

d-Sorting an O(d)-Ordered Sequence in O(dn) Time

- \diamondsuit If g and h are relatively prime and are both in o(d)
 - we can d-sort the sequence in O(dn) time ...
 - re-arrange the sequence as a 2D matrix with d columns
 - each element is swapped with $\mathcal{O}((g-1)\cdot (h-1)/d) = \mathcal{O}(d)$ elements
- \diamondsuit Since this holds for all elements, O(dn) steps are enough

——— (g-1)(h-1) ————

PS Sequence

❖ Papernov & Stasevic, 1965

//also called Hibbard's sequence

$$\mathcal{H}_{PS} = \mathcal{H}_{Shell} - 1 = \{ 2^k - 1 \mid k \in \mathcal{N} \} = \{ 1, 3, 7, 15, 31, 63, 127, 255, \dots \}$$

� Different items [may not] be relatively prime, e.g. $h_{2k} = h_k \cdot (h_k + 2)$

But adjacent items must be, since $h_{k+1}-2\cdot h_k\equiv 1$

- ❖ Shellsort with A_{ps} needs
 - $\mathcal{O}(logn)$ outer iterations and
 - $\mathcal{O}(n^{3/2})$ time to sorts a sequence of length n

//Why ...

- � Let $\overline{\mathbf{h_t}}$ be the h closest to $\overline{\sqrt{n}}$ and hence $h_t pprox \sqrt{n} = \Theta(n^{1/2})$
- 1) Consider those iterations for $\{ h_k \mid t < k \} = \{ \overleftarrow{h_{t+1}, h_{t+2}, ..., h_m} \}$
 - $oldsymbol{:}$ there would be $\mathcal{O}(n/h_k)$ elements in each of the h_k columns
 - $oldsymbol{\cdot}$ we can <code>insertionsort</code> each column in $\mathcal{O}((n/h_k)^2)$ time
 - \therefore each $\mathsf{h_k}\text{-sorting costs }\mathcal{O}(n^2/h_k)$ time
 - ∴ all these iterations cost time of

$$\mathcal{O}(2 \times n^2/h_t) = \mathcal{O}(n^{3/2})$$

 $k \le t$ $h_k \le h_t$

k = t $h_k = h_t$

$k \le t$

- 2) Consider those iterations for $\{\ h_k \mid k \leq t\ \} = \{\ \overleftarrow{h_1,h_2,...,h_t}\ \}$
 - \therefore h_{k+1} and h_{k+2} are relatively prime and are both in $O(h_k)$
 - \therefore each h_k -sorting costs $\mathcal{O}(n \times h_k)$ time
 - \therefore all these iterations cost $\mathcal{O}(n \times 2 \cdot h_t) = \mathcal{O}(n^{3/2})$ time
- ❖ This upper bound is TIGHT
- ❖ How about the average cases?
 - $\mathcal{O}(n^{5/4})$ based on simulations
 - but not proved yet

 $k \le t$ $h_k \le h_t$

$$k = t$$
 $h_k = h_t$