2 namų darbas (2 užd.)

Uždavinys 1 (0.2 balo). (a) Duotos funkcijos $f: \mathbb{N} \to \mathbb{R}$ ir $g: \mathbb{N} \to \mathbb{R}$. Užpildykite lentelę pliusais bei minusais, kur pliusas (atitinkamai minusas) reiškia, kad funkciją A galima (atitinkamai negalima) užrašyti pavidalu A = C(B), kur B yra kita funkcija, o C yra vienas iš žymėjimų $O, o, \Omega, \omega, \Theta$.

\overline{A}	В	0	0	Ω	ω	Θ
f(n)	g(n)					
g(n)	f(n)					

Sprendžiant gali prireikti Lopitalio taisyklės bei formulių

$$(a^x)' = a^x \ln a$$
 bei $(\log_a x)' = \frac{1}{x \ln a}$.

Formaliai norėdami pritaikyti Lopitalio taisyklę funkcijų santykio ribos $\lim_{n\to\infty}\frac{f(n)}{g(n)}=c$ įrodymui, turėtume funkcijas f ir g pratęsti iki funkcijų $\tilde{f}:\mathbb{R}^+\to\mathbb{R}$ ir $\tilde{g}:\mathbb{R}^+\to\mathbb{R}$, panaudoję išvestines gauti, kad $\lim_{x\to\infty}\frac{\tilde{f}(x)}{\tilde{g}(x)}=c$, o tada grįžti prie funkcijų f ir g. Kad įrodymai būtų paprastesni, vietoje to mes neformaliai tiesiogiai skaičiuosime funkcijų "išvestinę pagal natūralų argumentą n", turėdami galvoje, kad įrodymą visada galima pagrįsti griežtai, pereinant prie realaus kintamojo x, o paskui vėl grįžtant prie natūralaus argumento.

(b) Raskite didžiausias n reikšmes, su kuriomis funkcijos $f:\mathbb{N}\to\mathbb{R}$ ir $g:\mathbb{N}\to\mathbb{R}$ tenkina nelygybes $f(n)\leq 1000000$ ir $g(n)\leq 1000000$, t.y., skaičius N_f ir N_g tokius, kad $f(N_f)\leq 1000000$ bei $g(N_g)\leq 1000000$, tačiau $f(N_f+1)>1000000$ bei $g(N_g+1)>1000000$.

Pavyzdys 1. Duotos funcijos

$$f(n) = 10n^2$$
 ir $g(n) = n^2 + \log_2^2 n^{10}$.

(a) Reikia palyginti duotų funkcijų augimo greitį. Iš matematine indukcija nesunkiai įrodomos nelygybės $n < 2^n$ gauname $\log_2 n < n$, todėl $\log_2^2 n < n^2$ (kur n > 0). Kadangi $\log_2^2 n^{10} = (10 \log_2 n)^2$, tai antroji funkcija tenkina dvigubą nelygybę

$$n^2 \le g(n) < 101n^2,$$

iš kurios gauname, kad

$$\frac{1}{10}f(n) \le g(n) < 11f(n).$$

Taigi, g(n) = O(f(n)) (nes $g(n) \le c_1 f(n) \ \forall n > 0$, kur $c_1 = 11$) ir f(n) = O(g(n)) (nes $f(n) \le c_2 g(n) \ \forall n > 0$, kur $c_2 = 10$). Iš šių dviejų viršutinių įverčių gauname, kad abi duotos funcijos yra tos pačios augimo eilės: $f(n) = \Theta(g(n))$ ir $g(n) = \Theta(f(n))$. Be to, pagal Ω apibrėžimą iš jų išplaukia ir tai, kad $f(n) = \Omega(g(n))$ bei $g(n) = \Omega(f(n))$.

