7.3 一阶线性微分方程

要求: 记住一阶线性方程的标准形式及通解公式

一、一阶线性微分方程

定义: 形如 $\frac{dy}{dx}$ +P(x)y=Q(x)的方程称为一阶线性微分方程, 其中P(x),Q(x)均为已知函数.

当Q(x)=0时, $\frac{dy}{dx}+P(x)y=0$ 称为一阶线性齐次方程; 当 $Q(x)\neq 0$ 时, $\frac{dy}{dx}+P(x)y=Q(x)$ 称为一阶线性非齐次方程.

注意: $\frac{dy}{dx}$ 的系数为1时, $\frac{dy}{dx} + P(x)y = Q(x)$ 称为标准形式.

如: $x \frac{dy}{dx} + x^2 y = \ln x$ 是一阶线性非齐次方程.

整理: $\frac{dy}{dx} + xy = \frac{\ln x}{x}$ 是标准的一阶线性非齐次方程.

1. 一阶线性齐次微分方程
$$\frac{dy}{dx} + P(x)y = 0$$
的解法

分离变量,
$$\frac{1}{y}dy = -P(x)dx$$
, $y \neq 0$

两边积分,
$$\ln |y| = -\int P(x)dx + C_1$$
, $|y| = e^{-\int P(x)dx + C_1}$,

整理:
$$y = e^{-\int P(x)dx} \cdot (\pm e^{c_1})$$
 记 $C = \pm e^{C_1}$ 得 $y = Ce^{-\int P(x)dx}$

结论:
$$\frac{dy}{dx} + P(x)y = 0$$
的通解为 $y = Ce^{-\int P(x)dx}$

例如
$$\frac{dy}{dx} - 3x^2y = 0$$
 通解: $y = Ce^{-\int (-3x^2)dx} = Ce^{x^3}$

这是P124例7.2的例题,对比看看结果是一样的.

2. 一阶线性非齐次微分方程 $\frac{dy}{dx}$ +P(x)y=Q(x)的解法

推导:
$$\frac{dy}{dx} + P(x)y = Q(x)$$
, 移项 $\Rightarrow \frac{dy}{dx} = -P(x)y + Q(x)$

整理
$$\Rightarrow \frac{1}{y} dy = \left[-P(x) + \frac{Q(x)}{y} \right] dx$$

积分
$$\Rightarrow$$
 $\ln y = -\int P(x)dx + \int \frac{Q(x)}{y}dx$

化筒
$$\Rightarrow y = e^{-\int P(x)dx + \int \frac{Q(x)}{y}dx} = e^{\int \frac{Q(x)}{y}dx} \cdot e^{-\int P(x)dx}$$

$$= C(x)e^{-\int P(x)dx}$$

$$i c C(x) = e^{\int \frac{Q(x)}{y}dx}$$

第一步:得到 $\frac{dy}{dx} + P(x)y = Q(x)$ 通解的结构为: $y = C(x)e^{-\int P(x)dx}$ 其中C(x)为待定 函数.

第二步: 再求待定函数C(x)

根据
$$\frac{dy}{dx} + P(x)y = Q(x)$$
解的结构 $y = C(x)e^{-\int P(x)dx}$

$$y' = \left[C(x)e^{-\int P(x)dx}\right]' = C'(x)e^{-\int P(x)dx} + C(x)e^{-\int P(x)dx} \cdot \left[-\int P(x)dx\right]'$$

$$y' = C'(x)e^{-\int P(x)dx} - P(x) \cdot C(x)e^{-\int P(x)dx}$$

将以上两**有色**结论代入方程: $\frac{dy}{dx} + P(x)y = Q(x)$, 有

$$C'(x)e^{-\int P(x)dx} - P(x) \cdot C(x)e^{-\int P(x)dx} + P(x) \cdot C(x)e^{-\int P(x)dx} = Q(x)$$

整理得,
$$C'(x)e^{-\int P(x)dx} = Q(x)$$
 即 $C'(x) = Q(x)e^{\int P(x)dx}$

两边积分,求出
$$C(x) = \int Q(x)e^{\int P(x)dx}dx + C$$

$$\frac{dy}{dx} + P(x)y = Q(x)$$
的通解为 $y = e^{-\int P(x)dx} \left[\int Q(x)e^{\int P(x)dx} dx + C \right]$

一阶线性微分解法一: 公式法

例7.7(P129) 求下列微分方程的通解

$$(1)\frac{dy}{dx} + \frac{2}{x}y = x^2 \qquad (2)\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$$

$$\mathbf{P}(x) = \frac{2}{x}, \ Q(x) = x^2$$
 正确写出 $\mathbf{P}(x), Q(x)$ 很重要

由通解公式
$$y = e^{-\int P(x)dx} \left[\int Q(x)e^{\int P(x)dx} dx + C \right]$$
得,

$$y = e^{-\int \frac{2}{x} dx} \left[\int x^2 e^{\int \frac{2}{x} dx} dx + C \right] = x^{-2} \left[\int x^2 \cdot x^2 dx + C \right] = \frac{1}{x^2} \left(\frac{1}{5} x^5 + C \right)$$

$$(2)\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$$

解: 已知
$$P(x) = -\frac{2}{x+1}$$
, $Q(x) = (x+1)^{\frac{5}{2}}$

先算积分
$$e^{-\int P(x)dx} = e^{\int \frac{2}{x+1}dx} = e^{2\ln(x+1)} = e^{\ln(x+1)^2} = (x+1)^2$$

据公式
$$y = e^{-\int P(x)dx} \left[\int Q(x)e^{\int P(x)dx} dx + C \right]$$
, 所求方程通解为

$$y = (x+1)^{2} \left[\int (x+1)^{\frac{5}{2}} \cdot (x+1)^{-2} dx + C \right]$$
$$= (x+1)^{2} \left[\int (x+1)^{\frac{1}{2}} dx + C \right]$$

$$= (x+1)^{2} \left| \frac{2}{3} (x+1)^{\frac{3}{2}} + C \right|$$

注意: $e^{-\int P(x)dx}$ 和 $e^{\int P(x)dx}$ 互为倒数.

