

Técnicas de Amostragem - Aula 08

Amostragem Estratificada I

Kaique Matias de Andrade Roberto

Ciências Atuariais

HECSA - Escola de Negócios

FIAM-FAAM-FMU

Conteúdo

- 1. Conceitos que aprendemos em Aulas anteriores
- 2. Primeiras Definições e Propriedades
- 3. Notações
- 4. Estimação do Total e da Média Populacional
- 5. Alocação da Amostra pelos Estratos
- 6. Comentários Finais
- 7. Referências

Conceitos que aprendemos em

Aulas anteriores

Conceitos que aprendemos em Aulas anteriores

- definição da AASc e AASs;
- propriedades das principais estatísticas;
- normalidade e intervalo de confiança;
- tamanho da amostra;
- fizemos uma breve introdução aos geradores de números aleatórios.

Primeiras Definições e

Propriedades

Definição 2.1

A amostragem **estratificada** consiste na divisão de uma população em grupos (estratos) segundo alguma(s) característica(s) conhecida(s) na população sob estudo, e de cada um desses estratos são selecionadas amostras em proporções convenientes.

A estratificação é usada principalmente para resolver alguns problemas como:

- a melhoria da precisão das estimativas;
- produzir estimativas para a população toda e subpopulações;
- questões administrativas.

Na nossa disciplina focaremos no primeiro motivo: a melhoria da precisão das estimativas.

Foi visto (Teorema 4.3 Aula-03) que para uma amostra AASc de tamanho n, a variância do estimador média amostral \overline{y} , é dada por

$$Var[\overline{y}] = \frac{\sigma^2}{n}.$$

Se a população é muito heterogênea e as razões de custo limitam o aumento da amostra, torna-se impossível definir uma AASc da população toda com uma precisão razoável.

Uma saída para esse problema é dividir a população em subpopulações internamente mais homogêneas, ou seja, grupos com variâncias σ^2 pequenas que diminuirão o erro amostral global.

Exemplo 2.2

Considere uma pesquisa feita em uma população com N=8 domicílios, onde são conhecidas as variáveis renda domiciliar (Y) e local do domicílio (W), com os códigos A para região alta e B para região baixa. Tem-se então,

$$\mathcal{U} = \{1, 2, 3, 4, 5, 6, 7, 8\},\$$

com

$$D = \begin{pmatrix} y \\ w \end{pmatrix} = \begin{pmatrix} 13 & 17 & 6 & 5 & 10 & 12 & 19 & 6 \\ B & A & B & B & B & A & A & B \end{pmatrix}$$

Vamos analisar como se comportam os parâmetros de ${\it D}$ em função dos parâmetros das subpopulações determinadas pelos estratos A e B.

$$N = 11 \quad T = 24$$

$$V_{A} = \{2, 6, 7\} \quad D_{A} = (17, 12, 19)$$

$$V_{B} = \{1, 3, 4, 5, 8\} \quad D_{B} = (13, 6, 5, 10, 6)$$

$$V_{A} = \frac{17 + 12 + 19}{3} = \frac{29 + 19}{3} = \frac{48}{3} = 16$$

$$NB = \frac{13+6+5+10+6}{5} = \frac{25+15}{5} = 8$$

$$\nabla_A^2 = 8.7 \qquad \nabla_B^2 = 9.7$$

I- Sorteamos uma AASc(4) de W.

$$Var_{AAScly}[7] = \frac{\sigma^2}{N} = \frac{24}{4} = 6$$

II - Sortear AASc(z) em
$$W_A$$
 e $V_{2r} = V_{A}^2 = \frac{\sigma_A^2}{v} = \frac{8.7}{2} = 4.35$

$$= \frac{9.87 + 25.46}{64} \approx 7.4$$

EPA = V2r [4es] = 2.4 = 0.4 V2r AAS(14)[7]

20 estimador Yes é "melhor" 20 que y.

O resultado da estratificação será mais eficaz quanto maior for a habilidade do pesquisador em produzir estratos homogêneos.

O caso limite é aquele onde consegue-se a homogeneidade máxima (variância nula dentro de cada estrato) onde então a estimativa acerta o parâmetro populacional.

