

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS14120100604

FCC REPORT (WIFI)

Applicant: Verykool USA Inc

Address of Applicant: 3636 Nobel Drive, Suite 325, San Diego, CA 92122 USA

Equipment Under Test (EUT)

Product Name: Smart Phone

Model No.: s4002

Trade mark: verykool

FCC ID: WA6S4002

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 01 Dec., 2014

Date of Test: 01 Dec., to 08 Dec., 2014

Date of report issued: 10 Dec., 2014

Test Result: PASS*

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	10 Dec., 2014	Original

Prepared by: Date: 10 Dec., 2014

Report Clerk

Reviewed by: 10 Dec., 2014

Project Engineer

Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

3 Contents

			Page
1	COV	ER PAGE	1
2	VER:	SION	2
3	CON	TENTS	3
4	TEST	T SUMMARY	4
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
		GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	LABORATORY FACILITY	
	5.5	LABORATORY LOCATION	8
	5.6	TEST INSTRUMENTS LIST	
6	TEST	T RESULTS AND MEASUREMENT DATA	10
	6.1	ANTENNA REQUIREMENT:	10
	6.2	CONDUCTED EMISSION	11
		CONDUCTED OUTPUT POWER	
		OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	
	6.6.1		
	6.6.2		
	6.7	SPURIOUS EMISSION	
	6.7.1	00.00000 =00.00	
	6.7.2		
7	TEST	T SETUP PHOTO	68
8	EUT	CONSTRUCTIONAL DETAILS	69

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Verykool USA Inc
Address of Applicant:	3636 Nobel Drive, Suite 325, San Diego, CA 92122 USA
Manufacturer:	Verykool Wireless Technology Ltd.
Address of Manufacturer:	Room 802, Fangda Building, Science Park, Nanshan District, Shenzhen City, P.R.China

5.2 General Description of E.U.T.

Product Name:	Smart Phone
Model No.:	s4002
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	-0.6 dBi
AC adapter:	Input:100-240V AC,50/60Hz 0.15A Output:5V DC MAX 700mA
Power supply:	Rechargeable Li-ion Battery DC3.8V-1450mAh

Operation Frequency each of channel For 802.11b/g/n(H20)								
Channel Frequency Channel Frequency Channel Frequency Channel Frequency								
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz	
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz	
3	2422MHz	6	2437MHz	9	2452MHz			

Operation Frequency each of channel For 802.11n(H40)										
Channel	Channel Frequency Channel Frequency Channel Frequency Channel Frequency									
		4	2427MHz	7	2442MHz					
		5	2432MHz	8	2447MHz					
3	2422MHz	6	2437MHz	9	2452MHz					

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency		
The lowest channel	2412MHz		
The middle channel	2437MHz		
The Highest channel	2462MHz		

802.11n (H40)

Channel	Frequency		
The lowest channel	2422MHz		
The middle channel	2437MHz		
The Highest channel	2452MHz		

Report No: CCIS14120100604

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode	Keep the EUT in continuous transmitting with modulation			

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate	
802.11b	1Mbps	
802.11g	6Mbps	
802.11n(H20)	6.5Mbps	
802.11n(H40)	13.5Mbps	

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20) and 13.5 Mbps for 802.11n(H40). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

Report No: CCIS14120100604

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.6 Test Instruments list

Radia	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017		
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	04-19-2014	04-19-2015		
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	04-19-2014	04-19-2015		
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
5	Amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2014	04-01-2015		
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	06-09-2014	06-08-2015		
7	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2014	03-31-2015		
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	03-30-2014	03-29-2015		
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A		
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A		
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	04-19-2014	04-19-2015		
12	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	04-01-2014	03-31-2015		
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2014	03-31-2015		
14	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	05-29-2014	05-28-2015		
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-19-2014	04-19-2015		

Cond	Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	10-10-2012	10-09-2015	
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	04-10-2014	04-10-2015	
3	LISN	CHASE	MN2050D	CCIS0074	04-10-2014	04-10-2015	
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2014	03-31-2015	
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WiFi antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is -0.6 dBi.

