Module 4: Spatial & Multimedia Databases

Spatial Databases

- Also known as a "geospatial database" is built to capture and store the points, lines, and areas of cartographic information that we refer to as spatial data.
 - Geographic coordinates: Two-dimensional (2D) coordinates
 - Geometric shapes: Lines or polygons
 - GPS data collected using Global Positioning System (GPS) receivers, Drones, and Wireless sensors, etc.
- Most spatial databases allow the representation of simple geometric objects such as points, lines and polygons.

Value of SDBMS – Spatial Data Examples

- Examples of non-spatial data
 - Names, phone numbers, email addresses of people
- Examples of Spatial data
 - Census Data
 - NASA satellites imagery terabytes of data per day
 - Weather and Climate Data
 - Rivers, Farms, ecological impact
 - Medical Imaging

Value of SDBMS – Users, Application Domains

- Many important application domains have spatial data and queries. Some Examples follow:
 - Army Field Commander: Has there been any significant enemy troop movement since last night?
 - **Insurance Risk Manager**: Which homes are most likely to be affected in the next great flood on the Mississippi?
 - **Medical Doctor**: Based on this patient's MRI, have we treated somebody with a similar condition ?
 - Molecular Biologist: Is the topology of the amino acid biosynthesis gene in the genome found in any other sequence feature map in the database?
 - Astronomer: Find all blue galaxies within 2 arcmin of quasars.

Queries

- Non-spatial queries:
 - List the names of all bookstore with more than ten thousand titles.
 - List the names of ten customers, in terms of sales, in the year 2001
- Spatial Queries:
 - List the names of all bookstores within ten miles of VIT
 - List all customers who live in Chennai and its adjoining states

What is a SDBMS?

- A SDBMS is a software module that
 - can work with an underlying DBMS
 - supports spatial data models, spatial abstract data types (ADTs) and a query language from which these ADTs are callable
 - supports spatial indexing, efficient algorithms for processing spatial operations, and domain specific rules for query optimization
- Example: Oracle Spatial data cartridge, ESRI SDE
 - can work with Oracle 8i DBMS
 - Has spatial data types (e.g. polygon), operations (e.g. overlap) callable from SQL3 query language
 - Has spatial indices, e.g. R-trees

SDBMS Example

- Consider a spatial dataset with:
 - County boundary (dashed white line)
 - Census block name, area, population, boundary (dark line)
 - Water bodies (dark polygons)
 - Satellite Imagery (gray scale pixels)
- Storage in a SDBMS table:

```
reate table census_blocks (
name string,
area float,
population number,
boundary polygon);
```


Modeling Spatial Data in Traditional DBMS

- •A row in the table census_blocks
- Question: Is Polyline datatype supported in DBMS?

Spatial Data Types and Traditional Databases

- Traditional relational DBMS
 - Support simple data types, e.g. number, strings, date
 - Modeling Spatial data types is tedious
- Example: Figure X shows modeling of polygon using numbers
 - Three new tables: polygon, edge, points
 - Note: Polygon is a polyline where last point and first point are same
 - A simple unit sqaure represented as 16 rows across 3 tables
 - Simple spatial operators, e.g. area(), require joining tables
 - Tedious and computationally inefficient
- Question. Name post-relational database management systems which facilitate modeling of spatial data types, e.g. polygon.

Mapping "census_table" into a Relational Database

Census_blocks

Name	Area	Population	boundary-ID
340	1	1 839	1050

Polygon

boundary-ID	edge-name
1050	A
1050	В
1050	С
1050	D

Edge

edge-name	endpoint
A	1
A	2
В	2
В	3
С	3
С	4
ם	4
D	1

Point

endpoint	x-coor	y-000r
1	o	1
2	0	0
3	1	0
4	1	1

Fig X

How is a SDBMS different from a GIS?

- GIS is a software to visualize and analyze spatial data using spatial analysis functions such as
 - Search Thematic search, search by region, (re-)classification
 - Location analysis Buffer, corridor, overlay
 - Terrain analysis Slope/aspect, catchment, drainage network
 - Flow analysis Connectivity, shortest path
 - **Distribution** Change detection, proximity, nearest neighbor
 - Spatial analysis/Statistics Pattern, centrality, autocorrelation, indices of similarity, topology: hole description
 - Measurements Distance, perimeter, shape, adjacency, direction
- GIS uses SDBMS
 - to store, search, query, share large spatial data sets

How is a SDBMS different from a GIS?

