#### **EXPERIMENTT NO: 10**

**Title: -** DESIGN AND IMPLEMENTATION OF BCD TO EXCESS-3 CODE CONVERTER

#### **Objective:-**

To design and implement 4-bit

- (i) BCD to excess-3 code converter
- (ii) Excess-3 to BCD code converter

#### Tool required:-

SynaptiCAD Verilogger

#### THEORY:

A code converter is a circuit that makes the two systems compatible even though each uses a different binary code. To convert from binary code to Excess-3 code, the input lines must supply the bit combination of elements as specified by code and the output lines generate the corresponding bit combination of code. Each one of the four maps represents one of the four outputs of the circuit as a function of the four input variables.

A two-level logic diagram may be obtained directly from the Boolean expressions derived by the maps. These are various other possibilities for a logic diagram that implements this circuit. Now the OR gate whose output is C+D has been used to implement partially each of three outputs.

#### **LOGIC DIAGRAM:**



### **BCD TO EXCESS-3 CONVERTOR**

### K-Map for E<sub>3</sub>:



E3 = B3 + B2 (B0 + B1)

### K-Map for E<sub>2</sub>:



E2 = B2 (B1 + B0)

## K-Map for $E_1$ :



E1 = B1 ⊕ B0

# K-Map for $E_0$ :

| B1B0 |    |    |    |    |  |  |  |  |
|------|----|----|----|----|--|--|--|--|
| B3B2 | 00 | 01 | 11 | 10 |  |  |  |  |
| 00   | 1  |    |    | 1  |  |  |  |  |
| 01   | 1  |    |    | 1  |  |  |  |  |
| 11   | х  | x  | х  | x  |  |  |  |  |
| 10   | 1  |    | x  | х  |  |  |  |  |

 $E0 = \overline{B0}$ 

### TRUTH TABLE:

| BCD in | put |
|--------|-----|
|--------|-----|

| Excess | <b>-3</b> | outpi | ηf |
|--------|-----------|-------|----|
| LACUSS |           | vuipi | uι |

| <b>B3</b> | <b>B2</b> | <b>B1</b> | <b>B0</b> | G3 | G2 | G1 | G0 |
|-----------|-----------|-----------|-----------|----|----|----|----|
|           |           |           |           |    |    |    |    |
| 0         | 0         | 0         | 0         | 0  | 0  | 1  | 1  |
| 0         | 0         | 0         | 1         | 0  | 1  | 0  | 0  |
| 0         | 0         | 1         | 0         | 0  | 1  | 0  | 1  |
| 0         | 0         | 1         | 1         | 0  | 1  | 1  | 0  |
| 0         | 1         | 0         | 0         | 0  | 1  | 1  | 1  |
| 0         | 1         | 0         | 1         | 1  | 0  | 0  | 0  |
| 0         | 1         | 1         | 0         | 1  | 0  | 0  | 1  |
| 0         | 1         | 1         | 1         | 1  | 0  | 1  | 0  |
| 1         | 0         | 0         | 0         | 1  | 0  | 1  | 1  |
| 1         | 0         | 0         | 1         | 1  | 1  | 0  | 0  |
| 1         | 0         | 1         | 0         | X  | X  | X  | X  |
| 1         | 0         | 1         | 1         | X  | X  | X  | X  |
| 1         | 1         | 0         | 0         | X  | X  | X  | X  |
| 1         | 1         | 0         | 1         | X  | X  | X  | X  |
| 1         | 1         | 1         | 0         | X  | X  | X  | X  |

| 1 | 1 | 1 | 1 | X | X | X | X |
|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |

### **LOGIC DIAGRAM:**

### **EXCESS-3 TO BCD CONVERTOR**



## K-Map for A:

| X3)   | <4 |    |    |    |
|-------|----|----|----|----|
| X1 X2 | 00 | 01 | 11 | 10 |
| 00    | X  | ×  | o  | x  |
| 01    | 0  | 0  | o  | o  |
| 11    | 1  | Х  | Х  | X  |
| 10    | 0  | 0  | 1  | 0  |

## A = X1 X2 + X3 X4 X

## K-Map for B:



 $\mathsf{B} = \mathsf{X2} \oplus (\,\overline{\mathsf{X3}} + \overline{\mathsf{X4}}\,)$ 

## K-Map for C:

| X3 :  | ×4 |    |    |    |
|-------|----|----|----|----|
| X1 X2 | 00 | 01 | 11 | 10 |
| 00    | Х  | X  | 0  | Х  |
| 01    | 0  | 1  | х  | 1  |
| 11    | 0  | х  | х  | х  |
| 10    | Х  | 1  | 0  | 1  |

C = X3 ⊕ X4

## K-Map for D:

| X3:     | ×4 |    |    |    |
|---------|----|----|----|----|
| X1 X2 \ | 00 | 01 | 11 | 10 |
| 00      | Х  | x  | 0  | X  |
| 01      | 1  | 0  | 0  | 1  |
| 11      | 1  | Х  | х  | х  |
| 10      | 1  | 0  | 0  | 1  |

$$D = \overline{X4}$$

#### **TRUTH TABLE:**

|   | Excess – 3 Input | BCD Output |
|---|------------------|------------|
| 1 |                  |            |

| В3 | <b>B2</b> | <b>B</b> 1 | <b>B</b> 0 | G3 | G2 | G1 | G0 |
|----|-----------|------------|------------|----|----|----|----|
|    |           |            |            |    |    |    |    |
| 0  | 0         | 1          | 1          | 0  | 0  | 0  | 0  |
| 0  | 1         | 0          | 0          | 0  | 0  | 0  | 1  |
| 0  | 1         | 0          | 1          | 0  | 0  | 1  | 0  |
| 0  | 1         | 1          | 0          | 0  | 0  | 1  | 1  |
| 0  | 1         | 1          | 1          | 0  | 1  | 0  | 0  |
| 1  | 0         | 0          | 0          | 0  | 1  | 0  | 1  |
| 1  | 0         | 0          | 1          | 0  | 1  | 1  | 0  |
| 1  | 0         | 1          | 0          | 0  | 1  | 1  | 1  |
| 1  | 0         | 1          | 1          | 1  | 0  | 0  | 0  |
| 1  | 1         | 0          | 0          | 1  | 0  | 0  | 1  |
|    |           |            |            |    |    |    |    |

#### TASK:

- 1. Implement BCD to Excess-3 code Converter using Verilog a. Draw the diagram with the labels used in Verilog

  - b. Paste the Screenshot of the code
  - c. Paste the screenshot of the time diagram