

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Analysis of Synchronous Sequential Circuits

CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Administrative Stuff

Homework 11 is due on Nov 28

Administrative Stuff

- Final Project (7% of your grade)
- By now you should have selected a project
- Also, posted on the class web page (Labs section)
- This is your lab for the last two weeks
- This is due during your last lab (dead week)

Administrative Stuff

- Final Project: Stack Arithmetic problem
- If you picked that one, then you can ignore the issues with arithmetic overflow and with negative numbers.
- Simply assume that the test cases will not test for that.

Goal for Today's Lecture

- Given a circuit diagram for a synchronous sequential circuit, the goal is to figure out the FSM
- Figure out the present state variables, the next state variables, the state-assigned table, the state table, and finally the state diagram.
- In other words, the goal is to reverse engineer the circuit.

What does this circuit do?

Approach

- Find the flip-flops
- Outputs of the flip-flops = present state variables
- Inputs of the flip-flops determine the next state variables
- Determine the logical expressions for the outputs
- Given this info it is easy to do the state-assigned table
- Next do the state table
- Finally, draw the state diagram.

Where are the inputs?

Where are the inputs?

Where are the outputs?

Where are the outputs?

Where kind of machine is this? Moore or Mealy?

Moore: because the output does not depend directly on the primary input

Where are the memory elements?

Where are the memory elements?

Where are the outputs of the flip-flops?

Where are the outputs of the flip-flops?

These are the present-state variables

Where are the inputs of the flip-flops?

Where are the inputs of the flip-flops?

These are the next-state variables

What are their logic expressions?

What are their logic expressions?

Where is the output, again?

Where is the output, again?

What is its logic expression?

What is its logic expression?

This is what we have to work with now (we don't need the circuit anymore)

$$Y_1 = w\overline{y}_1 + wy_2$$

$$Y_2 = wy_1 + wy_2$$

$$z = y_1 y_2$$

$$Y_1 = w\overline{y}_1 + wy_2$$

$$Y_2 = wy_1 + wy_2$$

$$z = y_1 y_2$$

Present	Next State		
state	w = 0	w = 1	Output
У2У1	Y_2Y_1	Y_2Y_1	Z
0 0			
0 1			
10			
11			

$$Y_1 = w\overline{y}_1 + wy_2$$

$$Y_2 = wy_1 + wy_2$$

$$z = y_1 y_2$$

Present	Next State		
state	w = 0	w = 1	Output
У2У1	Y ₂ Y ₁	Y ₂ Y ₁	Z
0 0			
0 1			
10			
11			

$$Y_1 = w\overline{y}_1 + wy_2$$

$$Y_2 = wy_1 + wy_2$$

$$z = y_1 y_2$$

Present	Next State		
state	w = 0	w = 1	Output
У2У1	Y_2Y_1	Y_2Y_1	Z
0 0			0
0 1			0
10			0
11			1

$$Y_1 = w\overline{y}_1 + wy_2$$

$$Y_2 = wy_1 + wy_2$$

$$z = y_1 y_2$$

Present	Next State		
state	w = 0	w = 1	Output
У2У1	Y ₂ Y ₁	Y ₂ Y ₁	Z
0 0			0
0 1			0
10			0
11			1

$$Y_1 = w\overline{y}_1 + wy_2$$

$$Y_2 = wy_1 + wy_2$$

$$z = y_1 y_2$$

Present	Next	Next State	
state	w = 0	w = 1	Output
У2У1	Y_2Y_1	Y_2Y_1	Z
0 0	0	1	0
0 1	0	0	0
10	0	1	0
11	0	1	1

$$Y_1 = w\overline{y}_1 + wy_2$$

$$Y_2 = wy_1 + wy_2$$

$$z = y_1 y_2$$

Present	Next State		
state	w = 0	w = 1	Output
У2У1	Y_2Y_1	(Y ₂)Y ₁	Z
0 0	0	1	0
0 1	0	0	0
10	0	1	0
11	0	1	1

$$Y_1 = w\overline{y}_1 + wy_2$$

$$Y_2 = wy_1 + wy_2$$

$$z = y_1 y_2$$

Present	Next	Next State	
state	w = 0	w = 1	Output
У2У1	Y_2Y_1	Y_2Y_1	Z
0 0	0 0	0 1	0
0 1	0 0	1 0	0
10	0 0	11	0
11	0 0	11	1

