Section 9.5: Composition of Functions

Juan Patricio Carrizales Torres

Aug 1, 2022

We have previously defined operations on sets such as the integers modulo n. Some sets of functions are no exception. Let A, B', B and C be nonempty sets and consider the functions $f: A \to B'$ and $g: B \to C$. If $B' \subseteq B$, namely, if range $(f) \subseteq \text{dom}(g)$, then it is possible to create a new function from A to C called the composition of f and g. This composition $g \circ f$ is defined by

$$(g \circ f)(x) = g(f(x))$$
 for all $x \in A$.

Furthermore, it has some useful properties. Consider two functions f and g such that their composition $g \circ f$ is defined, then

(a) If both g and f are injective (surjective), then the composition $g \circ f$ is injective (surjective).

Clearly, one can further conclude that if g and f are bijective, then their composition $g \circ f$ is bijective. Keep in mind that in the beginning of the paragraph we assumed that their composition $g \circ f$ is defined. However, this is not a sufficient condition for $f \circ g$ to be defined. This depends on whether range $(g) \subset \text{dom}(f)$ is true or not.

Also, for nonempty functions f, g, h, if the compositions $g \circ f$ and $h \circ g$ are defined, then $h \circ (g \circ f)$ and $(h \circ g) \circ f$ are defined. Furthermore, $h \circ (g \circ f) = (h \circ g) \circ f$ and so the composition of f, g, h is **associative**.

Lastly, let's prove the following theorem.

Theorem 9.5.1. Let g and f be nonempty functions. If range $(f) \subseteq \text{dom}(g)$ then $g \circ f$ is a function.

Proof. Assume that range $(f) \subseteq \text{dom}(g)$. Consider some $(x,y) \in f$. Then, $(y,z) \in g$ and so $(x,z) \in g \circ f$. Hence, for any $x \in \text{dom}(f) = \text{dom}(g \circ f)$, there is an image $g(f(x)) = (g \circ f)(x)$ defined. We now prove that $g \circ f$ is well-defined. Consider two $a,b \in \text{dom}(g \circ f) = \text{dom}(f)$ such that a = b. Then, $f(a) = f(b) \in \text{dom}(g)$ and so g(f(a)) = g(f(b)). Hence, $(g \circ f)(a) = (g \circ f)(b)$.

Problem 38. Two functions $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ are defined by $f(x) = 3x^2 + 1$ and g(x) = 5x - 3 for all $x \in \mathbb{R}$. Determine $(g \circ f)(1)$ and $(f \circ g)(1)$.

Solution The composition functions $g \circ f : \mathbb{R} \to \mathbb{R}$ and $f \circ g : \mathbb{R} \to \mathbb{R}$ are defined by $g(f(x)) = 5(3x^2 + 1) - 3 = 15x^2 + 2$ and $f(g(x)) = 3(5x - 3)^2 + 1 = 75x^2 - 90x + 28$ for all $x \in \mathbb{R}$.

Hence, $(g \circ f)(1) = 17$ and $(f \circ g)(1) = 13$.

Problem 39. Two functions $f: \mathbb{Z}_{10} \to \mathbb{Z}_{10}$ and $g: \mathbb{Z}_{10} \to \mathbb{Z}_{10}$ are defined by f([a]) = [3a] and g([a]) = [7a].

(a) Determine $g \circ f$ and $f \circ g$.

Solution The composition functions $g \circ f : \mathbb{Z}_{10} \to \mathbb{Z}_{10}$ and $f \circ g : \mathbb{Z}_{10} \to \mathbb{Z}_{10}$ are defined by g(f([x])) = [21a] = [21][a] = [1][a] = [a] and f(g([x])) = [21a] = [a] for every $[a] \in \mathbb{Z}_{10}$. Therefore, $g \circ f = f \circ g$.

(b) What can be concluded as a result of (a)?

Solution Both $g \circ f$ and $f \circ g$ are identity functions on \mathbb{Z}_{10} .

Problem 40. Let A and B be nonempty sets. Prove that if $f: A \to B$, then $f \circ i_A = f$ and $i_B \circ f = f$.

