

CP4. 부호화와 발전

Part 1. 데이터 시스템의 기초

4. 부호화와 발전

개유

데이터 부호화 형식

데이터플로 모드

정리

Part 1. 데이터 시스템의 기초

4. 부호화와 발전

▼ 개요

- 대부분의 경우 애플리케이션 기능을 변경하려면 저장하는 데이터도 변경해야 한다. 아마도 새로운 필드나 레코드 유형을 저장해야 하거나 기존 데이터를 새로운 방법으로 제공해야 할지 모른다.
 - 관계형 DB는 일반적으로 DB의 모든 데이터가 하나의 스키마를 따른다.
 스키마가 변경될 수 있지만 특정 시점에는 정확하게 하나의 스키마가 적용된다.
 반면 읽기 스키마 DB는 스키마를 강요하지 않으므로 다른 시점에 쓰여진 이전 데이터 타입과 새로운데이터 타입이 섞여 포함될 수 있다.
 - 데이터 타입이나 스키마가 변경될 때 애플리케이션 코드에 대한 변경이 종종 발생한다. (ex. 레코드에 새로운 필드가 추가되면 애플리케이션 코드는 해당 필드의 읽고 쓰기를 시작한다.)
 하지만 대규모 애플리케이션에서 코드 변경은 대개 즉시 반영할 수 없다.
 - 서버 측 애플리케이션에서는 한 번에 몇 개의 노드에 새 버전을 배포하고 새로운 버전이 원할하게 실행되는지 확인한 다음 서서히 모든 노드에 실행되게 하는 **순회식 업그레이드(단계적 롤아웃)** 방 식이 있다. 순회식 업그레이드는 서비스 정지 시간 없이 새로운 버전을 배포 할 수 있기 때문에 더 욱 자주 출시할 수 있다. (좋은 발전성)
 - 클라이언트 측 애플리케이션은 사용자에 전적으로 좌우된다. (업데이트를 안 할 수도 있음)
 - 위 두 가지 내용은 새로운 버전과 이전 버전의 시스템이 동시에 공존할 수 있다는 의미이다.
 시스템이 원할하게 실행되려면 양방향 호환성을 유지해야 한다.
 - 하위 호환성 (새로운 코드는 예전 코드가 기록한 데이터를 읽을 수 있어야 한다.)
 - 상위 호환성 (예전 코드는 새로운 코드가 기록한 데이터를 읽을 수 있어야 한다.) 하위 호환성 보다 다루기 어려움
 - JSON, XML, 프로토콜 버퍼(Protocol Buffers), 스리프트, 아브로 등 데이터 부호화를 위한 다양한 형식을 확인한다.
 - 어떻게 스키마를 변경하고, old, new 버전의 데이터와 코드가 공존하는 시스템을 어떻게 지원하는
 지 체크한다.
 - rest, remote procedure call 뿐 아니라 actor 와 메시지 큐 같은 메시지 전달 시스템에서 다양한 데이터 부호화 형식이 데이터 저장과 통신에 어떻게 사용되는지 체크한다.

CP4. 부호화와 발전 1

▼ 데이터 부호화 형식

- 프로그램은 (최소) 두 가지 형태로 표현된 데이터를 사용해 동작한다.
 - 메모리에 객체, 구조체, 목록, 해쉬 테이블 등 데이터가 유지 된다. (이런 데이터 구조는 CPU 에서 효율적으로 접근 조작할 수 있게 최적화(보통 포인터(다른 프로세스가 이해 할 수 없음)) 된다.)
 - 데이터를 파일에 쓰거나 네트워크를 전송하려면 스스로를 포함한 일련 바이트열(ex. JSON) 의 형태로 부호화 해야한다. (다른 프로세스가 이해할 수 있어야 함)
 - 부호화 (직렬화,마샬링) 인메모리 표현에서 바이트열로 전환
 - 복호화 (파싱, 역직렬화, 언마샬링) 바이트열에서 인메모리 표현으로 전환

