15.085 Final Exam Cheat Sheet by S. Shreyas V., page 1 of 2

1 Prob. Models & Measures Prob. Experiments

Probability space: $(\Omega, \mathcal{F}, \mathbb{P})$ $-\Omega$ sample space $-\mathcal{F} \sigma$ -field −P prob. measure

Disc. Prob. Space

 Ω finite or countable, \mathcal{F} set of all subsets of Ω $\mathbb{P}:\Omega\to[0,1]$ sums to 1 σ -fields

(a) $\emptyset \in \mathcal{F}$ (b) $A \in \mathcal{F} \implies A^c \in \mathcal{F}$

(c) $\{A_i\} \subseteq \mathcal{F} \implies \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$ Set $A \in \mathcal{F}$ "event"/"measurable," (Ω, \mathcal{F}) measurable space $\mathcal{F} = \bigcap_{s \in S} \mathcal{F}_s$ also σ -field

Prob. Measures

Measure: $\mu: \mathcal{F} \to [0, \infty]$ (a) $\mu(\emptyset) = 0$; (b) Countable additivity: $\{A_i\} \subseteq \mathcal{F}$

disjoint $\implies \mu(\cup_i A_i) = \sum_{i=1}^{\infty} \mu(A_i)$

Prob. measure also has $\mathbb{P}(\Omega) = 1$ *Field*: like σ -field but finite

Continuity

Sequence of sets converge to union/intersection

2 Fundamental Models

Carathéodory's extension thm.

 \mathcal{F}_0 field, \mathcal{F} σ -field $\mathbb{P}_0: \mathcal{F}_0 \to [0,1], \, \mathbb{P}_0(\Omega) = 1$ \mathbb{P}_0 yields \mathbb{P} on (Ω, \mathcal{F})

Lebesgue measure

Uniform measure on [0,1]

Borel σ -field

 \mathcal{B} : smallest σ -field including every interval $[a, b] \subset [0, 1]$ $A \subset [0,1], A \in \mathcal{B}$ Borel set

3 Conditioning & Independence **Conditional probability**

 $\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$ $\mathbb{P}_B(A) = \mathbb{P}(A \mid B)$

Bayes' rule: $\mathbb{P}_A(B_i) = \frac{\mathbb{P}(B_i)\mathbb{P}_{B_i}(A)}{\mathbb{P}(A)}$ $\mathbb{P}(\cap_{i=1}^{\infty}A_i)$

 $\mathbb{P}(A_1) \prod_{i=2}^{\infty} \mathbb{P}\left(A_i \mid \bigcap_{i=1}^{i-1} A_i\right)$

Independence

Defn.: $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$ \mathcal{F}_1 , \mathcal{F}_2 σ -fields indep. iff any $A_1 \in$ \mathcal{F}_1 and $A_2 \in \mathcal{F}_2$ indep.

Borel-Cantelli lemma

Sequence of events $\{A_n\}$, $A = \{A_n \text{ i.o.}\} = \bigcap_{n=1}^{\infty} \bigcup_{i=n}^{n} A_i$ (a) $\sum_{n=1}^{\infty} \mathbb{P}(A_n) < \infty \Longrightarrow \mathbb{P}(A) = 0$ (b) $\sum_{n=1}^{\infty} \mathbb{P}(A_n) = \infty \Longrightarrow \mathbb{P}(A) = 1$ if events A_n , $n \in \mathbb{N}$ indep.

Summation lemma

If $0 \le p_i \le 1$, $\forall i \in \mathbb{N}$, and $\sum_{i=1}^{\infty} p_i = \infty$, then $\prod_{i=1}^{\infty} (1 - p_i) = 0$

4 Combinatorial prob.

 $\lim_{n\to\infty} \left(1 + \frac{r}{n}\right)^n = e^r$

Stirling's approx.

