1) a)

The schedule using EDF is feasible.

b)
$$c_1(3) = 3$$
 $c_2(3) = 0$ $c_3(3) = 4$ $c_4(3) = 2$ $c_5(3) = 3$ $c_x(3) = 2$

$$\forall i \sum_{k=1}^{i} c_k(t) \leq d_i - t \qquad (Tasks sorted by their deadlines)$$

$$J_2: 0 \leq 7 - 3 = 4$$

$$J_3: 0 + 4 \leq 8 - 3 = 5$$

$$J_x: 0 + 4 + 2 \leq 10 - 3 = 7$$

$$J_4: 0 + 4 + 2 + 2 \leq 11 - 3 = 8$$

$$J_1: 0 + 4 + 2 + 2 + 3 \leq 16 - 3 = 13$$

 $I_5: 0 + 4 + 2 + 2 + 3 + 3 \le 18 - 3 = 15$

The task set is schedulable.

2) Precedence graph:

Modified times (according to EDF):

Task	Arrival Time	Relative Deadline
Α	0	2
В	2	4
С	5	8
D	8	13
Е	13	14
F	14	16
G	16	21

3)

SPT: Shortest Processing Time

LPT: Longest Processing Time

LST: Least Slack Time

LRT: Latest Release Time

a)

Not schedulable if deadline of E=4 (A would miss the deadline by one unit).

Schedulable if deadline of E=9.

4)

* EDD minimizes the maximum lateness.

