DOKUZ EYLÜL UNIVERSITY

ENGINEERING FACULTY

DEPARTMENT OF COMPUTER ENGINEERING

Chennai House Price Prediction

By Semih Oktay Alptuğ

1) Project Description

This project aims to use machine learning techniques to predict house prices in the real estate market of Chennai, one of the important cities in India known for its dynamic real estate market. The goal of this project is to analyze price fluctuations in this market and adopt a data-driven approach to forecast future house prices.

1.1 Dataset

The project uses a comprehensive dataset to predict house prices in Chennai. This dataset encompasses various features of houses, serving as a significant resource to analyze factors that can influence house prices.

Location Information:

It includes the areas where houses are situated (AREA), representing the advantages and characteristics of these regions. For instance, areas like Karapakkam, Anna Nagar, Adyar, Velachery, and their respective traits.

House Features:

The dataset includes details about the features of houses, such as the interior square footage (INT_SQFT), the number of bedrooms (N_BEDROOM), bathrooms (N_BATHROOM), and the total number of rooms (N_ROOM).

Structure and Conditions:

Information about the types of structures (BUILDTYPE) and sales conditions (SALE_COND) are part of the dataset. It represents various types of structures like commercial, residential, or other types, along with sale conditions like abnormal, family, or normal sale.

Services and Environment:

Details regarding the available services (UTILITY_AVAIL) in houses and environmental factors (STREET) are included. For example, whether the house has services like electricity and water or the type of street it's located on.

Region and Quality Assessments:

Evaluation metrics such as the types of zones where houses are located (MZZONE) and scores indicating the quality of rooms, bathrooms, bedrooms, and an overall score (QS_ROOMS, QS_BATHROOM, QS_BEDROOM, QS_OVERALL) are part of the dataset.

Other Features:

Additional features such as the construction dates of houses (DATE_BUILD), selling prices (SALES_PRICE), registration fees (REG_FEE), commissions (COMMIS), among others, are also included in the dataset.

Here is the dataset:

	prt_id <chr></chr>	area <chr></chr>	int_sqft <int></int>	date_sale <chr></chr>	dist_mainroad <int></int>	n_bedroom <int></int>	n_bathroom <int></int>		sale_cond <chr></chr>	
1	p03210	karapakkam	1004	04-05-2011	131	1	1	3	abnormal	
2	p09411	anna <mark>n</mark> agar	1986	19-12-2006	26	2	i	5	abnormal	
3	p01812	adyar	909	04-02-2012	70	1	1	3	abnormal	
4	p05346	velachery	1855	13-03-2010	14	3	2	5	family	
5	p06210	karapakkam	1226	05-10-2009	84	1	1	3	abnormal	
6	p00219	chrompet	1220	11-09-2014	36	2	1	4	partial	
7	p09105	chrompet	1167	05-04-2007	137	1	1	3	partial	
8	p09679	velachery	1847	13-03-2006	176	3	2	5	family	
9	p03377	chrompet	771	06-04-2011	175	1	1	2	adjland	
10	p09623	velachery	1635	22-06-2006	74	2	1	4	abnormal	

I	park_fadl <crj></crj>	date_build <tt,r></tt,r>	buildtype <cnr·< th=""><th>utilify_avail <cnr></cnr></th><th>street</th><th></th><th>qs_rooms <col/></th><th>qs_bathroom <co></co></th><th>qs_bedroom <co)< th=""><th>qs_overallf <aol></aol></th></co)<></th></cnr·<>	utilify_avail <cnr></cnr>	street		qs_rooms <col/>	qs_bathroom <co></co>	qs_bedroom <co)< th=""><th>qs_overallf <aol></aol></th></co)<>	qs_overallf <aol></aol>
	yes	l5-0\-1967	commercial	allpub	paved		40	J.9	u	4.J30
	no	11-11-1995	commercial	allpub	gravel	rn	u	4.2	2.\	3765
	yes	09-01-1992	commercial	elo	gravel	rl	4.1	J.8	2.2	3.090
	no	18-0J-1988	otners	nosewr	paved		n	J.9	3.6	4010
	yes	J-10- 1 919	otners	allpub	gravel		JO	1.5	4.1	J.290
	no	12-09-2009	commercial	nosewa	noaccess	rn	ts	1.6	3.1	3.J20
	no	12-04-1919	otner	allpub	noaccess	rl	1.6	1.1	2)	2610
	no	I5-0J-1996	commercial	allpub	gravel	rm	1.4	4.5	2.1	3.260
	no	14-04-1917	otners	nosewr	paved	rm	1.9	J]	4.0	J\50
	no	16-06- 1 99 1	otners	elo	noaccess		3.1	J.I	J.3	J.160

1-10of10rows 11-10of22columns

utililpvail <tnr></tnr>	wee! <tnr;•< th=""><th>mnone ((11></th><th>uoom1 <ao></ao></th><th>1_oatBroom</th><th>1_oearoom</th><th>1_overall</th><th>re Jee <int:></int:></th><th>comm11 <nt></nt></th><th>1ale1_rrice <int:></int:></th></tnr;•<>	mnone ((11>	uoom1 <ao></ao>	1_oatBroom	1_oearoom	1_overall	re Jee <int:></int:>	comm11 <nt></nt>	1ale1_rrice <int:></int:>
allruo	ravea		to	J.	u	mo	110000	I100	1600000
allruo	ravel	rn	0	0	11	rn	1om1	JMM	m11m
elo	ravel	rl	ti	J.	u	1.0 0	rn	n1 <mark>1</mark>	IJ1 100
nom1r	rave□		V	Jj	Н	torn	11rn 1	llM1	%1010
allruo	ravel		1.0	l.	ti	mo	mooo	l OoJ	10b110
noiewa	noatte11	rn	ti	lb	1.1	mo	0 011	l m	Im /\O
allruo	nome11		Н	1.1	n	mo	mm	m11	m o
allruo	ravel	rm	1A	0	L.I	mo	oOio	m10	Ib00110
noiewr	ravea	rm	i.	n	to	1.110	mm	111%	10 10
elo	noatte11		1.1	1.1	jj	J. <mark>I</mark> W	1111b	mm	o mo

¹⁻¹⁰o(IOrowil 1 -1o1In columm

2) Preprocessing

2.1 Fill Null (N/A) Value

The preprocessing stage involves identifying null values in the dataset as the first step. If the column is numeric, the missing values are filled using the median of that column's data. For categorical data, the missing values are replaced with the mode of that column.

```
cat("Number of missing values : ", sum(is.na(dataset)) , "\n")

# Determining columns with missing values
columns_with_na <- names(Filter(function(x) any(is.na(x)), dataset))

# Selecting numeric columns with missing values
numeric_columns_with_na <- columns_with_na[sapply(dataset[columns_with_na], is.numeric)]

cat("Columns with missing values : ", columns_with_na , "\n")

# Fill Null value with median(numeric value)
for (col in numeric_columns_with_na) {
    dataset[[col]][is.na(dataset[[col]])] <- median(dataset[[col]], na.rm = TRUE)
}

cat("Number of missing values after filling : ", sum(is.na(dataset)), "\n")

Number of missing values : 54
Columns with missing values : n_bedroom n_bathroom qs_overall
Number of missing values after filling : 0</pre>
```

2.2 Rectification of Erroneous Entries in Data

In this section, we are rectifying incorrectly entered data in certain columns of our dataset with their accurate versions

"area" Column

"sale_cond" Column

"park_facil" Column

```
dataset$park_facil <- str_replace_all(dataset$park_facil, c('noo' = 'no'))
```

"buildtype" Column

"utility_avail" Column

"street" Column

2.3 Change Type Columns

```
dataset$n_bedroom <- as.integer(dataset$n_bedroom)
dataset$n_bathroom <- as.integer(dataset$n_bathroom)

dataset$date_sale <- as.Date(dataset$date_sale, format = "%d-%m-%Y")
dataset$date_build <- as.Date(dataset$date_build, format = "%d-%m-%Y")</pre>
```

