Geometria A modulo 2

Martino Papa AKA Intotino

September 16, 2021

Contents

1	For	me bilineari	2
	1.1	Introduzione	2
		1.1.1 vettori ortogonali e isotropi	2
		1.1.2 spazio ortogonale	3
		1.1.3 caratteristica di un vettore	3
	1.2	Matrici associate ad una forma bilineare	3
	1.3	forma quadratica	3
		1.3.1 teorema esistenza matrice diagonale	5
		1.3.2 teorema di Sylvester	6
	1.4	prodotto scalare	6
		1.4.1 disuguaglianza Cauchy-Shcwartz	7
	1.5	spazi affini	8
		1.5.1 spazio euclideo	9
		1.5.2 teorema spettrale	10
2	Geometria proiettiva		
	2.1	introduzione	12
3	Cur	rve algebriche piane	15
	3.1	introduzione	15
	3.2	classificazione delle quadriche proiettive	15
	3.3	classificazione quadratiche affini	17
		3.3.1 alcuni concetti algebrici	
		3.3.2 intersezione di curve algebriche piane	
	3 4	cubiche	21

Chapter 1

Forme bilineari

1.1 Introduzione

Siano $V,\ W$ due \mathbb{K} -spazi vettoriali. Definiamo la forma bilineare b come:

$$b: V \times W \to \mathbb{K}$$

Proprietà:

- $b(v_1 + v_2, w) = b(v_1, w) + b(v_2, w)$
- $b(\lambda v, w) = \lambda b(v, w)$
- $b(v, w_1 + w_2) = b(v, w_1) + b(v, w_2)$
- $b(v, \lambda w) = \lambda b(v, w)$

Forme simmetriche e antisimmetriche.

Una forma bilineare si dice **simmetrica** nel caso in cui l'applicazione su due vettori v e w produca lo stesso risultato dell'applicazione sui vettori w e v:

$$\operatorname{Sym} \Leftrightarrow b(v,w) = b(w,v)$$

Si definisce invece **antisimmetrica** una forma bilineare che applicata a v e w produca l'opposto della stessa applicata a w e v:

Anti-Sym
$$\Leftrightarrow b(v,w) = -b(w,v)$$

sia $b: V \times V \to \mathbb{K}$ una forma bilineare, $\beta = \{e_1, ..., e_n\}$ base di V, dim $(V) < +\infty$, $A \doteq b(e_i, e_j) \in M_{n \times n}(\mathbb{K})$ e siano $v, w \in V$ t.c

$$v = x_1e_1 + \dots + x_ne_n$$

$$w = y_1e_1 + \dots + y_ne_n$$

$$\Rightarrow b(v, w) = x^tAy$$

dimostrazione:
$$b(v,w)=b(x_1e_1+\ldots+x_ne_n,y_1e_1+\ldots+y_ne_n)=\sum_{i,j=1}^nx_iy_jb(e_i,e_j)=x^tAy$$

radicale (nucleo) il radicale (o nucleo) N_b di una forma bilineare $b: V \times V \to \mathbb{K}$ è definito

$$N_b = \{ v \in V | b(v, w) = 0 \ \forall w \in V \}$$

$$\tag{1.1}$$

1.1.1 vettori ortogonali e isotropi

Siano due vettori $v, w \in V$. $v \in w$ si dicono ortonormali se e solo se:

$$b(v, w) = b(w, v) = 0$$

Allo stesso modo, $v \in V$, si dice isotropo se e solo se

$$b(v,v) = 0$$

1.1.2 spazio ortogonale

sia $S \subset V$, S è detto sottospazio ortogonale se:

$$S^{\perp} = \{ v \in V \mid b(v, w) = 0 \ \forall w \in S \}$$

proposizione $\forall S \subset V, S^{\perp}$ è un sottospazio vettoriale di V

dimostrazione

1.
$$v \in S^{\perp} \Rightarrow b(v, w) = 0 \ \forall w \in S$$

 $\Rightarrow b(\lambda v, w) = \lambda \ b(v, w) = 0$
 $\Rightarrow \lambda v \in S^{\perp} \ \forall \lambda \in \mathbb{K}$

2.
$$v_1, v_2 \in S^{\perp} \Rightarrow b(v_1, w) = 0, \ b(v_2, w) = 0 \ \forall w \in S$$

 $\Rightarrow b(v_1 + v_2, w) = b(v_1, w) + b(v_2, w) = 0$

1.1.3 caratteristica di un vettore

sia $v \in V$ non isotropo, dato un vettore $w \in V$ definiamo

$$a_v(w) = \frac{b(v,w)}{b(v,v)}$$

osservazione $w - a_v(w)v \in V$ è un vettore ortogonale a v

1.2 Matrici associate ad una forma bilineare

sia V un K-spazio vettoriale, $b: V \times V \to \mathbb{K}$ bilineare, $\beta = \{e_1, ..., e_n\}, \beta' = \{f_1, ..., f_n\}$, A la matrice associata a b in β , A la matrice associata a b in β' allora

preso
$$M = M_{\beta\beta'}(I)$$

$$B = M^t A M$$

rango di una forma bilineare

preso $b:V\times V\to\mathbb{K}$ bilineare, $\forall A,B\in M_{n\times n}(\mathbb{K})$ siano matrici associate a b $\Rightarrow rk(A)=rk(B)$

⇒ si può definire il rango di b come il rengo di una sua matrice associata

forma non degenere una forma bilineare b è detta non degenere se rk(b)=dimV=n

matrice ortogonale

$$A \text{ ortogonale} \Leftrightarrow A^t A = AA^t = Id_n \tag{1.2}$$

sia A ortogonale allora:

- $det(A) = \pm 1$
- A invertibile e $A^{-1} = A^t$
- $\bullet\,$ gli autovettori di Aassociati ad autovalori distinti sono ortogonali

1.3 forma quadratica

sia $b: V \times V \to \mathbb{K}$ una forma bilineare, $q(v) \doteq b(v, v) \ \forall v \in V$ si dice forma quadratica associata a b

proprietà forma quadratica

- $\forall k \in \mathbb{K}, \forall v \in V \ q(\lambda v) = \lambda^2 q(v)$
- $\forall v, w \in V \ 2b(v, w) = q(v + w) q(v) q(w)$

$$Q(\underline{h}) = \sum_{i,j=1}^{n} a_{ij} h_i h_j, \quad a_{ij} \in \mathbb{R}, \ \underline{h} \in \mathbb{R}^n$$
(1.3)

NB: si può sempre supporre $a_{ij} = a_{ji}$

matrice associata ad ogni forma quadratica è associata una matrice simmetrica $A = (a_{ij})_{ij} \in M_{n \times n}$ t.c.

$$Q(h) = \underline{h}^t A \underline{h} \tag{1.4}$$

$$Q(\underline{h}) = \langle A\underline{h}, \underline{h} \rangle \tag{1.5}$$

definizioni una forma quadratica $Q(\underline{h})$ si dice

- definita positiva (negativa) $\Leftrightarrow Q(\underline{h}) > 0 \ \forall \underline{h} \neq 0 \ (Q(\underline{h}) < 0)$)
- semidefinita positiva (negativa) $\Leftrightarrow Q(\underline{h}) \geq 0 \ \forall \underline{h} \in \mathbb{R}^n \ (Q(\underline{h}) \leq 0) \land \exists h \neq 0 \ t.c. \ Q(\underline{h}) = 0$
- indefinita $\Leftrightarrow \exists \underline{h}^+, \underline{h}^- \in \mathbb{R}^n \ t.c. \ Q(\underline{h}^+) > 0 \land Q(\underline{h}^-) < 0$

teorema caratterizzazione forme quadratiche

- una forma quadratica è definita positiva $\Leftrightarrow \exists m > 0 \ t.c. \ \sum_{i,j=1}^n a_{ij} h_i h_j \ge m ||\underline{h}||^2 \ \forall \underline{h} \in \mathbb{R}^n$
- una forma quadratica è definita negativa $\Leftrightarrow \exists m>0 \ t.c. \ \sum_{i,j=1}^n a_{ij}h_ih_j \leq -m||\underline{h}||^2 \ \forall \underline{h} \in \mathbb{R}^n$

proposizione $n=2, Q(\underline{h})=ah_1^2+2bh_1h_2+ch_2^2$ è

- definita positiva (negativa) $\Leftrightarrow det(A) > 0 \land a > 0; (a < 0)$
- semi definita positiva (negativa) $\Leftrightarrow det(A) = 0 \land a > 0; (a < 0)$
- indefinita $\Leftrightarrow det(A) < 0$

criterio di Sylvester $n \geq 2, \ Q(\underline{h}) = \sum_{i,j=1}^n a_{ij} h_i h_j, \ \underline{h} \in \mathbb{R}^n$ è

