MULTIVARIJANTNA I DUBINSKA ANALIZA PODATAKA

ZORAVSTVENI POKAZATELJI DIJABETESA

CDC DIABETES HEALTH INDICATORS

JOSHUA LEE FLETCHER, NOA MIDŽIĆ MENTORICA: PROF. DR. SC. JASMINKA DOBŠA FAKULTET ORGANIZACIJE I INFORMATIKE INFORMACIJSKO I PROGRAMSKO INŽENJERSTVO 14

Opis skupa podataka

Popis i opis varijabli (vrijednosti i klasifikacija)

Popis obrada koji će se napraviti

Rezultati obrada

Zaključak

PODACIO DATASETU

- Behavioral risk factor surveillance system (BRFSS) – godišnja anketa CDC-a preko telefona
- 70,692 pojedinaca odgovorilo (opservacija)
 - 21 varijabli (podaci su odgovori ili izračunati s obzirom na odgovore)
 - 50% nema dijabetes
- Diabetes_binary
 - 0 nema dijabetes, 1 ima preddijabetes ili dijabetes

Varijable koje ćemo analizirati

Prikupljeni podaci za različite rizične i druge faktore za dijabetes – kolesterol, fizičko i mentalno zdravlje, pokriće zdravstvenim osiguranjem, ekonomski i socijalni status...

Varijabla	Značenje	Vrsta varijable	Vrijednosti koje poprima		
HighChol	Razina kolesterola	Kvalitativna, nominalna	0 (nizak), 1 (visok)		
CholCheck	Pregledan kolesterol u zadnjih 5 godina?	Kvalitativna, nominalna	0 (jest), 1 (nije)		
BMI_Group	Indeks tjelesne mase	Numerička, diskretna	12-98		
HvyAlcoholConsump	Žene >= 7 pića tjedno Muškarci >= 14 pića tjedno	Kvalitativna, nominalna	0 (ne), 1 (da)		
AnyHealthcare	Ima li zdravstveno osiguranje?	Kvalitativna, nominalna	0 (ne), 1 (da)		
NoDocbcCost	U zadnjih godinu dana, nemogućnost odlaska doktoru zbog cijene?	Kvalitativna, nominalna	0 (ne), 1 (da)		
Sex	Spol	Kvalitativna, nominalna	0 (žena), 1 (muškarac)		

Tablica 1. Varijable koje ćemo analizirat

Varijable koje ćemo analizirati

Varijabla	Značenje	Vrsta varijable	Vrijednosti koje poprima		
HighChol	Razina kolesterola	Kvalitativna, nominalna	0 (nizak), 1 (visok)		
CholCheck	Pregledan kolesterol u zadnjih 5 godina?	Kvalitativna, nominalna	0 (jest), 1 (nije)		
BMI_Group	Indeks tjelesne mase	Numerička, diskretna	12-98		
HvyAlcoholConsump	Žene >= 7 pića tjedno Muškarci >= 14 pića tjedno	Kvalitativna, nominalna	0 (ne), 1 (da)		
AnyHealthcare	Ima li zdravstveno osiguranje?	Kvalitativna, nominalna	0 (ne), 1 (da)		
NoDocbcCost	U zadnjih godinu dana, nemogućnost odlaska doktoru zbog cijene?	Kvalitativna, nominalna	0 (ne), 1 (da)		
Sex	Spol	Kvalitativna, nominalna	0 (žena), 1 (muškarac)		

Varijable koje ćemo analizirati

Varijabla	Značenje	Vrsta varijable	Vrijednosti koje poprima
Age_Group	AGE5GYR skala dobi: 1 = 18-24, 2 = 25-29, 3 = 30-34, 4 = 35-39, 5 = 40-44, 6 = 45-49, 7 = 50-54, 8 = 55-59, 9 = 60-64, 10 = 65-69, 11 = 70-74, 12 = 75-79, 13 = 80+ godina	•	1-13
Education_Group	EDUCA skala obrazovanja: 1 = samo vrtić, 2 = osnovna, 3 = nešto srednje škole, 4 = srednja škola, 5 = fakultet 1-3 godine, 6 = fakultet 4 godine ili više	•	1-6
Income	<pre>INCOME2 skala zarade: 1 = manje od 10.000 dolara, 2 = 10.000-15.000 dolara, 3 = 15.000-20.000 dolara, 4 = 20.000- 25.000, 5 = 25.000-35.000, 6 = 35.000- 50.000, 7 = 50.000-75.000, 8 = 75.000 ili više dolara</pre>		1-8

