Optimization Model for SCRUM Software Development

Decision Variables

$v_s \in [0, 100]$	Sprint velocity (story points completed)
$t_s \in \{3, \dots, 10\}$	Team size
$e_f \in [0.1, 40]$	Effort per task
$a_e \in [0, 40]$	Employee availability (hours per sprint)
$p_f \in \{1, \dots, 5\}$	Feature priority
$b_c \in \{1, \dots, 10\}$	Blocker severity
$s_p \in \{1, \dots, 20\}$	Story points per user story
$B \in [0, 1,\!000,\!000]$	Project budget
$d_s \in \{7, \dots, 30\}$	Sprint duration in days
$d_c \in [0, 100]$	Documentation completeness (%)
$x_{et} \in \{0, 1\}$	Assignment of employee e to task t

Objective Functions

\max	v_s	(Maximize sprint velocity)
\min	b_r	(Minimize number of unresolved blockers)
max	u_t	(Maximize team utilization)
max	c_f	(Maximize feature completion)
\min	o_s	(Minimize sprint overruns)
max	m_s	(Maximize skill match in assignments)
\min	r_w	(Minimize rework due to bugs)
max	a_{po}	(Maximize product owner availability)
max	s_c	(Maximize customer satisfaction)
max	q_s	(Maximize sprint goal achievement)

Constraints

 $d_c \ge 90$

(Documentation completeness at least 90%)

(8)

Other company specific constraints as required