Quiz Jan 31

Problem 1. Suppose that $X_1, ..., X_n$ are i.i.d. $N(0, \sigma^2)$. Show that $\frac{1}{n} \sum_{i=1}^n X_i^2$ is a consistent estimator of σ^2 .

Solution. Note that $E(X_i^2) = \sigma^2$. The Law of Large Numbers implies that

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2} \xrightarrow{Pr} E(X_{i}^{2}) = \sigma^{2},$$

which means that $n^{-1}\sum_{i=1}^{n}X_{i}^{2}$ is a consistent estimator of σ^{2} .