## TP558 - Tópicos avançados em Machine Learning: *Adicione aqui seu tema*





- Já pensaram como reduzir uma imagem de alta resolução, como uma foto para uma IA classificar objetos sem perder detalhes cruciais, como os contornos que diferenciam um carro de um caminhão?
- Imagine uma fotografia de alta resolução que precisa ser exibida em uma tela pequena ou usá-la em um aplicativo, classificação de objetos.



- Você precisa torná-la menor. Esse processo é chamado de redimensionamento.
- Tradicionalmente, os programas de computador utilizam métodos padronizados para isso, baseados em fórmulas matemáticas pré-definidas.



 Um método bastante utilizado é a Interpolação Bilinear, que considera os quatro pixels vizinhos mais próximos na imagem original e calcula uma média ponderada para gerar um novo pixel na imagem redimensionada.



- O problema central reside no fato de que esses resizers aplicam a mesma lógica de escalonamento em toda a imagem, sem levar em conta quais detalhes são cruciais para o reconhecimento
- Ele não distingue, por exemplo, entre o gramado ao fundo. Ao calcular a média das cores, ao mesmo tempo em que preserva sem dificuldade áreas de menor relevância, como uma parede uniforme.





#### Solução Inteligente:

Um Redimensionador que "Adapta" a Imagem para Máquinas

E se, em vez de usar um método fixo como o redimensionamento bilineal, tivéssemos um "especialista digital" que analisa a imagem e a redimensiona de forma a destacar as características mais importantes para uma tarefa específica de visão computacional?







#### **Proposed learned image resizer**

- O método utiliza uma rede neural convolucional (CNN) que aprende, junto com o modelo de visão, a redimensionar imagens de maneira otimizada para a tarefa-alvo.
- O treinamento é
   conjunto, utilizando a
   mesma função de perda
   (ex.: entropia cruzada
   para classificação).



Figure 1. Our proposed framework for joint learning of the image resizer and recognition models.

#### **Proposed learned image resizer**

| Característica          | Descrição                                               |  |
|-------------------------|---------------------------------------------------------|--|
| Integração adaptativa   | Adapta-se a diferentes modelos, melhorando consisten-   |  |
|                         | temente os resultados.                                  |  |
| Independência de per-   | Gera efeitos visuais otimizados para máquinas, não para |  |
| das perceptuais         | humanos.                                                |  |
| Flexibilidade de escala | Permite redimensionamento em fatores arbitrários, bus-  |  |
|                         | cando a resolução ideal.                                |  |
| Expansão para IQA       | Adapta-se com sucesso à avaliação de qualidade de ima-  |  |
|                         | gem.                                                    |  |
| Aplicação em inferência | Reduz latência em sistemas cliente-servidor, mantendo   |  |
| remota                  | precisão.                                               |  |

• A Tabela 1 apresenta as métricas de avaliação de desempenho e qualidade para quatro modelos de redes neurais amplamente utilizados em visão computacional.

| Métrica     | Resumo                                                                               |
|-------------|--------------------------------------------------------------------------------------|
| Top-1 Error | Percentual de vezes que a classe correta não é a 1ª predição. (Menor é melhor ↓)     |
| IQA         | Tarefa de avaliar a qualidade da imagem comparando com julgamentos humanos.          |
| PLCC        | Correlação linear entre predições do modelo e avaliações humanas. (Maior é melhor †) |

 A Tabela 1 apresenta as métricas de avaliação de desempenho e qualidade para quatro modelos de redes neurais amplamente utilizados em visão computacional.

|                |                      | Top-1 Error ↓    |                  |  |
|----------------|----------------------|------------------|------------------|--|
| Task           | Model                | Bilinear Resizer | Proposed Resizer |  |
| Classification | Inception-v2 [34]    | 26.7%            | 24.0%            |  |
| îca            | DenseNet-121 [9]     | 33.1%            | 29.8%            |  |
| issi           | ResNet-50 [8]        | 24.7%            | 23.0%            |  |
| CIa            | MobileNet-v2 [28]    | 29.5%            | 28.4%            |  |
|                |                      | PLCC ↑           |                  |  |
|                |                      | Bicubic Resizer  | Proposed Resizer |  |
|                | Inception-v2 [34]    | 0.662            | 0.686            |  |
| <sup>7</sup> ⊘ | DenseNet-121 [9]     | 0.662            | 0.683            |  |
| _              | EfficientNet-b0 [38] | 0.642            | 0.671            |  |

