Задание по квантовой теории поля

Юрий Голубев yura.winter@gmail.com

4 декабря 2020 г.

Аннотация

квантовая теория поля

Содержание

Предисловие	1
I Первое задание	2
1 упражнения	2
2 задачи	6
II Второе задание	18
3 упражнения	18
4 задачи	18
Список литературы	19

Предисловие

тренируемся, практикуемся

Часть I

Первое задание

1 упражнения

Упражнение. 1

Рассмотреть вещественный 4-вектор в представлении группы Лоренца $(\frac{1}{2}, \frac{1}{2})$ Рассмотрим произвольную эрмитово сопряженную величину \hat{V} в представлении $(\frac{1}{2}, \frac{1}{2})$. \hat{V} несет пару индексов $\{\alpha\dot{\alpha}\}$, может быть разложена по базису матриц σ^{ν} :

$$(\hat{V})_{\alpha\dot{\alpha}} = \sigma^{\nu}_{\alpha\dot{\alpha}} V_{\nu}$$

причем

$$V^{\mu} = \frac{1}{2} \operatorname{tr} \left\{ \bar{\sigma}^{\mu} \hat{V} \right\} = \frac{1}{2} \operatorname{tr} \left\{ \hat{V} \bar{\sigma}^{\mu} \right\}$$

так как по определению в (1.58) и (1.59), очевидно, что антисимметричная по пространственным индексам часть произведения матриц не дает вклада в след, ввиду бесследовости обычных 3 -мерных матриц Паули,

$$\operatorname{tr}\left\{\bar{\sigma}^{\mu}\sigma^{\nu}\right\} = 2g^{\mu\nu}$$

Согласно установленным нами законам преобразования верхних и нижних спинорных индексов, преобразования группы $\mathrm{SL}(2,\mathbb{C})$ переводят \hat{V} в эрмитову величину

$$\hat{V}' = \Lambda_{-} \hat{V} \Lambda^{\dagger}$$

которая опять может быть разложена по исходному базису релятивистских матриц Паули:

$$V^{\prime\mu} = \frac{1}{2} \operatorname{tr} \left\{ \bar{\sigma}^{\mu} \hat{V}^{\prime} \right\} = \frac{1}{2} \operatorname{tr} \left\{ \hat{V}^{\prime} \bar{\sigma}^{\mu} \right\}$$

Заметим, что

$$\det \hat{V}' = \det \left\{ \Lambda_{-} \hat{V} \Lambda_{-}^{\dagger} \right\} = \left| \det \Lambda_{-} \right|^{2} \det \hat{V} = \det \hat{V}$$

При этом

$$\hat{V} = \begin{pmatrix} V_0 + V_3 & V_1 - iV_2 \\ V_1 + iV_2 & V_0 - V_3 \end{pmatrix}$$

так что

$$\det \hat{V} = V_0^2 - \boldsymbol{V}^2$$

а равенство детерминантов $\det \hat{V}' = \det \hat{V}$ означает, что преобразование сохраняет лоренцинвариантную длину 4-вектора, т. е. представляет собой элемент группы Лоренца на 4-векторах.

Это представление является двузначным, так как матрицы Λ_- и $-\Lambda_-$ приводят к идентичным преобразованиям 4-вектора.

В случае инфинитезимальных преобразований $\omega^{\lambda\rho} \to 0$,

$$\Lambda_{-} = \mathbb{1} - \frac{\mathrm{i}}{2} \sigma_{\lambda\rho} \omega^{\lambda\rho}, Lambda_{-}^{\dagger} = \mathbb{1} + \frac{\mathrm{i}}{2} \bar{\sigma}_{\lambda\rho} \omega^{\lambda\rho}$$

находим, что

$$V^{\prime\mu} = V^{\mu} + \frac{\mathrm{i}}{4} \operatorname{tr} \left\{ \bar{\sigma}_{\lambda\rho} \bar{\sigma}^{\mu} \sigma^{\nu} - \sigma_{\lambda\rho} \sigma^{\nu} \bar{\sigma}^{\mu} \right\} \omega^{\lambda\rho} V_{\nu}$$

где, например, разложение на симметричную и антисимметричную по перестановке индексов части

$$\bar{\sigma}^{\mu}\sigma^{\nu}=q^{\mu\nu}-2i\bar{\sigma}^{\mu\nu}$$

приводит к

$$\operatorname{tr}\left\{\bar{\sigma}_{\lambda\rho}\bar{\sigma}^{\mu}\sigma^{\nu}\right\} = -2\operatorname{i}\operatorname{tr}\left\{\bar{\sigma}_{\lambda\rho}\bar{\sigma}^{\mu\nu}\right\}$$

и затем, как легко заметить, в силу симметрийных свойств по перестановке пространственных индексов выражение для следа матриц должно иметь определенную тензорную структуру,

$$\operatorname{tr}\left\{\bar{\sigma}_{\lambda\rho}\bar{\sigma}^{\mu\nu}\right\} = A\left\{\delta^{\mu}_{\lambda}\delta^{\nu}_{\rho} - \delta^{\nu}_{\lambda}\delta^{\mu}_{\rho}\right\} + B\hat{\varepsilon}^{\mu\nu}_{\lambda\rho}$$

а коэффициенты A, B можно определить, используя явный вид генераторов при определенном выборе пространственных индексов, так что в итоге полу- чаем

$$\operatorname{tr}\left\{\bar{\sigma}_{\lambda\rho}\bar{\sigma}^{\mu\nu}\right\} = \frac{1}{2}\left\{\delta^{\mu}_{\lambda}\delta^{\nu}_{\rho} - \delta^{\nu}_{\lambda}\delta^{\mu}_{\rho}\right\} - \frac{\mathrm{i}}{2}\hat{\varepsilon}^{\mu\nu}_{\lambda\rho}$$

Совершенно аналогично

$$\operatorname{tr}\left\{\sigma_{\lambda\rho}\sigma^{\mu\nu}\right\} = \frac{1}{2}\left\{\delta^{\mu}_{\lambda}\delta^{\nu}_{\rho} - \delta^{\nu}_{\lambda}\delta^{\mu}_{\rho}\right\} + \frac{\mathrm{i}}{2}\hat{\varepsilon}^{\mu\nu}_{\lambda\rho}$$

В итоге приведение подобных членов дает

$$V^{\prime\mu} = V^{\mu} + \omega^{\mu\nu} V_{\nu}$$

т. е. инфинитезимальное преобразование 4-вектора.

Упражнение. 2

Доказать равенства

$$(\sigma^{\mu}\bar{\sigma}^{\nu} + \sigma^{\nu}\bar{\sigma}^{\mu})^{\alpha}_{\beta} = 2g^{\mu\nu}\delta^{\alpha}_{\beta}$$
$$(\bar{\sigma}^{\mu}\sigma^{\nu} + \bar{\sigma}^{\nu}\sigma^{\mu})^{\dot{\alpha}}_{\dot{\beta}} = 2g^{\mu\nu}\delta^{\dot{\alpha}}_{\dot{\beta}}$$

По определению $\sigma^{\mu} = (1, \sigma^i), \bar{\sigma}^{\mu} = (1, -\sigma^i).$

Посчитаем отдельно

$$(\sigma^0 \bar{\sigma}^i + \sigma^i \bar{\sigma}^0) = (-\sigma^i + \sigma^i) = 0$$

$$(\sigma^i \bar{\sigma}^j + \sigma^j \bar{\sigma}^i) = -(\sigma^i \sigma^j + \sigma^j \sigma^i) = -2\delta^{ij}$$

Поэтому

$$(\sigma^{\mu}\bar{\sigma}^{\nu} + \sigma^{\nu}\bar{\sigma}^{\mu})^{\alpha}_{\beta} = 2g^{\mu\nu}\delta^{\alpha}_{\beta}$$

Аналогично доказывается второе.

