## Correction DS n°5

## Exercice 1.

1) 
$$N_3 = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$
.

Dans les questions suivantes - à l'exception de la dernière question - on considère que n=3.

$$rg(N) = rg\begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

$$= rg\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

en effectuant les opérations  $L_2 \leftarrow L_2 - L_1$  et  $L_3 \leftarrow L_3 - L_1$ .

Cette dernière matrice est réduite par ligne, possède deux pivots, donc rg(N) = 2.

3) dim Im  $N = \operatorname{rg}(N) = 2$ .

Il suffit donc de donner deux vecteurs non colinéaires de  $\operatorname{Im} N$  pour obtenir une base de cet espace.

Or les deux premières colonnes de N,  $C_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$  et  $C_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$  sont deux vecteurs non

colinéaires de  $\operatorname{Im} N$ .

Donc  $\mathcal{B} = ((1; 1; 1); (0; 1; 0))$  est une base de Im N.

4) dim  $\operatorname{Ker} N = 3 - \operatorname{rg}(N) = 1$  d'après la version matricielle du théorème du rang.

$$5) \left(\begin{array}{ccc} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{array}\right) \left(\begin{array}{c} -1 \\ 0 \\ 1 \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right).$$

Comme de plus dim Ker N = 1, la famille  $\mathcal{F} = ((-1; 0; 1))$  est une base de Ker N.

6) Soit  $\phi$  l'endomorphisme canoniquement associé à N. On note  $\mathcal{C} = (e_1, ..., e_n)$  la base canonique de  $\mathbb{R}^n$ .

a) 
$$\phi(e_1) = e_1 + e_2 + e_3 = (1; 1; 1)$$
 puisque la première colonne de  $N$  est  $C_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ .

b) De même,  $\phi(e_3) = \phi(e_1) = e_1 + e_2 + e_3$ .

c) Enfin, 
$$\phi(e_2) = e_2$$
 puisque la deuxième colonne de  $N$  est  $C_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ .

d)  $\phi \circ \phi(e_1) = \phi(e_1 + e_2 + e_3) = \phi(e_1) + \phi(e_2) + \phi(e_3)$  par linéarité. Donc  $\phi \circ \phi(e_1) = 2e_1 + 3e_2 + 2e_3 = (2; 3; 2)$ .

e) 
$$\phi \circ \phi \circ \phi(e_1) = \phi^3(e_1) = \phi(2e_1 + 3e_2 + 2e_3) = 2\phi(e_1) + 3\phi(e_2) + 2\phi(e_3) = (4, 7, 4).$$

f) Soit  $p \in \mathbb{N}^*$ . On souhaite calculer  $\phi^p(e_1)$ .

Les questions précédentes permettent de conjecturer que  $\phi^p(e_1) = (2^{p-1}; 2^p - 1; 2^{p-1}).$ 

L'initialisation est faite.

Faisons l'hérédité.

Supposons que pour  $p \in \mathbb{N}^*$  donné, on ait  $\phi^p(e_1) = (2^{p-1}; 2^p - 1; 2^{p-1})$ .

Alors  $\phi^{p+1}(e_1) = \phi(2^{p-1}; 2^p - 1; 2^{p-1}) = 2^{p-1}\phi(e_1) + (2^p - 1)\phi(e_2) + 2^{p-1}\phi(e_3)$  par linéarité.

Donc  $\phi^{p+1}(e_1) = (2^p; 2^p + 2^p - 1; 2^p)$  en remplaçant  $\phi(e_1)$ ,  $\phi(e_2)$  et  $\phi(e_3)$  par leurs expressions.

Donc  $\phi^{p+1}(e_1) = (2^p; 2^{p+1} - 1; 2^p)$ , ce qu'il fallait démontrer.

La propriété est initialisée au rang 1, héréditaire à partir de ce rang, donc

$$\forall p \in \mathbb{N}^*, \phi^p(e_1) = (2^{p-1}; 2^p - 1; 2^{p-1})$$

g)  $\phi$  est l'application linéaire canoniquement associée à N.

En notant  $\mathcal{C}$  la base canonique de  $\mathbb{R}^3$ , on a donc  $N = \operatorname{Mat}_{\mathcal{C}}(\phi)$ .

Donc  $N^p = \operatorname{Mat}_{\mathcal{C}}(\phi^p)$ .

