

Centralna Komisja Egzaminacyjna

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

Układ graficzny © CKE 2011

WPISUJE ZDAJĄCY

KOI)			Pl	ESE	L			

Miejsce na naklejkę z kodem

EGZAMIN MATURALNY Z INFORMATYKI

POZIOM PODSTAWOWY

CZĘŚĆ I

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 7 stron (zadania 1–3). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania i odpowiedzi zamieść w miejscu na to przeznaczonym.
- 3. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 4. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 5. Pamietaj, że zapisy w brudnopisie nie podlegają ocenie.
- 6. Wpisz obok zadeklarowane (wybrane) przez Ciebie na egzamin środowisko komputerowe, kompilator języka programowania oraz program użytkowy.
- 7. Jeżeli rozwiązaniem zadania lub jego części jest algorytm, to zapisz go w wybranej przez siebie notacji: listy kroków, schematu blokowego lub języka programowania, który wybrałeś/aś na egzamin.
- 8. Na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

MAJ 2013

WYBRANE:

	••
(środowisko)	
	••
(kompilator)	
(program użytkowy)	••

Czas pracy:

75 minut

Liczba punktów do uzyskania: 20

MIN-P1 1P-132

Zadanie 1. Obliczanie wartości wielomianu (7 pkt)

Rozważmy wielomian stopnia czwartego zapisany wzorem

$$W(x) = a_0 x^4 + a_1 x^3 + a_2 x^2 + a_3 x + a_4$$

Aby obliczyć wartość wielomianu dla zadanych liczb rzeczywistych a_0 , a_1 , a_2 , a_3 , a_4 oraz x, można posłużyć się jednym z dwóch podanych niżej sposobów obliczeń:

Sposób 1

$$W(x) = a_0 x^4 + a_1 x^3 + a_2 x^2 + a_3 x + a_4 = a_0 * x * x * x * x + a_1 * x * x * x + a_2 * x * x + a_3 * x + a_4$$

Sposób 2

$$W(x) = a_0 x^4 + a_1 x^3 + a_2 x^2 + a_3 x + a_4 = x * (x * (x * (x * (a_0 + a_1) + a_2) + a_3) + a_4$$

Rozważmy algorytm realizujący sposób 1.

Specyfikacja

Dane: liczby rzeczywiste a_0 , a_1 , a_2 , a_3 , a_4 oraz x

Wynik: liczba rzeczywista $W = a_0 x^4 + a_1 x^3 + a_2 x^2 + a_3 x + a_4$

Algorytm (sposób 1)

- 1. $W \leftarrow 0, i \leftarrow 0$
- 2. dopóki i<=4 wykonuj:
 - a) $sk \leftarrow a_i, j \leftarrow 4 i$
 - b) dopóki j > 0 wykonuj:
 - (i) $sk \leftarrow sk*x$
 - (ii) $j \leftarrow j 1$
 - c) $W \leftarrow W + sk$, $i \leftarrow i + 1$
- a) Ile operacji mnożenia i dodawania liczb rzeczywistych jest wykonywanych w powyższym algorytmie?

 $\underline{\text{Uwaga:}}$ w swoich obliczeniach $\underline{\text{nie}}$ uwzględniaj operacji arytmetycznych na zmiennych całkowitych i i j sterujących pętlami.

Liczba mnożeń jest równa

Liczba dodawań jest równa

b) Uzupełnij poniższy algorytm, tak aby realizował <u>drugi sposób</u> obliczania wartości wielomianu stopnia czwartego.

Specyfikacja

Dane: liczby rzeczywiste a_0 , a_1 , a_2 , a_3 , a_4 oraz x

Wynik: liczba rzeczywista $W = a_0 x^4 + a_1 x^3 + a_2 x^2 + a_3 x + a_4$

Algorytm (sposób 2)

- 1. $W \leftarrow a_0, i \leftarrow 0$
- 2. dopóki i < 4 wykonuj:
 - a) $i \leftarrow \dots$
 - b) *W*←

Ile operacji mnożenia i dodawania liczb rzeczywistych wykonuje zapisany przez Ciebie algorytm?

<u>Uwaga:</u> w swoich obliczeniach <u>nie</u> uwzględniaj operacji arytmetycznych na zmiennej sterującej *i*.

