This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

S.

PAT-NO:

JP403175211A

DOCUMENT-IDENTIFIER: JP 03175211 A

TITLE:

COMBUSTOR, COMBUSTOR FOR TURBINE, BURNER AND METHOD OF

COMBUSTION

PUBN-DATE:

July 30, 1991

INVENTOR-INFORMATION:

NAME
TANIGUCHI, MASAYUKI
AZUHATA, SHIGERU
ARASHI, NORIO
MURAKAMI, TADATAKA
YOSHII, YASUO
SOMA, KENICHI
KOBAYASHI, YOSHINOBU
ISHIBASHI, YOJI
KURODA, MICHIO

ASSIGNEE-INFORMATION:

NAME

COUNTRY

HITACHI LTD

N/A

APPL-NO: IP02065149

APPL-DATE: March 15, 1990

INT-CL (IPC): F23R003/30, F23R003/26

US-CL-CURRENT: 60/747, 431/5, 431/352

ABSTRACT:

PURPOSE: To be able to obtain stable flame and at the same time to reduce NO<SB>x</SB> by forming a high temperature range that is over the ignition temperature of a premixture gas in the inside of a premixture gas that is jetted out of a nozzle and circulating the combustion gas round the outside of the premixture gas that is jetted from the nozzle.

CONSTITUTION: In a first circulating flow region 51 a high temperature combustion gas 4 at nearly 2,000°C that is formed by the combustion of a premixture gas 50 flows. Accordingly the premixture flame that is formed in a secondary combustion chamber 20 gets an ignition source of the high temperature combustion gas 4 and is stabilized. On the other hand, in a second circulation flow region 52 that is formed on the side of the outer circumference of a

1,2,3,7
9,10,12

circular resistor 40 the combustion gas 4 and a premixture gas 5 flow, and the combustion gas 4 and the premixture gas 5 are mixed there to form a combustion mixture gas 6. This combustion mixture gas 6 burns due to the propagation of the flame from the combustion region 53 where the gas burns relatively violently, and outside the relatively violent combustion region 53 a slow combustion region 54 is formed. In the slow combustion region 54 the combustion mixture gas 6 with a low oxygen partial pressure burns so that the combustion tempera ture is low and the volume of the NO<SB>x</SB> formed in this region is extremely small.

COPYRIGHT: (C)1991,JPO&Japio

THIS PAGE BLANK (USPTO)

(11)Publication number:

03-175211

(43)Date of publication of application: 30.07.1991

(51)Int.CI.

F23R 3/30 F23R 3/26

(21)Application number: 02-065149

(22)Date of filing:

15.03.1990

(71)Applicant:

HITACHI LTD

(72)Inventor:

TANIGUCHI MASAYUKI **AZUHATA SHIGERU ARASHI NORIO**

MURAKAMI TADATAKA YOSHII YASUO

SOMA KENICHI

KOBAYASHI YOSHINOBU

ISHIBASHI YOJI KURODA MICHIO

(30)Priority

Priority number: 64 66232

Priority date: 20.03.1989 01245534

21.09.1989

Priority country: JP

(54) COMBUSTOR, COMBUSTOR FOR TURBINE, BURNER AND METHOD OF COMBUSTION

(57)Abstract:

PURPOSE: To be able to obtain stable flame and at the same time to reduce NOx by forming a high temperature range that is over the ignition temperature of a premixture gas in the inside of a premixture gas that is jetted out of a nozzle and circulating the combustion gas round the outside of the premixture gas that is jetted from the nozzle. CONSTITUTION: In a first circulating flow region 51 a high temperature combustion gas 4 at nearly 2,000° C that is formed by the combustion of a premixture gas 50 flows. Accordingly the premixture flame that is formed in a secondary combustion chamber 20 gets an ignition source of the high temperature combustion gas 4 and is stabilized. On the other hand, in a second circulation flow region 52 that is formed on the side of the outer circumference of a circular resistor 40 the combustion gas 4 and a premixture gas 5 flow, and the combustion gas 4 and the premixture gas 5 are mixed there to form a combustion mixture gas 6. This combustion mixture gas 6 burns due to the propagation of the flame from the combustion region 53 where the gas burns relatively violently, and outside the relatively violent combustion region 53 a slow combustion region 54 is formed. In the slow combustion region 54 the combus tion mixture gas 6 with a low oxygen partial pressure burns so that the combustion tempera ture is low and the volume of the NOx formed in this region is extremely small.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

19日本国特許庁(JP)

⑩ 特 許 出 願 公 開

@ 公 開 特 許 公 報 (A) 平3-175211

@Int. Cl. 5

識別記号

庁内整理番号

@公開 平成3年(1991)7月30日

F 23 R 3/30 3/26

7616-3G 7616-3G Z

審査請求 未請求 請求項の数 40 (全25頁)

会発明の名称

燃焼器、ガスターピン用燃焼器、パーナ、および燃焼方法

の特 顧 平2-65149

22出 願 平2(1990)3月15日

優先権主張

⑩平1(1989)3月20日孁日本(JP)⑩特願 平1-66232

@発 明 者

正 行

茂

茨城県日立市久慈町4026番地 株式会社日立製作所日立研

究所内

⑫発 明 者 小 豆 畑

谷

茨城県日立市久慈町4026番地 株式会社日立製作所日立研

究所内

四発 明 者 嵐 紀 夫 茨城県日立市久慈町4026番地 株式会社日立製作所日立研

究所内

勿出 願 人

株式会社日立製作所

東京都千代田区神田駿河台4丁目6番地

四代 理 人

弁理士 富田 和子

最終頁に続く

咡

1. 発明の名称

燃焼器、ガスターピン用燃焼器、パーナ、およ び燃烧方法

- 2. 特許請求の範囲
 - 1. 燃料と空気とが混合した予混合気体を吸出す るノズルを偉えた燃焼器において、

前記ノズルから噴出する予混合気体の喧流の 内部から周囲に向かって、該予混合気体の機能 を進行させるさせる予混合気体燃焼手段と、

前記予混合気体の噴流の外側から、数予混合 気体に燃焼気体を混入させる気体混入手段とを 備えていることを特徴とする燃焼器。

2. 燃料と空気とが混合した予混合気体を噴出す るノズルを個えた燃烧器において、

前記ノズルから噴出する予混合気体の噴流の 内部に、該予混合気体の着火温度を越える高温 領域を形成する高温領域形成手段と、

前記予混合気体の噴流の外側に燃焼気体を新 現させる燃烧気体循環手段とを増えていること を特徴とする燃焼器。

3. 燃料と空気とが混合した予混合気体を燃焼す る燃焼器において、

前記予混合気体を分割して噴出し、分割地点 の下流にうず流を形成するノズルと、

前記ノズル出口の外周の少なくとも一部に燃 焼気体のうず流を形成する空間とを備えている ことを特徴とする燃焼器。

4. 燃料と空気とが混合した予混合気体を噴出す るノズルを備えた燃焼器において、

前記ノズルの出口近傍に、下洗倜の斯面積が 急激に小さくなり、噴出する予混合気体の抵抗 となる抵抗体を設け、

前記予混合気体が燃焼する燃焼室を前記ノズ ルの出口から急激に大きくなるよう形成したこ とを特徴とする燃焼器。

- 前記抵抗体の断面積は、前記ノズルの出口面 積よりも小さいことを特徴とする趙求項4記載 の燃焼器。
- 6. 前記抵抗体を冷却する冷却手段を備えている

特閒平3-175211(2)

する前記予混合火炎を囲芯の2つの噴流に分割

し、該予組合気体の分割地点の下流に該予混合 気体の燃焼により発生する燃焼気体の循環流を

分割された前記予混合気体の外側から前記燃

焼気体を譲予混合気体内に混入させる燃焼気体

進入手段とを備えていることを特徴とする燃焼

11. 前記燃烧気体混入手段は、前記ノズルの出

12. 複数の燃焼室を借え、複数の該燃焼室のう

ち少なくとも1以上の燃焼室内に、予混合火炎

を形成するノズルが設けられている燃焼器にお

前記予混合火炎内に、該予混合火炎から発生

前記予混合火炎の外側に、前記燃焼気体の循

環流を形成する第2の循環流形成手段と、

した燃焼気体の循環流を形成する第1の循環流

特徴とする請求項10記載の燃焼器。

形成手段と,

口から急激に広がる燃焼室で構成されることを

形成する循環流形成手段と、

ことを特徴とする請求項4または5記載の燃焼

- 前記ノズルが同一円周上に複数配されていることを特徴とする請求項1、2、3、4、5または6記載の燃焼器。
- 8. 前記ノズルの上流偶または下流側に、予混合 火袋または拡散火袋を形成するノズルを備えて いることを特徴とする請求項1、2、3、4、 5、6または7記載の燃焼器。
- g. 燃料と空気とが混合した予混合気体を噴出する複数のノズルを備えた燃焼器において、

複数の前記ノズルの出口近傍に、下洗側の斯面積が急激に小さくなり、噴出する予混合気体の抵抗となる抵抗体を設け、

前記予混合気体が燃焼する燃焼室を、複数の 前記ノズルのそれぞれの出口から急激に大きく なるよう形成したことを特徴とする燃焼器。

10. 燃料と空気とが混合した予混合気体を環状に噴出するノズルと。

前記ノズルの出口近傍に位置し、環状に噴出

混合火炎とパイロット火炎であることを特徴と する請求項13記載の燃焼器。

- 17. 前記第2の燃焼室に予混合気体を噴出する ノズルは、環状に形成されていることを特徴と する請求項13、14、15または16記載の 燃焼器。
- 18. 環状に形成されている前記ノズルが、周方向に複数に分割されていることを特徴とする請求項17記載の燃焼器。
- 19. 前記抵抗体は、環状に形成されている前記 ノズルに沿って、環状に形成されていることを 特徴とする請求項17または18記載の燃焼器。
- 20. 前記第1の燃焼室を前記第2の燃焼室の上 流側に設けたことを特徴とする請求項13、 14、15、16、17、18または20記載 の燃焼器。
- 21. ノズルから噴出する予混合気体の流れ方向 に対して垂直方向の前記抵抗体の断面積が、前 記ノズルの出口面積よりも小さいことを特徴と する請求項13、14、15、16、17.