Kadangi duotų funkcijų santykis yra aprėžtas ir iš viršaus, ir iš apačios:

$$\frac{1}{c_1} \le \frac{f(n)}{g(n)} \le c_2,$$

tai jis negali artėti nei į 0, nei į ∞ . Vadinasi, negali būti f(n) = o(g(n)) bei $f(n) = \omega(g(n))$ ir analogiškai negali būti g(n) = o(f(n)) bei $g(n) = \omega(f(n))$.

Gauname tokį atsakymą:

(b) Iš nelygybės $10n^2<1000000$ gauname $n<\sqrt{100000}$. Pasitelkę kalkuliatorių gauname $N_f=316$. Nelygybę $n^2+\log_2^2n^{10}$ galima iš karto spręsti "bandymų ir klaidų" metodu naudojant elektroninį kalkuliatorių. Gauname, kad $N_g=995$, nes g(995)<1000000, o g(996)>1000000.

Pavyzdys 2. Duotos funcijos

$$f(n) = \left(\frac{n}{10\log_2 n}\right)^2$$
 ir $g(n) = n\sqrt{n}$.

(a) Reikia palyginti duotų funkcijų augimo greitį. Panaudoję naują kintamąjį $k = \sqrt{n}$, apskaičiuosime šių funkcijų santykio ribą:

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = \lim_{n \to \infty} \frac{n\sqrt{n}}{\frac{n^2}{100 \log_2^2 n}} = \lim_{n \to \infty} \frac{100 \log_2^2 n}{\sqrt{n}}$$

$$= \lim_{k \to \infty} \frac{400 \log_2^2 k}{k} = \lim_{k \to \infty} \frac{800 \log_2 k \cdot \frac{1}{k \ln 2}}{1} = \lim_{k \to \infty} \frac{800 \log_2 k}{k \ln 2}$$

$$= \lim_{k \to \infty} \frac{800 \cdot \frac{1}{k \ln 2}}{\ln 2} = \lim_{k \to \infty} \frac{800}{k \ln^2 2} = 0.$$

Vadinasi, g(n) = o(f(n)) ir $f(n) = \omega(g(n))$. Tada iš šių sąryšių gauname, kad g(n) = O(f(n)) ir $f(n) = \Omega(g(n))$. Aišku, kad funkcijos nėra tos pačios augimo eilės, t.y., $f(n) \neq \Theta(g(n))$. Panašūs samprotavimai leidžia galutinai užpildyti lentelę:

(b) Beliko parinkti N_f ir N_g . Nelygybė $(\frac{n}{10\log_2 n})^2 < 1000000$ ekvivalenti nelygybei $(\frac{n}{\log_2 n}) < 10000$, kurią sprendžiame "bandymų ir klaidų" metodu naudojant elektroninį kalkuliatorių. Gauname, kad $N_f = 174095$, nes f(174095) < 1000000, o f(174096) > 1000000. Su antrąja funkcija dar paprasčiau. Iš nelygybės $n^{3/2} \le 10^6$ gauname $n \le 10^4$. Taigi, $N_g = 10000$. Įdomu pažymėti, kad nors antroji funkcija ir auga lėčiau, tačiau "praktinėms" n reikšmėms pirmosios funkcijos reikšmės yra didesnės. Pvz. $f(10^{10})$ yra vis dar mažiau už $g(10^{10})$, bet $f(10^{11})$ jau yra daugiau už $g(10^{11})$.

Uždavinys 2 (0.3 balo). (a) Duotas 5 funkcijas $f_1, f_2, f_3, f_4, f_5 : \mathbb{N} \to \mathbb{R}$ išdėstykite jų augimo greičio didėjimo tvarka (kiekviena funkcija yra O(kitos funkcijos)). Taip pat nurodykite, kurios funkcijos turi vienodą augimo greitį (yra Θ viena nuo kitos). Tos pačios augimo eilės funkcijas dėstykite didėjimo tvarka atsižvelgiant ir į konstantas.