Proof. Note that range $(i_A) = A = \text{dom}(f)$ and range $(f) \subseteq \text{dom}(i_B) = B$. Hence, both functions $f \circ i_A : A \to B$ and $i_B \circ f : A \to B$ are defined by $(f \circ i_A)(x) = f(i_A(x)) = f(x)$ and $(i_B \circ f)(x) = i_B(f(x)) = f(x)$ for every $x \in A$. Both have the same Dominion and rule as f. Hence, $f \circ i_A = i_B \circ f = f$.

Problem 41. Let A be a nonempty set and let $f: A \to A$ be a function. Prove that if $f \circ f = i_A$, then f is bijective.

Proof. Assume that $f \circ f = i_A$ for a function $f : A \to A$. First, we show that f is injective. Let f(a) = f(b) for some $a, b \in A$. Then, $(f \circ f)(a) = f(f(a)) = i_A(a) = a$ and $(f \circ f)(b) = f(f(b)) = i_A(b) = b$. Since f is a function and f(a) = f(b), it follows that f(f(a)) = a = b = f(f(b)).

We now show that f is surjective. Consider any $c \in A$. Then, there is some $f(c) \in A$ and so $f(f(c)) = (f \circ f)(c) = c$.

Problem 42. Prove or disprove the following:

(a) If two functions $f:A\to B$ and $g:B\to C$ are both bijective, then $g\circ f:A\to C$ is bijective.

Proof. Since both f and g are bijective, it follows that f and g are both **injective** and **surjective**. By **Theorem 11**, $g \circ f : A \to C$ is injective and surjective, which, by definition, is a bijective function.

(b) Let $f:A\to B$ and $g:B\to C$ be two functions. If g is onto, then $g\circ f:A\to C$ is onto.

Solution This is false. Let $A = \{1\}$, $B = \{a, b, c\}$ and $C = \{1, 2, 3\}$. Also, let $f = \{(1, a)\}$ and $g = \{(a, 1), (b, 2), (c, 3)\}$. Hence, g is onto and $g \circ f = \{(1, 1)\}$ is not onto.

(c) Let $f:A\to B$ and $g:B\to C$ be two functions. If g is one-to-one, then $g\circ f:A\to C$ is one-to-one.

Solution This is false. Let $A = \{1, 2\}$, $B = \{a\}$ and $C = \{1\}$. Also, let $f = \{(1, a), (2, a)\}$ and $g = \{(a, 1)\}$. Then, $g \circ f = \{(1, 1), (2, 1)\}$ is not one-to-one.

(d) There exist functions $f:A\to B$ and $g:B\to C$ such that f is not onto and $g\circ f:A\to C$ is onto.

Solution Such functions exist. Let $A = \{1\}$, $B = \{a, b, c\}$ and $C = \{10\}$. Also, let $f = \{(1, a)\}$ and $g = \{(a, 10), (b, 10), (c, 10)\}$. Then, $g \circ f = \{(1, 10)\}$ is onto and f is not onto.

(e) There exist functions $f:A\to B$ and $g:B\to C$ such that f is not one-to-one and $g\circ f:A\to C$ is one-to-one.

Proof. We show that this is false. Namely, we prove that if f is not one-to-one, then $g \circ f$ is not one-to-one. Since f is not one-to-one, there are at least two distinct $a, b \in A$ such that f(a) = f(b). Since g is a function and $f(a) = f(b) \in B$, it follows that g(f(a)) = g(f(b)). Therefore, there two distinct $a, b \in A$ such that $(g \circ f)(a) = (g \circ f)(b)$ and so $g \circ f$ is not one-to-one.

Problem 43. For nonempty sets A, B and C, let $f: A \to B$ and $g: B \to C$ be functions.

(a) Prove:

If $g \circ f$ is one-to-one, then f is one-to-one.

using as many of the following proof techniques as possible: direct proof, proof by contrapositive, proof by contradiction.

Solution (i) Direct Proof

Proof. Assume that $g \circ f : A \to C$ is one-to-one. Consider some $f(a) = f(b) \in B$ for some $a, b \in A$. Then, $g(f(a)) = (g \circ f)(a) = g(f(b)) = (g \circ f)(b)$. Since $g \circ f$ is one-to-one, it follows that a = b. Hence, f is one-to-one.

