Linear Models

Numerical Methods for Deep Learning

Learning Problem

Given examples (inputs)

$$\mathbf{Y} = (\mathbf{y}_1 \ \mathbf{y}_2 \ \cdots \ \mathbf{y}_n) \in \mathbb{R}^{n_f \times n}$$

and labels (outputs)

$$\mathbf{C} = (\mathbf{c}_1 \ \mathbf{c}_2 \ \cdots \ \mathbf{c}_n) \in \mathbb{R}^{n_c \times n},$$

find a classification/prediction function $f(\cdot, \theta)$, i.e.,

$$f(\mathbf{y}_j, \boldsymbol{\theta}) \approx \mathbf{c}_j, \quad j = 1, \ldots, n.$$

Regression and Least-Squares

Simplest option, a linear model with $\theta = (\mathbf{W}, \mathbf{b})$ and

$$f(\mathbf{Y}, \mathbf{W}, \mathbf{b}) = \mathbf{W}\mathbf{Y} + \mathbf{b}\mathbf{e}_n^{\top} \approx \mathbf{C}$$

- ▶ **W** ∈ $\mathbb{R}^{n_c \times n_f}$ are weights
- ▶ **b** ∈ \mathbb{R}^{n_c} are biases
- $\mathbf{e}_n \in \mathbb{R}^n$ is a vector of ones

Equivalent notation:

$$f(\mathbf{Y}, \mathbf{W}, \mathbf{b}) = \begin{pmatrix} \mathbf{W} & \mathbf{b} \end{pmatrix} \begin{pmatrix} \mathbf{Y} \\ \mathbf{e}_{\mathbf{p}}^{\top} \end{pmatrix} \approx \mathbf{C}$$

Problem may not have a solution, or may have infinite solutions (when?). Solve through optimization

$$\min_{\mathbf{W}} \frac{1}{2} \|\mathbf{WY} - \mathbf{C}\|_F^2$$

(Frobenius norm:
$$\|\mathbf{A}\|_F^2 = \operatorname{trace}(\mathbf{A}^{\top}\mathbf{A}) = \sum_{i,j} \mathbf{A}_{i,j}^2$$
.)

Remark: Relation to Least-Squares

Consider the regression problem

$$\min_{\mathbf{W}} \frac{1}{2} \|\mathbf{WY} - \mathbf{C}\|_F^2.$$

It is easy to see that this is equivalent to

$$\min_{\mathbf{W}} \frac{1}{2} \| \mathbf{Y}^{\top} \mathbf{W}^{\top} - \mathbf{C}^{\top} \|_F^2,$$

which can be solved separately for each row in W

$$\mathbf{W}(j,:)^{\top} = \arg\min_{\mathbf{w}} \frac{1}{2} \|\mathbf{Y}^{\top}\mathbf{w} - \mathbf{C}(j,:)^{\top}\|_{F}^{2}.$$

Notation: Let $\mathbf{A} = \mathbf{Y}^{\top}$ and $\mathbf{X} = \mathbf{W}^{\top}$ (easy to add bias here), we solve

$$\min_{\mathbf{X}} \frac{1}{2} \|\mathbf{A}\mathbf{X} - \mathbf{C}^{\top}\|_{F}^{2}$$

Optimality Conditions for Least-Squares

To minimize a function need to differentiate and equate to 0

$$\frac{\partial \left(\frac{1}{2}\|\boldsymbol{A}\boldsymbol{X}-\boldsymbol{C}^{\top}\|_{\textit{F}}^{2}\right)}{\partial \boldsymbol{X}}=0$$

Compute the derivatives in three steps

1.

$$\frac{\partial \left(\frac{1}{2} \|\mathbf{R}\|_F^2\right)}{\partial \mathbf{R}} = ???$$

2.

$$\frac{\partial \left(\mathbf{AX} \right)}{\partial \mathbf{X}} = ???$$

3. Use chain rule

Least-Squares: Normal Equations

The necessary and sufficient optimality conditions for the least-squares problem are

$$\frac{\partial \left(\frac{1}{2}\|\mathbf{A}\mathbf{X} - \mathbf{C}^\top\|_F^2\right)}{\partial \mathbf{X}} = \mathbf{A}^\top (\mathbf{A}\mathbf{X} - \mathbf{C}^\top) = 0$$

Reorganize to obtain the normal equations

$$\boldsymbol{\mathsf{X}} = (\boldsymbol{\mathsf{A}}^{\top}\boldsymbol{\mathsf{A}})^{-1}(\boldsymbol{\mathsf{A}}^{\top}\boldsymbol{\mathsf{C}}^{\top}).$$

Here, $\mathbf{A}^{\top}\mathbf{A} \in \mathbb{R}^{n_f \times n_f}$ must be invertible, i.e.,

- ▶ sufficient amount of data $(n > n_f)$
- data is linearly independent

Coding: Least-Squares Regression

1. Write a code for solving

$$\min_{\mathbf{W},\mathbf{b}} \frac{1}{2} \|\mathbf{W}\mathbf{Y} + \mathbf{b}\mathbf{e}_n^\top - \mathbf{C}\|^2$$

and apply it to some of our test data (MNIST / CIFAR10)

- 2. Solve the problem using the normal equations derived above.
- 3. Use optimal weights to predict labels for test data. How well does your solution generalize?

