

Fourth Industrial Summer School

Advanced Machine Learning

Tips for ML + KNIME

Session Objectives

- ✓ Tips on machine learning
- ✓ KNIME

Tips on Machine Learning

Important remarks

- Mainly for supervised learning but some aspects are general
- Not for academic research but for development

- Understand your goal
 - What are you trying to achieve, translated into:
 - Classification
 - Regression
 - Unsupervised learning
 - •
- Understand your data
 - What data you have
 - How much data you have
 - Characteristics of your data

Prepare your data

- Clean your data
- Select your features
- Continuous vs. categorical features
- How to encode the target
- Data scaling
- Data imbalance
- Train/validation(cross-validation)/test sets

Data collection and annotation

- Realistic conditions
- Dev. and test sets from the same distributions

- Select measures appropriate for the task (get to an agreement)
 - Also depends on the data
 - Accuracy vs. precision & recall (unify it)
 - Prioritize your measures (accuracy vs. runtime), optimizing vs. satisficing
 - Change them later if needed
- What should be the size of train/dev/test partitions?
 - **-** 70/15/15?, 60/20/20?
 - What if you huge amount of data?
- Significance interval of differences in performance
 - 95% percent confidence intervals
 - The smaller the intended progress, the larger the dev set needed

Decide which algorithm to use

- Start simple (linear/logistic regression) unless there is a clear case
- Incrementally build complex ideas
- Start small instead of making big goals from the very beginning

Training

- Trying to fit (overfit) and then,
- Deal with variance

Error analysis

- Do error analysis to decide how to go forward by manually looking at the errors on the dev set
- What if the dev set is large (create a small subset for manual analysis)

- What about mislabeled data?
 - Correct them if they are a major cause of errors
 - Make sure to update the test set as well
 - What about errors in labels classified as correct category?
- Bias/variance and adding more data
 - What would be an optimal error rate?
 - All variance is avoidable (more data) but all bias is not
- High (avoidable) bias
 - Make your model more complex
 - More training
 - Error analysis on the training set

High variance

- Add more training data
- Regularization
- Early stopping
- Simpler model
- Study the error curves

Andrew Ng, Machine Learning Yearning, deeplearning.ai

- Data augmentation
- End-to-end recognition vs. a standard ML pipelines
- Use ensembles to give a final push to your results

KNIME

Data analysis and machine learning

KNIME (Konstanz Information Miner)

- It is a free and open-source data analytics, reporting and integration platform.
- Modular data pipelining concept.
- No programming needed.
- DEMO

References

- Andrew Ng, Machine Learning Yearning, deeplearning.ai
- Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar, Foundations of Machine Learning, second edition, The MIT Press
- Tom M. Mitchell, Machine Learning, McGraw-Hill, 1997