Universidad Nacional Autónoma de México Facultad de Ciencias Complejidad Computacional

Tarea 4 Multicommodity Integral Flow

Ángel Iván Gladín García No. cuenta: 313112470 angelgladin@ciencias.unam.mx

4 de octubre 2019

Sea G(V, E) una digráfica, con una función de capacidad c(e) (> 0) definida en las aristas. Vértices s_1, s_2, t_1, t_2 (no necesariamente distintos) ejercen un rol especial: s_1 y s_2 son llamados fuentes y t_1 y t_2 llamados sumideros. Esta información especifica la red.

Un flujo two commodity en una red está definido por dos fucniones $f_1(e)$ y $f_2(e)$, definidas en las atistas, que satifacen las siguientes condiciones:

1. Para cada $e \in E$, $f_1(e) \ge 0$, $f_2(e) \ge 0$ y

$$f_1(e) + f_2(e) \le c(e)$$

2. Para cada producto (commodity) $i \in \{1,2\}$ y cada vértive $v \in V \setminus \{s_i,t_i\}$

$$\sum_{e \in \alpha(v)} f_i(e) = \sum_{e \in \beta(v)} f_i(e)$$

El flujo total F_1 y F_2 , de las funciones del flujo f_1 y f_2 , son definidas por:

$$F_i = \sum_{e \in \alpha(v)} f_i(e) - \sum_{e \in \beta(v)} f_i(e)$$

Se restringe a que $f_1(e)$ y $f_2(e)$ son enteros y se asume que c(e) también lo es. Un problema de flujo entero two-commodity en una red dirigida (D2CIF) está definido como:

Entrada: Un red dirigida N y dos enteros no negativos R_1 y R_2 , llamados requerimientos.

Pregunta: ¿Hay funciones en el flujo entero f_1 y f_2 para N, para las cuales $F_i \geq R_i$?

Se mostrarará que D2CIF es NPC, incluso si todas las capacidades de las aristas son 1; esto es llamado el D2CIF simple.

Teorema 1. D2CIF simple es NPC

Demostración. Mostremos que SAT \propto D2CIF simple. La entrada I, de SAT, consiste en cláusulas C_1, C_2, \ldots, C_m , cada subconjunto del conjunto de literales $L = \{x_1, x_2, \ldots, c_n, \bar{x_1}, \bar{x_2}, \ldots, \bar{x_n}\}$. La estructura de f(I), la entrada del D2CIF simple está como sigue. Para cada variable x_i construimos un $l \delta b u l o^1$ como se muestra en 1. Aquí p_i es el número de ocurrencias de x_i in las cláusulas, y q_i es el número de ocurrencias de $\bar{x_i}$. Los lóbulos estan conectados en series: v_i^i está conectado por una arista con v_s^{i+1} , s_1 está conectado con v_s^1 y v_t^n a t_1 , s_2 está conectada por aristas a todos los vértives v_j^i y $\bar{v_j}^i$ donde j es impar. Además de esto, hay vértives C_1, C_2, \ldots, C_m y una arista por cada una a t_2 . Para la j-ésima ocurrencia de x_i ($\bar{x_i}$), hay una atista de v_{2j}^i (v_{2j}^i) al vértice C_r , la cláusa en que ocurre. Los requerimientos son $R_1 = 1$ y $R_2 = m$.

El primer producto (commodity) debe fluir de s_1 a t_1 , a través de los lóbulos; los vértices $s_2, C_1, C_2, \ldots, C_m$ y t_2 no pueden ser usados en este flujo porque como no hay arista del lóbulo a s_2 , y no hay arista de regredo de C_1, C_2, \ldots, C_m y t_2 a los lóbulos o a t_1 . Por tanto, la unidad del del primer producto debe usar cada lóbulo o la ruta superior o inferior, pero no ambas.

Si el segundo producto alcanza los requerimientos, entonces $F_2 = R_2 = m$, y todas las aristas que entrar a t_2 están saturadas. En este caso hay exactamente una unidad de flujo, en el segundo producto entrando cada C_k . Si esta unidad del fujo viene de una pista superior del i-ésimo lóbulo, a través de la arista $v_{2j}^i \to C_k$, entonces claramente usa también la arista $v_{2j-1}^i \to v_{2j}^i$ y la unidad del primer producto debe usar la pista de abajo es ese lóbulo.

Por tanto, si la respuesta a f(I), con respecto a D2CIF, es positica, entonces podemos usar los flujos f_1 y f_2 para asignar una asignación satisfactora a las literales como sigue: Si el primer producto va a través de la pista de abajo del i-ésimo lóbulo, asignar $x_i = T$, y si va a través de de la superior, $x_i = F$. En este caso, la respuesta a I, con respecto a SAT, es también positiva.

¹No supe como traducir *lobe*.

De manera análoga, asumimos que hay una asignación satisfactoria a las variables. Si $x_i = T$, sea el primer producto usa la pista inferior en el i-ésimo lóbulo; si $x_i = F$, usar la pista superior. Ahora, sea ξ sea una literal verdadera en C_k , Si $\xi = x_i$ entonces la pista superior está libre del primer producto y podemos usar para fluir una unidad del segundo producto desde s_2 a C_k ; si $\xi = \bar{x}_i$ entonces usar la pista inferior. Finalmente, usar m aristas entrado t_2 fluir en las m unidades disponibles del segundo producto.

En el caso de las redes no dirijidas, la gráfica G(V, E) es no dirigida. El flujo en las aristas puede ser o en una dirección, y

$$f_i(u \stackrel{\text{e}}{-} v) = f_i(v \stackrel{\text{e}}{-} u)$$

La condición (1) en las arista es cambiada a:

$$|f_1(u \stackrel{\text{e}}{-} v) + f_2(u \stackrel{\text{e}}{-} v)| \le c(e)$$

La condición (2), para cada $v \in V \setminus \{s_i, t_i\}$, el flujo total del i-ésimo producto entrando v es igual al flujo total del i-ésimo producto emanando de v, es ahora en la siguiente forma:

$$\sum_{\substack{e\\u-v\in E}} f_i(u - v) = 0$$

Notar que en esta ecuación v está fijada. Claramente,

$$F_i = \sum_{\substack{e \\ u-v \in E}} f_i(u - t_i)$$

El flujo entero no dirigido two-commodity (U2CIF) es definido similarmente a D2CIF.

Entrada: Una red no dirigida N con dos enteros no negativos R_1 y R_2 .

Pregunta: ¿Hay funciones en un flujo entero f_1 y f_2 para N, tal que $F_i \ge R_i$?

Teorema 2. U2CIF simple es NPC.

Referencias

[1] Even, S. (2011). Graph Algorithms (G. Even, Ed.). Cambridge: Cambridge University Press. doi:10.1017/CBO9781139015165