Упражнение. 3

Доказать равенства

$$\operatorname{tr}\left\{\bar{\sigma}_{\lambda\rho}\bar{\sigma}^{\mu\nu}\right\} = \frac{1}{2}\left\{\delta^{\mu}_{\lambda}\delta^{\nu}_{\rho} - \delta^{\nu}_{\lambda}\delta^{\mu}_{\rho}\right\} - \frac{\mathrm{i}}{2}\hat{\epsilon}^{\mu\nu}_{\lambda\rho}$$
$$\operatorname{tr}\left\{\sigma_{\lambda\rho}\sigma^{\mu\nu}\right\} = \frac{1}{2}\left\{\delta^{\mu}_{\lambda}\delta^{\nu}_{\rho} - \delta^{\nu}_{\lambda}\delta^{\mu}_{\rho}\right\} + \frac{\mathrm{i}}{2}\hat{\epsilon}^{\mu\nu}_{\lambda\rho}$$

По определению

$$\begin{split} \sigma^{\mu\nu} &= -\sigma^{\nu\mu} = \frac{i}{4} (\sigma^{\mu} \bar{\sigma}^{\nu} - \sigma^{\nu} \bar{\sigma}^{\mu}) \\ \bar{\sigma}^{\mu\nu} &= -\bar{\sigma}^{\nu\mu} = \frac{i}{4} (\bar{\sigma}^{\mu} \sigma^{\nu} - \bar{\sigma^{\nu}} \sigma^{\mu}) \end{split}$$

Посмотрим, как можно их расписать через компоненты.

$$\begin{split} \sigma^{00} &= 0 \\ \sigma^{0i} &= -\sigma^{\nu\mu} = \frac{i}{4} (\sigma^0(-\sigma^i) - \sigma^i \sigma^0) = -\frac{i}{2} \sigma^i \\ \bar{\sigma^{0i}} &= \frac{i}{2} \sigma^i \\ \bar{\sigma}^{ij} &= \frac{i}{4} (-\sigma^i \sigma^j - (-\sigma^j) \sigma^i) = -\frac{i}{4} \cdot 2i \varepsilon_{ijk} \sigma^k = \frac{1}{2} \varepsilon_{ijk} \sigma^k \\ \bar{\sigma}^{ij} &= \frac{1}{2} \varepsilon_{ijk} \sigma^k \end{split}$$

В последних равенствах использовалось соотношение на матрицы Паули:

$$\sigma^i \sigma^j = i\varepsilon_{ijk} \sigma^k + \delta_{ij} \sigma^0$$

Таким образом, исходное уравнение для пространственных индексов $\operatorname{tr} \{ \sigma_{\lambda\rho} \sigma^{\mu\nu} \}$ можно переписать как:

$$\operatorname{tr}\left\{\sigma_{ij}\sigma^{kl}\right\} = \operatorname{tr}\left\{\frac{1}{2}\varepsilon_{ijm}\sigma^{m}\frac{1}{2}\varepsilon_{kln}\sigma^{n}\right\} = \frac{1}{4}\varepsilon_{ijm}\varepsilon_{kln}\operatorname{tr}\left\{\sigma_{m}\sigma^{n}\right\} = \frac{1}{4}\varepsilon_{ijm}\varepsilon_{kln}\operatorname{tr}\left\{2\delta^{mn}\right\}$$

И дальше просто преобразуем до конца:

$$\operatorname{tr}\left\{\sigma_{ij}\sigma^{kl}\right\} = \frac{1}{2}\varepsilon_{ijm}\varepsilon_{kln} = 1\frac{1}{2}(\delta_{ik}\delta_{jl} - \delta_{il}\delta_{jk})$$

А если есть временной индекс, то

$$\operatorname{tr}\left\{\sigma_{ij}\sigma^{k0}\right\} = \operatorname{tr}\left\{\frac{1}{2}\varepsilon_{ijk}\sigma^{n}\frac{i}{2}\sigma^{k}\right\} = \frac{i}{2}\varepsilon_{ijk} = -\frac{i}{2}\varepsilon_{ijk0} = \frac{i}{2}\varepsilon_{ij}^{k0}$$

В последнем переходе показано как от трехмерного символа Леви-Чевиты перейти к четырехмерному. Также при подъеме пространственной части метрика домножилась на (-1), а при подъеме временной - на 1.

Осталось разобрать случай

$$\operatorname{tr}\left\{\sigma_{i0}\sigma^{k0}\right\} = -\left(\frac{i}{2}\right)^{2}\operatorname{tr}\left\{\sigma^{i}\sigma^{k}\right\} = \frac{1}{2}\delta_{ik} \equiv \frac{1}{2}\left[\delta_{i}^{k}\delta_{0}^{0} - \delta_{i}^{0}\delta_{0}^{k}\right]$$

Собирая все вместе, получаем

$$\operatorname{tr}\left\{\sigma_{\lambda\rho}\sigma^{\mu\nu}\right\} = \frac{1}{2}\left\{\delta^{\mu}_{\lambda}\delta^{\nu}_{\rho} - \delta^{\nu}_{\lambda}\delta^{\mu}_{\rho}\right\} + \frac{\mathrm{i}}{2}\hat{\epsilon}^{\mu\nu}_{\lambda\rho}$$

Теперь то же самое для $\operatorname{tr} \{ \bar{\sigma}_{\lambda\rho} \bar{\sigma}^{\mu\nu} \}$ действуя аналогично, получаем:

$$\operatorname{tr}\left\{\sigma_{\lambda\rho}\sigma^{\mu\nu}\right\} = \frac{1}{2}\left\{\delta^{\mu}_{\lambda}\delta^{\nu}_{\rho} - \delta^{\nu}_{\lambda}\delta^{\mu}_{\rho}\right\} + \frac{\mathrm{i}}{2}\hat{\epsilon}^{\mu\nu}_{\lambda\rho}$$

Упражнение. 4

Показать, что величины

$$heta\sigma^{\mu}\bar{\chi}= heta^{lpha}\sigma^{\mu}_{\alpha\dot{lpha}}\bar{\chi}^{\dot{lpha}}$$
 и $\bar{\theta}\bar{\sigma}^{\mu}\chi=\bar{\theta}_{\dot{lpha}}\left(\bar{\sigma}^{\mu}
ight)^{\dot{lpha}lpha}\chi_{lpha}$

ведут себя так же, как 4-векторы.

То есть нужно доказать, что

В самом деле, воспользуемся стандартным способом: построим, например, величину

$$V_{\mu}\theta\sigma^{\mu}\bar{\chi} = V_{\mu}\theta^{\alpha}\sigma^{\mu}_{\alpha\dot{\alpha}}\bar{\chi}^{\dot{\alpha}}$$

и покажем, что она является инвариантом.

Действительно, преобразование из группы $SL(2,\mathbb{C})$ дает

$$\theta^{\alpha} \mapsto \theta^{\alpha_1} \left(\Lambda^{-1} \right)_{\alpha_1}^{\alpha}, \quad \bar{\chi}^{\dot{\alpha}} \mapsto \bar{\chi}^{\dot{\alpha}_1} \left(\Lambda_+ \right)_{\dot{\alpha}_1}^{\dot{\alpha}}, \quad V_{\mu} \mapsto V_{\nu} \left(\Lambda^{-1} \right)_{\mu}^{\nu}$$

где Λ^{ν}_{μ} - матрица преобразований координат, так что ковектор преобразуется обратной матрицей, а также, как мы показали,

$$\hat{V}_{\alpha\dot{\alpha}} = V_{\mu} \left(\sigma^{\mu} \right)_{\alpha\dot{\alpha}} \mapsto \left(\Lambda_{-} \right)_{\alpha}^{\alpha_{1}} \hat{V}_{\alpha_{1}\dot{\alpha}_{1}} \left(\Lambda_{+}^{-1} \right)_{\dot{\alpha}}^{\dot{\alpha}_{1}}$$

Поэтому величина в явном виде

$$V_{\mu}\theta^{\alpha}\sigma^{\mu}_{\alpha\dot{\alpha}}\bar{\chi}^{\dot{\alpha}}$$

в явном виде переходит сама в себя, а значит, является инвариантом.

