射频电路辅助分析第一次作业

电磁1802 吴叶赛 U201813405

1.安装并熟悉ADS软件,并使用ADS主程序中的传输线及无源元件

任意设计一个电路

任取负载和信号源内阻 ,工作频率为1.5GHz。利用"两段串联传输线中间并联电容"的形式设计匹配电路,如下图。来求具体数值和给出仿真结果(传输线特性阻抗为50 Ω)。

电路图:

子电路图:

史密斯圆图:

仿真结果:

m3 freq=1.500GHz S(2,2)=0.003 / -71.087 impedance = Z0 * (1.002 - j0.006) m1 freq=1.500GHz S(1,1)=0.003 / -48.278 impedance = Z0* (1.004 - j0.005)

m2 freq=1.500GHz dB(S(1,2))=-4.905E-5

S-Parameters vs. Frequency

结果分析:

通过实验,使用"两段串联传输线中间并联电容"的形式实现了匹配,相关电路参数可以在电路图和子电路图中看出。通过仿真,观察到S(1,1)中1.5GHz在圆心处,匹配网络设计合理。进一步观察,发现此网络大致是一个低通滤波器。

在史密斯圆图中,串联传输线,匹配路径在S图中以原点为圆心顺时针旋转;并联电容,匹配路径在Y图中从对应阻抗点处沿着等电抗圆向下顺时针旋转。

2、使用ADS中的LineCale组件工具,进行各类传输线的基本分析和设计。

ads LineCalc中基板参数

Er: 微带线介质基片的相对介电常数 Mur:微带纤介质基片的相对磁导率

H: 微带线介质基片厚度 Hu:微带电路的封装高度 T: 为电线金属片的厚度Cond: 微带线金属片的电导率

TanD: 微带线的损耗角正切

Rough:微带线的表面粗糙度

Ze: Impedance for even-mode (偶模阻抗)

Zo: Impedance for odd-mode(奇模阻抗)

Z0: For coupled-line components, such as SCLIN or MCLIN, Z0=sqrt(Ze*Zo)

C_DB: Coupling factor in dB, i.e., C(dB) = 20log10 [(ZE-ZO)/(ZE+ZO)] (耦合因子)

E_EFF: Effective electrical length of line or coupled section (angle units) (等效电长度)

主要用这几种: 主要是介电常数、介质厚度、金属厚度、线宽 (如果是差分则还有间距)

LineCale主界面

ADS主程序中的传输线元件

微带线不连续性结构的计算方法: 与微带线的使用波长相比,不连续线段的尺寸通常很小,因此可以用集总参数元件等效电路来表征。这些不连续性都是由导体的结构尺寸突变引起的,在间断处电磁场的分布被改变,其中电场的改变引起电容的等效改变,磁场的改变引起电感的等效变化。所以,微带线不连续性的分析计算,就是计算由这种不连续性引起的电容和电感参数的变化。

3、查看和了解ADS软件中的肖特基势垒二极管的模型,参数,等效电路。一个 SBD管的实例?

肖特基势垒二极管SBD (SchottkyBarrierDiode,简称肖特基二极管)是近年来间世的低功耗、大电流、超高速半导体器件。其反向恢复时间极短(可以小到几纳秒),正向导通压降仅0.4V左右,而整流电流却可达到几千安培。这些优良特性是快恢复二极管所无法比拟的。中、小功率肖特基整流二极管大多采用封装形式。

肖特基整流管仅用一种载流子(电子)输送电荷,在势垒外侧无过剩少数载流子的积累,因此,不存在电荷储存问题(Qrr→0),使开关特性获得时显改善。其反向恢复时间已能缩短到10ns以内。但它的反向耐压值较低,一般不超过去时100V。因此适宜在低压、大电流情况下工作。利用其低压降这特点,

能 提高低压、大电流整流(或续流)电路的效率。

肖特基二极管分为有引线和表面安装 (贴片式)两种封装形式。

采用有引线式封装的肖特基二极管通常作为高频大电流整流二极管、续流二极管或保护二极管使用。它有单管式和对管(双二极管)式两种封装形式,如图4-45所示。

肖特基对管又有共阴(两管的负极相连)、共阳(两管的正极相连)和串联(一只二极管的正极接另一只二极管的负极)三种管脚引出方式,见下图

图 4-45 有引线式肖特

下面通过一个实例来介绍检测肖特基二极管的方法。检测内容包括: ①识别电极; ②检查管子的单向导电性; ③测正向导压降VF; ④测量反向击穿电压VBR。

被测管为B82-004型肖特基管,共有三个管脚,外形如图4所示,将管脚按照从左至右顺序编上序号①、②、③。选择500型万用表的R×1档进行测量。

测试结论:

第一,根据①�②、③�④间均可测出正向电阻,判定被测管为共阴对管,①、③脚为两个阳极,②脚为公共阴极。

第二,因①◆②、③◆②之间的正向电阻只几欧姆,而反向电阻为无穷大,故具有单向导电性。

第三,内部两只肖特基二极管的正向导通压降分别为0.315V、0.33V,均低于手册中给定的最大允许值VFM(0.55V)。

另外使用ZC25-3型兆欧表和500型万用表的250VDC档测出,内部两管的反向击穿电压VBR依次为140V、135V。查手册,B82-004的最高反向工作电压(即反向峰值电压)VBR=40V。表明留有较高的安全系数.

