

Redes Neurais Artificiais

(Prof. Ivan Nunes da Silva)

EPC-9

No processo industrial de fabricação de pneus sabe-se que o composto que forma a borracha pode apresentar imperfeições que impedem a sua utilização. Diversas amostras dessas imperfeições foram coletadas, sendo também realizadas as medidas referentes a três grandezas $\{x_1, x_2, x_3\}$ que participam do processo de fabricação das respectivas borrachas. Entretanto, a equipe de engenheiros e cientistas não tem sentimento de como essas variáveis podem estar relacionadas.

Assim, pretende-se aplicar uma Rede de Kohonen, conforme mostrado na figura abaixo, com o objetivo de detectar as eventuais similaridades e correlações entre essas variáveis, pois se tem como objetivo final o posterior agrupamento das amostras imperfeitas em classes.

Portanto, baseado nos dados fornecidos no apêndice, treine a rede de Kohonen, considerando N_1 =16 e taxa de aprendizado η =0.001, sendo que o grid topológico é bidimensional (4x4), tendo raio de vizinhança entre os neurônios igual a 1. Logo, o diagrama esquemático do grid está como se segue:

Página 1 de 3

De posse dos resultados advindos do treinamento da rede, efetuou-se uma análise neste conjunto e verificou-se que as amostras 1-20, 21-60 e 61-120 possuem particularidades em comum, podendo ser então consideradas três classes distintas, denominadas de classe A, B e C, respectivamente. Portanto, têm-se as seguintes questões:

- 1. Indique quem são os conjuntos de neurônios representados no grid que fornecem respostas relativas às classes A, B e C.
- 2. Para as amostras da tabela abaixo indique a que classes as mesmas pertencem.

Amostra	x_1	x_2	<i>X</i> ₃	Classe
1	0.2471	0.1778	0.2905	
2	0.8240	0.2223	0.7041	
3	0.4960	0.7231	0.5866	
4	0.2923	0.2041	0.2234	
5	0.8118	0.2668	0.7484	
6	0.4837	0.8200	0.4792	
7	0.3248	0.2629	0.2375	
8	0.7209	0.2116	0.7821	
9	0.5259	0.6522	0.5957	
10	0.2075	0.1669	0.1745	
11	0.7830	0.3171	0.7888	
12	0.5393	0.7510	0.5682	

3. Demonstrar que a regra de alteração de pesos "Norma Euclidiana" para um padrão *x* é obtida a partir da minimização da função erro quadrático:

$$E = \frac{1}{2} \sum_{i} (w_i^{(j)} - x_i)^2$$

onde j é o índice do neurônio vencedor.

