Review: Ch 14 Oscillations

Note: Midterm 1 is on Tuesday (04/27/2021).	covering chapters: 14, 1	5, 16, & 31
--	--------------------------	-------------

\sim 1			
<i>(</i>)	710	ati.	$\mathbf{v}_{\mathbf{v}}$
v	bje	СU	vc.

■ Destroy this upcoming Midterm 1. Let's gooooo!!!!
Okay but for real tho, let's try to nail down the following:
□ Apply the displacement function and Cons. of Energy for a spring-mass
□ Finding the resonant frequencies (harmonics & overtones) for a guitar string.

Contextualizing the Formula Sheet

[10mins]

- **1)** This equation represents _____ as a function of _____ $x(t) = A\cos\omega t + \phi$
- **2)** The angular frequency ω can be expressed/rewritten in the following ways
- 3) The **total energy** E_{total} of an oscillating spring-mass system can be written as

$$E_{\text{total}} = \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

However, the total energy can also be expressed as

 $\omega =$

$$E_{\text{total}} =$$

This principle is called _____

Group Activity (Leader - Student)

[15mins]

Oscillating Spring-Mass

A $1.0\,\mathrm{kg}$ block oscillates on a spring with spring constant $20\,\mathrm{N/m}$. At $t=0\,\mathrm{s}$, the block is $20\,\mathrm{cm}$ to the right of the equilibrium position and moving to the left at a speed of $100\,\mathrm{cm/s}$.

- (a) Determine the period
- (b) Determine the amplitude

Solution

the answer comes from within

Group Activity (Student - Leader)

[15mins]

Guitar String

A guitar string is $90\,\mathrm{cm}$ long and has a mass of $3.16\,\mathrm{g}$. From the bridge to the support post, the length of the string is $60\,\mathrm{cm}$ and the string is under a tension of $520\,\mathrm{N}$.

■ Determine the fundamental frequency and the first two overtones.

Solution

$$f_1 = 321 \,\mathrm{Hz}, \quad f_2 = 642 \,\mathrm{Hz}, \quad f_3 = 963 \,\mathrm{Hz}$$