SPPT and water conservation in IFS

work in progress

June 25, 2017

Precipitation - Evaporation

▶ SPPT leads to water budget residual of \approx -0.15 mm/day, hence drying of the atmosphere

Total column water vapour

Figure: Without SPPT vs. with SPPT in the first 20 days of forecast

- ► control (black)
- ensemble member (colors)

Water budget

Let q be the water content in a grid cell, ${\bf F}$ be its flux, then

$$\partial_t q = -\nabla \cdot \mathbf{F}$$

Vertical integration yields

$$\int_{p_s(t)}^{p_{top}} \partial_t q \ dp = -\underbrace{\int_{p_s(t)}^{p_{top}} \nabla_H \cdot \mathbf{F}_H \ dp}_{\equiv VIMD} - P - E$$

Interchanging integral and temporal derivative

$$\partial_t TCW + q|_{p=p_s} \partial_t p_s + VIMD + P + E = 0$$

Note, that with the global integral $\langle \rangle$

$$\langle VIMD\rangle = 0$$

should vanish.

10 days after forecast initilization, without SPPT

integrated over 10 days after forecast initilization, without SPPT

SPPT & water conservation

Water budget in IFS

integrated over 10 days after forecast initilization, with SPPT

Water budget in IFS - when does water vanish?

Back to the roots: 1D wave equation and SPPT

$$\partial_t u = -u\partial_x u - g\partial_x h + \mathcal{D} + \mathcal{F}$$
$$\partial_t h = -(1+r)\partial_x (uh)$$

- r = r(t) yields conservation of mass
- ightharpoonup r = r(x,t) non-conservation of mass, random walk

Back to the roots: 1D wave equation and SPPT

ightharpoonup r = r(x,t), more autocorrelation yields a faster deviation

Water budget in IFS with SPPT

with ${\cal Q}$ the total column water deterministic model

$$dQ = \partial_t Q - Q_{ten}^{dyn} - Q_{ten}^{phys} + P - E = 0$$

with SPPT

$$dQ_{SPPT} = \partial_t Q - Q_{ten}^{dyn} - (1+r)Q_{ten}^{phys} + P - E$$
$$= -rQ_{ten}^{phys}$$

▶ Any correlation between r and Q_{ten}^{phys} ?

Water budget in IFS with SPPT

with Q the total column water deterministic model

$$dQ = \partial_t Q - Q_{ten}^{dyn} - Q_{ten}^{phys} + P - E = 0$$

with SPPT and surface perturbation

$$dQ_{surf.pert.} = \partial_t TCW - Q_{ten}^{dyn} - (1+r) \left(Q_{ten}^{phys} + P - E \right)$$
$$= -r(Q_{ten}^{phys} - P + E)$$

▶ Are P, E completely balanced by Q_{ten}^{phys} ?

Figure: deterministic (blue), standard SPPT (orange), no BL-tapering (green), no autocorrelation (red)