

Report No. FAA-RD-78-56, VII

TIME DEGRADATION FACTORS FOR TURBINE ENGINE EXHAUST EMISSIONS

VOLUME VII RB211-22B TEST DATA

MAY 1978

INTERIM REPORT

Document is available to the public through the National Technical Information Service.

Springfield, Virginia 22151

Prepared for

U. S. DEPARTMENT OF TRANSPORTATION

FEDERAL AVIATION ADMINISTRATION

Systems Research & Development Service Washington, D.C. 20599

JUC FILE COPY

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

				flex pont's Cotalog (Documentation Page
1	FAA-RD 76-56 11 - 7	77-	179-VOL-7	, or seem to consider	
ا	FANAL MANAGEMENT CONTRACTOR OF THE PARTY OF	housemaker		1	
4	Fide and Laborito	A COLUMN TO SERVICE OF THE SERVICE O		Hay 1978	
1	Time Degradation Factor			May 1978	- Coh
1	Exhaust Emissions, Volu	me VII. KI	BZ11-22B	Contract Services	ion Com
I,	SHIP WHEN CHURCH SHIP WAS AND THE PROPERTY OF THE PERSON O		0.	Performing Organization	on Report No.
7.	دسمه		(11)	FAA-NA-77-1	79
_			17	NREC - 1238	- 12
٧.	Performing Organisation Hame and Address Northern Research and E	ngineering	Corporation	Bad Market Control	- I describe the second
	219 Vassar Street			Contract or Grant the	
	Cambridge, Massachusett	s 02139	/ (15)	DOT_FA74NA-	1199/
				2,000	Print Colony
12.	Department of Transport	ation	CON	Interim Rep	
	FEDERAL AVIATION ADMINI		7	August 74	- June 77
	Systems Research and De	velopment	Service Ta	. Spensonny Agency C	And the second second second
	Washington, D. C. 20591				
18.	This investigation was	performed	under a contract	administra-	d h., ab-
	This investigation was National Aviation Facil	ities Fran	cimental Contract	Atlantic	to by the
1	New Jersey.	THES EXPE	Timelical celicer,	ACIONEIC LI	.,
=	Abarrast				
• '	this is the seventh vol degradation of turbine compilation of all emis development of degradat addition, the volume co	engine emi sion test ion factor ontains mai	ssions. This vo data and analysi s for the RB211- ntenance data fo	olume contains data used 228 engine to the test u	in the cype. In units
	ihis is the seventh vol degradation of turbine compilation of all emis development of degradat	engine emi sion test ion factor ontains mai esting, as	ssions. This vo data and analysi s for the RB211- ntenance data fo	olume contains data used 228 engine to the test u	in the cype. In units
	this is the seventh vol degradation of turbine compilation of all emis development of degradat addition, the volume co during the period of te fuel used in each test.	engine emi sion test ion factor ontains mai esting, as	esions. This voldata and analysis for the RB211- ntenance data for well as analyses	olume contains data used 228 engine to the test u	in the cype. In units oles of
	this is the seventh vol degradation of turbine compilation of all emis development of degradat addition, the volume coduring the period of te fuel used in each test.	engine emi sion test ion factor ontains mai esting, as	ssions. This vo	available to	In the cype. In units ples of
	this is the seventh vol degradation of turbine compilation of all emis development of degradat addition, the volume coduring the period of te fuel used in each test. **Top Monda** Aircraft Turbine Engine	engine emi sion test ion factor ontains mai esting, as	ssions. This vo	available to National Tech	Lucothe public chnical
	this is the seventh vol degradation of turbine compilation of all emis development of degradat addition, the volume co during the period of te fuel used in each test. Aircraft Turbine Engine Exhaust Emissions	engine emission test ion factor ontains mai esting, as	ssions. This vo	available to Service, Spr	Lucothe public chnical
	this is the seventh vol degradation of turbine compilation of all emis development of degradat addition, the volume coduring the period of te fuel used in each test. **Top Monda** Aircraft Turbine Engine	engine emission test ion factor ontains mai esting, as	ssions. This vo	available to Service, Spr	Lucothe public chnical
17.	this is the seventh vol degradation of turbine compilation of all emis development of degradat addition, the volume co during the period of te fuel used in each test. Aircraft Turbine Engine Exhaust Emissions	engine emission test ion factor ontains mai esting, as	ssions. This vo	available to Service, Spr	Lucothe public chnical
17.	This is the seventh vol degradation of turbine compilation of all emis development of degradat addition, the volume conduring the period of the fuel used in each test. Turbine Engine Exhaust Emissions Time Degracation factor	engine emission test ion factor ontains mai esting, as	2 60 18. Distribution Sizes Document is through the Information Virginia 22	John Service, Spr	Luco the public chnical ringfield,

. U. S. GOVERNMENT PRINTING OFFICE : 1473 175-104/336

TABLE OF CONTENTS

1.	INTRODUCTION
	1.1 Content of Volume
2.	ENGINE TEST AND MAINTENANCE CHRONOLOGY
3.	NOMENCLATURE
4.	EMISSIONS AND ANALYSIS DATA
	Baseline Test Series
	150 Hour Test Series
	300 Hour Test Series
	450 Hour Test Series
	600 Hour Test Series
5.	FUEL ANALYSIS DATA
6.	REFERENCES

DDC TAB Unannounced Justification	
Justification	
The second secon	
Ву	
Distribution/	
Availability C	odes
Avail and,	or
ist special	
A	

LIST OF FIGURES

Figure	١.	Estimated Total Air Flow versus EPR
		Estimated Engine Thrust versu Engine Pressure Ratio Characteristic
Figure :	3.	Estimated Engine Thrust versus Corrected High Rotor Speed in the Idle Regime
Figure	4.	Typical Production Engine Performance

1. INTRODUCTION

This is the seventh volume of an eight-volume report concerning the degradation of turbine engine emissions. This volume contains test data obtained for the RB211-22B engine type as installed on the L1011 aircraft. The engines, owned and operated by TWA, were tested in San Francisco by NREC personnel.

The other volumes of the report are listed below:

Volume 1 - Program Description and Results

Volume II - JT8D-9 Test Data

Volume III - JT8D-7 Test Data

Volume IV - JT3D-7 Test Data

Volume V - JT3D-3B Test Data

Volume YI - JT9D-3A Test Data

Volume VIII - CF700-2D Test Data

Regarding the test data, it should be noted that EPA test specifications were not followed where they conflicted with the interests of degradation testing. Hence, comparison of <u>absolute</u> emission levels presented in this report with EPA standards may be misleading.

1.1 CONTENT OF VOLUME

There are four sections that make up the volume: Engine Test and Maintenance Chronology; Nomenclature; Emissions and Analysis Data; and Fuel Analysis Data.

The Engine Test and Maintenance Chronology section contains a chronological, unit-by-unit, listing of noteworthy events occurring to a particular engine in the course of the program. This includes test dates, dutes and descriptions of maintenance, and the dates of installations onto other aircraft that may have occurred. If an engine was removed from the program, the date and reason are also included.

The Nomenclature section contains a listing and description of all the titles and column headings used in the two succeeding sections.

This includes all equations used in the various calculations.

The Emission and Analysis Data section includes all data gathered during a test, plus the results of any calculations performed on that data.

It consists of a number of tables arranged according to test series. For the RB211-22B engine there were five such series; Baseline; 150 Hour; 300 Hour; 450 Hour; and 600 Hour and Above. The hour designations represent the nominal value of time since baseline (TSB) for each engine tested. The actual values of TSB are scattered about the nominal values. Within each test series, the data is further subdivided into a table of data pertinent to an entire test for an engine and a series of seven tables for each of the eight modes tested. Thus there are a total of 57 tables for each test series. In addition, the section begins with a set of notes documenting the data.

The Fuel Analysis Data section contains a unit-by-unit listing of the results of analyses performed on samples of jet fuel used during the emission tests. During each engine test, a sample of fuel was taken from the same fuel tank as used during the test and subsequently analyzed. The results of the analyses include API gravity, hydrogen-carbon ratio and the percentages of paraffins, olefins and aromatics.

2. ENGINE TEST AND MAINTENANCE CHRONOLOGY

Unit No./ Serial No.	Date	! t em
1/4802		Original Test A/C No. 11020, Position No. 1
	6/1/76	Baseline Emission Test
	6/28/76	"150-Hour" Emission Test
	7/27/76	"300-Hour" Emission Test
	8/23/76	"600-Hour" Emission Test
2/4425		Original Test A/C No. 11020, Position No. 3
	6/1/76	Baseline Emission Test
	6/18/76	The following took place after numerous squaks pertaining to high oil temperature in the engine. On start of take-off roll engine had what sounded like a compressor stall. We closed the throttle and the engine got to 750 deg before shutdown. The engine was removed from the program.
3/4487		Original Test A/C No. 11027, Position No. 1
	.6/3/76	Baseline Emission Test
	6/13/76	Disc: Engine TGT was normal for first 2 1/2 hours then became erratic
		C/A: Replaced TGT indicator
	6/14/76	Disc: Same squak as above
		C/A: Cleaned TGT indicator connectors
	6/16/76	Disc: Same squak as above
		C/A: Replaced indicator
	6/18/76	C/A: Screws too long in panel on top of engine splitter are causing to wear on TGT leads, replaced screws.
	6/21/76	"150-Hour" Emission Test
	7/25/76	''300-Hour'' Emission Test
	8/7/76	"450-Hour" Emission Test
	9/2/76	"600-Hour" Emission Test
	9/11/76	Disc: Checked engine for puddling after flight termination
		C/A: Replaced engine per MI39-585, engine removed from program

- イスのノスないと、アイスの

Unit No./ Serial No.	Date	l tem
4/4454		Original Test A/C No. 11027, Position No. 3
	6/3/76	Baseline Emission Test
	6/21/76	"150-Hour" Emission Test
	7/25/76	"300-Hour" Emission Test
	8/7/76	1450-Hour'l Emission Test
	9/2/76	"600-Hour" Emission Test
	9/15/76	Disc: After take-off oil psi started dropping, then oil quantity dropped to zero. After T.O. AH synthetic oil smell was apparent 5 minutes before oil loss. Isolated duct and stopped smell. Shut down engine at 12452 - idled engine 1 min approx 20 psi. Engine windmilled 26 mins, zero quantity and 20 mins zero set
		C/A: Found main oil screen clogged. Replaced screen, completed M139-59A and performed test no. 9 (oil consumption) no oil consumed, also changed oil
	10/8/76	"750-Hour" Emission Test
5/4468		Original Test A/C No. 11002, Position No. 1
	6/11/76	Baseline Emission Test
	7/12/76	Engine removed from program
6/4429		Original Test A/C No. 11002, Position No. 3
0, 1.25	6/11/76	Baseline Emission Test
	7/20/76	Engine removed from program
7/4470		Original Test A/C No. 11019, Position No. 1
	6/14/76	Baseline Emission Test
	6/21/76	Disc: On engine start oil pressure lite came on as engine was started
		C/A: Changed main oil and scan screen
	7/11/76	''150-Hour'' Emission Test
	8/6/76	"450-Hour" Emission Test
	8/31/76	"600-Hour" Emission Test

Unit No./ Serial No.	Date	I tem
8/4814		Original Test A/C No. 11019, Position No. 3
	6/15/76	Baseline Emission Test
	7/2/76	Disc: Engine EPR reads low with all other parameters aligned
		C/A: Replaced EPR indicator
	7/11/76	"150-Hour" Emission Test
	7/30/76	All engine parameters low, with fuel control amp switch set to override, all engine parameters indicate power restored, engine removed from program, per M139-585.
9/4457		Original Test A/C No. 11031, Position No. 1
	6/15/76	Baseline Emission Test
	6/28/76	Engine removed from program
10/4898		Original Test A/C No. 11031, Position No. 3
	6/15/76	Baseline Emission Test
	6/26/76	Disc: Engine oil filter pressure lite on/off during take-off and early climb out. Temperature and quantity Ok.
		C/A: Replaced pressure and scavenger filters
	8/11/76	Disc: Parameter indicator readings fluctuating with fuel control amp switch set to over-ride. Fluctation did not drop.
		C/A: Replaced fuel flow regulator, same squak on JFK leg of flight. No maint action requested as per TWA directive MSL 7-99-C73 but MCI engineering department advised
	8/19/76	Disc: Engine oil filter lite on in climb out of LAX; went out in cruise
		C/A: Replaced main and scavenger oil filters
	8/19/76	"600-Hour" Emission Test
	8/21/76	Disc: Ergine EPR indication loss
		C/A: Replaced EPR indicator
	8/29/76	Disc: Engine very slow to start
		C/A: Replaced both ignition plugs

THE THE PARTY.

一年七七年

Unit No./ Serial No.	Date	Item
10/4898 Continued	9/16/76	Disc: Engine slow to light-off after ignition on
		C/A: Washed APU and changed P-3 filter and checked, OK for proper trim
	9/24/76	Disc: Engine reverser intransit lite on during flight
		C/A: Proximity sensor gap adjusted, same squak on next leg, corrected by switch adjustment
	10/7/76	"750-Hour" Emission Test
11/4489		Original Test A/C No. 11009, Position No. 1
	6/22/76	Baseline Emission Test
	7/4/76	On descent to JFK engine would not accelerate. Used handbook procedure, operation normal but the during taxi in - same thing.
		C/A: Changed FFR
	7/17/76	Disc: On take-off with throttle against stop, unable to obtain take-off power. Take- off power should be 1.538
		C/A: Replaced P4 filter assembly
	7/19/76	Same squak, uptrimmed 2 turns
	7/27/76	Same squak again, replaced amplifier and reads TGT
	8/2/76	"300-Hour" Emission Test
	8/10/76	Out of JFT at full no reduction thrust take-off no. 1 engine 0.03 EPR low at full throttle. All other instruments low. Normal power at all other settings.
		C/A: Uptrimmed at San Francisco
	8/11/76	Same complaint again, retrimmed again
	8/12/76	Similar complaint as above, replaced fuel flow regulator
	8/24/76	''450-Hour'' Emission Test
	9/15/76	"600-Hour" Emission Test

Unit No./ Serial No.	0210	14.00
	Date	I t em
12/4816		Original Test A/C No. 11009, Position No. 3
	6/22/76	Baseline Emission Test
	8/2/76	"300-Hour" Emission Test
	8/24/76	'450-Hour' Emission Test
	8/28/76	Engine generator bearing lite on, all other indications normal
		C/A: Replaced generator control unit
	9/1/76	Same squak again, replaced generator bearing unit again
	9/14/76	No ignition on engine during start until "Cont" ignition pushed, all other indications normal
		C/A: Replaced 'A' excitor unit and engine start normal
	9/15/76	"600-Hour" Emission Test
13/4495		Original Test A/C No. 11012, Position No. 1
	7/3/76	Baseline Emission Test
	7/5/76	Disc: EPR inoperative
		C/A: Replaced EPR transmitter
	7/6/76	Disc: N ₁ and N ₃ maximum indicator lites on and would not reset
		C/A: Replaced N, indicator, placard N ₃ indicator
	7/7/76	Replaced N ₃ indicator and removed placard
	7/11/76	Disc: N ₃ indicator fluctuates
		C/A: Replaced N ₃ indicator module, reset CB
	7/20/76	"150-Hour" Emission Test
	8/11/76	"300-Hour" Emission Test
	8/29/76	"450-Hour" Emission Test
	8/29/76	Disc: ISLN valve would not open after engine start. No air flow or flowbar. Pulling CB no help.
		C/A: Replaced ISLN valve
	9/23/76	''600-Hour'' Emission Test
14/4804		Original Test A/C No. 11012, Position No. 3
	7/3/76	Baseline Emission Test

Unit No./ Serial No.	Date	l tem
14/4804 Continued	7/13/76	Disc: Engine would not develop take-off thrust, reduced EPR was 0.502 and 0.480 was obtained with throttle on the stop. All other parameters also low. Engine operation in climb and cruise appears normal except throttle is 3/4 to 1 knob ahead of others. Take-off temperature 83 deg F alt 29.31
		C/A: Replaced engine lower tongue box and teleflex cable
	7/20/76	"150-Hour" Emission Test
	7/31/76	Disc: Engine oil found draining down from rear turbine
		C/A: Replaced scavange filter
	8/6/76	Changed N ₃ indicator and TGT indicator
	8/11/76	1300-Hour! Emission Test
	8/29/76	1450-Hour" Emission Test
	9/11/76	Engine AVM reads off scale in turbine position
		C/A: Changed vibration monitor
	9/12/76	Disc: Same squak as above
		C/A: Found AVM pickup mount bracket loose, secured same
	9/18/76	Above condition persisted thru 9/18/76 - engine placarded during this period and then a harness change was made and placard removed
	9/21/76	Engine AVM squak appeared again and the turbine AVM pickup was replaced
	9/23/76	Same squak again, replaced signal conditioner unit
	9/23/76	"600-Hour" Emission Test
15/4435		Original Test A/C No. 11004, Position No. 3
	7/9/76	Baseline Emission Test
	7/23/76	"150-Hour" Emission Test
16/4474		Original Test A/C No. 11008, Position No. 1
	7/30/76	Baseline Emission Test

Unit No./ Serial No.	Date	I tem
16/4474	8/25/76	"150-Hour" Emission Test
Continued	9/4/76	ACM growls loudly, changed ACM on 9/6/76
	10/5/76	1450-Hour" Emission Test
17/4.03		Original Test A/C No. 11008, Position No. 3
	7/30/76	Baseline Emission Test
	8/25/76	"150-Hour" Emission Test
	9/13/76	Replaced fuel quantity indicator
	9/23/76	Engine experienced a series of compressor stalls on descent. Changed engine and removed from program.
18/4801		Original Test A/C No. 11015, Position No. 1
	8/9/76	Baseline Emission Test
19/4479		Original Test A/C No. 11015, Position No. 3
	8/9/76	Baseline Emission Test
	8/30/76	Engine removed from program

3. NOMENCLATURE

Name	Symbol	Description	Unit
TSO	TSO	Time Since Overhaul	hrs
TSB	TSB	Time Since Baseline	hrs
AMB TEMP	Ta	Ambient temperature	deg R
AMB PRESS	r _a	Barometric pressure	in Hg abs
AMB HUMID	н	Ambient humidity	Itn H2O per Ibm dry air
MODE 1		Idle, initial - 23 per cent N ₁ nominal	
MODE 2		Idle 'plus", initial - 27 percent N	
MODE 3		Take-off - T.O. EPR from airline engine operating guide	
HODE 4		Climb - EPR corresponding to 85 per cent	
MODE 5		Intermediate - EPR corresponding to 60 per cent T.O. thrust	
MODE 6		Approach - EPR corresponding to 30 per cent T.O. thrust	
MODE 7		Idle "plus", final - see MODE 2	
MODE 8		Idle, final - see MODE 1	
NI SPEED	N ₁	Rotational speed of low pressure turbine, given as a percent of design speed (3900 rpm)	percent
N2 SPEED	N ₂	Rotational speed of intermediate pressure turbine, given as a percent of design speed (7000 rpm)	percent
N3 SPEED	N ₃	Rotational speed of high pressure turbine, given as a percent of design speed (10,600 rpm)	percent
CORR NI	N ₁ '	N ₁ speed corrected to standard ambient conditions (Ref 1)	percent

Name	Symbol	Description	Unit
CORR N2	N ₂ ¹	Corrected N ₂ speed (Ref 1) N ₂ ' = N ₂ × $\sqrt{518.7/T_a}$	nercent
CORR N3	N ₃ '	Corrected N ₃ speed (Ref 1) $N_3^{1} = N_3 \times \sqrt{518.7/T_a}$	percent
FUEL FLOW	F	Fuel Flow	1bm per hr
CB F/A	(F/A) _{CB}	Carbon balance fuel-air ratio (Ref 2, dry ba	sis)
		$(F/A)_{CB} = \frac{(12+a) \times 4.77(1+0.25a)}{(1+0.25a)(32+3.73\times28+0.04\times40)} \div$	
		$\left[\frac{\frac{100}{\text{CO+CO}_2 + \text{HC}_1}}{\frac{10^4}{10^4}} + 0.25a - \frac{1}{2} \left(\frac{\frac{\text{CO/10}^4}{\text{CO+CO}_2 + \text{HC}_1}}{\frac{\text{CO}}{10^4}}\right) - \frac{(1+4)^4}{\frac{\text{CO}_2}{10^4}}\right] - \frac{1}{2} \left(\frac{\frac{1}{10^4}}{\frac{\text{CO}_2}{10^4}} + \frac{1}{10^4}\right) - \frac{1}{2} \left(\frac{\frac{1}{10^4}}{\frac{\text{CO}_2}{10^4}} + \frac{1}{10^4}$	0.25a) HC/10 ⁴ 0+C0 ₂ +HC 04
		where a is the hydrogen-carbon ratio of the fuel as obtained in the fuel analysis (a mean value was used when the analysis was not available; amean =1.90)	
PERF F/A	(F/A) _{PF}	Performance fuel-air ratio where air flow is obtained from curve shown in Figure 1 and fuel flow is measured	
Π7	777	Exhaust gas temperature	deg R
EPR	EPR	Engine pressure ratio	
THRUST	ТН	Thrust, obtained from TH = TH'x($P_a/29.92$) (Ref 1)	lbf
CORR FU FL	F'	Corrected fuel flow (Ref 1)	lbm per hr
500 50 54	(= (1))	$F' = F \times (29.92/P_a) \times \sqrt{518.7/T_a}$ Corrected carbon balance fuel-air ratio	
COR CB F/A	(F/A)CB	Corrected carbon balance fuel-air ratio (Ref 1) (F/A) = (F/A) × (518.7/Ta)	
COR PF F/A	(F/A)	Corrected performance fuel-air ratio (Refl)	
		$(F/A)_{PF}^{1} = (518.7/T_a)$	

Figure 1. Estimated Total Air Flow versus EPR

Name	Symbol	Description	Unit
CORR TT7	т _{т7} '	Corrected exhaust gas temperature $T_{T7}' = T_{T7}^{\times} (518.7/T_a)$	deg R
COR THRUST	тн'	Corrected thrust (obtained from curve shown in Fig 2 for modes 3 through 6 and from the curve shown in Fig 3 for modes 1, 2, 7 and 8)	lbf ·
CO2 CONC	co ₂	Concentration of carbon dioxide	percent
CO CONC	со	Concentration of carbon monoxide	ppm
HC CONC	нс	Concentration of hydorcarbons (propane)	ppm
NO CONC	NO	Concentration of NO	ppm
NOX CONC	NO _x	Concentration of NO x	ppm
CO2 EI	EIco2	Emission index of carbon dioxide (Ref 3)	1bm per 1000
	-	$EI_{CO2} = \frac{M_{CO2} \times CO_2 \times 1000}{(M_C + a \times M_H)(\frac{CO}{10^4} + \frac{+CO_2 + HC}{10^4})}$ where: $M_C = \text{atomic weight of carbon}$ $M_{LL} = \text{atomic weight of hydrogen}$	
CO EI	Elco	$M_{H} = \text{atomic weight of hydrogen}$ $M_{CO2} = \text{molecular weight of } CO_{2}$ Emission index of carbon monoxide (Ref 3) $EI_{CO} = \frac{M_{CO} \times \frac{CO}{10^{4}} \times 1000}{(M_{C} + a \times M_{H}) \cdot \frac{CC}{10^{4}} + \frac{CO}{10^{4}}}$	1bm per 1000 1bm fuel
HC EI	E I HC	where: M_{CO} = molecular weight of CO Emission index of hydrocarbons (Ref 3) $EI_{HC} = M_{HC} \times \frac{HC}{10} \times 1000$ $\frac{(M_{r} + a \times M_{H}) (CO_{L} + CO_{2} + HC)}{(M_{r} + a \times M_{H}) (CO_{L} + CO_{2} + HC)}$ where: M_{HC} = molecular weight of methane	i b m per 1000 1bm fuel

Figure 3. Estimated Engine Thrust versus Corrected High Rotor Speed in the Idle Regime

. Name	Symbol	Description	Unit
NO EI	EI _{NO}	Emission index of NO (Ref 3) $EI_{NO} = \frac{{}^{M}_{NO_{2}} \times \frac{{}^{NO_{1}}_{10^{4}} \times 1000}{{}^{(M}_{C} + a \times {}^{M}_{H}) \cdot (\frac{{}^{CO}_{10^{4}} + {}^{CO}_{2} + \frac{{}^{HC}_{10^{4}}}{10^{4}})}$	1bm per 1000 1bm fuel
NOX EI	EI _{NOx}	where: M_{NO_2} = molecular weight of NO_2 Emission index of NO_x (Ref 3) $EI_{NO_x} = \frac{M_{NO_2}}{10^4} \times \frac{NO_x}{10^4} \times 1000$ $\frac{(M_C + a \times M_H)}{(M_C + a \times M_H)} \cdot \frac{(CO_1 + CO_2 + HC_4)}{10^4}$	lbm per 1000 lbm fuel
SMK NUMBER FRONT SIDE	SN	Smoke Number (Ref 3) SN = 100 x (1-RS/RW) where RS = smoke spot reflectance RW = reflectance of clean filter paper	
SMK NJMBER	SN'	Smoke Number corrected in manner shown in Appendix III of Volume I	lbm per 1000 lbm fuel
NREC CO EI	(EI _{CO}) _{std}	NREC corrected CO emission index (see Appendix II of Volume I) $(EI_{CO})_{std} = \frac{F_{CO}}{(F_{CO})_{std}} \times EI_{CO}$	1bm per 1000 1bm fuel
NREC HC EI	(EI _{HC}) _{std}	NREC corrected HC emission index (see Appendix II of Volume I) $(EI_{HC})_{std} = \frac{F_{HC}}{(F_{HC})} \times EI_{HC}$	1bm per 1000 1bm fuel
NRE CNO EI	(EI _{NOx}) _{std}	NREC corrected NO emission index (see Appendix II of Volume I) $(EI_{NO})_{std} = \frac{(F_{NO})_{std}}{F_{NO}} \times EI_{NO}$	lbm per 1000 lbm fuel

Name	Symbol	Description	
NR CNOX EI	(EI _{NOx}) _{std}	NREC corrected NO emission index (see Appendix II of Volume I)	lbm per 1000 lbm fuel
		$(EI_{NO_X})_{std} = \frac{(F_{NO})_{std}}{F_{NO}} \times EI_{NO_X}$	
FCO	Fco	CO emission factor	
		$F_{CO} = \left[\frac{P_{b,obs}}{P_{b,ref}}\right]^{3/4} \cdot \left[\frac{T_{b,obs}}{T_{b,ref}}\right]^{1/2} \cdot \frac{e^{T_{b,obs}}/(8 - F/A_{obs} \times 10^{4})}{e^{T_{b,ref}}/(8 - F/A_{ref} \times 10^{4})}$	
	1-15	where: B = 600 for modes 1,2,6,7,8	
		B = 525 for modes 3,4,5	
		ard $P_{b,ref} = P_{a,ref} \cdot f \left(\frac{N_2 \cdot ref}{\sqrt{\frac{T_{a,re}}{518.7}}}\right)$	<u>f</u>)
		$T_{b,ref} = T_{a,ref} \cdot f_2 \left(N_{2,ref} / \sqrt{\frac{T_{a,ref}}{518.7}} \right)$	f)
		$P_{b,obs} = P_{a,obs} \cdot f_1 \left(\frac{N_{2,obs}}{\sqrt{\frac{T_{a,obs}}{518.7}}} \right)$	
		$T_{b,obs} = T_{a,obs} \cdot f_2 \left(N_{2,obs} / \sqrt{T_{a,obs}} \right)$,
		where $f_1 = P_b/P_a$ and $f_2 = T_b/(T_a/518.7)$, and P_b and T_b are obtained from curves supplied by Rolls-Royce (1971) Ltd. (see Fig. 4)	
		Subscript "obs" refers to actual values or values observed for a particular test and mode.	
		Subscript "ref" refers to reference values, arbitrarily chosen as the average values for the baseline tests (and at take-off power where appropriate)	
		The reference values were:	
		F/A, _{ref} = 0.0180	
		N ₂ , ref = 6800 rpm	
		P_a , ref = 30.00 in Hg abs	
		^T a, ref = 520.0 deg R	

Figure 4. Typical Production Engine Performance

Name	Symbol	Description
FHC	F _{HC}	HC emission factor $F_{HC} = \begin{bmatrix} \frac{P_{b,obs}}{P_{b,ref}} \end{bmatrix}^{1.8} \begin{bmatrix} \frac{T_{b,obs}}{T_{b,ref}} \end{bmatrix}^{1/2}$ $= 0.00222 (T_{b,obs} - T_{b,ref})$
FNO	F _{NO}	NO emission factor $F_{NO} = \begin{bmatrix} P_{b,obs} \\ P_{b,ref} \end{bmatrix}^{1/2} \cdot e^{\{0.00267(T_{b,obs} - T_{b,ref}) - 19H\}}$
STD FCO -	(F _{CO}) _{std}	Corrected CO emission factor
		$(F_{CO})_{std} = \left[\frac{P_{b,std}}{P_{b,ref}}\right]^{3/4} \cdot \left[\frac{T_{b,std}}{T_{b,ref}}\right]^{1/2}$
		$\frac{e^{T_{b,std}/\{B-T_{a,std}(F/A_{obs}/T_{a,obs})\times 10^{4}\}}}{e^{T_{b,ref}(B-F/A_{ref}\times 10^{4})}}$
		where: B = 600 for modes 1,2,6,7,8 B = 525 for modes 3.4.5
		and Pb,std Pa,std fl N2,std Ta,std Tb,std Ta,std of 2 N2,std Ta,std The values of the engine operating parameters in the standardized emission factors may be obtained by assuming that corrected thrust remains constant. Therefore,
		$\frac{F/A}{T_a} \text{ and } \frac{N_2}{T_a}$ remain constant, and the equations for T_b , std and P_b , std should be modified to read: $P_b, \text{std} = P_a, \text{std} \cdot f_1 \left(\frac{N_2, \text{obs}}{\sqrt{\frac{T_a, \text{obs}}{518.7}}} \right)$ $T_b, \text{std} = f_2 \left(\frac{N_2, \text{obs}}{\sqrt{\frac{T_a, \text{obs}}{518.7}}} \right)$

Name	Symbol	Description
STD FCO Continued		Subscript "std" refers to standard day conditions (i.e., 518.7 deg R, 29.92 in Hg abs and 0.0 lbm H ₂ 0/lbm dry air), or a value corrected to standard day condition.
STD FHC	(F _{HC}) _{std}	Corrected HC emission index $ (F_{HC})_{std} = \begin{bmatrix} \frac{P_{b,std}}{P_{b,ref}} \end{bmatrix}^{1.8} \cdot \begin{bmatrix} \frac{T_{b,std}}{T_{b,ref}} \end{bmatrix}^{1/2} . $ $ 0.00222 (T_{b,ref})^{1.8} \cdot \begin{bmatrix} \frac{T_{b,std}}{T_{b,ref}} \end{bmatrix}^{1/2} . $
STD FNO	(F _{NO}) _{std}	e 0.00222 (T _{b,std} - T _{b,ref}) Corrected NO emission index
		$(F_{N0})_{std} = \left[\frac{P_{b,std}}{P_{b,ref}}\right]^{1/2} \cdot e^{0.00267(T_{b,std}-T_{b,ref})}$
API		Specific gravity of jet fuel measured at 60 deg F using "Relative Density or Density of Liquid-Balance Method" and converted to API gravity using a conversion table.
H/C RATIO	a	Hydrogen-carbon ratio as determined using a Sanda-Carlo Erba Model 1100 elemental analyzer and the indium sample encapsulation technique.
FIA		Fluorescent Indicator Adsorption - Fuel samples were analyzed for paraffin, olefin, and aromatic content using the ASTM Method D1319-70.

4. EMISSIONS AND ANALYSIS DATA

The data which appears on the following pages consists of actual test data as well as calculated values which were used for analysis purposes. In examining this data, certain points should be noted, as listed below:

- Data has been rounded off to no more than 4 significant figures.
- 2. In some instances, the NO analyzer gave higher readings than the NO_X analyzer. In these cases, the NO_X emission index and the NREC corrected emission index were set equal to the corresponding NO values. The NO_X concentration and the FAA corrected emission index were not changed.
- In certain tests, smoke data could not be obtained for a particular mode. Values of 0.0 are printed in the tables for these cases.
- 4. The CO results for modes 3 through 5 of the Baseline test of unit 19 were unusually high. There is no present explanation for this and the data was not used for analysis purposes.
- 5. The calibration gas concentrations for NO and NO_X were questionable for the nominal 50-ppm bottle for tests conducted between October 10, 1975 and June 14, 1976; and for the nominal 200 ppm bottle for tests conducted between November 18, 1975 and April 22, 1976. The test data was processed in two different ways: the first assuming the stated concentrations were correct; and the second using calculated values for the concentrations. This is discussed in detail in Appendix IV of Volume 1. In the following tables, the concentrations and emission indices of NO and NO_X are based on the stated calibration gas concentrations, while the NREC corrected emission indices are based on the calculated values.

6. The following items of data were found to be erroneous and were changed in the data base:

Unit Number	Test Series	Mode	Quantity
1	"Baserine"	8	N3
1	"600-Hour"	1	N3
3	"Baseline"	8	N3, Fuel Flow
3	"600-Hour"	3	Fuel Flow
6	"Baseline"	4	EGT
7	"600-Hour"	2,7	N2
9	"Baseline"	8	Fuel Flow
11	"450-Hour"	2	N3
12	"300-Hour"	8	Fuel Flow
12	"600-Hour"	2	N3
16	"150-Hour"	7	N3

R9211-228 . BASELINE TEST SERIES .

UNIT	TSO MR	TSB HR	AMR TEMP	AMB PRESS IN HG	AMR HUMID
1	2794.	0.	525.7	30.07	.007200
5	5934.	0.	525.7	30.07	.007200
3	3018.	0.	523.7	30,00	.006550
4.	5097.	0.	523.7	30.00	.006550
5	3983.	0.	524.7	30.08	.008600
6	4928.	0.	524.7	30.08	.008600
7	4405.	0.	543.7	29.90	.006A30
8	1551.	0.	543.7	29.90	.006830
9	5429.	0.	543.7	29.90	.0061A0
10	3713.	0.	543.7	29.90	.006180
11	2941.	0.	526.7	50*00	.0075A0
15	A59.	0.	526.7	29.99	.007580
13 -	2889.	0.	524.7	30.05	.009220
14	1375.	0.	524.7	30.05	.009220
15	2410.	0.	527.7	30.0A	.009140
16	3372.	0,	523.7	29.96	.008870
17	6295.	. 0.	523.7	29.96	.008870
18	2715.	0.	526.7	29.92	.010060
19	4095.	0.	526.7	59.95	.010060

RB211-22B . BASELINE TEST SERIES .

MODE 1

UNIT	N1 SPEED PER CENT	NZ SPEED PER CENT	N3 SPEED PER CENT	CORR N1 PER CENT	CORR N2 PER CENT	CORR N3 PER CENT
1	25.00	46.00	63.00	24.83	45.69	62.58
2	-26.50	-49.50	-64.75	-26.32	-49.17	-64.32
3	-27.50	44.50	62.00	-27.37	44.29	61.70
4	24.00	45.00	63.00	23.89	44.78	62.70
5	25.00	46.00	64.00	24.86	45.74	43.63
6	23.00	44.00	62.00	22.87	43.75	61.64
7	24.00	46.00	64.00	23.44	44.93	62.51
8	25.00	-48.00	-65.00	24.42	-46.RB	63.49
9	24.00	45.00	63,50	23.44	43.95	45.05
10	-26.00	-49.00	-65.00	-25.40	-47.86	63.49
11	25.00	46.00	63.25	24.81	45.65	62.77
12	23.00	45.00	62.50	25.85	44.66	62.02
13	24.00	45.00	63.00	23.86	44.74	42.64
14	24.00	44.00	62.50	23.86	43.75	62.14
15	22.00	-41.50	61.00	21.81	-41.14	60.48
16	23.00	44.00	62.00	22.89	43.79	61.70
17	22.00	43.00	61.00	21.89	42.79	60.71
18	-27.00	47.00	64.00	-26.79	46.64	63.51
19	-26.00	47.00	-65.00	-25.80	46 : 54	-64.50

RB211-228 * BASELINE TEST SERIFS *

MODE 1

UNIT	FUEL FLOW LRM/HR	CR F/A X100	PERF F/A	TT7 DEG R	EPR	THRUST LRF
1	-1800.	.8390	9800	1045.	1.030	2802.
5	-1700.	.8330	9260	1064.	1.030	-3243.
3	1600.	.8070	.8710	1063.	1.028	2634.
4	1500.	.8070	.8170	1032.	1.029	2832.
5	1600.	.8210	.8710	1050.	1.029	3060.
6	1600.	.8210	.8710	1050.	1.030	2615.
7	1540.	.8210	.8610	1077.	1.018	2804.
A	1600.	.8400	.8710	1086.	1.016	1039.
9	1600.	.8630	.8710	106A.	1.025	2706.
10	-1800.	.8920	-,9800	1086.	1.022	3039.
11	-1700.	.8540	-,9260	1063.	1.023	2847.
12	1500.	.8620	.8170	1050.	1.023	2698.
13	1500.	9660	.8170	1064.	1.030	2816.
14	1550.	.8290	.8440	1032.	1.015	2717.
15	1500.	.8290	.8170	1054.	1.010	23/3.
16	1600.	9580	.8710	-1104.	1.025	2637.
17	1500.	.8860	.8170	1050.	1.025	2438.
18	1600.	.8870	.8710	1068.	1.025	3044.
19	-1700.	9090	9260	1068.	1.025	-3310.