С другой стороны, этот инвариант - скалярное линейное отображение 4-ковектора на числа, и, стало быть, по определению оно представляет собой 4-вектор, что и доказывает наше утверждение о характере преобразований билинейной по киральным полям форме $\theta \sigma^{\mu} \bar{\chi}$.

Упражнение. 5

Доказать, что $(\theta_{\alpha})^{\dagger} = \bar{\theta}_{\dot{\alpha}}$ и $(\bar{\chi}^{\dot{\alpha}})^{\dagger} = \chi^{\alpha}$.

Напомним, что по определению $(\theta_{\alpha})^{\dagger} = (\theta_{\dot{\alpha}})^*$, то есть мы совершаем комплексное сопряжение над спинором, а также заменяем точечный индекс на неточечный. (????)

Совершим преобразования поднятия индексов и перехода из сопряженного спинора к обычному над $\bar{\theta}_{\dot{\alpha}}$:

$$\bar{\theta}_{\dot{\alpha}} = \varepsilon_{\dot{\alpha}\dot{\beta}}\bar{\theta}^{\dot{\beta}} = \varepsilon_{\dot{\alpha}\dot{\beta}}[i\sigma_2^{\alpha\dot{\beta}}\theta_{\alpha}]^* = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \cdot i\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}\theta_{\alpha}^* = \delta_{\dot{\alpha}}^{\alpha}\theta_{\alpha}^* = (\theta_{\alpha})^{\dagger}$$

Однако то, что компоненты равны не значит, что это один и тот же объект, потому что они могут преобразовываться по-разному. Поэтому проверим, что они преобразуются одинаково:

$$(\theta')^{\dagger}_{\alpha} = ((\Lambda_{-})^{\beta}_{\alpha}\theta_{\beta})^{\dagger} = \exp\left(\frac{i}{2}\sigma^{\mu\nu}\omega_{\mu\nu}\right)^{\beta}_{\alpha}\theta^{\dagger}_{\beta}$$

а кстати легко показать, записывая в явном виде, что $(\sigma^{\mu\nu})^{\dagger} = \bar{\sigma}^{\mu\nu}$, поэтому

$$\bar{\theta}_{\dot{\alpha}} = \varepsilon_{\dot{\alpha}\dot{\beta}}\bar{\theta}^{\dot{\alpha}} = \varepsilon_{\dot{\alpha}\dot{\beta}}(\Lambda_{+})^{\dot{\beta}}_{\dot{\gamma}}\bar{\theta}^{\dot{\gamma}} = \varepsilon_{\dot{\alpha}\dot{\beta}}\exp\left(\frac{i}{2}\sigma^{\mu\nu}\omega_{\mu\nu}\right)^{\dot{\beta}}_{\dot{\alpha}}\bar{\theta}_{\dot{\beta}}$$

В итоге $(\theta_{\alpha})^{\dagger}$ и $\bar{\theta}_{\dot{\alpha}}$ преобразуются одинаково, так что это один и тот же объект.

Аналогично доказывается, что $\left(\bar{\chi}^{\dot{\alpha}}\right)^{\dagger}=\chi^{\alpha}$

Упражнение. 6*

Покажите, что представления группы Лоренца со спином s=1:(1,0) и (0,1) отвечают самодуальным и антисамодуальным тензорным полям второго ранга в пространствевремени Минковского, т.е. при определении поля, дуального к $B_{\mu\nu}$, как

$$\tilde{B}^{\mu\nu} = \frac{1}{2} \hat{\epsilon}^{\mu\nu\mu'\nu'} B_{\mu'\nu'}$$

имеют место соотношения самодуальности и антисамодуальности в пространстве-времени Минковского:

$$\tilde{B}^{\mu\nu} = \pm i B^{\mu\nu}$$

[Hint: При выводе учесть, что представления (1,0) и (0,1)— это бесследовые матрицы в индексах с точками и без точек.]

Упражнение. 7

Доказать, что квадрат псевдовектора Паули-Любанского имеет вид

$$W^{2} = -\frac{1}{2} \left\{ p^{2} S^{2} - 2p_{\nu} p^{\mu} S_{\mu\lambda} S^{\nu\lambda} \right\}$$

Просто запишем W^2 квадрат в тензорном виде, вспомнив, что произведение двух символов Леви-Чивиты запишутся через определитель матрицы ниже:

$$W^{2} = -\frac{1}{4} \begin{vmatrix} \delta^{\nu}_{\nu'} & \delta^{\nu}_{\lambda'} & \delta^{\nu}_{\rho'} \\ \delta^{\lambda}_{\nu'} & \delta^{\lambda}_{\lambda'} & \delta^{\lambda}_{\rho'} \\ \delta^{\rho}_{\nu'} & \delta^{\rho}_{\lambda'} & \delta^{\rho}_{\rho'} \end{vmatrix} p_{\nu} p^{\nu'} S_{\lambda \rho} S^{\lambda' \rho'}$$

что можно представить в виде

$$W^{2} = -\frac{1}{4} \left\{ p_{\nu} p^{\nu} S_{\lambda \rho} S^{\lambda \rho} + p_{\nu} p^{\rho} S_{\lambda \rho} S^{\nu \lambda} + p_{\nu} p^{\lambda} S_{\lambda \rho} S^{\rho \nu} - p_{\nu} p^{\rho} S_{\lambda \rho} S^{\lambda \nu} - p_{\nu} p^{\lambda} S_{\lambda \rho} S^{\nu \rho} - p_{\nu} p^{\nu} S_{\lambda \rho} S^{\rho \lambda} \right\}$$

и после использования антисимметрии тензора спина получаем

$$W^{2} = -\frac{1}{2} \left\{ p^{2} S^{2} - 2p_{\nu} p^{\lambda} S_{\lambda \rho} S^{\nu \rho} \right\}$$

2 задачи

3адача. $1.^{C}$

Доказать, что компоненты псевдовектора Паули—Любанского для безмассовых полей равны

$$W_0 = \hbar \boldsymbol{p} \cdot \boldsymbol{s}, \quad W^{\alpha} = \hbar \left\{ p_0 \boldsymbol{s}^{\alpha} \mp i (\boldsymbol{p} \times \boldsymbol{s})^{\alpha} \right\}$$

В искомом базисе поля удовлетворяют уравнению на собственные значения оператора W^2 . Но у повышающего оператора в группе SU(2) существуют только два собственных вектора: во-первых, это «вакуум» с нулевым моментом

$$\mathcal{J}^{\pm}|0\rangle = 0$$

а во-вторых, это старший вектор с нулевым собственным значением

$$\mathcal{J}_{+}^{+}\left|\lambda_{+},\lambda_{+}\right\rangle = 0$$

Точно так же для понижающего оператора есть два собственных вектора: вакуум (2.8) и младший вектор с нулевым собственным значением

$$\mathcal{J}_{-}^{-}\left|\lambda_{-},-\lambda_{-}\right\rangle = 0$$

При этом, конечно, на этих полях (т. е. при действии операторов на поля) проекция спина на ось импульса или, как говорят, спиральность имеет значения

$$\frac{p \cdot \mathcal{J}^{\pm}}{p_0} = \mathcal{J}_3^{\pm} = \pm \lambda_{\pm}$$

причем на физических полях $W^2 = 0$.

Таким образом, среди безмассовых полей со спином базис составляют так называемые киральные поля полуцелого спина и поляризованные поля целого спина: правъе поля с положительной киральностью и спиральностью $\mathfrak{s}=\lambda_+$:

$$\mathcal{J}^- \equiv 0 \Rightarrow \mathcal{K} = -is, \quad \mathcal{J}^+ = s$$

левъе поля с отрицательной киральностью и спиральностью $\mathfrak{s}=-\lambda_-$:

$$\mathcal{J}^+ \equiv 0 \Rightarrow \mathcal{K} = is, \quad \mathcal{J}^- = s$$

а также их произведения и вакуум. При этом произведения полей, конечно, могут оказаться приводимыми представлениями.

