Ondulatória

Fenômenos Ondulatórios

Principais fenômenos ondulatórios

- Reflexão
- Refração
- Difração
- Interferência
- Polarização (somente em ondas transversais)

Reflexão

Sempre que atinge um obstáculo ou uma fronteira de separação entre dois meios, uma onda pode, total ou parcialmente, retornar para o meio em que estava se propagando. Esse fenômeno é denominado **reflexão**.

i = r

(lei de reflexão das ondas)

Na reflexão: v, λ e f permanecem **constantes**.

Refração

passagem da onda de um meio para outro, no qual sua velocidade se altera.

Dependendo de como incide na fronteira de separação dos dois meios, a onda pode sofrer um **desvio de sua direção** de propagação.

Comportamento de v, \(\lambda\) e f na refração

Meio 1	Meio 2
\mathbf{v}_1	\mathbf{v}_2
λ_1	λ_2
\mathbf{f}_1	$\mathbf{f_2}$

A frequência de uma onda depende apenas da fonte, portanto, na refração **f permanece constante.**

$$f_1 = f_2 = f$$

$$v_1 = \lambda_1. f \implies f = \frac{v_1}{\lambda_1}$$

$$v_2 = \lambda_2. f \implies f = \frac{v_2}{\lambda_2}$$

$$v_2 = \lambda_2$$
 f \Longrightarrow $f = \frac{v_2}{\lambda_2}$

$$\frac{\mathbf{v}_1}{\lambda_1} = \frac{\mathbf{v}_2}{\lambda_2}$$

 $\frac{v_1}{\lambda_1} = \frac{v_2}{\lambda_2}$ "Na retração, a velocidade o comprimento de onda variam proporcionalmente." "Na refração, a velocidade e o

Refração luminosa

O **índice de refração absoluto** *n* de um meio, para determinada luz monocromática, é a razão entre a velocidade da luz no vácuo (c) e a velocidade da luz no meio em questão (v):

$$n = \frac{c}{v}$$

Leis da refração

1^a lei:

O raio incidente I, o raio refratado R e a normal N à superfície de separação S pertencem ao mesmo plano.

2^a lei ou lei de Snell-Descartes:

Para cada par de meios é constante o produto do seno do ângulo que o raio forma com a normal e o índice de refração do meio em que o raio se encontra.

 n_1 . sen $i = n_2$. sen r

Exemplo: Um raio luminoso, ao passar de um meio A para um meio B, forma com a normal à superfície de separação ângulos respectivamente iguais a 30° e 60°. O meio B é o ar, cujo índice de refração absoluto é 1,0 e no qual a luz se propaga com velocidade de 3,0.108 m/s. Determine o índice de refração do meio A e a velocidade da luz nesse meio. (dados: sen $30^{\circ} = \frac{1}{2}$; sen $60^{\circ} = \frac{\sqrt{3}}{2}$)

Solução:

 n_A . sen i = n_B . sen r \implies n_A . sen $30^o = 1,0$. sen 60^o

$$n_A \cdot \frac{1}{2} = 1,0.\frac{\sqrt{3}}{2} \implies n_A = \sqrt{3}$$

Dados:

$$i = 30^{\circ}$$
$$r = 60^{\circ}$$

$$n_{\rm B} = 1.0$$

$$n_A = ?$$

$$v_A = ?$$

$$n_{A} = \frac{c}{v_{A}} \implies \sqrt{3} = \frac{3.0.10^{8}}{v_{A}} \implies v_{A} = \frac{3.0.10^{8}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}}$$

$$v_A = \sqrt{3}.10^8 \text{ m/s}$$

Difração

É o nome dado à capacidade que uma onda apresenta de **contornar obstáculos** ou de **passar por fendas**.

- ✓ A difração não altera v, λ e f.
- ✓ A difração ocorre com qualquer onda desde que o comprimento de onda λ seja igual ou maior que o tamanho do obstáculo ou largura da fenda d.
- ✓ Se $\lambda \ll$ d, não ocorre difração.

Exemplos de difração

A difração permite a recepção de sinais de tv e rádio nas grandes cidades, apesar de obstáculos como construções e prédio.

Uma pessoa pode ouvir o som de um violão atrás de um muro por difração.

