Complejos simpliciales

Rafael Villarroel

2021-01-19 15:40 -0500

Complejo simplicial

Sea X un conjunto finito. Un complejo simplicial Δ en X es una colección de subconjuntos de X que es cerrada bajo inclusión. Es decir, si $\sigma \in \Delta$ y $\tau \subset \sigma$, entonces $\tau \in \Delta$.

1. Sea $X = \{1, 2, 3\}$. Sea $\Delta = \{\emptyset, \{1, 2\}, \{1\}, \{2\}\}$. Entonces Δ es un complejo simplicial.

- 1. Sea $X = \{1, 2, 3\}$. Sea $\Delta = \{\emptyset, \{1, 2\}, \{1\}, \{2\}\}$. Entonces Δ es un complejo simplicial.
- 2. Sea $X = \{1, 2, 3\}$. Sea $\Delta = \{\} = \emptyset$. Entonces Δ es un complejo simplicial.

- 1. Sea $X = \{1, 2, 3\}$. Sea $\Delta = \{\emptyset, \{1, 2\}, \{1\}, \{2\}\}$. Entonces Δ es un complejo simplicial.
- 2. Sea $X = \{1, 2, 3\}$. Sea $\Delta = \{\} = \emptyset$. Entonces Δ es un complejo simplicial.
- 3. Sea $X = \{1, 2, 3\}$. Sea $\Delta = \{\emptyset, \{1, 2\}, \{1\}, \{2\}, \{3\}, \{1, 3\}\}$. Entonces Δ es un complejo simplicial.

- 1. Sea $X = \{1, 2, 3\}$. Sea $\Delta = \{\emptyset, \{1, 2\}, \{1\}, \{2\}\}$. Entonces Δ es un complejo simplicial.
- 2. Sea $X = \{1, 2, 3\}$. Sea $\Delta = \{\} = \emptyset$. Entonces Δ es un complejo simplicial.
- 3. Sea $X = \{1, 2, 3\}$. Sea $\Delta = \{\emptyset, \{1, 2\}, \{1\}, \{2\}, \{3\}, \{1, 3\}\}$. Entonces Δ es un complejo simplicial.
- 4. Sea X cualquier conjunto finito. Sea $\Delta = \mathcal{P}(X)$. Entonces Δ es un complejo simplicial.

- 1. Sea $X = \{1, 2, 3\}$. Sea $\Delta = \{\emptyset, \{1, 2\}, \{1\}, \{2\}\}$. Entonces Δ es un complejo simplicial.
- 2. Sea $X = \{1, 2, 3\}$. Sea $\Delta = \{\} = \emptyset$. Entonces Δ es un complejo simplicial.
- 3. Sea $X = \{1, 2, 3\}$. Sea $\Delta = \{\emptyset, \{1, 2\}, \{1\}, \{2\}, \{3\}, \{1, 3\}\}$. Entonces Δ es un complejo simplicial.
- 4. Sea X cualquier conjunto finito. Sea $\Delta = \mathcal{P}(X)$. Entonces Δ es un complejo simplicial.
- 5. Observación Si Δ es un complejo simplicial en X, en particular $\Delta\subseteq\mathcal{P}(X)$.

3 | 8

- 1. Sea $X = \{1, 2, 3\}$. Sea $\Delta = \{\emptyset, \{1, 2\}, \{1\}, \{2\}\}$. Entonces Δ es un complejo simplicial.
- 2. Sea $X = \{1, 2, 3\}$. Sea $\Delta = \{\} = \emptyset$. Entonces Δ es un complejo simplicial.
- 3. Sea $X = \{1, 2, 3\}$. Sea $\Delta = \{\emptyset, \{1, 2\}, \{1\}, \{2\}, \{3\}, \{1, 3\}\}$. Entonces Δ es un complejo simplicial.
- 4. Sea X cualquier conjunto finito. Sea $\Delta = \mathcal{P}(X)$. Entonces Δ es un complejo simplicial.
- 5. Observación Si Δ es un complejo simplicial en X, en particular $\Delta \subseteq \mathcal{P}(X)$.
- 6. Si $X = \{1, 2, 3, 4\}$, entonces $\{\{1, 2\}, \{1, 3\}\}$ no es un complejo simplicial, pues no contiene a $\{1\}$.

3 | 8

- 1. Sea $X = \{1, 2, 3\}$. Sea $\Delta = \{\emptyset, \{1, 2\}, \{1\}, \{2\}\}$. Entonces Δ es un complejo simplicial.
- 2. Sea $X = \{1, 2, 3\}$. Sea $\Delta = \{\} = \emptyset$. Entonces Δ es un complejo simplicial.
- 3. Sea $X = \{1, 2, 3\}$. Sea $\Delta = \{\emptyset, \{1, 2\}, \{1\}, \{2\}, \{3\}, \{1, 3\}\}$. Entonces Δ es un complejo simplicial.
- 4. Sea X cualquier conjunto finito. Sea $\Delta=\mathcal{P}(X)$. Entonces Δ es un complejo simplicial.
- 5. Observación Si Δ es un complejo simplicial en X, en particular $\Delta \subseteq \mathcal{P}(X)$.
- 6. Si $X = \{1, 2, 3, 4\}$, entonces $\{\{1, 2\}, \{1, 3\}\}$ no es un complejo simplicial, pues no contiene a $\{1\}$.
- 7. Si $X = \{1, 2, 3, 4\}$, entonces $\{\emptyset, \{1\}, \{1, 2\}, \{1, 2, 3\}, \{1, 2, 3, 4\}\}$ no es un complejo simplicial, pues no contiene a $\{2\}$.

