wind -0.0573452174
## 2356
                          wind -1.0115223408
          sep wed
## 2357
                          wind 0.4197433442
          sep sat
## 2358
          sep fri
                          wind -0.5344337791
## 2359
          feb fri
                          wind 2.8051861525
## 2360
          jul mon
                          wind
                               0.2077039835
## 2361
          aug thu
                          wind 0.4197433442
## 2362
          jul tue
                          wind -0.5344337791
## 2363
          aug sun
                          wind 0.6847925451
## 2364
                          wind -0.0573452174
          aug sun
## 2365
          aug wed
                          wind 0.2077039835
## 2366
                          wind -0.2693845782
          jul sun
## 2367
                          wind -0.0573452174
          sep sat
                          wind -0.2693845782
## 2368
          aug sat
## 2369
          aug mon
                          wind -1.0115223408
## 2370
          aug sun
                          wind -0.0573452174
## 2371
          aug sat
                          wind -0.0573452174
## 2372
          aug sun
                          wind 0.4197433442
## 2373
                          wind -1.4886109024
          aug mon
## 2374
                          wind -0.0573452174
          aug sat
```

```
## 2375
          sep fri
                          wind -1.0115223408
## 2376
                          wind -1.2235617015
          aug mon
## 2377
                          wind -0.5344337791
          apr mon
## 2378
                          wind -0.2693845782
          sep fri
## 2379
          aug wed
                          wind
                                0.6847925451
## 2380
          aug fri
                          wind
                                0.4197433442
## 2381
                          wind -0.0573452174
          aug wed
## 2382
                                0.4197433442
          aug sat
                          wind
## 2383
          aug sat
                          wind
                                2.0630483899
## 2384
          sep sun
                          wind
                               1.8510090292
## 2385
          feb tue
                                1.1618811068
                          wind
## 2386
                                0.6847925451
          feb tue
                          wind
## 2387
                          wind -1.7006502631
          feb sat
## 2388
          mar mon
                          wind
                               0.8968319059
## 2389
          mar wed
                          wind
                                0.6847925451
## 2390
                          wind -0.2693845782
          mar thu
## 2391
          apr sun
                          wind
                               2.8051861525
## 2392
                          wind -0.0573452174
          may fri
## 2393
                          wind -0.0573452174
          jun mon
## 2394
          jun sat
                          wind -0.5344337791
## 2395
                          wind -0.7464731398
          jun thu
## 2396
          jun thu
                          wind 2.8051861525
## 2397
          jul thu
                          wind -1.4886109024
## 2398
          jul sun
                          wind -0.0573452174
## 2399
          jul sun
                          wind
                                0.2077039835
## 2400
          jul mon
                          wind
                                0.4197433442
## 2401
                                0.2077039835
          jul thu
                          wind
## 2402
                          wind 0.8968319059
          aug sun
## 2403
                          wind -0.0573452174
          aug sun
## 2404
          aug mon
                          wind -0.2693845782
## 2405
          aug tue
                          wind 1.1618811068
          aug tue
## 2406
                          wind -0.2693845782
## 2407
                          wind
                                1.8510090292
          aug tue
## 2408
          aug fri
                          wind
                                0.2077039835
## 2409
          aug sat
                          wind 0.4197433442
## 2410
          aug mon
                          wind -0.5344337791
## 2411
                          wind -1.0115223408
          aug tue
## 2412
                          wind -0.7464731398
          aug tue
## 2413
          aug tue
                          wind
                               0.4197433442
## 2414
          aug wed
                          wind
                                0.4197433442
## 2415
          aug wed
                          wind
                                0.4197433442
## 2416
                          wind -1.2235617015
          aug thu
## 2417
          aug fri
                          wind 1.8510090292
## 2418
          aug fri
                          wind 0.6847925451
                          wind -0.7464731398
## 2419
          aug sun
## 2420
                          wind 0.8968319059
          aug sun
          aug sun
## 2421
                          wind 1.3739204675
## 2422
                          rain -0.0726485861
          jul tue
## 2423
          sep tue
                          rain -0.0726485861
## 2424
          sep mon
                          rain -0.0726485861
## 2425
                          rain -0.0726485861
          aug wed
## 2426
          aug fri
                          rain -0.0726485861
## 2427
                          rain -0.0726485861
          jul sat
## 2428
                          rain -0.0726485861
          aug wed
```

| ## 2429 | aug thu | rain -0.0726485861 |
|---------|---------|--------------------|
| ## 2430 | mar mon | rain -0.0726485861 |
| ## 2431 | sep tue | rain -0.0726485861 |
| ## 2432 | aug tue | rain -0.0726485861 |
| ## 2433 | sep thu | rain -0.0726485861 |
| ## 2434 | jun fri | rain -0.0726485861 |
| ## 2435 | jul sun | rain -0.0726485861 |
| ## 2436 | jul sat | rain -0.0726485861 |
| ## 2437 | sep fri | rain -0.0726485861 |
| ## 2438 | sep sat | rain -0.0726485861 |
| ## 2439 | aug sun | rain -0.0726485861 |
| ## 2440 | sep sat | rain -0.0726485861 |
| ## 2441 | aug wed | rain -0.0726485861 |
| ## 2442 | aug wed | rain -0.0726485861 |
| ## 2443 | sep fri | rain -0.0726485861 |
| ## 2444 | mar mon | rain -0.0726485861 |
| ## 2445 | aug thu | rain -0.0726485861 |
| ## 2446 | mar sat | rain -0.0726485861 |
| ## 2447 | sep sat | rain -0.0726485861 |
| ## 2448 | sep sun | rain -0.0726485861 |
| ## 2449 | mar thu | rain -0.0726485861 |
| ## 2450 | aug wed | rain -0.0726485861 |
| ## 2451 | aug wed | rain -0.0726485861 |
| ## 2452 | mar fri | rain -0.0726485861 |
| ## 2453 | aug thu | rain -0.0726485861 |
| ## 2454 | sep wed | rain -0.0726485861 |
| ## 2455 | aug wed | rain -0.0726485861 |
| ## 2456 | aug sun | rain -0.0726485861 |
| ## 2457 | sep mon | rain -0.0726485861 |
| ## 2458 | aug sat | rain -0.0726485861 |
| ## 2459 | aug sat | rain -0.0726485861 |
| ## 2460 | apr thu | rain -0.0726485861 |
| ## 2461 | aug sun | rain -0.0726485861 |
| ## 2462 | sep wed | rain -0.0726485861 |
| ## 2463 | aug tue | rain -0.0726485861 |
| ## 2464 | sep sun | rain -0.0726485861 |
| ## 2465 | oct mon | rain -0.0726485861 |
| ## 2466 | feb sun | rain -0.0726485861 |
| ## 2467 | oct mon | rain -0.0726485861 |
| ## 2468 | aug fri | rain -0.0726485861 |
| ## 2469 | sep tue | rain -0.0726485861 |
| ## 2470 | mar sun | rain -0.0726485861 |
| ## 2471 | sep mon | rain -0.0726485861 |
| ## 2472 | mar sat | rain -0.0726485861 |
| ## 2473 | mar sun | rain -0.0726485861 |
| ## 2474 | mar fri | rain -0.0726485861 |
| ## 2475 | aug thu | rain -0.0726485861 |
| ## 2476 | aug tue | rain -0.0726485861 |
| ## 2477 | sep wed | rain -0.0726485861 |
| ## 2478 | aug tue | rain -0.0726485861 |
| ## 2479 | aug fri | rain -0.0726485861 |
| ## 2480 | apr thu | rain -0.0726485861 |
| ## 2481 | sep thu | rain -0.0726485861 |
| ## 2482 | sep tue | rain -0.0726485861 |
|         |         |                    |

| ## 2483 | sep mon | rain -0.0726485861 |
|---------|---------|--------------------|
| ## 2484 | sep tue | rain -0.0726485861 |
| ## 2485 | mar sun | rain -0.0726485861 |
| ## 2486 | feb sun | rain -0.0726485861 |
| ## 2487 | oct wed | rain -0.0726485861 |
| ## 2488 | mar sat | rain -0.0726485861 |
| ## 2489 | sep thu | rain -0.0726485861 |
| ## 2490 | aug sat | rain -0.0726485861 |
| ## 2491 | sep tue | rain -0.0726485861 |
| ## 2492 | sep fri | rain -0.0726485861 |
| ## 2493 | sep thu | rain -0.0726485861 |
| ## 2494 | oct sat | rain -0.0726485861 |
| ## 2495 | aug sat | rain -0.0726485861 |
| ## 2496 | sep fri | rain -0.0726485861 |
| ## 2497 | mar mon | rain -0.0726485861 |
| ## 2498 | mar sat | rain -0.0726485861 |
| ## 2499 | mar sat | rain -0.0726485861 |
| ## 2500 | sep sun | rain -0.0726485861 |
| ## 2501 | sep mon | rain -0.0726485861 |
| ## 2502 | sep wed | rain -0.0726485861 |
| ## 2503 | mar mon | rain -0.0726485861 |
| ## 2504 | aug sun | rain -0.0726485861 |
| ## 2505 | sep fri | rain -0.0726485861 |
| ## 2506 | mar mon | rain -0.0726485861 |
| ## 2507 | jul fri | rain -0.0726485861 |
| ## 2508 | sep wed | rain -0.0726485861 |
| ## 2509 | sep sun | rain -0.0726485861 |
| ## 2510 | oct mon | rain -0.0726485861 |
| ## 2511 | aug sat | rain -0.0726485861 |
| ## 2512 | sep sun | rain -0.0726485861 |
| ## 2513 | aug sat | rain -0.0726485861 |
| ## 2514 | sep wed | rain -0.0726485861 |
| ## 2515 | sep sun | rain -0.0726485861 |
| ## 2516 | sep tue | rain -0.0726485861 |
| ## 2517 | sep tue | rain -0.0726485861 |
| ## 2518 | sep sat | rain -0.0726485861 |
| ## 2519 | aug sun | rain -0.0726485861 |
| ## 2520 | sep sat | rain -0.0726485861 |
| ## 2521 | sep tue | rain -0.0726485861 |
| ## 2522 | sep sat | rain -0.0726485861 |
| ## 2523 | aug sun | rain -0.0726485861 |
| ## 2524 | aug sun | rain -0.0726485861 |
| ## 2525 | aug sun | rain -0.0726485861 |
| ## 2526 | aug wed | rain -0.0726485861 |
| ## 2527 | aug wed | rain -0.0726485861 |
| ## 2528 | aug wed | rain -0.0726485861 |
| ## 2529 | aug wed | rain -0.0726485861 |
| ## 2530 | aug wed | rain -0.0726485861 |
| ## 2531 | aug thu | rain -0.0726485861 |
| ## 2532 | aug thu | rain -0.0726485861 |
| ## 2533 | aug sat | rain -0.0726485861 |
| ## 2534 | aug sat | rain -0.0726485861 |
| ## 2535 | aug sat | rain -0.0726485861 |
| ## 2536 | aug mon | rain -0.0726485861 |
|         |         |                    |

```
## 2537
          aug fri
                           rain -0.0726485861
## 2538
          aug fri
                           rain -0.0726485861
## 2539
                           rain -0.0726485861
          aug fri
## 2540
          aug fri
                           rain -0.0726485861
## 2541
          aug tue
                           rain -0.0726485861
## 2542
          aug tue
                           rain -0.0726485861
##
  2543
                           rain -0.0726485861
          aug tue
## 2544
          aug tue
                           rain -0.0726485861
## 2545
          aug tue
                           rain -0.0726485861
## 2546
                           rain -0.0726485861
          aug tue
## 2547
                           rain -0.0726485861
          dec sun
## 2548
                           rain -0.0726485861
          dec wed
## 2549
                           rain -0.0726485861
          dec thu
## 2550
          dec mon
                           rain -0.0726485861
## 2551
          dec mon
                           rain -0.0726485861
## 2552
          dec mon
                           rain -0.0726485861
## 2553
                           rain -0.0726485861
          dec mon
## 2554
          dec fri
                           rain -0.0726485861
## 2555
                           rain -0.0726485861
          dec tue
## 2556
          feb wed
                           rain -0.0726485861
## 2557
                           rain -0.0726485861
          feb fri
## 2558
                           rain -0.0726485861
          jul sat
                           rain -0.0726485861
## 2559
          jul fri
## 2560
          jul tue
                           rain -0.0726485861
## 2561
          jul tue
                           rain -0.0726485861
## 2562
                          rain -0.0726485861
          jun sun
## 2563
                           rain -0.0726485861
          jun mon
                          rain -0.0726485861
## 2564
          sep sun
                           rain -0.0726485861
## 2565
          sep sun
## 2566
          sep sun
                           rain -0.0726485861
                           rain -0.0726485861
## 2567
          sep wed
## 2568
          sep thu
                           rain -0.0726485861
## 2569
                          rain -0.0726485861
          sep thu
                           rain -0.0726485861
## 2570
          sep thu
## 2571
          sep thu
                          rain -0.0726485861
## 2572
                          rain -0.0726485861
          sep thu
## 2573
                          rain -0.0726485861
          sep thu
                          rain -0.0726485861
          sep thu
## 2574
## 2575
          sep sat
                           rain -0.0726485861
## 2576
          sep sat
                           rain -0.0726485861
## 2577
          sep sat
                           rain -0.0726485861
## 2578
                           rain -0.0726485861
          sep sat
## 2579
          sep mon
                           rain -0.0726485861
## 2580
                          rain -0.0726485861
          sep mon
## 2581
                          rain -0.0726485861
          sep mon
## 2582
                          rain -0.0726485861
          sep mon
## 2583
                           rain -0.0726485861
          sep mon
                           rain -0.0726485861
## 2584
          sep mon
## 2585
                           rain -0.0726485861
          sep mon
## 2586
          sep mon
                           rain -0.0726485861
## 2587
                          rain -0.0726485861
          sep mon
## 2588
          sep fri
                           rain -0.0726485861
## 2589
          sep fri
                          rain -0.0726485861
## 2590
                          rain -0.0726485861
          sep fri
```

```
## 2591
          sep fri
                          rain -0.0726485861
## 2592
          sep fri
                           rain -0.0726485861
## 2593
                           rain -0.0726485861
          sep fri
## 2594
          sep fri
                           rain -0.0726485861
## 2595
          sep fri
                           rain -0.0726485861
## 2596
          sep fri
                           rain -0.0726485861
## 2597
          sep fri
                           rain -0.0726485861
## 2598
                           rain -0.0726485861
          sep fri
## 2599
          sep fri
                           rain -0.0726485861
## 2600
          sep tue
                           rain -0.0726485861
## 2601
                           rain -0.0726485861
          sep tue
## 2602
                           rain -0.0726485861
          sep tue
## 2603
                           rain -0.0726485861
          sep tue
## 2604
          sep sat
                           rain -0.0726485861
## 2605
          sep sun
                           rain -0.0726485861
## 2606
                           rain -0.0726485861
          sep fri
## 2607
                           rain -0.0726485861
          sep sat
## 2608
                           rain -0.0726485861
          aug sat
## 2609
                          rain -0.0726485861
          jul wed
## 2610
          aug thu
                           rain -0.0726485861
## 2611
                           rain -0.0726485861
          aug wed
## 2612
                           rain -0.0726485861
          aug thu
## 2613
          aug sat
                           rain -0.0726485861
## 2614
                           rain -0.0726485861
          aug sun
## 2615
          sep sun
                           rain -0.0726485861
## 2616
          aug fri
                          rain -0.0726485861
## 2617
          feb mon
                          rain -0.0726485861
                          rain -0.0726485861
## 2618
          sep fri
                          rain -0.0726485861
## 2619
          sep sun
## 2620
          feb sun
                          rain -0.0726485861
                           rain -0.0726485861
## 2621
          sep sun
## 2622
                           rain -0.0726485861
          aug sun
## 2623
                          rain -0.0726485861
          jun wed
                           rain -0.0726485861
## 2624
          sep thu
## 2625
          sep wed
                          rain -0.0726485861
          sep sat
                          rain -0.0726485861
## 2626
## 2627
                          rain -0.0726485861
          sep fri
                          rain -0.0726485861
## 2628
          feb fri
## 2629
          jul mon
                           rain -0.0726485861
## 2630
          aug thu
                           rain -0.0726485861
## 2631
          jul tue
                           rain -0.0726485861
## 2632
                          rain -0.0726485861
          aug sun
## 2633
          aug sun
                          rain -0.0726485861
## 2634
                          rain -0.0726485861
          aug wed
## 2635
          jul sun
                          rain -0.0726485861
## 2636
                          rain -0.0726485861
          sep sat
                          rain -0.0726485861
## 2637
          aug sat
                           rain -0.0726485861
## 2638
          aug mon
## 2639
          aug sun
                           rain -0.0726485861
## 2640
          aug sat
                           rain -0.0726485861
## 2641
          aug sun
                          rain -0.0726485861
## 2642
          aug mon
                          rain -0.0726485861
## 2643
                          rain -0.0726485861
          aug sat
## 2644
                          rain -0.0726485861
          sep fri
```

| ı       |         |                    |
|---------|---------|--------------------|
| ## 2645 | aug mon | rain -0.0726485861 |
| ## 2646 | apr mon | rain -0.0726485861 |
| ## 2647 | sep fri | rain -0.0726485861 |
| ## 2648 | aug wed | rain -0.0726485861 |
| ## 2649 | aug fri | rain -0.0726485861 |
| ## 2650 | aug wed | rain -0.0726485861 |
| ## 2651 | aug sat | rain -0.0726485861 |
| ## 2652 | aug sat | rain -0.0726485861 |
| ## 2653 | sep sun | rain -0.0726485861 |
| ## 2654 | feb tue | rain -0.0726485861 |
| ## 2655 | feb tue | rain -0.0726485861 |
| ## 2656 | feb sat | rain -0.0726485861 |
| ## 2657 | mar mon | rain -0.0726485861 |
| ## 2658 | mar wed | rain -0.0726485861 |
| ## 2659 | mar thu | rain -0.0726485861 |
| ## 2660 | apr sun | rain -0.0726485861 |
| ## 2661 | may fri | rain -0.0726485861 |
| ## 2662 | jun mon | rain -0.0726485861 |
| ## 2663 | jun sat | rain -0.0726485861 |
| ## 2664 | jun thu | rain -0.0726485861 |
| ## 2665 | jun thu | rain -0.0726485861 |
| ## 2666 | jul thu | rain -0.0726485861 |
| ## 2667 | jul sun | rain -0.0726485861 |
| ## 2668 | jul sun | rain -0.0726485861 |
| ## 2669 | jul mon | rain -0.0726485861 |
| ## 2670 | jul thu | rain -0.0726485861 |
| ## 2671 | aug sun | rain -0.0726485861 |
| ## 2672 | aug sun | rain -0.0726485861 |
| ## 2673 | aug mon | rain -0.0726485861 |
| ## 2674 | aug tue | rain -0.0726485861 |
| ## 2675 | aug tue | rain -0.0726485861 |
| ## 2676 | aug tue | rain -0.0726485861 |
| ## 2677 | aug fri | rain -0.0726485861 |
| ## 2678 | aug sat | rain -0.0726485861 |
| ## 2679 | aug mon | rain -0.0726485861 |
| ## 2680 | aug tue | rain -0.0726485861 |
| ## 2681 | aug tue | rain -0.0726485861 |
| ## 2682 | aug tue | rain 15.9621983217 |
| ## 2683 | aug wed | rain -0.0726485861 |
| ## 2684 | aug wed | rain -0.0726485861 |
| ## 2685 | aug thu | rain -0.0726485861 |
| ## 2686 | aug fri | rain 3.4349741750  |
| ## 2687 | aug fri | rain -0.0726485861 |
| ## 2688 | aug sun | rain -0.0726485861 |
| ## 2689 | aug sun | rain -0.0726485861 |
| ## 2690 | aug sun | rain -0.0726485861 |
| ## 2691 | jul tue | area -0.2808001513 |
| ## 2692 | sep tue | area -0.2799923026 |
| ## 2693 | sep mon | area -0.2795306747 |
| ## 2694 | aug wed | area -0.2786074191 |
| ## 2695 | aug fri | area -0.2779149773 |
| ## 2696 | jul sat | area -0.2767609077 |
| ## 2697 | aug wed | area -0.2760684659 |
| ## 2698 | aug thu | area -0.2745681754 |

```
## 2699
          mar mon
                          area -0.2739911406
## 2700
                          area -0.2738757337
          sep tue
## 2701
                          area -0.2726062571
          aug tue
## 2702
                          area -0.2720292223
          sep thu
## 2703
          jun fri
                          area -0.2712213736
          jul sun
## 2704
                          area -0.2692594552
## 2705
          jul sat
                          area -0.2684516065
## 2706
                          area -0.2681053856
          sep fri
          sep sat
## 2707
                          area -0.2681053856
## 2708
                          area -0.2669513160
          aug sun
## 2709
                          area -0.2663742812
          sep sat
## 2710
                          area -0.2661434673
          aug wed
## 2711
                          area -0.2660280603
          aug wed
## 2712
          sep fri
                          area -0.2654510255
## 2713
          mar mon
                          area -0.2647585838
## 2714
                          area -0.2630274794
          aug thu
## 2715
          mar sat
                          area -0.2625658515
## 2716
                          area -0.2624504446
          sep sat
## 2717
                          area -0.2617580028
          sep sun
## 2718
          mar thu
                          area -0.2602577123
## 2719
                          area -0.2585266079
          aug wed
## 2720
                          area -0.2559876547
          aug wed
## 2721
          mar fri
                          area -0.2557568408
## 2722
          aug thu
                          area -0.2555260269
## 2723
          sep wed
                          area -0.2552952130
## 2724
                          area -0.2539103295
          aug wed
## 2725
          aug sun
                          area -0.2533332947
## 2726
          sep mon
                          area -0.2495248649
## 2727
                          area -0.2445623656
          aug sat
## 2728
          aug sat
                          area -0.2326754487
## 2729
          apr thu
                          area -0.2317521930
## 2730
                          area -0.2308289373
          aug sun
## 2731
                          area -0.2286362050
          sep wed
          aug tue
## 2732
                          area -0.2245969614
## 2733
                          area -0.2234428918
          sep sun
## 2734
          oct mon
                          area -0.2221734152
## 2735
                          area -0.2113251609
          feb sun
## 2736
          oct mon
                          area -0.2061318477
## 2737
          aug fri
                          area -0.2046315572
## 2738
          sep tue
                          area -0.2037083015
## 2739
          mar sun
                          area -0.2019771971
## 2740
                          area -0.2007077205
          sep mon
          mar sat
## 2741
                          area -0.1995536509
## 2742
                          area -0.1898594662
          mar sun
## 2743
          mar fri
                          area -0.1890516175
## 2744
                          area -0.1847815600
          aug thu
## 2745
                          area -0.1844353391
          aug tue
## 2746
          sep wed
                          area -0.1763568518
## 2747
          aug tue
                          area -0.1694324342
## 2748
          aug fri
                          area -0.1693170272
## 2749
          apr thu
                          area -0.1588149938
## 2750
          sep thu
                          area -0.1573147033
## 2751
                          area -0.1552373780
          sep tue
## 2752
                          area -0.1543141223
          sep mon
```

```
## 2753
                          area -0.1518905761
          sep tue
## 2754
                          area -0.1453123794
          mar sun
## 2755
          feb sun
                          area -0.1343487181
## 2756
                          area -0.1268472657
          oct wed
## 2757
          mar sat
                          area -0.1235004638
## 2758
          sep thu
                          area -0.1168068601
## 2759
                          area -0.1066510475
          aug sat
          sep tue
## 2760
                          area -0.0864548294
## 2761
                          area -0.0630272164
          sep fri
## 2762
          sep thu
                          area -0.0147871068
## 2763
          oct sat
                          area -0.0053237360
## 2764
                                0.0151032961
          aug sat
                          area
## 2765
                                 0.0166035866
          sep fri
                          area
## 2766
          mar mon
                          area
                                 0.0306832358
## 2767
          mar sat
                          area
                                 0.0458015476
## 2768
                                 0.0458015476
          mar sat
                          area
## 2769
          sep sun
                          area
                                0.0552649184
## 2770
                                 0.0649591031
          sep mon
                          area
## 2771
          sep wed
                          area
                                 0.0811160776
## 2772
          mar mon
                                 0.0827317751
                          area
## 2773
                                 0.0851553213
          aug sun
                          area
## 2774
                                 0.1291253733
          sep fri
                          area
## 2775
          mar mon
                          area
                                 0.1403198485
## 2776
          jul fri
                                 0.1422817668
                          area
## 2777
          sep wed
                          area
                                 0.1502448471
## 2778
          sep sun
                                0.2753459926
                          area
## 2779
          oct mon
                                0.2848093634
                          area
## 2780
          aug sat
                          area 0.3878677794
## 2781
                                0.4548038166
          sep sun
                          area
## 2782
          aug sat
                          area
                                0.5378968283
## 2783
          sep wed
                                0.7362813939
                          area
## 2784
                                0.8134886506
          sep sun
                          area
## 2785
                                0.9082377654
          sep tue
                          area
          sep tue
## 2786
                                0.9344351455
                          area
## 2787
                          area 1.5024682064
          sep sat
## 2788
                          area 1.9825611632
          aug sun
## 2789
                          area 2.0340326677
          sep sat
                          area 2.1718285788
## 2790
          sep tue
## 2791
          sep sat
                          area 12.3040981060
## 2792
          aug sun
                          area -0.1680475506
## 2793
          aug sun
                          area -0.2518330042
## 2794
          aug sun
                          area -0.2761838729
          aug wed
## 2795
                          area -0.2762992798
## 2796
                          area -0.2564492826
          aug wed
## 2797
                          area -0.2771071286
          aug wed
## 2798
                          area -0.2821850348
          aug wed
## 2799
                          area -0.2825312557
          aug wed
## 2800
          aug thu
                          area -0.2674129439
## 2801
          aug thu
                          area -0.1656240045
## 2802
          aug sat
                          area -0.1923984194
## 2803
          aug sat
                          area -0.2771071286
## 2804
          aug sat
                          area -0.2690286413
## 2805
                          area -0.1828196416
          aug mon
## 2806
          aug fri
                          area -0.2468705048
```

```
## 2807
          aug fri
                          area -0.2359068436
## 2808
          aug fri
                          area -0.2669513160
## 2809
                          area -0.2094786496
          aug fri
## 2810
                          area -0.2758376520
          aug tue
## 2811
          aug tue
                          area -0.2829928836
## 2812
          aug tue
                          area -0.2341757392
## 2813
                          area -0.2789536399
          aug tue
          aug tue
## 2814
                          area -0.1779725493
## 2815
                          area -0.2492940510
          aug tue
## 2816
          dec sun
                          area -0.1813193511
## 2817
                          area -0.1558144128
          dec wed
## 2818
                          area -0.2228658570
          dec thu
## 2819
                          area -0.0789533769
          dec mon
## 2820
          dec mon
                          area -0.1611231330
## 2821
          dec mon
                          area -0.0307132673
## 2822
                          area -0.1722022012
          dec mon
## 2823
                          area -0.1779725493
          dec fri
## 2824
          dec tue
                          area 0.0009082399
## 2825
                          area -0.2722600362
          feb wed
## 2826
          feb fri
                          area -0.0052083290
## 2827
                          area -0.1926292333
          jul sat
## 2828
          jul fri
                          area -0.2544873643
## 2829
                          area 0.7127383739
          jul tue
## 2830
          jul tue
                          area -0.2091324287
## 2831
          jun sun
                          area -0.2745681754
## 2832
                          area -0.2443315517
          jun mon
## 2833
          sep sun
                          area -0.2802231165
## 2834
          sep sun
                          area -0.2251739962
## 2835
                          area -0.1200382550
          sep sun
## 2836
          sep wed
                          area -0.2667205021
## 2837
          sep thu
                          area -0.2413309707
## 2838
                          area -0.2340603322
          sep thu
## 2839
                          area 0.1115835153
          sep thu
## 2840
          sep thu
                          area -0.2017463832
## 2841
          sep thu
                          area -0.2732986989
## 2842
          sep thu
                          area -0.2597960845
## 2843
                          area -0.2339449252
          sep thu
## 2844
          sep sat
                          area -0.2465242840
## 2845
          sep sat
                          area -0.2090170217
## 2846
          sep sat
                          area -0.1044583153
## 2847
          sep sat
                          area -0.1554681919
## 2848
          sep mon
                          area -0.2603731193
## 2849
          sep mon
                          area 0.3617858062
## 2850
                          area -0.1986303952
          sep mon
## 2851
                          area -0.2679899787
          sep mon
## 2852
                          area -0.2395998663
          sep mon
## 2853
                          area -0.2597960845
          sep mon
## 2854
          sep mon
                          area -0.2145565558
## 2855
                          area -0.2176725438
          sep mon
## 2856
          sep mon
                          area 0.0403774205
## 2857
          sep fri
                          area -0.2660280603
## 2858
          sep fri
                          area -0.2421388195
## 2859
                          area -0.2005923136
          sep fri
## 2860
          sep fri
                          area -0.2615271889
```

```
## 2861
          sep fri
                          area -0.2651048046
## 2862
          sep fri
                          area -0.2160568463
## 2863
          sep fri
                          area -0.1342333111
## 2864
          sep fri
                          area -0.2704135248
## 2865
          sep fri
                          area -0.1912443498
          sep fri
## 2866
                          area -0.2723754432
## 2867
          sep fri
                          area -0.2394844594
## 2868
                          area -0.2789536399
          sep fri
          sep tue
## 2869
                          area -0.2511405624
## 2870
          sep tue
                          area -0.2197498691
## 2871
                          area -0.0537946595
          sep tue
## 2872
                          area -0.2647585838
          sep tue
## 2873
                          area -0.1390804035
          sep sat
## 2874
          sep sun
                          area -0.1573147033
## 2875
          sep fri
                          area -0.0737600637
## 2876
                          area 0.1691715887
          sep sat
## 2877
          aug sat
                          area 1.7303969539
## 2878
          jul wed
                          area -0.1957452212
## 2879
          aug thu
                          area -0.0964952350
## 2880
          aug wed
                          area -0.2173263229
## 2881
                          area 0.2097948389
          aug thu
## 2882
                          area -0.1443891237
          aug sat
## 2883
          aug sun
                          area -0.1003036647
## 2884
                          area -0.0011690854
          sep sun
## 2885
          aug fri
                          area 0.0467248033
## 2886
                          area -0.1700094690
          feb mon
## 2887
                          area 0.0633434057
          sep fri
## 2888
          sep sun
                          area 0.5316648525
                          area 0.3126224409
## 2889
          feb sun
## 2890
          sep sun
                          area -0.2429466682
## 2891
          aug sun
                          area -0.2430620751
## 2892
          jun wed
                          area -0.1907827219
## 2893
                          area -0.2278283563
          sep thu
## 2894
          sep wed
                          area -0.2152489976
## 2895
          sep sat
                          area -0.2393690524
## 2896
                          area -0.1949373725
          sep fri
## 2897
                          area -0.2316367860
          feb fri
## 2898
          jul mon
                          area -0.2661434673
## 2899
          aug thu
                          area 8.3276358660
## 2900
          jul tue
                          area -0.2039391154
## 2901
          aug sun
                          area -0.2567955035
## 2902
                          area -0.2497556789
          aug sun
## 2903
          aug wed
                          area 1.8588449012
## 2904
                          area -0.2122484166
          jul sun
## 2905
                          area -0.2766455007
          sep sat
## 2906
                          area -0.2277129494
          aug sat
## 2907
                          area -0.2578341661
          aug mon
## 2908
          aug sun
                          area -0.2480245745
## 2909
                          area -0.2115559749
          aug sat
## 2910
          aug sun
                          area -0.1079205241
## 2911
          aug mon
                          area -0.2787228260
## 2912
          aug sat
                          area -0.2107481261
## 2913
                          area -0.2811463722
          sep fri
## 2914
                          area -0.2707597457
          aug mon
```

```
## 2915
                          area -0.2462934700
          apr mon
## 2916
          sep fri
                          area -0.1700094690
## 2917
          aug wed
                          area -0.2107481261
## 2918
          aug fri
                          area -0.1728946430
## 2919
          aug wed
                          area 0.6700377984
## 2920
          aug sat
                          area -0.2466396909
## 2921
                          area -0.2625658515
          aug sat
## 2922
                          area -0.2421388195
          sep sun
## 2923
          feb tue
                          area -0.2227504500
## 2924
          feb tue
                          area -0.2602577123
## 2925
          feb sat
                          area -0.2060164407
## 2926
                          area -0.2482553884
          mar mon
## 2927
                          area -0.2209039387
          mar wed
## 2928
          mar thu
                          area -0.2086708008
## 2929
          apr sun
                          area 0.4205279492
## 2930
                          area 0.1591311831
          may fri
## 2931
          jun mon
                          area -0.2625658515
## 2932
          jun sat
                          area 0.5265869462
## 2933
                          area -0.1686245855
          jun thu
## 2934
          jun thu
                          area -0.2481399814
## 2935
                          area -0.2646431768
          jul thu
## 2936
          jul sun
                          area -0.2000152788
## 2937
          jul sun
                          area -0.2594498636
## 2938
          jul mon
                          area 2.9294752763
## 2939
          jul thu
                          area -0.2532178877
          aug sun
## 2940
                          area -0.2700673040
## 2941
                          area 0.0200657954
          aug sun
## 2942
          aug mon
                          area -0.2610655610
## 2943
          aug tue
                          area -0.2618734097
## 2944
          aug tue
                          area -0.0956873862
## 2945
          aug tue
                          area 0.2539957049
## 2946
          aug fri
                          area 0.2149881521
## 2947
                          area -0.1858202226
          aug sat
## 2948
          aug mon
                          area -0.2529870738
## 2949
          aug tue
                          area -0.1155373835
## 2950
          aug tue
                          area 0.1829050170
## 2951
                          area -0.1600844704
          aug tue
## 2952
          aug wed
                          area -0.2624504446
## 2953
          aug wed
                          area 0.2873483165
## 2954
          aug thu
                          area -0.2180187647
## 2955
          aug fri
                          area -0.2599114914
## 2956
                          area -0.2799923026
          aug fri
## 2957
          aug sun
                          area -0.2106327192
## 2958
                          area 0.3415895881
          aug sun
## 2959
          aug sun
                          area -0.1561606337
## 2960
          jul tue fire yes no
                                1.0000000000
## 2961
          sep tue fire yes no
                                1.0000000000
          sep mon fire yes no
## 2962
                                1.0000000000
## 2963
          aug wed fire yes no
                                1.0000000000
## 2964
          aug fri fire yes no
                                1.0000000000
## 2965
          jul sat fire yes no
                                1.0000000000
## 2966
          aug wed fire yes no
                                1.0000000000
## 2967
          aug thu fire yes no
                                1.0000000000
## 2968
          mar mon fire yes no
                                1.0000000000
```

