The Miller Rabin Test

CS 719 Course Report

Aryaman Maithani

November 4, 2021

Contents

1	Introduction	1
2	First attempt	3
3	The Miller-Rabin test	4

§1. Introduction

In this report, we are concerned with finding an algorithm for the following problem.

```
Input: An integer n > 1.
Output: isPrime(n).
```

The simplest way to do this is by trial division. Indeed, we simply divide n by 2,3,4, and so on, and see if the remainder is 0 in any case. As we know, we only need to divide by numbers up to \sqrt{n} . The issue with this algorithm is that it is extremely inefficient, requiring $\Theta(\sqrt{n})$ operations, which is *exponential* in the *bit length* len(n). For example, if n has 100-decimal digits, it would take more than 10^{33} years to perform \sqrt{n} divisions.

However, note that the above algorithm does *more* than what we expected from our algorithm. Namely, it not only tells us that the number is prime but also produces a nontrivial factor in the case that n is composite. Naïvely, one might think that it is necessary for us to produce a prime factor to claim that a number is composite. However, that is not the case.

In this report, we describe a much faster primality testing. This is a polynomial time algorithm. It allows for 100-decimal digits numbers to be tested in less than a second. Unlike the earlier algorithm, it does *not* give us a prime factor in the case that n is composite.

However, this algorithm is *probabilistic*. This means that the algorithm can make a mistake. Fortunately, one has control over this probability, and can make it arbitrarily small (but not zero).

For the rest of the talk, we shall assume that n > 1 is an *odd* integer. Let $n = p_1^{e_1} \cdots p_r^{e_r}$ be its prime factorisation.

By \mathbb{Z}_n , we shall denote the ring of integers modulo n. We have a ring homomorphism

$$\theta: \mathbb{Z}_n \to \mathbb{Z}_{p_1^{e_1}} \times \cdots \times \mathbb{Z}_{p_r^{e_r}}$$
$$[\mathfrak{a}]_n \mapsto ([\mathfrak{a}]_{p_1^{e_1}}, \cdots, [\mathfrak{a}]_{p_r^{e_r}}).$$

In fact, the Chinese Remainder Theorems tells us that the above is an isomorphism. This gives us a group isomorphism between the group of invertible elements of the two rings as

$$(\mathbb{Z}_{n})^{*} \xrightarrow{\cong} (\mathbb{Z}_{p_{1}^{e_{1}}})^{*} \times \cdots \times (\mathbb{Z}_{p_{r}^{e_{r}}})^{*}. \tag{1}$$

Several probabilistic primality tests, including the Miller–Rabin test, have the following general structure.

Define \mathbb{Z}_n^+ to be the set of nonzero elements of \mathbb{Z}_n . Note that $|\mathbb{Z}_n^+| = n-1$. Moreover, $\mathbb{Z}_n^+ = \mathbb{Z}_n^+$ iff n is prime. Suppose also that we define a set $L_n \subseteq \mathbb{Z}_n^+$ such that:

- 1. there is an efficient algorithm that on input n and $\alpha \in \mathbb{Z}_n^+$, determines if $\alpha \in L_n$;
- 2. if n is prime, then $L_n = \mathbb{Z}_n^*$; and
- 3. if n is composite, $|L_n| \leqslant c(n-1)$ for some universal constant c < 1.

Algorithm. To test for primality, we set a "repetition parameter" k, and choose random elements $\alpha_1, \ldots, \alpha_k \in \mathbb{Z}_n^+$. If $\alpha_i \in L_n$ for all $i \in \{1, \ldots, k\}$, then we output true; otherwise, we output false.

Observation 1. Let us note some properties of the above algorithm.

- 1. The algorithm is efficient since we can check $\alpha \in L_n$ efficiently.
- 2. If n is prime, then the algorithm outputs true, and it does so *correctly*.
- 3. If n is composite, then the algorithm may output true, with probability at most c^k .

In particular, note that there is a *one-sided error*. In fancy language, this is a *Monte Carlo algorithm*.

§2. First attempt

We now try to define a suitable candidate for L_n .

Definition 2.

$$L_n := \{ \alpha \in \mathbb{Z}_n^+ : \alpha^{n-1} = 1 \}.$$
 (2)

Note that we can test $\alpha \in L_n$ efficiently, using a repeated-squaring algorithm.

