КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ТАРАСА ШЕВЧЕНКА ФАКУЛЬТЕТ КОМП'ЮТЕРНИХ НАУК І КІБЕРНЕТИКИ

Звіт до лабораторної роботи №1 на тему

«Наближені методи розв'язання нелінійних рівнянь»

Зміст

- 1. Постановка задачі.
- 2. Попередні обчислення.
- 3. Розв'язання задачі методом простої ітерації.
- 4. Розв'язання задачі методом Ньютона.
- 5. Розв'язання задачі модифікованим методом Ньютона.
- 6. Висновок.

1. Постановка задачі.

Методами простої ітерації, Ньютона та модифікованим методом Ньютона знайти всі дійсні корені рівняння:

$$x^7 + x + 4 = 0$$

з точністю $\varepsilon=10^{-5}$. А також порівняти швидкість збіжності розглянутих методів за кількістю ітерацій.

2. Попередні обчислення.

Знайдемо кількість розв'язків заданого рівняння й проміжки, які їх містять.

$$x^7 + x + 4 = 0$$

Знайдемо похідну функції $f(x) = x^7 + x + 4$

$$f'(x) = 7x^6 + 1$$

Оскільки похідна функції завжди більше нуля і не змінює свій знак, то задане рівняння має лише один корінь. Знайдемо проміжок на якому він знаходиться:

Значення аргументу х	Значення функції $f(x)$	Знак
0	4	+
-1	2	+
-2	-126	-

Отже шуканий корінь лежить на проміжку [-2;-1].

3. Розв'язання задачі методом простої ітерації.

Метод простої ітерації застосовується до розв'язування нелінійного рівняння вигляду $x = \varphi(x)$.

Вибравши нульове наближення x_0 , наступні наближення знаходяться за формулою $x_{n+1}=\varphi(x_n), n=0,1,2,\dots$

Наведемо достатні умови збіжності методу простої ітерації.

Теорема 1. Нехай для обраного початкового наближення x_0 на проміжку $S = \{x: |x - x_0| \le \delta\}$ функція $\varphi(x)$ задовольняє умові Ліпшиця $|\varphi(x') - \varphi(x'')| \le q|x' - x''|$, x', $x'' \in S$, де 0 < q < 1, і виконується нерівність $|\varphi(x_0) - x_0| \le (1 - q)\delta$.

Тоді швидкість збіжності визначається нерівністю $|x_n - x_*| \le \frac{q^n}{1-q} |\varphi(x_0) - x_0|.$

Наведемо також апостеріорну оцінку, що характеризує збіжність методу простої ітерації: $|x_n-x_*| \leq \frac{q}{1-q}|x_n-x_{n-1}|$. З цієї нерівності одержимо $|x_n-x_*| \leq \frac{q}{1-q}|x_n-x_{n-1}| < \varepsilon$, звідки $|x_n-x_{n-1}| < \frac{1-q}{q}\varepsilon$.

Спочатку рівняння f(x) = 0 замінюємо еквівалентним $x = \varphi(x)$.

$$x^{7} + x + 4 = 0$$
$$x^{7} = -x - 4$$
$$x = -(x + 4)^{\frac{1}{7}}$$

Отже, $\varphi(x) = -(x+4)^{\frac{1}{7}}$.

Метод простої ітерації збігається, якщо $|\varphi'(x)| < 1$ на відрізку, на якому шукаємо корінь. Перевіримо виконання даної умови на відрізку [-2; -1].

$$|\varphi'(x)| = \left| -\frac{1}{7(x+4)^{\frac{6}{7}}} \right| = \frac{1}{7(x+4)^{\frac{6}{7}}}$$

Як бачимо на графіку функція монотонно спадає на проміжку

[-2;-1]. Тому максимум функції досягається у точці (-2; 0,07886). А отже умова $|\varphi'(x)| < 1$ виконується та $q \approx 0,07886$

Нехай $x_0 = -1,5$, тоді $\delta = 0,5$. Тоді

$$|\varphi(x_0) - x_0| = |\varphi(x_0) - x_0| = \left| -(x_0 + 4)^{\frac{1}{7}} - x_0 \right| \approx \left| -(-1.5 + 4)^{\frac{1}{7}} + 1.5 \right|$$
$$= \left| -(2.5)^{\frac{1}{7}} + 1.5 \right| \approx |-1.13985 + 1.5| = 0.36015$$

3 іншої сторони,

$$(1-q)\delta = 0.5(1-0.07886) = 0.46057$$

Отже, умова $|\varphi(x_0) - x_0| \le (1 - q)\delta$ також виконується. Тому метод збігається.