Tablica 1. Varijable koje ćemo analizirati

Varijable koje ćemo analizirati

Varijabla	Značenje	Vrsta varijable	Vrijednosti koje poprima
HighBP	Ima li povišen tlak krvi?	Kvalitativna, nominalna	0 (ne), 1 (da)
GenHlth	Osobna procjena općenitog zdravtsvenog stanja na skali 1-5: 1 = odlično, 2 = vrlo dobro, 3 = dobro, 4 = u redu, 5 = loše	Kvalitativna, redoslijedna	1-5

Tablica 1. Varijable koje ćemo analizirati

DESKRIPTIVNA STATISTIKA

Slika 1. Korelacija PhysHlth i BMI

```
> # Deskriptivna statistika - numericka varijabla (BMI)
> median bmi <- median(data$BMI)</pre>
> print(median bmi)
[1] 29
> mean bmi <- mean(data$BMI)</pre>
> print(mean bmi)
[1] 29.77
> standard deviation <- sd(data$BMI)</pre>
> print(standard deviation)
[1] 6.806707
> variance <- var(data$BMI)</pre>
> print(variance)
[1] 46.33127
> quantiles <- quantile(data$BMI, probs = c(0.25, 0.5, 0.75))</pre>
> print(quantiles)
25% 50% 75%
 25 29 33
> correlation <- cor(data$PhysHlth, data$BMI)</pre>
> print(correlation)
[1] 0.1499764
```

Korelacija između PhysHlth i BMI

3.75))

DESKRIPTIVNA STATISTIKA

Slika 1. Korelacija PhysHlth i BMI

```
> # Deskriptivna statistika - numericka varijabla (BMI)
> median bmi <- median(data$BMI)</pre>
> print(median bmi)
[1] 29
> mean bmi <- mean(data$BMI)</pre>
> print(mean bmi)
[1] 29.77
> standard deviation <- sd(data$BMI)</pre>
> print(standard deviation)
[1] 6.806707
> variance <- var(data$BMI)</pre>
> print(variance)
[1] 46.33127
> quantiles <- quantile(data$BMI, probs = c(0.25, 0.5, 0.75))</pre>
> print(quantiles)
25% 50% 75%
 25 29 33
> correlation <- cor(data$PhysHlth, data$BMI)</pre>
> print(correlation)
[1] 0.1499764
```

