

临床意义 - 诊断 ROC 曲线-联合指标

网址: https://www.xiantao.love

更新时间: 2023.04.21

目录

基本概念 3
应用场景 4
数据格式 6
参数说明 9
数据处理 9
统计9
置信区间 10
线11
点 12
曲线下面积
标题 13
图注
风 <mark>格</mark>
图片15
结果说明
主 <mark>要结果</mark>
补充结果17
方法学 19
如何引用 20
常见问题

基本概念

- 》 诊断ROC 曲线: 受试者工作特征曲线(Receiver Operating Characteristic Curve, ROC 曲线) 和 ROC 曲线下的面积(Area Under ROC Curve, AUC)常用于诊断试验的评估,评估预测准确率情况。例如一组数据的结局为 group1 和 group2,变量为 a、b 和 c,也就是评估 a、b 和 c 在预测 group1 和 group2 上的结局,哪个的准确性更高。ROC 曲线图是反映敏感性与特异性之间关系的曲线。AUC 取值范围一般在 0.5 和 1 之间,使用 AUC 值作为评价标准是因为很多时候 ROC 曲线并不能清晰的说明哪个分类器的效果更好,而作为一个数值,对应 AUC 更大的分类器效果更好。
- ➤ 诊断 ROC-联合指标: 通过数据中多个自变量构建 logistic 回归模型进行 ROC 分析,实现联合指标的效果
- ➤ 真阳率 (True Positive Rate, TPR) | <mark>敏感度 (Sensitivity)</mark> : 检测出来的真阳性 样本数除以所有真实阳性样本数
- ➤ 假阳率 (False Positive Rate, FPR) | 1-特异度: 检测出来的假阳性样本数除以 所有真实阴性样本数
- ▶ 真阴性率 (特异度, Specificity) : 检测出来的真阴性样本数除以所有真实阴性样本数
- ▶ 图形构成

应用场景

多应用在医学领域、判断某种因素对于某种疾病的诊断是否有诊断价值。

结果解读

诊断 ROC 曲线

- ▶ 横坐标 X 轴为 1 特异性,也称为假阳性率, X 轴越接近零准确率越高
- ▶ 纵坐标 Y 轴称为敏感度,也称为真阳性率,Y 轴越大代表准确率越好
- ➤ AUC (Area Under Curve, AUC), ROC 曲线下的面积,常用于诊断试验的评估, AUC 取值范围一般在 0.5 和 1 之间, AUC 越接近于 1, 说明该变量在预测结局上诊断效果越好。图中 c 变量 (AUC 面积为 0.924) 相比于变量 a 和 b 诊断效果较好

数据格式

4	Α	В	C	D	E	F	G
1	outcome	Age	Weight loss	Sex	Grade	Stage	Score
2	0	42	15	Male	2	Stage1	90
3	1	80		Male	0	Stage2	100
4	1	82	15	Male	0	Stage1	90
5	1	57	11	Male	0	Stage2	60
6	1	60	0	Male	2	Stage1	90
7	0	74	0	Male	2	Stage2	80
8	1	68	10	Female	0	Stage3	60
9	1	71	1	Female	2	Stage3	80
10	1	53	16	Male	1	Stage2	80
11	1	61	34	Male	0	Stage3	70
12	1	57	27	Male	1	Stage2	80
13	1	68	23	Female	1	Stage3	70
14	1	68	5	Female	0	Stage2	90
15	1	60	32	Male	0		70
16	1	57	60	Male	0	Stage2	70

表格 1: 变量预测数据

- ▶ 第1列结局变量(必须是二分类),缺失值不能超过第一列长度的 85%。第 1列中分类的前后出现的顺序会被参考的顺序,先出现的分类会被当做参考 组
- ➤ 至少需要 2 列数据,最多不能超过 20 列,最少需要 20 行,最多不能超过 30000 行,样本量需要至少 4 倍以上变量数量,样本过少拟合模型效果相对较差
- ▶ 第二列及以后为预测的变量,可以是数值类型,也可以是分类类型
 - 如果变量是数值变量,请以数值纳入,只要含有非数值(除空值)或者 是无穷值外,则此列有可能没有办法纳入到分析
 - 数值变量如果其分类个数 < 10 个 (如 Grade 变量只有 0 1 2) 则会按 照 等级变量来处理
 - 如果变量是等级变量,建议以具体的名字纳入,比如上图中的 Stage,也可以(类似 Grade)以数字 012 的形式纳入,但是,如果以数字编码

的形式纳人,如果种类超过 5 个,需要在 excel 的表 2 中设置等级参考顺序,否则该变量会以数值纳入 (等级超过 8 个将没办法纳入)

