P2: Análisis de señales mediante DFT

Análisis de Fourier mediante DFT

- □ La transformada de Fourier proporciona una función de variable real
 - > No es adecuada para un tratamiento numérico en un ordenador
- La transformada discreta de Fourier (DFT) proporciona una representación muestreada del dominio frecuencial

$$X[k] = DFT_N \{x[n]\} = \sum_{n=0}^{N-1} x[n] e^{-j2\pi \frac{k}{N}n} \qquad 0 \le k \le N-1$$

- ightharpoonup Cuando se calcula la DFT de tamaño N de una señal, hay un enventanado implícito en el intervalo [0,N-1]
- Práctica 2: Análisis de señales mediante DFT
 - ➤ Parte 1: DFT y ventanas
 - ➤ Parte 2: Señales de voz

TF de una señal enventanada

$$x[n] = s[n] \cdot w[n] = \begin{cases} s[n] & 0 \le n \le L - 1 \\ 0 & \text{otherwise} \end{cases}$$

DFT de tamaño N : Si
$$L \le N$$
 ,
$$DFT_N\{x[n]\} = X(F) \Big|_{F=\frac{k}{N}}; \ k=0,\dots,N-1$$
 > $k=\frac{N}{2} \Rightarrow F=0.5$ > $k=N \Rightarrow F=1$

Enventanado (1)

 Resolución en frecuencia: capacidad de detectar componentes espectrales de amplitud similar próximas en frecuencia

 Sensibilidad en amplitud: capacidad de detectar componentes espectrales de amplitud muy dispar

Para distinguir dos tonos:

$$\frac{A_1}{A_2} < \frac{A_p}{A_s}$$

$$|F_1 - F_2| > \Delta F$$

Enventanado (2)

- La ventana rectangular
 - presenta buena resolución, si L>>1
 - su sensibilidad es constante (~13 dB)e independiente de L.

Ventanas con diferentes compromisos resolución/sensibilidad

Window	ΔF	$lpha_{ps}$ dB
Rectangular	2/L	13
Barlett (triangular)	4/L	26
Hamming	4/L	41
Blackman	6/L	57

Naturaleza de la señal de voz

La voz es una señal acústica que se transmite mediante ondas de sonido utilizando la vibración de las moléculas del aire

- Fases producción voz:
 - Compresión pulmones
 - Vibración cuerdas vocales
 - sonidos sonoros
 - Cavidad oral
 - Oclusiones
 - Resonancias
 - Cavidad nasal
 - Resonancias
 - Radiación exterior

Señal analógica vs digital

 Un transductor (micrófono) convierte la energía acústica en energía eléctrica:

señal acústica -> señal eléctrica

 x_a(t): función 1D de variable real donde t representa el tiempo (seg) y x_a la amplitud relacionada con la presión sonora

Conversión A/D: x[n]

Señal de voz

Modelo de producción de la voz

Análisis del modelo

$$t[n] = \sum_{i = -\infty}^{\infty} \delta[n - iP] = \frac{1}{P} \sum_{k=0}^{P-1} e^{j2\pi \frac{k}{P}n}$$

$$x[n] = t[n] * h[n] = \sum_{i = -\infty}^{\infty} h[n - iP]$$

$$T(F) = \frac{1}{P} \sum_{k=0}^{P-1} \delta(F - \frac{k}{P}) \text{ para } 0 \le F < 1$$

$$X(F) = T(F)H(F) = \frac{1}{P} \sum_{k=0}^{P-1} H\left(\frac{k}{P}\right) \delta(F - \frac{k}{P}) \text{ para } 0 \le F < 1$$

$$x[n] = t[n] * h[n] = \sum_{i=-\infty}^{\infty} h[n-iP]$$

$$X(F) = T(F)H(F) = \frac{1}{P} \sum_{k=0}^{P-1} H\left(\frac{k}{P}\right) \delta(F - \frac{k}{P}) \text{ para } 0 \le F < 1$$

Efecto de la ventana:

$$x_L[n] = x[n]v_L[n]$$

$$X_L(F) = X(F) \otimes V_L(F) = V_L(F) * \frac{1}{P} \sum_{k=0}^{P-1} H\left(\frac{k}{P}\right) \delta\left(F - \frac{k}{P}\right) = \frac{1}{P} \sum_{k=0}^{P-1} H\left(\frac{k}{P}\right) V_L\left(F - \frac{k}{P}\right) \qquad \forall F$$

Pitch y formantes (1)

- Ancho de banda
 - 20 Hz − 300 Hz − 3.4 kHz − 6Khz (naturalidad, inteligibilidad)

 Canal telefónico
- Tono o Frecuencia fundamental (pitch)
 - Frecuencia de vibración de las cuerdas vocales
 - 80–160 Hz (hombres), 180–360 Hz (mujeres) y 250–500 Hz (niños)
- Formantes
 - Resonancias del tracto vocal
 - Aproximadamente una por kHz de ancho de banda
 - Caracterizan los sonidos: los dos primeros en frecuencia son los más relevantes.

Pitch y formantes (2)

 Representación temporal y frecuencial de un segmento de señal vocálico.

Triángulo vocálico

Articulación de las vocales

Triángulo de las vocales

parámetros descriptivos

La señal de música

□ Tono, volumen, timbre

