

Numerical computation with periodic functions

8th International Congress on Industrial and Applied Mathematics, Beijing

Hadrien Montanelli (Oxford)

Collaborators: N.I. Gushterov, M. Javed, and L.N. Trefethen (Oxford), G.B. Wright (Boise)

August 10, 2015

Overview

1 Extension of Chebfun to periodic functions

2 Application 1: Nonlinear stiff PDEs

3 Application 2: Choreographies

¹Wright, Javed, M., and Trefethen, "Extension of Chebfun to periodic functions", SISC, accepted.

■ f Lipschitz continuous and periodic function on $[0, 2\pi]$

¹Wright, Javed, M., and Trefethen, "Extension of Chebfun to periodic functions", SISC, accepted.

- f Lipschitz continuous and periodic function on $[0, 2\pi]$
- Continuous world (true object): f has a unique trigonometric series of the form

$$f(x) = \sum_{k=-\infty}^{\infty} a_k e^{ikx}, \quad a_k = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-ikx} dx$$

¹Wright, Javed, M., and Trefethen, "Extension of Chebfun to periodic functions", SISC, accepted.

- f Lipschitz continuous and periodic function on $[0, 2\pi]$
- Continuous world (true object): f has a unique trigonometric series of the form

$$f(x) = \sum_{k=-\infty}^{\infty} a_k e^{ikx}, \quad a_k = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-ikx} dx$$

■ Discrete world (approximation): f has a unique trigonometric polynomial p_N that interpolates the data $f_j = f(x_j)$ at the N points $x_j = 2\pi j/N$ of the form

$$p_N(x) = \sum_{k=-\frac{N-1}{2}}^{\frac{N-1}{2}} c_k e^{ikx}, \quad c_k = \frac{1}{N} \sum_{j=0}^{N-1} f_j e^{-ikxj}$$

¹Wright, Javed, M., and Trefethen, "Extension of Chebfun to periodic functions", SISC, accepted.

- f Lipschitz continuous and periodic function on $[0, 2\pi]$
- Continuous world (true object): f has a unique trigonometric series of the form

$$f(x) = \sum_{k=-\infty}^{\infty} a_k e^{ikx}, \quad a_k = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-ikx} dx$$

■ Discrete world (approximation): f has a unique trigonometric polynomial p_N that interpolates the data $f_j = f(x_j)$ at the N points $x_j = 2\pi j/N$ of the form

$$p_N(x) = \sum_{k=-\frac{N-1}{2}}^{\frac{N-1}{2}} c_k e^{ikx}, \quad c_k = \frac{1}{N} \sum_{j=0}^{N-1} f_j e^{-ikxj} = \sum_{j=-\infty}^{\infty} a_{k+jN}$$

¹Wright, Javed, M., and Trefethen, "Extension of Chebfun to periodic functions", SISC, accepted.

- f Lipschitz continuous and periodic function on $[0, 2\pi]$
- Continuous world (true object): f has a unique trigonometric series of the form

$$f(x) = \sum_{k=-\infty}^{\infty} a_k e^{ikx}, \quad a_k = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-ikx} dx$$

■ Discrete world (approximation): f has a unique trigonometric polynomial p_N that interpolates the data $f_j = f(x_j)$ at the N points $x_j = 2\pi j/N$ of the form

$$p_N(x) = \sum_{k=-\frac{N-1}{2}}^{\frac{N-1}{2}} c_k e^{ikx}, \quad c_k = \frac{1}{N} \sum_{j=0}^{N-1} f_j e^{-ikxj} = \sum_{j=-\infty}^{\infty} a_{k+jN}$$

Extension of Chebfun to periodic functions ¹:

¹Wright, Javed, M., and Trefethen, "Extension of Chebfun to periodic functions", SISC, accepted.

