Définition

- Si deux nombres relatifs sont de signes contraires, alors leur somme a :
- le signe du nombre qui a la plus grande distance à zéro ;
- pour distance à zéro, la différence de leurs distances à zéro.

Propriété

Exemples

On veut calculer -3,2 + (-5,9).

- -3,2 et -5,9 sont deux nombres négatifs :
- leur somme est négative
- on ajoute leurs distances à zéro

$$-3,2+(-5,9)=-(3,2+5,9)=-9,1$$

On veut calculer A = 5,6 - (-3,2). Pour soustraire -3,2, on ajoute son opposé 3,2.

$$A = 5,6 - (-3,2)$$

$$A = 5,6 + 3,2$$

$$A = 8.8$$

Pour éviter que deux signes se suivent, on utilise des parenthèses.


```
Calculer les expressions suivantes.
A = -14 + (-17)
                          B = 13,7 + (-6,9)
                                                       C = -25 - 13
                                                                               D = -21,3 - (-4,8)
Solution
                    -14 et -17 sont deux nombres négatifs : B = 13,7 + (-6,9) 13,7 et -6,9 sont de signes contraires :
A = -14 + (-17)

leur somme est négative;
on ajoute leurs distances à zéro.

A = -(14 + 17)
                                                              B = 13,7 - 6,9
                                                                                    • leur somme est positive (car 13,7 > 6,9);
A = -31
                                                                                   · on soustrait leurs distances à zéro.
                                                              D = -21,3 - (-4,8) Pour soustraire -4,8, on ajoute
C = -25 - 13
                    Pour soustraire 13, on ajoute
C = -25 + (-13)
                                                              D = -21,3 + 4,8
                    son opposé –13.
                                                                                   son opposé 4,8.
                                                              D = -16,5
C = -38
```

💥 Entraine-toi avec Calculs avec des nombres relatifs (1 à 4) 💥

Définition Propriété

Pour calculer le produit (ou le quotient) de deux nombres relatifs, on détermine son signe, puis on multiplie (ou on divise) les distances à zéro.

- •

Exemples $2 \times 7 = 14$

$$\frac{-3}{5} = 0.6$$
 $3 \times (-5.5) = -16.5$

Attention, le produit (ou le quotient) de deux nombres négatifs est positif!

Calculer les expressions suivantes.

$$A = -4 \times 12$$
 $B = -3 \times (-4,2)$

$$B = -3 \times (-4,2)$$

$$C = \frac{-15}{3}$$

Solution

produit est négatif.
$$B = -3 \times (-4,2)$$
 plie les distances à zéro : $B = 12,6$

 $C = \frac{-15}{}$ C = 5

-15 et -3 sont de même signe, donc le quotient est positif. On divise les distances à zéro :

$$D = \frac{25}{-2.5}$$

$$D = -10$$

25 et –2,5 sont de signes contraires, donc le quotient est négatif. On divise les distances à zéro : $25 \div 2,5 = 10.$

Propriétés

a et b désignent des nombres relatifs ($b \neq 0$).

- Le produit d'un nombre relatif par -1 est égal à son opposé : $a \times (-1) = -a$
 - **▶Exemples**
 - -7,2 × (-1) = -(-7,2) = 7,2. L'opposé de -7,2 est 7,2.
 - $\frac{-2}{13} = \frac{2}{-13} = -\frac{2}{13}$: les trois quotients sont négatifs.
 - Recopier les fractions suivantes puis encadrer en vert celles égales à $-\frac{3}{7}$ et en bleu celles égales à $\frac{3}{7}$.

Solution

XEntraine-toi avec Calculs avec des nombres relatifs (à partir de 5)
X

DM

Climatologie : le mois de janvier dans le village le plus froid de France

F

Climatologie : le mois de janvier dans le village le plus froid de France

F

Climatologie : le mois de janvier dans le village le plus froid de France

Act. 1

Définition

a désigne un nombre relatif et n désigne un nombre entier supérieur ou égal à 2.

