Machine Learning

Answer Sheet for Homework 7

Da-Min HUANG

R04942045

Graduate Institute of Communication Engineering, National Taiwan University

January 6, 2016

Problem 1

Set $\mu_- = 1 - \mu_+$, we have

$$1 - \mu_{+}^{2} - \mu_{-}^{2} = 1 - \mu_{+}^{2} - (1 - \mu_{+})^{2} = (1 - \mu_{+})(1 + \mu_{+}) - (1 - \mu_{+})^{2}$$
 (1)

$$=2\mu_{+}\left(1-\mu_{+}\right)=-2\mu_{+}^{2}+2\mu_{+}=-2\left(\mu_{+}-\frac{1}{2}\right)^{2}+\frac{1}{2}$$
 (2)

$$\leq \frac{1}{2} \tag{3}$$

Hence, if $\mu_{+} = 1/2 \in [0, 1]$, then the maximum value of Gini index is 1/2.

Problem 2

The normalized Gini index is

$$\frac{\left(1 - \mu_{+}^{2} - \mu_{-}^{2}\right)}{\left(\frac{1}{2}\right)} = 2\left(1 - \mu_{+}^{2} - \mu_{-}^{2}\right) \tag{4}$$

The squared error can be rewritten as

$$\mu_{+} \left(1 - (\mu_{+} - \mu_{-})\right)^{2} + \mu_{-} \left(-1 - (\mu_{+} - \mu_{-})\right)^{2} = 4\mu_{+} \left(1 - \mu_{+}\right)^{2} + 4\mu_{+}^{2} \left(1 - \mu_{+}\right) \tag{5}$$

$$=4\mu_{+}(1-\mu_{+}) \le 4 \times \frac{1}{4} = 1 \tag{6}$$

Hence the normalized squared error is

$$4\mu_{+}(1-\mu_{+}) = 2(2\mu_{+}(1-\mu_{+})) = 2((1-\mu_{+})(1+\mu_{+}) - (1-\mu_{+})^{2})$$
 (7)

$$=2\left(1-\mu_{+}^{2}-\mu_{-}^{2}\right) \tag{8}$$

which is equal to normalized Gini index.

Problem 3

The probability of one example not sampled is

$$\left(1 - \frac{1}{N}\right)^{pN} = \frac{1}{\left(\frac{N}{N-1}\right)^{pN}} = \frac{1}{\left(1 + \frac{1}{N-1}\right)^{pN}} = \left(\frac{1}{\left(1 + \frac{1}{N-1}\right)^{N}}\right)^{p} \tag{9}$$

As $N \to \infty$, we have

$$\lim_{N \to \infty} \left(\frac{1}{\left(1 + \frac{1}{N-1} \right)^N} \right)^p = \left(\lim_{N \to \infty} \frac{1}{\left(1 + \frac{1}{N-1} \right)^N} \right)^p = \left(\frac{1}{e} \right)^p = e^{-p}$$
 (10)

So there approximately $e^{-p} \cdot N$ of the examples not sampled.

Problem 4

Since $G = \text{Uniform}\left(\{g_k\}_{k=1}^3\right)$, so if at least two terms of $\{g_k\}_{k=1}^3$ output wrong result, then G outputs wrong result. Let $\{E_k\}_{k=1}^3$ be the set of examples that $\{g_k\}_{k=1}^K$ got wrong results. Apparently $|E_3| > |E_2| > |E_1|$ and $|E_1| + |E_2| > |E_3|$. So

- 1. Maximum of $E_{\text{out}}(G)$ happens at $E_3 \subset (E_1 \cup E_2)$. Then G outputs wrong result in the region of E_3 with $E_{\text{out}}(G) = 0.35$.
- 2. Minimum of $E_{\text{out}}(G)$ happens at $E_i \cap E_j = \phi$, $i \neq j$ and $1 \leq i, j \leq 3$ with $i, j \in \mathbb{N}$. Then G always outputs the correct result since $(E_1 \cup E_2 \cup E_3) \subset \{\text{all examples}\}$.

