Faculté des Sciences Dept. Maths Prof. Mohammed Benalili m_benalili@yahoo.fr

Chapitre4: Champs de vecteurs sur les sous-variétés de \mathbb{R}^n

Définition: Soit $M \subset R^n$ une sous-variété de R^n de dimension k et de classe C^p $(p \geq 2)$. Un champ de vecteurs de classe C^r $(r \leq p-1)$ sur M est une application X de classe C^r qui à chaque point $x \in M$ associe un vecteur $X(x) \in T_x M$. Cela revient à dire que pour toute carte $\varphi : U \to R^k$, le champ de vecteurs $(\varphi_*X)(y) = D\varphi(\varphi^{-1}(y)).X\varphi^{-1}(y) : \varphi(U) \to R^k$ est de classe C^r .

Exemple: Soit $c:(-\epsilon,\epsilon)\to M\subset R^n$ une courbe de classe C^2 sur M, la dériveé c'(t) vue comme élément de R^n est un vecteur de $T_{c(t)}M$ obtenu comme $c'(t)=dc_t.1$.

Soit X un champ de vecteurs sur M et $\psi: M \to N$ un difféomorphisme on note par ψ_*X le champ de vecteurs sur N tel défini par

$$\psi_* X(y) = D\psi(\psi^{-1}(y)).X(\psi^{-1}(y)).$$

La relation

$$Y = \psi_* X$$

signifie que

$$Y(\psi(x)) = D\psi(x)X(x).$$

Proposition: Si $Y = \psi_* X$ et si c'(t) = X(c(t)) alors $\gamma'(t) = Y(\gamma(t))$ avec $\gamma(t) = \psi oc(t)$.

En effet: $\gamma'(t) = (\psi oc)'(t) = D\psi(c(t)c'(t)) = D\psi(c(t)X(c(t))) = Y(\psi(c(t))) = Y(\gamma(t))$.

Espace tangent et crochet de Lie

Deux courbes $\gamma_1, \gamma_2 : I_{\epsilon} = (-\epsilon, \epsilon) \to M$ telles que $\gamma_1(0) = \gamma_2(0) = x$ sont dites tangentes en 0 si et seulement si $(\varphi \circ \gamma_1)'(0) = (\varphi \circ \gamma_2)'(0)$ pour toute carte φ de M en x.

Exercice.

Montrer que la relation tangentielle \sim est une relation d'équivalence sur l'ensemble $C^1_x(I_{\epsilon},M)$

des courbes de classe C^1 sur M qui satisfont à $\gamma(0) = x$.

Définissons l'espace tangent comme l'ensemble des classes d'equivalences

$$T_x M = C_x^1(I_{\epsilon}, M).$$

Pour toute carte φ en x l'application $\gamma \to (\varphi o \gamma)'(0)$ est une bijection entre $T_x M$ et R^k $(k = \dim(M))$. Alors $\gamma \to (\varphi o \gamma)'(0)$ induit sur $T_x M$ une structure d'espace vectoriel.

Toute application $f: M \to N$ différentiable définie au voisinage de x définit une application dérivée $d_x f: T_x M \to T_{f(x)} N$, qui à $v \in T_x M$ associe le vecteur défini par la courbe foc où c est une courbe sur M telle que c(0) = x et c'(0) = v.

Exercice

Montrer que le vecteur défini par foc ne dépend que de la classe de la courbe c.

Dérivation

Notons par $C^{\infty}(M,R)$ l'ensemble des fonctions de classe C^{∞} de M dans R. On appelle dérivation en x l'application linéaire

$$L: C^{\infty}(M,R) \to R$$

vérifiant la règle de Leibnitz (règle des dérivations)

$$L(fq) = q(x)L(f) + f(x)L(q).$$

Proposition

Si L est une dérivation en x sur M et $f: M \to N$ est une application de classe C^{∞} définie au voisinage de x, alors l'application

$$\psi_*L: f \to L(\psi \circ f)$$

est une dérivation ponctuelle en f(x).

A tout vecteur $v \in T_xM$ on associe la dérivation ponctuelle

$$L_v(f) = d_x f.v = (f \circ \gamma)'(0)$$

où γ x une courbe représentant le vecteur v

Notons l'ensemble des dérivations ponctuelles en x par D_x .

