Tutorial: 3D-Spin Texture generation

Computational Materials Physics

University Duisburg-Essen

Okan Köksal

Group: Prof. Dr. Rossitza Pentcheva

Please use [ref]: Köksal, O. (2021). Density functional theory study of Mott and topologically non-trivial phases in oxide heterostructures. https://doi.org/10.17185/duepublico/74872 for citing in any publication arising from the use of this code

Work funded by the German Science Foundation within CRC TRR 80, project G03

Report any bugs by sending an e-mail to: koeksal.okan@gmail.com

Contents

- Definition of the spin texture
- Application of C++: Preparation of the k-mesh grid and parsing of the output files obtained from the simulation package VASP
- Drawing of the spin texture via the graphing utility gnuplot

Spin texture of magnetic

materials

- Spin texture of electronic bands is derived from the coupling of spin and orbital motion of electrons known as spin-orbit coupling (SOC)
- A magnetic field is generated by the orbiting electrons due to their orbital and spin motion
- Useful for investigation of the non-trivial topology nature of systems, i.e.,
 Chern insulators by analyzing the band structures obtained from non-collinear calculations
 Side view

 Top view_{0.33}
 _{0.53}

Spin texture of magnetic

materials

 Spin texture plots are not only restricted to systems with a hexagonal structure but also possible for systems with a tetragonal structure

E_s 0.51 eV E_s 0.51 eV

Side view

Step 1: Preparation of the

k-point grid

- The written code generates 900 number of points along the reciprocal axis k_x , k_y and k_z
- Execute the already compiled code using the executable file "main.exe"
- Choose the desired k-point path (see exemplary message):

```
Choose the path you want to take!
Enter 'y' (yes) for Gamma-M-K-Gamma or type in 'n' (no) for the default path of Gamma-X-M-Gamma:
```

• The KPOINTS file for VASP should look like the output example below:

foo			
900			
rec			
-0.700	-0.700	0.000	1.0
-0.700	-0.652	0.000	1.0
-0.700	-0.603	0.000	1.0
-0.700	-0.555	0.000	1.0
-0.700	-0.507	0.000	1.0
-0.700	-0.459	0.000	1.0
-0.700	-0.410	0.000	1.0
-0.700	-0.362	0.000	1.0
-0.700	-0.314	0.000	1.0
-0.700	-0.266	0.000	1.0
-0.700	-0.217	0.000	1.0
-0.700	-0.169	0.000	1.0
-0.700	-0.121	0.000	1.0
-0.700	-0.072	0.000	1.0
-0.700	-0.024	0.000	1.0

- 1st line: Arbitrary comment line
- 2nd line: Total number of k-points
- 3rd line: Reciprocal coordinates option
- 4th line: Reciprocal coordinates of each k-point and its weight of 1.0 $_{5}$

UNIVERSITÄT DUISBURG ESSEN

Step 2: VASP calculation

- Use CHGCAR for the non SCF calculation from the pre-converged non-collinear SCF calculation
- Flags for INCAR: ICHARG = 11, ISMEAR = 0, ISYM = -1, LSORBIT = .TRUE.,
 LNONCOLLINEAR = .TRUE., SAXIS = 0 0 1 (by default)
- Required files for plotting the spin texture:

PROCAR: Magnetization components S_x , S_y and S_z for atoms arranged in the order of the POSCAR file

EIGENVAL: Eigen energy values for the chosen band

OUTCAR: Fermi energy E_F of the system

Step 3: Running the main

program

- Before running "main.exe" copy all necessary files "PROCAR, EIGENVAL and generated KPATH.txt into the current folder where you execute "main.exe"
- Run "main.exe", note that the size of the PROCAR file can be huge (several GBs)!
- After having performed the calculation with the finer grid, the main code can be executed (follow instructions on screen):

```
Did you already run this program in order to generate the kpath?
Please type in 'y' for yes and 'n' for no: n
Just type in 'y' for yes: y
Choose the path you want to take!
Enter 'f' for first path G-M-K-G or 's' (or any other character) for the second path G-X-M-G: f
Do you wish to run the entire code (use same kpath as used for the DFT calculations)?
Please type in 'y' for yes and 'n' for no: y
```

 If there was no error encountered, then it can be continued with the next step of plotting the spin texture

UNIVERSITÄT DUISBURG ESSEN

Step 4: Post-Processing/Gnuplot

 Use delivered gnuplot scripts for plotting side and top view of spin textures (example here: 2D-material hosting the honeycomb lattice)

Run sequentially the scripts (adjust the energy scale before running):

- 1. gnuplot -p top_view.gnu
- 2. gnuplot –p side_view.gnu(optional: labelling positions of the high-symmetry points by using 'KPATH.dat')

Output filenames (recommendation: *.ps files for high quality figures, see produced figures on page 3):

- 1. top_view.ps
- 2. side_view.ps

Congratulations, the spin texture was plotted!