Technická zpráva Analýza a interpretace biologických dat [MABD]

Projekt č. 10: Počítání kroků pomocí přizpůsobené filtrace

Zadání:

Pomocí akcelerometru chytrého telefonu s aplikací *Sense-it* nasnímejte 5 signálů chůze a zaznamenejte si referenci (ručně spočítané kroky). Detekujte kroky s využitím *přizpůsobené filtrace* a spočítejte je (automaticky). Porovnejte přesnost vašeho stanovení počtu kroků s referencí.

Bc. Veronika Pošustová, Bc. Jana Schwarzerová

Brno 2. 12. 2018

1. Teoretický rozbor

Počítání kroků se již dlouho používá jako metoda měřící vzdálenost. Kroky mají několik výhod v rámci posuzování fyzických činností, například jsou intuitivní, jsou snadno měřitelné atd. Počínaje polovinou devadesátých let, vědci se začali zajímat o kvantifikaci kroků za den z hlediska ambulantní fyzické aktivity. [1] Studie [2] pojednává o detekci chodidel, protože procházka jako aktivita je jedním z parametrů pro hodnocení zdraví pacienta. Například celková doba procházky během dne umožňuje rychlé posouzení, zda je pacient mobilní, či nikoliv. [2] Od roku 2010 se využívá aktivita založená na akcelerometru. [1] Akcelerometr je zařízení, které měří zrychlení. Akcelerometry integrované v dnešních chytrých mobilních telefonech bývají použity k odhadu vzdálenosti ušlých kroků pomocí zrychlení podél os x, y a z. [3]

Pro naměření dat pomocí akcelerometru byla v této práci použita aplikace *Sense-it*. Tato aplikace umožňuje přístup ke všem senzorům v rámci chytrých telefonů. Dále umožňuje nastavit parametry potřebné pro různé snímání jako je například vzorkovací frekvence. Aplikace *Sense-it* vytvoří protokol dat, vizualizuje je v grafech a exportuje do souborů *.csv, což umožňuje následně naměřená data dále zpracovat v jiných programech. Čehož jsme v této práci využili a naměřená data pomocí akcelerometru byla dále zpracována v programovacím prostředí Matlab2018a, kde jsme pomocí přizpůsobené filtrace provedli detekci jednotlivých kroků.

Přizpůsobená filtrace (také označovaná jako adaptivní filtrace) spočívá v kontinuální změně parametrů podle předem stanoveného algoritmu s využitím jak informace ze vstupu tak i pomocné informace přicházející většinou z výstupu celého systému. [4] Tato základní myšlenka byla aplikována v této práci za účelem detekce jednotlivých kroků. Pomocí akcelerometru a s použitím aplikace *Sense-it* jsme získali signál, kde je informace o daném zrychlení [ms⁻²] v závislosti na čase [s]. Podle teoretického předpokladu, že zrychlení bude největší právě při vykonávaném kroku, jsme aplikovali okno, díky kterému jsme zprůměrovali všechny naměřené kmity a tím jsme dostali kmit, který detekuje jeden krok. Při následném použití korelace mezi vlnou detekující jeden krok a celým naměřeným signálem, jsme získali informaci, která udává výskyt jednotlivých kroků v měřeném signálu.

2. Popis metody řešení

Pomocí akcelerometru chytrého telefonu jsme změřili celkem 10 signálů, z toho byly 4 změřeny s mobilním telefonem v ruce, 4 s mobilním telefonem v kapse a nakonec 2 signály pro interpretaci algoritmu na rozsáhlejší data – zvolili jsme 50 kroků pro jedno měření a 50 kroků s delšími pauzami pro druhé měření. Jako referenci jsme vždy spočítali kroky manuálně.

Vytvořili jsme algoritmus pro automatické počítání kroků. Skript *Projekt.m* obsahuje algoritmus pro výpočet aplikovaný na dvě měření, konkrétně měření, když objekt držel mobil v ruce a šel a poté měření, když objekt měl mobil v kapse a šel. Nejprve jsou načtena data (x, y, z osy – směry pohybu) příkazem *load*. Poté je spočítán ze všech těchto směrů celkový pohyb pomocí Euklidovské vzdálenosti a následně je odečteno tíhové zrychlení. Pro ilustraci jsme nejdříve detekovali kroky jako píky v signálu pomocí funkce *findpeaks* bez použití filtrace, s nastavenými parametry minimální vzdálenosti a minimální výšky píků. Tyto hodnoty byly nastaveny empiricky.

Poté jsme vytvořili referenční vlnku pro aplikaci přizpůsobené filtrace, viz Obr. 1, konkrétně jde o funkci *jeden_krok.m.* Vlnku jsme spočítali jako průměr jednotlivých úseků (píků) v signálu. Tyto dva signály jsme následně korelovali. Korelaci je možné provést jako obrácenou konvoluci, takže jsme získanou vlnku otočili v čase a aplikovali konvoluci na původní signál a referenční vlnku pomocí příkazu *conv.* Ve vyfiltrovaném signálu jsme opět pomocí funkce *findpeaks* našli píky pomocí obdobně nastavených parametrů, jako v předchozím signálu. Korelaci a následnou detekci píku, provádí funkce *korelace_detekce.m.* Závěrem jsme statisticky vyhodnotili úspěšnost nalezených kroků jednoduchým podílem počtu kroků, vypočítaných manuálně, a počtu kroků, nalezených automaticky. Výsledky jsme převedli na procenta a zapsali do předem vytvořené tabulky (výsledky viz kapitola Dosažené výsledky a jejich interpretace).

