FERRAMENTA COMPUTACIONAL QUALI-TOOL

EXEMPLO PRÁTICO

Grupo de Pesquisa em Recursos Hídricos e Saneamento Ambiental
Programa de Pós-graduação em Engenharia Civil – PPGEC
Universidade Federal de Uberlândia - UFU

EXEMPLO PRÁTICO DE MODELAGEM DE QUALIDADE DA ÁGUA EM AMBIENTE LÓTICO

UTILIZAÇÃO DA FERRAMENTA COMPUTACIONAL QUALI-TOOL

Ariel Ali bento Magalhães
José Eduardo Alamy Filho
Marcio Ricardo Salla
Túlio Humberto Machado Guimarães

Julho de 2017

Este material tem o objetivo de ajudar o usuário na utilização da ferramenta computacional QUALI-TOOL. A ferramenta permite a modelagem de qualidade de água em ambiente lótico, considerando um rio principal com o máximo de 15 afluentes "modeláveis". No rio principal e no limite máximo de 15 afluentes "modeláveis", o número de entradas (afluente menor, lançamento de esgoto sanitário, etc.) e retiradas (abastecimento público, industrial, irrigação, dessedentação, etc.) pontuais e difusas é ilimitado. Este texto define afluente "modelável" como o curso de água natural que recebe lançamentos(s) e retirada(s) pontual(is) e difusa(s) ao longo de seu comprimento e que sofre o processo de modelagem matemática de autodepuração até sua confluência com o rio principal.

A modelagem por meio de QUALI-TOOL é realizada em linguagem de programação Visual Basic for Applications, com entrada de dados e apresentação dos resultados em gráficos e tabelas diretamente na planilha de cálculo Excel. O executável da ferramenta computacional de uso livre QUALI-TOOL e os arquivos, em extensão .pdf, do manual do usuário e do exemplo prático resolvido podem ser baixados no site do Programa de Pós-graduação em Engenharia Civil -Uberlândia **PPGEC** Universidade Federal de UFU por meio do link: www.feciv.ufu.br/ppgec/quali tool.

O EXEMPLO PRÁTICO traz uma situação hipotética de um curso de água principal com dois afluentes "modeláveis", os quais são utilizados para diversos fins de uso da água superficial, conforme ilustra a Figura 1. O traçado do sistema hídrico foi idealizado para contemplar a maior parte da potencialidade da ferramenta QUALI-TOOL.

Figura 1 – Traçado do sistema hídrico

Fonte: Autora (2017)

De acordo com a Figura 1, o afluente modelável denominado "Rio Jacinto" recebe o lançamento pontual de efluente de uma indústria de alimentos. O afluente "modelável" denominado "Rio Crino" recebe o lançamento pontual de efluente de um matadouro. Já o rio principal denominado "Rio Junco" possui duas retiradas pontuais (abastecimento público de uma cidade de médio porte e irrigação para uma agricultura), três entradas ou lançamentos pontuais (afluentes modeláveis "Rio Jacinto" e "Rio Crino" e efluente sanitário doméstico tratado) e uma entrada ou lançamento difuso (carreamento superficial de material orgânico e inorgânico).

No rio principal, a montante da captação superficial para abastecimento público (a montante do ponto A na Figura 1), o curso de água não recebe nenhum tipo de contribuição de efluente, seja pontual e/ou difusa, sendo considerado razoavelmente limpo. Ainda no rio principal, a jusante de sua confluência com o afluente modelável "Rio Crino" (a jusante do ponto G na Figura 1), o rio

percorre um largo trecho sem lançamentos e retiradas difusas e pontuais até sua foz no "rio Kentia" (ponto H na Figura 1). O foco deste exemplo prático está nos afluentes "modeláveis" e no rio principal "Rio Junco" até sua foz no "rio Kentia".

Diante dos dados fornecidos nas Tabelas 1 até 6, pede-se para traçar o perfil, ao longo de todo o rio principal "Rio Junco" (desde a captação para abastecimento público – ponto A - até a sua foz – ponto H), dos seguintes parâmetros de qualidade de água: sólidos suspensos SS (contaminante arbitrário), oxigênio dissolvido (OD), demanda bioquímica de oxigênio (DBO), nitrogênio orgânico (NO), nitrogênio amoniacal (NO₃-), nitrato (NH₃+) e fósforo total (P_{total}).

TABELAS – DADOS DE ENTRADA

Tabela 1 – Topologia do sistema hídrico

Trecho	Donto	Coor	denada UTN	1 (m)	Tuasha	Donto	Coor	denada UTM	[(m)
1 reciio	Ponto	X	Y	Z	Trecho	Ponto	X	Y	Z
	A	787148	7896781	796,0		D	781048	7910480	754,5
		787186	7896928	794,5	1		780443	7910631	746,0
		787024	7897385	794,0	1		780298	7910629	744,5
A-B		786750	7897742	792,5			780079	7910937	739,5
		786526	7898274	791,0			780161	7911344	739,0
		786248	7898582	789,5	D-E		779499	7911952	736,5
	В	786019	7899201	789,0			779339	7912600	736,0
	B1	788490	7900459	843,0			779276	7912954	734,0
		787849	7900384	839,0			778882	7913608	729,5
D1 D		787431	7900070	833,0		Е	778636	7913708	729,0
B1-B		786670	7899669	812,0		Е	778636	7913708	729,0
		786337	7899418	797,0	1		778138	7914156	726,0
	В	786019	7899201	789,0	1		777721	7914664	724,0
	В	786019	7899201	789,0	E-F		776762	7916280	723,0
		785835	7899573	788,5			775985	7917673	719,0
		785361	7899627	787,3			775314	7918188	700,0
		785045	7900194	786,0			775113	7918603	684,0
		785103	7900831	785,5			774547	7918741	683,0
		785276	7901120	785,0			774508	7918964	669,5
		785226	7901491	784,6	1		774192	7919125	669,0
		785151	7902343	783,8	1		773868	7919632	665,0
		785257	7902388	783,3			773796	7919951	663,0
		785698	7902500	783,0			773442	7920084	662,0
		785706	7902684	782,6			773481	7920495	660,0
В-С		785485	7903766	782,2			772047	7921719	649,0
		785221	7904047	782,0	1		770955	7922075	645,0
		785110	7904376	781,0		F	769930	7923080	644,0
		785096	7904787	780,5		F	769930	7923080	644,0
		784454	7905656	779,0	1		769875	7923154	643,0
		783935	7906062	776,0	1		769339	7923377	638,5
		783667	7906789	775,7	1		768941	7923666	638,0
		783718	7907144	775,2	F-G		768947	7924068	637,5
		782875	7907693	774,0	1		768586	7924183	637,0
		782872	7908481	773,0	1		768149	7924354	635,0
		782685	7908776	772,0	1		767503	7924723	632,5
		782312	7909035	771,0	1		767465	7925292	632,0

Tabela 1 – Topologia do sistema hídrico (continuação)

	C	782175	7909654	768,0			766269	7926380	623,5
	С	782175	7909654	768,0			765973	7926399	623,0
		782002	7909898	765,5			765968	7926922	622,0
		781730	7910040	763,5			765531	7927082	619,0
C-D		781467	7909927	761,0			765159	7928591	612,0
		781236	7910040	758,0			764514	7929199	610,0
		781106	7910167	756,0			764729	7930647	600,0
	D	781048	7910480	754,5		G	764292	7931337	599,5
	G1	771737	7907434	793,0		G	764292	7931337	599,5
		766820	7913938	769,0			764183	7931948	599,0
		765827	7914886	761,0			763719	7932519	588,0
		765878	7915037	760,0			763413	7932885	578,0
		765326	7916729	757,0			763097	7932877	575,0
		765481	7917166	756,0			762899	7933042	565,0
		765347	7917280	752,0			762430	7933077	560,0
		765023	7917359	748,0			762530	7933920	558,0
		765118	7917541	745,0			762981	7934050	555,0
		764989	7917761	738,5			763004	7934213	552,0
		764876	7917799	738,0			762353	7934689	551,0
		764941	7918050	734,5			762346	7935136	545,5
		764730	7918190	734,0			761673	7936103	545,0
G1-G		764846	7918255	733,0	G-H		761208	7936285	544,5
		764699	7918309	730,5			761207	7936516	544,0
		764602	7918270	730,0			761557	7937050	542,0
		764568	7918592	729,0			761192	7937500	541,0
		764425	7918794	728,5			760897	7937291	539,0
		764667	7918915	728,0			760645	7937558	537,0
		764304	7922427	708,0			760748	7937696	534,0
		763274	7924932	648,0			760086	7938225	533,5
		763018	7926530	643,0			760617	7938937	533,0
		763486	7927184	636,0			759737	7939281	524,5
		762923	7928319	623,0			760088	7940036	524,0
		762445	7929593	607,0			761039	7939976	523,0
	G	764292	7931337	599,5			760783	7941372	518,0
						Н	761419	7941662	516,0

