

NINJA Loans, cont'd

- Bankers discovered that, rather than lending money to house buyers and waiting to be repaid, they could instead sell the debt to someone else as a "mortgage-backed security."
- Since getting repaid by the borrower was no longer the bank's problem, banks relaxed their lending standards so that even people with no regular job or income could qualify for a loan.
- These loans became known as "No Income, No Job, and no Assets," or NINJA, loans.

NINJA Loans, cont'd

- Unfortunately, though perhaps not surprisingly, it turned out that many of the NINJA borrowers were not able to keep up their mortgage payments and defaulted on their loans.
- It became clear that the acronym NINJA was particularly appropriate, since, like a ninja, the borrowers were stealthily vanishing.
- A large number of repossessed houses now appeared on the market.
- As a result of this oversupply, house prices dropped dramatically.

NINJA Loans, cont'd

- Many of the borrowers now found that the amount they still owed on their house was more than the house's market value, an undesirable condition known as being "underwater."
- This crisis then spread to the rest of the economy, creating the crash of 2008.

Learning Objectives

- Equivalent uniform annual cost (EUAC)
 - Resolve any series of cash flows into its annual cash flow equivalent
 - Use *annual costs* to compare alternatives with equal, common multiple, or continuous lives, or over some fixed study period
 - This is an alternative way to analyze a set of costs and revenues or cost savings
 - Sometimes it's easier to grasp numbers in annual terms rather than totals, and easier to compare them with other annual numbers
- Add another element to our analysis: salvage value
- How mortgages work

Key Summary: Course to date and coming soon

- Variables and parameters (puzzle pieces):
 - Different kinds of interest rates
 - Discount rates
 - Costs and cost savings or revenues, now and in the future
 - Different expected lives of the possible project/purchases
 - Salvage value
 - Taxes and tax savings
 - How these escalate
- Analysis methods (ways to put the pieces together):
 - Present worth analysis
 - Equivalent uniform annual cost analysis
 - Rate of return analysis
 - Benefit-cost ratio analysis
 - Payback period
 - Cost-effectiveness analysis

Annual Cash Flow Calculations: Equivalent Uniform Annual Cost Analysis

- The objective is to compare alternatives based on annual cash flows.
- This requires converting present values and one-time values on the timeline to their equivalent uniform annual costs (EUAC).
 - Using annual worth factors: F
 - For example: A = P(A/P, i%, 4)

• EUAC is also known as the "capital recovery cost" of a project: you buy capital, and need a stream of savings to pay for it.

Equivalent Uniform Annual Cost Analysis, cont'd

See Excel example. Several possible ways to solve this.

EXAMPLE 6-1

A student bought \$1,000 worth of home furniture. If it is expected to last 10 years, what will the equivalent uniform annual cost be if interest is 7%? (The student might, for example, need this information in order to compare the annual lease costs of a furnished versus an unfurnished apartment.)

SOLUTION

Equivalent uniform annual cost = P(A/P, i, n)= 1,000(A/P, 7%, 10) = \$142.40

Treatment of Salvage Value

• When there is a salvage value at the end of the life of an asset, it is represented as a one-time cash flow benefit (revenue) at the end of the asset's life

Example: Salvage value (S) of asset with a four-year life

- Salvage value is included in nearly all analysis methods.
- When salvage value exists, it lowers the equivalent uniform annual cost.

Adding Salvage Value to EUAC analysis

 When there is an initial cost (P) followed by a salvage value (S) the equivalent uniform annual worth (EUAC) can be computed by:

• EUAC = P(A/P, i, n) - S(A/F, i, n)

Or, equivalently:

• EUAC = (P - S)(A/F, i, n) + Pi

Or, equivalently:

• EUAC = (P - S)(A/P, i, n) + Si

The first is the most common formula (and perhaps the most intuitive).

