

Massive Data Computing Lab @ HIT

大数据算法

第六讲外存图数据算法

哈尔滨工业大学 王宏志 wangzh@hit.edu.cn

本讲内容

- 6.1 表排序及其应用
- 6.2 时间前向处理方法
- 6.3 缩图法

表排序List Ranking

表排序的困难之处

▶内存算法最坏情况的I/O数为Ω(N)

一种高效的表排序算法

• 假设一个独立集大小至少为N/3, 其中元素 能高效查找(只需O(sort(N))次I/O).

一种高效的表rank算法

• 压缩L:

- 对L\I中的元素进行排序
- 根据后继指针对I排序
- 对I中的每一个元素,扫描两个列表以更新 succ(v)的标签
- 该过程的I/O复杂度为
 I(N)≤I(2N/3)+O(sort(N)) = O(sort(N))

定理: 对大小为N的表进行rank的I/O复杂度为O(sort(N)).

欧拉回路技术

目标:对给定的树T,以表L表示,进而让对T的每一种计算可用对L的一种rank来完成.

欧拉回路技术

定理:对给定的顶点邻接链表T,其一个欧拉回路可以以O(scan(N))IO复杂性求得

• 假设 $\{v,w_1\},...,\{v,w_r\}$ 为以v为顶点的边

• 则 $succ((w_i,v)) = (v,w_{i+1})$

父子关系判定

选定某结点作为根,要求确定每条边两个结点的父子关系

对每条边{v,w}判定亲子关系

• v = p(w) 当且仅当rank((v,w)) < rank((w,v))

定理:对树求父子关系的I/O复杂度为O(sort(N)).

计算前序计数

定理: 前序计数的I/O复杂度为O(sort(N)).

preorder#(v) = rank((p(v),v))

计算子树大小

定理: 为树T的每个结点标上子树大小的I/O 复杂度为O(sort(N)).

$$|T(v)| = \frac{\operatorname{rank}((v,p(v))) - \operatorname{rank}((p(v),v)) + 1}{2}$$

本讲内容

- 6.1 表排序及其应用
- 6.2 时间前向处理方法
- 6.3 缩图法

DAG上的计算

• 更一般的情况:给定标签 ϕ , 计算标签 ψ 从而 ψ (v) 从 ϕ (v) 和 ψ (u₁),..., ψ (u_r)中计算出来, 其中 u₁,...,u_r 是v的入邻居

时间前向的处理

- 假设结点已经按照拓扑排序给出
- ➤ 利用优先队列Q沿着边传送数据

Q:

时间前向的处理

分析:

- 扫描对象: 点集合+邻接链表
- ▶I/O复杂度O(scan(|V| + |E|))
- 优先队列:
 - ▶每条边从队列中进出一次
 - ➤O(|E|)个优先队列操作
- ▶I/O复杂度为O(sort(|E|))

定理:一个DAG G = (V,E) 可以用O(sort(|V| + |E|))次I/O计算.

最大独立集 (MIS)

伪代码Algorithm GREEDYMIS:

- 1. $I \leftarrow 0$
- 2. **for** 每个顶点v ∈ G **do**
- 3. if 在I中没有v的邻居在 then
- 4. 将v加入I
- 5. **end if**
- 6. end for

观察:考虑v的被上一轮迭代中访问的邻居就足够了

最大独立集Maximal Independent Set (MIS)

最大独立集

定理: 求图G = (V,E)的最大独立集的I/O复杂度 为O(sort(|V|+|E|)).

表的大独立集

推论: 查找规模为N的表L中的大小至少为N/3的独立集的I/O复杂度为O(sort(N)).

• 独立集(MIS)I中的每个结点都使得其余两个结点不在I中

➤每个独立集(MIS)的大小至少为N/3.

本讲内容

- 6.1 表排序及其应用
- 6.2 时间前向处理方法
- 6.3 缩图法

连通性 半外存算法

连通性 半外存算法

分析:

- 扫描顶点集,以将顶点载入主存
- 扫描边集以执行算法
- I/O复杂度为O(scan(|V| + |E|))

定理: 假设|V| ≤ M, 求图的连通分量的I/O复杂度为O(scan(|V| + |E|))

连通性一般情况

思想:

- |V| ≤ M
 - 可使用半外存算法(semi-external algorithm)
- |V| > M
 - 找到G的简单连通子图
 - 收缩上述子图得到图G' = (V',E') 其中 |V'| ≤ c|V|, c < 1
 - 递归计算G'的连通分量
 - -从G'中得到G的各个连通分量

连通性Connectivity

一般情况

连通性Connectivity

一般情况

主要步骤:

- 对于每个点找到最小的邻居(容易)
- · 计算图H由选定的边导出的连通分量
- 将每个连通分量缩为一个结点(容易)
- 递归调用上述过程
- 对每个v∈G',将其连通度复制到其代表的G中的每个结点上(容易)

连通性

一般情况

- 每个强连通分量H的大小至少为2
- $\triangleright |V'| \leq |V|/2$
- ➤ log(\(\frac{V}{M}\)) 次递归调用

定理: 计算图 G = (V,E) 的连通分量的I/O复杂度为

 $O(\operatorname{sort}(|E|)\log(|V|_{M}))$

最小生成树 (MST)

观察: 图的连通性算法可扩增为求图G最小生

成树的算法

最小生成树 (MST)

获得最小生成树的过程:

• 选择权值最小且与v相关的边

- 一些注解:
 - 压缩后的图中某条边的权值= 该边代表的所有边的权值 的最小值
 - 当树加入边e时,实际上加入了这条最小边

最小生成树 (MST)

定理: 计算图**G** = (V,E)的最小生成树的I/O复杂度为O(sort(E))log(V/M))

图算法的三种技术

• 时间前向处理:

- 将图问题表示为有向无环图的估值问题

• 缩图法:

- 保持其他特定的情况下,缩减图G的规模
- 在压缩图中递归解决问题
- -根据压缩图的解,构造图 G的解

• 自举:

-一旦输入(或其部分)规模足够小,即可切换为相对低效的算法

致谢

• 本讲义部分内容来自于Norbert Zeh的讲义

