Curve e Superfici - Sommario

Curve e Superfici: Introduzione

A. CURVE

A1. Curva Parametrica

Curva in Forma Parametrica

Richiamo alla definizione di curva in forma parametrica. Interpretazione cinematica delle curve parametriche. Esempi di curve in forma parametrica.

0. Voci correlate

• Curve e Superfici Parametriche

1. Definizione di Curva in Forma Parametrica

#Definizione

Definizione (curva in forma parametrica).

Sia $\gamma: I \in \mathcal{B}(\mathbb{R}) \longrightarrow \mathbb{R}^N$ (dove $\mathcal{B}(E)$ è il *boreliano* di E, ovvero gli l'insieme degli intervalli nel caso dei numeri reali).

La coppia $(\gamma, \gamma(I))$ si dice *curva parametrica* in \mathbb{R} , di cui:

- γ si dice rappresentazione parametrica
- $\Gamma := \gamma(I)$ si dice sostegno della curva

Si può vedere la curva parametrica con l'interpretazione cinematica (1): la γ rappresenta l'informazione sul corpo puntiforme, $\gamma(I)$ la traiettoria del corpo.

#Definizione

Definizione (notazione).

Indicheremo le curve in 2D e 3D con le seguenti parametrizzazioni. Siano $x,y,t:\mathbb{R}\longrightarrow\mathbb{R}$, definiamo

$$N=2 \implies \gamma(t)=(x(t),y(t)) \ N=3 \implies \gamma(t)=(x(t),y(t),z(t))$$

2. Esempi di Curva in forma parametrica bidimensionale

#Esempio

Esempio (retta).

Но

$$\gamma(t) := (2t+1, t-1)$$

ovvero 2y-x+3=0 in forma implicita. Ovvero, abbiamo una retta.

#Esempio

Esempio (circonferenza).

Consideriamo

$$\gamma(t) := (\cos t, \sin t)$$

Per $I=[0,2\pi)$ e $I'=[0,3\pi]$ ho sempre lo stesso sostegno γ , ma vedremo che hanno proprietà diverse.

Questa rappresenta una circonferenza. Infatti $x^2+y^2=1$ rappresenta questa curva in forma implicita.

#Esempio

Esempio (curva).

Con

$$\gamma(t) := (t^2, t^3)$$

abbiamo per I = [-1, 1] un sostegno del tipo nella figura 2.1..

FIGURA 2.1.

3. Esempi di Curva in forma parametrica, tridimensionale

#Esempio

Esempio (spirali).

Consideriamo le curve nello spazio

$$\gamma_1(t) = (\cos t, \sin t, t)$$

е

$$\gamma_2(t) = (t\cos t, t\sin t, t)$$

abbiamo due spirali, una che "cresce in maniera costante", l'altra che "diventa sempre più grande" (vedere figura 3.1.)

FIGURA 3.1.

Teniamo fissati questi esempi per la classificazione delle curve.

A2. Tipologie di Curve

Classificazione delle Curve in Forma Parametrica

Prima classificazione delle curve in f.p.. Curva chiusa e semplice.

0. Voci correlate

• Curva in Forma Parametrica

1. Curve chiuse e semplici

Diamo una prima classificazione di curve in f.p..

#Definizione

Definizione (curva chiusa e semplice).

Sia $\gamma:I\in\mathcal{B}(\mathbb{R})\longrightarrow\mathbb{R}^N$ una curva. Sia $a=\min I$, $b=\max I$ (a è il "punto di partenza", b il "punto finale")

Si dice che γ è *chiusa* se vale che

$$\gamma(a)=\gamma(b)$$

Si dice che è semplice se vale che

$$t_1
eq t_2 \wedge t_1, t_2 \in I^\circ \implies orall (t_1, t_2) \in \mathbb{R}^2, \gamma(t_1)
eq \gamma(t_2)$$

ovvero abbiamo una specie di "iniettività" per i punti interni.

2. Esempi di Classificazione

(#Esempio)

Esempio (la circonferenza non è regolare su certi intervalli).

