Examenul de bacalaureat 2011 Proba E. c) Proba scrisă la MATEMATICĂ BAREM DE EVALUARE ȘI DE NOTARE

Varianta 3

Filiera teoretică, profilul real, specializarea științele naturii.

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale.

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUB	IECTUL I	(30 de puncte)
1.	$\log_6 3 + \log_6 12 = \log_6 36$	3p
	$\log_6 36 = \log_6 6^2 = 2$	2p
2.	$x_V = -\frac{b}{2a} = \frac{1}{4}$	2 p
	$\Delta = -23$	1p
	$y_V = -\frac{\Delta}{4a} = \frac{23}{8}$	2 p
3.	$7^x + 7^{x+1} = 392 \Leftrightarrow 7^x + 7^x \cdot 7 = 392$	1p
	$7^x \cdot 8 = 392 \Leftrightarrow 7^x = 49$	2 p
	x = 2	2 p
4.	$\frac{n!}{2!(n-2)!} = 4\frac{n!}{(n-1)!}$	2p
	$\frac{n-1}{2} = 4$	2 p
	n = 9	1p
5.	$\sqrt{(4-0)^2 + (m+2)^2} = 5$	1p
	$m^2 + 4m - 5 = 0$	2 p
	m = -5 sau $m = 1$	2p
6.	$\cos 140^{\circ} = \cos \left(180^{\circ} - 40^{\circ} \right) = -\cos 40^{\circ}$	3p
	$\cos 40^\circ + \cos 140^\circ = 0$	2 p

SUB	SUBIECTUL al II-lea (30 de p	
1.a)	$\det A = \begin{vmatrix} m & -1 & 1 \\ 1 & m & -1 \\ 1 & -2 & 1 \end{vmatrix} = m^2 - 2 + 1 - m - 2m + 1 =$	3p
	$=m^2-3m$	2 p
b)	$\begin{cases} -m-2+5=0\\ -1+2m-5=0\\ -1-4+5=0 \end{cases}$	3p
	m=3	2p

Probă scrisă la Matematică

Varianta 3

Barem de evaluare și de notare

Filiera teoretică, profilul real, specializarea științele naturii.

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale.

c)	$\det A \neq 0$	2p
	$m \in \mathbb{R} \setminus \{0,3\}$	3р
2.a)	(x * y) * z = (xy + x + y) * z = xyz + xz + yz + xy + x + y + z	2p
	x*(y*z) = x*(yz+y+z) = xyz + xy + xz + x + yz + y + z	2p
	Finalizare	1p
b)	$x*e=e*x=xe+x+e$, $\forall x \in \mathbb{R}$	2p
	$ex + e = 0$, $\forall x \in \mathbb{R}$	1p
	e = 0	2p
c)	$x^2 * 2 = 3x^2 + 2$	1p
	x*4=5x+4	1p
	$x^2 * 2 = x * 4 \Leftrightarrow 3x^2 - 5x - 2 = 0$	1p
	$x_1 = -\frac{1}{3} \text{ si } x_2 = 2$	2p
SUBIECTUL al III-lea (30 de pu		puncte)

 $f'(x) = \frac{(x-1)^2 - 2(x-1)(x+2)}{(x-1)^4}, x \in \mathbb{R} \setminus \{1\}$ 2p Finalizare f este continuă pe $\mathbb{R} \setminus \{1\}$ și $\lim_{x \to 1} \frac{x+2}{(x-1)^2} = +\infty$ 3p 2p x = 1 este ecuația asimptotei verticale c) $f'(x) = 0 \Rightarrow x = -5$ 1p x = -5 punct de minim global pe $(-\infty, 1)$ 2p $f(x) \ge f(-5), \forall x \in (-\infty, 1) \Rightarrow f(x) \ge -\frac{1}{12}, \forall x \in (-\infty, 1) \Rightarrow f(x) + \frac{1}{12} \ge 0, \forall x \in (-\infty, 1)$ 2p $\begin{array}{c|c} \hline \textbf{2.a)} & \int_{2}^{e} \frac{f(x)}{\ln x} dx = \int_{2}^{e} \frac{1}{x} dx = \ln x \bigg|_{2}^{e} = \end{array}$ 3p 2p $= 1 - \ln 2$ $g(x) = \frac{x-1}{x}, x \in (0,1]$ 1p $\int g(x) dx = x - \ln x + C$ 1p $G(x) = x - \ln x + c$, $c \in \mathbb{R}$, este o primitivă a funcției g pe intervalul (0,1]1p A(1,5) aparține graficului funcției $G \Rightarrow G(1) = 5 \Rightarrow c = 4$ 1p

Probă scrisă la Matematică

Varianta 3

1p

2p

1p

3p

Barem de evaluare și de notare

 $G(x) = x - \ln x + 4$

 $\int_{1}^{1} \frac{x-1}{x} dx = \frac{1}{2} - \ln 2$

 $\int_{\frac{1}{2}}^{e} f(x) dx = \int_{\frac{1}{2}}^{1} \frac{x-1}{x} dx + \int_{1}^{e} \frac{\ln x}{x} dx$

Filiera teoretică, profilul real, specializarea științele naturii.

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale.

$\int_{1}^{e} \frac{\ln x}{x} dx = \frac{1}{2} \ln^{2} x \Big _{1}^{e} = \frac{1}{2}$	1p
$\int_{\frac{1}{2}}^{e} f(x)dx = 1 - \ln 2$	1p