UKŁADY CYFROWE I SYSTEMY WBUDOWANE 2

Projekt

Organy z pozytywką

Maja Bojarska, 241287

Damian Koper, 241292

30 kwietnia 2020

1 Cel projektu

Celem projektu było wykonanie układu realizujący działanie organów sterowanych za pomocą klawiszy klawiatury podłączonej z wykorzystaniem interfejsu PS2. Rozszerzeniem działania układu było odtwarzanie sekwencji dźwięków zapisanej w pliku tesktowym odczytanych z karty pamięci SD.

1.1 Założenia wstępne

Początkowy projekt układu zakładał podział kolejnych funkcjonalności na możliwie małe moduły według zasady pojedynczej odpowiedzialności. Układ mapował klawisze klawiatury na właściwe tony. Klawisze były przypisane w przybliżeniu zgodnie z układem klawiszy pianina. Klawisze A – J odpowiadały tonom C – H, a klawisze W – E i T – U półtonom kolejno C#-D# i F#-A#. Oktawa zmieniana była za pomocą klawiszy strzałek w zakresie od 0 do 8.

Pierwotny projekt zawierał również podziała na wiele typów fal, których zmiana dokonywana być miała pomocą sygnałów z enkodera. Diagram przepływu danych wstępnego projektu przedstawia rysunek 1.

Rysunek 1: Bazowy projekt organów. Niebieskimi strzałkami oznaczono podstawową i wykonaną jako pierwszą funkcjonalność.

1.2 Założenia rozszerzone

Rozszerzeniem funkcjonalności organów sterowanych za pomocą klawiatury było uzyskanie możliwości odtwarzania wcześniej zapisanej sekwencji dźwięków o zmiennej długości. Wykorzystano do tego możliwość wczytania danych z karty pamięci i moduł $SDC_FileReader$. Przykład zapisu dźwięku w pliku tekstowym:

a4000000101001101

gdzie:

a-Ton

4 - Oktawa

 $0000000101001101 - Czas\ trwania\ [x*3ms]$

Jeden dźwięk jest definiowany zawsze z wykorzystaniem 18 znaków, więc zapis nie wymaga stosowania separatorów. Czas trwania dźwięku zapisany jest z wykorzystaniem liczby binarnej zapisanej tekstowo na 16 bitach i definiuje czas trwania jako wielokrotność 3ms.

2 Struktura układu

2.1 Schemat najwyższego poziomu

Schemat najwyższego poziomu przedstawiony na rysunku 2 zawiera wszystkie zawnętrzne moduły odpowiedzialne za komunikację z urządzeniami peryferyjnymi. Są to:

- \bullet SDC_FileReader
- PS2_Kbd
- DACWrite

Wszystkie moduły komunikują się z modułem InnerLogic.

Rysunek 2: Schemat najwyższego poziomu.

2.2 InnerLogic

Schemat InnerLogic przedstawiony na rysunku 3 zawiera wszystkie moduły odpowiedzialne za generowanie sygnału wyjściowego na podstawie danych wejściowych zebranych z klawiatury i karty SD. Przedstawione tutaj moduły mają swoje częściowe odwzorowanie we wstępnym projekcie przedstawionym na rysunku 1.

Rysunek 3: Schemat InnerLogic.

2.3 FileReaderFSM

Moduł FileReaderFSM realizuje maszynę stanów, która odpowiedzialna jest za interakcje z modułem $SDC_FileReader$. Odpowiada on za dostarczanie numeru tonu i oktawy przez określony czas, gdzie wszystkie te dane odczytywane są z karty SD.

Moduł $SDC_FileReader$ umożliwia obsługę odczytu jako obsługę kolejki FIFO. Moduł FileReaderFSM w procesie odczytu danych jednego dźwięku odczytuje najpierw znak tonu, potem oktawy, a następnie czas jego trwania wpisując tę wartość do licznika. Po zakończonym odczycie 18 znaków licznik jest uruchamiany, a zmapowane kody tonu i oktawy są widoczne na wyjściu dopóki licznik się nie wyzeruje. Wczytanie tonu 1 i oktawy 4 przedstawia symulacja na rysynku 4.