• 언어별 형식

- 프로그래밍 내장된 부호화 라이브러리는 최소한의 추가 코드로 인메모리 객체를 저장하고 복원할 수 있어 편리하지만, 심각한 문제점 또한 많다. (이팩티브 자바에서는 새로 개발 한다면 그냥 JSON 쓰라고 못 박음)
 - 부호화는 보통 특정 프로그래밍 언어와 묶여 있어 다른 언어에서 데이터를 읽기는 매우 어렵다. 이런 부호화로 데이터를 저장하고 전송하는 경우 매우 오랜 시간이 될지도 모를 기간 동안 현재 프 로그래밍 언어로만 코드를 작성해야 할 뿐 아니라 다른 시스템과 통합하는데 방해된다.
 - 동일한 객체 유형의 데이터를 복원하려면 복호화 과정이 임의의 클래스를 인스턴스화할 수 있어야 한다.
 - 이것은 종종 보안 문제의 원인이 된다. 공격자가 임의의 바이트열을 복호화할 수 있는 애플리케이션을 얻을 수 있으면 임의의 클래스를 인스턴스화 할 수 있고 공격자가 원격으로 임의 코드를 실행하는 것과 같은 끔직한 일이 발생할 수 있다.
 - 데이터 버전 관리는 보통 부호화 라이브러리에서는 나중에 생각하게 됨.
 데이터를 빠르고 쉽게 부호화하기 위해 상위, 하위 호환성의 불편한 문제가 등한시되곤 한다.
 - 효율성 (부호화, 복호화 시간, 부호화된 크기)도 나중에 생각하게 됨
- JSON, XML, CSV 이진 변형
 - ∘ JSON, XML, CSV 부호화
 - 결점
 - 수의 부호화, XML, CSV 에서는 수와 숫자로 구성된 문자열을 구분할 수 없다. JSON 은 문자열과 수를 구분하지만 정수와 부동소수점 수를 구별하지 않고 정밀도도 지정하지 않음. (큰 수를 다룰 때 문제가 일어난다.)
 - JSON 과 XML은 유니코드 문자열(사람이 읽을 수 있는)을 잘 지원한다. 그러나 이진 문자열 (문자열에 비해 성능이 훨 뛰어남) 을 지원하지 않는다.
 - 필수는 아니지만 XML, JSON 모두 스키마를 지원한다. 두 부호화 스키마 언어는 상당히 강력하지만 구현하기 난해하다. CSV는 스키마가 없으므로 각 로우와 컬럼의 의미를 정의하는 작업이 필요하다.
 - 이러한 결점에도 JSON, XML, CSV는 다양한 용도에 사용하기 충분하다. (특히 데이터 교환 형식)
 - 。 이진 부호화
 - 큰 데이터 셋인 경우 JSON 같은 부호화 형식일 경우 좋지 못하다. (이진 형식과 비교하면 JSON 같은 부호화는 더 많은 공간을 사용함)
 - JSON 형태는 데이터 안에 속성 값도 포함해야 한다.

CP4. 부호화와 발전 2

```
"userName": "Martin",
  "favoriteNumber": 1337,
  "interests": ["daydreaming", "hacking"]
}
```

■ 메시지 팩 형태 (JSON 전용 이진 부호화 형식)

```
83 a8 75 73 65 72 4e 61 6d 65 a6 4d 61 72 74 69 6e ae ... cd 05 39 83 (객체 항목 3) a8 (문자열 길이 8) 75 73 65 72 4e 61 6d 65 (u s e r N a m e) a6 (문자열 길이 6) 4d 61 72 74 69 6e (M a r t i n) ae (문자열 길이 14) ... cd (부호 없는 16비트 정수) 05 39 (1337) ...
```

- 첫 번째 바이트 0x83 은 세 개 필드를 가진 객체를 뜻 두 번째 바이트 0xa8은 이어지는 내용이 8btye 길이의 문자열 뜻 다음 8바이트는 userName 의 ASCII 다음 7바이트는 0xa6 문자열 길이 6개 나머지 6개 Martin ASCII
- 스리프트와 프로토 버퍼
- ▼ 데이터플로 모드
- ▼ 정리

CP4. 부호화와 발전 3