

时间敏感网络的工业需求和场景

中国科学院沈阳自动化研究所 副研究员 李栋

沈阳自动化研究所基本情况

沈自所本部

无锡中心 扬州中心

- 义乌中心 广州分所

- 成立于1958年,国立科研机构,直属于中国科学院;
- 三大方向: 机器人、自动化、光电信息
- 员工1400余人,研究生300余人,2位工程院院士
- 设有6个博士培养点、8个硕士培养点、2个博士后科研流动站。
- 除沈阳本部外,在多个城市设有分支机构。
- 全所每年科研经费16亿多元,拥有10余家所投资控股或合资的高新产业公司和3家上市公司。

沈阳自动化研究所基本情况

十余个国家及省部级重点实验室和工程中心的依托单位,孵化培育了新松机器人等 高新技术公司

国家重点实验室、工程中心

省部级 重点实验室、工程中心

培育公司

沈阳新松机器人自动化股份有限公司 沈阳中科博微自动化技术有限公司

沈阳芯源微电子设备有限公司

沈阳中科奥维科技股份有限公司 沈阳聚德视频技术有限公司

辽宁省先进制造工程技术研究中心

辽宁省雷达系统研究与应用技术重点实验室

辽宁省图像理解与视觉计算重点实验室 辽宁省工业物联网重点实验室

辽宁省工业通信与控制系统重点实验室

辽宁省数字化协同管理重点实验室

中国科学院光电信息处理重点实验室

中国科学院网络化控制系统重点实验室

网络化控制系统

国家地方联合工程研究中心

国家机器人标准化总体组秘书处

国家机器人质量监督检验中心

国家机器人检测与评定中心

机器人技术国家工程研究中心

机器人学国家重点实验室

目录

当前工业网络体系架构

工业发展对网络的需求

基于TSN工厂网络愿景

目录

当前工业网络体系架构

工业发展对网络的需求

基于TSN工厂网络愿景

典型的过程自动化系统

- ▶ 过程自动化通常是指石油、化工、电力、冶金、轻工、建材、 核能等工业生产中连续、慢速的或按一定周期程序进行的生产 过程自动控制,它是自动化技术的重要组成部分。
- ▶ 在现代化工业生产过程中,过程控制技术正在为实现各种最优的技术经济指标、提高经济效益和劳动生产率、改善劳动条件、保护生态环境等起着越来越大的作用。

典型的过程自动化系统

过程自动化的特点

- ▶生产过程中发生缓慢的物理、化学反应;
- ▶生产过程的模型非常复杂,不确定因素多;
- ▶生产过程需要被监测的状态信息多;
- ▶相比于离散自动化,过程自动化的控制系统<mark>采样时间较长</mark>。

典型的离散自动化系统

▶如汽车、船舶、电子设备、机床、飞机、火箭、武器装备、等制造业的自动化,都属于离散自动化。通常指产品由多个零部件构成,经过一系列并不连续的工序加工最终装配而成。一般都包含零部件加工、零部件装配等过程。

典型的离散自动化系统

离散自动化的特点

- ▶ 生产过程中基本上没有发生物质改变,只是物料的形状和组合 发生改变,即最终产品是由各种物料装配而成;
- ▶ 与过程控制系统的结构差异不大,只是在功能的着重点上的不同,过程控制着重于闭环控制及数据处理。离散控制着重于逻辑和开关量的控制,也可实现模拟量控制;
- ▶ 相比于过程自动化,离散自动化的控制系统采样时间更短。

当前工业自动化制造金字塔体系

在下图的制造业金字塔中,美国标准院推荐了一种常用的参考模型(ISA-95),是 当前自动化企业设计实现工业网络的主要参考标准

信息网络: 高带宽

低带宽

当前工业自动化制造金字塔体系

· 在下图的制造业金字塔中,美国标准院推荐了一种常用的参考模型(ISA-95),是 当前自动化企业设计实现工业网络的主要参考标准

企业决策层进行全局生产策略规划管理

ERP

• 企业决策层主要负责整个企业的商业计划信息化部署,逻辑工厂生产计划制定,商业管理等。具体而言指的是建立基础工厂的生产计划,材料使用计划,材料及商品的传递和运输计划,通常情况下由ERP(企业资源计划系统),PLM(产品生命周期管理系统),CRM(客户关系管理系统)等组成

舌 彩 裏 SCADA,总控PLC,DCS

程控制层完成与底层直接控制设备的 数据采集、监控,并进行流程控制

DNC,运动控制器,HMI

基础控制层实现流程控制 和管理监控等功能

IO,机器人,传感器,仪器仪表

<mark>没备层</mark>是生产制造 的实际执行者 控制网络:

高实时

当前工业自动化制造金字塔体系

· 在下图的制造业金字塔中,美国标准院推荐了一种常用的参考模型(ISA-95),是 当前自动化企业设计实现工业网络的主要参考标准

> 企业决策层进行全局生产策略规划管理 ERP
>
> 生产执行层对实际的生产进行统一 管理配置

信息网络:高带宽 任实时

• 生产执行层针对生产制造的运营进行管理和调度,详细制定车间级或产线级的生产计划以及对生产进行可靠性保障。具体而言为企业提供包括制造数据管理、计划排程管理、生产调度管理、库存管理、质量管理、人力资源管理、工作中心/设备管理、工具工装管理、采购管理、成本管理、项目看板管理、生产过程控制、底层数据集成分析、上层数据集成分解等管理模块

DNU,冱驯狂刑楍,用WII

和管理监控等功能

IO,机器人,传感器,仪器仪表

<mark>设备层</mark>是生产制造 的实际执行者 控制网络: 低带宽 高实时

当前工业自动化制造金字塔体系

· 在下图的制造业金字塔中,美国标准院推荐了一种常用的参考模型(ISA-95),是 当前自动化企业设计实现工业网络的主要参考标准

企业决策层进行全局生产策略规划管理
ERP

生产执行层对实际的生产进行统一管理配置

SCADA,总控PLC,DCS

过程控制层完成与底层直接控制设备的数据采集、监控,并进行流程控制
集

 过程控制层完成与底层直接控制设备的数据采集、监控,并进行流程控制,在数据交互、数据存储和应用控制 三个层面进行功能的设计和开发,该层是工业控制网络层与信息网络层的中间层,上层系统通过过程控制层采 集下层生产执行设备的数据信息、状态信息等;下层生产执行设备通过过程控制层执行上层下发的生产任务计划

当前工业自动化制造金字塔体系

· 在下图的制造业金字塔中,美国标准院推荐了一种常用的参考模型(ISA-95),是 当前自动化企业设计实现工业网络的主要参考标准

企业决策层进行全局生产策略规划管理

ERP

生产执行层对实际的生产进行统一

信息网络:

基础控制层是对生产执行单元、终端实现流程控制及管理监控作用,针对不同的生产执行单元和终端,有着不同的系统,比如,DNC是针对数控机床设备提供的管理、控制、监控系统;运动控制器是针对机器人提供管理、配置、控制、调试等功能;

关 划

DNC,运动控制器,HMI

基础控制层实现流程控制 和管理监控等功能

数据采集、监控,并进行流程控制

IO,机器人,传感器,仪器仪表

<mark>设备层</mark>是生产制造 的实际执行者 控制网络: 低带宽 高空时

当前工业自动化制造金字塔体系

在下图的制造业金字塔中,美国标准院推荐了一种常用的参考模型 (ISA-95) , 是 当前自动化企业设计实现工业网络的主要参考标准

设备层是生产制造的实际执行者,也是生产数据的提供者,比如,机床设备、机器人设备是生产制造的实际执 行者;传感器、IO设备、工业仪器仪表是生产过程中,采集生产数据, 环境数据等信息的数据提供者

和管理监控等功能

IO,机器人,传感器,仪器仪表

设备层是生产制造 的实际执行者

部分典型工业应用通信指标要求

Scenario	End-to- end latency	Jitter	Reliability	User experienced data rate	Payload size	Connection density
Tactile interaction	0,5 ms	TBC	[99,999%]	[Low]	[Small]	[Low]
Discrete automation – motion control	1 ms	1 μs	99,9999%	1 Mbps up to 10 Mbps	Small	100 000/km ²
Electricity distribution – high voltage	5 ms	1 ms	99,9999%	10 Mbps	Small	1 000/km ²
Intelligent transport systems	10 ms	2 ms	99,9999%	10 Mbps	Small to big	1 000/km ²
Remote control	[5 ms]	TBC	[99,999%]	[From low to 10 Mbps]	[Small to big]	[Low]
Discrete automation	10 ms	1ms	99,99%	10 Mbps	Small to big	100 000/km ²
Electricity distribution – medium voltage	25 ms	25 ms	99,9%	10 Mbps	Small to big	1 000/km ²
Process automation – remote control	50 ms	20 ms	99,9999%	1 Mbps up to 100 Mbps	Small to big	1 000/km ²
Process automation – monitoring	50 ms	20 ms	99,9%	1 Mbps	Small	10 000/km ²

工业以太网概述

➤ 工业以太网技术是普通以太网技术在控制网络延伸的产物,工业网络与传统办室网络相比,有一些不同之处:

	办公网络	工业网络
应用场合	普通办公场合	工业场合、工况恶劣, 抗干扰性要求较高
拓扑结构	支持线形、环形、星形等结 构	支持线形、环形、星形等结构,并便于各 种结构的组合和转换,简单的安装, 最大的灵活性和模块性,高扩展能力
可用性	一般的实用性需求,允许网 络故障时间以秒或分钟 计	极高的实用性需求,允许网络故障时间< 300ms以避免生产停顿
网络监控和维护	网络监控必须有专人员使用 专用工具完成	网络监控成为工厂监控的一部分,网络模 块可以被HMI软件如Win CC监控,故障 模块容易更换

