B-24514C2

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

re application

IL JOSTPH T. EVANS, JR., ET AL.

Serial No.:

Filed:

Settember

Group:

Examiner:

Alyssa H. Bowler

For:

NON-VOLATILE MEMORY CIRCUIT USING

1990

FERROELECTRIC CAPACITOR STORAGE ELEMENT

RECEIVED

JUL 1 1 1991

GROUP 230

Honorable Commissioner of
Patents and Trademarks
Washington, D.C. 20231

Dear Sir:

DECLARATION OF JOSEPH T. EVANS, JR.

I, Joseph T. Evans, Jr. of 13609 Verbena Place, N.E., Albuquerque, New Mexico 87112, do hereby declare that all statements made of my own knowledge are true and that all statements made on information and belief are believed to be true, do hereby declare as follows:

1. I was an owner-employee of Krysalis Corporation since its founding on or about September, 1984, and was then Acting Vice President of Product Development.

usy certify that this correspondence is being deposited with the United States Postal Service as first class mail in an envelope addressed to:

Commissioner of Patents and Trademarks.

July 8, 1991

Washington, D.C. 20231 on (Deta of Deposit)

Roger N. Chauza, Reg. No. 29,753

DECLARATION OF JOSEPH T. EVANS, JR. - Page 1

Name of applicant, assignes, or Registered Representative
Signature

TULY 8, 1991

Date of Signature

- 2. My general responsibilities were the development of solid state nonvolatile memory devices which incorporated ferroelectric capacitors, and the management of personnel to accomplish such task.
- 3. Exhibit 1 is my letter dated October 20, 1986, to Mr. Dale Nixon, an attorney representing Krysalis in patent matters. In my letter of Exhibit 1, I note that there are four groups of patent disclosures, including group four, entitled: "Method of Reading Polarization of Ferroelectric Cell for Purpose of Making a Solid State Memory". Attached to Exhibit 1 is the invention disclosure material showing the several concepts and variations of the solid state memory circuits mentioned in the letter of Exhibit 1.

The invention disclosure material related to the Group 4 invention noted in pages 5-8 of Exhibit 1 includes the following subject matter:

- 1) ferroelectric memory cell with 1 capacitor and 1
 transistor
- 2) 2 cells per bit architecture
- 3) the disturb problem and possible solutions
- 4) alternate architecture
- 5) pulsed instead of stepped read
- 6) dynamic sense amplifier
- 7) Wayne Kinney's sense amplifier scheme (Figure 17)

The different ferroelectric memory cell architectures were included in one disclosure and were considered together as it was believed that they related to the same general invention. A patent application covering both the single-transistor, single-capacitor cell architecture and the two cells per bit architecture was prepared by attorney Dale Nixon and filed in the U. S. Patent and Trademark Office.

- 4. Michael Cordoba was an employee of Krysalis Corporation during 1987, during which time period he was responsible for conducting numerous tests and evaluations on ferroelectric material to find a suitable ferroelectric material for fabricating nonvolatile memories.
- 5. Exhibit 2 is a memorandum dated March 4, 1987, that Mr. Cordoba prepared in connection with establishing a long-term fatigue (LTF) testing program for ferroelectric material developed by Krysalis. Mr. Cordoba developed a schedule, as set forth in his memo of Exhibit 2, in which fatigue structures having ferroelectric material were to be fabricated and tested at Krysalis to determine the fatigue characteristics of different types of ferroelectric compositions.
- 6. Exhibit 3 is a test film traveler, dated March 30, 1987. The test film traveler identifies the various wafers, 7082A-F, and the processing parameters particular to each wafer. The other pages of Exhibit B are the test results of various wafer die before actual fatigue tests were carried out. Such tests are believed to be carried out on or about March 31, 1987, and April 3, 1987, as indicated on various sheets of the test results.

- 7. Exhibit 4 is a document dated April 10, 1987, indicating the manner in which wafers 7096C-H and 7097A were processed at Krysalis with ferroelectric material to conduct various tests. The other papers of Exhibit C are tests of various wafer chips to accumulate parameters of the ferroelectric capacitors before undergoing fatigue tests. The wafer identified in the test report as "96C" corresponds to the wafer of the test film traveler "7096C", and so on. The test data is believed to be taken on or about April 15, 1987, the date indicated on the test printout.
- 8. Exhibit 5 is a report, dated April 15, 1987, which I prepared, concerning minutes of a Device Process Request Scheduling meeting. This memo sets forth the scheduling of personnel and equipment to carry out long-term fatigue tests of various types of ferroelectric material. The memo notes that until May 22, Krysalis will do one test day a week, testing up to 42 packages a day. To the best of my recollection, this was carried out.
- 9. Exhibit 6 is a memorandum by Michael Cordoba, dated April 24, 1987, of which I am familiar and recognize. In this memorandum and attached papers, Mr. Cordoba indicates the results of resistance measurements of top electrode (TEL) material which was deposited over the ferroelectric (FES) material. Copies of photographs dated April 27, 1987, illustrate the hysteresis loop characteristics of the capacitors on wafers 7098E and 7098F. A handwritten note on the memorandum references the photographs of the ferroelectric capacitor electrical characteristics.

- 10. Exhibit 7 is a memorandum dated April 28, 1987, from Michael Cordoba to myself. In this memo, Mr. Cordoba reports to me the long-term fatigue parameters of various compositions of PLZT ferroelectric materials. The various graphs attached to Exhibit 7 illustrate a change in the polarization magnitude (delta P) for various time periods shown along the horizontal axis as a logarithmic time period. The memorandum by Mr. Cordoba is self-explanatory as to the various results.
- 11. Exhibit 8 is a memorandum dated April 30, 1987, from Michael Cordoba to myself. According to the long-term fatigue test reported in this exhibit, Mr. Cordoba reported that Anita, a Krysalis employee, conducted tests on an 8/40/60 composition of ferroelectric material at two different frequencies (10KHZ and 1MHZ) to determine the frequency dependency of the fatigue rate of delta P. The graphical results, dated April 29, 1987, tabulate the tests conducted.
- 12. Exhibit 9 is a memo dated April 30, 1987, from Michael Cordoba to myself. Mr. Cordoba conducted threshold and beta tests on transistors from the process control module of a wafer vendor, and from transistors on the ECD512 wafer processed at Krysalis after covering it with a ferroelectric material. The comparative results of the threshold and beta transistor parameters are identified in the report of Exhibit 9.

- 13. Exhibit 10 is a memorandum from Michael Cordoba to myself, dated May 14, 1987. In this memorandum, Mr. Cordoba reports to me the results of an experiment with three different ferroelectric compositions using AC cycling to determine the extent of fatigue degradation of the material. Various graphical results of the tests are attached to the exhibit.
- 14. Exhibit 11 is a memorandum from Michael Cordoba to myself, dated May 19, 1987. The fourteen graphs attached to the exhibit illustrate the various capacitor parameters as a function of log time, and as a function of different types of ferroelectric material being tested. The memo states that certain tests were carried out for 678.1 hours of ferroelectric capacitor operation. The memo by Mr. Cordoba is self-explanatory as to the ferroelectric material tests.
- 15. Exhibit 12 is a memorandum by Michael Cordoba to myself, dated May 21, 1987. The various test printouts attached to the exhibit identify the ferroelectric parameters resulting from the tests conducted on May 19, 1987, and as reported in the memo of Exhibit K. Mr. Cordoba proposes additional tests which can be conducted using different numbers of ferroelectric layers and buffer layers of material.
- 16. Exhibit 13 is a memorandum from Michael Cordoba to myself, dated June 2, 1987. This memorandum by Mr. Cordoba identifies the results of tests on ferroelectric capacitors prepared on ECD512a CMOS wafers, and on non-CMOS wafers. Various tests were conducted on May 26, 1987, and June 2, 1987, the results of which are attached to Exhibit 13.

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Date:

Joseph T. Evans, Jr.

Attn: Dale Nixon Richards, Harris, Medlock & Andrews 2900 One Main Place Dallas, Texas 75250

October 20, 1986

Dear Dale.

Enclosed, you will find the following patent disclosures from Krysalis Corporation:

- 1. Method for preparing PLZT and PZT sol-gels and fabricating ferroelectric thin films.
 - 2. Method for patterning PLZT thin films

3. Ferroelectric Capacitor Structure

4. Method of reading polarization of ferroelectric cell for purpose of making a solid state memory.

These submissions represent the state of the art of our technology, and probably that of the rest of the world, in fabricating a ferroelectric, solid state memory based on perovskite ferroelectrics. The disclosures cover most of the building blocks required to make a memory device. There may actually be more than four patents and groups of claims in these submissions. For instance, "4 represents IC circuitry concepts for making a solid state memory and there are several concepts and variations mentioned in the disclosure.

The technology represented in the submissions is different than that in our original patent application of June, 1985. We may want to start our technology patents using these as the umbrella. However, it may be of use to use that original application as the umbrella. (We have serious doubts about the viability of the original patent as it is written!) Please review these disclosures and work out a framework for the patent applications. When you are ready, please visit us here in Albuquerque and we will finalize our strategy as well as let you speak with the inventors to fill in any gaps that exist.

Be aware that we have quite a few disclosures in the works based on our technology now that we are fairly confident of our capabilities. Examples of things to come are actual memory architectures, a non-volatile latch similar to an SRAM, process improvements, and actual ASIC products. A subject we must discuss is the workload involved in processing these applications, the number of people on your staff needed, and the cost to us. Please contact us when you are ready to visit Krysalis in Albuquerque.

RECEIVED

00T 21 1986

R' har 's, Horria, Marten & Fadrow.

Sincerely

oseph T. Evans, Jr.

President

MAILING ADDRESS:
4200 Osuna N.E. Suite 102, Box 106
Albuquerque, New Mexico 87109
LOCATION:
3825 Academy Parkway South N.E.
Albuquerque, New Mexico 87109

505 345 1953

KRYSALIS CORPORATION CONFIDENTIAL

Anysalis Corporation Patent Disclosure

Subject: Method of reading polarization of ferroelectric cell for purpose

of making solid state memoru.

Date: October 18, 1986

By: Richard Womack, Joe Evans, Wayne Kinney, William Miller

Description of Invention

Disclosed is a method, and variations thereof, of reading the polarization of a ferroelectric capacitor. Since the zero voltage, remnant polarization state of a ferroelectric capacitor, unlike a linear capacitor, can have a non-zero value, a ferroelectric capacitor can be used to make a solio state memory requiring no movino parts.

The basic invention consists of the ferroelectric cell, $C_{\rm fe}$, in series with a digital switch, ${\rm Sw}_3$, such as a bipolar or MGS transistor, and then in series with a capacitor, refered to as the sense capacitor, $C_{\rm e}$.

when a voltage is applied across the series components, Sw_1 prevents any charge transfer to take place until it is turned in and represents a mathod of accressing a particular component in an array of components. Parasitic losses must be taken into account in actual designs to prevent leakage of charge when the device is not selected. The polarization state of the ferroelectric capacitor after drive voltage, $V_{\rm d}$, application will consist of non-remnant charge, $P_{\rm nr}$, resembling that of a linear capacitor, plus whatever zero voltage remnant charge, $P_{\rm r}$, is present in the ferroelectric objection before $V_{\rm d}$ is applied. Folcrization, $P_{\rm r}$ is defined as charge/unit area, usually square centimeters. As a consequence of charge conservation, with the digital switch on $D_{\rm c}$ will take on the same

polarization state as the ferroelectric capacitor. The voltage, $\rm V_S$, across $\rm C_S$ will follow the well known capacitor equation:

$$V_{\rm S} = \frac{0}{C_{\rm S}}$$
 . Eq.1

 $O = Charge driven out of <math>C_{fe}$

In $\mathbb{S}_{\frac{1}{12}}$, \mathbb{G} consists of

1. r.u.s.

500

$$V_{s} = \frac{P_{c}A_{fe}}{C_{s}} + \frac{P_{cs}A_{fe}}{C_{s}}$$
 Eq.4

The non-remnant term will be present anytime a voltage is applied. The remnant term is the data retained term. If the $P_{\rm F}$ state before application is the result of a voltage applied in the same direction as $V_{\rm d}$ for the read, then the remnant term will be very small. If the opposite voltage is used to write $P_{\rm F}$ before the read, the remnant term will be large. Thus, in the circuit describes previously, the $V_{\rm S}$ for reading polarization of the fermi-sleptic self has the following mathematical description:

 $V_{\rm S}(V_{\rm d})$ = Remnant Voltage($V_{\rm d}$) + Common Mode Voltage($V_{\rm d}$) Eq.5

of $V_{\vec{0}}$ is returned to 0 volts after application but before reading V_{s} , the Common Mode Voltage will also return to 0 volts, subject to discharge rules, while the Remnant Voltage will remain across C_{s} .

The read method described herein is destructive of the information held within the cell. The data must be rewritten into the cell after the read is complete.

What follows are variations of the method when applied to solid state microelectronics circuits.

KRYSALIS CORPORATION CONFIDENTIAL

FERROELECTRIC MEMORY CELL CONFIGURATIONS

1) Ferroelectric Memory Cell with 1 Capacitor and 1 Transistor

Ferroelectric (FES) capacitors have the property that if the voltage across the capacitor changes from (Figure 2) Vcell = 0 at P = PO to Vcell = +VD, the amount of charge that has been moved across the capacitor is given by (Ps - PO) Area. Thus, if the capacitor was polarized to P1 the charge moved would be given by (Ps - P1)Area. Therefore, the difference in charge between a stored "1" and a stored "0" would be (Ps -PO)A - (Ps - P1)A = (P1 -PO)A.

One method of detecting this charge difference would be to charge a capacitor Cs (Figure 3) with it, causing a change in voltage Vs and then sensing the voltage change. This sense capacitor could, in addition to standard semiconductor capacitances (SiO2, P-N junction etc.), be made out of FES such that the ratio of the cell capacitor and the sense capacitor would track over processing and temperature.

Assuming an N-channel MOS transistor, WL1 and WL2 (Figure 3) are normally low to hold transistors M1 and M2 "off" when unaddressed. Capacitors C1 and C2 have been "polarized" to either P1 or P0. P1 and P0 represent data storage. A typical timing sequence for reading the data stored in C1 is shown in Figure 4. It is important that node V1 is precharged to the same voltage as DL1 because 0 volts are desired across the FES capacitors while they are not addressed so that when they are addressed they start out at PO or P1. It is also important that V1 is precharged to the same voltage that the substrate is biased, because the junction leakage on the node would gradually discharge the node to the substrate level or 1 VT below WL1 (whichever is higher) if the cell were not addressed for long periods of time. This would cause a voltage to develope across the capacitor C1 and potentially disturb the data that had been written into the cell i.e. a "O" would go to a "1". This would not be as large a problem if the cell were cycled frequently. One of the major problems with a cell configuration of this sort is developing a reference voltage that tracks A(P1 - P0)Cs over processing, temperature and fatigue of the cell capacitor.

