Lecture 11: Attention and Transformers

Administrative

Project proposal grades released.
 Check feedback on GradeScope!

Project milestone due May 7th Saturday 11:59pm PT
 Check Ed and course website for requirements

Last Time: Recurrent Neural Networks

Input: Sequence $x_1, \dots x_T$

Output: Sequence $y_1, ..., y_T$

Encoder: $h_t = f_W(x_t, h_{t-1})$

Input: Sequence $x_1, \dots x_T$

Output: Sequence $y_1, ..., y_{T'}$

From final hidden state predict:

Encoder: $h_t = f_W(x_t, h_{t-1})$ Initial decoder state s_0

Context vector c (often c=h_T)

Input: Sequence $x_1, \dots x_T$

Output: Sequence y₁, ..., y_T,

Decoder: $s_{t} = g_{U}(y_{t-1}, s_{t-1}, c)$

estamos

Sutskever et al, "Sequence to sequence learning with neural networks", NeurIPS 2014

Input: Sequence $x_1, \dots x_T$

Decoder: $s_{t} = g_{U}(y_{t-1}, s_{t-1}, c)$

comiendo

estamos

Output: Sequence $y_1, ..., y_{T'}$

From final hidden state predict: Initial decoder state s_o **Encoder:** $h_t = f_W(x_t, h_{t-1})$ Context vector c (often c=h_→) X_3 [START] eating bread estamos we are

Sutskever et al, "Sequence to sequence learning with neural networks", NeurIPS 2014

Sutskever et al, "Sequence to sequence learning with neural networks", NeurIPS 2014

Sutskever et al, "Sequence to sequence learning with neural networks", Temula 1000

Input: Sequence $x_1, ..., x_T$ **Output**: Sequence $y_1, ..., y_T$

Encoder: $h_t = f_W(x_t, h_{t-1})$ From final hidden state: Initial decoder state s_0

Compute (scalar) **alignment scores** $e_{t,i} = f_{att}(s_{t-1}, h_i)$ (f_{att} is an MLP)

Compute (scalar) **alignment scores** $e_{t,i} = f_{att}(s_{t-1}, h_i)$ (f_{att} is an MLP)

Normalize alignment scores to get **attention weights** $0 < a_{t,i} < 1$ $\sum_{i} a_{t,i} = 1$

Compute (scalar) **alignment scores** $e_{t,i} = f_{att}(s_{t-1}, h_i)$ (f_{att} is an MLP)

Normalize alignment scores to get **attention weights** $0 < a_{t,i} < 1$ $\sum_{i} a_{t,i} = 1$

Compute context vector as linear combination of hidden states

$$c_t = \sum_i a_{t,i} h_i$$

Use context vector in decoder: $s_t = g_U(y_{t-1}, s_{t-1}, c_t)$

This is all differentiable! No supervision on attention weights – backprop through everything

Use a different context vector in each timestep of decoder

Input sequence not bottlenecked through single vector

Example: English to French translation

Input: "The agreement on the European Economic Area was signed in August 1992."

Output: "L'accord sur la zone économique européenne a été signé en août 1992."

Visualize attention weights a_{t,i}

Example: English to French translation

Input: "The agreement on the European Economic Area was signed in August 1992."

Output: "L'accord sur la zone économique européenne a été signé en août 1992."

Diagonal attention means words correspond in order

Diagonal attention means words correspond in order

Visualize attention weights a, accord sur la zone économique européenne été signé en août 1992 <end>

Example: English to French translation

Input: "The agreement on the European Economic Area was signed in August 1992."

Output: "L'accord sur la zone économique européenne a été signé en août 1992."

Diagonal attention means accord words correspond in order sur la zone **Attention figures out** économique different word orders européenne été signé en août **Diagonal attention means** 1992 words correspond in order <end>

Bahdanau et al, "Neural machine translation by jointly learning to align and translate", ICLR 2015

Visualize attention weights a,

The decoder doesn't use the fact that h_i form an ordered sequence – it just treats them as an unordered set {h_i}

Input: Image I

Output: Sequence $y = y_1, y_2, ..., y_T$

Extract spatial features from a pretrained CNN

Features: H x W x D

Input: Image I

Output: Sequence $y = y_1, y_2, ..., y_T$

Encoder: $h_0 = f_w(z)$

where **z** is spatial CNN features

fw(.) is an MLP

Input: Image I

Output: Sequence $y = y_1, y_2, ..., y_T$

Decoder: $y_t = g_v(y_{t-1}, h_{t-1}, c)$ where context vector c is often $c = h_0$

