北京市西城区 2017 年九年级统一测试

数学试卷

1. 本试卷共 8 页,共三道大题,29 道小题,满分 120 分, 考试时间 120 分钟。

2017.4

考	2. 在试卷和答题卡上认真填写学校名称	、姓名和准考证号。	
_ 生 须	3. 试题答案一律填涂或书写在答题卡上	,在试卷上作答无效。	
知	 4. 在答题卡上,选择题、作图题用 2B 铅氧	芝作答,其他试题用黑色	
	5. 考试结束,请将本试卷、答题卡一并交	回。	
_	选择题 (本题共30分,每小题3分)		
`	下面各题均有四个选项,其中只有一个是	符合题音的	
1 ≢	事节假期,北京市推出了庙会休闲娱乐、传约		常花 冰雪项目休验笺精
	品文化活动,共接待旅游总人数9608000人		
		$(C)96.08\times10^{5}$	
,	在数轴上,实数 a,b 对应的点的位置如图所		
	个点关于原点对称,下列结论中,正确的是	a	0 1 b
(A) $a + b = 0$ (B) $a - b = 0$	(C) a < b	(D) ab > 0
3. 女	n图,AB//CD,DA ⊥ CE 于点 A. 若∠EAB=5	5°,则∠D 的度数为	E
(A)25°	(B)35°	$A \nearrow B$
(C)45°	(D)55°	
4. 相	古图是某几何体的三视图,该几何体是		$C \longrightarrow D$
	A)三棱柱	(B)长方体	
(C)圆锥	(D)圆柱	
5. 쿭	吉正多边形的一个外角是 40°,则这个正多边	也形是	
(A) 正七边形	(B) 正八边形	$\langle \rangle$
(C) 正九边形	(D) 正十边形	V
6. 月	目配方法解一元二次方程 $x^2 - 6x - 5 = 0$, 」	比方程可化为	
(A) $(x-3)^2 = 4$ (B) $(x-3)^2 = 14$	$(C) (x - 9)^2 = 4$	(D) $(x - 9)^2 = 14$
7. 女	四图,小明在地面上放了一个平面镜,选择台	合适的位置,刚好在平	面镜中看到旗杆的顶部,
耳	北时小明与平面镜的水平距离为2m,旗杆原	底部与平面镜的水平距	离为16 m. 若小明的眼睛
Ė	亏地面的距离为 1.5 m,则旗杆的高度为(单	位:m)	
(A) $\frac{16}{3}$	(B)9	
(C) 12	(D) $\frac{64}{3}$	· _
	九年级统一测试 数学	:试卷 第1页(共8页	<u>,</u>

- 8. 某商店举行促销活动,其促销的方式是"消费超过100元时,所购买的商品按原价打8折 后,再减少 20 元". 若某商品的原价为 x 元(x>100),则购买该商品实际付款的金额(单位: 元)是
 - (A) 80%x 20

(B) 80%(x-20)

(C) 20%x - 20

- (D) 20%(x-20)
- 9. 某校合唱团有 30 名成员,下表是合唱团成员的年龄分布统计表:

年龄(单位:岁)	13	14	15	16
频数(单位:名)	5	15	x	10 - x

对于不同的x,下列关于年龄的统计量不会发生改变的是

- (A)平均数、中位数 (B)平均数、方差 (C)众数、中位数 (D)众数、方差

- 10. 汽车的"燃油效率"是指汽车每消耗1升汽油行驶的里程数. "燃油效率"越高表示汽车每 消耗1升汽油行驶的里程数越多;"燃油效率"越低表示汽车每消耗1升汽油行驶的里程 数越少. 右下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列说法中,正 确的是
 - (A)以相同速度行驶相同路程,三辆车中,甲车消耗 汽油最多
 - (B)以低于80 km/h 的速度行驶时,行驶相同路程, 三辆车中,乙车消耗汽油最少
 - (C)以高于80 km/h 的速度行驶时,行驶相同路程, 丙车比乙车省油
 - (D)以80 km/h 的速度行驶时,行驶100公里,甲车 消耗的汽油量约为10升