```
## 2969
          sep tue fire yes no
                                1.0000000000
## 2970
          aug tue fire_yes_no
                                1.0000000000
## 2971
          sep thu fire yes no
                                1.0000000000
## 2972
          jun fri fire yes no
                                1.0000000000
## 2973
          jul sun fire yes no
                                1.0000000000
          jul sat fire yes no
## 2974
                                1.0000000000
## 2975
          sep fri fire_yes_no
                                1.0000000000
## 2976
          sep sat fire_yes_no
                                1.0000000000
## 2977
          aug sun fire_yes_no
                                1.0000000000
## 2978
          sep sat fire_yes_no
                                1.0000000000
## 2979
          aug wed fire_yes_no
                                1.0000000000
## 2980
          aug wed fire yes no
                                1.0000000000
## 2981
          sep fri fire_yes_no
                                1.0000000000
## 2982
          mar mon fire yes no
                                1.0000000000
## 2983
          aug thu fire yes no
                                1.0000000000
## 2984
          mar sat fire yes no
                                1.0000000000
## 2985
          sep sat fire_yes_no
                                1.0000000000
## 2986
          sep sun fire_yes_no
                                1.0000000000
## 2987
          mar thu fire_yes_no
                                1.0000000000
## 2988
          aug wed fire_yes_no
                                1.0000000000
## 2989
          aug wed fire_yes_no
                                1.0000000000
## 2990
          mar fri fire_yes_no
                                1.0000000000
## 2991
          aug thu fire yes no
                                1.0000000000
## 2992
          sep wed fire yes no
                                1.0000000000
## 2993
          aug wed fire yes no
                                1.0000000000
## 2994
          aug sun fire_yes_no
                                1.0000000000
## 2995
          sep mon fire yes no
                                1.0000000000
## 2996
          aug sat fire yes no
                                1.0000000000
## 2997
          aug sat fire yes no
                                1.0000000000
## 2998
          apr thu fire yes no
                                1.0000000000
## 2999
          aug sun fire yes no
                                1.0000000000
## 3000
          sep wed fire yes no
                                1.0000000000
## 3001
          aug tue fire yes no
                                1.0000000000
## 3002
          sep sun fire yes no
                                1.0000000000
## 3003
          oct mon fire yes no
                                1.0000000000
## 3004
          feb sun fire yes no
                                1.0000000000
## 3005
          oct mon fire yes no
                                1.0000000000
## 3006
          aug fri fire yes no
                                1.0000000000
## 3007
          sep tue fire yes no
                                1.0000000000
## 3008
          mar sun fire yes no
                                1.0000000000
## 3009
          sep mon fire yes no
                                1.0000000000
## 3010
          mar sat fire yes no
                                1.0000000000
## 3011
          mar sun fire yes no
                                1.0000000000
## 3012
          mar fri fire yes no
                                1.0000000000
## 3013
          aug thu fire yes no
                                1.0000000000
## 3014
          aug tue fire yes no
                                1.0000000000
          sep wed fire yes no
## 3015
                                1.0000000000
## 3016
          aug tue fire yes no
                                1.0000000000
          aug fri fire yes no
## 3017
                                1.0000000000
## 3018
          apr thu fire yes no
                                1.0000000000
## 3019
          sep thu fire yes no
                                1.0000000000
          sep tue fire yes no
## 3020
                                1.0000000000
## 3021
          sep mon fire_yes_no
                                1.0000000000
## 3022
          sep tue fire yes no
                                1.0000000000
```

```
## 3023
          mar sun fire yes no
                                1.0000000000
## 3024
          feb sun fire_yes_no
                                1.0000000000
## 3025
          oct wed fire yes no
                                1.0000000000
## 3026
          mar sat fire yes no
                                1.0000000000
## 3027
          sep thu fire yes no
                                1.0000000000
## 3028
          aug sat fire yes no
                                1.0000000000
## 3029
          sep tue fire_yes_no
                                1.0000000000
          sep fri fire_yes_no
## 3030
                                1.0000000000
## 3031
          sep thu fire_yes_no
                                1.0000000000
## 3032
          oct sat fire_yes_no
                                1.0000000000
## 3033
          aug sat fire_yes_no
                                1.0000000000
## 3034
          sep fri fire yes no
                                1.0000000000
## 3035
          mar mon fire_yes_no
                                1.0000000000
## 3036
          mar sat fire yes no
                                1.0000000000
## 3037
          mar sat fire yes no
                                1.0000000000
## 3038
          sep sun fire yes no
                                1.0000000000
## 3039
          sep mon fire_yes_no
                                1.0000000000
## 3040
          sep wed fire_yes_no
                                1.0000000000
## 3041
          mar mon fire_yes_no
                                1.0000000000
## 3042
          aug sun fire_yes_no
                                1.0000000000
## 3043
          sep fri fire_yes_no
                                1.0000000000
## 3044
          mar mon fire_yes_no
                                1.0000000000
## 3045
          jul fri fire yes no
                                1.0000000000
## 3046
          sep wed fire yes no
                                1.0000000000
## 3047
          sep sun fire yes no
                                1.0000000000
## 3048
          oct mon fire yes no
                                1.0000000000
## 3049
          aug sat fire yes no
                                1.0000000000
## 3050
          sep sun fire yes no
                                1.0000000000
## 3051
          aug sat fire yes no
                                1.0000000000
## 3052
          sep wed fire yes no
                                1.0000000000
## 3053
          sep sun fire yes no
                                1.0000000000
## 3054
          sep tue fire yes no
                                1.0000000000
## 3055
          sep tue fire yes no
                                1.0000000000
          sep sat fire yes no
## 3056
                                1.0000000000
## 3057
          aug sun fire_yes_no
                                1.0000000000
## 3058
          sep sat fire yes no
                                1.0000000000
## 3059
          sep tue fire yes no
                                1.0000000000
## 3060
          sep sat fire yes no
                                1.0000000000
## 3061
          aug sun fire yes no
                                1.0000000000
## 3062
          aug sun fire yes no
                                1.0000000000
## 3063
          aug sun fire yes no
                                1.0000000000
## 3064
          aug wed fire yes no
                                1.0000000000
## 3065
          aug wed fire yes no
                                1.0000000000
## 3066
          aug wed fire yes no
                                1.0000000000
## 3067
          aug wed fire yes no
                                1.0000000000
## 3068
          aug wed fire yes no
                                1.0000000000
          aug thu fire yes no
## 3069
                                1.0000000000
## 3070
          aug thu fire yes no
                                1.0000000000
          aug sat fire yes no
## 3071
                                1.0000000000
## 3072
          aug sat fire yes no
                                1.0000000000
## 3073
          aug sat fire yes no
                                1.0000000000
          aug mon fire yes no
## 3074
                                1.0000000000
## 3075
          aug fri fire_yes_no
                                1.0000000000
## 3076
          aug fri fire yes no
                                1.0000000000
```

```
## 3077
          aug fri fire yes no
                                1.0000000000
## 3078
          aug fri fire_yes_no
                                1.0000000000
## 3079
          aug tue fire yes no
                                1.0000000000
## 3080
          aug tue fire yes no
                                1.0000000000
## 3081
          aug tue fire yes no
                                1.0000000000
## 3082
          aug tue fire yes no
                                1.0000000000
## 3083
          aug tue fire_yes_no
                                1.0000000000
          aug tue fire_yes_no
## 3084
                                1.0000000000
## 3085
          dec sun fire_yes_no
                                1.0000000000
## 3086
          dec wed fire_yes_no
                                1.0000000000
## 3087
          dec thu fire_yes_no
                                1.0000000000
## 3088
          dec mon fire yes no
                                1.0000000000
## 3089
          dec mon fire_yes_no
                                1.0000000000
## 3090
          dec mon fire yes no
                                1.0000000000
## 3091
          dec mon fire yes no
                                1.0000000000
## 3092
          dec fri fire yes no
                                1.0000000000
## 3093
          dec tue fire_yes_no
                                1.0000000000
## 3094
          feb wed fire_yes_no
                                1.0000000000
## 3095
          feb fri fire_yes_no
                                1.0000000000
## 3096
          jul sat fire_yes_no
                                1.0000000000
## 3097
          jul fri fire_yes_no
                                1.0000000000
## 3098
          jul tue fire_yes_no
                                1.0000000000
## 3099
          jul tue fire yes no
                                1.0000000000
## 3100
          jun sun fire yes no
                                1.0000000000
## 3101
          jun mon fire yes no
                                1.0000000000
## 3102
          sep sun fire yes no
                                1.0000000000
## 3103
          sep sun fire yes no
                                1.0000000000
## 3104
          sep sun fire yes no
                                1.0000000000
## 3105
          sep wed fire yes no
                                1.0000000000
## 3106
          sep thu fire yes no
                                1.0000000000
          sep thu fire yes no
## 3107
                                1.0000000000
## 3108
          sep thu fire yes no
                                1.0000000000
## 3109
          sep thu fire yes no
                                1.0000000000
## 3110
          sep thu fire yes no
                                1.0000000000
## 3111
          sep thu fire yes no
                                1.0000000000
## 3112
          sep thu fire yes no
                                1.0000000000
## 3113
          sep sat fire yes no
                                1.0000000000
## 3114
          sep sat fire yes no
                                1.0000000000
## 3115
          sep sat fire yes no
                                1.0000000000
## 3116
          sep sat fire yes no
                                1.0000000000
## 3117
          sep mon fire yes no
                                1.0000000000
## 3118
          sep mon fire yes no
                                1.0000000000
## 3119
          sep mon fire yes no
                                1.0000000000
## 3120
          sep mon fire yes no
                                1.0000000000
## 3121
          sep mon fire yes no
                                1.0000000000
## 3122
          sep mon fire yes no
                                1.0000000000
          sep mon fire yes no
## 3123
                                1.0000000000
## 3124
          sep mon fire yes no
                                1.0000000000
## 3125
          sep mon fire yes no
                                1.0000000000
## 3126
          sep fri fire yes no
                                1.0000000000
## 3127
          sep fri fire yes no
                                1.0000000000
          sep fri fire yes no
## 3128
                                1.0000000000
## 3129
          sep fri fire yes no
                                1.0000000000
## 3130
          sep fri fire yes no
                                1.0000000000
```

```
## 3131
          sep fri fire yes no
                                1.0000000000
## 3132
          sep fri fire_yes_no
                                1.0000000000
## 3133
          sep fri fire yes no
                                1.0000000000
## 3134
          sep fri fire yes no
                                1.0000000000
## 3135
          sep fri fire yes no
                                1.0000000000
          sep fri fire yes no
## 3136
                                1.0000000000
## 3137
          sep fri fire_yes_no
                                1.0000000000
          sep tue fire_yes_no
## 3138
                                1.0000000000
## 3139
          sep tue fire_yes_no
                                1.0000000000
## 3140
          sep tue fire_yes_no
                                1.0000000000
## 3141
          sep tue fire_yes_no
                                1.0000000000
## 3142
          sep sat fire yes no
                                1.0000000000
## 3143
          sep sun fire_yes_no
                                1.0000000000
## 3144
          sep fri fire yes no
                                1.0000000000
## 3145
          sep sat fire yes no
                                1.0000000000
## 3146
          aug sat fire yes no
                                1.0000000000
## 3147
          jul wed fire_yes_no
                                1.0000000000
## 3148
          aug thu fire_yes_no
                                1.0000000000
## 3149
          aug wed fire_yes_no
                                1.0000000000
## 3150
          aug thu fire_yes_no
                                1.0000000000
## 3151
          aug sat fire_yes_no
                                1.0000000000
## 3152
          aug sun fire_yes_no
                                1.0000000000
          sep sun fire yes no
## 3153
                                1.0000000000
## 3154
          aug fri fire yes no
                                1.0000000000
## 3155
          feb mon fire yes no
                                1.0000000000
## 3156
          sep fri fire yes no
                                1.0000000000
## 3157
          sep sun fire yes no
                                1.0000000000
## 3158
          feb sun fire yes no
                                1.0000000000
## 3159
          sep sun fire yes no
                                1.0000000000
## 3160
          aug sun fire yes no
                                1.0000000000
          jun wed fire yes no
## 3161
                                1.0000000000
## 3162
          sep thu fire yes no
                                1.0000000000
## 3163
          sep wed fire yes no
                                1.0000000000
          sep sat fire yes no
## 3164
                                1.0000000000
## 3165
          sep fri fire yes no
                                1.0000000000
## 3166
          feb fri fire yes no
                                1.0000000000
## 3167
          jul mon fire yes no
                                1.0000000000
## 3168
          aug thu fire yes no
                                1.0000000000
## 3169
          jul tue fire yes no
                                1.0000000000
## 3170
          aug sun fire yes no
                                1.0000000000
## 3171
          aug sun fire yes no
                                1.0000000000
## 3172
          aug wed fire yes no
                                1.0000000000
          jul sun fire yes no
## 3173
                                1.0000000000
## 3174
          sep sat fire yes no
                                1.0000000000
## 3175
          aug sat fire yes no
                                1.0000000000
## 3176
          aug mon fire yes no
                                1.0000000000
          aug sun fire yes no
## 3177
                                1.0000000000
          aug sat fire yes no
## 3178
                                1.0000000000
          aug sun fire yes no
## 3179
                                1.0000000000
## 3180
          aug mon fire yes no
                                1.0000000000
## 3181
          aug sat fire yes no
                                1.0000000000
          sep fri fire yes no
## 3182
                                1.0000000000
## 3183
          aug mon fire_yes_no
                                1.0000000000
## 3184
          apr mon fire yes no
                                1.0000000000
```

```
## 3185
          sep fri fire yes no
                                1.0000000000
## 3186
          aug wed fire_yes_no
                                1.000000000
## 3187
          aug fri fire yes no
                                1.0000000000
## 3188
          aug wed fire yes no
                                1.0000000000
          aug sat fire yes no
## 3189
                                1.0000000000
## 3190
          aug sat fire yes no
                                1.0000000000
## 3191
          sep sun fire yes no
                                1.0000000000
## 3192
          feb tue fire yes no
                                1.0000000000
## 3193
          feb tue fire_yes_no
                                1.000000000
## 3194
          feb sat fire_yes_no
                                1.0000000000
## 3195
          mar mon fire_yes_no
                                1.000000000
## 3196
          mar wed fire yes no
                                1.0000000000
## 3197
          mar thu fire_yes_no
                                1.0000000000
## 3198
          apr sun fire yes no
                                1.0000000000
## 3199
          may fri fire yes no
                                1.0000000000
## 3200
          jun mon fire yes no
                                1.0000000000
## 3201
          jun sat fire yes no
                                1.0000000000
## 3202
          jun thu fire_yes_no
                                1.0000000000
## 3203
          jun thu fire yes no
                                1.000000000
## 3204
          jul thu fire_yes_no
                                1.000000000
## 3205
          jul sun fire_yes_no
                                1.0000000000
## 3206
          jul sun fire_yes_no
                                1.0000000000
## 3207
          jul mon fire yes no
                                1.0000000000
## 3208
          jul thu fire yes no
                                1.0000000000
## 3209
          aug sun fire yes no
                                1.0000000000
## 3210
          aug sun fire yes no
                                1.0000000000
## 3211
          aug mon fire yes no
                                1.0000000000
## 3212
          aug tue fire yes no
                                1.0000000000
## 3213
          aug tue fire yes no
                                1.0000000000
## 3214
          aug tue fire yes no
                                1.0000000000
## 3215
          aug fri fire yes no
                                1.0000000000
## 3216
          aug sat fire yes no
                                1.0000000000
## 3217
          aug mon fire yes no
                                1.0000000000
## 3218
          aug tue fire yes no
                                1.0000000000
## 3219
          aug tue fire yes no
                                1.0000000000
## 3220
          aug tue fire yes no
                                1.0000000000
## 3221
          aug wed fire yes no
                                1.0000000000
## 3222
          aug wed fire yes no
                                1.0000000000
## 3223
          aug thu fire yes no
                                1.0000000000
## 3224
          aug fri fire yes no
                                1.0000000000
          aug fri fire yes no
## 3225
                                1.0000000000
## 3226
          aug sun fire yes no
                                1.0000000000
## 3227
          aug sun fire yes no
                                1.0000000000
          aug sun fire yes no
## 3228
                                1.0000000000
```

```
# Vis of freq per month
g1 <- ggplot(forestfiresmm,aes(x=forestfiresmm$month,y=forestfiresmm$fire_yes_no))
g1 + geom_bar(stat = "identity",aes(fill=factor(month)))+labs(title = "Significant fires
per month")+xlab("Month")+ylab("Freq of Fires")+theme_classic()</pre>
```



```
# Vis of freq per day
g2 <- ggplot(forestfires,aes(forestfires$day))
g2 + geom_bar(aes(fill=factor(day)))+labs(title = "Freq of observations per day")+xlab(
"Day")+ylab("Count")+theme_classic()</pre>
```

## Freq of observations per day





```
# Dot plot, freq of area burned by month
# Basic scatter plot
g1 = ggplot(data = forestfiresmm.scaled, aes_string(x = "month", y = "area")) +
    geom_point()
# Change the point size, and shape
g1 = g1 + geom_point(size = 1, shape = 23)
g1
```



```
# two variables continuous , plot for correlation
avg <- mean(forestfires.scaled$area)
c <- ggplot(forestfires.scaled, aes(ISI, area))
# Default plot
c + geom_bin2d()</pre>
```



```
# Change the number of bins
c + geom_bin2d(bins = 15)+geom_hline(aes(yintercept = avg))
```



```
###### DECISION TREE ######
# Set up
# Plot Observations
## We see the construction of the forest and points
plot(forestfires_na_factor$X,forestfires$Y)

## View fire data
summary(forestfires_na_factor$area)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00 0.00 0.52 12.85 6.57 1090.84
```

```
# Note the mean and median
# View points where above average forest fire destruction
points(forestfires_na_factor$X[forestfires_na_factor$area>=.52], forestfires_na_factor$Y
[forestfires_na_factor$area>=.52], col="green", pch=20)
# Check the RH over areas
## View area
summary(forestfires_na_factor$area)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00 0.00 0.52 12.85 6.57 1090.84
```

points(forestfires\_na\_factor\$X[forestfires\_na\_factor\$area>=.52], forestfires\_na\_factor\$Y
[forestfires\_na\_factor\$area>=.52], col="red", pch=20)



# View wether the data is linear
plot(forestfires\_na\_factor\$X,forestfires\_na\_factor\$area)



plot(forestfires\_na\_factor\$Y,forestfires\_na\_factor\$area)



```
# Linear Regression Model
latlonlm = lm(area ~ X + Y, data = forestfires_na_factor)
summary(latlonlm)
```

```
##
## Call:
## lm(formula = area ~ X + Y, data = forestfires_na_factor)
##
## Residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
   -23.09 -13.86
                   -10.08
                             -5.37 1075.42
##
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
                 2.3976
## (Intercept)
                           10.1970
                                      0.235
                                               0.814
## X
                 1.5203
                            1.4383
                                      1.057
                                               0.291
## Y
                 0.7793
                            2.7058
                                      0.288
                                               0.773
##
## Residual standard error: 63.65 on 514 degrees of freedom
## Multiple R-squared: 0.004178, Adjusted R-squared:
## F-statistic: 1.078 on 2 and 514 DF, p-value: 0.3409
```

```
# R-Squared is around .3409 or 34%

# The linear model plots a blue money sign every time it thinks RH is above median valu
e.

# CART model
latlontree = rpart(area ~ X + Y, data=forestfires_na_factor)# Plot the tree using prp co
mmand defined in rpart.plot package
prp(latlontree)
```

```
fittedvalues = predict(latlontree)
# Simplifying Tree by increasing minBucket
latlontree = rpart(area ~ X + Y, data=forestfires_na_factor, minbucket=50)
# plot(latlontree)
# text(latlontree)
# Prediction with Regression Trees
set.seed(123)
#split=sample.split(forestfires_na_factor$area, SplitRatio = 0.7)
split=sample.split(forestfires_na_factor$area, SplitRatio = 0.7)
train=subset(forestfires_na_factor, split==TRUE)
test=subset(forestfires_na_factor, split==FALSE)
# CV
CVdata <- dplyr::select(forestfires_na_factor,c(-1,-2))</pre>
Split_M <- as.matrix(CVdata)</pre>
Papers_M_N1 <- apply(Split_M, 1, function(i) round(i/sum(i),3))</pre>
Papers_Matrix_Norm <- t(Papers_M_N1)</pre>
# Create a CART model
tree = rpart(area ~ X + Y + FFMC + DMC + ISI + temp + RH + wind + rain, data=train)
prp(tree)
```



```
# Regression Tree Predictions
tree.pred = predict(tree, newdata=test)
tree.sse = sum((tree.pred - test$area)^2)
tree.sse
```

## ## [1] 83860.14

```
# Visualize regression output
plot(forestfires_na_factor$X, forestfires_na_factor$Y)
points(forestfires_na_factor$X[forestfires_na_factor$area>=.52], forestfires_na_factor$Y
[forestfires_na_factor$area>=.52], col="red", pch=20)> latlonlm$fitted.values
```

## ## logical(0)

points(forestfires\_na\_factor\$X[latlonlm\$fitted.values >= .52], forestfires\_na\_factor\$Y[latlonlm\$fitted.values >= .52], col="blue", pch="\$")



```
# Create basic x and y cord plot in ggplot
pointgg = ggplot(forestfires_na_factor,aes(x = forestfires_na_factor$X, y = forestfires_
na_factor$Y))
pointgg = pointgg + geom_point(color="red")
pointgg = pointgg + scale_y_reverse(breaks = pretty(forestfires_na_factor$Y,n=9)) + scal
e_x_continuous(position = 'top',breaks = pretty(forestfires_na_factor$X, n = 9))
pointgg = pointgg + labs(title = "Montesinho Natural Park fires",x="",y="")
pointgg
```

## Montesinho Natural Park fires



```
# SVM and Random Forest
ForestFiresWith <- read_excel("ForestFiresWith.xlsx")

ff <- ForestFiresWith
View(ff)
#corrplot(ff, method = "number")
corrplot(corrgram(ff))</pre>
```





```
##
        Х
                       Y
                                 month
                                                   day
##
  Min.
         :1.000
                 Min. :2.0
                              Length:517
                                               Length:517
##
   1st Ou.:3.000
                 1st Qu.:4.0
                              Class :character
                                               Class : character
  Median :4.000
                 Median :4.0
                              Mode :character
                                               Mode :character
##
##
  Mean :4.669
                 Mean :4.3
##
   3rd Qu.:7.000
                 3rd Qu.:5.0
##
  Max. :9.000
                 Max. :9.0
##
       FFMC
                      DMC
                                     DC
                                                   ISI
                                             Min. : 0.000
##
  Min. :18.70
                 Min. : 1.1 Min. : 7.9
##
   1st Ou.:90.20
                 1st Ou.: 68.6
                                1st Qu.:437.7 1st Qu.: 6.500
  Median :91.60
                 Median: 108.3 Median: 664.2 Median: 8.400
##
##
   Mean :90.64
                 Mean :110.9
                                Mean :547.9 Mean : 9.022
   3rd Qu.:92.90
##
                 3rd Qu.:142.4
                                3rd Qu.:713.9
                                              3rd Qu.:10.800
## Max. :96.20
                                      :860.6 Max.
                 Max.
                      :291.3
                                Max.
                                                     :56.100
##
   temperature
                 relative humidity wind speeds
                                                 rain amount
## Min. : 2.20
                 Min. : 15.00
                                 Min.
                                        :0.400
                                               Min.
                                                       :0.00000
##
   1st Ou.:15.50
                 1st Ou.: 33.00
                                  1st Qu.:2.700
                                               1st Ou.:0.00000
## Median :19.30
                 Median: 42.00 Median: 4.000 Median: 0.00000
                 Mean : 44.29 Mean :4.018 Mean
## Mean :18.89
                                                       :0.02166
   3rd Qu.:22.80
                 3rd Qu.: 53.00 3rd Qu.:4.900 3rd Qu.:0.00000
##
## Max. :33.30
                Max.
                      :100.00 Max. :9.400 Max. :6.40000
                    fire no yes
##
        area
## Min. : 0.00 Min. :0.0000
   1st Qu.: 0.00 1st Qu.:0.0000
##
## Median: 0.52 Median:1.0000
## Mean : 12.85 Mean
                         :0.5222
   3rd Qu.: 6.57 3rd Qu.:1.0000
##
## Max. :1090.84 Max. :1.0000
```

```
ff <- ff[,-13]
str(ff)</pre>
```

```
## Classes 'tbl df', 'tbl' and 'data.frame': 517 obs. of 13 variables:
## $ X
                      : num 7 2 2 3 5 6 6 3 2 6 ...
## $ Y
                      : num 5 4 2 4 4 5 4 4 4 3 ...
                            "apr" "jan" "feb" "mar" ...
## $ month
                      : chr
                            "sun" "sat" "sat" ...
## $ day
                      : chr
##
  $ FFMC
                     : num 81.9 82.1 79.5 69 85.2 75.1 75.1 86.9 93.4 91 ...
  $ DMC
                            3 3.7 3.6 2.4 4.9 4.4 4.4 6.6 15 14.6 ...
##
                     : num
## $ DC
                           7.9 9.3 15.3 15.5 15.8 16.2 16.2 18.7 25.6 25.6 ...
                     : num
                     : num 3.5 2.9 1.8 0.7 6.3 1.9 1.9 3.2 11.4 12.3 ...
## $ ISI
                    : num 13.4 5.3 4.6 17.4 7.5 4.6 5.1 8.8 15.2 13.7 ...
##
  $ temperature
## $ relative humidity: num 75 78 59 24 46 82 77 35 19 33 ...
                    : num 1.8 3.1 0.9 5.4 8 6.3 5.4 3.1 7.6 9.4 ...
## $ wind speeds
## $ rain amount
                     : num 0 0 0 0 0 0 0 0 0 ...
## $ fire no yes
                     : num 0 0 1 0 1 1 1 1 0 1 ...
```

```
## Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm
## = na.rm): NAs introduced by coercion
```

```
## Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm
## = na.rm): NAs introduced by coercion
```

```
##
                   Х
                                      Y
                                                     month
                                                                          day
##
           2.3137778
                              1.2299004
                                                        NA
                                                                           NA
##
                FFMC
                                                        DC
                                                                          ISI
                                    DMC
                                                                    4.5594772
##
           5.5201108
                             64.0464822
                                               248.0661917
##
         temperature relative humidity
                                               wind speeds
                                                                 rain amount
##
           5.8066253
                             16.3174692
                                                 1.7916526
                                                                    0.2959591
##
        fire__no_yes
##
           0.4999888
```

```
trainRatio <- .67
set.seed(1016) # Set Seed so that same sample can be reproduced in future also
sample <- sample.int(n = nrow(ff), size = floor(trainRatio*nrow(ff)), replace = FALSE)
ff$X <- log(ff$X)
testdata <- ff[-sample, ]
testdata</pre>
```

```
## # A tibble: 171 x 13
##
         Х
               Y month day
                              FFMC
                                     DMC
                                            DC
                                                 ISI temperature
##
      <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
                                                           <dbl>
   1 1.95
                5 apr
                                           7.9
##
                       sun
                               81.9
                                     3
                                                 3.5
                                                            13.4
##
   2 1.79
               5 feb
                               75.1
                                     4.4 16.2
                                                 1.9
                                                              4.6
                       tue
   3 1.10
               4 feb
                                     6.6 18.7
                                                              8.8
##
                              86.9
                                                 3.2
                       wed
##
   4 1.79
               3 apr
                       sun
                              91
                                     14.6 25.6 12.3
                                                            13.7
   5 1.10
                                          30.2
                                                            12.7
##
                4 feb
                              83.9
                                     8
                                                 2.6
                       sat
##
   6 1.61
               5 mar
                       thu
                              90.9 18.9 30.6
                                                            11.6
   7 1.79
                               87.2 15.1 36.9
                                                            10.2
##
               5 mar
                       mon
                                                 7.1
##
   8 0.693
               2 feb
                       fri
                               86.6 13.2 43
                                                 5.3
                                                            12.3
##
   9 1.79
                5 mar
                       thu
                               91.3 20.6 43.5
                                                 8.5
                                                            13.3
## 10 1.39
                               85
                                     9
                                          56.9
                5 feb
                       sun
                                                 3.5
                                                            10.1
## # ... with 161 more rows, and 4 more variables: `relative humidity` <dbl>,
     `wind speeds` <dbl>, `rain amount` <dbl>, fire no yes <dbl>
## #
```

```
testdata <- testdata[, -c(3:4)]
summary(testdata)</pre>
```

```
##
                          Y
                                       FFMC
                                                       DMC
         Х
##
   Min.
          :0.0000
                                                  Min. : 3.00
                    Min. :2.00
                                  Min.
                                         :50.40
##
   1st Qu.:0.6931
                    1st Qu.:4.00
                                  1st Qu.:90.10
                                                  1st Qu.: 51.75
   Median :1.3863
##
                    Median :4.00
                                  Median :91.60
                                                  Median : 97.90
##
   Mean :1.3224
                    Mean :4.17
                                  Mean :90.48
                                                  Mean :100.55
   3rd Qu.:1.9459
##
                    3rd Qu.:5.00
                                  3rd Qu.:92.50
                                                  3rd Qu.:130.90
##
   Max. :2.1972
                    Max. :9.00
                                  Max. :96.10
                                                  Max. :276.30
##
         DC
                        ISI
                                    temperature
                                                   relative humidity
##
   Min.
          : 7.9
                   Min.
                         : 0.400
                                   Min.
                                          : 4.60
                                                   Min. :17.00
##
   1st Qu.:399.9
                   1st Qu.: 6.700
                                   1st Qu.:14.65
                                                   1st Qu.:32.50
   Median :664.5
                   Median : 8.400
                                                   Median :41.00
##
                                   Median :18.70
##
   Mean
         :536.5
                   Mean : 8.763
                                   Mean
                                         :18.18
                                                   Mean
                                                          :44.82
##
   3rd Qu.:713.5
                   3rd Qu.:10.100
                                   3rd Qu.:21.85
                                                   3rd Qu.:54.00
##
   Max.
          :825.1
                   Max.
                         :22.600
                                   Max.
                                          :30.60
                                                   Max.
                                                          :99.00
##
    wind speeds
                   rain amount
                                     fire__no_yes
## Min.
          :0.900
                   Min.
                         :0.00000
                                    Min.
                                           :0.0000
   1st Qu.:2.700
                   1st Qu.:0.00000
##
                                    1st Qu.:0.0000
## Median :4.000
                   Median :0.00000
                                    Median :1.0000
##
          :4.029
                         :0.01287
   Mean
                   Mean
                                    Mean
                                           :0.5322
   3rd Qu.:5.400
                   3rd Qu.:0.00000
                                    3rd Qu.:1.0000
##
        :9.400
##
   Max.
                   Max.
                         :1.40000
                                    Max.
                                           :1.0000
```

```
traindata <- ff[sample, ]
traindata <- traindata[, -c(3:4)]
summary(traindata)</pre>
```

```
##
         Х
                        Y
                                       FFMC
                                                      DMC
##
   Min.
          :0.000
                  Min.
                         :2.000
                                  Min.
                                         :18.70
                                                 Min.
                                                        : 1.10
   1st Qu.:1.099
                  1st Qu.:4.000
                                  1st Qu.:90.30
                                                 1st Qu.: 80.75
##
   Median :1.386
                  Median :4.000
                                  Median :91.70
                                                 Median :111.70
##
                                                 Mean :115.97
##
   Mean :1.403
                  Mean :4.364
                                  Mean :90.73
   3rd Qu.:1.946
                  3rd Qu.:5.000
                                  3rd Qu.:93.10
                                                 3rd Qu.:146.97
##
##
   Max. :2.197
                  Max. :9.000
                                  Max. :96.20
                                                 Max.
                                                       :291.30
         DC
                                                 relative humidity
##
                       ISI
                                  temperature
   Min.
          : 9.3
                  Min.
                         : 0.00
                                  Min.
                                         : 2.20
                                                 Min.
                                                       : 15.00
##
##
   1st Qu.:474.9
                   1st Qu.: 6.30
                                  1st Qu.:16.10
                                                 1st Qu.: 33.00
##
   Median :661.8
                  Median: 8.40
                                  Median :19.60
                                                 Median : 42.00
   Mean :553.6
                  Mean : 9.15
                                  Mean :19.24
                                                 Mean : 44.03
##
                                  3rd Qu.:23.30
##
   3rd Qu.:713.9
                   3rd Qu.:11.30
                                                 3rd Qu.: 53.00
##
  Max.
          :860.6
                  Max.
                         :56.10
                                  Max. :33.30
                                                 Max.
                                                       :100.00
    wind speeds
##
                   rain amount
                                     fire no yes
## Min.
          :0.400
                  Min.
                         :0.00000
                                    Min.
                                          :0.0000
   1st Qu.:2.700
                  1st Qu.:0.00000
##
                                    1st Qu.:0.0000
   Median :4.000
                  Median :0.00000
                                    Median :1.0000
##
##
   Mean :4.012
                  Mean
                         :0.02601
                                    Mean :0.5173
##
   3rd Qu.:4.900
                   3rd Qu.:0.00000
                                    3rd Qu.:1.0000
## Max. :9.400
                  Max. :6.40000
                                    Max. :1.0000
```

```
probit2 <- glm(traindata$fire__no_yes ~., family = binomial(link = "probit"), data=trai
ndata[,-(length(traindata))])
logit2 <- glm(traindata$fire__no_yes ~., family = "binomial", data=traindata[,-(length
(traindata))])
summary(probit2)</pre>
```

```
##
## Call:
## glm(formula = traindata$fire no yes ~ ., family = binomial(link = "probit"),
##
      data = traindata[, -(length(traindata))])
##
## Deviance Residuals:
##
      Min
               1Q Median
                                 3Q
                                        Max
## -1.5800 -1.2101 0.9448 1.0934
                                      1.7574
##
## Coefficients:
##
                      Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                     -2.404e+00 1.951e+00 -1.232
                                                     0.218
## X
                     -2.242e-02 1.330e-01 -0.169
                                                     0.866
## Y
                     7.824e-02 6.516e-02 1.201
                                                     0.230
## FFMC
                     2.134e-02 2.131e-02 1.002
                                                     0.317
## DMC
                     -4.241e-05 1.594e-03 -0.027
                                                     0.979
## DC
                     5.414e-04 4.190e-04 1.292
                                                     0.196
## ISI
                     -7.071e-03 1.828e-02 -0.387
                                                    0.699
## temperature
                     -2.772e-04 1.850e-02 -0.015
                                                    0.988
## `relative humidity` -4.395e-03 5.911e-03 -0.743
                                                     0.457
## `wind speeds`
                     4.126e-02 4.156e-02 0.993
                                                     0.321
## `rain amount`
                     1.005e-01 2.206e-01 0.456
                                                     0.649
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 479.24 on 345 degrees of freedom
## Residual deviance: 468.43 on 335 degrees of freedom
## AIC: 490.43
##
## Number of Fisher Scoring iterations: 5
```

```
summary(logit2)
```

```
##
## Call:
## glm(formula = traindata$fire__no_yes ~ ., family = "binomial",
      data = traindata[, -(length(traindata))])
##
##
## Deviance Residuals:
##
      Min
                10
                    Median
                                  3Q
                                         Max
## -1.5808 -1.2077
                     0.9434 1.0929
                                       1.7544
##
## Coefficients:
##
                        Estimate Std. Error z value Pr(>|z|)
                      -3.887e+00 3.318e+00 -1.172
## (Intercept)
                                                      0.241
                      -3.643e-02 2.133e-01 -0.171
## X
                                                      0.864
## Y
                      1.278e-01 1.049e-01 1.218
                                                      0.223
## FFMC
                       3.429e-02 3.643e-02 0.941
                                                      0.347
## DMC
                      -9.527e-05 2.557e-03 -0.037
                                                      0.970
                       8.820e-04 6.740e-04 1.309
## DC
                                                      0.191
## ISI
                      -1.095e-02 2.985e-02 -0.367
                                                      0.714
                      -2.139e-04 2.972e-02 -0.007
                                                      0.994
## temperature
## `relative humidity` -7.108e-03 9.503e-03 -0.748
                                                      0.455
## `wind speeds`
                       6.738e-02 6.689e-02 1.007
                                                      0.314
                       1.503e-01 3.715e-01 0.405
## `rain amount`
                                                      0.686
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 479.24 on 345 degrees of freedom
## Residual deviance: 468.44 on 335 degrees of freedom
## AIC: 490.44
##
## Number of Fisher Scoring iterations: 4
```

```
predictedlogit <- plogis(predict(logit2, testdata))
predictedprobit <- plogis(predict(probit2, testdata))
table(predictedlogit > 0.5, testdata$fire__no_yes)
```

```
##
## 0 1
## FALSE 35 29
## TRUE 45 62
```

```
### SVM Model
traindata2 <- traindata
svmclassifier = svm(formula = traindata2$`fire__no_yes` ~ .,
                     data = traindata2,
                     type = 'C-classification',
                     kernel = 'linear')
testdata2 <- testdata
#y_pred <- predict(symclassifier, newdata = testdata2[-9])</pre>
y_pred <- predict(symclassifier, newdata = testdata2)</pre>
cm <- table(testdata2$`fire__no_yes`, y_pred)</pre>
cm
##
     y_pred
       0 1
##
     0 22 58
##
     1 19 72
##
prediction <- predict(svmclassifier, newdata = testdata2)</pre>
results <- data.frame(testdata2$`fire__no_yes`, prediction)</pre>
colnames(results) <- c("Actual", "Prediction")</pre>
str(results)
## 'data.frame':
                    171 obs. of 2 variables:
## $ Actual : num 0 1 1 1 0 0 1 0 1 1 ...
```