Le **nombre** a^{-n} désigne l'inverse du nombre a^n (avec $a \neq 0$).

$$a^{n} = \underbrace{a \times a \times ... \times a}_{n \text{ facteurs}}$$
 $a^{-n} = \frac{1}{a^{n}}$

Remarque

Cas particuliers: on convient que $a^1 = a$ et que, si $a \ne 0$, $a^0 = 1$.

Exemples

$$(-3)^4 = (-3) \times (-3) \times (-3) \times (-3) = 81$$
4 facteurs

$$2^{-3} = \frac{1}{2^3} = \frac{1}{2 \times 2 \times 2} = \frac{1}{8}$$

$$4^0 = 1$$

Calculer:
$$A = -3^2 + 5 \times 2^{-3}$$
 $B = (-3)^2 + 5 \times 2^{-3}$

$$B = (-3)^2 + (5 \times 2)^3$$

Solution $A = 2^2 + 5 \times 2^{-3}$

A = -8,375

$$A = -3^2 + 5 \times 2^{-3}$$
 On commend
 $A = -9 + 5 \times 0,125$ puis la multip
 $A = -9 + 0,625$ l'addition.

$$B = (-3)^{2} + (5 \times 2)^{3}$$

$$B = (-3)^{2} + 10^{3}$$

$$B = 9 + 1000$$

$$B = 1009$$

Convention

Exemples

$$A = 1 + 3 \times 2^3 = 1 + 3 \times 8 = 1 + 24 = 25$$

$$B = 1 + (3 \times 2)^3 = 1 + 6^3 = 1 + 216 = 217$$

Propriété

n désigne un nombre entier strictement positif.

Exemples

$$10^9 = 1 \underbrace{000000000}_{9 \text{ zéros}}$$
 (1 milliard)

$$10^{-6} = \underbrace{0,000001}_{6 \text{ zéros}}$$
 (1 millionième)

Donner l'écriture décimale des nombres suivants.

b.
$$10^{-4}$$

Solution

a.
$$10^5 = 100000$$
 5 zéros

b.
$$10^{-4} = \underbrace{0,000}_{4 \text{ zéros}} 1$$

Écrire les nombres suivants sous forme d'une puissance de 10.

a. 10 000 000

Solution

a.
$$10000000 = 10^7$$

b.
$$\underbrace{0,000\,000}_{\text{7 zéros}} 1 = 10^{-7}$$

Définition

- a est un nombre décimal tel que $1 \le a < 10$;
- n est un nombre entier relatif.

Exemples

L'écriture scientifique de 1 785 000 000 est $1,785 \times 10^9$ (1 milliard 785 millions).

L'écriture scientifique de 0,000 028 est 2.8×10^{-5} .

Donner l'écriture décimale des nombres suivants.

$$A = 3.5 \times 10^3$$

$$B = 450 \times 10^{-5}$$

$$A = 3.5 \times 10^3$$

$$A = 3.5 \times 10^{3}$$

 $A = 3.5 \times 1000$

$$A = 3500$$

$$B = 450 \times 10^{-5}$$

$$B = \frac{450}{100000}$$

$$B = 0.0045$$

Donner l'écriture scientifique des nombres suivants.

 $A = 365\,000\,000$

$$B = 0,0000276$$

Solution

A = 365000000

$$B = 0,0000276$$

 $A = 3,65 \times 100000000$

$$B = \frac{2,76}{100,000}$$

$$A = 3,65 \times 10^8$$

$$B = 2.76 \times 10^{-5}$$

🕇 Evolution démographique, gestion des ressources et réchauffement climatique 🧲

Définition

Remarques

- Les nombres entiers, les nombres décimaux et les fractions sont des nombres rationnels.
- Il existe des nombres qui ne sont pas rationnels, par exemple : π et $\sqrt{2}$, qui ne peuvent pas s'écrire sous forme de fraction.

Propriétés

 Un quotient ne change pas si l'on multiplie ou si l'on divise son numérateur et son dénominateur par un même nombre non nul.

a, b et k désignent trois nombres $(b \neq 0)$ et $k \neq 0$.

$$\frac{a}{b} = \frac{a \times k}{b \times k}$$
 et $\frac{a}{b} = \frac{a \div k}{b \div k}$

• a, b, c et d désignent des nombres relatifs ($b \neq 0$ et $d \neq 0$).

