Problem Set 6 MATH 20700

6 Basic Topology

From Rudin (1976).

Chapter 2

- 11/8: 1. Prove that the empty set is a subset of every set.
 - 2. A complex number z is said to be algebraic if there are integers a_0, \ldots, a_n , not all zero, such that

$$a_0 z^n + a_1 z^{n-1} + \dots + a_{n-1} z + a_n = 0$$

Prove that the set of all algebraic numbers is countable. (Hint: For every positive integer N, there are only finitely many equations with $n + |a_0| + |a_1| + \cdots + |a_n| = N$.)

- 3. Prove that there exist real number which are not algebraic.
- **4.** Is the set of all irrational real numbers countable?
- 5. Construct a bounded set of real numbers with exactly three limit points.
- **6.** Let E' be the set of all limit points of a set E. Prove that E' is closed. Prove that E and \bar{E} have the same limit points (recall that $\bar{E} = E \cup E'$). Do E and E' always have the same limit points?
- 7. Let A_1, A_2, \ldots be subsets of a metric space.
 - (a) If $B_n = \bigcup_{i=1}^n A_i$, prove that $\bar{B}_n = \bigcup_{i=1}^n \bar{A}_i$ for $n = 1, 2, 3, \ldots$
 - (b) If $B = \bigcup_{i=1}^{\infty} A_i$, prove that $\bar{B} \supset \bigcup_{i=1}^{\infty} \bar{A}_i$. Show, by an example, that this inclusion can be proper.
- **8.** Is every point of every open set $E \subset \mathbb{R}^2$ a limit point of E? Answer the same question for closed sets in \mathbb{R}^2 .
- **9.** Let E° denote the set of all interior points of a set E (see Definition 2.18e; E° is called the **interior** of E).
 - (a) Prove that E° is always open.
 - (b) Prove that E is open if and only if $E^{\circ} = E$.
 - (c) If $G \subset E$ and G is open, prove that $G \subset E^{\circ}$.
 - (d) Prove that the complement of E° is the closure of the complement of E.
 - (e) Do E and \bar{E} always have the same interiors?
 - (f) Do E and E° always have the same closures?
- **10.** Let X be an infinite set. For $p \in X$ and $q \in X$, define

$$d(p,q) = \begin{cases} 1 & p \neq q \\ 0 & p = q \end{cases}$$

Prove that this is a metric. Which subsets of the resulting metric space are open? Which are closed? Which are compact?

11. For $x \in \mathbb{R}^1$ and $y \in \mathbb{R}^1$, define

$$d_1(x,y) = (x-y)^2$$

$$d_2(x,y) = \sqrt{|x-y|}$$

$$d_3(x,y) = |x^2 - y^2|$$

$$d_4(x,y) = |x-2y|$$

$$d_5(x,y) = \frac{|x-y|}{1+|x-y|}$$

Determine, for each of these, whether it is a metric or not.

Problem Set 6 MATH 20700

12. Let $K \subset \mathbb{R}^1$ consist of 0 and the numbers 1/n for $n = 1, 2, 3, \ldots$ Prove that K is compact directly from the definition (without using the Heine-Borel theorem).

- 13. Construct a compact set of real numbers whose limit points form a countable set.
- 14. Give an exmaple of an open cover of the segment (0,1) which has no finite subcover.
- 15. Show that Theorem 2.36 and its Corollary become false (in \mathbb{R}^1 , for example) if the word "compact" is replaced by "closed" or by "bounded."