- Inception-v2 [34]: desenvolvida por Szegedy et al. (2016)
- DenseNet-121 [9]: Proposta por Huang et al. (2017)
- ResNet-50 [8]: Desenvolvida por He et al. (2016),
- MobileNet-v2 [28]: Proposta por Sandler et al. (2018)
- EfficientNet-b0 [38]:Desenvolvida por Tan y Le (2019)

- Inception-v2: Conhecida por usar blocos inception, que capturam características em múltiplas escalas. Foi testada para classificação e IQA.
- DenseNet-121: Utiliza conexões densas para promover a reutilização de características e melhorar a eficiência. Foi testada em ambas as tarefas.
- ResNet-50: Uma rede residual que usa "conexões de salto" para facilitar o treinamento de redes muito profundas. Foi testada para classificação.
- MobileNet-v2: Uma arquitetura leve, otimizada para dispositivos móveis, que emprega convoluções separáveis. Foi testada para classificação.
- EfficientNet-b0: Uma rede que equilibra profundidade, largura e resolução de forma eficiente. Foi testada apenas para IQA.

 A Tabela 1 apresenta as métricas de avaliação de desempenho e qualidade para quatro modelos de redes neurais amplamente utilizados em visão computacional.

|                |                                    | Top-1 Error ↓         |                        |  |
|----------------|------------------------------------|-----------------------|------------------------|--|
| Task           | Model                              | Bilinear Resizer      | Proposed Resizer       |  |
| Classification | Inception-v2 [34]                  | 26.7%                 | 24.0%                  |  |
| ìcal           | DenseNet-121 [9]                   | 33.1%                 | 29.8%                  |  |
| issif          | ResNet-50 [8]                      | 24.7%                 | 23.0%                  |  |
| Cla            | MobileNet-v2 [28]                  | 29.5%                 | 28.4%                  |  |
|                |                                    | PLCC ↑                |                        |  |
|                |                                    | PLO                   | CC ↑                   |  |
|                |                                    | Bicubic Resizer       | CC ↑ Proposed Resizer  |  |
|                | Inception-v2 [34]                  |                       | <u>'</u>               |  |
| IQA            | Inception-v2 [34] DenseNet-121 [9] | Bicubic Resizer       | Proposed Resizer       |  |
| IQA            |                                    | Bicubic Resizer 0.662 | Proposed Resizer 0.686 |  |

- Inception-v2 [34]: desenvolvida por Szegedy et al. (2016)
- DenseNet-121 [9]: Proposta por Huang et al. (2017)
- ResNet-50 [8]: Desenvolvida por He et al. (2016),
- MobileNet-v2 [28]: Proposta por Sandler et al. (2018)
- EfficientNet-b0 [38]:
   Desenvolvida por Tan y Le
   (2019)

#### Solução Inteligente: Redimensionamento Otimizado para Máquinas

• A Figura 2 ilustra um exemplo prático do redimensionador aprendido, treinado para a classificação no conjunto de dados ImageNet.



- Redimensionamento Otimizado para Máquinas
- A imagem original é redimensionada por um modelo aprendido em conjunto com o Inception-v2, com uma redução de 480 × 640 para 192 × 256 pixel.
- Diferente dos métodos tradicionais, a imagem resultante não foca na qualidade visual humana, mas sim em realçar características "amigáveis para máquinas", como detalhes de alta frequência.



- Redimensionamento Otimizado para Máquinas
- Essa abordagem melhora o desempenho da tarefa de classificação, alinhando-se com os resultados da Tabela 1, onde o redimensionador reduz o erro Top-1 do Inception-v2 de 26,7% para 24,0%.



#### 1. Interpolação Bilinear (Métodos Tradicionais de Redimensionamento)

A interpolação Bilinear é usada como baseline no artigo (Tabela 1, Figura 3), redimensionando imagens de forma suave para uniformidade em mini-batches. No entanto, não é otimizada para percepção de máquinas, causando perda uniforme de detalhes ao contrário do redimensionador aprendido.

