

Theoretische Grundlagen der Informatik Tutorium

Institut für Theoretische Informatik

whois tutor

- Joachim Priesner joachim.priesner@student.kit.edu Montag 15:45, SR -108
- Sebastian Ullrich sebasti@nullrich.de
 Donnerstag 15:45, SR 131
- Max Wagner max@trollbu.de
 Donnerstag 15:45, SR 301

Organisatorisches – Zum Übungsbetrieb

- Abgabe: Handschriftlich in Zweiergruppen.
- Schein:
 - Klausurbonus (1 Notenschritt)
 - Ab 50% der erreichbaren Punkte
- Tutoriumsmaterial und aktueller Punktestand online.
 - http://tinyurl.com/tgi1112
 - E-Mail-Liste geht rum für
 - Allgemeines Blabla
 - \blacksquare Passwort für Online-Punkteeinsicht

Organisatorisches – Zum Tutorium

- Stoff soll wiederholt werden
- Dabei Fokus auf Übungsbetrieb
- Fragen/Vorschläge/Anmerkungen willkommen!

Kurze Wiederholung: Formale Sprachen

Eine formale Sprache L ist eine Teilmenge aller Wörter über einem endlichen Alphabet Σ . Also L $\subseteq \Sigma^*$.

Beispiele:

- $\Sigma = \{0, 1\}, L = \{w11z | w, z \in \Sigma^*\}$
 - Die Menge aller Wörter, die "11" enthalten.

Im Allgemeinen kann man formale Sprachen sehr frei angeben:

- $\Sigma = \{0, 1\}, L = \{w | w \in \Sigma^*, w \text{ hat eine gerade Anzahl an 1en} \}$
 - Die Menge aller Wörter, die eine gerade Anzahl an Einsen enthalten.

Kurze Wiederholung: Reguläre Sprachen

Eine Sprache L $\subseteq \Sigma^*$ heißt regulär, wenn für sie einer der folgenden Punkte gilt:

- Verankerung
 - $L = a \text{ mit } a \in \Sigma^* \text{ oder}$
 - $L = \emptyset$
- Induktion: Seien L₁, L₂ reguläre Sprachen.
 - $L = L_1 \cdot L_2$ oder
 - $L = L_1 \cup L_2$ oder
 - $L = L_1^*$

Beispiel ($\Sigma = \{a, b\}$):

- $L_1 = \{ w \in \Sigma^* \mid w \text{ besteht aus einer geraden Anzahl a} \}$
- $L_2 = \{ w \in \Sigma^* \mid w \text{ enthält gleich viele a und b} \}$

 L_1 ist regulär, L_2 nicht.

Deterministische endliche Automaten

Ein deterministischer endlicher Automat M ist ein 5-Tupel

$$M = (Q, \Sigma, \delta, s, F).$$

- Q: endliche Zustandsmenge
- lacksquare Σ : endliches Alphabet
- δ : Zustandsübergangsfunktion $Q \times \Sigma \to Q$
- s: Startzustand $\in Q$
- F: Endzustandsmenge $\subseteq Q$

Nichtdeterministische endliche Automaten

Ein nichtdeterministischer endlicher Automat M ist ein 5-Tupel

$$M = (Q, \Sigma, \delta, s, F).$$

- Q: endliche Zustandsmenge
- lacksquare Σ : endliches Alphabet
- δ : Zustandsübergangsfunktion $Q \times (\Sigma \cup \varepsilon) \to 2^Q$
- s: Startzustand $\in Q$
- F: Endzustandsmenge $\subseteq Q$

Damit der NEA ein Wort akzeptiert, muss es einen akzeptierenden Weg geben.

NEA: Beispiel

Bei Eingabe von b im Zustand q_1 gibt es mehrere Möglichkeiten (siehe Berechnungsbaum an der Tafel).

NEA: Aufgabe

Welche Sprache akzeptiert der nichtdeterministische endliche Automat zu dem folgenden Zustandsgraphen?

