

LINFO1361

Intelligence Artificielle

First-Order Logic

Éric Piette

18 April 2024

AIMA Ch. 8 [Artificial Intelligence, Modern Approach. Russel & Norvig, 4th ed. 2021]

3 weeks ago.... Propositional logic

Do you remember this?

• Propositional logic! Wumpus, CNF, horn clauses, Sound and complete, Inference, etc.

Propositional logic

- Declarative
 - Relationships between variables are described through sentences
 - A method for propagating relationships
- Expressive
 - Can represent partial information using disjunction
- Compositional
 - If A means "It is raining" and B means "I like beer",
 A ∧ B means "It is raining and I like beer"
- But lacks expressive power to describe the environment concisely
 - E.g. cannot say "pits cause breezes in adjacent squares "

Procedural Representation

- Representing knowledge with data structure
 - World[2,2] := Pit

- Limitations
 - How to derive new information from this representation?
 - How to state that there is a pit in [2,2] OR in [3,1]?
 - How to state that if the Wumpus is in [2,2] then it is not in [3,1]?

Need a declarative representation

First-Order Logic - basic blocks

PL assumes the world contains facts

- First-order logic (like natural language) assumes the world contains:
 - Objects
 - people, houses, numbers, colors, ...
 - Relations
 - Unary relation : properties of objects
 - N-ary: relations between objects
 - brother, bigger_than, inside, ...
 - Functions
 - father_of, successor, cons

Different logics

Propositional logic

- facts
- true, false, unknown

First-order logic

- facts, objects, relations
- true, false, unknown

Temporal logic

- facts, objects, relations, times
- true, false, unknown

Probability theory

- facts
- Degree of belief

Fuzzy logic

- facts with degree of truth
- Interval value

Higher-order logic

 Relations and functions are also objects

• ...

Example

Alphabet:

 {0}, {x,y}, {s}, {odd,even}, Con, Pun, Quan}

```
Terms:
{ 0, s(0), s(s(0)), s(s(s(0))), ...
x, s(x), s(s(x)), s(s(s(x))), ...
y, s(y), s(s(y)), s(s(s(y))), ... }
```

Well-formed formulas:

```
odd(0), even(s(0)), ...
odd(x), odd(s(y)), ...
odd(x) \leftarrow even(s(s(x))), ...
\forallx (odd(x) \leftarrow even(s(x))), ...
odd(y) \leftarrow \forallx (even(s(x))), ...
```

Syntax

• An *alphabet* consists of variables, constants, function symbols, predicate symbols (all user-defined) and of connectors, punctuations and quantifiers

- *Terms* are either:
 - variables
 - constants
 - function symbols provided with as many terms as arguments, as the function symbol expects
- Well-formed formulas are constructed from predicate symbols, provided with terms as arguments, and from connectors, quantifiers and punctuation according to the rules of the connectors

Syntax

```
Sentence → AtomicSentence | ComplexSentence
            AtomicSentence \rightarrow Predicate \mid Predicate(Term,...) \mid Term = Term
          ComplexSentence \rightarrow (Sentence)
                                        \neg Sentence
                                        Sentence \land Sentence
                                       Sentence ∨ Sentence
                                       Sentence \Rightarrow Sentence
                                       Sentence ⇔ Sentence
                                       Quantifier Variable,... Sentence
                          Term \rightarrow Function(Term,...)
                                        Constant
                                        Variable
                   Quantifier \rightarrow \forall \mid \exists
                     Constant \rightarrow A \mid X_1 \mid John \mid \cdots
                     Variable \rightarrow a \mid x \mid s \mid \cdots
                    Predicate \rightarrow True \mid False \mid After \mid Loves \mid Raining \mid \cdots
                    Function \rightarrow Mother | LeftLeg | \cdots
OPERATOR PRECEDENCE : \neg,=,\wedge,\vee,\Rightarrow,\Leftrightarrow
```

Examples

• Brother(Richard, John)

Married(Father(Richard), Mother(John)

King(Richard) V King(John)

• \forall x King(x) \Rightarrow Person(x)

• $\exists x \text{ Crown}(x) \Rightarrow \text{OnHead}(x)$

• \forall s Breezy(s) $\Leftrightarrow \exists$ r Adjacent(r, s) \land Pit(r)

Semantics

- Provided by interpretations for the basic constructs
 - usually suggested by meaningful names
- Domain of the interpretation: set of objects
- Constants
 - the interpretation identifies the object in the real world
- Predicate symbols
 - the interpretation specifies the particular relation in the domain
 - Can be defined implicitly, or explicitly through the set of tuples of objects that satisfy the relation
- Function symbols
 - identifies the object referred to by a tuple of objects
 - Can be defined implicitly, or explicitly through tables

