Chapter-10 कोशिका चक्र और कोशिका विभाजन

अभ्यास के अन्तर्गत दिए गए प्रश्नोत्तर

प्रश्न 1.

स्तनधारियों की कोशिकाओं की औसत कोशिका चक्र अवधि कितनी होती है?

उत्तर:

24 घण्टे के समय में मनुष्य की कोशिको अथवा स्तनधारियों की कोशिका में कोशिका विभाजन पूर्ण होने में केवल एक घण्टा लगता है।

प्रश्न 2.

जीवद्रव्य विभाजन व केन्द्रक विभाजन में क्या अन्तर है?

उत्तर:

कोशिका चक्र के M-प्रावस्था में केन्द्रक विभाजन आरम्भ होता है जिसमें गुणसूत्र अलग होकर दो केन्द्रकों का निर्माण करते हैं। इसे केन्द्रक विभाजन अथवा केरियोकाइनेसिस (karyokinesis) कहते हैं। सामान्यत: इस क्रिया की समाप्ति पर कोशिका द्रव्य में भी विभाजन होकर दो कोशिका बन जाती हैं। इसे जीवद्रव्ये विभाजन अथवा साइटोकाइनेसिस (cytokinesis) कहते हैं। यदि केवल केरियोकाइनेसिस हो तथा साइटोकाइनेसिस न हो, तो एक कोशिका बहुकेन्द्रकी (multinucleate) बन जाती है।

प्रश्न 3.

अन्तरावस्था में होने वाली घटनाओं का वर्णन कीजिए।

उत्तर:

यह अवस्था कोशिका की विश्राम अवस्था (resting phase) मानी जाती है क्योंकि इस अवस्था में कोशिका वृद्धि करती है, अगले विभाजन की तैयारियाँ पूर्ण होती हैं तथा DNA का द्विगुणन होता है। इस अवस्था के तीन चरण हैं

- 1. G1 फेस (Gap 1)
- 2. S फेस (संश्लेषण अवस्था)
- 3. G2- फेस (Gap 2)

G1-फेस माइटोसिस तथा DNA द्विगुणन प्रारम्भ होने का मध्यावकाश है। S-फेस में DNA संश्लेषण व द्विगुणन होता है। DNA की मात्रा दोगुनी हो जाती है परन्तु गुणसूत्र संख्या में वृद्धि नहीं होती है। यदि G1 में 2n गुणसूत्र संख्या हो, तो S में भी 2n ही होगी। जन्तु कोशिका में DNA द्विगुणन के साथ-साथ सेन्ट्रिओल विभाजन भी होता है। G₂फेस में प्रोटीन संश्लेषण होता है तथा कोशिका टोसिस (mitosis) के लिए तैयार होती है।

प्रश्न 4.

कोशिका चक्र का Go (प्रशान्त प्रावस्था) क्या है?

उत्तर :

कुछ कोशिकाओं में विभाजन की क्रिया नहीं होती है। कोशिका की मृत्यु होने पर दूसरी कोशिका उसका स्थान ले लेती है। अत: G1 -प्रावस्था एक अक्रिय अवस्था में प्रवेश करती है, इसे शान्त प्रावस्था (G0) कहते हैं। इस अवस्था में कोशिका केवल उपापचयी रूप से सक्रिय रहती है।

प्रश्न 5.

सूत्री विभाजन को सम विभाजन क्यों कहते हैं?

उत्तर:

सूत्री विभाजन में बनी दोनों पुत्री कोशिकाओं (daughter cells) में गुणसूत्रों की संख्या मातृ कोशिका के समान ही बनी रहती है। इसी कारण सूत्री विभाजन को सम विभाजन (equational division) भी कहते हैं।

प्रश्न 6.