■ Problem: We want to solve

$$\mathcal{L}u = f$$
, $\mathcal{L}u = \lambda u$,

with periodic operator ${\cal L}$ on $[0,2\pi]$ defined by

$$\mathcal{L} = u'' + a(x)u' + b(x)u = \mathcal{D}^{(2)} + \mathcal{M}[a]\mathcal{D} + \mathcal{M}[b]$$

■ Problem: We want to solve

$$\mathcal{L}u = f$$
, $\mathcal{L}u = \lambda u$,

with periodic operator $\mathcal L$ on $[0,2\pi]$ defined by

$$\mathcal{L} = u'' + a(x)u' + b(x)u = \mathcal{D}^{(2)} + \mathcal{M}[a]\mathcal{D} + \mathcal{M}[b]$$

■ Method: Spectral method, based on values or coefficients, with adaptive grid size

■ Problem: We want to solve

$$\mathcal{L}u = f$$
, $\mathcal{L}u = \lambda u$,

with periodic operator \mathcal{L} on $[0,2\pi]$ defined by

$$\mathcal{L} = u'' + \mathsf{a}(\mathsf{x})u' + \mathsf{b}(\mathsf{x})u = \mathcal{D}^{(2)} + \mathcal{M}[\mathsf{a}]\mathcal{D} + \mathcal{M}[\mathsf{b}]$$

- Method: Spectral method, based on values or coefficients, with adaptive grid size
- Discretize $[0,2\pi]$ with grid $x_j = 2\pi j/N$, f with trigonometric polynomial f_N that interpolates $f(x_j) = \mathtt{ifft}(f_k)$, and look for trigonometric polynomial solution u_N

$$u_N(x) = \sum_{k=-rac{N-1}{2}}^{rac{N-1}{2}} u_k e^{ikx}, \quad u_k = ext{fft}(u(x_j))$$

■ Problem: We want to solve

$$\mathcal{L}u = f$$
, $\mathcal{L}u = \lambda u$,

with periodic operator \mathcal{L} on $[0,2\pi]$ defined by

$$\mathcal{L} = u'' + a(x)u' + b(x)u = \mathcal{D}^{(2)} + \mathcal{M}[a]\mathcal{D} + \mathcal{M}[b]$$

- Method: Spectral method, based on values or coefficients, with adaptive grid size
- Discretize $[0,2\pi]$ with grid $x_j = 2\pi j/N$, f with trigonometric polynomial f_N that interpolates $f(x_i) = \mathtt{ifft}(f_k)$, and look for trigonometric polynomial solution u_N

$$u_N(x) = \sum_{k=-rac{N-1}{2}}^{rac{N-1}{2}} u_k e^{ikx}, \quad u_k = ext{fft}(u(x_j))$$

Leads to the following systems

$$(D_v^{(2)} + M_v[a]D_v + M_v[b])\mathbf{u} = \mathbf{f}$$

$$(D_c^{(2)} + M_c[a]D_c + M_c[b])\mathbf{u} = \mathbf{f}$$

$$\mathbf{u} = \{u(x_j)\}, \quad \mathbf{f} = \{f(x_j)\}$$

$$\mathbf{u} = \{u_k\}, \quad \mathbf{f} = \{f_k\}$$

■ Problem: We want to solve

$$\mathcal{L}u = f$$
, $\mathcal{L}u = \lambda u$,

with periodic operator \mathcal{L} on $[0,2\pi]$ defined by

$$\mathcal{L} = u'' + \mathsf{a}(\mathsf{x})u' + \mathsf{b}(\mathsf{x})u = \mathcal{D}^{(2)} + \mathcal{M}[\mathsf{a}]\mathcal{D} + \mathcal{M}[\mathsf{b}]$$

- Method: Spectral method, based on values or coefficients, with adaptive grid size
- Discretize $[0, 2\pi]$ with grid $x_j = 2\pi j/N$, f with trigonometric polynomial f_N that interpolates $f(x_j) = \mathtt{ifft}(f_k)$, and look for trigonometric polynomial solution u_N

$$u_N(x) = \sum_{k=-rac{N-1}{2}}^{rac{N-1}{2}} u_k e^{ikx}, \quad u_k = ext{fft}(u(x_j))$$

