Solutions of Assignment 11

Theory of Computation, Fall 2022

Keys O1

Proof:

I)

• L_1 is not recursive:

We can construct a reduction from H to L_1 to show that L_1 is not recursive.

There is a recursive function $f("M""w") = M_{"M""w"}$, in which $M_{"M""w"}$ is defined as follows.

$$M_{"M""w"} =$$
 on input u :
1. Run M on w (1)

For any input "M""w" of H,

$$''M'''w'' \in H \implies M \text{ halts on } w \implies$$

$$M_{''M'''w''} \text{ halts on every input } \implies \qquad (2)$$

$$M_{''M'''w''} \text{ halts on at least 2023 strings } \implies f(''M'''w'') \in L_1$$

$$''M'''w'' \in \overline{H} \implies M \text{ does not halt on } w \implies M''M'''w'' \text{ halts on no input } \implies M''M'''w'' \text{ halts on less than 2023 strings } \implies f(''M'''w'') \in \overline{L_1}$$

Therefore, $f("M""w") = M_{"M""w"}$ is a reduction from H to L_1 . Thus L_1 is not recursive.

• L_1 is recursively enumerable:

Since Σ^* is recursive, it is Turing enumerable, so we can construct a permutation s_1, s_2, \ldots of strings in Σ^* .

Construct a Turing machine M_1 as follows:

$$M_1=$$
 on input "M":

1. Set $c=0$

2. For $i=1,2,\ldots$ loop

3. For $s=s_1,s_2,\ldots,s_i$ without mark

4. Run M on s for i steps

5. If M halts on s in i steps

6. Mark s_i

7. Set $c=c+1$

8. If $c \geq 2023$

9. Halt

We have that M_1 semidecides L_1 . Thus L_1 is recursively enumerable.

 Q_2

Proof:

We can construct a reduction from \overline{H} to L_2 to show that L_2 is not recursively enumerable.

There is a recursive function $f("M'''w") = M_{"M'''w"}$, in which $M_{"M'''w"}$ is defined as follows.

$$M_{"M""w"} =$$
 on input u :
1. Run M on w (5)

For any input "M""w" of H,

$$''M'''w'' \in \overline{H} \implies M \text{ does not halt on } w \implies M_{''M'''w''} \text{ halts on no input } \implies (6)$$
 $M_{''M'''w''} \text{ halts on at most 2022 strings } \implies f(''M'''w'') \in L_2$

$$''M'''w'' \in H \implies M \text{ halts on } w \implies$$

$$M_{''M'''w''} \text{ halts on every input } \implies (7)$$

$$M_{''M'''w''} \text{ halts on less than 2022 strings } \implies f(''M'''w'') \in \overline{L_2}$$

Therefore, $f("M''''w'') = M_{"M'''w''}$ is a reduction from \overline{H} to L_2 . Thus L_2 is not recursively enumerable.

Note: Ignoring the input that is not an encoded Turing machine, L_2 is the complement of L_1 . You can also prove **Q2** using the conclusion of **Q1** and the fact that if a language A is recursively enumerable but not recursive, then if \overline{A} is not recursively enumerable.

*Q*3

We can construct a reduction from \overline{H} to L_3 to show that L_3 is not recursive.

There is a recursive function $f("M""w") = M_{"M""w"}$, in which $M_{"M""w"}$ is defined as follows.

$$M_{"M""w"} =$$
 on input u :
$$1. \operatorname{Run} M \text{ on } w$$

$$(8)$$

For any input "M""w" of H,

 $''M'''w'' \in \overline{H} \implies M \text{ does not halt on } w \implies M_{''M'''w''} \text{ halts on no input } \Longrightarrow$ (9)

At least 2023 strings on which M does not halt $\implies f("M""w") \in L_3$

$$''M'''w'' \in H \implies M \text{ halts on } w \implies M_{''M'''w''} \text{ halts on every input } \implies$$
 (10)

Less than 2023 strings on which M does not halt $\implies f("M""w") \in \overline{L_3}$

Therefore, $f("M''''w'') = M_{"M'''w''}$ is a reduction from \overline{H} to L_3 . Thus L_3 is not recursively enumerable.

Q4

We can construct a reduction from \overline{H} to L_4 to show that L_4 is not recursively enumerable.

There is a recursive function $f("M""w") = M_{"M""w"}$, in which $M_{"M""w"}$ is defined as follows.

$$M_{''M'''w''} = \qquad \text{on input } u:$$

$$1. \quad \text{Run } M \text{ on } w \text{ for } |u| \text{ steps}$$

$$2. \quad \text{If } M \text{ halts on } w \text{ in } |u| \text{ steps}$$

$$3. \quad \text{Loop forever}$$

$$4. \quad \text{Else } (M \text{ does not halt on } w \text{ in } |u| \text{ steps})$$

$$5. \quad \text{Halt}$$

$$(11)$$

For any input "M""w" of H,

$$''M'''w'' \in \overline{H} \implies M \text{ does not halt on } w \implies M_{''M'''w''} \text{ halts on every input } \implies$$
 (12)

At most 2022 strings on which M does not halt $\implies f("M""w") \in L_4$

$$''M'''w'' \in H \implies M \text{ halts on } w \implies$$

$$\exists n > 0, \forall u \text{ with } |u| \ge n, M_{''M'''w''} \text{ does not halt on } u \implies (13)$$

More than 2022 strings on which M does not halt $\implies f("M""w") \in \overline{L_4}$

Therefore, $f("M''''w'') = M_{"M'''w''}$ is a reduction from \overline{H} to L_4 . Thus L_4 is not recursively enumerable.

Q5

The grammar $G=(V,\Sigma,S,R)$ generates $\{ww:w\in\{a,b\}^*\}$ where

.

$$V = \{T, A, B, S_1, S, a, b\}$$
(14)

$$\Sigma = \{a, b\} \tag{15}$$

 \blacksquare *R* is the set of the following rules

$$egin{array}{lll} S &
ightarrow & TS_1 \ S_1 &
ightarrow & BbS_1 \ S_1 &
ightarrow & e \ aA &
ightarrow & Aa \ bA &
ightarrow & Ab \ aB &
ightarrow & Ba \ bB &
ightarrow & Bb \ TA &
ightarrow & aT \ TB &
ightarrow & bT \ T &
ightarrow & e \ \end{array}$$

Grading

100 pts. in total

- Q1. 32 pts. = 12 pts. + 20 pts.
- Q2. 12 pts.
- Q3. 12 pts.
- Q4. 20 pts.
- Q5. 24 pts.