Система оценивания проверочной работы

Оценивание отдельных заданий

Номер задания	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	Итого
Баллы	1	1	1	1	1	2	1	2	1	1	1	1	1	1	2	2	1	2	2	25

Ответы

Номер задания	Правильный ответ
1	4
2	-7; -1,5
3	12
5	_5
7	20
9	3,2
10	0,2
11	38
13	106
14	12

Решения и указания к оцениванию

В качестве верного следует засчитать любой ответ, где число x лежит между числами a и b.

/		`
/	_	
(h	
\	v	
\		-

Решение и указания к оцениванию	Баллы
Решение.	
Утром люди едут на общественном и личном транспорте на работу. Видимо, большинство едет к 10 утра, поэтому в районе 9 утра «пробки» на дорогах значительные. Вечером люди возвращаются с работы, и снова загруженность дорог возрастает. Обычно именно после работы они заезжают по делам или в магазин, и на это уходит некоторое время. Поэтому вечерний «всплеск» шире. Следует принять в качестве верного любое рассуждение с правдоподобными	
объяснениями особенностей диаграммы	
Имеется рассуждение, в котором делаются правдоподобные предположения о причинах двух «всплесков», дано правдоподобное объяснение того, почему второй «всплеск» шире	2
В решении присутствует утверждение о том, что утренний и вечерний «всплески» связаны с поездками на работу и с работы, но отсутствует объяснение того, почему вечерний «всплеск» шире утреннего	1
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	2

Ответ и указания к оцениванию			
Ответ:			
$\sqrt{166}$			
7 8 9 10 11 12 13 14			
Точка расположена в своём промежутке с целыми концами, учтено положение точки относительно середины отрезка	2		
Точка расположена в своём промежутке с целыми концами, но положение точки относительно середины отрезка неверное	1		
Решение не соответствует ни одному из критериев, перечисленных выше	0		
Максимальный балл	2		

(12)

Ответ: 45.

/		
/	_	_
(1	5
\	1	J

Решение и указания к оцениванию	Баллы
Решение.	
В прямоугольном треугольнике C_1DE $C_1D = AD: 2 = 8$, $DE + EC_1 = 16$.	
По теореме Пифагора, $EC_1^2 = C_1D^2 + DE^2$, а поскольку $EC_1 = 16 - DE$, получаем,	
что	
$(16 - DE)^2 = DE^2 + 64,$	
$256 - 32DE + DE^2 = DE^2 + 64,$	
откуда $DE = 6$.	
Возможна другая последовательность действий и рассуждений.	
Ответ: 6 см	
Проведены все необходимые рассуждения, получен верный ответ	2
Проведены все необходимые рассуждения, но допущена одна арифметическая	1
ошибка	
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	2

(16)

			Ответ и	указания	к оцениван	ию		Баллы					
O	гвет:												
1)	Нидерланд	ы;											
2)		T											
	Команда	Гр	упповой эт	гап		Плей-офф							
	Команда	1-я игра	2-я игра	3-я игра	1/8 финала	1/4 финала	1/2 финала						
	Бразилия	3	0	4	1	2	1						
В	ерно выпол	нено задан	ие 1, в зад	цании 2 таб	блица заполн	ена с учётом	всех сведений,	2					
ПС	лученных и	из текста						2					
Верно выполнено одно из заданий							1						
Pe	Решение не соответствует ни одному из критериев, перечисленных выше												
		-			Максимальный балл								

Решение и указания к оцениванию	Баллы
Решение. В С	
Углы <i>BCA</i> и <i>CAD</i> равны как накрест лежащие при параллельных прямых	
ВС и АД и секущей АС, АС —	
биссектриса угла ВАД, следовательно,	
$\angle BCA = \angle CAD = \angle BAC.$ A H D	
$\frac{1}{2}$ Значит, треугольник $\frac{ABC}{C}$	
равнобедренный и $AB = BC = 3\sqrt{2}$.	
Проведём высоту BH (см. рис.). Из прямоугольного треугольника ABH находим $BH = 3$. Значит, $CD = BH = 3$.	
BH = 3. Значит, $CD = BH = 3$. Из прямоугольного треугольника CBD находим:	
$BD^{2} = BC^{2} + CD^{2} = 3^{2} \cdot 2 + 3^{2} = 3^{2} \cdot 3, \ BD = 3\sqrt{3}.$	
Допускается другая последовательность действий и рассуждений,	
обоснованно приводящая к верному ответу.	
Otbet: $3\sqrt{3}$	
Обоснованно получен верный ответ	1
Решение неверно или отсутствует	0
Максимальный балл	1

(18)

Решение и указания к оцениванию	Баллы
Решение.	
Пусть скорость катера в неподвижной воде равна v км/ч, тогда:	
$\frac{40}{v+5} + \frac{30}{v-5} = 5,$	
$\frac{1}{v+5} + \frac{1}{v-5} = 3$	
$40v - 200 + 30v + 150 = 5v^2 - 125,$	
$v^2 - 14v - 15 = 0,$	
откуда $v_1 = 15$, $v_2 = -1$.	
Условию задачи удовлетворяет $v_1 = 15$.	
Допускается другая последовательность действий и рассуждений,	
обоснованно приводящая к верному ответу.	
Ответ: 15 км/ч	
Обоснованно получен верный ответ	2
Проведены все необходимые рассуждения, но допущена одна арифметическая	1
ошибка	1
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	2

Решение и указания к оцениванию	Баллы		
Решение.			
Докажем, что среди написанных чисел есть одинаковые. Действительно, если все			
написанные числа разные, то различных попарных сумм должно быть не менее			
четырёх, например, суммы одного числа с четырьмя остальными. Значит, среди			
попарных сумм есть суммы двух одинаковых натуральных чисел. Такая сумма			
должна быть чётной, в нашем списке это число 88. Отсюда следует, что среди			
написанных есть число 44 и оно написано не меньше двух раз.			
Одинаковых чисел, отличных от 44, быть не может, иначе среди попарных сумм			
было бы ещё одно чётное число.			
Обозначим одно из трёх оставшихся чисел буквой x , тогда среди попарных сумм			
есть число $44 + x$, значит, x равно либо $99 - 44 = 55$, либо $77 - 44 = 33$.			
Наборы 44, 44, 44, 44, 55 и 44, 44, 44, 44, 33 нам не подходят, так как в них всего			
две различные попарные суммы. Значит, был написан набор 44, 44, 44, 33, 55.			
Таким образом, наибольшее число — это 55.			
• ,			
Возможна другая последовательность действий и рассуждений.			
Ответ: 55			
Обоснованно получен верный ответ	2		
Найден верный набор пяти натуральных чисел, но при этом ответ	1		
на поставленный вопрос неверный или отсутствует	1		
Решение не соответствует ни одному из критериев, перечисленных выше	0		
Максимальный балл	2		

Система оценивания выполнения всей работы

Максимальный первичный балл за выполнение работы — 25.

Рекомендуемая таблица перевода баллов в отметки по пятибалльной шкале

Отметка по пятибалльной шкале	«2»	«3»	«4»	«5»
Первичные баллы	0–7	8–14	15–20	21–25