

FCC PART 15.247 TEST REPORT

For

XIAMEN RONGTA TECHNOLOGY CO.,LTD.

3F-1/E Building,No.195 Gaoqishe, Gaodian Village, Dianqian Street Office, Huli District, Xiamen City, China

FCC ID: 2AD6G-ACE-G1YB

Report Type: Product Name:

Original Report Thermal Receipt Printer

Report Number: RXM180314051-00B

Report Date: 2018-05-23

Jerry Zhang

EMC Manager

Reviewed By:

Bay Area Compliance Laboratories Corp. (Dongguan)

Jerry Zhang

Test Laboratory: No.69 Pulongcun, Puxinhu Industry Area,

Tangxia, Dongguan, Guangdong, China

Tel: +86-769-86858888 Fax: +86-769-86858891 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Dongguan).

This report must not be used by the customer to claim product certification, approval, or endorsement by A2LA* or any agency of the Federal Government. * This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "*"

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
Objective	4
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
MEASUREMENT UNCERTAINTY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EUT Exercise Software	
EQUIPMENT MODIFICATIONS	6
LOCAL SUPPORT EQUIPMENT LIST AND DETAILS	6
SUPPORT CABLE LIST AND DETAILS	
CONFIGURATION OF TEST SETUP	
SUMMARY OF TEST RESULTS	8
FCC §15.247 (i) & §1.1310 & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)	9
APPLICABLE STANDARD	9
FCC §15.203 - ANTENNA REQUIREMENT	10
APPLICABLE STANDARD	10
ANTENNA CONNECTOR CONSTRUCTION	10
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	11
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER SETUP	
TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST EQUIPMENT LIST AND DETAILS.	
TEST DATA	12
FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS	15
APPLICABLE STANDARD	
EUT Setup	15
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
Test Data	
FCC §15.247(a) (1) - CHANNEL SEPARATION TEST	
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE TEST DATA	
FCC §15.247(a) (1) – 20 dB BANDWIDTH TESTING	
APPLICABLE STANDARD	
TEST PROCEDURE	

TEST EQUIPMENT LIST AND DETAILS.	31
Test Data	
FCC §15.247(a) (1) (iii) - QUANTITY OF HOPPING CHANNEL TEST	37
APPLICABLE STANDARD	37
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS.	37
TEST DATA	37
FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)	41
APPLICABLE STANDARD	41
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	41
Test Data	41
FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT	57
APPLICABLE STANDARD	57
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	57
Test Data	57
FCC §15.247(d) - BAND EDGES TESTING	59
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	
Test Data	60

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

	EUT Name:	Thermal Receipt Printer	
EUT Model:		ACE G1Y	
Multiple Model:		ACE G1A, ACE G1B, ACE G1C, ACE G1D, ACE G1E, ACE G1F, ACE G1H, ACE G1I, ACE G1J	
FCC ID: 2AD6G-ACE-		2AD6G-ACE-G1YB	
Rated Input Voltage:		DC 9V from adapter	
A 1	Model:	DJ-U30S-9	
Adapter Information	Input:	AC 100-240V~ 50/60Hz 0.8A MAX	
Information	Output:	DC 9V , 3A MAX	
External Dimension:		Length (163 mm)*Width (115 mm)*High (105 mm)	
Serial Number:		180314051	
EUT	Received Date:	2018.03.16	

Note: The series product, models ACE G1Y, ACE G1A, ACE G1B, ACE G1C, ACE G1D, ACE G1E, ACE G1F, ACE G1H, ACE G1I, ACE G1J are electrically identical, we selected ACE G1Y for full test, and please refer to the declaration letter for details.

Objective

This report is prepared on behalf of *XIAMEN RONGTA TECHNOLOGY CO.,LTD.* in accordance with Part 2, Subpart J, Part 15, Subparts A and C of the Federal Communications Commission's rules

The tests were performed in order to determine the Bluetooth BDR and EDR mode of EUT compliance with FCC Rules Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Related Submittal(s)/Grant(s)

FCC Part 15C DTS submissions with FCC ID: 2AD6G-ACE-G1YB. FCC Part 15B JBP submissions with FCC ID: 2AD6G-ACE-G1YB.

Test Methodology

All measurements detailed in this Test Report were performed in accordance with ANSI C63.10-2013 "American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices".

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Dongguan).

