Ming Kong

Extended CS Bridge-Winter 2021

Homework 5

Question 3:

a) Exercise 4.1.3, sections b, c

Section b:

$$f(x) = 1 / (x^2 - 4)$$

Not a well defined function, when x = 2, the result is undefined.

Section c:

$$f(x) = \sqrt{x^2}$$

Not a well defined function, there is a positive and negative value f(x) for every x Example, if x = 2 then $f(x) = \sqrt{2^2} = \pm 2$

b) Exercise 4.1.5, sections b, d, h, i, l

Section b:

Let
$$A = \{2, 3, 4, 5\}$$
.

$$f: A \rightarrow \mathbf{Z}$$
 such that $f(x) = x^2$.

Range: {4, 9, 16, 25}

Section d:

f: $\{0,1\}^5 \to \mathbb{Z}$. For $x \in \{0,1\}^5$, f(x) is the number of 1's that occur in x. For example f(01101) = 3, because there are three 1's in the string "01101".

Range: {0,1,2,3,4,5}

Section h:

Let
$$A = \{1, 2, 3\}$$
.

f:
$$A \times A \rightarrow Z \times Z$$
, where $f(x,y) = (y, x)$

Range: {(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3) }

Section i:

Let
$$A = \{1, 2, 3\}$$
.

f:
$$A \times A \rightarrow Z \times Z$$
, where $f(x,y) = (x,y+1)$.

Range: {(1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,2), (3,3), (3,4)}

Section 1:

Let
$$A = \{1, 2, 3\}$$
.
f: $P(A) \rightarrow P(A)$. For $X \subseteq A$, $f(X) = X - \{1\}$
 $P(A) = \{\{\}, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$

Range: { {}, {2}, {3}, {2,3} }

Question 4:

- I. Discrete Math zyBook:
- a) Exercise 4.2.2, sections c, g, k

Section c:

h: **Z**
$$\rightarrow$$
 Z. h(x) = x^3

Not onto, let y be an integer y = -2. There is no such x such that $x^3 = y$ and $x \in \mathbb{Z}$. One to one.

Section g:

f:
$$\mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}$$
, $f(x, y) = (x+1, 2y)$

Not onto, there will be no odd integer values for y in f(x,y) = (x+1, 2y)One to one

Section k:

f:
$$Z^+ \times Z^+ \to Z^+$$
, $f(x, y) = 2^x + y$.

Not onto, there are no domain values that correspond to the target value of 1 or 2 Not, one to one. f(2, 1) = f(1, 4) = 6

b) Exercise 4.2.4, sections b, c, d, g

Section b:

f: $\{0, 1\}^3 \rightarrow \{0, 1\}^3$. The output of f is obtained by taking the input string and replacing the first bit by 1, regardless of whether the first bit is a 0 or 1. For example, f(001) = 101 and f(110) = 110.

Not onto, there are no domain values that gives us target values of $\{011, 000, 001, 010\}$ Not one to one, f(001) = f(101) = 101

Section c:

f: $\{0, 1\}^3 \rightarrow \{0, 1\}^3$. The output of f is obtained by taking the input string and reversing the bits. For example f(011) = 110

Onto and one to one.

Section d:

f: $\{0, 1\}^3 \rightarrow \{0, 1\}^4$. The output of f is obtained by taking the input string and adding an extra copy of the first bit to the end of the string. For example, f(100) = 1001.

Not onto, there are target values of y (ex. 1000, 0101), not in the range of f. One to one.

Section g:

Let A be defined to be the set $\{1, 2, 3, 4, 5, 6, 7, 8\}$ and let $B = \{1\}$. f: $P(A) \rightarrow P(A)$. For $X \subseteq A$, f(X) = X - B. Recall that for a finite set A, P(A) denotes the power set of A which is the set of all subsets of A.

Not onto, there are no domain values that gives us target values with a 1 in the set of f(x).

