HOMEWORK 5

MATH 2001

QI WANG

ABSTRACT. This is the first homework assignment. The problems are from Hammack [Ham18, Ch. 2, $\S 2.5$]:

• Chapter 2 Section 2.5, Exercises: 4, 6, 8. Section 2.6, Exercises: 4, 6. Section 2.7, Exercises: 2, 4, 8.

CONTENTS

Chapter 1 Section 1.1	1
Ch.2, §2.5, Exercise 4, 6, 8	1
Ch.2, §2.6, Exercise 4, 6	3
Ch.2, §2.7, Exercise 2, 4, 8	4
References	6

CHAPTER 1 SECTION 1.1

Ch.2, §2.5, Exercise 4, 6, 8. Write a truth table for the logical statements.

- 4. $\neg (P \lor Q) \lor (\neg P)$
- 6. $(\mathbf{P} \wedge \neg \mathbf{P}) \wedge \mathbf{Q}$
- 8. $P \lor (Q \land \neg R)$

Date: February 21, 2020.

2 QI

Solution to Ch.2, §2.5, *Exercise* 4, 6, 8.

4.
$$\neg (P \lor Q) \lor (\neg P)$$

6.
$$(\mathbf{P} \wedge \neg \mathbf{P}) \wedge \mathbf{Q}$$

$$\left| \begin{array}{c|cccc} P & Q & \neg P & P \wedge \neg P & (P \wedge \neg P) \wedge Q \\ \hline T & T & F & F & F \\ \hline T & F & F & F & F \\ \hline F & T & T & F & F \\ \hline F & F & T & F & F \\ \hline \end{array} \right|$$

8.
$$P \lor (Q \land \neg R)$$

P	Q	R	$\neg R$	$Q \wedge \neg R$	$P \vee (Q \wedge \neg R)$
T	T	T	F	F	T
T	T	F	T	T	T
T	F	T	F	F	T
T	F	F	T	F	T
F	T	T	F	F	F
F	T	F	T	T	T
F	F	T	F	F	F
F	F	F	T	F	F

Ch.2, §**2.6, Exercise 4, 6.** Use truth tables to show that the following statements are logically equivalent.

4.
$$\neg (P \lor Q) = (\neg P) \land (\neg Q)$$

6.
$$\neg (P \land Q \land R) = (\neg P) \lor (\neg Q) \lor (\neg R)$$

Solution to Ch.2, §2.6, Exercise 4, 6.

4.
$$\neg (P \lor Q) = (\neg P) \land (\neg Q)$$

4 QI

6.
$$\neg (P \land Q \land R) = (\neg P) \lor (\neg Q) \lor (\neg R)$$

Ch.2, §2.7, Exercise 2, 4, 8. Write the following as English sentences.

Say weather they are true or false.

2.
$$\forall x \in \mathbb{R}, \exists n \in \mathbb{N}, x^n \geq 0$$

4.
$$\forall X \in \wp(\mathbb{N}), X \subseteq \mathbb{R}$$

8.
$$\forall n \in \mathbb{Z}, \exists X \subseteq \mathbb{N}, |X| = n$$

Solution to Ch.2, §2.7, Exercise 18.

2. $\forall x \in \mathbb{R}, \exists n \in \mathbb{N}, x^n \geq 0$

For all x in the \mathbb{R} , there exists n in \mathbb{N} such that x^n is greater than and equal to 0. **TRUE**

4. $\forall X \in \wp(\mathbb{N}), X \subseteq \mathbb{R}$

All X in $\wp(\mathbb{N})$ is subsets of \mathbb{R} . **FALSE**

8. $\forall n \in \mathbb{Z}, \exists X \subseteq \mathbb{N}, |X| = n$

For all n in the \mathbb{Z} , there exists X in \mathbb{N} such that |X|=n. FALSE

REFERENCES

[Ham18] Richard Hammack, Book of Proof, 3 ed., Creative Commons, 2018.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309-0395

Email address: casa@math.colorado.edu