- definita positiva $\Leftrightarrow det(A_k) > 0 \ \forall k \ 1, \dots, n$
- definita negativa $\Leftrightarrow (-1)^k \det(A_k) > 0 \ \forall k \ 1, \ldots, n$

corollario $n \geq 2, \ Q(\underline{h}) = \sum_{i,j=1}^{n} a_{ij} h_i h_j, \ \underline{h} \in \mathbb{R}^n$ è

- semidefinita positiva $\Leftrightarrow det(A_k) \ge 0 \ \forall k \ 1, \dots, n$
- semidefinita negativa $\Leftrightarrow (-1)^k \det(A_k) \ge 0 \ \forall k \ 1, \dots, n$

autovalori $Q(\underline{h}) = \sum_{i,j=1}^{n} a_{ij} h_i h_j, \ \underline{h} \in \mathbb{R}^n$

- definita positiva (negativa) ⇔ tutti gli autovalori sono positivi (negativi)
- semidefinita positiva (negativa) \Leftrightarrow tutti gli autovalori sono $\geq 0 \ (\leq 0)$ ed almeno uno di essi è nullo
- indefinita $\Leftrightarrow \exists$ due autovalori di segno opposto

 $^{^1}$ una forma quadratica in \mathbb{R}^n è un polinomio omogeneo di grado 2 della forma

¹nota lezione 17

polinomio omogeneo

sia
$$\beta = \{e_1, ..., e_n\}$$
 una base di V, $v \in V$ allora $q(v) = q(x_1, ..., x_n) = \sum a_{i,j} x_i x_j$

viceversa un polinomio omogeneo di grado 2 nelle variabili $(x_1,...,x_n)$ t.c. $q(x_1,...,x_n) = \sum a_{i,j} x_i x_j$ corrisponde ad una **forma quadratica** su V una volta definita una base β

1.3.1 teorema esistenza matrice diagonale

sia $b:V\times V\to\mathbb{K}$ una forma bilineare simmetrica

- \exists una base $\beta = \{e_1, ..., e_n\}$ di V formata da vettori ortogonali, ovvero: $b(e_i, e_j) = 0$ se i $\neq j$
- $\bullet \; \exists$ una base nella quale la matrice associata è diagonale
- \exists una base nella quale la forma quadratica è della forma $q(x_1,...,x_n) = \sum_{i=1}^n a_{ii} x_i^2$

dimostrazione esistenza matrice diagonale

se $b(v, w) = 0 \ \forall v, w$ la dimostrazione è banale

supponiamo quindi che b non sia la forma nulla

- $\Rightarrow \exists v, w \in V \ t.c. \ b(v, w) \neq 0$
- $\Rightarrow \exists$ un vettore **non** isotropo (*)

dimostro (*)

b(v + w, v + w) = b(v, v) + b(w, w) + 2b(v, w) quindi:

- $b(v,v) \neq 0$ oppure $b(w,w) \neq 0 \Rightarrow$ v oppure w non isotopo
- se invece sono entrambi $= 0 \Rightarrow b(v + w, v + w) = 2b(v, w) \Rightarrow b(v, w) \neq 0 \Rightarrow v + w$ non isotopo

procedo per induzione su n=dimV

- passo base: n=1 banale (la matrice è ovviamente diagonale)
- passo induttivo, dimostriamo l'implicazione $p(n-1) \Rightarrow p(n)$ considero e_1 non isotopo e $W = e_1^{\perp} \Rightarrow dimW = n-1$ (**) per ipotesi induttiva esiste una base di W $\{e_2, ..., e_n\}$ ortogonale \Rightarrow

 $\{e_1, e_2, ..., e_n\}$ è una base ortogonale di V

Lemma (\star) sia V un \mathbb{K} -spazio vettoriale, dim V= n< ∞ , $b: V \times V \to \mathbb{K}$ una forma bilineare *simmetrica*, $v \in V$ vettore non isotropo

- $V = \langle v \rangle \bigoplus V^{\perp}$
- $dimV^{\perp} = n 1$

dimostrazione sia $w \in V$

$$w = a_v(w)v + (w - a_v(w)v)$$

dove $a_v(w)v \in \langle v \rangle$ e $(w - a_v(w)v) \in V^{\perp}$

esercizio $V=\mathbb{R}^2,\ e_1=(1,0),\ e_2=(0,1),\ q(x,y)=3x^2-8xy-3y^2$ forma quadratica rispetto a β'

$$A = \begin{pmatrix} 3 & -4 \\ -4 & -3 \end{pmatrix}, \ q(x,y) = 3(x - \frac{4}{3}y)^2 - (\frac{16}{3} + 3)y^2, \text{ scelgo } x' = x - \frac{4}{3}y, \ y' = y$$

$$\Rightarrow q(x,y) = 3x'^2 - \frac{25}{3}y'^2$$

$$x = x' + \frac{4}{3}y \land y = y' \Rightarrow M_{\beta\beta'} = \begin{pmatrix} 1 & \frac{4}{3} \\ 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 \\ \frac{4}{3} & 1 \end{pmatrix} \begin{pmatrix} 3 & -4 \\ -4 & -3 \end{pmatrix} \begin{pmatrix} 1 & \frac{4}{3} \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & -\frac{25}{3} \end{pmatrix}$$

teorema degli uni e degli zeri

sia V un K-spazio vettorale, K algebricamente chiuso, $b: V \times V \to \mathbb{K}$ bilineare simmetrica, $b(f_i, f_i) \neq 0 \Rightarrow$

 \exists una base in cui b si può rappresentare come una matrice diagonale formata da soli uni e zeri dimostrazione:

data $\{f_1, ..., f_n\}$ base diagonalizzante, denoto $g_i = \frac{1}{\sqrt{b(f_i, f_i)}} f_i$

$$\Rightarrow b(g_i, g_i) = b(\frac{1}{\sqrt{b(f_i, f_i)}} f_i, \frac{1}{\sqrt{b(f_i, f_i)}} f_i) = (\frac{1}{\sqrt{b(f_i, f_i)}})^2 b(f_i, f_i) = \frac{b(f_i, f_i)}{b(f_i, f_i)} = 1$$

1.3.2 teorema di Sylvester

²dato V \mathbb{R} spazio vettoriale, $b: V \times V \to \mathbb{R}$ simmetrica, dimV = n allora:

- $\bullet\,$ \exists una base nella quale b si rappresenta come una matrice diagonale composta da 1, -1, 0
- il numero di 1, -1, 0 non dipende dalla base scelta

dimostrazione:

il numero di zeri è sempre costante ed uguale a n-rk(b) sapendo che il numero di zeri è costante basterà dimostrare che il numero di positivi (o negativi) sia costante; supponiamo $\{e_1,...,e_n\}=\beta$, $\{f_1,...,f_n\}=\beta'$,

$$b(e_i, e_i) = 1 \ i = 1, ..., t$$

 $b(f_i, f_i) = 1 \ j = 1, ..., s$

per assurdo supponiamo t > s

denotiamo $T=\langle e_1,...,e_t\rangle,\ S=\langle f_{s+1},...,f_n\rangle,\ dim T=t,\ dim S=n-s.$ Per Grassman: $dim(S\cap T)=dim(S)+dim(T)-dim(S+T)\geq dim(S)+dim(T)-n=n-s+t-n=-s+t\\ t>s\Rightarrow dim(S\cap T)>0$ prendendo $v\in S\cap T,\ v=\sum_{i=1}^t a_ie_i=\sum_{j=s+1}^n b_jf_j\Rightarrow b(v,v)=\sum_{i=1}^t a_i^2=\sum_{j=s+1}^n b_j^2$ essendo $\sum_{j=s+1}^n b_j^2\neq 1$ e $\sum_{i=1}^t a_i^2=1$ si ricava una contraddizione

supponendo s>t si giungerà alla stessa conclusione

indice di positività l'indice di positività è dato dal numero di 1 in una rappresentazione diagonale matriciale

indice di negatività l'indice di negatività è dato dal numero di -1 in una rappresentazione diagonale matriciale

osservazione indice positività + indice negatività = rk(b)

segnatura la segnatura di una forma bilineare b è data da (indice di positività, indice di negatività)

