

## Прикладная статистика 3. Критерии однородности, ANOVA.

Родионов Игорь Владимирович rodionov@bigdatateam.org

## Устойчивость к выбросам

Непараметрические, т.е. использующие только ранги наблюдений тесты всегда являются устойчивыми к выбросам. К таким тестам относятся критерий Манна-Уитни, критерий знаковых рангов Уилкоксона, критерий знаков.

Параметрические, т.е. основанные на самих значениях наблюдений тесты часто являются неустойчивыми к выбросам. Все тесты, использующие выборочные характеристики, являются неустойчивыми к выбросам. Примеры: t-критерий Стьюдента, критерий Фишера равенства дисперсий, критерий Аспина-Уэлча.

## Определение нужного объема выборки

Как определить количество наблюдений, которое нужно, чтобы считать проверку некоторой гипотезы значимой? Для начала мы должны определить, какую ошибку можно считать незначимой.

Допустим, в t-критерии Стьюдента положим ошибку в 0.1 незначимой. Т.е. если  $|\overline{X}-\mu|\leq 0.1,$  то мы не будем отвергать гипотезу  $H_0:EX_1=\mu.$  Имеем, при  $|\overline{X}-\mu|=0.1,$ 

$$\sqrt{n}\frac{\overline{X}-\mu}{s}\approx t_{1-\alpha/2},$$

где  $t_{1-\alpha/2}$  – квантиль St(n-1). Зададим  $\alpha=0.05$ , тогда при больших n  $t_{0.975}\approx 2$ . Будем считать, что  $s\approx 1$ , тогда  $\sqrt{n}\approx \frac{2}{0.1}=20$ , откуда  $n\approx 400$ .

Родионов И.В. ПС, ANOVA Стр. 3 из 33

#### General QQ-plot

Пусть имеются две (независимые) выборки  $(X_1,\ldots,X_n)$  и  $(Y_1,\ldots,Y_n)$  с функциями распределения F и G соответственно. Допустим, мы хотим проверить гипотезу  $H_0:F=G\left(\frac{x-a}{\sigma}\right)$ .

General QQ-plot — это график, на который нанесены точки  $\left(\widehat{F}_n^{-1}\left(\frac{j}{m}\right),Y_{(j)}\right)$  и  $\left(X_{(i)},\widehat{G}_m^{-1}\left(\frac{j}{n}\right)\right)$ . Если точки лежат примерно на одной прямой, то гипотеза  $H_0$  близка к верности.

## General QQ-plot



#### Критерий Смирнова

Обсудим теперь критерии проверки двух выборок на однородность. Для решения этой задачи можно адаптировать критерии согласия, например, критерий Колмогорова-Смирнова.

Пусть  $(X_1,\ldots,X_n)$  и  $(Y_1,\ldots,Y_m)$  — две независимые выборки с непрерывными ф.р. F и G соответственно, а  $\widehat{F}_n(x)$  и  $\widehat{G}_m(x)$  — эмпирические функции распределения этих выборок. Определим

$$D_{n,m} = \sup_{x} |\widehat{F}_{n}(x) - \widehat{G}_{m}(x)|,$$

тогда при верной гипотезе  $H_0: F=G$  статистика  $\sqrt{\frac{nm}{n+m}}D_{n,m}$  имеет табличное распределение. При  $n,m\geq 20$  оно приближается распределением Колмогорова.

## Общий критерий Андерсона-Дарлинга

Пусть  $(X_1^{(1)},\ldots,X_{n_1}^{(1)}),\ldots,(X_1^{(k)},\ldots,X_{n_k}^{(k)})$  – k независимых выборок с функциями распределений  $F_1,\ldots,F_k$  соответственно. Пусть  $\widehat{F}_1,\ldots,\widehat{F}_k$  – эмпирические функции распределения этих выборок и  $\widehat{H}_N(x),N=\sum_i n_i,$  – эмпирическая функция распределения общей совокупности наблюдений.

Тогда статистика

$$\Omega^{2} = \sum_{i=1}^{k} n_{i} \int_{\mathbb{R}} \frac{(\widehat{F}_{i}(x) - \widehat{H}_{N}(x))^{2}}{\widehat{H}_{N}(x)(1 - \widehat{H}_{N}(x))} d\widehat{H}_{N}(x)$$

имеет табличное распределение при верной гипотезе  $H_0: F_1 = \ldots = F_k$ .

