Cleaning agent for s	miconductor device and method for manufacturing
s miconductor devic	

Publication date: 1995-07-12

Inventor(s): AOYAMA TETSUO C O MITSUBISHI G (JP); FUKUDA HIDEKI C O MITSUBISHI G (JP); GOTO HIDEO

C O TEXAS INSTRUMEN (JP); NAKANO RIEKO C O MITSUBISHI GA (JP)

Applicant(s): MITSUBISHI GAS CHEMICAL CO (JP)

Requested

Patent: JP7201794

Application

Number: EP19940120888 19941229

Priority Number

(s): JP19940000520 19940107

IPC

Classification: H01L21/321; H01L21/306

Classification:

H01L21/306N4, G03F7/42L3, H01L21/3213C4D

Equivalents: DF6

DE69425643D, DE69425643T, JP3264405B2, US6462005

Cited

Documents:

EP0496229; US4215005; EP0463423; US4343677; US4744834; JP63114128; JP4080297

Abstract

There are disclosed a method of manufacturing a semiconductor device by forming a mask with a photoresist on a conductive layer formed on a semiconductor substrate and then forming a wiring structure by dryetching which method comprises a cleaning step of peeling a protecting deposition film formed on side walls of the conductive layer and the photoresist by using a cleaning agent for a semiconductor device comprising an aqueous solution containing a specific quaternary ammonium salt and a fluoro-compound; and a cleaning agent for a semiconductor device which comprises a specific quaternary ammonium salt and a fluoro-compound, and optionally an organic solvent selected from the group consisting of amides, lactones, nitriles, alcohols and esters. The use of the above cleaning agent in the method of manufacturing a semiconductor device can peel out the protecting deposition film with extreme certainty, whereby the

surface of the conductive layer is decontaminated to high cleanness and corrosion problem is eliminated.

Data supplied from the esp@cenet database - 12

(19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出顧公開番号

特開平7-201794

(43)公開日 平成7年(1995)8月4日

(51) Int.Cl. ⁶	all rendes		D.	Laube-te hours
(51)IntCl.	微別記号	庁内整理番号	FΙ	技術表示箇所
H01L 21/304	341 L			
C11D 7/32				
H 0 1 L 21/308	G			

		審查請求	未請求 請求項の数3 OL (全 7 頁)
(21)出願番号	特顧平6-520	(71)出願人	000004466 三菱瓦斯化学株式会社
(22)出顧日	平成6年(1994)1月7日	(71)出顧人	東京都千代田区丸の内2丁目5番2号 390020248
			日本テキサス・インスツルメンツ株式会社 東京都港区北青山3丁目6番12号 青山富 土ビル
		(72)発明者	育山 哲男 新潟県新潟市太夫浜字新割182番地 三菱 瓦斯化学株式会社新潟研究所内
		(72)発明者	中野 里愛子 新潟県新潟市太夫浜宇新割182番地 三菱 瓦斯化学株式会社新潟研究所内
			最終頁に続く

(54) 【発明の名称】 半導体装置洗浄剤および半導体装置の製造方法

(57)【要約】

【構成】半導体装置製造工程において、フォトレジスト によるマスク形成を行った後、ドライエッチングにより 配線構造を形成させ、その際に導電層及びフォトレジス トの側壁部に生成する保護堆積膜を、第四級アンモニウ ム塩とフッ素化合物を含有する水溶液、或いは第四級ア ンモニウム塩とフッ素化合物に、アミド類、ラクトン 類、ニトリル類、アルコール類、エステル類から選ばれ た有機溶媒を含有する水溶液からなる半導体装置洗浄剤 を用いて剥離する。

【効果】保護堆積膜の剥離が極めて確実に行われること から、導電層表面の汚染が無くなり清浄化されるのでコ ロージョンが発生しない。

1

【特許請求の範囲】

【請求項1】一般式 [(R、),N-R]・・ X^- (R は炭素数 $1\sim 4$ のアルキル基または炭素数 $1\sim 4$ のヒドロキシル置換基、R、は炭素数 $1\sim 4$ のアルキル基、X は無機酸または有機酸)で表される第四級アンモニウム塩とフッ素化合物を含有することを特徴とする半導体装置洗浄剤。

