Set is Well-defined Collection of distinct objects.

ED(i) Rivers in India

(ii) Students who speak either third; or English (iii) the vowels in English alphabet.

(W) Countries in the woold.

Elements of a Set > the Objects in a set-are called its element or members

* Generally Capital letters A,B,C,--etc. are used to denote Sets and its elements by lower case letters a,b,C, — etc.

* the Symbol & (epsilon not) is used to indicate not belongs to

exis x-A (i) y+A

Standard Sels >

N= 1,2,3,4,-1, the Set of natural nois

I = 1. -, -3,-2, 1,0,1,2,3 - 3 the Set of integers.

Q = 1 x: x=\$; p,q EI & q to), the set of rational war.

R = the set of real nos.

C = fx: x=atib; a,bCR, i=1); the set of complex no's.

Representation of a Set > there are two ways of representing a set.

(1) Kostere or Tabular form

(ii) Rule Method or Set builder form

Roster or Tabular form) In this from all the elements of the set are listed the elements being Separated by commas and are enclosed within braces

Ex(i) A = fa,e,i,o,u), the set of vowels in the english alphabets.

Rule or Sef builder from In this method id set is elements of the Set have in Common.

exci) A= 5 1,2,3,4,5,6} AZJX: XEN, 15XS6)

(ii) B= {1,4,9,16,25,36} B= {x: x=n2, n = N : n < 6 }

(M) I or Z = { X: X is an integer}

tinite and tonfinite set > A set with finite ho's of elements in it, is called a finite set.

Those Sets which are not finite are called infinite sets.

EX (i) the set of students in a class (finite set) (ii) the set of Natural nois (infinite set)

Hull or Empty Set) A set which confains no element is called null or empty set.

ex (1) Az dx: L<x<2, xis an integer

Singleton Set -> A set which has only one element is called a Singleton Set.

ex (i) Az {x} is a singleton set.

Subset 3 9f A and B are sets such that every element of A is also on element of B, then A is said to be a subset of B. denoted by i.e., AEB, if KEAmd KEB every set A is a subset of itself i.e., ACA the next set of is subset of every non-empty Set of A & B. and BCC. Then ACC. Mamber of Subsets of a set = 2", nis no of elements Super Set -> Of A is a subset of B, then B is Called the superset of A. Lenoted by BZA& read as "B is a superset of A" Proper Subset - Any Subset A is said to be proper Subset of mother set B if A is a subset of B, but there is at least one element of B which does not belongs to A read as " A is proper subset of B" Equal Set -> two sets A and B arre said to be equal if and only if every element of A is an element of B and consequently every element of B is an element of A. i.e., A = B and B = A = B. Universal Set -> All the Sets under investigation one likely to be considered as subsets of Barficular set, this set is called the Universal set. denoted by U

Operations on Sets -3 (i) Union - the union of two sets A and B. denoted AUB = fx; xcA or xcB3 (ii) Intersection -> the intersection of two sets A and B denoted by ANB ANBE (x: X C A and X CB) (11) Complements -> let U be the universal set and A, B are two subsets of U. complement of A definde $A' = f'x: x \in U \text{ and } x \notin Af$ * Let XEA! => X & A A-B= {x: x ∈ A and x= B} (Deference) WXEAUB = XEAONEB LEX FAUB => X & A and X & B (N) Symmetoic Différence) fue symmetrice différence of two sets Kang B, denoted by AABOR AAB. or AAB = (A-B)U(B-A) $AAB = \{x : x : belongs to exactly one of A and B\}$ Distant set -> two sets A and Bare said to be disjoint set if ANB=\$ Cardinal Member of a Set -> the number

Operations on Sets > (1) Union of Sets -> let A and B are two. non-empty sets the Union of A and B is denoted by AUB and defined AUB= fx: x E A or x EB Proporties of unions of Sets -> (i) the Union of sels is commufative AUBZBUA (ii) The union of sets is Associative (AUB) UC = AU(BUC) (hi) the union of sels is idempotent AUA = A (1v) : 9 p Aisany Sefo, then AUP =A (v) of A is any subset of the universal set U, then AUU=U (d) Intersection of Sets > let A and B once two non-empty sets. The infersection of A and B is devoted by AAB defined as ANB= {x: X + A and X-CB} Properties of Intersection -(i) the intersection of Set is Commutative ANB=BNA " is Associative (AnB) ACZAN(BAC) n set A is idempotent ANA = A (1v) . 9P A is any sef, then And = 9 IP A is any set & U is the universal sef- then

Difference of 7200 sels > of A and B are any 1000 sels then the difference of A and B dended by A.R. defined as A-B= (x: x-CA and x- B) Properfies $(i) A-A = \phi (ii) A-\phi = A$ (V)(A-B) U A = A (iii) A-BEA (W)(A-B)AB=+ Complement of a Set > let A be any set. the Complement of A is the Set of elements that belonge to the universal set but do not belongs to A. denoted by A or A. A=U-A=jn: xe wand xef Ay tropedies (i) $AU\overline{A} = U$ (ii) $A \cap \overline{A} = \phi$ (iii) $\overline{U} = \phi$ (V) (AUB) = AOB (VI)(AOB) = AUB Symmetric deference of sets) let A and B be too nonempty sets. Then the symmetric difference of A and B; denoted by ADB or AAB. L defined as AAB = (A-B)U(B-A)ANB = (AUB) - (ANB) no perfies (1) Commufahre ADBZ BOA (ii) Associative (ADB) De= AD (BDC) (n) ABA= o (M ADB=+ AB