- (b) Išdėstykite didėjimo tvarka funkcijų reikšmes $f_1(n), f_2(n), f_3(n), f_4(n), f_5(n)$, kai n=16.
- (c) Išdėstykite didėjimo tvarka funkcijų reikšmes $f_1(n), f_2(n), f_3(n), f_4(n), f_5(n)$, kai $n=2^{16}=65536$.

Pavyzdys 3. Duotos funkcijos $f_1(n) = 10n + \log_2^2(8^n)$, $f_2(n) = 100n \log_2 n$, $f_3(n) = 10n\sqrt{n}$, $f_4(n) = 2^{\sqrt{n}}$ ir $f_5(n) = n^{\log_4 8}$.

(a) Pirmiausia pertvarkome f_1 ir f_5 :

$$f_1(n) = 10n + \log_2^2(2^{3n}) = 10n + (3n)^2 = 9n^2 + 10n,$$

 $f_5(n) = n^{\frac{\log_2 8}{\log_2 4}} = n^{3/2} = n\sqrt{n}.$

Funkcijos didėjimo tvarka išsidėstys taip:

$$f_2(n) = 100n \log_2 n$$
, $f_5(n) = n\sqrt{n}$, $f_3(n) = 10n\sqrt{n}$, $f_1(n) = 9n^2 + 10n$, $f_4(n) = 2^{\sqrt{n}}$.

Iš tiesų:

$$\lim_{n \to \infty} \frac{100n \log_2 n}{n\sqrt{n}} = 100 \lim_{n \to \infty} \frac{\log_2 n}{\sqrt{n}} = 100 \lim_{n \to \infty} \frac{\frac{1}{n \ln 2}}{\frac{1}{2} \frac{1}{\sqrt{n}}} = 100 \lim_{n \to \infty} \frac{2}{\sqrt{n} \ln 2} = 0,$$

$$n\sqrt{n} = \Theta(10n\sqrt{n}), \quad \text{nes } n\sqrt{n} = 0.1 \cdot 10n\sqrt{n},$$

$$\lim_{n \to \infty} \frac{10n\sqrt{n}}{9n^2 + 10n} = \lim_{n \to \infty} \frac{10\sqrt{n}}{9n + 10} = \lim_{n \to \infty} \frac{10}{9\sqrt{n} + \frac{10}{\sqrt{n}}} = 0$$

ir pagaliau

$$\lim_{n \to \infty} \frac{9n^2 + 10n}{2^{\sqrt{n}}} = \lim_{k \to \infty} \frac{9k^4 + 10k^2}{2^k} = \lim_{k \to \infty} \frac{36k^3 + 20k}{2^k \ln 2} = \lim_{k \to \infty} \frac{108k^2 + 20}{2^k \ln^2 2}$$
$$= \lim_{k \to \infty} \frac{216k}{2^k \ln^3 2} = \lim_{k \to \infty} \frac{216}{2^k \ln^4 2} = 0.$$

(b) Įstatę n=16, gauname $f_1(16)=2464$, $f_2(16)=6400$, $f_3(16)=640$, $f_4(16)=16$ ir $f_5(16)=64$. Taigi, funkcijų reikšmės išsidėsto taip:

$$f_4(16) < f_5(16) < f_3(16) < f_1(16) < f_2(16).$$

(c) Įstatę $n=2^{16}$, gauname $f_1(2^{16})=9\cdot 2^{32}+10\cdot 2^{16},\ f_2(2^{16})=100\cdot 2^{16}\cdot 16=100\cdot 2^{20},\ f_3(2^{16})=10\cdot 2^{24}=160\cdot 2^{20},\ f_4(2^{16})=2^{256}$ ir $f_5(2^{16})=2^{24}=16\cdot 2^{20}.$ Taigi, funkcijų reikšmės išsidėsto taip:

$$f_5(2^{16}) < f_2(2^{16}) < f_3(2^{16}) < f_1(2^{16}) < f_4(2^{16}).$$

Atsakymas. Funkcijos išsidėsto tokia tvarka: (a) 25314; (b) 45312; (c) 52314.