921) The output Y of a 2-bit comparator is logic I whenever the 2-bit input A is greater than Athel-bit input B. The number of combinations for which the output is logic I, is ____.

Ane - The only possible combinations are

A=11 & B=00,01,10

So, there are 6 combinations

(9)2) Find all preime implicants of the following function and then find all minimum solutions using petrick's method -

F(A,B,C;D) = In (9,12,13,15) + Id (1,4,5,7,8,11,14)

•	-1 1		, -,.	
Ans->	Column 1	Colu	ima 2	Column 3
1	0001	1,8	0-01	1,5,9,13OI C'D
4	0100	1,9	-001	1,9,5,1301 C'D
8	1000	4,8	010-	1. 5 10 10
5	0101	4,12	_100	4,12,5,13 -10- BC'
9	1001	8,9	100-	
12	1100	8,12	1_00	
7	0111	5,7	01-1	5,73,7,15 _1_1 BD
. 11	1011	5,13	2101	8,9,12,13 1_0_ AC'
13		9,11	10-1	8,12,9,13 1_0_ AC'
14	1110	9,13	1_01	9,11,13,15 1_1 AD
18		12, 13	110-	9,13,11,15 1_1 AD
		12,14	11_0	
		7,18	-111	12,13,14,18 11_ AB
		11,15	1_11	12,14,13,15 11 AB
		13,15	11_1	
		14,15	111_	

Prelme implicants + C'D, BC, BD, AC', AD, AB

Petrack's table->

By using Petrick's method,
$$P = (P_1 + P_3 + P_6) (P_2 + P_3 + P_6) (P_1 + P_2 + P_3 + P_4 + P_6 + P_6) (P_4 + P_5 + P_6)$$

$$= (P_3 + (P_1 + P_5) (P_2 + P_6)) (P_4 + P_5 + P_6 (P_1 + P_2 + P_3) + P_6))$$

$$= (P_3 + P_1 P_2 + P_1 P_6 + P_5 P_2 + P_6 P_6) (P_4 + P_5 + P_1 P_6 + P_3 P_6 + P_3 P_6 + P_6)$$

$$= (P_3 + P_1 P_2 + P_1 P_6 + P_5 P_2 + P_6 P_6) (P_4 + P_5 + P_6 (P_1 + P_2 + P_3 + 1))$$

$$= (P_3 + P_1 P_2 + P_1 P_6 + P_5 P_2 + P_5 P_6) (P_4 + P_5 + P_6)$$

$$= (P_3 + P_1 P_2 + P_1 P_6 + P_2 P_5 + P_5 P_6) (P_4 + P_5 + P_6)$$

$$= (P_3 + P_1 P_2 + P_1 P_6 + P_2 P_5 + P_5 P_6) (P_4 + P_5 + P_6)$$

$$= (P_3 + P_1 P_2 + P_1 P_6 + P_2 P_5 + P_5 P_6) (P_4 + P_5 P_6)$$

$$= (P_3 P_4 + P_1 P_2 P_4 + P_1 P_6 P_4 + P_2 P_5 P_6 + P_5 P_6 +$$

Simplified SOP
$$\rightarrow$$
 $F_1 = P_3 P_4 = AC' + BD$

$$F_4 = P_3 P_5 = AC' + AD$$

$$F_3 = P_4 P_5 = BC' + AD$$

$$F_4 = P_5 P_6 = AD + AB$$

$$F_5 = P_8 P_6 = AC' + AB$$

$$F_6 = P_1 P_6 = C'D + AD$$

4) Determine a minimum sum of products expression for the function F= Im (0,1,2, 5,6,7) using Quine-McCluskey method and praime implicant charet.

Ans \rightarrow $F = \sum_{m} (0,1,2,5,6,7)$

Column 1	Column 2	Prime implicants
0 -> 000	0,1 -> 00_	0,R
1 > 001	0,2-0-0	a'e'
2 -> 010	1,5 > _01	b'c
8 -> 101	2,6 > 0-10	pc,
€ → 110	5,7→1_1	ac
7->111	6,7-11-	ab

For the 1st solution, F= a'b'+bc'+ac

For the 2nd solution, F= &a'c' + b'c +ab

(93) Determine a minimum sum of products expression for the function F= Im(0,12,5,6,7) using Petrick's method.

Ans. For Petrick's method we can directly use 9.4's prime implicant charact

 $P = (P_1 + P_2) (P_1 + P_3) (P_2 + P_4) (P_3 + P_5) (P_4 + P_6) (P_5 + P_6)$

= (P1+P2P3)(P4+P2P6)(P5+P3P6)

= (P, P4 + P2P3P4 + P, P2P6 + P2P3P6) (P5+P3P6)

= P1P4P5+ P2P3P4P5+ P1P2P5Pc+P2P3P6Pc+P1P3P4P6+P2P3P6+P1P2P3P6 + P2P3P6

So, minimum SOP expression of the function,

for P.P4Ps = F = ab'+bc'+ac

forc Pap3 P6 = F = a'c' + b'c + ab

9)8) Determine the a minimum sum of preaducts expression for the function

F= Zm (1,3,4,5,6,7,10,12,13) + Zd(2,9,15) using Guine-McCluskey method and praine implicant chareto

and prame implica	or chuids	C . 21	
Ans > F= Zm Cl	,3,4,5,6,7,10,12	, 13)+ \(\mathbb{Z}_{\pi}(\mathbb{Q}, 9, 15)\)	Preime Implicants
	Column 2 1,3 → 00-1	1,3,5,7 > O1	A ² D
2→ 0010 4→ 0100	1,5 → 0_01 1,9 → _001	$1, 5, 9, 13 \rightarrow -01$	C, D
3 → 0011 5 → 0 0 01	2,3→001-	2,3,6,7 > 0-1-	A'C
6→0110 9→1001 10→1010	2,10→_010	2, 6, 3, 7 → 0_1_ 4, 5, 6, 7 → 01	A'B
15-1100	4,6→01_0 4,12→_100	4,6,5,7 -> 01	BC)
7 > 0111 13 > 1 1 0 1 15 > 1 1 11	3,7→0-11 5,7→01-1	5,13,7,15 → _1 _1 5,7,13,15 → _1_1	8D .
10 1111	6,7→011_ 5,13→_101	2,10→-010	BCD,
	$9, 13 \rightarrow 1 - 01$	4,5,12,13 -> 10-	
	12,13→110- 		
	13,15 -> 11-1		

Prame implicant charet ->

2 possible solo ane $\Rightarrow F = BC' + B'CD' + C'D + A'CC$ F = BC' + B'CD' + A'B + A'D QB) Using the method of map-entered variables, use four-variable maps to find a minimum sum-of-products expression for $F(A,B,C,D,E)=\sum_{m}(0,4,6,13,14)+\sum_{m}(2,4)+\sum_{m}(3,4)+\sum_{m}(3,4)$

Fore F=0

M80 = A'D + BCB' + AC'D

8 60	00	, 01	11	10
00	x	1		×
01	X	737		X
11	IJ	×		×
10		×		

For F=1

MS, = A'B'C'+BD'

So, minimum SOP expression of F= MSo+ E(MS,)
= A'D+BCD'+AC'D+ E(A'BC'+BD')

97) Using the method of map-entered variables, use four - variable maps to find a minimum sum-of-products expression for $F(A, B, C, D, E, F,G) = \sum_m (a, 5, 6, 9) + k \sum_{i=1}^{n} (1, 3, 4, 13, 14) + E(m_{11} + m_{12}) + F(m_{10}) + G(m_{0}).$

Ans > F(A,B,C,D,E,F,G)= \(\int_m(2),5,6,9)+\(\int_d(1,3,4,13,14)+\int_m(1)+\int_m(1)+\int_m(1))

+ G(mo) Forz E= 1, F=0,G=0								
00	at'	K	X	×				
01	X	X		X				
11	1_	X		×				
10		X	1					
ms1=BC, +B,D								

· vr	F	or, E	-G=0	F=	1
184	00	01	, 11	10	7
00		×	×	X	
01	×	×		×	
11	****	×		×	
10	8	×			
0	752 =	CD'			

So, minimum SOP of F= M80 + E(M81) + F(M82) + 6(M8)

= C'D+A'CO' + E(BC'+B'O) + F(CO')

+ G(A'B')

(3)8) Design a combinational circuit with 3 inputs ×, YPZ and one output F. The output is I when the binary value of the inputs is less than or equal to 2. The output is O otherwise.

Aras X Trouth tables

+				
-	Input	Output		
-	AX	Y	2	F
-	0	0	0	1
-	0	0	1	1
	0	1	0	1
	0	1	1	0
	1	0	0	0
	1	0	1	0
	1	1	0	0
	i	1	1	0

(9)9) Design a combinational circuit with four inputs A, B, C&D and one output F.

The output Fvalue is O if three ore four of the inputs are 1; otherwise the value of Fis 1.

Ana > Treuth Table >

			1		
L	Inp	uls	adputs		
	A	B	C	D	F
-	A 000000000	0	0	0	31 (M)
	0	000	00	1	1
1	0	0	1	0	3 1 1
1	0	0	l	1	
-	0	1	0	0	
	0	1	0	1	1
1	0	1	1	0	1 4
	0	1	1	1	0
-	1	0	0	0	Ī
	1	0	6	1	1
-	1	0	1	0	20
-	1	0	1	1	0
	1	1	0	0	1
	1	1	00	1	0
-	1	1	1	0	0
	1		1	1	000

(9)10) Design a 4-bit BCD to Excess-3 code converter.

Ans-> Trenth table>

In	Inputs				Outputs			
A	B	C .	D	W	X	X	Z	
0	0	0	0	0	0	l	1	
0	0	0	1	0	1	0	0	
0	0	1	0	0	1	0	1	
0	0	1	1	0	1	1	0	
0	1	0	0	0	1	1	1	
0	1	0	1	1	0	0	0	
0	1	1	0	1	0	0	1	
0	1	1	1	1	0	1	0	
1	0	0	0	1	0	1	1	
1	0	0	1	1	1	0	0	

