0.1. Prerequisites

- $I \subset R$ is an ideal if $\forall (a, b) \in \mathbb{R}^2, ab \in I \Longrightarrow a \in I \lor b \in I$.
- I is maximal if $I \neq R$ and there is no ideal $J \subset R$ such that $I \subset J$.
- $p \in \mathbb{Z}$ is prime iff $\langle p \rangle = \langle p \rangle_{\mathbb{Z}}$ is a prime ideal.
- For commutative ring R:
 - $I \subset R$ is prime ideal iff R/I is an integral domain.
 - I is maximal iff R/I is a field.
- Let R be PID and $a \in R$ irreducible. Then $\langle a \rangle = \langle a \rangle_R$ is maximal.
- **Theorem**: let F be field, $f(x) \in F[x]$ irreducible. Then $F[x]/\langle f(x) \rangle$ is a field and a vector space over F with basis $B = \{1, \overline{x}, ..., \overline{x}^{n-1}\}$ where $n = \deg(f)$. That is, every element in $F[x]/\langle f(x) \rangle$ can be uniquely written as a linear combination

$$a_0 + a_1 \overline{x} + \dots + a_{n-1} \overline{x}^{n-1}$$

1. Divisibility in rings

1.1. Every ED is a PID

- Definition: let R integral domain. $\varphi: R \{0\} \to \mathbb{N}_0$ is Euclidean function (norm) on R if:
 - $\forall x, y \in R \{0\}, \varphi(x) \le \varphi(xy)$.
 - $\forall x \in R, y \in R \{0\}, \exists q, r \in R : x = qy + r \text{ with either } r = 0 \text{ or } \varphi(r) < \varphi(y).$
- R is Euclidean domain (ED) if a Euclidean function is defined on it.
- Examples of EDs:
 - \mathbb{Z} with $\varphi(n) = |n|$.
 - F[x] for field F with $\varphi(f) = \deg(f)$.
- Lemma: $\mathbb{Z}\left[-\sqrt{2}\right]$ is an ED with Euclidean function with

$$\varphi \Big(a+b\sqrt{-2}\Big)=N\Big(a+b\sqrt{-2}\Big)\eqqcolon a^2+2b^2.$$

• **Proposition**: every ED is a PID.

1.2. Every PID is a UFD

- **Definition**: Integral domain R is **unique factorisation domain (UFD)** if every non-zero non-unit in R can be written uniquely (up to order of factors and multiplication by units) as product of irreducible elements in R.
- Example: let $R = \{f(x) \in \mathbb{Q}[x] : f(0) \in \mathbb{Z}\}$. Its units are ± 1 . Any factorisation of $x \in R$ must be of the form f(x)g(x) where $\deg f = 1, \deg g = 0$, so x = (ax + b)c, $a \in \mathbb{Q}$, $b, c \in \mathbb{Z}$. We have bc = 0 and ac = 1 hence $x = \frac{x}{c} \cdot c$. So x irreducible if $c \neq \pm 1$. Also, any factorisation of $\frac{x}{c}$ in R is of the form $\frac{x}{c} = \frac{x}{cd} \cdot d$, $d \in \mathbb{Z}$, $d \neq 0$. Again, neither factor is a unit when $d \neq \pm 1$. So $x = \frac{x}{c} \cdot c = \frac{x}{cd} \cdot c \cdot c = \cdots$ can never be decomposed into irreducibles (the first factor is never irreducible).
- Lemma: let R be PID. Then every irreducible element is prime in R.
- **Theorem**: every PID is a UFD.
- Example: $\mathbb{Z}\left[\sqrt{-2}\right]$ so by the above theorem it is a UFD. Let $x, y \in \mathbb{Z}$ such that $y^2 + 2 = x^3$.

- y must be odd, since if $y = 2a, a \in \mathbb{Z}$ then $x = 2b, b \in \mathbb{Z}$ but then $2a^2 + 1 = 4b^3$.
- $y \pm \sqrt{-2}$ are relatively prime: if $a + b\sqrt{-2}$ divides both, then it divides their difference $2\sqrt{-2}$, so norm $a^2 + 2b^2 \mid N\left(2\sqrt{-2}\right) = 8$. Only possible case is $a = \pm 1, b = 0$ so $a + b\sqrt{-2}$ is unit. Other cases $a = 0, b = \pm 1, a = \pm 2, b = 0$ and $a = 0, b = \pm 2$ are impossible since y not even.
- If $a + b\sqrt{-2}$ is unit, $\exists x, y \in \mathbb{Z} : (a + b\sqrt{-2})(x + y\sqrt{-2}) = 1$. If $b \neq 0$ then $(-a^2 2b^2)y = 1 \Longrightarrow b = 0$: contradiction. If b = 0, $a = \pm 1$.

