Summary for Elementary Probability

SEUNGWOO HAN

Contents

CHAPTER I	BASIC CONCEPTS	PAGE 2
1.1	Events and Probability	2
1.2	Random Variables and Their Distributions	3
1.3	Conditional Probability and Independence	5
1.4	Counting and Probability	6
CHAPTER 2	DISCRETE PROBABILITY	PAGE 7
	Discrete Random Elements	7
2.2	Expectation	7
2.3	Independence	9
2.4	Mean and Variance	0

Chapter 1

Basic Concepts

1.1 Events and Probability

Definition 1.1.1: Probability Space

A probability space contains of a triple (Ω, \mathcal{F}, P) where

- Ω is the sample space,
- $\mathcal{F} \subseteq 2^{\Omega}$ (each $A \in \mathcal{F}$ is called an *event*), and
- $P: \mathcal{F} \to [0,1]$ maps each event $A \in \mathcal{F}$ to the *probability* of A

which satisfies the following conditions:

Axioms Relative to the Events The family \mathcal{F} of events must be a σ -field on Ω :

- (1) $\Omega \in \mathcal{F}$;
- (2) If $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$ (where A^c is the complement of A);
- (3) If $\langle A_n \rangle_{n \in \mathbb{Z}_+}$ is a sequence on \mathcal{F} , then $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$.

Axioms Relative to the Probability The function *P* must satisfy the following conditions:

- (1) $P(\Omega) = 1$;
- (2) σ -additivity holds: if $\langle A_n \rangle_{n \in \mathbb{Z}_+}$ is a sequence of pairwise disjoint events, then

$$P\left(\bigcup_{n=1}^{\infty}A_{n}\right)=\sum_{n=1}^{\infty}P(A_{n}).$$

Note

Here are immediate properties of probability:

- $P(A^{c}) = 1 P(A)$;
- $\emptyset = \Omega^{c} \in \mathcal{F}$ and $P(\emptyset) = 0$;
- If $\langle A_n \rangle_{n \in \mathbb{Z}_+}$ is a sequence of events, then $\bigcap_{n=1}^{\infty} A_n$ is also an event;
- $A, B \in \mathcal{F}$ and $A \subseteq B$ implies $P(A) \le P(B)$.

Lemma 1.1.2 sub- σ -additivity

If $\langle A_n \rangle_{n \in \mathbb{Z}_+}$ is a sequence of events, then

$$P\left(\bigcup_{n=1}^{\infty}A_{n}\right)\leq\sum_{n=1}^{\infty}P(A_{n}).$$

Proof. Let $B_n = A_n \setminus \bigcup_{i=1}^{n-1} A_i$ for each $n \ge 1$ and use σ -additivity.

Lemma 1.1.3 Inclusion-Exclusion Principle

If A_1, \dots, A_n are events, then

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{\varnothing \neq I \subseteq [n]} (-1)^{|I|-1} P\left(\bigcap_{i \in I} A_{i}\right).$$

Proof. Classic.

Theorem 1.1.4 Sequential Continuity of Probability

(1) Let $\langle B_n \rangle_{n \in \mathbb{Z}_+}$ be a sequence of events such that $B_n \subseteq B_{n+1}$ for all $n \ge 1$. Then,

$$P\left(\bigcup_{n=1}^{\infty}B_n\right)=\lim_{n\to\infty}P(B_n).$$

(2) Let $\langle C_n \rangle_{n \in \mathbb{Z}_+}$ be a sequence of events such that $C_n \supseteq C_{n+1}$ for all $n \ge 1$. Then,

$$P\left(\bigcap_{n=1}^{\infty}C_{n}\right)=\lim_{n\to\infty}P(C_{n}).$$

Proof.