Interferência

É o fenômeno resultante da superposição de duas ou mais ondas.

Enquanto se cruzam, as ondas atravessam uma a outra, sem se modificar. Após a superposição, as ondas continuam a ter a mesma forma e continuam a se propagar como antes.

Interferência construtiva.

$A_1 \rightarrow A_2$

A₁: amplitude do pulso 1

A₂: amplitude do pulso 2

$$A_R = A_1 + A_2$$

Interferência destrutiva.

$$A_R = A_1 - A_2$$

Interferência Luminosa (Experiência de Young)

A experiência de Young demonstrou que a luz é uma onda.

Polarização

É o fenômeno no qual uma **onda transversal**, vibrando em várias direções, tem uma de suas direções de vibração selecionada, enquanto as vibrações nas demais direções são impedidas de passar por um dispositivo, denominado **polarizador**.

Provocam-se na corda oscilações em várias direções. A fenda vertical funciona como um polarizador. Ao passar pela fenda, as ondas sofrem uma polarização vertical.

A polarização é um fenômeno exclusivo de ondas transversais, ou seja, ondas longitudinais não sofrem polarização.

> A polarização é o fenômeno que comprova que a luz é uma onda transversal.

Exercícios resolvidos

Uma onda periódica sofre refração, ao passar para um meio no qual sua velocidade é maior. O que acontece com o período, com a frequência e com o comprimento de onda?

- a) O período e a frequência não mudam; o comprimento de onda é menor.
- b) O período diminui; a frequência aumenta; o comprimento de onda não muda.
- c) O período e a frequência não mudam; o comprimento de onda é maior.
- d) O período aumenta; a frequência diminui; o comprimento de onda aumenta.
- e) O período aumenta; a frequência aumenta; o comprimento de onda aumenta.

No ar, sabe-se que a onda sonora é longitudinal. Dessa forma, você poderá garantir que ela nunca poderá sofrer o fenômeno da:

- a) reflexão.
- **b**) interferência.
- c) refração.
- d) Polarização
- e) difração.

A difração de uma onda que atravessa um orifício é mais notável quando:

- a) a frequência da onda é grande.
- b) a dimensão do comprimento de onda é pequena, se comparada com a velocidade.
- c) a amplitude da onda é muito pequena, se comparada com a dimensão do orifício.
- d) a dimensão do orifício se aproxima da dimensão do comprimento de onda.
- e) a velocidade da onda é muito pequena, se comparada à dimensão do orifício.

A figura representa uma cuba com água onde o dispositivo *A* produz uma onda reta que chega ao anteparo *B*, o qual possui uma abertura.

O fenômeno representado após a abertura é conhecido como:

- a) Polarização
- **b**) interferência.
- c) difração.
- d) refração.
- e) reflexão.

A *interferência* de duas ondas, em um ponto do seu meio de propagação, caracteriza-se pela sobreposição dessas ondas, que se reforçam ou se atenuam mutuamente, nesse ponto. Supondo idênticas as ondas que se sobrepõem, comparando a onda resultante com as ondas interferentes, a grandeza que obrigatoriamente sofre alguma alteração na interferência é:

- a) a amplitude.
- **b**) a frequência.
- **c**) o período.
- d) a pulsação.
- e) o comprimento de onda.

Os fones de ouvido tradicionais transmitem a música diretamente para os nossos ouvidos. Já os modelos dotados de tecnologia redutora de ruído — Cancelamento de Ruído (CR) — além de transmitirem música, também reduzem todo ruído inconsistente à nossa volta, como o barulho de turbinas de avião e aspiradores de pó. Os fones de ouvido CR não reduzem realmente barulhos irregulares como discursos e choros de bebês. Mesmo assim, a supressão do ronco das turbinas do avião contribui para reduzir a "fadiga de ruído", um cansaço persistente provocado pela exposição a um barulho alto por horas a fio. Esses aparelhos também permitem que nós ouçamos músicas ou assistamos a vídeos no trem ou no avião a um volume muito menor (e mais seguro). A tecnologia redutora de ruído CR utilizada na produção de fones de ouvido baseia-se em qual fenômeno ondulatório?

- a) Absorção.
- b) Interferência.
- c) Polarização.
- d) Reflexão.
- e) Difração.