Si
$$\frac{a}{b} = \frac{c}{d}$$
, alors $ad = bc$. Si $ad = bc$, alors $\frac{a}{b} = \frac{c}{d}$.

$$\frac{3,1}{7} = \frac{3,1 \times 10}{7 \times 10} = \frac{31}{70}$$

$$\frac{18}{30} = \frac{18 \div 6}{30 \div 6} = \frac{3}{5}$$

• $\frac{3,1}{7} = \frac{3,1 \times 10}{7 \times 10} = \frac{31}{70}$ • On veut savoir si les fractions $\frac{20}{37}$ et $\frac{220}{407}$ sont égales. • $\frac{18}{30} = \frac{18 \div 6}{30 \div 6} = \frac{3}{5}$ On calcule les « produits en croix » : $20 \times 407 = 8140$ et $220 \times 37 = 8140$.

$$20 \times 407 = 8140$$
 et $220 \times 37 = 8140$.

Les produits en croix sont égaux, donc les fractions sont égales :

$$\frac{20}{37} = \frac{220}{407}$$

Les fractions suivantes sont-elles égales ? **a.** $\frac{48}{42}$ et $\frac{8}{7}$ **b.** $\frac{4}{3}$ et $\frac{32}{21}$ **c.** $\frac{168}{42}$ et $\frac{60}{15}$ **d.** $\frac{48}{5}$ et $\frac{31}{3}$

a.
$$\frac{48}{42}$$
 et $\frac{8}{7}$

b.
$$\frac{4}{3}$$
 et $\frac{32}{21}$

c.
$$\frac{168}{42}$$
 et $\frac{60}{15}$

d.
$$\frac{48}{5}$$
 et $\frac{31}{3}$

Act. 3

a.
$$\frac{48}{42} = \frac{48 \div 6}{42 \div 6} = \frac{8}{7}$$
 donc $\frac{48}{42} = \frac{8}{7}$.

b. $\frac{4}{3} = \frac{4 \times 7}{3 \times 7} = \frac{28}{21}$; $28 \ne 32$ donc $\frac{4}{3} \ne \frac{32}{21}$.

c.
$$168 \times 15 = 2520$$
 et $60 \times 42 = 2520$ donc $\frac{168}{42} = \frac{60}{15}$.
d. $48 \times 3 = 144$ et $5 \times 31 = 153$ donc $\frac{48}{5} \neq \frac{31}{3}$.

d.
$$48 \times 3 = 144$$
 et $5 \times 31 = 153$ donc $\frac{48}{5} \neq \frac{31}{3}$.

On peut également calculer les « produits en croix » et regarder si'ls sont égaux ou non.

Définition

a et b désignent deux entiers relatifs ($b \neq 0$).

 $\frac{5}{8}$ est une fraction irréductible car le seul diviseur positif commun à 5 et 8 est 1.

Méthode

a et b désignent deux entiers relatifs ($b \neq 0$).

▶ Exemple

On cherche la forme irréductible de $\frac{24}{36}$.

$$\frac{24}{36} = \frac{24 \div 2}{36 \div 2} = \frac{12}{18} = \frac{12 \div 2}{18 \div 2} = \frac{6}{9} = \frac{6 \div 3}{9 \div 3} = \frac{2}{3} \qquad \text{ou} \qquad \frac{24}{36} = \frac{2 \times 2 \times 2 \times 3}{2 \times 2 \times 3 \times 3} = \frac{2}{3}$$

$$\frac{24}{36} = \frac{2 \times 2 \times 2 \times 3}{2 \times 2 \times 3 \times 3} = \frac{2}{3}$$

a.
$$\frac{-615}{45}$$

b.
$$\frac{126}{72}$$

c.
$$-\frac{525}{405}$$

d.
$$\frac{-720}{-3 \ 150}$$

Solution

a.
$$\frac{-615}{45} = -\frac{615 \div 3}{45 \div 3} = -\frac{205}{15} = -\frac{205 \div 5}{15 \div 5} = -\frac{41}{3}$$

