Newtonian approximation in Causal Dynamical Triangulations

Adam Getchell

Contents

1	Motivation		1
	1.1	Newton's Law of Gravitation from General Relativity	1

1 Motivation

1.1 Newton's Law of Gravitation from General Relativity

Starting from the most general cylindrically symmetric (Weyl) metric [1]:

$$ds^{2} = e^{2\lambda} dt^{2} - e^{2(\nu - \lambda)} \left(dr^{2} + dz^{2} \right) - r^{2} e^{-2\lambda} d\phi^{2}$$
 (1)

$$g_{\mu\nu} = \begin{pmatrix} e^{2\lambda} dt^2 & 0 & 0 & 0\\ 0 & -e^{2(\nu-\lambda)} dr^2 & 0 & 0\\ 0 & 0 & -e^{2(\nu-\lambda)} dz^2 & 0\\ 0 & 0 & 0 & -\frac{r^2}{e^{2\lambda}} d\phi^2 \end{pmatrix}$$
 (2)

The definition of the Christoffel connection is: [2]

$$\Gamma^{\lambda}_{\mu\nu} = \frac{1}{2} g^{\lambda\sigma} \left(\partial_{\mu} g_{\nu\sigma} + \partial_{\nu} g_{\sigma\mu} - \partial_{\sigma} g_{\mu\nu} \right) \tag{3}$$

The non-zero Christoffel connections are:

$$\Gamma_{tr}^{t} = \partial_{r}\lambda
\Gamma_{tz}^{t} = \partial_{z}\lambda
\Gamma_{tt}^{r} = e^{4\lambda - 2v}\partial_{r}\lambda
\Gamma_{rr}^{r} = \partial_{r}v - \partial_{r}\lambda
\Gamma_{rz}^{r} = \partial_{z}v - \partial_{z}\lambda
\Gamma_{rz}^{r} = \partial_{z}\lambda - \partial_{z}v
\Gamma_{\phi\phi}^{r} = re^{-2v}(r\partial_{r}\lambda - 1)
\Gamma_{tt}^{r} = e^{4\lambda - 2v}\partial_{z}\lambda
\Gamma_{rz}^{r} = \partial_{z}\lambda - \partial_{z}v
\Gamma_{rz}^{r} = \partial_{z}\lambda - \partial_{z}v
\Gamma_{rz}^{z} = \partial_{r}v - \partial_{r}\lambda
\Gamma_{zz}^{z} = \partial_{r}v - \partial_{r}\lambda
\Gamma_{\phi\phi}^{z} = r^{2}e^{-2v}\partial_{z}\lambda
\Gamma_{\phi\phi}^{\phi} = r^{2}e^{-2v}\partial_{z}\lambda
\Gamma_{r\phi}^{\phi} = \frac{1}{r} - \partial_{r}\lambda
\Gamma_{z\phi}^{\phi} = -\partial_{z}\lambda$$
(4)

The components of the Riemann tensor are given by:

$$R^{\rho}_{\sigma\mu\nu} = \partial_{\mu}\Gamma^{\rho}_{\nu\sigma} - \partial_{\nu}\Gamma^{\rho}_{\mu\sigma} + \Gamma^{\rho}_{\mu\lambda}\Gamma^{\lambda}_{\nu\sigma} - \Gamma^{\rho}_{\nu\lambda}\Gamma^{\lambda}_{\mu\sigma} \tag{5}$$

Using the properties of the Riemann tensor:

$$R_{\rho\sigma\mu\nu} = -R_{\rho\sigma\nu\mu}$$

$$R_{\rho\sigma\mu\nu} = -R_{\sigma\rho\mu\nu}$$

$$R_{\rho\sigma\mu\nu} = R_{\mu\nu\rho\sigma}$$

$$R_{\rho[\sigma\mu\nu]} = 0$$
(6)