Not one to one.
$$f({2,3}) = f({1,2,3}) = {2, 3}$$

- II. Give an example of a function from the set of integers to the set of positive integers that is:
- a. one-to-one, but not onto.

f:
$$Z \to Z^+$$
, $f(x) = 2x + 3$, $x >= 0$
-2x, $x < 0$

b. onto, but not one-to-one.

$$f: Z \to Z^+, f(x) = |x| + 1$$

c. one-to-one and onto.

f:
$$Z \rightarrow Z^+$$
, $f(x) = 2x + 1$, $x >= 0$
-2x, $x < 0$

d. neither one-to-one nor onto

$$f: Z \to Z^+, f(x) = 5$$

Question 5:

a) Exercise 4.3.2, sections c, d, g, i

Section c:

f:
$$\mathbf{R} \to \mathbf{R}$$
. $f(x) = 2x + 3$

$$f^{-1}(x) = (y-3) / 2$$

Section d:

Let A be defined to be the set {1, 2, 3, 4, 5, 6, 7, 8}.

f:
$$P(A) \rightarrow \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$$
. For $X \subseteq A$, $f(X) = |X|$.

Recall that for a finite set A, P(A) denotes the power set of A which is the set of all subsets of A.

The function f is not one to one, because if $X = \{2,3\}$ or $X = \{4,5\}$, $f(\{2,3\}) = f(\{4,5\}) = 2$. Therefore f^{-1} is not well defined.

Section g:

f: $\{0, 1\}^3 \rightarrow \{0, 1\}^3$. The output of f is obtained by taking the input string and reversing the bits. For example, f(011) = 110.

The function f is onto and one to one.

 f^{-1} : $\{0, 1\}^3 \rightarrow \{0, 1\}^3$ The output of f^{-1} is obtained by taking the input string and reversing the bits

Section i:

f:
$$Z \times Z \to Z \times Z$$
, $f(x, y) = (x+5, y-2)$

$$f^{-1}$$
: $\mathbf{Z} \times \mathbf{Z} \rightarrow \mathbf{Z} \times \mathbf{Z}$, $f^{-1}(x, y) = (x-5, y+2)$

b) Exercise 4.4.8, sections c, d

Section c:

f o h =
$$f(h(x)) = 2(x^2+1) + 3$$

= $2x^2+2+3$
= $2x^2 + 5$

Section d:

h o f = h(f(x)) =
$$(2x + 3)^2 + 1$$

= $4x^2 + 12x + 9 + 1$

$$=4x^2+12x+10$$

c) Exercise 4.4.2, sections b-d

Section b:

Section c:

Section d:

h o f = h(f(x)) =
$$[x^2/5]$$

d) Exercise 4.4.6, sections c-e

Section c:

What is h o f(010)?

$$h o f(010) = 111$$

Section d:

What is the range of h o f?

Section e:

What is the range of g o f?

Range: {001, 011, 101, 111}

e) Extra Credit Exercise 4.4.4 sections c, d

Let $f: X \to Y$ and $g: Y \to Z$ be two functions.

Section c:

Y.

Is it possible that f is not one-to-one and g o f is one-to-one? Justify your answer. If the answer is "yes", give a specific example for f and g.

No. If f is not one to one that means there exists different $x \in X$ that maps to same elements in

Example functions:

f:
$$Z \to Z$$
, $f(x) = |x|$
g: $Z \to Z$, $g(x) = x + 1$
f o g (1) = f o g (-1) = 2

Section d:

Is it possible that g is not one-to-one and g o f is one-to-one? Justify your answer. If the answer is "yes", give a specific example for f and g.

No if, g is not one to one that means there are different domains for g that gives the same values in the target of g.

Example functions:

g:
$$Z \to Z$$
, $g(x) = |x|$
f: $Z \to Z$, $f(x) = x + 1$

$$g \circ f(-2) = 1$$

 $g \circ f(0) = 1$