Leads to the following systems

$$(D_v^{(2)} + M_v[a]D_v + M_v[b])\mathbf{u} = \mathbf{f}$$

$$(D_c^{(2)} + M_c[a]D_c + M_c[b])\mathbf{u} = \mathbf{f}$$

$$\mathbf{u} = \{u(x_i)\}, \quad \mathbf{f} = \{f(x_i)\}$$

$$\mathbf{u} = \{u_k\}, \quad \mathbf{f} = \{f_k\}$$

 Automatic Fréchet differentiation, and Newton's method in function space for nonlinear ODEs

$$0.004u'' + uu' - u = \cos(2\pi x), \quad x \in [-1, 1]$$

```
0.004u'' + uu' - u = \cos(2\pi x), \quad x \in [-1,1] N = chebop(-1,1);
N.op = @(x,u) .004*diff(u,2) + u.*diff(u) - u;
N.bc = 'periodic';
f = chebfun('cos(2*pi*x)','trig');
u = N\f; plot(u)
```

$$0.004u'' + uu' - u = \cos(2\pi x), \quad x \in [-1, 1]$$

```
N = chebop(-1,1);
N.op = @(x,u) .004*diff(u,2) + u.*diff(u) - u;
N.bc = 'periodic';
f = chebfun('cos(2*pi*x)','trig');
u = N\f; plot(u)
```


$$-u'' + 2q\cos(2x)u = \lambda u, \quad x \in [0, 2\pi]$$

$$-u'' + 2q\cos(2x)u = \lambda u, \quad x \in [0, 2\pi]$$
 q=2;
 L = chebop([0 2*pi]);
 L.op = @(x,u) -diff(u,2) + 2*q*cos(2*x).*u;
 L.bc = 'periodic';
 [V,D] = eigs(L,5); plot(V)

$$-u'' + 2q\cos(2x)u = \lambda u, \quad x \in [0, 2\pi]$$

```
q=2;
L = chebop([0 2*pi]);
L.op = @(x,u) -diff(u,2) + 2*q*cos(2*x).*u;
L.bc = 'periodic';
[V,D] = eigs(L,5); plot(V)
```


■ Problem: We want to solve

$$u_t(x,t) = \mathcal{L}u(x,t),$$

for some linear periodic operator $\mathcal L$ on $[0,2\pi] \times [0,T]$ and initial condition u(x,0)

■ Problem: We want to solve

$$u_t(x, t) = \mathcal{L}u(x, t),$$

for some linear periodic operator \mathcal{L} on $[0,2\pi]\times[0,T]$ and initial condition u(x,0)

■ When the problem is well-posed, solution given by the operator exponential

$$u(x,t)=e^{\mathcal{L}t}u(x,0)$$

■ Problem: We want to solve

$$u_t(x, t) = \mathcal{L}u(x, t),$$

for some linear periodic operator \mathcal{L} on $[0,2\pi]\times[0,T]$ and initial condition u(x,0)

■ When the problem is well-posed, solution given by the operator exponential

$$u(x,t) = e^{\mathcal{L}t}u(x,0)$$

■ Method: Spectral method, based on values or coefficients, with adaptive grid size

■ Problem: We want to solve

$$u_t(x, t) = \mathcal{L}u(x, t),$$

for some linear periodic operator \mathcal{L} on $[0,2\pi]\times[0,T]$ and initial condition u(x,0)

■ When the problem is well-posed, solution given by the operator exponential

$$u(x,t) = e^{\mathcal{L}t}u(x,0)$$

- Method: Spectral method, based on values or coefficients, with adaptive grid size
- E.g., advection equation

$$u_t = \mathcal{L}u, \quad \mathcal{L} = a(x)\frac{\partial}{\partial x} = \mathcal{M}[a]\mathcal{D}$$

■ Problem: We want to solve

$$u_t(x,t) = \mathcal{L}u(x,t),$$

for some linear periodic operator \mathcal{L} on $[0,2\pi]\times[0,T]$ and initial condition u(x,0)

