- **Problem 1:** A closed system contains 1 mol of nitrogen $(MW = 28 \text{ g. mol}^{-1})$. Using the ideal gas law, calculate the missing *PVT* parameter for the following data given. Give your results in **SI units**. The universal gas constant is $R = 8.314 \text{ J.gmol}^{-1} \text{ .K}^{-1}$.
 - (a) P = 1 atm, $T = 0^{\circ}C$
 - (b) $V^t = 12.85 \text{ ft}^3$; $T = 59^{\circ}\text{F}$
 - (c) $P = 2.5 \times 10^9 \text{ g.m}^{-1}.\text{s}^{-2}$; $T = 650.50^{\circ}\text{R}$
 - (d) $V^t = 1.3 \times 10^{-12} \text{Gl}$; P = 500 psi
- **Problem 2:** In a coal-fired power station water-steam system is used to produce electricity. Determine the enthalpy $(kJ.kg^{-1})$ and entropy $(kJ.kg^{-1}.K^{-1})$ of the system under the following conditions (a-h):

Pressure	Temperature	Enthalpy	Entropy	State
(bar)		$kJ.kg^{-1}$	$kJ.kg^{-1}.K^{-1}$	
150.0	733.15 K	(a)	(b)	(c)
37.5	_	(d)	(e)	liquid water
142.6	375.00°C	(f)	(g)	(h)

- **Problem 3:** The *Angle Falls* in Venezuela are the worlds highest waterfalls (\sim 1000 m). Take the amount of 1 kg of water as the system flowing over the waterfall. Assume that is does not exchange energy with its surroundings.
 - (a) Calculate the potential energy of the water at the top of the falls with respect to the base of the falls. Assume gravity acceleration as $9.81~\rm m.s^{-2}$.
 - (b) What is the energy balance that applies during the water falling down? What is the kinetic energy of the water just before it strikes down?
 - (c) When striking down the energy is converted to internal energy. Calculate the temperature change with the heat capacity $4184 \text{ J.kg}^{-1}.\text{K}^{-1}$.
- **Problem 4:** A hydroturbine operates with a head of 160 ft of water. Inlet and outlet conduits are 78.74 inches in diameter. Calculate the maximum mechanical power (in kW) that can be developed by the turbine for an inlet velocity of 18 km.h^{-1} .
- **Problem 5:** Given Ar at $P_1 = 140$ kPa, $T_1 = 10^{\circ}$ C, $V_1 = 200$ liters which undergoes a polytropic compression to $P_2 = 700$ kPa, $T_2 = 180$ °C, find Q_{1-2} . Given MW = 39.948 kg.kgmole⁻¹, R = 0.2081 kJ.kg⁻¹.K⁻¹ and $C_V = 0.312$ kJ.kg⁻¹.K⁻¹.

Dr Jeff Gomes 1

- **Problem 6:** Given air (assuming ideal gas behaviour) expanding reversibly and adiabatically from $T_1=450K$ and $V_1=3.0\times 10^{-3}m^3$ to the final volume, $V_2=5.0\times 10^{-3}m^3$. T and V relationship for constant heat capacities is represented by $\frac{T_2}{T_1}=\left(\frac{V_1}{V_2}\right)^{\gamma-1}$.
 - (a) Derive a relationship between T and P; Assuming that $C_p = 5.0cal. (mol.K)^{-1}$ and $C_v = 3.0cal. (mol.K)^{-1}$;
 - (b) Calculate T_2 ;
 - (c) Calculate the work done during the process and;
 - (d) Determine the enthalpy change.
- **Problem 7:** Gaseous CO_2 ($m_{CO_2} = 4g$) is contained in a vertical piston-cylinder assembly by a piston of mass 50 kg and having a face area of $1.0 \times 10^{-2} \text{m}^2$. The CO_2 initially occupies a volume of $5 \times 10^{-3} \text{m}^3$ and has a specific internal energy of 657 kJ.kg⁻¹. The atmosphere exerts a pressure of 100 kPa on the top of the piston. Heat transfer in the amount of 1.95 kJ occurs slowly from the CO_2 to the surroundings, and the volume of the CO_2 decreases to $2.5 \times 10^{-3} \text{m}^3$. Friction between the piston and the cylinder wall can be neglected. The local acceleration of gravity is 9.81 m.s⁻². For the CO_2 , determine (a) the pressure in kPa and (b) the final specific internal energy in kJ.kg⁻¹.