【請求項2】アミド類、ラクトン類、ニトリル類、アルコール類、エステル類から選ばれた一種以上の有機溶剤を1~50重量%含有する請求項1の半導体装置洗浄剤。

【請求項3】半導体基板上に形成され、少なくともチタン、タングステン、アルミニウムおよびアルミニウム合金のいずれか一つを含む導電層上に、フォトレジストによるマスク形成を行った後、ドライエッチングにより配線構造を形成する際、導電層及びフォトレジストの側壁部に発生する保護堆積膜を、一般式 [(R1), N-R]・・X~(Rは炭素数1~4のアルキル基または炭素数1~4のヒドロキシル置換基、R1は炭素数1~4のアルキル基、Xは無機酸または有機酸)で表される第20四級アンモニウム塩とフッ素化合物を含有する半導体装置洗浄剤を用いて剥離する洗浄工程を含む半導体装置の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、半導体装置製造工程に 用いられる洗浄剤および半導体装置の製造方法に関する ものである。

[0002]

【従来の技術】半導体装置製造工程において、半導体基 30 板上に導電性材料を用い配線構造を形成する加工方法としては化学反応を利用したエッチング加工技術が用いられている。一般的には先ずフォトレジストによるマスク加工工程を行った後に、化学薬品や反応性ガスを用いて非マスク部の除去を行う方法が行われるが、近年の高集積度化を目指す半導体工業においては、超微細化加工が要求されている。特に金属膜配線加工に対する要求度は益々高く、現在では半導体装置の加工精度を 0.5μm以下を目標とすることが要求されている。

【0003】 この目標を達成するにはフォトレジストの 40 加工精度の向上および非マスク部の除去を行うためのドライエッチ技術の向上が要求される。特にフォトレジストについては、従来のポジ型、ネガ型等の単層構造レジストに加えて、これらのレジストと他の樹脂を併用した多層構造レジストが用いられている。またドライエッチ技術は、フォトレジストと反応性ガスによる側壁保護堆積膜の形成技術の確立により、異方性エッチング技術が高まり、より高度な選択性エッチングが行われてきてい

【0004】とのような技術の確立に伴う弊害として、 50 中間層の金属配線に使用される場合が多く、もし生成し

側壁保護堆積膜の除去方法が非常に難しいことと、金属配線素材の腐食(コロージョン)が揚げられる。側壁保護堆積膜の除去が十分に行われない場合には、側壁保護堆積膜に取り込まれた反応ガス中のラジカルやイオンがエッチング終了後空気中に放置されることにより吸湿した水分と反応し酸を生成する。生成した酸は配線素材を腐食し、その結果抵抗の増加、断線など多大な悪影響を及ぼすこととなる。このような現象は特に配線材料として多用されているアルミニウム及びアルミニウム合金等10 において多く発生する。

【0005】 このようなコロージョンを防止する方法としては、ドライエッチング後に超純水洗浄を長時間行うことにより、塩素ラジカルやイオンを洗い流す方法が行われている。しかしこの方法では側壁保護堆積膜中から塩素イオンやラジカルを完全に除去することは極めて困難であり、このためコロージョンが発生する危険性を常にぬぐい去ることができない。従って、完全にコロージョンを防止するためには側壁保護堆積膜を完全に除去することが不可欠である。

【0006】このような側壁保護堆積膜を除去するために、酸性有機溶剤レジスト洗浄液やアルカリ性有機溶剤レジスト洗浄液としては、アルキルベンゼンスルホン酸にフェノール化合物や塩素系溶剤、芳香族炭化水素を転化した洗浄液が一般に使用されているが、この洗浄液を用いて100℃以上に加熱処理しても側壁保護堆積膜を完全に除去することはできない。またこれらの酸性有機溶剤レジスト洗浄液は、水に対する溶解性が低いため、除去操作の後水との相溶性の良いイソプロパノールの如き有機溶剤で洗浄し、次いで水洗しなければならず、工程が複雑になる。

