

수업 흐름도

순환신경망 (RNN)

시간에 따라 변하는 데이터를 처리해보자!

다음 문장을 완성해보자

- 나는 지각을 ____.
- 그래서 선생님께 혼이 ____.
- 내 짝은 우리반에서 가장 .
- 용진씨는 우리반에서 가장 ____.

다음 단어를 결정하기 위해서는 이전 단어를 기억하고 있어야 한다.

대화형 인공지능 - Chat GPT

한국의 저출산 문제에 대해 3줄로 요약해서 알려줘

번역결과

Summarize in 3 lines about Korea's low birth rate.

번역결과

한국의 낮은 출산율은 높은 생활비, 까다로운 직장 문화, 교육 압박 등의 요인으로 인해 가족 계획이 늦어지는 데 기인합니다. 이 문제를 해결하려면 유연한 근무 옵션, 재정적 인센티브, 성 역할과 가족에 대한 사회적 태도의 변화가 필요합니다. 대중 인식 캠페인은 부모 역할의 이점을 장려하고 가족 가치를 강화하는 데 중요합니다.

이러한 문제를 해결하기 위한 방안을 5줄로 알려줘

번역결과

Please tell me in 5 lines how to solve this problem

번역결과

저출산 문제를 해결하려면:

- 1. 유연한 정책: 유연한 근무 시간, 육아 휴직, 원격 근무를 시행하여 부모의 일과 삶의 균형을 개선합니다.
- 2. **재정적 지원:** 자녀 양육에 따른 경제적 부담을 완화하기 위해 상당한 재정 지원, 세금 인센티브, 저렴한 보육 서비스를 제공합니다.
- 3. 교육 구조 조정: 학업에 대한 부담을 줄이기 위해 교육 시스템을 개정하여 젊은 부부가 직업에 지장을 주지 않고 부모 역할을 계획할 수 있도록 합니다.
- 4. 성 평등: 가사 책임의 균등한 공유를 촉진하여 두 파트너가 공평하게 경력을 쌓고 양육할 수 있 도록 지원합니다.
- 5. **인식 캠페인:** 출생률 증가의 사회적, 경제적 이점을 보여주고 가족을 위한 지원 환경을 조성하는 광범위한 인식 캠페인을 시작합니다.

RNN 탄생 이유

- 먼저 문장을 보고 무엇을 의미하는지 알아야 서비스가 가능함
- 문장을 보고 이해한다는 것은 많은 문장을 이미 학습해 놓았다는 의미
- 문장의 의미를 제대로 전달하려면 각 단어가 정해진 순서대로 입력되어야 함
- 과거에 입력된 데이터와 나중에 입력된 데이터 사이의 관계를 고려해야 함
- 이러한 시간적 개념이 들어간 데이터들을 해결하기 위해 RNN이 고안됨

Recurrent : 순환하는

Neural Networks: 신경망

일반 신경망과 순환 신경망의 차이

- RNN은 여러 개의 데이터가 순서대로 입력되었을 때 앞서 입력 받은 데이터의 연산 결과를 잠시 기억해 놓는 방식
- 기억된 연산 결과를 가지고 다음 데이터가 들어오면서 함께 연산됨

일반 신경망과 순환 신경망의 차이

- 앞에서 나온 입력에 대한 결과가 뒤에서 나오는 입력 값에 영향을 주게 됨
- 비슷한 두 문장이 입력되어도 앞에서 나온 입력 값을 구별하여 출력값에 반영

일반 신경망과 순환 신경망의 차이

- 모든 입력 값에 이 작업을 순서대로 실행하므로 같은 층을 맴도는 것 처럼 보임
- 같은 층 안에서 맴도는 성질 때문에 순환 신경망이라고 지칭함

활용 사례 - Sequential Data(순차기반 데이터)

Time series

Sentence

Music

Translation

분석에 사용되는 특성들이 시간적, 순차적 특징을 지닌 데이터

RNN 수식 살펴보기

$$h_t = f_W(h_{t-1}, x_t)$$
new state old state input vector at some time step some function with parameters W

(Vanilla) Recurrent Neural Network

The state consists of a single "hidden" vector h:

SimpleRNN 신경망 실습

SimpleRNN (units = 3, input_shape = (4, 9))

- •units: 뉴런의 개수
- •input_shape:(timesteps, features) 형태의 튜플로 들어감
 - ※ timesteps: 순환 횟수 설정(즉, 입력 데이터가 몇 번이나 들어오는지)

SimpleRNN 신경망 실습

RNN 데이터 구조

Feed Forward Network Data (2D)

Recurrent Network Data (3D)

'hello'를 SimpleRNN 신경망으로 학습하기

Hello를 one hot encoding하기

RNN 활용 구조(다수 입력 단일 출력)

① 다수 입력 단일 출력

예: 문장을 읽고 뜻을 파악할 때 활용

RNN 활용 구조(다수 입력 단일 출력)

model = Sequential() model.add(SimpleRNN(units = output_size,

input_shape=(timesteps, features)]]

