

SF1624 Algebra och geometri Tentamen med lösningsförslag 11 januari 2021

(3 p)

1. Följande linjära ekvationssystem är givet

$$x_1 - 3x_2 + 4x_3 + 5x_4 = 2$$
$$2x_2 + 3x_3 + 4x_4 = 1$$
$$-3x_1 + 10x_2 - 6x_3 - 7x_4 = -4$$

- (a) Hitta alla lösningar till systemet.
- (b) Låt V vara ett delrum i \mathbb{R}^4 där $V = \text{span}\{\vec{v_1}, \vec{v_2}, \vec{v_3}\}$ och där

 $\vec{v}_1 = \begin{bmatrix} 1 \\ -3 \\ 4 \\ 5 \end{bmatrix}, \quad \vec{v}_2 = \begin{bmatrix} 0 \\ 2 \\ 3 \\ 4 \end{bmatrix}, \quad \vec{v}_3 = \begin{bmatrix} -3 \\ 10 \\ -6 \\ -7 \end{bmatrix}$

Bestäm en bas för V^{\perp} . (3 p)

Lösningsförslag.

(a) Totalmatrisen för systemet blir

$$\left[\begin{array}{ccc|cccc}
1 & -3 & 4 & 5 & 2 \\
0 & 2 & 3 & 4 & 1 \\
-3 & 10 & -6 & -7 & -4
\end{array}\right]$$

Gausselimination ger oss den radreducerade formen av totalmatrisen

$$\begin{bmatrix} 1 & -3 & 4 & 5 & 2 \\ 0 & 2 & 3 & 4 & 1 \\ -3 & 10 & -6 & -7 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & -\frac{1}{3} & \frac{2}{3} \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & \frac{4}{3} & \frac{1}{3} \end{bmatrix}$$

vilket ger oss lösningen

$$x_{1} = \frac{2}{3} + \frac{1}{3}x_{4}$$

$$x_{2} = 0$$

$$x_{3} = \frac{1}{3} - \frac{4}{3}x_{4}$$

$$x_{4} = s$$

dvs

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} \frac{2}{3} \\ 0 \\ \frac{1}{3} \\ 0 \end{bmatrix} + s \begin{bmatrix} \frac{1}{3} \\ 0 \\ -\frac{4}{3} \\ 1 \end{bmatrix}$$

(b) En bas för V^{\perp} ges av basen till A^T :s nollrum där A är en matris med vektorerna \vec{v}_1, \vec{v}_2 och \vec{v}_3 som kolonner. Dvs

$$A^T = \begin{bmatrix} 1 & -3 & 4 & 5 \\ 0 & 2 & 3 & 4 \\ -3 & 10 & -6 & -7 \end{bmatrix}$$

Från a) har vi att den radreducerade formen ges av

$$\left[\begin{array}{cccc}
1 & 0 & 0 & -\frac{1}{3} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & \frac{4}{3}
\end{array}\right]$$

och nollrummet ges av

$$x_1 = \frac{1}{3}x_4$$

$$x_2 = 0$$

$$x_3 = -\frac{4}{3}x_4$$

$$x_4 = s$$

så basen för V^{\perp} ges av vektorn $\begin{bmatrix} \frac{1}{3} \\ 0 \\ -\frac{4}{3} \\ 1 \end{bmatrix}$

2. Bestäm determinanten $\det A$, där

$$A = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 \end{pmatrix}.$$

(6 p)

Lösningsförslag. Vi anväder rad- och kolonnoperationer och byte av kolonner för att få en triangulär matris:

