Biometrics and Applied Intelligence

The Devil is in the Details: Biased Training

Data

Problem: Shape recognition triangle or square?

Problem: Shape recognition triangle or square?

Accuracy: 90%

Δ	
95	5
15	85

Problem: Shape recognition triangle or square?

Accuracy: 90%

95	5
15	85

Are all triangles and squares the same? Assumption of homogeneous population

Problem: Shape recognition triangle or square?

Accuracy: 90%

95	5
15	85

Biased databases imply a double penalty for underrepresented classes:

- Models are trained according to non-representative diversity.
- Models are tested on privileged classes

Problem: Shape recognition triangle or square?

Accuracy: 85%

90	10
20	80

Color does not affect the shape...

Therefore, performance should be the same

Heterogeneous populations might produce heterogeneous performances

Problem: Shape recognition triangle or square?

Blue Accuracy: 90%

95	5
15	85

Orange Accuracy: 80%

85	15
25	75

TASK 4.1:

- Train 3 different Gender Classifiers (previous Task 3.3) using images from same ethnic group: Model A (only Asian), Model B (only Black), Model C (only Caucasian)

TASK 4.1:

- Train 3 different Gender Classifiers (previous Task 3.3) using images from same ethnic group: Model A (only Asian), Model B (only Black), Model C (only Caucasian)

Training

Color does not affect the shape...

Therefore, performance should be the same

TASK 4.2:

- Evaluate the 3 Gender Classifiers (previous Task 4.1) using images from each of the three ethnic groups.

Evaluation:

3 test sets \times 3 models = 9 accuracies

500 images from Asian group -> Accuracy for Asian group 500 images from Black group -> Accuracy for Black group 500 images from Caucasian group -> Accuracy for Caucasian group

TASK 4.3:

- Train one Gender Classifiers (previous Task 3.3) using images from all three ethnic groups:

MODEL D

Training

1000 images from Asian group + 1000 images from Black group + 1000 images from Caucasian group

TASK 4.4:

- Evaluate the Gender Classifier (previous Task 4.3) using images from each of the three ethnic groups:

MODEL D

Evaluation:

3 test sets \times 1 model = 3 accuracies

500 images from Asian group -> Accuracy for Asian group 500 images from Black group -> Accuracy for Black group 500 images from Caucasian group -> Accuracy for Caucasian group