

ROTATION TOPOLOGICAL FACTORS OF MINIMAL \mathbb{Z}^d -ACTIONS ON THE CANTOR SET

MARIA ISABEL CORTEZ, JEAN-MARC GAMBAUDO AND ALEJANDRO MAASS

ABSTRACT. In this paper we study conditions under which a free minimal \mathbb{Z}^d -action on the Cantor set is a topological extension of the action of d rotations, either on the product \mathbb{T}^d of d 1-tori or on a single 1-torus \mathbb{T}^1 . We extend the notion of *linearly recurrent* systems defined for \mathbb{Z} -actions on the Cantor set to \mathbb{Z}^d -actions and we derive in this more general setting, a necessary and sufficient condition, which involves a natural combinatorial data associated with the action, allowing the existence of a rotation topological factor of one these two types.

1. INTRODUCTION

Let (X, \mathcal{A}) be a \mathbb{Z}^d -action (by homeomorphisms) on a compact metric space X . The action is *free* if $\mathcal{A}(\bar{n}, x) = x$ for some $\bar{n} \in \mathbb{Z}^d$ and $x \in X$ implies $\bar{n} = 0$ and is *minimal* if the orbit of any point $x \in X$, $O_{\mathcal{A}}(x) = \{\mathcal{A}(\bar{n}, x) : \bar{n} \in \mathbb{Z}^d\}$, is dense in X .

The simplest non trivial examples of free minimal \mathbb{Z}^d -actions on a compact metric space are given by “rotation-type” actions on compact topological groups. This type of factors play a central role in topological dynamics of \mathbb{Z}^d -actions since in particular they determine weak mixing property through the existence of continuous eigenvalues. In this paper, we focus on two kinds of “rotation-type” factors that we describe now.

- First consider the \mathbb{Z}^d -action generated by d rotations on the product d -torus $\mathbb{T}^d = \mathbb{R}^d / \mathbb{Z}^d = \mathbb{T}^1 \times \cdots \times \mathbb{T}^1$, each rotation acting on \mathbb{T}^1 . More precisely, take $\bar{\theta} = (\theta_1, \dots, \theta_d) \in \mathbb{R}^d$ and let $\mathcal{A}_{\bar{\theta}}^d : \mathbb{Z}^d \times \mathbb{T}^d \rightarrow \mathbb{T}^d$ be the map defined by:

$$\mathcal{A}_{\bar{\theta}}^d(\bar{n}, x) = x + [\bar{n}, \bar{\theta}] \mod \mathbb{Z}^d,$$

for $\bar{n} = (n_1, \dots, n_d) \in \mathbb{Z}^d$, $x \in \mathbb{T}^d$ and where $[\bar{n}, \bar{\theta}] = (n_1 \cdot \theta_1, \dots, n_d \cdot \theta_d)$. This construction yields a minimal \mathbb{Z}^d -action $(\mathbb{O}^d, \mathcal{A}_{\bar{\theta}}^d)$ on the closure \mathbb{O}^d of the orbit of 0 in the d -torus \mathbb{T}^d . When the coordinates of $\bar{\theta}$ are rationally independent, the set \mathbb{O}^d is the d -torus \mathbb{T}^d and the action is free.

- The same $\bar{\theta}$ can be used to define a \mathbb{Z}^d -action on \mathbb{T}^1 . Consider the map $\mathcal{A}_{\bar{\theta}}^1 : \mathbb{Z}^d \times \mathbb{T}^1 \rightarrow \mathbb{T}^1$ given by

$$\mathcal{A}_{\bar{\theta}}^1(\bar{n}, t) = t + \langle \bar{n}, \bar{\theta} \rangle \mod \mathbb{Z},$$

where $\langle \cdot, \cdot \rangle$ is the usual inner product in \mathbb{R}^d . The \mathbb{Z}^d -action $(\mathbb{O}^1, \mathcal{A}_{\bar{\theta}}^1)$ on the closure \mathbb{O}^1 of the orbit of 0 in the 1-torus \mathbb{T}^1 is again minimal. When

Date: February 1, 2008.

the coordinates of $\bar{\theta}$ are independent on \mathbb{Q} , the set \mathbb{O}^1 is the 1-torus \mathbb{T}^1 and the action is free.

Assume X is a Cantor set, *i.e.*, it has a countable basis of closed and open (clopen) sets and has no isolated points (or equivalently, it is a totally disconnected compact metric space with no isolated points).

The main question we address in this paper is to determine whether a free minimal \mathbb{Z}^d -action \mathcal{A} on the Cantor set X is an extension of an action of type $(\mathbb{O}^d, \mathcal{A}_\theta^d)$ or $(\mathbb{O}^1, \mathcal{A}_{\bar{\theta}}^1)$ for some $\bar{\theta} \in \mathbb{R}^d$.

Notice that a complete combinatorial answer to this question is given in [BDM] in the particular case when the dimension $d = 1$ and when the free minimal \mathbb{Z} -action is *linearly recurrent*. The linear recurrence of a given \mathbb{Z} -action is a property that involves the combinatorics of *return times* associated with a nested sequence of clopen sets (for further references on linearly recurrent \mathbb{Z} -actions see [CDHM],[Du1] and [Du2]).

