Домашня робота з математичного моделювання #2

Студента 2 курсу групи МП-21 Захарова Дмитра Олеговича

23 лютого 2023 р.

Завдання 1.

Умова. У лотереї на кожні 100 білетів припадає 15 виграшів. Кількість та розміри виграшів такі:

Розмір виграшу	2000	500	100
Кількість білетів	1	4	10

Випадкова величина X визначає розмір виграшу на один випадково вибраний білет. Скласти таблицю розподілу випадкової величини X. Знайти $p(X < 500), p(X < 2100), p(-100 < X \le 1000), <math>\mathbb{E}[X], \operatorname{Var}[X].$

Розв'язок. Маємо простір елементарних подій Ω , що складається з подій "випав білет вартістю 2000", "випав білет вартістю 500", "випав білет вартістю 500", "білет не випав". Позначимо їх як $\omega_1, \omega_2, \omega_3, \omega_-$, відповідно. Їх ймовірності:

$$p(\omega_{-}) = 0.85, \ p(\omega_{1}) = 0.01, \ p(\omega_{2}) = 0.04, \ p(\omega_{3}) = 0.1$$

Отже, розподіл має вид:

x	2000	500	100	0
p(X=x)	0.01	0.04	0.1	0.85

Отже, звідси маємо:

$$p(X < 500) = p(X = 0) + p(X = 100) = 0.95$$
$$p(X < 2100) = 1$$
$$p(-100 < X \le 1000) = 1 - p(X = 2000) = 0.99$$

Тепер знайдемо мат очікування. Маємо, за означенням:

$$\mathbb{E}[X] = \sum_{x} xp(X = x) = 0.01 \cdot 2000 + 0.04 \cdot 500 + 100 \cdot 0.1 = 50$$

Для знаходження дисперсії знайдемо $\mathbb{E}[X^2]$:

$$\mathbb{E}[X^2] = \sum_{x} x^2 p(X = x) = 0.01 \cdot 2000^2 + 0.04 \cdot 500^2 + 0.1 \cdot 100^2 = 51000$$

Отже, за озаченням, дисперсія:

$$Var[X] = \mathbb{E}[X^2] - \mathbb{E}^2[X] = 51000 - 50^2 = 48500$$

Відповідь.
$$p(X<500)=0.95, p(X<2100)=1, p(-100< X\le 1000)=0.99, \mathbb{E}[X]=50, \mathrm{Var}[X]=48500.$$

Завдання 2.

Умова. В результаті аналізу рахунків 400 інвесторів на фондовій біржі отримано таку інформацію про кількість угод за останній місяць:

X, кількість угод	0	1	2	3	4	5	6	7	8	9	10
Кількість інвесторів	146	97	73	34	23	10	6	3	4	2	2

Визначити ймовірності того, що випадково обраний інвестор зробив:

- 1. Нуль угод
- 2. Принаймі одну угоду

- 3. Понад п'ять угод
- 4. Менше шести угод

Знайти математичне сподівання та середнє квадратичне відхилення числа угод.

Розв'язок. Нехай X є випадковою величиною, що дорівнює кількості угод, що зробив випадково обраний інвестор.

Нуль угод зробило 146 інвесторів, отже

$$p(X=0) = \frac{146}{400} = 0.365$$

Принаймі одну угоду зробили 400 - 146 = 254 інвесторів, а отже

$$p(X \ge 1) = 1 - p(X = 0) = 0.635$$

Понад п'ять угод зробили 17 інвесторів, а отже:

$$p(X > 5) = \sum_{j=6}^{10} p(X = j) = 0.0425$$

Менше шести угод зробило 383 інвестора, а отже:

$$P(X < 6) = \sum_{j=0}^{5} p(X = j) = \frac{383}{400} = 0.9575$$

Знайдемо математичне сподівання. Для цього використовуємо формулу:

$$\mathbb{E}[X] = \sum_{k=0}^{10} kp(X=k) = 1.535$$

Знайдемо очікування квадрату кількості угод:

$$\mathbb{E}[X^2] = \sum_{k=0}^{10} k^2 p(X=k) = 5.735$$

А отже середнє квадратичне відхилення:

$$\sigma = \sqrt{\operatorname{Var}[X]} = \sqrt{\mathbb{E}[X^2] - \mathbb{E}^2[X]} \approx 1.84$$

Відповідь.
$$p(X=0)=0.365, p(X\geq 1)=0.635, p(X>5)=0.0425, p(X<6)=0.9575, \mathbb{E}[X]=1.535, \sigma\approx 1.84.$$

Завдання 3.