Tabela 2 – Dados geométricos e hidráulicos da seção transversal

	Ponto	L (m)	b (m)	α_{esq}	η_{calha}	α_{dir}
Rio Jacinto	B1	0,0	6,0	47	0,030	75
(afluente	Entre B1-B	1168	6,5	50	0,030	70
modelável)	В	2830	7,2	45	0,030	65
Die Crine	G1	0,0	5,0	45	0,035	48
Rio Crino	Entre G1-G	19445	5,3	46	0,035	50
(afluente	Entre G1-G	24007	6,5	48	0,036	52
modelável)	G	38355	7,0	50	0,038	55
	A	0	14,0	48	0,042	45
	В	2739	16,0	46	0,042	47
	С	15593	16,5	46	0,042	49
Rio Junco (rio	D	17242	17,5	48	0,042	45
principal)	Е	21759	18,0	45	0,042	47
	F	35220	18,5	46	0,045	48
	G	46572	21,0	48	0,045	45
	Н	62798	24,0	45	0,043	47

Tabela 3 – Discretização

	Discretização
Rio Jacinto	50
Rio Crino	500
Rio Junco	1000

Tabela 4 – Vazões pontuais e difusas

	Rio Jacinto									
	Vazão pontua		Vazão difusa							
$Q_{af} (m^3/s)$	Descrição	L _{inj.} (m)	Vazão (m ³ /s)	Descrição	L _{inicial} (m)	L _{final} (m)	$Q (m^3/s.m)$			
1,5	Indústria de alimentos	0	0,8	-	-	-	-			
	Rio Crino									
1,1	Matadouro	0	0,5	-	-	-	-			
			Rio Junco							
6,2	Abastecimento público	0	-1,2	Agrícola	21759	35220	0,0001			
	Demanda agrícola	15593	-1,8							
	ETE	17242	0,9							

Tabela 5 – Concentrações pontuais e difusas

Rio		SS	OD	DBO	NO	NH ₃ ⁺	NO ₃ -	P _{total}
KIO		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
	$Q_{af} (m^3/s)$	12	6,0	4,0	0,1	0,2	0,01	0,6
Jacinto	Ind. Alim.	250	1,0	260	25	8,0	2,0	10
	Difuso							
	$Q_{af} (m^3/s)$	8	5,8	3,0	0,2	0,3	0,02	0,5
Crino	Matadouro	850	0,5	440	1,5	4,5	0,8	20,0
	Difuso			-				
	$Q_{af} (m^3/s)$	13	6,3	5,0	0,3	0,4	0,02	0,7
Junco	ETE	140	1,5	65	1,3	15,0	0,07	4,5
	Agr. difusa	120	5,8	6,0	0,9	0,6	2,5	0,5

Tabela 6 – Coeficientes dos processos físicos e bioquímicos adotados da literatura (valor único para todos os trechos simulados)

Rio	Trecho	(C)	$K_{2}(d^{-1})$	$K_d(d^{-1})$	VS _{M0} (m/d)	Koa (d-1)	VS _{NO} (m/d)	Kan (d-1)	K _{NN} (d ⁻¹)	Kp (d ⁻¹)	VSP (m/d)	VSss (m/d)
Jacinto	В1-В											
Crino	G1- G		Equações									
	A-B B-C	22	hidráulicas da literatura (Tabela 4	0,4	0,1125	0,21	0,0045	0,20	0,5	0,25	0,0225	0,01
Junco	C-D D-E E-F		no manual do usuário)									
	F-G G-H											

^{*} Para transformar a velocidade de sedimentação VS em coeficiente de sedimentação K_S , deve-se utilizar a relação $K_S = VS/H$, sendo H a profundidade líquida em metros.

Considerar todos os outros parâmetros (Sd', S_{CA}, L_{rd}, S_{amon}) iguais a 0 (zero).

RESOLUÇÃO DO EXEMPLO PRÁTICO

1º Passo: Lançamento das coodenadas em "Topologia"

Copiar os dados da Tabela 1 e colar em x, y, z na aba "topologia" no QUALI-TOOL

AVISOS: Na Tabela 1 estão relacionadas as coordenadas entre os pontos A-B, B-C, C-D, etc, conforme ilustra a Figura 01. De acordo com as recomendações do Manual do Usuário, para evitar erros é importante não lançar duas vezes as mesmas coordenadas. Observe que no início dos segmentos sempre se repetem as mesmas coordenadas. Isso deve ser evitado, copiando a partir da 2ª linha de cada trecho!

Ao final do lançamento dos trechos, pressionar o botão executar. Os resultados do comprimento dos trechos e da declividade longitudinal são apresentados nas Tabelas de 7 a 9. A Figura 2 traz o traçado da hidrologia gerado pela ferramenta QUALI-TOOL. A Tabela 09 foi apresentada parcialmente, por apresentar grande quantidade de pontos amostrais, para que a mesma não ficasse muito extensa.

Tabela 7 – Resultados da Topologia do Rio Principal

RIO PRINCIPAL

Nome :	Rio Jui	nco	Lfinal (m):	62797,58
X (m)	Y (m)	Z (m)	L (m)	So (m/m)
787148	7896781	796	0	-0,0098793
787186	7896928	794,5	151,83214	-0,0098793
787024	7897385	794	636,69604	-0,0010312
786750	7897742	792,5	1086,7238	-0,0033331
786526	7898274	791	1663,9586	-0,0025986
786248	7898582	789,5	2078,8658	-0,0036153
786019	7899201	789	2738,8673	-0,0007576
785835	7899573	788,5	3153,8854	-0,0012048
785361	7899627	787,3	3630,9514	-0,0025154
785045	7900194	786	4280,0624	-0,0020027
785103	7900831	785,5	4919,6974	-0,0007817
785276	7901120	785	5256,5208	-0,0014845
785226	7901491	784,6	5630,8749	-0,0010685
785151	7902343	783,8	6486,1696	-0,0009354
785257	7902388	783,3	6601,326	-0,0043419
785698	7902500	783	7056,326	-0,0006593
761673	7936103	545	53364,238	-0,0004244
761208	7936285	544,5	53863,587	-0,0010013

Tabela 7 – Resultados da Topologia do Rio Principal (continuação)

761207	7936516	544	54094,589	-0,0021645
761557	7937050	542	54733,068	-0,0031324
761192	7937500	541	55312,486	-0,0017259
760897	7937291	539	55674,019	-0,005532
760645	7937558	537	56041,161	-0,0054475
760748	7937696	534	56213,361	-0,0174216
760086	7938225	533,5	57060,76	-0,00059
760617	7938937	533	57948,963	-0,0005629
759737	7939281	524,5	58893,81	-0,0089962
760088	7940036	524	59726,412	-0,0006005
761039	7939976	523	60679,303	-0,0010494
760783	7941372	518	62098,582	-0,0035229
761419	7941662	516	62797,578	-0,0028612