कोशिका चक्र की उस प्रावस्था का नाम बताइए जिसमें निम्न घटनाएँ सम्पन्न होती हैं

- 1. गुणसूत्र तर्क मध्य रेखा की ओर गति करते हैं।
- 2. गुणसूत्र बिन्दु का दूटना व अर्ध गुणसूत्र का पृथक् होना।
- 3. समजात गुणसूत्रों का आपस में युग्मन होना।
- 4. समजात गुणसूत्रों के बीच विनिमय का होना।

उत्तर:

- 1. मेटाफेस
- 2. एनाफेस
- 3. प्रोफेस-I की जाइगोटीन अवस्था जिसमें साइनेप्सिस (synapsis) होती है
- 4. प्रोफेस-। की पेकीटीन (pachytene) प्रावस्था।

प्रश्न 1.

निम्न के बारे में वर्णन कीजिए

- (i) सूत्रयुग्मन
- (ii) युगली

(iii) काएज्मेटा।

उत्तर:

(i) सूत्रयुग्मन (Synapsis) :

अर्धसूत्री विभाजन के प्रथम प्रोफेसे की जाइगोटीन अवस्था में गुणसूत्र जोड़े बनाते हैं। इसे सूत्रयुग्मन कहते हैं।

(ii) युगली (Bivalent) :

सूत्रयुग्मन से बने समजात गुणसूत्र जोड़े में 4 अर्धगुणसूत्र होते हैं तथा इस जोड़े को युगली कहते हैं।

(iii) काएज्मेटा (Chiasmeta) :

डिप्लोटीन में यदि गुणसूत्र में विनिमय प्रारम्भ होने से पहले 'x' आकार की संरचना बनती है, तो उसे काएज्मेटा कहते हैं।

प्रश्न 8.

पादप व प्राणी कोशिकाओं के कोशिकाद्रव्य विभाजन में क्या अन्तर है?

उत्तर:

पादप कोशिका में विभाजन के समय पट्ट बनता है जिससे बाद में कोशिका भित्ति बनती है। परन्तु जन्तु कोशिका में दोनों ओर से वलन बनकर मध्य में आते हैं और दो भागों में कोशिका बँट जाती है।

प्रश्न 9.

अर्द्धसूत्री विभाजन के बाद बनने वाली चार संतति कोशिकाएँ कहाँ आकार में समान व कहाँ भिन्न आकार की होती हैं?

उत्तर :

अर्द्धसूत्री विभाजन (Meiosis) द्वारा युग्मक निर्माण होता है। शुक्राणुजनन (spermatogenesis) में मातृ कोशिका के विभाजन से बनने वाली चारों पुत्री कोशिकाएँ समान होती हैं। ये शुक्रकायान्तरण द्वारा शुक्राणु का निर्माण करती हैं। शुक्रजनन में बनने वाली चारों संतित कोशिकाएँ आकार में समान होती हैं। अण्डजनन (oogenesis) में मातृ कोशिका से बनने वाली संतित कोशिकाएँ आकार में भिन्न होती हैं। अण्डनन के फलस्वरूप एक अण्डाणु तथा पोलर कोशिकाएँ बनती हैं। पोलर कोशिकाएँ आकार में छोटी होती हैं। पौधों के बीजाण्ड में गुरुबीजाणुजनन (अर्द्धसूत्री विभाजन) के फलस्वरूप गुरुबीजाणु से चार कोशिकाएँ बनती हैं। इनमें आधारीय कोशिका अन्य कोशिकाओं से भिन्न होती है। यह वृद्धि और विभाजन द्वारा भ्रूणकोष (embryo sac) बनाता है। पौधों में लघु-बीजाणु जनन द्वारा लघु बीजाणु या परागकण बनते हैं। ये आकार में समान होते हैं।

प्रश्न 10.

सूत्री विभाजन की पश्चावस्था तथा अर्द्धसूत्री विभाजन की पश्चावस्था। में क्या अन्तर है?

उत्तर:

सूत्री विभाजन तथा अर्द्धसूत्री विभाजन की पश्चावस्था प्रथम में अन्तर

समसूत्री विभाजन की पश्चावस्था (Anaphase Stage of Mitosis)

समसूत्री विभाजन की पश्चावस्था में गुणसूत्र के क्रोमै-टिड्स (अर्द्धगुणसूत्र) प्रतिकर्षण के कारण विपरीत ध्रुवों की ओर खिंचने लगते हैं। इन अर्द्ध गुणसूत्रों को सन्तित गुणसूत्र कहते हैं। दोनों क्रोमैटिड्स की संरचना समान होने से सन्तित कोशिकाएँ मातृ कोशिका के समान होती हैं।

अर्द्धसूत्री विभाजन प्रथम की पश्चावस्था (Anaphase Stage of Meiosis I)

अर्द्धसूत्री विभाजन की पश्चावस्था प्रथम में सूत्रयुग्मन (synapsis) के कारण बने गुणसूत्रों के जोड़ों में प्रतिकर्षण होने के कारण समजात गुणसूत्र विपरीत धुवों की ओर खिंचने लगते हैं। समजात गुणसूत्रों में विनिमय (crossing over) के कारण गुणसूत्रों की संरचना बदल जाती है और लक्षणों में भिन्नता आ जाती है। इसमें गुणसूत्रों का बँटवारा होने के कारण पुत्री कोशिकाओं में गुणसूत्रों की संख्या आधी रह जाती है।

प्रश्न 11.

सूत्री एवं अर्द्धसूत्री विभाजन में प्रमुख अन्तरों को सूचीबद्ध कीजिए।

उत्तर:

सूत्री व अर्द्धसूत्र विभाजन में अन्तर

क्र.सं.	सूत्री विभाजन	अर्धसूत्री विभाजन
1.	कोशिका एक बार विभाजित होती है।	कोशिका दो बार विभाजित होती है।
2.	ये कायिक कोशिकाओं (somatic cells) में होता है।	केवल जनद मातृ कोशिकाओं (reproductive
	*** ***	mother cells) में होता है।
3.	अलैंगिक व लैंगिक (asexual and sexual) दोनों	केवल लिंगक (sexual) जनन में होता है।
4.	जनन में पाया जाता है। DNA का द्विगुणन सुप्तावस्था में होता है।	DNA का द्विगुणन प्रथम सुप्तावस्था में होता है
		परन्त दितीय सप्तावस्था में नहीं होता है।
5.	एक बार विभाजन के लिए DNA में द्विगुणन एक	दो बार विभाजन के लिए DNA का द्विगुणन दो बार
	बार होता है।	होता है।
6.	पूर्वावस्था (prophase) बहुत छोटी अवधि में पूर्ण	पूर्वावस्था-I (prophase-I) सबसे लम्बी अवस्था
	हों जाती है।	होती है। ये कुछ घण्टों से कुछ दिनों तक चलती है।
		इसमें लेप्टोटीन, जाइगोटीन, पेकीटीन, डिप्लोटीन
		तथा डाइकाइनेसिस आदि उपअवस्थाएँ मिलती हैं।
7.	पूर्वावस्था सरल होती है।	पूर्वावस्था जटिल होती है।
8.	केन्द्रक आयतन में नहीं बढ़ता है।	केन्द्रक आयतन (volume) में बहुत बढ़ जाता है।
9.	गुणसूत्र युग्म (pair) नहीं बनते हैं, कुण्डली	गुणसूत्र युग्मी (paired) होते हैं तथा कुण्डली
	प्लेक्टोनीमिक होती है।	पेरानीमिक होती है।
10.	क्रॉसिंग ओवर (crossing over) नहीं होता है	
	तथा काएज्मा नहीं बनता है।	बनने से गुणसूत्र खण्डों का विनिमय होता है।
11.	कोशिका विभाजन तथा गुणसूत्र विभाजन एक ही	कोशिका विभाजन दो बार परन्तु गुणसूत्र विभाजन
	बार होता है।	एक बार होता है।
12.	मध्यावस्था में सभी सेन्ट्रोमियर मध्य रेखा पर आ	मध्यावस्था-I में सेन्ट्रोमियर दो रेखाओं में व्यवस्थित
	जाते हैं तथा एक रेखा में व्यवस्थित होते हैं।	रहते हैं तथा भुजाएँ मध्य रेखा पर होती हैं।
13.	मध्यावस्था में सेन्ट्रोमियर विभाजित हो जाता है।	मध्यावस्था-I में सेन्ट्रोमीयर विभाजित नहीं होता है,
		परन्तु समजात गुणसूत्र अलग-अलग हो जाते हैं।
14.	पश्चावस्था में गुणसूत्र के दोनों हिस्से अलग-अलग	पश्चावस्था-I में पहले छोटे कम काएज्मा वाले
	ध्रुवों की ओर चलते हैं।	गुणसूत्र तथा फिर लम्बे अधिक काएज्मा वाले
		गुणसूत्र अलग होते हैं।
15.		एक जनक कोशिका से चार पुत्री कोशिकाएँ
16	(daughter cells) बनती हैं।	(daughter cells) बनती हैं।
16.	पुत्रा काशिकाओं में गुणसूत्रा का संख्या जनव	 पुत्री कोशिकाओं में गुणूसत्रों की संख्या जनक कोशिकाओं की ठीक आधी (half) रह जाती है।
17.		त केन्द्रक विभाजन के पश्चात् कोशिकाद्रव्य का
1/.	होता है।	विभाजित होना निश्चित नहीं होता है।
18.		न पुत्री कोशिका में मातृ व पितृ लक्षणों का मिश्रण
10.	होते हैं।	मिलता है।
	GINI GI	LIKINI GI

