Today's Agenda

1. Explore the intuitions of OLS regression

2. Practice fitting and interpreting simple OLS regressions

Justin Leinaweaver (Spring 2022)

Figure 2.4. A scatterplot versus field goal percentage

Do more efficie

Do more efficie

Do more efficie

The Formula for a Line

$$y = mx + b$$
 is equivalent to $y = \alpha + \beta x$

The Formula for a Line

$$y = \alpha + \beta x$$

- y is the outcome
- ullet α is the constant
- ullet eta is the coefficient estimate
- x is the predictor

The Formula for a Line

$$y = \alpha + \beta x$$

- y is the outcome
- α is the constant (the intercept)
- β is the coefficient estimate (the slope)
- x is the predictor

Games Won = -19

Figure 3.2. The ordinary least function of X. Residuals (or develoint and the regression line are

Figure 1.6. Getting "Data Analysis"

Work, Family, and Well-Being

Version Date: Jun 10, 1996 Cite this study | Share this pa

Principal Investigator(s): 3

Catherine E. Ross

	A	В	C	D	E	F	
1	height	weight	male	earn	earnk	ethnicity	edu
2	74	210	1	50000	50	White	
3	66	125	O	60000	60	White	
4	64	126	0	30000	30	White	
5	65	200	O	25000	25	White	
6	63	110	O	50000	50	Other	
7	68	165	0	62000	62	Black	
8	63	190	O	51000	51	White	
9	64	125	0	9000	9	White	
10	62	200	O	29000	29	White	
11	73	230	1	32000	32	White	
12	72	176	1	2000	2	Hispanic	
13	72	265	1	35000	35	White	NA
14	72	160	1	27000	27	White	
15	70	225	1	6530	6.53	White	
16	62	107	0	0	0	\A/bito	

Is height a useful mo

Univariate Analysis

Formatting a Simple

height

SUMMARY OUTPUT	
Regression Sta	tistics
Multiple R	
R Square	
Adjusted R Square	
Standard Error	28
Observations	1788
ANOVA	
	df
Regression	
Residual	1
Total	1
	Coefficie
Intercept	-173

Formatting	g a Simple (
	Predictor

Adjusted R² Residual Std Erro

Add '*' next to any coeffic

F Statistic

Formatting a Simple

tistics		
0.55		
0.30		
0.30		
28.96		
1788.00		
df	SS	MS
1	643873.73	643873.73
1786	1497935.78	838.71
1787	2141809.51	
Coefficients	Standard Error	t Stat
-173.26	11.91	-14.54
4.95	0.18	27.71
	0.55 0.30 0.30 28.96 1788.00 df 1786 1787 Coefficients -173.26	0.55 0.30 0.30 28.96 1788.00 df

Formatting a Simple

SUMMARY OUTPUT				
Regression Sta	tistics			
Multiple R	0.55			
R Square	0.30			
Adjusted R Square	0.30			
Standard Error	28.96			
Observations	1788.00			
ANOVA				
	df	SS	MS	
Regression	1	643873.73	643873.73	
Residual	1786	1497935.78	838.71	
Total	1787	2141809.51		
	Coefficients	Standard Error	t Stat	-
Intercept	-173.26	11.91	-14.54	
height	4.95	0.18	27.71	

	Weight
Height	4.95*
	(0.18)
Constant	-173.26*
	(11.91)
Observations	1.788
Adjusted R ²	0.30
Residual Std. Error	28.96 (df = 1786)
F Statistic	$767.70^* (df = 1; 1786)$
Note:	*p < 0.05

	Weight
Height	4.95*
	(0.18)
Constant	-173.26*
	(11.91)
Observations	1,788
Adjusted R ²	0.30
Residual Std. Error	28.96 (df = 1786)
F Statistic	$767.70^* (df = 1; 1786)$
Note:	*p < 0.05

 $\mathsf{Outcome} = \mathsf{Constant} + \mathsf{Beta} \; \mathsf{Coefficient} \; \boldsymbol{^*} \; \mathsf{Predictor}$

	Weight
Height	4.95* (0.18)
Constant	-173.26* (11.91)
Observations Adjusted R ²	1,788 0.30
Residual Std. Error F Statistic	28.96 (df = 1786) $767.70^* \text{ (df} = 1; 1786)$
Note:	*p < 0.05

Weight $= -173.26 + 4.95 \times Height$

	Weight
Height	4.95*
	(0.18)
Constant	-173.26*
	(11.91)
Observations	1,788
Adjusted R ²	0.30
Residual Std. Error	28.96 (df = 1786)
F Statistic	767.70* (df = 1; 1786)
Note:	*p < 0.05

Weight = -173.26 + 4.95 x 64 \approx 143.54 lb

	Weight
Height	4.95*
	(0.18)
Constant	-173.26*
	(11.91)
Observations	1,788
Adjusted R ²	0.30
Residual Std. Error	28.96 (df = 1786)
F Statistic	767.70* (df = 1; 1786)
Note:	*p < 0.05

Weight = -173.26 + 4.95 x 69 \approx 168.29 lb

Work, Family, and Well-Being

Version Date: Jun 10, 1996 Cite this study | Share this part of the study | Share this part o

Principal Investigator(s): 3

Catherine E. Ross

	A	В	C	D	E	F	
1	height	weight	male	earn	earnk	ethnicity	edu
2	74	210	1	50000	50	White	
3	66	125	O	60000	60	White	
4	64	126	0	30000	30	White	
5	65	200	O	25000	25	White	
6	63	110	O	50000	50	Other	
7	68	165	0	62000	62	Black	
8	63	190	O	51000	51	White	
9	64	125	0	9000	9	White	
10	62	200	O	29000	29	White	
11	73	230	1	32000	32	White	
12	72	176	1	2000	2	Hispanic	
13	72	265	1	35000	35	White	NA
14	72	160	1	27000	27	White	
15	70	225	1	6530	6.53	White	
16	62	107	0	0	0	\A/bito	

Is height a useful mo

Analyze Three OLS Models

For each model: Make a regression table, scatter plot and a prediction using the average value of the predictor.

- Model 1: Regress earnings (earnk2021) on height
- Model 2: Regress earnings (earnk2021) on age
- Model 3: Regress earnings (earnk2021) on education

For Thursday

Finish the model building work from class today

Use the four steps outlined in Wilson, Keating, and Beal-Hodges (2012) chapters 4 and 5 to evaluate the fit of our models of earnings.