Совершенствование бизнес-модели логистической системы распределения продукции компании

Д. В. Клеветов

ФГБОУ ВО «Ковровская государственная технологическая академия им. В. А. Дегтярева» denis_klevetov@list.ru

Н. Н. Тихомиров

ФГБОУ ВО «Санкт-Петербургский государственный экономический университет» nicknnt@live.com

Аннотация. В современной экономике, перед каждой компанией стоит задача совершенствования применяемых бизнес-моделей, то есть увеличение создаваемой в ее рамках ценности. В качестве увеличиваемой ценности для предприятия, в данном случае рассматривается экономический эффект, создаваемый в процессе распределения продукции компании. Это определяет актуальность исследования и его практическую значимость в экономике. Цель: нахождение путей совершенствования логистической системы распределения компании для обеспечения ее развития. Методология: методы математического программирования, теория логистики, теория управления эффективностью. Исследования и результаты: В работе проведен анализ потоков поставок продукции одной из торговых компаний. На основе методов линейного программирования и с учетом сезонных факторов сформирована новая бизнес-модель логистической системы распределения предприятия с рекомендациями по организации транспортно-логистической инфраструктуры.

Ключевые слова: совершенствование бизнес-модели; бизнес-модель логистической системы распределения продукции; оптимизация бизнес-модели методами математического программирования

І. Введение

Совершенствование бизнес-модели функционирования компании является стратегической задачей и особенно актуализируется в условиях неопределённости внешней среды и высокого уровня конкуренции на рынке. В такой ситуации преобладающим будет ценностный подход в ее формировании и / или развитии, предполагающий увеличение ценности для всех участников взаимодействия. Особенно это актуально при построении логистических каналов распределения, строящихся по принципу оптимизации издержек в системе при условии выполнения всех ее функций, что ведет к созданию ценности для всех участников бизнес-модели. В статье рассматриваются результаты использования ценностного подхода для построения

M. A. СоколовскийOOO ТД «Ортоника»200@ortonica.ru

Л. В. Минченко

Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики lidia2505@mail.ru

бизнес-модели логистической системы распределения торговой компании, для которой гибкость в формировании каналов поставки и распространения продукции является определяющим фактором, создающим ценность, как для самой компании, так и для ее потребителей. Совершенствование бизнес-модели логистической системы распределения продукции в таких условиях решается нами методами математического программирования.

II. МЕТОДОЛОГИЯ

Для обоснования ценностного подхода использована теория М. Портера [1], [2], уточнение которой для специфики объекта и предмета исследования осуществлено на основе теории логистики [3].

Конкурентоспособность продукта (услуги) основывается на конкурентных преимуществах, в качестве которых, согласно теории М. Портера, выступают низкие издержки или дифференциация [4]. С точки зрения процессного подхода, эти конкурентные преимущества формируются в процессе движения предметов труда, что приводит к выводу о целесообразности рассмотрения концепции цепочки ценности (Value chain). При движении предметов труда в цепочке ценностей, а в агрегированном представлении, в системе цепочек ценностей, происходят продуктивные действия (действия, вносящие вклад в создание и предоставление продуктов, представляющих ценность для потребителя). Причем существует, как косвенная, так и прямая зависимость между эффективностью действий в различных звеньях цепочки ценности и системе цепочек ценностей поставщика, производителя, потребителя. Тогда, с позиции ценностного подхода конкурентоспособность складывается из конкурентоспособности всех участников бизнес-модели: поставщиков, заказчиков, инфраструктурных предприятий (складских, транспортных посредников, кредитно-финансовых учреждений и т. д.) и др.

Совершенствование бизнес-модели осуществлено с использованием методов математического программирования [5], [6]. В процессе исследования использованы работы российских и зарубежных ученых по использованию логистического и ценностного подходов в принятии решений [7], [8].

III. ИССЛЕДОВАНИЯ И РЕЗУЛЬТАТЫ

Проводя комплексный анализ хозяйственной деятельности и организации работ группы компаний ООО «Ортоника» было выявлено, что логистическая инфраструктура, сложившаяся в компании, основывается на организации поставок продукции через порт г. Новороссийска с последующим распространением на территорию РФ. При этом можно выделить явные особенности сложившейся системы:

- отсутствие производства (только поставка);
- возможность поставки с разных логистических центров.