#### O valor do píxel interpolado Q(x, y) é calculado como:

$$Q(x,y) = (1-a)(1-b)P_{11} + a(1-b)P_{21} + (1-a)bP_{12} + abP_{22}$$

#### 1. Interpolação Bilinear (Métodos Tradicionais de Redimensionamento)

$$Q(x,y) = (1-a)(1-b)P_{11} + a(1-b)P_{21} + (1-a)bP_{12} + abP_{22}$$

#### **Análise dos Componentes**

- $P_{11}, P_{12}, P_{21}, P_{22}$ : Valores dos quatro píxeles vizinhos mais próximos na imagem original, em coordenadas de grade.
- $a = x \lfloor x \rfloor$ : Fração decimal da coordenada horizontal, indicando a proximidade relativa aos píxeles.
- $b = y \lfloor y \rfloor$ : Fração decimal da coordenada vertical.
- (1-a)(1-b), a(1-b), (1-a)b, ab: Pesos que ponderam a contribuição de cada píxel vizinho, somando 1.

#### 2. Interpolação Bicúbica (Métodos Tradicionais de Redimensionamento)

É uma técnica amplamente utilizada para redimensionar imagens de forma suave e precisa. No artigo, a interpolação bicúbica é usada como um método de referência para comparar o desempenho do modelo proposto de redimensionamento aprendido (learned resizer).

O valor do píxel interpolado Q(x, y) na posição (x, y) é calculado usando uma função polinomial cúbica que considera os 16 píxeis vizinhos.

$$Q(x,y) = \sum_{i=-1}^{2} \sum_{j=-1}^{2} P(x_i, y_j) \cdot w(x - x_i) \cdot w(y - y_j)$$

#### 2. Interpolação Bicúbica (Métodos Tradicionais de Redimensionamento)

$$Q(x,y) = \sum_{i=-1}^{2} \sum_{j=-1}^{2} P(x_i, y_j) \cdot w(x - x_i) \cdot w(y - y_j)$$

 $P(x_i, y_j)$  São os valores dos 16 píxeis vizinhos ao ponto (x, y) na imagem original.

x e y : São as coordenadas normalizadas do ponto onde o valor interpolado deve ser calculado.

 $x_i, y_i$ : São as coordenadas dos píxeis vizinhos em relação ao ponto (x, y).

w(u) : É a função de peso cúbico que determina a contribuição de cada píxel ao resultado final. A função de peso típica é:

#### 2. Interpolação Bicúbica (Métodos Tradicionais de Redimensionamento)

$$Q(x,y) = \sum_{i=-1}^{2} \sum_{j=-1}^{2} P(x_i, y_j) \cdot w(x - x_i) \cdot w(y - y_j)$$

w(u) : É a função de peso cúbico que determina a contribuição de cada píxel ao resultado final. A função de peso típica é:

$$w(u) = \begin{cases} (1.5|u|^3 - 2.5|u|^2 + 1), & \text{se } |u| \le 1\\ (-0.5|u|^3 + 2.5|u|^2 - 4|u| + 2), & \text{se } 1 < |u| \le 2\\ 0, & \text{se } |u| > 2 \end{cases}$$

#### **Uma Receita Adaptável**

Este aprendizado é guiado por uma formulação que otimiza o redimensionador e o modelo base juntos, como descrito na Figura 1. A base teórica é o aprendizado conjunto, onde a imagem redimensionada é otimizada para maximizar o desempenho da tarefa, não a qualidade visual humana.

#### Formulação Matemática

O objetivo é encontrar os parâmetros ótimos do redimensionador ( $\theta$ ) e do modelo base ( $\varphi$ ) que minimizem o erro da tarefa final, conforme a equação:

$$(\theta^*, \phi^*) = \arg\min_{\theta, \phi} E_{(x,y) \sim D} \left[ \mathcal{L} \left( g_\phi \left( f_\theta(x) \right), y \right) \right]$$

$$(\theta^*, \phi^*) = \arg\min_{\theta, \phi} E_{(x,y) \sim D} \left[ \mathcal{L} \left( g_{\phi} \left( f_{\theta}(x) \right), y \right) \right]$$

#### **Análise dos Componentes**

- $f_{\theta}(x)$ : O redimensionador (CNN, Figura 3), que transforma a imagem de entrada x (e.g.,  $480 \times 640$ ) em uma versão redimensionada (e.g.,  $192 \times 256$ ).  $\theta$  são seus pesos (11k–93k parâmetros, Tabela 2).
- $g_{\phi}(...)$ : O modelo base (e.g., Inception-v2, ResNet-50) que processa a imagem redimensionada para a tarefa.  $\phi$  são seus pesos.
- $\mathcal{L}(...,y)$ : Função de perda da tarefa: entropia cruzada com *label-smoothing* para classificação (ImageNet, Equação 1) ou Earth Mover's Distance (EMD) para IQA (AVA, Equação 2).
- $E_{(x,y)\sim D}$ : Média sobre o dataset D (e.g., pares imagem-etiqueta do ImageNet ou AVA).
- $\arg\min_{\theta,\phi}$ : Otimização conjunta via gradiente descendente (e.g., momentum optimizer).

