Decision Trees

Wednesday, November 16, 2016 9:33 AM

Attributes

• Alternate: suitable alternative restaurants nearby? (Y/N)

• Bar: A bar to wait in? (Y/N)

• Fri/Sat (Y/N)

Hungry (Y/N)

• Price: (\$, \$\$, \$\$\$)

• Raining: (Y/N)

• Reservation: we made a reservation (Y/N)

• Type: Kind of restaurant (French, Italian, Thai, Burger)

• WaitEstimate (0-10, 10-30, 30-60, >60)

• Patrons: how busy? (none, some, full)

Discrete data Smill data sets

Decision trees

One possible representation for hypotheses

E.g., here is the "true" tree for deciding whether to wait:

Chapter 18, Sections 1-3 14

X

Examples described by attribute values (Boolean, discrete, continuous, etc.) E.g., situations where I will/won't wait for a table:

		Aut										m .	1
	Example	Attributes										Target	
		Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait	
نب	$\triangleright X_1$	T	F	F	T	Some	\$\$\$	F	T	French	0–10	<i>T</i> <	_
	X_2	T	F	F	T	Full	\$	F	F	Thai	30–60	F ≪	F
	X_3	F	T	F	F	Some	\$	F	F	Burger	0–10	<i>T</i> <	-
	X_4	T	F	T	T	Full	\$	F	F	Thai	10-30	T	
	X_5	T	F	T	F	Full	\$\$\$	F	T	French	>60	F	
	X_6	F	T	F	T	Some	\$\$	T	T	ltalian	0–10	T	
	X_7	F	T	F	F	None	\$	T	F	Burger	0–10	F	
	X_8	F	F	F	T	Some	\$\$	T	T	Thai	0–10	T	
	X_9	F	T	T	F	Full	\$	T	F	Burger	>60	F	
	X_{10}	T	T	T	T	Full	\$\$\$	F	T	Italian	10-30	F	
	X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F	
	X_{12}	T	T	T	T	Full	\$	F	F	Burger	30-60	T	

Classification of examples is positive (T) or negative (F)

Chapter 18, Sections 1–3 13

Which attribute to choose?

Information = entropy

- The one that gives you the most information (aka the most diagnostic)
- Information theory
 - Answers the question: how much information does something contain?
 - Ask a question

10111121001010111011

- Answer is information
- Amount of information depends on how much you already knew
- Example: flipping a coin
 - If coin is random: 1 bit of information is gained
- If you know the coin is weighted, there is less information gained because you could guess the outcome
- Two-headed coin: 0 bits of information gained

• If there are n possible answers, $v_1...v_n$ and v_i has probability $P(v_i)$ of being the right answer, then the amount of information is:

(On toss

$$V_1 = heals$$
 $P(V_1) = 0.5$
 $V_2 = fails$ $P(V_2) = 0.5$

$$I(P(v_1),...,P(v_n)) = \sum_{i=1}^{n} -P(v_i)\log_2 P(v_i)$$

= 1 bit

- · For a training set:
 - p = # of positive examples n = # of negative examples

Probability of a positive example a negative example

-p = n = 6

For our restaurant behavior

Pos: 13468 12 Neg: 2 5 7 9 10 11 $T\left(\frac{6}{12},\frac{6}{12}\right) = -\frac{6}{12}\log_2\frac{6}{12} - \frac{6}{12}\log_2\frac{6}{12}$ = 1 5.7

X

- I() = 1
- Would not be 1 if training set weren't 50/50 yes/no, but the point is to arrange attributes to increase information gain

Measuring attributes

- Information gain is a function of how much more information you need after applying an attribute
 - If I use attribute A next, how much more information will I

- · Not done yet
- · Need to measure information gained by an attribute

Gain(A) =
$$I\left(\frac{p}{p+n}, \frac{n}{p+n}\right)$$
 - remainder(A)

Info of the root of subtree

Pick the biggest

- Gain(type) =
$$I(6/12,6/12) - \left(\frac{2}{12}I\left(\frac{1}{2},\frac{1}{2}\right) + \frac{2}{12}I\left(\frac{1}{2},\frac{1}{2}\right) + \frac{4}{12}I\left(\frac{2}{4},\frac{2}{4}\right) + \frac{4}{12}I\left(\frac{2}{4},\frac{2}{4}\right)\right)$$

Save anything on the web to OneNote in one click — Get OneNote Web Clipper

$$- \text{ Gain(patrons)} = I(6/12,6/12) - \left(\frac{2}{12}I\left(\frac{0}{2},\frac{2}{2}\right) + \frac{4}{12}I\left(\frac{4}{4},\frac{0}{4}\right) + \frac{6}{12}I\left(\frac{2}{6},\frac{4}{6}\right)\right)$$

$$\approx 0.541 \text{ bits}$$

Pos: 13468 12
Neg: 25791011

Patrons=full, hungry=yes

Patrons=full, hungry=no

Full

Pos: 412
Neg: 25910

Decision-tree-learning (examples, attributes, default)

Greed, search Recursive

X

IF examples is empty THEN RETURN default

ELSE IF all examples have same classification THEN RETURN classification

ELSE IF attributes is empty RETURN majority-value(examples)

ELSE More amples, more attributes you havent Wed

best = choose(attributes, example) Where info gain happens higgest in to gain

tree = new decision tree with best as root

m = majority-value(examples)

FOREACH answer v_i of best DO

examples_i = {elements of examples with best= v_i }

 $subtree_i = \textbf{decision-tree-learning}(examples_i, attributes-\{best\}, m) \qquad \textit{CCOSinical}$

add a branch to tree based on v_i and subtree_i

RETURN tree

Save anything on the web to OneNote in one click
Get OneNote Web Clipper

Plot a learning curve

% correct on test set, as a function of training set size

0.4 0 10 20 30 40 50 60 70 80 90 100

Training set size

- As training set grows, prediction quality should increase
 - Called a "happy graph"
 - There is a pattern in the data AND the algorithm is picking it up!