Measurement Uncertainty

Parameter	Measurement Uncertainty
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±0.61dB
Power Spectral Density, conducted	±0.61 dB
Unwanted Emissions, radiated	30M~200MHz: 4.55 dB,200M~1GHz: 5.92 dB,1G~6GHz: 4.98 dB, 6G~18GHz: 5.89 dB,18G~26.5G:5.47 dB,26.5G~40G:5.63 dB
Unwanted Emissions, conducted	±1.5 dB
Temperature	±1°C
Humidity	±5%
DC and low frequency voltages	±0.4%
Duty Cycle	1%
AC Power Lines Conducted Emission	3.12 dB (150 kHz to 30 MHz)

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.69 Pulongcun, Puxinhu Industry Area, Tangxia, Dongguan, Guangdong, China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 897218,the FCC Designation No. : CN1220.

The test site has been registered with ISED Canada under ISED Canada Registration Number 3062D.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in engineering mode.

EUT Exercise Software

The test software 'RTLBTAPP' configured the maximum power level as below setting:

Test Software Version	RTLBTAPP				
Test Frequency	2402MHz	2441MHz	2480MHz		
GFSK	7	7	7		
π/4-DQPSK	7	7	7		
8DPSK	7	7	7		

Equipment Modifications

No modification was made to the EUT.

Local Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
MAKEN	Cash Drawer	MT-350T	/
DELL	Laptop	PP11L	HLKYGB1
Tenda	Router	D311R	/

Support Cable List and Details

Cable Description	Shielding Type	Ferrite Core	Length (m)	From	То
RJ45 Cable	No	No	10.0	RJ45 port of Router	EUT
RJ11 Cable	No	No	2.00	RJ11 port of EUT	Cash Drawer
USB Cable	No	Yes	5	USB port of Laptop	EUT

Configuration of Test Setup

FCC Rules	Description of Test	Result
§15.247 (i), §1.1310 & §2.1091	Maximum Permissible Exposure (MPE)	Compliance
§15.203	Antenna Requirement	Compliance
§15.207 (a)	Conducted Emissions	Compliance
\$15.205, \$15.209, \$15.247(d)	Spurious Emissions	Compliance
§15.247 (a)(1)	20 dB Bandwidth	Compliance
§15.247(a)(1)	Channel Separation Test	Compliance
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliance
§15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliance
§15.247(b)(1)	Peak Output Power Measurement	Compliance
§15.247(d)	Band Edges	Compliance

FCC §15.247 (i) & §1.1310 & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 15.247(i) and subpart §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

(B) Limits for General Population/Uncontrolled Exposure					
Frequency Range (MHz) Electric Field Strength (V/m) Magnetic Field Strength (A/m) Power Density (mW/cm²)		Averaging Time (minutes)			
0.3–1.34	614	1.63	*(100)	30	
1.34–30	824/f	2.19/f	*(180/f²)	30	
30–300	27.5	0.073	0.2	30	
300–1500	/	/	f/1500	30	
1500-100,000	/	/	1.0	30	

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary:

Prediction of power density at the distance of the applicable MPE limit:

 $S = PG/4\pi R^2$ = power density (in appropriate units, e.g. mW/cm²);

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

Calculated Data:

Frequency Range	Antenna Gain		mana Gain Maximum Power Including Tolerance (cm) Maximum Power Evaluation Distance		Power Density (mW/cm²)	MPE Limit (mW/cm²)	
(MHz)	(dBi)	(numeric)	(dBm)	(mW)	(CIII)	(III vv/ciii)	
2402-2480	2	1.58	8.5	7.08	20.00	0.002	1.0

Note: The Maximum Power Including Tolerance was declared by manufacturer.

Result: Compliance, The device meet FCC MPE at 20 cm distance

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Antenna Connector Construction

The EUT has one internal antenna arrangement for BT, and the antenna gain is 2.0 dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliance.

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC§15.207(a)

EUT Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

The adapter was connected to the main LISN with a 120 V/60 Hz AC power source.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the first LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

Corrected Amplitude & Margin Calculation

The basic equation is as follows:

$$V_C = V_R + A_C + VDF$$

Herein,

 V_C : corrected voltage amplitude V_R : reading voltage amplitude A_c : attenuation caused by cable loss

VDF: voltage division factor of AMN or ISN

The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESCS 30	830245/006	2017-12-11	2018-12-11
R&S	Two-line V-network	ENV 216	101614	2017-12-08	2018-12-08
Unknown	Coaxial Cable	C-NJNJ-50	C-0200-01	2017-09-05	2018-09-05
R&S	L.I.S.N	ESH2-Z5	892107/021	2017-09-25	2018-09-25
R&S	Test Software	EMC32	Version8.53.0	N/A	N/A

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	26.8 °C
Relative Humidity:	61 %
ATM Pressure:	100.5kPa

The testing was performed by Tyler Pan on 2018-05-14.