- 二、填空题(本题共18分,每小题3分)
- 11. 分解因式: $ax^2 2ax + a =$.
- 12. 若函数的图象经过点 A(1,2),点 B(2,1),写出一个符合条件的函数表达式
- 13. 下表记录了一名球员在罚球线上罚篮的结果:

投篮次数 n	100	150	300	500	800	1000
投中次数 m	58	96	174	302	484	601
投中频率 $\frac{m}{n}$	0.580	0.640	0.580	0.604	0.605	0.601

这名球员投篮一次,投中的概率约是

14. 如图,四边形 ABCD 是 $\odot O$ 内接四边形,若 $\angle BAC = 30^{\circ}$, $\angle CBD = 80^{\circ}$, 则 $\angle BCD$ 的度数为________。

15. 在平面直角坐标系 xOy 中,以原点 O 为旋转中心,将 $\triangle AOB$ 顺时针旋转 90° 得到 $\triangle A'OB'$,其中点 A' 与点 A 对应,点 B' 与点 B 对应. 若点 A(-3,0), B(-1,2),则点 A' 的坐标为______.

16. 下面是"经过已知直线外一点作这条直线的平行线"的尺规作图过程.

已知:如图 1,直线 l 和直线 l 外一点 P. 求作:直线 l 的平行直线,使它经过点 P.

作法:如图2,

(1) 过点P作直线m与直线l交于点O:

(2) 在直线m上取一点A(OA < OP),以点O为圆心,OA长为半径画弧,与直线l交于点B;

D/z

图 2

图 1

- (3) 以点P为圆心,OA 长为半径画弧,交直线m于点C,以点C 为圆心,AB 长为半径画弧,两弧交于点D;
- (4) 作直线 PD.
 所以直线 PD 就是所求作的平行线.

请回答:该作图的依据是

三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分) 解答应写出文字说明,演算步骤或证明过程.

17. 计算:
$$\left(\frac{1}{2}\right)^{-1} - \left(2 - \sqrt{3}\right)^{0} - 2\sin 60^{\circ} + \left|\sqrt{3} - 2\right|$$
.

18. 解不等式组:
$$\begin{cases} 5x - 2 < 3x + 4, \\ 2x \ge \frac{x + 7}{2}. \end{cases}$$

19. 已知
$$x = 2y$$
,求代数式 $\left(\frac{1}{y} - \frac{1}{x}\right) \div \frac{x^2 - 2xy + y^2}{x^2y}$ 的值.

20. 如图,在 $\triangle ABC$ 中,BC 的垂直平分线交 BC 于点 D,交 AB 延长 线于点 E,连接 CE.

求证: $\angle BCE = \angle A + \angle ACB$.

21. 某科研小组计划对某一品种的西瓜采用两种种植技术种植. 在选择种植技术时,该科研小组主要关心的问题是:西瓜的产量和产量的稳定性,以及西瓜的优等品率. 为了解这两种种植技术种出的西瓜的质量情况,科研小组在两块自然条件相同的试验田进行对比试验,并从这两块实验田中各随机抽取 20 个西瓜,分别称重后,将称重的结果记录如下:

表 1 甲种种植技术种出的西瓜质量统计表

编号	1	2	3	4	5	6	7	8	9	10
西瓜质量(单位:kg)	3.5	4.8	5.4	4.9	4.2	5.0	4.9	4.8	5.8	4.8
编号	11	12	13	14	15	16	17	18	19	20
西瓜质量(单位:kg)	5.0	4.8	5.2	4.9	5.1	5.0	4.8	6.0	5.7	5.0

表 2 乙种种植技术种出的西瓜质量统计表

编号	1	2	3	4	5	6	7	8	9	10
西瓜质量(单位:kg)	4.4	4.9	4.8	4.1	5.2	5.1	5.0	4.5	4.7	4.9
编号	11	12	13	14	15	16	17	18	19	20
西瓜质量(单位:kg)	5.4	5.5	4.0	5.3	4.8	5.6	5.2	5.7	5.0	5.3

回答下列问题:

(1) 若将质量为 4.5 ~ 5.5(单位:kg) 的西瓜记为优等品,完成下表:

	优等品西瓜个数	平均数	方差
甲种种植技术种出的西瓜质量		4.98	0.27
乙种种植技术种出的西瓜质量	15	4.97	0.21

(2) 根据以上数据, 你认为该科研小组应选择哪种种植技术, 并请说明理由.

