# CSE214 – Analysis of Algorithms

PhD Furkan Gözükara, Toros University

https://github.com/FurkanGozukara/Analysis-of-

Algorithms-2019

Lecture 5

Quicksort

Based on Kruse's and Ryba's Lecture Notes

### Sorting algorithms

- Insertion, selection and bubble sort have quadratic worstcase performance
- The faster comparison based algorithm ?
  O(nlogn)

Mergesort and Quicksort

# Quicksort Algorithm

- Fastest known sorting algorithm in practice
  - Caveats: not stable,
  - Vulnerable to certain attacks

Average case complexity  $\rightarrow O(N \log N)$ 

- Worst-case complexity  $\rightarrow O(N^2)$ 
  - Rarely happens, if coded correctly

# Quicksort Algorithm

Given an array of *n* elements (e.g., integers):

- If array only contains one element, return
- **Else** 
  - pick one element to use as pivot.
  - Partition elements into two sub-arrays:
    - Elements less than or equal to pivot
    - Elements greater than pivot
  - Quicksort two sub-arrays
  - Return results

# Example

We are given array of n integers to sort:

| 40 | 20 1 | 10 80 | 60 | 50 | 7 | 30 | 100 |
|----|------|-------|----|----|---|----|-----|
|----|------|-------|----|----|---|----|-----|

#### Pick Pivot Element

There are a number of ways to pick the pivot element. In this example, we will use the first element in the array:

| 40 | 20 | 10 | 80 | 60 | 50 | 7 | 30 | 100 |
|----|----|----|----|----|----|---|----|-----|
|----|----|----|----|----|----|---|----|-----|

# Partitioning Array

Given a pivot, partition the elements of the array such that the resulting array consists of:

- 1. One sub-array that contains elements >= pivot
- Another sub-array that contains elements < pivot</li>

The sub-arrays are stored in the original data array.

Partitioning loops through, swapping elements below/above pivot.



1. While data[too\_big\_index] <= data[pivot] ++too\_big\_index



1. While data[too\_big\_index] <= data[pivot] ++too\_big\_index



1. While data[too\_big\_index] <= data[pivot] ++too\_big\_index



- 1. While data[too\_big\_index] <= data[pivot] ++too\_big\_index
- 2. While data[too\_small\_index] > data[pivot]--too\_small\_index



- 1. While data[too\_big\_index] <= data[pivot] ++too\_big\_index
- 2. While data[too\_small\_index] > data[pivot]--too\_small\_index



- 1. While data[too\_big\_index] <= data[pivot] ++too\_big\_index
- 2. While data[too\_small\_index] > data[pivot]--too\_small\_index
- 3. too\_big\_index < too\_small\_index swap data[too\_big\_index] and data[too\_small\_index]



- 1. While data[too\_big\_index] <= data[pivot] ++too\_big\_index
- 2. While data[too\_small\_index] > data[pivot]--too\_small\_index
- 3. If too\_big\_index < too\_small\_index swap data[too\_big\_index] and data[too\_small\_index]



- 1. While data[too\_big\_index] <= data[pivot] ++too\_big\_index
- 2. While data[too\_small\_index] > data[pivot]--too\_small\_index
- 3. If too\_big\_index < too\_small\_index swap data[too\_big\_index] and data[too\_small\_index]
- 4. While too\_small\_index > too\_big\_index, go to 1.



- → 1. While data[too\_big\_index] <= data[pivot] ++too\_big\_index
  - 2. While data[too\_small\_index] > data[pivot]--too\_small\_index
  - 3. If too\_big\_index < too\_small\_index swap data[too\_big\_index] and data[too\_small\_index]
  - 4. While too\_small\_index > too\_big\_index, go to 1.



- → 1. While data[too\_big\_index] <= data[pivot] ++too\_big\_index
  - 2. While data[too\_small\_index] > data[pivot]--too\_small\_index
  - 3. If too\_big\_index < too\_small\_index swap data[too\_big\_index] and data[too\_small\_index]
  - 4. While too\_small\_index > too\_big\_index, go to 1.



- 1. While data[too\_big\_index] <= data[pivot] ++too\_big\_index
- → 2. While data[too\_small\_index] > data[pivot] --too\_small\_index
  - 3. If too\_big\_index < too\_small\_index swap data[too\_big\_index] and data[too\_small\_index]
  - 4. While too\_small\_index > too\_big\_index, go to 1.