We don't need the logic expressions anymore

$$Y_1 = w\overline{y}_1 + wy_2$$

$$Y_2 = wy_1 + wy_2$$

$$z = y_1 y_2$$

Present	Next		
state	w = 0	w = 1	Output
У2У1	Y_2Y_1	Y_2Y_1	Z
0 0	0 0	0 1	0
0 1	0 0	1 0	0
10	0 0	1 1	0
11	0 0	11	1

We don't need the logic expressions anymore

Present	Next		
state	w = 0	w = 1	Output
У2У1	Y_2Y_1	Y_2Y_1	Z
0 0	0 0	0 1	0
0 1	0 0	1 0	0
10	0 0	1 1	0
11	0 0	11	1

Next state		Output
w = 0	w = 1	Z
		Next state w = 0 w = 1

Present	Next		
state	w = 0	Output	
У2У1	Y_2Y_1	Y_2Y_1	Z
0 0	0 0	0 1	0
0 1	0 0	1 0	0
10	0 0	1 1	0
11	00	1 1	1

State table

Present	Next state		Output
state	w = 0	w = 1	Z

Present	Next	State	
state	w = 0	Output	
У2У1	Y_2Y_1	Y_2Y_1	Z
0 0	0 0	0 1	0
0 1	00	1 0	0
10	0 0	11	0
11	0 0	1 1	1

State table

Present	Next state	Output	Present	Next	State	
state	w = 0 $w = 1$	Z	state	w = 0	w = 1	Output
A ←			У2У1	Y_2Y_1	Y_2Y_1	Z
B ← C ←			0 0	0 0	0 1	0
D			- 01	0 0	10	0
			 10	0 0	11	0
			 11	0 0	11	1

State table

Present	Next	Output	
state	w = 0	w = 1	Z
Α			
В			
С			
D			

Present	Next	Next State		
state	w = 0	w = 1	Output	
У2У1	Y_2Y_1	Y_2Y_1	Z	
0 0	0 0	0 1	0	
0 1	00	10	0	
10	00	11	0	
11	00	11	1	

State table

Present	Next state	Output
state	w = 0 $w = 1$	z
А	A	
В	A	
С	Α	
D	A	

	Present	Next State		
	state	w = 0	w = 1	Output
	У2У1	Y_2Y_1	Y_2Y_1	Z
	0 0	00	0 1	0
Ì	01	00	1 0	0
	10	00	1 1	0
	11	00	11	1

State table

Present	Next	Output	
state	w = 0	w = 1	Z
Α	Α		
В	Α		
C	Α		
D	Α		

Present	Next		
state	w = 0	w = 1	Output
У2У1	Y_2Y_1	Y_2Y_1	Z
0 0	0 0	0 1	0
0 1	0 0	10	0
10	0 0	11	0
11	00	11	1

State table

Present	Next	Output	
state	w = 0	w = 1	Z
А	А	B	
В	Α	C	
С	Α	D	
D	Α	D	

Present	Next		
state	w = 0	w = 1	Output
У2У1	Y ₂ Y ₁	Y ₂ Y ₁	Z
0 0	00	01	0
0 1	00	10	0
10	0 0	11	0
11	00	11	1

State table

Present	Next	Output	
state	w = 0	w = 1	Z
Α	Α	В	
В	Α	С	
С	Α	D	
D	Α	D	

Present	Next		
state	w = 0	w = 1	Output
У2У1	Y_2Y_1	Y_2Y_1	Z
0 0	0 0	0 1	0
0 1	0 0	1 0	0
10	0 0	11	0
11	00	11	1

State table

Present	Next	Output	
state	w = 0	w = 1	Z
Α	Α	В	
В	Α	С	
С	Α	D	
D	Α	D	

Present	Next		
state	w = 0	w = 1	Output
У2У1	Y_2Y_1	Y_2Y_1	Z
0 0	0 0	0 1	0
0 1	0 0	1 0	0
10	0 0	11	0
11	0 0	11	1

State table

State-assigned table

The output is the same in both tables

The two tables for the initial circuit

Present	Next	Output	
state	w = 0	w = 1	Z
Α	Α	В	0
В	Α	С	0
С	Α	D	0
D	Α	D	1

Present	Next		
state	w = 0	w = 1	Output
У2У1	Y ₂ Y ₁	Y_2Y_1	Z
0 0	0 0	0 1	0
0 1	0 0	1 0	0
10	0 0	1 1	0
11	0 0	1 1	1

State table

We don't need the state-assigned table anymore

Present	Next	Output	
state	w = 0	w = 1	Z
Α	Α	В	0
В	Α	С	0
С	Α	D	0
D	Α	D	1

Present	Next		
state	w = 0	w = 1	Output
У2У1	Y_2Y_1	Y_2Y_1	Z
0.0	0 0	0 1	0
0 1	0 0	1 0	0
10	0 0	1 1	0
11	00	1 1	1