Рассмотрим компоненты псевдовектора Паули- -Любанского для киральных и поляризованных полей в представлениях, отвечающим полям группы Лоренца $(\lambda_+,0)$ и $(0,\lambda_-)$, в которых генераторы $\mathcal{J}^{(\pm)}$, отличные от нуля конечно, совпадают со спином s. С учетом

$$S_{\beta\gamma} = \hbar \varepsilon_{\beta\gamma\rho} s^{\rho}$$

нулевая компонента

$$W_0 = -\frac{1}{2}\hat{\varepsilon}^{0\alpha\beta\gamma}p_{\alpha}S_{\beta\gamma} = \hbar p \cdot s = \pm p_0\hbar\lambda_{\pm}$$

Половина задачи решена!

При вычислении пространственной компоненты необходимо использовать то, Что

$$\frac{1}{\hbar}S_{0\gamma} = \mathcal{K}^{\gamma} = \mp is^{\gamma}$$

откуда

$$W^{\alpha} = -\frac{1}{2}\hat{\varepsilon}^{\alpha 0\beta \gamma} p_0 S_{\beta \gamma} - \frac{1}{2} 2\hat{\varepsilon}^{\alpha \beta 0\gamma} p_{\beta} S_{0\gamma} = \hbar \left\{ p_0 s^{\alpha} \mp i(p \times s)^{\alpha} \right\}$$

Вот и вся задача решена.

3адача. 2. C

Доказать, что квадрат псевдовектора Паули-Любанского для безмассовых полей имеет вид

$$W^2 = -4p_0^2\hbar^2\left\{\partial^+\cdot\partial^- - rac{1}{p_0^2}\left(m{p}\cdotm{\jmath}^+
ight)\left(m{p}\cdotm{\jmath}^-
ight) - rac{\mathrm{i}}{p_0}m{p}\cdot\left(m{J}^+ imesm{j}^-
ight)
ight\}$$

Псевдовектор Паули-Любанского определяется как

$$W^m = -\frac{1}{2}\hat{\epsilon}^{mnkl}p_nS_{kl}$$

При $p^2 = 0$

$$W^{2} = p_{n}p^{k}S_{kl}S^{nl} = p_{n}p^{k}S_{k0}S^{n0} + p_{n}p^{k}S_{k\alpha}S^{n\alpha}$$

$$= -p^{\alpha}p^{\beta}S_{0\alpha}S^{0\beta} + p_{0}^{2}S^{0\alpha}S_{0\alpha} - p^{\gamma}p^{\beta}S^{\gamma\alpha}S_{\beta\alpha} + p_{0}p^{\beta}\left(S_{\beta\alpha}S^{0\alpha} - S_{0\alpha}S^{\beta\alpha}\right)$$

$$= \hbar^{2}\left\{ (\boldsymbol{p}\cdot\boldsymbol{\mathcal{K}})^{2} - p_{0}^{2}\boldsymbol{\mathcal{K}}^{2} - (\boldsymbol{p}\times\boldsymbol{s})^{2} + p_{0}\boldsymbol{p}\cdot\left\{(\boldsymbol{s}\times\boldsymbol{\mathcal{K}}) - (\boldsymbol{\mathcal{K}}\times\boldsymbol{s})\right\}\right\}$$

Раскрывая квадрат векторного произведения $(p \times s)^2 = p^2 s^2 - (p \cdot s)^2$, находим

$$\frac{1}{\hbar^2}W^2 = -p_0^2 \left(s^2 + \mathcal{K}^2\right) + (\boldsymbol{p} \cdot \boldsymbol{s})^2 + (\boldsymbol{p} \cdot \boldsymbol{\mathcal{K}})^2 + p_0 \boldsymbol{p} \cdot \left\{ (\boldsymbol{s} \times \mathcal{K}) - (\mathcal{K} \times \boldsymbol{s}) \right\}$$

Выражая генераторы спина и бустов через эрмитовы векторы \mathcal{J}^+ и \mathcal{J}^- , $s=\mathcal{J}^++\mathcal{J}^-$, $i\mathcal{K}=\mathcal{J}^+-\mathcal{J}^-$, получаем

$$W^2 = -4p_0^2\hbar^2\left\{oldsymbol{j}^+\cdotoldsymbol{j}^- - rac{1}{p_0^2}\left(oldsymbol{p}\cdotoldsymbol{j}^+
ight)\left(oldsymbol{p}\cdotoldsymbol{j}^-
ight) - rac{\mathrm{i}}{p_0}oldsymbol{p}\cdot\left(oldsymbol{j}^+ imesoldsymbol{j}^-
ight)
ight\}$$

задача решена.

3адача. 3. C

Найти поток частиц с релятивистской нормировкой состояний

$$\langle \mathbf{k} \mid \mathbf{k}' \rangle = 2\epsilon(\mathbf{k})(2\pi)^3 \delta(\mathbf{k} - \mathbf{k}')$$

Релятивистская нормировка задает число частиц, которое равно

$$\mathcal{N} = \langle \boldsymbol{k} \mid \boldsymbol{k} \rangle = 2\varepsilon(\boldsymbol{k})(2\pi)^3 \delta(\boldsymbol{k}) \big|_{\boldsymbol{k}=0} = 2\varepsilon(\boldsymbol{k}) V_{[3]}$$

Для свободных частиц вектор потока направлен по волновому вектору $j=j\cdot n$, где n=k/k. Тогда за время $T\to\infty$ через площадь $S=S\cdot n$ с нормалью, параллельной потоку, пройдет число частиц

$$\mathcal{N} = j \cdot ST = jST$$

Но если v - скорость движения частицы, то

$$T = \frac{L}{v}, \quad V_{[3]} = SL$$

и, следовательно,

$$\mathcal{N} = \frac{1}{v} j V_{[3]}$$

а значит,

$$j = 2\varepsilon(k) \cdot v$$

3адача. $4.^{C}$

Показать, что для свободного комплексного скалярного поля электрический заряд выражается через лоренц-инвариантные амплитуды $a(\mathbf{k})$ и $a_c(\mathbf{k})$ в виде

$$Q = \int d^3r j^0 = \int \frac{d^3k}{(2\pi)^3 2k_0} e\left\{a^*(\mathbf{k})a(\mathbf{k}) - a_c^*(\mathbf{k})a_c(\mathbf{k})\right\}$$

Как известно, из теоремы Нетер для действия скалярного комплексного поля, при глобальных калибровочных преобразованиях, сохраняется ток:

$$j^{\mu} = -ie(\partial_{\mu}\varphi^*\varphi - \varphi^*\partial_{\mu}\varphi)$$

где поле, как известно, имеет вид:

$$\varphi(k) = \frac{c\hbar}{\sqrt{\hbar\omega}} \hat{\mathfrak{q}}(k) = \frac{e}{2\omega} \left\{ e^{ikx} \hat{\mathfrak{a}}^{\dagger}(k) + e^{-ikx} \hat{\mathfrak{a}}(k) \right\}$$

Всё, осталось подставить, и просто посчитать.