A simples estratificação por si só não produz necessariamente estimativas mais eficientes que a AAS. O próximo exemplo ilustra tal situação.

Exemplo 2.3

Considere uma pesquisa feita em uma população com N=8 domicílios, onde são conhecidas as variáveis renda domiciliar (Y) e local do domicílio (W), com os códigos A para região alta e B para região baixa. Tem-se então,

$$\mathcal{U} = \{1, 2, 3, 4, 5, 6, 7, 8\},$$

divididas nos estratos

$$\mathbf{D}_1 = (13, 17, 6, 5) \in \mathbf{D}_2 = (10, 12, 19, 6).$$

Vamos analisar como se comportam os parâmetros de ${\it D}$ em função dos parâmetros das subpopulações determinadas pelos estratos 1 e 2.

$$U_{1}=2L_{1},2,3,4$$
 $D_{1}=(13,17,6,5)$
 $U_{7}=25,6,7,6$ $D_{7}=(10,17,19,6)$
 $U_{7}=10.75$ $U_{7}=24,69$

$$y_2 = 11.75$$
 $\sigma_1^2 = 27.29$

I-Sorkamos uma AASc(4) de W.

$$Var_{AASc(4)}[7] = \frac{\sigma^2}{M} = \frac{24}{4} = 6$$

II - Sorkamos uma AAScl2) em Ul e Ulz.

$$7es = \frac{4}{8}\overline{1}_{1} + \frac{4}{8}\overline{1}_{2} \text{ é não-viesabo}$$

$$PI \text{ N.} \qquad \frac{1}{N}$$

$$EPA = \frac{5.86}{6} = 0.98 = 1$$

A execução de um plano de amostragem estratificada (AE) exige os seguintes passos:

Passo 1

Divisão da população em subpopulações bem definidas (estratos).

Passo 2

De cada estrato retira-se uma amostra, usualmente independentes.

Passo 3

Em cada amostra usam-se estimadores convenientes para os parâmetros do estrato.

Passo 4

Monta-se para a população um estimador combinando os estimadores de cada estrato, e determinam-se suas propriedades.

Estrato	Dados	Total	Média	Variância
1	\mathbf{Y}_1 *	$ au_1$	$\mu_1 = \overline{Y}_1$	σ_1^2 ou S_1^2
:	:	:	÷	÷ :
h	$\mathbf{Y}_h\ ^*$	$ au_h$	$\mu_h = \overline{Y}_h$	σ_h^2 ou S_h^2
÷	:	÷	÷	:
H	$\mathbf{Y}_{H}\ ^{\ast}$	$ au_H$	$\mu_H = \overline{Y}_H$	σ_H^2 ou S_H^2

^{*} onde $\mathbf{Y}_h'=(Y_{h1},\dots,Y_{hN_h})$ é o vetor de dados no estrato $h,\,h=1,\dots,H.$

Vamos definir várias notações envolvendo os dados estratificados como acima. Para exemplificá-las, usaremos os dados à seguir:

1 NW 4 NOUR

Nome	Categoria	Nota	Nome	Categoria	Nota
Enedina	А	10	Leopoldina	А	3
Machado	А	4	Dandara	С	8
Luiz	А	5	Francisco	Α	6
Marilena	В	3	Felipa	Α	7
Clarice	В	9	Menininha	С	10
Heitor	В	2	Erenilton	С	9
Camargo	В	8	Vadinho	С	8
Rita	В	10	Jorge	С	3

9612375

$$U_3 = U_C = 2$$
 10, 13, 14, 15, 16 }

 $D_3 = D_C = (8, 10, 9, 8, 3)$
 $N_3 = N_C = 7, 6$
 $\sigma_3^3 = \sigma_C^2 = 5, 84$

Considere uma população bem descrita por um sistema de referências, ou seja,

$$U = \{1, 2, ..., N\}$$

e que existe uma partição $\mathcal{U}_1,...,\mathcal{U}_H$ de $\mathcal{U}_{}$, ou seja,

$$\mathcal{U} = igcup_{h=1}^H \mathcal{U}_h \; \mathsf{e} \; \mathcal{U}_h \cap \mathcal{U}_l = \emptyset$$

se $h \neq I$.