The notion of return time to a clopen set can be generalized to \mathbb{Z}^d -actions when $d \geq 2$. In this case, the combinatorics of the return times associated with a nested sequence of clopen sets inherits a richer structure than in the case $d = 1$. However, as for $d = 1$, there exists a natural definition of linearly recurrent \mathbb{Z}^d -action. These generalizations are developed in Section 2 which is devoted to the combinatorics of return times (for further references on the structure of return times associated with a \mathbb{Z}^d -action see [BG] where the hierarchical ideas used in this paper are introduced, see also [S] and [SW] for related topics).

This combinatorial approach allows us to derive a necessary condition on the action to be an extension of an action of one of the two rotations described above. In the case of a linearly recurrent action this condition is sufficient. This result is given in Section 3 (Theorem 3.1) together with its proof.

2. COMBINATORICS OF RETURN TIMES

Let us start this section with some general considerations.

Let \mathbb{R}^d be the Euclidean d -space and $\| - \|$ its Euclidean norm. Consider two positive numbers r and R . An (r, R) -*Delone set* is a subset \mathcal{D} of the d -space \mathbb{R}^d equipped with the Euclidean norm $\| - \|$, which satisfies the following two properties:

- (i) *Uniformly Discrete*: each open ball with radius r in \mathbb{R}^d contains at most one point in \mathcal{D} ;
- (ii) *Relatively Dense*: each open ball with radius R contains at least one point in \mathcal{D} .

When the constants r and R are not explicitly used, we will say in short *Delone set* for an (r, R) -Delone set. We refer to [LP] for a more detailed approach of the theory of Delone sets.

A *patch* of a Delone set \mathcal{D} is a finite subset of \mathcal{D} . A Delone set is of *finite type* if for each $M > 0$, there exist only finitely many patches in \mathcal{D} of diameter smaller than M up to translation. Finally, a Delone set of finite type is *repetitive* if for each patch P in \mathcal{D} , there exists $M > 0$ such that each ball with radius M in \mathbb{R}^d contains a translated copy of P in \mathcal{D} .

Let x be a point of a Delone set \mathcal{D} . The *Voronoi cell* \mathcal{V}_x associated with x is the convex closed set in \mathbb{R}^d defined by:

$$\mathcal{V}_x = \{y \in \mathbb{R}^d : \forall x' \in \mathcal{D}, \|y - x\| \leq \|y - x'\| \}.$$

The union $\cup_{x \in \mathcal{D}} \mathcal{V}_x$ is a cover of \mathbb{R}^d . We say that two points x and x' in \mathcal{D} are *neighbors* if $\mathcal{V}_x \cap \mathcal{V}_{x'} \neq \emptyset$.

The set of return vectors associated with \mathcal{D} is defined by:

$$\vec{\mathcal{D}} = \{x - y : (x, y) \in \mathcal{D} \times \mathcal{D}\}.$$

Lemma 2.1. *Let \mathcal{D} be a Delone set of finite type. Then, there exists a finite collection $\vec{\mathcal{F}}$ of vectors in $\vec{\mathcal{D}}$ such that:*

- $\vec{\mathcal{F}} = -\vec{\mathcal{F}}$;
- any vector in $\vec{\mathcal{D}}$ is a linear combination with non negative integer coefficients of vectors in $\vec{\mathcal{F}}$.

Proof. When \mathcal{D} is a Delone set of finite type, the set of vectors

$$\vec{\mathcal{F}} = \bigcup_{(x, x') \in \mathcal{D} \times \mathcal{D}, (x, x') \text{ neighbors}} (x - x')$$

is finite, satisfies $\vec{\mathcal{F}} = -\vec{\mathcal{F}}$ and clearly any vector in $\vec{\mathcal{D}}$ is a linear combination with non negative integer coefficients of vectors in $\vec{\mathcal{F}}$. \square

Given such a set $\vec{\mathcal{F}}$, we can define the $\vec{\mathcal{F}}$ -distance $d_{\vec{\mathcal{F}}}(x, x')$ as the minimal number of vectors in $\vec{\mathcal{F}}$ (counted with multiplicity) needed to write $x - x'$ for $x, x' \in \mathcal{D}$. The $\vec{\mathcal{F}}$ -diameter of a patch P , denoted by $diam_{\vec{\mathcal{F}}}(P)$, is the maximal $\vec{\mathcal{F}}$ -distance of pair of points in \mathcal{D} .

Consider now a free minimal \mathbb{Z}^d -action \mathcal{A} on the Cantor set X . Let \mathcal{C} be a clopen set in X and y a point in \mathcal{C} . The set of *return times* of the orbit of y in \mathcal{C} is defined by

$$\mathcal{R}_{\mathcal{C}}(y) = \{\bar{n} \in \mathbb{Z}^d : \mathcal{A}(\bar{n}, y) \in \mathcal{C}\}.$$

Proposition 2.2. *The set of return times $\mathcal{R}_{\mathcal{C}}(y)$ is a repetitive Delone set of finite type in \mathbb{Z}^d . Furthermore, if y and y' are two points in \mathcal{C} , the sets $\mathcal{R}_{\mathcal{C}}(y)$ and $\mathcal{R}_{\mathcal{C}}(y')$ have the same patches up to translation.*

Proof. • $\mathcal{R}_{\mathcal{C}}(y)$ is a Delone set of finite type.

