MODERATE AND EXTREME URBAN RAINFALL MODELING AT A FINE SPATIO-TEMPORAL RESOLUTION

JDS, Bordeaux, May 2024

Chloé SERRE-COMBE¹ Nicolas MEYER¹ Thomas OPITZ² Gwladys TOULEMONDE¹

¹IMAG, Université de Montpellier, LEMON Inria ²INRAE, BioSP, Avignon

STUDY AREA

► Geography:

Verdanson water catchment, tributary of the Lez, located in an urban area

Context:

Mediterranean events, flood risks

DATA

$$\boldsymbol{\mathcal{S}} = \{ \textbf{17 rain gauges} \} \subset \mathbb{R}^2 \, \text{and} \, \boldsymbol{\mathcal{T}} \subset \mathbb{R}_+$$

- ► **Source:** Urban observatory of HydroScience Montpellier (OHSM)¹
- ► Time period: [2019, 2022]
- ► **High temporal resolution:**Every minute → 5-minute aggregation
- ► **High spatial resolution:** Interdistance ∈ [77, 1531] meters

¹FINAUD-GUYOT et al. 2023

ADDITIONAL DATA

- ► Source: COMEPHORE, Météo France
- ► Time period: [1997, 2023]
- ► Temporal resolution: Every hour
- ► **Spatial resolution:** 1 km²

$$\boldsymbol{\mathcal{S}} = \{ \textbf{400 pixels} \} \subset \mathbb{R}^2 \, \text{and} \, \boldsymbol{\mathcal{T}} \subset \mathbb{R}_+$$

UNIVARIATE PRECIPITATION MODELING

UNIVARIATE PRECIPITATION MODELING

Generalized Pareto Distribution

$$\overline{H}_{\xi}\left(\frac{x-u}{\sigma}\right) = \begin{cases} \left(1 + \xi \frac{x-u}{\sigma}\right)^{-1/\xi} & \text{if } \xi \neq 0, \\ e^{-\frac{x-u}{\sigma}} & \text{if } \xi = 0, \end{cases}$$

where
$$a_{+} = \max(a, 0), \ \sigma > 0, \ x - u > 0$$

- ► Models extreme precipitation
- Depends on a threshold choice

Univariate precipitation modeling

Generalized Pareto Distribution

$$\overline{H}_{\xi}\left(\frac{x-u}{\sigma}\right) = \begin{cases} \left(1 + \xi \frac{x-u}{\sigma}\right)^{-1/\xi} & \text{if } \xi \neq 0, \\ e^{-\frac{x-u}{\sigma}} & \text{if } \xi = 0, \end{cases}$$

where
$$a_{+} = \max(a, 0), \ \sigma > 0, \ x - u > 0$$

- ► Models extreme precipitation
- Depends on a threshold choice

$$F(x) = G\left(H_{\xi}\left(\frac{x}{\sigma}\right)\right),\,$$

- where $G(x) = x^{\kappa}, \ \kappa > 0$
- Models moderate and extreme precipitation
- Avoids a threshold choice

²Naveau et al. 2016

UNIVARIATE PRECIPITATION MODELING

Extended GPD

$$F(x)=G\left(H_{\xi}\left(\frac{x}{\sigma}\right)\right),$$
 where $G(x)=x^{\kappa},\ \kappa>0$

- Models moderate and extreme precipitation
- Avoids a threshold choice

EGPD FITTING

Left-censoring: selected according to the NRMSE criterion for each site individually³

Parameter estimates

Density with mean parameters

³ Haruna, Blanchet, and Favre 2023

SPATIO-TEMPORAL DEPENDENCE MODELING

Rainfall field: $\mathbf{X} = \{X_{\mathbf{s},t}, (\mathbf{s},t) \in \mathcal{S} \times \mathcal{T}\}$

Domain of attraction: Stationary isotropic max-stable Brown-Resnick process

Brown-Resnick process (Brown and RESNICK 1977)

For all $\mathbf{s} \in \mathcal{S}$ and $t \in \mathcal{T}$,

$$X_{\mathbf{s},t} = \bigvee_{j=1}^{\infty} \xi_j e^{W_{\mathbf{s},t}^j - \gamma(\mathbf{s},t)}$$

- ξ_j : point of a Poisson process with intensity $\xi^{-2}d\xi$
- ► *W*^j: independent replicates of an intrinsic stationary and isotropic Gaussian random field *W*
- $ightharpoonup \gamma$: spatio-temporal variogram of **W**

DEPENDENCE MEASURES

Let $\Lambda_{\mathcal{S}} \subset \mathbb{R}^2_+$ and $\Lambda_{\mathcal{T}} \subset \mathbb{R}_+$ be sets of spatial and temporal lags respectively.

