複雑系科学演習第7回

今回はロジスティック写像を考える . f(x)=rx(1-x) としたとき , $x_{n+1}=f(x_n)$ である .

 $\mathbf{1}$ r=3.8285 として, x_n が $250 \le n \le 500$ の場合の時系列とリターンマップを描け. 初期値は適当でよい. 周期 3 を確認せよ (3 周期の窓)

イメージ例)

r=3.8284 として, x_n が $250 \le n \le 500$ の場合の時系列とリターンマップを描け. 初期値は適当でよい. 規則的な部分 (ラミナー) と不規則な部分 (バースト) を確認せよ.

イメージ例)

 $oldsymbol{3}$ 次に説明する写像 $f^{(3)}$ について,リターンマップを描け (横軸 x_n , 縦軸 x_{n+3}).

これまで $x_{n+1}=f(x_n)$ の写像について考えてきた (ここで関数 f は , 上で定義したロジスティック写像) . 時系列は $x_0,x_1,x_2,x_3,x_4,x_5,\dots$ を順に書いてきたが , 上のパラメータでは , だいたいの部分において周期 3 の運動をしている . そこでここでは , 3 つ飛ばしで時系列とリターンマップを考える .

いま $x_{n+1}=f(x_n)$ だから ,同様に $x_{n+2}=f(x_{n+1})$, $x_{n+3}=f(x_{n+2})$ が成り立つ.これらをまとめると, $x_{n+3}=f(x_{n+2})=f(f(x_{n+1}))=f(f(f(x_n)))$ と書ける.

この, x_n から x_{n+3} を求める式 $x_{n+3}=f(f(f(x_n)))$ を簡単のために $x_{n+3}=f^{(3)}(x_n)$ と書くことにする.これまでは x_n と x_{n+1} の間のリターンマップを書いてきたが, x_n と x_{n+3} の間のリターンマップを r=3.8284 のときに書いてみよ.また,下右図のようなリターンマップの階段状にはさまれた部分は何を意味するか考えよ.

イメージ例) 左図は横軸 [0:1], 右図は横軸 [0.9561:0.9565] とした.