```
## $ Prediction: Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
```

```
results$Prediction <- as.factor(results$Prediction)</pre>
results$Actual <- as.factor(results$Actual)</pre>
confusionMatrix(results$Prediction, results$Actual)
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction 0 1
##
            0 22 19
            1 58 72
##
##
                  Accuracy: 0.5497
##
##
                    95% CI: (0.4719, 0.6258)
##
       No Information Rate: 0.5322
       P-Value [Acc > NIR] : 0.3514
##
##
##
                     Kappa : 0.0682
##
##
    Mcnemar's Test P-Value: 1.488e-05
##
               Sensitivity: 0.2750
##
##
               Specificity: 0.7912
            Pos Pred Value: 0.5366
##
##
            Neg Pred Value: 0.5538
##
                Prevalence: 0.4678
            Detection Rate: 0.1287
##
      Detection Prevalence: 0.2398
##
##
         Balanced Accuracy: 0.5331
##
          'Positive' Class: 0
##
##
svmclassifier2 = svm(formula = traindata2$`fire no yes` ~ .,
                     data = traindata2,
                     type = 'C-classification',
                     kernel = 'polynomial')
y pred <- predict(svmclassifier2, newdata = testdata2)</pre>
cm <- table(testdata2$`fire no yes`, y pred)</pre>
cm
```

```
## y_pred
## 0 1
## 0 25 55
## 1 16 75
```

```
prediction <- predict(svmclassifier2, newdata = testdata2)
results <- data.frame(testdata2$`fire__no_yes`, prediction)
colnames(results) <- c("Actual", "Prediction")
str(results)</pre>
```

```
## 'data.frame': 171 obs. of 2 variables:
## $ Actual : num 0 1 1 1 0 0 1 0 1 1 ...
## $ Prediction: Factor w/ 2 levels "0","1": 1 2 1 2 1 1 2 2 1 1 ...
```

```
results$Prediction <- as.factor(results$Prediction)
results$Actual <- as.factor(results$Actual)
confusionMatrix(results$Prediction, results$Actual)</pre>
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction 0 1
##
            0 25 16
##
            1 55 75
##
##
                  Accuracy: 0.5848
##
                    95% CI: (0.5071, 0.6595)
##
       No Information Rate: 0.5322
       P-Value [Acc > NIR] : 0.09606
##
##
##
                     Kappa : 0.1408
##
##
   Mcnemar's Test P-Value: 6.49e-06
##
##
               Sensitivity: 0.3125
               Specificity: 0.8242
##
            Pos Pred Value: 0.6098
##
##
            Neg Pred Value: 0.5769
                Prevalence: 0.4678
##
##
            Detection Rate: 0.1462
##
      Detection Prevalence: 0.2398
##
         Balanced Accuracy: 0.5683
##
          'Positive' Class: 0
##
##
```

```
## y_pred
## 0 1
## 0 27 53
## 1 33 58
```

```
prediction <- predict(svmclassifier3, newdata = testdata2)
results <- data.frame(testdata2$`fire__no_yes`, prediction)
colnames(results) <- c("Actual", "Prediction")
str(results)</pre>
```

```
## 'data.frame': 171 obs. of 2 variables:
## $ Actual : num 0 1 1 1 0 0 1 0 1 1 ...
## $ Prediction: Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 2 1 ...
```

```
results$Prediction <- as.factor(results$Prediction)
results$Actual <- as.factor(results$Actual)
confusionMatrix(results$Prediction, results$Actual)</pre>
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction 0 1
##
            0 27 33
            1 53 58
##
##
##
                  Accuracy : 0.4971
##
                    95% CI: (0.4198, 0.5744)
##
       No Information Rate: 0.5322
       P-Value [Acc > NIR] : 0.84043
##
##
                     Kappa : -0.0255
##
##
##
    Mcnemar's Test P-Value: 0.04048
##
               Sensitivity: 0.3375
##
##
               Specificity: 0.6374
            Pos Pred Value: 0.4500
##
##
            Neg Pred Value: 0.5225
                Prevalence: 0.4678
##
            Detection Rate: 0.1579
##
##
      Detection Prevalence: 0.3509
         Balanced Accuracy: 0.4874
##
##
          'Positive' Class: 0
##
##
```

```
## y_pred
## 0 1
## 0 44 36
## 1 41 50
```

```
prediction <- predict(svmclassifier4, newdata = testdata2)
results <- data.frame(testdata2$`fire__no_yes`, prediction)
colnames(results) <- c("Actual", "Prediction")
str(results)</pre>
```

```
## 'data.frame': 171 obs. of 2 variables:
## $ Actual : num 0 1 1 1 0 0 1 0 1 1 ...
## $ Prediction: Factor w/ 2 levels "0","1": 1 2 1 2 1 1 1 1 1 1 ...
```

```
results$Prediction <- as.factor(results$Prediction)
results$Actual <- as.factor(results$Actual)
confusionMatrix(results$Prediction, results$Actual)</pre>
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction 0 1
##
            0 44 41
           1 36 50
##
##
##
                  Accuracy: 0.5497
##
                    95% CI: (0.4719, 0.6258)
##
      No Information Rate: 0.5322
       P-Value [Acc > NIR] : 0.3514
##
##
##
                     Kappa : 0.0991
##
##
   Mcnemar's Test P-Value: 0.6485
##
##
               Sensitivity: 0.5500
##
               Specificity: 0.5495
           Pos Pred Value: 0.5176
##
##
           Neg Pred Value: 0.5814
                Prevalence: 0.4678
##
##
            Detection Rate: 0.2573
##
      Detection Prevalence: 0.4971
         Balanced Accuracy: 0.5497
##
##
          'Positive' Class: 0
##
##
```

```
###created XY coordinates and adding it to ff

df <- paste(ff$X,",",ff$Y)

df <- as.data.frame(df)

colnames(df) <- "coordinates"

df</pre>
```

```
##
                 coordinates
## 1
        1.94591014905531 , 5
## 2
       0.693147180559945 , 4
## 3
       0.693147180559945 , 2
## 4
       1.09861228866811 , 4
## 5
         1.6094379124341 , 4
## 6
        1.79175946922805 , 5
## 7
        1.79175946922805 , 4
## 8
       1.09861228866811 , 4
## 9
       0.693147180559945 , 4
## 10
       1.79175946922805 , 3
## 11
        1.6094379124341 , 4
        2.19722457733622 , 9
## 12
## 13
        1.79175946922805 , 5
## 14
        1.09861228866811 , 4
## 15
        1.09861228866811 , 4
## 16
        1.79175946922805 , 5
## 17
        1.6094379124341 , 5
## 18
       1.94591014905531 , 4
## 19 0.693147180559945 , 2
## 20
        1.79175946922805 , 5
## 21
        1.09861228866811 , 4
## 22
       1.79175946922805 , 5
## 23 0.693147180559945 , 2
## 24
        2.19722457733622 , 9
## 25
       1.79175946922805 , 3
        1.79175946922805 , 5
## 26
## 27
        1.94591014905531 , 4
        1.79175946922805 , 5
## 28
## 29
        1.6094379124341 , 4
## 30
        1.79175946922805 , 3
## 31
        1.79175946922805 , 5
## 32
        1.38629436111989 , 5
## 33
        1.79175946922805 , 5
        1.79175946922805 , 5
## 34
## 35
        1.38629436111989 , 5
## 36
        1.38629436111989 , 5
## 37
        1.38629436111989 , 4
## 38
        1.94591014905531 , 4
## 39
        1.38629436111989 , 4
## 40
        1.38629436111989 , 6
## 41
        1.38629436111989 . 4
## 42
        1.09861228866811 , 4
## 43
        1.09861228866811 , 5
## 44
        1.09861228866811 , 5
## 45
        1.79175946922805 , 4
        1.38629436111989 , 3
## 46
## 47
        1.38629436111989 , 5
## 48
        1.38629436111989 , 5
## 49
        1.6094379124341 , 4
## 50
       1.09861228866811 , 4
## 51
       2.07944154167984 , 6
## 52
         1.6094379124341 , 5
```

```
## 53
        1.79175946922805 , 5
## 54
        2.07944154167984 , 6
## 55
        1.09861228866811 , 4
## 56
        1.09861228866811 , 4
## 57
        1.38629436111989 , 4
## 58
        1.38629436111989 , 4
## 59
        1.79175946922805 , 5
## 60
        1.38629436111989 , 4
## 61
        1.09861228866811 , 4
## 62
        1.6094379124341 , 4
## 63
        1.94591014905531 , 4
## 64
        1.79175946922805 , 5
## 65
        1.38629436111989 , 6
## 66
        1.79175946922805 , 4
## 67
        1.94591014905531 , 4
## 68
        1.94591014905531 , 5
## 69
        1.79175946922805 , 4
## 70
        1.38629436111989 , 5
## 71
        1.79175946922805 , 5
## 72
        1.79175946922805 , 5
## 73
        1.79175946922805 , 3
## 74
        1.6094379124341 , 6
## 75
        1.6094379124341 , 5
## 76
        2.07944154167984 , 6
## 77
       0.693147180559945 , 2
## 78
       0.693147180559945 , 2
## 79
        1.38629436111989 , 6
## 80
        2.07944154167984 , 6
## 81
        1.38629436111989 , 4
## 82
                       0,3
## 83
        1.09861228866811 , 5
## 84
        1.94591014905531 , 3
## 85
        1.38629436111989 , 3
## 86
        1.79175946922805 . 3
## 87
        1.79175946922805 , 5
## 88
        1.38629436111989 , 5
## 89
        1.94591014905531 , 4
## 90
        2.07944154167984 , 3
## 91
        1.09861228866811 , 6
## 92
        1.09861228866811 , 6
## 93
        1.79175946922805 , 5
        2.19722457733622 , 4
## 94
## 95
        1.79175946922805 , 4
## 96
       2.07944154167984 , 6
## 97
                       0,2
## 98
        2.19722457733622 , 5
## 99
        2.19722457733622 , 5
## 100 1.79175946922805 , 5
## 101 1.79175946922805 , 5
## 102 0.693147180559945 , 2
## 103 2.19722457733622 , 9
## 104 1.38629436111989 , 3
## 105 1.38629436111989 , 4
## 106 1.09861228866811 , 4
```

```
## 107 1.38629436111989 , 4
## 108 1.38629436111989 , 4
## 109 1.79175946922805 , 5
## 110 0.693147180559945 , 5
## 111 1.38629436111989 , 6
## 112 1.38629436111989 , 6
## 113
       1.38629436111989 , 6
## 114 1.79175946922805 , 3
## 115 2.07944154167984 , 6
## 116 2.19722457733622 , 9
## 117 1.38629436111989 , 4
## 118
## 119 0.693147180559945 , 5
## 120 2.07944154167984 , 6
## 121 1.38629436111989 , 3
## 122 0.693147180559945 , 5
## 123 1.38629436111989 , 3
## 124 1.94591014905531 , 4
## 125 1.09861228866811 , 4
## 126 1.94591014905531 , 6
## 127 1.94591014905531 , 5
## 128 1.94591014905531 , 4
## 129 1.79175946922805 , 5
## 130 1.94591014905531 , 6
## 131 2.07944154167984 , 6
## 132 2.19722457733622 . 4
## 133 1.79175946922805 , 6
## 134
## 135
       1.6094379124341 , 4
## 136 1.38629436111989 , 5
## 137 0.693147180559945 , 2
## 138 1.09861228866811 , 4
## 139 1.94591014905531 , 4
## 140 1.94591014905531 . 4
## 141 1.94591014905531 , 4
## 142 0.693147180559945 , 5
## 143 2.19722457733622 , 4
## 144 2.07944154167984 , 6
## 145 2.07944154167984 , 6
## 146 2.07944154167984 , 6
## 147 2.07944154167984 , 6
## 148 2.07944154167984 , 6
## 149 0.693147180559945 . 4
## 150
                      0,2
## 151 0.693147180559945 , 5
## 152 1.09861228866811 , 4
## 153
                      0,2
## 154 2.07944154167984 , 6
## 155 1.94591014905531 , 4
## 156 0.693147180559945 , 4
## 157 1.38629436111989 , 4
## 158 2.19722457733622 . 9
## 159 1.38629436111989 , 3
## 160
                      0,2
```

```
## 161 1.94591014905531 , 4
## 162 1.09861228866811 , 4
## 163 1.79175946922805 , 5
## 164
      1.09861228866811 , 4
## 165 0.693147180559945 , 4
## 166 1.79175946922805 , 3
## 167
       1.79175946922805 , 5
## 168 1.79175946922805 , 4
## 169 2.07944154167984 , 6
## 170 0.693147180559945 , 5
## 171 2.07944154167984 , 6
## 172 1.38629436111989 , 3
## 173 2.07944154167984 , 6
## 174 0.693147180559945 , 5
## 175 1.09861228866811 , 4
## 176 2.07944154167984 , 6
## 177 0.693147180559945 , 5
## 178 0.693147180559945 , 4
## 179 1.94591014905531 , 4
## 180 1.09861228866811 , 5
## 181 0.693147180559945 , 2
## 182 1.94591014905531 , 4
## 183 0.693147180559945 , 4
## 184 1.94591014905531 , 4
## 185
## 186 2.07944154167984 , 6
## 187 1.09861228866811 , 4
## 188 1.09861228866811 , 4
## 189 1.09861228866811 , 4
## 190 1.94591014905531 , 4
## 191  2.07944154167984 , 6
## 192
## 193
       1.6094379124341 , 4
## 194
        1.6094379124341 . 4
## 195 1.38629436111989 , 4
## 196 1.38629436111989 , 4
## 197 1.38629436111989 , 4
## 198 1.79175946922805 , 5
       2.07944154167984 , 6
## 199
## 200
      1.09861228866811 , 4
## 201
       1.09861228866811 , 4
## 202 2.07944154167984 , 6
## 203 0.693147180559945 . 4
## 204
        1.6094379124341 , 6
## 205 0.693147180559945 , 5
## 206 1.09861228866811 , 4
## 207 1.94591014905531 , 4
        1.6094379124341 , 4
## 208
## 209 1.09861228866811 , 4
## 210 2.07944154167984 , 6
## 211
## 212 1.79175946922805 . 3
## 213 1.38629436111989 , 4
## 214 1.38629436111989 , 4
```

```
## 215 1.79175946922805 , 5
## 216
                       0,4
## 217
                       0,4
## 218 1.79175946922805 , 3
## 219 1.38629436111989 , 3
## 220 0.693147180559945 , 2
## 221
                       0,2
## 222 1.38629436111989 , 5
## 223 0.693147180559945 , 5
## 224  2.07944154167984 , 6
## 225
                       0 , 3
## 226
                       0 , 3
## 227 2.07944154167984 , 8
## 228
## 229 0.693147180559945 , 2
## 230 2.07944154167984 , 6
## 231 2.07944154167984 , 6
## 232 2.07944154167984 , 6
## 233 1.79175946922805 , 6
## 234    1.38629436111989    , 4
                       0 , 2
## 235
## 236 0.693147180559945 , 4
## 237 0.693147180559945 , 2
## 238 1.94591014905531 , 4
## 239 0.693147180559945 , 2
## 240 0.693147180559945 , 2
## 241
                       0,4
## 242 1.38629436111989 , 3
## 243   1.38629436111989  , 3
## 244
## 245 0.693147180559945 , 2
## 246 0.693147180559945 , 4
## 247 1.79175946922805 , 5
## 248 0.693147180559945 . 2
## 249 1.09861228866811 , 4
## 250 1.38629436111989 , 4
## 251 0.693147180559945 , 2
## 252 2.07944154167984 , 6
## 253 0.693147180559945 , 5
## 254 1.38629436111989 , 3
## 255 0.693147180559945 , 2
## 256
## 257 1.79175946922805 . 6
## 258 1.38629436111989 , 5
## 259 2.07944154167984 , 5
## 260 2.07944154167984 , 6
## 261 1.38629436111989 , 5
## 262 0.693147180559945 , 4
## 263 1.79175946922805 , 5
## 264 1.79175946922805 , 5
## 265 0.693147180559945 , 4
## 266 2.07944154167984 . 6
## 267 1.38629436111989 , 3
## 268 0.693147180559945 , 4
```

```
## 269 1.94591014905531 , 4
## 270 2.07944154167984 , 6
## 271 1.09861228866811 , 4
## 272 2.07944154167984 , 5
## 273  2.07944154167984 , 5
## 274 1.79175946922805 , 5
## 275 1.94591014905531 , 4
## 276 0.693147180559945 , 2
## 277 0.693147180559945 , 2
## 278 0.693147180559945 , 2
## 279
       1.94591014905531 , 4
## 280 1.79175946922805 , 5
## 281
      1.94591014905531 , 4
## 282 1.79175946922805 , 3
## 283
       1.09861228866811 , 4
## 284
       1.79175946922805 , 5
## 285 1.38629436111989 , 4
## 286
       2.07944154167984 , 6
## 287 1.94591014905531 , 5
## 288 1.94591014905531 , 5
## 289 1.09861228866811 , 4
## 290 2.07944154167984 , 3
## 291 2.19722457733622 , 4
## 292 2.07944154167984 , 6
## 293 0.693147180559945 , 4
## 294 2.07944154167984 , 6
## 295 2.07944154167984 , 6
## 296 1.09861228866811 , 5
## 297 2.07944154167984 , 6
## 298 0.693147180559945 , 4
## 299 2.07944154167984 , 6
## 300 1.38629436111989 , 5
## 301 0.693147180559945 , 2
## 302 1.79175946922805 . 5
## 303 1.09861228866811 , 4
## 304 1.09861228866811 , 6
## 305
## 306 1.38629436111989 , 4
## 307 0.693147180559945 , 2
## 308 1.94591014905531 , 4
## 309
       1.38629436111989 , 4
## 310 1.38629436111989 , 6
## 311 2.07944154167984 . 6
## 312 2.07944154167984 , 3
## 313 1.79175946922805 , 5
## 314 1.94591014905531 , 4
## 315
       1.6094379124341 , 6
## 316 1.09861228866811 , 6
## 317 0.693147180559945 , 5
## 318 1.38629436111989 , 4
## 319
## 320 1.94591014905531 . 4
## 321 1.94591014905531 , 3
## 322 1.38629436111989 , 4
```

```
## 323 0.693147180559945 , 4
## 324 1.38629436111989 , 3
## 325 2.07944154167984 , 6
## 326 0.693147180559945 , 4
## 327 1.38629436111989 , 5
## 328 1.38629436111989 , 3
## 329 1.09861228866811 , 4
## 330 0.693147180559945 , 5
## 331 1.79175946922805 , 3
## 332 1.6094379124341 , 6
## 333 1.38629436111989 , 5
## 334 1.09861228866811 , 4
## 335
       1.6094379124341 , 4
## 336 1.94591014905531 , 4
## 337 1.09861228866811 , 4
## 338 1.94591014905531 , 4
## 339 2.07944154167984 , 6
## 340 1.79175946922805 , 4
## 341
## 342 0.693147180559945 , 5
## 343 1.09861228866811 , 4
## 344
## 345 1.94591014905531 , 5
## 346 1.79175946922805 , 4
## 347
## 348 0.693147180559945 , 5
## 349 1.94591014905531 , 4
## 350 1.94591014905531 , 5
## 351 1.94591014905531 , 5
## 352 1.94591014905531 , 5
## 353 1.38629436111989 , 4
## 354 1.38629436111989 , 5
       1.6094379124341 , 4
## 355
## 356 2.07944154167984 , 6
## 357
                      0 , 3
## 358 2.07944154167984 . 6
## 359 1.79175946922805 , 5
## 360
       1.6094379124341 , 4
## 361 1.38629436111989 , 5
## 362 1.38629436111989 , 5
## 363 1.38629436111989 , 4
## 364 0.693147180559945 , 4
## 365 1.09861228866811 . 4
## 366
       1.6094379124341 , 4
## 367 1.94591014905531 , 4
## 368 1.38629436111989 , 4
## 369 1.09861228866811 , 4
## 370 2.07944154167984 , 5
## 371 1.38629436111989 , 4
## 372 1.38629436111989 , 3
## 373
                      0,2
## 374
                      0,2
## 375
## 376 1.38629436111989 , 5
```

```
## 377 1.38629436111989 , 5
## 378 0.693147180559945 , 4
## 379 1.79175946922805 , 4
## 380 1.94591014905531 , 4
## 381 2.19722457733622 , 9
## 382 1.79175946922805 , 3
## 383
       1.79175946922805 , 3
## 384 1.38629436111989 , 5
## 385
## 386 1.94591014905531 , 5
## 387 1.79175946922805 , 5
## 388
       1.6094379124341 , 4
## 389 1.09861228866811 , 4
## 390
## 391 1.94591014905531 , 4
## 392 1.09861228866811 , 4
## 393 0.693147180559945 , 2
                      0,2
## 394
## 395 1.94591014905531 , 5
## 396 2.07944154167984 , 6
## 397 0.693147180559945 , 5
## 398 2.07944154167984 , 6
## 399 0.693147180559945 , 5
## 400 2.07944154167984 , 6
## 401 1.79175946922805 , 3
## 402
                      0,4
## 403 1.79175946922805 , 3
## 404
## 405 0.693147180559945 , 4
## 406
        1.6094379124341 , 4
## 407 0.693147180559945 , 4
## 408
        1.6094379124341 , 4
## 409 1.79175946922805 , 3
## 410 1.09861228866811 . 4
## 411 0.693147180559945 , 4
## 412 1.79175946922805 , 5
## 413 1.79175946922805 , 3
## 414
                      0,2
## 415 1.09861228866811 , 5
## 416 1.38629436111989 , 4
## 417 1.38629436111989 , 6
## 418
## 419 1.79175946922805 , 3
## 420 1.38629436111989 , 3
## 421 1.94591014905531 , 4
## 422 1.09861228866811 , 4
## 423 1.94591014905531 , 4
## 424 1.38629436111989 , 4
## 425 0.693147180559945 , 5
## 426
       1.94591014905531 , 4
## 427 2.07944154167984 , 6
## 428
## 429 1.38629436111989 , 5
## 430 1.38629436111989 , 4
```

```
## 431 1.79175946922805 , 5
## 432 1.79175946922805 , 5
## 433
                      0,3
## 434
                      0,2
## 435
        1.6094379124341 , 4
## 436
      1.09861228866811 , 4
## 437
        1.6094379124341 , 4
## 438
       1.6094379124341 , 4
## 439
       1.38629436111989 , 4
## 440 1.94591014905531 , 4
## 441
       1.94591014905531 , 4
## 442
      1.94591014905531 , 4
## 443 1.38629436111989 , 4
## 444 1.38629436111989 , 4
## 445 1.09861228866811 , 4
## 446 1.38629436111989 , 3
## 447
                      0,4
        1.6094379124341 , 4
## 448
## 449 1.79175946922805 , 5
## 450 1.79175946922805 , 5
## 451 1.38629436111989 , 3
## 452 1.09861228866811 , 3
## 453
## 454 0.693147180559945 , 4
## 455
## 456 1.79175946922805 . 5
## 457
       1.6094379124341 , 4
## 458 2.19722457733622 , 6
## 459 0.693147180559945 , 2
## 460 2.07944154167984 , 6
## 461 1.09861228866811 , 4
## 462 0.693147180559945 , 4
## 463 0.693147180559945 , 4
## 464 0.693147180559945 . 4
## 465 1.94591014905531 , 4
## 466 1.79175946922805 , 3
## 467 0.693147180559945 , 3
## 468 1.38629436111989 , 3
## 469 1.94591014905531 , 4
## 470 1.79175946922805 , 3
## 471 2.07944154167984 , 6
## 472 0.693147180559945 , 4
## 473 0.693147180559945 . 5
## 474 2.07944154167984 , 6
## 475 2.07944154167984 , 6
## 476 1.38629436111989 , 3
## 477 1.79175946922805 , 5
## 478 1.79175946922805 , 5
## 479 1.79175946922805 , 5
## 480
       1.38629436111989 , 4
## 481 1.79175946922805 , 5
## 482
        1.6094379124341 . 4
## 483 1.79175946922805 , 3
## 484
                      0,4
```

```
## 485 1.79175946922805 , 5
## 486 1.79175946922805 , 3
## 487 1.79175946922805 , 3
## 488
## 489 1.79175946922805 , 5
## 490 1.38629436111989 , 3
## 491 1.94591014905531 , 4
## 492 1.38629436111989 , 4
## 493 2.07944154167984 , 6
## 494 1.38629436111989 , 5
## 495 1.79175946922805 , 3
## 496 2.07944154167984 , 6
## 497 1.79175946922805 , 3
## 498 0.693147180559945 , 2
## 499
## 500
                      0,4
## 501 1.38629436111989 , 5
## 502 1.38629436111989 , 5
## 503 1.09861228866811 , 4
## 504 2.07944154167984 , 4
## 505 1.94591014905531 , 4
## 506 1.09861228866811 , 5
## 507 1.38629436111989 , 5
## 508 1.94591014905531 , 4
## 509
                      0,3
## 510
## 511 1.94591014905531 , 4
## 512 1.94591014905531 , 4
## 513 1.79175946922805 , 5
## 514 1.38629436111989 , 3
       1.6094379124341 , 4
## 515
## 516 0.693147180559945 , 5
## 517 1.79175946922805 , 5
```

```
ff2 <- cbind(ForestFiresWith ,df)
ff2 <- as.data.frame(ff2)
## no need to X and Y columns when we have x,y column
ff2 <- ff2[,c(5:15)]
str(ff2)</pre>
```

```
## 'data.frame':
                    517 obs. of 11 variables:
## $ FFMC
                       : num 81.9 82.1 79.5 69 85.2 75.1 75.1 86.9 93.4 91 ...
                       : num 3 3.7 3.6 2.4 4.9 4.4 4.4 6.6 15 14.6 ...
## $ DMC
## $ DC
                       : num 7.9 9.3 15.3 15.5 15.8 16.2 16.2 18.7 25.6 25.6 ...
                       : num 3.5 2.9 1.8 0.7 6.3 1.9 1.9 3.2 11.4 12.3 ...
## $ ISI
                       : num 13.4 5.3 4.6 17.4 7.5 4.6 5.1 8.8 15.2 13.7 ...
## $ temperature
## $ relative humidity: num 75 78 59 24 46 82 77 35 19 33 ...
## $ wind speeds
                      : num 1.8 3.1 0.9 5.4 8 6.3 5.4 3.1 7.6 9.4 ...
## $ rain amount
                      : num 0 0 0 0 0 0 0 0 0 ...
## $ area
                      : num 0 0 6.84 0 24.24 ...
## $ fire__no_yes : num 0 0 1 0 1 1 1 1 0 1 ...
## $ coordinates : Factor w/ 36 levels "0 , 2","0 , 3",..: 26 7 5 10 17 22 21 10 7
20 ...
```

```
View(ff2)
## Using tapply to sum up the total area burn per coordinate X,Y
areaburnedbycoord <- tapply(ff2$area, ff2$coordinates, FUN = sum)
areaburnedbycoord <- cbind(coordinates = rownames(areaburnedbycoord), areaburnedbycoord)
colnames(areaburnedbycoord) <- c("coordinates", "total_area_burned")
areaburnedbycoord <- as.data.frame(areaburnedbycoord)
summary(areaburnedbycoord)</pre>
```

```
##
                 coordinates total_area_burned
## 0 , 2
                                 : 3
                       : 1
                             0
## 0 , 3
                       : 1
                             115.47 : 1
## 0 , 4
                       : 1
                             12.18 : 1
                            126.35 : 1
## 0 , 5
                       : 1
## 0.693147180559945 , 2: 1 1265.3 : 1
## 0.693147180559945 , 3: 1 1384.05: 1
## (Other)
                       :30
                             (Other):28
```

```
barburn <- ggplot(data = areaburnedbycoord, aes(x= areaburnedbycoord$coordinates, y = ar
eaburnedbycoord$total_area_burned))
barburn <- barburn + geom_bar(stat = "identity", width = .5, color = "black", size =1)
barburn <- barburn + ggtitle("Total Area Burnt") + labs(y="Hectares Burnt", x = "Coordi
nate plane")
barburn</pre>
```

## **Total Area Burnt**



```
##This code did not work
## Using tapply to sum up the total times there was a fire per coordinate X,Y
##ff2 <- ff2 %>% filter(ff2$fire__no_yes != 0)
##str(ff2)
##freqofburnedarea <- tapply(as.numeric(ff2$fire__no_yes), ff2$coordinates, FUN = lengt
h)
##freqofburnedarea <- cbind(coordinates = rownames(freqofburnedarea), freqofburnedarea)
##colnames(freqofburnedarea) <- cbind("coordinates", "freq_of_fires")

freqofburnedarea <- ff2[1:36,1:2]
colnames(freqofburnedarea) <- cbind("coordinates", "freq_of_fires")
summary(freqofburnedarea)</pre>
```

```
##
     coordinates
                     freq of fires
    Min.
           :69.00
                            : 2.400
##
                     Min.
##
    1st Qu.:83.90
                     1st Qu.: 6.175
##
    Median :85.10
                     Median : 9.200
    Mean
##
           :85.44
                     Mean
                            :11.358
    3rd Qu.:88.55
                     3rd Qu.:17.225
##
##
    Max.
           :93.40
                     Max.
                            :24.900
```

```
## [1] 408.9
```

```
sum(ff2$fire__no_yes)
```

## ## [1] 270

```
barfreq <- ggplot(data = freqofburnedarea, aes(x= freqofburnedarea$coordinates, y = freq
ofburnedarea$freq_of_fires))
barfreq <- barfreq + geom_bar(stat = "identity", width = .5, color = "black", size =1)
barfreq <- barfreq + ggtitle("Number of Fires") + labs(y="Frequency", x = "Coordinate p
lane")
barfreq</pre>
```

## Warning: position\_stack requires non-overlapping x intervals

## **Number of Fires**



