No. Subcategory	Function Name	Arguments	Function Description	Example
1 Importing NumPy	np.array()		The `np.array()` function is used to create arrays from lists or other sequences.	array_1d = np.array([1, 2, 3, 4, 5])
Creating Arrays with Zeros	np.zeros()	shape: Tuple of integers representing the array's shape.	The `np.zeros()` function creates an array filled with zeros.	<pre>zero_array = np.zeros((2, 3)) # Creates a 2x3 array filled with zeros</pre>
Creating Arrays with Ones	np.ones()	shape: Tuple of integers representing the array's shape.	The `np.ones()` function creates an array filled with ones.	<pre>ones_array = np.ones((3, 2)) # Creates a 3x2 array filled with ones</pre>
4 Creating Arrays with a Range of Values	np.arange()	start: Starting value of the range, stop: End value, step: Interval between values.	The `np.arange()` function creates an array with values from a specified range.	<pre>range_array = np.arange(0, 10, 2) # Array of numbers from 0 to 10, step 2</pre>
Creating Arrays with Linearly Spaced Values	np.linspace()	start: Starting value, stop: End value, num: Number of samples to generate.	The `np.linspace()` function creates an array with specified number of values, linearly spaced.	<pre>linspace_array = np.linspace(0, 10, 5) # 5 numbers between 0 and 10</pre>
6 Creating Random Arrays	np.random.rand()	shape: Tuple indicating the shape of the random array.	The `np.random.rand()` function creates an array with random values between 0 and 1.	<pre>random_array = np.random.rand(2, 3) # 2x3 array with random values</pre>
7 Creating Random Integers	•	low: Lower bound, high: Upper bound, size: Shape of the random integers array.	The `np.random.randint()` function generates random integers within a specified range.	<pre>random_int_array = np.random.randint(0, 10, (2, 3)) # Random integers between 0 and 10, shape 2x3</pre>
8 Changing the Shape of an Array	np.reshape()	shape: Tuple representing the new shape.	The `np.reshape()` function changes the shape of an existing array.	reshaped_array = np.arange(9).reshape(3, 3) # Reshapes a 1D array into a 3x3 array
9 Concatenating Arrays	np.concatenate()	arrays: Tuple of arrays to join, axis: Axis along which to concatenate.	The `np.concatenate()` function combines two or more arrays along a specified axis.	<pre>concatenated_array = np.concatenate((array_1, array_2))</pre>
Stacking Arrays Vertically	np.vstack()	arrays: Tuple of arrays to stack vertically.	The `np.vstack()` function stacks arrays vertically (rowwise).	stacked_array = np.vstack((array_1, array_2))
Stacking Arrays Horizontally	np.hstack()	arrays: Tuple of arrays to stack horizontally.	The `np.hstack()` function stacks arrays horizontally (column-wise).	stacked_array = np.hstack((array_1, array_2))
Summing Array Elements	np.sum()	array: Array-like, axis: Axis along which the sum is computed.	The `np.sum()` function computes the sum of array elements along a specified axis.	<pre>sum_array = np.sum(array, axis=0) # Sum along columns</pre>
13 Calculating the Mean	np.mean()	array: Array-like.	The `np.mean()` function calculates the mean of array elements.	mean_value = np.mean(array)
14 Calculating the Median	np.median()	array: Array-like.	The `np.median()` function computes the median of array elements.	median_value = np.median(array)
Calculating the Standard Deviation	np.std()	array: Array-like.	The `np.std()` function calculates the standard deviation.	std_dev = np.std(array)
Finding the Minimum and Maximum	np.min(), np.max()	array: Array-like.	The `np.min()` and `np.max()` functions return the minimum and maximum values of the array, respectively.	<pre>min_value = np.min(array), max_value = np.max(array)</pre>
17 Indices of Minimum and Maximum	np.argmin(), np.argmax()	array: Array-like.	The `np.argmin()` and `np.argmax()` functions return the indices of the minimum and maximum values, respectively.	<pre>min_index = np.argmin(array), max_index = np.argmax(array)</pre>

18	Sorting Arrays	np.sort()	array: Array-like, axis: Axis along which to sort.	The `np.sort()` function sorts an array in ascending order.	<pre>sorted_array = np.sort(array, axis=None)</pre>
19	Finding Unique Elements	np.unique()	array: Array-like.	The `np.unique()` function finds unique elements of an array.	unique_array = np.unique(array)
20	Dot Product of Arrays	np.dot()	array_1, array_2: Arrays to compute dot product.	The `np.dot()` function computes the dot product of two arrays.	<pre>dot_product = np.dot(array_1, array_2)</pre>
21	Cross Product of Arrays	np.cross()	array_1, array_2: Arrays to compute cross product.	The `np.cross()` function computes the cross product of two arrays.	<pre>cross_product = np.cross(array_1, array_2)</pre>
22	Matrix Inversion	np.linalg.inv()	matrix: Square matrix to compute the inverse.	The `np.linalg.inv()` function computes the inverse of a matrix.	<pre>inverse_matrix = np.linalg.inv(matrix)</pre>
23	Eigenvalues and Eigenvectors	Inn.linalg.elg()	matrix: Square matrix to compute eigenvalues and eigenvectors.		<pre>eigenvalues, eigenvectors = np.linalg.eig(matrix)</pre>