1.4 prodotto scalare

sia V uno spazio vettoriale su $\mathbb R$ chiameremo **prodotto scalare** su V una funzione

$$\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$$

che soddisfi $\forall x, y, z \in V, \ \forall \lambda \in \mathbb{R}$:

- \bullet $\langle x, x \rangle \ge 0, \langle x, x \rangle = 0 \Leftrightarrow x = 0$
- \bullet $\langle x, y \rangle = \langle y, x \rangle$
- \bullet < x + y, z > = < x, z > + < y, z >
- \bullet $< \lambda x, y >= \lambda < x, y >$

²libro geometria pag 224

proposizione sia $\underline{:}V \times V \to \mathbb{R}$ una forma bilineare simmetrica, A la matrice associata a b in una base qualunque

$$b$$
 è definita positiva \Leftrightarrow tutti i suoi minori principali $D_1, ... D_n$ sono positivi (1.6)

vettori perpendicolari $v \perp w \Leftrightarrow < v, w >= 0$

norma
$$||v|| = \sqrt{\langle v, v \rangle}$$

teorema di pitagora sia
$$V = \mathbb{R}^2, \ < x, y > = \sum_{i=1}^n x_i y_i, \ < x, y > = 0 \Rightarrow ||x + y||^2 = ||x||^2 + ||y||^2$$

angolo dato V spazio vettoriale dotato di < · , · > possiamo introdurre l'angolo θ compreso tra due vettori non nulli:

$$\cos \theta = \frac{\langle x, y \rangle}{||x|| ||y||} \cos 0 \le \theta \le \pi$$
 (1.7)

1.4.1 disuguaglianza Cauchy-Shcwartz

sia V \mathbb{R} -spazio vettoriale, $x,y\in V$ allora:

- $| < x, y > | \le ||x|| ||y||$
- $||x|| ||y|| = \langle x, y \rangle \Leftrightarrow x = \lambda y, \ \lambda \in \mathbb{R}$

dimostrazione:

caso x=0 oppure y=0 (banali); supponiamo $x \neq 0, \ \lambda \in \mathbb{R}$, segue: $0 \leq <\lambda x - y \ , \ \lambda x - y > = \ \lambda^2 < x, x > -2\lambda < x, y > + < y, y > = \ \lambda^2 ||x||^2 - 2\lambda < x, y > + ||y||^2 \Rightarrow < x, y >^2 - ||x||^2 ||y||^2 \leq 0$ $\Rightarrow < x, y >^2 \leq ||x||^2 ||y||^2$ $\Rightarrow |< x, y > | \leq ||x|| \ ||y||$

osservazione sia V \mathbb{R} -spazio vettoriale, $<\cdot$, $\cdot>$ il prodotto scalare, $\{v_1,...,v_n\}$ un insieme di vettori ortogonali non nulli allora:

 $\{v_1, ..., v_n\}$ sono linearmente indipendenti

dimostrazione:

se
$$a_1v_1 + ... + a_rv_r = 0 \implies 0 = \langle a_1v_1 + ... + a_rv_r, v_i \rangle \forall i \implies a_i \langle v_i, v_i \rangle = 0 \implies a_i = 0 \forall i$$

Teorema di ortonormalizzazione di Gram. Schmidt

sia V \mathbb{R} -spazio vettoriale, $\{v_1,...,v_r\} \in V$ una successione di vettori $\Rightarrow \exists$ una successione $\{w_1,...,w_r,...\} \in V$ di vettori t.c. $\forall r \geq 1$

- 1. $\langle v_1, ..., v_r \rangle = \langle w_1, ..., w_r \rangle$
- 2. $\langle w_1, ..., w_r \rangle$ sono ortogonali

dimostrazione: si procede per induzione su r:

passo base (r=1): scelgo $w_1 = v_1$

passo induttivo: supponiamo il teorema vero per r-1, definiamo:

$$w_r \doteq v_r - \frac{\langle v_r, w_1 \rangle}{\langle w_1, w_1 \rangle} w_1 - \dots - \frac{\langle v_r, w_{r-1} \rangle}{\langle w_{r-1}, w_{r-1} \rangle} w_{r-1}$$
(1.8)

abbiamo quindi $w_r \perp w_i \ \forall i < r \Rightarrow (2)$ vero

inoltre v_r è combinazione lineare dei w_i e w_r combinazione lineare di v_i \Rightarrow doppia inclusione \Rightarrow (1) vero

esempio esercizio $v_1 = (1,2), v_2 = (3,1), \text{ in } \mathbb{R}^2 < \cdot, \cdot > \text{prodotto scalare standard}$

$$w_1 = v_1 = (1, 2), w_2 = v_2 - \frac{\langle v_2, w_1 \rangle}{\langle w_1, w_1 \rangle} w_1 = (2, -1)$$

base ortonormale sia $\{e_1, ..., e_n\}$ una base ortonormale

$$\langle e_i, e_j \rangle = \delta_{ij} = \begin{cases} 1 & \text{se } i = j \\ 0 & \text{se } i \neq j \end{cases}$$
, dove δ_{ij} è detto simbolo di Kronecker

normalizzazione per normalizzare un vettore e_i

$$e_i = \frac{1}{||e_i||} e_i \tag{1.9}$$

proposizione siano $\{e_1,...,e_n\} = \beta$, $\{f_1,...,f_n\} = \beta'$ due basi ortonormali, $M = M_{\beta\beta'} \Rightarrow$

- 1. $M_{\beta\beta'}$ è una matrice ortogonale
- 2. ${}^{t}MM = I, M_{\beta'\beta} = {}^{t}M_{\beta\beta'}$

dimostrazione:

$$M_{\beta\beta'} = a_{ij}$$
 definita: $f_j = \sum_{i=1}^n a_{ij} e_i$
 $\delta_{ij} = \langle f_i, f_j \rangle = \langle \sum_{h=1}^n a_{ih} e_h, \sum_{k=1}^n a_{jk} e_k \rangle = \sum_{h=1}^n a_{ih} a_{jh} = ({}^t M_{\beta\beta'} M_{\beta\beta'})_{ij}$

proposizione 3 sia V \mathbb{R} -spazio vettoriale, $<\cdot$, $\cdot>$, dimV=n, $W\triangleleft V$ sottospazio vettoriale \Rightarrow

- 1. $V = W \bigoplus W^{\perp}$
- 2. se $v = w + w^{\perp}$, $w \in W$, $w^{\perp} \in W \Rightarrow ||v||^2 = ||w||^2 + ||w^{\perp}||^2$

1.5 spazi affini

⁴ sia V un K-spazio vettoriale, uno **spazio affine** su V è un insieme $\mathbb{A} \neq \emptyset$ t.c. data un'applicazione $\mathbb{A} \times \mathbb{A} \rightarrow V$ che invia $(P,Q) \rightarrow \overline{PQ}$ essa soddisfi due proprietà:

- 1. $\forall P \in \mathbb{A}, \forall v \in V \exists ! Q \mid \overline{PQ} = v$
- 2. $\forall P, Q, R \in \mathbb{A} \ \overline{PQ} + \overline{QR} = \overline{PR}$

dimensione di uno spazio affine sia $\mathbb A$ uno spazio affine su $\mathbb V$ definiamo $dim(\mathbb A) \doteq dim(\mathbb V)$

sistema di riferimento sia \mathbb{A} uno spazio affine su V, un sistema di riferimento su \mathbb{A} è dato da un punto $0 \in \mathbb{A}$ e da una base $\{e_1, ..., e_n\}$ per V

coordinate dato un sistema di riferimento $\forall P \in \mathbb{A}$ consideriamo $\overline{OP} = a_1 e_1 + ... + a_n e_n$. $(a_1, ..., a_n)$ sono le coordinate di P.

giacitura dato V un \mathbb{K} -spazio vettoriale, \mathbb{A} spazio affine su V, $W \subset V$ un sottospazio vettoriale. Un sottospazio affine passante per un punto Q di \mathbb{A} e parallelo a W è il sottoinsieme S definito:

$$S \doteq \{Q \in \mathbb{A} \mid \overline{PQ} \in W\}, \mathbf{W}$$
 è detto giacitura di S (1.10)

