Color

- Trichromacy
- Spectral matching curves
- CIE XYZ color system
- xy-chromaticity diagram
- Color gamut
- Color temperature
- Color balancing algorithms

Visible Range of the Electromagnetic Spectrum

Source: Gonzalez, Woods, Figs. 6.1, 6.2

Absorption of Light in the Cones of the Human Retina

Source: Gonzalez, Woods, Fig. 6.3

Three-Receptor Model of Color Perception

[T. Young, 1802], [J.C. Maxwell, 1890]

- Different spectra can map into the same tristimulus values and hence look identical ("metamers")
- Three numbers suffice to represent any color

Color Matching

Suppose 3 primary light sources with spectra $P_k(\lambda)$, k=1,2,3

How to choose β_k , k=1,2,3, such that desired tristimulus

$$\alpha_i = \int S_i(\lambda) \left[\beta_1 P_1(\lambda) + \beta_2 P_2(\lambda) + \beta_3 P_3(\lambda) \right] d\lambda$$
$$= \beta_1 K_{i,1} + \beta_2 K_{i,2} + \beta_3 K_{i,3} \quad \text{with} \quad K_{i,j} = \int S_i(\lambda) P_j(\lambda) d\lambda$$

Color matching is linear ("Grassman's Laws")

Additive vs. Subtractive Color Mixing

Spectral Matching Curves

- Experiment:
 Match monochromatic light with 3 monochromatic
 - primaries
- "Negative intensity":Color is added to test color
- CIE (Commission Internationale de L'Eclairage), 1931:
 Spectral RGB primaries (scaled such that R_λ=G_λ=B_λ matches spectrally flat white)

Luminous Efficiency Curve

Experiment:

Match the brightness of a monochromatic light with a white reference light

Links photometric and radiometric quantities

CIE 1931 XYZ Color System

Properties:

- All positive spectral matching curves
- Y corresponds to luminance
- Equal energy white: X=Y=Z
- Virtual primaries

Chromaticity Diagram

$$x = \frac{X}{X + Y + Z}$$

$$y = \frac{Y}{X + Y + Z}$$

$$z = \frac{Z}{X + Y + Z}$$

$$X+Y+Z=1$$

Source: Gonzalez, Woods, Fig. 6.5

Inaccuracy for Color Matches

Just noticeable chromaticity differences (10x enlarged)

[MacAdam, 1942]

Color Gamut

NTSC phosphors:

R: x=0.67, y=0.33

G: x=0.21, y=0.71

B: x=0.14, y=0.08

Reference white: x=0.31, y=0.32

Illuminant C

White at Different Color Temperatures

Blackbody Radiation

Color Balancing

- Effect of different illuminants can be cancelled only in the spectral domain (impractical)
- Color balancing in 3-d color space is a practical approximation
- Color constancy in human visual system: Gain control in LMS cone space [von Kries, 1902]
- Von Kries hypothesis applied to image acquisition devices (cameras, scanners)

- Which color space is best?
- How to determine k_L, k_M, k_S automatically?

Color Balancing

Von Kries hypothesis

$$\begin{bmatrix} L' \\ M' \\ S' \end{bmatrix} = \begin{bmatrix} k_L & 0 & 0 \\ 0 & k_M & 0 \\ 0 & 0 & k_S \end{bmatrix} \begin{bmatrix} L \\ M \\ S \end{bmatrix}$$

 If illumination (or a patch of white in the scene) is known, calculate

$$k_L = \frac{L_{desired}}{L_{actual}}$$
 $k_M = \frac{M_{desired}}{M_{actual}}$ $k_S = \frac{S_{desired}}{S_{actual}}$

Color Balancing with Unknown Illumination

Gray-world

$$\sum_{image} k_L L = \sum_{image} k_M M = \sum_{image} k_S S$$

- Apply gray-world algorithm to a subset of pixels
 - Exclude saturated colors
 - Bright pixels only
- Scale-by-max algorithm
 - Determine max(L), max(M), max(S) separately in each channel
 - Scale each channel by its max
 - Sensitive to saturation

Color Balancing Example

original

scale-by-max color balancing

Color Balancing Example

original

scale-by-max color balancing