Умова. Проект складається з трьох етапів. Перший та другий етапи можна виконувати паралельно, а третій етап можна починати тільки по завершенню перших двох. Тривалість етапів (в робочих днях) описується дискретними випадковими величинами $T_i \ (i=1,2,3)$ з рядами розподілу:

$T_{1,i}$	2	3	4
p_i	0.1	0.8	0.1
$T_{2,i}$	2	3	4
p_i	0.4	0.4	0.2
$T_{3,i}$	2	3	4
p_i	0.2	0.3	0.5

Знайти ймовірність того, що від початку робіт за проектом до його завершення пройде понад шість робочих днів.

Розв'язок. Будемо вважати, що ми обираємо найбільш оптимальний спосіб, а саме виконуємо перші 2 задачі паралельно, а 3 виконуємо після перших двох. В такому разі введемо нову випадкову величину T^* яка позначає загальний час виконання усіх 3 задач. Тоді її можна задати як:

$$T^* = \max\{T_1, T_2\} + T_3$$

Нам потрібно знайти $p(T^* > 6)$. Проаналізуємо, коли може виникнути випадок $T^* > 6$. Нехай третя задача виконувалась 2 дні. В такому разі

ми ніколи не отримаємо загальну тривалість більше за 3 дня. А отже, ми можемо записати нашу ймовірність:

$$p(T^* > 6) = p(T_3 = 3, \max\{T_1, T_2\} > 3) + p(T_3 = 4, \max\{T_1, T_2\} > 2)$$

Нагадаю, що $p(A \cap B) \equiv p(A, B)$ в наших позначеннях.

Події, перелічені через кому, є незалежними, а отже

$$p(T^* > 6) = p(T_3 = 3)p(\max\{T_1, T_2\} > 3) + p(T_3 = 4)p(\max\{T_1, T_2\} > 2)$$

Оскільки ми вже знаємо значення $p(T_3 = t)$, то нам залишається розібратися з виразами, що містять максимум.

Легше розібратися з $p(\max\{T_1, T_2\} > 3)$, оскільки

$$p(\max\{T_1, T_2\} > 3) = p(\max\{T_1, T_2\} = 4) = p(T_1 = 4 \lor T_2 = 4)$$

Далі розглянемо об'єднання подій $T_1 = 4, T_2 = 4$:

$$p(T_1 = 4 \lor T_2 = 4) = p(T_1 = 4) + p(T_2 = 4) - p(T_1 = 4 \land T_2 = 4)$$

Оскільки T_1, T_2 є незалежними випадковими величинами, то:

$$p(T_1 = 4 \land T_2 = 4) = p(T_1 = 4)p(T_2 = 4)$$

Отже:

$$p(T_1 = 4 \lor T_2 = 4) = p(T_1 = 4) + p(T_2 = 4) - p(T_1 = 4)p(T_2 = 4) = 0.28$$

I тому $p(\max\{T_1,T_2\}>3)=0.28$. Залишилось знайти $p(\max\{T_1,T_2\}>2)$. Для цього помітимо, що:

$$p(\max\{T_1, T_2\} > 2) = 1 - p(\max\{T_1, T_2\} = 2)$$

Ну а в свою чергу

$$p(\max\{T_1, T_2\} = 2) = p(T_1 = 2 \land T_2 = 2) = p(T_1 = 2)p(T_2 = 2) = 0.04$$

А отже:

$$p(\max\{T_1, T_2\} > 2) = 1 - 0.04 = 0.96$$

Остаточно:

$$p(T^* > 6) = 0.3 \cdot 0.28 + 0.5 \cdot 0.96 = 0.564$$

Відповідь. 0.564.

