Bin Packing

Vstup: predmety s váhou s_1, \ldots, s_n , $s_i \in [0, 1]$

Úloha: rozdeľte predmety do najmenšieho možného počtu binov, pričom každý bin má kapacitu 1

Návrh aproximačnej schémy

- Zvolíme parameter δ a rozdelíme množinu predmetov S na veľké predmety $S_v = \{i | s_i \geq \delta\}$ a malé predmety $S_m = \{i | s_i < \delta\}$.
- Veľké predmety roztriedime do binov pomocou $V(\delta)\text{-aproximačného algoritmu:} \boxed{V(\delta) = 1 + \frac{1}{k\delta}}, \text{ čas } O(n^{k^\delta}).$
- Malé predmety "dosypeme" do binov pomocou first-fit heuristiky

Návrh aproximačnej schémy

- Zvolíme parameter δ a rozdelíme množinu predmetov S na veľké predmety $S_v = \{i | s_i \geq \delta\}$ a malé predmety $S_m = \{i | s_i < \delta\}$.
- Veľké predmety roztriedime do binov pomocou $V(\delta)$ -aproximačného algoritmu: $V(\delta) = 1 + \frac{1}{k\delta}$, čas $O(n^{k^{\delta}})$.
- Malé predmety "dosypeme" do binov pomocou first-fit heuristiky

Analýza

• Ak malé predmety neotvoria nový bin:

$$\text{naše rieš} \leq V(\delta).OPT(S)$$

Ak malé predmety otvoria nový bin:

naše rieš
$$\leq \left(1 + \frac{\delta}{1 - \delta}\right).OPT(S) + 1$$

Celociselné linearne programovanie (ILP)

Optimalizačná úloha nasledujúceho tvaru:

minimalizuj/maximalizuj $f(x_1,\ldots,x_n)$ za podmienok: $L_1(x_1,\ldots,x_n)\geq 0$ $L_2(x_1,\ldots,x_n)\geq 0$ \cdots $\forall i:x_i\in\{0,1\}$

 $(f, L_1, L_2, \dots$ sú lineárne funkcie)

ILP je NP-ťažký problém. ALE: existujú solvery, ktoré množstvo inštancií dokážu riešiť rýchlo (SCIP, CPLEX a pod.)

Lineárne programovanie

- ullet nahradíme podmienku $x_i \in \{0,1\}$ za $0 \le x_i \le 1$
- možno riešiť numerickým algoritmom v lineárnom čase