

emnis mannani mann

Prof. Felipe Andery Reis

<u>fandery@inatel.br</u>

Material adaptado do prof. Edielson

mar/2018

Paradigma do raciocínio da IA

Evolucionista

Metáfora da natureza

ex. algoritmos genéticos, vida artificial,...

- Mínimo Local
 - > Problema:

Um sistema tem o seu consumo energético dependente do ponto da curva f(X) abaixo, porém a curva não é conhecida, apenas a função:

Void Consumo (float X, float *Esquerda, float *Valor, float *Direita);

- Mínimo Local
 - ➤ Solução:
 - 1. Parta de um ponto qualquer;
 - 2. Visite os seus vizinhos;
 - 3. Se pelo menos um dos vizinhos for menos que ele, mova para o que tiver menor valor e repita os passos 2 e 3;

- Mínimo Local
 - ➤ Solução:
 - 1. Parta de um ponto qualquer;
 - 2. Visite os seus vizinhos;
 - 3. Se pelo menos um dos vizinhos for menos que ele, mova para o que tiver menor valor e repita os passos 2 e 3;

Em 1859, 2 anos após George Boole ter descrito sua álgebra, o naturalista Britânico Charles Robert Darwin, publicou sua obra "On the Origin of Species by Means of Natural Selection".

- Origem da genética;
- A natureza incentiva os mais fortes em detrimento dos mais fracos.

> Algoritmos evolucionários:

Usam modelos computacionais do processos naturais de evolução como uma ferramenta para resolver problemas.

- ✓ Estratégias Evolucionárias
- ✓ Algorítmos Genéticos
- ✓ Programação Genética

- ➤ O que são algoritmos genéticos (GA)?
- Ramo dos algoritmos evolucionários
 - técnica de busca baseada na metáfora do processo biológico de evolução natural.
- Podem ser consideradas técnicas heurísticas de otimização global
 - se opõe a outros métodos que ficam facilmente retidos em mínimos (ou máximos) locais (hill climbing).
- Populações de indivíduos são criadas e submetidas aos operadores genéticos:
 - Seleção;
 - Recombinação (crossover) e;
 - Mutação.

- Principais características
- Probabilística: mesmas configurações (população inicial e parâmetros) levam a diferentes soluções;
- Diminuição do espaço de busca: não avaliam todas as soluções possíveis;
- Codificação de parâmetros: generalização do algoritmo para vários problemas.
 - Alteração apenas da função de avaliação;
 - Economia de tempo e dinheiro.

- ➤ Por que GAs?
- Paralela: mantém uma população de soluções que são avaliadas simultaneamente;
- Global: não usa apenas informação local (menor chance de ficar preso em mínimos locais);
- Não totalmente aleatória: possui componentes aleatórios mas os próximos passos são baseados em informações da população corrente;
- Não afetada por descontinuidades: não utilizam informações de derivadas na sua evolução;
- Atua em funções discretas e continuas;

Algoritmo Específico x GA

Algoritmo Genético

> Terminologia

cromossomo/indivíduo

31758246

genótipo

gene

alelo: possíveis valores {1,2,3,4,5,6,7,8}

locus: possíveis posições {0,1,2,3,4,5,6,7}

- Passo a passo de um algoritmo genético:
 - 1. Inicialize a população de cromossomos;
 - 2. Avalie cada cromossomo na população;
 - 3. Selecione os pais para gerar novos cromossomos;
 - 4. Aplique os operadores de recombinação e mutação a estes pais de forma a gerar os indivíduos da nova geração;
 - 5. Apague os velhos membros da população;
 - 6. Avalie todos os novos cromossomos e insira-os na população;
 - 7. Se o tempo acabou, ou o melhor cromossomo satisfaz os requerimentos e desempenho, retorne-o, caso contrário, volte ao passo 3.

- Componentes do diagrama
 - Seleção: escolhe-se os indivíduos que participarão do processo de reprodução;
 - Operadores genéticos: aplica-se os operadores de recombinação e mutação aos indivíduos escolhidos para "pais";
 - Módulo de população: define-se a nova população a partir da geração existente e dos filhos gerados;
 - Critério de parada: verifica-se se o critério de parada é satisfeito. Pode ser por número de gerações ou qualidade da solução;
 - Avaliação: aplica-se a função de avaliação a cada um dos indivíduos desta geração;