Xu et al, "Show, Attend and Tell: Neural Image Caption Generation with Visual Attention", ICML 2015

[START]

Input: Image I

Output: Sequence $y = y_1, y_2, ..., y_T$

Decoder: $y_t = g_v(y_{t-1}, h_{t-1}, c)$ where context vector c is often $c = h_0$

Input: Image I

Output: Sequence $y = y_1, y_2, ..., y_T$

Decoder: $y_t = g_v(y_{t-1}, h_{t-1}, c)$ where context vector c is often $c = h_0$

Input: Image I

Output: Sequence $y = y_1, y_2, ..., y_T$

Decoder: $y_t = g_{v}(y_{t-1}, h_{t-1}, c)$

where context vector c is often $c = h_0$

Problem: Input is "bottlenecked" through c

Model needs to encode everything it wants to say within c

Attention idea: New context vector at every time step.

Each context vector will attend to different image regions

Attention Saccades in humans

Compute context vector:

$$c_t = \sum_{i,j} a_{t,i,j} z_{t,i,j}$$

Each timestep of decoder uses a different context vector that looks at different parts of the input image

Each timestep of decoder uses a different context vector that looks at different parts of the input image

Each timestep of decoder uses a different context vector that looks at different parts of the input image

Each timestep of decoder uses a different context vector that looks at different parts of the input image

Image Captioning with Attention

Xu et al, "Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention", ICML 2015
Figure copyright Kelvin Xu, Jimmy Lei Ba, Jamie Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Benchio, 2015. Reproduced with permission.

Image Captioning with Attention

A woman is throwing a frisbee in a park.

A dog is standing on a hardwood floor.

A <u>stop</u> sign is on a road with a mountain in the background.

A little <u>girl</u> sitting on a bed with a teddy bear.

A group of <u>people</u> sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

Xu et al, "Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention", ICML 2015
Figure copyright Kelvin Xu, Jimmy Lei Ba, Jamie Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Benchio, 2015. Reproduced with permission.

Inputs:

Features: **z** (shape: H x W x D) Query: **h** (shape: D)

Fei-Fei Li, Jiajun Wu, Ruohan Gao

h

Lecture 11 - 46

May 03, 2022

Alignment: $e_{i,j} = f_{att}(h, z_{i,j})$

Inputs: Features: **z** (shape: H x W x D)

Query: **h** (shape: D)

Outputs:

context vector: **c** (shape: D)

Operations:

Alignment: $e_{i,j} = f_{att}(h, z_{i,j})$ Attention: $\mathbf{a} = \text{softmax}(\mathbf{e})$ Output: $\mathbf{c} = \sum_{i,j} a_{i,j} z_{i,j}$

Inputs:

Features: **z** (shape: H x W x D)

Query: h (shape: D)

Outputs:

context vector: **c** (shape: D)

Operations:

Alignment: $e_i = f_{att}(h, x_i)$ Attention: $\mathbf{a} = \text{softmax}(\mathbf{e})$ Output: $\mathbf{c} = \sum_i a_i x_i$

Inputs:

Input vectors: **x** (shape: N x D)

Query: **h** (shape: D)

Attention operation is **permutation invariant.**

- Doesn't care about ordering of the features
- Stretch H x W = N into N vectors

Outputs:

context vector: **c** (shape: D)

Operations:

Alignment: $e_i = h \cdot x_i$ Attention: a = softmax(e)Output: $c = \sum_i a_i x_i$

Change f_{att}(.) to a simple dot product

 only works well with key & value transformation trick (will mention in a few slides)

Inputs:

Input vectors: **x** (shape: N x D)

Query: h (shape: D)

Outputs:

context vector: **c** (shape: D)

Operations:

Alignment: $e_i = h \cdot x_i / \sqrt{D}$ Attention: $\mathbf{a} = \text{softmax}(\mathbf{e})$ Output: $\mathbf{c} = \sum_i a_i x_i$ Change f_{att}(.) to a scaled simple dot product

- Larger dimensions means more terms in the dot product sum.
- So, the variance of the logits is higher.
 Large magnitude vectors will produce much higher logits.
- So, the post-softmax distribution has lower-entropy, assuming logits are IID.
- Ultimately, these large magnitude vectors will cause softmax to peak and assign very little weight to all others
- Divide by √D to reduce effect of large magnitude vectors

Inputs:

