$$\Phi_{\theta,\xi}(z)_{t} = \mathcal{F}_{d}^{-1} \left(\mathcal{F}_{1}^{-1}(B)_{t} \mathcal{F}_{d}(z_{0}) \right) + \mathcal{F}_{d+1}^{-1} \left(B \mathcal{F}_{d+1} \left(\mathbf{1}_{\geq 0} H_{\theta,\xi}(z_{0}) \right) \right)_{t}$$
Fixed Point Solver: $z = \Phi_{\theta,\xi}(z)$

Lift $L_{ heta}: \mathbb{R}^{d_u}
ightarrow \mathbb{R}^{d_h}$

t = 0

ODE Solver:
$$z_t = \mathcal{F}_d^{-1}(v_t)$$

$$v_t = v_0 + \int_0^t Av_s + \mathcal{F}_d(H_{\theta,\xi}(\mathcal{F}_d^{-1}(v_s))), \quad v_0 = \mathcal{F}_d(z_0)$$

Readout $\Pi_{\theta}: \mathbb{R}^{d_h}
ightarrow \mathbb{R}^{d_u}$

$$\left(u_0: \mathscr{D} \to \mathbb{R}^{d_u}, \quad \xi: [0,T] \to L^2(\mathscr{D}, \mathbb{R}^{d_{\xi}})\right)$$

Space Time

 $\cdots t = T$

Solution Operator

 $u:[0,T]\to L^2(\mathcal{D},\mathbb{R}^{d_u})$ Physical Space