Differentiability and inverses

Ex1. Differentiate (22+7)3.

$$((x^2+7)^{13})^1 = 13(x^2+7)^{12} \cdot 2x$$

Ex2. Compute derivatives.

1.
$$f_1(x) = (x^2 + 1) \sin(x)$$

$$\int_{1}^{1} (2x) = 2\pi \sin(2x) + (x^{2}+1) \cos(2x)$$

2.
$$f_1(x) = \frac{e^x}{x^2}$$

$$f_{2}(n) = \frac{e^{x} x^{2} - e^{x} \cdot 2x}{x^{4}} = \frac{x^{2} - 2x}{x^{4}} e^{x} = \frac{x - 2}{x^{3}} e^{x}$$

3.
$$f_3(x) = \cos(\ln(x) + 1)$$

$$f_3(x) = -\sin\left(\ln(x) + 1\right) \cdot \frac{1}{x}$$

$$f_{\mu}(x) = -\sin(\cos(\cos(x)) \cdot (-\sin(\cos(x))) \cdot (-\sin(x))$$

= $-\sin(\cos(\cos(\cos(x))) \cdot \sin(\cos(x)) \cdot \sin(x)$

Ez3. Compute derivatives.

1.
$$f_1(t) = t^2 + i \sin(t)$$

 $f_1'(t) = 2t + i \cos(t)$

2.
$$f_1(t) = |t| i t^5$$

 $f'_2(t) = 5 i t^4$

3.
$$f_3(t) = t^5 - i$$

 $f'_3(t) = 5t^4$

4.
$$f_{4}(t) = 3e^{it}$$

 $f_{4}(t) = 3ie^{it}$

5.
$$f_5(t) = i e^{2t+3it}$$

 $f_5(t) = i (2+3i) e^{2t+3it} = (-3+2i) e^{2t+3it}$

En4. Determine the derivative of arcsin using $(f^{-1})'(y) = \frac{1}{f(x)}$.

$$(\arcsin^{-1})'(y) = \frac{1}{(\sin(x))'} = \frac{1}{\cos(x)}$$
$$= \frac{1}{\sqrt{1-\sin^2(x)}} = \frac{1}{\sqrt{1-y^2}}$$

Recall that sine is the function relating values y to input x by y = sin(x), hence the last substitution. So we have $(\arcsin^{-1})'(x) = \frac{1}{\sqrt{1-x^2}}, x \in]-|\cdot|[.$

Ezs

a) Show that tan'(t) = 1 + tan2(t) where defined.

$$\tan'(t) = \left(\frac{\sin(t)}{\cos(t)}\right)' = \frac{\cos(t) \cdot \cos(t) - \sin(t) \cdot (-\sin(t))}{\cos^2(t)}$$

$$= \frac{\cos^2(t) + \sin^2(t)}{\cos^2(t)} = 1 + \tan^2(t) \quad \left(also \frac{1}{\cos^2(t)}\right)$$

$$\cos(t) \neq 0.$$

b) Determine arctan (x).

$$\arctan'(y) = \frac{1}{\tan^2(x)} = \frac{1}{1 + \tan^2(x)}, \quad y = \tan(x)$$

$$= \frac{1}{1 + y^2}, \quad y \in \mathbb{R}.$$

Thus we have $\arctan(\alpha) = \frac{1}{1+\alpha^2}$ for $\alpha \in \mathbb{R}$.

Exb. Show by definition that $f(x) = x^2$ is differentiable for every $x_0 \in \mathbb{R}$ with $f'(x_0) = 2x_0$.

