SEREN - Version 1.5.0

David Hubber, Christopher Batty & Andrew McLeod

February 17, 2013

Contents

1 Ove	erview
2 Usi	ng SEREN
2.1	Obtaining SEREN via git
	2.1.1 Initialising git and obtaining Seren
	2.1.2 Updating Seren and managing conflicts
	2.1.3 Other important commands
2.2	Compiling and running SEREN
	2.2.1 Command-line arguments
	2.2.2 Restarting simulations
2.3	SEREN -MPI
	2.3.1 Compiling and running SEREN-MPI
	2.3.2 Combining data snapshots with MPI
2.4	Makefile
2.5	Debug flags
2.6	Parameter file
Ger	nerating initial conditions
3.1	ic_BB
3.2	ic_binary
3.3	ic_core
3.4	ic_jeans
3.5	ic_KH
3.6	ic_lattice_cube
3.7	ic_NTSI
3.8	ic_plummer
3.9	ic_polytrope
3.10	oral ic_radtest oral control c
3.11	l ic_random_cube
3.12	2 ic_replicate_cubes
3.13	3 ic_RT
	4 ic_sedov
	5 ic_shocktube
	5 ic_sphere
	7 ic_vel_pert.F90
4 D	uning the SEREN bash test script

5	Cod	ling style of SEREN	32
	5.1	Design philosophy of SEREN	32
	5.2		32
			32
	5.3		33
	5.4	V1	33
	5.5	·	33
6	Unit	ts	35
7	File	formats	38
	7.1	ASCII format	38
	7.2		38
	7.3		39
8	Stru	acture of code	39
	8.1	Basic directory structure	39
9	Vari	iable conventions	40
	9.1	Integer variables	40
			40

1 Overview

SEREN is a Smoothed Particle Hydrodynamics (SPH) code designed for solving self-gravitating hydrodynamical problems in astrophysics, particularly in the fields of star and planet formation. SEREN largely grew from DRAGON, the star formation SPH code written by Simon Goodwin at Cardiff University, although many routines have significantly diverged from the original DRAGON versions, or have been rewritten from scratch. SEREN has also been designed to be compatible with DRAGON in its features and file formats.

The basic elements of SEREN can be used to simulate any problem involving hydrodynamics and gravity, but SEREN also contains many specialized features for star formation problems. The main features present in SEREN 1.5.0 include:

- Smoothed Particle Hydrodynamics (Standard SPH or conservative 'grad-h' SPH)
- Self-gravitating SPH / N-body dynamics
- Isothermal, barotropic or polytropic equations of state
- Octal-spatial (Barnes-Hut) neighbour-searching and gravity tree
- Simple sink particles (i.e. gravity only) or minimum-h value
- Different particle types (gas, inter-cloud, boundary, CDM and dust particles)
- 1, 2 or 3 dimensions
- Periodic boundary conditions (independent for each dimension) or spherical wall
- Hierarchical block timesteps, with neighbour-checking for safety
- 2nd order Runge-Kutta, Leapfrog-KDK and Leapfrog-DKD and integration schemes
- · Artificial viscosity with Balsara switch, time-dependence and Keplerian pattern-matching
- Artificial conductivity with switches
- N-body evolution of sinks using 4th order Hermite integrator at termination of SPH
- Radiative cooling approximation of Stamatellos et al. (2007)
- Simple external background gravitational potentials
- Parallelized using OpenMP
- Bash script to run automated batch tests
- Output compatable with Splash (Price 2007)

Features currently in development, or implemented but not full tested

- MPI parallelization (McLeod & Hubber)
- Combined radiative cooling and Flux-limited Diffusion (Stamatellos)
- Sinks with smoother (non-integer) accretion of particles (Hubber, Walch & Whitworth)
- Re-distributing angular momentum in sink particles (Walch, Hubber & Whitworth)
- Hybrid 4th-order hermite-scheme for N-body integration combined with SPH for background gas evolution (Hubber)
- Grouped particle tree walks (Hubber)
- Ewald method for periodic gravity (McLeod & Hubber)

