Lecture 21 Comparing counts (Chi-square test)

Review: Key Points

Chapter 25: Paired Samples and Blocks

- Paired t-test: use pairwise differences, and then one-sample t-test on the pairwise differences
 - H_0 : $\mu_d=\Delta_0$ (usually, $\Delta_0=0$), $t_{n-1}=\frac{\bar{d}-\Delta_0}{SE(\bar{d})}$, df=n-1, $SE(\bar{d})=\frac{S_d}{\sqrt{n}}$
- Confidence interval: $\bar{d} \pm t_{n-1}^* \times SE(\bar{d})$
- Nonparametric sign test:
 - Record 0 for the pairs with negative differences, record 1 for the pairs with positive differences
 - and ignore the pairs with difference = 0
 - Then, test the associated proportion p = 0.5 using a z-test

Counts

Births	Sign
23	Aries
20	Taurus
18	Gemini
23	Cancer
20	Leo
19	Virgo
18	Libra
21	Scorpio
19	Sagittarius
22	Capricorn
24	Aquarius
29	Pisces

Birth totals by sign for 256 Fortune 400 executives.

Example: zodiac signs of 256 heads of the largest 400 companies

- If the zodiac signs cannot predict the future, we should expect 1/12 counts for each category.
- How closely do the observed numbers of births per sign fit this simple "null" model?
- "Goodness-of-fit" test

Goodness-of-fit tests

- Procedure:
 - First, observed value minus expected value for each cell: similar to residuals
 - The residual values can be positive and negative, so we need to square them.
 - We divide the residuals by the expected counts.
 - $\sum \frac{(Obs Exp)^2}{Exp}$
 - How well the theory (expected values) fits the data: goodness-of-fit
- It follows the chi-square (χ^2) distribution.

₁ ,2 .	- V	$(Obs - Exp)^2$
χ -	– Z	Ехр

- This family of models also depends on the degrees of freedom.
- In the chi-square test, df = n 1, where n is the number of categories, not the sample size.

Births	Sign
23	Aries
20	Taurus
18	Gemini
23	Cancer
20	Leo
19	Virgo
18	Libra
21	Scorpio
19	Sagittarius
22	Capricorn
24	Aquarius
29	Pisces

Birth totals by sign for 256 Fortune 400 executives.

Assumptions and Conditions

- Counted Data Condition
 - The data must be **counts** for the categories of a categorical variable.
- Independence Assumption
 - The counts in the cells should be independent of each other.
- Sample Size Assumption
 - Expected cell frequency condition:
 - The expected counts for each cell should be at least 5.

Chi-Square P-values

- The chi-square should be used only for testing hypotheses, not for constructing confidence intervals.
- We can do only one-sided test (by squaring the differences, we made all the deviations positive).
- There's no direction to the rejection of the null model. All we know is that it doesn't fit.

• The mode is at $\chi^2 = df - 2$, and its mean is at df.

The example of zodiac sign

Births	Sign
23	Aries
20	Taurus
18	Gemini
23	Cancer
20	Leo
19	Virgo
18	Libra
21	Scorpio
19	Sagittarius
22	Capricorn
24	Aquarius
29	Pisces

- H_O: Births are uniformly distributed over zodiac signs.²
- H_A : Births are not uniformly distributed over zodiac signs.

Birth totals by sign for 256 Fortune 400 executives.

The conditions are satisfied, so I'll use a χ^2 model with 12-1=11 degrees of freedom and do a **chi-square goodness-of-fit test.**

The bar chart shows some variation from sign to sign, and Pisces is the most frequent. But it is hard to tell whether the variation is more than I'd expect from random variation.

- Counted Data Condition: I have counts of the number of executives in 12 categories.
- Independence Assumption: The birth dates of executives should be independent of each other.
- ▼ Randomization Condition: This is a convenience sample of executives, but there's no reason to suspect bias.
- Expected Cell Frequency Condition: The null hypothesis expects that 1/12 of the 256 births, or 21.333, should occur in each sign. These expected values are all at least 5, so the condition is satisfied.

The example of zodiac sign

Births	Sign
23	Aries
20	Taurus
18	Gemini
23	Cancer
20	Leo
19	Virgo
18	Libra
21	Scorpio
19	Sagittarius
22	Capricorn
24	Aquarius
29	Pisces

- H_O : Births are uniformly distributed over zodiac signs.²
- H_A : Births are not uniformly distributed over zodiac signs.