Or  $\phi(e_1) = \phi(e_3)$  donc  $\phi^p(e_1) = \phi^p(e_3) = (2^{p-1}; 2^p - 1; 2^{p-1})$  d'une part, et  $\phi(e_2) = e_2$  donc  $\phi^p(e_2) = e_2$  d'autre part.

Donc

$$\forall p \in \mathbb{N}^*, N^p = \begin{pmatrix} 2^{p-1} & 0 & 2^{p-1} \\ 2^p - 1 & 1 & 2^p - 1 \\ 2^{p-1} & 0 & 2^{p-1} \end{pmatrix}$$

- 7) On démontre de même, pour  $n \ge 3$  entier quelconque, que :
  - $\operatorname{rg}(N) = n 1;$
  - une base de  $\operatorname{Im} N$  est donnée par les n-1 premières colonnes de N;
  - dim Ker N = n (n 1) = 1;
  - une base de Ker N est donnée par le vecteur  $(-1; 0; ...; 0; 1) \in \mathbb{R}^n$ ;
  - $\phi(e_1) = \phi(e_n) = e_1 + e_2 + \dots + e_n = \sum_{k=1}^n e_k;$
  - pour  $k \in [2; n-1], \phi(e_k) = e_k;$
  - $\phi \circ \phi(e_1) = 2e_1 + 3e_2 + \dots + 3e_{n-1} + 2e_n = (2; 3; \dots; 3; 2);$
  - $\phi^3(e_1) = (4; 7; ...; 7; 4);$
  - $\forall p \in \mathbb{N}^*, \phi^p(e_1) = (2^{p-1}; 2^p 1; ...; 2^p 1; 2^{p-1});$

• enfin,

$$\forall p \in \mathbb{N}^*, N_n = \begin{pmatrix} 2^{p-1} & 0 & 0 & \cdots & 0 & 0 & 2^{p-1} \\ 2^p - 1 & 1 & 0 & \cdots & 0 & 0 & 2^p - 1 \\ 2^p - 1 & 0 & 1 & \ddots & 0 & 0 & 2^p - 1 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ 2^p - 1 & 0 & 0 & \ddots & 1 & 0 & 2^p - 1 \\ 2^p - 1 & 0 & 0 & \cdots & 0 & 1 & 2^p - 1 \\ 2^{p-1} & 0 & 0 & \cdots & 0 & 0 & 2^{p-1} \end{pmatrix} \in \mathcal{M}_n(\mathbb{R})$$

Exercice 2.

1)



2) 
$$f(x) = \frac{\left(\sqrt{1+x^4}-1\right)}{x} = \frac{1+\frac{x^4}{2}+o(x^4)-1}{x} = \frac{x^3}{2}+o(x^3).$$

- 3) f possède un développement limité à l'ordre 3 (donc à un ordre supérieur ou égal à 1) en 0. Donc f est prolongeable par continuité en 0 en posant f(0) = 0 (terme constant du développement limité).
- 4) De plus, ce prolongement est dérivable et f'(0) = 0 (coefficient du terme de degré 1 du développement limité).
- 5) L'équation de la tangente en 0 à  $C_f$  est donc y = 0 et  $f(x) = \frac{x^3}{2} + \underset{x \to 0}{o}(x^3)$  est du signe de  $x^3$  au voisinage de 0.

Donc  $C_f$  est au-dessus de sa tangente en  $0^+$ 

et  $C_f$  est en-dessous de sa tangente en  $0^-$ .

6) Développement asymptotique : on pose  $h = \frac{1}{x} \underset{x \to +\infty}{\longrightarrow} 0$ .

$$f(x) = f\left(\frac{1}{h}\right) = \frac{\left(\sqrt{1 + \frac{1}{h^4}} - 1\right)}{\frac{1}{h}}$$

$$= h \times \frac{1}{\sqrt{h^4}} \left(\sqrt{h^4 + 1} - h^2\right)$$

$$= \frac{1}{h} \left(1 + \frac{h^4}{2} + \underset{h \to 0}{o} (h^4) - h^2\right)$$

$$= \frac{1}{h} - h + \frac{h^3}{2} + \underset{h \to 0}{o} (h^3)$$

Donc  $f(x) = x - \frac{1}{x} + \frac{2}{x^3} + \sum_{x \to \pm \infty}^{\infty} \left(\frac{1}{x^3}\right)$ . Donc la droite d'équation y = x est asymptote oblique à la représentation graphique de fau voisinage de  $+\infty$  et au voisinage de  $-\infty$ .

7) f est une fonction impaire. Il suffit donc de l'étudier sur  $[0; +\infty[$ .

