Computer Networks COL 334/672

Measuring Internet

Tarun Mangla

Sem 1, 2024-25

Recap

Structure of the Internet

Various network services required for data transmission

Layered Internet architecture

Application Transport Network Datagram
ressage Segment Datagram
Linklayer Brognomming
frame bits

• This class: How do we measure the performance of a network?

Why? You can't improve what you can't measure

How would you characterize a network performance?

How fast you can send data over the network

- Latency or delay
- Loss
- Bandwidth

Sources of packet delay

d_{proc}: nodal processing

- check bit errors
- determine output link
- typically < microsecs</p>

d_{queue}: queueing delay

- time waiting at output link for transmission
- depends on congestion level of d_{trans} = L/R router

d_{prop} : propagation delay:

time taken for the signal to reach its destination

- d: length of physical link
- s: propagation speed (~2x10⁸ m/sec)
- $\mathbf{d}_{\text{prop}} = d/s$

ans: transmission delay:

time taken to transmit the packet from host to the link

- L: packet length (bits)
- R: link transmission rate (bps)

Caravan analogy

- car ~ bit; caravan ~ packet; toll service ~ link transmission
- toll booth takes 12 sec to service car (bit transmission time)
- "propagate" at 100 km/hr
- Q: How long until caravan is lined up before 2nd toll booth?

- time to "push" entire caravan through toll booth onto highway = 12*10 = 120 sec
- time for last car to propagate from 1st to 2nd toll both: 100km/(100km/hr) = 1 hr
- A: 62 minutes

Problem

Packet queueing delay (revisited)

- a: average packet arrival rate number packets /time
- L: packet length (bits)
- R: link bandwidth (bit transmission rate)

$$\frac{L \cdot a}{R}$$
: arrival rate of bits "traffic service rate of bits intensity"

- La/R ~ 0: avg. queueing delay small
- La/R -> 1: avg. queueing delay large
- La/R > 1: more "work" arriving is more than can be serviced - average delay infinite!

Packet queueing delay (revisited)

- a: average pac
- L: packet lengt

$$\frac{L \cdot a}{R}$$
: arrival traffic?

Balaji Prabhakar: Can digital • R: link bandwic incentives help alleviate

Researchers are reducing traffic congestion and commute times using networks that gently nudge people toward better travel habits.

- *La/R* ~ 0: avg
- *La/R* -> 1: av
- La/R > 1: mo more than ca delay infinite

He calls it "nudging," and says that small shifts in commute times

 just 20 minutes earlier or later — can make a considerable impact on the day's congestion in highly trafficked urban areas, like San Francisco.

~ 0

 $La/R \rightarrow$

- What is end-to-end delay?
- One-way delay vs round-trip time
- Delay-jitter

How do you measure delay on network?

- Network operator: directly query each router in the network (e.g., using SNMP protocol)
- End user: various utilities
 - ping

average

- traceroute program: provides delay measurement from source to router along end-end Internet path towards destination. For all *i*:
- sends three packets that will reach router i on path towards destination (with time-to-live field value of i)
 - router i will return packets to sender
 - sender measures time interval between transmission and reply

Real Internet delays and routes

traceroute: airtel network to olympics.com

```
traceroute to olympics.com (23.58.93.83), 64 hops max, 52 byte packets

1 dsldevice.lan (192.168.1.1) 3.793 ms 6.097 ms 2.330 ms 3 data

2 abts-north-dynamic-255.187.69.182.airtelbroadband.in (182.69.187.255) 7.155 ms 4.828 ms 5.167 ms

3 125.18.240.149 (125.18.240.149) 94.428 ms 125.18.240.153 (125.18.240.153) 6.395 ms 125.18.240.149 (125.18.240.149) 6.126 ms

4 182.79.208.12 (182.79.208.12) 6.186 ms 116.119.109.0 (116.119.109.0) 5.822 ms 6.520 ms

5 a23-58-93-83.deploy.static.akamaitechnologies.com (23.58.93.83) 5.946 ms 7.018 ms 4.783 ms
```

Packet loss

- queue (aka buffer) preceding link in buffer has finite capacity
- packet arriving to full queue dropped (aka lost)
- lost packet may be retransmitted by previous node, by source end system, or not at all
- Typically measured as the percentage of total packets sent

Throughput

- throughput: rate (bits/time unit) at which bits are being sent from sender to receiver
 - instantaneous: rate at given point in time
 - average: rate over longer period of time

Throughput

 $R_s < R_c$ What is average end-end throughput?

 $R_s > R_c$ What is average end-end throughput?

bottleneck link

link on end-end path that constrains end-end throughput

Throughput: network scenario

10 connections (fairly) share backbone bottleneck link *R* bits/sec

- per-connection endend throughput: $min(R_c, R_s, R/10)$ 10 sures
- in practice: R_c or R_s is often bottleneck

Summary

- Network performance metrics
 - Delay
 - Loss
 - Throughput
- How are these used by different stakeholders?
 - Designers: efficacy of protocols
 - Operators: capacity planning and network management
 - Regulators: policymaking

Next Classes

Topic	Sub-topics
Link layer	MAC protocol, switching, error detection/correction
Network layer	Forwarding and routing, data plane, control plane
Transport layer	Multiplexing, UDP, TCP, flow and congestion control
Application layer	Distributed application paradigm, DNS, HTTP, Email, CDN, video streaming and conferencing

Internet hourglass structure