State table

We don't need the state-assigned table anymore

Present	Next	Output	
state	w = 0	w = 1	Z
Α	Α	В	0
В	Α	С	0
С	Α	D	0
D	Α	D	1

Present	Next state		Output
state	w = 0	w = 1	Z
А	А	В	0
В	Α	С	0
С	Α	D	0
D	Α	D	1

Present	Next state		Output
state	w = 0	w = 1	Z
A	Α	В	0
В	Α	С	0
C	Α	D	0
	Α	D	1

Because this is a Moore machine the output is tied to the state

Present	Next state		Output
state	w = 0	w = 1	Z
Α	Α	В	0
В	Α	С	0
С	Α	D	0
D	Α	D	1

Present	Next state		Output
state	w = 0	w = 1	Z
А	Α	В	0
В	Α	С	0
С	Α	D	0
D	Α	D	1

Present	Next state		Output
state	w = 0	w = 1	Z
А	A	В	0
В	Α	С	0
С	A	D	0
D	A	D	1

Present	Next state		Output
state	w = 0	w = 1	Z
А	A	В	0
В	Α	С	0
С	Α	D	0
D	A	D	1

We are done!

Present	Next state		Output
state	w = 0	w = 1	Z
Α	Α	В	0
В	Α	С	0
С	Α	D	0
D	Α	D	1

State diagram

Almost done. What does this FSM do?

Present	Next state		Output
state	w = 0	w = 1	Z
Α	Α	В	0
В	Α	С	0
С	Α	D	0
D	Α	D	1

State diagram

Almost done. What does this FSM do?

It sets the output z to 1 when three consecutive 1's occur on the input w. In other words, it is a sequence detector for the input pattern 111.

Present	Next state		Output
state	w = 0	w = 1	Z
Α	Α	В	0
В	Α	С	0
С	Α	D	0
D	Α	D	1

State diagram

Another Example (with JK flip-flops)

What does this circuit do?

Approach

- Find the flip-flops
- Outputs of the flip-flops = present state variables
- Inputs of the flip-flops determine the next state variables
- Determine the logical expressions for the outputs
- Given this info it is easy to do the state-assigned table
- Next do the state table
- Finally, draw the state diagram.

Where are the inputs and outputs?

Where are the inputs and outputs?

What kind of machine is this?

Where are the flip-flops?

Where are the flip-flops?

Where are the outputs of the flip-flops?

Where are the outputs of the flip-flops?

These are the next-state variables

Where are the inputs of the flip-flops?

Where are the inputs of the flip-flops?

What are their logic expressions?

What are their logic expressions?

What is the logic expression of the output?

What is the logic expression of the output?

This is what we have to work with now (we don't need the circuit anymore)

$$J_1 = W$$

$$K_1 = \overline{W} + \overline{y}_2$$

$$J_2 = w y_1$$

$$K_2 = \overline{W}$$

$$z = y_1 y_2$$

$$J_1 = w$$

$$K_1 = \overline{W} + \overline{y}_2$$

$$J_2 = w y_1$$

$$K_2 = \overline{W}$$

Present		Flip-flop inputs					
state	w =	= 0	w =	Output			
<i>y</i> 2 <i>y</i> 1	J_2K_2	J_1K_1	J_2K_2	J_1K_1	Z		
00							
01							
10							
11							

$$z = y_1 y_2$$

$$J_1 = w$$

$$K_1 = \overline{W} + \overline{y}_2$$

$$J_2 = w y_1$$

$$K_2 = \overline{W}$$

Present		Flip-flop inputs					
state	w =	= 0	w =	Output			
<i>y</i> 2 <i>y</i> 1	J_2K_2	J_1K_1	J_2K_2	J_1K_1	Z		
00							
01							
10							
11							

$$z = y_1 y_2$$

$$J_1 = w$$

$$K_1 = \overline{W} + \overline{y}_2$$

$$J_2 = w y_1$$

$$K_2 = \overline{W}$$

Present		Flip-flop inputs					
state	w =	= 0	w=	Output			
<i>y</i> 2 <i>y</i> 1	J_2K_2	J_1K_1	J_2K_2	J_1K_1	Z		
00					0		
01					0		
10					0		
11					1		

$$z = y_1 y_2$$

$$J_1 = W$$

$$K = W + V$$

$$J_2 = w y_1$$

$$K_2 = \overline{W}$$

Present		Flip-flop inputs					
state	w =	= 0	w =	Output			
<i>y</i> 2 <i>y</i> 1	J_2K_2	J_1K_1	J_2K_2	J_1K_1	Z		
00					0		
01					0		
10					0		
11					1		