De plus f est continue sur  $\mathbb{R}$ , f(0) = 0 et  $\lim_{x \to +\infty} f(x) = +\infty$  (car  $f(x) = x + \underset{x \to +\infty}{o}(x)$  au voisinage de  $+\infty$ ).

Donc  $f([0; +\infty[) = [0; +\infty[$ , et comme f est impaire,  $f(\mathbb{R}) = \mathbb{R}$ .

Donc f est surjective de  $\mathbb{R}$  dans  $\mathbb{R}$ .

Pour montrer qu'elle est bijective, il suffit de montrer qu'elle est injective. La fonction étant continue, ceci équivaut à montrer que f est strictement monotone sur  $\mathbb{R}$ .

Or f est dérivable sur  $\mathbb{R}$ , de dérivée nulle en 0, et

$$\forall x > 0, f'(x) = \frac{\frac{4x^3}{2\sqrt{1+x^4}}x - \sqrt{1+x^4} + 1}{x^2} = \frac{x^4 - 1 + \sqrt{1+x^4}}{x^2\sqrt{1+x^4}} \geqslant \frac{x^2}{\sqrt{1+x^4}} > 0.$$
Denote  $f' > 0$  sum  $\mathbb{R}$ , no simple surion  $0$ , done if not strict ment, encionants

Donc  $f' \ge 0$  sur  $\mathbb{R}$ , ne s'annule qu'en 0, donc f est strictement croissante sur  $\mathbb{R}$ , donc injective.

f est bien une bijection de  $\mathbb{R}$  dans  $\mathbb{R}$ .

## Exercice 3.

On définit la suite u de  $\mathbb{R}^{\mathbb{N}}$  par

$$u_0 = 1$$
 et  $\forall n \in \mathbb{N}, u_{n+1} = u_n + \frac{1}{(n+1)!}$ 

1) 
$$u_0 = 1$$
.  
 $u_1 = 2$ .  
 $u_2 = 2 + \frac{1}{2} = \frac{5}{2}$ .

2) Pour tout entier 
$$n$$
,  $u_{n+1} - u_n = \frac{1}{(n+1)!} > 0$ .  
Donc  $u$  est strictement croissante.

3) Montrons que 
$$\forall n \in \mathbb{N}, u_n = \sum_{k=0}^n \frac{1}{k!}$$
 par récurrence.

pour 
$$n = 0$$
,  $u_0 = 1$  et  $\sum_{k=0}^{n} \frac{1}{k!} = \frac{1}{0!} = 1$ .

## Hérédité:

Supposons la propriété vérifiée pour un entier n donné.

$$u_{n+1} = u_n + \frac{1}{(n+1)!} = \frac{1}{(n+1)!} + \sum_{k=0}^{n} \frac{1}{k!}$$
 par hypothèse de récurrence.

Donc 
$$u_{n+1} = \sum_{k=0}^{n+1} \frac{1}{k!}$$
, ce qu'il fallait démontrer.

**Conclusion**: pour tout entier 
$$n$$
,  $u_n = \sum_{k=0}^{n} \frac{1}{k!}$ .

4) Pour tout entier 
$$n \in \mathbb{N}^*$$
, on note  $v_n = u_n + \frac{1}{n \times n!}$ .

Soit 
$$n \in \mathbb{N}$$
.

$$v_{n+1} - v_n = u_{n+1} - u_n + \frac{1}{(n+1) \times (n+1)!} - \frac{1}{n \times n!}.$$

Donc
$$v_{n+1} - v_n = \frac{n(n+1)}{n(n+1) \times (n+1)!} + \frac{n}{n(n+1) \times (n+1)!} - \frac{(n+1)^2}{n(n+1) \times (n+1)!}$$

$$= \frac{n^2 + n + n - n^2 - 2n - 1}{n(n+1) \times (n+1)!}$$
Finalement
$$v_{n+1} - v_n = \frac{-1}{n(n+1)(n+1)!}.$$

$$v_{n+1} - v_n = \frac{-1}{n(n+1)(n+1)!}$$

- 5) La suite v est décroissante, comme conséquence directe de la question précédente.
- 6) u est croissante, v est décroissante, de plus  $v_n u_n = \frac{1}{n \times n!} \xrightarrow[n \to +\infty]{} 0$ . Ces deux suites sont adjacentes et le premier terme de v, c'est-à-dire  $v_1$  majore la suite u.
- 7) Enfin, u est donc convergente, tout comme v, et leurs limites sont égales.