➤ Algoritmo

```
function GENETIC-ALGORITHM(population, FITNESS-FN) returns an individual
             inputs: population, a set of individuals
             FITNESS-FN, a function that measures the fitness of an individual
            repeat
                         new population ←empty set
                         for i = 1 to SIZE(population) do
                                      x \leftarrow RANDOM-SELECTION(population, FITNESS-FN)
                                      y←RANDOM-SELECTION(population, FITNESS-FN)
                                      child \leftarrowREPRODUCE(x, y)
                                      if (small random probability) then child ←MUTATE(child)
                                      add child to new population
                         population ← new population
             until some individual is fit enough, or enough time has elapsed
             return the best individual in population, according to FITNESS-FN
function REPRODUCE(x, y) returns an individual
            inputs: x, y, parent individuals
             n \leftarrow LENGTH(x); c \leftarrow random number from 1 to n
            return APPEND(SUBSTRING(x, 1, c), SUBSTRING(y, c + 1, n))
```

Algoritmo Genético Representação Cromossomial

- Representação cromossomial
 - Cada pedaço indivisível da representação é chamado de gene
 - Deve ser a mais simples possível
 - Soluções proibidas não deve possuir representação
 - Imposições devem estar implícitas dentro da representação

Genótipo	Fenótipo	Prolema
0010101001110101	10869	Otimização numérica
CGDEHABF	comece pela cidade C, depois passe pelas cidades G, D, E, H, A, B e termine em F	Caixeiro viajante
$C_1R_4C_2R_6C_4R_1$	se condição 1 (C_1) execute regra 4 (C_4), se (C_2) execute (R_6), se (C_4) execute (R_1)	Regras de aprendizagem para agente

- Representação binária
 - Precisão de uma representação binária de uma variável x_i , que existe no intervalo $[inf_i, sup_i]$

$$Precisão = \frac{sup_i - inf_i}{2^k - 1}$$

 Conversão do número binário dentro do cromossomo para um número real

$$real = inf_i + \frac{sup_i - inf_i}{2^k - 1}r_i$$

Onde r_i representa o número inteiro correspondente ao valor binário dentro do cromossomo.

> Exemplo:

Seja o problema de encontrar o máximo da função abaixo, sendo que ambas as variáveis x e y pertencem ao intervalo dado por [-100,100]

$$f(x,y) = |x * y * sen(\frac{y\pi}{4})|$$

Solução:

- Representação binária de 44 bits, sendo 22 bits para cada variável;
- Faixa de valores decimais: $[0, ..., 2^{22} 1]$
- $Precisão = \frac{sup_i inf_i}{2^k 1} = \frac{100 (-100)}{2^{22} 1} = 4,768e^{-5}$
- $Real = inf_i + \frac{sup_i inf_i}{2^{k} 1}r_i = 4,768e^{-5}r_i 100$

Outras representações:

- Representação em ordem
 - casos onde a ordem é importante para o problema (por exemplo: grafo, caixeiro viajante)
 - normalmente todos os nós devem estar presentes em um cromossomo

24748552

- Representação numérica
 - evitar a representação binária
 - cromossomos que representam diretamente os números reais

2.1 4.5 7.3 4.9 8.1 5.3

Algoritmo Genético Função objetivo

- Características dos indivíduos:
 - **Grau de adaptação**: representa o quão bem a resposta representada por indivíduo soluciona o problema proposto. Calculada pela função objetivo ($f_0(x)$). É uma nota dada ao indivíduo na resolução do problema.
 - Grau de aptidão: diz respeito ao nível de adaptação de um indivíduo em relação à população à qual ele pertence. Para uma população com n indivíduos:

$$f_A(x) = \frac{f_O(x)}{\sum_{i=1}^n f_O(i)}$$

Algoritmo Genético Seleção

- > Função de avaliação
 - O processo de seleção começa pela função de avaliação
 - Determina a qualidade de um indivíduo/cromossomo
 - Deve embutir todo o conhecimento sobre o problema (restrições, qualidades, etc.)
 - Devem relfetir os objetivos a serem alcançados
 - Exemplo: maximizar a função quadrática $f(x) = x^2$, no intervalo de x = [0,15]

Cromossomo	Avaliação/Grau de Adaptação
0001	1
0011	9
0100	16
0110	36
Total	62

Seleção

- Deve simular o mecanismo de seleção natural
 - Pais mais capazes geram mais filhos
 - Pais menos aptos também podem gerar descendentes (menor probabilidade), para evitar a convergência genética
- Convergência genética
 - Se só os melhores estiverem presentes, somente eles irão se reproduzir. Desta forma a população ficará com indivíduos cada vez mais iguais, causando assim a falta de diversidade para a população.