Potenzmengenkonstruktion

Zu jedem nichtdeterministischen endlichen Automaten existiert ein äquivalenter deterministischer endlicher Automat.

In eine Tabelle werden die Automatenzustände und ihre Folgezustände bei jeweiliger Eingabe eingetragen.

У	X
	\emptyset {q ₁ , q ₂ }

Potenzmengenkonstruktion

Ein neuer Zustand entsteht, wenn man von einem alten Zustand durch eine Eingabe in mehrere Zustände kommt.

Potenzmengenkonstruktion

Die Einträge der ersten Spalte sind die neuen Zustände. Alle Mengen, die einen Endzustand enthalten, sind wiederum im neuen Automaten Endzustände.

NEA2DEA: Aufgaben

Über dem Alphabet $\Sigma = \{a, b\}$ sei der reguläre Ausdruck $r := (a \cup (ab(b)^*ba))^*$ gegeben.

Geben Sie einen NEA an, der L(r) erkennt. Begründen Sie kurz die Korrektheit Ihres Automaten, ein formaler Korrektheitsbeweis ist jedoch nicht erforderlich.

(Hinweis: Es gibt einen NEA mit 3 Zuständen.)

Eliminierung von ε -Übergängen

Satz 2.13 (Skript)

- Zu jedem nichtdeterministischen endlichen Automaten mit ε -Übergängen gibt es einen äquivalenten nichtdeterministischen endlichen Automaten ohne ε -Übergänge, der nicht mehr Zustände hat.
- äquivalent = akzeptiert die selbe Sprache.

Erinnerung

Der ε -Abschluss E(q) eines Zustandes q ist definiert als die Menge aller Zustände, die von q aus durch lediglich ε -Übergänge erreichbar sind. (q selbst zählt auch dazu)

Eliminierung von ε -Übergängen Konstruktion

Zu einem NEA A := $(Q, \Sigma, \delta, s, F)$ mit ε -Übergängen konstruieren wir einen äquivalenten NEA $\tilde{A} := (\tilde{Q}, \Sigma, \tilde{\delta}, \tilde{s}, \tilde{F})$ mit

- $\tilde{Q} := Q$
- $\tilde{\mathbf{s}} := \mathbf{s}$
- $\tilde{\mathbf{F}} := \{\mathbf{q} | \mathbf{E}(\mathbf{q}) \cap \mathbf{F} \neq \emptyset\}$

$$\tilde{\delta}(q, a) := \begin{cases} \{q\} & \text{falls } a = \varepsilon \\ \delta(E(q), a) & \text{sonst} \end{cases}$$

Eigenschaften von $\tilde{\mathbf{A}}$

$$L(\tilde{A}) = L(A)$$
, und $|\tilde{Q}| = |Q|$.

NEA2DEA: Aufgaben

Gegeben sei der NEA $\mathcal{A}=(\{s,q,f\},\{a,b,c\},\delta,s,\{f\}),$ wobei die Übergangsfunktion δ gegeben ist durch:

	ε	a	b	$^{\mathrm{c}}$
s	$\{q, f\}$	Ø	{q}	{f}
q	Ø	$\{s\}$	$\{f\}$	$\{s,q\}$
f	Ø	Ø	Ø	Ø

- 1. Geben Sie zu dem Automaten \mathcal{A} den Ubergangsgraphen an und eliminieren Sie die ε -Übergänge.
- 2. Ermitteln Sie mittels Potenzmengenkonstruktion den zu $\mathcal A$ äquivalenten DEA. Geben Sie hierbei die Übergangsfunktion tabellarisch an.