RB211-228 . BASELINE TEST SERIES .

MODE 1

UNIT	CORR FU FL LBM/HR	COR CB F/A C X100	COR PF F/A (CORR TT7 COR	THRUST LBF
1	-1821.	.8270	9670	1031.	2816•
2	-1720.	.8210	9140	1053.	-3260.
3	1612.	.7990	.8630	1053.	2641.
4	1511.	.7990	.8090	1022.	2840.
5	1618.	.8120	.9610	1038.	3076.
6	1618.	.8120	.9610	1038.	2629.
7	1617.	.7830	.8210	1027.	2802.
8	1637.	.8020	.8310	1036.	3037•
.9	1637.	.8240	.8310	1019.	2705.
10	-1842.	.8510	9350	1036.	3037.
11	-1717.	.8410	9120	1047.	2854.
12	1515.	.8490	.8050	1034.	2705.
13	1515.	9550	.8080	1052.	2828•
14	1566.	.8200	.8350	1020.	2728.
15	1521.	.8150	.8030	1036.	2396.
16	1610.	-,9490	.8630	-1093.	2641.
17	1509.	.8780	.8090	1040.	2442.
18	1612.	.8740	.8580	1051.	3044.
19	-1713.	8950	9120	1051.	-3310.

RB211-22B . BASELINE TEST SERIES .

40DE 1

UNIT	CO2 CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
1	1.529	836.0	478.2	8.1	12.9
2	1.515	-726.0	519.5	-12.2	-15.7
3	1.443	908.3	524.4	4.9	11.5
4	1.477	A59.9	427.R	6.6	12.6
5	1.490	871.2	489.6	8.7	12.1
6	1.481	888.3	512.1	8.0	11.1
7	1.551	760.3	-324.8	4.5	12.0
8	1.588	-715.3	-351.1	8.1	13.4
9	1.599	878.0	414.9	5.7	12.1
10	-1.689	784.3	-353.7	8.7	13.9
11	1.585	794.3	418.5	7.1	12.9
12	1.569	862.8	507.0	6.5	12.8
13	-1.934	787.3	381.7	6.6	13.0
14	1.514	830.3	466.4	6.0	9.3
15	1.475	848.7	518.6	4.8	8.4
16	-1.775	870.8	493.0	-9.5	12.7
17	1.595	-943.1	561.1	6.2	10.0
18	1.649	-754.5	445.9	8.8	-15,2
19	-1.679	898.4	451.1	7.9	13.8

RR211-228 * BASELINE TEST SERIES *

MODE 1

UNIT	CO2 ET	CO ET	HC EI LB/KLR FU	NO EI LB/KLB FU	NOX EI	SMK NUMBER FRONT SIDE
1	2752.	95.75	94.10	1.52	2.42	0.00
5	2746.	83.78	102.98	-2.32	-2.93	0.00
3	2701.	108.20	107.30	•95	2.25	0.00
4	2764.	102.41	87.52	1.29	2.46	0.00
5	2740.	101.91	98.39	-1.6A	2.32	0.00
6	2724.	103.99	102.99	1.54	2.14	0.00
7	-2849.	88,89	-65.24	.87	2.31	0.00
8	-2850.	-81.72	-68.90	1.51	2.52	0.00
9	2794.	97.65	79.29	1.05	2.21	0.00
10	-2853.	84.33	-65.33	1.54	2.46	0.00
11	26	89,35	80.86	1.32	2.39	0.00
12	2746.	96.10	97.00	1.18	2.33	0.00
13	-2859.	-78.13	-65.08	1.07	2.12	0.00
14	2755.	96.16	92.79	1.15	1.77	0.00
15	2773.	98.36	103.27	•91	1.61	0.00
16	2793.	87.18	84.80	1.56	2.09	0.00
17	2716.	102.19	104.44	1.10	1.78	0.00
18	2803.	-81.62	88.58	1.56	-2.70	0.00
19	2785.	94.84	81.82	1.37	2.39	0.00

RB211-228 + DASELINE TEST SERIES +

MODE 1

UNIT	FC0 X100	FHC ×100	FN0 X100	STO FCO X100	STO FHC X100	STD FNO X100
1	1.3980	•6020	3.6740	1.3500	.57A0	4.0390
2	-1.6450	8110	-4.3470	-1.5880	7790	-4.7710
.3	1.2700	.5180	3.3980	1.2410	.5040	3.7180
4	1.3060	.5440	3.4960	1.2750	•5300	3.8450
5	1.3880	.6020	3.5660	1.3460	.5810	4.0470
6	1.2450	.4950	3.1910	1.2080	.4770	3.6250
7	1.4270	.5990	-3.9180	1.2800	.5380	3.8760
8	-1.5860	7170	-4.3390	1.4190	6420	-4,2790
9	1.3680	.5430	3.7460	1.2260	.4870	3.6670
10	-1.6910	7800	-4.6100	-1.5080	6980	-4.4850
11	1.4040	•5990	3.6560	1.3520	.5760	4.0300
12	1.3340	.5440	3.4610	1.2850	.5230	3.8170
13	1.3760	.5460	3.3370	1.3340	.52A0	3.8350
14	1.2470	.4940	3.1520	1.2110	.4770	3.6250
15	-1.0830	3790	-2.7540	-1.0390	3620	-3.1130
16	1.2920	.4910	3.1580	1.2620	.4790	3.6330
17	1.1930	.4430	2.9810	1.1660	.4320	3.4310
18	-1.4870	.6520	3.6580	-1.4340	.6290	4.2300
19	-1.4970	.6520	3.6580	-1.4430	.6290	4.2300

RB211-22B + BASELINE TEST SERIES +

MODE 1

UNIT				NR CNOX EI	
	LB/KLB FU	LB/KLB FU	LB/KLB FU	LB/KLR FU	CORRECTED
1	99.15	97,93	1.79	2.86	0.00
2	-86.83	107.28	-2.73	-3.51	0.00
3	110.79	110.20	1.12	2.66	0.00
4	104.87	89.90	1.53	2.91	0.00
5	105.08	102.01	-2.04	2.82	0.00
6	107.16	106.73	1.87	2.61	0.00
7	99.12	-72.70	.93	2.45	0.00
8	91.34	76,92	1.49	2.49	0.00
9	108.91	88,26	1.02	2.16	0.00
10	94,51	-73.00	1.50	2.39	0.00
11	92.76	84,13	1.45	2.63	0.00
12	99.75	100.89	1.31	2.58	0.00
13	-80.57	-67.34	1.23	2,43	0.00
14	99.02	95.99	1.32	2.03	0.00
15	102.60	108,31	1.03	1.82	0.00
16	89.27	96.87	1.79	2.40	0.00
17	104.55	106.97	1.26	2.05	0.00
18	-84.65	85.88	1.80	-3.12	0.00
19	98.38	84.79	1.58	2.77	0.00

RB211-228 . BASELINE TEST SERIFS .

MODE S

UNIT	N1 SPEFD PER CENT	NZ SPEED PER CENT	N3 SPEED PER CENT	CORR NI PER CENT	CORR NO PER CENT	CORR N3 PER CENT
1	-28.50	-52.00	67.00	-28.31	51.65	66.55
5	-29.00	-52.50	67.00	-28.91	-52-15	46.55
3	27.00	50.00	67.00	26.87	49.76	66.68
4	27.00	51.00	66.50	26.87	50.76	66.18
5	27.00	50.00	66.00	26.85	49.71	45.62
6	27.00	50.00	66.00	26.85	49.71	45.62
7	27.00	50.00	67.00	26.37	48.84	45.44
8	27.00	50.00	66.00	26.37	48.84	54.45
9	27.00	50.00	66.00	26.37	48.84	64.46
10	-29.00	-54.00	-67.50	-28.33	-52.74	65.93
11	-28.00	-52.00	66.00	-27.79	51.60	45.50
12	-26.00	49.00	65.00	-25.80	48.63	64.50
13	27.00	49.50	65.50	26.85	49.22	65.12
14	27.00	49.00	65.00.	26.85	48.72	64.63
15	27.50	-47.75	65.00	27.26	-47.34	44.44
16	27.00	51.00	67.00	26.87	50.76	66.68
17	27.00	50.00	66.00	26.87	49.76	55.58
18	-29.00	-52.00	67.00	-28.78	51.60	66.49
19	-29.00	-52.00	67.00	-28.78	51.60	66.49

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

RR211-228 * BASELINE TEST SERIES *

M00E 2

UNIT	FUEL FLOW LBM/HR	CB F/A X100	PERF F/A X100	TT7 DEG R	EPR	THRUST
1	-1950.	.8480	-1.0620	1068.	1.035	3944.
2	-1900.	.8290	-1.0350	1086.	1.035	3944.
3	. 1800.	.8290	.9800	1059.	1.032	-4012.
	1750。	.8110	.9530	1066.	1.031	3784.
5	1800.	.8190	.9800	1068.	1.031	3589.
6	1800.	.8160	.9800	-1041.	1.032	3589.
7	1700.	.8360	•9260	-1104.	1.022	3563.
8	1750.	.8490	.9530	-1104.	1.020	3301.
9	1700.	.8570	.9260	1068.	1.030	3301.
10	-2000.	9090	-1.0890	-1104.	1.030	3694.
11	-1900.	.8630	-1.0350	1077.	1.031	3567.
12	1700.	.8620	.9260	1068.	1.025	3302.
13	1825.	.8060	.9940	1068.	1.035	3461.
14	1800.	.8500	.9800	1050.	1,026	3328.
15	1700.	.8310	.9260	1068.	1.030	3276.
16	-2000.	9760	-1.0890	-1140.	1.035	-4017.
17	1800.	.8850	9800	1068.	1.035	3621.
18	1800.	.8870	.9800	1077.	1.030	1935.
19	-1900.	9200	-1.0350	1086.	1.032	3935.

RR211-228 * BASELINE TEST SERIES *

MODE 2

UNIT	CORR FU FL	COR CB F/A (COR PF F/A (CORR TIT COR	LAF
1	-1973.	.8370	-1.0480	1053.	3964.
2	-1977.	.8180	1.0210	1071,	3964.
3	1813.	.8210	.9710	1049.	-4023.
4	1763.	.8030	.9440	1056.	3794.
5	1820.	.9100	.9690	1055.	3609.
6	1970.	.9060	.9690	-1029.	3609.
7	1739.	.7970	.9830	1053.	3560•
8	1790.	.8100	.9090	1053.	3299+
9	1739.	.8180	.8830	-1019.	3299.
10	-2046.	.8680	-1.0390	1053.	3691 •
11	-1919.	.8500	1.0190	1060.	3575.
12	1717.	.8490	.9120	1051.	3310.
13	1844.	.7970	.9830	1055.	3476.
14	1818.	.8410	.9690	1039.	3742.
15	1724.	.8170	.9100	1049.	3293•
16	-2112.	9670	-1.0790	-1129.	-4023.
17	1811.	.8770	.9710	1059.	3625•
18	1814.	.8730	.9660	1060.	3935•
19	-1915.	9060	1.0190	1069.	3935.

RB211-228 . BASELINE TEST SERIES .

MODE 2

UNIT	CO2 CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
1	1.612	664.9	329.1	7.5	15.8
2	1.556	664.3	376.6	-11.7	16.8
3	1.553	724.0	375.1	5.2	14.3
4	1.542	708.2	298.9	6.A	15.3
5	1.522	788.1	401.2	-9.2	13.4
6	1.518	758.8	399.6	8.4	13.2
7	1.607	673.9	-268.2	5.0	15.4
. 8	1.623	685.0	307.8	6.3	15.0
9	1.617	788.7	342.3	5.A	14.4
10	-1.753	701.0	289.0	8.3	17.0
11	1.643	686.7	326.1	7.3	16.3
12	1.602	790.3	423.3	6,1	14.9
13	1.511	729,5	347.0	4.8	14.0
14	1.592	734.3	387.5	5.5	12.7
15	1.551	713.5	396.0	-3.8	11.6
16	-1.490	706.6	329.5	8.2	-17.5
17	1.670	736.9	376.3	7.2	14.3
18	1.684	659.9	358.7	7.6	12.8
19	-1.742	793.0	351.4	7.5	16.4

R8211-228 * BASELINE TEST SERIES *

HODE S

UNIT	COS EI	CO ET	HC FI	NO ET LR/KLR FU	NOX EI LR/KLR FU	SMY NUMBER FRONT STOP
1	2867.	75.26	64.00	1.40	2.95	0.00
5	2834.	76.98	74.96	-2.23	-3.20	0.00
3	SESE.	A3.90	74.67	1.00	2.72	0.00
4	2867.	83.82	60.78	1.31	80.5	0.00
5	2R03.	-92.39	80.80	-1.7R	2.58	0.00
6	2807.	49.35	80.84	-1.62	2.55	0.00
7	-2901.	77.40	-52,93	.95	5.90	0.00
А	-2887.	77.41	59.76	1.17	2.78	0.00
9	2845.	99.35	65.87	1.07	2.64	0.00
10	~2965.	-73,93	-62,74	1,44	2.94	0.00
11	2872.	76.3A	62.31	1.34	2.98	0.00
12	2804.	96.92	A1.01	1.13	2.73	0.00
13	2929.	86.91	71.03	.94	2.73	0.00
14	2924.	85.90	75.16	1.01	2.15	0.00
15	2915.	A2.41	74.58	72	2.19	0.00
16	-2901.	-69.40	-55.60	1.33	2.82	0.00
17	2845.	79.91	70.11	1.28	2.55	0.00
18	2863.	-71.39	66.67	1.34	5.58	0.00
19	2855.	82.72	62.97	1.28	2.81	0.00

* BASELINE TEST SER

MODE 2

	UNIT	FCO X100	FHC X100	FN0 X100	STO FCO	STD FHC	STD FNO
X	****					******	
1	1	1.8490	9900	-4.8810	1.7820	.9490	5.3520
ट्या	2	-1.8770	-1.0280	-4.9940	-1.8100	9870	-5.4750
7	3	1.6710	.8400	4.4670	1.6300	.8170	4.9050
1	4	1.7380	.9100	4.6790	1.6950	.8850	5.1360
74	5	1.6730	.8450	4.3180	1.6210	.8140	4.8940
7	6	1.6710	.8450	4.3180	1.6200	.8140	4,8940
1	7	1.7370	.8480	4.7760	1.5520	.75R0	4,6970
1/2	8	1.7450	.8480	4.7760	1.5580	.7580	4.6970
73	9	1.7500	.8480	4.8350	1.5620	.7580	4.6970
75	10	-2.1260	-1.1590	-5.8240	-1.8880	-1.0320	-5.6250
: ;	11	1.8580	9860	4.8590	1.7860	.9460	5,3400
Mark?	12	1.6230	.7760	4.2250	1.5620	.7450	4,6500
*	13	1.6280	.8100	4.1660	1.5790	.7820	4.7R10
3	14	1.6130	.7770	4.0690	1.5650	.7510	4,6710
7ha	15	-1.5230	7020	3.8840	-1.4570	6680	-4.3750
تثد	16	1.8330	.9080	4.4740	1.7880	.8850	5.1360
111	17	1.7000	.8380	4.2710	1.6600	.8170	4.9050
7.0	18	-1.8690	.9820	4.6290	1.8000	.9460	5.3400
7	19	-1.8900	.9820	4,6290	-1.8190	. 9460	5.3400
· ·	NOTE	MINUS SIGNS	DENOTE OU	TI YTHE VALUE	re		
2							
7				38			
A							
, in							
Si and	- XW- 8		1 11	المعرض مع	77.7		No whomas
13/2	77,	14 %	1 Por	Total .	1119	: 1	ورس
1	,	-	2 /3 1			-21 W	1.1

RR211-228 * BASELINE TEST SERIES *

MODE 5

UNIT	NREC CO EI LB/KLR FU	NREC HC EI LB/KLR FU		NR CNOX ET	
1	78.06	66.71	1.64	3.47	0.00
S	79.84	78.15	-2.62	-3.77	0.00
3	86.01	76.77	1.18	3.20	0.00
4	85.94	62.50	1.55	3.52	0.00
5	-95.34	A3.85	-2.15	3.14	0.00
6	92.20	83.40	-1.97	3.11	0.00
7	85.65	59.19	1.00	3.07	0.00
8	86.71	66.84	1.15	2.74	0.00
9	-98.98	73.67	1.04	2.57	0.00
10	83.29	-58.77	1.39	7.84	0.00
11	79.44	64.94	1.47	3.27	0.00
12	90.32	84.35	1.23	3.00	0.00
13	89.60	73.57	1.08	3.13	0.00
14	85.48	77.84	1.16	2.69	0.00
15	86.16	92.60	91	2.47	0.00
16	-71.16	-57.03	1.53	3.23	0.00
17	81.88	71.90	1.47	2.93	0.00
18	-74.14	69.19	1.55	2.63	0.00
19	85.94	45.35	1.47	3.25	0.00

R8211-228 * BASELINE TEST SERIES *

MODE 3

	UNIT	N1 SPEED PER CENT	N2 SPEED PER CENT	N3 SPEED PER CENT	CORR NI PER CENT	CORR NZ PER CENT	CORP N3 PER CENT
	,	02.25	07.00			24 25	
	1	93.25	97.00	92.00	92.63	96.35	91.39
,	2	92.75	98.00	91.75	92.13	97.35	91.14
,	3	93.00	96.00	92.00	92.55	95.54	91.56
	4	93.00	96.00	92.00	92.55	95.54	91.56
	. 5	-92.50	98.00	92.00	91.97	97.44	91.47
	6	93.50	97.00	92.00	92.96	96.44	91.47
	7	94.00	99.00	93.00	91.81	96.70	90.84
4	8	94.00	99.00	-94.00	91.81	96.70	91.81
	9	94.00	-100.00	92.50	91.81	97.67	-90.35
1	10	-95,00	97.00	92.75	92.79	-94.74	90.59
	11	93.50	96.00	92.00	92.79	95.27	91.30
	12	93.75	97.00	93.00	93.04	96.26	92.29
,	13	93.50	97.00	93.50	92.96	96.44	-92.96
	14	-91.00	-95.00	-90.00	-90.48	-94.46	-89.48
1	15	94.00	97.00	92.00	93.19	96.17	91.21
	16	93.00	97.00	92.00	92.55	96.54	91.56
-	17	93.00	98.00	92.00	92.55	97.53	91.56
-	18	94.00	97.00	93.00	93.28	96.28	92.29
	19	94.00	98.00	92.00	93.28	91.25	91.30

RR211-228 . BASELINE TEST SERIFS .

MODE 3

UNIT	FUFL FLOW	CR F/A	PERF F/A	TT7 DEG R	FPR	THRUST
	•••••					
1	15500.	1.8790	2.0680	1752.	1.537	42083.
5	16000.	1.8130	2.1350	1761.	-1.539	47229.
3	15700.	1.7880	2.0990	1716.	1.530	41668.
4	15500.	-1.7390	2.4720	1711.	1.530	41668.
5	15900.	1.8170	2.1420	1725.	-1.523	~41045.
6	15500.	1.8690	2.06RO	1752.	1.533	41777.
7	15800.	1.8990	2.1170	1752.	1,530	41807.
8	16000.	1.8530	2.1390	-1797.	1,530	41807.
9	15000.	1.9150	2.0010	1770.	1,533	42028.
10	16000.	-1.9340	2.1350	1770.	1.532	41955.
11	15750.	1.8560	5.1010	1752.	1.533	41902.
12	15750.	-1.9390	5.1010	1747.	1.533	41902.
13	15000.	1.7530	2.0080	1711.	1.529	41525.
14	-14000.	-1.7210	-1.9490	1707.	-1.492	-3A817.
15	15750.	1.8470	2.1010	1734.	1.533	1 ?77.
16	15000.	1.8120	2.0220	1734.	-1.522	-41136.
17	15000.	1.8860	5.0550	1752.	-1.522	-41136.
18	15900.	1.8730	2.1210	1734.	1.533	42000.
19	15500.	1.8750	2.0680	1752.	1.532	41926.

RB211-228 . BASELINE TEST SERIES .

MODE 3

UNIT	CORR FU FL LBM/HR	COR CH F/A	COR PF F/A	CORR TT7 COR	THRUST LBF
1	15682.	1.8540	2.0400	1728.	42294.
5	1618R.	1.7890	2.1060	1737.	-42441.
3	15818.	1.7710	2.0790	1699.	41779.
4	15616.	-1.7210	2.0530	1695.	41779.
5	16077.	1.7960	2.1170	1705.	-41265.
6	15673.	1.8480	2.0440	1732.	42000.
7	16165.	1.8120	2.0150	-1671.	41779.
8	16370.	1.7680	2.0410	1714.	41779.
. 9	15347.	1.8270	-1.9090	1688.	42000.
10	16370.	1.8450	2.0370	1688.	41926.
11	15908.	1.8280	2.0690	1725.	42006.
12	15908.	-1.9100	2.0690	1721.	42000•
13	15152.	1.7330	1.9850	1692.	41706.
14	-14142.	-1.7010	-1.9270	1687.	-38985.
15	15971.	1.8160	2.0660	1704.	42000•
16	15092.	1.7940	2.0030	1717.	-41191.
17	15092.	1.8680	2.0030	1735.	-41191.
18	16022.	1.8450	2.0890	1707.	42000•
19	15619.	1.8460	2.0370	1725.	41926.

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

R9211-228 * BASELINE TEST SERIES *

いないといく・ファーニー

11. 12. 12 . 1

MODE 3

UNIT	COZ CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
1	3.982	-11.3	8.7	458.4	-463.3
2	3.840	27.2	4.9	442.9	457.1
3	3.790	27.2	2.7	414.2	426.6
4	3,683	16.9	5.8	405.9	421.1
5	3.858	21.4	6.7	406.8	391.4
6	3.970	24.5	5.9	416.1	397.9
7	4.034	23.0	3.4	-473.3	-473.0
8	3,933	23.9	4.0	-461.1	-468.4
9	4.065	19.8	3.6	457.0	448.0
10	-4.107	26.1	3.8	445.A	439.7
11	3.935	1.55	4.9	437.8	448.7
12	-4.115	26.1	6.6	417.6	437.2
13	3.710	19.9	3.6	378.4	377.6
14	-3,639	-38.1	6.0	-317.1	-327.6
15	3.915	-9.6	4.5	418.9	426,9
16	3.840	25.9	5	396.7	391.4
17	4.000	26.7	3.7	393.7	396.2
18	3.966	28.3	6.2	402.A	393,2
19	3,960	-131.9	3.8	399.3	407.A

RB211-228 . BASELINE TEST SERIES .

MODE 3

UNIT	CO2 ET	CO EI LB/KLB FU		NO EI LA/KLA FU		SMK NUMBER FRONT SIDE
1	3157.	-,57	.75	38.00	38.41	27.15
2	3157.	1.16	.44	38.07	39.30	27.15
3	3162.	1.44	.25	36.13	37.21	33.11
4	3162.	.92	•55	36.43	37.80	32.00
5	3166.	1.12	•60	34.91	34.91	33.33
6	3166.	1.25	•51	34.69	34.69	31.33
7	3165.	1.15	.29	38.82	38.82	-48.03
8	3164.	1.22	•35	38.78	39.39	28.29
9	3163.	.98	•31	37.17	37.17	31.13
10	3162.	1.28	•32	35.88	35.88	-22.67
11	3160,	1.13	,43	36.75	37.66	31.33
12	3159.	1.28	.55	33.52	35.10	34.44
13	315A.	1.07	.34	33.67	33.67	33,77
14	3156.	-2.10	.57	-28.75	-29.70	-36.42
15	3159.	49	.39	35.33	36.00	-19.74
16	3161.	1.36	04	34.13	34.13	31.54
17	3160.	1.34	•32	32.51	32.72	28.67
18	3154.	1.43	.54	33.49	33.49	28.95
19	-3147.	-6.67	•33	33.18	33.88	28.76

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

一一一一一一

RESTITED * BASELINE TEST SERIES *

MODE 3:

UNIT	FC0 X100	FHC X100	FNO X100	STD FCO	STD FHC	STD FNO
1	108.5970	95.4570	86.6920	98.6320	90.0900	92.5350
2	107.9660	105.7370	93.1700	98.2860	99.7470	99.3780
3	87.6970	83.8060	79.3240	A2.2470	80.5700	A5.4490
4	-82.7990	A3.8060	79.3240	-77.7830	80.5700	A5.4490
5	107.5630	105.0580	89.8400	99.1580	99.7470	99.3780
6	107.3200	96.0480	84.7390	98.7870	91.2230	93.3450
7	-135.2950	112.3160	-107.5950	97.0320	94.4100	95.6110
. 8	-127.3810	112.3160	-107.5950	92.0940	94.4100	95.6110
9	-144.0590	-118.7670	-113.3690	102.8500	99.7470	99.3780
10	115.2330	85.6500	89.5440	82.8470	-72.2990	-79.1470
11	94,9320	82.3010	77.9050	85.4920	-77.5630	-A3.1500
12	117.0890	94.4710	86.0470	104.7910	AP.9700	91.7350
13	93.2220	95.8760	83.3150	86.2750	91.2230	93.3450
14	-73.6350	-73.0050	-68.6350	-68.3600	-69.5340	-77.0270
15	1.04.3720	94.4510	83.7550	92.4960	R7.8640	90.9420
16	99.7890	95.8916	83.6470	93.5380	92.3710	94.1620
17	115.8130	103.5730	88.3150	108.2300	99.7470	99.3780
18	107.4080	94.0750	81.9950	96.6680	88.9700	91.7350
19	117.2140	105.5300	88.9090	105.3630	99.7470	99.3780

RB211-22B * BASELINE TEST SERIES *

MODE 3

		•			
UNIT	NREC CO EI LB/KLB FU	NREC HC EI LB/KLB FU		NR CNOX ET	SMK NUMBER CORRECTED
	- 43	00	40 54	41 00	27.15
1	63	.80	40.56	41.00	27.15
2	1.28	.46	40.61	41.92	27.15
3	1.54	.25	38.92	40.08	24.60
4	.98	.57	39.25	40.72	24.29
5	1.22	.63	38.62	38.62	26.05
6	1.35	.54	38,40	38.40	24.96
7	1.60	.35	34.49	34.49	22.59
8	1.69	.42	34.46	35.00	25.86
9	1.37	.37	-32.58	-32.58	-31.13
10	1.78	.38	-31.72	-31.72	-19.03
11	1.26	.46	39.22	40.20	25.68
12	1.43	•59	35.74	37.42	22.74
13	1.16	.35	37,72	37.72	25.32
14	-2.26	.60	-32.27	-33.33	23.82
15	••55	.42	38.36	39.09	19.74
16	1.45	04	38,42	38.42	24.60
17	1.43	.33	36.59	36.82	28.67
18	1.59	.57	37.47	37.47	22.59
19	-7.42	.35	37.08	37.87	25.14

RB211-228 * BASELINE TEST SERIES *

MODE 4

UNIT	NI SPEED PER CENT	N2 SPEED PER CENT	N3 SPEED PER CENT	CORR NI PER CENT	CORR NZ PER CENT	PER CENT
1	87.00	94.00	89.50	A6.42	93.37	88.90
2	87.00	95.00	A9.50	A6.42	94.37	AR.90
3	87.00	94.00	90.00	86.5R	93.55	A9.57
4	87.50	95.00	89.00	87.0A	94.55	A8.57
5	87.00	95.00	90.00	R6.50	94.46	A9.48
6	85.00	95.00	90,00	A7.50	94.46	A9,48
7	89.00	95.00	-92.00	A6.93	92.79	A9.86
A	89.00	95.00	-92.00	R6.93	92.79	89.86
9	89.50	96.00	90.25	R6.44	93.77	A8.15
10	89.00	95.00	90,00	R6.93	92.79	-47.91
11	88.00	94.00	89,50	87,33	93.28	88.82
12	88.00	94.00	90.50	A7.33	93.28	A9.81
13	87.50	94.00	90.00	87.00	93.46	A9.48
14	87.00	94.00	-88.00	86.50	93.46	-A7.50
15	88.50	94.00	90.00	R7.74	93.19	89.23
16	88.00	94.00	99.00	A7.58	93.55	88.57
17	87.00	96.00	91.00	86.58	-95.54	90.56
18	88.00	95.00	90.00	A7.33	94.28	A9.31
19	89.00	94.00	89.50	87.33	93.28	A8.82

RB211-228 * BASELINE TEST SERIES *

MODE 4

	LBM/HR	CB F/A X100	PERF F/A X100	TT7 DEG R	EPR	THRUST LRF
1	-12230.	1.6490	1.8150	-1603.	-1.437	-34824.
2	12700.	1.6040	1.8620	1639.	1.446	35436.
3	12200.	1.5970	-1.7930	1630.	1.444	35382.
4	12500.	-1.5410	1.9330	1608.	1.446	35518.
5	13000.	1.5810	1.9060	1635.	1.446	35424.
6	13000.	1.6590	1.9060	1653.	1,446	35424.
7	13000.	-1.7220	1.9060	1680.	1.446	35637.
8	-13500.	1.6470	-1.9790	-1698.	1.446	35637.
9	13000.	1.7090	1.9060	1675.	1.446	35637.
10	13000.	-1.7190	1.9060	1662.	1.446	35637.
11	13000.	1.6320	1.9060	1630.	1.446	35530.
12	13000.	1.6650	1.9080	1644.	1.445	35462.
13	12500.	-1.5280	1.8440	1608.	-1.441	-35119.
14	13000.	1.5840	1.9170	-1603.	-1.441	-35119.
15	13000.	1.6530	1.9060	1653.	1.446	35424.
16	13000.	1.6060	1.9220	1644.	-1.439	-35088.
17	13000.	-1.7400	1.9220	1662.	-1.439	-35088.
18	13000.	1.6460	1.9060	1626.	1,446	35613.
19	12500.	1.6420	1.8330	1644.	1.446	35613.

RR211-228 * BASELINE TEST SERIFS *

MODE 4

UNIT	CORR FU FL LRM/HR	COR CB F/A C	OR PF F/A	CORR TT7 COR	THRUST LBF
1	-12394.	1.6270	1.7910	-1582.	-34998•
2	12850.	1.5830	1.8370	1617.	35613.
3	-12291.	1.5820	-1.7760	1615.	35477.
4	12594.	-1.5270	1.4150	1592.	35613.
5	13145.	1.5630	1.8840	1616.	35613.
6	13145.	1.6400	1.8840	1634.	35613.
7	13301.	1.6430	1.8180	1602.	35613.
8	-13812.	1.5710	1.8880	1620.	35613.
9	13301.	1.6310	1.8180	1598.	35613.
10	13301.	1.6400	1.8180	-1585.	35613.
11	13131.	1.6080	1.8770	1605.	35613.
12	13131.	1.6400	1.9790	1619.	35545•
13	12627.	-1.5110	1.8230	1589.	-35272•
14	13132.	1.5660	1.8950	-1585.	-35272.
15	13182.	1.6250	1.8740	1625.	35613.
16	13080.	1.5910	1.9040	1628.	-35135.
17	13080.	-1.7230	1.9040	1646.	-35135•
18	13100.	1.6210	1.8770	1601.	35613•
19	12596.	1.6170	1.8050	1619.	35613.

RB211-228 * BASELINE TEST SERIES *

HODE 4

UNIT	COZ CONC	CO CONC	HC CONC	NO CONC	NOX CONC
	***	*******			*******
1	3.485	24.1	5.3	294.3	296.7
5	3.386	34.5	-15.1	290.4	301.0
3	3.379	35.3	1.8	283.1	293.9
4	-3.260	21.4	3.6	279.5	286.6
5	3.347	31.0	4.7	263.6	252.4
6	3.516	28.6	3.4	380°S	269.5
7	-3.651	24.1	2.4	-334.5	-333.A
. 8	3.488	32.5	5.6	-320.2	-330.4
9	3.621	23.3	2.5	-321.0	310.5
10	-3.639	45.8	2.7	291.4	289.5
11	3.452	33.5	2.8	242.9	289.0
12	3.522	34.2	3.9	276.7	266,6
13	-3.227	30.5	2.5	241.4	242.1
14	3.344	49.4	2.7	242.0	254.4
15	3.495	21.2	5.1	303.9	313,6
16	3.396	32.8	1.7	270.2	273.8
17	-3,684	36.4	1.9	298.4	305.0
18	3.476	39.8	2.6	270.5	271.3
19	3.457	-138.3	1.7	256.7	269.1

RR211-228 . BASELINE TEST SERIES .

MODE 4

UNIT	COZ ET LBM LB FU	CO ET		NO FI LR/KLR FU		SHE NUMBER FRONT SIDE
1	3157.	1.39	•53	27.87	28.09	19.21
2	3153.	2.05	-1.54	28.27	29.30	-11.92
3	3161.	2.10	.19	27.6R	28.74	25.66
4	3162.	1.32	.38	28.35	29.06	21.05
5	3165.	1.87	.48	26.06	26.06	17.33
6	-3166.	1.64	•33	26.3R	26.38	18.24
7	3165.	1,33	.23	-30.31	-30.31	24.84
8	3164.	1.87	.26	-30.36	-31.33	20.26
9	3162.	1.29	.24	29.30	29.30	14.47
10	3160.	2,53	.25	26.46	26.46	14.47
11	3159.	1.95	.2A	27.07	27.65	-28.95
12	3159.	1,95	.TR	25.94	27.06	23.33
13	3157.	1.90	.27	24.69	24.76	21.05
14	3155.	2.97	.28	23.87	25.09	25.33
15	3154.	1.22	•50	2A.71	29.62	16.00
16	3159.	1.94	.17	26.28	56.65	19.87
17	3159.	1.99	.17	25.75	27.34	19.87
18	3154.	2.30	.26	25.66	25.74	19.46
19	-3145.	-8.01	.17	24.41	25.59	17.11

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

100 X 100 X 11 1

RB211-228 * RASELINE TEST SERIES *

MODE 4

UNIT	FC0 X100	FHC X100	FNO X100	STD FCO X100	STD FHC X100	STD FNO
1	61.7770	63.4510	64.9470	56.8740	59,9890	69.5270
5	64,9620	72.6950	71.4140	59,8470	6A.6890	76.3770
3	58.5370	63.8810	65.5520	55.2960	61.4660	70.7100
4	60,8590	73.1940	72.0660	57,5340	70.3890	77.6940
5	63,4390	73.1370	69.4790	59.1320	69.5340	77.0270
6	68.8510	73.1370	69.4790	64.0110	69.5340	77.0270
7	72.8540	65.3100	73.0270	54,6270	55.3530	65.7780
8	67.0590	65.3100	73.0270	50.8150	55.3530	65.7780
9	-79.2650	74.8400	-81.3850	59,3220	63.3020	72.1750
10	72,5900	65.3100	73,9250	54,4550	55.3530	65.7780
11	60.5720	62.8010	64.4550	55.7720	59.2640	68.9440
12	62.7040	62.8010	64.4550	57,1530	59.2640	68.9440
13	54.6500	63.7230	62.4260	51.1040	60.7230	70,1150
14	57.7660	63.7230	62.4260	53,9250	60.7230	70.1150
15	61.9900	62,7930	62,7290	55.7780	58,5480	6A.3670
16	59.0050	63.7280	62,6930	55.7820	61.4660	70.7100
17	-A2.9150	-83.6050	75,8530	-77.9650	-80.5700	-85.4490
18	67,5720	71.6500	67,5410	61.6790	67.8540	75.7330
19	61.0580	62.5370	61.4190	55.8090	59.2640	6R.9440

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

そのないなど、カーフノンスファンド

RB211-228 . RASELINE TEST SERIES .

MODE 4

UNIT	NREC CO EI LB/KLB FU		NRE CNO EI LBZKLR FU		SMK NUMBER CORRECTED
1	1.51	•56	29.83	30.07	19.21
2	5.55	-1.63	30.24	31.34	11.92
3 .	2.23	.19	29.86	31.00	-24.44
4	1.40	.39	30.56	:1.32	18.74
5	2.00	.51	28.99	28.89	17.33
6	1.76	.35	29.24	29.24	16.50
7	1.77	.27	27.30	27.30	20.63
8	2.47	.30	27.35	28.22	19.61
9	1.73	.28	25.99	-25.99	14.47
10	-3.37	.30	-21.54	-23.54	13.60
11	2.14	.30	28.95	29.57	20.79
12.	2.14	.40	27.75	28.94	23.33
13	2.03	.28	27.73	27.80	15.86
14	3.18	.30	26.R1	28.18	19.90
15	1.36	.2?	31.29	35.29	16.00
16	2.05	.19	29.64	30.03	17.47
17	2.11	.19	30.14	30.80	19.87
18	2.52	.28	28.78	29.86	19.03
19	-R.76	.18	27.40	28.72	17-11

RB211-22B * BASELINE TEST SERIES *

MODE 5

JNIT	N1 SPEED PER CENT	NZ SPEED PER CENT	N3 SPEED PER CENT	CORR N1 PER CENT	CORR N2 PER CENT	CORR N3 PER CENT
1	76.50	89.00	85.00	75.99	88.41	R4.43
2	-76.25	89.00	85.00	-75.74	88.41	R4.43
3	77.00	89.00	86.00	76.63	88.57	A5.59
4	77.00	89.00	85.00	76.63	88.57	84.59
5	77.00	90.00	86.00	76.56	89.48	A5.51
6	77.00	90.00	86.00	76.56	89.48	A5.51
7	-79.00	90.00	-87.00	77.16	87.91	84.98
8	77.00	90.00	-84.00	-75.21	87.91	-82.05
9	77.50	90.00	86.00	-75.70	87.91	-84.00
10	78.00	90.00	86.00	76.19	87.91	-R4.00
11	77.25	89.50	84.75	76.66	38.82	R4.10
12	77.50	90.00	A5.75	76.91	89.31	A5.10
13	77.00	90.00	85.75	76.56	89.48	R5.26
14	77.00	89.00	-84.50	76.56	88.49	-84.02
15	77.00	89.00	85.50	76.34	88.24	84.77
16	77.00	89.00	85.00	76.63	88.57	84.59
17	77.00	89.00	86.00	76.63	88.57	A5.59
18	78.00	90.00	86.00	77.41	89.31	85.34
19	78.00	89.00	85.00	77.41	88.32	A4.35

RAZ11-228 * BASELINE TEST SERIES *

MODE 5

UNIT	FUEL FLOW LBM/HR	CB F/A X100	PERF F/A	TT7 DEG R	EPR	LRF
1	8500.	1.3550	1.5800	1464.	1.300	-24289.
5	8700.	1.3120	1.6180	1464.	1.300	-242A9.
3	-8200.	1.3050	-1.5190	1459.	1.302	24503.
4	8500.	1.2700	1.5740	1450.	1.302	24503.
5	9000.	1.3070	1.6670	1459.	1.302	24438.
6	9000.	1.3620	1.6670	1473.	1.302	24438.
7	9000.	-1.4100	1.6670	-1500.	1.302	24585.
8	9010.	1.3500	1.6670	-1500.	1.302	24585.
9	8775.	1.4010	1.6250	1495.	1.302	24585.
10	9000.	-1.4200	1.6640	1496.	1.303	24663.
11	8975.	1.3340	1.6620	1473.	1.302	24511.
12	8750.	1.3620	1.6180	1464.	1.303	24589.
13	8500.	1.2650	1.5870	-1435.	-1.298	-24148.
14	8875.	1.3020	1.6570	-1419.	-1.298	-24148.
15	9000.	1.3340	1.6670	1464.	1.302	4438.
16	9000.	1.2980	1.6900	1464.	-1.295	-23985.
17	9000.	1.4040	1.6900	1482.	-1.295	-21985.
19	9000.	1.3380	1.6670	1464.	1.302	24568.
19	9000.	1.3840	1.6670	1464.	1.302	24568.

RB211-228 * BASELINE TEST SERIES *

MODE 5

UNIT	CORR FU FL LBM/HR	COR CB F/A	COR PF F/A	CORR TTT COP	R THRUST
1	8600.	1.3370	1.5590	1444.	24411.
5	8802.	1.2950	1.5960	1444.	24411.
3	-8261.	1.2920	-1.5040	1445.	24568.
4	8564.	1.2580	1.5590	1436.	24568.
5	9100.	1.2920	1.6480	1443.	24568.
6	9100.	1.3470	1.6480	1456.	. 2456A.
7	9208.	1.3450	1.5900	1431.	24568.
8	. 9208.	1.2880	1.5900	1431.	24568.
. 9	8978.	1.3370	1.5510	1426.	24568.
10	9208.	. 1.3550	1.5870	-1418.	24647.
11	9065.	1.3130	1.6370	1450.	24568.
12	8838.	1.3410	1.5930	1441.	24647.
13	8596.	-1.2500	1.5680	-1418.	-24253•
14	8965.	1.2870	1.6380	-1402.	-24253•
15	9126.	1.3120	1.6390	1439.	24568•
16	9055.	1.2860	1.6730	1450.	-24017•
17	9055.	-1.3900	1.6730	1468.	-24017•
18	9069.	1.3180	1.6420	1441.	24568
19	9069.	1.3630	1.6420	1441.	24568•

RB211-228 * BASELINE TEST SERIFS *

MODE 5

NOX CONC	NO CONC	HC CONC	CO CONC	COZ CONC PER CENT	UNIT
142.5	139.1	5.9	64.2	2.850	1
146.3	142.1	-9.2	86.2	2.757	2
141.2	132.4	3.9	77.1	2.746	3
134.5	130.7	3.4	55.4	2.675	4
126.3	130.4	7.4	76.7	2.754	5
129.8	133.4	5.3	76.3	2.973	6
-159.9	-161.8	2.7	49.3	-2.976	7
-157.7	-155.6	3.6	67.8	2.847	8
145.7	-144.9	3.2	58.4	-2.956	9
136.0	136.4	4.6	99.0	-2.991	10
134.2	128.6	5.6	67.3	2.805	11
138.1	126.4	6.1	80.4	2.866	12
-119.1	113.0	3.6	71.4	-2.658	13
128.7	118.0	6.4	103.6	2.733	14
144.0	135.0	3.7	75.3	,906	15
133.8	126.3	4.5	75.4	2.730	16
143.7	133.0	3.9	78.8	-2.956	17
136.3	129.1	5.9	91.3	2.810	18
135.5	126.4	3.8	-191.9	2.898	19

RB211-228 . BASELINE TEST SERIES .

MODE 5

UNIT	CO2 EI	CO EI LB/KLB FU	HC EI LB/KLB FU	NO EI LB/KLB FU	NOX EI	
1	3151.	4,52	.71	16.07	16.48	15.89
2	3147.	6.26	-1.15	-16.96	-17.46	8.55
3	3155.	5.64	.40	15.95	16.96	15.79
4	3157.	4.16	.43	16.13	16.59	13.82
5	3154.	5,60	.93	15.63	15.63	12.75
6	3159.	5.34	.64	15.33	15.33	8.05
7	-3161.	3,33	•32	-17.96	-17.96	14.29
8	3159.	4.78	•43	-18.05	-18.29	11.92
9	3158.	3,97	.37	16.19	16.27	13,33
10	3153.	6.54	.53	15.03	15.03	8.55
11	3151.	6.24	669	15.11	15.76	18,79
12	3152.	5.63	.73	14.53	15.88	16.11
13	3151.	5,39	.47	14.01	14.76	11.33
14	3146.	7,59	.81	14.20	15.49	-20.53
15	3151.	5.38	.46	15.85	16.90	9.93
16	3152.	5.54	.57	15.25	16.13	12.67
17	3153.	5.35	.46	14.84	16.02	8.78
18	3146.	6.50	.72	15.12	15.95	18.42
19	-3136.	-13.22	•45	14.30	15.33	11.84

RR211-228 * BASELINE TEST SERIES *

MODE 5

UNIT	FC0 X100	FHC X100	FN0 X100	STD FCO X100	STD FHC X100	STD FNO
1	28.7290	31.0010	40.1080	26.8390	29.3940	43.1380
2	27.7420	31.0010	40.1080	25.9480	29.3940	43,1380
3	27.4850	31.0980	40.3770	26.7260	29.9850	43.7020
4	26.7370	31.0980	40.3770	25.5290	29.9850	43.7020
. 2	30.2360	35.7640	42.6830	28.5140	34.0RR0	47.5150
6	31.6670	35.7640	42.6830	29.8230	34.0880	47,5150
7	32.7RA0	32.3580	45.3390	25.9870	27.6960	41.5030
8	31.1380	32.3580	45.3390	24.8300	27.6960	41.5030
9	32.5480	32.3580	-45.8960	25.8190	27.6960	41.5030
10	33.0920	32.3580	-45.8960	26.1990	27.6960	41.5030
11	29.2970	32.5970	41.4250	27.1830	10.8540	44.5290
12	31.4940	35.0A70	43.4710	29.1790	33.2000	46.7030
13	29.1820	35.7000	42.1650	27.5690	34.0880	47.5150
14	27.4740	31.0780	38.5010	25.9490	29.6880	43.4190
15	28.2840	30.7920	38.8380	25.9570	28.8150	42.5A20
16	27.3100	31.0240	38.6100	26.0890	29.9850	43.7020
17	29.8290	31.0240	38.6100	28.4330	29.9850	43.7020
19	30.8060	34.9400	41.4240	28.6150	33.2000	46.7030
19	29.3490	30.6100	37.9780	27.2430	29.1030	42.8590

RB211-22B * BASELINE TEST SERIES *

MODE 5

UNIT	NREC CO EI LB/KLB FU			NR CNOX EI LB/KLB FU	
1	4.84	,75	17.29	17.72	15.89
2	6.69	-1.21	-18.24	18.77	8.55
3	5.91	.51	17.26	18.35	14.97
4	4.36	.45	17.46	17.96	12.75
5	5.94	.97	17.40	17.40	12.75
6	5,67	.67	17.07	17.07	8.05
7	4.21	.37	16.44	16.44	13.48
8	6.00	•51	16.52	16.74	11.22
9	5.01	.44	-14.64	-14.71	12.99
10	8.39	.62	-13.59	-13.59	8.55
-11	6.72	.73	16.24	16.94	15.35
12	6.07	.78	15.61	17.06	16.11
13	5.70	.49	15.79	16.63	10.35
14	8.03	.84	16.01	17.46	-17.89
15	5.86	.49	17.38	18.53	9.80
16	5.80	.59	17.26	18.29	12.67
17	5.61	.47	16.79	18.14	8.78
18	7.00	.76	17.04	17.98	11.79
19	-14.24	.47	16.14	17.30	11.67

RB211-228 * BASELINE TEST SERIES *

MODE 6

UNIT	NI SPEFD PER CENT	NZ SPEED PER CENT	N3 SPEED PER CENT	CORR NI PER CENT	CORR N2 PER CENT	PER CENT
1	53.00	77.00	77.50	52.65	76.49	76.98
2	53.00	77.00	-77.00	52.65	76.49.	76.49
3	54.50	77.00	78.00	54.24	76.63	77.63
4	55.00	76.00	78.00	54.74	75.64	77.63
5	55.00	79.00	79.00	54.68	78.55	-78.55
6	54.00	76.00	78.00	53.69	75.56	77.55
7	56.00	78.00	79.00	54.70	76.19	77.16
8	56.00	80.00	78.00	54.70	78.14	-76.19
9	54.00	78.00	78.25	52.74	76.19	-76.43
10	55.00	78.00	78.50	53.72	76.19	76.67
11	54.00	76.00	77.25	53,59	75.42	76.66
12	54.00	79.00	78.50	53.59	78.40	77.90
13	54.50	77.00	78.00	54.19	76.56	77.55
14	54.00	-81.00	78.00	53.69	-80.54	77.55
15	55.00	76.00	78.00	54.53	75.35	77.33
16	53.00	77.00	78.00	52.75	76:63	77.63
17	-52.00	76.00	78.00	-51.75	75.64	77.63
13	55.00	78.00	78.00	54.58	77.41	77.41
19	54.00	80.50	79.00	53,59	79.89	77.41

RB211-228 . * BASELINE TEST SERIES *

MODE 6

UNIT	FUEL FLOW LBM/HR	CB F/A X100	PERF F/A X100	TT7 DEG R	EPR	THRUST
1	4075.	•9570	1.1820	1216.	-1.127	-10378.
2	4150.	.9150	1.1930	1216.	-1.129	10563.
3 .	4200.	.9640	1.2130	1207.	1.128	10495.
4	4000.	8900	1.1550	-1194.	1.128	10495.
5	4300.	.9420	1.2420	1221.	1.128	10467.
6	4200.	.9740	1.2130	1230.	1.128	10467.
7	4300.	-1.0210	1.2420	1257.	1.128	10530.
8	4200.	.9680	1.2130	-1266.	1.128	10530.
9	4100.	•9950	1.1840	:239.	1.128	10530.
10	4300.	-1.0280	1.2420	1243.	1.128	10530.
11	4200.	•9800	1.2130	1230.	1,128	10498.
12	4200.	.9860	1.2130	1225.	1.128	10498.
13	4150.	.9160	1.2040	1207.	-1.127	-10385.
14	-4700.	-1.1020	-1.3640	-1284.	-1.127	-10385.
15	4100.	.9360	1.1840	1212.	1,128	10467.
16	4100.	.9250	1.1950	.212.	-1.126	-10323.
17	4000.	.9760	1.1660	1212.	-1.126	-10323.
18	4000.	•9590	1.1550	1212.	1.128	10523.
19	4200.	1.0050	1.2130	1230.	1.128	10523.

R8211-228 * BASELINE TEST SERIFS *

MODE 6

UNIT	CORR FU FL	COR CA F/A C	OR PF F/A CO	DEG R	THRUST LRF
1	4123.	.9440	1.1660	1200.	-10430.
2	4199.	.9020	1.1770	1200.	-10616.
3	4231.	•9550	1.2010	1196.	10523.
4	4030.	8820	1.1440	1182.	10523.
5	4348.	.9310	1.2270	1207.	10523.
6	4247.	.9630	1.1990	1216.	10523.
7	4399.	.9740	1.1850	1199.	10523.
8	4297.	•9230	1.1570	1208.	10523.
9	4195.	•9500	1.1290	1182.	10523.
10	4399.	.9800	1.1850	1186.	19523•
11	4242.	•9650	1.1940	1211.	10523•
12	4242.	.9710	1.1940	1207.	10523.
13	4192.	•9060	1.1900	1193.	-10430•
14	-474A.	-1.0900	-1.3490	-1269.	-10430.
15	4158.	.9200	1.1640	1191.	10523.
16	~125·	•9160	1.1840	1200.	-10337.
17	4025.	•9670	1.1550	1200.	-10337.
18	4031.	.9440	1.1370	1193.	10523.
19	4232.	•9890	1.1940	1211.	10523.

RB211-228 * BASELINE TEST SERIES *

MODE 6

UNIT	COZ CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
1	1.980	198.9	36.7	36.7	48.5
2	1.884	253.6	38.3	39.4	52.0
3	1.995	227.7	35.4	38.0	51.9
4	-1.846	190.8	23.5	-49.5	50.7
5	1.949	228.7	41.6	35.9	47.9
6	2.014	235.7	50.5	43.1	-44.0
7	-2.128	171.9	-21.1	-47.5	54.7
. 8	2.010	194.6	28.1	-47.4	54.0
9	2.064	226.9	28.2	-43.9	53,5
10	-2.124	285.6	38.8	40.8	50.1
11	2.023	244.8	44.A	38.5	47.9
12	2.041	211.2	41.0	40.1	53,3
13	1.894	212.3	31.8	37.9	46.4
14	-2.278	268.9	48.7	41.5	56,6
15	1.930	230.8	42.0	39.4	51.1
16	1.908	238.0	40.7	37.0	50.3
17	2.014	251.1	45.2	34.8	50.7
18	1.977	228.0	44.9	41.5	50.9
19	2.062	-351.9	44.7	36.2	53,6

RR211-22B . BASELINE TEST SERIFS .

MODE 6

UNIT	COS EI	CO EI LB/KLB FU	HC EI LR/KLR FU	NO EI LRZKLR FU	NOX EI LR/KLB FU	SHK NUMBER FRONT SIDE
1	3112.	19.90	6.31	4.04	7.97	9.93
2	3100.	26,55	6.90	6.77	8.95	4.64
3	3113.	22.61	6.04	6.19	8.44	7.24
4	3121.	20,53	4.34	-A.75	8.96	6.62
5	3113.	23.25	7.27	6.00	8.00	4.61
6	3110.	23.16	A.52	6.96	-7-11	-2.01
7	-3133.	-16.10	-3, 39	7.32	8.42	5-26
Ą	-3124.	19.25	4.7R	-7.71	8.78	5,30
9	3118.	21.81	4.66	6.93	8.45	7,35
10	3106.	26,59	6.20	6.74	7.66	7.1
11	3105.	23.91	7.52	6.1A	7-68	-13.
12	3112.	20.49	6.84	6.39	8.49	7.2.
13	3110.	22.19	5.71	6.50	7.97	7.95
14	3104.	23.32	7.26	5.91	8.05	-14.57
15	3103.	23.62	7.38	6.62	8.59	6.62
16	3104.	24.64	7.23	6.30	8.55	9.33
17	3103.	24.62	7.62	5.60	8-17	4.00
19	3101.	22.75	7.69	6-80	R. 74	6.5A
19	-3085.	-33.52	7.32	5.98	8.39	5.AR

RB2)1-229 * BASELINE TEST SERIFS *

MODE 6

UNIT	FC0 X100	FHC X100	FNO X100	STD FCO X100	STD FHC	STD FNO
1	5.6190	6.5470	15.2030	5.3760	6.2410	16.4990
2	5.5190	6.5470	15.2030	5,2840	6.2410	16.4990
3	5.6660	6.6430	15.4250	5.4930	6.4300	16.8020
4	5.0900	5.8080	14.2150	4.9400	5.6230	15.4920
5	6.9520	9.6200	18.7520	6.6810	9.2060	21.0120
6	5.2880	5.8270	13.7350	5.0880	5.5840	15.4280
7	6.1160	6.7900	16.9190	5.2860	5.9260	15.9880
8	7.4490	9.9490	-21.5600	6.4230	A.6400	20.2140
9	6.0460	6.7900	17.1270	5.2320	5.9260	15.9880
10	6,1340	6.7900	17.1270	5,3000	5.9260	15.9880
11	5.3000	5.7790	14.0730	5.0520	5.5080	15.3010
12	7.0650	9.4760	19.1470	6.7200	9.0140	20.7500
13	5.5400	6.6010	14.6510	5.3360	6.3350	16.6500
14	-A.7320	-12.5890	-21.8670	-8.3750	-12.0590	-24.7720
15	5.2190	5,8010	13.7280	4.9390	5.4700	15.2380
16	5.5670	6.6270	14.7500	5.4040	6.4300	16.8020
17	5.2710	5.7940	13,5930	5.1160	5.6230	15.4920
18	6.2620	7.8500	16.2370	5.9740	7.5050	18.4890
19	7,9940	11.5930	20.6810	7.6080	11.0650	23.4900

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

17年7年111

RB211-22B * BASELINE TEST SERIES *

HODE 6

MIT	NREC CO EI LB/KLR FU	NREC HC EI LB/KLB FU		NR CNOX ET	
1	20.90	6,62	7.04	9.29	9.93
5	27.74	7.24	7,89	10.43	4.64
3.	23.32	6.24	7.24	9.88	7.24
4	21.15	4.48	-10.25	10.49	6.62
5	24.19	7.59	7.22	9,63	4.61
6	24.07	8.89	7.41	-7.9A	-2.01
7	19.63	-3,89	7.42	8.54	5.26
8	22.33	5.50	7.22	R.23	5.30
9	25.20	5,34	6.47	-7.89	7.33
10	-30.77	7.11	-5.82	-7.15	7.69
11	25.08	7.89	6.72	8,35	8.18
12.	21.54	7.19	6.93	9.20	7.2A
13	23.04	5.95	7.39	9.06	7.54
14	24.31	7.58	6.69	9.13	-14-57
15	24.96	7.83	7.35	9.53	6.62
16	25.38	7.45	7.17	9.74	9.33
17	25.37	7.85	6.38	9.31	4.00
18	23.85	8.05	7.74	9.50	6.58
19	-35.21	7.67	6.79	9.53	5.A8

R8211-228 • BASELINE TEST SERIES •

MODE 7

UNIT	NI SPEED PER CENT	N2 SPEED PER CENT	N3 SPEED PER CENT	CORR N1 PER CENT	CORR N2 PER CENT	CORR N3 PER CENT
1	-28.00	50.50	66.25	-27.81	50.16	65.81
2	-29.00	-53.00	67.00	-29.81	-52.65	66.55
3	27.00	49.00	66.00	26.87	48.77	65.68
4	27.00	48.50	66.00	26.87	48.27	45.68
5	27.00	49.00	66.00	26.85	48.72	45.62
6	27.00	50.00	66.00	26.85	49.71	45.62
7	27.00	50.00	37.00	26.37	48,84	65.44
8	27,00	50.00	67.00	26.37	48.84	65.44
9	27.00	49.00	66.25	26.37	47.86	64.71
10	-29.00	-54.00	-68.00	-28.33	-52.74	66.42
11	-28.00	51.00	66.00	-27.79	50.61	65.50
12	-26.00	50.00	66.00	-25.80	49.62	65.50
13	27.00	49.00	65.25	26.85	48.72	64.88
14	27.00	50.00	66.00	26.85	49.71	65.62
15	27.50	50.00	66.00	27.26	49.57	65.43
16	27.00	50.00	67.00	26.87	49.76	66.68
17	27.00	49.00	66.00	26.87	48.77	65.68
18	-29.00	51.00	67.00	-28.78	50.61	66.49
19	-29.00	-52.00	-68.00	-28.78	-51 .50	-67.48

RR211-22B * BASELINE TEST SERIES *

MODE 7

UNI	FUEL FLOW	CB F/A X100	PERF F/A X100	TT7 DEG R	EPR	THRUST
1	1800.	.8140	.9800	1068.	1.035	3640.
2	-1900.	.7950	1.0180	1077.	-1.037	1944.
3	1600.	.8150	.8710	1059.	1.035	3616.
4	1600.	7500	.8710	1054.	1.031	3616.
5	1675.	.7990	.9120	1063.	1.031	3589.
6	1700.	.7950	.9260	1054.	1.032	3589.
7	1650.	.8450	.8990	-1104.	1.022	3563.
8	1750.	.7950	.9530	1086.	-1.020	3563.
9	-1900.	.8210	-1.0350	1077.	1.030	3367.
10	-2000.	8690	-1.0890	-1108.	1.031	1905.
11	1800.	.8410	.9800	1090.	1.032	3567.
12	1700.	.8110	.9260	1077.	1.025	1567.
13	1750.	.8070	•9530	1057.	1.028	1394.
14	1750.	.8250	.9530	1059.	1.025	3593.
15	1750.	.7900	.9530	1077.	1.030	540.
16	-1900.	8980	-1.0350	-1122.	1.025	-4017.
17	1800.	.8430	.9800	1086.	1.035	3621.
18	1750.	.8390	.9530	1086.	1.030	3935.
19	1800.	8590	.9800	1059.	1.032	-4392.

RB211-22B * BASELINE TEST SERIES *

MODE 7

UNIT	CORR FU FL LBM/HR	COR CB F/A CO	R PF F/A CO	DEG R	THRUST
1	1821.	.8040	.9670	1053.	3658•
2	-1922.	-7840	1.0050	1062.	3964.
3	1612.	.8080	.8630	1049.	3625.
4	1612.	7430	.8630	1044.	3525.
5	1694.	.7900	.9020	1051.	3609.
6	1719.	.7860	.9150	1042.	3609.
7	1688.	.8070	.8570	1053.	3560.
8	1790.	•7590	.9090	1036.	3560 •
. 9	-1944.	.7830	.9870	-1027.	3364.
10	-2046.	.8290	-1.0390	1057.	3902.
11	1818.	08580	.9660	1074.	3575.
12	1717.	.7980	.9120	1060.	3575.
13	1768.	.7980	.9420	1045.	3409.
14	1768.	.8160	.9420	1047.	3609.
15	1775.	.7770	.9370	. 1058.	3559.
16	-1912.	8890	-1.0250	-1111.	-4023•
17	1811.	.8350	.9710	1075.	3625•
18	1763.	.8250	.9390	1069.	3935.
19	1814.	8560	.9660	1043.	-4392•

RB211-228 * BASELINE TEST SERIES *

MODE 7

UNIT	CO2 CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
1	1.529	744.1	341.A	7.2	14.9
2	1.502	736.3	299.2	8.3	16.0
3	1.515	787.5	387.6	6.0	13.5
4	-1.385	832.2	345.0	7.2	13.6
5	1.473	839.1	406.3	7.5	-12.3
6	1.481	770.9	374.5	8.6	13.4
7	-1.625	712.8	-265.R	6.5	14.8
8	1.500	739.7	317.6	7.0	13.7
9	1.541	811.7	335.2	6.9	13.8
10	-1.669	734.2	-272.9	-9.6	16.5
1 i	1.593	739.1	323.4	5.0	16.1
12	1.506	786.7	380.0	6.3	16.2
13	1.506	789.7	351.0	7.6	13.8
14	1.539	757.4	378.2	6.1	14.6
15	1.474	753.2	353.3	5.9	14.0
16	-1.708	796.9	316.5	9.5	-17.9
17	1.567	907.3	396.8	6.9	15.5
19	1.563	739.0	392.3	8.4	15.2
19	-1.629	841.6	357.1	8.4	-17.5

RB211-228 * BASELINE TEST SERIES *

HODE 7

UNIT	CO2 EI	CO ET	HC EI LB/KLB FU	NO EI L9/KLR FU	NOX EI LB/KLB FU	SMK NUMRER FRONT SIDE
1	2833.	87.72	69.23	1.39	2.88	0.00
2	2850.	88.94	62.08	1.65	3.17	0.00
3	2804.	92.76	78.43	1.16	2.61	0.00
4	2789.	-106.64	75.94	1.51	2.86	0.00
5	2781.	100.85	83.89	1.49	-2.43	0.00
6	2810.	93.10	77.69	1.70	2.65	0.00
7	-2898.	-80.91	-51.84	1.22	2.77	0.00
8	2846.	89.35	65.91	1.39	2.71	0.00
9	2831.	94.93	67.35	1.33	2.64	0.00
10	-2896.	-81.05	-51.76	1.74	2.99	0.00
11	2856.	84.34	63.40	1.69	3.02	0.00
12	2804.	93.21	77.34	1.23	2.76	0.00
13	2815.	94.00	71.78	1.48	2.70	0.00
14	2814.	88.15	75.63	1.16	2.79	0.00
15	2814.	91.53	73.75	1.17	2.79	0.00
16	-2868.	85.18	-58,49	1.66	3.14	0.00
17	2805.	92.00	77.66	1.30	2.91	0.00
19	2913.	84.68	77.21	1.57	2.87	0.00
. 19	2826.	92,93	67.73	1.53	3.18	0.00

RB211-22B * BASELINE TEST SERIFS *

MODE 7

UNIT	FC0 X100	FHC X100	FN0 X100	STD FCO X100	STD FHC .	STD ENO
1	1.7110	.8800	4.5550	1.6510	.8440	4.9970
5	-1.8970	-1.0680	-5.1090	-1.A300	-1.0250	-5.6000
. 3	1.5900	.7740	4.2620	1.5520	.7530	4.6910
4	1.5230	.7430	4.1620	1.4870	.7230	4.5720
. 5	1.5890	.7790	4.1200	1.5400	.7510	4.6710
6	1.6600	.8450	4.3180	1.6090	.8140	4.8940
7	1.7430	.8480	4.7760	1.5560	.7580	4.6970
. 8	1.7150	ec480	4.7760	1.5340	.7580	4.6970
9	1.6510	.7800	4.6100	1.4770	.6980	4.4850
10	-2.0970	-1.1590	-5.8240	-1.8640	-1.0320	-5.6250
11	1.7650	.9120	4.6390	1.6980	.8750	5.1020
12	1.6710	.8420	4.4280	1.6090	.8080	4,8720
13	1.5910	.7770	4.0690	1.5440	.7510	4.6710
15	1.6750	.8430	4.2650	1.6240	.8147	4.8940
15	1.6670	.8470	4.3210	1.5950	.8050	4.8620
16	1.7070	.8380	4.2710	1.6660	.8170	4.9050
17	1.6030	.7730	4.0750	1.5650	.7530	4.6810
18	1.7600	.9080	4.4210	1.6960	.8750	5.1020
19	-1.8580	9920	4.6290	-1.7900	9460	-5.3400

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

THE MAN TO STATE OF THE PARTY O

RB211-228 . BASELINE TEST SERIES .

MODE 7

JNIT	NREC CO EI LB/KLB FU	NREC HC EI LB/KLB FU	NRE CNO EI LB/KLB FU	NR CNOX EI LB/KLB FU	SMK NUMBER CORRECTED
1	90,92	72.14	1.64	3.39	0.00
2	92.22	64.73	1.94	3.73	0.09
3	95.07	80.62	1.37	3.08	0.00
4	-109.24	78.05	1.79	3.38	0.00
5	104.03	87.04	1.81	2.96	0.00
6	96.05	80,62	-2.07	3.25	0.00
7	90,62	-57.98	1.28	2.92	0.00
8	99.90	73,71	1.37	-2.67	0.00
9	-106.14	75.25	1.29	-2.57	0.00
10	91.17	-58.09	1.68	2.89	0.00
11	87.68	66.05	1.85	3+32	0.00
12	96.84	80.55	1.36	3.04	0.00
13	96.89	74,34	1.70	3.10	0.00
14	90.90	78,34	1.33	3.20	0.00
15	95.71	77.58	1.32	3.14	0.00
16	87.28	-59.99	1.91	3.61	0.00
17	94.22	79.65	1.49	3,34	0.00
18	87.87	80.11	1.82	3.31	0.00
19	96.49	70.30	1.76	3.67	0.00

RR211-228 * BASELINE TEST SERIES *

MODE 8

UNIT	N1 SPEED PER CENT	NZ SPEED PER CENT	N3 SPFFD PER CENT	CORP NI PER CENT	CORR N2 PER CENT	CORR N3 PER CENT
1	24.00	45.50	63.00	23.84	45.20	42.5A
5	-26.00	-48.00	-65.00	-25.83	-47.68	-64.57
3	23.00	42.50	62.00	22.89	42.30	61.70
4	23.00	44.00	63.00	22.99	43.79	62.70
5	25.00	45.00	64.00	24.96	44.74	63.63
6	24.00	44.00	63.00	23.86	43.75	42.64
7	25.00	-47.00	-65.00	24.42	45.91	63.49
8	25.00	-47.00	-65.00	24.42	45.91	63.49
9	24.00	45.00	64.00	23.44	43.95	42.51
10	25.00	-48.00	-64.75	24.42	-46.88	63.24
11	24.00	46.00	63.00	23.82	45.65	62.52
12	23.00	45.00	62.50	28.82	44.66	42.02
13	23.50	44.00	62.25	23.37	43.75	61.89
14	22.50	4 .00	62.50	22.37	43.75	62.14
15	22.00	-40.00	-60.00	21.81	-39.66	-59.49
16	23.00	44.00	62.00	22.89	43.79	61.70
17	22.00	-42.00	61.00	21.49	-41.80	60.71
18	25.00	-47.00	64.00	24.81	-46.64	43.51
19	25.00	-47.00	64.00	24.81	-46.64	63.51

RB211-228 . BASELINE TEST SERIES .

MODE 8

UNIT	FUEL FLOW LBM/HR	CB F/A X100	PERF F/A X100	TT7 DEG R	EPR	THRUST LAF
1	1584.	.8110	.8650	1036.	1.025	2802.
2	1600.	.7880	.8710	1050.	1.030	-3309.
3	1400.	.8100	.7630	1032.	1.030	2634.
4	1400.	7390	.7530	1027.	1.029	2832.
5	1600.	.8030	.8710	1032.	1.029	3060.
6	1500.	.7910	.8170	1050.	1.030	2813.
7	1586.	.8110	.8640	-1086.	. 1.018	3039.
8	1580.	.8080	.8610	1068.	1.016	3039.
9	-1700.	.8160	9260	1050.	1.025	2804.
10	-1700.	.8550	9260	1077.	1.020	2974.
11	1600.	8310	.8710	1063.	1.025	2797.
12	1500.	.8110	.8170	1050.	1.020	2698.
13	1500.	.8110	.8170	1036.	1.022	2667.
14	1500.	.8140	.8170	1023.	1.015	2717.
15	1500.	.7950	.8170	1041.	-1.010	-2211.
16	1600.	9320	.8710	-1122.	1.026	2637.
17	1500.	.8480	8170	1050.	1.025	2438.
18	1600.	.8440	.8710	1068.	1.025	3044.
19	1600.	.8670	.8710	1050.	1.022	3044.

RR211-228 * BASELINE TEST SERIES *

MODE 8

UNIT	CORR FU FL LBM/HR	COR CR F/A CO X100		TTT COR	THRUST LBF
1	1606.	.8000	.9530	1022.	2916.
2	1619.	.7770	.8600	1036.	-3326•
3	1410.	.8020	•7550	1022.	2641.
4	1410.	7320	. 7550	1017.	2840.
5	1619.	.7940	.8610	1020.	-3076.
6	1517.	.7820	.8080	1038.	2828.
7	1623.	.7740	.8240	1036.	3037.
8	1617.	.7713	.8710	1019.	3037.
9	-1739.	.7790	.8830	-1001.	2802.
10	-1739.	.8160	.8830	1027.	2972.
11	1616.	.8180	.8580	1047.	2804.
12	1515.	.7990	.9050	1034.	2705.
13	1515.	.8010	.9090	1024.	2679.
14	1515.	.8040	.8080	1011.	2728•
15	1521.	.7810	.8030	1023.	-2553•
16	1510.	9230	.8630	-1111.	2641.
17	1509.	.8400	.8090	1040.	2442.
18	1612.	.8310	.8580	1051.	3044.
19	1612.	8540	.8580	1034.	3044.

RB211-228 * BASELINE TEST SERIES *

MODE 8

UNIT	CO2 CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
1	1.474	855.4	461.7	5.8	12.5
2	1.455	-826.8	-371.0	6.6	13.6
3	1.447	937.9	523.7	5.1	11.1
4	-1.316	953.2	457.2	5.5	11.5
5	1.446	913.1	495.6	7.0	10.8
6	1.421	901.5	498.6	6.9	10.9
7	1.532	-767.0	-316.5	5.9	13.8
. 8	1.506	-794.2	-367.9	6.0	12.8
9	1.496	890.9	420.0	5.4	11.7
10	-1.593	858.8	-384.8	7.0	13.4
11	1.525	841.2	439.8	7.0	15.4
12	1,458	911.9	502.2	5,4	12,2
13	1.469	901.2	461.7	5.6	11.8
14	1,468	885.5	488.0	5.9	11.9
15	1.412	935.0	527.2	-4.1	10,8
16	-1.717	953.4	474.2	7.2	-14.3
17	1.507	-991.7	-569.9	4.9	12.1
18	1.539	-818.0	485.2	7.0	13.3
19	1.576	956.2	475.5	6.9	-14.4

RASELINE TEST SERIES .