练习:

$$(1)\frac{dy}{dx} + 2xy = 4x$$

$$(2)\frac{dy}{dx} + 3y = 8, y(0) = 2$$

$$(3)(x^2-1)y'+2xy=\cos x$$

$$\left(4\right)\frac{dy}{dx} = \frac{1}{x+y}$$

答案:

$$(1) y = 2 + Ce^{-x^2}$$

$$(2)y = \frac{8}{3} + Ce^{-3x}, C = \frac{2}{3}$$

特解
$$y = \frac{8}{3} + \frac{2}{3}e^{-3x}$$

$$(3)y = \frac{\sin x + C}{x^2 - 1}$$

 $\mathbf{m}(4)$ 将方程分子分母倒过来,将x看作函数,得

$$\frac{dx}{dy} = x + y$$
 整理: $\frac{dx}{dy} - x = y$

通解:
$$x = e^{\int 1dy} \left[\int y e^{-\int dy} dy + C \right] = e^y \left[\int y e^{-y} dy + C \right]$$
$$= e^y \left[(-y - 1)e^{-y} + C \right] = -y - 1 + Ce^y$$

一阶线性微分解法二: 常数变易法

第一步: 先求对应齐次方程 $\frac{dy}{dx} + P(x)y = 0$ 的通解 前面已介绍,通解为 $y = Ce^{-\int P(x)dx}$

第二步:将通解中的常数变成函数 $y = C(x)e^{-\int P(x)dx}$

求导
$$y' = C'(x)e^{-\int P(x)dx} - P(x) \cdot C(x)e^{-\int P(x)dx}$$

将y'及y代入原方程,得

$$C'(x)e^{-\int P(x)dx} - P(x) \cdot C(x)e^{-\int P(x)dx} + P(x) \cdot C(x)e^{-\int P(x)dx} = Q(x)$$

$$C'(x)e^{-\int P(x)dx} = Q(x) \qquad \mathbb{P} C'(x) = Q(x)e^{\int P(x)dx}$$

积分,
$$C(x) = \int Q(x)e^{\int P(x)dx}dx + C$$

故,
$$\frac{dy}{dx} + P(x)y = Q(x)$$
的通解为

$$y = e^{-\int P(x)dx} \left[\int Q(x) e^{\int P(x)dx} dx + C \right]$$

例7.7
$$(P129)$$
 $(2)\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$

解 第一步: 求对应齐次方程通解

$$y = Ce^{-\int P(x)dx} = Ce^{-\int \left(\frac{-2}{x+1}\right)dx} = Ce^{2\ln(x+1)} = C(x+1)^2$$

第二步:将通解中的常数变为x的函数

$$y = C(x)(x+1)^2$$

常数变易法实际上 是通解推导过程, 一般用公式法求解.

$$y' = C'(x)(x+1)^2 + C(x)2(x+1)$$
 $y = C(x)(x+1)^2$

将y'及y代入原方程,得

$$C'(x)(x+1)^2+C(x)2(x+1)-\frac{2}{x+1}C(x)(x+1)^2=(x+1)^{\frac{5}{2}}$$

$$C'(x)(x+1)^2 + C(x)2(x+1) - \frac{2}{x+1}C(x)(x+1)^2 = (x+1)^{\frac{5}{2}}$$

$$C'(x)(x+1)^2 = (x+1)^{\frac{5}{2}}$$
 $C'(x) = (x+1)^{\frac{1}{2}}$ $C(x) = \frac{2}{3}(x+1)^{\frac{3}{2}} + C$

通解
$$y = (x+1)^2 \left[\frac{2}{3} (x+1)^{\frac{3}{2}} + C \right]$$

这是完整的常数变易法求解过程,实际解题时一般直接套公式

二、伯努利方程

形如 $\frac{dy}{dx} + P(x)y = Q(x)y^n (n \neq 0,1)$ 的方程称为伯努利方程.

解法:
$$\frac{dy}{dx} + P(x)y = Q(x)y^n$$
 $\Longrightarrow y^{-n} \frac{dy}{dx} + P(x) \cdot y^{1-n} = Q(x)$

$$\stackrel{\text{\Rightarrow} u=y^{1-n}}{\Longrightarrow} \frac{1}{1-n} \cdot \frac{du}{dx} + P(x)u = Q(x)$$

说明: 令
$$u = y^{1-n}$$
,两边对 x 求导,有 $\frac{du}{dx} = (1-n)y^{-n}\frac{dy}{dx}$ 即 $y^{-n}\frac{dy}{dx} = \frac{1}{1-n}\cdot\frac{du}{dx}$

$$\Rightarrow \frac{du}{dx} + (1-n)P(x)u = (1-n)Q(x)(此为一阶线性微分方程)$$

P132 3.
$$(1)\frac{dy}{dx} - 3xy = xy^2$$

解 两边除以
$$y^2$$
 得 $\frac{1}{y^2} \frac{dy}{dx} - 3x \cdot \frac{1}{y} = x$

$$-\frac{du}{dx} - 3xu = x \quad \text{即}\frac{du}{dx} + 3xu = -x(解此一阶线性微分方程并还原即可)$$

作业: P131

预习: 第7.5节