- 1. While data[too\_big\_index] <= data[pivot] ++too\_big\_index
- → 2. While data[too\_small\_index] > data[pivot] --too\_small\_index
  - 3. If too\_big\_index < too\_small\_index swap data[too\_big\_index] and data[too\_small\_index]
  - 4. While too\_small\_index > too\_big\_index, go to 1.



- 1. While data[too\_big\_index] <= data[pivot] ++too\_big\_index
- While data[too\_small\_index] > data[pivot]--too\_small\_index
- 3. If too\_big\_index < too\_small\_index swap data[too\_big\_index] and data[too\_small\_index]</p>
  - 4. While too\_small\_index > too\_big\_index, go to 1.



- 1. While data[too\_big\_index] <= data[pivot] ++too\_big\_index
- While data[too\_small\_index] > data[pivot]--too\_small\_index
- 3. If too\_big\_index < too\_small\_index swap data[too\_big\_index] and data[too\_small\_index]</p>
  - 4. While too\_small\_index > too\_big\_index, go to 1.



- 1. While data[too\_big\_index] <= data[pivot] ++too\_big\_index
- 2. While data[too\_small\_index] > data[pivot]--too\_small\_index
- 3. If too\_big\_index < too\_small\_index swap data[too\_big\_index] and data[too\_small\_index]
- → 4. While too\_small\_index > too\_big\_index, go to 1.



- → 1. While data[too\_big\_index] <= data[pivot] ++too\_big\_index
  - 2. While data[too\_small\_index] > data[pivot]--too\_small\_index
  - 3. If too\_big\_index < too\_small\_index swap data[too\_big\_index] and data[too\_small\_index]
  - 4. While too\_small\_index > too\_big\_index, go to 1.



- 1. While data[too\_big\_index] <= data[pivot] ++too\_big\_index
  - 2. While data[too\_small\_index] > data[pivot]--too\_small\_index
  - 3. If too\_big\_index < too\_small\_index swap data[too\_big\_index] and data[too\_small\_index]
  - 4. While too\_small\_index > too\_big\_index, go to 1.



- 1. While data[too\_big\_index] <= data[pivot] ++too\_big\_index
- → 2. While data[too\_small\_index] > data[pivot] --too\_small\_index
  - 3. If too\_big\_index < too\_small\_index swap data[too\_big\_index] and data[too\_small\_index]
  - 4. While too\_small\_index > too\_big\_index, go to 1.



- 1. While data[too\_big\_index] <= data[pivot] ++too\_big\_index
- → 2. While data[too\_small\_index] > data[pivot]--too\_small\_index
  - 3. If too\_big\_index < too\_small\_index swap data[too\_big\_index] and data[too\_small\_index]
  - 4. While too\_small\_index > too\_big\_index, go to 1.



- 1. While data[too\_big\_index] <= data[pivot] ++too\_big\_index
- → 2. While data[too\_small\_index] > data[pivot] --too\_small\_index
  - 3. If too\_big\_index < too\_small\_index swap data[too\_big\_index] and data[too\_small\_index]
  - 4. While too\_small\_index > too\_big\_index, go to 1.



- 1. While data[too\_big\_index] <= data[pivot] ++too\_big\_index
- 2. While data[too\_small\_index] > data[pivot]--too\_small\_index
- → 3. If too\_big\_index < too\_small\_index swap data[too\_big\_index] and data[too\_small\_index]
  - 4. While too\_small\_index > too\_big\_index, go to 1.



- 1. While data[too\_big\_index] <= data[pivot] ++too\_big\_index
- 2. While data[too\_small\_index] > data[pivot]--too\_small\_index
- 3. If too\_big\_index < too\_small\_index swap data[too\_big\_index] and data[too\_small\_index]
- → 4. While too\_small\_index > too\_big\_index, go to 1.



