Elementary Number Theory

Thaqib Mo.

November 14, 2020

1 Integral Domains

Definition 1: Integral Domains

Let R be a commutative ring, then $a \in R$ is called the *zero divisor*, if there is some $b \in R$ with $b \neq 0$ for which ab = 0.

An Integral Domain is a commutative ring R, with $R \neq \{0\}$ such that 0 is the only zero divisor. If we have ab = 0 then either a = 0 or b = 0.

We can define Integral Domains in another equivalent way using the "cancellation law".

Theorem 1

A commutative ring $R \neq \{0\}$ is an integral domain if and only if for all $a, b, c \in R$ if $a \neq 0$ and

$$ab = ac$$

Then

$$b = c$$

Proof. Suppose R is an integral domain, and we have ab = ac and $a \neq 0$ then ab - ac = 0 and then a(b - c) = 0. Since R is an integral domain we must have b - c = 0 that implies b = c.

Now suppose R is a ring where the commutative property holds. Assume we have ab = 0 If a = 0 we are done, suppose $a \neq 0$ then

$$ab=a\cdot 0 \leadsto b=0$$

Example 1. The ring \mathbb{Z} is an integral domain.

Example 2. The commutative rings \mathbb{Q}, \mathbb{R} are an integral domains.

The rings \mathbb{Q} and \mathbb{R} are more than rings. They are also *fields*.

Definition 2: Fields

A ring F is called a *field* if it is commutative, and if every non zero element in F has a multiplicative inverse. That means if $a \in F$ with $a \neq 0$ then we have $b \in F$ such that

$$ab = 1$$

For the fields \mathbb{Q}, \mathbb{R} if we have $r \in \mathbb{Q}$ then we also have $\frac{1}{r} \in \mathbb{Q}$ and $r \cdot \frac{1}{r} = 1$. The same applies for the field \mathbb{R} . The ring \mathbb{Z} is not a field since not every element has a multiplicative inverse.

Theorem 2

Every subring of a field is an integral domain. In particular, every field is an integral domain.

Proof. Let F be a field and R be a sub ring. Since \times in R and \times in F is the same, (R, \times) is commutative and R is a commutative ring. Now suppose we have $a, b \in R$ such that ab = 0. If a = 0 we are done. Assume $a \neq 0$ since this equation also holds in F then there is some $a^{-1} \in F$ such that $aa^{-1} = 1$ then we get

$$ab = 0$$

$$aba^{-1} = 0a^{-1}$$

$$b = 0$$

Example 3. If $n \ge 2$ is composite then $\mathbb{Z}/n\mathbb{Z}$ is not an integral domain. Since there is a factorization of n = ab then [a], [b] are both non zero elements with [a][b] = [ab] = [n] = [0]

Example 4. We define the ring of Gaussian integers denoted by $\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\}$ where addition is given by

$$a + bi + c + di = (a + b) + (c + d)i$$

and multiplication is given by

$$(a+bi)(c+di) = (ac-bd) + (ad+bc)i$$

This is a subring is \mathbb{C} the complex numbers.

1.1 Basic Properties of Integral Domains

Theorem 3

If R is an integral domain then Char R = 0 or Char R is prime.

Proof. Suppose R is an integral domain and $\operatorname{Char} R \neq 0$ and $\operatorname{Char} R$ is not prime. Then if we have $\operatorname{Char} R = 1$, then R is the zero ring since 1 = 0, which is not possible due to the definition of integral domain. Now suppose $\operatorname{Char} R = n$ where n > 1 is not prime. Then we have n = ab then $a \cdot 1_R$ and $b \cdot 1_R$ are non zero elements but $(a \cdot 1)(b \cdot 1) = ab \cdot 1 = 0$ that contradicts the definition of an integral domain.

Note that this again shows that $\mathbb{Z}/n\mathbb{Z}$ is not an integral domain

Theorem 4

Every finite integral domain is a field.

Proof. Let R be an integral domain, and suppose |R| = n. Let $a \in R$ with $a \neq 0$ consider the multiplication map $\phi_a(r) = ar$ then ϕ is injective since if we have $\phi(r) = \phi(s)$ then ra = sa since R is an integral domain we can use the cancellation property to get r = s.

So we have an injective function $\phi: R \to R$. Since R is finite then this implies ϕ is surjective. Given that ϕ is injective we have $|\phi(R)| = n$. Since ϕ is surjective there must be some $b \in R$ such that $\phi(b) = 1$ which means ab = ba = 1 thus a has an multiplicative inverse in R. By definition R is a field.