प्रश्न 12.

अर्द्धसूत्री विभाजन का क्या महत्त्व है?

उत्तर :

अर्द्धसूत्री विभाजन का महत्त्व इसके निम्नलिखित महत्त्व हैं

- अर्द्धस्त्री विभाजन के फलस्वरूप बने युग्मकों में गुणस्त्रों की संख्या आधी रह जाती है। लेकिन जनन में नर तथा मादा युग्मकों के मिलने से द्विगुणित जाइगोट (zygote)का निर्माण होता है। इस प्रकार अर्द्धस्त्री विभाजन तथा निषेचन के फलस्वरूप प्रत्येक जाति में गुणस्त्रों की संख्या निश्चित बनी रहती है।
- अर्द्धसूत्री विभाजन के समय विनिमय (crossing over) के कारण गुणसूत्रों की संरचना बदल जाती है, इससे भिन्नताएँ उत्पन्न होती हैं। जैव विभिन्नताएँ जैव विकास का आधार होती हैं।

प्रश्न 13.

अपने शिक्षक के साथ निम्नलिखित के बारे में चर्चा कीजिए

- 1. अगुणित कीटों व निम्न श्रेणी के पादपों में कोशिका विभाजन कहाँ सम्पन्न होता है?
- 2. उच्च श्रेणी पादपों की कुछ अगुणित कोशिकाओं में कोशिका विभाजन कहाँ नहीं होता है?
 - 1. नर मधुमिक्खयाँ अर्थात् ड्रोन्स (drones) अगुणित होते हैं। इनमें सूत्री विभाजन अनिषेचित अगुणित अण्डों में होता है। निम्न श्रेणी के पादपों; जैसे-एककोशिकीय क्लैमाइडोमोनास (Chlamydomonas), बहुकोशिकीय यूलोथ्रिक्स (Ulothrix) आदि में समसूत्री विभाजन द्वारा जनन होता है। इनमें अगुणित युग्मक बनते हैं। युग्मकों के परस्पर मिलने से युग्माणु (zygote) बनते हैं। जाइगोट में अर्द्धसूत्री विभाजन होता है। इसके फलस्वरूप बने अगुणित बीजाणु समसूत्री विभाजन दवारा नए पादपों का विकास करते हैं।
 - 2. उच्च श्रेणी के पादपों में द्विगुणित बीजाण्डकाय में गुरुबीजाणु मातृ कोशिका में अर्द्धसूत्री विभाजन के कारण चार अगुणित गुरुबीजाणु बनते हैं। इनमें से तीन में कोशिका विभाजननहीं होता। सिक्रिय गुरुबीजाणु से भ्रूणकोष (embryo sac) बनता है। भ्रूणकोष की अगुणित प्रतिमुख कोशिकाओं (antipodal cells) तथा सहायक कोशिकाओं (synergids)में क्रोशिका विभाजन नहीं होता। साइकस के लघुबीजाणुओं (परागकण) के अंकुरण के फलस्वरूप नर युग्मकोभिद् बनता है। इसकी प्रोथैलियल कोशिका (prothallial cell) तथा लिका कोशिका (tube cell) में कोशिका विभाजन नहीं होता।

