$$4.11. F(x) = \begin{cases} x - 1, x \in [-1,0), \\ \alpha, x = 0, \\ 5, x \in (0,1); \end{cases}$$
$$4.12. F(x) = \begin{cases} x + 2, x \in [-1,\frac{1}{2}), \\ \alpha, x = \frac{1}{2}, \\ 5, x \in (\frac{1}{2},1); \end{cases}$$

$$4.13. F(x) = \begin{cases} -1, x \in [-1,0), \\ \alpha, x = 0, \\ x^2 + 4, x \in (0,1); \end{cases}$$
$$4.14. F(x) = \begin{cases} x^2 - 2, x \in [-1,\frac{1}{3}), \\ \alpha, x = \frac{1}{3}, \\ x + 4, x \in (\frac{1}{3},1). \end{cases}$$

Тема 2. ЛЕБЕГОВСКОЕ ПРОДОЛЖЕНИЕ МЕРЫ. МЕРА В \mathbb{R}^n

Пусть задано множество X и $S \subset \mathscr{P}(X)$ – полукольцо его подмножеств, на котором задана мера m.

Определение 1. Мера μ , заданная на кольце \mathcal{K} называется npo- должением меры m, если $S \subset \mathcal{K}$ и для всех $A \in S$ выполняется равенство $\mu(A) = m(A)$.

Теорема 1. Пусть m – мера на полукольце $S \subset \mathcal{P}(X)$ и $\mathcal{K}(S)$ – минимальное кольцо, порожденное S. Тогда на $\mathcal{K}(S)$ существует единственная мера μ , являющаяся продолжением меры m. Если мера m на полукольце $S \subset \mathcal{P}(X)$ является σ -аддитивной, то ее продолжение также σ -аддитивная мера.

Пусть $\mathcal{K} \subset \mathscr{P}(X)$ – алгебра подмножеств множества X, m – σ -аддитивная мера на \mathcal{K} .

Определение 2. Внешней мерой множества $A \subset X$ называется число

$$\mu^*(A) = \inf_{A \subset \bigcup_{j=1}^{\infty} A_j, A_j \subset K} \sum_{i=1}^{\infty} m(A_j),$$

где нижняя грань берется по всевозможным конечным или счетным покрытиям множества A элементарными множествами A_i .

Свойство 1. Если $A \subset \mathcal{K}$, то $\mu^*(A) = m(A)$.

Свойство 2. Для всех $A\subset X$ $\mu^*(A)\geqslant 0$ и $\mu^*(\varnothing)=0.$

Свойство 3. Для всех $A, B \subset X$ и $A \subseteq B$ справедливо неравенство $\mu^*(A) \leqslant \mu^*(B)$.

Свойство 4. Внешняя мера счетно-полуаддитивна, т. е. для всех $B_1, B_2, \dots \subseteq X$ имеет место неравенство:

$$\mu^* \left(\bigcup_{k=1}^{\infty} B_k \right) \leqslant \sum_{k=1}^{\infty} \mu^*(B_k).$$

Свойство 5. Для всех $A, B, C \subset X$

$$\mu^*(A \triangle B) \leqslant \mu^*(A \triangle C) + \mu^*(B \triangle C).$$

Свойство 6. Для любых $A, B \subset X$

$$|\mu^*(A) - \mu^*(B)| \leqslant \mu^*(A \triangle B).$$

Определение 3. Внутренней мерой множества $A\subset X$ называется число

$$\mu_*(A) = \mu(X) - \mu^*(A).$$

Для всех $A \subset X$ имеет место неравенство $\mu_*(A) \leqslant \mu^*(A)$. Пусть m – полная, счетно-аддитивная, конечная мера.

Определение 4. Множество $A\subset X$ называется *измеримым по Лебегу* относительно меры m, заданной на алгебре множеств K, если выполняется равенство

$$\mu^*(A) + \mu^*(X \backslash A) = \mu(X).$$

Совокупность измеримых множеств обозначим Σ . Для измеримого по Лебегу множества определим меру

$$\mu(A) = \mu^*(A), \quad A \in \Sigma.$$

Теорема 2 (критерий измеримости множества). Пусть задано пространство (X, Σ, m) . Тогда для всех $A \subset X$ следующие утверждения эквивалентны:

1. измеримо по Лебегу относительно меры m;

2. для любого $\varepsilon > 0$ существует $B \in \mathcal{K}$ такое, что

$$\mu^*(A \triangle B) < \varepsilon.$$

Следствие 1. Множество $A\subset X$ измеримо, если для всех $\varepsilon>0$ существует измеримое множество B такое, что $\mu^*(A\triangle B)<\varepsilon$.

Теорема 3 (о σ -алгебре измеримых множеств). Совокупность Σ измеримых по Лебнгу множеств образует σ -алгебру множеств, содержащую исходную алгебру K. Сужение μ внешней меры μ^* на измеримые множества является мерой на Σ .

Следствие 2. Счетное пересечение измеримых множеств измеримо.

Мера m, заданная на алгебре K, называется nonhoй, если из $A \in \mathcal{K}$, $B \subset A$ и $\mu(A) = 0$ следует, что $B \in \mathcal{K}$ и m(B) = 0.

Одним из важнейших примеров меры является мера Лебега на числовой прямой.

