Onsite Tutorial

Hibernia College Saturday 9th February 2013

Today's Class

Part 1 Graph Theory

Part 2 Digraphs and Relations

Part 3 Overview of previous material

Part 1: Graph Theory

Important Terminology

Vertex / Vertices Connected Graphs

Edges Degree

Incidence Parallel Edges

Adjacency Loops

Simple Graphs Isolated Vertex

Part 1: Graph Theory

Degree Sequence of a graph

Computing the number of edges of a graph

Part 1: Graph Theory

Special graphs

- n-regular graphs
- Complete graphs (K-graphs)

More terminology

- Cycles (also known as trails and tours)
- Paths

(Remark: Important definitions for more advanced algorithms, such as Travelling Salesman Problem and Chinese Postman Problem)

2003 Question 6

Question 6 Given the following definitions for simple, connected graphs:

- K_n is a graph on n vertices where each pair of vertices is connected by an edge;
- C_n is the graph with vertices v₁, v₂, v₃, ..., v_n and edges {v₁, v₂}, {v₂, v₃}, ...{v_n, v₁};
- W_n is the graph obtained from C_n by adding an extra vertex, v_{n+1}, and edges from this to each of the original vertices in C_n.
- (a) Draw K_4 , C_4 , and W_4 . [2 $\frac{1}{2}$]
- (b) Giving your answer in terms of n, write down an expression for the number of edges in K_n, C_n, and W_n.
 [2¹/₂]

2006 Question 6

Question 6

- (a) (i) A simple, connected graph has 7 vertices, all having the same degree d. State the possible values of d and for each value also give the number of edges in the corresponding graph.
 - (ii) Another simple, connected graph has 6 vertices, all having the same degree, n. Draw such a graph when n = 3 and state the other possible values of n.

[4]

Isomorphism

Graphs that appear different are isomorphic if, in fact, they have same mathematical structure.

Mathematical structure of a graph can be considered as

- 1) Adjacency Lists
- 2) Adjacency Matrices

2003 Question 5

Question 5 (a) Let G be a simple graph with vertex set $V(G) = \{v_1, v_2, v_3, v_4, v_5\}$ and adjacency lists as follows:

```
v_1: v_2 v_3 v_4

v_2: v_1 v_3 v_4 v_5

v_3: v_1 v_2 v_4

v_4: v_1 v_2 v_3.

v_5: v_2
```

- List the degree sequence of G.
- (ii) Draw the graph of G.
- (iii) Find two distinct paths of length 3, starting at v₃ and ending at v₄.
- (iv) Find a 4 cycle in G. [6]

Digraphs

Directed Graphs

- Adjacency Matrix and Adjacency Lists
- Indegree and Outdegree of a vertex

Relations

- Reflexive xRx?
- Symmetric if xRy then yRx?
- Transitive if xRy and yRz then yRz?

Consider the children of Emer and Finbar
 Ann, Barry, Ciara and Dermot

Suppose the relation we are interested is "is the brother of"

dRc: Dermot is the brother of Ciara

bRd: Barry is the brother of Dermot

(Ciara, Dermot, Emer and Finbar)

Is this relation

- Reflexive
- Symmetric
- Transitive

Suppose the relation is defined as

- 1) " is the sibling of "
- 2) "has the same parents as"

Transitive

- A, B and C live in a row of three houses
- A and B are next door neighbours (symm)
- B and C are next door neighbours (symm)

 Not transitive. A and C don't live beside each other.

Digraphs and Relations

 Equivalence Relations: A relation that is reflexive, symmetric and transitive.

Equivalence Classes

Question 8

- (a) Consider a set S = {0, 1, 2, 3, 4, 5}. R₁ is the relation such that xR₁y, if x − y = 2 and R₂ is the relation such that xR₂y if x − y is even, for all x and y ∈ S.
 - Illustrate the relations R₁ and R₂, using a separate digraph for each.
 - (ii) Complete the following table:

	Reflexive	Symmetric	Anti-symmetric	Transitive
R_1	×			
R_2		✓		

(iii) One of these relations is an equivalence relation. Say which relation this is and give the partition on S created by this relation. [6]

Cartesian Relations

 Every possible ordered pairing of elements of two sets