《普通化学(乙)》模拟考试试卷

课程	号: <u>7717</u>	<u>roogo</u> ,	开课学院:	化学系	<u> </u>			
考试	试卷: A 卷	√、B卷	(请在选定	项上打√))			
考试	形式:闭 🗸	'、开卷(⁻	请在选定项	页上打 √),	允许带_	科学计算	器_入场	
考试	日期:	年月]日,考	试时间:_	<u>120</u> 分钟			
				- . .	· A • • •			
•	诚信	考试,	沉着		善	上绝迁	纪。	
考生姓名:	:	学号:		所属院	系:		E课教师:	
题序	_	=	三	四	五	六	七	总分
得分								
评卷人								
本试卷可	能用到的数	女据: R = 8	3.314 J·mo	l ⁻¹ ·K ⁻¹ ; F	= 96500 C·	mol ⁻¹ ;标	准压力 p ⁰	= 100 kPa
一、选择	圣题 (单边		题 2 分,)	共30分)				
() 1.	CaCl ₂ 、P ₂ 0	O 5 等物质含	常用作固体	干燥剂,	这是利用了	7其水溶液	的 性儿	质。
	疑固点下降						·	
() 2.	反应 CaO(s	S) + H ₂ O(1)	$= Ca(OH)_2$	(1) 在25℃	2、标准状	态时为自然		5温时逆反
应为自	发反应,看	表明该反应	o					
Α. Δ	$_{\rm r}H^{\ominus}{}_{\rm m}>0$, ($\Delta_{\rm r} S^{\Theta}_{\rm m} < 0$		Е	3. Δ _r H [⊖] _m >0	, $\Delta_{\rm r} S^{\ominus}{}_{\rm m} > 0$)	
C. Δ ₁	$_{\rm r}H^{\ominus}{}_{\rm m}<0$, Δ	$\Lambda_{\rm r} S^{\ominus}_{\rm m} < 0$		Г	0. Δ _r H [⊖] _m <0	, $\Delta_{\rm r} S^{\ominus}{}_{\rm m} > 0$)	
() 3.	下列反应中	7,熵值增	加最多的原	反应是	.0			
A. 4.	$Al(s) + 3O_2($	$(g) = 2Al_2C$	$O_3(s)$	В	. Ni(CO) 4(s) = Ni(s) +	- 4CO(g)	
C. S	$(s) + H_2(g)$	$= H_2S(g)$		D	o. MgCO ₃ (s	= MgO(s)	$+ CO_2(g)$	
	已知下列反	_	2K时的标	准平衡常数	数:			
$H_2(g)$	$+(1/2)S_2(g$	$)\rightarrow H_2S(g)$		$K^{\ominus}_{1}=0.80$)			
3H ₂ (g	g)+SO ₂ (g)-	→H ₂ S(g)+2I	$H_2O(g)$	$K^{\Theta}_2=1.8\times$	10^{4}			
_	並 4H ₂ (g) +	_	_			⊖_ 。		
A. 2	.3×10 ⁴	B. 5.	.1×10 ⁸	C. 4.3	3×10 ⁻⁵	D. 2.0	0×10 ⁻⁹	
() 5.	基元反应 С	CaCO ₃ (s) -	\rightarrow CaO(s) $+$	- CO ₂ (g)的	反应速率ブ	方 程式为	o	
	= k							

