Lecture 3

Multiple Linear Regression: Inference and Prediction

Reading: Faraway 2014 Chapters 3.1-3.2; 3.5; 4.1-4.2; 4.4; 7.3. ISLR 2021 Chapter 3.2

DSA 8020 Statistical Methods II

Whitney Huang Clemson University

Notes

Agenda

- General Linear F-Test
- Prediction
- Multicollinearity

Notes

Review: t-Test and F-Test in Linear Regression

- *t*-Test: Testing one predictor

 - ② Test Statistic: $t^* = \frac{\hat{\beta}_j 0}{SE(\hat{\beta}_j)}$
 - $\textbf{ 3} \ \, \mathsf{Reject} \, H_0 \, \, \mathsf{if} \, \, |t^*| > t_{1-\alpha/2,n-p}$
- Overall F-Test: Test of all the predictors

 - ② H_a : at least one $\beta_j \neq 0, 1 \leq j \leq p-1$
 - **1** Test Statistic: $F^* = \frac{MSR}{MSF}$

Both tests are special cases of General Linear F-Test

Notes			

General Linear F**-Test**

- Comparison of a "full model" and "reduced model" that involves a subset of full model predictors
- \bullet Consider a full model with k predictors and reduced model with ℓ predictors ($\ell < k$)
- \bullet Test statistic: $F^* = \frac{(\text{SSE}_{\text{reduce}} \text{SSE}_{\text{full}})/(k-\ell)}{\text{SSE}_{\text{full}}/(n-k-1)} \Rightarrow \text{Testing } H_0$ that the regression coefficients for the extra variables are all zero
 - Example 1: $x_1, x_2, \cdots, x_{p-1}$ vs. intercept only \Rightarrow Overall F-test
 - Example 2: $x_j, 1 \le j \le p-1$ vs. intercept only \Rightarrow t-test for β_j
 - Example 3: x_1, x_2, x_3, x_4 vs. $x_1, x_3 \Rightarrow H_0: \beta_2 = \beta_4 = 0$

Geometric Illustration of General Linear F-Test

Source: Faraway, Linear Models with R, 2014, p.34

Notes	

Notes

Species Diversity on the Galapagos Islands: Full Model

> summary(gala_fit2)

Multiple Linear Regression: Inference and Prediction
CLEMS N
General Linear F-Test

Notes			

Species Diversity on the Galapagos Islands: Reduce Model

> summary(gala_fit1)

Call:

lm(formula = Species ~ Elevation)

Residuals:

Min 10 Median 30 Max -218.319 -30.721 -14.690 4.634 259.180

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 11.33511 19.20529 0.590 0.56
Elevation 0.20079 0.03465 5.795 3.18e-06 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 78.66 on 28 degrees of freedom Multiple R-squared: 0.5454, Adjusted R-squared: 0.5291 F-statistic: 33.59 on 1 and 28 DF, p-value: 3.177e-06

Performing a General Linear F-Test

 $\bullet \ H_0: \beta_{\rm Area} = 0 \ {\rm vs.} \ H_a: \beta_{\rm Area} \neq 0$

 $F^* = \frac{(173254 - 169947)/(2-1)}{169947/(30-2-1)} = 0.5254$

• P-value: P[F>0.5254]=0.4748, where $F\sim F\underbrace{1}_{k-\ell}\underbrace{27}_{n-k-1}$

> anova(gala_fit1, gala_fit2)

Analysis of Variance Table

Model 1: Species ~ Elevation + Area |
Model 2: Species ~ Elevation + Area |
Res.Df RSS Df Sum of Sq F Pr(>F) |
1 28 173254 |
2 173254 |
3 3307 0.5254 0.4748

Notes

Notes

3.8

Visualizing p-value

p-value is the shaped area under the density curve of the null distribution

Notes			

Another Example of General Linear F-Test: Full Model

```
Multiple Linear Regression: Inference and Prediction

CLEMSIN

General Linear F-Test

Prediction

Multicollinearity
```

Notes

Another Example of General Linear ${\it F-Test:}$ Reduced Model

Notes			

Performing a General Linear F-Test

• Null and alternative hypotheses:

 $H_0: \beta_{\texttt{Area}} = \beta_{\texttt{Nearest}} = \beta_{\texttt{Scruz}} = 0$ $H_a: \text{ at least one of the three coefficients} \neq 0$

 $F^* = \frac{(100003 - 89231)/(5-2)}{89231/(30-5-1)} = 0.9657$

ullet p-value: $\mathrm{P}[F>0.9657]=0.425,$ where $F\sim \mathsf{F}_{3,24}$

> anova(reduced, full)
Analysis of Variance Table

Model 1: Species ~ Elevation + Adjacent
Model 2: Species ~ Area + Elevation + Nearest + Scruz + Adjacent
Res.Df RSS Df Sum of Sq F Pr(>F)
1 77 1000003
2 24 89231 3 10772 0.9657 0.425