6.2 Conducted Emission

Toot Paguiroment:	FCC Part 15 C Section 15.207	7			
Test Requirement:					
Test Method:	ANSI C63.4: 2003				
Test Frequency Range:	150 kHz to 30 MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9 kHz, VBW=30 kHz				
Limit:	Frequency range (MHz)	Limit (c			
	0.15-0.5	Quasi-peak 66 to 56*	Average 56 to 46*		
	0.13-0.3	56	46		
	5-30	60	50		
	* Decreases with the logarithm				
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. 				
Test setup:		ence Plane			
	Test table/Insulation pla Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization		er — AC power		
	Test table height=0.8m				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data

Neutral:

Trace: 9

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

: 1006RF Job No. EUT : Mobile Phone : s4002 Model

Test Mode : WIFI Mode
Power Rating : AC120V/60Hz
Environment : Temp: 23 C Huni:56% Atmos:101KPa

Test Engineer: Carey

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∇	<u>dB</u>		dBu₹	dBu∇	<u>ab</u>	
1	0.150	40.45	0.25	10.78	51.48	66.00	-14.52	QP
2	0.150	27.26	0.25	10.78	38.29	56.00	-17.71	Average
1 2 3	0.162	38.63	0.25	10.77	49.65	65.34	-15.69	QP
4	0.178	36.67	0.25	10.77	47.69	64.59	-16.90	QP
5	0.219	33.13	0.25	10.76	44.14	62.88	-18.74	QP
6	0.219	18.30	0.25	10.76	29.31	52.88	-23.57	Average
4 5 6 7 8 9	0.299	12.56	0.26	10.74	23.56	50.28	-26.72	Average
8	0.410	12.13	0.25	10.72	23.10	47.64	-24.54	Average
9	0.426	27.95	0.26	10.73	38.94	57.33	-18.39	QP
10	0.724	12.52	0.18	10.78	23.48	46.00	-22.52	Average
11	1.032	11.12	0.22	10.87	22.21	46.00	-23.79	Average
12	1.819	27.24	0.28	10.95	38.47	56.00	-17.53	QP

Line:

Site

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Condition

: 1006RF Job No. : Mobile Phone EUT Model : s4002 Test Mode : WIFI Mode

Power Rating: AC120V/60Hz Environment: Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: Carey

est	rugineer:		LICH	C-11-		TULUL	O		
	Freq	Read Level	LISN Factor		Level	Limit Line	Over Limit	Remark	
	MHz	dBu∜	<u>dB</u>		dBu₹	dBu₹	<u>dB</u>		-
1	0.150	40.05	0.27	10.78	51.10	66.00	-14.90	QP	
1 2 3 4 5 6 7 8 9	0.154	21.96	0.27	10.78	33.01	55.78	-22.77	Average	
3	0.162	13.90	0.27	10.77	24.94	55.34	-30.40	Average	
4	0.170	37.47	0.27	10.77	48.51	64.94	-16.43	QP	
5	0.174	13.18	0.27	10.77	24.22	54.77	-30.55	Average	
6	0.202	31.89	0.28	10.76	42.93	63.54	-20.61	QP	
7	0.219	30.84	0.28	10.76	41.88	62.88	-21.00	QP	
8	0.238	12.89	0.27	10.75	23.91	52.17	-28.26	Average	
9	0.270	28.83	0.27	10.75	39.85	61.12	-21.27	QP	
10	0.289	28.31	0.26	10.74	39.31	60.54	-21.23	QP	
11	0.289	13.00	0.26	10.74	24.00	50.54	-26.54	Average	
12	0.313	11.92	0.26	10.74	22.92	49.88	-26.96	Average	

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)			
Test Method:	ANSI C63.4:2003 and KDB558074			
Limit:	30dBm			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.6 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			
Remark:	Test method refer to KDB558074 (DTS Measure Guidance) section 8.2, option 1.			

