PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12N 15/13, C07K 16/36, 16/46, A61K 39/395 // C12N 5/10, 15/85

(11) International Publication Number:

WO 96/40921

(43) International Publication Date:

19 December 1996 (19.12.96)

(21) International Application Number:

PCT/US96/09287

A1

(22) International Filing Date:

6 June 1996 (06.06.96)

(30) Priority Data:

08/480,120

7 June 1995 (07.06.95)

US

(71) Applicant: JOHNSON & JOHNSON [US/US]; One Johnson & Johnson Plaza, New Brunswick, NJ 08933-0001 (US).

(72) Inventors: JOLIFFE, Linda, K.; 16 Davenport Way, Belle Mead, NJ 08502 (US). ZIVIN, Robert, A.; 6 Glenbrook Court, Lawrenceville, NJ 08648 (US). PULITO, Virginia, L.; 37 Winding Way, Flemington, NJ 08822 (US).

(74) Agents: CIAMPORCERO, Audley, A., Jr. et al.; Johnson & Johnson, One Johnson & Johnson Plaza, New Brunswick, NJ 08933-0001 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: CDR-GRAFIED ANTI-TISSUE FACTOR ANTIBODIES AND METHODS OF USE THEREOF

(57) Abstract

The present invention provides CDR-grafted antibodies against human tissue factor that retain the high binding affinity of rodent monoclonal antibodies against tissue factor but have reduced immunogenicity. The present humanized antibodies are potent anticoagulants and are thus useful in the treatment and prophylaxis of human thrombotic disease. The invention also provides methods of making the CDR-grafted antibodies and pharmaceutical compositions for the attenuation or prevention of coagulation.

BNSDOCID: <WO_____9640921A1_I_>

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
ΑÜ	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HÜ	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	Sī	Slovenia
a	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
cs	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Lanembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TI	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Vict Nam

ı

CDR-GRAFTED ANTI-TISSUE FACTOR ANTIBODIES AND METHODS OF USE THEREOF

FIELD OF THE INVENTION

Monoclonal antibodies capable of inhibiting 5 tissue factor (TF) are useful as anticoagulants. Conventional rodent monoclonal antibodies, however, have limited use in human therapeutic and diagnostic applications due to immunogenicity and short serum half-10 life. The present invention provides CDR-grafted monoclonal antibodies against TF that retain the high binding affinity of rodent antibodies but have reduced immunogenicity. The present humanized antibodies are potent anticoagulants and are thus useful in the treatment and prophylaxis of human thrombotic disease. The invention also provides methods of making the CDRgrafted antibodies and pharmaceutical compositions for the attenuation or prevention of coagulation.

20 BACKGROUND OF THE INVENTION

The coagulation of blood involves a cascading series of reactions leading to the formation of fibrin. The coagulation cascade consists of two overlapping pathways, both of which are required for hemostasis. The intrinsic pathway comprises protein factors present in circulating blood, while the extrinsic pathway requires tissue factor, which is expressed on the cell surface of a variety of tissues in response to vascular injury. Davie et al., 1991, Biochemistry 30:10363. Agents that interfere with the coagulation cascade, such

PCT/US96/09287

as heparin and coumarin derivatives, have well-known therapeutic uses in the prophylaxis of venous thrombosis. Goodman and Gilman, eds., 1980, The Pharmacological Basis of Therapeutics, MacMillan Publishing Co., Inc., New York.

Tissue factor (TF) has been investigated as a target for anticoagulant therapy. TF is a membrane glycoprotein that functions as a receptor for factor VII and VIIa and thereby initiates the extrinsic pathway of the coagulation cascade in response to vascular injury.

10 In addition to its role in the maintenance of hemostasis by initiation of blood clotting, TF has been implicated in pathogenic conditions. Specifically, the synthesis and cell surface expression of TF has been implicated in vascular disease (Wilcox et al., 1989, Proc. Natl. Acad.

15 <u>Sci.</u> <u>86</u>:2839) and gram-negative septic shock (Warr <u>et</u> al., 1990, Blood 75:1481).

Ruf et al. (1991, Thrombosis and Haemostasis 66:529) characterized the anticoagulant potential of murine monoclonal antibodies against human TF. 20 inhibition of TF function by most of the monoclonal antibodies that were assessed was dependent upon the dissociation of the TF/VIIa complex that is rapidly formed when TF contacts plasma. Such antibodies were thus relatively slow inhibitors of TF in plasma. 25 monoclonal antibody, TF8-5G9, was capable of inhibiting the TF/VIIa complex without dissociation of the complex, thus providing an immediate anticoagulant effect in Ruf et al. suggest that mechanisms that inactivate the TF/VIIa complex, rather than prevent its 30 formation, may provide strategies for interruption of coaqulation in vivo.

- The therapeutic use of monoclonal antibodies against TF is limited in that currently available monoclonals are of rodent origin. The use of rodent antibodies in human therapy presents numerous problems, the most significant of which is immunogenicity.
- 5 Repeated doses of rodent monoclonal antibodies have been found to elicit an anti-immunoglobulin response termed human anti-mouse antibody (HAMA), which can result in immune complex disease and/or neutralization of the therapeutic antibody. See, e.g., Jaffers et al. (1986)
- 10 <u>Transplantation</u> 41:572. While the use of human monoclonal antibodies would address this limitation, it has proven difficult to generate large amounts of human monoclonal antibodies by conventional hybridoma technology.
- Recombinant technology has been used in an effort to construct "humanized" antibodies that maintain the high binding affinity of rodent monoclonal antibodies but exhibit reduced immunogenicity in humans. Chimeric antibodies have been produced in which the
- variable (V) region of a mouse antibody is combined with the constant (C) region of a human antibody in an effort to maintain the specificity and affinity of the rodent antibody but reduce the amount of protein that is nonhuman and thus immunogenic. While the immune response
- 25 to chimeric antibodies is generally reduced relative to the corresponding rodent antibody, the immune response cannot be completely eliminated, because the mouse V region is capable of eliciting an immune response. Lobuglio et al. (1989) Proc. Natl. Acad. Sci. 86:4220;
- 30 Jaffers et al. (1986) Transplantation 41:572.

In a recent approach to reducing

- immunogenicity of rodent antibodies, only the rodent complementarity determining regions (CDRs), rather than the entire V domain, are transplanted to a human antibody. Such humanized antibodies are known as CDR-
- 5 grafted antibodies. CDRs are regions of hypervariability in the V regions that are flanked by relatively conserved regions known as framework (FR) regions. Each V domain contains three CDRs flanked by four FRs. The CDRs fold to form the antigen binding
- site of the antibody, while the FRs support the structural conformations of the V domains. Thus by transplanting the rodent CDRs to a human antibody, the antigen binding domain can theoretically also be transferred. Owens et al. (1994) J. Immunol. Methods
- 15 <u>168</u>:149 and Winter <u>et al</u>. (1993) <u>Immunology Today 14</u>:243 review the development of CDR-grafted antibodies.

Orlandi et al. (1989) Proc. Natl. Acad. Sci.

USA 86:3833 constructed a humanized antibody against the relatively simple hapten nitrophenacetyl (NP). The CDRgrafted antibody contained mouse CDRs and human FRs, and exhibited NP binding activity similar to the native mouse antibody. However, the construction of CDRgrafted antibodies recognizing more complex antigens has resulted in antibodies having binding activity

- 25 significantly lower than the native rodent antibodies. In numerous cases it has been demonstrated that the mere introduction of rodent CDRs into a human antibody background is insufficient to maintain full binding activity, perhaps due to distortion of the CDR
- 30 conformation by the human FR.

For example, Gorman et al. (1991) Proc. Natl. 1 Acad. Sci. 88:4181 compared two humanized antibodies against human CD4 and observed considerably different avidies depending upon the particular human framework region of the humanized antibody. Co et al. (1991) 5 Proc. Natl. Acad. Sci. USA 88:2869 required a refined computer model of the murine antibody of interest in order to identify critical amino acids to be considered in the design of a humanized antibody. Kettleborough et al. (1991) Protein Engineering 4:773 report the 10 influence of particular FR residues of a CDR-grafted antibody on antigen binding, and propose that the residues may directly interact with antigen, or may alter the conformation of the CDR loops. Similarly, Singer et al. (1993) J. Immunol. 150:2844 report that 15 optimal humanization of an anti-CD18 murine monoclonal antibody is dependent upon the ability of the selected FR to support the CDR in the appropriate antigen binding conformation. Accordingly, recreation of the antigenbinding site requires consideration of the potential 20 intrachain interactions between the FR and CDR, and manipulation of amino acid residues of the FR that maintain contacts with the loops formed by the CDRs. While general theoretical guidelines have been proposed for the design of humanized antibodies (see, e.g., Owens 25 et al.), in all cases the procedure must be tailored and optimized for the particular rodent antibody of

There is a need in the art for humanized antibodies with reduced immunogenicity and comparable binding affinity relative to the parent rodent antibody for various therapeutic applications. In particular,

35

interest.

there is a need for a humanized antibody against human 1 tissue factor having anticoagulant activity and useful in the treatment and prevention of thrombotic disease.

SUMMARY OF THE INVENTION

5

The present invention is directed to CDR-grafted antibodies capable of inhibiting human tissue factor wherein the CDRs are derived from a non-human monoclonal antibody against tissue factor and the FR and 10 constant (C) regions are derived from one or more human antibodies. In a preferred embodiment, the murine monoclonal antibody is TF8-5G9.

In another embodiment, the present invention provides a method of producing a CDR-grafted antibody

15 capable of inhibiting human tissue factor which method comprises constructing one or more expression vectors containing nucleic acids encoding CDR-grafted antibody heavy and light chains, transfecting suitable host cells with the expression vector or vectors, culturing the transfected host cells, and recovering the CDR-grafted antibody.

The present invention also provides a method of attenuation of coagulation comprising administering a CDR-grafted antibody capable of inhibiting human tissue factor to a patient in need of such attenuation.

The present invention further provides a method of treatment or prevention of thrombotic disease comprising administering a CDR-grafted antibody capable of inhibiting human tissue factor to a patient in need of such treatment or prevention. In a preferred

35

embodiment, the thrombotic disease is intravascular l coagulation, arterial restenosis or arteriosclerosis.

Another embodiment of the present invention is directed to a pharmaceutical composition comprising CDR-grafted antibodies capable of inhibiting human tissue factor and further comprising a pharmaceutically acceptable carrier.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 provides the nucleotide and deduced amino acid sequences of the heavy chain of murine monoclonal antibody TF8-5G9.

Fig. 2 provides the nucleotide and deduced amino acid sequences of the light chain of murine monoclonal antibody TF8-5G9.

Fig. 3 is a graph depicting the ability of CDR-grafted antibody TF8HCDR1 x TF8LCDR1 to bind to human tissue factor and to compete with murine monoclonal antibody TF85G9 for binding to tissue factor.

- 20 Solid symbols indicate direct binding of TF8HCDR1 x
 TF8LCDR1 and the positive control chimeric TF85G9 to
 tissue factor. Open symbols indicate competition
 binding of TF8HCDR1 x TF8LCDR1 or chimeric TF85G9 with
 murine monoclonal antibody TF85G9.
- Fig. 4 presents the DNA sequence of expression vector pEe6TF8HCDR20 and the amino acid sequence of the coding regions of the CDR-grafted heavy chain TF8HCDR20.
- Fig. 5 presents the DNA sequence of expression vector pEe12TF8LCDR3 and the amino acid sequence of the coding regions of the CDR-grafted light chain TF8LCDR3.

-8-

Fig. 6 is a graph depicting the ability of 1 CDR-grafted antibody TF8HCDR20 x TF8LCDR3 to bind to human tissue factor.

Fig. 7 is a graph depicting the ability of CDR-grafted antibody TF8HCDR20 x TF8LCDR3 to compete 5 with murine monoclonal antibody TF85G9 for binding to tissue factor.

Fig. 8 is a graph depicting the ability of CDR-grafted antibody TF8HCDR20 \times TF8LCDR3 to inhibit factor X activation.

10 Fig. 9 provides expression vector
pEe6TF8HCDR20 resulting from the subcloning of CDRgrafted heavy chain TF8HCDR20 into myeloma expression
vector pEehCMV-BqlI. The following abbreviations are
used: VH is the CDR-grafted heavy chain variable
15 region; Cγ4 is the human IgG4 constant region; pA is the
polyadenylation signal; ampR is the β-lactamase gene;
and hCMV is human cytomegalovirus.

Fig. 10 provides expression vector
pEe12TF8LCDR3 resulting from the subcloning of CDR20 grafted light chain TF8LCDR3 into myeloma expression
vector pEe12. The following abbreviations are used: VL
is the CDR-grafted light chain variable region; CK is
the human kappa constant region; SVE is the SV40 early
promoter; GS is glutamine synthetase cDNA. Other
25 abbreviations are as noted in Fig. 9.

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides CDR-grafted
30 antibodies capable of inhibiting human tissue factor
wherein the CDRs are derived from a non-human monoclonal

antibody against tissue factor and the FR and C regions

l are derived from one or more human antibodies. The
present invention further provides methods of making and
using the subject CDR-grafted antibodies.

In accordance with the present invention, the 5 CDR-grafted antibody is an antibody in which the CDRs are derived from a non-human antibody capable of binding to and inhibiting the function of human tissue factor, and the FR and C regions of the antibody are derived from one or more human antibodies. The CDRs derived 10 from the non-human antibody preferably have from about 90% to about 100% identity with the CDRs of the nonhuman antibody, although any and all modifications, including substitutions, insertions and deletions, are contemplated so long as the CDR-grafted antibody 15 maintains the ability to bind to and inhibit tissue factor. The regions of the CDR-grafted antibodies that are derived from human antibodies need not have 100% identity with the human antibodies. In a preferred embodiment, as many of the human amino acid residues as 20 possible are retained in order than immunogenicity is negligible, but the human residues, in particular residues of the FR region, are substituted as required and as taught hereinbelow in accordance with the present Such modifications as disclosed herein are 25 necessary to support the antigen binding site formed by the CDRs while simultaneously maximizing the

Non-human monoclonal antibodies against human tissue factor from which the CDRs can be derived are known in the art (Ruf et al., 1991; Morrisey et al., 1988, Thrombosis Research 52:247) or can be produced by

humanization of the antibody.

-10-

well-known methods of monoclonal antibody production

(see, e.g. Harlow et al., eds., 1988, Antibodies, A

Laboratory Manual, Cold Spring Harbor Laboratories, Cold

Spring Harbor, New York). Purified human tissue factor
against which monoclonal antibodies can be raised is

5 similarly well-known (Morrisey et al., 1987, Cell 50:129) and available to the skilled artisan. Murine monoclonal antibodies, and in particular murine monoclonal antibody TF8-5G9 disclosed by Ruf et al. and Morrisey et al., 1988, Thrombosis Research 52:247, and U.S. Patent No. 5,223,427 are particularly preferred.

The ordinarily skilled artisan can determine the sequences of the CDRs by reference to published scientific literature or sequence databanks, or by cloning and sequencing the heavy and light chains of the antibodies by conventional methodology. In accordance with the present invention, the cDNA and amino acid sequences of the heavy chain (SEQ ID NOS:1 and 2, respectively) and light chain (SEQ ID NOS:3 and 4, respectively) of murine monoclonal antibody TF8-5G9 are provided. The cDNA and deduced amino acid sequence of the murine TF8-5G9 heavy chain is provided at Figure 1. The cDNA and deduced amino acid sequence of the murine TF8-5G9 light chain is provided at Figure 2.

Each of the heavy and light chain variable
regions contain three CDRs that combine to form the
antigen binding site. The three CDRs are surrounded by
four FR regions that primarily function to support the
CDRs. The sequences of the CDRs within the sequences of
the variable regions of the heavy and light chains can
be identified by computer-assisted alignment according
to Kabat et al. (1987) in Sequences of Proteins of

٩.

Immunological Interest, 4th ed., United States l Department of Health and Human Services, US Government Printing Office, Washington, D.C., or by molecular modeling of the variable regions, for example utilizing the ENCAD program as described by Levitt (1983) J. Mol. 5 Biol. 168:595.

In a preferred embodiment the CDRs are derived from murine monoclonal antibody TF8-5G9. The preferred heavy chain CDRs have the following sequences:

10	CDR1	DDYMH	(SEQ ID NO:5)
	CDR2	LIDPENGNTIYDPKFQG	(SEQ ID NO:6)
	CDR3	DNSYYFDY	(SEO ID NO.7)

The preferred light chain CDRs have the following 15 sequences:

CDR1	KASQDIRKYLN	(SEQ ID NO:8)
CDR2	YATSLAD	(SEQ ID NO:9)
CDR3	LQHGESPYT	(SEO ID NO:10)

20

The sequences of the CDRs of the murine or other nonhuman antibody, and in particular the sequences of the CDRs of TF8-5G9, may be modified by insertions, substitutions and deletions to the extent that the CDR-25 grafted antibody maintains the ability to bind to and inhibit human tissue factor. The ordinarily skilled artisan can ascertain the maintenance of this activity by performing the functional assays described hereinbelow. The CDRs can have, for example, from about 50% to about 100% homology to the CDRs of SEQ ID NOS:5-In a preferred embodiment the CDRs have from about

-12-

80% to about 100% homology to the CDRs of SEQ ID NOS:5-In a more preferred embodiment the CDRs have from about 90% to about 100% homology to the CDRs of SEQ ID In a most preferred embodiment the CDRs have from about 100% homology to the CDRs of SEQ ID NOS:5-10.

The FR and C regions of the CDR-grafted antibodies of the present invention are derived from one or more human antibodies. Human antibodies of the same class and type as the antibody from which the CDRs are derived are preferred. The FR of the variable region of 10 the heavy chain is preferably derived from the human antibody KOL (Schmidt et al., 1983, Hoppe-Seyler's Z. Physiol. Chem. 364:713) The FR of the variable region of the light chain is preferably derived from the human antibody REI (Epp et al., 1974, Eur. J. Biochem.

15 45:513). In accordance with the present invention, it has been discovered that certain residues of the human FR are preferably replaced by the corresponding residue of the non-human antibody from which the CDRs are For example, certain FR residues of TF8-5G9 20 are preferably retained to achieve optimal binding to antigen.

For convenience, the numbering scheme of Kabat et al. has been adopted herein. Residues are designated by lower case numbers or hyphens as necessary to conform the present sequences to the standard Kabat numbered sequence.

In accordance with the present invention, residues that are retained in the FR region, i.e residues that are not replaced by human FR residues, are determined according to the following guidelines. Residues that are idiosyncratic to the parent antibody,

25

30

-13-

e.g. TF8-5G9, relative to a human consensus sequence of l Kabat et al, are retained. Residues of the parent antibody that are in agreement with the consensus sequence are retained if the corresponding residue of the human antibody, e.g. KOL or REI, is idiosyncratic.

- 5 Residues that are part of the antibody loop canonical structures defined by Chothia et al. (1989) Nature 342:877, such as residue 71 of the heavy and light chains, are retained. FR residues predicted to form loops, such as residues 28-30 of the heavy chain, are
- 10 retained. FR residues predicted to influence the conformation of the CDRs such as residues 48 and 49 preceding CDR2 of the heavy chain, are retained. Residues that have been demonstrated to be critical in the humanization of other antibodies may also be
- 15 retained. The foregoing guidelines are followed to the extent necessary to support the antigen binding site formed by the CDRs while simultaneously maximizing the humanization of the antibody.

The amino acid sequence of a representative

CDR-grafted heavy chain variable region derived from murine monoclonal antibody TF8-5G9 and human antibody KOL is shown below. The CDR-grafted heavy chain is designated TF8HCDR1; murine residues were retained in the FR at residues 6, 17, 23, 24, 28, 29, 30, 48, 49, 68, 71, 73, 78, 88 and 91. CDRs are underlined.

 10
 20
 30
 35ab
 50

 QVQLVQSGGG
 VVQPGRLLRL
 SCKASGFNIK
 DYYMH--WVR
 QAPGKGLEWIG

 52abc
 60
 70
 80
 82abc
 90

 LIDP--ENGNTIYD
 PKFQGRFSIS
 ADTSK--NTAFL
 QMDSLRPEDTAVY

 100
 110

30 YCARDNSYYF DYWGQGTPVT VSS (SEQ ID NO:11)

-14-

The amino acid sequence of a representative 1 CDR-grafted light chain variable region derived from murine monoclonal antibody TF8-5G9 and human antibody REI is shown below. The CDR-grafted light chain is designated TF8LCDR1; murine residues were retained in 5 the FR at residues 39, 41, 46 and 105. CDRs are underlined.

 10
 20
 30
 40
 50

 DIQMTQSPSS
 LSASVGDRVT
 ITCKASQDIR
 KYLNWYQQK
 WKAPKTLIYY

 10
 60
 70
 80
 90
 100

 ATSLADGVPS
 RFSGSGSGTD
 YTFTISSLQP
 EDIATYYCLQ
 HGESPYTFGQ

GTKLEITR (SEQ ID NO:12)

a CDR-grafted antibody containing variable regions TF8HCDR1 and TF8LCDR1 has been demonstrated in accordance with the present invention to be as effective as murine monoclonal antibody TF8-5G9 in binding to human tissue factor. It has been further discovered in accordance with the present invention, by examination of the molecular structure of murine monoclonal antibody TF8-5G9, and by design, construction, and analysis of CDR-grafted antibodies, that the FR regions can be further humanized without the loss of antigen binding activity. In particular, the FR region may retain the human FR residue at residues 6, 17, 68, 73 and 78 of the heavy chain, and residues 39, 41, 16 and 105 of the light chain, with maintenance of antigen binding activity.

In a most preferred embodiment, the heavy

30 chain variable region contains a FR derived from human antibody KOL in which murine monoclonal antibody TF8-5G9

residues are retained at amino acids 23, 24, 28, 29, 30, 1 48, 49, 71, 88 and 91. The preferred heavy chain variable region is designated TF8HCDR20 and has the following sequence.

5 10 20 30 35ab 50 QVQLVESGGG VVQPGRSLRL SCKASGFNIK DYYMH--WVR QAPGKGLEWIGL

52abc 60 70 80 82abc 90 100 IDP--ENGNTIYD PKFQGRFTIS ADNSKNTLFL QMDSLRPEDTAVY YCARDNSYYF

10 110

DYWGQGTPVT VSS (SEQ ID NO:13)

In a most preferred embodiment, the light chain variable region contains a FR derived from human antibody REI in which murine monoclonal antibody TF8-5G9 residues are retained at amino acids 39 and 105. The preferred light chain variable region is designated TF8LCDR20 and has the following sequence.

20 30 40 50
DIQMTQSPSS LSASVGDRVT ITCKASQDIR KYLNWYQQKP GKAPKLLIYY
60 70 80 90 100
ATSLADGVPS RFSGSGSGTD YTFTISSLQP EDIATYYCLQ HGESPYTFGQ
GTKLEITR (SEQ ID NO:14)

It is within the ken of the ordinarily skilled artisan to make minor modifications of the foregoing sequences, including amino acid substitutions, deletions and insertions. Any such modifications are within the scope of the present invention so long as the resulting CDR-grafted antibody maintains the ability to bind to and inhibit human tissue factor. The ordinarily skilled artisan can assess the activity of the CDR-grafted

antibody with reference to the functional assays l described hereinbelow.

The human constant region of the CDR-grafted antibodies of the present invention is selected to minimize effector function. The intended use of the 5 CDR-grafted antibodies of the present invention is to block the coagulation cascade by inhibition of tissue factor, and thus antibody effector functions such as fixation of complement are not desirable. Antibodies with minimal effector functions include IgG2, IgG4, IgA, IgD and IgE. In a preferred embodiment of the present invention, the heavy chain constant region is the human IgG4 constant region, and the light chain constant region is the human IgG4 kappa constant region.

In that effector functions may not be

desirable for therapeutic uses, the present invention
further contemplates active fragments of the CDR-grafted
antibodies, and in particular Fab fragments and F(ab')₂
fragments. Active fragments are those fragments capable
of inhibiting human tissue factor. Fab fragments and

F(ab')₂ fragments may be obtained by conventional means,
for example by cleavage of the CDR-grafted antibodies of
the invention with an appropriate proteolytic enzyme
such as papain or pepsin, or by recombinant production.
The active fragments maintain the antigen binding sites
of the CDR-grafted antibodies and thus are similarly
useful therapeutically.

The ability of the CDR-grafted antibodies designed and constructed as taught in accordance with the present invention to bind and inhibit human tissue 30 factor can be assessed by functional assays. For example, in a rapid and convenient assay, expression

vectors containing nucleic acids encoding the CDR
grafted heavy and light chains can be co-transfected into suitable host cells and transiently expressed. The resulting antibodies can be assessed by standard assays for ability to bind human tissue factor, and for ability to compete for binding to tissue factor with the non-human antibody from which the CDRs are derived.

For example, transient expression of nucleic acids encoding the CDR-grafted heavy and light chains in COS cells provides a rapid and convenient system to test antibody gene expression and function. Nucleic acids encoding the CDR-grafted heavy and light chains, respectively, are cloned into a mammalian cell expression vector, for example pSG5, described by Green et al. (1988) Nucleic Acids Res. 16:369 and commercially available from Stratagene Cloning Systems, La Jolla, CA. The pSG5 expression vector provides unique restriction sites for the insertion of the heavy and light chain genes, and in vivo expression is under the control of the SV40 early promoter. Transcriptional termination is signaled by the SV40 polyadenylation signal sequence.

The pSG5-based expression vectors containing nucleic acids encoding the heavy and light chains are cotransfected into COS cells and cultured under conditions suitable for transient expression. Cell culture media is then harvested and examined for antibody expression, for example by an enzyme linked immunosorbent assay (ELISA), to determine that suitable levels of antibody have been produced. An ELISA may then be used to assess the ability of the CDR-grafted antibody to bind to human tissue factor. Human tissue factor is immobilized on a microtiter plate and the COS

cell supernatant containing the CDR-grafted antibody is

1 added followed by an incubation at room temperature for
about one hour. The plates are then washed with a
suitable detergent-containing buffer such as phosphate
buffered saline (PBS)/Tween, followed by the addition of

5 the components of a suitable detection system. For
example, horseradish peroxidase conjugated goat antihuman kappa chain polyclonal antibody is added, followed
by washing, followed by addition of substrate for
horseradish peroxidase, and detection. The CDR-grafted

10 antibodies within the scope of the present invention are
those which are capable of binding to human tissue
factor to a degree comparable to the non-human antibody
from which the CDRs are derived as determined by the
foregoing assay.

15 The ability of the CDR-grafted antibodies to inhibit the activity of human tissue factor in vivo can be conveniently assessed by the following in vitro assay that mimics in vivo coagulation events. In response to vascular injury in vivo, tissue factor binds to factor 20 VII and facilitates the conversion of factor VII to a serine protease (factor VIIa). The factor VIIa-tissue factor complex converts factor X to a serine protease (factor Xa). Factor Xa forms a complex with factor Va (from the intrinsic coagulation pathway), resulting in 25 the conversion of prothrombin to thrombin, which in turn results in the conversion of fibrinogen to fibrin. convenient in vitro functional assay, tissue factor is incubated in the presence of factor VIIa and the CDRgrafted anti-tissue factor antibody produced in the 30 transient expression system described above. Factor X is added and the reaction mixture is incubated, followed

- 19 -

by an assay for factor Xa activity utilizing a

l chromogenic substrate for factor Xa (Spectrozyme FXa,
American Diagnostica, Inc., Greenwich, CT). The ability
of the CDR-grafted antibody to inhibit factor X
activation thus provides a measure of the ability of the

CDR-grafted antibody to inhibit the activity of human
tissue factor.

The CDR-grafted antibodies within the scope of the present invention are those which are capable of inhibiting human tissue factor to a degree comparable to 10 the non-human antibody from which the CDRs are derived as determined by the foregoing assay. In one embodiment, the CDR-grafted antibody has at least 50% of the inhibitory activity of TF8-5G9 for human tissue In a preferred embodiment, the CDR-grafted 15 antibody has at least 70% of the inhibitory activity of TF8-5G9 for human tissue factor. In a more preferred embodiment, the CDR-grafted antibody has at least 80% of the inhibitory activity of TF8-5G9 for human tissue In a most preferred embodiment, the CDR-grafted 20 antibody has at least 90% of the inhibitory activity of TF8-5G9 for human tissue factor.

In another embodiment, the present invention provides a method of producing a CDR-grafted antibody capable of inhibiting human tissue factor. The method comprises constructing an expression vector containing a nucleic acid encoding the CDR-grafted antibody heavy chain and an expression vector containing a nucleic acid encoding the CDR-grafted antibody light chain, transfecting suitable host cells with the expression vectors, culturing the transfected host cells under conditions suitable for the expression of the heavy and

light chains, and recovering the CDR-grafted antibody.

1 Alternately, one expression vector containing nucleic acids encoding the heavy and light chains may be utilized.

Standard molecular biological techniques, for 5 example as disclosed by Sambrook et al. (1989), Molecular Cloning: A Laboratory Manual Cold Spring Harbor Press, Cold Spring Harbor, NY may be used to obtain nucleic acids encoding the heavy and light chains of the CDR-grafted antibodies of the present invention. 10 A nucleic acid encoding the CDR-grafted variable domain may be constructed by isolating cDNA encoding the antibody to be humanized, e.g. murine monoclonal antibody TF8-5G9, by conventional cloning methodology from the hybridoma producing the antibody, or by 15 polymerase chain reaction (PCR) amplification of the variable region genes, as described for example by Winter et al., followed by site-directed mutagenesis to substitute nucleotides encoding the desired human residues into the FR regions. Alternately, the cDNA 20 encoding the human antibody can be isolated, followed by site-directed mutagenesis to substitute nucleotides encoding the desired murine residues into the CDRs.

Nucleic acids encoding the CDR-grafted variable domain may also be synthesized by assembling synthetic oligonucleotides, for example utilizing DNA polymerase and DNA ligase. The resulting synthetic variable regions may then be amplified by PCR. Nucleic acids encoding CDR-grafted variable domains may also be constructed by PCR strand overlap methods that are known in the art and reviewed by Owens et al.

Accordingly, having determined the desired

amino acid sequences of the CDR-grafted variable domains in accordance with the present invention, the ordinarily skilled artisan can obtain nucleic acids encoding the variable domains. Further, the skilled artisan is aware that due to the degeneracy of the genetic code, various nucleic acid sequences can be constructed that encode

nucleic acid sequences can be constructed that encode the CDR-grafted variable domains. All such nucleic acid sequence are contemplated by the present invention.

The nucleic acids encoding the CDR-grafted

variable domains are linked to appropriate nucleic acids encoding the human antibody heavy or light chain constant region. Nucleic acid sequences encoding human heavy and light chain constant regions are known in the art. It is within the ken of the ordinarily skilled

artisan to include sequences that facilitate transcription, translation and secretion, for example start codons, leader sequences, the Kozak consensus sequence (Kozak, 1987, <u>J. Mol. Biol. 196</u>:947) and the like, as well as restriction endonuclease sites to facilitate cloning into expression vectors.

The present invention thus further provides nucleic acids encoding the heavy and light chains of CDR-grafted antibodies capable of inhibiting human tissue factor wherein the CDRs are derived from a murine monoclonal antibody against tissue factor and the FR and C regions are derived from one or more human antibodies.

In accordance with the present invention, representative nucleic acids encoding CDR-grafted heavy and light chains were constructed. The CDR-grafted heavy chain comprises a variable region containing FR regions derived from human antibody KOL and CDRs derived

-22-

from murine monoclonal antibody TF8-5G9 and further

comprises a constant region derived from the heavy chain of human IgG4. The CDR-grafted light chain comprises a variable region containing FR regions derived from human antibody REI and CDRs derived from murine monoclonal

antibody TF8-5G9 and further comprises a constant region derived from human IgG4 kappa chain. Nucleic acids encoding the heavy and light chains were constructed by assembling the variable regions from synthetic nucleotides, amplifying the assembled variable regions

by PCR, purifying the amplified nucleic acids, and ligating the nucleic acid encoding the variable region into a vector containing a nucleic acid encoding the appropriate human constant region.

The sequences of representative nucleic acids encoding CDR-grafted heavy and light chains are presented as nucleotides 1-2360 of SEQ ID NO:15 and nucleotides 1-759 of SEQ ID NO:20, respectively.

The nucleic acid sequence encoding a preferred heavy chain (nucleotides 1-2360 of SEO ID NO:15) is 20 designated the TF8HCDR20 gene. The nucleic acid sequence contains the following regions: 5' EcoRI restriction site (nucleotides 1-6); Kozak sequence (nucleotides 7-15); start codon and leader sequence (nucleotides 16-72); CDR-grafted variable region 25 (nucleotides 73-423); human IqG4 CH1 domain (nucleotides 424-717); human IgG4 intron 2 (nucleotides 718-1110); human IgG4 hinge (nucleotides 1111-1146); human IgG4 intron 3 (nucleotides 1147-1267); human IgG4 CH2 domain (nucleotides 1268-1594); human IgG4 intron 4 (nucleotides 1595-1691); human IgG4 CH3 domain 30 (nucleotides 1692-2012); 3' untranslated region

(nucleotides 2013-2354); 3' <u>BamHI</u> end spliced to <u>BCLI</u>]
1 site of expression vector (nucleotides 2355-2360).

The nucleic acid sequence encoding a preferred light chain gene (nucleotides 1-759 of SEQ ID NO:20) is designated the TF8LCDR3 gene. The nucleic acid sequence 5 contains the following regions: 5' EcoRI restriction site (nucleotides 1-5); Kozak sequence (nucleotides 6-8); start codon and leader sequence (nucleotides 9-68); CDR-grafted variable region (nucleotides 69-392); human kappa constant region (nucleotides 393-710); 3' untranslated region (nucleotides 711-753); 3' BamHI end spliced to BclI site of expression vector (nucleotides 754-759).

The foregoing preferred sequences can be modified by the ordinarily skilled artisan to take into account degeneracy of the genetic code, and to make additions, deletions, and conservative and nonconservative substitutions that result in a maintenance of the function of the nucleic acid, i.e. that it encodes a heavy or light chain of a CDR-grafted antibody capable of inhibiting human tissue factor. Restriction sites and sequences that facilitate transcription and translation may be altered or substituted as necessary depending upon the vector and host system chosen for expression.

Suitable expression vectors and hosts for production of the CDR-grafted antibodies of the present invention are known to the ordinarily skilled artisan. The expression vectors contain regulatory sequences, such as replicons and promoters, capable of directing replication and expression of heterologous nucleic acids sequences in a particular host cell. The vectors may

-24-

also contain selection genes, enhancers, signal

l sequences, ribosome binding sites, RNA splice sites,
polyadenylation sites, transcriptional terminator
sequences, and so on. The vectors may be constructed by
conventional methods well-known in the art, or obtained

5 from commercial sources. The expression vectors preferably have convenient restriction sites at which the nucleic acids encoding the antibody chains of the invention are inserted. Myeloma expression vectors in which antibody gene expression is driven by the human cytomegalovirus promoter-enhancer or are particularly preferred.

Expression vectors containing a nucleic acid encoding the CDR-grafted heavy chain under the control of a suitable promoter and expression vectors containing a nucleic acid encoding the CDR-grafted light chain under the control of a suitable promoter are cotransfected into a suitable host cell. In another embodiment, nucleic acids encoding both heavy and light chains are provided in a single vector for transfection of a suitable host cell.

Suitable host cells or cell lines for expression of the CDR-grafted antibodies of the present invention include bacterial cells, yeast cells, insect cells, and mammalian cells such as Chinese hamster ovary (CHO) cells, COS cells, fibroblast cells and myeloid cells. Mammalian cells are preferred. CHO, COS and myeloma cells are particularly preferred. Myeloma cells are preferred for establishing permanent CDR-grafted antibody producing cell lines. Expression of antibodies in myeloma cells, bacteria, and yeast is reviewed by

Sandhu (1992) Critical Reviews in Biotechnology 12:437.

l Expression in mammalian cells is reviewed by Owen et al. Transfection of host cells by the expression vectors containing nucleic acids encoding the CDRgrafted heavy and light chains can be accomplished by 5 methods well-known to one of ordinary skill in the art. Such-methods include, for example, calcium chloride transfection, calcium phosphate transfection, lipofection and electroporation. Suitable culture methods and conditions for the production of the CDR-10 grafted antibodies are likewise well-known in the art. The CDR-grafted antibodies can be purified by conventional methods, including ammonium sulfate precipitation, affinity chromatography, gel electrophoresis, and the like. The ability of the CDR-15 grafted antibodies to bind to and inhibit human tissue factor can be assessed by the in vitro assays described above.

The CDR-grafted antibodies of the present invention have a variety of utilities. For example, the antibodies are capable of binding to human tissue factor and thus are useful in assays for human tissue factor from body fluid samples, purification of human tissue factor, and so on.

The CDR-grafted antibodies of the present
invention are capable of inhibiting human tissue factor.
Human tissue factor is well-known to be an essential element in the human coagulation cascade. The ability of the antibodies of the present invention to disrupt the coagulation cascade is demonstrated by in vitro
assays in which the antibodies prevent factor X activation. Accordingly, the present antibodies are

-26-

useful in the attenuation of coagulation. The present invention thus provides a method of attenuation of coagulation comprising administering a therapeutically effective amount of CDR-grafted antibody capable of inhibiting human tissue factor to a patient in need of such attenuation.

Numerous thrombotic disorders are characterized by excessive or inappropriate coaqulation and are effectively treated or prevented by administration of agents that interfere with the 10 coagulation cascade. Accordingly, the present invention further provides a method of treatment or prevention of a thrombotic disorder comprising administering a therapeutically effective amount of a CDR-grafted antibody capable of inhibiting human tissue factor to a 15 patient in need of such treatment or prevention. preferred embodiment, the thrombotic disorder is intravascular coagulation, arterial restenosis or arteriosclerosis. The antibodies of the invention may be used in combination with other antibodies or therapeutic agents. 20

A therapeutically effective amount of the antibodies of the present invention can be determined by the ordinarily skilled artisan with regard to the patient's condition, the condition being treated, the 25 method of administration, and so on. A therapeutically effective amount is the dosage necessary to alleviate, eliminate, or prevent the thrombotic disorder as assessed by conventional parameters. For example, a therapeutically effective dose of a CDR-grafted antibody of the present invention may be from about 0.1 mg to about 20 mg per 70 kg of body weight. A preferred

dosage is about 1.0 mg to about 5 mg per 70 kg of body l weight.

A patient in need of such treatment is a patient suffering from a disorder characterized by inappropriate or excessive coagulation, or a patient at risk of such a disorder. For example, anticoagulant therapy is useful to prevent postoperative venous thrombosis, and arterial restenosis following balloon angioplasty.

The CDR-grafted antibodies of the present invention are useful in the same manner as comparable therapeutic agents, and the dosage level is of the same order of magnitude as is generally employed with those comparable therapeutic agents. The present antibodies may be administered in combination with a

15 pharmaceutically acceptable carrier by methods known to one of ordinary skill in the art.

Another embodiment of the present invention is directed to a pharmaceutical composition comprising a least one CDR-grafted antibody capable of inhibiting human tissue factor and further comprising a pharmaceutically acceptable carrier. As used herein, "pharmaceutically acceptable carrier" includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like. The use of such media and agents for pharmaceutically active substances is well-known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, its use in the therapeutic compositions is contemplated.

Supplementary active ingredients can also be incorporated into the compositions.

PCT/US96/09287

The antibodies can be administered by wellknown routes including oral and parenteral, e.g.,
intravenous, intramuscular, intranasal, intradermal,
subcutaneous, and the like. Parenteral administration
and particularly intravenous administration is
preferred. Depending on the route of administration,
the pharmaceutical composition may require protective
coatings.

The pharmaceutical forms suitable for injectionable use include sterile aqueous solutions or 10 dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. In all cases the ultimate solution form must be sterile and fluid. Typical carriers include a solvent or dispersion medium containing, for example, 15 water buffered aqueous solutions (i.e., biocompatible buffers), ethanol, polyol such as glycerol, propylene glycol, polyethylene glycol, suitable mixtures thereof, surfactants or vegetable oils. The antibodies may be incorporated into liposomes for parenteral 20 administration. Sterilization can be accomplished by an art-recognized techniques, including but not limited to, addition of antibacterial or antifungal agents, for example, paraben, chlorobutanol, phenol, sorbic acid or thimersal. Further, isotonic agents such as sugars or 25 sodium chloride may be incorporated in the subject compositions.

Production of sterile injectable solutions containing the subject antibodies is accomplished by incorporating these antibodies in the required amount in the appropriate solvent with various ingredients enumerated above, as required, followed by

sterilization, preferably filter sterilization. To

l obtain a sterile powder, the above solutions are vacuumdried or freeze-dried as necessary.

The following examples further illustrate the present invention.