- 1. While data[too\_big\_index] <= data[pivot] ++too\_big\_index
- 2. While data[too\_small\_index] > data[pivot]--too\_small\_index
- 3. If too\_big\_index < too\_small\_index swap data[too\_big\_index] and data[too\_small\_index]
- 4. While too\_small\_index > too\_big\_index, go to 1.
- → 5. Swap data[too\_small\_index] and data[pivot\_index]



- 1. While data[too\_big\_index] <= data[pivot] ++too\_big\_index
- 2. While data[too\_small\_index] > data[pivot]--too\_small\_index
- 3. If too\_big\_index < too\_small\_index swap data[too\_big\_index] and data[too\_small\_index]
- 4. While too\_small\_index > too\_big\_index, go to 1.
- → 5. Swap data[too\_small\_index] and data[pivot\_index]



### Partition Result



# Recursion: Quicksort Sub-arrays









#### FINAL SORTING







- Assume that keys are random, uniformly distributed.
- What is best case running time?

- Assume that keys are random, uniformly distributed.
- What is best case running time?
  - Recursion:
    - 1. Partition splits array in two sub-arrays of size n/2
    - 2. Quicksort each sub-array

- Assume that keys are random, uniformly distributed.
- What is best case running time?
  - Recursion:
    - 1. Partition splits array in two sub-arrays of size n/2
    - 2. Quicksort each sub-array
  - Depth of recursion tree?

- Assume that keys are random, uniformly distributed.
- What is best case running time?
  - Recursion:
    - 1. Partition splits array in two sub-arrays of size n/2
    - 2. Quicksort each sub-array
  - Depth of recursion tree? O(log<sub>2</sub>n)

- Assume that keys are random, uniformly distributed.
- What is best case running time?
  - Recursion:
    - 1. Partition splits array in two sub-arrays of size n/2
    - 2. Quicksort each sub-array
  - Depth of recursion tree? O(log<sub>2</sub>n)
  - Number of accesses in partition?

- Assume that keys are random, uniformly distributed.
- What is best case running time?
  - Recursion:
    - 1. Partition splits array in two sub-arrays of size n/2
    - 2. Quicksort each sub-array
  - Depth of recursion tree? O(log<sub>2</sub>n)
  - Number of accesses in partition? O(n)

- Assume that keys are random, uniformly distributed.
- $\blacksquare$  Best case running time: O(n log<sub>2</sub>n)

- Assume that keys are random, uniformly distributed.
- $\blacksquare$  Best case running time: O(n log<sub>2</sub>n)
- Worst case running time?

#### Quicksort: Worst Case

- Assume first element is chosen as pivot.
- Assume we get array that is already in order:



- 1. While data[too\_big\_index] <= data[pivot] ++too\_big\_index
  - 2. While data[too\_small\_index] > data[pivot]--too\_small\_index
  - 3. If too\_big\_index < too\_small\_index swap data[too\_big\_index] and data[too\_small\_index]
  - 4. While too\_small\_index > too\_big\_index, go to 1.
  - 5. Swap data[too\_small\_index] and data[pivot\_index]



- 1. While data[too\_big\_index] <= data[pivot] ++too\_big\_index
  - 2. While data[too\_small\_index] > data[pivot]--too\_small\_index
  - 3. If too\_big\_index < too\_small\_index swap data[too\_big\_index] and data[too\_small\_index]
  - 4. While too\_small\_index > too\_big\_index, go to 1.
  - 5. Swap data[too\_small\_index] and data[pivot\_index]



- 1. While data[too\_big\_index] <= data[pivot] ++too\_big\_index
- → 2. While data[too\_small\_index] > data[pivot] --too\_small\_index
  - 3. If too\_big\_index < too\_small\_index swap data[too\_big\_index] and data[too\_small\_index]
  - 4. While too\_small\_index > too\_big\_index, go to 1.
  - 5. Swap data[too\_small\_index] and data[pivot\_index]



- 1. While data[too\_big\_index] <= data[pivot] ++too\_big\_index
- While data[too\_small\_index] > data[pivot]--too\_small\_index
- 3. If too\_big\_index < too\_small\_index swap data[too\_big\_index] and data[too\_small\_index]
  - 4. While too\_small\_index > too\_big\_index, go to 1.
  - 5. Swap data[too\_small\_index] and data[pivot\_index]



- 1. While data[too\_big\_index] <= data[pivot] ++too\_big\_index
- 2. While data[too\_small\_index] > data[pivot]--too\_small\_index
- 3. If too\_big\_index < too\_small\_index swap data[too\_big\_index] and data[too\_small\_index]
- → 4. While too\_small\_index > too\_big\_index, go to 1.
  - 5. Swap data[too\_small\_index] and data[pivot\_index]