NB: la dimensione di S sarà uguale a qulla della sua giacitura (W)

iperpiano S (definito come sopra) è definito iperpiano se dim(S) = dim(W) = dim(V) - 1

direzione se la giacitura è bidimensionale essa prende il nome di direzione

sottospazi paralleli sia S passante per P con giacitura W, T passante per Q con giacitura U allora

$$S//T \Leftrightarrow W \triangleleft V \text{ oppure } U \triangleleft W$$
 (1.11)

³dimostrazione a pag 235

 $^{^4 {\}rm libro~pag~93}$

teorema sia $S \subset \mathbb{A}^n$ sottospazio affine, $P \in \mathbb{A}^n$ un punto allora:

$$\exists ! \ T \subseteq \mathbb{A}^n \text{ sottospazio affine passante per P t.c P}/S \land \dim(T) = \dim(S)$$
 (1.12)

rette in \mathbb{R}^3 due rette in \mathbb{R}^3 possono essere:

- \bullet sghembe \Leftrightarrow non sono complanari
- parallele o incidenti ⇔ sono complanari

teorema rette complanari siano $r_1 = \begin{cases} a_1x + b_1y + c_1z + d_1 = 0 \\ a_2x + b_2y + c_2z + d_2 = 0 \end{cases}$, $r_2 = \begin{cases} a_3x + b_3y + c_3z + d_3 = 0 \\ a_4x + b_4y + c_4z + d_4 = 0 \end{cases}$

$$r_1 \in r_2 \text{ sono complanari } \Leftrightarrow \det \begin{pmatrix} a_1 & b_1 & c_1 & d_1 \\ a_2 & b_2 & c_2 & d_2 \\ a_3 & b_3 & c_3 & d_3 \\ a_4 & b_4 & c_4 & d_4 \end{pmatrix} = 0$$
 (1.13)

intersezione di piani siano due piani in \mathbb{R}^3 , H_1 : $a_1x + b_1y + c_1z + d_1 = 0$, H_2 : $a_2x + b_2y + c_2z + d_2 = 0$

- $rk\begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{pmatrix} = 2 \Rightarrow i$ due piani si intersecano in una retta
- $rk\begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{pmatrix} = 1 \Rightarrow$ i due piani sono paralleli

intersezione piano e retta dato un piano H: ax+by+cz+d=0 e una retta $r=\begin{cases} a_1x+b_1y+c_1z+d_1=0\\ a_2x+b_2y+c_2z+d_2=0 \end{cases}$

$$\det \begin{pmatrix} a & b & c \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{pmatrix} \begin{cases} = 0 \Rightarrow H \text{ e } r \text{ sono paralleli} \\ \neq 0 \Rightarrow H \cap r \to \text{punto} \end{cases}$$
(1.14)

osservazione vettore parallelo se un vettore (v) è parallelo ad un iperpiano allorà v è soluzione dell'omogenea associata a quell'iperpiano.

giaciture ortogonali due giaciture $U, W \triangleleft V$ sono ortogonali se:

$$U \subset W^{\perp}$$
, oppure $W \subset U^{\perp}$ (1.15)

1.5.1 spazio euclideo

sia V un \mathbb{R} -spazio vettoriale, \mathbb{A}^n spazio affine su $V, <\cdot, \cdot>$ prodotto scalare su V, allora:

 \mathbb{A}^n si chiama spazio euclideo e si denota \mathbb{E}^n

sistema di riferimento euclideo un sistema di riferimento euclideo è un sistema di riferimento affine $(0, \{e_1, ...; e_n\})$ dove $\{e_1, ..., e_n\}$ è una base ortonormale

distanza siano $P,Q \in \mathbb{E}^n$ definisco la distanza tra P e Q come:

$$d(P,Q) \doteq ||\overline{PQ}|| = \sqrt{\langle \overline{PQ}, \overline{PQ} \rangle}$$
 (1.16)

distanza tra un iperpiano ed un punto sia \mathbb{R}^n uno spazio euclideo, $H: a_1x_1+...+a_nx_n+b$ un iperpiano, $P=(p_1,...,p_n)$ un punto, $<\overline{PN},v>=0, v=\frac{1}{\sqrt{a_1^2+...+a_n^2}}(a_1,...,a_n)$ (direzione di r)

$$\Rightarrow d(P,H) = d(P,N) = ||(\overline{PN})|| = | < \overline{PQ}, v > |, \ Q \in H$$

$$\Rightarrow d(P,H) \doteq \frac{1}{\sqrt{a_1^2 + \dots + a_n^2}} |a_1 p_1 + \dots + a_n p_n + b|$$
 (1.17)

lemma date r_1, r_2 due rette sghembe, $\exists !$ retta t che incontra perpendicorlarmente sia r_1 che r_2 dimostrazione:

$$\begin{aligned} & \text{siano } v_1, v_2 \text{ direzioni di } r_1, r_2, \, N_1 \in r_1, \, N_2 \in r_2 \, t.c. \, < \overline{N_1 N_2}, v_1 > = < \overline{N_1 N_2}, v_2 > = 0 \\ & \left\{ \begin{array}{l} \overline{OQ_1} + t_1 v_1 = \overline{ON_1} \\ \overline{OQ_2} + t_2 v_2 = \overline{ON_2} \end{array} \right. \Rightarrow \overline{N_1 N_2} = \overline{Q_1 Q_2} + t_2 v_2 - t_1 v_1 \\ & \left\{ \begin{array}{l} < \overline{Q_1 Q_2} + t_2 v_2 - t_1 v_1, v_1 > = 0 \\ < \overline{Q_1 Q_2} + t_2 v_2 - t_1 v_1, v_2 > = 0 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} < \overline{Q_1 Q_2}, v_1 > + t_2 < v_2, v_1 > -t_1 < v_1, v_1 > = 0 \\ < \overline{Q_1 Q_2}, v_2 > + t_2 < v_2, v_2 > -t_1 < v_1, v_2 > = 0 \end{array} \right. \\ & \text{sistema con due incognite } t_1, t_2 \\ & \left| \begin{array}{l} - < v_1, v_1 > < v_2, v_1 > \\ - < v_1, v_2 > < v_2, v_2 > \end{array} \right. \right. \\ & \left. \left. \left| \begin{array}{l} - < v_1, v_1 > < v_2, v_2 > -(v_1, v_2) < v_2 < v_2 > -(v_1, v_2) < v_2 < v_2 < v_2 < -(v_1, v_2) < v_2 < v_2 < v_2 < -(v_1, v_2) < v_2 < v_2 < -(v_1, v_2) < v_2 < v_2 < v_2 < -(v_1, v_2) < v_2 < -(v_1, v_2) < v_2 < v_2 < -(v_1, v_2) < v_2 < -(v_1, v_2) < v_2 < v_2 < v_2 < -(v_1, v_2) < v_2 < v_2 < v_2 < v_2 < -(v_1, v_2) < v_2 < v_2$$

distanza tra due rette siano r_1, r_2 due rette passanti rispettivamente per Q_1, Q_2 e aventi direzione v_1, v_2

$$d(r_1, r_2) = \frac{1}{||v_1 \wedge v_2||} | \langle v_1 \wedge v_2, \overline{Q_1 Q_2} \rangle |$$
(1.18)

dimostrazione:

sia
$$b = \frac{v_1 \wedge v_2}{||v_1 \wedge v_2||}$$
 (versore ortogonale ad r_1 e r_2), $N_1 \in r_1$, $N_2 \in r_2$ $t.c.$ $\langle \overline{N_1 N_2}, v_1 \rangle = \langle \overline{N_1 N_2}, v_2 \rangle = 0 \Rightarrow d(r_1, r_2) = d(N_1, N_2) = ||\overline{N_1 N_2}|| = |\langle b, \overline{Q_1 N_1} \rangle| = |\langle b, \overline{N_1 Q_2} \rangle + \langle b, \overline{Q_1 N_1} \rangle| = |\langle b, \overline{N} \rangle //\text{rivedo dalibro}//$

affinità $f: \mathbb{A}^n \to \mathbb{A}^n$ si dice affinità \Leftrightarrow

- f è biettiva
- $\exists \varphi : V \to V$ lineare e biettiva (**isomorfismo**) t.c. $\forall P, Q \in \mathbb{A}^n \ \overline{f(P)f(Q)} = \varphi(\overline{PQ})$

esempio: se definiamo $Q = t_v(P)$ nel primo assioma di spazio affine, questa funzione sarà una affinità NB: un'affinità di \mathbb{A} è un'isomorfismo di \mathbb{A} su se stesso

definizioni sia $T:V\to V$ lineare, V un \mathbb{R} -spazio vettoriale con prodotto scalare