The minimality of the action implies that the orbit of any point in X visits \mathcal{C} . For each $x \in X$ consider $\bar{n}_x \in \mathbb{Z}^d$ be such that $\mathcal{A}(\bar{n}_x, x)$ is in \mathcal{C} . Since \mathcal{C} is open, there exists a small neighborhood U_x of x such that for any x' in U_x we also have $\mathcal{A}(\bar{n}_x, x') \in \mathcal{C}$. Therefore $\{U_x : x \in X\}$ is a cover of X . Since X is compact, we can extract a finite cover $\{U_{x_i} : i \in I\}$. Let us choose $R > \max_{i \in I} \|\bar{n}_{x_i}\|$. It is clear that any ball with radius R in \mathbb{R}^d intersects $\mathcal{R}_{\mathcal{C}}(y)$. Thus, $\mathcal{R}_{\mathcal{C}}(y)$ is relatively dense. Since it is a subset of \mathbb{Z}^d , it is a Delone set of finite type.

• $\mathcal{R}_{\mathcal{C}}(y)$ is repetitive¹.

Consider a patch P in $\mathcal{R}_{\mathcal{C}}(y)$, choose \bar{n}_0 in P and let $z = \mathcal{A}(\bar{n}_0, y) \in \mathcal{C}$. Choose now a clopen set \mathcal{C}_z containing z , small enough so that for any z' in \mathcal{C}_z , $\mathcal{A}(\bar{n} - \bar{n}_0, z')$ is in \mathcal{C} for each \bar{n} in P . The set $\mathcal{R}_{\mathcal{C}_z}(z)$ is relatively dense, let R_1 be its R -constant. Let M stand for the diameter of P and let us prove that any ball with radius $R_1 + M$

¹The proof that minimality implies repetitivity is classical and works in a more general situation. However, for sake of completeness, we fix it here for our specific context.

in \mathbb{R}^d contains a translation of the patch P . Indeed, given such a ball B , choose an element $\bar{m} \in \mathcal{R}_{\mathcal{C}_z}(z)$ in the corresponding centered sub-ball of radius R_1 , then by construction $\bar{m} + P$ belongs to $\mathcal{R}_{\mathcal{C}}(y)$ and to the ball B .

- $\mathcal{R}_{\mathcal{C}}(y)$ and $\mathcal{R}_{\mathcal{C}}(y')$ have the same patches up to translation.

Let P be a patch of $\mathcal{R}_{\mathcal{C}}(y)$ and \bar{n}_0 be a point in P . The minimality of the action implies that the orbit of y' accumulates on $z = \mathcal{A}(\bar{n}_0, y)$. This means that there exists $\bar{n}_1 \in \mathbb{Z}^d$ such that $\mathcal{A}(\bar{n}_1 + \bar{n} - \bar{n}_0, y')$ is in \mathcal{C} when \bar{n} is in P . Thus a translation of the patch P is in $\mathcal{R}_{\mathcal{C}}(y')$. \square

The set of *return vectors* associated with \mathcal{C} is defined by:

$$\vec{\mathcal{R}}_{\mathcal{C}} = \mathcal{R}_{\mathcal{C}}(y) - \mathcal{R}_{\mathcal{C}}(y) = \{ \bar{n} - \bar{m} : (\bar{n}, \bar{m}) \in \mathcal{R}_{\mathcal{C}}(y) \times \mathcal{R}_{\mathcal{C}}(y) \} .$$

The fact that for any pair of points y and y' in \mathcal{C} , the patches of $\mathcal{R}_{\mathcal{C}}(y)$ and $\mathcal{R}_{\mathcal{C}}(y')$ fit up to translation, implies that $\vec{\mathcal{R}}_{\mathcal{C}}$ does not depend on y in \mathcal{C} , as suggested by the notation. Lemma 2.1 and Proposition 2.2 yield the following corollary.

Corollary 2.3. *There exists in $\vec{\mathcal{R}}_{\mathcal{C}}$ a finite collection of vectors $\vec{\mathcal{F}}_{\mathcal{C}}$ such that:*

- $\vec{\mathcal{F}}_{\mathcal{C}} = -\vec{\mathcal{F}}_{\mathcal{C}}$;
- any vector in $\vec{\mathcal{R}}_{\mathcal{C}}$ is a linear combination with non negative integer coefficients of vectors in $\vec{\mathcal{F}}_{\mathcal{C}}$.

Such a set $\vec{\mathcal{F}}_{\mathcal{C}}$ is called a *set of first return vectors* associated with \mathcal{C} .

Now we shall construct a combinatorial data associated to a \mathbb{Z}^d -action. Let x be a point in X and consider a sequence of nested clopen sets $X = \mathcal{C}_0 \supseteq \mathcal{C}_1 \supseteq \dots \supseteq \mathcal{C}_n$ such that

$$\bigcap_{n \geq 0} \mathcal{C}_n = \{x\} .$$

Consider also the associated sets of return times $\mathcal{R}_{\mathcal{C}_n}(x)$, of return vectors $\vec{\mathcal{R}}_{\mathcal{C}_n}$ and of first return vectors $\vec{\mathcal{F}}_{\mathcal{C}_n}$ that we denote respectively (in short) by $\mathcal{R}_n(x)$, $\vec{\mathcal{R}}_n$ and $\vec{\mathcal{F}}_n$.