他の燃焼室で発生した燃焼気体を前記予混合 火炎内に混入させる燃焼気体混入手段とを備え ていることを特徴とする燃焼器。

13. 所定の火炎が形成される第1の燃焼室と、 予混合火炎が形成される第2の燃焼室とを備え ている燃焼器において、

前記第2の燃焼室に噴出される予混合気体の 抵抗となり、予混合気体の燃焼により発生する 燃焼気体の循環液を下液側に形成する抵抗体と、

前記燃烧気体および第1の燃烧室で発生した 燃焼気体を前記予混合火炎に混入させる燃烧気 体混入手段とを備えていることを特徴とする燃 焼器。

- 14. 前記第1の燃烧室に形成される火炎が拡散 火炎であることを特徴とする請求項13記載の 燃烧器。
- 15. 前記第1の燃焼室に形成される火炎が予混合火炎であることを特徴とする請求項13記載の燃焼器。
- 16. 前記第1の燃焼室に形成される火炎は、予

-56-

特開平3-175211(3)

. 18、19、20記載の燃焼器。

- 22. 請求項1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20または21記載の燃焼器が、燃焼気体をガスタービンに送り込むための燃焼気体排出口を備えていることを特徴とするガスタービン用燃焼器。
- 23. 1 次燃料と空気とが混合した1次予混合気体を環状に噴出する環状の第1のノズルと、

環状に噴出する前記1次予混合気体に対する 抵抗となって、該1次予混合気体を同芯の2つ の流れに分流する環状の抵抗体と、

前記第1のノズルの出口から急激に広がる1次燃焼室と、

前記 1 次燃焼室の下流に位置し、 2 次燃料と空気とが混合した 2 次予混合気体を環状に噴出し、 環状の前記第 1 のノズルの外局径よりも大きい内周径を有する環状の第 2 のノズルと、

前記2次予混合気体が噴出される2次燃焼室とを借えていることを特徴とするガスタービン

分流する環状の抵抗体と、

館記ノズルの出口から急激に広がる2次燃焼 室とを備えていることを特徴とするガスタービ ン用燃焼器。

28. 請求項23、24、25、26または27 記載のガスタービン用燃焼器の運転方法にであって。

まず、上流側の燃焼室内に火炎を形成し、

次に、前記上流側の燃焼室における負荷が特定の負荷になった時点で、下流側の燃焼室内に 火炎を形成することを特徴とするガスタービン 用燃焼器の運転方法。

29. 請求項27記載のガスタービン用燃焼器の選転方法であって、

まず、前記1次燃焼室内に拡散火炎を形成し、 次に、前記1次燃焼室における負荷が特定の 負荷になった時点で、前記2次燃焼室に前記予 混合気体を噴出して予混合火炎を形成すると共 に、前記拡散火炎を消火または小さくすること を特徴とするガスタービン用燃烧器の遮転方法。 用燃烧器。

- 24. 環状に噴出する前記2次予混合気体に対する抵抗となって、該2次予混合気体を同芯の2つの流れに分流する環状の抵抗体を備えていることを特徴とする請求項23記載のガスタービン用燃焼器。
- 25. 前記2次燃焼室は、前記第2のノズルの出口から急激に広がるよう形成されていることを特徴とする請求項23または24記載のガスタービン用燃烧器。
- 26. 前記1 次燃焼室の上流線に、パイロットパーナが設けられていることを特徴とする請求項23、24 または25 記載のガスタービン用燃焼器。
- 27. 拡散火炎が形成される1次燃焼室と、

前記1次燃焼室の下流に位置し、燃料と空気とが混合した予混合気体を頭状に噴出する環状のノズルと、

環状に噴出する前記予混合気体に対する抵抗 となって、該予混合気体を同志の2つの流れに

30. 燃料と空気とが混合した予混合気体を燃焼させる燃焼方法において、

予混合気体 噴流の内部から外側に向かって、 該予混合気体の燃焼を進行させ、

前記予混合気体噴流の外側から、跛予混合気体の燃焼により発生する燃焼気体を前記予混合気体内に混入させることを特徴とする燃焼方法。

31. 燃料と空気とが混合した予混合気体を燃焼させる燃焼方法において、

予混合気体噴流の内部と該予混合気体噴流の 外部とに、 該予混合気体の燃焼により発生する 燃焼気体の循環流を形成することを特徴とする 燃焼方法。

32. 前記予混合気体の燃焼により形成される予 混合火炎の他に、火炎を形成し、

前記火炎の燃烧により発生する燃烧気体を前記予混合気体に混入させることを特徴とする請求項30または31記載の燃焼方法。

33. 燃料と空気とが混合した予混合気体を燃焼させる燃焼方法において、

前記予混合気体を環状に吸出して、該予混合 気体を内周側と外周側とに分流し、

前記予混合気体の分流地点の下流に、該予混合気体の燃焼により発生した燃焼気体の循環流を形成すると共に、少なくとも分流した外周側の予混合気体に、該外周側の予混合気体のさらに外周側から前記燃焼気体を混入させることを特徴とする燃烧方法。

- 34. 環状に噴出する前記予混合気体の内周側に 拡散火炎を形成することを特徴とする請求項 3 3 記載の燃焼方法。
- 35. 前配予復合気体が噴出する地点より、上流 に火炎を形成し、

該火炎から発生する燃焼気体を、少なくとも 分流した内周側の予混合気体に、該内周側の予 混合気体のさらに内周側から混入させることを 特徴とする請求項33記載の燃焼方法。

36. 前記予混合気体の燃焼により形成される予 混合火炎の下流に、他の火炎を形成し、

前記予混合火炎から発生する燃焼気体を、前

記他の火炎内に混入させることを特徴とする請求項33記載の燃焼方法。

37. 燃料と空気とが混合した予混合気体を噴出するパーナにおいて、

噴出する前記予混合気体の抵抗となり、該予 混合気体の燃焼により発生する燃焼気体の循環 液を下流側に形成する抵抗体と、

吸出する的記予混合気体の外側から前記燃焼 気体を混入させる燃焼気体混入手段とを備えて いることを特徴とするパーナ。

- 38. 請求項37記載のパーナが装着されていることを特徴とする燃焼器。
- 39. 請求項22、23、24、25、26または27記載のガスターピン用燃焼器と、

前記ガスターピン用燃焼器内で発生した燃焼 気体により駆動するガスターピンと、

前記ガスタービンの駆動により発電を行う発電機とを備えていることを特徴とするガスタービン発電設備。

40. 請求項22、23、24、25、26また

は27記載のガスターピン用燃焼器と、

前記ガスタービン用燃焼器内で発生した燃焼 気体により駆動するガスタービンと、

前記ガスタービンの駆動により発電を行う発電機と、

前記ガスタービンから排出される燃焼気体により、蒸気を発生させる廃熱回収ポイラとを得えていることを特徴とするコジェネレーションシステム。

3. 発明の詳細な説明

[産業上の利用分野]

本発明は、気体燃料あるいは液体燃料により予 混合燃焼を行う燃焼器、ガスタービン用燃焼器、 パーナ、および燃焼方法に関する。

[従来の技術]

一般的に、燃焼時に生成されるNOxには、燃料中の窒素化合物から生成されるフューエルNOxと、空気中の窒素から生成されるサーマルNOxとがある。

フューエルNOxを低波させるための技術には、

燃焼領域に還元領域を形成させてNOxをN』と O。とに還元する方法などがあるが、基本的には 燃料中の窒素分の低波、つまり燃料の改質を行う ことが最も効果的である。

一方、サーマルNOxを低減させる技術には、 水噴射法、排ガス再循環法、燃料稀稼燃焼法など がある。これらは、主として火炎温度を低下させ ることにより、サーマルNOxを低減させるもの であるが、これらの手法を用いると、火炎の安定 性が低下しやすい。

通常、燃焼器における燃焼方法として、燃料と空気とをそれぞれ異なるノズルから噴出する、いわゆる拡散燃焼が主に用いられてきたが、最近は、燃料と空気とを予め混合し同一のノズルから噴出する予測合燃焼が用いられつつある。