Além disso, vamos supor que cada subconjunto \mathcal{U}_h , bem determinado, é identificado por duplas ordenadas, do seguinte modo:

$$\mathcal{U}_h = \{(h,1), (h,2), ..., (h,N_h)\}.$$

Assim o universo todo pode ser descrito por

$$\mathcal{U} = \{(1,1),...,(h,N_1),...,(h,1),...,(h,N_h),...,(H,2),...,(H,N_H)\}$$

de modo a facilitar a identificação do estrato e do elemento dentro dele.

De modo análogo, as características populacionais serão identificadas por dois índices, ou seja, no caso univariado, por exemplo, tem-se o vetor de características populacionais

$$\mathbf{D} = (\mathbf{Y}_{11}, ..., \mathbf{Y}_{1N_1}, ..., \mathbf{Y}_{hi}, ..., \mathbf{Y}_{HN_H}),$$

ou seja, para o estrato 1 tem-se as características populacionais $\mathbf{Y}_{11},...,\,\mathbf{Y}_{1N_1}$, e assim por diante.

Eis algumas definições e relações entre os parâmetros:

• Tamanho do estrato h: N_h .

$$\mathcal{N}_{\Delta} = \mathcal{N}_{A} = 21, 2, 3, 9, 11, 123$$

$$\mathcal{D}_{A} = (10, 4, 5, 3, 6, 7)$$

$$\mathcal{N}_{Z} = \mathcal{N}_{B} = 24, 5, 6, 7, 83$$

$$\mathcal{D}_{Z} = \mathcal{D}_{B}^{2} 23, 9, 2, 8, 105$$

$$\mathcal{N}_{A} = \mathcal{N}_{C} = 210, 13, 14, 15, 163$$

$$\mathcal{N}_{A} = \mathcal{N}_{C} = 210, 13, 14, 15, 163$$

$$\mathcal{N}_{A} = \mathcal{N}_{C} = 210, 13, 14, 15, 163$$

$$N_{1} = N_{A} = 6$$
 $N_{2} = N_{B} = 5$
 $N_{3} = N_{C} = 5$

= 16 = N

• Total do estrato *h*:

$$\tau_h = \sum_{i=1}^{N_h} Y_{hi}.$$

$$\mathcal{N}_{1} = \mathcal{N}_{A} = 21, 2, 3, 9, 11, 123$$

$$\mathcal{D}_{3} = (10, 4, 5, 3, 6, 7)$$

$$\mathcal{Z}_{1} = \mathcal{Z}_{A} = 10 + 4 + 5 + 3 + 6 + 7 = 35$$

$$\mathcal{N}_{2} = \mathcal{N}_{B} = 24, 5, 6, 7, 83$$

$$\mathcal{D}_{2} = \mathcal{D}_{B} = 23, 9, 2, 8, 103$$

$$\mathcal{Z}_{2} = \mathcal{Z}_{3} = 3 + 9 + 2 + 8 + 10 = 32$$

 $U_3 = U_{C} = \frac{10}{13}, 14, 15, 16$ $D_3 = D_{C} = (8, 10, 9, 8, 3)$ $Z_3 = Z_{C} = 8 + 10 + 9 + 8 + 3 = 38$ $Z_{L} + Z_{2} + Z_{3} = Z$

• Média do estrato h:

$$\mu_h = \overline{Y}_h = \frac{1}{N_h} \sum_{i=1}^{N_h} Y_{hi}.$$

$$\begin{aligned}
N_{1} &= W_{A} = 21, 2, 3, 9, 11, 123 \\
D_{3} &= (10, 4, 5, 3, 6, 7) \\
N_{1} &= |V_{A}| = \frac{35}{6} = 5,83 \\
W_{2} &= |V_{B}| = \frac{37}{6} = 5,83 \\
& V_{2} &= |V_{B}| = \frac{37}{6} = 6, 4
\end{aligned}$$

$$\begin{aligned}
V_{3} &= |V_{C}| = \frac{37}{6} = 6, 4 \\
V_{3} &= |V_{C}| = \frac{37}{6} = 6, 4
\end{aligned}$$

