California Wildfire Damage Projection

Background

Wildfires in California are becoming increasinglycommon due to a variety of factors:

- Climate change
- Drought Frequency &
 Seasonal Rains
- Human Causal Factors
- Historical Forest Mismanagement
- Increased population in vulnerable areas

Background (Cont.)

FEMA would benefit from a model projects the costs resulting from a fire disaster.

 Financial aid can then be properly allocated to the impacted communities.

Data Science Problem

Our Goal is to Predict the Dollar Amount of Damage done to specific counties within the state of California due to wildfires

Data Science Problem

Interaction between some of these variables have proven useful for making predictions:

- 1. Average size of the fire spread
- 2. Number of fire origins within a given area
- 3. Weather conditions
- 4. Variables representing relative county affluence
- 5. Percentages of wilderness/developed land in a given county

Data Science Process / Methodology

- Data Collection
- Cleaning data & EDA
- Feature Engineering
- Model Fitting & Tuning
- Evaluations

Data Collection: Sources

- Cal Fire: Redbooks (2010 2016)
 - Number of Fires (sizes and causes)
 - Dollar Damage

- Yelp
 - Number of Campsites/RV Parks per County

Data Collection: Sources

- Weather Data
- National Census Bureau/Wikipedia
 - **Population Data**
- **Employment Development Department**
 - Workforce Data

2. Data Cleaning & EDA

1000-4999_acres_num_fire_size

Correlation: Heatmaps

target	1	
av_ac_brn_5000		
5000_acres_>_num_fire_size	0.48	
tot_av_ac_brn	0.38	
pop_dense		
pop	0.063	
av_ac_brn_349.5		
300-999_acres_num_fire_size	0.051	
tavg	0.036	
amt_forest		
tmax		0.8
av_ac_brn_0.125		
.25_acres_or_<_num_fire_size		
prcp	0.0081	
100-299_acres_num_fire_size	0.0043	0.4
av_ac_brn_99.5	0.0043	
awnd	0.00063	
av_ac_brn_8.865		
.26-9.99_acres_num_fire_size	-0.0029	0.0
year		
num_camps		
tot_ac_brn		
tot_ac_brn_half		-0.4
-0.4 av_ac_brn_1999.5		
1000-4999_acres_num_fire_size		
tot_av_ac_brn.1	-0.02	
tot_num_fire	-0.024	-0.8
val_sf		
percent_forest_acr		
snow		
av_ac_brn_44.5		
10-99_acres_num_fire_size	-0.033	
per_cap_income		
area	-0.049	
med_fam_income	-0.05	
forest_acr	-0.052	
med_house_income	-0.072	
	target	

3. Feature Engineering

4. Model Fitting and Tuning

The Models: Regression

- 1. Multiple Linear Regression
- 2. Lasso
- 3. Ridge
- 4. KNN
- 5. SVR
- 6. Random Forest
- 7. Bagging
- 8. Extra Trees
- 9. Ada Boost
- 10. Gradient Boost

Each model was trained and fit in three different contexts:

- Base Case no tuning
- 2. Grid Search tuning
- 3. Stacking predictions from best gs models become the new features

Stacking

5. **Evaluation and Conclusions**

Train Scores, Test Scores and CV Scores (R_squared) for Each Model

Train Scores, Test Scores and CV Scores (R_squared) for Each Model

Train Scores, Test Scores and CV Scores (R_squared)for Each Model

Demonstration of Our Solution

Interaction between some of these variables have proven useful for making predictions:

- 1. Average size of the fire spread
- 2. Number of fire origins within a given area
- 3. Weather conditions
- 4. Variables representing relative county affluence
- 5. Percentages of wilderness/developed land in a given county

How to Use the Model

- The best model is optimized for prediction, not for explainability
- Input: features
- Output: dollar amount damage

Limitations of the Model

- Data Collection Issues
 - Accuracy and completeness of raw data
- Missing values
 - Assumptions made while imputing missing values
- Overall complexity of variable space that are predictive of fire processes

Next Steps

- CalFire data that is more granular, so as to include detailed data on individual wildfires (e.g dollar amount damage, acres burned, etc).
- Data on the epicenter of fires to help determine spatial correlations.
- An examination of the impact of US Forest Service "controlled burns" and how it affects future fires.
- Insurance premium increases.
- Fire suppression/containment data.

Sources

- https://www.nytimes.com/2018/11/09/climate/why-california-fires.html
- https://www.kqed.org/science/1927354/controlled-burns-can-help-solve-californias-fire-problem-so-why-arent-there-more-of-them
- https://en.wikipedia.org/wiki/List of counties in California
- https://www.fire.ca.gov/fire_protection/fire_protection_fire_info_redbooks
- https://www.pewtrusts.org/en/research-and-analysis/reports/2018/06/19/what-we-dont-know-about-state-s-pending-on-natural-disasters-could-cost-us
- https://www.kdnuggets.com/2017/02/stacking-models-imropved-predictions.html
- https://www.codecademy.com/articles/seaborn-design-ii
- https://www.ncdc.noaa.gov/cdo-web/search

Thanks!

Any Questions?