Obr. 1: Příklad referenční vlnky

Celý algoritmus pro počítání kroků jsme ještě aplikovali na delší signály, abychom dokázali zhodnotit správnost řešení pro obecné využití. Na konci se ještě ve skriptu *Projekt.m* nachází vykreslení a tedy porovnání již zmiňovaných dvou měření a tedy s mobilním telefonem v ruce a s mobilním telefonem v kapse.I tyto výsledky jsou diskutovány v následující kapitole.

3. Dosažené výsledky a jejich interpretace

Vyhodnocení všech měření s mobilním telefonem v ruce a s mobilním telefonem v kapse jsou v následujících tabulkách. Běžně se setkáváme s krokoměry, které detekují více kroků, než člověk skutečně ujde. Takové výsledky vidíme, viz Tabulka 1, při měření v ruce. Naopak při měření v kapse jsme detekovali méně kroků, než byla referenční hodnota. Srovnání je zde i graficky znázorněné, viz Obr. 2.

Vidíme rozdíly v obou signálech – při měření s mobilním telefonem v ruce je po přizpůsobené filtraci signál zbaven rušivých elementů a výška píků je přibližně stejně velká. Díky tomu můžeme lépe posoudit, jestli se jedná o krok nebo ne. Při měření s mobilem v kapse nedetekujeme jen samostatné kroky, ale i jiné pohyby. Navíc signály kroků mohou být výrazně slabší, a proto nejsme schopni detekovat je všechny.

	bez filtrace	1. měření	2. měření	3. měření	4. měření
manuálně spočítané kroky	20	20	10	10	10
korky spočítané automaticky	21	22	12	11	10
vyhodnocení [%]	105	110	120	110	100

Tabulka 1: Vyhodnocení měření s mobilním telefonem v ruce

	5. měření	6. měření	7. měření	8. měření
manuálně spočítané kroky	10	10	10	10
korky spočítané automaticky	6	9	7	10
vyhodnocení [%]	60	90	70	100

Tabulka 2: Vyhodnocení měření s mobilním telefonem v kapse

Abychom mohli říct, že algoritmus je funkční, aplikovali jsme ho na rozsáhlejší data, viz skript *Aplikace_rozsahlejsich_dat.m.* Měřili jsme s mobilním telefonem v ruce. Nejdříve jsme naměřili signál 50 kroků, následně 50 kroků s delšími pauzami a sledovali jsme, jak program vyhodnotí zastavení vždy po 10 krocích. Na obrázku, viz Obr. 4, jsou výsledná data. Výsledky jsou pozitivní, protože z 50 skutečně naměřených kroků, bylo automaticky spočítáno 51 kroků bez zastavování a 54 kroků se zastavováním.

Obr. 3: Srovnání dvou různých měření

Obr. 4: Měření s mobilním telefonem v ruce - 50 kroků

Závěr

Pomocí akcelerometru chytrého telefonu jsme změřili celkem 10 signálů, z toho byly 4 změřeny s telefonem v ruce, 4 s telefonem v kapse a 2 signály pro interpretaci algoritmu na rozsáhlejší data (50 kroků). Jako referenci jsme vždy spočítali kroky ručně. Následně jsme vytvořili algoritmus pro automatické počítání, statisticky jsme vyhodnotili úspěšnost tohoto počítání a srovnali jsme úspěšnost v závislosti na umístění mobilního telefonu při měření. Nakonec jsme algoritmus aplikovali na signál získaný z měření 50 kroků.

Zhodnotili jsme výsledky, které byly relativně přesné, a proto můžeme konstatovat, že jsme kroky detekovali úspěšně. Relativně přesné myslíme tím, že se výsledky liší většinou o jeden krok. Pokud se zamyslíme, jak měření probíhá tak osoba, která jde konkrétní počet například deseti kroků, může započítat poslední krok jako přiložení nohy k noze, či jako nový nášlap. Dokonce stejná osoba v různých měřeních za sebou může počítat jinak. V tomto subjektivním názoru počítání kroků je zřejmé, že se tedy budou detekce lišit s chybou přičtení či odečtení jednoho kroku.

Zjistili jsme, že detekce je nejpřesnější při měření s mobilem v ruce, protože tak získáváme 'čistý' signál – píky jsou jen na pozicích skutečných kroků. Při dodatečné aplikace algoritmu na rozsáhlejší signály, konkrétně z měření 50 kroků se zastavením a bez zastavení jsme zjistili, že algoritmus díky detekci pomocí přizpůsobené filtrace nevadí, že kroky nejsou kontinuálně za sebou a pauzy způsobené zastavením nedetekuje, což je velkou výhodou detekce pomocí přizpůsobené filtrace.

Zdroje:

- [1] BASSETT, David R., Lindsay P. TOTH, Samuel R. LAMUNION a Scott E. CROUTER. Step Counting: A Review of Measurement Considerations and Health-Related Applications. *Sports Med.* 2017, , 47: 1303–1315. DOI: 10.1007/s40279-016-0663-1.
- [2] BARRALON, Pierre, Nicolas VUILLERME a Norbert NOURY. Walk Detection With a Kinematic Sensor: Frequency and Wavelet Comparison. Faculte de Medecine 38706 LA TRONCHE, France, 2006, 4.
- [3] BYLEMANS, Inge, Maarten WEYN a Martin KLEPAL. Mobile Phone-based Displacement Estimation for Opportunistic Localisation Systems. *Third International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies*.
- [4] Elektrorevue: Adaptivní filtrace zašuměných řečových signálů [online]. Ústav Telekomunikací, VUT v Brně, Fakulta elektrotechniky a informatiky, 2002 [cit. 2018-11-27]. Dostupné z: http://www.elektrorevue.cz/clanky/02063/index.html