Curso: Engenharia de Computação

Sistemas Digitais

Prof. Clayton J A Silva, MSc clayton.silva@professores.ibmec.edu.br

Sinais analógicos, discretos e digitais

Sinais analógicos...

comportam-se com uma variação contínua de valores, além de ser definida em qualquer instante do tempo, em uma janela temporal de observação

A grandeza (x) é uma função do tempo (t), tal que

$$x = f(t)$$

Sinal em funcao do tempo

Waveform ON or OFF
Time

Representações digitais e analógicas

Representações digitais e analógicas

Digital output equivalent to 2 V

(b)

Conversão A/D (analógico-digital) e D/A (digital-analógico)

Conversão A/D (analógico-digital) e D/A (digital-analógico)

Sinais analógicos, discretos e digitais

Sinais discretos...

apresentam descontinuidade do valor da medida de grandeza ou do instante de tempo em função da qual são observados

Sinal quantizado

Sinal amostrado

Sinal digital

Interfaces analógico e digital

Interfaces analógico e digital

- 1. Transdutor dispositivo que converte uma variável física em uma variável elétrica. Exemplo: microfone
- 2. Conversor A/D converte entrada analógica em uma saída digital
- 3. Sistema digital processa e/ou armazena os bits que correspondem ao sinal analógico digitalizado
- 4. Conversor D/A produz o sinal analógico para controlar o atuador
- 5. Atuador controla a grandeza física

 Processo em que um valor representado em um código digital é convertido em uma tensão ou corrente

D	С	В	Α		V _{OUT}	
0	0	0	0		0	volts
0	0	0	1		1	
0	0	1	0		2	
0	0	1	1		3	
0	1	0	0		4	
0	1	0	1		5	
0	1	1	0		6	
0	1	1	1		7	
1	0	0	0		8	
1	0	0	1		9	
1	0	1	0		10	
1	0	1	1		11	
1	1	0	0		12	
1	1	0	1		13	
1	1	1	0	5.50	14	V
1	1	1	11		15	volts

- Conversor de 4-bits
- Utiliza uma tensão de referência V_{ref} , que estabelece o máximo valor de saída (fundo de escala).
- O fator de multiplicação do sinal digital para obter o sinal analógico é chamado de fator de proporcionalidade (K)

 $saida \ analógica = k \times entrada \ digital$

• O valor de tensão (ou corrente) da saída analógica é a combinação binária multiplicada (ponderada) por K. Por exemplo, se K=1 V, 0010 irá implicara saída de 2 x 1 V = 2 V

 Resolução é o tamanho do degrau é a diferença mínima entre dois níveis de tensão analógica

Formas de onda de saída de um conversor D/A com as entradas sendo acionadas por um contador binário.

Conversor D/A de 8-bits

Conversão analógico-digital

Descrição geral

- Recebem uma tensão analógica e produz um código digital de saída
- Existem alguns métodos de realizar essa conversão
- A temporização é fornecida por um sinal de clock
- A UC contém os circuitos para gerar a sequência após o sinal de START
- O Amp Op produz o valor digitalizado

Etapas de operação

- 1. Pulso de START inicia a operação
- 2. Na taxa do clock, gera continuamente o número binário armazenado no registrador
- 3. O número binário é convertido em analógico pelo conversor D/A
- **4.** O comparador gera ALTO se o sinal analógico $V_A > V_{AX}$ caso contrário, SE $V_{AX} > V_A$ acima de uma tensão limiar (V_T) , gera BAIXO
- 5. A lógica de controle gera o sinal EOC após a conversão

Precisão e resolução de conversores A/D

Erro de quantização – diferença entre o valor do sinal analógico e o valor lido pelo conversor

Erro de amostragem – intervalo entre duas amostras do sinal que é ignorado

CIADC0804

IBMEC.BR

- f)/IBMEC
- in IBMEC
- @IBMEC_OFICIAL
- @@IBMEC