$$\det A = (-1)\det\begin{pmatrix} 1 & 0 & 1 & 1 & 1 & 1\\ 0 & 1 & 1 & 1 & 1 & 1\\ 1 & 1 & 0 & 1 & 1 & 1\\ 1 & 1 & 1 & 0 & 1 & 1\\ 1 & 1 & 1 & 1 & 0 & 1\\ 1 & 1 & 1 & 1 & 1 & 0 \end{pmatrix} = (-1)\det\begin{pmatrix} 1 & 0 & 1 & 1 & 1 & 1\\ 0 & 1 & 1 & 1 & 1 & 1\\ 0 & 1 & -1 & 0 & 0 & 0\\ 0 & 1 & 0 & -1 & 0 & 0\\ 0 & 1 & 0 & 0 & -1 & 0\\ 0 & 1 & 0 & 0 & 0 & -1 \end{pmatrix}$$
$$= (-1)\det\begin{pmatrix} 1 & 4 & 1 & 1 & 1 & 1\\ 0 & 5 & 1 & 1 & 1 & 1\\ 0 & 5 & 1 & 1 & 1 & 1\\ 0 & 0 & -1 & 0 & 0\\ 0 & 0 & 0 & -1 & 0\\ 0 & 0 & 0 & 0 & -1 \end{pmatrix} = -5,$$

där vi bytte först de första två kolonn vektorer, subtraherade sedan den första radvektoren från raderna 3 till 6, och adderade till slut kolonnerna 3,4,5 och 6 från kolonnen 2.

3. Planet V i \mathbb{R}^3 ges av ekvationen 2x - y + 3z = 0. Linjen L i \mathbb{R}^3 ges på parameterform av

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = t \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}, \qquad t \in \mathbb{R}.$$

- (a) Bestäm skärningen mellan planet V och linjen L. (3 p)
- (b) Bestäm ett ekvationssystem vars lösningsmängd är L. (3 p)

Lösningsförslag.

- (a) Eftersom riktningsvektorn (x, y, z) = (2, 1, -1) för L uppfyller ekvationen 2x y + 3z = 0, så är L en delmängd av V. Alltså är skärningen av V och L lika med L.
- (b) Vi vet från (a) att L är en delmängd av V, dvs punkterna på L uppfyller ekvationen 2x-y+3z=0. Förutom denna ekvation så behöver vi ytterligare en ekvation. Normalvektorn $\vec{n}=(2,-1,3)$ till planet V är ortogonal mot L:s riktningsvektor (2,1,-1). Det betyder att vektorn

$$\begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix} \times \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} -2 \\ 8 \\ 4 \end{bmatrix}$$

ortogonal mot både L och \vec{n} . Som andra ekvation kan vi därför välja -2x+8y+4z=0. Svar: Ekvationssystemet

$$\begin{cases} 2x - y + 3z = 0, \\ -2x + 8y + 4z = 0, \end{cases}$$

har lösningsmängd L.

4. Följande två vektorer är givna

$$\vec{v}_1 = \frac{1}{3} \begin{bmatrix} 2 \\ -1 \\ -2 \end{bmatrix}, \quad \vec{v}_2 = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 \\ 0 \\ -1 \end{bmatrix}.$$

- (a) Hitta en vektor \vec{v}_3 så att \vec{v}_1 , \vec{v}_2 och \vec{v}_3 bildar en ortonormal bas \mathcal{B} för \mathbb{R}^3 . (2 p)
- (b) Låt $T: \mathbb{R}^3 \to \mathbb{R}^3$ vara den linjära transformationen som avbildar \vec{v}_1 på \vec{v}_3 och \vec{v}_3 på \vec{v}_1 och har \vec{v}_2 som en egenvektor med egenvärdet $\lambda = -5$. Bestäm matrisen för avbildningen med avseende på basen \mathcal{B} dvs $[T]_{\mathcal{B}}$.

Lösningsförslag.

(a) Vektorerna \vec{v}_1 och \vec{v}_2 är ortonormala. Vektorn \vec{v}_3 ges av kryssprodukten mellan \vec{v}_1 och \vec{v}_2 ,

$$\vec{v}_3 = \vec{v}_1 \times \vec{v}_2 = \frac{\sqrt{2}}{6} \left(\begin{bmatrix} 2\\-1\\-2 \end{bmatrix} \times \begin{bmatrix} -1\\0\\-1 \end{bmatrix} \right) = \frac{\sqrt{2}}{6} \begin{bmatrix} 1\\4\\-1 \end{bmatrix}$$

