模型比較報告書(MASTER-Transformer v.s. Flash Attention Version)

I. Dataset

原始論文是用QLIB Alpha 158因子庫去當作因子, 使用的是滬深300以及滬深800的股票,參照的市場資訊 則為,CSI300指數、CSI500指數、CSI800指數。

這裡為了因應台股市場,替換成以下資料集:

Stock Universe: 上市全體股票

時間: 2020-10-01~2025-04-09

個股資料:每一支股票每一日有186個因子資料

市場資料:櫃買報酬指數價格以及成交量(成交量適用

OTC所有股票的交易金額相加)

II. Data Preprocessing(市場向量)

按照論文所需,將櫃買報酬指數的價格,生成出市 場指數價格資訊: mean(過去d日價格)以及std(過去d日價 格),d=5,10,20,30,60。

再將櫃買報酬指數的成交量,生成出市場指數成交量資訊:mean(過去d日成交量)以及std(過去d日成交量),d=5, 10, 20, 30, 60。

最後再補上當前市場指數的價格,所以有21個向量。 之後做標準化,價格類因子獨自做,成交量因子獨自做 標準化。才不會造成尺度不一。

III. Data Preprocessing(個股資訊)

先對因子以及報酬率做標準化,對因子標準化是因為每日因子會有極端值,所以必須去除,以免造成模型學習時的扭曲,對報酬率標準化是因為,原始論文就是預測標準化後報酬率(對於每日橫截面),以此來排名,遠比使用預測絕對報酬率還要好,因為市場的瞬息萬變,現在市場資訊跟過去的市場資訊相比,資料分布會不同,所以不能直接預測絕對報酬。

然而股票橫截面之間的好壞排名,相對來說會比股票絕對報酬率還要穩定,基本面好相對抗跌,因為(1)現金流穩定、財務健康(2)機構投資人偏好(3)能夠創新帶來利多消息等等。

因子以及報酬率有缺值(短暫下市或是當日沒有交易),因此標準化時是先跳過NaN,先使用Winsorization方法去除極端值:

令橫截面資料為:

$$x = [x_1, x_2, \dots, x_n] \in \mathbb{R}^n$$

1. 定義中位數 (median):

$$\tilde{x} = \text{median}(x_i \mid x_i \text{ 不為 NaN})$$

2. 計算 MAD (Median Absolute Deviation) :

$$MAD = median(|x_i - \tilde{x}| | x_i$$
 不為 $NaN)$

3. 上下界 (以 n 倍 MAD 為距離):

$$\begin{aligned} \text{Upper Bound} &= \tilde{x} + n \cdot 1.4826 \cdot \text{MAD} \\ \text{Lower Bound} &= \tilde{x} - n \cdot 1.4826 \cdot \text{MAD} \end{aligned}$$

常數 1.4826 是將 MAD 調整為與標準差相容的尺度,在常態分布下使其等價。

4. Winsorization 去極值處理:

$$x_i' = \begin{cases} \text{Upper Bound}, & \text{if } x_i > \text{Upper Bound} \\ \text{Lower Bound}, & \text{if } x_i < \text{Lower Bound} \\ x_i, & \text{otherwise} \end{cases}$$

避免過於極端的outlier扭曲資料分布,造成計算zscore時偏離,然後再對winsorize後的無NaN資料做Z標準化。

因子以及報酬率有缺值,因此需要補缺值,使用的方法是MICE,全名是「多變量鏈式迴歸插補法」 (Multivariate Imputation by Chained Equations),使用其他無缺值得資料去預測填補缺失的值。

通常初始值是設定為平均,然後這裡採用Random Forest Regressor,去填補缺值,為了避免未來資訊洩漏,當日缺值只使用當日資料填補。

IV. MASTER-Transformer架構

MASTER-Transformer是來自於這篇論文:

MASTER: Market-Guided Stock Transformer for Stock Price Forecasting

Tong Li^{1*}, Zhaoyang Liu², Yanyan Shen^{1†}, Xue Wang², Haokun Chen², Sen Huang²

¹ Shanghai Jiao Tong University, ² Alibaba Group
{2017lt, shenyy}@sjtu.edu.en, {jingmu.lzy, xue.w, hankel.chk, huangsen.huang}@alibaba-inc.com

結合了Transformer的優點以及特殊的設計,可以抽取股票內特徵以及跨股票的動態行為。

MarketGuidedGating:

從市場資訊抽取特徵,然後對因子做Hadamard Product。

IntraStockEncoder:

使用Attention機制各自對股票內的時間序列抽取特徵。

InterStockAggregator:

抽取完特徵的新的時間序列,針對每一個時間點進行跨 股票的抽取特徵,同樣是用Attention。

TemporalAggregator:將經過InterStockAggregator的最後時間序列,壓縮時間維度,抽取最後特徵並且預測。

V. 預測

預測時是拿過去8天的資訊去預測T+1買入T+5賣出的標準化報酬率。

VI. 節省記憶體

由於MASTER-Transformer的架構、參數十分龐大,因此可以用flash attention代替原有的Attention架構,一次 餵進去Attention的Q, K, V,達到節省記憶體以及運算量的效果。使用flash attention需要用混合精度float32和 float16交替訓練,因此接下來會比較兩種方法的效果。

VII. 定義名詞

刪減版模型:使用flash attention代替原本attention,並且使用混合精度float32和float16交替。

未刪減模型:原始attention,沒有節省記憶體,採用小batch訓練。

兩者的所有的參數全部一樣,並且採用相同的交易 策略,方便比較兩個模型(包含模型參數、optimizer參數、config),並且使用AdamW代替SGD,因為transformer架 構訓練時較不穩定,因此不用SGD。

