MINI_STAR_4K开发板 用户手册

2021-03-12

目 录

1,	关于	本手册	1
	1.1	手册内容	1
	1.2	适用产品	1
	1.3	相关文档	1
	1.4	技术支持	2
	1.5	术语、缩略语	2
2、	开发	板介绍	3
	2.1	概述	3
	2.2	开发板套件	4
	2.3	系统框架	5
	2.4	特性	5
	2.5	指标	6
	2.6	机械尺寸图	7
3、	开发	板详细介绍	8
	3.1、	FPGA模块	8
		3.1.1概述	8
		3.1.2 I/O BANK 说明	9
	3.2	下载	0
		3.2.1 概述1	0
		3.2.2 USB下载电路1	0
		3.2.3 管脚分配	1

3.3	电源	. 11
	3.3.1 概述	. 11
	3.3.2 电源系统分配	. 11
3.4	时钟	. 12
	3.4.1 概述	. 12
	3.4.2 时钟电路图	. 12
	3.4.3 管脚分配	. 12
3.5	LED	. 12
	3.5.1 概述	. 12
	3.5.2 LED 电路	. 13
	3.5.3 管脚分配	. 13
3.6	按键	. 13
	3.6.1 概述	. 13
	3.6.2 按键电路	. 14
	3.6.3 管脚分配	. 14
3.7	扩展IO	. 15
	3.7.1 概述	. 15
	3.7.2 扩展IO原理图	. 15
	3.7.3 管脚分配	. 16
3.8	64M SPI Flash	. 17
	3.8.1概述	. 17
	3.8.2 SPI Flash原理图	. 17

		3.8.3 管脚分配	17
	3.9	配套扩展实验板	18
		3.9.1 概述	18
		3.9.2 扩展实验板原理图	18
		3.9.3 核心板与扩展板连接图	19
		3.9.4 扩展实验板尺寸图	19
4、	开发	板使用	20
	4.1	工程导入	20
	4.2	程序编译和下载	21
	4.3	例程操作及现象说明	22
	4.4	硬件与软件下载	23
	4.5	开发板使用注意事项	24

1 、关于本手册

1.1 手册内容

Mini star 4K开发板套件用户手册分为三个部分:

- 1. 简述开发板的功能特点和硬件资源;
- 2. 介绍开发板上的各部分硬件电路的功能、电路及管脚分配;
- 3. 开发板使用注意事项。

1.2 适用产品

本手册中所述信息可适用于以下GW1NSR 系列FPGA产品:

■ GW1NSR-LV4CQN48P

1.3 相关文档

通过登录高云半导体网站 www.gowinsemi.com.cn 可以下载、查看以下相关文档:

- 1. GW1NSR 系列 FPGA 产品数据手册
- 2. GW1NSR 系列 FPGA 产品封装与管脚手册
- 3. GW1NSR-4 器件 Pinout 手册
- 4. GW1NSR 系列 FPGA 产品编程配置手册
- 5. Gowin 云源软件用户手册

1.4 技术支持

1、最新FPGA技术资讯请关注公众号MYMNIEYE;

2、教学视频链接更新地址: https://space.bilibili.com/507416742

3、淘宝店铺:小眼睛半导体

4、官网: <u>www.myminieye.com</u> 5、技术指导 QQ 群: 808770961

6、答疑邮箱:

1.5 术语、缩略语

表 1-1 中列出了本手册中出现的相关术语、缩略语及相关释义。 表 1-1 术语、缩略语

术语、缩略语	全称	含义	
FPGA	Field Programmable Gate Array	现场可编程门阵列	
LED	Light Emitting Diode	发光二极管	
LDO	Low Dropout Regulator	低压差线性稳压器	
GPIO	General Purpose Input Output	通用输入/输出	
LUT4	4-input Look-up Table	4 输入查找表	
S-SRAM	Shadow SRAM	分布式静态随机存储器	
B-SRAM	Block SRAM	块状静态随机存储器	
PLL	Phase-locked Loop	锁相环	
DLL	Delay-locked Loop	延迟锁相环	
DSP	Digital Signal Processing	数字信号处理	
QN48p	QN48p	QN48p 封装	

