

Transport Layer - Introduction

Amitangshu Pal
Computer Science and Engineering
IIT Kanpur

Application
Transport
Network
Link
Physical

Transport Layer Services and Protocols

 Provide logical communication between application processes running on different hosts

Transport protocols actions in end ---> means run on host systems:

- Sender: breaks application messages into segments, passes to network layer
- Receiver: reassembles segments into messages, passes to application layer
- Two transport protocols available to Internet applications
 - TCP, UDP

Transport vs Network Layer Services

- Network layer: host-to-host delivery
- Transport layer: logical communication between processes
 - relies on, enhances, network layer services

Src: https://commons.wikimedia.org/wiki/File:IP_stack_connections_(corrected).svg

Sockets

Socket: door between application process and end-end-transport protocol

 An application process can send/receive messages to/from another application process via a socket

Transport Layer Actions

Transport Layer Actions

Receiver:

- receives segment from IP
- checks header values
- extracts applicationlayer message
- demultiplexes message up to application via socket

Two Principal Internet Transport Protocols

- TCP: Transmission Control Protocol
 - reliable, in-order delivery
 - congestion control
 - flow control
 - connection setup
- UDP: User Datagram Protocol
 - unreliable, unordered delivery
 - no-frills extension of "best-effort"
 IP

Multiplexing and Demultiplexing

Multiplexing/demultiplexing

How Demultiplexing Works

- Host receives IP datagrams
 - Each datagram has source IP address, destination IP address
 - Each datagram carries one transport-layer segment
 - Each segment has source, destination port number
- Host uses IP addresses & port numbers to direct segment to appropriate socket

Src: https://linuxwheel.com/chapter-5-fundamentals-of-tcp-ip-transport-and-application/

TCP/UDP segment format

Connectionless Demultiplexing

- When creating datagram to send into UDP socket, must specify
 - Destination IP address
 - Destination port #
- When host receives UDP segment:
 - checks destination port # in segment
 - directs UDP segment to socket with that port #

IP datagrams with same dest. port #, but different source IP addresses and/or source port numbers will be directed to same socket at dest

Connectionless Demultiplexing

Connection-Oriented Demultiplexing

- TCP socket identified by 4tuple:
 - Source IP address
 - Source port number
 - Dest IP address
 - Dest port number
- Demux: receiver uses all four values to direct segment to appropriate socket

- Server host may support many simultaneous TCP sockets:
 - Each socket identified by its own 4-tuple
- Web servers have different sockets for each connecting client

Connection-Oriented Demultiplexing

Summary

- Transport layer protocols:
 - Multiplexing, demultiplexing
- UDP: Demultiplexing using destination IP address and port number
- TCP: Demultiplexing using 4-tuple: source and destination IP addresses, and port numbers