

TL;DR OF EDA

Mor Hananovitz
PyData Israel 2024

About Me

Head of Data & Data Scientist

Senior Lecturer | Huji, Data Analytics WiDS community manager

Snowboarder CrossFitter

Agenda

01 02 03

Whats Classic Ydata EDA? method profiling

04 05
Clustering LLM

What is Exploratory Data Analysis?

- Scope
- Issues
- Characteristics

Data Playground

Correlations

Detecting anomalies

Data characteristics

Distributions

Parameters

Segments

The Dataset

- UCI Wine Data set
- 13 chemical features + class column

Alcohol	Alcalinity of ash	Flavanoids	Color intensity	Proline
Malic acid	Magnesium	Nonflavanoid phenols	Hue	Class
Ash	Total phenols	Proantho cyanins	OD280/OD315 of diluted wines	

Manual EDA

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

df.info()

```
Column
                                 Non-Null Count
                                                 Dtype
   Alcohol
                                 178 non-null
                                                 float64
   Malicacid
                                                 float64
                                 178 non-null
   Ash
                                 178 non-null
                                                 float64
   Alcalinity of ash
                                 178 non-null
                                                 float64
   Magnesium
                                 178 non-null
                                                 int64
   Total phenols
                                                 float64
5
                                 178 non-null
   Flavanoids
                                 178 non-null
                                                 float64
```


df.describe(include = 'all')

	count	mean	std	min	25%
Alcohol	178.0	13.000618	0.811827	11.03	12.3625
Malicacid	178.0	2.336348	1.117146	0.74	1.6025
Ash	178.0	2.366517	0.274344	1.36	2.2100
Alcalinity_of_ash	178.0	19.494944	3.339564	10.60	17.2000
Magnesium	178.0	99.741573	14.282484	70.00	88.0000
Total_phenois	178.0	2.295112	0.625851	0.98	1.7425

8

df['col_name'].value_counts()

count

class

2 71

1 59

3 48

Visualizations

- Distributions
 - Histograms
 - Bar / line plots

df['Alcohol'].hist(bins = 20)

[] sns.pairplot(df)

sns

import seaborn as sns

[] sns.pairplot(df)

Pair Plot Analysis

Transition to Automated EDA

- Low-code
- Fast development
- Consistent across projects
- Scalability (big data)

Automated EDA Report

Ydata-Profiling

Generates an extensive EDA report in seconds:

- Statistics
- Correlations
- Missing values
- And more..

ProfileReport(df, title='Profile Report')

Alerts

@D280_@D315_of_diluted_wines is highly overall correlated with Flavanoids and 3 other fields	High correlation
Alcohol is highly overall correlated with Color_intensity and 2 other fields	High correlation
Color_intensity is highly overall correlated with Alcohol and 1 other fields	High correlation
Flavanoids is highly overall correlated with @D280_@D315_of_diluted_wines and 5 other fields	High correlation
Hue is highly overall correlated with Flavanoids and 2 other fields	High correlation
Magnesium is highly overall correlated with Proline	High correlation
Malicacid is highly overall correlated with Hue	High correlation
Nonflavanoid_phenols is highly overall correlated with Flavanoids	High correlation
Proanthocyanins is highly overall correlated with @D280_@D315_of_diluted_wines and 2 other fields	High correlation
Proline is highly overall correlated with Alcohol and 2 other fields	High correlation

Variables

Correlations

Interactions

Alcohol Proline Alcohol Malicacid Malicacid Ash Alcalinity_of_ash Ash Alcalinity_of_ash Magnesium Total_phenols Magnesium Total_phenols Flavanoids Nonflavanoid_phenols Flavanoids Proanthocyanins Nonflavanoid_phenols Color_intensity Proanthocyanins Color_intensity Hue 0D280_0D315_of_diluted_ Hue 0D280_0D315_of_diluted_wines Proline

Ydata_profiling vs Pandas

Ydata Profiling

Fast

- Low-code
- Intuitive

Pandas

- Easy to change
- Flexible

SONS

- Cannot be changed
- Requires manual exploration

- Slow
- Requires coding skills
- Need to know what to look

Automated EDA with ML

Clustering for EDA

Criteria for Clustering

Labeling

Segments

Outliers

Applying Clustering for EDA

Uncover segments within the data automatically

K-Means

```
[32] scaler = StandardScaler()
    data scaled = scaler.fit transform(df cluster)
    range k = range(2, 11)
     silhouette scores = []
    for k in range k:
         kmeans = KMeans(n clusters=k, random state=42)
         cluster labels = kmeans.fit predict(data scaled)
         score = silhouette_score(data_scaled, cluster_labels)
         silhouette scores.append(score)
     best_k = range_k[silhouette_scores.index(max(silhouette_scores))]
     best_score = max(silhouette scores)
```

best_k =(max(silhouette_scores))

Cluster Visualization

Model Evaluation

Model Accuracy: 96.62%

Descriptive Statistics

Principal Component Analysis PCA

- Dimensionality reduction
- Explain variance
- 2D Visualization

PCA Explainability

pca.components_

	Component 1	Component 2
1	Flavanoids	Color_intensity
2	Total_phenols	Alcohol
3	0D280_0D315_of_diluted_wines	Proline

PCA Explainability

```
pca.explained_variance_ratio_
```

array([0.36198848, 0.1920749])

sum(pca.explained_variance_ratio_)

0.5540633835693527

Outliers Analysis

- Cluster distribution
- Z-Score

Outlier [%]

Cluster

0	15.384615
1	1.960784
2	6.451613

What are the outputs?

- Clusters
- T-test comparison
- Explainability:
 - o Top 3 features
 - o Confidence interval
- Outliers

Using Large Language Models for EDA

Analyze Clusters

```
cluster_stats = df.groupby('Cluster Labels').describe()
cluster_stats.transpose()
```

Analyze the results and provide classification of wine type per group

LLM-Based EDA

High Color Intensity:

Likely indicates red wines due to deeper color from longer skin contact during fermentation.

from the 3 clusters - can you try to guess which cluster is which type of wine?

PCA Explainability

pca.components_

	Component 1	Component 2
1	Flav	color_interures
2	Flavor features Flavor features	Color_intertures Physical features
3	00_0D315_of_diluted_wines	Proline

Conclusions

- No one tool to rule them all
- Mix and match

Thanks!

mor.hananovitz@gmail.com

CREDITS: Diese Präsentationsvorlage wurde von <u>Slidesgo</u> erstellt, inklusive Icons von <u>Flaticon</u>, Infografiken & Bildern von <u>Freepik</u>

Bitte lösche diese Folie nicht, es sei denn du bist ein Premium-Nutzer