- 1. While data[too\_big\_index] <= data[pivot] ++too\_big\_index
- 2. While data[too\_small\_index] > data[pivot]--too\_small\_index
- 3. If too\_big\_index < too\_small\_index swap data[too\_big\_index] and data[too\_small\_index]
- 4. While too\_small\_index > too\_big\_index, go to 1.
- → 5. Swap data[too\_small\_index] and data[pivot\_index]



- 1. While data[too\_big\_index] <= data[pivot] ++too\_big\_index
- While data[too\_small\_index] > data[pivot]--too\_small\_index
- 3. If too\_big\_index < too\_small\_index swap data[too\_big\_index] and data[too\_small\_index]
- 4. While too\_small\_index > too\_big\_index, go to 1.
- → 5. Swap data[too\_small\_index] and data[pivot\_index]



- Assume that keys are random, uniformly distributed.
- $\blacksquare$  Best case running time: O(n log<sub>2</sub>n)
- Worst case running time?
  - Recursion:
    - 1. Partition splits array in two sub-arrays:
      - one sub-array of size 0
      - the other sub-array of size n-1
    - 2. Quicksort each sub-array
  - Depth of recursion tree?

- Assume that keys are random, uniformly distributed.
- Best case running time:  $O(n \log_2 n)$
- Worst case running time?
  - Recursion:
    - 1. Partition splits array in two sub-arrays:
      - one sub-array of size 0
      - the other sub-array of size n-1
    - 2. Quicksort each sub-array
  - Depth of recursion tree? O(n)

- Assume that keys are random, uniformly distributed.
- Best case running time:  $O(n \log_2 n)$
- Worst case running time?
  - Recursion:
    - 1. Partition splits array in two sub-arrays:
      - one sub-array of size 0
      - the other sub-array of size n-1
    - 2. Quicksort each sub-array
  - Depth of recursion tree? O(n)
  - Number of accesses per partition?

- Assume that keys are random, uniformly distributed.
- $\blacksquare$  Best case running time: O(n log<sub>2</sub>n)
- Worst case running time?
  - Recursion:
    - 1. Partition splits array in two sub-arrays:
      - one sub-array of size 0
      - the other sub-array of size n-1
    - 2. Quicksort each sub-array
  - Depth of recursion tree? O(n)
  - Number of accesses per partition? O(n)

- Assume that keys are random, uniformly distributed.
- $\blacksquare$  Best case running time: O(n log<sub>2</sub>n)
- $\blacksquare$  Worst case running time:  $O(n^2)!!!$

- Assume that keys are random, uniformly distributed.
- Best case running time: O(n log<sub>2</sub>n)
- Worst case running time:  $O(n^2)!!!$
- What can we do to avoid worst case?

#### **Improved Pivot Selection**

Pick median value of three elements from data array:

data[0], data[n/2], and data[n-1].

- Use this median of the array
  - Partitioning always cuts the array into roughly half
  - An optimal quicksort (O(N log N))
  - However, hard to find the exact median

# Improving Performance of Quicksort

- ■Improved selection of pivot.
- For sub-arrays of size 3 or less, apply brute force search:
  - Sub-array of size 1: trivial
  - Sub-array of size 2:
    - if(data[first] > data[second]) swap them
  - Sub-array of size 3?

#### Pivot: median of three

- We will use median of three
  - Compare just three elements: the leftmost, rightmost and center
  - Swap these elements if necessary so that

```
    A[left] = Smallest
    A[right] = Largest
    A[center] = Median of three
```

- Pick A[center] as the pivot
- ► Swap A[center] and A[right 1] so that pivot is at second last position

#### Pivot: median of three

Code for partitioning with median of three pivot:

```
int center = ( left + right ) / 2;
if( a[ center ] < a[ left ] )
        swap( a[ left ], a[ center ] );
if( a[ right ] < a[ left ] )
        swap( a[ left ], a[ right ] );
if( a[ right ] < a[ center ] )
        swap( a[ center ], a[ right ] );

        // Place pivot at position right - 1
swap( a[ center ], a[ right - 1 ] );</pre>
```

#### Pivot: median of three



Note we only need to partition A[left + 1, ..., right – 2]