予混合燃焼を用いることによる利点は、主として次の2点である。

ひとつは、予混合燃焼を用いると燃焼の反応領域を小さくすることができる。 つまり、ノズルから噴出する気体がすでに燃料と空気との予混合気

体であるため、ノズルの下流側に予混合気体を形成するための領域を要せず、火炎を短くすることができ、高負荷燃焼することが可能な点である。

もうひとつは、サーマルNOxを低減できることである。燃焼室内に異なるノズルから燃料と空気とを噴出する拡散燃焼では、たとえ燃料を稀存の条件で燃焼させても燃焼室内での燃料と空気との混合過程において、空気比が1(理論混合比)付近になる領域が必ず存在するため、NOxの低減が一般に困難であるとされる。これに対して、過剰の空気と燃料とを予め混合して燃焼する燃料が稀薄な燃焼条件のもとで燃焼するためNOxの低減が容易である。

このような稀薄予混合燃焼法は、例えば、特公昭62-35016号公報に記載されているガスタービンの燃焼器などで採用されつつある。

稀薄予混合燃焼は、空気過剰での燃焼であるため火炎温度が低なって、NOxの低減は図れるが、 予混合火炎の安定性が劣るのが欠点である。

に形成される高温の燃焼気体が着火源となり、火炎を安定させるというものである。

この他、特別昭59-74406号公報に記載されているもののように、パイロット火炎を用いるものや、特関平64-54122号公報に記載されているもののように、旋回波を形成させるものなど、火炎を安定させる多数の技術がある。

なお、これらの技術は、いずれも、燃焼室形状や旋回流の影響等により、燃焼気体と予混合気体との混合領域はほとんど形成されていない。

[発明が解決しょうとする課題]

上述のような火炎の安定化技術を用いて、稀薄 予混合燃焼を行うと、予混合火炎は安定すると共 に、ある程度のNO×低減も実現できる。

しかしながら、近年、光化学スモッグの原因となるNOxに対する排出規制が年々厳しくなってきており、さらに、NOxを低減することができる技術が領まれている。

本発明の目的は、このような点について着目し てなされたもので、安定した火炎を得ることがで 予混合火炎の安定性を向上させるためには、理 論混合比近傍で火炎を形成する必要があるが、前 述のように理論混合比付近での燃焼は、NOxの 発生量が多い。

このように、安定な火炎を形成し易い条件と NOxの発生を抑制できる条件とは異なるため、 過剰空気比条件でも安定に火炎を形成する保炎技術、もしくは理論混合比付近で燃焼させても NOxを低減できる燃焼技術が必要になる。

従来、予混合火炎の安定化技術として、例えば、 米国特許4,051,670号公報や米国特許4,150,539号 公報に記載されている燃焼器がある。

前者の燃焼器は、空気と燃料との混合気体を燃焼室内で旋回させる旋回手段と、旋回流が形成されている領域内の一部を減圧する減圧手段とを備えており、混合気体の旋回流内に高温の燃焼気体を導くことにより、燃料の着火性が確保され、火炎を安定させるというものである。

また、後者の燃焼器は、空気と燃料との混合気体の噴出口に抵抗板を取け、この抵抗板の下流側

きると共に、よりNOxを低減することができる 燃焼器、ガスタービン用燃焼器、パーナ、燃焼方 法を提供することである。

また、本願は、この燃焼器を用いたガスターピン発電設備、コジェネレーションシステム、およびこの燃焼器に好適な燃焼器の運転方法についても提供する。

(以下余白)

特開平3-175211(6)

[課題を解決するための手段]

前記目的は、燃料と空気とが混合した予復合気体を噴出するノズルを備えた燃焼器において、前記ノズルから噴出する予混合気体の内部から周囲に向かって、設予混合気体の燃焼を進行させる予混合気体燃焼手段と、前記ノズルから噴出する予混合気体の外側から、該予混合気体に燃焼気体を混入させる気体混入手段とを備えていてきる。

前記目的は、燃料と空気とが混合した予認合気 体を嗅出するノズルを備えた燃焼器において、前 記ノズルから噴出する予混合気体の内部に、該予 混合気体の着火湿度を越える高温領域を形成する 高温領域形成手段と、前記ノズルから噴出する予 混合気体の外側に、燃焼気体を循環させる燃焼 な循環手段とを偉えていることを特徴とする燃焼 器によっても遠成することができる。

また、前記目的は、燃料と空気とが混合した予 混合気体を噴出するノズルを備えた燃焼器におい

燃焼器の大型化のためには、前記2次燃焼室に 予混合気体を噴出するノズルが、環状に形成され ていることが有効である。さらに大型化するため には、環状に形成されている前記ノズルが、周方 向に複数に分割することが有効である。

なお、予混合気体を噴出するノズルが、現状に 形成されている場合には、このノズルに沿って、 前記抵抗体も環状に形成することが好ましい。

また、燃焼器の起動を容易にするために、上流 側の燃焼室内にパイロットバーナを設けることが 有効である。

また、第1の燃焼室と第2の燃焼室とのいずれか一方を上流側に配し、他方を下流側に配した場合には、上流側の燃焼室内で発生した燃焼気体を下流側の燃焼室で形成される火炎に混入させることができるように、これらの燃焼室の形状および配置関係を定めることがよい。

前記抵抗体は、この断面積が、ノズルの出口面 積よりも小さくなるよう形成することが好ましい。

また、前記抵抗体を冷却する冷却手段を備えて

て、前記ノズルの出口近傍に、下流側の断面積が 急波に小さくなり、噴出する予混合気体の抵抗と なる抵抗体を設け、前記予混合気体が燃焼する燃 焼室を前記ノズルの出口から急激に大きくなるよ う形成したことを特徴とする燃焼器によっても違 成することができる。

前記目的を逮成することができると共にが形と と連成することができると大氏が形成されている。 というのとなど、所定の火炎が形成されたが形成された。 の燃焼室と、予混合火炎においておいるが の燃焼室とでいる燃焼器においておいるが の燃焼室とで吸出される予混合気があいてが がおいてが、 がおいなが、 がは、 がは、 がいるが、 がいが、 がいるが、 がいが、 がいが、

ここで、前記第1の燃煙室に形成される火災は、 拡散火炎でも予混合火炎でもよいが、第1の燃煙 室に形成される火炎が拡散火炎である場合には、 第1の燃焼室を第2の燃焼室の上流側に設けるこ とが好ましい。

いることが好ましい。具体的には、抵抗体の内部 に冷却用の空気または水を供給することにより、 実施される。

予混合火炎が形成される燃焼室における、ノズル出口から急激に広がる幅は、できる限り大きくすることが好ましい。しかしながら、この幅を大きくすると、燃焼器の大型化しコストが満むので、ノズルの出口幅に対して、1.5倍程度にすることが適当であると思われる。

なお、以上の燃焼器の構成は、ガスターピン用 燃焼器に適用することができる。

また、これらの燃焼器は、燃焼器に、ガスター ピンを接続し、このガスターピンに発電機を接続。 することにより、ガスターピン発電機を構成する ことができる。

また、前記目的は、燃料と空気とが混合した予混合気体を噴出するパーナにおいて、噴出する前記予混合気体の抵抗となり、該予混合気体の燃焼により発生する燃焼気体の循環流を下流側に形成する抵抗体と、噴出する前記予混合気体の外側か

ら前記燃焼気体を混入させる燃焼気体混入手段と を備えていることを特徴とするパーナによっても 達成することができる。

また、前記目的は、燃料と空気とが混合した予 混合気体を燃焼させる燃焼方法において、予混合 気体噴流の内部から外側に向かって、 紋予混合気 体の燃焼を進行させ、前記予混合気体噴流の外側 から、 該予混合気体の燃焼により発生する燃焼気 体を前記予混合気体内に混入させることを特徴と する燃焼方法によっても達成することができる。

[作用]

ことを明らかにした。

予混合火炎でサーマルNO×を低級させるには、 先に述べたように、従来、過剰空気条件下で燃焼 を行うことが主流であるが、発明者らは、鋭意検 討の結果、予混合気体噴流のほぼ中心に高温の燃 焼気体を循環させるとともに、予混合気体に選入さ する前に、燃焼気体の一部を予混合気体に選入さ せることにより、予混合火炎を安定化させること ができると共に、NO×を低減することができる

急激に広がっているので、ノズル出口の外周側つまり噴出する予選合気体の外側にも気体の第2の循環流領域が形成される。

第1の循環流領域には、高温の燃焼気体の一部が流入し、第1の循環流領域の周囲の予混合気体が、高温の燃焼気体により着火し、そこに比較的急激な燃焼領域が確実に形成される。このように、比較的急激な燃焼領域が確実に形成されるので、 予混合火炎は安定化する。

第2の循環流領域にも、燃焼気体の一部が流入する。これが、ノズルから噴出する予混合気体と混合して燃焼混合気体を形成する。燃焼混合気体は、破流の内部に形成される比較的急激な燃焼領域から外部に向かって伝播してくる火炎により、燃焼し、緩慢な燃焼領域を形成する。緩慢な燃焼領域内では、酸素分圧の低い燃烧混合気体が燃焼するので、NO×の発生量が偏めて少ない。

また、比較的急激な燃焼領域は、緩慢な燃焼領域が形成されるので、縮小され、ここで発生するNO×の量も少なくなる。

本発明は、この知見に基づいてなされたもので ある。

内側の予退合気体は、高温の燃焼気体という潜火源を得て、確実に着火し、外側に向かって火炎が伝播して行く。一方、外側の予混合気体には、燃焼気体の一部が混入し、予混合気体と燃焼気体とが混合して形成された燃焼混合気体が、内側から伝播してきた火炎により、着火して燃焼する。