5

10

15

20

25

30

35

BNSDOCID: <WO_____9640921A1_1_>

-30-

EXAMPLE 1

Two DNA libraries were generated from oligo

(dT)-primed TF8-5G9 hybridoma RNA utilizing standard
molecular biology procedures as described by Sambrook et
al. The cDNA was cloned into the Librarian II plasmid
vector from Invitrogen (San Diego, CA), and the
libraries were screened for cDNA clones encoding murine

IGG HC and LC. A full-length cDNA clone for the heavy
chain could not be isolated, despite the construction of
two independent libraries. A random primed TF8-5G9 cDNA
library was generated to obtain the missing 5' sequence
of the heavy chain. Consequently, the heavy chain cDNA
was in two pieces: a 5' clone of 390 nucleotides and a
3' clone of 1392 nucleotides. The two HC clones overlap
by 292 nucleotides.

The HC and LC clones were completely sequenced by the dideoxy chain termination method of Sanger et al. 20 (1977) Proc. Natl. Acad. Sci. USA 74:5463. To verify the variable region sequence, sequence was obtained from PCR-amplified cDNA that had been synthesized from total TF8-5G9 hybridoma RNA. Total TF8-5G9 hybridoma RNA was isolated by the guanidinium thiocyanate method of 25 Chrigwin et al. (1970) Biochemistry 18:5294. cDNA was synthesized using the Perkin Elmer (Norwalk, CT) GeneAmp RNA Polymerase Chain Reaction (PCR) kit with an oligo (dT) primer. Components of the same kit were used in the PCR to amplify the LC and HC variable regions using 30 primers based on the sequence that had been obtained for the cDNA clones. The amplified variable region

fragments were gel-purified and sequenced according to

the method of Tracy et al. (1991) BioTechniques 11:68 on
a Model 373A Applied Biosystems, Inc. (Foster City, CA)
automated fluorescent DNA sequencer. The sequence for
TF8-5G9 LC and HC obtained from RNA amplification and
the sequence obtained from the cDNA clones agreed. The
TF8-5G9 HC variable region sequence with protein
translation is shown in Figure 1 and SEQ ID NO:1, and
that for the LC is shown in Figure 2 and SEQ ID NO:3.

10

15

20

25

30

EXAMPLE 2

Chimeric LC and HC Expression Vector Construction

In order to test the binding activity of the CDR-grafted anti-TF LC and HC individually, mouse-human 5 chimeric TF8-5G9 LC and HC were constructed. This allowed the CDR-grafted LC to be tested for TF binding ability in combination with the chimeric HC, and the CDR-grafted HC to be tested in combination with the chimeric LC.

Primers were designed to amplify the TF8-5G9 10 LC variable region using as template cDNA clones in the Librarian II vector. The 5' primer was designed with an EcoRI site while the 3' primer was designed with a NarI PCR was used to amplify the LC variable region, 15 generating a 433 bp fragment with a 5'EcoRI end and 3'NarI end. The fragment included the signal sequence from the TF8-5G9 LC cDNA clone but incorporated a 2 base change in the arginine codon immediately following the ATG start codon. This change retained the arginine 20 residue but made the sequence conform to the Kozak consensus sequence in order to potentially improve translation of the LC mRNA. The PCR amplified LC variable region fragment was digested with EcoRI and NarI restriction enzymes and purified by electrophoresis 25 on a 2% Nusieve, 1% Seakem agarose gel (FMC Bio

The DNA was extracted from the gel slice and purified by the Geneclean (Bio 101, La Jolla, CA) procedure. The full-length chimeric TF8-5G9 LC gene was generated by cloning this DNA into the EcoRI and NarI sites of a pSP73 vector (Promega, Madison, WI) which

Products, Rockland, ME).

contains the human kappa constant region. The gene was isolated from the pSP73 vector by <u>EcoRI</u> digestion and subcloned into the <u>EcoRI</u> site of the pSG5 mammalian cell expression vector (Stratagene Cloning Systems, La Jolla, CA).

The chimeric TF8-5G9 HC gene was assembled in a manner similar to that of the chimeric LC. Since there was no full-length HC cDNA isolated from the Librarian II vector cDNA libraries, the HC variable region fragment that was generated by the PCR from total TF8-5G9 hybridoma cell RNA was used as the template. Primers which incorporated an EcoRI site at the 5' end and a SacI site at the 3' end were used in the PCR to generate a 430 bp fragment which contained the TF8-5G9 HC Kozak sequence, start codon, signal sequence, and variable region. This fragment was digested with the restriction enzymes EcoRI and SacI, and gel-purified using the same procedure that was used with the chimeric LC construction.

The full-length TF8-5G9 chimeric HC gene was constructed by cloning the variable region fragment into the <u>EcoRI</u> and SacI sites of the pSG5 expression vector containing the human IgG4 constant region.

25

30

EXAMPLE 3

Design and Construction of the CDR-Grafted Heavy and Light Chain Genes

The variable region domains of the CDR-grafted 5 HC and LC genes were designed with an EcoRI overhang at the 5' end followed by a Kozak sequence to improve antibody expression. The leader sequences were derived from the heavy and light chains of the murine monoclonal antibody B72.3 (Whittle et al. (1987) Protein

10 Engineering 1:499). The 3' end of the variable regions were designed to have overhangs which allowed for splicing to the appropriate human constant region DNA.

In the initially designed CDR-grafted TF8-5G9 heavy and light chains the CDRs were derived from murine TF8-5G9 sequence while the frameworks were derived primarily from human antibody sequence. The human antibody KOL (Schmidt et al.) was used for the heavy chain frameworks, while the human antibody dimer (Epp et al.) was used for the light chain frameworks.

Several criteria were used to select murine framework residues in the design of the TF8-5G9 CDR-grafted heavy and light chain variable regions. Framework residues which, at a particular position, are idiosyncratic to TF8-5G9 were retained as murine sequence with the assumption that they contributed to its unique binding characteristics. TF8-5G9 murine residues were also retained at framework positions where they were in agreement with the human consensus sequence but where the corresponding residues in KOL or REI were

30 idiosyncratic. Residues that are part of antibody loop canonical structures such as residue 71 (numbering

- according to Kabat et al.) of the heavy and light chains were also retained as murine sequence. Framework residues that form loops such as residues 26-30 of the HC were kept as TF8-5G9 murine sequence at positions were the murine sequence differed from the human.
- 5 Residues known to directly influence the conformation of CDRs, such as 48 and 49 immediately preceding CDR2 of the HC, were also retained as murine sequence.

The amino acid sequence of the variable region for the initially designed CDR-grafted TF8-5G9 HC,

TF8HCDR1, is shown in SEQ ID NO:11. Murine residues were retained at framework positions 6, 17, 23, 24, 28, 29, 30, 48, 49, 68, 71, 73, 78 88 and 91. The CDR-grafted HC variable region was attached to a human IgG4 constant region.

The amino acid sequence of the variable region for the initially designed CDR-grafted TF8-5G9 LC, TF8LCDR1, is shown in SEQ ID NO:12. Murine residues were retained at framework positions 39, 41, 46 and 105. The CDR-grafted LC variable region was attached to a human kappa constant region.

The variable region for the CDR-grafted HC and LC described above were each assembled from 13 synthetic oligonucleotides which were synthesized by Research Genetics, Inc., Huntsville, AL. These oligonucleotides ranged in length from 42 to 80 bases, and encoded both variable region strands. When the 6 complementary oligonucleotide pairs were annealed, the overhangs generated were 17 to 24 bases in length. These oligonucleotide pairs were combined, annealed at their complementary overhangs, and ligated to give the final full length double-stranded variable regions.

PCT/US96/09287

The HC variable region oligonucleotides were

assembled into a 452 bp fragment which contains a 5'

EcoRI site and a 3' SacI site. The polymerase chain reaction was used to amplify this fragment. The resulting amplified DNA was purified on a 2% Nusieve, 1%

- 5 Seakem agarose gel (FMC). The appropriate size band of DNA was excised and the DNA was recovered by the Geneclean (Bio 101) procedure. The fragment was then digested with EcoRI and SacI, and purified again by the Geneclean method. This HC variable region fragment with
- 10 EcoRI and SacI ends was cloned into the EcoRI and SacI sites of the pSport-1 vector (GIBCO-BRL Life Technologies, Gaithersburg, MD). DNA from several clones was isolated and sequenced to verify proper variable region assembly. All clones had unexpected
- 15 base changes. One clone with the fewest base changes (two mismatches at bases 133 and 140) was selected to be corrected by site-directed mutagenesis according to Kunkel (1985) Proc. Natl. Acad. Sci. USA 82:488.

 Briefly, CJ236 (ung-, dut-) competent cells (Invitrogen
- 20 Corporation, San Diego, CA) were transformed with the pSport vector containing the CDR-grafted HC variable region with the two base mismatch. Single-stranded, uridine-incorporated DNA templates were purified from phage following M13 helper phage (Stratagene Cloning
- 25 Systems) infection of the transformed cells.

 Mutagenesis oligos containing the desired base changes

 were synthesized on an Applied Biosystems Model 380B DNA

 synthesizer. The mutagenesis oligos were annealed to

 the template DNA, and T7 DNA Polymerase and T4 DNA
- 30 Ligase (MutaGene InVitro Mutagenesis Kit, Bo-Rad Laboratories, Richmond, CA) were used to incorporate the

oligo into a newly synthesized DNA strand. DH5a

1 competent cells (GIBCO-BRL Life Technologies) were transformed with the double-stranded DNA. The original uridine-incorporated strand is destroyed while the newly synthesized strand containing the mutagenesis oligo is

5 replicated. Phagemid DNA was prepared from the resulting mutagenesis clones and the variable regions were sequence to identify the clones which had incorporated the desired changes. The corrected HC

ECORI/SacI variable region fragment was excised from the pSport vector, purified and ligated into the EcoRI/SacI sites of a pSG5 vector containing the human IgG4

sites of a pSG5 vector containing the human IgG4 constant region. This resulted in the generation of a full-length humanized TF8-5G9 HC gene, TF8HCDR1, in the pSG5 COS cell expression vector. The vector was designated pSG5TF8HCDR1.

The CDR-grafted TF8-5G9 LC variable region was also amplified by the PCR from the assembled synthetic oligonucleotides into a 433 bp fragment which contained a 5' EcoRI site and a 3' NarI site. This fragment was purified as described above for the HC, digested with EcoRI and NarI and purified by the Geneclean procedure. This fragment was cloned into the EcoRI and NarI sites of a pSG5 vector which contains the human kappa constant region. This resulted in the generation of a full-

25 length humanized TF8-5G9 LC gene, TF8LCDR1, in the pSG5 COS cell expression vector. Seven clones were sequenced, and one was found to have the desired CDR-grafted LC sequence. The vector was designated pSQ5TF8LCDR1.

Expression of the CDR-Grafted Heavy and Light Chain Genes in COS Cells

The transient expression of antibody genes in 5 COS-1 cells provides a rapid and convenient system to test antibody gene expression and function. COS-1 cells were obtained from the American Type Culture Collection (CRL 1650) and cultured in Dulbecco's Modified Eagle Medium (DMEM, from GIBCO BRL Life Technologies) with 10% 10 fetal calf serum. The pSG5TF8HCDR1 expression factor was cotransfected into COS cells with the pSG5 chimeric LC expression vector using the DEAE-Dextran method followed by DMSO shock as described by Lopata et al. (1984) Nucleic Acids Res. 14:5707. After 4 days of culture, media was harvested from the wells and examined for antibody expression levels.

Antibody levels were determined by an ELISA-based assembly assay. Plates were coated with a goat anti-human Fc specific antibody. Various dilutions of the COS cell supernatant containing secreted antibody were added, incubated for one hour, and washed. A horseradish peroxidase-linked goat anti-human kappa chain antibody was added, incubated for one hour at room temperature, and washed. Substrate for the horseradish peroxidase was added for detection. Antibody levels in the COS cell media were found to be nearly undetectable for the TF8HCDR1 x chimeric LC. Upon closer examination of the TF8HCDR1 variable region sequence, it was found that an unexpected base change, which had occurred during the site-directed mutagenesis process described in Example 3, introduced a stop codon into framework 4

of the TF8HCDR1 gene. This substitution was corrected

by site-directed mutagenesis as described above.

Thorough sequencing of the variable region confirmed that the correction was made with no additional changes introduced. Upon transfection of this corrected

TF8HCDR1 gene with the chimeric LC, reasonable expression levels were obtained.

COS cells which had been co-transfected with the CDR-grafted LC expression vector, pSGTF8LCDR1, and either the chimeric HC or TF8HCDR1, produced antibody at 10 reasonable levels. Antibody levels in COS cell supernatants ranged from 0.5 μg to 10.0 μg per ml.

15

20

25

30

Binding of the CDR-Grafted TF8-5G9 to Tissue Factor

An ELISA was used to determine the ability of the CDR-grafted TF8-5G9 antibody, TF8HCDR1 x TF8LCDR1,

5 to bind to tissue factor. Tissue factor was immobilized on a microtiter plate. The test COS cell supernatant, containing the CDR-grafted antibody, was added to the well, incubated for one hour at room temperature. Following three washes with PBS/Tween, a goat anti-human lo kappa chain polyclonal antibody conjugated to horseradish peroxidase was added, incubated for one hour at room temperature and washed. Substrate for the horseradish peroxidase was added for detection. The positive control was the TF8-5G9 chimeric antibody. The CDR-grafted TF8-5G9 antibody was able to bind to tissue factor to a degree comparable to the chimeric TF8-5G9 antibody (Figure 3, solid symbols).

The ability of the humanized antibody to compete with murine TF8-5G9 for binding to tissue factor 20 was also examined. Varying amounts of COS cell supernatant containing the test CDR-grafted antibody and a fixed amount of murine TF8-5G9 were added simultaneously to wells coated with tissue factor. Binding was allowed to occur for one hour at room 25 temperature. The wells were washed three times with PBS/Tween. A goat anti-human kappa chain antibody conjugated to horseradish peroxidase was added, incubated for one hour at room temperature and washed. Substrate for the horseradish peroxidase was added for detection. The positive antibody competed as well as

the chimeric antibody with murine TF8-5G9 for binding to 1 TF.

These data indicate that the initially designed CDR-grafted antibody, TF8HCDR1 x TF8LCDR1, was approximately as active as the chimeric TF8-5G9 in

5 binding to TF and competing with the murine antibody for binding to TF.

10

15

20

25

30

Construction and Characterization
of Additional CDR-Grafted Heavy Chains

Upon examination of the molecular structure of 5 murine TF8-5G9, framework residues at positions 27, 68, 73 and 78 were found to lie on the antibody surface and had no discernible contact with the CDRs. framework residues were of murine sequence in TF8HCDR1 but were changed to the human KOL sequence in various 10 combinations to generate a series of CDR-grafted heavy chains with framework residue variations. were made by the process of site-directed mutagenesis as described in Example 3. Each CDR-grafted heavy chain version was expressed in COS cells in combination with 15 the CDR-grafted LC, TF8LCDR1, and tested for its ability to bind TF and compete with murine TF8-5G9 for binding. Every version of the CDR-grafted heavy chain in combination with TF8LCDR1 was shown to bind TF with an affinity comparable to chimeric TF8-5G9. Every CDR-20 grafted HC in combination with TF8LCDR1 was able to compete with murine TF8-5G9 for binding to TF to a degree comparable to the chimeric antibody.

Changes in sequence from murine to human for HC framework positions 6, 7, 68, 73 and 78 did not 25 adversely affect the antigen binding ability of the antibody. The CDR-grafted HC version which had human sequence at all of these positions, and thus was the most humanized HC, was TF8HCDR20.

The complete sequence of the TF8HCDR20 gene
30 was determined. The DNA sequence is shown as a 2360 bp
EcoRI/BamHI insert with protein translation in the

pEe6TF8HCDR20 expression vector in Figure 4 and SEQ ID $^{\rm l}$ NO:15.

The essential regions of the gene are as follows:

	Nucleotide #	Region
5	1-6	5' EcoRI restriction site
	- 7-15	Kozak sequence
	16-72	Start codon and leader sequence
	73-423	CDR-grafted variable region
	424-717	Human IgG4 CH1 domain
10	718-1110	Human IgG4 intron 2
	1111-1146	Human IgG4 hinge
	1147-1267	Human IgG4 intron 3
	1268-1594	Human IgG4 CH2 domain
	1595-1691	Human IgG4 intron 4
15	1692-2012	Human 1gG4 CH3 domain
	2013-2354	3' untranslated region
	2355-2360	3' BamHI end spliced to BclI site of the expression vector

20

25

30 -

Construction and Characterization
of Additional CDR-Grafted Light Chains

The initially designed CDR-grafted LC, 5 TF8LCDR1, contained four framework residues from the murine TF8-5G9 sequence. At two of these positions, 39 and 105, the human REI framework sequence is unique to REI; however, the murine TF8-5G9 LC sequence is in agreement with the human consensus sequence. The other 10 two murine framework residues, trp41 and thr46, are Several versions of the CDR-grafted unique to TF8-5G9. LC were generated in which the sequence at these four positions were changed from the murine to the human REI in various combinations. These changes were made by . 15 site-directed mutagenesis. Each version of the CDRgrafted LC was expressed in COS cells in combination with the CDR-grafted HC, TF8HCDR20, and tested for ability to bind tissue factor and compete with murine TF8-5G9 for binding. Every version of the CDR-grafted 20 LC, in combination with TF8HCDR20, was shown to bind TF with an affinity comparable to TF8-5G9. Also every CDRgrafted LC version, in combination with TF8HCDR20, was able to compete with murine TF8-5G9 for binding to TF in a manner comparable to the chimeric TF8-5G9 control.

Changes in sequence from murine to human for LC framework positions 39, 41, 46 and 105 did not adversely effect the ability of the antibody to recognize antigen. The CDR-grafted LC of choice was TF8LCDR3, where murine TF8-5G9 sequence was used at positions 39 and 105 because these are in agreement with

the human consensus sequence. The preferred CDR-grafted 1 TF8-5G9 antibody is TF8HCDR20 x TF8LCDR3.

The complete sequence of the TF8LCDR3 gene was determined and is shown as a 759 bp EcoRI-BamHI insert with protein translation in the pEe12TF8LCDR3 expression vector in Figure 5 and SEQ ID NO:17. The essential regions of the gene are as follows:

	Nucleotide #	Region
	1-5	5' EcoRI restriction site
	6-8	Kozak sequence
10	9-68	Start codon and leader sequence
	69-392	CDR-grafted variable region
	393-710	Human kappa constant region
	711-753	3' untranslated region
	754-759	3'BamHI end spliced to BclI
15		site of the expression vector

20

25

30

35

BNSDOCID: <WO_____9640921A1_1_>

1 CDR-Grafted TF8-5G9 Antibody TF8HCDR20 x TF8LCDR3
Inhibits Human Tissue Factor

The binding of the CDR-grafted TF8-5G9

5 antibody, TF8HCDR20 x TF8LCDR3, to TF was assessed as described in Example 5 and was found to be comparable to that of the chimeric TF8-5G9 as illustrated in Figure 6. The ability of the CDR-grafted TF8-5G9 to compete with the murine antibody for binding to TF is comparable to that of the chimeric TF8-5G9 as shown in Figure 7.

An <u>in vitro</u> assay was used to measure the level of inhibition of factor X activation by the CDR-grafted TF8-5G9 antibody. In this assay, TF forms an active proteolytic complex with factor VII. This

15 complex then converts factor X to factor Xa by proteolysis. The activated Xa enzymatically cleaves a substrate, Spectrozyme FXa, which releases a chromogen. The level of chromogen, as detected by optical density, is an indication of factor X activation due to TF-factor 20 VIIa activity.

The following reaction mixtures were prepared in 12 x 75 mm borosilicate glass tubes.

25 μ l TBS (50 mM Tris, pH 7.4, 150 mM NaCl) 15 μ l 20 mM CaCl₂/1% bovine serum albumin

25 (BSA)

20 μ l human placental tissue factor solution (prepared by reconstituting one vial of Thromborel S, Curtin Matheson Scientific #269-338 with 4.0 ml dH₂O and diluting 1:10 in TBS)

35

30 μ l Factor VII (Enzyme Research Labs #HFVII 1007 at 237.66 ng/ml in TBS)

30 μ l TBS or TF8-5G9 or TF8MCDR20 x TF8LCDR3 at 1.18 μ g/ml or as indicated in Fig. 8 The reaction mixtures were incubated at 37°C

- for ten minutes before the addition of Factor X. (In some cases the reaction mixture was preincubated for five minutes before addition of Factor VII or antibody, followed by a ten minute incubation before addition of Factor X.) Thirty μ l of Factor X solution (Enzyme
- Research Labs, DHFX 330, 247.38 μ g/ml TBS) was added and the mixture was incubated at 37°C for three minutes. Factor X activation was terminated by pipetting 40 μ g of reaction mixture into 160 μ l of stop buffer (50 mM Tris, pH 7.4, 100 mM EDTA, 150 mM NaCl) in 96 well microtiter
- 15 plates. Each tube of reaction mixture was pipetted into three microtiter wells. Fifty μl of Spectrozyme FXa substrate (American Diagnostica #222, $l\mu M/ml$ TBS) was added to each well. OD_{405} was read on a Molecular Devices kinetic plate reader with readings taken every
- 20 twenty seconds for ten minutes. Factor X activity was recorded as mOD/minute, and enzyme velocities over the linear portion of the reaction curve were compared to determine inhibition of factor X activation by the anti-TF antibodies.
- As shown in Figure 8, the CDR-grafted TF8-5G9 antibody is approximately as effective as the murine TF8-5G9 in inhibiting factor X activation. This indicates that the CDR-grafted TF8-5G9 is functionally active.

Construction of the CDR-Grafted Heavy
and Light Chain Myeloma Expression Vectors

For the purpose of establishing a permanent 5 CDR-grafted antibody-producing cell line, the TF8HCDR20 and TF8LCDR3 genes were subcloned into myeloma cell expression vectors. The heavy chain TF8HCDR20 was subcloned into the EcoRI and BclI sites of the pEe6hCMV-BglII myeloma expression vector described by Stephens et 10 al. (1989) Nucleic Acids Res. 17:7110 to produce pEe6TF8HCDR20. The light chain TF8LCDR3 was subcloned into the EcoTI and BclI sites of the pEe12 myeloma expression vector to produce pEel2TF8LCDR3. The heavy and light chain expression vectors are illustrated in 15 Figures 9 and 10, respectively. In both vectors antibody gene transcription was driven by the human cytomegalovirus (hCMV) promoter-enhancer, which lies directly 5' to the multiple cloning site. polyadenylation signal sequence lies 3' to the multiple 20 cloning site and signals the termination of transcription. Each vector contains the ß-lactamase gene to allow for ampicillin selection in E. coli. pEel2 vector contains a glutamine synthetase cDNA gene under the transcriptional control of the SV40 early 25 promoter. Glutamine synthetase allows for myeloma cell transfectants to be selected in glutamine-free media. Myeloma cells are devoid of glutamine synthetase activity and are dependent on a supply of glutamine in the culture media. Cells which have been transfected 30 with the pEel2 vector, containing the glutamine

synthetase gene, are able to synthesize glutamine from l glutamate and can survive in the absence of glutamine.

The pEe6TF8HCDR20 expression vector is a 7073 bp plasmid whose DNA sequence is shown in Figure 4 and SEQ ID NO:15. The coding regions of the TF8HCDR20 gene are translated. The essential regions of this vector are described below:

- 1. Nucleotides #1-2360: The TF8HCDR20 CDR-grafted HC gene is described in Example 6. The HC gene was inserted as an EcoRI/BamHI fragment into the EcoRI/BclI sites of the pEe6hCMV-BglII vector.
- 2. Nucleotides #2361-2593: This region encodes the SV40 early gene polyadenylation signal (SV40 nucleotides 2770-2537), which acts as a transcriptional terminator. This fragment is flanked by a 5' BclI site and a 3' BamHI site. The 3' BamHI end of the heavy chain gene was spliced to the 5' BclI site of the polyadenylation signal, thus eliminating both sites.
- 3. Nucleotides #2594-3848: This region is a BamHI-BqlI fragment from pBR328

 (nucleotides 375-2422) but with a deletion between the SaI and AvaI sites (pBR328 nucleotides 651-1425) following the addition of a SalI linker to the AvaI site. This region contains the Col El bacterial origin of replication.
- 4. Nucleotides #3849-4327: This is a Bql I Xmn I fragment site from the ß-lactamase gene of pSP64 (Promega Corporation, Madison, WI). This gene provides ampicillin resistance to bacteria transformed with this vector.
- 5. Nucleotides #4328-4885: This is an XmnI-HindIII fragment of the ColEl based plasmid pCT54 described by Emtage et al. (1983) Proc. Natl. Acad. Sci. USA

10

- 1 B0:3671. The <u>Hind</u>III site was converted to a <u>Bql</u>II site by the addition of a linker following the addition of the hCMV promoter described below.
 - 6. Nucleotides #4886-7022: These nucleotides encode the Pst-lm fragment of human cytomeglovirus (hCMV) strain AD 169 described by Greenway et al. (1982) Gene

 18:355 containing the region coding for the hCMV middle intermediate early promoter. This Pst-lm fragment was cloned into the HindIII site of pEe6hCMV by addition of oligonucleotides of the following sequence to either end of the fragment:
 - 5' GTCACCGTCCTTGACACGA 3'
 - 3' ACGTCAGTGGCAGGAACTGTGCTTCGA 5'
- The resulting 2100 bp fragment was inserted such that the promoter directed transcription towards the EcoRI site of pEe6hCMV. The oligonucleotide above served to recreate the complete 5' untranslated sequence of the hCMV-MIE gene the added irrelevant sequence at the very 5' end of the fragment. The HindIII site at the 5' end was subsequently converted to a BqlII site by the addition of a further linker.
 - 7. Nucleotides #7023-7073: The pSP64 polylinker with the BamHI and SaII sites removed.
- The pEel2TF8LCDR3 expression vector is a 7864 bp plasmid whose DNA sequence is shown in Figure 5 and SEQ ID NO:17. The coding regions of the TF8LCDR3 gene are translated. The essential regions of this expression vector are described below:
- 30
 1. Nucleotides #1-759: The TF8LCDR3 CDR-grafted LC gene is described in Example 7. The gene was inserted as an

l

- $\frac{\text{EcoRI}/\text{BamHI}}{\text{sites of the pEel2 expression vector.}}$
 - 2. Nucleotides #760-3284: These regions of pEe12 are identical to the regions encoded by nucleotides 2361-4885 of the pEe6TF8HCDR20 vector described above (regions #2-5).
- 3. Nucleotides #3285-5736: This region encodes the Chinese hamster ovary glutamine synthetase cDNA under the transcriptional control of the SV40 early promoter and followed by the SV40 polyadenylation and splice signals from 10 the pSV2.dhfr vector described by Subramani et al. (1981) Mol. Cell. Biol. The following describes the derivation of this region: A 1200 bp NaeI-PvuII fragment, containing a complete GS coding sequence, was excised from the Chinese hamster ovary cDNA clone AGS1.1 described by Hayward et al. (1986) 15 Nucleic Acid Res. 14:999. After addition of a HindIII linker to the NaeI site and a <u>BqlII</u> linker to the <u>PvuII</u> site (hence destroying the Nael and Pvull sites), the 1200 bp fragment was cloned in place of DHFR sequences in pSV2.dhfr between the HindIII and BglII sites to form pSV2.GS. 20 The single remaining PvuII site in pSV2BamGS was converted to a BamHI site by addition of an oligonucleotide linker to form pSV2BamGS. An EcoRI site in the GS cDNA was destroyed by site directed mutagenesis without altering the amino acid sequence in pSV2BamGS and the HindIII site was destroyed by filling in 25 with DNa polymerase I. The 2451 bp BamHI fragment from this plasmid, containing the complete SV40-GS hybrid transcription unit, was excised and inserted at the BqlII site of Ee6hCMV-BqlII site of pEe6hCMV-BqlII such that transcription from the $\overline{sV40}$ early promoter proceeds 30 towards the hCMV promoter.

4. Nucleotides #5737-7864: This region is identical to the hCMV promoter and pSP64 polylinker encoded by nucleotides 4886-7073 of the pEe6TF8HCDR20 vector described above (regions 6 and 7).

For the purpose of ensuring that both the

pEe6TF8HCDR20 and peE12TF8LCDR3 vectors co-transfected

myeloma cells, the vectors were joined in linear

concatamers. Both the pEe6TF8HCDR20 and pEe12TF8LCDR3

vectors were digested at the unique SalI site. The SalI

linearized pEe6TF8HCDR20 vector was phosphatased at its

5' ends to prohibit ligation of two pEe6TF8HCDR20

vectors onto each other. This phosphatased HC vector

was ligated in a 2:1 molar ratio to the Sal linearized

pEe12TF8LCDR3. The resulting concatamers were most

likely of the following composition:

15 SalI SalI SalI SalI

pEe6TF8HCDR20 pEe12TF8LCDR3 pEe6TF8HCDR20

This concatamerized DNA was extracted with phenol and chloroform, and precipitated with ammonium acetate and 20 ethanol. The DNA precipitate was resuspended in distilled water to a concentration of 1 $\mu g/\mu L$ and used to transfect myeloma cells.

25

30

Development of NSO Expression Cell Lines

Stably transformed cell lines expressing the humanized TF8-5G9 antibody were prepared by transfecting 5 CDR-grafted heavy and light chain expression vectors into NSO mouse myeloma cells. Selection of transfected cells was carried out using the dominant selectable marker gene, glutamine synthetase (GS).

The NSO mouse myeloma cell line, obtained from
10 Celltech, Ltd., is a subclone derived from NS-1 and does
not express intracellular light chains. These cells
were cultured in Dulbecco's modified Eagle's medium
(DMEM) with added glutamine and 10% fetal bovine serum
(FBS). To prepare for transfection, the cells were

15 harvested in mid-log phase of the growth cycle, centrifuged for 5 minutes, washed with phosphate buffered saline (PBS), centrifuged again, and the cell pellet was resuspended in 2.2 mL of PBS. The final cell concentration was 2.18 x 10⁷ mL. Cells were maintained on ice during the entire procedure.

The DNA to be transfected (pEe12TF8LCDR3 x pEe6TF8HCDR20) was prepared as a concatamer as described in Example 9. The DNA and NSO cells were added to a 0.4 cm BioRad Gene Pulser cuvette in the following order:

 $40~\mu\text{L}~(40~\mu\text{g})$ DNA concatamer $320~\mu\text{L}$ double distilled water $40~\mu\text{L}~10~\text{x}$ PBS $400~\mu\text{L}$ NSO cells $(8.72~\text{x}~10^6~\text{cells})$

Transfection was performed by electroporation 30 following a protocol provided by Celltech, Ltd. In this procedure, the cells and DNA in PBS buffer were exposed

PCT/US96/09287

-54-

WO 96/40921

to a brief, high voltage pulse of electricity causing 1 transient micropores to form on the cell membrane. DNA transfer takes place through these openings. To prepare for electroporation, the suspension of NSO cells and DNA was gently mixed and incubated on ice for 5 minutes.

- 5 The cuvette was placed in a BioRad Gene Pulser and given 2 consecutive electrical pulses at settings of 3 μF (capacitance) and 1.5V (voltage). Following electroporation, the cuvette was returned to the ice for 5 minutes. The suspension was then diluted in prewarmed growth medium and distributed into seven 96-well plates. Control plates containing cells electroporated without DNA were also prepared at the same time to measure the presence of spontaneous mutants. Plates were placed in
- a 37°C incubator with 5% CO,. Glutamine synthetase, encoded by the GS gene, 15 is an enzyme that converts glutamate to glutamine. cells require glutamine for growth due to inadequate levels of endogenous GS gene expression. In the DNA concatamer, this gene is located on the pEe12TF8LCDR3 Transfected cells which incorporate the GS gene 20 vector. become glutamine-independent. Cells not integrating the GS gene into their genome would remain glutaminedependent and would not survive in glutamine-free medium. Approximately 18 hours post electroporation, 25 all plates were fed with glutamine-free selection medium and returned to the incubator until viable colonies appeared.

Approximately 3 weeks after transfection, distinct macroscopic colonies were observed. These were 30 screened for expression of the intact humanized antibody using the assembly ELISA as described in Example 5.

Tissue culture supernatants from wells containing 1 colonies were screened at a 1:10 dilution. Positive wells showing activity greater than the 25 ng/mL standard were subcultured and expanded for further analysis.

For selection of high producers, antibody production was quantitated after a 96 hour growth period. Tissue culture flasks were seeded with 2 x 10⁵ cells/mL in 10 mL of selection medium and incubated at 37°C, 5% CO₂ for 96 hours. At the end of that time 10 period, an aliquot was taken to determine cell concentration and antibody titor. Further time 10

concentration and antibody titer. Evaluation of antibody production was calculated as $\mu g/mL$ and pg/cell/96 hours. The highest producers from this transfection were:

1 5	Cell Line	μq/mL	pg/cell/96 hour
	2B1	26.3	24.3
	3E11	27.6	59.9
	4G6	30.2	41.9

20

25

30

CDR Grafted Antibody TF8HCDR20 x TF8LCDR3
Inhibits Tissue Factor In Vivo

CDR grafted antibody TF8HCDR20 x TF8LCDR3 was 5 compared to murine antibody TF8-5G9 for its ability to protect_rats from experimentally induced disseminated intravascular coagulation (DIC). In the DIC model, rats are challenged with human thromboplastin (a crude tissue extract containing TF activity), resulting in fibrinogen consumption and death. Pretreatment of rats with anti-TF antibody was demonstrated to protect rats from fibrinogen consumption and death as follows.

Human thromboplastin was prepared as described in U.S. Patent 5,223,427. Saline control or 30 μ/ml of TF8-5G9 or CDR-grafted antibody was injected through the tail vein of rats, followed by injection of thromboplastin equivalent to 200 ng of recombinant TF. Clotting times were determined at T=0 and T=1 minute as a measure of fibrinogen concentration. Clotting times 20 are proportional to fibrinogen concentration, with a 60 second clotting time corresponding to an 80% reduction in fibrinogen concentration. Clotting times of greater than 60 seconds cannot be accurately measured and were recorded as 60 seconds.

25 Survivability and clotting times for three representative studies are shown below.

		Survi	vors	
	Study	Controls	TF8-5G9	CDR-grafted Ab
	1	0/8	5/8	6/8
30	2	0/8	4/7	7/8
	3	0/8	8/8	3/7

ı			<u>Clotting Times</u> <u>Controls</u>		
		$\frac{1}{T=1}$	Study #2 <u>T=0</u> <u>T=1</u>	Stuc T=0	dy #3 <u>T=1</u>
5	16 16 17 15 16 16	>60 >60 >60 >60 >60 >60 >60 >60	18 >60 18 >60 18 >60 18 >60 16 >60 18 >60 17 >60 17 >60	19 21 18 19 18 18 18	>60 >60 >60 >60 >60 54 >60 >60
10			Clotting Times		
	$\frac{\mathtt{T}=0}{\mathtt{T}}$	y #1 <u>T=1</u>	Murine TF8-5G9 Study #2 T=0 T=1	Stud T=0	ly #3 <u>T=1</u>
15	16 15 15 15 16 16 16	36 41 33 31 >60 >60 33 33 >60	18 34 18 36 18 >60 17 >60 18 50 17 34 17 34 18 31	19 18 19 18 18 19 19	28 29 29 29 28 40 40 34 >60
			Clotting Times CDR-grafted TF8-5G9		
	$\frac{\text{Stud}}{\text{T}=0}$	y #1 <u>T=1</u>	Study #2 <u>T=0</u> <u>T=1</u>	Stud T=0	y #3 <u>T=1</u>
25 30	16 16 22 16 15 16	>60 >60 >60 37 32 >60 >60	17 >60 17 33 18 32 18 >60 17 32 18 31 17 31 16 32	21 18 17 20 17 18	>60 34 >60 35 58 33 31

PCT/US96/09287

Twenty-three of the twenty-four control rats

1 had clotting times of greater than 60 seconds indicating
that virtually all untreated rats were consuming more
than 80% of their fibrinogen. Both the CDR-grafted and
murine antibody treated rats had similar clotting times

5 at one minute of 44.5 and 40 seconds. Further, only six
of the murine antibody treated rats and nine of the CDRgrafted antibody treated rats had clotting times in
excess of 60 seconds. Accordingly, both the murine and
CDR-grafted antibodies were able to neutralize TF and
thus protect rats from fibrinogen consumption and death.