Завдання 4.

Умова. Абітурієнт при вступі до інституту складає чотири іспити, імовірність успішно скласти кожен іспит дорівнює $\theta=0.8$. Випадкова величина X описує кількість іспитів, який склав абітурієнт (припущення, що різні іспити є незалежними випробуваннями). Скласти таблицю розподілу випадкової величини X.

Розв'язок. Насправді перед нами розподіл Бернулі, який має формулу

$$p(X = k) = \binom{n}{k} \theta^k (1 - \theta)^{n-k}$$

В нашому випадку $k = 4, \theta = 0.8$ і тому:

$$p(X = k) = \frac{24}{k!(4-k)!} \cdot 0.8^k \cdot 0.2^{4-k}$$

Пояснімо цю формулу: рівно k зданих іспитів може трапитись з шансом θ^k , відповідно n-k провалених іспитів з шансом $(1-\theta)^{n-k}$. Проте, k зданих іспитів можуть трапитись будь-те в серії іспитів з 4 екзаменів.

Отже, кількість способів розмістити k успіхів серед 4 екзаменів це $\binom{4}{k}$.

Отже, наша таблиця розподілу має вид:

x	0	1	2	3	4
p(X=x)	0.0016	0.0256	0.1536	0.4096	0.4096

Завдання 5.

Умова. У групі із 16 осіб 12 підтримують деяку урядову програму. З цієї групи навмання відбирають трьох людей. Скласти ряд розподілу числа людей серед обраних, які підтримують програму, знайти середню кількість таких людей та дисперсію числа таких людей.

Розв'язок. Позначимо випадкову величину X, що відповідає числу людей серед обраних, які підтримують програму. Якщо ми обираємо навмання 3 людей, то можливі значення X це $\mathcal{X} = \{0,1,2,3\}$. Отже, знайдемо розподіл величини X.

Розглянемо подію $X=k\in\mathcal{X}$, тобто, ми взяли k підтримуючих урядову програму людей з 16. Загальна кількість варіантів обрати 3 людей з 16 це $\binom{16}{3}$. Кількість варіантів обрати k підтримуючих людей з 12 це $\binom{12}{k}$, а кількість варіантів обрати 3-k непідтримуючих людей з інших 4 це $\binom{4}{3-k}$. Отже, маємо:

$$p(X = k) = \frac{\binom{12}{k} \binom{4}{3-k}}{\binom{16}{3}}$$

Отже, знайдемо ці значення:

$$p(X = 0) = \frac{1}{140} \approx 0.00714, \ p(X = 1) = \frac{9}{70} \approx 0.12857,$$

 $p(X = 2) = \frac{33}{70} \approx 0.47143, \ p(X = 3) = \frac{11}{28} \approx 0.39286$

Для перевірки можемо переконатись, що дійсно $\sum_{k=0}^{3} p(X=k) = 1$. Тепер знайдемо математичне очікування $\mathbb{E}[X]$ та дисперсію $\mathrm{Var}[X]$:

$$\mathbb{E}[X] = \sum_{k=0}^{3} kp(X = k) = \frac{9}{4}$$

Математичне очікування $\mathbb{E}[X^2]$:

$$\mathbb{E}[X^2] = \sum_{k=0}^{3} k^2 p(X=k) = \frac{111}{20}$$

Отже, дисперсія:

$$Var[X] = \mathbb{E}[X^2] - \mathbb{E}^2[X] = \frac{39}{80}$$

Відповідь. Середня кількість дорівнює $\frac{9}{4}$, дисперсія $\frac{39}{80}$.

Завдання 7.

Умова. Клієнт повинен повернути банку кредит сьогодні. Тиждень тому він відправив грошовий переказ з іншого міста, який досі не прийшов. Час T прибуття грошей оцінюється клієнтом так:

За кожен день запізнення повернення кредиту клієнт має виплатити банку $\alpha=0.03$ від його суми. Є можливість звернутися до приватного детектива, який зобов'язується за $\beta=0.05$ від суми знайти її протягом дня. Визначити, що клієнтові вигідніше — звернутися до детектива чи чекати на прихід грошей.