■ When the problem is well-posed, solution given by the operator exponential

$$u(x,t) = e^{\mathcal{L}t}u(x,0)$$

- Method: Spectral method, based on values or coefficients, with adaptive grid size
- E.g., advection equation

$$u_t = \mathcal{L}u, \quad \mathcal{L} = a(x)\frac{\partial}{\partial x} = \mathcal{M}[a]\mathcal{D}$$

$$\mathbf{u}(\mathbf{t}) = e^{M_{\mathbf{v}}[\mathbf{a}]D_{\mathbf{v}}t}\mathbf{u}(\mathbf{0}) \qquad \qquad \mathbf{u}(\mathbf{t}) = e^{M_{\mathbf{c}}[\mathbf{a}]D_{\mathbf{c}}t}\mathbf{u}(\mathbf{0})$$

$$\mathbf{u}(\mathbf{t}) = \{u(x_j, t)\}, \quad \mathbf{u}(\mathbf{0}) = \{u(x_j, 0)\}$$
 $\mathbf{u}(\mathbf{t}) = \{u_k(t)\}, \quad \mathbf{u}(\mathbf{0}) = \{u_k(0)\}$

$$u_t = -(rac{1}{5} + \sin^2(x-1))u_x, \quad x \in [0, 2\pi], \ t \in [0, 20]$$

$$\begin{split} u_t &= -\big(\frac{1}{5} + \sin^2(x-1)\big)u_x, \quad x \in [0,2\pi], \ t \in [0,20] \\ \text{c} &= \text{chebfun(@(x)} - (1/5 + \sin(x-1).^2), [0\ 2*\text{pi}]); \\ \text{L} &= \text{chebop(@(x,u)} \ \text{c.*diff(u)}, [0\ 2*\text{pi}]); \\ \text{L.bc} &= '\text{periodic'}; \\ \text{u0} &= \text{chebfun(@(x)} \ \exp(-100*(x-1).^2), [0\ 2*\text{pi}]); \\ \text{u} &= \exp(\text{L},0:.5:20,u0), \ \text{waterfall(u,0:.5:20)} \end{split}$$

$$u_t = -(\frac{1}{5} + \sin^2(x-1))u_x, \quad x \in [0, 2\pi], \ t \in [0, 20]$$

```
c = chebfun(@(x) -(1/5 + sin(x-1).^2),[0 2*pi]);
L = chebop(@(x,u) c.*diff(u),[0 2*pi]);
L.bc = 'periodic';
u0 = chebfun(@(x) exp(-100*(x-1).^2),[0 2*pi]);
u = expm(L,0:.5:20,u0), waterfall(u,0:.5:20)
```


Overview

1 Extension of Chebfun to periodic functions

2 Application 1: Nonlinear stiff PDEs

3 Application 2: Choreographies

Problem of interest

Problem of interest

■ Problem: We want to solve nonlinear stiff PDEs of the form

$$u_t = \mathcal{L}u + \mathcal{N}(t, u(x, t)),$$

for some periodic op. $\mathcal L$ and $\mathcal N$ on $[0,2\pi]\times[0,T]$ and initial condition u(x,0)

Problem of interest

■ Problem: We want to solve nonlinear stiff PDEs of the form

$$u_t = \mathcal{L}u + \mathcal{N}(t, u(x, t)),$$

for some periodic op. $\mathcal L$ and $\mathcal N$ on $[0,2\pi]\times[0,T]$ and initial condition u(x,0)

■ In Chebfun: pde15s, based on the methods of lines, works for nonlinear PDEs but slow for some stiff PDEs, need another approach

■ Problem: We want to solve nonlinear stiff PDEs of the form

$$u_t = \mathcal{L}u + \mathcal{N}(t, u(x, t)),$$

for some periodic op. $\mathcal L$ and $\mathcal N$ on $[0,2\pi]\times[0,T]$ and initial condition u(x,0)

