bivariate regression

adam.okulicz.kozaryn@gmail.com

this version: Wednesday 24th January, 2024 11:01

<u>outline</u>

bivariate regression

stat significance (hypothesis testing)

basic measurement

discussions

- everyone saw discussion i posted on canvas?
- post stuff too!

math

- today math
- important you understand it
- memorizing formulas is not enough to pass this class
- again, start working on this and ask questions early!
- good idea to go over slides again and again
- note hats: $\hat{\beta}$ v β
- instead of $\sum_{i=1}^{n}$ i may just use \sum

<u>outline</u>

bivariate regression

stat significance (hypothesis testing)

basic measurement

bivariate regression 5/47

the idea

- $Y \leftarrow X$, there is a directional relationship, an effect
- like correlation, but here there is a direction
- (almost causality, but to argue causality you need also research design!)
- so we have outcome, or dependent variable predicted or affected by:
- independent variable (does not depend on the dependent variable)

bivariate regression 6/

why regression?

- ols is the most fundamental technique for soc sci
- o anova, t-test, z-test, chi-sq test, etc are obsolete!
- just run regression! indeed, no studies use these anymore
- o from qm1 only use des sta esp graphs
- if you want to figure out what predicts something, run regression
- o eg what will make you live longer
- lexp=weighted avg(diet, exercise, smoking, etc)
- o lexp=50+2*(veggie serv/day)+3*(hrs at gym)-10*(packs of cigarettes per day)

http://ianayres.yale.edu/prediction-tools

bivariate regression 7

"regression" sounds scary

- regression is easy (yes, we will do the tedious math), but all that regression does it fits a line that minimizes the sum of the squared vertical distances in a scatter plot; hence "OLS"
- that's it! we will just use some math to fit this line

bivariate regression 8/4

regression function

• $\hat{Y}_i = \hat{\beta}_1 + \hat{\beta}_2 X_i$ $Y_i = \hat{\beta}_1 + \hat{\beta}_2 X_i + e_i$

• (e_i) are errors of prediction

bivariate regression 9/4

first guess

• (1) $Y_i = 2 + X_i \rightarrow \sum e_i^2 = 3$

bivariate regression 10/47

second guess

- / α 2
- (1) $Y_i = 2 + X_i \rightarrow \sum e_i^2 = 3$

• (2) $Y_i = 0 + 2X_i \rightarrow \sum e_i^2 = 1$

11/47 bivariate regression

ols – cannot beat it!

$$\begin{array}{c|cc} Y_i & X_i \\ \hline 2 & 1 \\ \hline 5 & 2 \\ \hline 6 & 3 \\ \end{array}$$

• (1)
$$Y_i = 2 + X_i \rightarrow \sum_{i=1}^{n} e_i^2 = 3$$

• (2)
$$Y_i = 0 + 2X_i \rightarrow \sum e_i^2 = 1$$

• (3) $Y_i = 0.33 + 2X_i \rightarrow \sum e_i^2 = 0.67$

dofile: guessing can use these est to predict like lexp eg

bivariate regression

ols

- $Y_i = \hat{\beta}_1 \hat{\beta}_2 X_i + e_i \rightarrow e_i = Y_i \hat{\beta}_1 \hat{\beta}_2 X_i$
- chose estimators to minimize

$$\sum e_i^2 = \sum (Y_i - \hat{\beta}_1 - \hat{\beta}_2 X_i)^2$$

• [*] for elaboration and derivations see gujarati

bivariate regression 13/47

intercept and slope

$$\hat{eta}_1 = \bar{\mathsf{Y}} - \hat{eta}_2 \bar{\mathsf{X}}$$

$$\hat{\beta}_2 = \frac{\sum_{i=1}^n Y_i X_i - n\bar{X}\bar{Y}}{(\sum_{i=1}^n X_i^2 - n\bar{X}^2)}$$

$$\hat{\beta}_2 = \frac{\sum Y_i X_i - n \bar{Y} \bar{X}}{\sum X_i^2 - n \bar{X}^2}$$

$$\hat{\beta}_2 = \frac{\sum (Y_i - \bar{Y})(X_i - \bar{X})}{\sum (X_i - \bar{X})^2}$$

•
$$\hat{\beta}_2 = \frac{\sum y_i x_i}{\sum x_i^2}$$
 $y_i = Y_i - \bar{Y}$ $x_i = X_i - \bar{X}$

 slope is the covariance of Y and X divided by the variance of X; variance is always positive, so the numerator (the covariance) determines the sign of the slope

bivariate regression 14/47

solving the problem [blackboard]