- Implement Riemann solver for all EOSs (Hubber)
- Binary-mass tree (Whitworth & Hubber)
- Ionizing radiation with HEALPix (Bisbas & Hubber)
- Remove unconsequential outlying particles from simulation (Hubber)
- Wind feedback from high-mass stars (Ngoumou & Hubber)
- Multiple fluid components and independent EOSs (Hubber)

Features planned for future versions include:

- Physical viscosity
- Jet feedback from protostars
- Particle Splitting
- Ideal/Non-ideal MHD
- Divergence cleaning/Euler potentials

Suspended/abandoned features (i.e. features implemented in the past where development has either been suspended, or abandoned but not removed from the code as of yet but may do so in the future)

• Ideal MHD

2 Using SEREN

2.1 Obtaining SEREN via git

SEREN can be obtained using *git* (http://git-scm.com/), which is a new version-control software written by Linux-kernel author, Linus Torvalds. It is required that the user has *git* version 1.6 or later. If you have version 1.5 or older, it is recommended asking your computer administrator if he/she could update *git* to the latest version, since I have noticed that v1.5 does different things with regards to password authentication and therefore the instructions below will be invalid. For your own computers (e.g. laptops), *git* can easily be obtained with package managers such as apt, rpm, etc .. For Mac users, *git* can be obtained with fink or macports. *git* can also be downloaded directly from the *git* webpage (http://git-scm.com).

2.1.1 Initialising git and obtaining Seren

First, create a blank directory (e.g. seren) and cd into it. Then initialise your local git repository with the command

```
git init
```

This should create a directory '.git' inside the blank directory. Next, set your main details to the git repository using the commands

```
git config --global user.name "Your name here" git config --global user.email "Your email address here"
```

This makes it easier for you to track which changes have been made by yourself, and which have been made by the main SEREN authors when updating. Also, this creates a file called .gitconfig in your home directory containing this information. An alias for Seren git server address can be set with

```
git remote add SERENGIT
http://sf-git@git.astro.cf.ac.uk/git/star-formation/seren
```

Finally, Seren can be obtained by

```
git pull SERENGIT master
```

followed by the password provided. The full current snapshot of Seren should be downloaded to the working directory.

2.1.2 Updating Seren and managing conflicts

The SEREN git repository can be updated quite easily with a few commands. First, if you have changed any files in the repository (e.g. most likely with the Makefile or the params.dat file), then you have to commit your changes to the local repository. This can be done easily using

```
git commit -am "Message"
```

where "Message" is some status message which is recorded in the git logs. This command allows git to know the changes you have made to the SEREN files so it can easily be merged with the new version's updates. The update can now easily be obtained with the same command as above:

```
git pull SERENGIT master
```

with the same password to be entered at the prompt. If you have changed any part of the SEREN files which have also been changed in a different way by the update, then there will be a conflict and the merging of the two versions cannot proceed automatically. In this case, you have to intervene manually and resolve the conflict by

selecting which version (i.e. your altered version or the new update) you would like to use. To view which files have a conflict (plus other information about your local repository), simply type

```
git status
```

Once you have identified which files have conflicts, you have to open each one individually with a text editor, and edit the conflicted regions (which are clearly marked with both versions of the code in conflict) and save with the chosen version. Once ALL conflicted files have been modified, you can inform your local repository by committing the new files by again typing

```
git commit -am "Another message"
```

All conflicts should now be resolved, and you are free to update to any later versions. Note that you must commit your changes locally and resolve any potential conflicts every time you want to update the code.

2.1.3 Other important commands

A selected list of important commands that will be needed from time to time:

```
git log: Outputs log of various commits to screen git log --online: Less verbose version of 'git log' git status: Status of local repository, including what has been modified or added, but not commited git branch: Tells you which code branch you are currently on (should always say master) git diff: Displays difference between local files and those in the repository git gc --aggressive: Compresses parts of the git repository to reduce the overall size
```

2.2 Compiling and running SEREN

SEREN has been designed so to be compiled with GNU make. The user must specify a number of compiler options, which are set at the head of the Makefile (see Section 2.4 for more information). In order to compile, a compatible compiler must be specified in the first line of the Makefile. SEREN has been successfully tested on the following operating systems and compilers.