$$\begin{aligned}
V_{3} &= |V_{C}| = \frac{37}{6} = 6, 4 \\
V_{3} &= |V_{C}| = \frac{37}{6} = 6, 4
\end{aligned}$$

$$\begin{aligned}
V_{3} &= |V_{C}| = \frac{37}{6} = 6, 4 \\
V_{3} &= |V_{C}| = \frac{37}{6} = 7, 6
\end{aligned}$$

$$\begin{aligned}
V_{3} &= |V_{C}| = \frac{37}{6} = 7, 6
\end{aligned}$$

• Variância do estrato h:

$$\sigma_h^2 = \frac{1}{N_h} \sum_{i=1}^{N_h} (Y_{hi} - \mu_h)^2 \text{ ou } S_h^2 = \frac{1}{N_h - 1} \sum_{i=1}^{N_h} (Y_{hi} - \mu_h)^2.$$

$$\begin{aligned}
\mathcal{U}_{1} &= \mathcal{U}_{A} = 21, 2, 3, 9, 12, 123 \\
\mathcal{D}_{1} &= (10, 4, 5, 3, 6, 7) \\
\mathcal{T}_{2} &= \mathcal{T}_{A}^{2} = 5, 14 \\
\mathcal{T}_{1} &= \mathcal{T}_{A}^{2} = 5, 14
\end{aligned}$$

$$\begin{aligned}
\mathcal{U}_{2} &= \mathcal{U}_{B} = 3, 4, 5, 6, 7, 8 \\
\mathcal{D}_{2} &= \mathcal{D}_{B}^{2} 23, 9, 2, 8, 10 \\
\mathcal{T}_{2}^{2} &= \mathcal{T}_{A}^{2} = 10, 64
\end{aligned}$$

$$\begin{aligned}
\mathcal{T}_{2}^{2} &= \mathcal{T}_{A}^{2} = 10, 64
\end{aligned}$$

$$\begin{aligned}
\mathcal{T}_{3}^{2} &= \mathcal{T}_{3}^{2} = 3, 9, 2, 8, 10 \\
\mathcal{T}_{3}^{2} &= \mathcal{T}_{3}^{2} = 13, 3
\end{aligned}$$

$$U_3 = U_C = 2$$
 10, 13, 14, 15, 16 }
 $D_3 = D_C = (8, 10, 9, 8, 3)$

$$\int_{3}^{2} = \int_{C}^{2} = 5,84 \quad S_{3}^{2} = S_{C}^{2} = 7,3$$

• Tamanho do universo:

$$N = \sum_{h=1}^{H} N_h.$$

• Peso (proporção) do estrato h:

$$W_h = \frac{N_h}{N} \text{ com } \sum_{h=1}^H W_h = 1.$$

$$N_L = N_A = 6$$

$$W_L = \frac{6}{16} = \frac{3}{8} = 0,375 = 0,36$$

$$W_2 = \frac{5}{16} = 0,3125 = 0,31$$

$$N_3 = N_c = 5$$
 $W_3 = \frac{5}{16} = 0.3175$ $= 0.31$

• Total populacional:

$$\tau = \sum_{h=1}^{H} \tau_h = \sum_{h=1}^{H} \sum_{i=1}^{N_H} Y_{hi} = \sum_{h=1}^{H} N_h \mu_h.$$

 $105 = 7 = N_{1} \mu_{1} + N_{2} \mu_{2} + N_{3} \mu_{3}$ = 6.5,89 + 5.6,9 + 5.7,8 ≈ 105

• Média populacional:

$$\mu = \overline{Y} = \frac{\tau}{N} = \frac{1}{N} \sum_{h=1}^{H} \sum_{i=1}^{N_H} Y_{hi} = \frac{1}{N} \sum_{h=1}^{H} N_h \mu_h = \sum_{h=1}^{H} W_h \mu_h,$$

de modo que a média global é a média ponderada dos estratos.