四、常用的肖特基二极管主要参数

常用的有引线式肖特基二极管有D80-004、B82-004、MBR1545、MBR2535等型号,各管的主要参数见表4-43。

表 4-43 几种常用有引线式肖特基二极管的主要参数

参数型号	額定整 流电流 /A	峰值电流 /A	最大正 向压降 /V	反向击 穿电压 /V	反向恢 复时间 /ns	内部封 装结构	封装 形式
1380 - 004	15	250	0.55	40	< 10	作幣	TO - 3P
B82 - 004	5	100	0.55	40	< 10	共開对管	TO - 220
MBR1545	15	150	0.7	45	< 10	共阴对管	TO - 220
MBR2535	30	300	0.73	35	< 10	共開对管	TO - 220
RB015T - 40	10	60	0.55	40	-	-	TO - 220FP
RB025T - 40	5	60	0.55	40	-	-	TO - 220FP
RB100A	1	40	0.55	40	-	-	MSR

常用的表面封装肖特基二极管有FB系列,其主要参数

表 4-44 RB系列表面封装肖特基二极管的主要参数

を	阿电压		蜂值 电流 /A	最大正 向压降 /V	最大反 向电流 /µA	封装结构及形式	管脚引 出方式	用途
RB035B - 40 40		4	30	0.55	3500	CPD (D PAK)	G	
RB031B - 40	40	3	40	0.55	0.55 2000 CPD (D PAK)		1	
RB160L - 40	40	1	30	0.55	1000	PSM	1	
RB110C	40	1	5	0.6	80	MPD (SOT - 89)	F	
RB401D	40	0.5	3	0.5	5 70 SMD (SC - 59 /SOT - 23)		D	整流
RB111C	RB111C 40 RB435C 20 0 RB400D 20 0		3	0.5 0.55 0.5	100 30 30	MPD (SOT - 89)	G D	
RB435C						MPD (SOT - 89) SMD (SC - 59 /SOT - 23)		
RB400D								
RB411D	20	0.5	3	0.5	30	SMD	D	
RB420D	B420D 25		1	0.45	1	SMD	D	
RB421D	20	0.1	1	0.55	30	SMD	D	
RB425D	20	0.1	1	0.55	_30	SMD	A	
RB450F	25	0.1	1	0.45	1	UMD	D	
RB451F	20	0.1	1	0.55	30	UMD	D	
RB471E	20	0.1	1	1 0.55 30		FMD (SOT - 25) E		
RB701D 25		0.03	0.2	0.37	1	SMD (SC - 59 /SOT - 23)	D	
RB705D	25	0.03	0.2	0.37	1	SMD	A	
RB706D	25	0.03	0.2	0.37	1	SMD	С	
RB715F	25	0.03	0.2	0.37	1	UMD	A	小信
RB717F	25	0.03	0.03 0.2 0.37 1 UMD		UMD	В	号检	
RB751H	25	0.03	0.2	0.37	1	DSM	J	被
RB731U	25	0.03	0.2	0.37	1	IMD (SOT - 36)	н	

4、学习和了解隧道二极管的伏安特性、模型和等效电路。一个TD管的实例及应用。

隧道二极管原理: 隧道二极管是以隧道效应电流为主要电流分量的晶体二极管。

隧道效应,是指在两片金属间夹有极薄的绝缘层(厚度大约为 1nm(10-6mm),如氧化薄膜),当两端施加势能形成势垒V时,导体中有动能E的部分微粒子在E < V的条件下,可以从绝缘层一侧通过势垒V而达到另一侧的物理现象。

由重掺杂的p区和n区形成的PN结即隧道结。n型半导体的费米能级进入了导带,p型半导体的费米能级进入了价带,在没有外加电压,处于热平衡状态时,n区和p区的费米能级相等。n区导带底比p区价带顶还低,因此,在n区的导带和p区的价带中出现具有相同能量的量子态。在重掺杂情况下,杂质浓度大,势垒区很薄,由于量子力学的隧道效应,n区导带的电子可能穿过禁带,到p区价带,p区价带电子也可能穿过禁带到n区导带,从而有可能产生隧道电流。随着长度越短,电子穿过隧道的概率越大,隧道电流越显着。

隧道二极管的工作符合发生隧道效应具备的三个条件:

- ①费米能级位于导带和满带内;
- ②空间电荷层宽度必须很窄(0.01微米以下);
- ③简并半导体P型区和N型区中的空穴和电子在同一能级上有交叠的可能性。

隧道二极管的伏安特性 隧道二极管的伏安特性,是一条S型特性曲线。曲线中最大电流点P,称为峰点;最小电流点V,称为谷点。 其电流和电压间的变化关系与一般半导体二极管不同。当某一个极上加正电压时,通过管的电流先将随电压的增加而很快变 大,但在电压达到某一值后,忽而变小,小到一定值后又急剧变大;如果所加的电压与前相反,电流则随电压的增加而急剧变大。

隧道二极管的主要参数:

- (1) 峰点电压Up,约几十毫伏,谷点电压Uv,约几百毫伏
- (2) 峰点电流lpi,约几毫安,谷点电流lv约几百微安
- (3) 峰谷电流比,约为5-6,越大越好
- (4) 谷点电容Cv, 几微法至几十微法, 越小越好, 国产2BS4A: Up=80毫伏, Ip=4毫安, 峰谷电流比≥5, Cv=10~15微法, Uv=280毫伏。