2.4 Create New Columns (Property Age , Total Price)

The 'Property Age' column represents the age of the house, calculated by subtracting the construction year of the house from the sale date.

```
dataset$property_age <- as.numeric(format(dataset$date_sale, "%Y")) - as.numeric(format(dataset$date_build, "%Y"))
```

The 'total_price' column was created by summing the realtor commission and title deed expenses with the house's sale price to form a new column.

```
dataset$total_price <- dataset$reg_fee + dataset$commis + dataset$sales_price</pre>
```

2.5 Delete Outlier

```
q1 <- quantile(dataset$sales_price, 0.25)
q3 <- quantile(dataset$sales_price, 0.75)
iqr <- q3 - q1
lower_bound <- q1 - 1.5 * iqr
upper_bound <- q3 + 1.5 * iqr

# Find outlier
outliers_indices <- which(dataset$sales_price < lower_bound | dataset$sales_price > upper_bound)

# Delete outlier row
cleaned_data <- dataset[-outliers_indices, ]</pre>
```

3) Examination of Data Column Distributions

In this section, we delved into understanding the distribution of each column in our dataset. Histograms were generated for columns containing numerical data, depicting the frequency and distribution of values within those columns. For columns with categorical data, we visualized their distribution using bar graphs.

This analysis aided in comprehending the characteristics of each feature within the dataset. It allowed us to visually assess differences between features, understand the overall structure of the dataset, and evaluate the distribution of variables. This visual exploration significantly contributed to a deeper understanding of the dataset's analysis.

The distribution of the data appears to fit a normal distribution.

4) The Impact of Numerical Variables on House Prices

The distributions in each graph illustrate how the respective numerical variables impact house prices. For instance, it emphasizes that 'int_sqft' has a more pronounced effect on house prices, while 'property_age' demonstrates limited impact. Furthermore, 'qs_overall' and 'dist_mainroad' show no significant correlation with house prices. Columns lacking correlation were subsequently removed from the dataset.

Similar operations are conducted here, but this time, the impact of discrete and continuous columns on the total price is investigated. As seen in the graph, it is evident that the columns 'qs_rooms', 'qs_bathroom', and 'qs_bedroom' have no discernible impact on the target column. Therefore, we remove these columns from our dataset.

5) One-Hot Encoding

At this stage, we are transforming our categorical columns in the dataset into a numeric format by applying one-hot encoding, thereby creating new columns.

5.1 "buildtype" Column

```
filtered_data <- dataset[dataset$buildtype %in% c("commercial", "other", "house"), ]

# One-hot encoding
one_hot_encoded <- model.matrix(~ buildtype - 1, data = filtered_data)

#delete buildtype
dataset <- dataset[ , !(names(dataset) %in% "buildtype")]

dataset <- cbind(dataset, one_hot_encoded)</pre>
```

buildtype <chr></chr>	buildtypecommercial <dbl></dbl>	buildtypehouse «dbl»	buildtypeother «dbl»
commercial	1	0	0
commercial	1	0	0
other	0	0	1
other	0	0	1
commercial	1	0	0
other	0	0	1
commercial	1	0	0
other	0	0	1
other	0	0	1
commercial	1	0	0

5.2 "area" Column

chrompet velachery

chrompet

```
area_levels <- c("karapakkam", "anna nagar", "adyar", "velachery", "chrompet", "kk nagar", "t nagar")
one_hot_encoded_area <- matrix(0, nrow = nrow(dataset), ncol = length(area_levels))
colnames(one_hot_encoded_area) <- paste("area", area_levels, sep = "_")

for (i in 1:nrow(dataset)) {
    area_index <- match(dataset[i, "area"], area_levels)
    if (!is.na(area_index)) {
        one_hot_encoded_area[i, area_index] <- 1
    }
}

one_hot_encoded_area_df <- as.data.frame(one_hot_encoded_area)

#delete are column and add one_hot_encoded_area columns|
dataset <- cbind(dataset[, !(names(dataset) %in% "area")], one_hot_encoded_area_df)</pre>
```

area <chr></chr>	area_karapakkam <dbl></dbl>	area_anna nagar <dbl></dbl>	area_adyar <dbl></dbl>	area_velachery <dbl></dbl>
karapakkam	1	0	0	0
adyar	0	0	1	0
velachery	0	0	0	1
karapakkam	1	0	0	0
chrompet	0	0	0	0
chrompet	0	0	0	0
velachery				

The transformation was applied to other columns as well; however, only the first four columns are displayed due to space limitations in the image.

5.3 "sale_cond" Column

```
dataset$sale_cond <- factor(dataset$sale_cond, levels = c('partial', 'family', 'abnormal', 'normal sale', 'adjland'))
#One hot encoding
one_hot_encoded_sale_cond <- model.matrix(~ sale_cond - 1, data = dataset)
# Delete sade_cond
dataset <- dataset[, !(names(dataset) %in% "sale_cond")]
# Add One-hot encoded
dataset <- cbind(dataset, one_hot_encoded_sale_cond)</pre>
```

sale_cond	sale_condpartial <dbl></dbl>	sale_condfamily <dbl></dbl>	sale_condabnormal «dbl»	sale_condnormal sale <dbl></dbl>	sale_condadjland <dbl></dbl>
<chr></chr>	0	0	1	0	0
abnormal	0	0	1	0	0
abnormal	0	1	0	0	0
	0	0	1	0	0
family	1	0	0	0	0
abnormal	1	0	0	0	0
partial					
partial					
family					
adjland					

5.4 "park_facil" Column

abnormal adjland

```
dataset$park_facil <- factor(dataset$park_facil, levels = c('yes', 'no'))
# 'yes' 1 'no' 2
dataset$park_facil <- ifelse(dataset$park_facil == 'yes', 1, 0)
dataset$park_facil <- as.integer(dataset$park_facil)</pre>
```

	1	park_facil <chr></chr>
1	i i	yes
1	•	yes
0	1	no
1		yes
0	1	no
0		no

5.5 "utility avail" Column

```
utility_levels <- c('elo', 'nosewa', 'nosewr', 'allpub')
utility_factors <- factor(dataset$utility_avail, levels = utility_levels)
one_hot_encoded_utility <- model.matrix(~ utility_avail - 1, data = dataset)
one_hot_encoded_utility_df <- as.data.frame(one_hot_encoded_utility)
#add one hot encoded columns
dataset <- cbind(dataset, one_hot_encoded_utility_df)
# Delete 'utility_avail'
dataset <- dataset[, !(names(dataset) %in% "utility_avail")]</pre>
```

utility_avail <chr></chr>	utility_availelo <dbl></dbl>	utility_availnosewa <dbl></dbl>	utility_availnosewa <dbl></dbl>
allpub	0	0	0
elo	1	0	0
nosewa	0	0	1
allpub	0	0	0
nosewa	0	1	0
allpub	0	0	0

5.6 "street" Column

```
street_levels <- c('no access', 'paved', 'gravel')
street_factors <- factor(dataset$street, levels = street_levels)
one_hot_encoded_street <- model.matrix(~ street - 1, data = dataset)
one_hot_encoded_street_df <- as.data.frame(one_hot_encoded_street)
dataset <- cbind(dataset, one_hot_encoded_street_df)
# Delete 'street'
dataset <- dataset[, !(names(dataset) %in% "street")]</pre>
```

street <chr></chr>	streetgravel «dbl»	streetno access «dbl»	streetpaved <dbl></dbl>
paved	0	0	1
gravel	1	0	0
paved	0	0	1
gravel	1	0	0
no access	0	1	0
no access	0	1	0

5.7 "mzzone" Column

```
mzzone_levels <- c('a', 'c', 'i', 'rl', 'rh', 'rm')
mzzone_factors <- factor(dataset$mzzone, levels = mzzone_levels)

one_hot_encoded_mzzone <- model.matrix(~ mzzone - 1, data = dataset)

one_hot_encoded_mzzone_df <- as.data.frame(one_hot_encoded_mzzone)

dataset <- cbind(dataset, one_hot_encoded_mzzone_df)

# Delete 'mzzone'
dataset <- dataset[, !(names(dataset) %in% "mzzone")]</pre>
```

mzzone <chr></chr>	mzzonea <dbl></dbl>	mzzonec <dbl></dbl>	mzzonei <dbl></dbl>	mzzonerh <dbl></dbl>	mzzonerl <dbl></dbl>	mzzonerm <dbl></dbl>
a	1	0	0	0	0	0
rl	0	0	0	0	1	0
i	0	0	1	0	0	0
С	0	1	0	0	0	0
rh	0	0	0	1	0	0
rl	0	0	0	0	1	0

After applying one-hot encoding, the total number of columns has increased to 36.

