Data models (1/2)

- A model is an abstract representation
 - We care about data, so we have data models
- Do you know your data?
 - Is there something missing?
 - Are there redundancies?
 - How do various components of your data fit together?

Data models (2/2)

- To design a database, we first need a schema
 - Remember logical/physical independence ?
- Use a data model to design the schema
 - We will study two data models: ER and relational

ER MODEL

Entity-Relationship model (2/2)

- Entity sets ←
 - Actors, movies, studios
- Attributes ←
 - Atomic values
 - Name, age, height← Autor
- Relationships ←
 - Between two entity sets
 - Actors acts n Movies

ER diagram

Entity set

Attribute

Relationship

Example - Movie DB

Types of relationships (1/2)

Studio

Movie produced by at most one studio, but a studio produces many movies

Movie

An actor plays at most one role, a role is played by at most one actor

Actor plays Part Part

produ

Double roles

A movie has many actors, an actor plays in many movies

Types of relationships (2/2)

one-one

- an entity of one entity set is related to at most one entity of another entity set and vice-versa

many-one

- many entities of one entity set are related to at most one entity of another entity set
- many-many

Remember the maths

Extract
$$-A = \{a_1, a_2, a_3\}$$

$$-B = \{b_1, b_2\}$$

$$A \times B = \{(a_1, b_1), (a_2, b_2), (a_2, b_1), (a_3, b_2), (a_3, b_2)\}$$

$$R \subseteq A \times B$$
 on -one namy -one was

ER model: Relationships

Multi-way relationships

• Non-binary relationships

Attributes on relationships

- An attribute depends on a combination of entities, not a single entity
 - Relationships are how entities are combined!

Modeling subsets

- ER model allows for hierarchies
 - Sound familiar?

N-ary to binary

"Parallel" relationships

- A relationship from an entity set to itself
 - Each edge indicates a role

ER model

CONSTRAINTS

Modeling constraints

- Constraints model restrictions on the data
 - Data may be erroneous
 - Mistakes may be made during the data entry process 650
- Modeling the correct constraints are part of the design process

Common constraints (1/2)

- Keys
 - How is an entity uniquely identified?
 - (Name, Year of birth) identifies an actor uniquely
- Single-value constraints
 - Unique values in a given context
 - Place of birth has to be unique
 - Null values

Key constraints and single value constraints

Common constraints (2/2)

Referential integrity

Actor Morie

- Remove the null, insist on the value
- If an actor acts in a movie, then that movie has to exist in the database
- Domain constraints ←
 - Restricting the value set of attributes ←
 - Age in range from 0 to 100 (or is it 0 to 25?)
- General constraints —

Representing constraints (2/2)

Other

The Relational Model

Only one structure - relation

 A relation is both a mathematical concept and just a table of values

The relational model models "everything" as relations

Example

J Attributes Schema of the relation: Actor-Movies (Name varchar(20), Movie varchar(50), Character varchar(20)) None of the **Actor-Movies** Name Movie Priyanka Chopra Baywa Leeds tch Tom Cruise MI-I Ethan Hunt **Anthony Hopkins** Thor: Odin Ragnar ok

More about relations

 $R \subseteq A \times B$ $f_{\text{at}} \qquad f$

- A relation is a <u>set</u> of tuples, not a <u>bag</u>
- Permuting the order of attributes does not matter

	\downarrow	\downarrow	1
7	Name	Movie	Character
	Priyanka Chopra	Baywatch	Victoria Leeds
	Tom Cruise	MI-I	Ethan Hunt
	Anthony Hopkins	Thor: Ragnarok	Odin

\mathcal{T}	\downarrow	$oldsymbol{\downarrow}$
Character	Movie	Name
Victoria Leeds	Baywatch	Priyanka Chopra
Ethan Hunt	MI-I	Tom Cruise
Odin	Thor: Ragnarok	Anthony Hopkins

ER to relational

- ER diagrams are easy to comprehend and closer to how we think
- Relational model is powerful because it is simple only one kind of object
 - Any operation on the relation, results in yet another relation
- So, let's convert our ER diagrams to relational!

Entity sets/attributes

Relationships to relations

Relationships to relations

People (Name, DOB, Birthplace)
parentOf (parentName) parentDOB, childName, childDOB

Hierarchies to relations

Combining relations (1/2)

Combining relations (2/2)

NORMALIZATION

Designing good schemas

Actor (Name, DOB, Address, MovieTitle, Year, Language)

"Univered Table" **Anomalies** Actor Morre Redundancy < Address MTitle Name DOB Year Language riyanka 🔼 →Update Anomalies Mumba 1992 Don 2006 Hindi Chopra Priyanka Chopra's 1992 Hindi Priyanka 0 Mumbai Don II 2011 changed to Priyankaa Chopra Chopra Anthony 1937 LA Thor: Ragnarok 2017 **English Hopkins Deletion Anomalies** Tom Cruise Valkyrie -English LA 2008 1962 Delete the movie English Bill Nighy _ Valkyrie _ 2008 1949 LA "Valkyrie" from the DB 7

Normalization is the process of systematically eliminating these anomalies

Functional Dependencies (1/2)

- A <u>functional dependency</u> is another kind of constraint
- If two tuples in a relation agree on the values of one set of attributes then they must also agree on the values of another set of attributes.

