

Added source term: $\int f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi}$

	$i(\alpha_0$ - 4 $\beta_1)k$	0	$-\frac{\alpha_0 - 4\beta_1}{2\sqrt{2}}$	$\frac{1}{4}\left(lpha_0$ - 4 $eta_1 ight)$	0	0	0	$\omega_{1^- lpha}^{\# 1}$	βχ	$\chi^{-\rho_1\sigma_1}$	$f^{\delta} = R_{-} A^{\chi} f$
•	0	0	0	$-\frac{\alpha_0-4\beta_1}{2\sqrt{2}}$	0	0	0	$\omega_{1^{-}\alpha}^{\#2}$		X	35,50
(0	0	0	0	0	0	0	$f_{1^{-}\alpha}^{\#1}$			
(0	0	0	$-\frac{1}{2}i(\alpha_0-4\beta_1)k$	0	0	0	$f_{1^-\alpha}^{#2}$		1	
$\omega_{0}^{\#1}$				j	c#1 0 ⁺	$f_{0^{+}}^{#2}$	и) #1			
ω_0	$\omega_{0+}^{\#1} + \frac{\alpha_0}{2} - 2\beta_1 + \alpha_6 k^2$		$\frac{1}{2} - \frac{i(\alpha_0)}{\alpha_0}$	$\frac{0-4 \beta_1}{\sqrt{2}}$	0		0				
f_{0}	#1 0 ⁺ †		$\frac{i(\alpha_0-4\beta_1)k}{\sqrt{2}}$		-4	$\beta_1 k^2$	0		0		
f_{0}	#2 0 ⁺ 1		0			0	0		0		
ω	#1 0-1		0			0	0	$\frac{1}{2}$ (α_0	$-4 \beta_1$)		

$ au_2^{*}$ $ au_2^{*}$ $ au_3^{*}$ $ au_4^{*}$ $ au_$	Q#	
$\tau_{2}^{\#1} + \alpha \beta$ $\tau_{2}^{\#1} + \alpha \beta x$ $\sigma_{2}^{\#1} + \alpha \beta x$ $Lagrang$ $-\frac{1}{2} \alpha_{0} \omega_{\alpha}$ $2 \beta_{1} \omega_{\alpha}^{X}$ $2 \beta_{1} \omega_{\alpha}^{X}$ $\alpha_{0} f^{\alpha \beta} \partial_{t}$	$\sigma_{2}^{*1} + \alpha \beta$	
$\tau_{2}^{\#1} + \alpha\beta = \frac{\alpha_{0}^{2} + \alpha_{0}\beta_{1}}{\alpha_{0}k} = \frac{\alpha_{0}k}{\alpha_{0}k}$ $\tau_{2}^{\#1} + \alpha\beta = \frac{2i\sqrt{2}}{\alpha_{0}k} = \frac{2}{\alpha_{0}k^{2}}$ $\tau_{2}^{\#1} + \alpha\beta = \frac{2i\sqrt{2}}{\alpha_{0}k} = \frac{2}{\alpha_{0}k^{2}}$ $0 = 0$ $\tau_{2}^{\#1} + \alpha\beta = 0$ $0 $	•	, #7
$\begin{array}{c c} \alpha_0 k \\ \hline 2 \\ \hline \alpha_0 k^2 \\ \hline 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$\frac{\iota_{2} + \alpha \beta}{2i \sqrt{2}}$	- #1
0 0 $\frac{1}{\frac{\alpha_0}{4} + \beta_1}$ $\beta_{\alpha} \omega_{\beta} x$ $\alpha_{\beta} \beta_{\beta} \alpha_{\beta}$ $\alpha_{\beta} \beta_{\beta} \alpha_{\beta}$ $\alpha_{\beta} \beta_{\beta} \alpha_{\beta}$ $\alpha_{\beta} \beta_{\beta} \alpha_{\beta}$	$O_{2}^{-}\alpha\beta\chi$	\ #1
$\tau_{2}^{\#1} + \alpha\beta = \frac{\alpha_{0}^{Z+4\alpha_{0}\beta_{1}}}{\alpha_{0}k} = \frac{\alpha_{0}k}{\alpha_{0}k^{Z}} = 0$ $\tau_{2}^{\#1} + \alpha\beta = \frac{2i\sqrt{2}}{\alpha_{0}k} = \frac{2}{\alpha_{0}k^{Z}} = 0$ $\tau_{2}^{\#1} + \alpha\beta = \frac{2i\sqrt{2}}{\alpha_{0}k} = \frac{2}{\alpha_{0}k^{Z}} = 0$ $\tau_{2}^{\#1} + \alpha\beta = \frac{2i\sqrt{2}}{\alpha_{0}k^{Z}} = 0$ $\tau_{3}^{\#1} + \alpha\beta = \frac{2i\sqrt{2}}{\alpha_{0}k^{Z}} = 0$ $\tau_{4}^{\#1} + \beta1 = \frac{2i\sqrt{2}}{\alpha_{0}k^{Z}} = 0$ $\tau_{4}^{\#1} + \alpha\beta = \frac{2i\sqrt{2}}{\alpha_{0}k^{Z}} = 0$ τ		