2) 2 Cells per Bit Architecture

Shown in Figure 5 this architecture doubles the signal size and provides reference signal from a cell with the same processing and temperature characteristics. The number of cycles of the 2 cells of each bit is also the same. The fatigue characteristics should track to some extent also.

Two timing sequences for this arrangement are shown in Figures 6a and 6b assuming a 1 written into the bit. Figure 6a is very similar to Figure 4 with the exception of being applied to a 2 cell bit. In this scheme DL1 and DL2 behave exactly the same and thus can be tied together. This shorting could be taken advantage of in the layout and result in less area per bit than the Figure 6b scheme. The timing scheme in Figure 6b accomplishes the restore of the 1 and 0 simultaneously and could result in a faster read/restore cycle time.

3) The Disturb Problem and Possible Solutions

Figure 7 shows the parasitic junction diodes on the drains of the transistor. The diode on node V1 to substrate represents a parasitic capacitance to substrate also. When DL switches from low to hi, node V1 capacitively couples hi. If the cell is unaddressed i.e. WL is low, the amount of voltage dropped across C1 is dependent on the capacitance divider between C1 and DS1. C1, being a ferroelectric capacitor with a high dielectric constant, can have a value many times that of DS1, but a small delta V can develope across C1. This delta V is proportional to the swing on DL and dependent on the capacitance ratio.

As shown in Figure 10, if the capacitor is polarized to PO and a small positive delta v is applied and then Vcell is taken back to O volts, some polarization may be lost. This assumes that there is no threshold voltage that below which there is no polarization loss or that delta v is greater than the threshold. If a small amount of polarization is lost every cycle, then the total or at least half of the polarization is lost.

Figure 8 shows a circuit that may help. M2 is turned "on" when the cell is unaddressed. M2 effectively decreases the impedance of C1 during the disturb pulse such that delta V is decreased also. M2 however, is not as effective at high slew rates on DL and also requires another signal to be generated (WLX).

Figure 9 shows another solution where the capacitor C1 is isolated from DL while the cell is not addressed. Also, nodes V1 and V2 look very similar as far as parasitics to substrate are concerned. Thus, noise from substrate would have a tendency to be more common mode for this case. The circuit in Figure 9 would decrease the delta V by several orders of magnitude compared to Figure 7. The disadvantage here (as in Figure 8) is the addition of another transistor per cell. Figures 8 and 9 can also be used in the 2 cells per bit architecture.

4) Alternate Architecture

Figure 11 shows an alternate 2 cells per bit architecture (can also be used in 1 cell per bit scheme). In this scheme DL1 is parallel to WL1 instead of being parallel to BL1. What this implies is that DL1 only switches when WL1 is addressed and thus decreases the disturb problem mentioned earlier when DL1 switched (Figure 5) and WL1 did not i.e. the DLs only go to cells that are addressed simultaneously and do not disturb those that are not addressed. This scheme is not as good as that shown in Figure 9 from a disturb standpoint because DL1 and V1 do not have similar substrate, or layout characteristics and thus is more likely to have a difference voltage develope across C1 due to noise. The swing on DL1 (when unaddressed) should be at least an order of magnitude less than in the Figure 5 scheme i.e. noise swing compared to the signal swing on DL1 should be at least an order of magnitude less, and thus the delta V developed should be that much less. The scheme of Figure 11 has the advantages over Figure 8 and 9 is that it does not require extra transistors or

KRYSALIS CORPORATION CONFIDENTIAL

signals. The Figure 11 scheme is also superior to the Figure 9 scheme in switching characteristics because it has less impedance in the DL1 path and less capacitance on WL1. A possible timing sequence is shown in Figure 12. This figure assumes a 1 is written into the cell. This sequence is very similar to that in Figure 6a.

5) Pulsed Instead of Stepped Read

If a capacitor polarized to P1 at Vcell = 0v is taken to Vcell = +VD, and then taken back to Vcell = 0v, it should eventually return to P1. If a capacitor polarized to P0 is taken to Vcell = +VD and then back to Vcell = 0v, it should then have polarization P1. The change in polarization in this case is P1 - P0. This is the same as the charge differential when

both cases were just taken to Vcell = +VD. Furthermore, if a capacitor polarized at P1 is taken to any positive voltage and then returned to Vcell = Ov, the polarization should return to Thus a capacitor in a P1 state does not need full VD drive to be restored. The timing in Figure 12 can become that in Figure 14. This timing sequence has the advantage that if the P vs Voell curve of C1 and C2 did not track with fatigue, then the differential signal would not be affected, because the capacitor at P1 would cancel himself out and the capacitor at P0 would determine the differential signal to be sensed. The disadvantage is that one has to wait for $\overline{DL1}$ to switch twice before beginning to sense. The timing scheme in Figure 14 also lends itself to using one cell per bit because the resulting signal out from P1 or P0 polarization is referenced to ground i.e. P1 polarization would lead to 0 or some small voltage Vs1 and PO would lead to an absolute voltage of A(P1 -PO)Cs for that capacitor. Wayne Kinney suggested the Figure 14 timing sequence.

Because there is a capacitor divider in the actual circuit between the cell capacitor and Cs, not all the drive voltage may be across the cell capacitor during the read and thus not all of PO polarization may lead to differential signal. This case is shown in Figure 13 such that the voltage across the capacitor goes to Vr and then back to Vcell = Ov. The polarization in this case goes to P1' and the signal to be sensed is approximately A(P1' - PO)Cs. The voltage Vr is determined by the ratio of the cell capacitance (say C1) to Cs i.e.

 $\forall r = CsVD/(C1 + Cs).$

6) Dynamic Sense Amplifier

Because the charge dumping causes a destructive read, a restore operation is required. This is very analogous to a DRAM operation. The voltage magnitudes could be on the same order also. The destructive read implies synchronous operation. Therefore, a dynamic differential sense amp employing similar techniques used in DRAMS may be used. Such a sense amp is shown in Figure 15. Figure 16 shows the revised timing of Figure 14 with the additional signals.

KRYSALIS CORPORATION CONFIDENTIAL

7) Wayne Kinney's Sense Amplifier Scheme (Figure 17)

The idea is to maximize the voltage drop across the cell capacitor by integrating the charge using an inverting amplifier with capacitance feedback. The hope is that the voltage on BL would remain constant and the total change on DL would be across the cell capacitance and thus avoiding the loss of signal shown in Figure 13 with the capacitance divider method. The trade offs here involve the design complexity of the inverting amplifier, its speed, offset, and common mode range. If a very linear amplifier with low standby current, low offset and a common mode range encompassing the BL precharge voltage, can be designed, the a superior sense amp would result in allowing use with a smaller input signal.

BECAUSE of the complexedy of the concustry, It I willedy
That op mp sensing concurts would find acceptance in Light
density degetal memories. However, this sensing scheme
would be useful in Arrayed analog memory schemes
where analog data is stoned and sensed in as continuous
values and not discrete beneary uplues. An op any with
a capaciton in the faed back Loup in the forest stage
of a sample of Hold / Analog to Dogstal converter somewat
to digition analog values stoned in ferror electare cells.

KRYSALIS CORPORATION CONFIDENTIAL

Figure 1

Figure 3

Figure 11

Figure 12

Figure 14

Problems Solved

Until now, all viable memories using electric field only to store data have consisted of silicon based devices fabricated using microelectronic techniques. However, only silicon nitride has an intrinsic non-linear memory effect similar to ferroelectric materials that can be used to make non-volatile memories. Silicon nitride memories, otherwise known as MNOS devices, have proven to be notoriously unreliable and exhibit a wearout mechanism. Another method of non-volatile memory in silicon has used electron tunneling in the presence of high electric fields to trap charge on a MOSFET gate. This technique, commonly called Electrically Eraseable Programmable Read Only Memory, also exhibits a wearout phenomenon.

Recent advances in ferroelectric thin film technology and machining have created the potential for building ferroelectric capacitors with remnant polarization onto silicon wafers. Using the above described invention, non-volatile memories with long term or nearly infinite retention, high densities, low voltages, high speeds, and unlimited reads and writes may be fabricated at a reasonable cost. The availability of fast, cheap non-volatile, solid state memories will allow the design and fast cation of electronic computers and systems heretofore unneard of.

what was done. When,

- January, 1985 Basic solid state memory mechanism demonstrated on bulk ferroelectric material by Joe Evans.
- November, 1985 Ferroelectric thin films demonstrated by Joe Evans and William Miller.
- January, 1986 Invention concept demonstrated on thin ferroelectric film capacitors using XT computer as controller.
- September 1985 Zero fatique effect demonstrated on ferroelectric thin films capacitors by Joe Evans and Wayne Kinney. Lack of fatigue effect makes destructive readout viable for commercial applications.
- September, 1985 Architectural design for nonvolatile memory incorporating invention is completed by Richard Womack, Krysalis Corporation with essistance from Joe Evans, Wayne Kinney, and William Miller.

KRYSALIS CONFIDENTIAL

TO:

Distribution

Date: 03-04-87

FROM:

Michael Cordoba

SUBJECT: Minutes LTF System (LTF1.TXT)

The following is my view of the LTF system and the schedule for bringing parts of the system online. My philosophy for the schedule (which I believe was also the general consensus of those the meeting) is that we need to start collecting room temperature first and I MUST put in place what is necessary to do this. I will put effort, into getting other temperature boards up - but primary emphasis will be to get room temperature up and running by the end of this month. My feeling is that we need to start collecting data soon and we should do what is simple first, and then get complicated.

Schedule for First Board:

. Receive masks March 5 or 6. V . Finish processing wafers March 10. > Much 20

The following compositions were agreed to of 4 wafers each:

8/40/60

3/40/60

0/50/50

15/0/100

. Packages to be received by March 11. m arphi

. Wafers and packages to be sent to Indy Electronics March 12. $\rightarrow \frac{M\omega}{M}$ 24

Packaged parts to be received March 30. -> upil 3

The 5 columns will be organized in the following manner.

1A(i.e. 100X 100 w/ Al)

of 8,0 and -8 volts.

In conjunction with this happening I need to prepare following within a month ... BEFORE LTF SYSTEM COMES ONLINE. I think it is imperative that I do items 1 and 2 below.

w/ Pt- Il or other, happens at 450°C -

Room Temp LTF to go online by March 31. -> Opril 6
The 5 columns will be organized in the second sec

of cold bod wind of LTF

or text bod wind of LTF

or text bod wind of

or package soul on Mon

or 10 Junit 21 ~ Mon

or 15 Junit 21 ~ Mon The 5 columns will be pulsed in the following manner.

The first 2 columns will be pulsed with a continuous pulses (either Sine or Square) from -8 to 8 volts.

Column 3 will be pulsed with a saw wave from 0 to 8 volts.

However, I feel that I can let other items fall behind slightly so that 1 and 2 can be finished - so that LTF System can be used at room temperature.

- ** 1. Design a board to measure polarization of the capacitors placed in LTF.
- ** 2. Learn enough ASYST that I can write a program to collect the data.
 - 3. Design and checkout board to do 3 state pulsing.
 - 4. Order material for 3 other boards.
 - . boards
 - . oven
 - packages
 - . zips
 - resistor networks.
 - 5. Bring Bonder online.
 - 6. Select low temp and high temp ovens.
 - 7. Order a frame or a support for the boards.
 - 8. Hire a technician.

TEST FI	LM TRAVELER	Krysalis	Confidentia	1	t	1arch	30, 1987
FILM ID	SUBSTRATE	BEL	GEL ID	CTS	TEL	BAKE	ANNEAL
70 <u>82A</u>	Orbit TW	B58-4	G7055	8	55	29400	30 @ 650°c /02
	NOTES: NITEIDE	= 5.3.7.2776	E, MUSEMEN AT	750°C 0	2 BEFUR	e Bel.	
7082B	Orbit TW	B64-1	G7055	8	41.	29400	ч
	NOTES:	N SL35717 Ter,	ANNUAR 750°L C	2 Befor	20- 356		
7082D			G7055			29400	a a
	NOTES: OXIDE	SURFACE,	JITRIDE REMOV	<i>⊋</i> 77 .			•
7082E	Orbit TW	B64-3	G7055	8	• •	29400	**
	NOTES: NITRIO	E 750°C /	mnem OL				
7082F	Orbit TW	B64-4	G7055	8	,,	29400	\
	NOTES: NOTES:	E, NO AT	NEAL.		"		

ADDITIONAL NOTES

7082 A - BLISTERED, TESTABLE IN SHALL AREA ONLY

7082 B OK. TESTABLE ALL OVER

7082 B TORE THAT TESTABLE TO OK.

* PURPOSE OF TEST. SUBSTILATE CAN AFFECT OF ON LOOM'S NE HAVE

NEVER CONFIRMED WHAT OCCURS ON TOOL IMPORTANT

CBS GRUATIONS RELATIVE TO IMPROVING FET CHARACTERISTICS.

TEST FI	LM TRAVELER	Krysalis	Confidentia	al	M	larch	30, 1987
FILM ID	SUBSTRATE	BEL	GEL ID	CTS	TEL	BAKE	ANNEAL
70 <u>82A</u>	Orbit TW	B58-4	G7055	8	55	29400	30 @ 650°c /02
	NOTES: NITE 102	= 5.337.21TE	(, ANNEMEN A	750°C	2 BEFORE	g Bel.	
7082B	Orbit TW	B64-1	G7055	8	**	29400	"
	NOTES:	N SUBSTATE,	G7055	iz Befs	AU BEL		•
7082D				8		29400	**
	NOTES: ONIDE	SORFALE, M	SITRIDE REMO	<i>(</i> ぎ) .			
7082E	Orbit TW	B64-3	G7055	8	,,	29400	41
	NOTES: NITRIO	E. 750°C /	hunem C.			*	
7082F	Orbit TW	B64-4	G7055	8	11	29400	\
	NOTES: N.7.2.7	G NO AN	NEAL.		"		·

ADDITIONAL NOTES

7082 A - BLISTERED, TESTABLE IN SHALL AREA ONLY

7082 B . OK. TESTABLE ALL OVER

7082 B . TESTABLE TO OVER

7082 F . TESTABLE

PURPOSE OF TEST. SUBSTILATE CAN AFFECT OF ON LOOM'S NE HAVE

NEVER CONFIRMED WHAT OCCURS ON TOOL IMPORTANT

CRICTUATIONS RELATIVE TO IMPROVING TES CHARACTERISTICS.

