Graphing & Filtering EEG Data with MNE Python

21 July 2022 Jenny Tou

Learning Objectives

- Basic MNE Python
- Anatomy of EEG files
- Plot Raw EEG
- Basic preprocessing steps
- More EEG Plots
- Other resources for EEG data

MNE Python

Open-source Python package for exploring, visualizing, and analyzing human neurophysiological data: MEG, EEG, sEEG, ECoG, NIRS, and more.

Source Estimation
Distributed, sparse,
mixed-norm, beamformers, dipole fitting,
and more.

Machine Learning

Advanced decoding models including time generalization.

Encoding Models
Receptive field estimation with optional smoothness priors.

Statistics

Parametric and nonparametric, permutation tests and clustering. Connectivity

All-to-all spectral and effective connectivity measures.

Data Visualization
Explore your data from multiple perspectives.

Why MNE Python?

- Documentation
- Tutorials
- Functions for EEG data processing and analysis
- Support for reading most file formats
 - fif
 - Xdf
 - Csv
 -
- It's Python... great for leveraging other ML capacities; suitable for realtime applications

Anatomy of EEG Files

EEG & File Information

- Absolutely essential:
 - EEG channel labels
 - sampling frequency
- Other potentially useful information:
 - Subject name
 - Session number
 - Task name
 - Markers
 - ..

THE EEG Data

Channel

Timestamp	Channel 1	 Channel n	Markers
1655.2337	4138.055	 4208.205	Baseline start
1655.233879	4135.093	 4246.354	Eye open end

Signal Amplitude

Plot EEG

Channel

Timestamp	Channel 1		Channel n	Markers
1655.2337	4138.055		4208.205	Baseline start
1655.233879	4135.093	***	4246.354	Eye open end

Signal Amplitude

Basic Preprocessing Steps

Filtering

- Bandpass Filter ~1-30Hz
- Notch Filter 60Hz
- More next week!

Montage

Laplacian Montage

Acharya, Jayant N.; Acharya, Vinita J. Overview of EEG Montages and Principles of Localization, Journal of Clinical Neurophysiology: September 2019 - Volume 36 - Issue 5 - p 325-329 doi: 10.1097/WNP.000000000000538

Time Domain vs Frequency Domain

More EEG Plots

Spectrum (Frequency)

More...

https://mne.tools/stable/auto_tutorials/time-freq/20_sensors_time_frequency.html

Other Resources for EEG Data

Matlab Processing

- EEGLab (with GUI)
- FieldTrip (no GUI)
- Data Recording
 - Lab streaming layer (near-real-time access, time-synchronization, networking, recording)

Thanks!

Questions?
Jenny Tou
sl.tou@mail.utoronto.ca