# Vorlesung 13: Wozu sind Basen gut? Basenwechsel.

07.12.2022

Eine Teilmenge B eines Vektorraumes V heißt Basis von V, wenn sie erzeugend und linear unabhängig ist.

4 D > 4 A D > 4 B > 4 B > 9 Q (A

Eine Teilmenge B eines Vektorraumes V heißt Basis von V, wenn sie erzeugend und linear unabhängig ist.

#### Satz 7.8: Eine Basis existiert immer

Jeder Vektorraum V hat eine Basis.

#### Satz 7.3: Basis = minimal erzeugend

Eine Teilmenge B eines  $\mathbb{K}$ -Vektorraumes V ist eine Basis genau dann, wenn B ein minimales Erzeugendensystem ist.

#### Satz 7.3: Basis = minimal erzeugend

Eine Teilmenge B eines  $\mathbb{K}$ -Vektorraumes V ist eine Basis genau dann, wenn B ein minimales Erzeugendensystem ist.

#### Satz 7.4: Basis = maximal linear unabhängig

Eine Teilmenge B eines  $\mathbb{K}$ -Vektorraumes V ist eine Basis genau dann, wenn B maximal linear unabhängig ist.

Ist  $\dim(V) = n$ , so ist jede Teilmenge  $\{v_1, ..., v_n\}$ , die *entweder* linear unabhängig *oder* erzeugend ist, eine Basis von V.



# Darstellung bezüglich einer Basis

Sei V ein  $\mathbb{K}$ -Vektorraum und  $B = \{b_1, \ldots, b_n\}$  eine Basis von V.

# Darstellung bezüglich einer Basis

Sei V ein  $\mathbb{K}$ -Vektorraum und  $B = \{b_1, \ldots, b_n\}$  eine Basis von V.

B ist erzeugend, also ist jedes  $v \in V$  eine Linearkombonation

$$v = \sum_{i=1}^{n} v_i b_i,$$

mit  $v_1, ..., v_n \in \mathbb{K}$ .



# Eindeutige Basisdarstellung

#### Satz 7.15

Sei  $B=\{b_1,\ldots,b_n\}$  eine Basis eines  $\mathbb{K}$ -Vektorraumes V. Sei  $v\in V$  beliebig. Dann ist die Darstellung von v als Linearkombination der Vektoren  $b_i$  eindeutig.

# Bezeichnungen

Sei  $B = \{b_1, \dots, b_n\}$  eine Basis eines  $\mathbb{K}$ -Vektorraums V und  $v \in V$  ein beliebiger Vektor mit der eindeutigen Basisdarstellung

$$v = \sum_{i=1}^{n} v_i b_i.$$

# Bezeichnungen

Sei  $B = \{b_1, \dots, b_n\}$  eine Basis eines  $\mathbb{K}$ -Vektorraums V und  $v \in V$  ein beliebiger Vektor mit der eindeutigen Basisdarstellung

$$v=\sum_{i=1}^n v_ib_i.$$

Die Koeffizienten  $v_1, \ldots, v_n \in \mathbb{K}$  heißen Komponenten von v in der Basis B.

# Bezeichnungen

Sei  $B = \{b_1, \dots, b_n\}$  eine Basis eines  $\mathbb{K}$ -Vektorraums V und  $v \in V$  ein beliebiger Vektor mit der eindeutigen Basisdarstellung

$$v = \sum_{i=1}^{n} v_i b_i.$$

Die Koeffizienten  $v_1, \ldots, v_n \in \mathbb{K}$  heißen Komponenten von v in der Basis B.

Das *n*-Tupel  $\Theta_B(v) := (v_1, \dots, v_n) \in \mathbb{K}^n$  heißt **Komponentenvektor** von v bezüglich B.

