$I_1 = A_{21}U_2 + A_{22} - I_2^{10}$ $A_{21} = \begin{bmatrix} I_1 \\ I_2 \end{bmatrix}$ $I_{22} = 0$

6. Pentru circuitul electric cuadripolar cu schema din figură, să se determine parametrul A_{21} .

7. Pentru filtrul trece - bandă, a cărui schemă este reprezentată în figură, să se determine frecvențele de tăiere.

8. La bornele circuitului RLC serie, reprezentat în figură, se aplică tensiunea nesinusoidală $u_1 = 120\sqrt{2}\sin\omega\,t + 80\sqrt{2}\sin\omega\,t \big[V\big]$. Să se determine valoarea efectivă a tensiunii u_2 la bornele bobinei. Se cunosc:

$$R = 4\Omega$$
; $\omega L = 4\Omega$; $\frac{1}{\omega C} = 8\Omega$.

9. Circuitul cu schema din figură funcționează cu întrerupătorul K deschis. La momentul t=0 se închide întrerupătorul K. Să se determine variația în timp a curentului i_L pentru $t \ge 0$. Se cunosc:

$$U_e = 20V; R = 2\Omega; L = 0.2H.$$

1. Cunoscând tensiunea de 8V la bornele rezistorului de 1Ω , să se determine curentul I_{S} generat de sursa ideală de

2. Să se stabilească parametrii generatorului echivalent de tensiune față de bornele a și b ale rezistorului de .

3. Să se calculeze curenții din laturile circuitului și să se verifice conservarea puterilor.

4.Să se determine impedanța Z astfel încât puterea activă transferată în ea să fie maximă.

5. Să se calculeze capacitatea (C) condensatorului, astfel încât circuitul cu schema reprezentată în figură să fie rezonant. Date numerice:. $\omega = 5000~rad/s$, L = 20~mH, $R = 100\Omega$.

6. Pentru circuitul cuadripolar cu schema din figură, să se determine parametrii impedanță \underline{Z}

7. Să se determine banda de trecere pentru filtrul a cărui schemă este reprezentată în C

8. Se consideră semnalul nesinusoidal reprezentat în figură. Să se calculeze valoarea efectivă a tensiunii nesinusoidale.

9. Circuitul cu schema din figură funcționează cu întrerupătorul K închis. La momentul t=0 se deschide întrerupătorul. Să se determine variația în timp a tensiunii pe condensator pentru $t \ge 0$. Se cunosc: $U_e = 30V$; $R = 2k\Omega$; $C = 1\mu F$.

1. Să se calculeze puterea disipată în rezistorul de $\delta \Omega$.

2. Să se determine parametrii generatorului echivalent de tensiune față de bornele rezistorului de $3\Omega(U_{ab_a},R_{ab_a})$.

3. Să se calculeze curenții I_{θ}, I_{I}, I_{2} și să se verifice conservarea puterilor.

4. Să se determine impedanța \underline{Z} astfel încât puterea activă transferată în ea să fie maximă.

5. Un circuit RLC serie are $R=X_L=2X_C$. Pentru a ajunge la rezonanță frecvența trebuie: a) mărită de 4 ori; b) mărită de $\sqrt{2}$ ori; c) micșorată de 4 ori; d) micșorată de $\sqrt{2}$ ori; e) micșorată de 2 ori.

Stabiliți varianta corectă.

6. Pentru circuitul cuadripolar cu schema din figură să se determine parametrii impedanță \underline{Z} .

7. Să se determine banda de trecere pentru filtrul a cărui schemă este reprezentată în figură.

8. La bornele circuitului reprezentat în figură se aplică tensiunea nesinusoidală $u_1 = 100\sqrt{2}\sin\omega t + 200\sqrt{2}\sin3\omega t$ [V]. Să se determine valoarea efectivă a tensiunii u_2 de la bornele bobinei. Date numerice: $R = 10\Omega$; $\omega L = 5\Omega$; $\frac{1}{\omega C} = 15\Omega$.

9. Circuitul cu schema din figură funcționează cu întrerupătorul K deschis. La momentul t=0 se inchide întrerupătorul. Să se determine variația în timp a curentului i pentru $t \ge 0$. Valori numerice: $U_e = 12V$; $R = 4\Omega$; L = 0.1H.

1. Pentru circuitul cu schema din figură, să se calculeze rezistența echivalentă față de bornele A și B.

2. Să se determine parametrii generatorului echivalent de tensiune față de bornele rezistorului de $10\,\Omega\, \left(U_{ab_0},\,R_{ab_p}\right)$.

3. Să se calculeze curenții din laturile circuitului și să se verifice conservarea puterilor.

4. Să se determine impedanța \underline{Z} astfel încât puterea activă transferată în ea să fie maximă.

5. Să se calculeze pulsația de rezonanță pentru circuitul a cărui schemă este reprezentată în figura de mai jos. Date numerice: $R = 100 \, \Omega$; $L = 10 \, mH$; $C = 10 \, \mu F$.