summary(data) # za sve varijable

> summary(data)							
Diabetes_binary	HighBP	HighChol	CholCheck	BMI	Smoker	Stroke	HeartDiseaseorAttack
1:1000	Min. :0.0000	Min. :0.000	Min. :0.000	Min. :14.00	Min. :0.000	Min. :0.000	Min. :0.000
2:1000	1st Qu.:0.0000	1st Qu.:0.000	1st Qu.:1.000	1st Qu.:25.00	1st Qu.:0.000	1st Qu.:0.000	1st Qu.:0.000
	Median :1.0000	Median :1.000	Median :1.000	Median :28.00	Median :0.000	Median :0.000	Median :0.000
	Mean :0.5775	Mean :0.528	Mean :0.972	Mean :29.69	Mean :0.475	Mean :0.072	Mean :0.156
	3rd Qu.:1.0000	3rd Qu.:1.000	•	3rd Qu.:33.00	3rd Qu.:1.000	3rd Qu.:0.000	3rd Qu.:0.000
	Max. :1.0000	Max. :1.000		Max. :92.00	Max. :1.000	Max. :1.000	Max. :1.000
PhysActivity	Fruits	Veggies	HvyAlcoholConsum				
Min. :0.000	Min. :0.000	Min. :0.0000	Min. :0.000	Min. :0.000			
1st Qu.:0.000	1st Qu.:0.000	1st Qu.:1.0000	1st Qu.:0.000	1st Qu.:1.0000	•	•	•
Median :1.000	Median :1.000	Median :1.0000	Median :0.000	Median :1.0000			
Mean :0.704	Mean :0.605	Mean :0.7875	Mean :0.046	Mean :0.958			
3rd Qu.:1.000	3rd Qu.:1.000	3rd Qu.:1.0000	3rd Qu.:0.000	3rd Qu.:1.0000	•	•	*
Max. :1.000	Max. :1.000	Max. :1.0000	Max. :1.000	Max. :1.0000			
PhysHlth	DiffWalk	Sex	Age	Education	Income		_Group Age_Group
Min. : 0.000	Min. :0.0000		Min. : 1.000			_	
1st Qu.: 0.000	1st Qu.:0.0000	1st Qu.:0.0000	1st Qu.: 7.000	•	•	•	
Median : 0.000	Median :0.0000		Median : 9.000			_	:672 55-69 :750
Mean : 5.923	Mean :0.2495	Mean :0.4685	Mean : 8.635	Mean :4.932		•	:706 70-80+:701
3rd Qu.: 5.250	3rd Qu.:0.0000	•	3rd Qu.:11.000	•	•		ity:166 NA's :144
Max. :30.000	Max. :1.0000	Max. :1.0000	Max. :13.000	Max. :6.000	0 Max. :8.000)	
Education_Group							
Min. :1.000							
1st Qu.:2.000							
Median :3.000							
Mean :2.634							
3rd Qu.:3.000							
Max. :3.000							

DESKRIPTIVNA STATISTIKA

Slika 2. Raspodjela kvalitativnih varijabli

```
# Deskriptivna statistika - kvalitativne varijable
promatranja <- table(data$Diabetes binary)</pre>
pie(promatranja, labels = c("Nema dijabetes", "Ima dijabetes"), main =
"Raspodiela po dijabetesu")
promatranja <- table(data$Sex)</pre>
pie(promatranja, labels = c("Žene", "Muškarci"), main = "Raspodjela spola")
promatranja <- table(data$HighChol)</pre>
pie(promatranja, labels = c("Visok kolesterol", "Nizak kolesterol"),
                            main = "Raspodjela po kolesterolu")
promatranja <- table(data$Age)</pre>
pie(promatranja, labels = c("18-24", "25-29", "30-34", "35-39", "40-44",
                             "45-49", "50-54", "55-59", "60-64", "65-69",
                             "70-74", "75-79", "80+ godina"),
    main = "Raspodjela po dobi")
promatranja <- table(data$Education)</pre>
pie(promatranja, labels = c("Samo vrtić", "Osnovna", "Nešto srednje škole",
                             "Srednja škola", "Fakultet 1-3 godine",
                            "Fakultet 4 godine ili više"),
    main = "Raspodjela po edukaciji")
promatranja <- table(data$Income)</pre>
pie(promatranja, labels = c("Manje od 10.000 dolara", "10.000-15.000 dolara",
                             "15.000-20.000 dolara", "20.000-25.000",
                             "25.000-35.000", "35.000-50.000", "50.000-75.000",
                             "75.000 ili više dolara"),
    main = "Raspodjela po zaradi")
```

Raspodjela po dijabetesu

Raspodjela spola

Raspodjela po kolesterolu

Raspodjela po dobi

Raspodjela po zaradi

Raspodjela po edukaciji

Slika 2. Raspodjela kvalitativnih varijabli

PROVEDENE DBRADE

- 2 nezavisna uzorka
 - dijabetičari vs ne-dijabetičari
- Odabrane varijable (kontinuirane, kvalitativne)
 - BMI: x ε [14, 92]
 - Income: 1, 2, 3, 4, 5, 6, 7, 8
 - HighBP: 0, 1
 - GenHlth: 1, 2, 3, 4, 5

