Отчет о выполнении лабораторной работы 3.2.2(4.8) Резонанс напряжений

Исламов Сардор, группа Б02-111

22 октября 2022 г.

Аннотация. В данной работе исследован резонанс напряжений в последовательном колебательном контуре с изменяемой ёмкостью, также исследован закон Ома.

Теоретическое введение

Рассмотрим электрическую цепь, состоящую из резистора R и катушки индуктивности L с импедансом $Z_L = r_L + i\Omega L$, последовательно подключённых к внешнему источнику, ЭДС которого меняется по синусоидальному закону с частотой (рис. 1).

Обозначим через U_R напряжение на резисторе, через U_L – напряжение на катушке и через U_{R+L} — суммарное напряжение на катушке и на резисторе. Для этих напряжений справедливы комплексные соотношения:

$$\widehat{U}_R = \widehat{I}R, \quad \widehat{U}_L = \widehat{I}(r_L + i\Omega L), \quad \widehat{U}_{R+L} = \widehat{I}(R + r_L + i\Omega L).$$
 (1)

Напомним, что здесь r_L – активное сопротивление катушки, которое характеризует суммарные потери энергии в катушке, в том числе потери в её ферромагнитном сердечнике.

Переходя к модулям и фазам токов и напряжений, найдём из (1):

$$U_R = I \cdot R, \quad \operatorname{tg} \psi_1 = 0; \tag{2}$$

$$U_L = I \cdot \sqrt{r_L^2 + (\Omega L)^2}, \quad \operatorname{tg} \psi_2 = \frac{\Omega L}{r_L};$$
 (3)

$$U_{R+L} = I\sqrt{(R+r_L)^2 + (\Omega L)^2}, \quad \text{tg } \psi_3 = \frac{\Omega L}{R+r_L}.$$
 (4)

В этих формулах U и I обозначают эффективные значения напряжений и токов (показания приборов), как принято в электротехнике.

Измеряя с помощью трёх вольтметров значения U_R , U_L и U_{R+L} и зная сопротивление резистора R, нетрудно вычислить, пользуясь формулами (2), (3) и (4), силу тока в цепи, активное сопротивление катушки r_L , её индуктивность L, мощность P_L , выделяемую на катушке, и сдвиг фаз между током и напряжением на катушке.

Рассчитаем мощность переменного тока, выделяемую в катушке. Мгновенное значение мощности равно

$$P=U\left(t\right) \cdot I\left(t\right) .$$

Средняя мощность за период T определяется формулой

$$\overline{P} = \frac{1}{T} \int_{0}^{T} U(t) \cdot I(t) dt.$$

Полагая $I(t) = I\sqrt{2}\cos\Omega t$, $U(t) = U\sqrt{2}\cos(\Omega t + \psi)$, получим после интегрирования:

$$P_L = U_L \cdot I \cos \psi = I^2 \cdot r_L. \tag{5}$$

Средняя мощность, выделяющаяся в катушке самоиндукции, определяется, таким образом, действительной частью её импеданса.

Активное сопротивление катушки r_L можно определить, если включить её в последовательный колебательный контур с известными параметрами – сопротивлением R и ёмкостью C (рис.). В контуре, настроенном в резонанс на частоту Ω внешнего источника (собственная частота контура и внешняя совпадают: $\omega_0 = \Omega$, реактивные сопротивления индуктивности и ёмкости одинаковы:

$$\omega_0 L = \frac{1}{\omega_0 C}.\tag{6}$$

Определив каким-либо экспериментальным способом добротность Q этого контура, можно рассчитать полное сопротивление контура R_{Σ} в резонансе, поскольку

$$Q = \frac{\omega_0 L}{R_{\Sigma}} = \frac{1}{\omega_0 C R_{\Sigma}}.$$
 (7)

Резонансное сопротивление контура R_{Σ} , включает в себя известное со противление резистора R и активное сопротивление катушки r_L :

$$R_{\Sigma} = R + r_L. \tag{8}$$

Экспериментальная установка

В данной работе изучаются резонансные явления в последовательном колебательном контуре (резонанс напряжений). Схема экспериментального стенда показана на рис. 1.

Источник питания

Рис. 1: Схема установки для изучения закона Ома в цепи переменного тока

Схема установки для исследования закона Ома в цепи переменного тока представлена на рис. 1. Цепь, состоящая из резистора $R_1 \simeq 100$ Ом и катушки L с выдвижным сердечником, подключена к автотрансформатору, выходное напряжение которого можно менять от 0 до 127 В. Напряжения на каждом из элементов и суммарное напряжение цепи измеряются тремя вольтметрами: V_R , V_L и V_{R+L} . Амперметр А измеряет ток в цепи, а ваттметр Р — мощность, выделяющуюся на катушке.

Ваттметр электродинамической системы состоит из двух катушек, одна из которых вращается в магнитном поле другой, если через них течёт ток. Токовая катушка ваттметра II^* включается последовательно в исследуемую цепь, а катушка напряже-

ний (потенциальная) VV^* — параллельно к элементу, в котором измеряется выделяемая мощность.

Два из четырёх зажимов ваттметра помечены звёздочкой (*). Эти зажимы надо соединить вместе. Предел измерений устанавливается при помощи переключателей или штепселей, которые вставляются в соответствующие гнёзда: произведение цифр против штепселя

токовой катушки II^* и против переключателя катушки напряжений VV^* определяет мощность, соответствующую отклонению стрелки на всю шкалу. Отсчёт мощности ведётся по любой из шкал, обозначенных буквой P.