 $n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$

5 Random Variables

Definition

(a) $X : \Omega \to \mathbb{R}$ s.t. $\{\omega \mid X(\omega) \le c\}$ \mathcal{F} measurable $\forall c \in \mathbb{R}$ (b) Extended-valued r.v. if $\forall c \in \mathbb{R} =$ $\mathbb{R} \cup \{\pm \infty\}$ $X^{-1}(B) = \{X \in B\} = \{\omega \mid X(\omega) \in B\}$ Prob. law: $\mathbb{P}_X : \mathcal{B} \to [0,1], B \mapsto$ $\mathbb{P}(X \in B)$ (measure on $(\mathbb{R}, \mathcal{B})$) $(\mathcal{F}_1, \mathcal{F}_2)$ -measurable func.: f: $\Omega_1 \to \Omega_2$ s.t. $f^{-1}(B) \in \mathcal{F}_1, \forall B \in \mathcal{F}_2$ For $A \in \mathcal{F}$, I_A is $(\mathcal{F}, \mathcal{B})$ -measurable

Defn.: F_X : \mathbb{R} \rightarrow [0,1], $x \mapsto$ $\mathbb{P}(X \leq x)$

(a) Monotonicity

(b) $\lim_{x\to-\infty} F_X(x) = 0$, $F_{X,Y} = \mathbb{P}(X \le x, Y \le y)$ $\lim_{x\to\infty} F_X(x) = 1$ (c) Right-continuity

Discrete RV's

Range $X(\Omega)$ finite/countable $p_X : \mathbb{R} \to [0,1], x \mapsto \mathbb{P}(X=x) \text{ PMF}$

Continuous RV's

 $F_X(x) = \int_{-\infty}^x f(t) dt$, f PDF

6 Discrete RV's

Examples

Uniform: $p_X(k) = \frac{1}{b-a+1}$ Bernoulli: $p_X(1) = p$, $p_X(0) = 1 - p$ Binomial: $p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$ Geometric: $p_X(k) = (1 - p)^{k-1} p$ Poisson: $p_X(k) = e^{-\lambda} \frac{\lambda^k}{k!}$ Power law: $p_X(k) = \frac{1}{k^{\alpha}} - \frac{1}{(k+1)^{\alpha}}$

7 More Discrete RV's **Expected Values**

Bernoulli: $\mathbb{E}[X] = p, \text{Var}(X) =$ p(1-p)

Binomial: $\mathbb{E}[X] = np, \text{Var}(X) =$ np(1-p)

Geometric: $\mathbb{E}[X] = \frac{1}{p}, \text{Var}(X) =$

Poisson: $\mathbb{E}[X] = \lambda$, $Var(X) = \lambda$ Power law: $\mathbb{E}[X] = \sum_{k=0}^{\infty} \frac{1}{(k+1)^{\alpha}}$

Cov. & Corr.

Cov(X,Y) $\mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$ $\rho = \frac{\text{Cov}(X,Y)}{\sigma_X \sigma_Y} \text{ Cauchy-Schwarz ineq:}$ $\left(\mathbb{E}\left[XY\right]\right)^{2} \leq \mathbb{E}\left[X^{2}\right]\mathbb{E}\left[Y^{2}\right]$

Conditional Expectations

 $\mathbb{E}\left[\mathbb{E}\left[X\mid Y\right]g(Y)\right] = \mathbb{E}\left[Xg(Y)\right]$

8 Continuous RV's

Examples

Uniform: $F_X(x) = \frac{x-a}{b-a}$ Exponential: $F_X(x) = 1 - e^{-\lambda x}$ $f_X(x)$ $\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$ Cauchy: $f_X(x) = \frac{1}{\pi(1+x^2)}$

Power law: $f_X(t) = \frac{\alpha c^{\alpha}}{4\alpha + 1}$ Exp. Value

 $\mathbb{E}[X] = \int_0^\infty (1 - F_X(t)) dt \text{ for } X \text{ non-}$ negative

Joint Dist.'s

 $f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$

Independence

 $F_{X,Y} = F_X(x)F_Y(y)$

9 More Cont. RV's **Conditional PDFs**

 $f_{X\mid Y}\left(x\mid y\right) = \frac{f_{X,Y}\left(x,y\right)}{f_{Y}\left(y\right)}$

Bivariate Normal Dist.