Adding Salvage Value to EUAC analysis, cont'd

- Direct relationship exists between present worth cost and equivalent uniform cost:
 - EUAC = PW Cost(A/P, i, n)
 - Expenditure of money increases EUAC, whereas receipt of money decreases EUAC.
 - Direct relationship also exists between an arithmetic gradient and its equivalent uniform annual cost, using the factor (A/G, i, n)

Adding Salvage Value to EUAC analysis, cont'd

See Excel example. A couple possible ways to solve

EXAMPLE 6-2

The student in Example 6-1 now believes the furniture can be sold at the end of 10 years for \$200. Under these circumstances, what is the equivalent uniform annual cost?

SOLUTION

For this situation, the problem may be solved by any of three different calculations.

SOLUTION 1

$$\begin{aligned} \text{EUAC} &= P(A/P, i, n) - S(A/F, i, n) \\ &= 1,000(A/P, 7\%, 10) - 200(A/F, 7\%, 10) \\ &= 1,000(0.1424) - 200(0.0724) \\ &= 142.40 - 14.48 = \$127.92 \\ &\text{EUAC} &= \text{PMT}(i, n, P, F) \\ &= \text{PMT}(7\%, 10, -1000, 200) \\ &= \$127.90 \end{aligned}$$

Adding Salvage Value to EUAC analysis, cont'd

SOLUTION 2

Equation 6-1 describes a relationship that may be modified by an identity presented in Chapter 4:

$$(A/P, i, n) = (A/F, i, n) + i$$
 (6-2)

Substituting this into Equation 6-1 gives

EUAC =
$$P(A/F, i, n) + Pi - S(A/F, i, n)$$

= $(P - S)(A/F, i, n) + Pi$
= $(1,000 - 200)(A/F, 7\%, 10) + 1,000(0.07)$
= $800(0.0724) + 70 = 57.92 + 70$
= $$127.92$

This method computes the equivalent annual cost due to the unrecovered \$800 when the furniture is sold, and it adds annual interest on the \$1,000 investment.

SOLUTION 3

If the value for (A/F, i, n) from Equation 6-2 is substituted into Equation 6-1, we obtain

$$\begin{aligned} \text{EUAC} &= P(A/P, i, n) - S(A/P, i, n) + Si \\ &= (P - S)(A/P, i, n) + Si \\ &= (1,000 - 200)(A/P, 7\%, 10) + 200(0.07) \\ &= 800(0.1424) + 14 = 113.92 + 14 = \$127.92 \end{aligned} \tag{6-4}$$

Example 6-3

Betty owned a car for five years. One day she wondered what her uniform annual cost for maintenance and repairs had been (ed: as one does...) She assembled the following data:

Year	Maintenance and Repair Cost for Year
1	\$45
2	90
3	180
4	135
5	225

Switch to Excel examples.

Compute the equivalent uniform annual cost (EUAC), assuming 7% interest and end-of-year disbursements.

Cash Flow Calculations: Problem 1

• A university student looking for new tires has located the following alternatives:

Expected Tire Life	Price/Tire
12 Months	\$30.95
24 Months	\$44.95
36 Months	\$53.95
48 Months	\$59.95

If she figures that money is worth 12%, which tires should she choose?

Cash Flow Calculations: Problem 1, cont'd

$$EUAC = P\left[\frac{i(1+i)^n}{(1+i)^n - 1}\right]$$

Notice that this is the same formula we used earlier: EUAC just replaced 'A', the annual uniform payment.

Solution

EUAC (12 month tire) =
$$$30.95$$
 (A/P, 12%, 1) = $$34.66$

EUAC (24 month tire) =
$$$44.95$$
 (A/P, 12%, 2) = $$26.60$

EUAC (36 month tire) =
$$$53.95$$
 (A/P, 12%, 3) = $$22.46$

EUAC (48 month tire) =
$$$59.95$$
 (A/P, 12%, 4) = $$19.74$

Choose the 48 Month Tire for lowest annual costs among these options.