【0007】一方アルカリ性有機溶剤レジスト洗浄液も上記の酸性洗浄液の場合と同様に100°C以上に加熱しても側壁保護堆積膜を除去することがかなり困難である。このように酸性あるいはアルカリ性のいずれの洗浄液を用いた場合でも、側壁保護堆積膜を完全に除去できないため、残存した塩素ラジカルやイオンによるコロージョンの発生は回避できない。

【0008】また上記の洗浄方法とは異なる方法として、プラズマ灰化後のレジスト残りを、テトラメチルアンモニウムハイドロオキサイドを含有するポジ型レジスト現像液の如きアルカリ性水溶液で除去するという方法が知られている(特開昭62-281332号)。しかしながらこの方法では、アルミニウムを含む基体から成る導電圏がアルカリ性水溶液で激しく腐食される。

【0009】更にチタンやタングステン層をドライエッチした際に生成する堆積保護膜については、その除去方法は未だ確立されていない。これらのチタンやタングステン層は、半導体装置中の導電層を多層構造にする際の中間層の金属配線に使用される場合が多く もし生成し

L PL &

た側壁保護堆積膜を放置しておくと、次工程で堆積させ た膜の圧力等により隣接する配線が側壁保護堆積膜によ り接触し、短絡や配線異常の原因となる。

[0010]

【発明が解決しようとする課題】以上の如く半導体装置 製造工程において、半導体基板上に形成された導電層や フォトレジストの側壁部に生成する側壁保護堆積膜を除 去するために種々の方法が採られているが、コロージョ ンの発生などが課題であり、側壁保護堆積膜の除去が容 体装置洗浄剤が要望されている。本発明の目的は上記の 如き課題を解決し、ドライエッチングにより形成される 側壁保護堆積膜を容易に除去でき、配線素材となる各種 の金属素材からなる導電層を全く腐食せず、コロージョ ンも全く発生しないような半導体装置洗浄剤、及び髙精 度の回路配線を製造する半導体装置の製造方法を提供す ることである。

[0011]

【課題を解決するための手段】本発明者等は上記の如き ム塩とフッ素化合物を含有する水溶液、或いは第四級ア ンモニウム塩とフッ素化合物に、アミド類、ラクトン 類、ニトリル類、アルコール類、エステル類から選ばれ た有機溶媒を含有する水溶液からなる半導体装置洗浄剤 が、ドライエッチングの際に形成される側壁保護堆積膜 に対する除去性と、コロージョン防止性、配線材料に対 する非腐食性および作業性を備えた、極めて優れた特性 を有することを見出し、本発明に到達した。

【0012】即ち本発明は、一般式 [(R₁), N-R]・・X⁻ (Rは炭素数1~4のアルキル基または炭 30 モニウム硫酸塩等が挙げられる。 素数1~4のヒドロキシル置換基、R, は炭素数1~4 のアルキル基、Xは無機酸または有機酸)で表される第 四級アンモニウム塩とフッ素化合物を含有することを特 徴とする半導体装置洗浄剤、更にこれらの第四級アンモ ニウム塩とフッ素化合物に、アミド類、ラクトン類、ニ トリル類、アルコール類、エステル類から選ばれた一種 以上の有機溶剤を1~50重量%含有する半導体装置洗 浄剤、および半導体基板上に形成され、少なくともチタ ン、タングステン、アルミニウムおよびアルミニウム合 よるマスク形成を行った後、ドライエッチングにより配 線構造を形成する際、導電層及びフォトレジストの側壁 部に発生する保護堆積膜を、一般式[(R₁), N-R] * · X * (Rは炭素数 1 ~ 4 のアルキル基または炭 素数1~4のヒドロキシル置換基、R, は炭素数1~4 のアルキル基、Xは無機酸または有機酸)で表される第 四級アンモニウム塩とフッ素化合物を含有する半導体装 置洗浄剤を用いて剥離する洗浄工程を含む半導体装置の 製造方法である。

