<u>TD2 - Sibilo</u>	Pt		A	3 C	D N	ote
1 Donner le nom de la boucle de régulation.	0,5	Α		T		0,5
2 Donner le nom de la grandeur réglée.	0,5	Α				0,5
3 Donner le nom de l'organe de réglage.	0,5	Α				0,5
4 Donner le nom de la grandeur réglante.	0,5	Α				0,5
5 Donner le nom d'une perturbation.	0,5	Α				0,5
6 Donner le nom des éléments intervenants dans la boucle de régulation.	0,5	Α				0,5
7 Sur la capture d'écran ci-dessus, donner la valeur de la consigne.	0,5	Α				0,5
8 Sur la capture d'écran ci-dessus, donner la valeur de la mesure.	0,5	Α				0,5
9 En déduire la valeur de l'erreur statique.	1	Α				1
10 Enregistrer la réponse du système à un échelon de commande de 5%.	1	D			(0,05
11 Le système est-il stable ?	1	В			(0,75
12 Le système est-il intégrateur ?	1	В			(0,75
13 Expliquer l'évolution de la mesure.	1	D			(0,05
14 Quelle sera la valeur de l'erreur statique en boucle fermée, pour une régulation proportionnelle ?	1	D			(0,05
15 Pourquoi ne peut-on pas utiliser une méthode de réglage en boucle ouverte ?	1	D			(0,05
16 Quel doit être le sens d'action du régulateur ? Justifier votre réponse.	1	Α				1
17 Enregistrer l'évolution de la mesure pour un gain égal au gain critique Ac.	1	D			(0,05
18 Donner la valeur du gain critique ainsi que celle de la période des oscillations.	1	Α				1
19 En déduire les réglages du régulateur PID.	1	В			(0,75
20 Enregistrer l'évolution de la mesure en réponse à un échelon de consigne de 5% avec les réglages précédemment déterminés.	1	Х				0
Mesurer les performances (temps de réponse à ±10%, valeur du premier dépassement) de votre réglage. Faire apparaitre les constructions sur l'enregistrement précédent.	1	Х				0
Déterminer des réglages du correcteur PID permettant une réponse à ±10% la plus rapide possible.	1					0
23 Enregistrer l'évolution de la mesure en réponse à un échelon de consigne de 5% avec les réglages précédemment déterminés.	1			T		0
Mesurer les performances (temps de réponse à ±10%, valeur du premier dépassement) de votre réglage. Faire apparaître les constructions sur l'enregistrement précédent.	1					0
25 Quelles sont les performances améliorées avec votre réglage par rapport à celui proposé par Ziegler&Nichols.	1					0

Sibilo

TD2 Steamer - Régulation à un élément

2

Dans un premier temps, installer le logiciel <u>steamer</u> sur votre ordinateur. Lancer le logiciel pour répondre aux questions suivantes :

Le <u>fichier aide</u> pour bien débuter.

I. Analyse de la boucle

Q1 : Donner le nom de la boucle de régulation.	0.5
Régulation de niveau	
Q2 : Donner le nom de la grandeur réglée.	0.5
Niveau d'eau dans la cuve	
Q3 : Donner le nom de l'organe de réglage.	0.5
Vanne LV	
Q4 : Donner le nom de la grandeur réglante.	0.5
Débit d'eau en entrée de la cuve	
Q5 : Donner le nom d'une perturbation.	0.5
Débit de vapeur envoyé à la turbine	
Q6 : Donner le nom des éléments intervenants dans la boucle de régulation.	0.5
LV,LIC,LT	

Q7 : Sur la capture d'écran ci-dessus, donner la valeur de la consigne.

50%

Q8 : Sur la capture d'écran ci-dessus, donner la valeur de la mesure.

50%

Q9 : En déduire la valeur de l'erreur statique.

1

II. Boucle ouverte

Attendre que la mesure se stabilise vers 50%, puis mettre le système dans l'état initial et manuel en cliquant sur les boutons :

On pourra régler le défilement sur 4s/carreau.

On pourra réinitialiser le graphe.

Q10: Enregistrer la réponse du système à un échelon de commande de 5%.

Q11 : Le système est-il stable ?

1

Non, la mesure sature.

oui

0

1

Q12 : Le système est-il intégrateur ?

Q13 : Expliquer l'évolution de la mesure.

1

La mesure diminue jusqu'à ce que le débit d'entrée arrive à la meme valeur que la commande, ensuite la mesure augmente jusqu'à saturation.

Q14 : Quelle sera la valeur de l'erreur statique en boucle fermée, pour une régulation proportionnelle?

1

Q15 : Pourquoi ne peut-on pas utiliser une méthode de réglage en boucle ouverte ?

1

En boucle ouverte, on peut faire varier uniquement la commande, il faut alors utiliser une boucle fermée

III. Réglage de la boucle - Méthode de Ziegler&Nichols Q16 : Quel doit être le sens d'action du régulateur ? Justifier votre réponse. Quand la commande augmente, la mesure augmente, procédé direct donc régulateur inverse. Q17 : Enregistrer l'évolution de la mesure pour un gain égal au gain critique A_c. Q18 : Donner la valeur du gain critique ainsi que celle de la période des oscillations.

Q20 : Enregistrer l'évolution de la mesure en réponse à un échelon de consigne de 5% avec les réglages précédemment

1

ac=35 tc=16s

déterminés.

xp=4.49 ti=8s td=2s

Q19: En déduire les réglages du régulateur PID.

Q21 : Mesurer les performances (temps de réponse à $\pm 10\%$, valeur du premier dépassement) de votre réglage. Faire apparaître les constructions sur l'enregistrement précédent.

?

1

Q24: Mesurer les performances (temps de réponse à $\pm 10\%$, valeur du premier dépassement) de votre réglage. Faire apparaître les constructions sur l'enregistrement précédent.

déterminés.

?

Q25 : Quelles sont les performances améliorées avec votre réglage par rapport à celui proposé par Ziegler&Nichols.