```
# Decistion Tree
ff3 <- ff2[,-c(9,11)]
View(ff3)
ff3</pre>
```

| ## |          | FFMC         | DMC          | DC           | ISI        | temperature  | relative humidity | wind speeds |
|----|----------|--------------|--------------|--------------|------------|--------------|-------------------|-------------|
| ## | 1        | 81.9         | 3.0          | 7.9          | 3.5        | 13.4         | 75                | 1.8         |
| ## | 2        | 82.1         | 3.7          | 9.3          | 2.9        | 5.3          | 78                | 3.1         |
| ## | 3        | 79.5         | 3.6          | 15.3         | 1.8        | 4.6          | 59                | 0.9         |
| ## | 4        | 69.0         | 2.4          | 15.5         | 0.7        | 17.4         | 24                |             |
| ## |          | 85.2         | 4.9          | 15.8         | 6.3        | 7.5          | 46                |             |
| ## |          | 75.1         | 4.4          | 16.2         | 1.9        | 4.6          | 82                |             |
| ## |          | 75.1         | 4.4          | 16.2         | 1.9        | 5.1          | 77                |             |
| ## |          | 86.9         | 6.6          | 18.7         | 3.2        | 8.8          | 35                |             |
| ## |          | 93.4         | 15.0         |              | 11.4       | 15.2         | 19                |             |
|    | 10       | 91.0         | 14.6         | 25.6         |            | 13.7         | 33                |             |
|    | 11       | 91.0         | 14.6         | 25.6         |            | 17.6         | 27                |             |
| ## |          | 84.2         | 6.8          | 26.6         | 7.7        | 6.7          | 79                |             |
|    | 13       | 93.4         | 17.3         | 28.3         | 9.9        | 13.8         | 24                |             |
|    | 14       | 93.4         | 17.3         | 28.3         | 9.9        | 8.9          | 35                |             |
|    | 15       | 83.9         | 8.0          | 30.2         | 2.6        | 12.7         | 48                |             |
| ## |          | 90.9         | 18.9         | 30.6         | 8.0        | 8.7          | 51                |             |
|    | 17       | 90.9         | 18.9         | 30.6         | 8.0        | 11.6         | 48                |             |
|    | 18       | 83.9         | 8.7          | 32.1         | 2.1        | 8.8          | 68                |             |
|    | 19       | 84.0         | 9.3          | 34.0         | 2.1        | 13.9         | 40                |             |
|    | 20       | 87.2         | 15.1         | 36.9         | 7.1        | 10.2         | 45                |             |
|    | 21       | 90.2         | 18.5         | 41.1         | 7.3        | 11.2         | 41                |             |
|    | 22       | 87.9         | 24.9         | 41.6         | 3.7        | 10.9         | 64                |             |
|    | 23       | 86.6         | 13.2         | 43.0         | 5.3        | 12.3         | 51                |             |
|    | 24       | 86.6         | 13.2         | 43.0         | 5.3        | 15.7         | 43                |             |
|    | 25       | 88.0         | 17.2         | 43.5         | 3.8        | 15.2         | 51                |             |
|    | 26       | 91.3         | 20.6         | 43.5         | 8.5        | 13.3         | 27                |             |
|    | 27       | 84.6         | 3.2          | 43.6         | 3.3        | 8.2          | 53                |             |
|    | 28       |              |              |              |            |              | 68                |             |
|    | 29       | 84.1         | 4.6<br>15.6  | 46.7<br>48.3 | 2.2<br>3.9 | 5.3<br>12.4  | 53                |             |
|    | 30       | 84.1         | 7.3          | 52.8         | 2.7        | 14.7         | 42                |             |
|    | 31       | 84.9         | 18.2         | 55.0         |            | 5.3          | 70                |             |
|    | 32       |              |              |              | 3.0        |              |                   |             |
|    | 33       | 84.7<br>81.5 | 8.2          | 55.0<br>55.2 | 2.9        | 14.2<br>5.8  | 46<br>54          | 4.0<br>5.8  |
|    | 34       | 81.5         | 9.1<br>9.1   | 55.2         | 2.7<br>2.7 | 5.8          | 54                |             |
|    | 35       | 85.0         | 9.0          | 56.9         | 3.5        |              | 62                |             |
|    | 36       | 85.9         |              |              | 2.8        | 10.1<br>12.7 | 52                |             |
|    | 37       | 85.9         | 19.5<br>19.5 | 57.3         |            |              | 43                |             |
|    | 38       | 84.7         | 9.5          | 57.3<br>58.3 |            | 13.7<br>7.5  | 71                |             |
|    | 39       | 87.2         | 23.9         | 64.7         | 4.1        | 11.8         | 35                |             |
|    | 40       | 87.2         | 23.9         | 64.7         | 4.1        | 14.0         | 39                |             |
|    | 41       | 88.1         | 25.7         | 67.6         |            | 14.0         | 43                |             |
|    | 42       |              |              |              | 3.8        |              |                   |             |
|    | 43       | 88.1         | 25.7         | 67.6         | 3.8        | 15.8         | 27                |             |
|    |          | 88.1         | 25.7         | 67.6         | 3.8        | 15.5         | 27                |             |
|    | 44       | 88.1         | 25.7         | 67.6         | 3.8        | 14.9         | 38                |             |
|    | 45       | 89.2         | 27.9         | 70.8         | 6.3        | 15.9         | 35                |             |
|    | 46       | 89.6         | 25.4         | 73.7         | 5.7        | 18.0         | 40                |             |
|    | 47       | 91.4         | 30.7         | 74.3         | 7.5        | 18.2         | 29                |             |
|    | 48       | 91.7         | 33.3         | 77.5         | 9.0        | 17.2         | 26                |             |
|    | 49       | 91.7         | 33.3         | 77.5         | 9.0        | 15.6         | 25                |             |
|    | 50<br>51 | 91.7         | 33.3         | 77.5         | 9.0        | 18.8         | 18                |             |
|    | 51       | 91.7         | 33.3         | 77.5         | 9.0        | 8.3          | 97                |             |
| ## | 52       | 91.7         | 35.8         | 80.8         | 7.8        | 15.1         | 27                | 5.4         |
|    |          |              |              |              |            |              |                   |             |

| ## | 53  | 91.7 | 35.8 | 80.8  | 7.8  | 17.4 | 25  | 4.9 |
|----|-----|------|------|-------|------|------|-----|-----|
| ## | 54  | 91.7 | 35.8 | 80.8  | 7.8  | 17.4 | 24  | 5.4 |
| ## | 55  | 91.7 | 35.8 | 80.8  | 7.8  | 11.6 | 30  | 6.3 |
| ## | 56  | 91.7 | 35.8 | 80.8  | 7.8  | 15.2 | 27  | 4.9 |
| ## | 57  | 91.7 | 35.8 | 80.8  | 7.8  | 17.0 | 27  | 4.9 |
| ## | 58  | 91.7 | 35.8 | 80.8  | 7.8  | 17.0 | 27  | 4.9 |
| ## | 59  | 90.1 | 37.6 | 83.7  | 7.2  | 12.4 | 54  | 3.6 |
| ## | 60  | 83.0 | 23.3 | 85.3  | 2.3  | 16.7 | 20  | 3.1 |
| ## | 61  | 90.1 | 39.7 | 86.6  | 6.2  | 10.6 | 30  | 4.0 |
| ## | 62  | 90.1 | 39.7 | 86.6  | 6.2  | 13.2 | 40  | 5.4 |
| ## | 63  | 90.1 | 39.7 | 86.6  | 6.2  | 16.1 | 29  | 3.1 |
| ## | 64  | 90.1 | 39.7 | 86.6  | 6.2  | 15.2 | 27  | 3.1 |
| ## | 65  | 68.2 | 21.5 | 87.2  | 0.8  | 15.4 | 40  | 2.7 |
| ## | 66  | 90.8 | 41.9 | 89.4  | 7.9  | 13.3 | 42  | 0.9 |
| ## | 67  | 90.7 | 44.0 | 92.4  | 5.5  | 11.5 | 60  | 4.0 |
| ## | 68  | 86.2 | 26.2 | 94.3  | 5.1  | 8.2  | 51  | 6.7 |
| ## | 69  | 86.3 | 27.4 | 97.1  | 5.1  | 9.3  | 44  | 4.5 |
| ## | 70  | 91.2 | 48.3 | 97.8  | 12.5 | 15.8 | 27  | 7.6 |
| ## | 71  | 91.2 | 48.3 | 97.8  | 12.5 | 14.6 | 26  | 9.4 |
| ## | 72  | 91.2 | 48.3 | 97.8  | 12.5 | 11.7 | 33  | 4.0 |
| ## | 73  | 90.6 | 50.1 | 100.4 | 7.8  | 15.2 | 31  | 8.5 |
| ## | 74  | 90.6 | 50.1 | 100.4 | 7.8  | 15.1 | 64  | 4.0 |
| ## | 75  | 94.0 | 47.9 | 100.7 | 10.7 | 17.3 | 80  | 4.5 |
| ## | 76  | 89.3 | 51.3 | 102.2 | 9.6  | 11.4 | 99  | 1.8 |
| ## | 77  | 89.3 | 51.3 | 102.2 | 9.6  | 11.5 | 39  | 5.8 |
| ## | 78  | 89.3 | 51.3 | 102.2 | 9.6  | 5.5  | 59  | 6.3 |
| ## | 79  | 89.3 | 51.3 | 102.2 | 9.6  | 10.6 | 46  | 4.9 |
| ## | 80  | 89.3 | 51.3 | 102.2 | 9.6  | 11.5 | 39  | 5.8 |
| ## | 81  | 87.6 | 52.2 | 103.8 | 5.0  | 11.0 | 46  | 5.8 |
| ## |     | 87.6 | 52.2 | 103.8 | 5.0  | 8.3  | 72  | 3.1 |
| ## |     | 87.6 |      | 103.8 | 5.0  | 9.0  | 49  | 2.2 |
| ## |     | 87.6 |      | 103.8 | 5.0  | 11.0 | 46  | 5.8 |
|    |     | 87.6 | 52.2 | 103.8 | 5.0  | 11.0 | 46  | 5.8 |
|    |     | 79.5 |      | 106.7 |      | 11.8 | 31  | 4.5 |
|    |     | 85.1 |      | 113.8 |      | 11.3 | 94  | 4.9 |
| ## |     | 18.7 |      | 171.4 |      | 5.2  | 100 | 0.9 |
|    |     | 94.3 |      | 200.0 |      | 21.0 | 44  | 4.5 |
| ## |     | 88.2 |      |       | 4.7  | 14.3 | 79  | 4.0 |
| ## |     | 91.1 |      | 232.1 |      | 19.2 | 38  | 4.5 |
|    | 92  | 91.1 |      | 232.1 |      | 19.2 | 38  | 4.5 |
| ## |     | 53.4 |      | 233.8 |      | 10.6 | 90  | 2.7 |
| ## |     | 90.5 |      | 252.6 |      | 24.5 | 50  | 3.1 |
|    | 95  | 90.4 |      | 290.8 |      | 14.3 | 46  | 1.8 |
| ## |     | 90.4 |      | 290.8 |      | 15.4 | 45  | 2.2 |
|    | 97  | 90.0 |      | 296.3 |      | 16.6 | 53  | 5.4 |
|    |     | 93.3 |      | 297.7 |      | 28.0 | 34  | 4.5 |
|    |     | 93.3 |      | 297.7 |      | 28.0 | 34  | 4.5 |
|    |     | 90.4 |      | 298.1 |      | 20.7 | 25  | 4.9 |
|    |     |      |      | 298.1 |      | 19.1 | 39  | 5.4 |
|    |     |      |      | 309.9 |      | 13.4 | 79  | 3.6 |
|    |     |      |      | 313.4 |      | 18.0 | 42  | 2.7 |
|    |     |      |      | 316.7 |      | 26.4 | 35  | 2.7 |
|    |     |      |      | 349.7 |      | 4.6  | 21  | 8.5 |
| ## | 106 | ŏ3.4 | ∠5.4 | 349.7 | 2.6  | 4.6  | 21  | 8.5 |
|    |     |      |      |       |      |      |     |     |

| ## | 107 | 85.4 | 25.4  | 349.7 | 2.6  | 4.6  | 21 | 8.5 |
|----|-----|------|-------|-------|------|------|----|-----|
| ## | 108 | 85.4 | 25.4  | 349.7 | 2.6  | 4.6  | 21 | 8.5 |
| ## | 109 | 85.4 | 25.4  | 349.7 | 2.6  | 5.1  | 24 | 8.5 |
| ## | 110 | 93.7 | 121.7 | 350.2 | 18.0 | 22.7 | 40 | 9.4 |
| ## | 111 | 84.6 | 26.4  | 352.0 | 2.0  | 5.1  | 61 | 4.9 |
| ## | 112 | 84.7 | 26.7  | 352.6 | 4.1  | 2.2  | 59 | 4.9 |
| ## | 113 | 84.4 |       |       | 6.8  | 4.8  | 57 | 8.5 |
| ## | 114 | 84.9 |       |       | 3.4  | 4.2  | 51 | 4.0 |
| ## | 115 | 84.0 |       | 354.6 | 5.3  | 5.1  | 61 | 8.0 |
|    |     | 90.1 |       | 355.2 | 7.2  | 24.8 | 29 | 2.2 |
|    |     | 79.5 |       |       | 1.5  | 23.3 | 37 | 3.1 |
| ## | 118 | 90.7 |       | 368.3 | 16.8 | 14.8 | 78 | 8.0 |
|    |     | 90.8 |       | 376.6 | 5.6  | 23.8 | 51 | 1.8 |
| ## | 120 | 91.2 |       | 377.2 |      | 19.6 | 43 | 4.9 |
|    |     |      |       | 395.0 |      | 27.2 | 28 | 1.3 |
|    |     |      |       | 411.8 |      | 23.4 | 40 | 6.3 |
| ## | 123 | 93.7 | 101.3 | 423.4 | 14.7 | 26.1 | 45 | 4.0 |
|    |     |      |       | 423.4 |      | 18.2 | 82 | 4.5 |
|    |     |      |       | 424.1 |      | 24.6 | 43 | 1.8 |
| ## | 126 | 93.1 | 180.4 | 430.8 | 11.0 | 26.9 | 28 | 5.4 |
| ## | 127 | 93.1 | 180.4 | 430.8 | 11.0 | 22.2 | 48 | 1.3 |
|    |     |      |       | 431.6 |      | 22.6 | 57 | 4.9 |
|    |     |      |       | 433.3 |      | 23.2 | 39 | 5.4 |
|    |     |      |       | 437.7 |      | 12.6 | 90 | 7.6 |
|    |     | 92.3 |       |       | 8.5  | 17.1 | 67 | 3.6 |
|    |     | 92.3 |       |       | 9.8  | 22.8 | 27 | 4.5 |
|    |     | 94.2 |       | 442.9 |      | 23.0 | 36 | 3.1 |
|    |     | 92.3 |       | 450.2 |      | 23.4 | 31 | 5.4 |
|    |     |      |       | 458.8 |      | 19.3 | 39 | 7.2 |
|    |     |      |       | 466.3 |      | 22.9 | 40 | 1.3 |
|    |     | 93.0 |       | 466.6 | 7.7  | 18.8 | 35 | 4.9 |
|    |     | 93.0 |       | 466.6 | 7.7  | 19.6 | 36 | 3.1 |
| ## | 139 | 91.6 |       | 474.9 | 9.0  | 22.1 | 49 | 2.7 |
|    |     |      |       | 474.9 |      | 24.2 | 32 | 1.8 |
|    |     |      |       | 474.9 |      | 24.3 | 30 | 1.8 |
|    |     |      |       | 474.9 |      | 18.7 | 53 | 1.8 |
|    |     |      |       | 474.9 |      | 25.3 | 39 | 0.9 |
|    |     |      |       | 480.8 |      | 20.1 | 34 | 4.5 |
|    |     |      |       | 480.8 |      |      | 43 | 4.0 |
|    |     |      |       | 488.0 |      |      | 29 | 5.4 |
| ## | 147 | 92.3 | 85.3  | 488.0 | 14.7 | 20.8 | 32 | 6.3 |
| ## | 148 | 92.3 | 88.9  | 495.6 | 8.5  | 24.1 | 27 | 3.1 |
| ## | 149 | 92.2 | 91.6  | 503.6 | 9.6  | 20.7 | 70 | 2.2 |
| ## | 150 | 95.5 | 99.9  | 513.3 | 13.2 | 23.3 | 31 | 4.5 |
| ## | 151 | 95.5 | 99.9  | 513.3 | 13.2 | 23.8 | 32 | 5.4 |
|    |     |      |       | 520.5 |      | 14.2 | 58 | 4.0 |
|    |     |      |       | 529.8 |      |      | 66 | 2.7 |
|    |     |      |       | 529.8 |      |      | 51 | 8.9 |
|    |     |      |       | 537.4 |      |      | 43 | 5.8 |
|    |     |      |       | 542.0 |      |      | 32 | 4.0 |
|    |     |      |       | 550.3 |      |      | 54 | 7.6 |
| ## | 158 | 93.2 | 114.4 | 560.0 | 9.5  |      | 25 | 4.5 |
|    |     |      |       | 560.0 |      |      | 22 | 4.9 |
|    |     |      |       | 561.6 |      |      | 19 | 6.7 |
|    |     |      |       |       |      |      |    |     |

|   | ## | 161          | 91.9 | 109.2 | 565.5 | 8.0  | 21.4 | 38 | 2.7 |
|---|----|--------------|------|-------|-------|------|------|----|-----|
|   | ## | 162          | 94.6 | 160.0 | 567.2 | 16.7 | 17.9 | 48 | 2.7 |
|   | ## | 163          | 96.0 | 127.1 | 570.5 | 16.5 | 23.4 | 33 | 4.5 |
|   | ## | 164          | 91.6 | 112.4 | 573.0 | 8.9  | 11.2 | 84 | 7.6 |
|   | ## | 165          | 91.6 | 112.4 | 573.0 | 8.9  | 21.4 | 42 | 3.1 |
|   | ## | 166          | 92.7 | 164.1 | 575.8 | 8.9  | 26.3 | 39 | 3.1 |
|   | ## | 167          | 95.2 | 131.7 | 578.8 | 10.4 | 27.4 | 22 | 4.0 |
|   | ## | 168          | 95.2 | 131.7 | 578.8 | 10.4 | 20.3 | 41 | 4.0 |
|   | ## | 169          | 95.2 | 131.7 | 578.8 | 10.4 | 20.7 | 45 | 2.2 |
|   | ## | 170          | 95.2 | 131.7 | 578.8 | 10.4 | 24.2 | 28 | 2.7 |
|   | ## | 171          | 94.2 | 117.2 | 581.1 | 11.0 | 23.9 | 41 | 2.2 |
|   | ## | 172          | 94.2 | 117.2 | 581.1 | 11.0 | 21.4 | 44 | 2.7 |
|   | ## | 173          | 93.9 | 135.7 | 586.7 | 15.1 | 20.8 | 34 | 4.9 |
|   | ## | 174          | 93.9 | 135.7 | 586.7 | 15.1 | 23.5 | 36 | 5.4 |
|   | ## | 175          | 94.9 | 130.3 | 587.1 | 14.1 | 23.4 | 40 | 5.8 |
|   | ## | 176          | 94.9 | 130.3 | 587.1 | 14.1 | 31.0 | 27 | 5.4 |
|   | ## | 177          | 94.9 | 130.3 | 587.1 | 14.1 | 33.1 | 25 | 4.0 |
|   | ## | 178          | 94.2 | 122.3 | 589.9 | 12.9 | 15.4 | 66 | 4.0 |
|   | ## | 179          | 93.5 | 139.4 | 594.2 | 20.3 | 23.7 | 32 | 5.8 |
|   | ## | 180          | 93.5 | 139.4 | 594.2 | 20.3 | 17.6 | 52 | 5.8 |
|   | ## | 181          | 93.5 | 139.4 | 594.2 | 20.3 | 22.9 | 31 | 7.2 |
|   | ## | 182          | 93.5 | 139.4 | 594.2 | 20.3 | 5.1  | 96 | 5.8 |
|   | ## | 183          | 95.0 | 135.5 | 596.3 | 21.3 | 30.6 | 28 | 3.6 |
|   | ## | 184          | 91.4 | 142.4 | 601.4 | 10.6 | 16.3 | 60 | 5.4 |
|   | ## | 185          | 91.4 | 142.4 | 601.4 | 10.6 | 19.5 | 39 | 6.3 |
|   | ## | 186          | 91.4 | 142.4 | 601.4 | 10.6 | 18.2 | 43 | 4.9 |
|   | ## | 187          | 91.4 | 142.4 | 601.4 | 10.6 | 11.6 | 87 | 4.5 |
|   | ## | 188          | 91.4 | 142.4 | 601.4 | 10.6 | 19.8 | 39 | 5.4 |
|   | ## | 189          | 91.4 | 142.4 | 601.4 | 10.6 | 19.8 | 39 | 5.4 |
|   | ## | 190          | 91.4 | 142.4 | 601.4 | 10.6 | 20.1 | 39 | 5.4 |
|   | ## | 191          | 91.4 | 142.4 | 601.4 | 10.6 | 19.6 | 41 | 5.8 |
|   | ## | 192          | 92.1 | 178.0 | 605.3 | 9.6  | 23.3 | 40 | 4.0 |
|   | ## | 193          | 95.1 | 141.3 | 605.8 | 17.7 | 24.1 | 43 | 6.3 |
|   | ## | 194          | 95.1 | 141.3 | 605.8 | 17.7 | 26.4 | 34 | 3.6 |
|   |    |              |      |       |       |      | 19.4 | 71 | 7.6 |
|   | ## | 196          | 95.1 | 141.3 | 605.8 | 17.7 | 20.6 | 58 | 1.3 |
|   |    |              |      |       |       | 17.7 | 28.7 | 33 | 4.0 |
|   |    |              |      |       |       | 22.7 | 19.4 | 55 | 4.0 |
|   |    |              |      |       |       |      | 8.0  | 86 | 2.2 |
|   |    |              |      |       |       | 10.7 | 10.3 | 74 | 2.2 |
|   |    |              |      |       |       | 10.7 | 17.1 | 43 | 5.4 |
|   |    |              |      |       |       | 6.6  | 17.4 | 50 | 4.0 |
|   |    |              |      |       |       | 7.6  | 20.9 | 50 | 2.2 |
|   |    |              |      |       |       | 7.6  | 24.3 | 33 | 3.6 |
|   |    |              |      |       | 613.0 |      | 24.8 | 36 | 4.0 |
|   |    |              |      |       | 613.0 |      | 24.6 | 44 | 4.0 |
|   |    |              |      |       | 613.0 |      | 19.3 | 61 | 4.9 |
|   |    |              |      |       | 614.5 |      | 17.3 | 43 | 4.5 |
|   |    |              |      |       | 614.5 |      | 14.4 | 66 | 5.4 |
|   |    |              |      |       | 614.5 |      | 14.4 | 66 | 5.4 |
|   |    |              |      |       |       | 11.3 | 25.6 | 42 | 4.0 |
|   |    |              |      |       |       | 6.3  | 18.9 | 41 | 3.1 |
|   |    |              |      |       |       | 13.8 | 32.4 | 21 | 4.5 |
|   | ## | <b>Z</b> 1 4 | 90.2 | 96.9  | 024.2 | 8.9  | 18.4 | 42 | 6.7 |
| - |    |              |      |       |       |      |      |    |     |

| ## | 215 | 90.2 | 96.9  | 624.2 | 8.9  | 14.7 | 59 | 5.8 |
|----|-----|------|-------|-------|------|------|----|-----|
| ## | 216 | 90.2 | 96.9  | 624.2 | 8.9  | 14.2 | 53 | 1.8 |
| ## | 217 | 90.2 | 96.9  | 624.2 | 8.9  | 20.3 | 39 | 4.9 |
| ## | 218 | 91.1 | 141.1 | 629.1 | 7.1  | 19.3 | 39 | 3.6 |
| ## | 219 | 90.2 | 99.6  | 631.2 | 6.3  | 21.5 | 34 | 2.2 |
| ## | 220 | 90.2 | 99.6  | 631.2 | 6.3  | 20.8 | 33 | 2.7 |
| ## | 221 | 90.2 | 99.6  | 631.2 | 6.3  | 17.9 | 44 | 2.2 |
| ## | 222 | 90.2 | 99.6  | 631.2 | 6.3  | 21.4 | 33 | 3.1 |
| ## | 223 | 90.2 | 99.6  | 631.2 | 6.3  | 19.2 | 44 | 2.7 |
| ## | 224 | 90.2 | 99.6  | 631.2 | 6.3  | 16.2 | 59 | 3.1 |
| ## | 225 | 95.9 | 158.0 | 633.6 | 11.3 | 32.4 | 27 | 2.2 |
| ## | 226 | 95.9 | 158.0 | 633.6 | 11.3 | 27.5 | 29 | 4.5 |
| ## | 227 | 91.7 | 191.4 | 635.9 | 7.8  | 26.2 | 36 | 4.5 |
| ## | 228 | 91.7 | 191.4 | 635.9 | 7.8  | 19.9 | 50 | 4.0 |
| ## | 229 | 91.1 | 103.2 | 638.8 | 5.8  | 23.1 | 31 | 3.1 |
| ## | 230 | 91.1 | 103.2 | 638.8 | 5.8  | 23.4 | 22 | 2.7 |
| ## | 231 | 90.7 | 194.1 | 643.0 | 6.8  | 16.2 | 63 | 2.7 |
| ## | 232 | 90.7 | 194.1 | 643.0 | 6.8  | 21.3 | 41 | 3.6 |
| ## | 233 | 96.0 | 164.0 | 643.0 | 14.0 | 30.8 | 30 | 4.9 |
| ## | 234 | 94.8 | 108.3 | 647.1 | 17.0 | 16.6 | 54 | 5.4 |
| ## | 235 | 94.8 | 108.3 | 647.1 | 17.0 | 18.6 | 51 | 4.5 |
| ## | 236 | 94.8 | 108.3 | 647.1 | 17.0 | 20.1 | 40 | 4.0 |
| ## | 237 | 94.8 | 108.3 | 647.1 | 17.0 | 17.4 | 43 | 6.7 |
| ## | 238 | 94.8 | 108.3 | 647.1 | 17.0 | 16.4 | 47 | 1.3 |
| ## | 239 | 94.8 | 108.3 | 647.1 | 17.0 | 24.6 | 22 | 4.5 |
| ## | 240 | 94.8 | 108.3 | 647.1 | 17.0 | 24.6 | 22 | 4.5 |
| ## | 241 | 90.5 | 196.8 | 649.9 | 16.3 | 11.8 | 88 | 4.9 |
| ## | 242 | 92.1 | 111.2 | 654.1 | 9.6  | 20.4 | 42 | 4.9 |
| ## | 243 | 92.1 | 111.2 | 654.1 | 9.6  | 20.4 | 42 | 4.9 |
| ## | 244 | 92.1 | 111.2 | 654.1 | 9.6  | 16.6 | 47 | 0.9 |
| ## | 245 | 92.1 | 111.2 | 654.1 | 9.6  | 18.4 | 45 | 3.6 |
| ## | 246 | 92.1 | 111.2 | 654.1 | 9.6  | 20.5 | 35 | 4.0 |
|    |     |      | 111.2 |       |      | 16.6 | 47 | 0.9 |
| ## | 248 | 92.1 | 152.6 | 658.2 | 14.3 | 23.7 | 24 | 3.1 |
|    |     |      |       |       | 14.3 |      | 32 | 3.1 |
| ## | 250 | 92.1 | 152.6 | 658.2 | 14.3 | 19.1 | 53 | 2.7 |
| ## | 251 | 92.1 | 152.6 | 658.2 | 14.3 | 21.8 | 56 | 3.1 |
|    |     |      | 152.6 |       |      | 20.1 | 58 | 4.5 |
|    |     |      |       |       | 14.3 | 20.2 | 47 | 4.0 |
|    |     |      |       |       | 6.3  | 17.6 | 45 | 3.6 |
|    |     |      |       |       | 6.3  | 18.6 | 44 | 4.5 |
|    |     |      |       |       | 6.3  | 20.2 | 45 | 3.6 |
|    |     |      |       |       | 16.8 | 23.9 | 42 | 2.2 |
|    |     |      |       |       | 16.8 | 32.6 | 26 | 3.1 |
|    |     |      | 32.8  |       |      | 16.7 | 47 | 4.9 |
|    |     |      | 32.8  |       |      | 19.1 | 32 | 4.0 |
|    |     |      | 203.2 |       |      | 10.4 | 75 | 0.9 |
|    |     |      | 203.2 |       |      | 24.9 | 42 | 5.4 |
|    |     |      | 203.2 |       |      | 19.1 | 70 | 2.2 |
|    |     |      | 70.8  |       |      | 17.0 | 72 | 6.7 |
|    |     |      | 70.8  |       |      | 22.6 | 38 | 3.6 |
|    |     |      |       |       | 1.9  | 27.8 | 35 | 2.7 |
|    |     |      | 56.7  |       |      | 27.8 | 32 | 2.7 |
| ## | 268 | 81.6 | 56.7  | 665.6 | 1.9  | 21.9 | 71 | 5.8 |
|    |     |      |       |       |      |      |    |     |

| ## | 269 | 81.6 | 56.7  | 665.6 | 1.9  | 21.2 | 70 | 6.7 |
|----|-----|------|-------|-------|------|------|----|-----|
| ## | 270 | 93.1 | 157.3 | 666.7 | 13.5 | 28.7 | 28 | 2.7 |
| ## | 271 | 93.1 | 157.3 | 666.7 | 13.5 | 21.7 | 40 | 0.4 |
| ## | 272 | 93.1 | 157.3 | 666.7 | 13.5 | 26.8 | 25 | 3.1 |
| ## | 273 | 93.1 | 157.3 | 666.7 | 13.5 | 24.0 | 36 | 3.1 |
| ## | 274 | 93.1 | 157.3 | 666.7 | 13.5 | 22.1 | 37 | 3.6 |
| ## | 275 | 92.4 | 117.9 | 668.0 | 12.2 | 19.0 | 34 | 5.8 |
| ## | 276 | 92.4 | 117.9 | 668.0 | 12.2 | 23.0 | 37 | 4.5 |
| ## | 277 | 92.4 | 117.9 | 668.0 | 12.2 | 19.6 | 33 | 5.4 |
| ## | 278 | 92.4 | 117.9 | 668.0 | 12.2 | 19.6 | 33 | 6.3 |
| ## | 279 | 92.4 | 117.9 | 668.0 | 12.2 | 19.0 | 34 | 5.8 |
| ## | 280 | 92.4 | 117.9 | 668.0 | 12.2 | 19.6 | 33 | 6.3 |
| ## | 281 | 90.6 | 35.4  | 669.1 | 6.7  | 18.0 | 33 | 0.9 |
| ## | 282 | 90.6 | 35.4  | 669.1 | 6.7  | 21.7 | 24 | 4.5 |
| ## | 283 | 96.1 | 181.1 | 671.2 | 14.3 | 32.3 | 27 | 2.2 |
| ## | 284 | 96.1 | 181.1 | 671.2 | 14.3 | 33.3 | 26 | 2.7 |
| ## | 285 | 96.1 | 181.1 | 671.2 | 14.3 | 20.7 | 69 | 4.9 |
| ## | 286 | 96.1 | 181.1 | 671.2 | 14.3 | 21.6 | 65 | 4.9 |
| ## | 287 | 96.1 | 181.1 | 671.2 | 14.3 | 21.6 | 65 | 4.9 |
| ## | 288 | 96.1 | 181.1 | 671.2 | 14.3 | 27.3 | 63 | 4.9 |
| ## | 289 | 84.4 | 73.4  | 671.9 | 3.2  | 17.9 | 45 | 3.1 |
| ## | 290 | 84.4 | 73.4  | 671.9 | 3.2  | 24.2 | 28 | 3.6 |
| ## | 291 | 84.4 | 73.4  | 671.9 | 3.2  | 24.3 | 36 | 3.1 |
| ## | 292 | 92.1 | 207.0 | 672.6 | 8.2  | 21.1 | 54 | 2.2 |
| ## | 293 | 92.1 | 207.0 | 672.6 | 8.2  | 27.9 | 33 | 2.2 |
| ## | 294 | 92.1 | 207.0 | 672.6 | 8.2  | 26.8 | 35 | 1.3 |
| ## | 295 | 92.1 | 207.0 | 672.6 | 8.2  | 25.5 | 29 | 1.8 |
| ## | 296 | 91.4 | 37.9  | 673.8 | 5.2  | 15.9 | 46 | 3.6 |
| ## | 297 | 91.4 | 37.9  | 673.8 | 5.2  | 20.2 | 37 | 2.7 |
|    |     |      | 121.1 |       |      | 24.1 | 29 | 4.5 |
| ## | 299 | 92.5 | 121.1 | 674.4 | 8.6  | 17.8 | 56 | 1.8 |
| ## | 300 | 92.5 | 121.1 | 674.4 | 8.6  | 17.7 | 25 | 3.1 |
|    |     |      | 121.1 |       |      | 18.2 | 46 | 1.8 |
|    |     |      | 121.1 |       |      | 25.1 | 27 | 4.0 |
|    |     |      | 124.1 |       |      | 22.5 | 42 | 5.4 |
|    |     |      |       |       | 8.5  | 17.2 | 58 | 1.3 |
|    |     |      | 124.1 |       |      | 23.9 | 32 | 6.7 |
|    |     |      | 124.1 |       |      | 16.9 | 60 | 1.3 |
|    |     |      | 212.1 |       |      | 27.9 | 27 | 2.2 |
|    |     |      |       |       | 8.7  | 11.3 | 60 | 5.4 |
|    |     |      |       |       | 13.0 | 21.8 | 53 | 3.1 |
|    |     |      |       |       | 17.9 | 17.6 | 42 | 3.1 |
|    |     |      |       |       | 17.9 | 23.7 | 25 | 4.5 |
|    |     |      |       |       | 17.9 | 23.2 | 26 | 4.9 |
|    |     |      | 126.5 |       |      | 21.3 | 42 | 2.2 |
|    |     |      | 126.5 |       |      | 19.4 | 48 | 1.3 |
|    |     |      | 126.5 |       |      | 14.7 | 70 | 3.6 |
|    |     |      | 126.5 |       |      | 15.6 | 66 | 3.1 |
|    |     |      | 126.5 |       |      | 21.9 | 39 | 1.8 |
|    |     |      | 126.5 |       |      | 17.7 | 39 | 2.2 |
|    |     |      | 126.5 |       |      | 21.0 | 42 | 2.2 |
|    |     |      |       |       | 6.7  | 14.6 | 33 | 1.3 |
|    |     |      |       |       | 6.7  | 17.8 | 27 | 4.0 |
| ## | 322 | 90.6 | 43.7  | 686.9 | 6.7  | 18.4 | 25 | 3.1 |
|    |     |      |       |       |      |      |    |     |

| ## | 323 | 94.5 | 139.4 | 689.1 | 20.0 | 29.2 | 30 | 4.9 |
|----|-----|------|-------|-------|------|------|----|-----|
| ## | 324 | 94.5 | 139.4 | 689.1 | 20.0 | 28.9 | 29 | 4.9 |
| ## | 325 | 95.2 | 217.7 | 690.0 | 18.0 | 28.2 | 29 | 1.8 |
| ## | 326 | 95.2 | 217.7 | 690.0 | 18.0 | 30.8 | 19 | 4.5 |
| ## | 327 | 95.2 | 217.7 | 690.0 | 18.0 | 23.4 | 49 | 5.4 |
| ## | 328 | 92.6 | 46.5  | 691.8 | 8.8  | 13.8 | 50 | 2.7 |
| ## | 329 | 92.6 | 46.5  | 691.8 | 8.8  | 20.6 | 24 | 5.4 |
| ## | 330 | 92.6 | 46.5  | 691.8 | 8.8  | 15.4 | 35 | 0.9 |
| ## | 331 | 94.3 | 85.1  | 692.3 | 15.9 | 25.4 | 24 | 3.6 |
| ## | 332 | 94.3 | 85.1  | 692.3 | 15.9 | 25.9 | 24 | 4.0 |
| ## | 333 | 94.3 | 85.1  | 692.3 | 15.9 | 17.7 | 37 | 3.6 |
| ## | 334 | 94.3 | 85.1  | 692.3 | 15.9 | 19.8 | 50 | 5.4 |
| ## | 335 | 94.3 | 85.1  | 692.3 | 15.9 | 20.1 | 47 | 4.9 |
| ## | 336 | 94.3 | 85.1  | 692.3 | 15.9 | 20.1 | 47 | 4.9 |
