

UNIVERSITATEA NAȚIONALĂ DE ȘTIINȚĂ ȘI TEHNOLOGIE POLITEHNICA BUCUREȘTI

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

Proiect 1 – Dispozitive și circuite electronice Generator de semnal dreptunghiular

Student: Nanu Ana-Maria

Grupa: 434D

Profesori coordonatori: Conf. Dr. Ing. Drăghici Florin Ş.I. Dr. Ing. Pantazică Mihaela

Cuprins

Cι	prins		2
1.	Date	e inițiale de proiectare	4
	1.1.	Tema proiectului	4
	1.2.	Schema bloc a montajului electric	5
	1.3.	Schema electrică a montajului electric	6
2.	Cont	ținut tehnic/științific al proiectului	7
	2.1.	Descrierea funcțională a circuitului	7
	2.1.2	1. Etajul diferențial	8
	2.1.2	2. Etajul de amplificare în tensiune	9
	2.1.3	3. Etajul de amplificare în curent	10
	2.1.4	4. LED	10
	2.2.	Calcul de dimensionare	11
	2.2.2	1. Frecvența de oscilație	11
	2.2.2	2. Tensiunea vârf la vârf	12
	2.2.3	3. Factorul de umplere	12
	2.3.	Punctul static de funcționare	13
3.	Simu	ularea montajului electric	14
	3.1.	Curenți	14
	3.2.	Tensiuni	15
	3.3.	Puteri	16
	3.4.	$P1 = 0, P2 = 10k\Omega$	17
	3.5.	$P1 = 100\Omega, P2 = 10k\Omega.$	18
	3.6.	$P1 = 100\Omega \& P1 = 0, P2 = 0$	19
	3.7.	Temperatură	20
4.	BOM	1	21
5.	Layo	out	22
	5.1.	PCB design	22
	5.2.	BOARD OUTLINE	23
	5.3.	BOTTOM	23
	5.4.	FABRICATION	24
	5.5.	SOLDERMASK BOTTOM	24
	5.6.	SOLDERMASK TOP	25
	5.7.	SOLDERPASTE TOP	25

.8. SILKSCREEN TOP20	5.8.	
.9. LAYER TOP20	5.9.	
.10. FINAL2	5.10.	
Bibliografie și webografie28	Bik	6.

1. Date inițiale de proiectare

1.1. Tema proiectului

Să se proiecteze și realizeze un **generator de semnal dreptunghiular** cu următoarele caracteristici:

- Frecvența de oscilație, f_0 , reglabilă în intervalul 48-96 KHz;
- Factor de umplere: 0.5;
- Sarcina la ieşire, R_L: 24kΩ;
- Valoarea (vârf la vârf) a oscilației la ieșire, Vo, reglabilă în intervalul 0-6V;
- Semnalul la ieșire nu are componentă continuă;
- Domeniul temperaturilor de funcționare: -20° 120°C (verificabil prin testare în temperatură);
- Semnalizarea prezenței tensiunilor de intrare/ieșire cu o diodă de tip LED.

1.2. Schema bloc a montajului electric

Vom folosi un circuit basculant astabil, mai exact un oscilator de relaxare.

1.3. Schema electrică a montajului electric

2. Conținut tehnic/științific al proiectului

2.1. Descrierea funcțională a circuitului

Am construit un oscilator de relaxare dintr-un comparator inversor cu histerezis și o rețea RC pe intrarea inversoare.

Intrarea neinversoare este conectată la divizorul de tensiune format din R_3 și R_4 , prin intermediul căruia de aplică o parte din semnalul de la ieșire și prin care se fixează tensiunile de prag de histerezis.

Gruparea formată din C_1 , C_2 , R_7 și P_1 setează frecvența de oscilație.

Amplificatorul operațional folosit este unul standard, format din 3 etaje de amplificare:

- etaj de amplificare diferențială;
- etaj de amplificare în tensiune;
- etaj de amplificare în curent.

Am folosit două surse de alimentare de ±10V.

2.1.1. Etajul diferențial

Acest etaj este unul de tip transconductanță, transformând un semnal de tip tensiune, într-unul de tip curent. Acesta are o impedanță de intrare mare, ce permite adaptarea impedanței între sursa de semnal și următorul etaj din amplificatorul operațional.

Etajul principal este format din tranzistoarele Q_3 și Q_4 , NPN, de tip BC846B, în baza cărora se vor afla intrările amplificatorului operațional.

