Assignment

2.3: 13,15,16,17; 2.4: 2(bef), 5, 17, 20; 2.5: 3(cd), 6(bc), 10, 13

Work

2.3

- 13. Let A and B be $n \times n$ matrices. Prove that tr(AB) = tr(BA) and $tr(A) = tr(A^t)$.
- 15. Let M and A be matrices for which the product matrix MA is defined. If the jth column of A is a linear combination of a set of columns of A, prove that the jth column MA is linear combination of the corresponding columns of MA with the same corresponding coefficients.
- 16. Let V be a finite-dimensional vector space, and let $T: V \to V$ be linear.
 - (a) If ${\rm rank}(T)={\rm rank}(T^2),$ prove that $R(T)\cap N(T)=\{0\}.$ Deduce that $V=R(T)\oplus N(T)$
 - (b) Prove that $V = R(T^k) \oplus N(T^k)$ for some positive integer k
- 17. Let V be a vector space. Determine all linear transformations $T \colon V \to V$ such that $T = T^2$.

2.4

- 2. For each of the following linear transformations T, determine whether T is invertible and justify your answer.
 - (b) T: $\mathsf{T}^2 \to \mathsf{R}^3$ defined by $\mathsf{T}(a_1,a_2) = (3a_1-2a_2,a_2,4a_1)$ Claim: T is 1-1

Suppose $x, y \in \mathbb{R}^2$ such that $x = (a_1, a_2), y = (a_3, a_4)$ and $\mathsf{T}(x) = \mathsf{T}(y)$ for $a_i \in \mathbb{R}$

$$(3a_1 - a_2, a_2, 4a_1) = (3a_3 - a_4, a_4, 4a_3)$$
(1)

$$\implies 3a_1 - a_2 = 3a_3 - a_4 \tag{2}$$

$$a_2 = a_4 \tag{3}$$

$$4a_1 = 4a_3 \tag{4}$$

$$\implies a_1 = a_3 \tag{5}$$

$$a_2 = a_4 \tag{6}$$

(7)

$$\implies x = y$$
 (8)

Claim: T is onto

Suppose $x \in \mathbb{R}^3$ such that $x = (b_1, b_2, b_3)$ for $b_i \in \mathbb{R}$

Let $b_2 = a_2, b_3 = 4a_1, b_1 = (\frac{3}{4}b_3 - b_2)$

$$\implies (b_1, b_2, b_3) = (2a_1 - a_2, a_2, 4a_1) \tag{9}$$

$$\implies x \in R(\mathsf{T})$$
 (10)

$$R(\mathsf{T}) \subseteq \mathsf{M}_{n \times n}(\mathbb{R}) \text{ by def of } \mathsf{T}$$
 (11)

$$\therefore$$
 T is invertible (12)

(e)
$$T: \mathsf{M}_{2\times 2}(\mathbb{R}) \to \mathsf{P}_2(\mathbb{R})$$
 defined by $\mathsf{T} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = a + 2bx + (c+d)x^2$

(f)
$$T: \mathsf{M}_{2\times 2}(\mathbb{R}) \to \mathsf{M}_{2\times 2}(\mathbb{R})$$
 defined by $\mathsf{T} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a+b & a \\ c & c+d \end{pmatrix}$.

- 5. Let A be invertible. Prove that A^t is invertible and $(A^t)^{-1} = (A^{-1})^t$.
- 17. Let V and W be finite-dimensional vector spaces and $T: V \to W$ be an isomorphism. Let V_0 be a subspace of V.
 - (a) Prove that $T(V_o)$ is a subspace of W.
 - (b) Prove that $\dim(V_0) = \dim(T(V_0))$.
- 20. Let $T: V \to W$ be a linear transformation from an n-dimensional vector space V to an m-dimensional vector space W Let β and γ be ordered bases for V and W respectively. Prove that $\operatorname{rank}(T) = \operatorname{rank}(L_A)$ and that $\operatorname{nullity}(T = \operatorname{nullity}(L_1)$, where $A = [T]^{\gamma}_{\beta}$.

2.5

3. For each of the following pairs of ordered bases β and β' for $P_2(\mathbb{R})$, find the change or coordinate matrix that changes β' -coordinates into β -coordinates.

(c)
$$\beta = \{2x^2 - x, 3x^2 + 1, x^2\}$$
 and $\beta' = \{1, x, x^2\}$

$$a(2x^{2} - x) + b(3x^{2} + 1) + c(x^{2}) = 1$$
(13)

$$2a + 3b + c = 0 (14)$$

$$a = 0 \tag{15}$$

$$b = 1 \tag{16}$$

$$c = 0 \tag{17}$$

$$a(2x^{2} - x) + b(3x^{2} + 1) + c(x^{2}) = x$$
(18)

$$a = -1 \tag{19}$$

$$b = 0 (20)$$

$$c = 0 (21)$$

$$a(2x^{2} - x) + b(3x^{2} + 1) + c(x^{2}) = x^{2}$$
(22)

$$2a + 3b + c = 1 (23)$$

$$a = 0 (24)$$

$$b = 0 (25)$$

$$c = 1 \tag{26}$$

$$\begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \tag{27}$$

(d)
$$\beta = \{x^2 - x + 1, x + 1, x^2 + 1\}$$
 and $\beta' = \{x^2 + x + 4, 4x^2 - 3x + 2, 2x^2 + 3\}$

