Math 415 - Lecture 35 Quadratic forms

Monday November 30th 2015

Math 415 - Lecture 35 Quadratic forms

Monday November 30th 2015

Textbook reading: Chapter 6.2

Textbook reading: Chapter 6.2

Suggested practice exercises: Chapter 6.2, # 1, 2, 4, 5

Textbook reading: Chapter 6.2

Suggested practice exercises: Chapter 6.2, # 1, 2, 4, 5

Strang lecture: Lecture 27: Positive definite matrices and minima

Review

Spectral theorem:

• A is a symmetric matrix if $A^T = A$. e.g. $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 5 \end{bmatrix}$

Spectral theorem:

- A is a symmetric matrix if $A^T = A$. e.g. $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 5 \end{bmatrix}$
- Any $n \times n$ symmetric matrix A has n real eigenvalues and an orthonormal eigenbasis $\{\mathbf{q}_1, \dots, \mathbf{q}_n\}$.

Spectral theorem:

- A is a symmetric matrix if $A^T = A$. e.g. $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 5 \end{bmatrix}$
- Any $n \times n$ symmetric matrix A has n real eigenvalues and an orthonormal eigenbasis $\{\mathbf{q}_1, \dots, \mathbf{q}_n\}$.
- So, we can write

$$A = QDQ^T$$

where

$$D = \underbrace{\begin{bmatrix} \lambda_1 & & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}}_{\text{matrix of eigenvalues}} \text{ and } Q = \underbrace{\begin{bmatrix} & & & \\ & \mathbf{q}_1 & \cdots & \mathbf{q}_n \\ & & & \end{bmatrix}}_{\text{matrix of eigenvectors}}$$

Quadratic forms

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable function with critical point at $\mathbf{0}$.

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable function with critical point at $\mathbf{0}$. This means that all partial derivatives at $\mathbf{0}$ vanish.

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable function with critical point at $\mathbf{0}$. This means that all partial derivatives at $\mathbf{0}$ vanish. Is $\mathbf{0}$ a max, min, or neither?

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable function with critical point at $\mathbf{0}$. This means that all partial derivatives at $\mathbf{0}$ vanish. Is $\mathbf{0}$ a max, min, or neither? How to tell?

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable function with critical point at $\mathbf{0}$. This means that all partial derivatives at $\mathbf{0}$ vanish. Is $\mathbf{0}$ a max, min, or neither? How to tell?

• Look at the **quadratic** part of f!

Definition

A quadratic form $f: \mathbb{R}^n \to \mathbb{R}$ is a polynomial (in n variables) with every term degree two.

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable function with critical point at $\mathbf{0}$. This means that all partial derivatives at $\mathbf{0}$ vanish. Is $\mathbf{0}$ a max, min, or neither? How to tell?

• Look at the **quadratic** part of f!

Definition

A quadratic form $f: \mathbb{R}^n \to \mathbb{R}$ is a polynomial (in n variables) with every term degree two.

e.g., for
$$n = 2$$

$$f(x, y) = 3x^2 + 4xy - 5y^2$$

Let

$$f(x,y) = \begin{bmatrix} x \\ y \end{bmatrix} \cdot \begin{bmatrix} 3 & 2 \\ 2 & -5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Expand f(x, y) as a polynomial in x and y.

Let

$$f(x,y) = \begin{bmatrix} x \\ y \end{bmatrix} \cdot \begin{bmatrix} 3 & 2 \\ 2 & -5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Expand f(x, y) as a polynomial in x and y. The dot denotes the dot product!

Solution

Let

$$f(x,y) = \begin{bmatrix} x \\ y \end{bmatrix} \cdot \begin{bmatrix} 3 & 2 \\ 2 & -5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Expand f(x, y) as a polynomial in x and y. The dot denotes the dot product!

Solution

Example

Let

$$f(x,y) = \begin{bmatrix} x \\ y \end{bmatrix} \cdot \begin{bmatrix} 3 & 2 \\ 2 & -5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Expand f(x, y) as a polynomial in x and y. The dot denotes the dot product!