Input vectors: **x** (shape: N x D)

Query: h (shape: D)

Outputs:

context vectors: y (shape: D)

Operations:

Alignment: $e_{i,j} = q_j \cdot x_i / \sqrt{D}$ Attention: a = softmax(e)Output: $y_i = \sum_i a_{i,j} x_i$

Multiple query vectors

 each query creates a new output context vector

Inputs:

Input vectors: **x** (shape: N x D) Queries: **q** (shape: M x D) Multiple query vectors

Outputs:

context vectors: **y** (shape: D)

Operations:

Alignment: $e_{i,j} = q_j \cdot x_i / \sqrt{D}$ Attention: $\mathbf{a} = \text{softmax}(\mathbf{e})$ Output: $y_i = \sum_i a_{i,i} x_i$ Notice that the input vectors are used for both the alignment as well as the attention calculations.

 We can add more expressivity to the layer by adding a different FC layer before each of the two steps.

Inputs:

Input vectors: **x** (shape: N x D) Queries: **q** (shape: M x D)

Operations:

Key vectors: $\mathbf{k} = \mathbf{x} \mathbf{W}_{\mathbf{k}}$ Value vectors: $\mathbf{v} = \mathbf{x} \mathbf{W}_{\mathbf{v}}$ Notice that the input vectors are used for both the alignment as well as the attention calculations.

 We can add more expressivity to the layer by adding a different FC layer before each of the two steps.

Inputs:

Input vectors: \mathbf{x} (shape: N x D) Queries: \mathbf{q} (shape: M x $\mathbf{D}_{\mathbf{k}}$)

Outputs:

context vectors: **y** (shape: $\overline{\mathsf{D}_{\mathsf{v}}}$

Operations:

Key vectors: $\mathbf{k} = \mathbf{x} \mathbf{W}_{\mathbf{k}}$ Value vectors: $\mathbf{v} = \mathbf{x} \mathbf{W}_{\mathbf{v}}$ Alignment: $\mathbf{e}_{i,j} = \mathbf{q}_{j} \cdot \mathbf{k}_{i} / \sqrt{D}$ Attention: $\mathbf{a} = \operatorname{softmax}(\mathbf{e})$ Output: $\mathbf{y}_{i} = \sum_{i} \mathbf{a}_{i,i} \mathbf{v}_{i}$ The input and output dimensions can now change depending on the key and value FC layers

Notice that the input vectors are used for both the alignment as well as the attention calculations.

 We can add more expressivity to the layer by adding a different FC layer before each of the two steps.

Inputs:

Input vectors: \mathbf{x} (shape: N x D) Queries: \mathbf{q} (shape: M x D_k)

Outputs:

context vectors: \mathbf{y} (shape: $\mathbf{D}_{\mathbf{v}}$)

Operations:

Key vectors: $\mathbf{k} = \mathbf{x} \mathbf{W}_{\mathbf{k}}$ Value vectors: $\mathbf{v} = \mathbf{x} \mathbf{W}_{\mathbf{k}}$ Alignment: $\mathbf{e}_{i,j} = \mathbf{q}_{j} \cdot \mathbf{k}_{i} / \sqrt{D}$ Attention: $\mathbf{a} = \text{softmax}(\mathbf{e})$ Output: $\mathbf{y}_{i} = \sum_{i} \mathbf{a}_{i,i} \mathbf{v}_{i}$ Recall that the query vector was a function of the input vectors

Encoder: $h_0 = f_w(z)$

where **z** is spatial CNN features

fw(.) is an MLP

Inputs:

Input vectors: \mathbf{x} (shape: N x D) Queries: \mathbf{q} (shape: M x $\mathbf{D}_{\mathbf{k}}$)

Self attention layer

Operations:

Key vectors: $\mathbf{k} = \mathbf{x} \mathbf{W}_{\mathbf{k}}$ Value vectors: $\mathbf{v} = \mathbf{x} \mathbf{W}$

Query vectors: $\mathbf{q} = \mathbf{x}\mathbf{W}_q$ Alignment: $\mathbf{e}_{i,j} = \mathbf{q}_i \cdot \mathbf{k}_i / \sqrt[q]{\mathbf{D}}$

Attention: a = softmax(e)

Output: $y_j = \sum_i a_{i,j} v_i$

We can calculate the query vectors from the input vectors, therefore, defining a "self-attention" layer.

Instead, query vectors are calculated using a FC layer.

