K. Gibert (1,2)

(1)Department of Statistics and Operation Research

(2) Knowledge Engineering and Machine Learning group Universitat Politècnica de Catalunya, Barcelona

> Master Oficial en Enginyeria Informàtica Universitat Politècnica de Catalunya

Find the isomorph transformation from original space

keeps the adjacency relationships among variables

- Results expressed in a ficticious space
- Might produce interpretation problems
- Methods
 - PCA (Principal components analysis)
 - Simple correspondence analysis
 - Multiple correspondence analysis

- Principal Components Analysis
 - Only numerical variables
 - Find the most informative projection planes (factorial planes)

Example "Copas"

Factorial Plane: 2 factorial axes

Factorial axis: Linear combination of original variables

Purpose:

 To project the cloud of points upon a subspace (plane) retaining as much original cloud information.

(see video)

Course DM: Multivariate Visualisation. T. Aluja

•Find the most informative projection planes of data cloud (factorial planes)

- Output: K factors rotating original X variables
- Factors: Linear combinations of original variables

Several uses:

 As an associative data mining method: analyze relationships among variables
 Project variables and modalities and find associations

Microarray data: 64 cancers 6830 gen cromotografy

Microarray data: 64 cancers 6830 gen cromotografy

Spanish inquisition 1567-1600

sentences & crimes

Spanish inquisition 1567-1600

sentences & crimes

Spanish inquisition 1564-1600

sentences & crimes

Monitoring of the inner temperatures of Lascaux cave (France)

- Output: K factors rotating original X variables
- Factors: Linear combinations of original variables

Several uses:

- As an associative data mining method to analyze relationships among variables
 Project variables and modalities and find associations
- As a preprocessing method for elicitation of latent variables
 Project active and illustrative variables/individuals on first/second factorial plane and interpret factors (find latent variables)

Visualisation of international cities according their salaries. USB 1994.

Visualisation of international cities according their salaries. USB 1994.

Visualization of the table BCN Quarters x Profession of inhabitants

Visualization of the table BCN Quarters x Profession of inhabitants

Visualization of the table BCN Quarters x Profession of inhabitants

- Output: K factors rotating original X variables
- Factors: Linear combinations of original variables

Several uses:

- As an associative data mining method to analyze relationships among variables
 Project variables and modalities and find associations
- As a preprocessing method for elicitation of latent variables
 Project active and illustrative variables/individuals on first/second factorial plan and interpret factors (find latent variables)
- -As a preprocessing method for multidimensionality reduction

Data	Factorial Method
Continuous variables	PCA - Principal Component Analysis
Count variables	CA - (Simple) Correspondence Analysis
Categorical variables	MCA - Multiple Correspondence Analysis

Principal Components Analysis

- Only numerical variables
- Find the most informative projection planes (factorial planes, maximize projected inertia)

Given <X,M,D>

- A data matrix X (nxp) centered
- A matrix of individuals weights D (nxn)
- Assume euclidean metrics to compare individuals (M= Ip)

Matrix M^{1/2} X'DXM ^{1/2}

- Product of data with the two metrics
- Simetric,
- Semidefinite
- Catches relationships and opositions of data

Principal Components Analysis

M^{1/2}X'DXM^{1/2} catches well the data structures

$$Rang(M^{\frac{1}{2}}X'DXM^{\frac{1}{2}}) = r, r = rang(X)$$
 r pos

r positive vaps and p-r null vaps

Trace(
$$M^{\frac{1}{2}}X'DXM^{\frac{1}{2}}$$
)= $\sum_{\alpha=1}^{r}\lambda_{\alpha}$

 $(\lambda_{\alpha}$, the r non null vaps)

$$M = I_D: M^{1/2}X'DXM^{1/2} = X'DX$$

X centered and D diagonal: X'DX= Cov(X)

Build variances and covariances matrix: X'DX

Diagonalize X'DX (i.e. solving the equation) X'DXu= λu provides eigen values λ_{α} and

eigenvectors $u_{\alpha} = (u_{\alpha 1} u_{\alpha p})$

Principal Components Analysis

```
Diagonalize X'DX (i.e. solving the equation ) X'DXu= \lambda_u (1) \det(X'DX-\lambda)=0 (find roots of characteristic polynomial) provides eigen values \lambda_{\alpha} (\alpha=1:r, r=rang(X)) substituting in (1) provides eigenvectors u_{\alpha}=(u_{\alpha 1}....u_{\alpha n})
```

 $u^{-1}X'DXu = \lambda$ is a diagonal matrix

(X'DX becomes diagonal when pre/post multiplied by u)