$$a(x^{2} - x + 1) + b(x + 1)c(x^{2} + 1) = x^{2} + x + 4$$
(28)

$$a + c = 1 \tag{29}$$

$$-a + b = 1 \tag{30}$$

$$a + b + c = 4 \tag{31}$$

$$a = 2 \tag{32}$$

$$b = 3 \tag{33}$$

$$c = 1 \tag{34}$$

$$a(x^{2} - x + 1) + b(x + 1)c(x^{2} + 1) = 4x^{2} - 3x + 2$$
(35)

$$a + c = 4 \tag{36}$$

$$-a+b=-3 (37)$$

$$a + b + c = 2 \tag{38}$$

$$a = 1 \tag{39}$$

$$b = -2 \tag{40}$$

$$c = 3 \tag{41}$$

$$a(x^{2} - x + 1) + b(x + 1)c(x^{2} + 1) = 2x^{2} + 3$$
(42)

$$a + c = 2 \tag{43}$$

$$-a+b=0 (44)$$

$$a+b+c=3 (45)$$

$$a = 1 \tag{46}$$

$$b = 1 \tag{47}$$

$$c = 1 \tag{48}$$

$$\begin{pmatrix} 2 & 1 & 1 \\ 3 & -2 & 1 \\ 1 & 3 & 1 \end{pmatrix} \tag{49}$$

6. For each matrix A and ordered basis β , find $[\mathsf{L}_A]_{\beta}$. Also find an invertible matrix Q such that $[\mathsf{L}_A]_{\beta} = Q^{-1}AQ$.

(b)
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$
 and $\beta = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$
(c) $A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ and $\beta = \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \right\}$

10. Prove that if A and B are similar $n \times n$ matrices, then tr(A) = tr(B).

$$tr(B) = tr(QAQ^{-1}) (50)$$

$$=\operatorname{tr}(A(QQ^{-1}))\tag{51}$$

$$= tr(A) \text{ (by HW.2.3.13)}$$
 (52)

13. Let V be a finite-dimensional vector space over a field F, and let $\beta = \{x_1, x_2, \dots, x_n\}$ be an ordered basis for V. Let Q be an $n \times n$ invertible matrix with entries from F. Define

$$x'_j = \sum_{i=1}^n Q_{ij} x_i \text{ for } 1 \le j \le n$$

and set $\beta' = \{x'_1, x'_2, \dots, x'_n\}$. Prove that β' is a basis for V and hence that Q is a coordinate matrix changing β' -coordinates into β -coordinates. Claim span $(\beta) = \text{span}(\beta')$

Forward Direction

Suppose $x' \in \text{span}(\beta')$

$$x' = c_1 \left(\sum_{i=1}^n Q_{i1} x_i \right) + c_2 \left(\sum_{i=1}^n Q_{i2} x_i \right) + \dots + c_n \left(\sum_{i=1}^n Q_{in} x_i \right)$$
 (53)

$$x' = c_1 (Q_{11}x_1 + Q_{21}x_2 + \dots + Q_{n1}x_n) + c_2 (Q_{12}x_1 + Q_{22}x_2 + \dots + Q_{n2}x_n) + \dots + c_n (Q_{1n}x_1 + Q_{2n}x_2 + \dots + Q_{nn}x_n)$$
 (54)

$$x' = (c_1Q_{11} + c_2Q_{12} + \dots + c_nQ_{1n})x_1 + + (c_1Q_{21} + c_2Q_{22} + \dots + c_nQ_{2n})x_2 + + \dots + (c_1Q_{n1} + c_2Q_{n2} + \dots + c_nQ_{nn})x_n$$
 (55)

$$\implies x \in \operatorname{span}(\beta')$$
 (56)

Reverse Direction

Suppose $x \in \text{span}(\beta)$

$$x = c_1 x_2 + c_2 x_2 + \dots + c_n x_n \tag{57}$$

$$=\sum_{i=1}^{n}c_{i}x_{i}\tag{58}$$

Let $c_i = \sum_{j=1}^n a_j Q_{ij}$

$$x = \sum_{i=1}^{n} \left(x_i \sum_{j=1}^{n} a_j Q_{ij} \right) \tag{59}$$

$$x = \sum_{i=1}^{n} \left(\left(a_1 Q_{i1} + a_2 Q_{i2} + \dots + a_n Q_{in} \right) x_i \right)$$
 (60)

$$x = (a_1Q_{11} + a_2Q_{12} + \dots + a_nQ_{1n})x_1 + + (a_1Q_{21} + a_2Q_{22} + \dots + a_nQ_{2n})x_2 + + \dots + (a_1Q_{n1} + a_2Q_{n2} + \dots + a_nQ_{nn})x_n$$
 (61)

$$x = a_1(Q_{11}x_1 + Q_{21}x_2 + \dots + Q_{n1}x_n) + a_2(Q_{12}x_1 + Q_{22}x_2 + \dots + Q_{n2}x_n) + \dots + a_n(Q_{1n}x_1 + Q_{2n}x_2 + \dots + Q_{nn}x_n)$$
(62)

$$x = a_1 \sum_{i=1}^{n} Q_{i1} x_i + a_2 \sum_{i=1}^{n} Q_{i2} x_i + \dots + a_n \sum_{i=1}^{n} Q_{in} x_i$$
 (63)

$$\implies x \in \operatorname{span}(\beta')$$
 (64)