Solution

Expanding we get

$$f(x,y) = \begin{bmatrix} x \\ y \end{bmatrix} \cdot \begin{bmatrix} 3 & 2 \\ 2 & -5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
$$= \begin{bmatrix} x \\ y \end{bmatrix} \cdot \begin{bmatrix} 3x + 2y \\ 2x - 5y \end{bmatrix}$$
$$= 3x^2 + 4xy - 5y^2$$

This is the quadratic function from before!

Example

Let

$$f(x,y) = \begin{bmatrix} x \\ y \end{bmatrix} \cdot \begin{bmatrix} 3 & 2 \\ 2 & -5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Expand f(x, y) as a polynomial in x and y. The dot denotes the dot product!

Solution

Expanding we get

$$f(x,y) = \begin{bmatrix} x \\ y \end{bmatrix} \cdot \begin{bmatrix} 3 & 2 \\ 2 & -5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
=

$$3x^2 + 4xy - 5y^2$$

This is the quadratic function from before!

Example

Let

$$f(x,y) = \begin{bmatrix} x \\ y \end{bmatrix} \cdot \begin{bmatrix} 3 & 2 \\ 2 & -5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Expand f(x, y) as a polynomial in x and y. The dot denotes the dot product!

Solution

Expanding we get

$$f(x,y) = \begin{bmatrix} x \\ y \end{bmatrix} \cdot \begin{bmatrix} 3 & 2 \\ 2 & -5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
$$= \begin{bmatrix} x \\ y \end{bmatrix} \cdot \begin{bmatrix} 3x + 2y \\ 2x - 5y \end{bmatrix}$$
$$= 3x^2 + 4xy - 5y^2$$

Example

Let

$$f(x,y) = \begin{bmatrix} x \\ y \end{bmatrix} \cdot \begin{bmatrix} 3 & 2 \\ 2 & -5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Expand f(x, y) as a polynomial in x and y. The dot denotes the dot product!

Solution

Expanding we get

$$f(x,y) = \begin{bmatrix} x \\ y \end{bmatrix} \cdot \begin{bmatrix} 3 & 2 \\ 2 & -5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
$$= \begin{bmatrix} x \\ y \end{bmatrix} \cdot \begin{bmatrix} 3x + 2y \\ 2x - 5y \end{bmatrix}$$
$$= 3x^2 + 4xy - 5y^2$$

This is the quadratic function from before!

Theorem

Any quadratic form $f(x_1, x_2, \dots, x_n) : \mathbb{R}^n \to \mathbb{R}$ can be written

$$f(\mathbf{x}) = \mathbf{x} \cdot A\mathbf{x}$$

Theorem

Any quadratic form $f(x_1, x_2, ..., x_n) : \mathbb{R}^n \to \mathbb{R}$ can be written

$$f(\mathbf{x}) = \mathbf{x} \cdot A\mathbf{x} = \mathbf{x}^T A\mathbf{x}$$

for a symmetric matrix A.

Theorem

Any quadratic form $f(x_1, x_2, ..., x_n) : \mathbb{R}^n \to \mathbb{R}$ can be written

$$f(\mathbf{x}) = \mathbf{x} \cdot A\mathbf{x} = \mathbf{x}^T A\mathbf{x}$$

for a symmetric matrix A.

We see symmetric matrices show up "in the wild!"

Write
$$f(x, y, z) = 5x^2 + 7y^2 + 3z^2 + 2xy - 2yz$$
 as $\begin{bmatrix} x \\ y \\ z \end{bmatrix} \cdot A \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ where A is symmetric.

Example

Write
$$f(x, y, z) = 5x^2 + 7y^2 + 3z^2 + 2xy - 2yz$$
 as $\begin{bmatrix} x \\ y \\ z \end{bmatrix} \cdot A \begin{bmatrix} x \\ y \\ z \end{bmatrix}$

where *A* is symmetric.

Solution

Example

Write
$$f(x, y, z) = 5x^2 + 7y^2 + 3z^2 + 2xy - 2yz$$
 as $\begin{bmatrix} x \\ y \\ z \end{bmatrix} \cdot A \begin{bmatrix} x \\ y \\ z \end{bmatrix}$

where *A* is symmetric.

Solution

A
$$3 \times 3$$
 symmetric matrix has the form $A = \begin{bmatrix} a & d & f \\ d & b & e \\ f & e & c \end{bmatrix}$.

