MA4702 Programación Lineal Mixta Post-Laboratorio #2

Profesor: Martín Matamala, **Auxiliares:** Christian Palma & Benkamín Jauregui. **Grupo 1:** Alonso Rojas, Cristobal Ramos, Karim Saud, Manuel Torres.

Preliminares desde el laboratorio

Dados $A \in \mathbb{R}^{m \times n}$ y $g, d \in \mathbb{R}^m$, tenemos los problemas primal y dual respectivamente dados por

$$(\mathcal{P}) \quad \text{máx} \quad g^T A x$$

$$\text{s.a} \quad A x \leq d,$$

$$\sum_{j=1}^{n} x_j = 1,$$

$$x \geq 0,$$

$$(1)$$

y

(D) mín
$$\theta + d^T y$$

s.a $(A^T y)_j + \theta \ge (A^T g)_j$, $\forall j \in K$,
 $y \ge 0$, $\theta \in \mathbb{R}$. (2)

Para resolver el problema (\mathcal{P}) , como hemos visto durante el *laboratorio* 2, podemos aplicar el *algoritmo de generación de columnas*, esto es, un método iterativo que consiste en generar problemas truncados. Tenemos el *problema primal de la relajación*

$$(\mathcal{P}^{K}) \quad \text{máx} \quad g^{T} A^{K} x^{K}$$
s.a
$$A^{K} x^{K} \leq d,$$

$$\sum_{j \in K} x_{j} = 1,$$

$$x^{K} > 0,$$

$$(3)$$

en donde K es un subconjunto de $\{1, \ldots, n\}$, el cual identificará las columnas que serán utilizadas en una iteración del algoritmo. Así mismo tenemos el *problema dual de la relajación* dado por

$$(\mathcal{D}^{K}) \quad \min \quad \theta + d^{T}y$$
s.a $(A^{T}y)_{j} + \theta \ge (ATg)_{j}, \quad \forall j \in K,$
 $y \ge 0, \ \theta \in \mathbb{R}.$ (4)

Además, veremos que una solución óptima $(\overline{y}, \overline{\theta})$ de (\mathcal{D}^K) es factible para (\mathcal{D}) ssi el valor del siguiente problema es al menos $-\overline{\theta}$:

$$(\mathcal{E}) \quad \min \quad (A^T(\overline{y} - g))_j \tag{5}$$

A continuación demostraremos las afirmaciones antes realizadas.

Solución de los problemas

P1.- Demuestre que el dual de (P) está dado por (D), y que éste es factible y acotado. Donde (P) y (D) están descritos en 1 y 2 respectivamente.

Solución: Partimos escribiendo \mathcal{P} en forma general. Para esto, definamos $B = \begin{pmatrix} A \\ 1_{1\times n} \\ -1_{1\times n} \\ -I_n \end{pmatrix}$,

 $f = \begin{pmatrix} d \\ 1 \\ -1 \\ 0 \end{pmatrix}$ y $c = A^{\top}g$. De esta forma, vemos directamente que el problema original se escribe como

$$\max c^{\top} x$$
$$Bx < f$$

Así, por lo visto en clases su dual es

$$\begin{aligned} & \min f^\top z \\ & B^\top z = c \\ & z > 0 \end{aligned}$$

Notemos que z puede ser escrito como $z=\begin{pmatrix} y\\ \mu\\ \nu\\ \eta \end{pmatrix}$ con $y\in\mathbb{R}^m,\,\mu,\nu\in\mathbb{R}$ y $\eta\in\mathbb{R}^n.$ De esta

forma, $(B^{\top}z)_j = (A^{\top}y)_j + \mu - \nu - \eta_j, \forall j \in [n]$ y el problema se escribe como

$$\min d^{\top}y + \mu - \nu$$
$$(A^{\top}y)_j + \mu - \nu - \eta_j = c_j = (A^{\top}g)_j, \forall j \in [n]$$
$$y, \mu, \nu, \eta \ge 0$$
$$y \in \mathbb{R}^m, \mu, \nu \in \mathbb{R}, \eta \in \mathbb{R}^n$$

Veremos que el problema anterior equivale a

$$\min d^{\top}y + \theta$$
$$(A^{\top}y)_j + \theta \ge (A^{\top}g)_j, \forall j \in [n]$$
$$y \ge 0$$
$$y \in \mathbb{R}^m, \theta \in \mathbb{R}$$