Розв'язок. Нехай розмір кредиту s. Якщо клієнт звертається до приватного детектива, то він заплатить $s(1+\beta)$. Якщо ж він буде чекати прибуття грошей, то він заплатить $s(1+\alpha T)$, де T є випадковою величиною. Отже, нам потрібно порівняти $s(1+\beta)$ та значення

$$\mathbb{E}[s(1+\alpha T)]$$

Користуємось лінійністю математичного очікування і отримуємо:

$$\mathbb{E}[s(1+\alpha T)] = s\mathbb{E}[1+\alpha T] = s + s\alpha \mathbb{E}[T] = s(1+\alpha \mathbb{E}[T])$$

Отже насправді нам потрібно порівняти вирази β та $\alpha \mathbb{E}[T]$. Знайдемо скільки в середньому нам потрібно зачекати:

$$\mathbb{E}[T] = \sum_{t=1}^{5} tp(T=t) = 2.4$$

Отже $\alpha \mathbb{E}[T] = 0.072$. Як бачимо цей вираз більший за β , а отже вигідніше звернутися до детектива.

Відповідь. Вигідніше звернутися до детектива.

Завдання 8.

Умова. До банку надійшло 30 авізо, серед яких 5 фальшивих. Ретельної перевірці (яка гарантовано виявляє фальшиві документи) піддаються десять випадково обраних авізо. Знайти очікувану кількість виявлених фальшивих авізо.

Розв'язок. Нехай X є кількістю виявлених фальшивих авізо. Можливі значення цієї кількості приймає значення $\mathcal{X} = \{0, 1, 2, 3, 4, 5\}$. Отже, нам потрібно знайти $p(X = x), x \in \mathcal{X}$.

Загальна кількість вибрати 10 авізо з усієї купи дорівнює $\binom{30}{10}$. Далі порахуємо кількість способів взяти рівно k фальшивих авізо. Для цього ми беремо k авізо з 5 фальшивих, кількість таких варіантів $\binom{5}{k}$, а також 10-k авізо з 25 нефальшивих. Кількість вже таких варіантів

 $\binom{25}{10-k}$. Отже маємо розподіл:

$$p(X=k) = \frac{\binom{5}{k} \binom{25}{10-k}}{\binom{30}{10}}$$

Знаходимо усі значення:

$$p(X=0) = \frac{8075}{23751}, \ p(X=1) = \frac{950}{2639}, \ p(X=2) = \frac{3800}{23751},$$
$$p(X=3) = \frac{100}{3393}, \ p(X=4) = \frac{2}{1131}, \ p(X=5) = \frac{2584}{23751}$$

Нам потрібно знайти математичне очікування, тобто:

$$\mathbb{E}[X] = \sum_{k \in \mathcal{X}} kp(X = k) = \frac{5}{3}$$

Отже, очікувана кількість виявлених фальшивих авізо дорівнює $\frac{5}{3}$. Відповідь. $\frac{5}{3}$.

Замітка.

В задачах 5 та 8 ми використовували один й той самий розподіл. Можна узагальнити його. Зробимо це на прикладі завдання 8.

Отже, нехай надішло n авізо, серед яких k фальшивих, а перевіряється m>k штук. Випадкова величина X позначає скільки фальшивих авізо ми перевірили та, відповідно, виявили.

Тоді можемо записати розподіл як:

$$p(X = x \mid n, k, m) = \frac{\binom{k}{x} \binom{n - k}{m - x}}{\binom{n}{m}}$$

Далі за допомогою Wolfram Mathematica перевірив, що наступне твердження дійсно виконується:

$$\sum_{x=0}^{k} p(X=x) = 1$$

Математичне очікування:

$$\mathbb{E}[X] = \sum_{x=0}^{k} xp(X = x) = \frac{km}{n}$$

І дисперсія:

$$Var[X] = \frac{km(k-n)(m-n)}{(n-1)n^2}$$