Tabela 8 - Resultados da Topologia do Afluente 1

Nome :	Rio Jacinto		Lfinal (m):	2830,35
X (m)	Y (m)	Z (m)	L (m)	So (m/m)
788490	7900459	843	0	-0,006198
787849	7900384	839	645,37276	-0,006198
787431	7900070	833	1168,1729	-0,0114767
786670	7899669	812	2028,3601	-0,0244133
786337	7899418	797	2445,3613	-0,0359711
786019	7899201	789	2830,3457	-0,0207801

Tabela 9 - Resultados da Topologia do Afluente 2

AFLUENTE 2

Nome :	Rio Crino		Lfinal (m):	28596,32
X (m)	Y (m)	Z (m)	L (m)	So (m/m)
771737	7907434	793	0	-0,0029435
766820	7913938	769	8153,4597	-0,0029435
765827	7914886	761	9526,3228	-0,0058272
765878	7915037	760	9685,7028	-0,0062743
765326	7916729	757	11465,469	-0,0016856
765481	7917166	756	11929,144	-0,0021567
765347	7917280	752	12105,075	-0,0227361
765023	7917359	748	12438,567	-0,0119943
765118	7917541	745	12643,87	-0,0146126
764989	7917761	738,5	12898,901	-0,0254871

764876	7917799	738	13018,119	-0,004194
764941	7918050	734,5	13277,399	-0,0134989
764730	7918190	734	13530,6204	-0,0019746
764846	7918255	733	13663,59	-0,0075205
764699	7918309	730,5	13820,195	-0,0159638
764602	7918270	730	13924,742	-0,0047826
764568	7918592	729	14248,5316	-0,0030884
764425	7918794	728,5	14496,025	-0,0020203
764667	7918915	728	14766,589	-0,001848
764304	7922427	708	18297,299	-0,0056646
763274	7924932	648	21005,791	-0,0221526
763018	7926530	643	22624,166	-0,0030895
763486	7927184	636	23428,368	-0,0087043
762923	7928319	623	24695,33	-0,0102608
762445	7929593	607	26056,051	-0,0117585
764292	7931337	599,5	28596,3154	-0,0029524

Tabela 9 - Resultados da Topologia do Afluente 2 (continuação)

2º Passo: Lançamento dos dados geométricos em "Seções Transversais"

O lançamento dos dados geométricos é bem simples. Basta copiar os dados da Tabela 2 e colar na planilha "Seções Transversais". Deve-se ter cuidado para lançar os dados corretamente no

curso de água correto. Por exemplo, o rio principal é o Rio Junco, o afluente 1 é o rio Jacinto e o afluente 2 é o rio Crino. Também deve-se verificar se as unidades dos dados geométricos de entrada são as mesmas que a ferramenta QUALI-TOOL exige. Por fim, o usuário deve lançar cada dado de entrada em sua coluna correspondente. Os resultados dos lançamentos dos dados geométricos estão relacionados nas Tabelas de 10 a 12.

Tabela 10 – Lançamento dos dados geométricos do rio principal

RIO PRINCIPAL

Ls(m)	b (m)	α _{esq} (°)	n calha	adir (°)
0,00	14,00	48,00	0,04	45,00
2739,00	16,00	46,00	0,04	47,00
15593,00	16,50	46,00	0,04	49,00
17242,00	17,50	48,00	0,04	45,00
21759,00	18,00	45,00	0,04	47,00
35220,00	18,50	46,00	0,05	48,00
46572,00	21,00	48,00	0,05	45,00
62798,00	24,00	45,00	0,04	47,00

Tabela 11 – Lançamento dos dados geométricos do Afluente 1

AFLUENTE 1

Ls(m)	b (m)	$lpha_{ ext{esq}}$ (°)	n calha	adir (°)
0,00	6,00	47,00	0,03	75,00
1168,00	6,50	50,00	0,03	70,00
2830,00	7,20	45,00	0,03	65,00

Tabela 12 – Lançamento dos dados geométricos do Afluente 2

AFLUENTE 2

Ls(m)	b (m)	α_{esq} (°)	n calha	a _{dir} (°)
0,00	5,00	45,00	0,04	48,00
19445,00	5,30	46,00	0,04	50,00
24007,00	6,50	48,00	0,04	52,00
38355,00	7,00	50,00	0,04	55,00

3º Passo: Resultados Discretizados na seção "Discretização"

Nesta planilha, o único lançamento que deve ser feito é o da quantidade de nós que cada curso de água deverá possuir. A quantidade de nós para a discretização dos três cursos de água é apresentada na Tabela 3. São gerados resultados discretizados de L (metros), So (m/m), b

(metros), α_{esq} e $\alpha_{dir}(graus)$ e rugosidade. Em função da grande quantidade de nós para os cursos de água, as planilhas com os resultados das discretizações são enormes, o que torna inviável suas apresentações integrais neste exemplo. Com isso, as Tabelas 13, 14 e 15 trazem os primeiros e últimos quinze resultados, respectivamente. A Figura 3 ilustra a hidrografía discretizada do rio.

Tabela 13 – Resultados de discretização no rio principal

CANAL PRINCIPAL

NÓS	X (m)	Y (m)	Z (m)	L (m)	So(m/m)	b (m)	α _{esq} (°)	n calha	α _{dir} (°)
1000	787148	7896781	796	0	-0,009879	14	48	0,042	45
dL (m)	787163,73	7896841,9	795,37898	62,860439	-0,009879	14,0459	47,9541	0,042	45,0459
62,8604388	787179,46	7896902,7	794,75796	125,72088	-0,009879	14,091801	47,908199	0,042	45,091801
	787195,2	7896963,6	794,13694	188,58132	-0,009879	14,137701	47,862299	0,042	45,137701
	787152,72	7897021,9	793,51592	251,44176	-0,009879	14,183601	47,816399	0,042	45,183601
	787131,72	7897081,1	792,8949	314,30219	-0,009879	14,229501	47,770499	0,042	45,229501
	787110,71	7897140,4	792,27389	377,16263	-0,009879	14,275402	47,724598	0,042	45,275402
	787089,71	7897199,6	791,65287	440,02307	-0,009879	14,321302	47,678698	0,042	45,321302
	787068,71	7897258,9	791,03185	502,88351	-0,009879	14,367202	47,632798	0,042	45,367202
	787047,71	7897318,1	790,41083	565,74395	-0,009879	14,413103	47,586897	0,042	45,413103
	787026,7	7897377,4	789,78981	628,60439	-0,009879	14,459003	47,540997	0,042	45,459003
	787005,7	7897436,6	789,16879	691,46483	-0,009879	14,504903	47,495097	0,042	45,504903
	786952,38	7897478,3	789,10397	754,32527	-0,001031	14,550803	47,449197	0,042	45,550803
	786914,11	7897528,2	789,03914	817,1857	-0,001031	14,596704	47,403296	0,042	45,596704
	786875,84	7897578	788,97432	880,04614	-0,001031	14,642604	47,357396	0,042	45,642604
			•	•	•	•			
		•	•	•	•	•	•		
		•	•	•	•	•	•		
	760815,66	7941193,9	480,61183	61917,532	-0,001049	23,837212	45,162788	0,045	46,891474
	760804,32	7941255,7	480,54586	61980,393	-0,001049	23,848834	45,151166	0,045	46,899223
	760792,98	7941317,6	480,47989	62043,253	-0,001049	23,860456	45,139544	0,045	46,906971
	760781,64	7941379,4	480,41393	62106,113	-0,001049	23,872078	45,127922	0,045	46,914719
	760847,05	7941401,2	480,19247	62168,974	-0,003523	23,8837	45,1163	0,045	46,922467
	760904,24	7941427,3	479,97102	62231,834	-0,003523	23,895323	45,104677	0,045	46,930215
	760961,44	7941453,4	479,74957	62294,695	-0,003523	23,906945	45,093055	0,045	46,937963
	761018,63	7941479,4	479,52812	62357,555	-0,003523	23,918567	45,081433	0,045	46,945711
	761075,83	7941505,5	479,30667	62420,416	-0,003523	23,930189	45,069811	0,045	46,953459
	761133,02	7941531,6	479,08521	62483,276	-0,003523	23,941811	45,058189	0,045	46,961207
	761190,22	7941557,7	478,86376	62546,137	-0,003523	23,953433	45,046567	0,045	46,968956
	761247,41	7941583,8	478,64231	62608,997	-0,003523	23,965056	45,034944	0,045	46,976704
	761304,61	7941609,8	478,42086	62671,857	-0,003523	23,976678	45,023322	0,045	46,984452
	761361,8	7941635,9	478,19941	62734,718	-0,003523	23,9883	45,0117	0,045	46,9922
	761419	7941662	477,97795	62797,578	-0,003523	23,999922	45,000078	0,045	46,999948