Hence, $0 \le E_{\text{out}}(G) \le 0.35$.

Since $G = \text{Uniform}\left(\left\{g_k\right\}_{k=1}^K\right)$, so if at least (K+1)/2 terms of $\left\{g_k\right\}_{k=1}^K$ output wrong result, then G outputs wrong result. Let $\left\{E_k\right\}_{k=1}^K$ be the set of examples that $\left\{g_k\right\}_{k=1}^K$ got wrong results.

If G outputs wrong result on some example \mathbf{x} , then we have

$$\mathbf{x} \in \bigcap_{i=1}^{\left(\frac{K+1}{2}\right)+m} E_{\alpha_i} \tag{11}$$

where $\alpha_i \in \{1, 2, ..., K\}$ satisfies $1 \le \alpha_i \le K$ and $m \in (\mathbb{N} \cup \{0\})$ with $0 \le m < K + 1/2$. And

$$\left| \bigcap_{i=1}^{\left(\frac{K+1}{2}\right)+m} E_{\alpha_i} \right| \le \frac{2}{K+1+2m} \sum_{k=1}^{K} e_k \le \frac{2}{K+1} \sum_{k=1}^{K} e_k \tag{12}$$

(12) holds due to

$$\bigcap_{i=1}^{\left(\frac{K+1}{2}\right)+m} E_{\alpha_i} \subseteq E_{\beta} \text{ with } |E_{\beta}| \le |E_{\alpha_i}|, \ \forall i \tag{13}$$

where β is some index such that $|E_{\beta}| = \min_{\alpha_i} |E_{\alpha_i}|$. So

$$\left(\frac{K+1}{2}+m\right)\left|\bigcap_{i=1}^{\left(\frac{K+1}{2}\right)+m} E_{\alpha_i}\right| \le \left(\frac{K+1}{2}+m\right)|E_{\beta}| \le \sum_{i=1}^{\left(\frac{K+1}{2}\right)+m} |E_{\alpha_i}| \le \sum_{k=1}^{K} |E_k| \tag{14}$$

(14) holds since size of E_{β} is the samllest among $\left(\left(\frac{K+1}{2}\right)+m\right)$ terms and $\sum_{k=1}^{K}|E_{k}|$ must contains the $\left(\left(\frac{K+1}{2}\right)+m\right)$ terms. Hence, we have

$$E_{\text{out}}(G) \le \frac{2}{K+1+2m} \sum_{k=1}^{K} e_k \le \frac{2}{K+1} \sum_{k=1}^{K} e_k$$
 (15)

where $|E_k| = e_k$ by definition.

By the definition of U_t , we have

$$U_{t+1} = \frac{1}{N} \sum_{n=1}^{N} \exp\left(-y_n \sum_{\tau=1}^{t} \alpha_{\tau} g_{\tau} \left(\mathbf{x}_n\right)\right)$$
(16)

$$= \frac{1}{N} \sum_{n=1}^{N} \exp \left(-y_n \sum_{\tau=1}^{t-1} \alpha_{\tau} g_{\tau} \left(\mathbf{x}_n\right) - y_n \alpha_t g_t \left(\mathbf{x}_n\right)\right)$$
(17)

$$= \frac{1}{N} \sum_{n=1}^{N} \exp \left(-y_n \sum_{\tau=1}^{t-1} \alpha_{\tau} g_{\tau} \left(\mathbf{x}_n\right)\right) \exp \left(-y_n \alpha_t g_t \left(\mathbf{x}_n\right)\right)$$
(18)

$$= \sum_{n=1}^{N} u_n^{(t)} \exp\left(-y_n \alpha_t g_t\left(\mathbf{x}_n\right)\right) \tag{19}$$

$$= \sum_{\substack{y_n \neq q_t(\mathbf{x}_n)}} u_n^{(t)} \exp\left(-y_n \alpha_t g_t\left(\mathbf{x}_n\right)\right) + \sum_{\substack{y_n = q_t(\mathbf{x}_n)}} u_n^{(t)} \exp\left(-y_n \alpha_t g_t\left(\mathbf{x}_n\right)\right)$$
(20)

