Závěrečný deathmatch starších - fyzika, LMFS 2019

1 Rezonátor (10 bodů)

A=1. Pokud rovnoběžně umístíme dvě v
rstvy této fólie a necháme zvenku dopadat světlo o intenzit
ě $I_0,$ jaká intenzita světla Iproj
de na druhou stranu? Žádné interferenční koeficienty odrazu, propustnosti a absorpce označme postupně R, T a A (jde o podíly postupně odražené, propuštěné a absorbované intenzity k dopadající intenzitě), R+T+Mějme fólii, která částečně odráží, částečně propouští a částečně absorbuje světlo. Její jevy neuvažujte.

2 Lítám v díře (14 bodů)

Mějme v potenciálové jámě na intervalu $x \in (0,L)$ částici ve stavu

$$\psi\left(x,t=0\right) = N\sin\left(\frac{\pi x}{L}\right) \left[1 + 2\cos\left(\frac{\pi x}{L}\right)\right]. \tag{1}$$

Normujte (určete N), rozložte na stac. stavy a načrtněte hustotu pravděpodobnosti nalezení částice v bodě x v časech t=0 a $t=\frac{2mL^2}{\pi\hbar}$.

3 Půl harmonického oscilátoru (14 bodů)

Řešte stacionární Schrödingerovu rovnici (tj. najděte vlastní stavy a čísla Hamiltoniánu) pro částici v potenciálu $V\left(x\right)=kx^2$ pro x>0 a $V\left(x\right)\to\infty$ pro $x\le0$. Můžete použít výsledky LHO.

4 Keep 'Murica great again! (10 bodů)

Střílí ze sila u Albuquerque balistickou raketu Titan o doletu cca 10000 km. Dostřelí na nás? Albuquerque se nachází na 35°2' severní šířky a 106°33' západní délky, Kačák je na 50°47' severní šířky a 15°9' východní délky. Kartézské souřadnice z geografických získáte Nejmenovaný prezident nejmenované federace nejmenovaných 50 států se špatně vyspal.

$$x = r \cos \theta \cos \phi$$
, (2a)
 $y = r \cos \theta \sin \phi$, (2b)
 $z = r \sin \theta$. (2c)

$$y = r\cos\vartheta\sin\phi\,, ag{2b}$$

 $z = r \sin \vartheta$.

Pozor na východní/západní délku!

5 Koulování (10 bodů)

Mějme pevnou a nepohyblivou kouli o poloměru 1 m na povrchu Země. Stojí na ní miniaturizovaný skateboardista o zanedbatelných rozměrech a po nekonečně malém šťouchnutí se díky gravitaci rozjíždí dolů. V jaké výšce se od koule odlepí?

6 V. jiném stavu? (8 bodů)

Mějme několik následovně zadaných vlnových funkcí jednorozměrného kvantově mechanického systému:

$$\psi_{1}(x) = \frac{1}{\sqrt{\pi}}e^{-x^{2}}, \quad \psi_{2}(x) = \frac{1}{\sqrt{\pi}}e^{-x^{2}+ix}, \quad \psi_{3}(x) = -\frac{1}{\sqrt{\pi}}e^{-x^{2}}.$$
 (3)

Všechny tyto stavy mají stejné hustoty pravděpodobnosti $\rho(x)=|\psi(x)|^2$. Znamená to, že se z fyzikálního hlediska jedná o stejné stavy i co se týká např. měření hybnosti či časového vývoje? Určete, které z těchto funkcí v tomto smyslu popisují stejné stavy a které odlišné stavy.

7 Netočivý moment hybnosti (8 bodů)

Nalezněte spinový stav částice, ve kterém je pravděpodobnost naměření kladné hodnoty průmětu spinu do osy x dána výrazem $|s|^2$, kde s je komplexní číslo. Určete střední hodnotu S_x v tomto stavu. Spin reprezentujeme bezrozměrně maticí

$$S_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}. \tag{4}$$

8 Optická vs. elektronová mikroskopie (7 bodů)

V jakém intervalu energií je vlnová délka elektronu, popř. neutronu, menší než vlnová délka viditelného světla (400 nm)?

9 Měření energie (10 bodů)

Mějme Hamiltonián \hat{H} a označme tři normované stacionární stavy a příslušné energie jako ψ_n a $E_n,$ n=1,2,3. Platí

$$\hat{H}\psi_1 = E_1\psi_1 = E\psi_1, \ \hat{H}\psi_2 = E_2\psi_2 = 3E\psi_2, \ \hat{H}\psi_3 = E_3\psi_3 = 7E\psi_3. \tag{5}$$

Uvažujme obecný stav

$$\psi = \frac{1}{\sqrt{6}} (\psi_1 + \psi_2) + \sqrt{\frac{2}{3}} \psi_3. \tag{6}$$

Určete pravděpodobnosti změření jednotlivých hodnot energie a střední hodnotu energie. Napište časový vývoj stavu ψ .

10 Točivý moment hybnosti (9 bodů)

Uvažujme bezstrukturní částici ve dvou dimenzích s operátory polohy \hat{x},\hat{y} a operátory hybnosti $\hat{p}_x = -i\hbar\frac{\partial}{\partial x},\hat{p}_y = -i\hbar\frac{\partial}{\partial y}$. Definujme operátor momentu hybnosti $\hat{L} = \hat{x}\hat{p}_y - \hat{y}\hat{p}_x$. Najděte komutátory $\left[\hat{x},\hat{L}\right],\left[\hat{p}_y,\hat{L}\right]$ a $\left[\hat{x}^2+\hat{y}^2,\hat{L}\right]$.