Riprendiamo la circonferenza definita come

$$\gamma = (\cos t, \sin t)$$

Se si ha $I=[0,2\pi)$ allora la curva è chiusa e semplice. Infatti

$$\gamma(0)=0, \gamma(2\pi)=0$$

Tuttavia se si sceglie $I'=[0,3\pi]$ allora la curva non è ne chiusa ne semplice. Infatti

$$\gamma(0)
eq \gamma(3\pi), \gamma(0.1) = \gamma(2\pi+0.1)$$

Questo discorso ci interessa relativamente, la classificazione più interessante è quella delle *curve regolari* (1).

A3. Curve implicite

Curve Regolari in Forma Implicita

Conseguenze del teorema del Dini: definizione di curva regolare in forma implicita a due dimensioni, osservazioni miste.

0. Voci correlate

- Curva in Forma Implicita
- Teorema del Dini
- Curve Regolari

1. Curve Regolari in Forma Implicita

Grazie al teorema del Dini, possiamo dare una definizione ben posta di curva regolare in forma implicita.

#Definizione

Definizione (curva regolare in forma implicita).

Sia $\varphi:A\subseteq\mathbb{R}^2\longrightarrow\mathbb{R}\in\mathcal{C}^1(A)$ con A aperto, tale che soddisfi i seguenti criteri.

$$\Gamma := L_0(arphi)
eq \emptyset \
abla f(x_0,y_0)
eq 0, orall (x_0,y_0) \in \Gamma$$

La coppia $(\varphi, L_0(\varphi))$ si dice curva regolare in forma implicita, di cui $\varphi(x,y)=0$ si dice l'equazione e Γ il sostegno.

2. Proprietà delle Curve Regolari in Forma Implicita

Dal teorema del Dini abbiamo che queste curve possiedono delle proprietà particolari.

#Osservazione

Osservazione (conseguenze del teorema del Dini).

Sia $(\varphi, L_0(\varphi))$ una curva regolare in f.i.. Allora abbiamo che:

1. La retta tangente su un punto $\underline{x_0} \in \Gamma$ esiste e lo si calcola con

$$\langle
abla arphi(x_0), \underline{x} - x_0
angle = 0$$

2. Supponendo g la sua curva in funzione delle asse x (ovvero ho una funzione del tipo y=g(x), allora ho che

$$egin{aligned} g'(x_0) &= -rac{arphi_x(\underline{x_0})}{arphi_y(\underline{x_0})} &\implies arphi_y(\underline{x_0})g'(x_0) + arphi_x(\underline{x_0}) \cdot 1 = 0 \ &\implies \langle
abla arphi(x_0), (1, g'(x_0))
angle = 0 \end{aligned}$$

Geometricamente, con la 2 abbiamo che il vettore $\nabla \varphi$ è sempre ortogonale al vettore $(1, g'(x_0))$, che rappresenta il vettore tangente a x_0 .

Infatti, abbiamo che $\nabla \varphi(\underline{x})$ è ortogonale alle linee di livello φ in $\underline{x_0}$. Il ragionamento vale in una maniera analoga per l'esistenza di x=h(y).

FIGURA 2.1.

A4. Teorema del Dini

Teorema del Dini

Teorema del Dini (o delle funzioni implicite): enunciato, idea grafica.

0. Voci correlate

- Curva in Forma Implicita
- Curve Regolari
- Gradiente di Campi Scalari

1. Enunciato del teorema del Dini

Adesso vediamo un risultato importante per la parte sulle curve e superfici.

#Teorema

Teorema (della funzione implicita, o del Dini).

Sia $arphi:A\subseteq\mathbb{R}^2\longrightarrow\mathbb{R}\in\mathcal{C}^1(A)$ con A aperto. Sia $(x_0,y_0)=\underline{x_0}\in A$ un punto tale che

$$arphi(x_0)=0,
abla arphi(x_0)
eq 0$$

Allora esistono gli intorni $U(x_0)$ e $V(y_0)$ su cui sono definite le le funzioni $g:U\longrightarrow V$ o (vel) $h:V\longrightarrow U$ tali che

$$L_0(arphi) \cap (U imes V) = egin{cases} G(g) & \Longleftarrow arphi_y(\underline{x_0})
eq 0 \ G(h) & \Longleftarrow arphi_x(\underline{x_0})
eq 0 \end{cases}$$

(Nota: $G(f(\cdot))$ indica "grafico della funzione f). In un senso geometrico, abbiamo che g,h sono delle curve cartesiane.