III-posedness and the SVD

If the data is linearly dependent or close to be linearly dependent, least-squares problem gives no good solution [2, 4, 3].

Understanding can be gained by the *Singular Value Decomposition* (SVD) (e.g., [1, Ch. 8])

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}$$

where $\mathbf{U} \in \mathbb{R}^{n_f \times n_f}, \mathbf{V} \in \mathbb{R}^{n_f \times n}$ satisfy

$$\mathbf{U}^{\mathsf{T}}\mathbf{U} = \mathbf{I}$$
, and $\mathbf{V}^{\mathsf{T}}\mathbf{V} = \mathbf{I}$

Diagonal of Σ contains the singular values $\sigma_1 \geq ... \sigma_{n_f} \geq 0$

$$oldsymbol{\Sigma} = egin{pmatrix} \sigma_1 & & & & \ & \ddots & & \ & & \sigma_{n_f} \end{pmatrix}$$

III-posedness and Regularization

Important is the *effective rank*: If $\sigma_j \ll \sigma_1$ for all $j \geq k$, then the effective rank of the problem is k.

If $k < n_f$, the least squares problem is ill-posed, i.e., solution does not exist or is unstable.

Small perturbations in ${\bf C}$ or ${\bf A}={\bf Y}^{\top}$ yield large perturbations in ${\bf X}={\bf W}^{\top}$

Solve regularized problem: For $\lambda > 0$

$$\min_{\mathbf{X}} \frac{1}{2} \|\mathbf{A}\mathbf{X} - \mathbf{C}^{\top}\|_F^2 + \frac{\lambda}{2} \|\mathbf{X}\|_F^2$$

Exercise: solve the regularized least-squares problem

III-posedness and Regularization

Important is the *effective rank*: If $\sigma_j \ll \sigma_1$ for all $j \geq k$, then the effective rank of the problem is k.

If $k < n_f$, the least squares problem is ill-posed, i.e., solution does not exist or is unstable.

Small perturbations in ${\bf C}$ or ${\bf A}={\bf Y}^{\top}$ yield large perturbations in ${\bf X}={\bf W}^{\top}$

Solve regularized problem: For $\lambda > 0$

$$\min_{\mathbf{X}} rac{1}{2} \|\mathbf{A}\mathbf{X} - \mathbf{C}^{ op}\|_F^2 + rac{\lambda}{2} \|\mathbf{X}\|_F^2$$

Exercise: solve the regularized least-squares problem

$$\mathbf{X} = (\mathbf{A}^{\top}\mathbf{A} + \lambda \mathbf{I})^{-1}\mathbf{A}^{\top}\mathbf{C}^{\top}$$

The Bias-Variance Decomposition

Assume $\mathbf{C}^{\top} = \mathbf{A} \mathbf{X}_{\mathrm{true}} + \epsilon$, $\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma \mathbf{I})$, $\lambda > 0$ fixed. Then setting $\mathbf{A}_{\lambda}^{\dagger} = (\mathbf{A}^{\top} \mathbf{A} + \lambda \mathbf{I})^{-1}$

$$\begin{split} \mathbf{X} - \mathbf{X}_{\mathrm{true}} &= \mathbf{A}_{\lambda}^{\dagger} \mathbf{A}^{\top} \mathbf{C}^{\top} - \mathbf{X}_{\mathrm{true}} \\ &= \left(\mathbf{A}_{\lambda}^{\dagger} \mathbf{A}^{\top} \mathbf{A} - \mathbf{I} \right) \mathbf{X}_{\mathrm{true}} + \mathbf{A}_{\lambda}^{\dagger} \mathbf{A}^{\top} \epsilon \\ &= -\lambda \mathbf{A}_{\lambda}^{\dagger} \mathbf{X}_{\mathrm{true}} + \mathbf{A}_{\lambda}^{\dagger} \mathbf{A}^{\top} \epsilon \end{split}$$

