Reverse Connection with Objectness Prior Networks for Object Detection IV

Liangjie Cao

23 May 2018

1 Training and Testing results

Finally they train and evaluate our models on three major datasets: PASCAL VOC 2007, PASCAL VOC 2012, and MS COCO. For fair comparison, all experiments are based on the VGG-16 networks. We train all our models on a single Nvidia TitanX GPU, and demonstrate state-of-the-art results on all three datasets. As shown in Table 1, all methods have inferior performance on 'boat' and 'bottle'. However, RON improves performance of these categories by significant margins: 4.0 points improvement for 'boat' and 7.1 points improvement for 'bottle'. In summary, performance of 17 out of 20 categories has been improved by RON. 1

Figure 1: RON object detection overview

2 PASCAL VOC 2012

Actually the results, as shown in Table 2, demonstrate that our model performs the best on this dataset. Compared with Faster R-

CNN and other variants [1] [4], the proposed network is significantly better, mainly due to the reverse connection and the use of boxes from multiple feature maps. Compared with Faster R-CNN and other variants, the proposed network is significantly better, mainly due to the reverse connection and the use of boxes from multiple feature maps.

Figure 2: Recall versus number of proposals on the PASCAL VOC 2007 test set (with IoU = 0.5)

3 MS COCO

To further validate the proposed framework on a larger and more challenging dataset, they conduct experiments on MS COCO and report results from test-dev2015 evaluation server. Coco data set is a data set which can be used for image recognition + segmentation + capturing acquired by Microsoft team. With the standard CO-CO evaluation metric, Faster RCNN scores 21.9% AP, and RON improves it to 27.4% AP. Using the VOC overlap metric of IoU ≥0.5, RON384++ gives a 5.8 points boost compared with SSD500. [5] It is also interesting to note that with 320×320 input size, RON gets 26.2% AP, improving the SSD with 500×500 input size by 1.8 points on the

4 From MS COCO to PASCAL VOC

As the categories on MS COCO are a superset of these on PASCAL VOC dataset, the fine-tuning process becomes easier compared with the ImageNet pretrained model. Starting from MS COCO pretrained model, RON leads to 81.3% mAP on PASCAL VOC 2007(Table 1) and 80.7% mAP on PASCAL VOC 2012.(Table 2 When submitting, the authors model with 384×384 input size has been ranked as the top 1 on the VOC 2012 leaderboard among VGG-16 based models. We note that other public methods with better results are all based on much deeper networks.

5 Ablation Analysis

After removing the detection module, our network could get region proposals. We compare the proposal performance against Faster R-CNN [3] and evaluate recalls with different numbers of proposals on PASCAL VOC 2007 test set, as shown in Figure 2. Both Faster R-CNN and RON achieve promising region proposals when the region number is larger than 100. However, with fewer region proposals, the recall of RON boosts Faster R-CNN by a large margin. Specifically, with top 10 region proposals, these 320 model gets 80.7% recall, outperforming Faster R-CNN by 20 points. This validates that our model is more effective in applications with less region proposals.

6 Conclusion

They have presented RON, an efficient and effective object detection framework. We design the reverse connection to enable the network to detect objects on multi-levels of CNNs.On standard benchmarks, RON achieves state-of-the-art object detection performance. Maybe oneday I can do this professional work with my team.

Method	map	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbik	e perso	nplant	sheep	sofa	train	tv
Fast R-	70.0	77.0	78.1	69.3	59.4	38.3	81.6	78.6	86.7	42.8	78.8	68.9	84.7	82.0	76.6	69.9	31.8	70.1	74.8	80.4	70.4
CNN [2]																					
Faster R-	73.2	76.5	79.0	70.9	65.5	52.1	83.1	84.7	86.4	52.0	81.9	65.7	84.8	84.6	77.5	76.7	38.8	73.6	73.9	83.0	72.6
CNN [3]																					
SSD300	72.1	75.2	79.8	70.5	62.5	41.3	81.1	80.8	86.4	51.5	74.3	72.3	83.5	84.6	80.6	74.5	46.0	71.4	73.8	83.0	69.1
[6]																					
SSD500	75.1	79.8	79.5	74.5	63.4	51.9	84.9	85.6	87.2	56.6	80.1	70.0	85.4	84.9	80.9	78.2	49.0	78.4	72.4	84.6	75.5
[6]																					
RON320	74.2	75.7	79.4	74.8	66.1	53.2	83.7	83.6	85.8	55.8	79.5	69.5	84.5	81.7	83.1	76.1	49.2	73.8	75.2	80.3	72.5
RON384	75.4	78.0	82.4	76.7	67.1	56.9	85.3	84.3	86.1	55.5	80.6	71.4	84.7	84.8	82.4	76.2	47.9	75.3	74.1	83.8	74.5
RON320++	76.6	79.4	84.3	75.5	69.5	56.9	83.7	84.0	87.4	57.9	81.3	74.1	84.1	85.3	83.5	77.8	49.2	76.7	77.3	86.7	77.2
RON384++	77.6	86.0	82.5	76.9	69.1	59.2	86.2	85.5	87.2	59.9	81.4	73.3	85.9	86.8	82.2	79.6	52.4	78.2	76.0	86.2	78.0