- 22. 在平面直角坐标系 xOy 中,直线 y=x-1 与 y 轴交于点 A ,与双曲线 $y=\frac{k}{x}$ 交于点 B(m,2).
 - (1) 求点 B 的坐标及 k 的值;
 - (2) 将直线 AB 平移, 使它与 x 轴交于点 C, 与 y 轴交于点 D, 若 $\triangle ABC$ 的面积为 6, 求直线 CD 的表达式.

- 23. 如图,在 $\Box ABCD$ 中,对角线 BD平分 $\angle ABC$,过点 A 作 AE // BD,交 CD 的延长线于点 E,过点 E 作 EF \bot E0,交 E0 延长线于点 E7.
 - (1) 求证:四边形 ABCD 是菱形;
 - (2) 若 $\angle ABC = 45^{\circ}, BC = 2, 求 EF$ 的长.

24. 汽车保有量是指一个地区拥有车辆的数量,一般是指在当地登记的车辆.进入 21 世纪以来,我国汽车保有量逐年增长.下图是根据中国产业信息网上的有关数据整理的统计图.

2007 ~ 2015 年全国汽车保有量及增速统计图

根据以上信息,回答下列问题:

- (1) 2016 年汽车保有量净增 2200 万辆,为历史最高水平,2016 年汽车的保有量为万辆,与2015 年相比,2016 年的增长率约为 %;
- (2) 从 2008 年到 2015 年, 年全国汽车保有量增速最快;
- (3) 预估 2020 年我国汽车保有量将达到______万辆,预估理由是_____
- 25. 如图,AB 是 $\odot O$ 的直径,C 是 $\odot O$ 上一点,过点 C 作 $\odot O$ 的切线,交 BA 的延长线交于点 D,过点 B 作 $BE \perp BA$,交 DC 延长线于点 E,连接 OE,交 $\odot O$ 于点 F,交 BC 于点 H,连接 AC.
 - (1) 求证: $\angle ECB = \angle EBC$;
 - (2) 连接 BF, CF, 若 CF = 6, $\sin \angle FCB = \frac{3}{5}$, 求 AC 的长.

九年级统一测试 数学试卷 第6页(共8页)

26. 阅读下列材料:

某种型号的温控水箱的工作过程是:接通电源后,在初始温度 20° 下加热水箱中的水;当水温达到设定温度 80° 时,加热停止;此后水箱中的水温开始逐渐下降,当下降到 20° 时,再次自动加热水箱中的水至 80° 时,加热停止;当水箱中的水温下降到 20° 时,再次自动加热,……,按照以上方式不断循环.

小明根据学习函数的经验,对该型号温控水箱中的水温随时间变化的规律进行了探究,发现水温y是时间x的函数,其中y(单位: $^{\circ}$ C)表示水箱中水的温度,x(单位: $^{\circ}$ min)表示接通电源后的时间.

下面是小明的探究过程,请补充完整:

(1) 下表记录了 32 min 内 14 个时间点的温控水箱中水的温度 γ 随时间 x 的变化情况

接通电源后 的时间 <i>x</i> (单位:min)	0	1	2	3	4	5	8	10	16	18	20	21	24	32	•••
水箱中水的温度 <i>y</i> (单位:℃)	20	35	50	65	80	64	40	32	20	m	80	64	40	20	•••

m 的值为_____;

- (2) ① 当 $0 \le x \le 4$ 时,写出一个符合表中数据的函数解析式______; 当 $4 < x \le 16$ 时,写出一个符合表中数据的函数解析式
 - ②如图,在平面直角坐标系xOy中,描出了上表中部分数据对应的点,根据描出的点,画出当 $0 \le x \le 32$ 时,温度 y 随时间 x 变化的函数图象;

- (3) 如果水温 y 随时间 x 的变化规律不变, 预测水温第 8 次达到 40° 时, 距离接通电源 min.
- 27. 在平面直角坐标系 xOy 中,二次函数 $y = mx^2 (2m + 1)x + m 5$ 的图象与 x 轴有两个公共点.
 - (1) 求 m 的取值范围;
 - (2) 若 m 取满足条件的最小的整数,
 - ① 写出这个二次函数的解析式:
 - ② 当 $n \le x \le 1$ 时,函数值 y 的取值范围是 $-6 \le y \le 4 n$,求 n 的值;
 - ③ 将此二次函数图象平移,使平移后的图象经过原点 0. 设平移后的图象对应的函数 表达式为 $y = a(x h)^2 + k$, 当 x < 2 时, y 随 x 的增大而减小, x k 的取值范围.