Using $f(x) = f(x_0) + a(x-x_0) + \epsilon(x-x_0)(x-x_0)$ we have for arbitrary $x_0 \in \mathbb{R}$

$$\chi^{2} = \chi_{o}^{2} + \alpha \left(\chi - \chi_{o}\right) + \mathcal{E}\left(\chi - \chi_{o}\right) \left(\chi - \chi_{o}\right)$$

$$(z) \quad \chi^{2} - \chi_{o}^{2} \quad z \quad \alpha \left(\chi - \chi_{o}\right) + \mathcal{E}\left(\chi - \chi_{o}\right) \left(\chi - \chi_{o}\right)$$

$$(z) \quad \chi^{2} - \chi_{o}^{2} \quad z \quad \alpha \left(\chi - \chi_{o}\right) + \mathcal{E}\left(\chi - \chi_{o}\right) \left(\chi - \chi_{o}\right)$$

$$\langle x_{+} x_{c} \rangle (x_{-} x_{o}) = a (x_{-} x_{o}) + \varepsilon (x_{-} x_{o}) (x_{-} x_{o})$$

$$(=) \quad x + x_o = a + \varepsilon (x - x_o)$$

$$\Rightarrow$$
 $2x_0 - \alpha = \xi(0)$ for $x \Rightarrow x_0$.

With $a = 2x_0$ we have E(0) = 0 and $|E(x-x_0)| \rightarrow 0$ for $x \rightarrow x_0$. Thus differentiability is asserted by definition 1.59.

a) Solve quadratics in R and C.

1.
$$2\pi^{2} + 9x - 5 = 0$$
 $D = 9^{2} - 4 \cdot 2 \cdot (-5) = 121$

$$\pi = \frac{-9 \pm 11}{4} = \begin{cases} \frac{1}{2} & \text{in } R \text{ and } C \end{cases}$$

3.
$$x^2 - 4x + 13 = 0$$
 $D = (-4)^2 - 4 \cdot 13 = -36$

No real solutions. In a we have

$$x = \frac{4 \pm 6i}{2} = 2 \pm 3i$$
.

b) Solve
$$2(x+1-i)(x+1+i) = 0$$
 and show it's actually real coefficients.

We have

By multiplying out we find the coefficients.

$$2(x+1-i)(x+1+i) = 2(x^2+x+ix+x+1+i-ix-i+1)$$
$$= 2x^2+4x+4.$$

E28.
a) Solve
$$Z^2 - (1+5i) = 0 \iff Z(Z - (1+5i)) = 0$$

 $(=> Z = 0 \ v \ Z = 1+5i)$

b) Solve
$$Z^2 + (2+2i)Z - 2i = 0$$
.

$$D = (2+2i)^2 - 4 \cdot (-2i) = 4-4+8i+8i = 16i.$$

We have $\omega^2 = 16i$ and one solution W_0 is $4e^{\frac{\pi}{4}i} = \sqrt{8}i + i\sqrt{8}$, the other is $-\sqrt{8} - i\sqrt{8}$.

$$Z_{o} = \frac{-2-2i+\sqrt{8}+i\sqrt{8}}{2} = \frac{-2+\sqrt{8}}{2} + \frac{-2+\sqrt{8}}{2} = -1+\sqrt{2}+(\sqrt{2}-1)i$$

$$Z_{i} = \frac{-2-2i-\sqrt{8}-i\sqrt{8}}{2} = \frac{-2-\sqrt{8}}{2} + \frac{-2-\sqrt{8}}{2}i = -1-\sqrt{2}-(\sqrt{2}+1)i$$

Ex9.

a) Show that
$$f(\alpha) = \begin{cases} \frac{x}{|x|}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 is not an ε -function.

$$|f(x)| \rightarrow \pm \infty \neq 0$$
 for $x \rightarrow 0^{\dagger}$ and $x \rightarrow 0^{-}$ respectively.

b) Show that
$$f_2(x) = 1 - \cos(x)$$
 is an ε -function.

$$f_2(0) = 1 - \cos(0) = 1 - 1 = 0$$
 and

$$|f_2(x)| = |1 - \cos(\alpha)| \rightarrow |1 - 1| = 0$$
 for $\alpha > 0$.

c) Show that
$$f_3(x) = ie^{iz} - i$$
 is an z -function.
 $f_3(0) = ie^{i\cdot 0} - i = i\cdot 1 - i = 0$ and

$$|f_3(x)| = |ie^{ix} - i| = |i(e^{ix} - i)| = |i||e^{ix} - i|$$

= $|e^{ix} - i| \rightarrow |e^{i\cdot 0} - i| = 0$ for $x \rightarrow 0$.