

Seminar II: Deep Learning-based Natural Language Processing

"node2vec: Scalable Feature Learning for Networks"
Paper review

Contents

- 1. Introduction
 - Graphs
 - Graph Representation
 - BFS & DFS
 - Homophily & Structural Equivalence
 - Problem statement
 - Key Contribution
- 2. Methodology
 - Feature learning framework
 - Biased random walk
 - The node2vec algorithm
- 3. Results and Discussion
- 4. Conclusions

Introduction. Graphs

Data consist of

- Vertices (Nodes) V
- Edges (Connections) E (Directed or Undirected)

Words and images are a special case of graphs

Introduction. Graphs Representation

Most of the time: node representation

Source: Google Al blog

Left: The well-known <u>Karate</u> graph representing a social network.

Right: A continuous space embedding of the nodes in the graph using <u>DeepWalk</u>.

Introduction. Graphs Representation

The problem is graphs are not linear.

If we could sample multiple random linear sequence from graphs, then we could pass them to word2vec algorithm (etc. skip-gram).

Introduction. BFS & DFS

Suppose k is the size neighborhood = 3

BFS samples: $s_1 s_2 s_3$

DFS samples: s_4 s_5 s_6

BFS and DFS search strategies from node u (k = 3) Source: node2vec: Scalable Feature Learning for Networks

Introduction. Homophily & Structural Equivalence

Homophily: similar network clusters (ex: s_1 and u)

Structural equivalence: similar structural roles (ex: s_6 and u)

BFS closely lead to structural embeddings

DFS closely lead to homophily

BFS and DFS search strategies from node u (k = 3) Source: node2vec: Scalable Feature Learning for Networks

Introduction. Problem statement

PROBLEMS

- Unsupervised feature learning (e.g., PCA) suffer from computational costs because eigen decomposition is expensive
- If we turn a network into a ordered sequence of nodes, we can pass it to word2vec
- There are many possible sampling strategies
- The MAJOR GAP is that there is no flexibility in sampling nodes from a network

Introduction. Key Contribution

OBJECTIVE

To design a flexible sampling technique that is not tied to a particular sampling strategy and provides hyper-parameters to tune the explored search space.

Methodology - Feature learning framework

Let
$$G = (V;E)$$

Let
$$f: V \to \mathbb{R}^d$$

Every $u \in V$, $N_s(u) \subset V$ as a network neighborhood

Skip-gram architecture

$$\max_{f} \quad \sum_{u \in V} \log Pr(N_S(u)|f(u)).$$

Networks are not linear, and thus richer notion of a neighborhood is needed

 $N_{S}(u)$ -> vastly different structures depending on the sampling strategy S

Methodology - Biased random walk

2nd order random walk with two hyper-parameters p and q 2nd order means that it considers the previous state where it came from

Unnormalized transition probability:

$$\pi_{vx} = \alpha_{pq}(t, x) \cdot w_{vx}$$

$$\alpha_{pq}(t,x) = \begin{cases} \frac{1}{p} & \text{if } d_{tx} = 0\\ 1 & \text{if } d_{tx} = 1\\ \frac{1}{q} & \text{if } d_{tx} = 2 \end{cases}$$

Illustration of the random walk procedure in node2vec. The walk just transitioned from t to v and is now evaluating its next step out of node v. Edge labels indicate search biases

Source: node2vec: Scalable Feature Learning for Networks

Methodology - The node2vec algorithm

```
Algorithm 1 The node2vec algorithm.

LearnFeatures (Graph G = (V, E, W), Dimensions d, Walks per node r, Walk length l, Context size k, Return p, In-out q)

\pi = \operatorname{PreprocessModifiedWeights}(G, p, q)

G' = (V, E, \pi)

Initialize walks to Empty

for iter = 1 to r do

for all nodes u \in V do

walk = \operatorname{node2vecWalk}(G', u, l)

Append walk to walks
```

f = StochasticGradientDescent(k, d, walks)

return f

```
node2vecWalk (Graph G' = (V, E, \pi), Start node u, Length l)

Inititalize walk to [u]

for walk\_iter = 1 to l do

curr = walk[-1]
V_{curr} = \text{GetNeighbors}(curr, G')
s = \text{AliasSample}(V_{curr}, \pi)
Append s to walk

return walk
```

Results and Discussions

Complementary visualizations of Les Misérables coappearance network generated by node2vec with label colours reflecting homophily (top) and structural equivalence (bottom).

Source: node2vec: Scalable Feature Learning for Networks

Algorithm	Dataset			
	BlogCatalog	PPI	Wikipedia	
Spectral Clustering	0.0405	0.0681	0.0395	
DeepWalk	0.2110	0.1768	0.1274	
LINE	0.0784	0.1447	0.1164	
node2vec	0.2581	0.1791	0.1552	
node2vec settings (p,q)	0.25, 0.25	4, 1	4, 0.5	
Gain of node2vec [%]	22.3	1.3	21.8	

Macro-F1 scores for multilabel classification on BlogCatalog, PPI (Homo sapiens) and Wikipedia word cooccurrence networks with 50% of the nodes labelled for training.

Performance evaluation of different benchmarks on varying the amount of labelled data used for training. The x axis denotes the fraction of labelled data

Results and Discussions

(a). Parameter sensitivity (b). Perturbation analysis for multilabel classification on the BlogCatalog network.

Scalability of node2vec on Erdos-Renyi graphs with an average degree of 10.

Op	Algorithm	Dataset		
		Facebook	PPI	arXiv
- 	Common Neighbors	0.8100	0.7142	0.8153
	Jaccard's Coefficient	0.8880	0.7018	0.8067
	Adamic-Adar	0.8289	0.7126	0.8315
	Pref. Attachment	0.7137	0.6670	0.6996
	Spectral Clustering	0.5960	0.6588	0.5812
(a)	DeepWalk	0.7238	0.6923	0.7066
	LINE	0.7029	0.6330	0.6516
	node2vec	0.7266	0.7543	0.7221
	Spectral Clustering	0.6192	0.4920	0.5740
(b)	DeepWalk	0.9680	0.7441	0.9340
	LINE	0.9490	0.7249	0.8902
	node2vec	0.9680	0.7719	0.9366
	Spectral Clustering	0.7200	0.6356	0.7099
(c)	DeepWalk	0.9574	0.6026	0.8282
	LINE	0.9483	0.7024	0.8809
	node2vec	0.9602	0.6292	0.8468
<u> </u>	Spectral Clustering	0.7107	0.6026	0.6765
(d)	DeepWalk	0.9584	0.6118	0.8305
	LINE	0.9460	0.7106	0.8862
	node2vec	0.9606	0.6236	0.8477

Area Under Curve (AUC) scores for link prediction.
Comparison with popular baselines and embedding based
methods bootstapped using binary operators: (a) Average, (b)
Hadamard, (c) Weighted-L1, and (d) Weighted-L2

Conclusions

- BFS suitable for structural equivalences
- DFS suitable for homophiles clusters
- node2vec is both flexible and controllable exploring neighborhoods through parameters p and q