COVID 19 in Switzerland

Andre Meichtry

2020-05-05

The greatest shortcoming of the human race is the inability to understand the exponential function. (Al Bartlett)

Problem

Sie sitzen zuoberst in einem Fussball-Stadion; es hat Platz für 6×10^{13} Wassertropfen. Es beginnt zu regnen. Zuerst mit einem Tropfen, der in der ersten Minute ins Stadion tröpfelt. Jede Minute verdoppelt sich die Anzahl Tropfen. Lange passiert nichts Besonderes. Sie sehen die Gefahr nicht kommen. Von der $H\"{a}lfte$ bis ganz oben geht es plötzlich sehr schnell. Es würde auch nicht viel bringen, wenn das Stadion noch viel grösser wäre; wir haben **exponentielles Wachstum**.

```
max <- 3e06*20e06 ##Volumen Allianz-Arena
halb <- max/2
max2<-max*2
tmax<-50
t<-seq(0,tmax,by=0.1)
expwachs <- function(t) {y<-1*2^(t/1)}
plot(t,expwachs(t),type="l",ylim=c(0,max2),main="",ylab="Volumen [Wassertropfen]", xlab="Minuten")
axis(side = 1, at = seq(0,tmax,by=1))
abline(h=max,lty=2,col="red")
abline(v=t[458],lty=2,col="red")
abline(h=halb,lty=2,col="blue")
abline(v=t[448],lty=2,col="blue")</pre>
```


Exponentialfunktion

Jede Exponentialfunktion a^x mit a>1 wächst ab einem gewissen x schneller als jede lineare Funktion a+bx.

```
curve(10*x,from=0,to=60,ylab="y")
curve(20*x,add=TRUE,lty=2)
curve(2^x,add=TRUE,lty=3)
curve(1.2^x,add=TRUE,lty=4)
```


Exponentielles Wachstum

Exponential growth is defined by

$$x(t) = x_0 e^{kt} = x_0 e^{t/\tau} = x_0 2^{t/T}$$

with t: time, τ : e-folding time, T: doubling time, k: growth constant. ¹

Daten Covid-19

https://github.com/openZH/covid_19

```
data<-read.csv("https://raw.githubusercontent.com/openZH/covid_19/master/COVID19_Fallzahlen_CH_total.cs
names(data)[3]<-"Kanton"
data<-data[,-11]
sKcases<-split(data*ncumul_conf,data*Kanton)
sKfatal<-split(data*ncumul_deceased,data*Kanton)
sKhosp<-split(data*ncumul_hosp,data*Kanton)
sKICU<-split(data*ncumul_ICU,data*Kanton)
sKvent<-split(data*ncumul_vent,data*Kanton)</pre>
```

$$x(t) = x_0 e^{kt} = x_0 e^{t/\tau} = x_0 2^{\frac{t}{\tau} \log_2 e} = x_0 2^{\frac{t}{\tau} \frac{1}{\log 2}} = x_0 2^{t/T}$$

¹Proof:

Reported cases

```
CasesKanton<-sapply(sKcases,function(x){x[max(which(!is.na(x)))]})
CasesKanton</pre>
```

```
AG
       ΑI
             AR
                  BE
                              BS
                                   FL
                                         FR
                                              GE
                                                    GL
                                                          GR
                                                               JU
                                                                     LU
                                                                          NE
                                                                                NW
                                                                                     OW
1133
       25
             97 1798
                       829
                                                   122
                            959
                                   82 1104 4949
                                                        817
                                                              198
                                                                   706
                                                                         687
                                                                               113
                                                                                     79
  SG
       SH
             SO
                  SZ
                        TG
                             ΤI
                                   UR
                                         VD
                                              ۷S
                                                    ZG
                                                         ZH
793
       75
            402
                 305
                       373 3239
                                   91 5329 1882
                                                   191 3509
```

sum(CasesKanton)

[1] 29887

barplot(CasesKanton,las=2)

