Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет компьютерных систем и сетей

Кафедра электронных вычислительных машин

ОТЧЕТ

по лабораторной работе №2 Построение и исследование аналитической модели дискретностохастической СМО Вариант 1

Выполнили ст. группы № 950505 Киреев Ю.В. Денисов В.А.

Проверила Герман Ю.О.

1 Цель

Изучить методы анализа поведения дискретно-стохастической СМО.

2 Задание

Пусть матрица переходных вероятностей Р суть

	S0	S1	S2	S3
S0	0,10	0,20	0,40	0,30
S1	0,30	0,10	0,40	0,20
S2	0,20	0,20	0,20	0,40
S3	0,30	0,30	0,30	0,10

- 1. Найти установившиеся вероятности состояний системы : P_0 , P_1 , P_2 , P_3 .
- 2. Рассчитать вероятности состояний системы на третьем шаге (k=3)
- 3. Рассчитать число шагов до попадания в поглощающее состояние для матрицы вероятностей переходов

	S0	S1	S2	S3
S0	0,10	0,20	0,40	0,30
S1	0,30	0,10	0,40	0,20
S2	0,00	0,00	1,00	0,00
S3	0,30	0,30	0,30	0,10

3 Краткие теоретические сведения

Марковский случайный процесс с дискретными состояниями и дискретным временем называют дискретной марковской цепью.

Такие процессы удобно иллюстрировать с помощью графа состояний системы, где вершины представляют возможные состояния, S_2 , ..., S_n системы, а дуги — возможные переходы из состояния S_j в состояние S_k , (на графе отмечаются только непосредственные переходы, а не переходы через другие состояния). Над каждой стрелкой, как правило, проставляются соответствующие вероятности перехода из состояния S_j в состояние S_k

Однородная марковская цепь может быть полностью описана матрицей переходных вероятностей:

$$||P_{ij}|| = \begin{pmatrix} P_{11} & P_{12} & \dots & P_{1n} \\ P_{21} & P_{22} & \dots & P_{2n} \\ \dots & \dots & P_{ij} & \dots \\ P_{n1} & P_{n2} & \dots & P_{nm} \end{pmatrix}$$

и начальным распределением $p_m(0)$, где m = 1,2,...

Распределение X_0 называется начальным распределением марковской цепи:

$$p_m(0) = P\{X_0 = m\}$$
, где $m = 1, 2,$

Элементы матрицы переходных вероятностей обладают следующими свойствами: Pij > 0

$$\sum_{j=1}^{n} P_{ij} = 1, i = 1, ..., n.$$

Рассмотрим пример расчета. Пусть матрица переходных вероятностей суть

	S0	S1	S2
S0	0.1	0.2	0.7
S1	0.4	0.3	0.3
S2	0.6	0.2	0.2

Сумма вероятностей по каждой строке равна 1. Составим систему уравнений для установившегося режима

$$\begin{aligned} p_0 &= 0.1 * p_0 + 0.4 * p_1 + 0.6 * p_2 \\ p_1 &= 0.2 * p_0 + 0.3 * p_1 + 0.3 * p_2 \\ 1 &= p_0 + p_1 + p_2 \end{aligned}$$

Решаем систему и находим:

$$p_0 = 0.26, p_1 = 0.34, p_2 = 0.4$$

Можно также найти вероятности состояний системы на шаге. Для этого нужно знать вероятности состояний системы в начальный момент времени: (например) $P_0(0) = 1$, $P_1(0) = 0$, $P_2(0) = 0$. Эти вероятности проще обозначить как вектор: $R(0) = \langle P_0(0), P_1(0), P_2(0) \rangle$. Пусть матрица переходных вероятностей обозначена как P. Тогда вероятности состояния системы на шаге P0 вычисляются по формуле P1 вероятности P2 здесь P3 - P4 - P5 - P6 на степень матрицы. На примере: P3 - P6 - P9 - P1 - P

		,	
	S0	S 1	S2
S0	0.1	0.2	0.7
S 1	0.4	0.3	0.3
S2	0.6	0.2	0.2

S1	0.4	0.3	0.3
S2	0.6	0.2	0.2

$$R(3) = <0.51, 0.22, 0.27> \times$$

		S0	S 1	S2
	S0	0.1	0.2	0.7
Ī	S1	0.4	0.3	0.3
Ī	S2	0.6	0.2	0.2

= <0.3, 0.22, 0.48> и т.д.

Видим, что значения постепенно сходятся к установившимся: <0.26, 0.34, 0.4>

Поглощающие марковские цепи содержат невозвратные состояния, называемые поглощающими. Из поглощающего состояния нельзя перейти ни в какое другое. На графе поглощающему состоянию соответствует вершина, из которой не выходит ни одна дуга. В установившемся режиме поглощающему состоянию соответствует вероятность, равная 1.

В матричном виде запишем

$$T = Q*T+I$$
,

где I – единичная диагональная матрица.