Proposition 2.4. *For each $n \geq 0$, there exist a constant $k(n) > 0$ and a partition of $\mathcal{R}_n(x)$ in disjoint patches $\{\mathcal{P}_n(\bar{m})\}_{\bar{m} \in \mathcal{R}_{n+1}(x)}$ such that, for each $\bar{m} \in \mathcal{R}_{n+1}(x)$:*

- (i) $\mathcal{P}_n(\bar{m}) \cap \mathcal{R}_{n+1}(x) = \{\bar{m}\}$;
- (ii) $\text{diam}_{\vec{\mathcal{F}}_n}(\mathcal{P}_n(\bar{m})) \leq k(n)$.

Proof. For any point \bar{m} in $\mathcal{R}_{n+1}(x)$ consider its Voronoi cell $\mathcal{V}_{\bar{m}, n+1}$. The intersection of this Voronoi cell with $\mathcal{R}_n(x)$ defines a patch $\mathcal{P}_n(\bar{m})$ which intersects $\mathcal{R}_{n+1}(x)$ at \bar{m} . It may occasionally happen that a point \bar{l} in $\mathcal{R}_n(x)$ belongs to more than one Voronoi cell $\mathcal{V}_{\bar{m}, n+1}$. In this case, we make an arbitrary choice to exclude the point \bar{l} from all the patches it belongs to but one. This surgery done, the collection of patches $\{\mathcal{P}_n(\bar{m})\}_{\bar{m} \in \mathcal{R}_{n+1}(x)}$ realizes a partition of $\mathcal{R}_n(x)$. Furthermore, since $\mathcal{R}_{n+1}(x)$ and $\mathcal{R}_n(x)$ are repetitive Delone sets, the Euclidean diameters of the cells $\mathcal{V}_{\bar{m}, n+1}$ are bounded independently of \bar{m} , and thus their $\vec{\mathcal{F}}_n$ -diameters are bounded independently of \bar{m} . \square

The data $(x, \{\mathcal{C}_n\}_{n \geq 0}, \{\{\mathcal{P}_n(\bar{m})\}_{\bar{m} \in \mathcal{R}_{n+1}(x)}\}_{n \geq 0}, \{\vec{\mathcal{F}}_n\}_{n \geq 0})$ is called *a combinatorial data* associated with the action (X, \mathcal{A}) .

We remark that Proposition 2.4 does not require any condition on the nested sequence of clopen sets. By forgetting some \mathcal{C}_n 's in the sequence, it is always possible to insure the following two extra properties for the combinatorial data:

- (iii) for each $n \geq 0$ and for each \bar{m} in $\mathcal{R}_{n+1}(x)$

$$\vec{\mathcal{F}}_n \subseteq \mathcal{P}_n(\bar{m}) - \mathcal{P}_n(\bar{m});$$

- (iv) for each $n \geq 0$ and for each \bar{m} in $\mathcal{R}_{n+2}(x)$, all the patches $\mathcal{P}_n(\bar{m})$ are identical up to translation.

In this case, we say that the combinatorial data

$$(x, \{\mathcal{C}_n\}_{n \geq 0}, \{\{\mathcal{P}_n(\bar{m})\}_{\bar{m} \in \mathcal{R}_{n+1}(x)}\}_{n \geq 0}, \{\vec{\mathcal{F}}_n\}_{n \geq 0})$$

is *well distributed*.

Let m and n be two integers such that $0 \leq n \leq m$, and let \bar{p} be a point in $\mathcal{R}_m(x)$. We denote by $\mathcal{P}_n^m(\bar{p})$ the patch in $\mathcal{R}_n(x)$ defined recursively by:

$$\mathcal{P}_{m-1}^m(\bar{p}) = \mathcal{P}_{m-1}(\bar{p}),$$

and

$$\mathcal{P}_n^m(\bar{p}) = \cup_{\bar{q} \in \mathcal{P}_{n+1}^m(\bar{p})} \mathcal{P}_n(\bar{q}).$$

We adopt the convention $\mathcal{P}_m^m(\bar{p}) = \{\bar{p}\}$. The proof of the following result is plain.

Corollary 2.5. *For any $n_0 \geq 0$ and any \bar{p} in $\mathcal{R}_{n_0}(x)$, there exists a unique $m_0 \geq n_0$ and a unique sequence $\{\bar{p}_l\}_{0 \leq l \leq m_0 - n_0}$ of points in \mathbb{Z}^d such that:*

- m_0 is the smallest $m \geq n_0$ for which $\bar{p} \in \mathcal{P}_{n_0}^m(0)$;
- $\bar{p}_0 = 0$;
- $\bar{p}_l \in \mathcal{P}_{m_0-l}(\bar{p}_{l-1})$ and $\bar{p} \in \mathcal{P}_{n_0}^{m_0-l}(\bar{p}_l)$ for all $1 \leq l \leq m_0 - n_0$;
- $\bar{p}_{m_0-n_0} = \bar{p}$.

