Lab # 4: ICMP Protocol

Internet Control Message Protocol

ICMP Protocol

- On the Internet there are no hardware mechanisms available to check connectivity
- IP Protocol doesn't provide tools for problems detection and troubleshooting
- A new module is introduced: ICMP * (Internet Control Message Protocol)
- This protocol allows hosts and routers to send control messages to other hosts and routers
- * RFC 792

ICMP Overview

- ICMP allows us to know, for example, why a datagram has not been delivered (there is no route, the destination does not respond, the time to life is exhausted, etc.)
- ONLY the sender of the datagram, that caused the error, is informed about the error
- ICMP doesn't correct the problem (only inform!)

ICMP Message Encapsulation

- ICMP messages are encapsulated in IP datagrams
 - But ICMP is not considered a higher level protocol to IP

ICMP Message Format

- Each message has its own format, but all begin with the own fields:
 - Type (8 bits): Identifies the message type
 - Code (8 bits): More information about the message type
 - Checksum (16 bits): Use the same algorithm as IP
 0
 16
 31

ICMP Messages Types

The type of message determines its meaning and format.

- There are 15 different types. - Among the main ones we have:					
	Type	CMP Message		or	
	0	Echo reply	1		
3		Unreachable Destination		1	
	8 Echo request		1		
	11	Datagram Time exceeded		1	

 The error messages contain the IP header + 8 first bytes of data from the original datagram

ICMP Error Messages

- Error messages are never generated in response to:
 - An ICMP error message
 - A datagram with a broadcast destination IP address
 - A fragment that is not the first fragment of the original datagram
 - A datagram whose source IP address does not define a single machine (that is, the source address can not be zero, the loopback address, broadcast addresses)
- All this to prevent broadcast storms

Echo Message (request/reply)

- The Echo reply message returns the same data that was received in the Echo request message
- They are used to build the Ping tool
- It is employed by administrators and users to detect problems on the network
- It allows hosts/routers to :
 - Check if a destination is active and if there is a route to it
 - Measure the time of "round trip"
 - Estimate the reliability of the route

Time Exceeded Message

- These types of messages can be sent by routers and hosts:
 - Routers: when they discard a datagram at the end of their time to life
 - Hosts: when a timeout occurs while waiting for all the fragments of a datagram
- The code field explains which of the two events has occurred

Unreachable Destination Messages

- They are sent by a router or host when it can not send or deliver an IP datagram
- They are sent to the sender of the original datagram
- The code field contains an integer with additional information.
- Some important ones are:

Cod.	Description		
0	Unreachable Network		
1	Unreachable Host		
2	Unreachable Protocol		
3	Unreachable Port		
4	Fragmentation is required but DF flag enabled		
6	Unknown Destination Network		
7	Unknown Destination Host		

Traceroute and ICMP

- source sends series of UDP segments to dest
 - first set has TTL =1
 - second set has TTL=2, etc.
 - unlikely port number
- when nth set of datagrams arrives to nth router:
 - router discards datagrams
 - and sends source ICMP messages (type 11, code 0)
 - ICMP messages includes name of router & IP address

when ICMP messages arrives, source records RTTs

stopping criteria:

- UDP segment eventually arrives at destination host
- destination returns ICMP "port unreachable" message (type 3, code 3)
- source stops

ICMP Summary

•	used by hosts & routers to
	communicate network-
	level information

- error reporting:
 unreachable host, network,
 port, protocol
- echo request/reply (used by ping)
- network-layer "above" IP:
 - ICMP msgs carried in IP datagrams
- ICMP message: type, code plus first 8 bytes of IP datagram causing error

<u>Type</u>	<u>Code</u>	description
0	0	echo reply (ping)
3	0	dest. network unreachable
3	1	dest host unreachable
3	2	dest protocol unreachable
3	3	dest port unreachable
3	6	dest network unknown
3	7	dest host unknown
4	0	source quench (congestion
		control - not used)
8	0	echo request (ping)
9	0	route advertisement
10	0	router discovery
11	0	TTL expired
12	0	bad IP header