Inoltre si ha che possiamo calcolare le derivate di g,h come

$$egin{aligned} g'(x) &= -rac{arphi_x(x,g(x))}{arphi_y(x,g(x))} & \Longleftarrow arphi_y(\underline{x_0})
eq 0 \ h'(x) &= -rac{arphi_y(h(y),y)}{arphi_x(h(y),y)} & \Longleftarrow arphi_x(\underline{x_0})
eq 0 \end{aligned}$$

In particolare la retta tangente a $L_0(arphi)$ in $\underline{x_0}$ ha l'equazione

$$arphi_x(x_0)(x-x_0)+arphi_y(y-y_0)=0$$

Ovvero il prodotto scalare

$$r_t: \langle
abla arphi(\underline{x_0}), \underline{x} - \underline{x_0}
angle = 0$$

#Dimostrazione

DIMOSTRAZIONE del Teorema 1 (della funzione implicita, o del Dini)

La prima parte è omessa. Si dimostra solo la formula per la retta tangente. Per dimostrarla si suppone che esista g, ovvero che $\varphi_y(\underline{x_0}) \neq 0$ (la dimostrazione è analoga nel caso dell'esistenza di h o entrambi); di conseguenza, abbiamo che la sua retta tangente è

$$y=\underbrace{g(x_0)}_{y_0}+g'(x_0)(x-x_0)$$

Allora, usando la formula per la derivata di g, abbiamo

$$(y-y_0=g'(x_0)(x-x_0) \iff (y-y_0)=-rac{arphi_x(\underline{x_0})}{arphi_y(x_0)}(x-x_0)$$

che ci porta al risultato finale

$$oxed{arphi_x(x_0)(x-x_0)+arphi_y(\underline{x_0})(y-y_0)=0}$$

2. Idea grafica del teorema del Dini

Adesso diamo un'idea grafica del teorema del Dini, in particolare la prima tesi (ovvero l'esistenza di g,h).

Caso g. Nel caso in cui esiste $g:U\longrightarrow V$ (in particolare senza h), abbiamo che la derivata-vettore $\nabla \varphi$ è nulla verticalmente, ma non orizzontalmente. In questo caso, possiamo tracciare il "quadrato" $U\times V$ in cui abbiamo una funzione (che deve mandare elementi di U ad uno e solo elemento di V).

#Osservazione

Osservazione (l'ipotesi cruciale).

Notiamo che l'ipotesi essenziale per la validità del teorema del Dini è quella della non-nullità del gradiente, $\nabla f \neq 0$.

In un certo senso, possiamo applicare il teorema del Dini anche se il primo criterio (ovvero la funzione deve annullarsi in $\underline{x_0}$); infatti se avessimo $\varphi(\underline{x_0}) = c \in \mathbb{R} \setminus \{0\}$, basta ridefinire la funzione come $\tilde{\varphi}(x) := \varphi(x) - c$.

Invece, se avessi $\nabla f = 0$, non ci si scappa.

#Esempio

Esempio (esempio di funzione non-dinibile).

Abbiamo $f(x,y)=x^2-y^2$. Per il teorema del Dini non si può essere sicuri di prendere un intorno di (0,0) tale da avere una curva regolare: infatti, è così. Se prendiamo il punto $\underline{0}$ e provassimo a considerare un suo qualsiasi quadrato, avrò

sempre una *non-funzione* (che manda un elemento in più elementi: quindi una multifunzione).

FIGURA 3.1.

Caso h. Completamente analoga al caso g, solo che operiamo su una curva del tipo f(y)=x (ovvero con assi invertiti).

Caso g,h. Se abbiamo l'esistenza sia di g che di h, allora abbiamo una funzione invertibile (biiettiva). Infatti, considerando la retta f(x,y)=x-2y abbiamo che possiamo esplicitarla come due curve:

$$L_0(f)
ightarrow egin{cases} g(x) = rac{x}{2} \ h(y) = 2y \end{cases}$$

Infatti, troviamo che $(g \circ h)(\lambda) = (h \circ g)(\lambda) = \lambda$.

A5. Curve implicite regolari

Curve Regolari in Forma Implicita

Conseguenze del teorema del Dini: definizione di curva regolare in forma implicita a due dimensioni, osservazioni miste.