- In Chebfun: pde15s, based on the methods of lines, works for nonlinear PDEs but slow for some stiff PDEs, need another approach
- lacktriangle Method: Discretization with a spectral method in space with M points leads to

$$u'(t) = Lu(t) + N(t, u(t)),$$

with $u(t) = \{u_k(t)\}$, i.e., a system of M ODEs

■ Problem: We want to solve nonlinear stiff PDEs of the form

$$u_t = \mathcal{L}u + \mathcal{N}(t, u(x, t)),$$

for some periodic op. $\mathcal L$ and $\mathcal N$ on $[0,2\pi]\times[0,T]$ and initial condition u(x,0)

- In Chebfun: pde15s, based on the methods of lines, works for nonlinear PDEs but slow for some stiff PDEs, need another approach
- Method: Discretization with a spectral method in space with M points leads to

$$u'(t) = Lu(t) + N(t, u(t)),$$

with $u(t) = \{u_k(t)\}$, i.e., a system of M ODEs

 \blacksquare If N=0,

$$u(t) = e^{tL}u(x,0)$$

■ Problem: We want to solve nonlinear stiff PDEs of the form

$$u_t = \mathcal{L}u + \mathcal{N}(t, u(x, t)),$$

for some periodic op. $\mathcal L$ and $\mathcal N$ on $[0,2\pi]\times[0,T]$ and initial condition u(x,0)

- In Chebfun: pde15s, based on the methods of lines, works for nonlinear PDEs but slow for some stiff PDEs, need another approach
- Method: Discretization with a spectral method in space with M points leads to

$$u'(t) = Lu(t) + N(t, u(t)),$$

with $u(t) = \{u_k(t)\}$, i.e., a system of M ODEs

 \blacksquare If N=0,

$$u(t) = e^{tL}u(x,0)$$

■ If *N* is a constant,

$$u(t) = e^{tL}u_0 + L^{-1}[e^{tL} - I]N$$

■ Problem: We want to solve nonlinear stiff PDEs of the form

$$u_t = \mathcal{L}u + \mathcal{N}(t, u(x, t)),$$

for some periodic op. $\mathcal L$ and $\mathcal N$ on $[0,2\pi]\times[0,T]$ and initial condition u(x,0)

- In Chebfun: pde15s, based on the methods of lines, works for nonlinear PDEs but slow for some stiff PDEs, need another approach
- Method: Discretization with a spectral method in space with M points leads to

$$u'(t) = Lu(t) + N(t, u(t)),$$

with $u(t) = \{u_k(t)\}$, i.e., a system of M ODEs

 \blacksquare If N=0,

$$u(t) = e^{tL}u(x,0)$$

■ If N is a constant,

$$u(t) = e^{tL}u_0 + L^{-1}[e^{tL} - I]N$$

 $\blacksquare \text{ If } N = N(t),$

$$u(t) = e^{tL}u_0 + \int_0^t e^{(t-s)L}N(s)ds$$

■ Problem: We want to solve nonlinear stiff PDEs of the form

$$u_t = \mathcal{L}u + \mathcal{N}(t, u(x, t)),$$

for some periodic op. $\mathcal L$ and $\mathcal N$ on $[0,2\pi]\times[0,T]$ and initial condition u(x,0)

- In Chebfun: pde15s, based on the methods of lines, works for nonlinear PDEs but slow for some stiff PDEs, need another approach
- Method: Discretization with a spectral method in space with M points leads to

$$u'(t) = Lu(t) + N(t, u(t)),$$

with $u(t) = \{u_k(t)\}$, i.e., a system of M ODEs

 \blacksquare If N=0,

$$u(t) = e^{tL}u(x,0)$$

■ If *N* is a constant,

$$u(t) = e^{tL}u_0 + L^{-1}[e^{tL} - I]N$$

 $\blacksquare \text{ If } N = N(t),$

$$u(t) = e^{tL}u_0 + \int_0^t e^{(t-s)L}N(s)ds$$

■ For general N, one need to find a way to capture the nonlinearity in a time-stepping method

