CIS 410 Midterm Report on Hidden Subgroup Problem

Zhimeng Wang, Dongmin Roh, Matthew Jagielski May 12, 2016

1 Motivation

The hidden subgroup problem (HSP) is an computational algebra problem which has been shown to have a lot of interesting consequences and motivations. For example, the *Shor's quantum algorithm* of factoring integers and solving the discrete logarithm problem can be reduced to solving the HSP on finite abelian groups.

Definition 1. Given a group G, a subgroup $H \leq G$, and a set X, a function $f: G \to X$ hides H if $\forall g_1, g_2 \in G$, $f(g_1) = f(g_2)$ iff $g_1H = g_2H$, that is, g_1, g_2 are in the same coset of H.

Definition 2. Now, the **Hidden Subgroup Problem (HSP)** is a problem with inputs: a group G, a set X, and a function oracle $f: G \to X$ hiding a subgroup H. The function oracle uses $\log(|G| + |X|)$ bits. The desired output is a generating set of H.

It is known that there exits a quantum algorithm which solves with certainty a hidden subgroup problem of an arbitrary finite group in a polynomial (in log|G|) number of calls to the oracle. In addition, quantum computers have been shown to have very good speedups for some instances of the problem. In fact, because quantum computers can solve the HSP on finite abelian groups in polynomial time, it is possible for quantum computers to factor integers much faster than classical computers can.

Two unknowns regarding the HSP are whether the symmetric group and the dihedral group have efficient quantum algorithms for solving HSP. If an efficient quantum algorithm were to be found for the symmetric group HSP, we would have an efficient algorithm for *graph isomorphism*, a very important problem in theoretical computer science and for Eugene Luks. A polynomial time dihedral group HSP algorithm would give a polynomial time algorithm for solving the *shortest vector problem on lattices*, a problem which is...(line truncated)...

Our group has some background in abstract algebra and algebraic number theory, so this is an attractive topic for us to explore. Also, one of us is studying the shortest vector problem for his undergraduate thesis, so this is of increased interest.

2 Midterm Report

2.1 Quantum Query Complexity of HSP is polynomial

Our motivation is to find an efficient quantum algorithm which can solve the HSP for any arbitrary finite group G in a polynomial calls to the given oracle. Given r many distinct subgroups of G, we are looking for a generating set for one of the subgroups. We can assume that any algorithms for the HSP always output a subset of a subgroup H; if an algorithm outputs some subset $X \nsubseteq H$, we simply find the intersection of X with H by keeping $x \in X$ only if $f(x) = f(1_G)$.

Let f be a function satisfying the conditions of the HSP. Fix an ordering of the distinct subgroups H_1, H_2, \ldots, H_r such that $|H_i| \ge |H_{i+1}|$ for all $1 \le i \le r$. Also let N = |G| and consider n = log|G| to be the input size.

2.2 Dihedral Group HSP

In order to solve Dihedral Group HSP, we first need to characterize the subgroups of the Dihedral Group $D_N = \{r, s | ord(r) = N, ord(s) = 2, srs = r^{-1}\}$. First, there are the cyclic subgroups generated by the set $\{r^k | k \in \mathbb{Z}_N\}$, which are normal in D_N . There are also dihedral subgroups, which are of the form D_m , where m divides N. And the other subgroups are generated by sr^k and are of order 2.

In 1998, Ettinger and Hoyer showed that it is possible to reduce the problem of solving the hidden subgroup problem on D_N with hiding function f to calculating k assuming the hidden subgroup is generated sr^k . The reason is fairly simple. If the hidden subgroup is a cyclic subgroup of D_N , then it is normal in D_N and can be calculated in polynomial time using previous results. If it is a dihedral subgroup D_m , then the hidden subgroup itself has a cyclic subgroup - it hides a cyclic subgroup $\langle r^k \rangle$. We take the factor group $D_N/\langle r^k \rangle$ after calculating k, and we find the hidden subgroup that remains $D_m/\langle r^k \rangle$, which is just an order 2 subgroup. To recap, first we try to find if there is a cyclic subgroup that is hidden. If $\langle r^a \rangle$ is hidden, we calculate a using previously known results about finding hidden normal subgroups. After that, we take the factor group $D_N/\langle r^a \rangle$ and see if the function f hides an order 2 subgroup generated by sr^k or if only the trivial subgroup remains. If both a cyclic and an order 2 subgroup was detected, we have a hidden dihedral subgroup. Otherwise, it is either a cyclic or an order 2 subgroup that is hidden and we have detected it. Now we move to the algorithm for detecting an order 2 subgroup.

¹We know that the number of r is $2^{O(n^2)}$ since any H_i is generated by a set of at most n elements of G

References

- [1] Kirsten Eisenträger, Sean Hallgren, Alexei Kitaev, and Fang Song. A quantum algorithm for computing the unit group of an arbitrary degree number field. 2014 ACM Symposium on Theory of Computing, 2014.
- [2] Oded Regev. A Subexponential Time Algorithm for the Dihedral Hidden Subgroup Problem with Polynomial Space. arXiv:quant-ph/0406151, 2004.
- [3] Oded Regev. Quantum Computation and Lattice Problems. arXiv:cs/0304005, 2003.
- [4] Mark Ettinger, Peter Hoyer, and Emanuel Knill. The quantum query complexity of the hidden subgroup problem is polynomial. arXiv:quant-ph/0401083, 2004.