#### Implementation of partitioning step

- Works only if pivot is picked as median-of-three.
  - A[left] <= pivot and</li>
     A[right] >= pivot
  - Thus, only need to partition
     A[left + 1, ..., right 2]
- j will not run past the end
  - because a[left] <= pivot</p>
- i will not run past the end
  - because a[right-1] = pivot

```
int i = left, j = right - 1;
for(;;)
{
    while(a[++i] < pivot) { }
    while(pivot < a[--j]) { }
    if(i < j)
        swap(a[i],a[j]);
    else
        break;
}</pre>
```

#### Main Quicksort Routine

```
if( left + 10 <= right )
    Comparable pivot = median3( a, left, right );
                                                                 Choose pivot
       // Begin partitioning
    int i = left, j = right - 1;
    for(;;)
       while( a[ ++i ] < pivot ) { }
       while( pivot < a[ --j ] ) { }
       if(i < i)
                                                                 Partitioning
           swap( a[ i ], a[ j ] );
       e1se
           break;
    swap( a[ i ], a[ right - 1 ] ); // Restore pivot
    quicksort( a, left, i - 1 ); // Sort small elements
                                                                Recursion
   quicksort( a, i + 1, right ); // Sort large elements
else // Do an insertion sort on the subarray
                                                                For small arrays
   insertionSort( a, left, right );
```

#### Quicksort Faster than Mergesort

- Both quicksort and mergesort take O(N log N) in the average case.
- Why is quicksort faster than mergesort?
  - The inner loop consists of an increment/decrement (by 1, which is fast), a test and a jump.
  - Mergesort involves a large number of data movements.
  - Quicksort is done in-place.

```
int i = left, j = right - 1;
for(;;)
{
    while(a[++i] < pivot) { }
    while(pivot < a[--j]) { }
    if(i < j)
        swap(a[i], a[j]);
    else
        break;
}</pre>
```

# Performance of quicksort

- Worst-case: takes O(n2) time.
- Average-case: takes O(n log n) time.

On typical inputs, quicksort runs faster than other algorithms.

#### Further Analysis of Quicksort

The analysis is quite tricky.

- Assume all the input elements are distinct
  - no duplicate values makes this code faster!
  - there are better partitioning algorithms when duplicate input elements exist (e.g. Hoare's original code)

Let T(n) = worst-case running time on an array of n elements.

#### Worst-case of quicksort

- QUICKSORT runs very slowly when its input array is already sorted (or is reverse sorted).
  - o almost sorted data is quite common in the real-world

• This is caused by the partition using the min (or max) element which means that one side of the partition will have has no elements. Therefore:

$$T(n) = T(0) + T(n-1) + \Theta(n)$$
 $= \Theta(1) + T(n-1) + \Theta(n)$ 
 $= T(n-1) + \Theta(n)$ 
 $= \Theta(n^2)$  (arithmetic series)

no elements

 $= \Theta(n^2)$  no elements

$$T(n) = T(0) + T(n-1) + cn$$

$$T(n) = T(0) + T(n-1) + cn$$

$$T(n)$$

$$T(n) = T(0) + T(n-1) + cn$$

$$Cn$$

$$T(0)$$

$$T(n-1)$$

$$T(n) = T(0) + T(n-1) + cn$$

$$T(0)$$

$$C(n-1)$$

$$T(0)$$

$$T(n-2)$$

$$T(n) = T(0) + T(n-1) + cn$$

$$T(0) \qquad c(n-1)$$

$$T(0) \qquad T(n-2)$$

$$T(0)$$

$$\Theta(1)$$

$$T(n) = T(0) + T(n-1) + cn$$

$$\begin{array}{c|c}
 & Cn \\
\Theta(1) & C(n-1) \\
\Theta(1) & C(n-2)
\end{array}$$

$$\begin{array}{c}
\Theta\left(\sum_{k=1}^{n} k\right) = \Theta(n^2) \\
T(n) = \Theta(n) + \Theta(n^2) \\
= \Theta(n^2)
\end{array}$$

$$\begin{array}{c}
\Theta(1)
\end{array}$$

## Quicksort isn't Quick?

■ In the worst case, quicksort isn't any quicker than insertion sort.

- ■So why bother with quicksort?
- ■It's average case running time is very good, as we'll see.