Measurement Data

	Ma	aximum Conduct		5 1		
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBm)	Result
Lowest	16.78	14.51	14.54	10.88		
Middle	15.98	13.60	13.89	10.77	30.00	Pass
Highest	15.35	12.94	13.03	10.26		

Test plot as follows:

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H20)

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H40)

Lowest channel

Middle channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.4:2003 and KDB558074		
Limit:	>500kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

T (0)		6dB Emission		D 1		
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result
Lowest	9.54	16.51	17.80	36.71		
Middle	9.70	16.59	17.80	36.71	>500	Pass
Highest	9.54	16.51	17.80	36.71		

T (0)		99% Occupy		D 1		
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result
Lowest	12.91	16.59	17.64	36.07		
Middle	12.83	16.43	17.64	36.07	N/A	N/A
Highest	12.91	16.43	17.64	36.07		

Test plot as follows:

6dB EBW

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H20)

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H40)

Lowest channel

Middle channel

Highest channel

Page 23 of 69

99% **OBW**

Test mode: 802.11b

Lowest channel

Middle channel

Highest channel

Middle channel

Highest channel

Test mode: 802.11n(H20)

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H40)

Lowest channel

Middle channel

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)		
Test Method:	ANSI C63.4:2003 and KDB558074		
Limit:	8dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

			Power Spec				
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBm)	Result	
	Lowest	3.19	-3.51	-3.58	-8.64		
	Middle	2.53	-4.11	-4.34	-8.24	8.00	Pass
	Highest	1.97	-4.97	-5.50	-9.09		

Test plot as follows:

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H20)

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H40)

Lowest channel

Middle channel

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)			
Test Method:	ANSI C63.4:2003 and KDB558074			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:				
	Spectrum Analyzer			
	E.U.T			
	Non-Conducted Table			
	Ground Reference Plane			
Test Instruments:	Refer to section 5.6 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Test plot as follows:

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Lowest channel

Highest channel

Highest channel

Lowest channel

Highest channel

6.6.2 Radiated Emission Method

	0.0.2 Radiated Emission Method						
	est Requirement:	FCC Part 15 C Section 15.209 and 15.205					
Т	est Method:	ANSI C63.4: 2003					
Т	est Frequency Range:	2.3GHz to 2.5GHz					
Т	est site:	Measurement Distance: 3m					
F	Receiver setup:	Fraguenay	Dotootor	RBW	VBW	Remark	
		Frequency Detector Peak		1MHz	3MHz	Peak Value	
		Above 1GHz	Peak	1MHz	10Hz	Average Value	
L	imit:						
		Frequency		Limit (dBuV/m @3m)		Remark	
		Above 1GHz 1. The EUT was placed or		54.00		Average Value	
	est Procedure:			74.00 the top of a rotating table		Peak Value	
		 the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data 					
7	est setup:	Antenna Tower Horn Antenna Turn Table Amplifier					
Т	est Instruments:	Refer to section 5.6 for details					
	est mode:	Refer to section 5.3 for details					
Т	est results:	Passed					

802.11b

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 1006RF Condition

Pro EUT : Mobile Phone : s4002 Model Test mode : B-L mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey REMARK :

MAIA	, ;	Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
-	MHz	dBu∜	dB/m	dB	dB	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1	2390.000	23.09	27.58	5.67	0.00	56.34	74.00	-17.66	Peak
2	2390.000	11.87	27.58	5.67	0.00	45.12	54.00	-8.88	Average

Site Condition : 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

Pro : 1006RF

EUT : Mobile Phone Model : s4002
Test mode : B-L mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey REMARK :

CHENT	r :								
	Freq		Antenna Factor						Remark
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	<u>dB</u>	
1	2390.000	22.87	27.58	5.67	0.00	56.12	74.00	-17.88	Peak
2	2390.000	11.54	27.58	5.67	0.00	44.79	54.00	-9.21	Average

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 1006RF Condition

Pro EUT : Mobile Phone Model : s4002
Test mode : B-H mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Carey
RFMARK

REMARK

Congressi	Freq				Preamp Factor		Limit Line		Remark
	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500		777710 F 10 T		0.00 0.00				Peak Average

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 1006RF Site Condition

Pro EUT : Mobile Phone . s4002
Test mode : B-H mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Carey
REMARK :

