Deep Learning for Hate Speech Detection in Tweets

Last edited by Hamed Babaei 1 minute ago

Deep Learning for Hate Speech Detection in Tweets

Abstract:

- They define the task as being able to classify a tweet as racist, sexist or neither
- We perform extensive experiments with multiple deep learning architectures to learn semantic word embeddings to handle complexity
- Their experiments on a benchmark dataset show that such deep learning methods outperform state-of-the-art char/word n-gram methods by ~18 F1points.

Introduction

- On Twitter, hateful tweets are those that contain abusive speech targeting individuals (cyber-bullying, a politician, a celebrity, a product) or particular groups (a country, LGBT, a religion, gender, an organization, etc.).
- Logistic Regression, Random Forest, SVMs, Gradient Boosted Decision Trees (GBDTs) and Deep Neural Networks(DNNs) experimented
- feature spaces for these classifiers are, CNN, LSTM, FastText
- A baseline feature spaces are char n-grams[6] (this is a dataset paper- I added this dataset reference into dataset category!), TFIDF, Bag of Words vectors(BoWV).
- contributions of the paper:
 - (1) deep learning methods investigated
 - (2) various semantic embedding like: char ngrams/ TFIDF, BoWV over GloVe and task specific embedding learned using FastText, CNN, LSTM.
 - (3) beating state-of-the-art methods by a large margin (~18 F1 points better)

Proposed Approach:

- Baseline Methods: (1) char n-grams (dataset paper) as a state-of-the-art. (2) TFIDF, (3) BoWV which uses the average of the word (GloVe) embedding.
- Proposed Methods: for each following methods either random embeddings or GloVe embedding used: CNN,
 LSTM (to capture long dependencies), FastText similar to the BoWV model but allows update of word vector through back-propagation during training. opposite of BoWV. All models fine-tuned.

Dataset: Experimentation done on a dataset of 16K annotated tweets. 3383 are labeled as sexist, 1972 as racist, and the remaining are marked as neither.

Experiments and Results:

- They performed 10-fold cross-validation and reported P, R, F1
- They adam used for CNN and LSTM, and RMS-Prop for FastText as our optimizer
- They performed training in batches of size 128 for CNN & LSTM and 64 for FastText

Table 1: Comparison of Various Methods (Embedding Size=200 for GloVe as well as for Random Embedding)

	Method	Prec	Recall	F1
Part A:	Char n-gram+Logistic Regression 6	0.729	0.778	
	TF-IDF+Balanced SVM	0.816	0.816	0.816
	TF-IDF+Balanced SVM TF-IDF+GBDT	0.819	0.807	0.813
	BoWV+Balanced SVM	0.791	0.788	0.789
	BoWV+GBDT	0.800	0.802	0.801
Part B: DNNs Only	CNN+Random Embedding	0.813	0.816	0.814
	CNN+GloVe	0.839	0.840	0.839
	FastText+Random Embedding	0.824	0.827	0.825
	FastText+GloVe	0.828	0.831	0.829
	LSTM+Random Embedding	0.805	0.804	0.804
	LSTM+GLoVe	0.807	0.809	0.808
D	CNN+GloVe+GBDT	0.864	0.864	0.864
Part C:	CNN+Random Embedding+GBDT	0.864	0.864	0.864
DNNs +	FastText+GloVe+GBDT	0.853	0.854	0.853
GBDT	FastText+Random Embedding+GBDT	0.886	0.887	0.886
Classi- fier	LSTM+GloVe+GBDT	0.849	0.848	0.848
	LSTM+Random Embedding+GBDT	0.930	0.930	0.930

Table 2: Embeddings learned using DNNs clearly show the "racist" or "sexist" bias for various words.

Target Word	Similar words using GloVe	Similar words using task- specific embeddings learned using DNNs
pakistan	karachi, pakistani, lahore, india, taliban, punjab, is- lamabad	mohammed, murderer, pe- dophile, religion, terrorism, islamic, muslim
female	women, girl, other, artist,	sexist, feminists, feminism, bitch, feminist, blonde, bitches, dumb, equality, models, cunt
muslims	sikhs, extremists, non-	islam, prophet, quran, slave, jews, slavery, pe- dophile, terrorist, terror- ism, hamas, murder

tiple classifiers but report results mostly for GBDTs only, due to lack of space.

As the table shows, our proposed methods in part B are

Author Github Page: https://github.com/pinkeshbadjatiya/twitter-hatespeech

BibeText:

```
@article{Badjatiya_2017,
 title={Deep Learning for Hate Speech Detection in Tweets},
 ISBN={9781450349147},
 url={http://dx.doi.org/10.1145/3041021.3054223},
 DOI={10.1145/3041021.3054223},
 journal={Proceedings of the 26th International Conference on World Wide Web Companion - Ww publisher={ACM Press},
 author={Badjatiya, Pinkesh and Gupta, Shashank and Gupta, Manish and Varma, Vasudeva},
 year={2017}
```