Interpretation

5 objects

- Brother(Richard, John)
- King(Richard) V King(John)
- $\forall x \text{ King}(x) \Rightarrow \text{Person}(x)$
- $\exists x \text{ Crown}(x) \Rightarrow \text{OnHead}(x)$
- \forall x Person(x) \Rightarrow leftLeg(x)

Interpretation

a set D (the domain)

A (total) function that maps constants to D

A (total) function that maps function symbols to (total) functions:
 D → D

A (total) function that maps predicate symbols to

predicates: $D \rightarrow Booleans$

Interpretations

- Examples of interpretations
 - 2 constant symbols (R and J)
 - One binary relation

Intended Interpretation

- Usually, one has a specific interpretation in mind when writing sentences
 - Richard refers to Richard the Lionhearty and John refers to the evil King John
 - Brother refers to the brotherwood relation; OnHead is a relation that holds between the crown and King John; Person, King and Crown are unary relations that identify persons, kings, and crown
 - *LeftLeg* refers to the left leg function

• Beware sentences can be interpreted according to any possible interpretation

Terms

- A term is a logical expression referring to an object in the (domain of the) interpretation
 - Eg. John, LeftLeg(John)

- Let I be an interpretation
 t₁, ..., t_n be terms and f be a n-ary function symbol
 - f(t₁, ..., t_n) is a term
 - This term refers to the object $F(T_1, ..., T_n)$ in the domain of I
 - where F is the function $D^n \to D$ associated to f in I and $T_1, ..., T_n$ are the interpretation of the terms $t_1, ..., t_n$ in I

Atomic sentence

- An atomic sentence state a fact (true or false)
- An atomic sentence is composed of a predicate with possible arguments (terms)
 - Brother(Richard, John)
 - Married(Father(Richard, Mother(John))
- An atomic sentence is true or false in an interpretation
- Let I be an interpretation
 t₁, ..., t_n be terms and p be a n-ary predicate symbol
 - p(t₁, ..., t_n) is an atomic formula
 - The formula is true in I if the relation $P(T_1, ..., T_n)$ holds
 - where P is the predicate $D^n \to Boolean$ associated to P in I and $T_1, ..., T_n$ are the interpretation of the terms $t_1, ..., t_n$ in I

Complex sentences

- Built by combining atomic sentences using logical connectives
- $(\neg, \land, \lor, \Rightarrow, \Leftrightarrow)$ and parentheses
 - E.g. Brother(LetfLeg(Richard), John)
 - Brother(Richard, John) \(\times \) Brother(John, Richard)
 - King(Richard) V King(John)
- A complex sentence is true or false in a given interpretation

 Combinaison of truth values of the atomic sentences (see truth tables of logical connectives in propositional logic)

Quantifiers

Here comes the power of First-Order Logic

- Can be used to express properties of collections of objects
 - eliminates the need to explicitly enumerate all objects...
 - in a conjunction: universal quantifier ∀
 - in a disjunction: existential quantifier ∃

Universal Quantifier

- States that a predicate P holds for all objects x in the domain
 - $\forall x \text{ King}(x) \Rightarrow \text{Person}(x)$
 - $\forall x P(x)$
- Given an interpretation I with domain **D**, the sentence is true if and only if all the individual sentences where the variable *x* is replaced by the individual objects in D are true in the given interpretation

Universal Quantifier

- Typically, \Rightarrow is the main connective with \forall
- Common mistake: using \wedge as the main connective with \forall

- \forall x King(x) \Rightarrow Person(x)
- \forall x King(x) \land Person(x)

• What do they mean?

Universal Quantifier

- Typically, \Rightarrow is the main connective with \forall
- Common mistake: using \wedge as the main connective with \forall

- Correct: \forall x King(x) \Rightarrow Person(x)
- Incorrect: ∀ x King(x) ∧ Person(x)
 means "Everyone is a king and is a person"

Existential Quantification

- states that a predicate P holds for some object in the universe
 - \exists x Crown(x) \land OnHead(x, John)
 - $\exists x P(x)$
- Given an interpretation I with domain **D**, the sentence is true if and only if there is at least one of the individual sentences where the variable *x* is replaced by the individual objects in **D** is true in the given interpretation

Existential Quantifier

- Typically, \wedge is the main connective with \exists
- Common mistake: using \Rightarrow as the main connective with \exists

- \exists x Crown(x) \land OnHead(x, John)
- \exists x Crown(x) \Rightarrow OnHead(x, John)

• What do they mean?

