Algèbre II Clément Chivet

TD2 : Extensions de corps

25/09/2023

Exercice 1 : Corps de décomposition

Déterminer les corps de décompositon des polynôme suivants de $\mathbb{Q}[X]$, ainsi que leur dimension sur \mathbb{Q} :

- $-X^2-3$.
- $-X^3-2$
- $-(X^3-2)(X^2-2)$
- $-X^5-7$
- $-X^4 + 4$.
- $--X^6 + 3.$
- $-X^8 + 16.$

Exercice 2:

Soit L/K une extension de corps et F_1, F_2 deux sous-extensions. On suppose que $[F_1:K] \wedge [F_2:K] = 1$. Montrer que $F_1 \cap F_2 = K$.

Exercice 3: Polynômes minimaux

Soient K un corps et L une extension finie de K. Soient x, y deux éléments de L, et P_x, P_y leurs polynômes minimaux respectifs sur K. Montrer que P_x est irréductible sur K(y) si et seulement si P_y est irréductible sur K(x).

Exercice 4:

Soit k un corps et K = k(X) le corps des fractions rationnelles.

- **1.** Soit $F \in K \backslash k$.
 - a. Montrer que X est algébrique sur k(F).
 - b. En déduire que F est transcendant sur k.
 - c. Montrer que $[K:k(F)] = \max(\deg P, \deg Q)$ où $F = \frac{P}{Q}$ avec $P, Q \in k[X], P \land Q = 1$.

On pourra d'abord montrer le lemme suivant :

Lemme 0.1.

Soient $f, g \in K[t]$ premiers entre eux, et $m = \max(\deg f, \deg g)$, et $P_n \in K[t]$ des polynômes de degré strictement inférieur à m. Si il existe N tel que

$$\sum_{n=0}^{N} P_n f^n g^{N-n} = 0$$

Alors $P_n = 0$ pour tout $n \leq N$.

2. Soit $\phi: \operatorname{GL}_2(k) \to \operatorname{Aut}_k(K)$ le morphisme de groupe défini par

$$\phi \begin{pmatrix} a & b \\ c & d \end{pmatrix} : R \mapsto R \left(\frac{aX + b}{cX + d} \right)$$

Montrer que ϕ est surjectif et déterminer $\ker(\phi)$.

Algèbre II Clément Chivet

Exercice 5:

- 1. Est-ce que l'extension $\mathbb{Q}(\sqrt{2},\pi)/\mathbb{Q}$ est purement transcendante?
- **2.** Est-ce que l'extension $\mathbb{R}(X,Y)/\mathbb{R}(X+Y)$ est purement transcendante?

Exercice 6 : Degré du corps de décomposition

Soient K un corps, $P \in K[X]$ un polynôme de degré $n \ge 1$ et L un corps de décomposition de P sur K. Montrer que [L:K] divise n!.

Exercice 7: Un contre-exemple

Soit $K = \mathbb{Q}(T)$, et deux sous corps $K_1 = \mathbb{Q}(T^2)$ et $K_2 = \mathbb{Q}(T^2 - T)$. Montrer que K est algébrique sur K_1 et K_2 mais pas sur $K_1 \cap K_2$.

Exercice 8 : Extensions de degré 2

Soit L une extension d'un corps K de degré 2.

- **1.** On suppose que la caractéristique de K n'est pas 2. Montrer qu'il existe $a \in K$ tel que $L \simeq K[X]/(X^2-a)$ (que l'on note par definition $K(\sqrt{a})$.
 - 2. A quelle condition deux extensions de cette forme sont isomorphes?
 - **3.** Décrire les K automorphismes de $K(\sqrt{a})$.

Exercice 9: Une extension purement transcendante

Montrer que $k(x, \sqrt{1-x^2})$ est purement transcendante.

Exercice 10: Un exemple

Soit $K = \mathbb{Q}(\sqrt[3]{2}, j)$ où $j = e^{2i\pi/3}$.

- 1. Déterminer $[K:\mathbb{Q}]$, et exprimer K comme corps de décomposition d'un polynôme bien choisi.
- 2. Déterminer tous les sous-corps de K ainsi que leur degré.

Exercice 11 : Critères d'irréductiblité

- 1. (Eisenstein) Soit $P = \sum_{i=0}^{n} a_i X^i$ à coefficients entiers. Supposons qu'il existe un nombre premier p tel que $p|a_i$ pour $i \leq n-1$, p ne divise pas a_n et p^2 ne divise pas a_0 . Alors P est irréductible sur \mathbb{Q} .
- **2.** (Lemme de Gauss) Pour P un polynôme, on note c(P) le pgcd de ses coefficients. On dit que P est primitif si c(P) = 1.

Soit A un anneau factoriel, et K son corps des fractions. Les éléments irréductibles de A[X] sont les éléments premiers de A et les polynôme primitifs irréductibles sur K[X].