

SoccerTwos IFT608-702

Projet d'apprentissage par renforcement

Mohammed Benabbassi Elio Torquet Mahutondji Josué Friedman Couthon Farouk Oussada Abdou Rahime Daouda

Plan de la présentation

Environnement

Présentation & technologies

MADDPG

Présentation, contribution & résultats

QMIX

Présentation, contribution & résultats

Conclusion

Bilan & perspectives futures

Présentation de l'environnement

- Situation: soccer 2 VS 2.
- **Objectifs**: marquer un but rapidement, ne pas encaisser de buts.
- Capteurs: plusieurs "lasers" devant et derrière.
- Actions : avant/arrière, côtés et rotations.

Forward Motion: UP / DOWN
Sideways Motion: LEFT / RIGHT

Rotation: LEFT/RIGHT

- Multi-agents (2 équipes de 2 agents).
- Compétitif et Collaboratif.

Trainer/Optimizer avec ML-agents

Système de plugin extensible


```
mlagents trainer plugin
   - __init__.py
   - a2c
        - _init__.py
         a2c_3DBall.yaml
         a2c optimizer.py
        a2c trainer.pv
    dan
        init .py
        dqn_basic.yaml
        dan optimizer.py
        dgn trainer.py
setup.py
```

Trainer/Optimizer de ML-agents

Avantages

- Intégration profonde avec Unity.
- Haute performance (optimisé pour Unity).
- Support multimodal (entrées visuelles, audio et autres) → variétés de capteurs.
- **Exemples/tutoriels** fournis pour POCA et autres algorithmes.

- Configuration et implémentation complexes.
- Débogage complexe.
- Moins flexible.

Hugging Face

- Cours complet pour débutant en RL*.
- Documentation très détaillée.
- Beaucoup d'implémentations d'algorithmes/modèles déjà faites.
- Possibilité de comparer son modèle (Al vs Al Challenge).

- Impossibilité de modifier les espaces d'observations et d'actions de l'agent
- Impossibilité d'utiliser un trainer personnalisé.

🫣 AI vs. AI SoccerTwos Leaderboard 🚱

In this leaderboard, you can find the ELO score and the rank of your trained model for the SoccerTwos environment

If you want to know more about a model, just copy the username and model and paste them into the search bar

To visualize your agents competing check this demo: https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos

For more information about this AI vs. AI challenge and to participate? Check this

rank	author	model	elo A	games_played
1	Agog	Impatient	1803.9585029190428	252
2	Agog	Soccer	1756.3304118816602	874
3	atorre	poca-SoccerTwos-70M	1740.5054430831478	1025
4	ZhihongDeng	poca-SoccerTwos	1731.6567396710132	802
5	jinhu2659	poca-SoccerTwos	1712.975395772759	502

^{*}Hands-on - Hugging Face Deep RL Course

- Interface de contrôle standardisée pour du RL Multi-Agents.
- Fonctionnement de l'interface (méthode step(action)).
- Intégration avec Unity via un Wrapper.
- Implémentation plus conventionnelle des algos.
- Beaucoup plus documenté et utilisé.

Modifications apportées à l'environnement

MADDPG - Point de départ

- Type: Policy/value gradient.
- Entraînement centralisé, exécution décentralisée.
- Adapté pour la collaboration et la compétition.
 - Un critique "omniscient" distinct pour chaque agent.
 - Récompense distribué par agent (objectifs distincts).

Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments (Lowe & al. 2017)

MADDPG-PyTorch par Shariq Iqbal

MADDPG - Contribution et améliorations

Exploitation

- Replay buffer
- Exploration par OUNoise
- Gumbel-Softmax pour les actions discrètes

Adaptation

- Exécution d'instances parallèles de l'environnement
- Sauvegarde/Chargement des modèles
- Parallélisation des calculs via CUDA

Création

- Communication avec Unity via PettingZoo
- Scaling des paramètres de l'environnement pendant l'entraînement
- Paramétrisation via yaml

MADDPG - Résultats

Paramètres d'entraînement				
Environnement :				
Nombre d'instances	8			
Nombres d'épisodes	5000			
Time scale	20			
Ball touch : initial → final	$2.0x \rightarrow 0.0x$			
Modèle :				
Step par update	256			
Hidden units	128			
Learning rate actor / critic	3e-4 / 1e-3			
Tau	0.001			
Gamma	0.9			
Batch size	1024			
Bruit : initial → final	$5.0 \rightarrow 0.0$			

MADDPG - Résultats

Récompense moyenne des équipes sur ~5000 étapes.

QMIX- Point de départ

- Type: État/action-valeur.
- Entraînement centralisé, exécution décentralisée.
- Adapté pour la compétition & la collaboration.
 - > Récompense distribué par agent.
 - Réseau de mixture.
- Réseau d'un agent
 - Prend l'observation et action précédente et calcule l'utilité (Qa).
- Réseau de mixture
 - Prend les Qa de tous les agents et calcule la Qtot.

Qmix: Monotonic value function factorisation for deep multi-agent reinforcement learning (Rashid, T & al. 2018)

QMIX- Contribution et améliorations

Exploitation

- Sauvegarde/Chargement des modèles.
- Parallélisation des calculs via CUDA.
- Communication agents/réseau de mixture.

Adaptation

- Remplacement des MLP par RNN.
- Initialisation des poids au niveau des RNs.
- Architecture du réseau de mixture (inputs, layers, outputs).

Création

- Communication avec Unity via PettingZoo.
- Paramétrisation & généralisation via yaml.
- Gestion des actions multi-discrètes.
- ReplayBuffer adapté pour RNN.
 - Beaucoup de **refactoring** & **clean up**.

QMIX- Progrès

- Adaptation des actions multi-discrètes.
 - > Option 1: formuler toutes les combinaisons d'actions possibles.
 - > Option 2: passer 3 fois le RN (pour chaque type d'action).
- Finaliser l'adaptation du Replay Buffer.
 - > Suite à l'utilisation du RNN.
 - Régler des problèmes stockage (CUDA vs CPU).

0

2

Bilan

Points Positifs

- Algorithmes intéressants et pertinents vis à vis du problème.
 - Multi-agents, collaboratif, compétitif
- Implémentation complète et portable.
 - Adaptation à d'autres environnements Unity ou PettingZoo.
 - > Documentation de notre code.
- Manipulation concrètes de l'environnement
 - Meilleur compréhension des environnements ml-agents
- Parallélisation des calculs sur GPU.
 - Découverte et utilisation Torch

Points Négatifs

- Complexité de Unity ML-agents
 - > Très peu documenté (des *Markdown* bien cachés).
 - Tutoriels de ML-agents ne sont pas à jour.
 - Difficile à installer et démarrer le projet.
- Algorithmes récents et complexes.
 - Requièrent plus de temps/ressources pour les entraîner.
 - Moins documenté, moins utilisé.
- Mieux évaluer la contrainte du temps vs l'ampleur du projet.
- Commencer par la base avec un environnement plus **simple**.
- Disponibilité des ressources matérielles (GPU).

Perspectives futures

Merci