Functional Dependencies (2/2)

• Example (figure out the right FDs)

Actor (Name, DOB, Address)

Movie (Title, Year, Language)

PlaysIn (Name, DOB, Title, Year)

Name DOB
Address

Language
Language
Name DOB
Title Year

Name DOB
Title Year

Name DOB → Address
Name DOB Address → Language
Name DOB MovieTitle Year → Address
MovieTitle Year DOB → Name
DOB Address MovieTitle → Name
DOB Address MovieTitle Year → Name

Actor (Name, DOB, Address, MovieTitle, Year, Language)

Trivial and non-trivial FDs

```
Actor (Name, DOB, Address)
```

Movie (Title, Year, Language)

PlaysIn (Name, DOB, Title, Year)

```
Name DOB → Address ← Non-kind FD

Name DOB → Name ← timed FD

Name DOB → Name Address ← Non-kind FD
```

Keys and superkeys

Inferring FDs

- Given a set of FDs, which other FDs follow from it?
- Example:
 - Given: \[\{\text{Name, DOB}\} \rightarrow \text{Address} \rightarrow \]

 Address \rightarrow \text{City}
 - Inferred: $\{Name, DOB\} \rightarrow City$

Inferred through transitivity of FDs

Armstrong's Axioms

- Reflexivity \leftarrow Losw of FDs

 If \underline{B} is a subset of \underline{A} , then $\underline{A} \rightarrow \underline{B}$ Trivial FD
- Augmentation \leftarrow If A \rightarrow B, then $AC \rightarrow BC$
- Transitivity \leftarrow If A \rightarrow B and B \rightarrow C, then A \rightarrow C

Closure of FDs

- Given: S, the set of FDs
- Output: S⁺, the closure of S, containing all FDs derivable from S

NORMAL FORMS

Relation decomposition

- Breaking up a relation into two or more
- Tuples are projected accordingly
- Lossy and lossless decomposition
 - Can the original table be recovered from the decomposed tables?

First normal form

- 1NF (First normal form)
 - A relation is in 1NF iff every tuple contains an atomic value for each attribute
 - Follows directly from definition of relation
 - Relation contains a key

Second normal form (1/2)

No non-prime attribute in the table is functionally dependent on a proper subset of any candidate key N
olimits D

Name DOB MTitle Year - Address DOB_ Address **MTitle** Year Language Name Priyanka Chopra 1992 Mumbai Don 2006 Hindi Priyanka Chopra -1992 Mumbai Don II 2011 Hindi English Tom Cruise 1962 LA MI-IV 2011 1937 2017 English **Anthony Hopkins** LA Thor: Ragnarok Bill Nighy 1949 LA Valkyrie 2008 English

What are we missing here?

Name	DOB	Address	
Priyanka Chopra	1992	Mumbai	
Anthony Hopkins	1937	LA	
Bill Nighy	1949	LA	
Tom Cruise	1962	LA	
MTitle	Year 1	Language	

2006

2011

2011

2008

Don

Don II

MI-IV

Valkyrie

Hindi

Hindi

English

English

ige	
3	

Second normal form (2/2)

Name	DOB	Address	MTitle	Year	Language
Priyanka Chopra	1992	Mumbai	Don	2006	Hindi
Priyanka Chopra	1992	Mumbai	Don II	2011	Hindi
Anthony Hopkins	1937	LA	MI-IV	2011	English
Anthony Hopkins	1937	LA	Valkyrie	2017	English
Bill Nighy	1949	LA	Valkyrie	2008	English

No non-prime
attribute in the
table is functionally
dependent on a
proper subset of
any candidate key

Lossless

ID	Name	DOB	Address
1	Priyanka Chopra	1992	Mumbai
2	Anthony Hopkins	1937	LA
3	Bill Nighy	1949	LA

>	AID	MID
	1	1_
	1_	2
	2	3
	3	4
	4	5
ŀ		

	1			
	ID	MTitle	Year	Language
	1	Don	2006	Hindi
)	2	Don II	2011	Hindi
-)	3	MI-IV	2011	English
	4	Valkyrie	2008	English
	5	Thor: Ragnarok	2017	English

Third normal form

- 3NF (third normal form)
 - For a non-trivial FD X \rightarrow Y,

X is a superkey or Y is prime

Name _ -DOB Address Country 1992 Mumbai India Priyanka Chopra (USA) 1937 LA / Anthony **Hopkins** Bill Nighy USA? 1949 LA /

$X \rightarrow Y$	
ONF LX ALAZA3 >	4
and $X \times A \rightarrow X$	1
Address -> Country)
Name DOB -> Add	res

Name, DOB → Country

Name	DOB	AID	ID	Address	Country	
Priyanka Chopra	1992	1 -	- لرح	Mumbai	India	
Anthony	1937	2 -	72 -	LA	USA	4
Hopkins		2	1			

Boyce-Codd normal form

BLNF

For a non-trivial FD X \rightarrow Y,

X is a superkey or y is prime

Addresses the following additional scenarios:

- Multiple candidate keys with intersecting elements
- All attributes are part of some key

Lossless decomposition

- Algorithm:
 - If $X \rightarrow Y$ is a BCNF violation, then form two relations:

with attributes from X U Y with attributes from X U (all-X-Y)

$$\times \rightarrow \forall$$

 $\times A_1 A_2$

