Университет ИТМО

Факультет программной инженерии и компьютерной техники Направление подготовки 09.03.04 Программная инженерия Дисциплина «Вычислительная математика»

Отчёт

Лабораторная работа №4 Вариант 10

Выполнил:

Сандов Кирилл Алексеевич

P3213

Преподаватель:

Машина Екатерина Алексеевна

Цель работы

Найти функцию, являющуюся наилучшим приближением заданной табличной функции по методу наименьших квадратов.

Аппроксимация заданной функции

$$y = \frac{18x}{x^4 + 10}, x \in [0; 4], h = 0.4$$

Таблица табулирования

Х	0	0.4	0.8	1.2	1.6	2.0	2.4	2.8	3.2	3.6	4.0
Υ	0	0.72	1.38	1.79	1.74	1.38	1.00	0.71	0.50	0.36	0.27

Линейная аппроксимация

SX = 0 + 0.4 + 0.8 + 1.2 + 1.6 + 2.0 + 2.4 + 2.8 + 3.2 + 3.6 + 4.0 = 22.0

SXX = 0**2 + 0.4**2 + 0.8**2 + 1.2**2 + 1.6**2 + 2.0**2 + 2.4**2 + 2.8**2 + 3.2**2 + 3.6**2 + 4.0**2 = 61.6

SY = 0 + 0.72 + 1.38 + 1.79 + 1.74 + 1.38 + 1.00 + 0.71 + 0.50 + 0.36 + 0.27 = 9.85

SXY = 0*0 + 0.72*0.4 + 1.38*0.8 + 1.79*1.6 + 1.74*2.0 + 1.38*2.4 + 1.00*2.8 + 0.71*3.2 + 0.50*3.6 + 0.36*3.6 + 0.27*4.0 = 20.29

{ 61.6a + 22b = 20.29

{ 22a + 11b = 9.85

a = 0.0335, b = 0.8284

 $P_1(x)=0.0335x+0.8284$

Х	0	0.4	0.8	1.2	1.6	2.0	2.4	2.8	3.2	3.6	4.0
Υ	0	0.72	1.38	1.79	1.74	1.38	1.00	0.71	0.50	0.36	0.27
P ₁ (x)	0.828	0.842	0.855	0.867	0.882	0.895	0.909	0.922	0.936	0.949	0.962
ϵ_i	0.828	0.124	-0.528	-0.92	-0.858	-0.489	-0.092	0.217	0.434	0.585	0.692

Вывод: исследуемая функциональная зависимость может быть приближенно описана линейной моделью

 $P_1(x)=0.0335x + 0.8284$, T.K. P1 (xi) ≈ Yi , ϵ i →min

Квадратичная аппроксимация

$$\sum_{i=1}^{n} x_{i} = 22.0$$

$$\sum_{i=1}^{n} x_{i}^{2} = 61.6$$

$$\sum_{i=1}^{n} x_i^3 = 193.6$$

$$\sum_{i=1}^{n} x_{i}^{4} = 648.525$$

$$\sum_{i=1}^{n} y_{i} = 9.85$$

$$\sum_{i=1}^{n} x_{i} y_{i} = 20.296$$

$$\sum_{i=1}^{n} x_{i}^{2} y_{i} = 39.046$$

$$\{ 11a_0 + 22a_1 + 61.6a_2 = 9.85 \}$$

$$\{ 22a_0 + 61.6a_1 + 193.6a_2 = 20.296$$

$$\{61.6a_0+193.6a_1+648.526a_3=39.046$$

$$a_0$$
=-1.193, a_1 =3.402, a_2 =-0.842

$$P_2(x) = -0.842x^2 + 3.402x - 1.193$$

Х	0	0.4	0.8	1.2	1.6	2.0	2.4	2.8	3.2	3.6	4.0
Υ	0	0.72	1.38	1.79	1.74	1.38	1.00	0.71	0.50	0.36	0.27
P ₂ (x)	-1.193	0.033	0.99	1.677	2.095	2.243	2.122	1.731	1.071	0.141	-1.058
ϵ_i	-1.193	-0.685	-0.394	-0.112	0.355	0.858	1.121	1.026	0.569	-0.223	-1.329

Вывод: исследуемая функциональная зависимость может быть приближенно описана выбранной моделью, т.к.

Среднеквадратичные отклонения

$$\delta = \sqrt{\frac{\sum_{i=1}^{n} (\varphi(x_i) - y_i)^2}{n}}$$

Для линейной аппроксимации: $\delta = 0.593$

Для квадратичной аппроксимации: $\delta=0.819$

У лин. аппроксимации значение меньше, значит, этот метод приблизил лучше.

Графики функций

Код программы

https://github.com/amphyxs/Computational-Math-2024/tree/mai n/P3213/Sandow_367527/lab4

Вывод

В результате выполнения данной лабораторной работы были изучены методы для нахождения аппроксимирующих функций, приближающим функцию, заданную множеством её точек.