Existential Quantifier

- Typically, \wedge is the main connective with \exists
- Common mistake: using \Rightarrow as the main connective with \exists

- Correct: \exists x Crown(x) \land OnHead(x, John)
- Incorrect: ∃ x Crown(x) ⇒ OnHead(x, John)
 is true as soon as some object is not a crown

Properties of quantifiers

- $\forall x \ \forall y \ \text{is the same as} \ \forall y \ \forall x$
- $\exists x \exists y \text{ is the same as } \exists y \exists x$
- $\exists x \forall y \text{ is not the same as } \forall y \exists x$
 - $\exists x \forall y Loves(x, y)$
 - "???"
 - $\forall y \exists x Loves(x, y)$
 - "???"

Properties of quantifiers

- $\forall x \ \forall y \ \text{is the same as} \ \forall y \ \forall x$
- $\exists x \exists y \text{ is the same as } \exists y \exists x$
- $\exists x \forall y \text{ is not the same as } \forall y \exists x$
 - $\exists x \forall y Loves(x, y)$
 - "There is a person who loves everyone in the world"
 - $\forall y \exists x Loves(x, y)$
 - "Everyone in the world is loved by at least one person"

Connection between quantifiers

- $\forall x P$ is equivalent to $\neg \exists x \neg P$
- $\exists x P$ is equivalent to $\neg \forall x \neg P$

- This generalises
 - \neg (P \land Q) equivalent to \neg P \lor \neg Q
 - \neg (P \vee Q) equivalent to \neg P \wedge \neg Q

Closed and Ground Formulas

- A ground term (or formula) is a term (or formula) without any variable
 - Brother(LetfLeg(Richard), John) is ground
 - OnHead(x, John) is not ground

- A closed formula is a formula where each occurrence of a variable x is in the scope of a quantifier $\forall x$ or $\exists x$
 - ∃ x Crown(x) ∧ OnHead(x, John) is closed

Logical Reasoning

- An interpretation where α is true is called a model of α
- Logical entailment between sentences α and β

• $\alpha \models \beta$ if and only if, in every interpretation in which α is true, β is also true

Validity and satisfiability

- Validity
 - a sentence that is true in **all** interpretations
- Satisfiability
 - a sentence that is true in *some* interpretations (i.e. it has a model)
- Inconsistency, unsatifiability
 - a sentence that is **false** in *all* interpretation (i.e. it has no model)
- α is valid iff $\neg \alpha$ is unsatisfiable
- α β iff $(\alpha \land \neg \beta)$ is unsatisfiable
 - Proof by refutation (contradiction)

The kinship example

- One's mother is one's parent who is a female
 - Give the first-order logic statement with:
 - Two variables m and c, three functions Mother, Female, and Parent

- A grandparent is a parent of one's parent
 - Give the first-order logic statement with:
 - Two variables g and c, two functions Grandparent, and Parent

Express the siblinghood is symmetric

The kinship example

- One's mother is one's parent who is a female
 - \forall c, m Mother(m, c) \Leftrightarrow Parent(m, c) \land Female(m)

- A grandparent is a parent of one's parent
 - Give the first-order logic statement with:
 - Two variables g and c, two functions Grandparent, and Parent

Express the siblinghood is symmetric

The kinship example

- One's mother is one's parent who is a female
 - \forall c, m Mother(m, c) \Leftrightarrow Parent(m, c) \land Female(m)

- A grandparent is a parent of one's parent
 - \forall c, g Grandparent(g, c) $\Leftrightarrow \exists$ p Parent(g, p) \land Parent(p, c)

Express the siblinghood is symmetric

The kinship example

- One's mother is one's parent who is a female
 - \forall c, m Mother(m, c) \Leftrightarrow Parent(m, c) \land Female(m)

- A grandparent is a parent of one's parent
 - \forall c, g Grandparent(g, c) $\Leftrightarrow \exists$ p Parent(g, p) \land Parent(p, c)

- A theorem: siblinghood is symmetric
 - $\forall x, y \text{ Sibling}(x, y) \Leftrightarrow \text{Sibling}(y, x)$

The number, set and list examples

First-Order Logic can be used to model

natural numbers

Sets and subsets

Lists

Game Description Language (GDL)