Observation 3. It is easy to see that $L_n \subseteq \mathbb{Z}_n^*$. Indeed, α^{n-2} acts as the inverse of $\alpha \in L_n$. However, one can even note that L_n is a *subgroup* of \mathbb{Z}_n^* . Indeed, defining $\phi : \mathbb{Z}_n^* \to \mathbb{Z}_n^*$ to be the (n-1)-power map $x \mapsto x^{n-1}$, one sees that $L_n = \ker(\phi)$.

Theorem 4. If n is prime, then $L_n = \mathbb{Z}_n^*$. If n is composite and $L_n \subsetneq \mathbb{Z}_n^*$, then $|L_n| \leqslant \frac{1}{2}(n-1)$.

Proof. The first statement is clear. For the second, one recalls that L_n is a subgroup of Z_n^* . Thus, $\frac{|\mathbb{Z}_n^*|}{|L_n|}$ is a positive integer. Therefore, if the integer is not 1, it is at least 2. Hence, we see

$$|L_{\mathfrak{n}}| \leqslant \frac{1}{2} |\mathbb{Z}_{\mathfrak{n}}^*| \leqslant \frac{1}{2} (\mathfrak{n} - 1).$$

However, there *are* infinitely many odd composite n for which $L_n = \mathbb{Z}_n^*$ and thus, they cannot be ignored.

Definition 5. An odd composite number n such that $L_n = \mathbb{Z}_n^*$ is called a *Carmichael number*.

Example 6. The smallest Carmichael number is $561 = 3 \cdot 11 \cdot 17$.

Theorem 7. $\mathfrak n$ is a Carmichael number iff $\mathfrak n$ is of the following form:

- 1. $n = p_1 \cdots p_r$ for distinct primes p_i ,
- 2. $r \geqslant 3$,
- 3. $(p_i 1) \mid (n 1) \text{ for all } i \in \{1, \dots, r\}.$

Proof. Let $n = p_1^{e_1} \cdots p_r^{e_r}$ be a Carmichael number. Recalling (1), we have

$$\mathbb{Z}_n^* \cong \mathbb{Z}_{\mathfrak{p}_1^{\mathfrak{e}_1}}^* \times \cdots \times \mathbb{Z}_{\mathfrak{p}_r^{\mathfrak{e}_r}}^*.$$

Since n-1 annihilates the left group, it annihilates the right group. But this happens iff

$$p_i^{e_i-1}(p_i-1) | (n-1)$$

for all $i \in \{1, ..., r\}$ (since each factor on the right is a cycle group). In particular, $(p_i - 1) \mid (n - 1)$. Moreover, if $e_i > 1$ for some i, then $p_i \mid n - 1$, a contradiction. Thus, $e_i = 1$ for all i.

Now, we must show that $r \ge 3$. For the sake of contradiction, assume that r = 2. In this case, we have $n = p_1p_2$ for some $p_1 > p_2$. We note that

$$n-1 = p_1p_2 - 1 = (p_1 - 1)p_2 + (p_2 - 1).$$

The above shows that $p_1 - 1 \mid p_2 - 1$, a contradiction since $p_1 > p_2$.

Conversely, suppose n has the given form. Let $\mathfrak a$ be coprime to n and hence, to each $\mathfrak p_i$. Then, by Fermat's Little Theorem, we have $\mathfrak a^{\mathfrak p_i-1}\equiv 1\mod \mathfrak p_i$. Since $\mathfrak n-1$ is a multiple of $\mathfrak p_i-1$, we get

$$a^{n-1} \equiv 1 \mod p_i$$

for all $i \in \{1, ..., r\}$. By the Chinese Remainder Theorem, we are now done. \Box

§3. The Miller-Rabin test

We now define a new set L'_n as follows.

Definition 8. Let $n-1=t2^h$ where t is odd, and $h \ge 1$.

$$L'_{n} := \{ \alpha \in \mathbb{Z}_{n}^{+} : \alpha^{t2^{h}} = 1 \text{ and}$$

$$\alpha^{t2^{j+1}} = 1 \Rightarrow \alpha^{t2^{j}} = \pm 1$$
for $j = 0, \dots, h-1 \}.$
(3)

The Miller-Rabin test uses this set L'_n . By definition, it is clear that $L'_n \subseteq L_n$, since we have the condition (2) from earlier.

In fact, L'_n is precisely the set of those elements of L_n which also satisfy (3).

Testing whether a given $\alpha \in \mathbb{Z}_n^+$ belongs to L_n' can be done using the following algorithm:

Algorithm (Testing membership).

