Project CuFT PTA

In the group semiconducting compounds, cuprous oxide (Cu_2O) presents promising electrical and manufacturing features that establish it as a suitable candidate for p-type transparent semiconductors. During last year in LMGP we achieved the incorporation of magnesium in cuprous oxide thin films grown by aerosol-assisted metal-organic chemical vapor deposition. The fabricated doped thin films reached up to 17% of magnesium, resulting in morphology changes. Electrical resistivity was reduced down to values as low as 6.6 Ω .cm, due to the increase of charge-carrier density up to $8x10^{17}$ cm⁻³, 100 times higher than Cu_2O . On the mobility, we obtained diminished values ($1 \text{ cm}^2 \cdot \text{V}^{-1} \cdot \text{s}^{-1}$) when compared to intrinsic Cu_2O (5 cm².V⁻¹.s⁻¹). However, the assessment of the impact of the doping on the optical transparency was inconclusive since the bandgap (2.35eV) and the total transparency (51%) only improved slightly when comparable with intrinsic Cu_2O .

As a consequence of these results, we would like to prepare a Thin Film Transistor TFT in PTA with a following structure:

Figure 1 - Structure of the TFT

Substrate - Corning Glass 1737

Gate – 200nm of indium tin oxide (ITO) thin film (commercial)

Dielectric - 200 nm of Al_2O_3 and TiO_2 (ATO) superlattice, 200 nm Al_2O_3 , or 200 nm of SiO_2 (deposited in PTA with mask)

Semiconductor - 50nm of intrinsic Cu₂O and Mg doped Cu₂O (deposited in LMGP).

Channel width and length - W/L = $500 \mu m/20 \mu m$ litho and chemical etching (PTA)

Source and drain - 200nm Au or 200nm ITO (deposited in PTA with litho and lift off)