Advancing metal-binding protein predictions with deep learning

Update - Jingkai LAN

Supervisor: Thomas Lemmin

Co-supervisor: Giulia Peteani

Introduction

 Metalloproteins are abundant and perform many essential biological functions.

 Complex interactions occur within the coordination sphere.

 Importance of understanding metal ion roles and structure-function relationships.

Project goal

Leverage deep learning to investigate and model key properties of metalloproteins.

Project goal

Leverage deep learning to investigate and model key properties of metalloproteins.

Dataset creation


```
REMARK 620
REMARK 620 METAL COORDINATION
REMARK 620 (M=MODEL NUMBER; RES=RESIDUE NAME; C=CHAIN IDENTIFIER;
REMARK 620 SSEQ=SEQUENCE NUMBER; I=INSERTION CODE):
REMARK 620
REMARK 620 COORDINATION ANGLES FOR: M RES CSSEQI METAL
REMARK 620
                                        MG A 301 MG
REMARK 620 N RES CSEQI ATOM
REMARK 620 1 SER A
                         0G
REMARK 620 2 GDP A 302
                         01B
                              92.7
REMARK 620 3 HOH A 405
                              82.8 92.5
REMARK 620 4 HOH A 408
                                    86.0 174.2
REMARK 620 5 HOH A 409
                                          95.5
REMARK 620 6 HOH A 436
                                                94.7
                                                      90.3
REMARK 620 N
REMARK 620
REMARK 620 COORDINATION ANGLES FOR:
REMARK 620
                                        MG B 301 MG
REMARK 620 N RES CSSEQI ATOM
REMARK 620 1 SER B
                         0G
REMARK 620 2 GDP B
                         02B
                             89.4
REMARK 620 3 HOH B 438
                             170.2
                                    96.0
REMARK 620 4 HOH B 439
                                    81.0
                                          91.1
REMARK 620 5 HOH B 444
                              92.5 103.1
                                          94.2 172.9
REMARK 620 6 HOH B 468
                              89.3 173.0
                                          84.3
                                                92.0
                                                      83.9
REMARK 620 N
                                      2
```


Validation of ProteinMPNN redesigned sequences

1A7W ESM pLDDT 87.08

Validation of ProteinMPNN redesigned sequences

Validation of ProteinMPNN redesigned sequences

More examples..

Second approach to get negative sequences

Identify heteromeric protein complexes within the positive set and use their non-binding chains to expand negative set.

Negative 9441+9677 = 19118

Dataset split

Merge the positive and negative sets.

Cluster at **30 pident** with mmseq2.

Split the dataset base on clusters — 8:1:1 to Train, Validation, Test set

Training

Model: Training ProtBERT model with adapters.

Training - Parameter search

Model: Training ProtBERT model with adapters.

learning_rate: [1e-4, 5e-4, 1e-5, 5e-6, 1e-6]

batch_size: [64, 128, 256, 512]

dropout_p: [0.3, 0.5]

Training - Parameter search

Model: Training ProtBERT model with adapters.

learning_rate: [1e-4, **5e-4**, 1e-5, 5e-6, 1e-6]

batch_size: [64, **128**, 256, 512] Best performing model

dropout_p: [0.3, **0.5**]

Training - Parameter search

Model: Training ProtBERT model with adapters.

learning_rate: [1e-4, **5e-4**, 1e-5, 5e-6, 1e-6]

batch_size: [64, **128**, 256, 512]

dropout_p: [0.3, **0.5**]

Best performing model

After 2 epochs, model overfits!

Evaluation

Metrics:

Accuracy: 82.36%

Precision: 82.52%

Recall: 82.61%

F1 Score: 82.57%

Evaluation - only on real sequences

Metrics (excluding ProteinMPNN redesigned sequences):

Accuracy: 82.36% → **84.00%**

Precision: 82.52% → **87.86**%

Recall: 82.61%

F1 Score: 82.57% → **85.15**%

Outlook

- 1. Train the model with only synthetic data, and only with natural data, to compare the performances.
- 2. Implement the remaining 3 models.

Thanks for your attention!