Write
$$f(x, y, z) = 5x^2 + 7y^2 + 3z^2 + 2xy - 2yz$$
 as $\begin{bmatrix} x \\ y \\ z \end{bmatrix} \cdot A \begin{bmatrix} x \\ y \\ z \end{bmatrix}$

where *A* is symmetric.

Solution

A 3 × 3 symmetric matrix has the form
$$A = \begin{bmatrix} a & d & f \\ d & b & e \\ f & e & c \end{bmatrix}$$
. In

general,

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} \cdot \begin{bmatrix} a & d & f \\ d & b & e \\ f & e & c \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = ax^2 + by^2 + cz^2 + (2d)xy + (2e)yz + (2f)xz$$

Review

Example

Write $f(x, y, z) = 5x^2 + 7y^2 + 3z^2 + 2xy - 2yz$ as $\begin{bmatrix} x \\ y \\ z \end{bmatrix} \cdot A \begin{bmatrix} x \\ y \\ z \end{bmatrix}$

Solution

where A is symmetric.

A 3 × 3 symmetric matrix has the form
$$A = \begin{bmatrix} a & d & f \\ d & b & e \\ f & e & c \end{bmatrix}$$
. In

general,

So,
$$A = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \cdot \begin{bmatrix} a & d & f \\ d & b & e \\ f & e & c \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = ax^2 + by^2 + cz^2 + (2d)xy + (2e)yz + (2f)xz$$

Principal axes for a quadratic form

Principal axes for a quadratic form

Intermezzo: From Eigenbasis to Standard Basis and back.

- A symmetric, so $A = QDQ^T$.

Intermezzo: From Eigenbasis to Standard Basis and back.

- A symmetric, so $A = QDQ^T$.

- If
$$x \in \mathbb{R}^n$$
 and $x_Q = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$ is the coordinate vector of x in the Q basis, then

$$x = c_1q_1 + c_2q_2 + \cdots + c_nq_n = Qx_Q.$$

Intermezzo: From Eigenbasis to Standard Basis and back.

- A symmetric, so $A = QDQ^T$.

- If
$$x \in \mathbb{R}^n$$
 and $x_Q = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$ is the coordinate vector of

x in the Q basis, then

$$x = c_1q_1 + c_2q_2 + \cdots + c_nq_n = Qx_Q.$$

- This means that to find the Q coordinate vector for X, multiply by $Q^{-1} = Q^T$:

$$x_Q = Q^T x$$

There is always a "nicest possible" coordinate system for each quadratic form.

There is always a "nicest possible" coordinate system for each quadratic form. Just use an eigenbasis of A.

Theorem

Let A be a symmetric matrix,

Theorem

Let A be a symmetric matrix, $\mathbf{v}_1, \dots, \mathbf{v}_n$ an orthonormal basis of eigenvectors with eigenvalues

Theorem

Let A be a symmetric matrix, $\mathbf{v}_1, \dots, \mathbf{v}_n$ an orthonormal basis of eigenvectors with eigenvalues $\lambda_1, \dots, \lambda_n$. Write

$$\mathbf{x} = c_1 \mathbf{v}_n + \cdots + c_n \mathbf{v}_n$$

There is always a "nicest possible" coordinate system for each quadratic form. Just use an eigenbasis of A.

Theorem

Let A be a symmetric matrix, $\mathbf{v}_1, \dots, \mathbf{v}_n$ an orthonormal basis of eigenvectors with eigenvalues $\lambda_1, \dots, \lambda_n$. Write

$$\mathbf{x} = c_1 \mathbf{v}_n + \cdots + c_n \mathbf{v}_n$$
 How?

$\mathsf{Theorem}$

Let A be a symmetric matrix, $\mathbf{v}_1, \dots, \mathbf{v}_n$ an orthonormal basis of eigenvectors with eigenvalues $\lambda_1, \dots, \lambda_n$. Write

$$\mathbf{x} = c_1 \mathbf{v}_n + \cdots + c_n \mathbf{v}_n$$
 How?

Then,

$$q(\mathbf{x}) := \mathbf{x}^T A \mathbf{x} = \lambda_1 (c_1)^2 + \cdots + \lambda_n (c_n)^2$$

Proof.

A is symmetric. So write $A = QDQ^T$.

Proof.

