PA-2018 - 03: Non-parasitic density function

why might i want to estimate a probability density function (PDF) from some discreate observation?

- compute statistical measures, for example in Mutual information
 - o image from modality 1
 - e.g. a photograph
 - o image from modality 2
 - e.g. infrared image

• sample(draw) new observations with the same distribution as the actual(measurement)

Parzen Window Estimator

Idea: Given a set of discrete observations "smear" them out to obtain a PDF Let $S=\{x_1,x_2,x_3,\ldots,x_N\}$ denote the set of observations. Let PR denote the probability that x is falling into region R.

$$PR = \int_{R} p(x)\partial x \tag{1}$$

if we assume p(x) is approximately constant in R,

then
$$PR pprox p(x) * \int_R \partial x$$

Here $\int_R \partial x = V_R$ is the "Volume" of R

$$\Rightarrow PR = p(x) * V_R = rac{k_R}{N} * V_R$$

N is the number of features that fall in R over # of all features.

That called relative frequency feature in R.

For example, let R be a d-dimensional hypercube and let h denote the side-length of the hypercube $V_R=h^d$

The kernel window function is

$$K(x_c,x)=rac{1}{0}$$
 if $rac{x_{i,k}-x_k}{h}\leqrac{1}{2}$

$$\Rightarrow RewriteP(x) = \frac{1}{N} * \sum_{i=1}^{N} K(x_i, x)$$
 (2)

Alternatively, $K(x_i, x)$ can be any other kernel for example Gaussian.

$$K_{\sum}(x_i,x) = rac{1}{\sqrt{\det(\sum)*2\pi}} * e^{-rac{1}{2}(x_i-x)\sum^{-1}(x_i-x)}$$

where \sum is covariance

Question tree

Question tree: how do we obtain \sum ? equivalent: how do we obtain h for the hypercube?

Qualitatively, how doses the result change if $|\sum|$ become larger or smaller?

Estimation of the covariance \sum or the window width h can be done via ML estimation in the case of limited training data additionally with cross-validation

Cross-validation

Let $P_{\lambda,N-1}^i$ be the PDF defined by $S=rac{S}{x_i}$ $\lambda=\sum_i h$

Then we consider the objective function

$$\hat{\lambda} = argmax_{\lambda} \prod_{i=1}^{N} P_{\lambda,N-1}^{i}(x_{i})$$
 (3)

 $P^i_{\lambda,N-1}$ is "Trained model for all samples except of x_i " (x_i) is Test sample

$$= argmax_{\lambda} \sum_{i=1}^{N} log P_{\lambda,N-1}^{i}(x_{i})$$
 log-likelihood

For a differentiable kernel, we can now compute the gradient and look for an optimun, if the kernel is non-differentiable, we have to "brute force" the solution(Note: Gaussian=differentiable, Hypercube=non-diff.)