Multiple Linear Regression: Inference and Prediction
UNIVERSITY
General Linear F-Test

Notes			
•			

Multiple Linear Regression Prediction

Given a new set of predictors,

 $\boldsymbol{x}_0 = (1, x_{0,1}, x_{0,2}, \cdots, x_{0,p-1})^{\mathrm{T}}$, the predicted response is

$$\hat{y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_{0,1} + \hat{\beta}_2 x_{0,2} + \dots + \hat{\beta}_{p-1} x_{0,p-1}.$$

Again, we can use matrix representation to simplify the notation

$$\hat{y}_0 = \boldsymbol{x}_0^{\mathrm{T}} \hat{\boldsymbol{\beta}},$$

where ${m x}_0^{
m T} = (1, x_{0,1}, x_{0,2}, \cdots, x_{0,p-1})$

We will use this formula to carry out two different kinds of predictions

Notes

Notes

Two Kinds of Predictions

There are two kinds of predictions can be made for a

• Predicting a future response:

Based on MLR, we have $y_0 = \boldsymbol{x}_0^{\mathrm{T}}\boldsymbol{\beta} + \varepsilon$. Since $E(\varepsilon) = 0$, therefore the predicted value is

$$\hat{y}_0 = \boldsymbol{x}_0^{\mathrm{T}} \hat{\boldsymbol{\beta}}$$

Predicting the mean response:

Since $E(y_0) = \boldsymbol{x}_0^{\mathrm{T}}\boldsymbol{\beta}$, there we have the predicted mean response

$$\widehat{E(y_0)} = \boldsymbol{x}_0^{\mathrm{T}} \hat{\boldsymbol{\beta}},$$

the same predicted value as predicting a future response

Next, we need to assess their prediction uncertainties, and then we will identify the differences in terms of these uncertainties

Prediction Uncertainty

From page 22 of slides 2, we have $\operatorname{Var}(\hat{\boldsymbol{\beta}}) = \sigma^2 \left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X} \right)^{-1}$. Therefore we have

$$\operatorname{Var}(\hat{y}_0) = \operatorname{Var}(\boldsymbol{x}_0^{\mathrm{T}}\hat{\boldsymbol{\beta}}) = \sigma^2 \boldsymbol{x}_0^{\mathrm{T}} \left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right)^{-1} \boldsymbol{x}_0$$

We can now construct $100(1-\alpha)\%$ CI for the two kinds of predictions:

Predicting a future response y₀:

$$\boldsymbol{x}_{0}^{\mathrm{T}}\boldsymbol{\hat{\beta}} \pm t_{n-p,\alpha/2} \times \hat{\sigma} \sqrt{\underbrace{1}_{\mathrm{accounting for } \varepsilon}} \boldsymbol{x}_{0}^{\mathrm{T}} \boldsymbol{X}^{\mathrm{T}} \boldsymbol{X})^{-1} \boldsymbol{x}_{0}$$

• Predicting the mean response $E(y_0)$:

$$\boldsymbol{x}_{0}^{\mathrm{T}}\hat{\boldsymbol{\beta}} \pm t_{n-p,\alpha/2} \times \hat{\sigma} \sqrt{\boldsymbol{x}_{0}^{\mathrm{T}} \left(\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X}\right)^{-1} \boldsymbol{x}_{0}}$$

Multiple Linear Regression: Inference and Prediction
CLEMS N
Prediction

Notes				

Example: Predicting Body Fat (Faraway 2014 Chapter 4.2)

```
Im(formula = brozek - age = weight + height + neck + chest + abdom = hip + thigh + knee + ankle + biceps + forearm + wrist, data = fall, and = fall =
```

What is our prediction for the future response of a "typical" (e.g., each predictor takes its median value) man?

Notes

Example: Predicting Body Fat Cont'd

- lacktriangle Calculate the median for each predictor to get $m{x}_0$
- ② Compute the predicted value $\hat{y}_0 = \boldsymbol{x}_0^{\mathrm{T}} \hat{\boldsymbol{\beta}}$
- Quantify the prediction uncertainty

```
> X <- model.matrix(lmod)

> (x0 <- apply(x, 2, median))

(Intercept) age weight height neck chest 1.00 43.00 176.50 70.00 38.00 99.95 99.95

hip thigh knee ankle biceps forearm wrist 99.30 59.00 38.50 22.80 32.05 28.70 18.30

> (y0 <- sum(x0 * coef(lmod)))

[1] 17.49322 

> predict(lmod, new = data.frame(t(x0)), interval = "prediction") fit lwr upr 117.49322 9.61783 25.36861 

> predict(lmod, new = data.frame(t(x0)), interval = "confidence") fit lwr upr 17.49321 16.94426 18.04219
```


