Math 302, PSET 3

(1) (a) Define the function

$$f(x) = \begin{cases} 3x - b & x \in [0, 1] \\ 0 & \text{otherwise} \end{cases}$$

Show that there is no value of b for which this is the p.d.f. of some RV X.

(b) Let

$$f(x) = \begin{cases} \frac{1}{2}\cos x & x \in [-b, b] \\ 0 & \text{otherwise} \end{cases}$$

Show that there is exactly one value of b for which this could be the p.d.f. of some RV X.

(2) Let c > 0 and $X \sim \text{Unif}[0, c]$. Show that the RV Y = c - X has the same c.d.f. and therefore also the same p.d.f. as X.

(3) Let X be a random variable with p.d.f.

$$f(x) = \begin{cases} cx^{-3} & x > 2\\ 0 & \text{otherwise} \end{cases}$$

- (a) Find c so that f is a p.d.f.
- (b) Compute the c.d.f. of X.
- (c) Find $\mathbb{P}(X > 3 | X < 5)$.
- (d) Find the median of X, i.e. the value m such that $\mathbb{P}(X > m) = \mathbb{P}(X \leq m)$.
- (e) Calculate $\mathbb{E}\sqrt{X}$.

(4) Let X be an Exp(2) random variable. Find a number a such that $\{X \in [0,1]\}$ is independent of $\{X \in [a,2]\}$.

(5) Let X be a standard normal random variable. Compute $\mathbb{E} X^n$ for all $n \in \mathbb{N}$.

(6) You have two dice, one with three sides labeled 0, 1, 2 and one with 4 sides, labeled 0, 1, 2, 3. Let X_1 be the outcome of rolling the first die, and X_2 the outcome of rolling the second. The rolls are independent.

- (a) What is the joint p.m.f. of (X_1, X_2) ?
- (b) Let $Y_1 = X_1 \cdot X_2$ and $Y_2 = \max\{X_1, X_2\}$. Make a table for the joint p.m.f. of (Y_1, Y_2) .
- (c) Are Y_1, Y_2 independent? Compute $Cov(Y_1, Y_2)$.

(7) A fair die is rolled three times with outcomes X_1, X_2, X_3 . Let Y_3 be the maximum of the values obtained.

(a) Show that

$$\mathbb{P}(Y_3 \le j) = \mathbb{P}(X_1 \le j)^3$$

for any $j = 1, 2, \dots, 6$. Use this to find the distribution of Y_3 .

(b) Suppose instead we sample n independent random variables U_1, U_2, \ldots, U_n with Unif(0,1) distribution, and let M_n be their maximum. Find the PDF of M_n .

- (c) Show that, for any $x \in \mathbb{R}$, $\mathbb{P}(n \cdot (1 M_n) \le x) \to 1 e^{-x}$ as $n \to \infty$.
- (8) Compute the moment generating functions of $X \sim \text{Geom}(p)$, $Y \sim \text{Exp}(\lambda)$ and of $Z \sim \text{Poisson}(\mu)$.
- (9) Proof of the 'law of the unconscious statistician'
 - (a) Let X be a continuous random variable with p.d.f. f(x) and $g: \mathbb{R} \to \mathbb{R}$ be a strictly increasing function for which the set $A := \{x: g'(x) = 0\}$ is finite. Show that the following is a p.d.f. of g(X):

$$f_{g(X)}(y) = \begin{cases} \frac{f(g^{-1}(y))}{|g'(g^{-1}(y))|} & \text{there exists some } x \in \mathbb{R} \setminus A \text{ s.t. } g(x) = y \\ 0 & \text{otherwise} \end{cases}$$

(Note that the set $g(A) := \{y \in \mathbb{R} : \text{ s.t. } g(x) = y \text{ for some } x \in A\}$ is finite. The values of a function on a finite set does not affect its integral on any interval. Thus one need not worry about the value of $f_{g(X)}$ on A.)

(b)Let X be a continuous random variable with density function f_X . Let g be a differentiable, strictly increasing or strictly decreasing function for which $\mathbb{E}[g(X)]$ and |A| are finite (where A is as above)). Prove that

$$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx.$$

Hint: Use part (a). When solving part (b) use the definition for the expectation for the continuous random variable Y:=g(X), which is $\mathbb{E}[Y]:=\int_{-\infty}^{\infty}yf_Y(y)dy$, where f_Y is the p.d.f. of Y. (Note that we have been using the formula $\mathbb{E}[g(X)]=\int_{-\infty}^{\infty}g(x)f_X(x)dx$ without a proof. Part (a) allows us to prove this formula in the special case considered at part (b).)