CG 基礎数学 試験前問題

問1.次の値を求めよ。

- $(1) \cos 210$ °
- $(2) \sin 210$ °
- $(3) \cos 330$ °
- $(4) \sin 330$ °

$$(5) \cos\left(\frac{5\pi}{4}\right) \qquad (6) \sin\left(\frac{5\pi}{4}\right)$$

(6)
$$\sin\left(\frac{5\pi}{4}\right)$$

問2.2次元座標系における変換について、次の問に答えよ。

- (1) 点 (x_P, y_P) を $(-t_x, -t_y)$ 平行移動した点を(x', y')とすると、(x', y')は (x_P, y_P) と $(-t_x, -t_y)$ を用いてどのように表されるか。
- (2) 点 (x_P, y_P) を x 軸方向に s_x 倍、y 軸方向に s_y 倍した点を (x', y') とすると、(x', y') は (x_P, y_P) 、 s_x 、 s_y を用いてどのように表されるか。
- (3) 点 (x_P, y_P) を原点のまわりに角 θ だけ回転した点を (x', y') とすると、(x', y') は (x_P, y_P) と θ を用いてどのように表されるか。
- (4) 点 (x_P, y_P) を直線 y=x に関して鏡映変換して得られる点を (x', y') とすると、(x', y') は (x_P, y_P) を用いてどのように表されるか。
- (5) 点 (x_P, y_P) を直線 y=-x に関して鏡映変換して得られる点を (x', y') とすると、(x', y') は (x_P, y_P) を用いてどのように表されるか。
- (6) 点 (5, 0) を原点のまわりに 60 °回転した点の座標を求めよ。
- (7) 点 (7, 1) を直線 y = x に関して鏡映変換して得られる点の座標を求めよ。
- (8) 点 (4, 10 を点 (2, 0) のまわりに 45 °回転した点の座標を求めよ。

問 3. 視点 C を原点とする左手座標系 O-xyz を考え、平面 z=f を投影面とする。投影面上の O' - x'y'z' 座標系を座標中心 O' が z 軸との交点と一致し、座標軸 x' , y' をそれぞれ x 軸 , y 軸と 平行となるように選ぶ。3 次元空間内の点 (x_P, y_P, z_P) を投影面に投影したときの座標を x_P', y_P' として、以下の問に答えよ。

- (1) 視距離 f=40 の場合、点 $(30,\ 20,\ 100)$ の投影面における座標 $(x_P',\ y_P')$ を求めよ。
- (2) 平行投影の場合、点 (30, 20, 100) の投影面における座標 (x_P', y_P') を求めよ。

問 4. 次のようにパラメータ形式で表現された 2 次曲線を陰関数形式で表せ。

$$(1) x = a\cos\theta, \qquad y = b\sin\theta$$

(2)
$$x = \frac{a}{\cos \theta}$$
, $y = b \tan \theta$

問 5. 次の文章を読み、の中に、最も適当な言葉を入れよ。

平面内や空間内の位置を表すために、座標系が用いられる。よく用いられる座標系としてaがある。たとえば、平面におけるaは、原点 O で互いに垂直に交わる 2 つの直線 x 軸と y 軸を用いて定義される。このとき、平面内の点の位置は、x 軸と y 軸に関する位置を示す数値の組 (x,y)で表される。これに対し、点の位置を原点 O からの距離 r と基準の方向 (x 軸の正の方向) から反時計回りに測った回転角 θ の組 $(r,\theta$ で表す方法がb である。

問 6. 3 つの制御点を、 $\vec{P_0}=(0,\ 0),\ \vec{P_1}=(1,\ -1),\ \vec{P_2}=(2,\ 0)$ とする 2 次ベジエ曲線について以下の問に答えよ。

- (1) 2点 $\vec{P_0}$ と $\vec{P_1}$ を t : (1-t) (0-t-1) に内分する点を $\vec{P_a}=(x_a(t),\ y_a(t))$ とする。 $x_a(t)$, $y_a(t)$ を t の関数として求めよ。
- (2) 2点 $\vec{P_1}$ と $\vec{P_2}$ を t : (1-t) (0-t-1) に内分する点を $\vec{P_a}=(x_b(t),\ y_b(t))$ とする。 $x_b(t)$, $y_b(t)$ を t の関数として求めよ。
- (3) 2点 \vec{P}_a と \vec{P}_b を t : (1-t) (0-t-1) に内分する点を $\vec{P}_a=(x(t),\ y(t))$ とする。 x(t) , y(t) を t の関数として求めよ。