No input query vectors anymore

Inputs:

Input vectors: **x** (shape: N x D)

Queries: **q** (shape: M x D_p)

Self attention layer

Self attention layer - attends over sets of inputs

Outputs:

context vectors: \mathbf{y} (shape: $\mathbf{D}_{\mathbf{v}}$)

Operations:

Key vectors: $\mathbf{k} = \mathbf{x} \mathbf{W}_{\mathbf{k}}$ Value vectors: $\mathbf{v} = \mathbf{x} \mathbf{W}_{\mathbf{v}}$ Query vectors: $\mathbf{q} = \mathbf{x} \mathbf{W}_{\mathbf{v}}$ Alignment: $\mathbf{e}_{i,j} = \mathbf{q}_{j} \cdot \mathbf{k}_{i} / \sqrt{D}$ Attention: $\mathbf{a} = \text{softmax}(\mathbf{e})$ Output: $\mathbf{y}_{i} = \sum_{i} \mathbf{a}_{i,i} \mathbf{v}_{i}$

Inputs:

Input vectors: **x** (shape: N x D)

Self attention layer - attends over sets of inputs

Permutation equivariant

Self-attention layer doesn't care about the orders of the inputs!

Problem: How can we encode ordered sequences like language or spatially ordered image features?

Concatenate/add special positional encoding $\mathbf{p}_{_{|}}$ to each input vector $\mathbf{x}_{_{|}}$

We use a function *pos*: $N \rightarrow R^d$ to process the position j of the vector into a d-dimensional vector

So, $p_j = pos(j)$

Desiderata of pos(.):

- 1. It should output a **unique** encoding for each time-step (word's position in a sentence)
- Distance between any two time-steps should be consistent across sentences with different lengths.
- 3. Our model should generalize to **longer** sentences without any efforts. Its values should be bounded.
- It must be deterministic.

Concatenate special positional encoding $\mathbf{p}_{_{|}}$ to each input vector $\mathbf{x}_{_{|}}$

We use a function pos: $N \rightarrow \mathbb{R}^d$ to process the position j of the vector into a d-dimensional vector

So, $p_i = pos(j)$

Options for *pos*(.)

- 1. Learn a lookup table:
 - Learn parameters to use for pos(t) for t ε [0, T)
 - Lookup table contains T x d parameters.

Desiderata of pos(.):

- 1. It should output a **unique** encoding for each time-step (word's position in a sentence)
- **2. Distance** between any two time-steps should be consistent across sentences with different lengths.
- 3. Our model should generalize to **longer** sentences without any efforts. Its values should be bounded.
- 4. It must be **deterministic**.

Concatenate special positional encoding p_i to each input vector \mathbf{x}_i

We use a function pos: $N \rightarrow \mathbb{R}^d$ to process the position j of the vector into a d-dimensional vector

So,
$$p_i = pos(j)$$

Options for pos(.)

- Learn a lookup table:
 - Learn parameters to use for pos(t) for t ε [0, T)
 - Lookup table contains T x d parameters.
- 2. Design a fixed function with the desiderata

$$\mathbf{p(t)} = egin{bmatrix} \sin(\omega_1.\,t) \\ \cos(\omega_1.\,t) \\ \sin(\omega_2.\,t) \\ \cos(\omega_2.\,t) \\ & dots \\ \sin(\omega_{d/2}.\,t) \\ \cos(\omega_{d/2}.\,t) \end{bmatrix}_d \qquad ext{where} \ \ \omega_k = rac{1000}{1000}$$

Vaswani et al, "Attention is all you need", NeurIPS 2017

Concatenate special positional encoding p_i to each input vector \mathbf{x}_i

We use a function *pos*: $N \rightarrow R^d$ to process the position j of the vector into a d-dimensional vector

So,
$$p_i = pos(j)$$

Options for pos(.)

