Álgebra Lineal - Verano 2021

Práctica 2 - Espacios vectoriales

Espacios y subespacios

- 1. Determinar cuáles de los siguientes subconjuntos son subespacios del espacio vectorial dado:
 - a) $S \subset \mathbb{R}^2$; $S = \{(x_1, x_2) \in \mathbb{R}^2 : 3x_1 2x_2 = 0\}$.
 - b) $S \subset \mathbb{R}^2$; $S = \{(x_1, x_2) \in \mathbb{R}^2 : 2x_1 x_2 = 3\}.$
 - c) $S \subset \mathbb{R}^2$; $S = \{(x_1, x_2) \in \mathbb{R}^2 : x_1 x_2 = 0\}$.
 - d) $S \subset \mathbb{R}^2$; $S = \{(x_1, x_2) \in \mathbb{R}^2 : x_1^2 < -1\}$.
 - e) $S \subset \mathbb{R}^3$; $S = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + x_2 = 0, x_3 x_2 = 0\}$.
 - f) $S \subset \mathbb{R}^3$; $S = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 4x_2 \ge 0\}.$
- 2. Sea $A \in \mathbb{R}^{n \times m}$. Probar que $S = \{v \in \mathbb{R}^n : A \cdot v = 0\}$, el conjunto de soluciones de un sistema de ecuaciones lineal homogéneo, es un subespacio de \mathbb{R}^n .
- 3. Se consideran los vectores $v_1 = (2,3)$ y $v_2 = (1,-1)$ de \mathbb{R}^2 . Determinar si u = (1,2) es combinación lineal de v_1 y v_2 . ¿Qué sucede con w = (0,0)?
- 4. Analizar si $v \in S$ o no en cada uno de los siguientes casos:
 - a) $S = \langle (1,2,3) \rangle; \quad v = (\frac{3}{5}, \frac{6}{5}, \frac{9}{5}).$
 - b) $S = \langle (1,2,3), (\frac{1}{2},1,\frac{3}{2}) \rangle; \quad v = (-5,-10,-15).$
 - c) $S = \langle (1, -1, 2, 1), (2, 1, 3, 0) \rangle; \quad v = (0, -3, 1, 1).$
- 5. Analizar si los siguientes conjuntos de vectores generan \mathbb{R}^n o no:
 - a) $n = 2, \{(1,1), (1,-1)\}.$
 - b) $n = 2, \{(1,1), (1,-1), (3,4)\}.$
 - c) n = 3, $\{(1, 1, -1), (0, 1, 1), (1, 2, 0)\}$.
 - d) $n = 3, \{(1, 1, -1), (0, 1, 1), (1, 2, 1), (3, 2, 1)\}.$
 - e) $n = 4, \{(1, 1, 1, -1), (0, -1, 1, -2), (1, 1, 0, 1), (3, 2, 1, 2)\}.$
- 6. Analizar la dependencia o independencia lineal de los siguientes conjuntos de vectores.
 - a) $\{(1,-3,5), (-2,2,1), (-1,-1,6)\}; \mathbb{V} = \mathbb{R}^3.$
 - b) $\{(1,2,2,-1), (0,2,-2,-3), (1,1,0,2), (0,1,-1,0)\}; \mathbb{V} = \mathbb{R}^4$.
 - c) $\{v\}$ con $v \in \mathbb{V}$.
 - d) $\{v_1, v_2, \dots, v_n, 0\}$ con $v_1, v_2, \dots v_n, 0 \in \mathbb{V}$.
- 7. Determinar si los siguientes conjuntos de vectores son una base del espacio \mathbb{V} . En el caso que no sean base, analizar la posibilidad de extraer una base o bien de extender el conjunto a una base de \mathbb{V} .
 - a) $\{(1,0,1), (1,0,-1)\}; \mathbb{V} = \mathbb{R}^3$.
 - b) $\{(1,1,2), (0,1,1), (0,0,0)\}; \mathbb{V} = \mathbb{R}^3.$
 - c) $\{(1,1,2), (0,1,1), (2,3,3)\}; \mathbb{V} = \mathbb{R}^3.$
 - d) $\{(1,0,1), (1,0,-1), (0,0,1), (1,1,1)\}; \mathbb{V} = \mathbb{R}^3$.

