# 1 Aufgabe 14

## 1.1 Aufgabe 14a

Scatterplot für die ersten zwei Dimensionen des Datensatzes:



Abbildung 1: Scatterplot von  $x_1$  und  $x_2$ .

### 1.2 Aufgabe 14b

Die Hauptkomponentenanalyse sucht nach einer Basis im Raum indem die Varianz entlang der Basisvektoren maximiert wird.

Gegeben seien also N Datenpunkte mit d Dimensionen.

- 1. Zentrierung
  - a) Mittelwertvektor  $\mu$  bilden.

$$\mu = \begin{pmatrix} \bar{x_1} \\ \bar{x_2} \\ \bar{x_3} \\ \bar{x_4} \end{pmatrix}$$

- $b) x_i = x_i \mu$
- 2. Kovarianz
  - a) Kovarianzmatrix  $\text{Cov}(\boldsymbol{X})$  bilden
- 3. Eigenwerte und Vektoren
  - a) Die 4 Eigenwerte und Eigenvektoren von  $\mathrm{Cov}(X)$  bestimmen, und der Größe nach sortieren.

#### 4. Transformierung

a) Den Datensatz  $\boldsymbol{X}$  mit der Transformationsmatrix  $\boldsymbol{W}$ aus den Eigenvektoren multiplizieren.

$$X = XW$$

Es ergibt sich die transformierte Matrix  $\boldsymbol{X}$ 

# 1.3 Aufgabe 14c

Die Eigenwerte der Kovarianzmatrix ergeben sich zu:

$$\lambda_1 = 17.519$$

$$\lambda_2=0.999$$

$$\lambda_3 = 0.988$$

$$\lambda_4 = 0.899$$

Es ist deutlich dass der erste Eigenwert eine wesentlich höhere Korrelation als die anderen beschreibt.

# 1.4 Aufgabe 14d



Abbildung 2: Histogramm von  $x_1'$ .



Abbildung 3: Histogramm von  $x_2'$ .



Abbildung 4: Histogramm von  $x_3'$ .



Abbildung 5: Histogramm von  $x_4'$ .



Abbildung 6: Scatterplot von  $x_1'$  und  $x_2'$ .