4 D > 4 A > 4 B > 4 B > B 9 9 0

 Родионов И.В.
 ПС, ANOVA
 Стр. 7 из 33

#### Однофакторный дисперсионный анализ

Пусть имеются наблюдения признака X на  $N = \sum_i n_i$  объектах.

Хотим проверить, зависят ли значения признака X (а точнее, его среднее) от некого фактора A, принимающего значения (уровни)  $(A_1, \ldots, A_k)$ .

Пусть при  $A=A_j$  значения признака X заданы выборкой  $\{X_{ij}\}_{i=1}^{n_j},\ 1\leq j\leq k.$ 

#### Однофакторный дисперсионный анализ

Линейная (т.н. однофакторная) модель:

$$X_{ij} = \mu + \alpha_j + \varepsilon_{ij},$$

$$i=1,\ldots,n_j,\,j=1,\ldots,k.$$

 $\mu$  – глобальное среднее признака X;

 $\alpha_j$  – отклонение от  $\mu$ , вызванное влиянием j-того уровня фактора A;

 $arepsilon_{ij}$  – н.о.р. случайные ошибки,  $Earepsilon_{ij}=0$ .

Т.е. средние значения X во всех выборках одинаковы тогда и только тогда, когда  $\alpha_1 = \ldots = \alpha_k$ .

Родионов И.В.

### Критерий Фишера

Для проверки гипотезы  $H_0: \alpha_1 = \ldots = \alpha_k$  против альтернативы  $H_1: H_0$  неверна используется статистика

$$F = \frac{\sum_{j=1}^k n_j (\overline{X}_j - \overline{X})^2}{\sum_{j=1}^k \sum_{j=1}^{n_j} (X_{ij} - \overline{X}_j)^2} \cdot \frac{N - k}{k - 1}.$$

В случае выполнения  $H_0$  и предположений метода

$$F \sim F(k-1,N-k)$$
.

Критерий обычно выбирается правосторонним.



 Родионов И.В.
 ПС, ANOVA
 Стр. 10 из 33

#### Предположения метода:

- выборочные распределения средних значений признака во всех группах нормальны;
- дисперсия значений признака во всех выборках одинакова;
- в наблюдения независимы.

Родионов И.В. ПС, АNOVA Стр. 11 из 33

- Первое предположение считается выполненным, если распределение признака во всех группах нормально, или если объёмы выборок примерно одинаковы и N-k-1 > 20.
- Второе предположение считается выполненным, если отношение наибольшей выборочной дисперсии к наименьшей не превосходит 10.
- При  $n_1 = \ldots = n_k$  метод устойчив к нарушению первых двух предположений.
- Если объёмы выборок различаются, нарушение предположения о равенстве дисперсий может привести к росту вероятности ошибки первого рода.
- Выбросы могут оказывать существенное влияние на результат.

Родионов И.В. ΠC, ANOVA

#### Критерий Фишера

**Пример:** исследуется эффективность четырёх жаропонижающих средств, в составе которых один и тот же активный ингредиент присутствует в разных дозировках. Для каждой из четырёх групп из 15 морских свинок известно изменение температуры после введения жаропонижающего. Есть ли различия в действии препаратов?





Критерий Фишера проверки гипотезы  $H_0$  об отсутствии различий в действии препаратов дает p-value  $= 5.43 \times 10^{-14}$ .

Родионов И.В. ПС, ANOVA Cтр. 13 из 33

#### Критерий Краскела-Уоллиса

Пусть  $\{X_{ij}\}, 1 \leq i \leq n_j, 1 \leq j \leq k$  — независимые выборки с ф.р.  $F_j(x) = F(x-\alpha_j)$ . Проверим гипотезу об отсутствии сдвига  $H_0: \alpha_1 = \ldots = \alpha_k$  против альтернативы  $H_1: H_0$  неверна.

Пусть  $R_{ij}=R(X_{ij})$  – ранг наблюдения  $X_{ij}$  в общей совокупности,  $\overline{R}_j=\frac{1}{n_j}\sum_{i=1}^{n_j}R_{ij}, \, \overline{R}=\frac{1}{N}\sum_{i,j}R_{ij}=\frac{N+1}{2}.$ 

Статистика критерия Краскела-Уоллиса

$$W = (N-1) \frac{\sum_{j=1}^{k} n_{j} (\overline{R}_{j} - \overline{R})^{2}}{\sum_{j=1}^{k} \sum_{i=1}^{n_{j}} (R_{ij} - \overline{R})^{2}}$$

имеет табличное распределение (при верной  $H_0$ ), которое при  $n_j > 5 \ \forall j$  приближается распределением  $\chi^2_{k-1}$ .

