Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної

техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 4 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження арифметичних

циклічних алгоритмів»

Варіант 3

Виконав студент	III-15, Борисик Владислав Гарасович
•	(шифр, прізвище, ім'я, по батькові)
Перевірив	
1 1	(прізвище, ім'я, по батькові)

Лабораторна робота №4 Дослідження арифметичних циклічних алгоритмів

Мета — дослідити особливості роботи арифметичних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

Варіант 3

Задача

Обчислити площу фігури S, обмежену функціями $fI(x) = -2 \cdot x^2 + 3x + 6$ і f2(x) = x + 2.

Постановка задачі

За умовою задачі потрібно знайти площу фігури (S), обмежену двома

функціями:
$$f1(x) = -2x^2 + 3x + 6$$
 і $f2(x) = x + 2$

Результатом розв'язку ϵ значення площі фігури (S).

Побудова математичної моделі

Складемо таблицю змінних

Змінна	Тип	Ім'я	Призначення
Початкова точка інтегрування	Цілий	a	Початкове дане
Кінцева точка інтегрування	Цілий	b	Початкове дане
Кількість парабол на відрізку інтегрування (точність)	Цілий	n	Початкове дане
Крок розбиття	Дійсний	h	Проміжне дане
Площа під квадратичною функцією	Дійсний	area_quadratic	Проміжне дане
Площа під лінійною	Дійсний	area_linear	Проміжне дане

функцією			
Площа, обмежена двома	Дійсний	final_area	Результат
функціями			

Для обчислення інтеграла функцій $f1(x) = -2x^2 + 3x + 6$ і f2(x) = x + 2

будемо використовувати метод парабол (метод Сімпсона). Ми використовуємо цей метод, тому що за допомогою нього можна найбільш точно обчислити інтеграл з мінімальною похибкою. Для обчислення інтеграла кожної функції будемо використовувати наступну формулу:

$$\int_{a}^{b} f(x)dx \approx \frac{h}{3} \left(f(x_0) + 4 \sum_{i=1}^{n} f(x_{2i-1}) + 2 \sum_{i=1}^{n-1} f(x_{2i}) + f(x_{2n}) \right)$$

- 1) Створюємо змінні a, b, n і присвоюємо їм значення: a = -1, b = 2, n = 10000 (тобто ми розбиваємо функцію на відрізку [-1;2] на 10000 менших парабол).
- 2) Створюємо змінну h і присвоюємо їй крок розбиття за формулою: (b-a)/n.
- 3) Створюємо змінну area_quadratic і присвоюємо їй значення функції на початку і кінці інтегрування.
- 4) За допомогою арифметичного циклу ітеруємось по квадратичній функції, крок ітерації буде h. В тілі циклу, за допомогою альтернативної форми оператора вибору, ми перевіряємо чи парний в нас крок. Якщо так множимо значення функції на разбитій параболі на 2, якщо ні множимо значення функції на разбитій параболі на 4. Пораховані значення додаємо до змінної area_quadratic.
- 5) Множимо змінну area_quadratic на h/3.
- 6) Створюємо змінну area_linear і присвоюємо їй значення функції на початку і кінці інтегрування.
- 7) За допомогою арифметичного циклу ітеруємось по лінійній функції, крок ітерації буде h. В тілі циклу, за допомогою альтернативної форми оператора вибору, ми перевіряємо чи парний в нас крок. Якщо так множимо значення функції на разбитій параболі на 2, якщо ні множимо значення функції на разбитій параболі на 4. Пораховані значення додаємо до змінної area_linear.
- 8) Множимо змінну area linear на h/3.

- 9) Створюємо змінну final_area і присвоюємо їй значення різниці area_quadratic і area linear.
- 10) Виводимо значення змінної final area.

Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

- Крок 1. Визначимо основні дії
- *Крок 2.* Створення змінних a, b, n і присвоєння їм значення: a = -1, b = 2, n = 10000
- *Крок 3*. Створення змінної h і присвоєння їй крок розбиття за формулою: (b-a)/n.
- Крок 4. Створення змінної area_quadratic і присвоєння їй значення функції на початку і кінці інтегрування.
- Крок 5. Додавання до змінної area_quadratic значення площі, в залежності від кроку.
- Крок 6. Множення змінної area quadratic на h/3.
- Крок 7. Створення змінної area_linear і присвоєння їй значення функції на початку і кінці інтегрування.
- Крок 8. Додавання до змінної area_linear значення площі, в залежності від кроку.
- Крок 9. Множення змінної area_linear на h/3.
- Крок 10. Створення змінної final_area і присвоєння їй значення різниці area_quadratic і area_linear.
- Крок 11. Виведення значення змінної final_area.

Псевдокод

Крок 1

Початок

Створення змінних a, b, n і присвоєння їм значення: a = -1, b = 2, n = 10000

Створення змінної h і присвоєння їй крок розбиття за формулою:

(b-a)/n.

Створення змінної area_quadratic і присвоєння їй значення функції на початку і кінці інтегрування.

Додавання до змінної area_quadratic значення площі, в залежності від кроку. Множення змінної area_quadratic на h/3.

Створення змінної area_linear і присвоєння їй значення функції на початку і кінці інтегрування.

Додавання до змінної area linear значення площі, в залежності від кроку.

Множення змінної area linear на h/3.

Створення змінної final_area і присвоєння їй значення різниці area_quadratic і area_linear.

Виведення значення змінної final_area.

Кінець

Крок 2

Початок

a := -1

b := 2

n = 10000

Створення змінної h і присвоєння їй крок розбиття за формулою:

(b-a)/n.

Створення змінної area_quadratic і присвоєння їй значення функції на початку і кінці інтегрування.

Додавання до змінної area_quadratic значення площі, в залежності від кроку.

Множення змінної area_quadratic на h/3.

Створення змінної area_linear і присвоєння їй значення функції на початку і

кінці інтегрування.

Додавання до змінної area linear значення площі, в залежності від кроку.

Множення змінної area_linear на h/3.

Створення змінної final_area і присвоєння їй значення різниці area_quadratic і area linear.

Виведення значення змінної final area.

Кінець

Крок 3

Початок

a := -1

b := 2

n = 10000

h := (b-a)/n

Створення змінної area_quadratic і присвоєння їй значення функції на початку і кінці інтегрування.

Додавання до змінної area_quadratic значення площі, в залежності від кроку. Множення змінної area_quadratic на h/3.

Створення змінної area_linear і присвоєння їй значення функції на початку і кінці інтегрування.

Додавання до змінної area linear значення площі, в залежності від кроку.

Множення змінної area_linear на h/3.

Створення змінної final_area і присвоєння їй значення різниці area_quadratic і area_linear.

Виведення значення змінної final_area.

Кінець

Крок 4

Початок

a := -1

b := 2

```
n:= 10000
```

h := (b-a)/n

area_quadratic := (-2 * pow(a,2) + 3*a + 6) + (-2 * pow(b,2) + 3*b + 6)

Додавання до змінної area quadratic значення площі, в залежності від кроку.

Множення змінної area quadratic на h/3.

Створення змінної area_linear і присвоєння їй значення функції на початку і кінці інтегрування.

Додавання до змінної area linear значення площі, в залежності від кроку.

Множення змінної area_linear на h/3.

Створення змінної final_area і присвоєння їй значення різниці area quadratic і area linear.

Виведення значення змінної final_area.

Кінець

```
Крок 5
```

Початок

```
a := -1
b:= 2
n:= 10000
h := (b-a)/n
area_quadratic := (-2 * pow(a,2) + 3*a + 6) + (-2 * pow(b,2) + 3*b + 6)
повторити
для і від -1 до n-1
якщо і % 2 == 0
```

T0

area_quadratic := area_quadratic + 2 * (-2 * pow(a+i*h,2) + 3*(a+i*h) + 6)

інакше

area_quadratic := area_quadratic + 4 * (-2 * pow(a+i*h,2) + 3*(a+i*h) + 6)

все якщо

все повторити

Множення змінної area quadratic на h/3.