6) Scaling

In our project, we applied 2 different scaling methods to our dataset. One of these methods was Min-Max normalization, and the other was logarithmic transformation. Just as optimizing the model using different parameters is important, ensuring that the dataset is optimized for our models is crucial as well. Therefore, we conducted experiments on our dataset for both models and analyzed the outcomes we obtained.

6.1) Min max Normalization

```
# Min-Max normalization
min_max_normalize <- function(x) {
   return((x - min(x)) / (max(x) - min(x)))
}
normalized_dataset <- as.data.frame(lapply(dataset, min_max_normalize))
head(normalized_dataset)
dataset <- normalized_dataset</pre>
```

After Min-Max normalization, some of our models also exhibited better results compared to the log transformation. For instance, the first image shows the outcome of our Random Forest model with default parameters after the log transformation, while the second image displays the outcome of our Random Forest model with default parameters after Min-Max normalization.

After Log Transform

M. 4 <db< th=""><th>RMSE <dbl></dbl></th><th></th><th>MSE <dbl></dbl></th><th>R2 <dbl></dbl></th></db<>	RMSE <dbl></dbl>		MSE <dbl></dbl>	R2 <dbl></dbl>
0.0664487	7909	0.0903	0.008168379	.9812256
			ation	fter Min max normaliz
	MAE <dbi></dbi>	RMSE <ddb></ddb>	ation MSE ⊲db>	fter Min max normaliz

When we experimented by changing the parameters of our Random Forest model, it was observed that we obtained better results than Min-Max normalization.

Log Transform

Min-max Normalization

In our linear regression model, the dataset resulting from the log transformation provided better results.

Log Transform

MSE RMSE <dbl> <dbl></dbl></dbl>	R2 <dbl></dbl>	MAE <dbl></dbl>
15242 0.08952788	0.9809795	0.06250183
	1 row	

Min-max Transform

In our SVM model, a slight difference was observed where the logarithmic transformation yielded slightly better results.

Log Transform

R2	MSE	RMSE	MAE
<db ></db >	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
0.9958596	0.001736094	0.04166647	0.03214065

Min-max Normalization

R2	MSE	RMSE	MAE	
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	
0.9955887	0.000577444	0.02403007	0.01901622	

1 row

Our KNN model also yielded better results with the logarithmic transformation.

Log Transform

R2 <dbl></dbl>	MSE <dbl></dbl>	RN <	MSE dbl>	MAE <dbl></dbl>
0.9242683	0.03575501	0.189	909	0.1474365
Min-max Transform				
na	MCF	DMCF	маг	
R2 <dbl></dbl>	MSE <dbl></dbl>	RMSE <db ></db >	MAE <dbl></dbl>	
0.8723139	0.0170232	0.130473	0.09624709	
1 row				

6.2) Log Transform

Some of our columns needed normalization compared to other columns; for instance, our columns like 'sale_price' and 'total_price' consisted of 7 to 8-digit numbers. Consequently, even with a close estimation, metrics like MSE resulted in significantly large values. Additionally, after the logarithmic transformation, our KNN model showed a substantial increase in performance, reaching success rates around 0.92. While the improvement in other models wasn't as pronounced as in KNN, their performance also enhanced.

```
dataset$sales_price <- log(dataset$sales_price)
dataset$total_price <- log(dataset$total_price)
dataset$int_sqft <- log(dataset$int_sqft)
dataset$property_age <- log(dataset$property_age)</pre>
```

7) Cross Validation

In our project, the cross-validation method utilized was k-fold cross-validation, while in some models, the Repeated k-fold Cross-Validation method was employed.

```
trControl = trainControl(method = "repeatedcv", number = k, repeats = k_fold),
trControl = trainControl(method = "cv", number = k_fold),
```

8-9) Model Training

In our project, we utilized four different machine learning models:

- 1 Random Forest
- 2 Support Vector Machine
- 3 KNN
- 4 Linear Regression

We compared the default settings of these four models with variations in certain parameters, presenting the results in a tabular format. During the model training, we partitioned the data into 80% for training and 20% for testing. Furthermore, we employed cross-validation methods including k-fold cross-validation and repeated k-fold during this partitioning process. Additionally, we conducted these procedures separately for two scaling methods: Log transform and Min-Max normalization.

8) Log Transform Result

8.1 Random Forest

8.1.1 Random Forest with Default Parameter

```
library(caret)
library(randomForest)
library(Metrics)

#Create Train and test set.
set.seed(42)
trainIndex <- createDataPartition(dataset$total_price, p = 0.8, list = FALSE)
train_data <- dataset[trainIndex, ]
test_data <- dataset[-trainIndex, ]</pre>
```

```
#Create Random Forest model
rf_model <- randomForest(
  x = train_data[, -which(names(train_data) %in% target_columns)],
  y = train_data$sales_price + train_data$total_price
#Prediciton for random forest model
predictions <- predict(rf_model, newdata = test_data[, -which(names(test_data) %in% target_columns)])</pre>
# Calculate Error
errors <- predictions - (test_data$sales_price + test_data$total_price)</pre>
# Calculated Metrics
r_squared <- cor(predictions, test_data$sales_price + test_data$total_price)^2
mse <- mean(errors^2)
rmse <- sart(mse)
mae <- mean(abs(errors))</pre>
# Print Metrics
print(paste("R-kare Skoru:", r_squared))
print(paste("MSE:", mse))
print(paste("RMSE:", rmse))
print(paste("MAE:", mae))
plot(predictions, test_data$sales_price + test_data$total_price)
abline(0, 1, col = "red")
# Create Table
results <- data.frame(
   `R2` = r_squared,

`MSE` = mse,

`RMSE` = rmse,

`MAE` = mae
```

Result

R2	MSE	RMSE	MAE	
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	
0.9842605	0.002128213	0.04613256	0.03564307	

Regression Graph

8.1.2 Random Forest based on ntree and mtry parameters

```
#Create Train and test set
set.seed(42)
trainIndex <- createDataPartition(dataset$total_price, p = 0.8, list = FALSE)
train_data <- dataset[trainIndex, ]</pre>
test_data <- dataset[-trainIndex,
# Parameter Values
ntree_values <- c(50, 100, 300, 500)
mtry_values <- c(2, 5, 15 , 20)
metrics <- data.frame()
for (ntree in ntree_values)
  for (mtry in mtry_values) {
   # Create Model
   rf_model <- randomForest(</pre>
      x = train_data[, -which(names(train_data) %in% target_columns)],
y = train_data$sales_price + train_data$total_price,
      ntree = ntree,
mtry = mtry
    predictions <- predict(rf_model, newdata = test_data[, -which(names(test_data) %in% target_columns)])</pre>
    r\_squared <- cor(predictions, test\_data\$sales\_price + test\_data\$total\_price) \land 2
     mse <- mean((test_data$sales_price + test_data$total_price - predictions)^2)</pre>
    rmse <- sqrt(mse)
     mae <- mean(abs(test_data$sales_price + test_data$total_price - predictions))</pre>
    metrics <- rbind(metrics, data.frame(ntree = ntree, mtry = mtry, R_Squared = r_squared, MSE = mse, RMSE = rmse, MAE = mae))
```