- Learn a lookup table:
 - Learn parameters to use for pos(t) for $t \in [0, T)$
 - Lookup table contains T x d parameters.
- 2. Design a fixed function with the desiderata

$\mathbf{p(t)} = \begin{bmatrix} \sin(\omega_1, t) \\ \cos(\omega_1, t) \\ \sin(\omega_2, t) \\ \cos(\omega_2, t) \\ \vdots \end{bmatrix}$

Intuition:

where
$$\omega_k=rac{1}{10000^{2k/d}}$$

image source

Vaswani et al, "Attention is all you need", NeurIPS 2017

 $\sin(\omega_{d/2}.\,t)$

 $\cos(\omega_{d/2}.\,t)$

Masked self-attention layer

Outputs:

context vectors: \mathbf{y} (shape: $\mathbf{D}_{\mathbf{v}}$)

Operations:

Key vectors: $\mathbf{k} = \mathbf{x} \mathbf{W}_{\mathbf{k}}$ Value vectors: $\mathbf{v} = \mathbf{x} \mathbf{W}_{\mathbf{v}}$ Query vectors: $\mathbf{q} = \mathbf{x} \mathbf{W}_{\mathbf{v}}$ Alignment: $\mathbf{e}_{i,j} = \mathbf{q}_j \cdot \mathbf{k}_i / \sqrt{D}$ Attention: $\mathbf{a} = \operatorname{softmax}(\mathbf{e})$ Output: $\mathbf{y}_i = \sum_i \mathbf{a}_{i,i} \mathbf{v}_i$

- Prevent vectors from looking at future vectors.
- Manually set alignment scores to -infinity

Inputs:

Input vectors: **x** (shape: N x D)

Multi-head self attention layer

- Multiple self-attention heads in parallel

General attention versus self-attention

Input Image

Lecture 11 - 69

Example: CNN with Self-Attention

Example: CNN with Self-Attention

Self-Attention Module

Zhang et al, "Self-Attention Generative Adversarial Networks", ICML 2018

Slide credit: Justin Johnson

Comparing RNNs to Transformer

RNNs

- (+) LSTMs work reasonably well for long sequences.
- (-) Expects an ordered sequences of inputs
- (-) Sequential computation: subsequent hidden states can only be computed after the previous ones are done.

Transformer:

- (+) Good at long sequences. Each attention calculation looks at all inputs.
- (+) Can operate over unordered sets or ordered sequences with positional encodings.
- (+) Parallel computation: All alignment and attention scores for all inputs can be done in parallel.
- (-) Requires a lot of memory: N x M alignment and attention scalers need to be calculated and stored for a single self-attention head. (but GPUs are getting bigger and better)

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com

Llion Jones*

Google Research

llion@google.com

Noam Shazeer* Google Brain noam@google.com Niki Parmar* Google Research nikip@google.com

Jakob Uszkoreit*
Google Research

usz@google.com

Aidan N. Gomez* †
University of Toronto
aidan@cs.toronto.edu

Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin* ‡ illia.polosukhin@gmail.com

"ImageNet Moment for Natural Language Processing"

Pretraining:

Download a lot of text from the internet

Train a giant Transformer model for language modeling

Finetuning:

Fine-tune the Transformer on your own NLP task

On the Opportunities and Risks of Foundation Models

Rishi Bommasani* Drew A. Hudson Ehsan Adeli Russ Altman Simran Arora Sydney von Arx Michael S. Bernstein Jeannette Bohg Antoine Bosselut Emma Brunskill Erik Brynjolfsson Shyamal Buch Dallas Card Rodrigo Castellon Niladri Chatterji Annie Chen Kathleen Creel Jared Quincy Davis Dorottya Demszky Chris Donahue Moussa Doumbouya Esin Durmus Stefano Ermon John Etchemendy Kawin Ethayarajh Li Fei-Fei Chelsea Finn Trevor Gale Lauren Gillespie Karan Goel Noah Goodman Shelby Grossman Neel Guha Tatsunori Hashimoto Peter Henderson John Hewitt Daniel E. Ho Jenny Hong Kyle Hsu Jing Huang Thomas Icard Saahil Jain Dan Jurafsky Pratyusha Kalluri Siddharth Karamcheti Geoff Keeling Fereshte Khani Omar Khattab Pang Wei Koh Mark Krass Ranjay Krishna Rohith Kuditipudi Ananya Kumar Faisal Ladhak Mina Lee Tony Lee Jure Leskovec Isabelle Levent Xiang Lisa Li Xuechen Li Tengyu Ma Ali Malik Christopher D. Manning Suvir Mirchandani Eric Mitchell Zanele Munyikwa Suraj Nair Avanika Narayan Deepak Narayanan Ben Newman Allen Nie Juan Carlos Niebles Hamed Nilforoshan Julian Nyarko Giray Ogut Laurel Orr Isabel Papadimitriou Joon Sung Park Chris Piech Eva Portelance Christopher Potts Aditi Raghunathan Rob Reich Hongyu Ren Frieda Rong Yusuf Roohani Camilo Ruiz Jack Ryan Christopher Ré Dorsa Sadigh Shiori Sagawa Keshav Santhanam Andy Shih Krishnan Srinivasan Alex Tamkin Rohan Taori Armin W. Thomas Florian Tramèr Rose E. Wang William Wang Bohan Wu Jiajun Wu Yuhuai Wu Sang Michael Xie Michihiro Yasunaga Jiaxuan You Matei Zaharia Michael Zhang Tianyi Zhang Xikun Zhang Yuhui Zhang Lucia Zheng Kaitlyn Zhou Percy Liang*1