Para esto, veamos que dada una punto factible (y,μ,ν,η) para el primero, tomamos $\theta=\mu-\nu$ y entonces tenemos que claramente $y\geq 0$ y $\theta\in\mathbb{R}$. Por otra parte, para todo $j\in[n]$, tenemos que $(A^{\top}y)_j+\theta-(A^{\top}g)_j=(A^{\top}y)_j+\mu-\nu-(A^{\top}g)_j=\eta_j\geq 0$, concluyendo que $(A^{\top}y)_j+\theta\geq 0$

 $(A^{\top}g)_j$. Así, tenemos que (y,θ) es factible para el segundo y tiene el mismo valor en la función objetivo que (y,μ,ν,η) ya que $d^{\top}y + \mu - \nu = d^{\top}y + \theta$.

Recíprocamente, tenemos dada (y,θ) solución factible del segundo, entonces como todo real se puede escribir como diferencia de positivos, sean $\mu,\nu\geq 0$ reales tales que $\mu-\nu=\theta$. Elegimos además, para cada $j\in [n], \, \eta_j=(A^\top y)_j+\theta-(A^\top g)_j\geq 0$, entonces vemos que es directo que (y,μ,ν,η) es factible en el primero por construcción y tiene el mismo valor en su función objetivo que (y,θ) ya que $d^\top y+\theta=d^\top y+\mu-\nu$.

Con todo esto, vemos que el problema \mathcal{D} es equivalente al dual de \mathcal{P} , siendo sólo una reparametrización de su dual canónico.

Por otra parte, vemos que \mathcal{D} es factible ya que podemos tomar y=0 y, como θ es libre, podemos tomarlo suficientemente grande para que sea mayor que todos los $(A^{\top}g)_j - (A^{\top}y)_j$ y, como hay finitos de estos, esto siempre es posible.

Por lo visto en clases, al ser $\mathcal D$ factible, queda la opción de que o $\mathcal P$ sea infactible o que ambos sean factibles y acotados. Si suponemos que A,d,g son tales que $\mathcal P$ es factible, entonces concluimos que ambos son acotados, en particular, $\mathcal D$ es acotado.

P2.- Justifique brevemente que (\mathcal{D}^K) es a la vez el dual del problema (\mathcal{P}^K) y una relajación del problema (\mathcal{D}) . Demuestre además que una solución óptima $(\overline{y}, \overline{\theta})$ de (\mathcal{D}^K) es factible para (\mathcal{D}) ssi el valor de (\mathcal{E}) es al menos $-\overline{\theta}$. Donde (\mathcal{P}^K) , (\mathcal{D}^K) y (\mathcal{E}) están descritos en 3, 4 y 5 respectivamente.

Solución: El proceso para obtener el dual de (\mathcal{P}^K) es análogo a la obtención del dual de (\mathcal{P}) desarrollado en la P1 (es un caso particular, tomando A^K en vez de A y x^K en vez de x). Por otro lado es claro que (\mathcal{D}^K) es una relajación del problema (\mathcal{D}) , pues se quiere minimizar la misma función, pero con menos restricciones, al elegir sólo algunos j de [n] $(K \subseteq [n])$.

Para probar la equivalencia tomemos $(\overline{y}, \overline{\theta})$ óptimo del problema (\mathcal{D}^K) . Queremos probar que $(\overline{y}, \overline{\theta})$ es factible para (\mathcal{D}) ssi el valor de (ε) es al menos $-\overline{\theta}$. Con el problema (ε) el siguiente:

$$(\varepsilon)$$
 $\min_{j\in[n]}$ $(A^T(\overline{y}-g))_j$

Como $(\overline{y}, \overline{\theta})$ es óptimo de (\mathcal{D}^K) , entonces $\overline{y} \geq 0$ y $\overline{\theta} \in \mathbb{R}$. Luego,

$$\begin{split} (\overline{y}, \overline{\theta}) & \text{ es factible para } \quad (\mathcal{D}) \\ \iff & (A^T \overline{y})_j + \overline{\theta} \geq (A^T g)_j \quad \forall j \in [n] \\ \iff & (A^T (\overline{y} - g))_j \geq -\overline{\theta} \quad \forall j \in [n] \\ \iff & \min_{j \in [n]} \quad (A^T (\overline{y} - g))_j \geq -\overline{\theta} \end{split}$$

Y queda demostrada la equivalencia.