Test Result: Compliance

Test Mode: Transmitting

AC120V, 60 Hz, Line:

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.300025	43.9	9.000	L1	10.1	16.3	60.2	Compliance
0.349066	42.5	9.000	L1	10.0	16.5	59.0	Compliance
0.415949	42.7	9.000	L1	10.0	14.8	57.5	Compliance
0.443327	41.0	9.000	L1	9.9	16.0	57.0	Compliance
1.239175	45.8	9.000	L1	9.8	10.2	56.0	Compliance
1.259081	47.5	9.000	L1	9.8	8.5	56.0	Compliance

Frequency (MHz)	Average (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment	
0.317235	39.2	9.000	L1	10.1	10.6	49.8	Compliance	
0.381043	38.4	9.000	L1	10.0	9.9	48.3	Compliance	
0.415949	38.7	9.000	L1	10.0	8.8	47.5	Compliance	
0.703777	33.5	9.000	L1	9.8	12.5	46.0	Compliance	
1.117238	41.3	9.000	L1	9.8	4.7	46.0	Compliance	
1.259081	41.9	9.000	L1	9.8	4.1	46.0	Compliance	

AC120V, 60 Hz, Neutral:

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment	
0.307284	43.8	9.000	N	10.1	16.2	60.0	Compliance	
0.349066	44.2	9.000	N	10.0	14.8	59.0	Compliance	
0.415949	43.8	9.000	N	10.0	13.7	57.5	Compliance	
0.536756	38.5	9.000	N	9.9	17.5	56.0	Compliance	
1.190776	44.5	9.000	N	9.8	11.5	56.0	Compliance	
1.259081	48.3	9.000	N	9.8	7.7	56.0	Compliance	

Frequency (MHz)	Average (dBμV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment	
0.300025	40.6	9.000	N	10.1	9.6	50.2	Compliance	
0.384091	40.0	9.000	N	10.0	8.2	48.2	Compliance	
0.415949	38.7	9.000	N	10.0	8.8	47.5	Compliance	
1.090848	38.9	9.000	N	9.8	7.1	46.0	Compliance	
1.162648	40.8	9.000	N	9.8	5.2	46.0	Compliance	
1.259081	41.6	9.000	N	9.8	4.4	46.0	Compliance	

FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Applicable Standard

FCC §15.247 (d); §15.209; §15.205;

EUT Setup

Below 1GHz:

Above 1GHz:

The radiated emission Below 1GHz tests were performed in the 3 meters chamber A, above 1GHz tests were performed in the 3 meters chamber B, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	120 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1MHz	3 MHz	/	PK
Above I GHZ	1MHz	10 Hz	/	AV

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz - 1 GHz, peak and average detection modes for frequencies above 1 GHz.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESCI	100224	2017-12-11	2018-12-11
Sunol Sciences	Antenna	JB3	A060611-1	2017-11-10	2020-11-10
HP	Amplifier	8447D	2727A05902	2017-09-05	2018-09-05
Agilent	Spectrum Analyzer	E4440A	SG43360054	2018-01-04	2019-01-04
ETS-Lindgren	Horn Antenna	3115	000 527 35	2016-01-05	2019-01-04
MITEQ	Amplifier	AFS42-00101800- 25-S-42	2001271	2017-09-05	2018-09-05
Quinstar	Amplifier	QLW-18405536-JO	15964001001	2017-06-27	2018-06-27
Ducommun Technolagies	Horn Antenna	ARH-4223-02	1007726-01 1304	2016-11-18	2019-11-18
E-Microwave	Band-stop Filters	OBSF-2400-2483.5- S	OE01601525	2017-06-16	2018-06-16
Micro-tronics	High Pass Filter	HPM50111	S/N-G217	2017-06-16	2018-06-16
Unknown	Coaxial Cable	C-NJNJ-50	C-0400-01	2017-09-05	2018-09-05
Unknown	Coaxial Cable	C-NJNJ-50	C-0075-01	2017-09-05	2018-09-05
Unknown	Coaxial Cable	C-NJNJ-50	C-1000-01	2017-09-05	2018-09-05
Unknown	Coaxial Cable	C-SJSJ-50	C-0800-01	2017-09-05	2018-09-05
Unknown	Coaxial Cable	C-2.4J2.4J-50	C-0700-02	2017-06-27	2018-06-27
Farad	Test Software	EZ-EMC	V1.1.4.2	N/A	N/A

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit - Corrected Amplitude

Test Data

Environmental Conditions

Temperature:	21.8~24.9 °C
Relative Humidity:	43~51 %
ATM Pressure:	100.9~101 kPa

^{*} The testing was performed by Sunny Cen&Blake Yang on 2018-03-28 and 2018-05-14.

