Formal Methods in Software Engineering

Propositional Logic — Spring 2025

Konstantin Chukharev

§1 Propositional Logic

Motivation

- Boolean functions are at the core of logic-based reasoning.
- A Boolean function $F(X_1,...,X_n)$ describes the output of a system based on its inputs.
- Boolean gates (AND, OR, NOT) form the building blocks of digital circuits.
- Propositional logic formalizes reasoning about Boolean functions and circuits.
- Applications:
 - Digital circuit design.
 - Verification and synthesis of hardware and software.
 - Expressing logical constraints in AI and optimization problems.
 - Automated reasoning and theorem proving.

Boolean Circuits and Propositional Logic

Boolean circuit is a directed acyclic graph (DAG) of Boolean gates.

- Inputs: Propositional variables.
- Outputs: Logical expressions describing the circuit's behavior.

"Can the output of a circuit ever be true?"

• Propositional logic provides a formal framework to answer such questions.

Real-world examples:

- Error detection circuits.
- Arithmetic logic units (ALUs) in processors.
- Routing logic in network devices.

What is Logic?

A formal logic is defined by its **syntax** and **semantics**.

□ Syntax

- An **alphabet** Σ is a set of symbols.
- A finite sequence of symbols (from Σ) is called an **expression** or **string** (over Σ).
- A set of rules defines the **well-formed** expressions.

□ Semantics

• Gives meaning to (well-formed) expressions.

Syntax of Propositional Logic

□ Alphabet

- **1.** Logical connectives: \neg , \land , \lor , \rightarrow , \leftrightarrow .
- **2.** Propositional variables: $A_1, A_2, ..., A_n$.
- **3.** Parentheses for grouping: (,).

□ Well-Formed Formulas (WFFs)

- **1.** A single propositional symbol (e.g. *A*) is a WFF.
- **2.** If α and β are WFFs, so are: $\neg \alpha$, $(\alpha \land \beta)$, $(\alpha \lor \beta)$, $(\alpha \to \beta)$, $(\alpha \leftrightarrow \beta)$.
- **3.** No other expressions are WFFs.

□ Conventions

- Large variety of propositional variables: A, B, C, ..., p, q, r, ...
- Outer parentheses can be omitted: $A \wedge B$ instead of $(A \wedge B)$.
- Operator precedence: $\neg > \land > \lor > \rightarrow > \leftrightarrow$.

Semantics of Propositional Logic

- Each propositional variable is assigned a truth value: *T* (true) or *F* (false).
- More formally, interpretation $\nu: V \to \{0,1\}$ assigns truth values to all variables (atoms).
- Truth values of complex formulas are computed (evaluated) recursively:
 - **1.** $\llbracket p \rrbracket \triangleq \nu(p)$, where $p \in V$ is a propositional variable
 - **2.** $\llbracket \neg \alpha \rrbracket \triangleq 1 \llbracket \alpha \rrbracket$

 - 4. $[\![\alpha \lor \beta]\!] \triangleq \max([\![\alpha]\!], [\![\beta]\!])$
 - 5. $[\alpha \rightarrow \beta] \triangleq [\alpha] \leq [\beta]$
 - **6.** $\llbracket \alpha \leftrightarrow \beta \rrbracket \triangleq \llbracket \alpha \rrbracket = \llbracket \beta \rrbracket$

Truth Tables

α	β	γ	$\alpha \wedge (\beta \vee \neg \gamma)$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

§2 Semantical Aspects

Validity, Satisfiability, Entailment

□ Validity

- α is a **tautology** if α is true under all truth assignments. Formally, α is **valid**, denoted " $\models \alpha$ ", iff $\nu(\alpha) = 1$ for all interpretations $\nu \in \{0,1\}^V$.
- α is a **contradiction** if α is false under all truth assignments. Formally, α is **unsatisfiable** if $\nu(\alpha) = 0$ for all interpretations $\nu \in \{0, 1\}^V$.