6. Pentru circuitul cuadripolar cu schema din figură, să se determine parametrii impedanță \underline{Z}

7. Să se determine banda de trecere pentru filtrul cu schema din figură.

8. Se consideră semnalul periodic nesinusoidal reprezentat în figură. Să se calculeze valoarea efectivă a tensiunii nesinusoidale.

9. Circuitul cu schema din figură funcționează în regim staționar cu întrerupătorul K închis. La momentul t=0 se deschide întrerupătorul. Să se determine variația în timp a curentului prin bobină pentru $t \ge 0$. Date numerice: $U_e = 30V$; $R = 2.5 \Omega$; $L = 10 \, mH$.

1. Pentru circuitul cu schema din figură, să se calculeze rezistența echivalentă față de bornele A și B.

2. Să se determine parametrii generatorului echivalent de tensiune față de bornele rezistorului de 4,8 Ω (U_{abo}, R_{ab}) .

3. Să se calculeze curenții din laturile circuitului și să se verifice conservarea puterilor.

4. Să se determine impedanța \underline{Z} astfel încât puterea activă transferată în ea să fie maximă.

5. Un circuit RLC serie este la rezonanță. Se reduc la jumătate U, R, C și ω . Cum trebuie modificată inductivitatea L a bobinei pentru a readuce circuitul la rezonanță?

1. Să se calculeze rezistența echivalentă față de bornele a și b .

2. Să se calculeze curenții prin laturile circuitului a cărui schemă este reprezentată în fig.de mai jos:

3. Să se calculeze impedanța echivalentă față de bornele a și b. Se cunosc:

$$R = 10 \Omega; L = \frac{100}{\pi} mH; C = \frac{1}{\pi} mF; f = 50 Hz.$$

4.Să se calculeze curenții prin laturile circuitului și să se verifice conservarea puterilor.

5. Un circuit RLC serie este alimentat de la o sursă de tensiune cu frecvență variabilă . Inițial, corespunzător pulsației ω , între parametrii elementelor de circuit are loc relația $R=\omega L=2\frac{1}{\omega C}$ și prin circuit se stabilește curentul I. Ulterior, pentru pulsația ω_o , circuitul devine rezonant și este parcurs de curentul I_o . Să se determine rapoartele $\frac{\omega_o}{\omega}$ și $\frac{I_o}{I}$.

6. Să se stabilească parametrii generatorului echivalent de tensiune față de bornele a și b ale rezistorului de 2Ω .

7. Să se determine banda de trecere pentru filtrul a cărui schemă este reprezentată în figură:

8. Se consideră semnalul periodic nesinusoidal reprezentat în figură. Să se calculeze valoarea efectivă a tensiunii nesinusoidale.

9. Circuitul cu schema din figură funcționează cu întrerupătorul K deschis. La momentul t=0 se închide întrerupătorul K. Să se determine variația în timp a tensiunii pe condensator $u_C(t)$ pentru $t \ge 0$. Se cunosc: $U_e = 36~V$; $R = 3~\Omega$; $C = 5~\mu F$.

6. Pentru circuitul cuadripolar cu schema din figură, să se determine parametrii impedanță \underline{Z} .

7. Să se determine banda de trecere pentru filtrul a cărui schemă este reprezentată în figură.

8. La bornele circuitului reprezentat în figură se aplică tensiunea nesinusoidală $u_1 = 100\sqrt{2}\sin\omega t + 200\sqrt{2}\sin3\omega t [V]$. Să se determine valoarea efectivă a tensiunii u_2 de pe armăturile condensatorului. Date numerice: $R = 10 \Omega$; $\omega L = 5\Omega$; $\frac{1}{\omega C} = 15 \Omega$.

9. Circuitul cu schema din figură funcționează în regim staționar cu întrerupătorul K deschis. La momentul t=0 se închide întrerupătorul. Să se determine variația în timp a tensiunii pe condensator pentru $t \ge 0$. Date numerice: $U_e = 15V$; $R = 5\Omega$; $C = 100 \ \mu F$.

1. Cunoscând puterea de 32W disipată în rezistorul de 2Ω , să se calculeze curentul I_s injectat de sursa ideală de curent.

2. Să se determine parametrii generatorului echivalent de tensiune față de bornele rezistorului de $10 \Omega (U_{ab_a}, R_{ab_n})$.

3. Să se calculeze curenții din laturile circuitului și să se verifice conservarea puterilor.

4. Să se determine impedanța \underline{Z} astfel încât puterea activă transferată să fie maximă.

5. Să se calculeze pulsația de rezonanță pentru circuitul a cărui schemă este reprezentată în figura de mai jos. Date numerice: $R = 100 \Omega$; $L = 20 \, mH$; $C = 1 \, \mu F$.