這裡使用alphalens的方式是,把模型在T0預測T1買入T4賣出的標準化報酬率,當作是因子,拿來與實際T1買入T4賣出的真實報酬率去做分析,劃分成10個Quantile。

VIII. IC值比較

從Fig. 1. 可以看出,因子預測力,原始attention表現 比flash attention好,兩者標準差幾乎相同,Risk Adjusted IC也是原始attention表現較好。p-value表示,兩個模型的 因子預測力,不是偶然的,而是真正有效。

	Metric	刪減版模型	未刪減模型
0	IC Mean	0.047	0.066
1	IC Std.	0.104	0.110
2	Risk Adjusted IC	0.457	0.598
3	t-stat(IC)	4.749	6.242
4	p-value(IC)	0.000	0.000
5	IC skew	0.131	-0.064
6	IC kurtosis	-0.227	-0.238

Fig. 1. IC值表格比較圖

IX. Alpha以及Beta比較

從Fig. 2.來看,對於alpha表現,原始attention表現 比flash attention好,兩者的beta則是差不多,都與市場整 體輕微負相關,再區分Quantile上,不論是Top Quantile Return還是Bottom Quantile Return,都是原始attention表現 較好,最後的Spread(bps)也必然是原始attention表現出色。

	Metric	刪減版模型	未刪減模型
0	Ann. alpha	0.036	0.078
1	beta	-0.137	-0.132
2	Top Quantile Return (bps)	10.818	27.984
3	Bottom Quantile Return (bps)	-27.330	-39.621
4	Spread (bps)	38.148	67.605

Fig. 2. Alpha和Beta以及Quantile比較圖

X. Turnover比較

從Fig. 3.來看,Q1~Q10的Turnover都是原始attention 較低,但是flash attention的Mean Factor Rank Autocorrelation卻比原始attention好。

指標	刪減版模型	未刪減模型
Quantile 1.0 Mean Turnover	0.432	0.341
Quantile 2.0 Mean Turnover	0.712	0.629
Quantile 3.0 Mean Turnover	0.779	0.713
Quantile 4.0 Mean Turnover	0.805	0.763
Quantile 5.0 Mean Turnover	0.812	0.779
Quantile 6.0 Mean Turnover	0.810	0.775
Quantile 7.0 Mean Turnover	0.797	0.742
Quantile 8.0 Mean Turnover	0.770	0.698
Quantile 9.0 Mean Turnover	0.699	0.628
Quantile 10.0 Mean Turnover	0.420	0.403
Mean Factor Rank Autocorrelation	0.791	0.743

Fig. 3. Turnover比較

XI. 交易策略報酬結果(單利計算)

這裡都是採用最簡單的交易策略,T0決定買入的股票,持有期間 $T1\sim T4$,T4賣出獲利。

從Fig. 4. 和 Fig. 5.來看,原本Attention模型比起Flash Attention模型,整體報酬以及報酬穩定度來說,都是比較好的,而且抗跌的能力也較佳。

Fig. 4. Flash Attention模型

Fig. 5. 原本Attention模型

XII. 比較報酬Quantile

以下的Quantile是計算根據算出的分數排名,劃分成Q1~Q10去買入,當日報酬是採計T1買入T4賣出的報酬率(相當於時間是5倍速流逝,這種方式只是單純看預測五日後的預測是否準確,以及模型是否能區分好壞股票,所以不是實際交易的報酬),而且這裡採計純粹以採計T1買入T4賣出的報酬率相加,所以會出現負值。

從Fig. 6. 和 Fig. 7.可以看出,Flash Attention模型的Q1~Q10的Quantile曲線中途時常混雜在一起,然而原本Attention模型Q1~Q10的Quantile曲線分得很開,代表原本Attention模型技能區分好壞股票。

Fig. 6. Flash Attention模型 (Cumulative Quantile)

Fig. 7. 原本Attention模型 (Cumulative Quantile)

XIII. 訓練難易度

不論是用MSE還是MAE,Flash Attention模型需要額外去調參數,將爆炸的梯度補救回來,而且方式會是case by case,每訓練一次,必須再調整一次,而原本Attention模型則可以一次訓練到底。並且訓練過程中,收斂速度較快較穩定,也較能重現結果,Flash Attention模型出來的結果時常不能複現。

XIV. 數值收斂

模型預測的是標準化後報酬率,因此valid loss在不同的loss function底下有不同的標準。

MSE: valid loss < 1 才算是好模型

因為標準化後報酬率滿足mean=0, std=1,最沒有預測力的模型,什麼都不做,只輸出mean,意思是指輸出0的話。以常態分佈來說:

$$\mu=0,\quad \sigma=1$$
 $Z\sim \mathcal{N}(\mu,\sigma^2)$ $\mathbb{E}[(Z-\mu)^2]=\sigma^2=1$

所以在MSE底下, valid loss < 1 才算是好。

MAE: valid loss < 0.797 才算是好模型

以常態分佈來說:

$$egin{aligned} \mu &= 0, \quad \sigma = 1 \ &Z \sim \mathcal{N}(\mu, \sigma^2) = \mathcal{N}(0, 1) \ &\mathbb{E}[|Z - \mu|] = \sigma \cdot \sqrt{rac{2}{\pi}} pprox 0.797 \end{aligned}$$

所以在MAE底下, valid loss < 0.797 才算是好。

然而,flash attention在訓練時,MSE常常在1.4以上,調很久參數才有辦法到1.02,但是原始attention非常容易就可以到0.9。

對於MAE, flash attention常常在0.9以上,而原始 attention則可以到0.67以下,比0.797這個門檻還小。

XV. 結果

使用原始attention比flash attention效果還要好,而且 還更好訓練,並且收斂穩定。