Review Process

- Submit paper on Nov. 14 (5am on Nov. 15)
 - supplementary material (one week later), very important for papers on videos
- Select your areas and preferred area chair
- System will match your papers and area chairs (each area chair has his own areas and 10 representative papers), recommend papers to area chairs
- Area chairs bid for papers (indicating their preference)
- 25~30 papers are assigned to each area chair
 - Let your paper go to a right area chair who is familiar with your research problem

- AC will select 7 reviewers for each paper
 - System rank reviewers based on relevance
 - Not easy if AE is not familiar with your research problem
 - AE may find reviewers from your cited papers

Release review results

- Reviewers will ask specific questions for authors to clarify
- AE may summarize key questions to be addressed in rebuttal

Submit rebuttal

- Understand what the reviewers are asking for
- Explain the facts politely
- Provide evidence, specific
- Additional experimental results are helpful
- Reviewers won't consider the substantial changes made in the final version

- Reviewers will have discussions based on your rebuttal and change their ratings
 - The scores can be raised if their concerns are addressed and misunderstandings are clarified
 - The scores may drop if they are not satisfied with your explanation, or other reviewers point out facts they missed
 - A reviewer has one thousand reasons to reject a paper
- AC first filters definitely reject papers
 - No positive rating
 - No rebuttal
- Three AC will discuss the borderline cases
 - The other two ACs only roughly read the reviews and don't have strong opinions
 - No guideline on acceptance ratio

- Each AC will suggest strong papers and a second AC will read these papers and give his reviews
- 9 AC will propose and discuss oral candidates guided by one program chair
 - No special guideline for oral, quality is more important
 - Other AC don't have time to read the paper carefully

Introduction

- What are your contributions/novelty ☆☆☆
 - Don't over claim, avoid misleading statements
 - If your area is small, "this is the first time for xxx to be applied to xx" is not a strong novel point
 - Three points is about the right number
- Why does your method makes sense (motivation)☆☆
 - Examples, figure
- How is your method different from others?☆☆
 - No need to give details of specific methods
- How is your performance compared with others?☆☆

Introduction

- Why is this problem important? ☆
- What are the major challenges? ☆
- What are the drawbacks of existing methods?☆
 - Accuracy
 - Speed
 - Complementary
 - Your method don't have to always to best, especially if your problem is widely studied and two methods solve the problem different perspectives

Introduction

- A typical order
 - Why is this problem important?
 - Challenges
 - Drawbacks of existing methods
 - How is your method different from others?
 - Why does you method make sense?
 - What are your major contributions/novelty
 - How is your performance compared with others?

Related Work

- Introduction only briefly mention related works. Otherwise, it leaves people an impression that your work is incremental
- Need details in related work, other reviewers will challenge your work is similar to... why it is better than...
- Divide related works into different categories, and summary the drawbacks for each category. Their difference with yours.

Related Work

- If you can't convince others theoretically or intuitively, you have to rely on experiments
- Cite papers from important research groups and guess who will review your paper

Method

- Method overview
 - System diagram figure
- High-level ideas are more important than mathematical details.
 - You can always put details in supplementary materials by pointing to a reference.
 - Don't skip important basic concepts, even if they are from existing works
 - Figures and examples are helpful

Method

- Follow logic
 - Don't always tell readers "I will explain this later".
 At least give high-level description to bridge the logic gap

Experiments

- Dataset descriptions and evaluation protocol
 - Evaluate on public dataset following standard protocol, so you can compare with published results without implementing other methods;
 - Or implement other methods on your datasets
 - Try at least two datasets
- Explain parameter settings
- Accuracy
- Speed

Experiments

- Effectiveness of each component
 - Important for convincing reviewers why your method works
- Analyze some interesting examples
- Sensitivity to parameters
- Analyze your failure cases
- Be careful about the challenge on unfair comparison
 - Use extra training samples
 - Use extra information
 - Unfair comparison is even worse than no comparison, because it is misleading

Abstract

Highlight the strongest points of your paper.

Conclusions and Future Work

- Different than abstract, you can mention some claims which are understandable only after reading details.
- If some good points can't be claimed without experiment support, you can mention it in the future work

Title

- Identify and highlight the most important keywords
- Precise

Four Figures

- One figure in the first page to explain motivation
- One system diagram figure
- One experimental comparison figure
- One figure of analyzing interesting experimental results

Length

- Don't worry about length when you write a paper
- You know how to reduce the length only if you know which parts are important

Other Issues

- Think about the type of reviewers you preferred. You may want to highlight related keywords.
- Put important words in the first a few sentences in a paragraph

Some additional points ...

- Length of the title
 - Avoid a long title: keep it concise and short
- Length of each subsection
 - Keep it at the right length, e.g. 1.25 1.5 page for the introduction. A long intro implies one doesn't know the keys of the paper
- Length of each paragraph
 - Avoid writing a long paragraph
 - Start a new one to give readers some breaks in the middle
 - The first sentence always carries the most important message

Some additional points ...

- Contributions
 - Avoid listing too many contributions three contributions are the right number
 - You won't have space to explain and enough evidence to support too many contributions
 - Arrange your contributions in the most important one (conceptual contribution) to the least important (modifications of a model)
- Remember to repeat your contributions (in different ways) at different sections in your paper.

How to get a fair review?

- Need to have a strategy which part should I emphasize more
 - Sometimes you don't want your paper to be reviewed by a reviewer not in your field
 - Sometimes a technique is just a tool to solve a problem
 - Avoid having too much engineering description on the 'tool', and forget the problem and your core contributions

How to get an oral paper?

- I don't know either
 - Choose your topic wisely, avoid competing with others but don't choose a topic that nobody will get interested
 - Demonstrate that your paper has solved an open problem that nobody has thought about but it's utmost critical

Plan your paper

- Think about how to answer the questions in intro and related work from now. It helps you design the methodology and experiments
- Get your papers ready earlier the better, at least one week before the deadline
- Discuss the answers to these questions and the figures with me first before writing the paper
- I will try to give more help to second year students
- Senior students help junior students, help each other