I. ZeroR, OneR and Decision Tree Classifiers

1. Consider the below dataset on "Buys_Computer" with 12 observations.

Train #	Income	Student	Credit Rating	Buys_Computer
1	High	No	Fair	Yes
2	High	No	Excellent	Yes
3	High	Yes	Fair	No
4	Medium	No	Excellent	Yes
5	Low	Yes	Fair	No
6	Low	Yes	Excellent	No
7	Medium	Yes	Excellent	No
8	High	Yes	Excellent	No
9	Medium	Yes	Fair	No
10	Medium	No	Fair	Yes
11	Medium	No	Fair	Yes
12	Low	No	Fair	No

a. Apply ZeroR classification algorithm and predict the baseline performance.

Zero R **7 no > 5 yes**

b. Apply OneR classification algorithm, determine the best predictor and calculate its accuracy

Income	Yes	No	Student	Yes	No
High	2	2	Yes	0	6
Medium	3	2	No	5	1
Low	0	3			

Credit Rating	Yes		No	
Fair		3		4
Excellent		2		3

Student will be best predictor; accuracy:

91.67%

c. Calculate Information gain for all the predictors Income, Student, Credit Rating and construct the decision tree

Course Coordinator: Dr. Vani V

Decision Tree

Info Gain:

Ranking 1. Student 2. Income 3. Credit Rating

Info(D given Student) =
$$6/12 * I (0,6) + 6/12*I(5,1) = 0.325$$

$$I(0,6) = -(0/6) *log2(0/6)-((6/6)*log2(6/6)) = 0$$

$$I(5,1) = -5/6*log2(5/6) - ((1/6)*log2(1/6)) = 0.66$$

InfoGain(Student) = Info(D) - Info(D given Student) = 0.99 - 0.33 = 0.66

d. Derive and write down all the classification rules

e. Use the following test dataset and predict the class "Buys_Computer" based on the constructed model.

Test #	Income	Student	Credit Rating	Actual Buys_Computer	Predicted Buys_Computer
1	High	No	Excellent	No	Yes
2	High	Yes	Fair	Yes	No
3	Medium	No	Excellent	Yes	Yes
4	Medium	Yes	Fair	No	No
5	Low	Yes	Fair	Yes	No
6	Low	No	Fair	<mark>No</mark>	No

f. Create the confusion matrix for the model.

	Predicted		
		Yes	No
			2
	Yes	1	(FN)
		1	
Actual	No	(FP)	2

Course Coordinator : Dr. Vani V

- g. From the Confusion Matrix, calculate
 - a. Accuracy
 - b. Error Rate.
 - c. True Positive Rate
 - d. False Positive Rate

Accuracy: 50% Error Rate: 50%

TPR: TP/(TP+FN) 33.3333333%
FPR FP/(FP+TN) 33.33333333%

Course Coordinator : Dr.Vani V