A is symmetric. So write $A = QDQ^T$. Let's find $\mathbf{x}^T A \mathbf{x} = \mathbf{x}^T QDQ^T \mathbf{x}$.

A is symmetric. So write $A = QDQ^T$. Let's find $\mathbf{x}^T A \mathbf{x} = \mathbf{x}^T QDQ^T \mathbf{x}$. We know $Q^T \mathbf{x}$ writes \mathbf{x} in $\{\mathbf{v_1}, \dots, \mathbf{v_n}\}$ coordinates. So

A is symmetric. So write $A = QDQ^T$. Let's find $\mathbf{x}^T A \mathbf{x} = \mathbf{x}^T QDQ^T \mathbf{x}$. We know $Q^T \mathbf{x}$ writes \mathbf{x} in $\{\mathbf{v_1}, \dots, \mathbf{v_n}\}$ coordinates. So

$$Q^{\mathsf{T}}\mathbf{x} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$$

A is symmetric. So write $A = QDQ^T$. Let's find $\mathbf{x}^T A \mathbf{x} = \mathbf{x}^T QDQ^T \mathbf{x}$. We know $Q^T \mathbf{x}$ writes \mathbf{x} in $\{\mathbf{v_1}, \dots, \mathbf{v_n}\}$ coordinates. So

$$Q^T \mathbf{x} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$$

D is the matrix of eigenvalues. So,

$$D\begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} = \begin{bmatrix} \lambda_1 c_1 \\ \vdots \\ \lambda_n c_n \end{bmatrix}$$

A is symmetric. So write $A = QDQ^T$. Let's find $\mathbf{x}^T A \mathbf{x} = \mathbf{x}^T QDQ^T \mathbf{x}$. We know $Q^T \mathbf{x}$ writes \mathbf{x} in $\{\mathbf{v_1}, \dots, \mathbf{v_n}\}$ coordinates. So

$$Q^{\mathsf{T}} \mathbf{x} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$$

D is the matrix of eigenvalues. So,

$$D\begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} = \begin{bmatrix} \lambda_1 c_1 \\ \vdots \\ \lambda_n c_n \end{bmatrix}$$

Since $\mathbf{x}^T Q = (Q^T x)^T$, we have $x^T Q = \begin{bmatrix} c_1 & \dots & c_n \end{bmatrix}$.

A is symmetric. So write $A = QDQ^T$. Let's find $\mathbf{x}^T A \mathbf{x} = \mathbf{x}^T QDQ^T \mathbf{x}$. We know $Q^T \mathbf{x}$ writes \mathbf{x} in $\{\mathbf{v_1}, \dots, \mathbf{v_n}\}$ coordinates. So

$$Q^T \mathbf{x} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$$

D is the matrix of eigenvalues. So,

$$D\begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} = \begin{bmatrix} \lambda_1 c_1 \\ \vdots \\ \lambda_n c_n \end{bmatrix}$$

Since $\mathbf{x}^T Q = (Q^T \mathbf{x})^T$, we have $\mathbf{x}^T Q = \begin{bmatrix} c_1 & \dots & c_n \end{bmatrix}$. Thus,

$$\mathbf{x}^T A \mathbf{x} = \begin{bmatrix} c_1 & \dots & c_n \end{bmatrix} \begin{bmatrix} \lambda_1 c_1 \\ \dots \\ \lambda_n c_n \end{bmatrix} = \lambda_1 (c_1)^2 + \dots + \lambda_n (c_n)^2$$

Example

Let
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
 and $\mathbf{x} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$. Let $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$.

- Find the eigenvalues λ_1, λ_2 and **orthonormal** eigenbasis $\{\mathbf{v}_1, \mathbf{v}_2\}$ for A.
- Compute $q(\mathbf{x})$ using the formula $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$.
- Compute $q(\mathbf{x})$ using the theorem $(q(\mathbf{x}) = \lambda_1(c_1)^2 + \lambda_2(c_2)^2)$

Example

Let
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
 and $\mathbf{x} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$. Let $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$.

