Alphabet Applicant Success Prediction Report

Deep learning and neural networks were used to determine if applicants would be successfully funded by Alphabet Soup, whom previously funded over 34,000 organizations.

Data Processing

The dataset removed any irrelevant information; therefore, EIN and NAME were dropped from the model. The remaining columns were considered features for the model. Although NAME was added back in the second test. CLASSIFICATION and APPLICATION_TYPE was replaced with 'Other due to high fluctuation. The data was split into training and testing sets of data. The target variable for the model is "IS_SUCCESSFUL" and is verified by the value, 1 was considered yes and 0 was no. APPLICATION data was analyzed, and CLASSIFICATION's value was used for binning. Each unique value used several data point as a cutoff point to bin "rare" categorical variables together in a new value, 'Other'. Afterwards checked to see if binning was successful. Categorical variables were encoded by 'pd.get_dummies().

Compiling, Training, and Evaluation the Model

Neural Network was applied on each model multiple layers, three in total. The number of features dictated the number of hidden nodes.

```
[ ] # Define the model - deep neural net, i.e., the number of input features and hidden nodes for each layer.
number_input_features = len( X_train_scaled[0])
hidden_nodes_layer1=7
hidden_nodes_layer2=14
hidden_nodes_layer3=21
nn = tf.keras.models.Sequential()

nn = tf.keras.models.Sequential()

# First hidden layer
nn.add(tf.keras.layers.Dense(units=hidden_nodes_layer1, input_dim=number_input_features, activation='relu'))

# Second hidden layer
nn.add(tf.keras.layers.Dense(units=hidden_nodes_layer2, activation='relu'))

# Output layer
nn.add(tf.keras.layers.Dense(units=1, activation='sigmoid'))

# Check the structure of the model
nn.summary()
```

A three-layer training model generated 477 parameters. The first attempt came close at 72% which was under the desired 75%.

Model: "sequential_1"

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 7)	350
dense_1 (Dense)	(None, 14)	112
dense_2 (Dense)	(None, 1)	15

Total params: 477 Trainable params: 477 Non-trainable params: 0

```
[ ] # Evaluate the model using the test data
  model_loss, model_accuracy = nn.evaluate(X_test_scaled,y_test,verbose=2)
  print(f"Loss: {model_loss}, Accuracy: {model_accuracy}")
```

268/268 - 0s - loss: 0.5519 - accuracy: 0.7278 - 283ms/epoch - 1ms/step Loss: 0.5519309639930725, Accuracy: 0.7278134226799011

Optimization

The second attempt added 'NAME' back into the dataset, this time I achieved 79% which was 4% over target. A total of 3,298 params.

Model: "sequential 1"

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 7)	3171
dense_1 (Dense)	(None, 14)	112
dense_2 (Dense)	(None, 1)	15

_ . .

Total params: 3,298 Trainable params: 3,298 Non-trainable params: 0

Deep learning models should have multiple layers, since it is machined based it teaches a computer to filter inputs through the layers to learn how to predict and classify information.

Evaluate the model using the test data
model_loss, model_accuracy = nn.evaluate(X_test_scaled,y_test,verbose=2)
print(f"Loss: {model_loss}, Accuracy: {model_accuracy}")

268/268 - 0s - loss: 0.4647 - accuracy: 0.7869 - 229ms/epoch - 856us/step Loss: 0.4646620452404022, Accuracy: 0.7869387865066528