The non-zero components of the Riemann tensor are:

$$\begin{split} R_{rrr}^{l} &= -\partial_{r}^{2}\lambda + (\partial_{z}\lambda)^{2} - 2(\partial_{r}\lambda)^{2} + \partial_{r}\lambda\partial_{r}v - \partial_{z}\lambda\partial_{z}v \\ R_{rtz}^{l} &= -\partial_{r}\partial_{z}\lambda - 3\partial_{r}\lambda\partial_{z}\lambda + \partial_{r}\lambda\partial_{z}v + \partial_{r}v\partial_{z}\lambda \\ R_{ztz}^{l} &= -\partial_{z}^{2}\lambda - 2(\partial_{z}\lambda)^{2} + (\partial_{r}\lambda)^{2} - \partial_{r}\lambda\partial_{r}v + \partial_{z}\lambda\partial_{z}v \\ R_{\phi t\phi}^{l} &= re^{-2v}\left(r(\partial_{r}\lambda)^{2} - \partial_{r}\lambda + r(\partial_{z}\lambda)^{2}\right) \\ R_{zrz}^{r} &= \partial_{r}^{2}\lambda - \partial_{r}^{2}v + \partial_{z}^{2}\lambda - \partial_{z}^{2}v \\ R_{\phi z\phi}^{z} &= re^{-2v}\left(r\partial_{z}^{2}\lambda - r\partial_{z}\lambda\partial_{z}v + r\partial_{r}\lambda\partial_{r}v - r(\partial_{r}\lambda)^{2} + \partial_{r}\lambda - \partial_{r}v\right) \\ R_{\phi\phi r}^{z} &= re^{-2v}\left(-r\partial_{r}\partial_{z}\lambda + r\partial_{r}v\partial_{z}\lambda - r\partial_{r}\lambda\partial_{z}\lambda + r\partial_{r}\lambda\partial_{z}v - \partial_{z}v\right) \\ R_{\phi\phi r}^{\phi} &= \partial_{r}^{2}\lambda + \frac{1}{r}\partial_{r}v - \partial_{r}\lambda\partial_{r}v - (\partial_{z}\lambda)^{2} + \partial_{z}\lambda\partial_{z}v + \frac{1}{r}\partial_{r}\lambda \end{split}$$

The Ricci tensor is given by:

$$R_{\mu\nu} = R^{\lambda}_{\mu\lambda\nu} \tag{8}$$

The non-zero components of the Ricci tensor are:

$$R_{tt} = \frac{e^{4\lambda - 2v}}{r} \left(r \partial_r^2 \lambda + r \partial_z^2 \lambda + \partial_r \lambda \right)$$

$$R_{rr} = \partial_r^2 \lambda - \partial_r^2 v + \partial_z^2 \lambda - \partial_z^2 v - 2 (\partial_r \lambda)^2 + \frac{1}{r} \partial_r \lambda + \frac{1}{r} \partial_r v$$

$$R_{rz} = \frac{1}{r} \partial_z v - 2 \partial_r \lambda \partial_z \lambda$$

$$R_{zz} = \partial_r^2 \lambda - \partial_r^2 v + \partial_z^2 \lambda - \partial_z^2 v - 2 (\partial_z \lambda)^2 + \frac{1}{r} \partial_r \lambda - \frac{1}{r} \partial_r v$$

$$R_{\phi\phi} = r e^{-2v} \left(r \partial_r^2 \lambda + r \partial_z^2 \lambda + \partial_r \lambda \right)$$
(9)

Einstein's equation in a vacuum is:

$$R_{\mu\nu} = 0 \tag{10}$$

Applying this complete set of relations to Equation (9) gives the following:

$$\partial_r^2 \lambda + \frac{1}{r} \partial_r \lambda + \partial_z^2 \lambda = 0 \tag{11}$$

$$\partial_r \mathbf{v} = r \left(\partial_r^2 \mathbf{v} + \partial_z^2 \mathbf{v} + 2 \left(\partial_r \lambda \right)^2 \right) \tag{12}$$

$$\partial_z \mathbf{v} = 2r \partial_r \lambda \partial_z \lambda \tag{13}$$

$$\partial_r^2 v + \partial_z^2 v + (\partial_r \lambda)^2 + (\partial_z \lambda)^2 = 0$$
 (14)

Equation (11) is the two-dimensional Laplace equation in cylindrical coordinates, for which the known general solutions are:

$$\lambda(r,z) = \sum_{n=0}^{\infty} [A_n J_n(kr) + B_n Y_n(kr)] [C_n \sinh(kz) + D_n \cosh(kz)]$$
 (15)

Plugging Equation (14) into Equation (12) gives:

$$\partial_r \mathbf{v} = r \left((\partial_r \lambda)^2 - (\partial_z \lambda)^2 \right) \tag{16}$$

Using Equations (13), (15) and (16) we find solutions for ν given by:

$$v = \int r[\left((\partial_r \lambda)^2 - (\partial_z \lambda)^2\right) dr + (2\partial_r \lambda \partial_z \lambda) dz]$$
(17)

In principle, we have solutions for axially symmetric static vacuum spacetimes. We now wish to add matter. If the object is also axially symmetric and static, then we can consider solutions in the form of an external metric E and an internal metric I, where E is given by Equations (1), (15), and (17).

