CS301: Theory of Computation Sections 7.2 & 7.3 - P versus NP

Daniel White

Gettysburg College Computer Science

Spring 2024

We have established the differences between the time complexities of problems solved by single/multitage and non/deterministic TMs.

single-tape TM
$$\stackrel{\text{polynomial}}{\longleftrightarrow}$$
 multitape TM deterministic TM $\stackrel{\text{exponential}}{\longleftrightarrow}$ nondeterministic TM

We will consider polynomial differences in running time to be "small", whereas exponential differences are considered "large".

exercise: Give n so that 10^n seconds exceeds the age of the universe.

exercise: Give n so that n^2 seconds exceeds the age of the universe.

Class P

Class P

P is the class of languages that are decidable in polynomial time on a deterministic single-tape Turing machine. In other words,

$$P = \bigcup_{k \ge 1} \mathsf{TIME}(n^k).$$

- P is invariant for models of computation that are polynomially equivalent to the deterministic single-tape TM (i.e. can simulate one another with only polynomial time increase), and
- P (roughly) corresponds to the class of problems that are realistically solvable on computers.

Theorem 7.14 (pg. 288)

 $PATH \in P$, where

 $PATH = \{\langle G, s, t \rangle \mid G \text{ is directed graph with path from } s \text{ to } t\}.$

Proof. On input $\langle G, s, t \rangle$,

- 1 Place a mark on node s.
- Repeat the following until no additional nodes are marked:
- Scan all edges of G. If (a, b) is found going from marked a to unmarked b, mark b.
- 4 If t is marked, accept. Otherwise, reject.

exercise: Finish this proof by establishing time complexity. **exercise:** Bad approach that yields exponential complexity?

homework: 7.8

RELPRIME \in P, where

 $\mathsf{RELPRIME} = \{ \langle x, y \rangle \mid x \text{ and } y \text{ are relatively prime} \}.$

Proof. We build R which uses the following subroutine. Define the Euclidean algorithm E, where on input $\langle x, y \rangle$,

- **I** Repeat until y = 0:
- Assign $x \leftarrow x \pmod{y}$.
- Exchange x and y.
- 4 Halt with x on tape.

exercise: Finish this proof.

exercise: What would it mean to instead "brute force"

RELPRIME? What is the time complexity in that situation?

Definition 7.18 (pg. 293)

A **verifier** for a language A is an algorithm V, where

$$A = \{w \mid V \text{ accepts } \langle w, c \rangle \text{ for some string } c\}.$$

Class NP

We measure the time of a verifier only in terms of the length of w, so a polynomial time verifier runs in polynomial time in the length of w. Language A is polynomially verifiable if it has a polynomial time verifier.

e.g. Consider $A = \{\langle n \rangle \mid n \text{ is composite} \}$. A verifier for A would be V that checks if some 1 < c < n is a divisor of n.

A verifier uses additional information, represented by c, to verify $w \in A$. This information is called a **certificate** or **proof**.

Daniel White

Definition 7.19 (pg. 294)

NP is the class of languages that have polynomial time verifiers.

The class NP contains many important problems of practical interest. The term NP comes from **nondeterministic polynomial time**; see below.

Theorem 7.20 (pg. 294)

A language is in NP if and only if it is decided by some nondeterministic polynomial time Turing machine.

exercise: Prove Thm 7.20. (pgs. 294 - 295)

exercise: Do you think that $P \subseteq NP$? What about P = NP?

homework: 7.6, 7.7, & 7.16

Theorem 7.24 (pg. 296)

CLIQUE = $\{\langle G, k \rangle \mid G \text{ undirected graph with } k\text{-clique}\} \in NP$

Proof. We present a verifier V for CLIQUE. On input $\langle \langle G, k \rangle, c \rangle$

- 1 Test whether c is subgraph of G.
- 2 Test if c has k nodes and is complete.
- If both pass, accept; otherwise, reject.

exercise: Finish proof; establish that $V \in P$.

exercise: Do you think CLIQUE \in P?

exercise: Prove instead using a nondeterministic machine.

Daniel White

Theorem 7.25 (pg. 297)

$$SUBSUM = \{ \langle S, t \rangle \mid \exists R \subseteq S \text{ where } \sum_{r \in R} r = t \} \in NP$$

Proof. We present a verifier V for SUBSUM. On input $\langle \langle S, t \rangle, c \rangle$

- **1** Test whether *c* is subset of *S*.
- **2** Test if elements of c sum to t.
- 3 If both pass, accept; otherwise, reject.

exercise: Finish proof; establish that $V \in P$.

exercise: Do you think SUBSUM \in P?

exercise: Prove instead using a nondeterministic machine.

homework: Know CLIQUE and SUBSUM proofs

P = languages where membership can be decided quickly NP = languages where membership can be verified quickly

FIGURE **7.26** One of these two possibilities is correct

The question of P = NP is one of the greatest unsolved problems in computer science and mathematics. If these classes are equal, then any quickly verifiable problem also has a quick solution.

exercise: Loosely speaking, what are the implications of P = NP in, say, cryptography and artificial intelligence?