 f_X , f_Y Normal PDF's

Mixed Bayes' Rule

Sums for discrete RV, prods for cont. RV

10 Derived Dist.'s

Func. of Single RV

If Y = g(X), calculate $F_Y(y) =$ $\mathbb{P}(g(X) \le y) = \int_{\{x \mid g(x) \le y\}} f_X(x) \, \mathrm{d}x$ Then $f_Y(y) = \frac{dF_Y}{dx}(y)$

Multivariate

 $f_Y(y) = f_X(M^{-1}y) \cdot |M^{-1}|$

Max & Min of RV's

 $\mathbb{P}\left(\max_{j} X_{j} \leq x\right) = F_{X_{1}}\left(x\right) \cdots F_{X_{n}}\left(x\right)$ $\mathbb{P}\big(\min_i X_i \le x\big)$ $(1-F_{X_1}(x))\cdots(1-F_{X_n}(x))$

Convolution

 $\begin{aligned} p_{X+Y}\left(z\right) &= \sum_{x} p_{X}\left(x\right) p_{Y}\left(z-x\right) \\ f_{X+Y}\left(z\right) &= \int_{-\infty}^{\infty} f_{X,Y}\left(x,z-x\right) \mathrm{d}x \end{aligned}$

11 Abstract Integration I **Preliminaries**

 $(\Sigma, \mathcal{F}, \mathbb{P})$: $\mathbb{E}[X] = [Xd\mathbb{P}]$ $(\mathbb{R}, \mathcal{B}, \lambda)$: $\int g d\lambda = \int g(x) dx$

Results

Monotone Convergence Theorem: $0 \le g_n \uparrow g \implies \left[g_n d\mu \uparrow \left[g du \right] \right]$

General Case

Let $g_+ = g \cdot \mathbb{1}_{g>0}$, $g_- = -g \cdot \mathbb{1}_{g<0}$: $\int g d\mu = \int g_+ d\mu - \int g_- d\mu$

12 Abstract Integration II Fatou's Lemma

 $Y \text{ s.t. } \mathbb{E}[|Y|] < \infty : (a) \text{ If } Y \leq X_n \forall n,$ $\mathbb{E}[\liminf_{n\to\infty} X_n]$ $\lim_{h \to \infty} \inf_{x \to \infty} \mathbb{E}[X_n] \\
\text{(b)} \quad \text{If} \quad X_n \leq$ $Y \forall n$. then $\mathbb{E}[\limsup_{n\to\infty}X_n]$ $\limsup_{n\to\infty} \mathbb{E}[X_n]$

Dominated Convergence Theorem

Sequence $\{X_n\}$ converges to X a.e. Suppose $|X_n| \leq Y$, $\forall n$, $Y \ge 0$ with $\mathbb{E}[Y] < \infty$. Then: $\lim_{n\to\infty} \mathbb{E}[X_n] = \mathbb{E}[X]$. Corollary: if $\sum_{n=1}^{\infty} \mathbb{E}[|Z_n|] < \infty$, $\sum_{n=1}^{\infty} \mathbb{E}[Z_n] = \mathbb{E}\left[\sum_{n=1}^{\infty} Z_n\right].$

13 Product Measure & Fubini's Thm

Product Measure

 $\mathcal{F}_1 \times \mathcal{F}_2$: smallest σ -field of subsets of $\Omega_1 \times \Omega_2$ containing all $A_1 \times \Omega_2$ and $\tilde{\Omega}_1 \times A_2$, for $A_1 \in \mathcal{F}_1, A_2 \in \mathcal{F}_2.$ Exists unique \mathbb{P} on $(\Omega_1 \times \Omega_2, \mathcal{F}_1 \times \mathcal{F}_2)$ with $\mathbb{P}(A_1 \times A_2) = \mathbb{P}_1(A_1) \mathbb{P}_2(A_2)$

Fubini's Theorem

nonnegative or $i^k \mathbb{E}[X^k]$ $J_{\Omega_1\times\Omega_2}|g(\omega_1,\omega_2)|\mathrm{d}\mathbb{P}<\infty$: can switch order of integration