	Y_{i}	X_{i}	$ \left(Y_i - \overline{Y}\right) \\ = y_i $	$(X_i - \overline{X})$ $= x_i$	y_i^2	x_i^2	$y_i x_i$
	2	1	-2.33	-1	5.53	1	2.33
	5	2	0.67	0	0.45	0	0
	6	3	1.67	1	2.79	1	1.67
Σ	13	6	0	0	8.67	2	4
mean	4.33	2					

•
$$\hat{\beta}_2 = \frac{\sum y_i x_i}{\sum x_i^2} = \frac{4}{2} = 2$$

•
$$\hat{\beta}_1 = \bar{Y} - \hat{\beta}_2 \bar{X} = 4.33 - (2)(2) = 0.33$$

bivariate regression 15/47

example: age(18-80) and fear(0-15) [blackboard]

The Data
$$obs \mid X_i \mid Y_i \ 1 \mid 22 \mid 2 \ 2 \mid 35 \mid 7 \ 3 \mid 47 \mid 6 \ 4 \mid 56 \mid 14 \ 5 \mid 72 \mid 13 \ \hline \sum \mid 232 \mid 42 \ \hline S = 8.4$$
Deviations from the means $obs \mid X_i \mid Y_i \mid Y_i \mid Y_i \mid X_i \mid Y_i \mid X_i \mid X_i$

•
$$\hat{\beta}_2 = \frac{\sum y_i x_i}{\sum x_i^2} = \frac{342}{1473} = .232$$

•
$$\hat{\beta}_1 = \overline{\bar{Y}} - \hat{\beta}_2 \bar{X} = 8.4 - (.232)(46.4) = -2.365$$

•
$$\hat{Y}_i = \hat{\beta}_1 + \beta_2 X_i = -2.365 + .232 X_i$$

• interpretation?

bivariate regression 16/47

the estimated regression line

bivariate regression 17/47

variance and std error of regression

- ok, we know how to calculate betas and fit the line (that min the sum of the squared resid)
- but some lines fit better and some worse
- need a measure of uncertatinty, ie how line fits the
- the fit is measured with residuals
- so our measure of uncertainty has to do with residuals!

•
$$s^2 = \frac{\sum_{i=1}^{n} (e_i - \bar{e})^2}{n-2} = \frac{\sum_{i=1}^{n} e_i^2}{n-2}$$

 $s = \sqrt{\frac{\sum_{i=1}^{n} \overline{e_i^2}}{n-2}}$

the mean of the residuals is 0 so \bar{e} drops out

• s measures spread of the points around the regression line

bivariate regression 18/47

from \hat{Y} to s (se of reg) to $s_{\hat{\beta}_2}$ (se of slope)

•
$$s_{\hat{\beta}_2} = \frac{s}{\sqrt{\sum_{i=1}^5 x_i^2}} = \frac{2.7}{\sqrt{1473}} = .07$$

• $s = \sqrt{\frac{\sum_{i=1}^{5} e_i^2}{n-2}} = \sqrt{\frac{21.7}{3}} =$

lexp we predicted earlier
$$t = \frac{\hat{\beta}}{s_{\hat{n}}}$$

Standard Error of the Slope Coefficient Numerator -- variance of disturbance term

ucla: hands-on dofile

- https://stats.idre.ucla.edu/stata/webbooks/reg
- let's just see a first reg output (you'll do it for ps2)
- what is bivariate regression command?
- \circ where is β_1 and β_2
- excellent for self study!!
- do it at home; and do ask me questions about it
- this is especially an excellent resource for final paper

bivariate regression 21/47

finish first class here

• finish first class here

bivariate regression 22/47

outline

bivariate regression

stat significance (hypothesis testing)

basic measurement

calculations again blackboard; dofile

<u>Y</u>	Χ	У	y2	Х	x2	ху
1	17					
3	13					
5	8					
7	10					
9	2					
Sum						
25	50					

$$\bar{Y} = 5$$
 $\bar{X} = 10$

the coefficients-interpretation

 Beta hat two is the slope coefficient. Thus, a one unit change in X leads to a 0.524 decrease in Y. Beta hat one is the intercept term. It is the predicted value for Y when X is equal to zero.