- GNU/Linux
 - f95 NAG f95 compiler (Linux workstations)
 - g95 g95 compiler (Linux workstations)
 - gfortran GNU Fortran compiler (Linux workstations)
 - ifort Intel Fortran compiler (Merlin cluster)
 - $-\ \mathrm{pgf}90$ Portland group Fortran compiler (Coma cluster)
 - pgf95 Portland group Fortran compiler (Iceburg cluster)
- Mac OS X (1.4, 1.5, 1.6 & 1.7)
 - g95 g95 compiler
 - gfortran GNU Fortran compiler
 - ifort Intel Fortran compiler

Once all the other Makefile options have been set to their desired values, SEREN is compiled by GNU make with the command

```
make [-j N] seren
```

GNU make will compile the source code of SEREN and produce the executable program seren. The optional argument, -j N, allows parallel compilation on multi-core architecture, where N is the number of routines to be

compiled in parallel at any one time. Prior to performing a simulation, the user must set all simulation parameters in the file params.dat (See section 2.6 for more information) and provide an initial conditions file in the appropriate format. To run SEREN, the user must type

./seren

SEREN will read in the default parameters file params.dat before performing the simulation.

2.2.1 Command-line arguments

SEREN has a number of optional command-line arguments that can be invoked to change the behaviour of the SEREN executable. The behaviour can depend on several factors, particularly what Makefile options have been invoked while compiling SEREN .

Table 1: List of all command-line arguments available in SEREN

Argument	Behaviour
-d, -D, debug	SEREN prints out the debug output column data for-
	mat to screen and then exits without running any sim-
	ulation. (N.B. The same information is printed to the
	runid.params file when a simulation is performed using
	SEREN)
diag	SEREN prints out the column data format that is used
	in the diagnostics file to the screen (enabled with DIAG-
	NOSTIC_OUTPUT = 1 in the Makefile).
-h, -H, help	SEREN prints out all available command-line options
-m, -M	SEREN prints out the Makefile options used to compile
	the code to screen and then exits without running any sim-
	ulation. (N.B. The same Makefile options are printed to
	the runid.params file when a simulation is performed us-
	ing SEREN)
-s, -S, sinks, stars	SEREN prints out the column data format to screen for
	the sink files.
-v, -V, version	SEREN prints out current version number
paramsfile	SEREN reads the parameters file paramsfile instead of
	the default params.dat

2.2.2 Restarting simulations

If a simulation is terminated for some reason, then it can be restarted by simply running SEREN without any modification to the params.dat file. Each simulation generates a file runid.restart which contains the name of the last snapshot to be outputted. SEREN will search for this file, and if it exists, it will read the snapshot name contained and restart the simulation from that point. If you do not wish to restart the simulation from this point, but want a fresh run, then you should delete the runid.restart file. If you wish to restart a simulation from a different snapshot, you can delete the runid.restart file and alter some of the parameters in the params.dat file, such as the restart logical flag (See Section 2.6).

2.3 SEREN-MPI

The SEREN source code also contains an MPI version, SEREN-MPI. In order to compile SEREN-MPI, one must download and install an implementation of MPI that works on your system. To date, we have tested SEREN-MPI using the mpich2 (http://http://www.mpich.org) library at the development stage. SEREN-MPI has not been fully tested or debugged using other MPI implementations (e.g. openmpi). Therefore, it is recommended to use mpich2 if possible.

We stress that SEREN-MPI is currently in the beta-testing stage. Although it has been shown to run for a limited number of test cases, it has not been through an exhaustive list of tests. Therefore bugs may still (and probably do) exist in the code that can only be identified and fixed through thorough usage, bug-reporting, fixing, updating and re-testing. We welcome any feedback from users who wish to trial SEREN-MPI to help us fix any problems rapidly.