#### **Entropia Cruzada con Label Smoothing**

A função de perda é definida como

$$L = -\sum_{k=1}^{K} q_k' \log(p_k)$$

Entropia Cruzada com Label Smoothing ajusta os parâmetros do modelo de classificação (φ) para minimizar o erro de previsão, ao mesmo tempo que evita que o modelo se torne excessivamente confiante em suas predições.

#### **Entropia Cruzada con Label Smoothing**

# $L = -\sum_{k=1}^{K} q_k' \log(p_k)$

#### **Análise dos Componentes**

 $q'_k$ : As etiquetas suavizadas são calculadas como  $q'_k = (1 - \epsilon)\delta_{k,y} + \frac{\epsilon}{K}$ , onde:

- $\delta_{k,y}$ : É 1 se k=y (classe verdadeira) e 0 caso contrário.
- $\epsilon$ : Parâmetro de suavização ( $\epsilon = 0.1$ ).
- K: Número total de classes (e.g., K = 1000 para ImageNet). Essa suavização distribui parte da probabilidade entre todas as classes, reduzindo a confiança excessiva do modelo na classe correta.
- $p_k$ : Probabilidades preditas pelo modelo para cada classe k. Essas probabilidades são obtidas pela saída da camada Softmax no modelo base (e.g., Inception-v2, ResNet-50).

#### **Entropia Cruzada con Label Smoothing**

#### **Análise dos Componentes**

$$L = -\sum_{k=1}^{K} q_k' \log(p_k)$$

- $\log(p_k)$ : O logaritmo das probabilidades preditas, que penaliza fortemente predições incorretas ou incertas.
- $\sum_{k=1}^{K}$ : A soma é realizada sobre todas as classes K, garantindo que o modelo seja avaliado em relação a todas as possíveis classes.

#### Earth Mover's Distance (EMD) (para IQA)

O objetivo da (Earth Mover's Distance - EMD) é medir a diferença entre duas distribuições de probabilidades, especialmente no contexto de avaliação de qualidade de imagens (Image Quality Assessment - IQA). A fórmula da EMD é definida como:

$$EMD(P,Q) = \left(\frac{1}{K} \sum_{k=1}^{K} |CDF(P_k) - CDF(Q_k)|^d\right)^{1/d}$$

EMD permite uma comparação mais precisa e robusta. No artigo, essa métrica foi usada com sucesso para treinar modelos de avaliação de qualidade em conjuntos de dados como o AVA, resultando em melhorias consistentes na correlação entre as pontuações preditas e as reais.

$$EMD(P,Q) = \left(\frac{1}{K} \sum_{k=1}^{K} |CDF(P_k) - CDF(Q_k)|^d\right)^{1/d}$$

#### Earth Mover's Distance (EMD) (para IQA)

P e Q: Representam as distribuições de probabilidade das avaliações humanas e as predições do modelo, respectivamente.

- $P_k$ : Probabilidade acumulada da k-ésima classe na distribuição de referência (avaliações humanas).
- $Q_k$ : Probabilidade acumulada da k-ésima classe na distribuição predita pelo modelo.
- $\mathbf{CDF}(P_k)$  e  $\mathbf{CDF}(Q_k)$ : Funções de distribuição cumulativa (*Cumulative Distribution Function CDF*) das distribuições P e Q, respectivamente. A CDF é usada para capturar a diferença entre as distribuições em cada ponto.

$$EMD(P,Q) = \left(\frac{1}{K} \sum_{k=1}^{K} |CDF(P_k) - CDF(Q_k)|^d\right)^{1/d}$$

#### Earth Mover's Distance (EMD) (para IQA)

- K: Número total de classes ou bins na distribuição (e.g., K = 10 para o conjunto de dados AVA, onde as pontuações variam de 1 a 10).
- d: Parâmetro que controla a sensibilidade à diferença entre as distribuições. No artigo,
   d = 2 foi considerado o valor mais eficaz.
- $\bullet$   $\frac{1}{K}$ : Normalização para garantir que a distância seja calculada em média sobre todas as classes.

