Actividad 2

Jennifer Judith Salgado Parra Universidad de Sonora Departamento de Física

Septiembre 11, 2017

1 Movimiento de Proyectiles

1.1 Definición

El movimiento del proyectil es una forma de movimiento en la que un objeto o partícula (en cualquier caso denominado proyectil) se lanza cerca de la superficie de la Tierra, y se mueve a lo largo de un camino curvo bajo la acción de la gravedad solamente, donde la resistencia del aire no se toma en cuenta.

1.2 La velocidad inicial

Ésta podemos expresarla como la suma de componentes horizontales y verticales, de esta manera:

$$v_0 = v_{0x}i + v_{0y}j$$

En caso que queramos encontrar las componentes, es necesario contar con el ángulo inicial θ y la velocidad inicial v_0 , para así utilizar las siguientes fórmulas.

$$v_{0x} = v_0 cos\theta$$

$$v_{0y} = v_0 sen\theta$$

En caso que necesitemos encontrar la velocidad inicial, teniendo la posición del proyectil (x,y) y el ángulo de lanzamiento θ , se utilizará la siguiente fórmula:

$$v_0 = \sqrt{\frac{x^2 g}{x Sen(2\theta) - 2y Cos^2(\theta)}}$$

1.3 Aceleración

Dado que sólo hay aceleración en la dirección vertical (trarándose de un movimiento en caída libre); la velocidad en la dirección horizontal es constante. Siendo así:

$$a_x = 0$$

$$a_y = -g$$

1.4 Velocidad

La magnitud de la velocidad dada por el teorema de pitágoras se definirá de la siguiente forma:

 $v = \sqrt{v_x^2 + v_y^2}$

Desplazamiento 1.5

En cualquier momento t, el desplazamiento horizontal y vertical del proyectil son:

$$x = v_0 t cos(\theta)$$

$$y = v_0 t sen(\theta) - \frac{1}{2} g t^2$$

1.6 Tiempo de vuelo

El tiempo total t para el cual el proyectil permanece en el aire se llama el tiempo de vuelo y está determinado con la siguiente fórmula

$$t = \frac{2v_0 sen(\theta)}{g}$$

1.6.1 **Ejemplo**

Un hombre lanza una pelota con un ángulo de $\theta=25^{\circ}$ a una rapidez de 8 m/s. ¿Cuánto tiempo permanece la pelota en el aire?

Sustituimos en la ecuación

$$t = \frac{2 \cdot 8sen(20)}{9.8} \approx 0.558s$$

Altura máxima del proyectil 1.7

La altura máxima que el objeto alcanzará será cuando $v_y=0$ y está dada por la siguiente fórmula

 $h = \frac{v_0^2 sen^2(\theta)}{2g}$

Por otra parte, si queremos encontrar el tiempo para alcanzar la altura máxima, basta con igualar a cero la ecuación del desplazamiento en y, y despejar t, quedándonos así

 $t_h = \frac{v_0 sen(\theta)}{g}$

1.7.1 Ejemplo

Un hombre lanza una pelota con un ángulo de $\theta=25^\circ$ a una rapidez de 8 m/s. ¿En qué altura su velocidad es cero?

Sustituimos en la ecuación

$$h = \frac{8^2 \cdot sen^2(25)}{2 \cdot 9.8} \approx 0.381m$$

1.8 Distancia máxima del proyectil

Hemos de notar que para encontrar el rango horizontal del proyectil es cuando la altura en y vuelve a ser cero. Por lo tanto, igualamos a cero la ecuación en desplazamiento en y.

$$0 = v_0 t_d sen(\theta) - \frac{1}{2} g t_d^2$$

Despejamos t_d , tiempo en el que se realizó la distancia máxima recorrida del proyectil.

$$t_d = \frac{v_0 sen(\theta)}{q}$$

Teniendo el tiempo en el que realizó el proyectil todo el recorrido, sustituimos en la ecuación de desplazamiento en x.

$$d = v_0 t_d cos(\theta)$$

Utilizando la identidad trigonométrica $2 \cdot sen(\theta) \cdot cos(\theta) = sen(2\theta)$ nos queda que:

$$d = \frac{v_0^2 sen(2\theta)}{g}$$

1.8.1 Ejemplo

Un hombre lanza una pelota con un ángulo de $\theta=25^\circ$ a una rapidez de 8 m/s. ¿Qué distancia recorre la pelota?

Sustituimos en la ecuación

$$d = \frac{8^2 \cdot sen(2 \cdot 20)}{9.8} \approx 4.197m$$

2 Bibliografía

References

[1] Wikipedia. (Agosto 31, 2017). Movimiento de proyectiles. 2017, de Fundación Wikimedia, Inc. Sitio web: https://en.wikipedia.org/wiki/Projectile_motion