- ◆ 等级变量在不同等级之间的 OR 是不同的, 比如结果表格中的 Stage 变量, 可以看到 Stage2 和 Stage1 与 Stage4 和 Stage3 之间的 OR 是不同的。尤其要注意不要随意对一个等级资料编码为 01 23, 如果在 上传数据进行了此类编码,则这个变量会被认为是数值 变量而产生 上述数值变量的效果而出现错误。如果是进行了数字编码的等级变 量, 比如图中 Grade 变量, 假设我们设置了 Grade 变量的等级是 012, 可以在表 2 中设定该变量的等级顺序
- 如果变量是分类变量,默认是以等级资料纳入。二分类变量以等级或者以分类资料或者数值纳入结果都是一样的。如果是多分类非等级资料,则需要以哑变量(暂不考虑)的形式纳入

■ 数值变量

▶ 注意:尽量按照示例数据格式整理数据,否则有可能会导致验证数据失败。

all	Α	В	C	D
1	Sex	Stage	Grade	
2	Male	Stage1	0	
3	Female	Stage2	1	
4		Stage3	2	
5				

表格 2: 预测变量各分类等级

- ▶ 对应 (表 1) 预测变量 (分类类型) 中各分类的顺序 (可以不提供)
 - 比如 Stage 想要设置 Stage1, Stage2, Stage3, Stage4 的顺序,就可以如上图设置。注意,设置了等级顺序后,多因素 Logistic 回归的结果都是以第一个作为参考,其他的等级顺序与第一个等级进行对比。另外,如果在表1中的分类变量没有设置等级顺序,则默认以在表1中各个分

组出现 的顺序作为等级顺序。此外,如果是以 012 编码的等级变量,如果没有 在这个表中进行设置,则会以数值类型纳入 (可见 Grade 列)

▶ 如果其取值跟表 1 预测变量完全一致,则会按照其顺序对上方对应的变量 分类顺序进行分析。比如 Grade 变量在表 2 中各分类的顺序为 0、1、2, 与表 1 的 Grade 变量中变量名还有具体值完全一样,则会按照表 2 变量 法分类的 顺序进行分析,如果不是则按照表 1 中变量分类的顺序进行分析

参数说明

(说明:标注了颜色的为常用参数。)

数据处理

▶ 缺失值处理: 默认是单因素后多因素前处理变量缺失, 也可以选择单因素分析前统一删除缺失值

统计

▶ 方向: 可以选择自动、正向或者反向

置信区间

▶ 计算方法:可以选择在分析过程中对相关内容(OR 值)进行置信区间计算的方法,包含有: Wald 方法、profile 方法(MASS 包)、传统计算方法。其中,Wald 方法得到的置信区间是和 SPSS 是一致的,传统计算方法为(OR±1.96*SE),传统计算方法对应原本生成置信区间的方式。建议选择 Wald 方法。

线

▶ 颜色:每条曲线的颜色

▶ 样式:默认是实线,也可以选择虚线

▶ 粗细: 默认是 0.75pt

➤ 不透明度: 默认是 1,0 是完全透明,1 是完全不透明

点

▶ 展示: 是否展示曲线上的点

▶ 填充色: 点的填充色

▶ 描边色:点的描边色

样式: 圆形、三角形等形状选择

▶ 大小:点的大小,默认0.3

▶ 不透明度: 默认是 1,0 是完全透明,1 是完全不透明

曲线下面积

曲线下面积	R	~
展示		
不透明度	0.1	

▶ 是否展示:是否展示出每个变量曲线下的面积

▶ 不透明度: 如果展示曲线下面积, 可以设定面积的不透明度

> 大标题: 大标题内容

➤ x 轴标题: x 轴标题内容

▶ y轴标题: y轴标题内容

补充: 在要换行的中间插入\n。如果需要上标,可以用两个英文输入法下的大括号括住,比如 {{2}};如果需要下标,可以用两个英文输入法下的中括号括住,比如 [[2]]

图注

图注		~
是否展示	10	
图注标题	图注标题内容	
图注位置	默认	V

▶ 是否展示:图注内容是否展示

▶ 图注标题: 可以填入图注标题

▶ 图注位置:默认是右下,还可以选右

▶ 边框:是否在图中添加边框

网格:是否在图中添加网格线

》 文字大小:图中的文字部分的大小(包括标签文字和刻度数),默认是7pt

图片

▶ 宽度: 图片横向长度,单位为 cm

▶ 高度:图片纵向长度,单位为 cm

> 字体:可以选择图中文本内容字体

结果说明

主要结果

主要结果格式为图片格式,提供 PDF、TIFF 、PPT 格式下载。同时提供了预测值 - 系数 表格 , 表格 里 面 对 应 的 linear_predictor 代表模型 的 线性 预 测 值 , predicted_probability 代表模型预测对应样本的概率值,可视化主要是用这个来代表模型进行联合指标可视化。

补充结果

1. 变量情况表

变量情况

各个变量识别出来的类型以及是否纳入进行分析

变量	类型	分类数量	缺失数量	是否纳入分析	补充说明
outcome	分类变量	2	0	纳入	
Age	数值变量	-	0	纳入	
Weight loss	数值变量	.T.	14	纳入	
Sex	分类变量	2	0	纳入	
Grade	分类变量	3	0	纳入	
Stage	分类变量	3	1	纳入	
Score	数值变量	-	3	纳入	