Наглядно схему транспортных потоков между логистическими центрами компании иллюстрирует схема основных и вспомогательных транспортных потоков

Таким образом, альтернативными центрами отгрузки, исходя из схемы распространения продукции (см. рис. 1), являются центры в г. Воронеж и г. Москва в рамках поставок для центра в г. Санкт-Петербург. Одновременно центры в городах Владимир и Воронеж применяются для обеспечения центра в г. Новосибирск. Исходя из достаточно активного развития (за 2016 - 2017 года показатель объем выручки вырос с 0,8 млрд. руб. до 1,01 млрд. руб.) встал острый вопрос о развитии сбытовой инфраструктуры. Рассматривая соотношение распределения поставок (см. рис. 2) в Федеральные округа РФ, к настоящему времени перед компанией стоит ряд вопросов: по охвату и развитию продаж на территории Северо-Западного Федерального округа (СЗФО), и по охвату и развитию продаж на территориях Уральского, Сибирского и Дальневосточного Федерального округов (УФО, СФО, ДФО).

В рамках данной работы произведена оценка возможности организации альтернативных поставок в СЗФО и УФО, СФО, ДФО через центры в городах Воронеж и Владимир.

Рис. 1. Схема основных и вспомогательных транспортных потоков. (Вспомогательные транспортные потоки показаны пунктирной линией)

Рис. 2. Объем отгрузки по Федеральным округам

При подобных проблемах полезно сформировать модель материальных потоков компании для оптимизации издержек и дальнейшего развития. Данный подход возможно реализовать за счет формализации имеющихся сведений и решения частной транспортной задачи (задача Монжа – Канторовича).

Классически решение транспортных задач реализуется относительно одного из двух критериев [5, 6]:

- минимизация издержек (стоимость или расстояние);
- минимизация времени доставки.

В данном случае имеет место сбалансированная транспортная задача, т.к. все, что поступило на склады компании было отгружено потребителю без остатка. Это обусловлено позаказной системой поставок продукции.

С учетом того, что перевозка грузов обеспечивается транспортом с грузоподъемностью 20 тонн и, зная объем потребления по федеральным округам (ФО) (таблица 1), стало возможным определить конечное число перевозок для каждого потребителя (логистического центра).

Однако, из-за наличия различных возможных вариантов осуществления перевозок, стоит задача в определении оптимального сценария доставок.

При решении данной задачи учтено, что для осуществления доставок в СЗФО продукция может быть отгружена с различных центров. Поэтому для моделирования было принято допущение, что нагрузка на логистические центры компании распределялась равномерно. Подобная ситуация наблюдается и с обеспечением поставок в УФО, СФО и ДФО через центр в г. Новосибирске. Также нагрузку по обеспечению доставок в ПФО разделили между собой центры в г. Владимир и г. Воронеж. При этом общий объем перевозок в регионы должен быть не меньше зафиксированного объема продаж.

ТАБЛИЦА І СВЕДЕНИЯ ПО ОБЪЕМУ ОТГРУЗКИ

Регион	Объем отгрузки, кг	
поставки	2016	2017
СЗФО	111550,86	229221,20
ЦФО	68577382,16	55630870,25
ПФО	261944,86	727336,50
ЮФО	198390,43	65522594,79
УФО	43847,63	65654,76
СФО	142303,84	332163,30
ДФО	25566,98	49370,72
СКФО	60002,02	227302,38

Формализуя процесс поставки и обозначив за x – количество перевозок от i-го логистического центра к j-му потребителю (шт.), c_{ij} – стоимость перевозки (руб.) от i-го логистического центра к j-ому потребителю станет возможным сформировать целевую функцию F(x) (формула 1).

$$\begin{cases} F(x) = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \to \min; \\ \sum_{j=1}^{n} x_{ij} = a_{i} (i = \overline{1, m}); \\ \sum_{j=1}^{n} x_{ij} = b_{j} (j = \overline{1, n}); \\ \sum_{i=1}^{m} a_{i} = \sum_{j=1}^{n} b_{j}; \\ x_{ij} \ge 0. \end{cases}$$
(1)

где a_i — объем поставленной продукции при $(i = \overline{1,m}), b_j$ — объем продукции, принятой потребителем при $(j = \overline{1,n})$.

В соответствии с системой (1), используя стоимостные показатели перевозок между логистическими центрами, целевая функция существующей логистической системы организации (без учета ЮФО и СКФО) за 2017 год составит:

$$F_1(x) = 25953x_{11} + 65052x_{12} + 23114x_{13} + 129558x_{22} + 123669x_{23} + 15720x_{32} + 19448x_{33} + 19448x_{41} + 25974x_{42};$$

С учетом полученной системы ограничений (2), составленной по объему перевозок, значение целевой функции $F_I(x)$ составит - 36,7 млн. руб. При этом расхождение полученного показателя с реальными издержками компании составили менее 9%, что позволяет говорить об адекватности результатов моделирования.

$$\begin{cases} x_{11} + x_{12} + x_{13} \ge 12; \\ x_{22} + x_{23} \ge 23; \\ x_{32} + x_{33} \ge 944; \\ x_{41} + x_{42} \ge 955; \\ x_{ii} \ge 0. \end{cases}$$
 (2)

Учитывая, что в ЦФО у компании находятся сразу 3 логистических центра (г. Воронеж, г. Москва и г. Владимир), применяя формализованный подход, определим целесообразность поддержания логистического центра в г.