Apêndice

Amostra	x_1	x_2	<i>X</i> ₃	Amostra	x_1	x_2	<i>x</i> ₃
1	0.2417	0.2857	0.2397	61	0.4856	0.6600	0.4798
2	0.2417	0.2874	0.2357	62	0.4030	0.7220	0.5106
3	0.1975	0.3315	0.1965	63	0.5671	0.7935	0.5929
4	0.3414	0.3166	0.1074	64	0.4875	0.7928	0.5532
5	0.2587	0.1918	0.2634	65	0.5172	0.7147	0.5774
6	0.2455	0.2075	0.1344	66	0.5483	0.6773	0.4842
7	0.3163	0.1679	0.1725	67	0.5740	0.6682	0.5335
8	0.2704	0.2605	0.1411	68	0.4587	0.6981	0.5900
9	0.1871	0.2965	0.1231	69	0.5794	0.7410	0.4759
10	0.3474	0.2715	0.1958	70	0.4712	0.6734	0.5677
11	0.2059	0.2928	0.2839	71	0.5126	0.8141	0.5224
12	0.2442	0.2272	0.2384	72	0.5557	0.7749	0.4342
13	0.2126	0.3437	0.1128	73	0.4916	0.8267	0.4586
14	0.2562	0.2542	0.1599	74	0.4629	0.8129	0.4950
15	0.1640	0.2289	0.2627	75	0.5850	0.7358	0.5107
16	0.2795	0.1880	0.1627	76	0.4435	0.7030	0.4594
17	0.3463	0.1513	0.2281	77	0.4155	0.7516	0.5524
18	0.3430	0.1508	0.1881	78	0.4887	0.7027	0.5886
19	0.1981	0.2821	0.1294	79	0.5462	0.7378	0.5107
20	0.2322	0.3025	0.2191	80	0.5251	0.8124	0.5686
21	0.7352	0.2722	0.6962	81	0.4635	0.7339	0.5638
22	0.7191	0.1825	0.7470	82	0.5907	0.7144	0.4718
23	0.6921	0.1537	0.8172	83	0.4982	0.8335	0.4597
24	0.6833	0.2048	0.8490	84	0.5242	0.7325	0.4079
25	0.8012	0.2684	0.7673	85	0.4075	0.8372	0.4271
26	0.7860	0.1734	0.7198	86	0.5934	0.8284	0.5107
27	0.7205	0.1542	0.7295	87	0.5463	0.6766	0.5639
28	0.6549	0.3288	0.8153	88	0.4403	0.8495	0.4806
29	0.6968	0.3173	0.7389	89	0.4531	0.7760	0.5276
30	0.7448	0.2095	0.6847	90	0.5109	0.7387	0.5373
31	0.6746	0.3277	0.6725	91	0.5383	0.7780	0.4955
32	0.7897	0.2801	0.7679	92	0.5679	0.7156	0.5022
33	0.8399	0.3067	0.7003	93	0.5762 0.5997	0.7781	0.5908
34	0.8065	0.3206	0.7205	94		0.7504	0.5678
35	0.8357 0.7438	0.3220 0.3230	0.7879 0.8384	95 96	0.4138 0.5490	0.6975 0.6674	0.5148 0.4472
36	0.7438	0.3230	0.8384	97	0.3490	0.7527	0.4472
38	0.8172	0.3319	0.7028	98	0.4719	0.8063	0.4253
39	0.6248	0.2014	0.7309	99	0.4438	0.8003	0.4233
40	0.6804	0.2142	0.7309	100	0.4983	0.6789	0.5025
41	0.6973	0.3194	0.7522	101	0.5289	0.7354	0.4718
42	0.7910	0.2239	0.7018	102	0.5927	0.7738	0.5390
43	0.7052	0.2148	0.6866	103	0.5199	0.7131	0.4028
44	0.8088	0.1908	0.7563	104	0.5716	0.6558	0.4451
45	0.7640	0.1676	0.6994	105	0.5075	0.7045	0.4233
46	0.7616	0.2881	0.8087	106	0.4886	0.7004	0.4608
47	0.8188	0.2461	0.7273	107	0.5527	0.8243	0.5772
48	0.7920	0.3178	0.7497	108	0.4816	0.6969	0.4678
49	0.7802	0.1871	0.8102	109	0.5809	0.6557	0.4266
50	0.7332	0.2543	0.8194	110	0.5881	0.7565	0.4003
51	0.6921	0.1529	0.7759	111	0.5334	0.8446	0.4934
52	0.6833	0.2197	0.6943	112	0.4603	0.7992	0.4816
53	0.7860	0.1745	0.7639	113	0.5491	0.6504	0.4063
54	0.8009	0.3082	0.8491	114	0.4288	0.8455	0.5047
55	0.7793	0.1935	0.6738	115	0.5636	0.7884	0.5417
56	0.7373	0.2698	0.7864	116	0.5349	0.6736	0.4541
57	0.7048	0.2380	0.7825	117	0.5569	0.8393	0.5652
58	0.8393	0.2857	0.7733	118	0.4729	0.7702	0.5325
59	0.6878	0.2126	0.6961	119	0.5472	0.8454	0.5449
60	0.6651	0.3492	0.6737	120	0.5805	0.7349	0.4464