Pumping Lemma

Pumping Lemma

Sei L eine reguläre Sprache. Dann existiert eine Zahl $n \in \mathbb{N}$, so dass für jedes Wort $w \in L$ mit |w| > n eine Darstellung

$$w = uvx$$

existiert, so dass folgende Eigenschaften erfüllt sind:

- 1. $v \neq \varepsilon$
- $2. |uv| \leq n$
- 3. Für alle $i \in \mathbb{N}_0$ gilt: $uv^i x \in L$

Pumping Lemma: Übersicht

- Jede reguläre Sprache erfüllt das Pumping Lemma. Aber: Nicht jede Sprache, die das Pumping Lemma erfüllt, ist regulär!
- In der Übung wird üblicherweise die Kontraposition des Pumping-Lemmas verwendet: Man zeigt für eine Sprache, dass das Pumping-Lemma nicht erfüllt ist, woraus folgt, dass diese Sprache nicht regulär sein kann.
- $\begin{array}{l} \bullet \ \neg \left[\exists n \in \mathbb{N} \, : \, \forall w \in L, |w| > n \, : \, \exists uvx = w \, : \, \ldots \forall i \in \mathbb{N} \, : \, uv^i x \in L \right] \\ \Leftrightarrow \forall n \in \mathbb{N} \, : \, \exists w \in L, |w| > n \, : \, \forall uvx = w \, : \, \ldots \exists i \in \mathbb{N} \, : \, uv^i x \not \in L \end{array}$
 - Finden wir für jedes n ein w mit |w| > n, so dass für jede Darstellung w = uvx mit $v \neq \varepsilon$ sowie $|uv| \leq n$ ein $i \in \mathbb{N}_0$ existiert mit $uv^ix \notin L$, dann ist L nicht regulär.

Pumping Lemma: Übersicht

- Jede reguläre Sprache erfüllt das Pumping Lemma. Aber: Nicht jede Sprache, die das Pumping Lemma erfüllt, ist regulär!
- In der Übung wird üblicherweise die Kontraposition des Pumping-Lemmas verwendet: Man zeigt für eine Sprache, dass das Pumping-Lemma nicht erfüllt ist, woraus folgt, dass diese Sprache nicht regulär sein kann.
- $\begin{array}{l} \bullet & \neg \left[\exists n \in \mathbb{N} \, : \, \forall w \in L, |w| > n \, : \, \exists uvx = w \, : \, \dots \forall i \in \mathbb{N} \, : \, uv^i x \in L \right] \\ \Leftrightarrow \forall n \in \mathbb{N} \, : \, \exists w \in L, |w| > n \, : \, \forall uvx = w \, : \, \dots \exists i \in \mathbb{N} \, : \, uv^i x \not \in L \end{array}$
 - Finden wir für jedes n ein w mit |w| > n, so dass für jede Darstellung w = uvx mit $v \neq \varepsilon$ sowie $|uv| \leq n$ ein $i \in \mathbb{N}_0$ existiert mit $uv^ix \notin L$, dann ist L nicht regulär.

Pumping Lemma: Übersicht

- Jede reguläre Sprache erfüllt das Pumping Lemma. Aber: Nicht jede Sprache, die das Pumping Lemma erfüllt, ist regulär!
- In der Übung wird üblicherweise die Kontraposition des Pumping-Lemmas verwendet: Man zeigt für eine Sprache, dass das Pumping-Lemma nicht erfüllt ist, woraus folgt, dass diese Sprache nicht regulär sein kann.
- $\begin{array}{l} \bullet & \neg \left[\exists n \in \mathbb{N} \, : \, \forall w \in L, |w| > n \, : \, \exists uvx = w \, : \, \dots \forall i \in \mathbb{N} \, : \, uv^i x \in L \right] \\ \Leftrightarrow \forall n \in \mathbb{N} \, : \, \exists w \in L, |w| > n \, : \, \forall uvx = w \, : \, \dots \exists i \in \mathbb{N} \, : \, uv^i x \not \in L \end{array}$
 - Finden wir für jedes n ein w mit |w| > n, so dass für jede Darstellung w = uvx mit $v \neq ε$ sowie $|uv| \le n$ ein $i \in \mathbb{N}_0$ existiert mit $uv^ix \notin L$, dann ist L nicht regulär.

