t=1 to  $t=\tau$ , we apply the following update equations:

$$a^{(t)} = b + Wh^{(t-1)} + Ux^{(t)}$$
 (10.8)

$$\mathbf{h}^{(t)} = \tanh(\mathbf{a}^{(t)})$$

$$\mathbf{o}^{(t)} = \mathbf{c} + \mathbf{V}\mathbf{h}^{(t)}$$

$$(10.9)$$

$$\boldsymbol{o}^{(t)} = \boldsymbol{c} + \boldsymbol{V} \boldsymbol{h}^{(t)} \tag{10.10}$$

$$\hat{\mathbf{y}}^{(t)} = \operatorname{softmax}(\mathbf{o}^{(t)}) \tag{10.11}$$

where the parameters are the bias vectors  $\boldsymbol{b}$  and  $\boldsymbol{c}$  along with the weight matrices U, V and W, respectively for input-to-hidden, hidden-to-output and hidden-tohidden connections. This is an example of a recurrent network that maps an input sequence to an output sequence of the same length. The total loss for a given sequence of x values paired with a sequence of y values would then be just the sum of the losses over all the time steps. For example, if  $L^{(t)}$  is the negative log-likelihood of  $y^{(t)}$  given  $x^{(1)}, \ldots, x^{(t)}$ , then

$$L\left(\{\boldsymbol{x}^{(1)}, \dots, \boldsymbol{x}^{(\tau)}\}, \{\boldsymbol{y}^{(1)}, \dots, \boldsymbol{y}^{(\tau)}\}\right)$$
(10.12)

$$= \sum_{t} L^{(t)} \tag{10.13}$$

$$= -\sum_{t} \log p_{\text{model}} \left( y^{(t)} \mid \{ \boldsymbol{x}^{(1)}, \dots, \boldsymbol{x}^{(t)} \} \right), \tag{10.14}$$

where  $p_{\text{model}}\left(y^{(t)} \mid \{\boldsymbol{x}^{(1)}, \dots, \boldsymbol{x}^{(t)}\}\right)$  is given by reading the entry for  $y^{(t)}$  from the model's output vector  $\hat{\boldsymbol{y}}^{(t)}$ . Computing the gradient of this loss function with respect to the parameters is an expensive operation. The gradient computation involves performing a forward propagation pass moving left to right through our illustration of the unrolled graph in figure 10.3, followed by a backward propagation pass moving right to left through the graph. The runtime is  $O(\tau)$  and cannot be reduced by parallelization because the forward propagation graph is inherently sequential; each time step may only be computed after the previous one. States computed in the forward pass must be stored until they are reused during the backward pass, so the memory cost is also  $O(\tau)$ . The back-propagation algorithm applied to the unrolled graph with  $O(\tau)$  cost is called **back-propagation through time** or BPTT and is discussed further in section 10.2.2. The network with recurrence between hidden units is thus very powerful but also expensive to train. Is there an alternative?

## 10.2.1 Teacher Forcing and Networks with Output Recurrence

The network with recurrent connections only from the output at one time step to the hidden units at the next time step (shown in figure 10.4) is strictly less powerful