<□ > <Ē > < 볼 > ○ 볼 · ◇익산

#### Критерий Джонкхиера

Данный критерий используется для проверки гипотезы  $H_0: \alpha_1 = \ldots = \alpha_k$  против альтернативы  $H_1': \alpha_1 \leq \ldots \leq \alpha_k$ . Статистика критерия

$$S = \sum_{j=1}^k \sum_{i=1}^{n_j} a_{ij},$$

где  $a_{ij}$  — количество наблюдений из первых j-1 выборок, меньших  $X_{ij}$ . При верности гипотезы  $H_0$  имеет табличное распределение.

На альтернативе  $H_1'$  критерий Джонкхиера имеет большую мощность, чем критерий Краскела-Уоллиса, чем и объясняется его использование.

Кроме того, оба этих критерия являются устойчивыми к наличию выбросов в данных.

4 D > 4 D > 4 E > 4 E > E 9 Q @

#### Пример

Исследуется зависимость предела прочности армированного бетона с разной концентрацией укрепляющих добавок: 16, 20, 24 и 28%. Меняется ли средний предел прочности вместе с концентрацией добавок?



 $H_0$ : концентрация добавок не влияет на среднюю прочность.

 $H_1$ : концентрация добавок влияет на среднюю прочность (критерий Краскела-Уоллиса): p-value = 0.0042.

 $H_1'$ : увеличение концентрации добавок повышает среднюю прочность (критерий Джонкхиера): p-value = 2.936  $\times$  10<sup>5</sup>.

## Виды эффектов модели

Прежде чем переходить к вопросу, средние (медианы) в каких группах отличаются (в независимости от того, отклонили мы гипотезу однородности или нет), следует понять, чем вызваны различия между выборками. Наиболее популярными являются 2 модели: модель со случайным эффектом

$$X_{ij} = a_j + \varepsilon_{ij},$$

где  $\{a_j\}$  — н.о.р. случайные величины (как правило, нормальные) со средним  $\mu$  и дисперсией  $\sigma_{\alpha}^2$ , независимые с  $\{\varepsilon_{ij}\}$ , и модель с фиксированным эффектом

$$X_{ij} = \mu + a_j + \varepsilon_{ij},$$

где  $a_j$  — не случайны.

4 D > 4 D > 4 B > 4 B > B 9 Q C

Родионов И.В. ПС, ANOVA Cтр. 17 из 33

## Различия эффектов





Исследователь:
Сравню-ка я

в эффективность
анальгина и лекарства
СтопБобо, под контролем
плацебо!

Как бы ни было поставлено это исследование, группы будут три, и именно эти, **других нет**.



Исследователь: Изучу-ка я, различается ли масса лягушек в разных прудах!



Количество прудов в исследовании может быть разным, существуют неисследованные пруды.

## Модель с фиксированным эффектом

Проверять гипотезы об однородности пар выборок внутри совокупности в модели со случайным эффектом бессмысленно, потому что различия будут вызваны случаем. Однако в модели с фиксированным эффектом такая задача интересна.

#### Свойства модели:

- 1) Разбиение на группы определено до получения данных.
- 2) При повторе эксперимента ожидается, что соотношения между средними групп сохранятся.
- 3) Если между средними есть различия, на следующем этапе анализируется, какие именно группы различаются.

Пусть  $\{X_{ij}\}_{i=1}^{n_j} \sim N(\mu_j, \sigma^2), 1 \leq j \leq k$ . Критерий проверяет гипотезы  $H_{0j}: \alpha_j = \alpha_{j+1}$ , где  $\alpha_j$  снова упорядочены по возрастанию выборочных средних  $\overline{X}_i$ . Рассмотрим

$$LSD_{j} = t_{1-\frac{\alpha}{2}} \sqrt{\frac{n_{j} + n_{j+1}}{n_{j}n_{j+1}}} \sqrt{\frac{(n_{j} - 1)S_{j}^{2} + (n_{j+1} - 1)S_{j+1}^{2}}{n_{j} + n_{j+1} - 2}}.$$

где  $t_{\gamma}-\gamma$ -квантиль распределения Стьюдента с  $n_j+n_{j+1}-2$  степенями свободы,  $S_j^2$  и  $S_{j+1}^2$  — выборочные дисперсии j-той и (j+1)-ой выборки соответственно.