15

20

25

30

SEQUENCE LISTING

1

5

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: Joliffe, Linda K. Zivin, Robert A. Pulito, Virginia L.
 - (ii) TITLE OF INVENTION: CDR-GRAFTED ANTI-TISSUE FACTOR ANTIBODIES AND METHODS OF USE THEREOF
 - (iii) NUMBER OF SEQUENCES: 20
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Scully, Scott, Murphy & Presser
- (B) STREET: 400 Garden City Plaza 10
 - (C) CITY: Garden City
 - (D) STATE: New York
 - (E) COUNTRY: United States (F) ZIP: 11530

 - (v) COMPUTER READABLE FORM:
 (A) MEDIUM TYPE: Floppy disk
- (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS 15
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE: 07-JUN-1995
 - (C) CLASSIFICATION:
 - (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: DiGiglio, Frank S. (B) REGISTRATION NUMBER: 31,346
 - (C) REFERENCE/DOCKET NUMBER: 9598

 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (516) 742-4343 (B) TELEFAX: (516) 742-4366
 - (C) TELEX: 230 901 SANS UR

25

20

30

	(2)	INFO	RMAT	ION	FOR	SEQ	ID N	0:1:								
1		(i)	(B) LE ;) TY ;) ST	NGTH PE: RAND	ARAC nucl DEDNE	89 b eic SS:	ase acid doub	pair I	's						
_		(ii)	MOL	ECUL	E TY	PE:	DNA	(ger	omic	:)						
5		(ix)		L) NA	ME/K	EY:		1391	L							
		(xi)	SEÇ	OUENC	E DE	ESCRI	PTIC	N: 5	SEQ I	D NC	:1:					
10	GGT	CTTI	ACA F			rgc A										49
			GGG Gly													97
15			AGG Arg												1	145
			ATT Ile												:	193
20			CTG Leu												:	241
20			GAC Asp 80	Pro											:	289
														GAC Asp		337
25		Ala	GTC Val									Tyr				385

1	Trp	Gly	Gln	Gly	Thr 130	Thr	Leu	ACA Thr	Val	TCC Ser 135	TCA Ser	GCC Ala	Lys	ACG Thr	ACA Thr 140	CCC Pro	433
	CCA Pro	TCT Ser	GTC Val	TAT Tyr 145	CCA Pro	CTG Leu	GCC Ala	CCT Pro	GGA Gly 150	TCT Ser	GCT Ala	GCC Ala	CAA Gln	ACT Thr 155	AAC Asn	TCC Ser	481
5	ATG Met	GTG Val	ACC Thr 160	CTG Leu	GGA Gly	TGC Cys	CTG Leu	GTC Val 165	AAG Lys	GGC Gly	TAT Tyr	TTC Phe	CCT Pro 170	GAG Glu	CCA Pro	GTG Val	529
	ACA Thr	GTG Val 175	ACC Thr	TGG Trp	AAC Asn	TCT Ser	GGA Gly 180	TCC Ser	CTG Leu	TCC Ser	AGC Ser	GGT Gly 185	GTG Val	CAC His	ACC Thr	TTC Phe	577
10	CCA Pro 190	GCT Ala	GTC Val	CTG Leu	CAG Gln	TCT Ser 195	GAC Asp	CTC Leu	TAC Tyr	ACT Thr	CTG Leu 200	AGC Ser	AGC Ser	TCA Ser	GTG Val	ACT Thr 205	625
•	GTG Val	CCC Pro	TCC Ser	AGC Ser	ACC Thr 210	TGG Trp	CCC Pro	AGC Ser	GAG Glu	ACC Thr 215	GTC Val	ACC Thr	СУз	AAC Asn	GTT Val 220	GCC Ala	673
15	CAC His	CCG Pro	GCC Ala	AGC Ser 225	AGC Ser	ACC Thr	AAG Lys	GTG Val	GAC Asp 230	AAG Lys	AAA Lys	ATT Ile	GTG Val	CCC Pro 235	AGG Arg	GAT Asp	721
-,	TGT Cys	GGT Gly	ТСТ Сув 240	FÅ8 YYG	CCT Pro	TGC Cys	ATA Ile	TGT Cys 245	ACA Thr	GTC Val	CCA Pro	GAA Glu	GTA Val 250	TCA Ser	TCT Ser	GTC Val	769
	TTC Phe	ATC Ile 255	TTC Phe	CCC Pro	CCA Pro	AAG Lys	CCC Pro 260	AAG. Lys	GAT Asp	GTG Val	CTC Leu	ACC Thr 265	ATT Ile	ACT Thr	CTG Leu	ACT Thr	817
20	Pro 270	AAG Lys	GTC Val	ACG Thr	TGT Cys	GTT Val 275	GTG Val	GTA Val	GAC Asp	ATC Ile	AGC Ser 280	AAG Lys	GAT Asp	GAT Asp	CCC Pro	GAG Glu 285	865
	GTC Val	CAG Gln	TTC Phe	AGC Ser	TGG Trp 290	TTT Phe	GTA Val	GAT Asp	GAT Asp	GTG Val 295	GAG Glu	GTG Val	CAC His	ACA Thr	GCT Ala 300	CAG Gln	913
25	ACG Thr	CAA Gln	CCC Pro	CGG Arg 305	GAG Glu	GAG Glu	CAG Gln	TTC Phe	AAC Asn 310	AGC Ser	ACT Thr	TTC Phe	CGC Arg	TCA Ser 315	GTC Val	AGT Ser	961

1	GAA Glu	CTT Leu	CCC Pro 320	ATC Ile	ATG Met	CAC His	CAG Gln	GAC Asp 325	TGG Trp	CTC Leu	AAT Asn	GGC Gly	AAG Lys 330	GAG Glu	TTC Phe	AAA Lys	1009
	TGC Cys	AGG Arg 335	GTC Val	AAC Asn	AGT Ser	GCA Ala	GCT Ala 340	TTC Phe	CCT Pro	GCC Ala	CCC Pro	ATC Ile 345	GAG Glu	AAA Lys	ACC Thr	ATC Ile	1057
5	TCC Ser 350	AAA Lys	ACC Thr	AAA Lys	GGC Gly	AGA Arg 355	CCG Pro	TAa TAG	GCT Ala	CCA Pro	CAG Gln 360	GTG Val	TAC Tyr	ACC Thr	ATT Ile	CCA Pro 365	1105
	CCT Pro	CCC Pro	AAG Lys	GAG Glu	CAG Gln 370	ATG Met	GCC Ala	AAG Lys	GAT Asp	ААА Lyв 375	GTC Val	AGT Ser	CTG Leu	AAC	TGC Cys 380	ATG Met	1153
LO	ATA Ile	ACA Thr	Asp	TTC Phe 385	TTC Phe	CCT Pro	GAA Glu	Aab GAC	ATT Ile 390	Thr	GTG Val	GAG Glu	TGG Trp	CAG Gln 395	TGG Trp	AAT Asn	1201
	GGG Gly	CAG Gln	CCA Pro 400	Ala	GAG Glu	AAC Asn	TAC Tyr	AAG Lys 405	AAC	ACT Thr	CAG Gln	CCC Pro	ATC Ile 410	Met	GAC Asp	ACA Thr	1249
. –	GAT Asp	GGC Gly 415	Ser	TAC	TTC Phe	GTC Val	TAC Tyr 420	Ser	Lys Lys	CTC Leu	TAA Asn	GTG Val 425	Gln	AAG Lys	AGC Ser	AAC Asn	1297
15	TGG Trp 430	Glu	GCA Ala	GGA Gly	AAT Asn	ACT Thr 435	Phe	ACC	TGC Cys	TCT Ser	GTG Val 440	Leu	CAT His	GAG Glu	GGC	CTG Leu 445	1345
	CAC His	AAC Asn	CAC His	CAT His	ACT Thr 450	Glu	Lys	AGC Ser	Leu	Ser 455	His	TCI Ser	CCI Pro	GGT Gly	Lya 460	l /	1391
20	GAT	CCCF	GTG	TCCT	TGGA	GC C	CTCI	GGTC	C TA	CAGG	ACTO	TGA	CACC	TAC	CTCC	ACCCCT	1451
	ccc	TGT	AATA	ATA	AAGC	cc c	AGCA	CTGC	c T	rggac	cc						1489

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 460 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear

30

25

(ii) MOLECULE TYPE: protein

1

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Lys Cys Ser Trp Val Ile Phe Phe Leu Met Ala Val Val Thr Gly
1 5 10 15

Val Asn Ser Glu Ile Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Arg 20 25 30

Pro Gly Ala Leu Val Lys Leu Ser Cys Lys Ala Ser Gly Phe Asn Ile 35 40 45

Lys Asp Tyr Tyr Met His Trp Val Lys Gln Arg Pro Glu Gln Gly Leu
50 60

Glu Trp Ile Gly Leu Ile Asp Pro Glu Asn Gly Asn Thr Ile Tyr Asp 10 65 70 75 80

Pro Lys Phe Gln Gly Lys Ala Ser Ile Thr Ala Asp Thr Ser Ser Asn 85 90 95

Thr Ala Tyr Leu Gln Leu Ser Ser Leu Thr Ser Glu Asp Thr Ala Val 100 105 110

Tyr Tyr Cys Ala Arg Asp Asn Ser Tyr Tyr Phe Asp Tyr Trp Gly Gln 115 120 125

Gly Thr Thr Leu Thr Val Ser Ser Ala Lys Thr Thr Pro Pro Ser Val

Tyr Pro Leu Ala Pro Gly Ser Ala Ala Gln Thr Asn Ser Met Val Thr 145

Leu Gly Cys Leu Val Lys Gly Tyr Phe Pro Glu Pro Val Thr Val Thr 20 165 170 175

Trp Asn Ser Gly Ser Leu Ser Ser Gly Val His Thr Phe Pro Ala Val

Leu Gln Ser Asp Leu Tyr Thr Leu Ser Ser Ser Val Thr Val Pro Ser 195 200 205

Ser Thr Trp Pro Ser Glu Thr Val Thr Cys Asn Val Ala His Pro Ala 25 210 225 220

30

1	225	ser	Thr	гла	vai	230	rys	гув	TTE	vai	235	Arg	Asp	Cys	GIĀ	240
_	Lув	Pro	Cys	Ile	Cys 245	Thr	Val	Pro	Glu	Val 250	Ser	Ser	Val	Phe	11e 255	Phe
	Pro	Pro	Lys	Pro 260	Lys	Asp	Val	Leu	Thr 265	Ile	Thr	Leu	Thr	Pro 270	Lys	Val
5	Thr	Сув	Val 275	Val	Val	Asp	Ile	Ser 280	Lys	Asp	Asp	Pro	Glu 285		Gln	Phe
	Ser	Trp 290	Phe	Val	Asp	Asp	Val 295	Glu	Val	His	Thr	Ala 300	Gln	Thr	Gln	Pro
	Arg 305	Glu	Glu	Gln	Phe	Asn 310	Ser	Thr	Phe	Arg	Ser 315	Val	Ser	Glu	Leu	Pro 320
10	Ile	Met	His	Gln	Asp 325	Trp	Leu	Asn	Gly	Lув 330	Glu	Phe	ГЛа	Cys	Arg 335	Val
	Asn	Ser	Ala	Ala 340	Phe	Pro	Ala	Pro	Ile 345	Glu	Lys	Thr	Ile	Ser 350	ГЛЗ	Thr
	Lув	Gly	Arg 355	Pro	Lys	Ala	Pro	Gln 360	Val	Tyr	Thr	Ile	Pro 365	Pro	Pro	Lye
15	Glu	Gln 370		Ala	Lys	Asp	Lys 375	Val	Ser	Leu	Asn	Сув 380	Met	Ile	Thr	Asp
	Phe 385		Pro	Glu	Yab	Ile 390	Thr	Val	Glu	Trp	Gln 395		Asn	Gly	Gln	Pro 400
	Ala	Glu	Asn	Tyr	Lys 405		Thr	Gln	Pro	Ile 410		Asp	Thr	Asp	Gly 415	Ser
20	Tyr	Phe	. Val	Tyr 420		Lys	Leu	Asn	Val 425		. Lys	Ser	Asn	Trp 430	Glu	Ala
	Gly	Asn	Thr 435		Thr	Сув	Ser	Val 440		His	Glu	Gly	Leu 445	His	Asn	His
	Hie	Thr 450		Lys	Ser	Leu	Ser 455		Ser	Pro	Gly	Lys 460				

30

	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO: 3	:								
1		(i	(QUEN A) L B) T C) S D) T	ENGT YPE: TRAN	H: 9 nuc DEDN	37 b leic ESS:	ase aci dou	pair d	s							
5) MO) FE.	LECU: ATUR: A) N. B) L	LE T E: AME/	YPE: KEY:	pep	tiđe									
10	GGA	C ATO	G CG	QUENO G GCO G Ala	c cc	r GC	r ca	G TT	ጥ ጥጥ	ጥ ሮር	ር ልጥ	e Le	G TT u Le	G CT	C TGO u Tr	G TTT p Phe 15	49
	CCA Pro	GGT Gly	ATC Ile	AGA Arg	TGT Cys 20	GAC Asp	ATC Ile	AAG Lys	ATG Met	ACC Thr 25	CAG Gln	TCT Ser	CCA Pro	TCC	TCC Ser 30	ATG Met	97
15	TAT Tyr	GCA Ala	TCG Ser	CTG Leu 35	GGA Gly	GAG Glu	AGA Arg	GTC Val	ACT Thr 40	ATC Ile	ACT Thr	TGT Cys	AAG Lys	GCG Ala 45	AGT Ser	CAG Gln	145
	ш	ATT	50	Буз	TYL	rea	ASN	55	Tyr	Gln	Gln	Lys	Pro 60	Trp	Lys	Ser	193
20		AAG Lys 65		Deu	116	TYL	70	Ala	Thr	Ser	Leu	Ala 75	Asp	Gly	Val	Pro	241
	80	AGA Arg		Der	GIY	85	GIÀ	ser	GIY	GIn	90	Tyr	Ser	Leu	Thr	Ile 95	289
		AGC Ser	200	GIU	100	мыр	Авр	Thr	Ala	105	Tyr	Tyr	Сув	Leu	Gln 110	His	337
25	GGT Gly	GAG Glu	AGC Ser	CCG Pro 115	TAC Tyr	ACG Thr	TTC Phe	GGA Gly	GGG Gly 120	GGG Gly	ACC Thr	AAG Lys	CTG Leu	GAA Glu 125	ATA Ile	AAC Asn	385

1	AGG Arg	GCT Ala	GAT Asp 130	GCT Ala	GCA Ala	CCA Pro	ACT Thr	GTA Val 135	TCC Ser	ATC Ile	TTC Phe	CCA Pro	CCA Pro 140	TCC Ser	AGT Ser	GAG Glu	4	133
	CAG Gln	TTA Leu 145	ACA Thr	TCT Ser	GGA Gly	GGT Gly	GCC Ala 150	TCA Ser	GTC Val	GTG Val	TGC Cys	TTC Phe 155	TTG Leu	AAC Asn	AAC Asn	TTC Phe	•	481
5	TAC Tyr 160	CCC Pro	AAA Eyd	GAC Asp	ATC Ile	AAT Asn 165	GTC Val	AAG Lys	TGG Trp	AAG Lys	ATT 11e 170	GAT Asp	GGC Gly	AGT Ser	GAA Glu	CGA Arg 175	!	529
	CAA Gln	AAT Asn	GGC Gly	GTC Val	CTG Leu 180	AAC Asn	AGT Ser	TGG Trp	ACT Thr	GAT Asp 185	CAG Gln	Aab GYC	AGC Ser	AAA Lys	190 Aap GAC	AGC Ser	!	57 7
10	ACC Thr	TAC Tyr	AGC Ser	ATG Met 195	Ser	AGC Ser	ACC Thr	CTC Leu	ACG Thr 200	TTG Leu	ACC Thr	AAG Lys	yab	GAG Glu 205	TAT Tyr	GAA Glu		625
	C GA A rg	CAT	AAC Asn 210	Ser	TAT	ACC Thr	тст Сув	GAG Glu 215	Ala	ACT Thr	CAC His	AAG Lys	ACA Thr 220	Ser	ACT	TCA Ser		673
	CCC	AAT Asr 225	ı Val	AAG Lye	AGC Ser	TTC	AAC Asn 230	Lys	AAT Asn	GAG Glu	TGT Cys	TAG	AĠAC	AAA	GGTC	CTGAGA		726
15	CGC	CAC	CACC	AGCI	cccc	AG C	TCCA	TCCT	'A TC	TTCC	CTTC	TAA	GGTC	TTG	GAGG	CTTCCC	:	786
	CAC	AAGO	GAC	CTAC	CACI	GT I	CCGG	TGCI	C CA	AACC	TCCI	ccc	CACC	TCC	TTCI	CCTCCT	•	846
	cci	ccc:	TTTC	CTT	GCTI	TT A	TCAT	GCTA	LA TA	TTTG	CAGA	AAA A	TATI	CAA	TAAA	GTGAGT	•	906
	CTI	TGC	ACTT	GAAJ	LAAA	AA A	AAA	LAAA	A A									937

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 234 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein 25

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

- l Met Arg Ala Pro Ala Gln Phe Phe Gly Ile Leu Leu Leu Trp Phe Pro 1 5 15
 - Gly Ile Arg Cys Asp Ile Lys Met Thr Gln Ser Pro Ser Ser Met Tyr
 20 25 30
- Ala Ser Leu Gly Glu Arg Val Thr Ile Thr Cys Lys Ala Ser Gln Asp
 5 35 40 45
 - Ile Arg Lys Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Trp Lys Ser Pro
 50 55 60
 - Lys Thr Leu Ile Tyr Tyr Ala Thr Ser Leu Ala Asp Gly Val Pro Ser 65 70 75 80
- Arg Phe Ser Gly Ser Gly Ser Gly Gln Asp Tyr Ser Leu Thr Ile Ser 10 85 90 95
 - Ser Leu Glu Ser Asp Asp Thr Ala Thr Tyr Tyr Cys Leu Gln His Gly
 - Glu Ser Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Asn Arg 115 120 125
- Ala Asp Ala Ala Pro Thr Val Ser Ile Phe Pro Pro Ser Ser Glu Gln
 15 130 140
 - Leu Thr Ser Gly Gly Ala Ser Val Val Cys Phe Leu Asn Asn Phe Tyr 145 150 155 160
 - Pro Lys Asp Ile Asn Val Lys Trp Lys Ile Asp Gly Ser Glu Arg Gln 165 170 175
- Asn Gly Val Leu Asn Ser Trp Thr Asp Gln Asp Ser Lys Asp Ser Thr 20
 - Tyr Ser Met Ser Ser Thr Leu Thr Leu Thr Lys Asp Glu Tyr Glu Arg
 - His Asn Ser Tyr Thr Cys Glu Ala Thr His Lys Thr Ser Thr Ser Pro
- Asn Val Lys Ser Phe Asn Lys Asn Glu Cys 25 225 230

30

```
(2) INFORMATION FOR SEQ ID NO:5:
          (i) SEQUENCE CHARACTERISTICS:
1
               (A) LENGTH: 5 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: double
               (D) TOPOLOGY: linear
         (ii) MOLECULE TYPE: peptide
 5
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:
          Asp Asp Tyr Met His
10 (2) INFORMATION FOR SEQ ID NO:6:
          (i) SEQUENCE CHARACTERISTICS:
                (A) LENGTH: 17 amino acids
(B) TYPE: amino acid
                (C) STRANDEDNESS: double
                (D) TOPOLOGY: linear
         (ii) MOLECULE TYPE: peptide
15
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:
          Leu Ile Asp Pro Glu Asn Gly Asn Thr Ile Tyr Lys Pro Lys Phe Gln
          Gly
20
  (2) INFORMATION FOR SEQ ID NO:7:
           (i) SEQUENCE CHARACTERISTICS:
                (A) LENGTH: 8 amino acids
                (B) TYPE: amino acid
                (C) STRANDEDNESS: double
                (D) TOPOLOGY: linear
25
          (ii) MOLECULE TYPE: peptide
```

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:
- 1 Asp Asn Ser Tyr Tyr Phe Asp Tyr
- (2) INFORMATION FOR SEQ ID NO:8:
- 5 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 11 amino acids (B) TYPE: amino acid

 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8: 10 Lys Ala Ser Gln Asp Ile Arg Lys Tyr Leu Asn
 - (2) INFORMATION FOR SEQ ID NO:9:
- 15 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7 amino acids
 (B) TYPE: amino acid

 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9: 20 Tyr Ala Thr Ser Leu Ala Asp

30

(2)	INFORMATION	FOR	SEQ	ΙĐ	NO:	10:

ı (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 9 amino acids
(B) TYPE: amino acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Leu Gln His Gly Glu Ser Pro Tyr Thr

10 (2) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 117 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide

15

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

Gln Val Gln Leu Val Gln Ser Gly Gly Gly Val Val Gln Pro Gly Arg 1 5 10 15

Leu Leu Arg Leu Ser Cys Lys Ala Ser Gly Phe Asn Ile Lys Asp Tyr 20 25 30

20 Tyr Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Ile

Gly Leu Ile Asp Pro Glu Asn Gly Asn Thr Ile Tyr Asp Pro Lys Phe 50 60

Gln Gly Arg Phe Ser Ile Ser Ala Asp Thr Ser Lys Asn Thr Ala Phe 65 70 75 80

25

30

Leu Gln Met Asp Ser Leu Arg Pro Glu Asp Thr Ala Val Tyr Tyr Cys 95

Ala Arg Asp Asn Ser Tyr Tyr Phe Asp Tyr Trp Gly Gln Gly Thr Pro 100

Val Thr Val Ser Ser 115

5

- (2) INFORMATION FOR SEQ ID NO:12:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 108 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- 10
- (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
1 10 15

Asp Arg Val Thr Ile Thr Cys Lys Ala Ser Gln Asp Ile Arg Lys Tyr 20 25 30

Leu Asn Trp Tyr Gln Gln Lys Pro Trp Lys Ala Pro Lys Thr Leu Ile 35

Tyr Tyr Ala Thr Ser Leu Ala Asp Gly Val Pro Ser Arg Phe Ser Gly 50 55 60

Ser Gly Ser Gly Thr Asp Tyr Thr Phe Thr Ile Ser Ser Leu Gln Pro
65 70 75 80

Glu Asp Ile Ala Thr Tyr Tyr Cys Leu Gln His Gly Glu Ser Pro Tyr 85 90 95

Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Thr Arg

25

30

(2)	INFORMATION	FOR	SEQ	ID	NO:13:

1 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 117 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg 1 5 10 15

Ser Leu Arg Leu Ser Cys Lys Ala Ser Gly Phe Asn Ile Lys Asp Tyr 20 25 30

10 Tyr Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Ile 35 40 45

Gly Leu Ile Asp Pro Glu Asn Gly Asn Thr Ile Tyr Asp Pro Lys Phe 50 60

Gln Gly Arg Phe Thr Ile Ser Ala Asp Asn Ser Lys Asn Thr Leu Phe

15 Leu Gln Met Asp Ser Leu Arg Pro Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95

Ala Arg Asp Asn Ser Tyr Tyr Phe Asp Tyr Trp Gly Gln Gly Thr Pro 100 105 110

Val Thr Val Ser Ser 115

20

(2) INFORMATION FOR SEQ ID NO:14:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 108 amino acids

 - (B) TYPE: amino acid
 (C) STRANDEDNESS: single
- 25 (D) TOPOLOGY: linear

30

(ii) MOLECULE TYPE: peptide

1 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly

Asp Arg Val Thr Ile Thr Cys Lys Ala Ser Gln Asp Ile Arg Lys Tyr 5

Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile

Tyr Tyr Ala Thr Ser Leu Ala Asp Gly Val Pro Ser Arg Phe Ser Gly 50

Ser Gly Ser Gly Thr Asp Tyr Thr Phe Thr Ile Ser Ser Leu Gln Pro 10

Glu Asp Ile Ala Thr Tyr Tyr Cys Leu Gln His Gly Glu Ser Pro Tyr

Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Thr Arg

15 (2) INFORMATION FOR SEQ ID NO:15:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7073 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- 20 (ii) MOLECULE TYPE: peptide
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 61..717
 - (ix) FEATURE:

 - (A) NAME/KEY: CDS (B) LOCATION: 1111..1146

30

25

(ix) FEATURE:

1		, ,				EY:		15	94								
		(ix)	(A		ME/K	EY:		20	12								
5		(xi)	SEÇ	UENC	E DE	ESCRI	PTIC	n: s	EQ I	D NC	:15:						
	GAAT	TCGC	CT C	CACC	ATGO	ra ag	GGAG	CTGG	GTC	TTTC	TCT	TCTI	CTT	TC P	GTAA	CTACA	60
						GTT Val											108
10						CTG Leu											156
						ATG Met											204
15						TTA Leu											252
						GGA Gly 70											300
	AAT Asn	ACA Thr	CTG Leu	TTC Phe	CTG Leu 85	CAG Gln	ATG Met	GAC Asp	TCA Ser	CTC Leu 90	AGA Arg	CCT Pro	GAG Glu	GAT Asp	ACA Thr 95	GCA Ala	348
20					Ala	AGA Arg											396
				Pro		ACC Thr			Ser					Gly			444
25			Pro			CCC Pro		Ser					Glu				492

30

ı	Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val 145 150 160	540
	TCG TGG AAC TCA GGC GCC CTG ACC AGC GGC GTG CAC ACC TTC CCG GCT Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala 165 170 175	588
5	GTC CTA CAG TCC TCA GGA CTC TAC TCC CTC AGC AGC GTG GTG ACC GTG Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val 180	636
	CCC TCC AGC AGC TTG GGC ACG AAG ACC TAC ACC TGC AAC GTA GAT CAC Pro Ser Ser Leu Gly Thr Lys Thr Tyr Thr Cys Asn Val Asp His 195 200 205	684
10	AAG CCC AGC AAC ACC AAG GTG GAC AAG AGA GTT GGTGAGAGGC CAGCACAGGG Lys Pro Ser Asn Thr Lys Val Asp Lys Arg Val 210 215	737
	CAGGGAGGGT GTCTGCTGGA AGCCAGGCTC AGCCCTCCTG CCTGGACGCA CCCCGGCTGT	797
	GCAGCCCCAG CCCAGGGCAG CAAGGCATGC CCCATCTGTC TCCTCACCCG GAGGCCTCTG	857
	ACCACCCCAC TCATGCTCAG GGAGAGGGTC TTCTGGATTT TTCCACCAGG CTCCGGGCAG	917
15	CCACAGGCTG GATGCCCCTA CCCCAGGCCC TGCGCATACA GGGGCAGGTG CTGCGCTCAG	977
ユン	ACCTGCCAAG AGCCATATCC GGGAGGACCC TGCCCCTGAC CTAAGCCCAC CCCAAAGGCC	1037
	AAACTCTCCA CTCCCTCAGC TCAGACACCT TCTCTCCTCC CAGATTCGAG TAACTCCCAA	1097
	TCTTCTCTCT GCA GAG TCC AAA TAT GGT CCC CCA TGC CCA TCA TGC CCA Glu Ser Lys Tyr Gly Pro Pro Cys Pro Ser Cys Pro 1 5	1146
20	GGTAAGCCAA CCCAGGCCTC GCCCTCCAGC TCAAGGCGGG ACAGGTGCCC TAGAGTAGCC	1206
	TGCATCCAGG GACAGGCCCC AGCCGGGTGC TGACGCATCC ACCTCCATCT CTTCCTCAGC	1266
	A CCT GAG TTC CTG GGG GGA CCA TCA GTC TTC CTG TTC CCC CCA AAA Pro Glu Phe Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys 1 5 10 15	1312
25	CCC AAG GAC ACT CTC ATG ATC TCC CGG ACC CCT GAG GTC ACG TGC GTG Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val 20 25 30	1360

-76-

1	GTG Val											CAG Gln					1408
	GTG Val																1456
5	- 1											CTC Leu 75					1504
												AAG Lys					1552
10												AAA Lys					1594
	GGT	GGGA	ccc i	ACGG	GTG	CG A	GGC	CACA:	r GGZ	ACAG	AGGT	CAG	CTCG	GCC	CACC	CTCTGC	1654
	CCT	CCCN	CTC :		~~~~~~~		ש הכיי	יריזיכי	r cc	~TD (, cc	CAC	- ~~	c cc	A GA	G CCA	1709
	CCI	GGGA	GIG A	4000	JIGI	30 0	Dicc.			LINC					_	Pro	2.5.
15	CAG	GTG	TAC	ACC	CTG	ccc	CCA	TCC	CAG	GAG	GAG		n Pro	o Ar AAG	g Gl AAC Asn	Pro CAG	1757
15	CAG Gln GTC	GTG Val	TAC Tyr	ACC Thr 10	CTG Leu	CCC Pro	CCA Pro	TCC Ser	CAG Gln 15	GAG Glu TTC	GAG Glu TAC	y Gli 1 ATG	ACC Thr	AAG Lys 20 GAC Asp	g Gl AAC Asn ATC	CAG Gln	
15	CAG Gln GTC Val	GTG Val AGC Ser	TAC Tyr CTG Leu 25 TGG	ACC Thr 10 ACC Thr	CTG Leu TGC Cys	CCC Pro CTG Leu	CCA Pro GTC Val	TCC Ser AAA Lys 30 CAG	CAG Gln 15 GGC Gly	GAG Glu TTC Phe	GAG Glu TAC Tyr	y Gli ATG Met	ACC Thr AGC Ser 35	AAG Lys 20 GAC Asp	AAC ASN ATC Ile	CAG Gln GCC Ala	1757
	CAG Gln GTC Val GTG Val	GTG Val AGC Ser GAG Glu 40	TAC Tyr CTG Leu 25 TGG Trp	ACC Thr 10 ACC Thr GAG Glu	CTG Leu TGC Cys AGT Ser	CCC Pro CTG Leu AAT Asn	CCA Pro GTC Val GGG Gly 45 GAC Asp	TCC Ser AAA Lys 30 CAG Gln	CAG Gln 15 GGC Gly CCG Pro	GAG Glu TTC Phe GAG Glu	GAG Glu TAC Tyr AAC Aan	ATG Met CCC Pro AAC Asn 50 CTC Leu	ACC Thr AGC Ser 35 TAC Tyr	AAG Lys AAG AAG Lys	AAC ASN ATC Ile	CAG Gln GCC Ala	1757 1805
	CAG Gln GTC Val GTG Val CCT Pro 55	GTG Val AGC Ser GAG Glu 40	TAC Tyr CTG Leu 25 TGG Trp	ACC Thr 10 ACC Thr GAG Glu CTG Leu	CTG Leu TGC Cys AGT Ser GAC Asp	CCC Pro CTG Leu AAT Asn TCC Ser 60 AGG Arg	CCA Pro GTC Val GGG Gly 45 GAC Asp	TCC Ser AAA Lys 30 CAG Gln GGC Gly	CAG Gln 15 GGC Gly CCG Pro	GAG Glu TTC Phe GAG Glu TTC Phe	GAG Glu TAC TYr AAC Aan TTC Phe 65 AAT	ATG Met CCC Pro AAC Asn 50 CTC	ACC Thr AGC Ser 35 TAC Tyr	AAG Lys AAG Lys AAG Lys AAG Lys	AAC ASN ATC Ile ACC Thr	CAG Gln GCC Ala ACG Thr CTA Leu 70 TCC Ser	1757 1805 1853

30

1	Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser 90 95 100	199
	CTG TCT CTG GGT AAA TGAGTGCCAG GGCCGGCAAG CCCCCGCTCC CCGGGCTCTC Leu Ser Leu Gly Lys 105	2052
5	GGGGTCGCGC GAGGATGCTT GGCACGTACC CCGTCTACAT ACTTCCCAGG CACCCAGCAT	2112
	GGAAATAAAG CACCCACCAC TGCCCTGGGC CCCTGTGAGA CTGTGATGGT TCTTTCCACG	2172
	GGTCAGGCCG AGTCTGAGGC CTGAGTGACA TGAGGGAGGC AGAGCGGGTC CCACTGTCCC	2232
	CACACTGGCC CAGGCTGTGC AGGTGTGCCT GGGCCACCTA GGGTGGGGCT CAGCCAGGGG	2292
	CTGCCCTCGG CAGGGTGGGG GATTTGCCAG CGTGGCCCTC CCTCCAGCAG CAGGACTCTA	2352
10	GAGGATCATA ATCAGCCATA CCACATTTGT AGAGGTTTTA CTTGCTTTAA AAAACCTCCC	2412
	ACACCTCCCC CTGAACCTGA AACATAAAAT GAATGCAATT GTTGTTGTTA ACTTGTTTAT	2472
•	TGCAGCTTAT AATGGTTACA AATAAAGCAA TAGCATCACA AATTTCACAA ATAAAGCATT	2532
	TTTTTCACTG CATTCTAGTT GTGGTTTGTC CAAACTCATC AATGTATCTT ATCATGTCTG	2592
15	GATCCTCTAC GCCGGACGCA TCGTGGCCGG CATCACCGGC GCCACAGGTG CGGTTGCTGG	2652
ر ـ	CGCCTATATC GCCGACATCA CCGATGGGGA AGATCGGGCT CGCCACTTCG GGCTCATGAG	2712
	CGCTTGTTTC GGCGTGGGTA TGGTGGCAGG CCCGTGGCCG GGGGACTGTT GGGCGCCATC	2772
	TCCTTGCATG CACCATTCCT TGCGGCGGCG GTGCTCAACG GCCTCAACCT ACTACTGGGC	2832
	TGCTTCCTAA TGCAGGAGTC GCATAAGGGA GAGCGTCGAC CTCGGGCCGC GTTGCTGGCG	2892
20	TTTTTCCATA GGCTCCGCCC CCCTGACGAG CATCACAAAA ATCGACGCTC AAGTCAGAGG	2952
	TGGCGAAACC CGACAGGACT ATAAAGATAC CAGGCGTTTC CCCCTGGAAG CTCCCTCGTG	3012
	CGCTCTCCTG TTCCGACCCT GCCGCTTACC GGATACCTGT CCGCCTTTCT CCCTTCGGGA	3072
	AGCGTGGCGC TTTCTCAATG CTCACGCTGT AGGTATCTCA GTTCGGTGTA GGTCGTTCGC	3132
25	TCCAAGCTGG GCTGTGCA CGAACCCCCC GTTCAGCCCG ACCGCTGCGC CTTATCCGGT	3192
رے	AACTATCGTC TTGAGTCCAA CCCGGTAAGA CACGACTTAT CGCCACTGGC AGCAGCCACT	3252

	GGTAACAGGA	TTAGCAGAGC	GAGGTATGTA	GGCGGTGCTA	CAGAGTTCTT	GAAGTGGTGG	3312
1	CCTAACTACG	GCTACACTAG	AAGGACAGTA	TTTGGTATCT	GCGCTCTGCT	GAAGCCAGTT	3372
	ACCTTCGGAA	AAAGAGTTGG	TAGCTCTTGA	TCCGGCAAAC	AAACCACCGC	TGGTAGCGGT	3432
	GGTTTTTTTG	TTTGCAAGCA	GCAGATTACG	CGCAGAAAAA	AAGGATCTCA	AGAAGATCCT	3492
_	TTGATCTTTT	CTACGGGGTC	TGACGCTCAG	TGGAACGAAA	ACTCACGTTA	AGGGATTTTG	3552
5	GTCATGAGAT	TATCAAAAAG	GATCTTCACC	TAGATCCTTT	TAAATTAAAA	ATGAAGTTTT	3612
	AAATCAATCT	AAAGTATATA	TGAGTAAACT	TGGTCTGACA	GTTACCAATG	CTTAATCAGT	3672
	GAGGCACCTA	TCTCAGCGAT	CTGTCTATTT	CGTTCATCCA	TAGTTGCCTG	ACTCCCCGTC	3732
	GTGTAGATAA	CTACGATACG	GGAGGGCTTA	CCATCTGGCC	CCAGTGCTGC	AATGATACCG	3792
10	CGAGACCCAC	GCTCACCGGC	TCCAGATTTA	TCAGCAATAA	ACCAGCCAGC	CGGAAGGGCC	3852
	GAGCGCAGAA	GTGGTCCTGC	AACTTTATCC	GCCTCCATCC	AGTCTATTAA	TTGTTGCCGG	3912
	GAAGCTAGAG	TAAGTAGTTC	GCCAGTTAAT	AGTTTGCGCA	ACGTTGTTGC	CATTGCTACA	3972
	GGCATCGTGG	TGTCACGCTC	GTCGTTTGGT	ATGGCATCAT	TCAGCTCCGG	TTCCCAACGA	4032
15	TCAAGGCGAG	TTACATGATC	CCCCATGTTG	TGCAAAAAAG	CGGTTAGCTC	CTTCGGTCCT	4092
יב	CCGATCGTTG	TCAGAAGTAA	GTTGGCCGCA	GTGTTATCAC	TCATGGTTAT	GGCAGCACTG	4152
	CATAATTCTC	TTACTGTCAT	GCCATCCGTA	AGATGCTTTT	CTGTGACTGG	TGAGTACTCA	4212
	ACCAAGTCAT	TCTGAGAATA	GTGTATGCGG	CGACCGAGTT	GCTCTTGCCC	GGCGTCAACA	4272
	CGGGATAATA	CCGCGCCACA	TAGCAGAACT	TTAAAAGTGC	TCATCATTGG	AAAACGTTCT	4332
20						GTAACCCACT	4392
	CGTGCACCCA	ACTGATCTTC	AGCATCTTT	ACTTTCACCA	GCGTTTCTGG	GTGAGCAAAA	4452
	ACAGGAAGG	AAAATGCCGC	AAAAAAGGG	ATAAGGGCGA	CACGGAAATG	TTGAATACTC	4513
						CATGAGCGGA	457
25	TACATATTT	AATGTATTTA	GAAAAATAA	A CAAATAGGGG	TTCCGCGCAC	ATTTCCCCGA	463
2	3 3 3 CMCCCC C				CROTTARCOTA	TANANTACC	469

-79-

	CGTATCACGA	GGCCCTGATG	GCTCTTTGCG	GCACCCATCG	TTCGTAATGT	TCCGTGGCAC	4752
1	CGACGACAAC	CCTCAAGAGA	AAATGTAATC	ACACTGGCTC	ACCTTCGGGT	GGGCCTTTCT	4812
	GCGTTTATAA	GGAGACACTT	TATGTTTAAG	AAGGTTGGTA	AATTCCTTGC	GGCTTTGGCA	4872
	GCCAAGCTAG	AGATCTCTAG	CTTCGTGTCA	AGGACGGTGA	CTGCAGTGAA	TAATAAAATG	4932
, 5	TGTGTTTGTC	CGAAATACGC	GTTTTGAGAT	TTCTGTCGCC	GACTAAATTC	ATGTCGCGCG	4992
)	ATAGTGGTGT	TTATCGCCGA	TAGAGATGGC	GATATTGGAA	AAATCGATAT	TTGAAAATAT	5052
	GGCATATTGA	AAATGTCGCC	GATGTGAGTT	TCTGTGTAAC	TGATATCGCC	ATTTTTCCAA	5112
	AAGTGATTTT	TGGGCATACG	CGATATCTGG	CGATAGCGCT	TATATCGTTT	ACGGGGGATG	5172
	GCGATAGACG	ACTTTGGTGA	CTTGGGCGAT	TCTGTGTGTC	GCAAATATCG	CAGTTTCGAT	5232
10	ATAGGTGACA	GACGATATGA	GGCTATATCG	CCGATAGAGG	CGACATCAAG	CTGGCACATG	5292
	GCCAATGCAT	ATCGATCTAT	ACATTGAATC	AATATTGGCC	ATTAGCCATA	TTATTCATTG	5352
	GTTATATAGC	ATAAATCAAT	ATTGGCTATT	GGCCATTGCA	TACGTTGTAT	CCATATCATA	5412
	ATATGTACAT	TTATATTGGC	TCATGTCCAA	CATTACCGCC	ATGTTGACAT	TGATTATTGA	5472
15	CTAGTTATTA	ATAGTAATCA	ATTACGGGGT	CATTAGTTCA	TAGCCCATAT	ATGGAGTTCC	5532
- J	GCGTTACATA	ACTTACGGTA	AATGGCCCGC	CTGGCTGACC	GCCCAACGAC	CCCCGCCCAT	5592
	TGACGTCAAT	AATGACGTAT	GTTCCCATAG	TAACGCCAAT	AGGGACTTTC	CATTGACGTC	5652
	AATGGGTGGA	GTATTTACGG	TAAACTGCCC	ACTTGGCAGT	ACATCAAGTG	TATCATATGC	5712
	CAAGTACGCC	CCCTATTGAC	GTCAATGACG	GTAAATGGCC	CGCCTGGCAT	TATGCCCAGT	5772
20	ACATGACCTT	ATGGGACTTT	CCTACTTGGC	AGTACATCTA	CGTATTAGTC	ATCGCTATTA	5832
	CCATGGTGAT	GCGGTTTTGG	CAGTACATCA	ATGGGCGTGG	ATAGCGGTTT	GACTCACGGG	5892
	GATTTCCAAG	TCTCCACCCC	ATTGACGTCA	ATGGGAGTTT	GTTTTGGCAC	CAAAATCAAC	5952
	GGGACTTTCC	AAAATGTCGT	AACAACTCCG	CCCCATTGAC	GCAAATGGGC	GGTAGGCGTG	6012
25	TACGGTGGGA	GGTCTATATA	AGCAGAGCTC	GTTTAGTGAA	CCGTCAGATC	GCCTGGAGAC	6072
	GCCATCCACG	СТСТТТТСАС	CTCCDTDCDD	CACACCCCA	0002 8002 00		

30

PCT/US96/09287 WO 96/40921

-80-

	GGGAACGGTG	CATTGGAACG	CGGATTCCCC	GTGCCAAGAG	TGACGTAAGT	ACCGCCTATA	6192
1	GAGTCTATAG	GCCCACCCC	TTGGCTTCTT	ATGCATGCTA	TACTGTTTTT	GGCTTGGGGT	6252
	CTATACACCC	CCGCTTCCTC	ATGTTATAGG	TGATGGTATA	GCTTAGCCTA	TAGGTGTGGG	6312
	TTATTGACCA	TTATTGACCA	CTCCCCTATT	GGTGACGATA	CTTTCCATTA	CTAATCCATA	6372
_	ACATGGCTCT	TTGCCACAAC	TCTCTTTATT	GGCTATATGC	CAATACACTG	TCCTTCAGAG	6432
5	ACTGACACGG	ACTCTGTATT	TTTACAGGAT	GGGGTCTCAT	TTATTATTTA	CAAATTCACA	6492
	TATACAACAC	CACCGTCCCC	AGTGCCCGCA	GTTTTTATTA	AACATAACGT	GGGATCTCCA	6552
	CGCGAATCTC	GGGTACGTGT	TCCGGACATG	GGCTCTTCTC	CGGTAGCGGC	GGAGCTTCTA	6612
	CATCCGAGCC	CTGCTCCCAT	CCCTCCAGCG	ACTCATGGTC	GCTCGGCAGC	TCCTTGCTCC	6672
LO	TAACAGTGGA	GGCCAGACTT	AGGCACAGCA	CGATGCCCAC	CACCACCAGT	GTGCCGCACA	6732
	AGGCCGTGGC	GGTAGGGTAT	GTGTCTGAAA	ATGAGCTCGG	GGAGCGGGCT	TGCACCGCTG	6792
	ACGCATTTGG	AAGACTTAAG	GCAGCGGCAG	AAGAAGATGC	AGGCAGCTGA	GTTGTTGTGT	6852
	TCTGATAAGA	GTCAGAGGTA	ACTCCCGTTG	CGGTGCTGTT	AACGGTGGAG	GGCAGTGTAG	6912
. –	TCTGAGCAGT	ACTCGTTGCT	GCCGCGCGCG	CCACCAGACA	TAATAGCTGA	CAGACTAACA	6972
15	GACTGTTCCT	TTCCATGGGT	CTTTTCTGCA	GTCACCGTCC	TTGACACGAA	GCTTGGGCTG	7032
	CAGGTCGATC	GACTCTAGAG	GATCGATCCC	CGGGCGAGCT	С		7073

(2) INFORMATION FOR SEQ ID NO:16:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 219 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear 20

(ii) MOLECULE TYPE: protein

25

30

(xi)	SEQUENCE	DESCRIPTION:	SEQ	ID	NO:16:
------	----------	--------------	-----	----	--------

Gln Pro Gly Arg Ser Leu Arg Leu Ser Cys Lys Ala Ser Gly Phe Asn 25

Ile Lys Asp Tyr Tyr Met His Trp Val Arg Gln Ala Pro Gly Lys Gly

Journal of the Cys Cys Lys Ala Pro Gly Lys Gly

Leu Glu Trp Ile Gly Leu Ile Asp Pro Glu Asn Gly Asn Thr Ile Tyr
50 55 60

Asp Pro Lys Phe Gln Gly Arg Phe Ile Ile Ser Ala Asp Asn Ser Lys 65 70 75 80

Asn Thr Leu Phe Leu Gln Met Asp Ser Leu Arg Pro Glu Asp Thr Ala 10 85 90 95

Val Tyr Phe Cys Ala Arg Asp Asn Ser Tyr Tyr Phe Asp Tyr Trp Gly 100 105 110

Gln Gly Thr Pro Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser 115 120 125

Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala 15 130 135 140

Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val 145 150 155 160

Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala 165 170 175

Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val 180 185 190

Pro Ser Ser Ser Leu Gly Thr Lys Thr Tyr Thr Cys Asn Val Asp His 195 200 205

Lys Pro Ser Asn Thr Lys Val Asp Lys Arg Val 210 215

25

30

- (2) INFORMATION FOR SEQ ID NO:17:
- (i) SEQUENCE CHARACTERISTICS: l
 - (A) LENGTH: 12 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein

5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17: Glu Ser Lys Tyr Gly Pro Pro Cys Pro Ser Cys Pro

(2) INFORMATION FOR SEQ ID NO:18:

10

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 109 amino acids (B) TYPE: amino acid

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18: 15

Pro Glu Phe Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro

Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val

Val Asp Val Ser Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val 20

Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln 50 60 .