В итоге у нас слагаемые преобразуются и

$$Q = \int d^3r j^0 = \int \frac{d^3k}{(2\pi)^3 2k_0} e \left\{ a^*(\mathbf{k}) a(\mathbf{k}) - a_c^*(\mathbf{k}) a_c(\mathbf{k}) \right\}$$

Задача. 5

Для решения в виде плоской монохроматической волны для скалярного поля

$$\phi \mapsto \frac{1}{\sqrt{2k_0}} e^{\mp ikx}$$

найти, что компоненты тензора энрегии-импульса

$$T_0^0 \mapsto k_0, \quad T_0^\alpha \mapsto \mathbf{k}$$

Тензор энергии-импульса определяется как

$$T^{\mu}_{\nu} = \frac{\partial L}{\partial \partial_{\mu} \varphi} \partial_{\nu} \varphi + \frac{\partial L}{\partial \partial_{\mu} \varphi^*} \partial_{\nu} \varphi^* - \delta^{\mu}_{\nu} L$$

Поэтому в случае скалярного поля, когда $L = \partial_{\mu}\varphi \partial^{\mu}\varphi^* - m^2\varphi \varphi^*$, мы имеем

$$T^{\nu}_{\mu} = \partial^{\nu} \varphi^* \partial_{\mu} \varphi + \partial_{\mu} \varphi^* \partial^{\nu} \varphi - \delta^{\nu}_{\mu} (\partial_{\mu} \varphi \partial^{\mu} \varphi^* - m^2 \varphi \varphi^*)$$

просто подставим $\phi \mapsto \frac{1}{\sqrt{2k_0}} e^{\mp ikx}$.

Получаем

$$T_0^0 = \frac{2}{2k_0} (\pm ik_0)(\mp ik_0) = k_0$$

и также

$$T_0^{\alpha} = \frac{1}{2k_0} (\pm ik_0^{\alpha} (-ik_0) + (\pm ik_0)(\mp ik^{\alpha}) = k^{\alpha}$$

Задача. 6

Для решения в виде плоской монохроматической волны для скалярного поля $\phi\mapsto \frac{1}{\sqrt{2k_0}}\mathrm{e}^{\mp\mathrm{i}kx}$ Найти, что компоненты тока

$$j_0 \mapsto \pm e, \quad j_\alpha \mapsto \pm e \mathbf{k}$$

подставим в ток $j^\mu=-ie(\partial_\mu\varphi^*\varphi-\varphi^*\partial_\mu\varphi)$ поле $\phi\mapsto \frac{1}{\sqrt{2k_0}}{\rm e}^{\mp{\rm i}kx}$ и всё просто

$$j_0 = ie \left(\frac{1}{\sqrt{2k_0}}\right)^2 (\pm ik_0 - (\mp ik_0)) = \pm e$$

$$j_{\alpha} = ie \left(\frac{1}{\sqrt{2k_0}}\right)^2 (\mp ik_{\alpha} - (\pm ik_0)) = \pm ek_{\alpha}$$

3адача. $7.^{C}$

Какой вид имеет тензор энергии-импульса релятивистски инвариантного вакуума? Этот объект удовлетворяет:

Для баланса энергии-импульса должно выполняться $\partial_{\mu}T^{\mu}_{\nu}=0.$ симметричность.

во всех системах отсчета он должен иметь один и тот же вид.

А вообще тензор энергии-импульса в теории поля в пространстве Минковского: $T_{\mu\nu} = 2\frac{\partial \mathcal{L}}{\partial a^{\mu\nu}} - g_{\mu\nu}\mathcal{L}$ где лагранжиан \mathcal{L} является плотностью функции Лагранжа

$$\frac{1}{c}L = \int d^3x \mathcal{L}$$

Тогда для вещественного скалярного поля лагранжиан

$$c\mathcal{L} = \frac{1}{2} \left\{ g^{\mu\nu} \partial_{\mu} \varphi \partial_{\nu} \varphi - \frac{m^2 c^2}{\hbar^2} \varphi^2 \right\}$$

И тензор энергии-импульса

$$cT_{\mu\nu} = \partial_{\mu}\varphi \partial_{\nu}\varphi - g_{\mu\nu} \frac{1}{2} \left\{ g^{\mu'\nu'} \partial_{\mu'}\varphi \partial_{\nu'}\varphi - \frac{m^2 c^2}{\hbar^2} \varphi^2 \right\}$$

Задача. 8

Для правого вейлевского спинора покажите, что из уравнения движения следует тождество

$$\frac{1}{\hbar} \boldsymbol{W} \bar{\chi} = \frac{1}{2} \boldsymbol{p} \bar{\chi}$$

Правое киральное безмассовое поле $\bar{\chi}^{\dot{\alpha}}(x)$, преобразующееся по представлению $(\frac{1}{2},0)$ группы $SL(2,\mathbb{C})$, согласно общему формализму удовлетворяет уравнению

$$\mathfrak{s}p^{\mu}\bar{\chi} = \frac{1}{\hbar}W^{\mu}\bar{\chi}$$

где спиральность $\mathfrak{s}=\frac{1}{2},$ а оператор W^k задается покомпонентно, так что для временн Ой компоненты

 $\frac{1}{\hbar}W^0 = \frac{1}{2}p \cdot \sigma$

а уравнения для пространственных компонент, как мы показали, являются следствием заданного представления для безмассового поля. В явном виде уравнение для p_0 принимает вид

$$p_0\bar{\chi} = p \cdot \sigma\bar{\chi}$$

или с учетом определения 4-вектора сигма-матриц

$$p_{\mu}\sigma^{\mu}\bar{\chi} = 0 \Leftrightarrow p_{\mu}\sigma^{\mu}_{\alpha\dot{\alpha}}\bar{\chi}^{\dot{\alpha}} = 0$$

Задача. 9

Показать, что если

$$p \cdot \sigma \bar{\chi}(p) = |p| \bar{\chi}(p),$$

то спинор

$$\chi_{cp}(-\boldsymbol{p}) = -\mathrm{i}\sigma_2\bar{\chi}^*(\boldsymbol{p})$$

удовлетворяет уравнению

$$-oldsymbol{p}\cdotoldsymbol{\sigma}\chi_{cp}(-oldsymbol{p})=|oldsymbol{p}|\chi_{cp}(-oldsymbol{p})$$

Найдем решения уравнения для спинора (6.1) в импульсном представлении, т. е. в виде плоской волны

$$\bar{\chi}(x) = e^{-\frac{i}{\hbar}p \cdot x} \sum_{\lambda} \bar{\chi}_{(\lambda)}(\boldsymbol{p})$$

где

$$p \cdot x = p_0 x_0 - \boldsymbol{p} \cdot \boldsymbol{x}$$

Как нам известно, матрица

$$p \cdot \sigma = \sigma_p$$

имеет пару собственных векторов-столбцов, так что в их базисе

$$m{p}\cdotm{\sigma}=|m{p}|\sigma_3=|m{p}|\left(egin{array}{cc} 1 & 0 \ 0 & -1 \end{array}
ight)$$

и, принимая условие нормировки $\bar{\chi}^\dagger \bar{\chi} = 2|p|$

$$ar{\chi}(m{p}) = \sqrt{2|m{p}|} \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad m{p} \cdot m{\sigma} ar{\chi}(m{p}) = |m{p}| ar{\chi}(m{p})$$
 $\chi_{cp}(m{p}) = \sqrt{2|p|} \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad -m{p} \cdot m{\sigma} \chi_{cp}(-m{p}) = |m{p}| \chi_{cp}(-m{p})$

Задача. 10.

Вычислить гамильтониан правого вейлевского спинора в терминах амплитуд релятивистски нормированных мод.

Выписывая обобщенный импульс

$$\frac{\delta L_{\rm R}}{\delta \dot{\bar{\chi}}(x)} = \mathrm{i}\hbar \chi \sigma^0$$

находим гамильтониан вейлевского классического поля

$$H_{\rm R} = \int \mathrm{d}^3 x \left\{ \mathrm{i}\hbar \chi \sigma^0 \dot{\bar{\chi}} - c \chi p_\mu \sigma^\mu \bar{\chi} \right\} = c \int \mathrm{d}^3 x \left\{ \chi \boldsymbol{p} \cdot \sigma \bar{\chi} \right\}$$

В итоге разложение классического правого спинорного поля по модам принимает вид

$$\bar{\chi}(x) = \int \frac{\mathrm{d}^3 p}{2p_0 (2\pi\hbar)^3} \left\{ e^{-\frac{1}{\hbar}p \cdot x} \bar{\chi}(p) \vartheta(p) + e^{\frac{1}{\hbar}p \cdot x} \chi_{cp}(p) \bar{v}(p) \right\}$$

где уже энергия p_0 принимает только положительные значения

$$p_0 = |p|, \quad p \cdot x = p_0 x_0 - p \cdot \boldsymbol{x}$$

а $\vartheta(p)$ и v(p) - комплекснозначные параметры. С учетом ортогональности базисных спиноров находим для гамильтониана

$$H_{\rm R} = \int \varepsilon(p) \frac{\mathrm{d}^3 p}{2p_0 (2\pi\hbar)^3} \{ \bar{\vartheta}(p)\vartheta(p) - v(p)\bar{v}(p) \}$$

где $\varepsilon(p)=c|p|=cp_0>0$ - положительно определенная энергия спинорной моды.