Tested values BEFORE	fatigue	01/01/80	page 1	Tested	3/31
WAFER	Cap (E-12)	DeltaP tan(del) uC/cm^2 Ratl	Ve -1	1og(I)	Ps-Pr
828 828	1 .	******	.000	19.04E -18 12.17E -11	. 24 L 1 14.74 L
82B 82B	• -	****** 149 ***** ******* 169 *****		18.94E -12 19.18E -12	1 .13
	-		-1	.	

_Tealer Salar

į

-

Tested values BEFORE fatigue: 01/01/80

WAFER		tan(del)			Vc	log(I)	Ps-Pr
838	i .	*****	. 114	.121	.000	19.41E -12 11.87E -11	.02 1
828 828		.0183 *****			.000	18.79E -12	.01
82B	, ===	****** 				18.88E -12	

Tested values BEFORE	fatigue	. 01/0	01/80	l	page 1					
WAFER	(E-12)	tan(del)	uC/cm^2	Rat1	Vc	log(I)	Ps-Pr			
828 828 828 828	. 169. .	******* .0185 ******	.000 2.839 2.227 129	1.000 .841 ***** 2.179	1 .000 1 .867 1 .000	18.86E	.04 15.06 14 .24			
Tested values BEFORE										
WAFER	Cap (E-12)	tan(del)	DeltaP uC/cm^2	Ratl	Vc	log(I)	Ps-Pr			
828 828 828 828	. 161. .	****** .0185 ******	.024 3.039 .000 .208	.846 .826 1.000 710	.000 .867 .000	8.98E -12 11.90E -11 8.54E -12 8.56E -12	.13 14.43 02 09			
ted values BEFORE fatigue: 01/01/80 page 1										
WAFER	(E-12)	tan(del)	uC/cm^2	Ratl	٧c	log(I)	Ps-Pr			
828	! ! 165. ! ! !	****** .0183 ******	196 2.980 .145 012	!724 .834 .119 1.042	1 .000 1 .880 1 .000	18.88E -12	.08 14.94 .02 .29			
Tested values BEFORE							•			
WAFER	(E-12)		uC/cm^2	Ratl		log(I)				
82D 82D 82D	111.	****** .1068 ******	1 .024 1192 1 .043 1051	.905 361 .784 2.182	.000 .907 .000	18.82E -12 12.31E -11 17.91E -12 18.08E -12	.22 .05 .16			
Tested values BEFORE						,				
WAFER	(E-12)	tan(del)	uC/cm^2	Ratl	Ve	1⊕g (I)	Ps-Pr			
82D 82D 82D 82D	1 147.	****** .0678 ******	114 2.706 .102 251	12.706 .844 .278 *****	1 .000 1 .827 1 .000 1 .000	18.75E -12	.18 14.67 .04			
Tested values BEFORE										
HOCEO	Cap	ا الإسام المام	DeltaP	n-41	Un	Toward TV	n-uns			

Tested values BEFORE fatigue: 01/01/80 page 1 DeltaP Cap (E-12) tan(del) uC/cm^2 Ratl Vc log(I) WAFER

82D | . |****** | -.165 |***** | .000 |8.37E -12 | .09 | | 161. | .0184 | 2.980 | .832 | .933 |1.82E -11 | 14.75 | 82D | . |****** | .271 |***** | .000 |7.52E -12 | -.20 | 82D 1. |****** | .012 | .500 | .000 |7.13E -12 | .01 | ---|-----|------|------|------|

Tested values BEFORE fatigue: 01/01/80 page 1

WAFER	Cap (E-12)	tan(del)	DeltaP uC/cm^2	Ratl	Vc	log(<u>I)</u>	F5-Pr
82D		<u>*</u> ****	016	 - <u>-</u>	.000	18.13E -12	.00 1
820		*****	>====	.851		17.67E -12	
82D	لمستعد ا	*****	.208	****	000	[7.43E −12	20 1
82D	1. 1	*****	.004	.952	.000	7.49E 18	.08 1
	11						

Tested values BEFORE fatigue: 01/01/80 page 1

	WAFER .			tan(del)			۷c	_	Ps-Pr
) 138	•		•	-	•	•	 8.75E -12	
	820							11.77E -11	
	820							17.29E -12	
	820) [1.	*****	.255	1857	.000	6.81E -12	12
	1]					

```
Tested values BEFORE fatigue: 01/01/80
                                   page 1
             Cap
                          DeltaF
              (E-12) tan(del) uC/cm^2 Ratl Vc log(I) Ps-Pr
      82D | . (****** | .165 |-.167 | .000 |1.12E -11 | -.02 |
       82D
              | | 173. | .0175 | 2.682 | .853 | .733 |1.88E -11 | 15.61 |
       82D
              | | . |****** | .024 |2.500 | .000 |7.47E -12 | -.04 |
       82D
                1. |****** | -.086 |-.222 | .000 |7.30E -12 |
____|__|___|___|___|
Tested values BEFORE fatigue: 01/01/80
                                   page 1
                          DeltaP
              (E-12) tan(del) uC/cm^2 Ratl Vc log(I) Ps-Pr
      ____
       82E | . !****** | -.125 |-.778 | .000 |8.55E -12 |
              | | 18. | -.3066 | 3.749 | .651 | 1.333 |2.70E -11 | 7.00 |
       82E
              . | ****** | .110 | .000 | .000 |7.74E -12 | .00 |
       82E
                1. |***** | .212 |-.421 | .000 |8.29E -12 | -.06 |
  ted values BEFORE fatigue: 01/01/80
                                    page 1
                          DeltaF
                Cap
               (E-12) tan(del) uC/cm<sup>2</sup> Ratl Vc log(I)
            ____|___|___|
             | . |****** | .102 |-.083 | .000 |8.55E -12 | -.01 |
              1. |****** | .275 |***** | 1.240 |3.68E -11 | -.20 |
       82E
                 . |****** | .204 |-.625 | .000 |8.07E -12 | -.08 |
                 1. |****** | .086 | .542 | .000 |7.89E -12 | .10 |
       8EE
____| ___| ____| ____| ____| ____| ____| ____| ____| ____| ____| ____| ____| ____| ____| ____|
Tested values BEFORE fatigue: 01/01/80
                                    page 1
               Cap
                          DeltaP
              (E-12) tan(del) uC/cm^2 Ratl Vc log(I)
    WAFER
      82E | . !****** | .102 | .316 | .000 | 7.56E -12 | .05 |
              | 115. | .0176 | 2.565 | .809 | .680 |2.14E -11 | 10.83 |
       82E
              . |****** | -.039 |1.833 | .000 |8.04E -12 | .09 |
                 1. |****** | .165 | .364 | .000 |8.15E -12 |
    Tested values BEFORE fatigue: 01/01/80
                                   page 1
```

DeltaP

ER (E-12) tan(del) uC/cm^2 Ratl Vc log(I) Ps-Pr

18888888 1 110 IL 550 1 000 10 100 L10 1

Cap

had her also	i .	, internative verse out	i Barato i	. J. a sireire	, gradendelte	المورد المتعادية والمادا	11 L NAT
		*****				18.21E -12	
						1	
Tested values BEFORE	fatrgue	: 01/0	01780		age 1		
	Cap		DeltaP				
WAFER				R=+1	Vc	log(I)	Oc-Or
WIT LIV	1					1	
82E	I .	******	1 .157	l111	.000	18.37E -12	02
82E	1 147.	.018≘	1 3.365	: BoB	1 .720	12.58E -11	13.68
82E	1 .	*****	.055	.774	.000	18.17E -12	.19 +
82E						17.82E -12	
	=	=	-	-	I -		;
Tested values BEFORE	fatigue	01/0	01/80	1	page 1		
=	Cap		DeltaP			•	
WAFER						log(I)	
·						 8.26E -12	
						12.52E -11	
						17.06E -12	
		******				18.30E -12	
0:25							
Tested values BEFORE	•		•				
TEDVED VOLUMED I.E. ONE		•					
	Cap		DeltaP				
WAFER	(E-12)	tan(del)	u0/cm^2	Ratl	۷c	log(I)	Ps-Pr
		l					
82F	١ .	****	1 .118	1667	.000	18.51E -12	05 [
						12.06E -11	
						18.04E -12	
						18.16E -12	
						1	
Tested values BEFORE	fatigue	: 01/0	01/80		page 1		
	O		D = 1 + - D				
LACCO	•	h / - - 1 \			11-) } = =	D=Dv
WAFER	(E-12)	tan(del)	uc/em/2	rati I	\	log(I)	F-S
82F		*******				1.09E -11	
82F		.0189				11.44E -11	
82F		******				18.10E -12	
82F		* * * * * *				18.21E -12	
		1					
Tested values BEFORE	fatioue	: 01/0	01/80	•	page 1	•	
					-		
	Сар		DeltaP				
WAFER		tan(del)	uC/cm^2	Rat1	٧c	log(I)	Ps-Pr
				1			
82F	١.	**** *	.102	1083	1 .000	18.55E -12	01
82F	1.	******	1 .275	****	1 1.240	13.68E -11	20 i
82F	١.	*****	1 .204	1625	.000	18.07E -12	08
82F	1 1.	*****	.086	1.542	.000	17.89E -12	.10
	•						

WHITEK	(E-12)	tan(del)	uCzem"a	Hatl	∨c !	10g(1)	Ps-Pr			
82F 82F 82F 82F	166. 1.	****** .0189 ******	3.514 .220 235		.000 .880 .000	19.83E -12 12.05E -11 18.95E -12 17.98E -12	01 16.05 13 .25			
Tested values BEFORE fatigue: 01/01/80 page 1										
WAFER	Cap (E-12)	tan(del)	uC/cm^2			log(I)	Pg-Pr 			
82F 82F 82F 82F	1 167.	****** 0189 ****** ******	1 2.580 1 .133	****	.920 .000	18.51E -12 11.93E -11 19.50E -12 19.34E -12	15.37			
Tested values BEFORE	fatigue	. 01/0	01/80	·	Dage 1	·				
WAFER	Cap (E-12)	tan(del)	DeltaP uC/cm^2	Ratl	Vc 1	log(I)	Ps-Pr			
82F 82F 82F 82F	1 165.	****** .0194 ******	.141 3.059 .055	1286 .835 .759 .500	.947 .000	8.68E -12 1.95E -11 9.14E -12 9.15E -12	03 15.46 .17			
	-									

- 1,15-

į

WHIF WHIF	ER StrucJAna	Cap (E-E)	tan(del)	DeltaP uC/cm^2	Rat L	Vc	log(I)	Ps-Pr
1.PZ	75B 75B -	183. 188. 182. 53.	.0288 .1626 .13317	4.047 4.169 3.988	.813 .809 .816	1 1.480 1 1.467 1 1.333	 2.58E -11	17.56 17.66 17.69
	lues BEFORE						1	
WAF		(E-12)		uC/cm^2			log(I)	
2.PI	758 758 758 A - 1 758	180. 186. 186. 190.	0163 0187 0187 0187	5.110 4.549 4.714 3.490	.776 .796 .788	1.013 1.000 1.120 .973		17.75 17.71 17.54 17.05
•	•	•	•		•	•	,	·
				·				
Tested va	lues BEFORE					page 1		
WAF		(E-12)	tan(del)	uC/cm^2			log(I)	Ps-Pr
1,73	758 758 758 1-2	1 179. 1 184.	1 .0158 1 .0122 10774	4.600 4.443	.792 .799 .798	1.027 .987 .987	15.06E -11	17.67
Tested va	lues BEFORE	•	· 01/0	•	•	 page 1		1
		_				. <u>-</u> .		
WAF	ER		tan(del)	uC/cm^2			log(I)	
next. Page. 2.PZ	75B 1A-Z	i . i . i .	****** ******	.086 153 035	375 ***** 5.499	000. 1 .000 1 .000	11.09E -11	02 .13 .04
•	lues BEFORE	*	•	-	-			
WAF		(E-12)		uC/cm^2			log(I)	
1.P4	75B 75B 75B \-3 75B	181. 188. 188. 190.	.0151 .0184 .0182 .0182	4.310 3.604 3.859 3.439	1 .803 1 .829 1 .819 1 .835	1 1.000 1 .973 1 1.040 1 .893	12.64E -11 12.05E -11 12.10E -11 12.35E -11	17.57 17.41 17.43 17.36
	alues BEFORE							
		Can		Delta0				

Tested valu	es BEFORE	fatigue	: 01/0	01/80	. !	page 1				
cdl/vers. WAFER	struc/Area	Cap (E-12)	tan(del)	DeltaP uC/cm^2	Ratl	Vc '	10g(I)	P6-Pr		
2.P6	75B 75B /A-2	175. 176. 1.	.0283 .1611 *****	2.863 4.831 5.114	1 .854 1 .790 1 .782	1 .813 1 1.253 1 1.507	11.58E -8 12.14E -11 17.09E -10	16.74 18.20 18.31		
758 185. .0192 4.729 .795 .960 2.702 -9 18.35										
WAFER		Cap (E-12)	tan(del)	DeltaP uC/cm^2	Ratl	Vc	log(I)	Ps-Pr		
1.76	75B 75B 75B -4 75B	185. 191. 192. 194.	.0152 .0710 .0189 .0180	4.314 4.165 4.126 3.443	.811 .815 .817 .841	.960 1.013 1.013 .933	3.37E -11 2.44E -11 2.34E -11 3.54E -11	18.53 18.40 18.48 18.19		
Tested valu										
WAFER		(E-12)	tan(del)	uC/cm^2	Ratl	, Vc	log(I)	Ps-Pr		
2. P7	758 758 759 JA - 4 758	***** 189. -1. 192.	-3.3170 .0196 ******	4.957 4.753 2.635 3.451	.789 .796 394 .836	1.107 1.053 2.800 .933	2.66E -11	18.49 18.56 75 17.63		
Tested valu										
WAFER		(E-12)		uC/cm^2	Ratl		log(I)			
1. 27	758 758 758 -5 758	186. 191. 191.	.0154 .0192 .0187 .0188	4.376 4.220 4.408 3.435	.811 .816 .808 .841	.933 1.053 .960	3.92E -11 2.01E -11 2.14E -11 2.07E -11	18.78 18.67 18.60 18.11		
Tested value							1			
WAFER	1		tan(del)	uC/cm^2			log(I)			
2.P8	75B 75B /A -5	183. 181.	.0286 .0181	5.247 4.957 4.667	.778 .786 .797	.933 1.400 .973	 2.47E -11	18.42 18.24 18.29		

