"运动控制系统"设计仿真作业(一)

晶闸管供电的转速负反馈闭环直流调速系统采用PI控制,各环节的已知数据如下:

他励直流动机: $P_{N}=18kW$, $U_{N}=220V$, $I_{N}=94A$, $n_{N}=1000r/\min$, $R_{a}=0.2\Omega$;

晶闸管整流装置内阻 $R_{rec}=0.35\Omega$,触发整流环节的放大倍数 $K_s=40$,滞后时间常数 $T_s=0.0017s$;

电枢回路电磁时间常数 $T_{\rm i=0.017s}$,电力拖动系统机电时间常数 $T_{\rm m=0.08s}$,转速反馈系数 α =0.015V*min/r,对应额定转速时的给定电压 $U_n^*=15V$ 。

1) 采用MATLAB SIMULINK 建立该调速系统的仿真模型并仿真分析PI调节器的比例系数、积分系数的选择对系统动静态性能的影响; 2) 如何解决系统起动和堵转时电流过大的问题? 试进行仿真分析与研究。