BIOS 7659 Homework 3

Tim Vigers

12 October 2020

1. T-statistics

Read in the data:

a) Fold Change

For each gene (row), find the mean \log_2 expression among controls and among the knock out group. Then calculate fold change using $\log_2(controls) - \log_2(knockouts)$:

```
fc <- apply(array,1,function(x){
  control = mean(as.numeric(x[1:8]))
  knockout = mean(as.numeric(x[9:16]))
  return(control-knockout)
})</pre>
```

Table 1: Top 10 genes with largest absolute value of fold change

Gene	log2FC
ApoAI,lipid-Img	4.749247
EST, Highlysimilarto A	4.572826
CATECHOLO-METHYLTRAN	2.772249
EST, Weaklysimilar to C	1.540431
ESTs, Highly similar to	1.514718
est	1.466135
similartoyeaststerol	1.432454
ApoCIII,lipid-Img	1.398874
psoriasis-associated	1.256714
Cy3RT	-1.193286

b) Standard t test

For each gene, calculate the two-sample independent t-statistic between controls and knockouts, assuming equal variances:

```
# Tests
tp <- apply(array,1,function(x){
  control = as.numeric(x[1:8])
  knockout = as.numeric(x[9:16])</pre>
```

```
t <- t.test(control,knockout,var.equal = T)
return(c(t$statistic,t$p.value))
})</pre>
```

Table 2: Top 10 genes with largest t-statistic

Gene	log2FC	Т	p value
ApoAI,lipid-Img	4.7492467	23.104347	0.0000000
EST, Weakly similar to C	1.5404305	12.982368	0.0000000
EST, Highlysimilarto A	4.5728257	11.762486	0.0000000
CATECHOLO-METHYLTRAN	2.7722489	11.759068	0.0000000
ApoCIII,lipid-Img	1.3988735	10.430072	0.0000001
est	1.4661354	9.087422	0.0000003
ESTs, Highlysimilar to	1.5147176	9.018613	0.0000003
similartoyeaststerol	1.4324539	7.208906	0.0000045
Caspase7,heart-Img	0.4533114	4.578842	0.0004294
EST, Weakly similar to F	0.8558850	4.434296	0.0005662

Out of the 6384 genes, 85 were significant at the p < 0.01 level.

c) Alternative t-statistics

i) Modified t-statistic (using the samr package)

Table 3: Top 10 genes with largest modified t-statistic

Gene	Modified t-statistic	p value
estrogenrec	3.420501	0.0041406
ESTs, Weakly similar to	3.406533	0.0042572
	3.281333	0.0054614
Meox2	3.226082	0.0060960
Cy5RT	3.145973	0.0071486
BLANK	3.139623	0.0072394
	3.112484	0.0076405
Olf-1	3.106402	0.0077334
BLANK	2.966281	0.0102114
	2.956415	0.0104128

ii) Moderated t-statistic (using the limma package)

First, create the design matrix for limma:

```
design <- matrix(ncol = 2,nrow = ncol(array))
colnames(design) <- c("Control","Knockout")
rownames(design) <- colnames(array)</pre>
```

```
design[,1] <- rep(1,nrow(design))
design[,2] <- ifelse(grepl("k",rownames(design)),1,0)</pre>
```

Fit the model with limma:

```
fit <- lmFit(array, design)
eb <- eBayes(fit)
limma_res <- topTable(eb,coef = 2)</pre>
```

Table 4: Top 10 differentially expressed genes (based on the moderated t-statistic)

	\log FC	AveExpr	t	P.Value	adj.P.Val	В
ApoAI,lipid-Img	-4.749247	5.773086	-23.976817	0.0000000	0.0000000	14.9269328
EST, Highlysimilar to A	-4.572826	5.959409	-12.963071	0.0000000	0.0000005	10.8150265
CATECHOLO-	-2.772249	6.617134	-12.439908	0.0000000	0.0000006	10.4483231
METHYLTRAN						
EST, Weakly similar to C	-1.540431	6.817930	-11.749992	0.0000000	0.0000012	9.9246200
ApoCIII,lipid-Img	-1.398874	7.081690	-9.831229	0.0000000	0.0000157	8.1890866
ESTs, Highlysimilar to	-1.514718	7.077908	-9.012972	0.0000000	0.0000423	7.3031534
est	-1.466135	6.971799	-8.999811	0.0000000	0.0000423	7.2881051
similartoyeaststerol	-1.432454	6.640370	-7.440210	0.0000007	0.0005617	5.3097967
EST, Weakly similar to F	-0.855885	7.517514	-4.553948	0.0002495	0.1769590	0.5618636
•	-0.549536	7.325818	-3.961031	0.0009254	0.5284860	-0.5563623

d) Method comparisons

P Values and Multiple Testing

a) Permutation tests

First, find all the possible permutations of group labels (i.e. control vs. knockout) using combinations (16,8,colnames(array))

Using the permutation test approach, there are 117 genes significant at the 0.01 level.