Здесь Q — матрица вероятностей переходов, которая получается из матрицы Р удалением строк и столбцов, соответствующих поглощающим состояниям. Например, пусть матрица переходных вероятностей Р суть

	S0	S 1	S2
S0	0.1	0.2	0.7
S1	0	1.0	0
S2	0.6	0.2	0.2

Здесь одно поглощающее состояние:S1. Удаляем строку и столбец S1:

	S0	S2
S0	0.1	0.7
S2	0.6	0.2

Это есть матрица Q.

$$\|\mathbf{Q}\| = \begin{bmatrix} q_{00} & q_{02} \\ q_{20} & q_{22} \end{bmatrix}$$

Запишем уравнения T = Q*T+I

в таком виде:

$$t_1 = q_{11} * t_1 + q_{12} * t_2 + q_{1z} * t_z + 1$$

$$t_2 = q_{21} * t_1 + q_{22} * t_2 + q_{2z} * t_z + 1$$

 $t_z = q_{z1} * t_1 + q_{z2} * t_2 + q_{zz} * t_z + 1,$

где t_i — среднее количество шагов, которое сделаем из состояния t_i в поглощающее состояние; q_{ii} — вероятность перехода.

Согласно примеру получаем всего два уравнения:

$$t_0 = q_{00} * t_0 + q_{02} * t_2 + 1$$
 $t_2 = q_{20} * t_0 + q_{22} * t_2 + 1$
или
 $t_0 = 0.1 * t_0 + 0.7 * t_2 + 1$
 $t_2 = 0.6 * t_0 + 0.2 * t_2 + 1$

Матрица Т выражается в виде формулы

$$T = (I - Q)^{-1}.$$

Матрица I-Q имеет такой вид в нашем случае:

	S0	S2
S0	0.9	-0.7
S2	-0.6	0.8

С помощью Excel найдем обратную матрицу:

Итак, если система стартует из состояния S0, то она попадает в поглощающее состояние в среднем за 2.66+2.33=5 шагов. Если система стартует из состояния S2, то она попадает в поглощающее состояние в среднем за 2+3 шага (сумма берется по строке матрицы $T=(I-Q)^{-1}$.).

1. Ход работы

	S0	S1	S2	S3
S0	0,10	0,20	0,40	0,30
S1	0,30	0,10	0,40	0,20
S2	0,20	0,20	0,20	0,40
S3	0,30	0,30	0,30	0,10

Для заданного варианта составим систему уравнений:

Решив ее, получим $p_0 = 0.22$, $p_1 = 0.21$, $p_2 = 0.31$ $p_3 = 0.26$. Их мы и примем за начальное состояние.

Найдем состояние системы на первом, втором и третьем шаге. $\mathbf{R}(\mathbf{k}) = \mathbf{R}(0) \cdot \mathbf{P}^{\mathbf{k}}$.

R0	0,22402	0,205352	0,311761	0,258867
R1	0,2240	0,2054	0,3118	0,2589
R2	0,2240	0,2054	0,3118	0,2589
R3	0,2240	0,2054	0,3118	0,2589

R3 - состояние системы на 3 шаге.

Исключим из данной матрицы столбец и строку поглощающего состояния S2 и S2 и получим следующую матрицу:

	S0	S1	S3
S0	0,1	0,2	0,3
S1	0,3	0,1	0,2
S3	0,3	0,3	0,1

Это есть матрица Q.

Q	q00	q01	q03
	q10	q11	q13
	q30	q31	q33

Запишем уравнения T = Q*T+I в таком виде:

```
t0=q00*t0+q01*t1+q03*t3+1;
t1=q10*t0+q11*t1+q13*t3+1;
t3=q30*t0+q31*t1+q33*t3+1;
или
t0=0,1*t0+0,2*t1+0,3*t3+1;
t1=0,3*t0+0,1*t1+0,2*t3+1;
t3=0,3*t0+0,3*t1+0,1*t3+1;
```

Матрица T выражается в виде формулы $T = (I-Q)^{\text{-}1}$. Матрица I-Q имеет такой вид в нашем случае:

	S0	S1	S3
S0	0,9	-0,2	-0,3
S1	-0,3	0,9	-0,2
S3	-0,3	-0,3	0,9

Найдем обратную матрицу:

, ,		1 7		_	
S0	1,497006	0,538922	0,618762	=	2,654691
S1	0,658683	1,437126	0,538922	=	2,634731
S3	0,718563	0,658683	1,497006	=	2,874251

Итак, если система стартует из состояния S0, то она попадет в поглощающее состояние в среднем за 2,65 то есть за 3 шага, если стартует из состояния S1 то в среднем за 2,63 то есть за 3 шага, если стартует из состояния S3 то в среднем за 2,87 то есть за 3 шага.

5 Вывод

В ходе выполнения лабораторной работы были изучены методы анализа поведения дискретно-стохастической СМО.