Matrica korelacije Dijagrami rasipanja

Logistička regresija

Hi-kvadrat

MATRICA KORELACIJE

```
##
                                                HighBP
                            BMI
                                     Income
                                                          GenHlth Diabetes_binary
                                             0.2653145
                                                        0.2565445
## BMI
                    1.00000000 -0.08070523
                                                                         0.3015427
  Income
                   -0.08070523
                                 1.00000000
                                            -0.1666267 -0.3541305
                                                                        -0.2034299
## HighBP
                    0.26531455 -0.16662669
                                             1.0000000
                                                        0.3273458
                                                                         0.3857488
## GenHlth
                    0.25654447 -0.35413051
                                             0.3273458
                                                        1.0000000
                                                                         0.3982426
                    0.30154274 -0.20342990
## Diabetes_binary
                                             0.3857488
                                                        0.3982426
                                                                         1.0000000
```


Slika 3. Matrica korelacije

Slika 3. Matrica korelacije

DIJAGRAM RASIPANJA

Dijagram rasipanja


```
# dijagrami rasipanja
pairs(~ BMI + Income + HighBP +
   GenHlth + Diabetes_binary,
   main = "Dijagram rasipanja",
   data = data)
```

Slika 4. Dijagram rasipanja

LOGISTIČKA REGRESIJA FORMULA

```
logit(DiabetesBinary) = \beta_0 + \beta_1 BMI + \beta_2 HighBP + \beta_3 GenHlth + \beta_4 Income + \epsilon
ln(P(imati\_dijabetes)/P(nemati\_dijabetes))
```

PROVEDBA

```
data$Diabetes_binary <- as.factor(data$Diabetes_binary)</pre>
data$Income <- as.factor(data$Income)</pre>
data$HighBP <- as.factor(data$HighBP)</pre>
data$GenHlth <- as.factor(data$GenHlth)</pre>
skup <- data %>%
  select(Diabetes binary, HighBP, GenHlth, Income, BMI)
set.seed(1)
split = initial_split(skup, prop = 0.7, strata = Diabetes_binary)
train = split %>%
 training()
test = split %>%
  testing()
```

OBRADA LOGISTIČKA REGRESIJA

attach(train)
summary(train)

```
Diabetes_binary HighBP
                           GenHlth
##
                                       Income
                                                      BMI
                   0:598
                                                 Min. :15.00
                           1:142
   0:700
                                          : 385
##
                   1:802
                           2:432
                                          :224
                                                 1st Qu.:25.00
##
   1:700
                                                 Median:29.00
                           3:449
                                          :216
##
                           4:263
                                          :169
##
                                                 Mean :29.65
##
                           5:114
                                          :157
                                                 3rd Qu.:33.00
                                          :114
##
                                                 Max. :92.00
                                   (Other):135
##
```

OBRADA LOGISTIČKA REGRESIJA

describe(train)

##		vars	n	mean	sd	median	trimmed	mad	min	max	range	skew	kurtosis	se
##	Diabetes_binary*	1	1400	1.50	0.50	1.5	1.50	0.74	1	2	1	0.00	-2.00	0.01
##	HighBP*	2	1400	1.57	0.49	2.0	1.59	0.00	1	2	1	-0.29	-1.91	0.01
##	GenHlth*	3	1400	2.84	1.10	3.0	2.82	1.48	1	5	4	0.23	-0.63	0.03
##	Income*	4	1400	5.69	2.10	6.0	5.91	2.97	1	8	7	-0.60	-0.71	0.06
##	BMI	5	1400	29.65	6.72	29.0	29.04	5.93	15	92	77	1.62	7.76	0.18