(b) Matrisen $[T]_{\mathcal{B}}$ ges av $[T]_{\mathcal{B}} = [[T(\vec{v}_1)]_{\mathcal{B}} [T(\vec{v}_2)]_{\mathcal{B}} [T(\vec{v}_3)]_{\mathcal{B}}]$. Enligt uppgiften har vi att

$$T(\vec{v}_1) = \vec{v}_3 \Rightarrow [T(\vec{v}_1)]_{\mathcal{B}} = \begin{bmatrix} \vec{v}_3 \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$T(\vec{v}_2) = -5\vec{v}_2 \Rightarrow [T(\vec{v}_2)]_{\mathcal{B}} = -5[\vec{v}_2]_{\mathcal{B}} = \begin{bmatrix} 0 \\ -5 \\ 0 \end{bmatrix}$$

$$T(\vec{v}_3) = \vec{v}_1 \Rightarrow [T(\vec{v}_3)]_{\mathcal{B}} = [\vec{v}_1]_{\mathcal{B}} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

Detta ger oss att

$$[T]_{\mathcal{B}} = \left[\begin{array}{ccc} 0 & 0 & 1 \\ 0 & -5 & 0 \\ 1 & 0 & 0 \end{array} \right]$$

- **5.** Två $n \times n$ -matriser A och B sägs vara samtidigt diagonaliserbara om det finns en gemensam bas av egenvektorer dvs om det finns en inverterbar $n \times n$ matris S sådan att $S^{-1}AS$ och $S^{-1}BS$ är diagonalmatriser.
 - (a) Bevisa att AB = BA om A och B är samtidigt diagonaliserbara. (3 p)
 - (b) Bevisa att A och B är samtidigt diagonaliserbara om vi antar att AB = BA och A har nstycket distinkta egenvärden. (3 p)

Lösningsförslag.

- (a) Låt $D_1 = S^{-1}AS$ och $D_2 = S^{-1}BS$. Eftersom D_1 och D_2 är diagonalmatriser gäller att $D_1D_2 = D_2D_1$ och vi får $\overline{AB} = SD_1S^{-1}SD_2S^{-1} = SD_1D_2S^{-1} = SD_2D_1S^{-1} = SD_2S^{-1}SD_1S^{-1} = BA.$
- (b) Eftersom A är har n olika egenvärden så är A diagonaliserbar. Om A är diagonaliserbar finns en inverterbar matris \tilde{S} sådan att $D_1 = S^{-1}AS$ där

$$D_1 = \begin{bmatrix} \lambda_1 & 0 & 0 & \cdots & 0 \\ 0 & \lambda_2 & 0 & \cdots & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & 0 & \cdots & & \lambda_n \end{bmatrix}$$

Låt $D_2 = S^{-1}BS$. För att A och B ska vara samtidigt diagonaliserbara måste D_2 vara en diagonalmatris. Om vi antar att

$$D_2 = \begin{bmatrix} d_{11} & d_{12} & \cdots & d_{1n} \\ d_{21} & d_{22} & \cdots & d_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ d_{n1} & d_{n2} & \cdots & d_{nn} \end{bmatrix}$$

gäller det att visa att elementen $d_{ij}=0$ när $i\neq j$. Eftersom AB=BA har vi att $D_1D_2=S^{-1}ASS^{-1}BS=S^{-1}ABS=S^{-1}BAS=S^{-1$ $S^{-1}BSS^{-1}AS = D_2D_1.$

Kalla elementen i D_1D_2 för a_{ij} och elementen i D_2D_1 för b_{ij} . Det betyder att $a_{ij}=b_{ij}$ för alla i och j.

När i=j har vi att $a_{ii}=b_{ii}=\lambda_i d_{ii}$. När $i\neq j$ har vi att $a_{ij}=\lambda_i d_{ij}$ och $b_{ij}=\lambda_j d_{ij}$ dvs $\lambda_i d_{ij} = \lambda_j d_{ij}$. Eftersom alla λ_i är olika måste $d_{ij} = 0$ när $i \neq j$.