- T si dice simmetrica $\Leftrightarrow \langle T(v), w \rangle = \langle v, T(w) \rangle \ \forall v, w \in V$
- T si dice unitaria $\Leftrightarrow \langle T(v), T(w) \rangle = \langle v, w \rangle \ \forall v, w \in V$

proposizione $\beta = \{e_1, ..., e_n\}$ base ortonormale, $A = M_{\beta\beta}(T)$

- T simmetrica \Leftrightarrow A simmetrica
- $\bullet\,$ T unitaria \Leftrightarrow A unitaria \Leftrightarrow A orotgonale

ricordo: A simmetrica $\Leftrightarrow A^t = A$; A ortogonale $\Leftrightarrow A^t = A^{-1}$

1.5.2 teorema spettrale

sia $T: V \to V$ simmetrica, V con prodotto scalare, $\dim(V) = n \Rightarrow \exists$ una base di autovettori ortonormali

lemma $T: V \to V$ simmetrica ammette un autovalore $\lambda \in \mathbb{R}$

osservazione sia $A \in M_{n \times n}(\mathbb{R})$ simmetrica, per il teorema spettrale esiste una base di autovettori diagonalizzante e ortonormalizzante, esiste quindi $M \in M_{n \times n}(\mathbb{R})$ t.c. $M^{-1}AM$ è diagonale e ortonormale

proposizione sia $T: V \to V$ simmetrica, λ_1, λ_2 autovalori con rispettvi autovettori v_1, v_2 .

$$\lambda_1 \neq \lambda_2 \Rightarrow v_1, v_2 \text{ sono linearmente indipendenti}$$
 (1.19)

⁵pagina 196 sernesi

proposizione (2) sia $T: V \to V$, le seguenti affermazioni sono equivalenti

- T è unitaria
- T è lineare e $||T(v)|| = ||v|| \ \forall v \in V$
- $T(0) = 0e||T(v) T(w)|| = ||v w|| \ \forall v, w \in V$

isometria $f: \mathbb{E}^n \to \mathbb{E}^n$ si dice isometria se f è una affinità con isomorfismo associato $\phi: V \to V$ unitario

isometria (2) $f: \mathbb{E}^n \to \mathbb{E}^n$ è un isometria \Leftrightarrow preserva le distanze

$$d(f(P), f(Q)) = d(P, Q) \ \forall P, Q \in \mathbb{E}^n$$
(1.20)

definizione sia f un isometria con isomorfismo associato ϕ

- f si dice **diretta** $\Leftrightarrow det(\phi) = 1$
- f si dice **inversa** $\Leftrightarrow det(\phi) = -1$

rotazioni un'isometria f con isomorfismo associato ϕ si dice

$$rotazione \Leftrightarrow det(\phi) = 1$$
 (1.21)

traslazioni le traslazioni sono particolari isometrie dirette

congruenti sia $\mathbb E$ un piano euclideo, due figure geometriche $F,\,F'$ in $\mathbb E$ si dicono congruenti

$$\Leftrightarrow \exists f \in Isom(\mathbb{E}) \ t.c. \ f(F') = F \tag{1.22}$$

Chapter 2

Geometria proiettiva

2.1 introduzione

 1 sia V un \mathbb{K} -spazio vettoriale di dimensione finita. Lo spazio proiettivo associato a V è l'insieme P(V) i cui elementi sono sottospazio vettoriali di dimensione 1 di V

$$P(V) = \{ [v] \mid v \in V, \ v \neq 0 \}$$
 (2.1)

$$[v] = \{ w \in V \mid v = \lambda w, \ \lambda \in \mathbb{K} \}$$
 (2.2)

$$dim(P(V)) = dim(V) - 1 \tag{2.3}$$

osservazione se $V = \{0\}$ allora $P(V) = \emptyset$ e definiamo dim(P(V)) = -1

riferimento proiettivo sia P = P(V) e $\{e_0, ..., e_n\}$ una base di V. Diremo che $\{e_0, ..., e_n\}$ definisce in P una sistema di coordinate omogenee (riferimento proiettivo)

$$v = x_0 e_0 + \dots + x_n e_n \in V \setminus \{0\}$$
 (2.4)

gli scalari $x_0 \dots x_n$ si dicono coordinate omogenee del punto $P = [v] \in P$ rispetto al riferimento $e_0 \dots e_n$

sottospazio proiettivo sia W sottospazio di V allora $P(W) = \{[w]|W \neq 0, W \in W\}$ sarà sottospazio priettivo di P(V)

$$W \triangleleft V \Rightarrow P(W) \triangleleft P(V) \tag{2.5}$$

osservazione dim(P(W)) = dim(W) - 1

codimensione sia $P(W) \triangleleft P(V)$, chiamiamo codimensione di P(W) in P(V): dim[P(V)] - dim[P(W)]

classificazione sottospazi

- iperpiani: sottospazi di codimensione 1
- **piani**: sottospazi di codimensione n-2
- rette: sottospazi di codimensione n-1

lemma $^{2}\bigcap_{i\in I}P(W_{i})=P(\bigcap_{i\in I}W_{i})$

teorema intersezione sottospazi siano $P(W_1)$, $P(W_2)$ sottospazi proiettivi di $P(V) \Rightarrow$ l'intersezione $P(W_1) \cap P(W_2)$ sarà a sua volta sottospazio proiettivo di P(V)

$$P(W_1) \cap P(W_2) \triangleleft P(V) \tag{2.6}$$

 $^{^{1}}$ geometria 1 pag 302

²da questo lemma segue il teorema successivo

definizione sia $J \subset P(V)$ un sottospazio proiettivo, denotiamo L(J) l'intersezione di tutti i sottospazi proiettivi che contengono J

$$L(J) = \bigcap_{i \in I} S_i \mid J \subset S_i \tag{2.7}$$

proprietà

- L(J) è il più piccolo sottospazio proiettivo che contiene J
- $L(P(W) \cup P(U)) \doteq L(P(W), P(U)) = P(W + U)^{3}$
- siano $S_1 = P(W_1), S_2 = P(W_2)$ allora $L(S_1, S_2) = P(W_1 + W_2)$

formula di Grassman proiettiva siano S_1, S_2 sottospazi di P(V)

$$dim(L(S_1, S_2)) = dim(S_1) + dim(S_2) - dim(S_1 \cap S_2)$$
(2.8)

proiezione sia $H \subset P(V)$ un iperpiano, $P \in P(V) \setminus H$, chiameremo proiezione di P(V) su H di centro P l'applicazione

$$\pi_{P,H}: P(V) \setminus \{P\} \to H$$
 (2.9)

$$\pi_{P,H}(Q) = L(P,Q) \cap H \tag{2.10}$$

 $\pi_{P,H} \doteq$ applicazione che associa a un punto $Q \neq P$ il punto di intersezione fra H e la retta passante per P e Q

proposizione 4 sia P(V) uno spazio proiettivo, dim(P(V)) = r, $P_1 = [v_1], ..., P_r = [v_r] \in P(V)$

$$L(P_1, ..., P_r) = P(\langle v_1, ..., v_r \rangle)$$
(2.11)

linearmente indipendenti $P_1, ..., P_r$ si dicono linearmente indipendenti \Leftrightarrow

$$dim(L(P_1, ..., P_r)) = r - 1 (2.12)$$

proiezione generale 5 $S, T \in P(V)), dim(P(V)) = n, S, T$ si dicono in *posizione generale* se si verifica una di queste due affermazioni:

- $dim(S \cap T) > n \land dim(S \cap T) = dim(S) + dim(T) n$
- $dim(S) + dim(T) < n \land S \cap T = \emptyset$

quando l'intersezione di due sottospazi proiettivi ha la dimensione più piccola possibile (compatibilmente con la formula di Grassman proiettiva), essi si dicono in posizione generale

proiettività sia $f: P(V) \to P(V)$ è una proiettività \Leftrightarrow

- f è biettiva
- $\exists \varphi : V \to V$ isomorfismo lineare t.c. $\forall P = [v] \in P(V)$ $f(P) = [\varphi(v)]$

punto fisso sia f una proiettività un punto P si dice fisso per $f \Leftrightarrow f(P) = P$

osservazione i punti fissi sono deterinati dagli autovalori della matrice associata alla proiettività

