

Ecole Nationale Supérieure d'Arts et Métiers de Meknès

Département Energétique

Chapitre 2:

Relations fondamentales des Turbomachines

Ecole Nationale Supérieure d'Arts et Métiers de Meknès

Département Energétique

Relations fondamentales des turbomachines

- 1. Triangle des vitesses
- 2. Relation d'Euler
- 3. Degré de réaction

Ecole Nationale Supérieure d'Arts et Métiers de Meknès

Département Energétique

1. Triangle des vitesses

Considérons la composition du mouvement absolu du fluide à travers un rotor, résultant de la rotation de celui-ci. Le mouvement absolu caractérisé par une vitesse $\overrightarrow{\mathbf{V}}$ est obtenu par la composition du mouvement d'entraînement de vitesse $\overrightarrow{\mathbf{U}}$ et le mouvement relatif (par rapport au rotor) de vitesse $\overrightarrow{\mathbf{W}}$

$$\vec{V} = \vec{U} + \vec{W}$$

Ecole Nationale Supérieure d'Arts et Métiers de Meknès

Département Energétique

1. Triangle des vitesses

V₁: Vitesse absolue du fluide à l'entrée du rotor

W₁: Vitesse relative du fluide par rapport au rotor à l'entrée du rotor

U₁: Vitesse d'entraînement du rotor à l'entrée

V₂: Vitesse absolue du fluide à la sortie du rotor

W₂: Vitesse relative du fluide par rapport au rotor à la sortie du rotor

U₂: Vitesse d'entraînement du rotor à la sortie

Département Energétique

1. Triangle des vitesses

i=1: l'entrée du rotor

i=2: la sortie du rotor

 β_i : angle d'écoulement

Ecole Nationale Supérieure d'Arts et Métiers de Meknès

Département Energétique

2. Relation d'Euler

La relation d'Euler donne l'expression de l'énergie spécifique échangée entre le rotor d'une turbomachine à fluide incompressible et le fluide. Elle résulte de l'application du théorème du moment cinétique sur un volume de fluide à

l'intérieur du rotor. Cette énergie est notée $\boldsymbol{e}_{\mathit{th}}$.

$$e_{th}=\pm(U_2Vu_2-U_1Vu_1)$$
 +: machine réceptrice -: machine motrice

La hauteur énergétique (en m) , échangée entre le rotor et le fluide, est donnée par:

$$H_{th}=e_{th}/g$$

cole Nationale Supérieure d'Arts et Métiers de Meknès

L'application du premier principe de la thermodynamique pour le système fluide

traversant une turbomachine:

$$P_u + P_c = Q_m (h_{0s} - h_{0e})$$

Avec:

$$h_0 = h + v^2/2$$
 l'enthalpie d'arrêt

$$P_{u}/Q_{m} = e_{th} = U_{2}Vu_{2} - U_{1}Vu_{1}$$

En absence d'échange calorifique

 $P_c = 0$ on aura:

$$h_{0s}$$
- $h_{0e} = U_2 V u_2$ - $U_1 V u_1$

On peut écrire: h₂=h_s h₁=h_e

Donc:
$$h_{02} - U_2 V u_2 = h_{01} - U_1 V u_1$$

En absence d'échange calorifique la quantité l=h₀–UV_u est constante.

I est appelée Rothalpie.

Ecole Nationale Supérieure d'Arts et Métiers de Meknès

Département Energétique

3. Degré de réaction

Nous avons exprimé l'énergie massique e_{th} en utilisant le premier principe. Cette énergie est composé de deux parties. La première est dite statique, la deuxième est dite dynamique.

$$e_{th} = U_2 V u_2 - U_1 V u_1 = \frac{p_{02} - p_{01}}{\rho} = \frac{p_2 - p_1}{\rho} + \frac{1}{2} (V_2^2 - V_1^2)$$

Énergie Énergie

statique Dynamique

cole Nationale Supérieure d'Arts et Métiers de Meknès

Département Energétique

3. Degré de réaction

Le degré de réaction est par définition le rapport entre la partie statique et l'énergie

totale:

$$\varepsilon = \frac{p_2 - p_1}{p_{02} - p_{01}}$$

On peut démontrer que:

$$\varepsilon = 1 - \frac{1}{2} \frac{(Vu_2 + Vu_1)(Vu_2 - Vu_1)}{U_2 Vu_2 - U_1 Vu_1}$$

Pour une pompe centrifuge $Vu_1=0$.

$$\varepsilon = 1 - \frac{Vu_2}{2U_2}$$

Le degré de réaction doit être le plus grand possible

Ecole Nationale Supérieure d'Arts et Métiers de Meknès

Département Energétique

3. Degré de réaction

La pompe doit être tournée dans le sens inverse d'inclinaison des aubes pour avoir un degré de réaction qui est grand

