OUTILS MATHÉMATIQUES 1 Trigonométrie

1 Relations entre les distances et les angles

1.1 Triangle rectangle

> Distances et angles comptés positivement

$$\cos(\alpha) = \frac{AC}{AB} = \frac{\text{côt\'e adjacent}}{\text{hypot\'enuse}} \left[\sin(\alpha) = \frac{BC}{AB} = \frac{\text{côt\'e oppos\'e}}{\text{hypot\'enuse}} \right]$$

$$\tan(\alpha) = \frac{BC}{AC} = \frac{\text{côt\'e oppos\'e}}{\text{côt\'e adjacent}}$$

$$A$$
 α Γ_C

- Distances et angles algébriques
 - Signe des distances algébriques :

$$\begin{cases} \overline{AC} > 0 \text{ et } \overline{CB} > 0 \\ \overline{CA} = -\overline{AC} < 0 \text{ et } \overline{BC} = -\overline{CB} < 0 \end{cases}$$

- Signe des angles : $\alpha = CAB > 0$ et $BAC = -\alpha < 0$
- Relation: $\tan(\alpha) = \frac{\overline{CB}}{\overline{AC}} > 0$

1.2 Triangle quelconque

$$\frac{BC}{\sin(\alpha)} = \frac{AC}{\sin(\beta)} = \frac{AB}{\sin(\gamma)}$$

2 Relations trigonométriques

- $\ge \underline{\text{Les indispensables ! }} \left[\cos^2(\alpha) + \sin^2(\alpha) = 1 \right] \text{ et } \tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)}$
- > Transformations remarquables

$\cos(-\alpha) = \cos(\alpha)$	$\cos(2\pi + \alpha) = \cos(\alpha)$	$\cos(\pi - \alpha) = -\cos(\alpha)$	$\cos(\pi + \alpha) = -\cos(\alpha)$	
$\sin(-\alpha) = -\sin(\alpha)$	$\sin(2\pi + \alpha) = \sin(\alpha)$	$\sin(\pi-\alpha)=\sin(\alpha)$	$\sin(\pi + \alpha) = -\sin(\alpha)$	
$\tan(-\alpha) = -\tan(\alpha)$	$\tan(2\pi + \alpha) = \tan(\alpha)$	$\tan(\pi-\alpha) = -\tan(\alpha)$	$\tan(\pi+\alpha)=\tan(\alpha)$	
$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin(\alpha)$	$\sin\!\left(\frac{\pi}{2} - \alpha\right) = \cos\!\left(\alpha\right)$	$\cos\left(\frac{\pi}{2} + \alpha\right) = -\sin(\alpha)$	$\sin\left(\frac{\pi}{2} + \alpha\right) = \cos(\alpha)$	
$\tan\left(\frac{\pi}{2} - \alpha\right) = \frac{1}{\tan(\alpha)}$		$\tan\left(\frac{\pi}{2} + \alpha\right) = -\frac{1}{\tan(\alpha)}$		

> Formules d'addition

$$\cos(\alpha - \beta) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta)$$

$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$$

$$\sin(\alpha - \beta) = \sin(\alpha)\cos(\beta) - \sin(\beta)\cos(\alpha)$$

$$\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \sin(\beta)\cos(\alpha)$$

Formules de duplication

$$\cos(2\alpha) = \cos^2(\alpha) - \sin^2(\alpha)$$
$$\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha)$$

> Formules de linéarisation

$$\cos^{2}(\alpha) = \frac{1}{2}(1 + \cos(2\alpha))$$

$$\sin^{2}(\alpha) = \frac{1}{2}(1 - \cos(2\alpha))$$

> Formules de factorisation

$$\cos(\alpha) + \cos(\beta) = 2\cos\left(\frac{\alpha + \beta}{2}\right)\cos\left(\frac{\alpha - \beta}{2}\right)$$
$$\cos(\alpha) - \cos(\beta) = -2\sin\left(\frac{\alpha + \beta}{2}\right)\sin\left(\frac{\alpha - \beta}{2}\right)$$
$$\sin(\alpha) + \sin(\beta) = 2\sin\left(\frac{\alpha + \beta}{2}\right)\cos\left(\frac{\alpha - \beta}{2}\right)$$
$$\sin(\alpha) - \sin(\beta) = 2\cos\left(\frac{\alpha + \beta}{2}\right)\sin\left(\frac{\alpha - \beta}{2}\right)$$

3 Angles remarquables

α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
$\cos(\alpha)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1
$\sin(\alpha)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0
$\tan(\alpha)$	0	$\frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	+∞	0