- ad ogni λ_i con $m_i = 1$ corrisponde un punto fisso
- ad ogni λ_i con $m_i=2$ corrisponde una retta di punto fissi
- ad ogni λ_i con $m_i = n$ corrisponde uno spazio di dimensione (n-1) di punti fissi

 $^{^3}$ dimostrazione a pagina 307

⁴pagina 307 [24.9]

⁵pagina 308-309

teorema A ⁶ dati due insiemi di n+2 punti in posizione generale $\{P_0,...,P_{n+1}\},\{Q_0,...,Q_{n+1}\}$

$$\exists!$$
 proiettività $f: \mathbb{P}^n \to \mathbb{P}^n \ t.c. \ f(P_i) = Q_i \forall i \in \{0, ..., n+1\}$ (2.13)

teorema B sia S un sottospazio proiettivo di dimensione s e $f: \mathbb{P} \to \mathbb{P}$ una proiettività \Rightarrow

$$f(S)$$
 è un sottospazio proiettivo di dimensione s (2.14)

inoltre per ogni coppia di sottospazi proiettivi S, S' aventi dimensione s \exists una proiettività $f: \mathbb{P}^n \to \mathbb{P}^n$ t.c. f(S) = S'

teorema di Desargues 7 sia $\mathbb{P}(V)$ un piano proiettivo e siano $P_1,...,P_6 \in \mathbb{P}(V)$ punti distinti tali che le rette $L(P_1,P_4),L(P_2,P_5),L(P_3,P_6)$ abbiano in comune un punto P_0 diverso da $P_1,...,P_6 \Rightarrow$ i seguenti punti sono allineati:

$$L(P_1, P_3) \cap L(P_4, P_6)$$
 $L(P_2, P_3) \cap L(P_5, P_6)$ $L(P_1, P_2) \cap L(P_4, P_5)$ (2.15)

proposizione sia $\mathbb{P}^2(\mathbb{K})$ con coorinate standard $[x_0, x_1, x_2], r_0 : x_0 = 0$

$$\mathbb{P}^2(\mathbb{K}) = \mathbb{A}^2(\mathbb{K}) + r_0 \tag{2.16}$$

corollario $P \in r_0 \Rightarrow P$ è detto punto improprio

 $^{^6 \\} lezione \ 13.04.2021$

⁷pagina 335, figura a pagina 336

Chapter 3

Curve algebriche piane

3.1 introduzione

nota due polinomi $f, g \in K[x_1, ..., x_n \text{ si dicono equivalenti } \Leftrightarrow \exists \lambda \in K \setminus \{0\} \text{ t.c. } f = \lambda g$

curva algebrica di $A^2(K)$ una curva algebrica di $A^2(K)$ è una classe di proporzionalità di polinomi non costanti di K[X,Y], se f(X,Y) è un rappresentante della curva l'equazione

$$f(X,Y) = 0$$
 è detta equazione della curva (3.1)

il sottoinsieme $\xi \subset A^2(K)$ costituito dai punti le cui cordinate soddisfano la (3.1) è detto **supporto della curva**, il gradi della curva è definito come il grado di f(X,Y)

curva algebirca di $P^2(K)$ ¹ una curva algebrica di $P^2(K)$ è una classe di proporzionalità di polinomi omogenei di $K[X_0, X_1, X_2]$. Se $F(X_0, X_1, X_2)$ è un rappresentante della curva

$$F(X_0, X_1, X_2) = 0$$
 è detta equazione della curva (3.2)

il sottoinsieme $\zeta \subset P^2(K)$ costituito da punti le cui coordinate soddisfano la (3.2) si dice **supporto della** curva (Supp(C)), il grado di F si dice **grado della curva** $(\delta\zeta = \delta F)$

osservazione curve diverse possono avere lo stesso supporto

affinemente equivalenti 2 sia C una curva di $\mathbb{A}^2(K)$ una curva D si dice affinemente equivalente a $C \Leftrightarrow$

$$\exists T \text{ (affinità) t.c. } C = T(D)$$
 (3.3)

in questo caso D è detta **trasformata** di C e si scrive $T^{-1}(C) = D \vee T(D) = C$

proiettivamente equivalenti sia $T: \mathbb{P}^2_k \to \mathbb{T}^2_k$ una proiettività, $C = [F(x_0, x_1, x_2)]$ la curva $D = [F \circ T]$ è una curva proiettiva t.c. $T(D) = C \Rightarrow$

 ${\cal C}$ e ${\cal D}$ sono proiettivamente equivalenti

proposizione ogni retta affine (o proiettiva) è affinemente (o proiettivamente) equivalente alla retta r:[x]

gruppo generale lineare l'insieme $GL_n(\mathbb{K})$ è il gruppo di matrici invertibili $n \times n$ in un campo \mathbb{K}

3.2 classificazione delle quadriche proiettive

consideriamo in \mathbb{P}^2_k una curva algebrica piana C=[F] di grado 2. F è una forma quadratica e si può quindi rappresentare come

$$F(x_0, x_1, x_2) = (x_0, x_1, x_2) A \begin{pmatrix} x_0 \\ x_1 \\ x_2 \end{pmatrix}, A \in M_{3 \times 3} \ (simmetrica)$$
 (3.4)

¹pagina 357

 $^{^2}$ pagina 359

sia $T:\mathbb{P}^2_k \to \mathbb{P}^2_k$ una proiettività, $T[x_0,x_1,x_2]=M\begin{pmatrix} x_0\\x_1\\x_2 \end{pmatrix},\ M\in GL_3(\mathbb{R})\Rightarrow T(x_0,x_1,x_2)$

$$F \circ T(x_0, x_1, x_2) = {}^{t} \left(M \begin{pmatrix} x_0 \\ x_1 \\ x_2 \end{pmatrix} \right) AM \begin{pmatrix} x_0 \\ x_1 \\ x_2 \end{pmatrix} = (x_0, x_1, x_2)^{t} MAM \begin{pmatrix} x_0 \\ x_1 \\ x_2 \end{pmatrix}$$
(3.5)

l'equazione di una conica C di \mathbb{P}^2_k può scriversi nella forma

$$a_{11}X_1^2 + 2a_{12}X_1X_2 + a_{22}X_2^2 + 2a_{01}X_0X_1 + 2a_{02}X_0X_2 + a_{00}X_0^2 = 0$$
(3.6)

ponendo $a_{21}=a_{12},\ a_{10}=a_{01},\ a_{20}=a_{02}$ otteniamo la matrice simmetrica

$$A = \begin{pmatrix} a_{00} & a_{01} & a_{02} \\ a_{10} & a_{11} & a_{12} \\ a_{20} & a_{21} & a_{22} \end{pmatrix}$$

$$(3.7)$$

definiamo inoltre

$$A_0 = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \tag{3.8}$$

osservazione A matrice associata a F $\Rightarrow^t MAM$ matrice associata a $F \circ T \wedge rk(A) = rk(^tMAM)$

forma degenere

- $det(A) \neq 0 \ (rk(A) = 3) \Rightarrow$ la conica C è **non degenere**
- $rk(A) = 2 \Rightarrow$ la conica C è degenere
- $rk(A) = 1 \Rightarrow$ la conica C è doppiamente degenere

teorema supponendo $\mathbb{K}=\mathbb{R}$ ogni conica C di $\mathbb{P}^2_{\mathbb{K}}$ è proiettivamente equivalente ad una delle seguenti:

•
$$x_0^2 + x_1^2 - x_2^2 = 0$$

C è non degenere (generale)

•
$$x_0^2 + x_1^2 + x_2^2 = 0$$

 ${\cal C}$ è non degenere (generale) a punti non reali

$$\oint \begin{cases} x_0^2 - x_1^2 = 0 \\ x_0^2 + x_1^2 = 0 \end{cases}$$

 ${\cal C}$ è semplicemente degenere

•
$$x_0^2 = 0$$

C è doppiamente degenere

se \mathbb{K} algebricamente chiuso C proiettivamente equivalente a:

•
$$x_0^2 + x_1^2 + x_2^2 = 0$$

C è non degenere (generale)