() 6. 在 298.15K,由下列三个反应的 $\Delta_r H^{\Theta}_m$ 数据可求 $\Delta_t H^{\Theta}_m$ (CH4,g),其值为。
$C(石 墨) + O_2(g) \longrightarrow CO_2(g)$ $\Delta_r H^{\Theta}_m = -393.5 \text{ kJ·mol}^{-1}$
$H_2(g) + (1/2)O_2(g) \rightarrow H_2O(l)$ $\Delta_r H^{\Theta}_m = -285.8 \text{ kJ} \cdot \text{mol}^{-1}$
$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(l) \qquad \Delta_r H^{\ominus}{}_m = -890.3 \ kJ \cdot mol^{-1}$
A. 211.0 kJ·mol⁻¹ B. 无法确定 C. 890 kJ·mol⁻¹ D. −74.8 kJ·mol⁻¹
() 7. 在一恒压容器中,在 TK 、100 kPa 条件下,将 1.00 mol A 和 2.00 mol B 混合,按
下式反应: $A(g) + 2B(g) \rightarrow C(g)$ 。达到平衡时,B 消耗了 20.0%,则反应的 $K^{\Theta} = $ 。
A. 0.660 B. 0.375 C. 9.77×10^{-2} D. 1.21
() 8. 反应 $2A+2B\rightarrow 3D$ 的 $E_a(\mathbb{E})=m$ kJ·mol ⁻¹ , $E_a(\mathfrak{U})=n$ kJ·mol ⁻¹ ,则反应的 $\Delta_r H_m$
=
A. $(m-n) \text{ kJ} \cdot \text{mol}^{-1}$ B. $(n-m) \text{ kJ} \cdot \text{mol}^{-1}$ C. $(2m-3n) \text{kJ} \cdot \text{mol}^{-1}$ D. $(3n-2m) \text{kJ} \cdot \text{mol}^{-1}$
() 9. 当化学反应速率常数的自然对数 $\ln k$ 与热力学温度的倒数 $1/T$ 作图时,直接影响直
线斜率的因素是。
A. $\Delta_r G_m$ B. $\Delta_r H_m$ C. E_a D. 以上三项都有影响
()10. 某反应的速率常数为 $0.01 \text{ mol·dm}^{-3} \cdot \text{s}^{-1}$,反应的初始浓度为 0.5 mol·dm^{-3} ,则反应
的半衰期为。
A. 25 s B. 69.3 s C. 200 s D. 50 s
()11. OF ₂ 分子的中心原子采取的杂化轨道为。
A. sp^2 B. sp^3 C. sp D. dsp^2
()12. 下列各浓度相同的溶液,其 pH 值由大到小排列次序正确的是。
A. HAc,(HAc+NaAc 且 HAc:NaAc=1:1),NH ₄ Ac,NaAc
B. NaAc,(HAc+NaAc 且 HAc:NaAc=1:1),NH ₄ Ac,HAc
C. NH ₄ Ac, NaAc, (HAc+NaAc 且 HAc:NaAc=1:1), HAc
D. NaAc, NH ₄ Ac, (HAc+NaAc 且 HAc:NaAc=1:1), HAc
()13. 浓度为 a mol.L ⁻¹ 的 Na ₂ S 溶液的质子平衡方程式是。
A. $c(Na^+) = a - c(H^+)$ B. $c(HS^-) + 2c(H_2S) + c(OH^-) = a - c(H^+)$
C. $c(H^+) = c(HS^-) + c(OH^-) + 2c(S^{2-})$ D. $c(OH^-) = c(HS^-) + c(H^+) + 2c(H_2S)$
() 14. 某金属离子生成的两种八面体配合物的磁距分别为 μ =4.90 B.M 和 μ =0 B.M,则
该金属离子可能是。
A. Cr^{3+} B. Mn^{2+} C. Fe^{3+} D. Fe^{2+}
() 15. $ZnS(s) + 4OH^- = [Zn(OH)_4]^{2-} + S^{2-}$ 的标准平衡常数 $K^{\Theta} =$ 。
A. $K^{\Theta}_{sp}(ZnS)/K^{\Theta}_{f}([Zn(OH)_{4}]^{2-})$ B. $K^{\Theta}_{sp}(ZnS)\cdot K^{\Theta}_{f}([Zn(OH)_{4}]^{2-})$
$\text{C. } K^{\ominus}_{\text{f}}\left([\text{Zn}(\text{OH})_4]^{2-}\right)/K^{\ominus}_{\text{sp}}(\text{ZnS}) \text{D. } K^{\ominus}_{\text{sp}}(\text{ZnS}) \cdot K^{\ominus}_{\text{f}}([\text{Zn}(\text{OH})_4]^{2-}) \cdot K^{\ominus}_{\text{sp}}(\text{Zn}(\text{OH})_2)$

