ЗАДАНИЕ ПО ИНФОРМАТИКЕ ВАРИАНТЫ 7111 / 7112 для 11 классов

- 1. Разработайте алгоритм для перевода натуральных чисел в римскую систему счисления. В качестве исходных данных выступает натуральное число. В качестве результата необходимо вывести представление в виде римских цифр.
- **2.** Двоично-десятичная система счисления это форма записи рациональных чисел, при которой каждый десятичный разряд числа записывается в виде его четырёхбитного двоичного кода. Например, десятичное число 311_{10} будет записано в двоичной системе счисления как 1 0011 0111_2 , а в двоично-десятичном коде как 0011 0001 0001_{2-10} .В каких случаях её применение целесообразно?
- **3.** Мультипликативно обратным к целому числу a по модулю n является целое число b (0<=a<n и 0<=b<n), для которого справедливо сравнение а·b=1 {mod n} (два целых числа сравнимы по модулю n, если при делении на n они дают одинаковые остатки). Мультипликативно обратное число существует тогда и только тогда, когда a и n взаимно простые числа (их наибольший общий делитель равен 1). Разработайте алгоритм для нахождения мультипликативно обратного числа по задаваемому значению модуля для задаваемого целого числа.

Примеры

Входные данные		Результат работы	
Модуль	Целое число		
5	3	2	
10	3	7	
10	5	Не существует	

4. Робот выкладывает по спирали (например, по часовой стрелке) квадраты из реек одинаковой длины. Вершинами квадратов являются точки, в которых сходятся концы реек, а сторонами квадратов — сами рейки. Какое минимальное количество реек понадобится роботу, чтобы выложить N квадратов? Ограничение $1 \le N \le 15000$.

Номер квадрата	Минимальное количество
	для данного квадрата
1	4
2	3
3	3
4	2
5	3
6	2
7	3
8	2

- **5.** Результаты научных экспериментов записаны в таблицу вида (№ п/п, значение параметра, результат). Перед Вами стоит задача упорядочить данные по возрастанию значений результата. Разработать схему хранения данных и наиболее быстрый алгоритм для решения задачи. Поле «Значение параметра» название, «результат» целое число.
- 6. Школьники Петр и Данил играли в игру. Результаты (количество очков в каждой партии) записывали в таблицу на странице блокнота (№ партии, рез-т1, рез-т2). Размер страницы М*N клеток. Перед Вами завершенная игра. Кто набрал больше очков? В качестве результата вывести имя школьника.

ЗАДАНИЕ ПО ИНФОРМАТИКЕ ВАРИАНТ 7113 для 11 классов

1. Рассмотрим систему счисления, в которой основанием с.с. являются числа Фибоначчи. Алфавитом этой системы счисления являются цифры 0 и 1. В записи числа в фибоначчиевой системе не могут стоять две единицы подряд. Пример. Покажем, как записывать числа в фибоначчиевой системе счисления:

$$37_{10} = 34 + 3 = 1*34 + 0*21 + 0*13 + 0*8 + 0*5 + 1*3 + 0*2 + 0*1 = 10000100_{Fib};$$

 $25_{10} = 21 + 3 + 1 = 1*21 + 0*13 + 0*8 + 0*5 + 1*3 + 0*2 + 1*1 = 100101_{Fib}.$

Разработайте алгоритм перевода чисел из десятичной с.с. в фибоначчиеву.

- **2.** Разработайте алгоритм для решения задачи. Найти все числа N из диапазона $N1 < N \le N1 + 50$, которые представляются суммой четырех квадратов натуральных чисел не единственным образом и которые имеют на заданном диапазоне наименьшее количество таких представлений.
- **3.** Для проверки, является ли большое целое простым, может использоваться вероятностный тест Миллера-Рабина. Пусть p>2 простое число. Представим число p-1 в виде $p-1=2^{s} \cdot d$, где d нечётное число. Тогда для любого a из $\{1, 2, ..., p-1\}$ выполняется одно из условий:
 - 1. $a^d = 1 \{ \text{mod } p \}$
 - 2. Существует r, $0 \le r \le s-1$, для которого $a^{k+d} = -1 \pmod{p}$, где $k=2^r$.
 - В тесте Миллера-Рабина эти проверки выполняются для t случайно выбираемых a $(t=\log_2(p))$.

Разработайте алгоритм проверки вводимого числа на простоту по тесту Миллера-Рабина.

Примеры

Входные данные	Результат работы
2047	Вероятно простое
2043	Составное
2039	Вероятно простое

- **4.** Даны целые неотрицательные числа M и N, количество разрядов которых может быть велико. Разработайте алгоритм для нахождения величины N^M . **Ограничение:** длина чисел $0 \le N$, $M \le 1000$ цифр.
- **5.** На листе блокнота школьник Матвей записал несколько строчек из чисел. Размер страницы M*N клеток. Лист вырвал из блокнота и забрал его одноклассник Николай. Хобби Николая упорядочение чисел. Разработайте алгоритм, который упорядочит все числа на листе в убывающем порядке.
- **6.** В лесничестве провели эксперимент по выращиванию елей разных видов. Виды отличаются друг от друга по числу ярусов веток (от M до N). К сожалению, печатную версию плана рассадки за несколько лет целиком съели грызуны, а электронной не было. Перед Вами стоит задача посчитать количество елей каждого вида в настоящий момент. Участок эксперимента изначально имел прямоугольную форму (K*L км) и было высажено P саженцев, не все из которых есть сейчас. Каждая ель занимает квадрат не более 2 м² площади. Разработайте алгоритм и схему хранения данных.