というというははなる事にノンとうしまたすで

MODE 8

UNIT	COZ FI	CO EI	HC ET	NO FI LR/KLR FU	NOX EI LR/KLR FU	SHK NIMBER FRONT STOE
1	2744.	101.31	93.94	1.12	2.43	0.00
S	-2789.	100.84	-77.75	1.33	-2.73	0.00
3	2697,	111.27	106.74	.99	2.16	0.00
4	2690.	-124.00	102.18	1.18	2.45	0.00
5	2718.	109.25	101.87	1.39	2.13	0.00
6	2712.	109.50	104.04	1.37	2.17	0.00
7	-ZA4R.	-90.77	-54.35	1.14	-2.69	0.00
A	-2813.	-94,43	-75.15	1.17	2.50	0.00
9	2767.	104.87	-84.93	1.04	2.27	0.00
10	-2810.	-96.43	-74.24	1.29	2.46	0.00
11	2770.	-97.26	87.35	1.33	2.55	0.00
12	2713.	108.01	102.20	1.05	2.37	0.00
13	2735.	136.80	94.00	1.09	5.29	0.00
14	2725.	104.57	99.00	1.13	2.31	0.00
15	2682.	113.05	109.50	81	2.14	0.00
16	-277A.	98.20	-83.91	1.21	2.42	0.00
17	2682.	112.33	110.90	•91	2.24	0.00
16	2752.	-93.09	94.86	1.30	2.48	0.00
19	2744.	105.91	90.48	1.26	5.65	0.00

RB211-22B * BASELINE TEST SERIES *

MODE 8

UNIT	FC0 X100	FHC X100	FN0 X100	STD FCO X100	STD FHC X100	STD FNO X100
1	1.3510	.5740	3.5790	1.3050	•5520	3.9340
2	-1.5140	7160	-4.0480	-1.4620	6880	-4.4460
3	1.1340	.4210	3.0280	1.1080	.4100	3.3130
4	1.2110	.4920	3.3030	1.1830	.4790	3.6330
5	1.3090	.5470	3.3780	1.2700	.5280	3,8350
6	1.2340	.4950	3.1910	1.1980	.4770	3.6250
7	-1.4980	6580	-4.1320	1.3420	•5890	4.0810
8	-1.4960	6580	-4.1320	1.3410	.5890	4.0810
9	1.3480	•5430	-3.7460	1.2100	.4870	3.6670
10	-1.5930	7170	-4.3930	-1.4250	6420	-4,2790
11	1.3940	•5990	3.6560	1.3430	.5760	4.0300
12	1.3140	•5440	3.4610	1.2660	.5230	3.8170
13	1.2400	.4940	3.1520	1.2040	.4770	3.6250
14	1.2410	.4940	3.1520	1.2050	.4770	3.6250
15	97A0	3200	-2.5150	9390	3050	-2.846
16	1.2850	.4910	3.1580	1.2520	.4790	3,6330
17	1.1130	.3980	2.8110	1.0880	.3890	-3.2370
18	-1.4670	6520	3.6580	-1.4150	6290	-4.2300
19	-1.4770	6520	3.6580	-1.4250	6290	-4.2300

RB211-22R * MASELINE TEST SERIFS *

MODE 8

пи. Т	NREC CO E: LB/KLB FU			NR CNOX EI LR/KLB FU	SMK NUMBER CORRECTED
1	104.86	97.76	1.32	2.87	0.00
2	104.43	-80.96	1.57	-3.22	0.00
3	113.49	109.57	1.17	2.56	0.00
4	-126.91	104.93	1.39	2.90	0.00
5	112.60	105.59	-1.69	2.59	0.00
6	112.42	107.82	-1.67	2.65	0.00
7	-101.27	-71.7R	1.21	2.84	0.00
8	105.35	-A3.A3	1.16	2.47	0.00
9	116.79	94.54	1.01	-2.22	0.00
16	107.84	-82.88	1.26	2.40	0.00
11	-100.95	90.88	1.46	2.81	0.00
12	112.04	106.29	1.15	61	0.00
13	109.96	97.24	1.25	2.64	0.00
14	107.67	102.41	1.31	2.66	0.00
15	117.91	114.77	91	2.42	0.00
16	-100.52	-45.96	1.39	2.79	0.00
17	114.88	113.56	1.05	2.59	0.00
18	-96,49	98.31	1.51	2.87	0.00
19	109.81	93.77	1.46	3.03	0.00

UNIT	TSO HR	TSB HR	AMR TEMP DEG R	AMB PRESS	OIMUH RMA PIA\OSH RJ

1	2480.	186.	538.7	29.80	.008670
3	3150.	132.	521.7	29.99	.008140
4	5230.	133.	521.7	29.90	.008170
7	4617.	212.	527.7	29.95	.011130
8	1432.	211.	527.7	29.95	.011130
13	3057.	168.	523.7	30.10	.008830
14	1543.	168.	523.7	30.10	.008830
15	2525.	115.	527.7	30.05	.011090
16	3558.	186.	529.7	30.00	.009990
17	6482.	187.	529.7	30.00	.009990

MODE 1

UNIT	N1 SPEED PER CENT	NZ SPEFD PER CENT	N3 SPEED PER CENT	CORR NI PER CENT	CORR NZ PER CENT	CORR N3 PER CENT
1	25.00	46.00	64.00	24.53	45.14	62.80
3	23.00	44.00	61.50	22.93	43.87	61.32
4	23.00	45.00	62.00	55.93	44.87	61.62
7	24.00	45.00	65.00	23.79	44.61	61.47
8	23.00	45.00	62.00	22.80	-44-61	61.47
13	24.00	46.00	63,00	23.89	45.78	42.70
14	23.00	44.00	64.00	22.89	43.79	53.69
15	23.00	-42.00	61.50	22.80	-41.64	60.97
16	23.50	44.50	\$2.00	23.25	44.04	41.35
17	22.00	-42.00	61.00	21.77	-41.56	-60.36

MODE 1

UNIT	FUEL FLOW LBM/HR	CR F/A X100	PERF F/A X100	TTT DEG R	EPR .	THRUST LRF
1	1600.	.8320	.8710	1077.	1.026	2872.
3	1500.	.8320	.8170	1032.	1.012	2559.
4	1500.	.8080	.8170	1050.	1.018	2666.
7	1550.	.8090	.8440	1050.	1.025	2591.
8	1500.	.8310	.8170	1041.	1.028	2591.
13	1600.	9770	.8710	1050.	1.020	2823.
14	1600.	.8650	.8710	1032.	1.020	3074.
15	1500.	.8840	.8170	1068.	1.020	2484.
. 16	-1400.	.8320	7630	1032.	1.026	2564.
17	1500.	.8630	.8170	1068.	1.024	2366.

MODE 1

UNIT	CORR FU FL LRM/HR	COR CR F/A	COR PF F/A	CORR TT7 DEG R	COR THRUST
1	1624.	.8010	.A39	103	7. ZR6n.
3	1508.	.8270	.412	102	6. 2565.
4	1503.	.8040	.812	104	4. 2654.
7	1565.	.7950	.830	103	2594.
8	1514.	.8170	.903	102	3. 2594.
13	1617.	9680	.9630	104	n. 2840.
14	1617.	.8570	.863	102	23093.
15	1520.	.8680	.903	104	9. 2495.
16	-1419.	.8140	747	101	0. 2571.
17	1520.	.8450	.800	0 104	6. 2373.

RB211-22B + 150 HOUR TEST SERIES +

40DE 1

UNIT	CO2 CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
1	1.545	790.5	393.2	7.2	13.2
3	1.478	894.1	571.9	6.5	11.1
4	1.468	874.3	450.7	6.9	11.9
7	1.480	835.9	428.6	4.7	7.9
8	1.512	847.6	474.0	5.2	9.9
13	-1.847	803.2	393.3	8.5	14.1
14	1.579	853.4	484.2	8.7	10.6
15	1,625	861.5	469.1	5.4	10.9
16	1.518	872.4	461.0	5.1	11.4
17	1.567	891.5	509.8	6.7	10.4

MODE 1

UNIT	CO2 FT	CO EI	HC ET	NO FI		SMK NUMBER FRONT SIDE
••••						
1	2801.	91.22	77.94	1.36	2.50	0.00
3	-26A4.	103.34	113.56	1.24	2.10	0.00
. 4	2742.	103.93	92.04	1.34	5.35	0.00
7	. 2762.	99.31	87.49	.91	1.55	0.00
. 8	2746.	97.98	94.14	.99	1.89	0.00
13	-284A.	-78.81	-66.31	1.37	2.27	0.00
14	2752.	94.66	92.26	1.59	1.94	0.00
15	2775.	93.62	A7.57	.97	1.95	0.00
16	2756.	100.76	91.47	.97	2.16	0.00
17	2742.	99.27	97.52	1.22	1.91	0.00

MODE 1

UNIT	FC0 X100	FHC X100	FN0 X100	STD FCO X100	STD FHC X100	STD FNO X100
1	1.4170	•5950	3.7170	1.3010	•5490	3.9220
3	1.2400	.4920	3.1840	1.2220	.4840	3.6510
4	1.2990	.5410	3,3630	1.2330	.5350	3.8630
7	1.3130	•5430	3.2430	1.2620	.5210	3.8080
8	1.3270	.5430	3.2430	1.2700	.5210	3.8080
13	1.4560	.6020	3.5400	1.4160	.5830	4.0560
14	1.2600	•4950	3.1680	1.2270	.4790	3.6330
15	-1.1340	4000	-2.7320	-1.0870	3820	-3.2060
16	1.2920	•5180	3.2450	1.2290	.4920	3.6A50
17	-1.1280	3990	2.8050	-1.0740	3790	-3.1920

MODE 1

UNIT	NREC CO FI LB/KLR FU	NREC HC EI L9/KL9 FU	the second of the second of the second	NR CNOX ET	SMK NUMBER CORRECTED
1	99.32	R4.49	1.44	2.64	0.00
3	104.88	115.54	1.42	2.41	0.00
4	105.25	93.15	1.53	2.67	0.00
7	103.37	91.17	1.07	1.82	0.00
8	102.01	98.10	1.16	2.22	0.00
13	-81.02	-68.53	1.57	2.60	0.00
14	97.20	95.31	1.92	5.52	0.00
15	97.66	91.70	1.14	7.2A	0.00
16	105.94	96.42	1.10	2.45	0.00
17	104.28	102.67	1.39	2.17	0.00

MODE 2

UNIT	NI SPEED PER CENT	NZ SPEED PER CENT	N3 SPEED PER CENT	CORR NI PER CENT	CORR N2 PER CENT	CORP N3

1	-28.00	51.00	67.00	27.48	50.04	65.74
3	27.00	50.00	66.00	26.92	49.86	65.81
4.	27.00	50.00	66.00	56.95	49.86	65.81
7	27.00	50.00	66.00	26.77	49.57	65,43
8	27.00	50.00	66.00	26.77	49.57	65.43
13	27.00	50.00	66.00	26.87	49.76	65.68
14	27.00	51.00	67.00	26.87	.50.76	66.68
15	27.00	-48.00	65.00	26.77	-47.59	64.44
16	27.00	50.00	66.00	26.72	49.48	65.31
17	27.00	51.00	66.00	26.72	50.47	65.31

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

をおいるかと、大人のでは、大人というというできる。

MODE 2

UNIT	FUEL FLOW LRM/HR	CR F/A X100	PERF F/A X100	TT7 DEG R	EPR	THRUST LPF
1	1800.	.8470	.9800	-1104.	1.032	3656.
3	1800.	.8270	.9800	1068.	1.022	3651.
4	1700.	.8150	.9260	1068.	1.026	3662.
7	1800.	.8210	.9800	1068.	1.030	3555.
8	1800.	•9340	.9800	1068.	1.029	1555.
13	1800.	.8460	.9800	1068.	1.028	7604.
14	1800.	.8780	.9800	1066.	1.028	-3998.
15	1800.	.8540	.9800	1086.	1.028	1279.
16	1700.	.8390	•9260	1068.	1.034	3516.
17	1800.	.8640	.7900	1086.	1.036	3516.

MODE 5

UNIT	CORR FU FL LBM/HR	COR CR F/A CO	X100	DRR TT7 COR	THRUST
1	1827.	.8160	.9440	1063.	3642•
3	1809.	.8220	.9750	1052.	3659.
4	1704.	.8100	.9210	1062.	3659.
7	1817.	.8070	.9640	1049.	3359•
8	1817.	.8200	.9640	1049.	3559.
13	1820.	.6380	.9710	1058.	3625.
14	1820.	.8690	.9710	1056.	-4023.
15	1923.	.8490	.9640	1067.	3293.
16	1723.	.8220	.9070	1046.	3526•
17	1824.	.8450	•9600	1063.	3526•

MODE S

UNIT	CO2 CONC	CO CONC	HC CONC	NO CONC	NOX CONC
		********		••••••	
1	1.621	667.0	289.9	6.1	-17.8
3	1.537	724.2	405.4	5.6	15.0
4	1.538	724.3	318.3	6,5	15.2
7	1.548	716.4	327.7	4.2	11.7
8	1.563	734.0	367.5	5.3	12.3
13	1.594	727.4	345.1	6.8	15.0
14	1.651	717.2	375.4	7.5	15.7
15	1.617	709.9	410.2	7.1	13.3
16	1.590	718.6	330.1	5.2	14.4
17	1.656	-646.7	309.3	6.7	15.0

	ASSIFIE	TIM	E DEGRA	-1238-	FACTO	ENGINEE RS FOR	TURBIN	E ENGI	NE EXHA	UST EM	ISSIONS		(ט)
	2 of 4 AD A070579	Daniel 1	**************************************		100 (100 (100 (100 (100 (100 (100 (100	Pilipino,	**************************************	100 pt 10	**************************************		* 50 to 10 t		
Magazini 1	**************************************		TALAXEN	- but has the factor	- NORMAN	1000000		**************************************	Ministers Total of the mater 1 to 1 to	#	**************************************	**************************************	
Note No.	100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		**************************************		- MARIANA - MARI		**************************************	THE RESERVE		TALAREN	**************************************	Haran	
1	**************************************		TAAANS	***************************************		THE STATE OF THE S	**************************************	TOTAL STREET	**************************************	111111	M-2000 - 4.4.5 × × × × × × × × × × × × × × × × × × ×	Stagement of the stage of the s	
**************************************	Magaza				Principal land					TAN-00-00-00-00-00-00-00-00-00-00-00-00-00			THE REAL PROPERTY OF THE PARTY
**************************************	MARKANE I II I I I I I I I I I I I I I I I I I		1111111	1111111	**************************************	**************************************	**************************************	March 197	**************************************		**************************************	100 (40000)	
	***************************************	Marine Ma Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Ma Marine Ma Marine Ma Marine Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma	1 No. 2 A Sec. 10 A Sec. 1	TATALE I	Therefore the state of the stat	TOMBONO INTERNATION		Angero 1 No. 10 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	**************************************		1111111	majora.	

RR211-22R . 150 HOUR TEST SERIES .

MODE 2

UNIT	COS EI	CO EI	HC EI	NO FT		SMK NIMBER
	LB/KLR FU	LA/KLA FU	LA/KLA FU	LA/KLA FU	LR/KLR FU	FRONT SIDE
1	-2885.	75.56	-56.41	1.14	-3.31	0.00
3	2804.	84.11	80.89	1.06	2.45	0.00
•	2847.	A5.35	64,43	1.25	2.94	0.00
7	2946.	83.82	65.86	.80	2.24	0.00
4	2826.	A4.48	72.66	1.00	2.33	0.00
13	2840.	A2.49	67.23	1.27	2.79	0.00
14	2A37.	78.42	70.51	1.34	2.83	0.00
15	2974.	78.89	78.30	1.29	2.42	0.00
16	ZASR.	82.22	64.90	.97	2.71	0.00
17	-ZA90.	-71.85	59.03	1.22	2.74	0.00

MODE S

UNIT	FCO X100	FHC X100	FN0 X100	STD FCO X100	STD FHC X100	STD FNO X100
1	1.8020	.9100	4.7380	1.6490	.8360	4.9700
3	1.6540	.8390	4.3010	1.6380	.8240	4.9260
4	1.6530	.8340	4.2920	1.6320	.8240	4.9760
7	1.6780	.8400	4.1520	1.6090	.8050	4.8620
8	1.6850	.8400	4.1520	1.6160	.8050	4.8620
13	1.6850	.8450	4.2850	1.6390	.8170	4.9050
14	1.7800	.9160	4.4890	1.7310	.8850	5.1360
15	1.5560	7160	-3.7860	1.4880	6830	-4.4270
16	1.6970	.8440	4.2780	1.6100	.7990	4.8400
17	1.7890	.9140	4,4833	1,6960	.8650	5.0680

S 3COM

UNIT	NREC CO EI			NR CNOX ET	SMK NUMBER CORRECTED
	••••••				••••••
1	82.60	61.37	1.20	3.48	0.00
3	85.42	92.36	1.22	3.27	0.00
4	86.47	65.24	1.43	3.3A	0.00
7	87.40	68.74	.94	2.63	0.00
A	AR.10	75.84	1.17	2.72	0.00
13	84.79	69.53	1.46	3.19	0.00
14	80.64	72.94	1.53	3.23	0.00
15	87.45	82.17	1.51	2.83	0.00
16	86.65	68.56	1.10	3.07	0.00
17	-75.79	62.39	1.38	3.10	0.00

MODE 3

UNIT	NI SPEED	N2 SPEED	N3 SPEED	CORR NI	CORR NZ	CORP. N3
	PER CENT					
1	-95.00	99.00	93.40	93.22	97.14	91.65
3	94.00	96.00	93.00	93.73	95.72	92.73
4	93.50	96.00	92.50	93.23	95.72	92.23
7	93.00	97.00	92.00	92.20	96-17	91.21
8.	93,00	97.00	92.00	92.20	96.17	91.21
13	93.00	97.50	93.00	92.55	97.03	92.55
14	93.50	97.00	93.00	93.05	96.54	92.55
15	93.00	-92.00	92.00	92.20	-91.21	91.21
16	94.00	98.00	92.00	93.02	96.98	91.04
17	93.00	-100.00	93.00	92.03	-98.96	92.03

MODE 3

UNIT	FUEL FLOW LRM/HR	CR F/A X100	PERF F/A X100	TT7 DEG R	EPR	THRUST LRF
1	15800.	1.9170	2.1080	-1806.	1,533	42169.
3	15000.	1.8170	2.0010	1716.	1.533	41902.
4	15000.	1.7700	2.0010	1734.	1,533	47028.
7	15500.	1.7450	2.0680	1716.	1.533	41958.
8	15500.	1.8030	2.0680	1734.	1,533	41958.
13	15005.	1.8090	2.0020	1716.	1.533	41749.
14	15500.	1.8430	2.0680	1747.	1.533	41749.
15	15000.	1.8300	2.0250	1725.	-1.521	-40940.
16	16000.	1.8200	2.1350	1752.	1.533	41888.
17	16000.	1.8600	2.1350	1761.	1.533	41688.

MODE 3

UNIT	CORR FU FL LBM/HR	COR CB F/A	COR PF F/A	CORR TT7 COR	THRUST LRF

1	16037.	1.8460	2.0300	1739.	42000.
3	15079.	1.8060	1.9900	1706.	42000.
4	15033.	1.7600	1.9900	1724.	42000.
7	15650.	-1.7150	2.0330	1686.	42000•
8	15650.	1.7720	2.0330	1704.	42000.
13	15168.	1.7920	1.9830	1699.	42000.
. 14	15668.	1.8260	2.0480	1731.	42000•
15	15195.	1.7980	1.9900	1695.	-41118.
16	16212.	1.7830	2.0900	1715.	42000•
17	16212.	1.8220	2.0900	1724.	42000•

MODE 3

UNIT	COZ CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC

.1	4.062	21.7	3.4	-503.9	-503,1
3	3.844	27.6	8.0	399.3	408.4
4	3.744	19.0	-9,3	393.2	417,5
7	3.690	24.6	3.7	-342.6	-337.4
8	3.816	24.8	3.7	376.7	383,6
13	3.825	17.9	4.4	380.4	383,1
14	3.896	. 33.3	4.7	365.1	385.9
15	3.877	27.5	6.2	391.2	394,1
16	3.840	55.9	6.2	413.8	422,8
17	3.947	24.1	4.0	425.2	441.9

MODE 3

UNIT	COS EI	CO EI	HC EI	NO EI LR/KLB FU	NOX ET	SMK NUMBER FRONT SIDE
					CBYKED PO	LKOMI SINE
1	3156.	1.07	.29	-40.93	-40.93	27.81
3	3154.	1.44	.71	34.25	35.03	25.17
4	3154.	1.02	85	34.63	36.77	27.15
7	3155.	1.34	.34	30.62	30.62	29.14
8	3155.	1.31	•59	32.57	33.17	27.81
13	3151.	.94	.39	32.76	32.99	33.33
14	3150.	1.72	.42	30.86	32.60	30.00
15	3159.	1.42	•55	33.32	33.56	30.20
16	3162.	1.19	•56	35.43	36.21	78.86
17	3162.	1.23	.35	35.61	37.01	30.67

MODE 3

UNIT	FC0 X100	FHC X100	FN0 X100	STO FCO X100	STD FHC X100	STD FNO X100
1	-137.6580	113.9860	-102.7040	105,2630	99.7470	99.3780
3	90.8670	A4.7330	76.8620	A7.3720	82.6410	87.0240
4	-85.8490	A4.2750	76.7040	A2.A060	A2.6410	87.0240
7	92.0190	93.7170	An.46An	82.3140	A7.8640	90.9420
A	98.5560	93.7170	80.4680	A7. A649	A7.8640	90.9420
13	104.9090	103.4230	87.9870	97.9630	98.7730	98.6930
14	104-0330	96.6990	83.9190	97.0740	92.3710	94.1620
15	-61.4210	-47.2130	-49.7810	-54.9400	-44.1650	-56.4690
16	111.2680	106.4240	90.7260	96.3260	98.0310	98.1710
17	118,5130	108.3000	91.8500	102.2500	99.7470	99.3780

MODE 3

UNIT	NREC CO EI			NR CNOX EI	
****	********	••••••			
1	1.40	.33	39,61	39.61	20.78
3	1.50	.73	38.78	39.66	22.74
4	1.06	87	39,29	41.72	22.59
7	1.49	.37	34.61	34.61	24.44
8	1.47	.31	36.81	37.48	20.63
13	1.01	•41	36.75	37.00	-33-33
14	1.84	.44	34.62	36.5A	28.67
15	1.59	.59	37.80	38.07	23.82
16	1.38	.60	38,34	39.18	23.66
17	1.42	.38	38.53	40.04	25.50

R8211-228 * 150 HOUR TEST SERIES *

MODF 4

UNIT	NI SPEED PER CENT	N2 SPEED PER CENT	N3 SPEED PER CENT	CORR N1 PER CENT	CORR N2 PER CENT	CORR N3 PER CENT
1	89.00	95.00	-92.00	A7.33	93.22	90.28
3	88.00	94,00	91.00	A7.75	93.73	90.74
4	88.00	94.00	90.00	A7.75	92,73	A9.74
7	88.00	94.00	90.00	87.25	9~ 19	A9.23
8	88.00	94.00	90.00	A7.25	93.19	A9.23
13	88.00	95.00	91.00	87.58	94.55	90.56
14	87.00	94.50	91.00	A6.5A	94.05	90.56
15	88.00	94.00	90.00	87.25	93.19	a9.23
16	87.50	95.00	90.00	A6.59	94.01	A9.06
17	87.50	95.00	-92.00	A6.59	95.00	-91.04

RB211-228 • 150 HOUR TEST SERIES •

MODE 4

UNIT	FUEL FLOW LBM/HR	CB F/A X100	PERF F/A X100	TT7 DEG R	EPR	THRUST LRF
1	12500.	1.7000	1.8330	-1689.	1.446	35757.
3	13000.	1.6410	1.9060	1544.	1.446	35530.
4	12500.	1.5860	1.8330	1635.	1.446	35637.
7	13000.	1.5730	1.9060	-1599.	1.446	35578.
8	13000.	1.5820	1.9060	1609.	1.446	35578.
13	12500.	1.5940	1.8330	1614.	1,446	35400.
14	13000.	1.6260	1.9060	1626.	1.446	35400.
15	13000.	1.6680	1.9290	1644.	-1.436	-34779.
16	13000.	1.6070	1.9060	1644.	1.446	35518.
17	13000.	1.7030	1.9060	1680.	1.446	35518.

PR211-22R . 150 HOUR TEST SERIES .

MODE 4

UNIT	CORR FU FL LRM/HR	COR CB F/A	COR PF F/A	CORR TT7 COR	THRUST LAF
		•••••	********		
1	12644.	1.6370	-1.7650	1626.	35613.
3	13068.	1.6320	1.8950	1634.	35613.
4	12528.	1.5760	1.8220	1625.	35613.
7	13125.	1.5470	1.8740	-1571.	35613.
8	13125.	1.5550	1.8740	-1580.	35413.
13	12636.	1.5790	1.8150	1599.	35613.
14	13141.	1.6100	1.8880	1610.	35613.
15	13169.	1.6400	1.8960	1616.	-34930.
16	13172.	1.5740	1.8560	1610.	35613.
17	13172.	1.6580	1.8660	1645.	35613.

RB211-228 • 150 HOUR TEST SERIES •

400F 4

UNIT	COZ CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
	********	*******	********		*******
1	3,595	27.4	2.1	-345.4	-349,3
3	3.466	37,1	4.7	277.5	288.7
4	3.347	24,2	-7.6	271.4	287.4
7	3.322	31.5	1.8	245.3	246.5
8	3.339	44.8	1.9	254.2	265.7
13	3.362	26.7	5.5	251.7	-228.6
14	3.428	50.4	2.7	244.6	263,7
15	3.529	36,5	3.6	299.9	308.0
16	3.401	29.7	2.4	293.7	302.9
17	3.60A	32.1	2.6	315.6	-333.4

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

:

#9211-228 . 150 HOUR TEST SERIES .

MODE 4

UNIT	CO2 ET	CO EI	HC EI	NO FI LR/KLR FU	NOX EI	SMK NUMBER FRONT SIDE
1	3155.	1.53	•50	-31.70	-32.05	20.00
3	3154.	2.15	.46	26.39	27.46	19.74
4	3154.	1.45	-,7A	26.74	28.32	17.76
7	3155.	1.90	-19	24.35	24.47	18.67
8	3153.	2.69	.20	25.09	26.23	19.33
13	3150.	1.59	.23	24.66	24.66	18.00
14	-314A.	2.95	.27	23.49	25.32	20.81
15	3159.	2.08	.35	2A.06	28.82	-8.00
16	3162.	1.76	.25	29.26	29.44	16.56
17	3162.	1.79	.25	28.92	-30.54	23.11

RB211-228 . 150 HOUR TEST SERIES .

HODE 4

TIMIT	FC0 X100	FHC X100	FN0 X100	STD FCO X100	STD FHC X100	STD FNO X100
1	71.0930	66.6940	70.0620	56.6380	58.7480	68.5280
3	61.3100	64.5420	63.4670	59.1900	62.9800	71.9190
4	57.7520	64.1940	63.3370	55.9310	42.9A00	71.9190
7	56.9160	62.3060	60.2690	51.5790	58.5480	64,3670
8	57.4340	62.3060	60.2690	52.0270	58.5480	68.3670
13	64.3890	73.6240	69.1370	60.6350	70.3890	77.6940
14	63.4140	68.7760	65.9390	59.6860	65.7670	74.1170
15	62.9730	62.6810	60.4160	56.6600	59.5480	68,3670
16	64.9060	70.8150	67.9310	57,2950	65.4120	73.8410
17	-79.3430	-81.0590	74.6820	-69.5040	74.8070	81.0580

RR211-228 . 150 HOUR TEST SERIES .

MODE 4

UNIT	NREC CO EI LB/KLB FU	NREC HC EI LR/KLB FU		NR CNOX EI LR/KLR FU	SMK NUMBER CORRECTED
1	1.92	.23	31.00	31.35	18.17
3	5.53	.48	29.91	31.15	17.89
4	1.50	80	30.36	32.15	17.61
7	2.10	.19	27.63	27.76	17.05
A	2.97	.21	28.47	29.76	18.89
13	1.69	.24	27.71	27.71	14.47
14	3.13	.28	26.40	28.46	20.79
15	2.31	.37	31.75	32.61	-8.00
16	1.99	.27	30.71	35.00	15.73
17	2.04	.27	31.39	33.15	18.89

RR211-228 * 150 HOUR TEST SERIES *

MODE 5

UNIT	NI SPEED PER CENT	NZ SPEED PER CENT	N3 SPEED PER CENT	CORP NI PER CENT	CORR NZ PER CENT	CORP N3 PER CENT
				*******		~~~~~
1	78.00	90.00	-87.00	76.54	88.31	A5.37
3	78.00	90.00	86.00	77.78	89.74	A5.75
4	. 77.00	89.00	86.00	76.78	88.74	A5.75
7.	78.00	89.00	86.00	77.33	88.24	A5.26
8	77.00	89.00	86.00	76.34	88.24	A5.26
13	77.00	90.00	86.00	76.63	89.57	A5.59
14	77.00	89.00	86.00	76.63	88.57	R5,59
15	77.00	-88.00	A5.50	76.34	-87.25	R4.77
16	77.00	89.00	85.00	76.20	88.07	A5.10
17	77.00	90.00	86.00	76.20	89.06	A5.10

RR211-22R + 150 HOUR TEST SERIES +

MODE 5

UNIT	FUEL FLOW LAM/HR	CB F/A X100	PERF F/A X100	TT7 DEG R	EPR	THRUST LRF
1	8500.	1.3890	1.5740	-1509.	1.302	24667.
3	9000.	1.3520	1.4670	1464.	1.302	24511.
4	8500.	1.2920	1.5740	1455.	1.302	24585.
7	9000.	1.2890	1.6670	-142A.	1.302	24544.
8	8750.	1.3060	1.6210	-1428.	1.302	24544.
13	8500.	1.3220	1.5770	-1439.	1.301	24343.
14	9000.	1.3570	1.6670	1464.	1,302	24421.
15	8500.	1.3440	1.5990	1473.	-1.294	-21835.
16	8500.	1.3110	1.5740	1464.	1.302	24503.
17	9000.	1.4030	1.6670	-1500.	1.302	24503.

R8211-228 * 150 HOUR TEST SERIES *

MODE 5

UNIT	CORR FU FL	COR CR F/A	COR PF F/A	CORR TT7 CO	THRUST LBF
				••••••	
1	8628.	1.3370	-1.5160	1453.	24568.
3	9047.	1.3440	1.6570	1455.	24568.
4	8519.	1.2850	1.5650	1446.	24568.
7	9087.	1.2670	1.6390	-1403.	24568.
8	8834.	1.2840	1,5930	-1403.	24568.
13	8592.	1.3100	1.5620	1426.	24490•
14	9098.	1.3440	1.6510	1450.	24568.
15	8611.	1.3210	1.5720	1448.	-2393A•
16	8613.	1.2840	1.5420	1433.	24568.
17	9119.	1.3740	1.6320	1469.	24568.

R8211-228 * 150 HOUR TEST SERIES *

MODE 5

UNIT	COZ CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
				********	********
1	2.923	56.8	2.5	-158.1	-161.9
3	2.840	83.5	7.0	132.4	140.4
4	. 2.715	57.5	-10.3	120.8	130.3
7	2.708	71.1	3.5	121.0	124.2
8	2.742	103.3	4.9	120.A	131.7
13	2.776	69.8	3.A	119.8	121.6
14	2.844	-120.8	7.4	123.7	135.2
15	2.826	88.8	6.1	130.3	134.6
16	2.761	. 65.1	4.5	132.0	145.1
17	-2.959	60.5	3.6	-149.6	-164.2

R6211-228 . 150 HOUR TEST SERIES .

MODE 5

UNIT	CO2 EI	CO EI	HC EI LB/KLP FU	NO EI LB/KLB FU	NOX EI LR/KLB FU	SMK NUMBER FRONT STDE
1	3151.	3.89	•30	-17.62	-18.24	15.79
3	3147.	5.89	.85	15.39	16.26	13.64
•	3148.	4.24	-1.30	14.65	15.80	10.67
7	3149.	5,26	.45	14.72	15.10	13.25
8	3145.	7.54	•60	14.48	15.79	13.82
13	3144.	5.03	.47	14.19	-14.40	11.18
14	-3138.	-8.49	.90	14.27	15.60	14.57
15	3151.	6.30	.74	15.18	15.69	10.00
16	3156.	4.73	•56	15.77	-17.33	6.08
17	3157.	4.11	.41	-16.69	-18.31	15.89

RB211-228 * 150 HOUR TEST SERIES *

MODE 5

UNIT	FCO X100	FHC X100	FN0 X100	STD FCO X100	STD FHC X100	STD FNO X100
1	32.0110	32.7430	43.2160	26.6600	29.0750	42.8320
3	31.4550	36.3060	42.9630	30.5420	35.4630	48.7650
4	27.1190	31.1380	38.9130	26,4200	30.58A0	44.2770
7	27.1550	30.5530	37.3140	25.0440	28.8150	42.5920
8	27.5500	30.5530	37.3140	25.3920	28.8150	47.5920
13	30.6840	36.0530	42.5080	29.1780	34.5410	47.9270
14	28.7750	31.2A50	34.7360	27.3590	29.9850	43.7020
15	26.3220	-27.2530	-34.5940	24.1890	-25.5640	-39.4190
16	27.7190	30.4180	34.3350	25.0600	28.2480	42.0360
17	32.4940	34.3870	41.5590	29.2210	31.9100	45.5160

RB211-22B . 150 HOUR TEST SERIES .

MODE 5

UNIT	NREC CO EI LB/KLB FU	NREC HC EI LB/KLB FU		NR CNOX ET	SMK NUMBER CORRECTED
	••••••		********	••••••	
1	4.68	.34	17.66	18.08	15.35
3	6.06	.87	17.46	18.46	12.75
4	4,36	-1.33	16.67	17.97	10.67
7	5.70	.48	16.79	17.23	13.25
. 8	8.18	.63	16.53	18.02	12.63
13	5.29	.49	16.00	-16.24	11-18
14	-8.92	.93	16.10	17.60	12.75
15	6,85	.79	17.30	17.87	9.69
16	5,24	.60	17.30	19.01	-6.08
17	4.57	.45	-18.27	-20.06	14-10

R8211-228 * 150 HOUR TEST SERIES *

40DE 6

TINU	N1 SPEED PER CENT	NZ SPEED PER CENT	N3 SPEED PER CENT	CORR N1 PER CENT	CORR N2 PER CENT	CORR N3 PER CENT
1	55.00	78.00	79.00	53.97	76.54	77.52
3	55.50	77.00	79.00	55.34	76.79	-78.77
4	55.00	76.00	78.00	54.84	75.7A	77.79
7	54.00	76.00	78.00	53.54	75.35	77.33
8	55.00	78.00	78.00	54.53	77.33	77.33
13	55.00	78.00	78.50	54.74	77.63	78.12
14	53.00	-8:.00	-80.00	52.75	-80.61	-79.62
15	55.00	76.00	78.00	54.53	75.35	77.33
16	54.00	76.00	78.00	53.44	75.21	77.19
17	54.00	76.00	78.00	53.44	75.21	77.19

RB211-22B . 150 HOUR TEST SERIES .

MODE 6

UNIT	FUEL FLOW LBM/HR	CR F/A X100	PERF F/A X100	TT7 DEG R	EPR	THRUST LRF
1	4100.	•9810	1.1840	1257.	1.128	10565.
3	4300.	•9870	1.2420	1221.	1.128	10498.
4	4110.	.9490	1.1840	1212.	1.128	10530.
7	£100.	.9200	1.1840	1203.	1.128	10512.
8	4200.	•9450	1.2130	1221.	1.128	10512.
13	4200.	•9580	1.2130	1212.	1,128	10460.
14	-4800,	-1.1450	-1.3860	-1279.	1.128	10460.
15	4100.	.9810	1.1950	1230.	-1.126	-10292.
16	4000.	.9160	1.1550	1221.	1.128	10495.
17	4000.	.9710	1.1550	1221.	1.128	10495.

R8211-228 . 150 HOUR TEST SERIES .

MODE 6

UNIT	CORR FU FL	COR CB F/A	COR PF F/A	CORR TTT COR	THRUST LBF
	*********	*******			
1	4167.	.9450	1.1400	1210.	10523•
3	4323.	.9820	1.2340	1214.	10523.
4	4109.	.9440	1.1770	1205.	10523.
7	4140.	.9040	1.1640	1182.	10523.
8	4241.	.9290	1.1920	1200.	10523.
13	4746.	.9490	1.2010	1500.	10523.
14	-485?	-1.1340	3730	-1267.	10523•
15	4153.	.9640	1.1750	1200.	-10337•
16	4053.	.8970	1.1310	1195.	10253.
17	4053.	.9500	1.1310	1195.	10523.

RR211-22R . 150 HOUR TEST SERIES .

MODE 6

UNIT	COR CONC	CO CONC	HC CONC	NO CONC	NOX CONC
	*******	*********	******		********
1	2.035	186.6	25.0	-48.7	57.1
3	2.038	223.1	45.7	40.4	54.4
•	1.944	208.4	-93.2	40.4	50.3
7	1.898	224.7	35.1	-30.9	-41.8
8	1.950	235.4	37.7	35.3	.46,9
13	1.977	210.9	37.1	41-1	51.1
14	-2.360	-298.2	48.8	42.2	57.4
15	2.024	235.0	51.1	41.9	51.6
16	1.893	229.0	33.9	36 ₉ 8	52.6
17	2.008	236.2	36.9	39.6	53.5

RR211-228 + 150 HOUR TEST SERIES +

MODE 6

UNIT	COS EI	CO EI LB/KLR FU	HC ET LR/KLR FII	NO EI LAZKLA FU	NOX ET	SMK NUMBER FRONT SIDE
1	3114.	18.20	4.1A	-7.80	9.15	8.00
3	3103.	21.62	7.60	6.43	8.66	6.54
4 -	-30A1.	21.02	-16.15	6.69	8,33	5.92
7	3104.	23.40	6.27	-5.2A	-7.15	8.55
Ą	3103.	23.84	6.56	5.44	7.80	6.58
13	3103.	21.06	6,37	6.74	8.19	4.67
14	-3095.	24.89	7.00	5.79	7.A7	-11.33
15	3103.	22.92	A.56	6.71	8.25	6.67
16	3111.	23,95	6.09	6.32	9.03	5,33
17	3111.	23.29	6.25	6.42	8.67	6.00

RR211-228 • 150 HOUR TEST SERIES •

MODE 6

UNIT	FCO X100	FHC X100	FN0 X100	STD FCO X100	STD FHC X100	STD FNO X100
1	6.0600	6.9960	16.3390	5.4110	6.3090	16,6080
3	5.7610	6.7650	15.0130	5.4510	6.6250	17.1120
•	5.1920	5.7900	13.6720	5.1070	5.7020	15.6720
7	5.1680	5.7560	13.1890	4.9080	5.4700	15.2380
8	6.2100	7.7950	15.4950	5.8870	7.3970	18.3230
13	6.3490	8.1470	16.7440	6.1370	7.8350	18.9960
14	-8.9240	-12.6710	-21.9990	-8.5990	-12.1720	-24.9130
15	5.3160	5.7910	13.2220	5.0310	5.4700	15.2380
16	5.1760	5.7560	13.5780	4.8550	5.3950	15.1130
17	5.2970	5.7560	13.5790	4.9640	5.3950	15.1130

RB211-22B + 150 HOUR TEST SERIES +

MODE 6

UNIT	NREC CO ET	NREC HC ET		NR CNOX ET	SMK NUMBER
	**********	********			*******
1	20.3R	4,64	7.93	9.30	8.00
3	22.04	7.76	7.32	9.87	6.54
4	21.3A	-16.40	7.64	9.52	5.43
7	24,63	6.60	-6.11	8.26	A.55
8	25.15	6,91	5.7R	A.99	6.59
13	21.79	6.62	7.65	9.51	4.67
14	25.83	7.29	6,55	8.91	-11.33
15	24.22	9.06	7.73	9.52	6.67
16	25.54	6,50	7.04	10.06	5.33
17	24.86	6,67	7.15	9.64	6.00

R8211-228 * 150 HOUR TEST SERIES *

MODE 7

UNIT	N1 SPEED PER CENT	NZ SPEED PER CENT	N3 SPEED PER CENT	CORR N1 PER CENT	CORR NZ PER CENT	CORR N3 PER CENT
1	-28.00	51.00	67.00	27.48	50.04	65.74
.3	27.00	49.00	66.00	26.92	48.86	65.81
•	27.00	50.00	66.50	26.92	49.86	66.31
7	27.00	51.00	67.00	26.77	50.56	66.43
	27.00	48.00	65.50	26.77	47.59	64.94
13	-28.00	51.00	67.00	-27.87	50.76	66.68
14	-26.00	49.00	67.00	-25.88	48.77	66.68
15	27.00	49.00	66.00	26.77	48.58	45,43
16	27.00	. 50.00	66.00	26.72	49.48	45.31
17	27.00	50.00	66.00	26.72	49.48	65.31

RB211-228 • 150 HOUR TEST SERIES •

MODE 7

UNIT	FUEL FLOW	CB F/A X100	PERF F/A	TT7 DEG R	EPR	THRUST LRF
1	1800.	.8000	.9800	-1176.	1.033	3656.
•	1000	•6000	.4000	-11144	1.033	10306
3	1600.	.8130	.8710	1068.	1.022	3651.
4	1700.	.7850	.9260	. 1068.	1.028	3854.
7	1800.	.7850	.9800	1054.	1.023	1902.
8	1700.	.8170	.9260	1059.	1.023	1423.
13	1800.	.8220	.9800	1068.	1.028	-3998.
14	1700.	.8480	.9760	1063.	1.028	-3998.
15	1800.	.8420	.9800	1095.	1.030	1543.
16	1700.	.8090	.9260	1050.	1.034	3516.
17	1700.	.8170	.9260	1077.	-1.036	3516.