Tabela 14 – Resultados de discretização no afluente 1

NÓS	X (m)	Y (m)	Z (m)	L (m)	So(m/m)	b (m)	α _{esq} (°)	n calha	α _{dir} (°)
500	788490	7900459	843	0	-0,006198	6	47	0,03	75
dL (m)	788484,37	7900458,3	842,96484	5,6720355	-0,006198	6,0024281	47,014569	0,03	74,975719
5720355	788478,73	7900457,7	842,92969	11,344071	-0,006198	6,0048562	47,029137	0,03	74,951438
	788473,1	7900457	842,89453	17,016107	-0,006198	6,0072843	47,043706	0,03	74,927157
	788467,47	7900456,4	842,85938	22,688142	-0,006198	6,0097124	47,058274	0,03	74,902876
	788461,83	7900455,7	842,82422	28,360178	-0,006198	6,0121405	47,072843	0,03	74,878595
	788456,2	7900455	842,78907	34,032213	-0,006198	6,0145686	47,087412	0,03	74,854314
	788450,56	7900454,4	842,75391	39,704249	-0,006198	6,0169967	47,10198	0,03	74,830033
	788444,93	7900453,7	842,71876	45,376284	-0,006198	6,0194248	47,116549	0,03	74,805752
	788439,3	7900453,1	842,6836	51,04832	-0,006198	6,0218529	47,131117	0,03	74,781471
	788433,66	7900452,4	842,64845	56,720355	-0,006198	6,024281	47,145686	0,03	74,75719
	788428,03	7900451,7	842,61329	62,392391	-0,006198	6,0267091	47,160254	0,03	74,732909
	788422,4	7900451,1	842,57814	68,064426	-0,006198	6,0291372	47,174823	0,03	74,708628
	788416,76	7900450,4	842,54298	73,736462	-0,006198	6,0315653	47,189392	0,03	74,684347
	788411,13	7900449,8	842,50783	79,408497	-0,006198	6,0339934	47,20396	0,03	74,660066
	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•
	786084,59	7899245,8	804,80289	2750,9372	-0,035971	7,1667004	45,237854	0,03	65,237854
	786079,91	7899242,6	804,59886	2756,6093	-0,035971	7,1690893	45,22079	0,03	65,22079
	786075,22	7899239,4	804,39483	2762,2813	-0,035971	7,1714783	45,203727	0,03	65,203727
	786070,54	7899236,2	804,1908	2767,9533	-0,035971	7,1738672	45,186663	0,03	65,186663
	786065,85	7899233	803,98677	2773,6254	-0,035971	7,1762562	45,169599	0,03	65,169599
	786061,17	7899229,8	803,78274	2779,2974	-0,035971	7,1786451	45,152535	0,03	65,152535
	786056,48	7899226,6	803,57871	2784,9694	-0,035971	7,1810341	45,135471	0,03	65,135471
	786051,8	7899223,4	803,37468	2790,6415	-0,035971	7,183423	45,118407	0,03	65,118407
	786047,11	7899220,2	803,17065	2796,3135	-0,035971	7,1858119	45,101343	0,03	65,101343
	786042,43	7899217	802,96662	2801,9855	-0,035971	7,1882009	45,084279 45,067215	0,03	65,084279
	786037,74	7899213,8	802,76259	2807,6576	-0,035971	7,1905898	45,067215	0,03	65,067215
	786033,06	7899210,6	802,55856 802,35453	2813,3296	-0,035971	7,1929788	45,050152	0,03	65,050152
	786028,37 786023,69	7899207,4 7899204,2	802,35455	2819,0016 2824,6737	-0,035971 -0,035971	7,1953677 7,1977567	45,033088 45,016024	0,03	65,033088 65,016024
	786019	7899204,2	801,94647	2830,3457	-0,035971	7,2001456	44,99896	0,03	64,99896
	750019	1077201	301,24041	2030,3431	0,033711	1,2001430	44,23030	3,03	04,23030

Tabela 15 – Resultados de discretização no afluente 2

AFLUENTE 2

NÓS	X (m)	Y (m)	Z (m)	L (m)	So(m/m)	b (m)	α _{esq} (°)	n calha	α _{dir} (°)
1000	771737	7907434	793	0	-0,002944	5	45	0,035	48

Tabela 15 – Resultados de discretização no afluente 2 (continuação)

								1	
dL (m)	771719,74	7907456,8	792,91574	28,62494	-0,002944	5,0004416	45,001472	0,035	48,002944
28,62494	771702,48	7907479,7	792,83148	57,249881	-0,002944	5,0008833	45,002944	0,035	48,005888
	771685,21	7907502,5	792,74722	85,874821	-0,002944	5,0013249	45,004416	0,035	48,008833
	771667,95	7907525,3	792,66297	114,49976	-0,002944	5,0017665	45,005888	0,035	48,011777
	771650,69	7907548,2	792,57871	143,1247	-0,002944	5,0022081	45,00736	0,035	48,014721
	771633,43	7907571	792,49445	171,74964	-0,002944	5,0026498	45,008833	0,035	48,017665
	771616,16	7907593,8	792,41019	200,37458	-0,002944	5,0030914	45,010305	0,035	48,020609
	771598,9	7907616,7	792,32593	228,99952	-0,002944	5,003533	45,011777	0,035	48,023554
	771581,64	7907639,5	792,24167	257,62446	-0,002944	5,0039747	45,013249	0,035	48,026498
	771564,38	7907662,3	792,15741	286,2494	-0,002944	5,0044163	45,014721	0,035	48,029442
	771547,11	7907685,2	792,07316	314,87434	-0,002944	5,0048579	45,016193	0,035	48,032386
	771529,85	7907708	791,9889	343,49928	-0,002944	5,0052996	45,017665	0,035	48,03533
	771512,59	7907730,8	791,90464	372,12422	-0,002944	5,0057412	45,019137	0,035	48,038275
	771495,33	7907753,7	791,82038	400,74916	-0,002944	5,0061828	45,020609	0,035	48,041219
				•					•
				•					•
	•			•	•				•
	763979,81	7931042,2	614,14613	28166,941	-0,011758	6,6449659	48,579864	0,036	52,869795
	764000,62	7931061,9	613,80954	28195,566	-0,011758	6,6459634	48,583854	0,036	52,87578
	764021,43	7931081,5	613,47296	28224,191	-0,011758	6,6469609	48,587844	0,036	52,881766
	764042,25	7931101,2	613,13637	28252,816	-0,011758	6,6479585	48,591834	0,036	52,887751
	764063,06	7931120,8	612,79979	28281,441	-0,011758	6,648956	48,595824	0,036	52,893736
	764083,87	7931140,5	612,4632	28310,066	-0,011758	6,6499535	48,599814	0,036	52,899721
	764104,68	7931160,1	612,12661	28338,691	-0,011758	6,650951	48,603804	0,036	52,905706
	764125,5	7931179,8	611,79003	28367,316	-0,011758	6,6519486	48,607794	0,036	52,911691
	764146,31	7931199,4	611,45344	28395,941	-0,011758	6,6529461	48,611784	0,036	52,917676
	764167,12	7931219,1	611,11686	28424,566	-0,011758	6,6539436	48,615774	0,036	52,923662
	764187,94	7931238,7	610,78027	28453,191	-0,011758	6,6549411	48,619765	0,036	52,929647
	764208,75	7931258,4	610,44369	28481,816	-0,011758	6,6559387	48,623755	0,036	52,935632
	764229,56	7931278	610,1071	28510,441	-0,011758	6,6569362	48,627745	0,036	52,941617
	764250,37	7931297,7	609,77051	28539,065	-0,011758	6,6579337	48,631735	0,036	52,947602
	764271,19	7931317,3	609,43393	28567,69	-0,011758	6,6589312	48,635725	0,036	52,953587
	764292	7931337	609,09734	28596,315	-0,011758	6,6599287	48,639715	0,036	52,959572

Figura 3 – Hidrografia discretizada gerada na ferramenta Quali-Tool

4º Passo: Lançamento das Vazões Pontuais em "Q Pontuais"

Nesta planilha deve-se relacionar todas as vazões pontuais do rio principal e seus afluentes (Tabela 4 do enunciado), lembrando que no rio principal não se devem lançar as vazões dos afluentes no rio principal. As Tabelas 16 a 18 apresentam os dados de vazões relacionados na ferramenta QUALI-TOOL.

