I: BINARY COMPOUNDS

Binary compounds contain **two** different elements. Binary compounds may be **ionic** or **molecular** compounds. We have different rules for each of these.

A: Regular Ionic Compounds

Regular ionic compounds ALWAYS contain a <u>metal</u> element from group 1, 2 or 13, and a <u>non-metal</u> element.

Writing Formulas:

To write the **formula** of this type of compound, we must first determine the CHARGE that each element will have when it forms a stable ion. Remember, the **group number** of the element will tell us the charge its ion will have.

Practice Table #1: Finding Charges on lons

Element	Group #	lon	Element	Group #	lon
Li	1	Li ⁺¹	F	17	F ⁻¹
Mg	2	Mg+2	S	16	5-2
Al	13	A1+3	N	15	N-3
Ве	2	Be+2	Br	17	Br-1
Na	1	Na+1	Р	15	b -3

Once we know the charge on each element, we then use the **crossover rule** to find the **formula** of the compound they will form.

Eg. Find the formula of the compound formed from Li and P.

Solution: Li is in group 1, so its charge will be +1

P is in group 15, so its charge will be -3

So: Li⁺¹ cross over" the value of the charges but not the sign to find the formula

Li₃P [notice that we do not show the "1", it is understood to be there]

You can check this by modeling the transfer of electrons we learned previously. It works!!

Practice Table #2: Writing Formulas of Regular Ionic Compounds

Metal	Non-metal	Compound	Metal	Non-metal	Compound
Na	Br	NaBr	Al	CI	Al Cl3
Mg	Br	MgBG	В	0	B203
Al	Br	AIBr3	Ca	N	Caz Nz
Li	S	Lias	К	0	KJO
Ca	s	Ca,S, Cas	Na	Р	Na3P
В	S	B, S,	Al	0	A1,03
K	N	K ₃ N	Mg	S	Mg. S. Mg
Ве	N	Be3 N2	В	Р	B3 P3 BP
Al	N	Alz Nz AIN	Na	CI	Nacl
Li	0	Lizo	Ca	F	Caf

Please Note: The subscripts of ionic compounds must be the lowest ratio.

Example: Mg₂O₂ reduces to become MgO

Naming Compounds:

A regular ionic compound has a very simple name. We simply take the name of the **metal element** and follow it with the name of the **non-metal element**, with the ending changed to **–ide**.

Eg. NaCl = sodium and chlorine → sodium chloride

That's it! Go back to Practice Table #2 and write the NAME of each compound under its formula. Notice that NO capital letters are used in the name.

Practice Table #3: Chemical Names and Formulas of Regular Ionic Compounds

Chemical Name	Metal Ion	Non-metal Ion	Chemical Formula
sodium fluoride	Na ⁺¹	F ⁻¹	NaF
boron iodide			BJ3
calcium phosphide			Caz C
magnesium oxide	Mgts	O-2	Mg0 ?
potassium chloride	U		KCI
beryllium sulfide		7	Be S
barium nitride	Bath	A	Ba ₃ N ₂
aluminum sulfide			$A_1 S_3$
lithium phosphide			Li3P
potassium sulfide			K25
boron oxide			B ₂ O ₃ Caf ₂
calcium fluoride			Ca F,

B: Molecular Compounds

Molecular compounds ALWAYS contain two non-metal elements.

Writing Formulas:

The formulas of covalent compounds often cannot be predicted. We understand covalent bonding, but many non-metals bond in unexpected combinations. You will always be given the NAME or the FORMULA of the compound.

If you are given the name of the compound, you need to be able to write its formula. We use **prefixes** to indicate how many atoms of each element are in the compound.

PREFIX	NUMBER	PREFIX	NUMBER
mono	1	tetra	4
di	2	penta	5
tri	3	hexa	6

NOTES:

- 1. The prefix **mono** is never used with the **first element** in the compound.
- 2. The prefixes **mono**, **tetra**, **penta**, **and hexa** LOSE their final o or a when placed in front of oxygen.
- 3. The ending of the second element is again changed to -ide.

Eg. What are the formulas of the following compounds?

carbon **mon**ox**ide** CO₁ (the molecule contains 1 atom of carbon – see note 1, and one atom of oxygen – see note 2)

diphosphorus pentapromide

P₂Br₅ (2 atoms of phosphorus and 5 atoms of bromine)

Naming Compounds:

To determine the name of a covalent compound, simply apply the prefixes to the two elements that make up the compound.

Eg. What are the names of the following compounds?

carbon **di**ox**ide** (the molecule contains 1 atom of carbon – see note 1, and 2 atoms of oxygen)

M2O3 dinitrogen trioxide (2 atoms of nitrogen and 3 atoms of oxygen)

Practice Table #4: Names and Formulas of Molecular Compounds

Complete the table with the names or formulas needed.

Chemical Name	Formula	Chemical Name	Formula
nitrogen monoxide	NO		SCI ₂
silicon dioxide		sulfur d'oxide	SO ₂
sulfur trioxide			NO
carbon tetrachloride	C Cly		SiS ₂
diarsenic trioxide			PO ₃
phosphorus pentabromide	P Brz		PF ₃
nitrogen dioxide			CBr ₄
sulfur hexafluoride		nitrogen trich	W.NC/3
selenium dioxide			SiO₃
dinitrogen tetroxide	No Oy		PCI ₃
sulfur dioxide			CS ₂

II: COMPOUNDS CONTAINING POLYATOMIC IONS

Some **ionic compounds** are **NOT binary**. They contain AT LEAST three elements. In this situation, the compound contains one (or both) ion which is **polyatomic** (many atoms). You **must memorize** the names, formulas and charges of EIGHT polyatomic ions. These can be found in your text in Table 4.7, on p. 161.

