induttore

Partitore pre-

to osc. V'_C

 V_{bias}

from V_C

Colonne del file

 $t [\mu s], \sigma_t [\mu s],$

 V'_C [digit], $\sigma_{V'_C}$ [digit]

 $t [\mu s], V'_C [digit]$

t [μ s], V_C' [digit]

Page 1 of 2

Nome e Cognome:	□LUN Data:	□MAR	□GIO	15)
-----------------	---------------	------	------	-----

Correnti parassite e Arduino improved

Lo scopo dell'esperienza è quello di valutare l'effetto delle correnti parassite, <u>e non solo</u>, per diversi oggetti di materiale conduttore inseriti nel nucleo dell'induttore che fa parte dell'oscillatore armonico smorzato rLC. Dal punto di vista pratico, vanno montati in sequenza e testati attentamente i circuiti già realizzati per l'oscillatore armonico smorzato.

1. Montate il circuito di figura e controllate che il segnale V_C osservato all'oscilloscopio abbia le caratteristiche attese (oscillazione smorzata). Scegliete liberamente, ma con giudizio, la capacità del condensatore C e gli avvolgimenti dell'induttore. Indicate le vostre scelte nel riquadro e stimate la frequenza angolare propria dell'oscillatore $\omega_{0,\rm att}$ che vi attendete (richiede di "ricordare" i valori "tipici" di L).

2. Costruite il generatore di d.d.p. continua V_{bias} secondo lo schema di figura e controllate che $V_{bias} \sim 0.5 \text{ V}$.

3. Montate <u>in serie</u> V_{bias} con l'uscita (V_C) dell'oscillatore secondo quanto indicato nello schema, e fate in modo, agendo sull'ampiezza del generatore di funzioni, che il segnale $V_C' = V_C + V_{bias}$ sia <u>sempre positivo</u>. Controllate <u>attentamente</u> che questo si verifichi <u>prima di collegare Arduino</u>.

Nome sketch

harmlong.ino

harmint.ino

Nome script

harmlong_v1.py

harmint_v1.py

harmaverage.ino harmaverage_v1.py

4. Collegate Arduino, secondo lo schema di figura. Si consiglia di osservare sempre il segnale V'_C all'oscilloscopio per verificare che esso si mantenga positivo (e sufficientemente ampio) in qualsiasi condizione operativa.

5. Preliminarmente ai cicli di acquisizione, dovete eseguire come al solito l'upload dello sketch e modificare (nomi dei files, eventuale intervallo di tempo di campionamento nominale Δt) lo script di Python. Potete usare diverse combinazioni di sketch e script che implementano strategie di acquisizione "improved". Indicate la vostra scelta (una crocetta) e commentate brevemente sulle vostre ragioni.

Commenti e <u>dettagli</u> sulla strategia
di acquisizione:

Scopo

media su N_{cucle} cicli

con calcolo di σ_t e $\sigma_{V'_C}$ da deviazione standard sperimentale

 $\overline{\Delta T}$ esteso $(\Delta T_{long} = 4\Delta T)$

(4 blocchi di acquisizione

consecutivi)

modalità interleaved

con $\Delta t_{int} = 10 \ \mu s$, $\Delta t = 50 \ \mu s$ (fissati, nominali)

diodo

 R_A

File prodotto

256 righe

4 colonne

1024 righe

2 colonne

1024 righe

2 colonne

6. A questo punto potete passare all'esperienza pratica vera e propria. Essa consiste nell'infilare dentro il core dell'induttore oggetti di materiale, forma e dimensioni diverse. Non tutti gli oggetti sono disponibili su tutti i banchi: dunque organizzatevi con scambi e prestiti, in modo da esaminare il comportamento dell'oscillatore con almeno 6-7 oggetti differenti. Per l'analisi dovete fare grafici ed eseguire best-fit (le stampe non sono richieste), riportando in tabella i valori di ω, τ, χ²/ndof, e anche il valore di L (dedotto da ω, τ e dalla conoscenza nominale di C). Siete fortemente invitati a riportare qualche dettaglio sui best-fit che eseguite nel riquadro dei commenti. Inoltre scrivete brevi commenti sui risultati, mettendo in evidenza quelli che vi sembrano più interessanti e dando un po' di spiegazione fisica.

			1 &	
Oggetto	ω [rad/s]	τ [ms]	χ²/ndof	L [H]
Niente				
Alluminio pieno				
Alluminio profilato				
Alluminio profilato segato per lungo				
Ferro pieno				
Ferro laminato				
Ferro lamine				

Commenti (tutti quelli necessari e richiesti):	
	Page 2 of 2