When the constant $k(n)$ in Proposition 2.4 is bounded independently on n , we say that the free minimal \mathbb{Z}^d -action \mathcal{A} on the Cantor set X is *linearly recurrent*. In this case, the combinatorial data $(x, \{\mathcal{C}_n\}_{n \geq 0}, \{\{\mathcal{P}_n(\bar{m})\}_{\bar{m} \in \mathcal{R}_{n+1}(x)}\}_{n \geq 0}, \{\vec{\mathcal{F}}_n\}_{n \geq 0})$ is said *adapted* to the action.

3. MAIN RESULTS

To each vector $\bar{\theta}$ in \mathbb{R}^d we associate the linear maps $c_{\bar{\theta}}^1 \in \mathcal{L}(\mathbb{Z}^d, \mathbb{T}^1)$ and $c_{\bar{\theta}}^d \in \mathcal{L}(\mathbb{Z}^d, \mathbb{T}^d)$ defined by

$$c_{\bar{\theta}}^1(\bar{p}) = <\bar{\theta}, \bar{p}> \text{ mod } \mathbb{Z} \text{ and } c_{\bar{\theta}}^d(\bar{p}) = [\bar{\theta}, \bar{p}] \text{ mod } \mathbb{Z}^d$$

for each \bar{p} in \mathbb{Z}^d .

Consider a minimal free \mathbb{Z}^d -action (X, \mathcal{A}) on the Cantor set X and a combinatorial data $(x, \{\mathcal{C}_n\}_{n \geq 0}, \{\{\mathcal{P}_n(\bar{m})\}_{\bar{m} \in \mathcal{R}_{n+1}(x)}\}_{n \geq 0}, \{\vec{\mathcal{F}}_n\}_{n \geq 0})$ associated with this action. For any $n \geq 0$ and any $\bar{\theta} \in \mathbb{R}^d$ we define the *$\bar{\theta}$ -length of $\vec{\mathcal{F}}_n$ of dimension 1 and d* respectively by:

$$l_{n, \bar{\theta}}^1 = \max_{r_n \in \vec{\mathcal{F}}_n} |||c_{\bar{\theta}}^1(r_n)||| \text{ and } l_{n, \bar{\theta}}^d = \max_{r_n \in \vec{\mathcal{F}}_n} |||c_{\bar{\theta}}^d(r_n)|||,$$

where $\|\cdot\|$ stands for the Euclidean distance to 0 on the k -torus, $\mathbb{T}^k = \mathbb{R}^k/\mathbb{Z}^k$, $k = 1, d$. The following theorem is the main result of this paper.

Theorem 3.1. *Let (X, \mathcal{A}) be a free minimal \mathbb{Z}^d -action on the Cantor set X , $(x, \{\mathcal{C}_n\}_{n \geq 0}, \{\{\mathcal{P}_n(\bar{m})\}_{\bar{m} \in \mathcal{R}_{n+1}(x)}\}_{n \geq 0}, \{\vec{\mathcal{F}}_n\}_{n \geq 0})$ be an associated combinatorial data and $k = 1$ or $k = d$.*

- (i) *Assume that for some $\bar{\theta} \in \mathbb{R}^d$, (X, \mathcal{A}) is an extension of the action $(\mathbb{O}^k, \mathcal{A}_{\bar{\theta}}^k)$. Assume furthermore that the combinatorial data is well distributed. Then the series $\sum_{n \geq 0} l_{n, \bar{\theta}}^k$ converges.*
- (ii) *Conversely assume that the action is linearly recurrent, that the combinatorial data is adapted to the action and that, for some $\bar{\theta} \in \mathbb{R}^d$, the series $\sum_{n \geq 0} l_{n, \bar{\theta}}^k$ converges. Then (X, \mathcal{A}) is an extension of the action $(\mathbb{O}^k, \mathcal{A}_{\bar{\theta}}^k)$.*

Remark 1: In the particular case when the \mathbb{Z}^d -action \mathcal{A} is the product of d linearly recurrent \mathbb{Z} -actions on X , Theorem 3.1 for $k = d$ is a direct corollary of its $d = 1$ version proved in [BDM].

Remark 2: The lie group structure of \mathbb{T}^k allows us to construct a continuous surjective map $\phi : \mathbb{T}^d \rightarrow \mathbb{T}^1$ defined by $\phi(\alpha_1, \dots, \alpha_d) = \alpha_1 + \dots + \alpha_d$. Assume that $h : (X, \mathcal{A}) \rightarrow (\mathbb{O}^d, \mathcal{A}_{\bar{\theta}}^d)$ is an extension, then the map $\phi \circ h : (X, \mathcal{A}) \rightarrow (\mathbb{O}^1, \mathcal{A}_{\bar{\theta}}^1)$ is also an extension. This is coherent with the fact that the convergence of the series $\sum_{n \geq 0} l_{n, \bar{\theta}}^d$ implies the convergence of the series $\sum_{n \geq 0} l_{n, \bar{\theta}}^1$.

Proof of Theorem 3.1. The proofs of both assertions of Theorem 3.1 for $k = 1$ or $k = d$ follow the same scheme and will be gathered in a single demonstration. Let $\langle\langle \cdot, \cdot \rangle\rangle$ stand for $[\cdot, \cdot] \bmod \mathbb{Z}^d$ when $k = d$ and for $\langle \cdot, \cdot \rangle \bmod \mathbb{Z}$ when $k = 1$.

