CONSTRUÇÃO CIVIL

Aplicação como eficiente isolante térmico - acústico, através de reboco, graças à baixa condutividade térmica e pequena propagação sonora, utilizando argamassas com os seguintes traços em volumes:

- Vermiculita: Cal: Cimento: Areia = 3:1:1:1
- Vermiculita : Cal : Cimento = 3 : 1 : 1 (esta deve ser utilizada apenas para revestimentos internos).

 Também muito utilizada na produção de concretos leves, para confecção de contra-piso de nivelamento de lajes em edifícios:
- Vermiculita : Cimento : Água = 4 : 1 : 2 (esta mistura quando curada apresenta um peso de aproximadamente 700 Kg/m³).
- Vermiculita : Cimento : Água = 5 ou 6 : 1 : 2 (para locais sem trânsito)

Vantagens

- Baixo Peso: é 15% a 30% mais leve guando comparado com um concreto estrutural;
- Isolação: a argamassa com VERMICULITA EXPANDIDA tem excelentes propriedades isolantes. Em termos de isolamento, apenas 2,5 cm da argamassa com VERMICULITA EXPANDIDA equivalem a 25,0 cm de concreto comum;
- Facilidade de Aplicação: não há diferença na forma de aplicar a argamassa com VERMICULITA
 EXPANDIDA em relação ao concreto convencional. Pode ser aplicada até manualmente;
- Resistência ao Fogo: as características de resistência ao fogo são totalmente reconhecidas e aprovadas pelas Seguradoras e Corpo de Bombeiros;
- Versátil: pode ser aplicada sobre qualquer base, o que permite a arquitetos e engenheiros a liberdade para criação de soluções. A espessura pode variar para permitir o caimento necessário para drenagem;
- Proteção Mecânica: constitui substrato adequado para assentamento de pisos cerâmico e revestimentos impermeabilizantes.

Tabela de traços

(aplicação e traços para preparo em 1 Betoneira*)

		Quantidade em Litr		tros			
Aplicação	Traços	Vermiculita	Cimento	Água	MEA-Kg/m ³	R.C.28	U28
Contra piso	4:1	160	36 (50 Kg)	50	720	15,00	9
Lajes com trânsito	6:1	240	36 (50 Kg)	50	650	10,00	6
Lajes sem trânsito	8:1	325	36 (50 Kg)	50	580	8,50	4
Enchimentos	10:1	400	36 (50 Kg)	50	520	4,00	4

- R.C. 28 ☐ Resistência à compressão em Kgf/cm², após 28 dias.
- U 28 □ Umidade residual após 28 dias.
- * Betoneira com volume de 450 Litros.

SIDERURGIA E FUNDIÇÃO

Concentrados de vermiculita são empregados como cobertura de metais líquidos, pois devido ao calor liberado por esses metais, a vermiculita expande e atua como camada isolante, evitando perdas térmicas. É recomendada especialmente para aços com baixo conteúdo de carbono.

NUTRIÇÃO ANIMAL

A vermiculita é utilizada como suporte e carga para ampla variedade de nutrientes, ácidos graxos, vitaminas e antibióticos utilizados na preparação de aditivos para ração animal, devido a sua elevada capacidade absorvente e manutenção das características de trabalhabilidade dos produtos nos quais é inserido.

PISCINAS E SAUNAS

Após a escavação e construção das paredes laterais, a argamassa preparada com VERMICULITA EXPANDIDA é lançada ou espalhada em todo fundo da piscina.

Vantagens

- Isolante: minimiza as trocas térmicas entre a piscina e o meio circulante;
- Resistente a impressões e marcas de pés: realça a beleza e a longevidade do bolsão de vinil;
- Inibe raízes e algas: evita o crescimento de raízes ou invasões de gramíneas, bem como representa um meio desfavorável ao desenvolvimento de algas;
- Estável à pressão hidrostática negativa: quando o lençol freático (nível de água do solo) se eleva, o que freqüentemente ocorre nos períodos de chuva, as argamassas comuns tendem a ser lixiviadas e podem quebrar. Porém, a base com vermiculita permite que a água passe através de milhões de poros microscópicos da vermiculita sendo que, quando a pressão é reduzida, a água é drenada para o solo;
- Não escorregadia e pouco abrasiva: o vinil não desliza sobre a superfície e não se tem a sensação do fundo arenoso, o que ocorre com a base em argamassa comum. Pode ser menos abrasiva desgasta menos o bolsão de vinil, prolongando sua vida útil;
- Resistente e com absorção de impactos: o fato de ser mais "macio" de que o concreto tradicional propicia maior conforto para os pés e, em caso de batidas, absorve melhor o impacto do que o concreto tradicional;
- Boa trabalhabilidade: pode ser aplicado com equipamento simples e corriqueiros. Se o vinil precisar ser substituído, o trabalho será executado facilmente e com menor custo, já que a base com VERMICULITA EXPANDIDA mantém a forma e a integridade;
- Estável: quando aplicado nas partes inclinadas, não desliza como ocorre com argamassas de cimento e areia.