75B | 193. | .0188 | 3.576 | .834 | .907 | 9.46E -11 | 17.95 |

Tested values BEFORE fatigue: 01/01/80 page 1 DeltaP Cap (E-12) tan(del) uC/cm^2 Ratl Vc log(I) Ps-Pr Callyers.______ | STRUC | Area | _____ | ____ | ____ | ____ | ____ | ____ | 69C | 201. | .0168 | 4.455 | .819 | .920 | 3.60E -11 | 20.15 | 69C | . | 203. | .0195 | 4.259 | .827 | .777 | 690 |-| 1 203. 1 .0197 | 4.078 | .831 | .960 | 9.82E -9 | 20.08 | 69C | 1 207. | .0203 | 3.325 | .854 | .960 | 8.73E | -9 | 19.47 | Tested values BEFORE fatigue: 01/01/80 page 1 DeltaP (E-12) tan(del) uC/cm^2 Ratl Vc log(I) Ps-Pr 69C | 1**** 1-3.2920 | 4.933 | .805 | .933 | 3.96E -11 | 20.34 | 69C | | 203. | .0196 | 4.235 | .826 | 1.027 | 3.18E -11 | 20.11 | 69C | A - | 1 155. | ****** | 4.776 | .809 | 1.000 | 1.08E | -7 | 20.22 | 69C | | 207. | .0184 | 4.306 | .827 | .933 | 2.82E | -8 | 20.56 | ____|___|___| Tested values BEFORE fatigue: 01/01/80 page 1 DeltaP Cap WAFER (E-12) tan(del) uC/cm^2 Ratl Vc log(I) Ps-Pr _____|__|__|__|__| 1. P3 69C | 183. | .0155 | 4.024 | .823 | .867 | 3.66E -11 | 18.67 | 1.73 69C | -2 | 201. | .0196 | 4.141 | .827 | .960 | 3.11E -11 | 19.84 | 69C | 1 191. | .0199 | 3.412 | .843 | .907 |2.79E -11 | 18.31 | _____|___|___|___|___|___|___|___|___|___| page 1 Tested values BEFORE fatigue: 01/01/80 DeltaP Cap (E-12) tan(del) uC/cm^2 Ratl Vc log(I) Ps-Pr 69C | 184. | .0172 | 4.196 | .817 | .907 | 3.69E -11 | 18.78 | 69C | 186. | .0195 | 4.910 | .794 | .933 | 3.13E -11 | 18.93 | 69C | 7 - 2 | 188. | .0199 | 4.392 | .809 | 1.040 | 2.97E -11 | 18.56 | 69C | 190. | .0198 | 2.886 | .861 | .907 | 2.32E -11 | 17.91 | ____|___| page 1 Tested values BEFORE fatique: 01/01/80 DeltaP Cap (E-12) tan(dél) uC/cm^2 Ratl Vc log(I) Ps-Pr _____| 69C | 59. | 1.3534 | 3.976 | .821 | .920 | 2.32E -11 | 18.27 | 69C | 187. | .0430 | 4.024 | .821 | 1.120 | 9.66E -11 | 18.43 | 69C | 3 | 189. | .0136 | 3.992 | .822 | .960 | 2.19E -11 | 18.45 | 69C | 3 | 192. | .0203 | 2.957 | .857 | .973 | 1.75E -11 | 17.76 | ____| Tested values BEFORE fatigue: 01/01/80 page 1 DeltaP Cap (E-12) tan(del) uC/cm^2 Ratl Vc log(I) Ps-Pr 690 | 182. | .0173 | 4.000 | .821 | .920 |2.23E -11 | 18.29 | 7 | 7 | 690 | | 163. | .0274 | 4.314 | .810 | 1.333 |2.04E -11 | 18.41 |

Tested values BEFORE fatigue: 01/01/80 page 1

69C | A-3 | 188. | .0196 | 4.227 | .812 | 2.107 | 2.05E -11 | 18.31 | 69C | | 193. | .0267 | 3.027 | .854 | .907 | 1.69E -11 | 17.76 |

WAFER	(E 2)	tan(del)	uC/cm^2	Rat1 🛮	Vc	log(I)	Ps-Pr
1. P5 690 1A-4	199. 202. 183. 212.	.0188 .0202 .******	1 5.043 1 4.659 1 4.949 1 5.090	1 .799 .811 .805	1 .960 1 1.000 1 1.053	3.53E -11 2.82E -11 7.09E -7	20.09 19.97 20.38
Tested values BEFORE	fatigue:	01/0	01/80	' !	page 1	•	'
WAFER	(E-12)	tan(del)	uC/cm^2	, Ratl	Vc	log(I)	Ps-Pr
69C 69C 1.P6 69C 1-4	197. 205. 210. 214.	.0163 .0206 .0211 .0211	1 4.988 1 3.937 1 4.000 149.274	1 .798 .834 .833 001	973 960 987 1.013	3.06E - 1	19.76 19.77 20.00 06
Tested values BEFORE f				•	•		
WAFER	(E-12)	tan(del)	uC/cm^2	Ratl	Vc	log(I)	Ps-Pr
69C 69C 1	186. 192. 193. 195.	.0164 .0199 .0199 .0201	3.875 3.192 3.161 3.239	1 .828 1 .853 1 .855 1 .852	.893 .960 .947	11.95E -11 11.75E -11 11.78E -11 11.71E -11	18.67 18.47 18.60 18.65
Tested values BEFORE f							
WAFER	(E-12)	tan(del)	uC/cm^2	Rat1	Ve	log(I)	Ps-Pr
69C A -5 1	187. 190. 191. 197.	.0176 .0200 .0202 .0208	3.631 3.906 3.929 3.067	.837 .827 .826 .857	.867 .893 .880	1.96E -11	18.69 18.61 18.68 18.33

Tested values BEFORE	fatigue			<u>ن</u> 	age l	Tested	3/3/
WAFER	(E-12)	tan(del)	DeltaP uC/em^2	Rat1	Vc 1	log(I)	ps-pr
828 828 828 828	1 163.	****** ****	1 3.016	058. *****	.000 .840 .000	9.04E -12 2.17E -11 8.94E -12 9.18E -12	.24 14.74 .13
·		,	•		· '		
	161	.0182				1.94E-11	
B. D	160	,७३०				1. 85E-11	
E?	146?		3,04	, 82	,69	2.556-11	13.7
; (F	160	.019	3.029	,872	. 401	1.896-	1, 14.99
						· ·	
: :							

Tested values BEFORE fatigue: 01/01/80

page 1

WAFER			tan(del)			Ve	log(I)	Ps-Pr
	! !	147.	******* .0183 ******	. 114 2.420 008	. 121 .850 3.000	.000 .933 .000	9.41E -12 1.87E -11 8.79E -12	13.67 .01
82B	I		****** 				8.88E -12 !	

```
Tested values BEFORE fatigue: 01/01/80
                                    page 1
                Cap
                          DeltaP
               (E-12) tan(del) uC/cm^2 Ratl Vc log(I) Ps-Pr
    WAFER
    ._____| ____| ____| ____| _____| _____| _____| ____| ____| ____| ____| ____| ____|
       82B | . |****** | .000 |1.000 | .000 |8.86E -12 | .04 |
             | 169. | .0185 | 2.839 | .841 | .867 | 1.99E -11 | 15.06 |
       82B
              | . |****** | .227 |***** | .000 |8.44E -12 | -.14 |
                 1. |****** | -.129 |2.179 | .000 |8.31E -12 | .24 |
 ---|-----|-----|------|------|------|
                                page 1
Tested values BEFORE fatigue: 01/01/80
                           DeltaP
                Cap
            (E-12) tan(del) uC/cm^2 Ratl Vc log(I) Ps-Pr
    ------
       82B | . |****** | .024 | .846 | .000 |8.98E -12 | .13 |
              | 161. | .0185 | 3.039 | .826 | .867 | 1.90E -11 | 14.43 |
       828
              . | ****** | .000 | 1.000 | .000 | 8.54E -12 | .02 |
       82B
                 1. |****** | -.208 |-.710 | .000 |8.56E -12 |
              i
       828
 ted values BEFORE fatigue: 01/01/80
                                    page 1
                Cap
                           DeltaP
               (E-12) tan(del) uC/cm^2 Ratl Vc log(I) Ps-Pr
    _____|___|___|___|___|___|___|___|___|___|___|___|
             | . |****** | -.196 |-.724 | .000 |8.88E -12 | .08 |
             | 165. | .0183 | 2.980 | .834 | .880 | 1.77E -11 | 14.94 |
        82B
              | . |****** | .145 | .119 | .000 |8.26E -12 | .02 |
        82B
            | 1. |****** | -.012 |1.042 | .000 |8.23E -12 |
----|----|-----|-----|-----|-----|
Tested values BEFORE fatigue: 01/01/80
                                    page 1
                Cap
                          DeltaP
              (E-12) tan(del) uC/cm^2 Ratl Vc log(I) Ps-Pr
    WAFER
   _____|-_---|-----|-----|-----|-----|-----|-----|
       | . |****** | .043 | .784 | .000 | <del>7.91</del>E | -12 | .16 |
        82D
82D | 1. |****** | -.051 |2.182 | .000 |8.08E -12 | .09 |
Tested values BEFORE fatigue: / 01/01/80
                                    page 1
                Cap
                          DeltaP
                (E-12) tan(del) uC/cm^2 Ratl Vc log(I)
    | . |****** | -.114 |2.706 | .000 |8.75E -12 | .18 |
              | 147. | .0678 | 2.706 | .844 | .827 | 1.94E -11 | 14.67 |
        82D
              . | ****** | .102 | .278 | .000 | 8.77E -12 | .04 |
        82D
            1
                 1. |****** | -.251 |**** | .000 |8.42E -12 |
Tested values BEFORE fatigue:
                                    page 1
                       01/01/80
               .
Сар
                          DeltaP
```

78 400 Factors 10 /4400 0-61

Tested values BEFORE fatigue: 01/01/80

page 1

WAFER	Cap (E-12)	tan(del)	DeltaP uC/cm^2	Ratl	Vc	log(I)	F's-F'r
82D 82D 82D 82D 82D	1 161.	****** .0184 ****** ******	165 2.980 .271 .012	 ***** .832 **** .500	.000 .933 .000 .000	8.37E -12 1.82E -11 7.52E -12 7.13E -12	.09 14.75 20 .01
Tested values BEFORE	fatigue:	01/0	01/80	•	page 1		'
WAFER	Cap (E-12)	tan(del)	DeltaP uC/cm^2	Ratl	Vc (log(I)	
82D 82D 82D 82D	1 . 1	***** ****** ******	016 29 1 .208	-,333 .851 **** .952	1 000	18.13E -12 17.67E -12 17.43E -12 17.49E -12	00. 22. 02 80.
	1						

Tested values BEFORE fatigue: 01/01/80 page 1

WAFE	•			tan(del)			Vc	log(I)	Ps-Pr
	82D 82D	!	١.	****	.224	 * * * *	.000	8.75E -12 1.77E -11	15 I
	82D 82D	1	٠.	******	.188	****	.000	7.29E -12 6.81E -12	09
	I								

```
Tested values BEFORE fatigue:
                         01/01/80
                                       page 1
                 Cap
                             DeltaP
                (E-12) tan(del) uC/cm^2 Ratl Vc log(I) Ps-Pr
    WAFER
      ____| ___| ___| ___| ___| ___| ___| ___| ___| ___| ___| ___| ___| ___| ___|
               . (***** | .165 (-.167 | .000 |1.12E -11 | -.02 |
               | 1 173. | .0175 | 2.682 | .853 | .733 |1.88E -11 | 15.61 |
               . |***** | .024 |2.500 | .000 |7.47E -12 | -.04 |
        82D
                  1. |****** | -.086 |-.222 | .000 |7.30E -12 |
        82D
               1
 Tested values BEFORE fatigue: 01/01/80 page 1
                 Cap
                             DeltaP
                (E-12) tan(del) uC/cm^2 Ratl Vc log(I) Ps-Pr
       ----|-----|-----|-----|-----|
                     /|*******/| -.125 |-.778 | .000 |8.55E -12 | .05 |
                1 1x. 1 -.30x6 | 3.749 | .651 | 1.333 | 2.70E -11 | 7.00 |
        82E
                    \ |******* | .110 | .000 | .000 |7.74E -12 | .00 |
        82E
                | /1. |***/*** | .212 |-.421 | .000 |8.29E -12 | -.06 |
        825
  ted values BEFORE fatigue: 01/01/80
                                       page 1
                             DeltaP/
                 Cap
                 (E-12) tan(del) uC/cgr 2 Rat1 Vc log(I)
               --|----|----|----|-----|
               | . |****** | .102 |-.083 | .000 |8.55E -12 | -.01 |
| 1. |****** | .275 |***** | 1.240 |3.68E -11 | -.20 |
        82E
               . 1 . 1******* .204 1-.625 1 .000 18.07E -12 1 -.08 !
        82E
             | 1. |******* | .086 | .542 | .000 |7.89E -12 | .10 |
   01/01/80
Tested values BEFORE fatigue:/
                                        page 1
                             DeltaP
                 Cap
                (E-12) tan(del) uC/cm^2 Ratl Vc log(I)
    WAFER
    . | ****** | .102 | .316 | .000 |7.56E -12 | .05 |
             ] | 115. | .0176 | 2.565 | .809 | .680 |2.14E -11 | 10.83 |
              1 . |****** | -.039 |1.833 | .000 |8.04E -12 | .09 |
                   1. |****** | .165 | .364 | .000 |8.15E -12 |
              ___ | ___ | ___ | ___ | ___ | ___ | ___ | ___ | ___ | ___ | ___ | ___ | ___ | ___ | ___ |
•••
Tested values BEFORE fatigue: 01/01/80
                                       page 1
                             DeltaP
                 Cap
```

TXXXXXXX 1 110 II FFC 1 000 10 10F 210 1 II 0/4 1

. 828	 -	Bes t-Á vail	able Copy			1 .000	18.21E -12	03 .
Tested values	l.		t .	•	1	page 1		
WAFER		Cap (E-12)	tan(del)	DeltaP uC/cm^2	Ratl	Vc	log(I)	Ps-Pr
826 826 826 826	<u>:</u> :	1 147. I .	****** .0182 *****	.157 3.365 .055 .267	l111 .803 .774 062	1 .000 1 .720 1 .000 1 .000	18.37E -12 12.58E -11 18.17E -12 17.82E -12	02 13.68 .19 02
Tested values		-	•	=	-	•	,	,,
WAFER		(E-12)		uC/cm^2			log(I)	
828	<u> </u>	146. . 1.	.0183 ****** *******	2.714 094 3.078	1 .835 11.500 1 .286	1 .653 1 .000 1 .000	18.26E -12 12.52E -11 17.06E -12 18.30E -12	13.71 28 03
Tested values		-		=	=		Į.	'
WAFER		(E-12)		uC/cm^2			log(I)	
82F 82F 82F 82F	- - -	1 145. 1 1.	****** .0191 ******	1 .118 2.753 047 196	I667 I .831 I .500	1 .000 1 .800 1 .000	8.51E -12 2.06E -11 8.04E -12 8.16E -12	05 13.52 05 .18
Tested values		•	-		-	· -		
WAFER		(E-12)		uC/cm^2	Ratl		; log(I)	
82F 82F 82F 82F	: : :	. 156. .	****** .0189 *****	.118 .239 .157 .173	I500 I .818 I .167 I1.917	1 .000 1 .960 1 .000	1.09E -11	04 14.56 .03 .36
Tested values		•	•	•	•	page 1	[
WAFER		Cap (E-12)	tan(del)				log(I)	
82F 82F 82F 82F	:	1. .	******* ****** ******	.102 .275 .204 .086	083 ***** 625 .542	1 .000 1 1.240 1 .000 1 .000	8.55E -12	01 20 08 .10
1			, -	, 		,	,	!