□ Satisfiability

- α is **satisfiable** (**consistent**) if there exists an interpretation $\nu \in \{0,1\}^V$ where $\nu(\alpha) = 1$. When α is satisfiable by ν , denoted $\nu \models \alpha$, this interpretation is called a **model** of α .
- α is **falsifiable** (**invalid**) if there exists an interpretation $\nu \in \{0,1\}^V$ where $\nu(\alpha) = 0$.

□ Entailment

- Let Γ be a set of WFFs. Then Γ tautologically implies (semantically entails) α , denoted $\Gamma \vDash \alpha$, if every truth assignment that satisfies all formulas in Γ also satisfies α .
- Formally, $\Gamma \vDash \alpha$ iff for all interpretations $\nu \in \{0,1\}^V$ and formulas $\beta \in \Gamma$, if $\nu \vDash \beta$, then $\nu \vDash \alpha$.
- Note: $\alpha \vDash \beta$, where α and β are WFFs, is just a shorthand for $\{\alpha\} \vDash \beta$.

Examples

- $A \vee B \wedge (\neg A \wedge \neg B)$ is satisfiable, but not valid.
- $A \lor B \land (\neg A \land \neg B) \land (A \leftrightarrow B)$ is unsatisfiable.
- $\{A \rightarrow B, A\} \models B$
- $\{A, \neg A\} \vDash A \land \neg A$
- $\neg (A \land B)$ is tautologically equivalent to $\neg A \lor \neg B$.

Duality of SAT vs VALID

• **SAT**: Given a formula α , determine if it is satisfiable.

 $\exists \nu. \llbracket \alpha \rrbracket$

• **VALID**: Given a formula α , determine if it is valid.

 $\forall \nu. \llbracket \alpha \rrbracket$

- **Duality**: α is valid iff $\neg \alpha$ is unsatisfiable.
- Note: SAT is NP, but VALID is co-NP.

Solving SAT using Truth Tables

Algorithm for satisfiability:

To check whether α is satisfiable, construct a truth table for α . If there is a row where α evaluates to true, then α is satisfiable. Otherwise, α is unsatisfiable.

Algorithm for semantical entailment (tautological implication):

The check whether $\{\alpha_1,...,\alpha_k\} \vDash \beta$, check the satisfiability of $(\alpha_1 \land ... \land \alpha_k) \land (\neg \beta)$. If it is unsatisfiable, then $\{\alpha_1,...,\alpha_k\} \vDash \beta$. Otherwise, $\{\alpha_1,...,\alpha_k\} \nvDash \beta$.

Logical Laws and Tautologies

- **Associative** and **Commutative** laws for \land , \lor , \leftrightarrow :
 - $A \circ (B \circ C) \equiv (A \circ B) \circ C$
 - $A \circ B \equiv B \circ A$
- Distributive laws:
 - $A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$
 - $A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$
- Negation:
 - $\neg \neg A \equiv A$
- De Morgan's laws:
 - $\neg (A \land B) \equiv \neg A \lor \neg B$
 - $\neg (A \lor B) \equiv \neg A \land \neg B$

Logical Laws and Tautologies [2]

- Implication:
 - $(A \to B) \equiv (\neg A \lor B)$
- Contraposition:
 - $(A \to B) \equiv (\neg B \to \neg A)$
- Law of Excluded Middle:
 - $(A \vee \neg A) \equiv \top$
- Contradiction:
 - $(A \land \neg A) \equiv \bot$
- Exportation:
 - $\bullet \ ((A \land B) \to C) \equiv (A \to (B \to C))$

Example Problems

- Given $\alpha = (A \vee B) \wedge \neg A$, determine:
 - **1.** Is α consistent (satisfiable)?
 - **2.** Is α valid (a tautology)?
 - **3.** Compute the truth table for α .