Multicollinearity

>	cor(siml)		
	У	x1	x2
У	1.0000000	0.7987777	0.8481084
x1	0.7987777	1.0000000	0.9281514
x2	0.8481084	0.9281514	1.0000000

Notes			

Multicollinearity Cont'd

Multicollinearity is a phenomenon of high inter-correlations among the predictor variables

- ullet Numerical issue \Rightarrow the matrix $oldsymbol{X}^Toldsymbol{X}$ is nearly singular
- Statistical issues/consequences
 - β 's are not well estimated \Rightarrow spurious regression coefficient estimates
 - $\bullet \ R^2$ and predicted values are usually okay even with multicollinearity

Notes

2.10

An Simulated Example

Suppose the true relationship between response y and predictors (x_1,x_2) is

$$y = 4 + 0.8x_1 + 0.6x_2 + \varepsilon,$$

where $\varepsilon\sim N(0,1)$ and x_1 and x_2 are positively correlated with $\rho=0.9.$ Let's fit the following models:

- Model 1: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon_1$ This is the true model with parameters unknown
- Model 2: $y = \beta_0 + \beta_1 x_1 + \varepsilon_2$ This is the wrong model because x_2 is omitted

Notes

Scatter Plot: x_1 vs. x_2

Notes ______

Model 1 Fit

```
Call:
lm(formula = Y \sim X1 + X2)
    Min
                1Q Median
                                   3Q
-1.91369 -0.73658 0.05475 0.87080 1.55150
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.0710 0.1778 22.898 < 2e-16 ***
X1 2.2429 0.7187 3.121 0.00426 **
X2 -0.8339 0.7093 -1.176 0.24997
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.9569 on 27 degrees of freedom
Multiple R-squared: 0.673, Adjusted R-squared: 0.6488
```

F-statistic: 27.78 on 2 and 27 DF, p-value: 2.798e-07

Notes

Model 2 Fit

```
Call:
lm(formula = Y \sim X1)
Residuals:
    Min
                10 Median
-2.09663 -0.67031 -0.07229 0.87881 1.49739
Estimate Std. Error t value Pr(>|t1)
(Intercept) 4.0347 0.1763 22.888 < 2e-16 ***
X1 1.4293 0.1955 7.311 5.84e-08 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.9634 on 28 degrees of freedom
Multiple R-squared: 0.6562, Adjusted R-squared: 0.644
F-statistic: 53.45 on 1 and 28 DF, p-value: 5.839e-08
```


Notes			

Takeaways

Model 1 fit:

Call: lm(formula = Y ~ X1 + X2)

Min 1Q Median 3Q Max -1.91369 -0.73658 0.05475 0.87080 1.55150

---Signif. codes: 0 '***' 0.801 '**' 0.81 '*' 0.85 '.' 0.1 ' ' : Residual studender error: 0.9569 on 27 degrees of freedom Multiple R-squared: 0.673, Adjusted R-squared: 0.6488 F-statistic: 27.78 on 2 and 27 DF, p-value: 2.798e-07

Recall the true model:

where $\varepsilon \sim N(0,1)$, x_1 and x_2 are positively correlated with

 $\rho = 0.9$

Model 2 fit: Call: lm(formula = Y ~ X1)

Min 1Q Median 3Q Max -2.09663 -0.67031 -0.07229 0.87881 1.49739

---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.9634 on 28 degrees of freedom Multiple R-squared: 0.6562, Adjusted R-squared: 0.644 F-statistic: 53.45 on 1 and 28 DF, p-value: 5.839e-08

 $y = 4 + 0.8x_1 + 0.6x_2 + \varepsilon,$

Summary:

- β's are not well estimated in model 1
- Spurious regression coefficient estimates
- In model 2, \mathbb{R}^2 and predicted values are OK compared to model 1

linear sion: and sion	Notes
S &N	
arity	

Variance Inflation Factor (VIF)

We can use the variance inflation factor (VIF)

$$\mathsf{VIF}_i = \frac{1}{1 - \mathsf{R}_i^2}$$

to quantifies the severity of multicollinearity in MLR, where R_i^2 is the **coefficient of determination** when X_i is regressed on the remaining predictors

R example code

 $\sqrt{\text{VIF}}$ indicates how much larger the standard error increases compared to if that variable had 0 correlation to other predictor variables in the model.

Notes

Notes

Multiple Linear Regression: Inference and Prediction
CLEMS N
Multicollinearity
3.25

Summary

These slides cover:

- General Linear F-Test provides a unifying framework for hypothesis tests
- Making predictions and quantifying prediction uncertainty
- Multicollinearity and its implications for MLR

R commands:

- ullet anova for model comparison based on F-test
- predict: obtain predicted values from a fitted model
- vif under the faraway library: computes the variance inflation factors

Notes		