predicted val and resid blackboard; dofile

- $\bullet \hat{Y}_i = \hat{\beta}_1 + \hat{\beta}_2 X_i$
- for obs 1:
- $\hat{Y}_1 = 10.24 + (-0.524)(17) = 1.332$
- $e_1 = 1 1.33 = -0.33$

regression plot again

se of the slope blackboard; dofile

- $\sum e_i^2 = 5.42$
- $s = \sqrt{\frac{\sum e_i^2}{n-2}} =$
- $\bullet \ s_{\hat{\beta}_2} = \frac{s}{\sqrt{\sum x_i^2}}$
- o it gives us info about reliability (like sd or se) of slope

sampling distribution of the slope

probability distribution of $\hat{\beta}_2$ is centered on the true value of the parameter (i.e. unbiased) and is normally distributed with variance:

hypothesis test dofile

- the null is that slope ("the unobserved true parameter")
- o is zero (ie no effect)
- H_0 : $\beta_2 = 0$
- $H_A: \beta_2 \neq 0$
- $t = \frac{\hat{\beta}_2 \beta_2}{s_{\hat{\beta}_2}} = \frac{\hat{\beta}_2}{s_{\hat{\beta}_2}}$
- CI: $\hat{\beta}_2 \pm (t_{n-2,\frac{\alpha}{2}})(s_{\hat{\beta}_2})$
- lets do it and calculate all by hand! incl crit val

accounting for variation in Y blackboard in 3 colors

• before regression $E[Y] = \overline{Y}$

TSS total sum of squares [like RSS before reg; we were off

by this much!]
$$TSS = \sum_{i=1}^{n} (Y_i - \bar{Y})^2$$

 after regression $E[Y|X_i] = \hat{Y}_i = \hat{\beta}_1 + \hat{\beta}_2 X_i$

• ESS explained sum of squares
$$ESS = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2$$

RSS residual sum of squares

• RSS residual sum of squares
$$RSS = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 = \sum_{i=1}^{n} e_i^2$$
• $TSS = ESS + RSS$

stat significance (hypothesis testing)

R^2 variation explained

- TSS = ESS + RSS
- $1 = \frac{ESS}{TSS} + \frac{RSS}{TSS}$
- $R^2 = \frac{ESS}{TSS} = 1 \frac{RSS}{TSS} = 1 \frac{\sum e_i^2}{y_i^2}$
- R²: the fraction of the variance in the dependent variable explained by the model

partitioning variance in Y dofile

- before regression $E[Y_i] = \bar{Y}$
- $TSS = \sum (Y_i \bar{Y})^2 = \sum y_i^2 = 40$
- after regression $E[Y_i|X_i] = \hat{Y}_i$
- $RSS = \sum (Y_i \hat{Y}_i)^2 = \sum e_i^2 = 5.43$
- \circ FSS = TSS RSS = 40 5.4 = 34.57
- $R^2 = 1 \frac{\sum e_i^2}{\sum v_i^2}$
- proportion of the total variance in the Y explained by Xs
- $0 < R^2 < 1$

TSS

RSS

reliability of predict val (se of E(Y|X)

- parameter estimates are random variables, and so they have standard errors
- predicted values are also random variables because they are linear combinations of the coefficients
- the further from the mean of X, the wider the confidence interval around the predicted value
- leave it to software, no need to know the formula

se of E(Y|X) illustration **dofile**

anatomy of stata output [biv] dofile: outlier

. regress DV IV

Source	! 	SS 	df	MS	Number of o	obs = n
Model	ESS =	$\sum (\hat{Y}_i - \overline{Y})$	1	••••	F(1, n-2)	=
	!	` ,		$_{2}$ RSS	Prob > F	=
Residual	RSS	$S = \sum e_i^2$	n-2	$2 s^2 = \frac{RSS}{n-2}$	R-squared	$= r^2$
Total	TCC	$\nabla (v \ \overline{v})$	2 1	$_{2}$ TSS	Adj R-Squa	red =
Total	133 =	$\sum (Y_i - Y)$	n-1	$s_Y^2 = \frac{TSS}{n-1}$	Root MSE	= s
DV	Coef.	Std.Err.	 t	P> t	[95% Conf.	 Intervall
	L		-,,			
IV	$\hat{\beta}_{2}$	S a	$ \underline{\beta_2} $	p val. for H ₀	$\hat{\beta}_2 - t_{0.005} s_{\hat{\alpha}}$	$\hat{\beta}_2 + t_{0.025} s_2$
	 	β_2	$\left(\begin{array}{c}s_{\hat{eta}_2}\end{array}\right)$	that $\beta_2 = 0$	β 2 0.025 β ₂	β 2 0.025 β ₂
_	 a		$(\hat{\beta}_1)$	p val. for H ₀	à	à
Intercept	$m{\beta}_1$	$s_{\hat{eta}_{\!\scriptscriptstyle 1}}$	$\left \begin{array}{c} \frac{7}{S_{\hat{a}}} \end{array} \right $	that $\beta_1 = 0$	$\beta_1 - t_{0.025} s_{\hat{\beta}_1}$	$\beta_1 + t_{0.025} s_{\hat{\beta}_1}$
IV Intercept	\hat{eta}_{2} \hat{eta}_{1}	$S_{\hat{eta}_2}$	(.)	p val. for H_0 that $\beta_2 = 0$ p val. for H_0 that $\beta_1 = 0$	$\hat{\beta}_{2} - t_{0.025} s_{\hat{\beta}_{2}}$ $\hat{\beta}_{1} - t_{0.025} s_{\hat{\beta}_{1}}$	