प्रश्न 14.

क्या S प्रावस्था में बिना डी॰एन॰ए॰ प्रतिकृति के सूत्री विभाजन हो सकता है?

उत्तर :

'S' प्रावस्था में DNA की प्रतिकृति के बिना सूत्री विभाजन नहीं हो सकता।

प्रश्न 15.

क्या बिना कोशिका विभाजन के डी॰एन॰ए॰ प्रतिकृति हो सकती है?

उत्तर:

कोशिका विभाजन के बिना भी DNA प्रतिकृति हो सकती है। सामान्यतया DNA से RNA का निर्माण प्रतिकृति के फलस्वरूप ही होता रहता है।

ਧਾਰ 16.

कोशिका विभाजन की प्रत्येक अवस्थाओं के दौरान होने वाली घटनाओं का विश्लेषण कीजिए और ध्यान दीजिए कि निम्नलिखित दो प्राचलों में कैसे परिवर्तन होता है?

- 1. प्रत्येक कोशिका की गुणसूत्र संख्या (N)
- 2. प्रत्येक कोशिका में डी॰एन॰ए॰ की मात्रा (C)

उत्तर:

अन्तरावस्था की G1 प्रावस्था में कोशिका उपापचयी रूप से सिक्रय होती है। इसमें निरन्तर वृद्धि होती रहती है। S-प्रावस्था में DNA की प्रतिकृति होती है। इसके फलस्वरूप DNA की मात्रा दोगुनी हो जाती है। यदि DNA की प्रारम्भिक मात्रा 2C से प्रदर्शित करें तो इसकी मात्रा 4C हो जाती है, जबिक गुणसूत्रों की संख्या में कोई परिवर्तन नहीं होता। यदि G1 प्रावस्था में गुणसूत्रों की संख्या 2N है। तो G2 प्रावस्था में भी इनकी संख्या 2N रहती है।

अर्द्धसूत्री विभाजन की पूर्वावस्था प्रथम की युग्मपट्ट (जाइगोटीन) अवस्था में समजात गुणसूत्र जोड़े बनाते हैं। पश्चावस्था प्रथम में गुणसूत्रों का बँटवारा होता है। यदि गुणसूत्रों की संख्या 2N है तो अर्द्धसूत्री विभाजन के पश्चात् गुणसूत्रों की संख्या N रह जाती है। जननांगों (2N) में युग्मकजनन अर्द्धसूत्री विभाजन के फलस्वरूप होता है। इसके फलस्वरूप युग्मकों में गुणसूत्रों की संख्या घटकर अगुणित (आधी-N) रह जाती है।

परीक्षोपयोगी प्रश्नोत्तर

बहुविकल्पीय प्रश्न

प्रश्न 1.

वे कोशिकाएँ कौन-सी हैं, जिनमें सेण्ट्रिओल नहीं होता?

- (क) तन्त्रिका कोशिका
- (ख) जनन कोशिका
- (ग) अस्थि कोशिका
- (घ) यकृत कोशिका

उत्तर:

(क) तन्त्रिका कोशिका

अतिलघु उत्तरीय प्रश्न

प्रश्न 1.

कोशिका चक्र की विभिन्न अवस्थाओं को क्रम में लिखिए।

उत्तर :

G1 ,S, G2 एवं M प्रावस्थाएँ।

प्रश्न 2.

कोशिका चक्र की G1 प्रावस्था में क्या घटित होता है?