201	Freq			a Cable r Loss			Limit Line		Remark	
	MHz	dBu₹	dB/m	<u>dB</u>	<u>d</u> B	$\overline{dB}\overline{uV/m}$	dBuV/m	<u>d</u> B		-
	2483.500 2483.500					56.85 44.69			Peak Average	

802.11g

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: 1006RF Pro : Mobile Phone

Model : s4002

Test mode : G-L mode

Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey

REMARK :

	Freq		Antenna Factor				Limit Line		
-	MHz	dBu₹	dB/m	₫B	dB	dBuV/m	$\overline{dBuV/m}$	<u>dB</u>	
	2390.000 2390.000			177,7 137,000			74.00 54.00		

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: 1006RF Pro : Mobile Phone

Model : s4002
Test mode : G-L mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Carey
REMARK :

			Antenna Factor				Limit Line		
-	MHz	dBu∜	dB/m	d₿	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000				0.00 0.00				

Test channel: Highest

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

Pro : 1006RF : Mobile Phone

Model : \$4002

Test mode : G-H mode

Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey

REMARK :

EMAKE	3		Ant enna							
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
5	MHz	dBu∀	─dB/m	<u>dB</u>	dB	$\overline{dBuV/m}$	dBu√/m	dB		
	2483.500 2483.500				0.00 0.00				Peak Average	

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: 1006RF : Mobile Phone Pro : Mobile Phone

Model : s4002

Test mode : G-H mode

Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey

REMARK :

			Antenna Factor				Limit Line	Over Limit	Remark	
-	MHz	dBu₹	dB/m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	dB		-
	2483.500 2483.500			0.765 - 9465	0.00 0.00				Peak Average	

802.11n (H20)

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 1006RF Condition

Pro : Mobile Phone EUT Model : \$4002 Test mode : N20-L mode

Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey

	Freq			a Cable r Loss						
-	MHz	dBuV	dB/m	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>		-
1 2	2390.000 2390.000				0.00 0.00				Peak Average	

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: 1006RF Pro : Mobile Phone EUT : s4002 Model Test mode : N20-L mode

Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: Carey REMARK :

1 2

307.9	Freq				Preamp Factor		Limit Line		Remark	
-	MHz	dBu∜	—dB/m	dB	dB	dBuV/m	dBu√/m	<u>dB</u>		-
	2390.000 2390.000						74.00 54.00		Peak Average	

Test channel: Highest Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 1006RF Condition

Pro : Mobile Phone EUT Model : s4002
Test mode : N20-H mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Carey

REMARK

	Freq		Antenna Factor					Remark
1	MHz	dBu∀	dB/m	dB	<u>dB</u>	dBuV/m	dBuV/m	
1 2	2483.500 2483.500							

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

Pro EUT

: 1006RF : Mobile Phone : s4002
Test mode : N20-H mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Carey
REMARK :

		Read	intenna Cable I		Preamo		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
-	MHz	dBu₹	dB/m	dB	dB	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>		
1	2483.500	28.41	27.52	5.70	0.00	61.63	74.00	-12.37	Peak	
2	2483.500	13.26	27.52	5.70	0.00	46.48	54.00	-7.52	Average	

802.11n (H40)

Test channel: Lowest

Horizontal:

Site Condition : 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 1006RF

Pro EUT : Mobile Phone Model : s4002
Test mode : N40-L mode
Power Rating : AC 120V/60Hz

Environment: Temp: 25.5°C Huni: 55%

Test Engineer: Carey

REMARK

			Antenna Factor						Remark	
	MHz	dBu₹	dB/m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>		
1 2	2390.000 2390.000				0.00 0.00					

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 1006RF Condition

Pro EUT : Mobile Phone : s4002 Model Test mode: N40-L mode
Power Rating: AC 120V/60Hz
Environment: Temp:25.5°C Huni:55%
Test Engineer: Carey

Elliar		Read	Ant enna	Cable	Preamo		Limit	Over	
	Freq		Factor						Remark
	MHz	dBu∀	dB/m	dB	dB	dBuV/m	dBuV/m	<u>dB</u>	
1	2390.000	24.82	27.58	5.67	0.00	58.07	74.00	-15.93	Peak
2	2390.000	13.30	27.58	5.67	0.00	46.55	54.00	-7.45	Average