九年级统一测试 数学试卷 第7页(共8页)

- 28. 在 $\triangle ABC$ 中 AB = BC $BD \perp AC$ 于点 D.
 - (1) 如图 1,当 $\angle ABC = 90^{\circ}$ 时,若 CE 平分 $\angle ACB$,交 AB 于点 E,交 BD 于点 F.
 - ① 求证: $\triangle BEF$ 是等腰三角形;
 - ② 求证: $BD = \frac{1}{2}(BC + BF)$;
 - (2) 点 E 在 AB 边上,连接 CE.若 $BD = \frac{1}{2}(BC + BE)$,在图 2 中补全图形,判断 $\angle ACE$ 与 $\angle ABC$ 之间的数量关系,写出你的结论,并写出求解 $\angle ACE$ 与 $\angle ABC$ 关系的思路.

- 29. 在平面直角坐标系 xOy 中, 若点 P 和点 P_1 关于 y 轴对称, 点 P_1 和点 P_2 关于直线 l 对称,则 称点 P_2 是点 P 关于 y 轴, 直线 l 的二次对称点.
 - (1) 如图 1,点 A(-1,0).
 - ① 若点 B 是点 A 关于 γ 轴, 直线 $l_1:x=2$ 的二次对称点,则点 B 的坐标为_____;
 - ② 若点 C(-5,0) 是点 A 关于 y 轴, 直线 $l_2:x=a$ 的二次对称点, 则 a 的值为
 - ③ 若点 D(2,1) 是点 A 关于 y 轴, 直线 l_3 的二次对称点, 则直线 l_3 的表达式为
 - (2) 如图 2, $\odot O$ 的半径为 1.若 $\odot O$ 上存在点 M, 使得点 M' 是点 M 关于 y 轴, 直线 $l_4: x = b$ 的二次对称点, 且点 M' 在射线 $y = \frac{\sqrt{3}}{3}x$ $(x \ge 0)$ 上, b 的取值范围是______;
 - (3) E(t,0) 是x 轴上的动点, $\odot E$ 的半径为 2, 若 $\odot E$ 上存在点 N, 使得点 N' 是点 N 关于 y 轴, 直线 $l_s: y = \sqrt{3}x + 1$ 的二次对称点, 且点 N' 在 y 轴上, 求 t 的取值范围.

九年级统一测试 数学试卷 第8页(共8页)

北京市西城区 2017 年九年级统一测试

数学试券签案及评分参考

2017.4

一、选择题(本题共30分,每小题3分)

题号	1	2	3	4	5	6	7	8	9	10
答案	D	A	В	В	С	В	С	A	С	D

二、填空题(本题共18分,每小题3分)

11.
$$a(x-1)^{\frac{1}{2}}$$

11.
$$a(x-1)^2$$
 12. 答案不唯一.如: $y = \frac{2}{x}$

15.
$$A'(0,3)$$
, $B'(2,1)$

- 16. 三边分别相等的两个三角形全等;全等三角形的对应角相等;同位角相等两直线平行;两 点确定一条直线.
- 三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)

17.
$$\Re \left[\left(\frac{1}{2} \right)^{-1} - \left(2 - \sqrt{3} \right)^{0} - 2\sin 60^{\circ} + \left| \sqrt{3} - 2 \right| \right]$$

18. 解:解不等式组为 $\begin{cases} 5x - 2 < 3x + 4 & ① \\ 2x \ge \frac{x+7}{2} & ② \end{cases}$