■ **Problem:** We want to solve a system of *M* ODEs

$$u'(t) = Lu(t) + N(t, u(t))$$

■ **Problem:** We want to solve a system of *M* ODEs

$$u'(t) = Lu(t) + N(t, u(t))$$

■ **Method:** From the value $u_n = u(t_n)$ at time t_n , the numerical approximation u_{n+1} at time $t_{n+1} = t_n + h$ is given by the formula

$$u_{n+1} = e^{hL}u_n + h\sum_{i=1}^s B_i(hL)N(t_n + c_ih, v_i),$$

with internal stages $v_1 = u_n$ and, for $2 \le i \le s$,

$$v_i = e^{c_i h L} u_n + h \sum_{j=1}^{i-1} A_{i,j}(hL) N(t_n + c_j h, v_j)$$

■ **Problem:** We want to solve a system of *M* ODEs

$$u'(t) = Lu(t) + N(t, u(t))$$

■ **Method:** From the value $u_n = u(t_n)$ at time t_n , the numerical approximation u_{n+1} at time $t_{n+1} = t_n + h$ is given by the formula

$$u_{n+1} = e^{hL}u_n + h\sum_{i=1}^s B_i(hL)N(t_n + c_ih, v_i),$$

with internal stages $v_1 = u_n$ and, for $2 \le i \le s$,

$$v_i = e^{c_i h L} u_n + h \sum_{j=1}^{i-1} A_{i,j}(hL) N(t_n + c_j h, v_j)$$

■ Coefficients $A_{i,j}$, B_i and c_i given via Butcher tableau

■ **Problem:** We want to solve a system of *M* ODEs

$$u'(t) = Lu(t) + N(t, u(t))$$

■ **Method:** From the value $u_n = u(t_n)$ at time t_n , the numerical approximation u_{n+1} at time $t_{n+1} = t_n + h$ is given by the formula

$$u_{n+1} = e^{hL}u_n + h\sum_{i=1}^s B_i(hL)N(t_n + c_ih, v_i),$$

with internal stages $v_1 = u_n$ and, for $2 \le i \le s$,

$$v_i = e^{c_i h L} u_n + h \sum_{j=1}^{i-1} A_{i,j}(hL) N(t_n + c_j h, v_j)$$

- Coefficients $A_{i,j}$, B_i and c_i given via Butcher tableau
- In Chebfun: available soon, use 4th- and 5th-order time-stepping schemes, easy to add another scheme, essentially just give the Butcher tableau

Example 1: Kuramoto-Sivashinsky

Example 1: Kuramoto–Sivashinsky

$$u_t = -u_{xx} - u_{xxxx} - uu_x, \quad x \in [0, 32\pi], \ t \in [0, 200]$$

$$u(x,0) = \cos(x/16)(1 + \sin(x/16))$$

 $u_t = -u_{xx} - u_{xxxx} - uu_x, \quad x \in [0, 32\pi], \ t \in [0, 200]$

Example 1: Kuramoto-Sivashinsky

$$u(x,0) = \cos(x/16)(1+\sin(x/16))$$
 S = spin('ks',{[0 32*pi], [0 200]}); u0 = chebfun('cos(x/16).*(1 + sin(x/16))',[0 32*pi],'trig'); u = solvepde(S,u0);

Example 1: Kuramoto-Sivashinsky

$$u_t = -u_{xx} - u_{xxx} - uu_x, \quad x \in [0, 32\pi], \ t \in [0, 200]$$

 $u(x, 0) = \cos(x/16)(1 + \sin(x/16))$

```
S = spin('ks',{[0 32*pi], [0 200]});
u0 = chebfun('cos(x/16).*(1 + sin(x/16))',[0 32*pi],'trig');
u = solvepde(S,u0);
```


$$u_t = -u_{xxx} - uu_x, \quad x \in [-\pi, \pi], \ t \in [0, .01]$$

$$u(x, 0) = 3A^2 \operatorname{sech}^2\left(\frac{A(x+2)}{2}\right) + 3B^2 \operatorname{sech}^2\left(\frac{B(x+1)}{2}\right)$$