• Variância Populacional:

$$\sigma^2 = \sum_{h=1}^{H} W_h \sigma_h^2 + \sum_{h=1}^{H} W_h (\mu_h - \mu)^2.$$

Também denotamos

$$\sigma^2 = \sigma_d^2 + \sigma_e^2 \text{ com}$$

$$\sigma_d^2 = \sum_{h=1}^H W_h \sigma_h^2 \text{ e } \sigma_e^2 = \sum_{h=1}^H W_h (\mu_h - \mu)^2.$$

Amostral

• Variância Populacional:

$$S^{2} = \sum_{h=1}^{H} \frac{N_{h} - 1}{N - 1} S_{h}^{2} + \sum_{h=1}^{H} \frac{N_{h}}{N - 1} (\mu_{h} - \mu)^{2}.$$

• Para estratos grandes temos

$$S^2pprox \sigma_d^2+\sigma_e^2pprox S_d^2+\sigma_e^2$$
 com $S_d^2=\sum_{h=1}^H W_hS_h^2.$

Note que quando todos os estratos têm a mesma média, ou seja, $\mu_h=\mu$, h=1,...,H, a variância populacional σ^2 coincide com σ_d^2 .

Quanto maior for $\sigma_{\rm e}^{\rm 2},$ maior é a diferença $\sigma^{\rm 2}-\sigma_{\rm d}^{\rm 2}.$

As nomenclaturas para as estatísticas mais usadas (média, total e variância amostrais) são análogas: \overline{y}_h , T_h , s_h^2 respectivamente.

Lembre que, se $X_1, X_2, ..., X_H$ são variáveis aleatórias independentes, então para $X = \sum_{h=1}^H I_h X_h$,

$$E[X] = \sum_{h=1}^{H} I_h E[X_h] \text{ e Var}[X] = \sum_{h=1}^{H} I_h^2 \text{Var}[X].$$

Estimação do Total e da Média

Populacional

Considere a seguinte situação:

• uma população estratificada;

 de cada estrato foi sorteada independentemente uma amostra de tamanho n_h, podendo ou não ter sido usado o mesmo plano amostral em cada estrato;

• e consideremos $\hat{\mu}_h$ um estimador não viesado para a média populacional μ_h do estrato h, ou seja, $E_A[\hat{\mu}_h] = \mu_h$, onde A é o plano amostral usado no estrato h.

Teorema 4.1

O estimador

$$\overline{y}_{es} = \frac{1}{N} \sum_{h=1}^{H} N_h \hat{\mu}_h = \sum_{h=1}^{H} W_h \hat{\mu}_h$$

é não-viesado para a média populacional μ e

$$\operatorname{Var}_A[\overline{y}_{es}] = \sum_{h=1}^H W_h^2 \operatorname{Var}_A[\hat{\mu}_h].$$

Corolário 4.2

Considere agora que, dentro de cada estrato, a amostra foi sorteada por um processo AASc e que $\hat{\mu}_h = \overline{y}_h$. Então

$$\overline{y}_{\rm es} = \sum_{h=1}^{H} N_h \overline{y}_h \; {\rm e} \; {\rm Var}[\overline{y}_{\rm es}] = \sum_{h=1}^{H} W_h^2 \frac{\sigma_h^2}{n_h},$$

com estimador não-viesado para $Var[\overline{y}_{es}]$ dado por

$$\operatorname{var}[\overline{y}_{es}] = \sum_{h=1}^{H} W_h^2 \frac{s_h^2}{n_h}.$$

Este procedimento (e sua variante sem reposição) é um dos planos amostrais mais usados em problemas reais.

Alocação da Amostra pelos

Estratos

Alocação da Amostra pelos Estratos

Definição 5.1

A distribuição das *n* unidades da amostra pelos estratos chama-se **alocação da amostra**.

Alocação da Amostra pelos Estratos

Essa distribuição é muito importante pois ela irá garantir a precisão do procedimento amostral.