Anexo 1 - Tabela de Traços							
Aplicação	Traços	Vermiculita	Cimento	Água-Litros	MEA- Kg/m³	R.C.28	U28
Base da Piscina	4:1	1 ½ Saco	1 Saco*	60	720	15	9

- Rendimento: 7,20 m² para 2,5 cm de espessura.
- MEA □ Massa específica aparente.
- R.C.28 □ Resistencia à compressão em Kgf/cm², após 28 dias.
- U28 □ Umidade residual após 28 dias.
- *Embalagem de Vermiculita Expandida: sacos de 100 litros.

FREIOS E FRICÇÃO

A vermiculita é um componente utilizado na composição de massas para pastilhas de freios devido a algumas de suas características, entre as quais se destacam a baixa abrasividade, resistência térmica, incombustibilidade e baixa reatividade química.

Trata-se de uma alternativa segura para substituir o asbesto.

Finamente moída ou delamiada, pode ser utilizada para produção de coberturas incombustíveis e isolantes em escapamentos e juntas; e também como cargas funcionais em tintas.

Podem ser empregadas também para aumentar a resistência ao fogo em fibra de vidro e em espumas orgânicas e poliméricas.

SACHÊS

Como base para saches aromáticos, em razão de suas propriedades, a VERMICULITA EXPANDIDA tem o poder de reter grande quantidade de água, que chega até 5 vezes o poder de cada floco.

Desta forma, agregando essências ao produto, este manterá seu aroma por maior tempo, trazendo excelente desempenho ao produto final.

Receita Típica:

Vermiculita Expandida : Álcool (fixador) : Essência

CORTA FOGO

Utilizada como parte de miolo de porta corta fogo, parede corta fogo, câmaras a prova de fogo. Normalmente utilizada no formato de placas ou reboco.

As características de resistência ao fogo são totalmente reconhecidas e aprovadas pelas Seguradoras e Corpo de Bombeiros.

PROTEÇÃO TERMO-ACÚSTICO

Isolada ou conjuntamente com outros materiais formando compostos, a vermiculita é utilizada como isolante térmico em uma ampla variedade de produtos que podem ser empregados até a temperatura de 1.150 °C. Prensada com silicatos de sódio e potássio pode ser utilizada também para isolação de altas temperaturas em calcinadores, fornos, aquecedores e cubas eletrolíticas.

Aplicação como eficiente isolante térmico - acústico, através de reboco, graças à baixa condutividade térmica e pequena propagação sonora, utilizando argamassas com os seguintes traços em volumes:

- Vermiculita : Cal : Cimento : Areia = 3 : 1 : 1 : 1
- Vermiculita: Cal: Cimento = 3:1:1 (esta deve ser utilizada apenas para revestimentos internos).
- Contra-pisos: além de aliviar a carga na estrutura, o uso de Vermiculita Expandida nos contra-pisos permite um isolamento de som entre os pavimentos.

INDÚSTRIA

Devido a sua versatilidade, até mesmo na indústria de materiais refratários é utilizada a Vermiculita Expandida, assim como os exemplos abaixo:

- Tijolos e argamassas isolantes
- Isolante Térmico e anti corrosivo
- Isolante Termo acústico para construção naval
- Embalagens à prova de choques e fogo
- Elemento filtrante
- Proteção de estruturas de aço contra altas temperaturas
- Aumento da viscosidade de óleos lubrificantes
- Absorvente de umidade
- Entre outras aplicações