REZULTATI LOGISTIČKA REGRESIJA

model <- glm(Diabetes_binary ~ BMI + Income + HighBP + GenHlth,
 data = train, family = binomial)
summary(model)</pre>

```
## Coefficients:
                                                       ## (Dispersion parameter for binomial family taken to be 1)
              Estimate Std. Error z value Pr(>|z|)
                                                       ##
  ## (Intercept) -5.36003
                       0.54125 -9.903 < 2e-16 ***
                                                             Null deviance: 1940.8 on 1399 degrees of freedom
> ## BMI
          ## Residual deviance: 1488.9 on 1386 degrees of freedom
  ## Income2 0.78698 0.40396 1.948 0.051398 .
                                                       ## AIC: 1516.9
> ## Income3 1.02183
                       0.37235 2.744 0.006065 **
> ## Income4 0.76518
                       0.34767 2.201 0.027743 *
                                                       ## Number of Fisher Scoring iterations: 5
             1.18561
> ## Income5
                       0.35285 3.360 0.000779 ***
  ## Income6 0.61090
                       0.33848 1.805 0.071098 .
> ## Income7 0.70241
                       0.33737 2.082 0.037341 *
  ## Income8
             0.38522
                       0.32775 1.175 0.239850
> ## HighBP1
              1.20292
                        0.13132 9.160 < 2e-16 ***
> ## GenHlth2
              1.34604
                        0.33071 4.070 4.70e-05 ***
> ## GenHlth3
             2.37584
                       0.32999 7.200 6.03e-13 ***
> ## GenHlth4
             2.51745
                       0.34872 7.219 5.23e-13 ***
> ## GenHlth5
              2.80037
                       0.39705 7.053 1.75e-12 ***
  ## ---
  ## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

REZULTATI LOGISTIČKA REGRESIJA

```
logit(DiabetesBinary) = -5.36003 + 0.06975 * BMI + 1.20292 * HighBP1 + 1.34604GenHlth2 \\ + 2.37584GenHlth3 + 2.51745GenHlth4 + 2.80037GenHlth5 + 0.78698Income2 + 1.02183Income3 \\ + 0.76518Income4 + 1.18561Income5 + 0.61090Income6 + 0.70241Income7 + 0.38522Income8 \\ + 0.76518Income4 + 0.38522Income8 \\ + 0.86518Income4 + 0.86518Income5 + 0.61090Income6 \\ + 0.86518Income7 + 0.38522Income8 \\ + 0.86518Income7 + 0.86518Income7 \\ + 0.86518Income7 + 0.86518Income7 \\ + 0.
```

KOEFICIJENTI LOGISTIČKE REGRESIJE & OMJERA IZGLEDA

exp(model\$coefficients)

```
## (Intercept) BMI Income2 Income3 Income4 Income5 Income6 Income7 Income8
## 0.004700749 1.072236345 2.196753842 2.778278951 2.149387700 3.272666611 1.842095207 2.018606202 1.469943960
## HighBP1 GenHlth2 GenHlth3 GenHlth4 GenHlth5
## 3.329819837 3.842188376 10.760003655 12.396899569 16.450794905
```

KOEFICIJENTI LOGISTIČKE REGRESIJE & OMJERA IZGLEDA

```
##
                    2.5 %
                         97.5 %
 ## (Intercept) 0.001581672 0.01325646
>## BMI
              1.049385430 1.09629860
 ## Income2 0.999029915 4.88480843
>## Income3
              1.341095643 5.79091611
>## Income4
              1.086509315 4.25935115
>## Income5
              1.640188370 6.56144053
                                     exp(confint(model))
              0.947701662 3.58412113
 ## Income6
              1.040968740 3.91996879
>## Income7
 ## Income8
              0.772324534 2.80130492
> ## HighBP1
              2.577079346 4.31311992
> ## GenHlth2
              2.081990516 7.69080889
> ## GenHlth3
              5.842622516 21.51772115
## GenHlth4 6.465416517 25.60844677
>## GenHlth5
              7.781523726 37.16838503
```

SIGNIFIKANTNOST MODERAL SIGNIF

- logistički regresijski model je statistički značajan na razini od 5%
- model je bolji od nultog modela

```
# testna statistika
ModelChi = model$null.deviance
  - model$deviance
ModelChi
[1] 451.9521
# broj stupnjeva slobode
ChiDf = model$df.null - model$df.residual
ChiDf
[1] 13
# p-vrijednost
ChisqProb = 1 - pchisq(ModelChi, ChiDf)
ChisqProb
[1] 0
```

ZAKLJUČAK

❖ Varijable BMI + Income + HighBP + GenHlth u logističkoj regresiji modeliraju statistički značajnu korelaciju

regresija.Rmd

