Lab 8: Torque & Static Equilibrium

Learning Goals	Concepts
 Solve for an unknown mass or length to balance the sum of torques equation. Gain an intuitive understanding of torque. 	 Torque Static equilibrium Center of gravity
Vocab & Notation	
Mechanical equilibrium Translation	al equilibrium Lever arm
• Pivot • Fulcrum	• Cantilever
 Line of action φ 	
Equations	
$\tau_{net} = \tau_1 + \tau_2 + \cdots (3)$	$\tau = rF\sin\varphi \ (4)$
$\tau = rF \ (5)$	$(\tau = \mathbf{r} \times \mathbf{F})$

Theory Outline

- Compare torque and Newton's 2^{nd} Law F = ma and $\tau = Ia$
- Torque from a single force Equation 4
- Torque from a perpendicular force *Equation 5, Meter Stick & Torque*
- Sum of torques and static equilibrium Equation 3

Procedure Outline

- Calculate an unknown position for mass for each setup.
 - o Example: pivot at COM, $m_1 = 50$ g, $x_1 = 10$ cm, $m_2 = 100$ g, $x_2 = ?$
- Four Setups:
 - o One mass on each side of the meter stick
 - o Two masses on one side and one mass on the other
 - o Pivot at 10 cm and mass at the 5 cm mark
 - o Pivot at 10 cm and an upward force applied with a string and hanging mass

Diagrams

Meter Stick & Torque

Vector Cross Product

Four Setups

