Approximate Value Iteration and Variants

Chen-Yu Wei

Value Iteration

For
$$k=1, 2, ...$$

$$\forall s, a, \qquad Q^{(k)}(s,a) \leftarrow \boxed{R(s,a)} + \gamma \sum_{s'} \boxed{P(s'|s,a)} \max_{a'} Q^{(k-1)}(s',a')$$
 unknown unknown

Idea: In each iteration, use multiple samples to estimate the right-hand side.

Least-Square Value Iteration (LSVI)

For k = 1, 2, ... We want these samples to be "exploratory"

Obtain samples $\{(s_i, a_i, r_i, s_i')\}_{i=1}^n$ where $\mathbb{E}[r_i] = R(s_i, a_i)$, $s_i' \sim P(\cdot | s_i, a_i)$ Find $Q^{(k)}$ such that

$$Q^{(k)}(s_i, a_i) \approx r_i + \gamma \max_{a'} Q^{(k-1)}(s_i', a')$$
 (regression)

Tabular
$$\forall s, a, \qquad Q^{(k)}(s, a) = \frac{\sum_{i=1}^{n} \mathbb{I}\{(s_i, a_i) = (s, a)\} \left(r_i + \gamma \max_{a'} Q^{(k-1)}(s_i', a')\right)}{\sum_{i=1}^{n} \mathbb{I}\{(s_i, a_i) = (s, a)\}}$$

General function approximation $\theta_k = \underset{\theta}{\operatorname{argmin}} \sum_{i=1}^n \left(Q_{\theta}(s_i, a_i) - r_i - \gamma \max_{a'} Q_{\theta_{k-1}}(s_i', a') \right)^2$

Linear function approximation
$$\theta_k = \left(\lambda I + \sum_{i=1}^n \phi(s_i, a_i) \phi(s_i, a_i)^{\mathsf{T}}\right)^{-1} \left(\sum_{i=1}^n \phi(s_i, a_i) \left(r_i + \gamma \max_{a'} \phi(s_i', a')^{\mathsf{T}} \theta_{k-1}\right)\right)$$

Comparison with Contextual Bandits

Env
$$\xrightarrow{x_t}$$
 $\xrightarrow{a_t}$ $\xrightarrow{r_t}$

Exploration

$$p_t(a) \propto e^{\lambda \, \hat{R}(x_t, a)}$$

$$a_t = \underset{a}{\operatorname{argmax}} \left(\hat{R}(x_t, a) + b_t(a) \right)$$
...

Regression

Fit $\hat{R}(x_i, a_i) \approx r_i$

Env
$$\xrightarrow{s_t}$$
 $\xrightarrow{a_t}$ $\xrightarrow{r_t}$

Exploration

$$p_t(a) \propto e^{\lambda Q^{(k)}(s_t, a)}$$

$$a_t = \underset{a}{\operatorname{argmax}} \left(Q^{(k)}(s_t, a) + b_t(a) \right)$$

Value Iteration + Regression

For
$$k = 1, 2, ...$$

Fit
$$Q^{(k)}(s_i, a_i) \approx r_i + \gamma \max_{a'} Q^{(k-1)}(s'_i, a')$$

To theoretically show that LSVI converges to the optimal value function, we will make some assumptions to ensure the following holds for all iteration k:

$$Q^{(k)}(s,a) \approx R(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} \left[\max_{a'} Q^{(k-1)}(s',a') \right]$$

Linear case:

$$\phi(s,a)^{\top}\theta^{(k)} \approx R(s,a) + \gamma \, \mathbb{E}_{s' \sim P(\cdot \mid s,a)} \left[\max_{a'} \phi(s',a')^{\top}\theta^{(k-1)} \right]$$

1. Approximate Bellman Completeness Assumption: For any $\theta \in \mathbb{R}^d$, there exists a $\theta' \in \mathbb{R}^d$ such that

$$\left| \phi(s, a)^{\mathsf{T}} \theta' - \left(R(s, a) + \gamma \, \mathbb{E}_{s' \sim P(\cdot | s, a)} \left[\max_{a'} \phi(s', a')^{\mathsf{T}} \theta \right] \right) \right| \leq \epsilon_{\mathrm{fa}}$$

This ensures that no matter what θ_{k-1} is, there always exists a θ_k^* such that

$$\phi(s, a)^{\top} \theta_k^{\star} \approx R(s, a) + \gamma \, \mathbb{E}_{s' \sim P(\cdot \mid s, a)} \left[\max_{a'} \phi(s', a')^{\top} \theta_{k-1} \right]$$

This is similar to the linear assumption $|\phi(s, a)^T \theta^* - R(s, a)| \le \epsilon_{fa}$ in contextual bandits, but is qualitatively stronger because the assumption require "for any θ ".

2. Coverage Assumption: The dataset $\{(s_i, a_i, r_i, s_i')\}_{i=1}^n$ collected in each iteration allows us to find θ_k so that for any s, a,

$$\left| \phi(s, a)^{\mathsf{T}} \theta_k - \phi(s, a)^{\mathsf{T}} \theta_k^{\star} \right| \le \epsilon_{\text{stat}}$$

Recall from linear contextual bandit analysis, with

$$\theta_k = \underset{\theta}{\operatorname{argmin}} \sum_{i=1}^n \left(\phi_i^{\mathsf{T}} \theta - \left(r_i + \gamma \max_{a'} \phi(s_i', a')^{\mathsf{T}} \theta_{k-1} \right) \right)^2 + \lambda \|\theta\|^2$$

$$= \underset{\theta}{\operatorname{Expectation}} = \phi_i^{\mathsf{T}} \theta_k^{\star}$$

we have $|\phi(s,a)^{\mathsf{T}}(\theta_k - \theta_k^{\star})| \lesssim \sqrt{\beta} \|\phi(s,a)\|_{\Lambda^{-1}}$ where $\Lambda = \lambda I + \sum_{i=1}^n \phi_i \phi_i^{\mathsf{T}}$

In linear CB, we did not make such an assumption. What we did there is adding $\sqrt{\beta} \|\phi(s,a)\|_{\Lambda^{-1}}$ as **exploration bonus**, which aims to make $\sqrt{\beta} \|\phi(s,a)\|_{\Lambda^{-1}}$ small for all s,a.

Under approximate Bellman completeness and coverage assumptions, LSVI ensures

$$\left\|Q^{(k)} - Q^*\right\|_{\infty} \le O\left(\gamma^k \left\|Q^{(0)} - Q^*\right\|_{\infty} + \frac{\epsilon_{\text{fa}} + \epsilon_{\text{stat}}}{1 - \gamma}\right)$$

where
$$\|Q^{(k)} - Q^*\|_{\infty} := \max_{s,a} |Q^{(k)}(s,a) - Q^*(s,a)|$$

Also, the greedy policy $\pi^{(k)}(s) = \operatorname{argmax} Q^{(k)}(s, a)$ satisfies for all s,

$$V^{\star}(s) - V^{\pi^{(k)}}(s) \le O\left(\gamma^{k} \|Q^{(0)} - Q^{\star}\|_{\infty} + \frac{\epsilon_{fa} + \epsilon_{stat}}{1 - \gamma}\right)$$