MGF's

 $M_X(s) = \mathbb{E}\left[\exp(sX)\right]$ Domain $D_r = \{s \mid M_r(s) < \infty\}$ Inversion Thm: if $M_X(s) = M_V(s)$, $\forall |s| \leq a$, then $F_X = F_Y$

Probability GF: $g_X(s) = \mathbb{E}[s^X]$

$$\frac{d}{ds}g_X(s)\Big|_{s=1} = \mathbb{E}[X]$$

$$Y = aX + b \Longrightarrow M_Y(s) = e^{sb}M_X(as)$$

$$X \text{ and } Y \text{ indep.: } M_{X+Y}(s) = M_X(s)M_Y(s)$$
If $\mathbb{P}(Z = X) = p$ and $\mathbb{P}(Z = Y) = 1$

Sum of RVs

Law of Total Variance: Var(Y) = $\mathbb{E}[\operatorname{Var}(Y \mid X)] + \operatorname{Var}(\mathbb{E}[Y \mid X])$

 $M_Z(s) = pM_X(s) + (1-p)M_Y(s)$

15 Multivariate Normal Dist.

Positive Definite

A is $n \times n$ symmetric matrix $A > 0 \iff x^{\mathsf{T}} A x > 0, \forall x \in \mathbb{R}^n$ $A \ge 0 \iff x^{\mathsf{T}} A x \ge 0, \ \forall x \in \mathbb{R}^n.$ Symmetric: *n* real eigenvalues; Pos Defn.: *n* real positive eigenvalues; Nonnegative Defn.: *n* real nonnegative eigenvalues. Symmetric matrices are diagonaliz-

Multivariate Normal Dist.

Defn. of mv normal:

Factorization: convert
$$X_i$$
 to W_i

$$f_X(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^n |V|}} \exp\left\{-\frac{(\mathbf{x} - \mu)V^{-1}(\mathbf{x} - \mu)^\top}{2}\right\};$$

$$\mathbf{X} = D\mathbf{W} + \mu, W_{ij} \sim \mathcal{N}(0, 1);$$

$$\forall \mathbf{a} \in \mathbb{R}^n \colon \mathbf{a}^\top \mathbf{X} \sim \mathcal{N}\left(\mu, \sigma^2\right)$$
Factorization: convert X_i to W_i

$$W_1 = X_1,$$

$W_2 = X_2 - \mathbb{E}[X_2 \mid X_1],$ $W_n = X_n - \mathbb{E}[X_n \mid X_1, \dots, X_{n-1}]$

16 Characteristic Functions

Basics

Can use
$$e^{iX} = \cos(x) + i\sin(x)$$

Invertible for all RV's:
 $f_X(x) = \frac{1}{2\pi} \lim_{T \to \infty} \int_{-T}^T e^{-itx} \phi_X(t) dx$
 $\lim_{n \to \infty} X_n = X \implies$
 $\lim_{n \to \infty} \phi_{X_n}(t) = \phi_X(t)$
 $\mathbb{E}[|X|^k] < \infty \implies \frac{d^k}{dt^k} \phi_X(t)|_{t=0} =$

Exponential:
$$\phi_X(t) = \frac{\lambda}{\lambda - it}$$

14 Moment Generating Functions Normal:
$$\phi_X(t) = \exp\left(it\mu - \frac{t^2\sigma^2}{2}\right)$$

17 MGF Applications

Random Walks

Can apply MGFs to calculate probability and time to return

15.085 Final Exam Cheat Sheet by S. Shreyas V., page 2 of 2

Branching Processes

 Z_n : indivs in n^{th} gen, g is PGF of dist. $F, X \stackrel{d}{=} F$, $g(s) = \sum_{m \ge 0} s^m \mathbb{P}(X = m).$ G_n is PGF of Z_n , $\mathbb{E}[X] = \mu$, $\operatorname{Var}(X) = \sigma^2$, $G_n = g^{(n)}$, $\forall n \ge 0$. $\mathbb{E}[Z_n] = \mu^n$,

$$\operatorname{Var}(Z_n) = \begin{pmatrix} n\sigma^2, & \mu = 1; \\ \frac{\sigma^2(\mu^{n-1})\mu^{n-1}}{\mu - 1} & \mu \neq 1. \end{pmatrix}$$
If $\mu \in 1, Z_n = 0$, $\mathbb{P}(Z_n) \in \mathbb{P}^n$

If $\mu < 1$, $Z_n \rightarrow 0$, $\mathbb{P}(Z_n > 0) < \mu^n$ Pr. extinction η smallest root of s = g(s); $\eta = 1$ in many cases.