2.3.1 Compiling and running SEREN-MPI

In order to compile SEREN-MPI, several extra options must be set in the Makefile. These options are

- MPIF90
- MPI
- MPI_LIBRARY

The default values to compile with MPI should be MPIF90 = mpif90, MPI = 1 and MPI_LIBRARY = mpich2. If the user wishes to compile also with OpenMP, then this flag should also be switched on. In this mode, the code will run on each local node parallelised with OpenMP, but parallelised using MPI to communicate between nodes. This mode could potentially have scaling advantages, although this will be determined with more testing of the code.

make or make seren

To run the code

```
mpiexec -n N ./seren-mpi
```

where N is the number of tasks that the MPI job will run on.

2.3.2 Combining data snapshots with MPI

Since MPI runs segments of the simulation on different CPU tasks (often on different nodes), it is more efficient during runtime for each task to write its own contribution to the overall simulation to a separate file. In order for these files to be meaningfully analysed with SPLASH or some other data analysis tool, they must be combined together to a single file per output. A python script has been written to easily accomplish this with minimal effort, called joinlots.py which is located in the joinsim sub-directory. It may be required to add the pathname of both the main SEREN directory and the joinsim sub-directory to your PATH environment variable. To join all snapshots for a simulation, we simply type :

```
joinlots.py runid
```

where runid is the run id of the simulation as chosen in the parameters file. (N.B. this currently only works with double precision simulations).

2.4 Makefile

The head of the Makefile contains the complete list of compilation variables that are available. Most variables have two or more possible values which must be entered in the Makefile. If an illegal value is entered, then make will halt during compilation, or the program will stop during runtime (see the routine /main/sanitycheck.F90). The Makefile is technically split into two separate files; Makefile, which contains the user options, and makefiletail.mk, which processes all the selected options to compile the code. The full list of all Makefile variables and possible options is given in the table below.

Table 2: List of all available Makefile options in SEREN

Variable	Options	
F90	f95:	NAG f95 compiler (Linux)
	g95:	free (not gnu) f95 compiler (Linux, Mac OS
		X)
	gfortran:	gnu f95 compiler (Linux, Mac OS X)
	pgf90:	Portland Group compiler (Coma cluster)
	mpif90:	Portland Group compiler (Coma cluster)
	ifort:	Intel Fortran compiler (Merlin cluster)
MPIF90	mpif90:	MPI Fortran compiler
VERSION_NO		Version no. string
SRCDIR		Absolute path of main SEREN directory (de-
		fault \$(PWD)/src)
EXEDIR		Absolute path of location for SEREN exe-
		cutable (default \$(PWD))
OPENMP	0:	Compile as serial code
	1:	Compile using OpenMP directives
MPI	0:	Compile as serial code
	1:	Compile with MPI directives
MPI_LIBRARY	mpich2	Name of MPI library used
COMPILER_MODE	0:	No optimisation or debugging flags
	STANDARD:	Use standard optimisation flags (-O3 plus in-
		line functions)
	FAST:	Use fast optimisation flags for increased
		speed. (Note that fast math optimisations are
		potentially unsafe and can lead to floating
		point errors, even in apparently bug-less code,
		and therefore should not be used without test-
		ing with the required compilation flags.)
	DEBUG:	Use all available debug flags (e.g. bounds-
		testing, floating point erros, etc). Should be
		selected when debugging the code using gdb,
		or another debugger.
OUTPUT_LEVEL	0:	Output/debug flags switched off
	1:	Output/debug flags switched on to level 1
	2:	Output/debug flags switched on to level 2
	3:	Output/debug flags switched on to level 3
DIAGNOSTIC_OUTPUT	1:	Print diagnostic information of conserved
		quantities (e.g. total mass, momentum, en-
		ergy) to screen (if OUTPUT_LEVEL ; 0) and
		file ('run_id.diag')