Proposition D_x est un espace vectoriel de dimension $k = \dim(M)$ et l'application $v \to L_v$ est un isomorphisme de T_xM dans D_x .

Crochet de Lie

Soient X et Y deux champs de vecteurs sur M. On note par ϕ_X et ϕ_Y les solutions des équations $\phi_X'(t) = X(\phi_X(t))$ et $\phi_Y'(t) = Y(\phi_Y(t))$ et $\phi_X(0) = \phi_y(0) = 0.$

Pour chaque $x \in M$, on pose $\varphi_x(s,t) = \phi_Y^s o \phi_X^t o \phi_Y^{-s} o \phi_X^{-t}(x)$. Nous avons $\varphi_x(0,t) = \varphi_x(s,0) = x$ et donc $\frac{\partial \varphi_x}{\partial t}(0) = \frac{\partial \varphi_x}{\partial s}(0) = 0$ dans $T_x M$. La dérivée seconde $\frac{\partial^2 \varphi_x}{\partial s \partial t}(0)$ est bien définie de $R^2 \to T_x M$ comme application bilinéaire telle que $\frac{\partial^2 \varphi_x}{\partial s \partial t}(0) \cdot (h,k) = hk \frac{\partial^2 \varphi_x}{\partial s \partial t}(0)$ avec $\frac{\partial^2 \varphi_x}{\partial s \partial t}(0) \in T_x M$ T_xM .

On pose par définition

$$[X,Y](x) = \frac{\partial^2 \varphi_x}{\partial s \partial t}(0).$$

[X,Y] est un champ de vecteurs de même classe que les champs X et Y appelé le crochet de Lie de X et Y.

Si on considère la courbe $c_x(t) = \varphi_x(t,t)$ on obtient

$$[X,Y](x) = \frac{1}{2}c_x''(0).$$

Proposition

 $\psi: M \to N$ est une application différentiable. Si $\psi_* X$ et $\psi_* Y$ existent et sont différentiables alors

$$\psi_*\left[X,Y\right] = \left[\psi_*X,\psi_*Y\right].$$

Expression du crochet de Lie

On obtient une autre expression du crochet de Lie en écrivant

$$\phi_Y^s o \phi_X^t o \phi_Y^{-s} = \phi_{\left(\phi_Y^s\right)_* X}^t$$

et alors

$$\varphi_x\left(s,t\right) = \phi_{\left(\phi_Y^s\right)_*X}^t o \phi_X^{-t}$$

et

$$\frac{\partial \varphi_x(s,0)}{\partial t} = (\phi_Y^s)_* X(x) - X(x)$$

ce qui donne

Proposition

$$[X,Y](x) = \frac{d}{ds} |_{s=0} (\phi_Y^s)_* X(x)$$

Soient X et Y deux champs de vecteurs sur \mathbb{R}^n alors

$$(\phi_Y^s)_* X(x) = (d_x \phi_Y^s . X) o \phi_Y^{-s}(x)$$

et en dérivant par rapport à s en 0, on obtient

$$[X,Y](x) = d_x Y.X(x) - d_x X.Y(x)$$
$$= \sum_{i=1}^{n} \sum_{i=1}^{n} \left(X^i \frac{\partial Y^j}{\partial x_i} - Y^i \frac{\partial X^j}{\partial x_i} \right) \frac{\partial}{\partial x_i}.$$

Proposition. L'application qui aux champs de vecteurs X et Y associe leur crochet de Lie [X,Y]

est bilinéaire et antisymétrique :

$$[X, Y] = -[Y, X]$$

Elle vérifie de plus l'identité de Jacobi:

$$[[X,Y],Z] + [[Y,Z],X] + [[Z,X],Y] = 0$$

L'antisymétrie implique notamment que

$$[X,Y](x) = -\frac{d}{ds}\Big|_{s=0} (\phi_X^s)_* Y = \frac{d}{ds}\Big|_{s=0} (\phi_X^{-s})_* Y = L_X Y.$$

 ${\cal L}_X Y$ est appelé dérivée de Lie de Y par rapport à X. L'identité de Jacobi est

équivalente à

$$[[X,Y],Z] = [X,[Y,Z]] - [Y,[X,Z]]$$

elle s'interpréte comme la relation

$$L_{[X,Y]} = L_X o L_Y - L_Y o L_X.$$