Створення змінної area linear і присвоєння їй значення функції на початку і кінці інтегрування.

Додавання до змінної area linear значення площі, в залежності від кроку.

Множення змінної area linear на h/3.

Створення змінної final_area і присвоєння їй значення різниці area quadratic i area linear.

Виведення значення змінної final area.

Кінець

```
Крок 6
```

Початок

```
a := -1
b := 2
n = 10000
h := (b-a)/n
area_quadratic := (-2 * pow(a,2) + 3*a + 6) + (-2 * pow(b,2) + 3*b + 6)
повторити
для і від -1 до n-1
 якщо і % 2 == 0
    T0
       area quadratic := area quadratic + 2 * (-2 * pow(a+i*h,2) + 3*(a+i*h) + 6)
     інакше
       area_quadratic := area_quadratic + 4 * (-2 * pow(a+i*h,2) + 3*(a+i*h) + 6)
  все якщо
```

все повторити

area_quadratic := area_quadratic * (h/3)

Створення змінної area linear і присвоєння їй значення функції на початку і кінці інтегрування.

Додавання до змінної area linear значення площі, в залежності від кроку. Множення змінної area linear на h/3.

Створення змінної final_area і присвоєння їй значення різниці area quadratic і area linear.

Виведення значення змінної final area.

Кінець

```
Крок 7
Початок
  a := -1
  b := 2
  n = 10000
  h := (b-a)/n
  area_quadratic := (-2 * pow(a,2) + 3*a + 6) + (-2 * pow(b,2) + 3*b + 6)
  повторити
  для і від -1 до n-1
    якщо і % 2 == 0
       T0
         area_quadratic := area_quadratic + 2 * (-2 * pow(a+i*h,2) + 3*(a+i*h) + 6)
       інакше
         area_quadratic := area_quadratic + 4 * (-2 * pow(a+i*h,2) + 3*(a+i*h) + 6)
     все якщо
  все повторити
  area_quadratic := area_quadratic * (h/3)
  area linear := a + 2 + b + 2
  Додавання до змінної area linear значення площі, в залежності від кроку.
  Множення змінної area linear на h/3.
  Створення змінної final area і присвоєння їй значення різниці
  area quadratic i area linear.
   Виведення значення змінної final area.
```

```
Крок 8
Початок
  a := -1
  b := 2
  n := 10000
  h := (b-a)/n
  area_quadratic := (-2 * pow(a,2) + 3*a + 6) + (-2 * pow(b,2) + 3*b + 6)
  повторити
  для і від -1 до n-1
    якщо і % 2 == 0
       T0
         area_quadratic := area_quadratic + 2 * (-2 * pow(a+i*h,2) + 3*(a+i*h) + 6)
       інакше
         area_quadratic := area_quadratic + 4 * (-2 * pow(a+i*h,2) + 3*(a+i*h) + 6)
    все якщо
  все повторити
  area_quadratic := area_quadratic * (h/3)
  area\_linear := a + 2 + b + 2
  повторити
  для і від -1 до n-1
    якщо і % 2 == 0
       T0
         area_linear := area_linear + 2 * ((a+i*h) + 2)
       інакше
         area linear := area linear + 4 * ((a+i*h) + 2)
     все якщо
  все повторити
  Множення змінної area linear на h/3.
  Створення змінної final area і присвоєння їй значення різниці
```

area_quadratic i area_linear.

Виведення значення змінної final_area.

```
Крок 9
Початок
  a := -1
  b := 2
  n = 10000
  h := (b-a)/n
  area quadratic := (-2 * pow(a,2) + 3*a + 6) + (-2 * pow(b,2) + 3*b + 6)
  повторити
  для і від -1 до n-1
    якщо і % 2 == 0
       T0
         area_quadratic := area_quadratic + 2 * (-2 * pow(a+i*h,2) + 3*(a+i*h) + 6)
       інакше
         area_quadratic := area_quadratic + 4 * (-2 * pow(a+i*h,2) + 3*(a+i*h) + 6)
     все якщо
  все повторити
  area_quadratic := area_quadratic * (h/3)
  area\_linear := a + 2 + b + 2
  повторити
  для і від -1 до n-1
    якщо і % 2 == 0
       T<sub>0</sub>
         area_linear := area_linear + 2 * ((a+i*h) + 2)
       інакше
         area_linear := area_linear + 4 * ((a+i*h) + 2)
     все якщо
  все повторити
  area_linear:= area_linear * (h/3)
```

Створення змінної final area і присвоєння їй значення різниці area quadratic і area linear.