MA <db< th=""><th>RMSE</th><th>MSE <dbl></dbl></th><th>R_Squared <dbl></dbl></th><th>mtry <dbl></dbl></th><th>ntree <dbl></dbl></th></db<>	RMSE	MSE <dbl></dbl>	R_Squared <dbl></dbl>	mtry <dbl></dbl>	ntree <dbl></dbl>
	<dbl></dbl>				
0.1999613	0.26073610	0.067983313	0.9211987	2	50
0.0864030	0.11502658	0.013231114	0.9725328	5	50
0.0657950	0.08992073	0.008085738	0.9811689	15	50
0.0650182	0.08802326	0.007748094	0.9818037	20	50
0.1952650	0.25440834	0.064723604	0.9250735	2	100
0.0876227	0.11741384	0.013786009	0.9721829	5	100
0.0642568	0.08762774	0.007678622	0.9821284	15	100
0.0640470	0.08692837	0.007556541	0.9823239	20	100
0.1953840	0.25345331	0.064238582	0.9292085	2	300
0.0852358	0.11437292	0.013081165	0.9732764	5	300

Description: df [16 × 6]					
ntree <dbl></dbl>	mtry <dbi></dbi>	R_Squared «dbl>	MSE <db ></db >	RMSE <dbl></dbl>	MA <dbl< th=""></dbl<>
300	15	0.9824098	0.007590077	0.08712105	0.0641076
300	20	0.9826705	0.007421479	0.08614801	0.0633358
500	2	0.9338219	0.063525213	0.25204208	0.1936676
500	5	0.9733074	0.013178055	0.11479571	0.0854821
500	15	0.9825425	0.007535124	0.08680509	0.0641390
500	20	0.9824639	0.007530793	0.08678014	0.0636528
-16 of 16 rows					Previous 1 2 Ne

8.1.3 Random Forest based on ntree , mtry and $k_{\rm fold}$ parameters

50 50 50 50 50 50 50 50 100 100 0 of 32 rows	2 2 5 5 15 15 20 20 2	5 10 5 10 5 10 5 10 5	0.9211987 0.9218441 0.9691847 0.9718730 0.9821615 0.9816072 0.9810447 0.9819050 0.9280581 0.9258452	0.067983313 0.067295480 0.014568628 0.013588517 0.007712954 0.007895447 0.008090964 0.007710772	0.26073610 0.25941372 0.12070057 0.11656980 0.08782343 0.08885633 0.08994979 0.08781100	0.19996137 0.19848218 0.09010003 0.08756457 0.06519105 0.06523930 0.06599325
50 50 50 50 50 50 50 100 100 of 32 rows	2 5 5 15 15 20 20 2	10 5 10 5 10 5	0.9218441 0.9691847 0.9718730 0.9821615 0.9816072 0.9810447 0.9819050 0.9280581	0.067295480 0.014568628 0.013588517 0.007712954 0.007895447 0.008090964	0.25941372 0.12070057 0.11656980 0.08782343 0.08885633 0.08994979	0.19848218 0.09010003 0.08756457 0.06519105 0.06523930
50 50 50 50 50 50 100 100 100 f 32 rows	5 5 15 15 20 20 20	5 10 5 10 5 10	0.9691847 0.9718730 0.9821615 0.9816072 0.9810447 0.9819050 0.9280581	0.014568628 0.013588517 0.007712954 0.007895447 0.008090964	0.12070057 0.11656980 0.08782343 0.08885633 0.08994979	0.09010003 0.08756457 0.06519105 0.06523930
50 50 50 50 100 100 100 of 32 rows	15 15 20 20 2	10 5 10 5 10 5	0.9718730 0.9821615 0.9816072 0.9810447 0.9819050 0.9280581	0.013588517 0.007712954 0.007895447 0.008090964	0.11656980 0.08782343 0.08885633 0.08994979	0.08756457 0.06519105 0.06523930
50 50 50 50 100 100 100 of 32 rows	15 15 20 20 2	5 10 5 10 5	0.9821615 0.9816072 0.9810447 0.9819050 0.9280581	0.007712954 0.007895447 0.008090964	0.08782343 0.08885633 0.08994979	0.06519105 0.06523930
50 50 50 100 100 of 32 rows	15 20 20 2	10 5 10 5	0.9816072 0.9810447 0.9819050 0.9280581	0.007895447 0.008090964	0.08885633 0.08994979	0.06523930
50 50 100 100 100 of 32 rows	20 20 2	5 10 5	0.9810447 0.9819050 0.9280581	0.008090964	0.08994979	
50 100 100 f 32 rows	20	10	0.9819050 0.9280581			
100 100 of 32 rows	2	5	0.9280581	0.007710772		0.06431601
100 of 32 rows ntree				0.064258851	0.25349329	0.19469466
ntree m				0.069007769	0.26269330	0.20323839
<dbl></dbl>						1 2 3 4 Nex
<dbl> <</dbl>						
	try	k_fold <dbl></dbl>	R_Squared	MSE <dbl></dbl>	RMSE <dbl></dbl>	M <d< td=""></d<>
100	5	5	0.9724107	0.013558800	0.11644226	0.086901
100	5	10	0.9720796	0.013458221	0.11600957	0.086272
100	15	5	0.9810658	0.008151597	0.09028620	0.066564
100	15	10	0.9822436	0.007624655	0.08731927	0.064542
100	20	5	0.9818595	0.007756532	0.08807118	0.064918
100	20	10	0.9824796	0.007502193	0.08661520	0.063935
300	2	5	0.9282952	0.065151793	0.25524849	0.196775
300	2	10	0.9290833	0.065823745	0.25656139	0.198990
300	5	5	0.9727465	0.013329879	0.11545510	0.085487
300	5	10	0.9724436	0.013502597	0.11620068	0.086315
of 32 rows					Previ	ous 1 2 3 4 N
ntree «dbl>	ntry dbl>	k_fold «dbl»	R_Squared <dbl></dbl>	MSE «dbl»	RMSE <dbl></dbl>	N
300	15	5	0.9825396	0.007527314	0.08676009	0.064060
300	15	10	0.9826037	0.007491979	0.08655622	0.06373
300	20	5	0.9826869	0.007419464	0.08613631	0.06346
300	20	10	0.9826720	0.007419433	0.08613613	0.06350
500	2	5	0.9301979	0.064851585	0.25465974	0.19595
500	2	10	0.9288779	0.066196498	0.25728680	0.19770
500	5	5	0.9732347	0.013066652	0.11430946	0.08553
500	5	10	0.9738344	0.012932465	0.11372099	0.08498
500	15	5	0.9822828	0.007630594	0.08735327	0.06408
500	15	10	0.9825920	0.007514127	0.08668406	0.06376
of 32 rows					Prev	ious 1 2 3 4 M
ntree mi	ry	k_fold	R_Squared	MSE	RMSE	MAE
<dbl> <d< td=""><td>20</td><td><dbl></dbl></td><td><dbl></dbl></td><td><dbl></dbl></td><td><dbl> 0.08623692</dbl></td><td><dbl></dbl></td></d<></dbl>	20	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl> 0.08623692</dbl>	<dbl></dbl>
	20	10	0.9826313	0.007436806	0.08623692	0.06331519