2、开发板介绍

2.1 概述

图 2-1 MINI STAR 4K开发板

MINI_STAR_4K开发板是以高云半导体 GW1NSR 系列 FPGA: GW1NSR-LV4CQN48P为核心。

高云半导体 GW1NSR 系列 FPGA 产品是高云半导体小蜜蜂 (LittleBee®)家族第一代 FPGA 产品,是一款系统级封装芯片, 内部集成 了 GW1NS 系列FPGA 产品和 PSRAM 存储芯片;包括 GW1NSR-2C 器件,GW1NSR-4C 器件和 GW1NSR-2 器件,GW1NSR-4 器件。GW1NSR-2C 及 GW1NSR-4C器件内嵌 ARM Cortex-M3 硬核处理器。此外, GW1NSR 系列 FPGA 产品内嵌 USB2.0 PHY、 用户闪存以及 ADC 转换器。 GW1NSR-2C / GW1NSR-4C器件以 ARM Cortex-M3 硬核处理器为核心,具备了实现系统功能所需要的最小内存;内嵌的

FPGA 逻辑模块单元方便灵活,可实现多种外设控制功能,能提供出色的计算功能和异常系统响应中断,具有高性能、低功耗、管脚数量少、使用灵活、瞬时启动、低成本、非易失性、高安全性、封装类型丰富等特点。GW1NSR-2C 器件实现了可编程逻辑器件和嵌入式处理器的无缝连接,兼容多种外围器件标准,可大幅降低用户成本,可广泛应用于工业控制、通信、物联网、伺服驱动、消费等多个领域。

2.2 开发板套件

开发板套件包括:

- ■开发板
- ■板卡指导手册

图2-2 MINI_STAR_4K开发板功能接口

2.3 系统框架

图2-3 MINI_STAR_4K开发板系统框架图

2.4 特性

开发板组成结构及特性如下:

- 1. FPGA
 - 采用 QN48P 封装
 - 内嵌 ARM Cortex-M3 硬核处理器
- 2. FPGA 配置模式
 - **■** JTAG
- 3. 时钟资源
 - 27MHz 时钟晶振
- 4. 按键
 - 2 个按键开关
- 5. LED

- 1 个电源指示灯(绿)
- 2 个 用户指示灯 (绿)
- 6. 存储
 - 256Kbit flash (内部)
 - 64Mbit flash (外部)
- 7. FPC扩展IO口
 - 2组 FPC 扩展 IO 口
- 8. 电源
 - 具有电压反向保护;
 - 提供 5V 电压输入。

2.5 指标

表 2-1 MiniStar开发板参数指标列表

序号	项目	参数	功能描述
1	5V供电和下载	5V DC-DC; Typc-USB	5V供电。USB转JTAG接口
3	轻触按键	2路轻触按键	可作为测试控制输入使用。(按下为低电平)
4	指示灯	2路LED指示灯	当 FPGA 对应管脚输出信号为逻辑高电平时, LED 被点亮;
5	时钟	1 路27MHZ时钟	为 FPGA 提供 27MHz 时钟
6	扩展接口	FPC座扩展	用于摄像头、HDMI、GPIO等控制 输出
7	工作温度	0~+ 70℃商业级	
8	环境湿度	20%~90%,非冷凝	
9	机械尺寸	20mm×57mm	
10	PCB 规格	4层,黑底白字	
11	电源供电	5V/1A,typec-USB接 口供电	
12	系统功耗		

2.6 机械尺寸图

图2-4 MINI_STAR_4K开发板

3、开发板详细介绍

3.1、FPGA模块

3.1.1概述

GW1NSR-LV4CQN48P FPGA 产品资源信息如表 3-1 所示。

表 3-1 GW1NSR 系列 FPGA 产品信息列表

表 3-1 GW INSK 系列	
器件	GW1NSR-4C
逻辑单元(LUT4)	4608
寄存器(FF)	3456
块状静态随机存储器 B-SRAM(bits)	180K
块状静态随机存储器数目 B-SRAM(个)	10
用户闪存(bits)	256K
PSRAM (bits)	64M
HyperRAM(bit)	64M
NOR FLASH (bits)	32M
乘法器(18x18Multiplier)	16
锁相环(PLLs)	2
osc	1,精度±5%
硬核处理器	Cortex-M3
I/O Bank 总数	4
最大用户 I/O 数	39
核电压	1.2V

3.1.2 I/O BANK 说明

GW1NSR 系列 FPGA 产品分为四个 I/O BANK 区,图 3-1 为 GW1NSR 系列 FPGA产品的I/O BANK整体示意图。图3-2为QN48P封装管脚分布示意图。

图 3-1 GW1NSR-LV4CQN48P 产品 I/O BANK 分布图

图 3-2 GW1NSR-LV4CQN48P FPGA 封装管脚分布示意图 (顶视图)

BANK	电压	功能	I/O 占用			
0	1.2V/2.5V	Jtag	4个GPIO			
		IO扩展	1对差分对,2个GPIO			
1	1.2V/2.5V	IO扩展	5对差分对			
2	1.2V/2.5V	IO扩展	4对差分对,1个GPIO			
3	1.8V	27M时钟	1个GPIO			
		LED	2个GPIO			
		按键	2个GPIO			
		spi-flash	5个GPIO			