 $\alpha \alpha + 2 \beta_1 \omega_{\beta \delta}^{\delta} \partial^{\beta} f^{\alpha}_{\alpha}$

$\sigma_{2^{-}}^{*1} \dagger^{lphaeta\chi}$	$\tau_{2+}^{*1} + \alpha \beta$	$\sigma_{2^+}^{*1} + ^{\alpha\beta}$	
0	$-\frac{2i\sqrt{2}}{\alpha_0 k}$		$\sigma_{2^{+}lphaeta}^{*1}$
0	$\frac{2}{\alpha_0 k^2}$	$\frac{2i\sqrt{2}}{\alpha_0 k}$	$ au_2^{\#1}{}_{lphaeta}$
0 $\frac{1}{-\frac{\alpha_0}{4} + \beta_1}$		0	$\sigma_{2^{+} \alpha \beta}^{\# 1} \ \sigma_{2^{-} \alpha \beta \chi}^{\# 1}$

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_2^{\sharp 1}_{\alpha\beta\chi}$
$\omega_{2}^{\#1}\dagger^{lphaeta}$	$-\frac{\alpha_0}{4} + \beta_1$	$\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	0
$f_2^{#1}\dagger^{\alpha\beta}$	$-\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	$2 \beta_1 k^2$	0
$\omega_2^{#1} \dagger^{\alpha\beta\chi}$	0	0	$-\frac{\alpha_0}{4}+\beta_1$

Source constraints					
SO(3) irreps	#				
# ₂ == 0	1				
$a_1^{\#2\alpha} + 2ik \sigma_1^{\#2\alpha} == 0$	3				
$r_{1}^{\#1\alpha} == 0$	3				
$\sigma_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3				
otal #:	10				

_	$\sigma_{0^+}^{\sharp 1}$	$ au_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	$\frac{8 \beta_1}{\alpha_0^2 - 4 \alpha_0 \beta_1 + 8 \alpha_6 \beta_1 k^2}$	$-\frac{i\sqrt{2} (\alpha_0-4\beta_1)}{\alpha_0 (\alpha_0-4\beta_1)k+8\alpha_6\beta_1 k^3}$	0	0
$\tau_{0}^{\#1}$ †	$\frac{i\sqrt{2}(\alpha_0-4\beta_1)}{\alpha_0(\alpha_0-4\beta_1)k+8\alpha_6\beta_1k^3}$	$-\frac{\alpha_0 - 4 \beta_1 + 2 \alpha_6 k^2}{k^2 (\alpha_0^2 - 4 \alpha_0 \beta_1 + 8 \alpha_6 \beta_1 k^2)}$	0	0
$\tau_{0^{+}}^{\#2}$ †	0	0	0	0
$\sigma_0^{\#1}$ †	0	0	0	$\frac{2}{\alpha_0$ -4 β_1

Unitarity conditions						
$\alpha_0 > 0 \&\& \alpha_6 > 0 \&\& \beta_1 < 0 \mid \beta_1 > \frac{\alpha_0}{4}$						