(i) Assume that the free minimal \mathbb{Z}^d -action (X, \mathcal{A}) is an extension of the action $\mathcal{A}_{\bar{\theta}}^k$ on the closure \mathbb{O}^k of the orbit of the point 0 in the k -torus \mathbb{T}^k for some $\bar{\theta}$ in \mathbb{R}^d . Let us denote by $h : X \rightarrow \mathbb{O}^k$ the extension. Choose a well distributed associated combinatorial data

$$(x, \{\mathcal{C}_n\}_{n \geq 0}, \{\{\mathcal{P}_n(\bar{m})\}_{\bar{m} \in \mathcal{R}_{n+1}(x)}\}_{n \geq 0}, \{\vec{\mathcal{F}}_n\}_{n \geq 0})$$

and fix $h(x) = 0 \in \mathbb{T}^k$.

For each $n \geq 0$ let v_n be the first return vector in $\vec{\mathcal{F}}_n$ such that:

$$l_{n, \bar{\theta}}^k = \max_{u_n \in \vec{\mathcal{F}}_n} \|\|c_{\bar{\theta}}^k(u_n)\|\| = \|\|c_{\bar{\theta}}^k(v_n)\|\|.$$

The following observation is a direct consequence of the continuity of h .

Lemma 3.1. *The quantity $l_{n, \bar{\theta}}^k$ goes to 0 as n goes to ∞ . Furthermore, for each $\epsilon > 0$ there exists $N > 0$ such that for any pair of points (\bar{n}, \bar{m}) in $\mathcal{R}_N(x) \times \mathcal{R}_N(x)$, we have:*

$$\|\|h(\mathcal{A}(\bar{n}, x)) - h(\mathcal{A}(\bar{m}, x))\|\| \leq \epsilon.$$

Let B be the open ball on the k -torus, centered at 0, with radius $\sqrt{k}/2$. Fix $0 < \epsilon < \sqrt{k}/2$ and let N verifying the conclusion of Lemma 3.1 for this ϵ and such that $l_{n, \bar{\theta}}^k \leq \epsilon$ for $N \leq n$. The ball B is decomposed in 2^k sectors $S_{\epsilon_1, \dots, \epsilon_k}$ with $\epsilon_i \in \{-1, 1\}$ for $i \in \{1, \dots, k\}$ defined by

$$S_{\epsilon_1, \dots, \epsilon_k} = \{(x_1, \dots, x_k) \in B : x_i \cdot \epsilon_i \geq 0, \forall i \in \{1, \dots, k\}\}.$$

Let $I_{\epsilon_1, \dots, \epsilon_k}$ be the set of integers n such that $c_{\bar{\theta}}^k(v_n)$ is in $S_{\epsilon_1, \dots, \epsilon_k}$ and let us prove that the series $\sum_{n \in I_{\epsilon_1, \dots, \epsilon_k}} l_{n, \bar{\theta}}^k$ converges. Actually, we only need to prove that the series $\sum_{n \in I_{1, \dots, 1}} l_{n, \bar{\theta}}^k$ converges, a similar proof works for the other cases. This sum can be splitted into two parts:

$$\sum_{n \in I_{1, \dots, 1}} l_{n, \bar{\theta}}^k = \sum_{n \in I_{1, \dots, 1}, \text{ even}} l_{n, \bar{\theta}}^k + \sum_{n \in I_{1, \dots, 1}, \text{ odd}} l_{n, \bar{\theta}}^k.$$

Here again we only need to prove that the series $\sum_{n \in I_{1, \dots, 1}, \text{ even}} l_{n, \bar{\theta}}^k$ converges, a similar proof works also for the case where n is odd. Observe that we are assuming $I_{1, \dots, 1}$ is infinite.

The proof splits in five steps:

Step 1: Fix an even integer N_0 big enough in $I_{1, \dots, 1}$, and let $N < n_l < n_{l-1} < \dots < n_1 < N_0$ be the ordered sequence of even integers bigger than N that belong to $I_{1, \dots, 1}$.

Step 2: Consider two points \bar{m}_1 and \bar{p}_1 in $\mathcal{R}_{n_1}(x)$ such that

$$v_{n_1} = \bar{p}_1 - \bar{m}_1.$$

Since the combinatorial data is well distributed, the two patches $\mathcal{P}_{n_2}(\bar{m}_1)$ and $\mathcal{P}_{n_2}(\bar{p}_1)$ are identical up to translation and there exists a pair of points (\bar{m}_2, \bar{m}'_2) in $\mathcal{P}_{n_2}(\bar{m}_1) \times \mathcal{P}_{n_2}(\bar{m}_1)$ such that

$$v_{n_2} = \bar{m}'_2 - \bar{m}_2.$$

We define \bar{p}_2 in $\mathcal{P}_{n_2}(\bar{p}_1)$ by $\bar{p}_2 - \bar{p}_1 = \bar{m}_2 - \bar{m}_1 + v_{n_2}$. We have:

$$\bar{p}_2 - \bar{m}_2 = v_{n_1} + v_{n_2}.$$

Step 3: Since the combinatorial data is well distributed, the two patches $\mathcal{P}_{n_3}(\bar{m}_2)$ and $\mathcal{P}_{n_3}(\bar{p}_2)$ are identical up to translation and there exists a pair of points (\bar{m}_3, \bar{m}'_3) in $\mathcal{P}_{n_3}(\bar{m}_2) \times \mathcal{P}_{n_3}(\bar{m}_2)$ such that