Birth totals by sign for 256 Fortune 400 executives.

The conditions are satisfied, so I'll use a χ^2 model with 12-1=11 degrees of freedom and do a **chi-square goodness-of-fit test.**

The expected value for each zodiac sign is 21.333.

$$\chi^{2} = \sum \frac{(Obs - Exp)^{2}}{Exp} = \frac{(23 - 21.333)^{2}}{21.333} + \frac{(20 - 21.333)^{2}}{21.333} + \dots$$

= 5.094 for all 12 signs.

P-value =
$$P(\chi^2 > 5.094) = 0.926$$

Trouble with Goodness-of-fit tests

- Goodness-of-fit: How well does the theory fit the data?
- The only null hypothesis available (H₀: the theory is true)
 - We can only reject or fail to reject the null hypothesis.
 - We can never confirm the theory is true.
- It is also difficult to know what is the alternative.
 - The theory can be wrong in many ways.
- Thus, there is no way to prove that a favored model is true, with goodness-of-fit tests.
 - Alternative: model comparison

Chi-square test of Homogeneity

- Testing whether the proportions are same across multiple groups
- two-way table

Post-graduation activities of the class of 2006 for several colleges of a large university

	Agriculture	Arts & Sciences	Engineering	Social Science	Total
Employed	379	305	243	125	1052
Grad School	186	238	202	96	722
Other	104	123	37	58	322
Total	669	666	482	279	2096

	Agriculture	Arts & Sciences	Engineering	Social Science	Total
Employed Grad School Other	56.7% 27.8 15.5	45.8% 35.7 18.5	50.4% 41.9 7.7	44.8% 34.4 20.8	50.2 34.4 15.4
Total	100	100	100	100	100

Expected values for the '06 graduates

	Agriculture	Arts & Sciences	Engineering	Social Science	Total
Employed	335.777	334.271	241.920	140.032	1052
Grad School	230.448	229.414	166.032	96.106	722
Other	102.776	102.315	74.048	42.862	322
Total	669	666	482	279	2096

Chi-square test of Homogeneity

•
$$\chi^2 = \sum \frac{(Obs - Exp)^2}{Exp}$$

- The example of the agriculture school $\frac{(Obs Exp)^2}{Exp} = \frac{(379 335.777)^2}{335.777} = 5.564$
- And summing these across all the schools,

$$\chi^2 = \sum \frac{(Obs - Exp)^2}{Exp} = 54.51$$

- Degrees of freedom:
 - (R-1)(C-1), where R: the number of rows, C: the number of columns

Examining the Residuals

- Which cell? How far from the expected values?
- Standardized residual:

•
$$c = \frac{(Obs-Exp)}{\sqrt{Exp}}$$

- square roots of the components we calculated for each cell
- Their sign indicates whether we observed more or fewer cases than we expected.

	Ag	A&S	Eng	Soc Sci
Employed	2.359	-1.601	0.069	-1.270 -0.011 2.312
Grad School	-2.928	0.567	2.791	
Other	0.121	2.045	-4.305	

Chi-square test of independence

Race effects on police vehicle search

		Race				
		Black	White	Other	Total	
Search	No Yes	787 813	594 293	27 19	1408 1125	
	Total	1600	887	46	2533	

- Are police search and race independent? or have relationship?
- Contingency table
- From L09:
 - "Independence: the occurrence of A does not change the probability of B, $P(\mathbf{B}|\mathbf{A}) = P(\mathbf{B})$ "
- The calculation is identical to the homogeneity test.
- What's different?
 - Independence test: Two categorical variables measured on a single population
 - Homogeneity test: a single categorical variable independently measured on two or more populations
 - Independence test's question: "Are the variables independent?"
 - Homogeneity test: "Are the groups homogeneous?"

Review: Key Points

Chapter 26: Comparing Counts

- Goodness-of-fit tests: $\chi^2 = \sum \frac{(Obs Exp)^2}{Exp}$
- Assumption and conditions:
 - counted data condition, independence assumption, expected cell frequency condition
- Chi-square distribution: only positive, right skewed, mode: df-2, mean: df
- Chi-square test for a one-way count table
- Chi-square test for a two-way table: Chi-square test of homogeneity
- Chi-square test for a contingency table: Chi-square test of independence