总样本数: 228

- ·如果某个分类变量的分类>10,将无法识别为分类变量/等级变量
- ·如果变量的分组是以012此类进行编码,如果分类数量<5,会被识别为分类变量;如果>5,会被识别为数值变量
- · 如果数据中含有无穷值, 无穷值会被当做缺失处理
- 补充说明: 单因素分析前,会先去掉结局列中的缺失的样本(结局缺失的样本是无法纳入进行分析的)

缺失处理策略: 单因素后多因素前处理变量缺失

2. 单因素 Logistic

単因素Logistic

变量	类型	数量	OR	置信区间	p值
Age	数值变量	228	1.039	1.006 - 1.072	0.0205
Weight loss	数值变量	214	1.006	0.983 - 1.029	0.6088
Sex	等级变量	228			
Male		138	Reference		
Female		90	0.333	0.183 - 0.605	0.0003
Grade	等级变量	228			
0		40	Reference		
1		92	0.171	0.021 - 1.362	0.0953
2		96	0.024	0.003 - 0.179	0.0003
Stage	等级变量	227			
Stage1		63	Reference		
Stage2		113	1.859	0.970 - 3.560	0.0615
Stage3		51	5.270	1,961 - 14.163	0.0010

3. 多因素 logistic

多因素logistic

模型对应二分类结局(因变量): 1 vs. 0 (其中参考组: 0)

变量	系数β	OR	置信区间	p值
Weight loss	-0.021661	0.979	0.951 - 1.007	0.1386
Sex				
Male		Reference		
Female	-1.3773	0.252	0.116 - 0.550	0.0005
Grade				
0		Reference		
1	-1.4708	0.230	0.027 - 1.925	0.1751
2	-3.7444	0.024	0.003 - 0.191	0.0004
Stage				
Stage1		Reference		
Stage2	0.66601	1.946	0.831 - 4.559	0.1251
Stage3	1.5945	4.926	1.203 - 20.175	0.0266
Score	-0.0038113	0.996	0.967 - 1.026	0.8023

多因素logistic.xlsx

模型常数/截距(Intercept): 3.1294

原始数据一共有228个, 变量信息缺失的样本有18个, 最终纳入的样本数: 210

4. AUC 结果表

AUC结果表

预测变量	预测结局	曲线下面积(AUC)	置信区间(CI)
Model	1 vs 0	0.859	0.807 - 0.912

预测结局中, vs后面的结局事件为参考组(影响真/假阳性和真/假阴性的区分)(如果统计-方向参数选择的是"自动",则会对结局的方向会进行调整保证曲线都是往上凸(pROC包提供))

在AUC > 0.5的情况下,AUC越接近于1,说明该变量在预测结局上诊断效果越好。

 $AUC在0.5 \sim 0.7$ 时有较低准确性, $AUC在0.7 \sim 0.9$ 时有一定准确性,AUC在0.9以上时有较高准确性。

AUC = 0.5时,说明该变量不起作用,无诊断价值。

5. ROC 信息表

ROC信息表 预测变量 cut-off值 准确率 真阳个数 真阴个数 假阳个数 假阴个性 阳性预测值 阴性预测值 约至 灵敏度 特异度 0.90265 7 38 0.5914 0.6 Model 0.74324 0.8871 0.78571 110 55 0.94017 • 各预测变量在各自最佳cut-off值下部分ROC相关信息和数据。

方法学

统计分析和可视化均在 R 4.2.1 版本中进行

涉及的 R 包: pROC[1.18.0] 用于 ROC 分析和 ROC 检验

- 1. 数据清洗后,利用 glm 构建多因素 logistic 回归模型,并对模型使用 pROC 包进行 ROC 分析
- 2. 结果用 ggplot2 进行可视化
- 3. pROC 包默认会对数据的结局顺序进行校正(保证结果是往上凸)

如何引用

生信工具分析和可视化用的是 R 语言,<mark>可以直接写自己用 R 来进行分析和可视化即可</mark>,可以无需引用仙桃,如果想要引用仙桃,可以在致谢部分 (Acknowledge) 致谢仙桃学术(www.xiantao.love)。

方法学部分可以参考对应说明文本中的内容以及一些文献中的描述。

常见问题

1. AUC 会出现 < 0.5 的情况吗?

答:一般情况下, pROC 分析结果中 AUC 面积是在 0.5-1 之间。

2. 为什么没有给出统计学检验的 p 值?

答:

ROC一般是看 AUC 的大小的,只有当存在有多个曲线的时候才会进行检验比较。如果只有1条曲线,是没办法进行统计检验的,除非是跟 0.05 的对角线比,这种比较其实是没有意义的,这种只要 AUC 的下限没有跨过 0.5,那么这个曲线肯定是有意义的,所以单个曲线是没有统计学比较的意义。

3. 数据的结局是以哪个作为阴性(参考)?哪个作为阳性(实验)?

答:

默认上传数据的第一列(二分类)以第一个出现的分类组参考,后出现的分类作为实验。这个方向会影响最终的真阳、真阴、假阳、假阴个数。如果需要反过来,可以在<统计>-<方向>参数中进行修改。