Table 1: Detection results on PASCAL VOC 2007 test set. The entries with the best APs for each object category are bold-faced.

Method	122.012	0.000	hilto	hind	hoot	hattla	hua	00#	oot	ahair	2011/	toblo	doa	horso	mbile	2 22 22 22	nnlant	ahaan	, gofo	train	437
	map	aero	bike	bird	boat	bottle		car	cat	chair		table				1	nplant	1		train	
Fast R-	68.4	82.3	78.4	70.8	52.3	38.7	77.8	71.6	89.3	44.2	73.0	55.0	87.5	80.5	80.8	72.0	35.1	68.3	65.7	80.4	64.2
CNN [2]																					
OHEM	71.9	83.0	81.3	72.5	55.6	49.0	78.9	74.7	89.5	52.3	75.0	61.0	87.9	80.9	82.4	76.3	47.1	72.5	67.3	80.6	71.2
[1]																					
Faster R-	75.2	79.8	70.5	62.5	41.3	81.1	80.8	86.4	51.5	74.3	72.3	83.5	84.6	80.6	74.5	46.0	71.4	73.8	83.0	69.1	
CNN [3]																					
70.4																					
HyperNet	71.4	84.2	79.8	70.5	62.5	41.3	81.1	80.8	86.4	51.5	74.3	72.3	83.5	84.6	80.6	74.5	46.0	71.4	73.8	83.0	69.1
[4]																					
SSD300	70.3	84.2	76.3	69.6	53.2	40.8	78.5	73.6	88.0	50.5	73.5	61.7	85.8	80.6	81.2	77.5	44.3	73.2	66.7	81.1	65.8
[6]																					
SSD500	73.1	84.9	82.6	74.4	55.8	50.0	80.3	78.9	88.8	53.7	76.8	59.4	87.6	83.7	82.6	81.4	47.2	75.5	65.6	84.3	68.1
[6]																					
RON320	71.7	84.1	78.1	71.0	56.8	46.9	79.0	74.7	87.5	52.5	75.9	60.2	84.8	79.9	82.9	78.6	47.0	75.7	66.9	82.6	68.4
RON384	73.0	85.4	80.6	71.9	56.3	49.8	80.6	76.8	88.2	53.6	78.1	60.4	86.4	81.5	83.8	79.4	48.6	77.4	67.7	83.4	69.5
RON320++	74.5	87.1	81.0	74.6	58.8	51.7	82.1	77.0	89.7	57.2	79.9	62.6	87.2	83.2	85.0	80.5	51.4	76.7	68.5	84.8	70.4
RON384++	75.4	86.5	82.9	76.6	60.9	55.8	81.7	80.2	91.1	57.3	81.1	60.4	87.2	84.8	84.9	81.7	51.9	79.1	68.6	84.1	70.3

Table 2: Results on PASCAL VOC 2012 test set. All methods are based on the pre-trained VGG-16 networks.

References

- [1] A. Gupta A. Shrivastav and R. Girshick. Training regionbased object detectors with online hard example mining. *In CVPR*, 2016.
- [2] R. Girshic. Fast r-cnn. In ICCV, 2015.
- [3] R. Girshick S. Ren, K. He and J. Sun. Faster r-cnn: Towards real-time object detection with region proposal networks. *In NIPS*, 2015.
- [4] Y. Chen T. Kong, A. Yao and F. Sun. Hypernet: Towards accurate region proposal generation and joint object detection. *In CVPR*, 2016.
- [5] Anbang Yao Huaping Liu Ming Lu Tao Kong, Fuchun Sun and Yurong Chen. Ron: Reverse connection with objectness prior networks for object detection. *In CVPR*, 2017.
- [6] D. Erhan C. Szegedy W. Liu, D. Anguelov and S. Reed. Ssd: Single shot multibox detector. *In ECCV*, 2014.