2 – Leis fundamentais dos circuitos electricos

Objectivo – Simulação de circuitos simples em DC. Verificação das leis fundamentais dos circuitos electricos: lei de Ohm e leis de Kirchhoff. Associação de resistências em série e em paralelo. Divisor de tensão; divisor de corrente.

2.1 - Verificação da lei de Ohm

- a) Desenhar o circuito da fig. 2.1 com uma resistência de valor à escolha. Colocar probes de tensão e corrente. Medir corrente para três ou quatro valores de tensão, calcular a relação V_s/I para cada par de valores e tirar conclusões.
- **b)** Com $V_s = 8V$ medir I para outros dois ou três valores de R. Para cada caso calcular V_s/R . e comparar com os valores de I

Fig. 2.1

2.2 - Verificação da lei de Kirchhoff das tensões

Desenhe o circuito da fig. 2.2. Use três resistências diferentes de valores entre 330Ω e $2.2K\Omega$.

- a) Obtenha os valores das tensões V_1 , V_2 e V_3 . (V_1 e V_2 devem ser obtidos com dois probes colocados nas extremidades de cada uma destas resistências, sendo um deles do tipo 'Voltage Reference'). Qual a relação entre a soma destas tensões e o valor de V_{DC} ?
- **b)** A corrente que percorre as três resistências é a mesma. Obtenha o valor desta corrente. Verifique se o valor da corrente, juntamente com as medidas efectuadas na alinea anterior, estão de acordo com a lei de Ohm.
- c) Compare o valor da relação V_{DC}/I com o valor resultante da soma das três resistências.
- d) Usando a fórmula do divisor de tensão, relacione qualquer uma das tensões V_1 , V_2 ou V_3 com V_{DC} .

Fig. 2.2 – A tensão assinalada pelo probe V1+ é referida ao probe de referência V1ref. Corresponde, portanto, à tensão V_I . O mesmo para os probes V2+ (relativo a V2ref) e V3+ (relativo a V3ref).

2.3 - Verificação da lei de Kirchhoff das correntes

Desenhe o circuito da fig. 2.3. Use três resistências diferentes de valores entre 330Ω e $1K\Omega$.

- a) Obtenha as correntes I, I_1 , I_2 e I_3 . Qual a relação entre I e a soma das correntes I_1 , I_2 e I_3 ?
- **b)** A tensão aos terminais de cada uma das resistências é a mesma é a tensão da fonte. Verifique se esta tensão, juntamente com as medidas de I_1 , I_2 e I_3 efectuadas na alinea anterior, estão de acordo com a lei de Ohm.
- c) Relacione o valor de V_{DC}/I com as três resistências do circuito.
- d) Usando a fórmula do divisor de corrente, relacione qualquer uma das tensões I_1 , I_2 ou I_3 com I.

Fig. 2.3