CARACTERÍSTICAS FÍSICO-QUÍMICAS

🚡 Anexo 1 - Características Físico-Químicas					
Características -		Granulometrias			
		Média	Fina	Super Fina	
Massa específica aparente (Kg/m³)		80 🗆 100	90 🗆 110	100 □ 120	
	8,00 mm	0 🗆 1	-	-	
	4,00 mm	10 🗆 45	0 🗆 1	-	
	2,40 mm	55 🗆 95	5 🗆 35	0 🗆 1	
Distribuição Granulométrica Acumulada	1,20 mm	75 🗆 100	65 🗆 95	1 🗆 50	
(Retido em %)	0,60 mm	85 🗆 100	80 🗆 100	70 🗆 95	
(Retido em 90)	0,30 mm	90 🗆 100	90 🗆 100	90 🗆 100	
	0,15 mm	95 🗆 100	95 🗆 100	95 🗆 100	
	<0,15 mm	-	-	97 🗆 100	

Obs.: Valores típicos encontrados na produção. Podem ser alterados sem aviso prévio.

Fórmula Química Tipica: (Mg,Fe++,Al)3 (Al,Si)4O10(OH)2□4(H2O)

Validade: Prazo de validade indefinido desde que o produto seja estocado e manuseado adequadamente, produto não perecível.

Precauções e Manuseio: evitar pancadas fortes que podem provocar geração de pó dentro da embalagem. Material poderá emitir poeira se manuseado de modo inadequado. O ambiente deve ser ventilado. A trepidação gerada durante o transporte e o manuseio provoca um adensamento normal do material.

Estocagem: armazenar o produto sobre paletes de madeira, em local seco e aberto protegido de intempéries. Empilhamento máximo recomendado de 10 sacos.

hexo 2 - CONSUMO DE VEI	🚡 Anexo 2 - CONSUMO DE VERMICULITA POR m³ DE ÁREA						
Espessura (cm)	Volume Real (m³)	Vermiculita (m³)					
1	0,01	0,013					
2	0,02	0,026					
3	0,03	0,039					
4	0,04	0,052					
5	0,05	0,065					
6	0,06	0,078					
7	0,07	0,091					
8	0,08	0,104					

9	0,09	0,117
10	0,10	0,130

Obs.: O coeficiente de compressibilidade adotado foi de 1,3.

Para maiores detalhes solicite a ficha técnica e de segurança do produto.

PLACAS DE VERMICULITA EXPANDIDA

Destinam-se a constituir o miolo das portas e divisórias corta-fogo, utilizáveis em edifícios residenciais e públicos, escritórios, indústrias e construção naval.

Podem também, serem utilizadas como revestimento aparente de interiores quer pelo aspecto decorativo, quer pelo aspecto funcional.

📠 Anexo 1 - Caract	erísticas dos Produ	ıtos				
Caractorísti	cas Tócnicas	Unidade		Produtos/Ti	pos	
Características Técnicas Temperatura Máxima de Servico		Officace	1403	1603	1704	
Temperatura Máxima de Serviço		oC oC	850	900	950	
Massa Específica	Aparente (MEA	Kg/m³	350	360	420	
Resistência a Compressão		Kgf/cm2	5	8	10	
Módulo de Ruptura a flexão a frio		• Kgf/cm2	1,5	3	4	
Retração Line	ar Permanente	%	<1,0	<1,0	<1,0	
Temp.	ensaio					
		oC	800	850	900	
Refratariedade Simples		Cone Orton N.º	2 a 6	2 a 6	2 a 6	
		oC	1142a1201	1142 ^a 1201	1142a1201	
Porosidade Total		%	86	86	84	
Densidade Real		Kg/m3	2600	2620	2650	
		Temp. °C		W/mK		
	Método Calorimétrico	200	0,21	0,21	0,23	
		400	0,22	0,22	0,24	
		600	0,25	0,25	0,25	
		7/1/1	0,25	0,25	0,26	
	ASTM C 182 Adaptada Condutividade Térmica	800	0,26	0,26	0,27	
		900	-	0,27	0,28	
Condutividade		1000	-	-	0,29	
Térmica		1100	-	-	-	
		200	0,178	0,178	0,178	
		300	0,189	0,189	0,189	
	Método Fio	400	0,209	0,209	0,209	
	Quente Parale	500	0,232	0,232	0,232	
	Quente i araic	600	0,231	0,231	0,231	
		700	0,263	0,263	0,263	
		800	0,282	0,282	0,282	
			Al203 13,48	SiO2 K2O N 47,23 2,44 5,3	a2O Fe2O3 30 4,82	
Composição Química Médi		edia %	TiO Mg CaO MnO Cr2O3 0,70 15,20 2,86 0,057 0,21		057 0,21	
				Perda ao fogo a 9 7,7	900 °C	
Característica	s Técnicas		Produ	tos/Tipos		
Caracteristica	is recilicas	1805	1905	2006	2016	