WHFER		tan(del)			VC	108(1)	Hambir
82F 82F 82F 82F 82F 1	1 166. I . I 1.	****** ******	.000 3.514 .220 235	1.000 .820 **** ****	.880 .000 .000	 9.83E -12 2.05E -11 8.95E -12 7.98E -12	
WAFER	Cap (E-12)	tan(del)	uC/cm^2			log(I)	
82F 82F 82F 82F	1 167. 1 .	******* .0189 *****	.196 2.580 .133 016	***** .856 ****	.000 .920 .000	8.51E -12 1.93E -11 19.50E -12 19.34E -12	10 15.37 10 .05
Tested values BEFORE	•			•	page 1	,	'
WAFER	Cap (E-12)	tan(del)			Vc 1	log(I)	
82F 82F 82F 82F	1 165. . 1.		3.059 .055 .039	1286 .835 .759	1 .000 1 .947 1 .000 1 .000	8.68E -12	03 15.46 .17

•

i,

·..

TEST FI	LM TRAVELER	Krysalis	Confide	ential	April	10, 1987
FILM ID	SUBSTRATE	BEL	TEL	BAKE	ANNEAL	DAY MADE
7096C	Th Oxide NOTES: Excess PI G7090A(8/40/60	_		29400 old	30 9 650 i n02	04/06/87
7096D	Th Oxide NOTES:Excess Pi G7091(8/40/60,	-		29400 old	309650 i n02	04/06/87
7096E	Th Oxide NOTES: New composition of the Composition		LODM :4 days	29400 old	309650in02	04/06/87
7096F	Th Oxide NOTES:Fast ram G7047(8/40/60,	•			MufFur650	04/06/87
7096G	Th Oxide NOTES:Slow ram G7047(8/40/60.	-			2*//-650*	04/06/87
7096H	Th Oxide NOTES:Control G7072(3/40/60,			29400 s old	30 9650 i nO2	04/06/87
7097A	Th Oxide NOTES:2X std.: G7090B(8/40/60				309650in02 Diff 4 coats at Note 4 coas Equivalent N 4300 A	ts of this sol-gel to 8 conts Normal gels;

7/15 100/3 100/3 10/

Tested values BEFORE fatigue: 01/01/80 page 1 Delta₽ (E-12) tan(del) uC/cm^2 Ratl Vc log(I) Ps-Pr WAFER _____| 960 | 118. | .0138 | 3.286 | .775 | 1.053 | 1.06E -10 | 11.30 | | 133. | .0149 | 2.443 | .832 | .813 |4.58E -11 | 12.08 | 96C 96C | 1. |****** | .020 | .667 | .000 | 4.73E -12 | .04 | 96C | 1. |****** | .012 | .906 | .000 | 6.54E -11 | .11 | _____|___|___|___|___|___| Tested values BEFORE fatigue: 01/01/80 page 1 DeltaP (E-12) tan(del) uC/cm^2 Ratl Vc log(I) Ps-Pr WAFER Refest 96C | 109. | .2448 | 1.243 | .882 | .720 | 1.11E -10 | 9.33 | 96C | 125. | .0138 | 1.353 | .887 | .707 | 1.03E -10 | 10.67 | 96C | 1.1****** | .004 | .964 | .000 | 1.94E -11 | .11 | 96C | 113. | .0149 | 1.345 | .879 | .800 | 9.32E -11 | 9.75 | ___|____|___|___|___|___|___|___|___|___| Tested values BEFORE fatigue: 01/01/80 page 1 DeltaP Cap (E-12) tan(del) uC/cm^2 Ratl Vc log(I) Ps-Pr ._____|___|___|___|___| 96D | 157. | .0190 | 3.561 | .815 | .853 | 9.99E -10 | 15.67 | | 162. | .0227 | 3.133 | .827 | .880 |1.06E -8 | 15.00 | | 1. |****** | .024 | .769 | .000 |1.04E -11 | .08 | 96D 96D 96D | 164. | .0234 | 3.090 | .830 | .867 | 8.61E -10 | 15.05 | page 1 Tested values BEFORE fatigue: 01/01/80 DeltaP Cap (E-12) tan(del) uC/cm^2 Ratl Vc log(I) Ps-Pr 96E | 194. | .0122 | 5.600 | .774 | 1.000 | 1.49E -11 | 19.13 | 96E | 182. | .0172 | 4.357 | .786 | 1.013 | 1.15E -11 | 15.99 | 96E | 1.1****** | .012 | .930 | .000 | 6.07E -12 | .16 | 96E | 208. | .0185 | 4.569 | .792 | 1.000 | 1.20E -11 | 17.39 Tested values BEFORE fatigue: 01/01/80 page 1 DeltaP Cap (E-12) tan(del) uC/cm^2 Ratl Vc log(I) Ps-Pr _____|___|___|___|___|___| 96F | 154. | .0128 | 4.722 | .772 | .947 | 1.55E -11 | 15.97 | 96F | 162. | .0177 | 3.392 | .813 | .920 | 1.25E -11 | 14.77 | 96F | 164. | .0178 | 3.455 | .810 | .933 | 1.24E -11 | 14.68 | 96F | 2. | ****** | -.012 | 11.079 | .000 | 16.76E -12 | .16 Tested values BEFORE fatigue: 01/01/80 page 1

		1 i						
Relest	 96F	Best Av	ailable Çepy	. A ASO	, , 777	-1 000	11.59E -11	15 91
ncies i	96F	1 14	0151	4.400 4.200	791	920	11.34E -11	15.93
	96F	1 104	0161	1 4.200 . 1 4.263 :	788	1 1 000	11.39E -11	15.82
	96F						16.81E -12	
	!		* * * * * * * * 	.035	.071 	1	1	
rested va	alues BEFOR	E fatigue:	01/0	01/80	•	page 1	•	•
		Cap		DeltaP				
WAF	FER	(E-12)	tan(del)	uC/cm^2	Rat1	۷c	10g(I)	Ps-Pr
			I		l	1	1og(I)	l
	96G	l 147.	l .0191	1 4.404	I .773	1 1.093	11.89E -11	1 15.01
	96G	1 149.	.0190	4.204	1.779	1.080	11.59E -11	1 14.79
	96G	l 153.	1 .0191	4.322	1.776	1 1.080	11.80E -11	1 14.97
	96G	1 2.	******	004	1.020	.000	17.27E -12	.20
				•	1		.	
							•	
	 alues BEFOR							
		RE fatigue:	: 01/0	01/80				
Tested va	alues BEFOR	RE fatigue: Cap	: 01/0	01/80 DeltaP		page 1		
ested va	alues BEFOR FER	RE fatigue: Cap (E-12)	: 01/0 tan(del)	DeltaP uC/cm^2	Ratl	page 1 Vc	log(I)	Ps-Pr
rested va	alues BEFOR	Cap (E-12)	tan(del)	01/80 DeltaP uC/cm^2 	Ratl	Page 1 Vc !	log(I)	Ps-Pr
Tested va	alues BEFOR FER 	Cap (E-12) 	tan(del)	DeltaP uC/cm^2 9.647	Ratl .612	Vc 2.093	log(I) 2.05E -11	Ps-Pr
rested va	alues BEFOR FER ! 96H 96H	Cap (E-12) 122. 133.	tan(del) .0160 .0195	DeltaP uC/cm^2 9.647 8.894	Ratl .612 .642	Vc 2.093 1.987	log(I) 2.05E -11 1.73E -11	Ps-Pr 15.20 15.97
rested va	alues BEFOR FER ! 96H 96H 96H	Cap (E-12) ! ! 122. ! 133. ! 132.	tan(del) .0160 .0195	DeltaP uC/cm^2 9.647 8.894 9.133	Ratl .612 .642 .634	Vc 2.093 1.987 2.000	log(I) 2.05E -11 1.73E -11 2.42E -11	Ps-Pr 15.20 15.97 15.80
rested va	alues BEFOR FER I 96H 96H 96H 96H	Cap (E-12) ! ! 122. ! 133. ! 132. ! 135.	tan(del) .0160 .0195 .0197	DeltaP uC/cm^2 I I 9.647 I 8.894 I 9.133 I 9.518	Ratl .612 .642 .634 .619	Vc 2.093 1.987 2.000 2.080	log(I) 2.05E -11 1.73E -11 2.42E -11 1.97E -11	Ps-Pr 15.20 15.97 15.80 15.45
Value va	alues BEFOR FER I 96H 96H 96H 96H	Cap (E-12) ! 122. 133. 138. 135.	tan(del) .0160 .0195 .0197 .0204	DeltaP uC/cm^2 9.647 8.894 9.133 9.518 	Ratl .612 .642 .634 .619	Vc 2.093 1.987 2.000 2.080	log(I) 2.05E -11 1.73E -11 2.42E -11	Ps-Pr 15.20 15.97 15.80 15.45
Value va	alues BEFOR FER ! 96H 96H 96H ! alues BEFOR	Cap (E-12) 122. 133. 135. 135. Cap	tan(del) .0160 .0195 .0197 .0204	DeltaP uC/cm^2 9.647 8.894 9.133 9.518 D1/80 DeltaP	Ratl .612 .642 .634 .619 	Vc 2.093 1.987 2.000 2.080 page 1	log(I) 2.05E -11 1.73E -11 2.42E -11 1.97E -11	Ps-Pr 15.20 15.97 15.80 15.45
WAF	alues BEFOR FER 96H 96H 96H 96HI	Cap (E-12) 122. 133. 132. 135 RE fatigue (E-12)	tan(del) .0160 .0195 .0197 .0204 .01/0	DeltaP uC/cm^2 9.647 8.894 9.133 9.518 D1/80 DeltaP uC/cm^2	Ratl .612 .642 .634 .619 	Vc 2.093 1.987 2.000 2.080 page 1	log(I) 	Ps-Pr 15.20 15.97 15.80 15.45
Value	FER 96H 96H 96H 96H alues BEFOR	Cap (E-12)	tan(del) .0160 .0195 .0197 .0204 .01/0	DeltaP uC/cm^2 9.647 8.894 9.133 9.518 D1/80 DeltaP uC/cm^2	Ratl .612 .642 .634 .619 	Vc 	log(I)	Ps-Pr 15.20 15.97 15.80 15.45
WAF	FER 96H 96H 96H 96HI alues BEFOR	Cap (E-12)	tan(del) .0160 .0195 .0197 .0204 tan(del) .0210	DeltaP uC/cm^2 9.647 8.894 9.133 9.518 D1/80 DeltaP uC/cm^2 	Ratl .612 .642 .634 .619 	Vc	log(I) 12.05E -11 11.73E -11 12.42E -11 11.97E -11 log(I)	Ps-Pr 15.20 15.80 15.45
WAF	FER 96H 96H 96H 96H 96H 97A	Cap (E-12)	tan(del) .0160 .0195 .0197 .0204 tan(del) .0210 .0206	DeltaP uC/cm^2 9.647 8.894 9.133 9.518 D1/80 DeltaP uC/cm^2 4.561 4.690	Ratl .612 .642 .634 .619 Ratl 	Ve	log(I)	Ps-Pr 15.20 15.97 15.80 15.45
WAF	FER 96H 96H 96H 96HI alues BEFOR	Cap (E-12) 122. 133. 135. 135. 135. 135. 136. 156. 161.	tan(del) .0160 .0195 .0197 .0204 tan(del) .0210 .0206	DeltaP uC/cm^2 9.647 8.894 9.133 9.518 DeltaP uC/cm^2 4.561 4.690 4.518	Ratl .612 .642 .634 .619 Ratl .774 .770	Ve	log(I) 12.05E -11 11.73E -11 12.42E -11 11.97E -11 log(I)	Ps-Pr 15.20 15.97 15.80 15.45 15.63 15.67 15.58

MAIL TIL

Tested values BEFORE fatigue: 01/01/80

page 1

	_						
WAFER				P-+1	Vo	leg(I)	005
WHFER							
97A						17.87E -10	
						12.02E -10	
						11.46E -10	
						11.42E -10	
	-			ı	1		
Tested values BEFORE	fatique	: 01/0	01/80	1	page 1		
_				•	-		
	Cap		DeltaP				
WAFER	(E-12)	tan(del)	uC/cm^2	Ratl	٧c	log(I)	Ps-Pr
96H						12.42E -11	
96H	1 125.	.0194	4.188	.758	1.480	15.72E -11	1 13.15
96H	1 125.	.0190	4.137	1.761	1 1.467	1.93E -11	13.17
96H	1 127.	1 .'0194	4.243	.758	1 1.480	12.05E -11	13.29
	-				1		
Tested values BEFORE	fatigue	: 01/0	01/80		page 1		
			D 11 5				
HOFFE	Cap		DeltaP	D-43	1.1	3 (T)	Fig Fiss.
WAFER	(E-12)	tan(del)	uczem ja	Rati	VC	log(I)	
36G						12.00E -11	
						11.74E -11	
						11.66E -11	
	1 143.	1 .0172	1.780	. 3/5	1 .840	1.70E -11	12.33
Tested values BEFORE	fations	• 01/	71.480	1	2222	1	1
rested values before	racigae	. 01/	31760		page 1		
	Can		nel+aD				
WAFER					Vc	log(I)	De-Dr
						1.64E -11	
96F						11.26E -11	
						11.38E -11	
						11.38E -11	
Tested values BEFORE	=					•	•
rested values berine	ravigue	. 0170	21/00		hada 1		

Tested values BEFORE fatigue: 01/01/80

1 page

WAFER	Cap (E-12)	tan(del)	DeltaP uC/cm^2	Ratl	Vc	log(I)	Ps-Pr
96E 96E 96E 96E	171. 63. 186. 162.	.0164 .0172 .0155 .0157	2.553 1.063 1.2.490 1.2.227	.853 .837 .865 .861	1.080	3.44E -11 1.06E -11 1.46E -11 1.28E -10	14.82 5.47 15.90 13.76
Tested values BEFORE	fatigue:	01/0	01/80	ŀ	page 1		
WAFER	Cap (E-12)		DeltaP uC/cm^2	Rat1	Vc !	log(I)	Ps-Pr
96D 96D 96D 96D	153. 154. 152. 155.	.0249 .0242 .0242 .0238	1.694 1.804 1.686 1.722	. 885 .880 .885 .885	.760 .760	19.74E -10 3.19E -8 4.25E -9 1.22E -9	13.09 13.21 13.03 13.26
Tested values BEFORE	ratigue	01/0	01/80	, !	page 1		'
WAFER	Cap (E-12)	tan(del)	DeltaP uC/cm^2	Ratl	Vc	log(I)	Ps-Pr
96C 96C 96C 96C 	116. 80. 24. 118.	.0142 .0136 .0115 .0136	1.051 .671 .188 1.027	. 905 .910 .918 .907	.560 .267	7.17E -10 1.54E -10 8.15E -11 2.42E -10	9.98 6.81 2.11 10.06

Minutes of Device Process Request Scheduling Meeting 4/15/87

Purpose of meeting: Establish priorities for individuals between now and Jun 1, 87 as well as schedule the test devices to be requested from Process.

