ECON21030 (S25): Econometrics - Honors

Lecturer: Joseph Hardwick Notes by: Aden Chen

Tuesday 25th March, 2025

Contents

1	Introduction				
2	Probability				
	2.1	Expectation	4		
	2.2	Moments	4		

1 Introduction

- The "small bin" problem, dimension reduction, and linearity.
- Given the model $y_i = \beta x_i + \epsilon_i$, ϵ_i is the **error**, and $\hat{\epsilon}_i = y_i \hat{y}_i$ is the **residual**. The residual is sample-dependent.
- $-\min_b \sum |x_i a bx_i|$ gives an estimate of the conditional median of y given x. This is called the "quantile regression."
 - $\min_b \sum |x_i a bx_i|^2$ gives the conditional expectation function $\mathrm{E}[Y|X]$. This is called the "ordinary least squares."

2 Probability

Definition 2.1. A random variable X is **absolutely continuous** if there exists a density function f_X such that

$$F_X(x) = \int_{-\infty}^x f_X(t) \, \mathrm{d}t.$$

Remark 2.2. Absolutely continuous distributions assign probability 0 to any finite set of points.

2.1 Expectation

Proposition 2.3.

- E is linear.
- If $X \le Y$ with probability 1, then $E X \le E Y$.

Theorem 2.4 (Jensen's Inequality). *If* X *is such that* E X *and* E g(X) *exist and* g *is convex, then*

$$g(EX) \le Eg(X)$$

where the inequality is strict if g is strictly convex and X is not constant.

Proof. From the convexity of g we know $g(x) \ge g(y) + g'(y)(x - y)$ for any x and y. Setting $y = \mu =: E X$ gives

$$g(X) \ge g(\mu) + g'(\mu)(X - \mu), \quad \forall x, y.$$

Taking expectation on both sides gives the desired result.

Example 2.5. Wages are often modeled using a log-normal distribution: $\log w \sim \mathcal{N}(\mu, \sigma^2)$. Then, $E \log w = \mu$, but $E w = E(\exp \log w) \geq e^{\mu}$ (the inequality is strict when $\sigma^2 > 0$). It turns out that $E w = \exp(\mu + \sigma^2/2)$.

2.2 Moments

Definition 2.6. 'If $E(X^k)$ exists, then

• $E(X^k)$ is the **k-th moment of** X.

• $E[(X - EX)^k]$ is the *k*-th central moment of *X*. The case k = 2 gives the variance of *X*.

Theorem 2.7 (Markov's Inequality). *If* $X \ge 0$ *and* c > 0, *then*

$$\mathbb{P}(X \ge c) \le \frac{\mathrm{E}(X)}{c}.$$

(Equality is attained when $\mathbb{P}(X = 0 \text{ or } X = c) = 1.$)

Proof. Construct

$$Y \coloneqq c \cdot \mathbb{1}_{\{x \ge c\}}(X).$$

Then $Y \leq X$ and

$$E(Y) = c \cdot \mathbb{P}(X \ge c) \le E(X).$$

Theorem 2.8 (Chebychev's Inequality). *If* c > 0, *then for any* μ *we have*

$$\mathbb{P}(|X - \mu| \ge c) \le \frac{\mathrm{E}[(X - \mu)^2]}{c^2}.$$

Proof. Apply Markov's inequality to $(X - \mu)^2$.