Completeness of Connectives

- All Boolean functions can be expressed using $\{\neg, \land, \lor\}$ (so called "standard Boolean basis").
- Even smaller sets are sufficient:
 - $\{\neg, \land\}$ AIG (And-Inverter Graph), see also: <u>AIGER format</u>.
 - ${lack} \{\neg, \lor\}$
 - $\{\overline{\wedge}\}$ NAND
 - $\{\overline{\lor}\}$ NOR

Incompleteness of Connectives

To prove that a set of connectives is incomplete, we find a property that is true for all WFFs expressed using those connectives, but that is not true for some Boolean function.

Example: $\{\land, \rightarrow\}$ is not complete.

Proof. Let α be a WFF which uses only these connectives. Let ν be an interpretation such that $\nu(A_i)=1$ for all propositional variables A_i . Next, we prove by induction that $\llbracket \alpha \rrbracket=1$.

- Base case:
 - $[A_i] = \nu(A_i) = 1$
- Inductive step:
 - $\blacktriangleright \ \llbracket \beta \wedge \gamma \rrbracket = \min(\llbracket \beta \rrbracket, \llbracket \gamma \rrbracket) = 1$
 - $\blacktriangleright \ \llbracket \beta \to \gamma \rrbracket = \max(1 \llbracket \beta \rrbracket, \llbracket \gamma \rrbracket) = 1$

Thus, $[\![\alpha]\!]=1$ for all WFFs α built from $\{\land,\rightarrow\}$. However, $[\![\neg A_1]\!]=0$, so there is no such formula α tautologically equivalent to $\neg A_1$.

Compactness

Recall:

- A WFF α is **satisfiable** if there exists an interpretation ν such that $\nu \vDash \alpha$.
- Hereinafter, let Γ denote a *finite* set of WFFs, and Σ denote a *possibly infinite* set of WFFs.
- A set of WFFs Σ is **satisfiable** if there exists an interpretation ν that satisfies all formulas in Σ .
- A set of WFFs Σ is **finitely satisfiable** if every finite subset of Σ is satisfiable.

Theorem 1: Compactness Theorem.

A set of WFFs Σ is satisfiable iff it is finitely satisfiable.

Proof.

(=>) Suppose Σ is satisfiable, i.e. there exists an interpretation ν that satisfies all formulas in Σ .

This direction is trivial: any subset of a satisfiable set is clearly satisfiable.

- For each finite subset $\Sigma' \subseteq \Sigma$, ν also satisfies all formulas in Σ' .
- Thus, every finite subset of Σ is satisfiable.

Compactness [2]

(<=) Suppose Σ is finitely satisfiable, i.e. every finite subset of Σ is satisfiable.

Construct a *maximal* finitely satisfiable set Δ as follows:

- Let $\alpha_1, ..., \alpha_n, ...$ be a fixed enumeration of all WFFs.
 - ▶ This is possible since the set of all sequences of a countable set is countable.
- Then, let:

$$\begin{split} &\Delta_0 = \Sigma, \\ &\Delta_{n+1} = \begin{cases} \Delta_n \cup \{\alpha_{n+1}\} \text{ if this is finitely satisfiable,} \\ &\Delta_n \cup \{\neg \alpha_{n+1}\} \text{ otherwise.} \end{cases} \end{split}$$

- Note that each Δ_n is finitely satisfiable by construction.
- Let $\Delta = \bigcup_{n \in \mathbb{N}} \Delta_n$. Note:
 - 1. $\Sigma \subset \Delta$
 - **2.** $\alpha \in \Delta$ or $\neg \alpha \in \Delta$ for any WFF α
 - **3.** Δ is finitely satisfiable by construction.

Compactness [3]

Now we need to show that Δ is satisfiable (and thus $\Sigma \subseteq \Delta$ is also satisfiable).

Define an interpretation ν as follows: for each propositional variable p, let $\nu(p)=1$ iff $p\in\Delta$.

We claim that ν satisfies a WFF α iff $\alpha \in \Delta$. The proof is by induction on well-formed formulas.