8.1.4 Random Forest based on ntree , mtry ,k_fold , maxnodes , maxdepth parameters

Result

								cription: df [288 × 9]
MA <db< th=""><th>RMSE <dbl></dbl></th><th>MSE <dbl></dbl></th><th>R_Squared <dbl></dbl></th><th>maxdepth <dbl></dbl></th><th>maxnodes «dbl></th><th>k_fold <dbl></dbl></th><th>mtry <dbl></dbl></th><th>ntree <dbl></dbl></th></db<>	RMSE <dbl></dbl>	MSE <dbl></dbl>	R_Squared <dbl></dbl>	maxdepth <dbl></dbl>	maxnodes «dbl>	k_fold <dbl></dbl>	mtry <dbl></dbl>	ntree <dbl></dbl>
0.181347	0.2298662	0.05283845	0.8812029	15	30	5	15	500
0.238195	0.3045081	0.09272521	0.8040510	5	10	10	15	500
0.237986	0.3034770	0.09209831	0.8048066	10	10	10	15	500
0.237504	0.3035509	0.09214314	0.8057245	15	10	10	15	500
0.199494	0.2537417	0.06438483	0.8574510	5	20	10	15	500
0.200587	0.2545272	0.06478411	0.8571976	10	20	10	15	500
0.199647	0.2534841	0.06425417	0.8587350	15	20	10	15	500
0.181945	0.2303236	0.05304895	0.8802552	5	30	10	15	500
0.181396	0.2301171	0.05295387	0.8803260	10	30	10	15	500
0.181212	0.2293814	0.05261584	0.8815448	15	30	10	15	500

Due to the extensive changes in parameters, only the section displaying the best values is included, resulting in 28 pages of tables.

Conclusion

Changing different parameters sometimes leads to better results for our model, while in some cases, using default values for certain parameters yields better outcomes. For instance, increasing the ntree value enhances model performance, but it's beneficial to maintain a balanced number for the mtry parameter. Additionally, restricting maxnodes and maxdepth to specific numbers decreases our model's performance, while increasing the k_fold value improves the model's performance.

8.2 Support Vector Machine (SVM)

8.2.1 SVM with Default Parameters

```
library(caret)
library(e1071)
library(Metrics)
# Create Train and Test set
set.seed(42)
trainIndex <- createDataPartition(dataset$total_price, p = 0.8, list = FALSE)</pre>
train_data <- dataset[trainIndex,</pre>
test_data <- dataset[-trainIndex, ]</pre>
#Create Model
svm_model <- train(</pre>
 x = train_data[, -which(names(train_data) %in% target_columns)],
y = train_data$sales_price + train_data$total_price,
  method = "svmRadial",
  trControl = trainControl(method = "cv", number = 10),
  metric = "RMSE"
predictions <- predict(svm_model, newdata = test_data[, -which(names(test_data) %in% target_columns)])</pre>
errors <- predictions - (test_data$sales_price + test_data$total_price)
r_squared <- cor(predictions, test_data$sales_price + test_data$total_price)^2
mse <- mean(errors^2)</pre>
rmse <- sqrt(mse)</pre>
mae <- mean(abs(errors))</pre>
print(paste("R2:", r_squared))
print(paste("MSE:", mse))
print(paste("RMSE:", rmse))
print(paste("MAE:", mae))
plot(predictions, test_data$sales_price + test_data$total_price)
abline(0, 1, col = "red")
```

R2 <dbl></dbl>	MSE <dbl></dbl>	RMSE <dbl></dbl>	MAE <dbl></dbl>
0.9958596	0.001736094	0.04166647	0.03214065

Regression Graph

8.2.2 SVM based on C, Sigma parameters

```
C_values <- c(0.1, 0.5 , 1, 10)
sigma_values <- c(0.001, 0.01, 1, 10)

metrics <- data.frame()

for (C in C_values) {
  for (sigma in sigma_values) {
    svm_model <- train(
        x = train_data[, -which(names(train_data) %in% target_columns)],
        y = train_data$sales_price + train_data$total_price,
        method = "svmRadial",
        trControl = trainControl(method = "cv", number = 10),
        metric = "RMSE",
        tuneGrid = data.frame(C = C, sigma = sigma)
    )
}</pre>
```

					escription: df [16 × 6]
MAE <dbi:< th=""><th>RMSE <dbl></dbl></th><th>MSE <dbl></dbl></th><th>R_Squared <dbl></dbl></th><th>Sigma <dbl></dbl></th><th>C <dbl></dbl></th></dbi:<>	RMSE <dbl></dbl>	MSE <dbl></dbl>	R_Squared <dbl></dbl>	Sigma <dbl></dbl>	C <dbl></dbl>
0.10186406	0.14711677	0.021643343	0.97106408	1e-03	0.1
0.04790824	0.06881451	0.004735437	0.98942287	1e-02	0.1
0.50648579	0.64074254	0.410551005	0.10217675	1e+00	0.1
0.51357016	0.64618926	0.417560564	0.04085508	1e+01	0.1
0.06136237	0.08905536	0.007930857	0.98186118	1e-03	0.5
0.03147775	0.04243742	0.001800935	0.99570666	1e-02	0.5
0.47892434	0.62077195	0.385357818	0.12403495	1e+00	0.5
0.50579768	0.64048289	0.410218333	0.04527730	1e+01	0.5
0.05522598	0.08021951	0.006435169	0.98481351	1e-03	1.0
0.02931876	0.03874484	0.001501163	0.99642140	1e-02	1.0

C <dbl></dbl>	Sigma <dbl></dbl>	R_Squared <dbl></dbl>	MSE <dbl></dbl>	RMSE «dbl»	MAE «dbl»
1.0	1e+00	0.14156298	0.370278011	0.60850473	0.46396171
1.0	1e+01	0.05242834	0.403885425	0.63551981	0.50102154
10.0	1e-03	0.99442454	0.002342930	0.04840383	0.03458297
10.0	1e-02	0.99690122	0.001303514	0.03610421	0.02784705
10.0	1e+00	0.14974126	0.361876359	0.60156160	0.45812656
10.0	1e+01	0.05374585	0.399515363	0.63207228	0.49907610
11-16 of 16 rows					Previous 1 2 Next

Conclusion

Our model achieved the best result with a C value of 10 and a Sigma value of 0.01.

8.3 KNN

8.3.1 KNN with Default Parameters

```
set.seed(42)
trainIndex <- createDataPartition(dataset$total_price, p = 0.8, list = FALSE)</pre>
train_data <- dataset[trainIndex,</pre>
test_data <- dataset[-trainIndex,</pre>
knn_model <- train(
 x = train_data[, -which(names(train_data) %in% target_columns)],
  y = train_data$sales_price + train_data$total_price,
  method = "knn",
  trControl = trainControl(method = "cv", number = 10),
  metric = "RMSE",
predictions <- predict(knn_model, newdata = test_data[, -which(names(test_data) %in% target_columns)])</pre>
errors <- predictions - (test_data$sales_price + test_data$total_price)
r_squared <- cor(predictions, test_data$sales_price + test_data$total_price)^2
mse <- mean(errors^2)</pre>
rmse <- sqrt(mse)
mae <- mean(abs(errors))</pre>
print(paste("R-kare Skoru:", r_squared))
print(paste("MSE:", mse))
print(paste("RMSE:", rmse))
print(paste("MAE:", mae))
plot(predictions, test_data$sales_price + test_data$total_price)
abline(0, 1, col = "red")
```

R2	MSE	RMSE	MAE
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
0.9242683	0.03575501	0.18909	0.1474365

Regression Graph

8.3.2 KNN based on K, k_values parameters

```
k_values <- c(3, 5, 7, 9, 11,13)
k_fold_values <- c(5, 7, 10, 15)

metrics <- data.frame()

for (k in k_values) {
    for (k_fold in k_fold_values) {
        print(k)
        knn_model <- train(
            x = train_data[, -which(names(train_data) %in% target_columns)],
            y = train_data$sales_price + train_data$total_price,
            method = "knn",
            trControl = trainControl(method = "cv", number = k_fold),
            metric = "RMSE",
            tuneGrid = data.frame(k = k),
            )
}</pre>
```

