	J2 /1
Review of last loca	fance
* Single particle	
	Solut of Maxwell equat:
\rightarrow \bigcirc	aksoret
	Cross-section } south;
	cross-section { souther; exception}
	albedo .
	phase function $\phi(\Omega' \to SZ)$
* Spherical partiele	: Mie therry - general x = 22r n
,	Rayloigh X<<1; Qs~ 20 X4
	: Mie therzy - general $x = \frac{2xr}{\lambda_0}$, r Revleigh $x <<1$; $x < 1$; $x < 1$ Greenwhic $x > 1$
	L ray tracing.
	Cray wacro.
* there is also mie the	ey for infinitely buy Cylinder
	V
Today: a ferry	h particle clounds.
b. Drud	e model
Joseph N (table)), we can colculate
	R, T, A, p
but N d	lepends on I. - do not quite understand this elopendence yet
we	- do not quite understand this dependence yet

Made in U.S.A.

		19/2
particle Clouds:		
000	uniform 572e	
0 0 0	NT - # of particle per unit	velume
	Scattering wefficeunt	
	$5s_1 = N_7 Cs$	[-m]
	absorpt Confficent	
	$K_{\mathbf{A}} = N_{\mathbf{T}} C_{\mathbf{A}}$	
	extind:	
	$\beta = K_{\lambda} + \delta_{s\lambda} = N$	T Ce
non-unterm size	: particle distorbut find	oner)
_		1 #prhely
Volume fo	na of	m - 111
y o week in a second	$f_0 = \int_0^\infty \frac{4}{3} r^2 R(r) dr$	perunt radi.
	Jo Jo 3	,
	$55n = \int_0^\infty n(r) G_s dr$	
	$k_{\lambda} = \int_{0}^{n} n(r) \mathcal{K}_{\alpha} dr$	
	$\beta_{n} = \int_{0}^{n} n(r) \operatorname{Ced} r$	
phase finet,		
phase functi	$\frac{1}{2}(\Omega(y)) \rightarrow \Omega = \frac{1}{5\pi} \int_{0}^{\infty} C_{5} q$	b(r, s2->2) n(rx
	J (-) 10 05/ Jo 57	
v Dona la Live là	down lat cotto	Independent /

7

(6)

	14/3
Next 3 lectures understand why what material	Specifical
properties of smallers	
fundamental reguirement	
absorption = - to	
$E_f - E_c = tec$	2)
-funal state of matter	1 state of matter
-funal state of matter	,
- energy anoemal	Lan
$\frac{-\text{energy ansemal}}{\hbar \vec{k} = \vec{l}_f - \vec{l}_i + \vec{l}_i}$	
Three	to geometry appoint lative vector
- momentum wusema	-
Energy states of in Matters	
· A single atom	
+ranslation	
$E = \frac{mv^2}{2}$	
L preth	much continuous
- 1=3 electronic	
$\frac{13.66}{1}$	ev con
$\gamma_{000} = \frac{13.66}{n}$	2 (Hydragen oth
$E_n = -\frac{1}{n}$ $R_n = -\frac{1}{n}$	r. (l, m) , $l \leq n$
$ \begin{array}{c c} \hline V_{100} & \hline \end{array} $ $ \begin{array}{c c} \hline P_{100} & \hline \end{array} $ $ \begin{array}{c c} \hline P_{100} & \hline \end{array} $ $ \begin{array}{c c} \hline P_{100} & \hline \end{array} $ $ \begin{array}{c c} \hline P_{100} & \hline \end{array} $ $ \begin{array}{c c} \hline P_{100} & \hline \end{array} $ $ \begin{array}{c c} \hline P_{100} & \hline \end{array} $	r. (l, m), ·l≤n. dù fable.
You $P = \frac{E_n = -\frac{1}{n}}{2}$ Vioo $P = \frac{1}{n}$ $E_n = -\frac{1}{n}$ Quantum number $E_n = -\frac{1}{n}$ Pomment on period $E_n = -\frac{1}{n}$	r. (l, m), ·l≤n dù fable.
Comment on perio	$r. (l, m), l \leq n$

Made in U.S.A.

	5	12/ [
34 rotation:	$E_{\ell} = \frac{4}{100} L(l+1)$	I - moments of indica
Vibration:	$E_n = h \mathcal{V}(n + \frac{1}{2})$	point energy $\frac{1}{22}\sqrt{\frac{K}{m}}$ reduced mass.
	∑ rem	point energy I reduced mass.
• 3 melen	15 per molecule CO2	
		a sun makin shall
		mdamental modes asymmetric stretchi.
• Solid H	H H H H H H H	1.D
-	00000 kal	When you put a atoms close Your cannot be same
	E	Tooo - split. Celeation dass now more space
	n=2;	travel as a work.
@ ,	9ap.	$k_i = \frac{n\pi}{Na} (n = 0 \pm 1, \dots, \pm N)$
e & L = 2 x n	4a N	1 money of electrons
$k = \frac{27n}{Na}$	— one	To (Kx. kg. to. spin) -D 2N & states for
	# Cold	=) metalic
1		el in band en voe
	he core Lypically intereste	In something of the
Adon	nic vibrat. > 100	
FORM 7527 Reaver		$E = \hbar \omega (n + \frac{1}{2})$
Made in U.S.A.	= all atoms in one pend	W= COCK) Ldioperson.