$$\dot{x} = Ax + bu$$

$$y = Cx + Du$$

nicht sprungfähiges (streng proper) System: Wenn D=0

Zusammenschaltung von Übertragungsfunktionen: S.24

Umwandeln der Matixdarstellung in die Übertragungsfunktion

$$G(s) = C(sI - A)^{-1}B + D$$

inverse einer Matrix:
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad-cb} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

inverse einer Matrix:
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad-cb} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$
Rosenbrock Systemmatrix:
$$\begin{bmatrix} sI - A & -B \\ C & D \end{bmatrix} \begin{bmatrix} X(s) \\ U(s) \end{bmatrix} = \begin{bmatrix} x_0 \\ Y(s) \end{bmatrix}$$

Pole und Nullstellen

- 1. Pole: Pole der einzelnen Elemente der Übertragungsmatrix Vielfachkeit: Minoren aufstellen: Jede einzelne mögliche Unterdeterminate daraus ergibt sich die Vielfachheit
- 2. Übertragungsnullstellen:

bei Quadratischen G(s): $det(G(z_i)) = 0$

bei nicht Quadratischen: $rang(G(z_i)) < \underbrace{max}_s rang(G(s))$ mit $\underbrace{max}_s rang(G(s))$: Miniumum aus An-

zahl der Spalten und Anzahl der Zeilen

- (a) können gleichen Wert wie Pole haben
- (b) nicht quadratische Übertragungsfkt. haben meist keine Übertragungsnullstellen
- (c) nicht sprungfähige Syteme mit gleichen Anzahl an Eingangs-, Zustands- und Ausgangsgrößen (n = q = r) haben keine ÜNS
- (d) Systeme mit quadratischen, nicht singulären B,C haben keine ÜNS
- (e) minimalphasig: Alle UNS haben negativen Realteil, sonst hat es Allpassverhalten

1

- 3. invarianten Nullstellen: mit Rosenbrockmatrix
 - (a) $det(R(\eta)) = 0$ für Quadratische
 - (b) $rang(R(\eta)) < \underbrace{max}_{s} rang(G(s))$

Es gibt i. A. mehr invariante Nullstellen als ÜNS

- (a) Eingangsendkopplungsnullstelle: $rang(\eta I A B) < n$
- (b) Ausgangsendkopplungsnullstelle: $rang \begin{pmatrix} \eta I A \\ C \end{pmatrix} < n$

invariante Nullstellen sind ÜNS, wenn sie mit keinem Eigenwert zusammenfallen oder der Eigenwert, mit dem sie zusammenfallen sowohl steuerbar, als auch beobachtbar ist

Wenn Pole der Übertragungsfunktion Eigenwerte der Matrix A sind, dann ist das System vollständig steuer- und beobachtbar

Steuer- und Beobachtbarkeit

1. stabilisierbar: kann für einen beliebigen Anfangszustand x_0 in nicht unbedingt endlicher Zeit gesteuert werden

Ist genau dann stabilisierbar, wenn alle nicht steuerbaren EW asymptotisch stabil sind: $rang(\lambda_i * I - A, B) \ \forall Re(\lambda_i) \ge 0$

- 2. steuerbar: kann für einen beliebigen Anfangszustand x₀ in endlicher Zeit gesteuert werden Ist genau dann steuerbar, wenn: rang(Q_s) = n mit Q_s = [B, AB, A²B, ..., Aⁿ⁻¹B] Ist genau dann steuerbar, wenn: rang(λ_i * I A, B) = n für alle Eigenwerte λ_i Eine Paralelschaltung zweier identischer Systeme ist nicht vollständig steuer und beobachtbar Gilbert (SISO): Eingangsvektor b braucht zwei lin unabh. Zeilen/Spalten für die Steuer- und Beobachtbrkeit eines zweifachen Eigenwerts
- 3. erreichbar: für einen beliebigen Endzustand x_e kann das System von dem Anfangszustand $x_0=0$ in endlicher Zeit in x_e überführt werden
- 4. entdeckbar: Anfangszustand $x_0 = 0$ kann bei einem geg. u(t) aus dem zukünftigen Zeitverlauf y(t) in nicht unbedingt endlicher Zeit ermittelt werden

