RACHUNEK PRAWDOPODOBIEŃSTWA 1R LISTA ZADAŃ NR 6

- **1.** Niech X_1, \ldots, X_n będą niezależnymi zmiennymi losowymi o rozkładzie wykładnicznym z parametrem 1. Znajdź rozkład $Y = \min_{1 \le i \le n} X_i$. Czy X_1 i Y są niezależne?
- **2.** Zmienne losowe X_1, \ldots, X_n $(n \ge 6)$ są niezależne i mają ten sam rozkład: $\mathbb{P}(X_i = -1) = \mathbb{P}(X_i = 1) = 1/2$.
 - a) Czy zmienne $X_1 + X_2$, X_1X_2 są niezależne?
 - b) Czy zmienne $X_1 + X_2$, X_3 , $X_4 + X_5X_6$ są niezależne?
 - c) Czy zmienne X_1 , X_1X_2 , ..., X_1X_2 .. X_n są niezależne?
- **3.** Zmienne losowe X i Y są niezależne. Pokaż, że jeżeli X nie ma atomów, to $\mathbb{P}(X=Y)=0$.
- **4.** Z odcinka [0,1] wybieramy kolejno niezależnie nieskończenie wiele liczb X_1, X_2, \ldots , każda o rozkładzie jednostajnym. Udowodnij, że

$$\mathbb{P}(\lim_{n\to\infty} X_1 X_2 \dots X_n = 0) = 1.$$

- 5. Momenty przybycia autobusów A i B są niezależnymi zmiennymi losowymi X,Y o rozkładzie wykładniczym z parametrami λ i μ .
 - a) Znaleźć rozkład momentu przybycia pierwszego autobusu.
 - b) Obliczyć prawdopodobieństwo, że autobus A przyjedzie pierwszy.
- **6.** Zmienne losowe X i Y są niezależne i mają rozkłady wykładnicze z parametrami λ i μ odpowiednio. Znajdź rozkład zmiennej losowej X+Y.
- 7. Zmienne losowe $X_1,..,X_n$ są niezależne i mają rozkłady Poissona z parametrami λ_i . Pokaż, że $X_1+..+X_n$ ma rozkład Poissona z parametrem $\lambda_1+..+\lambda_n$.
- 8. Załóżmy, że X_1 i X_2 są niezależnymi zmiennymi losowymi o rozkładach odpowiednio $N(m_1,\sigma_1)$ i $N(m_2,\sigma_2)$. Oblicz rozkład zmiennej losowej X_1+X_2 .
- **9.** Monika wybrała się do kasyna w Las Vegas mając przy sobie 255\$. Jako cel postawiła sobie wygranie 1 dolara i wyjście z kasyna z kwotą 256\$. Podczas tej wizyty obstawiała kolory. Wszystkie pola poza 0 i 00 są czerwone lub czarne (po 18 pól). Poprawne wskazanie koloru (z prawdopodobieństwem 18/38) podwaja zaryzykowaną kwotę. Monika zastosowała następującą strategię: postanowiła, że będzie grać kolejno o 1\$, 2\$, 4\$, 8\$, 16\$, 32\$, 64\$, 128\$. Jeżeli w jednej z gier wygra, zabiera nagrodę i opuszcza kasyno z 256 dolarami. Obliczyć prawdopodobieństwo, że jej się powiodło. Obliczyć wartość oczekiwaną wygranej.
- 10. Oblicz $\mathbb{E}X$ oraz $\operatorname{var}X$ jeżeli X jest zmienną o rozkładzie: a) $\operatorname{Poiss}(\lambda)$, b) $\operatorname{Exp}(\lambda)$, c) $\operatorname{Geom}(p)$.
- 11. Zmienna losowa X ma rozkład jednostajny U[0,1]. Obliczyć $\mathbb{E}Y$ i varY jeżeli a) $Y = \sin(\pi X)$, b) $Y = \cos^2(\pi X)$, c) $Y = -\log X$.
- **12.** Zmienna losowa ma rozkład o gęstości $g(x) = \frac{1}{4}x^3\mathbbm{1}_{[0,1]}(x)$. Obliczyć $\mathbb{E}X$, $\mathbb{E}[1/(1+X^4)]$, $\text{var}X^2$.
- 13. W urnie jest $b \ge 1$ kul białych i $c \ge 1$ czarnych. Obliczyć $\mathbb{E} X$ oraz $\mathrm{var} X$, jeśli X jest liczbą wylosowanych kul białych podczas:
 - a) losowania bez zwracania n kul ($n \le b$ i $n \le c$);
 - b) losowania bez zwracania tak długo, aż wylosujemy kulę czarną.
- **14.** W urnie znajduje się 50 białych kul. Losujemy ze zwracaniem po jednej kuli, przy czym wyciągniętą kulę malujemy na czerwono, jeśli jest biała. Niech X będzie liczbą czerwonych kul w urnie po 20 losowaniach. Obliczyć $\mathbb{E}X$ i $\mathrm{var}X$.

15. Każdy bok i każdą przekątną sześciokąta foremnego malujemy losowo na jeden z trzech kolorów. Wybór każdego koloru jest jednakowo prawdopodobny, a kolorowania różnych odcinków są niezależne. Niech X oznacza liczbę jednobarwnych trójkątów o wierzchołkach będących wierzchołkami sześciokąta. Obliczyć $\mathbb{E} X$.