Spark the Definitive Guide 2nd Edition

Chapter 06

Working With Different Types of Data

Basic Structured Operations

Text Book

Bill Chambers & Matei Zaharia

Objectives and Outcomes

- Understand how to build expressions using typed data
- Understand how to use:
 - Booleans
 - Numbers
 - Strings
 - Dates and Timestamps
 - Nulls
 - Complex and user types

Review

► So far:

- We covered basic DataFrame operations.
- We learned the simple concepts and tools that you will need to be successful with Spark DataFrames
- ▶ We learned what an expression is
- We learned the difference between Select and SelectExpr
- We learned how to add columns and rows to a DataFrame
- ▶ We learned how to take random samples from DataFrames

API Documentation

- Where do all of these functions come from?
 - ▶ There is Spark documentation for Datasets in Scala
 - Python API
 - ► A DataFrame is just a Dataset of type Row so you'll end up looking at the Dataset methods
- Column Methods such as alias or contains
 - Column
 - org.apache.spark.sql.functions
- ▶ All of these tools exist to transform rows of data in one format or structure to another.

```
df = spark.read.format("csv").option("header","true").optio
df.printSchema()
df.createOrReplaceTempView("dfTable")
```

Schema Output

Booleans

- ▶ You can build logical statements to evaluate either *true* or *false*
 - ▶ from pyspark.sql.functions import col
 - df.where(col("InvoiceNo") != 536365).select("InvoiceNo";
- ► A cleaner solution would be to specify a predicate as an expression in a string
 - Another way to say does not equal
 - ▶ df.where("InvoiceNo <> 536365").show(5, False)
- In Spark, you should always chain together and filers
 - Even if filters are expressed serially, Spark will flatten all of these filters into one statement and performed the filter at the same time

```
from pyspark.sql.functions import instr
priceFilter = col("UnitPrice") > 600
descripFilter = instr(df.Description, "POSTAGE") >= 1
df.where(df.StockCode.isin("DOT")).where(priceFilter | description)
```

SELECT * FROM dfTable WHERE StockCode in ("DOT") AND (Unit

Boolean Column

```
from pyspark.sql.functions import instr
DOTCodeFilter = col("StockCode") == "DOT"
priceFilter = col("UnitPrice") > 600
descripFilter = instr(col("Description"), "POSTAGE") >= 1
df.withColumn("isExpensive", DOTCodeFilter & (priceFilter
--in SQL
SELECT UnitPrice, (StockCode = 'DOT' AND (UnitPrice > 600 of FROM dfTable
```

WHERE (StockCode = 'DOT' AND (UnitPrice > 600 OR instr(Desc

Working With Numbers and Nulls

- When using comparisons, watch out for Nulls
 - ► There is a way to do a null-safe comparison
 - There is a way to do a half safe companies

```
df.where(col("Description").eqNullSafe("hello")).show()
```

- Working with Big Data, after you filter things (WHERE clause), the next task is to count things
- ▶ We are able to do math on numeric typed fields, such as:
 - Exponents 82
 - Addition and subtraction
 - All of these features are available in SQL as well and can be written as selectExpr
 - Rounding up by default, rounding down, truncating

Basic ANOVA

- Usually there a basic set of statistical methods that are always useful
 - Calculate the Pearson Correlation
 - from pyspark.sql.functions import corr
 - df.stat.corr("Quantity", "UnitPrice")
 - df.select(corr("Quantity", "UnitPrice")).show()
- You can use a single describe() method to generate the following:
 - count
 - mean
 - Standard deviation
 - min and max
 - df.describe().show()
- These aggregations can be preformed by importing the individual libraries
- Additional statistical functions are available in the StatFunctions Package
 - Python StatFunction Library Reference

Working With Strings

- String manipulation is important because you might not have any guarantees about the data you are working with
 - What if the data when entered didn't have any capitalization enforcement?
 - How does this affect string comparisons?
 - from pyspark.sql.functions import initcap
 - df.select(initcap(col("Description"))).show()
 - lower and upper will cast entire strings
 - ► Trimming or padding whitespace 85
 - Regex (Regular Expressions)
 - Use the contains method on a column to return a true or false
 - Python uses the instr function in place of contains

Working With Dates and Timestamps

- ▶ Always challenging because they are numbers but not ordinal
 - Sometimes dates are stored as strings because of this
 - ► Timezones and Daylight Saving time
 - Even though Spark uses Java dates and timestamps it only works to second level precision
 - No milliseconds
 - Java does have support for date addition and subtraction 91
 - Can also do date comparison and difference between two dates (number of days)
 - to_date function allows for converting a string to a date (format can be specified)

Working With Nulls

- Nulls can be represent missing or empty data
 - Spark is internally optimized for use of nulls as opposed to empty strings or zeros
 - ▶ But does using *nulls* make sense in your logic
 - Spark has built in functions to check for nulls
 - ► The df.na.drop("any") can be used to drop any row in which any value is null
 - ▶ fill() and replace()

Conclusion

► This chapter demonstrated how easy it is to extend Spark SQL and in a way that is easy to understand.

Questions

- ► Any questions?
- ▶ Read Chapter 07 and do any exercises in the book.