0. Voci correlate

- Curva in Forma Implicita
- Teorema del Dini
- Curve Regolari

1. Curve Regolari in Forma Implicita

Grazie al teorema del Dini, possiamo dare una definizione ben posta di curva regolare in forma implicita.

#Definizione

Definizione (curva regolare in forma implicita).

Sia $\varphi:A\subseteq\mathbb{R}^2\longrightarrow\mathbb{R}\in\mathcal{C}^1(A)$ con A aperto, tale che soddisfi i seguenti criteri.

$$\Gamma := L_0(arphi)
eq \emptyset
onumber
abla f(x_0,y_0)
eq 0, orall (x_0,y_0)
eq \Gamma$$

La coppia $(\varphi, L_0(\varphi))$ si dice curva regolare in forma implicita, di cui $\varphi(x,y)=0$ si dice l'equazione e Γ il sostegno.

2. Proprietà delle Curve Regolari in Forma Implicita

Dal teorema del Dini abbiamo che queste curve possiedono delle proprietà particolari.

#Osservazione

Osservazione (conseguenze del teorema del Dini).

Sia $(\varphi, L_0(\varphi))$ una curva regolare in f.i.. Allora abbiamo che:

1. La retta tangente su un punto $x_0 \in \Gamma$ esiste e lo si calcola con

$$\langle
abla arphi(x_0), \underline{x} - x_0
angle = 0$$

2. Supponendo g la sua curva in funzione delle asse x (ovvero ho una funzione del tipo y=g(x), allora ho che

$$egin{aligned} g'(x_0) &= -rac{arphi_x(\underline{x_0})}{arphi_y(\underline{x_0})} &\Longrightarrow arphi_y(\underline{x_0})g'(x_0) + arphi_x(\underline{x_0}) \cdot 1 = 0 \ &\Longrightarrow \langle
abla arphi(x_0), (1, g'(x_0))
angle = 0 \end{aligned}$$

Geometricamente, con la 2 abbiamo che il vettore $\nabla \varphi$ è sempre ortogonale al vettore $(1, g'(x_0))$, che rappresenta il vettore tangente a x_0 .

Infatti, abbiamo che $\nabla \varphi(\underline{x})$ è ortogonale alle linee di livello φ in $\underline{x_0}$. Il ragionamento vale in una maniera analoga per l'esistenza di x=h(y).

FIGURA 2.1.

B. SUPERFICI

B1. Superficie regolare parametrica

Superficie Regolare in Forma Parametrica

Approfondimenti sulle superfici. Definizione di superficie regolare semplice in forma parametrica.

0. Voci correlate

• Curve e Superfici Parametriche

1. Definizione di Superficie Regolare e Semplice in f.p.

#Definizione

Definizione (superficie regolare e semplice in forma parametrica).

Sia $A\subseteq\mathbb{R}^2$ aperto e connesso. Sia σ la parametrizzazione su A, definita come tale

$$\sigma:K=\overline{A}\,\subseteq\mathbb{R}^2\longrightarrow\mathbb{R}^3$$

ovvero $\sigma(u,v)=(x(u,v),y(u,v),z(u,v))$ con $x,y,z:\mathbb{R}^2\longrightarrow\mathbb{R}.$

Si dice che:

i. σ è semplice se è continua nell'interno di K ($\sigma \in \mathcal{C}^1(K^\circ)$), e le sue derivate parziali σ_u , σ_v sono estendibili con continuità fino al bordo (la frontiera) di K.

ii. σ è regolare se vale che σ_u e σ_v sono sempre linearmente indipendenti in K° , ovvero che vale

$$orall (u,v) \in K^\circ, \sigma_u(u,v) imes \sigma_v(u,v)
eq \underline{0}$$

iii. terza condizione

$$u_1,u_2\in K^\circ\wedge u_1
eq u_2\implies \sigma(u_1)
eq \sigma(u_2)$$

Se valgono tutte e tre le condizioni, allora la coppia $(\sigma, \sigma(K))$ si dice "superficie regolare semplice in forma parametrica" di cui σ è la rappresentazione parametrica e $\Sigma := \sigma(K)$ il sostegno.

Esempio (la sfera).

La funzione

$$\sigma(\theta, \varphi) = (R \sin \theta \cos \varphi, R \sin \theta \sin \varphi, R \cos \theta)$$

con $K=[0,\pi] imes [0,2\pi]$ si ha una sfera. Si verifica che è regolare e semplice.