工业以太网分类

根据工业以太网协议的实时通信实现方式,将工业以太网分为三类:

> 通用硬件、标准

Modbus/TCP、Ethernet/IP、PROFINET/CbA(版本1)采用这种方式。使用标准TCP/IP协议和通用以太网控制器。这种方式下,所有的实时数据(如过程数据)和非实时数据(如参数配置数据)均通过TCP/IP协议传输。其优点是成本低廉,实现方便,完全兼容通用以太网。在具体实现中,某些产品可能更改/优化了TCP/IP协议以获得更好的性能,但其实时性始终受到底层结构的限制。

工业以太网分类

▶ 通用硬件、自定义实时数据传输协议

Ethernet、Powerlink、PROFINET/RT(版本2)采用这种方式。采用通用以太网控制器,但不使用TCP/IP协议来传输实时数据,而是定义了一种专用的包含实时层的实时数据的实时是解析以,用来传输对实时性要求很高的数据。TCP/IP协议栈可能依然存在,用来传输非实时数据,但是其对以太网的读取受到实时层(Timing-Layer)的限制,以提高实时性能。这种结构的优点是实时性较强,硬件与通用以太网兼容

工业以太网分类

► 专用硬件、自定义实时数据传输协议 POWERLINK、SERCOS-III、

PROFINET/IRT(版本3)采用这种方式。这种方式前一种方式的基础上底层使用专有以太网控制器(至少在从站侧),以进一步优化性能。其优点是实时性强,缺点是成本较高,需使用专有协议芯片、交换机等。

当前工业网络架构

- ・ IT网络 (信息网) 与OT网络 (控制网) 分离的层次化结构
- · IT网基本成熟,以标准以太网协议为主
- · OT网使用多种工业以太网/现场总线协议,不同厂商根据场景和出于商业利益等方 面的考虑开发了数十种很难相互兼容的通信协议
- ・ 当前工业网络具有分层异构的特点,现场存在大量异构的有线和无线网络,这些网络的协议格式、管理方式、传输介质各不相同,IT层和OT层之间的通信需要进行低效的协议转换

目录

当前工业网络体系架构

工业发展对网络的需求

基于TSN工厂网络愿景

智能制造的纵向集成需求

由"分层、分域"到"跨层、跨域"的扁平化发展

传统方式:

将一个复杂问题分 为相对简单的不同 层次,逐层解决问 题

工业自动化体系的变革

当前自动化系统: 分层架构、信息孤岛

未来自动化系统: 物联网+云计算+大数据分析

离散行业柔性生产案例

• 现状:

- ✓ 某家电装配线,年产600万台,自动化率超过60%,良品率96%。
- ✓ 装配过程为串行生产,工艺分为备料、两器组装、机芯组装、外壳组装、 总体检测、包装入库
- ✓ 可以通过人工实现混线装配,兼容3个主要型号,人员培训需要3个月, 混装切单过程需要10~20分钟工序调整时间
- ✓ 工艺缺陷、新型号调整由30人的整改组实施工艺调整,新型号投产则需要试产10~15天,用于人员熟练加工流程

离散行业柔性生产需求

减人

• 自动化率偏低,有较的大人力成本压力,需要减少生产线上的工人数量

增效

- 批量定制模式下工艺调整频繁,导致生产效率低下,产能不足
- 自动化产线普遍柔性程度不足,难以满足快速工艺调整需求, 需要支持柔性制造的生产线,实现快速转产。

品控

- 检测粒度不足,产品质量难以严格把控,良品率波动较大
- 普遍采用抽检模式,质量追溯能力有限,缺乏有效的全检技术手段,需要细粒度的品质控制手段,对产品质量进行追溯

离散行业柔性生产管控系统

• 解决方案: 工艺过程由紧耦合发展成松耦合

工位模块化的加工装配工艺

特点:

- ✓ 制造单元内工艺重构,生产工序紧耦合
- ✓ 批次级抽检,工艺质量无法动态调整

特点:

- ✓ 生产工序松耦合,产线级动态重构,工序分解重排
- ✓ 单件化质量检测,工艺质量支持动态调整

离散行业柔性生产管控系统

- 解决方案
 - 面向生产流程的动态服务编程技术:解决基于Web服务的生产工艺与设备资源在线重构问题

动态调度服务

订单激增

匹配条件

✓ 工位类型: 装配

軍编程过程

- ✓ 前台对象拖拽
- ✓ 工位模型后台关联
- ✓ I/O变量自动匹配
- ✓ 生产约束自动查询
- ✓ 数据库自动更新

命令执行过程

- ✓ BPEL序列解析
- ✓ 命令与web服务映射
 - ✓ 转换PLC信号量
 - ✓ 分发命令

目录

当前工业网络体系架构

工业发展对网络的需求

基于TSN工厂网络愿景

基于TSN的工厂网络愿景

敬请各位专家老师指教!

致谢

