Corrigé de l'exercice 1 du TD 1

Champ créé par un fil rectiligne de longueur finie

Considérons un fil rectiligne vertical de longueur finie parcouru par un courant d'intensité I. Déterminons le champ magnétique \vec{B} créé par cette distribution de courant en un point M.

- Système de coordonnées : M est repéré par ses coordonnées cylindriques ρ , ϕ et z On note O la projection du point M sur l'axe OZ du fil tel que: OM = ρ
- On utilise la base cylindrique (\vec{e}_{ρ} , \vec{e}_{φ} , \vec{e}_{z}): $\vec{e}_{\rho} = \frac{O\dot{M}}{OM}$, $\vec{e}_{\varphi} = \vec{e}_{z} \wedge \vec{e}_{\rho}$ et \vec{e}_{z} le vecteur unitaire porté par l'axe OZ

D'après la loi de Biot et Savart un élément de courant $Id\ell$ centré en un point P crée au point M un champ d'induction magnétique élémentaire $d\vec{B}(M)$:

$$d\vec{B}(M) = \frac{\mu_0 I}{4\pi} \frac{d\vec{\ell} \wedge P\vec{M}}{PM^3} = \frac{\mu_0 I}{4\pi} \frac{dz\vec{e}_z \wedge (-z\vec{e}_z + \rho\vec{e}_\rho)}{PM^3} = \frac{\mu_0 I}{4\pi} \frac{\rho dz\vec{e}_\phi}{PM^3}$$

 $d\vec{B}(M)$ est perpendiculaire au plan contenant le fil et le point M et il est porté par le vecteur unitaire \vec{e}_{φ} (Tous les champs magnétiques $d\vec{B}$ sont portés par le vecteur unitaire $\vec{e}_{\varphi} \Rightarrow \vec{B}$ est porté par \vec{e}_{φ} .

On peut utiliser la symétrie :

Le plan (M, \vec{e}_{ρ} , \vec{e}_{z}) est un plan de symétrie magnétique pour la distribution de courant, donc le champ résultant créé au point M par la distribution du courant est perpendiculaire à ce plan : $\vec{B} = B_{\varphi} \vec{e}_{\varphi}$ est porté par \vec{e}_{φ}

On écrit alors : dB =
$$\frac{\mu_0}{4\pi} \frac{I \rho dz}{PM^3}$$

Introduisons l'angle α , orienté par l'espace ,tel que : $\cos(\alpha) = \frac{\rho}{PM}$; $PM = \frac{\rho}{\cos(\alpha)}$

On a OP =
$$z = \rho \operatorname{tg}(\alpha) \implies dz = \frac{\rho}{\cos^2(\alpha)} d\alpha$$

dB (M) = $\frac{\mu_0 I}{4\pi \alpha}\cos(\alpha)$ d α . Le champ total créé par le fil fini :

$$B(M) = \frac{\mu_0 I}{4\pi\rho} \int_{\alpha_1}^{\alpha_2} \cos(\alpha) d\alpha = \frac{\mu_0 I}{4\pi\rho} \left(\sin(\alpha_2) - \sin(\alpha_1) \right)$$

Remarque:

Pour les points M appartenant au plan médiateur, $\alpha_1 = -\alpha_2 = \beta$: B(M) = $\frac{\mu_0 I}{2\pi\rho}$ sin β

2) Pour un fil rectiligne de longueur infinie parcouru par un courant d'intensité I : α_1 tend vers $-\pi/2$ et α_2 tend vers $\pi/2$

$$B(M) = \frac{\mu_0 I}{2\pi\rho} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos(\theta) d\theta$$

$$B(M) = \frac{\mu_0 I}{2\pi\rho} \int_{\frac{2\pi}{2}}^{\frac{\pi}{2}} \cos(\theta) d\theta$$

$$d'où B(M) = \frac{\mu_0 I}{2\pi\rho} \quad \text{soit} \qquad \vec{B}(M) = \frac{\mu_0 I}{2\pi\rho} \vec{e}_{\varphi}$$

Remarque:

Les lignes de champ d'induction magnétique sont des cercles d'axe Oz et de rayon p. Elles sont orientées selon la règle du tire bouchon : $(d\vec{B}, Id\vec{l}, PM)$ est un trièdre direct Le module de \vec{B} décroît avec la distance.