Beispiel

Sei
$$\Sigma = \{a,b\}$$
 und $L = \{a^nb^n \mid n \ge 0\}$. (Also $L = \{\varepsilon, ab, aabb, aaabb, \ldots\}$)

- 1. Angenommen, L sei regulär. Sei dann n wie im Pumping Lemma.
- 2. Wähle das Wort $w = a^n b^n$.
- 3. Es ist also |w| > n.
- 4. Nun ist aber für jede Darstellung w=uvx mit $|uv| \le n$ und $v \ne \varepsilon$ $v=a^m$ mit $m\ge 0$. Demnach ist $uv^0x=a^lb^n\ne L$, da l< n.
- 5. Daher kann L nicht regulär sein.

Pumping Lemma: Aufgaben

Welche der folgenden Sprachen sind regulär? Begründen Sie Ihre Antwort.

- 1. $L = \{a^k c^l b^k \mid k, l \ge 0\}$
- 2. Die Menge aller Wörter über $\{0,1\}$, sodass auf jede Null eine Eins folgt
- 3. Die Menge der Wörter über $\{0,1\}$, die die Form ww haben, wobei w aus w gebildet wird, indem alle Nullen durch Einsen und alle Einsen durch Nullen ersetzt werden; so ist etwa $\overline{011}=100$ und 011100 ein Beispiel für ein Wort dieser Sprache

Konstruktion eines RA aus einem DEA

Wir wissen: Zu jedem DEA gibt es einen regulären Ausdruck, der genau die Sprache beschreibt, die der Automat akzeptiert. Wie konstruiert man nun diesen RA aus dem DEA?

Idee: Betrachte die Sprachen L_{q_r,i,q_t} , definiert als $w \in \Sigma^*$ mit w überführt q_r in q_t unter Benutzung der Zwischenzustände $\{q_1,\ldots,q_i\}$

- Es ist $L = \bigcup_{f \in F} L_{s,n,f}$
- Es ist weiterhin $L_{q_r,i+1,q_t} = L_{q_r,i,q_t} \cup (L_{q_r,i,q_{i+1}}(L_{q_{i+1},i,q_{i+1}})^*L_{q_{i+1},i,q_t})$
- Letztlich ist $L_{q_r,0,q_t}$ immer regulär, das sind die Zeichen mit denen man von q_r nach q_t kommt, ohne weitere Zustände zu verwenden (sowie ε falls r = t).
- Unter Benutzung dieser Punkte kann man nun einen Regulären Ausdruck zu einem DEA Konstruieren.

- Was sind hier jeweils: $\mathbf{L}_{\mathbf{q_1},\mathbf{0},\mathbf{q_1}} = (\bot \cup \varepsilon)$
- $L_{q_1,0,q_2} = (0)$
- $L_{q_1,1,q_1} = (1^*)$
- $L_{q_2,1,q_2} = (0 \cup 1 \cup \varepsilon)$
- $L_{q_2,2,q_2} = (0 \cup 1)^*$
- $L_{q_1,2,q_2} = 1*0(0 \cup 1)*$

- Was sind hier jeweils: $L_{q_1,0,q_1} = (1 \cup \varepsilon)$
- $\mathbf{L}_{q_1,0,q_2} = (0)$
- $L_{q_1,1,q_1} = (1^*)$
- $L_{q_2,1,q_2} = (0 \cup 1 \cup \varepsilon)$
- $L_{q_2,2,q_2} = (0 \cup 1)^*$
- $L_{q_1,2,q_2} = 1*0(0 \cup 1)*$

- Was sind hier jeweils: $L_{q_1,0,q_1} = (1 \cup \varepsilon)$
- $L_{q_1,0,q_2} = (0)$
- $\quad \quad \mathbf{L}_{\mathbf{q_1,1,q_1}} = (1^*)$
- $L_{q_2,1,q_2} = (0 \cup 1 \cup \varepsilon)$
- $L_{q_2,2,q_2} = (0 \cup 1)^*$
- $L_{q_1,2,q_2} = 1*0(0 \cup 1)*$