Test channel: Highest Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: 1006RF Pro : Mobile Phone

Model : \$4002

Test mode : N40-H mode

Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey

REMARK :

	81		Antenna Factor				Limit Line	Over Limit	Remark	
-	MHz	dBu∜	─dB/m	dB	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>		1
1 2	2483.500 2483.500						74.00 54.00			

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 1006RF Condition

Pro : Mobile Phone EUT Model : s4002 Test mode : N40-H mode

Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: Carey REMARK :

N	K :									
		Read	Ant enna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
	MHz	dBu∀	dB/m	dB	B	dBuV/m	dBu√/m	dB		
	2483.500	23.49	27.52	5.70	0.00	56.71	74.00	-17.29	Peak	
	2483 500	11 63	27 52	E 70	0.00	44 95	E4 00	-0 15	Arrevege	

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)							
Test Method:	ANSI C63.4:2003 and KDB558074							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:								
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to section 5.6 for details							
Test mode:	Refer to section 5.3 for details							
Test results:	Passed							

Test plot as follows:

Date: 3.DEC.2014 19:00:08

30MHz~25GHz

Middle channel

Date: 3.DEC.2014 19:00:33

30MHz~25GHz

Highest channel

Date: 3.DEC.2014 19:00:59

30MHz~25GHz

Test mode: 802.11g Lowest channel

Date: 3.DEC.2014 19:01:32

30MHz~25GHz

Middle channel

Date: 3.DEC.2014 19:01:50

30MHz~25GHz

Highest channel

Date: 3.DEC.2014 19:02:08

30MHz~25GHz

Test mode: 802.11n(H20) Lowest channel

Date: 3.DEC.2014 19:02:48

30MHz~25GHz

Middle channel

Date: 3.DEC.2014 19:03:04

30MHz~25GHz

Page 57 of 69

Highest channel

Date: 3.DEC.2014 19:03:25

30MHz~25GHz

Test mode: 802.11n(H40) Lowest channel

Date: 3.DEC.2014 19:03:54

30MHz~25GHz

Middle channel

Date: 3.DEC.2014 19:04:15

30MHz~25GHz

Highest channel

Date: 3.DEC.2014 19:04:34

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205									
Test Method:	ANSI C63.4:200)3								
Test Frequency Range:	9KHz to 25GHz									
Test site:	Measurement D	istance: 3m								
Receiver setup:										
·	Frequency									
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value					
	Above 1GHz	Peak	1MHz	3MHz	Peak Value					
	7.0000 10112	Peak	1MHz	10Hz	Average Value					
Limit:	Frequency Limit (dBuV/m @3m) Remark									
	Freque			•	Remark					
	30MHz-8 88MHz-21		40.0 43.5		Quasi-peak Value Quasi-peak Value					
	216MHz-9		45.0 46.0		Quasi-peak Value Quasi-peak Value					
	960MHz-		54.0		Quasi-peak Value					
			54.0		Average Value					
	Above 1	GHz	74.0)	Peak Value					
Test Procedure:	the ground to determin 2. The EUT wantenna, wantenna, wantenna and the ground Both horizon make the normal and to find the normal and to determine the normal and to determine the normal and the	at a 3 meter come the position was set 3 meter which was mour that he ight is varied to determine the contal and vertice the assurement. If the rota table maximum read ceiver system and width with sion level of the would be reported to the position of the would be reported to the terminal than the rota table maximum read ceiver system and width with sion level of the would be reported to the rep	amber. The softhe highests away from the on the tried from one he maximum al polarizations ion, the EU a was turned was turned ing. was set to P Maximum He EUT in peasing could butted. Otherwise re-tested	table was rost radiation. the interfer op of a variate meter to for a value of the analysis of the analysis of the analysis of the analysis of the each of the cold Mode. The was arranged to the each of the each	e 0.8 meters above otated 360 degrees rence-receiving able-height antenna our meters above the field strength. Intenna are set to aged to its worst from 1 meter to 4 the ees to 360 degrees. Function and s 10dB lower than and the peak values ssions that did not the using peak, quasi-ported in a data					