(1) Let $B'_n := B_n \setminus B_{n-1}$ for each $n \ge 2$ and $B'_1 := B_1$. so that $B_m = \bigcup_{n=1}^m B'_n$ and B'_i 's are pairwise disjoint. Hence, by σ -additivity, we have

$$P\left(\bigcup_{n=1}^{\infty}B_{n}\right)=P\left(\bigcup_{n=1}^{\infty}B_{n}'\right)=\sum_{n=1}^{\infty}P(B_{n}')=P(B_{1})+\sum_{n=1}^{\infty}\left(P(B_{n})-P(B_{n-1})\right)=\lim_{n\to\infty}P(B_{n}).$$

(2) Let $C'_n := C_n^c$ for each $n \ge 1$ so that $C'_n \subseteq C'_{n+1}$ for all n. Hence, by (1), we have $P\left(\bigcup_{n=1}^{\infty} C'_n\right) = \lim_{n \to \infty} P(C'_n)$. The result follows from the fact that $\bigcup_{n=1}^{\infty} C'_n = \Omega \setminus \bigcap_{n=1}^{\infty} C_n$.

1.2 Random Variables and Their Distributions

Definition 1.2.1: Random Variable

A random variable on (Ω, \mathcal{F}) is any mapping $X : \Omega \to \overline{\mathbb{R}}$ such that for all $a \in \mathbb{R}$, $\{X \le a\} \triangleq \{\omega \in \Omega \mid X(\omega) \le a\} \in \mathcal{F}$. Here, $\overline{\mathbb{R}} = \mathbb{R} \cup \{\pm \infty\}$.

- If *X* only takes finite values, *X* is called a *real random variable*.
- If X only takes only a countable set of values $\{a_n\}_{n\in\mathbb{Z}_{\geq 0}}$, X is called a *discrete random variable*.

Definition 1.2.2: Cumulative Distribution Function

The *cumulative distribution function* (CDF) of a random variable X is the function $F: \mathbb{R} \to [0,1]$ defined by

$$F(x) = P(X \le x) \triangleq P(\{X \le x\}).$$

Lemma 1.2.3

Let *F* be a cumulative distribution function of a random variable *X*.

- (1) *F* is monotone increasing.
- (2) *F* is right-continuous.
- (3) If we define $F(\infty) := \lim_{x \to \infty} F(x)$ and $F(-\infty) = \lim_{x \to -\infty} F(x)$, then $1 F(\infty) = P(X = \infty)$ and $F(-\infty) = P(X = -\infty)$.

Proof.

- (1) Take any $x, y \in \mathbb{R}$ with $x \le y$. Then, $\{X \le x\} \subseteq \{X \le y\}$. Hence, $F(x) = P(X \le x) \le P(X \le y) \le F(y)$.
- (2) Take any decreasing nonnegative sequence $\langle \varepsilon_n \rangle_{n \in \mathbb{Z}_+}$ of real numbers converging to zero and a real number x. Let $C_n \coloneqq \{X \le x + \varepsilon_n\}$ so that $\langle C_n \rangle_{n \in \mathbb{Z}_+}$ is a decreasing sequence of events. Note also that $\{X \le x\} = \bigcap_{n=1}^{\infty} C_n$ Then, by Theorem 1.1.4 (2),

$$F(x) = P(X \le x) = \lim_{n \to \infty} P(X \le x + \varepsilon_n) = \lim_{n \to \infty} F(x + \varepsilon_n).$$

(3) Let $B_n := \{X \le n\}$ for each $n \in \mathbb{Z}_+$ so that $\bigcup_{n=1}^{\infty} B_n = \{X < \infty\}$ and $\langle B_n \rangle_{n \in \mathbb{Z}_+}$ is an increasing sequence of events. By Theorem 1.1.4 (1),

$$1 - P(X = \infty) = P(X < \infty) = P\left(\bigcup_{n=1}^{\infty} B_n\right) = \lim_{n \to \infty} P(B_n) = \lim_{n \to \infty} F(n) = F(\infty).$$

The last equality is due to (1).

Definition 1.2.4: Probability Density

If a real random variable *X* admits a cumulative distribution function *F* such that

$$F(x) = \int_{-\infty}^{x} f(y) \, \mathrm{d}y$$

for some nonnegative function f, then X is said to admit the *probability density* f.