Test Result: Compliance

Test Mode: Transmitting

1) 30MHz-1GHz(GFSK High channel was the worst)

Horizontal:

Frequency (MHz)	Receiver Reading (dBµV)	Detector	Correction Factor (dB/m)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
30.9700	31.49	QP	0.81	32.30	40.00	7.70
108.5700	37.27	QP	-6.77	30.50	43.50	13.00
142.5200	41.06	QP	-5.96	35.10	43.50	8.40
165.8000	42.62	QP	-6.42	36.20	43.50	7.30
235.6400	43.57	QP	-6.37	37.20	46.00	8.80
289.9600	41.53	QP	-4.03	37.50	46.00	8.50

Report No.: RXM180314051-00B

Vertical:

Frequency (MHz)	Receiver Reading (dBµV)	Detector	Correction Factor (dB/m)	Factor Amp. (dB/m) (dBµV/m)		Margin (dB)
30.9700	35.59	QP	0.81	36.40	40.00	3.60
61.0400	46.69	QP	-12.19	34.50	40.00	5.50
142.5200	42.66	QP	-5.96	36.70	43.50	6.80
191.0200	45.79	QP	-7.29	38.50	43.50	5.00
434.4900	39.97	QP	-1.37	38.60	46.00	7.40
466.5000	37.18	QP	-0.58	36.60	46.00	9.40

Report No.: RXM180314051-00B

2)1GHz-25GHz:

BDR Mode (GFSK):

	Reco	eiver	Rx A	ntenna	Cable	Amplifier	Corrected	T,	3.7
Frequency (MHz)	Reading (dBµV)	Detector	Polar (H/V)	Factor (dB/m)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
				Low Chan	nel: 2402	MHz	•		
2402.00	70.43	PK	Н	28.10	1.80	0.00	100.33	N/A	N/A
2402.00	69.78	AV	Н	28.10	1.80	0.00	99.68	N/A	N/A
2402.00	66.74	PK	V	28.10	1.80	0.00	96.64	N/A	N/A
2402.00	65.44	AV	V	28.10	1.80	0.00	95.34	N/A	N/A
2390.00	23.74	PK	Н	28.08	1.80	0.00	53.62	74.00	20.38
2390.00	13.98	AV	Н	28.08	1.80	0.00	43.86	54.00	10.14
4804.00	51.38	PK	Н	32.91	3.17	37.20	50.26	74.00	23.74
4804.00	43.18	AV	Н	32.91	3.17	37.20	42.06	54.00	11.94
7206.00	45.21	PK	Н	35.74	4.82	37.23	48.54	74.00	25.46
7206.00	37.54	AV	Н	35.74	4.82	37.23	40.87	54.00	13.13
			N	Middle Cha	nnel: 244	l MHz			
2441.00	70.47	PK	Н	28.18	1.82	0.00	100.47	N/A	N/A
2441.00	68.84	AV	Н	28.18	1.82	0.00	98.84	N/A	N/A
2441.00	66.51	PK	V	28.18	1.82	0.00	96.51	N/A	N/A
2441.00	64.35	AV	V	28.18	1.82	0.00	94.35	N/A	N/A
4882.00	49.48	PK	Н	33.06	3.27	37.21	48.60	74.00	25.40
4882.00	42.14	AV	Н	33.06	3.27	37.21	41.26	54.00	12.74
7323.00	45.47	PK	Н	36.04	4.62	37.38	48.75	74.00	25.25
7323.00	38.62	AV	Н	36.04	4.62	37.38	41.90	54.00	12.10
	_			High Chan	nel: 2480	MHz			
2480.00	70.49	PK	Н	28.26	1.84	0.00	100.59	N/A	N/A
2480.00	69.93	AV	Н	28.26	1.84	0.00	100.03	N/A	N/A
2480.00	69.23	PK	V	28.26	1.84	0.00	99.33	N/A	N/A
2480.00	68.46	AV	V	28.26	1.84	0.00	98.56	N/A	N/A
2483.50	24.74	PK	Н	28.27	1.84	0.00	54.85	74.00	19.15
2483.50	13.65	AV	Н	28.27	1.84	0.00	43.76	54.00	10.24
4960.00	50.87	PK	Н	33.22	3.23	37.25	50.07	74.00	23.93
4960.00	43.96	AV	Н	33.22	3.23	37.25	43.16	54.00	10.84
7440.00	46.57	PK	Н	36.34	4.41	37.52	49.80	74.00	24.20
7440.00	38.68	AV	Н	36.34	4.41	37.52	41.91	54.00	12.09