$$z = y_1 y_2$$

$$J_1 = w$$

$$K_1 = \overline{w} + \overline{y}_2$$

$$J_2 = w y_1$$

$$K_2 = \overline{W}$$

Present		Flip-flop inputs					
state	w =	= 0	w =	Output			
<i>y</i> 2 <i>y</i> 1	J_2K_2	J_1K_1	J_2K_2	Z			
00		0 1		11	0		
01		0 1		11	0		
10		0 1		10	0		
11		0 1		10	1		

$$z = y_1 y_2$$

$$J_1 = w$$

$$K_1 = \overline{W} + \overline{y}_2$$

$$J_2 = w y_1$$

$$K_2 = \overline{W}$$

Present		Flip-flop inputs					
state	w =	= 0	w =	Output			
<i>y</i> 2 <i>y</i> 1	J_2K_2	J_1K_1	J_2K_2	Z			
00		0 1		11	0		
01		0 1		11	0		
10		0 1		10	0		
11		0 1		10	1		

$$z = y_1 y_2$$

The excitation table

$$J_1 = w$$

$$K_1 = \overline{W} + \overline{y}_2$$

$$J_2 = w y_1$$

$$K_2 = \overline{W}$$

Present		Flip-flop inputs						
state	w =	= 0	w =	Output				
<i>y</i> 2 <i>y</i> 1	J_2K_2	J_1K_1	J_2K_2	J_1K_1	Z			
00	01	0 1	00	11	0			
01	01	0 1	10	11	0			
10	01	0 1	00	10	0			
11	01	0 1	10	10	1			

$$z = y_1 y_2$$

We don't need the logic expressions anymore

$$J_1 = w$$

$$K_1 = \overline{W} + \overline{y}_2$$

$$J_2 = w y_1$$

$$K_2 = \overline{W}$$

Present		Flip-flop inputs						
state	w =	= 0	w =	Output				
<i>y</i> 2 <i>y</i> 1	J_2K_2	J_1K_1	J_2K_2	Z				
00	01	0 1	00	11	0			
01	01	0 1	10	11	0			
10	01	0 1	00	10	0			
11	01	0 1	10	10	1 1			

$$z = y_1 y_2$$

We don't need the logic expressions anymore

Present		Flip-flop inputs						
state	w =	= 0	w =	Output				
<i>y</i> 2 <i>y</i> 1	J_2K_2	J_1K_1	J_2K_2	J_1K_1	Z			
00	01	0 1	0 0	11	0			
01	01	0 1	10	11	0			
10	01	0 1	00	10	0			
11	01	0 1	10	10	1			

Present state	Next	state	Output
	w = 0	w = 1	Z

Present	resent Flip-flop inputs						
state	w:	= 0	w=	Output			
У 2 У 1	J ₂ K ₂	J_1K_1	J_2K_2	z			
00	01	0 1	00	11	0		
01	01	0 1	10	11	0		
10	01 01		00	10	0		
11	01	0 1	10	10	1		

State table Excitation table

Present	Next	state	Output	Present		Flip-flo	p inputs		
state	w = 0	w = 1	z	state	w:	= 0	w =	= 1	Output
A ←				У 2 У 1	J_2K_2	J_1K_1	J_2K_2	J_1K_1	Z
В ←				00	01	0 1	00	11	0
C ←				- 01	01	0 1	10	11	0
D ←				<u> </u>	01	0 1	00	10	0
I	l			11	01	0 1	10	10	1

State table

Excitation table

This step is easy (map 2-bit numbers to 4 letters)

Present	Next	state	Output		Present		Flip-flo	p inputs		
state	w = 0	w = 1	z Z		state	w:	= 0	w=	= 1	Output
Α			0 ←		y 2 y 1	J_2K_2	J_1K_1	J_2K_2	J_1K_1	Z
В			0 ←		00	01	01	00	11	<u> </u>
С			0 ←		01	01	01	10	11	<u> </u>
D			1 ←		10	01	01	00	10	0
' <u> </u>				,	11	01	01	10	10	<u> </u>

State table

Excitation table

This step is easy too (the outputs are the same in both tables)

Present	Next state	Output
state	w = 0 $w = 1$	Z
А	? ←	0
В		0
C		0
D		1

Present		Flip-flo	p inputs		
state		= 0	w=	= 1	Output
У 2 У 1	J ₂ K ₂	J_1K_1	J_2K_2	J_1K_1	Z
00	01	0 1	00	11	0
01	01	0 1	10	11	0
10	01	0 1	00	10	0
11	01	0 1	10	10	1

State table

Excitation table

How should we do this?