EMD permite que o redimensionador (Figura 3) adapte imagens para prever distribuições de qualidade melhorando PLCC (e.g., 0,662 para 0,686 com Inception-v2, Tabela 1). É mais robusta que regressão, alinhando-se com a percepção humana no AVA.

A Figura 3 apresenta a arquitetura da CNN usada como redimensionador aprendido, que transforma imagens em resoluções otimizadas para tarefas como classificação e IQA. Seus componentes são:



<sup>\*</sup>Entrada: Imagem em resolução original (e.g., 480 × 640). \*Convolução inicial: Kernel 7×7 extrai características iniciais.

<sup>\*</sup>Blocos residuais (r=1 ou 2, n=16 filtros): Convoluções 3×3, normalização de batch e LeakyReLU.

<sup>\*</sup>Redimensionamento bilinear: Ajusta características para a resolução desejada (e.g., 192 × 256).

<sup>\*</sup>Conexão de salto: Soma a imagem bilinear à saída da CNN. \*Convolução final: Kernel 7×7 gera a imagem redimensionada.



| Componente         | Descrição                           | Propósito                            |  |
|--------------------|-------------------------------------|--------------------------------------|--|
| Imagem Original    | Entrada inicial ao modelo.          | Fornecer os dados de entrada para    |  |
|                    |                                     | o modelo.                            |  |
| Conv2d(k7n16s1)    | Camada convolucional inicial.       | Extrair características iniciais da  |  |
|                    |                                     | imagem.                              |  |
| Bilinear Resizer 1 | Redimensionador bilinear após       | Facilitar o fluxo de informações di- |  |
|                    | BatchNorm.                          | retamente para Sum1.                 |  |
| Conexão Direta 1   | Conexão paralela do Bilinear Re-    | Combinar características aprendi-    |  |
|                    | sizer 1 ao Sum1.                    | das com a imagem redimensionada      |  |
|                    |                                     | bilinearmente.                       |  |
| Bloques Residuais  | Blocos residuais para aprender car- | Aprender características específicas |  |
| (r blocks)         | acterísticas complexas.             | para a tarefa.                       |  |
| Sum1               | Combinação de características       | Integrar informações de diferentes   |  |
|                    | aprendidas e bilineares.            | fontes.                              |  |
| Conv2d(k7n3s1)     | Camada convolucional final.         | Gerar a imagem redimensionada fi-    |  |
|                    |                                     | nal.                                 |  |
| Bilinear Resizer 2 | Redimensionador bilinear da im-     | Proporcionar uma base sólida para    |  |
|                    | agem original.                      | o redimensionamento.                 |  |
| Conexão Direta 2   | Conexão paralela do Bilinear Re-    | Garantir que não se perca in-        |  |
|                    | sizer 2 ao Sum2.                    | formação importante da imagem        |  |
|                    |                                     | original.                            |  |
| Sum2               | Combinação final das carac-         | Produzir a saída final do modelo.    |  |
|                    | terísticas.                         |                                      |  |



| Componente       | Descrição                          | Impacto no Modelo                    |  |
|------------------|------------------------------------|--------------------------------------|--|
| Filtros (n)      | Número de filtros nas camadas con- | Quanto maior o número de filtros     |  |
|                  | volucionais.                       | (n), maior a capacidade de apren-    |  |
|                  |                                    | der características complexas, mas   |  |
|                  |                                    | também aumenta o número total de     |  |
|                  |                                    | parâmetros.                          |  |
| Blocos Residuais | Número de blocos residuais no      | Cada bloco residual contém duas      |  |
| (r)              | modelo.                            | camadas convolucionais. Quanto       |  |
|                  |                                    | maior o número de blocos, maior a    |  |
|                  |                                    | profundidade e capacidade do mod-    |  |
|                  |                                    | elo, mas também aumenta a com-       |  |
|                  |                                    | plexidade.                           |  |
| Configurações    | n = 16, r = 1: Modelo mais leve.   | Ideal para tarefas com limitações de |  |
| Chave            |                                    | memória.                             |  |
|                  | n = 32, r = 2: Modelo mais pesado. | Melhora o desempenho em troca de     |  |
|                  |                                    | maior consumo computacional.         |  |
| Número de        | Varia entre 11.87K e 93.37K.       | O modelo é significativamente mais   |  |
| Parâmetros       |                                    | leve que arquiteturas como ResNet-   |  |
|                  |                                    | 50 (23M parâmetros).                 |  |

• O modelo proposto é relativamente leve e pode ser facilmente integrado em diferentes tarefas de visão computacional.