Spatio-temporal extremogram

For all $\mathbf{h} \in \Lambda_{\mathcal{S}}, \tau \in \Lambda_{\mathcal{T}}$,

$$\chi\left(\boldsymbol{h},\tau\right)=\lim_{q\to 1}\mathbb{P}(X_{\boldsymbol{s},\,t}^*>q\mid X_{\boldsymbol{s}+\boldsymbol{h},t+\tau}^*>q),$$

with $q \in [0,1[$ and $X_{s,t}^*$ the uniform margins.

Spatio-temporal variogram γ

$$\gamma(\mathbf{h}, \tau) = \frac{1}{2} Var\left(W_{\mathbf{s}, t} - W_{\mathbf{s} + \mathbf{h}, t + \tau}\right), \ \mathbf{h} \in \Lambda_{\mathcal{S}}, \tau \in \Lambda_{\mathcal{T}}$$

DEPENDENCE MEASURES

Spatio-temporal extremogram of a Brown-Resnick process

Let $\mathbf{h} \in \Lambda_{\mathcal{S}}$ and $\tau \in \Lambda_{\mathcal{T}}$. We have

$$\chi(\mathbf{h}, \tau) = 2\left(1 - \phi\left(\sqrt{\frac{1}{2}\gamma(\mathbf{h}, \tau)}\right)\right)$$

with ϕ the std normal c.d.f. and γ the variogram of \boldsymbol{W} .

Dependence model framework: BUHL et al. 2019

SPATIO-TEMPORAL DEPENDENCE MODELING

Case of additive separability:
$$\frac{\gamma(h,\tau)}{2} = \beta_1 ||h||^{\alpha_1} + \beta_2 \tau^{\alpha_2}, \ 0 < \alpha_1, \alpha_2 \le 2, \ \beta_1, \beta_2 > 0$$

SPATIO-TEMPORAL DEPENDENCE MODELING

Case of additive separability:
$$\frac{\gamma(h,\tau)}{2} = \beta_1 ||h||^{\alpha_1} + \beta_2 \tau^{\alpha_2}, \ 0 < \alpha_1, \alpha_2 \le 2, \ \beta_1, \beta_2 > 0$$

Weighted Least Squares Estimation (WLSE)

$$\begin{pmatrix} \widehat{c}_{i} \\ \widehat{\alpha}_{i} \end{pmatrix} = \operatorname{argmin}_{c_{i},\alpha_{i}} \sum_{x} w_{x} \left(\eta \left(\widehat{\chi} \right) - \left(c_{i} + \alpha_{i} x \right) \right)^{2}$$

SPATIAL DEPENDENCE ESTIMATION

Empirical spatial extremogram

For a fixed $t \in \mathcal{T}$ and q a high quantile,

$$\widehat{\chi}_{q}^{(t)}(\textbf{h},0) = \frac{\frac{1}{|N_{\textbf{h}}|} \sum_{i,j \mid (\textbf{s}_{i},\textbf{s}_{j}) \in N_{\textbf{h}}} \mathbb{1}_{\{X_{\textbf{s}_{i},t}^{*} > q, X_{\textbf{s}_{j},t}^{*} > q\}}}{\frac{1}{|\mathcal{S}|} \sum_{i=1}^{|\mathcal{S}|} \mathbb{1}_{\{X_{\textbf{s}_{i},t}^{*} > q\}}},$$

where C_h are equifrequent distance classes and $N_h = \left\{ (s_i, s_j) \in \mathcal{S}^2 \mid \|s_i - s_j\| \in C_h \right\}$.

Transformation and WLSE

Spatial variogram $\widehat{\gamma}(\textbf{\textit{h}}, 0) = 2\widehat{eta}_1 \| \textbf{\textit{h}} \|^{\widehat{\alpha}_1}$

TEMPORAL DEPENDENCE ESTIMATION

Empirical temporal extremogram

For a location $s \in \mathcal{S}$, a high quantile q and $t_k \in \{t_1, \dots, t_T\}$,

$$\widehat{\chi}_{q}^{(s)}(\mathbf{0},\tau) = \frac{\frac{1}{T-\tau} \sum_{k=1}^{T-\tau} \mathbb{1}_{\{X_{s,t_k}^* > q, X_{s,t_k+\tau}^* > q\}}}{\frac{1}{T} \sum_{k=1}^{T} \mathbb{1}_{\{X_{s,t_k}^* > q\}}}$$

Transformation and WLSE

Temporal variogram
$$\widehat{\gamma}(\mathbf{0}, au)=2\widehat{eta}_2 au^{\widehat{lpha}_2}$$