(ii) Proof by Contrapositive.

Proof. We show that if f is not one-to-one, then $g \circ f$ is not one-to-one. Since f is not one-to-one, it follows that there are two distinct $a, b \in A$ such that f(a) = f(b). Then, $g(f(a)) = (g \circ f)(a) = g(f(b)) = (g \circ f)(b)$ and $a \neq b$. The function $g \circ f$ is not one-to-one.

(iii) Proof by Contradiction.

Proof. Suppose that there are functions $f:A\to B$ and $g:B\to C$ such that f is not one-to-one and $g\circ f$ is one-to-one. We can use the argument made in the **Proof by Contrapositive** to arrive at the conclusion that there are two distinct $a,b\in A$ such that $(g\circ f)(a)=(g\circ f)(b)$, which contradicts our assumption that $g\circ f$ is one-to-one.

(b) Disprove: If $g \circ f$ is one-to-one, then g is one-to-one.

Solution We disprove this statement by giving functions $f: A \to B$ and $g: B \to C$ such that g is not one-to-one and $g \circ f: A \to C$ is one-to-one. Let $A = \{1\}, B = \{a, b\}$ and $C = \{10\}$, and define $f: A \to B$ and $g: B \to C$ by $f = \{(1, a)\}$ and $g = \{(a, 10), (b, 10)\}$. Then, $g \circ f = \{(1, 10)\}$ is one-to-one and g is not.

Problem 47. For functions f, g and h with domain and codomain \mathbb{R} , prove or disprove the following.

(a)
$$(g+h) \circ f = (g \circ f) + (h \circ f)$$

Proof. Note that both functions have the same domain, namely, \mathbb{R} . We show that $((g+h)\circ f)(x)=((g\circ f)+(h\circ f))(x)$ for every $x\in\mathbb{R}$. Observe that

$$((g+h) \circ f)(x) = (g+h)(f(x))$$

= $g(f(x)) + h(f(x)) = (g \circ f)(x) + (h \circ f)(x)$

for any $x \in \mathbb{R}$. Both functions have the same domain and equal definition.

(b)
$$f \circ (g+h) = (f \circ g) + (f \circ h)$$
.

Solution This is not true for every functions f, g, h. Note that f(g(x) + h(x)) = f(g(x)) + f(h(x)) is not true for all cases, for instance

$$|g(x) + h(x)| = |g(x)| + |h(x)|$$

is not true for all real numbers $g(x), h(x) \in \mathbb{R}$. Hence, we can define functions $g : \mathbb{R} \to \mathbb{R}$, $h : \mathbb{R} \to \mathbb{R}$ and $f : \mathbb{R} \to \mathbb{R}$ by g(x) = 3, h(x) = -2 and f(x) = |x| for all real numbers x to create a counterexample.

Problem 48. The composition $g \circ f : (0,1) \to \mathbb{R}$ of two functions f and g is given by $(g \circ f)(x) = \frac{4x-1}{2\sqrt{x-x^2}}$, where $f : (0,1) \to (-1,1)$ is defined by f(x) = 2x-1 for $x \in (0,1)$. Determine the function g.

Solution Let $g:(-1,1)\to\mathbb{R}$ be defined by

$$g(n) = \frac{2n+1}{\sqrt{1-n^2}}$$

for every $n \in (-1,1)$. Note that for all $n \in (-1,1)$, $0 < 1 - n^2$ and so its denominator $\sqrt{1-n^2}$ is defined in the real numbers and is nonzero. Then, the function $g \circ f : (0,1) \to \mathbb{R}$ is defined by

$$(g \circ f)(x) = \frac{2(2x-1)+1}{\sqrt{1-(2x-1)^2}}$$

$$= \frac{4x-1}{\sqrt{1-4x^2+4x-1}}$$

$$= \frac{4x-1}{\sqrt{4(x-x^2)}} = \frac{4x-1}{2\sqrt{x-x^2}}$$

for all real numbers $x \in (0,1)$.