Q1. 1. Strict & assortative Z: MNTU is PAM

2. W(i, j) has decreasing difference

W(;) is twice differentiable.

then W has decreasing difference iff Way =0

w has increasing difference if Wry ≥0.

D.D) AXISUO, AAISAO

W(M1. y1) - W(M1, y0) = W(M0, y1) - W(M0, 40)

M(W1. Å1) - M(W1. Å0) = M(W0, Å1) - M(W0, Å0)

Wy (N) } Wy (No)

lim My (M) - Wy(M) = 0

i.e. Wyx (1/6) ≥0.

Wij = 20(0-1) (i+j) 0-2 <0. Therefore, MTU is NAM

3. $W(M^{NTU}) = 2 \frac{5}{2} (2i)^{\alpha} \quad W(M^{TU}) = 2n(n+1)^{\alpha}$

4. W(MNTU) & [JX-1, 1] TU: non-changed.

W(MTU) & [JX-1, 1] But, NTU can be changed

 $\frac{(N+1)^{N}}{2 \cdot (N+1)^{N}} = \frac{2N)^{N+2}}{2 \cdot (N+1)^{N}} = \frac{2N+\frac{1}{N^{N}}}{2(N+\frac{1}{N})^{N}} \rightarrow 2N-1 \quad (N \rightarrow \infty)$

Q2.

Lemma 1) It (x*, g*) solves (*), then = a Pareto optimal allocation (x*, m*, q*, z*)

proof) Choose Z^* , m^* such that $\forall j$, $Z_j^* = C_j(\mathcal{S}_j^*)$ and m^* satisfies $\overline{Z_j}m_i^* = \overline{W_m} - \overline{Z_j}C_j(\mathcal{S}_j^*)$.

So defined, the allocation is teasible

Check, $\overline{Z_j}N_i^* = \overline{Z_j}C_j^*$.

Since (x^*, g^*) Solves (H), $\sum_{i=1}^{7} m_i^* = \overline{u}_m - \sum_{i=1}^{7} C_i(g_i^*)$ by construction. For any feasible (x, m, g, z), if it parteto dominates (x^*, m_i^*, g^*, z^*) ,
then $\sum_{i=1}^{7} (m_i + g_i(x_i)) > \sum_{i=1}^{7} (m_i^* + g_i(x_i^*))$.

Thus, $\overline{W}_{m} + S(x, q) = \overline{W}_{m} + \overline{S}(x_{i}) - \overline{S}_{i}C_{j}(q_{i}) \quad (\forall j, z_{j} = C_{j}(q_{i}))$ $\geq \overline{W}_{m} + \overline{S}_{i}(x_{i}) - \overline{S}_{i}z_{j}$ $= \overline{\Sigma}_{i} m_{i} + \overline{S}_{i} c_{i}(x_{i})$

= Wm + S(x*, 8*)

, Contradicts that (x*, g*) solves (*). 11

02

Lemma +) If (x^*, m^*, g^*, z^*) is parets optimal. then it induces a $V \in \mathbb{R}^{\times}$ with $V \in bd(\mathcal{U}(x^*, g^*))$

proof) Suppose (x^*, m^*, g^*, z^*) is pareto optimal and includes $\sqrt[4]{ER^2}$. First, claim $\forall j$, $C_j(g_j^*) = Z_j^*$. If $\exists j$ s.t $C_j(g_j^*) < Z_j^*$. Keep everything else fixed, giving $(Z_j^* - C_j(g_j^*))$ to some answer is a pareto improvement.

Second.
$$\underline{\Sigma}_{m}^{*} = \underline{\Sigma}_{m}^{*} + \underline{\Sigma}_{m}^{*} \underline{S}(n_{m}^{*}) = \underline{W}_{m} + \underline{\Sigma}_{m}^{*} \underline{S}(n_{m}^{*}) - \underline{\Sigma}_{m}^{*$$

For any other feasible allocation (x, m, g, z)

$$\frac{1}{2} V_{n}^{\dagger} = \overline{W}_{m} + S(x^{*}, g^{*}) \geq \overline{W}_{m} + S(x, g) = \overline{W}_{m} + \frac{1}{2} g_{n}(x_{n}) - \frac{1}{2} G(g_{n})$$

$$\geq \overline{W}_{m} + \sum_{i=1}^{n} g_{n}(x_{i}) - \frac{1}{2} G_{n}(g_{n})$$

$$= \sum_{i=1}^{n} (m_{i} + g_{n}(x_{n})) = \sum_{i=1}^{n} u_{n}(m_{n}, x_{n}) \parallel$$

Q2.

