

IMD0033 - Probabilidade Aula 15 - Visualização Exploratória de Dados I

Ivanovitch Silva Outubro, 2018

Agenda

- Interface entre Pandas & Matplotlib
- Motivação
- Estudo de caso: diferença entre gêneros para cursos STEAM

Atualizar o repositório

git clone https://github.com/ivanovitchm/imd0033_2018_2.git

Ou

git pull

Estudo de caso: avaliando filmes

IMDB

Rotten Tomatoes

Fandango

pandas $y_{it} = \beta' x_{it} + \mu_i + \epsilon_{it}$

$$y_{it} = \beta' x_{it} + \mu_i + \epsilon_{it}$$

matpletlib

Enable matplotlib plot inline
%matplotlib inline
norm_reviews.Fandango_Ratingvalue.hist(bins=20, range=(0,5))

other way to do the same thing
norm_reviews.Fandango_Ratingvalue.plot(kind='hist', bins=20, range=(0,5));

norm_reviews.plot(kind='hist', bins=20, range=(0,5), alpha=0.3);

norm_reviews.plot(kind='hist', bins=20, range=(0,5), stacked=True);

norm_reviews.Fandango_Ratingvalue.plot(kind='box')
norm_reviews.plot(kind='box',rot=90)

norm_reviews.plot(kind='scatter',x='RT_user_norm', y='Fandango_Ratingvalue')

Estética

Introdução ao dataset

Year	Agriculture	Architecture	Art and Performance	Biology	Business	Communications and Journalism	Computer Science	Education	Engineering
1970	4.229798	11.921005	59.7	29.088363	9.064439	35.3	13.6	74.535328	0.8
1971	5.452797	12.003106	59.9	29.394403	9.503187	35.5	13.6	74.149204	1.0
1972	7.420710	13.214594	60.4	29.810221	10.558962	36.6	14.9	73.554520	1.2

- Porcentagem de mulheres que se formaram entre 1970 a 2012
- Departamento Americano para Estatísticas Educacionais

Visualizando a diferença de gênero

Visualizando a diferença de gênero

Visualizando a diferença de gênero

```
%matplotlib inline
women degrees['men bio'] = 100-women degrees['Biology']
women degrees.plot(kind='line',x='Year',y=['Biology','men bio'],
                   title='Percentage of Biology Degrees Awarded By Gender',
                   color=['blue','green']).\
                        legend(loc='best',
                               labels=['Women','Men'])
ax = women degrees.plot(kind='line',x='Year',y=['Biology','men bio'],
                   title='Percentage of Biology Degrees Awarded By Gender',
                   color=['blue', 'green'])
ax.legend(loc='best',labels=['Women','Men'])
```


Menos é mais

Ocultar as marcas dos eixos

ax.tick_params(bottom="off", top="off", left="off", right="off")

Ocultar os contornos

```
ax.spines["right"].set_visible(False)
ax.spines["left"].set_visible(False)
ax.spines["bottom"].set_visible(False)
ax.spines["top"].set_visible(False)
```


Comparação final