Ton i oktawa podawane są na wyjście zaraz po ich odczytaniu, a licznik uruchamiany jest

po wczytaniu całego słowa określającego długość dźwięku. Skutkuje to pomijalnie małym wydłużeniem czasu trwania dźwięku.

Rysunek 4: Symulacja modułu FileReaderFSM.

2.4 ToneFSM

ToneFSM realizuje maszynę stanów, której stan określa aktualnie odtwarzany ton. Kody od 1 do xd odpowiadają wszystkim tonom i półtonom jednej oktawy. Kod 0 odpowiada ciszy, czyli stanowi, kiedy żaden przycisk nie jest wciśnięty. Stan maszyny zmieniany jest w momencie naciśnięcia lub puszczenia przycisku na klawiaturze i stan ten następnie jest mapowany na odpowiedni kod tonu. Kolejne wciśnięcia przycisków (a, w, s, e, d, r, f) przedstawia symulacja na rysunku 5.

Rysunek 5: Symulacja modułu ToneFSM.

2.5 OctaveFSM

xd

2.6 SourceSwitchFSM

Moduł SourceSwitchFSM odpowiedzialny jest za wybór źródła dźwięku i za restartowanie odczytu dźwięków z karty pamięci w przypadku wyboru tego źródła. Klawisz M zmienia źródło na klawiaturę, a klawisz N na kartę pamięci. Na symulacji z rysunku 6 widać zmianę domyślnego źródła klawiatury na kartę pamięci i wysłanie impulsu wystąpienia zdarzenia zmiany źródła. Zdarzenie to obsługiwane jest przez moduł FileReaderFSM, który restartuje proces odczytu.

Rysunek 6: Symulacja modułu SourceSwitchFSM.

2.7 FreqMapper

FreqMapper obsługuje proces mapowania oktawy i tonu na liczbę cykli zegara o częstotliwości 50MHz, która odpowiada okresowi fali danego dźwięku. Ton 0 mapowany jest zawsze na wartość 0, co w dalszym procesie generowania sygnału oznacza ciszę. Symulację dla oktawy 0 i 3 przedstawia rysunek 7.

Rysunek 7: Symulacja modułu FreqMapper.

2.8 GeneratorSaw

xd

2.9 GeneratorSignalSwitch

xd

3 Symulacja InnerLogic

Oba warianty wejść zostały odpowiednio przetestowane w symulacji. Rysuneki 8 i 9 przedstawiają symulacje działania modułu InnerLogic i falę generowaną przez ten moduł.

3.1 Wejście z klawiatury

Rysunek 8 przedstawia symulację działania modułu InnerLogic i falę generowaną przez ten moduł. Symulacja obejmuje odtworzenie wszystkich tonów poprzez wciśnięcie odpowiadających im klawiszy. Przeplatane jest to chwilą ciszy, co widać na symulacji.

Rysunek 8: Symulacja modułu InnerLogic. Wejście z klawiatury.

3.2 Wejście z karty pamięci

Symulacja obejmuje odtworzenie melodii zdefiniowanej w pliku na karcie pamięci. Dźwięki opisane są następującym ciągiem:

Rysunek 9: Symulacja modułu InnerLogic. Wejście z karty pamięci.

4 Analiza statyczna

5 Podsumowanie

5.1 Analiza czasów

Narzędzie ISE w wygenerowanym raporcie z procesu implementacji zapewnił, że wymagania czasowe związane z częstotliwością taktowania zegara 50MHz zostaną spełnione.

```
Timing summary:

-----

Timing errors: 0 Score: 0 (Setup/Max: 0, Hold: 0)

Constraints cover 5434354 paths, 0 nets, and 7551 connections

Design statistics:

Minimum period: 17.917ns{1} (Maximum frequency: 55.813MHz)
```

5.2 Zrealizowane założenia

Działanie poparte poprawnymi efektami symulacji pozwala sądzić, iż projekt został wykonany poprawnie zgodnie ze wstępnymi założeniami. Zrezygnowano jednak z pozostałych generatorów typów fal, pozostając tylko przy fali piłokształtnej, ponieważ proces generowania fali w pozostałych generatorach odbywałby się podobnie. Czy to poprzez użycie innego zachowania liczników, czy to poprzez podawanie na wyjście stablicowanych wartości.