Wenn alle instabielen EW beobachtbar sind: $rang \begin{pmatrix} \lambda_i I - A \\ C \end{pmatrix} = n \ \forall Re(\lambda_i) \geq 0$

- 5. rekonstruierbar: geg. u(t), dann kann aus dem vergangenen Zeitverlauf y(t) über eine endliche Zeitspanne der Zustand $x(t_e) = x_e$ eindeutig rekonstruiert werden kann
- 6. beobachtbar: geg. u(t), dann kann aus dem zukünftigen Zeitverlauf von y(t) über eine endl. Zeit den Anfangszustand eindeutig ermitteln

Genau dann beobachtbar, wenn: $rang(Q_B) = n$ mit $Q_B = \begin{bmatrix} C \\ CA \\ CA^2 \\ \vdots \\ CA^{n-1} \end{bmatrix}$

Genau dann beobachtbar, wenn: $rang\begin{pmatrix} \lambda_i I - A \\ C \end{pmatrix} = n$ für alle Eigenwerte λ_i

Strukturelle Analyse linearer Systeme

 $S_A={\rm jeden}$ Eintrag von A, der ungleich 0 ist, zu 1 setzen

Gleiche mit S_B und S_C

Graphen zeichnen: $b_{ij} = 1$: Kante von u_j nach x_i (von Spalte nach Zeile)

 $a_{ij} = 1$: Kante von x_j nach x_i (von Spalte nach Zeile)

 $c_{ij} = 1$: Kante von x_j nach y_i (von Spalte nach Zeile)

Systemadjazent
matrix:
$$\begin{bmatrix} \dot{x} \\ u \\ y \end{bmatrix} = \begin{bmatrix} S_A & S_B & 0 \\ 0 & 0 & 0 \\ S_C & S_D & 0 \end{bmatrix}$$

Struckturelle Steuerbarkeit und Beobachtbarkeit: wenn mindestens ein System existiert, dass steueroder beobachtbar ist

- 1. struckturell steuerbar, wenn:
 - System eingangsverbunden: Es von jeden Eingangsknoten zu jedem Zustandsknoten mindestens einen Pfad gibt
 - $s Rang(S_A S_B) = n$: Einsen in jeder Zeile und Spalte zählen, jede eins muss pro Zeile und Spalte einmalig sein
- 2. struckturell beobachtbar, wenn
 - System ausgangsverbunden: Es von jeden Zustandsknoten zu jedem Ausgangsknoten mindestens einen Pfad gibt
 - \bullet $s-Rang({S_A \over S_C})=n$: Einsen in jeder Zeile und Spalte zählen, jede eins muss pro Zeile und Spalte einmalig sein, dann Anzahl addieren
- 3. struckturell feste Eigenwerte: Genau dann, wenn entweder:
 - Nicht ausgangsverbunden oder nicht eingangsverbunden (Typ 1)
 - Im Strukturgraphen gibt es keine Schleifenfamilie der Weite n. Schleifenfamilie: Menge der geschlossenen Pfade, die keine gemeinsame Knoten enthalten

Stabilität von MIMO

Rückführdifferenzatrix: $F(s) = I + G_{ol} = I + G(s)K(s)$

falls System vollständg beobachtbar und steuerbar ist (geschlossene und offene Kreis haben keine gemeinsamen Eigewerte) $det(F(s)) = k \frac{\prod\limits_{i=1}^{n} (s - \overline{s}_i)}{\prod\limits_{i=1}^{n} (s - s_i)}$ mit s_i : Pole des offenen Regelkreises \overline{s}_i : Pole des geschlossenen Kreises