Temperatura Má	xima de Serviço	1000	1050	1100	1150
Massa Especit		420	510	600	650
Resistência a Compressão		13,5	19	22	21
Módulo de Ruptura a flexão a frio		4,4	6,5	6,6	4,4
Retração Linea	r Permanente	<1,5	<1,5	<1,5	<1,5
Temp.	ensaio				
		950	950	1000	1050
		2 a 6	2 a 6	6 a 8	2 a 6
		1142a1201	1142a1201	1255a1300	1142 a 1201
Porosidade Total		84	80	77,8	76
Densidade Real		2650	2610	2700	2700
				W/mK	
		0,23	0,27	0,23	0,23
Método Calorimétric ASTM C 182 Adaptada	Calorimétrico	0,24	0,3	0,26	0,26
		0,25	0,3	0,26	0,26
		0,26	0,3	-	-
		0,27	0,31	0,27	0,27
Auaptaua		0,28	0,32	0,27	0,27
Condutividade	0,29	0,33	0,28	0,28	
Térmica		-	-	0,28	0,28
		0,219	0,217	0,22	0,258
		0,222	0,219	0,232	0,268
	Método Fio		0,233	0,25	0,274
		0,245	0,242	0,264	0,286
	Paralelo	0,256	0,253	0,284	0,3
		0,272	0,278	0,3	0,32
		0,288	0,289	0,308	0,329
		III	O Na2O Fe2O3	Al203 SiO2 K2	
			,44 5,30 4,82	9,36 52,47 3,4	
Composição Qu	ímica Média %	TiO Mg CaO M		Fe2O3 TiO2 M	
		0,70 15,20 2,8		5,20 0,66 17,3	
		Perda ao fogo	a 900 °C	MnO Cr2O3	P.F. a 900 °C
		7,7		0,07 0,18	6,2

Anexo 2 - Di	mensões DIMENSÕ E	ES (mm)	
Α	В	C	⊢A _→ ,
400	300	20 a 200	/\ _B
600	300	15 a 200	\ \P
1000	300	15 a 200	,C

TIJOLOS ISOLANTES DE VERMICULITA EXPANDIDA

O baixo coeficiente de condutividade térmica, mesmo em temperaturas elevadas, tornam a vermiculita expandida uma excelente matéria prima para a fabricação de materiais isolantes, tais como: concretos, argamassas, blocos/tijolos, entre outros.

Os tijolos de vermiculita expandida possuem baixa densidade, boa resistência mecânica e não sofrem influência de termoclase. As suas propriedades tornam o seu uso, no isolamento de fornos e estufas, mais vantajoso.

O seu assentamento é realizado da mesma forma normalmente utilizado nas peças refratárias, procedendose à amarração e evitando-se juntas ou que elas sejam as mais finas possíveis.

Galeria de Fotos:

n Anexo 1 - Caraci	terísticas dos Produto	OS I		Duadutes/Tie		
Característi	cas Técnicas	Unidade	Produtos/Tipos 1403 1603 1704			
Temperatura Máxima de Serviço		oC	850	900	950	
Massa Específica Aparente (MEA)		Kg/m³	350	360	420	
		Kgf/cm2	5	8	10	
	ıra a flexão a frio	Kgf/cm2	1,5	3	4	
	ar Permanente	%	<1,0	<1,0	<1,0	
	ensaio					
		°C	800	850	900	
Refratariedade Simples		Cone Orton	2 a 6	2 a 6	2 a 6	
11011011101		oC .	1142a1201	1142 ^a 1201	1142a1201	
Porosida	ide Total	%	86	86	84	
	ide Real	Kg/m3	2600	2620	2650	
	Método Calorimétrico ASTM C 182	Temp. °C				
		200	0,21	0,21	0,23	
		400	0,22	0,22	0,24	
		600	0,25	0,25	0,25	
		700	0,25	0,25	0,26	
	Adaptada	800	0,26	0,26	0,27	
	Adaptada	900	-	0,27	0,28	
Condutividade		1000	-	-	0,29	
Térmica		1100	-	-	-	
		200	0,178	0,178	0,178	
		300	0,189	0,189	0,189	
	Máis de Pie	400	0,209	0,209	0,209	
	Método Fio Quente Paralelo	500	0,232	0,232	0,232	
	Quente Faraielo	600	0,231	0,231	0,231	
		700	0,263	0,263	0,263	
		800	0,282	0,282	0,282	
Composi	ção Química Médi	a %	Al203 13,48	47,23 2,44 5,3		
				5	nO Cr2O3)57 0,21	