- 二、简答题(20分)
- 1. (4 分)已知 $E^{\Theta}(Sn^{4+}/Sn^{2+}) = 0.15V$, $E^{\Theta}(Fe^{3+}/Fe^{2+}) = 0.771V$, $E^{\Theta}(Fe^{2+}/Fe) = -0.44V$, $E^{\Theta}(O_2/H_2O) = 1.23V$,解释下列现象,并写出有关离子反应方程式。
- (1) SnCl₂溶液长时间放置后,可失去还原性。
- (2) 淡绿色 FeSO₄ 溶液存放后会变色。

2. (10分)用价键理论和晶体场理论完成下表:

	配合物	CoF ₆ ³⁻	Co(NH ₃) ₆ ³⁺
	磁矩µ/B.M.	4.9	0
	未成对电子数 n		
	中心原子杂化轨道类型		
价键理论	配合物类型		
晶体场理论	t _{2g} 、eg 轨道电子排布		
	配合物类型		

3. (6分) 在下列空格中填入 ">、=或<"符号:

键能: N ₂ O	磁矩: O ₂	O ₂ ²⁻
沸点: HF HO	标准熵 S [⊖] 2	_{198K} : H ₂ O(l) H ₂ O(g)
键角: NH ₃ H ₂	渗透压(等)	农度): HAc 葡萄糖

- 三、 $(10 \, \text{分})$ 在一定温度下 Ag_2CO_3 的分解反应为 $Ag_2CO_3(s) \rightarrow Ag_2O(s) + CO_2(g)$ 。假定反应焓 变和反应熵变均不随温度的变化而改变。
- (1) 估算 Ag₂CO₃(s)在标准状态下的最低分解温度;
- (2) 计算上述分解反应在 700 K 时的标准平衡常数。

已知 298.15 K 时相关物质的热力学数据如下所示:

	Ag ₂ O(s)	Ag ₂ CO ₃ (s)	$CO_2(g)$
$\Delta_{\rm f} H_{\rm m}^{\theta} / {\rm kJ \cdot mol^{-1}}$	-31.05	-505.8	-393.5
$S_{\rm m}^{\theta}/$ J·mol ⁻¹ ·K ⁻¹	121.3	167.4	213.7

四、(10 分)已知反应 $2N_2O_5(g)\to 4NO_2(g)+O_2(g)$ 在 318 K 时的速率常数 k_1 =4.98×10⁻⁴ s⁻¹,反应的活化能 E_a =102 kJ·mol⁻¹。

- (1) 判断上述反应的反应级数;
- (2) 计算上述反应在 338 K 时的反应速率常数 k2 和半衰期。

五、(10 分)将 50.0 mL 含 0.950 gMgCl₂ 的溶液与等体积的 1.80 mol·L⁻¹ 氨水混合,为了防止生成 Mg(OH)₂ 沉淀,问溶液中至少需加入多少克 NH₄Cl 固体?已知 M(MgCl₂)=95.0,M(NH₄Cl)=53.5,K^{Θ}_b(NH₃·H₂O)=1.75×10⁻⁵,K^{Θ}_{sp}(Mg(OH)₂)=1.80×10⁻¹¹。

六、(10分)已知 298.15 K 时的相关热力学数据如下所示:

	Ag ⁺ (aq)	AgCl(s)	Cl ⁻ (aq)
$\Delta_f G^{\theta}_{\mathrm{m}} / \mathrm{kJ \cdot mol^{-1}}$	77.11	-109.79	-131.23

- (1) 计算 298.15 K 时 AgCl(s)的溶度积常数 $K_{\rm sp}^{\theta}$ 。
- (2) 计算 298.15 K 时 AgCl(s)在纯水中的溶解度(用物质的量浓度表示)。
- (3) 计算 298.15 K 时 AgCl(s)在 0.01 mol·L⁻¹ NaCl 水溶液中的溶解度(用物质的量浓度表示)。

七、(10 分) 已知 298.15 K 时 E^{θ} (Cu²⁺/Cu)=0.34 V, E^{θ} (Cu²⁺/Cu⁺)=0.16 V。

- (1) 计算 298.15 K 时 E^θCu⁺/Cu);
- (2)若 298.15 K 时 $K_{\rm sp}^0$ (CuCl)=1.2×10⁻⁶,计算 298.15 K 时电极反应 CuCl(s)+e→Cu(s)+Cl⁻对应的标准电极电势。