e)
$$\{(1,1,1,1,1), (1,2,0,1,1), (1,1,1,2,1)\}; \mathbb{V} = \mathbb{R}^5.$$

- 8. Hallar bases y determinar la dimensión de cada uno de los siguientes subespacios:
 - a) $S = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + x_2 = 0, x_3 x_2 = 0\}.$
 - b) $S = \langle (1, 1, -1), (0, 1, 1), (1, 2, 0) \rangle$.
- 9. Sea $S = \langle (0, -1, k), (1, -1, 0), (-1, 0, 2) \rangle$. Estudiar la dimensión y dar una base del subespacio S en función de k.
- 10. Dados los subespacios de \mathbb{R}^3 , $S = \{x \in \mathbb{R}^3 : 2x_1 x_2 + x_3 = 0, -4x_1 + 2x_2 2x_3 = 0\}$ y $T = \langle (2,3,-1), (-2,1,5), (4,2,-6) \rangle$:
 - a) Probar que $T \subset S$.
 - b) Calcular $\dim(S)$, $\dim(T)$ y decidir si vale la igualdad T = S o no.

Transformaciones lineales. Imagen y núcleo de matrices.

11. Dadas las matrices

$$A = \begin{pmatrix} 1 & 1 & 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 1 \\ 8 & 7 \end{pmatrix}, \quad C = \begin{pmatrix} 2 & -3 & 0 \\ 4 & -5 & 1 \\ 2 & -1 & 2 \end{pmatrix} \quad \text{y} \quad D = \begin{pmatrix} 1 & 2 \\ 4 & 8 \\ 5 & -5 \\ 9 & -9 \end{pmatrix}.$$

- a) hallar una base y la dimensión del espacio fila, del espacio columna y del núcleo.
- b) calcular el rango.
- c) repetir los ítems (a) y (b) para las respectivas matrices transpuestas.
- 12. Sea $A \in \mathbb{R}^{m \times n}$.
 - a) Si m = 7, n = 8 y Im(A) = 2, calcular $\dim(\text{Nu}(A))$.
 - b) Si m = 6, n = 5 y dim(Nu(A)) = 3, calcular Im(A).
 - c) Si m = 3, n = 5 y dim $(Im(A^t)) = 3$, calcular Im(A) y dim(Nu(A)).

13. Sea
$$A \in \mathbb{R}^{4 \times 5}$$
 la matriz $A = \begin{pmatrix} 3 & 1 & 6 & 1 & 9 \\ 2 & 2 & 0 & 2 & 2 \\ 2 & 1 & 3 & 1 & 5 \\ 2 & 0 & 6 & 0 & 8 \end{pmatrix}$.

- a) Hallar una base y la dimensión de Im(A).
- b) Calcular $\dim(\operatorname{Nu}(A))$, $\dim(\operatorname{Nu}(A^t))$, $\operatorname{Im}(A)$ y $\operatorname{Im}(A^t)$.
- 14. Sea $A \in \mathbb{R}^{4\times 3}$ una matriz tal que dim(Nu(A)) = 1 y sea $b \in \mathbb{R}^{4\times 1}$. Determinar el rango de la matriz ampliada $[A|b] \in \mathbb{R}^{4\times 4}$ para que el sistema $A \cdot x = b$ tenga solución.

15. Sea
$$A \in \mathbb{R}^{3\times 4}$$
 la matriz $A = \begin{pmatrix} 3 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 4 & 2 & 0 & b \end{pmatrix}$.

- a) Determinar el valor de $b \in \mathbb{R}$ que hace que $\operatorname{Im}(A) = 2$.
- b) Para el valor de b hallado, decidir si $v = (3, 2, 2) \in \text{Im}(A)$ y hallar una base de $\text{Nu}(A^t)$.

