$$\frac{1.1.1}{(a)}$$
 (a) (a) (a) (a) (a) (a)

(b)
$$\times (n) = \delta (n+3) + 0.5 \delta (n-1)$$

(c)
$$\times (n) = 2^n \cdot \mathcal{G}(n-4)$$

(d)
$$\chi(n) = 2^n \dot{\mu}(-n-2)$$

$$\frac{1:1:2}{0.199} (a) \times (a) = \sum_{k=-\infty}^{\infty} (0.9)^{|k|} f(n-k)$$

$$(c) \times (n) = u(n) - 2u(n-4) + u(n-8)$$

$$\frac{1}{1.1.6} \text{ (b) } 3(n) = \sum_{k=-\infty}^{\infty} (-0.9)^{kkl} \int (n-3k)$$

$$\frac{1}{2} \frac{1}{2} \frac{1$$

$$-1$$
 $A(n) = 2 \times (n-1) - 2 \times (n-2)$.

Output signal produced by Linear Time-Invariant System.

Thus,
$$B(n) = 2y(n-1) - 2y(n-2)$$
.

$$\frac{1.2.7}{h(n)} = 2.18(n) + 3.8(n-1) + 3.8(n-1)$$

$$x(n) = S(n) + 3S(n-1) + 2S(n-2)$$

$$y(n) = x(n) + h(n)$$

$$y(n) = y_0(n) + y_1(n) + y_2(n)$$

$$\gamma_{o}(n) = \chi(o) h(n) = (1) h(n)$$

$$Y_1(n) = x(1)h(n-1) = 3h(n-1)$$

$$y_2(n) = x(2)h(n-2) = 2h(n-2)$$

$$Y(n) = Y_0(n) + Y_1(n) + Y_2(n)$$

$$Y(n) = x(n+1) + \frac{1}{2}x(n-n)$$

Substitude
$$x(n) = S(n)$$

:
$$h(n) = \beta(n-5) + \frac{1}{2} \beta(n-7)$$