Lemma 3) If $(x^{*}, m^{*}, g^{*}, z^{*})$ is pareto optimal, then (x^{*}, g^{*}) solves (*)

proof) Suppose (x*, m*, g*, z*) is paleto optimal, but it does not solve (*)

Construct $M_i = \frac{1}{I}(\overline{w}_m - \overline{\xi}_i Z_j)$ and $Z_j = C_j(Q_j)$

So defined, $\overline{\xi}_{m} = \overline{\xi}_{m} + \overline{\xi}_{m} = \overline{\xi}_{m} = \overline{\xi}_{m} + \overline{\xi}_{m} = \overline{\xi}_{m} = \overline{\xi}_{m} + \overline{\xi}_{m} = \overline{\xi}_{m}$

= Wm + S(x,g)

> Wm + S (10th, 9th) = = = mt + = p (10th) (Lemma)

Thus, I wi (mi, Ni) > I wi (mi*, Ni*)

It means someone gets better off under (1x, m, q, Z)

Step 2) Order consumers.

 $U_{1}(m_{1},\alpha_{1})-U_{1}(m_{1}^{*},\alpha_{1}^{*})\geq U_{+}(m_{+},\alpha_{2})-U_{+}(m_{2}^{*},\alpha_{2}^{*})$

≥ ... ≥ UI(MI, MI) - UI(MI, MI)

It must be that U1(m1.1/1) - U1(mt. (x, +)≥0

There is k s.t.

for ish Ui (mi, (xi) - Ui (mi, xi) =0

for ich " 1, <0

The total surplus is higher than the total deficit.

$$\frac{\sum_{i=1}^{n} u_i(m_i, \chi_i) + \sum_{i=1}^{n} u_i(m_i, \chi_i)}{\sum_{i=1}^{n} (u_i(m_i, \chi_i) - u_i(m_i, \chi_i))} > \sum_{i=1}^{n} (u_i(m_i, \chi_i) + \sum_{i=1}^{n} u_i(m_i, \chi_i))$$

$$= \sum_{i=1}^{n} (u_i(m_i, \chi_i) - u_i(m_i, \chi_i)) > \sum_{i=1}^{n} (u_i(m_i, \chi_i) - u_i(m_i, \chi_i))$$

∃ X ∈ (0,1) S.t.

 $\propto \frac{1}{2} \left(u_{\lambda}(m_{\lambda}, \chi_{\lambda}) - u_{\lambda}(m_{\lambda}^{*}, \chi_{\lambda}^{*}) \right) > \frac{1}{2} \left(u_{\lambda}(m_{\lambda}^{*}, \chi_{\lambda}^{*}) - u_{\lambda}(m_{\lambda}, \chi_{\lambda}) \right)$

Construct m'

For isk, Mi= Mi-d(Ui(mi, ai) - Ui(mt, at))

For ich, mi= mi + (u, (m*, n*) - u, (m, n))

Show that (M, m', g, Z) pareto dominates (X*, m*, g*, z*)

O (x, m', g, z) is feasible

- Everybody is as good as under (x*, m*, q*, ≥*)
 - 1 Consumer 1 is strictly better off 11

Q3. Suppose (0x*, m*, g*, z*) and p* forms a ampetitive equilibrium.

case A) $0 < p^*, q^* \rightarrow \infty$: NO solution to maximize firm's profit

(ase B) 6 = p*, g*= a*, m*= wm - p*x

Consumer problem: max (Wm-p*x) + d+Blnx

F.o.c. 1 = p* ("=" it x">0) => x= 1

rasec) 67p*, 9*=0, x*=0 utility is defined at x*=0. 11