Phe Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Met His Gln 65 70 75 80

Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly 85 90 95 25

30

Leu Pro Ser Ser Ile Glu Lys Thr Ile Ser Lys Ala Lys 1

- (2) INFORMATION FOR SEQ ID NO:19:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 107 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:
- Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Gln Glu 10
 - Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe
 - Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu
- Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe 15
 - Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg Trp Gln Glu Gly
 - Asn Val Phe Ser Val Ser Val Met His Glu Ala Leu His Asn His Tyr
- Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys 20 100
 - (2) INFORMATION FOR SEQ ID NO:20:
 - (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 7864 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

30

25

(ii) MOLECULE TYPE: peptide

1 (ix) FEATURE:

(A) NAME/KEY: CDS (B) LOCATION: 9..711

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

	- · · · · · · · · · · · · · · · · · · ·						
5	AATTCACCAT	GGGTGTGCCA	ACTCAGGTAT	TAGGATTACT	GCTGCTGTGG	CTTACAGATG	60
	CAAGATGTGA	TATCCAAATG	ACACAATCTC	CTTCTTCTCT	AAGTGCTTCT	GTCGGAGATA	120
	GAGTAACAAT	TACATGTAAG	GCGAGTCAGG	ACATTAGAAA	GTATTTAAAC	TGGTATCAGC	180
	AAAAACCTGG	GAAGGCTCCT	AAGCTACTGA	TTTATTATGC	AACAAGTTTG	GCAGATGGAG	240
	TACCTTCTAG	ATTTTCTGGT	TCTGGCTCTG	GAACAGACTA	CACATTCACA	ATTTCTTCTC	300
10	TCCAACCTGA	GGACATTGCT	ACATACTACT	GCCTACAACA	TGGTGAGAGT	CCGTATACAT	360
	TTGGACAAGG	AACAAAACTA	GAGATCACAA	GAACTGTTGC	GCCCCCTCT	GTCTTCATCT	420
	TCCCGCCATC	TGATGAGCAG	TTGAAATCTG	GAACTGCCTC	TGTTGTGTGC	CTGCTGAATA	480
	ACTTCTATCC	CAGAGAGGCC	AAAGTACAGT	GGAAGGTGGA	TAACGCCCTC	CAATCGGGTA	540
15	ACTCCCAGGA	GAGTGTCACA	GAGCAGGACA	GCAAGGACAG	CACCTACAGC	CTCAGCAGCA	600
	CCCTGACGCT	GAGCAAAGCA	GACTACGAGA	AACACAAAGT	CTACGCCTGC	GAAGTCACCC	660
	ATCAGGGCCT	GAGCTCGCCC	GTCACAAAGA	GCTTCAACAG	GGGAGAGTGT	TAGAGGGAGA	720
	AGTGCCCCC	CCTGCTCCTC	AGTTCCAGCO	TGGGGATCAT	AATCAGCCAT	ACCACATTTG	780
	TAGAGGTTTT	ACTTGCTTTA	AAAAACCTC	CACACCTCCC	CCTGAACCTG	AAACATAAAA	840
20	TGAATGCAAT	r TGTTGTTGT1	AACTTGTTT	TTGCAGCTT	A TAATGGTTAC	AAATAAAGCA	900
	ATAGCATCA	C AAATTTCAC	AATAAAGCA	TTTTTTCAC	r gcattctagi	TGTGGTTTGT	960
	CCAAACTCA	r caatgtatci	TATCATGTC	r ggatcctct	A CGCCGGACGC	ATCGTGGCCG	1020
	GCATCACCG	G CGCCACAGGT	CCGGTTGCT	G GCGCCTATA	r cgccgacato	ACCGATGGGG	1080
25	AAGATCGGG	C TCGCCACTT	C GGGCTCATG	A GCGCTTGTT	T CGGCGTGGG	T ATGGTGGCAG	1140

30

	0000010000	GGGGGACIGI	IGGGCGCCAI	CICCTIGCAT	GCACCATTCC	TTGCGGCGGC	1200
1	GGTGCTCAAC	GGCCTCAACC	TACTACTGGG	CTGCTTCCTA	ATGCAGGAGT	CGCATAAGGG	1260
	AGAGCGTCGA	CCTCGGGCCG	CGTTGCTGGC	GTTTTTCCAT	AGGCTCCGCC	CCCCTGACGA	1320
	GCATCACAAA	AATCGACGCT	CAAGTCAGAG	GTGGCGAAAC	CCGACAGGAC	TATAAAGATA	1380
5	CCAGGCGTTT	CCCCTGGAA	GCTCCCTCGT	GCGCTCTCCT	GTTCCGACCC	TGCCGCTTAC	1440
7	CGGATACCTG	TCCGCCTTTC	TCCCTTCGGG	AAGCGTGGCG	CTTTCTCAAT	GCTCACGCTG	1500
	TAGGTATCTC	AGTTCGGTGT	AGGTCGTTCG	CTCCAAGCTG	GGCTGTGTGC	ACGAACCCCC	1560
	CGTTCAGCCC	GACCGCTGCG	CCTTATCCGG	TAACTATCGT	CTTGAGTCCA	ACCCGGTAAG	1620
	ACACGACTTA	TCGCCACTGG	CAGCAGCCAC	TGGTAACAGG	ATTAGCAGAG	CGAGGTATGT	1680
10	AGGCGGTGCT	ACAGAGTTCT	TGAAGTGGTG	GCCTAACTAC	GGCTACACTA	GAAGGACAGT	1740
	ATTTGGTATC	TGCGCTCTGC	TGAAGCCAGT	TACCTTCGGA	AAAAGAGTTG	GTAGCTCTTG	1800
	ATCCGGCAAA	CAAACCACCG	CTGGTAGCGG	TGGTTTTTTT	GTTTGCAAGC	AGCAGATTAC	1860
	GCGCAGAAAA	AAAGGATCTC	AAGAAGATCC	TTTGATCTTT	TCTACGGGGT	CTGACGCTCA	1920
15	GTGGAACGAA	AACTCACGTT	AAGGGATTTT	GGTCATGAGA	TTATCAAAAA	GGATCTTCAC	1980
-,	CTAGATCCTT	TTAAATTAAA	AATGAAGTTT	TAAATCAATC	TAAAGTATAT	ATGAGTAAAC	2040
	TTGGTCTGAC	AGTTACCAAT	GCTTAATCAG	TGAGGCACCT	ATCTCAGCGA	TCTGTCTATT	2100
	TCGTTCATCC	ATAGTTGCCT	GACTCCCCGT	CGTGTAGATA	ACTACGATAC	GGGAGGGCTT	2160
	ACCATCTGGC	CCCAGTGCTG	CAATGATACC	GCGAGACCCA	CGCTCACCGG	CTCCAGATTT	2220
20					AGTGGTCCTG		2280
					GTAAGTAGTT		2340
					GTGTCACGCT		2400
					GTTACATGAT		2460
25					GTCAGAAGTA		2520
-	AGTGTTATCA	CTCATGGTTA	TGGCAGCACT	GCATAATTCT	CTTACTCTCA	TCCCATCCCT	2590

	AAGATGCTTT	TCTGTGACTG	GTGAGTACTC	AACCAAGTCA	TTCTGAGAAT	AGTGTATGCG	2640
1	GCGACCGAGT	TGCTCTTGCC	CGGCGTCAAC	ACGGGATAAT	ACCGCGCCAC	ATAGCAGAAC	2700
	TTTAAAAGTG	CTCATCATTG	GAAAACGTTC	TTCGGGGCGA	AAACTCTCAA	GGATCTTACC	2760
	GCTGTTGAGA	TCCAGTTCGA	TGTAACCCAC	TCGTGCACCC	AACTGATCTT	CAGCATCTTT	2820
_	TACTTTCACC	AGCGTTTCTG	GGTGAGCAAA	AACAGGAAGG	CAAAATGCCG	CAAAAAAGGG	2880
5	AATAAGGGCG	ACACGGAAAT	GTTGAATACT	CATACTCTTC	CTTTTTCAAT	ATTATTGAAG	2940
	CATTTATCAG	GGTTATTGTC	TCATGAGCGG	ATACATATTT	GAATGTATTT	AGAAAAATAA	3000
	ACAAATAGGG	GTTCCGCGCA	CATTTCCCCG	AAAAGTGCCA	CCTGACGTCT	AAGAAACCAT	3060
	TATTATCATG	ACATTAACCT	ATAAAAATAG	GCGTATCACG	AGGCCCTGAT	GGCTCTTTGC	3120
LO	GGCACCCATC	GTTCGTAATG	TTCCGTGGCA	CCGAGGACAA	CCCTCAAGAG	AAAATGTAAT	3180
	CACACTGGCT	CACCTTCGGG	TGGGCCTTTC	TGCGTTTATA	AGGAGACACT	TTATGTTTAA	3240
	GAAGGTTGGT	AAATTCCTTG	CGGCTTTGGC	AGCCAAGCTA	GAGATCCGGC	TGTGGAATGT	3300
	GTGTCAGTTA	GGGTGTGGAA	AGTCCCCAGG	CTCCCCAGCA	GGCAGAAGTA	TGCAAAGCAT	3360
1 =	GCATCTCAAT	TAGTCAGCAA	CCAGGCTCCC	CAGCAGGCAG	AAGTATGCAA	AGCATGCATC	3420
15	TCAATTAGTC	AGCAACCATA	GTCCCGCCCC	TAACTCCGCC	CATCCCGCCC	CTAACTCCGC	3480
	CCAGTTCCGC	CCATTCTCCG	CCCCATGGCT	GACTAATTTT	TTTTATTTAT	GCAGAGGCCG	3540
	AGGCCGCCTC	GGCCTCTGAG	CTATTCCAGA	AGTAGTGAGG	AGGCTTTTTT	GGAGGCCTAG	3600
	GCTTTTGCAA	AAAGCTAGCT	TGGGGCCACC	GCTCAGAGCA	CCTTCCACCA	TGGCCACCTC	3660
20	AGCAAGTTCC	CACTTGAACA	AAAACATCAA	GCAAATGTAC	TTGTGCCTGC	CCCAGGGTGA	3720
	GAAAGTCCAA	GCCATGTATA	. TCTGGGTTGA	TGGTACTGGA	GAAGGACTGC	GCTGCAAAAC	3780
	CCGCACCCTG	GACTGTGAGO	CCAAGTGTGT	AGAAGAGTTA	CCTGAGTGGA	ATTTTGATGG	3840
	CTCTAGTACC	TTTCAGTCTG	AGGGCTCCAA	CAGTGACATG	TATCTCAGCC	CTGTTGCCAT	3900
25	GTTTCGGGAC	CCCTTCCGC	GAGATCCCAA	CAAGCTGGTG	TTCTGTGAAG	TTTTCAAGTA	3960
-)	GRAGGGGAAG					TOCACATECT	4020

	GAGCAACCAG	CACCCCTGGT	TTGGAATGGA	ACAGGAGTAT	ACTCTGATGG	GAACAGATGG	4080
1	GCACCCTTTT	GGTTGGCCTT	CCAATGGCTT	TCCTGGGCCC	CAAGGTCCGT	ATTACTGTGG	4140
	TGTGGGCGCA	GACAAAGCCT	ATGGCAGGGA	TATCGTGGAG	GCTCACTACC	GCGCCTGCTT	4200
	GTATGCTGGG	GTCAAGATTA	CAGGAACAAA	TGCTGAGGTC	ATGCCTGCCC	AGTGGGAACT	4260
5	CCAAATAGGA	CCCTGTGAAG	GAATCCGCAT	GGGAGATCAT	CTCTGGGTGG	CCCGTTTCAT	4320
	CTTNCATCGA	GTATGTGAAG	ACTTTGGGGT	AATAGCAACC	TTTGACCCCA	AGCCCATTCC	4380
	TGGGAACTGG	AATGGTGCAG	GCTGCCATAC	CAACTTTAGC	ACCAAGGCCA	TGCGGGAGGA	4440
	GAATGGTCTG	AAGCACATCG	AGGAGGCCAT	CGAGAAACTA	AGCAAGCGGC	ACCGGTACCA	4500
	CATTCGAGCC	TACGATCCCA	AGGGGGGCCT	GGACAATGCC	CGTGGTCTGA	CTGGGTTCCA	4560
10	CGAAACGTCC	AACATCAACG	ACTTTTCTGC	TGGTGTCGCC	AATCGCAGTG	CCAGCATCCG	4620
	CATTCCCCCG	ACTGTCGGCC	AGGAGAAGAA	AGGTTACTTT	GAAGACCGCG	GCCCCTCTGC	4680
	CAATTGTGAC	CCCTTTGCAG	TGACAGAAGC	CATCGTCCGC	ACATGCCTTC	TCAATGAGAC	4740
	TGGCCACGAG	CCCTTCCAAT	ACAAAAACTA	ATTAGACTTT	GAGTGATCTT	GAGCCTTTCC	4800
15		CACCCCGCCC					4860
	ACATAATTGG	ACAAACTACC	TACAGAGATT	TAAAGCTCTA	AGGTAAATAT	ATTTTTAAAA	4920
	AGTGTATAAT	GTGTTAAACT	ACTGATTCTA	ATTGTTTGTG	TATTTTAGAT	TCCAACCTAT	4980
		AATGGGAGCA					5040
		CATCTAGTGA					5100
20		GAAAGGTAGA					5160
		TGTTTAGTAA					5220
		TGCTATACAA					5280
		ATAATCATAA					5340
25		ACTATGCTCA					5400
_	AATAAGGAAT	ATTTGATGTA	TAGTGCCTAG	ACTAGAGATC	ATAATCAGCC	ATACCACATT	5460

	TGTAGAGGTT	TTACTTCCTT	TAAAAAACCT	CCCACACCTC	CCCCTGAACC	TGAAACATAA	5520
1	AATGAATGCA	ATTGTTGTTG	TTAACTTGTT	TATTGCAGCT	TATAATGGTT	ACAAATAAAG	5580
	CAATAGCATC	ACAAATTTCA	CAAATAAAGC	ATTTTTTCA	CTGCATTCTA	GTTGTGGTTT	5640
	GTCCAAACTC	ATCAATGTAT	CTTATCATGT	CTGGATCTCT	AGCTTCGTGT	CAAGGACGGT	5700
E	GACTGCAGTG	AAAATAATAA	TGTGTGTTTG	TCCGAAATAC	GCGTTTTGAG	ATTTCTGTCG	5760
5	CCTACTAAAT	TCATGTCGCG	CGATAGTGGT	GTTTATCGCC	GATAGAGATG	GCGATATTGG	5820
	AAAAATCGAT	ATTTGAAAAT	ATGGCATATT	GAAAATGTCG	CCGATGTGAG	TTTCTGTGTA	5880
	ACTGATATCG	CCATTTTTCC	AAAAGTGATT	TTTGGGCATA	CGCGATATCT	GGCGATAGCG	5940
	CTTATATCGT	TTACGGGGGA	TGGCGATAGA	CGACTTTGGT	GACTTGGGCG	ATTCTGTGTG	6000
10	TCGCAAATAT	CGCAGTTTCG	ATATAGGTGA	CAGACGATAT	GAGGCTATAT	CGCCGATAGA	6060
	GGCGACATCA	AGCTGGCACA	TGGCCAATGC	ATATCGATCT	ATACATTGAA	TCAATATTGG	6120
	CCATTAGCCA	TATTATTCAT	TGGTTATATA	GCATAAATCA	ATATTGGCTA	TTGGCCATTG	6180
	CATACGTTGT	ATCCATATCA	TAATATGTAC	ATTTATATTG	GCTCATGTCC	AACATTACCG	6240
15	CCATGTTGAC	ATTGATTATT	GACTAGTTAT	TAATAGTAAT	CAATTACGGG	GTCATTAGTT	·6300
ょう	CATAGCCCAT	ATATGGAGTT	CCGCGTTACA	TAACTTACGG	TAAATGGCCC	GCCTGGCTGA	6360
	CCGCCCAACG	ACCCCCCCCC	ATTGACGTCA	ATAATGACGT	ATGTTCCCAT	AGTAACGCCA	6420
	ATAGGGACTT	TCCATTGACG	TCAATGGGTG	GAGTATTTAC	GGTAAACTGC	CCACTTGGCA	6480
	GTACATCAAG	TGTATCATAT	GCCAAGTACG	CCCCCTATTG	ACGTCAATGA	CGGTAAATGG	6540
20	CCCCCTGGC	ATTATGCCCA	GTACATGACC	TTATGGGACT	TTCCTACTTG	GCAGTACATC	6600
	TACGTATTAG	TCATCGCTAT	TACCATGGTG	ATGCGGTTTT	GGCAGTACAT	CAATGGGCGT	6660
	GGATAGCGGT	TTGACTCACG	GGGATTTCCA	AGTCTCCACC	CCATTGACGT	CAATGGGAGT	6720
	TTGTTTTGGC	ACCAAAATCA	ACGGGACTTT	CCAAAATGTC	GTAACAACTC	CGCCCCATTG	6780
25	ACGCAAATGG	GCGGTAGGCG	TGTACGGTGG	GAGGTCTATA	TAAGCAGAGC	TCGTTTAGTG	6840
ري	AACCCTCACA	TOCOCOTOCAC	ACCCCATCCA	CCCTCTTTTC	ACCTCCATAG	AAGACACCGG	6900

information on patent family members

Inter onal Application No PCI/US 96/09287

Patent document cited in search report	Publication date		t family ber(s)	Publication date
WO-A-8807543		FI-A- GR-A- JP-T- US-A-	954347 88100198 1503438 5437864	15-09-95 31-01-89 22-11-89 01-08-95
WO-A-9411029	26-05-94	US-A- AU-A-	5437864 5671594	01-08-95 08-06-94
WO-A-9405328	17-03-94	AU-A-	5093593	29-03-94

Form PCT/ISA/210 (patent family annex) (July 1992)

nformation on patent family members

Inter 2012 Application No PC1/US 96/09287

 -	aniador or pacia failing incha	PC1/U	S 96/09287
Patent document cited in search report	Publication date	Patent family . member(s)	Publication date
WO-A-9109968	11-07-91	AT-T- 129017 AT-T- 124459 AU-B- 664801	15-10-95 15-07-95 30-11-95
		AU-A- 6461294	22-12-94
5 -		AU-B- 646009 AU-A- 6974091	03-02-94 24-07-91
		AU-B- 649645	02-06-94
		AU-A- 7033091 AU-B- 631481	24-07-91 26-11-92
		AU-A- 7048691	24-07-91
		BG-B- 60462	28-04-95
		CA-A- 2037607 CA-A- 2046904	07-09-92 22-06-91
		CA-A- 2050479	22-06-91
		DE-D- 69020544 DE-T- 69020544	03-08-95 18-01-96
		DE-D- 69022982	16-11-95
		DE-T- 69022982	28-03-96
		EP-A- 0460167 EP-A- 0460171	11 - 12-91 11-12-91
		EP-A- 0460178	11-12-91
		EP-A- 0620276 EP-A- 0626390	19-10-94
		EP-A- 0626390 ES-T- 2079638	30-11-94 16-01-96
		ES-T- 2074701	16-09-95
		WO-A- 9109966 WO-A- 9109967	11-07-91 11-07-91
		GB-A,B 2246781	12-02-92
		GB-A,B 2246570 GB-A,B 2268744	05-02-92 19-01-94
		GB-A,B 2268745	19-01-94
		JP-T- 4505398 JP-T- 4506458	24-09-92 12-11-92
		JP-T- 5500312	28-01-93
WO-A-8807543	06-10-88	US-A- 5110730	05-05-92
		US-A- 5223427 AU-B- 605864	29-06-93 24-01-91
		AU-A- 1627488	02-11-88
		EP-A- 0309548	05-04-89

Form PCT/ISA/218 (patent family annex) (July 1992)

national application No.

PCT/US 96/09287

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X Claims Nos.: 31-35
because they relate to subject matter not required to be searched by this Authority, namely: Remark: Although claims 31-35 are directed to a method of treatment of
the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searches without effort instifuing an additional of the search
2. As all searchable claims could be searches without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
·
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report
covers only those claims for which fees were paid, specifically claims Nos.:
-
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
· ·
Remark on Protest The additional search fees were accompanied by the applicant's protest.
No protest accompanied the payment of additional search fees.

Inter mal Application No
PC1/US 96/09287

		PC1/US 90/0920/
Category *	ction) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
1	JOURNAL OF CRYSTAL GROWTH, vol. 122, no. 1-4, August 1992, AMSTERDAM, NL, pages 253-264, XP002015918 W. RUF ET AL.: "Purification, sequence and crystallization of an anti-tissue factor Fab and its use for the crystallization of tissue factor."	1-37
	see abstract see table 1	
		·
		-

Form PCT/ISA/218 (continuation of second sheet) (July 1992)

Inter 2011 Application No PCT/US 96/09287

			PCT/	/US 96/09287
A. CLASS IPC 6	IFICATION OF SUBJECT MATTER C12N15/13 C07K16/36 C07K16/4 C12N15/85	46 A61K39/	395	//C12N5/10,
	o International Patent Classification (IPC) or to both national classs	fication and IPC		
Minimum d	cocumentation searched (classification system followed by classification colored by classificati	tion symbols)	·	
Documenta	tion searched other than minimum documentation to the extent that	such documents are incl	ude d in 1	the fields searched
Electronic	lata base consulted during the international search (name of data bas	se and, where practical,	search te	rns used)
C. DOCUN	MENTS CONSIDERED TO BE RELEVANT		·-	
Category *	Citation of document, with indication, where appropriate, of the r	elevant passages		Relevant to claim No.
Y	WO 91 09968 A (CELLTECH LIMITED) 1991 see examples see claims	11 July		1-37
Y	WO 88 07543 A (SCRIPPS CLINIC AND FOUNDATION) 6 October 1988 see claims	O RESEARCH		1-37
A	WO 94 11029 A (THE SCRIPPS RESEAUTION OF THE STATE OF THE SCRIPPS RESEAUTION OF THE SCRIPPS RESE	RCH		1-37
A	WO 94 05328 A (THE SCRIPPS RESEAUTINSTITUTE) 17 March 1994 see examples see claims	RCH -/		1-37
X Furt	her documents are listed in the continuation of box C.	X Patent family r	members	are listed in annex.
'A' docum consid 'E' earlier filing 'L' docum which citatio 'O' docum other 'P' docum later th	ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another in or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or means ent published prior to the international filing date but can the priority date claimed	or priority date an cited to understand invention "X" document of partic cannot be consider involve an inventio" "Y" document of partic cannot be consider document is comb	d not in a did not	ther the international filing date conflict with the application but reciple or theory underlying the vance; the claimed invention or cannot be considered to then the document is taken alone vance; the claimed invention rolve an inventive step when the a one or more other such docucing obvious to a person skilled sune patent family
	actual completion of the international search 5 October 1996	Date of mailing of		8. 11. 96
	nailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fax (+ 31-70) 340-3016	Authorized officer		

Form PCT/ISA/210 (second sheet) (July 1992)

RECTIFIED SHEET (RULE 91)
ISA/EP

RECTIFIED SHEET (RULE 91)
ISA/EP

BNSDOCID: <WO_____9640921A1_i_>

RECTIFIED SHEET (RULE 91)
ISA/EP

RECTIFIED SHEET (RULE 91)
ISA/EP

FIG. 5 0

7830 7840 7850 7860

CGA TCG ACT CTA GAG GAT CGA TCC CCG GGC GAG CTC G
GCT AGC TGA GAT CTC CTA GCT AGG GGC CCG CTC GAG C

RECTIFIED SHEET (RULE 91)
ISA/EP

FIG. 5 N

TOS GST CHE ANT TAN TAT TAT CAN ANT CAC AND TAC ANC ACC CAC GST CACC CCN CAG TAN AND AND AND AND AND GST TAN AND TAG TAG CAN ATT TAX CAN AND TAG TAG TAG TAG TAG TAG CAC CAN CAC CAN CAC CAN CAC CAN CAC CAN AND AND AND TAG TAG TAG CAC CAN CAC CAC																	
7300 7310 7320 7330 7340 CCC AGT GCC CCC AGT TITT TAT TAA ACA TAA CGT GGG ATC TCC AGC GGG GCT ACG GGG TCA AAA ATA ATT TGT ATT GCA CCC TAG AGG TCC GGT TCA AAA ATA ATT TGT ATT GCA CCC TAG AGG TCC GGT TCA AAA ATA ATT TGT ATT GCA CCC TAG AGG TCC GGT TCA AAA ATA ATT TGT ATT GCA CCC TAG AGG TCC GGT TAG AGC TCC GGT TCC GGA AAA AGA ATT TGT ATT GCA CCC TAG AGC GCC GGA AAG AGC CCA TCC CCG GTA AGC ACC GCC GAA AAG AGC CCA TCC CCG GCT TAG AGC CCA AAG AGC CCA TCC CCG GCT TAG AGC CCA AGA AGC CCA TCC CCG GCT TCA AGA AGC CCA TCC AGC GCC GCA AAG AGC CCA TCC AGC GCC GCT TCA AGA AGA TCT AGG CCC GGA AGG AGC TCA AGA AGA TCT AGG CCC GGA AGG AGC TCA AGA AGA TCT AGG CCC GGA AGG AGC TCA AGA TCT AGG CCC AGG TCC AGC AGC AGC TCC AGC AGC AGC TCC AGC AGC TCC AGC AGC AGC TCC AGC AGC AGC AGC TCC AGC AGC AGC AGC CCC TCC AGC AGC AGC AGC AGC AGC AGC AGC AGC A	`			4	•			-									
7310 7310 7320 7330 7340 CCC AST SCC CCC AST TIT TAT TAA ACA TAA CCT GGG ATC TCC ACG CGA GGG TCA CCG GGG TCA AAA ATA ATT TGT ATT GCA CCC TAG ACG TCC GGT TAG ACG TCC GGG TCA AAA ATA ATT TGT ATT GCA CCC TAG ACG TCC GGT TAG ACG CCT TGT ACC GGA CAT GGG CTC TTC TCC GGT ACG CGC GGA TAG ACG CCT TGT ACG		ACC	CC	GAG	TAA	TAT ATA	TAT ATA	TTA TAA	CAN	ATI TAX	CAC	TAT	TAC YTA	AAC TTC	ACC	C ACC	C GTC
CCC ACT GCC CGC AGT TIT TAT TAX ACA TAX CCT GGG ATC TCC ACG GCA GCC TCA AAA ATT ATT TCT ATT GCA CCC TAG AGG TCC GCC TCA AAA ATT ATT TCT ATT GCA CCC TAG AGG TCC GCC TAG AGG TCC GCC TAG AGG TCC GCC TCA AAA ATT ATT TCT ATT GCA CCC TAG AGG TCC GCC TCC TCA AGG TCC GCA AAC ACG CCT GCA CCA GCG CTC TCT TCC CCA ACG ACG CCC TCC TCC CCC CCT TAG AGC CCA TCC ACC ACG ACC CCC CCC CCT TAG AGC CCA TCC ACC ACG ACC CCC CCC CCC CCC CCC CCC C		7300		7	310			7320			73	30		7	7340		
7350 7360 7370 7380 7390 ATC TCC GCT ACC TCT TCC GCA CAT GCG CTC TCT TCC GCT ACC GCA CAT GCG CAC AMA AGG CCA TCC CCC CCT TAG AGC CCA TCC ACC ACG CCT GTA CCC CAG AMA AGG CCA TCC CCC CCT 7400 7410 7420 7430 7440 GCT TCT ACA TCC GAG CCC TCC TCC CAT GCC TCC ACC ACC ACT ACC CCC CCT CCA AGA TCT ACG CCC GCG ACC ACG GTA CCC TCC ACC ACC TCA ACT ACC ACC CCA AGA TCT ACG CCC GCG ACC ACG GTA CCC TCC ACC ACC TCA ACT ACC ACC 7450 7460 7470 7480 7480 7490 CTC GCC ACC ACC TCC TTC CTC CTA ACA GTA GAG GCA ACA CTT AGG CAC ACC CCC GTA CCC CCC TCC ACC ACC ACC ACC ACC ACC CCC C		CCC	AGT	. ecc	ccc	AGT	TIT	TAT	TAA	λCA	ТАХ	_	ccc	3 000			
ATC TCG GGT ACG TGT TCC GGA CAT GGG CTC TTC TCC GGT AGC GGA CAT TGG GGA CAT GGG CTC TTC TCC GGT AGC GGA CAT TGG CGA CCT TGA CCC CAG AAA AGG CCC TCG CCT TGA CCC CAG AAA AGG CCC TCG CCC CCT TGA CCC CAG AAA AGG CCC TCG CCC CCT TGA AGC AAG CCC TCG AGC AAG AGG TCC TCC AGG AGC AGG CCC TCC AGG AGG TCC TCC AGG AGC AGC TCC AGC AGC AGC TCC AGC AGC AGC TCC AGC AGC AGC TCC AGC AGC AGC CCC TCC AGG AGC CCC TCC AGC AGC AGC CCC TCC CCG TCC AGC AGC AGC AGC CCC CCC CCC CCC CCC C				CGG			λλλ	ATA	ATT	TGT	ATT	GCA	CCC	TAG	AGG	TGC	CGA
7400 7410 7420 7430 7440 CCT TCT ACA TCC GAG CCC TGC TCC CAT GCC TCC AGC GAC TCA ACC AGC GAC AGA TCT AGG CTC GAG AGA AGA TGT AGG CTC GAG AGA GAG AGA TGT AGG CTC AGC AGC AGA TCT AGC AGC AGA TGT AGG CTC GAG AGA TGT AGG CTC AGC AGC AGC AGA TGT AGC AGC AGC AGA TGT AGG CAC AGG CTC AGG CTC AGG AGG CTC AGG CTC AGG CTC AGG AGG CTC AGG AGG AGG AGG AGG AGG AGG AGG CTC AGG AGG AGG AGG AGG AGG AGG AGG AGG AG		•				•			_						73	90	
7410 7410 7420 7430 7440 GCT TCT ACA TCC GAG CCC TGC TGC CAT GCC TCC AGC GAC TCA TGC TCC CAT ACA AGA TCT AGG CTC GGG ACG AGG GTA CGG AGG TCC CTC AGT ACC AGC TCC AGA AGA TCT AGG CTC GGG ACG ACG GTA CGG GTA CGG AGG TCC CTC AGT ACC AGC CTC AGA ACA AGA CTC AGC AGG CTC AGA TCC AGC AGA CTC AGG CAC AGA CTC CGG TCC AGG CAC AGA CTC CAC AGC CTC CGG TCC CGG TCC CGG TCC CGG TCC CGC TCC CGG TCC CGC CAC CAC CAC CCC CAC CCC CAC CCC CAC		TAG	AGC	CCA	TGC	YCY	TCC	CCT	CAT	CCC	CTC GAG	TTC AAG	TCC AGG	CCA) TCG	CCC	CCT
GET TET ACA TEC GAG CEC TGC TGC TCC ACT GCC TCC AGC GAC TCA TGG TCC GGA AGA TGT AGG CTC GGG ACG ACG ACG AGG GTA CGG AGG TCC GAC TACT AGG CCC AGG AGA TGT ACC AGC AGC AGA AGA TGT ACG AGG CGA AGA TGT ACC AGC AGG CTC GGG AGG TCC AGA ACC AGG CTC GGG AGG CCC AGA CTT AGG CAC AGA CTT AGG CAC AGG CCC AGA CTT AGG CAC AGG CCC AGA CTT AGG CAC AGC AGG CCC TCC GGG TCC GGG TCC GGG TCC GGG TCC GGG AGA ACC GGG CGC GGG GTC GGG CAT CCC CAC AGG CCC AGA ACC CGC CAT CCC TCC TAC GGG TCC TGC TGC TGC TGC TGC TGC TGC TG												_					
7450 7460 7470 7480 7480 7480 7480 7480 7480 748		CCT	TCT	ACA	T	CAC	~~~			•			•			•	
THE GGC AGC TCC TTG CTC CTA ACA GTG GAG GCC AGA CTT AGC CAC AGC CTC CTA ACA GTG GAG GCC AGA CTT AGC CAC AGC CAC CTC CTG AGC ACC CTC CTG TCC CTG AGC ACC CTC CTG TCC CTG CTG		CGA	λGλ	TCT	λGG	CIC	GGG) ACC	AGG	CAT	000 000	TCC	YCC TCC	CIC	TCX AGT	TGG	TCG
7500 7510 7520 7530 ACG ATG CCC ACC ACC ACC ACC ACT GTG GCG CAC AAG GCC GTG GCG GTA GGG TGC TAC GGG TGG TGG TGG TGG GCG GAC GGC GTG TTC CCC CAT CCC 7540 7550 7560 7570 7580 TAT GTG TCT GAA AAT GAG GTC GGG GAG GGG GCT TGC ACC GGT GAC GGA ATA CAC AGA CTT TTA CTC GAG CCC CTC GCC GCA CTG GCT 7590 7600 7610 7620 7630 TTT GGA AGA CTT AAG GCA GGG GCA GAA GAA GAT GCA GGC AGC TGG ACT CAT CAT AAA CCT TCT GAA TTC GCT CGC GCT GTT CTT CTT CTT CTT GAA GTT CAA GTT CAA ACC TCT GCA ATT CCT CGT CGC CCT TCT CTT CTT CTT CTT GCA ACC GCC AAC 7640 7650 7660 7670 7680 GTT GTG TTC TGA TAA GAG TCA GAG GTA ACT CCC GTT GCG GTC CTC TTA CAA CAC AAG ACT ATT CTC AGT CTC CAT TGA GGG CAA CCC CAC GAC AAT 7690 7700 7710 7720 7730 ACG GTG GAG GGC ACT GTA GTC TGA GCA GTA CTC GTT GCT GCC GCC GCC TGC CAC CTC CCC TCA CAT CAG ACT CAT CAG CAA CCC GCC GCC TGC CAC CTC CCG TCA CAT CAG ACT CTC TGA GAA GAA CAT CAG CCC GCC GCC TGC CAC CTC CCG TCA CAT CAG ACT CTC TGA GCA GAA GCT TCC GTT CCC TTC CAC TTC GAA CAT AAT ACC TCA CAG ACT CAT CAG CAA CCC CCC CCC ACC ACC ACT CAT CAG ACT CTC TGA TGA GAA GCT TGC GCC GCC GCC TGC TCG TCT GTA TTA TCC ACT CTC TGA CAC GAA GCT TCC GTT TCC ATG CCG TCG TCT GTA TTA TCC ACT CTC TGA CAC GAA GCT TGC GCT GCA CCC ACC ACA CAT CAG CCT CCT TGA CAC GAA GCT TGC GCT GCA CCT CCA CCC ACA CAT CAG CCT CCT TGA CAC GAA GCT TGC GCT GCA CCT CCA				•			•			_						7	490
7500 7510 7520 7530 ACC ATC CCC ACC ACC ACC ACC ACT GTG CCG CAC AAG GCC GTG GCG GTA GGG TGC TAC GGG TGG TCG TCA CAC GGC GTG TTC CGG CAC CAC CCC CAT CCC 7540 7550 7560 7570 7580 TAT GTG TCT GAA AAT GAG CTC GGG GAG CGG GCT TGC ACC GCT GAC GCA ATA CAC AGA CTT TTA CTC GAG CCC CTC GCC CGA ACG TGG CGA CTG CGA ATA CAC AGA CTT TTA CTC GAG CCC CTC GCC CGA ACG TGG CGA CTG CGA CTG CGT ATA CAC AGA CTT AAG GCA GCG GCA GAA GAA GAA GAT GCA GCC AGC TGA CTG CGT AAA CCT TCT GAA TTC CGT CGC CGT CTT CTT CTA CGT CCC TCG ACC GCA ACT CAA CTC AAT CAC AAG ACT ATA CAC AAG ACT ATA CAC AGA CTC AGT CTC CAT TCA CGT CCC TTC AAT CAC CAC AAC CAC AAC ACC CAC GAC AAT CAC AAC CAC AAG ACT ATA CAC AGA CAC AAG ACT ATA CAC AGA CAC AAG ACT ATA CTC CAT TCA GGG CAA CGC CAC GAC AAT CAC AAC CAC AAG ACT ATA CTC CAT TCA GCA GCA CAC CAC GAC AAT CAC CAC CAC CAC CAC CAC CAC CAC C		CAC	CCC	AGC TCG	TCC	TTG AAC	CIC	CTA CAT	ACA TCT	CXC	GAG	GCC CCG	AGA TOT	CIT	λGG	CAC	YCC .
ACC ATG ACC ACC ACC ACC ACC ACC ACC ACC ACC CCC CAC CAC GCC CAC CAC CCC CAC CAC <th></th> <td></td> <td>100</td> <td>CIG</td> <td>TCG</td>															100	CIG	TCG
7540 7550 7560 7570 7580 TAT GTC TCT GAA AAT GAG CTC GGG GAG CGG GCT TGC ACC GCT GAC GCA ATA CAC AGA CTT TTA CTC GAG CCC CTC GCC CGA ACG TGC CGA CTC GCT TTA CTC GAG CCC CTC GCC CGA ACG TGC CGA CTC CGT CTC CTT TTA CTC GAG CCC CTC GCC CGA ACG TGC CGA CTC CGT CTC TCT CTT CTA CGC CGA CTC CGT CAC TCA CTC CAC CA		λCG	ATY:	~	300			•									
7540 7550 7560 7570 7580 TAT GTG TCT GAA AAT GAG CTC GGG GAG CGG GGT TGC ACC GCT GAC GGA ATA CAC AGA CTT TTA CTC GAG CCC CTC GCC CGA ACG TGC CGA CTC GGT 7620 7630 7590 7600 7610 7620 7630 TTT GGA AGA CTT AAG GCA GCC GCA GAA GAA GAA GAT GCA GGC AGC TGA GTT AAA CCT TCT GAA TTC CGT CGC CGT CTT CTT CTA CGT CCG TCG ACT CAA 7640 7650 7660 7670 7680 GTT GTG TTC TGA TAA GAG TCA GAG GTA ACT CCC GTT GCG GTG CTC TTA CAA CAC AAG ACT ATT CTC AGT CTC CAT TCA GGG CAA GCC CAC GAC AAT 7730 7730 7730 7730 7730 ACG GTG GAG GGC AGT GTA CTC TCA GCA GTA CTC GTT GCT GCC GCG CCC TCC CAT CAG CAT CAG CAT CAG CCG CCC GCG TCC CAT CAG CAT CAG CAG CCG CCC GCG TCC CAT CAG CAT CAG CAT CAG CCG CCC GCG CCC TCC CAT CAG CAT CAG CAT CAG CCG CCC CCC CCC CCC CCC CCC CCC CCC		TCC	TAC	ccc	TGG	TGG	TCC	TCX	CAC	ccc	CYC	AAG TTC	666 666	CAC	666 666	GTA CAT	CCC
TAT GTG TCT GAA AAT GAG CTC GGG GAG CGG GCT TGC ACC GCT GAC GCA ATA CAC AGA CTT TTA CTC GAG CCC CTC GCC CGA ACG TGC CGA CTC GCT TTA CTC GAG CCC CTC GCC CGA ACG TGC CGA CTC CGT TTA CTC GAG CCC CTC GCC CGA ACG TGC CGA CTC CGT TTT CTT GGA AGA GAA GAA GAA GAA GAA GAA GAA G	7	540															
7590 7600 7610 7620 7630 TIT GGA AGA CIT AMG GCA GCG GCA GAA GAA GAT GCA GGC AGC TGA GTT AMA CCT TCT GAA TTC CGT CGC CGT CTT CTT CTA CGT CGC TCG ACT CAA CAA CAA CAA GAA GAT GCA GGC AGC TGA GTT AMA CCT TCT GAA TTC CGT CGC CGT CTT CTT CTA CGT CGC GTG CTG TTA CAA CAC AAG ACT ATT CTC AGT CTC CAT TGA GGG CAA CGC CAC GAC AAT 7640 7650 7660 7670 7680 GTT GTG TTC TGA TAA GAG TCA GAG GTA ACT CCC GTT GCG GTG CTG TTA CAA CAA CAC AAG ACT ATT CTC AGT CTC CAT TGA GGG CAA CGC CAC GAC AAT 7690 7700 7710 7720 7730 ACG GTG GAG GGC AGT GTA GTC TGA GCA GTA CTC GTT GCT GCC GCG CGC TGC CAC CTC CCG TCA CAT CAG ACT CAT GAG CAA CGA CGC CGC GCC TGC CAC CTC CGG TCA CAT CAG ACT CAT GAG CAA CGA CGC CGC GCC TCG TTA TTA TGG ACT GTC TGA TTA TTA TCG ACT GTC TGA TTA TTC GAC AAG GAA AGG TAC 7780 7790 7800 7810 7820 GGT CTT TTC TGC AGT CAC CGT CCT TGA CAC GAA GCT TGG GCT GCA GGT CCA GAA AAG TCC TTT CCTA CAC GAA ACG TTA CAC GAA ACC CGA CGT CCA GAA ACC CGA CGT CCA GAA ACC CGA CGT CCA GAA AAC GCT TGG GCT GCA CGT CCA GAA AAC GTT TGC GCT GCA CGT CCA GAA AAC GCT TGG GCT GCA CGT CCA GAA ACC GGA ACCT GTG GCT CCA ACC CGA CGT CCA CCA CGT CCA GAA ACC GGA ACCT GTG GCT CCA ACC CGA CGT CCA CCA CGT CCA GAA ACC GGA ACCT GTG GCT CCA ACC CGA CGT CCA CCA CCT CCA CCA CGT CCA GAA ACC GGA ACCT GTG GCT CCA ACC CGA CCT CCA CCT CCA CCA CCT CCT		TAT	crc	TCT	GAA	AAT	ChC	~							•		
TIT GGA AGA CIT AAG GCA GGG GGA GAA GAA GAT GCA GGC AGC TGA GTT AAA CCT TCT GAA TTC CGT CGC CGT CTT CTT CTA CGT CCG TCG ACT CAA 7640 7650 7660 7670 7680 GTT GTG TTC TGA TAA GAG TCA GAG GTA ACT CCC GTT GCG GTG CTG TTA CAA CAC AAG ACT ATT CTC AGT CTC CAT TGA GGG CAA CGC CAC GAC AAT 7690 7700 7710 7720 7730 ACG GTG GAG GGC AGT GTA GTC TGA GCA GTA CTC GTT GCT GCC GCG CGC TGC CAC CAC CAC GAC AAT ACG GTG CAG GGC AGT GTA GTC TGA GCA GTA CTC GTT GCT GCC GCG CGC TGC CAC CAC CAC GAC AAT 7740 7750 7760 7770 GCC ACC AGA CAT AAT AGC TGA CAG ACT AAC AGA CTC TTC CTT TCC ATG CGG TGG TGT TTA TTA TCG ACT GTC TGA TTG TCT GAC AAG GAA AGG TAC 7780 7790 7800 7810 7820 GGT CTT TTC TGC AGT CAC CGT CCT TGA CAC GAA GCT TGG GCT GCA GGT CCA GAA AAG AAC CTC TTC CTA CCA GAA AAG AAC CTC TCC CCA CCT CCA		ATA	CAC	λGλ	CII	TTA	CIC	CAG	000	CIC	CCC	CCY	TGC	ACC TGG	CCI	CXC	CCA CCT
7640 7650 7660 7670 7680 CTT CTC TCC TCA TAX CAG TCA CAG CTA ACT CCC CTT CCC CTC TTA CAA CAA CAC AAG ACT ATT CTC ACT CTC CAT TCA CGG CAA CGC CAC CAA AAT 7690 7700 7710 7720 7730 ACC CTC CAG CGC ACT CTA CTC TCA CCA CTA CTC CTT CCC CCC		7590 •			760	0 •		76	10		7	620			763	0	
CTT GTG TTC TGA TAA GAG TCA GAG GTA ACT CCC GTT GCG GTC CTG TTA CAA CAC AAG ACT ATT CTC AGT CTC CAT TGA GGG CAA CGC CAC GAC AAT 7690 7700 7710 7720 7730 ACG GTG GAG GGC AGT GTA GTC TGA GCA GTA CTC GTT GCT GCC GCG GGC TGC CAC CTC CCC TCA CAT CAG ACT CAT GAG CAA CGA CCG CCC GCG TGC CAC CTC CCC TCA CAT CAG ACT CAT GAG CAA CGA CCG CCC GCG TGC TGC TCT GTA TTA TCG ACT GTC TGA TTG TCT GAC AAG GAA AGG TAC 7780 7790 7800 7810 7820 GGT CTT TTC TGC AGT CAC CGT CCT TGA CAC GAA GCT TGG GCT GCA GGT CCA GAA AAG AAG ACC CGA CGT CCA GAA AAG AAG ACC CGA CGT CCA GAA AAG AAC CTC TCC GCT CCA GAA AAG AAC CTC TCG GCT GCA GGT CCA GAA AAG ACC CGA CGT CCA GAA AAG GAA AAC CTC CCA CCA GAA AAG ACC CGA CGT CCA GAA AAC GCT TGG GCT GCA CGT CCA GAA AAG GAA AAC CCA GGA ACC CGA CGT CCA		TTT AAA	CCI	AGA TCT	CIT	TTC	CCY	000 000	CCX	CII	GAA CTT	GAT CTA	CCT CCT	CCC	AGC TCG	TGX ACT	CAX
7690 7700 7710 7720 7730 ACG GTG GAG GGC AGT GTA GTC TGA GCA GTA CTC GTT GCT GCC GCG GCG TGC CAC CAC CTC CCG TCA CAT CAG ACT CAT GAG CAA CGA CGC CCC GCG CCC GCG TGC CAC AGA CAT AAT AGC TGA CAG ACT AAC AGA CTC TTC CTT TCC ATG CGG TGG TCT GTA TTA TCG ACT GTC TGA TTG TCT GAC AAG GAA AGG TAC 7780 7790 7800 7810 7820 GGT CTT TTC TGC AGT CAC CGT CCT TGA CAC GAA GCT TGG GCT GCA GGT CCA GAA AAG ACA CTC TTC GAC AAG AAG AAG TAC		76	40		7	650			766	0		76	70		7	76B0	
ACG GTG GAG GGC AGT GTA GTC TGA GCA GTA CTC GTT GCT GCC GCG GGC TGC CAC CTC CCG TCA CAT CAG ACT CGT CAT GAG CAA CGA CGG CGC GCG TGC CAC CAC ACA CAT CAA CAG ACT CAT GAG ACT AAC AGA CTC TTC CTT TCC ATC CGG TGG TGT GTA TTA TCG ACT GTC TGA TTG TCT GAC AAG GAA AGG TAC 7780 7790 7800 7810 7820 GGT CTT TTC TGC AGT CAC CGT CCT TGA CAC GAA GCT TGG GCT GCA GGT CCA GAA AAG TCA CTC GCA GAA AAG TCA CTC CCA GAA AAG CTC TGG GCT CCA GAA AAG CCT CCA		CAA	CYC	TTC AAG	TCX ACT	TAA ATT	CIC CYC	TCA AGT	CTC	CTA CAT	XCT TGX	CCC	CYY	222 222	CXC	CTG GAC	TTX AAT
TGC CAC CTC CCG TCA CAT CAG ACT CGT CAT GAG CAA CGA CGG CGC GCG 7740 7750 7760 7770 GCC ACC AGA CAT AAT AGC TGA CAG ACT AAC AGA CTG TTC CTT TCC ATG CGG TGG TCT GTA TTA TCG ACT GTC TGA TTG TCT GAC AAG GAA AGG TAC 7780 7790 7800 7810 7820 GGT CTT TTC TGC AGT CAC CGT CCT TGA CAC GAA GCT TGG GCT GCA GGT CCA GAA AAG ACC TCA GTG GCA GGA ACT GTG CTT CGA ACC CGA CGT CCA			769	0		77	00		7	710			772	20	-	77	730
7740 7750 7760 7770 GCC ACC AGA CAT AAT AGC TGA CAG ACT AAC AGA CTG TTC CTT TCC ATG CGG TGG TCT GTA TTA TCG ACT GTC TGA TTG TCT GAC AAG GAA AGG TAC 7780 7790 7800 7810 7820 GGT CTT TTC TGC AGT CAC CGT CCT TGA CAC GAA GCT TGG GCT GCA GGT CCA GAA AAG TCA GTG GCA GGT CCA GAA AAG ACC CGA CGT CCA		ACG	crc	CXC	ccc	AGT	CTA	CTC	TGA	SCX CX	CTA	CTC	CIT	ec.	ccc	ccc	ccc
GCC ACC AGA CAT AAT AGC TGA CAG ACT AAC AGA CTG TTC CTT TCC ATG CGG TGG TGT GTA TTA TCG ACT GTC TGA TTG TCT GAC AAG GAA AGG TAC 7780 7790 7800 7810 7820 GGT CTT TTC TGC AGT CAC CGT CCT TGA CAC GAA GCT TGG GCT GCA GGT CCA GAA AAG TCA GTG GCA GGA ACT GTG CTT CGA ACC CGA CGT CCA		TGC	CAC	.,,,,,,			\sim	~~	~~1	4	بمر	منحما		CLIA	CCC	α c	ccc
7780 7790 7800 7810 7820 GGT CTT TTC TGC AGT CAC CGT CCT TGA CAC GAA GCT TGG GCT GCA GGT CCA GAA AAG TAC CGA GAA AAG TAC		TGC	CAC		. ملک	100											
CCT CTT TTC TCC ACT CAC CCT CCT TCA CAC GAA GCT TCG GCT GCA GCT CCA GAA AAG ACC TCA GTC GCA GGA ACT GTG CTT CGA ACC CGA CCT CCA		TGC	САС 7	740			775	0			•			770			
CCA GAX AME ACE TEX CTC GEX GEX ACT GTG CTT CEX ACC CEX CET CEX		GCC	CAC 7 ACC	740 •	САТ	AAT	775 XGC	0 •	CAG	λCT	AAC	AGA TCT	CIIC.	770	CIII	TCC	ATG TAC
CCA GAX AME ACE TEX CTC GEX GEX ACT GTG CTT CEX ACC CEX CET CEX	7	ccc	CAC 7 ACC	AGA TCT	CAT GTA	AAT	775 AGC TCG	O TCA ACT	CAG	λCT	AAC	TCT	CIIC.	TIC	CYY	TCC	ATG TAC
	7	CCC CCC 780	CAC 7 ACC TGG	740 AGA TCT 77	CAT GTA '90 TGC	AAT TTA	775 AGC TCG 7	TCA ACT 800	CAG GTC	ACT TGA	AAC TTG 783	TCT 10	CIC	770 TTC AAG 78	620 620	AGG	TAC