表 3-2 FPGA I/O BANK 电压及功能分布

3.2 下载

3.2.1 概述

开发板提供 USB 下载接口,由 FT2232 USB 转换芯片的 A 通道来实现。内部ARM Cortex-M3 硬核处理器下载也通过同一组IO下载。当需调试下载ARM核时需要保持USB供电,同时拨动拨码开关断开USB转JTAG模块的连接。

下载的连接示意图如图3-3所示。

3.2.2 USB下载电路

图 3-3 FPGA下载电路原理图

3.2.3 管脚分配

次 3 3 1 4X 0 0 日 6 M 7 3 日 6 M 7 3 日 7 M 7 M 7 M 7 M 7 M 7 M 7 M 7 M 7 M 7					
信号名称	FPGA管脚序	BANK	描述	I/O电平	
	号				
FPGA_ TMS	6	0	TMS	3.3V	
FPGA_ TCK	7	0	TCK	3.3V	
FPGA_TDI	3	0	TDI	3.3V	
FPGA_TDO	4	0	TDO	3.3V	

表 3-3 下载电路管脚分配

3.3 电源

3.3.1 概述

开发板通过typec-USB接口提供DC5V输入,设置有1.5A过流保护,防 反接保护;

输入的DC5V电源经过板上的电源IC转换输出3.3V,2.5,1.8V, 1.2V

3.3.2 电源系统分配

图 3-4 电源电路

3.4 时钟

3.4.1 概述

开发板为 FPGA 提供了 27MHz有源晶振,连接到了全局时钟引脚。

3.4.2 时钟电路图

图 3-5 时钟连接原理图

3.4.3 管脚分配

表 3-4 FPGA 时钟管脚分配

信号名称	FPGA管脚序号	BANK	描述	I/O电平
CLK_27MHZ_IN	22	3	27MHz 有源 晶振输入	1.8V

3.5 LED

3.5.1 概述

开发板中有用户LED2个,可通过 LED 灯显示所需状态。可通过以下方式对 LED 灯进行测试:

- 当 FPGA 对应管脚输出信号为逻辑高电平时, LED 被点亮;
- 当输出信号为低电平时, LED 熄灭

3.5.2 LED 电路

图 3-6 LED电路原理图

3.5.3 管脚分配

表 3-5 LED管脚分配

信号名称	FPGA管脚序号	BANK	描述	I/O电平
LED1	13	3	LED 指示灯 1	1.8V
LED2	14	3	LED 指示灯 2	1.8V

3.6 按键

3.6.1 概述

开发板有 2个按键开关,用户可通过手动控制向对应 FPGA 管脚输入低电平,可作为测试控制输入使用。(按下为低电平)

3.6.2 按键电路

图 3-7 按键电路原理图

3.6.3 管脚分配

表 3-6 按键管脚分配

信号名称	FPGA管脚序号	BANK	描述	I/O电平
KEY1	23	3	按键 1	1.8V
KEY2	20	3	按键 2	1.8V

3.7 扩展IO

3.7.1 概述

板卡包含两组扩展 IO,分别由两个 0.5mm-24P 的 FPC 座引出。第一组包含: 1、DC5V,DC3.3V 电源输出; 2、BANK1 的 5 对差分对 3、BANK0 的 2 个 GPIO 和 BANK2 的一个 GPIO。第二组包含: 1、DC5V,DC3.3V 电源输出; 2、BANK2 的 4 对差分对,1 个 GPIO(IOR9B_33 IO 与第一组共用); 3、BANK0 的 2 个 GPIO。用户可配套官方推荐转接板进行摄像头输入-HDMI 输出实验等。