したがって、予混合気体の内側が確実に着火するので、予混合火炎は、安定化する。また、単なる予混合気体が燃焼する高温の燃焼領域が縮小されると共に、酸素分圧の低い燃焼混合気体が燃焼するので、NOxが著しく低減する。

具体的に、本発明に係る燃焼器の作用について 説明する。

抵抗体と、予混合気体を噴出するノズル出口から急激に広がる燃焼室とを備えているものでは、抵抗体の下流側の斯面積が急激に小さくなっているので、抵抗体の下流側に気体の第1の循環流領域が形成される。また、燃焼室がノズル出口から

したがって、燃焼領域で発生するNOxを著し く低減することができる。

なお、機慢な燃焼領域を形成するためには、このように、火炎が噴流の内部から外部に向かって伝播してくることが必要である。これは、予混合気体噴流の外側から火炎が形成されると、予混合気体が燃焼気体と混合する前に燃焼してしまい、燃焼混合気体が形成されないからである。

予混合火炎が形成される燃焼室における、ノズル出口から急激に広がる幅をより大きくしたものでは、燃焼気体の一部が循環する第2の循環流気体と燃焼気体とが混合する量が増え、NOxをより低減することができる。なお、ノズル出口から急激に広がる幅をノズルの出口幅の約1.5倍にすると、この幅の大きさに対するNOx低減効果を最もよくすることができる。

また、所定の火炎が形成される第1の燃焼室と 予混合火炎が形成される第2の燃焼室とを備えて いる燃焼器では、予混合火炎は、前述したように、 抵抗体の作用により、安定して燃焼する。また、2つの燃焼室を有するので、それぞれの燃焼室内の負荷を変えることにより、負荷変動の許容範囲を広げることができる。したがって、このような構成が大型の燃焼器に好適である。

燃焼器の大型化のためには、予混合気体を噴出するノズルを環状に形成し、このノズルから予混合気体を下流側に噴出するように構成することが はい。これは、火炎相互の干渉による燃焼撮動を 抑えることができるからである。また、環状に形成したノズルを両方向に複数に分割すると、逆火 を助ぐことができると共に、ノズル内で燃焼用空気と燃料とを効率よく混合することができる。

ここで、第1の燃焼室と第2の燃焼室とのいずれか一方を上流側に配し、他方を下流側に配した場合には、上流側の燃焼室内で発生した燃焼気体を下流側の燃焼室で形成される火炎に混入させることができるよう構成すると、下流側の燃焼室ででは、酸素分圧の低い燃焼気体の混入により、火炎から発生するNOx量を少なくすることができ

を形成するものでは、先の手段により、火炎を安定させることができると共に、両方の燃焼室で形成される火炎から発生するNO×量を少なくすることができるので、燃焼器から排出されるNO×量を振めて少なくすることができる。

(以下余白)

ă.

また、予混合火炎を形成する燃焼室が上流側に 設けられている場合には、この燃焼室にパイロットパーナを設けることにより、燃焼器の起動を容 品に行うことができるようになる。

第1の燃焼室および第2の燃焼室に予混合火炎

[実施例]

以下、第1図~第31図に基づき本発明の各種 実施例について説明する。なお、各種実施例につ き同一部位には同一の符号を付し、重複した説明 を省略する。

ガスタービン用燃焼器の第1の実施例について、 第1図~第6図に基づき説明する。

ガスタービン用燃焼器100には、第4図に示すように、燃焼用空気1を加圧して燃焼器100に送り込む空気圧縮機301と、燃焼器100内で発生した燃焼気体4により駆動するガスタービン303とが接続されている。ガスタービン303には発電機304が接続されている。

ガスタービン用燃焼器100は、第1回~第3回に示すように、その燃焼器ケーシング10に、空気圧縮機301からの燃焼用空気1を取り入れる空気取入口11と、燃焼により発生する燃焼気体4を排出する燃焼気体排出口12とが形成されている。燃焼器ケーシング10内には、1次燃焼室30を形成する1次燃焼用内筒31と、2次燃

焼 室 2 0 を形成する 2 次燃焼用内筒 2 1 とが設けられている。

1 次燃焼用内筒31は、燃焼器ケーシング10 内の燃焼気体排出口12と相対する面に設けられている。1 次燃焼用内筒内31には、第2回に設けられている。1 次燃料2を噴出する複数の1 次燃料ノズル34,34,…が、同一円周上に等間隔で配設されている。この1 次燃料ノズル34,34,…には、1 次燃料2 を受け入れる1 次燃料の筒31の傾向には、空気取入口11 から流入する燃焼用空気1を内筒31内に流入させるための1 次空気1を内筒31,33,…が形成されており、そこには、流入する燃焼用空気4 量を調節するための1 次空気網節弁35が設けられている。

2 次燃焼用内筒 2 1 は、1 次燃焼用内筒 3 1 の下液倒に設けられており、その側周には内筒自身を冷却するための冷却空気口 2 2 が形成されている。2 次燃焼用内筒 2 1 の上流船には、燃焼用空気 1 と 2 次燃料 3 との予混合気体 5 を噴出する被

体40は、第2図および第3図に示すように、予復合火炎形成ノズル群24に沿って環状を成し、その断面はV字状を成している。環状の抵抗体40の半径方向の幅は予混合火炎形成ノズル群24の半径方向の幅よりも小さく形成されている。断面がV字状の抵抗体40は、その頂点部が上流方向に向くように設けられている。頂点部はは、抵抗体40を支持する支持部材41が設けられている。この支持部材41は、複数の予混合火炎形成ノズル23、23、…間を仕切る仕切板29上に設けられている。

2 次燃焼用内筒 2 1 の下流線には、燃焼気体 4 を燃焼器ケーシング 1 0 の燃焼気体排出口 1 2 に遂くためのトランジッションピース 1 5 が接続されている。

次に第1の実施例の燃焼器の作用について説明する。

空気圧縮機301で加圧された燃焼用空気1は、 空気取入口11から燃焼器ケーシング10内に流 入する。燃焼用空気1は、燃焼器ケーシング10 数の予混合火炎形成ノズル23,23,…が、節2四に示すように、回一円周上に配され、親状の予混合火炎形成ノズル群24を形成している。ノズル23,23,…の下流端には、熾焼用空気1をノズル23,23,…内に流入させる2次空気供給口25,25,…と、2次燃料3を噴出している。この2次燃料ノズル26,26,26,26,27,27,27,27,25,25,…には、流入する燃焼用空気1量を調節するための2次空気質節升28,28,…が設けられている。

現状の予混合火炎形成ノズル群24の外間の径は、2次燃焼用内筒21の内径よりも小さく、2次燃焼室20は、予混合火炎形成ノズル23の出口で急激に大きくなるよう形成されている。

予混合火炎形成ノズル23の出口近傍には、混合気体5の燃焼により発生する燃焼気体4を循環させるための抵抗体40が設けられている。抵抗

とトランジッションピース15および2次燃焼用内筒21との間を通過して、1次空気供給口33から1次燃焼用内筒31内へ、2次空気供給口25から2次燃焼用内円筒21内へと流入する。燃焼用空気1の一部は、2次内円筒21の冷却空気口22から整面冷却のために、2次内円筒21内へ流入する。

一方、燃料2,3は、1次燃料受入ノズル32 および2次燃料受入ノズル27から燃焼器100 内に流入し、1次燃料ノズル34および2次燃料 ノズル26から噴出する。

本実施例に使用される燃料は、液化天然ガスである。被化天然ガスは、破黄分や窒素化合物をほとんど含まず、SOェやフューエルNOェの発生量が少なく、クリーンなエネルギーとして、近年その領要が伸びている燃料である。

1 次燃料ノズル34 から吸出した1 次燃料2 は、燃焼用空気1と反応して、1 次燃焼室30 内に拡散火炎を形成する。

一方、2次燃料ノズル26から噴出した2次燃

特開平3-175211 (10)

料3は、複数の予混合火炎形成ノズル23,23, …内で燃焼用空気1と混合して予混合気体5を形成してから、2次燃焼室20内に噴出する。

2 次燃焼室 2 0 内に吸出した予混合気体 5 は、抵抗体 4 0 により分流される。 抵抗体 4 0 の下流側には、気体が錯環する第 1 の循環流領域 5 1 が形成される。また、抵抗体 4 0 の外周側、つまり2 次燃焼室 2 1 内の上流端の外周側にも、気体が循環する第 2 の循環流領域 5 2 が形成される。この循環流は、 2 次燃焼室 2 0 が予混合形成ノズル2 3 の出口から急酸に大きくなっているために形成される。

第1の循環液領域51には、予混合気体5の燃焼により生成した2000で前後の高温の燃焼気体4が流れ込む。このため、第1の循環流領域51は、予混合気体5の着火温度である700~800でを越えて、1500で以上の高温な領域となり、第1の循環流領域51に近接する予混合気体5は、確実に燃焼し、比較的急激な燃焼領域53が形成される。したがって、2次燃焼窒20内で形成される予混

ある。これは、仮りに、外側から着火して火炎が 内側へ伝播して行くと、予混合気体 5 が、燃焼気体 4 と混合する前に燃焼してしまい、燃焼混合気体 6 が形成されないからである。

