PLSC 476: Empirical Legal Studies

Christopher Zorn

January 26, 2021

Logistics

Details:

- Syllabus is on the Github repository (https://github.com/PrisonRodeo/PLSC476-SP2021-git)
- Three broad course "themes":
 - · Introduction / review software, statistics, etc.
 - · Empirical work on courts and judges
 - · Empirical analysis of (and in) the practice of law
- Research modules (4 @ 15% each):
 - · Module #1 will be "common" (assigned the end of this week)
 - · Modules #2-4 will be your choice
 - · More details will be posted soon

Levels of Measurement

- Nominal (classification)
- Ordinal (order)
- Interval (equal intervals)
- Ratio ("true zero")

Variables: Discrete vs. Continuous

Examples of Variables, by Type and Level of Measurement

Level of Measurement	Discrete	Continuous
Nominal	$\{Blonde, Brunette, Redhead\}$	n/a
Ordinal	Social Class (Upper, middle, lower)	n/a
Interval	Year	Temperature (in degrees F)
Ratio	Counts of things	Height, weight, distance, etc.

Central Tendency

Arithmetic Mean (minimizes squared deviations):

$$\bar{X} = \frac{1}{N} \sum_{i=1}^{N} X_i$$

Median (minimizes absolute deviations):

$$\check{X}$$
 = "middle observation" of X
= 50th percentile of X .

Mode (most frequently-occurring value):

Variation: Range and Percentiles

Range:

$$\mathsf{Range}(X) = \mathsf{max}(X) - \mathsf{min}(X)$$

The k**th percentile** is the value of the variable below which k percent of the observations fall

- 50th percentile = \check{X}
- 0th percentile = minimum(X)
- 100th percentile = maximum(X)

Variance and S.D.

Variance:

$$\sigma^2 = \frac{1}{N-1} \sum_{i=1}^{N} (X_i - \bar{X})^2$$

Standard deviation:

$$\sigma = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (X_i - \bar{X})^2}$$

Skewness

Typically:

$$\mu_{3} = \frac{M_{3}^{2}}{\sigma^{3}}$$

$$= \frac{\frac{1}{N} \sum_{i=1}^{N} (X_{i} - \bar{X})^{3}}{\left[\frac{1}{N} \sum_{i=1}^{N} (X_{i} - \bar{X})^{2}\right]^{3/2}}$$

- Skewness = $0 \rightarrow \text{symmetrical}$
- Skewness $> 0 \rightarrow$ "positive" (tail to the right)
- Skewness $< 0 \rightarrow$ "negative" (tail to the left)

Skewness Illustrated

Means, Medians, Modes, and Skewness

Dichotomous / "Binary" Variables

Defined as:

$$D \in \{0, 1\}$$

Central Tendency:

Mean
$$\overline{D} = Pr(\widehat{D=1})$$

Median = Mode

Variance:

$$\sigma_D^2 = \bar{D} \times (1 - \bar{D})$$

and so SD:

$$\sigma_D = \sqrt{ar{D} imes (1 - ar{D})}$$

Types of Relationships

Strength of Relationships

Tabular Methods "Crosstabs"

- Requires nominal- or ordinal-level data...
- Rows / columns denote categories (or intervals) of Y and X respectively
- Cell entries indicate frequencies of observations that meet both conditions...
- Levels of Measurement:
 - · Nominal categories = no indication of "direction"
 - · Ordinal categories should appear in order
 - · Continuous variables require "binning" ...
 - · Are related to statistics (e.g., χ^2)

Statistical Measures of Association

The general idea:

- If two variables X and Y are unrelated, then we should see an "even" distribution of cases on each, irrespective of the values of the other
- If we observe something other than such an "even" distribution, then the variables are not unrelated
- Formally: No association means f(Y|X) = f(Y)