$$v_{n_3} = \bar{m}'_3 - \bar{m}_3.$$

We define \bar{p}_3 in $\mathcal{P}_{n_3}(\bar{p}_2)$ by $\bar{p}_3 - \bar{p}_2 = \bar{m}_3 - \bar{m}_2 + v_{n_3}$. We have:

$$\bar{p}_3 - \bar{m}_3 = v_{n_1} + v_{n_2} + v_{n_3}.$$

Step 4: We iterate this construction until we get the points \bar{m}_l and \bar{p}_l which satisfy:

$$\bar{p}_l - \bar{m}_l = \sum_{j=1}^l v_{n_j}.$$

Step 5: We have:

$$\begin{aligned} |||h(\mathcal{A}(\bar{p}_l, x)) - h(\mathcal{A}(\bar{m}_l, x))||| &= |||<<\sum_{j=1}^l v_{n_j}, \bar{\theta}>>||| \\ &= |||\sum_{j=1}^l c_{\bar{\theta}}^k(v_{n_j})||| \end{aligned}$$

Since \bar{p}_l and \bar{m}_l are in $\mathcal{R}_N(x)$, Lemma 3.1 implies that:

$$|||\sum_{j=1}^l c_{\bar{\theta}}^k(v_{n_j})||| \leq \epsilon.$$

Let $\pi : B \rightarrow B'$ be the canonical isometric identification of the ball B with the open ball B' in the Euclidean space \mathbb{R}^d centered at 0 with radius $\sqrt{k}/2$. Through this identification, it is clear that for all x in B : $|||x||| = |||\pi(x)|||$. Moreover for any pair of points x, x' in $S_{1,\dots,1}$ such that $x + x'$ is also in $S_{1,\dots,1}$, we have: $\pi(x + x') = \pi(x) + \pi(x')$. It follows that

$$|||\sum_{j=1}^l c_{\bar{\theta}}^k(v_{n_j})||| = \|\sum_{j=1}^l \pi(c_{\bar{\theta}}^k(v_{n_j}))\|.$$

Finally, since for $1 \leq j \leq l$, $c_{\bar{\theta}}^k(v_{n_j})$ is in $S_{1,\dots,1}$, we have:

$$\sum_{j=1}^l \|\pi(c_{\bar{\theta}}^k(v_{n_j}))\| \leq 1/\sqrt{k} \cdot \|\sum_{j=1}^l \pi(c_{\bar{\theta}}^k(v_{n_j}))\|,$$

which implies

$$\sum_{N \leq n, n \in I_{1,\dots,1}, \text{ even}} l_{n,\bar{\theta}}^k \leq 1/\sqrt{k} \cdot \epsilon.$$

This insures that the series $\sum_{n \in I_{1,\dots,1}, \text{ even}} l_{n,\bar{\theta}}^k$ converges, and consequently the series $\sum_{n \geq 0} l_{n,\bar{\theta}}^k$ converges too.

(ii) Let (X, \mathcal{A}) be a linearly recurrent \mathbb{Z}^d -action on the Cantor set X . Assume that the combinatorial data is adapted to the action and that the series of $\bar{\theta}$ -lengths $\sum_{n \geq 0} l_{n,\bar{\theta}}^k$ converges for some $\bar{\theta}$ in \mathbb{R}^d . Fix $\epsilon > 0$ and choose $n_0 \in \mathbb{N}$ big enough so that

$$\sum_{n \geq n_0} l_{n,\bar{\theta}}^k < \epsilon.$$

Let us define the map h on the \mathbb{Z}^d -orbit of x by,

$$h(\mathcal{A}(\bar{n}, x)) = <<\bar{n}, \bar{\theta}>> = \mathcal{A}_{\bar{\theta}}^k(\bar{n}, 0)$$

for each \bar{n} in \mathbb{Z}^d . In order to prove that the map h extends to a continuous map on the closure \mathbb{O}^k of the orbit of 0 in \mathbb{T}^k , it is enough to prove that h is uniformly continuous, which follows from the continuity of h at x . Consider a point \bar{p} in $\mathcal{R}_{n_0}(x)$ and apply Corollary 2.5. There exists a unique $m_0 \geq n_0$ and a unique sequence $\{\bar{p}_l\}_{0 \leq l \leq m_0 - n_0}$ of points in \mathbb{Z}^d such that:

- m_0 is the smallest $m \geq n_0$ for which $\bar{p} \in \mathcal{P}_{n_0}^m(0)$;
- $\bar{p}_0 = 0$;
- $\bar{p}_l \in \mathcal{P}_{m_0-l}(\bar{p}_{l-1})$ and $\bar{p} \in \mathcal{P}_{n_0}^{m_0-l}(\bar{p}_l)$, $\forall 1 \leq l \leq m_0 - n_0$;
- $\bar{p}_{m_0-n_0} = \bar{p}$.

