

Slide 1 of 22

Background

Lit. SS

Diaon

next Step

Conclusion

Literate Scientific Software

Spencer Smith, Dan Szymczak and Jacques Carette

Computing and Software Department Faculty of Engineering McMaster University

PASC, MS06, June 16, 2016

Slide 2 of 22

Backgroun |

Lit. O

Diasi

Next Step

Conclusion

Literate Scientific Software

- 1 Background
- 2 Literate Scientific Software
- 3 Drasil
- 4 Next Steps
- **5** Conclusions

Slide 3 of 22

Background

Lit SS

Drasil

lext Step

Conclusion

Important SS Qualities

- Reusability
- Maintainability
- Verifiability
- Reproducibility

Slide 4 of 22

Background

Lit CC

Drasil

lext Step

Conclusion

Challenges

- Up front requirements
- Rapid change for numerical algorithms
- Information duplication
- Synchronization headaches between artifacts
- Perceived over-emphasis on non-executable artifacts

Slide 5 of 22

Background

14 00

Drasil

Vext Sten

Conclusion

Solar Water Heating Tank

https://github.com/smiths/swhs

Slide 6 of 22

Background

1 it Q0

Drasi

Jext Step

Conclusion

"Faked" Rational Design Process

Slide 7 of 22

Literate Scientific Software

Lit. SS

SRS (verbose)

SRS (LaTeX)

SRS (html)

MG

MIS

Test cases

C Code) (checks)

Makefile

Matlab (no checks)

Recipes

W = J/s

description

knowledge

 $L \geq 0$

Slide 8 of 22

Backgrour

Lit. SS

Drasii

Mext Step

Conclusion

How Addresses Challenges

- Supports changing requirements and design
 - Generation
 - Automated traceability
- Supports duplication
 - Knowledge is entered once, generated/transformed
 - Eases maintenance
 - If incorrect, incorrect everywhere
- Non-executable artifacts are generated

Slide 9 of 22

Lit. SS

Drasi

Nevt Ston

Conclusion

Verifiability

Var	Constraints	Typical Value	Uncertainty
L	<i>L</i> > 0	1.5 m	10%
D	D > 0	0.412 m	10%
V_P	$V_P > 0$	0.05 m ³	10%
A_P	$A_P > 0$	1.2 m ²	10%
$ ho_{P}$	$ ho_P>0$	1007 kg/m ³	10%

- ??Add latest from Brooks??
- Sanity checks captured and reused
- Generate guards against invalid input
- Generate test cases

Slide 10 of 22

Lit. SS

Drasi

Next Step:

Conclusion

Reusability

Number	T1
Label	Conservation of energy
Equation	$-\nabla \cdot \mathbf{q} + \mathbf{q}''' = \rho C \frac{\partial T}{\partial t}$
Description	The above equation gives the conservation of energy for time varying heat transfer in a material of specific heat capacity C and density ρ , where \mathbf{q} is the thermal flux vector, q''' is the volumetric heat generation, T is the temperature, ∇ is the del operator and t is the time.

Slide 11 of 22

Backgroun

Lit. SS

Drasii

Next Step

Conclusion

Maintainability

show assumptions

Slide 12 of 22

Backgrour

Lit. SS

TTOXE OLOP

Conclusion

Reproducibility

- Knowledge is explicitly stored for the future
- Recipes can be use to regenerate any artifacts
- Recipes include build instructions

Slide 13 of 22

Background

Lit SS

Drasil

Next Sten

Conclusion

Drasil Framework Design

Slide 14 of 22

Backgroun

Drasil

Next Sten

. . .

SRS for h_g and h_c

Spencer Smith

May 15, 2016

1 Table of Units

Throughout this document SI (Système International d'Unités) is employed as the unit system. In addition to the basic units, several derived units are employed as described below. For each unit, the symbol is given followed by a description of the unit with the SI name in parentheses.

Symbol	Description
m	length (metre)
kg	mass (kilogram)
S	time (second)
K	temperature (kelvin)
mol	amount of substance (mole)
A	electric current (ampere)

Slide 15 of 22

Dackyrc

Lit SS

Drasil

Next Steps

Conclusion

Example Recipe

```
srsBody = srs [h_g, h_c] "Spencer Smith" [s1,s2] s1 = Section (S "Table of Units") [intro, table] table = Table [S "Symbol", S "Description"] (mkTable [(\x -> Sy (x ^. unit)), (\x -> S (x ^. descr))] si_units) intro = Paragraph (S "Throughout this ...")
```


Slide 16 of 22

Backgroun

Lit St

Drasil

Nevt Stor

Conclusion

Reusable Chunks

```
metre, second, kelvin :: FundUnit
metre = fund "Metre" "length (metre)" "m"
second = fund "Second" "time (second)" "s"
kelvin = fund "Kelvin" "temperature (kelvin)" "K"
```

Slide 17 of 22

Backgroun

Lit. SS

Drasil

Next Step

Conclusion

The *h_c* Chunk

$$h_c = \frac{2k_ch_b}{2k_c + \tau_ch_b}$$

```
h_c_eq :: Expr
h_c_eq = 2*(C k_c)*(C h_b) /
  (2*(C k_c) + (C tau_c)*(C h_b))

h_c :: EqChunk
h_c = fromEqn "h_c"
  "convective heat transfer coefficient between clad and coolant"
  (sub h c) heat_transfer h_c_eq
```


Slide 18 of 22

Backgroun

LIT. S

Drasil

Next Ster

Conclusion

Table of Symbols

Slide 19 of 22

Background

Lit S

Drasi

Next Steps

Conclusion

Next Steps: Design Documentation

Slide 20 of 22

Background

_...

Drasii

Next Steps

Conclusion

Generate Code to Solve Instanced Models

part of IM2

Slide 21 of 22

Backgroun

LIL. O

Next Steps

Conclusion

Approach to Developing Drasil

- Case studies
 - Solar water heating tank
 - Slope stability analysis
 - Glass safety analysis
 - Game physics engine
- Practical
- Decompose into small chunks
- Look for patterns

Slide 22 of 22

Dackgro

LIL. OC

Diasi

Mext Step

Conclusions

Conclusions

- SCS has the opportunity to lead other software fields by leveraging its solid existing knowledge base
- DDD is feasible with a knowledge-based approach
- Documentation for QA and software certification does not have to be painful, expensive or time consuming
- Drasil will be developed via practical case studies