Seleção

- Método da roleta viciada
 - Cada cromossomo recebe sua chance de ser selecionado
 - Exemplo: maximizar a função quadrática $f(x) = x^2$, no intervalo de x = [0,15]

Cromossomo	Adaptação	Grau de Aptidão (%)
0001	1	1,61
0011	9	14,51
0100	16	25,81
0110	36	58,07
Total	62	100,00

Seleção

Roleta viciada para a população do exemplo

- > Outros métodos de seleção:
 - Seleção por ranking (rank selection): os indivíduos da população são ordenados de acordo com seu valor de adequação e então sua probabilidade de escolha é atribuída conforme a posição que ocupam;
 - Seleção por torneio (tournament selection): grupos de soluções são escolhidos sucessivamente e as mais adaptadas dentro de cada um destes são selecionadas;
 - Seleção uniforme: todos indivíduos possuem a mesma probabilidade de serem selecionados. Obviamente, esta forma de seleção possui uma probabilidade muito remota de causar uma melhora da população sobre a qual atua.

Algoritmo Genético Operadores genéticos

- > Operador de *crossover*
 - Responsável por combinar características dos pais selecionados
 - Ponto de corte representa uma posição entre dois genes (cromossomo com n genes possui n-1 pontos de corte).
 - Método de cruzamento de um ponto
 - Sorteia-se um ponto de corte;
 - O primeiro filho será composto pela concatenação da parte esquerda ao ponto de corte do primeiro pai, e da parte direita ao ponto de corte do segundo pai;
 - O segundo filho será composto pela concatenação da parte direita ao ponto de corte do primeiro pai, e da parte esquerda ao ponto de corte do segundo pai.

Exemplo: operador de *crossover*

> Outros métodos de *crossover*

- Cruzamento multiponto: o cruzamento multi-ponto é uma generalização do operador de um ponto. Nele são sorteados um número fixo n de pontos de corte.
- Cruzamento segmentado: o cruzamento segmentado funciona de maneira semelhante ao multi-ponto, com a exceção de que sorteia o número de pontos de corte toda vez que é executado;
- Cruzamento uniforme: para cada gene a ser preenchido nos cromossomos filhos, o operador de cruzamento uniforme sorteia de qual dos pais este deve ser gerado.

Operador de mutação

- Responsável por alterar características dos indivíduos gerados durante o crossover
 - Garante que diversas alternativas serão exploradas, mantendo assim um nível mínimo de abrangência na busca
 - Testa a probabilidade de mutação para todos os genes (probabilidade muito baixa $\sim 0.5\%$). Caso o teste seja positivo, o valor do gene é alterado aleatoriamente.
- Operadores de mutação
 - mutação flip: cada gene a ser mutado recebe um valor sorteado do alfabeto válido;
 - mutação por troca (swap mutation): são sorteados n pares de genes, e os elementos do par trocam de valor entre si;
 - mutação creep: um valor aleatório é somado ou subtraído do valor do gene.

Operador de mutação

- Probabilidade de mutação
 - Se probabilidade for muita alta, fará com que o algoritmo genético possua soluções que são determinadas de forma aleatória, ou seja, sem utilizar informações passadas.
- Operador de mutação
 - O operador de mutação é necessário para introdução e manutenção da diversidade genética da população
 - Assegura que a probabilidade de se chegar a qualquer ponto do espaço de busca nunca será zero

- Exemplo: operador de mutação
 - Exemplo:

Algoritmo Genético Módulo de população

- Módulo de população
 - Responsável por controlar a população de indivíduos
 - controla o número de indivíduos, descartando os indivíduos da geração anterior
 - Evolução baseada na dinâmica populacional
 - propaga as características desejáveis às gerações subsequentes (cruzamento)
 - manipula a frequência com que determinadas sequências de genes aparecem nas populações

População: características

- Geração: número de vezes que a população passou pelo processo de seleção, reprodução, mutação e atualização
- Média de adaptação:

$$M_A = \frac{\sum_{i=1}^n f_O(i)}{n}$$

- Grau de convergência: mede a proximidade da média de adaptação da atual geração em relação às anteriores
 - Objetivo: população convergir em um valor ótimo de adaptação
 - Problema: convergência prematura devida a baixa diversidade

População: características

- Diversidade: mede o grau de variação entre os genótipos presentes na população (fundamental para a amplitude da busca)
- Elite: composta pelos indivíduos mais adaptados da população.
 - elitismo: os m melhores indivíduos (normalmente m=1) são mantidos a cada geração

Algoritmo Genético Exemplos

> Exemplo1: Problema das 8 Rainhas

Exemplo1: Problema das 8 Rainhas, solução.

24748552

32752411

24415124

32543213

✓ **População inicial:** Neste exemplo foram criados 4 indivíduos onde a posição no vetor corresponde à coluna do tabuleiro e o valor do algarismo corresponde à linha (posicionamento de cada uma das 8 rainhas).

Exemplo1: Problema das 8 Rainhas, solução.

24748552	24	31%
32752411	23	29%
24415124	20	26%
32543213	11	14%

✓ **Função de avaliação:** Utiliza-se uma função que avalia quantos pares de rainha *não-atacantes* existem para cada indivíduo. O valor para a solução seria 28.

