Diskretna matematika

Rješenja zadataka za vježbu - drugi ciklus 2008/2009

```
1.a) (15, 112, 113), (8, 15, 17), (9, 12, 15), (15, 36, 39), (15, 20, 25)
```

- **1.c)** (20, 21, 29), (29, 420, 421)
- **1.d)** (38, 360, 362)

2.a)
$$\frac{51}{97} = [0; 1, 1, 9, 5]$$

2.b)
$$\frac{101}{31} = [3; 3, 1, 7]$$

2.c)
$$\frac{58}{269} = [0; 4, 1, 1, 1, 3, 5]$$

3.a)
$$\sqrt{23} = [4; \overline{1, 3, 1, 8}]$$

3.b)
$$\sqrt{47} = [6; \overline{1, 5, 1, 12}]$$

3.c)
$$\sqrt{57} = [7; \overline{1, 1, 4, 1, 1, 14}]$$

- **4.** (3480, 413)
- **5.** (145, 12), (42049, 3480)
- **6.** Zatvorenost i asocijativnost slijedi iz istih svojstava grupe (G, \cdot) . Neutralni element je funkcija $e: S \to G$ definirana sa $e(s) = e_G$ za svaki $s \in S$. Inverz of $f \in X$ je funkcija $g: S \to G$ definirana sa $g(s) = (f(s))^{-1}$ za svaki $s \in S$.
- 7.a) 4
- **7.b**) 3
- **7.c**) 7
- 7.d) 3
- **8.** Neka je $ab \in H$. Tada je $b(ab) \in bH = Hb$, pa je $ba = (bab)b^{-1} \in Hbb^{-1} = H$. Obrat se dokazuje sasvim analogno.
- 9. DA. Preslikavanje $f: \mathbb{Z} \to 2\mathbb{Z}$ definirano sa f(z) = 2z je očito bijekcija i homomorfizam.
- **10.** NE. Ako je $f: \mathbb{Z}_{12} \to \mathbb{Z}_2 \times \mathbb{Z}_6$ homomorfizam, onda je f(0) = (0,0), ali je također i f(6) = f(1) + f(1) + f(1) + f(1) + f(1) + f(1) = (0,0), pa f nije injekcija.

- **11.** $\varphi(xy)=(xy)^2=x^2y^2=\varphi(x)\varphi(y)$ pa je φ homomorfizam. Ker $(\varphi)=\{1,-1\}$, Im $(\varphi)=\{x^2:x\in\mathbb{Q}\}$
- **12.** Neka je $P = \{a + b\sqrt{5} : a, b \in \mathbb{Q}\}$. Za $a + b\sqrt{5}, c + d\sqrt{5} \in P$ je $(a + b\sqrt{5}) (c + d\sqrt{5}) = (a c) + (b d)\sqrt{5} \in P$, pa je (P, +) abelova grupa. Ako je $c + d\sqrt{5} \neq 0$, onda je $(a + b\sqrt{5})(c + d\sqrt{5})^{-1} = \frac{ac 5bd}{c^2 5d^2} + \frac{bc ad}{c^2 5d^2}\sqrt{5} \in P$, pa je $(P \setminus \{0\}, \cdot)$ abelova grupa.

$$(2 - 3\sqrt{5})^{-1} = -\frac{2}{41} - \frac{3}{41}\sqrt{5}$$

Polja P i $\mathbb Q$ nisu izomorfna. Zaista, pretpostavimo da je $f: P \to \mathbb Q$ izomorfizam. Tada je f(1) = 1 i f(5) = f(1+1+1+1+1) = f(1)+f(1)+f(1)+f(1)+f(1)+f(1)=5. Neka je $f(\sqrt{5}) = a \in \mathbb Q$. Tada iz $5 = f(5) = f(\sqrt{5} \cdot \sqrt{5}) = a^2$ slijedi da je $\sqrt{5}$ racionalan broj, što je kontradikcija.

13. Označimo zadani skup sa \mathcal{M} . Tvrdnja slijedi iz

$$\begin{bmatrix} a & b \\ 2b & a \end{bmatrix} - \begin{bmatrix} c & d \\ 2d & c \end{bmatrix} = \begin{bmatrix} a-c & (b-d) \\ 2(b-d) & a-c \end{bmatrix} \in \mathcal{M},$$

$$\begin{bmatrix} a & b \\ 2b & a \end{bmatrix} \cdot \begin{bmatrix} c & d \\ 2d & c \end{bmatrix} = \begin{bmatrix} ac+2bd & bc+ad \\ 2(bc+ad) & ac+2bd \end{bmatrix} \in \mathcal{M},$$

$$\begin{bmatrix} a & b \\ 2b & a \end{bmatrix}^{-1} = \frac{1}{a^2 - 2b^2} \begin{bmatrix} a & -b \\ -2b & a \end{bmatrix} \in \mathcal{M}.$$

14. Ireducibilnost od g nad \mathbb{Z}_2 slijedi iz $g(0) = 1 \neq 0$ i $g(1) = 3 = 1 \neq 0$. Budući da je red od \mathbb{F}_8^* prost broj 7, generator je bilo koji element od \mathbb{F}_8^* različit od 1. Inverz od a = t + 1 je $a^{-1} = t^2 + t$.