R8211-228 * 150 HOUR TEST SERIES *

MODE 7

UNIT	CORR FU FL	COR CB F/A C	OR PF F/A	CORR TT7 COR	THRUST
	LBM/HR	X100	X100	DEG R	LBF
	*********		********		
1	1827.	.7700	.9440	-1132.	3642.
3	1608.	.8080	.8660	1062.	3659.
4	1704.	.7810	.9210	1062.	3A52.
7	1817.	.7720	.9640	1036.	3906.
. 8	1716.	.8030	.9100	1041.	3426.
13	1820.	.8140	.9710	1058.	-4023.
14	1718.	.8400	.9170	1053.	-4023.
15	1823.	.8280	.9640	1076.	3559.
16	1723.	.7920	.9070	1029.	3526•
17	1723.	.8000	.9070	1054.	3526.

RR211-228 * 150 HOUR TEST SERIES *

MODE 7

PER CENT PPM PP						
3 1.505 771.7 395.4 6.8 14 4 1.467 795.7 321.7 7.9 14 7 1.471 759.1 321.7 5.4 13 8 1.513 812.0 387.3 6.0 12 13 1.549 747.1 316.0 8.7 15 14 1.579 772.2 387.2 7.9 16 15 1.573 760.0 389.8 9.2 13 16 1.519 769.9 334.1 7.3 16	UNIT					NOX CONC
3 1.505 771.7 395.4 6.8 14 4 1.467 795.7 321.7 7.9 14 7 1.471 759.1 321.7 5.4 13 8 1.513 812.0 387.3 6.0 12 13 1.549 747.1 316.0 8.7 15 14 1.579 772.2 387.2 7.9 16 15 1.573 760.0 389.8 9.2 13 16 1.519 769.9 334.1 7.3 16					******	
4 1.467 795.7 321.7 7.9 14 7 1.471 759.1 321.7 5.4 13 8 1.513 812.0 387.3 6.0 12 13 1.549 747.1 316.0 8.7 15 14 1.579 772.2 387.2 7.9 16 15 1.573 760.0 389.8 9.2 13 16 1.519 769.9 334.1 7.3 16	1	1.517	714.3	-286.4	8.8	-17.1
7 1.471 759.1 321.7 5.4 13 8 1.513 812.0 387.3 6.0 12 13 1.549 747.1 316.0 8.7 15 14 1.579 772.2 387.2 7.9 16 15 1.573 760.0 389.8 9.2 13 16 1.519 769.9 334.1 7.3 16	3	1.505	771.7	395.4	6.8	14.1
8 1.513 812.0 387.3 6.0 12 13 1.549 747.1 316.0 8.7 15 14 1.579 772.2 387.2 7.9 16 15 1.573 760.0 389.8 9.2 13 16 1.519 769.9 334.1 7.3 16	4	1.467	795.7	321.7	7.9	14.3
13 1.549 747.1 316.0 8.7 19 14 1.579 772.2 387.2 7.9 16 15 1.573 760.0 389.8 9.2 13 16 1.519 769.9 334.1 7.3 16	7	1.471	759.1	321.7	5.4	13.2
14 1.579 772.2 387.2 7.9 16 15 1.573 760.0 389.8 9.2 13 16 1.519 769.9 334.1 7.3 16	8	1.513	812.0	387.3	6.0	12.9
15 1.573 760.0 389.8 9.2 13 16 1.519 769.9 334.1 7.3 16	13	1.549	747.1	. 316.0	8.7	15.8
16 1.519 769.9 334.1 7.3 16	14	1.579	772.2	387.2	7.9	16.3
	15	1.573	760.0	3A9.8	9.2	13.7
17 1.528 769.3 364.9 7.8 15	16	1.519	769.9	334.1	7.3	16.0
	17 -	1.528	769.3	364.9	7.8	15.3

RB211-228 + 150 HOUR TEST SERIES +

MODE 7

UNIT	COZ ET	CO EI	HC EI	NO EI LR/KLR FU	NOX EI	SMK NUMBER FRONT SIDE
	*******	••••••				
1	-2861.	85,75	-59.05	1.73	-3.38	0.00
3	2795.	91.18	80.27	1.32	2.73	0.00
4	2820.	97.32	67.59	1.60	2.87	0.00
7	2827.	92.82	67.57	1.09	2.65	0.00
A	2794.	95,45	78.21	1.16	2.50	0.00
13	2842.	87.27	63.42	1.68	3.03	0.00
. 14	2810.	87.44	75.32	1.46	3.03	0.00
15	2817.	86,65	76.35	1.72	2.56	0.00
16	2834.	91.42	68.15	1.41	3.71	0.00
17	2821.	90.41	73.68	1.50	2.95	0.00

RB211-228 + 150 HOUR TEST SERIES +

MODE 7

UNIT	FC0 X100	FHC X100	FN0 X100	STD FCO X100	STD FHC X100	STD FNO X100
1	1.7750	•9100	4.7380	1.6250	.8360	4.9700
3	1.5830	.7730	4.1040	1.5590	.7590	4.7020
4	1.6390	.8340	4.2920	1.6170	.8240	4.9260
7	1.7350	.9100	4.3500	1.6640	.8720	5.0910
8	1.5290	.7120	3.7770	1.4670	.6830	4.4270
13	1.7480	.9160	4.4890	1.7010	.8850	5.1360
14	1.6110	.7790	4.0890	1.5670	.7530	4.6810
15	1.6180	.7790	3.9710	1.5480	.7420	4.6400
16	1.6900	.8440	4.2780	1.5950	.7990	4.8400
17	1.6850	.8440	4.2780	1.5990	.7990	4.8400

R8211-228 + 150 HOUR TEST SERIES +

MODE 7

UNIT	NREC CO EI LB/KLB FU	NREC HC EI LB/KLB FU	NRE CNO EI LB/KLB FU	NR CNOX EI LB/KLB FU	SMK NUMBER CORRECTED
1	93.62	64.24	1.82	3.55	0.00
3	92.5A	81.71	1.52	3.13	0.00
4	98.59	68.44	1.83	3.30	0.00
7	96.78	70.55	1.29	3.10	0.00
8	99,46	81,58	1.36	2.93	0.00
13	89.70	65,60	1.92	3.47	0.00
14	89,86	77.89	1.67	3.46	0.00
15	90.57	80.15	2.01	2.99	0.00
16	96.30	72.60	1.60	3.52	0.00
17	95.25	77.84	1.70	3.34	0.00

R9211-228 * 150 HOUR TEST SERIES *

MODE 8

UNIT	NI SPEED PER CENT	NZ SPEED PER CENT	N3 SPEED PER CENT	CORR NI PER CENT	CORR NZ	CORR N3 PER CENT

1	25.00	46.00	64.00	24.53	45.14	62.80
3	23.00	43.00	62.00	22.93	42.88	61.82
4	23.00	44.00	62.50	22.93	43.87	42.32
7	24.00	45.00	63.00	23.79	44.61	62.46
8	23.00	44.00	62.00	22.80	43.62	61.47
13	24.00	44.00	63.00	23.89	43,79	62.70
14	23.00	44.00	63.00	22.89	43.79	62.70
15	55.00	-42.00	-60.00	21.81	-41.64	-59.49
16	22.00	44.00	62.00	21.77	43.54	61.35
17	22.00	-42.00	61.00	21.77	-41.56	-60.36

R8211-228 * 150 HOUR TEST SERIES *

MODE 8

UNIT	FUEL FLOW LBM/HR	CB F/A X100	PERF F/A X100	TT7 DEG R	EPR	THRUST LAF
1	1550.	.7920	.8440	-1086.	1.)28	2872.
3	1400.	.8150	.7630	1032,	1.014	2658.
4	1400.	.7820	.7630	1032.	1.018	2766.
7	1500.	.7890	.8170	1041.	1.014	2789.
8	1500.	.8250	.8170	1032.	1.015	2591.
13	1500.	.8280	.8170	1050.	1.020	2823.
14	1500.	.8220	.8170	1032.	1.020	2823.
15	1500.	.8500	.8170	1068.	1.020	-2213.
16	1400.	.8000	.7630	1032.	1.026	2564.
17	1400.	.8250	.7630	1068.	1.025	-7366.

RR211-22R . 150 HOUR TEST SERIES .

MODE 8

UNIT	CORR FU FL LRM/HR	COR CR F/A	COR PF F/A	CORR TT7 COR	THRUST LRF
1	1573.	.7630	.A130	1045.	2860.
3	1407.	.8100	.7580	1026.	2664.
4	1403.	.7770	.75A0	1026.	2764.
7	1514.	.7750	.8030	1023.	2792.
8	1514.	.8110	.8030	1014.	2594.
13	1516.	.8200	.8090	1040.	2840.
14	1516.	.8150	.8090	1055.	2840.
15	1520.	•9350	.8030	1049.	-5553.
15	1419.	.7830	.7470	1010.	2571.
17	1419.	.8080	.7470	1046.	-2373.

R8211-228 . 150 HOUR TEST SERIES .

MONE 8

UNIT	COZ CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
****	*********				
1	1.453	838.4	-401.0	6.5	-14.4
3	1.445	927.1	553.6	5.2	11.1
4	1.403	937.7	458.0	6.4	11.6
7	1.431	886.1	435.3	4.8	11,2
8	1.483	892.4	509.9	4.5	11.0
13	1.500	909.3	463.6	6.9	12.7
14	1.483	882.5	490.5	6.9	13,5
15	1.518	913.7	567.6	-8.4	10.8
16	1.438	973.2	485.5	5.3	12.2
17	1.468	966.1	547.4	5.4	11.4

R9211-229 . 150 HOUR TEST SERTES .

MODE 8

UNIT	COS EI	CO EI	HC ET LB/KLR FU	NO EI LRZKLR FU	NOX ET	SMK NUMBER FRONT STOE
1	2769.	101.68	-A3.55	1.29	-2.86	0.00
3	2678.	109.3R	112.21	1.01	2.16	0.00
•	2711.	115.31	96.77	1.30	2.34	0.00
7	2739.	107.92	91.09	.96	2.25	0.00
A.	2715.	103.95	102.04	.86	2.10	0.00
13	2734.	105.47	92.38	1.32	2.42	0.00
14	2722.	103.09	98.45	1.32	2.59	0.00
15	269A.	103.33	110.28	-1.55	-2.01	0.00
16	716.	110.94	100.23	1.05	2.41	0.00
17	2667.	112.58	109.59	1.22	2.27	0.00

RB211-228 . 150 HOUR TEST SERIES .

MODE 8

UNIT	FC0 X100	FHC X100	FN0 X100	STD FCO	STD FHC	STD FNO
		*********	********	*******	******	
1	1.3990	•5950	-3.7170	1.2860	.5490	3.9220
3	1.1660	.4440	3.0060	1.1490	.4360	3.4470
4	1.2190	.4890	3.1770	1.2040	.4840	3.6510
7	1.3050	.5430	3.2430	1,2550	.5210	3.8080
8	1.2480	.4910	3.0630	1.1990	.4710	3.5990
13	1.2460	.4950	3.1680	1.2140	.4790	3,6330
14	1.2440	•4950	3.1640	1.2120	.4790	3,6330
15	1.1220	.4000	-2.7320	-1.0760	3820	-3.2050
16	1.2440	.4920	3.1530	1.1840	.4670	3.5820
17	1.1160	.3990	2.8050	-1.0630	-,3790	-3,1920

R9211-228 + 150 HOUR TEST SERIES +

MODE B

UNIT	NREC CO ET			NP CNOX EI	
	*******	*******			******
1	110.59	90.56	1.36	3.02	0.00
3	110.98	114.14	1.16	2,4A	0.00
4	116.74	97.92	1.49	5.69	0.00
7	112.30	94,92	1.12	2.64	0.00
8	10A.1A	106.29	1.01	2.46	0.00
13	108.28	95.43	1.51	2.7R	0.00
14	105.A3	101.70	1.51	2.99	0.00
15	107.74	115.48	-1.47	2.36	0.00
16	116.56	105.62	3.19	2.74	0.00
17	114.21	115.38	1.38	2.58	0.00

RB211-22B . 300 HOUR TEST SERIES .

UNIT	TSO HR	TSB HR	AMB TEMP DEG R	AMB PRESS	AMR HUMIN
****	*********			••••••	******
. 1	2680.	386.	527.7	29.98	.009810
3	3379.	361.	527.7	29.90	.009210
4	5448.	351.	527.7	29.90	.009210
11	3252.	311.	527.7	30.02	.009790
12	1170.	311.	527.7	30.02	.009790
13	3217.	328.	520.7	30.05	.008940
14	1703.	328.	520.7	30.05	.008940

MODE 1

UNIT	NI SPEFO PER CENT	N2 SPEFD PER CENT	N3 SPEED PER CENT	CORR NI PER CENT	CORR NZ	CORP. N3
••••				•••••		*********
1	25.00	46.00	62.00	24.79	45.61	61.47
3	23.00	44.00	62.50	22.80	43.62	61.96
4	23.00	45.00	63.00	22.80	44.61	42.46
11	24.00	44.00	62.00	23.79	43.62	61.47
12	24.00	46.00	63.00	23.79	45.61	42.46
13	24.00	45.00	63.00	23.95	44.91	42.88
14	23.00	44.00	62.00	22.96	43.92	61.88

MODE 1

UNIT	FUEL FLOW LBM/HR	CB F/A X100	PERF F/A X100	TIT DEG R	EPR	THRUST LRF
1	1600.	.8330	.9710	1068.	-1.008	2589.
3	1500.	.8560	.8170	1032.	1.012	2695.
4	1500.	.8310	.9170	1041.	1.017	2794.
11	1500.	.8620	.9170	1059.	1.015	2585.
12	1550.	. 3690	.8440	1059.	1.015	2783.
13	1600.	.8460	.9710	1050.	1.020	2863.
14	1620.	.8600	.8710	1032.	1.022	2665.

MODE 1

UNIT	CORR FU FL	COR CR F/A CO		RR TT7 COR	THRUST LBF
1	1617.	.8180	.9570	1049.	2594.
3	1512.	.8420	.8030	1014.	2693.
4	1512.	.8170	.8030	1023.	2792•
- 11	1518.	.8470	.A030	1041.	2594.
12	1569.	.8540	.8300	1041.	2792•
13	1610.	.8430	. 8680	1046.	2876.
14	1610.	.8560	.8680	1028.	2676.

MODE 1

UNIT	CO2 CONC	CC CONC	HC CONC	NO CONC	NOX CONC
		•••••			
1	1.516	869.6	472.0	7.0	-2.5
3	1.547	862.5	539.2	6.3	11.3
4	1.513	891.2	468.6	7.7	10.0
11	1.621	-753.2	-363.5	5.7	14.0
12	1.583	877.0	493.2	6.0	11.8
19	1.545	858.4	478.7	6.0	10.0
14	1.564	867.1	506.2	6.6	10.8

MODE 1

UNIT	CO2 ET	CO ET	HC FT	NO FI LR/KLR FU	NOX EI	SMK NUMBER FRONT STDE
1	2748.	100.32	93,55	1.32	-1.32	0.00
3	2728.	96.78	103.94	1.16	2.09	0.00
4	2748.	103.02	93.06	1.46	1.90	0.00
11	-2836.	83.86	-69.52	1.03	2.57	6.00
12	2749.	96.94	93.66	1.09	2.14	0.00
13	2756.	97.43	93.35	1.13	1.87	0.00
14	2746.	96.90	97.19	1.21	1.99	0.00

MODE 1

UNIT	FC0 X100	FHC X100	FN0 X100	STD FCO	STD FHC X100	STD FNO X100
1	1.3970	•5990	3.5170	1.3410	.5740	4.0220
3 .	1.2580	.4890	3.1750	1.2100	.4710	3.5990
4	1.3210	.5410	3.3610	1.2700	.5210	3.8080
11	1.2640	•4930	3.1460	1.2120	.4710	3,5990
12	1.4140	.6010	3.5200	1.3550	.5740	4.0720
13	1.3170	•5460	3.3120	1.3010	:5370	3.8730
14	1.2510	.4940	3.1290	1.2360	.4860	3.6590

MODE 1

UNIT	NREC CO EI			NR CNOX ET	SMK NUMBER CORRECTED
		•••••			
1	104.57	97.69	1.51	-1.51	0.00
3	100.62	107.95	1.31	2.35	0.00
4	107.12	96.69	1.66	2.16	0.00
11	-87.45	-72.72	1.18	2.94	0.00
12	101.18	98.04	1.24	2.45	0.00
13	98.61	94.91	1.32	2.18	0.00
14	98.07	98.81	1.41	2.32	0.00

MODE 2

UNIT	N1 SPEED PER CENT	NZ SPEED PER CENT	N3 SPEED PER CENT	CORR NI PER CENT	CORR NZ	CORR N3 PER CENT
1	27.00	50.00	66.00	26.77	49.57	65.43
3	27.00	50.00	66.00	26.77	49.57	65.43
4	27.00	50.00	66.00	26.77	49.57	65.43
11	-28.00	51.00	66.00	-27.76	50.56	65.43
12	27.00	50.00	56.00	26.77	49.57	65.43
13	27.00	49.00	66.00	26.95	48.91	65.87
14	27.00	51.00	66.20	26.95	50.90	65.87

MODE 2

UNIT	FUEL PLOW	CR F/A X100	PERF F/A	TTT DEG R	EPR	THRUST
1	1800.	.8450	.9800	1086.	1.030	1552.
3	1800.	.8490	.9800	1050.	1.020	3561.
4	1700.	.8220	.9260	1059.	1.024	3561.
11	1900.	.8600	.9800	1069.	1.025	1547,
12	1700.	.8790	.9260	1068.	1.030	3547.
13	1900.	.8420	.9800	1068.	1.025	3660.
14	-1900.	.4790	-1.0350	1068.	1.030	3660.

MODE 2

UNIT	CORR FU FL	COR CB F/A C	OR PF F/A	CORR TT7 COR	THRUST LBF

1	1819.	.8300	.9640	1067.	3559.
3	1814.	.8340	.9640	-1032.	3559.
4	1714.	.8080	.9100	1041.	3559.
11	1822.	.8450	.9640	1049.	3559.
12	1720.	.8640	.9100	1049.	3559.
13	1811.	.8390	.9770	1064.	3676.
14	-1912.	.8760	-1.0310	1064.	3676.

MODE 2

UNIT	COZ CONC	CO CONC	HC CONC	NO CONC	NOX CONC
	********	********	~~~~~~		
1	1.579	776.6	390.5	7.2	-2.7
3	1.590	703.9	400.7	7.3	14.2
4	1.547	755.9	340.3	8.0	13,6
11	1.415	756.8	364.9	5.3	14.8
15	1.649	753.6	396.7	6.5	14.4
13	1.582	734.9	374.3	5.3	13.6
14	1-556	729.8	387.5	6.6	14,6

MODE 2

UNIT	COS EI	CO EI	HC EI	NO EI	NOX ET	SMK NUMBER
	LB/KLB FU	LB/KLB FU	LB/KLB FU	LR/KLR FU	LHYKLH FU	FRONT SIDE
1	2820.	88.26	74.29	1.34	-1.34	0.00
3	2826.	79.64	77.89	1.35	2.63	0.00
4	2839.	88.27	68.26	1.53	2.61	0.00
11	2833.	84.50	69.99	.97	2.71	0.00
12	2830.	82.29	72.55	1.17	2.59	0.00
13	2832.	83.77	73.29	.99	2.55	0.00
14	2840.	79.67	72.67	1.19	2.62	0.00

MODE S

UNIT	FC0 X100	FHC X100	FN0 X100	STD FCO X100	STD FHC X100	STD FNO X100
1	1.6920	.8420	4.2600	1.6210	.8050	4.8620
3	1.6910	.8380	4.3030	1.6230	.8050	4.8620
4	1.6770	.8380	4.3030	1.6100	.8050	4.8620
11	1.7800	.9140	4.4670	1.7030	.8720	5.0910
12	1.7130	.8440	4.2640	1.6390	. 8050	4.8620
13	1.5970	.7750	4.0320	1.5770	.7620	4.7120
14	1.7690	.9110	4.4260	1.7460	.8950	5.1710

MODE 2

UNIT	NREC CO EI LB/KLB FU		NRE CNO EI	NR CNOX ET	SMK NUMBER CORRECTED

1	92.12	77.69	1.53	-1.53	0.00
.3	82.97	81.05	1.53	2.97	0.00
4	91.93	71.04	1.73	2.95	0.00
11	88.33	73,39	1.10	3.09	0.00
12	86.02	76.04	1.33	2.95	0.00
13	84.81	74.54	1.15	2.9A	0.00
14	80.68	73,92	1.39	3.06	0.00

MODE 3

UNIT	NI SPEED PER CENT	NZ SPFFD PER CENT	N3 SPEED PER CENT	CORR NI PER CENT	CORR N2 PER CENT	CORP N3
1	94.00	98.00	92.00	+3.19	97.16	91.21
3	93.75	96.50	93.00	92.95	95.67	92.20
4	94.00	98.00	92.50	93.19	97-16	91.71
11	93.00	95.00	92.00	92.20	95.18	91.21
15	93.00	97.00	93.00	92.20	96.17	92.20
13	93.00	98.00	93.00	97.87	97.A1	92.82
14	93.00	97.00	92.00	92.82	96.Al	91.82

MODE 3

UNIT	FUEL FLOW LBM/HR	CB F/A X100	PERF F/A X100	TT7 DEG R	EPR	THRUST LRF
1	15500.	1.8410	2.0680	1770.	1.533	41916.
3	15375.	1.8430	2.0510	1734.	1,533	41991.
4	15625.	1.7500	2.0850	1738.	1.538	42359.
11	15500.	1.8470	2.0940	1743.	-1.520	-40907.
12	15900.	1.9050	2.1710	1743.	1,533	41860.
13	15500.	1.7850	2.0720	1734.	1,530	41599.
16	15500.	1.8430	2.0720	1752.	1,530	41599.

MODE 3

UNIT	CORR FU FL	COR CR F/A	COR PF F/A	CORR TT7 CO	R THRUST
1	15665.	1.8100	2.0330	1740.	42000.
3	15497.	1.8120	2.0160	1704.	41963.
4	. 15749.	-1.7200	2.0490	1709.	42331.
11	15686.	1.8150	2.0590	1713.	-41044.
12	16091.	1.8730	2.0850	1713.	42000.
13	15597.	1.7780	2.0640	1727.	41779.
14	15597.	1.8360	2.0640	1745.	41779.

MODE 3

UNIT	CO2 CONC	CO CONC	HC CONC	NO CONC	HOX CONC
••••		•••••		********	
1	3.903	25.5	5.2	426.9	416.9
3	3,908	29.5	5.8	383.6	380.7
4	3.708	20.5	4.3	372.4	375.3
11	3.910	23.8	5.0	411.1	403.4
12	4.037	27.4	6	395.0	395.5
13	3.784	19.4	4.2	372.1	371.1
14	3.909	-35.9	4.3	354.4	357.3

MODE 3

UNIT	COS EI	CO EI LB/KLB FU	HC FI LB/KLB FU	NO FI LB/KLR FU	NOX EI LB/KLB FU	SMK NUMBER FRONT STOE
1	3159.	1.31	.46	36.13	36-13	30.00
3	3161.	1.52	.51	32.43	32.43	-22.67
4	3162.	1.11	.40	33.20	33.46	28.00
11	3155.	1.22	.44	34.68	34.68	30.67
12	3156.	1.37	05	32.29	32.32	32.67
13	3162.	1.03	.3A	12.51	32.51	32.45
14	3161.	-1.85	.38	29.96	30.21	28.38

MODE 3

UNIT	FC0 X100	FHC X100	FN0 X100	STD FCO X100	STD FHC X100	STO FNO
	112 5314	10/ /504		144 7054	7/ 50	*********
1	113.5710	106.6590	90.3240	100.7950	99.7470	······································
3	. 98.1510	87.2400	79.3560	87.4670	82.0700	86.5910
•	101.4400	106.1470	91.2390	90,7080	99.7470	99.3780
11	93.8650	-82.0040	74.8120	83.4440	-76.6210	-82.4340
12	112.0630	94.1120	82.6410	99.0950	87.8640	90.9420
13	99.7400	101.9560	85.7350	96.9970	99.7470	99.3780
14	103.9950	98.0220	83.3900	101.0690	95,9030	96.6680

MODE 3

UNIT	NREC CO EI LB/KLB FU			NR CNOX ET	SMK NUMBER CORRECTED
1	1.48	•50	39.75	39.75	26.78
3	1.70	.54	35.39	35.39	22.59
4	1.24	.42	36.16	36.44	22.59
11	1.38	.48	38.22	39.22	24.60
12	1.54	06	35.53	35.57	28.47
13	1.06	.39	37.69	37.69	26.79
14	1.90	.39	34.73	35.02	23.05

MODE 4

UNIT	NI SPEED PER CENT	NZ SPEED PER CENT	N3 SPEED PER CENT	CORR NI PER CENT	CORR NZ PER CENT	CORR N3 PER CENT
	*********		~~~~~~	********		••••••
1	87.00	94.00	90.00	86.25	93.19	89.23
3	88.75	94.00	90.75	87.99	93.19	89.97
4	89.00	94.00	90.00	A7.25	93.19	A9.23
11	88.00	94.00	90.00	A7.25	93.19	89.23
12	88.00	94.00	90.00	87.25	93.19	A9.23
13	88.00	95.00	91.00	A7.83	94.82	90.83
14	88.00	95,00	89.00	87.83	94.92	AR.83

MODE 4

UNIT	FUEL FLOW LBM/HR	CR F/A X100	PERF F/A X100	TT7 DEG R	EPR	THRUST LRF
1	12500.	1.6390	1.4330	1662.	1.446	35542.
3	13000.	1.6640	1.9060	1644.	1.446	35637.
4	12875.	1.5530	1.8980	1639.	1.445	35637.
11	12500.	1.6540	1.8330	1653.	1.445	35495.
12	12500.	1.6290	1.8330	163°.	1.445	35495.
13	12500.	1.5540	1.8330	1676.	1.446	35459.
14	13000.	1.6320	1.9060	1644.	1.446	35459.

MODE 4

UNIT	COPR FU FL	COR CR F/A C	OR PF F/A C	ORR TT7 COR	THRUST LBF
	********		********		
1	12633.	1.6110	1.8020	1633.	35613.
3	13104.	1.6350	1.8740	1616.	35613.
4	12978.	-1.5260	1.8560	1611.	35613.
11	12650.	1.6250	1.8020	1625.	35613.
12	12650.	1.6000	1.8020	1607.	35613.
13	12578.	1.5480	1.8260	1619.	35613.
14	13082.	1.6250	1.8990	1637.	35613.

MODE 4

UNIT	COZ CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
	********			**********	
1	3.467	33.9	3.4	306.0	305.9
3	3.521	38.8	3.9	269.4	269.3
4.	3.285	24.7	2.4	258.1	262.0
11	3.494	29.9	2.7	276.3	278.4
15	3.438	35.8	2	253.0	264.4
13	3.287	28.9	5.2	239.2	242.7
14	3.451	-57.3	2.6	242.0	254.1

MODE 4

UNIT	COS EI	CO EI LB/KLB FU	HC EI LB/KLB FU	NO FI LR/KLR FU	NOX EI LB/KLB FU	SMK NUMBER FRONT STOE
1	3159.	1.97	.34	29.15	29.15	23.49
3	3161.	2.21	•38	25.29	25.2A	17.57
4	3162.	1.5.	•?5	25.9A	26.37	17.33
11	3155.	1.72	.27	26.09	26.28	-30.20
12	3155.	2.09	02	24.27	25.36	23.33
13	3162.	1.77	.23	24.05	24.40	17.88
14	3159.	-5.34	•56	23.17	24.32	19.87

MODE 4

UNIT	FC0 X100	FHC X100	FN0 X100	STD FCO X100	STD FHC X100	STO FNO
1	60.9610	62.4180	61.8350	55.0270	5R.54R0	6R.3670
3	62.4390	62.1190	62,4610	56,4050	5R.5480	68.3470
4	55.6970	62.1190	62.4510	50.5770	58.5480	68.3670
11	61.9480	62.5680	61.8950	55.8220	58.5480	6A.3670
12	60.2970	62.5680	61.8950	54.3960	58.5480	64,3670
13	61.8190	74.6070	68.7120	60.3140	73.0190	79.6970
14	66.9710	74.6070	68.7120	65.2890	73.0190	79.6970

MODE 4

UNIT	NREC CO EI		NRE CNO EI	NP CNOX EI	SMK NUMBER CORRECTED
1	2.18	.37	32.23	32.23	19.61
3	2.45	.40	27.67	27.67	17.57
4	1.66	.26	28.43	28.86	15.99
11.	1.91	.29	28.82	29.03	-27.16
12	2.32	03	26.81	28.01	21.53
13	1.81	.23	27.90	28.30	14.22
14	-3.43	.27	26.87	28.21	17.75

MODE 5

UNIT	NI SPEED PER CENT	NZ SPEED PER CENT	N3 SPEED PER CENT	CORR NI PER CENT	CORR NZ PER CENT	COPP N3 PER CENT
1	78.00	89.00	86.00	77.33	88.24	A5.26
3	78.00	89.00	86.50	77.33	88.24	A5.76
4	77.50	89.00	85.75	76.84	88.24	45.02
11	78.00	90.00	86.00	77.33	89.23	A5.26
12	78.00	90.00	86.00	77.33	89.23	A5.26
13	77.00	90.00	86.00	76.85	89.A3	A5.83
14	77.00	A9.00	85.00	76.85	88.83	84.84

MODE 5

UNIT	FUEL FLOW LBM/HR	CR F/A X100	PERF F/A X100	TT7 DEG R	EPR	THRUST LRF

1	8500.	1.3220	1.5740	1482.	1.302	24519.
3	8625.	1.3520	1.5980	1464.	1.302	24585.
4	8500.	1.2720	1.5740	1459.	1.302	24585.
11	8500.	1.3690	1.5740	-1518.	1.302	24486.
12	8500.	1.3470	1.5740	1482.	1.302	24486.
13	8500.	1.2880	1.5740	1464.	1.302	24462.
14	8500.	1.3360	1.5740	1464.	1.302	24462.

MODE 5

UNIT	CORR FU FL	COR CR F/A	COR PF F/A	CORR TT7 COP	LBF
1	A591.	1.3000	1.5480	1456.	24568.
3	8694.	1.3290	1.5700	1439.	24568•
4	8568.	-1.2510	1.5480	1434.	24568.
. 11	8602.	1.3460	1.5480	-1492.	24568.
12	8602.	1.3240	1.5480	1456.	24568.
13	A553.	1.2930	1.5680	1458.	24568•
14	R553.	1.3300	1.5680	1458.	24568•

MODE 5

UNIT	CO2 CONC	CO CONC	HC CONC	NO CUNC	NOX CONC
	••••••				
1	2.782	76.2	5.0	132.7	139.9
3	2.848	80.8	6.0	130.3	136.6
4	2.679	58.4	3.9	117.7	125.5
. 11	2.880	66.5	4.1	128.6	135.6
12	2.832	72.9	3.8	124.1	133.6
13	2.711	71.6	4.3	115.4	124.1
14	2.807	-119.4	6.6	119.3	129.4

MODE 5

UNIT	COS EI	CO FI	HC EI	NO EI	NOX ET	SMK NUMBER
	LB/KLH FU	LB/KLB FU	LR/KLR FU	LR/KLR FU	LR/KLB FU	FRONT STDE
1	3152.	5.50	•62	15.72	16.57	16.00
3	3154.	5.69	.72	15.09	15.82	10.60
4	3157.	4.38	•50	14.50	15.46	10.74
11	3150.	4.63	.49	14.70	15.50	-28.10
12	3149.	5.16	.46	14.42	15.53	-20.53
13	3155.	5.30	•55	14.05	15.10	9.27
14	3149.	-8.53	.81	13.99	15.18	12.58

MODE 5

UNIT	FCO	FHC	FNO	STD FCO	STD FHC	STD FNO
	X100	X100	X100	X100	X100	X100
	********				*******	*******
1	27.9360	30.6080	38.2840	25.7140	28.8150	42.5920
3	. 28.5850	30.4610	38.6720	26.3350	28.8150	42.5820
4	26.7630	30.4610	38,6720	24.7270	28.8150	42.5920
11	31.6750	34.9090	41.7130	29.0470	32.7640	46.3030
12	31.0740	34,9090	41.7130	28.5190	32.7640	46.3030
13	29.9160	36,6840	42.3510	29.2930	35.9340	49.1990
14	28.1810	31.5340	38.3610	27,5910	30.8940	44.5680

MODE 5

		NRE CNO ET			UNIT
CORRECTED	L9/KLB FU	LB/KLB FU	L9/KLB FU	LB/KLB FU	
			******	*********	
15.10	18.43	17.49	.66	5.97	1
10.35	17.42	16.62	.76	6.18	3
10.74	17.02	15.97	•53	4.74	4
••••			• > -		
-22.28	17.20	16.37	.52	5.05	11
-19.61				5 43	
-14.01	17.24	16.01	.49	5.62	12
8.94	17.54	16.32	.56	5.42	13
10.35	17.63	16.26	-82	-R.71	14

MODE 6

UNIT	N1 SPEED	NZ SPEED	N3 SPEED	CORP NI	CORR 42	CORP N3
	PER CENT					
1	54.00	76.00	79.00	53.54	75.35	77.33
3	55.00	77.50	78.75	54.53	76.84	78.08
4	55.00	77.00	79.00	54.53	76.34	77.33
11	55.00	76.00	78.00	54.53	75.35	77.33
12	54.00	78.00	78.00	53.54	77.33	77.33
13	55.00	77.00	78.00	54,89	76.85	77.85
14	53.00	-81.00	78.00	52.90	-80.84	77.85

MODE 6

TIMI	FUEL FLOW LRM/HR	CR F/A	PERF F/A	TT7 DEG R	EPR	THRUST LRF
1	4050.	.9370	1.1690	124A.	1.128	10502.
3	4200.	.9700		1551.	-1.125	-10250.
4	4200.	.9120	1.2180	1221.	-1.127	10437.
11	4400.	1.0030	1.2710	1248.	1.128	10488.
12	4200.	.9700	1.2130	1239.	1.178	10488.
13	4200.	.9200	1.2130	1515.	1.128	10477.
14	-46nn.	-1.1030	-1.3280	1248.	1.128	10477.

MODE 6

UNIT	CORR FU FL LAM/HR	COR CB F/A	COR PF F/A	CORR TT7 COR	THRUST LBF
	******	******			
1	4093.	.9210	1.1490	1556.	10523.
3	4233.	•9540	1.2090	1200.	-10243.
4	4233.	.8970	1.1980	1200.	-10430.
11	4453.	•9850	1.2490	1226.	10523.
12	4250.	•9530	1.1920	1218.	10523.
13	4226.	.9170	1.2080	1207.	10253.
14	-4629.	-1.0990	-1.3230	-1243.	10523.