RECTIFIED SHEET (RULE 91) ISA/EP

FIG. 5 M

}-	66	90		•	690			67	00		67	710		•	720	
	TCA AGT	CCC	GGA CCT	TTT	CCA GGT	AGT TCA	CTC GAG	CAC GTG	CCC	ATT TAA	GAC CTG	GTC CAG	እ አ ፐ ፕፐአ	CCC	AGT TCA	TTG AAC
		67:	30		67	740		•	6750			67	50		67	70
	TTT AAA	TGG ACC	CAC GTG	CAA GTT	AAT TTA	CAA GTT	CCC CCC	GAC CTG	TTT AAA	CCA GGT	λλλ ΤΤΤ	TGT ACA	CCT CCA	AAC TTG	AAC TTG	TCC AGG
		(5780			679	0		68	300		6	810		•	
	ccc ccc	CCA GGT	TTG AAC	λCG TGC	CAA GTT	ATG TAC	CCC	GGT CCA	AGG TCC	CCT CCA	GTA CAT	CCC	TGG	GAG CTC	CAG	ፐ አ ፐ እፐእ
682	20		68	B30		•	840			68	50		68	360		
	ATA TAT	agc TCG	XGX TCT	CCY	CCA	TTA AAT	GTG CAC	AAC TIG	CCT CCA	CAG GTC	ATC TAG	ccc	TGG ACC	AGA TCT	CCC	CAT GTA
	870			688	30		68	390		e e	5900			69:	0	
	CCX	CCC	YCY	YYY TIT	CTC	CIC	CAT GTA	AGA TCT	AGA TCT	CAC	CCC	CIG	CCI	TCC AGG	AGC TCG	CYC CTC
	69	920 *		•	930			69	40		69	950		•	5960	
	ဆင	CCC CCC	CCC	CII	CCC	YCC YCC	XTT TAX	CCI	TGC	CCC	ATT TAA	CCC	CCT	CCC	AAG TTC) TCA
		69	70 •		6	980			6990			70	00		7	010
		GTA CAT	AGT		GCC	TAT		CIC	TAT	λGG		ACC	ccc		ccr	TCT
		GTA CAT	AGT		GCC	TAT	TCT	CIC	TAT ATA	λGG	ccc	ACC TGG	ccc		ccr	TCT
	CTG	GTA CAT	AGT TCA 7020 TGC	TAT	GCC CCG	TAT ATA 70:	TTT	CAC	TAT ATA 70	AGG TCC	CCC	ACC TGG	7050 CAC	SCC	CCT	TCT AGA
70	TAT ATA	GTA CAT	AGT TCA 7020 TGC ACG	TAT ATA	GCC CCG	TAT ATA 70: GTT CAA	TCT 30 TTT AAA	GTC CAG	TAT ATA 70	AGG TCC 040 GGG CCC	TCT	ACC TGG	7050 CAC	CCC	CCT	TCT
70	TAT ATA	GTA CAT	AGT TCA 7020 TGC ACG	TAT ATA	GCC CCG	TAT ATA 703 GTT CAA	TCT 30 TTT AAA 7080	CCC CCC CCC	TAT ATA 70 TIG AAC	AGG TCC 040 GGG CCC	TCT AGA	ACC TGG ATA TAT	CCC GGG 7050 CAC GTG	CCC GGG	CCC	TCT AGA TTC AAG
70	TAT ATA	GTA CAT CCA CCT	AGT TCA 7020 TCC ACG	TAT ATA	GCC CCG ACT TGA	TAT ATA 703 GTT CAA	TCT 30 TTT AAA 7080	GTC CAG GGC CCG	TAT ATA 70 TIG AAC	AGG TCC 040 GGG CCC 70	TCT AGA	ACC TGG ATA TAT	CCC GGG 7050 CAC GTG	CCC GGG 100	CCC CCC	TCT AGA
	TAT ATA	GTA CAT CCA CCT	AGT TCA 7020 TCC ACG	TAT ATA	CTC CAC	TAT ATA 703 GTT CAA	TCT 30 TTT AAA 7080 CTA CAT	GTC CAG GGC CCG	TAT ATA 70 TIG AAC	AGG TCC 040 GGG CCC 70 AGC TCG	TCT AGA	ACC TGG ATA TAT	CCC GGG 7050 CAC GTG	CCC GGG 100	CCT CCA CCC CCC CCC	TCT AGA TTC AAG
	TAT ATA CTC GAG 7110	GTA CAT GCA CCT ATG TAC	AGT TCA 7020 TGC ACG 71 TTA AAT	TAT ATA 070 TAG ATC 71:	ACT TGA GTG CAC	TAT ATA 700 GTT CAA ATG TAC	TCT 30 TTT AAA 7080 CTA CAT 7	GTC CAG GGC CCG TAG ATC	TAT ATA 70 TIG AAC CIT GAA	AGG TCC 040 GGG CCC 70 AGC TCG	TCT AGA 90 CTA GAT 7140	ACC TGG ATA TAT TAG ATC	CAC GTG GTG CAC	CCC GGG 100 TGG ACC 71	CCC CCC CCC CCC CCC CCC CCC CCC CCC CC	TCT AGA TTC AAG
	TAT ATA CTC GAG 7110 GAC CTC	GTA CAT GCA CCT ATG TAC	AGT TCA 7020 TGC ACG 71 TTA AAT	TAT ATA 070 TAG ATC 71: TGA ACT	ACT TGA GTG CAC	TAT ATA 70: GIT CAA ATG TAC CAG	TCT 30 TTT AAA 7080 CTA CAT 7	GTC CAG GGC CCG TAG ATC	TAT ATA 70 TIG AAC CIT GAA	AGG TCC 040 GGG CCC 70 AGC TCG	TCT AGA 90 CTA GAT 7140 CGA	ACC TGG ATA TAT TAG ATC	CAC GTG CAC	CCC GGG 100 TGG ACC 71 CCA GGT	CCC CCC CCC CCC CCC CCC CCC CCC CCC CC	TCT AGA TTC AAG ATT TAA CTA GAT
	TAT ATA 60 CTC GAG 7110 GAC CTC	GTA CAT GCA CGT ATG TAC CAT GTA	AGT TCA 7020 TCC ACG 7 TTA AAT	TAT ATA O70 TAG ATC TCA ACT	GCC CCG ACT TCA CAC CAC CCA GCT	TAT ATA 70: GTT CAA ATG TAC CTC GAG	TCT 30 TTT AAA 7080 GTA CAT 7 CCC GGG	GTC CAG GGC CCG TAG ATC 130 TAT ATA 71 CAC	TAT ATA 70 TTG AAC CTT GAA TGG ACC BO ACC BO	AGG TCC 040 GGG CCC 70 AGC TCG	TCT AGA CTA GAT 7140 CCA CCT 7	ACC TGG ATA TAT TAG ATC TAC ATG	CCC GGG 7050 CAC GTG 7 GTG CAC	CCC GGG 100 TGG ACC 71 CCA GGT	GCT CCA CCC GCC GCC TTA AAT 72000	TCT AGA TTC AAG ATT TAA CTA GAT
	TAT ATA 60 CTC GAG 7110 GAC CTC	GTA CAT GCA CGT ATG TAC CAT GTA	AGT TCA 7020 TCC ACG 70 TTA AAT TAT ATA	TAT ATA O70 TAG ATC TCA ACT	GCC CCG CAC CAC CCA CCT CCA CCCA CCCA CC	TAT ATA 70: GTT CAA ATG TAC CTC GAG	TCT 30 TTT AAA 7080 GTA CAT 7 CCC GGG	GTC CAG	TAT ATA 70 TTG AAC CTT GAA TGG ACC BO ACC BO	AGG TCC 040 GGG CCC 70 AGC TCG TCA ACT	TCT AGA CTA GAT 7140 CCA CCT 7	ACC TGG ATA TAT TAG ATC TAC ATG	CCC GGG 7050 CAC GTG 7 GTG CAC	CCC GGG 100 TGG ACC 71 CCA GGT	GCT CCA CCC GCC GCC TTA AAT 7200 TAT ATA	TCT AGA TTC AAG ATT TAA CTA GAT
	TAT ATA 60 . CTC GAG 7110 . GAC CTG ATC TAG	GTA CAT GTA ATG TAC ATA GTA ATA ATA	AGT TCA 7020 TCC ACG 7 TTA AAT TAT ATA	TAT ATA 070 TAG ATC 71 TGA ACT ATG TAC	GCC CCG ACT TCA CCA CCA TTC	TAT ATA 70: GTT CAA ATG TAC CTC GAG	TCT 30 TTT AAA 7080 GTA CAT 7 CCC GGG	CCC CCC TAG ATC	TAT ATA 71 TTG AAC CTT GAA ACC BO ACC TTG ACC ACC TTG ACC ACC TTG ACC ACC TTG ACC ACC ACC ACC ACC ACC ACC ACC ACC AC	AGG TCC 040 GGG CCC 70 AGC TCG TCG TCG ACT	TCT AGA 90 CTA GAT 7140	ACC TGG ATA TAT TAG ATC TAC ATG 190 TATA 72	CCC GGG 7050 CAC GTG 77 GTG CAC	CCC GGG 100 TGG ACC 71 CCA GGT	CCC CCC CCC CCC CCC CCC CCC CCC CCC CC	TCT AGA TTC AAG ATT TAA CTA GAT GCC CCC

RECTIFIED SHEET (RULE 91)

ISA/EP

FIG. 5 L

, 6100 •	•	6	110			6120			61:	30		6	140		
TAT ATA	ACA TGT	TTG AAC	AAT TTA	CAA	TAT ATA	TGG ACC	CCA	TTA AAT	GCC	ATA TAT	TTA	TTC	ATT	GGT	TAT ATA
6150			61	_			170			5180	122	And	61:		ATA
ATA	CCA	ጥልል	a TVC	330	3 (777)		*			*				•	
TAT	CGT	ATT	ATC TAG	TTA	TAA	CCC	ATA	ACC	GGT	AAC	CAT GTA	YCC TCC	AAC	TAT ATA	CCA GGT
	200			5210 •			623	•			230			240	
TAT ATA	CAT	AAT TTA	ATG TAC	TAC	ATT TAA	TAT ATA	ATT TAA	CCC	TCA AGT	TGT ACA	CCA GGT	ACA TGT	TTA AAT	CCC	CCA
	62				260			5270			628				
		•			•			•				_			₹90 •
ACA	ACT	GTA	TGA	TTA AAT	AAC	ACT TGA	AGT TCA	TAT ATA	TAA ATT	TAG ATC	TAA ATT	TCA AGT	λΤΤ Τλλ) TGC	222 223
	(5300			631	0		63	120		6	330			
TCA	TTA	GIT	CAT	λGC	CCA	TAT.	λTG	GAG	محلمك <u>م</u>	~~	~~~		~~~		
AGT	λλT	CYY	GTA	TCG	GGT	λTA	TAC	CIC	λλG	ecc	CXX	ICI	ATT	CIT	ACG TGC
6340		63	350		6	360			637	0		63	880		
CIA	AAT	GGC	CCC	ccr	CCC	TGA	CCG	ccc	λλC	GAC	222	CCC	CCA	تكلمك	300
CAT	TTA	ccc	CCC	CCY	ccc	ACT	CCC	CCC	TIG	CIC	CCC	CCC	CCT	λλC	TCC
6390			640	00		64	110		•	6420			643	0	
TCA	 	ATG TAC	640 ACG	DO TAT	GIT	64 CCC	IIO ATA	GTA	ACG	6420 CCX	λτλ	ccc	643 ACT	TTC	CAT
TCA AGT	TAT	ATG TAC	ACG TGC	00 TAT ATA	GIT	64 CCC	ATA TAT	GTA CAT	ACG	CCA GGT	λΤ λ ΤλΤ	ccc	643 ACT TGA	TTC	CAT
TCA AGT	TAT 40	TAC	ACG TGC	TAT ATA	CYY	64 CCC GGG	ATA TAT	GTA CAT	ACG TGC	CCA GGT	ATA TAT	ccc	ACT TGA	TTC AAG	CAT GTA
TCA AGT 64	TAT	TAC	ACG TGC	TAT ATA 6450	CYY	CCC GGG	ATA TAT 646	GTA CAT	ACG TGC	CCA GGT 64	ATA TAT	CAC	ACT TGA	TTC AAG	CAT GTA
TCA AGT 64	TAT	CAA GIT	ACG TGC	TAT ATA 6450 CTC CAC	CYY	CCC GGG	ATA TAT 646 TTA AAT	GTA CAT	ACG TGC	CCA GGT 64	ATA TAT	CAC CCC	ACT TGA	TTC AAG 6480 GCA CCT	CAT GTA
TCA AGT 64 TCA ACT	CGT GCA CAA	CAA GIT	ACG TGC TGG ACC	TAT ATA 6450 CTC CAC	CAA CAC CTC	CCC GGG TAT ATA	ATA TAT 646 TTA AAT	GTA CAT	ACG TGC	CCA GGT 66 ACT TGA	ATA TAT 170 GCC CCG 652	CAC GTG	ACT TGA TTG AAC	TTC AAG 65480 CGT 65	CAT GTA CTA CAT
TCA AGT 64 TCA ACT	CGT GCA CAA GTT	CAA GIT	ACG TGC TGG ACC	TAT ATA 6450 CTC CAC	CAA CAC CTC	CCC GGG TAT ATA	ATA TAT 646 TTA AAT	GTA CAT 60 CGG GCC 6510	ACG TGC TAA ATT	CCA GGT 66 ACT TGA	ATA TAT 170 GCC CGG 65: ATT TAA	CAC GTG	ACT TGA TTG AAC	TTC AAG 65480 CGT 65	CAT GTA CTA CAT
TCA AGT 64 TGA ACT CAT GTA	CAA GTT	CAA GTT OO GTG CAC	ACG TGC TGG ACC	TAT ATA 5450 GTG CAC 65 CAT	CAA CAA CTC 500 ATC TAC	CCA GGT	TAT 646 TTA AAT AGT TCA	GTA CAT 50 CCG GCC 6510 ACG TCC	ACG TGC TAA ATT	CCA GGT 66 ACT TGA CCT GGA	ATA TAT 170 GCC CGG 653 ATT TAA	CAC GTG	ACT TGA TTG AAC	TTC AAG 6480 GCA CGT 65	CAT GTA CAT CAT GAC CTG
TCA AGT 64 TGA ACT CAT GTA	CGT GCA CAA GTT	CAA GTT OO GTG CAC	ACG TGC TGG ACC	TAT ATA 5450 GTG CAC CAT GTA	CAA CAA CTC SOO ATC TAC	CCA GGT	TAT AGT TCA	GTA CAT 50 CCG GCC 6510 ACG TCC	ACG TGC TAA ATT	CCA GGT 66 ACT TGA CCT GGA	ATA TAT I70 GCC CGG 65: ATT TAA	CAC GTG	ACT TGA TTG AAC	TTC AAG 6480 GCA CGT 65 AAT TTA	CAT GTA CTA CAT
TCA AGT 64 TGA ACT CAT GTA	CGT GCA CAA GTT	CAA GTT OCCAC S540 TGG ACC	ACG TGC TGG ACC	TAT ATA 5450 GTG CAC CAT GTA	CAA CAA CTC SOO ATC TAC CSS	CCA GGT	TAT AGT TCA	GTA CAT 50 CCG GCC 6510 ACG TCC	ACG TGC TAA ATT	CCA GGT 66 ACT TGA CCT GGA TAC	ATA TAT I70 GCC CGG 65: ATT TAA	CAC GTG 20 CAC CTG ACC TGG	ACT TGA TTG AAC	TTC AAG 6480 GCA CGT 65 AAT TTA	CAT GTA CAT CAT GAC CTG
TCA AGT 64 TGA ACT CAT GTA GGT CCA 6580	CGT GCA CAA GTT AAA TTT	CAA GTT 00 GTG CAC 5540 TGG ACC	TGG ACC TAT ATA CCC GGG	TAT ATA 6450 CAC CAC CAT GTA	CAC CAC CTC 500 ATC TAC 65!	CCA CCA CCA CCA CCAT CCAT	ATA TAT 646 TTA AAT AGT TCA	GTA CAT 50 CGG GCC 5510 ACG TGC GCC CGG	ACG TGC TAA ATT CCC GGG CAG GTC	CCA GGT 66 ACT TGA CCT GGA TAC ATG	ATA TAT 170 GCC CGG 652 ATT TAA ATG TAC	GGG CCC GTG GAC CTG 6570 ACC TGG	ACT TGA TTG AAC CTC CAG TTA AAT	TTC AAG 480 CCA CCT 6! AAT TTA TCG ACC	CAT GTA CAT GAC CTG
TCA AGT 64 TGA ACT CAT GTA CCA 6580 TTT	CCT CCT	CAA GTT 00 GTG CAC 5540 TGG ACC	ACG TGC TGG ACC TAT ATA CCC GGG	TAT ATA 6450 CAC CAC CAT GTA	CAC CAC CTC 600 ATC TAC 65!	CCA CCT CTA CTA	ATA TAT 646 TTA AAT AGT TCA TAT ATA	GTA CAT 50 CGG GCC 5510 ACG TGC GCC CCG	ACG TGC TAA ATT CCC GGG CAG GTC	CCA GGT 66 ACT TGA CCT GGA	ATA TAT 170 GCC CGG 652 ATT TAA ATG TAC	GGG CCC CAC GTG GAC CTG ACC TGG 6.	ACT TGA TTG AAC GTC CAG TTA AAT 620	TTC AAG 6480 GCA CGT 65 AAT TTA TGG ACC	CAT GTA GTA CAT GAC CTG
TCA AGT 64 TGA ACT CAT GTA GGT CCA 6580 TTT AAA 6630	CCT CCT	CAA GTT 00 GTG CAC 5540 TGG ACC	ACG TGC TGG ACC TAT ATA CCC GGG	TAT ATA S450 GTC CAC CAT GTA GCC CCG	CAC CAC CTC 600 ATC TAC 65!	CCA GGT CAT GTA 6600	ATA TAT 646 TTA AAT AGT TCA TAT ATA	GTA CAT 50 CGG GCC 5510 ACG TGC GCC CCG	ACG TGC TAA ATT CCC GGG CAG GTC 66	CCA GGT 66 ACT TGA CCT GGA	ATA TAT 170 GCC CGG 652 ATT TAA ATG TAC	GGG CCC CAC GTG GAC CTG ACC TGG 6.	ACT TGA TTG AAC GTC CAG TTA AAT 620	TTC AAG 480 GCA CGT 6! AAT TTA TCG ACC	CAT GTA CAT GAC CTG
TCA AGT 64 TCA ACT CAT GTA GGT CCA 6580 TTT AAA 6630	CAA CTT CAA CTT CCT CCT CCT	CAA GTT 00 GTG CAC TGG ACC 6:	TGG ACC TAT ATA CCC GGG TGG ACC TGG ACC	TAT ATA 5450 GTG CAC CAT GTA GCC CCG	GAG CTC 500 ATG TAC ACC	CCA GGT GTA ATC TAG	ATA TAT AGT TCA TAT ATA TAC ATC	GTA CAT SO CCG GCC S510 ACG TGC CCG	ACG TGC TAA ATT CCC GGG CAG GTC 66:	CCA GGT 66 ACT TGA CCT GGA TAC ATG	ATA TAT 170 GCC CGG 653 ATT TAA ATG TAC	CAC GTG CAC GTG ACC TGG ACC TGG GCT CCA	ACT TGA TTG AAC GTC CAG TTA AAT 620 ATT TAA	TTC AAG 6480 CCT 65 AAT TTA TCG ACC	CAT GTA CAT CAT GAC CTG
TCA AGT 64 TGA ACT CAT GTA CCA 6580 TTT AAA 6630 GTG	CCT CCA TTT CCT CCA ATC	CAA GTT 0 GTG CAC 5540 TGG ACC ACT TGA	TGG ACC TAT ATA CCC GGG TGG ACC TTGG ACC TTGG ACC TTGG ACC TTTT	TAT ATA 5450 GTG CAC CAT GTA GCC CCG CAG GTC 40 TGG	GAG CTC 500 ATG TAC ACC TAC ATG	CCC GGG TAT ATA CCA GGT CAT GTA ATC TAG TAG	TAT AGT TCA TAC ATC	GTA CAT CCG GCC S10 ACG TCC GCC CCG GCC CCG	TAA ATT CCC GGG CAG GTC 66: TTA AAT	CCA GGT 66 ACT TGA CCT GGA TAC ATG	ATA TAT 170 - GCC CGG 653 ATT TAA ATG TAC	CAC GTG CAC GTG CAC GTG ACC TGG ACC TGG ACC TGG	ACT TGA TTG AAC GTC CAG TTA AAT 620 ATT TAA 66	TTC AAG 6480 CCT 65 AAT TTA TCG ACC	CAT GTA GTA CAT GAC CTG

RECTIFIED SHEET (RULE 91)
ISA/EP

FIG. 5 K

}•		553	0		55	40		5	550			556	0		55	70
	GAA CTT	TGC ACG	AAT TTA	TGT ACA	TGT ACA	TGT ACA	ፐ λ λ እፐፐ	CTT GAA	GTT CAA	TAT ATA	TGC ACG	AGC TCG	TTA AAT	ፕ አ እ እፕፐ	TGG ACC	TTA AAT
		5	580			559	0		56	00		5	610			
											AAA TTT					
56	20		56	30		5	640			565	0		5€	60		
											CAT GTA					
	5670			568	30		56	590		:	700			571	0	
	TGT ACA	CTG GAC	GAT CTA	CTC GAG	TAG ATC	CTT GAA	CGT GCA	GTC CAG	AAG TTC	GAC CTG	GGT CCA	CAC CTG	TGC	AGT TCA	CTT CTT	TAA ATT
	57	720		5	5730			574	0.0		57	750		5	760	
	TAA ATT	AAT TTA	CYC	TCT ACA	TTG AAC	TCC AGG	CAA CTT	ΧΤΧ ΤΧΤ	ccc	CNY	TTG AAC	AGA TCT	TTT AAA	CTG GAC	TCG AGC	ccc
		577	70		51	780		:	579D •			586	00		58	310
•	JCY YCI	XXX TTT	TTC AAG	ATG TAC	TCG AGC	CCC	CTX	AGT TCA	CCA	CYY	TAT ATA	CCC	CCI	TAG ATC	AGA TCT	TGG
		!	5B20 •			583	30		51	B40		:	5850			
	CCI CCI	ТАТ	TGG	λλλ ΤΤΤ	AAT TT A	CGA	• TAT	TTG AAC	λλλ	* λΤλ	TGG ACC	CAT	ATT	GAA CTT	AAT TTA	GTC CAG
51	CGA GCT	ТАТ	TGG	XXX TTT 970	AAT TTA	CCA	• TAT	TTG AAC	λλλ	* λΤλ	YCC	CAT	ATT TAA	GAA CTT	AAT TTA	GTC CAG
51	CCT CCT	TAT ATA	TCG ACC 51	TTT 970 AGT	TTA	CCA	TAT ATA 5880	AAC	AAA TIT	* ATA TAT 58	YCC	CAT GTA	λΤΤ Τλλ 5:	600 600 CLL	TTA	CAG
58	GCT GGC GGC CGG	TAT ATA CAT CTA	TGG ACC 51 GTG CAC	777 870 AGT TCA 59:	TTA TTC AAG	CCA GCT TCT ACA	TAT ATA 5880 GTA CAT	ACT TGA 930	CAT CTA	ATA TAT 58 ATC TAG	ACC 90 6CC 6CG 5940	CAT GTA ATT TAA	ATT TAA 5:	CTT 900 CCA CCT S91	AAA TTT	CAG CTC CAC
58	GCT GCC GCC GCG 5910	TAT ATA CAT CTA	TGG ACC 51 GTG CAC	TTT 870 AGT TCA 592	TTA TTC AAG 20 ACG	CCA CCA	TAT ATA 5880 CTA CAT 5	ACT TGA 930 CTG	AAA TTT CAT CTA	ATA TAT 58 ATC TAG	30 600 600	CAT GTA ATT TAA	ATT TAA 5:	CTT 900 CCA CCT 59:	AAA TIT SO	CAG CTC CAC
51	GCT GCC GCC S910 ATT TAA	TAT ATA CAT CTA	TGG ACC 51 GTG CAC	ACT TCA 59: CAT GTA	TTA TTC AAG 20 ACG	CCA CCA	TAT ATA 5880 CTA CAT 5	ACT TGA 930 CTG	CAT CTA	ATA TAT 58 ATC TAG	ACC 90 6CC 6CC 5940 6CG 6CG	CAT GTA ATT TAA	ATT TAA 5:	CTT 900 CCA GGT 59:	AAA TIT SO	CAG CTC CAC
58	GCT GCC GCC S910 ATT TAA 5	TAT ATA CAT CTA TIT AAA 960	TGG ACC 51 GTG CAC	TTT 970 AGT TCA 599 CAT GTA	TTA TTC AAG 20 ACG TGC 5970 AGA	CCA CCA CCA CCA	TAT ATA SBB0 CTA CAT STAT ATA	ACT TGA 930 CTG GAC 59	AAA TIT CAT CTA GCC GCC BO TGA	ATA TAT 58 ATC TAG ATA TAT	ACC 90 6CC 6CC 5940 6CG 6CG	CAT GTA ATT TAA CTT CAA	ATT TAA 5: TTT AAA ATA TAT	CTT 900 CCA GCT 599 TCG AGC	AAA TIT SO TIT AAA 6000	CAG CTC CAC
51	GCT GCC GCC S910 ATT TAA 5	TAT ATA CAT CTA TIT AAA 960	TGG ACC 51 GTG CAC GGG CCC GGG CCC	TTT 970 AGT TCA 599 CAT GTA	TTA TTC AAG 20 ACG TGC 5970 AGA TCT	CCA CCA CCA CCA	TAT ATA SBB0 CTA CAT STAT ATA	ACT TGA 930 CTG GAC 59	AAA TIT CAT CTA GCC GCC BO TGA	ATA TAT 58 ATC TAG ATA TAT CTT GAA	ACC 90 6CC 6CC 5940 6CG 6CG	CAT GTA ATT TAA CTT GAA 990	ATT TAA 5: TTT AAA ATA TAT	CTT 900 CCA GCT 599 TCG AGC	AAA TTT SO TTT AAA 6000 CAC	CAG CTC CAC ACG TGC
56	GCT GGG GGG S910 ATT TAA S GGG CCC	TAT ATA CAT CTA AAA 960 CAT CTA 60 ATA	TGG ACC 51 GTG CAC GGG CCC GGG CCC TCC	TTT 870 AGT TCA 599 CAT GTA CTA CAG	TTA TTC AAG 20 ACG TCC 5970 AGA TCT 6	CCA GCT TCT ACA CCA CCT	TATA SBBO GTA CAT TATA TATA TATA	ACT TGA 930 CTG GAC 59 TGG ACC	CAT CTA CCC CCC BO TCA ACT	ATATATATATATATATATATATATATATATATATATAT	ACC FO GCC CCC SO GCC CCC S GCC CCC ACCC	CAT GTA ATT TAA CTT GAA 990 CGA GCT 60	ATT TAA 5: TTT AAA ATA TAT TIC AAG	CTT 900 CCA GGT 599 TCG AGC AGC	TTA AAA TTT SO TTT AAA GTG CAC	CAG GTG CAC ACG TGC TGC TGC 050
56	GCT GCC GCC S910 ATT TAA 5 GCG CCC	TAT ATA CAT CTA TIT AAA 960 CAT CTA 60 ATA TAT	TGG ACC STG CAC GGG CCC GGG	TTT 870 AGT TCA 599 CAT GTA CAT CTA CAC CTA	TTA TTC AAG 20 ACG TCC 5970 AGA TCT 6	CCA CCT CCA CCT CCA CCT CCA CCT	TATA 5880 GTA CAT TATA ATA CTT GAA TATA 70	ACT TGA 930 CTG GAC 59 TGG ACC	GCC CCC BO TCA ACT ACT ACT ACT ACT	ATAT 58 ATC TAG ATAT CITT GAA CAG CTC 080	ACC 90 CCC CCC 5940 CCC CCC ACC	CAT GTA ATT TAA CTT GAA 990 CGA GCT 60 ATA	ATT TAA STAT ATA ATA TAT TTC AAG 40 TGA ACT	CTT 900 CCA CCT 599 TCG AGC TGT ACA CCC	TTA AAA TTT AAA 6000 CAC CAC TAT	CAG GTG CAC ACG TGC TCG AGC

RECTIFIED SHEET (RULE 91)

ISA/EP

FIG. 5 J

CTA ATT GTT TGT GTA TTT TAG ATT CCA ACC TAT GGA ACT GAT G GAT TAA CAA ACA CAT AAA ATC TAA GGT TGG ATA CCT TGA CTA C	AA TGG
5000 5010 5020 5030 50	40
GAG CAG TGG TGG AAT GCC TTT AAT GAG GAA AAC CTG TTT TGC TC CTC GTC ACC ACC TTA CGG AAA TTA CTC CTT TTG GAC AAA ACG A	CY CYY
5050 5060 5070 5080	5090
GAA ATG CCA TCT AGT GAT GAT GAG GCT ACT GCT GAC TCT CAA C	AT TCT TA AGA
5100 5110 5120 5130	
ACT CCT CCA AAA AAG AAG AGA AAG GTA GAA GAC CCC AAG GAC T TGA GGA GGT TTT TTC TTC TCT TTC CAT CTT CTG GGG TTC CTG A	TT CCT
5140 5150 5160 5170 5180	
TCA GAA TIG CIA AGT TIT TIG AGT CAT GCT GTG TIT AGT AAT A	
AGT CIT AND GAT TOA ANA AND TOA GTA CGA CAD ANA TOA TTA T	CT TCA
5190 5200 5210 5220 5230)
CIT GCT TGC TIT GCT ATT TAC ACC ACA AAG GAA AAA GCT GCA CGAAAA CGA AAA CGA TAA ATG TGG TGT TTC CTT TTT CGA CGT G	TC CTA
5240 5250 5260 5270 52	80
TAC AAG AAA ATT ATG GAA AAA TAT TCT GTA ACC TTT ATA AGT A ATG TTC TTT TAA TAC CTT TTT ATA AGA CAT TGG AAA TAT TCA T	AGG CAT
5290 5300 5310 5320	5330
•	•
ANC NOT TAT ANT CAT ANC ATA CTG TIT TIT CTT NOT COA CNG A TIG TCA ATA TTA GTA TIG TAT GAC ANA ANA GAN TGA GGT GTG T	CC CTA
5340 5350 5360 5370	
AGA GTG TCT GCT ATT AAT AAC TAT GCT CAA AAA TTG TGT ACC T	TTT AGC
5380 5390 5400 5410 5420	
TIT TTA ATT TOT ANA GGG GTT ANT ANG GAN THE TTG ATG THE ANA ANA ANT THA ACA TIT CCC CAN TEN TIC CIT ATA ANC THE ATA T	AGT GCC
5430 5440 5450 5460 5470	
•	•
TIG ACT AGA GAT CAT AAT CAG CCA TAC CAC ATT TGT AGA GGT TAC TGA TGT CTA GTA TTA GTC GGT ATG GTG TAA ACA TCT CCA	YYY ICY
5480 5490 5500 5510 59	520
TGC TIT AAA AAA CCT CCC ACA CCT CCC CCT GAA CCT GAA ACA 'ACG AAA TTT TTT GGA GGG TGT GGA GGG GGA CTT GGA CTT TGT .	TAA AAT ATT TTA
RECTIFIED SHEET (RULE 91)	
ISA/EP	