Results:

Approved equipment acquisitions:

Richard - AT for the P-Cad sftware

1.5 MIPS to 2.5 MIPS diskless Sun workstation for CAD system 4 terminals, 4 1200 BAUD terminal modems, and 2 2400 BAUD

base

modems

Mike - Gets the Compaq for the LTF system

Can acquire an HP8116 pulse generator for the LTF Can use one of the rented Tek 2430 digital oscilloscopes

Wayne - nothing!

We determined that any test structures we want to examine should be in the F1 structures if possible. Also, all tests we want involve the LTF system so that the limited test throughput of the system is an issue. The major characteristics we need to test are

Composition,
Thickness of the capacitor,
and buffer layers in the capacitor.

Because of the large numbers of test combinations that can be generated from this list, we will attempt to hold off the thickness and buffer experiments until a narrowed scope of composition is achieved. However, if Process can produce more structures than we request as a result of the above limitation, we can add the thickness and buffer experiments earlier.

According to Mike, the bonder will not be up until May 5. The FAST LTF system will be up on May 22 if Mike is the only one working on it. Wayne's priorities were adjusted to allow him to assist Mike on bringing the FAST LTF and bonder up.

We looked at process scheduling and decided to ask for three compositions on F1 structures to be delivered in two weeks. We will put them into the LTF as they become packaged. The compositions are:

6/50/50 15/0/100 8/20/80.

Whether we do any more than that depends on the Process groups throughput. LTF testing throughput:

Until May 22, we will do one test day a week and can test up to 42 packages a day. 32 are committed now.

After May 22, or when the FAST LTF is up, we can test roughly 100 packages/day. We will also have a hot capability by that time. Cold temp and temp cycling will have to wait for the new building.

ACTION ITEMS:

Wayne - Establish standard tests

Help Mike bring up FAST sftware Work on PEM, Due Date: Jun 1

Look at grain boundry enhancement for cross section work

Richard - Complete F2 masks if necessary

Order number cruncher Get HSPICE or SIMON

Plan out software development and verification plan with Chris

Order terminals
Order AT for P-Cad

Mike - Bring bonder up

Bring FAST software up Bring up temp chambers Bring up separate LTF system

Get next LTF packages bonded (in-house)

Check on scribe suitability

Order in-house scribe if it is useful Manage F2 masks and fabrication

Joe - Complete polarization measurement system for 512

Look into drivers

Postscript:

I talked to Bill Shepherd. They can do 8 F1's a week on average. They will require 3 to 4 of them for their stuff. We can have 4 to 5 each week. We have to consider which of their experiments will also go on the LTF when we consider the LTF testing saturation for the next 5 weeks. (Meeting required)

Bill Miller stated that there may be room to set up the cold and hot chambers at the university if they get more room from Jungling. Mike should foolow this up with

It may be July before we can set up anything at the new building so plan accordingly.

JTE

KRYSALIS CONFIDENTIAL

TO:

Distribution

DATE: April 24, 1987

FROM:

Michael Cordoba

SUBJECT: MEASUREMENT OF RESISTANCE TEL OVER FES (Before annex)

Bill S. provided us with two 512 wafers to measure the resistance of the serpentine structure of TEL over FES. The wafers were 7098E and 7098F. We measured 20 sites on each wafer, see the attached results.

The resistance was generally linear but varied a great deal across the wafer, particularly for wafer 7098E, variations were from 300 ohms to 690 ohms. Resistance on wafer 7098F was lower and the range was smaller (291 to 396 ohms).

By the way, the value of resistance expected for the serpentine is in the order of 257 ohms, since there are 257 squares and the sheet resistance of the TEL is 1 ohm/square.

notice also the FES capacition (100×100 pm²)
hysteresis curses (masured by anta) show cariotions
across the wafer — it appleass that the centre of the
wafer has a love AP those the edges (Left + Right
sides of wafer) — refer to pictures).

7098E Area T	64752 16905 146252 168752 161852	V5,5555	<u></u>	*/~~/ () / <u>V</u>
Area z	34152 32952 32952 31852 3105	5 5 5 5 5 5		
A Vea 3	348 N 380N 510N 355N 456N	5 5 - 5 5	1 X106	6
Areah	359 N 332 N 330 N 424 N 397 N	5 4 6 6 6		
Area5	43250 45550 44450 4280 4020	55555		
7097F Area 1	526 R 421 N 375 R 417 R 581 R	55555		

	_	<i>:</i>	7/20/8/		
7098F Avec 2	2955 293N	5 5 5	• R		
	293D 291D 304D	5		·	
Area 3	313R :323R 340R 350R 339R	55555			
AneaH	361SC 340R 336SC 370TU	55555 555			
Area 5	324 T 350N 396R 36ZN 329N	55555			
	Area				
· · · · · · · · · · · · · · · · · · ·	Area Area	Area)			

_3

page Z

100 × 100 CAPACITOR

70981

KRYSALIS CORPORATION

TO:

Joe Evans

DATE: April 28, 1987

FROM:

Michael Cordoba

SUBJECT: LTF as a Function of Stress Pulse and Composition

fat1.txt

Introduction-

As we are well aware Long Term Fatigue (LTF) is one of the critical issues facing us — and the literature on this subject besides being scarce offers very conflicting information. The purpose of this study is to determine if we can make a long term reliable memory. This is the beginning of a series of memos which will look at the issue of LTF in varios compositions of PLZT. This first memo is a preliminary look at Delta—P as a function of stress pulse and composition.

The first thrust of the LTF system is to look at fatigue at room temperature. I've placed 36 die on the LTF system at room temperature. The actual die and their composition is specified in Table 1 below.

table 1

Chip Label			Lot #		Structure		Composition		
	 A	 :	7076A		1	:	3/40/60	;	
i	В		7076B	1	1	:	0/50/50	1	
	Ċ	1	7069D	ı	1	ł	8/40/60	i	
1	D	1	7075A	ţ	1A	ŀ	8/40/60	1	
1	E	1	7076A	ŧ	1A	ŀ	3/40/60	1	
i	F	1	7076B	ŀ	1A	:	0/50/50	:	
	G	•	7069D	;	1A	:	8/40/60	;	
ì	H	•	7075A	:	1	:	8/40/60	ŀ	
i		ŀ		:		_ 1		_ ;	

The stress board is divided into 5 columns which can have 5 different signals per column. There are 8 chips (i.e. chips A thru H) per column on columns 1 thru 4 and 4 chips on column 5 (i.e. chips A, B, C, and H). The actual signals applied to each column is specified below.

column 1 - square wave 8V to -8V @ 10 KHz.

column 2 - square wave BV to OV @ 10 KHz.

column 3 - DC of 8 volts.

column 4 - no stress. Control

column 5 - 10 % duty cycle of column 1 with a sinusoidal wave.

Results -

- . Fatigue is flat for columns 2, 3 and 4. That is when the memory is not switched.
- . Fatigue is worse when memory is switched from a zero to one and back again. The plots at the end of this report are for columns 1 and 5.
- . It appears that the fatigue rate is not duty cycle dependent. In other words, column 5 which is flipped 10 times less often doesn't fatigue with a 10 fold decrease in slope. In fact, in some cases it looks like it fatigues at very close to the same rate as column 1.
- . Data with and without Aluminum on top of capacitor is practically identical for all compositions tested.
- . It appears that the 8/40/60 fatigue is leveling off at 2 uC/cm². This is significant!
- . The capacitor sigma is less than 1% of the DELTA-P before fatigue and usually becomes less than .5% of DELTA-P after fatigue.
- . Delta-P appears to follow a normal distribution (refer to figure 1).

Speculations and Conclusions ?

It appears that the fatigue rate flattens out after a period of time for 8/40/60. This is good news! Maybe the other materials will also flatten out.

There seems to be two mechanisms of fatigue (I'm referring to the 8/40/60 material). One which occurs very rapidly, so rapidly that we do not see a duty cycle dependence, sort of an "infant fatigue" of domains which with time no longer switch their polarization. And then what is left is the "intrinsic fatigue" rate of domains which "appear" to be able to continue switching.

Appendix -

- figure 1 Histogram of initial Delta-P vs # of samples of 3/40/60, step size is .1 uC/cm².
- figure 2 Plot of Delta-P vs Log[hours] of 3/40/60 for column 1 (*) vs column 5 (#) with structure 1.
- figure 3 Plot of Delta-P vs Log[hours] of 0/50/50 for column 1 (*) vs column 5 (#) with structure 1.
- figure 4 Plot of Delta-P vs Log[hours] of 8/40/60 for column 1 (*) vs column 5 (#) with structure 1.
- figure 5 Plot of Delta-P vs Log[hours] of 8/40/60 for column 1 (*) with structure 1A.
- figure 6 Plot of Delta-P vs Log[hours] of 3/40/60 for column 1 (*) with structure 1A.
- figure 7 Plot of Delta-P vs Log[hours] of 0/50/50 for column 1 (*) with structure 1A.
- figure 8 Plot of Delta-P vs Log[hours] of 8/40/60 for column vs column 5 (#) with structure 1A.
- figure 9 Plot of Delta-P vs Log[hours] of 8/40/60 for column 1 (*) vs column 5 (#) with structure 1.

3/40/60 Histogram

LOG [HOURS]

LOG [HOURS]

LOG [HOURS]

I

LOG [HOURS]

į

LOG [HOURS]

į

LOG [HOURS]

i

LOG [HOURS]

DD 14

KRYSALIS CONFIDENTIAL

TO:

Joe Evans

DATE: April 30, 1987

FROM:

Michael Cordoba

SUBJECT: LTF ON 8/40/60 AS A FUNCTION OF FREQUENCY

Introduction-

In last wednesday's meeting there was some question as to whether the fatigue rate of Delta-P is frequency independent. In order to look at this issue we stressed two chips of lot "C" (i.e. 8/40/60 material) at two different frequencies at 10 KHz and at 1 MHz.

Anita measured the Delta-P at the following times specified in table 1 below. The data is graphed in figure 1 and it is also graphed with ranges in figure 2.

table 1

time between stresses	!	10 KHz Delta-P	1	MHz Delta-P	!
1 sec 1 min 2 min 4 min 8 min 16 min 32 min		5.00 4.06 3.70 3.47 3.44 3.32 3.38	: : : : :	4.84 4.21 3.88 3.82 3.85 3.74 3.84	:
64 min 128 min	; ;	2.91 3.//	: :	3.69 3.75	· ;

Conclusions -

The first thing to notice from figure 1 is that after an initial fast decay, the fatigue rate is relatively flat. One can conclude that fatigue rate is not a strong "obvious" function of frequency at less than 1 hour of stress time. However, it still may be a function of frequency at later times, notice in figures 1 and 2 that the points seem to spread further apart as time goes on.

5TH LINES ACCENTED

SEMPLOGARITHMIC 5 CYCLES X 10 TO THE INCH STH LINES ACCENTES

KRYSALIS CONFIDENTIAL

TO:

Joe Evans

DATE: April 30, 1987

FROM:

Michael Cordoba

SUBJECT: Transistor PCM Parameters with & without FES

Introduction-

This a quick look to see that transistor parameters are not effected by the " new " materials we are integrating with silicon technology. I measured the VT and Beta of two Orbit wafers, one with and one without our materials (refer to table 1). The structures measured where 30/30 transistors on Orbit PCM and 20/20 transistors on the Krysalis ECD512.

table_

	silicon Orbit PCM	silicon & Kry materials Krysalis ECD512			
structure & location	Vt Beta	Vt	Beta		
n-ch center n-ch top	1.03: 41 1.02: 41 1.02: 41 1.92: 14.5 1.96: 14.6	97	39 40 12 13.2		
h.c		R	a is in uA/V2		

note — units of Vt are volts and Beta is in uA/V^2

Conclusions -

Transistor threshold voltage and Beta are very similar for Orbit wafers with silicon technology and with our technology integrated with silicon.

KRYSALIS CONFIDENTIAL

TO:

Joe Evans

DATE: May 14, 1987

FROM:

Michael Cordoba

SUBJECT: LTF NEGATIVE DC STRESS

nfat.txt

Introduction-

Wayne went to the American Ceramic Society Conference and spoke to David Payne about the "oxygen pumping "fatigue mechanism in BatiOs capacitors and about the elimination of the degradation by coating them (prevents exposure to atmospheric Oxygen).

With reference to this information Bill M. suggested that maybe the reason that a positive DC stress causes no degradation (with respect to the LTF system) is because of the biasing of the capacitor allows no oxygen to enter. He suggested a quick experiment with 8/40/60 using a negative DC bias, to see if there is degradation.

Results -

Chip C (i.e. lot 7069D, 8/40/60 with structure 1) was place on LTF for 1 sec, 15 minutes, 1.025 hrs. and 10.42 hours with a DC stress of - 8 volts. Virtually no fatigue was visible. Please refer to the attached results.

Conclusions and Suggestions -

Fatigue does not occur with a DC stress and is independent of polarity. However, this still does not necessarily rule out the possibity of "oxygen pumping "causing fatigue in the capacitors that are AC stressed.

