Support Vector Regression

Performance indices for 1-5-day lead time forecasts for the WSVR-AU and WSVR models

Naraj		RMSE (cumecs)		Е					
Lead Time	WBANN	WSVR	WSVR-AU	WBANN	WSVR	WSVR-AU			
1	2247.9	1081.9	952.3	.93	0.98	0.98			
2	2921.6	2285.1	2028.4	.89	0.93	0.95			
3	3367.2	2871.7	2426.9	.85	0.89	0.92			
4	4850.9	3967.8	3105.6	.69	0.79	0.87			
5	4981.3	5161.9	3671.4	.68	0.65	0.82			

*WSVR= Wavelet based Support Vector Regression; WSVR-AU= Wavelet based Support Vector Regression with auto update

Hydrographs of observed and predicted discharge of testing dataset for Naraj using the WSVR-AU and WSVR models.

 $Scatter\ plots\ of\ observed\ and\ predicted\ discharge\ of\ testing\ dataset\ for\ Naraj\ using\ the\ WSVR-AU\ and\ WSVR\ models.$

Threshold statistics for WSVR-AU and WSVR models for testing period

TS%	1-d lead	2-d lead	3-d lead	4-d lead	5-d lead	1-d lead	2-d lead	3-d lead	4-d lead	5-d lead	1-d lead	2-d lead	3-d lead	4-d lead	5-d lead		
WSVR- AU	High Flows						Med. Flows					Low Flows					
5	50.0	50.0	50.0	50.0	0.0	64.5	45.2	29.0	29.0	25.8	21.1	21.1	18.4	23.7	18.4		
10	100.0	50.0	50.0	100.0	50.0	93.5	67.7	58.1	48.4	41.9	47.4	28.9	28.9	34.2	26.3		
20	100.0	50.0	100.0	100.0	100.0	100.0	90.3	83.9	74.2	64.5	65.8	55.3	47.4	36.8	39.5		
25	100.0	100.0	100.0	100.0	100.0	100.0	96.8	90.3	80.6	71.0	76.3	57.9	57.9	47.4	42.1		
50	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	96.8	96.8	94.7	78.9	73.7	65.8	63.2		
WSVR																	
5	50.0	50.0	0.0	0.0	0.0	51.6	22.6	19.4	16.1	12.9	15.8	10.5	7.9	7.9	0.0		
10	50.0	50.0	0.0	0.0	0.0	90.3	61.3	45.2	32.3	22.6	34.2	21.1	15.8	13.2	10.5		
20	100.0	50.0	50.0	50.0	0.0	100.0	90.3	77.4	61.3	45.2	73.7	52.6	31.6	18.4	18.4		
25	100.0	50.0	100.0	100.0	0.0	100.0	96.8	87.1	64.5	51.6	73.7	65.8	47.4	39.5	28.9		
50	100.0	100.0	100.0	100.0	100.0	100.0	100.0	96.8	93.5	83.9	94.7	78.9	73.7	65.8	57.9		

Distribution of forecast by WSVR-AU and SVR model errors across different error thresholds for 1-5 day lead time forecasts for low, medium and high flow profiles.

MATLAB IMPEMENTATION

1. Support Vector Regression

% example of a 2D Support Vector Regression

%------Data creation-----

x=trn;

y=tr_tr;

```
%------Parameter specifications------
C = 60;
lambda = 1.0;
epsilon = .001;
kerneloption = 01;
kernel='poly';
verbose=1;
[xsup, ysup, w, w0] = svmreg(x, y, C, epsilon, kernel, kerneloption, lambda, verbose); \\
xtest=tin;
ypred = svmval(xtest,xsup,w,w0,kernel,kerneloption);
2. Support Vector Regression with Auto Update
% example of a 2D Support Vector Regression with Auto Update
%-----Data creation-----
output=zeros(1)
for i=0:70
  q=423+i;
  z=424+i;
   k=tr_t(1:q,1);
   l = trn(1:q,1);
   tin=trn(z:z,1);
   for a=2:28
   ab=trn(1:q,a);
 l=cat(2,l,ab);
cd=trn(z:z,a);
tin=cat(2,tin,cd);
    end
```


Comparison of RMSE and E value of WSVR-AU and WSVR models

Multiple Linear Regression

Performance indices for 1-5-day lead time forecasts for the WMLR-AU and WMLR models