Let us write:

$$h(\mathcal{A}(\bar{p}, x)) = \sum_{l=1}^{m_0-n_0} (h(\mathcal{A}(\bar{p}_l, x)) - h(\mathcal{A}(\bar{p}_{l-1}, x))).$$

For any $1 \leq l \leq m_0 - n_0$ both points \bar{p}_l and \bar{p}_{l-1} are in $\mathcal{P}_{m_0-l}(\bar{p}_{l-1})$. Consequently there exists a collection $\{v_{m_0-l,i}\}_{1 \leq i \leq q(m_0-l)}$ of vectors in $\vec{\mathcal{F}}_{m_0-l}(\bar{p}_{l-1})$ such that:

- $q(m_0 - l) \leq k(m_0 - l)$;
- the sequence of points $\{\bar{p}_{l-1,i}\}_{0 \leq i \leq q(m_0-l)}$ defined by:
 - $\bar{p}_{l-1,0} = \bar{p}_{l-1}$;
 - $\bar{p}_{l-1,i} = \bar{p}_{l-1,i-1} + v_{m_0-l,i}$ for $1 \leq i \leq q(m_0 - l)$;
 - $\bar{p}_{l-1,q(m_0-l)} = \bar{p}_l$,
 - belongs to $\mathcal{R}_{m_0-l}(x)$.

This yields

$$h(\mathcal{A}(\bar{p}, x)) = \sum_{l=1}^{m_0-n_0} \sum_{i=1}^{p(m_0-l)} (h(\mathcal{A}(\bar{p}_{l-1,i}, x)) - h(\mathcal{A}(\bar{p}_{l-1,i-1}, x))).$$

Now we use the fact that the action is linearly recurrent and that the combinatorial data is adapted to this action. We denote by L a uniform upper bound for the sequence $\{k(n)\}_{n \geq 0}$. We get,

$$|||h(\mathcal{A}(\bar{p}, x))||| \leq L \cdot \sum_{l=1}^{m_0-n_0} l_{m_0-l,\bar{\theta}}^k \leq L \cdot \sum_{n=n_0}^{\infty} l_{n,\bar{\theta}}^k \leq \epsilon.$$

This proves the continuity of h at x . \square

Acknowledgments. All authors acknowledge financial support from ECOS-Conicyt grant C03-E03. The third author thanks also support from Programa Iniciativa Científica Milenio P01-005 and FONDECYT 1010447.

REFERENCES

- [BG] R. Benedetti, J.M. Gambaudo, *On the dynamics of \mathbb{G} -solenoids. Applications to Delone sets*, Ergodic Theory and Dynamical Systems **23**, No 3, (2003) 673-691.
- [BDM] X. Bressaud, F. Durand, A. Maass, *Necessary and sufficient conditions to be an eigenvalue for linearly recurrent dynamical Cantor systems*, preprint (2003).
- [CDHM] M. I. Cortez, F. Durand, B. Host, A. Maass, *Continuous and measurable eigenfunctions of linearly recurrent dynamical Cantor systems*, J. of the London Math. Soc. **67**, No 3, (2003) 790-804.
- [Du1] F. Durand, *Linearly recurrent subshifts have a finite number of non-periodic subshift factors*, Ergodic Theory and Dynamical Systems **20**, No 4, (2000) 1061-1078.
- [Du2] F. Durand, *Corrigendum and addendum to: Linearly recurrent subshifts have a finite number of non-periodic subshift factors*, Ergodic Theory and Dynamical Systems **23**, No 2, (2003) 663-669.
- [LP] J. C. Lagarias, P. A. B. Pleasants, *Repetitive Delone sets and quasicrystals*, Ergodic Theory and Dynamical Systems **23**, No 3, (2003) 831-867.
- [S] L. Sadun, *Tiling spaces are inverse limits*, J. Math. Phys. **44**, No 11, (2003) 5410-5414.
- [SW] L. Sadun, R. F. Williams, *Tiling spaces are Cantor fiber bundles*, Ergodic Theory and Dynam. Systems. **23**, No 1, (2003) 307-316.

M. I. Cortez : DEPARTAMENTO DE INGENIERÍA MATEMÁTICA, FAC. CIENCIAS FÍSICAS Y MATEMÁTICAS, UNIVERSIDAD DE CHILE, AV. BLANCO ENCALADA 2120 5TO PISO, SANTIAGO, CHILE, AND INSTITUT DE MATHÉMATIQUES DE BOURGOGNE, U.M.R. CNRS 5584, UNIVERSITÉ DE BOURGOGNE, U.F.R. DES SCIENCES ET TÉCHNIQUES, B.P. 47870- 21078 DIJON CEDEX, FRANCE
E-mail address: mcortez@dim.uchile.cl

J.-M. Gambaudo: CENTRO DE MODELAMIENTO MATEMÁTICO, U.M.R. CNRS 2071, AV. BLANCO ENCALADA 2120, 7TO PISO, SANTIAGO, CHILE.
E-mail address: gambaudo@u-bourgogne.fr

A. Maass: DEPARTAMENTO DE INGENIERÍA MATEMÁTICA AND CENTRO DE MODELAMIENTO MATEMÁTICO, FAC. CIENCIAS FÍSICAS Y MATEMÁTICAS, UNIVERSIDAD DE CHILE, AV. BLANCO ENCALADA 2120 5TO PISO, SANTIAGO, CHILE
E-mail address: amaass@dim.uchile.cl