Universidad de la República Facultad de Ingeniería - IMERL

Cálculo diferencial e integral en varias variables Primer Semestre 2018

Primer parcial – Viernes 4 de mayo de 2018

Nro de Parcial	Cédula	Apellido y nombre		

(I) Múltiple opción. Total: 30 puntos

Puntajes: 5 puntos si la respuesta es correcta, 0 punto por no contestar y -1 si la respuesta es incorrecta.

Indique sus respuestas en los casilleros correspondientes, con letras mayúsculas imprenta: A, B, C, D o E.

Ejercicio 1	Ejercicio 2	Ejercicio 3	Ejercicio 4	Ejercicio 5	Ejercicio 6

Ejercicio 1

Sea x(t) la solución a la ecuación diferencial x''(t) - 6x'(t) + 25x(t) = 0 que cumple x(0) = 0 y x'(0) = 4.

Indicar la opción correcta:

- (A) $x(\pi) = 0$
- (B) $x(\pi) = e^{3\pi}$
- (C) $x(\pi) = 1$
- (D) $x(\pi) = e^{4\pi} \cos(3\pi)$
- (E) $x(\pi) = e^{4\pi}$

Ejercicio 2

Sea x(t) la solución a la ecuación diferencial x'(t) = -2tx(t) que cumple x(0) = 1. Indicar la opción correcta:

- (A) x''(0) = -2
- (B) x''(0) = -1
- (C) x''(0) = 0
- (D) x''(0) = 1
- (E) x''(0) = 2

Ejercicio 3

Considere la serie infinita

$$\sum_{n=1}^{+\infty} \left(\log \left(6 + \frac{6}{n} \right) - \log \left(6 + \frac{6}{n+2} \right) \right).$$

Indicar la opción correcta:

- (A) La serie no converge.
- (B) La serie converge al valor log(6).
- (C) La serie converge al valor log(12).
- (D) La serie converge al valor log(12) + log(9) 2 log(6).
- (E) La serie converge al valor log(12) + log(9) log(6).

Ejercicio 4

Considere la serie infinita $\sum_{n=1}^{+\infty} \frac{\log(n)}{\sqrt{n}}$ y la integral impropia $\int\limits_{1}^{+\infty} \frac{\log(x)}{\sqrt{x}} dx$.

Indicar la opción correcta.

- (A) La serie converge y la integral impropia también.
- (B) La serie converge pero la integral impropia no converge.
- (C) La serie no converge y la integral impropia tampoco.
- (D) La serie no converge pero la integral impropia converge.
- (E) La serie y la integral impropia convergen al mismo valor.

Ejercicio 5

Una pelota de goma se deja caer desde una altura de 2 metros. Cada vez que toca el piso rebota y se eleva hasta una altura de 2/3 de la distancia desde la que cae.

Interpretando la distancia que recorre la pelota luego de infinitos rebotes como suma de una serie infinita indicar la opción correcta.

- (A) Luego de infinitos rebotes la pelota recorre 4 metros.
- (B) Luego de infinitos rebotes la pelota recorre 6 metros.
- (C) Luego de infinitos rebotes la pelota recorre 8 metros.
- (D) Luego de infinitos rebotes la pelota recorre 10 metros.
- (E) Para rebotar infinitas veces la pelota debe recorrer una distancia infinita (i.e. la serie no converge).

Ejercicio 6

Considere la integral impropia $\int_0^1 \left(\frac{x}{(x-1)^2}\right)^s dx$ donde s es un número real.

Indicar la opción correcta:

- (A) La integral converge para todo valor de s.
- (B) La integral converge sólamente si -1 < s < 1.
- (C) La integral converge sólamente si s < 1/2.
- (D) La integral converge sólamente si -1 < s < 1/2.
- (E) La integral no converge para ningún valor de s.

Problema (10 puntos)

- a) Definir la norma de la suma $|x|_1$, la norma Euclídea $|x|_2$, y la norma del máximo $|x|_{\infty}$ de un punto $x=(x_1,\ldots,x_d)$ en \mathbb{R}^d .
- b) Representar gráficamente la bola de radio 1 centrada en el punto (0,0) de \mathbb{R}^2 para cada una de las tres normas definidas en la parte anterior.
- c) Demostrar que la norma Euclídea de todo punto (x, y) en \mathbb{R}^2 es menor o igual a su norma de la suma. Indicar en qué puntos de \mathbb{R}^2 las dos normas coinciden.