Naraj	•	RMSE (cumecs)	-	Е					
Lead Time	WBANN	WMLR	WMLR-AU	WBANN	WMLR	WMLR-AU			
1	2247.9	941.5	1033.4	.93	0.99	0.99			
2	2921.6	2141.9	2198.8	.89	0.94	0.94			
3	3367.2	2830.8	2798.3	.85	0.90	0.90			
4	4850.9	3803.3	3413.1	.69	0.81	0.85			
5	4981.3	4700.4	4065.9	.68	0.71	0.78			

*WMLR= Wavelet based MLR; WMLR-AU = Wavelet based MLR with auto update

Hydrographs of observed and predicted discharge of testing dataset for Naraj using the WMLR-AU and WMLR models.

Scatter plots of observed and predicted discharge of testing dataset for Naraj using the WMLR-AU and WMLR models.

Threshold statistics for WMLR-AU and WMLR models for testing period

TS%	1-d lead	2-d lead	3-d lead	4-d lead	5-d lead	1-d lead	2-d lead	3-d lead	4-d lead	5-d lead	1-d lead	2-d lead	3-d lead	4-d lead	5-d lead	
WMLR- AU	High Flows						Med. Flows					Low Flows				
5	50.0	50.0	0.0	50.0	0.0	61.3	35.5	25.8	35.5	19.4	26.3	13.2	5.3	7.9	5.3	
10	100.0	50.0	50.0	50.0	100.0	83.9	67.7	58.1	45.2	35.5	50.0	23.7	15.8	26.3	5.3	
20	100.0	50.0	50.0	100.0	100.0	100.0	90.3	77.4	67.7	48.4	71.1	44.7	36.8	31.6	31.6	
25	100.0	50.0	100.0	100.0	100.0	100.0	93.5	83.9	71.0	54.8	78.9	55.3	44.7	34.2	36.8	
50	100.0	100.0	100.0	100.0	100.0	100.0	100.0	96.8	93.5	93.5	94.7	81.6	71.1	60.5	65.8	
WMLR		,	•	•	,			•	•		·		•	,		
5	50.0	50.0	50.0	50.0	0.0	64.5	41.9	12.9	22.6	16.1	13.2	7.9	5.3	10.5	7.9	
10	100.0	50.0	50.0	50.0	0.0	93.5	67.7	51.6	41.9	25.8	31.6	21.1	10.5	13.2	10.5	
20	100.0	50.0	50.0	100.0	100.0	100.0	90.3	83.9	67.7	51.6	63.2	44.7	34.2	21.1	21.1	
25	100.0	50.0	100.0	100.0	100.0	100.0	93.5	87.1	71.0	61.3	78.9	55.3	42.1	23.7	28.9	
50	100.0	100.0	100.0	100.0	100.0	100.0	100.0	96.8	93.5	87.1	89.5	78.9	73.7	65.8	47.4	

Distribution of forecast by WMLR-AU and WLR model errors across different error thresholds for 1-5 day lead time forecasts for low, medium and high flow profiles.

MATLAB IMPLEMENTATION

1. Multiple Linear Regression

 $\begin{array}{l} v=mregress(target,trn_input,1) \\ m=size(v,1) \\ v1=v(2:m,1) \\ n=tst_input*v1 \end{array}$

output=n+v(1,1)

2. Multiple Linear Regression with Auto Update

output=zeros(1)

for i=0:122

```
q=346+i;
  z=347+i;
 k=target(1:q,1);
    l=trn_input(1:q,1);
tst_input=trn_input(z:z,1);
    for a=2:16
    ab=trn_input(1:q,a);
 l=cat(2,l,ab);
 cd=trn_input(z:z,a);
 tst_input=cat(2,tst_input,cd);
 end
v=mregress(k,l,1);
m=size(v,1);
v1=v(2:m,1);
z=q+1;
n=tst_input*v1;
output1=n+v(1,1);
output=cat(1,output,output1)
  end
```

Comparison of RMSE and E value of WMLR-AU and WSVR models

Example from other river system

 $Comparison \ of \ RMSE \ and \ E \ value \ of \ WSVR-AU, \ WSVR, \ WMLR-AU \ and \ WSVR \ models \ for \ \textbf{Kamla River} \ of \ North \ Bihar.$