Measures of Association, by Levels of Measurement

				Χ	
		Nominal	Binary	Ordinal	Interval/Ratio
	Nominal	χ^2	χ^2	χ^2	t -test (and η)
v	Binary	χ^2	ϕ , Q	γ, au_c	t-test
,	Ordinal	χ^2	γ, τ_c	γ, au_{a}, au_{b}	Spearman's $ ho$
	Interval / Ratio	t -test (and η)	<i>t</i> -test	Spearman's $ ho$	r (+ regression)

Statistical Inference

Hypothesis Testing

Moving parts:

- A *null hypothesis*, usually denoted H_0
- an alternative (or research) hypothesis H_a or H_1
- a test statistic $\theta = f(\text{sample data } \mathbf{X})$
- a rejection region for the null in the space of the sample statistic

Type I and Type II Errors:

- Type I error: rejecting a true null hypothesis (think of this as a "false positive")
- Type II error: failing to reject a false null hypothesis (think of this as a "false negative")

	Reality / Population				
Test Statistic / Sample	H_a	$\overline{H_0}$			
H _a	Correct	Type I error			
H ₀	Type II Error	Correct			

Example: English Premier League (EPL) Table

> print(EPL)

· primo(212)									
Team	Rank	${\tt Points}$	${\tt Matches}$	Win	\mathtt{Draw}	Loss	${\tt Goals}$	${\tt GoalsAgainst}$	${\tt GoalDifference}$
Manchester United	1	40	19	12	4	3	36	25	11
Manchester City	2	38	18	11	5	2	31	13	18
Leicester City	3	38	19	12	2	5	35	21	14
Liverpool	4	34	19	9	7	3	37	22	15
Tottenham Hotspur	5	33	18	9	6	3	33	17	16
Everton	6	32	17	10	2	5	28	21	7
West Ham United	7	32	19	9	5	5	27	22	5
Aston Villa	8	29	17	9	2	6	31	18	13
Chelsea	9	29	19	8	5	6	33	23	10
Southampton	10	29	18	8	5	5	26	21	5
Arsenal	11	27	19	8	3	8	23	19	4
Leeds United	12	23	18	7	2	9	30	34	-4
Crystal Palace	13	23	19	6	5	8	22	33	-11
Wolverhampton	14	22	19	6	4	9	21	29	-8
Burnley	15	19	18	5	4	9	10	22	-12
Newcastle United	16	19	19	5	4	10	18	32	-14
Brighton & Hove Albion	17	17	19	3	8	8	22	29	-7
Fulham	18	12	18	2	6	10	15	27	-12
West Bromwich Albion	19	11	19	2	5	12	15	43	-28
Sheffield United	20	5	19	1	2	16	10	32	-22

EPL Data Summary

> summarv(EPL)

> Summary (EPL)					
Team	Rank	Poi	nts	Matches	Win
Length:20	Min. : 1	.00 Min.	: 5.00 Min	. :17.0	Min. : 1.0
Class : charact	ter 1st Qu.: 5	5.75 1st Qu.	:19.00 1st	Qu.:18.0	1st Qu.: 5.0
Mode :charact	ter Median :10	.50 Median	:28.00 Med	ian :19.0	Median: 8.0
	Mean :10	.50 Mean	:25.60 Mea	n :18.5	Mean : 7.1
	3rd Qu.:15	.25 3rd Qu.	:32.25 3rd	Qu.:19.0	3rd Qu.: 9.0
	Max. :20	0.00 Max.	:40.00 Max	. :19.0	Max. :12.0
Draw	Loss	Goals	GoalsAg	ainst Goa	alDifference
Min. :2.00	Min. : 2.0	Min. :10.0	0 Min. :	13.00 Min	ı. :-28.00
1st Qu.:2.75	1st Qu.: 5.0	1st Qu.:20.2	5 1st Qu.::	21.00 1st	Qu.:-11.25
Median:4.50	Median: 7.0	Median:26.5	0 Median :	22.50 Med	lian : 4.50
Mean :4.30	Mean : 7.1	Mean :25.1	5 Mean :	25.15 Mea	n : 0.00
3rd Qu.:5.00	3rd Qu.: 9.0	3rd Qu.:31.5	0 3rd Qu.::	29.75 3rd	l Qu.: 11.50
Max. :8.00	Max. :16.0	Max. :37.0	0 Max. :	43.00 Max	: 18.00