Problem 8: CO gas contained within a piston-cylinder assembly undergoes three processes in series:

- Process 1-2: expansion from $p_1 = 5$ bar, $V_1 = 0.2$ m³ to $V_2 = 1.0$ m³, during which the pressure-volume relationship is pV = constant.
- Process 2-3: constant volume heating from state 2 to state 3, where $p_3 = 5$ bar.
- Process 3-1: constant pressure compression to the initial state.

Sketch the processes in series on p-V coordinates and evaluate the work for each process, in kJ.

Dr Jeff Gomes 2

Tutorial 01

PI (PV= mRT)
$$m=1$$
 gmol $R=8.3145$ /gwol.K
(a) $P=1$ atm; $T=0$ °C : $V=\frac{1}{2}$?
 $V^{t}=\frac{mRT}{P}=1$ gmol $\times 8.3145$ $\times \frac{1}{2}$ $\times \frac{1}$

 $[K] \times \frac{10^{-3} \text{ m}^3}{12} \times \frac{12}{12}$

T= 0.5391 K

P2 (1) At 150 bar, the saturation temperature (Tsat) is 342.1°C <<< T=733.15 K (= 460°C). Thus the water is at superheated steam (e) state. The superheated them table (SST) at 150 ban looks like: But we want Hand 500 S at 460°C. H (NS/NJ) 3156.2 3308.6 A limear interpolation S (WS/WW) 6.140 6.344 Ollwern 450 and 500°C Tz - Ts Hz-Hs _ 3307.6-3156.2 500-450 ____ 3308.6 - U* 500 - 460 T2 - T* (3308.6-H*)(500-450)=(500-460)(3308.6-3156.2) H*= 3186.68 KJ/KJ (a)

Using the some procedure for entropy (S): S*= 6.1808 K5/K, K (b)

(2) At 37.5 ban and considering that the fluid is liquid, by simple impection in the saturated steam table: $\{H^* = 1069.0 \text{ KS/Kg} \text{ Cd}\}$ $\{S^* = 2.7618 \text{ KS/Kg}.\text{K} \text{ Ce}\}$ (3) At 142.6 bar, the saturation temperature (Tsat) 1) 337.7 (Tsat (338.8. This is lower than the established temperature, therefore the fluid is at Sleperhealed state (h). From the SST (at 375°C): P(ba) Now we need to T=375°C Isat (°C) proceed with a linear H (KS/Kg) 2894.5 140 interpolation in The (336.6) S (NS/NJ.K) 5.78Z H (KZ/K/) 2858.4 pressure range: 150 (342.1) $S(K5/K_1,K)$ 5.703

Hz-UI

P2 - P1 2858.4-2894.5 150-140 2858.4-W* 150-142.6 P2-P*

(2858.4-H*)(150-140) = (150-142.6)(2858.4-2894.5) U*=2885.11 KS/Kg (3)With the same proadure for antropy: S*=5.7635 KS/Kg.K (3)

$$\Delta z = 1000 \text{m}$$

$$E_p + E_{\kappa} = \text{const.} \Rightarrow E_p(z) + E_{\kappa}(z) = E_p(\Delta z)$$

Sust before hitting the bottom: Z=0

$$E_{K} = E_{p}(\Delta z) = 9.81 \text{ KS}$$

 $\hat{\omega} = 15708.41 \frac{\text{Mg}}{\text{S}^2} \times 9.81 \frac{\text{m}}{\text{S}^2} \times 160 \text{ gt} \times \frac{0.3048 \text{ m}}{14t}$

W = 7515124.52 kg.m² x 15 W 58 1 km x 1 km W= 7515124.523/s = 7515.12 KW

polytopic

polytopic

Tz = 180°C

erepansion $P_{1} = 140 \text{ K/B}$ $A_{1} = 10^{\circ}\text{C}$ $V_{1} = 200 \text{ f}$ From the 1st law All= U2-U1= D12-W12 For ideal gases, we meed to calculate $\Delta U = \Delta U(\Delta T)$ and we can easily compute W12 from its definition as J. PdV. Using the following data for mobble gas Argon:

MW= 39.948 Kg/Kgmcl; Cv= 0.312 K5/kg.K

The mass of Argon ean be calculated from state 1:

$$M = \frac{m}{MW} = \frac{P_1 V_1}{RT_1} \cdot m = \frac{P_1 V_1}{RT_1} \times MW$$