【0013】本発明に使用される第四級アンモニウム塩 50 リル、ベンゾニトリルなどのニトリル類、メタノール、

は次式に表される。

 $[(R_1), N-R] \cdot \cdot X$

(Rは炭素数1~4のアルキル基または炭素数1~4の ヒドロキシ置換アルキル基、R1 は炭素数1~4のアル キル基、Xは無機酸、有機酸基を示す。)

【0014】このような一般式で表される第四級アンモ ニウム塩としては、テトラメチルアンモニウムギ酸塩、 テトラメチルアンモニウム酢酸塩、テトラメチルアンモ ニウムプロピオン酸塩、テトラメチルアンモニウム酪酸 易で、しかもその際金属導電層を腐食しないような半導 10 塩、テトラメチルアンモニウムシュウ酸塩、テトラメチ ルアンモニウムマロン酸塩、テトラメチルアンモニウム マレイン酸塩、テトラメチルアンモニウムフマル酸塩、 テトラメチルアンモニウムシトラコン酸塩、テトラメチ ルアンモニウム安息香酸塩、テトラメチルアンモニウム トルイル酸塩、テトラメチルアンモニウムフタル酸塩、 テトラメチルアンモニウムアクリル酸塩、トリメチル (2-ヒドロキシエチル) アンモニウウムギ酸塩、トリメ チル(2-ヒドロキシエチル)アンモニウム酢酸塩、トリ メチル (2-ヒドロキシエチル) アンモニウム安息香酸 課題を解決すべく鋭意検討した結果、第四級アンモニウ 20 塩、トリメチル(2-ヒドロキシエチル)アンモニウムフ タル酸塩、テトラエチルアンモニウムギ酸塩、テトラエ チルアンモニウム酢酸塩、テトラプロビルアンモニウム ギ酸塩、テトラプロビルアンモニウム酢酸塩、テトラブ チルアンモニウムギ酸塩、テトラブチルアンモニウム酢 酸塩、テトラメチルアンモニウムホウ酸塩、テトラメチ ルアンモニウムリン酸塩、テトラメチルアンモニウム硫 酸塩、トリメチル(2-ヒドロキシエチル)アンモニウム ホウ酸塩、トリメチル (2-ヒドロキシエチル) アンモニ ウムリン酸塩、トリメチル (2-ヒドロキシエチル) アン

> 【0015】本発明の半導体装置洗浄剤における第四級 アンモニウム塩の濃度は1~60重量%、好ましくは1 0~50重量%の範囲で使用される。第四級アンモニウ ム塩の濃度が1重量%より低い場合は、配線材料への腐 食が激しく、60重量%より高い場合には側壁保護堆積 膜の除去速度が遅くなり好ましくない。

【0016】本発明の半導体装置洗浄剤におけるフッ素 化合物としては、フッ化水素酸、フッ化アンモニウム、 フッ化水素アンモニウム、ホウフッ化アンモニウム、フ 金のいずれか一つを含む導電層上に、フォトレジストに 40 ッ化テトラメチルアンモニウム、フッ化水素テトラメチ ルアンモニウム等が挙げられる。このフッ素化合物の濃 度は 0.1~10重量%、好ましくは 0.5~5重量%であ る。フッ素化合物の濃度が 0.1重量%より低い濃度では 側壁保護堆積膜の除去速度が遅く、10重量%より高い **浪度では配線材料への腐食が激しくなる。**

> 【0017】本発明で更に添加されるされる有機溶媒と しては、ジメチルホルムアミド、ジメチルアセトアミ ド、ホルムアミド、N-メチルピロリドンなどのアミド 類、ア-ブチロラクトンなどのラクトン類、アセトニト

