딥러닝 올인원

순환 신경망의 발전 18강

RNN의 타임라인

RNN	RNN LSTM				GRU	Transformer					
··· 1986	1989	•••	1997	•••	2014	2015	•••	2017	•••	2019	
	CNN				A	Attention			BERT		

Vanilla RNN

Vanilla RNN의 문제점

● 기울기 사라짐

Vanilla RNN의 문제점

장기 의존성(Long term dependency)

LSTM(Long Short-Term Memory models)

GRU(Gated Recurrent Unit)

seq2seq(sqeuence-to-sqeuence)

입출력의 시퀀스 길이가 다르고 순서가 뒤 섞인다.

seq2seq(sqeuence-to-sqeuence)

Attention Mechanism - 어순의 차이를 극복