Tabela 16 – Lançamento das vazões pontuais no rio principal e em seus afluentes

RIO PRINCIPAL

AFLUENTE 1

Qaf (m³/s)	DESCRIÇÃO	Linj (m)	Qp (m ³ /s)
6,2	Abastecimento público	0	-1,2
	Demanda Agrícola	15593	-1,8
	ETE	17242	0,9

Tabela 17 – Lançamento das vazões pontuais no Afluente 1

Qaf (m³/s)	DESCRIÇÃO	Linj (m)	Qp (m³/s)
1.5	Indústria de alimentos	0	0,8

Tabela 18 – Lançamento das vazões pontuais no Afluente 2

Qaf (m³/s)	DESCRIÇÃO	Linj (m)	Qp (m³/s)	
1,1	Matadouro	0	0,5	

5º Passo: Lançamento das Vazões Difusas em "Q Difusas"

Nesta planilha deve-se relacionar todas as vazões difusas do rio principal e seus afluentes (Tabela 4 do enunciado). No caso deste exercício, apenas o rio principal apresenta lançamento difuso e o mesmo está relacionado na Tabela 19.

Tabela 19 – Lançamento das vazões difusas no rio principal

RIO PRINCIPAL

DESCRIÇÃO	L inicial (m)	L final (m)	qd (m³/s x m)
Agrícola	21759	35220	0,0001

6º Passo: Cálculos da hidrodinâmica em "Hidráulica"

Primeiramente pressiona-se o botão "1ª PARTE VAZÕES", calculam-se os resultados de comprimento, vazões e ângulos dos taludes esquerdo e direito em radianos. Estes resultados são exibidos nas primeiras colunas das Tabelas de 20 a 22. Antes de pressionar o segundo botão "2ª PARTE SOLVER", verifica-se se na coluna "FUNÇÕES" (coluna G da planilha Hidráulica da ferramenta QUALI-TOOL) consta a Equação 1 (ver Figura 4). Caso não conste equação na célula, copie a Equação 1 e arraste para as demais linhas, até o número de pontos discretizados. Copie a fórmula da primeira célula e cole nos demais afluentes (tributários).

 $= ((1/DISCRETIZAÇÃO!K5)*((2*DISCRETIZAÇÃO!I5+(HIDRÁULICA!H5/TAN(HIDRÁULICA!E5))+(HIDRÁULICA!H5/TAN(HIDRÁULICA!F5)))*H5/2)*(((2*DISCRETIZAÇÃO!I5+(HIDRÁULICA!H5/TAN(HIDRÁULICA!H5/TAN(HIDRÁULICA!F5)))*H5/2)/(H5/SIN(E5)+H5/SIN(F5)+DISCRETIZAÇÃO!I5)^(2/3))*(DISCRETIZAÇÃO!H5*(-1))^(1/2))+HIDRÁULICA!D5 (1)$

Pressione o botão "2ª PARTE SOLVER" e aguarde até que a mensagem "Cálculo finalizado" seja mostrada na tela. Verifique se a coluna G e as demais correspondentes apresentam o valor da função igual ou próximo de 0.

Figura 4 – Verificação da Equação 1 na coluna "Funções"

Após feito, pressiona-se o botão "3ª PARTE DINÂMICA" e a ferramenta calculará os valores de velocidade, nível de água, tensão de cisalhamento e número de Froude.

Em função da grande quantidade de nós para o rio principal e seus afluenes, as planilhas com os resultados das discretizações são enormes, o que torna inviável suas apresentações integrais neste exemplo. Com isso, as Tabelas 20 a 22 trazem os primeiros e últimos quinze resultados da seção "Hidráulica". As Figuras 5 a 7 ilustram os resultados da parte hidráulica para o Rio principal e seus afluentes respectivamente.

L (m)	Q (m ³ /s)	α _{esq} (rad)	α _{dir} (rad)	Função	h (m)	V (m/s)	to (Pa)	NA (m)	Fr
0,00	5,00	0,84	0,79	0,00	0,25	1,40	23,49	796,25	0,90
62,86	5,00	0,84	0,79	0,00	0,25	1,40	23,44	795,63	0,90
125,72	5,00	0,84	0,79	0,00	0,25	1,40	23,39	795,01	0,90
188,58	5,00	0,84	0,79	0,00	0,25	1,40	23,35	794,39	0,90
251,44	5,00	0,83	0,79	0,00	0,25	1,40	23,30	793,76	0,90
314,30	5,00	0,83	0,79	0,00	0,25	1,40	23,25	793,14	0,90
377,16	5,00	0,83	0,79	0,00	0,25	1,40	23,21	792,52	0,90
440,02	5,00	0,83	0,79	0,00	0,25	1,39	23,16	791,90	0,90
502,88	5,00	0,83	0,79	0,00	0,25	1,39	23,11	791,28	0,90
565,74	5,00	0,83	0,79	0,00	0,25	1,39	23,07	790,66	0,90
628,60	5,00	0,83	0,79	0,00	0,24	1,39	23,02	790,03	0,90
691,46	5,00	0,83	0,79	0,00	0,24	1,39	22,98	789,41	0,90
754,33	5,00	0,83	0,80	0,00	0,43	0,78	4,12	789,53	0,38
817,19	5,00	0,83	0,80	0,00	0,43	0,78	4,11	789,47	0,38
880,05	5,00	0,83	0,80	0,00	0,43	0,78	4,11	789,40	0,38

Tabela 20 – Resultados hidrodinâmicos para o rio principal

Tabela 20 – Resultados hidrodinâmicos para o rio principal (continuação)

•	•	•							•
	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•
61917,53	9,35	0,79	0,82	0,00	0,43	0,89	4,33	481,05	0,43
61980,39	9,35	0,79	0,82	0,00	0,43	0,89	4,33	480,98	0,43
62043,25	9,35	0,79	0,82	0,00	0,43	0,89	4,33	480,91	0,43
62106,11	9,35	0,79	0,82	0,00	0,43	0,89	4,33	480,85	0,43
62168,97	9,35	0,79	0,82	0,0;0	0,32	1,20	10,82	480,51	0,68
62231,83	9,35	0,79	0,82	0,00	0,32	1,20	10,82	480,29	0,68
62294,69	9,35	0,79	0,82	0,00	0,32	1,20	10,82	480,07	0,68
62357,56	9,35	0,79	0,82	0,00	0,32	1,20	10,81	479,85	0,68
62420,42	9,35	0,79	0,82	0,00	0,32	1,20	10,81	479,63	0,68
62483,28	9,35	0,79	0,82	0,00	0,32	1,20	10,81	479,41	0,68
62546,14	9,35	0,79	0,82	0,00	0,32	1,20	10,80	479,18	0,68
62609,00	9,35	0,79	0,82	0,00	0,32	1,20	10,80	478,96	0,68
62671,86	9,35	0,79	0,82	0,00	0,32	1,20	10,80	478,74	0,68
62734,72	9,35	0,79	0,82	0,00	0,32	1,20	10,79	478,52	0,68
62797,58	9,35	0,79	0,82	0,00	0,32	1,20	10,79	478,30	0,68

