

1 / 13

Синтаксический анализ графов и задача генерации строк с ограничениями

Докладчик: Рустам Азимов

Лаборатория языковых инструментов JetBrains Санкт-Петербургский государственный университет Математико-механический факультет

4 апреля 2017г.

Рустам Азимов 4 апреля 2017г.

Синтаксический анализ графов

- Входной граф:
 - lacktriangledown D = (V, E) помеченный граф с метками на ребрах из Σ
- Запрос к входному графу:
 - lacktriangledown C формальная грамматика, порождающая язык $L(C)\subseteq \Sigma^*$
- Результат запроса:
 - Некоторая информация о путях в графе, метки на ребрах которых образуют строку $w \in L(C)$
- Пример области применения:
 - Статический анализ динамически формируемого кода (динамические SQL-запросы, генераторы Web-страниц)
 - ▶ Графом в данном случае является регулярная аппроксимация множества возможных значений динамически формируемых строк

2 / 13

Рустам Азимов 4 апреля 2017г.

Грамматики

- Регулярные
- Контекстно-свободные:
 - $C = (N, \Sigma, P)$
 - lacktriangle Для стартового нетерминала $a\in N$ порождается язык L(C,a)
- Конъюнктивные:
 - $C = (N, \Sigma, P)$
 - ▶ Правила грамматики имеют вид $a \to \alpha_1 \& \dots \& \alpha_n$, где $a \in N$, $\alpha_i \in (\Sigma \cup N)^*$, $n \ge 1$
 - lacktriangle Для стартового нетерминала $a\in N$ порождается язык L(C,a)

Рустам Азимов 4 апреля 2017г.

Семантики запросов

- Реляционная:
 - ▶ Для всех $a \in N$ вычислить $\{(m, n) \mid L(C, a) \cap L(D, m, n) \neq \emptyset\}$
- All-path:
 - ▶ Для всех $a \in N$ и $m, n \in V$ предъявить все пути из вершины m в n, такие что метки на ребрах этих путей образуют строку $w \in L(C,a)$
- Single-path:
 - ▶ Для всех $a \in N$ и $m, n \in V$ предъявить какой-нибудь путь (если он существует) из вершины m в n, такие что метки на ребрах этих путей образуют строку $w \in L(C, a)$

4 / 13

Рустам Азимов 4 апреля 2017г.

Пример

- Граф D коллекция генеалогических деревьев
- Вершины графа люди
- Ребра представляют отношение между родителями и детьми (parentOf или childOf)
- КС-грамматика C, порождающая язык $L(C) = \{parent Of^n \text{child} Of^n | n > 0\}$
- Пути, соответствующие языку L(C), соединяют потомков общего предка из одного поколения
- Находить данные пути можно с помощью генератора строк КС-языка $L(C) \cap L(D)$

Рустам Азимов 4 апреля 2017г.

Существующие работы

- Алгоритм синтаксического анализа графов для КС-грамматик и реляционной семантики запросов (Hellings, 2014)
 - Основан на СҮК алгоритме
- Алгоритм синтаксического анализа графов для КС-грамматики и All-path, Single-path семантик запросов (Hellings, 2016)
 - ▶ Строит некоторую КС-грамматику C_D , порождающую язык $L(C) \cap L(D)$
 - ▶ Грамматика C_D является компактным представлением ответа на запрос с **all-path** семантикой
 - ▶ Если язык $L(C_D) \neq \emptyset$, то в нем находится строка минимальной длинны, которая и будет ответом на запрос с **single-path** семантикой
- Алгоритмы для задач генерации строк с ограничениями с использованием КС и конъюнктивных грамматик (Охотин, 2003)

Рустам Азимов 4 апреля 2017г.

Постановка задачи

Цель: Исследование связи между задачей генерации строк с ограничениями и задачами синтаксического анализа графов, использующих реляционную, *all-path* и *single-path* семантики запросов **Задачи**:

- Исследовать связь между данными задачами для КС-грамматик
- Исследовать связь между данными задачами для конъюнктивных грамматик

Рустам Азимов 4 апреля 2017г.

Использование генератора строк с ограничениями

- Для использования генератора строк с ограничениями необходимо иметь:
 - Формально определенную входную грамматику
 - ightharpoonup Возможность проверить непустоту языка L, порождаемого входной грамматикой
 - ightharpoonup Оценку сверху на минимальную длину строки из языка L

Рустам Азимов 4 апреля 2017г.

Генератор КС-языка

- ullet Входная грамматика C_D , порождает КС-язык $L(D) \cap L(C)$
- Задача проверки пустоты КС-языка разрешима
- Задача оценки сверху на минимальную длину строки из языка, порожденного входной грамматикой — разрешима

Рустам Азимов 4 апреля 2017г.

Связь с синтаксическим анализом графов для КС-грамматик

- Задача синтаксического анализа графов сводится к задаче генерации строк языка $L(C_D)$
- All-path семантика: построение грамматики C_D автоматически решает задачу синтаксического анализа графов
 - ▶ Генератор может применяться для последовательного вывода строк из языка $L(C_D)$
- Реляционная семантика: проверка пустоты языка $L(C_D)$ автоматически решает задачу синтаксического анализа графов
- Single-path семантика: алгоритмы синтаксического анализа графов и генерации строк эквивалентны:
 - ▶ Проверяется непустота языка $L(C_D)$
 - \blacktriangleright Находится строка минимальной длины из языка $L(C_D)$

Рустам Азимов 4 апреля 2017г. 10 / 13

Генератор конъюнктивного языка

- Входная грамматика строится с помощью явной операции &
- Задача проверки пустоты конъюнктивного языка неразрешима
- Задача оценки сверху на минимальную длину строки из языка, порожденного входной грамматикой — неразрешима

Рустам Азимов 4 апреля 2017г.

Связь с синтаксическим анализом графов для конъюнктивных грамматик

Из неразрешимости задачи проверки пустоты конъюнктивного языка следует неразрешимость задачи генерации строк с ограничениями

- Неразрешимы задачи синтаксического анализа графов для конъюнктивных грамматик
- All-path семантика: применение генератора приводит к перебору всех возможных строк, что не соответствует практическому смыслу задачи
- Single-path семантика: применение генератора возможно, только если заранее гарантируется непустота языка, порождаемого входной грамматикой

Рустам Азимов 4 апреля 2017г. 12 / 13

Результаты

- Показана связь между задачей генерации строк с ограничениями и задачами синтаксического анализа графов, использующих реляционную, all-path и single-path семантики запросов:
 - ▶ Сведение задачи синтаксического анализа графов к задаче генерации строк для КС-грамматик
 - ▶ Неразрешимость задачи синтаксического анализа графов для конъюнктивных грамматик
- Полученные результаты могут быть использованы в дальнейших исследованиях рассматриваемых областей

Рустам Азимов 4 апреля 2017г. 13 / 13