解不等式 ①, 得 x < 3. ············· 2 分

解不等式 ②,得
$$x \ge \frac{7}{3}$$
. 4 分

19. 解:原式= $\frac{x-y}{xy} \cdot \frac{x^2y}{(x-y)^2}$

$$=\frac{x}{x-y} - 4$$

20. 证明::: DE 垂直平分 BC 于点 D,

∴
$$\angle BCE = \angle CBE$$
. 3 $\%$

$$\therefore$$
 ∠CBE = ∠ACB + ∠A. ······ 4 分

∴
$$\angle BCE = \angle ACB + \angle A$$
. 5 分

九年级统一测试 数学试卷答案及评分参考 第1页(共6页)

21. 解:(1)

	优等品西瓜个数	平均数	方差
甲种种植技术种出的西瓜质量	15		
乙种种植技术种出的西瓜质量			

(2) 在试验田中,两种种植技术种出的西瓜的优等品率均为75%,平均产量相差不大, 乙种种植技术种出的西瓜,质量更稳定,大小更均匀,科研小组应选择乙种种植技术......5分

- 22. 解:(1) :: 点 B(m,2) 在直线 y = x 1 上,
 - $\therefore m 1 = 2.$

解得 m = 3.

∴ 点 B(3,2).

又 :: 点 B(3,2) 在双曲线 $y = \frac{k}{x}$ 上,

 $\therefore AB // CD$,

$$\therefore S_{\triangle ABD} = S_{\triangle ABC}.$$

$$\therefore S_{\triangle ABD} = \frac{1}{2}AD \cdot x_B = 6.$$

$$\therefore AD = 4$$
.

∴
$$b + 1 = 4$$
 或 $-1 - b = 4$.

∴
$$b = 3$$
 或 $b = -5$.

 \therefore 平移后的直线的表达式为 y = x + 3 或

$$\therefore \angle ABD = \angle BDC.$$

$$\therefore \angle ABD = \angle DBC.$$

$$\therefore \angle BDC = \angle DBC.$$

 $\therefore BC = CD.$

:. 四边形 ABCD 是菱形. ······ 2 分

$$\therefore \angle ECF = \angle ABC = 45^{\circ}.$$

 $\therefore AE //BD$,

:. 四边形 ABDE 是平行四边形.

九年级统一测试 数学试卷答案及评分参考 第2页(共6页)

24.	∴ $DE = AB = 2$. ∴ $CE = 4$. 在 $Rt \triangle ECF + \bot \triangle ECF = 45^{\circ}$, $CE = 4$, ∴ $EF = 2\sqrt{2}$. 5 分 (1) 19400,13; (2) 2010; (3) 预估理由合理,支撑预估的数据.如:2020 年我国汽车保有量将达到 28000 万辆.
25.	(1) 证明: $:: BE \perp BA $ 于点 B , $:: BE \neq \bigcirc 0$ 的切线. $:: DE \neq \bigcirc 0$ 的切线, C 为切点, $:: BE = CE$. $:: \angle ECB = \angle EBC$. (2) 解: 连接 AF ,
	\therefore AB 是 $\odot O$ 直径, \therefore $\angle AFB = \angle ACB = 90^{\circ}$. BE 是 $\odot O$ 的切线,切点为 B , CE 是 $\odot O$ 的切线,切点为 C , \therefore $BE = CE$, EO 平分 $\angle BED$. \therefore $EO \perp BC$, $CH = BH$.
	∴ $BF = CF = 6$, $\widehat{BF} = \widehat{CF}$, $OH // AC$. ∴ $\angle FBC = \angle BAF = \angle FCB$. $ERT \triangle ABF \Rightarrow \sin \angle BAF = \frac{3}{5}, BF = 6$, ∴ $AB = 10$, $OF = 5$.
	在 Rt $\triangle FCH$ 中, $\sin \angle FCB = \frac{3}{5}$, $CF = 6$, $\therefore FH = \frac{18}{5}.$ $\therefore OH = OF - FH = \frac{7}{5}.$
26.	$\therefore AC = 20H = \frac{14}{5}$. 5 分解:(1)50; 1 分(2)①答案不唯一.如:当 $0 \le x \le 4$ 时, $y = 15x + 20$;
	当 $4 < x \le 16$ 时, $y = \frac{320}{x}$;

28. 证明:在 $\triangle ABC$ 中,AB = BC, $BD \perp AC$ 于点 D.

$$\therefore \angle ABD = \angle CBD$$
, $AD = BD$.