EDR Mode ($\pi/4$ -DQPSK):

-	Reco	eiver	Rx A	ntenna	Cable	Amplifier	Corrected	T	24	
Frequency (MHz)	Reading (dBµV)	Detector	Polar (H/V)	Factor (dB/m)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)	
				Low Chan	nel: 2402	MHz				
2402.00	71.44	PK	Н	28.10	1.80	0.00	101.34	N/A	N/A	
2402.00	67.31	AV	Н	28.10	1.80	0.00	97.21	N/A	N/A	
2402.00	67.32	PK	V	28.10	1.80	0.00	97.22	N/A	N/A	
2402.00	62.18	AV	V	28.10	1.80	0.00	92.08	N/A	N/A	
2390.00	23.64	PK	Н	28.08	1.80	0.00	53.52	74.00	20.48	
2390.00	13.56	AV	Н	28.08	1.80	0.00	43.44	54.00	10.56	
4804.00	50.11	PK	Н	32.91	3.17	37.20	48.99	74.00	25.01	
4804.00	40.23	AV	Н	32.91	3.17	37.20	39.11	54.00	14.89	
7206.00	46.87	PK	Н	35.74	4.82	37.23	50.20	74.00	23.80	
7206.00	35.80	AV	Н	35.74	4.82	37.23	39.13	54.00	14.87	
	Middle Channel: 2441 MHz									
2441.00	71.47	PK	Н	28.18	1.82	0.00	101.47	N/A	N/A	
2441.00	68.41	AV	Н	28.18	1.82	0.00	98.41	N/A	N/A	
2441.00	67.54	PK	V	28.18	1.82	0.00	97.54	N/A	N/A	
2441.00	63.85	AV	V	28.18	1.82	0.00	93.85	N/A	N/A	
4882.00	51.34	PK	Н	33.06	3.27	37.21	50.46	74.00	23.54	
4882.00	41.22	AV	Н	33.06	3.27	37.21	40.34	54.00	13.66	
7323.00	47.48	PK	Н	36.04	4.62	37.38	50.76	74.00	23.24	
7323.00	37.24	AV	Н	36.04	4.62	37.38	40.52	54.00	13.48	
				High Chan	nel: 2480	MHz				
2480.00	72.06	PK	Н	28.26	1.84	0.00	102.16	N/A	N/A	
2480.00	68.61	AV	Н	28.26	1.84	0.00	98.71	N/A	N/A	
2480.00	70.49	PK	V	28.26	1.84	0.00	100.59	N/A	N/A	
2480.00	66.51	AV	V	28.26	1.84	0.00	96.61	N/A	N/A	
2483.50	24.73	PK	Н	28.27	1.84	0.00	54.84	74.00	19.16	
2483.50	13.27	AV	Н	28.27	1.84	0.00	43.38	54.00	10.62	
4960.00	50.39	PK	Н	33.22	3.23	37.25	49.59	74.00	24.41	
4960.00	40.12	AV	Н	33.22	3.23	37.25	39.32	54.00	14.68	
7440.00	45.74	PK	Н	36.34	4.41	37.52	48.97	74.00	25.03	
7440.00	35.32	AV	Н	36.34	4.41	37.52	38.55	54.00	15.45	

EDR Mode (8-DPSK):