- Base case:
 - Suppose $\alpha \equiv p$ for some propositional variable p.
 - By definition, $\llbracket p \rrbracket = \nu(p) = 1$.
- Inductive step:
 - (Note: here, we consider only one case for brevity)
 - Suppose $\alpha \equiv \beta \wedge \gamma$.
 - $\llbracket \alpha \rrbracket = 1$ iff both $\llbracket \beta \rrbracket = 1$ and $\llbracket \gamma \rrbracket = 1$ iff both $\beta \in \Delta$ and $\gamma \in \Delta$.
 - ▶ Now, if both β and γ are in Δ , then since $\{\beta, \gamma, \neg \alpha\}$ is not satisfiable, we must have $\alpha \in \Delta$.
 - ▶ Similarly, if either β or γ is not in Δ , then its negation must be in Δ , and thus $\alpha \notin \Delta$.

Compactness [4]

Corollary 1.

If $\Sigma \vDash \alpha$, then there is a finite $\Sigma_0 \subseteq \Sigma$ such that $\Sigma_0 \vDash \alpha$.

Proof.

Suppose that $\Sigma_0 \nvDash \alpha$ for every finite $\Sigma_0 \subseteq \Sigma$.

Then, $\Sigma_0 \cup \{\neg \alpha\}$ is satisfiable for every finite $\Sigma_0 \subseteq \Sigma$.

Then, by the compactness theorem, $\Sigma \cup \{\neg \alpha\}$ is satisfiable, which contradicts the assumption that $\Sigma \vDash \alpha$.

Normal Forms

- Conjunctive Normal Form (CNF):
 - ▶ A formula is in CNF if it is a conjunction of *clauses* (disjunctions of literals).
 - ► Example: $(A \lor B) \land (\neg A \lor C) \land (B \lor \neg C)$ CNF with 3 clauses.
- Disjunctive Normal Form (DNF):
 - A formula is in DNF if it is a disjunction of *cubes* (conjunctions of literals).
 - ► Example: $(\neg A \land B) \lor (B \land C) \lor (\neg A \land B \land \neg C)$ DNF with 3 cubes.
- Algebraic Normal Form (ANF):
 - A formula is in ANF if it is a sum of *products* of variables (or a constant 1).
 - ► Example: $B \oplus AB \oplus ABC$ ANF with 3 terms.

§3 Proof Systems

Natural Deduction

- Natural deduction is a proof system for propositional logic.
- Axioms:
 - No axioms.
- Rules:
 - **Introduction**: ∧-introduction, ∨-introduction, →-introduction, ¬-introduction.
 - ▶ **Elimination**: \land -elimination, \lor -elimination, \rightarrow -elimination.
 - Reduction ad Absurdum
 - ▶ Law of Excluded Middle (note: forbidden in *intuitionistic* logic)
- **Proofs** are constructed by applying rules to assumptions and previously derived formulas.

$$\frac{\Gamma_1 \vdash (\textit{premise 1}) \quad \Gamma_2 \vdash (\textit{premise 2}) \quad \dots}{\Gamma \; (\textit{assumptions}) \vdash (\textit{conclusion})} \; \text{ rule name}$$

Inference Rules

 $\frac{}{\Gamma \vdash \varphi \lor \neg \varphi} \text{law of excluded middle}$

$$\boxed{\frac{}{\Gamma,\varphi \vdash \varphi}} \text{assumption}$$

$$\frac{\Gamma \vdash \alpha \quad \Gamma \vdash \neg \alpha}{\Gamma \vdash \beta}$$
 reduction ad absurdum

$$\frac{\Gamma \vdash \alpha \land \beta}{\Gamma \vdash \alpha} \land -elimination$$

$$\frac{\Gamma \vdash \alpha \land \beta}{\Gamma \vdash \beta} \land \text{-elimination}$$