$$= \sum_{\substack{n \ y_n \neq g_t(\mathbf{x}_n)}} u_n^{(t)} \exp\left(\alpha_t\right) + \sum_{\substack{n \ y_n = g_t(\mathbf{x}_n)}} u_n^{(t)} \exp\left(-\alpha_t\right)$$
(21)

$$= \exp\left(\alpha_t\right) \left(\epsilon_t\right) \sum_{n=1}^{N} u_n^{(t)} + \exp\left(-\alpha_t\right) \left(1 - \epsilon_t\right) \sum_{n=1}^{N} u_n^{(t)}$$
(22)

$$= U_t \left(\exp \left(\alpha_t \right) \left(\epsilon_t \right) + \exp \left(-\alpha_t \right) \left(1 - \epsilon_t \right) \right) = U_t \cdot 2\sqrt{\epsilon_t \left(1 - \epsilon_t \right)}$$
 (23)

Since

$$U_1 = \sum_{n=1}^{N} u_n^{(1)} = \sum_{n=1}^{N} \frac{1}{N} = 1$$
 (24)

we have

$$U_3 = U_2 \cdot 2\sqrt{\epsilon_2 (1 - \epsilon_2)} = \left(U_1 \cdot 2\sqrt{\epsilon_1 (1 - \epsilon_1)}\right) \cdot 2\sqrt{\epsilon_2 (1 - \epsilon_2)}$$
 (25)

$$=4\sqrt{\epsilon_1\epsilon_2\left(1-\epsilon_1\right)\left(1-\epsilon_2\right)}\tag{26}$$

which can be generalized as

$$U_{T+1} = \prod_{t=1}^{T} \left(2\sqrt{\epsilon_t \left(1 - \epsilon_t \right)} \right) \tag{27}$$

To compute s_n , we need to find the optimal η of

$$\min_{\eta} \frac{1}{N} \sum_{n=1}^{N} \left((y_n - s_n) - \eta g_t(\mathbf{x}_n) \right)^2 := A$$
(28)

From $\partial A/\partial \eta = 0$, we have

$$\eta = \frac{\sum_{n=1}^{N} g_t(\mathbf{x}_n) (y_n - s_n)}{\sum_{n=1}^{N} g_t^2(\mathbf{x}_n)}$$
(29)

Now $s_n = 0$ and $g_1(\mathbf{x}) = 2$, so

$$\eta = \frac{2\sum_{n=1}^{N} y_n}{4\sum_{n=1}^{N}} = \frac{1}{2N} \sum_{n=1}^{N} y_n \tag{30}$$

Since $\eta = \alpha_1$, so

$$\alpha_1 g_1(\mathbf{x}_n) = \frac{2}{2N} \sum_{n=1}^{N} y_n = \frac{1}{N} \sum_{n=1}^{N} y_n = s_n$$
 (31)

Problem 8

From the equatio of optimal η , we have

$$\eta = \frac{\sum_{n=1}^{N} g_t(\mathbf{x}_n) (y_n - s'_n)}{\sum_{n=1}^{N} g_t^2(\mathbf{x}_n)} = \frac{\sum_{n=1}^{N} y_n g_t(\mathbf{x}_n) - \sum_{n=1}^{N} s'_n g_t(\mathbf{x}_n)}{\sum_{n=1}^{N} g_t^2(\mathbf{x}_n)} = \alpha_t$$
(32)

SO

$$\sum_{n=1}^{N} y_n g_t(\mathbf{x}_n) - \sum_{n=1}^{N} s'_n g_t(\mathbf{x}_n) = \alpha_t \sum_{n=1}^{N} g_t^2(\mathbf{x}_n) = \sum_{n=1}^{N} \alpha_t g_t^2(\mathbf{x}_n) = \sum_{n=1}^{N} (s_n - s'_n) g_t(\mathbf{x}_n)$$
(33)

where s'_n is defined as the s_n in iteration (t-1) and $s_n = s'_n + \alpha_t g_t(\mathbf{x}_n)$, so

$$\sum_{n=1}^{N} s_n g_t(\mathbf{x}_n) = \sum_{n=1}^{N} y_n g_t(\mathbf{x}_n)$$
(34)

 $OR(x_1, x_2, ..., x_d)$ means outputs TRUE if one input is TRUE; outputs FALSE if all inputs are FALSE.