ここで、2 次燃料3、燃烧用空気1、および燃烧気体4を均一に混合した後、予混合火炎形成ノ ズル23から噴出し、火炎を形成すると、緩慢な燃烧領域のみが形成されるため、安定な火炎が形成されない。

また、予混合火炎形成ノズル23は、本実施例のように、1次燃焼室30の下流端に環状に配置することが望ましい。このように予混合火炎形成ノズル23を配置すると、1次燃焼室30中で形成される拡散火炎から排出される燃焼気体4の熱により、予混合火炎形成ノズル23から噴出される予混合気体5がより速やかに着火され、予混合火炎はより安定化する。

また、抵抗体40の半径方向の幅に関しても、 本実施例のように、予混合火災形成ノズル23出 ロの半径方向の幅より小さくすることが望ましい。 合火炎は、高温の燃焼気体4という着火源を得る ことにより、安定化する。

一方、円形状の抵抗体40の外周側に形成される第2の循環流領域52には、燃焼気体4と予混合気体5点体5とが流れ込み、燃焼気体4と予混合気体5とが混合して燃焼混合気体6が形成される。また、環状の抵抗体40の内周側にも、1次燃焼室30で発生した燃焼気体4と予混合気体5か形成される。

この燃焼混合気体 6 は、比較的急激な燃焼領域 5 3 からの火炎が伝播して、燃焼し、比較的急激 な燃焼領域 5 3 の外側に緩慢な燃焼領域 5 4 を形成する。 短慢な燃焼領域 5 4 では、酸素分圧の低い燃焼混合気体 6 が燃焼するため、燃焼温度も低く、この領域で生成される NO×量は、極めて少ない。

燃焼混合気体6を形成するためには、火炎が、 予混合火炎形成ノズル23から噴出する予混合気 体5の内部から外側へ伝播して行くことが必要で

抵抗体 4 0 の幅が予混合火炎形成ノズル 2 3 出口の幅より大きいと、第 1 の循環流領域 5 1 が大きなものとなり、予混合火炎が抵抗体 4 0 の近傍に保持されず、火炎の安定性が低下する。

燃焼器100で発生した燃焼気体4は、燃焼気体排出口12から排出され、ガスタービン303 に供給される。ガスタービン303内では、高温高圧の燃焼気体4が膨張する過程で、タービンが離動される。ガスタービン303の動力は、発電機304に伝達され、発電が行われる。

一般に、近年のガスタービン発電設備では、ガスタービン303から排出される燃焼気体4が、廃熱回収ポイラへ導かれ、水蒸気発生用の熱源として用いられることが多い。廃熱回収ポイラ内には、脱硝装置が設けられていることがある。この脱硝装置は、固体触媒表面上でアンモニアと燃烧気体4とを反応させて、燃焼気体4中のNOxを取り除くものである。本実施例に係る燃焼器100を使用する場合、NOxの発生量が少なくなるため、脱硝装置でのアンモニア使用量を低波

特開平3-175211(11)

することができる、また、選転形態によっては、 脱硝装置が無くても環境規制値を満足することが できる。

なお、本実施例において、複数の予混合火炎形成ノズル23,23。…を形成するために、仕切板29を設けたが、抵抗体40を他の方複数できる場合は、特に仕切板29を設けて複数の予混合火炎形成ノズル23,23。…を形成とと、選及を助ぐために、仕切板29を設けて複数の予混合火炎形成ノズル23,23,…を形成する方がよい。

ガスタービン303の起動時には、第6回に示すように、燃焼器100に1次燃料2のみを投入し、1次燃焼室30において拡散火炎を形成させ

燃料供給の調整を容易に行うことができる。また、 食荷変動範囲を大きくすることができる。

なお、本実施例の燃烧器100では、燃料切り替え後、1次燃料2の供給を停止しても良いが、 1次燃料2を常時1次燃焼室20に投入し、拡散 火炎を形成しておくことにより、負荷増減の対応 を楽早く行うことができる。

次に、種々の燃焼器に関して検証を行ったので、 予混合火炎の安定化の原理およびNOxの低減効 果について、第7図から第13回に基づき説明する。

この検証には、5種類の検証用燃焼器を用いている。

第1の検証用燃焼器410は、第7回に示すように、予混合火炎形成ノズル411と、このノズル411出口から急激に大きくなる燃焼室412と、ノズル411出口の周囲に配されているパイロットパーナ413からの気体噴出流量は、予混合火炎形成ノズル411

る。ガスターピン303の負荷がある一定の負荷 L。%に建した時点で、1次燃料2量を減少させ、 これに対応して2次燃料3量を増加させ、2次燃 焼室20において予混合火炎を形成させる。一定 の負荷L。%から最大負荷100%に達するまでは、 主として2次燃料量3を増加させることにより負 荷変化に対応させる。

また、空気供給量は、NOx発生量をある範囲内に保つように、第5回に示すように、燃料2,3の増減に対応させて、1次空気量を減少させ、2次空気量を増加させる。

抵抗体40が設けられていない燃焼器においては、2次燃焼室20において形成する予混合火炎の安定性が、1次燃焼室30において形成する拡散火炎の空気比などにより影響を受けるため、投入する1次燃料2量と2次燃料3量の比が一定の範囲内に制限される。本実施例の燃焼器では、予混合火炎を単独で安定化する機構を有するため、1次燃料2量と2次燃料3量の比を任意に設定でき、負荷変動に対する

からの気体噴出流量の1/1000以下に設定されている。

パイロットパーナ413でパイロットフレーム414を形成し、これを着火源として、予遇合形成ノズル411から噴出する予混合気体401を燃焼させる。予混合火炎402は、ノズル411の出口から円錐状に形成される。予混合火炎402の外周には、燃焼気体404による外部循環領域403が形成される。

この燃焼では、パイロットフレーム414という着火源があるので、予混合火炎402は安定化するが、予混合火炎402がノズル411の出口から形成され、先端が分離していないので、火炎402の周囲に形成されている燃焼気体404の循環流と予混合気体401とのが混合することがほとんど期待できない。したがって、予混合気体401が燃焼気体404と混合した状態で燃焼することはほとんど無く、NOxをあまり低減できない

第2の検証用燃焼器420は、本発明に係る燃

焼器で、 第8回に示すように、 予混合火炎形成ノ ズル411と、 このノズル411出口から急激に 大きくなる燃焼室412と、 ノズル411出口近 傍に配され平板状の抵抗体421とを備えている ものである。

予混合気体401をノズル411から噴出する。 予混合気体噴流の内部には、抵抗体421の作用 により、内部循環領域422が形成される。また、 燃焼室412がノズル411出口から急激に大き くなっていることにより、外部循環流領域423 が形成される。

内部循環流領域422と外部循環流領域423の形成に関しては、燃焼室412内の温度分布、ガス組成分布、流速分布、およびOHラジカル等の発光スペクトル分布を測定することにより、確認している。

内部循環流領域422には、高限の燃焼気体404が流入し、内部循環流領域422の周囲に 比較的急激な燃焼領域424が確実に形成される。 このように、比較的急激な燃焼領域424が確実

た燃焼気体404を用いているが、他のノズルから 噴出した燃料の燃焼により発生した燃焼気体を 用いても良い。

第3の検証用燃焼器430は、第9図に示すように、予混合火炎形成ノズル411と、このノズルと同径の燃焼室431と、平板状の抵抗体421とを備えている。

この検証用燃焼器430による燃焼では、第2の検証用燃焼器420と同様に、抵抗体421の作用により、予混合火炎432を安定化させることができるが、火炎432の外側に燃焼気体404による外部循環領域を形成することができないので、NOxをあまり低減させることができない。

第4の検証用燃焼器440は、第11回に示す ように、第1の予混合火炎形成ノズル441と、 このノズル441の傾周に沿った環状の噴出口を 有する第2の予混合火炎形成ノズル442と、第 1の予混合火炎形成ノズル441近傍に配されて いる平板状の抵抗体421と、第2の予混合火炎 に形成されるので、予混合火炎は安定化する。

また、比較的急激な燃烧領域424、つまり、 ラジカル濃度の高い領域が、特定の狭い範囲内に しか形成されないので、燃焼用空気中の窒素の分 解および酸化が促進される領域が狭く、サーマル NO×の発生を抑制することができる。

比較的急激な焼領域424の周囲には、外部循環流 423内の燃焼気体404とノズル411から噴出した予混合気体401とが混ざり合い燃焼混合気体が形成される。燃焼混合気体気候は、噴流の内部に形成される比較的急激な燃焼領域424から外部に向かってい伝播してくる成体により、燃焼し、軽慢な燃焼領域425を形成し、投資分圧の低いよりラジカル濃度の低い条件で燃焼が進行するので、NOxの発生量を極めて低い値に抑えることができる。

なお、この検証用燃焼器420では、NO×の低減のため、予混合火炎形成ノズル411から噴出した予混合気体401自身の燃焼により発生し

形成ノズル442出口から急激に大きくなる燃焼 宝443とを備えている。

第1の予混合火炎形成ノズル441から噴出する予混合気体401は、抵抗体421の作用により、安定した第1の予混合火炎444を形成する。第2の予混合火炎形成ノズル442から噴出する予混合気体405は、第1の予混合火炎444を形成ノズル441との境目から、第1の予混合火炎形人ズル441との境目から、第1の予混合火炎444のほぼ先續まで形成される。