```
title: "Regresija"
output: html_document
# 2. faza projekta - Logistička regresija
if (!require("dplyr")) install.packages("dplyr")
library(ggplot2)
library(corrplot)
data <- read.csv(file.choose())</pre>
correlation_matrix <- cor(numeric_vars, use = "complete.obs")</pre>
print(correlation matrix)
corrplot(correlation matrix, method = "circle")
pairs(~ BMI + Income + HighBP + GenHlth + Diabetes_binary,
 main = "Dijagram rasipanja", data = data)
Jednadžba:
$$logit(DiabetesBinary) = \beta_{0} + \beta_1BMI + \beta_2HighBP + \beta_3GenHlth +
\beta 4Income + \epsilon$$
$logit(admit)$ je $ln(P(imati\_dijabetes)/P(nemati\_dijabetes))$
```{r}
data$Diabetes_binary <- as.factor(data$Diabetes_binary)</pre>
data$Income <- as.factor(data$Income)</pre>
data$HighBP <- as.factor(data$HighBP)</pre>
data$GenHlth <- as.factor(data$GenHlth)</pre>
if (!require("rsample")) install.packages("rsample")
library(rsample)
skup <- data %>%
 select(Diabetes binary, HighBP, GenHlth, Income, BMI)
```

#### GitHub poveznica na ovu datoteku u trenutku izrade dokumentacije.

```
set.seed(1)
split = initial_split(skup, prop = 0.7, strata = Diabetes_binary)
train = split %>%
 training()
test = split %>%
 testing()
attach(train)
summary(train)
library(psych)
describe(train)
model <- glm(Diabetes binary ~ BMI + Income + HighBP + GenHlth, data = train, family = binomial)</pre>
summary(model)
$$logit(DiabetesBinary) = -5.36003 + 0.06975*BMI + 1.20292*HighBP1 + 1.34604GenHlth2 + 2.37584GenHlth3 + 2.51745GenHlth4
2.80037GenHlth5 + 0.78698Income2 + 1.02183Income3 + 0.76518Income4 + 1.18561Income5 + 0.61090Income6 + 0.70241Income7 +
0.38522Income8$$
Koeficijenti logističke regresije i omjera izgleda
···{r}
exp(model$coefficients)
exp(confint(model))
Signifikantnost modela
```{r}
ModelChi = model$null.deviance - model$deviance
ModelChi
ChiDf = model$df.null - model$df.residual
ChiDf
ChisqProb = 1 - pchisq(ModelChi, ChiDf)
ChisqProb
```

LITERATURA

Sav programski kod se može pronaći na javnom GitHub repozitoriju ovog rada: https://github.com/jfletcher20/diabetes-health-indicators-analysis

- AGE5GYR Variable Home Page (bez dat.). Preuzeto na: https://www.icpsr.umich.edu/web/NAHDAP/studies/34085/datasets/0001/variables/AGE G5YR?archive=NAHDAP (pristupano: 5.5.2024.).
- Body mass index (BMI) I NHS inform (bez dat.). Preuzeto na: https://www.nhsinform.scot/healthy-living/food-and-nutrition/healthy-eating-and-weight-loss/body-mass-index-bmi/ (pristupano: 5.5.2024.).
 - Diabetes Health Indicators Dataset (bez dat.). Preuzeto na: https://www.kaggle.com/datasets/alexteboul/diabetes-health-indicatorsdataset/data?select=diabetes_binary_5050split_health_indicators_BRFSS2015.csv (pristupano: 5.5.2024.).
 - EDUCA Variable Home Page (bez dat.). Preuzeto na: https://www.icpsr.umich.edu/web/NAHDAP/studies/34085/datasets/0001/variables/EDUCA?archive=nahdap (pristupano: 5.6.2024.).
 - INCOME2 Variable Home Page (bez dat.). Preuzeto na: https://www.icpsr.umich.edu/web/NAHDAP/studies/34085/datasets/0001/v ariables/INCOME2?archive=NAHDAP (pristupano: 5.6.2024.).

HVALAVAMNA PARTICIONAL PARTIC

JOSHUA LEE FLETCHER, NOA MIDŽIĆ