第九届中国大学生数学竞赛预赛试卷

(数学类, 2017年10月28日)

绝密 ★ 启用前

(14 金融工程 - 白兔兔)

考试形式: 闭卷 考试时间: 150 分钟 满分: 100 分

题号	_		三	四	五	六	总 分
满分	15	15	15	20	15	20	100
得分							

注意: 1. 所有答题都须写在试卷密封线右边, 写在其他纸上一律无效.

- 2. 密封线左边请勿答题, 密封线外不得有姓名及相关标记.
- 3. 如答题空白不够, 可写在当页背面, 并标明题号.

得 分	
阅卷人	

一、(本题 15 分) 在空间直角坐标系中,设单叶双曲面 Γ 的方程 为 $x^2+y^2-z^2=1$,设 P 为空间的平面,它交 Γ 于一抛物线 C. 求该平面的 法线与 z- 轴的夹角.

得 分	
阅卷人	

二、(本题 15 分) 设 $\{a_n\}$ 是递增数列, $a_1 > 1$. 求证: 级数 $\sum\limits_{n=1}^{\infty} \frac{a_{n+1}-a_n}{a_n\ln a_{n+1}}$ 收敛的充分必要条件是 $\{a_n\}$ 有界, 又问级数通项分母中的 a_n 能否换成 a_{n+1} ?

答题时不要超过此线

得分	三、(本题 15 分) 设 $\Gamma = \{W_1, W_2, \dots, W_r\}$ 为 r 个各不相同的可逆
14 刀	n 阶复方阵构成的集合. 若该集合关于矩阵乘法封闭 (即, $\forall M, N \in \Gamma$, 有
阅卷人	$MN \in \Gamma$), 证明: $\sum_{i=1}^{r} W_i = 0$ 当且仅当 $\sum_{i=1}^{r} \operatorname{tr}(W_i) = 0$, 其中 $\operatorname{tr}(W_i)$ 表示 W_i 的迹
	i=1 $i=1$

得 分	
阅卷人	

四、(本题 20 分) 给定非零实数 a 及实 n 阶反对称矩阵 A (即, A 的 转置 A^T 等于 -A), 记矩阵有序对集合 T 为

$$T = \{(X,Y)|X \in \mathbb{R}^{n \times n}, Y \in \mathbb{R}^{n \times n}, XY = aI + A\},\$$

其中 I 为 n 阶单位阵, $\mathbb{R}^{n\times n}$ 为所有实 n 阶方阵构成的集合. 证明: 任取 T 中两元: (X,Y) 和 (M,N) 必有 $XN+Y^TM^T\neq 0$

得 分	
阅卷人	

存在,求A,B

五、(本题 15 分) 设 $f(x) = \arctan x$, A 为常数. 若

$$B = \lim_{n \to \infty} \left(\sum_{k=1}^{n} f\left(\frac{k}{n}\right) - An \right)$$

得 分	
阅卷人	

六、 (本题 20 分) 设 $f(x) = 1 - x^2 + x^3$ $(x \in [0,1])$, 计算以下极限并说明理由

$$\lim_{n\to\infty} \frac{\int_0^1 f^n(x) \ln(x+2) \, \mathrm{d}x}{\int_0^1 f^n(x) \, \mathrm{d}x}$$