A Tabela 2 apresenta o número de parâmetros treináveis (em milhares) do redimensionador, variando o número de blocos residuais (r) e filtros (n):

| Blocks Filters | r = 1 | r = 2 | r = 3 | r=4   |
|----------------|-------|-------|-------|-------|
| n=16           | 11.87 | 16.48 | 21.08 | 25.69 |
| n=32           | 38.08 | 56.51 | 74.94 | 93.37 |

## Treinamento e otimização

A Tabela apresenta os principais parâmetros e configurações adotados nos experimentos. Esses elementos incluem framework de treinamento, otimizador, taxas de aprendizado, e a métrica utilizada para avaliação.

| Parâmetro             | Configuração                                             |
|-----------------------|----------------------------------------------------------|
| Framework             | TensorFlow                                               |
| Otimizador            | Momentum (decaimento 0.9)                                |
| Taxa de aprendizado   | 0.05 ou 0.005                                            |
| Decaimento da taxa    | Exponencial (0.94 a cada 2 épocas)                       |
| Resoluções de entrada | 224×224 a 448×448                                        |
| Tamanho do lote       | Ajustado para otimizar uso de memória                    |
| Inicialização         | Aleatória (redimensionador), pré-treinada (modelos base) |

## Treinamento e otimização

```
import tensorflow as tf
from keras import layers
from keras.optimizers import SGD
LEARNING RATE = 0.05
DECAY STEPS = 2
DECAY RATE = 0.94
INPUT RESOLUTIONS = [(224, 224), (448, 448)]
optimizer = SGD(learning rate=LEARNING RATE, momentum=0.9)
# O Decaimento Exponencial pode ser implementado com callbacks.
lr schedule = tf.keras.optimizers.schedules.ExponentialDecay(
    initial learning rate=LEARNING RATE,
    decay steps=DECAY STEPS,
   decay rate=DECAY RATE
# Convolução inicial para extrair características da imagem de entrada.
   x = layers.Conv2D(filters=filters, kernel size=7, strides=1, padding="same")(inputs)
   x = layers.LeakyReLU(0.2)(x)
# Segunda convolução, seguida de normalização.
   x = layers.Conv2D(filters=filters, kernel size=1, strides=1, padding="same")(x)
   x = layers.LeakyReLU(0.2)(x)
   x = layers.BatchNormalization()(x)
# Convolução final para projetar as características refinadas de volta para o espaço da imagem.
   x = layers.Conv2D(
       filters=filters, kernel size=3, strides=1, padding="same", use bias=False
   )(x)
   x = layers.BatchNormalization()(x)
model.compile(
    loss=keras.losses.CategoricalCrossentropy(label smoothing=0.1),
   optimizer="sgd",
   # `metrics`: Métrica de desempenho, neste caso, a acurácia.
   metrics=["accuracy"],)
```

## Vantagens e desvantagens

 O redimensionamento aprendido reflete um avanço em relação aos métodos tradicionais, pois é projetado especificamente para melhorar o desempenho em tarefas de visão computacional, em vez de focar na qualidade perceptual

da imagem.

| Vantagens                                                                                                              | Desvantagens                                                                                        |
|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Melhoria no desempenho em tarefas de visão computacional (ex.: redução de erro top-1 de 26,7% para 24,0% em ImageNet). | Complexidade adicional no treinamento debido al entrenamiento conjunto con el modelo de base.       |
| Flexibilidad para redimensionar<br>a cualquier resolución objetivo,<br>ajustándose a diferentes tareas.                | Qualidade perceptual no es priorizada, resultando en imágenes menos atractivas visualmente.         |
| Arquitectura ligera (11,87 mil parámetros para n=16, r=1) con ganancias significativas en rendimiento.                 | Dependencia del modelo base, exigiendo entrenamiento específico para cada arquitectura.             |
| Adaptable a diferentes tareas, como clasificación y IQA, con ganancias consistentes.                                   | Aumento en el costo computacional de inferencia (ex.: aumento de FLOPS de 3,88 para 5,07 billones). |
| Ideal para inferencia remota, minimizando la pérdida de rendimiento en imágenes redimensionadas.                       |                                                                                                     |

