| Roll No | ******* |
|---------|---------|

## National Institute of Technology, Delhi

Name of the Examination: B.Tech.

## Re-Mid Semester Examination (October, 2023)

**Branch** 

: ECE & EE

Semester

: 5th

**Title of the Course** 

: IC Applications

**Course Code** 

: ECBB 304

Time: 1 Hour 30 Minutes

Maximum Marks: 25

Note: All questions are compulsory.

| COURSE OUTCOMES |                                                              | COGNITIVE LEVELS |
|-----------------|--------------------------------------------------------------|------------------|
| CO1             | Study of basics of operational amplifier ideal and practical | Understanding    |
|                 |                                                              | (Level II)       |
| CO2             | Application of operational amplifier                         | Analyzing        |
|                 | rr                                                           | (Level IV)       |
| CO3 Stu         |                                                              | Evaluating       |
|                 | Study and analysis of opamp filters                          | (Level V)        |
| CO4             | Comparator, convertor circuit analysis                       | Analyzing        |
|                 | Comparator, convertor circuit analysis                       | (Level IV)       |

| Course         | CO1    | CO2        |
|----------------|--------|------------|
| Outcomes(CO's) |        |            |
| Questions No.  | Q1, Q2 | Q3, Q4, Q5 |

## Answer the following questions. All questions carry equal marks.

- 1) Find the expression of voltage gain for inverting opamp configuration with negative feedback.
- 2) Define input bias current and derive its mathematical expression.
- 3) Why gain falls for specific frequency ranges? Find the expression for gain magnitude and phase angle for open loop opamp configuration.
- 4) What is the power absorbed by the 4-k $\Omega$  resistor below?



Figure 1

5. Find output offset voltage. Following values are given:



Figure 2