Знайдемо кількість ітерацій, що може знадобитися для досягнення заданої точності $\varepsilon=10^{-5}$:

$$n \ge \left[\frac{\ln \frac{|\varphi(x_0) - x_0|}{(1 - q)\varepsilon}}{\ln \frac{1}{q}} \right] + 1 = \left[\frac{\ln \frac{0.36015}{0,00001(1 - 0,07886)}}{\ln \frac{1}{0,07886}} \right] + 1$$

$$= \left[\frac{\ln \frac{0.36015}{0.0000092114}}{\ln 12.68069997} \right] + 1 = \left[\frac{\ln 39098.291248}{\ln 12.68069997} \right] + 1$$

$$= \left[\frac{10.573834}{2.540081} \right] + 1 = [4.16] + 1 = 4 + 1 = 5$$

Отже, маємо такий ітераційний процес: $x_{k+1} = \varphi(x_k)$, $k = \overline{0,5}$.

Нехай $f(x) = x^7 + x + 4$.

Результат:

```
|x_k-x_k-1|
 k
                                            f(x_k)
0
     -1.50000000000
                                   -14.5859375000
                                      0.3601477190
     -1.1398522810
                      0.3601477190
2
                                     -0.0221269134
     -1.1619791945
                      0.0221269134
3
                      0.0012884784
                                      0.0012884784
     -1.1606907161
                                     -0.0000752654
*4
     -1.1607659815
                      0.0000752654
*5
     -1.1607615858
                      0.0000043958
                                      0.0000043958
```

Апріорна оцінка - 5, апостеріорна оцінка -4.

4. Розв'язання задачі методом Ньютона.

Метод Ньютона застосовується до розв'язання нелінійного рівняння

$$f(x) = 0$$
, де $f(x) \in C^2[a; b]$.

На початку обчислень обирається початкове наближення x_0 .

Наступні наближення обчислюються за формулою

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, n = 0, 1, 2, ..., f'(x_n) \neq 0.$$

3 геометричної точки зору x_{n+1} є значенням абсциси точки перетину дотичної до кривої y = f(x) у точці $(x_n, f(x_n))$ з віссю абсцис. Тому метод Ньютона називають також методом дотичних.

Теорема 1 (про вибір початкового наближення). Якщо $f(x) \in C^2[a;b]$, f(a)f(b) < 0, f''(x) не змінює знаку на [a;b] і початкове наближення $x_0 \in [a;b]$ задовольняє умові $f(x_0)f''(x_0) > 0$, то можна обчислити єдиний корінь x_* рівняння f(x) = 0 метода Ньютона з будь-якою точністю.

Введемо позначення
$$m = \frac{\min |f'(x)|}{x \in S}$$
, $M = \frac{\max |f''(x)|}{x \in S}$.

Теорема 2 (про збіжність методу Ньютона). Нехай x_* – простий дійсний корінь рівняння $f(x) = 0, \ f(x) \in C^2(S), \ f'(x) \neq 0, \ \forall x \in S, \ \text{де } S = \{x: |x - x_0| \leq \delta\}$ і виконується нерівність $q = \frac{M|x_0 - x_*|}{2m} < 1$.

Тоді для $x_0 \in S$ метод Ньютона збігається, а для похибки справедлива оцінка $|x_n - x_*| \le q^{2^{n-1}} |x_0 - x_*|$.

Також варто зазначити, що метод Ньютона має квадратичну збіжність.

Як було показано раніше, рівняння $x^7 + x + 4 = 0$ має єдиний корінь, що належить проміжку [-2; -1]. Нехай $f(x) = x^7 + x + 4$. Тоді $f'(x) = 7x^6 + 1 > 0$ і $f''(x) = 42x^5 < 0$, де $x \in [-2; -1]$. Перевіримо умови збіжності:

$$m= {\min |f'(x)| \over x \in [-2;-1]} = |f'(-1)| = 8; M= {\max |f''(x)| \over x \in [-2;-1]} = |f''(-2)| = 1344.$$
 Оберемо $x_0=-1,5$, тоді $|x_0-x_*| \le 0,5$. З формули $q= {M|x_0-x_*| \over 2m} < 1$ маємо $q=42>1$, умова не виконується і ми не можемо порахувати апріорну оцінку кількості ітерацій. Тому звузимо проміжок і знову перевіримо умови збіжності.