4 D > 4 A > 4 B > 4 B > 9 9 9

#### **Technisches**

Wir identifizieren die Komponentenvektoren  $\Theta_B(v) = (v_1, \dots, v_n) \in \mathbb{K}^n$  im Folgenden oft mit  $n \times 1$ -Matrizen, d.h. wir schreiben auch

$$\Theta_B(v) = \left(\begin{array}{c} v_1 \\ \vdots \\ v_n \end{array}\right).$$

#### **Technisches**

Wir identifizieren die Komponentenvektoren  $\Theta_B(v) = (v_1, \dots, v_n) \in \mathbb{K}^n$  im Folgenden oft mit  $n \times 1$ -Matrizen, d.h. wir schreiben auch

$$\Theta_B(v) = \left(\begin{array}{c} v_1 \\ \vdots \\ v_n \end{array}\right).$$

Allgemein: Elemente von  $\mathbb{K}^n$  werden oft mit **Spaltenvektoren**, d.h.  $n \times 1$ -Matrizen identifiziert.

# Wichtige Bemerkungen

Die Abbildung  $\Theta_B:V o\mathbb{K}^n$  ist eine Bijektion!

# Wichtige Bemerkungen

Die Abbildung  $\Theta_B:V\to\mathbb{K}^n$  ist eine Bijektion!

Die Wahl der Basis B in V versieht V mit "Koordinaten".

# Wichtige Bemerkungen

Die Abbildung  $\Theta_B:V\to\mathbb{K}^n$  ist eine Bijektion!

Die Wahl der Basis B in V versieht V mit "Koordinaten".

Die Koordinaten hängen von der Wahl von B ab!

#### Verschiedene Basen

**Gegeben**: n-dimensionaler Vektorraum V und zwei Basen von V

$$B = \{b_1, \dots, b_n\}$$
 und  $\overline{B} = \{\overline{b}_1, \dots, \overline{b}_n\}$ .

#### Verschiedene Basen

**Gegeben**: *n*-dimensionaler Vektorraum *V* und zwei Basen von *V* 

$$B = \{b_1, \dots, b_n\}$$
 und  $\overline{B} = \{\overline{b}_1, \dots, \overline{b}_n\}$ .

**Gesucht**: Eine Beziehung zwischen den durch die Basis B und durch die Basis  $\bar{B}$  gegebenen "Koordinaten".

#### Verschiedene Basen

**Gegeben**: *n*-dimensionaler Vektorraum *V* und zwei Basen von *V* 

$$B = \{b_1, \ldots, b_n\}$$
 und  $\overline{B} = \{\overline{b}_1, \ldots, \overline{b}_n\}.$ 

**Gesucht**: Eine Beziehung zwischen den durch die Basis B und durch die Basis  $\bar{B}$  gegebenen "Koordinaten".

Also eine Beziehung zwischen  $\Theta_B(v)$  und  $\Theta_{\overline{B}}(v)$ .

# Verschiedene Basen: ein Beispiel



# Beispiel

# Allgemeine Lösung

Jedes  $b_i$  lässt sich eindeutig als Linearkombination der  $\overline{b}_1, \ldots, \overline{b}_n$  mit Koeffizienten aus  $\mathbb{K}$  darstellen:

# Allgemeine Lösung

Jedes  $b_i$  lässt sich eindeutig als Linearkombination der  $\overline{b}_1, \ldots, \overline{b}_n$  mit Koeffizienten aus  $\mathbb{K}$  darstellen:

$$b_{1} = a_{11} \overline{b}_{1} + a_{21} \overline{b}_{2} + \dots + a_{n1} \overline{b}_{n}$$

$$b_{2} = a_{12} \overline{b}_{1} + a_{22} \overline{b}_{2} + \dots + a_{n2} \overline{b}_{n}$$

$$\vdots$$

$$b_{n} = a_{1n} \overline{b}_{1} + a_{2n} \overline{b}_{2} + \dots + a_{nn} \overline{b}_{n}.$$

# Allgemeine Lösung

Jedes  $b_i$  lässt sich eindeutig als Linearkombination der  $\overline{b}_1, \ldots, \overline{b}_n$  mit Koeffizienten aus  $\mathbb{K}$  darstellen:

$$b_{1} = a_{11} \overline{b}_{1} + a_{21} \overline{b}_{2} + \dots + a_{n1} \overline{b}_{n}$$

$$b_{2} = a_{12} \overline{b}_{1} + a_{22} \overline{b}_{2} + \dots + a_{n2} \overline{b}_{n}$$

$$\vdots$$

$$b_{n} = a_{1n} \overline{b}_{1} + a_{2n} \overline{b}_{2} + \dots + a_{nn} \overline{b}_{n}.$$

In Kurzform:

$$b_i = \sum_{i=1}^n a_{ji} \, \overline{b}_j, \qquad i = 1, \ldots, n; \quad a_{ji} \in \mathbb{K}.$$

# Daten: Basiswechsel $B \rightsquigarrow \overline{B}$

$$A := \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \in \mathbb{K}^{n \times n},$$

### Daten: Basiswechsel $B \rightsquigarrow \overline{B}$

$$A := \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \in \mathbb{K}^{n \times n},$$

Die Matrix A heißt Übergangsmatrix des Basiswechsels von B nach  $\overline{B}$ .