उत्तर:

G1 प्रावस्था में कोशिका वृद्धि करती है। DNA का संश्लेषण करने वाले एन्जाइम तथा DNA के विभिन्न घटकों का निर्माण होता है। G1 प्रावस्था में कोशिका चक्र का लगभग 35% से 50% समय लगता है।

प्रश्न 3.

कोशिकाद्रव्य विभाजन पर संक्षिप्त टिप्पणी कीजिए।

उत्तर:

केन्द्रक विभाजन के पश्चात् जन्तु कोशिकाओं में खाँच विधि (furrow method) से तथा पादप कोशिका में कोशिका पट्ट निर्माण से कोशिकाद्रव्य का बँटवारा होता है।

प्रश्न 4.

सूत्री विभाजन की किस अवस्था में प्रत्येक गुणसूत्र का गुणसूत्र बिन्दु दो भागों में बँट जाता

उत्तर:

मध्यावस्था के अन्त में।

प्रश्न 5.

सूत्री विभाजन के समय गुणसूत्र किस अवस्था में कोशिका के मध्य में एक प्लेट पर एकत्र होते हैं?

उत्तर:

मध्यावस्था में।

प्रश्न 6.

अर्द्धसूत्री विभाजन में प्रथम पूर्वावस्था की उप-प्रावस्थाओं को सही क्रम में लिखिए।

उत्तर:

- 1. तनुसूत्र (Leptotene)
- 2. युग्मसूत्र (Zygotene)
- 3. स्थूलसूत्र (Pachytene)
- 4. द्विपट्ट (Diplotene) एवं

5. पारगतिक्रम (Diakinesis)

प्रश्न 7.

अर्द्धसूत्री विभाजन के समय समजात गुणसूत्र किस अवस्था में अलग होते हैं?

उत्तर:

पश्चावस्था-। में।

प्रश्न 8.

अर्द्धसूत्री विभाजन की किस अवस्था में गुणसूत्रों की संख्या आधी हो जाती है?

उत्तर:

अर्द्धसूत्री विभाजन-प्रथम (न्यूनकारी विभाजन) में।।

लघु उत्तरीय प्रश्न

प्रश्न 1.

तर्क तन्तु क्या हैं ? प्रत्येक प्रकार के त तन्तुओं के कार्य लिखिए। उत्तर:

तर्क तन्तु एवं उनके कार्य

समस्त जन्त् कोशिकाओं में विभाजनान्तराल अवस्था (interphase) में ट्यूब्यूलिन (tubulin) प्रोटीन से बनी सूक्ष्म नलिकाओं के संघनन की दो तारककेन्द्र या सेण्ट्रिओल्स (centrioles) नामक सूक्ष्म संरचनाएँ केन्द्रक के समीप स्थित होती हैं। ये दोनों तारककेन्द्र कोशिकाद्रव्य के विशेष कणिकामय (granular) छोटे से क्षेत्र में स्थित होते हैं। इसे कोशिका का विभाजन केन्द्र (division centre) या तारककाय (सेण्ट्रोसोम-centrosome) कहते हैं। यह वनस्पति कोशिकाओं में अनुपस्थित होता है। कोशिका विभाजन में सेण्ट्रोसोम की प्रमुख भूमिका होती है। इण्टरफेज अवस्था की S-उप अवस्था में ही तारककेन्द्रों से दो नये तारककेन्द्र बनने लगते हैं जो G2 प्रावस्था के अन्त तक पूर्ण विकसित हो जाते हैं। पूर्वावस्था (prophase) के प्रारम्भ में सेण्ट्रोसोम के चारों ओर अनेक सूक्ष्म नलिकाएँ बनती हैं, जिन्हें तारक किरणें (astral rays) कहते हैं। इनके कारण सेण्ट्रोसोम सितारे (star) जैसी आकृति का दिखाई देता है, इसलिए इसे तारक (aster) कहते हैं। तारक किरणों के बन जाने पर तारक दो सन्तति सेण्ट्रोसोम्स (daughter centrosomes) में विभाजित हो जाता है, शीघ्र ही सन्तित सेण्ट्रोसोम जनक सेण्ट्रोसोम से दूर हटने लगते हैं और दोनों सेण्ट्रोसोम्स के बीच कोशिकाद्रव्य की सूक्ष्म नलिकाओं से तर्क तन्तु (spindle fibres) बनने लगते हैं। पूर्वावस्था के समाप्त होने तक दोनों सेण्ट्रोसोम्स कोशिका में विपरीत ध्रुवों पर पहुंच जाते हैं और दोनों के मध्य । ध्रुवीय तर्क तन्तु (polar spindle fibres) बनने से तर्क निर्माण (spindle formation) पूरा हो जाता है। इस दविध्वीय तर्क को समसूत्री तर्क (mitotic spindle) या द्वितारक (एम्फीऐस्टर-amphiaster) कहते हैं। समसूत्री तर्क में निम्नलिखित तीन प्रकार के तन्त् होते हैं।