Deceased

FatKanton<-sapply(sKfatal,function(x){x[max(which(!is.na(x)))]})
FatKanton</pre>

AG AI BS FL FR GE GL GR JU LU NE OW SG SH SO SZ 50 36 NA 90 80 253 12 45 18 6 22 3 32 1 76 3 0 33 15 ΤI UR VD ٧S ZG ZH 17 329 7 385 141 8 124

sum(FatKanton,na.rm=TRUE)

[1] 1793

barplot(FatKanton,las=2)

Exponentielles Wachstum Covid-19

points(tag, cases, type="l", col="red")

- Bei Verdoppelung alle 2 Tage: $2^{t/2} = (2^{1/2})^t = 1.41^t$
- Bei Verdoppelung alle 3 Tage: $2^{t/3}=(2^{1/3})^t=1.26^t$
- Bei Verdoppelung alle 7 Tage: $2^{t/7} = (2^{1/7})^t = 1.1^t$
- Bei Verdoppelung alle 10 Tage: $2^{t/10} = (2^{1/10})^t = 1.07^t$

```
data<-read.csv("https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/css
sw<-data[data$"Country/Region"=="Switzerland",-c(1,2,3,4)]</pre>
cases<-as.numeric(sw[-c(1:42)])</pre>
swisspop<-8e6
time < -seq(1,80,by=1)
tag<-1:length(cases)
T1<-1
T2<-2
T3<-3
T7<-7
x0<-100
Y1 < -x0*2^(time/T1)
Y2 < -x0 * 2^(time/T2)
Y3<-x0*2^(time/T3)
Y7 < -x0 * 2^(time/T7)
time<-time+1
plot(time,Y1,type="l",ylab="cases",ylim=c(100,40000),xlab="days",las=1)
lines(time, Y3, col="red", lty=2)
lines(time, Y2, lty=2)
lines(time, Y7, lty=3)
## abline(h=swisspop, lty=5, col="red")
points(tag,cases,type="l",col="red")
plot(time,Y1,log="y",type="l",ylab="cases",xlab="days",axes=FALSE,ylim=c(100,40000))
at.y <- outer(1:9, 10^{(2:9)})
lab.y \leftarrow ifelse(log10(at.y) \% 1 == 0, at.y, NA)
axis(2, at=at.y, labels=lab.y, las=2)
axis(1,time)
lines(time, Y2, lty=2)
lines(time, Y7, lty=3)
lines(time, Y3, col="red", lty=2)
abline(h=swisspop,col="red",lty=3)
```


Example of doubling times: 1 day (solid), 2 days (dashed), 3 days (red), seven days (dotted), with reported cases Covid19 in Switzerland. Horizontal line: swiss population. On a logarithmic scale, a straight line indicates exponential growth. Quelle.

Auswirkung Vorfaktor

Annahme: Verdoppelung alle drei Tage, 10 Prozent der Infizierten müssen ins Spital. Die Anzahl Cases von heute sind die Anzahl Spitalpatienten in 9 Tagen, wenn mann nichts macht.

$$0.1 \times 2^{0.33t} = 0.1 \times (2^{0.33})^t = 0.1 \times 1.3^t = 1.3^{\log_{1.3} 0.1} \\ 1.3^t = 1.3^{t + \log_{1.3} 0.1} = 1.3^{t - 8.776}$$

Analog kann man zeigen: Wenn die Mortalitätsrate bei einem Prozent der bestätigten Fälle liegt, dann ist die Anzahl der bestätigten Fälle die zu erwartende Anzahl der Todesfälle ca. 18 Tage später, wenn man nichts macht.

```
0.01 \times 2^{0.33t} = 0.01 \times (2^{0.33})^t = 0.01 \times 1.3^t = 1.3^{\log_{1.3} 0.01} 1.3^t = 1.3^{t + \log_{1.3} 0.01} = 1.3^{t - 17.552} delay<-log(0.1)/log(1.3) delay
```

```
[1] -8.7763
```

```
delay2<-log(0.01)/log(1.3)
delay2
```

[1] -17.553

```
plot(time,2^(0.33*time),ylab="cases",xlab="days",type="1",ylim=c(0,10000))
lines(time,0.1*2^(time/3),lty=2)
lines(time,0.01*2^(time/3),lty=3)
```

