../Imagens/bla.png

Anderson Gomes da Silva RA 110826
Eduardo Oliveira RA 108164
Gabriel Rodrigues Munhoz RA 106802
Guilherme Benetti RA 107613
Hugo Minella RA 110862
José Henrique Gonçalves RA 110058

Relatório sobre Cronoanálise Introdução a Engenharia de Produção

Maringá, São Paulo Maio de 2018

Sumário

0.1	Introdução
0.2	Metodologia
0.2.1	Materiais
0.2.2	Método
0.3	Resultados e Discussão
0.4	Conclusão

0.1 Introdução

Bla bla

0.2 Metodologia

0.2.1 Materiais

Nesse experimento foram utilizados os seguinte materiais:

- -Cronômetro;
- -Peças de LEGO;
- -Imagens do robô montado;
- -Material para anotação;

0.2.2 Método

Bla bla, robô montado como vemos na imagem 1.

Figura 1 – Vistas do robô montado

0.3 Resultados e Discussão

A partir dos tempos coletados durante a análise (Tabela 1), calculamos as médias (Tabela 2), por meio de média aritmética. (Abreviação de funcionário: func.)

Tabela 1 – Tempos coletados em segundos

1 func.	3 func. em fila	3 func. simultâneas
19,34	13,49	11,22
12,93	12,96	6,23
14,62	10,73	5,29
11,61	23,31	5,12
11,22	10,36	5,20
12,62	9,50	4,35
35,55*	21,79	4,65
12,44	13,22	4,46
11,78	24,76	4,91
14,74	11,70	5,50

*Outlier

Tabela 2 – Médias calculadas em segundos

1 func.	3 func. em fila	3 func. simultâneas
13,48	15,18	5,69

E a partir dessas médias de tempo(\overline{T}) calculamos a produtividade mensal(P) de 1, 2 e 3 funcionários trabalhando em linha e simultaneamente. Para isso, consideramos um rendimento de 80%, um dia contendo 25.200 segundos disponíveis e um mês apresentando 22 dias úteis.

$$P = \frac{25.200}{\overline{T}} \times 0,80 \times 22 \quad (1)$$

A produtividade mensal (Tabela 4) dos 4 casos foram alocados em uma tabela para melhor visualização.

Tabela 3 – Produtividade mensal em número de peças prontas

1 func.	2 func.	3 func. em fila	3 func. simultâneas
32.902	65.804	29.217	77.947

Considerando uma meta de 70.000 peças por mês e um salário de R\$1.000,00 mensal, com hora extra custando 50% a mais do que uma hora de trabalho normal, o custo total dos funcionários e suas horas extras são:

Custo Total

R\$3.000,00

	1 func.	2 func.	3 func. em fila	3 func. simultâneas
Produtividade	32.902	65.804	29.217	77.947
Peças faltando	37.098	4.196	40.783	0
Total dos Salários	R\$1.000,00	R\$2.000,00	R\$3.000,00	R\$3.000,00
Total das Horas Extras	R\$1.302,29	R\$147,29	R\$1.612,19	R\$0,00

R\$4.612,19

R\$2.302,29 R\$2.147,29

Tabela 4 – Custo total - META 70.000

Considerando uma meta de 170.000 peças por mês e um salário de R\$1.000,00 mensal, com hora extra custando 50% a mais do que uma hora de trabalho normal, o custo total dos funcionários e suas horas extras são:

Tabela 5 – Custo total - META 170.000

	1 func.	2 func.	3 func. em fila	3 f <mark>unc. simultân</mark> eas
Produtividade	32.902	65.804	29.217	77.947
Peças faltando	137.098	104.196	140.783	92.053
Total dos Salários	R\$1.000,00	R\$2.000,00	R\$3.000,00	R\$3.000,00
Total das Horas Extras	R\$4.812,71	R\$3.657,71	R\$5.565,31	R\$1.364,01
Custo Total	R\$5.812,71	R\$5.657,71	R\$8.565,31	R\$4.364,01

Com isso, podemos observar que a cronoanálise dentro de uma empresa faz total diferença no corte de custos e que devemos nos atentar para as características de cada empresa, pois cada análise foca diretamente naquilo que a empresa precisa, nos retornando resultados específicos. No caso da meta de 70.000 peças, verificamos que o melhor plano de produção ocorre quando possuímos 2 funcionários trabalhando em 2 peças distintas. Porém, no caso da meta de 170.000 peças, o melhor modelo para produção se encontra quando possuímos 3 funcionários trabalhando simultaneamente na mesma peça, dividindo o produto em setores que podem ser montados separados e depois ao final podem ser encaixados.

Em nossa simples análise não nos atentamos ao custo de estoque que poderia ocorrer caso algum modelo superasse a meta de produção, e nem ao máximo de horas extras que cada funcionário poderia realizar. Com isso, nossos resultados possuem um erro significativo se acaso os números de hora extra extrapolaram o limite determinado por lei, no entanto, podemos utilizá-los para comparação e análise dentro de um contexto que não contenha tais variáveis.

0.4 Conclusão

Concluindo... bla bla