- 1. निरन्तरे या सतत् अथवा धुवीय तर्क तन्तु (Continuous or polar spindle fibres) : ये एक ध्रव से दूसरे ध्रव तक फैले रहते हैं।
- 2. असतत् या गुणसूत्री त तन्तु (Discontinuous or chromosomal spindle fibres) : ये तर्क ध्रुव से तर्क की मध्यवर्ती रेखा तक फैले होते हैं और गुणसूत्रों के गुणसूत्र बिन्दु (सेण्ट्रोमियर) से जुड़े होते हैं।
- 3. अन्तक्षेत्रीय तर्क तन्तु (Interzonal spindle fibres) :

ये तर्कु पश्चावस्था (anaphase) में बनते हैं और दो पृथक् व क्रमश: दूर होते पुत्री गुणसूत्रों (daughter chromosomes) के मध्य फैले रहते हैं।

प्रश्न 2.

असूत्री विभाजन का वर्णन कीजिए।

उत्तर:

इस प्रकार के विभाजन में सबसे पहले केन्द्रक कुछ लम्बा हो जाता है तथा मध्य स्थान पर या किसी एक सिरे के पास संकुचन (constriction) बन जाता है। कुछ समय के बाद केन्द्रक समान आकार के नहीं होते हैं। यह अनिवार्य नहीं है कि केन्द्रक विभाजन के बाद कोशिका का भी विभाजन हो। इस प्रकार का विभाजन सामान्यतः कवकों (fungi) तथा शैवालों (algae) में पाया जाता है। उच्च वर्ग के पौधों में यह केवल पुरानी कोशिकाओं (जो नष्ट हो रही हैं) में होता है।

चित्र-असूत्री विभाजन (Amitosis)

दीर्घ उत्तरीय प्रश्न

प्रश्न 1.

अर्द्धसूत्री विभाजन से आप क्या समझते हैं? इसकी विभिन्न प्रावस्थाएँ लिखिए। समसूत्री विभाजन तथा इसका महत्व भी बताइए।

उत्तर

अर्द्धसूत्री विभाजन यह प्रत्येक जीव के जीवन चक्र (life cycle) में एक बार होने वाला ऐसा विभाजन है जो

कोशिका में उपस्थित द्विगुणित (diploid = 2n) गुणस्त्रों को अगुणित (haploid = n) संख्या में हासित (reduce) कर देता है। इसी के बाद अगुणित (n) युग्मकों (gametes) का निर्माण होता है। युग्मकों के समेकन (fusion) के बाद जो युग्मनज बनता है उसमें क्रोमोसोम्स की संख्या फिर दोगुनी हो जाती है। इस प्रकार अर्द्धस्त्री विभाजन (meiosis) के बिना युग्मक नहीं बन सकते तथा संयुग्मन निषेचन (fertilization) के बिना युग्मनज (zygote) का निर्माण नहीं हो सकता। अर्द्धस्त्री विभाजन (meiosis or reduction division) में जनक गुणस्त्रों का द्विगुणन तो एक बार ही होता है, परन्तु कोशिका दो बार विभाजन होती है अर्थात् विभाजनान्तराल प्रावस्था (interphase) एक ही बार होती है।