JK Flip-Flop Refresher

$$D = \overline{JQ} + \overline{KQ}$$

JK Flip-Flop Refresher

JΚ	Q(t+1)	
0 0	Q(t)	
0 1	0	
1 0	1	
1 1	$\overline{Q}(t)$	

(c) Graphical symbol

Present	Next state	Output
state	w = 0 $w = 1$	Z
А	? ←	0
В		0
C		0
D		1

Present		Flip-flo	p inputs		
state		= 0	w=	= 1	Output
У 2 У 1	J ₂ K ₂	J_1K_1	J_2K_2	J_1K_1	Z
00	01	0 1	00	11	0
01	01	0 1	10	11	0
10	01	0 1	00	10	0
11	01	0 1	10	10	1

State table

Excitation table

How should we do this?

Present	Next state	Output
state	w = 0 $w = 1$	Z
Α		0
В		0
C		0
D		1

Present		Flip-flo	p inputs		
state	w:	= 0	w=	= 1	Output
У 2 У 1	J ₂ K ₂	J_1K_1	J_2K_2	J_1K_1	Z
00	01	01	00	11	0
01	01	0 1	10	11	0
10	01	0 1	00	10	0
11	01	0 1	10	10	1

Present	Next state	Output
state	w = 0 $w = 1$	Z
Α		0
В		0
C		0
D		1

Present		Flip-flo	p inputs		
state	w:	= 0	w=	= 1	Output
<i>y</i> 2 <i>y</i> 1	J ₂ K ₂	J_1K_1	J_2K_2	J_1K_1	Z
00	01	01	00	11	0
01	01	0 1	10	11	0
10	01	0 1	00	10	0
11	01	0 1	10	10	1

J K	Q(t+1)	JK	Q(t+1)
0 0	Q(t)	0 0	Q(t)
0 1	0	0 1	0
1 0	1	1 0	1
1 1	$\overline{Q}(t)$	1 1	$\overline{Q}(t)$

Present	Next state	Output
state	w = 0 $w = 1$	Z
Α	A	0
В		0
C		0
D		1

Present		Flip-flop inputs			
state	w = 0 $w = 1$			Output	
У 2 У 1	J ₂ K ₂	J_1K_1	J_2K_2	J_1K_1	z
00	01	01	00	11	0
01	01	0 1	10	11	0
10	01	0 1	00	10	0
11	01	0 1	10	10	1

Note that A = 00

ĮΚ	Q(t+1)	JK	Q(t+1)
0 0	Q(t)	00	Q(t)
0 1	0	0 1	0
1 0	1	1 0	1
1 1	$\overline{Q}(t)$	1 1	$\overline{Q}(t)$

Present	Next	Output	
state	w = 0	w = 1	Z
Α	Α]	0
В		?	0
C			0
D			1

Present		Flip-flop inputs				
state	w = 0		w=	w = 1		
<i>y</i> 2 <i>y</i> 1	J ₂ K ₂	J_1K_1	J_2K_2	J ₁ K ₁	Z	
00	01	0 1	00	11	0	
01	01	0 1	10	11	0	
10	01	0 1	00	10	0	
11	01	0 1	10	10	1	

Present	Next state	Output
state	w = 0 $w = 1$	Z
Α	Α	0
В		0
C		0
D		1

Present		Flip-flop inputs			
state	_		w=	= 1	Output
<i>y</i> 2 <i>y</i> 1	J ₂ K ₂	J ₁ K ₁	J_2K_2	J ₁ K ₁	Z
00	01	0 1	00	11	0
01	01	0 1	10	11	0
10	01	0 1	00	10	0
11	01	0 1	10	10	1

JΚ	Q(t+1)	JK	Q(t+1)
0 0	Q(t)		Q(t)
0 1	0	0 1	
1 0	1	1 0	1
1 1	$\overline{Q}(t)$	1 1	Q̄(t)

Present	Next state	Output
state	w = 0 $w = 1$	Z
Α	Α	0
В		0
C		0
D		1

Present		Flip-flop inputs			
state	w = 0		w=	w = 1	
<i>y</i> 2 <i>y</i> 1	J ₂ K ₂	J ₁ K ₁	J_2K_2	J ₁ K ₁	Z
00	01	0 1	00	11	0
01	01	0 1	10	11	0
10	01	0 1	00	10	0
11	01	0 1	10	10	1

