11.14 (a) $F^{\alpha\beta}F_{\alpha\beta} = -2(|\vec{E}|^2 - |\vec{B}|^2)$, $f^{\alpha\beta}F_{\alpha\beta} = -4\vec{E}\cdot\vec{B}$, $f^{\alpha\beta}F_{\alpha\beta} = 2(|\vec{E}|^2 - |\vec{B}|^2)$.

No further invariants quadratic in \vec{E} and \vec{B} .

(b) It is not possible to have only Ein one frame while only is in other frame.

From the Lorents invariant $F^{ab}F_{ab}$, it can be seen that, if we can make \vec{E} disappear in one frame, then $F^{ab}F_{ab} < 0$ If we can make \vec{E} disappear in another frame, we win have $F^{ab}F_{ab} > 0$, a contradiction. To have $\vec{E} = 0$ in one frame, we must have $|\vec{E}| < |\vec{B}|$ in all frames. Also, if $\vec{E} = 0$, then $\vec{E} \cdot \vec{P} = 0$, which means \vec{E} and \vec{B} are perpendicular in an frames.

(c) Similar to For we have

$$G^{2\beta} = \begin{pmatrix} 0 & -D_{x_{1}} & -D_{y_{2}} & -D_{z_{2}} \\ D_{x_{1}} & 0 & -1d_{z_{2}} & 1d_{y_{1}} \\ D_{y_{2}} & 1d_{z_{2}} & 0 & -1d_{x_{1}} \\ D_{z_{2}} & -1dy & 1d_{x_{1}} & 0 \end{pmatrix} \qquad G^{\beta} = \begin{pmatrix} 0 & -1d_{x_{1}} & -1d_{y_{2}} & -1d_{y_{1}} \\ 1d_{x_{1}} & 0 & D_{z_{2}} & -D_{y_{1}} \\ 1d_{y_{2}} & D_{y_{1}} & -D_{x_{1}} & 0 \end{pmatrix}$$

The additional invariants are

$$G^{ab}G_{ab} = -2(|\vec{b}|^{2} - |\vec{H}|)^{2}, \quad G^{ab}G_{ab} = -4\vec{b} \cdot \vec{H}, \quad g^{ab}G_{ab} = 2(|\vec{b}|^{2} - |\vec{H}|^{2})$$

$$F^{ab}G_{ab} = -2(|\vec{E} \cdot \vec{D} - \vec{B} \cdot \vec{H}), \quad F^{ab}G_{ab} = -2(|\vec{E} \cdot \vec{H} + \vec{B} \cdot \vec{D})$$

$$F^{ab}G_{ab} = -2(|\vec{E} \cdot \vec{H} + \vec{B} \cdot \vec{D}), \quad F^{ab}G_{ab} = 2(|\vec{E} \cdot \vec{D} - \vec{D} \cdot \vec{H})$$