Transformer

Derivatan

Definition

$$D[f(x)] = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Central differenskvot för Numerisk derivering

$$D[f(a)] \approx \lim_{h \to 0} \frac{f(a+h) - f(a-h)}{2h}$$

$$d\ddot{a}r 'a' \ddot{a}r \ ett \ n\ddot{a}rmv \ddot{a}rde \ till \ x. \ dvs, \ x = a$$

Betekningar

Förstaderivatan: D[f(x)], Df(x), $\frac{dy}{dx}$, f'(x), f'

Andraderivatan: $D^2[f(x)], D^2f(x), \frac{d^2y}{dx^2}, f''(x), f''$

Räkneregler

kedjeregeln: om f(x) = a(x), och a(x) = b(x), dvs, f(x) = a(b(x)) gäller $D[f(x)] = D[a(x)] \cdot D[b(x)], dvs, ytterderivatan \cdot inerderivatan$

Funktion	Derivata
$\sin(kx)$	$\cos(kx) \cdot k$
$e^{u(x)}$	$e^{u(x)}\cdot u'(x)$
$(u(x))^n$	$n(u(x))^{n-1}\cdot u'(x)$
$\frac{k}{u(x)}$	$\frac{-k}{u(x)^2} \cdot u'(x)$

Om
$$V = \frac{4\pi r^3}{3}$$
 och r är en funktion av t så är
$$\frac{dV}{dt} = \frac{dV}{dr} \cdot \frac{dr}{dt} = \frac{4\pi}{3} \cdot 3r^2 \cdot \frac{dr}{dt}$$

Produktregeln:

$$om f(x) = a(x) \cdot b(x) \quad s\mathring{a} \ddot{a}r$$

$$D[f(x)] = a'(x) \cdot b(x) + a(x) \cdot b'(x)$$

kvotregeln:

$$om f(x) = \frac{a(x)}{b(x)} s \ddot{a} \ddot{a} r$$

$$D[f(x)] = \frac{a'(x) \cdot b(x) - a(x) \cdot b'(x)}{b(x)^2}$$

Funktion	Derivata
x ^a , a är reellt	ax^{a-1}
$\frac{1}{x}$	$-\frac{1}{x^2}$
\sqrt{x}	$\frac{1}{2\sqrt{x}}$
e^{x}	e^{x}
a^x , $a>0$	$a^{x}\ln\left(a\right)$
$\ln(x), x > 0$	$\frac{1}{x}$
$\log_a(x), x > 0$	$\frac{\log_a(e)}{x} = \frac{1}{x \ln(a)}$
$\sin(x)$	$\cos(x)$
$\cos(x)$	$-\sin(x)$
tan(x)	$1 + \tan^2(x) = \frac{1}{\cos^2(x)}$
arcsin(x)	$\frac{1}{\sqrt{1-x^2}}$, $-1 < x < 1$
$\arccos(x)$	$-\frac{1}{\sqrt{1-x^2}}, -1 < x < 1$
arctan(x)	$\frac{1}{1+x^2}$