

ESC201: Introduction to Electronics Module 6: Digital Circuits

Dr. Shubham Sahay,
Associate Professor,
Department of Electrical Engineering,
IIT Kanpur

Counters

- Counters are sequential circuits.
- They traverse a set of states in a sequence.
- They keep repeating the cycle of states.
- There need be no input to counters.
- Output may be the state value itself.

Sequential Binary Counter

In state S₀, the output ABC is 000, in S₁ 001 and so on

There are 8 states so 3 Registers are at least required. Let us choose T FF.

Design with T-Register

PS (t)	NS (t+1)	
АВС	АВС	$T_A \; T_B \; T_C$
0 0 0	0 0 1	0 0 1
0 0 1	0 1 0	0 1 1
0 1 0	0 1 1	0 0 1
0 1 1	1 0 0	1 1 1
1 0 0	1 0 1	0 0 1
1 0 1	1 1 0	0 1 1
1 1 0	1 1 1	0 0 1
1 1 1	0 0 0	1 1 1

Binary Counter

$$T_A = B.C \; ; \; T_B = C \; ; \; T_C = 1$$

Binary Up Counter – Another Version

Counter with Enable

Counter is in Hold state.

When Enable = 1, the counter begins the count.

Counter with Asynchronous Reset

When Enable = 1, the counter begins the count.

4 Bit Up Counter

4-bit Down Counter

Some Other Types of Counters

Binary down counter

Decade counter

Modulo-10 Counter

Modulo-5 Counter

BCD Counter

Binary Coded Decimal (BCD): each decimal digit is coded as a 4-bit binary number

BCD counter from 0 to 99

Counter with Unused States!

Arbitrary sequence, 6 states

PS ABC	NS A B C	J _A K _A	J _B K _B	J _c K _c
0 0 0	0 0 1	0 X	0 X	1 X
0 0 1	0 1 0	0 X	1 X	X 1
0 1 0	1 0 0	1 X	X 1	0 X
1 0 0	1 0 1	X 0	0 X	1 X
1 0 1	1 1 0	X 0	1 X	X 1
1 1 0	0 0 0	X 1	X 1	0 X

There are two unused states 011 and 111. one approach to handle this situation is that, while evaluating expressions for J K, we use don't care conditions corresponding to these unused states

Continued...

PS A B C	NS A B C	J _A K _A	J _B K _B	J _C K _C
0 0 0	0 0 1	(0\ X	0 X	1 X
0 0 1	0 1 0	$\int O \setminus X$	1 X	X 1
0 1 0	1 0 0	1 X	X 1	0 X
1 0 0	1 0 1	X 0	0 X	1 X
1 0 1	1 1 0	X 0	1 X	X 1
1 1 0	0 0 0	X 1	X 1	0 X

$$J_{\Delta} = B$$

Continued...

PS	NS					
<u> </u>	АВС	$J_A K_A$	J_{B}	K _B	J _C	K _C
0 0 0	0 0 1	0 X	0	X	1	Χ
0 0 1	0 1 0	0 X	1	Χ	Χ	1
0 1 0	1 0 0	1 X	Χ	1	0	Χ
1 0 0	1 0 1	X 0	0	Χ	1	Χ
1 0 1	1 1 0	X 0	1	Χ	Χ	1
1 1 0	0 0 0	X 1	Χ	1	0	Χ
	$J_A=B$	$K_A = B$	•			
	$J_B = C$	$K_B = 1$				
	$J_C = \overline{B}$	$K_C = 1$				

After synthesizing the circuit, one needs to check that if by chance the counter goes into one of the unused states, after one or more clock cycles, it enters a used state and then remains among the used states