

Universidad Tecnológica de la Mixteca

Clave DGP: 200089

Maestría en Robótica

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA	,
7	
Tópicos Selectos De Control	3

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Optativa	252206CD	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

En el curso se estudian técnicas de control no lineal avanzadas aplicadas al control de robots manipuladores

TEMAS Y SUBTEMAS

1. Control basado en Pasividad para manipuladores robóticos

- 1.1 Introducción a la Pasividad
- 1.2 Disipatividad y pasividad
- 1.3 Interconección de sistemas pasivos
- 1.4 Estabilidad de Lyapunov y Pasividad
- 1.5 Pasividad por retroalimentación
- 1.6 Representación del modelo a través del Hamiltoniano
- 1.7 Sistemas Hamiltonianos controlados por puerto (PCHS)
- 1.8 Equivalencia entre los sistemas PCH y el modelo dinámico Euler-Lagrange
- 1.9 Control basado en pasividad por asignación de amortiguamiento e interconección (IDA-PBC)
 - 1.9.1 Introducción al moldeo de energía e inyección de amortiguamiento
 - 1.9.2 Matrix de interconexión, matriz de disipación y la función hamiltoniana
 - 1.9.3 Balance de energía
 - 1.9.4 Conceptos de estabilidad de Lyapunov relacionados
 - 1.9.5 Función de energía del sistema y función de energía deseada
 - 1.9.6 Forma del controlador IDA-PBC
 - 1.9.7 Suposiciones para simplificar la obtención de la ley de control final
 - 1.9.8 Sintonización de ganancias

2. Control geométrico no lineal

- 2.1 Introducción
- 2.2 Derivadas de Lie y corchetes de Lie
- 2.3 Difeomorfismos y transformaciones de estado
- 2.4 Teorema de Fobrenius
- 2.5 Linealización entrada-estado
 - 2.5.1 Condiciones para la linealización entrada-estado
 - 2.5.2 Diseño de controlador basado en linealización entrada-estado
 - 2.5.3 Ejemplo del mecanismo de unión flexible
 - 2.5.4 Linealización por retroalimentación para robots de n-eslabones
- 2.6 Linealización entrada-salida
 - 2.6.1 Grado relativo bien definido
 - 2.6.2 Formas normales
 - 2.6.3 Dinámica cero
 - 2.6.4 Estabilización asintótica local
 - 2.6.5 Estabilización asintótica global
 - 2.6.6 Control de seguimiento
 - 2.6.7 Control de seguimiento para sistemas de fase no mínima.
 - 2.6.8 Linealización por retroalimentación de sistemas MIMO
 - 2.6.9 Redefinición de entradas: extensión dinámica.
 - 2:6.10 Redefinición de salidas: inversión del sistema.
- 2.7 Sistemas no holonómicos
 - 2.7.1 Involutividad y Holonomía
 - 2.7.2 Sistemas de control sin deslizamiento
 - 2.7.3 Ejemplos de sistemas no holonómicos

augusta --

1986

3. Control de Fuerza

- 3.1 Marcos de referencia y restricciones
- 3.2 Restricciones naturales y artificiales
- 3.3 Modelos de red e impedancia
- 3.4 Operadores de impedancia
- 3.5 Clasificación de operadores de impedancia
- 3.6 Equivalentes de Thévenin y Norton
- 3.7 Dinámica del espacio de tarea y control
 - 3.7.1 Relaciones estáticas de fuerza/par
 - 3.7.2 Dinámica del espacio de tarea
 - 3.7.3 Control de impedancia
- 3.7.4 Control de impedancia híbrido

ACTIVIDADES DE APRENDIZAJE

Exposición de los temas del curso por parte del profesor en el pizarrón, apoyándose de material didáctico que ayude a ilustrar los conceptos impartidos (se necesita un equipo de proyección digital). Utilización de software matemático (MATLAB) en la realización de prácticas y proyectos relacionados a los temas vistos en clase (se necesita un aula equipada con equipos de cómputo). Lectura de artículos de la IEEE por parte de los alumnos.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Evaluación continua mediante tareas y simulaciones, así como un proyecto final.

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL Y AÑO

- 1. Mark W. Spong, Seth Hutchinson, M. Vidyasagar (2006). Robot Modelling and Control, John Wiley & Sons Inc.
- 2. Jean-Jacques E. Slotine and Weiping Li. (1991). Applied Nonlinear Control, Pearson
- 3. Sepulchre, R., Jankovic, M., Kokotovic, P.V. (1997). **Constructive Nonlinear Control**, Springer-Verlag London
- 4. Ortega, R., Loria Perez, J.A., Niclasson, P.J. Sira-Ramirez (1998). Passivity-based control of Euler-Lagrange Systems. Springer-Verlag London.

Consulta:

- 1. Ortega, R., van der Schaft, A., Maschke, B., & Escobar, G. (2002). **Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian system**. Automatica, 38(4), 585-596.
- 2. H. K. Khalil. (2017). Nonlinear systems. Pearson
- 3. Shankar Sastry. (1999). **Nonlinear Systems, Analysis, Stability, and Control.** Springer-Verlag London

PERFIL PROFESIONAL DEL DOCENTE

Estudios formales en robótica y control no lineal, mínimo de maestría y de preferencia a nivel de doctorado.

Vo.Bo

DR. JOSÉ ANIBAL ARIAS AGUILAR

JEFE DE LA DIVISIÓN DE ESTUDIOS DE POSGRADO

DR. AGUSTÍN SANTIAGO ALVARADO VICE-RECTOR ACADÉMICO ACADÉMICA