Tabela 21 – Resultados hidrodinâmicos para o afluente 1

L (m)	Q (m ³ /s)	α _{esq} (rad)	α _{dir} (rad)	Função	h (m)	V (m/s)	to (Pa)	NA (m)	Fr
0,00	2,30	0,82	1,31	0,00	0,29	1,30	16,04	843,29	0,78
5,67	2,30	0,82	1,31	0,00	0,29	1,30	16,03	843,25	0,78
11,34	2,30	0,82	1,31	0,00	0,29	1,30	16,03	843,22	0,78
17,02	2,30	0,82	1,31	0,00	0,29	1,30	16,03	843,18	0,78
22,69	2,30	0,82	1,31	0,00	0,29	1,30	16,02	843,14	0,78
28,36	2,30	0,82	1,31	0,00	0,29	1,30	16,02	843,11	0,78
34,03	2,30	0,82	1,31	0,00	0,29	1,30	16,02	843,07	0,78
39,70	2,30	0,82	1,31	0,00	0,29	1,30	16,01	843,04	0,78
45,38	2,30	0,82	1,31	0,00	0,29	1,30	16,01	843,00	0,78
51,05	2,30	0,82	1,31	0,00	0,29	1,30	16,01	842,97	0,78
56,72	2,30	0,82	1,30	0,00	0,28	1,30	16,00	842,93	0,78
62,39	2,30	0,82	1,30	0,00	0,28	1,30	16,00	842,90	0,78
68,06	2,30	0,82	1,30	0,00	0,28	1,30	16,00	842,86	0,78
73,74	2,30	0,82	1,30	0,00	0,28	1,30	15,99	842,83	0,78
79,41	2,30	0,82	1,30	0,00	0,28	1,30	15,99	842,79	0,78
•		•	•		•	•	•	•	•
•									•
•									•
2750,94	2,30	0,79	1,14	0,00	0,16	1,94	55,18	804,97	1,54
2756,61	2,30	0,79	1,14	0,00	0,16	1,94	55,17	804,76	1,54
2762,28	2,30	0,79	1,14	0,00	0,16	1,94	55,16	804,56	1,54

Tabela 21 – Resultados hidrodinâmicos para o afluente 1 (continuação)

2767,95	2,30	0,79	1,14	0,00	0,16	1,94	55,15	804,35	1,54
2773,63	2,30	0,79	1,14	0,00	0,16	1,94	55,14	804,15	1,54
2779,30	2,30	0,79	1,14	0,00	0,16	1,94	55,13	803,95	1,54
2784,97	2,30	0,79	1,14	0,00	0,16	1,94	55,11	803,74	1,54
2790,64	2,30	0,79	1,14	0,00	0,16	1,94	55,10	803,54	1,54
2796,31	2,30	0,79	1,14	0,00	0,16	1,94	55,09	803,33	1,54
2801,99	2,30	0,79	1,14	0,00	0,16	1,94	55,08	803,13	1,54
2807,66	2,30	0,79	1,14	0,00	0,16	1,94	55,07	802,92	1,54
2813,33	2,30	0,79	1,14	0,00	0,16	1,94	55,06	802,72	1,54
2819,00	2,30	0,79	1,14	0,00	0,16	1,94	55,05	802,52	1,54
2824,67	2,30	0,79	1,13	0,00	0,16	1,94	55,03	802,31	1,54
2830,35	2,30	0,79	1,13	0,00	0,16	1,94	55,02	802,11	1,54

Tabela 22 – Resultados hidrodinâmicos para o afluente 2

L (m)	Q (m ³ /s)	α_{esq} (rad)	α_{dir} (rad)	Função	h (m)	V (m/s)	to (Pa)	NA (m)	Fr
0,00	1,60	0,79	0,84	0,00	0,35	0,87	8,93	793,35	0,47
28,62	1,60	0,79	0,84	0,00	0,35	0,87	8,93	793,26	0,47
57,25	1,60	0,79	0,84	0,00	0,35	0,87	8,93	793,18	0,47
85,87	1,60	0,79	0,84	0,00	0,35	0,87	8,93	793,09	0,47
114,50	1,60	0,79	0,84	0,00	0,35	0,87	8,93	793,01	0,47
143,12	1,60	0,79	0,84	0,00	0,35	0,87	8,93	792,92	0,47
171,75	1,60	0,79	0,84	0,00	0,35	0,87	8,93	792,84	0,47
200,37	1,60	0,79	0,84	0,00	0,35	0,87	8,93	792,76	0,47
229,00	1,60	0,79	0,84	0,00	0,35	0,87	8,93	792,67	0,47
257,62	1,60	0,79	0,84	0,00	0,35	0,87	8,93	792,59	0,47
286,25	1,60	0,79	0,84	0,00	0,35	0,87	8,93	792,50	0,47
314,87	1,60	0,79	0,84	0,00	0,35	0,87	8,93	792,42	0,47
343,50	1,60	0,79	0,84	0,00	0,35	0,87	8,93	792,33	0,47
372,12	1,60	0,79	0,84	0,00	0,35	0,87	8,93	792,25	0,47
400,75	1,60	0,79	0,84	0,00	0,35	0,87	8,93	792,17	0,47
•	•	•				•	•	•	•
٠		•	•	•		•	•	•	•
٠	•	•	•	•		•	•	•	•
28195,57	1,60	0,85	0,92	0,00	0,21	1,14	22,59	614,02	0,80
28224,19	1,60	0,85	0,92	0,00	0,21	1,14	22,59	613,68	0,80
28252,82	1,60	0,85	0,92	0,00	0,21	1,14	22,59	613,34	0,80
28281,44	1,60	0,85	0,92	0,00	0,21	1,14	22,58	613,01	0,80
28310,07	1,60	0,85	0,92	0,00	0,21	1,14	22,58	612,67	0,80
28338,69	1,60	0,85	0,92	0,00	0,21	1,14	22,58	612,33	0,80
28367,32	1,60	0,85	0,92	0,00	0,21	1,14	22,58	612,00	0,80
28395,94	1,60	0,85	0,92	0,00	0,21	1,14	22,58	611,66	0,80
28424,57	1,60	0,85	0,92	0,00	0,21	1,14	22,57	611,32	0,80

Tabela 22 – Resultados hidrodinâmicos para o afluente 2 (continuação)

28453,19	1,60	0,85	0,92	0,00	0,21	1,14	22,57	610,99	0,80
28481,82	1,60	0,85	0,92	0,00	0,21	1,14	22,57	610,65	0,80
28510,44	1,60	0,85	0,92	0,00	0,21	1,14	22,57	610,31	0,80
28539,07	1,60	0,85	0,92	0,00	0,21	1,14	22,57	609,98	0,80
28567,69	1,60	0,85	0,92	0,00	0,21	1,14	22,56	609,64	0,80
28596,32	1,60	0,85	0,92	0,00	0,21	1,14	22,56	609,30	0,80

Figura 5 – Resultados hidrodinâmicos gerados em Quali-Tool para o rio principal

Figura 6 – Resultados hidrodinâmicos gerados no Quali-Tool para o afluente 1

Figura 7 – Resultados hidrodinâmicos gerados no Quali-Tool para o afluente 2

7º Passo: Lançamento das concentrações para lançamentos pontuais "C Pontuais"

Nesta planilha deve-se relacionar todas as concentrações dos lançamentos pontuais (Tabela 5 do enunciado). Para facilitar e garantir que não esqueçam-se quais os lançamentos e retiradas pontuais, pode-se importar os dados da planilha "Q Pontuais" clicando em no botão "Importar de Q pontuais", neste caso, os dados irão aparecer em azul. As Tabelas 23 a 25 apresentam os dados de concentrações relacionados no QUALI-TOOL.

