Homework 6

(You must justify ALL your claims unless otherwise stated)

Problem 1

- (a) Find the greatest integer, call it m, that can't be represented as the sum of multiples of 4 and 5.
- (b) Prove that for all $n \ge m+1$, n can be represented as the sum of multiples of 4 and 5.

Problem 2

Prove the following statement using weak induction:

$$\forall n \ge 1, \ \frac{1 \cdot 3 \cdot 5 \dots (2n+1)}{2 \cdot 4 \cdot 6 \dots (2n+2)} \ge \frac{1}{2n+2}$$

Problem 3

Prove the following statement using weak induction:

$$\forall n \in \mathbb{N}, \ \sum_{k=1}^{n} k^3 = \left(\sum_{k=1}^{n} k\right)^2$$

[Hint: Do we have a formula for $\sum_{k=1}^{n} k$ that we can use? You don't need to re-prove statements that we previously proved in class]

Problem 4

Recall that the Fibonacci numbers are defined by:

$$f_0 = 0, f_1 = 1, f_2 = 1, f_n = f_{n-1} + f_{n-2}$$
 for $n \ge 3$

Show that: $f_1 + f_3 + f_5 + ... + f_{2n-1} = f_{2n}$ for all $n \ge 1$.

Problem 5

Use strong induction to prove that: $\forall n \in \mathbb{N}, 12 | (n^4 - n^2).$

[Hint: In your IS, write n+1 as m+6, where m=n-5. This means that the $n+1^{st}$ step uses the $n-5^{th}$ step. How many base cases will you need?]

Problem 6

Prove that:

$$\forall n \ge 1, \prod_{k=1}^{n} \left(1 - \frac{1}{2^k}\right) \ge \frac{1}{4} + \frac{1}{2^{n+1}}$$