3.5 Soit $\varepsilon > 0$ un nombre positif quelconque (arbitrairement petit).

Il faut montrer qu'il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \geqslant n_0$ on ait $|u_n - 1| < \varepsilon$.

$$|u_n - 1| = \left|1 + \frac{1}{10^n} - 1\right| = \left|\frac{1}{10^n}\right| = \frac{1}{10^n}$$

Il faut donc que soient vérifiées les inégalités suivantes :

$$\frac{1}{10^n}<\varepsilon$$

$$10^n > \frac{1}{\varepsilon}$$

En choisissant $n_0 \in \mathbb{N}$ avec $10^{n_0} > \frac{1}{\varepsilon}$, il résulte que pour tout $n \geqslant n_0$, on a

bien
$$|u_n - 1| = \frac{1}{10^n} \leqslant \frac{1}{10^{n_0}} < \varepsilon$$
.