$$\left(\frac{\Gamma \vdash \alpha \land \beta}{\Gamma \vdash \beta} \land \text{-elimination}\right) \left(\frac{\Gamma \vdash \alpha \quad \Gamma \vdash \beta}{\Gamma \vdash \alpha \land \beta} \land \text{-introduction}\right)$$

$$\left(\begin{array}{c|c} \Gamma \vdash \alpha_1 \lor \alpha_2 & \Gamma, \alpha_1 \vdash \beta & \Gamma, \alpha_2 \vdash \beta \\ \hline \Gamma \vdash \beta & \end{array} \lor \text{-elim} \right)$$

$$\left[\begin{array}{c} \Gamma \vdash \alpha \\ \overline{\Gamma \vdash \alpha \lor \beta} \lor \text{-intro} \end{array}\right] \left[\begin{array}{c} \Gamma \vdash \beta \\ \overline{\Gamma \vdash \alpha \lor \beta} \lor \text{-intro} \end{array}\right]$$

$$\frac{\Gamma \vdash \beta}{\Gamma \vdash \alpha \lor \beta} \lor \text{-intro}$$

$$\left[\begin{array}{cc} \Gamma \vdash \alpha & \Gamma \vdash \alpha \to \beta \\ \hline \Gamma \vdash \beta \end{array}\right] \to \text{-elimination} \left[\begin{array}{cc} \Gamma, \alpha \vdash \beta \\ \hline \Gamma \vdash \alpha \to \beta \end{array}\right] \to \text{-introduction}$$

$$\frac{\Gamma,\alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \!\to\! \text{-introduction}$$

Soundness and Completeness

- A formal system is **sound** if every provable formula is true in all models.
 - Weak soundness: "every provable formula is a tautology".

If
$$\vdash \alpha$$
, then $\models \alpha$.

▶ **Strong soundness**: "every derivable (from Γ) formula is a logical consequence (of Γ)".

If
$$\Gamma \vdash \alpha$$
, then $\Gamma \vDash \alpha$.

- A formal system is **complete** if every formula true in all models is provable.
 - Weak completeness: "every tautology is provable".

If
$$\vDash \alpha$$
, then $\vdash \alpha$.

Strong completeness: "every logical consequence (of Γ) is derivable (from Γ)".

If
$$\Gamma \vDash \alpha$$
, then $\Gamma \vdash \alpha$.

§4 Theory of Computation

Computability

Definition 1: Church–Turing thesis.

Computable functions are exactly the functions that can be calculated using a mechanical (that is, automatic) calculation device given unlimited amounts of time and storage space.

"Every model of computation that has ever been imagined can compute *only* computable functions, and *all* computable functions can be computed by any of several *models of computation* that are apparently very different, such as Turing machines, register machines, lambda calculus and general recursive functions."

For example, a partial function $f: \mathbb{N}^k \hookrightarrow \mathbb{N}$ is computable ("can be calculated") if there exists a computer program with the following properties:

- If f(x) is defined, then the program terminates on the input x with the value f(x) stored in the computer memory.
- If f(x) is undefined, then the program never terminates on the input x.

Definition 2.

An **effective procedure** is a finite, deterministic, mechanical algorithm that guarantees to terminate and produce the correct answer in a finite number of steps.

Decidability

Definition 3: Decidable set.

Given a universal set \mathcal{U} , a set $S \subseteq \mathcal{U}$ is **decidable** (or **computable**) if there exists a computable function $f: \mathcal{U} \longrightarrow \{0,1\}$ such that f(x) = 1 iff $x \in S$.

Examples:

- The set W of all WFFs is decidable.
 - We can check if a given string is well-formed by recursively verifying the syntax rules.
- For a given finite set Σ of WFFs, the set $\{\alpha \mid \Sigma \vDash \alpha\}$ of all tautological consequences of Σ is decidable.
 - We can decide $\Sigma \vDash \alpha$ using a truth table algorithm by enumerating all possible interpretations (at most $2^{|\Sigma|}$) and check if each satisfies all formulas in Σ .
- The set of all tautologies is decidable.
 - ▶ It is the set of all tautological consequences of the empty set.