Задача. 11.С

Вычислить заряд правого вейлевского спинора в терминах амплитуд релятивистски нормированных мод.

Аналогично предыдущему пункту, заряд классического поля

$$Q = e \int \frac{\mathrm{d}^3 p}{2p_0 (2\pi\hbar)^3} \{ \bar{\vartheta}(\boldsymbol{p}) \vartheta(\boldsymbol{p}) + v(\boldsymbol{p}) \bar{v}(\boldsymbol{p}) \}$$

Просто подставили разложение спинорного поля по модам в формулу для тока.

Задача. 12

Показать, что проекторы на состояния с заданной проекцией спина частицы на вектор поляризации имеют вид

$$P_{\pm} = \frac{1}{2} \left(1 + \lambda \gamma_5 \notin \right)$$

а для античастиц -

$$P_{\pm}^{c} = \frac{1}{2} \left(1 - \lambda \gamma_5 \notin \right)$$

где λ — направление спина вдоль вектора поляризации ε^{μ} , ортогонального 4-импульсу р:

$$\lambda = \pm 1, \quad \epsilon^2 = -1, \quad \epsilon \cdot p = 0$$

3адача. $13.^{C}$

Вычислить сумму по поляризациям дираковских частиц и античастиц:

$$\Pi(\boldsymbol{p}) = \sum_{\lambda} u_{\lambda}(\boldsymbol{p}) \bar{u}_{\lambda}(\boldsymbol{p}) = p + mc, \quad \Pi^{c}(\boldsymbol{p}) = \sum_{\lambda} v_{\lambda}(\boldsymbol{p}) \bar{v}_{\lambda}(\boldsymbol{p}) = p - mc$$

Для покоящихся спиноров сумму по поляризациям - матрицу

$$\Pi(0) = \sum_{\lambda} u_{\lambda}(0)\bar{u}_{\lambda}(0)$$

можно вычислить в явном виде как прямое произведение строк и столбцов

$$\Pi(\mathbf{0}) = mc(1,0,1,0) \otimes \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix} + mc(0,1,0,1) \otimes \begin{pmatrix} 0\\1\\0\\1 \end{pmatrix} = mc \begin{pmatrix} 1&0&1&0\\0&1&0&1\\1&0&1&0\\0&1&0&1 \end{pmatrix}$$

или в ковариантном виде

$$\Pi(0) = mc(\gamma_0 + 1) = (p' + mc), \quad p' = (mc, 0)$$

Поскольку преобразование Лоренца для матрицы A сводятся к преобразованию 4-вектора A^{ν} в движущуюся систему отсчета:

$$\Lambda \mathcal{A} \Lambda^{-1} \to \mathcal{A}$$

сумма по поляризациям для движущихся частиц

$$\Pi(p) = (\not p + mc)$$

и аналогично для античастиц

$$\Pi^{c}(p) = \sum_{\lambda} v_{\lambda}(p) \bar{v}_{\lambda}(p) = (\not p - mc)$$

Но можно самим подумать, а не по Киселеву отвечать на этот вопрос.

Запишем уравнение Дирака

$$(i\gamma^{\mu}\partial_{\mu} - m)\psi = 0$$

Рассмотрим для начала положительно частотные решения уравнения (16.1). Для этого запипем ψ в виде

$$\psi = u(\mathbf{p})e^{-ip\cdot x}$$

где $u(\mathbf{p})$ - четырёхкомпонентных спинор, зависящий только от \mathbf{p} . С учётом (16.2), уравнение Дирака примет вид

$$(\gamma^{\mu}p_{\mu} - m) u(\mathbf{p}) = \begin{pmatrix} -m & p_{\mu}\sigma^{\mu} \\ p_{\mu}\bar{\sigma}^{\mu} & -m \end{pmatrix} u(\mathbf{p}) = 0$$

Здесь мы использовали следующие обозначения: $\sigma^{\mu} = (1, \sigma^i)$, $\bar{\sigma}^{\mu} = (1, -\sigma^i)$. Найдём общий вид $u(\mathbf{p})$. Для этого запишем спинор $u(\mathbf{p})$ как

$$u(\mathbf{p}) = \left(\begin{array}{c} u_1 \\ u_2 \end{array}\right)$$

Тогда имеем

$$(p \cdot \sigma)u_2 = mu_1, \quad (p \cdot \bar{\sigma})u_1 = mu_2$$

Заметим, что $(p \cdot \sigma)(p \cdot \bar{\sigma}) = m^2$. Действительно,

$$(p \cdot \sigma)(p \cdot \bar{\sigma}) = p_0^2 - p_i p_j \sigma^i \sigma^j = p_0^2 - p_i p_j \delta^{ij} = p_0^2 - \mathbf{p}^2 = p^2 = m^2$$

Всвязи с этим, представим двухкомпонентный спинор u_1 в виде $u_1 = (p \cdot \sigma)\xi'$. В таком случае спинор u_2 примет вид: $u_2 = m\xi'$. Значит,

$$u(\mathbf{p}) = A \left(\begin{array}{c} (p \cdot \sigma)\xi' \\ m\xi' \end{array} \right)$$

Выбирая $A=\frac{1}{m},\xi'=\sqrt{p\cdot\bar{\sigma}}\xi\left(\xi^{\dagger}\xi=1\right)$, получаем

$$u(\mathbf{p}) = \left(\begin{array}{c} \sqrt{p \cdot \sigma} \xi \\ \sqrt{p \cdot \bar{\sigma}} \xi \end{array}\right)$$

Аналогично можно рассмотреть и отрицательно частотные решения уравнения Дирака:

$$\psi = v(\mathbf{p})e^{i\mathbf{p}\cdot\mathbf{x}}$$
$$(\gamma^{\mu}p_{\mu} + m)\,v(\mathbf{p}) = \begin{pmatrix} m & p_{\mu}\sigma^{\mu} \\ p_{\mu}\bar{\sigma}^{\mu} & m \end{pmatrix}v(\mathbf{p}) = 0$$

Решение имеет вид:

$$v(\mathbf{p}) = \begin{pmatrix} \sqrt{p \cdot \sigma} \eta \\ -\sqrt{p \cdot \overline{\sigma}} \eta \end{pmatrix}$$

где η - некоторый постоянный двухкомпонентный спинор с нормировкой $\eta^\dagger \eta = 1$. Вычислим теперь суммы по поляризациям

$$\sum_{s} u_{s}(\mathbf{p}) \bar{u}_{s}(\mathbf{p}) = \sum_{s} \begin{pmatrix} \sum_{s} u_{s}(\mathbf{p}) \bar{u}_{s}(\mathbf{p}), & \sum_{s} v_{s}(\mathbf{p}) \bar{v}_{s}(\mathbf{p}) \\ \sqrt{p \cdot \sigma} \xi_{s} \end{pmatrix} \begin{pmatrix} \xi_{s}^{\dagger} \sqrt{p \cdot \sigma}, \xi_{s}^{\dagger} \sqrt{p \cdot \sigma} \end{pmatrix} = \begin{pmatrix} m & p_{\mu} \sigma^{\mu} \\ p_{\mu} \bar{\sigma}^{\mu} & m \end{pmatrix} = p\gamma + m = p + m$$