- Find the eigenvalues λ_1, λ_2 and **orthonormal** eigenbasis $\{\mathbf{v}_1, \mathbf{v}_2\}$ for A.
- Compute $q(\mathbf{x})$ using the formula $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$.
- Compute $q(\mathbf{x})$ using the theorem $(q(\mathbf{x}) = \lambda_1(c_1)^2 + \lambda_2(c_2)^2.)$

Are the answers the same? This is a silly Example. To calculate q(x) you never would go through the eigenvalues.

Example

Let
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
 and $\mathbf{x} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$. Let $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$.

- Find the eigenvalues λ_1, λ_2 and **orthonormal** eigenbasis $\{\mathbf{v}_1, \mathbf{v}_2\}$ for A.
- Compute $q(\mathbf{x})$ using the formula $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$.
- Compute $q(\mathbf{x})$ using the theorem $(q(\mathbf{x}) = \lambda_1(c_1)^2 + \lambda_2(c_2)^2.)$

Are the answers the same? This is a silly Example. To calculate q(x) you never would go through the eigenvalues.

Example

Let
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
 and $\mathbf{x} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$. Let $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$.

- Find the eigenvalues λ_1, λ_2 and **orthonormal** eigenbasis $\{\mathbf{v}_1, \mathbf{v}_2\}$ for A.
- Compute $q(\mathbf{x})$ using the formula $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$.
- Compute $q(\mathbf{x})$ using the theorem $(q(\mathbf{x}) = \lambda_1(c_1)^2 + \lambda_2(c_2)^2)$

Are the answers the same? This is a silly Example. To calculate q(x) you never would go through the eigenvalues.

Solution

Eigenvalues: Sum $\lambda_1 + \lambda_2 = \text{Tr}(A)$

Example

Let
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
 and $\mathbf{x} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$. Let $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$.

- Find the eigenvalues λ_1, λ_2 and **orthonormal** eigenbasis $\{\mathbf{v}_1, \mathbf{v}_2\}$ for A.
- Compute $q(\mathbf{x})$ using the formula $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$.
- Compute $q(\mathbf{x})$ using the theorem $(q(\mathbf{x}) = \lambda_1(c_1)^2 + \lambda_2(c_2)^2)$

Are the answers the same? This is a silly Example. To calculate q(x) you never would go through the eigenvalues.

Eigenvalues: Sum
$$\lambda_1 + \lambda_2 = \text{Tr}(A) = 2$$

Example

Let
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
 and $\mathbf{x} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$. Let $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$.

- Find the eigenvalues λ_1, λ_2 and **orthonormal** eigenbasis $\{\mathbf{v}_1, \mathbf{v}_2\}$ for A.
- Compute $q(\mathbf{x})$ using the formula $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$.
- Compute $q(\mathbf{x})$ using the theorem $(q(\mathbf{x}) = \lambda_1(c_1)^2 + \lambda_2(c_2)^2)$

Are the answers the same? This is a silly Example. To calculate q(x) you never would go through the eigenvalues.

Eigenvalues: Sum
$$\lambda_1 + \lambda_2 = \text{Tr}(A) = 2$$

Product $\lambda_1 \lambda_2 = \det(A)$

Example

Let
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
 and $\mathbf{x} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$. Let $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$.

- Find the eigenvalues λ_1, λ_2 and **orthonormal** eigenbasis $\{\mathbf{v}_1, \mathbf{v}_2\}$ for A.
- Compute $q(\mathbf{x})$ using the formula $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$.
- Compute $q(\mathbf{x})$ using the theorem $(q(\mathbf{x}) = \lambda_1(c_1)^2 + \lambda_2(c_2)^2)$

Are the answers the same? This is a silly Example. To calculate q(x) you never would go through the eigenvalues.

Eigenvalues: Sum
$$\lambda_1 + \lambda_2 = \text{Tr}(A) = 2$$

Product $\lambda_1 \lambda_2 = \det(A) = -3$.

Example

Let
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
 and $\mathbf{x} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$. Let $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$.

- Find the eigenvalues λ_1, λ_2 and **orthonormal** eigenbasis $\{\mathbf{v}_1, \mathbf{v}_2\}$ for A.
- Compute $q(\mathbf{x})$ using the formula $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$.
- Compute $q(\mathbf{x})$ using the theorem $(q(\mathbf{x}) = \lambda_1(c_1)^2 + \lambda_2(c_2)^2)$

Are the answers the same? This is a silly Example. To calculate q(x) you never would go through the eigenvalues.

