	Date:
	3 GREEDY METHOD
	Used to solve optimisation problems
	[posololems orequiering either minimum
	Cosi) rogadmum susult
	THE SESSION OF THE PROPERTY OF
	P! A -> B [locations]
	SI S2 S3 S4 CARSht)
	S1 S2 S3 S4 CFEBRA
Si I	(cas) (cas) (bus) (team)
	suppose constraint: 12h
	train fleight -> feasible
	© O solutions
	E THE E F THE LINE IN THE WORLD
5	suppose constraint: minimum cost
	Now train -> satesfies both
	constraints -> optimal solution
	The second of th
	stoutegres used foor solving optimization
	Pa Oblams:
	1) Greedy method
	D by namic Programming
	3) Branch and Bound
	[each are different]

						Date			
General	aredy	meth	red						
algorit	hm Gree	edy	C9,	n)	N.				
ર ં	u				1 = 1	7			
For	1=1 6	n	do						
4	2 = sel	004	200		\$				
1 - 10 - 100									
				1100					
ય	806	utec	20 c	solu	ction	V+:	ر يع		
3	f - = -	TUIE -							
G	n=5	a	91	9	2 0	ا ق	94	9,0	
				\$	2 :	3	4	5	
KNAP	SACK	PRO	BLEN	1					
m=7	objects	0	L	2	3	4	5	6	チ
m= 15	Profits	P	10	5	15	ず	6	18	3
Section 1	weights	w	Ş٩	3	5	7	1	4	1
					V A				
$a\eta \rightarrow$	eapactty	op							
		-1-		Ī					

profits -> capacity of bag

profits -> obtained on selling an item

maximize profit by felling bags with

ximize profit by filling bags with various ebject

maximization

Coptimization problem

apsara

	0 to 1 0 to 1
	× (f), f) 0 = D = 1
	$\begin{array}{c} x & (\overrightarrow{\square}, \overrightarrow{\square}, \overrightarrow{\square}, \cdots) & o \leq \square \leq 1 \\ x_1 & o_2 & x_3 & \cdots & o \leq \square \leq 1 \end{array}$
	Deposes fraction of that
	elegect takers,
	abjects are dévisible
	a tala was a second of the second
	Approach for take mascimum profit first
	(-> take minimum weight first
	combining both
	take object with highest P910fit/welght
1.70	2. Taliffication andio
	1.0
	Given example:
	8/09 5 1.66 3 1 6 4.5 3
	01 02 08 04 05 06 04
A	w=15 kg, taking 95, of 1kg & ₹6.
	Remaining w= 14 kg, profit = ₹ 6
*	w=14 kg, taking of 2 kg & 210
	remaining w= 12 kg, profit= ₹16
*	w = 12 kg, taking $06 of 4 kg 8 218'$ Remaining $w = 8 kg$, profit = ₹34
	Remaining W= 8 kg profit = ₹34
	50,000

w= 8 kg, taking 3 9 5 kg & \$15

Remaining w= 3kg & profit = \$49 B \$ w= pkg, next we must choose 2 B 9: 3kg & ₹ 5taking $(2/3)^{rd_2}$ of 9: Remaining w = 0 p.ofit = .52 + (2/3)(5) = ₹ 55.33maximised profit constoraint was strivor = 15, we got Exiwi=15 itself alégentaire: maon Excipi objective obtained!

[01, knapsack X> Greedy method!!]

Page No 67

Date:___._

20B REGOENCING COITH DEADLINES

n=5

20pl	٦,	72	73	74	75
Parfots.	50	15	10	5	1
seadlines	2	2	-11,113	3	3

As many jebs have to be completed.

As completing a jebs generates a profit.

As Job is either completed before its assigned deadline / not completed at all.

Machine

Assumption: Bugst rime = 1 unit

Each god takes exactly one unit of

time for completion.

completing as many jobs as possible septenting their respective deadlines.

maximization problem
C, optimization
Cs Greedy Method

Date:

D. C.		
Date:_	 	

Tabula representation

500 consider	ed slot	80ln	Reefit
<u> </u>	- ·	-	O
71 7	[1,2]	11 J	20
72 V	[0,1][1,2]	J, 5 32	20+15
で メ	[0)1][13]	J, 72	20 + 15
J4 V	[0,1][1,2][2,3	220 25 23	20+15+5
7 ₅ ×	[0,1][1,2][2,9		20+15+5

Another example

かって 20 73 Jeles 52 7, **I**5 J4 Porofits 35 25 30 20 15 12 5 4 3. 2 Deadlines 2 3

> deadline = 4 maximum 2 3 0 28 37 32 J4-30 25 35

Date:____.

HOFFMAN CODING

Message -> BCC ABBDDA ECCBBAEDDCC Data can be composessed and sent to reduce the cost of transmission.

variable Fixed Normal size esscooling encoding

Huffman cooling

Length of above message = 20

Transferred in ASCII codes (8 bit)

A = 65 = 01000001

66 = 01000010

Totally 20 x & = (160 bit) message

fraced size encoding character count/ coole Frequency A 000 neue 001 B codes 010 6 assigned B 4 011 E 2 100

20

n			
Date:_	4.5	4.5	

3	20 × 3 = 60 lets only grequired
	[when compared to 160 sets]
	but
	table also needled to store
-	characters & cerresponding codes
-	5x 2 5x 3
	40 + 15 = 55 Dits for table
	60 + 55 = (115 doing) us 160 losty
	60 + 55 = (115 lossy) vs 160 lossy smaller large.
	variable size encooling: Huffman code
	follows optimal merge pattern
	· · · · · · · · · · · · · · · · · · ·
	Arrange alphabets in an increasing
	order of their earns
	2 3 4 5 6
	EO B B
7/4	(5) [optimal
	meige
	5) [optimal meige pattern tree]
	20) the
	Left -> mark o
	Left → mark o Right → mark 1

go from parent to shille & record numbers en branches. A -> 3 count, 001 code, 3 leils $B \rightarrow 5$ count, 10 code, 2 tots e → 6 count, 11 code, 2 loits D-> 4 count, of code, 2 lity E >> 2 count, 000 code, 8 lolts variable size coole CCABBDDAECC B = distance from

