Sistemas Digitales

Algebra Booleana y Simplificación Lógica:

Teoremas de DeMorgan

Primer Teorema de DeMorgan

$$\overline{XY} = \overline{X} + \overline{Y}$$

El complemento de un producto de variables es igual a la suma de los complementos de las variables.

O dicho de otra manera,

El complemento de dos o más variables a las que se aplica la operación AND es equivalente a aplicar la operación OR a los complementos de cada variable.

$$\begin{array}{ccc}
X & & & \\
Y & & & \\
\end{array}$$

$$\begin{array}{ccc}
X & & & \\
Y & & & \\
\end{array}$$

$$\begin{array}{cccc}
\overline{X} + \overline{Y} \\
\end{array}$$

$$\begin{array}{cccc}
NAND & \text{Negative-OR}
\end{array}$$

Inputs		Output		
	X	Y	\overline{XY}	$\overline{X} + \overline{Y}$
	0	0	1	1
	0	1	1	1
	1	0	1	1
	1	1	0	0

Segundo Teorema de DeMorgan

$$\overline{X+Y} = \overline{X}\overline{Y}$$

El complemento de una suma de variables es igual al producto de los complementos de las variables.

O dicho de otra manera,

El complemento de dos o más variables a las que se aplica la operación OR es equivalente a aplicar la operación AND a los complementos de cada variable.

Inputs	s Ou	Output	
X Y	$\overline{X} + 1$	\overline{Y} \overline{X} \overline{Y}	
0 0	1	1	
0 1	0	0	
1 0	0	0	
1 1	0	0	

Ejemplo: Aplicar los teoremas de DeMorgan a las expresiones

$$\overline{XYZ}$$
 , $\overline{X+Y+Z}$, \overline{WXYZ} y $\overline{W+X+Y+Z}$

$$\blacksquare \ \overline{XYZ} = \overline{X} + \overline{Y} + \overline{Z}$$

$$\blacksquare \overline{X + Y + Z} = \overline{X}\overline{Y}\overline{Z}$$

$$\blacksquare \overline{WXYZ} = \overline{W} + \overline{X} + \overline{Y} + \overline{Z}$$

$$\blacksquare \overline{W + X + Y + Z} = \overline{W} \overline{X} \overline{Y} \overline{Z}$$

Ejercicios:

Simplificar las siguientes expresiones y dibujar los circuitos que representan a la expresión original y la simplificada.

1.
$$\overline{(AB+C)(A+BC)}$$

$$2. \quad \overline{(A+B+C)D}$$

3.
$$\overline{ABC + DEF}$$

4.
$$\overline{A\overline{B} + \overline{C}D + EF}$$

5.
$$\overline{\overline{(A+B)}} + \overline{C}$$

6.
$$\overline{(\bar{A}+B)+CD}$$

7.
$$\overline{(A+B)}\overline{C}\overline{D} + E + \overline{F}$$