Optimization. Homework 2

Oscar Dalmau

- 1. The directional derivative $\frac{\partial f}{\partial v}(x_0,y_0,z_0)$ of a differentiable function f are $\frac{3}{\sqrt{2}},\frac{1}{\sqrt{2}}$ and $-\frac{1}{\sqrt{2}}$ in the directions of vectors $[0,\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}]^T,[\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}}]^T$ and $[\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0]^T$. Compute $\nabla f(x_0,y_0,z_0)$.
- 2. Show that the level curves of the function $f(x,y) = x^2 + y^2$ are orthogonal to the level curves of $g(x,y) = \frac{y}{x}$ for all (x,y).
- 3. Compute the stationary points of $f(x,y) = \frac{3x^4 4x^3 12x^2 + 18}{12(1+4y^2)}$ and determine their corresponding type (ie: minimum, maximum or saddle point)
- 4. Compute the gradient $\nabla f(\boldsymbol{x})$ and Hessian $\nabla^2 f(\boldsymbol{x})$ of the Rosenbrock function

$$f(\mathbf{x}) = \sum_{i=1}^{N-1} [100(x_{i+1} - x_i^2)^2 + (1 - x_i)^2]$$

where $\boldsymbol{x} = [x_1, \dots, x_N]^T \in \mathbb{R}^N$

5. Show, without using the optimality conditions, that $f(x) > f(x^*)$ for all $x \neq x^*$ if

$$f(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{x}^T \mathbf{Q} \boldsymbol{x} - \boldsymbol{b}^T \boldsymbol{x}$$

 $\mathbf{Q} = \mathbf{Q}^T \succ 0$ and $\mathbf{Q} \boldsymbol{x}^* = \boldsymbol{b}$.