The solution of Laplace's equation for a point particle of mass m at $z=z_0$ is well known:

$$\lambda(r,z) = -\frac{m}{\sqrt{r^2 + (z - z_0)^2}}$$
 (18)

Likewise, we can easily verify for a single particle that the solution for v from Equations (17) and (18) is (setting integration constants equal to zero):

$$v(r,z) = -\frac{m^2 r^2}{\left(r^2 + (z - z_0)^2\right)^2}$$
 (19)

However, before we can consider this to be a complete solution we must consider elementary flatness. This condition requires that, for any infinitesimal spacelike circle, the ratio of circumference to radius is 2π . The most likely place to run into issues is along the z-axis, for which r=0. Looking back at Equation (1) we see that the necessary condition is:

$$\lim_{r \to 0} v = 0 \tag{20}$$

Consider the following diagram¹

Equation (17) includes a constant, which we can set by choosing that v = 0 at A. So, v = 0 along the z-axis from A' to A. The same applies from B to B'. Then our path ADB may be deformed into an infinite semicircle.

Now consider two bodies, as in the following diagram:

¹Adapted from Synge

Since solutions to Laplace's equation are linear, we have:

$$\lambda(r,z) = -\frac{m_1}{R_1} - \frac{m_2}{R_2} \tag{21}$$

Plugging this into Equation (17) yields:

$$v(r,z) = -\frac{m_1^2 r^2}{R_1^4} - \frac{m_2^2 r^2}{R_2^4} + \frac{4m_1 m_2}{(z_1 - z_2)^2} \frac{r^2 + (z - z_1)(z - z_2)}{R_1 R_2}$$
(22)

$$R_i = \sqrt{r^2 + (z - z_i)^2} \tag{23}$$

In this case, we expect v=0 along A'A and C'C as before. But there is no a priori reason to think that v=0 along B'B. This means that our vacuum solution fails along the z-axis. Therefore, there must be a strut of matter, i.e. a metric I such that $R_{\mu\nu} \neq 0$, along the z-axis B'B separating the two objects. This corresponds with the expectation that two masses will attract each other and not remain at rest.

Indeed, if we apply the condition that r = 0 we get:

$$v(0,z) = \frac{4m_1m_2}{(z_1 - z_2)^2} \tag{24}$$

Which means that in order for Equation (20) to hold, our strut must have:

$$v = -\frac{4m_1m_2}{(z_1 - z_2)^2} \tag{25}$$

To get the force on the strut, we can integrate the z-component of the stress-energy tensor over the area:

$$F_z = \int T_{zz} d\sigma \tag{26}$$

We can get the stress-energy tensor from Einstein's equation:

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = 8\pi G T_{\mu\nu} \tag{27}$$

We have all of the relevant components, except the Ricci scalar:

$$R = R^{\mu}_{\mu} = g^{\mu\nu}R_{\mu\nu} \tag{28}$$

Which is:

$$R = 2e^{2(\lambda - \nu)} \left(\partial_r^2 \nu + \partial_z^2 \nu - \partial_r^2 \lambda - \partial_z^2 \lambda + (\partial_r \lambda)^2 + (\partial_z \lambda)^2 - \frac{1}{r} \partial_r \lambda \right)$$
(29)

Since:

$$G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} \tag{30}$$

We get:

$$G_{zz} = (\partial_r \lambda)^2 - (\partial_z \lambda)^2 - \frac{1}{r} \partial_r \nu$$
 (31)

Thus:

$$T_{zz} = \frac{1}{8\pi G}(stuffhopefullyv) \tag{32}$$

References

- [1] J. L. Synge, Relativity: the general theory. North-Holland Pub. Co., 1960.
- [2] S. Carroll, *Spacetime and Geometry: An Introduction to General Relativity*. Benjamin Cummings, Sept. 2003.