b.
$$\frac{126}{72} = \frac{126 \div 2}{72 \div 2} = \frac{63}{36} = \frac{63 \div 9}{36 \div 9} = \frac{7}{4}$$

$$c. - \frac{525}{405} = -\frac{3 \times 5 \times 5 \times 7}{3 \times 3 \times 3 \times 3 \times 5} = -\frac{5 \times 7}{3 \times 3 \times 3} = -\frac{35}{27}$$

d.
$$\frac{-720}{-3150} = \frac{2^4 \times 3^2 \times 5}{2 \times 3^2 \times 5^2 \times 7} = \frac{2^3}{5 \times 7} = \frac{8}{35}$$

On simplifie la fraction par étapes, par divisions successives du numérateur et du dénominateur, en s'aidant par

On décompose le numérateur et le dénominateur en produits de facteurs

★ Sensibilité écologique

★

Propriété

a, b et c désignent trois nombres relatifs (
$$c \neq 0$$
).

$$\frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}$$

$$\frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}$$
 $\frac{a}{c} - \frac{b}{c} = \frac{a-b}{c}$

$$\frac{5}{2} + \frac{3}{7} = \frac{5 \times 7}{2 \times 7} + \frac{3 \times 2}{7 \times 2} = \frac{35}{14} + \frac{6}{14} = \frac{41}{14}$$

$$\frac{5}{2} + \frac{3}{7} = \frac{5 \times 7}{2 \times 7} + \frac{3 \times 2}{7 \times 2} = \frac{35}{14} + \frac{6}{14} = \frac{41}{14}$$

$$\frac{3}{4} - \frac{11}{6} = \frac{3 \times 3}{4 \times 3} - \frac{11 \times 2}{6 \times 2} = \frac{9}{12} - \frac{22}{12} = \frac{-13}{12}$$

Propriété

$$a, b, c$$
 et d désignent quatre nombres ($b \neq 0$ et $d \neq 0$).

$$\frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d}$$

Exemple 1

$$\frac{3}{8} \times \frac{-1}{4} = \frac{3 \times (-1)}{8 \times 4} = \frac{-3}{32}$$

$$\frac{24}{28} \times \frac{56}{18} = \frac{24 \times 56}{28 \times 18} = \frac{6 \times 4 \times 8 \times 7}{4 \times 7 \times 3 \times 6} = \frac{8}{3}$$

Calculer et donner le résultat sous forme d'une fraction irréductible. $A = \frac{7}{10} - \frac{3}{5} + \frac{-2}{25} \qquad B = \frac{-15}{36} \times \frac{9}{-35} \times \frac{-24}{21}$ On cherche le signe du résultat,

$$A = \frac{7}{10} - \frac{3}{5} + \frac{-2}{25}$$

$$B = \frac{-15}{36} \times \frac{9}{-35} \times \frac{-24}{21}$$

A =
$$\frac{7 \times 5}{10 \times 5} - \frac{3 \times 10}{5 \times 10} + \frac{-2 \times 2}{25 \times 2}$$
A = $\frac{35}{50} - \frac{30}{50} + \frac{-4}{50}$
A = $\frac{35 - 30 - 4}{50}$

$$A = \frac{50 \quad 50}{35 - 30 - 4} = \frac{50}{50}$$

multiple commun à 10, 5 et 25, par

$$B = \frac{-15}{36} \times \frac{9}{-35} \times \frac{-24}{21}$$

$$B = -\frac{3 \times 5 \times 3 \times 3 \times 2 \times 2 \times 2 \times 3}{2 \times 2 \times 3 \times 3 \times 5 \times 7 \times 3 \times 7}$$

$$B = -\frac{3 \times 2}{7 \times 7}$$

$$B = -\frac{6}{49}$$

$$B = -\frac{3 \times 2}{7 \times 7}$$

$$B = -\frac{6}{49}$$

Définition

Propriété

a et b désignent des nombres relatifs non nuls.

• L'inverse du nombre a est le nombre $\frac{1}{a}$; l'inverse du nombre $\frac{a}{b}$ est le nombre $\frac{b}{a}$.

