Chemical Kinetics (Chapter 14)

10¹⁵ s (30 million years)

- 1. Factors affecting reaction rates.
- 2. Reaction rate law and order.
- 3. First-order and second-order reactions.
- 4. Half life of a reaction.
- 5. Arrhenius equation.
- 6. Effects of catalyst.

Why do we study kinetics?

- Provides the rate at which a chemical process occurs.
- Gives information on reaction mechanism the detailed steps occur at molecular level when the reactants are turned into products.

Factors That Affect Reaction Rates

- Reaction occurs when the reactant molecules have sufficient energy and come in contact (or collide).
- 1. Physical State of the Reactants
 - > The more homogeneous the mixture of reactants, the faster the molecules can react.
 - ➤ When the reactants are in different phases, the reaction rate is limited by the contact area.

e.g., Mixing, stirring and making the sugar in a powder help to dissolve sugar in beverage.

3

2. Concentration of Reactants

> As the concentration / pressure of reactants increases, the number of collisions among reactant molecules increases.

Steel wool heated in air (about 20% O₂) glows red-hot but oxidizes to Fe₂O₃ slowly

Red-hot steel wool in 100% O₂ burns vigorously, forming Fe₂O₃ quickly

3. Temperature

> At a higher temperature, reactant molecules have more kinetic energy, move faster, and collide more often and with a greater energy.

Higher temperature increase the rate of chemiluminscence in light sticks.

4. Presence of a Catalyst

- > Catalysts speed up reactions by providing alternative reaction pathway with lower activation energy.
- > Catalysts are not consumed during the course of the reaction.

Reaction Rates

It is the **change** in concentration of either reactants or products as a function of time.

Consider a reaction:
$$A \to B$$
 change Rate of disappearance of $A = -\frac{\Delta[A]}{\Delta t}$ Rate of appearance of $B = +\frac{\Delta[B]}{\Delta t}$

[M/s] Rate =
$$-\frac{\Delta[A]}{\Delta t} = +\frac{\Delta[B]}{\Delta t}$$
 [s]

Reaction: $A \rightarrow B$

Rate =
$$-\frac{\Delta[A]}{\Delta t}$$
 = $+\frac{\Delta[B]}{\Delta t}$

t	[A]	[B]	Rate
0	1.00	0.00	L _{0.022}
20	0.54	0.46	0.023
40	0.30	0.70 _	-0.023 -0.012

By convention, rates are always expressed as positive quantities.

Time (s)

- Note that the average rate decreases as the reaction proceeds.
- This is because as the reaction goes forward, there are fewer collisions between reactant molecules A. 7

Instantaneous Reaction Rate

 $C_4H_0Cl(aq) + H_2O(l) \longrightarrow C_4H_0OH(aq) + HCl(aq)$

Time, t(s)	[C ₄ H ₉ C1] (M)	Average Rate (M/s)	0.100	Instantaneous	
0.0	0.1000	4040-4	0.090	rate at $t = 0$	
50.0	0.0905	1.9×10^{-4}	.080	(initial rate)	
100.0	0.0820	1.7×10^{-4}		1	
150.0	0.0741	1.6×10^{-4}	0.070		
200.0	0.0671	1.4×10^{-4}	€ 0.060		
300.0	0.0549	1.22×10^{-4}	0.060 (W) 0.050 0.050 O.040 (D) 0.040		
400.0	0.0448	1.01×10^{-4}	0.050 H [‡]		Instantaneous
500.0	0.0368	0.80×10^{-4}	<u>U</u> 0.040	5	rate at $t = 600 \text{ s}$
800.0	0.0200	$>> 0.560 \times 10^{-4}$	0.030	[C4H,CI]	
10,000	0		0.000	D C	
D - 4 -		4 - 41 -	0.020		Δt
Kate	is the slope	e to tne	0.010		Δι
tang	ent to the c	IIPVA	0 100	0 200 300 400 5	00 600 700 800

- tangent to the curve.
- All reactions slow down over time.
- Therefore, the best indicator of reaction rate is the instantaneous rate at time ≈ 0 (initial).

Reaction Rates and Stoichiometry

For a reaction:
$$\mathbf{A} \to \mathbf{B}$$
 \mathbf{R} ate $= -\frac{\Delta[\mathbf{A}]}{\Delta t} = \frac{\Delta[\mathbf{B}]}{\Delta t}$

For a reaction: 2A
$$\rightarrow$$
 B Rate = $-\frac{1}{2} \frac{\Delta[A]}{\Delta t} = \frac{\Delta[B]}{\Delta t}$ (2 moles of A react to form 1 mole of B.)