MAE <dbl></dbl>	RMSE <dbl></dbl>	MSE <dbl></dbl>	R_Squared <dbl></dbl>	k_fold <dbl></dbl>	k <dbl></dbl>
0.1602240	0.2147307	0.04610926	0.8902965	5	3
0.1602240	0.2147307	0.04610926	0.8902965	7	3
0.1602240	0.2147307	0.04610926	0.8902965	10	3
0.1499091	0.1983842	0.03935628	0.9090311	5	5
0.1499091	0.1983842	0.03935628	0.9090311	7	5
0.1499091	0.1983842	0.03935628	0.9090311	10	5
0.1475414	0.1916888	0.03674460	0.9183904	5	7
0.1475414	0.1916888	0.03674460	0.9183904	7	7
0.1475414	0.1916888	0.03674460	0.9183904	10	7
0.1474365	0.1890900	0.03575501	0.9242683	5	9

MAE <dbl></dbl>	RMSE <dbl></dbl>	MSE <dbl></dbl>	R_Squared <dbl></dbl>	k_fold <dbl></dbl>	k ≪dbl>
0.1475414	0.1916888	0.03674460	0.9183904	10	7
0.1475414	0.1916888	0.03674460	0.9183904	15	7
0.1474365	0.1890900	0.03575501	0.9242683	5	9
0.1474365	0.1890900	0.03575501	0.9242683	7	9
0.1474365	0.1890900	0.03575501	0.9242683	10	9
0.1474365	0.1890900	0.03575501	0.9242683	15	9
0.1481121	0.1888303	0.03565688	0.9264972	5	11
0.1481121	0.1888303	0.03565688	0.9264972	7	11
0.1481121	0.1888303	0.03565688	0.9264972	10	11
0.1481121	0.1888303	0.03565688	0.9264972	15	11
Previous 1 2 3 Next					11-20 of 24 rows
N «	RMSE	MSE <dbl></dbl>	R_Squared	k_fold <db></db>	k <dbl></dbl>
0.1484	0.1892680	0.03582236	0.9291423	5	13
0.1484	0.1892680	0.03582236	0.9291423	7	13
0.1484	0.1892680	0.03582236	0.9291423	10	13

8.3.3 KNN based on K, k_values parameters

MAI <dbl:< th=""><th>RMSE <dbl></dbl></th><th>MSE <dbl></dbl></th><th>R_Squared <dbl></dbl></th><th>k <dbl></dbl></th></dbl:<>	RMSE <dbl></dbl>	MSE <dbl></dbl>	R_Squared <dbl></dbl>	k <dbl></dbl>
0.1602240	0.2147307	0.04610926	0.8902965	3
0.1602240	0.2147307	0.04610926	0.8902965	3
0.1602240	0.2147307	0.04610926	0.8902965	3
0.1602240	0.2147307	0.04610926	0.8902965	3
0.1499091	0.1983842	0.03935628	0.9090311	5
0.1499091	0.1983842	0.03935628	0.9090311	5
0.1499091	0.1983842	0.03935628	0.9090311	5
0.1499091	0.1983842	0.03935628	0.9090311	5
0.1475414	0.1916888	0.03674460	0.9183904	7
0.1475414	0.1916888	0.03674460	0.9183904	7
Previous 1 2 3 Nex				of 24 rows
MAE	RMSE	MSE	R Squared	k
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	R_Squared <dbl></dbl>	k <dbl></dbl>
0.1475414	0.1916888	0.03674460	0.9183904	7
0.1475414	0.1916888	0.03674460	0.9183904	7
0.1474365	0.1890900	0.03575501	0.9242683	9
0.1474365	0.1890900	0.03575501	0.9242683	9
0.1474365	0.1890900	0.03575501	0.9242683	9
0.1474365	0.1890900	0.03575501	0.9242683	9
0.1481121	0.1888303	0.03565688	0.9264972	11
0.1481121	0.1888303	0.03565688	0.9264972	11
0.1481121	0.1888303	0.03565688	0.9264972	11
0.1481121	0.1888303	0.03565688	0.9264972	11
Previous 1 2 3 Next				of 24 rows
		MSE	P. Squared	k
1	RMSE			
!	<dbl></dbl>	<dbl></dbl>	R_Squared <dbl></dbl>	<dbl></dbl>
0.1484	<dbl> 0.1892680</dbl>	<dbl> 0.03582236</dbl>	0.9291423	<dbl></dbl>
0.1484 0.1484	<db> 0.1892680 0.1892680</db>	<dbl> 0.03582236 0.03582236</dbl>	0.9291423 0.9291423	<dbl> 13 13</dbl>
0.1484	<dbl> 0.1892680</dbl>	<dbl> 0.03582236</dbl>	0.9291423	<dbl></dbl>

Conclusion

In our KNN model, as the value of k increases, the performance of our model improves.

8.4 Linear Regression

8.4.1 Linear Regression Default Parameter

```
set.seed(42)
trainIndex <- createDataPartition(dataset$total_price, p = 0.8, list = FALSE)</pre>
train_data <- dataset[trainIndex, ]
test_data <- dataset[-trainIndex,</pre>
lm_model <- train(</pre>
  x = train_data[, -which(names(train_data) %in% target_columns)],
  y = train_data$sales_price + train_data$total_price,
  method = "1m",
  trControl = trainControl(method = "cv", number = 10),
  metric = "RMSE"
predictions <- predict(lm_model, newdata = test_data[, -which(names(test_data) %in% target_columns)])</pre>
errors <- predictions - (test_data\sales_price + test_data\total_price)
r_squared <- cor(predictions, test_data$sales_price + test_data$total_price)^2
mse <- mean(errors^2)</pre>
rmse <- sqrt(mse)
mae <- mean(abs(errors))</pre>
print(paste("R-kare Skoru:", r_squared))
print(paste("MSE:", mse))
print(paste("RMSE:", rmse))
print(paste("MAE:", mae))
plot(predictions, test_data$sales_price + test_data$total_price)
abline(0, 1, col = "red")
results <- data.frame(
  `R2` = r_squared,

`MSE` = mse,

`RMSE` = rmse,
  `MAE` = mae
```

R2 <dbl></dbl>	MSE <dbl></dbl>	RMSE <dbl></dbl>	MAE <dbl></dbl>	
0.9809795	0.008015242	0.08952788	0.06250183	

Regression Graph

8.4.2 Lasso Regression

MAE <dbl></dbl>	RMSE <dbl></dbl>	MSE <dbl></dbl>	R_Squared <dbl></dbl>	Lambda <dbl></dbl>	Alpha <dbl></dbl>
0.07606386	0.1088187	0.01184151	0.9760579	0.1	0.0
0.23650215	0.3053077	0.09321280	0.9264400	1.0	0.0
0.07606386	0.1088187	0.01184151	0.9760579	0.1	0.0
0.24018499	0.3105173	0.09642099	0.8400253	0.1	1.0
0.51639289	0.6468965	0.41847511	NA	1.0	1.0
0.24018499	0.3105173	0.09642099	0.8400253	0.1	1.0
0.09341997	0.1288681	0.01660699	0.9691291	0.1	0.1
0.33952643	0.4332702	0.18772303	0.8394652	1.0	0.1
0.09341997	0.1288681	0.01660699	0.9691291	0.1	0.1

9) Min-Max Normalization

9.1 Random Forest

9.1.1 Random Forest Default Parameter

R2	MSE	RMSE	MAE	
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	
0.9842605	0.002128213	0.04613256	0.03564307	