## Exemplo(s) de aplicação

| Contexto                                                 | Tarefa de Visão<br>Computacional          | Impacto Esperado                                                                            |
|----------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------|
| Reconhecimento Facial<br>em Sistemas de<br>Segurança     | Classificação de<br>Identidades           | Menos falsos positivos/negativos, maior confiabilidade em ambientes críticos                |
| Diagnóstico Médico por<br>Imagens                        | Classificação de<br>Anomalias             | Maior precisão na<br>detecção de condições<br>médicas, como tumores<br>ou fraturas          |
| Veículos Autônomos                                       | Classificação de Objetos e<br>Cenas       | Decisões mais seguras,<br>com menor erro em<br>detecção de pedestres e<br>sinais            |
| Avaliação de Qualidade<br>em Plataformas de<br>Streaming | Avaliação de Qualidade<br>de Imagem (IQA) | Avaliação mais precisa da<br>qualidade de vídeos,<br>melhorando a experiência<br>do usuário |
| Monitoramento<br>Ambiental por Drones                    | Classificação de Padrões<br>Ambientais    | Identificação mais precisa<br>de áreas degradadas,<br>apoiando ações de<br>conservação      |



## Comparação com outros algoritmos

| Método                                             | Desempenho<br>em Tarefas                                            | Qualidade<br>Perceptual   | Complexidade<br>Computacio-<br>nal                    | Flexibilidade                          |
|----------------------------------------------------|---------------------------------------------------------------------|---------------------------|-------------------------------------------------------|----------------------------------------|
| CNN Resizer                                        | Alto (ex.: erro<br>top-1 de 24,0%<br>vs. 26,7% com<br>Inception-v2) | Baixa (não<br>priorizada) | Moderada<br>(11,87 mil<br>parâmetros,<br>5,07B FLOPS) | Alta (resoluções<br>arbitrárias)       |
| Bilinear                                           | Moderado (erro<br>top-1 de 26,7%)                                   | Moderada                  | Baixa (não<br>treinável, 3,88B<br>FLOPS)              | Moderada (fixo<br>para<br>downscaling) |
| Bicúbica                                           | Moderado<br>(correlação de<br>0,642 em IQA)                         | Alta                      | Baixa (não<br>treinável)                              | Moderada (fixo<br>para<br>downscaling) |
| Superresolução<br>(SRResNet,<br>EDSR)              | Baixo para<br>downscaling                                           | Muito alta                | Alta (milhões de parâmetros)                          | Baixa<br>(otimizado para<br>upscaling) |
| Pré-<br>processamento<br>com Perdas<br>Perceptivas | Moderado a alto                                                     | Alta                      | Alta<br>(treinamento<br>separado)                     | Moderada<br>(depende da<br>tarefa)     |

## Validação e Refutação

O método de redimensionamento aprendido é validado pelos resultados do artigo, que mostram melhorias consistentes no desempenho de tarefas de visão computacional (Tabela 1), como redução de erro top-1 em classificação e aumento da correlação de Pearson em IQA. Sua flexibilidade para resoluções arbitrárias e sua arquitetura leve (Tabela 2) o tornam superior a métodos tradicionais e de superresolução em cenários com restrições computacionais e foco na precisão da tarefa. No entanto, a dependência de treinamento conjunto e a falta de priorização da qualidade perceptual podem limitar sua aplicação em contextos onde a estética visual é crucial, como interfaces de usuário. Assim, o método é validado para aplicações técnicas, mas pode ser refutado em cenários que exigem alta qualidade visual sem treinamento adicional.

### QUIZ



**QUIZ SEMINARIO** 

#### Referências

- [1] H. Talebi e P. Milanfar, Aprendendo a Redimensionar Imagens para Tarefas de Visão Computacional. arXiv preprint arXiv:2103.09950, 2021.
- [2] K. He, X. Zhang, S. Ren, e J. Sun, Aprendizado residual profundo para reconhecimento de imagens. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-778, 2016.
- [3] C. Ledig et al., Super-resolução de imagem única fotorrealística usando uma rede adversária generativa. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4681-4690, 2017.
- [4] I. Goodfellow, Y. Bengio, e A. Courville, Aprendizado Profundo. MIT Press, 2016.

# Obrigado!