$$u_t = -u_{xxx} - uu_x, \quad x \in [-\pi, \pi], \ t \in [0, .01]$$

$$u(x, 0) = 3A^2 \operatorname{sech}^2\left(\frac{A(x+2)}{2}\right) + 3B^2 \operatorname{sech}^2\left(\frac{B(x+1)}{2}\right)$$

```
S = spin('kdv',{[-pi pi], [0 .01]}); A = 25; B = 16;
u0 = @(x) 3*A^2*sech(.5*A*(x+2)).^2+3*B^2*sech(.5*B*(x+1)).^2;
u0 = chebfun(u0,[-pi pi],'trig'); u = solvepde(S,u0);
```


$$u_t = -u_{xxx} - uu_x, \quad x \in [-\pi, \pi], \ t \in [0, .01]$$

$$u(x, 0) = 3A^2 \operatorname{sech}^2\left(\frac{A(x+2)}{2}\right) + 3B^2 \operatorname{sech}^2\left(\frac{B(x+1)}{2}\right)$$

Overview

1 Extension of Chebfun to periodic functions

2 Application 1: Nonlinear stiff PDEs

3 Application 2: Choreographies

lacktriangle Based on the principle of least action applied to the n-body problem

■ Based on the principle of least action applied to the *n*-body problem

Choreographies of the *n*-body problem

$$z_j''(t) - \sum_{\substack{i=0\\i\neq j}}^{n-1} \frac{z_i(t) - z_j(t)}{|z_i(t) - z_j(t)|^3} = 0, \quad 0 \le j \le n-1,$$

with
$$z_j(t)=q\Big(t+rac{2\pi j}{n}\Big)$$
 for some 2π -periodic function $q(t):[0,2\pi] o\mathbb{C}$

■ Based on the principle of least action applied to the *n*-body problem

Choreographies of the *n*-body problem

$$z_j''(t) - \sum_{\substack{i=0\\i\neq j}}^{n-1} \frac{z_i(t) - z_j(t)}{|z_i(t) - z_j(t)|^3} = 0, \quad 0 \le j \le n-1,$$

with $z_j(t)=q\Big(t+rac{2\pi j}{n}\Big)$ for some 2π -periodic function $q(t):[0,2\pi] o\mathbb{C}$

Minima of the action

$$A = \int_0^{2\pi} (K(t) - U(t)) dt,$$

$$K(t) = \frac{n}{2} |q'(t)|^2, \quad U(t) = -n \sum_{i=1}^{n-1} |q(t) - q(t + \frac{2\pi j}{n})|^{-1}$$

²M. and Gushterov, "Computing planar and spherical choreograhies", SIADS, submitted.

■ Trigonometric interpolation: $q(t) \rightarrow p_N(t) \rightarrow A_N$

²M. and Gushterov, "Computing planar and spherical choreograhies", SIADS, submitted.

■ Trigonometric interpolation: $q(t) \rightarrow p_N(t) \rightarrow A_N$

$$q(t) \approx p_N(t)$$
 instead of $q(t) = x(t) + iy(t) \approx x_N(t) + iy_N(t)$

²M. and Gushterov, "Computing planar and spherical choreograhies", SIADS, submitted.

■ Trigonometric interpolation: $q(t) \rightarrow p_N(t) \rightarrow A_N$

$$q(t) \approx p_N(t)$$
 instead of $q(t) = x(t) + iy(t) \approx x_N(t) + iy_N(t)$

■ A closed-form expression for the gradient: $p_N(t) \rightarrow \nabla A_N$

²M. and Gushterov, "Computing planar and spherical choreograhies", SIADS, submitted.

- Trigonometric interpolation: $q(t) \rightarrow p_N(t) \rightarrow A_N$ $q(t) \approx p_N(t)$ instead of $q(t) = x(t) + iy(t) \approx x_N(t) + iy_N(t)$
- A closed-form expression for the gradient: $p_N(t) \rightarrow \nabla A_N$
- Optimization algorithm: $p_N(t) \rightarrow p_N^*(t)$

²M. and Gushterov, "Computing planar and spherical choreograhies", SIADS, submitted.