Center for Research on Foundation Models (CRFM)
Stanford Institute for Human-Centered Artificial Intelligence (HAI)
Stanford University

Image Captioning using Transformers

Input: Image I

Output: Sequence $\mathbf{y} = \mathbf{y}_1, \mathbf{y}_2, ..., \mathbf{y}_T$

Image Captioning using Transformers

Input: Image I

Output: Sequence $y = y_1, y_2, ..., y_T$

Encoder: $c = T_w(z)$ where z is spatial CNN features $T_w(.)$ is the transformer encoder

Image Captioning using Transformers

Input: Image I

Output: Sequence $y = y_1, y_2, ..., y_T$

Decoder: $y_t = T_D(y_{0:t-1}, c)$

where $T_{D}(.)$ is the transformer decoder

Made up of N encoder blocks.

In vaswani et al. N = 6, D_a = 512

Let's dive into one encoder block

Add positional encoding

Attention attends over all the vectors

Add positional encoding

Residual connection

Attention attends over all the vectors

Add positional encoding

LayerNorm over each vector individually

Residual connection

Attention attends over all the vectors

Add positional encoding

MLP over each vector individually

LayerNorm over each vector individually

Residual connection

Attention attends over all the vectors

Add positional encoding

Residual connection

MLP over each vector individually

LayerNorm over each vector individually

Residual connection

Attention attends over all the vectors

Add positional encoding

Transformer Encoder Block:

Inputs: Set of vectors x
Outputs: Set of vectors y

Self-attention is the only interaction between vectors.

Layer norm and MLP operate independently per vector.

Highly scalable, highly parallelizable, but high memory usage.

Made up of N decoder blocks.

In vaswani et al. N = 6, D_{q} = 512

The Transformer **Transformer Decoder Block:** Decoder block Laver norm **Inputs**: Set of vectors **x** and [END] person wearing hat Set of context vectors **c**. y_0 y₁ y_2 y₃ Outputs: Set of vectors y. **MLP** Laver norm Masked Self-attention only Transformer decoder interacts with past inputs. **C**_{0,0} Multi-head attention : x N Multi-head attention block is **C**_{0.1} NOT self-attention. It attends C_{0,0} **C**_{0,2} over encoder outputs. Laver norm **C**_{0,1} Highly scalable, highly C_{2,2} **C**_{0,2} parallelizable, but high memory Masked Multi-head self-attention usage. Positional encoding C_{2,2} y₁ y₂ **y**₃ y_∩ X X_2 X_3 [START] wearing hat person Vaswani et al, "Attention is all you need", NeurIPS 2017

Image Captioning using transformers

No recurrence at all

Image Captioning using transformers

Perhaps we don't need convolutions at all?

Image Captioning using ONLY transformers

Transformers from pixels to language

Vision Transformers vs. ResNets

Figure 5: Performance versus cost for different architectures: Vision Transformers, ResNets, and hybrids. Vision Transformers generally outperform ResNets with the same computational budget. Hybrids improve upon pure Transformers for smaller model sizes, but the gap vanishes for larger models.

Dosovitskiy et al, "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale", ArXiv 2020 Colab link to an implementation of vision transformers

Vision Transformers

Carion et al, "End-to-End Object Detection with Transformers", ECCV 2020

ConvNets strike back!

A ConvNet for the 2020s. Liu et al. CVPR 2022

DeiT III: Revenge of the ViT

Hugo Touvron*,† Matthieu Cord† Hervé Jégou*

88

Summary

- Adding **attention** to RNNs allows them to "attend" to different parts of the input at every time step
- The **general attention layer** is a new type of layer that can be used to design new neural network architectures
- Transformers are a type of layer that uses self-attention and layer norm.
 - It is highly scalable and highly parallelizable
 - Faster training, larger models, better performance across vision and language tasks
 - They are quickly replacing RNNs, LSTMs, and may(?) even replace convolutions.

Next time: Video Understanding