- (b) (Lösningsalternativ.) Låt $\lambda_1, \ldots, \lambda_n$ vara de distinkta egenvärden till A. Eftersom egenvektorer till distinkta egenvärden är ortogonala, finns det en ortonormal bas $\mathcal{B} = \{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ som består av egenvektorer till A, dvs $A\mathbf{v}_j = \lambda_j\mathbf{v}_j$ för $j=1,\ldots,n$. Vi vet att AB=BA implicerar att för varje $j\in\{1,\ldots n\},\ A(B\mathbf{v}_j)=BA\mathbf{v}_j=\lambda_jB\mathbf{v}_j,\ dvs$ att $B\mathbf{v}_j\in V_{\lambda_j},\ der\ V_{\lambda_j}$ betecknar egenrummet till egenvärde λ_j för avbildningen A. Eftersom A har n distinkta egenvärden, så gäller $\dim V_{\lambda_j}=1$ för alla egenrum. Det betyder att \mathbf{v}_j och $B\mathbf{v}_j$ är linjär beroende, dvs att det finns $\mu_j\in\mathbb{R}$ så att $B\mathbf{v}_j=\mu_j\mathbf{v}_j$. Ortonormalbasen \mathcal{B} består således inte bara av egenvektorer till A men även av egenvektorer till B (med egenvärden μ_1,\ldots,μ_n). Om $S=[\mathbf{v}_1\mathbf{v}_2\ldots\mathbf{v}_n]$ så är $S^{-1}AS=S^TAS$ och $S^{-1}BS=S^TBS$ diagonalmatriser.
- **6.** Om A är en reel symmetrisk 3×3 matris låt $q_A(\vec{x}) = \vec{x}^T A \vec{x}$ vara den associerade kvadratiska formen.
 - (a) Låt λ vara ett egenvärde till A och \vec{v} en motsvarande egenvektor som är normaliserad så att $\|\vec{v}\| = 1$. Bestäm $q_A(\vec{v})$.
 - (b) Antag att det minsta egenvärdet till A är 1. Bevisa att $q_A(\vec{x}) \ge 1$ för varje enhetsvektor \vec{x} (dvs. $||\vec{x}|| = 1$). (Tips: bevisa först att $q_A(\vec{x}) \ge 1$ för varje enhetsvektor \vec{x} , där A är diagonal). (5 p)

Lösningsförslag.

(a) Vi har:

$$q_A(\vec{v}) = \vec{v}^T A \vec{v} = \vec{v}^T \lambda \vec{v} = \lambda \vec{v} \bullet \vec{v} = \lambda ||\vec{v}||^2 = \lambda.$$

(b) Låt S vara en ortogonal matris så att $S^TAS = D$ är diagonal. Låt $\vec{x} = S\vec{y}$. Då är

$$q_A(\vec{x}) = q_A(S\vec{y}) = \vec{y}^T S^T A S \vec{y} = q_D(\vec{y}).$$

Eftersom S är ortogonal, dvs bevara längder, så är

$$||S\vec{y}|| = 1$$
 om och endast om $||\vec{y}|| = 1$.

Det betyder att minimet som $q_A(\vec{x})$ tar på mängden av vektorer $\{\vec{x} \in \mathbb{R}^3 : ||\vec{x}|| = 1\}$ är lika med minimet som $q_D(\vec{y})$ tar på mängden av vektorer $\{\vec{y} \in \mathbb{R}^3 : ||\vec{y}|| = 1\}$.

Minimet som $q_D(\vec{y})$ tar på mängden av vektorer $\{\vec{y} \in \mathbb{R}^3 : ||\vec{y}|| = 1\}$ är 1:

D är diagonal, då har vi $q_D(\vec{y}) = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \lambda_3 y_3^2$, där λ_1, λ_2 och λ_3 är egenverden till A. Också $\lambda_i \geq 1$ för i = 1, 2, 3. Därför har vi:

$$q_D(\vec{y}) \ge y_1^2 + y_2^2 + y_3^2 = \|\vec{y}\|^2 = 1$$
, där $\|\vec{y}\| = 1$.

Därför: $q_A(\vec{x}) \ge 1$ där $||\vec{x}|| = 1$.