# LDA, Decision Trees, and Extra Trees on the MNIST and Yale B Datasets

Kudiyar Orazymbetov, Nico Casale

NCSU

2017/04/23

#### outline

- 1 datasets
- 2 decision trees
- 3 extra trees
- 4 linear discriminant analysis (LDA)
- 5 results
- 6 conclusion

#### datasets

Modified Nat'l Institute of Standards and Technology (MNIST) database

- o source: Yann LeCun et al. [1]
- o 70k 28x28 images of handwritten digits (0-9)



Yale Exended Face Database B

- o source: Yale University [2]
- o 2414 32x32 images of 38 subjects



- 1 datasets
- 2 decision trees
- 3 extra trees
- 4 linear discriminant analysis (LDA)
- 5 results
- 6 conclusion

# decision trees



features generated with LDA

# training decision trees

#### recursive training algorithm [3] :

- 1. check stopping conditions
  - no more features
  - set is smaller than minLeaf
  - all samples in the same class
  - no feature improves information gain (IG)
- 2. iterate over each available feature, perform a line search to approximate the highest IG
- 3. recur over the subsets given by splitting at the feature and threshold with the highest IG

$$IG(X) = H(X) - \sum_{i=1}^{2} \frac{|S_i|}{|X|} H(S_i)$$
 (1)

$$H(X) = -\sum_{i=1}^{n} P(x_i) \log_2 P(x_i)$$
(2)

- 1 datasets
- 2 decision trees
- 3 extra trees
- 4 linear discriminant analysis (LDA)
- 5 results
- 6 conclusion

# extremely randomized (extra) trees

recursive, random training algorithm [4]:

- 1. check stopping conditions
  - no more features
  - set is smaller than minLeaf
  - all samples in the same class
- 2. choose random feature. simply use the raw pixels as features
- 3. find the mean and variance of this feature across the set. generate a random value from a *normal distribution* with this mean and variance
- recur on the subsets obtained by splitting the parent set on the randomly chosen feature and threshold

ensemble of random trees votes on test data to build extra-tree classifier

- 1 datasets
- 2 decision trees
- 3 extra trees
- 4 linear discriminant analysis (LDA)
- 5 results
- 6 conclusion

# LDA - dimension reduction

#### Steps:

1. within-class scatter matrix for each class

$$\Sigma_i = \frac{1}{N_i - 1} \sum_{\mathbf{x} \in D_i}^{n} (\mathbf{x} - \boldsymbol{\mu}_i) (\mathbf{x} - \boldsymbol{\mu}_i)^T$$
(3)

then sum them to obtain

$$\Sigma_W = \sum_{i=1}^n (N_i - 1) \Sigma_i \tag{4}$$

2. between-class scatter matrix

$$\Sigma_B = \sum_{i=1}^n \frac{N_i}{N} (\boldsymbol{\mu}_i - \boldsymbol{\mu}) (\boldsymbol{\mu}_i - \boldsymbol{\mu})^T$$
 (5)

- 3. find eigenvectors and eigenvalues of  $\Sigma^{-1}\Sigma_b$
- 4. using the eigenvectors we transform our data onto a new subspace

### LDA - classification

#### Assumptions:

- o we assume normality for each independent variable
- homogeneity of variance/covariance
- o independence between samples

#### Classification steps:

o for each class  $\mu_i$ , we compute

$$f_i(x_k) = \mu_i w_a^{-1} x_k^T - \frac{1}{2} \mu_i w_a^{-1} \mu_i^T + \ln(P_i)$$
 (6)

• we classify it to the class with  $\max(f_i(x_k))$ 

- 1 datasets
- 2 decision trees
- 3 extra trees
- 4 linear discriminant analysis (LDA)
- 5 results
- 6 conclusion

## results

#### best performance

| algorithm     | MNIST | Yale B |
|---------------|-------|--------|
| LDA           | 13.5% | 6.8%   |
| decision tree | 16.6% | 57.9%  |
| extra-trees   | 4.9%  | 34%    |

#### 5-fold cross-validated performance

| algorithm     | MNIST | Yale B |
|---------------|-------|--------|
| LDA           | 14.5% | 2.5%   |
| decision Tree | 17.9% | 74.9%  |
| extra-trees   | 5.4%  | 36.3%  |

#### conclusion

- o intuition needed for feature generation
- o choice of algorithm depends on
  - type of data
  - time available
  - accuracy needed
- future work
  - alternative features
  - parallelize algorithms

#### references

- Yann LeCun and Corinna Cortes.

  MNIST handwritten digit database.

  2010.
- Yale face database b.
  - Wikipedia contributors.
     C4.5 algorithm wikipedia, the free encyclopedia, 2018.
     [Online; accessed 14-March-2018].
- Wikipedia contributors.

  Random forest Wikipedia, the free encyclopedia, 2018.

  [Online; accessed 23-April-2018].

# than Rs!