$$I^{G}(J^{PC}) = 0^{-}(3^{-})$$

$\phi_{3}(1850)$ MASS

VALUE (MeV)	<i>EVTS</i>	DOCUMENT ID		TECN	COMMENT
1854± 7 OUR AVERAG	E				
1855 ± 10		ASTON	88E	LASS	11 $K^- p \rightarrow K^- K^+ \Lambda$,
					$\kappa_{\mathcal{S}}^0 \kappa^{\pm} \pi^{\mp} \Lambda$
1870^{+30}_{-20}	430	ARMSTRONG	82	OMEG	18.5 $K^-p \rightarrow$
-20					$\kappa^- \kappa^+ \Lambda$ _
1850 ± 10	123	ALHARRAN	81 B	HBC	8.25 $K^- p \rightarrow K \overline{K} \Lambda$

ϕ_3 (1850) WIDTH

<i>VALUE</i> (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
87 ⁺²⁸ ₋₂₃ OUR AVERAG	E Error inc	ludes scale facto	r of 1	2.	
64±31		ASTON	88E	LASS	11 $K^- p \rightarrow K^- K^+ \Lambda$, $K_S^0 K^{\pm} \pi^{\mp} \Lambda$
160^{+90}_{-50}	430	ARMSTRONG			3
80^{+40}_{-30}	123	ALHARRAN	81 B	НВС	$8.25 \ K^{-} p \rightarrow K \overline{K} \Lambda$

ϕ_3 (1850) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ ₁	K K	seen
Γ ₂	K K *(892)+ c.c.	seen

ϕ_3 (1850) BRANCHING RATIOS

$\Gamma(K\overline{K}^*(892) + \text{c.c.})/\Gamma(K\overline{K})$					Γ_2/Γ_1
VALUE	DOCUMENT ID		TECN	COMMENT	
$0.55^{+0.85}_{-0.45}$	ASTON	88E	LASS	11 $K^- p \rightarrow K^- K^0 K^{\pm} \pi^{\mp} K^0 K^{\pm} \pi^{\mp} K^0 K^{\pm} \pi^{\mp} K^0 K^{\pm} K^{\pm} K^{\mp} K^{$	- κ+ Λ, Ι
• • • We do not use the following	data for averages	s, fits,	limits,	etc. • • •	

8.25 $K^- p \rightarrow K \overline{K} \pi \Lambda$ 81B HBC $0.8\ \pm0.4$ ALHARRAN

ϕ_3 (1850) REFERENCES

ASTON	88E	PL B208 324	D. Aston et al.	(SLAC, NAGO, CINC, INUS) IGJPC
ARMSTRONG	-		T.A. Armstrong et al.	(BARI, BIRM, CERN+) JP
ALHARRAN	81B	PL 101B 357	S. Al-Harran <i>et al.</i>	(BIRM, CERN, GLAS+)

Created: 5/30/2017 17:21