Eigenvalues: Sum
$$\lambda_1 + \lambda_2 = \text{Tr}(A) = 2$$

Product $\lambda_1 \lambda_2 = \det(A) = -3$.
So, $\lambda_1 = 3$, $\lambda_2 = -1$.

Example

Let
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
 and $\mathbf{x} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$. Let $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$.

- Find the eigenvalues λ_1, λ_2 and **orthonormal** eigenbasis $\{\mathbf{v}_1, \mathbf{v}_2\}$ for A.
- Compute $q(\mathbf{x})$ using the formula $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$.
- Compute $q(\mathbf{x})$ using the theorem $(q(\mathbf{x}) = \lambda_1(c_1)^2 + \lambda_2(c_2)^2)$

Are the answers the same? This is a silly Example. To calculate q(x) you never would go through the eigenvalues.

Eigenvalues: Sum
$$\lambda_1 + \lambda_2 = \text{Tr}(A) = 2$$

Product
$$\lambda_1 \lambda_2 = \det(A) = -3$$
.

So,
$$\lambda_1 = 3$$
, $\lambda_2 = -1$.

Eigenbasis:
$$\mathbf{v}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
, $\mathbf{v}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

$$q(\mathbf{x}) = \mathbf{x}^{T} A \mathbf{x}$$

$$= \begin{bmatrix} 2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$

$$= 4$$

$$q(\mathbf{x}) = \mathbf{x}^{T} A \mathbf{x}$$

$$= \begin{bmatrix} 2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$

$$= 4$$

$$q(\mathbf{x}) = \mathbf{x}^{T} A \mathbf{x}$$

$$= \begin{bmatrix} 2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$

$$= 4$$

Using theorem:
$$\mathbf{x} = \begin{bmatrix} 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$q(\mathbf{x}) = \mathbf{x}^{T} A \mathbf{x}$$

$$= \begin{bmatrix} 2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$

$$= 4$$

Using theorem:
$$\mathbf{x} = \begin{bmatrix} 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$q(\mathbf{x}) = \mathbf{x}^{T} A \mathbf{x}$$

$$= \begin{bmatrix} 2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$

$$= 4$$

Using theorem:
$$\mathbf{x} = \begin{bmatrix} 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \sqrt{2}\mathbf{v}_1 + \sqrt{2}\mathbf{v}_2$$
. So,

$$q(\mathbf{x}) = \mathbf{x}^{T} A \mathbf{x}$$

$$= \begin{bmatrix} 2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$

$$= 4$$

Using theorem:
$$\mathbf{x} = \begin{bmatrix} 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \sqrt{2}\mathbf{v}_1 + \sqrt{2}\mathbf{v}_2$$
. So,
$$q(\mathbf{x}) = \lambda_1(c_1)^2 + \lambda_2(c_2)^2$$
$$= 3(\sqrt{2})^2 + (-1)(\sqrt{2})^2$$
$$= 4$$

$$q(\mathbf{x}) = \mathbf{x}^{T} A \mathbf{x}$$

$$= \begin{bmatrix} 2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$

$$= 4$$

Using theorem:
$$\mathbf{x} = \begin{bmatrix} 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \sqrt{2}\mathbf{v}_1 + \sqrt{2}\mathbf{v}_2$$
. So,
$$q(\mathbf{x}) = \lambda_1(c_1)^2 + \lambda_2(c_2)^2$$
$$= 3(\sqrt{2})^2 + (-1)(\sqrt{2})^2$$
$$= 4$$

We have
$$\mathbf{x}=c_1\mathbf{v}_1+\cdots+c_n\mathbf{v}_n$$
 and
$$q(\mathbf{x})=\lambda_1(c_1)^2+\cdots+\lambda_n(c_n)^2$$

We have
$$\mathbf{x}=c_1\mathbf{v}_1+\cdots+c_n\mathbf{v}_n$$
 and
$$q(\mathbf{x})=\lambda_1(c_1)^2+\cdots+\lambda_n(c_n)^2$$

• So up to coordinate change, **q** is a weighted sum of squares.