エタノール、イソプロパノール、エチレングリコールな どのアルコール類、および酢酸メチル、酢酸エチル、安 息香酸メチルなどのエステル類が挙げられる。これらの 有機溶媒の濃度は1~60重量%、好ましくは20~5 5重量%である。有機溶媒が1重量%より低い濃度では 配線材料の腐食が激しくなり、60重量%より高い濃度 では側壁保護堆積膜の除去速度が遅くなる。

【0018】側壁保護堆積膜を除去する際の本発明の半 導体装置洗浄剤の温度は、通常、常温、例えば18~2 5℃で十分であるが、側壁保護堆積膜の除去速度が著し 10 ーニングされた導電層側面に側壁保護堆積膜8の形成が く遅い場合には、例えば30~60℃に加熱して使用さ れる。また洗浄温度および洗浄時間は、側壁保護堆積膜 の状態、および配線材料の種類を考慮して、適宜選択さ れる。側壁保護堆積膜の洗浄剥離に際し、その剥離工程 は被処理半導体基板を本発明の洗浄による従来から用い られている方法、例えば、バッチ方式による浸漬洗浄、 枚葉式によるスプレイまたは噴霧洗浄等を採用し、その 後、前記方式による純水洗浄、乾燥して終了する。

【0019】本発明の半導体装置洗浄剤は、半導体装置 製造工程において、半導体基板上に形成された導電層 を、ポジ型及びネガ型の単層構造フォトレジスト、或い は多層構造によるフォトレジストによるマスク形成を行 った後、ドライエッチングにより配線構造を形成させる 際に導電層及びフォトレジストの側壁部に生成する保護 堆積膜を除去するために用いられ、保護堆積膜の剥離が 極めて確実に行われることから、導電層表面の汚染が無 くなり清浄化されるのでコロージョンが発生しない。ま た本発明の半導体装置洗浄剤は、従来困難であったチタ ンやタングステン層をドライエッチした際に発生する堆 積保護膜の除去にも用いることができ、多層構造の半導 30 体装置や高度集積回路の製造に有利に使用される。

[0020]

【実施例】以下実施例により、本発明を更に具体的に説 明する。

【0021】実施例1

図1に示す構造の導電層を形成した直後の半導体装置に フォトレジストによるマスクを形成し、ドライエッチン グにより配線構造を形成する際に導電層およびフォトレ ジストの側壁部に生成した側壁保護堆積膜を洗浄した。 図1において導電層を形成した直後の半導体装置には、 中間絶縁膜であるCVD酸化層1 の上に第1層金属膜で あるTiW層2、第2層金属膜であるCVD-W層3、 第3層金属膜であるA1-Si-Cu層4 、反射防止膜 であるTiN層5、耐薬品保護膜であるPLASMA TEOS層6 が順に形成されている。各金属膜の膜厚は 第1層金属膜2 が600点、第2層金属膜3 が500 A、第3層金属膜4が5000Aであり、更に上層膜で あるTiN膜5 は200A、PLASMA TEOS膜 6 は400 Aである。またこの時のA1-Si-Cu層 5 としては、Si含有率1重量%、Cu含有率 0.5重量 50 察された。

%のものを用いた。

【0022】図2はマスク形成工程まで終了した時点で の構造を示す。図1に示した導電層上にポジ型フォトレ ジスト7を塗布(コーティング)し、露光してレジスト マスク部を形成したものである。この時のフォトレジス ト7 はノボラック系樹脂を主成分とした多層構造レジス トを用いた。図3は導電層のフォトマスクに覆われてい ない領域 (非マスク領域) を塩素系ガスを用いたドライ エッチングにより取り除いた時点での構造を示す。バタ すでに認められる。

【0023】図4はドライエッチングの後、マスクにな っていたレジストをアッシング及び有機溶剤による洗浄 により除去した後の構造を示す。この方法では側壁保護 堆積膜8を除去することは困難であることが確認され た。図5は本発明の半導体装置洗浄剤を用いて図4の半 導体装置を洗浄した後の構造を示す。半導体装置洗浄剤 には、フッ化アンモニウム/テトラメチルアンモニウム ギ酸塩/ジメチルホルムアミド/水が1/10/40/ 20 49 (重量%) の溶液を用いて23℃で20分間洗浄後 水洗した。 図5から本発明の半導体装置洗浄剤を用いる ことにより図4の側壁保護堆積膜8が完全除去され、パ ターニングされた導電層表面の汚染が無くなり、清浄化 されたことが分かる。