We should look at AC fatigue with top passivation. If fatigue is still present (at the same rate) than we can rule out " oxygen pumping " as a mechanism of fatigue.

mPLE # 3LNC41.P1 - 8/40/60 - 2.78E-4 HRS. (DC -8VOLTS)

j	CHIP	HYSTE I	HYSTEI	PULSE	I PULSE			Ī	1
i	NUMBERI	DELTA !	Ps-Prl	DELTA	F's-F'i	·	۷c	ı	1/RatLl
1	1	P(uC)	(uC) l	P(uC)	(uC)		(V)	1	i
1.					- 1	- -		١.	
	1 1	4.67	17.7	2.97	1 17.8	1	.92	ł	1.167
ì	2 1	5.07	17.7	2.89	1 17.5	1	.92	1	1.165
i	3 1	4.67	17.5	1.11	1 - 7.0	١	.91	1	.843
÷	4 1	5.47	17.6	3.58	1 18.0	- [1.00	l	1.200
1	5 I	5.47	17.3	3.17	1 17.9	1	92	١	1.177
;	6 I	5.47	17.3	3.33	1 17.8	ł	. 95	1	1.187
1	7 1	5.07	16.9	3.67	1 17.8	1	. 99	i	1.206 J
•	8 1	4.93	. 17.2 I	2.93	1 17.3	i	. 99	1	1.169 i
4	9 1	5.60	16.8	2.91	1 17.3	1	. 96	ŧ	1.168
1	10 i	5.20	17.2 1	2.91	1 17.5	1	. 96	1	1.167 H
,	11	4.53	17.5	3.33	1 17.8	1	.91	l	1.187
ì	12	5.20	17.6	2.71	1 17.7	1	1.00	ı	1.153 !
,	13	5.20	16.8	3.80	1 18.0	1	.93	1	1.211
	14	4.67	, 13.3 , 17.3	3.09	1 17.7	1	. 95	i	1.175
		5.20	16.8	2.91	1 17.4	1	. 95	1	1.167
1	15	J. EV	1 10.0 1		1	1		1	i
. 1		<u> </u>	' <u></u> ' 17.3	3.11	17.7	-	. 95	٦,	1.176
1	MEAN	5.10	•	.8427	1 .62	1	.08	i	.043
i	3516MA	.0191	865 i	. 0727	1	i		i	
:		·	¹¹		'	—'		- '	

Japan.

*DLE # 3LNC41.P2 - 8/40/60 - .25 HRS. (DC -8VOLTS)

			145223777	CULL CC	I PULSE!		1
I	CHIP	HYSTE I					1/RatLl
1	NUMBERI	DELTA I	Fis-Fir I	DELTA	Ps-Pr		1 1/Ratil
ŧ	i	P(uC) I	(uC) l	P(uC)	1 (uC) 1	(V)	ļ i
1.							i
·	1 1	4.40 1	17.2	2.75	1 17.2 1	. 96	1 1.160 1
•	2 1	4.67 1	17.3	2.73	1 17.0 1	.80	[1.160]
,	3 i	4.67	17.3 1	3.23	1 17.4 1	. 85	1.185
;	4 1	4.40	17.2 I	2.73	1 17.0 1	.83	1.161
1	5 1	4.53	17.2	3.73	1 17.6	.80	1 1.212
,	£	4.40	16.8	3.14	1 17.2 1	.92	1 1.183
1	7 1	5.20	16.4	3.26	1 17.0 1	.92	1 1.192
1	e i	4.80	16.8	2.69	1 16.7	.91	1.161
1	9 1	4.67	17.1	2.82	1 16.7 1	.99	1 1.169
;	10 I	5.20	16.8	3.29	1 17.2	1.00	1 1.191
i	11	4.93	17.2	2.53	1 16.9	.92	1 1.150
,	12	4.40	17.2	2.76	1 17.4 1	.83	1 1.158 i
1	13 1	4.67	17.3	3.73	1 17.5	.84	1.213 !
•	14 1	4.40	17.2	3.44	1 17.5	. 96	1 1.197
1			17.2	2.61	1 16.9	.91	1 1.155
1	15	4.40	1 1/•== 1				1
1	l		! !		. ' '	.89	1.176
• 1	MEAN I	4.63	17.1	3.01	1 17.1		
1	DSIGMAI	.0093	.556	****	1 .74	. 17	.053
1	1		l1		.		·

MPLE # 3LNC41.P3 - 8/40/60 - 1.025 HRS. (DC -8VOLTS)

							-		_		
3	CHIP	HYSTE I	HYSTE		i	PULSE			i	 -	
	NUMBERI	DELTA I	Fs-Pri		1	P's-P'r	I	VC	l	1/RatL!	
•	ł	P(uC) i	(uC)	P(uC)	ı	(uC)	ı	(V)	1		
					٠ ٠		-		- ۱		:
1	1 l	4.27 I	16.7	2.66	1	16.6	{	.88	Ì	1.161	I
i	2 1	4.67	16.7	3.13	1	16.9	1	. 95	1	1.185	İ
i	3 1	4.80	16.6	2.62	1	16.4	1	.92	í	1.159	ı
i	4 1	4.67	16.8	2.88	I	16.7	ļ	.96	1	1.173	İ
;	5 I	4.87	16.5	2.64	!	16.3	ı	. 92	ı	1.162	ļ
i	6 I	5.00	16.7	2.94	1	16.6	i	1.01	1	1.177	i
:	7 I	5.20	15.3	3.40	1	16.0	l	1.01	١	1.212	Ì
•	ė i	4.87	16.2	2.76	İ	16.2	1	1.01	1	1.171	į
	9 1	4.93	16.4	2.75	1	16.5	l	1.03	1	1.167	į
i	10 1	5.00	1 16.3	2.56	1	16.6	İ	1.01	-1	1.154	ļ
ì	11 1	5.27	16.1	2.49	1	16.4	1	. 95	1	1.152	I
3	12 (4.80	16.6	2.93	1	16.7	1	. 92	ſ	1.175	ì
. (13	4.47	16.8	3.69	1	17.0	1	.88	1	1.217	1
- 1	14 1	4.73	16.2	2.47	ı	1E.4	1	. 95	i	1.150	l
•	15	5.87	16.4	3.99	i	16.7	i	1.09	ı	1.238	l
•	וייב	3.07		1	1		1		1		ł
; • 1	MEAN	4.87	16.5	2.88	- <u>'</u>	16.5	1	. 96	-	1.174	ì
•			1 .644	*****	i	.54	ſ	. 14	1	.058	1
	3SIGMA!		1	1	i		i		!		I
- 1	· · · · · · · · · · · · · · · · · · ·		·	' 	'		• •		-		

PLE # 3LNC41.P5 - 8/40/60 - 10.42 HRS. (DC -8VOLTS)

,	CHIP 1	HYSTE I	HYSTEI	PULSE	1 PULSE1		1
i	NUMBERI	DELTA I	Pe-Prl	DELTA	Ps-Pr	٧c	1/RatL
i	1	P(uC) 1	(uC) l	F(uC)	1 (uC) 1	(V)	i i
;			1				
i	1 1	4.67	17.1 l	2.68	1 16.9 1	. 96	1.158
i	2 1	4.60	17.1 I	2.84	1 16.9 I	. 96	1 1.167
1	3 1	4.80 1	16.9 1	2.76	1 16.8 1	. 96	1.164
i	4 1	5.27	16.5	3.69	17.4	. 96	1 1.212
1	5 1	4.73	17.0	2.70	1 16.7	.96	1 1.162
1	6 1	5.13	17.1	2.94	1 17.2	.96	1 1.171
į	7 1	4.67	16.3 l	2.65	1 16.0	1.04	1 1.165
1	8 1	5.53	16.3	≥.8€	1 16.6	1.04	1.172
i	9 1	5.40	16.5	3.63	17.2	. 96	1 1.211
1	10 1	4.80	17.1	3.09	1 17.1	.96	1.180
•	11	5.60	16.6	3.78	17.4	1.04	1 1.217
i	12	4.80	17.0 I	3.22	1 17.2	.96	1.188
i	13 l	4.80	17.0	2.60	1 16.9	1.97	1 1.154
1	14	5.27	16.5	3.36	1 17.2	.96	1 1.195 !
i	15	5.93	16.2	3.46	116.9	1.12	1 1.205
1			I I		_l	l	l!
• i	MEAN I	5.04	16.8	3.07	1 17.0	.98	1 1.181
i	3SIGMA	.0348	1 .869	****	1 .66	1 .10	1 .056 i
i	, <u></u>		11		_1	·	·

KRYSALIS CONFIDENTIAL

11/24 19

TO:

Joe Evans

DATE: April 30, 1987

FROM:

Michael Cordoba

SUBJECT: LTF May 15 Update

fat.may

Introduction-

The latest results of LTF are available and show that 0/50/50 may be the material of choice! We are now extracting Pulse Delta-P and 1/RATL or LTAR as Rich likes to call it. The latest data in plots is for up to 678.1 hours. The plots presented are for the +/- 8 V AC pulse since that is the worst case condition.

Figures -

- Figure 1 Hysteresis Delta-P as a function of log time for the varios compositions with AC stress.
- Figure 2 Same as figure 1 except Pulse Delta-P.
- Figure 3 LTAR as a function of log time with varios compositions.
- Figure 4 LTAR as a function of temperature for 0/50/50.
- Figure 5 Pulse Delta-P as a function of temperature for 0/50/50.
- Figure 6 Hysteresis Delta-P as a function of log time for 8/40/60D.
- Figure 7 Hysteresis Delta-P as a function of log time for 8/40/60C.
- Figure 8 Hysteresis Delta-P as a function of log time for 3/40/60A.
- Figure 9 Hysteresis Delta-P as a function of log time for 0/50/50B.

- Figure 10 Pulse Delta-P as a function of log time for 0/50/50B. Note that figure 9 and 10 are on same scale for comparison purposes.
- Figure 11 Pulse Delta-P as a function of log time for 8/40/60C.
- Figure 12 LTAR as a function of log time for 0/50/50.
- Figure 13 LTAR as a function of log time for 3/40/60A.
- Figure 14 LTAR as a function of log time for 8/40/60C.

Discussions -

Figures 1, 2, 3, 4 and 5 summarize the results of the LTF. Figure 1 shows the delta-P for Hysteresis and figure 2 shows the data for pulse delta-P. It appears that 0/50/50 is the best material to use, in terms of having the highest delta-P. Extrapolating to 11 years (10⁵ hours) shows that the Delta-P is still above 1.5 uC/cm². Note that 8/40/60 appears to be the worst material we can use, it already has after 678.1 hours a pulse delta-P that is below 1 uC/cm².

LTAR for all materials appear to be rather flat (refer to figure 3), in fact LTAR is increasing for the 0/50/50 which is also good.

In order to give 0/50/50 some more serious consideration I ran a quick experiment to look at the variation of Delta-P and LTAR with respect to temperature. It appears that we loose about a factor of 2 of delta-P at high temperature (i.e. 150 C). Note also that LTAR decreases and seems to track with temperature the Delta-P change. Note that the part used for temperature testing was pre-stressed with +/- AC for 41 hours so that measuring the Delta-P at the varios temperatures would not fatigue it significantly.

Figure 9 and 10 is 0/50/50 data for hysteresis and Pulse Delta-P, respectively. This data shows the difference between hysteresis and pulse Delta-P decreases with stress time. This information is probably significant in the puzzle of understanding fatigue.

Conclusions -

To quote Nicholas in The Miko, "... non-volatile RAM which will change the face of the computer industry for all time was still not available. Until now." And I think we may be there with 0/50/50 !!!! We need to look closely at more data and at its low temperature characteristics, but we are definitely close. I do not believe we will make it with 8/40/60.

;;

_67/

TEST REPORT

KRYSALIS CORPORATION

TO:

Joe Evans

DATE: May 21, 1987

FROM:

Michael Cordoba

SUBJECT: Multi-coat and Thin-coat Compositions

Introduction-

This experiment looked at the polarization of multi-coat and thin-coat compositions on Fat1 structures. Also a TD01 CMOS wafer (sample #1 in Table 1) was tested.

Results -

The TD01 wafer, was an experiment to determine whether the protective Nitride can be removed earlier in the process. The nitride was removed pre-Bel. The measurements indicated that the contacts were not opened on this wafer, so no measurements could be made.

The buffer layer sample 7121A with 1 coat 8/40/60 and 6 coats 3/40/60 and 1 coat 8/40/60 looked good.

All the thin coat material (i.e 4 coats instead of 8) except for 7125E (8/40/60) were leaky.

Conclusions and Recommendations -

It appears that of all the thin layer compositions, the 8/40/60 was the only layer that was not leaky. I recommend that we package some of the thin 8/40/60 material and place it on LTF, as well as the buffer layer sample.

We should probably manufacture a buffer layer sample of 1 coat 8/40/60, 6 coats 0/50/50 and 1 coat 8/40/60. And place it on LTF and determine if it has an effect on the slope of fatigue as a function of log time.

Tables

	TEST	FILM	TRAVELER	Krysalis	Confide	ential	May 19	, 1987
	FILM	ID	SUBSTRATE	BEL	TEL	BAKE	ANNEAL	DAY MADE
	71176		TD01 CMOS 7110(8/40/60,4 3:TD01 CMOS wi				30@650inO2 EL	04/27/87
(3)	7121/	G.	711077072(8740	0/60.+10:0	3/40/60	,+10);1/60	30@450inO2 :ts;11/49 days (/40/60,+10:1x8/	010
,		NOTE:	Nitride 7022(0/50/50, 5:1/2 Std. FE	+10);4cts 3 thicknes	;103 da [,]	ys old	30@650inO2	05/05/87
-		NOTE	S:1/2 Std. FE	S thickne	55		30@650inO2	05/05/87
(3)	7125	G	Nitride 7110(8/40/60, 5:1/2 Sta. FE	+10);4075	ito gay.	20400 s old	30@650inO2	05/05/87
	7135	_/ G	ECD512A 7110(8/40/60, S:CMOS ECD512	+10) :8cts	;25 day	s old	30@650inO2 C	05/15/87
	5 4	. ()	id insi recent completed that	on TIZIA	71250	771257	7125E	

SAMPLE # 4521A1.P1 - TOP POSITION - BUFFER LAYER STUDY. - 5/19/87

l	INITLI	1	TAN	I DELTA	ı	1	LOGICOTLOGICOT	
ì	DELTAI	CAP I	DEL	l Þ	1	Ps-Prl	DELTA Ps-Pri	Vc LEAKAGE
								(V) I CURRENT I
i					• •		i-	
ı	1.8	165 l	3.0	1.71	١	14.4	.61 14.3	.73 3.7E -11
ì	01	Q 1	***	.06	١	.0 1	.04 .0	.00 1.3E -11
ı	2.0 1	169	3.4	1.84	1	14.4 1	.67 14.2	.80 3.5E -11
ı	2.1 1	168 1	3.4	1.90	i	14.2	.74 14.2	.76 3.3E -11
1	1.			·	1		<u> </u>	

