A Co-Simulation Based Approach for Developing Safety-Critical Systems

Daniella Tola Peter Gorm Larsen

Aarhus University, Department of Engineering

7th December 2020 The 18th Overture Workshop

Agenda

- Background
- Development Process
- Demo
- Discussion & Conclusion

Background

Definitions:

- Safety-critical system
- Safety case

Motivation:

- Systems are becoming more complex
- Time-consuming
- Avoid large system re-designs

Background

Case Study

- Expensive to perform physical tests
- Uncontrollable environment
- Unethical tests

Background

Case Study

https://www.theguardian.com/world/2014/apr/25/german-drones-protect-young-deer-combine-harvesters ARNO

Development Process: Methodology

7th December 2020

Development Process: Safety Case

Phased Safety Case

Three main phases:

- Preliminary
- Interim
- Operational

Hazard Analysis

H1: Collision with object.

H2: Damage to unharvested crops.

H3: Fire ignition.

H4: Damage to harvesting machinery.

H5: Contamination of harvested crops.

Hazard Analysis - Fault Tree Analysis

The second secon

Risk Assessment

Identified Hazard	Hazard probabil- ity	Accident severity	Estimated risk	Acceptability
H1: Collision with object	Medium	High	High	Intolerable
H2: Damage to unharvested crops	Low	Medium	Medium	ALARP
H3: Fire ignition	Low	High	High	Intolerable
H4: Damage to harvesting machinery	Low	Medium	Medium	ALARP
H5: Contamination of harvested crops	Low	Medium	Medium	ALARP

Allen parlet manch

Goal Structuring Notation (GSN)

Formalizing Safety Goals

When to use co-simulation for producing evidence?

Hazard	H1	H3
Root causes	 software/hardware failure dense fog, heavy rain dust/materials on sensors 	 friction of knife in cutter bar oil or fuel leakage residue inside high temperature areas of machinery
	 swarm of insects blocking sensor view 	extreme wind, high temperatures, and low humidity

Scenario Construction

Hazardous event	Vehicle speed	Initial distance to
		obstacle
Dense fog	{1,2,3} [m/s]	>1 meter
Heavy rain	{1,2,3} [m/s]	>1 meter
Inaccurate sensor	{1,2,3} [m/s]	>1 meter

Identify Models

FMU	Tool
Controller	Overture
Vehicle	20-sim
Environment	PyFMU
Sensor	PyFMU
Supervisory Controller	PyFMU
Monitor	PyFMU

Modelling Scenarios

Sensor model

Sensor Model

Demo

Results

Discussion

When to use this technique?

Discussion

Practical Limitations

Conclusion and Future Work

Conclusion:

- Complex software and hardware interactions
- Visualize results

Future Work:

- Interim and Operational
- Amount of parameters per scenario
- Model validation
- Evaluate on other systems, e.g. medical devices

Acknowledgements

Thank you to Martin Peter Christensen from AGCO for the discussions about the challenges of an autonomous combine harvester.

And thank you to the anonymous reviewers of the paper for the detailed feedback.

AARHUS UNIVERSITY