MODE 6

UNIT	COZ CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
1	1.936	213.5	37.6	40.4	50,2
3	2,007	220.3	42.2	36.7	49,6
4	1.491	193.5	28.0	38.1	48.7
11	2.073	211.8	39.0	37.1	49.4
15	2.003	223,3	40.7	39.2	52,3
13	1.903	217,3	38.0	35.7	49.6
14	-2.276	-305.0	-57.9	39.1	56,3

MODE 6

UNIT	COS EI	CO EI	HC EI	NO EI	NOX EI	SHK NUMBER
	LB/KLB FU	LB/KLB FU	LB/KLB FU	LA/KLA FU	LR/KLB FU	FRONT STOE
1	3110.	21.83	6.61	6.78	8.43	10.07
3	3111.	21.73	7.16	5.94	8.04	4.00
4	3119.	20.31	5.06	6.57	8.40	4.03
11	3109.	20.21	6,39	5.82	7.74	-18.54
15	3105.	22.03	6.89	6.35	8.48	-11.18
13	3111.	25.61	6.80	6.10	8.48	2.65
14	3100.	26.44	8.63	5.56	8.01	6.62

MODE 6

UNIT	FC0 X100	FHC X100	FN0 X100	STD FCO	STD FHC	STD FNO
	•••••					
ı	5.2090	5.7670	17.5320	4.9410	5.4700	15.2380
3	5.9220	7.0390	15,4840	5.6220	6.7030	17.2760
4	5.4520	6.3590	14.5440	5.1820	6.0570	16.2010
11	5.3610	5.7R00	13.5450	5.0760	5.4700	15.2380
15	6.2880	7.8280	16.3240	5.9480	7.3970	18.3230
13	5.6270	6.8530	14.8270	5.5450	6.7240	17.2700
14	-9.7200	-12.7440	-21.7470	-8.5820	-12.4970	-25.3040

MODE 6

UNIT	NREC CO EI LB/KLB FU	NREC HC EI LB/KLB FU	NRE CNO EI LR/KLB FU		SMK NUMBER CORRECTED
			**********		*******
1	23.00	6,96	7.64	9.50	6.37
3 .	55.90	7.52	6.61	8.94	4.00
4	21.37	5.31	7.32	9.35	4.03
11 .	21.35	6.75	6,55	8.71	-18.54
12	23.29	7.29	7.13	9.52	9.58
13	22.94	6.93	7.10	9.87	2.65
14.	26.87	8.80	6.47	9.32	6.62

MODE 7

UNIT	N1 SPEED PER CENT	NZ SPEFD PER CENT	N3 SPEED PER CENT	CORR NI PER CENT	CORR NZ PER CENT	CORR N3 PER CENT
•			~~~~~			
1	27.00	49.00	66.00	26.77	48.58	65.43
3	27.00	49.00	66.00	26.77	48.5A	45.43
4	27.00	49.00	66.25	26.77	48.59	45.68
11	-28.00	51.00	66.00	-27,76	50.56	45.43
12	-25.00	48.00	-65.00	-24.79	47.59	-64.44
13	27.00	49.00	66.00	26.95	48.91	65.87
14	27.00	50.00	66.00	26.95	49.90	65.87

MODE 7

UNIT	FUEL FLOW	CB F/A X100	PERF F/A X100	TT7 DEG R	EPR	THRUST LAF
1	1700.	.7950	.9260	1086.	1.030	1552.
3	1600.	.8130	.8710	1059.	1.022	3561.
4	1600.	.7730	.8710	1059.	1.024	3627.
11	1800.	.8450	.9800	1086.	1.025	3547.
12	1600.	.8290	.8710	1068.	1.025	3282.
13	1600.	.7970	.8710	1069.	1.025	3660.
14	1800.	.8250	.9800	1068.	1.030	3660.

MODE 7

UNIT	CORR FU FL LBM/HR	COR CR F/A COP		RR TT7 COR	THRUST .
1	1718.	.7810	.9100	1067.	3550.
3	1613.	.7990	.8570	1041.	3559.
4	1613.	.7600	.8570	1041.	3625•
11	1822.	.8300	.9640	1067.	3559•
12	1619.	.8140	.8570	1049.	3293•
13	1610.	.7940	.8680	1064.	3676.
14	1811.	.8220	.9770	1064.	3676.

MODE 7

UNIT	CO2 CONC	CO CONC	HC CONC	NO CONC	NOX CONC
••••		*******	********		
1	1.470	907.5	381.4	8.5	15.1
3	1.514	761.7	3A3.3	8.3	14.8
4	1.442	784.0	331.7	8.7	14.3
11	1.580	785.0	365.8	7.3	15.2
12	1.527	833.6	413.1	7.0	14.4
13	1.467	830.4	406.2	6.6	14,5
14	1.532	772.2	404.0	7.4	15.9

MODE 7

UNIT	COZ ET	CO ET	HC ET LB/KLB FU	NO EI L9/KL9 FU	NOX EI LR/KLB FU	SMK NUMBER FRONT STDE
•			~~~~~~			
1	2792.	97.62	79.22	1.68	3.00	0.00
3	2810.	89.98	77.78	1.60	2.88	0.00
4	2818.	97.46	70.84	1.78	2.93	0.00
11	2822.	89.22	71.42	1.36	2.84	0,00
12	2741.	96.61	82.26	1.34	2.73	0.00
13	2777.	100.04	84.07	1.31	2.86	0.00
14	2802.	89.89	80.79	1.42	3.04	0.00

HODE 7

MIT	FC0 X100	FHC X100	FNO X100	STD FCO X100	STD FHC X100	STD FNO.
1	1,5910	.7/60	4.0640	1.5260	.7420	4.6400
3	1.5980	.7720	4.1050	1.5350	.7420	4.6400
4	1.5770	.7720	4.1050	1.5160	.7420	4.6400
11	1.7720	.9140	4.4670	1.6950	.8720	5.0910
12	1.5370	.7150	3.8790	1.4720	.6830	4,4270
13	1.5740	.7750	4.0320	1.5550	.7620	4.7120
14	1.6620	.8410	4.2250	1.6420	.8270	4.9370

PODE 7

UNIT	NREC CO FI LB/KLB FU	NREC HC EI LB/KLB FU	and the second s	NR CNOX EI LR/KLR FU	SMK NUMBER CORRECTED
1	101.80	A2.81	1.92	3.43	0.00
3	93.66	80.92	1.41	3.26	0.00
4	101.41	73.70	2.01	3.31	0.00
11	93.26	74.89	1.55	3.23	0.00
12	100.86	86.17	1.53	3.12	0.00
13	101.27	95.50	1.53	3.35	0.00
14	91.00	82.17	1.66	3.56	0.00

MODE 8

UNIT	NI SPEED PER CENT	NZ SPEED PER CENT	N3 SPEED PER CENT	CORR NI PER CENT	CORR NZ PER CENT	CORP N3 PER CENT
						~~~~~~
1	25.00	46.00	63.00	24.79	45.61	62.46
3	23.00	44.00	62.50	22.80	43.62	61.96
4	23.00	44.00	63.00	22.80	43.62	62.46
11	24.00	44.00	65.00	23.79	43.62	41.47
12	23.00	45.00	63.00	22.80	44.61	62.46
13	24.00	44.00	63.00	23.95	43.92	42.88
14	23.00	44.00	62.00	55.96	43.92	61.88

INCL	SSIFIE	D MAY		-1230-	12		FA	A-RD-7	8-56-7	DOT-FAT	-NA-11	NL.	
	3 of 4 AD A070579		100 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 -	Market III					THE PROPERTY OF THE PARTY OF TH	Constitution of the consti		CHANGE THE PARTY OF THE PARTY O	
				mgm TMXXXXX					2	S. C.	The second		Telegraph .
	- No. 10 / 10 / 10 / 10 / 10 / 10 / 10 / 10							3 1111111 4				A STATE OF THE STA	
	Amount can			72 17 17 17 17 17 17 17 17 17 17 17 17 17	!	TO SECURE OF THE PARTY OF THE P		San No.	O CONTRACTOR	A CONTRACTOR OF THE PARTY OF TH	Personnent V		Anersons
				Same and		**************************************	2 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -		100000	Section of the sectio		The second secon	Marine 1887
	Z-ser-szentezh a	**************************************	1 i	T		A LANGE OF THE PARTY OF T			No.	NAME OF THE PARTY	AND MANAGEMENT OF THE PROPERTY	and the second second	
	Arrana are	ionama i		50500 d		\$	9	The contract of	3	Sunname !	E-monasement	Smarrow recorded	Barranion

MODE 8

UNIT	FUEL FLOW LBM/HR	CB F/A X100	PERF F/A	TT7 DEG R	EPR	THRUST
1	1600.	.8040	.9710	1050.	1.025	2787.
3	1400.	.9160		1032.	1.014	2695.
4	1400.	.7710	.7630	1032.	1.019	2794.
11	1500.	.8550	.8170	1059.	1.015	. 2585.
12	1450.	.8290	.7900	106A.	1.020	2783.
13	1500.	.8080	·A170	1050.	1.020	2863.
14	1500.	.R190	.8170	1032.	1.022	2665.

# RR211-22R • 300 HOUR TEST SERIES •

MODE 8

UNIT	CORR FU FL LRM/HR	COR CR F/A C	OR PF F/A (	CORR TT7 COR	THRUST LBF
1 .	1617.	.7900	.8570	1032.	2792.
3	1411.	.8030	.7500	1014.	2693•
.4	1411.	.7580	.7500	1014.	2792.
11	151A.	.8400	.8030	1041.	2594.
15	1467.	.8150	.7760	1049.	2792.
13	1509.	.8040	.8140	1046.	2876.
14	1509.	.8160	.9140	1024.	2676.

MODE 8

UNIT	CO2 CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
		******			*******
1	1.450	887.6	485.3	6.2	12.7
3	1.472	891.8	501.1	6.4	11.6
4	1.395	893.8	440.4	6.8	12.0
11	1.537	910.7	536.6	5.5	12.4
12	1.487	936.5	511.4	5.7	12.6
13	1.449	924.5	502.5	5.5	12.4
14	1.469	899.5	529.0	6.2	12.8

MODE 8

UNIT	CO2 ET	CO FI	HC EI LRZKLR FU	NO FI LR/KLR FU	NOX EI LR/KLB FU	SHK NUMBER FRONT SIDE
1	2723.	106.08	99.64	1.21	2.50	0.00
3	2722.	104.97	101.32	1.25	2.27	0.00
4	2731.	111.37	94.28	1.40	2.46	0.00
11	2713.	102.32	103.5R	1.01	2.29	0.00
12	270A.	108.55	101.83	1.09	2.40	0.00
13	2710.	110.03	102.74	1.07	2.43	0.00
14	2707.	105.51	106.50	1.20	2.47	0.00

MODE 8

UNIT	FC0 X100	FHC X100	FN0 X100	STD FCO X100	STD FHC X100	STD FNO X100
1	1.3850	.5990	3.5170	1.3290	.5740	4.0220
3	1.2430	.4890	3-1750	1.1960	.4710	3.5990
4	1.2270	.4890	3.1750	1.1810	.4710	3,5990
11	1.2620	4930	3.1460	1.2100	.4710	3.5990
12	1.3240	•5450	3.3310	1.2690	.5210	3.8080
13	1.2310	.4940	3.1290	1.2170	.4860	3,6590
14	1.2360	.4940	3.1290	1.2210	.4860	3.6590

MODE 8

SMK NUMBER CORRECTED	NR CNOX ET			NREC CO ET	UNIT
0.00	2.86	1.3A	104.05	110.53	1
0.00	2.54	1.41	105.23	109.0A	3
0.00	2.79	1.59	97,92	115.49	4
0.00	2.62	1.16	108.35	106.70	11
0.00	2.74	1.25	106.56	113.21	12
0.00	7.84	1.25	104.45	111.34	13
0.00	2.89	1.40	108.37	106.77	14

UNIT	TSO	TSB	AMR TEMP	AMB PRESS	AMR HUHID
	HR	HR	DEG R	IN HG	LB H20/ATR
					*******
3	3494.	476.	527.7	30.03	.010440
4	5573.	476.	527.7	30.03	.010440
7	4825.	420.	522.7	30.09	.009660
11	3434.	493.	525.7	30.00	.010260
12	1352.	493.	525.7	30.00	.010260
13	3332.	443.	528.7	29.95	.010900
14	1818.	443.	528.7	29.95	.010900
16	3889.	517.	529.7	29.95	.007500

#### RR211-228 + 450 HOUR TEST SERIES +

MODE 1

UNIT	NI SPEED PER CENT	N2 SPEFD PER CENT	N3 SPEED PER CENT	CORR NI PER CENT	CORR NZ	CORR N3 PER CENT
	******	*********	********	*****		
3	23.00	. 44.00	42.00	22.80	43.62	61.47
4	24.00	45.00	63.00	23.79	44.61	62.46
7	22.00	-42.00	61.00	21.92	-41.84	60.77
11	25,00	44.00	62.00	22.95	43.71	41.59
12	27.00	45.00	63,00	22.95	45.69	62.5R
13	23.00	45.00	63,00	22.78	44.57	62.40
14	22.00	43.00	62.00	21.79	42.59	61.41
16	23.00	44.00	62.00	22.76	43.54	61.35

MODE 1

UNIT	FUEL FLOW	CB F/A X100	PERF F/A	TT7 DEG R	EPR	THRUST
	********					
3	1500.	.8500	.8170	1032.	1.012	2584.
4	1600.	9260	.8710	1068.	1.018	2782.
7	-1400.	.8630	-,7630	1032.	1.015	7439.
11	1600.	.8980	.8710	1068.	1.020	2610.
12	1600.	.8460	.9710	1059.	1.015	2808.
13	1500.	.8730	.8170	1068.	1.020	2777.
14	1500.	.8780	.8170	1032.	1.020	2580.
16	-1400.	.7930	7630	1068.	1.026	2568.

マートンが、サールーナー

MODE 1

UNIT	CORR FU FL	COR CR F/A C	COR PF F/A	CORR TT7 COR	THRUST LRF
		••••••	*********		
3	1519.	.8350	.8030	1014.	2594.
4	1620.	9100	.4570	1049.	2792•
7	-1413.	.8550	7570	1024.	2453.
11	1615.	.8860	.9600	1053.	2617.
12	1615.	.8350	.8600	1045.	2816.
13	1516.	.8570	.8020	1048.	2790.
14	1516.	.8610	.8020	1012.	2582.
16	-1416.	.7770	7470	1046.	2571.

#### R9211-228 + 450 HOUR TEST SERIES +

MODE 1 :

UNIT	COZ CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
	*******			*********	
3	1.520	875.8	-576.5	5.8	10.1
4	-1.729	836.0	436.4	7.9	12.7
. 1	1.525	-991.5	-602.8	6.2	9.2
11	1.655	864.6	476.8	6.3	9,9
12	1.538	855.7	503.2	6.9	9.0
13	1.594	89R.6	484.6	7.0	11,3
14	1.592	867.3	531.9	6.3	10.4
16	1.448	770.5	449.0	4.8	9,2

MODE 1

UNIT	COZ ET	CO EI	HC EI	NO FI LB/KLB FU	NOX ET	SMK NUMBER FRONT SIDE
	•••••				*******	
3	2702.	99.06	112.03	1.07	1.89	0.00
4	-2816.	86,63	77.69	1.35	2.16	0.00
7	-266A.	-110.41	-115.32	1.13	1.67	0.00
11	2780.	92.40	A7.53	1.10	1.73	0.00
12	2747.	97.16	98.15	1.29	1.67	0.00
13	2754.	98.83	91.56	1.26	2.05	0.00
14	2737.	94.91	100.00	1.13	1.87	0.00
16	2757.	93,36	93.46	.96	1.84	0.00

# RB211-228 . 450 HOUR TEST SERIES .

MODE 1

UNIT	FCO X100	FHC X100	FN0 \$100	STD FCO	STO FHC	STO FNO
	*******		*********			
3	1.2600	.4930	3.1090	1.2090	.4710	3.5990
4	1,3640	.5460	3.2910	1.3060	.5210	3.4080
7	-1.1200	4010	-2.7670	-1.0960	3900	-3.2440
11	1.2740	.4920	3.0970	1.2320	.4750	3.6160
12	1.3990	.5990	3.4630	1.3530	.57AD	4.0390
13	1.3420	•5430	3.2690	1.2820	.5190	1.7990
14	1.1990	.4430	2.9130	1.1470	.4230	3,3910
16	1.2400	.4910	3.3020	1.1820	.4670	3.5A20

### RR211-228 . 450 HOUR TEST SERIES .

### MODE 1

UNIT	NREC CO FI	NREC HC EI			
	LB/KLB FU	LAZKLA FU	LR/KLP FU	LR/KLR FIJ	CORRECTED
3	103.33	117.26	1.24	7.18	0.00
4	90.48	A1.35	1.56	2.50	0.00
7	-112.80	-118.51	1.33	1.96	0.00
11	95.50	90.67	1.29	5.05	0.00
12	101.44	101.73	1.50	1.95	0.00
13	103.40	95.83	1.47	AE.5	0.00
14	99.22	104.57	1.31	2.18	0.00
16	97.95	98.20	1.05	1.99	0.00

# R5211-228 • 450 HOUR TEST SERIES •

### MODE 2

UNIT	NI SPEED PER CENT	NZ SPEED PER CENT	N3 SPEED PER CENT	CORR NI PER CENT	CORR NZ PER CENT	CORP N3 PER CENT
****	*******				*****	
3	27.00	49.00	66.00	26.77	48.58	65,43
4	27.00	50.00	66.00	24.77	49.57	65,43
7	27.00	50.00	66.00	26.90	49.81	45.75
11	-26.00	49.00	65.00	-25.83	48.67	64.57
12	-26.00	50.00	66.00	-25.83	49.67	65.56
13	27.00	50.00	67.00	26.74	49.52	66.36
14	27.00	50.00	65.00	26.74	49.52	64.38
16	27.00	49.00	65.00	26.72	48.49	64.32

### RB211-228 . 450 HOUR TEST SERIES .

#### HODE S

UNIT	FUEL FLOW LRM/HR	CR F/A X100	PERF F/A	TT7 DFG R	EPR	THRUST LRF
3	1700.	.8580	.9260	1050.	1.021	1546.
4	1700.	.8290	.9760	1068.	1.024	1546.
.7	1700.	•8520	.9260	1068.	1.030	1622.
11	1700.	.8950	.9260	1086.	1.028	1317.
12	1700.	.8520	.9260	1068.	1.078	3582.
13	1800.	.8690	.9800	1086.	1.025	1873.
14	1800.	9140	.9800	1068.	1.025	3274.
16	-1400.	7820	8710	1068.	1.032	1257.

M00E 2

UNIT	CORR FU FL LBM/HR	COR CB F/A C X100	OR PF F/A C	ORR TT7 COR	THRUST LAF
3	1721.	.8440	.9100	-1032.	3559•
4	1721.	.8140	.9100	1049.	3559.
7	1716.	•8450	.9190	1060.	3642.
11	1716.	.8830	.9140	1071.	3326•
12	1716.	.8410	.9140	1053.	3592•
13	1819.	•8520	.9620	1065.	3877.
14	1819.	8970	.9620	104R.	3277•
16	-1618.	7660	A530	1046.	3261.

MODF 2

UNIT	COR CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
3	1.594	739.7	-441.3	6.3	13,5
4	1.554	765.5	357.6	6.6	13.9
7	1.593	771.6	379.9	6.2	13,4
11	1.693	757.2	366.4	6.2	13,4
12	1.593	742.4	403.5	7.3	13.1
13	1.637	743.9	363.1	7.2	13.6
14	-1.721	737.6	406.0	6.7	13.7
16	-1.462	680.6	359.1	5.1	12.4

### RB211-228 . 450 HOUR TEST SERIES .

400E 2

UNIT	COS EI	CO EI	HC EI	NO EI	NOX EI	SMK NUMBER
	LB/KLR FU	LB/KLB FU	LR/KLB FU	LA/KLA FU	LR/KLB FU	FRONT SIDE
3	2802.	82.77	-84.83	1.17	2.49	0.00
4	2830.	88.71	71.20	1.26	2.66	0.00
7	2820.	86,96	73.55	1.16	2.48	0.00
11	2852.	81.20	67.50	1.09	2.37	0.00
12	2819.	83,63	78.10	1.36	2.42	0.00
13	2842.	. 82,20	68,93	1.31	2.48	0.00
14	2838.	77.41	73.19	1.15	2.36	0.00
16	2821.	83.60	75.7A	1.04	2.50	0.00

#### R8211-228 . 450 HOUR TEST SERTES .

MONE 2

UNIT	FCO	FHC	FNO	STO FCO	STD FHC	STD FNO
	x100	X100	X100	X100	X100	X100
3	1.6260	.7780	4.0190	1.5560	.7420	4.6400
4	1.6860	.8440	4.2130	1.6130	.8050	4.8620
7	1.6840	.8440	4.2010	1.6470	.8210	4.9160
				•••		4,100
11	1.6340	.7750	4.0010	1.5820	.7480	4.6610
12	1.6910	.8420	4.1940	1.6340	.8110	4.8930
•	•••••	•	~~.,~	100340	•011.	4
13	1.7080	.8410	4.1860	1.6290	.8020	4.8510
14	1.7340	.8410	4-1860	1.6530	.8920	4.8510
	•••••	••	401.000	1.033.	40.50	4.0710
16	:.5900	.7750	4.2750	1.5130	.7360	4.6200

HODE S

UNIT	NREC CO EI		NRE CNO EI LB/KLB FU	NR CNOX EI	SMK NUMBER CORRECTED
****	••••••	*********			
3	86.49	-88.94	1.35	2.87	0.00
4	92.70	74.68	1.45	3.06	0.00
7	88.95	75.68	1.35	2.90	0.00
11	84.04	70.01	1.27	2.76	0.00
12	86.54	81.02	1.58	2.81	0.00
13	86.16	72.27	1.52	2.87	0.00
14	81.19	76.74	1.33	2.74	0.00
16	87.88	79.79	1.12	2.70	0.00

# RB211-22B . 450 HOUR TEST SERIES .

MODE 3

UNIT	NI SPEFO PER CENT	NZ SPEED PER CENT	N3 SPEED PER CENT	CORR NI PER CENT	CORR NZ	CORR N3 PER CENT
••••	**********	*********			••••••	********
3	94.00	97.00	93.00	93.19	96.17	92.20
. 4	93.00	97.00	92.00	92.20	96.17	91.21
7	93.00	97.00	92.00	97.64	96.63	91.65
11	94.00	99.00	92.00	93.37	98.34	91.39
12	94.00	98.00	93.00	93.37	97.35	92.38
13	94.00	98.00	93.00	93.11	97.07	92.12
14	94.00	98.00	92.00	93.11	97.07	91.13
16	94.00	98.00	93.00	93.02	96.98	92.03

# RR211-228 * 450 HOUR TEST SERIES *

MODE 3

UNIT	FUEL FLOW LBM/HR	CR F/A X100	PERF F/A	TT7 DEG R	EPR	THRUST LRF
3	15000.	1.8850	2.0010	1734.	1.533	41846.
4	15000.	1.7910	2.0010	1734.	1,533	41846.
7	15900.	1.7820	2.1210	1734.	1,533	41763.
11	15500.	1.8500	2.0680	1752.	1,533	41888.
12	15500.	1.7970	2.0680	1734.	1,533	41888.
13	15000.	1.8460	2.0010	1734.	1,533	41958.
14	16000.	1.8840	2.1350	1770.	1,533	41958.
16	15500.	1.7930	2.0680	1761.	1,533	41958.

## RR211-22B * 450 HOUR TEST SERIES *

MODE 3

UNIT	CORR FU FL	COR CR F/A	COR PF F/A	CORR TT7 COR	THRUST LBF
3	15185.	1.8520	1.9670	1704.	42000•
4	15195.	1.7600	1.9670	1704.	42000.
7	16052.	1.7680	2.1050	1720.	42000.
11	15646.	1.8250	2.0400	1728.	42000.
12	15646.	1.7730	2.0400	1711.	42000•
13	15159.	1.8110	1.9630	1701.	42000.
14	16170.	1.8480	2.0940	1736.	42000•
16	15679.	1.7550	2.0250	1724.	42000.

#### R8211-228 * 450 HOUR TEST SERIES *

MODE 3

UNIT	CO2 CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
3	3.998	28.3	5.8	416.1	409.9
. 4	3,796	20.4	4.8	386.3	391.6
7	3.770	23.2	5.2	357.1	365.4
11	3.924	24.0	5.5	399.8	400.6
12	3.810	26.3	5.2	346.7	363,7
13	3.911	21.3	4.8	392.7	. 392.9
14	3.990	-41.8	6.2	383.6	385,9
16	3.794	24.9	8.3	451.2	442,5