【0024】実施例2

実施例1の図4と同一の半導体装置を、フッ化アンモニ ウム/テトラメチルアンモニウムギ酸塩/水が2/45 /53 (重量%)の組成の洗浄液を用い、23℃で20 分間洗浄後、水洗した。その結果、実施例1と同様に側 壁保護堆積膜が完全に除去され、バターニングされた導 電層表面の汚染が無くなり、清浄化された。

【0025】実施例3

実施例1の図4と同一の半導体装置を、フッ化テトラメ チルアンモニウム/テトラメチルアンモニウム酢酸塩/ ジメチルアセトアミド/水が5/15/40/40(重 量%)の組成の洗浄液を用い、25℃で30分間洗浄後 水洗した。その結果、実施例1と同様に側壁保護堆積膜 は完全に除去され、パターニングされた導電層の汚染が 無くなり、清浄化された。

40 【0026】比較例1

実施例1の図4と同一の半導体装置を、市販品洗浄液 (アルカリ性レジスト洗浄液)を用い、100℃で10 分間という洗浄条件の下で洗浄を行った。この結果、側 壁保護堆積膜は除去できなかった。

【0027】比較例2

実施例1の図4と同一の半導体装置を、フッ化アンモニ ウム1重量%の水溶液を用い、23℃で20分間洗浄を 行った。その結果、側壁保護堆積膜は除去できたが、A 1-Si-Cu層の腐食が激しく起こっていることが観

19 🔞

【0028】実施例4

図6に示す構造の導電層を形成した直後の半導体装置に フォトレジストによるマスクを形成し、ドライエッチン グにより配線構造を形成する際に導電層およびフォトレ ジストの側壁部に生成した側壁保護堆積膜を洗浄した。 図6において導電層を形成した直後の半導体装置には、 中間絶縁膜であるCVD酸化層9の上に第1層金属膜で あるTi層10、第2層金属膜であるTiN層11、第3層 金属膜である♥ (タングステン)層12が順に形成されて いる。各金属膜の膜厚は第1層金属膜10が300~50 10 【0035】 0点、第2層金属膜11が500~700点、第3層金属 膜12が3000Åである。

【0029】図7はマスクを形成工程まで終了した時点 での構造を示す。図6に示した導電層上にポジ型フォト レジスト13を塗布 (コーティング) し、露光してレジス トマスク部を形成したものである。この時のフォトレジ スト13はノボラック系樹脂を主成分とした多層構造レジ ストを用いた。図8は導電層のレジストマスクに覆われ ていない領域をドライエッチングにより取り除いた時点 での構造を示す。パターニングされた導電層側面に側壁 20 保護堆積膜14の形成が既に認められる。

【0030】図9はドライエッチング後、マスクになっ ていたレジストをアッシング除去した後の構造を示す。 この方法ではレジスト除去までは可能であるが、側壁保 護堆積膜14を除去することが困難であることが確認され た。図10は本発明の半導体装置洗浄剤を用いて図9の 半導体装置を洗浄した後の構造を示す。半導体装置洗浄 剤にはフッ化アンモニウム/テトラメチルアンモニウム 蟻酸塩/ジメチルホルムアミド/水が1/10/40/ 49 (重量%) の水溶液を用いて23℃で20分間洗浄 30 後水洗し乾燥した。図10において側壁保護堆積膜14は 除去され、パターニングされた導電層表面の汚染物が無 くなり、清浄化されたことが分かる。

【0031】実施例5

実施例4の図9と同一の半導体装置を、フッ化アンモニ ウム/テトラメチルアンモニウムギ酸塩/水が2/45 /53 (重量%)の組成の洗浄液を用い、23℃で20 分間洗浄後、水洗した。その結果、実施例4と同様に側 壁保護堆積膜14は完全に除去され、パターニングされた 導電層表面の汚染が無くなり、清浄化された。