Regression Graph

9.1.2 Random Forest based on ntree and mtry parameters

MA <db< th=""><th>RMSE <dbl></dbl></th><th>MSE <dbl></dbl></th><th>R_Squared <dbl></dbl></th><th>mtry <dbl></dbl></th><th>ntree <dbl></dbl></th></db<>	RMSE <dbl></dbl>	MSE <dbl></dbl>	R_Squared <dbl></dbl>	mtry <dbl></dbl>	ntree <dbl></dbl>
0.1162661	0.14966853	0.022400669	0.9197454	2	50
0.0481976	0.06122779	0.003748842	0.9750583	5	50
0.0355954	0.04633445	0.002146881	0.9838893	15	50
0.0354137	0.04578467	0.002096236	0.9842329	20	50
0.1089006	0.14168245	0.020073917	0.9257852	2	100
0.0477382	0.06083272	0.003700619	0.9754859	5	100
0.0352745	0.04591865	0.002108523	0.9842545	15	100
0.0351355	0.04579370	0.002097063	0.9842282	20	100
0.1100248	0.14108226	0.019904204	0.9288936	2	300
0.0461886	0.05897738	0.003478332	0.9773144	5	300

ntree <dbl></dbl>	mtry <dbl></dbl>	R_Squared <dbl></dbl>	MSE <dbl></dbl>	RMSE <dbl></dbl>	MA <dbi< th=""></dbi<>
300	15	0.9845815	0.002058215	0.04536756	0.0348207
300	20	0.9849977	0.001991349	0.04462454	0.0342955
500	2	0.9259547	0.020798879	0.14421817	0.1122239
500	5	0.9771390	0.003466189	0.05887435	0.0463176
500	15	0.9848186	0.002026061	0.04501179	0.0345680
500	20	0.9851012	0.001979353	0.04448992	0.0341442

9.1.3 Random Forest based on ntree , mtry and k_fold parameters

ntree <dbl></dbl>	mtry <dbl></dbl>	k_fold <dbl></dbl>	R_Squared <dbl></dbl>	MSE <dbl></dbl>	RMSE <dbl></dbl>	MAE <dbl></dbl>
50	2	5	0.9197454	0.022400669	0.14966853	0.11626615
50	2	10	0.9250977	0.019564522	0.13987323	0.10907932
50	5	5	0.9752340	0.003691721	0.06075954	0.04727501
50	5	10	0.9733052	0.004001189	0.06325495	0.04918287
50	15	5	0.9833999	0.002213550	0.04704838	0.03634472
50	15	10	0.9839696	0.002136041	0.04621733	0.03557919
50	20	5	0.9842301	0.002089717	0.04571343	0.03508345
50	20	10	0.9840088	0.002117323	0.04601438	0.03519626
100	2	5	0.9250234	0.020797826	0.14421452	0.11145339
100	2	10	0.9236668	0.020702455	0.14388348	0.11180502

MAE <dbl></dbl>	RMSE <dbl></dbl>	MSE <dbl></dbl>	R_Squared <dbl></dbl>	k_fold <dbl></dbl>	mtry <dbl></dbl>	ntree <dbl></dbl>
0.04710450	0.06001526	0.003601832	0.9763414	5	5	100
0.04699669	0.06028094	0.003633792	0.9754338	10	5	100
0.03520983	0.04585965	0.002103107	0.9842050	5	15	100
0.03502749	0.04547130	0.002067639	0.9845326	10	15	100
0.03493248	0.04543440	0.002064285	0.9844282	5	20	100
0.03495562	0.04539261	0.002060489	0.9844778	10	20	100
0.10735402	0.13889646	0.019292228	0.9335015	5	2	300
0.11242246	0.14463959	0.020920611	0.9280574	10	2	300
0.04684671	0.05925693	0.003511384	0.9768220	5	5	300
0.04637476	0.05891728	0.003471246	0.9773383	10	5	300

MAI <dbl:< th=""><th>RMSE <dbl></dbl></th><th>MSE <dbl></dbl></th><th>R_Squared <dbl></dbl></th><th>k_fold <dbl></dbl></th><th>mtry <dbl></dbl></th><th>ntree <dbl></dbl></th></dbl:<>	RMSE <dbl></dbl>	MSE <dbl></dbl>	R_Squared <dbl></dbl>	k_fold <dbl></dbl>	mtry <dbl></dbl>	ntree <dbl></dbl>
0.03452782	0.04500720	0.002025648	0.9848533	5	15	300
0.03448568	0.04486622	0.002012978	0.9849339	10	15	300
0.03468468	0.04512391	0.002036167	0.9846465	5	20	300
0.03442697	0.04488768	0.002014904	0.9848299	10	20	300
0.11208406	0.14439915	0.020851116	0.9293018	5	2	500
0.11059594	0.14254408	0.020318815	0.9316795	10	2	500
0.04649602	0.05898131	0.003478795	0.9770718	5	5	500
0.04671912	0.05937362	0.003525227	0.9769371	10	5	500
0.03464048	0.04503580	0.002028223	0.9848207	5	15	500
0.03451824	0.04496428	0.002021787	0.9848909	10	15	500

MAE <dbl></dbl>	RMSE <dbl></dbl>	MSE <dbl></dbl>	R_Squared <dbl></dbl>	k_fold <dbl></dbl>	mtry <dbl></dbl>	ntree <dbl></dbl>
0.03424287	0.04466513	0.001994974	0.9849902	5	20	500
0.03439120	0.04474545	0.002002155	0.9849335	10	20	500

$9.1.4\ Random\ Forest\ based\ on\ ntree\ ,\ mtry\ ,\ k_fold\ ,\ maxnodes\ and\ maxdepth$ parameters

MAI <dbl< th=""><th>RMSE <dbl></dbl></th><th>MSE <dbl></dbl></th><th>R_Squared <dbl></dbl></th><th>maxdepth «dbl»</th><th>maxnodes «dbl»</th><th>k_fold <dbl></dbl></th><th>mtry <dbl></dbl></th><th>ntree <dbl></dbl></th></dbl<>	RMSE <dbl></dbl>	MSE <dbl></dbl>	R_Squared <dbl></dbl>	maxdepth «dbl»	maxnodes «dbl»	k_fold <dbl></dbl>	mtry <dbl></dbl>	ntree <dbl></dbl>
0.09791773	0.1211928	0.01468770	0.8926436	15	30	5	15	500
0.1335110	0.1685519	0.02840976	0.8038754	5	10	10	15	500
0.13344461	0.1685426	0.02840661	0.8034613	10	10	10	15	500
0.13305001	0.1677193	0.02812976	0.8087610	15	10	10	15	500
0.10963564	0.1373559	0.01886665	0.8659775	5	20	10	15	500
0.10964013	0.1375221	0.01891232	0.8654613	10	20	10	15	500
0.10963885	0.1373605	0.01886792	0.8652186	15	20	10	15	500
0.09812583	0.1215584	0.01477645	0.8919452	5	30	10	15	500
0.09829855	0.1215077	0.01476413	0.8924020	10	30	10	15	500
0.09844158	0.1218686	0.01485196	0.8913166	15	30	10	15	500

Due to the extensive changes in parameters, only the section displaying the best values is included, resulting in 28 pages of tables.

