

Operaciones de Procesamiento de Imágenes

II Unidad

Ms. Ing. Liz Sofia Pedro H.

Contenidos.

- Morfología matemática.
- 2. Filtros
- Detección de bordes.
- 4. Mejoramiento del contraste.

4. MEJORAMIENTO DE CONTRASTE

4.1. Introducción

- Condiciones inadecuadas de iluminación generan imágenes demasiado oscuras o con mucho brillo (bajo contraste).
- El contraste es el rango en el que varían los tonos de gris que toman la mayoría de los pixeles de una imagen a lo largo de los tonos de gris permisibles.
- □ El contraste de una imagen puede ser revelado por su histograma.

4.1. Introducción

4.1. Introducción (Cont.)

- Si los tonos de gris empleados son muy bajos la imagen será muy oscura, si son muy altos será muy clara. También será bajo contraste si solos e considera una pocas tonalidades con valores centrales.
- □ El histograma representa la distribución de tonos de gris en la imagen, más no la distribución espacial.

4.1. Introducción (Cont.)

4.1. Introducción (Cont.)

Imágenes muy distintas visualmente, podrían tener el mismo histograma.

4.2. Definición

- □ El mejoramiento de contrate es una de las operaciones más usadas.
- El mejoramiento de contraste trata de modificar la distribución de los tonos de gris.
- Una imagen tiene mejor contraste cuando su histograma es casi plano.

4.2. Definición (Cont.)

- En el mejoramiento de contraste la regla de oro es que no se debe añadir información que no este presente en la imagen (objetos extraños).
- Eso se logra manteniendo el orden de los tonos de gris:

$$I(x,y) > I(a,b) \rightarrow G(x,y) > G(a,b)$$

No importa que la variación inicial varíe.

4.3. Métodos

- Escalamiento lineal
- Ecualización del histograma
- Ecuación local

4.3.1. Contrast Stretching

Permite ampliar el rango de tonos de gris que toman los pixels de la imagen

$$G(x,y) = (I(x,y) - a) \left(\frac{c-d}{a-b}\right) + d$$

$$\square \text{ Donde } \frac{b \text{ y a}}{a \text{ y } b} \text{ son máximo y mínimo tono de gris en } I, \text{ y } c \text{ y } d \text{ son}$$

el máximo y mínimo tono de gris en G.

4.3.1. Contrast Stretching (Cont.)

- □ Si la variación entre (a b a b) y (c d) es muy pequeña como 1, no se observaría mejora.
- Una solución sería seleccionar seleccionar c y d en base al histograma de la imagen original, de tal forma que el 5% de pixels tengan valores menores que a y otro 5% tengan valores mayores que b.
- Problema: No conserva el orden de los tonos de gris: genera objetos extraños en la imagen.

4.3.1. Contrast Stretching (Cont.)

4.3.2. Ecualización del Histograma

- La ecualización de histogramas es un método de ajuste de contraste utilizando el histograma de la imagen.
- A través de este ajuste, las intensidades se pueden distribuir mejor en el histograma.
- Esto permite que las áreas de menor contraste local obtengan un mayor contraste.
- □ La ecualización del histograma logra esto al distribuir efectivamente los valores de intensidad más frecuentes.

Caso Continuo:

$$s = T(r) = (L-1) \int_0^r p_r(w) dw$$

Caso Discreto:

$$S_k = T(r_k) = (L-1)\sum_{j=0}^{n} p_r(r_j)$$

$$= (L-1)\sum_{j=0}^{k} \frac{n_j}{MN} = \sum_{j=0}^{L-1} \sum_{j=0}^{k} n_j \qquad k=0,1,..., L-1$$

M N

□ Ejemplo: Sea I una imagen de 3 bits (L = 8) de tamaño 64 × 64 píxeles (= 4096) cuya distribución de intensidad se muestra en la

siguiente tabla.

r_k	n_k	$p_r(r_k) = n_k/MN$
$r_0 = 0$	790	0.19
$r_1 = 1$	1023	0.25
$r_2 = 2$	850	0.21
$r_3 = 3$	656	0.16
$r_4 = 4$	329	0.08
$r_5 = 5$	245	0.06
$r_6 = 6$	122	0.03
$r_7 = 7$	81	0.02

r_k	n_k	$p_r(r_k) = n_k/MN$
$r_0 = 0$	790	0.19
$r_1 = 1$	1023	0.25
$r_2 = 2$	850	0.21
$r_3 = 3$	656	0.16
$r_4 = 4$	329	0.08
$r_5 = 5$	245	0.06
$r_6 = 6$	122	0.03
$r_7 = 7$	81	0.02

$s_0 = T(r_0) = 7 \sum_{i=0}^{6} p_r(r_i) = 7 \times 0.19 = 1.33$ $s_1 = T(r_1) = 7 \sum_{j=0}^{1} p_r(r_j) = 7 \times (0.19 + 0.25) = 3.08$ $s_2 = 4.55 \rightarrow 5$ $s_3 = 5.67 \rightarrow 6$ $s_4 = 6.23 \rightarrow 6$ $s_5 = 6.65 \rightarrow 7$ $s_6 = 6.86 \rightarrow 7$ $s_7 = 7.00 \rightarrow 7$

Redondear

FIGURE 3.19 Illustration of histogram equalization of a 3-bit (8 intensity levels) image. (a) Original histogram. (b) Transformation function. (c) Equalized histogram.

4.3.3. Ecualización Local

- Las técnicas globales no brindan la posibilidad de mejorar el contraste en zonas pequeñas y con mucho detalle.
- La ecualización local es similar solo que usa una vecindad móvil $de m \times n$.
- □ El tamaño de la vecindad influye notoriamente en el resultado.
- □ El algoritmo se puede optimizar para no realizar el calculo completo nuevamente (*).

4.3.3. Ecualización Local (Cont.)

4.3.3. Ecualización Local (Cont.)

4.3.3. Ecualización Local (Cont.)

Gracias...