Amendments to the Claims:

This listing of claims will replace all prior versions and listings of claims in the application:

Listing of Claims

- 1. (currently amended) An ion pump comprising:
 - an insulating layer;
 - a first conductive layer situated on a first the upstream side of the insulating layer;
 - a second conductive layer situated on a second the downtream side of the insulating layer;
 - a plurality of openings situated in the first conductive layer, the insulating layer and the second conductive layer forming channels having a first upstream and a second downstream discharge device electrodes, wherein the first electrode has a sharp-like shape at an upstream end and a blunt downstream end, wherein the plurality of openings are grouped into upstream inputs formed by the first electrode and downstream outputs formed by the second electrode, and the openings situated at inputs are formed by upstream sharp-like conductor ends and the openings situated at outputs are formed by downstream non-sharp-like conductor ends; and an enclosure containing the channels and having an input port proximate to an input side of the plurality of openings and an output port proximate to an output side of the plurality of openings.
- 2. (original) The pump of claim 1, wherein a fluid in the enclosure can be transported between the input port and output port by being forced through the plurality of openings.
- 3. (previously presented) The pump of claim 2, wherein:
 the sharp-like conductor ends and non-sharp-like conductor ends are situated in
 the first conductive layer to generate in-situ ions proximate to the sharplike conductor ends;

the in-situ ions predominantly have the polarity of the sharp-like conductor ends, which then induce a fluid flow of neutral molecules as a result of a force and viscous drag of the in-situ ions and away from the sharp-like conductor ends.

4. (original) The pump of claims 3, wherein:

the plurality of openings is grouped into first and second stages;

the stages are arranged in a flow series; and

a total useful pressure difference of the pump is approximately equal to that of each stage multiplied by a number of stages.

5. (previously presented) The pump of claim 4, wherein:

the openings situated at inputs of the first and second stages are formed by sharplike conductor ends; and

the openings situated at outputs of the first and second stages are formed by nonsharp-like ends; and

the first and second stages are in separate chambers.

- 6. (previously presented) The pump of claim 3, wherein the sharp-like conductor ends comprise conductive nanotube whiskers.
- 7. (original) The pump of claim 6, wherein the nanotube whiskers are for providing an electrical discharge in a cold cathode field emission mode.
- 8. (original) The pump of claim 6, wherein the nanotube whiskers are for providing an electrical discharge in a corona discharge mode.
- 9. (original) The pump of claim 2, wherein the first and second discharge device electrodes energized by a voltage provide an electrical discharge.

- 10. (previously presented) The pump of claim 3, wherein the sharp-like conductor ends comprise thin-film material.
- 11. (previously presented) The pump of claim 3, wherein the sharp-like conductor ends comprise conductive electrode material to provide an electrical discharge in a cold cathode field emission mode.
- 12. (previously presented) The pump of claim 3, wherein the sharp-like conductor ends comprise conductive electrode material to provide an electrical discharge in a corona discharge mode.
- 13. (previously presented) The pump of claim 3, wherein:

the sharp-like conductor ends comprise 10 to 100 nm-thick films of conductive material; and

the non-sharp-like conductor ends comprise:

100 to 10,000 nm thick films of conductive material; and rounded inner diameter edges.

- 14. (original) The pump of claim 2, wherein the plurality of openings is fabricated with a technique selected from a group containing etching, laser-drilling, mechanical stamping and a combination of etching, laser-drilling and mechanical stamping.
- 15. (original) The pump of claim 2, wherein the each opening of the plurality of openings is sized for a ratio, R, of an axial length equal to a thickness of the insulator, to an inner diameter, of each opening to maximize a performance of the pump, having approximately $1 \le R \le 10$, and the thickness of the insulator about 6 µm $\le S \le 100$ µm.
- 16. (original) The pump of claim 2, further comprising a number of consecutive stages, L, of channels, and having an applied voltage, U, as required to achieve a desired total pressure head, $\Delta p_t = n \cdot \Delta p$, where an achieved pressure head at each stage is about Δp ,

including compensation for the changes in absolute pressure, gas volume due to compressibility, and temperature at each stage, which entails changes in pump effectiveness and capacity at each stage.