SDBMS focusses on

- Efficient storage, querying, sharing of large spatial datasets
- Provides simpler set based query operations
- Example operations: search by region, overlay, nearest neighbor, distance, adjacency, perimeter etc.
- Uses spatial indices and query optimization to speedup queries over large spatial datasets.

SDBMS may be used by applications other than GIS

- Astronomy, Genomics, Multimedia information systems, ...
- Will one use a GIS or a SDBM to answer the following:
 - How many neighboring countries does USA have?
 - Which country has highest number of neighbors?

Components of a SDBMS

Recall: a SDBMS is a software module that

- can work with an underlying DBMS
- supports spatial data models, spatial ADTs and a query language from which these ADTs are callable
- supports spatial indexing, algorithms for processing spatial operations, and domain specific rules for query optimization

Components include

 spatial data model, query language, query processing, file organization and indices, query optimization, etc.

1.6.1 Spatial Taxonomy, Data Models

Spatial Taxonomy:

- multitude of descriptions available to organize space.
- Topology models homeomorphic relationships, e.g. overlap
- Euclidean space models distance and direction in a plane
- Graphs models connectivity, Shortest-Path

Spatial data models

- rules to identify identifiable objects and properties of space
- Object model help manage identifiable things, e.g. mountains, cities, land-parcels etc.
- Field model help manage continuous and amorphous phenomenon, e.g. wetlands, satellite imagery, snowfall etc.

Spatial Query Language

- Spatial query language
 - Spatial data types, e.g. point, linestring, polygon, ...
 - Spatial operations, e.g. overlap, distance, nearest neighbor, ...
 - Callable from a query language (e.g. SQL3) of underlying DBMS

```
SELECT S.name
FROM Senator S
WHERE S.district.Area() > 300
```

- Standards
 - SQL3 (a.k.a. SQL 1999) is a standard for query languages
 - OGIS is a standard for spatial data types and operators
 - Both standards enjoy wide support in industry

Example

CREATE TABLE Parks (park_id SERIAL PRIMARY KEY, name VARCHAR(255) NOT NULL, boundary POLYGON NOT NULL -- Storing the park's boundary as a polygon);

Example Record:

- park_id:1
- name: "Central Park"
- boundary: POLYGON((40.7681 -73.9817, 40.7681 -73.9580, 40.8006
 -73.9580, 40.8006 -73.9817, 40.7681 -73.9817))

This boundary field stores a polygon representing the shape of the park as a series of coordinates that form a closed loop.

CREATE TABLE Hospitals (hospital_id SERIAL PRIMARY KEY, name VARCHAR(255) NOT NULL, location POINT NOT NULL -- Storing hospital location as a point (latitude, longitude));

Example Record:

- hospital_id:1
- name: "City General Hospital"
- location: POINT(40.712776 -74.005974)

This location field stores the coordinates of the hospital as a point.

CREATE TABLE Roads (road_id SERIAL PRIMARY KEY, name VARCHAR(255) NOT NULL, path LINESTRING NOT NULL -- Storing the road path as a linestring);

Example Record:

- road_id:1
- name: "Main Street"
- path: LINESTRING(40.712776 -74.005974, 40.715776 -74.002974, 40.718776
 -73.998974)

This path field stores the geometry of the road as a series of points connected by lines.

Multi-scan Query Example

• Spatial join example

SELECT S.name FROM Senator S, Business B WHERE S.district.Area() > 300 AND Within(B.location, S.district)

• Non-Spatial Join example

SELECT S.name FROM Senator S, Business B

WHERE S.soc-sec = B.soc-sec AND S.gender = 'Female'

NAME SOC.-SEC GENDER DISTRICT (POLYGON) BUSINESS B-NAME OWNER SOC-SEC LOCATION (POINT)

SQL Query Example (assuming a PostGIS-enabled database):

Consider a spatial database of a city's infrastructure with tables for roads, parks, and buildings. The Park table contains data about each park, including its name, area (stored as polygons), and location.

"Which parks are within 2 kilometers of 'Main Street'?"