Exemplo1: Problema das 8 Rainhas, solução.

✓ **Seleção:** Indivíduos são selecionados para reprodução com base na sua pontuação de fitness. Existem vária variantes para o critério de seleção.

Exemplo1: Problema das 8 Rainhas, solução.

✓ Crossover: Para cada par a ser cruzado é selecionado aleatoriamente um ponto de crossover dentre as posições na cadeia. Neste exemplo os pontos de crossover estão depois do terceiro dígito no primeiro par e depois do quinto dígito no segundo par.

Exemplo1: Problema das 8 Rainhas, solução.

✓ Mutação: Cada posição está sujeita à mutação aleatória com uma pequena probabilidade independente.

Exemplo2: Problema de otimização

• Maximizar a função $f(x,y) = |x * y * sen(^{y\pi}/_4)|$, com $x \in y$ pertencentes ao intervalo [0,15].

- Exemplo2: Problema de otimização, solução.
 - Para evitar o valor de f(x,y) = 0, usaremos g(x,y) = 1 + f(x,y) como função de avaliação.
 - Para o intervalo definido das variáveis, 4 bits para cada variável é suficiente. Logo, cada cromossomo será formado por 8 bits.
 - Vamos utilizar uma taxa de mutação de 1%.
 - Para fins explicativos, vamos manter uma população de 6 indivíduos.

Exemplo2: Problema de otimização, solução.

Cromossomo	\boldsymbol{x}	y	g(x,y)
0100 0011	4	3	9,5
0010 1001	2	9	13,7
1001 1011	9	11	71,0
0000 1111	0	15	1,0
1001 1001	5	5	18,7
1110 0011	14	3	30,7
Somatório das avaliações:		144,6	

$$M_A = \frac{\sum_{i=1}^n f_O(i)}{n} = \frac{144.6}{6} = 24.1$$

✓ Função de avaliação: Retorno da função g(x, y) = 1 + f(x, y)

[✓] **População inicial:** Neste exemplo foram criados 6 indivíduos, onde os primeiros 4 bits representam o valor de x e os ultimos 4 bits o valor de y.

A roleta para a população inicial

Cromossomo	g(x,y)	Intervalo	Aptidão (%)
0100 0011	9,5	[0; 9,5[7%
0010 1001	13,7	[9,5; 23,2[9%
1001 1011	71,0	[23,2; 94,2[49%
0000 1111	1,0	[94,2; 95,2[1%
1001 1001	18,7	[95,2; 113,9[13%
1110 0011	30,7	[113,9; 144,6[21%

Exemplo2: Problema de otimização, solução.

Números sorteados	Cromossomos escolhidos	
12,8	00101001	
65,3	10011011	
108,3	10011001	
85,3	10011011	
1,8	01000011	
119,5	11100011	

[✓] **Seleção:** Indivíduos são selecionados para reprodução com base na sua pontuação, de acordo com os intervalos definidos.

Exemplo2: Problema de otimização, solução.

[✓] **Crossover:** Para cada par a ser cruzado é selecionado aleatoriamente um ponto de crossover dentre as posições na cadeia.

Exemplo2: Problema de otimização, solução.

Cromossomo	x	y	g(x,y)
00111011	3	11	24,3
10001001	8	9	51,9
10011011	9	11	71
10011000	9	8	1
01000011	4	3	9,5
11100011	14	3	30,7
Somatório das avaliações:		188,4	

$$M_A = \frac{\sum_{i=1}^n f_O(i)}{n} = \frac{188,4}{6} = 47,1 > 24,1$$

✓ Função de avaliação: Avaliação da nova população utilizando a função g(x, y) = 1 + f(x, y)

Referências Bibliográficas

Referência Bibliográfica Básica

- [1] RUSSEL, S. e NORVIG, P. (2004). Inteligência Artificial. 2a. Edição. Editora Campos, 2004.
- [2] PARSAYE, K.; CHIGNELL, M. Expert systems for experts. New Jersey: J. Wiley, 1988.
- [3] NASCIMENTO JR., C. L.; YONEYAMA, T.; "Inteligência Artificial em Controle e Automação" São Paulo: Blusher: FAPESP, 2004
- [4] LUGER, George F. Inteligência Artificial. Porto Alegre: Ed. Bookman Companhia, 2004.
- [5] LINDEN, Ricardo. Algoritmos Genéticos. Rio de Janeiro: Ed. Brasport, 2006.
- [6] WOLPERT, D. H.; MACREADY, W. G., No Free Lunch Theorems for Search, Relatório Técnico SFI-TR-95-02-010, Santa Fe, Santa Fe, EUA, 1995.