Рис. 2: Схема установки для наблюдения резонанса напряжений

Схема установки для изучения резонанса напряжений изображена на рис. 2. Последовательно соединены резистор $R_2 \simeq 5$ Ом, катушка L и магазин емкостей C. Амперметр A измеряет ток в цепи, вольтметр V_C — напряжение на ёмкости, вольтметр V_{Σ} — суммарное напряжение на контуре. Резонанс можно зафиксировать с помощью осциллографа, если подать на вход X напряжение с контура, а на вход Y — напряжение с резистора R_2 , пропорциональное току в цепи. В общем случае на экране виден эллипс. При резонансе эллипс вырождается в прямую линию.

Результаты измерений и обработка данных

Закон Ома в цепи переменного тока. Установим зависимость параметров цепи от индуктивности катушки. Для этого будем малыми шагами изменять положение сердечника и снимать показания с приборов (табл. 1). Сопротивление реостата $R_1 = 98$ Ом. Установленные на приборах пределы измерения, а также их параметры в установленных режимах указаны в табл. 2

x, MM	5	7	9	11	13	15	17	19	21
<i>I</i> , дел	32	35	37	38	39.5	40	40.5	41	41
U_R , дел	67	72.5	77	80	82	83.5	84.5	85.5	86
U_{RL} , дел	117	115.5	114	113	112.5	112	111	110.5	110
U_L , дел	80	72.5	65	60.5	56.5	52.5	50	47.5	45
P_L , дел	47.5	43	40	38	36	34	33	32	31

Таблица 1: Зависимость величин в цепи от индуктивности

	Предел измерений	Сопротивление	Индуктивность	Класс точности		
I	5А / 100 дел	0.005 Ом	0.0023 мГн	0.5		
U_R	75В / 150 дел	1667 Ом	_	0.5		
U_{RL}	150В / 150 дел	2.5 кОм	_	0.5		
U_L	150В / 150 дел	2.5 кОм	_	0.5		
P_L	250Вт / 100 дел	_	_	0.5		

Таблица 2: Параметры приборов

Теперь по формулам (5) и (3) вычислим r_L и L (табл. 3) и изобразим на графиках (рис. 3) их зависимости от положения сердечника.

x, MM	5	7	9	11	13	15	17	19	21
r_L , 10 Om	4.64	3.51	2.92	2.63	2.31	2.12	2.01	1.9	1.84
σ_{r_L} , 10 Om	0.15	0.11	0.09	0.08	0.07	0.06	0.06	0.06	0.05
$L, 10^{-2}$ Гн	5.94	7.0	6.21	5.71	5.38	4.91	4.56	4.2	3.79
$\sigma_L, 10^{-2}$ Гн	0.25	0.13	0.1	0.09	0.08	0.07	0.07	0.07	0.07

Таблица 3: Зависимость r_L и L от x

Рис. 3: Зависимость r_L и L от x

Обратим внимание, что первые точки выпадают из основной серии, поэтому при аппроксимровании и расчетах не учитывались.

Векторная диаграмма. Из векторной диаграммы (рис. 4) для среднего положения сердечника определим напряжение на активной $U_{L, \text{акт}}$ и реактивной $U_{L, \text{реакт}}$ части импеданса катушки.

$$\cos \psi = \frac{U_R^2 + U_{LR}^2 - U_L^2}{2 U_R U_{LR}}$$

$$U_{L,\text{akt}} = U_{LR}\cos\psi - U_R, \quad U_{L,\text{peakt}} = U_{RL}\sqrt{1 - \cos^2\psi}$$

Тогда $\cos \psi = 0.93 \pm 0.36$,

 $U_{L,{
m akt}}=6.89\pm2.33\,$ В, $U_{L,{
m peakt}}=39.4\pm13.1\,$ В Теперь найдем L и r_L :

Рис. 4: Векторная диаграмма

$$L = \frac{U_{L,\mathrm{peakt}}}{I\Omega} = 0.13 \pm 0.05 \ \Gamma$$
н, $r_L = \frac{U_{L,\mathrm{akt}}}{I} = 3.63 \pm 1.72 \ \mathrm{Om}$

Определим по диаграмме $\cos \theta = \frac{U_{L,\text{акт}}}{U_L} = 0.11 \pm 0.05$ Экспериментальное значение

 $\cos \theta_{\text{эксп}} = \frac{P_L}{U_L I} = 0.33 \pm 0.02$, что довольно сильно разнится со знаением, полученным по векторной диаграмме.

Также по векторной диаграмме найдем $P_L = U_L I \cos \theta = 13.1 \pm 6.2$ Вт. Из эксперимента $P_L = 38.0 \pm 0.5$ Вт, что также противоречит расчитанным значениям.

Добротность. Теперь расчитаем индуктивность и и сопротивление через добротность по формулам (6), (7), (8). Элеткроемкость, при которой достигался резонанс равна $C=52.1\pm1.1$ мкФ, $U_{\Sigma}=65.5\pm0.1$ В

$$L = \frac{1}{\omega_0^2 C} = 0.19 \pm 0.01 \ \Gamma$$
н, $r_L = \frac{U_{\Sigma} \omega_0 L}{C} = 75.2 \pm 3 \ \mathrm{Om}.$

Подведение итогов

Мы экспериментально исследовали резонанс напряжения в последовательной цепи переменного тока, а также нашли L и r_L различными методами. Вычисление r_L из векторной диаграммы имеет огромную погрешность. Это происходит из-за применения теоремы косинусов, применение которой вносит значительный вклад в погрешность, поскольку при её применении необходимо производить арифметические операции над числами, достаточно близко лежащими друг к другу. При этом их погрешность такова, что она не позволяет адекватно оценить значение искомой величины.

Остальные методы измерения сопротивления и индуктивности имеют право на существование, хотя и могут довольно сильно отличаться друг от друга.

Таким образом, применённые методы позволяют оценить параметры катушки по порядку величины, однако они не дают возможности с точностью получить реальные характеристики элемента.