Variable	Options	
	0:	Do not compute diagnostic information
NDIM	1:	One-dimensional
	2:	Two-dimensional
	3:	Three-dimensional
PRECISION	SINGLE :	Single precision for main real variables
	DOUBLE:	Double precision for main real variables
INFILE_FORMAT	ALL:	Include routines to read all possible file for-
		mats
	DRAGON:	Only include DRAGON-format reading rou-
		tines
	SEREN:	Only include SEREN-format reading routines
	ASCII :	Only include column-ASCII format reading
		routine
OUTFILE_FORMAT	ALL:	Include routines to write all possible file for-
		mats
	DRAGON:	Only include DRAGON-format writing rou-
		tines
	SEREN:	Only include SEREN-format writing routines
	ASCII :	Only include column-ASCII format writing
		routine
PERIODIC	1:	Periodic boundary conditions (Note: must
		be set to 1 if any of X_BOUNDARY,
		Y_BOUNDARY, Z_BOUNDARY or SPHER-
		ICAL_MIRROR are set to any value other
		than 0)
	0:	No periodic boundary conditions
X_BOUNDARY	PERIODIC :	Periodic box in x-dimension
	WALL:	Walls in LHS and RHS directions of x-
		dimension
	0:	No periodicity in x-dimension
Y_BOUNDARY	PERIODIC :	Periodic box in y-dimension
	WALL:	Walls in LHS and RHS directions of y-
		dimension
	0:	No periodicity in y-dimension
Z_BOUNDARY	PERIODIC :	Periodic box in z-dimension
	WALL:	Walls in LHS and RHS directions of z-
		dimension
	0:	No periodicity in z-dimension
SPHERICAL_WALL	1:	Spherical mirror to reflect particles that ex-
		ceed some give radial distance
	0:	No spherical mirror
CYLINDRICAL_WALL	1:	Cylindrical mirror to reflect particles that ex-
		ceed some given distance about z-axis
CIVOCE DA DESCRIPTION	0:	No spherical mirror
GHOST_PARTICLES	1:	Use ghost particles for periodic boundaries
		(experimental; advise not to use for now)
	0:	No ghost particles; use relative position peri-
any an an array		odic wrapping
SPH_SIMULATION	1:	Perform SPH simulation
	0:	No SPH simulation

Variable	Options	
NBODY_SPH_SIMULATION	1:	Perform hybrid N-body/SPH simulation (Not
		included in git release)
	0:	No hybrid simulation
NBODY_SIMULATION	1:	Perform N-body simulation
	0:	No N-body simulation
SPH	STANDARD:	Use traditional SPH formulation (Monaghan 1992)
	GRAD_H_SPH:	Use 'grad-h' SPH formulation (Springel & Hernquist 2002; Price & Monaghan 2004)
	RTSPH:	Use Ritchie & Thomas (2001) SPH formulation
SPH_INTEGRATION	RK2:	
SPH_INTEGRATION	LFKDK:	2nd order Runge-Kutta integration scheme
		2nd order Leapfrog kick-drift-kick scheme 2nd order Leapfrog drift-kick-drift scheme
	LFDKD : PC :	2nd order Leapirog drift-kick-drift scheme 2nd order Predictor-Corrector scheme
KEDNEL		
KERNEL	M4:	M4 kernel (Monaghan & Lattanzio 1985) M4 kernel with modifed 1st derivative
	M4TC:	
	OUNTIO	(Thomas & Couchman 1992)
	QUINTIC:	Quitic kernel (Morris 1996)
	QUINTICTC:	Quintic kernel with modified 1st derivative
	CATIONAL OF	(c.f. Thomas & Couchman 1992)
THEN ID	GAUSSIAN_3H:	Gaussian kernel truncated at 3 h
HFIND	NUMBER:	Determine <i>h</i> by number of neighbours
	MASS:	Determine h by total mass of neighbours
	H_RHO:	Determine h by iterating h-rho relation (as in
	CONCTANT	'grad-h' SPH')
AUNTHALINA II	CONSTANT:	Use contant smoothing length
MINIMUM_H	1:	Set a minimum smoothing length
HYDRO	1:	Allow any smoothing length
HIDRO	1	Hydro forces switched on
ENERGY FON	0:	No hydro forces
ENERGY_EQN	1:	Activate energy equation
	0:	Do not include energy equation in complia-
EMEDODY FON	1.	tion
ENTROPY_EQN	1:	Activate entropy equation
	0:	Do not include entropy equation in complia-
RIEMANN_SOLVER	1.	Use iterative Riemann solver (Van Leer 1977,
KIEMANN_SOLVEK	1:	Cha & Whitworth 2003). Currently unstable
		and deactivated.
	0:	No Riemann solver
ARTIFICIAL_VISCOSITY	MON97 :	Monaghan (1997) artificial viscosity
ARTIFICIAL_VISCOSIT I	AB:	Standard α - β viscosity (Monaghan & Gingold
	Ab.	1983)
	0:	No artificial viscosity
VISC_TD	1:	Use time-dependent value of α (Morris & Monaghan 1997)
	0:	Constant value for α
BALSARA	1:	Use Balsara switch (Balsara 1995)
	0:	No Balsara switch