- 17. (previously presented) The pump of claim 16, wherein a number of openings, n, of the plurality of openings, stages, L, and applied voltage, U, are selected so that a desired total pumping volumetric rate and total pump head pressure can be achieved, including compensation for a pressure drop through the pump, and a required number of openings, n_0 , and compensation for a pressure drop through the analyzer load.
- 18. (original) The pump of claim 17, wherein:

the number of openings, n, is increased by a factor $\alpha = n/n_0 = \Delta p_0 / (\Delta p_0 - \Delta p_L)$;

 Δp_0 = pump pressure head without a load;

 Δp_L = pressure drop through the load; and

 $\Delta p_{0} \sim 2 \cdot \Delta p_{L}$.

- 19. (original) The pump of claim 2, wherein rapid control of a sample gas flow is enabled upon resetting applied fields of the first and second discharge device electrodes to achieve small gas pulses/injections of sample/analyte into micro-GC columns, as in one of a group containing a second stage of a GC-GC system and a second part of a separation column of a second material.
- 20. (original) The pump of claim 2, wherein the pump is operated like a valve by adjusting an applied voltage across the first and second discharge device electrodes to oppose and balance an external flow and pressure.
- 21. (previously presented) Pump means of claim 3, wherein each of the sharp-like conductor ends are recessed to a larger inner diameter than an inner diameter of each of the plurality of openings in the insulating layer, by a distance equal to about 10 to 20

percent of the inner diameter of an opening in the insulating layer, to enable removal of non-predominant polarity ions before remaining predominant ions enter the inside diameters of the plurality of openings in the insulating layer.

- 22. (currently amended) An ion pump comprising:
 - a flow channel;
 - a first conductive material at a first <u>upstream</u> position in the channel; and a second conductive material proximate at a second <u>downstream</u> position in the

flow channel; and

wherein:

the first and second conductive materials form a discharge device;

the first conductive material has an upstream tapered prominent-like contour;

- a distance between the first position and the second position is maintained by a non-conducting spacer material; and
- a flow direction of the flow channel is approximately parallel to the elongated dimension through the non-conducting spacer material, and proceeding from [[an]] the upstream prominent tapered first conductive material to a downstream non-prominent blunt conductive material, wherein the conductive materials are electrodes forming the discharge device.
- 23. (original) The pump of claim 22, further comprising a plurality of the flow channels having the first and second conductive materials.
- 24. (original) The pump of claim 23, wherein:

the flow channels of the plurality of the flow channels form an array in a plane; and

an axis of each flow channel is approximately perpendicular to the plane.

25. (currently amended) An ion pump comprising:

a channel;

a first conductive material at a first <u>upstream</u> position in the channel; and a second conductive material proximate at a second <u>downstream</u> position in the channel; and

wherein:

the first and second conductive materials form a discharge device;
the first conductive material has an upstream <u>angular</u> projection into the channel;
a distance between the first position and the second position is maintained by a
non-conducting spacer material; and

- a flow direction of the channel is approximately parallel to the elongated dimension through the non-conducting spacer material and proceeds from the upstream <u>angular</u> projection into the channel.
- 26. (original) The pump of claim 25, further comprising a plurality of the channels having the first and second conductive materials.
- 27. (original) The pump of claim 26, wherein:

the plane is not necessarily flat.

the channels of the plurality of the channels are situated in a plane;
the elongated dimension of each channel is approximately perpendicular to the
plane; and

- 28. (original) The pump of claim 27, wherein a first portion of the plurality of channels
- has the first conductive material on a first side of the plane and the second conductive material on a second side of the plane.
- 29. (original) The pump of claim 28, further comprising an enclosure having an input port and an output port.

- 30. (original) The pump of claim 29, wherein the first portion of the plurality of the channels is situated in the enclosure with the first side of the plane proximate to the input port and the second side of the plane proximate to the output port.
- 31. (withdrawn) The pump of claim 28, wherein a second portion of the plurality of the channels has the first conductive material on the second side of the plane and the second conductive material on the first side of the plane.
- 32. (withdrawn) The pump of claim 31, wherein a third portion of the plurality of the channels has the first conductive material on the first side of the plane and the second conductive material on the second side of the plane.
- 33. (withdrawn) The pump of claim 32, further comprising:
 - an enclosure having an input port in the first side of the plane and proximate to the first portion of the plurality of the channels and an output port in the second side of the plane and proximate to the third portion of the plurality of the channels; and
 - wherein the enclosure provides a path from the input port through the first portion of the plurality of the channels to the second side of the plane, through the second portion of the plurality of the channels to the first side of the plane, and through the third portion of the plurality of the channels to the output port.
- 34. (withdrawn) The pump of claim 33, wherein the first conductive material has at least one nanotube.
- 35. (withdrawn) The pump of claim 33, wherein the first conductive material has at least one cold cathode field emission device.
- 36. (previously presented) An ion pump comprising:

a plurality of pumping elements; and wherein each pumping element of the plurality of pumping elements comprises:

- a first orifice upstream in a first electrode plate;
- a second orifice downstream in a second electrode plate; and
- a layer of insulating material situated between the first and second electrode plates and having an opening between the first and second orifices; and
- wherein the first orifice has an upstream sharp-like contour to achieve local high intensity electric fields.
- 37. (original) The pump of claim 36, further comprising a chamber that encloses the plurality of pumping elements.
- 38. (original) The pump of claim 37, wherein the chamber has an input port and an output port.
- 39. (original) The pump of claim 38, wherein the chamber has a structure that provides a path from the input port to the plurality of pumping elements through the first orifices, the openings, the second orifices and to the output port.
- 40. (original) The pump of claim 39, wherein the first and second orifices of each pumping element form a discharge device.
- 41. (original) The pump of claim 40, wherein the first orifice of each pumping element is capable of producing an ionizing corona.
- 42. (previously presented) A method for pumping, comprising:

 providing at least one set of first upstream and second downstream electrodes separated by a distance;

- containing the at least one set of first and second electrodes in an enclosure having an input and an output;
- shaping the first electrode to have an upstream sharp-like opening at a first end so as to be suitable for providing a corona of ionization of a fluid; and applying a DC voltage to the at least one set of first and second electrodes to result in a corona at the first electrode; and
- wherein the corona may generate ions to induce a fluid flow in the enclosure.
- 43. (original) The method of claim 42, further comprising complementing the at least one set of first and second electrodes to ignite the discharge with a second set of electrodes to generate an ion drift.
- 44. (original) The method of claim 43, further comprising applying and using an AC voltage to generate ions in an electroless operation and a DC field to accelerate the ions of the fluid in the direction of a desired flow.
- 45. (original) The method of claim 44, wherein a negative electrode attracts mostly positive and heavy ions.
- 46. (original) The method of claim 44, wherein a positive electrode attracts mostly negative ions, generated by an attachment of electrons which is a lower-energy process than a process of removing an electron from a neutral molecule.
- 47. (original) The method of claim 44, further comprising controlling fluid flow with the at least one set of first and second electrodes to achieve pulses of sample analyte into a gas analyzer and/or out of a gas analyzer.
- 48. (original) The method of claim 47, wherein the gas analyzer is of gas chromatography.

- 49. (original) The method of claim 44, further comprising adjusting the voltages to provide valve-like control of the fluid flow.
- 50. (previously presented) A means for ion pumping, comprising:
 - means for providing an electrical discharge;
 - means for enclosing the means for providing an electrical discharge, having an upstream input and a downstream output for a fluid proximate to the electrical discharge; and
 - wherein the means for providing an electrical discharge includes a sharp-like upstream element that provides a corona of ions to induce a flow of a fluid proximate to the electrical discharge.
- 51. (previously presented) The means for ion pumping of claim 50, wherein the means for providing an electrical discharge has a nanotube electrode.
- 52. (previously presented) The means for ion pumping of claim 51, wherein the means for providing an electrical discharge has a cold cathode field emission electrode.
- 53. (currently amended) An ion pump comprising:
 - an insulating layer;
 - a first conductive layer situated on a first upstream side of the insulating layer;
 - a second conductive layer situated on a second <u>downstream</u> side of the insulating layer;
 - a plurality of openings situated in the first conductive layer, the insulating layer and the second conductive layer forming channels having first upstream and second downstream discharge device electrodes, respectively, wherein the openings in the first conductive layer at the first discharge device electrodes are upstream and are formed by a sharp point in the conductive layer; and

an enclosure containing the channels and having an input port proximate to the first conductive layer and an output port proximate to the second conductive layer.

54. (original) The pump of claim 53, wherein the first discharge electrodes have a configuration to generate in-situ ions to induce a fluid flow.