Exemple : Lentilles L'expérimentation pour chaque sac Résultats collectés Modélisation et Test d'hypothèses sur p

Tests paramétriques I

Frédérique Leblanc

- 8 sacs de mélanges de deux sortes de lentilles (vertes et blondes) avec 6 sacs ayant une proportion 0.5 de vertes et 2 sacs ayant une proportion 0.6 de vertes.
- Question : trouver les deux "mauvais" sacs qui ont un mélange à 60% de vertes
- Les sacs contiennent 5 à 6000 lentilles ⇒
 dénombrement impossible
- stratégie : faire une étude expérimentale en tirant des échantillons dans chaque sac

• Tirages (avec remise) de N (10, 15 ou 20 selon les sacs) échantillons de lentilles de taille n=25 (ou n=50 pour le sac N5) dans chaque sac notés

$$x_1^{(k)},...,x_n^{(k)}$$
 $k=1,...,N$ où $x=1$ si vert $x=0$ sinon

- Calcul des moyennes empiriques obtenues pour chacun des N échantillons : $x^{(k)}$, k = 1, ..., N
- Utilisation de trois règles de décisions D1, D2 et D3 différentes pour choisir entre 0.5 et 0.6

Les données sont collectées dans Lentilles.csv

> head(lentilles)

NumSac NumEch TailleEch FreqObsVert

1	1	1	25	0.56
2	1	2	25	0.52
3	1	3	25	0.36

.

Et on obtient en moyennes sur chaque sac :

NumSac	1	2	3	4	5	6	7	8
FreqMoy	0.54	0.4547	0.568	0.483	0.526	0.448	0.556	0.404

Boites de distribution de la moyenne empirique selon le sac

Histogramme des réalisations de \bar{X}_n pour tous les échantillons tirés des sacs 1,2,4,5,6 et 8 ("bons" sacs)

Un exemple d'intervalles de confiance symétriques :

Les décisions prises pour les règles D1 (> 0.55) et D2 (> 0.58):

Tables des décisions pour D1 et D2

Décision	P=0.5	P=0.6	P=0.5	P=0.6
Verite	avec D1	avec D1	avec D2	avec D2
P=0.5	0,57	0,33	0,79	0,21
P=0.6	0,25	0,75	0,6	0,4

Remarque 1: si p=0.5 (verité) alors: Freq de concl. 0.5 (à raison) + Freq de concl. 0.6 (à tort)=1 (même chose si c'est p=0.6 qui est vrai)

Remarque 2 : Les fréqs d'erreurs dépendent du test et celui défini par D1 se trompe plus souvent quand p=0.5 est vrai que celui défini par D2 (D2 plus conservatif de p=0.5 que D1)

Remarque 3 : au contraire quand p=0.6 est vrai c'est D2 qui se trompe plus souvent que D1

0,33 = freq (rejet de p=0.5 | p=0.5 vrai) avec le test D1

0,21 = freq (rejet de p=0.5 | p=0.5 vrai) avec le test D2

Ces deux fréqs. approchent (assez mal car N petit) les risques de première espèces de chacune des règles D1 et D2 dans le test entre deux hypothèses simples suivant :

H0: p=p0 avec p0=0.5 H1: p=p1 avec p1=0.6

- **Modèle** : X de loi $\mathcal{B}(p)$ avec $p \in \{0.5, 0.6\} = \{p_0, p_1\}$
- Estimateur de p: \bar{X}_n sans biais de variance min. et de loi $\mathcal{N}(p, p(1-p)/n)$
- Hypothèses à tester :

$$\mathcal{H}_0: p=p_0$$
 $\mathcal{H}_1: p=p_1$

ullet Sous \mathcal{H}_0 : $ar{X}_n$ suit $\mathcal{N}(p_0,p_0(1-p_0)/n)$ et

$$P(\bar{X}_n > 0.55) = P\left(\frac{\bar{X}_n - p_0}{\sqrt{p_0(1 - p_0)/n}} > \frac{0.55 - p_0}{\sqrt{p_0(1 - p_0)/n}}\right)$$

$$= 1 - \Phi\left(\frac{0.55 - p_0}{\sqrt{p_0(1 - p_0)/n}}\right)$$

$$= P(accepter \mathcal{H}_1 | \mathcal{H}_0 vrai) = 0.31$$

De même sous $\mathcal{H}_1: \bar{X}_n$ suit une $\mathcal{N}(p_1,p_1(1-p_1)/n)$ et

$$P(\bar{X}_n \le 0.55) = P\left(\frac{\bar{X}_n - p_1}{\sqrt{p_1(1 - p_1)/n}} \le \frac{0.55 - p_1}{\sqrt{p_1(1 - p_1)/n}}\right)$$

$$= \Phi\left(\frac{0.55 - p_1}{\sqrt{p_1(1 - p_1)/n}}\right)$$

$$= P(accepter \mathcal{H}_0 | \mathcal{H}_1 vrai) = 0.31$$

Ce qui caractérise un test en plus de sa région de rejet :

- Risque de première espèce : $\alpha = P(accepter\mathcal{H}_1|\mathcal{H}_0vrai)$ que l'on souhaite contrôler : celui de refuser \mathcal{H}_0 à tort
- ② Risque de seconde espèce : $\beta = P(accepter\mathcal{H}_0|\mathcal{H}_1vrai)$. Risque de refuser \mathcal{H}_1 à tort. Dépend aussi de l'écart entre les deux hypothèses testées. Si elle sont "collées" la somme de ces deux risques vaut 1.
- **3** La puissance : $\gamma = 1 \beta = P(accepter \mathcal{H}_1 | \mathcal{H}_1 vrai)$ Sur la figure suivante : α : surface rouge (verte pour β)

A chaque test défini par sa région de rejet $W=\{\bar{X}_n>C\}$ correspond un risque de première espèce différent : pour C=0.55 on a obtenu 31% et pour C=0.58 on a obtenu 21%. On pourrait aussi chercher C_α pour que $W_\alpha=\{\bar{X}_n>C_\alpha\}$ soit la région de rejet d'un test de risque de première espèce donné α .

Dans ce cas C_{α} est tel que

$$P\left(\frac{\bar{X}_n - p_0}{\sqrt{p_0(1-p_0)/n}} > \frac{C_{\alpha} - p_0}{\sqrt{p_0(1-p_0)/n}}\right) = \alpha$$

et après quelques manipulations algébriques on obtient :

$$C_{\alpha} = p_0 + \sqrt{\frac{p_0(1-p_0)}{n}}u_{1-\alpha}$$

Ex : calculer la puissance de ce test lorsqu'il est de niveau 5%.

Lorsque l'on dispose d'une seule estimation \hat{p} (car un seul échantillon est observé) et que l'on souhaite faire le test à différents niveaux α on peut calculer les C_{α} correspondant et les décisions associées :

α	0.1	0.2	0.3	0.4	0.5
C_{α}	0.628	0.584	0.552	0.525	0.5

Ex: pour une estimation $\hat{p} = 0.57$ dans le test de niveau :

- **1** 20%: comme $0.57 \le 0.584$ on ne rejette pas p = 0.5
- ② 30% : comme 0.57 > 0.552 on rejette p = 0.5 et on valide p = 0.6
- **3** 40% : comme 0.57 > 0.525 on rejette p = 0.5 et on valide p = 0.6

Pour un échantillon la décision change selon le α choisi.

p-valeur : la valeur seuil α^* la plus petite telle que pour tout risque α supérieur on rejette \mathcal{H}_0 et valide \mathcal{H}_1 .