- Kreises
 - Zustandsstabilität: Zustandsvektor x nähert sich immer mehr seinem Gleichgeichtszustand an
 - Nyquistkriterium: geschlossene Regelkreis genau dann stabil, wenn: $\Delta argdet(F(s)) = -(2n^+ + n^0)\pi$ mit F(s) = I + G(s)K(s) (von $-\infty$ bis ∞) und n^+ : Pole von G_{ol} mit positiven Realteil, n_0 : Pole mit Realteil 0 (Kurve umschließt $(2n^+ + n^0)$ mal den Ursprung gegen den Uhrzeigersinn)

Äquivalnt dazu: $\Delta argdet(F(s)) = -(n^+ + \frac{n^0}{2})\pi$ für ω von 0 bis ∞ $(0 - \infty)$

Graphsich: Vektor von 0 bis zu Ortskurve macht über die Zeit von ω den Winkel $\Delta argdet(F(s)) =$

$$-(n^{+} + \frac{n^{0}}{2})\pi$$

$$arg(x + iy) = \begin{bmatrix} arctan(\frac{y}{x}) & \text{für } x > 0 \\ arctan(\frac{y}{x}) + \pi & \text{für } x < 0 \text{ und } y \ge 0 \\ arctan(\frac{y}{x}) - \pi & \text{für } x < 0 \text{ und } y < 0 \\ \frac{\pi}{2} & \text{für } x = 0 \text{ und } y > 0 \\ -\frac{\pi}{2} & \text{für } x = 0 \text{ und } y < 0 \\ undefined & x = 0 \text{ und } y = 0 \end{bmatrix}$$

$$-G_{ol} \text{ nicht sprungfähig und E/A-stabil: } \rho(G_{ol}(j\omega)) < 1$$

- − G_{ol} nicht sprungfähig und E/A-stabil: $\rho(G_{ol}(j\omega))$ < 1 $\forall \omega$ (Betragsmäßig größter EW kleiner als 1 für alle ω)
- G_{ol} nicht sprungfähig und E/A-stabil: $||G_{ol}(j\omega)|| < 1$
- Gershgorintherorem: F(s) diagonal dominant und Haubtdiagonal elemente $F_{ii}(s)$ den Ursprung der komplexen Ebene nicht umschlingen (Radius der Kreise: $\sum_{i\neq j} |F_{ij}(s)|$)

Oder einfach für jedes Diagonalelement $F_{ii}(s)$) das Niquistkriterium einzeln anwenden, wenn jedes stabil, ist das ganze System stabil!

diagonaldominant: Zeilen oder Spaltensumme kleiner als Diagonalelement

- E/A-Stabilität: beschränktes Eingagnsignal ⇒ beschränktes Ausgangssignal (falls Anfangszusand 0 ist)Genau dann, wenn
 - asymptotisch stabil ist Luaponov: Finde Matrix $P=P^T\succ 0$ (Alle EW größer 0) und $Q=Q^T\succ 0$, sodass gilt: $A^TP+PA=-Q$
 - Alle Lösungen von det(I + G(s)K(s)) = 0 negativen Realteil haben $Re(s_i) < 0 \ \forall i \in \{1, ..., n\}$ (K(s) ist Reglerstrecke)

Entwurfsverfahren für Zustandsregler

$$u(t) = -Kx(t) + L\omega(t) \Longrightarrow \dot{(x)} = (A - BK)x + BL\omega$$

Wahl der Vorfiltermatrix: $L = (C(BK-A)^{-1}B)^{-1}$ (exisitert, falls System stabil und keine invariante Nullstelle in 0) Vollständige Modulare Synthese nach Roppenecker

 $v_{K_i} = (A - \lambda_{K_i} I)^{-1} B p_i$ (p_i : frei wählbare Parametervektoren, falls die Vektoren eine Basis bilden gilt: $K v_{K_i} = p_i$ oder $K = (p_1, ..., p_n)(v_{K_1}, ..., v_{k_n})^{-1}$)

für was sind die Parametervektoren gut?:

- Spalten von K zu 0 machen: Verzicht auf eine Messung
- einzelne Elemente von K zu 0 machen: dezentrale Zustandsrückführung
- Stellgrößenausschläge vermindern
- Robustheit erhöhen
- Erhaltung eines Streckeneigenwertes: $v_{K_j} = v_j$ und $p_j = 0$