2. Finite field extensions

- **Definition**: let F, L fields. If $F \subseteq L$ and F and L share the same operations then F is a **subfield** of L and L is **field extension** of F (denoted L/F), and L is vector space over F with
 - $0 \in L$ (zero vector).
 - $u, v \in L \Longrightarrow u + v \in L$ (additivity).
 - $a \in F, u \in L \Longrightarrow au \in L$ (scalar multiplication).
- **Definition**: let L/F field extension. **Degree** of L over F is dimension of L as vector space over F:

$$[L:F]\coloneqq \dim_F(L)$$

If [L:F] finite, L/F is **finite field extension**.

- Example: $\mathbb{Q}\left(\sqrt{-2}\right) = \left\{a + b\sqrt{-2} : a, b \in \mathbb{Q}\right\}$ is isomorphic as a vector space to \mathbb{Q}^2 so is 2-dimensional vector space over \mathbb{Q} . Isomorphism is $a + b\sqrt{-2} \longleftrightarrow (a, b)$. Standard basis $\{e_1, e_2\}$ in \mathbb{Q}^2 corresponds to the basis $\left\{1, \sqrt{-2}\right\}$ in $\mathbb{Q}\left(\sqrt{-2}\right)$. $\left[\mathbb{Q}\left(\sqrt{-2}\right) : \mathbb{Q}\right] = 2$.
- **Example**: $[\mathbb{C} : \mathbb{R}] = 2$ (a basis is $\{1, i\}$). $[\mathbb{R} : \mathbb{Q}]$ is not finite, due to the existence of transcendental numbers (if α transcendental, then $\{1, \alpha, \alpha^2, ...\}$ is linearly independent).
- **Definition**: let L/F field extension. $\alpha \in L$ is **algebraic** over F if

$$\exists f(x) \in F[x] : f(\alpha) = 0$$

If all elements in L are algebraic, then L/F is algebraic field extension.

- **Example**: $i \in \mathbb{C}$ is algebraic over \mathbb{R} since i is root of $x^2 + 1$. \mathbb{C}/\mathbb{R} is algebraic since z = a + bi is root of $(x z)(x \overline{z})$.
- **Proposition**: if L/F is finite field extension then it is algebraic.
- **Definition**: let L/F field extension, $\alpha \in L$ algebraic. **Minimal polynomial** $p_{\alpha}(x) = p_{\alpha,F}(x)$ of α over F is the monic polynomial f of smallest degree such that $f(\alpha) = 0$.
- **Proposition**: $p_{\alpha}(x)$ is unique and irreducible. Also, if $f(x) \in F[x]$ is monic, irreducible and $f(\alpha) = 0$, then $f = p_{\alpha}$.
- Example:
 - $p_{i,\mathbb{R}}(x) = p_{i,\mathbb{Q}}(x) = x^2 + 1, \, p_{i,\mathbb{Q}(i)}(x) = x i.$
 - Let $\alpha = \sqrt[7]{5}$. $f(x) = x^7 5$ is minimal polynomial of α over \mathbb{Q} , as it is irreducible by Eisenstein's criterion with p = 5 and the above proposition.

• Let $\alpha = e^{2\pi i/p}$, p prime. α is algebraic as root of $x^p - 1$ which isn't irreducible as $x^p - 1 = (x - 1)\Phi(x)$ where $\Phi(x) = (x^{p-1} + \dots + 1)$. $\Phi(\alpha) = 0$ since $\alpha \neq 1$, $\Phi(x)$ is monic and $\Phi(x + 1) = ((x + 1)^p - 1)/x$ irreducible by Eisenstein's criterion with p = p, hence $\Phi(x)$ irreducible. So $p_{\alpha}(x) = \Phi(x)$.

2.1. Fields generated by elements

• **Definition**: let L/F field extension, $\alpha \in L$. The field generated by α over F is the smallest subfield of L containing F and α :

$$F(\alpha) = \bigcap_{\substack{K \text{ field,} \\ F \subseteq K \subseteq L, \\ \alpha \in K}} K$$

Generally, $F(\alpha_1,...,\alpha_n)$ is smallest field extension of F containing $\alpha_1,...,\alpha_n$

- We have $F(\alpha_1,...,\alpha_n) = F(\alpha_1)\cdots(\alpha_n)$ (show $F(\alpha,\beta) \subseteq F(\alpha)(\beta)$ and $F(\alpha)(\beta) \subseteq F(\alpha,\beta)$ by minimality and use induction).
- Definition: $F[\alpha]=\{\sum_{i=0}^n a_i\alpha^i: a_i\in F, n\in\mathbb{N}\}=\{f(\alpha): f(x)\in F[x]\}.$
- **Lemma**: let L/F field extension, $\alpha \in L$ algebraic over F. Then $F[\alpha]$ is field, hence $F(\alpha) = F[\alpha]$.
- Lemma: let α algebraic over F. Then $[F(\alpha):F]=\deg(p_{\alpha})$.
- **Definition**: let K/F and L/K field extensions, then $F \subseteq K \subseteq L$ are **tower of** fields.
- Tower theorem: let $F \subseteq K \subseteq L$ tower of fields. Then

$$[L:F] = [L:K] \cdot [K:F]$$