Zel:

Es werden Spannungsveläufe in Fourierhomponenten Zerlegt & weitere Spannungen mit diesen modelliert

Theorie:

f: R-> R inthan. mit f(& + T)= f(&) Yt & IR zu einem festm

 $T \in \mathbb{R}$, dann gilt: $\frac{2\pi ni}{T} t$ $f(t) = \sum_{n \in \mathbb{Z}} f_n e$, mit $f_n = (e^{-1} | f(t))_{L^2}$, falls

 $\|f\|_{L^2} < \infty$

Dabei gilt: $\langle f|g \rangle_{L^2} = \int_0^T f^*g dt$

Weiker gilt:

$$\hat{f}(w) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(t) e^{-iwt} dt$$

Aulbau:

-> digitales Ospilloskop (mit FFT)

-> Oberwellingenerator

-> Erzeugt Grundschwingung: e ; w:= T

-> Oberschevingungen: e'wne, n e N2?

L> regelbare Amplifuden (+ für Phazenversch.)

-> Phtgenerator.

-> Multimeter

7. Fourier - Synthese Durchführung: - Ausgang Oberwellengenerator an Multimeter -> Amplitadenstärke wird abh. von ,, n" der Oberschwingung Cingestellt um verschiedene Spannungen zu modellieren - » Modelliert werden: -> Rechtesh - 7 Sågesahn - Spannung Dreieck --> Der Oberwellengenerator wird an ein Ossilloskop angeschlossen -> X - Achse: Grundsehwingung L.> Y - Achse: n-te Oberschwingung Lo Für jede einmal -> Phasenversch. wird angepasst, bis die Lissajous - Figur sich überlagert: -> Wowlagung wird stuck für Stück aktiviert L> Eventuelle Phasenversch. um TI -> Nun wird Approx. betrachtet Ergebnis & Probleme: -> oute Approx. -> Ose. an Stellen: endl. Anzahl an Schwingungen

-> Ose. an Stellen: endl. Anzahl an Schwingungen
-> Gibbsches Chanomen on Unstetigkeiten
-> Besk Approx. bei Dreiechsspannung
$\downarrow \qquad \qquad$
L> Schnellere Konv.
2. Fourier. Analyse:
Durchfeihrung:
-> Am Flotgener. wird eine Schwingungsform eingeskelt -> Grundfrequene einstellen
einstellen
Therresh -
Sågezahn - (- Spannung
-> Dreiede -)
- Die Spannung wird auf dos Oszillozhop gegeben
Modus FFT: fost Fouriertransform UdB.
-> Frequenespektrum: in dB -> Ur 20 20
L> 5 - Distributionen bei per Flat.
Los Von Rauschen unterscheiden und Amplituden aufnehmen
Ergebnis & Problème:
-> Fit mit $f(n) = \frac{A}{n^d}$, mit $n = \frac{f_n}{f_0}$ Frequenzum

~ Rauschen

-> theor. erwortete n - Abh. werden weitezgehand reproducient

Lo Chrischerheit von & marginal