Assignment 3, TTK4190

Shiv Jeet Rai Arne Selle Erik Liland

17. November 2015

Contents

1	Aut	opilot design	2
	1.1	Heading autopilot	2
	1.2	Speed autopilot	7
2	Patl	h following and Path tracking	8
2		h following and Path tracking Path Generation	_
2	2.1		8

1 Autopilot design

1.1 Heading autopilot

Analysis of ship characteristics

To be able to model the ship in a good way we ran many simulations with different rudder angle and measured the steady-state yaw rate. We then made a $\delta-r$ plot of the result. Since the ship was turning port while giving a positive rudder command, this plot the rest of the assignment is made with a fixed gain of -1 on δ_c .

Figure 1: $\delta - r$ plot

From figure 1 we clearly see the non-linear behavior of the ship. This motivates a 1-DOF heading model i.e. first- or second order Monoto model with non-linear extensions. To further investigate the effect of the non-linear characteristics of this ship, we compare the actual response with different models at different rudder angles. It should also be noticed that the ship has a constant drift to starboard with $\delta_c=0$, as seen by the curve not passing through the origin. We compensate for this through the rest of the modeling part by adding a fixed rudder angle of 0.52° to the rudder input. We only need this correction while estimating the model parameters. In a closed loop, the integral effect will cancel both this drift and drift caused by wind, current and waves.

2. order linear Nomoto

$$\frac{r}{\delta}(s) = \frac{K_{\nu}(1 + T_3 s)}{(1 + T_1 s)(1 + T_2 s)}$$

$$T_1 T_2 \ddot{\psi} + (T_1 + T_2) \ddot{\psi} + \dot{\psi} = K(\delta + T_3 \dot{\delta})$$
(1)

The second order Nomoto model follows the ships overshoot some, but not enough.

2st order linear Nomoto model compared to ship response

Figure 2: 2.order linear Nomoto model

1. order linear Nomoto

$$\frac{r}{\delta}(s) = \frac{K}{(1+Ts)}$$

$$T\ddot{\psi} + \dot{\psi} = K\delta$$
(2)

We also tried the first order version Nomoto, and as expected the model will only be accurate for small rudder angles, and is therefore not very good for modeling the non-linearities.

1st order linear Nomoto model compared to ship response

Figure 3: 1.order linear Nomoto model

2. order non-linear Nomoto

$$T_1 T_2 \ddot{r} + (T_1 + T_2) \dot{r} + K H_b(r) = K(\delta + T_3 \dot{\delta})$$

$$H_B(r) = b_3 r^3 + b_2 r^2 + b_1 r + b_0$$
(3)

Where the steady state of $H_B(r)=\delta$. b_0 have already been taken care of in the fixed rudder offset, and by symmetry in the hull leads to $b_2=0$. We then only need the first- and third-order term to describe the maneuvering characteristics. By curve fitting $H_B(r)=b_3r^3+b_1r=\delta$ to the obtained delta-r curve, we estimate the parameters b_3 and b_1 .

Figure 4: Third degree approximation of ship characteristics

Figure 5: 2.order non-linear Nomoto model

1. order non-linear Nomoto

Norbins' extension of the linear first order model:

$$T\dot{r} + H_N(r) = K\delta$$

$$H_N(r) = n_3 r^3 + n_2 r^2 + n_1 r + n_0$$
(4)

Where the steady state of $H_N(r)=K\delta$. We know that $n_i=\frac{b_i}{|b_1|}$, and since our ship is stable we know that $n_1=1$, and $n_3=sign(b_3)=1$ thus resulting in following model.

$$T\dot{r} + r^3 + r = K\delta \tag{5}$$

Figure 6: 1.order non-linear Nomoto model

1.2 Speed autopilot

To control the surge speed of MS Fartøystyring we suggest using a linearized model, where the surge speed is decoupled from the rest of the system. We are assuming

which leads to the conclusion that

$$U = u$$

. We then use a first order linear speed model

$$(m + X_{\dot{u}})\dot{u} - X_{u}u_{r} - X_{|u|u}|u_{r}|u_{r} = \tau$$
(6)

which leads to

$$\dot{u} = \frac{\tau + X_{|u|u}|u_r|u_r + X_u u_r}{m - X_{\dot{u}}} = \frac{X_{|u|u}|u_r|u_r + X_u u_r}{m - X_{\dot{u}}} + \tau_{nl}$$
(7)

where

$$\tau_{nl} = \frac{\tau}{m - X_{\dot{u}}} \Rightarrow \tau = \tau_{nl}(m - X_{\dot{u}}) \tag{8}$$

2 Path following and Path tracking

2.1 Path Generation

Her skriver vi om Path generation

Figure 7: Different trajectories

2.2 Path following

Her skriver vi om Path following

2.3 Path Tracking

Her skriver vi om Path tracking