 $IM = 140 \text{ kfa} \times 2000 \text{ kg} \times 39.948 \text{ kg} \times 1000 \text{ kg} \times 11 \text{ kg} \times 1000 \text{ kg} \times 11 \text{ kg} \times 1000 \text{ kg} \times 11 \text{ kg}$

Now, the rolume at state 2:

$$P_2 \sqrt{2} = \frac{m}{MW} RT_2$$

$$\sqrt{2} = \frac{m}{MW} \frac{RT_2}{P_2} = \frac{0.4751 \text{ Mg}}{39.948 \text{ Mg}} \times 8.314 \frac{\text{MS}}{\text{Mpol, N}} \times 463.15 \text{ M}_{\times} \frac{1}{700 \text{ Mg}} \times \frac{1 \text{Mg}}{1000 \text{ Pa}} \times \frac{1 \text{Mg}} \times \frac{1 \text{Mg}}{1000 \text{ Pa}} \times \frac{1 \text{Mg}}{1000 \text{ Pa}} \times \frac{$$

Now, Jor polytropic processes,

Pivi" = constant = C

Pi 1/2

$$\frac{V_1}{V_2} = \left(\frac{\sqrt{2}}{\sqrt{1}}\right)^n$$

lm (Ps/P2) = lm (V2/V1)

$$m = \frac{\ln(V_3/V_2)}{\ln(V_2/V_3)} = 1.412$$

Thus, the work in polytropic processes can be described as

$$W_{12} = \begin{cases} \sqrt{2} & \text{pd} \\ \sqrt{2} & \text{pd} \\ \sqrt{3} & \text{pd} \end{cases} = \begin{cases} \sqrt{2} & \text{pd} \\ \sqrt{2} & \text{pd} \\ \sqrt{3} & \text{pd} \end{cases} = \begin{cases} \sqrt{2} & \text{pd} \\ \sqrt{3} & \text{pd} \\ \sqrt{3} & \text{pd} \end{cases}$$

$$W_{12} = \frac{C}{1-m} \left[\sqrt{2(1-m)} - \sqrt{3(1-m)} \right]$$

$$W_{12} = \frac{P_{2}\sqrt{2}\sqrt{2}-P_{3}\sqrt{3}}{1-m} = \frac{P_{2}\sqrt{2}-P_{3}\sqrt{3}}{1-m}$$

$$W_{12} = \frac{1}{1-1.412} \left[\frac{700\times6.40\times10^{-2}}{100\times10^{-2}}-\frac{140\times2\times10^{-3}}{100\times10^{-3}}\right]W_{0}^{2}$$

$$\times \frac{1000 P_{0}}{100\times10^{-2}} \times \frac{11/m^{2}}{100\times10^{-2}} \times \frac{15}{100\times10^{-2}} = -40776.705$$

W12 = - 40.78 WS

The work is mogative => At was worked upon in compression.
From the 1st law,

Uz-U1 = Q12 - W12

Q12= U2-U1+ W12

Druming that Ar behaves like amideal gas, i.e., M=M(T) (with M=U/m)

du = Cv : du = CrdT . . Du = Au = CrdT

Thus; Q12 = mCr (T2-T1) + W12 Q12 = 0.4751 kg, 0.312 K5 × 170 K+ (-40.78 K5) = -15.58 K5

leat was lost from the system although temperature increased. This is because the vaise in internal energy was mainly due to work.

) T₁ = 450K Dir) V₁ = 3 × 10⁻³ m³ $=> \sqrt{2 = 5 \times 10^{-3} \text{m}^3}$ The total change in energy, DE, can be split into DE = DEx + DEp + DU = Q - W Kimetic potential internal energy energy Assuming that in the expansion process, kimetics and potential energies do not change DE = DU = Q - W or in differential form du=da-dw Do the process is adiabatic, ie, da=0 du=-dw=-rdV Since the gas is ideal, du=CrdT=-PdV and V=RT/P,

and applying the chain rule to V= V(T, P) W= DY dT+ DY dP= RdT- RT dP

Since Cp-C1=R, replacing Cv in the equation above

$$\frac{dT}{T} = \frac{R}{CP} \frac{dP}{P} = \frac{C_P - C_V}{C_P} \frac{dP}{P} = \frac{\delta - 1}{\delta} \frac{dP}{P} \quad (\delta = C_P / C_V)$$