この検証用燃焼器440による燃焼では、第1 の予混合気体形成ノズル441から噴出する予混 合気体401が、燃焼気体404と混合する前に 燃焼してしまうので、NOxをあまり低減するこ とができない。

第10図および第12図に、以上の検証用燃焼器のNO×排出特性を示す。

第10回に示すNOx排出特定曲線419,

4 2 9 , 4 3 9 のうち、曲線 4 1 9 は第 1 の検証 用燃焼器 4 1 0 によるものを、曲線 4 2 9 は第 2 の検証用燃焼器 4 2 0 によるものを、曲線 4 3 9 は第 3 の検証用燃焼器 4 3 0 によるものを表している。

また、第12回に示す NOx 排出特性曲線 429,448,449のうち、曲線429は第 2の検証用燃焼器420によるものを、曲線 449は第4の検証用燃焼器440で2つのノズ ルからそれぞれ吸出する燃料と空気との量変えた ときに最もNOx 発生量が少ない条件下でのもの を、曲線448は第4の燃焼器440で最も NOx 発生量が大い条件下でのものを表している。

これらの図より、本発明に係る第2の検証用燃 焼粉420を用いると、他の燃烧器を用いるより、 NOx排出量を1/3以下に低減させることがで きることがわかる。

サーマルNOxは、NOxが発生する領域及び その生成速度の点から、ゼルドヴィッヒ機構によるNOxと、プロンプトNOxとの二つに分類さ

一般的に、燃焼用空気に対して、燃料量が多いほどプロンプトNOxの発生量が増し、燃料量が少ないほどゼルドヴィッヒ機構によるNOxの発生量が増す傾向にあるが、第10回および第12回より、本発明に係る第2の検証用燃焼器を用いると、いずれのNOxも低減できることがわかる。

したがって、本発明に係る燃焼器では、空気比が大きい条件下での燃料の燃焼でも、空気比の小さい条件下での燃料の燃焼でも、NO×を低減することができ、稀薄予混合燃焼を行わなくても十分にNO×を低減することができる。また、稀薄予混合燃焼法を採用すると、よりNO×を低減することができる。

なお、第2の検証用燃焼器420において、燃料をメタンとし、噴出する予混合気体の温度が約240℃で、燃焼室中に空気比が1.0~1.1で、燃焼用空気と燃料の予混合気体のみを供給し完全燃焼させた際のNOxの排出濃度は、約60ppm(0%Ox換算値)以下であった。

第5の検証用燃焼器450は、第13回に示す

れる.

ゼルドヴィッヒ機構によるNOxは、火炎後流で比較的遅い速度で生成するもので、燃焼空気中の窒素が酸素により酸化されて生成するNOxである。ゼルドヴィッヒ機構によるNOxの生成は温度依存性が高く、火炎温度が高くなると発生量が増加する。投入空気量と燃料を完全燃焼するのに必要な空気量との比である空気比を1付近、即ち当量比付近で燃焼すると火炎温度は最も高くなり、NOx譲渡も最大になる。

プロンプトNOxは、炭化水製系燃料特有のもので、火炎の反応領域中あるいはその近傍で比較的早い速度で生成するNOxである。プロンプトNOxは、燃料空気中の窒素が、火炎中に存在する反応活性の高い炭化水煮ラジカルなどにより分解され、さらに酸化されて生成するNOxである。プロンプトNOxの生成は温度依存性が比較的低く、反応活性の高いラジカルの濃度および高濃度のラジカルが存在する領域の大きさにより支配される。

ように、環状に複数の噴出口を有する予混合火炎 形成ノズル451,451。…と、このノズルに 沿って設けられている平板状の抵抗体452と、 予混合火炎形成ノズル451出口から急激に大き くなる燃焼室453とを備えている。

本検証用燃焼器 4 5 0 は、それぞれの予混合火 炎形成ノズル 4 5 1 、 4 5 1 、 … に対応させて、 抵抗体 4 5 2 を設けたものであるが、このように 構成することで、ノズル 4 5 1 、 4 5 1 、 … から 噴出する予混合気体 4 0 1 と外部循環領域 4 5 4 内の燃焼気体 4 0 4 とを混合させることができ、 N O x を低減することができる。

次に、 蒸気タービン用燃焼器の第2の実施例に ついて第14 図に基づき説明する。

本実施例の蒸気タービン用燃焼器 1 1 0 は、拡 散火炎を形成する 1 次燃焼室 3 0 a と、予退合火 炎を形成する 2 次燃焼室 2 0 a とを備え、第 1 の 実施例の燃焼器 1 0 0 とその基本構成がほぼ同じ ものであるが、 2 次燃焼室 2 0 a における、予混 合火炎形成ノズル 2 3 の出口から急激に広がる傾

特開平3-175211(14)

Dを広げたものである.

2 次燃焼用内筒 2 1 a の内径は、予混合火炎形成ノズル 2 3 の出口から 2 次燃焼室 2 0 a が急激に広がる幅 D が、予混合火炎形成ノズル 2 3 の出口幅 d に対して、約1.5 倍になるよう設定されている。

本実施例では、第1の実施例と同様に、抵抗体 40の下途偶に、燃焼気体4による第1の循環流 領域51が形成されるので、安定した予混合火炎 を得ることができる。

さらに、2 次燃煙室20 a における予混合火炎形成ノズル23の出口から急激に広がる幅 D が広がったので、抵抗体40の外周側に形成される等 2 の循環流領域52 a が広がり、ノズル23から噴出する予混合気体5と第2の循環流気域52 a 内の燃焼気体4との混合率が増える。したがので、では、 型なるよりも多く、 燃焼することができる。

側に形成される循環流464が形成され易くなり、 火炎中の酸素分圧が低くなるためである。

なお、この検証結果によれば、D./D.が1.5 以上になると、NOxの低減効果率が小さくなる ので、実際の場合には、燃焼器の小型化を図るた めにも、D./D.が1.5前後になるよう設計する ことが好ましいと思われる。

(以下余白)

また、予混合火災形成ノズル23の出口から急激に広がる傾口を広げることにより、2次燃焼用 内備22aの冷却空気口22から流入する燃焼用 空気1が直接燃焼領域内に流入して燃焼温度を下 げることがないので、COおよび未燃炭化水素の 発生を抑制することができる。

予混合火炎を形成する燃焼室において、予混合 火炎形成ノズルの出口から燃焼室が急激に広がる 幅を変えた場合における、NO×の低減効果につ いて検証したので、これについて説明する。

検証には、第15回に示すように、予混合火炎 形成ノズル462と、予混合火炎が形成される燃 塊室461と、抵抗体463とを値えている燃焼 室460を用いて行った。

第16図に示すように、予混合火炎形成ノズル462の口径 D. と予混合火炎形成ノズルの出口から燃焼 室 4 6 1 が急激に広がる 幅 D. との比(D./D.) が、大きくなるにつれて、NOx 発生量は小さくなる。

これは、D.が大きくなると、予混合火炎の外

次に、第17回および第18回に基づき、ガス タービン用燃焼器の第3の実施例について説明す

この燃焼器120は、予混合火炎を形成する燃焼器ケーシング121と、環状に配されている複数の予混合火炎形成ノズル122、122、…と、複数の予混合火炎形成ノズル122、122、… へ予混合気体5を供給する予混合気体供給管 123と、複数の予混合火炎形成ノズル122、 122、…に沿って設けられている抵抗体124 とを備えている。

予混合気体供給質123の下流には、燃料2を取り入れる燃料ノズル125,125と、燃焼用空気1を取り入れる空気ノズル126とが設けられている。

抵抗体124は、平板状を成しており、複数の 混合火炎形成ノズル122,122相互間を仕切 る仕切板127,127,の上に、支持部材 128,128,を介して、設けられている。

本実施例は、先に説明した第5の検証用燃焼器

特開平3-175211(15)

4 5 0 を実機レベルにしたもので、第 1 の実施例および第 2 の実施例と同様に、安定した予遇合火炎を得ることができると共に、NO x の発生を抑制することができる。なお、本実施例では、 2 つの燃焼室が設けられていないので、先の実施例と比べて、小型化の点では優れているが、 負荷変動に対する許容範囲が狭い点で劣っている。

抵抗体は、第1の実施例および第2の実施例のように所面がマ字形状であるとができるもの実施例のである。とのできるものである。とのでも良い。本実施のように、平板状のものでも良い。なお、気ののように、平板状の抵抗体の場合、予測合気傾いに対して、抵抗体が約45°以内の仮として、抵抗体が約45°以内の仮ととがわかっている。

また、抵抗体は、高温になるので、少なくとも 500で以上の耐熱性を増えている材料で形成する 必要があるが、抵抗体を中空構造にしてその内に 冷却用の空気または水を供給することにより、耐

いる。抵抗体136は、複数の予混合火炎形成ノ ズル133,133,…間を仕切る仕切板137。 137…上に、支持部材を介して設けられている。

2 次燃焼室141は、2 次燃焼用内筒142により構成されており、1 次燃焼用内筒132の下流側に設けられている。2 次燃焼用内筒142の上流線には、環状に配されている複数の2 次予混合火炎形成ノズル143,143,が設けられている。ノズル143,143,…の上流側には、燃焼用空気1をノズル143,143,…内に流入させる2 次空気供給口145,145,…と、2 次燃料3 を噴出する2 次燃料ノズル146,146,…とが、設けられている。