FIG. 5 I

4380 4390 4400 GCC CAT TCC TGG GAA CTG GAA TGG TGC AGG CTG CCA TAC CAA CTT TAG CGG GTA AGG ACC CTT GAC CTT ACC ACG TCC GAC GGT ATG GTT GAA ATC 4420 4430 4440 4450 4460 CAC CAA GGC CAT GCG GGA GGA GAA TGG TCT GAA GCA CAT CGA GGA GGC GTG GTT CCG GTA CGC CCT CCT CTT ACC AGA CTT CGT GTA GCT CCT CCG 4470 4480 4490 CAT CGA GAA ACT AAG CAA GCG GCA CCG GTA CCA CAT TCG AGC CTA CGA GTA GCT CTT TGA TTC GTT CGC CGT GGC CAT GGT GTA AGC TCG GAT GCT 4540 TCC CAA GGG GGG CCT GGA CAA TGC CCG TGG TCT GAC TGG GTT CCA CCA AGG GTT CCC CCC GGA CCT GTT ACG GGC ACC AGA CTG ACC CAA GGT GCT 4580 4590 4610 ANC STE CAN CAT CAN CGN CIT THE TGE TGG TGT CGC CAN TCG CAG TGC TTG CAG GTT GTA GTT GCT GAA AAG ACG ACC ACA GCG GTT AGC GTC ACG CAG CAT CCG CAT TCC CCG GAC TCT CCG CCA GGA GAA GAA AGG TTA CTT GTC GTA GGC GTA AGG GGC CTG ACA GCC GGT CCT CTT CTT TCC AAT GAA 4660 4670 4680 4690 4700 TGA AGA COG CGG CCC CTC TGC CAA TTG TGA CCC CTT TGC AGT GAC AGA ACT TOT GGC GGC GGG GAG ACG GTT AAC ACT GGG GAA ACG TOA CTG TOT 4710 4740 4720 4730 AGC CAT CGT CCG CAC ATG CCT TCT CAA TGA GAC TGG CCA CGA GCC CTT TCG GTA GCA GGC GTG TAC GGA AGA GTT ACT CTG ACC GGT GCT CGG GAA 4760 **4780** CCA ATA CAA AAA CTA ATT AGA CTT TGA GTG ATC TTG AGC CTT TCC TAG GGT TAT GTT TTT GAT TAX TCT GAA ACT CAC TAG AAC TCG GAA AGG ATC 4830 TTC ATC CCA CCC CGC CCC AGA GAG ATC TTT GTG AAG GAA CCT TAC TTC AME THE GET GGG GGG GGG TET CTC THE ANA CHC TTC CTT GGA ATG AME TGT GGT GTG ACA TAA TTG GAC AAA CTA CCT ACA GAG ATT TAA AGC TCT ACA CCA CAC TOT ATT AAC CTG TTT GAT GGA TGT CTC TAA ATT TGG AGA 4900 4910 4920 4930 ANG GTA ANT ATA ANA TIT TTA AGT GTA TAA TGT GTT ANA CTA CTG ATT TTC CAT ITA TAT ITT AAA AAT TCA CAT ATT ACA CAA TIT GAT GAC TAA

RECTIFIED SHEET (RULE 91) ISA/EP

FIG. 5 H

3 -1	3800		3810			3820			3930			3840				
	TGA ACT	CCC	CAA GTT	GTG CAC	TGT ACA	AGA TCT	AGA TCT	GTT CAA	ACC TGG	TGA ACT	GTG CAC	GAA CTT	ΤΤΤ΄ λλλ	TGA ACT	TGG	CIC
	3850			38	160		•	3870		381		30		3890		
	TAG ATC	TAC ATG	CTT GAA	TCA AGT	GTC CAG	TGA ACT	GGG CCC	CTC GAG	CAA	CAG GTC	TGA ACT	CAT GTA	GTA CAT	TCT	CAG	CCC
	3900				3910		3920					3930				
	TGT	TGC	CAT	CIT	TCG	GGA	ccc	CTT	CCG	CAG	λGλ	TCC	CYY	CAA	CCI	GCT
394	ACA ACG GTA		950		3960		unn uuc t		3970				BO CLI COY CO		CCY	
	•		•		•				•				•			
•	CAA	CTG GAC	TCA ACT	AGT TCA	TTT	CAA	CTA CAT	CXX	ccc	CIT	ccc ccc	TGC ACC	YCY TCT	CIC	CYY	TTT AAA
:	3990		4000		40		010		4020				4030			
	AAG TTC	GCA CCT	CXC	CYC	TAX ATT	ACG TGC	GAT CTA	AAT TTA	GGA CCT	CAT CTA	CCY	CLC CYC	CAA	CCY CCY	GCX CGT	CCC
	4040			4050				4060						4080		
	CTG GAC	CXX	TGG ACC	λλτ ΤΤλ	GGA CCT	ACA TGT	GGA CCT	GTA CAT	TAC ATG	TCT AGA	CTX	222	AAC TTG	AGA TCT	TGG ACC	GCA
	4090		4100				4110				4120			4130		
	·	409	90		4:	100		4	1110			412	20		4:	130
	CCC	TIT	• TGG	TTG AAC	GCC	TTC	CXX	TCC	CIT	TCC AGG	TGG ACC	ccc	• CCA	AGG TCC	TCC	•
	ccc	TTT	• TGG	TTG AAC	GCC	TTC	CIT	TCC	CIT GAA	TCC AGG	TGG ACC	ccc	• CCA	AGG TCC	TCC	•
	TTA	TTT	TGG ACC	TTG AAC TGT ACA	CCC CCC	TTC AAG 41!	GTT 50	TCC ACC	CTT GAA 4:	AGG 160 CTA	ACC	929 929	CCA GGT 1170	TAT	TCC	GTA CAT
41:	TTA	TTT	TGG ACC	TGT	CCC CCC	TTC AAG 41! CGC CCC	GTT 50	TCC ACC	CTT GAA 4:	AGG 160 CTA	TCG ACC	929 929	CCA GGT 1170 GGA CCT	TAT	TCC	GTA CAT
41	TTA AAT BO	TTT AAA CTG GAC	TGG ACC TGG ACC	TGT	222	TTC AAG 41! CGC GCC GCC	GTT 50 AGA TCT 4200	TCG ACC	CTT GAA 4:	AGG 160 CTA GAT 42:	TCG ACC	CAG	CCA GGT 1170 GGA CCT 4:	TAT ATA	TCC AGG CGT GCA	GTA CAT GGA CCT
	TTA AAT BO	TTT AAA CTG GAC	TGG ACC TGG ACC	TGT ACA	222	TTC AAG 41! CGC GCC GCC	AGA TCT 4200 CTT GAA	CAA GTT GTA CAT	CTT GAA 4:	AGG CTA GAT 42: TGG ACC	TGG ACC	CAA GTT	CCA GGT 1170 GGA CCT 4:	TAT ATA	TCC AGG CGT GCA AGG TCC	GTA CAT GGA CCT
	TTA AAT 60 CCC 4230	TTT AAA CTG GAC TCA AGT	TGG ACC 1140 TGG ACC 4: CTA GAT	TGT ACA 190 CCG GGC 42	CAT	TTC AAG 41! CGC GCC GCC	GTT 50 AGA TCT 4200 CTT GAA TCC	CAA GTT CAT	CTT GAA 4: AGC TCG TCG TCG	AGG 160 CTA GAT 42: TGG ACC	TCG ACC	COC CCC	CCA CCT 1170 CCA CCT CAT CTA	TAT ATA 220 . TAC ATG	TCC AGG CGT GCA AGG TCC	GTA CAT GGA CCT
	TTA AAT GGC CCG 4230 AAA TTT	TTT AAA CTG GAC TCA AGT	TGG ACC 1140 TGG ACC 4: CTA GAT	TGT ACA 190 CCC GGC 42	CAT	TTC AAG 41! CGC GCC GCC	GTT 50 AGA TCT 4200 CTT GAA TCC	CAA GTT CAT	CTT GAA 4: AGC TCC TCC ACG CAC	AGG 160 CTA GAT 42: TGG ACC	TGG ACC	COC CCC	CCA CCT 1170 CCA CCT CAT CTA	TAT ATA 220 TAC ATG AGG TCC	TCC AGG CGT GCA AGG TCC	GTA CAT GGA CCT AAC TTG CTG GAC
	TTA AAT BO GGC CCG 4230 AAA TTT TCA	TTT AAA CTG GAC TCA AGT TGC ACG	TGG ACC 1140 TGG ACC 4: CTA GAT TGA ACT	TGT ACA 190 CCC GGC 42 GCT CCA	GCC CCC GCC GCC GCC GCC GCC GCC GCC GCC	TTC AAG 41! CGC GCC GCC GCC GAC GCC GCC GCC GCC GCC	GTT 50 AGA TCT 4200 CTT GAA TCC ACG	CAA GTT CAT CCA GGT 43	CTT GAA AGC TCG TCC ACC	AGG 160 CTA GAT 42: TGG ACC	TCG ACC	CAA CTT	CCA CCT 1170 CCA CCT 43 CCT AAT TTA	TAT ATA 220 TAC ATG TCC	TCC AGG CGT GCA AGG TCC TGG 4320	GTA CAT GGA CCT AAC TTG CTG GAC
	TTA AAT BO GGC CCG 4230 AAA TTT TCA	TTT AAA CTG GAC TCA AGT	TGG ACC 1140 TGG ACC 4: CTA GAT TGA ACT	TGT ACA 190 CCC GGC 42 GCT CCA	GCC CCC CCC CCC GCC GCC GCC CAT GTA	TTC AAG 41! CGC GCC GCC GCC GCC GCC GCC GCC GCC GC	GTT 50 AGA TCT 4200 CTT GAA TCC ACG	CAA GTT CAT CCA GGT 43 TCA AGT	CTT GAA AGC TCG TCC ACG CAC	AGG 160 CTA GAT 42: TGG ACC CCT CCTG GAC	TCG ACC	CAA GIT	CCA GGT 1170 GGA CCT GAT CTA	TAT ATA 220 TAC ATG TCC	TCC AGG CGT GCA AGG TCC ACC TGG 4320 CAT GTA	CTA CAT CCA CCT AAC TTC CTC CAC CTT CAA
	TTA AAT BO GGC CCG 4230 AAA TTT TCA ACT	TTT AAA CTG GAC TCA AGT AGG ACG AGG TCC	TGG ACC 1140 TGG ACC 41 CTA GAT TGA ACT AAT TTA	TGT ACA L90 CCC GCC 42 GCT CCA CCC	CCC CCC CCC CCC CCC CCC CCC CCC CCC CC	TTC AAG 41! CGC GCC GCC GAC GCC GCC GCC GCC GCC GCC	AGA TOT AGA TOC ACG ACA	CAA GTT CAT CCA GGT A3 TCA AGT	TCC ACC	TGG ACC	TCG ACC 10 GGT CCA 4260 ACT TCA 4 CGT CCA	CAA GTT CAA GTT CCA GTT CCA GTT	CCA GGT 1170 GGA CCT GAT CTA AAT TTA	TAT ATA 220 TAC ATG 42 AGG TCC	TCC AGG AGG TCC TGC ACC TGG ACC TGG ACC TGG ACC TGG	GTA CAT GGA CCT AAC TTG CTG GAC

RECTIFIED SHEET (RULE 91)

ISA/EP

FIG. 5 G

¹ 3220 3230 3240 3250 3260 AMG GAG ACA CTT TAT GTT TAM GAM GGT TGG TAM ATT CCT TGC GGC TTT TTC CTC TGT GAA ATA CAA ATT CTT CCA ACC ATT TAA GGA ACG CCG AAA 3290 3270 3280 3300 3310 GGC AGC CAA GCT AGA CAT CCG GCT GTG GAA TGT GTG TCA GTT AGG GTG CCG TCG GTT CGA TCT CTA GGC CGA CAC CTT ACA CAC AGT CAA TCC CAC 3340 3350 TGG AAA GTC CCC AGG CTC CCC AGC AGG CAG AAG TAT GCA AAG CAT-GCA ACC TIT CAG GGG TCC GAG GGG TCG TCC GTC TTC ATA CGT TTC GTA CGT 3370 3380 3390 3400 TCT CAA TTA GTC AGC AAC CAG GCT CCC CAG CAG GCA GAA GTA TGC AAA AGA GTT AAT CAG TCG TTG GTC CGA GGG GTC GTC CGT CTT CAT ACG TTT 3430 3440 GCA TGC ATC TCA ATT AGT CAG CAA CCA TAG TCC CGC CCC TAA CTC CGC CGT ACG TAG AGT TAA TCA GTC GTT GGT ATC AGG GCG GGG ATT GAG GCG 3460 3470 3480 3490 3500 CCA TCC CGC CCC TAA CTC CGC CCA GTT CCG CCC ATT CTC CGC CCC ATG GGT AGG GCG GGG ATT GAG GCG GGT CAA GGC GGG TAA GAG GCG GGG TAC 3510 3520 3530 3540 CCT GAC TAA TIT TITA TITA ATG CAG AGG CCG AGG CCC CCT CGG CCT CGA CTG ATT AAA AAA AAT AAA TAC GTC TCC GGC TCC GGC GGA GCC GGA 3560 3570 3580 3590 CTG AGC TAT TCC AGA AGT AGT GAG GAG GCT TIT TTG GAG GCC TAG GCT CAC TOG ATA AGG TOT TOA TOA CTO OTO CGA AAA AAC CTO CGG ATO CGA 3620 3630 TIT GCA AAA AGC TAG CIT GGG GCC ACC GCT CAG AGC ACC TIC CAC CAT ANA COT TIT TOO ATC GAA CCC CCG TCG CCA CTC TCC TCG AAG GTG GTA 3660 3670 3680 3690 GGC CAC CTC AGC AAG TTC CCA CTT GAA CAA AAA CAT CAA GCA AAT GTA CCC GTG GAG TCG TTC AAG GGT GAA CTT GTT TTT GTA GTT CGT TTA CAT 3700 3710 3720 3730 CTT GTG CCT GCC CCA GGG TGA GAA AGT CCA AGC CAT GTA TAT CTG GGT GAA CAC GGA CGG GGT CCC ACT CTT TCA GGT TCG GTA CAT ATA GAC CCA 3750 3760 3770 3780 3790 TGA TGG TAC TGG AGA AGG ACT GGG CTG CAA AAC CGG CAC CCT GGA CTG ACT ACC ATG ACC TCT TCC TGA CGC GAC GTT TTG GGC GTG GGA CCT GAC

RECTIFIED SHEET (RULE 91)

ISA/EP

FIG. 5 F

· *	ACC GAG TTG CTC						2	2670			268	80		26	590
ACC TGG	GAG CTC	TTG AAC	CTC GAG	TTG AAC	CCC	CCC	GTC CAG	AAC	ACG TGC	GGA CCT	TAA ATT	TAC ATG	CCC	CCC	ACA TYPE
		2700			271				720			730			101
TAG	CAG	AAC	TTT	AAA	AGT	• CCT	CAT	CAT	TGG	λλλ	ACG	TTC	مكلمل	ccc	ccc
ATC	GIC	TTG	AAA	TTT	TCA	CGA	GTA	GTA	ACC	TTT	TGC	AAG	AAG	CCC	ccc
2740		27	750		2	760			277	0		27	80		
AAA TTT	ACT TGA	CTC GAG	AAG TTC	GAT CTA	CTT CTT	ACC TGG	CCA CCA	CTT CAA	GAG CTC	ATC TAG	CAG GTC	TTC AAG	GAT CTA	GTA CAT	ACC TGG
2790			280	00		28	110		2	820			283	0	
CYC	TCG AGC	TGC ACG	ACC TGG	CAA	CTC GAC	ATC TAG	TTC AAG	AGC TCG	ATC TAG	TTT.	TAC ATG	TTT AAA	CAC GTG	CAG GTC	CCT
28	2840			2850			28	50		28	70		2	880	
TTC	TTC TGG GTG A			λλλ	AAC	λGG	AAG	GCA	λλλ	TGC	œc	λλλ	λλλ	ccc	λλΤ
AAG	TTC TGG GTG A AAG ACC CAC T 2890			TTT	TIG	TCC	TIC	CCI	TIT	УСС	ငေင	TTT	TTT	CCC	TTA
		*			900			2910			292	•			930
AAG TTC	CCC	CIC	YCC TCC	GAA CTT	ATG TAC	TTG	AAT TTA	YCI TGY	CAT GTA	JCY	CTT	CCT	TTT AAA	TCA AGT	ΑΤΑ ΤΑΤ
		ANG GGC GAC AC													
	2940				29	50		2	960		:	2970			
TTA	TIC	λλG	CAT	TTA	TCA	• ccc	TTA	TIG	TCT	CAT	GAG	• œc	λτλ	CAT	ATT
AAT ·	TIC	AAG	GTA	TTA AAT	TCA AGT	CCC	TTA AAT	TIG	TCT AGA	GTA	GAG	- CCC	TAT	CAT GTA	ATT TAA
2980 *	TTG AAC	AAG TTC	GTA 990	AAT	TCA AGT	3000	AAT	TIG	TCT AGA	GTA 10	CTC	- CCC CCC	TAT 020	CTA	TAA
2980 TGA	TTG AAC	AAG TTC 2	GTA	CAA	TCA AGT	GGG CCC 3000	ACA	TTG AAC	TCT AGA 30 AGG	CTA 10 CCT	CAC	3 600	777 020 CAC	GTA	TAA
2980 TGA	TTG AAC	AAG TTC 2	GTA 990 TTA	GAA CTT	TCA AGT	GGG CCC 3000 TAA ATT	ACA	TTG AAC	TCT AGA 30 AGG TCC	CTA 10 CCT	CAC	3 600	777 020 CAC	ATT TAA	TAA
2980 TGA ACT 3030	TTG AAC ATG TAC	AAG TTC 2 TAT ATA	990 TTA AAT	CAA CTT	TCA ACT	GGG CCC 3000 TAA ATT	ACA TGT	AAT	TCT AGA 30 AGG TCC	GTA GGT GGT CCA 3060	CAG CTC TCC AGG	3 606 600	TAT 020 CAC GTG	ATT TAA	TXX TCC AGG
2980 TGA ACT 3030	TTG AAC ATG TAC	AAG TTC 2 TAT ATA	GTA 990 TTA AAT 30 GCC	GAA CTT	TCA ACT AAA TTT	GGG CCC 3000 TAA ATT 3	ACA TGT 050	AAT TTA	TCT AGA 30 AGG TCC	GTA 10 GGT CCA 3060	CAG CTC TCC AGG	GCG CCC	CAC GTG 30	ATT TAA	TAA
2980 TGA ACT 3030 CCG GGC	TTG AAC ATG TAC	AAG TTC 2 TAT ATA	990 TTA AAT 30 GCC CGG	GAA CTT	TCA AGT TTT TCA ACT	GGG CCC 3000 TAA ATT 3	ACA TGT 050 CTA GAT	AAT TTA	TCT AGA 30 AGG TCC	CTA CCTA CCCA CCAT CTA	CAG CTC TCC AGG	GCG CCC	CAC GTG 30 CAT CAT	ATT TAA	TCC AGG
2980 TGA ACT 3030 CCG GGC	ATG TAC AAA TTT	AAG TTC 2 TAT ATA AGT TCA	990 TTA AAT 30 GCC CGG	GAA CIT 40 ACC TGG 3090	TCA AGT AAA TTT TCA ACT	GCG CCC 3000 TAA ATT 3 CCT GCA	ACA TGT 050 CTA GAT	AAT TTA	TCT AGA 30 AGG TCC	CTA CCA 3060 CAT CTA 3	TAT ATA	GCT	CAT	ATT TAA O CTG 3120	TAA TCC AGG
2980 TGA ACT 3030 CCG GGC	ATG TAC AAA TTT 080	AAG TTC 2 TAT ATA AGT TCA	990 TTA AAT 30 GCC CGG	GAA CTT 40 ACC TGG 3090 TAC	TCA AGT AAA TTT TCA ACT	GCG CCC 3000 TAA ATT 3 CCT GCA	ACA TGT 050 CTA GAT CAC GTG	AAT TTA	TCT AGA 30 AGG TCC AAC TTG	CTA CCA 3060 CAT CTA 3	TCC AGG TAT ATA 110 ATG TAC	GCT	CAT	ATT TAA 70 GAC CTG 3120 TGC ACG	TCC AGG
2980 TGA ACT 3030 CCG GGC	ATG TAC AAA TTT OBO CTA GAT	AAG TTC 2 TAT ATA AGT TCA	990 TTA AAT 30 GCC CGG	GAA CIT 40 ACC TGG 3090 TAC ATC	TCA AGT TTT TCA ACT	GGG CCC 3000 TAA ATT 3 CGT GCA TAT ATA	ACA TGT 050 CTA GAT 31 CAC	AGA TCT GAG GAG GAG GAG GAG	TCT AGA 30 AGG TCC AAC TTG	CTA CCA 3060 CAT GTA 3 CTC	TAT ATA ATA TAC TAC	CCC TATA ATA CCA	CAC GTG GTA CAT GTA CTT	ATT TAA 70 GAC CTG 3120 TGC ACG	TAA TCC AGG ATT TAA GGC CCG
2980 TGA ACT 3030 CCG GGC 30 AAC TTG	ATG AAA TTT BB0 CTA GAT 31 CAT	AAG TTC 2 TAT ATA AGT TCA TAA ATT	TTA AAT 30 GCC CGG AAA TTT	GAA CIT 40 ACC TGG 3090 TAG ATC	TCA AGT TCA ACT TCA ACT TCA ACT	GGG CCC 30000 TAA ATT 3 CGT GCA TAT ATA	ACA TGT 050 CTA GAT 31 CAC	AGA TCT OO CAG CTC 3150	TCT AGA 30 AGG TCC AAC TTC	GTA GGT CCA 3060 CAT GTA 3 CTG GAC	TAT ATA ATG TAC ATG TAC ATG TAC	CCC TATA ATA CCA 60	CAC GTG GTA CAT CTT CAA	ATT TAA 70 GACCTG 3120 ACG	TAA TCC AGG ATT TAA
2980 TGA ACT 3030 CCG GGC 30 AAC TTG	ATG TAC AAA TTT CTA GAT CAT GTA	AAG TTC 2 TAT ATA AGT TCA TAA ATT	TTA AAT 30 GCC CGG AAA TTT	GAA CIT 40 ACC TGG 3090 TAG ATC	TCA AGT TCA ACT TCA ACT TCA ACT	GGG CCC 30000 TAA ATT 3 CGT GCA TAT ATA	ACA TGT 050 CTA GAT 31 CAC	AGA TCT GAG CTC 3150 CCC CCC	TCT AGA 30 AGG TCC AAC TTC	GTA GGT CCA 3060 CAT GTA 3 CTG GAC	TAT ATA ATG TAC ATG TAC ATG TAC	CCC TATA ATA CCA 60	CAC GTG GTA CAT CAT CAT CAA	ATT TAA 70 GACCTG 3120 ACG	TAA TCC AGG ATT TAA GGC CCG
2980 TGA ACT 3030 CCG GGC AAC TTG	AAAA TTT OBO CTA GAT GTA	AAG TTC 2 TAT ATA AGT TCA TAA ATT 30 CGT GCA 3180	TTA AAT 30 GCC CCG AAA TTT	GAA CIT 40 ACC TCG 3090 TAG ATC	TCA ACT TCA ACA TCT ACA TCT ACA	GCG CCC 3000 TAA ATT 3 CCT GCA TAT ATA	AAT ACA TGT 050 CTA GAT GAT GTG CAC	AGA AGA TCT 3150 GCAC GCAC GCAC GCAC GCAC GCAC GCAC GCA	AAC TTC	GTA 10 GGT CCA 3060 CAT GTA 3 CTG GAC	TATATATA ATG TATA ATG TAC TATA ATG TAC CCC	CCC CCC TATA ATA CCCA CCCA CCCA CCCA CC	CAC GTG GTG CAT GTA CTT GAA	ATT TAA O GAC CTG 3120 TGC ACG TGC ACG	TAA TCC AGG ATT TAA GGC CCG

RECTIFIED SHEET (RULE 91)

ISA/EP

WO 96/40921 PCT/US96/09287

27/41

FIG. 5 E

2070 2080 2090 2100 CAG TGA GGC ACC TAT CTC AGC GAT CTG TCT ATT TCG TTC ATC CAT AGT GTC ACT CCG TGG ATA GAG TCG CTA GAC AGA TAA AGC AAG TAG GTA TCA 2120 2130 2140 2150 2160 TGC CTG ACT CCC CGT CGT GTA GAT AAC TAC GAT ACG GGA GGG CTT ACC ACG GAC TGA GGG GCA GCA CAT CTA TTG ATG CTA TGC CCT CCC GAA TGG 2190 2200 ATC TGG CCC CAG TGC TGC AAT GAT ACC GCG AGA CCC ACG CTC ACC GGC TAG ACC GGG GTC ACG ACG TTA CTA TGG CGC TCT GGG TGC GAG TGG CCC 2230 TCC AGA TIT ATC AGC AAT AAA CCA GCC AGC CGG AAG GGC CGA GCG CAG AGG TOT AAA TAG TOG TTA TIT GGT CGG TCG GCC TTC CCG GCT CGC GTC 2260 2270 2280 2290 ANG TGG TCC TGC ANC TIT ATC CGC CTC CAT CCA GTC TAT TAN TTG TTG TTC ACC AGG ACC TTC AAA TAG GCG GAG GTA GGT CAG ATA ATT AAC AAC 2310 2320 2330 2340 CCG GGA AGC TAG AGT AAG TAG TTC GCC AGT TAA TAG TTT GCG CAA CGT GGC CCT TCG ATC TCA TTC ATC AAG CGG TCA ATT ATC AAA CGC GTT GCA 2360 2370 2390 2390 TGT TGC CAT TGC TAC AGG CAT CGT GGT GTC ACG CTC GTC GTT TGG TAT ACA ACC GTA ACG ATG TCC GTA GCA CCA CAG TGC GAG CAG CAA ACC ATA 2420 GGC TTC ATT CAG CTC CGG TTC CCA ACG ATC AAG GCC AGT TAC ATG ATC CCC AMG TAM GTC GAG GCC AMG GGT TGC TAG TTC CGC TCA ATG TAC TAG 2470 2480 CCC CAT GTT GTG CAA AAA AGC GGT TAG CTC CTT CGG TCC TCC GAT CGT CGG GTA CAA CAC GTT TTT TCG CCA ATC GAG GAA GCC AGG AGG CTA GCA 2510 2520 TGT CAG ANG TAN GTT GGC CGC AGT GTT ATC ACT CAT GGT TAT GGC AGC ACA GTC TTC ATT CAA CCG GCG TCA CAA TAG TGA GTA CCA ATA CCG TCG 2550 2560 2570 2580 ACT GCA TAX TTC TCT TAC TGT CAT GCC ATC CGT AAG ATG CIT TTC TGT TGA CGT ATT AMG AGA ATG ACA GTA CGG TAG GCA TTC TAC GAA AMG ACA 2600 2610 2620 2630 2640 GAC TGG TGA GTA CTC AAC CAA GTC ATT CTG AGA ATA GTG TAT GCG GCG CTG ACC ACT CAT GAG TTG GTT CAG TAA GAC TCT TAT CAC ATA CCC CGC

FIG. 5 D

1500 1520 CTC ACG CTG TAG GTA TCT CAG TTC GGT GTA GGT CGT TCG CTC CAA GCT GAG TGC GAC ATC CAT AGA GTC AAG CCA CAT CCA GCA AGC GAG GTT CGA 1540 1560 1570 1580 GGG CTG TGT GCA CGA ACC CCC CGT TCA GCC CGA CCG CTG CGC CTT ATC CCC GAC ACA CGT GCT TGG GGG GCA AGT CGG GCT GGC GAC GCG GAA TAG 1590 1600 1610 1620 1630 CGG TAA CTA TCG TCT TGA GTC CAA CCC GGT AAG ACA CGA CTT ATC GCC GCC ATT GAT AGC AGA ACT CAG GTT GGG CCA TTC TGT GCT GAA TAG CGG 1640 1650 1660 ACT GGC AGC AGC CAC TGG TAA CAG GAT TAG CAG AGC GAG GTA TGT AGG TGA CCG TCG TCG GTG ACC ATT GTC CTA ATC GTC TCG CTC CAT ACA TCC CGG TGC TAC AGA GTT CTT GAA GTG GTG GCC TAA CTA CGG CTA CAC TAG GCC ACG ATG TCT CAA GAA CTT CAC CAC CGG ATT GAT GCC GAT GTG ATC 1740 1760 ANG GAC AGT ATT TGG TAT CTG CGC TCT GCT GAA GCC AGT TAC CTT CGG TTC CTG TCA TAA ACC ATA GAC GCG AGA CGA CTT CGG TCA ATG GAA GCC 17B0 1790 1800 1810 ANN ANG NOT TOG THE CTC TTG ATC CGG CAN ACA AND CHE CGC TGG THE TIT TIC TCA ACC ATC GAG AAC TAG GCC GIT TGT TIG GTG GCG ACC ATC 1830 1840 1850 1960 1870 CCC TCC TTT TTT TCT TTC CAA GCA GCA GAT TAC CCC CAG AAA AAA AGG GCC ACC AAA AAA ACA AAC GTT CGT CGT CTA ATG CGC GTC TIT TIT TCC 1880 1890 1900 1910 ATC TCA AGA AGA TCC TTT GAT CTT TTC TAC GGG GTC TGA CGC TCA GTG THE ACT TOT TOT AGG ANA CTA GAN ANG ATG CCC CAG ACT GCG AGT CAC CAA CCA AAA CTC ACG TTA AGG GAT TTT GGT CAT GAG ATT ATC AAA AAG CTT GCT TTT GAG TGC AAT TCC CTA AAA CCA GTA CTC TAA TAG TTT TTC 1980 1990 CAT CTT CAC CTA GAT CCT TTT AAA TTA AAA ATG AAG TTT TAA ATC AAT CTA GAA GTG GAT CTA GGA AAA TTT AAT TIT TAC TTC AAA ATT TAG TTA 2020 2030 2040 2050 2060 CTA AAG TAT ATA TGA GTA AAC TTG GTC TGA CAG TTA CCA ATG CTT AAT CAT TTC ATA TAT ACT CAT TTG AAC CAG ACT GTC AAT GGT TAC GAA TTA

RECTIFIED SHEET (RULE 91)

ISA/FP

FIG. 5 C

}	9	920			930			94	10		9	950			960	
	TCA AGT	CAA	ATA TAT	AAG TTC	CAT GTA	TTT AAA	TTT AAA	CAC	TGC	λΤΤ Τ λλ	CTA GAT	CAX	CXC	CAA CAA	TCT ACA	CCA
		. 97	70		9	80			990			100	00		10	210
	AAC TTG	TCA AGT	TCA AGT	ATG TAC	TAT ATA	CTT GAA	ATC TAG	ATG TAC	TCT AGA	GGA CCT	TCC AGG	TCT AGA	ACG TGC	CCC	GAC CTG	GC)
		1	1020			103	0		10	40		1	.050			
	TCG AGC	TGG ACC	CCC	GCA CGT	TCA AGT	ecc ccc	CCC	CCA GGT	CAG GTC	GTG CAC	CCC CCC	TTG AAC	CTG GAC	CCC	CCT	XTX TXT
106	50		10	70		1	080			109	0		11	.00		
				TCA												
			TGT	AGT		TAC			TAG		GAG	تكن	TGA			AGT
,	1110		~~~	GTT	•	606		130	maa		•		~~**	115	•	
	1	1160			1170			111	80		13	190		:	L200	
				CCC												
		12	10		1	220			1230			12	40		1	250
				CCI												
			1260			12	70		1	280			1290			
		TAA	GGG	λGλ		TCG	ACC		GGC	œc	CIT	CCT	GGC			CCA
13		TAA	CCC	λGλ		TCG	ACC	AGC	GGC	ccc	CIT	CCT	• 000			
13	CGT 00 TAG	TAA	1	AGA TCT	ccc	TCG	ACC TCG 1320	AGC GCA	GGC	CAA	CIT CAA 30	GCT CGA	GGC CCG	CAA 340 CTC	AAA AAG	
	CGT 00 TAG	TAA ATT GCT CGA	1	AGA TCT 310	ccc	TCG	ACC TGG 1320 CGA GCT	AGC GCA	GGC	CAA	CIT CAA 30	GCT CGA TCG	GGC CCG	CAA 340 CTC GAG	AAA AAG	GCT
	TAG ATC	TAA ATT CCA	666 666 666 666	AGA TCT 310 CCC CGG	60 60 60	TCG AGC	ACC TGG 1320 CGA GCT	AGC	CCC CCC	CAA GTT	CTT CAA 30 AAA TTT 1380	CCA	GGC CCG	CAA 340 CTC GAG 13	AAAG TTO	GCT
	TAG ATC 1350 GAG CTC	TAA ATT CCA	666 666 666 666	AGA TCT 310 CCC CGG	60 60 60	TCA ACT	ACC TGG 1320 CGA GCT	GCA GCI 370 ACI	CCC CCC	CAA GTT	CIT CAA 30 AAA TIT 1380	CCA	ACC	CAA 340 CTC GAG 13	AAAG TTO	GGT TCA AGT
	CGT 00 TAG ATC 1350 CAG CTC	CCT CGA		AGA TCT 310 CCC GGG	60 60 60 60 60 60 60 7	TCA ACT	ACC TCG 1320 CGA CGT 1 AGG TCC	AGC GCA GCA 370 ACT TGA	GGC CCG	CAA CAA CTT	CAA 30 AAA TTT 1380 ATA TAT	CCA CCA AGO	GGC CCG	CAA 340 CTC GAG 13 CTTC CAA	AAA AAG TCC AGC 1440	GGT TCA AGT
	CGT 00 TAG ATC 1350 CAG CTC	CCT CGA		AGA TCT 310 CCC GGG	60 60 60 60 1410	TCA ACT	ACC TCG 1320 CGA CGT 1 AGG TCC	AGC GCA GCA 370 ACT TGA	GGC CCG	CAA CAA CTT	CAA 30 AAA TTT 1380 ATA TAT	CCA	GGC CCG	CAA 340 CTC GAG 13 CTTC CAA	AAAGO TOO AAGO TAAGA ATG	CCC CCC

FIG. 5 B

۶.																	
		440			45	0		4	60			470			48	10	
	GAG	CAG	TTG	λλλ	TCT	GGA	ACT	GCC	TCT	CTT	GTG	TGC	CIG	CTG	ААТ	λλC	
	Glu	Gln	Leu	Lys	Ser	Gly	Thr	CGG Ala	AGA	CAA Val	CAC	λCG Cvs	GAC	GAC	ATT	TTG	
														200	Vatt		
			190			500				±		٠	520			530	
	TTC	TAT	CCC	AGA	GAG	GCC	AAA	GTA	CAG	TGG	AAG TTC	CAC	CAT	XXC	CCC	CTC	
	Phe	Tyr	Pro	yLa	Glu	Ala	LyB	Val	Gln	TIP	Lys	Val	увр	ABD	λla	ren>	
			5	40			550			560			57	70			
				•			*		~~~	*	~~~	020	~~~	*			
											GAG						
																yeb>	
	580			590	•		6	00			610			620			
	AGC	ACC	TAC	AGC	crc	AGC	AGC	ACC	CTG	ACG	CIG	λGC	λλλ	GCA	GAC	TAC	
	TCC	TCC	ATG	TCG	GAG	TCG	TCG	TGG	GAC	TGC	GAC	TCC	TTT	CCT	CTG	ATG	
	Ser	Thr	Tyr	Ser	Leu	Ser	Ser	Thr	Leu	Thr	Leu	Ser	Lys	λla	увъ	TYT>	
	6	30			640			650			6	60	-		670		
											ACC						
											Thr					TCC Ser>	
		680)		6	90			700			710)		7	20	
	TYCYC		. تىلد ،		AAG	• AGC			· AGO	: CCA	GAG	• TCT	· · T A	GA C	cc l	SA AG	•
																CT TC	
	Ser	Pro	Val	The	Lys	Ser	Phe	. Yez	Arg	Gly	Glu	Cys	•>				
		7	30			740			750	· •		7	60			770 +	
																ATA	
	CCC	GGC	TGC	ACC	, AGG	AGI	. (20	CGG	CGC	. ACC	ניטט נ	(Also	r All	. Als	ال ال	TAT	
			780	•		7	90			800			810	•			
																TCC	
	زمادا	(G1/	• ^^	- 71/	- 166	. ~~	, VI	- ^^(_	A A 1.	1 11.	1 10	<i>5</i>	. G11	, 164	AGG	
1	B20 •			830			84	D •		1	850			960			
																TGT A ACA	
	870				880	_ •••	- ••	890		- - •	90				910		
		•			•			•				•			•		
	TT	A TT	C (CX)	C CI	T AT	7 AT	G GT	T AC	እ እአ ጉ ጉጉ	ች እአ ፕ	A GC	አ	λ GC	A TC	λ Cλ T GT	7 TAA	
				_ ~~			_ ~			44							

FIG. 5 A

The pEe12TF8LCDR3 expression vector DNA sequence. The coding regions of the TF8-5G9 CDR-grafted LC gene, TF8LCDR3, are translated.