JΚ	Q(t+1)	_	J K	Q(t+1)
0 0	Q(t)	_	0 0	Q(t)
0 1	0		0 1	0
1 0	1		1 0	_1_
1 1	$\overline{Q}(t)$		1 1	$\overline{Q}(t)$

Present	Next state		Output
state	w = 0 $w =$	1	Z
Α	Α		0
В			0
C			0
D			1

Present		Flip-flop inputs			
state	w = 0		w = 1		Output
y 2 y 1	J ₂ K ₂	J_1K_1	J_2K_2	J ₁ K ₁	Z
00	01	01	00	11	0
01	01	0 1	10	11	0
10	01	0 1	00	10	0
11	01	0 1	10	10	1

J K	Q(t+1)	JK	Q(t+1)
0 0	Q(t)	0 0	Q(t)
0 1	0	0 1	0
1 0	1	1 0	1_
1 1	$\overline{Q}(t)$	1 1	$\overline{Q}(t)$

Present	Next state	Output
state	w = 0 $w = 1$	Z
Α	Α	0
В		0
C		0
D		1

Present	Flip-flop inputs				
state	w = 0		w = 1		Output
y 2 y 1	J ₂ K ₂	J_1K_1	J_2K_2	J ₁ K ₁	Z
00	01	01	00	11	0
01	01	0 1	10	11	0
10	01	0 1	00	10	0
11	01	0 1	10	10	1

Present	Next	Output	
state	w = 0	w = 1	Z
Α	Α		0
В		C _	0
C		K	0
D			\ \ \

Present Flip-flop inputs					
state		w = 0 $w = 1$		Output	
y 2 y 1	J ₂ K ₂	J_1K_1	J_2K_2	J ₁ K ₁	Z
00	01	0 1	00	11	0
01	01	0 1	10	11	0
10	01	0 1	00	10	0
11	01	0 1	10	10	1

Note that C = 10

The two tables for the initial circuit

Present	Next	Output	
state	w = 0	w = 1	Z
Α	А	В	0
В	Α	С	0
C	Α	D	0
D	Α	D	1

Present		Flip-flo	p inputs		
state	w = 0		w = 1		Output
<i>y</i> 2 <i>y</i> 1	J ₂ K ₂	J_1K_1	J_2K_2	J ₁ K ₁	Z
00	01	0 1	00	11	0
01	01	0 1	10	11	0
10	01	0 1	00	10	0
11	01	0 1	10	10	1

State table Excitation table

The state diagram

Present	Next	Output	
state	w = 0	w = 1	Z
Α	Α	В	0
В	Α	С	0
С	Α	D	0
D	Α	D	1

State table

State diagram

The state diagram

Thus, this FSM is identical to the one in the previous example, even though the circuit uses JK flip-flops.

Present	Next	Output	
state	w = 0	w = 1	Z
Α	Α	В	0
В	Α	С	0
C	Α	D	0
D	Α	D	1

State table

State diagram

Yet Another Example (with mixed flip-flops)

What does this circuit do?

Approach

- Find the flip-flops
- Outputs of the flip-flops = present state variables
- Inputs of the flip-flops determine the next state variables
- Determine the logical expressions for the outputs
- Given this info it is easy to do the state-assigned table
- Next do the state table
- Finally, draw the state diagram.

What are the logic expressions?

What are the logic expressions?

What are the logic expressions?

The Excitation Table

$$D_1 = w (\overline{y_1} + y_2)$$

$$T_2 = \overline{w} y_2 + w y_1 \overline{y}_2$$

$$z = y_1 y_2$$

Present	Flip-flo		
state	w = 0 $w = 1$		Output
<i>y</i> 2 <i>y</i> 1	T_2D_1	T_2D_1	Z
0.0	00	01	0
0 1	00	10	0
10	10	01	0
11	10	01	1

Excitation table

Present	Next	Output	
state	w = 0	w = 1	Z

Present	Flip-flop inputs		
state	w = 0 $w = 1$		Output
<i>y</i> 2 <i>y</i> 1	T_2D_1	T_2D_1	Z
0 0	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1

1			I	Present	Flip-flo	p inputs	
Present	Next state	Output		state	w = 0	w = 1	Output
state	w = 0 w = 1	Z		<i>Y</i> 2 <i>Y</i> 1	T_2D_1	T_2D_1	Z
A ← B ←				- 00	0 0	01	0
C ←				01	00	10	0
D				10	10	01	0
				11	10	01	1

This step is easy (map 2-bit numbers to 4 letters)

