CSIE 2344, Spring 2019 — Final Exam Solution Sketch

Name: _	S	ID:	Email:
1 Mu	ltiple-Choice Quest	ions (4pts)	
Pick ONE	of the choices for each quest	tion. No explanation is rec	quired.
1	amount of IC products of plants focused on products	of its own design, but inste	mpany that does not offer a significant ead operates semiconductor fabrication ies. Regarding the market share in the semiconductor foundry is
	1. Globalfoundries.		
	2. Intel.		
	3. Samsung.		
	4. TSMC.		
	2. (1pt) "IC Compiler II" is	s a product of Synopsys. I	t is
	1. Document.		
	2. Hardware.		
	3. Software.		
3	3. (1pt) Regarding the busin	ness model, which of the fol	llowing descriptions is the most precise?
	1. MediaTek pays to	Synopsys, and MediaTek I	pays to TSMC.
	2. MediaTek pays to	Synopsys, and TSMC pays	s to MediaTek.
	3. Synopsys pays to N	MediaTek, and MediaTek p	pays to TSMC.
	4. Synopsys pays to N	MediaTek, and TSMC pays	s to MediaTek.
	4. (1pt) Which one of the f	ollowing routing results fo	r two netlists is NOT feasible?

Answer: 4,3,1,1.

2 Programmable Logic Array (8pts)

 $F_1 = ABD + BC'D'$ has been implemented below. Implement $F_2 = B'C + A'BD$ and $F_3 = AC + BD$ by adding " \bullet " below (adding lines is not allowed). No explanation is required.

Answer:

3 Latch (8pts)

Given the latch, complete the following truth table. No explanation is required.

A	В	Q	$Q^{\scriptscriptstyle +}$
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Answer: 0,1,0,1,0,0,1,1.

4 Counter (28pts)

Design a 3-bit counter which counts CBA in the sequence: 001, 100, 101, 111, 110, 010, 011, and repeats. No explanation is required.

- 1. (4pts) Complete the following truth table.
- 2. (4pts) Complete the following Karnaugh map for C^+ .
- 3. (4pts) Complete the following Karnaugh map for B^+ .
- 4. (4pts) Use a J-K flip-flop and complete the following Karnaugh map for J_C .
- 5. (4pts) Use an S-R flip-flop and complete the following Karnaugh map for S_B .

 Answer:

C	В	A	$C^{\scriptscriptstyle +}$	B^+	A^+
0	0	0	X	X	X
0	0	1	1	0	0
0	1	0	0	1	1
0	1	1	0	0	1
1	0	0	1	0	1
1	0	1	1	1	1
1	1	0	0	1	0
1	1	1	1	1	0

5 Circuit Analysis (12pts)

Given the circuit including one D flop-flop and one T flop-flop. No explanation is required.

- 1. (8pts) Complete the following transition table.
- 2. (4pts) Complete the following state graph where S_{ij} represents the state (A, B) = (i, j).

Answer:

AB	A^+	7	
	X=0	X=1	Z
00	00	10	0
01	01	01	1
11	01	00	1
10	00	11	1

6 State Graph (8pts)

A detector detects a 101 sequence and a sequence starting by 0, ending by 0, having no 0 between the two 0's, and having a positive number of 1's between the two 0's, *i.e.*, 010, 0110, 01110, 011110, The following is example inputs and outputs:

X = 0110001101110Z = 0001000011001

Draw a Mealy machine for the detector.

Answer: S_0 : reset, S_1 : received 0 (00 or after reset), S_2 : received 1 (not after a 0), S_3 : received 1 (after a 0), S_4 : received 10.

7 Circuit Equivalence (8pts)

Given the state tables of two circuits, determine whether the two circuits are equivalent. If yes, list all equivalent states (e.g., $S_0 \equiv A$); otherwise, list all states (in both state tables) which have no equivalent state (e.g., S_0 in the first state table and A in the second state table). You can use the empty table, but it is not required.

	Next State		Z
	X = 0	X=1	Z
S_0	S_3	S_1	0
S_1	S_0	S_1	0
S_2	S_0	S_2	0
S_3	S_0	S_3	0

	Next State		Z
	X = 0	X=1	Z
A	E	A	1
В	F	В	1
C	E	D	0
D	E	C	0
E	В	D	0
F	В	C	0

Answer: No. Considering the equivalence in the other table, every state has no equivalent state. Considering the equivalence in the same table, every state has an equivalent state: $S_0 \equiv S_1 \equiv S_2 \equiv S_3$, $A \equiv B$, $C \equiv D$, $E \equiv F$.

8 Rules Derivation (8pts)

Given the truth table of a new flip-flop: Y flip-flop.

- 1. (6pts) Complete the following table by deriving its rules from a next state map to an input map.
- 2. (2pts) Does this flip-flop have any limitation in counter design?

Y	Q	$Q^{\scriptscriptstyle +}$
0	0	0
0	1	0
1	0	1
1	1	0

Type		Rules from Next State Map to Input Map		
Type of FF	Input	Q = 0 Half of Map	Q = 1 Half of Map	
D	D	No change	No change	
T	T	No change	Complement	
Y	Y			

Answer:

- 1. For Q=0 half, no change. For Q=1 half, replace 0's with X's and replace 1's with "not implementable".
- 2. The flip-flop cannot implement a counter where one bit has two consecutive 1's.

9 Dynamic Hazard (16pts)

Given the circuit.

- 1. (8pts) The transition (A, B, C, D) from (1, 1, 0, 0) to (1, 1, 1, 0) has a potential dynamic hazard, depending on the propagation delays of the gates. Assuming 5, 10, w, x, y, z are the propagation delays of the corresponding gates, what is the necessary and sufficient condition of w, x, y, z that there is no dynamic hazard for the transition?
- 2. (8pts) Assuming x = y, what is the necessary and sufficient condition of w, x, y, z that there is no dynamic hazard for the circuit (all transitions)? Justify your answer.

Answer:

- 1. $w \ge 5 + x + z$ or $5 + x \ge y$.
- 2. C is the only input having three paths to the output, so we only need to consider another transition from (1, 1, 1, 0) to (1, 1, 0, 0). Note that a propagation delay is non-negative.

$$((w \ge 5 + x + z) \lor (5 + x \ge y)) \land ((w \le 5 + x + z) \lor (5 + x \le y))$$

$$\iff ((w \ge 5 + x + z) \lor (5 + x \ge x)) \land ((w \le 5 + x + z) \lor (5 + x \le x))$$

$$\iff ((w \ge 5 + x + z) \lor (T)) \land ((w \le 5 + x + z) \lor (F))$$

$$\iff (T) \land (w \le 5 + x + z)$$

$$\iff w \le 5 + x + z,$$

which is also equivalent to $w \leq 5 + y + z$.