A general game description language in first-order logic

```
(role white) (role black)
                                                                  (<= (row ?m ?x) (true (cell ?m 1 ?x))
(init (cell 1 1 b)) (init (cell 1 2 b)) (init (cell 1 3 b))
                                                                      (true (cell ?m 2 ?x)) (true (cell ?m 3 ?x)))
(init (cell 2 1 b)) (init (cell 2 2 b)) (init (cell 2 3 b)) (<= (column ?n ?x) (true (cell 1 ?n ?x))
(init (cell 3 1 b)) (init (cell 3 2 b)) (init (cell 3 3 b))
                                                                      (true (cell 2 ?n ?x)) (true (cell 3 ?n ?x)))
(init (control white))
                                                                  (<= (diagonal ?x) (true (cell 1 1 ?x))</pre>
(<= (legal ?w (mark ?x ?y)) (true (cell ?x ?y b))</pre>
                                                                      (true (cell 2 2 ?x)) (true (cell 3 3 ?x)))
    (true (control ?w)))
                                                                  (<= (diagonal ?x) (true (cell 1 3 ?x))</pre>
(<= (legal white noop) (true (control black)))</pre>
                                                                      (true (cell 2 2 ?x)) (true (cell 3 1 ?x)))
(<= (legal black noop) (true (control white)))</pre>
                                                                  (\leq (line ?x) (row ?m ?x))
(\le (\text{next (cell ?m ?n x})) (\text{does white (mark ?m ?n)})
                                                                 (<= (line ?x) (column ?m ?x))
    (true (cell ?m ?n b)))
                                                                  (<= (line ?x) (diagonal ?x))
(<= (next (cell ?m ?n o)) (does black (mark ?m ?n))</pre>
                                                                  (<= open (true (cell ?m ?n b))) (<= (goal white 100)</pre>
    (true (cell ?m ?n b)))
                                                                  (line x))
(<= (next (cell ?m ?n ?w)) (true (cell ?m ?n ?w))</pre>
                                                                  (<= (goal white 50) (not open) (not (line x)) (not
    (distinct ?w b))
                                                                  (line o)))
(<= (next (cell ?m ?n b)) (does ?w (mark ?j ?k))</pre>
                                                                  (<= (goal white 0) open (not (line x)))</pre>
    (true (cell ?m ?n b)) (or (distinct ?m ?j)
                                                                  (<= (goal black 100) (line o))
                                                                  (<= (goal black 50) (not open) (not (line x)) (not
    (distinct ?n ?k)))
(<= (next (control white)) (true (control black)))</pre>
                                                                  (line o)))
(<= (next (control black)) (true (control white)))</pre>
                                                                  (<= (goal black 0) open (not (line o)))</pre>
                                                                  (<= terminal (line x))</pre>
                                                                  (<= terminal (line o))</pre>
                                                                  (<= terminal (not open))</pre>
```

The Wumpus World

More precise axioms than with propositional logic

- Percept has five values
- Time is important
- A typical sentence
 - Percept ([Stench, Breeze, Glitter, None, None], 7)
- The actions are terms
 - Turn(right), Turn(left), Forward, Shoot, Grab, Release
- Computing best action with a query
 - ∃ a: BestAction(a, 7)

Sensors: Stench, Breeze, Glitter, Bump, Scream

The Wumpus World

- Connecting percepts to actions
 - $\forall s, b, u, c, t \ Percept([s, b, Glitter, u, c], t) \Rightarrow Action(Grab, t)$
 - requires many rules
- Can be simplified by intermediate predicates

```
\forall b, g, u, c, t Percept([Stench, b, g, u, c], t) \Rightarrow Stench(t)
```

 \forall b, g, u, c, t Percept([None, b, g, u, c], t) \Rightarrow \neg Stench(t)

 $\forall s, g, u, c, t \ Percept([s, Breeze, g, u, c], t) \Rightarrow Breeze(t)$

 $\forall s, g, u, c, t \ Percept([s, None, g, u, c], t) \Rightarrow \neg Breeze(t)$

• • •

 $\forall t \ Glitter(t) \Rightarrow BestAction(Grab, t)$

The Wumpus World

• Defining squares with [x,y] reference instead of atomic names

Adjacency between two squares

$$\forall x,y, a,b \ Adjacent([x,y], [a,b]) \Leftrightarrow$$
 $(x=a \land y=b-1) \lor (x=a \land y=b+1)$
 $\lor (x=a-1 \land y=b) \lor (x=a+1 \land y=b)$

• Modeling the breeze of pits $\forall s \ Breezy(s) \Leftrightarrow \exists r \ Adjacent(r, s) \land Pit(r)$

• ...

Inference system

Truth value

How many sentences is there?
How many interpretations is there?

Models

How many models is there?

Models

Is it possible to compute this set?

Completeness

The set $LC(\alpha)$ is computable!

Inference system

Intended Interpretation

I1 is the intended interpretation (a model)

Intended Consequences

 β in IC(α) iff β is true in the intended model I1

IC Versus LC

The set $LC(\alpha)$ is a subset of $IC(\alpha)$

In the next episode... Inference in First-Order Logic

AIMA Ch. 9
[Artificial Intelligence, Modern Approach.
Russel & Norvig, 4th ed. 2021]

Next class on 02/05/2024