SAMPLE # 4521A1.P2 - CENTER POSITION - BUFFER LAYER STUDY - 5/19/87

1	INITLI	1	TAN	1	DELTA	ı	1	LOGICO	ILOGICO	1	١	- · · · · · · · · · · · · · · · · · · ·	_
1	DELTAI	CAP I	DEL	1	Þ	i	Ps-Prl	DELTA I	Ps-Ph	į	Ve I	LEAKAGE	1
1	P 1	(pF)!	(%)	1	(uC)	ł	(uC)	P ((uC)	ļ	(V)	CURRENT	1
1 -		!		٠ -		1.	!-		1	 	i		-
1	1.9	165	3.0	ì	1.94	l	14.9 l	.71	14.7	1	.85	3.7E -11	1
- [2.4 1	167 I	3.5	l	2.07	ſ	14.8 I	.69	14.7	1	.93	3.7E -11	i
I	2.0 1	163	3.7	1	1.95	1	14.3	.67 (14.3	1	.89	3.5E -11	i
l	3.4 ∣	164	3.5	1	1.96	1	14.4 1	.62 !	14.4	i	.87 1	3.4E -11	i
1.	1	1		.1.		١.	1		l	ا			_1

SAMPLE # 4S21A1.P3 - BOTTOM POSITION - BUFFER LAYER STUDY - 5/19/87

1	INITLI		TAN	I DELTA	ī		LOGICO) H	LOGICOI		1		ł
ı	DELTAI	CAP	DEL	I P	İ	Ps-Prl	DELTA	1	Ps-Prl	٧c	I LEAKA	AGE	ł
				l (uC)									
i					1 -			- -			!		-
i	1.1	167	2.5	1.13	1	14.9	. 45	1	14.8	.51	1 3.9E	-11	1
İ	1.3	169	2.9	1.21	I	14.7 I	. 42	1	14.7	.53	1 4.3E	-11	l
1	0	1	***	1 .00	ł	. 1 l	. 11	1	.01	.00	I 1.25	-11	l
i	2.1	169	2.9	1.15	ì	14.9 l	. 40	İ	14.9	.60	1 3.6E	-11.	1
1	1		l	1	1	1		i	ŀ		i		1

. -- 14

				•										
INITLI		ī	TAN	1	DELTA	Ī	. 1	LOGICO	11	LOGICO!		1		_ 1
DELTAI	CAP	i	DEL	i	F	i	Ps-Pr!	DELTA	I	Ps-Pr!	۷c	i	LEAKAGE	1
P 1	(pF)	ł	(%)	i	(uC)	ł	(uC) I	Þ	ì	(uC) i	(∀)	ł	CURRENT	i
1		1 -		1 -		- i ·	1		1 -	!-		- 1 -		i
4.0 1	225	ı	1.7	1	3.48	1	17.7	.98	1	17.3 H	.96	ı	3.5E -3	3 I
3 6 1	216	1	1 2	1	E. 34	1	17 6 1	1 27	1	17 1 !	1 04	1	7 55 47	च् <u>र</u> ा

-.1 | 1 | *** | .03 | .1 | -.02 | .1 | .00 | 1.2E -11 3.6 | 245 | *** | 10.32 | 18.5 | 3.69 | 17.7 | 1.20 | 3.5E | -3 |

SAMPLE # 4825D1.P2 - CENTER POSITION - 1/2 STD FES - 5/19/87

, -	THITTE	1	TON I	DELTO	;		LOGICO	V 1 1	OCIONA		1	<u> </u>	 ,
1	TIATIF	1	15414 1	DEFIH	ı		LUGIC	, ; ;	_061001		1		ı
l	DELTAI	CAP I	DEL I	P	ı	Ps-Pr!	DELTA	1	Ps-Prl	٧c	l	LEAKAGE	i
I	F 1	(pF) I	(%)	(uC)	1	(uC) I	Þ	ſ	(uC) i	(V)	I	CURRENT	i
1 -		i	!		1 -	1		- -			١.		· -
i	3.8	219	1.6	3.32	1	17.2	.80	1	17.0 (. 88	ĺ	3.5E -3	
ł	5.3	221	***	44.24	1	.1	-1.67	1	45.7 l	1.09	ļ	3.5E -3	: 1
i	4.6 1	***	***	-3.68	1	47.6 1	-3.69	1	47.4 1	.99	1	3.5E -3	; 1
1	4.2	218	1.7 1	6.35	i	18.1	1.22	ł	17.7	1.05	ı	3.5E -3	, 1
1		I.			1	j		_!	!		1		I

SAMPLE # 482501.P3 - BOTTOM POSITION - 1/2 STD. FES - 5/19/87

1	INITLI	ı	TAN I	DELTA I	1	LOGICO	LOGICOL	1	
I	DELTAI	CAP I	DEL I	PI	Ps-Pr1	DELTA I	Ps-Prl	Vc I	LEAKAGE I
									CURRENT I
1 -	1-	1	i	}	1-		1-		
ļ	3.5	218 I	1.7 /	3.40	17.3 I	.96 1	16.9	.88 1	3.5E -3
ì	3.7 1	220 1	***	28.93	5.5	18.38	8.2 I	1.20	3.5E -3
1	.01	1 1	***]	03 1	.2	.05	.1	.00 1	2.2E -9 1
ţ	4.2 ∣	221	1.6	6.36 1	18.2	1.28	17.7	1.04 1	3.5E -3 1
II.			1	I	1	1			

SAMPLE # 4825D1.P2 - TOP POSITION - 1/2 STD FES - 5/19/87

															~ .
1	INITLI	1	TAN	ı	DELTA	1	i	LOGICO	11	_0GICO:		i	•		İ
1	DELTAI	CAP I	DEL	1	Р	1	Ps-Prl	DELTA	1	Ps-Pri	٧c	I	LEAKA	GE	İ
i	P I	(pF)!	(%)	1	(uC)	I	(uC) l	P	1	(uC)	(V)	1	CURRE	NT	l
1.	i	1		- -		- }			· i -	!-		-			-
ſ	10.4	204 1	2.6	1	2.26	1	15.2	.77	ı	15.0 l	1.12	1	1.25	-E	i
1	10.4	184	1.5	ì	1.90	1	14.1	.39	1	14.0	.7≘	i	3.0€	6	1
ŧ	10.5 (43 1	***	i	. 85	1	5.0			4.9					
1	10.5	181	1.6	1	1.84	1	13.7	.51	!	13.8	.72		3.3E	-6	i
١.	1	1		_1	J	_ !	!		١.	! .		- 1			_

SAMPLE # 4S25D1.P3 - CENTER POSITION - 1/2 STD. FES - 5/19/87

DELTA!	CAP DE	_	P (uC)	1	Ps-Pr)	DELIH	1 (uC)	(V) I	LEAKAGE CURRENT	i
1 3.2 1	200 2. 207 ** 213 2.	2 * 8 7	2.02 47.25 3.17	i 1 1	17.1 .0 18.1 18.3	.65 -3.46 .83	1 46.9 1 47.9 1 18.0	1.11 .76 .79	3.5E -3 3.5E -3 5.8E -9 3.5E -3	1

SAMPLE # 4S25D1.P4 - BOTTOM POSITION - 1/2 STD FES - 5/19/87.

1	DELTAI P I	CAP !	DEL I	DELTA P (uC)	1	Ps-Prl (uC) l	DELTA P	l	Ps-Pri	 V□ (V),	1	LEAKA CURRE	GE NT	1
1 1 1	3.7 5.6 5.7 4.9	200 221 224 224	1.8 2.5 2.4 2.3	2.20 4.01 4.71	1 1 1	17.4 18.7 19.1 19.4	.72 .96 1.04 1.04	1	17.2 18.4 18.7 19.0	.64 .72 .79 .84	1 1 1	3.5E 3.5E 3.5E 3.5E	-3 -3 -3 -3	1 1

SAMPLE # 4525E1.P1 - TOP POSITION - 1/2 STD FES - 5/19/87

1	DELTAI	CAP (DEL	P (μC)	1 Ps-Pr	· DELTA Ps-Pri P	I I Ve I LEAKAGE I (V) I CURRENT I
1	5.7	234	2.6	1 1.84	18.2	.90 18.0	.65 7.9E -10
	0	1	***	1 .00	.1	03 .1	.00 1.3E -11
	2.7	242	2.4	1 1.91	18.0	.71 17.9	.64 6.6E -11
	5.8	236	2.7	1 1.70	17.9	.69 17.8	.75 7.0E -10

SAMPLE # 4525E1.P2 - CENTER POSITION - 1/2 STD. FES - 5/19/87

INITLI	I TAN	I DELTA	1	LOGICOTLOGICOT	1	!
I DELTAI	I CAP I DEL	I P	Ps-Fr	DELTA Ps-Pri	Ve I	LEAKAGE !
1 P I	(pF) (%)	(uC)	(uC)	P (uC)	(V) I	CURRENT !
1	I I	.				
1 2.3 7.1 5.1 2.5	236 2.6 230 2.6 233 2.6 236 2.6	1 1.84 i 1.80 i 1.79 i 1.76	18.7 18.1 18.2 18.4	.77 18.5 .78 17.8 .63 18.0 .74 18.2	.64 .72 .68 '.64	2.4E -10 2.2E -10 1.2E -10 2.0E -10
1 2.5 1	1 236 1 2.6	1 1.76	1 18.4 1		1.64	Ξ

SAMPLE # 4S25E1.P3 - BOTTOM POSITION - 1/2 STD. FES - 5/19/87

1	INITLI	COE	TAI	V I	DELTA	1	De-Pri	LOGICO) 	LOGICO! Ps-Pri	٧c	1	LEAKAGE	
i	PI	(pF)	(%)	(uC)	1	(uC) l	Þ	1	(uC) l	(V)	ì	CURRENT	l
1 1	5.5 5.4 2.3 4.3	246 241 237 243	2. 2. 2.	4 5 5 4	2.01 1.82 1.70 1.89	1 1 1	19.1 18.5 18.2 18.7	.84 .74 .67	1 1	18.9 18.3 18.0 18.5	.69 .72 .72 .64	1 1	4.7E -11 4.3E -11 7.4E -11 4.8E -11	!!!

TEST REPORT

KRYSALIS CORPORATION

TO:

Joe Evans

DATE: June 2, 1987

FROM:

Michael Cordoba

SUBJECT: ECD512A Parametrics

param.txt

Introduction-

This is a cursory look at ECD512a parametrics. Looking specifically at contact strings, transitor parametrics and ferroelectric properties.

Results -

In general the transitor parametrics looked good, however there were some variations of Vt across the wafer of 150 mV.

The Al-P+ resistance is 10 to 100 times higher than a wafer processed completely by Orbit, and also it varies a great deal from wafer to wafer and across the wafer. Al-N+ contact resistance looks good, as does the Al-Tel contact strings.

The ferroelectric properties are slimmer looped for both 0/50/50 wafer and the 8/40/60 wafer when compared to non-CMOS wafers. The Delta-P for 0/50/50 is 5-6 uC/cm**2 and 8-9 uC/cm**2 on two ECD512a wafers, when typically it is 20-30 uC/cm**2 (i.e. prefatigued) on non-CMOS wafers.

Conclusions and Recommendations -

Conduct experiments on improving the AL-P+ contact resistance.

Look into determining whether Nitride is lowering the value of the initial Delta-P of the CMOS wafers and whether this is detrimental or helpful with respect to fatigue rate.

Orbit contact Resistance

al-N+

Cel - Pt

 $\mathcal{L}_{\mathcal{L}_{\mathcal{A}}} = \mathcal{L}_{\mathcal{A}} = \{\mathcal{L}_{\mathcal{A}} \mid \mathcal{L}_{\mathcal{A}} = \mathcal{L}_{\mathcal{A}} \in \mathcal{A}_{\mathcal{A}} \}$

٩

 $(.) = v_1/11$

.....

<u>.</u>

+

 $() = v_{1}/I_{1}$

σ

Ž

Krysalis Confidential Parametric Data Date : May 26, 1987 Foundry: Orbit Wafer ID: 7/394 Wafer Description: ECD 512A 0/50/50 Transistor Parametrics N-ch: FLAT CENTER | Location 1 | Location 2 | Location 3 | | Vt (volts) | .875 | .887 | .89/ | Beta (uA/V²) | 4/.9 | 4/.3 | 40.0 P-ch:

	FLAT	CELTER	70P	
	Location 1			. 4 .4
I Vt (volts) I Beta (uA/V ²)	-1.01	963	looky (doe	in it sket off
Beta (uA/Vº)	14.0	13.9	13.4	no • 1)

Contact Si	trings:	FAT	cente	top	
Size	!	Location 1	Location 2	Location 3	
Al-Te	l Kohm s	49.62	53.252	47-9-5	: !
I A1-N+	Kohms'	2,170	2,20	2,20	
ا Al-P+	Kohms	22.7 £	20.0	13.9	@ 5V
sontaine de	ecopating	as suldas	voltage		

0/50/50 meteral 5-6 µC/an2, for material That has not been stressed it is slim looped for 0/50/50.

 $() = v_1/I_1$

Œ

٩

() = V1/I1

α

ŧ

Krysalis Confidential

Parametric Data Date : June 1, 1987 Foundry: 076it Wafer ID: 7/48A (8/40/66) Wafer Description: ECD 5/2A Transistor Parametrics Centr N-ch: | Location 1 | Location 2 | Location 3 | | Size 1 Vt (volts) | .790 | .7/8 | .867 1 Beta (uA/V*)1 42,4 P-ch: Flat | Location 1 | Location 2 | Location 3 | Size | Vt (volts) | -,875 | -,837 | -,738 | | Beta (uA/V*) | 14,6 | 15./ | 13.8 Flut Top | Location 1 | Location 2 | Location 3 | | Size | Al-Tel Holms | 50 | 50 | 50 | 1.77 | 1.77 | 1.77 | 1.77 | 1.77 | 1.77 | 1.096 x

Slim looped & 1-2 µ C/cm² Looked at fine deflerent spots on the wafers results the same. all mideral devices moderned slim looped.

Krysalis Confidential

Parametric Data : June 1, 1987 Foundry: Orbit Wafer ID: 545/2 A 7/88 Wafer Description: 0/50/50 ECD 5/2A Transistor Parametrics Flat center N-ch: | Location 1 | Location 2 | Location 3 | 1 Size | Beta (uA/V*)| 42.4 Flat P-ch: Center top | Size | Location 1 | Location 2 | Location 3 | | Vt (volts) | -,891 | -,875 | -,717 | | Beta (uA/V*) | 14.0 | 14.6 | 14.8 |

Contact Strings:	=/at	Center.	top
1 Size Lo	cation 1	Location 2	Location 3
: Al-Tel Mainie 40	S.C.	31.97	39.15
I Al-N+ Kohms' (,		1.83 Kr	1-78 KR

1 A1-N+ Kohms 1.73 Kr 1.83 Kr 1.78 Kr 1 A1-P+ Kohms 283 Kr 707 Kr 186 Kr

@ 5V

8 = 9 M (/cm² = 10)

7148 B

6-2-87

8-9 mc/cm = AP

Conier

eft

ECO 512A 0/50/50 7148B

8-9 MC/on2 = 4P

2U 50mU CHI UECTORS ON OFF INTENS GRAT DISP ELD SIZA 0/50/50

Right