Note

Note that the probability density f satisfies

$$\int_{-\infty}^{\infty} f(y) \, \mathrm{d}y = 1.$$

1.3 Conditional Probability and Independence

Definition 1.3.1: Conditional Probability

Let *B* be an event with P(B) > 0. For any event *A*, we define

$$P(A \mid B) := \frac{P(A \cap B)}{P(B)}$$

and it is called the probability of A given B.

Definition 1.3.2: Independent Events

- (1) Two events *A* and *B* are said to be *indepenent* if $P(A \cap B) = P(A)P(B)$.
- (2) Let A be a nonempty family of events. A is said to be a *family of independent events* if for any finite subfamily $\langle A_1, \dots, A_n \rangle$ of A,

$$P\left(\bigcap_{i=1}^n A_i\right) = \prod_{i=1}^n P(A_i).$$

Note

When P(B) > 0, A and B are independent if and only if $P(A \mid B) = P(A)$.

Definition 1.3.3: Independent Random Variables

Two random variables X and Y defined on (Ω, \mathcal{F}, P) are said to be *independent* if

$$\forall a, b \in \mathbb{R}, P(X \le a, Y \le b) = P(X \le a)P(Y \le a).$$

A family \mathcal{X} of random variables is said to be *independent* if, for any finite subfamily $\{X_1, \dots, X_n\} \subseteq \mathcal{X}$, and for any $a_1, \dots, a_n \in \mathbb{R}$, we have

$$P(X_1 \leq a_1, \cdots, X_n \leq a_n) = \prod_{i=1}^n P(X_i \leq a_i).$$

Note

If X and Y takes values $\langle a_n \rangle_{n \in \mathbb{Z}_+}$ and $\langle b_n \rangle_{n \in \mathbb{Z}_+}$, respectively, then X and Y are independent if and only if

$$P(X = a_i, Y = b_j) = P(X = a_i)P(Y = b_j)$$

for all $i, j \in \mathbb{Z}_+$. It is analogous to family of discrete random variables.

Lemma 1.3.4 Bayes' Retrodiction Formula

If *A* and *B* are events of positive probability, then

$$P(B \mid A) = \frac{P(A \mid B)P(B)}{P(A)}.$$

Lemma 1.3.5 Bayes' Sequential Formula

Let A_1, \dots, A_n be events such that $P(A_1 \cap \dots \cap A_n) > 0$. Then,

$$P(A_1 \cap \cdots \cap A_n) = P(A_1)P(A_2 \mid A_1)P(A_3 \mid A_1 \cap A_2)\cdots P(A_n \mid A_1 \cap \cdots \cap A_{n-1}).$$

Proof. Mathematical induction.

Lemma 1.3.6 Law of Total Probability

Let A be an event, and let $\langle B_n \rangle_{n \in \mathbb{Z}_{>0}}$ be an exaustive sequence of events. In other words, $\bigcup_{n=1}^{\infty} B_n = \Omega$ and $B_i \cap B_j = \emptyset$ for all $1 \le i < j$. Then, we have

$$P(A) = \sum_{n=1}^{\infty} P(A \mid B_n) P(B_n)$$

where we agree to have $P(A \mid B_n)P(B_n) = 0$ when $P(B_n) = 0$. Moreover, for all $m \in \mathbb{Z}_{>0}$, we have

$$P(B_m | A) = \frac{P(A | B_m)P(B_m)}{\sum_{n=1}^{\infty} P(A | B_n)P(B_n)}$$

if P(A) > 0.

Proof. $A = A \cap \Omega = A \cap \left(\bigcup_{n=1}^{\infty} B_n\right) = \bigcup_{n=1}^{\infty} (A \cap B_n)$. Apply σ -additivity to obtain the result. Note that $P(A \cap B_n) = P(A \mid B_n)P(B_n)$ always according to our convention.