 $u^{-1}=u'$ in orthonormal basis: $u'X'DXu=\lambda$ X'DX decompose in a product by a diagonal matrix X'DX = $u\lambda u'$

 $X'DX = u\lambda u' = u\lambda^{1/2}\lambda^{1/2} u' = u\lambda^{1/2} \mathbb{I}\lambda^{1/2} u' = u\lambda^{1/2} u'u \lambda^{1/2} u' = A^{1/2}A^{1/2}$ X'DX decompose in a product of something by itself (A square root)

 $Trace(X'DX)=Trace(\lambda)$ (property of diagonalization)

Given <X,M,D>

Diagonalize covariances matrix (with centered data X'DX)

Get r eigen values λ_{α} and sort decreasingly

$$\{\lambda_{\alpha}\}_{\alpha=1:r}$$
 $\lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq \ldots \geq \lambda_{r}$

Corresponding eigenvectors $u_{\alpha} = (u_{\alpha 1} \dots u_{\alpha p})$

$$|u_{\alpha}|=1$$

 $u_{\alpha}u_{\alpha'}=0$
 $\{u_{\alpha}\}_{\alpha=1:r}$ orthonormal base for individuals

The subspace generated by $\{u_{\alpha}\}_{\alpha=1:r}$ is the same as the subspace generated by the rows of X

Given <X,M,D>

In general *Diagonalize M^{1/2}X'DXM^{1/2}*)

Get r eigen values λ_{α} and sort decreasingly (vaps are conserved!!!!)

$$\{\lambda_{\alpha}\}_{\alpha=1:r}$$
 $\lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \leq \ldots \geq \lambda_{r}$

Corresponding eigenvectors $u^*_{\alpha} = (u^*_{\alpha 1}....u^*_{\alpha p})^{n}$

by algebraic properties, u^*_{α} can be found from u^*

$$u^*_{\alpha} = M^{-1/2}u_{\alpha}$$

 $\{u^*_{\alpha}\}_{\alpha=1:r}$ orthonormal base for individuals

$$|u^*_{\alpha}|_{M}=1: u^{*'}_{\alpha}Mu^*_{\alpha}=u'_{\alpha}M^{-\frac{1}{2}}MM^{-\frac{1}{2}}u_{\alpha}=1$$

 $u^*_{\alpha}Mu^*_{\alpha'}=0: u^*_{\alpha}Mu^*_{\alpha'}=u'_{\alpha}M^{-\frac{1}{2}}MM^{-\frac{1}{2}}u_{\alpha'}=0$

Subspace generated by $\{u^*_{\alpha}\}_{\alpha=1:r}$ = Subspace generated by X rows

Given <X,M,D>

Diagonalize Covariance matrix X'DX

Get r eigen values λ_{α} and sort decreasingly

$$\{\lambda_{\alpha}\}_{\alpha=1:r}$$
 $\lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq \ldots \geq \lambda_{r}$

Corresponding eigenvectors $u_{\alpha} = (u_{\alpha 1} u_{\alpha p})$

for
$$M = \mathbb{I}_p : u^*_{\alpha} = u_{\alpha}$$
; for $M \neq \mathbb{I}_p : u^*_{\alpha} = M^{-1/2} u_{\alpha}$

 $\{u^*_{\alpha}\}_{\alpha=1:r}$ orthonormal base for individuals

 u^*_{α} are the principal factors of X : good rotation directions

 $U^*=([u^*_1][u^*_2]....[u^*_r])$ is the basis for the projection space

Centering X

(0,0,0)

Given <X,M,D>

Diagonalize Covariance matrix X'DX

Get r eigen values λ_{α} and sort decreasingly

$$\{\lambda_{\alpha}\}_{\alpha=1:r}$$
 $\lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq \ldots \geq \lambda_{r}$

Corresponding eigenvectors $u_{\alpha} = (u_{\alpha 1} u_{\alpha p})^{\prime}$

for
$$M = \mathbb{I}_p : u^*_{\alpha} = u_{\alpha}$$
; for $M \neq \mathbb{I}_p : u^*_{\alpha} = M^{-1/2} u_{\alpha}$

 $\{u^*_{\alpha}\}_{\alpha=1:r}$ orthonormal base for individuals

 u^*_{α} are the principal factors of X : good rotation directions

 $U^*=([u^*_1][u^*_2]....[u^*_r])$ is the basis for the projection space

How is i expressed in rotated space?

Given <X,M,D>

Can we find coordinates in rotated space from original ones?

