Overview

- Link Layer
 - Error Detection
 - Flow Control
 - HDLC Frames/Control Bytes
 - PPP Lifecycle/State Diagram
 - Medium Access Control
 - 802.11 DCF & PCF
 - CDMA & Ethernet
 - Bridges & Switches
- Network Layer

Overview

- Link Layer
 - Error Detection
 - Flow Control
 - HDLC Frames/Control Bytes
 - PPP Lifecycle/State Diagram
 - Medium Access Control
 - 802.11 DCF & PCF
 - CDMA & Ethernet
 - Bridges & Switches
- Network Layer

CS2031 Telecommunications II

Medium Access Control

HDLC / PPP

Analogy: Point-to-Point Communication

Synchronization: Simple!

Analogy: Shared Medium

Synchronisation: More complex

Multiple-Access Protocols

Select / Push

- Primary co-ordinates all communication
- Primary selects station that is destination then transmits data

Primary contacts stations to determine if they have data to transmit

Token-Passing Network

- Token passes around a network
- Machine with token is allowed to transmit data

Static Channel Allocation

- Frequency Division Multiplexing (FDM)
 - N users get 1/N of the total bandwidth
 - << N users ⇒ wasted bandwidth</p>
 - > N users ⇒ denial of service
 - Bursts cannot be accommodated

- Time Division Multiplexing (TDM)
 - N users get full bandwidth 1/N of the time
 - Same arguments apply

Frequency Division Multiple Access (FDMA)

Channel Partitioning MAC protocols: FDMA

FDMA: frequency division multiple access

- channel spectrum divided into frequency bands
- each station assigned fixed frequency band
- unused transmission time in frequency bands go idle
- example: 6-station LAN, 1,3,4 have pkt, frequency bands 2,5,6 idle

Time Division Multiple Access (TDMA)

Channel Partitioning MAC protocols: TDMA

TDMA: time division multiple access

- access to channel in "rounds"
- each station gets fixed length slot (length = pkt trans time)
 in each round
- unused slots go idle
- example: 6-station LAN, 1,3,4 have pkt, slots 2,5,6 idle

Reservation Access Method

- Station that wants to transmit data
 - transmits 1 during its slot in the reservation frame
- All stations are informed about all planned communication
- Limited number of pre-allocated slots/stations

Static Channel Allocation

Frequency Division Multiplexing (FDM)

Time Division Multiplexing (TDM)

Code Division Multiple Access (CDMA)

- Makes use of physical properties of interference
 - If two stations send signals in phase, they will "add up" to give twice the amplitude
 - If the signals are out of phase, they will "subtract" and give a signal that is the difference
- Difficult to implement because control of exact power strength is essential

Chip Sequences

Every station is identified by an individual chip sequence

$$A$$
 B C D

Data bits are encoded as either +1, 0, or -1:

Data bit
$$0 \longrightarrow -1$$
 Data bit $1 \longrightarrow +1$ Silence $\longrightarrow 0$

Databit ⊗ Chip Sequence = Transmission

-1
$$\otimes$$
 $+1, +1, -1, -1$ \longrightarrow $-1, -1, +1, +1$

CDMA Multiplexer

CDMA De-Multiplexer

Decoding of received signal

Walsh Tables

$$W_1 = \begin{bmatrix} +1 \end{bmatrix}$$
 $W_{2N} = \begin{bmatrix} W_N & W_N \\ W_{2N} & W_N \end{bmatrix}$

$$W_{2N}$$
=

$$W_N$$

$$W_N$$

$$W_N$$

$$W_{\Lambda}$$

$$W_1 = \begin{bmatrix} +1 \end{bmatrix}$$

$$W_2 = \begin{bmatrix} +1 & +1 \\ +1 & -1 \end{bmatrix}$$

$$W_4 = egin{bmatrix} +1 & +1 & +1 & +1 \ +1 & -1 & +1 & -1 \ +1 & +1 & -1 & -1 \ +1 & -1 & -1 & +1 \ \end{bmatrix}$$

$$+1$$
 $+1$ -1 -1

$$+1$$
 -1 -1 $+1$

Summary: Synchronous CDMA

Makes use of physical properties of interference

- All stations use whole bandwidth
- Computational requirements at stations

Stations hold individual chip sequences

FDMA in AMPS

FDMA

time

Non-overlapping channels

Mixture of TDMA and FDMA

CDMA in Mobile Phones

- Asynchronous CDMA
- Cells use same frequencies
- Directional antennae used to split cell into sectors
 - 3x capacity

Multiple-Access Protocols

ALOHA Network

Pure ALOHA

- Assuming all frames of equal length
- Frames are transmitted at completely arbitrary times

Pure Aloha II

 Collision occurs when frames are transmitted by stations at the same time

Procedure for ALOHA Protocol

Vulnerable Period for Frame

Maximum utilization around 18%

Slotted Aloha

Divide time into intervals (timeslots)

Algorithm:

when data ready wait for next timeslot transmit if (collision)

wait and retransmit

Maximum utilization is 2 × Pure Aloha

Frames in Slotted Aloha

Advantage of Slotted Aloha

Collisions can only occur within a slot

Performance of ALOHA

Throughput versus offered traffic for ALOHA systems.

Random-Access Methods

- CS ⇒ Carrier Sense
- MA ⇒ Multiple Access

- CD ⇒ Collision Detection

school of | Computer Science & Statistics

Collision in CSMA/CD

- Both stations will realize that a collision has taken place
- Backoff and attempt to send later

Binary Exponential Backoff

Backoff Time = Random() \times aSlotTime

where

Random() = Pseudorandom integer drawn from a uniform distribution over the interval [0,CW], where CW is an integer within the range of values of the PHY characteristics aCWmin and aCWmax, aCWmin ≤ CW ≤ aCWmax. It is important that designers recognize the need for statistical independence among the random number streams among STAs.

aSlotTime = The value of the correspondingly named PHY characteristic.

An Alternative Representation

Fig. 1. The operation of three saturated links within carrier-sense range. The graphs show the unfinished work $U_i(t)$ of each transmitter τ_i at time t, which can be either the remaining backoff or the remaining transmission time.

Rafael Laufer and Leonard Kleinrock, The Capacity of Wireless CSMA/CA Networks, IEEE/ACM TRANSACTIONS ON NETWORKING, vol. 24, no. 3, pp 1518-1532, JUNE 2016

Capacity of Networks

Rafael Laufer and Leonard Kleinrock, The Capacity of Wireless CSMA/CA Networks, IEEE/ACM TRANSACTIONS ON NETWORKING, vol. 24, no. 3, pp 1518-1532, JUNE 2016

CSMA with Collision Detection

CSMA/CD can be in one of three states: contention, transmission, or idle.

CSMA/CD Procedure

Persistence Strategies

- 1-persistent CSMA
 - if medium idle send imidiately
- p-persistent CSMA
 - if medium available station may send depdending on probability
 - reduces chance of collison and improves efficiency

Persistence Strategies II

a. 1-persistent

b. Nonpersistent

c. p-persistent

Persistent and Non-Persistent CSMA

Comparison of the channel utilization versus load for various random access protocols

CSMA in Wireless Media

station A station B **CRS** ldefer station C CRS defer

Collision is at the receiver !!!

- Sense carrier to determine if medium is free
- Once free pick a random number
 - then start sending

CSMA/CA Procedure

Start

^{*} Figure is courtesy of B. Forouzan

CSMA/CD and CSMA/CA

• CSMA/CD

• CSMA/CA

^{*} Figure is courtesy of Avaya Communications Inc

Multiple-Access Protocols