<u>Claim</u>: $(w_0, w_1, ..., w_d) = (d - 1, 1, ..., 1)$ implements OR.

Proof of Claim:

1. If all $x_i = -1$, then we have

$$\operatorname{sign}\left(\sum_{i=0}^{d} w_i x_i\right) = \operatorname{sign}\left(d - 1 + \sum_{i=1}^{d} (-1)\right) = \operatorname{sign}(-1) = \operatorname{FALSE}$$
 (35)

2. If some $x_i = +1$ and others are -1, we have

$$\operatorname{sign}\left(\sum_{i=0}^{d} w_i x_i\right) = \operatorname{sign}\left(d - 1 + 1 + (-1)\left(d - 1\right)\right) = \operatorname{sign}\left(+1\right) = \operatorname{TRUE} \quad (36)$$

Hence, $(w_0, w_1, ..., w_d) = (d - 1, 1, ..., 1)$ implements OR.

Problem 10

Claim: $D \geq 5$.

Proof of Claim:

From the conclusion of Problem 21, we have D = 5.

Problem 11

<u>Claim</u>: Only the gradient components with respect to $w_{01}^{(L)}$ may be non-zero, all other gradient components must be zero.

Proof of Claim:

Consider

$$\frac{\partial e_n}{\partial w_{i1}^{(L)}} = -2\left(y_n - s_1^{(L)}\right) \left(x_i^{(L-1)}\right) = -2\left(y_n - \sum_{j=0}^{d^{(L-2)}} w_{j1}^{(L)} x_j^{(L-1)}\right) \left(x_i^{(L-1)}\right)$$
(37)

Since all $w_{ij}^{(\ell)} = 0$, we have

$$\frac{\partial e_n}{\partial w_{i1}^{(L)}} = -2y_n x_i^{(L-1)} \tag{38}$$

If $i \neq 0$, then

$$\frac{\partial e_n}{\partial w_{i1}^{(L)}} = -2y_n x_i^{(L-1)} = -2y_n \tanh\left(s_i^{(L-1)}\right) = -2y_n \tanh\left(\sum_{j=0}^{d^{(L-2)}} w_{ji}^{(L-1)} x_j^{(L-2)}\right) = 0 \quad (39)$$

since all $w_{ij}^{(\ell)} = 0$.

If i = 0, then

$$\frac{\partial e_n}{\partial w_{01}^{(L)}} = -2y_n x_0^{(L-1)} = -2y_n \tag{40}$$

If $y_n \neq 0$, then

$$\frac{\partial e_n}{\partial w_{01}^{(L)}} \neq 0 \tag{41}$$

Similarly, we have

$$\frac{\partial e_n}{\partial w_{0j}^{(\ell)}} = \delta_j^{(\ell)} \left(x_0^{(\ell-1)} \right) = \delta_j^{(\ell)} = \sum_k \left(\delta_k^{(\ell+1)} \right) \left(w_{jk}^{(\ell+1)} \right) \left(\frac{\partial \tanh \left(s_j^{(\ell)} \right)}{\partial s_j^{(\ell)}} \right) = 0 \tag{42}$$

since all $w_{ij}^{(\ell)} = 0$.

