MISTRZ PROGRAMOWANIA

Kumkwaty

Limit pamięci: 256 MB

Pewnej środy Piotrek i Łukasz wymyślili grę w "Kumkwaty". Na stole w rządku ustawili n kupek kumkwatów¹ ponumerowanych od 1 do n. i-ta kupka liczy a_i kumkwatów. Piotrek i Łukasz będą wykonywać ruchy na zmianę dopóki nie skończą się kupki. Zrobić ruch można na 2 sposoby:

- 1. Jeżeli poprzedni gracz zabrał kupkę i, to możesz zabrać kupkę i-1 lub i+1.
- 2. Jeżeli pierwsza opcja jest nie możliwa (to jest pierwszy ruch w grze lub obie kupki i-1 i i+1 zostały już zabrane), to możesz zabrać dowolną kupkę.

Zabierając kupkę i, gracz zjada wszystkie znajdujące się w niej kumkwaty. Celem gry jest zjeść jak najwięcej kumkwatów.

Piotrek i Łukasz są doświadczeni w różnego rodzaju rozgrywkach, więc będą grać optymalnie. Jako, że poprzednią ich konkurencję wygrał Łukasz, to on będzie wykonywał pierwszy ruch.

I tutaj proszę Cię o pomoc. Założyłem się z Tomkiem o to, kto ile zje kumkwatów i nie chcę czekać na wynik aż pojedynek się skończy. Napisz program, który to policzy.

Wejście

W pierwszym wierszu wejścia znajduje się jedna liczba całkowita n ($1 \le n \le 1\,000\,000$). W drugim wierszu wejścia znajduje się n liczb całkowitych a_i ($1 \le a_i \le 1\,000$).

Wyjście

W pierwszym wierszu wypisz dwie liczby całkowite – ile kumkwatów zje Łukasz oraz ile Piotrek.

Przykłady

Wejście dla testu r2e0a: 4 8 4 2 1	Wyjście dla testu r2e0a:
Wejście dla testu r2e0b: 5 5 10 5 1 2	Wyjście dla testu r2e0b:

Wyjaśnienie: Łukasz zaczyna od kupki drugiej, która ma 10 kumkwatów, potem Piotrek zabiera kupkę trzecią, Łukasz czwartą, Piotrek piątą i Łukasz na końcu pierwszą.

Ocenianie

Podzadanie	Ograniczenia	Limit czasu	Punkty
1	$a_i = 1$ dla każdego i	1 s (C++) / 15 s (Python)	2
2	$a_i \le 2$ dla każdego i	1 s (C++) / 15 s (Python)	10
3	$n \le 100$	1 s (C++) / 15 s (Python)	14
4	$n \le 1000$	5 s (C++) / 20 s (Python)	27
5	n jest parzyste	1 s (C++) / 15 s (Python)	19
6	n jest nieparzyste	1 s (C++) / 15 s (Python)	19
7	brak dodatkowych ograniczeń	1 s (C++) / 15 s (Python)	9

¹To taki owoc :3