Homework Assignment #10

Note: You must provide sufficient detail in your derivations or proofs to earn full credit. No late homework will be graded.

- 1. Let X_1, \dots, X_n be a random sample from $n(\mu, \sigma^2)$, where μ and σ are unknown.
- (a) Find the likelihood ratio test for the null hypothesis $\sigma^2 = \sigma_0^2$ versus the alternative hypothesis $\sigma^2 \neq \sigma_0^2$ for a given value of σ_0^2 .
- (b) By inverting the above test, derive the level $1-\alpha$ confidence interval for σ^2 .
- 2. Let X_1, \dots, X_n be a random sample from the Poisson distribution with mean λ , and let $T = \sum_{i=1}^{n} X_i$.
 - (a) Show that $(T n\lambda)/\sqrt{2n\lambda}$ is asymptotically pivotal.
- (b) Construct an approximate level 1α confidence set for λ based on the result in (a).
- (c) For n=9 and T=16, find an approximate 95% confidence interval for λ .
- 3. In a series of 5 independent missile trials, only four launches were successful. Find a 90% lower confidence bound for the success probability.
- 4. Let X_1, \dots, X_n be a random sample from a distribution that takes three possible values as follows: $P(X = -1) = P(X = 1) = \theta$ and $P(X = 0) = 1 2\theta$.
- (a) Show the likelihood ratio test for H_0 : $\theta = \theta_0$ versus H_1 : $\theta > \theta_0$ takes the form that $\sum_{i=1}^n I(X_i = 0) < k$ for some value of k.
- (b) Assume that $k = k(\alpha)$ is known for any given level of α , find the level 1α lower confidence bound for θ .
 - (c) For $\theta_0 = 1/3$, n = 10 and $\alpha = 0.05$, find k numerically.