

UNIVERSIDADE FEDERAL DE SANTA CATARINA CAMPUS ARARANGUÁ CENTRO DE CIÊNCIAS, TECNOLOGIAS E SAÚDE DEPARTAMENTO DE ENERGIA E SUSTENTABILIDADE PLANO DE ENSINO

SEMESTRE 2022.2

TOTAL DE HORAS-AULA SEMESTRAIS							
SEMESTRAIS							
=0							
72							
HORÁRIO							
MODALIDADE							
Presencial							
NOME DA DISCIPLINA							
Cálculo IV (estabelecido pelo novo Projeto Pedagógico do Curso de Engenharia da Computação,							
aprovado na 19ª reunião extraordinária de colegiado do referido curso em 30 de agosto de 2019).							
Física B (estabelecido pelo novo Projeto Pedagógico do Curso de Engenharia da Computação,							
o em 30 de agosto de 2019).							
7							

IV. CURSO(S) PARA O(S) QUAL(IS) A DISCIPLINA É OFERECIDA
Graduação em Engenharia de Computação

V. JUSTIFICATIVA

Os fenômenos de transporte de fluidos e energia estão presentes em diversas aplicações na engenharia. Na Mecânica dos Fluidos, podemos citar em áreas tais como o projeto de sistemas de canal, dique e represa; o projeto de bombas, compressores, tubulações e dutos usados nos sistemas de água e condicionamento de ar de casas e edifícios, assim como sistemas de bombeamento necessários na indústria química; a aerodinâmica de automóveis e aviões sub e supersônicos. Na transferência de calor, podemos citar processos importantes como aquecimento de peças, resfriamento de circuitos, secagem e controle de temperatura. Ao Engenheiro da Computação é importante compreender os mecanismos físicos associados à mecânica dos fluidos e transferência de calor, bem como compreender os métodos empregados para solução de problemas típicos de engenharia.

VI. EMENTA

Mecânica dos Fluidos: Conceitos básicos em mecânica dos fluidos. Estática dos fluidos. Pressão. Manometria. Forças em corpos submersos. Empuxo hidrostático. Dinâmica dos fluidos. Formulação integral. Teorema do Transporte de Reynolds. Formulação diferencial. Equação de Bernoulli. Termodinâmica e Transferência de Calor: Temperatura. Escalas de temperatura. Trabalho e calor. 1ª lei da termodinâmica. Introdução aos mecanismos de transmissão de calor. Condução de calor unidimensional permanente. A parede plana. Equivalência elétrica para a transferência de calor.

VII. OBJETIVOS

Objetivo Geral:

Esta disciplina tem por objetivo dar condições para que o aluno reúna um conjunto de métodos e técnicas da física utilizados na solução de problemas na engenharia.

Objetivos Específicos:

Para tanto, espera-se que os alunos:

- Compreendam os princípios básicos da mecânica dos fluidos e da transferência de calor;
- Conheçam as equações que representam os mecanismos físicos da estática e da dinâmica dos fluidos, bem como de cada modo de transferência de calor;
- Apliquem as leis da mecânica dos fluidos e da transferência de calor e as equações que descrevem os mecanismos físicos em problemas práticos envolvendo fenômenos de transporte de massa (fluidos) e energia térmica (calor).

VIII. CONTEÚDO PROGRAMÁTICO

- Definições fundamentais de mecânica dos fluidos (definição de fluido, métodos de descrição e análise, campo de tensão, viscosidade, massa específica, pressão)
- Manometria
- Variação de pressão em um fluido estático e força sobre superfícies submersas
- Empuxo
- Dinâmica dos fluidos: Leis da conservação da massa e da quantidade de movimento linear
- Equação de Bernoulli
- Escoamento incompressível, em condutos forçados, em regime permanente
- Escoamento laminar. Escoamento turbulento
- Temperatura. Escalas de temperatura
- Trabalho e calor. Primeira lei da termodinâmica para sistema e volume de controle
- Mecanismos de transmissão de calor
- Condução de calor unidimensional em regime permanente

IX. COMPETÊNCIAS/HABILIDADES

X. METODOLOGIA DE ENSINO / DESENVOLVIMENTO DO PROGRAMA

Aula expositiva e dialogada, utilizando data-show e quadro. Resolução de exercícios em sala de aula. Proposição de listas de exercícios e/ou trabalhos extraclasse.

XI. METODOLOGIA E INSTRUMENTOS DE AVALIAÇÃO

- A verificação do rendimento escolar compreenderá frequência e aproveitamento nos estudos, os quais deverão ser atingidos conjuntamente. Será obrigatória a frequência às atividades correspondentes a cada disciplina, ficando nela reprovado o aluno que não comparecer, no mínimo a 75% das mesmas.
- A nota mínima para aprovação na disciplina será 6,0 (seis). (Art. 69 e 72 da Res. nº 17/CUn/1997).
- O aluno com frequência suficiente (FS) e média das notas de avaliações do semestre entre 3,0 e 5,5 terá direito a uma nova avaliação no final do semestre (REC), exceto as atividades constantes no art.70,§ 2º. A nota será calculada por meio da média aritmética entre a média das notas das avaliações parciais (MF) e a nota obtida na nova avaliação (REC). (Art. 70 e 71 da Res. nº 17/CUn/1997).

$$NF = (MF + REC)/2$$

 Ao aluno que não comparecer às avaliações ou não apresentar trabalhos no prazo estabelecido será atribuída nota 0 (zero). (Art. 70, § 4º da Res. nº 17/CUn/1997)

Avaliações Escritas

Serão realizadas três provas escritas: P1, P2 e P3 e P4. A média final (MF) será calculada a partir da combinação das notas das quatro avaliações, conforme a equação abaixo:

$$MF = \frac{P1 + P2 + P3 + P4}{4}$$

Será realizado um trabalho (T) cuja nota será utilizada para substituir a mais baixa das notas das provas.