Pentru a mări câștigul, stabilitatea și pentru a reduce zgomotul, adăugăm două etaje auxiliare: oglinda și sursa de curent.

Tranzistoarele PNP, BC856B, Q_1 și Q_2 sunt folosite pentru a avea același curent în colectorul celor două tranzistoare ce formează principala parte din etajul diferențial.

Pentru polarizarea tranzistoarelor am folosit sursa de curent formată din Q_5 , Q_6 și R_5 . Astfel am asigurat un $I_{REF} = 4.27$ mA ce permite crearea unui semnal dreptunghiular perfect drept.

2.1.2. Etajul de amplificare în tensiune

Am folosit un etaj de tip transimpedanță, ce are rolul de a obține o tensiune mare, transformând curentul de la intrare.

Având o amplificare mare în buclă deschisă, am folosit o buclă de reacție negativă pentru a adapta valoarea tensiunii la cea specificată în datele inițiale de proiectare.

Amplificarea este realizată de tranzistorul PNP, BC856B, Q_7 , aflat în conexiune emitor-comun, ceea ce face ca acesta să aibă o amplificare mare. Rolul său este de a regla tensiunea la valoarea dorită. Are ca sarcină o sursă de curent formată din Q_8 .

Sursa de curent comandă curentul din etajul final.

2.1.3. Etajul de amplificare în curent

Acest etaj ar trebui să aibă o amplificarea unitară a tensiunii reglate în etajul anterior, motiv pentru care s-a folosit o conexiune de tip colector comun. Tranzistorul Q_9 este de tip BC846B, iar Q_{10} de tip BC856B. Ele vor disipa o putere semnificativă, datorită curentului care va trece și prin sarcină.

Cele două tranzistoare formează o configurație de tip pushpull, specifică amplificatoarelor de clasă B. Q_9 este responsabil pentru alternanța pozitivă, iar Q_{10} pentru alternanța negativă.

Dioda Zener D_1 stabilește tensiunile bază-emitor de deschidere pentru cele două tranzistoare și reduce distorsiunile.

2.1.4. LED

Conform cerințelor am semnalizat tensiunile de intrare în circuit printr-un led de tip SMLS14BET, în serie cu rezistența R_1 și R_2 . Luând în considerare puterea maximă

admisă (117mW) și valoarea tensiunii de funcționare uzuală pentru acesta (3.32V), precum și curentul necesar pentru aprindere [0.1-1~A], am ales valoarea de 150 Ω pentru rezistențe.

2.2. Calcul de dimensionare

2.2.1. Frecvența de oscilație

$$T = 2RC \ln \left(1 + \frac{R_3}{R_{H_1}}\right)$$

$$T = 2RC \ln \left(1 + \frac{R_3}{R_{H_1}}\right)$$

$$T = 2.2RC = \frac{1}{4}$$

$$f_{min} = 48 \text{ M/z} \Rightarrow T_{max} = \frac{1}{48 \text{ to}^3} \approx 20 \text{ ps}$$

$$f_{max} = 36 \text{ K/z} \Rightarrow T_{min} = \frac{1}{36 \cdot 10^3} \approx 10 \text{ ps}$$

$$T_{max} = 2.2 (R_k + R)C = 20 \text{ ps}$$

$$T_{min} = 2.2 R_k C = 10 \text{ ps}$$

$$1 + \frac{R}{R_0} = 2 \Rightarrow R = R'$$

$$1 + \frac{R}{R_0} = 2 \Rightarrow R = R'$$

$$Restor = 2 \cdot 2 \cdot 10^{-1} = \frac{100}{2.2 \cdot 100} = \frac{100}{2.2} \cdot 10^3 = 145, 1 \text{ m}$$