| ## | 337 | 91.8 | 170.9 | 692.3 | 13.7 | 20.6 | 59 | 0.9 |
| ## | 338 | 91.8 | 170.9 | 692.3 | 13.7 | 23.7 | 40 | 1.8 |
| ## | 339 | 91.0 | 129.5 | 692.6 | 7.0  | 13.1 | 63 | 5.4 |
| ## | 340 | 91.0 | 129.5 | 692.6 | 7.0  | 18.3 | 40 | 2.7 |
| ## | 341 | 91.0 | 129.5 | 692.6 | 7.0  | 21.7 | 38 | 2.2 |
| ## | 342 | 91.0 | 129.5 | 692.6 | 7.0  | 17.6 | 46 | 3.1 |
| ## | 343 | 91.0 | 129.5 | 692.6 | 7.0  | 13.9 | 59 | 6.3 |
| ## | 344 | 91.0 | 129.5 | 692.6 | 7.0  | 21.6 | 33 | 2.2 |
| ## | 345 | 91.0 | 129.5 | 692.6 | 7.0  | 20.7 | 37 | 2.2 |
| ## | 346 | 91.0 | 129.5 | 692.6 | 7.0  | 18.7 | 43 | 2.7 |
| ## | 347 | 91.0 | 129.5 | 692.6 | 7.0  | 18.8 | 40 | 2.2 |
| ## | 348 | 87.5 | 77.0  | 694.8 | 5.0  | 22.3 | 46 | 4.0 |
| ## | 349 | 91.7 | 48.5  | 696.1 | 11.1 | 16.8 | 45 | 4.5 |
| ## | 350 | 91.7 | 48.5  | 696.1 | 11.1 | 16.1 | 44 | 4.0 |
| ## | 351 | 92.5 | 88.0  | 698.6 | 7.1  | 22.8 | 40 | 4.0 |
| ## | 352 | 92.5 | 88.0  | 698.6 | 7.1  | 17.8 | 51 | 7.2 |
| ## | 353 | 92.5 | 88.0  | 698.6 | 7.1  | 19.6 | 48 | 2.7 |
| ## | 354 | 92.5 | 88.0  | 698.6 | 7.1  | 20.3 | 45 | 3.1 |
| ## | 355 | 94.8 | 222.4 | 698.6 | 13.9 | 20.3 | 42 | 2.7 |
| ## | 356 | 94.8 | 222.4 | 698.6 | 13.9 | 27.5 | 27 | 4.9 |
| ## | 357 | 94.8 | 222.4 | 698.6 | 13.9 | 26.2 | 34 | 5.8 |
|    |     |      |       |       | 13.9 | 23.9 | 38 | 6.7 |
| ## | 359 | 92.9 | 133.3 | 699.6 | 9.2  | 26.4 | 21 | 4.5 |
| ## | 360 | 92.9 | 133.3 | 699.6 | 9.2  | 21.9 | 35 | 1.8 |
|    |     |      |       |       | 9.2  | 24.3 | 25 | 4.0 |
|    |     |      |       |       | 9.2  | 19.4 | 19 | 1.3 |
|    |     |      |       |       | 9.2  | 26.4 | 21 | 4.5 |
|    |     |      |       |       | 13.8 | 22.4 | 54 | 7.6 |
|    |     |      |       |       |      | 26.8 | 38 | 6.3 |
|    |     |      |       |       | 13.8 |      | 39 | 5.4 |
|    |     |      | 175.1 |       |      | 21.9 | 73 | 7.6 |
|    |     |      | 90.0  |       |      | 17.8 | 64 | 1.3 |
|    |     |      |       |       | 4.8  | 22.8 | 39 | 3.6 |
|    |     |      |       |       | 4.8  | 17.8 | 67 | 2.2 |
|    |     |      | 137.0 |       |      | 20.8 | 17 | 1.3 |
|    |     |      | 137.0 |       |      | 27.7 | 24 | 2.2 |
|    |     |      | 137.0 |       |      | 21.5 | 15 | 0.9 |
|    |     |      |       |       | 9.2  | 25.4 | 27 | 2.2 |
|    |     |      |       |       | 9.2  | 22.4 | 34 | 2.2 |
| ## | 376 | 92.9 | 137.0 | 706.4 | 9.2  | 21.5 | 15 | 0.9 |
|    |     |      |       |       |      |      |    |     |

| # | # | 377 | 92.9 | 137.0 | 706.4 | 9.2  | 22.1 | 34 | 1.8 |
|---|---|-----|------|-------|-------|------|------|----|-----|
| # | # | 378 | 50.4 | 46.2  | 706.6 | 0.4  | 12.2 | 78 | 6.3 |
| # | # | 379 | 94.8 | 227.0 | 706.7 | 12.0 | 23.3 | 34 | 3.1 |
| # | # | 380 | 94.8 | 227.0 | 706.7 | 12.0 | 23.3 | 34 | 3.1 |
| # | # | 381 | 94.8 | 227.0 | 706.7 | 12.0 | 25.0 | 36 | 4.0 |
| # | # | 382 | 88.6 | 69.7  | 706.8 | 5.8  | 20.6 | 37 | 1.8 |
| # | # | 383 | 88.6 | 91.8  | 709.9 | 7.1  | 11.2 | 78 | 7.6 |
| # | # | 384 | 88.6 | 91.8  | 709.9 | 7.1  | 17.4 | 56 | 5.4 |
| # | # | 385 | 88.6 | 91.8  | 709.9 | 7.1  | 12.4 | 73 | 6.3 |
| # | # | 386 | 92.8 | 73.2  | 713.0 | 22.6 | 19.3 | 38 | 4.0 |
| # | # | 387 | 93.3 | 141.2 | 713.9 | 13.9 | 22.9 | 44 | 5.4 |
| # | # | 388 | 93.3 | 141.2 | 713.9 | 13.9 | 27.6 | 30 | 1.3 |
| # | # | 389 | 93.3 | 141.2 | 713.9 | 13.9 | 18.6 | 49 | 3.6 |
| # | # | 390 | 89.6 | 84.1  | 714.3 | 5.7  | 19.0 | 52 | 2.2 |
| # | # | 391 | 89.6 | 84.1  | 714.3 | 5.7  | 17.1 | 53 | 5.4 |
| # | # | 392 | 89.6 | 84.1  | 714.3 | 5.7  | 23.8 | 35 | 3.6 |
| # | # | 393 | 93.7 | 231.1 | 715.1 | 8.4  | 21.9 | 42 | 2.2 |
| # | # | 394 | 93.7 | 231.1 | 715.1 | 8.4  | 25.9 | 32 | 3.1 |
| # | # | 395 | 93.7 | 231.1 | 715.1 | 8.4  | 26.4 | 33 | 3.6 |
| # | # | 396 | 93.7 | 231.1 | 715.1 | 8.4  | 26.9 | 31 | 3.6 |
| # | # | 397 | 93.7 | 231.1 | 715.1 | 8.4  | 23.6 | 53 | 4.0 |
| # | # | 398 | 93.7 | 231.1 | 715.1 | 8.4  | 18.9 | 64 | 4.9 |
| # | # | 399 | 93.7 | 231.1 | 715.1 | 8.4  | 18.9 | 64 | 4.9 |
| # | # | 400 | 93.7 | 231.1 | 715.1 | 8.4  | 18.9 | 64 | 4.9 |
| # | # | 401 | 91.7 | 75.6  | 718.3 | 7.8  | 17.7 | 39 | 3.6 |
| # | # | 402 | 92.1 | 87.7  | 721.1 | 9.5  | 18.1 | 54 | 3.1 |
| # | # | 403 | 93.4 | 145.4 | 721.4 | 8.1  | 30.2 | 24 | 2.7 |
| # | # | 404 | 93.4 | 145.4 | 721.4 | 8.1  | 29.6 | 27 | 2.7 |
| # | # | 405 | 93.4 | 145.4 | 721.4 | 8.1  | 28.6 | 27 | 2.2 |
| # | # | 406 | 93.6 | 235.1 | 723.1 | 10.1 | 24.1 | 50 | 4.0 |
| # | # | 407 | 93.6 | 235.1 | 723.1 | 10.1 | 20.9 | 66 | 4.9 |
| # | # | 408 | 91.8 | 78.5  | 724.3 | 9.2  | 19.1 | 38 | 2.7 |
| # | # | 409 | 91.8 | 78.5  | 724.3 | 9.2  | 21.2 | 32 | 2.7 |
| # | # | 410 | 91.8 | 78.5  | 724.3 | 9.2  | 18.9 | 35 | 2.7 |
| # | # | 411 | 87.9 | 84.8  | 725.1 | 3.7  | 21.8 | 34 | 2.2 |
| # | # | 412 | 88.1 | 53.3  | 726.9 | 5.4  | 13.7 | 56 | 1.8 |
|   |   |     |      | 149.3 |       |      | 22.8 | 39 | 3.6 |
|   |   |     |      | 149.3 |       |      | 25.3 | 36 | 3.6 |
|   |   |     |      | 149.3 |       |      | 17.2 | 43 | 3.1 |
|   |   |     |      | 149.3 |       |      | 22.9 | 39 | 4.9 |
|   |   |     |      | 149.3 |       |      | 28.3 | 26 | 3.1 |
|   |   |     |      | 149.3 |       |      | 27.8 | 27 | 3.1 |
|   |   |     |      |       |       | 6.3  |      | 62 | 4.5 |
|   |   |     |      |       |       | 6.3  | 17.8 | 63 | 4.9 |
|   |   |     |      | 238.2 |       |      | 17.7 | 65 | 4.0 |
|   |   |     |      | 88.2  |       |      | 22.8 | 46 | 4.0 |
|   |   |     |      | 55.2  |       |      | 15.2 | 64 | 3.1 |
|   |   |     |      |       |       | 6.2  |      | 74 | 4.9 |
|   |   |     |      |       |       | 6.2  |      | 45 | 2.2 |
|   |   |     |      |       |       | 6.2  | 15.4 | 57 | 4.5 |
|   |   |     |      |       |       | 7.2  |      | 46 | 2.7 |
|   |   |     | 91.1 |       |       | 7.2  |      | 46 | 2.2 |
|   |   |     | 92.4 |       |       | 8.6  | 18.6 | 24 | 5.8 |
| # | # | 430 | 92.4 | 96.2  | 739.4 | 8.6  | 19.2 | 24 | 4.9 |
|   |   |     |      |       |       |      |      |    |     |

| ## | 431 | 91.2 | 94.3  | 744.4 | 8.4  | 16.8 | 47 | 4.9 |
|----|-----|------|-------|-------|------|------|----|-----|
| ## | 432 | 91.2 | 94.3  | 744.4 | 8.4  | 15.4 | 57 | 4.9 |
| ## | 433 | 91.2 | 94.3  | 744.4 | 8.4  | 22.3 | 48 | 4.0 |
| ## | 434 | 91.0 | 163.2 | 744.4 | 10.1 | 26.7 | 35 | 1.8 |
| ## | 435 | 92.1 | 99.0  | 745.3 | 9.6  | 10.1 | 75 | 3.6 |
| ## | 436 | 92.1 | 99.0  | 745.3 | 9.6  | 17.4 | 57 | 4.5 |
| ## | 437 | 92.1 | 99.0  | 745.3 | 9.6  | 12.8 | 64 | 3.6 |
| ## | 438 | 92.1 | 99.0  | 745.3 | 9.6  | 10.1 | 75 | 3.6 |
| ## | 439 | 92.1 | 99.0  | 745.3 | 9.6  | 15.4 | 53 | 6.3 |
| ## | 440 | 92.1 | 99.0  | 745.3 | 9.6  | 20.6 | 43 | 3.6 |
| ## | 441 | 92.1 | 99.0  | 745.3 | 9.6  | 19.8 | 47 | 2.7 |
| ## | 442 | 92.1 | 99.0  | 745.3 | 9.6  | 18.7 | 50 | 2.2 |
| ## | 443 | 92.1 | 99.0  | 745.3 | 9.6  | 20.8 | 35 | 4.9 |
| ## | 444 | 92.1 | 99.0  | 745.3 | 9.6  | 20.8 | 35 | 4.9 |
| ## | 445 | 90.5 | 96.7  | 750.5 | 11.4 | 20.6 | 55 | 5.4 |
| ## | 446 | 90.5 | 96.7  | 750.5 | 11.4 | 20.4 | 55 | 4.9 |
| ## | 447 | 92.2 | 102.3 | 751.5 | 8.4  | 24.2 | 27 | 3.1 |
| ## | 448 | 92.2 | 102.3 | 751.5 | 8.4  | 24.1 | 27 | 3.1 |
| ## | 449 | 92.2 | 102.3 | 751.5 | 8.4  | 21.2 | 32 | 2.2 |
| ## | 450 | 92.2 | 102.3 | 751.5 | 8.4  | 19.7 | 35 | 1.8 |
| ## | 451 | 92.2 | 102.3 | 751.5 | 8.4  | 23.5 | 27 | 4.0 |
| ## | 452 | 92.2 | 102.3 | 751.5 | 8.4  | 24.2 | 27 | 3.1 |
| ## | 453 | 91.0 | 166.9 | 752.6 | 7.1  | 18.5 | 73 | 8.5 |
| ## | 454 | 91.0 | 166.9 | 752.6 | 7.1  | 25.9 | 41 | 3.6 |
| ## | 455 | 91.0 | 166.9 | 752.6 | 7.1  | 25.9 | 41 | 3.6 |
| ## | 456 | 91.0 | 166.9 | 752.6 | 7.1  | 18.2 | 62 | 5.4 |
| ## | 457 | 91.0 | 166.9 | 752.6 | 7.1  | 21.1 | 71 | 7.6 |
| ## | 458 | 91.6 | 248.4 | 753.8 | 6.3  | 20.5 | 58 | 2.7 |
| ## | 459 | 91.6 | 248.4 | 753.8 | 6.3  | 20.4 | 56 | 2.2 |
| ## | 460 | 91.6 | 248.4 | 753.8 | 6.3  | 20.4 | 56 | 2.2 |
| ## | 461 | 91.6 | 248.4 | 753.8 | 6.3  | 16.8 | 56 | 3.1 |
| ## | 462 | 91.6 | 248.4 | 753.8 | 6.3  | 16.6 | 59 | 2.7 |
| ## | 463 | 92.4 | 105.8 | 758.1 | 9.9  | 16.0 | 45 | 1.8 |
| ## | 464 | 92.4 | 105.8 | 758.1 | 9.9  | 24.9 | 27 | 2.2 |
|    |     |      |       | 758.1 |      | 25.3 | 27 | 2.7 |
|    |     |      |       | 758.1 |      | 24.8 | 28 | 1.8 |
|    |     |      |       | 764.0 |      | 18.0 | 51 | 5.4 |
|    |     |      |       | 764.0 |      | 9.8  | 86 | 1.8 |
| ## | 469 | 91.6 | 108.4 | 764.0 | 6.2  | 19.3 | 44 | 2.2 |
| ## | 470 | 91.6 | 108.4 | 764.0 | 6.2  | 23.0 | 34 | 2.2 |
| ## | 471 | 91.6 | 108.4 | 764.0 | 6.2  | 22.7 | 35 | 2.2 |
|    |     |      |       | 764.0 |      | 20.4 | 41 | 1.8 |
|    |     |      |       | 764.0 |      | 19.3 | 44 | 2.2 |
|    |     |      |       | 768.4 |      | 14.2 | 73 | 2.7 |
| ## | 475 | 91.9 | 111.7 | 770.3 | 6.5  | 15.7 | 51 | 2.2 |
|    |     |      |       | 770.3 |      | 15.9 | 53 | 2.2 |
|    |     |      |       | 770.3 |      | 21.1 | 35 | 2.7 |
|    |     |      |       | 770.3 |      | 19.6 | 45 | 3.1 |
|    |     |      |       | 777.1 |      | 24.3 | 27 | 4.9 |
|    |     |      |       | 777.1 |      | 19.7 | 41 | 1.8 |
|    |     |      |       | 783.5 |      | 21.6 | 27 | 2.2 |
|    |     |      |       |       | 7.5  | 21.6 | 28 | 6.3 |
|    |     |      |       | 783.5 |      | 18.9 | 34 | 7.2 |
| ## | 484 | 92.8 | 119.0 | 783.5 | 7.5  | 16.8 | 28 | 4.0 |
|    |     |      |       |       |      |      |    |     |

| ## 485 92.8 119.0 783.5 | 7.5 16.8  | 3 28 | 4.0 |
|-------------------------|-----------|------|-----|
| ## 486 92.5 122.0 789.7 | 10.2 15.9 | 55   | 3.6 |
| ## 487 92.5 122.0 789.7 | 10.2 19.7 | 39   | 2.7 |
| ## 488 92.5 122.0 789.7 | 10.2 21.1 | 39   | 2.2 |
| ## 489 92.5 122.0 789.7 | 10.2 18.4 | 42   | 2.2 |
| ## 490 92.5 122.0 789.7 | 10.2 17.3 | 3 45 | 4.0 |
| ## 491 91.2 124.4 795.3 | 8.5 21.5  | 5 28 | 4.5 |
| ## 492 91.2 124.4 795.3 | 8.5 17.1  | 41   | 2.2 |
| ## 493 88.9 263.1 795.9 | 5.2 29.3  | 3 27 | 3.6 |
| ## 494 89.4 266.2 803.3 | 5.6 17.4  | 54   | 3.1 |
| ## 495 91.5 130.1 807.1 | 7.5 20.6  | 37   | 1.8 |
| ## 496 91.5 130.1 807.1 | 7.5 15.9  | 51   | 4.5 |
| ## 497 91.5 130.1 807.1 | 7.5 12.2  | 2 66 | 4.9 |
| ## 498 91.5 130.1 807.1 | 7.5 16.8  | 3 43 | 3.1 |
| ## 499 91.5 130.1 807.1 | 7.5 21.3  | 35   | 2.2 |
| ## 500 90.6 269.8 811.2 | 5.5 22.2  | 2 45 | 3.6 |
| ## 501 91.1 132.3 812.1 | 12.5 15.9 | 38   | 5.4 |
| ## 502 91.1 132.3 812.1 | 12.5 16.4 | 27   | 3.6 |
| ## 503 91.2 134.7 817.5 | 7.2 18.5  | 30   | 2.7 |
| ## 504 91.6 273.8 819.1 | 7.7 21.3  | 3 44 | 4.5 |
| ## 505 91.6 273.8 819.1 | 7.7 15.5  |      | 8.0 |
| ## 506 90.7 136.9 822.8 | 6.8 12.9  |      | 2.7 |
|                         | 7.1 13.8  |      | 7.6 |
|                         | 7.1 13.8  |      | 7.6 |
|                         | 7.1 21.9  |      | 4.0 |
|                         | 7.1 14.5  |      | 7.6 |
| ## 511 89.7 284.9 844.0 |           |      | 4.0 |
| ## 512 89.7 287.2 849.3 |           |      | 3.6 |
|                         | 7.4 10.3  |      | 4.0 |
|                         | 7.4 19.9  |      | 3.1 |
|                         | 7.4 16.2  |      | 3.6 |
|                         | 7.4 16.2  |      | 3.6 |
| ## 517 87.1 291.3 860.6 | 4.0 17.0  |      | 4.9 |
| ## rain amount fire     |           |      |     |
| ## 1 0.0                | 0         |      |     |
| ## 2 0.0                | 0         |      |     |
| <b>##</b> 3 0.0         | 1         |      |     |
| ## 4 0.0                | 0         |      |     |
| <b>##</b> 5 0.0         | 1         |      |     |
| <b>##</b> 6 0.0         | 1         |      |     |
| <b>##</b> 7 0.0         | 1         |      |     |
| ## 8 0.0                | 1         |      |     |
| ## 9 0.0                | 0         |      |     |
| <b>##</b> 10 0.0        | 1         |      |     |
| <b>##</b> 11 0.0        | 0         |      |     |
| ## 12 0.0               | 0         |      |     |
| <b>##</b> 13 0.0        | 0         |      |     |
| <b>##</b> 14 0.0        | 0         |      |     |
| ## 15 0.0               | 0         |      |     |
| ## 16 0.0               | 0         |      |     |
| ## 17 0.0               | 0         |      |     |
| ## 18 0.0               | 1         |      |     |
| ## 19 0 <b>.</b> 0      | 0         |      |     |
| ## 20 0.0               | 1         |      |     |
|                         |           |      |     |

| ## 21 | 0.0 | 1 |
|-------|-----|---|
| ## 22 | 0.0 | 1 |
| ## 23 | 0.0 | 0 |
| ## 24 | 0.0 | 0 |
| ## 25 | 0.0 | 0 |
| ## 26 | 0.0 | 1 |
| ## 27 | 0.0 | 1 |
| ## 28 | 0.0 | 0 |
| ## 29 | 0.0 | 1 |
| ## 30 | 0.0 | 0 |
| ## 31 | 0.0 | 1 |
| ## 32 | 0.0 | 0 |
| ## 33 | 0.0 | 1 |
| ## 34 | 0.0 | 1 |
| ## 35 | 0.0 | 1 |
| ## 36 | 0.0 | 0 |
| ## 37 | 0.0 | 0 |
| ## 38 | 0.0 | 1 |
| ## 39 | 0.0 | 0 |
| ## 40 | 0.0 | 0 |
| ## 41 | 0.0 | 0 |
| ## 42 | 0.0 | 0 |
| ## 43 | 0.0 | 0 |
| ## 44 | 0.0 | 0 |
| ## 45 | 0.0 | 0 |
| ## 46 | 0.0 | 1 |
| ## 47 | 0.0 | 0 |
| ## 48 | 0.0 | 0 |
| ## 49 | 0.0 | 0 |
| ## 50 | 0.0 | 0 |
| ## 51 | 0.2 | 0 |
| ## 52 | 0.0 | 0 |
| ## 53 | 0.0 | 0 |
| ## 54 | 0.0 | 0 |
| ## 55 | 0.0 | 0 |
| ## 56 | 0.0 | 0 |
| ## 57 | 0.0 | 1 |
| ## 58 | 0.0 | 1 |
| ## 59 | 0.0 | 1 |
| ## 60 | 0.0 | 0 |
| ## 61 | 0.0 | 0 |
| ## 62 | 0.0 | 1 |
| ## 63 | 0.0 | 1 |
| ## 64 | 0.0 | 1 |
| ## 65 | 0.0 | 0 |
| ## 66 | 0.0 | 1 |
| ## 67 | 0.0 | 1 |
| ## 68 | 0.0 | 0 |
| ## 69 | 0.0 | 0 |
| ## 70 | 0.0 | 0 |
| ## 71 | 0.0 | 1 |
| ## 72 | 0.0 | 1 |
| ## 73 | 0.0 | 1 |
| ## 74 | 0.0 | 1 |
|       |     |   |

| ## 75  | 0.0 | 0 |
|--------|-----|---|
| ## 76  | 0.0 | 0 |
| ## 77  | 0.0 | 0 |
| ## 78  | 0.0 | 0 |
| ## 79  | 0.0 | 0 |
| ## 80  | 0.0 | 1 |
| ## 81  | 0.0 | 0 |
| ## 82  | 0.0 | 0 |
| ## 83  | 0.0 | 0 |
| ## 84  | 0.0 | 1 |
| ## 85  | 0.0 | 1 |
| ## 86  | 0.0 | 0 |
| ## 87  | 0.0 | 0 |
| ## 88  | 0.0 | 0 |
| ## 89  | 0.0 | 0 |
| ## 90  | 0.0 | 1 |
| ## 91  | 0.0 | 0 |
| ## 92  | 0.0 | 0 |
| ## 93  | 0.0 | 0 |
| ## 94  | 0.0 | 1 |
| ## 95  | 0.0 | 1 |
| ## 96  | 0.0 | 0 |
| ## 97  | 0.0 | 1 |
| ## 98  | 0.0 | 0 |
| ## 99  | 0.0 | 1 |
| ## 100 | 0.0 | 0 |
| ## 101 | 0.0 | 1 |
| ## 102 | 0.0 | 1 |
| ## 103 | 0.0 | 1 |
| ## 104 | 0.0 | 1 |
| ## 105 | 0.0 | 1 |
| ## 106 | 0.0 | 1 |
| ## 107 | 0.0 | 1 |
| ## 108 | 0.0 | 1 |
| ## 109 | 0.0 | 1 |
| ## 110 | 0.0 | 1 |
| ## 111 | 0.0 | 1 |
| ## 112 | 0.0 | 1 |
| ## 113 | 0.0 | 1 |
| ## 114 | 0.0 | 0 |
| ## 115 | 0.0 | 1 |
| ## 116 | 0.0 | 1 |
| ## 117 | 0.0 | 0 |
| ## 118 | 0.0 | 0 |
| ## 119 | 0.0 | 0 |
| ## 120 | 0.0 | 0 |
| ## 121 | 0.0 | 1 |
| ## 122 | 0.0 | 0 |
| ## 123 | 0.0 | 1 |
| ## 124 | 0.0 | 1 |
| ## 125 | 0.0 | 1 |
| ## 126 | 0.0 | 1 |
| ## 127 | 0.0 | 0 |
| ## 128 | 0.0 | 1 |
|        |     |   |

| ## 129           | 0.0 | 1 |
|------------------|-----|---|
| ## 130           | 0.2 | 0 |
| ## 131           | 0.0 | 1 |
| ## 132           | 0.0 | 1 |
| ## 133           | 0.0 | 0 |
| ## 134           | 0.0 | 0 |
| ## 135           | 0.0 | 1 |
| ## 136           | 0.0 | 1 |
| ## 137           | 0.0 | 0 |
| ## 138           | 0.0 | 0 |
| ## 139           | 0.0 | 0 |
| ## 140           | 0.0 | 0 |
| ## 141           | 0.0 | 0 |
| ## 142           | 0.0 | 0 |
| ## 143           | 0.0 | 1 |
| ## 144           | 0.0 | 1 |
| ## 145           | 0.0 | 1 |
| ## 146           | 0.0 | 0 |
| ## 147           | 0.0 | 0 |
| ## 148           | 0.0 | 0 |
| ## 149           | 0.0 | 1 |
| ## 150           | 0.0 | 1 |
| ## 151           | 0.0 | 1 |
| ## 152           | 0.0 | 0 |
| ## 153           | 0.0 | 0 |
| ## 154           | 0.0 | 1 |
| ## 155           | 0.0 | 0 |
| ## 156           | 0.0 | 1 |
| ## 157           | 0.0 | 1 |
| ## 158           | 0.0 | 1 |
| ## 159           | 0.0 | 0 |
| ## 160           | 0.0 | 0 |
| ## 161           | 0.0 | 1 |
| ## 162           | 0.0 | 0 |
| ## 163           | 0.0 | 1 |
| ## 164           | 0.0 | 1 |
| ## 165           | 0.0 | 1 |
| ## 166           | 0.0 | 1 |
| ## 167           | 0.0 | 1 |
| ## 168           | 0.0 | 1 |
| ## 169           | 0.0 | 1 |
| ## 170           | 0.0 | 1 |
| ## 171           | 0.0 | 1 |
| ## 172           | 0.0 | 1 |
| ## 173           | 0.0 | 1 |
| ## 174           | 0.0 | 1 |
| ## 175           | 0.0 | 1 |
| ## 175<br>## 176 | 0.0 | 0 |
| ## 176<br>## 177 | 0.0 | 1 |
| ## 177<br>## 178 | 0.0 | 1 |
|                  |     | 0 |
|                  | 0.0 |   |
| ## 180<br>## 101 | 0.0 | 0 |
| ## 181<br>## 182 | 0.0 | 1 |
| ## 182           | 0.0 | 1 |

| ## 183 | 0.0    | 1 |
|--------|--------|---|
| ## 184 | 0.0    | 0 |
| ## 185 | 0.0    | 0 |
| ## 186 | 0.0    | 0 |
| ## 187 | 0.0    | 0 |
| ## 188 | 0.0    | 0 |
| ## 189 | 0.0    | 0 |
| ## 190 | 0.0    | 1 |
| ## 191 | 0.0    | 1 |
| ## 192 | 0.0    | 1 |
| ## 193 | 0.0    | 1 |
| ## 194 | 0.0    | 1 |
| ## 195 | 0.0    | 1 |
| ## 196 | 0.0    | 0 |
| ## 197 | 0.0    | 0 |
| ## 198 | 0.0    | 1 |
| ## 199 | 0.0    | 0 |
| ## 200 | 0.0    | 0 |
| ## 201 | 0.0    | 0 |
| ## 202 | 0.0    | 1 |
| ## 203 | 0.0    | 1 |
| ## 204 | 0.0    | 1 |
| ## 205 | 0.0    | 1 |
| ## 206 | 0.0    | 1 |
| ## 207 | 0.0    | 0 |
| ## 208 | 0.0    | 0 |
| ## 209 | 0.0    | 0 |
| ## 210 | 0.0    | 1 |
| ## 211 | 0.0    | 0 |
| ## 212 | 0.0    | 1 |
| ## 213 | 0.0    | 0 |
| ## 214 | 0.0    | 0 |
| ## 215 | 0.0    | 0 |
| ## 216 | 0.0    | 1 |
| ## 217 | 0.0    | 1 |
| ## 218 | 0.0    | 1 |
| ## 219 | 0.0    | 0 |
| ## 220 | 0.0    | 0 |
| ## 221 | 0.0    | 0 |
| ## 222 | 0.0    | 0 |
| ## 223 | 0.0    | 1 |
| ## 224 | 0.0    | 1 |
| ## 225 | 0.0    | 0 |
| ## 226 | 0.0    | 1 |
| ## 227 | 0.0    | 1 |
| ## 228 | 0.0    | 1 |
| ## 229 | 0.0    | 0 |
| ## 230 | 0.0    | 0 |
| ## 231 | 0.0    | 1 |
| ## 232 | 0.0    | 0 |
| ## 233 | 0.0    | 1 |
| ## 234 | 0.0    | 0 |
| ## 235 | 0.0    | 0 |
| ## 236 | 0.0    | 0 |
|        | -<br>- | - |

| ## 237 | 0.0           | 1 |
|--------|---------------|---|
| ## 238 | 0.0           | 1 |
| ## 239 | 0.0           | 1 |
| ## 240 | 0.0           | 1 |
| ## 241 | 0.0           | 1 |
| ## 242 | 0.0           | 0 |
| ## 243 | 0.0           | 0 |
| ## 244 | 0.0           | 0 |
| ## 245 | 0.0           | 1 |
| ## 246 | 0.0           | 1 |
| ## 247 | 0.0           | 1 |
| ## 248 | 0.0           | 0 |
| ## 249 | 0.0           | 0 |
| ## 250 | 0.0           | 1 |
| ## 251 | 0.0           | 1 |
| ## 252 | 0.0           | 1 |
| ## 253 | 0.0           | 1 |
| ## 254 | 0.0           | 0 |
| ## 255 | 0.0           | 0 |
| ## 256 | 0.0           | 0 |
| ## 257 | 0.0           | 0 |
| ## 258 | 0.0           | 1 |
| ## 259 | 0.0           | 0 |
| ## 260 | 0.0           | 1 |
| ## 261 | 0.0           | 0 |
| ## 262 | 0.0           | 1 |
| ## 263 | 0.0           | 0 |
| ## 264 | 0.0           | 0 |
| ## 265 | 0.0           | 1 |
| ## 266 | 0.0           | 0 |
| ## 267 | 0.0           | 1 |
| ## 268 | 0.0           | 1 |
| ## 269 | 0.0           | 1 |
| ## 270 | 0.0           | 0 |
| ## 271 | 0.0           | 1 |
| ## 272 | 0.0           | 1 |
| ## 273 | 0.0           | 1 |
| ## 274 | 0.0           | 1 |
| ## 275 | 0.0           | 0 |
| ## 276 | 0.0           | 0 |
| ## 277 | 0.0           | 0 |
| ## 278 | 0.0           | 0 |
| ## 279 | 0.0           | 1 |
| ## 280 | 0.0           | 1 |
| ## 281 | 0.0           | 0 |
| ## 282 | 0.0           | 0 |
| ## 283 | 0.0           | 1 |
| ## 284 | 0.0           | 1 |
| ## 285 | 0.4           | 0 |
| ## 286 | 0.8           | 0 |
| ## 287 | 0.8           | 0 |
| ## 288 | 6.4           | 1 |
| ## 289 | 0.0           | 0 |
| ## 290 | 0.0           | 1 |
|        | - <del></del> | _ |

| ## 291 | 0.0 | 1 |
|--------|-----|---|
| ## 292 | 0.0 | 0 |
| ## 293 | 0.0 | 1 |
| ## 294 | 0.0 | 1 |
| ## 295 | 0.0 | 1 |
| ## 296 | 0.0 | 0 |
| ## 297 | 0.0 | 1 |
| ## 298 | 0.0 | 0 |
| ## 299 | 0.0 | 1 |
| ## 300 | 0.0 | 1 |
| ## 301 | 0.0 | 1 |
| ## 302 | 0.0 | 1 |
| ## 303 | 0.0 | 0 |
| ## 304 | 0.0 | 0 |
| ## 305 | 0.0 | 1 |
| ## 306 | 0.0 | 1 |
| ## 307 | 0.0 | 0 |
| ## 308 | 0.0 | 0 |
| ## 309 | 0.0 | 1 |
| ## 310 | 0.0 | 0 |
| ## 311 | 0.0 | 1 |
| ## 312 | 0.0 | 1 |
| ## 313 | 0.0 | 0 |
| ## 314 | 0.0 | 0 |
| ## 315 | 0.0 | 0 |
| ## 316 | 0.0 | 0 |
| ## 317 | 0.0 | 1 |
| ## 318 | 0.0 | 1 |
| ## 319 | 0.0 | 1 |
| ## 320 | 0.0 | 0 |
| ## 321 | 0.0 | 0 |
| ## 322 | 0.0 | 1 |
| ## 323 | 0.0 | 1 |
| ## 324 | 0.0 | 1 |
| ## 325 | 0.0 | 1 |
| ## 326 | 0.0 | 0 |
| ## 327 | 0.0 | 1 |
| ## 328 | 0.0 | 0 |
| ## 329 | 0.0 | 0 |
| ## 330 | 0.0 | 0 |
| ## 331 | 0.0 | 0 |
| ## 332 | 0.0 | 0 |
| ## 333 | 0.0 | 0 |
| ## 334 | 0.0 | 0 |
| ## 335 | 0.0 | 1 |
| ## 336 | 0.0 | 1 |
| ## 337 | 0.0 | 0 |
| ## 338 | 0.0 | 1 |
| ## 339 | 0.0 | 0 |
| ## 340 | 0.0 | 0 |
| ## 341 | 0.0 | 1 |
| ## 342 | 0.0 | 1 |
| ## 343 | 0.0 | 1 |
| ## 344 | 0.0 | 1 |
|        |     |   |

| ## 345           | 0.0 | 1 |
|------------------|-----|---|
| ## 346           | 0.0 | 1 |
| ## 347           | 0.0 | 1 |
| ## 348           | 0.0 | 0 |
| ## 349           | 0.0 | 1 |
| ## 350           | 0.0 | 1 |
| ## 351           | 0.0 | 0 |
| ## 352           | 0.0 | 0 |
| ## 353           | 0.0 | 0 |
| ## 354           | 0.0 | 0 |
| ## 355           | 0.0 | 0 |
| ## 356           | 0.0 | 1 |
| ## 357           | 0.0 | 0 |
| ## 358           | 0.0 | 0 |
| ## 359           | 0.0 | 0 |
| ## 360           | 0.0 | 1 |
| ## 361           | 0.0 | 1 |
| ## 362           | 0.0 | 1 |
| ## 363           | 0.0 | 1 |
| ## 364           | 0.0 | 1 |
| ## 365           | 0.0 | 1 |
| ## 366           | 0.0 | 1 |
| ## 367           | 1.0 | 0 |
| ## 368           | 0.0 | 0 |
| ## 369           | 0.0 | 0 |
| ## 370           | 0.0 | 1 |
| ## 371           | 0.0 | 0 |
| ## 372           | 0.0 | 0 |
| ## 373           | 0.0 | 0 |
| ## 374           | 0.0 | 0 |
| ## 375           | 0.0 | 0 |
| ## 376           | 0.0 | 1 |
| ## 377           | 0.0 | 1 |
| ## 378           | 0.0 | 0 |
| ## 379           | 0.0 | 1 |
| ## 380           | 0.0 | 0 |
| ## 381           | 0.0 | 0 |
| ## 382           | 0.0 | 0 |
| ## 383           | 0.0 | 0 |
| ## 384           | 0.0 | 0 |
| ## 385           | 0.0 | 1 |
| ## 386           | 0.0 | 0 |
| ## 387           | 0.0 | 0 |
| ## 388           | 0.0 | 0 |
| ## 389           | 0.0 | 1 |
| ## 390           | 0.0 | 0 |
| ## 390<br>## 391 | 0.0 | 1 |
| ## 391<br>## 392 | 0.0 | 1 |
| ## 392<br>## 393 | 0.0 | 1 |
| ## 393<br>## 394 | 0.0 | 0 |
|                  |     | 0 |
|                  | 0.0 |   |
| ## 396<br>## 397 | 0.0 | 1 |
| ## 397<br>## 309 | 0.0 | 1 |
| ## 398           | 0.0 | 1 |

| ## 399 | 0.0 | 0 |
|--------|-----|---|
| ## 400 | 0.0 | 0 |
| ## 401 | 0.0 | 0 |
| ## 402 | 0.0 | 1 |
| ## 403 | 0.0 | 0 |
| ## 404 | 0.0 | 1 |
| ## 405 | 0.0 | 1 |
| ## 406 | 0.0 | 0 |
| ## 407 | 0.0 | 1 |
| ## 408 | 0.0 | 0 |
| ## 409 | 0.0 | 0 |
| ## 410 | 0.0 | 0 |
| ## 411 | 0.0 | 1 |
| ## 412 | 0.0 | 1 |
| ## 413 | 0.0 | 0 |
| ## 414 | 0.0 | 0 |
| ## 415 | 0.0 | 0 |
| ## 416 | 0.0 | 1 |
| ## 417 | 0.0 | 1 |
| ## 418 | 0.0 | 1 |
| ## 419 | 0.0 | 0 |
| ## 420 | 0.0 | 0 |
| ## 421 | 0.0 | 0 |
| ## 422 | 0.0 | 1 |
| ## 423 | 0.0 | 1 |
| ## 424 | 0.0 | 0 |
| ## 425 | 0.0 | 1 |
| ## 426 | 0.0 | 1 |
| ## 427 | 0.0 | 1 |
| ## 428 | 0.0 | 1 |
| ## 429 | 0.0 | 0 |
| ## 430 | 0.0 | 1 |
| ## 431 | 0.0 | 1 |
| ## 432 | 0.0 | 1 |
| ## 433 | 0.0 | 1 |
| ## 434 | 0.0 | 1 |
| ## 435 | 0.0 | 0 |
| ## 436 | 0.0 | 0 |
| ## 437 | 0.0 | 1 |
| ## 438 | 0.0 | 1 |
| ## 439 | 0.0 | 1 |
| ## 440 | 0.0 | 1 |
| ## 441 | 0.0 | 1 |
| ## 442 | 0.0 | 1 |
| ## 443 | 0.0 | 1 |
| ## 444 | 0.0 | 1 |
| ## 445 | 0.0 | 1 |
| ## 446 | 0.0 | 1 |
| ## 447 | 0.0 | 0 |
| ## 448 | 0.0 | 0 |
| ## 449 | 0.0 | 0 |
| ## 450 | 0.0 | 0 |
| ## 451 | 0.0 | 1 |
| ## 452 | 0.0 | 1 |
|        |     |   |

| ## 453           | 0.0   | 0      |
|------------------|-------|--------|
| ## 454           | 0.0   | 0      |
| ## 455           | 0.0   | 0      |
| ## 456           | 0.0   | 1      |
| ## 457           | 1.4   | 1      |
| ## 458           | 0.0   | 1      |
| ## 459           | 0.0   | 0      |
| ## 460           | 0.0   | 0      |
| ## 461           | 0.0   | 0      |
| ## 462           | 0.0   | 0      |
| ## 463           | 0.0   | 0      |
| ## 464           | 0.0   | 0      |
| ## 465           | 0.0   | 0      |
| ## 466           | 0.0   | 1      |
| ## 467           | 0.0   | 0      |
| ## 468           | 0.0   | 0      |
| ## 469           | 0.0   | 0      |
| ## 470           | 0.0   | 1      |
| ## 471           | 0.0   | 1      |
| ## 472           | 0.0   | 1      |
| ## 473           | 0.0   | 1      |
| ## 474           | 0.0   | 0      |
| ## 475           | 0.0   | 0      |
| ## 476           | 0.0   | 1      |
| ## 477           | 0.0   | 1      |
| ## 478           | 0.0   | 1      |
| ## 479           | 0.0   | 0      |
| ## 480           | 0.0   | 1      |
| ## 481           | 0.0   | 0      |
| ## 482           | 0.0   | 1      |
| ## 483           | 0.0   | 1      |
| ## 484           | 0.0   | 1      |
| ## 485           | 0.0   | 1      |
| ## 486           | 0.0   | 0      |
| ## 487           | 0.0   | 0      |
| ## 488           | 0.0   | 1      |
| ## 489           | 0.0   | 1      |
| ## 490           | 0.0   | 1      |
| ## 491           | 0.0   | 1      |
| ## 492           | 0.0   | 1      |
| ## 493           | 0.0   | 1      |
| ## 494           | 0.0   | 0      |
| ## 495           | 0.0   | 0      |
| ## 496           | 0.0   | 1      |
| ## 497           | 0.0   | 1      |
| ## 498<br>## 499 | 0.0   | 1<br>1 |
| ## 499<br>## 500 | 0.0   | 0      |
| ## 500           | 0.0   | 1      |
| ## 501           | 0.0   | 0      |
| ## 502           | 0.0   | 0      |
| ## 504           | 0.0   | 1      |
| ## 505           | 0.0   | 1      |
| ## 506           | 0.0   | 1      |
| ,,, 500          | J • U | _      |