RNN 활용 구조(단일 입력 다수 출력)

② 단일 입력 다수 출력

예: 사진의 캡션을 만들 때 활용

RNN 활용 구조(단일 입력 다수 출력)

model = Sequential()

model.add(RepeatVector(number_of_times, input_shape=input_shape))

※ number_of_times : 출력 개수 설정, ex) 3개의 캡션을 원하면 3으로 설정

model.add(SimpleRNN(units = output_size, return_sequences=True))

※ return_sequences=True : SimpleRNN 신경망이 순환할 때마다 값을 계속 출력

RNN 활용 구조(다수 입력 다수 출력)

③ 다수 입력 다수 출력

RNN 활용 구조(다수 입력 다수 출력)

Video에서 Frame단위 Classfication ex) 폭력감지 CCTV 영상

RNN 활용 구조(다수 입력 다수 출력)

로이터 뉴스 카테고리 분류 실습

Simple RNN의 문제점과 개선 모델을 알아보자

SimpleRNN의 문제점

장기 의존성 문제(Long-Term Dependency)

- 활성화 함수로 tanh를 사용하기 때문에 timesteps(순환횟수)가 길어질수록 역전파시 기울기가 점차 줄어 학습 능력이 저하됨
- → 기울기 소실 문제 (Vanishing Gradient) 발생

시간이 지나면 이전의 입력값을 잊어버리게 된다!

SimpleRNN의 대안 → LSTM

- 순환횟수가 많더라도 앞에서 연산한 결과를 장기간 유지할 수 있는 '구조'가 필요
 - : RNN에 메모리 셀(cell) 추가
- 메모리 셀(cell)
 - 시각 t에서 메모리 셀의 c에는 과거로부터 현재시각 t까지의 필요한 대부분의 정보가 저장
 - 오차역전파 시 tanh와 같은 활성화 함수를 통과하지 않아서 기울기 소실이 일어나지 않음
 - 데이터를 LSTM 계층 내에서만 주고 받으며 다른 계층으로는 전달하지 않음

SimpleRNN의 대안 → LSTM

SimpleRNN 구조

- LSTM Cell 1개는 3개의 gates(forget, input, output)로 구성
- Forget gate는 이전 상태 정보를 얼마나 버리고 얼마 만큼을 저장할지 결정하고,
- Input gate는 입력되는 새로운 정보를 얼마만큼 저장할지 결정하며,
- Output gate는 현재 메모리 Cell 값을 얼만큼 다음 셀로 전달할지를 결정

- h는 단기 상태(Short-Term state)를 c는 장기 상태(Long-Term state)
- 이전 스텝의 장기 기억 c_{t-1} 은 Forget gate를 지나면서 일부 정보를 잃고, Input gate로 부터 덧셈(+) 연산을 통해 새로운 정보를 추가하여 현재 스텝의 장기 기억 c_t 가 생성 됨
- c, 는 Output gate의 tanh 활성화함수로 전달되어 sigmoid를 거쳐 단기 상태 h, 를 만듦

워드임베딩 (Word Embedding)

컴퓨터가 좀 더 효율적인 자연어 처리를 하기 위해서는?

Word Embedding

워드 임베딩 목적

- 무한대의 가짓수가 나오는 자연어를 컴퓨터가 더 잘 이해하고 효율적으로 처리하기 위해서는 단순한 인코딩이 아닌 컴퓨터가 더 잘 이해할 수 있도록 변환 할 필요가 있음
- 임베딩은 희소 표현(원 핫 인코딩)에서 밀집 표현(실수형태)으로 변환하는 것을 의미
- 워드 임베딩은 한 단어의 의미를 풍부하게 만들어주는 역할을 함
- 밀집표현을 통해 단어들의 유사도(cosine 유사도)까지 판단해서 예측에 반영할 수 있음

Word Embedding

워드 임베딩 변환

- 밀집표현의 차원수(일반적으로 희소표현보다 저 차원)는 사용자가 정할 수 있음
- 밀집표현의 실수 값들은 처음에는 랜덤하게 설정되었다가 학습이 되면서 최적 값을 찾아감

Word Embedding

코사인 유사도(Cosine similarity)

- 단어 a와 단어 b간의 유사한 정도를 표현할 수 있음(범위: -1 ~ 1)
- Cosine 함수 사잇각이 0°일 때 값은 1(같음), 90°일 때 0(관계없음), 180°일 때 -1(반대)

코사인 유사도(cosine similarity)

코사인 값이 크면, 사잇각은 작아지고, 유사도는 높아진다.

$$\cos \theta = \left(\frac{\mathbf{a}}{\parallel \mathbf{a} \parallel}\right) \cdot \left(\frac{\mathbf{b}}{\parallel \mathbf{b} \parallel}\right)$$

LSTM과 Word Embedding을 활용한 로이터 뉴스 카테고리 분류 실습

