Sequential logic design

Vikas Dhiman for ECE275

October 30, 2023

1 Objectives

- 1. Analyse and design both Mealy and Moore sequential circuits with multiple inputs and multiple outputs
- 2. Convert between Mealy and Moore designs
- 3. Perform a state assignment using the guideline method
- 4. Reduce the number of states in a state table using row reduction and implication tables

2 Mealy vs Moore Finite State Machines

Definition 1 (Finite State Machines (FSM)). [1, Sec 3.4]

Definition 2 (Mealy FSM). [1, Sec 3.4.3]

Definition 3 (Moore FSM). [1, Sec 3.4.3]

Example 1. A sequential circuit has one input (X) and one output (Z). The circuit examines groups of four consecutive inputs and produces an output Z=1 if the input sequence 0010 or 0001 occurs. The sequences can overlap. Draw both Mealy and Moore timing diagrams. Find the Mealy and Moore state graph.

Practice Problem 1. A sequential circuit has one input (X) and one output (Z). The circuit examines groups of four consecutive inputs and produces an output Z=1 if the input sequence 0101 or 1001 occurs. The circuit resets after every four inputs. Draw both Mealy and Moore timing diagrams. Find the Mealy and Moore state graph.

3 Full procedure for designing sequential logic circuit

- 1. Convert the word problem to a state transition diagram. Let the states be $S_0, S_1, S_2, \ldots, S_n$.
- 2. Draw state transition table with named states. For example,

Present State	Next State		Outputs	
	X = 0	X = 1	X=0	X=1
S_0 S_1	S_1	S_2	0	0
S_1	S_2	S_0	0	0
:	:	:	:	:

- 3. State reduction step: Reduce the number of required states to a minimum. Eliminate unnecessary or duplicate states.
- 4. State assignment step: Assign each state a binary representation. For example,

State name	State assignments $(Q_2Q_1Q_0)$
S_0	000
S_1	001
:	:

5. Draw State assigned transition table. For example,

Inj	puts (X_1X_0)	Present State (Q_1Q_0)	Next State $(Q_1^+Q_0^+)$	Outputs (Z_1Z_0)
0	0	00	01	0 0
0	0	01	10	0 0
:	:	÷	:	: :

(a) Use excitation tables to find truth tables for the combinational circuits. For example, the excitation table for J-K ff is

Q	Q^+	J	K
0	0	0	d
0	1	1	d
1	0	d	1
1	1	d	0

4 State assignment by guideline method [2, Section 8.2.5]

4.1 State Maps

Example 2. Draw a state map for a sequential assignment of the states

Figure 8.27 Five-state finite state machine.

4.2 Guideline method

Guideline method states that the following states should be adjacent in the state map according the following priorities:

Figure 8.29 Adjacent assignment priorities.

Example 3. A state transition table is given. Find optimal state assignment by using the guideline

method.

		Next State	Output	
Input Sequence	Present State	X=0 $X=1$	X=0 $X=1$	
Reset	S_0	S_1' S_1'	0 0	
0 or 1	Sí	S'_3 S'_4	0 0	
00 or 10	S' ₃	S_0 S_0	0 0	
01 or 11	S ₄	S_0 S_0	1 0	

Figure 8.30 Reduced state diagram for 3-bit sequence detector.

Example 4. Draw a Mealy FSM for detecting binary string 0110 or 1010. The machine returns to the reset state after each and every 4-bit sequence. Draw the state transition diagram on your own as practice problem. The state transition diagram is given here. Find optimal state assignment by using the guideline method.

5 State reduction by implication chart

Example 5. Design a Mealy FSM for detecting binary sequence 010 or 0110. The machine returns to reset state after each and every 3-bit sequence. For now the state transition table is given. Reduce the following state transition table

Input Sequence	Present State		State $X=1$	Out X=0	tput X=1
Reset	S_0	S_1	S_2	0	0
0	S_1	S_3	S_4	0	0
1	S_2	S_5	S_6	0	0
00	S_3	S_0	S_0	0	0
01	S_4	S_0	S_0	1	0
10	S_5	S_0	S_0	0	0
11	S_6	S_0	S_0	1	0

5.1 Implication chart Summary

The algorithms for state reduction using the implication chart method consists of the following steps

- 1. Construct the implication chart, consisting of one square for each possible combination of states taken two at a time.
- 2. For each square labeled by states S_i and S_j , if the outputs of the states differ, mark the square with an X; the states are not equivalent. Otherwise, they may be equivalent. Within the square write implied pairs of equivalent next states for all input combinations.
- 3. Systematically advance through the squares of the implication chart. If the square labeled by states S_i, S_j contains an implied pair S_m, S_n and square S_m, S_n is marked with an X, then mark S_i, S_j with an X. Since S_m, S_n are not equivalent, neither are S_i, S_j .
- 4. Continue executing Step 3 until no new squares are marked with an X.
- 5. For each remaining unmarked square S_i, S_j , we can conclude that S_i, S_j are equivalent.

References

- [1] Sarah L Harris and David Harris. Digital design and computer architecture. Morgan Kaufmann, 2022.
- [2] Randy Katz and Gaetano Barriello. Contemporary Logic Design. Prentice Hall, 2004.

Ask for reference PDF if you need it.