			Present	Flip-flo _l	p inputs	
Present	Next state	Output	state	w = 0	w = 1	Output
state	w = 0 w = 1	Z	<i>Y</i> 2 <i>Y</i> 1	T_2D_1	T_2D_1	Z
A		0 ←				
В		0 🔸	00	00	01	 0
C		0 🔸	01	00	10	0
D		1 🔸	10	10	01	0
			11	10	01	<u> </u>

This step is easy too (the outputs are the same in both tables)

Present	Next state	Output
state	w = 0 $w = 1$	Z
Α	?	0
В		0
С		0
D		1

Present	Flip-flo		
state	w = 0	Output	
<i>У</i> 2 <i>У</i> 1	T_2D_1	T_2D_1	Z
0.0	00	01	0
01	0 0	10	0
10	10	01	0
11	10	01	1

What should we do here?

	Next state	_
Present	ווכאו אומוכ	Output
state	w = 0 $w = 1$	Z
Α	?	0
В		0
C		0
D		1

Present	Flip-flo		
state	w = 0	Output	
<i>y</i> 2 <i>y</i> 1	T_2D_1	T_2D_1	Z
0.0	00	01	0
0 1	00	10	0
10	10	01	0
11	10	01	1

What should we do here?

T

$$Q(t+1)$$
 D
 $Q(t+1)$

 0
 $Q(t)$
 0
 0

 1
 $Q(t)$
 1
 1

Present	Next	state	Output
state	w = 0	w = 1	Z
Α			0
В			0
C			0
D			1

Present	Flip-flo		
state	w = 0 $w = 1$		Output
<i>y</i> 2 <i>y</i> 1	T_2D_1	T_2D_1	Z
0 0	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1

T

$$Q(t+1)$$
 D
 $Q(t+1)$

 0
 $Q(t)$
 0
 0

 1
 $Q(t)$
 1
 1

Present	Next	Next state	
state	w = 0	w = 1	Z
Α			0
В			0
C			0
D			1

Present	Flip-flop inputs		
state	w = 0	w = 1	Output
<i>y</i> 2 <i>y</i> 1	T_2D_1	T_2D_1	Z
0 0	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1

T

$$Q(t+1)$$
 D
 $Q(t+1)$

 0
 $Q(t)$
 0
 0

 1
 $\overline{Q}(t)$
 1
 1

Present state		Output z
	w = 0 $w = 1$	0
A		0
В		0
C		0
D		1

Present	Flip-flop inputs		
state	w = 0	w = 1	Output
<i>y</i> 2 <i>y</i> 1	T_2D_1	T_2D_1	Z
00	00	01	0
0 1	00	10	0
10	10	01	0
11\	10	01	1

Present	Present Next state		Output
state	w = 0	w = 1	Z
Α			0
В			0
C			0
D			1

Present	Flip-flop inputs		
state	w = 0	w = 1	Output
У2У1	T_2D_1	T_2D_1	Z
0 0	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1

T

$$Q(t+1)$$
 D
 $Q(t+1)$

 0
 0
 0
 0

 1
 $\overline{Q}(t)$
 1
 1

Present	Next state		Output
state	w = 0	w = 1	Z
Α			0
В			0
C			0
D			1

Present	Flip-flop inputs		
state	w = 0	w = 1	Output
<i>y</i> 2 <i>y</i> 1	T_2D_1	T_2D_1	Z
0 0	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1

$$\begin{array}{c|cccc} T & Q(t+1) & D & Q(t+1) \\ \hline 0 & 0 & 0 & 0 \\ 1 & \overline{Q}(t) & 1 & 1 \end{array}$$

Present	sent Next state		Output
state	w = 0	w = 1	Z
Α			0
В			0
C			0
D			1

Present	Flip-flop inputs		
state	w = 0	w = 1	Output
<i>y</i> 2 <i>y</i> 1	T_2D_1	T_2D_1	Z
0 0	00	01	0
0 1	00	10	0
10	10	01	0
11	10	01	1

Present	Next state		Output
state	w = 0	w = 1	Z
Α	Aĸ		0
В	*		0
C			0
D			1

Present	Flip-flop inputs		
state	w = 0	w = 1	Output
<i>y</i> 2 <i>y</i> 1	T_2D_1	T_2D_1	Z
0 0	00	01	0
0 1	00	10	0
10	10	01	0
11	10	01	1

Note that A = 00

Present	Next state		Output
state	w = 0	w = 1	Z
Α	А		0
В			0
C		? €	0
D		اب	1

Present	Flip-flo	-flop inputs	
state	w = 0	<i>w</i> = 1	Output
<i>У</i> 2 <i>У</i> 1	T_2D_1	T_2D_1	Z
0 0	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1

What should we do here?