1 次燃焼用内筒 1 3 2 および 2 次燃焼用内筒 1 4 2 の側周には、内筒 1 3 2 。 1 4 2 自身を冷 却するための冷却空気口 1 3 8 。 1 4 8 が形成さ れている。

燃焼用空気1は、空気圧縮器301により圧縮された後、燃焼器130内に流入し、1次予混合火炎形成ノズル133および2次予混合火炎形成

熱性を確保するようにしてもよい。

次に、ガスターピン用燃焼器の第4の実施例に ついて第19回および第20回に基づき説明する。

本実施例のガスターピン用燃焼器130は、予 混合火炎を形成する2つの燃焼室、1次燃焼室 131と2次燃焼室141とを借えている。

1 次燃焼室131は、1 次燃焼室用内筒132により構成されており、その上洗幅には、環状に配されている複数の1次予混合火炎形成ノズル133,133,が設けられている。予混合火炎形成ノズル133,133,の上洗側には、1次燃料2を噴出する複数の1次燃料ノズル134,134,…と、燃焼用空気1を内筒132内に洗入させるための1次空気供給口135,135,…とが設けられている。1 次燃焼室131は、1次予混合火炎形成ノズル133の出口で急激に大きくなるよう形成されている。

1次予混合火炎形成ノズル133の出口近傍には、予混合気体5の燃焼により発生する燃焼気体4を循環させるための抵抗体136が設けられて

ノズル143の混合部139、149において燃料2、3と混合する。このよう形成された予混合気体5は、1次燃焼室131および2次燃焼室141内に噴出する。燃焼用空気1の一部は、内筒132、142の冷却用として冷却空気口138、148から燃焼室131、141内に流入する。

1次予混合火炎形成ノズル133から噴出する 予混合気体5は、抵抗体136の作用により分割 される。抵抗体136の下流側には第1の循環 領域151が形成され、第1の循環流1の域151 の周囲に予涸合火炎が形成される。予混合火炎が形成される。予混合火炎が形成される。予混合火炎では、予混合 152が形成される。予混合火炎では、予混合 体5と燃焼気体4とが混合して形成される。 体5と燃焼気体4とが混合して形成される。 合気体が燃焼することになるので、NOxが低減

1次燃焼室131で形成された燃焼気体4は、 ほぼ直進して、2次燃焼室141の中心部に流入 する。この燃焼気体4の外周側に2次予混合火炎 形成ノズル143からの予混合気体5が噴出される。2次予混合火炎形成ノズル143から噴出される予混合気体5は、1次燃焼室131で形成された燃焼気体4により着火されて、予混合火炎が形成される。

本実施例のように、2つの燃焼室を設けることにより、食荷変動に対する許容範囲を大きくすることができる。

次に、ガスタービン用燃焼器の第5の実施例に ついて第21図および第22図に基づき説明する。

本実施例のガスタービン用燃焼器160は、予混合火炎を形成する2つの燃焼室、1次燃焼室 131と2次燃焼室141とを備えており、それぞれの予混合火炎形成ノズル133a,143の出口に抵抗体161,163を設けたもので、その他の構成に関しては、第4の実施例のガスタービン用燃焼器130と基本的な構成は同じである。なお、1次燃焼用抵抗体161には、その下流倒にパイロットフレームを形成するパイロットバーナ162が設けられている。

を形成する予混合火炎形成ノズル133を設ける と共に、拡散火炎172を形成する拡散火炎形成 ノズル171を設けたものであり、その他の基本 的な構成は、第4の実施例とほぼ同じである。

燃焼器170の起動時には、まず、鉱散火炎形成ノズル171から燃料2を噴出し、1次燃焼室131内に拡散火炎172を形成させる。鉱散火炎172が形成されると、1次予混合火炎形成ノズル133に1次燃料2を供給し、1次予混合火炎形成ノズル133に1次燃料2を供給し、1次予混合火炎形成ノズル143に2次燃料3を供給し、2次予混合火炎を形成させると共に、拡散火炎172を消化させる。このとき、2次予混合火炎は、1次予混合火炎で発生する燃焼気体4により着火する。

これ以降は、1次予混合火炎と2次予混合火炎の負荷を調節して、燃焼器170の負荷変動に対応させる。

本実施例では、燃焼器170の起動を容易に行うことができる。なお、拡散火炎172を形成さ

燃焼弱160の起動時には、パイロットバーナ 162のみに燃料を供給し、1次燃焼用抵抗体 161の下流側にパイロットフレームを形成させる。

パイロットフレームが形成された後に、1次予 混合火炎形成ノズル133aから1次燃料2の供 給を開始し、予混合火炎を形成させる。この予混 合火炎が安定に形成された後、パイロットパーナ 162への燃料供給を停止する。このように選転 することにより、燃焼器160の起動を容易に行 うことができる。

また、本実施例では、いずれの予混合火炎形成 ノ ズ ル 133a, 143 に も 抵 抗 体 161, 163 が設けられているので、いずれの予混合火 炎も燃料の供給量等にあまり影響されること無く、 常に安定した予混合火炎を得ることができる。

次に、ガスターピン用燃焼器の第6の実施例に ついて第23回に基づき説明する。

本実施例の燃焼器170は、第4の実施例の燃焼器130の1次燃焼室131内に、予混合火炎

せるための燃焼用空気1は、拡散火炎形成ノズル171の周囲から供給されが、この燃焼用空気1は、1次予混合火炎から排出される燃焼気体と混合するため、拡散火炎172から排出されるNOxは少ない。

次に、ガスタービン用燃焼器の第7の実施例に ついて第24図および第25図に基づき説明する。

本実施例の燃焼器180は、1次燃焼室181の上流側に、予混合火炎を形成する複数の予混合火炎形成ノズル183、183、…と、複数の予混合火炎形成ノズル183、183、…の出口近傍に配されている抵抗体184と、1次燃焼室181の上流端の中央にパイロットフレームを形成するパイロットバーナ185とを設け、2次燃焼室20、その他の基本的な構成を第1の実施例の燃焼器100とほぼ同じに構成したものである。

複数の1次予混合火炎形成ノズル183, 183,…は、相互間が仕切板186,186, …により仕切られ、環状に配されている。

抵抗体 1.84 は、断面がV字形を成し、複数の

1 次予混合火炎形成ノズル183,183,…に沿って、その下波側に設けられている。

1 次燃焼室181は、1 次燃焼用内筒182により構成されており、1 次予混合火炎形成ノズル183の出口から急激に広がるよう形成されている。

起動時には、1 次燃焼室181内にパイロットパーナ185によりパイロットフレームを形成させる。次に1 次燃焼室181内に予混合火炎を形成させ、所定の負荷になった時点で、2 次燃焼室20内に予混合火炎を形成させる。したがって、パイロットパーナ185により燃焼器180を起動させるので、容易に起動を行うことができる。

また、本実施例では、いずれの燃焼室181。20にも、予混合火炎形成ノズル183。23の出口に抵抗体40が設けられているので、安定した予混合火炎を得ることができる。さらに、いずれの燃焼室181。20も、予混合火炎形成ノズル183。23の出口から急激に広がるように形成されているので、予混合火炎の周囲に燃焼気体

切るそれぞれの仕切板186、186、…上に複数の抵抗体201、201、…を設けるようにしてもよい。なお、同図に示す燃焼器200は、第7の実施例の変形例である。

次に、ガスタービン用 燃焼器の第8の実施例に ついて第28回に基づき説明する。

本実施例の燃焼器210は、燃焼室211の上流額に、複数の1次予混合火袋形成ノズル212。 212、…が現状に配されている1次予混合火袋形成ノズル群と、その外周に沿って、複数の2次予混合火袋形成ノズル23。23、…が環状に配されている2次予混合火袋形成ノズル群と、燃焼室211の上流額の中央にパイロットフレームを形成するパイロットバーナ185とが設けられているものである。

1 次予混合火炎形成ノズル212および2次予混合火炎形成ノズル23の出口近傍には、抵抗体213、40が設けられている。

本実施例では、第7の実施例と同様に、安定した予混合火炎を得ることができると共に、NOx

4 による循環液領域 1 8 7 , 5 2 が形成され、 N O × の発生を抑制することができる。

以上の各種実施例において、複数の予混合外炎 形成ノズルを設ける場合、これを環状に連続の予混を放ける場合、これを環状に混合外で混合のでで、複数の予認を外では、のまが、例えば、第26図に示すように、複数を放けるがある。 を外炎形成ノズル191,191,…を断続になける。 が対状に配列してもよい。この際、火炎形成になりである。 形成ノズル191,191,…に対応で火炎 形成ノズル191,191,…に対応で火炎 が対状に設けることが好ましい。なお、両図に示す 燃烧器190は、第7の実施例の変形例である。

また、以上の各種実施例において、環状に複数の予認合火炎形成ノズルが配されている場合、これに対して、環状の複数の予認合火炎形成ノズルに対する抵抗体は、これに限定されるものではなく、例えば、第27回に示すように、複数の予混合火炎形成ノズル183、183、…相互間を仕

を低減することができる。なお、本実施例の場合、 同一の燃焼室211中に1次予混合火炎と2次予 混合火炎とを形成するので、第4の検証用燃焼器 440のように、火炎相互が重なることによる NOェの低減効果の低下や扱動燃焼を防ぐために、 1 次予混合火炎形成ノズル212と2次予混合火 炎形成ノズル23との配置関係に十分な考慮をは らって設計する必要がある。