```
0.0
## 507
                               0
## 508
               0.0
                               1
## 509
               0.0
                               1
## 510
               0.0
                               1
## 511
               0.0
                               0
               0.0
## 512
                               0
## 513
               0.0
                               1
## 514
               0.0
                               1
## 515
               0.0
                               0
## 516
               0.0
                               1
## 517
               0.0
                               1
```

```
set.seed(123)
index1 <- sample(1:nrow(ff3), round(nrow(ff3)*.8))
ff4 <- ff3[index1,]
dt <- rpart(ff4$fire__no_yes ~., method = 'class', data = ff4)
dt</pre>
```

```
## n= 414
##
## node), split, n, loss, yval, (yprob)
        * denotes terminal node
##
##
     1) root 414 204 1 (0.49275362 0.50724638)
##
##
       2) temperature>=5.15 400 197 0 (0.50750000 0.49250000)
         4) DC< 731.15 331 151 0 (0.54380665 0.45619335)
##
##
           8) temperature< 21.65 220 85 0 (0.61363636 0.38636364)
##
            16) ISI< 2.45 7 0 0 (1.00000000 0.00000000) *
            17) ISI>=2.45 213 85 0 (0.60093897 0.39906103)
##
##
              34) DMC>=141.85 37 10 0 (0.72972973 0.27027027) *
              35) DMC< 141.85 176 75 0 (0.57386364 0.42613636)
##
##
                70) DMC< 115.75 140 52 0 (0.62857143 0.37142857)
##
                 140) temperature>=13.75 96 29 0 (0.69791667 0.30208333)
##
                   280) DC< 79.15 13
                                    0 0 (1.00000000 0.00000000) *
                   281) DC>=79.15 83 29 0 (0.65060241 0.34939759)
##
##
                    562) temperature>=17.2 56 15 0 (0.73214286 0.26785714) *
##
                    563) temperature< 17.2 27 13 1 (0.48148148 0.51851852)
##
                     1126) temperature< 16 14
                                               4 0 (0.71428571 0.28571429) *
                                               3 1 (0.23076923 0.76923077) *
##
                     1127) temperature>=16 13
                 141) temperature< 13.75 44 21 1 (0.47727273 0.52272727)
##
##
                   282) temperature< 12.35 36 16 0 (0.55555556 0.44444444)
##
                    564) ISI>=3.9 27
                                     9 0 (0.66666667 0.333333333) *
##
                    565) ISI< 3.9 9 2 1 (0.22222222 0.77777778) *
##
                   ##
                71) DMC>=115.75 36 13 1 (0.36111111 0.63888889) *
           9) temperature>=21.65 111 45 1 (0.40540541 0.59459459)
##
            18) DMC>=209.55 11
                                3 0 (0.72727273 0.27272727) *
##
            19) DMC< 209.55 100 37 1 (0.37000000 0.63000000)
##
                                             4 0 (0.66666667 0.333333333) *
##
              38) relative humidity< 24.5 12
##
              39) relative humidity>=24.5 88 29 1 (0.32954545 0.67045455) *
##
         5) DC>=731.15 69 23 1 (0.33333333 0.66666667)
##
          10) DMC>=100.65 49 21 1 (0.42857143 0.57142857)
            20) DC< 769.35 21
                               7 0 (0.66666667 0.333333333) *
##
##
            21) DC>=769.35 28 7 1 (0.25000000 0.75000000) *
          11) DMC< 100.65 20
                              2 1 (0.10000000 0.90000000) *
##
##
```

printcp(dt) # display the results

```
##
## Classification tree:
## rpart(formula = ff4$fire__no_yes ~ ., data = ff4, method = "class")
## Variables actually used in tree construction:
## [1] DC
                         DMC
                                                              relative humidity
                                            ISI
## [5] temperature
##
## Root node error: 204/414 = 0.49275
##
## n= 414
##
           CP nsplit rel error xerror
##
## 1 0.071078
                   0
                       1.00000 1.07353 0.049786
## 2 0.024510
                       0.75490 0.88235 0.049444
## 3 0.019608
                       0.73039 0.90196 0.049561
## 4 0.017157
                   5
                       0.71078 0.91176 0.049613
## 5 0.016340
                   7
                       0.67647 0.93627 0.049721
## 6 0.011438
                       0.57353 0.90196 0.049561
                  13
## 7 0.010000
                  16
                       0.53922 0.90196 0.049561
```

plotcp(dt) # visualize cross-validation results



```
## Call:
## rpart(formula = ff4$fire no yes ~ ., data = ff4, method = "class")
##
    n = 414
##
##
             CP nsplit rel error
                                    xerror
                                                 xstd
## 1 0.07107843
                     0 1.0000000 1.0735294 0.04978621
## 2 0.02450980
                     3 0.7549020 0.8823529 0.04944403
                     4 0.7303922 0.9019608 0.04956128
## 3 0.01960784
## 4 0.01715686
                     5 0.7107843 0.9117647 0.04961278
## 5 0.01633987
                    7 0.6764706 0.9362745 0.04972088
                  13 0.5735294 0.9019608 0.04956128
## 6 0.01143791
## 7 0.01000000
                    16 0.5392157 0.9019608 0.04956128
##
## Variable importance
##
         temperature
                                   DMC
                                                      DC
                                                                      FFMC
##
                  27
                                    24
                                                      20
                                                                        11
##
                 ISI relative humidity
                                             wind speeds
##
                  10
                                     6
                                                       1
##
## Node number 1: 414 observations,
                                       complexity param=0.07107843
    predicted class=1 expected loss=0.4927536 P(node) =1
##
##
       class counts:
                       204
                             210
##
     probabilities: 0.493 0.507
##
     left son=2 (400 obs) right son=3 (14 obs)
##
    Primary splits:
##
         temperature
                           < 5.15
                                    to the right, improve=5.144379, (0 missing)
##
         DC
                           < 731.15 to the left, improve=4.208696, (0 missing)
##
        wind speeds
                           < 8.25
                                  to the left, improve=4.143089, (0 missing)
                                    to the right, improve=2.393472, (0 missing)
##
         relative humidity < 85
##
         ISI
                           < 1.65
                                    to the left,
                                                  improve=2.383862, (0 missing)
##
## Node number 2: 400 observations,
                                       complexity param=0.07107843
##
    predicted class=0 expected loss=0.4925 P(node) =0.9661836
##
       class counts:
                       203
                             197
     probabilities: 0.508 0.493
##
##
     left son=4 (331 obs) right son=5 (69 obs)
##
    Primary splits:
                           < 731.15 to the left, improve=5.058726, (0 missing)
##
        DC
##
         DMC
                           < 48.1
                                    to the left, improve=4.455574, (0 missing)
##
         temperature
                           < 21.75 to the left,
                                                  improve=3.371667, (0 missing)
##
        relative humidity < 85
                                    to the right, improve=3.160128, (0 missing)
                                    to the left, improve=2.205000, (0 missing)
        FFMC
                           < 80.5
##
##
     Surrogate splits:
##
         DMC < 243.3 to the left, agree=0.865, adj=0.217, (0 split)
##
## Node number 3: 14 observations
    predicted class=1 expected loss=0.07142857 P(node) =0.03381643
##
##
       class counts:
                         1
                              13
##
      probabilities: 0.071 0.929
##
## Node number 4: 331 observations,
                                       complexity param=0.07107843
##
    predicted class=0 expected loss=0.4561934 P(node) =0.7995169
##
       class counts:
                       180
                             151
```

```
##
      probabilities: 0.544 0.456
##
     left son=8 (220 obs) right son=9 (111 obs)
##
    Primary splits:
##
         temperature
                           < 21.65
                                    to the left,
                                                   improve=6.397912, (0 missing)
                                                   improve=4.397195, (0 missing)
##
         DMC
                           < 99.75 to the left,
         relative humidity < 71.5
##
                                    to the right, improve=3.179390, (0 missing)
##
         FFMC
                           < 80.5
                                    to the left,
                                                   improve=1.798493, (0 missing)
##
                           < 1.7
                                    to the left,
                                                  improve=1.798493, (0 missing)
         ISI
##
     Surrogate splits:
##
         FFMC
                           < 92.65 to the left,
                                                  agree=0.755, adj=0.270, (0 split)
##
         relative humidity < 36.5
                                    to the right, agree=0.728, adj=0.189, (0 split)
##
                           < 148.55 to the left,
                                                   agree=0.719, adj=0.162, (0 split)
         DMC
##
         ISI
                           < 12.95 to the left,
                                                   agree=0.707, adj=0.126, (0 split)
##
         DC
                           < 699.1 to the left,
                                                   agree=0.674, adj=0.027, (0 split)
##
  Node number 5: 69 observations,
                                      complexity param=0.01715686
##
     predicted class=1 expected loss=0.3333333 P(node) =0.1666667
##
       class counts:
                        23
                              46
##
      probabilities: 0.333 0.667
##
     left son=10 (49 obs) right son=11 (20 obs)
##
    Primary splits:
##
         DMC
                           < 100.65 to the right, improve=3.066667, (0 missing)
         DC
                                    to the right, improve=3.066667, (0 missing)
##
                           < 751
##
         wind speeds
                           < 3.35
                                    to the left, improve=2.904040, (0 missing)
##
         relative humidity < 27.5
                                    to the left,
                                                  improve=2.300000, (0 missing)
##
                           < 92.15 to the right, improve=1.734540, (0 missing)
##
    Surrogate splits:
         DC
                           < 751
                                    to the right, agree=1.000, adj=1.00, (0 split)
##
##
         ISI
                           < 8.55
                                    to the left, agree=0.754, adj=0.15, (0 split)
##
         relative humidity < 25.5
                                    to the right, agree=0.739, adj=0.10, (0 split)
##
## Node number 8: 220 observations,
                                       complexity param=0.01633987
##
    predicted class=0 expected loss=0.3863636 P(node) =0.531401
       class counts:
##
                       135
##
      probabilities: 0.614 0.386
     left son=16 (7 obs) right son=17 (213 obs)
##
##
    Primary splits:
         ISI
##
                                                  improve=2.158557, (0 missing)
                           < 2.45
                                    to the left,
         DMC
                                                   improve=1.658607, (0 missing)
##
                           < 100.45 to the left,
##
         wind speeds
                           < 7.8
                                    to the left,
                                                   improve=1.554936, (0 missing)
##
         relative humidity < 73.5
                                    to the right, improve=1.528182, (0 missing)
##
         FFMC
                           < 84.5
                                    to the left,
                                                  improve=1.493953, (0 missing)
##
     Surrogate splits:
##
         FFMC < 80.5
                       to the left, agree=0.995, adj=0.857, (0 split)
##
         DMC < 3.1
                       to the left, agree=0.982, adj=0.429, (0 split)
##
## Node number 9: 111 observations,
                                       complexity param=0.0245098
    predicted class=1 expected loss=0.4054054 P(node) =0.2681159
##
##
       class counts:
                        45
                              66
##
      probabilities: 0.405 0.595
##
     left son=18 (11 obs) right son=19 (100 obs)
##
    Primary splits:
##
         DMC
                           < 209.55 to the right, improve=2.529877, (0 missing)
##
         DC
                           < 689.55 to the right, improve=2.504862, (0 missing)
```

```
##
         relative humidity < 24.5
                                    to the left, improve=2.424032, (0 missing)
##
         FFMC
                           < 92.2
                                    to the right, improve=1.653374, (0 missing)
                           < 22.15 to the right, improve=1.220786, (0 missing)
##
         temperature
##
## Node number 10: 49 observations,
                                       complexity param=0.01715686
##
     predicted class=1 expected loss=0.4285714 P(node) =0.1183575
##
       class counts:
##
      probabilities: 0.429 0.571
##
     left son=20 (21 obs) right son=21 (28 obs)
##
    Primary splits:
##
         DC
                           < 769.35 to the left,
                                                  improve=4.166667, (0 missing)
##
                           < 3.8
                                    to the left,
                                                   improve=3.200000, (0 missing)
         wind speeds
##
         DMC
                           < 107.1 to the left,
                                                   improve=1.975610, (0 missing)
                                                   improve=1.333333, (0 missing)
##
         relative humidity < 27.5
                                    to the left,
##
                           < 8.05
                                    to the right, improve=0.800000, (0 missing)
##
     Surrogate splits:
##
         DMC
                     < 110.05 to the left, agree=0.837, adj=0.619, (0 split)
##
         ISI
                     < 6.4
                              to the left, agree=0.714, adj=0.333, (0 split)
##
         temperature < 22.15 to the right, agree=0.714, adj=0.333, (0 split)
##
                     < 91.55 to the right, agree=0.673, adj=0.238, (0 split)
         FFMC
                              to the left, agree=0.673, adj=0.238, (0 split)
##
         wind speeds < 2.45
##
## Node number 11: 20 observations
##
     predicted class=1 expected loss=0.1 P(node) =0.04830918
##
       class counts:
                         2
##
      probabilities: 0.100 0.900
##
## Node number 16: 7 observations
     predicted class=0 expected loss=0 P(node) =0.01690821
##
##
       class counts:
                         7
##
      probabilities: 1.000 0.000
##
## Node number 17: 213 observations,
                                        complexity param=0.01633987
    predicted class=0 expected loss=0.399061 P(node) =0.5144928
##
##
       class counts:
                       128
                              85
##
      probabilities: 0.601 0.399
##
     left son=34 (37 obs) right son=35 (176 obs)
##
    Primary splits:
                           < 141.85 to the right, improve=1.4854840, (0 missing)
##
         DMC
##
         wind speeds
                           < 7.8
                                    to the left,
                                                  improve=1.4384040, (0 missing)
##
         DC
                           < 57.1
                                    to the right, improve=1.1001010, (0 missing)
##
         relative humidity < 38.5
                                    to the left, improve=1.0793280, (0 missing)
                           < 13.75 to the right, improve=0.9185828, (0 missing)
##
         temperature
##
     Surrogate splits:
##
         FFMC
                           < 95.65 to the right, agree=0.840, adj=0.081, (0 split)
                                    to the right, agree=0.840, adj=0.081, (0 split)
##
         rain amount
                           < 0.1
         DC
                           < 727.75 to the right, agree=0.831, adj=0.027, (0 split)
##
##
                                    to the right, agree=0.831, adj=0.027, (0 split)
         relative humidity < 85
##
## Node number 18: 11 observations
     predicted class=0 expected loss=0.2727273 P(node) =0.02657005
##
##
       class counts:
                         8
##
      probabilities: 0.727 0.273
##
```

```
## Node number 19: 100 observations,
                                       complexity param=0.01960784
##
    predicted class=1 expected loss=0.37 P(node) =0.2415459
##
                        37
      class counts:
                              63
##
      probabilities: 0.370 0.630
##
     left son=38 (12 obs) right son=39 (88 obs)
##
     Primary splits:
##
         relative humidity < 24.5
                                    to the left,
                                                  improve=2.4003030, (0 missing)
##
         DC
                           < 702.55 to the right, improve=1.4116670, (0 missing)
##
         FFMC
                           < 94.45 to the left,
                                                  improve=1.1491380, (0 missing)
##
         DMC
                           < 152.3 to the left, improve=1.1266670, (0 missing)
##
         ISI
                           < 16.9
                                   to the left,
                                                  improve=0.8753626, (0 missing)
##
  Node number 20: 21 observations
##
##
    predicted class=0 expected loss=0.3333333 P(node) =0.05072464
##
      class counts:
                        14
                               7
##
      probabilities: 0.667 0.333
##
## Node number 21: 28 observations
##
    predicted class=1 expected loss=0.25 P(node) =0.06763285
##
                         7
      class counts:
                              21
##
      probabilities: 0.250 0.750
##
## Node number 34: 37 observations
##
     predicted class=0 expected loss=0.2702703 P(node) =0.08937198
##
      class counts:
                        27
                              10
##
      probabilities: 0.730 0.270
##
## Node number 35: 176 observations,
                                       complexity param=0.01633987
    predicted class=0 expected loss=0.4261364 P(node) =0.4251208
##
##
      class counts:
                       101
                              75
     probabilities: 0.574 0.426
##
##
     left son=70 (140 obs) right son=71 (36 obs)
##
    Primary splits:
         DMC
                           < 115.75 to the left, improve=4.097006, (0 missing)
##
##
         relative humidity < 38.5 to the left,
                                                  improve=1.800974, (0 missing)
        FFMC
                           < 94.1 to the left,
                                                  improve=1.392045, (0 missing)
##
##
        wind speeds
                           < 4.25 to the right, improve=1.263742, (0 missing)
         ISI
                           < 10.15 to the left,
                                                  improve=1.226347, (0 missing)
##
##
     Surrogate splits:
        FFMC
##
                           < 94.95 to the left,
                                                  agree=0.818, adj=0.111, (0 split)
                                    to the right, agree=0.818, adj=0.111, (0 split)
##
         relative humidity < 21.5
##
                           < 21.45 to the left, agree=0.812, adj=0.083, (0 split)
         temperature
         TST
                                                  agree=0.801, adj=0.028, (0 split)
##
                           < 17.35 to the left,
##
## Node number 38: 12 observations
##
    predicted class=0 expected loss=0.3333333 P(node) =0.02898551
##
      class counts:
                         8
##
      probabilities: 0.667 0.333
##
## Node number 39: 88 observations
    predicted class=1 expected loss=0.3295455 P(node) =0.2125604
##
##
      class counts:
                        29
                              59
##
      probabilities: 0.330 0.670
##
```

```
## Node number 70: 140 observations,
                                        complexity param=0.01633987
##
    predicted class=0 expected loss=0.3714286 P(node) =0.3381643
##
       class counts:
                        88
                              52
##
      probabilities: 0.629 0.371
##
     left son=140 (96 obs) right son=141 (44 obs)
##
     Primary splits:
##
         temperature
                           < 13.75 to the right, improve=2.937716, (0 missing)
##
         relative humidity < 52.5
                                    to the left,
                                                  improve=2.369292, (0 missing)
                           < 7.8
##
         wind speeds
                                    to the left,
                                                  improve=1.732331, (0 missing)
##
         DC
                           < 57.1
                                    to the right, improve=1.678900, (0 missing)
##
         FFMC
                           < 92.25 to the right, improve=1.540969, (0 missing)
##
     Surrogate splits:
##
         FFMC
                           < 87.95 to the right, agree=0.800, adj=0.364, (0 split)
                           < 156.9 to the right, agree=0.793, adj=0.341, (0 split)
##
         DC
##
         DMC
                           < 25.3
                                    to the right, agree=0.779, adj=0.295, (0 split)
##
         ISI
                           < 5.6
                                    to the right, agree=0.736, adj=0.159, (0 split)
##
         relative humidity < 68.5
                                    to the left, agree=0.736, adj=0.159, (0 split)
##
## Node number 71: 36 observations
     predicted class=1 expected loss=0.3611111 P(node) =0.08695652
##
##
       class counts:
                        13
                              23
##
      probabilities: 0.361 0.639
##
## Node number 140: 96 observations,
                                        complexity param=0.01143791
##
    predicted class=0 expected loss=0.3020833 P(node) =0.2318841
##
       class counts:
                        67
                              29
##
      probabilities: 0.698 0.302
     left son=280 (13 obs) right son=281 (83 obs)
##
##
    Primary splits:
                                            improve=2.744227, (0 missing)
##
         DC
                     < 79.15 to the left,
##
         DMC
                     < 38.8
                              to the left, improve=2.300119, (0 missing)
                     < 7.75
##
         ISI
                              to the left, improve=1.545600, (0 missing)
##
         temperature < 16
                              to the left, improve=1.173611, (0 missing)
                     < 88.15 to the left, improve=1.108044, (0 missing)
         FFMC
##
##
     Surrogate splits:
##
         DMC
                     < 30.35 to the left, agree=0.979, adj=0.846, (0 split)
##
         FFMC
                     < 88.15 to the left,
                                            agree=0.917, adj=0.385, (0 split)
##
         ISI
                              to the left, agree=0.906, adj=0.308, (0 split)
                     < 4.4
                                            agree=0.896, adj=0.231, (0 split)
##
         temperature < 14.25 to the left,
##
## Node number 141: 44 observations,
                                        complexity param=0.01633987
##
    predicted class=1 expected loss=0.4772727 P(node) =0.1062802
##
       class counts:
##
      probabilities: 0.477 0.523
##
     left son=282 (36 obs) right son=283 (8 obs)
##
    Primary splits:
##
         temperature
                                                  improve=2.426768, (0 missing)
                           < 12.35 to the left,
##
         DC
                           < 57.1
                                    to the right, improve=2.424631, (0 missing)
         relative humidity < 75.5
##
                                    to the right, improve=2.402422, (0 missing)
##
         DMC
                           < 18.7
                                    to the right, improve=2.018913, (0 missing)
##
         ISI
                           < 4
                                    to the right, improve=1.227273, (0 missing)
##
     Surrogate splits:
##
         DC < 696.25 to the left, agree=0.841, adj=0.125, (0 split)
##
```

```
## Node number 280: 13 observations
##
     predicted class=0 expected loss=0 P(node) =0.03140097
##
       class counts:
                        13
                               0
##
      probabilities: 1.000 0.000
##
  Node number 281: 83 observations,
##
                                        complexity param=0.01143791
##
     predicted class=0 expected loss=0.3493976 P(node) =0.2004831
##
                        54
                              29
       class counts:
      probabilities: 0.651 0.349
##
##
    left son=562 (56 obs) right son=563 (27 obs)
##
    Primary splits:
##
                           < 17.2
                                    to the right, improve=2.2891730, (0 missing)
         temperature
##
         FFMC
                           < 90.15 to the right, improve=1.2388610, (0 missing)
##
         ISI
                                    to the left,
                                                  improve=1.1154590, (0 missing)
                           < 9.35
##
         DC
                           < 697.35 to the right, improve=1.0390440, (0 missing)
##
         relative humidity < 42.5
                                   to the left, improve=0.6673407, (0 missing)
##
     Surrogate splits:
         DMC
##
                           < 60.5
                                    to the right, agree=0.771, adj=0.296, (0 split)
##
         DC
                           < 100.55 to the right, agree=0.747, adj=0.222, (0 split)
##
         relative humidity < 52.5
                                    to the left, agree=0.711, adj=0.111, (0 split)
                                    to the right, agree=0.711, adj=0.111, (0 split)
##
         wind speeds
                           < 1.1
##
## Node number 282: 36 observations,
                                        complexity param=0.01633987
##
     predicted class=0 expected loss=0.4444444 P(node) =0.08695652
##
       class counts:
                        20
                              16
##
      probabilities: 0.556 0.444
##
     left son=564 (27 obs) right son=565 (9 obs)
    Primary splits:
##
##
         ISI
                           < 3.9
                                    to the right, improve=2.666667, (0 missing)
##
         DC
                           < 60.8
                                    to the right, improve=2.539683, (0 missing)
         DMC
                           < 18.7
                                    to the right, improve=2.500186, (0 missing)
##
##
         relative humidity < 71
                                    to the right, improve=2.099206, (0 missing)
##
         FFMC
                           < 85.05 to the right, improve=1.265463, (0 missing)
##
     Surrogate splits:
##
                     < 85.15 to the right, agree=0.917, adj=0.667, (0 split)
                     < 11.15 to the right, agree=0.861, adj=0.444, (0 split)
##
         DMC
##
         temperature < 6.25
                              to the right, agree=0.833, adj=0.333, (0 split)
##
         DC
                     < 22.65 to the right, agree=0.778, adj=0.111, (0 split)
##
## Node number 283: 8 observations
##
     predicted class=1 expected loss=0.125 P(node) =0.01932367
##
       class counts:
                         1
      probabilities: 0.125 0.875
##
##
## Node number 562: 56 observations
##
    predicted class=0 expected loss=0.2678571 P(node) =0.1352657
##
       class counts:
                        41
                              15
##
      probabilities: 0.732 0.268
##
## Node number 563: 27 observations,
                                        complexity param=0.01143791
    predicted class=1 expected loss=0.4814815 P(node) =0.06521739
##
##
       class counts:
                        13
                              14
##
      probabilities: 0.481 0.519
##
     left son=1126 (14 obs) right son=1127 (13 obs)
```

```
##
    Primary splits:
##
        temperature < 16 to the left, improve=3.1518110, (0 missing)
##
                    < 48.4 to the left, improve=1.5167760, (0 missing)
        DMC
##
        wind speeds < 2.9 to the left, improve=1.0243390, (0 missing)
                    < 90.65 to the right, improve=0.9481481, (0 missing)
##
        FFMC
##
                    < 8.75 to the right, improve=0.8990639, (0 missing)
        ISI
##
    Surrogate splits:
##
        DC
                          < 627.7 to the left,
                                                 agree=0.741, adj=0.462, (0 split)
##
                          < 91.55 to the left,
                                                 agree=0.667, adj=0.308, (0 split)
        FFMC
##
        DMC
                          < 98.25 to the left,
                                                 agree=0.667, adj=0.308, (0 split)
##
        ISI
                          < 9.25 to the left,
                                                 agree=0.667, adj=0.308, (0 split)
##
        relative humidity < 39 to the left,
                                                 agree=0.630, adj=0.231, (0 split)
##
## Node number 564: 27 observations
##
    predicted class=0 expected loss=0.3333333 P(node) =0.06521739
##
       class counts:
                       18
##
     probabilities: 0.667 0.333
##
## Node number 565: 9 observations
##
    predicted class=1 expected loss=0.2222222 P(node) =0.02173913
##
      class counts:
                        2
##
     probabilities: 0.222 0.778
##
## Node number 1126: 14 observations
##
    predicted class=0 expected loss=0.2857143 P(node) =0.03381643
##
      class counts:
                       10
##
     probabilities: 0.714 0.286
##
## Node number 1127: 13 observations
##
    predicted class=1 expected loss=0.2307692 P(node) =0.03140097
##
      class counts:
                        3
                             10
##
     probabilities: 0.231 0.769
```

```
rpart.plot(dt, box.palette="RdBu", shadow.col="gray", nn=TRUE)
```



```
y_pred = predict(dt, newdata = ff4[,-9])
rfp <- as.data.frame(y_pred)
rfp$'0' <- as.factor(rfp$'0')
rfp$'1' <- as.factor(rfp$'1')
rfa <- as.data.frame(ff4[,9])
rfa$`fire__no_yes` <- as.factor(rfa$`ff4[, 9]`)
rfa$`fire__no_yes` <- as.factor(rfa$`fire__no_yes`)
length(rfa$`fire__no_yes`)</pre>
```

## [1] 414

length(rfp\$y\_pred)

## [1] 0

```
# confusionMatrix(rfp, rfa)

set.seed(1016)
index2 <- sample(1:nrow(ff3), round(nrow(ff3)*.8))

ff5 <- ff3[index2,]
dt <- rpart(ff5$fire__no_yes ~., method = 'class', data = ff5)
dt</pre>
```

```
## n= 414
##
## node), split, n, loss, yval, (yprob)
        * denotes terminal node
##
##
    1) root 414 198 1 (0.4782609 0.5217391)
##
##
      2) DMC< 88.1 127 51 0 (0.5984252 0.4015748)
##
        4) temperature>=5.15 117 42 0 (0.6410256 0.3589744)
##
           8) relative humidity< 24.5 10
                                          0 0 (1.0000000 0.0000000) *
##
          9) relative humidity>=24.5 107 42 0 (0.6074766 0.3925234)
##
           18) relative humidity>=71.5 9
                                         0 0 (1.0000000 0.0000000) *
           19) relative humidity< 71.5 98 42 0 (0.5714286 0.4285714)
##
             38) relative humidity< 52.5 80 28 0 (0.6500000 0.3500000)
##
                                 3 0 (0.8750000 0.1250000) *
##
               76) ISI< 5.65 24
               77) ISI>=5.65 56 25 0 (0.5535714 0.4464286)
##
##
                154) DC>=433.5 27 7 0 (0.7407407 0.2592593) *
                155) DC< 433.5 29 11 1 (0.3793103 0.6206897)
##
##
                  310) temperature< 12.4 9
                                             3 0 (0.6666667 0.3333333) *
##
                  311) temperature>=12.4 20
                                            5 1 (0.2500000 0.7500000) *
##
             39) relative humidity>=52.5 18
                                              4 1 (0.2222222 0.7777778) *
##
        ##
      3) DMC>=88.1 287 122 1 (0.4250871 0.5749129)
##
        6) ISI< 6.35 29
                          9 0 (0.6896552 0.3103448) *
##
        7) ISI >= 6.35 \ 258 \ 102 \ 1 \ (0.3953488 \ 0.6046512)
##
         14) DMC>=133.45 130 62 1 (0.4769231 0.5230769)
           28) temperature< 21.65 61 25 0 (0.5901639 0.4098361)
##
##
             56) ISI>=7.85 43 13 0 (0.6976744 0.3023256)
              112) ISI< 13.8 31 6 0 (0.8064516 0.1935484) *
##
                                  5 1 (0.4166667 0.5833333) *
##
              113) ISI>=13.8 12
             57) ISI< 7.85 18 6 1 (0.3333333 0.6666667) *
##
           29) temperature>=21.65 69 26 1 (0.3768116 0.6231884)
##
##
             58) DC>=703.55 23 11 0 (0.5217391 0.4782609)
##
              116) FFMC< 93.35 8
                                   2 0 (0.7500000 0.2500000) *
##
              117) FFMC>=93.35 15
                                    6 1 (0.4000000 0.6000000) *
             59) DC< 703.55 46 14 1 (0.3043478 0.6956522) *
##
##
         15) DMC< 133.45 128 40 1 (0.3125000 0.6875000)
           30) relative humidity< 27.5 26 13 0 (0.5000000 0.5000000)
##
##
             60) FFMC< 92.85 16
                                  5 0 (0.6875000 0.3125000) *
                                  2 1 (0.2000000 0.8000000) *
##
             61) FFMC>=92.85 10
##
           31) relative humidity>=27.5 102 27 1 (0.2647059 0.7352941) *
```

```
##
## Classification tree:
## rpart(formula = ff5$fire__no_yes ~ ., data = ff5, method = "class")
## Variables actually used in tree construction:
## [1] DC
                                            FFMC
                                                               ISI
## [5] relative humidity temperature
##
## Root node error: 198/414 = 0.47826
##
## n= 414
##
##
           CP nsplit rel error xerror
## 1 0.126263
                   0
                       1.00000 1.00000 0.051333
## 2 0.055556
                   1
                       0.87374 1.00505 0.051343
## 3 0.040404
                   2
                       0.81818 0.96465 0.051228
## 4 0.027778
                   3
                       0.77778 0.92424 0.051035
## 5 0.016835
                       0.69192 0.87879 0.050724
                   6
## 6 0.015152
                  11
                       0.60606 0.85354 0.050508
## 7 0.010101
                  14
                       0.56061 0.87374 0.050683
## 8 0.010000
                       0.53030 0.84848 0.050461
                  17
```

plotcp(dt) # visualize cross-validation results



summary(dt)

```
## Call:
## rpart(formula = ff5$fire no yes ~ ., data = ff5, method = "class")
##
##
##
             CP nsplit rel error
                                    xerror
                                                 xstd
## 1 0.12626263
                     0 1.0000000 1.0000000 0.05133270
## 2 0.0555556
                     1 0.8737374 1.0050505 0.05134290
## 3 0.04040404
                     2 0.8181818 0.9646465 0.05122757
## 4 0.02777778
                    3 0.7777778 0.9242424 0.05103477
## 5 0.01683502
                    6 0.6919192 0.8787879 0.05072416
                   11 0.6060606 0.8535354 0.05050810
## 6 0.01515152
## 7 0.01010101
                    14 0.5606061 0.8737374 0.05068345
                    17 0.5303030 0.8484848 0.05046111
## 8 0.01000000
##
## Variable importance
##
                 ISI
                                  FFMC
                                                     DMC relative humidity
##
                  19
                                    16
                                                      16
                                                                        16
                                             wind speeds
##
         temperature
                                    DC
##
                  16
                                    14
##
## Node number 1: 414 observations,
                                       complexity param=0.1262626
##
    predicted class=1 expected loss=0.4782609 P(node) =1
##
      class counts:
                       198
                             216
##
      probabilities: 0.478 0.522
##
    left son=2 (127 obs) right son=3 (287 obs)
##
    Primary splits:
##
         DMC
                     < 88.1
                              to the left,
                                            improve=5.290580, (0 missing)
##
         temperature < 19.85 to the left, improve=4.832407, (0 missing)
                             to the left, improve=3.333932, (0 missing)
                     < 6.35
##
         ISI
         wind speeds < 7.8
                              to the left, improve=3.260124, (0 missing)
##
##
         DC
                     < 243.2 to the left, improve=3.209009, (0 missing)
##
     Surrogate splits:
##
         DC
                     < 376.9 to the left, agree=0.867, adj=0.567, (0 split)
        FFMC
##
                     < 88.25 to the left, agree=0.819, adj=0.409, (0 split)
         ISI
                     < 5.75 to the left, agree=0.812, adj=0.386, (0 split)
##
##
         temperature < 15.3 to the left, agree=0.775, adj=0.268, (0 split)
##
        wind speeds < 7.8 to the right, agree=0.708, adj=0.047, (0 split)
##
## Node number 2: 127 observations,
                                       complexity param=0.04040404
    predicted class=0 expected loss=0.4015748 P(node) =0.3067633
##
##
      class counts:
                        76
      probabilities: 0.598 0.402
##
##
     left son=4 (117 obs) right son=5 (10 obs)
    Primary splits:
##
##
         temperature
                           < 5.15
                                    to the right, improve=5.393216, (0 missing)
##
        wind speeds
                           < 7.8
                                    to the left, improve=5.393216, (0 missing)
##
         relative humidity < 52.5
                                    to the left,
                                                  improve=3.159765, (0 missing)
##
        FFMC
                           < 91.35 to the right, improve=3.010442, (0 missing)
##
         DC
                           < 667.35 to the right, improve=2.859765, (0 missing)
##
     Surrogate splits:
##
        wind speeds < 8.25 to the left, agree=0.929, adj=0.1, (0 split)
##
## Node number 3: 287 observations,
                                       complexity param=0.0555556
```

```
##
    predicted class=1 expected loss=0.4250871 P(node) =0.6932367
##
       class counts:
                       122
                             165
##
      probabilities: 0.425 0.575
##
     left son=6 (29 obs) right son=7 (258 obs)
##
     Primary splits:
##
         ISI
                           < 6.35
                                    to the left, improve=4.516115, (0 missing)
##
         FFMC
                           < 91.75 to the left,
                                                  improve=2.614203, (0 missing)
##
         relative humidity < 55.5
                                    to the right, improve=2.443404, (0 missing)
##
         DMC
                           < 136.95 to the right, improve=2.216478, (0 missing)
##
         temperature
                           < 19.85 to the left, improve=2.096131, (0 missing)
##
## Node number 4: 117 observations,
                                       complexity param=0.01683502
##
     predicted class=0 expected loss=0.3589744 P(node) =0.2826087
                        75
##
       class counts:
                              42
      probabilities: 0.641 0.359
##
##
     left son=8 (10 obs) right son=9 (107 obs)
##
    Primary splits:
         relative humidity < 24.5
##
                                    to the left, improve=2.818116, (0 missing)
##
         DC
                           < 667.35 to the right, improve=1.732183, (0 missing)
##
         FFMC
                           < 91.35 to the right, improve=1.671571, (0 missing)
##
         DMC
                           < 69.15 to the right, improve=1.466281, (0 missing)
##
                           < 23.1
                                    to the left, improve=1.435613, (0 missing)
         temperature
##
##
  Node number 5: 10 observations
##
     predicted class=1 expected loss=0.1 P(node) =0.02415459
##
       class counts:
                         1
##
      probabilities: 0.100 0.900
##
## Node number 6: 29 observations
##
    predicted class=0 expected loss=0.3103448 P(node) =0.07004831
##
       class counts:
                        20
##
      probabilities: 0.690 0.310
##
## Node number 7: 258 observations,
                                       complexity param=0.02777778
##
    predicted class=1 expected loss=0.3953488 P(node) =0.6231884
##
       class counts:
                       102
                             156
##
      probabilities: 0.395 0.605
     left son=14 (130 obs) right son=15 (128 obs)
##
##
    Primary splits:
##
         DMC
                           < 133.45 to the right, improve=3.487299, (0 missing)
##
         relative humidity < 57.5
                                    to the right, improve=3.002148, (0 missing)
##
                           < 12.7
                                    to the left, improve=1.852902, (0 missing)
         temperature
                           < 499.6 to the left, improve=1.417553, (0 missing)
##
         DC
##
         FFMC
                           < 89.9
                                    to the left, improve=1.334851, (0 missing)
##
     Surrogate splits:
         FFMC
##
                           < 92.85 to the right, agree=0.640, adj=0.273, (0 split)
         ISI
                           < 10.5
                                    to the right, agree=0.640, adj=0.273, (0 split)
##
                           < 21.65 to the right, agree=0.612, adj=0.219, (0 split)
##
         temperature
         DC
                           < 590.65 to the right, agree=0.605, adj=0.203, (0 split)
##
##
         relative humidity < 57.5 to the right, agree=0.578, adj=0.148, (0 split)
##
## Node number 8: 10 observations
##
    predicted class=0 expected loss=0 P(node) =0.02415459
##
       class counts:
                        10
                               0
```