TODO: undecidable sets (existence proof)

Semi-decidability

Suppose we want to determine $\Gamma \vDash \alpha$ where Γ is infinite. In general, it is undecidable.

However, it is possible to obtain a weaker result.

Definition 4: Semi-decidable set.

A set S is **computably enumerable** if there is an *enumeration procedure* which lists, in some order, every member of S: $s_1, s_2, s_3...$

Equivalently, a set S is **semi-decidable** if there is an algorithm such that the set of inputs for which the algorithm halts is exactly S.

Note that if S is infinite, the enumeration procedure will *never* finish, but every member of S will be listed *eventually*, after some finite amount of time.

Some properties:

- Decidable sets are closed under union, intersection, Cartesian product, and complement.
- Semi-decidable sets are closed under union, intersection, and Cartesian product.

Semi-decidability [2]

Theorem 2.

A set S is computably enumerable iff it is semi-decidable.

(here, we assume that S is a set of WFFs)

(=> proof of "only if" part)

If S is computably enumerable, we can check if $\alpha \in S$ by enumerating all members of S and checking if α is among them. If it is, we answer "yes"; otherwise, we continue enumerating. Thus, if $\alpha \in S$, the procedure produces "yes". If $\alpha \notin S$, the procedure runs forever.

(<= proof of "if" part)

On the other hand, suppose we have a procedure P which, given α , terminates and produces "yes" iff $\alpha \in S$. To show that S is computably enumerable, we can proceed as follows.

- **1.** Construct a systematic enumeration of **all** expressions (for example, by listing all strings over the alphabet in length-lexicographical order): $\beta_1, \beta_2, \beta_3, \dots$
- 2. Break the procedure P into a finite number of "steps" (for example, by program instructions).
- **3.** Run the procedure on each expression in turn, for an increasing number of steps (see <u>dovetailing</u>):

Semi-decidability [3]

- Run P on β_1 for 1 step.
- Run P on β_1 for 2 steps, then on β_2 for 2 steps.
- ... • Rı
- Run P on each of $\beta_1, ..., \beta_n$ for n steps each.
- ..
- **4.** If *P* produces "yes" for some β_i , output (yield) β_i and continue enumerating.

This procedure will eventually list all members of S.

Semi-decidability [4]

Theorem 3.

A set is decidable iff both it and its complement are semi-decidable.

Proof. Alternate between running the procedure for the set and the procedure for its completement. One of them will eventually produce "yes".

Semi-decidability [5]

Theorem 4.

If Σ is an effectively enumerable set of WFFs, then the set of tautological consequences of Σ is effectively enumerable.

Proof. Consider an enumeration of the elements of Σ : $\sigma_1, \sigma_2, \sigma_3, \dots$

By the compactness theorem, $\Sigma \vDash \alpha$ iff $\{\sigma_1,...,\sigma_n\} \vDash \alpha$ for some n.

Hence, it is sufficient to successively test:

- $\emptyset \vDash \alpha$
- $\{\sigma_1\} \vDash \alpha$
- $\{\sigma_1, \sigma_2\} \vDash \alpha$
- ...

If any of these tests succeeds (each is decidable), then $\Sigma \vDash \alpha$.

Complexity

TODO

TODO

- ✓ Natural deduction
- Soundnsess and completeness of propositional logic
- Compactness
- **✓** Computability
- Decidability
- ☐ Undecidable sets
- **☑** Semi-decidability
- ☐ Complexity
- Normal forms
- ☐ Canonical normal forms
- ☐ Equisatisfiability, Tseitin transformation, Example
- ☐ DIMACS format
- \bigcap SAT
- Cook theorem

Summary

- Propositional logic provides a foundation for reasoning about Boolean functions.
- Key concepts: Syntax, semantics, WFFs, truth tables, and logical laws.
- Next steps: SAT solvers and their role in automated reasoning.