To generalize, for the reaction $aA + bB \rightarrow cC + dD$

Rate =
$$-\frac{1}{a} \frac{\Delta[A]}{\Delta t} = -\frac{1}{b} \frac{\Delta[B]}{\Delta t} = \frac{1}{c} \frac{\Delta[C]}{\Delta t} = \frac{1}{d} \frac{\Delta[D]}{\Delta t}$$

Reaction Rate and Rate Law

- The rate law shows the relationship between the reaction rate and the concentrations of reactants.
- The rate law for the reaction $aA + bB \rightarrow cC + dD$ has a general form of :

(Initial) Rate =
$$k[A]^m[B]^n$$

where *k* is the rate constant (temperature dependent). *m* and *n* are the respective reaction orders with respect to A and B.

Reaction Rate Order

• The reaction orders m and n depend on reaction mechanism, they must be experimentally determined and are not related to a and b.

For example:

$$2 N2O5 \rightarrow 4 NO2 (g) + O2 (g) Rate = k[N2O5]$$

$$CHCl3 (g) + Cl2 (g) \rightarrow CCl4 (g) + HCl (g) Rate = k[CHCl3][Cl2]1/2$$

In most rate laws, reaction order are 0, 1 and 2. We occasionally encounter rate law in which the reaction order is fractional or negative.

11

Reaction Rate Order

Given a reaction $aA + bB \rightarrow cC + dD$:

Rate law	The reaction is	Overall reaction order	
$k[A]^{1}[B]^{1}$	first-order in A and first-order in B	2 (bimolecular)	
$k[A]^{1}$	first-order in A and zero-order in B	1 (unimolecular)	
$k[A]^2[B]^3$	second-order in A and third-order in B	5	

Unimolecular: [A] is doubled \Rightarrow rate is doubled.

Bimolecular: [A] & [B] are doubled \Rightarrow rate is increased by 4¹times.

First-order Reaction

• The reaction rate has first-order dependence on the concentration of the reactant:

Rate =
$$-\frac{\Delta[A]}{\Delta t} = k[A]$$

$$-\frac{d[A]}{dt} = k[A]$$

$$\frac{d[A]}{[A]} = -kdt$$

$$\int_{[A]_0}^{[A]_t} \frac{d[A]}{[A]} = -k \int_0^t dt$$

$$\ln[A]_t - \ln[A]_a = -kt$$

or
$$\ln \frac{[A]_t}{[A]_o} = -kt$$

where $[A]_0$ is the initial conc. of A.

13

Example: First-order reaction

 $CH_3NC \rightarrow CH_3CN$ methyl isonitrile acetonitrile

Plot of P vs. t

Plot of ln(P) vs. t

1st-order reaction gives a straight line in ln(*P*) vs. *t* plot:

$$\ln P = \ln P_o - kt_{14}$$

Exercise: The initial rate of a reaction $A + B \rightarrow C$ was measured for several different starting concentrations of A and B, and the results are as follows:

Experiment Number	[A] (M)	[B] (M)	Initial Rate (M/s)
1	0.100	0.100	4.0×10^{-5}
2	0.100	0.200	4.0×10^{-5}
3	0.200	0.100	16.0×10^{-5}

Determine the rate law for this reaction.

15

Experiment Number	[A] (M)	[B] (M)	Initial Rate (M/s)
1	0.100	0.100	4.0×10^{-5}
2	0.100	0.200	4.0×10^{-5}
3	0.200	0.100	16.0×10^{-5}

Second-order Reaction

The reaction rate has second-order dependence on the concentration of the reactant:

Rate =
$$-\frac{\Delta[A]}{\Delta t} = k[A]^2$$

$$-\frac{d[A]}{dt} = k[A]^2$$

$$\frac{d[A]}{[A]^2} = -kdt$$

$$\int_{[A]_0}^{[A]_t} \frac{d[A]}{[A]^2} = -k \int_0^t dt$$

$$-\frac{1}{[A]_t} + \frac{1}{[A]_0} = -kt$$

$$\frac{1}{[A]_t} = \frac{1}{[A]_0} + kt$$
where $[A]_0$ is the initial conc. of A.

$$-\frac{1}{[A]_t} + \frac{1}{[A]_0} = -kt$$

$$\frac{1}{[A]_t} = \frac{1}{[A]_0} + kt$$

Example: Second-order reaction

Decomposition reaction: $NO_2(g) \rightarrow NO(g) + \frac{1}{2} O_2(g)$

Time (s)	$[NO_2](M)$	ln[NO ₂]	1/[NO ₂]
0.0	0.01000	-4.610	100
50.0	0.00787	-4.845	127
100.0	0.00649	-5.038	154
200.0	0.00481	-5.337	208
300.0	0.00380	-5.573	263

A plot of 1/[A] vs. tyield a straight line and the slope is k.