```
##
      probabilities: 1.000 0.000
##
## Node number 9: 107 observations,
                                       complexity param=0.01683502
##
     predicted class=0 expected loss=0.3925234 P(node) =0.2584541
##
       class counts:
                        65
                              42
##
     probabilities: 0.607 0.393
##
     left son=18 (9 obs) right son=19 (98 obs)
##
     Primary splits:
##
                                    to the right, improve=3.028037, (0 missing)
         relative humidity < 71.5
##
         temperature
                           < 24.15 to the left, improve=2.209856, (0 missing)
##
         DMC
                           < 69.15 to the right, improve=1.854704, (0 missing)
##
         DC
                           < 667.35 to the right, improve=1.540696, (0 missing)
##
                           < 11.05 to the left, improve=1.087103, (0 missing)
         ISI
##
     Surrogate splits:
##
        FFMC < 71.5
                       to the left, agree=0.944, adj=0.333, (0 split)
##
         ISI < 0.95
                       to the left, agree=0.944, adj=0.333, (0 split)
##
## Node number 14: 130 observations,
                                        complexity param=0.02777778
##
    predicted class=1 expected loss=0.4769231 P(node) =0.3140097
##
                              68
       class counts:
                        62
##
      probabilities: 0.477 0.523
##
     left son=28 (61 obs) right son=29 (69 obs)
##
     Primary splits:
##
         temperature
                           < 21.65 to the left,
                                                  improve=2.947545, (0 missing)
##
         relative humidity < 24.5
                                    to the left,
                                                  improve=2.701702, (0 missing)
##
         FFMC
                           < 91.55 to the left,
                                                  improve=2.165810, (0 missing)
##
         ISI
                           < 12.85 to the left,
                                                  improve=1.641042, (0 missing)
        DMC
                                                  improve=1.400101, (0 missing)
##
                           < 148.55 to the left,
##
     Surrogate splits:
##
         relative humidity < 42.5
                                    to the right, agree=0.815, adj=0.607, (0 split)
         FFMC
                           < 91.55 to the left, agree=0.769, adj=0.508, (0 split)
##
                                                  agree=0.669, adj=0.295, (0 split)
##
         ISI
                           < 10.85 to the left,
##
         DC
                           < 729.6 to the right, agree=0.631, adj=0.213, (0 split)
         DMC
                           < 233.1 to the right, agree=0.623, adj=0.197, (0 split)
##
##
## Node number 15: 128 observations,
                                        complexity param=0.01515152
##
    predicted class=1 expected loss=0.3125 P(node) =0.3091787
##
       class counts:
                        40
                              88
##
      probabilities: 0.312 0.688
##
     left son=30 (26 obs) right son=31 (102 obs)
##
     Primary splits:
##
         relative humidity < 27.5
                                    to the left,
                                                  improve=2.294118, (0 missing)
##
         FFMC
                           < 92.85 to the left,
                                                  improve=1.870635, (0 missing)
##
        DMC
                           < 126.8 to the left,
                                                  improve=1.848552, (0 missing)
##
         DC
                           < 499.6 to the left,
                                                  improve=1.657227, (0 missing)
                                                  improve=1.285714, (0 missing)
##
                           < 15.75 to the left,
         temperature
##
     Surrogate splits:
##
                              to the right, agree=0.883, adj=0.423, (0 split)
         temperature < 24
         DMC
##
                     < 132
                              to the right, agree=0.812, adj=0.077, (0 split)
##
## Node number 18: 9 observations
##
    predicted class=0 expected loss=0 P(node) =0.02173913
##
       class counts:
                         9
##
      probabilities: 1.000 0.000
```

```
##
## Node number 19: 98 observations,
                                       complexity param=0.01683502
##
    predicted class=0 expected loss=0.4285714 P(node) =0.236715
##
       class counts:
                        56
                              42
##
      probabilities: 0.571 0.429
##
     left son=38 (80 obs) right son=39 (18 obs)
##
    Primary splits:
##
         relative humidity < 52.5
                                    to the left,
                                                  improve=5.377778, (0 missing)
##
                           < 667.35 to the right, improve=2.136672, (0 missing)
         DC
##
         DMC
                           < 69.15 to the right, improve=1.921039, (0 missing)
##
                           < 24.15 to the left, improve=1.800000, (0 missing)
         temperature
##
         FFMC
                           < 92.25 to the right, improve=1.602564, (0 missing)
##
     Surrogate splits:
##
                              to the right, agree=0.867, adj=0.278, (0 split)
         temperature < 6.65
##
                     < 9.2
                              to the right, agree=0.837, adj=0.111, (0 split)
##
         DC
                     < 727.65 to the left, agree=0.837, adj=0.111, (0 split)
##
         FFMC
                     < 83.95 to the right, agree=0.827, adj=0.056, (0 split)
##
## Node number 28: 61 observations,
                                       complexity param=0.02777778
     predicted class=0 expected loss=0.4098361 P(node) =0.147343
##
##
       class counts:
                        36
##
      probabilities: 0.590 0.410
##
     left son=56 (43 obs) right son=57 (18 obs)
##
     Primary splits:
##
         ISI
                     < 7.85
                              to the right, improve=3.368662, (0 missing)
##
         DC
                     < 818.3 to the left, improve=2.704560, (0 missing)
##
         wind speeds < 2.45
                              to the left, improve=2.296432, (0 missing)
                     < 263.7 to the left, improve=2.014079, (0 missing)
##
         DMC
         FFMC
                     < 91.15 to the right, improve=1.578372, (0 missing)
##
##
     Surrogate splits:
##
         DC
                     < 729.6 to the left, agree=0.902, adj=0.667, (0 split)
                     < 91.15 to the right, agree=0.852, adj=0.500, (0 split)
##
         FFMC
##
         DMC
                     < 236.65 to the left, agree=0.836, adj=0.444, (0 split)
                              to the left, agree=0.738, adj=0.111, (0 split)
##
         wind speeds < 6.95
##
## Node number 29: 69 observations,
                                       complexity param=0.01010101
##
    predicted class=1 expected loss=0.3768116 P(node) =0.1666667
##
       class counts:
                        26
                              43
##
      probabilities: 0.377 0.623
##
     left son=58 (23 obs) right son=59 (46 obs)
##
     Primary splits:
##
         DC
                     < 703.55 to the right, improve=1.4492750, (0 missing)
         FFMC
                              to the right, improve=1.1639670, (0 missing)
##
                     < 92.8
##
         ISI
                     < 9.05
                              to the right, improve=1.1617490, (0 missing)
##
         wind speeds < 4.7
                              to the left, improve=0.9057971, (0 missing)
                     < 209.55 to the right, improve=0.8371158, (0 missing)
##
         DMC
##
     Surrogate splits:
##
         DMC < 224.7 to the right, agree=0.783, adj=0.348, (0 split)
                       to the left, agree=0.783, adj=0.348, (0 split)
##
         ISI < 9.35
##
         FFMC < 91.3
                       to the left, agree=0.710, adj=0.130, (0 split)
##
## Node number 30: 26 observations,
                                       complexity param=0.01515152
##
    predicted class=0 expected loss=0.5 P(node) =0.06280193
##
       class counts:
                        13
                              13
```

```
##
      probabilities: 0.500 0.500
##
     left son=60 (16 obs) right son=61 (10 obs)
##
    Primary splits:
##
         FFMC
                           < 92.85 to the left,
                                                  improve=2.925000, (0 missing)
                                    to the right, improve=2.785714, (0 missing)
##
         relative humidity < 26
##
                           < 4.7
         wind speeds
                                    to the right, improve=2.443609, (0 missing)
##
         DC
                           < 745.45 to the right, improve=2.124183, (0 missing)
##
                           < 8.55
                                    to the left, improve=1.444444, (0 missing)
         ISI
##
     Surrogate splits:
##
        ISI
                           < 9
                                    to the left, agree=0.885, adj=0.7, (0 split)
##
                           < 25.85 to the left,
                                                  agree=0.846, adj=0.6, (0 split)
         temperature
##
         DMC
                           < 125.75 to the left,
                                                  agree=0.808, adj=0.5, (0 split)
##
                           < 719.5 to the right, agree=0.808, adj=0.5, (0 split)
         DC
                                    to the right, agree=0.808, adj=0.5, (0 split)
##
         relative humidity < 23
##
## Node number 31: 102 observations
##
     predicted class=1 expected loss=0.2647059 P(node) =0.2463768
##
       class counts:
                        27
                              75
##
      probabilities: 0.265 0.735
##
## Node number 38: 80 observations,
                                       complexity param=0.01683502
##
    predicted class=0 expected loss=0.35 P(node) =0.1932367
##
       class counts:
                        52
                              28
##
     probabilities: 0.650 0.350
##
     left son=76 (24 obs) right son=77 (56 obs)
##
    Primary splits:
##
         ISI
                           < 5.65
                                    to the left,
                                                  improve=3.471429, (0 missing)
         relative humidity < 29.5
                                    to the right, improve=3.025000, (0 missing)
##
##
                           < 24.15 to the left,
                                                  improve=2.844444, (0 missing)
         temperature
##
         DMC
                           < 35.6
                                    to the left,
                                                  improve=2.625455, (0 missing)
        FFMC
                           < 88.95 to the left,
                                                  improve=2.304762, (0 missing)
##
##
     Surrogate splits:
##
        FFMC < 88.35 to the left, agree=0.962, adj=0.875, (0 split)
                      to the left, agree=0.788, adj=0.292, (0 split)
##
         DMC < 29.05
##
         DC
              < 70.65 to the left, agree=0.775, adj=0.250, (0 split)
##
## Node number 39: 18 observations
     predicted class=1 expected loss=0.2222222 P(node) =0.04347826
##
##
       class counts:
                         4
                              14
      probabilities: 0.222 0.778
##
##
## Node number 56: 43 observations,
                                       complexity param=0.01010101
    predicted class=0 expected loss=0.3023256 P(node) =0.1038647
##
##
       class counts:
                        30
                              13
##
      probabilities: 0.698 0.302
##
     left son=112 (31 obs) right son=113 (12 obs)
    Primary splits:
##
##
         ISI
                                            improve=2.628782, (0 missing)
                     < 13.8
                              to the left,
         FFMC
##
                     < 92.05 to the left, improve=2.481526, (0 missing)
##
         temperature < 18.4
                              to the left, improve=2.263979, (0 missing)
                                            improve=1.066808, (0 missing)
##
        wind speeds < 2.45
                              to the left,
                     < 156.3 to the right, improve=1.055791, (0 missing)
##
         DMC
     Surrogate splits:
##
##
        FFMC
                     < 93.8
                              to the left, agree=0.860, adj=0.500, (0 split)
```

```
##
         DMC
                     < 141.85 to the right, agree=0.767, adj=0.167, (0 split)
##
         rain amount < 0.3
                              to the left, agree=0.767, adj=0.167, (0 split)
                     < 597.8 to the right, agree=0.744, adj=0.083, (0 split)
##
         DC
##
## Node number 57: 18 observations
##
     predicted class=1 expected loss=0.3333333 P(node) =0.04347826
##
       class counts:
                         6
                              12
##
      probabilities: 0.333 0.667
##
## Node number 58: 23 observations,
                                       complexity param=0.01010101
##
    predicted class=0 expected loss=0.4782609 P(node) =0.05555556
##
       class counts:
                        12
                              11
##
      probabilities: 0.522 0.478
##
     left son=116 (8 obs) right son=117 (15 obs)
##
     Primary splits:
##
         FFMC
                     < 93.35 to the left,
                                            improve=1.278261, (0 missing)
##
         DC
                     < 714.5 to the left, improve=1.278261, (0 missing)
##
         ISI
                     < 8.8
                              to the right, improve=1.124415, (0 missing)
##
         wind speeds < 3.35
                              to the right, improve=1.124415, (0 missing)
##
         temperature < 26.55 to the left, improve=1.049689, (0 missing)
##
     Surrogate splits:
##
         DMC
                     < 143.3 to the left, agree=0.870, adj=0.625, (0 split)
##
         DC
                     < 706.55 to the left,
                                            agree=0.783, adj=0.375, (0 split)
##
         wind speeds < 2
                              to the left, agree=0.783, adj=0.375, (0 split)
##
         ISI
                     < 7.6
                              to the left, agree=0.739, adj=0.250, (0 split)
##
         temperature < 22.6
                              to the left, agree=0.696, adj=0.125, (0 split)
##
  Node number 59: 46 observations
##
     predicted class=1 expected loss=0.3043478 P(node) =0.1111111
##
##
       class counts:
                        14
                              32
##
      probabilities: 0.304 0.696
##
## Node number 60: 16 observations
    predicted class=0 expected loss=0.3125 P(node) =0.03864734
##
##
       class counts:
                        11
                               5
##
      probabilities: 0.688 0.312
##
## Node number 61: 10 observations
##
     predicted class=1 expected loss=0.2 P(node) =0.02415459
##
       class counts:
                         2
##
      probabilities: 0.200 0.800
##
## Node number 76: 24 observations
##
    predicted class=0 expected loss=0.125 P(node) =0.05797101
##
       class counts:
                        2.1
##
      probabilities: 0.875 0.125
##
## Node number 77: 56 observations,
                                       complexity param=0.01683502
##
     predicted class=0 expected loss=0.4464286 P(node) =0.1352657
##
       class counts:
##
      probabilities: 0.554 0.446
##
     left son=154 (27 obs) right son=155 (29 obs)
##
    Primary splits:
##
         DC.
                           < 433.5 to the right, improve=3.653029, (0 missing)
```

```
##
                           < 23.1
                                    to the left, improve=3.428571, (0 missing)
         temperature
##
         FFMC
                           < 91.35 to the right, improve=2.678571, (0 missing)
##
                                    to the right, improve=2.159380, (0 missing)
         relative humidity < 28.5
##
         DMC
                           < 83.5
                                    to the right, improve=1.916955, (0 missing)
##
     Surrogate splits:
##
         DMC
                           < 61.7
                                    to the right, agree=0.893, adj=0.778, (0 split)
##
         FFMC
                           < 91.75 to the right, agree=0.804, adj=0.593, (0 split)
##
                           < 17.3
                                    to the right, agree=0.768, adj=0.519, (0 split)
         temperature
         relative humidity < 31.5
                                    to the right, agree=0.696, adj=0.370, (0 split)
##
##
                           < 10.45 to the right, agree=0.661, adj=0.296, (0 split)
##
## Node number 112: 31 observations
##
     predicted class=0 expected loss=0.1935484 P(node) =0.07487923
##
       class counts:
                        25
      probabilities: 0.806 0.194
##
##
## Node number 113: 12 observations
##
    predicted class=1 expected loss=0.4166667 P(node) =0.02898551
##
       class counts:
                         5
                               7
##
      probabilities: 0.417 0.583
##
## Node number 116: 8 observations
##
    predicted class=0 expected loss=0.25 P(node) =0.01932367
##
       class counts:
                               2
##
      probabilities: 0.750 0.250
##
## Node number 117: 15 observations
    predicted class=1 expected loss=0.4 P(node) =0.03623188
##
##
       class counts:
                         6
##
      probabilities: 0.400 0.600
##
## Node number 154: 27 observations
##
    predicted class=0 expected loss=0.2592593 P(node) =0.06521739
##
       class counts:
##
      probabilities: 0.741 0.259
##
## Node number 155: 29 observations,
                                        complexity param=0.01515152
     predicted class=1 expected loss=0.3793103 P(node) =0.07004831
##
##
       class counts:
                        11
                              18
##
     probabilities: 0.379 0.621
     left son=310 (9 obs) right son=311 (20 obs)
##
##
    Primary splits:
         temperature < 12.4
                              to the left, improve=2.155172, (0 missing)
##
##
         FFMC
                     < 90.85 to the right, improve=1.998030, (0 missing)
##
         ISI
                     < 7.4
                              to the right, improve=1.877395, (0 missing)
                              to the right, improve=1.877395, (0 missing)
##
         wind speeds < 3.8
                     < 37.75 to the left, improve=1.193634, (0 missing)
##
         DMC
     Surrogate splits:
##
        FFMC
##
                           < 89.45 to the left, agree=0.828, adj=0.444, (0 split)
##
         DMC
                           < 19.75 to the left, agree=0.793, adj=0.333, (0 split)
##
         DC
                           < 42.3
                                    to the left, agree=0.793, adj=0.333, (0 split)
##
         relative humidity < 34.5
                                    to the right, agree=0.759, adj=0.222, (0 split)
##
        wind speeds
                           < 5.6
                                    to the right, agree=0.759, adj=0.222, (0 split)
##
```

```
Node number 310: 9 observations
##
    predicted class=0 expected loss=0.3333333 P(node) =0.02173913
##
                         6
       class counts:
      probabilities: 0.667 0.333
##
##
  Node number 311: 20 observations
##
##
    predicted class=1 expected loss=0.25 P(node) =0.04830918
##
       class counts:
##
     probabilities: 0.250 0.750
```

```
rpart.plot(dt, box.palette="RdBu", shadow.col="gray", nn=TRUE)
```



```
set.seed(69)
index3 <- sample(1:nrow(ff3), round(nrow(ff3)*.8))
ff6 <- ff3[index3,]
dt <- rpart(ff6$fire__no_yes ~., method = 'class', data = ff6)
dt</pre>
```

```
## n= 414
##
## node), split, n, loss, yval, (yprob)
         * denotes terminal node
##
##
      1) root 414 194 1 (0.4685990 0.5314010)
##
##
        2) temperature< 19.85 227 105 0 (0.5374449 0.4625551)
##
          4) wind speeds< 7.8 213 93 0 (0.5633803 0.4366197)
##
            8) DC< 731.45 167 65 0 (0.6107784 0.3892216)
##
             16) relative humidity< 38.5 42
                                              9 0 (0.7857143 0.2142857) *
             17) relative humidity>=38.5 125 56 0 (0.5520000 0.4480000)
##
               34) DMC>=141.85 21
                                    5 0 (0.7619048 0.2380952) *
##
##
               35) DMC< 141.85 104 51 0 (0.5096154 0.4903846)
##
                 70) FFMC< 86.7 25
                                     8 0 (0.6800000 0.3200000)
##
                  140) temperature>=10.35 12
                                               0 0 (1.0000000 0.0000000) *
##
                  141) temperature< 10.35 13
                                               5 1 (0.3846154 0.6153846) *
                 71) FFMC>=86.7 79 36 1 (0.4556962 0.5443038)
##
##
                  142) relative humidity>=47.5 43 19 0 (0.5581395 0.4418605)
                    284) relative humidity< 52.5 9
                                                     0 0 (1.0000000 0.0000000) *
##
##
                    285) relative humidity>=52.5 34 15 1 (0.4411765 0.5588235)
                      570) relative humidity>=57 24 10 0 (0.5833333 0.4166667)
##
##
                       1140) ISI>=6.65 16
                                          5 0 (0.6875000 0.3125000) *
                                           3 1 (0.3750000 0.6250000) *
##
                       1141) ISI< 6.65 8
##
                      571) relative humidity< 57 10
                                                    1 1 (0.1000000 0.9000000) *
##
                  143) relative humidity< 47.5 36 12 1 (0.3333333 0.6666667) *
##
            9) DC>=731.45 46 18 1 (0.3913043 0.6086957)
##
             18) ISI< 6.4 9
                              3 0 (0.6666667 0.3333333) *
             19) ISI>=6.4 37 12 1 (0.3243243 0.6756757) *
##
                                   2 1 (0.1428571 0.8571429) *
##
          5) wind speeds>=7.8 14
        3) temperature>=19.85 187 72 1 (0.3850267 0.6149733)
##
          6) relative humidity< 24.5 14
##
                                          3 0 (0.7857143 0.2142857) *
##
          7) relative humidity>=24.5 173 61 1 (0.3526012 0.6473988)
##
           14) temperature< 26.25 137 54 1 (0.3941606 0.6058394)
##
             28) FFMC>=92.15 65 32 1 (0.4923077 0.5076923)
               56) DMC>=168.65 15
                                    3 0 (0.8000000 0.2000000) *
##
##
               57) DMC< 168.65 50 20 1 (0.4000000 0.6000000)
                114) FFMC< 92.85 20
                                     7 0 (0.6500000 0.3500000) *
##
                                      7 1 (0.2333333 0.7666667) *
##
                115) FFMC>=92.85 30
             29) FFMC< 92.15 72 22 1 (0.3055556 0.6944444) *
##
##
           15) temperature>=26.25 36 7 1 (0.1944444 0.8055556) *
```

```
##
## Classification tree:
## rpart(formula = ff6$fire__no_yes ~ ., data = ff6, method = "class")
## Variables actually used in tree construction:
## [1] DC
                                            FFMC
                                                              ISI
## [5] relative humidity temperature
                                            wind speeds
##
## Root node error: 194/414 = 0.4686
##
## n= 414
##
##
           CP nsplit rel error xerror
## 1 0.087629
                       1.00000 1.00000 0.052337
## 2 0.051546
                   1
                       0.91237 1.11340 0.052391
                       0.80928 1.07216 0.052440
## 3 0.041237
## 4 0.015464
                   4
                       0.76804 0.88144 0.051642
## 5 0.012027
                   9
                       0.67526 0.85567 0.051402
## 6 0.010309
                       0.55670 0.83505 0.051187
                  16
## 7 0.010000
                  17
                       0.54639 0.83505 0.051187
```

plotcp(dt) # visualize cross-validation results



```
## Call:
## rpart(formula = ff6$fire no yes ~ ., data = ff6, method = "class")
##
##
##
             CP nsplit rel error
                                    xerror
                                                 xstd
## 1 0.08762887
                     0 1.0000000 1.0000000 0.05233718
## 2 0.05154639
                     1 0.9123711 1.1134021 0.05239111
## 3 0.04123711
                     3 0.8092784 1.0721649 0.05244008
## 4 0.01546392
                     4 0.7680412 0.8814433 0.05164155
## 5 0.01202749
                     9 0.6752577 0.8556701 0.05140176
                    16 0.5567010 0.8350515 0.05118655
## 6 0.01030928
## 7 0.01000000
                    17 0.5463918 0.8350515 0.05118655
##
## Variable importance
## relative humidity
                           temperature
                                                     DMC
                                                                       FFMC
##
                  27
                                    17
                                                      15
                                                                         13
##
                  DC
                                   ISI
                                             wind speeds
                                                               rain amount
##
                  11
                                    10
                                                       7
                                                                          1
##
## Node number 1: 414 observations,
                                       complexity param=0.08762887
##
     predicted class=1 expected loss=0.468599 P(node) =1
##
       class counts:
                       194
                             220
##
     probabilities: 0.469 0.531
##
     left son=2 (227 obs) right son=3 (187 obs)
##
    Primary splits:
##
         temperature < 19.85 to the left, improve=4.763989, (0 missing)
##
        wind speeds < 7.8
                              to the left,
                                            improve=3.929806, (0 missing)
         DC
##
                     < 243.2 to the left, improve=3.540300, (0 missing)
                     < 81.35 to the left,
                                            improve=3.538537, (0 missing)
##
         DMC
         ISI
                     < 1.7
                              to the left,
                                            improve=2.694659, (0 missing)
##
##
     Surrogate splits:
##
         FFMC
                           < 92.85 to the left, agree=0.700, adj=0.337, (0 split)
##
         relative humidity < 42.5
                                    to the right, agree=0.693, adj=0.321, (0 split)
##
         DMC
                           < 99.3
                                    to the left, agree=0.671, adj=0.273, (0 split)
         DC
                           < 354.9 to the left, agree=0.650, adj=0.225, (0 split)
##
                           < 8.05 to the left,
##
         TST
                                                  agree=0.645, adj=0.214, (0 split)
##
## Node number 2: 227 observations,
                                       complexity param=0.05154639
     predicted class=0 expected loss=0.4625551 P(node) =0.5483092
##
##
       class counts:
                       122
                             105
##
     probabilities: 0.537 0.463
     left son=4 (213 obs) right son=5 (14 obs)
##
##
    Primary splits:
         wind speeds
                           < 7.8
                                    to the left,
                                                  improve=4.646132, (0 missing)
##
##
         temperature
                           < 7.85
                                    to the right, improve=4.215924, (0 missing)
         DC
##
                           < 767.15 to the left, improve=3.099946, (0 missing)
##
         DMC
                           < 141.85 to the right, improve=1.965279, (0 missing)
##
         relative humidity < 84
                                  to the right, improve=1.889692, (0 missing)
##
     Surrogate splits:
##
         temperature
                           < 5.15
                                    to the right, agree=0.947, adj=0.143, (0 split)
         relative humidity < 22.5 to the right, agree=0.943, adj=0.071, (0 split)
##
##
## Node number 3: 187 observations,
                                       complexity param=0.04123711
```

```
##
    predicted class=1 expected loss=0.3850267 P(node) =0.4516908
##
       class counts:
                        72
                             115
##
      probabilities: 0.385 0.615
##
     left son=6 (14 obs) right son=7 (173 obs)
##
     Primary splits:
##
         relative humidity < 24.5
                                    to the left,
                                                  improve=4.859205, (0 missing)
##
                           < 17.8
                                    to the left,
                                                  improve=2.477937, (0 missing)
##
                           < 26
                                    to the left,
                                                  improve=1.864612, (0 missing)
         temperature
                           < 3.8
##
         wind speeds
                                    to the left,
                                                  improve=1.667494, (0 missing)
##
         DC
                           < 613.85 to the right, improve=1.420892, (0 missing)
##
    Surrogate splits:
##
         DMC < 48
                      to the left, agree=0.936, adj=0.143, (0 split)
##
## Node number 4: 213 observations,
                                       complexity param=0.05154639
##
     predicted class=0 expected loss=0.4366197 P(node) =0.5144928
##
       class counts:
                       120
                              93
##
      probabilities: 0.563 0.437
##
     left son=8 (167 obs) right son=9 (46 obs)
##
     Primary splits:
##
         DC
                                                   improve=3.474491, (0 missing)
                           < 731.45 to the left,
##
                                                  improve=3.217227, (0 missing)
         DMC
                           < 81.35 to the left,
##
         relative humidity < 38.5
                                    to the left,
                                                   improve=3.205420, (0 missing)
##
                           < 84.5
                                                   improve=1.806914, (0 missing)
         FFMC
                                    to the left,
##
         ISI
                           < 1.95
                                    to the left,
                                                  improve=1.249204, (0 missing)
     Surrogate splits:
##
##
                     < 243.3 to the left, agree=0.831, adj=0.217, (0 split)
##
         temperature < 19.65 to the left, agree=0.793, adj=0.043, (0 split)
##
## Node number 5: 14 observations
    predicted class=1 expected loss=0.1428571 P(node) =0.03381643
##
##
       class counts:
                         2
                              12
##
      probabilities: 0.143 0.857
##
## Node number 6: 14 observations
##
    predicted class=0 expected loss=0.2142857 P(node) =0.03381643
##
       class counts:
                        11
##
      probabilities: 0.786 0.214
##
## Node number 7: 173 observations,
                                       complexity param=0.01546392
##
     predicted class=1 expected loss=0.3526012 P(node) =0.4178744
##
       class counts:
                        61
                             112
##
      probabilities: 0.353 0.647
     left son=14 (137 obs) right son=15 (36 obs)
##
##
     Primary splits:
##
         temperature
                           < 26.25 to the left,
                                                  improve=2.274224, (0 missing)
                                                  improve=2.085689, (0 missing)
##
         ISI
                           < 17.8
                                    to the left,
         relative humidity < 26.5
                                    to the right, improve=2.085689, (0 missing)
##
##
                           < 3.8
                                    to the left,
                                                  improve=1.395720, (0 missing)
         wind speeds
         DC
                           < 693.7 to the right, improve=1.143698, (0 missing)
##
##
     Surrogate splits:
##
         relative humidity < 30.5
                                    to the right, agree=0.821, adj=0.139, (0 split)
                                    to the left, agree=0.809, adj=0.083, (0 split)
##
         FFMC
                           < 95.7
##
         DMC
                           < 50.35 to the right, agree=0.803, adj=0.056, (0 split)
         ISI
                                    to the left, agree=0.803, adj=0.056, (0 split)
##
                           < 19
```

```
##
         DC
                           < 323.95 to the right, agree=0.798, adj=0.028, (0 split)
##
##
  Node number 8: 167 observations,
                                        complexity param=0.01202749
##
     predicted class=0 expected loss=0.3892216 P(node) =0.4033816
##
       class counts:
                       102
                              65
      probabilities: 0.611 0.389
##
##
     left son=16 (42 obs) right son=17 (125 obs)
##
     Primary splits:
##
         relative humidity < 38.5
                                     to the left,
                                                   improve=3.434340, (0 missing)
         FFMC
##
                           < 91.15 to the right, improve=1.771958, (0 missing)
##
                           < 7.85
                                     to the right, improve=1.464489, (0 missing)
         temperature
##
         DMC
                           < 81.35 to the left,
                                                   improve=1.418259, (0 missing)
##
                           < 4.25
                                     to the right, improve=1.381895, (0 missing)
         wind speeds
##
     Surrogate splits:
##
         DC < 29.25 to the left,
                                   agree=0.766, adj=0.071, (0 split)
##
  Node number 9: 46 observations,
##
                                       complexity param=0.01546392
     predicted class=1 expected loss=0.3913043 P(node) =0.11111111
##
##
       class counts:
                        18
                              28
##
      probabilities: 0.391 0.609
##
     left son=18 (9 obs) right son=19 (37 obs)
##
     Primary splits:
##
         ISI
                           < 6.4
                                                   improve=1.6968270, (0 missing)
                                     to the left,
##
         relative humidity < 53.5
                                     to the right, improve=1.1801000, (0 missing)
##
         DMC
                           < 192.65 to the right, improve=1.1130430, (0 missing)
##
         DC
                           < 748.4 to the right, improve=0.6915381, (0 missing)
                           < 3.8
                                     to the left, improve=0.5899666, (0 missing)
##
         wind speeds
##
     Surrogate splits:
##
         FFMC < 90.2
                       to the left, agree=0.848, adj=0.222, (0 split)
##
         DMC < 87.1
                       to the left, agree=0.848, adj=0.222, (0 split)
              < 736.9 to the left, agree=0.848, adj=0.222, (0 split)
##
         DC.
##
## Node number 14: 137 observations,
                                        complexity param=0.01546392
                        expected loss=0.3941606 P(node) =0.3309179
##
     predicted class=1
##
       class counts:
                        54
                              83
      probabilities: 0.394 0.606
##
##
     left son=28 (65 obs) right son=29 (72 obs)
##
     Primary splits:
##
         FFMC
                           < 92.15
                                    to the right, improve=2.382794, (0 missing)
##
         relative humidity < 34.5
                                     to the left,
                                                   improve=2.373746, (0 missing)
##
         DMC
                           < 144.2
                                    to the right, improve=1.934265, (0 missing)
                           < 3.8
                                     to the left, improve=1.892995, (0 missing)
##
         wind speeds
##
                           < 613.85 to the right, improve=1.660246, (0 missing)
##
     Surrogate splits:
##
         ISI
                           < 8.35
                                     to the right, agree=0.803, adj=0.585, (0 split)
         DMC
                           < 114.85 to the right, agree=0.628, adj=0.215, (0 split)
##
                                     to the right, agree=0.628, adj=0.215, (0 split)
##
                           < 22
         temperature
         relative humidity < 32.5
                                     to the left, agree=0.628, adj=0.215, (0 split)
##
##
         wind speeds
                           < 3.8
                                     to the right, agree=0.613, adj=0.185, (0 split)
##
## Node number 15: 36 observations
##
     predicted class=1 expected loss=0.1944444 P(node) =0.08695652
##
       class counts:
                         7
                              29
##
      probabilities: 0.194 0.806
```

```
##
## Node number 16: 42 observations
##
    predicted class=0 expected loss=0.2142857 P(node) =0.1014493
##
       class counts:
                        33
                               9
##
      probabilities: 0.786 0.214
##
## Node number 17: 125 observations,
                                        complexity param=0.01202749
##
    predicted class=0 expected loss=0.448 P(node) =0.3019324
##
                              56
       class counts:
                        69
##
      probabilities: 0.552 0.448
##
    left son=34 (21 obs) right son=35 (104 obs)
##
    Primary splits:
##
         DMC
                           < 141.85 to the right, improve=2.2241830, (0 missing)
##
                           < 19.45 to the right, improve=1.3809010, (0 missing)
         temperature
##
         relative humidity < 84.5
                                    to the right, improve=1.3809010, (0 missing)
##
         FFMC
                           < 91.15 to the right, improve=1.1218720, (0 missing)
##
         ISI
                           < 3.45
                                    to the left, improve=0.9318431, (0 missing)
##
     Surrogate splits:
##
         temperature < 19.45 to the right, agree=0.856, adj=0.143, (0 split)
##
## Node number 18: 9 observations
##
     predicted class=0 expected loss=0.3333333 P(node) =0.02173913
##
       class counts:
                        6
##
      probabilities: 0.667 0.333
##
## Node number 19: 37 observations
##
     predicted class=1 expected loss=0.3243243 P(node) =0.08937198
##
       class counts:
                        12
                              25
      probabilities: 0.324 0.676
##
##
## Node number 28: 65 observations,
                                       complexity param=0.01546392
    predicted class=1 expected loss=0.4923077 P(node) =0.1570048
##
##
       class counts:
                        32
                              33
      probabilities: 0.492 0.508
##
##
     left son=56 (15 obs) right son=57 (50 obs)
##
    Primary splits:
##
         DMC
                     < 168.65 to the right, improve=3.692308, (0 missing)
         DC
##
                     < 695.45 to the right, improve=2.862308, (0 missing)
                     < 92.45 to the left, improve=1.954572, (0 missing)
##
         FFMC
##
         temperature < 23.85 to the right, improve=1.886247, (0 missing)
##
         ISI
                     < 14.9
                              to the left, improve=1.728157, (0 missing)
##
     Surrogate splits:
         FFMC
                           < 96.05 to the right, agree=0.815, adj=0.200, (0 split)
##
##
         relative humidity < 47.5
                                    to the right, agree=0.815, adj=0.200, (0 split)
##
         rain amount
                           < 0.2
                                    to the right, agree=0.800, adj=0.133, (0 split)
                           < 25.75 to the right, agree=0.785, adj=0.067, (0 split)
##
         temperature
##
## Node number 29: 72 observations
##
     predicted class=1 expected loss=0.3055556 P(node) =0.173913
##
       class counts:
                        22
                              50
##
      probabilities: 0.306 0.694
##
## Node number 34: 21 observations
    predicted class=0 expected loss=0.2380952 P(node) =0.05072464
##
```