We have
$$\mathbf{x}=c_1\mathbf{v}_1+\cdots+c_n\mathbf{v}_n$$
 and
$$q(\mathbf{x})=\lambda_1(c_1)^2+\cdots+\lambda_n(c_n)^2$$

• So up to coordinate change, **q** is a weighted sum of squares.

We have
$$\mathbf{x} = c_1 \mathbf{v}_1 + \dots + c_n \mathbf{v}_n$$
 and
$$q(\mathbf{x}) = \lambda_1 (c_1)^2 + \dots + \lambda_n (c_n)^2$$

- So up to coordinate change, **q** is a weighted sum of squares.
- ullet The eigenvectors $oldsymbol{v}_1,\ldots,oldsymbol{v}_n$ are called principal axes

We have
$$\mathbf{x} = c_1 \mathbf{v}_1 + \dots + c_n \mathbf{v}_n$$
 and
$$q(\mathbf{x}) = \lambda_1 (c_1)^2 + \dots + \lambda_n (c_n)^2$$

- So up to coordinate change, **q** is a weighted sum of squares.
- ullet The eigenvectors $oldsymbol{v}_1,\ldots,oldsymbol{v}_n$ are called principal axes

We have $\mathbf{x} = c_1 \mathbf{v}_1 + \cdots + c_n \mathbf{v}_n$ and

$$q(\mathbf{x}) = \lambda_1(c_1)^2 + \cdots + \lambda_n(c_n)^2$$

- So up to coordinate change, **q** is a weighted sum of squares.
- The eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ are called principal axes

Definition

Let A be a symmetric $n \times n$. We say A is **positive definite** if $\mathbf{x}^T A \mathbf{x} > 0$ for all non zero $\mathbf{x} \in \mathbb{R}^n$.

We have $\mathbf{x} = c_1 \mathbf{v}_1 + \cdots + c_n \mathbf{v}_n$ and

$$q(\mathbf{x}) = \lambda_1(c_1)^2 + \cdots + \lambda_n(c_n)^2$$

- So up to coordinate change, **q** is a weighted sum of squares.
- The eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ are called principal axes

Definition

Let A be a symmetric $n \times n$. We say A is **positive definite** if $\mathbf{x}^T A \mathbf{x} > 0$ for all non zero $\mathbf{x} \in \mathbb{R}^n$.

Theorem

Let A be a symmetric $n \times n$ and let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of A. Then

We have $\mathbf{x} = c_1 \mathbf{v}_1 + \cdots + c_n \mathbf{v}_n$ and

$$q(\mathbf{x}) = \lambda_1(c_1)^2 + \cdots + \lambda_n(c_n)^2$$

- So up to coordinate change, **q** is a weighted sum of squares.
- The eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ are called principal axes

Definition

Let A be a symmetric $n \times n$. We say A is **positive definite** if $\mathbf{x}^T A \mathbf{x} > 0$ for all non zero $\mathbf{x} \in \mathbb{R}^n$.

Theorem

Let A be a symmetric $n \times n$ and let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of A. Then

• If all $\lambda_i > 0$, then A is positive definite,

We have $\mathbf{x} = c_1 \mathbf{v}_1 + \cdots + c_n \mathbf{v}_n$ and

$$q(\mathbf{x}) = \lambda_1(c_1)^2 + \cdots + \lambda_n(c_n)^2$$

- So up to coordinate change, **q** is a weighted sum of squares.
- The eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ are called principal axes

Definition

Let A be a symmetric $n \times n$. We say A is **positive definite** if $\mathbf{x}^T A \mathbf{x} > 0$ for all non zero $\mathbf{x} \in \mathbb{R}^n$.

Theorem

Let A be a symmetric $n \times n$ and let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of A. Then

- If all $\lambda_i > 0$, then A is positive definite,
- ② If all $\lambda_i < 0$, then $\mathbf{x}^T A \mathbf{x} < 0$ for all $\mathbf{x} \neq \mathbf{0}$

We have $\mathbf{x} = c_1 \mathbf{v}_1 + \cdots + c_n \mathbf{v}_n$ and

$$q(\mathbf{x}) = \lambda_1(c_1)^2 + \cdots + \lambda_n(c_n)^2$$

- So up to coordinate change, **q** is a weighted sum of squares.
- The eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ are called principal axes

Definition

Let A be a symmetric $n \times n$. We say A is **positive definite** if $\mathbf{x}^T A \mathbf{x} > 0$ for all non zero $\mathbf{x} \in \mathbb{R}^n$.