<u>outline</u>

bivariate regression

stat significance (hypothesis testing)

basic measurement

basic measurement 39/47

intuition

- what happens to betas if we change variables' measurement?
- millions of dollars as opposed to dollars
- o curved grades (each person gets extra 10 points)
- o proportion of people in poverty v percent in poverty
- income per capita v income per 100k people

basic measurement 40/47

add constant c to X or Y (say curved grades)

- if you add c to each obs, mean of var would change by that much
- but demeaned var doesn't change:
- $x_{i}^{'} = (X_{i}^{'} \bar{X}^{'}) = [(X_{i} + c) (\bar{X} + c)] = x_{i}$ same for Y
- $\hat{\beta}_2 = \frac{\sum y_i x_i'}{\sum x_i'^2} = \frac{\sum y_i x_i}{\sum x_i^2}$ only demeaned vars so no change
- and nobody cares about intercept anyway, so let's spare our brain

basic measurement $41_{
m f}$

multiply X or Y by constant (say months, not years)

- think about it, assume some example
- o say year of educ produces \$2 increase in wage
- how about a month of educ? should be 1/12 of \$2!
- to convert yr to mo, multiply years by 12
- o if a person has 2yr of educ, that's 24mo
- so if i multiply X by c, say 12, I need to divide $\hat{\beta}_2$ by 12
- what if multiply Y?
- o again, say year of educ produces \$2 increase in wage
- o ...or 200 cent increase in wage
- to get cents from dollars, I multiply dollars by 100
- o so if I multiply Y by 100, i get β_2 100x bigger

basic measurement 42/47

fun fact1: correlation v bivariate regression

• $r = \frac{\sum y_i x_i}{\sqrt{(\sum x_i^2)(\sum y_i^2)}}$ $\hat{\beta}_2 = \frac{\sum y_i x_i}{\sum x_i^2}$ • bivariate slope equals corr coef scaled by std dev of Y and

X:
$$\hat{\beta}_2 = \frac{\sum y_i x_i}{\sum x_i^2} = r(\frac{s_Y}{s_X})$$

basic measurement

education and wages dofile

. corr wage educ							
		wage	educ				
wage educ	-	.0000 .3819	1.0000				

. sum wage educ									
Variable	Obs	Mean	Std. Dev.	Min	Max				
	534	9.023939	5.138876	1	44.5				
educ	534	13.01873	2.615373	2	18				

basic measurement 44/47

education and wages dofile

regress wage educ

Source		df			Number of obs	
Model Residual		1 2053 532 22.5	.22494 982396		<pre>F(1, 532): Prob > F : R-squared : Adj R-squared :</pre>	= 0.0000 = 0.1459
	14075.4884					= 4.7538
wage		Std. Err.			[95% Conf.]	=
educ _cons		.07873	9.532	0.000 0.476	.5957891 -2.799576	.9051086 1.307678

The estimated regression line:

$$\widehat{wage}_i = \hat{\beta}_1 + \hat{\beta}_2 educ_i = -0.75 + 0.75 educ_i$$

Interpret the coefficients.

basic measurement 45/47

fun fact2: Z scores bivariate regression=correlation

• $z_{Yi} = \beta_1 + \beta_2 z_{Xi} + u_i$ $z_{Xi} = \frac{X_i - \bar{X}}{s_X} = \frac{x_i}{s_X}$ $z_{Yi} = \frac{Y_i - \bar{Y}}{s_{Yi}} = \frac{y_i}{s_Y}$

 z scores always have a mean of 0 and a variance (and standard deviation of 1):

$$\hat{\beta}_2 = r_{Z_Y Z_X} \frac{s_{Z_Y}}{s_{Z_X}} = r_{YX}$$

$$\hat{\beta}_1 = \bar{z}_Y - \hat{\beta}_2 \bar{z}_X = 0 - r(0) = 0$$

 Thus, a regression of the z scores of Y on the z scores of X produces a slope equal to the correlation coefficient of X and Y and a zero intercept.

pasic measurement 46,

exercise 2: if no time do at home: see dofile

- confirm the above in stata using our simple data we started today's lecture with
- run regression of Y on X
- modify X or Y and check what happened

pasic measurement 47/