- Was sind hier jeweils: $L_{q_1,0,q_1} = (1 \cup \varepsilon)$
- $L_{q_1,0,q_2} = (0)$
- $L_{q_1,1,q_1} = (1^*)$
- $L_{\mathbf{q_2},\mathbf{1},\mathbf{q_2}} = (0 \cup 1 \cup \varepsilon)$
- $L_{q_2,2,q_2} = (0 \cup 1)^*$
- $L_{q_1,2,q_2} = 1*0(0 \cup 1)*$

- Was sind hier jeweils: $L_{q_1,0,q_1} = (1 \cup \varepsilon)$
- $L_{q_1,0,q_2} = (0)$
- $L_{q_1,1,q_1} = (1^*)$
- $L_{q_2,1,q_2} = (0 \cup 1 \cup \varepsilon)$
- $\mathbf{L}_{\mathbf{q_2,2,q_2}} = (0 \cup 1)^*$
- $L_{q_1,2,q_2} = 1^*0(0 \cup 1)^*$

Was sind hier jeweils:

- $\mathbf{L}_{q_1,0,q_1} = (1 \cup \varepsilon)$
- $L_{q_1,0,q_2} = (0)$
- $L_{q_1,1,q_1} = (1^*)$
- $L_{q_2,1,q_2} = (0 \cup 1 \cup \varepsilon)$
- $L_{q_2,2,q_2} = (0 \cup 1)^*$
- $L_{\mathbf{q_1,2,q_2}} = 1^*0(0 \cup 1)^*$

Was sind hier jeweils:

- $L_{q_1,0,q_1} = (1 \cup \varepsilon)$
- $L_{q_1,0,q_2} = (0)$
- $L_{q_1,1,q_1} = (1^*)$
- $L_{q_2,1,q_2} = (0 \cup 1 \cup \varepsilon)$
- $L_{q_2,2,q_2} = (0 \cup 1)^*$
- $L_{q_1,2,q_2} = 1*0(0 \cup 1)*$

Ausführliche Konstruktion

- 1. $L_{q_1,2,q_2} = L_{q_1,1,q_2} \cup (L_{q_1,1,q_2}(L_{q_2,1,q_2})^* L_{q_2,1,q_2})$
- 2. $L_{q_1,1,q_2} = L_{q_1,0,q_2} \cup (L_{q_1,0,q_1}(L_{q_1,0,q_1})^*L_{q_1,0,q_2}) = 0 \cup ((1 \cup \epsilon)(1 \cup \epsilon)^*0)$
- 3. $L_{q_2,1,q_2} = L_{q_2,0,q_2} \cup (L_{q_2,0,q_1}(L_{q_1,0,q_1})^*L_{q_1,0,q_2}) = (0 \cup 1 \cup \epsilon)$
- 4. Also: $L_{q_1,2,q_2} = 0 \cup (1 \cup \epsilon)(1 \cup \epsilon)^*0 \cup ((0 \cup ((1 \cup \epsilon)(1 \cup \epsilon)^*0))(0 \cup 1 \cup \epsilon)^*(0 \cup 1 \cup \epsilon))$
- 5. Vereinfacht: $1*0(0 \cup 1)*$

Aufgabe

Bestimmen Sie mit dem im Beweis von Satz 2.14 verwendeten Verfahren die reguläre Sprache, die folgender deterministische endliche Automat erkennt:

Bis zum nächsten Mal!

Some people, when confronted with a problem, think "I know, I'll use regular expressions." Now they have two problems. – Jamie Zawinski

Lizenzen

Dieses Werk ist unter einem "Creative Commons Namensnennung-Weitergabe unter gleichen Bedingungen 3.0

Deutschland "-Lizenzvertrag lizenziert. Um eine Kopie der Lizenz zu erhalten, gehen Sie bitte zu

http://creativecommons.org/licenses/by-sa/3.0/de/ oder schreiben Sie an Creative Commons, 171 Second

Street, Suite 300, San Francisco, California 94105, USA.

Davon ausgenommen sind das Titelbild, welches aus der März-April 2002 Ausgabe von American Scientist erschienen ist und ohne Erlaubnis verwendet wird, sowie das KIT Beamer Theme. Hierfür gelten die Bestimmungen der jeweiligen Urheber.