From all dwarfs, we can expect four groups of answers and assign them symbols:

- Green hats always telling truth *green*
- Orange hats starting with answering the 1^{st} question with a lie, therefore telling truth to the 2^{nd} question and lying to the 3^{rd} $orange_{oddLie}$
- Orange hats starting with truth opposite of the last group, truth to 1^{st} and 3^{rd} question and lie to 2^{nd} question $orange_{evenLie}$
- Red hats always lying red

Graphically, we can represent them in a table of truth, which can be applied to any set of questions:

Answers	green	orange _{oddLie}	$orange_{evenLie}$	red
1 st	Truth	Lie	Truth	Lie
2 nd	Truth	Truth	Lie	Lie
3 rd	Truth	Lie	Truth	Lie

To build our system of equations, we can combine the table of truth with actual questions and answers:

Question	green	$orange_{oddLie}$	$orange_{evenLie}$	red
Green hat?	Positive	Positive	Negative	Positive
Orange hat?	Negative	Positive	Negative	Positive
Red hat?	Negative	Positive	Negative	Negative

Now we can easily transpose the table to equations where the know number of positive answers is combined with proper addends:

$$\begin{cases} green + orange_{oddLie} + red = 34\\ orange_{oddLie} + red = 26\\ orange_{oddLie} = 11 \end{cases}$$

Last equation would be the sum of all dwarfs:

$$green + orange_{oddLie} + orange_{evenLie} + red = 43$$

Final system:

$$\begin{cases} green + orange_{oddLie} + orange_{evenLie} + red &= 43\\ green + orange_{oddLie} + red &= 34\\ orange_{oddLie} + red &= 26\\ orange_{oddLie} &= 11 \end{cases}$$

The results are:

$$\begin{cases} green = 8 \\ orange_{oddLie} = 11 \\ orange_{evenLie} = 9 \\ red = 15 \end{cases}$$

So, the answer is: 20 dwarfs with orange hats attended the party