Pedido de Nova Avaliação - Art. 74 da Res. nº 17/CUn/97

- O aluno, que por motivo de força maior e plenamente justificado, deixar de realizar atividades avaliativas previstas no plano de ensino, deverá fazer o pedido à Chefia do Departamento de Energia e Sustentabilidade (EES), dentro do prazo de 3 (três) dias úteis, apresentando documentação comprobatória. O pedido de Nova Avaliação deve ser formalizado na Secretaria Integrada de Departamentos (SID).
- A Nova Avaliação englobará o conteúdo referente à prova não realizada pelo aluno e ocorrerá em local e data a serem acordados entre professor e aluno.

XII. CRONOGRAMA PREVISTO						
AULA (semana)	DATA	ASSUNTO				
1 ^a	25/08 a 27/08	Apresentação do plano de ensino. Definição de fluido. Métodos de análise e descrição. Teoria do contínuo. Campos de escoamento.				
2ª	29/08 a 03/09	Campo de tensão. Viscosidade. Descrição e classificação do movimento dos fluidos. Estática dos fluidos: A equação básica da estática dos fluidos. Variação de pressão num fluido estático. Manometria.				
3ª	05/09 a 10/09	Força sobre superfícies planas submersas. Empuxo.				
4 ^a	12/09 a 17/09	PROVA 1 (14/09). Teorema do Transporte de Reynolds. Formulação integral da equação da conservação da massa.				
5ª	19/09 a 24/09	Formulação integral da equação da quantidade de movimento linear. Introdução à formulação diferencial.				
6ª	26/09 a 01/10	Escoamento invíscido. Equação de Bernoulli. Pressão estática, dinâmica e de estagnação.				
7ª	03/10 a 08/10	Escoamento interno incompressível. Regimes laminar e turbulento. Perda de carga em condutos.				
8 ^a	10/10 a 15/10	Revisão. PROVA 2 (13/09).				
9 ^a	17/10 a 22/10	Temperatura. Escalas de temperatura. Calor e trabalho.				
10 ^a	24/10 a 29/10	Mecanismos de transferência de calor.				
11 ^a	31/10 a 05/11	Primeira lei da termodinâmica para sistema. Primeira lei da termodinâmica para volume de controle.				
12ª	07/11 a 12/11	PROVA 3 (08/10). Equação da taxa de condução de calor. Propriedades térmicas. Equação da difusão de calor.				
13ª	14/11 a 19/11	FERIADO (15/11). Equação da difusão de calor. Condições inicial e de contorno. Parede plana sem geração.				
14ª	21/11 a 26/11	Parede plana sem geração. Resistência térmica. Parede composta. Resistência de contato. Parede plana com geração.				
15 ^a	28/11 a 03/12	Superfícies estendidas (aletas).				
16ª	05/12 a 10/12	PROVA 4 (06/12). Apresentação dos trabalhos (T)				
17ª	12/12 a 17/12	Apresentação dos trabalhos (T)				
18 ^a	19/12 a 23/12	Avaliação de Recuperação (20/12). Divulgação das notas.				
Obs: O calendário está sujeito a pequenos ajustes de acordo com as necessidades das atividades						

DATA	Feriados	
07/09 (qua)	Independência do Brasil	
12/10 (qua)	Nossa Senhora Aparecida	
28/10 (sex)	Dia do servidor público	
02/11 (qua)	Finados	
15/11 (ter)	Proclamação da república	
09,10 e 11/12 (sex)	Vestibular	

XIV. BIBLIOGRAFIA BÁSICA***

- 1. FOX AND MCDONALD, Introdução à Mecânica dos Fluidos. 6ª ed. LTC editora, 2006.
- BIRD, R. B.; STEWARD, W. E. & LIGHTFOOT, E. N. Fenômenos de Transporte. 2^a ed. Rio de Janeiro: LTC
 – Livros Técnicos e Científicos Editora S. A., 2004.

INCROPERA, P. F.; de WITT, D. P. **Fundamentos de Transferência de Calor e de Massa**. 4ª ed. Rio de Janeiro: LTC, 1998.

XV. BIBLIOGRAFIA COMPLEMENTAR

- 1 ROMA, W. N. L. Fenômenos de Transporte para Engenharia. 2ª ed. São Carlos: Rima Editora, 2006.
- 2 MUNSON B. R., YOUNG D. F., OKIISHI T. H.; Fundamentos da Mecânica dos Fluidos. Vol II. Ed. Edgard Blucher Ltda., 1997.
- 3 MORAN, M. J. & SHAPIRO, H. N. Princípios de Termodinâmica para Engenharia. 4ª ed. LTC, Rio de Janeiro, 2002.
- 4 SISSON L. E., PITTS D. R. Fenômenos de Transporte. Rio de Janeiro: Guanabara Dois, 1996.
- WELTY, J. R.; WICKS, C. E.; WILSON, R. E. Funtamentals of Momentum, Heat and Mass Transfer. 3rd ed. New York: John Wiley & Sons Inc. 1984.

Professor:		
Aprovado pelo Colegiado do Curso em	/ /	Presidente do Colegiado: