- 1 import pandas as pd
- 2 import numpy as np
- 3 import matplotlib.pyplot as plt
- 4 import seaborn as sns
- 1 data = pd.read_csv("airquality.csv")

1 data.head()

	Unnamed: 0	Ozone	Solar.R	Wind	Temp	Month	Day
0	1	41.0	190.0	7.4	67	5	1
1	2	36.0	118.0	8.0	72	5	2
2	3	12.0	149.0	12.6	74	5	3
3	4	18.0	313.0	11.5	62	5	4
4	5	NaN	NaN	14.3	56	5	5

1 data.isnull().sum()

Unnamed: 0	0
Ozone	37
Solar.R	7
Wind	0
Temp	0
Month	0
Day	0
dtypo: int61	

dtype: int64

1 data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 153 entries, 0 to 152
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype			
0	Unnamed: 0	153 non-null	int64			
1	Ozone	116 non-null	float64			
2	Solar.R	146 non-null	float64			
3	Wind	153 non-null	float64			
4	Temp	153 non-null	int64			
5	Month	153 non-null	int64			
6	Day	153 non-null	int64			
d+						

dtypes: float64(3), int64(4)

memory usage: 8.5 KB

```
1 ozone_mean = data['Ozone'].mean()
```

2 ozone_mean

42.12931034482759

1 data = data.fillna(ozone_mean)
2 data.head()

Unnar	med: 0	Ozone	Solar.R	Wind	Temp	Month	Day
0	1	41.00000	190.00000	7.4	67	5	1
1	2	36.00000	118.00000	8.0	72	5	2
2	3	12.00000	149.00000	12.6	74	5	3
3	4	18.00000	313.00000	11.5	62	5	4
4	5	42.12931	42.12931	14.3	56	5	5

1 data.isnull().sum()

```
Unnamed: 0 0
Ozone 0
Solar.R 0
Wind 0
Temp 0
Month 0
Day 0
dtype: int64
```

```
1 x = data['Month']
2 y = data['Temp']
3 plt.figure(dpi = 120)
4 plt.bar(x,y,color = 'red',label='Temperature values')
5 plt.xlabel('Monthly data')
6 plt.ylabel('Temperature data')
7 plt.legend()
```

 \Box

<matplotlib.legend.Legend at 0x7f357d244fd0>

```
Temperature values
```

```
1 x = data['Day']
2 y = data['Temp']
3 plt.figure(dpi = 120)
4 plt.bar(x,y,color = 'red',label='Temperature values')
5 plt.xlabel('Daywise data')
6 plt.ylabel('Temperature data')
7 plt.legend()
```

<matplotlib.legend.Legend at 0x7f357cd02f10>


```
1 x = data['Month']
2 y = data['Ozone']
3 plt.figure(dpi = 120)
4 plt.bar(x,y,color = 'blue',label='Ozone values')
5 plt.xlabel('Monthly data')
6 plt.ylabel('Daywise data')
7 plt.legend()
```

<matplotlib.legend.Legend at 0x7f357c612510>


```
1 x = data['Day']
2 y = data['Ozone']
3 plt.figure(dpi = 120)
4 plt.bar(x,y,color = 'blue',label='Ozone values')
5 plt.xlabel('Daywise data')
6 plt.ylabel('Temperature data')
7 plt.legend()
```

<matplotlib.legend.Legend at 0x7f357d050790>


```
1 x = data['Ozone']
2 plt.boxplot(x)
   {'whiskers': [<matplotlib.lines.Line2D at 0x7f357c192c10>,
     <matplotlib.lines.Line2D at 0x7f357c1a1190>],
    'caps': [<matplotlib.lines.Line2D at 0x7f357c1a16d0>,
     <matplotlib.lines.Line2D at 0x7f357c1a1c10>],
    'boxes': [<matplotlib.lines.Line2D at 0x7f357c192690>],
    'medians': [<matplotlib.lines.Line2D at 0x7f357c1a71d0>],
    'fliers': [<matplotlib.lines.Line2D at 0x7f357c1a7710>],
    'means': []}
    175
                              0
    150
                              0
    125
    100
     75
     50
     25
```

```
1 x = data['Temp']
2 plt.boxplot(x)
```

0

1 from sklearn.model_selection import train_test_split

```
1 X = data['Temp']
2 Y = data['Ozone']
3 X_train,x_test,y_train,y_test = train_test_split(X, Y, test_size=0.20, rando
1 X train.shape, y train.shape, x test.shape, y test.shape
   ((122,), (122,), (31,), (31,))
1 X = np.array(X).reshape(-1,1)
2 Y = np.array(Y).reshape(-1,1)
3 from sklearn.linear model import LinearRegression
4 model = LinearRegression().fit(X,Y)
1 z = np.array([100,76,45])
2z = z.reshape(-1,1)
3 model.predict(z)
   array([[ 82.94440343],
         [ 38.6556854 ],
         [-18.55057539]])
1 #training pred5
1 X train = np.array(X train).reshape(-1,1)
2 y_train = np.array(y_train).reshape(-1,1)
3 training model = LinearRegression().fit(X train,y train)
1 x train predicted = training model.predict(X train)
2
1 x_test = np.array(x_test).reshape(-1,1)
2 y test = np.array(y test).reshape(-1,1)
3 testing_model = LinearRegression().fit(x_test,y_test)
1 y_test_predicted = testing_model.predict(x_test)
1 plt.figure(dpi = 120)
2 plt.scatter(x_test,y_test,label="Actual data")
3 plt.plot(x_test,y_test_predicted,label="Predicted data")
4 plt.title("Ozone vs Temp")
5 plt.xlabel("Temp")
6 plt.ylabel("Ozone")
7 plt.legend()
```

<matplotlib.legend.Legend at 0x7f357b357650>


```
Temp
1 from sklearn.metrics import mean_squared_error
2
1 training_mse = mean_squared_error(y_train,x_train_predicted)
2 training mse
   532.9230042762385
1 training_rmse = training_mse**0.5
2 training_rmse
   23.085125173501627
1 from sklearn.metrics import r2_score
2 model_mean = np.mean(y_train)
3 model_mean
4 r_squared = 1 - (training_mse/model_mean)
5 r_squared
6 r2_score(y_train,x_train_predicted)
   0.32981095616195255
1 testing_mse = mean_squared_error(y_test,y_test_predicted)
2 testing_mse
```

425.0761498073731

Colab paid products - Cancel contracts here

✓ 0s completed at 8:21 AM

×