

Universidad Tecnológica de la Mixteca 00088

Clave DGP: 200089

Ingeniería en Física Aplicada

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA Mecánica de Fluidos

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Séptimo	172073	101

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Proporcionar al estudiante los conocimientos para comprender y resolver problemas relacionados con la dinámcia de los fluidos, así como su aplicación en procesos y sistemas industriales.

TEMAS Y SUBTEMAS

1. Estática de fluidos.

- 1.1. Introducción.
- 1.2. Variación de la presión con la posición en un fluido.
- 1.3. Empuje hidrostático en superficies sumergibles.
- 1.4. Estabilidad de cuerpos en fluidos.
- 1.5. Equilibrio de fluidos en movimiento.

2. Cinemática de fluidos.

- 2.1. El campo de velocidad.
- 2.2. Medición de velocidades y caudales con tubo de Pitot.
- 2.3. El campo de aceleración.
- 2.4. Teorema de transporte de Reynolds.
- 2.5. Ecuación de continuidad.
- 2.6. Ecuación de Bernoulli.
- 2.7. Ecuación de energía.

3. Flujo en canales abiertos.

- 3.1. Introducción.
- 3.2. Clasificación del flujo en canal abierto.
- 3.3. Tipos de flujo en canal abierto.
- 3.4. Flujo estable en canales abiertos.
- 3.5. Formas eficientes para canales abiertos.
- 3.6. Flujo crítico y energía específica.
- 3.7. Salto hidráulico.
- 3.8. Flujo gradualmente variado.

4. Flujo viscoso en tuberías y canales.

- 4.1. Flujo laminar y turbulento.
- 4.2. Flujo laminar incompresible y permanente entre placas paralelas.
- 4.3. Flujo laminar en tuberías y anillos.
- 4.4. Relaciones para flujo turbulento.
- 4.5. Pérdida de energía en flujo turbulento en conductos abiertos y cerrados.
- 4.6. Flujo permanente incompresible a través de tuberías simples.

5. Flujo en conductos.

- 5.1. Introducción.
- 5.2. Flujo laminar en tuberías circulares.
- 5.3. Flujo laminar a través de anillos.
- 5.4. Flujo laminar entre planos paralelos.
- 5.5. Capa límite.
- 5.6. Medida de viscosidad.
- 5.7. Fundamentos de la teoría de lubricación hidrodinámica.
- 5.8. Flujo laminar a través de medios porosos.
- 5.9. Flujo no permanente.

Universidad Tecnológica de la Mixteca

00089

Clave DGP: 200089

Ingeniería en Física Aplicada

PROGRAMA DE ESTUDIOS

6. Análisis dimensional.

- 6.1. Variables o parámetros.
- 6.2. Dimensiones y Unidades.
- 6.3. Aplicación del Teorema de Buckingham.
- 6.4. Números adimensionales, Euler, Froude, Reynolds, Match y su significado.
- 6.6. Uso de los números adimensionales.
- 6.7. Estudio de modelos.

7. Flujos compresibles.

- 7.1. Introducción.
- 7.2. Clasificación de flujos compresibles.
- 7.3. Flujo isoentrópico y sus leyes.
- 7.4. Flujo subsónico y flujo supersónico.

8. Solución Numérica de las ecuaciones de Navier-Stokes.

- 8.1. Diferencias Finitas.
- 8.2. Elementos Finitos.
- 8.3. Utilización de paquetes software comerciales. ANSYS, COMSOL, SOLID WORKS.

9. Turbomáquinas.

- 9.1. Turbinas de impulso.
- 9.2. Turbinas de reacción.
- 9.3. Relaciones de energía y cabeza para bombas.
- 9.4. Rendimiento de bombas y relaciones de semejanza.
- 9.5. Velocidad especifica.
- 9.6. Cavitación.
- 9.7. Hélices y aerogeneradores.

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como son la computadora y los proyectores. Asimismo se desarrollarán programas de cómputo sobre los temas y los problemas del curso.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender, al menos tres evaluaciones parciales que tendrán una equivalencia del 50% y un examen final que tendrá 50%. Las evaluaciones serán escritas, orales y prácticas; éstas últimas, se asocian a la ejecución exitosa y a la documentación de la solución de programas asociados a problemas sobre temas del curso; la suma de estos dos porcentajes dará la calificación final

Además se considerará el trabajo extra-clase, la participación durante las sesiones del curso y la asistencia a las asesorías.

Universidad Tecnológica de la Mixteca

00090

Clave DGP: 200089

Ingeniería en Física Aplicada

PROGRAMA DE ESTUDIOS

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL Y AÑO)

- Mecánica de Fluidos, Hansen A.G., Limusa, (2000) Mecánica de Fluidos, White F.M., McGraw Hill, (2000)
- 3. Introduction to the Mechanics of a Continuos Medium, Malvern L.E., Prentice Hall, (2000)
- Fundamentals of Fluid Mechanics, 5th Ed., Munson B.R., Young D.F., and Okiishi T.H., John Wiley & Sons, (2006)

- Mecánica de Fluidos, Streeter V.L., E.B. Wylie, y K.W. Bedford, McGraw Hill, 9a Ed., (2003)
 Mechanics of Fluids, Massey B.F., Routledge, 8th Ed., (2006)
 Applied Fluid Mechanics, Mott R.L., Prentice Hall, 6th Ed., (2005)

- Mechanics of Fluids, Shames I.H., McGraw Hill, 4th Ed., (2002)

PERFIL PROFESIONAL DEL DOCENTE

Maestría y/o Doctorado en Física, Ciencia de Materiales, Química de Materiales o en Metalurgia.

Materiales,

JEFATURA DE CARRERA INGENIERIA EN FÍSICA APLICADA

DR. SALOMÓN GONZÁLEZ MARTÍNEZ JEFE DE CARRERA

DR. AGUSTIN SANTIAGO ALVAR VICE-RECTOR ACADÉMICO