Where to go from here?

- Introduction is Image Segmentation
- How to solve Image Segmentation problems?
- Approaches for Image Segmentation
 Use Traditional Methods
 Leverage Deep Learning
- Understanding Deep Learning Architectures for Image Segmentation
- Project on Lane Segmentation for Self Driving Cars
- What's Next?

What is Image Segmentation?

Image Segmentation is the task of partitioning an image into multiple segments

Applications of Image Segmentation

Types of Image Segmentation Problems

(a) image

(b) semantic segmentation

(c) instance segmentation

(d) panoptic segmentation

- Introduction is Image Segmentation
- How to solve Image Segmentation problems?
- Approaches for Image Segmentation
 Use Traditional Methods
 Leverage Deep Learning
- Understanding Deep Learning Architectures for Image Segmentation
- Project on Lane Segmentation for Self Driving Cars
- What's Next?

Exploring Blood Cell Segmentation Dataset

Problem Statement: Segmenting WBCs in the Images of Blood Cells

Binary Semantic Segmentation!

WBC

- Introduction is Image Segmentation
- How to solve Image Segmentation problems?
- Approaches for Image Segmentation
 Use Traditional Methods
 Leverage Deep Learning
- Understanding Deep Learning Architectures for Image Segmentation
- Project on Lane Segmentation for Self Driving Cars
- What's Next?

Image Segmentation through Thresholding

Image Segmentation through Clustering

Modified CNN for Image Segmentation

Approach to solve Blood Cell Segmentation

What do we need?

- Feasible but still computationally expensive
- → Inverse Operation for Pooling (Bilinear Interpolation, Max Unpooling)
- Options for DL architecture is limited
- → A Convolution Operation which increases size of output (Transpose Convolution)

- Simplistic DL model, doesn't take ideas from complex networks
- → Better Deep Learning architecture

- Introduction is Image Segmentation
- How to solve Image Segmentation problems?
- Approaches for Image Segmentation
 Use Traditional Methods
 Leverage Deep Learning
- Understanding Deep Learning Architectures for Image Segmentation
- Project on Lane Segmentation for Self Driving Cars
- What's Next?

Understanding DL Architectures for Image Segmentation

U-Net Family

DeepLab Family
 Analytics
 Vidhya

R-CNN Family

- Introduction is Image Segmentation
- How to solve Image Segmentation problems?
- Approaches for Image Segmentation
 Use Traditional Methods
 Leverage Deep Learning
- Understanding Deep Learning Architectures for Image Segmentation
- Project on Lane Segmentation for Self Driving Cars
- What's Next?

Lane Segmentation problem

Source: Marius Cordts et al: "The Cityscapes Dataset for Semantic Urban Scene Understanding", 2016

- Introduction is Image Segmentation
- How to solve Image Segmentation problems?
- Approaches for Image Segmentation
 Use Traditional Methods
 Leverage Deep Learning
- Understanding Deep Learning Architectures for Image Segmentation
- Project on Lane Segmentation for Self Driving Cars
- What's Next?

Deep Learning Architectures for Image Segmentation

Best Practices for solving Image Segmentation problems