Annual Cash Flow Analysis

- Just like in other analysis methods, differences are most important for choosing among alternatives.
 When comparing alternatives, we can always ignore any cash flows common to each alternative.
- So:
- Conversely:

Annual Cash Flow Analysis: Problem 2

• The following data are available for three different alternatives:

	Alternative A	Alternative B	Alternative C
Initial Cost	\$1000	\$1500	\$2000
Uniform Annual Benefits	\$200	\$276.20	\$654.80
Useful Life in Years		20	5
Interest Rate	15%	15%	15%

• Alternatives B and C are replaced at the end of their useful lives with identical replacements. Using annual cash flow analysis find the most attractive alternative.

Annual Cash Flow Analysis: Problem 2

Switch to Excel example

Annual Cash Flow Analysis: Problem 2, cont'd

(Solution summary as described and calculated in Excel)

Solution

Alternative A

EUAB - EUAC = 200 - 1000(0.15) = \$50

Alternative B

EUAB - EUAC = 276.2 - 1500(A/P, 15%, 20) = 276.2 - 1500(0.1598) = \$36.5

Alternative C

EUAB - EUAC = 654.8 - 2000(A/P, 15%, 5) = 654.8 - 2000(0.2983) = \$58.2

Choose Alternative C.

EUAC: Impact of Analysis Period

- Alternatives have equal lives.
 - If the lives are equal, the analysis period is based on the same lifetime.
- Alternatives have unequal lives.
 - If the lives are unequal, the analysis period is based on alternate lifetimes.
 - No correction is required as is necessary in present worth analysis (using lowest common multiple).
 - Multiples of service life are equivalent to one service life with annual worth analysis—therefore, it doesn't matter!

Example 6-5 in the textbook shows this to be the case.

Analysis Period, cont'd

Example 6-5:

Two possible pumps. Interest rate 7%

	Pump A	Pump B
Initial cost	\$7,000	\$5,000
Salvage value	\$1,500	\$1,000
Useful life (years)	12	6

Turn to Excel example for 6-5.

Analysis Period, cont'd

EXAMPLE 6-6

Pump B in Example 6-5 is now believed to have a nine-year useful life. Assuming the same initial cost and salvage value, compare it with Pump A, using the same 7% interest rate.

SOLUTION

If we assume that the need for A or B will exist for some continuing period, the comparison of costs per year for the unequal lives is an acceptable technique. For 12 years of Pump A:

EUAC = (7,000 - 1,500)(A/P, 7%, 12) + 1,500(0.07) = \$797

For nine years of Pump B:

EUAC = (5,000 - 1,000)(A/P, 7%, 9) + 1,000(0.07) = \$684

For minimum EUAC, choose Pump B.

Return to Excel example for 6-6.

Infinite Analysis Period

- Since multiples of finite service lives are equivalent to one service life, an infinite analysis of finite service lives yield:
 - EUAC_{infinite analysis period}= EUAC_{for limited life n}
- However, when an alternative with an infinite life is evaluated over an infinite analysis period:
 - EUAC_{infinite analysis period} = $P(A/P, i, \infty)$ + Any other annual costs
- When $n = \infty$, A = Pi, therefore:
 - EUAC_{infinite analysis period} = Pi + Any other annual costs

Infinite Analysis Period, cont'd

- The difference in annual cost between a long life and an infinite life is normally small, unless an unusually low interest rate is used.
- Example 6-7 demonstrates this:

Infinite Analysis Period, cont'd

See Excel example.

EXAMPLE 6-7

In the construction of an aqueduct to expand the water supply of a city, there are two alternatives for a particular portion of the aqueduct. Either a tunnel can be constructed through a mountain, or a pipeline can be laid to go around the mountain. If there is a permanent need for the aqueduct, should the tunnel or the pipeline be chosen for this particular portion of the aqueduct? Assume a 6% interest rate.

SOLUTION

	Tunnel through Mountain	Pipeline around Mountain
Initial cost	\$5.5 million	\$5 million
Maintenance	0	0
Useful life	Permanent	50 years
Salvage value	0	0

Tunnel

For the tunnel, with its permanent life, we want $(A/P, 6\%, \infty)$. For an infinite life, the capital recovery is simply the interest on the invested capital. So $(A/P, 6\%, \infty) = i$, and we write

EUAC = Pi = \$5.5 million(0.06) = \$330,000

Pipeline

EUAC = \$5 million(A/P, 6%, 50) = \$5 million(0.0634) = \$317,000

For fixed output, minimize EUAC. Choose the pipeline.