18 Convergence

Definition

Almost surely: $X_n \overset{\text{a.s.}}{\to} X$ if $\exists A \subset \Omega$: (a) $\lim_{n\to\infty} X_n(\omega) = X(\omega)$, $\forall \omega \in A$, (b) $\mathbb{P}(A) = 1$.

Dist: $X_n \xrightarrow{d} X$ if $(F \text{ and } F_n \text{ CDFs})$ $\lim_{n \to \infty} F_n(x) = F(x), \forall x \in \mathbb{R}.$

Prob:
$$X_n \stackrel{\text{i.p.}}{\to} X$$
 if $(\forall \varepsilon > 0)$
 $\lim_{n \to \infty} \mathbb{P}(|X_n - X| \ge \varepsilon) = 0$.

Hierarchy

Each implies the next:

- i) Almost Surely
- ii) In Probability
- ii) In Distribution
- iv) $\phi_{X_n}(t) \rightarrow \phi_X(t), \forall t$

Last one holds in reverse

19 LLN & CLT Inequalities

Markov: $\mathbb{P}(X \ge a) \le \frac{\mathbb{E}[X]}{a}$ extends Markov Chebyshev: $\mathbb{P}(|X - \mathbb{E}[X]| \ge \varepsilon) \le \frac{\operatorname{Var}(X)}{\varepsilon^2}$

Weak LLN

 X_n i.i.d., $\mathbb{E}[|X_1|] < \infty$, S_n sum $\frac{S_n}{n} \stackrel{\text{i.p.}}{\to} \mathbb{E}[X_1]$; Strong LLN a.s.

 X_n i.i.d., mean μ , var σ^2 , S_n sum $\frac{S_n - n\mu}{\sigma\sqrt{n}} \xrightarrow{d} X \sim \mathcal{N}\left(0, 1\right)$

20 LLN II

Strong LLN

 $\{X_n\}$ sequence of RV's (i) $\sum_{n=1}^{\infty} \mathbb{E}[|X_n|^s] < \infty, s > 0 \implies X_n \stackrel{\text{a.s.}}{\longrightarrow} 0$ (ii) $\sum_{n=1}^{\infty} \mathbb{P}(|X_n| > \varepsilon) < \infty$, $\forall \varepsilon > 0$ Ergodic Theorem $\Longrightarrow X_n \stackrel{\text{a.s.}}{\to} 0$ LLN: X, X_1, X_2, \dots i.i.d., $\mathbb{E}[|X|] < \infty$,

$S_n \text{ sum } \Longrightarrow S_n/n \overset{\text{a.s.}}{\to} \mathbb{E}[X].$ **Chernoff Bound**

If $\mathbb{E}[\exp(sX)] < \infty$ for some s > 0, and a > 0, then $\mathbb{P}(S_n \ge na) \le \exp(-n\phi(a))$, where $\phi(a) = \sup_{s>0} (sa - \ln M_X(s)).$ If X continuous and boundless, $\lim_{n\to\infty} n^{-1} \mathbb{P}(S_n \ge na) = -\phi(a).$

21 Stochastic Processes

Bernoulli

 $X_n \sim \text{Ber}(p) \text{ i.i.d., } \Omega = \{0,1\}^{\infty}.$ S_n : $\mathbb{E}[S_n] = np$, $Var(S_n) = npq$. $T_1 = \min\{n \mid X_n = 1\}, \mathbb{E}[T_1] = p^{-1}.$ Stationary and memoryless

Poisson

N(t): arrivals during (0, t], $N(t) \sim \text{Pois}(\lambda t)$. $\mathbb{P}(T_1 > t) = \exp(-\lambda t)$

Given info on number of arrivals by t, prev. arrivals are dist. $\mathcal{U}(0,t]$.