1.4 Counting and Probability

If Ω is finite and we let $p(\omega) := P(\{\omega\})$ with equal probabilities, then we must have $P(A) = (\operatorname{card} A)/(\operatorname{card} \Omega)$ for all $A \subseteq \Omega$. Hence, we should *count*.

Example 1.4.1

- The number of injections from *E* to *F* with $p = \operatorname{card}(E)$ and $n = \operatorname{card}(F)$ when $p \le n$ is $A_p^n = \frac{n!}{(n-p)!}$.
- In particular, if p = n, we have A_n^n , the number of permutations of n elements, which is n!.
- The number of subsets of *F* with *p* elements is $\binom{n}{p} = \frac{n!}{p!(n-p)!}$.
- (Binomial formula) $(x+y)^n = \sum_{p=0}^n x^p y^{n-p}$. $2^n = \sum_{p=0}^n {n \choose p}$.
- $\binom{n}{p} = \binom{n}{n-p}$.
- (Pascal's formula) $\binom{n}{p} = \binom{n-1}{p-1} + \binom{n-1}{p}$.

Chapter 2

Discrete Probability

2.1 Discrete Random Elements

Definition 2.1.1: Discrete Random Element

Let *E* be a denumerable set and let (Ω, \mathcal{F}, P) be a probability space. Any function $X: \Omega \to E$ such that

$$\forall x \in E, \{ \omega \mid X(\omega) = x \} \in \mathcal{F}$$

is called a *discrete random element* of *E*. When $E \subseteq \mathbb{R}$, we refer to *X* as a *discrete random variable*. This allows us to define

$$p(x) := P(X = x)$$

for $x \in E$. The collection $\{p(x) \mid x \in E\}$ is the distribution of X. It satisfies

$$0 \le p(x) \le 1$$
 and $\sum_{x \in E} p(x) = 1$.

Note

E being denumerable enables us to define in such way. Note the difference from Definition 1.2.1.

2.2 Expectation

Definition 2.2.1: Expectation of Discrete Random Variable

Let *X* be a random element taking its values in *E*, and let $f: E \to \mathbb{R}$ be a function such that

$$\sum_{x \in F} |f(x)| p(x) < \infty. \tag{2.1}$$

One then defines the *expectation* of f(X), denoted $\mathbb{E}[f(X)]$, by

$$\mathbb{E}[f(X)] := \sum_{x \in E} f(x)p(x).$$

Note

If $\langle 2.1 \rangle$ is satisfied, $\mathbb{E}[f(X)]$ is well-defined and finite. If $\langle 2.1 \rangle$ is not satisfied and f is nonnegative, then $\mathbb{E}[f(X)]$ is well-defined but can be infinite. Otherwise, $\mathbb{E}[f(X)]$ may not be well-defined.

Note

Definition 2.2.1 easily extends to $f: E \to \mathbb{C}$ with the same condition. Writing f = g + ih, $\langle 2.1 \rangle$ is equivalent to

$$\sum_{x \in E} |g(x)| p(x) < \infty \quad \text{and} \quad \sum_{x \in E} |h(x)| p(x) < \infty.$$

Note •

Some properties of expectation:

- Linearity. $\mathbb{E}[\lambda_1 f_1(X) + \lambda_2 f_2(X)] = \lambda_1 \mathbb{E}[f_1(X)] + \lambda_2 \mathbb{E}[f_2(X)].$
- *Monotonicity*. If $\forall x \in E$, $f_1(x) \le f_2(x)$, then $\mathbb{E}[f_1(X)] \le \mathbb{E}[f_2(X)]$.
- $|\mathbb{E}[f(X)]| \leq \mathbb{E}[|f(X)|].$
- Let $C \subseteq E$ and let I_C be the *indicator function* of C defined by

$$I_C(x) := \begin{cases} 1 & \text{if } x \in C \\ 0 & \text{otherwise.} \end{cases}$$

Then,
$$\mathbb{E}[I_C(X)] = \sum_{x \in E} I_C(x) p(x) = \sum_{x \in C} p(x) = \sum_{x \in C} P(X = x) = P(\bigcup_{x \in C} \{X = x\}).$$

• Let (Ω, \mathcal{F}, P) be a probability space and let $A \in \mathcal{F}$. Defining the indicator function $I_A \colon \Omega \to \{0, 1\}$ for A, I_A is clearly a discrete random variable taking values on $\{0, 1\}$. We have $\mathbb{E}[I_A] = P(A)$.