Москва, перераспределив транспортные потоки. Тогда целевая функция получит вид:

$$F_2(x) = 65052x_{12} + 23114x_{13} + 129558x_{22} + 123669x_{23} + 25974x_{22} + x_{43},$$

при системе ограничений (3) суммарная стоимость перевозок (значение целевой функции $F_2(x)$) составит — 25,707 млн. руб.

$$\begin{cases} x_{12} + x_{13} \ge 12; \\ x_{22} + x_{23} \ge 23; \\ x_{42} \ge 1426; \\ x_{ii} \ge 0. \end{cases}$$
 (3)

Аналогично проанализируем целесообразность поддержания центра в г. Владимир. Целевая функция имеет вид:

$$F_3(x) = 25953x_{11} + 65052x_{12} + 174720x_{21} + 129558x_{22} + 15720x_{32};$$

и при системе ограничений (4) значение целевой функции $F_3(x)$ составит - 25,7 млн. руб.

$$\begin{cases} x_{11} + x_{12} \ge 12; \\ x_{21} + x_{22} \ge 23; \\ x_{32} \ge 1426; \\ x_{ii} \ge 0. \end{cases}$$
(4)

Как видно из получившихся значений целевых функций $F_I(x)$, $F_2(x)$ и $F_3(x)$ объем транспортных расходов при ликвидации логистического центра в г. Владимир будет минимален. Однако данное решение не учитывает параметр сезонности и охватывает только годовые показатели отгрузки 2017 года.

Для более детального анализа предлагается рассмотреть динамику процесса поставок с учетом изменения дискретизации до месячных показателей.

Проводя анализ динамики потребления было выявлено, что пиковые нагрузки на транспортную инфраструктуру логистических центров (г. Воронеж, г. Владимир и г. Москва) приходятся на 2 периода — май/июль и сентябрь/декабрь.

Исходя из методики определения объема транспортных затрат (по аналогии поиска издержек $F_l(x)$) проведен анализ существующей системы с учетом месячных показателей и подтверждена целесообразность организации временного логистического центра в г. Москва в пиковые периоды, тем самым сократив издержки на его содержание в 2 раза. Одновременно, общие затраты на организацию поставок, по сформированной модели, составили 23,6 млн. руб.

Таким образом, за счет проведенного математического моделирования логистической системы распределения продукции были выработаны рекомендации, обеспечивающие более чем 50%-е снижение издержек.

Формирование новых логистических каналов распределения на базе полученной модели позволит компании повысить свою ценность за счет снижения издержек, в частности, роста продаж и достижение эффекта масштаба, в целом. Это приведет к повышению ценности потребителя за счет приближения распределительных центров и появляющихся у компании возможностей гибкого ценообразования. Такая сбалансированность интересов будет способствовать росту конкурентоспособности компании на рынке. Этим определяется практическая значимость проведенного исследования.

IV. Выволы

Формирование бизнес-модели логистической системы распределения торгового предприятия рассмотрено на основе ценностного подхода. С этой целью использованы методы математического программирования, позволившие по критерию минимизации издержек сформировать новый вариант бизнес-модели, что позволило получить не только экономический эффект от сбалансированности ценностей ее участников, но и обосновать возможность достижения эффекта масштаба, усиливающего эту ценность.

Направление дальнейших исследований связано с развитием полученной бизнес-модели и распространение полученного опыта моделирования на другие компании, что актуально в условиях географических масштабов бизнеса в России.

Список литературы

- [1] Porter M.E. Competitive advantage of nations: creating and sustaining superior performance / Simon and Schuster, 2011, 283p.
- [2] Porter, M.E. Location, competition, and economic development: Local clusters in a global economy. Economic Development Quarterly, 2000. 14(1), Pp. 15-34.
- [3] Рыкалина О.В. Теория и методология современной логистики. Москва: ИНФРА-М, 2015. 208с.
- [4] Porter M.E. The competitive advantage of notions / Harvard Business Review, 1990, 68(2), Pp. 73-93.
- [5] Канторович Л.В. Экономический расчет наилучшего использования ресурсов. М.: Изд-во АН СССР, 1959.
- [6] Просветов, Г.И.. Математические методы в логистике: задачи и решения // Г.И. Просветов / изд. 3-е, доп., М.: Альфа-Пресс, 2014 272c
- [7] Ветрова Е.Н. Мультипликатор конкурентоспособности // Известия вузов. Горный журнал. 2012. №7. С 17-22.
- [8] Ветрова Е.Н. Мультипликатор конку-рентоспособности на логистической основе // Логистика». 2005. № 2. с. 14-15.