- Trigonometric interpolation: $q(t) \rightarrow p_N(t) \rightarrow A_N$ $q(t) \approx p_N(t)$ instead of $q(t) = x(t) + iy(t) \approx x_N(t) + iy_N(t)$
- A closed-form expression for the gradient: $p_N(t) \rightarrow \nabla A_N$
- Optimization algorithm: $p_N(t) \rightarrow p_N^*(t)$

Quasi-Newton methods (BFGS) instead of Gradient methods

²M. and Gushterov, "Computing planar and spherical choreograhies", SIADS, submitted.

- Trigonometric interpolation: $q(t) \rightarrow p_N(t) \rightarrow A_N$ $q(t) \approx p_N(t)$ instead of $q(t) = x(t) + iy(t) \approx x_N(t) + iy_N(t)$
- A closed-form expression for the gradient: $p_N(t) \rightarrow \nabla A_N$
- Optimization algorithm: $p_N(t) o p_N^*(t)$ Quasi-Newton methods (BFGS) instead of Gradient methods
- Can be generalized to the sphere using stereographic projection ²

²M. and Gushterov, "Computing planar and spherical choreograhies", SIADS, submitted.

Numerical results

Numerical results

lacksquare At convergence check $\|
abla A_N \|_2$, $|c_k|$, and $\| \operatorname{residual} \|_\infty$

Numerical results

■ At convergence check $\|\nabla A_N\|_2$, $|c_k|$, and $\|\text{residual}\|_\infty$

Action	68.8516	71.3312	77.1588	88.4397	109.6366	119.3191
Computer time (s)	0.79	0.49	0.44	0.70	0.98	0.86
2-norm of the gradient	1.26e-02	1.39e-02	8.87e-03	9.68e-03	1.18e-02	1.28e-02
Smallest coefficient	4.71e-06	6.45e-08	2.26e-06	3.33e-06	2.08e-05	2.75e-05
∞ -norm of the residual	9.31e-02	1.09e-03	1.30e-02	4.43e-02	2.83e-01	6.56e-01

■ Chebfun now uses trigonometric interpolation for periodic problems

- Chebfun now uses trigonometric interpolation for periodic problems
- It includes the solution of linear and nonlinear ODEs, e-value problems, and linear and nonlinear stiff PDEs

- Chebfun now uses trigonometric interpolation for periodic problems
- It includes the solution of linear and nonlinear ODEs, e-value problems, and linear and nonlinear stiff PDEs
- Trigonometric interpolation can also be used when looking for periodic solutions of dynamical systems

- Chebfun now uses trigonometric interpolation for periodic problems
- It includes the solution of linear and nonlinear ODEs, e-value problems, and linear and nonlinear stiff PDEs
- Trigonometric interpolation can also be used when looking for periodic solutions of dynamical systems
- Future work includes the automatic computation of adjoint for optimal control

- Chebfun now uses trigonometric interpolation for periodic problems
- It includes the solution of linear and nonlinear ODEs, e-value problems, and linear and nonlinear stiff PDEs
- Trigonometric interpolation can also be used when looking for periodic solutions of dynamical systems
- Future work includes the automatic computation of adjoint for optimal control

$$Lu = \sum_{k=0}^{n} a_k u^{(k)},$$

$$L^*v = \sum_{k=0}^{n} (-1)^k (\overline{a_k} v)^{(k)}$$

- Chebfun now uses trigonometric interpolation for periodic problems
- It includes the solution of linear and nonlinear ODEs, e-value problems, and linear and nonlinear stiff PDEs
- Trigonometric interpolation can also be used when looking for periodic solutions of dynamical systems
- Future work includes the automatic computation of adjoint for optimal control

$$Lu = \sum_{k=0}^{n} a_k u^{(k)},$$

$$L^*v = \sum_{k=0}^{n} (-1)^k (\overline{a_k} v)^{(k)}$$

```
L = chebop([0 2*pi]);
L.op = @(t,u) diff(u) + cos(2*t).*u;
L.bc = 'periodic';
L.'
```