Виведення значення змінної final_area.

```
Крок 10
Початок
  a := -1
  b := 2
  n = 10000
  h := (b-a)/n
  area_quadratic := (-2 * pow(a,2) + 3*a + 6) + (-2 * pow(b,2) + 3*b + 6)
  повторити
  для і від -1 до n-1
    якщо і % 2 == 0
       T0
         area_quadratic := area_quadratic + 2 * (-2 * pow(a+i*h,2) + 3*(a+i*h) + 6)
       інакше
         area_quadratic := area_quadratic + 4 * (-2 * pow(a+i*h,2) + 3*(a+i*h) + 6)
    все якщо
  все повторити
  area_quadratic := area_quadratic * (h/3)
  area linear := a + 2 + b + 2
  повторити
  для і від -1 до n-1
    якщо і % 2 == 0
       T0
         area_linear := area_linear + 2 * ((a+i*h) + 2)
       інакше
         area_linear := area_linear + 4 * ((a+i*h) + 2)
```

```
все якшо
```

```
все повторити
```

```
area_linear:= area_linear * (h/3)
```

final_area := area_quadratic - area_linear

Виведення значення змінної final area.

Кінепь

```
Крок 11
```

Початок

```
a := -1
```

b := 2

n = 10000

h := (b-a)/n

area_quadratic := (-2 * pow(a,2) + 3*a + 6) + (-2 * pow(b,2) + 3*b + 6)

повторити

```
для і від -1 до n-1
```

якщо і % 2 == 0

T0

area_quadratic := area_quadratic + 2 * (-2 * pow(a+i*h,2) + 3*(a+i*h) + 6)

інакше

area_quadratic := area_quadratic + 4 * (-2 * pow(a+i*h,2) + 3*(a+i*h) + 6)

все якщо

все повторити

```
area_quadratic := area_quadratic * (h/3)
```

$$area_linear := a + 2 + b + 2$$

повторити

T0

 $area_linear := area_linear + 2 * ((a+i*h) + 2)$

інакше

$$area_linear := area_linear + 4 * ((a+i*h) + 2)$$

все якщо

все повторити

area_linear:= area_linear * (h/3)

final_area := area_quadratic - area_linear

Виведення значення змінної final_area.

Блок-схема алгоритму

Випробування алгоритму

Блок	Дія		
	Початок		
1	a := -1		
2	b := 2		
3	n := 10000		
4	h := 0.000299999999999999		
5	area_quadratic := 5		
6	area_quadratic := area_quadratic + 4 *		
	(-2 * pow(-1+(-1)* 0.000299, 2) +3*(-1+-1* 0.000299)+ 6)		
7	area_quadratic := area_quadratic + 2		
	* (-2 * pow(-1+0* 0.000299, 2) +3*(-1+0* 0.000299)+		
	6)		
10007	area_quadratic := 164989 * (0.000299/3)		
10008	area_linear := 5		
10009	area_linear := $5 + 4 * ((-1 + (-1) * 0.000299) + 2)$		
10010	area_linear := $8.9 + 2 * ((-1+0*0.000299) + 2)$		
•••			
20010	area_linear:= 74990* (0* 0.000299/3)		
20011	final_area := 16.5 - 7.5		
20012	Виведення final_area := 9		
	Кінець		

Висновок

Протягом четвертої лабораторної роботи я дослідив особливості роботи арифметичних циклів та набув практичних навичок їх використання під час складання програмних специфікацій. В результаті виконання роботи я отримав алгоритм, який обчислює площу фігури (інтеграл), яка обмежена двома функціями $f1(x) = -2x^2 + 3x + 6$ і f2(x) = x + 2.