9.2 Support Vector Machine

9.2.1 SVM Default Parameters

R2	MSE	RMSE	MAE
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
0.9955887	0.000577444	0.02403007	0.01901622

Regression Graph

9.2.2 SVM based on C, Sigma parameters

					scription: df [16 x 6]
MAI <dbl:< th=""><th>RMSE <dbl></dbl></th><th>MSE <dbl></dbl></th><th>R_Squared «dbl»</th><th>Sigma «dbl»</th><th><dbl></dbl></th></dbl:<>	RMSE <dbl></dbl>	MSE <dbl></dbl>	R_Squared «dbl»	Sigma «dbl»	<dbl></dbl>
0.06522408	0.10257724	0.0105220903	0.95356079	1e-03	0.1
0.03150775	0.04930489	0.0024309724	0.98298642	1e-02	0.1
0.28339224	0.35751513	0.1278170649	0.11212456	1e+00	0.1
0.28755642	0.36081060	0.1301842916	0.04104926	1e+01	0.1
0.04360503	0.06847028	0.0046881794	0.96711155	1e-03	0.5
0.02029121	0.02549280	0.0006498829	0.99499831	1e-02	0.5
0.26845862	0.34487221	0.1189368408	0.13180698	1e+00	0.5
0.28389484	0.35672601	0.1272534478	0.04389622	1e+01	0.5
0.03932049	0.06086930	0.0037050717	0.97280869	1e-03	1.0
0.01856891	0.02305766	0.0005316558	0.99594406	1e-02	1.0

Description: df [16 \times 6]					E A A
C <dbl></dbl>	Sigma <dbl></dbl>	R_Squared <dbl></dbl>	MSE <dbl></dbl>	RMSE <dbl></dbl>	MAE <dbl></dbl>
1.0	1e+00	0.15079487	0.1139259658	0.33752921	0.26055402
1.0	1e+01	0.05221213	0.1253853569	0.35409795	0.28191404
10.0	1e-03	0.99299986	0.0009093829	0.03015598	0.02350918
10.0	1e-02	0.99665309	0.0004488779	0.02118674	0.01702865
10.0	1e+00	0.16498226	0.1107405716	0.33277706	0.25697140
10.0	1e+01	0.05424876	0.1241311342	0.35232249	0.28152442

9.3 KNN

9.3.1 KNN with Default Parameters

Result

R2	MSE	RMSE	MAE
<db ></db >	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
0.8723139	0.0170232	0.130473	0.09624709

Regression Graph

9.3.2 KNN based on K, k_values parameters

MA <dbl< th=""><th>RMSE <dbl></dbl></th><th>MSE <dbl></dbl></th><th>R_Squared <dbl></dbl></th><th>k_fold <dbl></dbl></th><th>k <dbl></dbl></th></dbl<>	RMSE <dbl></dbl>	MSE <dbl></dbl>	R_Squared <dbl></dbl>	k_fold <dbl></dbl>	k <dbl></dbl>
0.1016586	0.1372805	0.01884594	0.8553037	5	3
0.1016586	0.1372805	0.01884594	0.8553037	7	3
0.1016586	0.1372805	0.01884594	0.8553037	10	3
0.1016586	0.1372805	0.01884594	0.8553037	15	3
0.0962470	0.1304730	0.01702320	0.8723139	5	5
0.0962470	0.1304730	0.01702320	0.8723139	7	5
0.0962470	0.1304730	0.01702320	0.8723139	10	5
0.0962470	0.1304730	0.01702320	0.8723139	15	5
0.0973335	0.1295352	0.01677938	0.8793048	5	7
0.0973335	0.1295352	0.01677938	0.8793048	7	7

MAE <dbl></dbl>	RMSE <dbl></dbl>	MSE <dbl></dbl>	R_Squared <dbl></dbl>	k_fold <dbl></dbl>	k <dbl></dbl>
0.09733357	0.1295352	0.01677938	0.8793048	10	7
0.09733357	0.1295352	0.01677938	0.8793048	15	7
0.09910891	0.1289538	0.01662909	0.8847866	5	9
0.09910891	0.1289538	0.01662909	0.8847866	7	9
0.09910891	0.1289538	0.01662909	0.8847866	10	9
0.09910891	0.1289538	0.01662909	0.8847866	15	9
0.09988134	0.1297786	0.01684247	0.8861686	5	11
0.09988134	0.1297786	0.01684247	0.8861686	7	11
0.09988134	0.1297786	0.01684247	0.8861686	10	11
0.09988134	0.1297786	0.01684247	0.8861686	15	11
Previous 1 2 3 Next					11-20 of 24 rows
MAE <dbl></dbl>	RMSE ⊲db >	MSE ⊲dbl>	R_Squared	k_fold «dbl>	k <db></db>
0.10109138	0.1314112	0.01726890	0.8865284	5	13
0.10109138	0.1314112	0.01726890	0.8865284	7	13
0.10109138	0.1314112	0.01726890	0.8865284	10	13
0.10109138	0.1314112	0.01726890	0.8865284	15	13

9.3.3 Changing the cross-validation method in KNN

k <dbl></dbl>	R_Squared <dbl></dbl>	MSE <dbl></dbl>	RMSE «dbl»	MAE <dbl></dbl>
3	0.8553037	0.01884594	0.1372805	0.10165864
3	0.8553037	0.01884594	0.1372805	0.10165864
3	0.8553037	0.01884594	0.1372805	0.10165864
3	0.8553037	0.01884594	0.1372805	0.10165864
5	0.8723139	0.01702320	0.1304730	0.09624709
5	0.8723139	0.01702320	0.1304730	0.09624709
5	0.8723139	0.01702320	0.1304730	0.09624709
5	0.8723139	0.01702320	0.1304730	0.09624709
7	0.8793048	0.01677938	0.1295352	0.09733357
7	0.8793048	0.01677938	0.1295352	0.09733357
1-10 of 24 rows				Previous 1 2 3 Next

MAE «dbl»	RMSE «dbl»	MSE <dbl></dbl>	R_Squared <dbl></dbl>	k <dbl></dbl>
0.09733357	0.1295352	0.01677938	0.8793048	7
0.09733357	0.1295352	0.01677938	0.8793048	7
0.09910891	0.1289538	0.01662909	0.8847866	9
0.09910891	0.1289538	0.01662909	0.8847866	9
0.09910891	0.1289538	0.01662909	0.8847866	9
0.09910891	0.1289538	0.01662909	0.8847866	9
0.09988134	0.1297786	0.01684247	0.8861686	11
0.09988134	0.1297786	0.01684247	0.8861686	11
0.09988134	0.1297786	0.01684247	0.8861686	11
0.09988134	0.1297786	0.01684247	0.8861686	11

k ⊲dbl>	R_Squared <dbl></dbl>	MSE «dbl»	RMSE <dbl></dbl>	MAE <dbl></dbl>
13	0.8865284	0.01726890	0.1314112	0.10109138
13	0.8865284	0.01726890	0.1314112	0.10109138
13	0.8865284	0.01726890	0.1314112	0.10109138
13	0.8865284	0.01726890	0.1314112	0.10109138

9.4 Linear Regression

9.4.1 Linear Regression with Default Parameter

Result

R2	MSE	RMSE	MAE
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
0.9632262	0.004798767	0.06927313	0.05060293

Regression Graph

9.4.1 Lasso Regression

Result

Alpha «dbl»	Lambda <dbl></dbl>	R_Squared <dbl></dbl>	MSE <dbl></dbl>	RMSE <dbl></dbl>	MAE <dbl></dbl>
0.0	0.1	0.9543901	0.007610068	0.08723571	0.05967037
0.0	1.0	0.8766830	0.048475942	0.22017253	0.17236359
0.0	0.1	0.9543901	0.007610068	0.08723571	0.05967037
1.0	0.1	0.7368749	0.056820892	0.23837133	0.18538742
1.0	1.0	NA	0.129924826	0.36045086	0.29043654
1.0	0.1	0.7368749	0.056820892	0.23837133	0.18538742
0.1	0.1	0.9447951	0.010596728	0.10294041	0.07328013
0.1	1.0	0.7031756	0.094551907	0.30749294	0.24469871
0.1	0.1	0.9447951	0.010596728	0.10294041	0.07328013

9 rows

10) References

[1] Kunwarakash, "Chennai House Price Prediction," Kaggle, [Online]. Available: https://www.kaggle.com/code/kunwarakash/chennai-house-price-prediction/.

[2] "Support Vector Machines in Machine Learning," YouTube, [Online]. Available: https://www.youtube.com/watch?v=6EXPYzbfLCE.

[3] "Support Vector Machines Tutorial in R," DataCamp, [Online]. Available: https://www.datacamp.com/tutorial/support-vector-machines-r.

[4] "Linear Regression Tutorial in R," DataCamp, [Online]. Available: https://www.datacamp.com/tutorial/linear-regression-R.