

Introduction to Music Computing

Sequential Models
Chord Recognition and HMMs

Dr Robert Lieck robert.lieck@durham.ac.uk

Figures from

Meinard Müller, Fundamentals of Music Processing, Springer 2015

Chapter 5: Chord Recognition

International Audio Laboratories Erlangen

www.music-processing.de

Computational Models of Music

Sequential Models (n-gram and (hidden) Markov models)

Hierarchical Models (context-free grammars)

Neural Networks (RNNs, Transformers, WaveNet)

Chord Recognition

Fig. 5.1

Recap: Basic Theory of Harmony

Tuning Systems

C	C#	D	D#	E	F	F#	G	G#	A	A#	В	C
f0 1 (0,0) 	16/15 (-1,-1) 	9/8 	6/5 (1,-1) 	5/4 5/4 (0,1) 32/25 (0,-2)	4/3 (-1,0) 	45/32 (2,1)	3/2 3/2 (1,0) 	13/8 8/5 (0,-1) 25/16 (0,2)	5/3 (-1,1)	7/4 16/9 (-2,0) 	15/8 (1,1) 	2
1 (0) 531441/524 (12)	256/243 (-5) 	9/8 (2) 	32/27 (-3) 	81/64 (4) 	4/3 (-1) 	1024/729 (-6) 729/512 (6)	3/2 (1) 	128/81 (-4) 	27/16 (3) 	16/9 (-2) 	243/128 (5) 	
		∧ Interva	l Int	erval JI	P	yt.						

Fig 5.3 [FM	P15]
Dur] Unive	nam rsity

L	∆ Interval name		Interval	JI ratio	Pyt. ratio
	0	(Perfect) unison	C4 – C4	1:1	1:1
	1	Minor second	C4 – D♭4	15:16	3 ⁵ :2 ⁸
	2	Major second	C4 – D4	8:9	2 ³ :3 ²
	3	Minor third	C4 – E♭4	5:6	33:25
	4	Major third	C4 – E4	4:5	2 ⁶ :3 ⁴
	5	(Perfect) fourth	C4 – F4	3:4	3:2 ²

	6	Tritone	C4 – F [#] 4	32:45	29:36 or 36:210
	7	(Perfect) fifth	C4 – G4	2:3	2:3
	8	Minor sixth	C4 – A [♭] 4	5:8	3 ⁴ :2 ⁷
	9	Major sixth	C4 – A4	3:5	2 ⁴ :3 ³
	10	Minor seventh	C4 – B♭4	5:9	32:24
	11	Major seventh	C4 – B4	8:15	2 ⁷ :3 ⁵
	12	(Perfect) octave	C4 – C5	1:2	1:2

Fig. 5.6

Fig. 5.7

This is all a C major chord!

Fig. 5.10

Tonnetz

- Two versions (equivalent/dual)
 - pitch-based: pitches as hexagonal faces (triads at corners)

GH

- **triad-based:** triads as triangular faces (pitches at corners)
- Neo-Riemannian operations with minimal voice-leading
 - Relative major/minor C major (C, E, \underline{G}) \leftrightarrow a minor (\underline{A} , C, E)
 - Parallel major/minor C major (C, \underline{E} , G) \leftrightarrow c minor (C, \underline{Eb} , G)
 - Leading-Tone Exchange

e

	С	C ♯	D		Cm C [♯] m Dm			
В	0	0	0		0	0	0	
A♯	0	0	0		0	0	0	
Α	0	0	1		0	0	1	
G♯	0	1	0		0	1	0	
G	1	0	0		1	0	0	
F♯	0	0	1	:	0	0	0	
F	0	1	0	:	0	0	1	
Е	1	0	0	:	0	1	0	
D♯	0	0	0		1	0	0	
D	0	0	1	:	0	0	1	
C [♯]	0	1	0		0	1	0	
С	1	0	0		1	0	0	

Fig. 5.15

Template-based chord recognition using binary templates for the 24 major and minor chords.

The audio recording consists of the first four measures of the Beatles song "Let It Be".