2. Definizioni relative alle Superfici Regolari

Introduciamo un paio di nozioni *relative* alle superfici regolari, utili per l'ottimizzazione vincolata.

#Definizione

Definizione (linee coordinate).

Sia $\Sigma=(\sigma,\sigma(K))$ una superficie regolare semplice in forma parametrica e $(u_0,v_0)=u_0\in K$ fissato.

Abbiamo che possiamo definire le curve regolari in forma semplice come

$$egin{aligned} \sigma(\cdot,v_0): (u_0-\delta,u_0+\delta) &\longrightarrow \mathbb{R}^3 \ \sigma(u_0,\cdot): (v_0-\delta,v_0+\delta) &\longrightarrow \mathbb{R}^3 \end{aligned}$$

si dicono le linee coordinate su Σ .

Graficamente prendiamo K piatto su \mathbb{R}^2 , e tracciamo le assi u,v aventi origine in $\underline{u_0}$. Dopodiché, portandoli sulla curva Σ abbiamo che queste linee sono un po' "deformate".

FIGURA 2.1. (Linee coordinate)

Adesso introduciamo le ultime nozioni sulle superfici regolari.

#Definizione

Definizione (vettori tangenti, piano tangente e normale al piano).

Sia $\Sigma = (\sigma, \sigma(K))$ una curva regolare semplice in f.p..

I vettori tangenti alle linee coordinate in $\underline{x_0}$ sono le derivate parziali $\sigma_u(\underline{x_0})$ e $\sigma_v(\underline{x_0})$.

Per definizione questi sono *linearmente indipendenti*, dunque individuano il *piano* tangente a Σ e lo si rappresenta in forma parametrica come lo *span* dei due vettori (1):

$$egin{aligned} & \underline{x} \in \operatorname{span}(\sigma_u(\underline{u_0}), \sigma_v(\underline{u_0})) \ \Longrightarrow \underline{x} = \underline{x_0} + s\sigma_u(\underline{u_0}) + t\sigma_v(\underline{u_0}) ext{ (forma parametrica)} \ \Longrightarrow \langle \sigma_u(\underline{u_0}) imes \sigma_v(\underline{u_0}), \underline{x} - \underline{x_0} \rangle = 0 ext{ (forma implicita)} \end{aligned}$$

Infine si definisce il versore normale a Σ in x_0 come il vertore normalizzato

$$\mu(\underline{u_0}) := rac{\sigma_u(\underline{u_0}) imes \sigma_v(\underline{u_0})}{\|\sigma_u(u_0) imes \sigma_v(u_0)\|}$$

FIGURA 2.2. (Linee coordinate e la normale alla superficie)

B2. Prodotto Vettoriale

Cenni sul Prodotto Vettoriale

Brevi cenni sul prodotto vettoriale.

1. Definizione di Prodotto Vettoriale in 3D

#Definizione

Definizione (prodotto vettoriale).

Sia $\underline{a}=(a_1,a_2,a_3)$ e $\underline{b}=(b_1,b_2,b_3)$. Si definisce il prodotto vettoriale in \mathbb{R}^3 come l'operatore

$$\underline{a} imes \underline{b} := \det egin{pmatrix} \xi_1 & \xi_2 & \xi_3 \ a_1 & a_2 & a_3 \ b_1 & b_2 & b_3 \end{pmatrix} = (a_2b_3 - a_3b_2)\xi_1 + (a_3b_1 - a_1b_3)\xi_2 + (a_1b_2 - a_2b_3)\xi_1 + (a_3b_1 - a_2b_3)\xi_2 + (a_1b_2 - a_2b_3)\xi_1 + (a_3b_1 - a_2b_3)\xi_2 + (a_1b_2 - a_2b_3)\xi_1 + (a_3b_1 - a_2b_3)\xi_2 + (a_1b_2 - a_2b_3)\xi_1 + (a_2b_1 - a_2b_3)\xi_2 + (a_2b_2 - a_2b_3)\xi_1 + (a_2b_1 - a_2b_3)\xi_2 + (a_2b_2 - a_2b_3)\xi_1 + (a_2b_1 - a_2b_3)\xi_2 + (a_2b_2 - a_2b_3)\xi_1 + (a_2b_2 - a_2b_3)\xi_2 + (a_2b_2 - a_2b_3)\xi_3 + (a_2b_2 - a_2b_3)\xi_3$$

dove ξ_1, ξ_2, ξ_3 sono elementi della base canonica $\mathcal{E}(\mathbb{R}^3)$.