Если  $|\overline{X}_j - \overline{X}_{j+1}| > LSD_j$ , то частная нулевая гипотеза  $H_{0j}$ :  $\alpha_j = \alpha_{j+1}$  отклоняется в пользу двусторонней альтернативы. LSD можно использовать только в случае отклонения общей гипотезы однородности, и при этом стоит применять множественную проверку гипотез.

Родионов И.В. ПС, АNOVA Стр. 20 из 33

#### Критерий Неменьи

Непараметрический аналог критерия HSD Тьюки. Пусть в каждой из k выборок n наблюдений. Пусть  $R_{ii}$  – ранг наблюдения  $X_{ii}$  в общей совокупности,  $\overline{R}_i = \frac{1}{n} \sum_i R_{ii}$  – средний ранг по *і*-той выборке.

Введем

$$CD=q_{1-\frac{\alpha}{2}}^{\prime}\frac{k+1}{6n},$$

где  $q_{\gamma}' - \gamma$ -квантиль из распределения стьюдентизированного размаха с k степенями свободы.

Проверим серию гипотез  $H_{0i}$ :  $\alpha_i = \alpha_{i+1}$ , где  $\alpha_i$ упорядочены по возрастанию  $\overline{R}_i$ . Если  $|\overline{R}_i - \overline{R}_{i+1}| > CD$ , то отвергаем гипотезу  $H_{0i}$ . Для проверки  $H_{0i}$  следует пользоваться методами множественной проверки гипотез.

#### Действие жаропонижающих на морских свинок:





#### LSD Фишера

| $T_1$ vs. $T_3$ | 0.9983               |  |
|-----------------|----------------------|--|
| $T_3$ vs. $T_2$ | $3.5 \times 10^{-8}$ |  |
| $T_2$ vs. $T_4$ |                      |  |

#### Критерий Неменьи

| $T_1$ vs. $T_3$ | 0.9999               |
|-----------------|----------------------|
|                 | $1.8 \times 10^{-4}$ |
| $T_2$ vs. $T_4$ | ·                    |

Пусть имеются наблюдения признака X на N объектах. Хотим проверить, зависят ли значения признака X (а точнее, его среднее или медиана) от факторов A и B, принимающих значения  $(A_1,\ldots,A_k)$  и  $(B_1,\ldots,B_m)$  соответственно.

Пусть при  $A=A_j$  и  $B=B_l$  значения признака X заданы выборкой  $\{X_{ijl}\}_{i=1}^{n_{jl}}, 1\leq j\leq k, 1\leq l\leq m.$ 

Поскольку двухфакторный анализ для выборок разного размера довольно сложен, будет считать, что  $n_{11}=\ldots=n_{km}=n$ . Часто будем полагать, что n=1.

4 D > 4 B > 4 E > 4 E > E 9 Q C

#### Линейная двухфакторная модель:

$$X_{ijl} = \mu + \alpha_j + \beta_l + \gamma_{jl} + \varepsilon_{ijl},$$

$$i = 1, \ldots, n; j = 1, \ldots, k; l = 1, \ldots, m.$$

 $\mu$  – глобальное среднее признака X;

 $\alpha_j$  – воздействие j-того уровня фактора A;

 $\beta_I$  – воздействие I-того уровня фактора B;

 $\gamma_{jl}$  — дополнительное воздействие комбинации уровней j и

I факторов A и B соответственно;

 $arepsilon_{iil}$  – н.о.р. случайные ошибки.

Родионов И.В. ПС, АNOVA Стр. 24 из 33

Если  $\gamma_{jl}=0\ \forall j,l,$  то решить задачу дисперсионного анализа гораздо проще (можно свести задачу к однофакторному дисперсионному анализу для связанных выборок). Иначе приходится рассматривать следующие гипотезы:

 $H_0^1: \alpha_j = 0 \ \forall j \ ($ т.е. фактор A не влияет на значения признака X) против  $H_1^1: H_0^1$  неверна,

 $H_0^2: \beta_I = 0 \ \forall I \ (\text{т.e.} \ фактор \ B$  не влияет на значения признака X) против  $H_1^2: H_0^2$  неверна,

 $H_0^{12}: \gamma_{jl} = 0 \ \forall j, l \ ($ т.е. между факторами A и B нет взаимодействия) против  $H_1^{12}: H_0^{12}$  неверна.