CONSIDERING ADVECTION

Advection vector **V**

- ► Horizontal transport of air masses
- To relax the separability assumption

Lagrangian/Eulerian variogram

$$\gamma_{L}(\mathbf{h}, \tau) = \gamma (\mathbf{h} - \tau \mathbf{V}, \tau)$$

Dependence model

$$\frac{1}{2}\gamma_L(\mathbf{h},\tau) = \beta_1 \|\mathbf{h} - \tau \mathbf{V}\|^{\alpha_1} + \beta_2 \tau^{\alpha_2}$$

Hydrologic cycle

CONSIDERING ADVECTION - ESTIMATION

Parameter optimization of \Theta = (\beta_1, \beta_2, \alpha_1, \alpha_2, \mathbf{V})

Excesses: for all spatio-temporal observations (\mathbf{s}_i, t_i) and (\mathbf{s}_j, t_j) ,

$$E_i = \mathbb{1}_{\{X_{\mathbf{s}_i,t_i} > q\}}$$
 and $E_i | (E_j = 1) \sim \mathcal{B}(\chi_{ij,\mathbf{\Theta}})$

Then

$$k_{ij} = \sum_{\ell=1}^{n} E_{i,\ell} E_{j,\ell} \sim \mathcal{B}(n_j, \chi_{ij,\Theta})$$

Composite log-likelihood:

$$\sum_{m} \left[\log \binom{n_m}{k_m} + k_m \log \chi_{m,\Theta} + (n_m - k_m) \log(1 - \chi_{m,\Theta}) \right]$$

CONCLUSION

REFERENCES

- BROWN, Bruce M. and Sidney I. RESNICK (1977). "Extreme values of independent stochastic processes". In: *Journal of Applied Probability*. DOI: 10.2307/3213346.
- Buhl, Sven et al. (2019). "Semiparametric estimation for isotropic max-stable space-time processes". In: *Bernoulli*.
- FINAUD-GUYOT, Pascal et al. (2023). Rainfall data collected by the HSM urban observatory (OMSEV). DOI: 10.23708/67LC36.
- HARUNA, Abubakar, Juliette Blanchet, and Anne-Catherine Favre (2023). Modeling Areal Precipitation Hazard: A Data-driven Approach to Model Intensity-Duration-Area-Frequency Relationships using the Full Range of Non-Zero Precipitation in Switzerland. preprint. Preprints. DOI: 10.22541/essoar.169111775.53035997/v1.
- NAVEAU, Philippe et al. (2016). "Modeling jointly low, moderate, and heavy rainfall intensities without a threshold selection". In: Water Resources Research. DOI: 10.1002/2015WR018552.

MODEL VALIDATION - SIMULATIONS

Brown-Resnick simulations

- ▶ Spatial: $S = \{400 \text{ sites }\}$, $T = \{1, ..., 50\}$, $|\Lambda_S| = 10 \text{ and } |\Lambda_T| = 10$
- ► Temporal: $S = \{25 \text{ sites }\}$, $T = \{1, ..., 300\}$, $|\Lambda_S| = 10$ and $|\Lambda_T| = 10$

	True	Mean	RMSE	MAE
\widehat{eta}_1	0.4	0.524	0.138	0.126
$\widehat{\alpha}_1$	1.5	1.507	0.120	0.088
\widehat{eta}_{2}	0.2	0.259	0.093	0.074
$\widehat{lpha}_{ m 2}$	1	0.873	0.149	0.128

Parameter estimates for 100 realisations

True variogram: $\frac{1}{2}\gamma(\mathbf{h},\tau) = 0.4\|\mathbf{h}\|^{3/2} + 0.2\tau$

CONSIDERING ADVECTION

Advection vector **V**

- ► Horizontal transport of air masses
- ► To relax the separability assumption

Lagrangian/Eulerian variogram

$$\gamma_{L}(\mathbf{h}, \tau) = \gamma(\mathbf{h} - \tau \mathbf{V}, \tau)$$

Dependence model

$$\frac{1}{2}\gamma_L(\boldsymbol{h},\tau) = \beta_1 \|\boldsymbol{h} - \tau \boldsymbol{V}\|^{\alpha_1} + \beta_2 \tau^{\alpha_2}$$

Spatial variogram with a constant advection $V = (0.001, 45)^T$ on OHSM data

RAINFALL DATA - OHSM

Rainfall amounts on CNRS and Polytech rain gauges

EGPD FITTING

EGPD fitting on an OHSM site (CNRS) and on a COMEPHORE pixel with left-censoring at 0.25 mm and 0.45 mm respectively with 95% CI