# RB211-228 * 450 HOUR TEST SERIES *

MODE 3

UNIT	COS EI	CO ET	HC EI LR/KLR FU	NO FI LR/KLR FU	NOX EI LR/KLB FU	SMK NUMBER FRONT STDE
		~~~~~~				
3	3161.	1.42	.51	34.40	34.40	29.80
4	3162.	1.08	.43	33.64	34.10	28.19
7	3155.	1.24	.49	31.24	31.97	36.00
11	3162.	1.23	.49	33.6A	33.74	28.48
12	3162.	1.39	.47	30.08	31.55	12.89
13	3158.	1.10	.47	33.15	33.17	13.55
14	3156.	-2.10	.54	31.72	31.91	12.68
16	3156.	1.32	.75	-39.24	39.74	29.80

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

一声と ちゃんだ どいし

RB211-228 + 450 HOUR TEST SERIES +

MODE 3

UNIT	FCO	FHC	FNO	STD FCO	STD FHC	STD FNO
	X100	X100	X100	X100	X100	X100
3	109.2050	94.1680	A1.6490	96.6720	87.8640	90.9420
4	97.3240	94.1680	81.6490	86.6540	87.8640	90.9420
7	96.6530	97.1790	82.4850	91.5470	93.5340	94.9890
11	112.8340	105.2940	87.8110	102.7130	99.7470	99.3780
12	105.7310	105.2940	87.4110	96.4910	99.7470	99.3780
13	114.7170	106,6700	88,9830	100.5370	99.2400	99,0220
14	120.3820	106.6700	88.9830	105,2170	99.2400	99.0220
16	107.4250	106.1050	95.0,20	93.3070	98.0310	98,1710

RR211-228 * 450 HOUR TEST SERIES *

MODE 3

UNIT				NR CNOX ET	
	LB/KLB FU	FHYKES ED	LHZKLH FI	LR/KLR FU	CORRECTED
3	1.61	.54	38.31	18.31	20.78
4	1.21	.47	37.46	37.98	21.99
7	1.31	.49	35.98	36.82	21.53
11	1.35	.51	39.11	38.18	22.59
12	1.52	.49	34.04	35.71	23.82
-					
13	1.25	.45	36.89	36.91	27.16
14	-2.40	.58	35.29	35.51	24.44
14			40.54		22.44
16	1.52	.81	40.54	40.54	23.46

RB211-22B . 450 HOUR TEST SERIES .

MODE 4

UNIT	NI SPEED PER CENT	NZ SPEED PER CENT	N3 SPEED PER CENT	CORR NI PER CENT	CORR NZ PER CENT	CORR N3
	••••••		••••••	•••••	*******	*******
3	88.00	94.00	91.00	87.25	93.19	90.22
4	88.00	95.00	90.00	A7.25	94.19	R9.23
7	84.00	94.00	90.00	A7.66	93.64	R9.65
11	88.00	96.00	90.00	R7.41	-95.36	. R9.40
12	89.00	95.00	91.00	-88.41	94.37	90.39
13	87.00	96.00	-92.00	86.17	95.09	-91.13
14	88.00	96.00	90.00	A7.16	95.09	R9.14
16	88.00	95.00	90.00	87.08	94.01	A9.06

RR211-228 * 450 HOUR TEST SERIES *

MODE 4

FUEL FLOW	CR F/A X100	PERF F/A	TT7 DEG R	EPR	THRUST
*********					*******
13000.	1.6740	1.9060	1644.	1.446	3548
13000.	1.6150	1.9060	1644.	1.446	3548
13000.	1.5910	1.9060	1644.	1,446	3541
13000.	1.6540	1.9060	1662.	1,446	3551
-135nn.	1.6290	-1.9790	1664.	1.446	3551
13000.	1.6270	1.9060	1644.	1,446	3557
-140nn.	1.6900	-2.0530	1662.	1.446	3551
13000.	1.6130	1.9060	1680.	1.446	3551
	13000. 13000. 13000. 13000. 13000. -13500.	13000. 1.6740 13000. 1.6150 13000. 1.5910 13000. 1.6540 -13500. 1.6290 13000. 1.6270 -14000. 1.6900	130nn. 1.6740 1.9060 130nn. 1.6150 1.9060 130nn. 1.5910 1.9060 130nn. 1.6540 1.9060 -135nn. 1.6290 -1.9790 130nn. 1.6270 1.9060 -140nn. 1.6900 -2.0530	LBM/HR X100 X100 DEG R 13000. 1.6740 1.9060 1644. 13000. 1.6150 1.9060 1644. 13000. 1.5910 1.9060 1644. 13000. 1.6540 1.9060 1662. -13500. 1.6290 -1.9790 1664. 13000. 1.6270 1.9060 1644. -14000. 1.6900 -2.0530 1662.	LBM/HR X100 X100 DEG R 13000. 1.6740 1.9060 1644. 1.446 13000. 1.6150 1.9060 1644. 1.446 13000. 1.5910 1.9060 1644. 1.446 13000. 1.6540 1.9060 1662. 1.446 -13500. 1.6290 -1.9790 1664. 1.446 13000. 1.6270 1.9060 1644. 1.446 -14000. 1.6900 -2.0530 1662. 1.446

R8211-228 * 450 HOUR TEST SERIES *

HONE 4

UNIT	CORR FU FL	COR CB F/A C	OR PF F/A	CORR TT7 COR	THRUST LBF
		********		*******	
3	13161.	1.6450	1.8740	1616.	35613.
4	13161.	1.5880	1.8740	1616.	35613.
7	13124.	1,5690	1.8910	1631.	35613.
11	13122.	1.6320	1.8810	1640.	35613.
12	-13627.	1.6070	-1.9530	1641.	35613.
13	13138.	1.5960	1.8700	1613.	35613.
14	-14148.	1.6580	-2.0140	1630.	35613+
16	13150.	1.5790	1.8660	1645.	35613.

RR211-22B . 450 HOUR TEST SERIES .

MODE 4

UNIT	COZ CONC	CO CONC	HC CONC	NO CONC	NOX CONC
3	3.543	38.8	2.9	281.3	285.0
4	3.419	22.7	2.4	276.1	284.0
7	3.338	31.4	2.9	251.3	260.3
11	3.501	30.3	3.9	271.9	280.4
12	3.447	29.3	2.3	743.9	248.4
13	3.439	25.7	3.4	260.7	26A.3
14	3,573	50.4	3,9	269.4	281.0
16	3.408	27.4	4.R	-321.2	-323.1

R8211-228 * 450 HOUR TEST SERIES *

MODE 4

UNIT	CO2 EI	CO ET	HC FI	NO EI	NOX ET	SMK NUMBER
•		********	••••••			
3	3161.	2,20	.29	26.23	26.58	18.67
. •	3162.	1.34	•25	26.70	27.46	20.00
7	3154.	1.89	.30	24.82	25.72	21.85
11	3161.	1.74	•39	25.66	26.47	-26.67
12	3162.	1.71	.23	23.38	23.82	15.89
13	3157.	1.50	•35	25.02	25.74	19.74
14	3155.	. 2.84	•38	24.87	25.94	88.55
16	3157.	1.62	.48	-31.10	-31.2A	19.87

R9211-228 * 450 HOUR TEST SERIES *

400E 4

UNIT	FCO	FHC	FNO	STD FCO	STD FHC	STD FNO
OMII						
	x100	X100	XIOO	X100	X100	X100
	••••••			•••••		
3	63.3160	62.6960	61.1520	56.9820	58.5480	68.3670
4	65.5740	71.7290	67.2520	59.1100	67.0300	75.0960
7	57.7480	64.5780	61.9220	55.0540	62.2190	71.3110
11	-75.3000	-R2.8340	74.0140	-69.2850	-7A.5530	-83.9080
12	66.5100	72.3900	67.3060	61.3230	68.6890	76.3770
13	72.9130	-81.2380	73.2510	64.9920	-75.7090	81.7430
14	-78.1290	-81.2380	73.2510	-69.3860	-75.7090	A1.7430
16	65.2130	70.6020	71.1550	57.6180	65.4170	73.8410

RB211-22B * 450 HOUR TEST SERIES *

MODE 4

UNIT	NREC CO EI			NR CNOX ET	SMK NUMBER CORRECTED
3	2.45	.31	29.33	29.72	16.78
4	1.48	.26	29.81	30.66	17.89
7	1.98	.31	28.63	29.66	19.46
11	1.89	.41	29.10	30.01	14.47
12	1.85	.25	26,53	27.03	14.22
13	1.69	.37	27.92	28.73	17.75
14	3.19	.41	27.75	28.95	20.49
16	1.83	.52	-32.28	32.46	19.32

RR211-228 + 450 HOUR TEST SERIES +

MODE 5

UNIT	NI SPEED PER CENT	NZ SPEED PER CENT	N3 SPEED PER CENT	CORR NI PER CENT	CORR NZ	CORP N3 PER CENT
3	79.00	89.00	86.00	77.33	88.74	A5.26
. 4	78.00	89.00	86.00	77.33	88.24	A5.26
7	77.00	89.00	86.00	76.70	88.66	R5.67
11	75.00	90.00	85.00	77.4A	89.40	A4.43
.12	78.00	-91.00	86.00	77.48	-90.39	R5.43
13	78.00	-91.00	-87.00	77.26	-90.14	-R6.17
14	77.00	90.00	85.00	76.27	89.14	R4.19
16	77.00	90.00	86.00	76.20	89.06	A5.10

RB211-228 + 450 HOUR TEST SERIES +

MODE 5

UNIT	FUEL FLOW	CB F/A X100	PERF F/A X100	TT7 DEG R	EPR	THRUST
	*******			*******		*******
3	9000.	1.3680	1.6670	1464.	1.302	24478.
4	9000.	1.3160	1.6670	1464.	1.302	24478.
7	9000.	1.3100	1.6670	1464.	1.302	24429.
11	9000.	1.3410	1.6670	1482.	1.302	24503.
12	9000.	1.3220	1.6670	1464.	1.302	24503.
13	9000.	1.3380	1.6670	1482.	1.302	24544.
14	9000.	1.4000	1.6670	1482.	1,302	24544.
16	9000.	1.3030	1.6670	-1500.	1,302	24544.

RR211-22R . 450 HOUR TEST SERIES .

MODE 5

UNIT		COR CB F/A			THRUST
	LAM/HR	X100	X100	DEG R	LRF
3	9111.	1.3450	1.6390	1439.	2456R.
4	9111.	1.2940	1.6390	1439.	24568.
7	9086.	1.3000	1.6540	1453.	24568.
11	9085.	1.3230	1.6450	1462.	24568.
12	9085.	1.3040	1.5450	1444.	74568.
13	9095.	1.3130	1.6350	1454.	24568.
14	9095.	1.3730	1.6350	1454.	24568.
16	9104.	1.2763	1.6320	1469.	24568.

RB211-228 . 450 HOUR TEST SERIES .

MODE 5

UNIT	COZ CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
	*********	•••••	*******		*******
3	2.881	83.9	5.2	132.0	140.9
4	2.774	56.6	3.0	125.2	133.8
7	2.754	66.2	4.1	125.7	133.7
11	2.825	61.0	4.5	123.1	132.1
12	2.7A1	84.3	4.A	116.9	129.5
13	2.816	59.0	4.8	121.5	133.1
14	2.942	104.9	6.5	126.7	141.5
16	2.740	59.3	6.3	-143.9	-154.6

R9211-228 • 450 HOUR TEST SERIES •

MODE 5

UNIT	CO2 ET	CO EI LB/KLB FU	HC EI LR/KLB FU	NO EI LR/KLB FU	NOX EI LR/KLB FU	SMK NUMBER FRONT SIDE
3	3154.	5.85	.63	15-11	16.12	10.00
4	315A.	4.10	.TA	14.90	15.92	12.00
7	3149.	4.82	.52	15.02	15.99	14.47
11	3157.	4.34	•55	14.38	15.43	18.79
12	3154.	6.08	.60	13.86	15.35	15.33
13	3152.	4.20	•59	14.22	15.58	12.99
14	3147.	7.14	.76	14.17	15.82	15.23
16	3151.	4.34	.79	-17.30	-18.59	A.67

THE RESIDENCE OF THE PARTY OF T

RB211-228 . 450 HOUR TEST SERIES .

MODE 5

UNIT	FC0 x100	FHC X100	FN0 X100	STD FCO	STO FHC	STD FNO
	********	*******				~~~~~~
3	29.0580	30.7000	37.8610	26.6670	28.8150	42.5820
4	27.8340	30.7000	37.8610	25.5930	28.8150	42.5920
7	27.6570	31.3810	38.0310	26.5680	30.2850	43.9880
11	30.9950	35.3500	41.3140	28.9950	33.6410	47.1070
12	-33.7180	-41.1500	45.6990	-31.5320	-39.1370	-52.0560
13	-34.0200	-40.2390	45.1570	-30.965C	-37.6560	-50.7360
14	32,4050	34.5230	40.8030	29.4570	32.3340	45,9070
16	29.8090	34.2840	43.5310	26.9640	31.9100	45.5160

RB211-228 . 450 HOUR TEST SERIES .

MODE 5

UNIT	NREC CO FI	NREC HC EI	NRE CHO ET	NR CNOX ET	SMK NUMBER
	LB/KLB FU	LR/KLR FU	LR/KLR FU	LAZKLA FU	CORRECTED
••••	********				******
3	6.37	.67	16.99	14.14	10.00
4	4.46	.40	16.76	17.90	12.00
7	5.02	•54	17.38	18.49	13.24
11	4,63	•58	16.39	17.60	-17.49
15	4.51	.63	15.79	17.49	14.22
13	4.62	.63	15.98	17.51	12.99
14	7.85	.82	15.94	17.80	14.35
16	4.80	.84	18.09	-19.43	8.18

RR211-228 . 450 HOUR TEST SERIES .

HODE 6

UNIT	NI SPEED PER CENT	NZ SPEED PER CENT	N3 SPEED PER CENT	CORP NI PER CENT	CORR NZ	CORR N3
	**********	*********				********
3	55.00	79.00	79.00	54.53	78.32	78.32
4	55.00	77.00	78.00	54.53	76.34	77.33
7	55.00	76.00	-77.00	54.79	75.71	76.70
11	55.00	78.00	78.00	54.63	77.48	77,48
12	54.00	78.00	78.00	53.64	77.48	77.48
13	55.00	-88.00	78.00	54.4R	-87.16	77.26
14	-52.00	-R2.00	78.00	-51.51	-81.22	77.26
16	54.00	77.00	78.00	53.44	76.20	77,19

RB211-228 + 450 HOUR TEST SERIES +

MODE 6

UNIT	FUEL FLOW LRM/HR	CR F/A	PERF F/4 X100	TT7 DEG R	EPR	THRUST LRF
3	4400.	.9790	1.2710	1212.	1.128	10484.
4	4200.	.9400	1.7170	1230.	1.128	10484.
.7	4200.	.9460	1.2130	1212.	1.128	10464.
11	4400.	.9730	1.2710	1249.	1,178	10495.
12	4100.	.9650	1.1940	1230.	1.128	10495.
13	4200.	.9630	1.2130	1230.	1.128	10512.
14	-4700.	-1.1440	-1.3570	-1302.	1,128	1.1512.
16	4000.	8970	1.1550	1248.	1,128	10512.

RB211-228 * 450 HOUR TEST SERIES *

MODE 6

UNIT	CORR FU FL	COR CB F/A	COR PF F/A	CORR TT7	COR THRUST
••••	********	••••••			*********
3	4454.	•9620	1.2490	1191	. 10523.
4	4252.	.9240	1.1920	1209	. 10523.
7	4240.	.9390	1.2030	1505	. 10523.
11	4441.	.9600	1.2540	1231	. 10523.
12	4139.	•9530	1.1680	1213	. 10523.
13	4245.	•9450	1.1900	1206	. 10523.
14	-4750.	-1.1220	-1.3310	-1277	. 10523.
16	4046.	8780	1.1310	1555	. 10523.

R8211-228 * 450 HOUR TEST SERIES *

MONE 6

UNIT	CO2 CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
3	2.024	220.9	45.0	41.8	54,5
4	1.950	195.4	29.4	42.7	52.9
7	1.954	219.7	36.2	40.R	50.9
11	2.015	212.9	36.0	36.9	49.1
12	1.995	271.0	47.5	36.6	49.4
13	1.990	214.7	38.3	38.1	51.0
14	-2.362	289.8	54.8	42.5	57.0
16	-1.852	200.9	37.3	40.1	52.9

RB211-228 . 450 HOUR TEST SERIES .

MODE 6

UNIT	CO2 ET	CO E1	HC ET	NO EI LR/KLR FU	NOX EI	SMK NUMBER FRONT SIDE
••••	********		••••••		*******	
3	3110.	21.60	7.57	6.72	8.75	7.84
4	3120.	19,90	5.14	7.15	8.86	6.62
7	3106.	22.13	6.30	6.78	8.47	7.24
11	3115.	20.96	6.08	5.97	7.94	-11.49
15	3108.	21.91	8.10	5.97	8.05	4.70
13	3109.	21.35	6.54	6.22	8.32	5.30
14	3101.	24.21	7.87	5.83	7.82	10.53
16	3109.	21,45	6.84	7.04	9.27	6.58

RR211-228 + 450 HOUR TEST SERIES +

MODE 6

UNIT	FCO	FHC	FNO	STD FCO	STD FHC	STD FNO
	X100	X100	X100	X100	X100	X100
3	7.0410	9.4520	19.1750	6.6520	A.9190	20.6200
4	5.5350	6.4080	14.2390	5.2420	6.0570	16.2010
7	5.2160	5.8480	13.3750	5.0770	5.6620	15.5570
11	6.3330	7.9580	16.2200	6.0640	7.6130	18.6560
12	6.3130	7.9580	16.2200	6.0450	7.6130	18.6560
13	-12.7520	-26.9A30	-34.7330	-11.9360	-25.3060	-39.1450
14	-9.5010	-13.8550	-77.8980	-8.8910	-13.03A0	-25.9500
16	5.4130	6.3140	15.0670	5.0840	5.9320	15.9970

R8211-228 * 450 HOUR TEST SERIES *

MODE 6

UNIT	NREC CO EI		NRE CNO EI	NR CNGX EI LB/KLB FU	SMK NUMBER CORRECTED
••••	£07K£0 7 U	CONCO PO	FUNCULO	FBYKE4 FO	CORRECTED
3	22.87	8.02	7.63	9.93	7.R4
4	21.01	5.44	8.13	10.08	6.62
7	22.73	6.50	7.89	9.85	7.24
11	21.89	6,36	6.86	9.13	-11-49
12	22.88	8.46	6.86	9.26	4.70
13	22.80	6.97	7.02	9.39	4.80
14	25.87	8.36	6.61	8.87	10.53
16	22.84	7.28	7.47	9.85	6.58

RB211-228 * 450 HOUR TEST SERIES *

MODE 7

UNIT	NI SPEED	NZ SPEED	N3 SPEED	CORR NI	CORR NZ	CORR N3
	PER CENT					
				*******		********
3	27.06	49.00	67.00	26.77	48.58	66.43
4	27.00	49.00	66.00	26.77	48.58	45.43
7	27.00	49.00	66.00	26.90	48.81	45.75
11	27.00	50.00	-65.00	26.82	49.67	-64.57
12	-26.0	49.00	66.00	-25.A3	48.67	45.56
13	27.00	-55.00	67.00	26.74	-54.48	66.36
14	27.00	50.00	66.00	26.74	49.52	45.37
16	27.00	49.00	66.00	26.72	48.49	45.31

RB211-22B + 450 HOUR TEST SERIES +

MODE 7

UNIT	FUEL FLOW LBM/HR	CB F/A X100	PERF F/A X100	TT7 DEG R	EPR	THRUST
3	1800.	.8270	.9500	1068.	1.024	3892.
4	1600.	•7930	.8710	1068.	1.028	3546.
7	1700.	.8160	.9260	1068.	1.030	3622.
11	1800.	.8300	.9800	-1104.	1.030	3317.
12	1600.	.8130	.8710	1068.	1.028	3582.
13	1700.	.8330	.9260	1086.	1.028	3873.
14	1700.	8670	.9260	1086.	1.028	3539.
16	1600.	7310	.8710	1059.	1.032	3522.

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

MAN THE STATE OF THE PARTY OF T

111

RB211-228 * 450 HOUR TEST SERIES *

MODE 7

UNIT	CORR FU FL	COR CH F/A C	OR PF F/A (CORR TT7 COR	THRUST LBF
	********			•••••	
3	1822.	.8130	•9640	1049.	3906.
4	1620.	.7790	.4570	1049.	3559.
7	1716.	.8100	.9190	1060.	3642.
11	1817.	.8190	.9670	-1009.	3326•
12	1615.	.8020	.8600	1053.	3592.
13	1718.	.8170	.9080	1065.	3877.
14	1718.	8510	.9080	1065.	3542.
16	1618.	7160	.8530	1037.	3526•

RB211-228 * 450 HOUR TEST SERIES *

MODE 7

UNIT	CC2 CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
	**********			*********	*******
3	1.532	777.9	417.1	6.8	14.8
. 4	1.481	783.3	344.8	-9.6	15.6
7	1.509	823.1	387.4	8.3	14.8
11	1.555	778.4	357.4	8.3	14.6
12	1.503	800.0	409.0	6,9	13,9
13	1.556	795.0	363.3	6.9	14.6
14	1.615	793.2	407.7	7.1	14,3
16	-1.356	732.3	338.1	7.0	14.2

RR211-228 * 450 HOUR TEST SERIES *

MODE 7

UNIT	CO2 ET	CO EI LB/KLB FU	HC EI LB/KLB FU	NO EI LB/KLB FU	NOX ET	SMK NUMBER FRONT SIDE
3	2795.	90.34	93.20	1.30	2.81	0.00
4	2819.	94.89	71.75	-1.92	3.11	0.00
7	2791.	96.89	78.33	1.61	2.A7	0.00
11	2829.	90.09	71.05	1.57	2.77	0.00
12	2789.	94.49	82.99	1.33	2.70	0.00
13	2919.	91.67	71.97	1.31	2.77	0.00
14	2810.	87.82	77.55	1.30	2.60	0.00
16	2800.	96.23	76.34	1.52	3.06	0.00

RB211-228 + 450 HOUR TEST SERIES +

MODE 7

UNIT	FC0 X100	FHC X100	F40 X100	STD FCO	STO FHC X100	STO FNO
-500					E @ @ @ U @ @ @	
3	1.6100	.7780	4.0190	1.5410	.7420	4.6400
4	1.5930	.7780	4.0190	1.5250	.7420	4.6400
7	1.5910	.7780	4.0080	1.5560	.7560	4.6910
11	1.6790	.8420	4.1940	1.6220	.8110	4.8830
12	1.5950	.7750	4.0010	1.5430	.7480	4.6610
13	-2.0970	-1.2340	-5.2610	-1.9980	-1.1750	-6.0R00
14	1.7070	.8410	4.1860	1.6280	.8020	4.8510
16	1.5650	.7750	4.2750	1.4900	.7360	4.6700

RA211-22A * 450 HOUR TEST SERIES *

MODE 7

TINU	NREC CO FI	NREC HC EI	NRE CHO ET	NR CNOX ET	SHK NUMBER
	LB. 'LB FU	LB/KLB FU	LR/KLB FII	LAJKLA FU	CORRECTED
	••••••		********		*******
3	94.36	A7.24	1.50	3.25	0.00
4	99.07	75.23	-2.21	3,59	0.00
7	99.08	90.59	1.48	3.36	0.00
11	93.21	73.72	1.83	3.23	0.00
12	97.73	86.08	1.55	3.14	0.00
13	96.21	75.60	1.52	3.20	0.00
14	92.05	81.32	1.50	3.01	0.00
16	101.09	80.38	1.64	3.30	0.00

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

TINK MY

RB211-228 + 450 HOUR TEST SERIES +

HODE 8

Unit	NI SPEED PER CENT	NZ SPEED PER CENT	N3 SPEED PER CENT	CORR NI PER CENT	CORR NZ	CORR N3
	*********		*******	••••••	*****	
3	23.00	44.00	62.00	22.80	43.62	61.47
4	23.00	45.00	63.00	22.80	44.61	42.46
7	24.00	45.00	63.00	23.91	44.A3	62.76
11	24.00	44.00	62.00	23.44	43.71	61.59
12	23.00	45.00	63.00	22.45	44.70	62.58
13	22.00	45.00	63.00	21.79	44.57	62,40
14	22.00	43,00	62.00	21.79	42.59	61.41
16	24.00	44.00	62.00	23.75	43.54	61.35

RB211-228 . 450 HOUR TEST SERIES .

MODE A

UNIT	FUEL FLOW LRM/HR	CR F/A X100	PERF F/A	TT7 NEG R	EPR	THRUST LRF
3	1500.	.8250	·A170	1032.	1.015	2584.
4	1400.	.7960	.7630	1032.	1.018	2782.
7.	1600.	.8190	.9710	1050.	1.020	7836.
11	1600.	.8260	.8710	106A.	1.020	2610.
12	1500.	.8190	.9170	1050.	1.020	2808.
13	1500.	.8390	· .A170	1068.	1.020	2777.
14	1500.	.8540	.8170	1032.	1.020	2580.
16	1400.	7220	.7630	1068.	1.026	2568.

RB211-22R * 450 HOUR TEST SERIES *

MODE 8

UNIT	CORR FU FL LBM/HR	COR CB F/A CO	DR PF F/A CO	DEG R	THRUST LBF
	*******	*********			
3	1519.	.8110	.8030	1014.	2594.
4	1417.	.7820	.7500	1014.	2792.
7	1615.	.8130	.8650	1042.	2852.
11	1615.	.8150	.8600	1053.	2617.
12	1514.	.8080	.8060	1036.	2816.
13	1516.	.8220	.8020	1048.	2780.
14	1516.	.8380	.8020	1012.	2582•
16	1416.	7070	.7470	1046.	2571.

RAZ11-228 * 450 HOUR TEST SERIES *

MODE 8

UNIT	COZ CONC	CO CONC	HC CONC	NO CUNC	NOX CONC
3	1.470	908.0	557.0	5.6	12.2
4	1.430	915.9	484.7	5.4	12.4
7	1.469	930.3	506.9	6.4	12.4
11	1.496	987.2	490.3	6.A	11,9
12	1.468	911.4	521.4	6.0	11.7
13	1.504	950.4	517.1	6.0	11.8
14	1.537	907.4	535.2	4.9	11,3
16	-1.291	845.8	446.A	5.1	11.5

RR211-228 . 450 HOUR TEST SERIES .

MODE 8

UNIT	CO2 EI	CO EI LB/KLB FU	HC ET	NO EI LB/KLB FU	NOX EI LB/KLB FU	SMK NUMBER FRONT SIDE
			~~~~~	********	********	
3	2693.	105.83	111.53	1.09	2.33	0.00
4	2715.	110.65	100.61	1.16	2.45	0.00
7	2706.	109.10	102.14	1.24	2.40	0.00
. 11	2734.	103.17	97.96	1.30	2.28	0.00
12	270A.	107.00	105.16	1.15	2.25	0.00
13	2710.	108.97	. 101.86	1.14	5.55	0.00
14	2716.	102.07	103,43	•91	2.08	0.00
16	2703.	112.67	102.25	1.11	2.51	0.00

# RR211-228 . 450 HOUR TEST SERIES .

MODE 8

UNIT	FC0 X100	FHC X100	FN0 X100	STD FCO X100	STD FHC X100	STD FNO X100
3	1.2500	.4930	3.1080	1.1990	.4710	3.5990
4	1.3110	•5460	3.2910	1.2570	.5210	3.8080
7	1.3120	.5470	3.2900	1.2840	.5320	3.8540
11	1.2460	.4920	3.0970	1.2060	.4750	3.6160
12	1.3150	.5440	3.2790	1.2720	.5260	3.8260
13	1.3270	•5430	3.2680	1.2690	.5190	3.7990
14	1.1910	.4430	2.9130	1.1390	.4230	3.3910
16	1.2140	.4910	3.3020	1.1540	.4670	3.5R20

## RB211-228 * 450 HOUR TEST SERIES *

MODE 8

UNIT	NREC CO EI	NREC HC EI	NRE CNO ET	NR CNOX EI	SMK NUMBER CORRECTED
					CORRECTED
3	110.35	116.74	1.25	2.69	0.00
4	115.39	105.35	1.34	2.84	0.00
7	111.50	105.02	1.45	2.81	0.00
11	106.58	101.47	1.52	2.66	0.00
12	110.55	108.96	1.34	2.62	0.00
13	113.96	106.61	1.32	2.59	0.00
14	106.67	108.15	1.06	2.42	0.00
16	118.10	107.43	1.21	2.72	0.00

## RR211-228 * 600 HOUR AND ABOVE TESTS *

UNIT	TSO HR	TSR HR	AMR TEHP	AMR PRESS	LB H20/ATR
1-5	2927.	633.	529.7	29.98	.010660
3-5	3668.	650.	525.7	29.87	.009680
4-5	5747.	650.	525.7	29.97	.009680
7-5	5053.	648.	520.7	29.90	.008990
10-5	4257.	544.	525.7	29.90	.011620
11-5	3600,	659.	519.7	29.97	.008040
12-5	1515.	656.	519.7	29.97	.008040
13-5	3467.	578.	514.7	29.95	.008270
14-5	1952.	577.	514.7	29.95	.008270
4-6	SAAS.	788.	525.7	29.98	.009640
10-6	4532.	919.	521.7	30.04	.006450

# RB211-228 * 600 HOUR AND ABOVE TESTS *

MODE 1

UNIT	NI SPEED PER CENT	NZ SPEED PER CENT	N3 SPEED PER CENT	CORR NI PER CENT	CORR NO	CORP N3 PER CENT
		********				~~~~~~
1-5	25.00	46.00	63.00	24.74	45.52	62.34
3-5	25.00	44.50	62.00	21.45	44.20	61.59
4-5	24.00	45.00	63.00	23.84	44.70	42.58
7-5	24.00	47.00	62.00	23.95	-46.91	61.8A
10-5	22.00	45.00	62.00	21.85	44.70	61.59
11-5	24.00	45.00	62.00	23.98	44.96	61.94
12-5	24.00	45.00	65.00	23.98	44.96	41.94
13-5	23.00	45.00	63.00	\$3.00	45.00	63.00
14-5	23.00	44.00	61.00	23.00	44.00	61.00
4-6	24.00	45.50	64.00	23.84	45.20	63.57
10-6	23.00	44.00	62.00	22.93	43.A7	41.82

#### RR211-228 * 600 HOUR AND ABOVE TESTS *

MONF 1

UNIT	FUEL FLOW LRM/HR	CB F/A X100	PERF F/4	TT7 DEG R	EPR	THRUST LRF
1-5	1675.	.8580	.9120	1086.	1.025	2763.
3-5	1500.	.8380	.8170	1032.	1.020	2622.
4-5	1500.	.8130	.8170	1032.	1.020	2821.
7-5	1500.	.8720	.8170	1086.	1.021	267A.
10-5	1500.	.2000	.9170	1068.	1.014	2619.
11-5	1500.	.7960	.9170	1068.	-1.009	2684.
12-5	1500.	.7840	.8170	1068.	1.020	2684.
13-5	1500.	.7880	.8170	1032.	1.020	2904.
14-5	1600.	.7920	.R710	1032.	1.020	2497.
4-6	1600.	.8350	.8710	1050.	1.010	7054.
10-6	1600.	.9180	.8710	1050.	1.018	2654.

#### RB211-22B + 600 HOUR AND ABOVE TESTS +

MODE 1

UNIT	CORR FU FL LBM/HR	COR CR F/4 COR		R TT7 COR	THRUST LBF
	*******	*********			
1-5	1696.	.8400	.8930	1063.	2768.
3-5	1508.	.8260	.9060	1018.	2617.
4-5	1508.	.8020	.8060	1018.	2816.
7-5	1502.	.8680	.9140	-10A2.	2676.
10-5	1509.	.7900	.8060	1053.	2617.
11-5	1504.	.7940	.8150	-1066.	2688.
12-5	1504.	.7830	.8150	-1066.	2688•
13-5	1502.	.7880	.8170	1032.	2907.
14-5	1602.	.7920	.8710	1032.	2500.
4-6	1614.	.8240	.8600	1036.	3060.
10-6	1611.	.8140	.8660	1044.	2664.

#### RR211-228 * 600 HOUR AND ABOVE TESTS *

MODE 1

UNIT	COR CONC PER CENT	CO CONC	HC CONC	NO CONC	NUX CONC
1-5	1.573	A31.3	465.4	5.2	12.7
3-5	1.493	903.6	563.3	4.4	A.4
4-5	1.480	879.8	447.A	5.3	10.5
7-5	1.561	-983.3	570.0	4.7	10.5
10-5	1.461	P29.7	439.0	5.4	7.9
11-5	1.472	-746.8	395.7	5.0	11.2
12-5	1.420	791.1	462.1	6.1	10.1
13-5	1.432	A2A.3	445.7	4.7	9.6
14-5	1.428	914.2	485.7	4.6	9.9
4-6	1.534	845.9	438.3	-1.7	-4.2
10-6	1.486	818.2	481.5	3.7	A.5

## RB211-228 . 600 HOUR AND ABOVE TESTS .

HODE 1

UNIT	COS ET	CO EI	HC EI	NO FI	NOX ET	SMK NIMPER
	LB/KLB FU	LB/KL9 FU	LA/KLA FIJ	LR/KLR FU	LA/KLB FU	FRONT SIDE
1-5	2767.	93.03	89.47	.97	2.33	0.00
3-5	2691.	103.67	111.94	.83	1.50	0.00
4-5	2748.	103.94	90.06	1.04	2.05	0.00
7-5	2703.	108.37	108.09	.94	1.90	0.00
10-5	2754.	99.61	90.54	1.07	1.55	0.00
11-5	2793.	90.14	79.98	1.00	2.22	0.00
12-5	2734.	96.93	97.27	1.23	2.03	0.00
13-5	2745.	101.05	93,53	.95	1.92	0.00
14-5	2722.	99.03	101.46	•91	1.97	0.00
4 >6	2770.	97.24	86.57	33	-1.18	0.00
10-6	2741.	96.04	97.19	.72	1.64	.0.00

#### PRETT-228 . 600 HOUR AND AROVE TESTS .

MODE 1

INIT	FCO	FHC	FNO	eth eco	STO FHC	STO FNO
	xloa	KIOD	X100	XIOO	x5 uu	XIOO
			*********			
1-5	1.4130	.5000	3.4850	1.3440	.5690	4.0050
1-5	1.2820	.5140	7.2140	1.2450	.5000	7.7200
4-5	1.3080	.5400	3.3089	1.2700	.5260	1,8200
7-5	1.4470	.6490	3.6530	-1.4500	6440	-4,2850
10-5	1.3040	.5410	7.1910	1.2660	.5240	3,8260
11-5	1.2030	.5430	3.3540	1.2850	.5390	3.8820
12-5	1.2980	.5430	3.3540	1.2810	.5390	7.88.0
17-5	1.2970	.5420	3.3270	1.2860	.5410	1,80;0
14-5	1.2190	.4010	3.1440	1.2140	.4900	3,677
4-4	1.3590	.5710	3.4120	1.3160	.5520	3.037"
10-6	1.2370	.4930	3.2910	1.2170	.4840	3.65

## RB211-228 * 600 HOUR AND ABOVE TESTS *

MODE 1

UNIT	NREC CO FI		NRE CHO ET	NR CNOX EI	SMK NUMBER
	*******	•••••			•••••
1-5	97.86	94.27	1.11	2.68	0.00
3-5	106.77	114.13	.96	1.83	0.00
4-5	107.03	92.59	1.20	2.37	0.00
7-5	109.30	108.93	1.01	2.23	0.00
10-5	102.64	93.25	1.28	1.86	0.00
11-5	90.64	80.57	1.15	2.57	0.00
12-5	97.46	97.99	1.43	2.36	0.00
13-5	101.11	93.79	1.11	2.24	0.00
14-5	99.00	101.64	1.07	2.30	0.00
4-6	100.45	89.60	38	-1.36	0.00
10-6	97.59	99.08	.80	1.82	0.00

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

松大大

#### RR211-228 * 600 HOUR AND ABOVE TESTS *

MUDE S

TINU	NI SPEED PER CENT	NE SPEED	N3 SPEED PER CENT	CORP NI	CORR NO	CORP N3
	*******				*******	********
1-5	27.00	49.00	65.00	24.72	48.49	44.32
3-5	27.00	50.00	66.00	26.82	49.47	45.56
4-5	27.00	50.00	66.00	24.82	49, 57	45.56
7-5	27.00	50.00	45.00	24.95	49.90	A4.RR
10-5	27.00	50.00	65.00	26.82	49.67	44.57
11-5	27.00	51.00	66.00	26.97	50.95	45.94
12-5	27.00	-52.00	65.00	24.97	-51.95	44.94
13-5	27.00	-52.00	57.00	27.00	-52.00	-47.00
14-5	27.00	51.00	65.00	27.00	51.00	45.00
4-5	27.00	50.00	66.00	24.82	49.67	45.56
10-6	27.00	49.00	45.00	26.92	48.86	44.R]

## RR211-228 . 600 HOUR AND ABOVE TESTS .

MODE S

UNIT	FUEL FLOW LRM/HR	CR F/A X100	PERF F/A X100	TT7 DEG R	EPR	THRIIST LRF
1-5	1750.	.8540	.9530	1077.	1.030	3254.
3-5	1800.	.8470	.9800	1050.	1.030	3598.
4-5	1700.	.8200	.9260	1068.	1.030	3598.
7-5	1800.	.8680	.9800	-1104.	1.025	3411.
10-5	1800.	.8150	.9800	1096.	1.022	3328.
11-5	1800.	7720	.9800	1072.	1.026	36A7.
12-5	1800.	.8080	.9800	1068.	1.028	3420.
13-5	1800.	.7990	.9800	1054.	1.030	-4166.
14-5	1800.	.8310	.9800	1059.	1.030	3439.
4-6	1700.	.8390	.9260	106R.	1,020	3585.
10-6	1800.	.8240	.9800	1068.	1.024	3379.

## RRS11-228 * 600 HOUR AND ABOVE TESTS *

#### MODE 2

UNIT	CORR FU FL LBM/HR	COR CR F/A	COR PF F/A	CORR TT7 CO	R THRUST LBF
	•••••				
1-5	1772.	.8360	.933	1054.	3261•
3-5	1809.	.8350	.9470	1036.	3592•
4-5	1709.	.8090	.9140	1053.	3592•
7-5	1902.	·8650	.9770	-1099.	3419.
10-5	1911.	.9040	.9670	1071.	3326.
11-5	1805.	7700	.9790	1070.	3693.
12-5	1805.	.8070	.9790	1066.	3426.
13-5	1802.	.7990	.9800	1054.	-4170.
14-5	1802.	.8310	.9800	1059.	3447.
4-6	1715.	.8270	.9140	1053.	3592•
10-6	1912.	.8190	.9750	1062.	3192.

## RB211-228 . 600 HOUR AND ABOVE TESTS .

HODE 2

UNIT	CO2 CONC	CO CONC	HC CONC	NO CONC	NOX CONC
1-5	1.588	776.6	405.1	4.R	13.6
3-5	1.568	740.1	-434.2	5.3	12,5
4-5	1.539	767.3	334.4	5.0	13.2
7-5	1.640	755.2	361.7	6.2	14.7
10-5	1.529	732.5	346.9	5.8	-10.7
11-5	-1.460	660.8	291.0	4.2	14.4
12-5	1.525	-644.1	332.4	6.6	14.6
13-5	1.507	686.6	326.6	5.1	13.6
14-5	1.558	691.6	373.0	4.6	13.3
4-6	1.588	701.6	323.9	-1.7	-8.1
10-6	1.536	735.1	381.6	4.9	11.0

## RR211-228 * 600 HOUR AND AROVE TESTS *

HOUE S

UNIT	COZ FI	CO EI	HC EI LAZKLB FU	NO FI LR/KLR FU	NOX EI LR/KLR FU	SMK NIJMRER FRONT STOE
1-5	2806.	A7.35	78.79	.89	2.51	0.00
3-5	2794.	A3.95	84.60	.99	2.32	0.00
4-5	2832.	A9.4A	67.30	.97	2.53	0.00
7-5	2850.	A3.53	68.72	1.12	2.66	0.00
10-5	2832.	R6.34	70.22	1.12	-2.07	0.00
11-5	2954.	82.21	62.20	.96	2.95	0.00
12-5	2847.	76.53	67.85	1.29	2.85	0.00
13-5	2946.	82.51	67.42	1.01	2.49	0.00
14-5	2A27.	79.86	73.99	.67	2.5?	7.00
4-6	285Q.	A0.38	63.75	32	-1.52	0.00
10-6	2914.	85.69	76.42	.94	-2.10	0.00

#### RB211-228 . 640 HOUR AND ABOVE TESTS .

#### MODE 2

UNIT	FC0 x100	FHC X100	FN0 X100	STD FCO X100	STD FHC X100	STD FNO X100
1-5	1.6280	.7770	4.0280	1.5460	.7360	4.6200
3-5	1.6820	.8350	4.2310	1.6310	.8110	4.8930
4-5	1.6680	.8350	4.2310	1.6170	.8110	4.8830
7-5	1.6780	.8330	4.2110	1.6640	.8270	4.9370
10-5	1.6660	.8360	4.0800	1.6150	.8110	4.8830
11-5	1.7020	.9060	4.4790	1.6920	.8990	5.1430
12-5	1.7980	.9790	4.6890	1.7880	9720	-5.4250
13-5	1.7890	.9770	4.6490	1,7880	9750	-5.4380
14-5	1.7300	.9040	4.4410	1.7290	•0050	5.1940
4-6	1.6820	.8400	4.7470	1.6260	.8110	4.8830
10-6	1.5900	.7750	4.2420	1.5640	.759ů	4.7020

#### RB211-228 . 600 HOUR AND ABOVE TESTS .

MODE 2

UNIT	NREC CO FI LR/KLB FU			NR CNOX ET	SMK NUMBER CORRECTED
1-5	91.99	92.58	1.02	2.44	0.00
3-5	86.59	-97.09	1.14	2.68	0.00
4-5	92.68	49.28	1.12	2.92	0.00
7-5	84.26	69.27	1.31	3,12	0.00
10-5	89.10	72.42	1.34	2.48	0.00
11-5	82.48	42.69	1.00	3.42	0.00
12-5	-76.97	. 69.37	1.49	3.31	0.00
13-5	92.56	67.55	1.19	3.15	0.00
14-5	79.91	74.12	1.01	7.94	0.00
4-6	83.13	55.05	37	-1.75	0.00
10-6	87.12	78.03	1.04	-2.33	0.00

## RB211-228 + 600 HOUR AND ABOVE TESTS +

MODE 3

UNIT	NI SPEEN PER CENT	NZ SPEFD PER CENT	N3 SPEEN PER CENT	CORR NI PER CENT	CORR NZ	CORP N3
1-5	94.00	97.00	92.00	93.02	95.99	91.04
3-5	94.00	98.00	93.00	93.37	97.35	92.38
4-5	94.10	98.00	92.50	93.37	97.35	91.88
7-5	-92.00	99.00	-95.00	91.82	-98.Al	-94.82
10-5	-95.00	99.00	93.00	-94.37	98.34	92.38
11-5	93.00	97.00	92.00	92.91	96.91	91.91
12-5	93.00	98.00	92.00	92.91	97.91	91.91
13-5	-92.00	97.00	92.00	92.00	97.00	92.00
14-5	93.50	99.00	-91.00	93.50	-99.00	91.00
4-6	94.00	98.00	93.00	93.37	97.35	92.38
10-6	93.75	97.00	91.75	93.48	96.72	91.49

#### PR211-22R + 600 HOUR AND ABOVE TESTS +

MODE 3

TINU	FUFL FLOW LRM/HR	CR F/A	PERF F/A	TT7 DEG R	EPR	THRUST LAF
1-5	16000.	1.8940	2.1350	1770.	1.533	41916.
3-5	15500.	1.7750	2.0680	1725.	1.533	42070.
4-5	15250.	1.7780	2.0350	1725.	1.533	42070.
7-5	15000.	1.7620	2.2010	1716.	1,533	42028.
10-5	16000.	1.8100	2.1350	1770.	1,533	42028.
11-5	15500.	1.8360	2.0680	1752.	1.533	41930.
12-5	15000.	1.8340	2.0010	1716.	1.533	41930.
13-5	15000.	1.7810	2.0010	1707.	1.533	41958.
14-5	15000.	1.9390	2.0010	1725.	1,533	41958.
4-6	16000.	1.8650	2.1350	1752.	1.533	41916.
10-6	16000.	1.8460	2.1390	1734.	1,530	41513.

#### RR211-223 . 600 HOUR AND ABOVE TESTS .

MODE 3

UNIT	CORR FU FL LRM/HR	COR CR F/A	COR PF F/A	CORR TT7 COR	THRUST LBF
1-5	16201.	1.8550	2.0900	1733.	42000.
3-5	15573.	1.7510	2.0400	1702.	42000•
4-5	15327.	1.7550	2.0080	1702.	42000.
7-5	15019.	1.7560	1.9940	1709.	42000•
10-5	16097.	1.7860	2.1060	1746.	42000•
11-5	15541.	1.8330	2.0640	-174R.	42000•
12-5	15040.	1.8300	1.9970	1712.	42000•
13-5	15015.	1.7810	2.0010	1707.	42000•
14-5	15015.	1.8390	2.0010	1725.	42000.
4-6	16140.	1.8420	2.1060	1728.	42000•
10-6	16115.	1.6360	2.1270	1724.	41779.

#### RB211-228 . 600 HOUR AND ABOVE TESTS .

MODE 3

UNIT	COS CONC	CO CONC	HC CONC	NO CONC	NOX CONC
1-5	4.012	24.5	6.4	433.7	423.1
3-5	3.753	29.9	я.я	424.3	409.0
4-5	3.761	20.4	-11.4	401.6	410.5
7-5	3.719	24.7	6.2	3A3.n	384.2
10-5	3.832	29.8	A.7	437.0	432.4
11-5	3.882	23.4	5.9	437.9	439.7
12-5	3.875	24.9	8.8	192.A	407.5
13-5	3.770	21.6	6.5	391.0	394.1
14-5	3.401	34.1	4.4	367.4	380.5
4-6	3.954	22.8	-9.4	386.1	382.0
10-6	3.900	24.2	5,5	384.6	390.7

## RB211-228 + 6 HOUR AND ABOVE TESTS +

MODE 3

UN	IT	CO2 ET	CO FI LR/KLB FU	HC FI LR/KLR FU	NO EI LR/KLR FU	NOX EI LR/KLB FU	SMK NIJMPER FRONT STOE
1	-5	3155.	1.23	•55	35.65	35.65	29.05
3	-5	3153.	1.60	91	37.28	37.29	30.67
4	-5	3153.	1.09	-:.08	35.21	35.95	30.87
7	-5	3144.	1.33	.57	33.90	34.01	27.52
10	-5	3156.	1.56	.74	37.71	37.71	-14.67
11	-5	3150.	1.21	.53	37.15	37.31	28.67
12	-5	-3149.	1.39	.78	33.38	34.29	31.13
13	-5	3157.	1.15	.60	34.23	34.50	33.11
14	<b>~</b> 5	3152.	1.76	.39	31.12	32.23	30.26
4	-6	3154.	1.16	82	32.23	32.23	29.53
10	-6	3155.	1.35	.48	32.45	32.97	-21.33

# RRELL-SER . 600 HOUR AND ABOVE TESTS .

MODE 3

UNIT	FCO X100	FHC x100	FN0 X100	STO FCO	STD FHC	STD FNO
1-5	110.3140	92.9410	81.3730	95.1830	95.7010	89.3430
7-5	102.5840	104.4750	88.5950	94.0230	99.7470	99,3780
4-5	103.0400	104.4750	88.5950	94.4240	99.7470	99.3780
7-5	96.7541	101.0420	85.4400	94.5150	99.7470	99.3780
10-5	107.1300	104.6660	85.4350	97.9540	99.7470	99.3780
11-5	105.9200	98.0900	84.5210	101.5670	97.1100	97.5210
12-5	104.5650	100.7550	86.2350	103.2870	93.7470	99.3780
17-5	96.3240	99.5100	84.1190	95.3690	98.3320	98.3930
14-5	104.4070	99.9270	84.9711	104,4640	99.7470	99.3780
4-4	115.1140	105.1690	0,9290	104.7570	99.7470	99.3780
10-6	104.3510	97.4250	87.5030	100.1030	94.7110	95.9240

#### RR211-228 . 600 HOUR AND ABOVE TESTS .

MODE 3

UNIT	NREC CO FI	NREC HC EI LB/KLB FU	NRE CNO EI	NR CHOX ET	SHK NUMBER
				•••••	
1-5	1.42	.60	39.14	39.14	29.05
3-5	1,75	85	-41.81	41.41	25.86
4-5	1.19	-1.13	39.50	40.36	26.41
7-5	1.36	.58	39,43	39.56	25.68
10-5	1.71	.77	-43.AK	-43.86	-14.67
11-5	1.23	.53	-42.81	-47.90	23.66
12-5	1.41	.79	38.46	19.51	23.66
13-5	1.15	.60	40,03	40.35	23.82
14-5	1.76	.39	36.40	37.70	25.46
4-6	1.27	87	36.06	36.06	22.59
10-6	1.40	•50	35.54	36.10	-18.89

#### RR211-228 + 600 HOUR AND AROVE TESTS +

MODE 4

UNIT	NI SPEFO PER CENT	NS SPFFD	N3 SPEED PER CENT	CORR NI	CORR NO PER CENT	COPP N3
1-5	88.00	95.00	90.00	A7.09	94.01	R9.06
3-5	88.50	95.00	91.00	A7.91	94.37	90,39
4-5	89.00	95.00	90.00	-88.41	94.37	A9.40
7-5	88.00	96.00	-94.00	87.83	-95.A2	-93.82
10-5	-90.00	94.00	90.00	-89.40	93.37	A9.40
11-5	87.00	-93.00	89.00	A6.97	92.91	88.91
12-5	88.00	94.00	90,00	87.97	93.91	10.00
13-5	87.00	95.00	90.00	87.00	95.00	90.00
14-5	88,00	95.00	89.00	88.00	95.00	89.00
4-6	. HA*UU	94,00	90.50	.87.41	93.37	89.90
10-6	99,00	94.00	80.50	-AP.74	93.73	89.24

## RR211-228 * 600 HOUR AND ABOVE TESTS *

MODF 4

T1:4U	FUEL FLOW LRM/HR	CB F/A X100	PERF F/A X100	TT7 DEG R	FPR	THRIIST LAF
1-5	13000.	1.6930	1.9060	1666.	1.446	35542.
3-5	13000.	1.6540	1.9060	1644.	1.446	35673.
4-5	13000.	1.5690	1.9060	1635.	1.446	35673.
7-5	13000.	1.5810	1.9060	1653.	1.446	35637.
10-5	13000.	1.6510	1.9060	1644.	1.446	35637.
11-5	13000.	1.6470	1.9060	1644.	1.446	35554.
12-5	-12000.	1.6040	-1.7590	1644.	1.446	35554.
13-5	-12000.	1.5630	-1.7590	160A.	1.446	35578.
14-5	13000.	1.6370	1.9060	1617.	1,446	35578.
4-6	12900.	1.6430	1.8910	1644.	1.446	35542.
10-6	12500.	1.6470	1.8280	1644.	1,448	35607.

