EECS 203: Discrete Mathematics Winter 2024 Discussion 5a Notes

1 Definitions

- Mathematical Induction:
- Induction Steps:
 - Base Case:
 - Inductive Hypothesis:
 - Inductive Step:

2 Exercises

1. Bandar's Blunder \star

Bandar writes a proof for the following statement:

$$n! > n^2$$
 for all $n \ge 4$.

His proof is incorrect, and it's your task to help him identify his mistake!

Proof:

Inductive step:

Let k be arbitrary. Assume $P(k): k! > k^2$. We need to show $P(k+1): (k+1)! > (k+1)^2$

$$(k+1)! = (k+1) \cdot k!$$

$$> (k+1) \cdot k^2$$

$$= (k+1)(k \cdot k)$$

$$\ge (k+1)(2 \cdot k)$$

$$= (k+1)(k+k)$$

$$\ge (k+1)(k+1)$$

$$= (k+1)^2$$
(By the Inductive Hypothesis)
(Because $k \ge 2$)
(Because $k \ge 1$)

This proves $(k+1)! > (k+1)^2$.

Base Case:

Prove
$$P(0): 0! > 0^2, 0! = 1 > 0^2 = 0$$

Thus by mathematical induction, $n! > n^2$ for all $n \ge 0$.

What is wrong with Bandar's proof?

2. Sum Mathematical Induction

Using induction, prove that for all integers $n \geq 1$:

$$\sum_{r=1}^{n} (r+1) \cdot 2^{r-1} = n \cdot 2^{n}$$

3. REVIEW: Satisfiability \star

Determine whether each of these compound propositions is satisfiable.

(a)
$$(p \vee \neg q) \wedge (\neg p \vee q) \wedge (\neg p \vee \neg q)$$

(b)
$$(p \to q) \land (p \to \neg q) \land (\neg p \to q) \land (\neg p \to \neg q)$$

4. REVIEW: Nested Quantifier Translations

Let P(x, y) be the statement "Student x has taken class y," where the domain for x consists of all students in your class and for y consists of all computer science courses at your school. Express each of these quantifications in English.

- a) $\exists x \exists y P(x, y)$
- b) $\exists x \forall y P(x, y)$
- c) $\forall x \exists y P(x, y)$
- d) $\exists y \forall x P(x, y)$
- e) $\forall y \exists x P(x, y)$
- f) $\forall x \forall y P(x, y)$

5. REVIEW: Direct Proof

Use a direct proof to show that the product of any two odd numbers must be odd.

6. REVIEW: Proof by Contradiction ★

Prove that for all integers n, if $n^2 + 2$ is even, then n is even using a proof by contradiction.

7. REVIEW: Proof by Contrapositive \star

Prove that for all integers x and y, if xy^2 is even, then x is even or y is even.

8. REVIEW: Proof by Cases/Disproofs *

- a) Prove or Disprove that for all integers $n, n^2 + n$ is even
- b) Prove or Disprove that for all integers a and b, $\frac{a}{b}$ is a rational number.

9. REVIEW: Sets *

Let our domain U be the set of the 26 lowercase letters in the English alphabet. Let $A = \{i, a, n\}, B = \{s, h, u, b\}, C = \{i, s, a, b, e, l\}$. Compute the following, where complements are taken within U. Write your answers in list notation.

Hint: For parts (b) and (c), simplifying the expressions using set identities may make the sets quicker to compute.

- (a) $(A \cup B) C$
- (b) $\overline{\overline{B \cup C} \cup A}$
- (c) $(A \times B) \cap (A \times C)$