南京大学线性代数期中试卷

姓名______ 学号_______ 专业______ 考试时间 2016.4.23

一.(10分) 计算行列式

$$\begin{vmatrix} 10 & 2 & 8 \\ 15 & 3 & 12 \\ 20 & 12 & 32 \end{vmatrix}$$

二.(10分) 设 $A=(a_{ij})$ 为 n 阶方阵且为严格上三角形矩阵(即 $a_{ij}=0, \forall i\geq j$), 证明 $A^n=O$.

三.(10分) 设向量组

$$\alpha_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 2 \end{pmatrix}, \alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ -1 \end{pmatrix}, \alpha_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 3 \end{pmatrix}, \alpha_4 = \begin{pmatrix} 1 \\ -1 \\ -1 \\ 0 \end{pmatrix},$$

求该向量组的一个极大线性无关组,并用它表示其余的向量。

四.(10分) 设 $A \in n$ 阶方阵, $\alpha_1, \alpha_2, \alpha_3 \in n$ 维列向量。已知

$$A\alpha_1 = c_1\alpha_1$$
, $A\alpha_2 = c_2\alpha_1 + c_1\alpha_2$, $A\alpha_3 = c_2\alpha_2 + c_1\alpha_3$, $c_2 \neq 0$.

假设 α_1, α_2 线性无关,证明 $\alpha_1, \alpha_2, \alpha_3$ 线性无关。

五.(10分) 证明方程组 AX = 0 与方程组 $A^TAX = 0$ 是同解方程组,其中 $A \in \mathbb{R}^{m \times n}$.

六.(10分) 设
$$AX = 0$$
 的基础解系为 $\alpha_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 1 \\ 2 \\ 0 \\ -1 \end{pmatrix}$, $BX = 0$ 的基础解系为 $\beta_1 = \begin{pmatrix} 1 \\ -1 \\ 1 \\ 1 \end{pmatrix}$, $\beta_2 = \begin{pmatrix} 2 \\ 1 \\ 1 \\ 0 \end{pmatrix}$, 其中 A,B 为4阶方阵,求

$$\begin{pmatrix} A \\ B \end{pmatrix} = 0$$

的基础解系。

七.(10分) 设 A 为 $m \times n$ 矩阵,其行简化梯形矩阵为 B. 若 B 的第1列为标准列向量 e_1 ,第2列为标准列向量 e_2 ,…,第r列为标准列向量 e_r $(r \le m)$,

- (1) 证明 A 的第1列,第2列,…,第r列是线性无关列向量。
- (2) 若进一步有A的秩等于r,则A的第1列,第2列,…,第r列是A的一个极大线性无关组。

八.(15分) 设 A, B 为3阶方阵, 已知 BA = A + 2B.

- (1) 证明 A, B 可交换 (即 AB = BA);
- (2) 若

$$A = \begin{pmatrix} 3 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 4 \end{pmatrix} \quad .$$

求矩阵 B.

九.(15分) 已知矩阵 $A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & a & -1 \\ 1 & -1 & a \end{pmatrix}$, $B = \begin{pmatrix} 2 & 2 \\ 1 & a \\ a+1 & 2 \end{pmatrix}$, 试问当 a 取何值时,矩阵方程 AX = B 无解,有唯一解,有无穷多解?当矩阵方程有解时请求出其解。