अर्द्धसूत्री विभाजन की प्राधस्थाएँ

अर्द्धस्त्री विभाजन एक लम्बी प्रक्रिया है और इसमें केन्द्रक व कोशिकाद्रव्य के दो बार विभाजन सम्मिलत हैं। इन दो बार के विभाजनों में से पहला विभाजन हास विभाजन (न्यूनकारी = reduction division) है जिसमें गुणस्त्रों की संख्या विगुणित से अगुणित (2n से n) हो जाती है। दोनों केन्द्रकों में गुणस्त्रों की संरचना यद्यपि एक जैसी होती है किन्तु इन पर उपस्थित आनुवंशिक प्रभावों में अन्तर हो सकता है, अत: इस विभाजन को विषम विभाजन (heterotypic division) भी कहते हैं, जबिक दूसरा विभाजन-साधारण स्त्री विभाजन की तरह ही होता है। इसमें बनने वाले नये केन्द्रकों में गुणस्त्र लम्बाई में दूट कर पहुँचते हैं; अत: इसे सम विभाजन (homotypic division) भी कहते हैं। इस विभाजन के अन्त में चार अगुणित (n) कोशिकाएँ बनती हैं।

चित्र-अर्द्धसूत्री विभाजन (meiosis) में दो विभाजन सम्मिलित होते हैं-पहला ह्रास विभाजन तथा दूसरा साधारण समसूत्री विभाजन

समसूत्री विभाजन एवं इसका महत्त्व

समसूत्री विभाजन जनन कोशिकाओं के अतिरिक्त सभी प्रकार की कायिक कोशिकाओं (somatic cells) में होता है। इसमें क्रोमोसोम्स की संख्या सदैव समान बनी रहती है। नयी सन्तित कोशिकाओं का निर्माण युग्मनज से होता है। इसमें नयी सन्तित कोशिकाएँ बार-बार विभाजित (समसूत्री कोशिका विभाजन द्वारा) होकर वृद्धि करती रहती हैं। कोशिका विभाजन के फलस्वरूप बनने वाली कोशिकाओं में विभेदीकरण (maturation) भी होता है जिससे जीव के शरीर में विभिन्न अंग विकसित होते हैं। और इस प्रकार भ्रूणीय विकास के बाद एक नन्हे विकसित जीव का निर्माण हो जाता है। अब यह जीव वृद्धि करके वयस्क में बदल जाता है। यह वृद्धि भी सूत्री विभाजनों द्वारा कोशिकाओं की संख्या बढ़ने से ही होती है। इस प्रकार

- यही एक ऐसा विभाजन है जिसके द्वारा बनने वाली सन्तित कोशिकाएँ पूर्णरूप से गुणों और संरचना में मातृ कोशिका की तरह होती हैं। सन्तित कोशिकाओं में क्रोमोसोम्स की संख्या और उनके लाक्षणिक गुण भी मातृ कोशिका की तरह ही रहते हैं।
- 2. इस विभाजन के द्वारा बहुकोशिकीय संरचना का निर्माण होता है जबकि प्रत्येक जीव का जीवन चक्र,वास्तव में, एक कोशिका से ही प्रारम्भ होता है।
- 3. एककोशिकीय जीवों में तो यह विभाजन जनन की एक विधि है।
- 4. वृद्धि के लिए कोई कोशिका यदि परिमाप में बढ़ती जाये तो एक समय ऐसा आयेगा जब उसके जीवद्रव्य की विभिन्न दृष्टिकोण से सिक्रयता नहीं रह पायेगी।

अतः यह कोशिका विभाजन जीव का परिमाप बढ़ाते हुए भी सक्रियता को कम नहीं होने देता अर्थात् इसके द्वारा पुरानी वृद्ध कोशिकाओं के स्थान पर नयी नवजीवन युक्त कोशिकाओं का निर्माण होता है।