

Finding the Shortest Path Using Reinforcement Learning

Group E-puck 3

Technishce Universität München

July 27, 2017

Group members

Lingfeng Zhang

- Learning Algorithm
- Modeling
- E-puck commission

Tianming Qiu

- Simulation
- Build environment
- Low-level control

Wenhan Hao

- State unit design
- Real world
- Training

- Introduction
- Modeling
- State detection
- Simulation
- Real world demonstration

- Introduction
- Modeling
- State detection
- Simulation
- Real world demonstration

Scenario

Scenario

- Introduction
- Modeling
- State detection
- Simulation
- Real world demonstration

Modeling

Markov Decision Process (S, A, P, r, γ) $P(s_{t+1}) = P(s_{t+1}|s_t, a_t)$

Modeling

Model-based method: first learn a model of the system, and then optimize the policy under this model.

Figure: Main Modules of model-based method. [1]

Model-free method: directly learn a control policy from system interaction

Modeling

- Problem:
- Long training time
- Solution:
- Prior knowledge

- Introduction
- Modeling
- State detection
- Simulation
- Real world demonstration

E-puck and its sensors

Camera

IR proximity

Microphone

Floor sensors

State detection design

Gray area for stop

Ternary detection unit

White: 2

Gray: 1

Black: 0

e.g.
$$201_{(3)} \leftarrow \rightarrow 2 \times 3^2 + 0 \times 3^1 + 1 \times 3^0 = 19_{(10)}$$

Maximal state space: $3^3 = 27$

- Introduction
- Modeling
- State detection
- Simulation
- Real world demonstration

Simulation

Simulation

8x speed

- Introduction
- Modeling
- State detection
- Simulation
- Real world demonstration

Real world demonstration: Training

Real world demonstration: After training

Questions?