

Project Overview

In this Project we have used Python3 to deal with a messy data set, and analyze and process it into valuable data, from which we have been able to extract valuable insights and information.

The data set was extracted from Global Shark Attack File. It consists of current and historical data of shark/human interactions, with the aim of better understanding these interactions, and minimize the risk of being injured by a shark, while contributing in the conservation of shark species worldwide.

Data source:

https://www.kaggle.com/datasets/teajay/global-shark-attacks?resource=download

Data Processing

and required

libraries

exploration and

EDA exploration

plots/graphs and

geographical map

our scope, eliminate

unneeded data and

format the data

information/insights

from data obtained

Exploring the Data

To explore the data, we used df.describe(), df["column"], and also exploration by columns using some EDA techniques.

The main purpose of this exploration is to have a general overview of the data's distribution and to filter the scope in which we want to focus our analysis.

This exploration allowed us to have a general overview of the data's distribution, being able to filter the scope in which we decided to focus our analysis.

Cleaning and formatting the Data

After exploring the data, we have cleaned the data based on the following hypotheses:

- ➤ Keep the columns that are relevant to our study (Case Number, Date, Year, Type, Country, Activity, Sex, Species).
- Focus the analysis on the data registered after 1950.
- Eliminate registers with empty/not valid data.

Some of the cleaning techniques and methods used are: Drop columns, drop null values, string manipulation, dropna, isnull, map, filter, rename, replace, regex, lambda, datetime, append, etc.

Cleaning and formatting the Data

In order to understand and analyze the data correctly, we need to format the data to have standardized type of data and meaning.

After cleaning the data according to the above criteria, we will:

- ✓ Describe each variable
- ✓ Analyze which factors may contribute to the fatality rate of shark at
- ✓ Analyze the information by country

In addition, we included new columns:

- ✓ Country Code (Alpha-2 code per ISO 3166), by using pycountry
- ✓ Coordinates (Latitude and Longitude)
- ✓ Month
- ✓ Season in each geographical area

The final data frame has a total of 4050 registers and 14 columns.

Cleaning and formatting the Data

	Case_Number	Year	Туре	Country	Activity	Sex	Age	Fatal (Y/N)	Species	Month	Country_Code	Latitude	Longitude	Season
0	2018-06-25	2018	Watercraft	UNITED STATES	rowing sports	F	57.0	N	white shark	6	US	38.0000	-97.00	Spring
1	2018-06-18	2018	Unprovoked	UNITED STATES	wading	F	11.0	N	NaN	6	US	38.0000	-97.00	Spring
2	2018-05-27	2018	Unprovoked	UNITED STATES	fishing	М	52.0	N	lemon shark	5	US	38.0000	-97.00	Spring
3	2018-05-26	2018	Unprovoked	UNITED STATES	wading	М	15.0	N	bull shark	5	US	38.0000	-97.00	Spring
4	2018-05-26	2018	Unprovoked	UNITED STATES	wading	М	12.0	N	NaN	5	US	38.0000	-97.00	Spring
4045	1954-00-00	1954	Unprovoked	MARTINIQUE	NaN	М	NaN	N	nurse shark	0	MQ	14.6667	-61.00	NaN
4046	1952-03-30	1952	Unprovoked	NETHERLANDS	NaN	М	NaN	N	bull shark	3	NL	52.5000	5.75	Winter
4047	1952-00-00	1952	Unprovoked	LIBERIA	snorkeling	М	NaN	Υ	NaN	0	LR	6.5000	-9.50	NaN
4048	1950-00-00	1950	Unprovoked	LIBERIA	NaN	М	NaN	Υ	NaN	0	LR	6.5000	-9.50	NaN
4049	1950-08-00	1950	Unprovoked	SAUDI ARABIA	snorkeling	М	NaN	N	NaN	8	SA	25.0000	45.00	Summer

Attacks by Activity

surfing 33.2% swimming 18.4% 0.5% sea disaster 2.3% rowing sports 6.8% wading 15.1% multiple activities 11.4% 12.3% snorkeling fishing

Fig.1 Total number of Attacks by Activity

Fig.2 Percentage Attacks by Activity

Fatality by Activity

Fig.3 Fatality % per Activity

Fatality by Type of Event

Fig.4 Fatality % per Type of Event

Social-demographic Analysis

Fig.5 Attacks by Age Histogram

Fig.6 Fatality according Age Area

Social-demographic Analysis

Fig. 7 Total attacks by Sex

Fig.8 Fatality by Sex

Attacks by Shark Species

Fig.9 Total no. of Attacks by Shark

Fig. 10 Total no. of Attacks by Shark (Top 5)

Fatality by Shark Species

Fig.11 Fatality % for all Shark Species

Attacks by Season

Fig.13 Total No. Attacks by Season

Fig.14 Total % Attacks by Season

Fatality by Season

Fig.15 Fatality % by Season

Attacks by Country

		_			T (1)
	Country_Code	Frequency	Latitude	Longitude	lop_Shark
0	US	1717	38.00	-97.0	white shark
1	AU	734	-27.00	133.0	white shark
2	ZA	417	-29.00	24.0	white shark
3	PG	121	-6.00	147.0	tiger shark
4	BS	88	24.25	-76.0	bull shark

Fig.16 Total No. Attacks by Country (Top 5)

Fig.17 Total No. Attacks by Country (Top 5)

Interactive World Map

Interactive World Map

Conclusions

After all the above, we have been able to extract following conclusions:

- 1. Surfing is the sport with the highest number of registered shark attacks (33.2%)
- 2. Despite this, Surfing is in the 7th out of 8 positions of activities that cause fatality.
- 3. Top 3 activities that cause fatalities are: sea disaster, swimming and snorkeling (activities where people do not take additional equipment).
- 4. Following Sea Disaster, unprovoked events are the most common type of event that causes fatality.
- 5. 40% of attacks occur to people between 15 and 25 years old.
- 6. 63% of attacks occur to people between 10 and 30 years old.
- 7. The majority (86.7%) of attacks occur in people of male gender. However, although most attacks are registered in male gender, the % fatality is almost identical for both men and women.
- 8. Only 15% of all shark attacks have been registered to cause fatality.
- 9. The shark species with highest number of attacks is the White shark
- 10. The most dangerous sharks, who attacked the most are: White shark, tiger shark, bull shark, nurse shark, bronze whaler shark. Except nurse shark, all of them caused fatalities.
- 11. 40.2% of the attacks occur in the summer season, followed by 27.2% in the spring season.
- 12. The top 3 countries with most registered shark attacks are: USA, Australia, South Africa.

Questions

