$$\lambda = \frac{C}{f} \text{ if } d = \frac{\lambda}{10} = 1 \text{ instant.}$$

$$| = \frac{\Delta Q}{\Delta t} \quad P = | \cdot V = |^2 R = \frac{V^2}{R}$$

$$| = \frac{V}{R} \quad R = \int \cdot \frac{I}{A}$$

$$| = \frac{V}{R} \quad R = \int \cdot \frac{I}{A}$$

$$| = \frac{V}{R} \quad R = \int \cdot \frac{I}{A}$$

$$| = \frac{V}{R} \quad R = \int \cdot \frac{I}{R} \quad R = \frac{P}{R} \quad R = \frac{P}$$

natural resp:
over:
$$x(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$$

 $x(0) = A_1 + A_2 \times (0) = A_1 + A_2 \times (0) = A_2 + A_3 = A_4 + A_4 \times (0) = A_$

under:
$$x(t) = (b_1 w_3(w_d t) + b_2 m_n(w_d t))e^{-tt}$$
 $w_d = \int_{w_s^2 - t^2}^{w_s^2 - t^2} x(0) = b_1 x'(0) = -tb_1 + w_d b_2$
 $crit: x(t) = (b_1 t + b_2)e^{-tt}$ $x(0) = b_2 x'(0) = b_1 - tb_2$

Energy in RL: $\frac{1}{2}$ L $_{1}$ i $_{1}$ + $\frac{1}{2}$ L $_{2}$ i $_{2}$ + ... + M i $_{1}$ i $_{2}$ + ...

Volume charge density: f
Current: 1; Epotential: V
Volume current density: F
Electric field intensity: E
Electric flux density: B
Magnetic field intensity: H
Magnetic flux density: B
Magnetic flux density: B

ES: $Gauss law: GEdS = \frac{Qint}{E_0}$ no $MF: \int \nabla x \vec{E} = 0$ $\begin{cases} \nabla x \vec{E} = 0 \end{cases} \qquad \begin{cases} g_c E \cdot dl = 0 \end{cases}$ $\begin{cases} \nabla \vec{E} = \frac{f}{E_0} \end{cases} \qquad \begin{cases} g_s E \cdot ds = \frac{Q}{E_0} \end{cases}$ $Conlomb's law: \vec{F} = \frac{1}{4\pi E_0} \cdot \frac{1!q^2}{R^2}$ $\vec{E} = -\nabla V; \quad Jonles: \vec{P} = \int_V (\vec{E}', \vec{J}) dv$ $Ohm: micro \vec{J} = \nabla \vec{E}, \quad macro: \vec{J} = \frac{V}{R}$ $equation of continuity: \nabla \cdot \vec{J} = -\frac{\partial J}{\partial t}$

MS: Ampere's |2w|: $\frac{1}{\mu_0}$ \mathcal{G}_{3S} $\mathcal{B}dl = |$ C_{2USS} |2w|: \mathcal{G}_{B} $\mathcal{B}dS = 0$, solencid with: $\mathcal{B} = \mu_0 m$ $\nabla \cdot \mathcal{B} = 0$ \Rightarrow $|Poisson: \nabla^2 A = -\mu_0 \overline{J} \Rightarrow \nabla^2 V = -\frac{J}{E}$ $\nabla \times \overline{\mathcal{B}} = \mu_0 \overline{J}$ $|Biot - Savart: \mathcal{B} = \int_{C} d\overline{\mathcal{B}}$ M dipole moment: $\overline{m} = \overline{a}_m^2 |S$, self inductance $L_{11}: \frac{\Lambda_{10}}{L_1}$ M energy: $W = \frac{1}{2} \sum_{k=1}^{\infty} |A \phi_k|$; $W_m = \frac{1}{2} \int_{V} (\overline{A} \cdot \overline{F}) dv$; M force: $F_m = |\mathcal{G}_{C} \cdot \overline{A}| \times \overline{B}$

Maxwell: ES/MS
integral: $\begin{cases}
\delta_s \hat{D} d\hat{s} = Q_{encl}.
\end{cases}$ $\begin{cases}
\delta_c \hat{E} \cdot d\hat{I} = 0
\end{cases}$ \begin{cases}

