

Двухчастичные корреляции, возникающие при распаде одиночной струны

Автор: Кравцов Павел Сергеевич, 408 группа

Научный руководитель: д.ф.-м.н., профессор Вечернин

Владимир Викторович

Рецензент: к.ф.-м.н., ассистент Алцыбеев Игорь Геннадьевич

Санкт-Петербургский государственный университет Кафедра физики высоких энергий и элементарных частиц

6 июня 2016г.

Актуальность и цель работы

Цель работы:

Объяснить задний хребет.

 $\Delta\eta$ - разность быстрот частиц

 $\Delta \varphi$ - (азимутальный) угол разлета (угол между поперечными импульсами частиц)

Определение быстроты:

$$\eta = \ln \frac{1 + V_z}{1 - V_z},$$

где V_z - продольная скорость частицы.

Рис.: Распределение по разности быстрот $\Delta\eta$ и углу разлета $\Delta\varphi$ частиц в процессе множественного рождения. 2

²ALICE Collaboration, arxiv:1307.3237 [nucl-ex] (2013).

Модель кварк-глюонной струны

- Двухстадийное описание столкновений адронов
- Модель "уо-уо"струны
- Механизм фрагментации струны

Двухстадийное описание столкновений адронов

"Үо-уо" струна

$$S = \gamma \int_{\sigma_1}^{\sigma_2} d\sigma \int_{-\infty}^{+\infty} d\tau \sqrt{\left(\frac{\partial x_\mu}{\partial \tau} \frac{\partial x^\mu}{\partial \sigma}\right)^2 - \left(\frac{\partial x_\mu}{\partial \sigma} \frac{\partial x^\mu}{\partial \sigma}\right) \left(\frac{\partial x_\nu}{\partial \tau} \frac{\partial x^\nu}{\partial \tau}\right)},$$

где $\gamma = const$ - натяжение струны, σ, τ - переменные, параметризующие струну, $x^{\mu} = x^{\mu} (\sigma, \tau)$ - координа-

ты струны.

Рис.: Движение концов струны "yo-yo"с массами (сплошная линия) и без масс (пунктирная линия).

Механизм фрагментации струны

Рис.: Доминирующий процесс фрагментации струны. Все разрывы происходят с $S=S_0$.

Модель Артру-Менниссиера 5 :

$$P(S) = 1 - exp\left(-\frac{S}{S_0}\right),$$

где S_0 - параметр модели.

Вывод: $|\Delta\eta| \approx 1$

⁴V. V. Vechernin, arXiv: 0812.0604 [hep-ph].

⁵X. Artru, Phys. Rep. 97, p.147 (1983).

Источники и виды корреляций

- Дальние корреляции
 - Флуктуация числа струн-источников
 - Слияние струн
- Ближние корреляции
 - Локальные законы сохранения

7 / 12

Модель одиночной струны

Рис.: Модель цветной кварк-глюонной струны

Дано:

- $|\Delta \eta| = 1$
- $\bullet \ \vec{p_i} = \vec{q}_{i+1} + \vec{\bar{q_i}} = \vec{q}_{i+1} \vec{q_i}$
- ullet $\Delta arphi_i$ угол между p_i и p_{i+1}
- $\bullet \ \rho_{\varphi_i}\left(\varphi_i\right) = \frac{1}{2\pi}$
- $\rho_{q_i}(q_i)$ известно

Найти:

- $\rho_{p_i}(p_i) = ?$
- $\rho_{\Delta\varphi_i}(\Delta\varphi_i) = ?$

Константный случай

Распределение импульсов кварков:

$$\rho_{q_i}(q) = \delta(q - q_0),$$

где q_0 - параметр модели.

Распределение импульсов мезонов:

$$\rho_{p}(p) = \frac{2}{\pi \sqrt{(2q_{0})^{2} - p^{2}}}.$$

Распределение по углу разлета:

$$ho_{\Deltaarphi}\left(\Deltaarphi
ight)=rac{\left|\Deltaarphi
ight|}{\pi^{2}},\Deltaarphi\in\left[-\pi,\pi
ight].$$

Гауссов случай

Распределение импульсов кварков:

$$ho_{q_i}\left(q
ight) = rac{q}{2q_0^2} exp\left(-rac{q^2}{q_0^2}
ight).$$

Распределение импульсов мезонов:

$$ho_p(p) = rac{p \ e^{-rac{p^2}{2q_0^2}}}{q_0^2}.$$

Распределение по углу разлета:

$$ho_{\Deltaarphi}\left(\Deltaarphi
ight)=rac{3}{8\pi}rac{\sqrt{1-\gamma^2}-\gamma\;lpha
ho\cos\gamma}{\left(1-\gamma^2
ight)^{3/2}},\;\;\stackrel{\widehat{\scriptsize \textcircled{\scriptsize 3}}}{\stackrel{\scriptsize \textcircled{\scriptsize 3}}{\circlearrowleft}}\,_{\scriptscriptstyle \circ,1}$$

где
$$\gamma = \frac{cos\Delta\varphi}{2}$$
.

Объяснение наличия заднего риджа

Рис.: Экспериментальное распределение числа частиц по $(\Delta\eta,\Deltaarphi)$

Модель предсказывает:

Результаты

- Построена модель одиночной струны
- В рамках модели объяснен задний хребет
- Получены аналитические выражения для распределений вероятности импульса мезона и угла разлета, которые в дальнейшем можно использовать в построении монте-карловских генераторов событий

⁶Использован стилевой файл презентации из репозитория github.com/YaccConstructor/articles/tree/master/SlidesTemplate