Theorem

Let A be a symmetric $n \times n$ and let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of A. Then

- If all $\lambda_i > 0$, then A is positive definite,
- ② If all $\lambda_i < 0$, then $\mathbf{x}^T A \mathbf{x} < 0$ for all $\mathbf{x} \neq \mathbf{0}$
- **3** If some $\lambda_i > 0$, some $\lambda_j < 0$, $\mathbf{x}^T A \mathbf{x}$ will have both positive and negative values.

Completing the squares

Basic Question. Let A be a symmetric matrix, and $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$. Is $q(\mathbf{x})$ always ≥ 0 ? Or always ≤ 0 ?

Basic Question. Let A be a symmetric matrix, and $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$. Is $q(\mathbf{x})$ always ≥ 0 ? Or always ≤ 0 ? How to decide?

Basic Question. Let A be a symmetric matrix, and $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$. Is $q(\mathbf{x})$ always ≥ 0 ? Or always ≤ 0 ? How to decide? Write $q(\mathbf{x})$ as a sum of squares!

Example

Let
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
, so that $q(\mathbf{x}) = x^2 + 4xy + y^2$. Write $q(\mathbf{x})$ as a sum of squares. Is $q(\mathbf{x})$ always positive?

Basic Question. Let A be a symmetric matrix, and $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$. Is $q(\mathbf{x})$ always ≥ 0 ? Or always ≤ 0 ? How to decide? Write $q(\mathbf{x})$ as a sum of squares!

Example

Let
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
, so that $q(\mathbf{x}) = x^2 + 4xy + y^2$. Write $q(\mathbf{x})$ as a sum of squares. Is $q(\mathbf{x})$ always positive?

Basic Question. Let A be a symmetric matrix, and $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$. Is $q(\mathbf{x})$ always ≥ 0 ? Or always ≤ 0 ? How to decide? Write $q(\mathbf{x})$ as a sum of squares!

Example

Let
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
, so that $q(\mathbf{x}) = x^2 + 4xy + y^2$. Write $q(\mathbf{x})$ as a sum of squares. Is $q(\mathbf{x})$ always positive?

*
$$q(\mathbf{x}) = x^2 + 4xy + y^2 =$$

Basic Question. Let A be a symmetric matrix, and $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$. Is $q(\mathbf{x})$ always ≥ 0 ? Or always ≤ 0 ? How to decide? Write $q(\mathbf{x})$ as a sum of squares!

Example

Let
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
, so that $q(\mathbf{x}) = x^2 + 4xy + y^2$. Write $q(\mathbf{x})$ as a sum of squares. Is $q(\mathbf{x})$ always positive?

*
$$q(\mathbf{x}) = x^2 + 4xy + y^2 = (x + 2y)^2 - 3y^2$$
.

Example

Let
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
, so that $q(\mathbf{x}) = x^2 + 4xy + y^2$. Write $q(\mathbf{x})$ as a sum of squares. Is $q(\mathbf{x})$ always positive?

- * $q(\mathbf{x}) = x^2 + 4xy + y^2 = (x + 2y)^2 3y^2$.
- * Sometimes you get something positive, sometimes something negative.

Example

Let
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
, so that $q(\mathbf{x}) = x^2 + 4xy + y^2$. Write $q(\mathbf{x})$ as a sum of squares. Is $q(\mathbf{x})$ always positive?

Solution

- * $q(\mathbf{x}) = x^2 + 4xy + y^2 = (x + 2y)^2 3y^2$.
- * Sometimes you get something positive, sometimes something negative.

There are many ways of writing $q(\mathbf{x})$ as a sum of squares.

Example

Let
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
, so that $q(\mathbf{x}) = x^2 + 4xy + y^2$. Write $q(\mathbf{x})$ as a sum of squares. Is $q(\mathbf{x})$ always positive?

Solution

- * $q(\mathbf{x}) = x^2 + 4xy + y^2 = (x + 2y)^2 3y^2$.
- * Sometimes you get something positive, sometimes something negative.

There are many ways of writing $q(\mathbf{x})$ as a sum of squares. Today we are using eigenvalues to do this.