Khôlles de Mathématiques HXII Séries réelles et complexes

N. CLOAREC

Du 03-01-17 au 14-01-17

Exercice 1 Soient

$$u_n = \frac{1}{3^n n!} \prod_{k=1}^n (3k-2) \text{ et } v_n = \frac{1}{n^{3/4}}$$

- a) Montrer que pour n assez grand : $\frac{u_{n+1}}{u_n} \geq \frac{v_{n+1}}{v_n}$
- b) En déduire que $\sum u_n$ diverge. (on pourra utiliser $\frac{u_n}{v_n}$)

Exercice 2 Soit (u_n) une suite de réels strictement positifs.

- a) Pour tout $n \in \mathbb{N}$, on pose $v_n = \frac{u_n}{1+u_n}$. Montrer que $\sum u_n$ et $\sum v_n$ sont de même nature.
- b) Même question avec

$$v_n = \frac{u_n}{u_1 + \dots + u_n}$$

On pourra étudier $\ln(1-v_n)$ dans le cadre de la divergence.

Exercice 3

- a) Soit (u_n) une suite décroissante de limite nulle. Montrer que $\sum (-1)^n u_n$ est convergente.
- b) Déterminer la nature de $\sum \cos \left(\pi \sqrt{n^2 + n + 1}\right)$

Exercice 4 Soient $(u_n)_{n\geq 0}$ et $(v_n)_{n\geq 0}$ dans $(\mathbb{R}_+)^{\mathbb{N}}$ telles que

$$\forall n \in \mathbb{N}, v_n = \frac{1}{1 + n^2 u_n}$$

Montrer que si la série de terme général v_n converge alors la série de terme général u_n diverge.

Exercice 5 Soit (u_n) une suite réelle strictement positive et strictement croissante.

Nature de la série de terme général

$$\frac{u_{n+1} - u_n}{u_n}$$

On pourra essayer de faire apparaître une intégrale.

Exercice 6 Soit $(u_n)_{n\geq 1}$ une suite de réels positifs. On considère la suite (v_n) définie par

$$v_n = \frac{1}{n(n+1)} \sum_{k=1}^n k u_k$$

Montrer que les séries $\sum u_n$ et $\sum v_n$ ont même nature et même somme.

Exercice 7 Soit (a_n) une suite de réels strictement positifs et $S_n = \sum_{k=0}^n a_k$.

- a) On suppose que la série $\sum a_n$ converge, donner la nature de $\sum a_n/S_n$.
- b) On suppose que la série $\sum a_n$ diverge, montrer

$$\forall n \in \mathbb{N}^*, \frac{a_n}{S_n^2} \le \frac{1}{S_{n-1}} - \frac{1}{S_n}$$

En déduire la nature de $\sum a_n/S_n^2$

c) On suppose toujours la divergence de la série $\sum a_n$. Quelle est la nature de $\sum a_n/S_n$?

Exercice 8 Soient (u_n) une suite décroissante de réels positifs et α un réel positif. On suppose la convergence de la série $\sum n^{\alpha}u_n$. Montrer que $n^{\alpha+1}u_n \to 0$.

Exercice 9 Soit (a_n) une suite décroissante tendant vers 0. Prouver que :

- a) les séries $\sum a_n$ et $\sum 2^n a_{2^n}$ sont de même nature;
- b) si $\sum a_n = +\infty$, alors $\sum \min\{a_n, \frac{1}{n}\} = +\infty$.

Exercice 10 Soit (a_n) et (b_n) deux suites décroissantes tendant vers 0 avec $\sum a_n = \sum b_n = +\infty$. La série $\sum \min\{a_n, b_n\}$ est-elle toujours divergente?