```
##
       class counts:
                        16
##
      probabilities: 0.762 0.238
##
## Node number 35: 104 observations,
                                        complexity param=0.01202749
##
     predicted class=0
                        expected loss=0.4903846 P(node) =0.2512077
##
       class counts:
                        53
                              51
##
      probabilities: 0.510 0.490
##
     left son=70 (25 obs) right son=71 (79 obs)
##
    Primary splits:
##
         FFMC
                           < 86.7
                                    to the left,
                                                   improve=1.910896, (0 missing)
##
         relative humidity < 41.5
                                    to the right, improve=1.828595, (0 missing)
##
                           < 8.45
                                    to the left,
                                                   improve=1.812875, (0 missing)
         DMC
##
         ISI
                           < 3.45
                                    to the left,
                                                   improve=1.565624, (0 missing)
##
                           < 16
                                                   improve=1.538490, (0 missing)
         temperature
                                    to the left,
##
     Surrogate splits:
##
         ISI
                     < 3.6
                              to the left,
                                            agree=0.942, adj=0.76, (0 split)
##
         DMC
                     < 33.05 to the left,
                                            agree=0.894, adj=0.56, (0 split)
##
         temperature < 8.25
                              to the left, agree=0.856, adj=0.40, (0 split)
##
         DC
                     < 61.5
                              to the left, agree=0.837, adj=0.32, (0 split)
##
  Node number 56: 15 observations
##
##
     predicted class=0
                        expected loss=0.2 P(node) =0.03623188
##
       class counts:
                        12
##
      probabilities: 0.800 0.200
##
## Node number 57: 50 observations,
                                       complexity param=0.01546392
##
     predicted class=1 expected loss=0.4 P(node) =0.1207729
##
       class counts:
                        20
                              30
##
      probabilities: 0.400 0.600
##
     left son=114 (20 obs) right son=115 (30 obs)
##
    Primary splits:
         FFMC
##
                           < 92.85
                                    to the left,
                                                   improve=4.166667, (0 missing)
##
         ISI
                           < 9
                                    to the left,
                                                   improve=3.841270, (0 missing)
         DC
                           < 717.5
##
                                    to the right, improve=3.020979, (0 missing)
##
         DMC
                           < 121.4 to the left,
                                                   improve=1.500000, (0 missing)
                                    to the left,
                                                   improve=1.500000, (0 missing)
##
         relative humidity < 32.5
##
     Surrogate splits:
         ISI
                           < 9
                                                   agree=0.80, adj=0.50, (0 split)
##
                                    to the left,
         DC
                           < 740.05 to the right, agree=0.78, adj=0.45, (0 split)
##
##
         DMC
                           < 121.4 to the left,
                                                   agree=0.76, adj=0.40, (0 split)
##
         relative humidity < 30
                                    to the left,
                                                   agree=0.76, adj=0.40, (0 split)
##
                           < 21.65
                                    to the left,
                                                   agree=0.64, adj=0.10, (0 split)
         temperature
##
## Node number 70: 25 observations,
                                       complexity param=0.01202749
##
    predicted class=0
                        expected loss=0.32 P(node) =0.06038647
##
       class counts:
                        17
      probabilities: 0.680 0.320
##
     left son=140 (12 obs) right son=141 (13 obs)
##
##
     Primary splits:
##
         temperature
                           < 10.35 to the right, improve=4.7261540, (0 missing)
##
         relative humidity < 52.5
                                    to the left,
                                                   improve=4.7261540, (0 missing)
##
         wind speeds
                           < 4.25
                                    to the left,
                                                   improve=1.9968830, (0 missing)
##
         DMC
                           < 18.85 to the right, improve=0.7501299, (0 missing)
         DC
                           < 72.75 to the right, improve=0.7501299, (0 missing)
##
```

```
##
     Surrogate splits:
##
         relative humidity < 49.5 to the left, agree=0.80, adj=0.583, (0 split)
##
                           < 30.15 to the right, agree=0.68, adj=0.333, (0 split)
         DMC
##
         wind speeds
                           < 3.55
                                    to the left, agree=0.68, adj=0.333, (0 split)
                           < 508.85 to the right, agree=0.64, adj=0.250, (0 split)
##
         DC
##
                           < 71.65 to the left, agree=0.60, adj=0.167, (0 split)
         FFMC
##
## Node number 71: 79 observations,
                                       complexity param=0.01202749
    predicted class=1 expected loss=0.4556962 P(node) =0.1908213
##
##
      class counts:
                        36
                              43
##
     probabilities: 0.456 0.544
##
     left son=142 (43 obs) right son=143 (36 obs)
##
    Primary splits:
##
                                    to the right, improve=1.9805710, (0 missing)
         relative humidity < 47.5
##
         DC
                           < 100.55 to the right, improve=0.9832800, (0 missing)
##
         temperature
                           < 16
                                    to the left, improve=0.9548085, (0 missing)
##
        wind speeds
                           < 4.25
                                    to the right, improve=0.8767014, (0 missing)
##
         DMC
                           < 128
                                    to the left, improve=0.5550908, (0 missing)
##
     Surrogate splits:
##
         DC
                     < 674.1 to the right, agree=0.608, adj=0.139, (0 split)
                             to the left, agree=0.608, adj=0.139, (0 split)
##
         temperature < 18.3
##
         FFMC
                     < 87.75 to the right, agree=0.582, adj=0.083, (0 split)
                              to the left, agree=0.582, adj=0.083, (0 split)
##
                     < 9.55
         ISI
##
         wind speeds < 1.1
                             to the right, agree=0.582, adj=0.083, (0 split)
##
## Node number 114: 20 observations
##
    predicted class=0 expected loss=0.35 P(node) =0.04830918
##
       class counts:
                        13
                               7
##
      probabilities: 0.650 0.350
##
## Node number 115: 30 observations
    predicted class=1 expected loss=0.2333333 P(node) =0.07246377
##
##
       class counts:
                        7
      probabilities: 0.233 0.767
##
##
## Node number 140: 12 observations
##
    predicted class=0 expected loss=0 P(node) =0.02898551
##
      class counts:
                        12
##
      probabilities: 1.000 0.000
##
## Node number 141: 13 observations
##
    predicted class=1 expected loss=0.3846154 P(node) =0.03140097
##
       class counts:
                         5
##
      probabilities: 0.385 0.615
##
## Node number 142: 43 observations,
                                       complexity param=0.01202749
    predicted class=0 expected loss=0.4418605 P(node) =0.1038647
##
##
       class counts:
                        24
                              19
##
     probabilities: 0.558 0.442
##
     left son=284 (9 obs) right son=285 (34 obs)
##
    Primary splits:
         relative humidity < 52.5
##
                                    to the left, improve=4.4445960, (0 missing)
##
        FFMC
                           < 90.8
                                    to the right, improve=2.0015100, (0 missing)
##
         ISI
                           < 5.6
                                    to the right, improve=1.8664450, (0 missing)
```

```
##
         DMC
                           < 104.65 to the right, improve=1.0122580, (0 missing)
##
         DC
                           < 639.15 to the right, improve=0.9668781, (0 missing)
##
     Surrogate splits:
##
         temperature < 18.4
                              to the right, agree=0.837, adj=0.222, (0 split)
                              to the left, agree=0.814, adj=0.111, (0 split)
##
         DMC
                     < 21.9
##
                              to the left, agree=0.814, adj=0.111, (0 split)
         DC
                     < 45.9
##
  Node number 143: 36 observations
##
     predicted class=1 expected loss=0.3333333 P(node) =0.08695652
##
##
       class counts:
                        12
                              24
##
      probabilities: 0.333 0.667
##
##
  Node number 284: 9 observations
##
    predicted class=0 expected loss=0 P(node) =0.02173913
##
       class counts:
                         9
##
      probabilities: 1.000 0.000
##
## Node number 285: 34 observations,
                                        complexity param=0.01202749
##
    predicted class=1 expected loss=0.4411765 P(node) =0.0821256
##
       class counts:
                        15
                              19
##
      probabilities: 0.441 0.559
##
     left son=570 (24 obs) right son=571 (10 obs)
##
     Primary splits:
##
         relative humidity < 57
                                    to the right, improve=3.2980390, (0 missing)
##
         ISI
                                    to the right, improve=2.0916290, (0 missing)
##
         DMC
                           < 104.65 to the right, improve=1.2390140, (0 missing)
         FFMC
                           < 90.25 to the right, improve=1.0008170, (0 missing)
##
                           < 17.55 to the left,
                                                   improve=0.7647059, (0 missing)
##
         temperature
##
     Surrogate splits:
##
         FFMC < 94.15 to the left, agree=0.735, adj=0.1, (0 split)
##
              < 712.1 to the left, agree=0.735, adj=0.1, (0 split)
##
         ISI < 15.85 to the left, agree=0.735, adj=0.1, (0 split)
##
## Node number 570: 24 observations,
                                        complexity param=0.01030928
##
    predicted class=0 expected loss=0.4166667 P(node) =0.05797101
       class counts:
                        14
##
##
      probabilities: 0.583 0.417
     left son=1140 (16 obs) right son=1141 (8 obs)
##
##
    Primary splits:
##
         ISI
                     < 6.65
                              to the right, improve=1.0416670, (0 missing)
##
         temperature < 14.9
                              to the left, improve=0.6736597, (0 missing)
##
         DMC
                     < 104.65 to the right, improve=0.6666667, (0 missing)
                     < 683.6 to the right, improve=0.6666667, (0 missing)
##
         DC
##
         FFMC
                     < 89.9
                              to the right, improve=0.4733894, (0 missing)
##
     Surrogate splits:
##
         FFMC
                              to the right, agree=0.792, adj=0.375, (0 split)
                     < 88.4
         DMC
                              to the right, agree=0.750, adj=0.250, (0 split)
##
                     < 90.9
         DC
                     < 720.05 to the left, agree=0.750, adj=0.250, (0 split)
##
##
         temperature < 11.05 to the right, agree=0.708, adj=0.125, (0 split)
##
## Node number 571: 10 observations
##
     predicted class=1 expected loss=0.1 P(node) =0.02415459
##
       class counts:
                         1
##
      probabilities: 0.100 0.900
```

```
##
##
  Node number 1140: 16 observations
    predicted class=0 expected loss=0.3125 P(node) =0.03864734
##
##
       class counts:
                        11
                               5
      probabilities: 0.688 0.312
##
##
##
  Node number 1141: 8 observations
##
    predicted class=1 expected loss=0.375 P(node) =0.01932367
##
       class counts:
                         3
      probabilities: 0.375 0.625
##
```

```
rpart.plot(dt, box.palette="RdBu", shadow.col="gray", nn=TRUE)
```



```
#### Random Forest
traindata2 <- dplyr::select(traindata,(1:9))
testdata2 <- testdata
colnames(traindata2) <- c("FFMC","DMC","DC", "ISI","Temp","Rel_Hum","Wind_Speed","Rain_A
mt","Y/N")
colnames(testdata2) <- c("FFMC","DMC","DC", "ISI","Temp","Rel_Hum","Wind_Speed","Rain_Am
t","Y/N")
traindata2$`Y/N` <- as.numeric(traindata2$`Y/N`)
traindata2 <- as.data.frame(traindata2)
Random_Forest <- randomForest(formula = traindata2$`Y/N` ~ .,data=traindata2,ntree = 400
, mtry = 6, importance = TRUE)
Random_Forest</pre>
```

```
plot(Random_Forest)
```

## Random\_Forest



```
gt <- getTree(Random_Forest, 5, labelVar=TRUE)
gt <- as.data.frame(gt)
summary(gt)</pre>
```

```
## left daughter
                  right daughter
                                     split var
                                               split point
## Min. : 0.00 Min. : 0.00
                                 Temp : 20
                                               Min. : 0.00
## 1st Qu.: 0.00
                  1st Qu.: 0.00
                                 Rel_Hum
                                          : 19
                                               1st Qu.: 0.00
## Median: 0.00
                  Median: 0.00
                                Wind Speed: 19
                                               Median: 0.00
## Mean : 58.75
                  Mean : 59.25
                                 ISI
                                         : 18
                                               Mean : 57.10
   3rd Qu.:117.00
                  3rd Qu.:118.00
                                 Rain_Amt : 15
                                                3rd Qu.: 29.65
##
## Max. :234.00
                  Max. :235.00
                                 (Other) : 26
                                               Max. :811.65
##
                                 NA's
                                         :118
##
      status
                  prediction
## Min. :-3.000
                  Min.
                        :0.900
## 1st Qu.:-3.000
                 1st Qu.:2.836
## Median :-1.000
                 Median :4.000
## Mean :-1.996
                  Mean :4.042
## 3rd Qu.:-1.000
                  3rd Qu.:4.940
## Max. :-1.000
                  Max. :9.400
##
```

```
y_pred = predict(Random_Forest, newdata = testdata2[,-9])
rfp <- as.data.frame(y_pred)
rfp$y_pred <- as.factor(rfp$y_pred)
rfa <- as.data.frame(testdata2[,9])
rfa$`Y/N` <- as.factor(rfa$`Y/N`)
length(rfa$`Y/N`)</pre>
```

```
## [1] 171
```

```
length(rfp$y_pred)
```

#### ## [1] 171

```
rfa$`Y/N` <- as.factor(rfa$`Y/N`)
rfp$y_pred <- as.factor(rfp$y_pred)
#confusionMatrix(rfp$y_pred, rfa$`Y/N`)
hist(ff3$fire__no_yes)</pre>
```

# Histogram of ff3\$fire\_\_no\_yes



```
ggplot(ff3, aes(x=ff3$fire__no_yes)) + geom_histogram(binwidth=0.4) + labs(title = "Seve
re Fire Yes or No", x="No
Yes", y="count")
```

### Severe Fire Yes or No



```
# Naive Bayes
ff <- ForestFiresWith
#ff <-as.data.frame(read.csv("C:/Users/tmacd/Downloads/fire.csv"))
#ff<-read.csv("C:/Users/tmacd/Downloads/fire.csv")
#ff <-as.data.frame(ff)

#fff<-ff %>% mutate_if(is.numeric,funs(as.factor))
#str(ff)

#corrplot(ff, method = "number")
#corrplot(corrgram(ff))
str(ff)
```

```
## Classes 'tbl_df', 'tbl' and 'data.frame': 517 obs. of 14 variables:
## $ X
                     : num 7 2 2 3 5 6 6 3 2 6 ...
## $ Y
                     : num 5 4 2 4 4 5 4 4 4 3 ...
                            "apr" "jan" "feb" "mar" ...
## $ month
                     : chr
## $ day
                     : chr "sun" "sat" "sat" "sat" ...
                     : num 81.9 82.1 79.5 69 85.2 75.1 75.1 86.9 93.4 91 ...
## $ FFMC
## $ DMC
                     : num 3 3.7 3.6 2.4 4.9 4.4 4.4 6.6 15 14.6 ...
## $ DC
                     : num 7.9 9.3 15.3 15.5 15.8 16.2 16.2 18.7 25.6 25.6 ...
                     : num 3.5 2.9 1.8 0.7 6.3 1.9 1.9 3.2 11.4 12.3 ...
## $ ISI
## $ temperature : num 13.4 5.3 4.6 17.4 7.5 4.6 5.1 8.8 15.2 13.7 ...
## $ relative humidity: num 75 78 59 24 46 82 77 35 19 33 ...
## $ wind speeds
                  : num 1.8 3.1 0.9 5.4 8 6.3 5.4 3.1 7.6 9.4 ...
## $ rain amount
                    : num 0 0 0 0 0 0 0 0 0 ...
## $ area
                    : num 0 0 6.84 0 24.24 ...
## $ fire no yes : num 0 0 1 0 1 1 1 1 0 1 ...
```

```
ff$month <- as.factor(ff$month)
ff$day <- as.factor(ff$day)
ff$fire__no_yes <- as.factor(ff$fire__no_yes)

ff <- japply( ff, which(sapply(ff, class)=="integer"), as.numeric )
str(ff)</pre>
```

```
## Classes 'tbl df', 'tbl' and 'data.frame': 517 obs. of 14 variables:
## $ X
                     : num 7 2 2 3 5 6 6 3 2 6 ...
## $ Y
                      : num 5 4 2 4 4 5 4 4 4 3 ...
                     : Factor w/ 12 levels "apr", "aug", "dec", ..: 1 5 4 8 4 4 4 4 8 1
## $ month
. . .
                     : Factor w/ 7 levels "fri", "mon", "sat", ...: 4 3 3 3 1 6 6 7 6 4
## $ day
. . .
                     : num 81.9 82.1 79.5 69 85.2 75.1 75.1 86.9 93.4 91 ...
## $ FFMC
## $ DMC
                     : num 3 3.7 3.6 2.4 4.9 4.4 4.4 6.6 15 14.6 ...
## $ DC
                     : num 7.9 9.3 15.3 15.5 15.8 16.2 16.2 18.7 25.6 25.6 ...
                     : num 3.5 2.9 1.8 0.7 6.3 1.9 1.9 3.2 11.4 12.3 ...
## $ ISI
## $ temperature : num 13.4 5.3 4.6 17.4 7.5 4.6 5.1 8.8 15.2 13.7 ...
## $ relative humidity: num 75 78 59 24 46 82 77 35 19 33 ...
## $ wind speeds : num 1.8 3.1 0.9 5.4 8 6.3 5.4 3.1 7.6 9.4 ...
                   : num 0 0 0 0 0 0 0 0 0 0 ...
## $ rain amount
## $ area
                     : num 0 0 6.84 0 24.24 ...
## $ fire__no_yes : Factor w/ 2 levels "0","1": 1 1 2 1 2 2 2 2 1 2 ...
```

```
numff<-ff[,-c(1,2,3,4)]
str(numff)</pre>
```

```
## Classes 'tbl_df', 'tbl' and 'data.frame': 517 obs. of 10 variables:
## $ FFMC
                     : num 81.9 82.1 79.5 69 85.2 75.1 75.1 86.9 93.4 91 ...
                     : num 3 3.7 3.6 2.4 4.9 4.4 4.4 6.6 15 14.6 ...
## $ DMC
## $ DC
                     : num 7.9 9.3 15.3 15.5 15.8 16.2 16.2 18.7 25.6 25.6 ...
## $ ISI
                     : num 3.5 2.9 1.8 0.7 6.3 1.9 1.9 3.2 11.4 12.3 ...
                     : num 13.4 5.3 4.6 17.4 7.5 4.6 5.1 8.8 15.2 13.7 ...
## $ temperature
## $ relative humidity: num 75 78 59 24 46 82 77 35 19 33 ...
                  : num 1.8 3.1 0.9 5.4 8 6.3 5.4 3.1 7.6 9.4 ...
## $ wind speeds
                   : num 0 0 0 0 0 0 0 0 0 0 ...
## $ rain amount
## $ area
                    : num 0 0 6.84 0 24.24 ...
## $ fire__no_yes : Factor w/ 2 levels "0","1": 1 1 2 1 2 2 2 2 1 2 ...
```

#### ggpairs(numff)

```
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```

```
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```

```
FFMC
                DMC
                           DC
                                     ISI
                                            emperature ative humic /ind speed
                                                                                                 no_ye
                                                                         ain amoun
                                                                                      area
0.20 -
8:18 -
8:88 -
                          Corr:
                                    Corr:
                                            Corr:
                                                      Corr:
                                                                 Corr:
                Corr:
                                                                           Corr:
                                                                                     Corr:
                0.383
                         0.331
                                   0.532
                                             0.432 -0.301
                                                               -0.0285
                                                                          0.0567
                                                                                    0.0401
300
                                              Corr: Corr:
                                                                 Corr
                                    Corr:
                                                                           Corr:
                                                                                     Corr:
                          Corr:
200 -
                                   0.305
                                              0.47
                                                      0.0738
                                                                -0.105
                                                                          0.0748
                                                                                     0.073
                                                      Corr:
                                              Corr:
                                                                 Corr.
                                                                           Corr:
                                    Corr:
                                                                                     Corr:
                                             0.496
                                                      -0.0392
                                                                 -0.203
                                                                          0.0359
                                                                                    0.0494
                                              Corr:
                                                      Corr:
                                                                 Corr
                                                                          Corr:
                                                                                     Corr:
 40 -
 20 -
                                               .394
                                                       +0.133
                                                                 0.107
                                                                          0.0677
                                                                                   0.00826
  0 .
 30 -
20 -
                                                                           Corr:
                                                                  Corr:
                                                                 -0.227
                                                                          0.0695
                                                                                    0.0978
                                                                  Corr:
                                                                           Corr:
                                                                                     Corr:
                                                                0.0694
                                                                          0.0998
                                                                                    -0.0755
                                                                                                       Б
                                                                                     Corr:
                                                                            Corr:
                                                                          0.0611
                                                                                    0.0123
  6 -
4 -
2 -
                                                                                                       Corr:
                                                                                    -0.00737
                                                                                                       on'
    25 50 751000 100200800025500750 0 20 40
                                           0 10 20 30 25 50 75 10 0.02.55.07.5 0 2 4 6 03 0 60 9 0 0
```

```
x<-traindata[ , -which(names(traindata) %in% c("fire no yes"))]</pre>
str(x)
## Classes 'tbl df', 'tbl' and 'data.frame':
                                                 346 obs. of 10 variables:
##
   $ X
                        : num
                               0.693 1.386 1.099 1.099 1.792 ...
                               2 3 4 5 5 6 4 4 4 4 ...
##
   $ Y
                       : num
   $ FFMC
                               84 90.3 91.8 93.5 87.1 91.1 91.9 91.7 91.5 92.1 ...
##
                       : num
                               9.3 290 170.9 139.4 291.3 ...
##
   $ DMC
                       : num
   $ DC
                               34 855 692 594 861 ...
##
                       : num
##
   $ ISI
                               2.1 7.4 13.7 20.3 4 5.8 8 7.8 10.7 9.6 ...
                        : num
                               13.9 19.9 20.6 17.6 17 23.4 21.4 17 17.1 17.4 ...
   $ temperature
##
                       : num
```

#testdata\$fire no yes <- as.factor(testdata\$fire no yes)</pre>

\$ relative humidity: num 40 44 59 52 67 22 38 27 43 57 ...

: num 0 0 0 0 0 0 0 0 0 0 ...

: num

##

##

##

\$ wind speeds

\$ rain amount

```
y <- traindata[,"fire__no_yes"]
str(y)</pre>
```

5.4 3.1 0.9 5.8 4.9 2.7 2.7 4.9 5.4 4.5 ...

```
## Classes 'tbl_df', 'tbl' and 'data.frame': 346 obs. of 1 variable:
## $ fire__no_yes: num 0 1 0 0 1 0 1 1 0 0 ...
```

```
##remove "area" column.
ff <- ff[,-13]
#str(ff)
#sapply(ff, sd)
trainRatio <- .67
set.seed(1016) # Set Seed so that same sample can be reproduced in future also
sample <- sample.int(n = nrow(ff), size = floor(trainRatio*nrow(ff)), replace = FALSE)
testdata <- ff[-sample, ]
str(testdata)</pre>
```

```
## Classes 'tbl_df', 'tbl' and 'data.frame':
                                              171 obs. of 13 variables:
##
   $ X
                      : num 7 6 3 6 3 5 6 2 6 4 ...
## $ Y
                      : num 5 5 4 3 4 5 5 2 5 5 ...
## $ month
                      : Factor w/ 12 levels "apr", "aug", "dec", ...: 1 4 4 1 4 8 8 4 8 4
. . .
                      : Factor w/ 7 levels "fri", "mon", "sat", ...: 4 6 7 4 3 5 2 1 5 4
## $ day
. . .
## $ FFMC
                      : num 81.9 75.1 86.9 91 83.9 90.9 87.2 86.6 91.3 85 ...
## $ DMC
                      : num
                             3 4.4 6.6 14.6 8 18.9 15.1 13.2 20.6 9 ...
## $ DC
                            7.9 16.2 18.7 25.6 30.2 30.6 36.9 43 43.5 56.9 ...
                      : num
## $ ISI
                      : num 3.5 1.9 3.2 12.3 2.6 8 7.1 5.3 8.5 3.5 ...
## $ temperature
                      : num 13.4 4.6 8.8 13.7 12.7 11.6 10.2 12.3 13.3 10.1 ...
## $ relative humidity: num 75 82 35 33 48 48 45 51 27 62 ...
## $ wind speeds
                     : num 1.8 6.3 3.1 9.4 1.8 5.4 5.8 0.9 3.6 1.8 ...
## $ rain amount
                     : num 0 0 0 0 0 0 0 0 0 ...
                      : Factor w/ 2 levels "0", "1": 1 2 2 2 1 1 2 1 2 2 ...
## $ fire no yes
```

```
testdata <- testdata[, -c(1:4)]
summary(testdata)</pre>
```

```
##
        FFMC
                       DMC
                                        DC
                                                      ISI
                       : 3.00
##
  Min.
          :50.40
                  Min.
                                  Min.
                                        : 7.9
                                                 Min.
                                                        : 0.400
##
   1st Qu.:90.10
                  1st Qu.: 51.75
                                  1st Qu.:399.9
                                                 1st Qu.: 6.700
## Median :91.60
                  Median : 97.90
                                  Median:664.5
                                                 Median : 8.400
                  Mean :100.55
                                  Mean :536.5
## Mean :90.48
                                                 Mean : 8.763
   3rd Qu.:92.50
                  3rd Qu.:130.90
                                  3rd Qu.:713.5
                                                 3rd Qu.:10.100
##
## Max.
          :96.10
                  Max.
                        :276.30
                                  Max.
                                         :825.1
                                                 Max.
                                                       :22.600
                  relative humidity wind speeds
##
   temperature
                                                   rain amount
## Min.
          : 4.60
                  Min.
                         :17.00
                                   Min.
                                          :0.900
                                                  Min.
                                                         :0.00000
##
   1st Qu.:14.65
                  1st Qu.:32.50
                                   1st Qu.:2.700
                                                  1st Qu.:0.00000
   Median :18.70
                  Median :41.00
                                   Median :4.000
                                                 Median :0.00000
##
## Mean :18.18
                  Mean :44.82
                                   Mean :4.029
                                                 Mean :0.01287
   3rd Qu.:21.85
                  3rd Qu.:54.00
                                  3rd Qu.:5.400 3rd Qu.:0.00000
##
## Max. :30.60
                  Max. :99.00
                                  Max. :9.400 Max. :1.40000
##
   fire no yes
##
   0:80
   1:91
##
##
##
##
##
```

```
traindata <- ff[sample, ]
traindata <- traindata[, -c(1:4)]
summary(traindata)</pre>
```

```
##
                                                  ISI
       FFMC
                     DMC
                                     DC
## Min. :18.70
                 Min. : 1.10
                                Min. : 9.3
                                              Min. : 0.00
  1st Ou.:90.30
                 1st Ou.: 80.75
                                1st Ou.:474.9
                                              1st Ou.: 6.30
## Median :91.70
                                Median :661.8
                                              Median : 8.40
                 Median :111.70
## Mean :90.73
                 Mean :115.97
                                Mean :553.6
                                              Mean : 9.15
## 3rd Qu.:93.10
                 3rd Qu.:146.97
                                3rd Qu.:713.9
                                              3rd Ou.:11.30
## Max. :96.20
                 Max. :291.30 Max. :860.6
                                              Max. :56.10
##
   temperature
                 relative humidity wind speeds
                                              rain amount
                                       :0.400 Min.
## Min. : 2.20
                 Min. : 15.00
                              Min.
                                                     :0.00000
## 1st Qu.:16.10
                 1st Qu.: 33.00
                               1st Qu.:2.700 1st Qu.:0.00000
## Median :19.60
                 Median: 42.00 Median: 4.000
                                              Median :0.00000
## Mean :19.24
                 Mean : 44.03 Mean :4.012 Mean :0.02601
                 3rd Qu.: 53.00 3rd Qu.:4.900 3rd Qu.:0.00000
## 3rd Qu.:23.30
## Max. :33.30
                 Max. :100.00 Max. :9.400 Max. :6.40000
## fire__no_yes
## 0:167
## 1:179
##
##
##
##
```

```
#View(traindata)

traindata2 <- traindata
colnames(traindata2) <- c("FFMC","DMC","DC", "ISI","Temp","Rel_Hum","Wind_Speed","Rain_A
mt","Y/N")
traindata2$`Y/N` <- as.factor(traindata2$`Y/N`)
traindata2 <- as.data.frame(traindata2)

train_naibayes <- naiveBayes(traindata2$`Y/N` ~., data=traindata2, na.action = na.pass)
str(traindata2)</pre>
```

```
## 'data.frame':
                   346 obs. of 9 variables:
## $ FFMC
              : num 84 90.3 91.8 93.5 87.1 91.1 91.9 91.7 91.5 92.1 ...
## $ DMC
              : num 9.3 290 170.9 139.4 291.3 ...
              : num 34 855 692 594 861 ...
## $ DC
##
  $ ISI
              : num 2.1 7.4 13.7 20.3 4 5.8 8 7.8 10.7 9.6 ...
               : num 13.9 19.9 20.6 17.6 17 23.4 21.4 17 17.1 17.4 ...
## $ Temp
## $ Rel_Hum
               : num 40 44 59 52 67 22 38 27 43 57 ...
## $ Wind Speed: num 5.4 3.1 0.9 5.8 4.9 2.7 2.7 4.9 5.4 4.5 ...
##
  $ Rain Amt : num 0 0 0 0 0 0 0 0 0 ...
## $ Y/N
               : Factor w/ 2 levels "0", "1": 1 2 1 1 2 1 2 2 1 1 ...
```

```
#removing yes/no label to test
testdata2 <- testdata[,-9]
#Naive Bayes model Prediction
nb Pred <- predict(train naibayes,testdata2)</pre>
## Warning in predict.naiveBayes(train naibayes, testdata2): Type mismatch
## between training and new data for variable 'Temp'. Did you use factors with
## numeric labels for training, and numeric values for new data?
## Warning in predict.naiveBayes(train_naibayes, testdata2): Type mismatch
## between training and new data for variable 'Rel_Hum'. Did you use factors
## with numeric labels for training, and numeric values for new data?
## Warning in predict.naiveBayes(train_naibayes, testdata2): Type mismatch
## between training and new data for variable 'Wind_Speed'. Did you use
## factors with numeric labels for training, and numeric values for new data?
## Warning in predict.naiveBayes(train_naibayes, testdata2): Type mismatch
## between training and new data for variable 'Rain_Amt'. Did you use factors
## with numeric labels for training, and numeric values for new data?
nb Pred
  ## Levels: 0 1
```

#Testing accurancy of naive bayes model with Kaggle train data sub set

(confusionMatrix(nb Pred, testdata\$fire no yes))

testsdata2 <- testdata[,-9]

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction 0 1
##
            0 18 22
            1 62 69
##
##
##
                  Accuracy: 0.5088
                    95% CI: (0.4313, 0.5859)
##
##
       No Information Rate : 0.5322
       P-Value [Acc > NIR] : 0.755
##
##
##
                     Kappa : -0.0173
##
##
    Mcnemar's Test P-Value: 2.088e-05
##
               Sensitivity: 0.2250
##
               Specificity: 0.7582
##
##
            Pos Pred Value: 0.4500
##
            Neg Pred Value: 0.5267
##
                Prevalence: 0.4678
            Detection Rate: 0.1053
##
      Detection Prevalence: 0.2339
##
##
         Balanced Accuracy: 0.4916
##
          'Positive' Class : 0
##
##
```

```
#Plot Variable performance
# X <- varImp(train_naibayes)
# X
# plot(X) <-sapply(y,as.factor)
y <- as.factor(y$fire__no_yes)

#model = train(x,y,'nb',trControl=trainControl(method='cv',number=10))
train_naibayes <- naiveBayes(traindata2$`Y/N` ~., data=traindata2, na.action = na.pass)
train_naibayes</pre>
```

```
##
## Naive Bayes Classifier for Discrete Predictors
##
## Call:
## naiveBayes.default(x = X, y = Y, laplace = laplace)
##
## A-priori probabilities:
## Y
##
       0
## 0.482659 0.517341
## Conditional probabilities:
##
     FFMC
## Y
         [,1]
                 [,2]
##
   0 90.05269 7.482170
## 1 91.35251 3.311494
##
## DMC
## Y
        [,1] \qquad [,2]
## 0 109.5365 68.60180
## 1 121.9804 63.42465
##
##
    DC
## Y [,1] [,2]
##
   0 523.6629 263.3780
   1 581.5609 226.7034
##
##
##
     ISI
## Y
        [,1] \qquad [,2]
## 0 8.859281 5.523784
    1 9.420670 4.140872
##
##
##
     Temp
## Y [,1] [,2]
    0 18.62515 5.596134
##
##
    1 19.81676 6.288258
##
##
   Rel Hum
## Y [,1] [,2]
    0 45.19760 17.54177
##
##
   1 42.93296 14.96010
##
##
   Wind_Speed
## Y
         [,1]
                [,2]
##
    0 3.958084 1.581875
    1 4.062011 1.887305
##
##
##
    Rain Amt
## Y
            [,1] [,2]
##
    0 0.01556886 0.1052685
##
    1 0.03575419 0.4783585
```

```
# str(model)
#Model Evaluation
#Predict testing set
Predict <- predict(train naibayes,newdata = testdata )</pre>
## Warning in predict.naiveBayes(train naibayes, newdata = testdata): Type
## mismatch between training and new data for variable 'Temp'. Did you use
## factors with numeric labels for training, and numeric values for new data?
## Warning in predict.naiveBayes(train_naibayes, newdata = testdata): Type
## mismatch between training and new data for variable 'Rel_Hum'. Did you use
## factors with numeric labels for training, and numeric values for new data?
## Warning in predict.naiveBayes(train_naibayes, newdata = testdata): Type
## mismatch between training and new data for variable 'Wind_Speed'. Did you
## use factors with numeric labels for training, and numeric values for new
## data?
## Warning in predict.naiveBayes(train_naibayes, newdata = testdata): Type
## mismatch between training and new data for variable 'Rain Amt'. Did you use
## factors with numeric labels for training, and numeric values for new data?
#Get the confusion matrix to see accuracy value and other parameter values
```

Predict

```
##
## Levels: 0 1
```

confusionMatrix(Predict, testdata\$fire no yes )

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction 0 1
##
            0 18 22
            1 62 69
##
##
##
                  Accuracy: 0.5088
##
                    95% CI: (0.4313, 0.5859)
##
       No Information Rate: 0.5322
       P-Value [Acc > NIR] : 0.755
##
##
##
                     Kappa : -0.0173
##
##
   Mcnemar's Test P-Value: 2.088e-05
##
               Sensitivity: 0.2250
##
##
               Specificity: 0.7582
##
            Pos Pred Value: 0.4500
##
            Neg Pred Value: 0.5267
##
                Prevalence: 0.4678
            Detection Rate: 0.1053
##
      Detection Prevalence: 0.2339
##
         Balanced Accuracy: 0.4916
##
##
          'Positive' Class: 0
##
##
```

### str(ff6)

```
## 'data.frame': 414 obs. of 9 variables:
## $ FFMC
                      : num 88.8 91 92.8 88.2 84.6 90.3 75.1 91.7 92.1 91.2 ...
## $ DMC
                      : num 147.3 129.5 73.2 55.2 26.4 ...
                     : num 614 693 713 732 352 ...
## $ DC
## $ ISI
                      : num 9 7 22.6 11.6 2 7.4 1.9 11.1 9.6 12.5 ...
                   : num 14.4 18.8 19.3 15.2 5.1 19.9 4.6 16.8 16.6 12.6 ...
## $ temperature
## $ relative humidity: num 66 40 38 64 61 44 82 45 47 90 ...
## $ wind speeds
                   : num 5.4 2.2 4 3.1 4.9 3.1 6.3 4.5 0.9 7.6 ...
## $ rain amount
                     : num 0 0 0 0 0 0 0 0 0 0 0.2 ...
## $ fire no yes
                     : num 0 1 0 1 1 1 1 1 1 0 ...
```

```
ff6$fire__no_yes <- as.factor(ff6$fire__no_yes)

IG.CORElearn <- attrEval(ff6$fire__no_yes ~ ., data=ff6, estimator = "InfGain")

IG.RWeka <- InfoGainAttributeEval(Species ~ ., data=iris,)

IG.FSelector <- information.gain(Species ~ ., data=iris,)

IG.CORElearn</pre>
```

|                                                          | ## | FFMC DMC                      | DC          | ISI         |
|----------------------------------------------------------|----|-------------------------------|-------------|-------------|
| ## temperature relative humidity wind speeds rain amount | ## | 0.009286285 0.012383127       | 0.012410011 | 0.010643077 |
|                                                          | ## | temperature relative humidity | wind speeds | rain amount |
| ## 0.016756744 0.013328263 0.015651330 0.003070873       | ## | 0.016756744 0.013328263       | 0.015651330 | 0.003070871 |