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

: 1006RF Pro : Mobile Phone

Model : s4002

Test mode : WIFImode

Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey

REMARK :

EMAKK	:								
	Freq		Antenna Factor					Over Limit	Remark
-	MHz	−dBuV	— <u>d</u> B/m		<u>d</u> B	dBuV/m	dBuV/m	<u>d</u> B	
1	49.707	28.75	13.28	0.61	29.82	12.82	40.00	-27.18	QP
2	99.180	28.08	13.13	0.96	29.53	12.64	43.50	-30.86	QP
2	159.784	30.88	8.64	1.33	29.13	11.72	43.50	-31.78	QP
4	300.367	28.10	13.06	1.77	28.45	14.48	46.00	-31.52	QP
5	489.027	29.36	16.33	2.37	28.93	19.13	46.00	-26.87	QP
6	691.987	28, 87	18.78	2.89	28, 69	21.85	46.00	-24.15	QP

Site

3m chamber FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL Condition

Pro 1006RF

EUT Mobile Phone Model s4002Test mode : WIFImode

Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: Carey
REMARK

THEFTILE									
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
555	MHz	dBu∜	—dB/m	dB	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1	43.812	33.95	13.56	0.55	29.87	18.19	40.00	-21.81	QP
1 2 3	81.212	39.24	8.98	0.86	29.63	19.45	40.00	-20.55	QP
3	90.220	38.62	11.99	0.91	29.57	21.95	43.50	-21.55	QP
4	107.888	35.68	12.44	1.03	29.47	19.68	43.50	-23.82	QP
5	145.861	36.35	8.23	1.30	29.24	16.64	43.50	-26.86	QP
6	307.831	31.45	13.17	1.80	28.47	17.95	46.00	-28.05	QP

Above 1GHz

Test mode: 80	02.11b		Test channel: Lowest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	44.80	31.53	8.90	40.24	44.99	74.00	-29.01	Vertical	
4824.00	47.36	31.53	8.90	40.24	47.55	74.00	-26.45	Horizontal	
Test mode: 80	02.11b		Test channel: Lowest			Remark: Ave	erage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	34.55	31.53	8.90	40.24	34.74	54.00	-19.26	Vertical	
4824.00	37.12	31.53	8.90	40.24	37.31	54.00	-16.69	Horizontal	

Test mode: 80	02.11b		Test char	nnel: Middle		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	43.70	31.58	8.98	40.15	44.11	74.00	-29.89	Vertical
4874.00	43.00	31.58	8.98	40.15	43.41	74.00	-30.59	Horizontal
Test mode: 80	02.11b		Test channel: Middle			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	33.01	31.58	8.98	40.15	33.42	54.00	-20.58	Vertical
4874.00	32.17	31.58	8.98	40.15	32.58	54.00	-21.42	Horizontal

Test mode: 8	02.11b		Test char	nnel: Highest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	41.86	31.69	9.08	40.03	42.60	74.00	-31.40	Vertical
4924.00	42.79	31.69	9.08	40.03	43.53	74.00	-30.47	Horizontal
Test mode: 80	02.11b		Test channel: Highest			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	31.61	31.69	9.08	40.03	32.35	54.00	-21.65	Vertical
4924.00	32.62	31.69	9.08	40.03	33.36	54.00	-20.64	Horizontal

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "--", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80)2.11g		Test char	nel: Lowest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	43.66	31.53	8.90	40.24	43.85	74.00	-30.15	Vertical
4824.00	43.05	31.53	8.90	40.24	43.24	74.00	-30.76	Horizontal
Test mode: 80)2.11g		Test channel: Lowest			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	33.35	31.53	8.90	40.24	33.54	54.00	-20.46	Vertical
4824.00	33.15	31.53	8.90	40.24	33.34	54.00	-20.66	Horizontal