_	Receiver		Rx Antenna		Cable	Amplifier	Corrected	T	3.6
Frequency (MHz)	Reading (dBµV)	Detector	Polar (H/V)	Factor (dB/m)	loss (dB)	Gain (dB)	Amplitude (dBμV/m)	Limit (dBµV/m)	Margin (dB)
				Low Chan	nel: 2402	MHz			
2402.00	71.40	PK	Н	28.10	1.80	0.00	101.30	N/A	N/A
2402.00	67.01	AV	Н	28.10	1.80	0.00	96.91	N/A	N/A
2402.00	67.86	PK	V	28.10	1.80	0.00	97.76	N/A	N/A
2402.00	63.78	AV	V	28.10	1.80	0.00	93.68	N/A	N/A
2390.00	23.59	PK	Н	28.08	1.80	0.00	53.47	74.00	20.53
2390.00	13.61	AV	Н	28.08	1.80	0.00	43.49	54.00	10.51
4804.00	50.22	PK	Н	32.91	3.17	37.20	49.10	74.00	24.90
4804.00	40.18	AV	Н	32.91	3.17	37.20	39.06	54.00	14.94
7206.00	45.87	PK	Н	35.74	4.82	37.23	49.20	74.00	24.80
7206.00	34.66	AV	Н	35.74	4.82	37.23	37.99	54.00	16.01
			N	Middle Cha	nnel: 244	1 MHz			
2441.00	70.89	PK	Н	28.18	1.82	0.00	100.89	N/A	N/A
2441.00	66.54	AV	Н	28.18	1.82	0.00	96.54	N/A	N/A
2441.00	68.62	PK	V	28.18	1.82	0.00	98.62	N/A	N/A
2441.00	64.54	AV	V	28.18	1.82	0.00	94.54	N/A	N/A
4882.00	51.36	PK	Н	33.06	3.27	37.21	50.48	74.00	23.52
4882.00	40.64	AV	Н	33.06	3.27	37.21	39.76	54.00	14.24
7323.00	46.55	PK	Н	36.04	4.62	37.38	49.83	74.00	24.17
7323.00	35.21	AV	Н	36.04	4.62	37.38	38.49	54.00	15.51
				High Chan	nel: 2480	MHz			
2480.00	72.46	PK	Н	28.26	1.84	0.00	102.56	N/A	N/A
2480.00	68.64	AV	Н	28.26	1.84	0.00	98.74	N/A	N/A
2480.00	70.25	PK	V	28.26	1.84	0.00	100.35	N/A	N/A
2480.00	66.05	AV	V	28.26	1.84	0.00	96.15	N/A	N/A
2483.50	23.23	PK	Н	28.27	1.84	0.00	53.34	74.00	20.66
2483.50	13.32	AV	Н	28.27	1.84	0.00	43.43	54.00	10.57
4960.00	50.16	PK	Н	33.22	3.23	37.25	49.36	74.00	24.64
4960.00	39.97	AV	Н	33.22	3.23	37.25	39.17	54.00	14.83
7440.00	46.35	PK	Н	36.34	4.41	37.52	49.58	74.00	24.42
7440.00	35.74	AV	Н	36.34	4.41	37.52	38.97	54.00	15.03

18000.00018850.00 19700.00 20550.00 21400.00 22250.00 23100.00 23950.00

26500.00 MHz

Vertical

Fundamental Test with Band Rejection Filter

FCC §15.247(a) (1) - CHANNEL SEPARATION TEST

Applicable Standard

Frequency hopping systems shall have hoping channel carrier frequencies separated by a minimum of 25 kHz or the 20dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.50 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2017-08-31	2018-08-31
Unknown	Coaxial Cable	C-SJ00-0010	C0010/01	Each Time	/

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

- 1. Set the EUT in transmitting mode, spectrum Bandwidth was set at 30 kHz, maxhold the channel.
- 2. Set the adjacent channel of the EUT maxhold another trace.
- 3. Measure the channel separation.

Test Data

Environmental Conditions

Temperature:	26.1 °C	
Relative Humidity:	52 %	
ATM Pressure:	100.9 kPa	

^{*} The testing was performed by Tiago Huang on 2018-03-28.

Test Result: Compliance.

Please refer to following tables and plots

Test Mode: Transmitting

Mode	Channel	Frequency (MHz)	Channel Separation (MHz)	Limit (MHz)
nnn	Low	2402	0.998	0.57
BDR (GFSK)	Middle	2441	1.002	0.57
(GFSK)	High	2480	1.002	0.57
EDD	Low	2402	0.998	0.81
EDR (π/4-DQPSK)	Middle	2441	1.002	0.81
	High	2480	1.002	0.81
EDR (8-DPSK)	Low	2402	1.002	0.84
	Middle	2441	1.006	0.83
	High	2480	1.002	0.84

Note: Limit= $(2/3) \times 20dB$ *bandwidth*

BDR Mode (GFSK):

Low Channel

Middle Channel

High Channel

EDR Mode (\pi/4-DQPSK):

Middle Channel

High Channel

EDR Mode (8-DPSK):

Low Channel

Middle Channel

High Channel

FCC $\S15.247(a)$ (1) – 20 dB BANDWIDTH TESTING

Applicable Standard

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT on the test table without connection to measurement instrument. Turn on the EUT. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2017-08-31	2018-08-31
Unknown	Coaxial Cable	C-SJ00-0010	C0010/01	Each Time	/

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	26.1 °C
Relative Humidity:	52 %
ATM Pressure:	100.9 kPa

^{*} The testing was performed by Tiago Huang on 2018-03-28.