3.7.2 扩展IO原理图

图 3-8 扩展原理图

3.7.3 管脚分配

信号名称	FPGA管脚序号	BANK	描述	I/O电平
IOT10A_01	1	0	差分对	1.2V/2.5V
IOT10B_02	2	0		1.2V/2.5V
IOT4B_08	8	0	GPIO	1.2V/2.5V
IOT5B_09	9	0	GPIO	1.2V/2.5V
IOR17B_27	27	2	差分对	1.2V/2.5V
IOR17A_28	28	2		1.2V/2.5V
IOR15B_29	29	2	差分对	1.2V/2.5V
IOR15A_30	30	2		1.2V/2.5V
IOR11B_31	31	2	差分对	1.2V/2.5V
IOR11A_32	32	2		1.2V/2.5V
IOR9B_33	33	2	GPIO	1.2V/2.5V
IOR2B_34	34	2	差分对	1.2V/2.5V
IOR2A_35	35	2		1.2V/2.5V
IOT26A_39	39	1	差分对	1.2V/2.5V
IOT26B_40	40	1		1.2V/2.5V
IOT20A_41	41	1	差分对	1.2V/2.5V
IOT20B_42	42	1		1.2V/2.5V
IOT17A_43	43	1	差分对	1.2V/2.5V
IOT17B_44	44	1		1.2V/2.5V
IOT13A_45	45	1	差分对	1.2V/2.5V
IOT13B_46	46	1		1.2V/2.5V
IOT11B_47	47	1	差分对	1.2V/2.5V
IOT11A_48	48	1		1.2V/2.5V

3.8 64M SPI Flash

3.8.1概述

本开发板搭配了64Mbit SPI Flash,型号W25Q64DWSSIG。可以通过 JTAG接口将程序下载到flsah中保存。

3.8.2 SPI Flash原理图

图 3-9 SPI Flash原理图

3.8.3 管脚分配

信号名称	FPGA管脚序号	BANK	描述	I/O电平
SPI_CS	17	3	SPI使能	1.8V
SPI_MISO	16	3	SPI数据,从发主收	1.8V
SPI_WP	15	3	写保护	1.8V
SPI_HOLD	18	3	数据保持	1.8V
SPI_CLK	19	3	SPI时钟	1.8V
SPI_MOSI	21	3	SPI数据,主发从收	1.8V

3.9 配套扩展实验板

3.9.1 概述

为方便进行简单实验,开发板配套了 FPC 转接排针的实验板。其他实验板 请自行购买或制作。

3.9.2 扩展实验板原理图

3.9.3 核心板与扩展板连接图

3.9.4 扩展实验板尺寸图

4、开发板使用

4.1 工程导入

具体软件操作说明参见SUG100-1.7_Gowin云源软件用户指南

- 1. 直接点击.gprj文件
- 2. 进入开发软件后点击"文件"→"打开"选择.gprj文件导入

₩ GOWIN FPGA Designer - [Design Summary] 文件(\underline{F}) 编辑(\underline{E}) 工具(\underline{T}) 窗口(\underline{W}) 帮助(\underline{H}) S 🔀 🔥 <u>新建(N</u>)... Ctrl+N <u></u> 打开(<u>O</u>)... Ctrl+O ₩ 保存(S) Ctrl+S 另存为(<u>A</u>)... 全部保存 Ctrl+Shift+S 关闭 "Design Summary"(C) 关闭全部 关闭工程 割打印(P)... Ctrl+P 最近打开的文件 最近打开的工程 退出

4.2 程序编译和下载

1.编写完程序之后保存点击Process 点击Place&Route编译,编译通过之后前面会出现绿勾

2.编译通过后双击Program Device弹出下载窗口,点击开始下载

4.3 例程操作及现象说明

开发板套配套视频,将在Bilibili (网址:

https://space.bilibili.com/507416742) 等网站及相关公众号发布欢迎关注。

4.4 硬件与软件下载

GW1NS-4C件内嵌 ARM Cortex-M3 硬核处理器,若要使用 EMPU,需要在 Gowin 云源软件的 Programmer 下载软件下载 Gowin_EMPU (GW1NS-4C)硬件设计码流文件和软件编程设计二进制BIN 文件。在下载界面双击device下的器件,GW1NS-4C/GW1NSR-4C 下载 选项配置如下图所示。

GW1NS-4C上EMPU的使用可参考Gowin官方的文档和参考设计:

http://www.gowinsemi.com.cn/prodshow_view.aspx?TypeId=71&Id =186&FId=t31:71:31#IP

文档		
IPUG930, Gowin_EMPU(GW1NS-4C)快速设计参考手册		
IPUG931, Gowin_EMPU(GW1NS-4C)软件编程参考手册		
IPUG932, Gowin_EMPU(GW1NS-4C)硬件设计参考手册		
IPUG928, Gowin_EMPU(GW1NS-4C)IDE 软件参考手册		
IPUG929, Gowin_EMPU(GW1NS-4C)串口调试参考手册		
RN933, Gowin_EMPU(GW1NS-4C)软件和硬件设计发布说明		

4.5 开发板使用注意事项

- 1. 开发板使用时, 注意轻拿轻放, 并做好静电防护。
- 2. 对内部 Flash 或外部 Flash 下载 bitstream 文件时,需设置 MODE 脚状态在正确的配置值上。
- 3. 连接模块时,必须先断电。