#### RR211-229 * 600 HOUR AND AROVE TESTS *

MODE 4

COPR FU FL	COR CH F/A	COR PF F/A	COPR TT7 COR	THRUST LAF
13163.	1.6580	1.8660	1637.	35613.
13066.	1.6320	1.9910	1625.	35613.
13044.	1.5480	1.4410	1613.	35613.
13016.	1.5750	1.8990	1646.	35613.
13079.	1.6290	1.0410	1622.	35617.
13034.	1.6440	1.9020	1641.	35613.
-12032.	1.6010	-1.7560	1641.	35613.
-12012.	1.5630	-1.7590	1604.	35613.
13013.	1.6370	1.9060	1617.	35613.
13013.	1.6210	1.8660	1622.	35413.
12584.	1.6340	1.8180	1634.	35750.
	13163. 13066. 13066. 13016. 13079. 13034. -12032. -12012. 13013.	13163. 1.6580 13066. 1.6320 13066. 1.5480 13016. 1.5750 13079. 1.6290 13034. 1.6440 -12032. 1.6010 -12012. 1.5630 13013. 1.6370	13163.   1.6580   1.8660   1.3066.   1.6320   1.8810   1.3066.   1.5480   1.8810   1.3016.   1.5750   1.8990   1.3079.   1.6290   1.8410   1.3034.   1.6440   1.9020   -12032.   1.6010   -1.7560   -12012.   1.5630   -1.7590   13013.   1.6370   1.9060   13013.   1.6370   1.9060   13013.   1.6210   1.8660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1.9660   1	Tan/HR   X100   X100   DEG R

#### RB211-228 . 600 HOUR AND ABOVE TESTS .

MODE 4

UNIT	COZ CONC PER CENT	CO CONC	HC CONC	NU CUNC	NOX CONC
					******
1-5	3.57R	33.6	3.4	293.5	296.5
3-5	3.493	39.2	5.4	282.9	292.4
4-5	3.310	26.1	-R.1	271.9	286.7
7-5	3.349	30.6	4.4	257.7	268,2
10-5	3.4R7	47.9	5.5	268.4	271.9
11-5	3.476	29.7	3.1	294.2	306.1
12-5	3.383	38.6	2.8	258.5	278,5
13-5	3.301	24.1	3.1	248.6	262.7
14-5	3.454	48.9	5.4	241.5	266.1
4-6	3,473	23.1	-7.1	272.A	281.3
10-6	3.477	-52.5	2.8	250.3	266.9

# RB211-228 + 600 HOUR AND ABOVE TESTS +

MODE 4

UNIT	COS EI	CO EI	HC FT	NO FI	NOX ET	SMK NIMBER
	LH/KLA FI	FBNKFA EII	LAJKLA FII	LA/KLA FU	LAYKER FU	FRONT SIDE
	********			******		
1-5	3154.	1.89	.17	27.05	27.32	-10.53
3-5	3153.	2.19	.53	26.70	27.60	18.67
4-5	3157.	1.58	A4	27.07	28.55	17.22
7-5	3166.	1.94	.45	25.47	26.50	23.53
10-5	3155.	2.76	•55	25.39	25.72	-11.41
11-5	3150.	1.71	.30	27.87	29.00	25.33
12-5	3149.	2.29	.28	25.16	27.11	20.67
13-5	3157.	1.71	.33	24.94	26.27	17.65
14-5	3151.	2.84	.78	23.03	25.39	21.57
4-6	3156.	1.34	70	25.92	26.73	20.27
10-6	3153.	-3.03	.27	23.72	25.29	-12.00

#### RB211-228 . 600 HOUR AND ABOVE TESTS .

MODE 4

UNIT	FCO	FHC	FNO	STO FCO	STD FHC	STO FNO
	X100	X100	X100	X100	X100	X100
1-5	71.1370	70.7300	67.0490	62,4920	65.4120	73.8410
3-5	68.1190	71.8270	67.9070	62,9480	6R.6890	76,3770
4-5	62.3020	71.8270	67.9070	57.7620	68.6R90	76.3770
7-5	69.8150	-84.7640	75.4800	-69.3330	-A3.6960	-A7.A250
10-5	61.6390	62.8070	59.5550	56.9840	59.9899	69.5270
11-5	56.0090	56.8370	57.7050	55.3590	56.2RA0	66.5390
12-5	59.0330	65.1660	63.4495	58.3520	64.5320	73.1520
13-5	62.2490	74.9620	49.3190	62.2590	74.8270	A1.0740
14-5	67,2220	74.9620	69.3190	-67.2390	74.8270	81.0740
4-6	61.2820	63.1090	61.9200	56.5570	59,9890	69.5270
10-6	61.7470	64.7360	65.5970	59.5330	62.9900	71.9190

## RR211-228 + 600 HOUR AND AROVE TESTS +

MODE &

UNIT	NREC CO FI LB/KLB FU			NP CNOX ET	
1-5	2.15	.35	29.79	30.09	-10.53
3-5	2.17	.56	30.03	31.04	16.79
4-5	1.71	88	30.45	32.11	15.73
7-5	1.48	. 46	29.63	30.83	21.23
10-5	2.98	.57	29.44	30.03	-11.22
11-5	1.73	.31	32.14	-37.44.	-24.60
12-5	2.31	29	29.01	31.25	18.74
13-5	1.71	.33	29.08	30.73	15.85
14-5	2.94	.29	26.94	29.49	21.38
4-6	1.45	74	23.11	30.01	17.89
10-6	3.14	.28	24.01	27.73	11.91

# RB211-228 + 600 HOUR AND ABOVE TESTS +

MODE 5

UNIT	NI SPEED PER CENT	NZ SPEED PER CENT	N3 SPEED PER CENT	CORP NI PER CENT	CORR NZ	CORR N3
					*******	
1-5	77.00	90.00	86.00	76.20	89.06	A5.10
3-5	77.00	90.00	86.00	76.49	89.40	R5.43
4-5	78.00	90.00	86.00	77.4A	89.40	R5.43
7-5	77.00	90.00	-89.90	76.A5	89.83	-R7.83
10-5	-79.00	90.00	86.00	-78.47	89.40	R5.43
11-5	77.00	49.00	A5.00	76.93	A8.91	84.92
12-5	77.00	-91.00	85.00	76.93	-90.91	84.92
13-5	76.50	90.00	86.00	76.50	90.00	A6.00
14-5	77.00	49.00	-84.50	77.00	89.00	R4.50
4-6	78.00	90.00	86.00	77.48	89.40	A5,43
10-6	-75.25	89.00	A5.00	-75.03	98.74	R4.76

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

さいい、大きからない

一一一一一

#### RR211-228 + 600 HOUR AND ABOVE TESTS +

#### MODE 5

UNIT	FUEL FLOW	CR F/4 X100	PERF F/A	TT7 DEG R	EPR	THRUST LRF
1-5	9000.	1.3640	1.6700	1477.	1.301	24441.
3-5	9000.	1.3510	1.6670	1464.	1.302	24609.
4-5	9000.	-1.2520	1.6670	1464.	1.302	24609.
7-5	3000.	1.3110	1.6670	1464.	1.302	24585.
10-5	9000.	1.3400	1.4670	1482.	1302	24585.
11-5	grnn.	1.3380	1.6670	1473.	1.352	24527.
12-5	-8000.	1.3310	-1.4820	1464.	1.302	24527.
13-5	8500.	1.2760	1.5740	-1428.	1.302	24544.
14-5	9000.	1.3420	1.6670	1464.	1.302	24544.
4-6	9000.	1.3420	1.6670	1464.	1.302	24519.
10-6	850r.	1.7300	1.5680	1464.	-1.304	24627.

#### RB211-228 * 600 HOUR AND ABOVE TESTS *

MODE 5

UNIT	CORR FU FL	COR CR F/A C	OR PF F/A	CORR TT7 COR	THRUST LBF
	********			********	
1-5	9113.	1.3360	1.6360	1447.	24490.
3-5	9045.	1.3330	1.6450	1444.	24568.
4-5	9045.	-1.2350	1.6450	1444.	24568.
7-5	9011.	1.3060	1.6610	1458.	24568.
10-5	9054.	1.3220	1.6450	1462.	24568.
11-5	9024.	1.7360	1.6540	1470.	24568.
12-5	-8021.	1.3290	-1.4790	1461.	24568.
13-5	8509.	1.2760	1.5740	1428.	2456A.
14-5	9609.	1.3420	1.6670	1464.	24568.
4-6	9079.	1.3240	1.6450	1444.	24568.
10-6	8559.	1.3220	1.5590	1455.	-24726.

#### RR211-228 * 600 HOUR AND AROVE TESTS *

MODE 5

UNIT	CO2 CONC PER CFNT	CO CONC	HC COAC	NO CONC	NOX CONC
1-5	2.868	73.3	5.7	132.5	138,5
3-5	2.838	83.5	-9.A	130.2	144.2
4-5	-2.631	57.2	4.2	123.7	138.5
7-5	2.764	69.0	4.5	119.3	133.6
10-5	2.914	100.3	7.9	122.2	130.1
11-5	2.411	50.4	3.5	131.9	145.1
12-5	2.792	86.4	5.3	122.0	139.9
13-5	2.691	70.9	4.7	112.3	127.7
14-5	2.816	104.8	5.2	117.4	135.6
4-6,	2.823	56.0	7.4	120.2	137.8
10-6	2.749	-123.3	7.5	111.8	128.2



#### RB211-228 + 600 HOUR AND ABOVE TESTS +

MODE 5

UNIT	COS EI	CO EI	HC EI	NO FI LR/KLR FU	NOX ET	SMK NUMBER
	******	*********	~~~~~~		*********	
1-5	3149.	5.12	•6A	15.21	15.90	14.57
3-5	3146.	5.89	-1.19	15.09	16.71	9.33
4-5	3150.	4.36	•55	:5.49	-17.34	10.00
7-5	3160.	5.02	.56	14.27	15.97	15.33
10-5	3147.	7.14	.96	14.28	15.20	7.33
11-5	3146.	4.30	•43	15.43	16.98	20.00
12-5	3142.	6.19	•65	14.35	16.45	13.33
13-5	3150.	5.30	.60	13.79	15.49	9.33
14-5	3142.	7.44	.75	13.69	15.42	13.64
4-6	3152.	3.98	.90	14.03	15.50	11.33
10-6	3142.	-8.84	.93	-13.17	15.10	-4.61

## RR211-228 . 600 HOUR AND ABOVE TESTS .

MODE:5

UNIT	FC0 X100	FHC X100	FN0 X100	STO FCO	STO FHC X100	STD F40
1-5	31.3990	34.7460	41.0190	28.3030	31.9100	45.5160
3-5	31.1650	35.0750	41.6830	29,2410	33.6410	47.1070
4-5	28.7130	35.0750	41.6830	27.0160	33.6410	47.1070
7-5	30.3730	36.3550	47.2050	29.8470	35.9340	49.1490
10-5	30.88A0	35.1390	40.1960	28.9660	33.6410	47.1070
11-5	28.1690	31.4980	38.9840	27,4900	31.2040	44.8610
12-5	-34.2240	-42.6790	-47,5300	-33,4810	-42.2740	-54.9210
13-5	29.6400	36.9590	42.7960	29,6350	-36.8920	-50,0530
14-5	28.2AR0	31.6640	38,6770	29.2840	31.6070	45,2150
4-6	31.00 0	35.3080	41.7920	29.0150	33.6410	47.1070
10-6	28,0580	31,4010	40,3020	27,2270	30.5480	44.2770

#### RR211-228 . 600 HOUR AND ABOVE TESTS .

MODE 5

INIT	NREC CO FT LAZKLA FU		LAZKLA FII	NR CNOX FT LA/KI R FU	SMK NUMBER CORRECTED
	********				*****
1-5	5.48	.73	16.87	17.64	14.57
1-5	6.28	-1.24	17.05	18.48	9.33
4-5	4.63	.57	17.50	-19,59	10.00
7-5	5.11	.57	16.63	18.61	15.10
10-5	7.61	-1.01	16.74	17.42	7.13
11-5	4.74	.43	17.40	-19.59	16.11
12-5	4.25	.66	16.55	18.98	11.91
13-5	5.30	.60	14.13	14.35	9.13
14-5	7,45	.76	16.01	18.50	13.64
4-6	4.2-	.95	15.41	17.48	11.33
10-6	-9.11	.95	-14.45	16.50	-4.61

## RB211-228 * 600 HOUR AND ABOVE TESTS *

MODE 6

INIT	NI SPEED PER CENT	NZ SPEED PER CENT	N3 SPEED PER CENT	CORR NI	CORR NP	CORR N3
	*******				•••••	
1-5	54.00	78.00	78.00	53.44	77.19	77.19
3-5	55.00	78.00	79.00	54.63	77.45	78.47
4-5	55.00	78.00	78.00	54.63	77.49	77.48
7-5	-77.00	-85.00	-75.20	-76.45	-84.84	-74.86
10-5	55.00	76.00	78.00	54.63	75.49	77.48
11-5	55.00	77.00	70.00	54.95	.76.93	77.92
12-5	54.00	79.00	78.00	53.95	78.92	77.92
13-5	55.00	77.00	79.00	55.00	77.00	-79.00
14-5	53.00	80.00	77.50	53.00	80.00	77.50
4-6	56.00	79.00	78.50	55.53	78.47	77,98
10-6	54.00	77.00	77.50	53.94	76.75	77.28

## RR211-228 . 600 HOUR AND AROVE TESTS .

MODE 6

UNIT	FUEL FLOW	CR F/A X100	PERF F/4 X100	TT7 DFG Q	EPR	THRUST
1-5	4100.	.9570	1.1840	1239.	1.128	10502.
3-5	4300.	.9880	1.2420	1221.	1.128	10541.
4-5	4200.	.9310	1.2130	1212.	1.128	10541.
7-5	4200.	.9470	1.2130	1221.	1.128	10530.
10-5	4200.	.9440	1.2130	124A.	1.128	10530.
11-5	4200.	.9710	1.2130	1239.	1.128	10505.
12-5	4000.	.9600	1.1550	1230.	1.129	10505.
13-5	4200.	.9240	1.2130	1203.	1.128	10512.
14-5	-4400.	-1.1190	-1.3280	1257.	1.178	10512.
4-6	-447	.9680	-1.2780	1229.	1.128	10502.
10-6	4200.	,0530	1,2170	1221.	1.128	10481.

# RB211-228 . 600 HOUR AND AROVE TESTS .

MODE 6

UNIT	CORR FU FL LRM/HR	COR CR F/A	COR PF F/A	CORR TT7 CO	R THRUST
	••••••				*******
1-5	4152.	.9380	1.159	1213.	10523.
3-5	4322.	.9750	1.225	1204.	10523.
4-5	4221.	.9190	1.197	1196.	10523.
7-5	4205.	.9430	1.208	1216.	10523.
10-5	4225.	.9320	1.197	1231.	10523.
11-5	4211.	-9690	1.210	-1236.	10523.
12-5	4011.	.9580	1.153	1227.	10523.
13-5	4204.	.9240	1.213	1203.	10523.
14-5	-4605.	-1-1180	-1.378	-1257.	10523.
4-6	4454.	.9550	-1.261	1212.	10523•
10-6	4220.	.9470	1.206	1214.	10523•

# RR211-228 . AND HOUR AND ABOVE TESTS .

MODE 6

INIT	COP CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
1-5	1.978	211.4	37.7	41.4	51.5
3-5	2.040	217.4	42.1	42.2	56.0
4-5	1.927	192.0	27.1	39.9	53.4
7-5	1.963	213.7	15.9	35.1	47.4
10-5	1.044	273.2	42.4	35.1	47.5
11-5	2.008	144.8	30.0	39.4	. 52.7
12-5	1.978	207.5	49.3	41.1	55.3
13-5	1.908	210.4	37.7	36.2	51.6
14-5	-5.296	-329,6	-69.6	38.3	57,3
4-6	2.007	174.8	32.A	38.0	-35.1
10-6	1,953	-302.5	-57,4	-28.6	46.1

# RR211-228 + 600 HOUR AND ABOVE TESTS +

MODE 6

UNIT	CO2 ET	CO ET	HC EI	NO FI	NOX ET	SMK NUMBER FRONT STOF
1-5	3107.	21.14	6.47	6.90	8.45	8.05
3-5	3106.	21.06	7.01	6.72	8.91	5.92
4-5	3114.	19.74	4.7R	4.55	9.01	4.00
7-5	-3119.	21.60	6.23	5.82	7.A7	7.33
10-5	3097.	-27.70	7.39	5.85	7.91	6.62
11-5	3110.	18,61	5.07	6.39	8.53	-11.33
12-5	3094.	20.68	9.26	6.73	9.05	5.96
13-5	3109.	21.81	6.71	6.16	8.79	5.30
14-5	-3034.	-28.09	-10.22	5.38	. 8.04	5.33
4-6	3118.	-17.28	5.57	6.17	-6.17	6.04
10-6	-3083.	-30.40	-9.91	-4.72	7.61	6.67

# RR211-228 + 600 HOUR AND AROVE TESTS +

MODE 5

UNIT	FC0 X100	FHC X100	FNO X100	STO FCO X100	STD FHC X100	STO FNO X100
1-5	6.2070	7.6720	15.9990	5.4110	7.1870	17,9970
3-5	6.3540	7.8960	16.3650	4.1030	7.6130	18.6560
4-5	6.1990	7.8960	16.3650	5.9580	7.6130	18.6560
7-5	-10.2840	-19.3420	-24.1490	-10.1630	-19.1300	-32.8430
10-5	5.2030	5.7540	12.9748	5.0020	5.5460	15.3640
11-5	5.7570	6.8840	15.0870	5.7170	6.8250	17.4290
12-5	7.0140	9.7900	18.7800	6.9650	9.7040	21.6880
13-5	5.6590	6.9390	15.0390	5.6560	6.9270	17.5890
14-5	-4.1520	11.2550	20.2730	-A.1480	11.2350	23.7100
4-6	7.0100	9.5160	18.3840	6.7120	9.1090	20.8810
10-6	5,6830	6.7850	15.5170	5,5690	6.6250	17.1120

# RB211-22B + 600 HOUR AND ABOVE TESTS +

MODE 6

UNIT		NREC HC EI LB/KLB FU	the state of the s	NR CNOX ET	SMK NUMBER CORRECTED
1-5	22.58	6.90	7,65	9.51	8.05
3-5	21.93	7.27	7.66	10.15	5.43
4-5	20.54	4.96	7.46	10.28	4.00
7-5	21.87	6,30	6.80	9.19	7.33
10-5	-28.81	7.67	6.93	9.37	6.62
11-5	18.73	5.12	7.3A	9.86	-11.33
12-5	20.43	8.34	7.78	10.45	5.96
13-5	21.82	6.72	7.21	10.28	5.30
14-5	-2A.10	-10.24	6.29	9.41	5.33
4-6	-18.05	5.82	7.01	-7.01	6.94
10-6	-31.02	-10.15	-5.20	8.40	6.16

# RR211-228 * 600 HOUR AND AROVE TESTS *

MODE 7

UNIT	NI SPEED PER CENT	NZ SPEED PER CENT	N3 SPEED PER CENT	CORR NI PER CENT	CORR NO PER CENT	CORP N3
1-5	27.00	50.00	66.00	26.72	49.49	65.31
3-5	27.00	50.00	66.00	26.82	49.67	45.56
4-5	27.00	50.00	67.00	26.82	49.67	46.55
7-5	-27.00	50.00	66.00	26.95	49.90	45.87
10-5	27.00	50.00	66.00	26.82	49.67	45.56
11-5	27.00	50.00	-65.00	26.97	49.95	64.94
12-5	27.00	51.00	67.00	26.97	50.95	-66.94
13-5	27.00	50.50	67.00	27.00	50.50	-67.00
14-5	27.00	50.00	-65.00	27.00	50.00	45.00
4-6	-26.00	49.00	44.00	-25.83	48.67	45.56
10-6	27.00	-52.00	66.00	26.92	-51.85	65.81

# RB211-228 + 600 HOUR AND ABOVE TESTS +

MODE 7

UNIT	FUEL FLOW LRM/HR	CR F/A X100	PERF F/A X100	TT7 DEG R	EPR	THRUST
1-5	1700.	.8290	.9260	1068.	1.029	3518.
3-5	1700.	.8160	.9260	1063.	1.030	3598.
4-5	1700.	.7810	.9260	1077.	1.030	3971.
7-5	1700.	.8250	.9260	1077.	1.028	3678.
10-5	1800.	.7970	.9800	1095.	1.022	3594.
11-5	1600.	7370	.8710	1068.	1.026	3420.
12-5	1700.	.7780	.9260	-1104.	1.030	-4133.
13-5	1750.	7400	.9530	1059.	1.030	-4166.
14-5	1800.	.7730	.9800	1050.	1,030	3439.
4-6	1600.	.7960	.8710	1050.	-1.018	3585.
10-6	1900.	•7660	.9800	1063.	1.026	3645.

#### RR211-228 + 600 HOUR AND ABOVE TESTS +

MODE 7

UNIT	CORP FU FL	COR CR F/4 C		TTT COR	THRUST
••••	*********	*********			
1-5	1721.	.8110	.9070	1046.	3526.
3-5	1709.	.8050	.9140	1149.	3592•
4-5	1709.	.7710	.9140	1062.	3964.
7-5	1702.	•8220	.9220	1073.	876.
10-5	1911.	.7470	.9670	1080.	3592•
11-5	1604.	7360	.8700	1066.	3426.
12-5	1704.	.7760	.9240	-1102.	-4140.
13-5	1752.	7400	.9510	1059.	-4170.
14-5	1802.	•7730	.9800	1050.	3442.
4-6	1614.	.7450	.8600	1035.	3592.
10-6	1812.	.7610	.9750	1057.	3659.

#### RE211-228 . 600 HOUR AND ABOVE TESTS .

MODE 7

UNIT	CO2 CONC	CO CONC	HC CONC	NO CONC	NOX CONC
4.00					
?~5	1.543	795.1	375.2	7.2	14.8
3-5	1.507	785.0	407.R	6.6	15.1
4-5	1.460	783.7	319.9	6.1	15.0
7-5	. 1.556	780.4	331.4	7.0	15.1
10-5	1.488	796.4	339.5	7.8	14.8
11-5	-1.391	-692.4	300.7	6.9	14,5
12-5	1.463	-693,5	310.7	7.4	16.2
13-5	-1.373	751.6	334.2	5.9	14.4
14-5	1.440	712.0	352.4	-5.2	14,1
4-6	1.468	841.8	378.1	-3.2	-8,2
10-6	1.413	727.5	323.4	6.4	15.2

#### RRELL-228 . GOO HOUR AND AROVE TESTS .

MODE 7

INIT	COS ET	CO ET	HC FI	NO FI	NOX ET	SHK NIMBER FRONT STOF
	********	*******				
1-5	2808.	92.13	74.81	1.3A	2.41	0.00
3-5	2787.	92.51	A7.45	1.27	2.91	0.00
4-5	5451.	96.3A	67.5A	1.24	3.03	0.00
7-5	7845.	90.81	66.24	1.33	2.49	0.00
10-5	2817.	95,95	70.26	1.54	. 5.43	0.00
11-5	2A27.	90.19	67.29	1.48	3-11	0.00
12-5	SEAZE.	85.62	65.80	1.50	3.2A	0.00
13-5	SEUS.	97.64	74.58	1.23	3.07	0.00
14-5	Selu.	AR.43	75.27	1.06	2.47	0.00
4-6	2794.	-101.65	78.44	64	-1.43	0.00
10-6	2874.	91.18	69.67	1.32	3.13	0.00

#### RR211-228 . 600 HOUR AND ABOVE TESTS .

MODE 7

UNIT	FC0 X100	FHC X100	FHO X100	STD FCO	STD FHC	STO FNO
1-5	1.6900	. 8430	4.2230	1.4050	.7990	4,8400
3-5	1.6660	.8350	4.2310	1.6150	.8110	4.8#30
4-5	1.6470	.8350	4.2310	1.5980	.8110	4.8830
7-5	1.6560	.8330	4.2110	1.6420	.8270	4.9370
10-5	1.6570	.8360	4.0800	1.6060	.8110	4.8830
11-5	1.6110	.8360	4.2770	1.6020	<b>48300</b>	4.9480
12-5	1.7050	.9060	4.4790	1.6950	.8000	5.1430
13-5	1.6440	.8690	4.3400	1.6430	.8670	5.0760
14-5	1.6250	.8350	4.2410	1.6240	.8330	4,9600
4-6	1.5860	.7750	4.0470	1.5340	.7480	4.6610
10-6	1.7850	9850	-4.9750	-1.7550	9640	-5.4010

# RR211-229 . GOD HOUR AND APOVE TESTS .

MOOF 7

UNIT	NREC CO FT LB/KLR FII	NREC HC FI LR/KLH FU		NR CHAX FT	SMK NUMBER CORRECTED
••••	••••••		••••••		*******
1-5	97.02	78.94	1.5A	1.21	0.00
3-5	95.39	84.8R	1.46	3.34	0.00
4-5	99.74	69.57	1.43	3.50	0.00
7-5	91.59	66.77	1.56	3.39	0.00
10-	98.99	72.46	1.84	3.51	0.00
11-5	90.70	67.40	1.71	3.50	0.00
12-5	84.11	66.40	1.73	-3.80	0.00
13-5	97.70	74.72	1.44	7.60	0.00
14-5	88.49	75.41	1.24	1,35	0.00
4-6	-105.06	A1.26	74	-1.87	0.00
10-6	92.71	71.17	1.45	3.47	0.00

# RR211-228 • 600 HOUR AND ABOVE TESTS •

8 300M

UNIT	NI SPEED	NS SPEED	N3 SPFFD	CORR NI	CORR NZ	CORP N3
	PER CENT					
1-5	25.00	46.00	63.00	24.74	45.52	42.34
3-5	55.00	43.00	62.00	21.45	42.71	61.59
4-5	24.00	45.00	63.00	23.84	44.70	A2.5A
7-5	55.00	43.00	62.00	21.96	42.92	61.88
10-5	55.00	44.00	61.00	21.45	43.71	-40.59
11-5	23.00	44.00	62.00	22.98	43.96	61.94
12-5	22.00	44.00	65.00	21.9A	43.96	61.94
13-5	22.00	44.00	63.00	22.00	44.00	43.00
14-5	55.00	44.00	61.50	25.00	44.00	61.50
4-6	24.00	45.00	63.00	23.84	44.70	62.58
10-6	22.50	44.00	61.00	22.44	43.87	58.04

## PR211-228 + 600 HOUR AND AHOVE TESTS +

MODER

UNIT	FUEL FLOW	CR F/A X100	PERF F/A	TT7 DFG R	EPR .	THRUST LAF
1-5	1600.	.8290	.9710	1068.	1.025	2763.
3-5	1400.	.8120	.7630	1032.	1.020	2622.
4-5	1400.	.7840	.7630	1032.	1.020	2821.
7-5	1500.	.8260	.4170	-1086.	1.020	2678.
10-5	1500.	.7920	.9170	1048.	1.014	2420.
11-5	1500.	7310	.9170	1068.	1.018	2684.
12-5	1400.	.7660	.7630	1068.	1.020	7684.
13-5	1500.	7340	.4170	1032.	1.020	7904.
14-5	1500.	.7530	.4170	1032.	1.020	2597.
4-6	-1250.	.7920	6810	1032.	-1.010	2810.
10-6	1500.	7450	.9170	1650.	1.018	2455.

# RB211-22B . 600 HOUR AND AROVE TESTS .

MODE 8

UNIT	CORR FII FL LBM/HR	COR CR F/A CO	and the second s	TTT COR	THRUST
	********				
1-5	1620.	.8120	.8530	1046.	276R.
3-5	1407.	.8010	.7520	1018.	2617•
4-5	1407.	.7740	.7520	1019.	2816.
7-5	1502.	.8230	.8140	-1082.	2676.
10-5	1509.	.7820	.8060	1053.	2419.
11-5	1504.	7300	.4150	-1066.	2688•
12-5	1404.	.7640	.7610	-1066.	2648.
13-5	1502.	7340	.9170	1032.	2907.
14-5	1502.	.7530	.8170	1032.	2600.
4-6	-1261.	.7820	6720	1019.	2816.
10-6	1510.	.7410	.8120	1044.	2465.

## RRS11-228 . 600 HOUR AND AROVE TESTS .

MODE A

UNIT	COP CONC	CO CONC	HC CONC	NO CONC	NOX CONC
••••			••••••	•••••	••••••
1-5	1.502	887.6	481.2	5.2	12.1
3-5	1.437	941.6	555.5	5.3	12.1
4-5	1.416	920.3	442.2	5.0	12.3
7-5	1.513	992.4	444.7	5.3	12.4
10-5	1.422	923.4	479.0	5.5	12.0
11-5	-1.324	-782.0	414.7	5.6	11.5
12-5	1.380	949.7	445.6	5.1	12.0
13-5	-1.30A	873.2	466.A	4.4	11.7
14-5	1,349	950.4	464.4	4.2	11.7
4-6	1.425	926.3	468.9	-2.6	-7.2
10-6	-1.328	A73.0	474.1	5.0	11.5

## RB211-228 . 600 HOUR AND ABOVE TESTS .

MODE 8

UNIT	COZ ET	CO FT	HC FT LB/KLB FU	NO EI LR/KLR FU	NOX ET	SHK NUMBER FRONT STDE
	000000000	********		*******		
1-5	2734.	102.82	95.76	.98	2.31	0.00
3-5	2673.	111.47	112.98	1.04	2.35	0.00
4-5	2726.	112.75	93.06	1.02	2.48	0.00
7-5	2763.	103.74	88.80	1.02	2.37	0.00
10-5	2710.	112.03	99.84	1.10	2.40	0.00
11-5	2715.	102.84	93.59	1.20	2.49	0.00
12-5	2722.	106.59	96.30	1.09	2.48	0.00
13-5	2692.	114.44	105.10	.95	2.52	0.00
14-5	2706.	108.58	101.47	.89	2.46	0.00
4-6	2716.	112.35	97.70	51	-1.44	0.00
10-6	2693.	112.67	105.12	1.05	2.43	0.00

## RR211-228 + 600 HOUR AND ABOVE TESTS +

MODE 8

INIT	FC0 X100	FHC X100	FN0 X100	STO FCO X100	STD FHC X100	STD FNO X1n0
1-5	1.4010	.6000	3.4850	1.7320	.5690	4.0150
3-5	1.1680	.4400	2.9500	1.1350	.4290	3,4150
4-5	1.2970	.5400	3.3090	1.2600	.5260	3.8260
7-5	1.1450	.4410	7.9440	1.1560	.43A1	7,4550
10-5	1.2310	.4890	3.0140	1.1950	.4750	3.6160
11-5	1.2000	.4910	7.1690	1.1940	-4880	3.6680
12-5	1.2120	.4910	3.1690	1.2060	.4880	7,6690
13-5	1.1990	.4910	3.1440	1.1980	.4900	3.6770
14-5	1.2050	.4910	3.1440	1.2040	.4900	3,6770
4-6	1.3040	.5440	3.3170	1.2630	.5260	3.8260
10-6	1.2110	.4930	3.2910	1.1920	.4840	7,6510

#### RB211-228 + 600 HOUR AND ABOVE TESTS +

MODE 8

UNIT	NREC CO EI	NREC HC EI LB/KLB FU	NRE CNO ET		SMK NUMBER
		••••••			
1-5	108.12	100.39	1.13	2.65	0.00
3-5	114.72	116.08	1.20	2.72	0.00
4-5	116.08	95,67	1.18	2.87	0.00
7-5	104.57	89.46	1.20	2.7A	0.00
10-5	115.40	102.80	1.32	2.88	0.00
11-5	103.39	94.28	1.19	2.44	0.00
12-5	107.17	97.01	1.27	2.87	,0.00
13-5	114.51	105.29	1.11	2.95	0.00
14-5	108.65	102.06	1.04	2.87	0.00
4-6	116.00	101.11	59	-1.66	0.00
10-6	114.46	107.27	1.17	2.70	0.00

5. FUEL ANALYSIS DATA

Unit	Test deg H/C			FIA, percent			
No.	Series	API	Ratio	Paraffin	Olefin	Aromatic	
1	Baseline 150-Hour 300-Hour	41.1 40.6 41.1	1.90 1.91 1.89	79 82 79	2 2 2	19 16 19	
	600-Hour	40.9	1.91	80	2	18	
2	Baseline	41.1	1.90	79	2	19	
3	Baseline 150-Hour 300-Hour 450-Hour 600-Hour	41.1 40.6 40.6 40.6 40.6	1.88 1.91 1.88 1.88 1.91	81 82 78 82 81	1 3 1 1 2	18 15 21 17 17	
4	Baseline 150-Hour 300-Hour 450-Hour 600-Hour 750-Hour	41.1 40.6 40.6 40.6 40.6 41.9	1.88 1.91 1.88 1.88 1.91	81 92 78 82 81 77	1 3 1 1 2 2	18 15 21 17 17 21	
5	Baseline	40.9	1.86	79	1	20	
6	Baseline	40.9	1.86	79	1	20	
7	Baline 150-Hour 450-Hour 600-Hour	41.1 40.6 40.6 40.0	1.87 1.91 1.91 1.86	79 84 85 82	1 2 1	20 14 14 17	
8	Baseline 150-Hour	41.1 40.6	1.87	79 84	1 2	20 14	
9	Baseline	40.9	1.88	78	2	20	

Unit	Test	deg	H/C		A, perce	nt
No.	Series	VST	Ratio	Paraffin	Olefin	Aromatic
10	Baseline 600-Hour 750-Hour	40.9 39.4 41.9	1.88 1.90 1.91	78 82 81	2 1 2	20 17 17
11	Baseline 300-Hour 450-Hour 600-Hour	40.4 40.6 40.4 43.4	1.89 1.91 1.88 1.93	81 84 79 80	2 1 1 2	17 15 20 18
12	Baseline 300-Hour 450-Hour 600-Hour	40.4 40.6 40.4 43.4	1.89 1.91 1.83 1.93	81 84 79 80	2 1 1 2	17 15 20 18
13	Baseline * 150-Hour 300-Hour 450-Hour 600-Hour *	41.3 41.9 40.4	1.93 1.88 1.90	83 81 30	] ] ]	16 18 19
14	Baseline * 150-Hour 300-Hour 450-Hour 600-Hour	41.3 41.9 40.4 41.1	1.93 1.88 1.90 1.92	83 81 80 85	1 1 1	16 18 19 14
15	Baseline 150-Hour	40.0 40.4	1.90 1.89	81 79	2 2	17 19
16	Baseling 150-Hour 450-Hour	40.2 40.6 42.3	1.89 1.88 1.90	81 79 80	1 1 2	15 20 18
17	Baseline 150-Hour	40.2 40.6	1.89 1.88	81 79	1	18 20
18	Baseline	40.6	1.91	80	1	19
19	Baseline	40.6	1.91	80	1	19

#### 6. REFERENCES

- Adams, H. T., <u>Elements of Internal Combustion Turbine Theory</u>, Cambridge University Press, 1949.
- "T53 and T55 Gas Turbine Combustor and Engine Exhaust Emission Measurements" USAAMRDL Technical Report 73-47, Devember 1973.
- "Control of Air Pollution from Aircraft and Aircraft Engines, Emissions Standards and Test Procedures for Aircraft", Federal Register, vol. 38, no. 136. Part 11, July 17, 1973.