18

Zero-order vs. First-order

 The reaction rate has no dependence on the concentration of the reactant.

Rate =
$$-\frac{\Delta[A]}{\Delta t} = k$$

$$d[A] = -kdt$$

$$[A]_t = [A]_o - kt$$

Exponential decay for a 1st-order reaction:

$$[A]_t = [A]_o e^{-kt}$$

19

Half-life of a reaction

• Defined as the time $(t_{1/2})$ required for the concentration of reactant to decrease by half.

1st-order:
$$\ln \frac{[A]_t}{[A]_o} = -kt$$

$$[A]_{t} = \frac{1}{2}[A]_{0}$$

$$\Rightarrow \ln(\frac{1}{2}) = -kt_{1/2}$$

$$t_{1/2} = \frac{\ln 2}{k}$$

 $t_{1/2}$ is a constant and independent of initial concentration.

2nd-order:
$$\frac{1}{[A]_t} = \frac{1}{[A]_0} + kt$$

1st-order:
$$\ln \frac{[A]_t}{[A]_o} = -kt$$

$$|A|_t = \frac{1}{2}[A]_0$$

$$\Rightarrow \ln(\frac{1}{2}) = -kt_{1/2}$$

$$|A|_t = \frac{1}{2}[A]_0$$

$$\Rightarrow \ln(\frac{1}{2}) = -kt_{1/2}$$

$$|A|_t = \frac{1}{2}[A]_0$$

$$\Rightarrow \frac{1}{[A]_t} = \frac{1}{[A]_0} + kt_{1/2}$$

$$t_{1/2} = \frac{\ln 2}{k}$$

$$t_{1/2} = \frac{1}{k[A]_0}$$

 $t_{1/2}$ is dependent on initial concentration.

Determination of k by measuring $t_{1/2}$

 $CH_3NC \rightarrow CH_3CN$ methyl isonitrile acetonitrile

By plotting P vs. t, the half life for this reaction is determined to be $\approx 13,000$ seconds.

21

Carbon dating and half-life

- Carbon dating is used to estimate the age of dead animal or plant.
- Radioactive decay: ${}^{14}_{6}C \rightarrow {}^{14}_{7}N + electron$
- The $t_{1/2}$ for this radioactive decay of carbon-14 is \approx 5730 years.
- A living matter has a constant level of ¹⁴C, but its ¹⁴C amount keeps decreasing for a dead matter.

By measuring the ¹⁴C level, the age of a dead tree trunk can be estimated.

Arrhenius equation

Svante Arrhenius proposed a mathematical relationship between k, E_a and T:

$$k = A e^{-\frac{E_a}{RT}} \qquad E_a \uparrow k \downarrow$$

where A is the frequency factor

Gas constant.

and E_a is the activation energy of the reaction.

Alternative form:
$$\ln k = -\frac{E_a}{R} \frac{1}{T} + \ln A$$

$$y = mx + c$$

Measuring k at several T's allow us to determine E_a from the slope of a plot of $\ln k$ vs. 1/T.

Frequency factor (A)

- The frequency factor is related to
 - the frequency of the collisions;
 - the probability of the effective collisions that cause reactions.
- Reaction happens only if the reactants collide with each other.
- Molecules must collide with the proper orientation and with enough energy to make reactions happen.

Effective collision

For example: $Cl + NOCl \rightarrow NO + Cl_2$

Activation energy

• The minimum amount of energy required for reaction is the activation energy (E_a) .

Activation energy

Consider the following three energy profiles:

Assume all three reactions have similar frequency factors, the reaction rates rank from slowest to fastest:

$$k(2) \le k(3) \le k(1)$$
.

27

Effect of catalysts

- A catalysis is a substance that changes the speed of a chemical reaction without a permanent chemical/physical change itself.
- Catalysts increase the rate of a reaction by decreasing the activation energy of the reaction.
- Catalysts change the mechanism by which the process occurs.
- Catalysts (or enzyme) works for specific substrate.

28

Catalysts and activation energy

• Catalyst speed up a reaction by providing an alternative reaction pathway (blue) of lower E_a .

• Lowering the E_a means more molecules having energy above the E_a .

Heterogeneous catalyst: catalytic converter

- The exhaust gases of automobiles always contain some unburned CO, NO and C_xH_y , which are the air-pollutants.
- A catalytic converters is used to speed up the oxidations of these pollutants into harmless gases before exhausting into the environment.

Catalysts: CuO + Cr₂O₃

Reactants and catalyst are in different phases, the design is to maximize the surface area.