- (1) $\widehat{1}$:: $\angle ABC = 90^{\circ}$,
 - $\therefore \angle ACB = 45^{\circ}.$
 - ∵ CE 平分 ∠ACB
 - $\therefore \angle ECB = \angle ACE = 22.5^{\circ}.$
 - $\therefore \angle BEF = \angle CFD = \angle BFE = 67.5^{\circ}.$
 - $\therefore BE = BF.$
 - ∴ △BEF 是等腰三角形. ······ 2 分
 - ② 延长 AB 至 M, 使得 BM = AB, 连接 CM.

$$\therefore BD /\!/ CM, BD = \frac{1}{2}CM.$$

$$\therefore \angle BCM = \angle DBC = \angle ABD = \angle BMC = 45^{\circ},$$
$$\angle BFE = \angle MCE.$$

- $\therefore BC = BM.$
- 由①可得, $\angle BEF = \angle BFE$, BE = BF.
- $\therefore \angle BFE = \angle MCE = \angle BEF.$
- $\therefore EM = MC.$

$$\therefore BD = \frac{1}{2}(BC + BF). \quad \dots \quad 5 \, \text{ f}$$

b. 由 $BD = \frac{1}{2}(BC + BE)$ 可证 $\triangle PEC$ 和 $\triangle BEF$ 分别是等腰三角形;

e. 由
$$\angle BEF + \angle BFE + \angle EBF = 180^{\circ}$$
, $\angle FCD + \angle DFC = 90^{\circ}$, 可证 $\angle ACE = \frac{1}{4} \angle ABC$.

------7分

- 29. $\text{解}_{:}(1)$ ① 点 B 的坐标为(3,0);
 - ②a 的值为 2.
 - ③ 直线 l_3 的表达式为 y = -x + 2. 3 分

- (3) 将点 N 关于 γ 轴的对称点记为点 P,
 - ∴ 点 P 和点 N' 关于直线 $l:y = \sqrt{3}x + 1$ 对称,
 - : 直线 $y = \frac{\sqrt{3}}{3}x + 1$ 和 y 轴关于直线 $l: y = \sqrt{3}x + 1$ 对称,

$$\therefore 点 P 在直线 y = \frac{\sqrt{3}}{3}x + 1 上,$$

: 直线
$$y = -\frac{\sqrt{3}}{3}x + 1$$
 和直线 $y = \frac{\sqrt{3}}{3}x + 1$ 关于 y 轴对称,

$$\therefore 点 N 在直线 y = -\frac{\sqrt{3}}{3}x + 1 上,$$

:. 符合题意的点
$$N$$
 是直线 $y = -\frac{\sqrt{3}}{3}x + 1$ 与 $\odot E$ 的公共点.

- (i) 当直线 $y=-\frac{\sqrt{3}}{3}x+1$ 与 $\odot E$ 相离时,则不存在符合题意的点 N.
- (ii) 当直线 $y = -\frac{\sqrt{3}}{3}x + 1$ 与 $\odot E$ 相切时,如图所示.

则符合题意的点 N 是直线 $y = -\frac{\sqrt{3}}{3}x + 1$ 与 $\odot E$ 相切时的切点,

记直线
$$y = -\frac{\sqrt{3}}{3}x + 1 与 x$$
 轴交于点 $R(\sqrt{3},0)$,

若点 E 在点 R 的左侧,

由
$$E_1N_1 = 2$$
,可得 $RE_1 = 4$, $OE_1 = 4 - \sqrt{3}$,

$$\therefore t_1 = -4 + \sqrt{3}.$$

若点 E 在点 R 的右侧,

由
$$E_2N_2 = 2$$
,可得 $RE_2 = 4$, $OE_2 = 4 + \sqrt{3}$,

$$\therefore t_2 = 4 + \sqrt{3}.$$

(iii) 当直线 $y = -\frac{\sqrt{3}}{3}x + 1$ 与 $\odot E$ 相交时,

$$-\ 4\ + \sqrt{3}\ < t\ < \ 4\ + \sqrt{3}\ ,$$