Alternative Summary

> describe(EPL)

	vars	n	mean	sd	median	trimmed	mad	min	max	range	skew	kurtosis	se
Team*	1	20	NaN	NA	NA	NaN	NA	Inf	-Inf	-Inf	NA	NA	NA
Rank	2	20	10.50	5.92	10.5	10.50	7.41	1	20	19	0.00	-1.38	1.32
Points	3	20	25.60	9.65	28.0	26.12	8.90	5	40	35	-0.40	-0.86	2.16
Matches	4	20	18.50	0.69	19.0	18.62	0.00	17	19	2	-0.92	-0.49	0.15
Win	5	20	7.10	3.29	8.0	7.19	2.97	1	12	11	-0.33	-1.05	0.74
Draw	6	20	4.30	1.75	4.5	4.19	1.48	2	8	6	0.18	-0.86	0.39
Loss	7	20	7.10	3.48	7.0	6.81	2.97	2	16	14	0.61	-0.05	0.78
Goals	8	20	25.15	8.40	26.5	25.62	8.90	10	37	27	-0.35	-1.16	1.88
GoalsAgainst	9	20	25.15	7.16	22.5	24.75	6.67	13	43	30	0.60	-0.19	1.60
GoalDifference	10	20	0.00	13.59	4.5	1.00	16.31	-28	18	46	-0.39	-1.14	3.04

Hypothesis Testing: One Variable

In the EPL.

- wins are worth three points,
- draws are worth one point, and
- losses are worth zero points.

If (on average) teams are "balanced," then each team can expect to score

$$\frac{\{(0.5 \times 1) + [(0.25 \times 3) + (0.25 \times 0)]\}}{2} = 1.25$$

points per game. Do they?

Hypothesis Testing: One Variable

Hypothesis test for $\overline{PPG} = 1.25$:

```
> EPL$PPG <- EPL$Points / EPL$Matches
> describe(EPL$PPG)
  vars n mean sd median trimmed mad min max range skew kurtosis
X1
     1 20 1.39 0.53 1.47 1.42 0.57 0.26 2.11 1.85 -0.42 -0.94 0.12
> t.test(EPL$PPG, mu=1.25)
One Sample t-test
data: EPL$PPG
t = 1.1733, df = 19, p-value = 0.2552
alternative hypothesis: true mean is not equal to 1.25
95 percent confidence interval:
1.141219 1.636318
sample estimates:
mean of x
1.388768
```

se

Hypothesis Testing: Differences Of Means

Q: Do London-area teams score more points than those elsewhere?

```
Hypothesis test for \overline{PPG}_{London} = \overline{PPG}_{Non-London}:
> LACs<-c("Tottenham Hotspur", "West Ham United", "Chelsea",
          "Crystal Palace", "Fulham", "Arsenal")
> EPL$London<-ifelse((EPL$Team %in% LACs==TRUE),1,0)
> table(EPL$London)
0 1
14 6
> t.test(PPG~London.data=EPL)
Welch Two Sample t-test
data: PPG by London
t = -0.0098105, df = 13.439, p-value = 0.9923
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.4984103 0.4938892
sample estimates:
mean in group 0 mean in group 1
       1.388090
                  1.390351
```

Measures of Association

Q: Do teams that score a lot of goals also allow a lot of goals?

```
Examine the association between Goals and GoalsAgainst:
```

```
> with(EPL, cor(Goals,GoalsAgainst))
[1] -0.5218317
> with(EPL, cor.test(Goals,GoalsAgainst))
Pearson's product-moment correlation
data: Goals and GoalsAgainst
t = -2.5953, df = 18, p-value = 0.01828
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.7834396 -0.1031246
sample estimates:
       cor
-0.5218317
```

Next time: Data Visualization