$$Restor = 2 \cdot 2 \cdot 10^{-1} = 100 \text{ ps}$$

$$Restor = 2 \cdot 2 \cdot 10^{-1} = 100 \text{ ps}$$

$$Restor = 2 \cdot 2 \cdot 10^{-1} = 100 \text{ ps}$$

$$Restor = 2 \cdot 10^{-1} = 100 \text{ ps}$$

$$Restor = 2 \cdot 10^{-1} = 100 \text{ ps}$$

$$Restor = 2 \cdot 10^{-1} = 100 \text{ ps}$$

$$Restor = 2 \cdot 10^{-1} = 100 \text{ ps}$$

$$Restor = 2 \cdot 10^{-1} = 100 \text{ ps}$$

$$Restor = 2 \cdot 10^{-1} = 100 \text{ ps}$$

$$Restor = 2 \cdot 10^{-1} = 100 \text{ ps}$$

$$Restor = 2 \cdot 10^{-1} = 100 \text{ ps}$$

$$Restor = 2 \cdot 10^{-1} = 100 \text{ ps}$$

$$Restor = 2 \cdot 10^{-1} = 100 \text{ ps}$$

$$Restor = 2 \cdot 10^{-1} = 100 \text{ ps}$$

$$Restor = 2 \cdot 10^{-1} = 100 \text{ ps}$$

$$Restor = 2 \cdot 10^{-1} = 100 \text{ ps}$$

$$Restor = 2 \cdot 10^{-1} = 100 \text{ ps}$$

$$Restor = 2 \cdot 10^{-1} = 100 \text{ ps}$$

$$Restor = 2 \cdot 10^{-1} = 100 \text{ ps}$$

$$Restor = 2 \cdot 10^{-1} = 100 \text{ ps}$$

$$Restor = 2 \cdot 10^{-1} = 100 \text{ ps}$$

$$Restor = 2 \cdot 10^{-1} = 100 \text{ ps}$$

$$Restor = 2 \cdot 10^{-1} = 100 \text{ ps}$$

$$Restor = 2 \cdot 10^{-1} = 100 \text{ ps}$$

$$Restor = 2 \cdot 10^{-1} = 100 \text{ ps}$$

$$Restor = 2 \cdot 10^{-1} = 100 \text{ ps}$$

$$Restor = 2 \cdot 100 \text{ ps}$$

$$Restor = 2$$

2.2.2. Tensiunea vârf la vârf

2.2.3. Factorul de umplere

Tooleans de sumpleres

Este deserminat de divisée et le
$$R_3$$
- R_4 .

 $R_3 - R_4 = \frac{R_3}{R_3 + R_4} = \frac{1}{2}$
 $R_3 - R_4 = R_3 = R_4 = 10 \text{ K}$

2.3. Punctul static de funcționare

3. Simularea montajului electric

3.1. <u>Curenți</u>

Verificând foile de catalog ale componentelor, acestea merg în regulă la curenții obținuți.

3.2. <u>Tensiuni</u>

Verificând foile de catalog ale componentelor, acestea merg în regulă pentru tensiunile obținute.

3.3. Puteri

De asemenea, și puterile se încadrează în parametrii normali de funcționare a componentelor.

3.4.
$$\underline{P_1} = 0$$
, $\underline{P_2} = 10$ k Ω .

Pentru aceste valori se obțin:

- $f_{min} = 49.27kHz$;
- $V_{PP} = 6.0071V$;
- Componenta continuă este neglijabilă.

3.5. $\underline{P_1} = 100\Omega$, $\underline{P_2} = 10k\Omega$.

Pentru aceste valori se obțin:

- $f_{max} = 98kHz$;
- $V_{PP} = 5.9944V$;
- Componenta continuă este neglijabilă.

3.6. $\underline{P_1} = 100\Omega \& \underline{P_1} = 0, \underline{P_2} = 0$

Pentru aceste valori se obțin:

- $f_{max} = 98kHz \& f_{min} = 49.27kHz;$
- $V_{PP} = 743nV$;

3.7. <u>Temperatură</u>

Am simulat funcționarea circuitului la -20°, 0°, 20°, 27°, 40°, 60°, 80°, 100°, 120°C, toate componentele funcționând normal în tot intervalul de temperatură.