Tabela 23 - Lançamento das concentrações pontuais para o rio principal

RIO PRINCIPAL

CONDIÇÕES A MONTANTE DO TRECHO DE ANÁLISE Oaf OD DBO CA NO $\mathbf{P}_{\mathsf{TOT}}$ Namon Nitrato E-coli Metais (m3/s) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (NPM) 6,2 6,3 5 13 0,3 0,4 0,02 0,7

DESCRIÇÃO	Linj (m)	Qp (m³/s)	OD (mg/L)	DBO (mg/L)	CA (mg/L)	NO (mg/L)	N _{amon} (mg/L)	Nitrato (mg/L)	P _{TOT} (mg/L)	E-coli (NPM)	Metais
Abastecimento público	0	-1,2									
Demanda Agrícola	15593	-1,8									
ETE	17242	0,9	1,5	50	140	1,3	15	0,07	4,5		

Tabela 24 - Lançamento das concentrações pontuais para o afluente 1

	CONDIÇÕES A MONTANTE DO TRECHO DE ANÁLISE										
Qaf (m³/s)	OD (mg/L)	DBO (mg/L)	CA (mg/L)	NO (mg/L)	N _{amon} (mg/L)	Nitrato (mg/L)	P _{TOT} (mg/L)	E-coli (NPM)	Metais		
1,5	6	100	12	0,1	0,2	0,01	0,6				

DESCRIÇÃO	Linj (m)	Qp (m³/s)	OD (mg/L)	DBO (mg/L)	CA (mg/L)	NO (mg/L)	N _{amon} (mg/L)	Nitrato (mg/L)		E-coli (NPM)	Metais
Indústria de alimentos	0	0,8	1	100	150	25	8	2	10		

Tabela 25 - Lançamento das concentrações pontuais para o afluente 2

AFLUENTE 2

	CONDIÇÕES A MONTANTE DO TRECHO DE ANÁLISE											
Qaf (m³/s)	OD (mg/L)	DBO (mg/L)	CA (mg/L)	NO (mg/L)	N _{amon} (mg/L)	Nitrato (mg/L)	P _{TOT} (mg/L)	E-coli (NPM)	Metais			
1,1	5,8	3	8	0,2	0,3	0,02	0,5					

DESCRIÇÃO	Linj (m)	Qp (m³/s)	OD (mg/L)	DBO (mg/L)	CA (mg/L)	NO (mg/L)	N _{amon} (mg/L)	Nitrato (mg/L)	P _{TOT} (mg/L)	E-coli (NPM)	Metais
Matadouro	0	0,5	0,5	440	850	1,5	4,5	0,8	20		

8º Passo: Lançamento das concentrações para lançamentos difusos "C Difusas"

Nesta planilha deve-se relacionar todas as concentrações dos lançamentos difusos (Tabela 5 do enunciado). Para facilitar e garantir que não esqueçam-se quais os lançamentos e retiradas difusas, pode-se importar os dados da planilha "Q Difusas" clicando em no botão "Importar de Q Difusas", neste caso, os dados irão aparecer em azul. A Tabela 26 apresenta os dados de concentrações relacionados no QUALI-TOOL.

Tabela 26 - Lançamento das concentrações difusas para o rio principal

CONTRIBUIÇÕES E RETIRADAS DIFUSAS DO RIO PRINCIPAL

DESCRIÇÃO	L inicial (m)	L final (m)	qd (m³/s)	OD (mg/L)	DBO (mg/L)	CA (mg/L)		Namon (mg/L)		P _{TOT} (mg/L)	E-coli (NPM)	Metais
Agrícola	21759	35220	0,0001	5,8	100	120	0,9	0,6	2,5	0,5		

9º Passo: Lançamento dos coeficientes dos processos físicos e bioquímicos em "Coeficientes"

A Tabela 29 relaciona os coeficientes que devem ser usados neste exemplo do QUALI-TOOL, apresentada parcialmente, omitindo as colunas dos parâmetros E-Coli e Metais, os quais não estão sendo simulados. Nesse exemplo prático, os coeficientes são iguais para todos os rios e trechos Então, basta copiar os valores da Tabela 6 para o rio principal e afluentes 1 e 2, modificando o comprimento final do rio (destacado em amarelo). É importante observar, na Tabela 27, que as células referentes ao coeficiente de reaeração k₂ estão vazias, o que significa que foram utilizadas equações da literatura para a sua estimativa, como pedido no enunciado.

É importante ressaltar que em outros exercícios ou em análises reais é comum que os valores dos coeficientes se modifiquem ao longo dos trechos em função dos lançamentos que ocorrem através deste. Fixou-se **para este exercício** em função do requisitado no enunciado. O valor de K₂ também pode ser **fornecido** ao invés de **calculado** através das equações da literatura.

CONTAMINANTE OD **DBO NITROGÊNIO** V_{SP} (m/d⁻¹) **ARBITRÁRIO** Kd **VS**_{MO} L_{rd} K2 **VS**_{NO} KOA KAN KNN SAMON **USD** Kρ S_d' **VS**CA **S**CA L(m) (m/d⁻¹) (°C) (d-1) (g/m².d) (m/d-1) (g/m2.d) (m/d-1) (q/m2,d1) (m/d⁻¹) (d-1) (d-1) (d-1) (g/m2.d) (d-1) 0,00 22 0,00 0,4 0,1125 0,00 0,01 0,00 0,045 0,21 0,2 0,5 0,00 0,023 0,25 22 0,4 0,01 62797,58 0,00 0,1125 0,00 0,00 0,045 0,21 0,2 0,5 0,00 0,023 0,25

Tabela 27 – Coeficientes utilizados no exemplo

10º Passo: Cálculo das concentrações (resultados) finais em "Concentrações"

Nesta planilha não existem lançamentos a serem feitos. Inicialmente, pressiona-se o botão "IMPORTAR COEFICIENTES" e a ferramenta irá discretizar os coeficientes de acordo com os fornecidos para cada segmento e corrigi-los para a temperatura real. Após isso, pressiona-se os botões dos parâmetros a serem calculados. Neste caso, DBO, OD, nitrogênio e suas frações e Fósforo Total e Sólidos Suspensos, que estão inseridos como contaminantes arbitrários. Em função da grande quantidade de nós para o rio principal e seus afluenes, as planilhas com os resultados das discretizações são enormes, o que torna inviável suas apresentações integrais neste exemplo. Com isso, as Tabelas 28 a 30 trazem os primeiros e últimos quinze resultados da seção "Concentrações".

Tabela 28 – Resultados de concentrações do Rio Principal

OD (mg/L)	DBO (mg/L)	Contaminantes Arbitrários(mg/L)	Nitrogênio Orgânico (mg/L)	Nitrogênio Amoniacal (mg/L)	Nitrato (mg/L)	Fósforo Total (mg/L)
6,300	5,000	13,000	0,300	0,400	0,020	0,700
6,376	4,998	12,997	0,300	0,400	0,020	0,700
6,448	4,995	12,995	0,300	0,400	0,020	0,700
6,517	4,993	12,992	0,300	0,400	0,020	0,700
6,583	4,991	12,989	0,300	0,400	0,020	0,699
6,646	4,988	12,986	0,300	0,400	0,020	0,699
6,706	4,986	12,984	0,300	0,400	0,020	0,699
6,763	4,984	12,981	0,300	0,400	0,020	0,699
6,818	4,981	12,978	0,300	0,400	0,020	0,699
6,870	4,979	12,975	0,300	0,400	0,020	0,699
6,920	4,977	12,973	0,300	0,400	0,020	0,699
6,967	4,974	12,970	0,300	0,400	0,020	0,699
7,048	4,971	12,967	0,300	0,400	0,020	0,698
7,121	4,968	12,964	0,300	0,400	0,020	0,698
7,189	4,965	12,961	0,300	0,400	0,020	0,698
•		•				•
8,057	34,629	87,569	1,969	2,519	0,550	2,241
8,057	34,609	87,552	1,969	2,519	0,550	2,240
8,057	34,589	87,536	1,969	2,519	0,550	2,240
8,057	34,570	87,519	1,969	2,519	0,550	2,239
8,057	34,550	87,503	1,969	2,519	0,550	2,239
8,057	34,533	87,486	1,968	2,519	0,550	2,238
8,058	34,517	87,470	1,968	2,519	0,550	2,238
8,058	34,500	87,453	1,968	2,519	0,550	2,237
8,058	34,484	87,437	1,968	2,519	0,550	2,237
8,058	34,468	87,420	1,968	2,519	0,550	2,236
8,058	34,451	87,404	1,967	2,519	0,550	2,236
8,058	34,435	87,387	1,967	2,519	0,550	2,235
8,059	34,418	87,371	1,967	2,519	0,550	2,235
8,059	34,402	87,354	1,967	2,519	0,550	2,234
8,059	34,385	87,337	1,967	2,519	0,550	2,234