# Daten: Basiswechsel $B \rightsquigarrow \overline{B}$

$$A := \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \in \mathbb{K}^{n \times n},$$

Die Matrix A heißt Übergangsmatrix des Basiswechsels von B nach  $\overline{B}$ .

**Merkregel**: Die zur Linearkombination von  $b_i$  aus den  $\overline{b}_1, \ldots, \overline{b}_n$  benötigten Koeffizienten  $a_{1i}, a_{2i}, \ldots, a_{ni}$  stehen in der *i*-ten Spalte von A.

# Umkehrung: Basiswechsel $\overline{B} \rightsquigarrow B$

Jedes  $\bar{b}_j$  hat eine eindeutige Basisdarstellung bezüglich B:

$$ar{b}_j = \sum_{i=1}^n c_{ij} \ b_i, \qquad \qquad j=1,\ldots,n; \quad c_{ij} \in \mathbb{K}$$

mit der zum Basiswechsel von  $\overline{B}$  nach B gehörigen Übergangsmatrix

$$C = \begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{pmatrix} \in \mathbb{K}^{n \times n}.$$

4014914714717

# Sprechweise

"alte" Basis: 
$$B=\{b_1,\ldots,b_n\}$$
, "neue" Basis:  $\overline{B}=\{\overline{b}_1,\ldots,\overline{b}_n\}$ 

# Sprechweise

"alte" Basis: 
$$B=\{b_1,\ldots,b_n\}$$
, "neue" Basis:  $\overline{B}=\{\overline{b}_1,\ldots,\overline{b}_n\}$ 

**Basiswechsel** von der alten Basis  $\overline{B}$  zur neuen Basis  $\overline{B}$  ist gegeben durch

$$b_i = \sum_{j=1}^n a_{ji} \, \overline{b}_j, \qquad \qquad i = 1, \ldots, n; \quad a_{ji} \in \mathbb{K}.$$

und von der neuen Basis  $\overline{B}$  zur alten Basis B durch

$$\overline{b}_j = \sum_{i=1}^n c_{ij} b_i, \qquad j = 1, \ldots, n; \quad c_{ij} \in \mathbb{K}$$

40.44.45.45. 5.00

#### Satz 7.19: Übergangsmatrizen eines Basiswechsels

Seien V ein n-dimensionaler  $\mathbb{K}$ -Vektorraum und  $B, \overline{B}$  zwei Basen von V.

Dann ist die Übergangsmatrix C des Basiswechsels von  $\overline{B}$  nach B die Inverse der Übergangsmatrix A des Basiswechsels von B nach  $\overline{B}$ , d.h. es gilt  $C = A^{-1}$ .

# **Beweis**

#### Satz 7.20: Komponentenvektoren eines Basiswechsels

Sei V ein n-dimensionaler  $\mathbb{K}$ -Vektorraum und  $B, \overline{B}$  Basen von V.

Für  $v \in V$  seien  $\Theta_{\overline{B}}(v)$  und  $\Theta_{\overline{B}}(v)$  die Komponentenvektoren bezüglich B bzw.  $\overline{B}$ .

Dann gilt in Matrixschreibweise

$$\Theta_{\overline{B}}(v) = A \cdot \Theta_B(v)$$
 und  $\Theta_B(v) = A^{-1} \cdot \Theta_{\overline{B}}(v)$ .

Dabei ist A die Übergangsmatrix des Basiswechsels von B nach  $\overline{B}$ .

# Beweis

# Vorlesung 15: Untervektorräume

9.12.2021

Als Vorbereitung lesen Sie bitte im Skript: Seiten 88-95