

Departamento de Matemática, Universidade de Aveiro

Cálculo II - Agrupamento II — 2.º Teste de Avaliação 22 de junho de 2017

Duração: 2h

[30pts]

- 1. Determine o integral geral da equação diferencial $y'' 6y' + 9y = \frac{2e^{3x}}{x}, \ x > 0.$
- 2. Considere a função 2π periódica f definida em $-\pi \le x < \pi$ por f(x) = x + |x|.

[10pts]

(a) Esboce o gráfico de f em $]-3\pi, 3\pi[$.

[30pts]

(b) Determine a série de Fourier de f e uma expressão analítica da respetiva soma.

[20pts]

3. (a) Mostre que $\mathcal{L}\{e^{2t}\cos(t)\}(s)=\frac{s-2}{s^2-4s+5}$ e indique o seu domínio.

[30pts]

(b) Utilize transformadas de Laplace para resolver o PVI

$$y'' - 2y' = e^{2t}\cos(t), \ y(0) = 0, \ y'(0) = 0.$$

4. Considere a série de potências $\sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n}}{n!}$.

[20pts]

(a) Determine o domínio de convergência da série.

[20pts]

(b) Justifique que a série de potências converge uniformemente em qualquer intervalo I fechado e limitado.

[25pts]

(c) A série de potências representa, em \mathbb{R} , a função f definida por $f(x) = e^{-x^2}$? Porquê? **Sugestão**: Tenha em consideração a série de MacLaurin de e^x , $x \in \mathbb{R}$.

[15pts]

(d) Indique, justificando, o valor de $f^{(1001)}(0)$.