Tabela 29 – Resultados de concentraçãos para o Afluente 1

OD (mg/L)	DBO (mg/L)	Contaminantes Arbitrários(mg/L)	Nitrogênio Orgânico (mg/L)	Nitrogênio Amoniacal (mg/L)	Nitrato (mg/L)	Fósforo Total (mg/L)
4,2609	93,0435	94,7826	8,7609	2,9130	0,7022	3,8696
4,2711	93,0396	94,7809	8,7608	2,9130	0,7022	3,8695
4,2814	93,0357	94,7793	8,7607	2,9131	0,7022	3,8694
4,2916	93,0318	94,7776	8,7606	2,9131	0,7022	3,8694

Tabela 29 – Resultados de concentraçãos para o Afluente 1

4,3017	93,0279	94,7759	8,7606	2,9131	0,7022	3,8693
4,3119	93,0240	94,7743	8,7605	2,9131	0,7022	3,8692
4,3220	93,0201	94,7726	8,7604	2,9131	0,7022	3,8692
4,3320	93,0162	94,7709	8,7603	2,9131	0,7022	3,8691
4,3421	93,0123	94,7692	8,7603	2,9131	0,7022	3,8690
4,3521	93,0084	94,7676	8,7602	2,9131	0,7022	3,8689
4,3620	93,0045	94,7659	8,7601	2,9131	0,7022	3,8689
4,3720	93,0006	94,7642	8,7601	2,9131	0,7022	3,8688
4,3819	92,9966	94,7625	8,7600	2,9131	0,7022	3,8687
4,3918	92,9927	94,7608	8,7599	2,9131	0,7022	3,8687
4,4016	92,9888	94,7592	8,7598	2,9131	0,7022	3,8686
		•				
		•		•		
•		•	•	•	•	•
6,6043	91,2025	93,9050	8,7222	2,9149	0,7022	3,8386
6,6060	91,1991	93,9030	8,7221	2,9149	0,7022	3,8385
6,6077	91,1956	93,9011	8,7220	2,9149	0,7022	3,8385
6,6093	91,1921	93,8991	8,7219	2,9149	0,7022	3,8384
6,6110	91,1886	93,8972	8,7219	2,9149	0,7022	3,8384
6,6126	91,1851	93,8952	8,7218	2,9149	0,7022	3,8383
6,6143	91,1816	93,8933	8,7217	2,9149	0,7022	3,8382
6,6159	91,1781	93,8913	8,7216	2,9149	0,7022	3,8382
6,6176	91,1746	93,8893	8,7215	2,9149	0,7022	3,8381
6,6192	91,1712	93,8874	8,7214	2,9149	0,7022	3,8381
6,6209	91,1677	93,8854	8,7213	2,9149	0,7022	3,8380
6,6225	91,1642	93,8835	8,7213	2,9149	0,7022	3,8380
6,6241	91,1607	93,8815	8,7212	2,9149	0,7022	3,8379
6,6257	91,1572	93,8795	8,7211	2,9149	0,7022	3,8379
6,6274	91,1537	93,8776	8,7210	2,9149	0,7022	3,8378

Tabela 32 – Resultados de concentrações para o afluente 2

OD (mg/L)	DBO (mg/L)	Contaminantes Arbitrários(mg/L)	Nitrogênio Orgânico (mg/L)	Nitrogênio Amoniacal (mg/L)	Nitrato (mg/L)	Fósforo Total (mg/L)
4,1438	139,5625	271,1250	0,6063	1,6125	0,2638	6,5938
4,1727	139,5218	271,0951	0,6062	1,6125	0,2638	6,5929
4,2012	139,4812	271,0652	0,6062	1,6125	0,2638	6,5920
4,2294	139,4406	271,0353	0,6062	1,6125	0,2638	6,5912
4,2572	139,3999	271,0053	0,6061	1,6125	0,2638	6,5903
4,2846	139,3593	270,9754	0,6061	1,6125	0,2638	6,5895
4,3116	139,3187	270,9455	0,6061	1,6125	0,2638	6,5886
4,3383	139,2781	270,9156	0,6060	1,6125	0,2638	6,5878
4,3646	139,2375	270,8857	0,6060	1,6125	0,2638	6,5869
4,3906	139,1969	270,8558	0,6060	1,6125	0,2638	6,5861

4,4162	139,1564	270,8259	0,6059	1,6125	0,2638	6,5852
4,4415	139,1158	270,7960	0,6059	1,6125	0,2638	6,5844
4,4664	139,0753	270,7661	0,6059	1,6125	0,2638	6,5835
4,4910	139,0347	270,7362	0,6058	1,6125	0,2638	6,5827
4,5153	138,9942	270,7063	0,6058	1,6125	0,2638	6,5818
					•	
6,7668	105,0924	241,1284	0,5729	1,6127	0,2638	5,8410
6,7675	105,0623	241,0944	0,5729	1,6127	0,2638	5,8403
6,7681	105,0322	241,0604	0,5728	1,6127	0,2638	5,8397
6,7688	105,0021	241,0264	0,5728	1,6127	0,2638	5,8390
6,7694	104,9720	240,9923	0,5728	1,6127	0,2638	5,8384
6,7701	104,9419	240,9583	0,5727	1,6127	0,2638	5,8377
6,7707	104,9119	240,9243	0,5727	1,6127	0,2638	5,8371
6,7713	104,8818	240,8902	0,5726	1,6127	0,2638	5,8364
6,7720	104,8517	240,8562	0,5726	1,6127	0,2638	5,8358
6,7726	104,8217	240,8222	0,5726	1,6127	0,2638	5,8351
6,7733	104,7916	240,7882	0,5725	1,6127	0,2638	5,8345
6,7739	104,7616	240,7541	0,5725	1,6127	0,2638	5,8338
6,7746	104,7316	240,7201	0,5725	1,6127	0,2638	5,8332
6,7752	104,7015	240,6861	0,5724	1,6127	0,2638	5,8325
6,7759	104,6715	240,6521	0,5724	1,6127	0,2638	5,8319

As Figura 8, 9 e 10 apresentam, respectivamente, os resultados ao longo do curso de água de OD/Fósforo_total, DBO/Contaminantes_arbitrários e Nitrogênio orgânico/Amônia/Nitrato em função do comprimento do rio principal.

Figura 8 – Resultados OD e Fósforo Total para o rio principal

Figura 9 – Resultados DBO e Contaminantes Arbitrários para o rio principal

Figura 10 – Resultados Nitrogênio e suas frações para o rio principal

Após gerar os perfis longitudinais para os diversos parâmetros de qualidade da água, é importante avaliar a consistência dos resultados alcançados. Neste contexto, deve-se verificar se as entradas e saídas pontuais causam variações localizadas nos perfis dos diversos parâmetros de qualidade da água. Analisar se o posicionamento longitudinal dessas variações condiz com a localização das entradas e saídas. A mesma análise deve ser feita para as entradas difusas.

Além dos perfis do rio principal também são gerados os perfis dos afluentes que foram ocultados devido ao anunciado solicitar somente os resultados do rio principal (Junco).