Test Result: Compliance.

Please refer to following tables and plots

Test Mode: Transmitting

Mode	Channel	Frequency (MHz)	20 dB Bandwidth (MHz)
DDD 14. 1	Low	2402	0.86
BDR Mode (GFSK)	Middle	2441	0.86
(OI SIC)	High	2480	0.86
EDD 14 1	Low	2402	1.21
EDR Mode (π/4-DQPSK)	Middle	2441	1.22
(m+DQISK)	High	2480	1.22
	Low	2402	1.26
EDR Mode (8-DPSK)	Middle	2441	1.25
(0-DI 5K)	High	2480	1.26

BDR Mode (GFSK):

Low Channel

Middle Channel

High Channel

EDR Mode ($\pi/4$ -DQPSK):

Middle Channel

Report No.: RXM180314051-00B

High Channel

EDR Mode (8-DPSK):

Low Channel

Middle Channel

High Channel

FCC §15.247(a) (1) (iii) - QUANTITY OF HOPPING CHANNEL TEST

Applicable Standard

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the Max-Hold function record the Quantity of the channel.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2017-08-31	2018-08-31
Unknown	Coaxial Cable	C-SJ00-0010	C0010/01	Each Time	/

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	26.1 °C
Relative Humidity:	52 %
ATM Pressure:	100.9 kPa

^{*} The testing was performed by Tiago Huang on 2018-03-28.

Test Result: Compliance.

Please refer to following tables and plots

Test Mode: Transmitting

BDR Mode (GFSK):

Frequency Range (MHz)	Number of Hopping Channel	Limit
2400-2483.5	79	≥15

Number of Hopping Channels

EDR Mode ($\pi/4$ -DQPSK):

Frequency Range (MHz)	Number of Hopping Channel	Limit
2400-2483.5	79	≥15

Number of Hopping Channels

EDR Mode (8-DPSK):

Frequency Range (MHz)	Number of Hopping Channel	Limit
2400-2483.5	79	≥15

Number of Hopping Channels

FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

The EUT was worked in channel hopping; the time of single pulses was tested.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2017-08-31	2018-08-31
Unknown	Coaxial Cable	C-SJ00-0010	C0010/01	Each Time	/

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	26.1 °C
Relative Humidity:	52 %
ATM Pressure:	100.9 kPa

^{*} The testing was performed by Tiago Huang on 2018-03-28.

Test Result: Compliance.

Please refer to following tables and plots

Test Mode: Transmitting

BDR Mode (GFSK):

Mode	Channel	Pulse Width (ms)	Dwell Time (s)	Limit (s)	Result	
	Low	0.412	0.132	0.4	Compliance	
DH1	Middle	0.410	0.131	0.4	Compliance	
DIII	High	0.410	0.131	0.4	Compliance	
	Note: Dwell time=Pulse time (ms) × (1600/2/79) ×31.6 s					
	Low	1.675	0.268	0.4	Compliance	
DH3	Middle	1.675	0.268	0.4	Compliance	
DIIS	High	1.675	0.268	0.4	Compliance	
	Note: Dwell time=Pulse time (ms) \times (1600/4/79) \times 31.6 s				.6 s	
	Low	2.928	0.312	0.4	Compliance	
DH5	Middle	2.928	0.312	0.4	Compliance	
DIIS	High	2.928	0.312	0.4	Compliance	
	Note: Dwell time=Pulse time (ms) × (1600/6/79) ×31.6 s					

DH1: Low Channel

DH1: Middle Channel

DH1: High Channel

DH3: Low Channel

28.MAR.2018 22:23:30

DH3: Middle Channel

DH3: High Channel

ate: 28.MAR.2018 22:28:54

DH5: Low Channel

Date: 20.MAR.2010 22:32:4

DH5: Middle Channel

DH5: High Channel

EDR Mode (\pi/4-DQPSK):

