Contents

MCU 1 Sequence Diagram	3
MCU 1 State Machine	
MCU 1 CPU Load (Assuming missing data)	
MCU 2 Sequence Diagram	
MCU 2 State Machine	
MCU 2 CPU Load (Assuming missing data)	

MCU 1 Sequence Diagram

MCU 1 State Machine

MCU 1 CPU Load (Assuming missing data)

Task Name	Execution Time	Period
Door_Sensor	15 us	10 ms
Speed_Sensor	30 us	5 ms
Light_SW	15 us	20 ms
Send_Status	20 us	5 ms

CPU Load = $((0.015 \times 2 + 0.030 \times 4 + 0.015 + 0.020 \times 4) / 20) \times 100\% = 0.925\%$

MCU 2 Sequence Diagram

MCU 2 State Machine

MCU 2 CPU Load (Assuming missing data)

Task Name	Execution Time	Period
Update LL	15 us	10 ms
state		
Update RL	15 us	10 ms
state		
Update	15 us	10 ms
Buzzer State		

CPU Load = $((0.015 + 0.015 + 0.015) / 10) \times 100\% = 0.45\%$

MCU 2 CPU Load (Assuming missing data)

Sensor	Period	Message Rate
Speed Sensor	5 ms	200 messages/s
Door Sensor	10 ms	100 messages/s
Light SW	20 ms	50 messages/s
Sensor		

Total messages on bus = 350 message/second

Assuming simple can protocol with a 125-bit frame length at a speed of 500kbit/s:

Bus Load = ((Total Messages / 1000) * (Frame Length / 125)) x 100%

Bus Load = $((350 / 1000) * 250 / 125) \times 100\% = 7.0\%$

Therefore, the bus load of the system is 7.0%, indicating that the system has sufficient bandwidth to handle the message traffic without any significant performance issues.