Alocação da Amostra pelos Estratos

Exemplo 5.2

Considere a população $\mathcal{U}=\{1,2,3,4,5,6,7,8\}$ do Exemplo 2.1 com a estratificação

$$\mathcal{U}_1 = \{2, 4, 7\} \text{ com } \mathbf{D}_1 = (17, 5, 19)$$

$$\mathcal{U}_2 = \{1, 3, 5, 6, 8\} \text{ com } \mathbf{D}_2 = (13, 6, 10, 12, 6).$$

Vamos estudar o efeito do planejamento (EPA) para duas situações:

- 1. AL_1 : AASs com $n_1 = 1$ e $n_2 = 2$;
- 2. AL_2 : AASs com $n_1 = 2$ e $n_2 = 1$.

$$\nabla_{L}^{2} = 8,7$$
 $\nabla_{Z}^{2} = 9,7$ $\nabla = 24$
 $S_{L}^{2} = 13$ $S_{Z}^{2} = 11,5$ $S^{2} = 27,43$

AAS₅(3) em W

$$V_{2}Y[7] = (1 - \frac{N}{N}) \frac{5^{2}}{N}$$

 $= (1 - \frac{3}{8}) \frac{27,43}{3} = \frac{5 \cdot 77,43}{74} \approx 5,71$

$$V_{3} = \frac{1}{100} = \frac{1}{100$$

- Alz
$$N_{L} = 2$$
, $N_{2} = 1$
 $V_{2} \Gamma \Gamma_{1} \Gamma_{2} = (1 - \frac{N_{2}}{N_{2}}) \frac{S_{L}}{N_{3}}$
= $(1 - \frac{2}{3}) \frac{13}{2} = \frac{13}{6} = \frac{7}{13} = \frac{13}{6}$

$$V_{27}[y_{2}] = \left(1 - \frac{Nz}{N_{2}}\right) \frac{5^{2}z}{Nz} =$$

$$= \left(1 - \frac{1}{5}\right) \frac{11}{2} = \frac{4 \cdot 11}{5} = 9.2$$

$$EPA[A1, AAS(31] = \frac{7,57}{5,75} = 0,45$$

EPA[A1, A12] =
$$\frac{7,57}{3,9}$$
 = 0,66

Alocação da Amostra pelos Estratos

Vamos retomar os dados da tabela que usamos para as Notações:

Alocação da Amostra pelos Estratos

Nome	Categoria	Nota	Nome	Categoria	Nota
Enedina	A	10	Leopoldina	А	3
Machado	A	4	Dandara	С	8
Luiz	A	5	Francisco	Α	6
Marilena	В	3	Felipa	Α	7
Clarice	В	9	Menininha	С	10
Heitor	В	2	Erenilton	С	9
Camargo	В	8	Vadinho	С	8
Rita	В	10	Jorge	С	3

Alocação da Amostra pelos Estratos

Exemplo 5.3

- 1. Para os estratos A,B,C, realize a alocação AL_k com uma amostragem AASc com $n_A=2$, $n_B=3$ e $n_C=2$. Para esta alocação, calcule $Var_{AL_k}[\overline{y}_{es}]$.
- 2. Defina uma nova alocação AL_e de sua preferência e calcule $Var_{AL_e}[\overline{y}_{es}]$.
- 3. Calcule o efeito do planejamento (EPA) entre as alocações AL_k e AL_e .

$$=\frac{6.56}{8} \approx 0.82$$

$$V_{2r}[72] = \frac{\sigma_{z}^{2}}{3} = \frac{10,64}{3} = 3,55$$

Varly3] =
$$\frac{\sigma_3^2}{\tau} = \frac{5184}{7} = 792$$

$$V_{AL_{N}}[Y_{es}] = \left(\frac{N_{1}}{N}\right)^{2} V_{ar}[Y_{1}] + \left(\frac{N_{2}}{N}\right)^{2} V_{ar}[Y_{2}] + \left(\frac{N_{3}}{N}\right)^{3} V_{ar}[Y_{3}]$$

$$= \frac{9 \cdot 7,57 + 9 \cdot 3,55 + 9 \cdot 7,92}{16^{2}}$$

Em resumo, na aula de hoje nós:

- introduzimos a amostragem estratificada;
- listamos as notações para esse plano amostral;
- falamos da estimação do total e média populacional;
- lidamos coma a alocação do tamanho da amostra entre os estratos.

Nas próximas aulas nós vamos continuar focar em:

- tipos de alocação;
- normalidade assintótica e intervalo de confiança;
- tamanho da amostra;
- estimação da proporção.

EXERCÍCIOS PARA APS (E PREPARAÇÃO PARA A N2)

Resolva os Exercícios 8.1-8.3.

Referências

Referências

Referências

Bons Estudos!