#Osservazione

Osservazione (condizioni di indipendenza lineare).

Notiamo che $\underline{a},\underline{b}$ sono linearmente indipendenti per $\underline{a} \times \underline{b} \neq \underline{0}.$

B3. Superficie Regolare implicita e in forma cartesiana

Superficie Regolare in Forma Cartesiana e Implicita

Breve descrizione qui

0. Voci correlate

- Superficie Regolare in Forma Parametrica
- Curve Regolari
- Curva in Forma Implicita
- Campo Scalare e Insieme di Livello

1. Superficie Regolare in Forma Cartesiana

#Definizione

Definizione (superficie regolare in forma cartesiana).

Sia $f:K\subseteq\mathbb{R}^2\longrightarrow\mathbb{R}$ con $K=\overline{A}$ (lo si pone per evitare di creare insiemi connessi e chiusi "male").

Supponiamo ∇f estendibile su tutto~K, con continuità. Allora la funzione

$$\sigma:K\longrightarrow\mathbb{R}^3$$

definita come $\sigma(u,v):=(u,v,f(u,v))$, va a definire una superficie regolare semplice che si dice "in forma cartesiana".

#Osservazione

Osservazione (la regolarità delle superfici cartesiane).

Si dimostra, con calcoli a mano, che la *superficie in forma cartesiana* è sempre *regolare*. Infatti si ha

$$\sigma_u imes\sigma_v=\detegin{pmatrix} \xi_1&\xi_2&\xi_3\ 1&0&f_u(u,v)\ 0&1&f_v(u,v) \end{pmatrix}=(-f_u,-f_v,1)$$

quindi non si annulla mai.

2. Superficie Regolare in Forma Implicita

#Definizione

Definizione (superficie regolare in forma implicita).

Sia $\varphi:A\subseteq\mathbb{R}^3\longrightarrow\mathbb{R}\in\mathcal{C}^1(A)$, con A aperto, tale che:

i. La curva di livello non è vuota

$$\Sigma:=L_o(arphi)
eq\emptyset$$

ii. Il gradiente non è nullo per il sostegno

$$orall \underline{x} \in \Sigma,
abla arphi(\underline{x})
eq 0$$

Allora la coppia (φ, Σ) si dice superficie regolare in forma implicita di cui $\varphi(x, y, z)$ è l'equazione e Σ il sostegno.

#Definizione

Definizione (piano tangente).

Sia $(arphi,\Sigma)$ una superficie regolare in forma implicita, con $x_0\in\Sigma$ fissato.

Si definisce il $\emph{piano tangente a} \; \Sigma \; \emph{in} \; x_0 \; \textrm{dall'equazione}$

$$\langle
abla arphi(x_0), \underline{x} - x_0
angle = 0$$

e si ha che il vettore $\nabla \varphi(x_0)$ è ortogonale a Σ in x_0 .

C. ESERCIZI

Esercizi sulle Curve e Superfici

Esercizi sulle curve e superfici

1. Classificazione delle Curve

#Esercizio

Esercizio.

Stabilire se la curva

$$\gamma(t):=(t^2,t^3)$$

è regolare o meno. Giustificare la risposta.

#Esercizio

Esercizio.

Considerare l'equazione $\varphi(x,y)=x^3+y^3-xy$. Sia L_k la linea di livello su k. Dire per quali valori k al variare in $\mathbb R$ si ha curve regolari $(\varphi,L_0(\varphi))$. Trovare la retta tangente a $L_1(\varphi)$ in (1,1).

#Esercizio

Esercizio.

Sia $f(x,y)=x^4+y^2+2x^2y+1$. Determinare gli insiemi di livello $L_k(f)$ regolari in forma implicita.

2. Superfici

#Esercizio

Esercizio.

Sia $\varphi(x,y,z)=x^2+y^2-z^2$. Determinare i valori $k\in\mathbb{R}$ per cui si ha $L_k(\varphi)$ una superficie regolare in forma implicita. Determinare il piano tangente a $L_0(\varphi)$ in (1,0,1).