Liczba mnożeń jest równa

Liczba dodawań jest równa

Wymalnia	Nr zadania	1a	1b
Wypełnia	Maks. liczba pkt	2	5
egzaminator	Uzyskana liczba pkt		

Zadanie 2. Algorytm (6 pkt)

Dane: liczba całkowita N > 1

Algorytm

```
Krok 1. d \leftarrow 2

Krok 2. dopóki N \ge d wykonuj:

jeżeli (N \mod d) = 0 to

wypisz d

N \leftarrow N \operatorname{div} d

w przeciwnym razie d \leftarrow d + 1
```

<u>Uwaga:</u> " $N \mod d$ " oznacza resztę z dzielenia całkowitego liczby $N \operatorname{przez} d$ " $N \operatorname{div} d$ " oznacza wynik dzielenia całkowitego liczby $N \operatorname{przez} d$

a) Przeanalizuj powyższy algorytm dla podanych wartości N i uzupełnij tabelę.

N	Wynik (wypisane liczby)
36	
120	
675	

- b) Spośród poniższych odpowiedzi podkreśl tę, która opisuje wynik działania powyższego algorytmu:
 - wszystkie dzielniki liczby N
 - pierwsze cztery dzielniki liczby N
 - czynniki pierwsze liczby N
- c) Ile liczb zostanie wypisanych dla $N = 2^{100}$?

.....

d) Podaj algorytm, który będzie wypisywał listę czynników pierwszych danej liczby w postaci par liczb *a*, *b*, gdzie *a* – **czynnik pierwszy**, natomiast *b* – **liczba jego wystąpień** w rozkładzie na czynniki pierwsze.

Przykład:

Dla liczby 225 w wyniku działania algorytmu zostaną wypisane dwie pary:

3, 2

5, 2

ponieważ
$$225 = 3 * 3 * 5 * 5$$

Dla liczby 784 w wyniku działania algorytmu zostaną wypisane dwie pary:

2, 4

7, 2

```
ponieważ 784 = 2 * 2 * 2 * 2 * 7 * 7
```

Specyfikacja

Dane: liczba całkowita N > 1

Wynik: lista czynników pierwszych w postaci par liczb a, b, gdzie a – czynnik pierwszy, natomiast b – liczba jego wystąpień

Algorytm

Wan alaia	Nr zadania	2a	2b	2c	2d
Wypełnia	Maks. liczba pkt	1	1	1	3
egzaminator	Uzyskana liczba pkt				

Zadanie 3. Test (7 pkt)

Zaznacz znakiem X poprawne zakończenie poniższych zdań.

Uwaga: W każdym podpunkcie poprawna jest tylko jedna odpowiedź. a) Kolumna w tabeli bazy danych ☐ zawiera dane różnych typów. zawiera dane tego samego typu. może mieć taka sama nazwe, jak inna kolumna w tej samej tabeli. b) Aby zmniejszyć rozmiar przechowywanych danych, stosuje się programy do kompresji. ☐ tworzenia kopii zapasowych. defragmentacji dysku. c) Liczba 10101 zapisana w systemie binarnym jest większa od liczby 10110 zapisanej w systemie binarnym. mniejsza od liczby 20 zapisanej w systemie dziesiętnym. ☐ równa liczbie 15 zapisanej w systemie szesnastkowym. d) Jeśli w arkuszu kalkulacyjnym w komórce C1 umieścimy formułę =A1*\$B\$1, to po skopiowaniu jej do komórki C2 uzyskamy formułę $\Box = A1*\$B\$1.$ $\Box = A2*\$B\$2.$ $\Box = A2*\$B\$1.$ e) Grafika wektorowa to sposób tworzenia i przechowywania w komputerze obrazów, które są reprezentowane w postaci ☐ zbiorów punktów jednokolorowych. opisów figur geometrycznych (odcinków, łuków, okręgów, elips ...). siatki niezależnie traktowanych pikseli. f) Protokół sieciowy to ☐ zbiór reguł, zgodnie z którymi następuje wymiana informacji między komputerami w sieci. polecenie, które wysyła pakiet informacji do dowolnego komputera w sieci z żadaniem potwierdzenia otrzymania informacji. sterownik, który musi być zainstalowany, aby była możliwa wymiana informacji z innymi komputerami w sieci. g) Programy komputerowe rozpowszechniane bez opłat do wypróbowania przez użytkowników, mające często ograniczenia czasowe, limit uruchomień lub blokadę dostępu do niektórych funkcji, mają licencję ☐ freeware. ☐ komercyjna. ☐ shareware.

Wypełnia egzaminator	Nr zadania	3a	3b	3c	3d	3e	3f	3g
	Maks. liczba pkt	1	1	1	1	1	1	1
	Uzyskana liczba pkt							

BRUDNOPIS