【0032】実施例6

実施例4の図9と同一の半導体装置を、フッ化アンモニ ウム/トリメチル (2-ヒドロキシエチル) アンモニウ ムギ酸塩/ジメチルホルムアミド/水が2/20/30 /48(重量%)の組成の洗浄液を用いて、25℃で2 0分間洗浄後、水洗した。その結果、実施例4と同様 に、側壁保護堆積膜14は完全に除去され、パターニング された導電層表面の汚染が無くなり清浄化された。

【0033】比較例3

実施例4の図9と同一の半導体装置を、市販品洗浄液

(アルカリ性レジスト洗浄液)を用い、100℃で20 分間洗浄を行った。この結果、側壁保護堆積膜14は除去 できなかった。

【0034】比較例4

実施例4の図9と同一の半導体装置をテトラメチルアン モニウムギ酸塩/ジメチルホルムアミド/水が10/4 0/50 (重量%の組成の洗浄液を用い25℃で30分 洗浄後水洗した。その結果、側壁保護堆積膜14は除去で きなかった。

【発明の効果】半導体装置製造工程において本発明の半 導体装置洗浄剤を用いることにより、ドライエッチング により配線構造を形成させる際に導電層及びフォトレジ ストの側壁部に生成する保護堆積膜の剥離が極めて確実 に行われることから、導電層表面の汚染が無くなり清浄 化されるのでコロージョンが発生しない。また本発明の 半導体装置洗浄剤は、従来困難であったチタンやタング ステン層をドライエッチした際に生成する堆積保護膜の 除去にも用いることができ、多層構造の半導体装置や高 度集積回路の製造に有利に使用される。

【0036】更に本発明の半導体装置洗浄剤を使用する 上で、次の利点が挙げられる。

- (1) 従来除去することが困難であった導電層及びフォト レジストの側壁部に生成する保護堆積膜の剥離が短時間 で、しかも常温付近で確実に行われる。
- (2) 使用の際に配線材料であるアルミニウム合金などが エッチングされない。
- (3) 本発明の半導体装置洗浄剤を使用した後のリンスに は水が用いられるので極めて容易である。

【図面の簡単な説明】

【図1】断面図

実施例1における導電層を形成した直後の半導体装置の 構造を示す。

【図2】断面図

実施例1におけるマスク形成工程まで終了した時点での 構造を示す。

【図3】断面図

実施例1における導電層のフォトマスクに覆われていな い領域(非マスク領域)をドライエッチングにより取り 40 除いた時点での構造を示す。

【図4】断面図

実施例1におけるドライエッチングの後、マスクになっ ていたレジストをアッシング及び有機溶剤による洗浄に より除去した後の構造を示す。

【図5】断面図

実施例1における本発明の半導体装置洗浄剤を用いて図 4の半導体装置を洗浄した後の構造を示す。

【図6】断面図

実施例4における導電層を形成した直後の半導体装置の 50 構造を示す。

10

【図7】断面図

実施例4におけるマスク形成工程まで終了した時点での 構造を示す。

【図8】断面図

実施例4における導電層のフォトマスクに覆われていな い領域(非マスク領域)をドライエッチングにより取り 除いた時点での構造を示す。

【図9】断面図

実施例4におけるドライエッチングの後、マスクになっ ていたレジストをアッシング及び有機溶剤による洗浄に 10 10 Ti層 より除去した後の構造を示す。

【図10】断面図

実施例4における本発明の半導体装置洗浄剤を用いて図 9の半導体装置を洗浄した後の構造を示す。

【符号の説明】

*1 CVD酸化層

- 2 TiW層
- 3 CVD-W層
- 4 Al-Si-Cu層
- 5 TiN層
- 6 PLASMA TEOS層
- 7 フォトレジスト
- 8 側壁保護堆積膜
- 9 CVD酸化層
- 11 TiN層
- 12 ♥(タングステン)層
- 13 フォトレジスト
- 14 側壁保護堆積膜