### Best-case Analysis

- If we're lucky, PARTITION splits the array evenly:
   Case 2 of the Master Method
- $T(n) = 2T(n/2) + \Theta(n)$
- $= \Theta(n \log n)$  (same as merge sort)

#### Almost Best-case

- What if the split is always 1/10: 9/10?
- T(n) = T(1/10n) + T(9/10n) + Θ(n)

T(n)









## Short and Long Path Heights

- Short path node value:  $n \rightarrow (1/10)n \rightarrow (1/10)^2n \rightarrow ... \rightarrow 1$
- $\therefore$  n(1/10)<sup>sp</sup> = 1
- $\therefore$  n = 10<sup>sp</sup> // take logs
- $\log_{10} n = sp$
- Long path node value:  $n \rightarrow (9/10)n \rightarrow (9/10)^2n \rightarrow ... \rightarrow 1$
- :  $n(9/10)^{lp} = 1$
- :  $n = (10/9)^{lp}$  // take logs
- $\log_{10/9} n = lp$

#### Quicksort in Practice

- Quicksort is a great general-purpose sorting algorithm.
  - especially with a randomized pivot
  - Quicksort can benefit substantially from code tuning
  - Quicksort can be over twice as fast as merge sort

Quicksort behaves well even with caching and virtual memory.

#### **Timing Comparisons**

Lesson 1. Good algorithms are better than supercomputers.
Lesson 2. Great algorithms are better than good ones.

- Running time estimates:
- ► Home PC executes 10<sup>8</sup> compares/second.
- Supercomputer executes 10<sup>12</sup> compares/second

|          | insertion sort (N²) |           |           | mergesort (N log N) |          |         | quicksort (N log N) |         |         |
|----------|---------------------|-----------|-----------|---------------------|----------|---------|---------------------|---------|---------|
| computer | thousand            | million   | billion   | thousand            | million  | billion | thousand            | million | billion |
| home     | instant             | 2.8 hours | 317 years | instant             | 1 second | 18 min  | instant             | 0.6 sec | 12 min  |
| super    | instant             | 1 second  | 1 week    | instant             | instant  | instant | instant             | instant | instant |

## Quickselect

- Quickselect algorithm is used to find the i-th smallest element in a given unordered array
- Randomized algorithm using divide and conquer
- □ Similar to randomized quicksort
  - □ *Like quicksort*: Partitions input array recursively
  - □ *Unlike quicksort*: Makes a single recursive call
    - Reminder: Quicksort makes two recursive calls
- $\square$  Expected runtime:  $\Theta(n)$ 
  - Reminder: Expected runtime of quicksort:  $\Theta(nlgn)$

# Selection in Expected Linear Time: Example 1

Select the 2<sup>nd</sup> smallest element:



Partition the input array:



make a recursive call to select the 2<sup>nd</sup> smallest element in left subarray

# Selection in Expected Linear Time: Example 2

Select the 7<sup>th</sup> smallest element:



Partition the input array:



make a recursive call to select the 4<sup>th</sup> smallest element in right subarray

### Selection in Expected Linear Time

```
R-SELECT(A,p,r,i)

if p = r then

return A[p]

q \leftarrow \text{R-PARTITION}(A, p, r)

k \leftarrow q - p + 1

if i \leq k then

return R-SELECT(A, p, q, i)

else

return R-SELECT(A, q+1, r, i-k)
```

x = pivot

### Selection in Expected Linear Time



- All elements in  $L \le all$  elements in R
- L contains |L| = q-p+1 = k smallest elements of A[p...r] if  $i \le |L| = k$  then

search L recursively for its *i*-th smallest element else

search R recursively for its (i-k)-th smallest element

## Runtime Analysis

#### □ Worst case:

Imbalanced partitioning at every level <a href="mailto:and">and</a> the recursive call always to the larger partition



## Runtime Analysis

#### □ *Worst case*:

$$T(n) = T(n-1) + \Theta(n)$$

$$\rightarrow$$
 T(n) =  $\Theta$ (n<sup>2</sup>)

Worse than the naïve method (based on sorting)

□ **Best case**: Balanced partitioning at every recursive level

$$T(n) = T(n/2) + \Theta(n)$$

$$\rightarrow$$
 T(n) =  $\Theta$ (n)

□ Avg case: Expected runtime – need analysis