•
$$x_0^2 + x_1^2 = 0$$

 ${\cal C}$ è semplicemente degenere

•
$$x_0^2 = 0$$

C è doppiamente degenere

queste coniche sono a due a due non proiettivamente equivalenti

ipersuperficie \Im in \mathbb{P}^n_k è data da $\Im = [F]$ con F omogeneo

teorema A ogni iperpiano di \mathbb{P}_k^n è proiettivamente equivalente a $H_0: x_0 = 0$

teorema B una superficie quadrica di \mathbb{P}^n_k è proiettivamente equivalente a

•
$$x_0^2 + x_1^2 + ... + x_r^2$$

$$0 \le r \le n, K = \mathbb{C}$$

•
$$x_0^2 + \dots + x_p^2 - x_{p+1}^2 - \dots - x_r^2$$

$$0$$

classificazione quadratiche affini 3.3

chiusura proiettiva e traccia affine sia C = [f] una curva piana affine, sia $F(x_0, x_1, x_2) = x_0^2 f(\frac{x_1}{x_0}, 1\frac{x_2}{x_0}) \Rightarrow$ $\overline{C} = [F]$ è la chiusura proiettiva di C e

$$\overline{C} = C \cup \begin{cases} F(x_0, x_1, x_2) = 0\\ x_0 = 0 \ (punti \ all' \ \infty) \end{cases}$$
(3.9)

viceversa sia $\overline{C} = [F]$ m prendiamo $f(x, y) = F(1, x, y) \Rightarrow$

$$C = [f]$$
 è la traccia affine di \overline{C}

definizione sia K algebricamente chiuso, C una quadrica in \mathbb{A}^2_K si dice

- non degenere $\Leftrightarrow rk(A) = 3$
- (semplicemente) degenere $\Leftrightarrow rk(A) = 2$
- (doppiamente) degenere $\Leftrightarrow rk(A) = 1$
- conica a centro $\Leftrightarrow det(A_0) \neq 0$
- parabola $\Leftrightarrow det(A_0) = 0$

se invece $K=\mathbb{R}$ (non algebricamente chiuso), anche il segno del determinante di A_0 va tenuto in considerazione:

- C è una ellisse $\Leftrightarrow det(A_0) > 0$
- C è una iperbole $\Leftrightarrow det(A_0) < 0$
- C è una parabola $\Leftrightarrow det(A_0) = 0$

traccia la traccia di una matrice A è data dalla somma degli elementi lungo la sua diagonale

$$tr(A) = \sum_{i=0} a_{ii}$$
 (3.10)

punti reali una conica è definita a punti

- reali $\Leftrightarrow tr(A_0) \cdot det(A) < 0$
- non reali $\Leftrightarrow tr(A_0) \cdot det(A) > 0$

teorema 3 sia $C=[f]\subset A^2(K)$ una curva algebrica piana di grado 2 allora è affinemente equivalente ad una delle seguenti

- 1. K algebricamente chiuso $(K = \mathbb{C})$
 - $X^2 + Y^2 1 = 0$

conica a centro

• $X^2 + Y^2 = 0$

conica a centro degenere parabola

• $Y^2 - X = 0$

parabola degenere

• $Y^2 - 1 = 0$

• $Y^2 = 0$

conica doppiamente degenere

 $2. \ K = \mathbb{R}$

• $X^2 + Y^2 - 1 = 0$

ellisse

• $X^2 + Y^2 + 1 = 0$

ellisse a punti non reali

• $X^2 + Y^2 = 0$

ellisse degenere

• $X^2 - Y^2 - 1 = 0$

iperbole

• $X^2 - Y^2 = 0$

iperbole degenere

³pagina 379

• $Y^2 - X = 0$ parabola

$$\bullet \begin{cases}
Y^2 - 1 = 0 \\
Y^2 + 1 = 0
\end{cases}$$

conica doppiamente degenere

parabole degeneri

• $Y^2 = 0$

le coniche di questi gruppi sono a due a due non affinemente equivalenti

3.3.1 alcuni concetti algebrici

sia D[x] anello dei polinomi a coefficenti in D un dominio a fattorizzazione unica siano $f=a_0+a_1x+\cdots+a_nx^n,\ a_n\neq 0,\ g=b_0+b_1x+\cdots+b_mx^m,\ b_n\neq 0,\ f,g\in D[x]$

lemma f e g hanno un fattore comune non costante $\Leftrightarrow \exists \varphi, \psi \in D[x]$ non nulli con $\delta \varphi < n \wedge \delta \psi < m \ t.c. \ \psi f = \varphi g$

risultante ⁴ definiamo risultante di f,g il determinante della matrice $M_{(m+n)\times(m+n)}$

teorema f e g hanno un fattore in comune $\Leftrightarrow R = 0$

teorema sia $R(x_1, \ldots, x_{r-1})$ il risultante di f, g ristretto rispetto a $x_r \Rightarrow$

"
$$R(x_1, \ldots, x_{r-1})$$
 è un polinomio omogeneo di grado m " $\forall R(f, g) = 0$ (3.12)

proposizione sia $K = \mathbb{C}$ (algebricamente chiuso), $F(x_0, x_1)$ polinomio omogeneo di grado $n \Rightarrow \exists n$ coppie $(a_i, b_i) \in \mathbb{C}^2$, $i \in [1, n]$ diverse da (0, 0) t.c. $F(x_0, x_1) = (a_1x_1 - b_1x_0) \cdots (a_nx_1 - b_nx_0)$

3.3.2 intersezione di curve algebriche piane

⁵ sia C = [f] una curva algebrica piana affine (proiettiva) in \mathbb{C}^2 ($\mathbb{P}^2_{\mathbb{C}}$)

irriducibile C si dice irriducibile $\Leftrightarrow f(x_0, x_1)$ è irriducibile

componenti irriducibili se $f = f_1 \cdots f_r$ scomposizione di f in irriducibili le curve $C_i = [f_i]$ si diranno componenti irriducibili di C, inoltre vale $C = C_1 + \cdots + C_r$

teorema di Bezout (base) siano C = [F], D = [G] due curve algebriche in $\mathbb{P}^2_{\mathbb{C}}$, $\delta C = n$, $\delta D = m$ se hanno più_(>) di mn punti in comune \Rightarrow hanno una componente in comune \Rightarrow hanno infiniti punti in comune NB: il teorema di Bezout vale anche nel piano affine

proposizione sia C = [F], r una retta passante per i punti $P \neq Q \in \mathbb{P}^2_{\mathbb{C}}$, un punto $\lambda P + \mu Q$, $\lambda, \mu \in \mathbb{C}$

$$F(\lambda P + \mu Q) \doteq F(\lambda, \mu) = 0 \Leftrightarrow F(\lambda, \mu)$$
 è un polinomio omogeneo in λ, μ (3.13)

⁴pagina 458

⁵capitolo 33 pagina 399

molteplicità di intersezione sia $P_0 = \lambda_0 P + \mu_0 Q$ un punto sulla retta r, denotiamo $I(C, r; P_0)$ la molteplicità di (λ_0, μ_0) come radice di $F(\lambda, \mu)$

$$I(C, r, ; P_0) = \begin{cases} 0 & \text{se } P_0 \notin C \\ \infty & \text{se } r \subset C \text{ (è una sua componente)} \\ m \mid 0 < m \le n \text{ altrimenti} \end{cases}$$

$$(3.14)$$

r e C hanno molteplicità d'intersezione $m=I(C,r,;P_0)$ nel punto $P_0=\lambda_0 P+\mu_0 Q\in r$ se (λ_0,μ_0) è una radice di molteplicità m del polinomio $F(\lambda P+\mu Q)$

proprietà siano C, D due curve algebriche, T una proiettività (o affinità)

$$I(C, r; P_0) + I(D, r; P_0) = I(C + D, r; P_0)$$
(3.15)

$$I(C, r; P_0) = I(T(C), T(r); T(P_0))$$
(3.16)

teorema di Bezout (retta) ⁶ siano $C = [f] \subset \mathbb{P}^2_{\mathbb{C}}$ una curva algebrica di grado $n, r \not\subset C$ una retta che non è una sua componente, allora

$$\sum_{P_0 \in r} I(C, r; P_0) = n \tag{3.17}$$

teorema du Bezout (completo) siano C, D due curve algebriche in $\mathbb{P}^2_{\mathbb{C}}$ di grado m, n, se non hanno componenti in comune