Здесь учтено, что $\sum_{s} \xi_{s} \xi_{s}^{\dagger} = 1$. Аналогично находим, что

$$\sum_{s} v_{s}(\mathbf{p}) \bar{v}_{s}(\mathbf{p}) = \sum_{s} \begin{pmatrix} \sqrt{p \cdot \sigma} \eta_{s} \\ -\sqrt{p \cdot \overline{\sigma}} \eta_{s} \end{pmatrix} \begin{pmatrix} -\eta_{s}^{\dagger} \sqrt{p \cdot \overline{\sigma}}, \eta_{s}^{\dagger} \sqrt{p \cdot \sigma} \end{pmatrix} = \begin{pmatrix} -m & p_{\mu} \sigma^{\mu} \\ p_{\mu} \bar{\sigma}^{\mu} & -m \end{pmatrix} = p \gamma - m = p - m$$

Задача. 14

Вывести уравнения Швингера—Дайсона и графическое представление для двухточечной вершинной функции для биспинора Дирака с юкавским взаимодействием с вещественным скалярным полем. Записать правила Фейнмана.

Задача. 15.С

Вывести уравнения Швингера—Дайсона и графическое представление для двухточечной вершинной функции для скалярной электродинамики. Записать правила Фейнмана.

Правила Фейнмана для вычисления амплитуд квантовых переходов в теории со скалярными полями при заданных начальных и конечных состояниях.

Эти правила зависят, конечно, от исходного (bare) лагранжиана, что подразумевает определение состава полей и их взаимодействий.

Поэтому опишем типовую модель с нейтральным (вещественным) полем φ и заряженным (комплексным) полем Φ , где лагранжиан свободных полей имеет стандартный вид

$$\mathcal{L}_{0} = \frac{1}{2} \left(\partial_{\mu} \varphi \partial^{\mu} \varphi - M^{2} \varphi^{2} \right) + \partial_{\mu} \Phi^{\dagger} \partial^{\mu} \Phi - m^{2} \Phi^{\dagger} \Phi$$

где M -масса нейтрального поля, а m - масса заряженного поля, а взаимодействия включают в себя

$$\mathcal{L}_{int} = -\Lambda \varphi \Phi^{\dagger} \Phi - \frac{\lambda}{4} \left(\Phi^{\dagger} \Phi \right)^{2}$$

так что Λ - размерная постоянная юкавского взаимодействия полей, а λ константа самодействия заряженного поля.

В импульсном представлении амплитуда квантового перехода строится по диаграмме с учетом закона сохранения 4-импульса, которые приписываются всем линиям,

$$i\mathcal{M} = (2\pi)^4 \delta\left(\sum p\right) i\mathfrak{M}$$

причем в $\mathfrak M$ внутренним линиям отвечают следующие пропагаторы: вещественное поля φ - штриховая линия -

вещественное поля φ — штриховая линия —

$$\frac{\mathrm{i}}{k^2 - M^2 + \mathrm{i}0}, \quad - - - - -$$

комплексное поле Φ — сплошная линия со стрелкой по направлению движения заряда —

$$\frac{\mathrm{i}}{k^2 - m^2 + \mathrm{i}0}, \quad \longrightarrow$$

вершина юкавского взаимодействия

вершина самодействия заряженного поля

Рис. 1

Вершина, как мы убедились, получаются из затравочного действия путем дифференцирования лагранжиана \mathcal{L}_{int} по полям и домножением на мнимую единицу. Внешним линиям в конечном состоянии отвечают следующие моды:

заряженная частица - отрицательно частотная мода поля $\hat{\Phi}^{\dagger}$, заряженная античастица - отрицательно частотная мода поля $\hat{\Phi}$, нейтральная частица - отрицательно частотная мода поля $\hat{\varphi}$.

Внешним линиям в начальном состоянии отвечают следующие моды: заряженная античастица - положительно частотная мода поля $\hat{\Phi}^{\dagger}$, заряженная частица - положительно частотная мода поля $\hat{\varphi}$. Для скалярных частиц в принятой релятивистски ковариантной нормировке состояний все эти моды в координатном представлении отвечают волнам де Бройля с соответствующей прескрипцией для импульсов и энергий в начальных и конечных состояниях, чтобы выполнялся закон сохранения 4 импульса. В импульсном же представлении эти моды оказываются равными 1. Однако понимание того, как они были получены, упростит нам задачу в случае полей с ненулевым спином, когда моды - это многокомпонентные строки или столбцы, а не единицы.

При наличии в диаграмме петель закон сохранения 4-импульса приводит к дополнительному интегрированию по 4-импульсу, который может принимать произвольные значения,

$$\int \frac{\mathrm{d}^4 p}{(2\pi)^4}$$

для каждой петли. Подчеркием, что при наличии тождественных полей необходимо учесть симметрийный фактор: для внешних полей провести симметризацию по тождественным частицам и сосчитать варианты прескрипции 4-импульсов этим полям, для внутренних линий сосчитать число графических вариантов возникновения одних и тех же диаграмм по заданному набору линий и вершин. Пример расчета симметрийного фактора мы видели в теории кубического самодействия нейтрального поля.

И наконец, повторим, как связана амплитуда с дифференциальной шириной распада частицы массой M с 4 -импульсм p

$$\mathrm{d}\Gamma = \frac{|\mathfrak{M}|^2}{2M} \; \mathrm{d}\mathfrak{p}_f$$

где релятивистски инвариантный фазовый объем частиц в конечном состоя- нии

$$d\mathfrak{p}_f = (2\pi)^4 \delta \left(p - \sum_{n=1}^{n_f} k_{(n)} \right) \prod_{n=1}^{n_f} \frac{d^3 k_{(n)}}{2E_{(n)}}$$

и дифференциальным сечением рассеяния частиц с 4-импульсами p и \tilde{p}

$$d\sigma = \frac{|\mathfrak{M}|^2}{4\sqrt{(p\cdot\tilde{p})^2 - m^2\tilde{m}^2}} d\mathfrak{p}_f$$

где фазовый объем в конечном состоянии

$$d\mathfrak{p}_f = (2\pi)^4 \delta \left(p + \tilde{p} - \sum_{n=1}^{n_f} k_{(n)} \right) \prod_{n=1}^{n_f} \frac{d^3 k_{(n)}}{2E_{(n)}}$$

Отметим, что эти правила относятся к случаю, когда одноточечная функция Грина поля равна нулю. Однако, легко сообразить, что ненулевое

вакуумное значение поля $v = \langle 0|\hat{\varphi}(x)|0\rangle$ отвечает просто случаю внешнего поля с нулевым импульсом. Такую внешнюю линию обычно изображают с символом \otimes на конце. При этом вершины взаимодействия внешнего вакуумного поля легко определить, если в исходном лагранжиане произвести замену поля, скажем, $\varphi \mapsto v + \varphi$, так что новое поле уже не имеет вакуумного среднего.

3адача. $16.^{C}$

Вывести уравнения Швингера-Дайсона и графическое представление для двухточечной вершинной функции для массивного скалярного поля с самодействием $\lambda \phi^4/4!$. Записать правила Фейнмана.

Правила Фейнмана:

- 1. точный пропагатор дается суммой всех связных диаграмм
- 2. каждой вершине отвечает $-i\lambda\int d^4x$ 3. Свободный пропагатор $D_0^F(x,y)=\int \frac{d^4k}{(2\pi)^4} \frac{e^{ik(x-y)}}{k^2-m^2+i\varepsilon}$
- 4. Комбинаторные множители.

Задача. 17. $^{\it C}$

Доказать, что число петель N_L В диаграмме с N_V степенями действия взаимодействия V, Числом связных компонент диаграммы N_c и числом внутренних линий N_I определяется соотношением

$$N_L = N_I + N_c - N_V$$

Привести примеры одно- и двухпетлевых диаграмм с одно- и двухсвязными компонентами в теории с взаимодействием $V \sim \lambda \phi^4$

Внутренняя линия добавляет $\int d^4x$, а петля снимает.

