Федеральное государственное бюджетное образовательное учреждениевысшего профессионального образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский институт)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Информатика и системы управления КАФЕДРА Программное обеспечение ЭВМ и информационные технологии

Отчёт

по лабораторной работе №2

Дисциплина: Архитектура ЭВМ

Тема лабораторной работы работы: исследование дешифраторов

Студенты гр. ИУ7-416	Сушина А.Д.			
Фамилия)	(Подпись, дата) (И.О.			
Преподаватель	Попов А. Ю.			
Фамилия)	(Подпись, дата) (И.С).		

Москва, 2019г

Работа №2. ИССЛЕДОВАНИЕ ДЕШИФРАТОРОВ

Цель работы: изучение принципов построения и методов синтеза дешифраторов; макетирование и экспериментальное исследование дешифраторов.

Ход работы

- 1. Исследование линейного двухвходового дешифратора с инверсными выходами:
- а) собрать линейный стробируемый дешифратор на элементах 3И-НЕ; наборы входных адресных сигналов 0 1 А А, задать в выходов 0 1 Q Q, четырехразрядного счетчика; подключить световые индикаторы к выходам счетчика и дешифратора;

б) подать на вход счетчика сигнал с выхода ключа (Switch) лог. 0 и 1 как генератора одиночных импульсов; изменяя состояние счетчика с помощью ключа, составить таблицу истинности нестробируемого дешифратора (т.е. при EN=1);

EN	A0	A1	F0	F1	F2	F3
0	Х	Х	1	1	1	1
1	0	0	0	1	1	1
1	0	1	1	0	1	1
1	1	0	1	1	0	1
1		1	1	1	1	0

в) подать на вход счетчика сигнала генератора и снять временные диаграммы сигналов дешифратора; временные диаграммы здесь и в дальнейшем наблюдать на логическом анализаторе;

г) определить амплитуду помех, вызванных гонками, на выходах дешифратора;

д) снять временные диаграммы сигналов стробируемого дешифратора; в качестве стробирующего сигнала использовать инверсный сигнал генератора, задержанный линией задержки логических элементов (повторителей и инверторов);

е) опередить время задержки, необходимое для исключения помех на выходах дешифратора, вызванных гонками.

Время задержки дожно быть больше, чем суммарная задержка всех элементов в цепи от входа до выхода дешефратора. (задержка NOT + разница самого быстрого и самого медленного из 3И-НЕ)

- 2. Исследование дешифраторов ИС K155ИД4 (74LS155), рис. 8:
- а) снять временные диаграммы сигналов двухвходового дешифратора, подавая на его адресные входы 1 и 2 сигналы $Q0\ 1$ и Q выходов счетчика, а на стробирующие входы 3 и 4 импульсы генератора , задержанные линией задержки;

- б) определить время задержки стробирующего сигнала, необходимое для исключения помех на выходах дешифратора;
- в) собрать схему трехвходового дешифратора на основе дешифратора K155ИД4 (см. рис. 8), задавая входные сигналы 0 1 2 A A A , , с выходов 0 1 2 Q Q , , счетчика; снять временные диаграммы сигналов дешифратора и составить по ней таблицу истинности.

EN	A0	A1	A2	F0	F1	F2	F3
0	X	х	X	1	1	1	1
1	0	0	0	0	1	1	1
1	1	0	0	1	0	1	1
1	0	1	0	1	1	0	1
1	1	1	0	1	1	1	0
Х	X	х	1	1	1	1	1

3. Исследование дешифраторов ИС КР531ИД14 (74LS139) аналогично п.2.

ИС 74LS139 содержит два дешифратора DC 2-4 (U1A и U1B, см. рис. ниже) с раздельными адресными входами и разрешения. Входы разрешения – инверсные. Так как каждый дешифратор имеет один вход разрешения, то для образования двух инверсных входов необходимо перед входом разрешения включить двухвходовой ЛЭ. Чтобы на выходе ЛЭ получить функцию конъюнкции $1 \cdot 2$, ЛЭ при наборе 00 входных сигналов должен формировать выходной сигнал 0, а на остальных наборах входных сигналов – 1.

- 4. Исследовать работоспособность дешифраторов ИС 533ИД7 (74LS138 см. U3 на рис. ниже), рис. 4 и рис. 9:

б) собрать схему дешифратора DC 5-32 согласно методике наращивания числа входов и снять временные диаграммы сигналов, подавая на его адресные входы сигналы Q0, Q1, Q2, Q3, Q4 с выходов 5разрядного счетчика, а на входы разрешения – импульсы генератора, задержанные линией задержки макета

Вывод: Были изучены

принципы построения и методы синтеза дешифраторов, произведено макетирование и экспериментальное исследование дешифраторов.