Más definiciones

Si Δ es un complejo simplicial, sus elementos se llaman simplejos. Si $\tau \subseteq \sigma$, decimos que τ es una cara de σ . La dimensión dim σ de un simplejo σ es dim $\sigma = |\sigma| - 1$. La dimensión de Δ es dim $\Delta = \max\{\dim \sigma \mid \sigma \in \Delta\}$.

Subcompleio

Sean Δ_1 y Δ_2 dos complejos simpliciales en X. Decimos que Δ_1 es subcomplejo de Δ_2 si $\Delta_1 \subset \Delta_2$. Por ejemplo, si , $\Delta_2 = \{\emptyset, \{1, 2\}, \{1\}, \{2\}, \{3\}, \{1, 3\}\}, \text{ el complejo simplicial}$ $\Delta_1 = \{\emptyset, \{1\}, \{2\}, \{3\}\} \}$ es subcomplejo de Δ_2 .

Esqueleto

Si Δ es cualquier complejo simplicial y k es un número natural, definimos el k-esqueleto como

 $\Delta^{(k)} = \{ \sigma \in \Delta \mid \dim \sigma \leq k \}$. Por ejemplo, si $X = \{1, 2, 3, 4\}$ y $\Delta = \{\emptyset, \{1, 2\}, \{1\}, \{2\}, \{3\}, \{1, 3\}\}, \text{ tenemos que:}$

• $\Delta^{(0)} = \{\emptyset, \{1\}, \{2\}, \{3\}\}.$

Esqueleto

Si Δ es cualquier complejo simplicial y k es un número natural, definimos el k-esqueleto como $\Delta^{(k)} = \{ \sigma \in \Delta \mid \dim \sigma \leq k \}$. Por ejemplo, si $X = \{1, 2, 3, 4\}$

$$\Delta^{(k)} = \{ \sigma \in \Delta \mid \dim \sigma \le k \}$$
. Por ejemplo, si $X = \{1, 2, 3, 4\}$ y $\Delta = \{\emptyset, \{1, 2\}, \{1\}, \{2\}, \{3\}, \{1, 3\}\}$, tenemos que:

- $\Delta^{(0)} = \{\emptyset, \{1\}, \{2\}, \{3\}\},\$
- $\bullet \ \Delta^{(1)} = \Delta.$

Como otro ejemplo, sea $X = \{1, 2, 3, 4\}$, sea $\Delta = \mathcal{P}(X)$. Entonces:

• $\Delta^{(0)} = \{\emptyset, 1, 2, 3, 4\}$. (En adelante, haremos la convención de denotar, por ejemplo, a $\{1\}$ como 1 y a $\{1, 2\}$ como 12)

Tarea Demuestra que para toda k, el k-esqueleto de Δ es un subcompleio de Δ .

Como otro ejemplo, sea $X = \{1, 2, 3, 4\}$, sea $\Delta = \mathcal{P}(X)$. Entonces:

- $\Delta^{(0)} = \{\emptyset, 1, 2, 3, 4\}$. (En adelante, haremos la convención de denotar, por ejemplo, a $\{1\}$ como 1 y a $\{1, 2\}$ como 12)
- $\Delta^{(1)} = \Delta^{(0)} \cup \{12, 13, 14, 23, 24, 34\}.$

Tarea Demuestra que para toda k, el k-esqueleto de Δ es un subcompleio de Δ .

Como otro ejemplo, sea $X = \{1, 2, 3, 4\}$, sea $\Delta = \mathcal{P}(X)$. Entonces:

- $\Delta^{(0)} = \{\emptyset, 1, 2, 3, 4\}$. (En adelante, haremos la convención de denotar, por ejemplo, a $\{1\}$ como 1 y a $\{1, 2\}$ como 12)
- $\Delta^{(1)} = \Delta^{(0)} \cup \{12, 13, 14, 23, 24, 34\}.$
- $\Delta^{(2)} = \Delta^{(1)} \cup \{123, 134, 234, 124\}.$

Tarea Demuestra que para toda k, el k-esqueleto de Δ es un subcomplejo de Δ .

Como otro ejemplo, sea $X = \{1, 2, 3, 4\}$, sea $\Delta = \mathcal{P}(X)$. Entonces:

- $\Delta^{(0)} = \{\emptyset, 1, 2, 3, 4\}$. (En adelante, haremos la convención de denotar, por ejemplo, a $\{1\}$ como 1 y a $\{1, 2\}$ como 12)
- $\Delta^{(1)} = \Delta^{(0)} \cup \{12, 13, 14, 23, 24, 34\}.$
- $\Delta^{(2)} = \Delta^{(1)} \cup \{123, 134, 234, 124\}.$
- $\Delta^{(3)} = \Delta = \Delta^{(4)}$.

Tarea Demuestra que para toda k, el k-esqueleto de Δ es un subcomplejo de Δ .

Caras maximales

Sea Δ un complejo simplicial. Un simplejo $\sigma \in \Delta$ es una cara maximal, si $\sigma \subseteq \tau$ para $\tau \in \Delta$ implica que $\sigma = \tau$. Por ejemplo, si $X = \{1, 2, 3\}$, y $\Delta = \{\emptyset, \{1, 2\}, \{1\}, \{2\}, \{3\}, \{1, 3\}\}\}$. Entonces las caras maximales Δ de son $\{1, 2\}$ y $\{1, 3\}$. Las caras maximales también se suelen llamar facetas. Denotaremos a la colección de facetas del complejo simplicial Δ como $\mathcal{F}(\Delta)$. Observación: Un compleio simplicial está determinado por sus caras maximales. Por ejemplo, sea Δ el complejo simplicial con conjunto de caras maximales dado por $\{123, 124, 134, 234\}$. Entonces Δ es esencialmente un tetraedro hueco.