SELECT p.name FROM Parks p, Roads r WHERE r.name = 'Main Street' AND ST_DWithin(p.location, r.location, 2000);

- ST_DWithin is a spatial function that checks whether two geometries are within a specified distance of each other (in this case, 2000 meters or 2 kilometers).
- The query finds all parks (p) that are within 2 kilometers of 'Main Street' (r).

which schools are within 3 kilometers of Central Park for a school safety program.

SELECT s.name FROM Schools s, Parks p WHERE p.name = 'Central Park' AND ST_DWithin(s.location, p.boundary, 3000);

- ST_DWithin(s.location, p.boundary, 3000) checks whether the schools (s.location) are within 3000 meters (3 kilometers) of Central Park's boundary (p.boundary).
- This query returns all schools within the specified distance of Central Park.

Query Processing

- Efficient algorithms to answer spatial queries
- Common Strategy filter and refine
 - Filter Step: Query Region overlaps with minimum bounding rectangle (MBF of B,C and D
 - Refine Step: Query Region overlaps with B and C

Query Processing of Join Queries

- •Example Determining pairs of intersecting rectangles
 - (a):Two sets R and S of rectangles, (b): A rectangle with 2 opposite corners marked, (c): Rectangles sorted by smallest X coordinate value
 - Plane sweep filter identifies 5 pairs out of 12 for refinement step
 - •Details of plane sweep algorithm on page 15

1.6.4 File Organization and Indices

- A difference between GIS and SDBMS assumptions
 - •GIS algorithms: dataset is loaded in main memory (Fig. 1.10(a))
 - •SDBMS: dataset is on secondary storage e.g disk (Fig. 1.10(b))
 - •SDBMS uses space filling curves and spatial indices
 - •to efficiently search disk resident large spatial datasets

Fig 1.10

Organizing spatial data with space filling curves

- •Issue:
 - •Sorting is not naturally defined on spatial data
 - •Many efficient search methods are based on sorting datasets
- •Space filling curves
 - •Impose an ordering on the locations in a multi-dimensional space
 - •Examples: row-order (Fig. 1.11(a), z-order (Fig 1.11(b))
 - Allow use of traditional efficient search methods on spatial data

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

7	8	14	16
5	6	13	15
2	4	10	12
1	3	9	11

(b)

(a)

Fig 1.11

Spatial Indexing: Search Data-Structures

- •Choice for spatial indexing:
 - •B-tree is a hierarchical collection of ranges of linear keys, e.g. numbers
 - •B-tree index is used for efficient search of traditional data
 - •B-tree can be used with space filling curve on spatial data
 - •R-tree provides better search performance yet!
 - •R-tree is a hierarchical collection of rectangles
 - •More details in chapter 4

Query Optimization

- Query Optimization
 - A spatial operation can be processed using different strategies
 - Computation cost of each strategy depends on many parameters
 - •Query optimization is the process of
 - •ordering operations in a query and
 - •selecting efficient strategy for each operation
 - •based on the details of a given dataset
- •Example Query:

```
SELECT S.name FROM Senator S, Business B
```

WHERE S.soc-sec = B.soc-sec AND S.gender = 'Female'

- Optimization decision examples
 - •Process (S.gender = 'Female') before (S.soc-sec = B.soc-sec)
 - •Do not use index for processing (S.gender = 'Female')

Data Mining

- Analysis of spatial data is of many types
 - Deductive Querying, e.g. searching, sorting, overlays
 - Inductive Mining, e.g. statistics, correlation, clustering, classification, ...
- Data mining is a systematic and semi-automated search for interesting non-trivial patterns in large spatial databases
- •Example applications include
 - •Infer land-use classification from satellite imagery
 - •Identify cancer clusters and geographic factors with high correlation
 - •Identify crime hotspots to assign police patrols and social workers

Multimedia Database Concepts

- Multimedia databases allow users to store and query images, video, audio, and documents
- Content-based retrieval
 - Automatic analysis
 - Manual identification
 - Color often used in content-based image retrieval
 - Texture and shape
- Object recognition
 - Scale-invariant feature transform (SIFT) approach

Multimedia Database Concepts (cont'd.)

- Semantic tagging of images
 - User-supplied tags
 - Automated generation of image tags
 - Web Ontology Language (OWL) provides concept hierarchy
- Analysis of audio data sources
 - Text-based indexing
 - Content-based indexing