**Пример:** X – успешность решения кейса командой (в баллах от 0 до 10),  $f_1$  – размер команды (1 – маленькая, 2 – средняя, 3 – большая),  $f_2$  – наличие назначенного лидера (1 – нет, 2 – есть).





Пусть  $X_{ijl} \sim N(\mu_{jl}, \sigma^2), \ \mu_{jl} = \mu + \alpha_j + \beta_l + \gamma_{jl}.$  Обозначим  $\overline{X}_{jl}$  – выборочное среднее по ячейке;

 $\overline{X}_{j*}$  – выборочное среднее по значению фактора  $A=A_j$ ;

 $\overline{X}_{*\prime}$  – выборочное среднее по значению фактора  $B=B_{j}$ ;

 $\overline{X}$  – выборочное среднее по всей таблице.

Внутрифакторные дисперсии:

$$\begin{split} S_{1}^{2} &= \frac{nm}{(k-1)} \sum_{j=1}^{k} (\overline{X}_{j*} - \overline{X})^{2}, \quad S_{2}^{2} = \frac{nk}{(m-1)} \sum_{l=1}^{m} (\overline{X}_{*l} - \overline{X})^{2}, \\ S_{12}^{2} &= \frac{n}{(k-1)(m-1)} \sum_{j,l} (\overline{X}_{jl} - \overline{X}_{j*} - \overline{X}_{*l} + \overline{X})^{2}, \\ S_{int}^{2} &= \frac{1}{km(n-1)} \sum_{i=1}^{n} \sum_{j,l} (X_{ijl} - \overline{X}_{jl})^{2}. \end{split}$$

Проверка значимости факторов и взаимодействия между ними:

1) при 
$$n>1$$
 
$$F_1=\frac{S_1^2}{S_{int}^2}\sim F(k-1,km(n-1))$$
 при верной  $H_0^1;$  
$$F_2=\frac{S_2^2}{S_{int}^2}\sim F(m-1,km(n-1))$$
 при верной  $H_0^2;$  
$$F_{12}=\frac{S_{12}^2}{S_{int}^2}\sim F((k-1)(m-1),km(n-1))$$
 при верной  $H_0^{12};$ 

$$P_1=rac{S_1^2}{S_{12}^2}\sim F(k-1,(k-1)(m-1))$$
 при верной  $P_2=rac{S_2^2}{S_{12}^2}\sim F(m-1,(k-1)(m-1))$  при верной  $P_2=rac{S_2^2}{S_{12}^2}\sim F(m-1,(k-1)(m-1))$  при верной  $P_2=rac{S_2^2}{S_1^2}$ 

4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D > 4 D >

Изучалось воздействие марихуаны на скорость реакции. В качестве испытуемых были выбраны по 12 человек из каждой категории:

- никогда не пробовали марихуану;
- иногда употребляют марихуану;
- регулярно употребляют марихуану.

Испытуемые были разделены на две равные группы; половине из них дали выкурить две сигареты с марихуаной, вторая половина выкурила две обычные сигареты с запахом и вкусом марихуаны. Сразу после этого все испытуемые прошли тест на скорость реакции.

Требуется оценить влияние марихуаны на скорость реакции, учитывая фактор предыдущего опыта употребления.

### Пример



#### Пример

 $H_0^1$ : средняя скорость реакции одинакова при употреблении и марихуаны, и сигарет;

 $H_0^2$ : средняя скорость реации не зависит от предыдущего опыта употребления марихуаны;

 $H_0^{12}$ : отсутствует межфакторное взаимодействие между употребляемым веществом и предыдущим опытом употребления марихуаны.

| Source      | F     | p-value |
|-------------|-------|---------|
| Group       | 17.58 | 0.0002  |
| Past use    | 2.02  | 0.15    |
| Interaction | 2.02  | 0.15    |

Вывод: гипотеза о том, что предыдущий опыт употребления не влияет на скорость реакции, не отклоняется – значит, данные по группам можно объединить.

#### Для объединенных данных:

- 1) p-value однофакторного дисперсионного анализа 0.00036;
- 2) p-value критерия Манна-Уитни 0.00059;
- 3) p-value двухвыборочного t-критерия 0.00018.



# Спасибо за внимание!