E fibi = E fidi noot 11 Size of message (3×3)+(5×2)+(6×2)+ (4 x e) + (2x3) 45 loit message For the table and tree + (12) = 52 loits (5 x 8) charactery total bits of code Total size = 45 + 52 = (91 loits. very small

apsara

Date:___-

Time to meage: 4 elements + 4 = 8 units of time

Page No. 71

n	-	í.	_				
\cup	C)	ŀ	u	ē,	 _		

	Meaging of many elests	
	List -> A B C D	
	Sizes -> 6 5 8 3	
	meege only two at a time	
	A B C D (C) (E) (2) (3)	
	11 + 13 + 16	
	(3) = 40 unity 9	
	(16) time	
31	2 6 1 2 2 1 1 1 1 1 1 1 2 2	
	Another way:	
	A B C D	
	(E) (E) (E) (E)	
	11+5+16	
	(05) = 32 units	of
	(16)	
	Another way 3	
	ABCD	
the .	(B) (E) (E) (E)	

10)

5+10+16 = 31 units of time

Greedy Approach: Always merge a pain of small sized else to get the dest result. G total merging time ?! seduced. combine file names with sizes: List -> x1 72 x3 74 75 sizes -> 20 30 10 B 30 95 15 60 30 23 xı 3 x5 total cost of merging = sum of nonleaf nodes = 15+60+35+95= (205) (min m (min) Elidi) eli -> value of leaf node di - distance of leaf from swoot = (3)(5)+(3)(10)+(2)(20)+(2)(30)+(2)(30) = 15 + 30 + 40 + 60 + 60 [205] same rejuet.

(5,6) (6,10)

Date:___-

MINIMUM COST SPANNING TREE

G= (v, E) vertices

Spanning Tree

\$

G A subgraph of graph G such that 19 = 1n1 = 6 vertices

E = 101-1 = 5 edges no cycle in the sulgeaph

S ⊆ S , S = (v', E')

with v'= V

(P)

n				
U	а	(e:_		

No. of spanning thees

In geven example

6 edges -> chapse ANY 5 edges ->

→ GC5 = G spanning trees

Another Example

General Fograula

101-1 cycles cycles

case of weighted graphy

Greedy methods to final MST

- 1 Pouris Algorithm
- 2 bruskal's Algorithm

$$cost = 99$$

$$cost = 99$$

reim's algorithm cannot find MSI may find for a

Page No - X

Date:___-

	IEI edges, "101-1 edges to be releved
	1
	Time complexity (0 (10) 1 (1)
	O Cne 2 -> kruskal's
	Algorithm)
	MPn Heap
	Deleting always keeps minimum
	at the top - log n time
	(5 (6 (n log n)) seduced
	6 (n log n) seduced time complex i ty
	Will the same
	using knuskal's algorithm find MST
ĺ	
	(1) 2 (2) (5) (7)
	6 3 7
Ī	(4) - (3) (b) - 2 (8)
	6 4
	4 (9)
	0 2
	(D) (S) (S)
1	
	5 9
	cannot find MST, but finds MST for
	individual connected components

of ? if all marked Find min values edges feem a MST. ? chasen after 2/3. ? min → (4) spanning tree: find wst minimum 2 spanning read ceas posseble lout optimal mm aust oremains some other MST: · cost 3

Date:			_
-------	--	--	---

DIJKSTRA ALGORITHM
single source shortest path problem
2 72 7
3 5 5
minimization peroblem
optimization peoblem
optimization peoblem greedy approach
Difks tora Underected graphy
Algerithm > Disperted graphy ()
Smaller example
7 2 4 3
Initially @ vertex 0,
P-3-9-3
Initially @ v,, now @ v2 Relaxation:

updation q

distance

Date:___-.

For Asst graph

select smallest

next smallest
$$\rightarrow 0$$
, $2 \rightarrow 2$, $3 \rightarrow 3$, $4 \rightarrow 9$, $5 \rightarrow 6$, $6 \rightarrow \infty$

next smaller
$$t$$
 $l \rightarrow 0$, $a \rightarrow 2$, $a \rightarrow 3$, $4 \rightarrow 2$, $5 \rightarrow c$, $6 \rightarrow 1$

rext smaller
$$0 \lor 4 : 1 \to 0, 2 \to 2, 3 \to 3$$

 $0 \lor 4 : 4 \to 8, 5 \to 6, 6 \to 9$

1	17%	٠	0				
U	€2	t.	e	Ξ	٠	٠	

n veetice.

For complete graph, each vertex is connected to all other vertices - n

(O(U2) = O(N2)) P3 the work

Case time complexity

Run Dijkstera's Algorithm on the

			1				
26	leded .			rectica	2		
W	leded. exten	೩	3	4	5	6	
	4	50	45	(10)	_ ∞	00	
	5	50	45	10	25	00	
	2	(45)	45	@	23	∞	
	3	45	(9-5)	10	25	00	
	G	45)	45	(6)	(DB)	(3)	
			2ho	atest	olls-	tance	3

ondtorected graphs :-

Daawlack of Dijkston Algorithm

negative edge &

as $R: 1 \rightarrow 4 \rightarrow 3 \rightarrow 2$ -3 is called not 3

Page No