Exemple

L'inverse de –3 est $\frac{1}{3}$, c'est-à-dire $\frac{-1}{3}$ ou $-\frac{1}{3}$.

Propriété

$$a \div b = a \times \frac{1}{b}$$

$$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c}$$

$$a \div b = a \times \frac{1}{b}$$
 $\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c}$ $\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c}$

•
$$\frac{2}{9} \div \frac{-3}{7} = \frac{2}{9} \times \frac{7}{-3} = \frac{2 \times 7}{9 \times (-3)} = \frac{14}{-27} = -\frac{14}{27}$$
• $\frac{\frac{7}{3}}{\frac{-4}{5}} = \frac{7}{3} \div \frac{-4}{5} = \frac{7}{3} \times \frac{5}{-4} = -\frac{35}{12}$

$$\frac{\frac{7}{3}}{\frac{-4}{5}} = \frac{7}{3} \div \frac{-4}{5} = \frac{7}{3} \times \frac{5}{-4} = -\frac{35}{12}$$

c.
$$\frac{-3}{8}$$

2. Calculer et donner le résultat sous forme d'une fraction irréductible.
$$A = \frac{-11}{9} \div \frac{-8}{5} \quad B = \frac{\frac{-5}{7}}{8} \quad C = \frac{-5}{\frac{7}{8}} \quad D = \frac{\frac{-14}{25}}{\frac{-21}{15}}$$

Solution

1. a. 0,1 × 10 = 1 donc l'inverse de 0,1 est 10. b. $\frac{1}{4}$ × 4 = 1 donc l'inverse de $\frac{1}{4}$ est 4. c. $\frac{-3}{8}$ × $\frac{8}{-3}$ = 1 donc l'inverse de $\frac{-3}{8}$ est $\frac{8}{-3}$ ou $\frac{-3}{8}$.

2.
$$A = \frac{-11}{9} \div \frac{-8}{5}$$

$$B = \frac{\frac{-5}{7}}{8}$$

$$C = \frac{-5}{\frac{7}{8}}$$

$$D = \frac{\frac{-14}{25}}{\frac{-21}{15}}$$

2. $A = \frac{-11}{9} \div \frac{-8}{5}$ $B = \frac{\frac{-5}{7}}{8}$ $C = \frac{-5}{\frac{7}{8}}$ $D = \frac{\frac{-14}{25}}{\frac{-21}{15}}$ On transforme la division en une multiplication en remplaçant la deuxième fraction par son inverse. On peut remplacer le trait principal de fraction par une division. $A = \frac{-11 \times 5}{9 \times (-8)}$ $B = \frac{-5}{7} \times \frac{1}{8}$ $C = -5 \times \frac{8}{7}$ $D = \frac{-14}{25} \div \frac{-21}{15}$ On peut remplaçant la deuxième fraction par son inverse. On peut remplacer le trait principal de fraction par une division. $A = \frac{55}{72}$ $B = \frac{-5 \times 1}{7 \times 8}$ $C = \frac{-5 \times 8}{7}$ $D = \frac{2 \times 7 \times 3 \times 5}{5 \times 5 \times 3 \times 7}$ $D = \frac{2}{5}$

$$A = \frac{-11}{9} \times \frac{5}{-8}$$

$$-11 \times 5$$

$$B = \frac{-5}{7} \div 8$$

$$C = -5 \div \frac{7}{8}$$

$$D = \frac{-14}{25} \div \frac{-21}{15}$$

$$D = \frac{-14}{25} \times \frac{15}{15}$$

$$A = \frac{1}{9 \times 1}$$

$$A = \frac{55}{72}$$

$$B = \frac{3}{7} \times \frac{1}{8}$$

$$B = \frac{-5 \times 1}{7 \times 8}$$

$$C = \frac{-5 \times 8}{7}$$

$$D = \frac{25 - 21}{2 \times 7 \times 3 \times 5} = \frac{25 - 21}{5 \times 5 \times 3 \times 7}$$

XEntraine-toi avec Opérations avec des fractions