- 1. $\beta \leftarrow \alpha^t$
- 2. if $\beta = 1$ then return true
- 3. for $j \leftarrow 0$ to h 1 do
 - if $\beta = -1$ then return true
 - if $\beta = 1$ then return false
 - $\beta \leftarrow \beta^2$
- 4. return false

This algorithm runs in time $O(len(n)^3)$ and thus, satisfies the first criteria.

Theorem 9. If n is prime, then $L'_n = \mathbb{Z}_n^*$. If n is composite, then $|L'_n| \leq \frac{1}{4}(n-1)$.

Proof. Case 1. n is prime.

Note that we have $L'_n \subseteq L_n = \mathbb{Z}_n^*$. Thus, it suffices to prove that $L_n \subseteq L'_n$. But this follows because $x^2 = 1 \Rightarrow x = \pm 1$ in a field.

Case 2. $n = p^e$ for a prime $p \ge 3$ and $e \ge 2$.

Recall that L_n is the kernel of the (n-1)-power map. Since \mathbb{Z}_n^* is cyclic, it follows that $|L_n| = gcd(\phi(n), n-1)$. We can explicitly calculate it to get

$$\left|L_n'\right| \leqslant |L_n| = gcd(p^{e-1}(p-1), p^e-1) = p-1 = \frac{p^e-1}{p^{e-1}+\dots+1} \leqslant \frac{n-1}{4}.$$

Case 3. $n = p_1^{e_1} \cdots p_r^{e_r}$ is the standard prime factorisation of n, with r > 1.

Let $\theta: \mathbb{Z}_n \to \mathbb{Z}_{p_1^{e_1}} \times \cdots \times \mathbb{Z}_{p_r^{e_r}}$ be the ring isomorphism from earlier.

Write $n-1=t2^h$ and $\phi(p_i^{e_i})=t_i2^{h_i}$ in the usual way, and let $g:=\min\{h,h_1,\ldots,h_r\}$. Note that $g\geqslant 1$, and that each $\mathbb{Z}_{p_i^{e_i}}^*$ is a cyclic group of order $t_i2^{h_i}$.

We first show that $\alpha^{t2^g}=1$. By definition of L_n' , we may assume g< h. Now, suppose $\alpha^{t2^g}\neq 1$, and let j be the smallest index in $g,\ldots,h-1$ such that $\alpha^{t2^{j+1}}=1$. By definition of L_n' , we have $\alpha^{t2^j}=-1$. Let i be such that $g=h_i$. Writing $\theta(\alpha)=(\alpha_1,\ldots,\alpha_r)$, we have $\alpha_i^{t2^j}=-1$. Thus, the order of α_i^t (in $\mathbb{Z}_{p_i^e}^{\epsilon_i}$) is equal to 2^{j+1} . But this is a contradiction since

it does not divide
$$\left|\mathbb{Z}_{p_i^{e_i}}^*\right| = t_i 2^{h_i}.$$
 $(::j \geqslant g = h_i)$

For $j=0,\ldots,h$, define ρ_j to be the $(t2^j)$ -power map on \mathbb{Z}_n^* . From the previous claim, and

the definition of L_n' , it follows that $\alpha^{t2^{g-1}}=\pm 1 \ \forall \alpha\in L_n'$. Thus, $L_n'\subseteq \rho_{g-1}^{-1}(\{\pm 1\})$ and hence,

$$|L_n|' \leqslant 2|\ker(\rho_{g-1})|. \tag{4}$$

Also,

$$|ker(\rho_j)| = \prod_{i=1}^r gcd(t_i 2^{h_i}, t 2^j) \qquad \qquad \forall j \in \{0, \dots, h\}.$$

Since $g \le h$ and $g \le h_i$ for all i, we get

$$2^{r}|ker(\rho_{g-1})| = |ker(\rho_{g})| \leqslant |ker(\rho_{h})|. \tag{5}$$

Combining (4)-(5), we get

$$\left|L_n'\right|\leqslant 2^{-r+1}|ker(\rho_h)|=\frac{|L_n|}{2^{r-1}}.$$

If $r\geqslant 3$, then we are done since $|L_n|\leqslant |Z_n^*|\leqslant n-1$, and $2^{r-1}\geqslant 4.$

If r = 2, then n is not a Carmichael number and thus,

$$\frac{|L_n|}{2^{r-1}} = \frac{|L_n|}{2} \leqslant \frac{1}{4}(n-1),$$

and we are again done.