Regelung für Störentkopplung $\dot{x} = Ax + Bu + Nd$ (d. Störung) und u = -Kx

- 1. Bestimme v_{k_i} so, dass gilt: $Cv_{k_i} = 0$ (falls sich alle Spaltenvektoren von N(Matrix der Störung) mit den Vektoren v_{k_i} darstellen lassen ist eine Störentkopplung möglich, sonst nicht)
- 2. Bestimme k invariante Nullstellen η_i (k ist Anzahl von lin. unabh. v_{K_i}) Die Nullstellen sind die Regleungseigenwerte λ_{K_i}
- 3. Berechne p_i : $v_{K_i} = (A \lambda_{K_i} I)^{-1} B p_i$
- 4. Restlichen n-k Eigenwerte mit Parametervorgabe sind frei wählbar (bei denen von A belassen)
- 5. Filtermatrix $K = (p_1, ..., p_n)(v_{K_1}, ..., v_{k_n})^{-1}$

Enfkopplungsregelung nach Falb-Wolovich

- 1. Bestimmung der Gesamtdifferenzenordnung δ Bestimmung von δ_i : Leite y_i so oft ab, bis y_i von u abhängig ist Bestimmung von δ : $\delta = \sum \delta_i$
 - $\delta = n$: weiter mit 2
 - $\delta < n$:es existieren EW die nicht als Pole von der Übertragungsfkt G auftauchen. Diese werden in invariante Nullstellen verschoben \Rightarrow Überprüfe interne Stabilität: $R(\eta) < 0$ (alle Rangabfälle der Rosenbrockmatrix haben negativen Realteil), wenn ja dann weiter mit 2, andernfalls mach Entkopplungsregelung das System instabil
- 2. Entkopplungsbedingung erfüllt?: $det(E) \neq 0$ (wenn nein, abbruch) mit $E = \begin{bmatrix} c_1^T A^{\delta_1 1} B \\ \vdots \\ c_q^T A^{\delta_q 1} B \end{bmatrix}$ ($C = \begin{bmatrix} c_1^T A^{\delta_1 1} B \\ \vdots \\ c_q^T A^{\delta_q 1} B \end{bmatrix}$

 $\begin{bmatrix} c_1^T \\ c_2^T \\ \vdots \\ c_b^T \end{bmatrix})$

- 3. Vorfilter: $L = E^{-1}\Gamma$, Γ aus gewünschten Führungsübertragungsfunktionsverhalten: $\Gamma = \begin{bmatrix} \gamma_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \gamma_q \end{bmatrix}$
- 4. Regelmatrix: $K = E^{-1} \begin{bmatrix} c_1^T A^{\delta_1} + \sum\limits_{\nu=0}^{\delta_1-1} M_{1\nu} c_1^T A^{\nu} \\ \vdots \\ c_q^T A^{\delta_q} + \sum\limits_{\nu=0}^{\delta_q-1} M_{q\nu} c_q^T A^{\nu} \end{bmatrix}$ M_{ij} ergeben sich aus den Polen der entkoppelten

Übertragungsfunktion: $y_i = \frac{\gamma_i}{s^{(\delta_i)} + \dots + M_{i1}s + M_{i0}} \omega_i(s)$

Für Stationäre Genauigkeit muss für s=0 gelten, dass: $y_i=w_i\Longrightarrow \gamma_i=M_{i0}$

Nyquist-Verfahren

Aufteilen eines komplexen Gesamtsystems in mehrere kleine, einzelne, lokal steuerbare Systeme:

$$\dot{x} = Ax + Bu \to \begin{bmatrix} \dot{x}_1 \\ \vdots \\ \dot{x}_n \end{bmatrix} = \begin{bmatrix} A_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & A_n \end{bmatrix} \begin{bmatrix} x_1 \\ \ddots \\ x_n \end{bmatrix} + \begin{bmatrix} B_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & B_n \end{bmatrix} \begin{bmatrix} u_1 \\ \ddots \\ u_n \end{bmatrix}$$

Stabilitätsbedingung:

- $G_{ol,i}(s)$ den Punkt -1 $-n^+$ -mal im Uhrzeigersinn umschlingt (n^+ : Anzahl der Pole von G_ol mit positiven Realteil)
- die Rückführmatrix $F(s) = I + G_{ol}(s)$ diagonaldominant ist (Damit Systeme unhanhängig vom Ausfall einzelner Systeme noch stabil sind)

Vorgehen, wenn D=0 (System nicht Sprugfähig), G näherungsweise diagonaldominant ist, die Regelstrecke E/A-stabil ist:

- Entwurf der einzelenen SISO Reglern $K_i(s)$
- Überprüfen ob die Rückführmatrix diagonaldominant ist
- Simulation für das gesamte System

 $\underline{\text{max., min. Verst\"{a}rkung eines Systems:}}$ Eigenwerte von $\sqrt{eig(GG^T)}$, Richtung aus den Eigenvektoren

Relative Gain Error:
$$RGA(G) = G \times (G^{-1})^T \rightarrow RGA(\begin{bmatrix} G_{11} & G_{12} \\ G_{21} & G_{22} \end{bmatrix}) = \begin{bmatrix} a & 1-a \\ 1-a & a \end{bmatrix}$$
 mit $a = \frac{1}{1-\frac{G_{12}G_{21}}{G_{22}}}$

RGA(G) = I, falls G untere oder obere Dreiecksmatrix

zeigt an:

- Vorzeichen eines RGA-Eintrags ändert sich für s=0 bis $s=\infty$: G oder ein Subsystem von G hat eine Nullstelle in der rechten Halbebene
- Feststellen von Diagonaldominanz: $||RGA(G) I||_{sum}$ (Summe aller Beträge der Einträge) soll bei der Durchtrittsfrequenz ω_C Nahe bei 0 liegen ω_C : $|G_{ol}(j\omega)|$ schnedet zum ersten mal die Eins von oben

Sensitivitätsfunktion:
$$S = (I + GK)^{-1} = (I + G_{ol})^{-1}$$
 und $T = (I + GK)^{-1}GK = (I + G_{ol})^{-1}G_{ol} = G_{ol}(I + G_{ol})^{-1}$ und $S + T = I$

Bandbreite: $|S(j\omega_B)| = \frac{1}{\sqrt{2}}$ (von unten schneiden)

und $|T(j\omega_{BT})| = \frac{1}{\sqrt{2}}$

Loop-shaping:

- Gutes Folgeverhalten: $T(j\omega) \to I$ oder $|G_{ol}(s)|$ möglichst groß
- Gute Stöunterdrückung: $S(j\omega) \to 0$
- Gute Rauschunterdrückung: $T(j\omega) \to 0 \Rightarrow |T(j\omega)| \to 0$ (für hohe Frequenzen)

- Niedriger Energieaufwand: $K(j\omega)S(j\omega) \to 0 \Rightarrow |K(j\omega)S(j\omega)| \to 0$
- Gewährleistung einer Bandbreite $|S(j\omega)| < 3dB \forall \omega < \omega_B$: Gutes Folgeverhalten für alle Frequenzen $\omega < \omega_B$
- Beschränkung des stationären Folgefehlers (max Amplitude A): $\lim_{t \to \infty} |e(t)| = \lim_{s \to 0} |S(s)| < A$
- Beschränkung des maximalen Regelfehlers M: $\max_{\omega} S(j\omega) \leq M$

In Form von Schrankenfunktionen: $\omega_S(s) = \frac{\frac{s}{M} + \omega_B}{s + \omega_B A}$ (oder mit stärkeren Flanken: $\omega_S(s) = (\frac{\frac{2}{\sqrt{M}} + \omega_B}{s + \omega_B \sqrt{A}})^2$) |S| soll beschränkt werden: $|S(j\omega)| < \frac{1}{|\omega_S|} \Rightarrow ||\omega_S(j\omega)s(j\omega)||_{\infty} < 1$ H_{∞} -Norm: größter Betragsmäßiger Wert über alle Frequenen

|T| soll beschränkt werden: $|T| < |\omega_S|$

fundamentale Performenceschranken:

- $\bullet \left| \frac{1}{\omega_S} \right| + \left| \frac{1}{\omega_T} \right| \ge 1$
- Pole in Rechter Halbebene: T(p) = 1 und S(p) = 0
- Nullstellen in Rechte HE: T(z) = 0 und S(z) = 1
- ullet Wasserbetteffekt: Sensitivität stiegt für eine Frequenz \Rightarrow Sie sinkt für eine andere Frequenz
- Grenzen des Sensitifitätspeaks: $\|\omega_S S(s)\|_{\infty} \ge |\omega_S(z)|$ mit z
: Nullstelle in RHE
- \bullet Stabilitätskriterien: G(s)mit N_z Nullstellen z_j und N_p Polen p_i in der RHE
 - 1. für alle Nullstellen z_j : $\|\omega_S S\|_{\infty} \ge c_{1j} |\omega_S(z_j)|$ mit $c_{1j} = \prod_{i=1}^{N_p} \frac{|z_j + p_i^*|}{|z_j p_i|} \ge 1$
 - 2. für alle Pole p_i : $\|\omega_T T\|_{\infty} \ge c_{2i} |\omega_T(p_i)|$ mit $c_{2i} = \prod_{i=1}^{N_p} \frac{|z_j^* + p_i|}{|z_j p_i|} \ge 1$
- Einfluss von Nullstellen N_z in der RHE:
 - Nach Einheitssprung wirs das Antwortverhalten N_z -mal die 0 durchqueren
 - impliziert High Gain instability

im MIMO-Fall

- $\bullet \ \left| \frac{1}{\omega_S} \right| + \left| \frac{1}{\omega_T} \right| \ge 1$
- mit Ausgangsrichtung y_z : für Nullstelle: $y_z^*T(z)=0$ und $y_z^*S(z)=y_z^*$; für Polstelle: $S(p)y_P=0$ und $T(p)y_P=y_P$
- Grenzen des Sensitifitätspeaks: $\|\omega_S S(s)\|_{\infty} \ge |\omega_S(z)|$ mit z
: Nullstelle in RHE
- Für mehr als eine Nullstelle: Skript: Seite 106 unten
- Performanzbeschränkung für die Gewichtungsfunktion:

- entweder Pole oder Nullstellen in der RHE: $\omega_B = z_j \frac{1 \frac{1}{M}}{1 A}$ für $\omega_{B2} = \frac{\frac{s}{M} + \omega_B}{s + \omega_B A}$
- entweder Pole oder Nullstellen in der RHE: $\omega_B>p_i\frac{M_T}{M_T-1}$ für $\omega=\frac{s}{\omega_B}+\frac{1}{M_T}$
- Pole und Nullstellen: $||S||_{\infty} \ge \max_{z_i} c_{1j}$ und $||T||_{\infty} \ge \max_{p_i} c_{2i}$
- genau eine Pol und eine Nullstelle: $c_2 = c_1 = \sqrt{\sin^2(\phi) + \frac{|z+p^*|^2}{|z-p|^2}\cos^2(\phi)}$ mit $\phi = \cos^{-1}(y_z^*y_p)$
- es ist möglich eine Nullstelle in der RHE in einen weniger wichtigen Bereich am Ausgang zu verschieben

H-unendlich-Regleung:

- 1. Sammeln aller Störsignale im Vektor ω
- 2. Abhängigkeiten von z von allen Eingängen (ω und u) (Regler entspricht leeres Feld, d.h. kein Signal geht durch)
- 3. Bestimmen von y (EINGANG VON K) durch alle Eingänge
- 4. verallgemeinterte Strecke ist dann: $\begin{bmatrix} z \\ y \end{bmatrix} = P \begin{bmatrix} \omega \\ u \end{bmatrix}$ mit: $z = P_{11}\omega + P_{12}u$ und $y = P_{21}\omega + P_{22}u$
- 5. $N = P * K = P_{11} + P_{12}K(I P_{22}K)^{-1}P_{21}$