				Perda ao fog			
Como abouístic	T faulas	Produtos/Tipos					
Características Técnicas		1805	1905	2006	2016		
Temperatura Máxima de Serviço		1000	1050	1100	1150		
Massa Específica Aparente		420	510	600	650		
		13,5	19	22	21		
Módulo de Rup fri		4,4	6,5	6,6	4,4		
Retração Linea	r Permanente	<1,5	<1,5	<1,5	<1,5		
Temp.	ensaio						
		950	950	1000	1050		
Dofustariada	ndo Cimplos	2 a 6	2 a 6	6 a 8	2 a 6		
Refratariedade Simples		1142a1201	1142a1201	1255a1300	1142 a 1201		
Porosidade Total		84	80	77,8	76		
Densidade Real		2650	2610	2700	2700		
		W/mK					
		0,23	0,27	0,23	0,23		
	_	0,24	0,3	0,26	0,26		
	Método	0,25	0,3	0,26	0,26		
Calorin	Calorimétrico	0,26	0,3	-	-		
	ASTM C 182 Adaptada	0,27	0,31	0,27	0,27		
		0,28	0,32	0,27	0,27		
Condutividade		0,29	0,33	0,28	0,28		
Térmica		-	-	0,28	0,28		
		0,219	0,217	0,22	0,258		
		0,222	0,219	0,232	0,268		
	Método Fio	0,229	0,233	0,25	0,274		
	Quente	0,245	0,242	0,264	0,286		
	Paralelo	0,256	0,253	0,284	0,3		
		0,272	0,278	0,3	0,32		
		0,288	0,289	0,308	0,329		
			20 Na20 Fe203 2,44 5,30 4,82	Al2O3 SiO2 K 9,36 52,47 3,			
Composição Qu	ímica Média %	TiO Mg CaO N 0,70 15,20 2,	1nO Cr2O3 86 0,057 0,21	Fe2O3 TiO2 N 5,20 0,66 17,			
		Perda ao fogo	a 900 °C	MnO Cr2O3	P.F. a 900 °C		
		7,7		0,07 0,18	6,2		

🊡 Anexo 2 - Dii		(<u> </u>
Α	Dimensõe B	es (mm) C	C.
229	114	5 a 200	

REBOCO PRONTO TERMO-ACÚSTICO COM VERMICULITA EXPANDIDA

Em desenvolvimento

AGROTIL

O **Agrotil** é um produto destinado para utilização em vasos, jardineiras, hortas, canteiros, jardins e pequenas produções caseiras.

Trata-se de Vermiculita Expandida na granulometria fina, ideal como condicionador de solo e retentor de umidade, comercializado em quantidade inferior, destinado a revendas de produtos para agricultura não-profissional, gardens, floriculturas e etc.

O **Agrotil** é um produto de origem mineral, inerte, não tóxico, isento de bactérias e fungos, leve, com alta capacidade de troca catiônica e elevada absorção de água, recomendado para a agricultura convencional e orgânica.

Embalagem: sacos contendo 300 g (Aproximadamente 4 litros de Vermiculita Expandida)

Galeria de Fotos:

Os benefícios de se usar Agrotil

- Amacia os solos, facilitando a germinação e o crescimento de plantas
- Elevada capacidade de absorção, armazenamento e disponibilidade de água para plantas
- ✓ Colocado nas superfícies de vasos e canteiros, reduz a evaporação da umidade do solo e substrato.
- Isento de pragas de origem animal e vegetal
- Produto atóxico, pH neutro, inerte e higroscópico.

Sugestão de Preparo

le litro de Agrotil para cada 2 litros de terra ou componentes orgânicos (pó de xaxim, casca de coco ou fibras naturais). Para conhecer outras aplicações deste produto, visite: www.refratil.com.br.

REFRATIL