Sequence Range: 1 to 7864 20 30 40 50 AAT TOA CO ATG GGT GTG COA ACT CAG GTA TTA GGA TTA CTG CTG CTG TGG TTA AGT GG TAC CCA CAC GGT TGA GTC CAT AAT CCT AAT GAC GAC GAC ACC Het Gly Val Pro Thr Gln Val Leu Gly Leu Leu Leu Leu Trp> 70 80 90 CTT ACA GAT GCA AGA TGT GAT ATC CAA ATG ACA CAA TCT CCT TCT TCT GAA TGT CTA CGT TCT ACA CTA TAG GTT TAC TGT GTT AGA GGA AGA AGA Leu Thr Asp Ala Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ser Ser> 100 110 120 CTA AGT GCT TCT GTC GGA GAT AGA GTA ACA ATT ACA TGT AAG GCG AGT GAT TOA COA AGA CAG COT CTA TOT CAT TOT TAA TOT ACA TTO COO TOA Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Lys Ala Ser> CAG GAC ATT AGA AAG TAT TTA AAC TGG TAT CAG CAA AAA CCT GGG AAG GTC CTG TAA TCT TTC ATA AAT TTG ACC ATA GTC GTT TTT GGA CCC TTC Gln Asp Ile Ard Lys Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys> 200 210 220 230 GCT CCT ANG CTA CTG ATT TAT TAT GCA ACA AGT TTG GCA GAT GGA GTA CCA GGA TTC GAT GAC TAA ATA ATA CGT TGT TCA AAC CGT CTA CCT CAT Ala Pro Lys Leu Leu Ile Tyr Tyr Ala Thr Ser Leu Ala Asp Gly Val> 260 270 280 CCT TCT AGA TIT TCT GGT TCT GGC TCT GGA ACA GAC TAC ACA TTC ACA GGA AGA TOT AAA AGA COA AGA COG AGA COT TGT CTG ATG TGT AAG TGT Pro Ser Ard Phe Ser Gly Ser Gly Ser Gly Thr Asp Tyr Thr Phe Thr> 300 310 320 ATT TOT TOT CTC CAA COT GAG GAC ATT GOT ACA TAC TAC TGC CTA CAA TAA AGA AGA GAG GTT GGA CTC CTG TAA CGA TGT ATG ATG ACG GAT GTT Ile Ser Ser Leu Gln Pro Glu Asp Ile Ala Thr Tyr Tyr Cys Leu Gln> 350 360 370 380 CAT GGT CAG AGT CCG TAT ACA TTT GGA CAA GGA ACA AAA CTA GAG ATC GTA CCA CTC TCA GGC ATA TGT ANA CCT GTT CCT TGT TTT GAT CTC TAG His Gly Glu Ser Pro Tyr Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile> 400 410 ACA AGA ACT CIT GCG GCG CCC TCT GTC TTC ATC TTC CCG CCA TCT GAT TCT TCT TGA CAA CCC CGC CGC AGA CAG AAG TAG AAG GGC GGT AGA CTA

RECTIFIED SHEET (RULE 91) ISA/EP

Thr Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp>

FIG. 4 N

6700 6710 6720 6680 6690 TGG AGG CCA GAC TTA GGC ACA GGA CGA TGC CCA CCA CCA GTG TGC ACC TCC GGT CTG AAT CCG TGT CGT GCT ACG GGT GGT GGT CAC ACG 6750 6760 6740 6730 CGC ACA AGG CCG TGG CGG TAG GGT ATG TGT CTG AAA ATG AGC TCG GGG GCG TGT TCC GGC ACC GCC ATC CCA TAC ACA GAC TTT TAC TCG AGC CCC 6800 6780 6790 AGC GGG CTT GCA CCG CTG AGG CAT TTG GAA GAC TTA AGG CAG CGG CAG TCG CCC GAA CGT GGC GAC TGC GTA AAC CTT CTG AAT TCC GTC GCC GTC 6830 6840 6850 6860 ANG ANG ATC CAG GCA GCT GAG TTG TTG TGT TGT GAT ANG AGT CAG AGG TTC TTC TAC GTC CGT CGA CTC AAC AAC ACA AGA CTA TTC TCA GTC TCC 6880 6890 6900 TAX CTC CCC TTG CCG TCC TCT TAX CCC TCG ACC CCA GTC TAG TCT GAG ATT CAG GGC AAC GCC ACG ACA ATT GCC ACC TCC CGT CAC ATC AGA CTC 6920 6940 CAG TAC TOG TTG CTG COG CGC GCG CCA CCA GAC ATA ATA GCT GAC AGA GTC ATG AGC AAC GAC GGC GGG CGC GGT GGT CTG TAT TAT CGA CTG TCT **6980** 6990 CTA ACA GAC TGT TCC TTT CCA TGG GTC TTT TCT GCA GTC ACC GTC CTT CAT TOT CTG ACA AGG AAA GGT ACC CAG AAA AGA CGT CAG TGG CAG GAA 7040 CAC ACG AMG CIT GGG CTG CAG GTC CAT CGA CTC TAG AGG ATC GAT CCC CTG TGC TTC GAA CCC GAC GTC CAG CTA GCT GAG ATC TCC TAG CTA GGG 7070 CGG GCG AGC TC GCC CGC TCG AG

FIG. 4 M

6160 6170 6180 CGC GGA TTC CCC GTG CCA AGA GTG ACG TAA GTA CCG CCT ATA GAG TCT GCG CCT AMG GGG CAC GGT TCT CAC TGC ATT CAT GGC GGA TAT CTC AGA ATA GGC CCA CCC CCT TGG CTT CTT ATG CAT GCT ATA CTG TIT TTG GCT THE CCG GGT GGG GGA ACC GAA GAA THC GTA CGA THE GAC HAN HAC CGA 6280 6270 6250 6260 TGG GGT CTA TAC ACC CCC GCT TCC TCA TGT TAT AGG TGA TGG TAT AGC ACC CCA GAT ATG TGG GGG CGA AGG AGT ACA ATA TCC ACT ACC ATA TCG 6320 6300 6330 6310 6340 TTA GCC TAT AGG TGT GGG TTA TTG ACC ATT ATT GAC CAC TCC CCT ATT ANT CCG ATA TCC ACA CCC AAT AAC TCG TAA TAA CTC CTC ACG CGA TAA 6360 6370 6350 GGT GAC GAT ACT TTC CAT TAC TAA TCC ATA ACA TGG CTC TTT GCC ACA CCA CTG CTA TGA AAG GTA ATG ATT AGG TAT TGT ACC GAG AAA CGG TGT ACT CTC TTT ATT GGC TAT ATG CCA ATA CAC TGT CCT TCA GAG ACT GAC TGA GAG AAA TAA COG ATA TAC GGT TAT GTG ACA GGA AGT CTC TGA CTG 6470 6440 6450 6460 ACC CAC TOT GTA TIT TTA CAG GAT GGG GTC TCA TIT ATT ATT TAC AAA TGC CTG AGA CAT AAA AAT GTC CTA CCC CAG AGT AAA TAA TAA ATG TTT 6500 6490 TTC ACA TAT ACA ACA CCA CCG TCC CCA GTG CCC GCA GTT TTT ATT AAA AMG TOT ATA TOT TOT GOT GGC AGG GGT CAC GGG CGT CAA AAA TAA TIT 6540 6550 6560 6570 65B0 CAT AAC GTG GGA TCT CCA CGC GAA TCT CGG GTA CGT GTT CCG GAC ATG GTA TTG CAC CCT AGA GGT GGG CTT AGA GCC CAT GCA CAA GGC CTG TAC 6600 6610 GGC TCT TCT CCG GTA GCG GCG GAG CTT CTA CAT CCG AGC CCT GCT CCC CCG AGA AGA GGC CAT CGC CGC CTC GAA GAT GTA GGC TCG GGA CGA GGG ATG CCT CCA GCG ACT CAT GGT CGC TCG GCA GCT CCT TGC TCC TAA CAG TAC GGA GGT CGC TGA GTA CCA GCG AGC CGT CGA GGA ACG AGG ATT GTC

RECTIFIED SHEET (RULE 91)

ISA/EP

FIG. 4 L

5630 5640 5650 5660 TAN CGC CAN TAG GGA CTT TCC ATT GAC GTC AAT GGG TGG AGT ATT TAC ATT GCG GTT ATC CCT GAA AGG TAA CTG CAG TTA CCC ACC TCA TAA ATG 5690 5700 GGT ANA CTG CCC ACT TGG CAG TAC ATC AAG TGT ATC ATA TGC CAA GTA CCA TIT GAC GGG TGA ACC GTC ATG TAG TTC ACA TAG TAT ACC GTT CAT CGC CCC CTA TTG ACG TCA ATG ACG GTA AAT GGC CCG CCT GGC ATT ATG GCG GGG GAT AAC TGC AGT TAC TGC CAT TTA CCG GGC GGA CCG TAA TAC 5770 5780 5790 CCC ACT ACA TGA CCT TAT GGG ACT TTC CTA CTT GGC AGT ACA TCT ACG GGG TCA TGT ACT GGA ATA CCC TGA AAG GAT GAA CCG TCA TGT AGA TGC 5820 5830 5840 5850 5860 TAT TAG TOA TOG CTA TTA COA TGG TGA TGC GGT TTT GGC AGT ACA TOA ATA ATC AGT AGC GAT AAT GGT ACC ACT ACC CCA AAA CCC TCA TGT AGT 5880 5890 ATC GGC GTG GAT AGC GGT TTG ACT CAC GGG GAT TTC CAA GTC TCC ACC TAC COG CAC CTA TOG CCA AAC TGA GTG CCC CTA AAG GTT CAG AGG TGG 5940 CCA TTG ACG TCA ATG GGA GTT TGT TTT GGC ACC AAA ATC AAC GGG ACT GGT AAC TGC AGT TAC CCT CAA ACA AAA CCG TGG TTT TAG TTG CCC TGA 5960 5970 TTC CAN ART GTC GTA ACA ACT COG CCC CAT TGA CGC ARA TGG GCG GTA AMG CIT TIM CAG CAT TOT TOM CGC CGG CIM ACT GGG TIT ACC CGC CAT 6010 6030 6040 GGC GTG TAC GGT GGG AGG TCT ATA TAA GCA GAG CTC GTT TAG TGA ACC CCG CAC ATG CCA CCC TCC AGA TAT ATT CCT CTC GAG CAA ATC ACT TGG 6060 6070 6080 6090 6100 GTC AGA TOG CCT GGA GAC GCC ATC CAC GCT GTT TTG ACC TCC ATA GAA CAG TCT AGC GGA CCT CTG CGG TAG GTG CGA CAA AAC TGG AGG TAT CTT 6120 6130 GAC ACC GGG ACC GAT CCA GCC TCC GCG GCC GGG AAC GGT GCA TTG GAA CTG TGG CCC TGG CTA GGT CGG AGG CGC CGG CCC TTG CCA CGT AAC CTT

FIG. 4 K

ja.	5	100			511	0		51	20		5	130			514	0
													œc œc			
		53	50		5	160			517	0		51	.80		5	190
	CCA CCT	TAG ATC	CCC	TTA AAT	Τ λ Τ λ Τλ	CCY	TTA AAT	CCC	CCC	ATG TAC	000 000	XTX TXT	CIC	CJC GYC	TTT AAA	CCX
			520	D		52	10		5	220			523	0		
													TTC			
	CIG	XXC	CCC	CTA	AGA	CAC	ACA	GCG	TTT			TCA	λλG		TAT	CCA
	5240	CIG TOT GO					526	•		52	270		2	280		
		CTG TCT GC														
	52	5290 CAC ATG GO		5	300		:	5310			53	20		5:	330	
		5290 CAC ATG GC GTG TAC GG 5340			53	50		5	360			5370			531	80
													ATA TAT			λΤΤ Τλλ
	AIC			AIA			Gu.	ini			• • • •			7010		
			390			5400			54	•			420			5430
	ccc	CAT	TGC ACG	TAT TAT	CCI	TGT ACA	ATC	CAT	XTC	TAT	KTK .) ACA) ACA	λλλ	ATA TAT	TTG AAC
			54	40		5	450			5460			54	70		
	CCI	CAT	GTC	CAA GTT	CAT GTA	TAC ATG	CCC	CAT	CAA	GAC	ATT TAA	CTA	TAT	TGA	CTA	GTT CAA
	5480			5490			55	00		5	510			5520		
	ATT	λλΤ	AGT	AAT	CAA	TTA	œc	GGT	CAT	TAG	TTC	λта	GCC	CAT	ATA	TGG
	TAA	TTA	TCA	TTA	GTT	AAT	CCC	CCY	GIA	ATC	λλG	TAT	ccc	GTA	TAT	ACC
	55	30		5	540		,	5550 •			55	60		5	570	
	AGT TCA	TCC	CCC	TTA AAT	CAT GTA	AAC TTG	TTA AAT	CCC	TAA ATT	ATG TAC	CCC	ccc	CTG GAC	GCT CGA	GAC	000 000
		5580			55	90		5	600			5610			56	20
	CCA	ACG TGC	ACC	CCC	CCC	CAT GTA	TGA ACT	CCY	CXX	TAX TTX	TGA ACT	CCA	ATG TAC	TTC	CCA	TAG ATC

FIG. 4 J

4580 4600 4610 AGC GGA TAC ATA TIT GAA TGT ATT TAG AAA AAT AAA CAA ATA GGG GTT TCG CCT ATG TAT ANA CTT ACA TAN ATC TIT TTA TIT GTT TAT CCC CAN 4620 4630 4640 4660 CCC CCC ACA TIT CCC CCA AAA GTG CCA CCT GAC GTC TAA GAA ACC ATT CGC GCG TCT ANA GGG GCT TIT CAC GGT GGA CTG CAG ATT CTT TGG TAA 4670 4680 4690 4700 4710 ATT ATC ATG ACA TTA ACC TAT AAA AAT AGG CGT ATC ACG AGG CCC TGA TAX TAG TAC TOT AAT TOG ATA TIT TTA TOO GOA TAG TOO TOO GOG ACT 4730 4740 TGG CTC TTT GCG GCA CCC ATC GTT CGT AAT GTT CCG TGG CAC CGA GGA ACC GAG AAA CGC CCT GGG TAG CAA GCA TTA CAA GGC ACC GTG GCT CCT 4770 47BD 4790 CAN CCC TON AGA GAN ANT GTN ATC ACA CTG GCT CAC CTT CGG GTG GGC CTT GGG AGT TCT CTT TTA CAT TAG TGT GAC CGA GTG GAA GCC CAC CCC 4810 4820 4830 4840 4850 CTT TCT GCG TTT ATA AGG AGA CAC TTT ATG TTT AAG AAG GTT GGT AAA GAA AGA CEC AAA TAT TCC TCT GTG AAA TAC AAA TTC TTC CAA CCA TTT 4860 4870 4880 4890 4900 TTC CTT GCG GCT TTG GCA GCC AAG CTA GAG ATC TCT AGC TTC GTG TCA ANG GAN CGC CGN ANC CGT CGG TTC GAT CTC TAG AGA TCG ANG CAC AGT 4910 4920 4930 AGG ACG GTG ACT GCA GTG AAT AAA ATG TGT GTT TGT CCG AAA TAC TCC TGC CAC TGA CGT CAC TTA TTA TTT TAC ACA CAA ACA GGC TTT ATG 4980 4990 GCG TTT TGA GAT TTC TGT CGC CGA CTA AAT TCA TGT CGC GCG ATA GTG CGC AAA ACT CTA AAG ACA GCG GCT GAT TTA AGT ACA GCG CGC TAT CAC 5010 5020 5030 GTG TTT ATC GCC GAT AGA GAT GGC GAT ATT GGA AAA ATC GAT ATT TGA CAC AAA TAG CCG CTA TCT CTA CCG CTA TAA CCT TTT TAG CTA TAA ACT 5050 5060 5070 5090 AAA TAT GGC ATA TTG AAA ATG TCG CCG ATG TGA GTT TCT GTG TAA CTG TIT ATA CCG TAT AAC TIT TAC AGC GGC TAC ACT CAA AGA CAC ATT GAC

FIG. 4 I

4040		•	1050			40	60		40	070			4080		
CCX (CXX	ACA TGT	TGA ACT	TCC AGG	CCC	ATG TAC	TTC	TGC ACG	XXX TTT	AAA TTT	000 000	CXX	AGC TCG	TCC AGG	TTC AAG
409	•			100			4110			41:	•			130	
CCY (CCT	CCC	ATC TAG	CYY	CYC	YCI.	TCX	AAG TTC	TTG AAC	CCC	CCA CCT	CXC	TTA AAT	TCA AGT	CTC GAG
4:	140			41	50		4:	160			4170			41	ВО
ATG (CIT	ATG TAC	CCA	GCA CGT	CTG	CAT	AAT TTA	TCT	CIT	ACT	CIC	ATG	CCA	TCC	
		190			4200			42				220			4230
		•			•				•			•			
AGA TOT	YCC YCC) AAA	YCY	CYC	TGX	CCA	CIC	TAC ATG	TCA AGT	ACC TGG	AYC TLC	TCA AGT	TTC AAG	TGA ACT	GAA CTT
	TAG TGT ATC CCG ATC ACA TAC GCC				4:	250			4260			42	70		
TAG '	TCT	ATC	œc	CCA	ccc	AGT	TGC	TCT	TGC	ccc	CCC	ביאד	ACA	CCC	C) m
ATC .	усу	TAC	ecc	CCI	ccc	TCA	ACC	AGA	ACG	GGC	œc	AGT	TGT	CCC	CTA
4280			1290			430	•			310			320		
AAT I	ACC IGG	CCC	CCA CCT	CAT GTA	AGC TCG	AGA TCT	ACT TGA	TTA AAT	AAA TTT	CYC	CTC GAG	ATC TAG	ATT TAA	CCI	AAA TTT
4330	0		43	340		4	350			436	50		43	70	
CCT	rcr	TCG	GGG	CGA	AAA	CTC	TCA) CC) TC	and F	~~	~~~		*	
GCA 2	AGA	AGC	ccc	CCI	TIT	GAG	λGT	TCC	TAG	AAT	GGC	CYC	AAC	TCT	AGG
	380			435	• •			001			410			442	•
AGT 1	rcg Agc	ATG TAC	TAA ATT	CCC	XCT TGA	CCT CCA	GCA CCT	CCC	AAC TTG	TGA ACT	TCT AGA	TCA AGT	CCA	TCT AGA	TTT
		30			1440			445			44				470
3 (70 /1	- VIA	100	100	~		~~~			•			•			•
ACT 1	AAG	TGG	TCG	CYY	yCy	CCC	ACT	CCT	TTT	TCT	CCT	TCC	CILL	AAT TTA	ccc
		448	0		44	90		4	1500			451	.Ō		
						~~~	ACA	CCC	222	TET	TCA	3773		3.003	~~
GUA	AAA .	λλG	CCY	λTλ	AGG	~~	4200								
GCA A	TTT	AAG TTC	CCI	TAT	TCC	ccc	TGT	GCC	TIT	усу	ACT	TAT	GAG	TAT	GAG
CGT 1	MAA .	TTC	CCT 530	ATA TAT	TCC	CGC 454	TCT	GCC	TIT	ACA 50	ACT	TAT	GAG 560	TAT	GAG
CGT 1	M	TTC 4	230 cci.	TAT	TCC	454	TGT 0	GCC	TTT 45	3CA 550	ACT	TAT	<b>GAG</b>	TAT	GAG

## FIG. 4 H

			35	20		3	530			3540			35	50		
	TCT AGA	CIG	CCA	CYC	TGG	AAC TTG	CTT	AAC TTG	TCA AGT	CCI	TAA ATT	CCC	λΤΤ Τλλ	TTG AAC	GTC CAG	ATG TAC
35	60		;	3570			351	B 0		3	590			3600		
	XGX TCT	TTA AAT	TCA AGT	AAA TTT	AGG TCC	ATC TAG	TTC	ACC TGG	TAG	ATC TAG	CII	TTA AAT	AAT TTA	TAA	λλλ	TGA
	36:				620			3630			36				650	NC1
	AGT	لملمك	111	7773	377	~~ .		•				•			•	
	TCA	λλλ	TTT	AGT	ATC TAG	ATT	TCA	TAT	ATA	CIC	ATT	TGA	TGG ACC	TCT AGA	CIC	JCY YCI
	;	3660			36	70		3	680			3690			~~	•
		CAN TGC TO				•			•						37	•
	TAC ATG	CAA	TGC ACG	TTA AAT	ATC TAG	AGT TCA	CIC	CCT CCT	CCT GGA	ATC TAG	TCA AGT	000 000	ATC TAG	TCT ACA	CTA GAT	TTT
			710			3720			37:	•			740			3750
	CCT CCA	TCA AGT	TCC	ATA TAT	GTT CAA	ccc	TGA ACT	CAC	ccc	GTC CAG	CAC	TAG ATC	<b>ΑΤΑ ΤΑΤ</b>	ACT TGA	YCC TCC	ATA TAT
			37	•			770			3780			37	_		
·	CCC	CIC	ccc	TTA AAT	CCA GGT	TCT AGA	CCC	CCC	AGT TCA	GCT CGA	GCA CCT	ATG TAC	<b>λΤλ ΤλΤ</b>	ccc	CGA GCT	GAC
	00			3810			382				830			3840		
	CCA	CGC	TCA	CCG	CCT	CCA	CAT	עובו <i>ס</i>	מיצוו	CCA	3773	110	010	~~		
1	GCT	GCG	AGT	GGC	CGA	GGT	CTA	AAT	λGT	CCT	TAT	TIG	CTC	CCT	CCC	CCI
	385	50		. 31	860		3	870			388	30		38	190	
		•			•			•				•			•	
	rcc	CCC	CIC	CCC	AGA TCT	TCA	CCA	CCI	CCT	ACT TGA	TTX AAT	TCC	000 000	TCC	ATC TAG	CAG GTC
		900			391	•			20			930			394	_
	ICT AGA	ATT TAA	TTA TTA	TGT ACA	TGC ACG	CCC	CIT	GCT CGA	AGA TCT	GTA CAT	AGT TCA	XCX XOT	TCG AGC	CCY	CTT	AAT TTA
		35	50		3	960			397	0		39	80		3	990
2	AGT	TTG	ccc	λλC	CTT	CIT	CCC	ATT	CCT	ACA	ccc	3770	-	~~~	<b>TC</b> 3	~~~
• •	rca.	AAC	نانانا	116	CXX	CAA	ccc	TAA	CGA	TCT	222	TAG	CAC	CYC	AGT	GCC
			400	0		40	10		4	1020			403	10		
	1001	ביטד	طعلعك	CC-T	3.7~		- TV-1			-				•		
j	AGC	AGC	***	CCA	ATG TAC	CCY	AGT	AAG	TCG	<b>AGG</b>	CCA	AGG	CYY	CCI	TCA AGT	XGG TCC

## **RECTIFIED SHEET (RULE 91)**

**ISA/EP** 

### FIG. 4 G

2990 3000 3010 3020 3030 CAG GCG TTT CCC CCT GGA AGC TCC CTC GTG CGC TCT CCT GTT CCG ACC STC CGC AAA GGG GGA CCT TCG AGG GAG CAC GCG AGA GGA CAA GGC TGG 3040 3050 3060 3070 CTG CCG CTT ACC GGA TAC CTG TCC GCC TTT CTC CCT TCG GGA AGC GTG CAC GGC GAA TGG CCT ATG GAC AGG CGG AAA GAG GGA AGC CCT TGG CAC 3080 3090 3100 3110 GCG CIT TCT CAA TGC TCA CGC TGT AGG TAT CTC AGT TCG GTG TAG GTC CGC GAA AGA GTT ACG AGT GCG ACA TCC ATA GAG TCA AGC CAC ATC CAG 3150 3160 GTT CGC TCC AAG CTG GGC TGT GTG CAC GAA CCC CCC GTT CAG CCC GAC CAN GCG AGG TTC GAC CCG ACA CAC GTG CTT GGG GGG CAN GTC GGG CTG 3189 3190 3200 3210 CGC TGC GCC TTA TCC GGT AAC TAT CGT CTT GAG TCC AAC CCG GTA AGA GCG ACG CGG ANT AGG CCA TTG ATA GCA GAA CTC AGG TTG GGC CAT TCT 3230 3240 3250 3260 3270 CAC GAC TTA TCG CCA CTG GCA GCC ACT GGT AAC AGG ATT AGC AGA GTG CTG AAT AGC GGT GAC CGT CGT CGG TGA CCA TTG TCC TAA TCG TCT 3280 3290 3300 GCG AGG TAT GTA GGC GGT GCT ACA GAG TTC TTG AAG TGG TGG CCT AAC CGC TCC ATA CAT CCG CCA CGA TGT CTC AAG AAC TTC ACC ACC GGA TTG 3320 3330 3340 TAC GGC TAC ACT AGA AGG ACA GTA TIT GGT ATC TGC GCT CTG CTG AAG ATG CCG ATG TGA TCT TCC TGT CAT AAA CCA TAG ACG CGA GAC GAC TTC 3380 3390 3400 3410 CCA GTT ACC TTC GGA AAA AGA GTT GGT AGC TCT TGA TCC GGC AAA CAA GGT CAA TGG AAG CCT TTT TCT CAA CCA TCG AGA ACT AGG CCC TTT GTT 3420 3430 3440 3450 3460 ACC ACC GCT GGT AGC GGT GGT TTT TTT GTT TGC AAG CAG CAG ATT ACG TGG TGG CGA CCA TCG CCA CCA AAA AAA CAA ACG TTC GTC GTC TAA TGC 3470 3480 3490 CCC AGA AAA AAA GGA TCT CAA GAA GAT CCT TTG ATC TTT TCT ACG GGG GCG TCT TTT TTT CCT AGA GTT CTT CTA GGA AAC TAG AAA AGA TGC CCC

### FIG. 4 F

2460 2470 2480 2490 2500 TGT TGT TAX CTT GTT TAT TGC AGC TTA TAX TGG TTA CAX ATA AAG CAX ACA ACA ATT GAA CAA ATA ACG TCG AAT ATT ACC AAT GIT TAT TIC GIT 2520 2530 2540 2550 TAG CAT CAC ANA TIT CAC ANA TAN AGC ATT TIT TIC ACT GCA TIC TAG ATC GTA GTG TIT AAA GTG TIT ATT TCG TAA AAA AAG TGA CGT AAG ATC 2560 2570 TTG TGG TTT GTC CAA ACT CAT CAA TGT ATC TTA TCA TGT CTG GAT CCT ANC ACC ANA CAG GTT TGA GTA GTT ACA TAG ANT AGT ACA GAC CTA GGA 261D 2620 CTA CGC CGG ACG CAT CGT GGC CGG CAT CAC CGG CGC CAC AGG TGC GGT GAT GCG GCC TGC GTA GCA CCG GCC GTA GTG GCC GCG GTG TCC ACG CCA 2650 2660 2670 2690 TGC TGG CGC CTA TAT CGC CGA CAT CAC CGA TGG GGA AGA TCG GGC TCG ACG ACC GCG GAT ATA GCG GCT GTA GTG GCT ACC CCT TCT AGC CCG AGC 2700 2710 2720 2730 2740 CCA CTT CGG GCT CAT GAG CGC TTG TTT CGG CGT GGG TAT GGT GGC AGG GGT GAA GCC CGA GTA CTC GCG AAC AAA GCC GCA CCC ATA CCA CCG TCC 2750 2760 2770 2780 CCC GTG GCC GGG GGA CTG TTG GGC GCC ATC TCC TTG CAT GCA CCA TTC GGG CAC CGG CCC CCT GAC AAC CCG CGG TAG AGG AAC GTA CGT GGT AAG CTT GCG GCG GCG GTG CTC AAC GGC CTC AAC CTA CTA CTG GGC TGC TTC GAA CGC CGC CGC CAC GAG TTG CCG GAG TTG GAT GAT GAC CCG ACG AAG 2840 2850 2860 2870 2880 CTA ATC CAG GAG TCG CAT AAG GGA GAG CGT CGA CCT CGG GCC GCG TTG CAT TAC GTC CTC AGC GTA TTC CCT CTC GCA GCT GGA GCC CGG CGC AAC 2890 2900 2910 2920 2930 CTG GCG TIT TTC CAT AGG CTC CGC CCC CCT GAC GAG CAT CAC AAA AAT GAC CGC AAA AAG GTA TCC GAG GGG GGG GGA CTG CTC GTA GTG TTT TTA 2940 2950 2960 2970 CGA CGC TCA AGT CAG AGG TGG CGA AAC CCC ACA GGA CTA TAA AGA TAC GCT GCG AGT TCA GTC TCC ACC GCT TTG GGC TGT CCT GAT ATT TCT ATG

### FIG. 4 E

1930 1940 1950 1960 GAG GGG AAT GTC TTC TCA TGC TCC GTG ATG CAT GAG GCT CTG CAC AAC CTC CCC TTA CAG AAG AGT ACG AGG CAC TAC GTA CTC CGA GAC GTG TTG Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn> 1990 2000 CAC TAC ACA CAG AAG AGC CTC TCC CTG TCT CTG GGT AAA T GAG TGC CAG GTG ATG TGT GTC TTC TCG GAG AGG GAC AGA GAC CCA TTT A CTC ACG GTC His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys Xxx> 2070 GGC CGG CAA GCC CCC GCT CCC CGG GCT CTC GGG GTC GCG CGA GGA TGC CCG GCC GTT CGG GGG CGA GGG GCC CGA GAG CCC CAG CGC GCT CCT ACG 2090 2100 TTG GCA CGT ACC CCG TCT ACA TAC TTC CCA GGC ACC CAG CAT GGA AAT AAC CGT GCA TGG GGC AGA TGT ATG AAG GGT CCG TGG GTC GTA CCT TTA 2130 2140 AAA GCA CCC ACC ACT GCC CTG GGC CCC TGT GAG ACT GTG ATG GTT CTT TIT COT GGG TGG TGA CGG GAC CCG GGG ACA CTC TGA CAC TAC CAA GAA 2170 2180 2190 2200 TCC ACG GGT CAG GCC GAG TCT GAG GCC TGA GTG ACA TGA GGG AGG CAG AGG TGC CCA GTC CGG CTC AGA CTC CGG ACT CAC TGT ACT CCC TCC GTC 2220 2230 2240 2250 2260 AGC GGG TCC CAC TGT CCC CAC ACT GGC CCA GGC TGT GCA GGT GTG CCT TOO COO AGG GTG ACA GGG GTG TGA COO GGT COO ACA COT COA CAC GGA 2270 2280 2290 2300 GGG CCA CCT AGG GTG GGG CTC AGC CAG GGG CTG CCC TCG GCA GGG TGG CCC GGT GGA TCC CAC CCC GAG TCG GTC CCC GAC GGG AGC CCT CCC ACC 2330 GGG ATT TGC CAG CGT GGC CCT CCC TCC AGC AGC AGG ACT CTA-GAG GAT CCC TAA ACG GTC GCA CCG GGA GGG AGG TCG TCG TCC TGA GAT CTC CTA 2360 2370 **2380** 2390 CAT AAT CAG CCA TAC CAC ATT TGT AGA GGT TTT ACT TGC TTT AAA AAA CTA TTA CTC GCT ATC CTC TAA ACA TCT CCA AAA TGA ACG AAA TTT TTT 2410 2420 2430 2450 CCT CCC ACA CCT CCC CCT GAA CCT GAA ACA TAA AAT GAA TCC AAT TGT GGA GGG TGT GGA GGG GGA CTT GGA CTT TGT ATT TTA CTT ACG TTA ACA

### FIG. 4 D

1450 1460 1470 1480 AMG CCC CCG GAG GAG CAG TTC AAC AGC ACG TAC CGT GTG GTC AGC GTC TTC GGC GCC CTC CTC GTC AAG TTG TCG TGC ATG GCA CAC CAG TCG CAG Lys Pro Arg Clu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser Val> 1490 1500 1510 1520 CTC ACC GTC CTG CAC CAG GAC TGG CTG AAC GGC AAG GAG TAC AAG TGC GAG TGG CAG GAC GTG GTC CTG ACC GAC TTG CCG TTC CTC ATG TTC ACG Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys> 1540 1550 1560 1570 AMG GTC TCC AMC AMA GGC CTC CCG TCC TCC ATC GAG AMA ACC ATC TCC TTC CAG AGG TTG TTT CCG GAG GGC AGG AGG TAG CTC TTT TGG TAG AGG Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile Ser) 1590 1600 1610 AAA GCC AAA GG TGG GAC CCA CGG GGT GCG AGG GCC ACA TGG ACA GAG GTC TIT CGG TIT CC ACC CTG GGT GCC CCA CGC TCC CGG TGT ACC TGT CTC CAG Lys Ala Lys> 1670 1640 1650 1660 AGC TCG GCC CAC CCT CTG CCC TGG GAG TGA CCG CTG TGC CAA CCT CTG TOG AGO COG GTG GGA GAO GGG ACO CTC ACT GGC GAO ACG GTT GGA GAO 1690 1700 1710 1720 TCC CTA CA GGG CAG CCC CGA GAG CCA CAG GTG TAC ACC CTG CCC CCA TCC AGG GAT GT CCC GTC GGG GCT CTC GGT GTC CAC ATG TGG GAC GGG GGT AGG Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser> 1740 1750 1760 1770 CAG GAG ATG ACC AAG AAC CAG GTC AGC CTG ACC TGC CTG GTC AAA STC CTC CTC TAC TGG TTC TTG GTC CAG TGG GAC TGG ACG GAC CAG TTT Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys> 1800 1790 1810 1820 GGC TTC TAC CCC AGC GAC ATC GCC GTG GAG TGG GAG AGC AAT GGG CAG CCG AAG ATG GGG TCG CTG TAG CGG CAC CTC ACC CTC TCG TTA CCC GTC Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln> 1830 1840 1850 1860 CCG GAG AAC AAC TAC AAG ACC ACG CCT CCC GTG CTG GAC TCC GAC GGC GGC CTC TTG TTG ATG TTC TGG TGC GGA GGG CAC GAC CTG AGG CTG CCG Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly> 1880 1890 1900 1910 TCC TTC TTC CTC TAC AGC AGG CTA ACC GTG GAC AAG AGC AGG TGG CAG AGG AAG AAG GAG ATC TCC TCC GAT TGG CAC CTG TTC TCG TCC ACC GTC Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Amp Lym Ser Arg Trp Gln>

### FIG. 4 C

920 930 950 GGC AGC CAC AGG CTG GAT GCC CCT ACC CCA GGC CCT GCG CAT ACA GGG CCG TCG GTG TCC GAC CTA CGG GGA TCG GGT CCG GGA CGC GTA TGT CCC 970 980 990 1000 GCA GGT GCT GCG CTC AGA CCT GCC AAG AGC CAT ATC CGG GAG GAC CCT CGT CCA CGA CGC GAG TCT GGA CGG TTC TCG GTA TAG GCC CTC CTG GGA 1010 1020 1030 1040 GCC CCT GAC CTA AGC CCA CCC CAA AGG CCA AAC TCT CCA CTC CCT CAG CGG GGA CTG GAT TCG GGT GGG GTT TCC GGT TTG AGA GGT GAG GGA GTC 1080 1070 1090 CTC AGA CAC CIT CTC TCC TCC CAG ATT CGA GTA ACT CCC AAT CIT CTC GAG TOT GTG GAA GAG AGG AGG GTC TAA GCT CAT TOA GGG TTA GAA GAG 1110 1130 1140 TOT GOA GAG TOO AAA TAT GGT COO COA TGC COA TGA TGC COA GGT AAG AGA CGT CTC AGG TTT ATA CCA GGG GGT ACG GGT AGT ACG GGT CCA TTC Glu Ser Lys Tyr Gly Pro Pro Cys Pro Ser Cys Pro> 1170 1180 CCA ACC CAG GCC TCG CCC TCC AGC TCA AGG CGG GAC AGG TGC CCT AGA GGT TGG GTC CGG AGC GGG AGG TCG AGT TCC GCC CTG TCC ACG GGA TCT 1210 1220 1230 GTA GCC TGC ATC CAG GGA CAG GCC CCA GCC GGG TGC TGA CGC ATC CAC CAT CGG ACG TAG GTC CCT GTC CGG GGT CGG CCC ACG ACT GCG TAG GTG 1250 1260 1270 1280 1290 CTC CAT CTC TTC CTC AGC A CCT GAG TTC CTG GGG GGA CCA TCA GTC TTC GAG GTA GAG AAG GAG TOG T GGA CTC AAG GAC CCC CCT GGT AGT CAG AAG Pro Glu Phe Leu Gly Gly Pro Ser Val Phe) 1300 1320 1330 CTG TTC CCC CCA AAA CCC AAG GAC ACT CTC ATG ATC TCC CCG ACC CCT CAC AME GGG GGT TTT GGG TTC CTG TGA GAG TAC TAG AGG GCC TGG GGA Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro> 1350 1360 1370 1380 CAG GTC ACC TGC GTG GTG GAC GTG AGC CAG GAA GAC CCC GAG GTC CTC CAG TCC ACC CAC CAC CTC CAC TCG GTC CTT CTG GGG CTC CAG Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu Val> 1400 1410 1420 1440 CAG TTC AAC TGG TAC GTG GAT GGC GTG GAG GTG CAT AAT GCC AAG ACA GTC ANG TTG ACC ATG CAC CTA CCG CAC CTC CAC GTA TTA CGG TTC TGT Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr>

# FIG. 4 B

`h		440			450			-	60			470			480
AAG	GGC	CCA	TCC	GTC	TTC	CCC	CTG	GCG	CCC	TGC	TCC	AGG	AGC	ACC	TCC
440		22.1			AAG	فانانا	GAC	CCC	ccc	ACC	100		TV-CV-	m~~	3.00
Dys	GLY	PIO	SEI	vai	Pne	Pro	Геп	Ala	Pro	СУВ	Ser	yrg	Ser	Thr	Ser>
		49	0		5	00			510			52	D		
GAG	AGC	ACA	GCC	GCC	CTG	GGC	TGC	CIG	GTC	AAG	GAC	TAC	TTC	ccc	GAA
CTC	TCG	TGT	CGG	CGG	GAC	CCG	ACG	GAC	CAG	TTC	CIG	ATG	λλG	CCC	CIT
Glu	Ser	Thr	λla	Ala	Leu	Cly	СЛВ	Lou	Val	Lys	YBD	Tyr	Phe	Pro	Glu>
530			540			55	•		_	60			570 •		
CCG	GTG	ACG	CTG	TCG	TCC	AAC	TCA	GGC	GCC	CIG	YCC	AGC	GGC	CIC	CAC
GGC	CAC	TGC	CAC	AGC	ACC	TIG	AGT	CCG	CCC	GAC	TGG	TCG	COG	CAC	GIG
PIO	AGI	1111	Val	SEI	ענדנ	VBII	Ser	CTA	VIG	Den		361	O1,	Val	HIB)
58	0		5	90			600			61	0		6	20	
ACC	TTC	CCG	CCT	GTC	CTA	CAG	TCC	TCA	CGA	CTC	TAC	TCC	CTC	λGC	λGC
TGG	λλG	GGC	CCA	CAG	GAT	GTC	ACG	AGT	CCI	CAC	λTG	YCC	CAC	TCG	TCG
Thr	Phe	Pro	λla	Val	Lou	Gln	Ser	Ser	Gly	Leu	TYI	Ser	Lou	Ser	Ser>
	630			6	40		•	65 D			660			61	70 •
					TCC										
					λCC										
Val	ATT	THE	ANT	PFO	Ser	SEL	Ser	Pen	GIY	1111	LYB	IIII	TYT	1111	CAB>
		680			690			7	00		•	710			720
					ccc										
TIG	CAT	CIN	CIC	TTC	GGG	TCG	TTC	TCC	TIC	CAC	CIC	TTC	TCT	CYY	CCY
YBD	VAI	ABT	HIB	LYB	Pro	Ser	ASD	131	ГАВ	VAL	VRD	LYB	VIA	vai	,
			30	•		740			750 •				60 •		
CYC	YCC	CC)	CCA	CAG	GGC	AGG	GAG	CCT	CIC	TGC	TCC	λλG	CCX	CCC	TCA
cre	TCC	: GG1	CGI	GIC	: CCG	TCC	CIC	: (4)	CAL	, ALL	ALL	TIC			AGT
770			780			7	90			800			810	) •	
GCC	CTC	: CTC	: ככד	. cc	ccc	ACC	: ccc	GCT	GTO	CAC	: eec	: CAC	ccc	: AGG	GCA
ccc	CAC	CAC	CCX	CCT	ccc	TCC	GGC	. ca	CAC	: CIC	: ccc	CIC	: cc	TCC	CCT
8	20			830			840	)		ε	350			860	
	•			•.							*	- ~~~	• ~~ •		
CCI	TC	GT	A CCC	: cc	r yes	CAC	) ACC	) AC	r GCC	. cc:	r ca	CAC	) AC	r cc:	ccc ccc
	87	0		1	880			890			90	D		!	910
CYC		- 1 TY:	ר דרי	. cc	G AGI	. cc	- TY-	יאר ה ב	T CC	A TYP	L JJ.	- C CM	ב כא	G GC	r ccc
CIC	AG	r ac	פ אכי	CC	c TC	CC	ב אמ	y ye	A CC	Γλλ	λλλ	c cn	3 62	c ca	A GGC

## FIG. 4 A

The pEe6TF8HCDR20 expression vector DNA sequence. The coding regions of the TF8-5G9 CDR-grafted HC gene, TF8HCDR20, are translated.

