## énergie 3 - COURS Énergie molaire de réaction

## 1°) Énergie de liaison.

En se liant par une liaison covalente, deux atomes gagnent en stabilité énergétique. L'énergie de liaison entre deux atomes est l'énergie nécessaire pour rompre cette liaison

(voir figure ci-contre et doc. 4). Elle s'exprime en

(J.mol-1).



| de liaison. |                                                         |
|-------------|---------------------------------------------------------|
| Liaison     | <b>Énergie de liaison</b><br>en (kJ.mol <sup>-1</sup> ) |
| C-C         | 345                                                     |
| C-O         | 358                                                     |
| C – H       | 415                                                     |
| H – H       | 436                                                     |
| O – H       | 463                                                     |
| O = O       | 498                                                     |
| C = C       | 615                                                     |
| C = O       | 804                                                     |
|             |                                                         |

**Doc. 4** – Exemples d'énergies

## 2°) Énergie molaire de réaction.

L'énergie molaire de réaction  $\Delta E$  est l'énergie libérée par la combustion d'une mole de combustible. Elle peut être calculée à partir des énergies de liaisons comme suit, si l'équation de la réaction est écrite avec un nombre stœchiométrique égal à 1 pour le combustible:



Exemple: Énergie molaire de combustion du méthane (CH<sub>4</sub>).

H

H

C

H

H

H

C

H

H

H

H

$$=> \Delta E = (4 E_{C-H} + 2 E_{O=O}) - (2 E_{C=O} + 4 E_{O-H})$$
 $=> \Delta E = (4 \times 415 + 2 \times 498) - (2 \times 804 + 4 \times 463)$ 

L'énergie molaire de combustion du méthane est de  $-804 \text{ kJ.mol}^{-1}$ .

## énergie 3 - COURS Énergie molaire de réaction

**Remarque :** Pouvoir calorique PC et énergie molaire de réaction  $\Delta E$  sont liés par la relation :  $\Delta E = -PC \times M$  avec  $\Delta E$  en  $(J.mol^{-1})$ ; PC en (J.kg-1) et M: masse molaire en  $(kg.mol^{-1})$ .

**Application :** Montrer que l'énergie molaire de combustion de l'éthanol ( $C_2H_6O$ ) est de  $-1259kJ.mol^{-1}$ , puis calculer son pouvoir calorifique. Données :  $MC = 12,0 \text{ g.mol}^{-1}$  ;  $MH = 1,0 \text{ g.mol}^{-1}$  ; et  $MO = 16,0 \text{ g.mol}^{-1}$