STATS 415

DATA MINING PROJECT

Group Member

Hao Xu Shengqian Jin Xinye Xu (Presenter)

Contents

Goals and Issues
Data Exploration

Classification

Logistic Regression
Decision Tree
Support Vector Machine

Conclusion

☐ Goals and Issues

Goal

Propose data mining approaches to predict the success of telemarketing calls for selling bank long-term deposits.

Data Description

- **20** most relevant features out of **150** selected by S. Moro's^[1, 2] research from 2008 to 2013.
- 7 variables about client data, 8 about contact information with customers, and 5 about social and economic.
- 41,188 valid observations.

^[1] S. Moro, P. Cortez and P. Rita. A Data-Driven Approach to Predict the Success of Bank Telemarketing. Decision Support Systems, Elsevier, 62:22-31, June 2014

^[2] S. Moro, R. Laureano and P. Cortez. Using Data Mining for Bank Direct Marketing: An Application of the CRISP-DM Methodology. In P. Novais et al. (Eds.), Proceedings of the European Simulation and Modelling Conference - ESM'2011, pp. 117-121, Guimaraes, Portugal, October, 2011

Correlation (Categorical)

Correlation (Continuous)

Several Histograms

Some predictors might be insignificant.

Several Histograms

Take out your phone and call the cellulars of the previous buyers!

Several Histograms

Retired and student are more likely to say 'yes'.

Several Histograms

The most successful months!

Importance of Employment

□ Classification: Logit

- Lowest Train Error: AIC
- Lowest Test Error: Full
- Lowest CV Error: Backwards
- Lowest N.O. of predictors: BIC

□ Classification: Logit

 Lowest class error for both train & test: AIC

Confusion Table:

0 1 class_error 0 5721 613 0.09677929 1 89 167 0.34765625 0 1 class_error 0 1434 141 0.08952381 1 27 45 0.37500000

Methods	Full Model	Backwards	AIC	BIC
N.O.	19	10	10	8
7	contact	contact	contact	contact
7	month	month	month	month
7	pdays	pdays	pdays	pdays
7	emp_var_rate	emp_var_rate	emp_var_rate	emp_var_rate
7	cons_price_idx	cons_price_idx	cons_price_idx	cons_price_idx
7	cons_conf_idx	cons_conf_idx	cons_conf_idx	cons_conf_idx
6	campaign	campaign	campaign	
5	poutcome	poutcome		poutcome
4	job		job	job
4	nr_employed	nr_employed		
3	education		education	
3	euribor3m		euribor3m	
2	default	default		
1	age			
1	marital			
1	housing			
1	loan			
1	day_of_week			
1	previous			

□ Classification: Tree

Simple Tree Model (Pruned)

□ Classification: Tree

Random Forest

☐ Classification: Tree

AdaBoost

var (rel.inf)

nr_employed (72.643525009) month (9.858543689) pdays (7.745866460) poutcome (6.313556929) euribor3m (1.507383196) job (0.628293087) age (0.586199042) cons conf idx (0.584907609) cons price idx (0.039819632) campaign (0.033449676) education (0.030060442) contact (0.025386936) emp_var_rate (0.001840013) marital (0.001168279) default (0.00000000) housing (0.00000000) previous (0.00000000)

□ Classification: Tree

Comparison and Some Issues

	Simple Tree	Random Forest	AdaBoost
Training	10.75%	11.45%	11.80%
Testing	10.57%	11.06%	11.30%
C.V.	10.67%	-	-

```
Confusion matrix:

0 1 class.error

0 5626 184 0.03166954

1 570 210 0.73076923
```

Classification: SVM

Kernel	Parameters		Test	Class '1'
Kerner	Cost	Other	rest	Errors
Linear	1	-	10.40%	81.65%
Polynomial	1	d = 1	10.40%	81.65%
Radial	1	γ= 0.06	9.82%	76.38%

- We will change our classification probability threshold to 0.09.
- Improved SVM model gives 54% class error, which is not bad to predict a rare case.

Conclusion

Conclusion

Based on train, test, CV errors:

- Logistic method: AIC is better;
- Tree method: simple tree is better;
- * SVM method: radial kernel is better.

 Given confusion matrix: Logistic is better

Limitation

Imbalance class problem: where one response class outnumbered the other class. In our case, people finally agree to buy the product is only 10%.