➤ Sequence Range: 1 to 7073

		1	LD			20			30			4	10		
GAA CTT	TTC	CCC	GCC	ACC TGG	ATG TAC	GAA	TGG	AGC	TGG	CTC	TTT	CTC	TTC	TTC	TTG
					Met	Glu	Trp	Ser	TIP	Val	Phe	Leu	Phe	Phe	Leu>
50 *			60 *			7	70			80			90		
TCA	GTA	ACT	ACA	CCT	GTA	CAC	TCA	CAA	GTT	CXC	CIG	CIC	GAG	TCT	GGA
λGT	CAT	TCA	TGT	CCA	CAT	CIG	AGT	GIT	CAA	CTC	CAC	CAC	$\sim$	301	CCT Gly>
JEI	741			GIY	٧	nib	Ser	GIII	ANT	GIH	Leu	VAI	Glu	Ser	Gly>
10	00		. :	110			120			13	90		1	40	
GGA	GCA	GTA	GTA	CAA	CCI	GGA	AGG	TCA	CTG	λGλ	CTG	TCT	TGT	λλG	CCT
CCT	CCI	CAT	CAT	GTT	GGA	CCI	TCC	AGT	GAC	TCT	GAC	<b>XGX</b>	ACA	Jake	CCA
GTA	GIY	VAI	Val	GIN	PIO	CIA	VLA	Ser	Leu	YLA	Leu	Ser	СУВ	Lys	YJS>
	150			16	50		1	170			180			19	90
AGT	GGA	TIC	λλτ	ATC	λλG	GXC	TAT	TAT	ATG	cyc	TCG	CIC	λGλ	CAA	CCT
TCA	CCI	λλC	TTA	TAG	TTC	CIC	λTλ	λΤλ	TAC	CIG	ACC	CXG	TCT	ملحك	CCA
SEI	GIY	FUE	VRII	176	гÀв	ABD	TYT	TYT	Met	His	TIP	Val	yra	Gln	Ala>
		200			210			22	•			230			240
CCI	CCY	λλλ	CCY	crc	CYC	TCC	ATA	GGT	TTA	ATT	CAT	CCT	GAG	AAT	CCT
Pro	Gly	Lys	Gly	GAG Leu	Glu	TID	Ile	Glv	Leu	TAA	Agn	GGA	CIC	TTA	CCY
	_							,			,		<b>01</b> 0	VP!I	GIY
		2:	50			260			270			21	90		
λλC	YCC	λTλ	TAT	CAT	ccc	λAG	TTC	CAA	GGA	λςλ	TTC	λCλ	ATT	TCT	GCA
TTG	TGC	TAT	ATA	CTA	CCC	TTC	λAG	CII	CCI	TCT	AAG	TCT	TAX	λGλ	CCT
VPII	1111	116	IYI	VBD	PIO	ГАВ	Pne	GIn	GIA	yrg	Phe	Thr	Ile	Ser	Ala>
290			300				.0			320			330		
CYC	λλ¢	TCT	YYC	AAT	λCλ	CIC	TTC	CTC	CXC	λTG	GXC	TCA	CTC	λGλ	CCT
CIG	TIC	YCY	TTC	TTA	ICI	CXC	λλG	GAC	GTC	TAC	CTG	AGT	GAG	TYTE	CCA
ABD	VBII	261	Lym	ABD	THE	Leu	Phe	ren	Gin	Met	yeb	Ser	Leu	yrg	Pro>
34	10		:	350			360			31	70		:	380	
CAG	CAT	<b>XCX</b>	<b>GCX</b>	CIC	TAC	TAT	TCT	CCT	AGA	GAT	λλС	ACT	TAT	TAC	TTC
crc	CIA	TCT	CCI	CYC	λTG	λTλ	<b>ACA</b>	CCA	TCT	CTA	TTG	TCA	ATA	ATC	AAG
CIN	VBD	TOF	VIS	Val	TYT	Tyr	Сув	λla	yrg	YED	yen	Ser	Tyr	Tyr	Phe>
	390			40	00		4	410			420			4:	30
CAC	* The	₩.c	CCC	C2.3	•	101	~~	*	. ~~		•				•
CIC	ATG	ACC	222	CAA	CCI	TCT	GGT	CAR	TGG	CXC	AGC	TCA	CCI	TCC	ACC
Хвр	Tyr	TIP	Gly	Gln	Cly	Thr	Pro	Val	Thr	Val	Ser	Ser	λla	Ser	Thr>



RECTIFIED SHEET (RULE 91)
ISA/EP

## FIG. 2 C

820 830 840 850 ACC TCC TCC CCA CCT CCT TCT CCT CCT CCC TTT CCT TCG CTT TTA TOG AGG AGG GGT GGA GGA AGA GGA GGA GGG AAA GGA ACC GAA AAT 870 880 890 900 910 TCA TGC TAX TAT TTG CAG AAA ATA TTC AAT AAA GTG AGT CTT TGC ACT AGT ACG ATT ATA AAC GTC TTT TAT AAG TTA TTT CAC TCA GAA ACG TGA 920 930 TGA AAA AAA AAA AAA AAA A ACT TIT TIT TIT TIT TIT TIT T

## FIG. 2B

340	GAG AGC CCG T			50		3	60			370			38	30	
CCT	GAG	AGC	CCG	TAC	ACG	TTC	GGA	GGG	GGG	ACC	λAG	CTG	GAA	* 3 T 3	330
CCA	Crc	TCG	GGC	ATG	TGC	AAG	CCI	CCC	CCC	TCG	JALC	CAC	ملحلم	TRE	- T
Gly	Glu	Ser	Pro	TYI	Thr	Phe	Gly	Gly	Gly	Thr	Lув	Leu	Glu	Ile	Asn>
3	90			400			41	.D		4	20			430	
AGG	GCT	GAT	CCT	GCA	CCA	λCT	GTA	TCC	ATC	TTC	CCA	CCA	TCC	ACT	GAG
TCC	CCA	CTA	CGA	CGT	CCT	TGA	CAT	AGG	TAG	λλG	CCT	مت	100	7773	CTDC
Arg	Ala	Увр	λla	Ala	Pro	Thr	Val	Ser	Ile	Phe	Pro	Pro	Ser	Ser	Glu>
	44	0		4	50			460			47	0		4	80
CAG	TTA	ACA	ىلىكل	GGA	CCL	ccc	TYC X	~~~	~~~	~~~		•			•
GTC	AAT	TGT	AGA	CCI	CCY	CCC	AGT	CXG	CAC	ACC	110	TIG	AYC .	XXC	TTC
Gln	Leu	Thr	Ser	Gly	Gly	λla	Ser	Val	Val	Сув	Phe	Leu	yen	Agn	Phe>
		490			50				510			520			1207
TAC	ccc	λλλ	CYC	ATC	<b>AAT</b>	CTC	λλG	TCC	λλG	λTT	CAT	GGC	λGT	Gλλ	CGA
λTG	CCC	TIT	CIG	TAG	TTX	CAG	TTC	<b>ACC</b>	TTC	TAX	CTA	222	TCA	CIT	تحات
TYT	Pro	LyB	Хвр	Ile	YBD	Val	Lys	TIP	Lys	Ile	увр	Cly	Ser	Glu	Arg>
530		!	540			550			5	50		:	570		
CAY	AAT	CCC	CTC	CIG	λλC	ACT	TGG	ACT	CAT	CXG	GAC	AGC	λλλ	GAC	AGC
CLL	TTA	ccc	CAG	GXC	TIG	TCA	<b>ACC</b>	TCA	CTA	CIC	CTG	TCG	Lalah	27	TY
CIR	AND	GIY	VAI	Leu	ABD	Ser	TXP	Thr	увр	Gln	увр	Ser	Lys	увь	Ser>
580				90			000			610				20	
YCC	TAC	AGC	ATC	AGC	YCC	ACC	CTC	ACG	TIC	ACC	λλG	GAC	GAG	TAT	Gλλ
TCG	ATC	TCC	TAC	TCG	TCC	TCC	CAC	·TCC	YYC	TCC	TIC	CIC	CIC	λTλ	CIT
1111	TAT	201	net	261	361	Inr	Leu	THE	Leu	THE	Lys	ABD	Glu	Tyr	Glu>
	630			640				50			660	•		670	•
CCY CCY	CAT	λλC	AGC	TAT	YCC	TCT	CYC	ccc	ACT	CYC	λλG	ACA	TCA	ACT	TCA
ATT	Hig	App	Ser	λΤλ	The	ACA	Glu	Ala	TOX	CIC	TTC	TCT	ACT	TCA	AGT Ser>
				-,-		<b>-</b> , <b>-</b>	914	<i>_</i>	****	1172	БУВ	1111	Ser	IH	Serv
		B0			690 •			700				10			720
222	ATT	CIC	AAG	AGC	TTC	λλC	λCC	AAT	cxc	TCT	Tλ	CAC	YCŽ .	AAG	cic cic
Pro	Ile	Val	Lys	Ser	Phe	Am	yra	TTA App	Glu	усу Сув	AT >	CIC	TCT '	TTC	CAG GAC
	7	30			740			750			7	60			770
λGλ	œc	CXC	CXC	CAG	CTC	ccc	λGC	TCC	ATC	СТА	TCT	TCC	CIT	CTA	λGG
TCT	ccc	CIC	CIC	CTC	CXC	CCC	TCC	AGG	TAG	CAT	YCY	ACC	CAA	GAT	TCC
		780			7	90			800	•		810			
TCT	TGG	λGG	CIT	. ccc	CAC	XXC	CCA	CCT	, YCC	እርጥ	ىلىن	· cm	C.IV.	(T)	CAA
YCY	ACC	TCC	CN	CCC	CIC	TIC	CCI	CCY	TGG	TCA	CXX	. œc	CAC	CAC	CIT

WO 96/40921 PCT/US96/09287

5/41

Sequence of the murine TF8-5G9 light chain cDNA with protein translation. The essential regions of the cDNA are as follows:

	<u>Nucleotides</u>	<u>Region</u>
<u>,</u>	1-4	5' untranslated.
FIG. 2 A	5-64	Start codon and leader sequence.
	65-385	Variable region.
	386-706	Murine kappa constant region.
	707-917	3' untranslated region.
	918-937	Poly A tail.

Sequence Range: 1 to 937

			1	.0			20			30			4	0		
CCI	. C	TA	C GC	:C 00	ic cc	IA CG	A GI	C AA	A AM	N CC	C TA	עע פו	CAA	C C	G AC	G TTT C AAA p Phe>
50				60			70			8	0			90		
•				•			•				•			•		
										YCC						
										TCC						
Pro	<b>O</b>	ly	Ile	YIĞ	CAB	YED	Ile	Lys	Mot	Thr	Gln	Ser	Pro	Ser	Ser	Met>
100	)			11	.0		1	20			130			14	10	
mar.			~~~	~~~	-	63.6		~~~	. ~	ATC	.~			~~~	.~	<b>~~</b>
										TAG						
																Gln>
	•			200	01,	014	7.20	•		110	• • • • • • • • • • • • • • • • • • • •		<i>Dy</i> <b></b>		361	GIM/
	15	0			160			17	70		1	180			190	
GX	. ,	TT	λGλ	λλG	ТАТ	TTA	AAC	TCC	TAC	CXC	CXG	222	CCA	TCC	***	יובאנ
										CIC						
																Ser>
		20	00		:	210		Ÿ	220			2	30		;	240
			•			•			•							•
										YCC						
										TCC						
PI	5 ,	СУВ	THE	Leu	116	171	TYT	Ala	THE	Ser	Seu	YIZ	ABP	GIY	Val	Pro>
			250			2	60			270			280			
~~	. ,		****	. ~		. ~~	-		~~~	~	~\~	m>	~~	~.·		
										CYY						
										CIT						TAG
20		AT U	Phe	261	CTA	SEI	CIY	Ser	GIY	GIH	AND	тут	Ser	rea	inr	116)
290			;	300			310			3:	20			330		
30	_		(~TY-	CAC	بتمكك	CLC	Cam	101	CCI	ACT	ىلى لايل _	The	ىنىك	ر بلک -	CNA	Car
										JCY						
																His>

## FIG. 1 D

1300	1310					1	320			1330			13	40	
•				•			•			•				•	
TCC	GAG	CCY	GGA	λλτ	λCT	TTC	λCC	TGC	TCT	CIC	TTA	CAT	GAG	GGC	CTG
λCC	CLC	CCI	CCI	TTA	TGA	λAG	TCO	λCG	λGλ	CAC	λλΤ	GTA	CTC	רככ	GAC
TIP	Glu	λla	Gly	ABD	Thr	Phe	Thr	CVB	Ser	Val	Leu	Hin	Glu	Gly	Leu)
			_					_						,	2047
	0														
1.	350		-	1360			131	70		1:	380			1390	
	•							•			•				
CAC	AAC CAC CAT ACT GA					λAG	AGC	CTC	TCC	CAC	لتكل	رحب	CCT		<b>m</b>
CIG	TIG	GTG	CTA	TGA	CTC	TTC	TCG	GAG	ACC	CTC	363	CCA	001	~~~	16 ATC
His	λen	His	Hie	Thr	Glu	tara	807	Len	Car	Нів	Com	Stan	CCA	TIT	AC TAG
					010	Dy B	261	Deu	261	HIB	Ser	PTO	GIY	LYB:	>
14	00		3	410			142	20		3.4	30				
	•		_								.30		2	L440	
CCX	~~	m-c	m	~~~	000						. •			•	
000	010	100	110	GAG		TCI	GGT	CCT	ACA	GGA	CIC	TGA	CYC.	CTA	CCT
GGT	CAC	AGG	AAC	CTC	CCC	YCY	CCA	CCA	TCT	CCT	CYC	ACT	CTC	GAT	GGA
	1450 1460						2	1470			148	30			
		•			•			•				•			
CCA	CCC	CTC	CCT	GTA	TAA	λΤλ	λλG	CAC	CCA	GCA	CTC	CCT	ناتك	100	~
GGT	GGG	GAG	GGA	CAT	λTT	TAT	TTC	GTG	GGT	CCI	GAC	CCA	3.00	TCC	_

## FIG. 1 C

	820	930					840			850			860 •			
r	CCX	AAG TTC	CXG	TCC	λCλ	CXX	CYC	CAT	CIG	TAG	TCG	TIC	CTA	CTA	CCC	CTC
	PIO	гув	ANT	THE	Сув	VAL	ANT	VAL	VED	110	BOI	Lys	ASD	YBD	PTO	Glu>
	*			880	•			900				910				
	CIC	CAG	TTC	λGC	TGG	TTT	GTA	GAT	CAT	GIG	GAG	GIG	CXC	λCλ	CCT	CAG
	CAG		الممر	1110	ALL		CAT	CTA	CTA	CAC	مكلم	$C \setminus C$	~~~	m~m	~~	GTC Gln>
	920			930 940					950				960			
	λCG	СУУ	CCC	CGG	GAG	GAG	CAG	مكلمك	330	100	3 (~7)	7777A	*	<b></b>		•
	700	G T T			CIL	CTC	GIC	AAG	عكلمة	ביאד	W. 3	110	000	100		
	Thr	Gln	Pro	yrg	Glu	Glu	Gln	Phe	Asn	Ser	Thr	Phe	yia	Ser	Val	TCA Ser>
		970 *					•				990 1000					
	CXX	CIT	CCC	ATC	λTG	CYC	CYC	CAC	TCC	crc	λλΤ	GGC	λλG	GAG	TTC	λλλ
	~	~~		100	TAC	CIL	CIT	CALC:			4	$\sim$	- A	~~~		
10	Glu Leu Pro Ile Met 1010 1020					1030			1040			1050				
	TGC	AGG	GTC	AAC	AGT	GCA	CCT	TTC	CCT	CCC	~~	) TOO	C1C	•	100	
	ALG	100	سک	1.10	TUL	CCT	CCY	AAG	CCX	CCC	CCC	TO	~~~	TIVE TO	<b>m</b> 00	
	СУВ	yrg	Val	ARD	Ser	λla	УŢЯ	Phe	Pro	YJE	Pro	Ile	Glu	Lys	Thr	Ile>
	1060 1070			1080			1090			1100						
	•			-	•			•			_					
	TCC	<b>XXX</b>	YCC	λλλ	GGC	λGλ	ccc	AAG	GCT	~~	*	crc	TAC		•	CCY
	TCC AGG	AAA TTT Lys		AAA TTT	GGC	1-1	CCC	AAG TTC	LILA	CCA	CYC	~~~	`~~	<b>ACC</b>	ATT	
	TCC AGG Ser	Lys		AAA TIT Lye	egy ccc ccc	1-1	CCC	AAG TTC Lys	YIE	CCA	CAG GID	Val	`~~	ACC TGG Thr	λTT Tλλ Ile	CCA GGT Pro>
	TCC AGG Ser	Lys	Thr	AAA TIT Lys	GGC CCG Gly	YIG	CCG GGC Pro	AAG TTC Lys	Ala 30	CCA GGT Pro	CAG GIC Gln	VAI VAI	Tyr	ACC TGG Thr	ATT TAA Ile	GGT Pro>
	TCC AGG Ser 1:	Lys	Thr	AAA TTT Lye	GCC CCG Gly	yra yra	CCG GGC PID	AAG TTC Lys	Ala 30	CCA GGT Pro	CAG GTC Gln	VAI	Tyr	ACC TGG Thr	ATT TAA Ile	GGT Pro>
	TCC AGG Ser 1: CCT GGA	Lys	Thr AAG TTC	AAA TTT Lys	GGC CCG Gly L120 CAG	ATG TAC	CCG GGC Pro	AAG TTC Lys 11:	Ala 30 GAT	CCA GGT PTO	CAG GTC Gln 11	Val Val AGT	ATG Tyr	ACC TOG Thr	ATT TAA Ile 1150	ATC
	TCC AGG Ser 1: CCT GGA	Lys	AAG TTC Lys	AAA TTT Lys	GGC CCG Gly L120 CAG GTC Gln	ATG TAC	CCG GGC Pro	AAG TTC Lys 111 AAG TTC Lys	Ala 30 GAT	CCA GGT PTO	CAG GTC Gln 11	Val Val AGT	Tyr CTG GAC Leu	ACC TOG Thr	ATT TAA Ile 1150 TGC ACG Cys	GGT Pro>
	TCC AGG Ser 1: CCT GGA Pro	Lys CCC GGG Pro	AAG TTC Lys	AAA TTT Lys GAG CTC Glu	GGC CCG Gly L120 CAG GTC Gln	ATG TAC Het	CCG GGC PIO GCC CCG Ala	AAG TTC Lys 111 AAG TTC Lys	GAT CTA Amp	CCA GGT PTO AAA TTT Lys	CAG GTC Gln 11 GTC CAG Val	CAC Val 40 ACT TCA Ser	Tyr  CTG GAC Leu	ACC TGG Thr ACC TGG Thr	ATT TAA Ile LISO TGC ACG Cys	ATG TAC Met>
	TCC AGG Ser  1: CCT GGA PTO  ATA TAT	Lys 110 CCC GGG Pro 110	AAG TTC Lys	AAA TTT Lys GAG CTC Glu	GGC CCG Gly L120 CAG GTC GIn 11	ATG TAC Het	CCG GGC PTO GCC CGG Ala	AAG TTC Lys 11: AAG TTC Lys	GAT CTA Amp	CCA CGT PID AAA TTT Lyn	CAG GTC GIn 11 GTC CAG Val	CAC Val L40 AGT TCA Ser 115	Tyr  CTG GAC Len  TCG	ACC TOG Thr ACC TOG Thr	ATT TAA IIe II50 TGC ACG Cys	ATG TAC Met>
	TCC AGG Ser  1: CCT GGA PTO  ATA TAT	Lys 110 CCC GGG Pro 110	AAG TTC Lys	AAA TTT Lys GAG CTC Glu	GGC CCG Gly L120 CAG GTC GIn 11	ATG TAC Het	CCG GGC PTO GCC CGG Ala	AAG TTC Lys 11: AAG TTC Lys	GAT CTA Amp	CCA CGT PID AAA TTT Lyn	CAG GTC GIn 11 GTC CAG Val	CAC Val L40 AGT TCA Ser 115	Tyr  CTG GAC Len  TCG	ACC TOG Thr ACC TOG Thr	ATT TAA IIe II50 TGC ACG Cys	ATG TAC Met>
	TCC AGG Ser 1: CCT GGA PTO ATA TAT Ile	Lys 110 CCC GGG Pro 110 ACA TGT Thr	AAG TTC Lys GAC CTG Asp	CAG CTC Glu TTC AAG Phe	GGC CCG Gly L120 CAG GTC GIn TTC AAG Phe	ATG TAC Het 170 CCT GGA PTO	CCC GGC Pro GCC CCG Ala CTT Glu	AAG TTC Lys 11: AAG TTC Lys CAC CTG Asp	GAT CTA AMP 1180 ATT TAA Ile	CCA CGT PID AAA TTT Lym ACT TGA Thr	CAG GTC GID 11 GTC CAG Val	CAC Val 40 AGT TCA Ser 115 CAC CTC Glu	Tyr  CTG GAC Lett TCG ACC Trp	ACC TCG Thr ACC TCG Thr	ATT TAA IIe II50 ACG ACG Cys II	ATG TAC Met> 200 AAT TTA ABD>
	TCC AGG Ser 1: CCT GGA PTO ATA TAT Ile	Lys 110 CCC GGG Pro 110 ACA TGT Thr	AAG TTC Lys 60 GAC CTG Asp	AAA TTT Lys GAG CTC Glu TTC AAG Phe	GGC CCG Gly L120 CAG GTC GIn 11 TTC AAG Phe	ATG TAC Het L70 CCT GGA PTO	CCG GGC PID GCC CCG Ala CTT Glu	AAG TTC Lys 11: AAG TTC Lys CAC CTG ASP	GAT CTA ABP 1180 ATT TAA Ile	CCA CGT PID AAA TTT Lys ACT TCA Thr	CAG GTC GID 11 GTC CAG Val	CAC Val 40 AGT TCA Ser 115 CAC CTC Glu	Tyr  CTG GAC Leu  TCG ACC TTP	ACC TCG Thr ACC TCG Thr	ATT TAA IIe II50 ACG ACG Cys II	ATG TAC Met> 200 AAT TTA ASD>
	TCC AGG Ser 1: CCT GGA PTO ATA TAT Ile GGG CCC	Lys 110 CCC GGG Pro 111 ACA TGT Thr	AAG TTC Lys 60 CAC CTG Asp 210 CCA GGT	AAA TTT Lys GAG CTC Glu TTC AAG Phe	GGC CCG G1y L120 CAG GTC G1n L1 TTC AAG Phe	ATG TAC Het L70 CCT GGA PTO 122	CCG GGC PTO GCC CCG Ala CTT Glu	AAG TTC Lys 11: AAG TTC Lys CAC CTG ASD	GAT CTA AMP LIBO ATT TAA Ile	CCA CGT PID AAA TTT Lys ACT TCA Thr	CAG GTC GID CTC CAG CAG Val	CAC Val	Tyr  CTG GAC Leu  TCG ACC TTP  240 ATC	ACC TCG Thr ACC TCG Thr CAG GTC Gln	ATT TAA IIe II50 ACG ACG Cys II	ATG TAC Met> 200 AAT TTA ASD ACA
	TCC AGG Ser 1: CCT GGA PTO ATA TAT Ile GGG CCC Gly	Lys 110 CCC GGG Pro 111 ACA TGT Thr	AAG TTC Lys 60 CAC CTG Asp 210 CCA GGT	AAA TTT Lys GAG CTC Glu TTC AAG Phe	GGC CCG G1y L120 CAG GTC G1n L1 TTC AAG Phe	ATG TAC Het L70 CCT GGA PTO 122	CCG GGC PTO GCC CCG Ala CTT Glu	AAG TTC Lys 11: AAG TTC Lys CAC CTG ASD	GAT CTA AMP LIBO ATT TAA Ile	CCA CGT PID AAA TTT Lys ACT TCA Thr	CAG GTC GID CTC CAG CAG Val	CAC Val	Tyr  CTG GAC Leu  TCG ACC TTP  240 ATC	ACC TCG Thr ACC TCG Thr CAG GTC Gln	ATT TAA IIe II50 ACG ACG Cys II	ATG TAC Met> 200 AAT TTA ASD>
12:	TCC AGG Ser 1: CCT GGA Pro	Lys 110 CCC GGG Pro 110 ACA TGT Thr CAG GTC Gln	AAG TTC Lys  GAC CTG Asp  CCA CGT Pro	AAA TTT Lys GAG CTC Glu TTC AAG Phe	GGC CCG Gly L120 CAG GTC Gln 11 TTC AAG Phe	ATG TAC Het  170 CCT CGA PID  122 AAC TTG ABD	GCC GCC Ala GAA CTT Glu TAC ATG TYT	AAG TTC Lys 11: AAG TTC Lys CAC CTC Asp	GAT CTA AMP 1180 ATT TAA Ile 12 AAC TIG AMR	CCA CGT PID AAA TIT Lys ACT TGA Thr 121	CAG GTC CAG Val  CAG GTC CAC Val  CAG GTC GIn	CAC Val	CTG GAC Leu  O TCG ACC TTP  L240 ATC TAG Ile	ACC TGG Thr  ACC TGG Thr  CAG GTC Gln  ATG TAC Met	ATT TAA IIe II50 Cys Cys Cys ACC Trp	ATC TAC Met> 200 AAT TTA ASEN ACA TCT Thr>
	TCC AGG Ser 1: CCT GGA Pro	Lys 110 CCC GGG PTO 110 ACA TGT Thr CAG GTC Gln	AAG TTC Lys 50 GAC CTG Asp CCA CGT Pro	GAG CTC Glu TTC AAG Phe	GGC CCG Gly L120 CAG GTC Gln TTC AAG Phe	ATG TAC Het  170 CCT GGA PID  122 AAC TTG ABB	GCC CCG Ala CTT Glu TAC ATG TYT	AAG TTC Lys 11: AAG TTC Lys AAG TTC Lys	GAT CTA Asp 1180 ATT TAA Ile 12 AAC TTG ASD	CCA CGT PID ALL TIT Lys ACT TGA Thr 128	CAG GTC GIR  GTC CAG Val  CAC Val  CAG GTC GIR	CAC Val	CTG GAC Leu Po CCG ACC Trp ATC TAG Ile	ACC TGG Thr  ACC TGG Thr  CAG GTC Gln  ATG TAC Met	ATT TAA IIe IISO CYB II TGG ACC TIP GAC CTG ASP	ATC TAC Met> 200 AAT TTA ASD> ACA TGT Thr>
	TCC AGG Ser 1: CCT GGA PTO ATA TAT Ile GGG CCC Gly GAT CTA	Lys 110 CCC GGG PTO 110 ACA TGT Thr CAG GTC GIn GGC	AAG TTC Lys GAC CTG Asp 210 CCA GGT PTO 12	GAG CTC Glu  TTC AAG Phe  CCC Ala  60  TAC ATG	GGC CCG Gly L120 CAG GTC Gln TTC AAG Phe CAG CTC Glu	ATG TAC Het  T70 CCT GGA PTD  122 AAC TTG ABB	GCC GGC Ala  GAA CTT Glu  TAC ATG TYT  TAC ATG	AAG TTC Lys 11: AAG TTC Lys AAG TTC Lys	GAT CTA AMP LIMBO ATT TAA LITE AAC TTG AMB	CCA CGT PID ALT TUT Lyn ACT TGA Thr 128 CTC	CAG GTC GIR  CTC CAG Val  CAG GTC GIR  CAG GTC GIR  AAT	CAC Val  AGT TCA Ser 115 GAC CTC Glu CCC CCC PTO	TYF  CTG GAC Lett  O  TGG ACC TTP  ATC TAG Ile  CAG	ACC TCG Thr  ACC TCG TTG TTG TAC GTC GIR	ATT TAA IIe II50 ACG CYB II TGG ACC TIP GAC CTG ABP	ATC TAC Met> 200 AAT TTA ASD> ACA TGT Thr>

# RECTIFIED SHEET (RULE 91)

**ISA/EP** 

# FIG. 1 B

340	350	360	370	380			
TIEN COOL C	AG ATA ATG ACA	עובר עלא. עלא.	יאדע אברי אברי	TAC TIT GAC TAC ATG AAA CTG ATG Tyr Phe Asp Tyr>			
390	400	410	420	430			
מני ניני ני	IT LLG TGG TGA	GAG TGT CAG	AGG AGT CCC	AAA ACG ACA CCC TIT TGC TGT GGG Lys Thr Thr Pro>			
440	450 •	. 460	47	*			
GGT WOW C	ME ATA GGT GAC	CGG GGA CCT	AGA OGA OGG	CAA ACT AAC TCC GIT TGA TIG AGG Gln Thr Abn Ser>			
49	90 50	)0. 5 •	10	520			
TAC CAC TO	GG GAC CCT ACG	GAC CAG TTC	CCG ATA AAG	CCT CAG CCA GTG GGA CTC GGT CAC Pro Glu Pro Val>			
530	540	550	560	570 •			
TGT CAC TO	GG ACC TTG AGA	CCT AGG GAC	AGG TCG CCA	CTG CAC ACC TTC CAC CTG TGG AAG Val His Thr Phe>			
580	590	60D	610	620			
CCT CCA C	NG GAC GTC AGA	CTG GAG ATG	TGA GAC TCG	ASC TCA GTG ACT TCG AGT CAC TGA Ser Ser Val Thr>			
630	640	650 •	660	670			
CYC CCC Y	GG TCG TGG ACC	GGG TCG CTC	TGG CAG TGG	TGC AAC GTT GCC ACG TTG CAA CGG Cym Amn Val Ala>			
680	690	700	7:	720			
crc ccc c	DOT DOT DOT DO	TTC CAC CTG	TTC. TTT TAA	CAC GGG TCC CTA Val Pro Arg Asp>			
7	730 7	40	750	760			
אכא ככא א	CA TTC GGA ACC	TAT ACA TGT	CAG GGT CTT	GTA TCA TCT GTC CAT AGT AGA CAG Val Ser Ser Val>			
770	780	790	800	810			
ANG TAG 2	ANG GGG GGT TTG	C GGG TTC CTA	CAC GAG TGG	ATT ACT CTG ACT TAA TGA GAC TGA Ile Thr Leu Thr>			

## **RECTIFIED SHEET (RULE 91)**

ISA/EP

1/41

Sequence of the murine TF8-5G9 heavy chain cDNA with protein translation. The essential regions of the cDNA are as follows:

FIG. 1 A

<u>Nucleotides</u>	Region
1-10	5' untranslated region.
11-67	Start codon and leader sequence.
68-418	Variable region.
419-1390	Murine lgG1 constant region.
1391-1489	3' untranslated region.

Sequence Range: 1 to 1489

	10				<b>∠</b> U ★				3U *			•				
GGT	CCT	TAC	λ λ:	וג א	AA T	GC AC	C TO	G G	rc an	C T	C T	rc c	יי דע איז	v: cr	A GTG	
CCA	GGA	λTG	TT	C T	TT A	CC TX	$\infty$ $\lambda$ (	2C C	AG TI	C A	AG AJ	LG GI	AC TI	CC	T CAC	
			Me	et Ly	ув С	ys Se	x T	rp V	al II	le Pi	ne Pi	e L	eu Me	E A	a Val	
50			60			70										
*			•			/0			•	30			90			
CTT	ACA	CCC	CTC	λλΤ	TCA	GAG	λTT	CAG	ويري	CAG	CAG	طعمك		~~	<b>63.6</b>	
CAA	TGT	CCC	CXC	TTA	AGT	CIC	TAA	GTC	GAC	GTC	CIC.	AGA	CCC	CCI	CAG	
Val	The	Gly	Val	λen	Ser	Glu	Ile	Gln	Leu	Gln	Gln	Ser	Glv	112	Glu>	
		-												/La	GIU	
100			1:	10		120				130			140			
•	•					•		•			•					
CIT	CIC	AGG	CCX	CCC	CCC	TTA	CIC	λλC	TIC	TCC	TGC	λλλ	CCI	TCT	CCC	
Gλλ	CYC	TCC	GGT	ccc	ccc	AAT	CYC	TTC	λλC	AGG	λCG	TTT	CCA	AGA	CCC	
Leu	Val	yià	Pro	Gly	λla	Leu	Val	Lys	Leu	Ser	Сув	Lys	λla	Ser	Gly>	
•	150			160												
-	•			160			1	70		-	180			190		
TTC	λλC	ATT	222	GAC	TAC	ТАТ	3.77	CNC	<b>₩</b>	~~~		~~		•		
λλG	TIC	TAA	TTT	CIG	ATG	ATA	TAC	CTC	ACC	CAC	TTTC	CAC	700	CCT	CAA	
Phe	λen	Ile	Lys	λap	Tyr	Tyr	Met	His	Tro	Val	Lve	Gln	λrn	PTT	Glu>	
					_						-,-		,		GIU,	
	20	00			210 220				230			30	240			
		•			•			•				•			•	
CXC	CCC	CIC	cxc	TCC	ATT	CCY	TIC	ATT	CAT	CCT	GXG	AAT	CCT	AAT	ACT	
CIC.	CCC	CYC	CTC	ACC	TAA	CCI	YYC	TAA	CTA	CCA	CLC	TTA	CCA	TTA	TGA	
Gin	CIA	ren	CIA	TTP	Ile	Cly	Leu	Ile	yab	Pro	Glu	увр	Cly	λen	Thr>	
	250				2	260				270			280			
		•			_	•			-,0			<b>∡</b> 80		-		
λτλ	TAT	CYC	$\infty$	λAG	TTC	CAG	GCC	λλG	GCC	AGT	እጥል	AC A	CCA	CAC	3.03	
TAT	λTλ	CIC	GGC	TTC	AAG	CIC	CCC	TIC	CCC	TCA	TAT	TGT	CCT	CLC	TCT.	
Ile	Tyr	Asp	PTO	Ly:e	Phe	Glp	Gly	Lув	λla	Ser	Ile	Thr	λla	Авр	Thr>	
														-		
90	300				310			320			330					
TCC	TCC	220	303	CCC	TAC	٠	CAC	~~	100	300	~~~		•			
AGG	AGG	Jane -	172T	CCC	ATC	CIG		CIC	AGC TYCE	AGC TYY	CIG	YCY	TCT	CXC	CYC	
Ser	Ser	ARD	The	Ala	Tyr	Lan	Clr	Len	Ser.	90-	Lec	The	المفلا	CTC	CTG	
					-,-		يندت	u	201	201	Den	TITE	SEL	CIH	VBDS	

. 3..

37. The pharmaceutical composition of Claim 1 36 wherein said CDR-grafted antibody is TF8HCDR20  $\times$  TF8LCDR3.

5

10

15

20

25

30

35

- 26. The method of Claim 19 wherein said l expression vector comprising a nucleic acid encoding the CDR-grafted antibody light chain is pEel2TF8LCDR3.
  - 27. A nucleic acid encoding the heavy chain of the CDR-grafted antibody of Claim 1.
- 5 28. A nucleic acid encoding the light chain of the CDR-grafted antibody of Claim 1.
  - 29. The nucleic acid of Claim 27 having the sequence of nucleotides 1-2360 of SEQ ID NO:15.
- 30. The nucleic acid of Claim 28 having the 10 sequence of nucleotides 1-759 of SEQ ID NO:17.
- 31. A method of attenuation of coagulation comprising administering a therapeutically effective amount of a CDR-grafted antibody capable of inhibiting human tissue factor to a patient in need of said 15 attenuation.
  - 32. The method of Claim 31 wherein said CDR-grafted antibody is TF8HCDR20 x TF84CDR3.
- 33. A method of treatment or prevention of thrombotic disorder comprising administering a20 therapeutically effective amount of a CDR-grafted antibody capable of inhibiting human tissue factor to a
  - patient in need of said treatment or prevention.

    34. The method of Claim 33 wherein said thrombotic disorder is intravascular coaqulation,
- 25 arterial restenosis or arteriosclerosis.
  - 35. The method of Claim 33 or 34 wherein said CDR-grafted antibody is TF8HCDR20 x TF8LCDR3.
- 36. A pharmaceutical composition comprising at least one CDR-grafted antibody capable of inhibiting human tissue factor and a pharmaceutically acceptable carrier.

- 18. The fragment of Claim 17 wherein said 1 fragment is an Fab or  $F(ab')_2$  fragment.
- 19. A method of making the CDR-grafted antibody of Claim 1 comprising cotransfecting a host cell with an expression vector comprising a nucleic acid encoding the CDR-grafted antibody heavy chain and an expression vector comprising a nucleic acid encoding the CDR-grafted antibody light chain; culturing the transfected host cell; and recovering said CDR-grafted antibody.
- 20. A method of making the CDR-grafted antibody of Claim 1 comprising transfecting a host cell with an expression vector comprising a nucleic acid encoding the CDR-grafted antibody heavy chain and a nucleic acid encoding the CDR-grafted antibody light chain; culturing the transfected host cell; and recovering said CDR-grafted antibody.
- 21. The method of Claim 18 or 19 wherein said nucleic acid encoding the CDR-grafted antibody heavy chain has the sequence of nucleotides 1-2360 of SEQ ID 20 NO:15.
  - 22. The method of Claim 18 or 19 wherein said nucleic acid encoding the CDR-grafted light chain has the sequence of nucleotides 1-759 of SEQ ID NO:17.
- 23. The method of Claim 19 or 20 wherein said 25 host cell is a bacterial cell, yeast cell, insect cell or mammalian cell.
  - 24. The method of Claim 23 wherein said mammalian cell is a CHO cell, COS cell or myeloma cell.
- 25. The method of Claim 19 wherein said 30 expression vector comprising a nucleic acid encoding the CDR-grafted antibody heavy chain is pEe6TF8HCDR20.

- 7. The CDR-grafted antibody of Claim 1 1 wherein the heavy chain variable region has the amino acid sequence of SEQ ID NO:11.
- 8. The CDR-grafted antibody of Claim 1 or 7 wherein the light chain variable region has the amino 5 acid sequence of SEQ ID NO:12.
  - 9. The CDR-grafted antibody of Claim 1 wherein the heavy chain variable region has the amino acid sequence of SEQ ID NO:13.
- 10. The CDR-grafted antibody of Claim 1 or 9 10 wherein the light chain variable region has the amino acid sequence of SEQ ID NO:14.
  - 11. The CDR-grafted antibody of Claim 1 wherein the heavy chain constant region is the human IgG4 constant region.
- 15 12. The CDR-grafted antibody of Claim 10 wherein the heavy chain constant region is the human IgG4 constant region.
- 13. The CDR-grafted antibody of Claim 1 wherein the light chain constant region is the human 20 kappa constant region.
  - 14. The CDR-grafted antibody of Claim 10 wherein the light chain constant region is the human kappa constant region.
- 15. CDR-grafted monoclonal antibody TF8HCDR1 25 x TF8LCDR1.
  - 16. CDR-grafted monoclonal antibody TF8HCDR20
    x TF8LCDR3.
- 17. A fragment of the CDR-grafted antibody of Claim 1 wherein said fragment is capable of inhibiting human tissue factor.

#### WHAT IS CLAIMED IS:

1

- A CDR-grafted antibody capable of inhibiting human tissue factor wherein the complementarity determining regions (CDRs) are derived from a non-human monoclonal antibody against tissue factor and the framework (FR) and constant (C) regions are derived from one or more human antibodies.
- The CDR-grafted antibody of Claim 1 wherein said non-human monoclonal antibody is a murine 10 antibody.
  - 3. The CDR-grafted antibody of Claim 2 wherein said murine antibody is TF8-5G9.
- 4. The CDR-grafted antibody of Claim 1 wherein said CDRs of the heavy chain have the amino acid 15 sequences:

CDR1 DDYMH (SEQ ID NO:5)
CDR2 LIDPENGNTIYDPKFQG (SEQ ID NO:6)
CDR3 DNSYYFDY (SEQ ID NO:7)

and said CDRs of the light chain have the amino acid 20 sequences:

CDR1 KASQDIRKYLN (SEQ ID NO:8)
CDR2 YATSLAD -(SEQ ID NO:9)
CDR3 LQHGESPYT (SEQ ID NO:10).

- 5. The CDR-grafted antibody of Claim 1 25 wherein the FR of the heavy chain is derived from the human antibody KOL.
  - 6. The CDR-grafted antibody of Claim 1 wherein the FR of the light chain is derived from the human antibody REI.

30

WO 96/40921 PCT/US96/09287

-89-

GACCGATCCA GCCTCCGCGG CCGGGAACGG TGCATTGGAA CGCGGATTCC CCGTGCCAAG 6960 1 AGTGACGTAA GTACCGCCTA TAGAGTCTAT AGGCCCACCC CCTTGGCTTC TTATGCATGC 7020 TATACTGTTT TTGGCTTCGG GTCTATACAC CCCCGCTTCC TCATGTTATA GGTGATGGTA 7080 TAGCTTAGCC TATAGGTGTG GGTTATTGAC CATTATTGAC CACTCCCCTA TTGGTGACGA 7140 TACTTTCCAT TACTAATCCA TAACATGGCT CTTTGCCACA ACTCTCTTTA TTGGCTATAT 7200 5 GCCAATACAC TGTCCTTCAG AGACTGACAC GGACTCTGTA TTTTTACAGG ATGGGGTCTC 7260 ATTTATTATT TACAAATTCA CATATACAAC ACCACCGTCC CCAGTGCCCG CAGTTTTAT 7320 TAAACATAAC GTGGGATCTC CACGCGAATC TCGGGTACGT GTTCCGGACA TGGGCTCTTC 7380 TCCGGTAGCG GCGGAGCTTC TACATCCGAG CCCTGCTCCC ATGCCTCCAG CGACTCATGG 7440 10 TCGCTCGGCA TCTCCTTGCT CCTAACAGTG GAGGCCAGAC TTAGGCACAG CACGATGCCC 7500 ACCACCACCA GTGTGCCGCA CAAGGCCGTG GCGGTAGGGT ATGTGTCTGA AAATGAGCTC 7560 GGGGAGCGGG CTTGCACCGC TGACGCATTT GGAAGACTTA AGGCAGCGGC AGAAGAAGAT 7620 GCAGGCAGCT GAGTTGTTGT GTTCTGATAA GAGTCAGAGG TAACTCCCGT TGCGGTGCTG 7680 TTAACGGTGG AGGGCAGTGT AGTCTGAGCA GTACTCGTTG CTGCCGCGCG CGCCACCAGA 7740 15 CATAATAGCT GACAGACTAA CAGACTGTTC CTTTCCATGG GTCTTTTCTG CAGTCACCGT 7800 CCTTGACACG AAGCTTGGGC TGCAGGTCGA TCGACTCTAG AGGATCGATC CCCGGGCGAG 7860 CTCG 7864

20

25

30

35

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

### **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS OF STATE OF S

### IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)