

CLAIM AMENDMENTS

1-76. (canceled)

77. (currently amended): The membrane of claim 75 A proton-conducting membrane designed to serve as an electrolyte in a fuel cell, which membrane consists essentially of a single metal or metal hydride support, wherein one or both faces of said support is coated with an electronically-insulating proton-conducting coating, which coating consists of an inorganic material that contains no liquid phase, said coating having a thickness such that the area-specific resistance for protons is in the range of 0.01-100 $\Omega \cdot \text{cm}^2$ at at least one temperature between 220°C and 550°C.

wherein the metal or metal in the metal hydride is selected from the group consisting of Pd, PdAg, PdCu, Ti, LaNi₅, TiFe and CrV₂, V/Ni/Ti, V/Ni and V/Ti.

78. (currently amended): The membrane of claim 75 A proton-conducting membrane designed to serve as an electrolyte in a fuel cell, which membrane consists essentially of a single metal or metal hydride support, wherein one or both faces of said support is coated with an electronically-insulating proton-conducting coating, which coating consists of an inorganic material that contains no liquid phase, said coating having a thickness such that the area-specific resistance for protons is in the range of 0.01-100 $\Omega \cdot \text{cm}^2$ at at least one temperature between 220°C and 550°C.

wherein the electronically-insulating proton conductor coating is selected from the group consisting of:

mesoporous zirconium phosphate pyrophosphate, Zr(P₂O₇)_{0.81};

Ba₃Ca_{1.18}Nb_{1.82}O_{8.73}·H₂O;

Cs₅H₃(SO₄)₄·0.5H₂O;

a hydrate of SnCl₂;

silver iodide tetratungstate Ag₂₆I₁₈W₄O₁₆;

KH₂PO₄;

tetraammonium dihydrogen triselenate, (NH₄)₄H₂(SeO₄)₃;

CsDSO₄;

CsH₂PO₄;

Sr[Zr_{0.9}Y_{0.1}]O_{3-δ};

a silica-polyphosphate composite containing ammonium ions;

La_{0.9}Sr_{0.1}Sc_{0.9}Mg_{0.1}O₃; and

BaCe_{0.9-x}Zr_xM_{0.1}O_{3-δ} where M is Gd or Nd and x = 0 to 0.4.

79. (currently amended): The membrane of claim 75 A proton-conducting membrane designed to serve as an electrolyte in a fuel cell, which membrane consists essentially of

a single metal or metal hydride support, wherein

one or both faces of said support is coated with an electronically-insulating proton-conducting coating, which coating consists of an inorganic material that contains no liquid phase, said coating having a thickness such that the area-specific resistance for protons is in the range of 0.01-100 Ω.cm² at at least one temperature between 220°C and 550°C,

wherein the electronically-insulating proton-conducting coating consists of

Ba₃Ca_{1.18}Nb_{1.82}O_{8.73}·H₂O;

CsH₂PO₄;

Sr[Zr_{0.9}Y_{0.1}]O_{3-δ};

polyphosphate composite containing 19.96 wt% NH₄⁺, 29.3 wt% P, 1.51 wt% Si;

La_{0.9}Sr_{0.1}Sc_{0.9}Mg_{0.1}O₃; or

BaCe_{0.9-x}Zr_xM_{0.1}O_{3-δ} where M is Gd or Nd and x = 0 to 0.4.

80-81. (canceled)

82. (currently amended): The membrane of claim 75 A proton-conducting membrane designed to serve as an electrolyte in a fuel cell, which membrane consists essentially of

a single metal or metal hydride support, wherein

one or both faces of said support is coated with an electronically-insulating proton-conducting coating, which coating consists of an inorganic material that contains no liquid phase,

said coating having a thickness such that wherein the area-specific resistance for protons at at least one temperature between 220°C and 550°C is about 0.150 $\Omega \cdot \text{cm}^2$.