$$\sum_{P \in \mathbb{P}^2} I(C, D; P) = m \cdot n \tag{3.18}$$

teorema (caso affine) sia C = [f] una curva algebrica, r una retta in \mathbb{C}^2

$$\sum_{P \in r} I(C, r; P) \le \delta f = n \tag{3.19}$$

NB: $\sum_{P \in r} I(C,r;P) = \delta f \Leftrightarrow$ il punto all'infinito di rnon è un punto all'infinito di C

molteplicità 7 sia C una curva algebrica (o proiettiva) e sia P un punto. La molteplicità $m_{P}(C)$ di C in P è definita

$$m_P(C) = \min_{P \in r} I(C, r; P) \tag{3.20}$$

al variare di r tra tutte le rette del fascio di centro P, poichè esistono rette contenenti P non contenute in C

$$0 \le m_P(C) \le \delta C \text{ (grado di } C)$$
 (3.21)

definizioni

- $m_P(C) = 1 \Rightarrow P$ è definito **punto semplice** (o non singolare, liscio) di C
- $m_P(C) > 1 \Rightarrow P$ è definito **punto singolare** (o multiplo) di C, diremo che un punto è m-uplo di C se $m_P(C) = m$
- una curva C si dice **non singolare** se tutti i suoi punti sono punti semplici

proposizione (uguale nel caso proiettivo) sia $C \subset \mathbb{A}^2$ la curva di equazione $f(X,Y) = 0, P \in \mathbb{A}^2$

$$P$$
 è semplice per $C \Leftrightarrow$ almeno una derivata parziale di $f(X,Y)$ è diversa da 0 in P (3.22)

$$P$$
 è singolare per $C \Leftrightarrow f(X,Y)$ ha entrambe le derivate parziali uguali a 0 in P (3.23)

proposizione

una quadrica è singolare \Leftrightarrow è degenere

⁶pagina 404

 $^{^7}$ capitolo 34 pagina 408

proposizione (uguale nel caso proiettivo) sia $C \subseteq \mathbb{A}^2$ la curva di equazione f(X,Y) = 0, un punto $P \in C$ ha molteplicità m per $C \Leftrightarrow$ si annullano in P tutte le derivate parziali di f fino all'ordine m-1 e almeno una dellle derivate di ordine m non si annulla

proposizione sia un punto $P \in C = [F] \subset \mathbb{P}^2_{\mathbb{C}}$

$$P \text{ è semplice} \Leftrightarrow (F_{x_0}(P), F_{x_1}(P), F_{x_2}(P)) \neq (0, 0, 0)$$
 (3.24)

NB: se P è semplice la retta $r: F_{x_0}(P)x_0 + F_{x_1}(P)x_1 + F_{x_2}(P)x_2 = 0$ è l'unica retta passante per P t.c. $I(C,r;P) > m_P(C) = 1$ ed è nominata retta tangente a C in P

tangente $\,$ sia C una curva algebrica e sia $P \in C$ un suo punto u

- sia P un punto semplice una retta r t.c. I(C, r; P) > 1 è detta **tangente** a C nel punto P
- una retta r t.c. $I(C,r;P) > m_P(C)$ è detta tangente principale a C in P

asintoto sia C una curva affine e sia $\overline{C} \subset \mathbb{P}^2$ la sua chiusura proiettiva. Una retta $r \subset \mathbb{A}^2$ la cui chiusura proiettiva è una tangente principale a \overline{C} in uno dei punti impropri di C si dice asintoto

proposizione sia $m = m_P(C)$, le tangenti principali nel punto $P = (p_1, p_2)$ sono le rette r il cui vettore direzione (L, M) soddisfa l'equazione

$$\sum_{k=0}^{m} {m \choose k} f_{X^{m-k}Y^k}(p_1, p_2) L^{m-k} M^k = 0$$
(3.25)

$$\binom{m}{k} = \frac{m!}{k!(m-k)!} \tag{3.26}$$

dalla 3.25 possiamo notare come il numero ξ di tangenti principali a C in P distinte è tale che

$$1 \le \xi \le m_P(C) \tag{3.27}$$

definizioni sia ξ il numero di tangenti principali

- se $\xi = m_P(C) \ge 2$, P si dice punto multiplo ordinario
- un punto doppio ordinario si dice nodo

in un punto doppio non ordinario P la curva C possiede un'unica tangente principale r ($\xi = 1$) la quale soddisfa $I(C, r; P) \ge 3$. P è definito:

- cuspide ordinaria $\Leftrightarrow I(C, r; P) = 3$
- tacnodo $\Leftrightarrow I(C, r; P) = 4$

flesso sia P un punto semplice, $P \in C$, τ la tangente in P

$$P$$
 è punto di flesso $\Leftrightarrow I(C, \tau; P) \ge 3$ (3.28)

un flesso si dice di **specie** $k(\geq 1) \Leftrightarrow I(C,\tau;P) = k+2$, un flesso di specie k=1 si dice **ordinario**

osservazione una retta r è una curva non singolare che coincide con la sua tangente \Rightarrow ogni suo punto è un punto di flesso, infatti

$$I(r, r; P) = \infty \,\forall P \in r \tag{3.29}$$

hessiana sia $C \subset \mathbb{P}^2$ una curva proiettiva di equazione $F(x_0, x_1, x_2) = 0$, di grado $n \geq 3$ definiamo hessiana di C la curva di equazione

$$H(X) = 0 (3.30)$$

dove H(X) è il determinante della matrice hessiana $H \in M_{3 \times 3}$

$$H(X) = det(H) = det \begin{pmatrix} F_{00}(X) & F_{01}(X) & F_{02}(X) \\ F_{10}(X) & F_{11}(X) & F_{12}(X) \\ F_{20}(X) & F_{21}(X) & F_{22}(X) \end{pmatrix}$$
(3.31)

NB: H(X) ha grado gr(H(X)) = 3(n-2)

 ${f proposizione}^{-8}$ i flessi di una curva proiettiva C sono i punti semplici che la curva ha in comune con la sua essiana

$$P \in C \text{ flesso} \Leftrightarrow P \text{ liscio } \land P \in H$$
 (3.32)

corollario una curva proiettiva di grado $n \geq 3$

- se non ha infiniti flessi, ha al più 3n(n-2)
- se è non singolare ha almeno 1 punto di flesso

3.4 cubiche

proposizione sia una cubica $C = [F] \subset \mathbb{P}^2_{\mathbb{C}}$, F omogenea, irriducibile

- $\delta C = 1 \Rightarrow C$ è proiettivamente equivalente a $[x_0]$
- $\delta C = 2 \Rightarrow C$ è proiettivamente equivalente a $[x_0^2 + x_1^2 + x_2^2]$
- (teorema di Newoton) $\delta C=3,\ C$ liscia $\Rightarrow C$ è proiettivamente equivalente ad una cubica con traccia affine

$$y^{2} = x(x-1)(x-c) \ c \in \mathbb{C} \setminus \{0,1\}$$
(3.33)

• $\delta C = 3$, C singolare $\Rightarrow C$ è proiettivamente equivalente a una cubica con traccia affine

a)
$$y^2 = x^2(x-1)$$
 (nodo nell'origine)
b) $y^2 = x^3$ (cuspide nell'origine)

corollario una cubica non singolare possiede esattamente 9 flessi, una retta passante per due di essi ne contiene un terzo

corollario ogni cubica irriducibile ha almeno un flesso

definizione sia $C: y^2 = x(x+1)(x-c), c \in \mathbb{C} \setminus \{0,1\}$

$$d(C) = \frac{(c^2 - c + 1)^3}{c^2(c - 1)^2}$$
(3.34)

proposizione sia $C: y^2 = x(x+1)(x-c), C': y^2 = x(x+1)(x-c'), c, c' \in \mathbb{C} \setminus \{0,1\}$

$$C, C'$$
 proiettivamente equivalenti $\Leftrightarrow d(C) = d(C')$ (3.35)

definizione 9 sia C una cubica non singolare, $A,B\in C$ due punti, definisco R(A,B) come l'intersezione della retta L(A,B) con C

$$R(A,B) = L(A,B) \cap C \tag{3.36}$$

definendo ora un'operazione $+: C \times C \to C$ t.c.

$$A + B = R(R(A, B), O) \tag{3.37}$$

otteniamo (C, +) gruppo abeliano con neutro O

⁸dimostrazione pagina 418

⁹pagina 436