【手続補正書】

【提出日】平成6年12月22日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正内容】

【特許請求の範囲】

【請求項1】一般式[(R₁), N-R]・・X⁻(R は炭素数1~4のアルキル基または炭素数1~4のヒド ロキシル置換アルキル基、R, は炭素数1~4のアルキ ル基、Xは無機酸または有機酸)で表される第四級アン モニウム塩とフッ素化合物を含有することを特徴とする 半導体装置洗浄剤。

【請求項2】アミド類、ラクトン類、ニトリル類、アル

コール類、エステル類から選ばれた一種以上の有機溶剤 を1~60重量%含有する請求項1記載の半導体装置洗 净剤。

【請求項3】半導体基板上に形成され、少なくともチタ ン、タングステン、アルミニウムおよびアルミニウム合 金のいずれか一つを含む導電層上に、フォトレジストに よるマスク形成を行った後、ドライエッチングにより配 線構造を形成する際、導電層及びフォトレジストの側壁 部に発生する保護堆積膜を、一般式[(R,),N-R]・・X⁻ (Rは炭素数1~4のアルキル基または炭 素数1~4のヒドロキシル置換アルキル基、R1 は炭素 数1~4のアルキル基、Xは無機酸または有機酸)で表 される第四級アンモニウム塩とフッ素化合物を含有する 半導体装置洗浄剤を用いて剥離する洗浄工程を含む半導 体装置の製造方法。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0006

【補正方法】変更

【補正内容】

【0006】 このような側壁保護堆積膜を除去するために、酸性有機溶剤レジスト洗浄液やアルカリ性有機溶剤レジスト洗浄液としては、アルキルベンゼンスルホン酸にフェノール化合物や塩素系溶剤、芳香族炭化水素を<u>添加</u>した洗浄液が一般に使用されているが、この洗浄液を用いて100℃以上に加熱処理しても側壁保護堆積膜を完全に除去することはできない。またこれらの酸性有機溶剤レジスト洗浄液は、水に対する溶解性が低いため、除去操作の後水との相溶性の良いイソブロバノールの如き有機溶剤で洗浄し、次いで水洗しなければならず、工程が複雑になる。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】0012

【補正方法】変更

*【補正内容】

【0012】即ち本発明は、一般式[(R₁), N-R] * · X * (Rは炭素数1~4のアルキル基または炭 素数1~4のヒドロキシル置換アルキル基、R, は炭素 数1~4のアルキル基、Xは無機酸または有機酸)で表 される第四級アンモニウム塩とフッ素化合物を含有する ことを特徴とする半導体装置洗浄剤、更にこれらの第四 級アンモニウム塩とフッ素化合物に、アミド類、ラクト ン類、ニトリル類、アルコール類、エステル類から選ば れた一種以上の有機溶剤を1~50重量%含有する半導 体装置洗浄剤、および半導体基板上に形成され、少なく ともチタン、タングステン、アルミニウムおよびアルミ ニウム合金のいずれか一つを含む導電層上に、フォトレ ジストによるマスク形成を行った後、ドライエッチング により配線構造を形成する際、導電層及びフォトレジス トの側壁部に発生する保護堆積膜を、一般式[(R,) , N-R] * · X⁻ (Rは炭素数1~4のアルキル基ま たは炭素数1~4のヒドロキシル置換アルキル基、R, は炭素数1~4のアルキル基、Xは無機酸または有機 酸)で表される第四級アンモニウム塩とフッ素化合物を 含有する半導体装置洗浄剤を用いて剥離する洗浄工程を 含む半導体装置の製造方法である。

フロントページの続き

(72)発明者 福田 秀樹

新潟県新潟市太夫浜字新割182番地 三菱 瓦斯化学株式会社新潟研究所内 (72)発明者 後藤 日出人

茨城県稲敷郡美浦村木原2355 日本テキサ ス・インスツルメンツ株式会社内