Mode	Channel	Pulse Width (ms)	Dwell Time (s)	Limit (s)	Result	
	Low	0.420	0.134	0.4	Compliance	
2DH1	Middle	0.420	0.134	0.4	Compliance	
2ДП1	High	0.420	0.134	0.4	Compliance	
	Note: Dwell time=Pulse time (ms) \times (1600/2/79) \times 31.6 s					
	Low	1.681	0.269	0.4	Compliance	
2DH3	Middle	1.681	0.269	0.4	Compliance	
20113	High	1.681	0.269	0.4	Compliance	
	Note: Dwell time=Pulse time (ms) × (1600/4/79) ×31.6 s					
	Low	2.938	0.313	0.4	Compliance	
2DH5	Middle	2.948	0.314	0.4	Compliance	
20113	High	2.938	0.313	0.4	Compliance	
	Note: Dwell time=Pulse time (ms) \times (1600/6/79) \times 31.6 s					

2DH1: Low Channel

2DH1: Middle Channel

Date: 28.MAR.2018 22:10:38

2DH1: High Channel

Date: 28.MAR.2018 22:10:51

2DH3: Low Channel

2DH3: Middle Channel

2DH3: High Channel

Date: 28.MAR.2018 22:28:07

2DH5: Low Channel

Page 50 of 66

2DH5: Middle Channel

2DH5: High Channel

EDR Mode (8-DPSK):

Mode	Channel		Dwell Time (s)	Limit (s)	Result	
	Low	0.424	0.136	0.4	Compliance	
3DH1	Middle	0.422	0.135	0.4	Compliance	
3DH1	High	0.422	0.135	0.4	Compliance	
	Note: Dwell time=Pulse time (ms) × (1600/2/79) ×31.6 s					
	Low	1.687	0.27	0.4	Compliance	
3DH3	Middle	1.681	0.269	0.4	Compliance	
3DH3	High	1.681	0.269	0.4	Compliance	
	me=Pulse time	$(ms) \times (1600)$	/4/79) ×31.	6 s		
	Low	2.938	0.313	0.4	Compliance	
<i>3DH5</i>	Middle	2.938	0.313	0.4	Compliance	
	High	2.938	0.313	0.4	Compliance	
	Note: Dwell time=Pulse time (ms) \times (1600/6/79) \times 31.6 s					

3DH1: Low Channel

3DH1: Middle Channel

3DH1: High Channel

3DH3: Low Channel

3DH3: Middle Channel

3DH3: High Channel

Date: 28.MAR.2018 22:27:32

3DH5: Low Channel

Page 55 of 66

3DH5: Middle Channel

3DH5: High Channel

FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT

Applicable Standard

According to §15.247(b) (1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts

Test Procedure

- 1. Place the EUT on a bench and set in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Agilent	USB Wideband Power Sensor	U2022XA	MY5417006	2017-12-11	2018-12-11
Unknown	Coaxial Cable	C-SJ00-0010	C0010/01	Each time	N/A

^{*} **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	26.1 °C
Relative Humidity:	52 %
ATM Pressure:	100.9 kPa

^{*} The testing was performed by Tiago Huang on 2018-03-28.

Test Result: Compliance.

Test Mode: Transmitting

Mode	Frequency (MHz)	Peak Conducted Output power (dBm)	Limit (dBm)
BDR Mode (GFSK)	2402	6.50	21
	2441	6.50	21
	2480	5.77	21
EDR Mode (π/4-DQPSK)	2402	7.63	21
	2441	7.63	21
	2480	6.89	21
EDR Mode (8-DPSK)	2402	8.03	21
	2441	8.18	21
	2480	7.24	21

Note: The data above was tested in conducted mode.

FCC §15.247(d) - BAND EDGES TESTING

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW/ VBW of spectrum analyzer to 100/300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2017-08-31	2018-08-31
Unknown	Coaxial Cable	C-SJ00-0010	C0010/01	Each Time	/

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	26.1 °C	
Relative Humidity:	52 %	
ATM Pressure:	100.9 kPa	

^{*} The testing was performed by Tiago Huang on 2018-03-28.

Test Result: Compliance

Single Channel Mode, BDR Mode (GFSK):

Band Edge, Left Side

Report No.: RXM180314051-00B

Band Edge, Right Side

EDR Mode (\pi/4-DQPSK):

Band Edge, Left Side

Report No.: RXM180314051-00B

Band Edge, Right Side

EDR Mode (8-DPSK):

Band Edge, Left Side

Span 14 MHz

Date: 28.MAR.2018 20:38:20

Center 2.4835 GHz

Hopping Mode, BDR Mode (GFSK):

Band Edge, Left Side

1.4 MHz/

Band Edge, Right Side

EDR Mode (\pi/4-DQPSK):

Band Edge, Left Side

Report No.: RXM180314051-00B

Band Edge, Right Side

EDR Mode (8-DPSK)

Band Edge, Left Side

Band Edge, Right Side

***** END OF REPORT *****