Theorem 2.2.2 Markov's Inequality

Let $f: E \to \mathbb{R}$ satisfy (2.1). Then, for a > 0, we have

$$P(|f(X)| \ge a) \le \frac{\mathbb{E}[|f(X)|]}{a}.$$

Proof. Let $C := \{x \in E \mid |f(x)| \ge a\} \subseteq E$. Then, $|f(x)| \ge |f(x)|I_C(x)$ and thus

$$\mathbb{E}[|f(X)|] \ge \mathbb{E}[|f(x)|I_C(x)]$$

$$\ge \mathbb{E}[aI_C(X)]$$

$$= a\mathbb{E}[I_C(X)] = aP(|f(X)| \ge a).$$

2.3 Independence

Definition 2.3.1: Independence of Discrete Random Elements

Let X and Y be two discrete random elements with values in the denumerable spaces E and F, respectively. Now, one can define another random element Z on $G := E \times F$ by $Z(\omega) = (X(\omega), Y(\omega))$. We say X and Y are *independent* if

$$P(X = x, Y = y) := P(Z = (x, y)) = P(X = x)P(Y = y)$$

for all $x \in E$ and $y \in F$. This can be ge

Lemma 2.3.2 Product Formula

Let X and Y be two discrete random elements with values in the denumerable spaces E and F, respectively. If $f: E \to \mathbb{R}$ and $g: F \to \mathbb{R}$ satisfy $\langle 2.1 \rangle$, and if X and Y are independent, then $\mathbb{E}[f(X)g(Y)]$ is well-defined and

$$\mathbb{E}[f(X)g(Y)] = \mathbb{E}[f(X)] \cdot \mathbb{E}[g(Y)].$$

Note

Definition 2.3.1 and Lemma 2.3.2 can readily be generalized to finite number of discrete random elements.

2.4 Mean and Variance

Definition 2.4.1: Mean and Variance of Discrete Random Variable

If *X* is a discrete random variable, the quantities

$$m \triangleq \mathbb{E}[X]$$
 and $\sigma^2 \triangleq \text{Var}[X] \triangleq \mathbb{E}[(X-m)^2]$

are called the *mean* and *variance* of X, respectively. The quantity $\sigma \triangleq \sqrt{\sigma^2}$ is called the *standard deviation* of X.

Note •

Some properties of mean and variance:

- $Var[aX] = a^2 Var[X]$.
- $\sigma^2 = 0$ implies that p(x) = 0 for all $x \neq m$.
- If X_1, \dots, X_n are independent discrete random variables, then $\text{Var}\left[\sum_{i=1}^n X_i\right] = \sum_{i=1}^n \text{Var}[X_i]$.

Theorem 2.4.2 Chebyshev's Inequality

Let *X* be a discrete random variable. Then, for any $\varepsilon > 0$, we have

$$P(|X-m| \ge \varepsilon) \le \frac{\sigma^2}{\varepsilon^2}.$$

Proof. Apply Markov's Inequality to X with $f(x) = (x - m)^2$ and $a = \varepsilon^2$ to get

$$P(|X - m| \ge \varepsilon) = P((X - m)^{2} \ge \varepsilon^{2})$$

$$\le \frac{\mathbb{E}[|X - m|^{2}]}{\varepsilon^{2}} = \frac{\sigma^{2}}{\varepsilon^{2}}.$$

Theorem 2.4.3 Weak Law of Large Numbers

Let $\langle X_n \rangle_{n \in \mathbb{Z}_{>0}}$ be a sequence of discrete random variables, identically distributed with common mean m and common variance σ^2 .