OBJECTIVES:

- To Provide knowledge about the stand alone and grid connected renewable energy systems.
- To equip with required skills to derive the criteria for the design of power converters for renewable energy applications.
- To analyse and comprehend the various operating modes of wind electrical generators and solar energy systems.
- To design different power converters namely AC to DC, DC to DC and AC to AC converters for renewable energy systems.
- To develop maximum power point tracking algorithms.

UNIT I INTRODUCTION

q

Environmental aspects of electric energy conversion: impacts of renewable energy generation on environment (cost-GHG Emission) - Qualitative study of different renewable energy resources: Solar, wind, ocean, Biomass, Fuel cell, Hydrogen energy systems and hybrid renewable energy systems.

UNIT II ELECTRICAL MACHINES FOR RENEWABLE ENERGY CONVERSION
Reference theory fundamentals-principle of operation and analysis: IG, PMSG, SCIG and DFIG.

UNIT III POWER CONVERTERS

9

Solar: Block diagram of solar photo voltaic system -Principle of operation: line commutated converters (inversion-mode) - Boost and buck-boost converters- selection of inverter, battery sizing, array sizing Wind: Three phase AC voltage controllers- AC-DC-AC converters: uncontrolled rectifiers, PWM Inverters. Grid Interactive Inverters-matrix converters.

UNIT IV ANALYSIS OF WIND AND PV SYSTEMS

9

Stand alone operation of fixed and variable speed wind energy conversion systems and solar system-Grid connection Issues -Grid integrated PMSG, SCIG Based WECS, grid Integrated solar system

UNIT V HYBRID RENEWABLE ENERGY SYSTEMS

۵

TOTAL: 45 PERIODS

Need for Hybrid Systems- Range and type of Hybrid systems- Case studies of Wind-PV Maximum Power Point Tracking (MPPT).

OUTCOMES:

- Ability to understand and analyze power system operation, stability, control and protection.
- Ability to handle the engineering aspects of electrical energy generation and utilization.

TEXT BOOK:

- 1. S. N. Bhadra, D.Kastha, S.Banerjee, "Wind Electrical Systems", Oxford University Press, 2005.
- B.H.Khan Non-conventional Energy sources Tata McGraw-hill Publishing Company, New Delhi, 2009.

REFERENCES:

- 1. Rashid .M. H "power electronics Hand book", Academic press, 2001.
- 2. Ion Boldea, "Variable speed generators", Taylor & Francis group, 2006.
- 3. Rai. G.D, "Non conventional energy sources", Khanna publishes, 1993.
- 4. Gray, L. Johnson, "Wind energy system", prentice hall linc, 1995.
- 5. Andrzej M. Trzynnadlowski, 'Introduction to Modern Power Electronics', Second edition, wiley India Pvt. Ltd, 2012.