4. BOM

Nr. ort.	Referinț ă	Catalog	Cod distrib	Nume prod	Prod	Clasă	Qty	Descriere	Distribuitor	Pret (fara TVA)	Pret total pe reper (fara TVA)
1	R6	LINK	SMD0805-100R- 1%	0805S8F1000T5E	ROYAL OHM	rezistor	3	Rezistor SMD, chip, 0805, 1000, ±1%, 0.125W	TME România	0.03041	0.09123
2	R1, R2	LINK	SMD0805-150R- 1%	0805S8F1500T5E	ROYAL OHM	rezistor	2	Rezistor SMD, chip, 0805, 1500, ±1%, 0.125W	TME România	0.03041	0.06082
3	R11	LINK	SMD0805-2K-1%	0805S8F2001T5E	ROYAL OHM	rezistor	1	Rezistor SMD, chip, 0805, 2kg, ±1%, 0.125W	TME România	0.03041	0.03041
4	R5	LINK	SMD0805-2K2-1%	0805S8F2201T5E	ROYAL OHM	rezistor	1	Rezistor SMD, chip, 0805, 2.2kg, ±1%, 0.125W	TME România	0.03041	0.03041
5	R8	LINK	SMD0805-4K7-1%	0805S8F4701T5E	ROYAL OHM	rezistor	1	Rezistor SMD, chip, 0805, 4.7kn, ±1%, 0.125W	TME România	0.03041	0.03041
6	R3, R4, R7	LINK	SMD0805-10K-1%	0805S8F1002T5E	ROYAL OHM	rezistor	3	Rezistor SMD, chip, 0805, 10k0, ±1%, 0.125W	TME România	0.03041	0.09123
7	R10	LINK	SMD0805-22K-1%	0805S8F2202T5E	ROYAL OHM	rezistor	1	Rezistor SMD, chip, 0805, 22kg, ±1%, 0.125W	TME România	0.03041	0.03041
8	P1	LINK	1804GSMD-100R	1804GSMD-100R	SR PASSIVES	potențiometru	1	Potențiometru liniar, simplă tură, SMD, 1000, ±10%, 100ppm/°C, 0.25W	TME România	2.4015	2.4015
9	R9	LINK	TS53YL103MR10	TS53YL103MR10	VISHAY	potențiometru	1	Poten;iometru de montare; singurā turā; 10kΩ; 250mW; SMD; ±20%	TME România	2.4015	2.4015
10	C3	LINK	CL21B222KBAN NND	CL21B222KBANN ND	SAMSUNG	condesator	1	Condensator ceramic; MLCC; 2,2nF; 50V; X7R; ±10%; SMD; 0805	TME România	0.02821	0.02821
11	C2	LINK	CL21B103KCANN NC	CL21B103KCANN NC	SAMSUNG	condesator	1	Condensator MLCC, SMD, 0805, 10nF, ±5%,	TME România	0.02821	0.02821
12	C1	LINK	CL21B333KBAN NNC	CL21B333KBANN NC	SAMSUNG	condesator	1	Condensator ceramic; MLCC; 33nF; 50V; X7R; ±10%; SMD; 0805	TME România	0.0409	0.0409
13	Q3, Q4, Q5, Q6, Q8, Q9	LINK	BC846B	BC846B	NXP	tranzistor bipolar	6	Tranzistor bipolar NPN, SMD, SOT23, 65V,	TME România	0.0481	0.2886
14	Q1, Q2, Q7, Q10	LINK	BC856B	BC856B	DIOTEC	tranzistor bipolar	4	Tranzistor bipolar PNP, SMD, SOT23, 80V,	TME România	0.0401	0.1604
15	D2	LINK	BZX84C5V1	BZX84-C5V1	NEXPERIA	diodā Zener	1	Diodā Zener, SMD, SOT23, 5,1V, ±5%, 0.3W	TME România	0.0562	0.0562
16	D1					LED	1				
TOTAL fārā TVA				TOTAL ou TVA							
5.77044				7.1553456							

5. Layout

5.1. PCB design

5.2. BOARD OUTLINE

5.3. <u>BOTTOM</u>

5.4. <u>FABRICATION</u>

5.5. <u>SOLDERMASK BOTTOM</u>

5.6. SOLDERMASK TOP

5.7. SOLDERPASTE TOP

5.8. SILKSCREEN TOP

5.9. LAYER TOP

5.10. <u>FINAL</u>

	DRILL CHART: TOP	to BOTTOM			
ALL UNITS ARE IN MILLIMETERS					
FIGURE	FINISHED_SIZE	PLATED	QTY		
•	0.4	PLATED	1 3		

6. Bibliografie și webografie

- CODREANU N., PANTAZICĂ M., IONESCU C., MARCU A., Tehnici CAD de realizarea modulelor electronice, București, Editura CAVALLIOTI, 2017
- BREZEANU GH., DRĂGHICI F., DILIMOŢ GH., MITU F., Circuite electronice fundamentale, București, Editura ROSETTI EDUCATIONAL, 2009
- Curs DE și CEF
- Curs CIA
- https://eprofu.ro/docs/electronica/analogica/circuite/filtre-oscilatoare.pdf
- http://www.bel.utcluj.ro/dce/didactic/cef/20 generatoare nesinusoidale.p
 df