Polyatomic lons to Memorize:

NAME	FORMULA
ammonium	NH ₄ ⁺
hydroxide	OH ⁻
nitrate	NO ₃ -1
carbonate	CO ₃ ²⁻
sulfate	SO ₄ ²⁻
phosphate	PO ₄ 3-
hydrogen	HCO ₃
carbonate	
hydrogen sulfate	HSO ₄

Writing Formulas:

Since these are ionic compounds, we use ALL the same rules that applied to the other ionic compounds. One NEW thing is the use of **brackets** whenever we need **more than one** of these polyatomic ions in the compound.

Eg 1 What is the formula of lithium hydroxide?

We know that lithium forms a 1+ ion, and hydroxide is OH, SO:

Li⁺ OH⁻ The charges are equal but opposite -no crossover is needed.

SO... LiOH is the correct formula for lithium hydroxide

Eg 2 What is the formula of Magnesium nitrate?

Mg²⁺ NO₈ CROSSOVER!

Mg(NO₃)2 is the correct formula for Magnesium nitrate

Notice the use of brackets around the **whole** nitrate ion. This is important, since we can then put the two **outside** the bracket to show that this compound needs two complete nitrate ions.

Practice Table #5: Writing Formulas with Polyatomic Ions

Compound Name	Positive Ion	Negative Ion	Formula
sodium carbonate	Na⁺	CO ₃ ²⁻	Na ₂ CO ₃
calcium nitrate			
barium sulfate			/. \
aluminum hydrogen carbonate	A 1 +3	HCOZ	A) (H(Q))
potassium phosphate	. —	3	
beryllium hydroxide			
lithium hydrogen sulfate			
ammonium chloride			
sodium phosphate			
potassium sulfate			
ammonium carbonate			

Naming Compounds:

Again, we use all the same rules for naming ionic compounds when we are using these polyatomic ions. Notice that other than ammonium (a positive ion), the other (negative ions) names all end in **–ate**.

Eg 1 What is the name of $Ca(NO_3)_2$?

Calcium is a regular metal, so we just call this compound **calcium nitrate**. Notice that again, the positive ion name goes first, followed by the negative ion name. We **do not** change the ending to –ide, since **nitrate** is alreadly the proper name for the ion.

Eg 2 What is the name of Li₃PO₄?

Li PO₄ Here, there is ONE phosphate ion, so the number that we cross up will be 1, NOT 4

This gives phosphate a charge of -3 and lithium +1.

Practice Table #6: Naming Compounds with Polyatomic Ions

FORMULA	NAME OF COMPOUND
Mg(OH) ₂	
CaCO ₃	
NH₄CI	
LiHCO₃	
AI(NO ₃) ₃	
Be ₃ (PO ₄) ₂	
KHSO₄	
(NH₄)₃N	

III: Ionic Compounds with the Transition Metals

The Transition metals are unusual because many of them are able to form several different ions. For example, iron may form an Fe²⁺ ion OR an Fe³⁺ ion, depending on what it is bonding with. This means that we cannot PREDICT the charge on the ion when we see it in a compound.

We use a special system that allows us to know what charge is on the ion. We actually put the charge into the name! We write the charge as a **Roman numeral**, and put it in **brackets** after the name of the metal.

Eg. iron (II) chloride - in this case, iron has formed an Fe²⁺ ion copper (I) oxide - here, copper has formed a Cu⁺ ion

Writing Formulas:

The bracket system makes it very easy to find the formulas of transition metal compounds, since we are given the charge on the metal ion! We only have to predict the charge on the non-metal as usual, using the periodic table. We then use the crossover rule as usual to get the formula.

Eg. copper (II) chloride - here, copper has a 2+ charge, as indicated in the brackets

So: Cu²⁺ Cl⁻ (predicted from the periodic table)

Crossover!

Formula: CuCl₂

Practice Table #7: Writing Formulas with Transition Metals

Compound Name	Metal Ion	Non-metal Ion	Formula
gold (I) chloride	Aut	CH	Aucl
nickel (III) sulfide			
cobalt (II) oxide			
iron (III) phosphide			
mercury (IV) fluoride			
nickel (II) nitride			
gold (III) sulfide			
copper (I) oxide			

Review: Naming Chemical Compounds

Element #1	Element #2	Type of	Formula	Name
(or ion and	(or ion and charge)	Compound	. omala	
charge) Be ²⁺	F ⁻	ionic	BeF ₂	beryllium fluoride
			NaCl	
				nickel (III) oxide
			Cl ₂ O	
Na ⁺	CO ₃ -2			
			Na₃PO₄	
				calcium chloride
NH ₄ ⁺	F ⁻¹			
K ⁺	OH ⁻¹			
				calcium nitrate
				nitrogen trifluoride
				gold (III) iodide
			Mg(NO ₃) ₂	
K ⁺	HSO ₄			
			KCI	
				copper (II) hydroxide
				sulfur dioxide
			СО	
				nickel (II) nitrate
				lead (IV) sulfate