Problem 12

For $\ell = 1$ and all $w_{ij}^{(\ell)}$ initialized as 1, we have

$$\eta x_i^{(0)} \delta_j^{(1)} = \eta x_i^{(0)} \sum_k \left(\delta_k^{(2)} \right) \left(w_{jk}^{(2)} \right) \left(\frac{\partial \tanh\left(s_j^{(1)} \right)}{\partial s_j^{(1)}} \right) \tag{43}$$

$$= \eta x_i^{(0)} \sum_k \left(\delta_k^{(2)} \right) \left(\frac{\partial \tanh\left(s_j^{(1)} \right)}{\partial s_j^{(1)}} \right) \tag{44}$$

and

$$s_j^{(1)} = \sum_{i=0}^{d^{(0)}} w_{ij}^{(1)} x_i^{(0)} = \sum_{i=0}^{d^{(0)}} x_i^{(0)}$$

$$(45)$$

So we have

$$s_1^{(1)} = s_2^{(1)} = \dots = s_{d^{(1)}}^{(1)} \Rightarrow \delta_1^{(1)} = \delta_2^{(1)} = \dots = \delta_{d^{(1)}}^{(1)}$$
 (46)

Hence, all update term of $w_{ij}^{(1)}$ is the same for $1 \leq j \leq d^{(1)}$, so

$$w_{ij}^{(1)} = w_{i(j+1)}^{(1)} (47)$$

for $1 \le j \le d^{(1)} - 1$.

Problem 13

The rules of following tree are

- 1. (feature column, s, θ). The meaning of combination of numbers.
- 2. If the feature of \mathbf{x} is smaller than θ , then go to the left tree; if not, then go to the right tree.
- 3. If go to left and there is no more node, then return $s \times (+1)$; if go to the right and there is no more node, return $s \times (-1)$, where s is from the last node.

Figure 1: Tree Graph

 $E_{\rm in} = 0.0.$

Problem 15

 $E_{\rm out} = 0.126.$

Problem 16

Figure 2: Q16

The average $E_{\text{in}}\left(g_{t}\right)$ of total 30,000 trees is 0.0593.

Figure 3: Q17

The average $E_{\text{in}}(G_t)$ of total 30,000 trees is 0. Since most values are 0 so the figure seems nothing left.

Figure 4: Q17 first 60 points

The figure of first 60 points. We can see that after the 20^{th} point, $E_{in}(G_t)$ is almost 0.

Figure 5: Q17 $\log_{10} (E_{in}(G_t))$

The figure of log value of $E_{\text{in}}(G_t)$ (removed $E_{\text{in}}(G_t) = 0$ points). We can see that most of the $E_{\text{in}}(G_t) = 0$ (only 17 points left).

Figure 6: Q18

The average $E_{\text{out}}\left(G_{t}\right)$ of total 30,000 trees is 0.0753.

This curve approaches the average value as $t\to 30,000$. The curve of Problem 17 oscillates and most points are 0.

Figure 7: Q19

The average $E_{\text{in}}\left(G_{t}\right)$ of total 30,000 trees is 0.1042.

Problem 20

Figure 8: Q20

The average $E_{\text{out}}\left(G_{t}\right)$ of total 30,000 trees is 0.1483.

This curve approaches the average value as $t \to 30,000$. The curve of Problem 19 oscillates between the average value.

Problem 21

Consider the projection of all convex points to diagonal line of N-dimensional hypercube, the value of each function is

- 1. 2-D: (-1)(1,1)(-1)
- 2. 3-D: (-1)(1,1,1)(-1,-1,-1)(1)
- 3. 4-D: (-1)(1,1,1,1)(-1,-1,-1,-1,-1,-1)(1,1,1,1)(1)

:

the convex points are the input of neural network. The projections are linear transformation of these convex points, which can be implemented by d linear classfier (AND or OR). By uniform blending all these linear classfier and sign ({all linear classifer}), we implement the XOR (x_1, x_2, \ldots, x_d) .

The input layer to hidden layer (d - D) is the linear transformation, the hidden layer to output layer (D - 1) is the uniform blending of all these linear classifer.

Problem 22

The answer is D = d - 1. Like

Reference

[1] Lecture Notes by Hsuan-Tien LIN, Department of Computer Science and Information Engineering, National Taiwan University, Taipei 106, Taiwan.