Test mode: 80	02.11g		Test char	nel: Middle		Remark: Pea		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	43.44	31.58	8.98	40.15	43.85	74.00	-30.15	Vertical
4874.00	43.50	31.58	8.98	40.15	43.91	74.00	-30.09	Horizontal
Test mode: 80	02.11g		Test char	nel: Middle		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	33.84	31.58	8.98	40.15	34.25	54.00	-19.75	Vertical
4874.00	33.27	31.58	8.98	40.15	33.68	54.00	-20.32	Horizontal

Test mode: 8	02.11g		Test char	nnel: Highest		Remark: Pea		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	43.53	31.69	9.08	40.03	44.27	74.00	-29.73	Vertical
4924.00	42.53	31.69	9.08	40.03	43.27	74.00	-30.73	Horizontal
Test mode: 8	02.11g		Test char	nnel: Highest		Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	33.18	31.69	9.08	40.03	33.92	54.00	-20.08	Vertical
4924.00	32.66	31.69	9.08	40.03	33.40	54.00	-20.60	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "--", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	02.11n(H20)		Test char	nnel: Lowest		Remark: Pea		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	44.26	31.53	8.90	40.24	44.45	74.00	-29.55	Vertical
4824.00	43.76	31.53	8.90	40.24	43.95	74.00	-30.05	Horizontal
Test mode: 80	02.11n(H20)		Test char	nnel: Lowest		Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	34.16	31.53	8.90	40.24	34.35	54.00	-19.65	Vertical
4824.00	33.50	31.53	8.90	40.24	33.69	54.00	-20.31	Horizontal

Test mode: 8	Test mode: 802.11n(H20)			Test channel: Middle			Remark: Peak		
Frequency	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Polar.	
(MHz)	(dBuV)	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		
4874.00	44.13	31.58	8.98	40.15	44.54	74.00	-29.46	Vertical	
4874.00	43.29	31.58	8.98	40.15	43.70	74.00	-30.30	Horizontal	
Test mode: 8	02.11n(H20)		Test char	nnel: Middle		Remark: Average			
Frequency	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Polar.	
(MHz)	(dBuV)	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		
4874.00	34.71	31.58	8.98	40.15	35.12	54.00	-18.88	Vertical	
						54.00	-19.83	Horizontal	

Test mode: 80	est mode: 802.11n(H20)			Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	45.10	31.69	9.08	40.03	45.84	74.00	-28.16	Vertical	
4924.00	44.38	31.69	9.08	40.03	45.12	74.00	-28.88	Horizontal	
Test mode: 80	02.11n(H20)		Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
	Level	Factor	Loss	Factor			Limit	Polar.	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "--", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	Test mode: 802.11n(H40)			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4844.00	43.99	31.53	8.90	40.24	44.18	74.00	-29.82	Vertical	
4844.00	44.45	31.53	8.90	40.24	44.64	74.00	-29.36	Horizontal	
Test mode: 80	02.11n(H40)		Test char	nnel: Lowest		Remark: Average			
Frequency	Read	Antenna	Cable	Preamp			Over		
(MHz)	Level (dBuV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Limit (dB)	Polar.	
			Loss	Factor			Limit	Polar. Vertical	

Test mode: 80	Test mode: 802.11n(H40)			Test channel: Middle			Remark: Peak		
Frequency	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Polar.	
(MHz)	(dBuV)	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	1 01411	
4874.00	44.21	31.58	8.98	40.15	44.62	74.00	-29.38	Vertical	
4874.00	43.87	31.58	8.98	40.15	44.28	74.00	-29.72	Horizontal	
Test mode: 80	02.11n(H40)		Test char	nnel: Middle		Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	34.36	31.58	8.98	40.15	34.77	54.00	-19.23	Vertical	
4874.00	33.98	31.58	8.98	40.15	34.39	54.00	-19.61	Horizontal	

Test mode: 80	Test mode: 802.11n(H40)			Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4904.00	43.05	31.69	9.08	40.03	43.79	74.00	-30.21	Vertical	
4904.00	43.73	31.69	9.08	40.03	44.47	74.00	-29.53	Horizontal	
Test mode: 80	02.11n(H40)		Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4904.00	33.94	31.69	9.08	40.03	34.68	54.00	-19.32	Vertical	
4904.00	33.34	01.00	0.00						

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "--", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.