Візьмемо проміжок [-1.25; -1.125] і $x_0 = -1.25$. $f(x_0)f''(x_0) > 0$. $|x_0 - x_*| \le 0.125$. $m = \min_{x \in [-1.25; -1.125]} \min_{x \in [-1.25; -1.125]} |f'(-1.125)| = 15.191$; $M = \max_{x \in [-1.25; -1.125]} |f''(x)| = |f''(-1.25)| = 128.17$. 3 формули $q = \frac{M|x_0 - x_*|}{2m} < 1$ маємо q = 0.527327 < 1

Отже, всі умови теореми про збіжність методу Ньютона виконані.

Знайдемо кількість ітерацій, що може знадобитися для досягнення заданої точності $\varepsilon = 10^{-5}$:

$$n_0(\varepsilon) = \left[\log_2 \frac{\ln \frac{|x_0 - x_*|}{\varepsilon}}{\ln \frac{1}{q}} + 1\right] + 1 = \left[\log_2 \frac{\ln \frac{0,125}{0,00001}}{\ln \frac{1}{0,527327}} + 1\right] + 1$$

$$= \left[\log_2 \frac{\ln 12500}{\ln 1,896357} + 1\right] + 1 = \left[\log_2 \frac{9,433483}{0,639935} + 1\right] + 1$$

$$= \left[\log_2 14,741314 + 1\right] + 1 = 5$$

Отже, маємо такий ітераційний процес: $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$, $n = \overline{0,5}$.

Результат:

x k	lx k-x k-11	f(x_k)
_	_\ \ _\ \ _\	-2.0183715820
	0 0728578227	-0.3090029416
		-0.0115094930
		-0.0000177719
		-0.00000000000
		0.0000000000
	x_k -1.25000000000 -1.1771421773 -1.1613959540 -1.1607628090 -1.1607618283 -1.1607618283	-1.2500000000

Апріорна оцінка — 5, умова: $|x_n - x_{n-1}| \le \varepsilon \wedge |f(x_n)| \le \varepsilon$ виконується уже на 4 кроці.

5. Розв'язання задачі модифікованим методом Ньютона.

Всі викладки, зазначені до методу Ньютона, справедливі також для модифікованого методу Ньютона. Різниця між ними полягає лише в тому, що модифікований метод Ньютона, на відміну від методу Ньютона, дозволяє не обчислювати похідну $f'(x_n)$ на кожній ітерації. Ітераційний процес даного методу: $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_0)}$, $n = 0, 1, 2, ..., f'(x_0) \neq 0$.

Також це дозволяє позбутися можливого ділення на нуль на $n \ge 1$ ітераціях. Проте даний алгоритм має лінійну збіжність.

Використаємо міркування й розрахунки, які ми провели при використанні методу Ньютона. Всі умови теореми про збіжність методу Ньютона також застосовні й до модифікованого методу Ньютона.

Матимемо такий ітераційний процес: $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_0)}$, який зупинимо по загальній формулі зупинки ітераційного процесу:

$$|x_n - x_{n-1}| \le \varepsilon \wedge |f(x_n)| \le \varepsilon$$

Результат:

k	x_k	x_k-x_k-1	f(x_k)
0	-1.2500000000		-2.0183715820
1	-1.1771421773	0.0728578227	-0.3090029416
2	-1.1659879965	0.0111541808	-0.0959268479
3	-1.1625252935	0.0034627030	-0.0320956381
4	-1.1613667267	0.0011585668	-0.0109782287
5	-1.1609704420	0.0003962847	-0.0037824419
6	-1.1608339059	0.0001365361	-0.0013064270
7	-1.1607867474	0.0000471585	-0.0004516136
8	-1.1607704454	0.0000163020	-0.0001561623
9	-1.1607648083	0.0000056370	-0.0000540044
10	-1.1607628589	0.0000019494	-0.0000186766
11_	-1.1607621847	0.0000006742	-0.0000064591

6. Висновок.

Отже, було наближено знайдено корінь рівняння $x^7 + x + 4 = 0$ з точністю $\varepsilon = 10^{-5}$ методами простої ітерації, Ньютона та модифікованим методом Ньютона. Найефективнішими виявилися метод Ньютона та метод простої ітерації.

Метод Ньютона має квадратичну швидкість збіжності, а метод простої ітерації й модифікований метод Ньютона — лінійну швидкість збіжності. Тому в загальному метод Ньютона найефективніший з цих трьох, проте ефективність даного методу корелює зі складністю обчислення $f'(x_n)$ на кожній ітерації. Хоча методи простої ітерації й модифікований метод Ньютона є менш ефективними в порівнянні з методом Ньютона, вони дозволяють зробити обчислення простішими.