16. Sean
$$A \in \mathbb{R}^{4 \times 3}$$
 la matriz $A = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 2 & -2 \\ 1 & 2 & -3 \\ 1 & -2 & 1 \end{pmatrix}$ y S el sistema $S : \begin{cases} ax + y + bz & = 0 \\ 2ax - y + bz & = 0 \end{cases}$.

Hallar $a, b \in \mathbb{R}$ tales que el subespacio Nu(A) coincida con el espacio de soluciones de S.

- 17. Para cada uno de los siguientes subespacios S, hallar $m, n \in \mathbb{N}$, y $A \in \mathbb{R}^{m \times n}$ tales que Nu(A) = S.
 - a) $S = \langle (1,3,1), (-2,1,0) \rangle$.
 - b) $S = \langle (1,3,1,-2), (-2,1,0,3), (-1,4,1,1) \rangle$.

Producto interno

- 18. Calcular la norma de cada uno de los vectores siguientes, y normalizarlos
 - a) u = (0, 1, 2),

c) w = 3u,

b) v = (-1, 1, 1),

- d) z = u + v
- 19. Determinar la distancia entre los puntos A = (1, 2, 3) y B = (4, 1, -2)
- 20. a) Sean $u=(1,2,-1),\ v=(1,-1,1).$ Hallar $w\in\mathbb{R}^3,\ w\neq 0$ tal que $\langle u,w\rangle=\langle v,w\rangle=0.$ ¿Es único?
 - b) Sea u = (1, -1). Hallar todos los $v \in \mathbb{R}^2$ tal que ||v|| = ||u|| y $\langle u, v \rangle = 0$.
 - c) Sea u=(0,0,2). Hallar todos los vectores $v\in\mathbb{R}^3$ tales que ||v||=||u|| y $\langle v,u\rangle=0$.
 - d) Sean $u=(1,2),\,v=(-1,1)$ y $w\in\mathbb{R}^2$ tales que $\langle u,w\rangle=1$ y $\langle v,w\rangle=3$. Hallar w.
- 21. Decidir si son o no ciertas las siguientes proposiciones en \mathbb{R}^n , $n \geq 2$:
 - a) Si $\langle u, v \rangle = \langle u, w \rangle$ para algún $u \neq 0$, entonces v = w.
 - b) Si $\langle u, v \rangle = \langle u, w \rangle$, $\forall u \in \mathbb{R}^n$, entonces v = w.
- 22. Determinar si los siguientes pares de vectores son ortogonales o no

a)
$$v = (1, 1, 1), w = (1, 0, 1)$$

b)
$$v = (1, -2, 4), w = (-2, 1, 1)$$

23. Calcular el ángulo entre los siguientes pares de vectores

a)
$$v = (1,1), w = (1,0)$$

b)
$$v = (3, 2, -1), w = (0, 1, 2)$$

- 24. Sea la recta $S = \langle (3,4) \rangle \subseteq \mathbb{R}^2$ y p la proyección ortogonal sobre S. Hallar:
 - a) p(3,4), p(-4,3) y p(2,1).
 - b) El punto más cercano de la recta S a cada uno de los puntos (3,4), (-4,3) y (2,1), y la distancia de esos puntos a la recta S.
- 25. a) Aplicar el proceso de Gram-Schmidt a la base $\mathcal{B} = \{(-1, 1, 0), (1, 0, 1), (1, 1, 1)\}$ de \mathbb{R}^3 para obtener una base ortonormal \mathcal{B}' .
 - b) Escribir a los vectores v = (1, 1, 1) y de w = (1, 0, 0) como combinación lineal de los vectores de \mathcal{B}' .
 - c) Hallar una base ortonormal de \mathbb{R}^3 que contenga una base del plano

$$S = \{x \in \mathbb{R}^3 : x_1 + x_2 - x_3 = 0\}.$$