Для одной связной петли $N_V=N_I-N_L+1$ Поэтому для нескольких: $\sum N_v=\sum N_I-\sum N_L+N_C=N_v=N_I-N_L+N_C$

А также верно следующее:

Амплитуду квантовых переходов при наличии взаимодействий

$$\hat{Z}(j) = \int \mathcal{D}\varphi \exp\left\{\frac{\mathrm{i}}{\hbar} \left(S_0(\varphi) + j_{x'}\varphi_{x'}\right) + \frac{\mathrm{i}}{\hbar} S_{\mathrm{int}}(\varphi)\right\}$$

можно выразить с помощью действия оператора поля на функционал, построенный для свободных полей,

$$\hat{Z}(j) = \exp\left\{\frac{\mathrm{i}}{\hbar}S_{\mathrm{int}}\left(-\mathrm{i}\hbar\frac{\delta}{\delta j}\right)\right\} \int \mathcal{D}\varphi \exp\left\{\frac{\mathrm{i}}{\hbar}\left(S_{0}(\varphi) + j_{x'}\varphi_{x'}\right)\right\}$$

Этот функционал позволяет найти общее соотношение для числа петель, степени возмущения и числа внутренних линий в связной диаграмме.

Действительно, если N_V — степень вклада возмущения в функцию Грина, и значит, N_V - это число внутренних вершин в диаграмме, то вклад вершин в число интегрирований по координатам равен N_V (vertex, number of vertecies).

Если в диаграмме есть внутренняя линия, то она соединяет 2 точки, т. е. каждой внутренней линии отвечает одно интегрирование по координатам на конце внутренней линии, так что при наличии N_I внутренних линий (internal lines) N_I интегрирований относятся именно к этим линиям, и нужно добавить еще одну начальную точку, так что при последовательном счете, если рассматривать связную цепочку внутренних линий, имеется $N_I + 1$ число интегрирований в цепочке.

При этом, поскольку внутренняя линия соединяет именно вершины, по сути мы полагаем, что в диаграмме столько же и вершин.

Однако если диаграмма связная, то некоторые начальные и конечные точки в цепочке внутренних линий могут совпасть.

Каждое такое совпадение означает наличие замкнутой петли.

Число петель N_L (loop, number of loops) определяет число точек посчитанных дважды, так что общее число интегрирований по внутренним вершинам или просто число вершин в действительности равно

$$N_V = N_I + 1 - N_L, \quad N_L = N_I + 1 - N_V$$

В справедливости данной формулы читатель может наглядно убедиться на примере четырехи двухточечной функции Грина в теории «фи-в-четвертой», как это показано на рис.

Рис. 2

Доказать, что разложение связных Диаграмм по петлям совпадает с разложением по постоянной Планка \hbar

Заметим, что связные функции Грина $\mathrm{i} G(j)/\hbar$ с фиксированным числом петель получаются суммированием диаграмм с N_V степенями возмущения и N_I внутренними линиями, причем каждое возмущение дает фактор $1/\hbar$, а каждая внутренняя линия отвечает обратному оператору на квадратичном по траектории свободном действии, т. е. вносит фактор \hbar (ст. связь связной двухточечной функции Грина со связной частью двухточечной функции Грина для амплитуды вероятности Z(j)). В итоге связные функции Грина с петлями имеют следующий масштаб по \hbar :

$$\frac{1}{\hbar}G^{(L)} \sim \sum_{N_V, N_I} \left(\frac{1}{\hbar}\right)^{N_V} \hbar^{N_I} \bigg|_{N_L \text{ fixed}} \sim \hbar^{N_L - 1}$$

Таким образом, разложение связных функций Грина по петлям совпадает с разложением по степеням $\hbar!$ Это означает, что в классическом пределе $\hbar \to 0$ среди связных диаграмм остаются только диаграммы без петель или, как говорят, древесные диаграммы.

Часть II

Второе задание

3 упражнения

\mathbf{y} пражнение. 8. C

Пользуясь антикоммутатором, вычислить следы произведений Гамма-матриц Дирака:

$$\operatorname{tr}(\gamma^{\mu}\gamma^{\nu}), \quad \operatorname{tr}(\gamma_{5}\gamma^{\mu}), \quad \operatorname{tr}(\gamma_{5}\gamma^{\mu}\gamma^{\nu}), \quad \operatorname{tr}(\gamma^{\mu}\gamma^{\nu}\gamma^{\mu'})$$

 $\operatorname{tr}(\gamma_{5}\gamma^{\mu}\gamma^{\nu}\gamma^{\mu'}), \quad \operatorname{tr}(\gamma^{\mu}\gamma^{\nu}\gamma^{\mu'}\gamma^{\nu'}), \quad \operatorname{tr}(\gamma_{5}\gamma^{\mu}\gamma^{\nu}\gamma^{\mu'}\gamma^{\nu'})$

\mathbf{y} пражнение. 9. C

Доказать, что след нечетного числа гамма-матриц Дирака равен нулю, а для четного n имеет место соотношение редукции

$$\operatorname{tr}\left(\gamma^{\mu_1}\dots\gamma^{\mu_n}\right) = g^{\mu_1\mu_2}\operatorname{tr}\left(\gamma^{\mu_3}\dots\gamma^{\mu_n}\right) + g^{\mu_1\mu_3}\operatorname{tr}\left(\gamma^{\mu_2}\gamma^{\mu_4}\dots\gamma^{\mu_n}\right) + \dots$$

Упражнение. 10.

Упростить выражения

$$\gamma_{\mu} p \gamma^{\mu}, \quad \gamma_{\mu} p k \gamma^{\mu}$$

Упражнение. 11

Рассмотреть тождества Фирца для гамма-матриц Дирака.

4 задачи

3адача. $19.^{C}$

В ведущем порядке теории возмущений квантовой электродинамики вычислить дифференциальное и полное сечения элеткрон-позитронной аннигиляции в мюон-антимюон: $e^+e^- \to \mu^+\mu^-$

3адача. 20. C

В ведущем порядке теории возмущений квантовой электродинамики вычислить дифференциальное и полное сечения элеткрон-позитронной аннигиляции в пион-антипион, считая пионы точечными скалярными частицами: $e^+e^- \to \pi^+\pi^-$. Сравнить распределение по углами в системе центра масс с распределением в случае образования мюонов.

3адача. $21.^{C}$

В ведущем порядке теории возмущений квантовой электродинамики вычислить дифференциальное сечение комптоновского рассеяния фотона на электроне: $\gamma e^- \to \gamma e^-$

Задача. 22. ^C Вычислить сечение рассеяния электронов на мюонном нейтрино в модели с четырёхфермионном взаимодействием: $e^-\nu_\mu \to \nu_e \mu^-$

Задача. 23. C Вычислить ширину трёхчастичного распада мюона на электрон и нейтрино: $\mu^- \to e^- \bar{\nu}_e \nu_\mu$

Задача. 24. ^C Вычислить время дВухчастичного распада заряженного пиона: $\pi^- \to \mu^- \bar{\nu}_\mu$. Сравнить ширину распада пиона на электрон и мюон.

Задача. 25. C Вычислить время распада нейтрона: $n \to p e^- \bar{\nu}_e$

Задача. 26. *

Вычислить ширину двухчастичного распада Z -бозона на нейтри $\mathrm{HO}:Z o
u ar{
u}$

Задача. 27. C В ведушем порядке теории возмушений КХД вычислить сечение $\bar{q}q \to \bar{c}c$

Задача. В ведущем порядке теории возмущений КХД вычислить сечение рождения очарованных кварков в глюон-глюоннном слиянии: g g cc. Рассмотреть синглетный и октетный по цвету вклады в сечение.

Список литературы