22 Markov Chains

Basics

Process takes values in countable \mathcal{X} , probability $X_n = x_n$ only conditioned on $X_{n-1} = x_{n-1}$ Homogeneous: constant transition

matrix **P**;

$$p_{i,j} = \mathbb{P}(X_{n+1} = j \mid X_n = i)$$
 s.t.
 $\sum_i p_{i,j} = 1, \forall i$ —stochastic matrix

Stationary Distribution

 π stationary iff $\pi^{\mathsf{T}} = \pi^{\mathsf{T}} \mathbf{P}$ Every finite state Markov chain has at least 1 stationary distribution

State Classification

Transient: i s.t. $\exists j : i \rightarrow j, j \not\rightarrow i$. Recurrent: *i* not transient.

23 Markov Chains II

Single Recurrence Class

↔ is an equivalency relation: recurrent states form classes $R_1, ..., R_r$. T transient states.

 $\forall l = 1, ..., r, \forall i \in R_l, j \notin R_l: p_{i,j} = 0$ Let $T_i = \min\{n \ge 1 : X_n = i \mid X_0 = i\}$ first passage time; $\mu_i = \mathbb{E}[T_i]$ mean recurrence time.

 $\forall i \in \mathcal{T} : \mathbb{P}(X_n = i, i.o.) = 0, \ \mu_i = \infty.$ Irreducible: $\mathcal{X} = \mathcal{T} \cup R$ and $\mathcal{T} = \emptyset$. Uniqueness of π

If single recurrence class, π

Furthermore, $\pi_i = \mu_i^{-1}$, $\forall i$. If *i* recurrent, $\pi_i > 0$.

Let $N_i(t)$ be # of times state i visited during times $0, 1, \dots t$. For arbitrary starting $X_0 = k$, $\forall i$, $\lim_{t\to\infty} \frac{N_i(t)}{t} = \pi_i \text{ a.s.}$ $\lim_{t\to\infty} \frac{\mathbb{E}[N_i(t)]}{t} = \pi_i.$

Multiple Recurrence Classes

r stationary distributions where $\forall 1 \leq i \leq r$: $\pi_k^i = 0$ if $k \notin R_i$ and $\pi_k^i = \mu_k^{-1} \text{ if } k \in R_i.$

24 Markov Chains III

Periodicity

 $\forall x \in \bigcup R_i, I_x = \left\{ n \ge 1 : p_{x,x}^{(n)} > 0 \right\}$ d_x period is GCD of I_x numbers States in same recurrence class have same period Periodic: $d_x > 1$; Aperiodic: $d_x = 1$ $d_{y} = 1 \implies \exists N \ge 1 : p_{y,y}^{(n)} > 0, \forall n \ge$

Coupling & Mixing

Irreducible aperiodic MC: $\forall x, y \in$ $\mathcal{X}: \lim_{n\to\infty} p_{x,v}^{(n)} = \pi_v.$ Irreducible aperiodic reversible MC: $\exists C: \forall x, y \in \mathcal{X}: \left| p_{x,y}^{(n)} - \pi_y \right| \le$ $C|\lambda_2|^n$, where λ_2 second largest (absolute value) eigenvalue of P. Coupling: X_n MC on $\{1,...,N\}$ and Y_n MC on $\{1,\ldots,M\}$ with **P**, **Q**, respectively. Can create Z_n MC on $\{1,\ldots,N\}\times\{1,\ldots,M\}$ with transition $R = \{r_{(x_1, x_2), (y_1, y_2)}\}.$

Moves in each direction with same probability matrices.

Coupling behaves as above until collision—then transition the same.

Absorbtion Probability

Assume recurrent states *i* absorbing, i.e., $p_{i,i} = 1$. Absorbing probability: $a_{ki} =$ $\mathbb{P}(X_n = i \text{ eventually } | X_0 = k).$