次に、ガスタービン用燃焼器の第3の実施例に ついて第28図に基づき説明する。

本実施例の燃焼器220は、1次燃焼室221 で拡散火炎を2次燃焼室222で予混合火炎を形成する燃焼器において、複数の予混合火炎形成ノ ズル223、223、…を2次燃焼用内筒24の 壁面に設置したものである。

複数の予混合火炎形成ノズル223。223。 …は、2次燃焼用内筒24の中心軸に向かって、 予混合気体が噴出されるよう設けられている。こ れら複数の予混合火炎形成ノズル223。223。 …の出口近傍には、抵抗体224。224。…が

特開平3-175211(18)

それぞれ設けられている。

このような燃焼器 2 2 0 においても、抵抗体 2 2 4 に対して内筒 2 4 の中心鏡側に燃焼気体 4 の循環流領域が形成されると共に、予混合火炎の周囲にも燃焼気体 4 による循環流領域が形成されるので、安定した予混合火炎を得ることができると共にNOxを低減することができる。

ガスターピンに接続される以上の各種実施例のガスターピン用機焼器100,110, …は、第30回に示すように、ガスターピン303と共に、ガスターピン303からの燃焼気体4の熱により蒸気を発生させる廃熱回収ポイラ312を設けることにより、いわゆるコジェネレーションシステムを構築することができる。

このコジェネレーションシステムは、空気圧縮機301とガスタービン用燃焼器100,110, ... とガスタービン303と発電機304とから構成されるガスタービン発電設備310と、メインボイラ設備313と、ガスタービン用燃焼器100,110,... とメインボイラ313とに燃

れている場合が多いが、このような場合でも、ガスタービン用燃焼器内でのNO×排出量が少ないので、既に述べたように、廃熱回収ポイラ312 内に脱硝装置を設けなくても、厳しい規制値を満足することができる場合がある。

なお、廃熱回収ポイラに蒸気タービンを接続することにより、廃熱回収型のコンパインドサイク ルを構成することができる。

以上、ガスタービン用燃焼器に関する実施例を 説明したが、本発明は、ガスタービン用に限るも のではなく、燃料の燃焼によりサーマルNO×が 発生するものであれば、例えば、ボイラ、焼却器 や化学プラント等で反応器と呼ばれるものなど、 あらゆる燃焼器に適用してもよい。

次に、本発明にかかるパーナの1実施例につい て第31図に基づき説明する。

バーナ80は、外筒81と内筒85とを備えて 構成されている。外筒81の下流端側は、途中から急激に拡径されている。外筒81の上流端側に は、燃料2を受入る燃料ノズル82と、燃焼用空 料2を供給する燃料供給設備315と、廃熱回収ポイラ312と、ターボ冷却機314とを備えている。

燃料 2 は、燃料供給設備 3 1 5 からガスタービン用 燃 焼 器 1 0 0 , 1 1 0 , … と メ イ ン ボ イ ラ 3 1 3 と に 供給される。

ガスターピン用燃焼器100,110,…に供給された燃料2は、燃焼器100,110,…内で燃烧した後、燃焼により発生した燃烧気体4がガスターピン303に送られる。そして、燃焼気体2は、ターピンを駆動して発電が行われる。

ガスターピン303からの燃焼気体4は、廃熱 回収ポイラ312に送られて、そこで、蒸気を発 生させる。

この蒸気は、夏季にはターボ冷却機314の鹿 動用に用いられ、冬期には暖房用に用いられる、 この蒸気が不足しているときは、メインボイラ 313で発生した蒸気が用いられる。

このようなコジェネレーションシステムは、 NOx 排出規制の厳しい都市や都市近郊に設置さ

気1を受入る空気ノズル83とが設けられている。 内簡85の下流端には、下流側に循環流が形成されるよう抵抗体86が形成されている。内簡85は、中空構造になっており、中に冷却水9を供給する冷却水供給管87が設けられている。

このようなパーナ80を燃焼器88に取り付け、予混合火炎89を形成させると、先に述べたガスタービン用燃焼器と同様に、抵抗体86の下流側に燃焼気体4による第1の循環流領域90が形成されると共に、予測合火炎89の周囲に燃焼気体4による第2の循環流領域91が形成されるので、安定した予混合火炎89を得ることができると共に、NOxを低減させることができる。

[発明の効果]

本発明によれば、予混合気体噴流内に高温の燃焼気体が循環し、これを着火源として予混合火炎が確実に形成されるので、火炎を安定させることができる。

また、予混合気体内に燃焼気体が混入し、これ により形成された酸素分圧の低い気体が燃焼する

特 開 平3-175211(19)

ので、NOxを著しく低波することができる。

4. 図面の簡単な説明

第1図~第6図は第1の実施例を示しており、 第1回はガスタービン用燃焼器の全体断面図、第 2回は第1回におけるⅡ-Ⅱ線断面図、第3回は ガスタービン用燃焼器の要部断面図、第4回はガ スターピン発電設備の系統図、第5図はガスター ピン用燃焼器を運転する際のガスターピン負荷と 空気供給量との関係を示すグラフ、第6回はガス ターピン用燃焼器を選転する際のガスターピン負 荷と燃料供給量との関係を示すグラフ、第7図は 第1の検証用燃焼器の断面図、第8図は第2の検 証用燃焼器の断面図、第9図は第3の検証用燃焼 器の断面図、第10図は第1の燃焼器と第2の燃 焼器と第3の燃焼器とのNO×排出特性を示すグ ラフ、第11回は第4の検証用燃焼器の断面図、 第12図は第2の検証用燃焼器と第4の検証用燃 焼器とのNOx排出特性を示すグラフ、第13図 は第5の検証用燃焼器の断面図、第14回は第2 の実施例のガスタービン用燃焼器の全体断面図、

第15回は検証用燃焼器の断面図、第16回は検 延用燃焼器のNOx排出特性を示すグラフ、第 17図は第3の実施例のガスターピン用燃焼器の 要部断面図、第18図は第17図における1位-1 **連線断面図、第19回は第4の実施例のガスター** ピン用燃焼器の要部断面図、第20回は第19図 におけるII-II機断面図、第21回は第5の実施 例のガスタービン用燃焼器の要部断面図、第22 図は第21図における1四-1四線断面図、第23 図は第6の実施例のガスターピン用燃焼器の要部 断面図、第24回は第7の実施例のガスターピン 用燃焼器の全体断面図、第25回は第24回にお けるエエアーエエト練断面図、第26図は第7の実施例 の変形例のガスタービン用燃焼器の要部断面図、 第27図は第7の実施例のその他の変形例のガス ターピン用燃焼器の要部断面図、第28図は第8. の実施例のガスタービン用燃焼器の全体断面図、 第29図は第9の実施例のガスターピン用燃烧器 の全体断面図、第30図はコジェネレーションシ ステムの系統図、第31図はパーナの全体断面図

である.

1 … 燃燒用空気、2 … 1 次燃料、3 … 2 次燃料。 4 … 燃烧気体、 5 … 予混合気体、 6 … 燃烧混合気 体、 10 ··· 燃焼器ケーシング、 20。 20 a. 141,222 ··· 2 次燃烧室、21,21a, 132,142…2次燃燒用內筒、23,133, 133a, 136, 143, 183, 191, 212,223…予混合火炎形成ノズル、30。 30a,131,181,221…1次燃烧室、 31,132,182…1次燃烧用内筒、40, 86, 124, 136, 161, 163, 184, 192,201,213,224 … 抵抗体、51 … 第 1 の循環流領域、 5 2 , 5 2 a … 第 2 の循環 流領域、53…比較的急激な燃焼領域、54…穏 慢な燃焼領域、80…パーナ、100,110, 120, 130, 160, 170, 180. 190, 200, 210, 220 … ガスタービン 用燃焼器、301…空気圧縮器、303…ガスタ

ービン、312…廃熱ポイラ。

21 -- 2 次烟境用内满

100…ガスターピン用燃焼器

4---燃烧泵体 ・23… 予選火炎形成ノズル

5… 子混合気体 30 -- 1 文度改革

第 2 図

第 5 図

经效供品量

ガスターピン負荷 (%) 第 6 図

0 Lo 50

特別平3-175211(21)

1, 2

1.4 空気比(-) 1.6

01.0

特開平3-175211(22)

特開平3-175211(23)

特閒平3-175211(25)

第1頁	【の概	たき				•	
優先権主張			〒 1 (1989) 9 月21日 日 日 本 (JP) 動 特願 平1-245534				
@発	明	者	村	上	忠	孝	茨城県日立市久慈町4026番地 株式会社日立製作所日立研 究所内
個発	明	者	吉	井	泰	雄	茨城県日立市久慈町4026番地 株式会社日立製作所日立研 充所内
個発	明	者	相	馬	窓	_	茨城県日立市久慈町4026番地 株式会社日立製作所日立研 究所内
個発	明	者	小	林	啓	信	茨城県日立市久慈町4026番地 株式会社日立製作所日立研 究所内
@発	明	者	石	欍	洋	=	茨城県土浦市神立町502番地 株式会社日立製作所機械研 究所内
⑦発	明	者	黒	B .	倫	夫	茨城県日立市幸町1丁目1番1号 株式会社日立製作所日 立工場内

THIS PAGE BLANK (USPTO)