

UNIVERSIDADE FEDERAL DE OURO PRETO PRÓ-REITORIA DE GRADUAÇÃO PROGRAMA DE DISCIPLINA

Disciplina				Código
TEORIA DE CONTROLE II				CAT 183
Professor (a)				
Adrielle C. Santana				
Departamento			Unidade	
DECAT			Escola de Minas	
Carga Horária Semanal	Teórica	Prática	Duração/Semana	Carga Horária Semestral
4	4	0	18	72 h/a

Ementa

Conceitos de sinais contínuos e discretos. Amostragem de sinais contínuos. Teoria de controle discreto. Transformada Z. Modelagem de sistemas de tempo discreto. Processos e sistemas contínuos e discretos. Análise de sistemas discretos no domínio da frequência. Projeto de controladores digitais. Manipulação de sistemas discretos em espaço de estados. Projeto de controlador e observador de estados em tempo discreto. Sistemas de tempo real.

CONTEÚDO PROGRAMÁTICO

1 - Introdução

2 - Representação de Sistemas Dinâmicos Discretos

- 2.1 Equações discretas
- 2.2 Transformada Z
- 2.3 Amostragem e a teoria da amostragem
- 2.4 Conversão A/D e D/A
- 2.5 Análise de estabilidade em sistemas discreto
- 2.6 Exemplos e simulações em MATLAB

3 – Métodos de Projetos de Controladores Digitais

- 3.1 Discretização de controladores contínuos
- 3.2 Especificações de sistemas de controle
- 3.3 Método do Lugar Geométrico das Raízes (LGR)
- 3.4 Projeto usando o LGR
- 3.5 Análise e Projeto de controlador no domínio da frequência
- 3.6 Exemplos e simulações em MATLAB

4 – Modelagem no Espaço de Estado

- 4.1 Sistemas discretos no espaço de estados
- 4.2 Controlabilidade e Observabilidade
- 4.3 Discretização de sistemas contínuos em espaço de estados
- 4.4 Análise de estabilidade por Liapunov
- 4.4 Exemplos e simulações em MATLAB

5 – Projeto de Controladores Digitais em Espaço de Estado

- 5.1 Fórmula de Ackermann para controlador de estados
- 5.2 Fórmula de Ackermann para observador de estados
- 5.3 Modelagens e simulações em MATLAB
- 6 Sistemas de tempo real

UNIVERSIDADE FEDERAL DE OURO PRETO PRÓ-REITORIA DE GRADUAÇÃO PROGRAMA DE DISCIPLINA

BIBLIOGRAFIA

Bibliografia Básica

- 1 OGATA, KATSUHIRO. Discrete-Time Control Systems. Prentice Hall, 1995, 2 ed..
- 2 ASSUNÇÃO, EDVALDO. **Controle Digital**. Disponível em: http://falcao.feis.unesp.br/dee/projetos/lpc/Downloads/Controle%20Digital.pdf. Acesso em 26/06/2013. UNESP, 2008.
- 3 OPPENHEIM, ALAN V.; SCHAFER, <u>RONALD W.</u>. **Discrete-Time Signal Processing**. Prentice Hall, 2009, 3 ed..

Bibliografia Complementar

- 1 ASTOM, KARL JOHAN; WITTENMARK, BJORN. **Computer-Controlled System: Theory and Design**. Prentice Hall, 1996, 3 ed..
- 2 LATHI, B. P.. Sinais e Sistemas Lineares. Bookman, 2007, 2 ed..
- 3 BOLTON, WILLIAM. **Mechatronics: Eletronic Control Systems in Mechanical and Electrical Engineering**. Prentice Hall, 2003, 3 ed..
- 4 HAYKIN, SIMON; VEEN, BARRY V.. Sinais e Sistemas. Bookman, 2001.
- 5 HSU, HWEI P.. Sinais e Sistemas. Coleção Schaum. Bookman, 2004.

h/aula é de 50 minutos

AVALIAÇÃO

Prova 1 (05/12/2013)

Conteúdos 1, 2 e 3. Valor 10. Peso 4.

Prova 2 (13/02/2014)

Conteúdos 4, 5 e 6. Valor 10. Peso 4.

Trabalho (18/02/2014)

Conteúdos 1, 2, 3, 4, 5 e 6 Valor 10. Peso 2.

Exame Especial (20/02/2014)

Todo o conteúdo ministrado.