VXH=J

Time varying (dynamic) $\begin{cases}
\hat{S} \cdot \hat{D} \cdot \hat{S} = Q \cdot \text{encl.} \\
\hat{S} \cdot \hat{E} \cdot \hat{d} \cdot \hat{I} = -\int_{S} \frac{\partial \hat{B}}{\partial t} \cdot d\hat{S}
\end{cases}$ $\begin{cases}
\hat{S} \cdot \hat{B} \cdot \hat{J} \cdot \hat{S} = 0 \\
\hat{S} \cdot \hat{H} \cdot \hat{d} \cdot \hat{I} = | \text{encl.} + \int_{S} \frac{\partial}{\partial t} \cdot \hat{D} \cdot d\hat{S}
\end{cases}$ $\begin{vmatrix}
\hat{J} \cdot \hat{D} \cdot \hat{J} \cdot \hat{J}$

gradient: $\nabla V = \vec{a} \cdot \frac{\partial V}{\partial n}$ divergence: $\nabla \cdot \vec{A} = \lim_{\Delta V \to 0} \frac{\vec{\beta}_s \cdot \vec{A} \, ds}{\Delta V} = \int_{V} \vec{A} \, ds^2 = \int_{V} (\nabla \cdot \vec{A}) \, dv$ curl: $\nabla \times \vec{A} = \lim_{\Delta S \to 0} \frac{\vec{a}_m \left(\vec{\beta}_{C_{max}} \vec{A} \, d\vec{l}\right)}{\Delta S}$ Stoke's theorem: $\nabla \times \vec{A} = \lim_{\Delta S \to 0} \frac{\vec{a}_m \left(\vec{\beta}_{C_{max}} \vec{A} \, d\vec{l}\right)}{\Delta S} = 0$ =) $\oint_{C} \vec{A} \, d\vec{l} = \int_{S} (\nabla \times \vec{A}) \, ds$ scalar Laplacian: $\nabla^2 \vec{V} = \nabla (\nabla \vec{V}) = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2}$ vector Laplacian: $\nabla^2 \vec{A} = \nabla (\nabla \vec{A}) - \nabla \times \nabla \times \vec{A} = \vec{a}_x (\vec{v} \cdot \vec{A}_x) + \vec{a}_y (\vec{v} \cdot \vec{A}_y) + \vec{a}_z (\vec{v} \cdot \vec{A}_z)$ conservative $V.F.: \nabla \times (\nabla \vec{V}) = 0$ Espotential

Hembolta: $S.O. (\nabla \times \vec{A}) = 0$ Ms potential

Hembolta: $S.O. (\nabla \times \vec{A}) = 0$ Ms potential

modified Ampere: $\nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$

Homogeneous $M_{2\times well}$: $\nabla \times \vec{E}' = -\mu \frac{\partial \vec{H}}{\partial t}$ $\nabla \times \vec{H}' = \mathcal{E} \frac{\partial \vec{E}'}{\partial t}$ $\nabla \times \vec{H}' = \mathcal{E} \frac{\partial \vec{E}'}{\partial t}$ $\nabla \times \vec{H}' = 0$ $\nabla \cdot \vec{H}' = 0$ $\nabla \cdot \vec{H}' = 0$ $\nabla \cdot \vec{H}' = 0$ pitentials (time varying): $\vec{E}' = -\nabla V - \frac{\partial \vec{A}}{\partial t}$ $\nabla^2 \vec{A} - \mu \mathcal{E} \frac{\partial^2 \vec{A}}{\partial t^2} = -\mu \vec{J}$ $\nabla^2 \vec{V} - \mu \mathcal{E} \frac{\partial^2 \vec{V}}{\partial t^2} = -\frac{f}{\mathcal{E}}$ $\vec{B}' = \nabla \times \vec{A}$

$$\nabla^{2} \overrightarrow{E} - \mu \varepsilon \frac{\partial^{2} \overrightarrow{E}}{\partial t^{2}} = 0$$

$$\nabla^{2} \overrightarrow{H} - \mu \varepsilon \frac{\partial^{2} \overrightarrow{H}}{\partial t^{2}} = 0$$
E.M. wave propagatition