Cairo University FCI

Theory of Computation

Push Down Automata (PDA)

Manar Elkady, Ph.D.

A more powerful machine

 limitation of FA related to fact that they can only "remember" a bounded amount of information

 What is the simplest alteration that adds unbounded "memory" to our machine?

• Should be able to recognize, e.g., $\{0^n1^n: n \ge 0\}$

Pushdown Automata (PDA)

- Two ways to describe PDA
 - diagram
 - formal definition

PDA diagram

transition label:

(tape symbol read, stack symbol popped → stack symbol pushed)

PDA operation

Taking a transition labeled:

- $-a \in (\Sigma \cup \{\epsilon\})$
- $-b,c \in (\Gamma \cup \{\epsilon\})$

If the input symbol is **a and**the top stack symbol is **b then**q₁ to q₂, pop **b**, push **c**, advance read head

read a from tape, or don't read from tape if $a = \varepsilon$ pop b from stack, or don't pop from stack if $b = \varepsilon$ push c onto stack, or don't push onto stack if $c = \varepsilon$

• tape: 0 0 1 1 Stack contents: \$

• tape: 0 0 1 1 Stack contents: 0 \$

• tape: 0 0 1 1 Stack contents: 0 0 \$

• tape: 0 0 1 1 Stack contents: 0 0 \$

• tape: 0 0 1 1 Stack contents: 0 \$

• tape: 0 0 1 1 Stack contents: \$ accepted

• tape: 0 0 1 Stack contents: \$

• tape: 0 0 1 Stack contents: 0 \$

• tape: 0 0 1 Stack contents: 0 0 \$

• tape: 0 0 1 Stack contents: 0 0 \$

• tape: 0 0 1 Stack contents: 0 \$ not accepted

What language does this PDA accept?

Formal definition of PDA

- A PDA is a 6-tuple (Q, Σ , Γ , δ , q_0 , F) where:
 - Q is a finite set called the states
 - $-\Sigma$ is a finite set called the tape alphabet
 - $-\Gamma$ is a finite set called the stack alphabet
 - $-\delta:Q \times (\Sigma \cup \{\epsilon\}) \times (\Gamma \cup \{\epsilon\}) \rightarrow \wp(Q \times (\Gamma \cup \{\epsilon\}))$ is a function called the transition function
 - q₀ is an element of Q called the start state
 - F is a subset of Q called the accept states

Formal definition of PDA

• PDA M = $(Q, \Sigma, \Gamma, \delta, q_0, F)$ accepts string $w \in \Sigma^*$ if w can be written as

$$w_1w_2w_3...w_m \in (\Sigma \cup \{\epsilon\})^*$$
, and

- there exist states r_0 , r_1 , r_2 , ..., r_m , and
- there exist strings $s_0, s_1, ..., s_m$ in $(\Gamma \cup \{\epsilon\})^*$
 - $r_0 = q_0$ and $s_0 = \varepsilon$
 - $-(r_{i+1}, b) \in \delta(r_i, w_{i+1}, a)$, where $s_i = a_t, s_{i+1} = b_t$ for some $t \in \Gamma^*$
 - $-r_m \in F$

Example of formal definition

•
$$Q = \{q_0, q_1, q_2, q_3\}$$

•
$$\Sigma = \{0,1\}$$

•
$$\Gamma = \{0, 1, \$\}$$

•
$$F = \{q_0, q_3\}$$

•
$$\delta(q_0, \epsilon, \epsilon) = \{(q_1, \$)\}$$

•
$$\delta(q_1, 0, \epsilon) = \{(q_1, 0)\}$$

•
$$\delta(q_1, 1, 0) = \{(q_2, \epsilon)\}$$

•
$$\delta(q_2, 1, 0) = \{(q_2, \epsilon)\}$$

•
$$\delta(q_2, \epsilon, \$) = \{(q_3, \epsilon)\}$$

other values of

$$L = \{a^ib^jc^k \mid i, j, k \ge 0 \text{ and } j = k\}$$

$$L = \{a^ib^jc^k \mid i, j, k \ge 0 \text{ and } j = k\}$$

$$L = \{a^ib^jc^k \mid i, j, k \ge 0 \text{ and } j = k\}$$

$$L = \{a^ib^jc^k \mid i, j, k \ge 0 \text{ and } j = k\}$$

$$L = \{a^ib^jc^k \mid i, j, k \ge 0 \text{ and } j = k\}$$

$$L = \{a^ib^jc^k \mid i, j, k \ge 0 \text{ and } j = k\}$$

$$L = \{a^i b^j c^k \mid i, j, k \ge 0 \text{ and } j = k\}$$