83-85. (canceled)

86. (currently amended): The membrane of claim 85, A proton-conducting membrane designed to serve as an electrolyte in a fuel cell, which membrane consists essentially of a single metal or metal hydride support, wherein

one or both faces of said support is coated with an electronically-insulating proton-conducting coating, which coating consists of an inorganic material that contains no liquid phase, said coating having a thickness such that the ASR for protons at at least one temperature between 220°C and 550°C is in the range shown for Nafion® 117 in Figure 10:

Figure 10:

wherein the metal or metal in the metal hydride is selected from the group consisting of Pd, PdAg, PdCu, Ti, LaNi₅, TiFe and CrV₂, V/Ni/Ti, V/Ni and V/Ti.

87. (currently amended): The membrane of claim 84 A proton-conducting membrane designed to serve as an electrolyte in a fuel cell, which membrane consists essentially of a single metal or metal hydride support, wherein one or both faces of said support is coated with an electronically-insulating proton-conducting coating, which coating consists of an inorganic material that contains no liquid phase, said coating having a thickness such that the ASR for protons at at least one temperature between 220°C and 550°C is in the range shown for Nafion® 117 in Figure 10:

Figure 10:

wherein the electronically-insulating proton-conducting coating is selected from the group consisting of:

mesoporous zirconium phosphate pyrophosphate, $Zr(P_2O_7)_{0.81}$;
 $Ba_3Ca_{1.18}Nb_{1.82}O_{8.73}\cdot H_2O$;
 $Cs_5H_3(SO_4)_4\cdot 0.5H_2O$;
a hydrate of $SnCl_2$;
silver iodide tetratungstate $Ag_{26}I_{18}W_4O_{16}$;
 KH_2PO_4 ;
tetraammonium dihydrogen triselenate, $(NH_4)_4H_2(SeO_4)_3$;
 $CsDSO_4$;
 CsH_2PO_4 ;
 $Sr[Zr_{0.9}Y_{0.1}]O_{3-\delta}$;
a silica-polyphosphate composite containing ammonium ions;
 $La_{0.9}Sr_{0.1}Sc_{0.9}Mg_{0.1}O_3$; and
 $BaCe_{0.9-x}Zr_xM_{0.1}O_{3-\delta}$ where M is Gd or Nd and x = 0 to 0.4.

88. (currently amended): The membrane of claim 84, A proton-conducting membrane designed to serve as an electrolyte in a fuel cell, which membrane consists essentially of a single metal or metal hydride support, wherein

one or both faces of said support is coated with an electronically-insulating proton-conducting coating, which coating consists of an inorganic material that contains no liquid phase, said coating having a thickness such that the ASR for protons at at least one temperature between 220°C and 550°C is in the range shown for Nafion® 117 in Figure 10:

Figure 10:

wherein the electronically-insulating proton-conducting coating consists of
 $\text{Ba}_3\text{Ca}_{1.18}\text{Nb}_{1.82}\text{O}_{8.73}\text{-H}_2\text{O}$;
 CsH_2PO_4 ;
 $\text{Sr}[\text{Zr}_{0.9}\text{Y}_{0.1}]\text{O}_{3-\delta}$;

polyphosphate composite containing 19.96 wt% NH_4^+ , 29.3 wt% P, 1.51 wt% Si;

$\text{La}_{0.9}\text{Sr}_{0.1}\text{Sc}_{0.9}\text{Mg}_{0.1}\text{O}_3$; or

$\text{BaCe}_{0.9-x}\text{Zr}_x\text{M}_{0.1}\text{O}_{3-\delta}$ where M is Gd or Nd and x = 0 to 0.4.

89-90. (canceled)

91. (currently amended): The membrane of claim 84 A proton-conducting membrane designed to serve as an electrolyte in a fuel cell, which membrane consists essentially of a single metal or metal hydride support, wherein

one or both faces of said support is coated with an electronically-insulating proton-conducting coating, which coating consists of an inorganic material that contains no liquid phase, said coating having a thickness such that the area-specific resistance for protons at at least one temperature between 220°C and 550°C is about 0.150 $\Omega \cdot \text{cm}^2$ as shown for Nafion® 117 in
Figure 10:

Figure 10.

wherein the area-specific resistance for protons at at least one temperature between 220°C and 550°C is about 0.150 $\Omega \cdot \text{cm}^2$.