Analysis complexities

• Other costs and revenues, like the salvage value or operational and maintenance costs, may also need to be included, so – as always – make sure to include all relevant items.

Potential break point

Mortgages in Canada

- Although technically a **mortgage** is a legal document, most people use the word to mean a long-term amortized loan that is used for buying real property such as a house or land.
- If the mortgage payments are not made, the lender can take the property and sell it to recover the outstanding debt.

Mortgages in Canada, cont'd

- A mortgage document:
 - Outlines the terms and conditions for repaying the money borrowed: the amount borrowed, the interest rate, the first and last payment dates, the repayment period, and the date the balance is due (the renewal date or term).
 - Prepayment options and penalties may also be included.
- Amortization is the process of paying off a debt over time.
- Amortization period is the length of time it takes to pay off the mortgage assuming:
 - Payments are made on time with no additional payments
 - Interest rate doesn't change

Mortgages in Canada, cont'd

- Amortization periods are typically between 5 years and 40 years
 - Norms: 26-25 yrs CA, 15 130 YES US
- Terms
 - In Canada: Amort of mortgage made of smaller periods called terms. Term is period in which interest rt. term" is established Interest rates:
 - Interest rates: fixed for term or var.
 - At the end of the term:
- (an be renewed for another term a curr. intr rate.
- Rates
 - Interest rates are usually stated as the nominal annual rate, but are applied differently (more on this soon).

Building an Amortization Schedule

- An amortization schedule lists the following for each payment period:
 - · Loan payment
 - · Interest paid
 - · Principal Paid
 - · Remaining balance
- For each period the interest paid equals the interest rate times the balance remaining from the period before.
- Then, the principal payment equals the payment minus the interest paid.
- Finally, this principal payment is applied to the balance remaining from the preceding period to calculate the new remaining balance.

Mortgage Compounding Periods

- In the US and many other countries, effective annual rate is listed, and monthly equivalent can be calculated directly.
 - See Excel example 'mortgage ex 1'
- In Canada: rates are compounded semi-annually by law.
 - But payments are monthly (or biweekly), so lenders determine monthly interest rates that are equivalent to the semi-annual declared rate.
 - For example:
 - 6% rate quoted
 - Semi-annual rate = 6%/2 = 3%
 - Effective annual rate = $(1+6\%/2)^2 = 6.09\%$
 - Equivalent monthly rate = $(1+6.09\%)^{(1/12)} = 0.493862\%$
 - See also Excel example 'mortgage ex 2'

Types of Mortgages Available

- "Conventional":
 - · For 80% or less of the appraised value of the Property, and as such they sequire the purchaser to make a down payment of
- "High-ratio" mortgages:
- · Itigher than 80 % and usually require on outside agency such as the CMHC ((Central mortgage and housing corporation) to Some others:
- - Open, variable rate, ARM (adjustable rate morgage), capped rate, closed, Convertible (ate, second, reverse, CHIP-

Interest Rate Considerations

Fixed mortgage rates are influenced mainly by the bond market, starting with government-issued bonds (which set the tone for the market).

Interest Rate Considerations

 Variable mortgage rates are tied to lending rates that National banks (like the Bank of Canada or the Federal Reserve) set, for loaning money to financial institutions

•

Interest Rate Considerations

- Most people are risk averse: that means they would prefer less mortgage risk than more, all else the same.
- Fixed rates mean less uncertainty, which therefore usually cost more
- These markets can move in different directions, leading to variability in the gap between them

Equity

- Equity
 - The value remaining in a property after all mortgage and loans registered against the title are subtracted from its value.
 - Another way to say it: the amount you actually have paid off.
 - For example:
 Appraised value \$210,000
 minus mortgage \$150,000
 minus second mortgage \$25,000
 equals equity \$35,000