T

$$Q(t+1)$$
 D
 $Q(t+1)$

 0
 $Q(t)$
 0
 0

 1
 $Q(t)$
 1
 1

Present Next sta		state	Output
state	w = 0	w = 1	Z
Α	Α		0
В			0
C			0
D			1

Present	Flip-flo	p inputs	
state	w = 0	w = 1	Output
У2У1	T_2D_1	T_2D_1	Z
0 0	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1

T

$$Q(t+1)$$
 D
 $Q(t+1)$

 0
 $Q(t)$
 0
 0

 1
 $Q(t)$
 1
 1

Present	Next state		Output
state	w = 0	w = 1	Z
Α	Α		0
В			0
C			0
D			1

Present	Flip-flo	p inputs	
state	w = 0	w = 1	Output
У2У1	T_2D_1	T_2D_1	Z
0 0	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1

T

$$Q(t+1)$$
 D
 $Q(t+1)$

 0
 $Q(t)$
 0
 0

 1
 $\overline{Q}(t)$
 1
 1

Present	Next	t state Outpu	
state	w = 0	w = 1	Z
Α	Α		0
В			0
C			0
D			1

Present	Flip-flo _l	p inputs	
state	w = 0	w = 1	Output
<i>У</i> 2 <i>У</i> 1	T_2D_1	T_2D_1	Z
0 0	00	01	0
01	00	10	0
10	10	01	0
1/1	10	01	1

T	Q(t+1)	D	Q(t+1)
0	Q(t)	0	0
1	$\overline{\overline{\mathrm{Q}}}(t)$	1	1

Present Next state		state	Output
state	w = 0	w = 1	Z
Α	Α		0
В			0
C			0
D			1

w = 1	Output
T_2D_1	Z
01	0
10	0
01	0
01	1
	<i>T</i> ₂ <i>D</i> ₁

T
$$Q(t+1)$$
 D $Q(t+1)$

0 1 0 0
1 $\overline{Q}(t)$ 1 1

Present Next sta		state	Output
state	w = 0	w = 1	Z
Α	Α		0
В			0
C			0
D			1

Present	Flip-flo	p inputs	
state	w = 0	w = 1	Output
У2У1	T_2D_1	T_2D_1	Z
0 0	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1

T

$$Q(t+1)$$
 D
 $Q(t+1)$

 0
 1
 0
 0

 1
 $\overline{Q}(t)$
 1
 1

Present	Next state		Output
state	w = 0	w = 1	Z
Α	Α		0
В			0
C			0
D			1

Present	Flip-flop inputs		
state	w = 0	w = 1	Output
У2У1	T_2D_1	T_2D_1	Z
0 0	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1

T
$$Q(t+1)$$
 D $Q(t+1)$

0 1 0 0
1 $\overline{Q}(t)$ 1 1

Present	Next state		Output
state	w = 0	w = 1	Z
Α	Α		0
В			0
C		D	0
D		K.K.	

Present	Flip-flop inputs		
state	w = 0	w = 1	Output
<i>y</i> 2 <i>y</i> 1	T_2D_1	T_2D_1	Z
0 0	00	01	0
0 1	00	10	0
10	10	01	0
11	10	01	1

Note that D = 11

Present	Next state		Output
state	w = 0	w = 1	Z
Α	А	В	0
В	Α	С	0
С	Α	D	0
D	Α	D	1

Present	Flip-flop inputs		
state	w = 0	w = 1	Output
У2У1	T_2D_1	T_2D_1	Z
0 0	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1

$$\begin{array}{c|cccc} T & Q(t+1) & D & Q(t+1) \\ \hline 0 & Q(t) & 0 & 0 \\ 1 & Q(t) & 1 & 1 \end{array}$$

The two tables for the initial circuit

Present	Next state		Output
state	w = 0	w = 1	Z
Α	Α	В	0
В	Α	С	0
C	Α	D	0
D	Α	D	1

Present	Flip-flop inputs		
state	w = 0	w = 1	Output
У2У1	T_2D_1	T_2D_1	Z
0 0	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1

State table

Excitation table

The state diagram

Present	Next state		Output
state	w = 0	w = 1	Z
Α	Α	В	0
В	Α	С	0
С	Α	D	0
D	Α	D	1

State table

State diagram

The state diagram

Thus, this FSM is identical to the ones in the previous examples, even though the circuit uses one D and one T flip-flop.

Present	Next	Output	
state	w = 0	w = 1	Z
Α	Α	В	0
В	Α	С	0
C	Α	D	0
D	Α	D	1

State table

State diagram

Questions?

THE END