Now integrating from state 1 to 2:

$$\ln \frac{\int_2}{\int_1} = \left(\frac{\lambda - 1}{\lambda}\right) \ln \frac{P_2}{P_1}$$

$$\frac{\sqrt{2}}{\sqrt{1}} = \left(\frac{\sqrt{2}}{\sqrt{2}}\right)^{\frac{d-1}{d}} \tag{a}$$

(b) To is obtained from (see lecture motes)

$$\frac{\sqrt{3}}{\sqrt{3}} = \left(\frac{\sqrt{3}}{\sqrt{2}}\right)^{3} = \left(\frac{3 \times 10^{-3} \text{ m}^{3}}{5 \times 10^{-3} \text{ m}^{3}}\right)^{\frac{5 \text{ cal/Lolk} - 1}{3 \text{ cal/Lolk}}$$

The work done during the process is W=- All=-C/AT=-3 cal (320.12-450)K $W = 389.64 \text{ Cal}_{mol} \times \frac{4.1845}{1000}$ W = 1630.25 S/mol (c) 4 W>0 indicates that in the expansion process, work is done by the system. (d) The onthalpy change of the gas can be calculated as,

MH = Cp AT = 5 cal x (320-12-450) K x 4.1845 mol. K

DH = - 2717.09 5/mol

Let's assume that potential and kinetic energy are negligible. Also, as there is no gridion and the piston is NOT accelerated, the yora exerted by the COz in the cylinder on the bottom of the piston is equal to the weight of the piston & the force exerted by the atmosphere on the top of the piston: piston = mpst. g

The Jove balance at the surface of the piston is:

pApist = patro Apist + Mpist g * (1/Apist) p = patm + mpiot g = 100 Kla + 50kg x 9.81 pm x 1 Pa x 1 N/2 x 1 N/2 x 1000 Pa p= 149.05 K/a (a)

(b)
$$V_{3} = 5 \times 40^{-3} \text{ m}^{3}$$
 $V_{2} = 2.5 \times 40^{-2} \text{ m}^{3}$ $U_{1} = 657 \text{ KS/Kg}$ $U_{2} = ?$

The work can be calculated through (assuming constant pressure):

 $W_{12} = \begin{cases} v_{2} & \text{pd} \ v_{3} = 0 \end{cases} = p(v_{3} - v_{1}) = 149.05 \text{ kfa} \times (2.5 - 5) \times 0^{3} \text{ m}^{3} \times \frac{1000 \text{ fa}}{1 \text{ kfa}} \times \frac{15}{1 \text{ kfm}} = -372.63 \text{ J}$

The energy balance for O_{2} :

 $\Delta U = \omega U - W = -1.95 \times 10^{3} \text{ J} - (-372.63) \text{ J}$

All 1577.25 J

All=-1577, 255

Thun, with All = m(M2-M1): M2 = AM + Ms

 $M_{2} = -1577.255 + 657 \times 10^{3}$ 4×10^{-3} K_{g}

Mz=262687.5 J = 262.69 Kg

(b) 2-3: The piston does not move (V constant). Therefore
$$W_{23} = 0$$

(c)
$$3-1$$
: $W_{31} = \int_{3}^{\sqrt{1}} P dV$

Do pressure is constant between

$$3-1$$
 (i.l., $p_3=p_1=5$ ban)

$$W_{31} = P_1 \left(\sqrt{1 - \sqrt{3}} \right) = 5 bm \left(0.2 - 1 \right) m^3 \times \frac{10^5 \text{ N/m}^2}{1 bm} \times \frac{15}{100}$$

$$W_{34} = -4 \times 10^5 \le$$

(a)
$$1-2$$
: $PV = constant = K$
 $P = K/V$
 $W_{12} = \begin{cases} \sqrt{2} & PdV = \int_{V_1}^{V_2} & V dV = V \\ V_1 & V_2 = \int_{V_1}^{V_2} & V_1 & Im V_2 \\ V_1 & V_2 & V_1 & Im V_2 \\ V_1 & V_2 & V_1 & Im V_2 \\ & = 5 & banx & 0.2 & m^3 \times lm \frac{1}{0.2} \\ W_{12} = 1.609 & ban. m^3 \times log / lm v^2 \times log / log$

$$\times \frac{15}{1000}$$
 $W_{12} = 1.61 \times 10^{5}$