Пусть X=[a,b) – некоторый фиксированный полуинтервал прямой, $S\subset \mathscr{P}(X)$ — полукольцо, состоящее из полуинтервалов $[\alpha,\beta)\subset X$. Пусть \mathcal{K} – алгебра подмножеств, порожденная полукольцом S, каждый элемент которой имеет вид $A=\coprod_{j=1}^n [\alpha_j,\beta_j)$, причем полуинтервалы в правой части попарно не пересекаются. Через m обозначим меру на алгебре \mathcal{K} , полученную продолжением меры с полукольца, т. е. $m(A)=\sum_{j=1}^n (\beta_j-\alpha_j)$. Для произвольного множества $A\subset [a,b)$

определим внешнюю меру $\mu^*(A)=\inf\sum_{j=1}^\infty (\beta_j-\alpha_j)$, где точная нижняя грань берется по всем таким наборам полуинтервалов $[\alpha,\beta)$, что $A\subset\bigcup_k [\alpha_k,\beta_k)$. Множество $A\subset X$ называется измеримым по Лебегу, если $\mu^*(A)+\mu^*(X\backslash A)=b-a$. Таким образом, мерой Лебега μ на отрезке называется лебеговское продолжение длины.

Рассмотрим измеримые по Лебегу линейные ограниченные множества:

1. Множество, состоящее из одной точки, измеримо и его мера равна нулю;

- 2. Всякое не более чем счетное ограниченное множество точек прямой измеримо и его мера равна нулю;
- 3. Любой промежуток измерим и его мера равна его длине;
- 4. Любое ограниченное открытое или замкнутое множество измеримо по Лебегу;
- 5. Любое ограниченное борелевское множество на прямой измеримо по Лебегу.

Часто приходится рассматривать меры, которые могут принимать и бесконечные значения. Ограничимся случаем σ -конечных мер.

Определение 5. Мера μ , принимающая бесконечные значения, называется σ -конечной, если существует последовательность множеств $A_1, A_2, \dots \in \mathcal{K}$ такая, что $A_1 \subseteq A_2 \subseteq \dots, \mu(A_i) < +\infty$ для всех i и

$$X = \bigcup_{i=1}^{\infty} A_i.$$

Если мера μ , заданная на алгебре $\mathcal K$ подмножеств X, σ -конечна, то X можно представить в виде объединения счетной системы попарно непересекающихся множеств конечной меры.

Рассмотрим теорию измеримости по Лебегу для произвольных (даже неограниченных) множеств на прямой. Длина как мера на $\mathbb R$ является σ -конечной, потому что

$$\mathbb{R} = \bigcup_{n=1}^{\infty} [-n,n) = \bigsqcup_{n=-\infty}^{\infty} [n,n+1).$$

Определение 6. Множество $A \subseteq \mathbb{R}$ называется измеримым по Лебегу, если для всех $n \in \mathbb{N}$ измеримо по Лебегу ограниченное множество $A \cap [-n,n)$ или $A \cap [n,n+1)$.

Совокупность всех измеримых подмножеств \mathbb{R} обозначим Σ . Обозначим через $A_n = A \cap [n, n+1)$. Тогда $A = \coprod_{n=1}^{\infty} A_n$ и $\mu(A) = \sum_{n=1}^{\infty} \mu(A_n)$. Если ряд расходится, то $\mu(A) = \infty$.

Утверждение 1. Совокупность Σ всех измеримых по Лебегу подмножеств R является σ -алгеброй.

Утверждение 2. Введенная функция $\mu(A)$ является σ -конечной мерой на σ -алгебре всех измеримых множеств на \mathbb{R} .

Пусть, как и при построении меры Лебега, X=[a,b) – фиксированный полуинтервал, $S\subset \mathscr{P}(X)$ – полукольцо, порожденное системой полуинтервалов $[\alpha,\beta)\subseteq [a,b)$. Пусть на [a,b) задана неубывающая ограниченная функция F(x). Определим меру элемента полукольца

$$m_F([\alpha,\beta)) = F(\beta) - F(\alpha).$$

Теорема 4. Для того, чтобы мера m_F была σ -аддитивной, необ-ходимо и достаточно, чтобы порождающая ее функция F(x) была непрерывной слева.

Пусть $\mathcal{K}(S)$ — кольцо, порожденное полукольцом с единицей S. Тогда для всех $A \in \mathcal{K}(S)$ имеет место представление:

$$A = \coprod_{i=1}^{n(A)} [\alpha_i, \beta_i] = \coprod_{i=1}^{n(A)} A_i, \quad A_i \in S.$$

Соответствующее продолжение меры на $\mathcal{K}(S)$ задается формулой

$$m_F(A) = \sum_{i=1}^{n} m_F(A_i).$$

Пусть μ_F^* — внешняя мера, построенная по мере m_F , заданной на алгебре \mathcal{K} . Продолжение меры m_F на σ -алгебру Σ измеримых относительно меры m_F множеств называется мерой Лебега-Стилтьеса, построенной по неубывающей функции F.

Очевидно, что μ_F — конечная полная мера. Если F(x)=x, то мера Лебега-Стилтьеса совпадает с мерой Лебега μ .

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

 $\Pi p \, u \, m \, e \, p \, 1$. Пусть $X = [0,1[\times [0,1[, S - \text{полукольцо прямоуголь- ников, принадлежащих } X, вида <math>T_{ab} = [a,b) \times [0,1)$. Определим меру таких прямоугольников как их площадь $m(T_{ab}) = b - a$. Найти внешнюю меру множества $A = \left\{ (x,y) \in X : 0 \leqslant x \leqslant 1, y = \frac{1}{2} \right\}$ и выяснить,