The Bias-Variance Decomposition

Assume $\mathbf{C}^{\top} = \mathbf{A} \mathbf{X}_{\mathrm{true}} + \epsilon$, $\epsilon \sim \mathcal{N}(0, \sigma \mathbf{I})$, $\lambda > 0$ fixed. Then setting $\mathbf{A}_{\lambda}^{\dagger} = (\mathbf{A}^{\top} \mathbf{A} + \lambda \mathbf{I})^{-1}$

$$\begin{split} \mathbf{X} - \mathbf{X}_{\mathrm{true}} &= \mathbf{A}_{\lambda}^{\dagger} \mathbf{A}^{\top} \mathbf{C}^{\top} - \mathbf{X}_{\mathrm{true}} \\ &= \left(\mathbf{A}_{\lambda}^{\dagger} \mathbf{A}^{\top} \mathbf{A} - \mathbf{I} \right) \mathbf{X}_{\mathrm{true}} + \mathbf{A}_{\lambda}^{\dagger} \mathbf{A}^{\top} \epsilon \\ &= -\lambda \mathbf{A}_{\lambda}^{\dagger} \mathbf{X}_{\mathrm{true}} + \mathbf{A}_{\lambda}^{\dagger} \mathbf{A}^{\top} \epsilon \end{split}$$

Error depends on $\epsilon \rightsquigarrow$ take expectation

$$\begin{split} \mathbb{E}\|\mathbf{X} - \mathbf{X}_{\text{true}}\|_F^2 &= \mathbb{E}\|\mathbf{A}_{\lambda}^{\dagger}\mathbf{A}^{\top}\boldsymbol{\epsilon} - \lambda\mathbf{A}_{\lambda}^{\dagger}\mathbf{X}_{\text{true}}\|_F^2 \\ &= \overbrace{\lambda^2\|\mathbf{A}_{\lambda}^{\dagger}\mathbf{X}_{\text{true}}\|_F^2}^{\|\text{bias}\|_F^2} + \overbrace{\sigma^2\text{trace}\left(\mathbf{A}\mathbf{A}_{\lambda}^{\dagger^T}\mathbf{A}_{\lambda}^{\dagger}\mathbf{A}^{\top}\right)}^{\text{variance}} \end{split}$$

The Bias-Variance Decomposition

Assume $\mathbf{C}^{\top} = \mathbf{A} \mathbf{X}_{\mathrm{true}} + \epsilon$, $\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma \mathbf{I})$, $\lambda > 0$ fixed. Then setting $\mathbf{A}_{\lambda}^{\dagger} = (\mathbf{A}^{\top} \mathbf{A} + \lambda \mathbf{I})^{-1}$

$$\begin{split} \mathbf{X} - \mathbf{X}_{\mathrm{true}} &= \mathbf{A}_{\lambda}^{\dagger} \mathbf{A}^{\top} \mathbf{C}^{\top} - \mathbf{X}_{\mathrm{true}} \\ &= \left(\mathbf{A}_{\lambda}^{\dagger} \mathbf{A}^{\top} \mathbf{A} - \mathbf{I} \right) \mathbf{X}_{\mathrm{true}} + \mathbf{A}_{\lambda}^{\dagger} \mathbf{A}^{\top} \epsilon \\ &= -\lambda \mathbf{A}_{\lambda}^{\dagger} \mathbf{X}_{\mathrm{true}} + \mathbf{A}_{\lambda}^{\dagger} \mathbf{A}^{\top} \epsilon \end{split}$$

Error depends on $\epsilon \rightsquigarrow$ take expectation

$$\begin{split} \mathbb{E}\|\mathbf{X} - \mathbf{X}_{\text{true}}\|_F^2 &= \mathbb{E}\|\mathbf{A}_{\lambda}^{\dagger}\mathbf{A}^{\top}\boldsymbol{\epsilon} - \lambda\mathbf{A}_{\lambda}^{\dagger}\mathbf{X}_{\text{true}}\|_F^2 \\ &= \overbrace{\lambda^2\|\mathbf{A}_{\lambda}^{\dagger}\mathbf{X}_{\text{true}}\|_F^2}^{\|\text{bias}\|_F^2} + \overbrace{\sigma^2\text{trace}\left(\mathbf{A}\mathbf{A}_{\lambda}^{\dagger^T}\mathbf{A}_{\lambda}^{\dagger}\mathbf{A}^{\top}\right)}^{\text{variance}} \end{split}$$

Take home: No such thing as exact recovery!

Next Time

Solving large-scale least-squares problems.

Watch: https://www.youtube.com/watch?v=eAYohMUpPMA

Overview of Conjugate Gradient Method

References

- U. M. Ascher and C. Greif. A First Course on Numerical Methods. SIAM, Philadelphia, 2011.
- [2] P. C. Hansen. Rank-deficient and discrete ill-posed problems. SIAM Monographs on Mathematical Modeling and Computation. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1998.
- [3] P. C. Hansen. *Discrete inverse problems*, volume 7 of *Fundamentals of Algorithms*. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2010.
- [4] C. R. Vogel. Computational Methods for Inverse Problems. SIAM, Philadelphia, 2002.