The projection matrix $P = U^*_k U^{*'}_k M$

Projection of a single individual: $Pr(i) = U_k^* U_k^{*\prime} M x_i$

Projection of all individuals: $Pr(X) = U_k^* U_k^{*'} M X'$

Get a matrix with projections in ROWS: $Pr(X)' = XMU^*_k U^{*'}_k$

Projections expressed in original vectorial space

The best possible projection over k dimensions

Given <X,M,D>

Matrix $XMU^*_k U^{*'}_k$ provides the best possible k-projection of X

Silver-Smidth norm:
$$|X|^2_{MD} = \sum_{\alpha=1}^r \lambda_{\alpha}$$

Measures variability, information contained in X

Property:
$$||XMU^*_{k}U^{*'}_{k}||^2_{MD} = ||X||^2_{MD}$$

Any other k-projection of X

- Provides smallest values of Silver-Smidth norm
- Has less variability
- Keeps smallest information from X

Given <X,M,D>

Diagonalize covariances matrix (with centered data)

```
eigenvectors u_{\alpha} = (u_{\alpha 1} .... u_{\alpha p}) (direction of factor \alpha, \alpha = 1:p)
u_{p \alpha} : \text{contribution of variable p to the factor } \alpha
(u_{1} ..... u_{k}) \text{ ortonormal}
```

eigen values λ_k (quantity of information converved by factor k) (Projected inertia)

$$\{\lambda_{\alpha}\}_{\alpha=1:r}$$
 $\lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \leq \ldots \geq \lambda_{r}$

 $\Sigma_{\forall \alpha} \lambda_{\alpha}$ = Total inertia of X (information in data)

Given <X,M,D>

eigenvectors $u_{\alpha} = (u_{1\alpha} u_{p\alpha})$ (direction of factor k) $u_{p\alpha}$: contribution of variable p to the factor α

eigen values λ_{α} (quantity of information converved by factor α) (Projected inertia)

$$\lambda_1 \geq \lambda_2 \geq \lambda_3 \geq \ldots \geq \lambda_r$$

 $\Sigma_{\forall \alpha}$ λ_{α} = Total inertia of X (information of data)

Given <X,M,D>

$$i = (x_{1i}, ..., x_{pi})$$

Points in projected space: $i = (\Psi_{1i}, ..., \Psi_{\alpha i}, ..., \Psi_{ri})$ (often r=p)

$$\Psi_{\alpha i} = x_{1i} u_{1\alpha} + x_{2i} u_{2\alpha} + \dots + x_{pi} u_{p\alpha} \qquad \qquad \psi_{\alpha} = X u_{\alpha}$$

Then
$$\Psi'_{\alpha}$$
 $D\Psi_{\alpha} = \lambda_{\alpha}$

Illustrative points z also projectable

$$\Psi_{\alpha z} = x_{1z} u_{1\alpha} + x_{2z} u_{2\alpha} + \dots + x_{pz} u_{p\alpha}$$

Factors are linear combinations of original variables

Original variables project as VECTORS over factorial space angle and lenght important

- Principal Components Analysis
 - Output: K factors rotating original X variables
 - Factors: Linear combinations of original variables

Several uses:

- As an associative data mining method to analyze relationships among variables
 Project variables and modalities and find associations
- As a preprocessing method for elicitation of latent variables
 Project active and illustrative variables/individuals on first/second factorial plane and interpret factors (find latent variables)
- -As a preprocessing method for multidimensionality reduction

Select more informative factors $\kappa << p$ (accumulate 80% inertia)

Reduce data matrix to selected factors

Alternative, keep variables mainly contributing to selected factors

(smaller angles with factorial axis)

©K. Gibert

Given <X,M,D>

Diagonalize Covariance matrix X'DX

Get r eigen values λ_{α} and sort decreasingly

$$\{\lambda_{\alpha}\}_{\alpha=1:r}$$
 $\lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq \ldots \geq \lambda_{r}$

Corresponding eigenvectors $u_{\alpha} = (u_{\alpha 1} u_{\alpha p})$

for
$$M = \mathbb{I}_p : u^*_{\alpha} = u_{\alpha}$$
; for $M \neq \mathbb{I}_p : u^*_{\alpha} = M^{-1/2} u_{\alpha}$

 $\{u^*_{\alpha}\}_{\alpha=1:r}$ orthonormal base for individuals

 u^*_{α} are the principal factors of X : good rotation directions

 $U^*=([u^*_1][u^*_2]....[u^*_r])$ is the basis for the projection space

 $U_k^*=([u_1^*][u_2^*]....[u_k^*])$ is the basis for projecting in first k dimensions(k<r)

•Find the most informative projection planes of data cloud (factorial planes)

•Introduce qualitative information (projecting modalities)

Visualisation of international cities according their salaries. USB 1994.

Visualisation of international cities according their salaries. USB 1994.

