

UCB008 - APPLIED CHEMISTRY

Molecular Spectroscopy Series Lecture - III

UV-Visible Spectroscopy – Electronic Transitions

by

Prof. Ranjana Prakash

School of Chemistry and Biochemistry
Thapar Institute of Engineering and Technology
Patiala -147004, India

Ranjana Prakash

Learning Outcomes

At the end of this session participants should be able to:

• Visualize and illustrate the types of electronic transitions

UV-Visible Spectroscopy (or) Electronic Spectroscopy

UV-Visible Spectroscopy (or) Electronic Spectroscopy

EM Radiations of UV-visible region

compound having multiple bond

Absorption of radiation

Transition of valence electron from ground to excited state

Covalent bonds in organic molecule

- Compounds containing hetero atom have nonbonding electrons
- A electronic transition is always from bonding molecular orbital (BMO) to anti-bonding molecular orbital (ABMO)

 Ranjana Prakash

Types of Electronic Transitions

Energy Requirement for Electronic Transitions

$$\sigma - \sigma^* > n - \sigma^* \simeq \pi - \pi^* > n - \pi^*$$

~150nm ~170-190nm 280nm

 σ - σ * - saturated hydrocarbons e.g. ethane

n-**σ*** - saturated compounds containing hetro atom having unshared pair of electrons. e.g. saturated halides, alcohols, ethers, aldehydes, amines, etc.

 π – π * - compounds having double or triple bond and aromatics e.g. butadiene, benzene, etc.

 $n-\pi*$ - unsaturated compounds containing hetro atom having unshared pair of electrons e.g. carboxylic acids, aldehydes, ketones, etc.

Electronic Transitions

- An allowed electronic transition involves orbitals having same symmetry e.g., $\sigma \rightarrow \sigma^*$ and $\pi \rightarrow \pi^*$ transitions.
- Allowed transitions have higher extinction coefficient (ϵ_{max}) values of greater than 10⁴.
 - e.g., $\pi \rightarrow \pi^*$ transition of 1-3 butadiene absorbs at 270 nm (ϵ_{max} : 21000)
- Transitions between orbitals having different symmetry are classified as symmetry forbidden transitions.
 - e.g., $\sigma \to \pi^*$ and $\pi \to \sigma^*$ transitions are possible only theoretically .
- The forbidden transition namely $n \rightarrow \pi^*$ have very low extinction coefficient (ϵ_{max}) values.
 - e.g., $n \rightarrow \pi^*$ transition of carbonyl compounds, at 280 nm, has ε_{max} 15.

Chromophore	Example	Excitation	λ _{max} (nm)	3
C=C	Ethene	$\pi \rightarrow \pi *$	171	15,000
C≡C	1-Hexyne	$\pi \rightarrow \pi *$	180	10,000
C=O	Ethanal	$n \rightarrow \pi *$ $\pi \rightarrow \pi *$	290 180	15 10,000
N=O	Nitromethane	$n \rightarrow \pi *$ $\pi \rightarrow \pi *$	275 200	17 5,000
C-X X=Br; X=I	Methyl bromide Methyl lodide	n→σ* n→σ*	205 255	200 360

σ – σ * transitions

- σ−σ* requires photons of 150 nm.
- Conventional UV-visible spectrophotometer works in the range of 200 nm to 760 nm.
- This instrument cannot be used below 200 nm as oxygen in air strongly absorbs in far UV region.
- Thus, σ–σ* transitions cannot be observed using conventional UV-visible spectrophotometer.

σ−σ* transitions

- Analysis in far UV region requires vacuum ultraviolet spectrophotometer which is cost intensive.
- Vacuum UV spectrophotometer is used mainly for determining bond energies.
- This equipment is not used for organic structural determination.

In the next session.....

Terms used in the UV-visible spectroscopy