Chroma representation

Similarity values between the chroma vectors and the 24 chord templates

Chord recognition result

Manually specified chord annotations

Normalized binary templates of the chord recognition result.

Fig. 5.23 0.75 0.7 0.65 F-measure 0.6 binary 0.45 average 0.4 HMM 0.35 13 17 21 25 Smoothing length

Logarithmic compression

Prefiltering by smoothing

Hidden Markov Models (HMMs)

$$p(x_0) := ext{prior/starting distribution} \ p(x_{i+1} \mid x_i) := ext{transition probabilities} \ p(y_i \mid x_i) := ext{observation probabilities}$$

$$x \in \mathcal{X} \quad ext{discrete e.g. } \{0,1,\ldots,k\} \ y \in \mathcal{Y} \quad ext{discrete or continuoue}$$

Fig. 5.24

Fig. 5.28

Forward-Backward Algorithm

$$lpha(x_i) := p(y_0,\ldots,y_{i-1},x_i)$$
 forward $= \sum_{x_{i-1}} p(x_i \mid x_{i-1}) \, p(y_{i-1} \mid x_{i-1}) \, p(y_0,\ldots,y_{i-2},x_{i-1})$ $= \sum_{x_{i-1}} p(x_i \mid x_{i-1}) \, p(y_{i-1} \mid x_{i-1}) \, lpha(x_{i-1})$ $lpha(x_0) = p(x_0)$

$$eta(x_i) := p(y_i, y_{i+1}, \ldots, y_n \mid x_i)$$
 backward $= \sum_{x_{i+1}} p(x_{i+1} \mid x_i) \, p(y_i \mid x_i) \, p(y_{i+1}, \ldots, y_n \mid x_{i+1})$ $= \sum_{x_{i+1}} p(x_{i+1} \mid x_i) \, p(y_i \mid x_i) \, eta(x_{i+1})$ $eta(x_n) = p(y_n \mid x_n)$

$$lpha(x_i)eta(x_i)=p(y_0,\ldots,y_n,x_i)$$

data likelihood
$$\sum lpha(x_i)eta(x_i) = p(y_0,\dots,y_n) = \ell(ext{data})$$

$$rac{lpha(x_i)eta(x_i)}{\ell(ext{data})} = p(x_i \mid y_0, \dots, y_n)$$
 marginals

Viterbi Algorithm

$\max_{x_0,\dots,x_n} p(x_0,\dots,x_n\mid y_0,\dots,y_n)$ maximum posterior estimate $=\max_{x_0,\dots,x_n} rac{p(y_0,\dots,y_n,x_0,\dots,x_n)}{p(y_0,\dots,y_n)}$

$$=rac{1}{\ell(data)}\max_{x_0,\ldots,x_n}p(y_0,\ldots,y_n,x_0,\ldots,x_n)$$

$$\widehat{\alpha}(x_i) := \max_{x_0,\ldots,x_{i-1}} p(y_0,\ldots,y_i,x_0,\ldots,x_i) \\ = p(y_i\mid x_i) \max_{x_{i-1}} p(x_i\mid x_{i-1}) \max_{x_0,\ldots,x_{i-2}} p(y_0,\ldots,y_{i-1},x_0,\ldots,x_{i-1}) \\ = p(y_i\mid x_i) \max_{x_{i-1}} p(x_i\mid x_{i-1}) \, \widehat{\alpha}(x_{i-1}) \\ \widehat{\alpha}(x_0) = p(y_0,x_0) = p(y_0\mid x_0) \, p(x_0) \\ \max_{x_n} \widehat{\alpha}(x_n) = \max_{x_0,\ldots,x_n} p(y_0,\ldots,y_n,x_0,\ldots,x_n)$$

Fig. 5.28

(different naming convention!!)

Further Notes

References

- Meinard Müller (2015) Fundamentals of music processing: Audio, analysis, algorithms, applications.
 Springer
- 2) Bishop CM (2007) Pattern Recognition and Machine Learning (Information Science and Statistics), 1st ed. 2006. Corr. 2nd printing. Springer