Variable	Options	
PATTERN_REC	1:	Use Keplarian pattern-matching (Cartwright
		& Stamatellos 2010)
	0:	Do not use pattern matching
ARTIFICIAL_CONDUCTIVITY	0:	No artificial conductivity
	PRICE2008:	Artificial conductivity with constant α_{cond}
		(Price 2008)
	WADSLEY2008:	Wadsley et al. (2008) conductivity
EXTERNAL_PRESSURE	0:	No external pressure
	1:	Simple external pressure formulation
RAD_WS	1:	Activate radiative cooling scheme (Stamatel-
		los et al. 2007)
	0:	Do not include radiative cooling in compila-
		tion
FLUX_LIMITED_DIFFUSION	1:	Switch on flux-limited diffusion for hybrid ra-
		diation scheme (Forgan et al. 2009). Only ac-
		tivated when $RAD_WS = 1$ (experimental).
	0:	No flux-limited diffusion
SINK_POTENTIAL_WS	1:	Use gravitational potential from sink in radia-
		tive cooling calculations
	0:	Ignore gravitational potential from sinks for
		cooling
AMBIENT_HEATING_WS	1:	External ambient heating source (e.g. CMB)
	0:	No ambient heating
SINK_HEATING_WS	STAR_HEATING:	
	STAR_SIMPLE_HEATING:	
	HDISC_HEATING:	
	0:	
COOLING_HEATING	0:	No cooling or heating terms added
	EXPLICIT:	Explicit cooling/heating terms added to en-
		ergy equation (Experimental)
IONIZING_RADIATION	0:	No ionizing sources
	SINGLE_STATIC_SOURCE :	Single static source of ionizing radiation (Bis-
		bas et al. 2009; not included in git release yet)
	MULTIPLE_SINK_SOURCES:	Sink particles act as sources of ionizing ra-
		diaiton (experimental; not included in git re-
		lease)
STELLAR_WIND	0:	No wind sources
	SINGLE_STATIC_SOURCE :	Single static source of wind (Not included in
		git release)
PARTICLE_INJECTION_WINDS	0:	No injection of particles
	1:	Inject particles for pressure-driven winds (ex-
		perimental; not included in git release)
STELLAR LUMINOSITY	0:	No luminosity feedback from stars
	1:	Luminosity feedback from stars using
		HEALPix (experimental; not included in git
		release)
EXTERNAL_FORCE	0:	No external forces
	PLUMMER:	Plummer sphere potential
	UDS:	Uniform density sphere potential
	NFW1996:	Navarro, Frenk & White (1996) potential
L	l	· · · · · ·

Variable	Options	
SELF_GRAVITY	0:	No gravitational forces computed
	KS:	Kernel-softened gravity for 2-body forces
	NBODY:	Newton's gravitational law for all 2-body
		forces
MEANH_GRAVITY	1:	Use mean-h gravity (cf. Price & Monaghan
		2007)
	0:	Use default gravity
EWALD	1:	Ewald periodic gravity switched on
	0:	No Ewald corrections
SINKS	0:	No sinks
	SIMPLE:	Simple (i.e. only gravitating) sinks (Bate,
		Bonnell & Price 1995)
	NO_ACC:	Simple sinks with no accretion
	SMOOTH_ACC:	Sinks with smooth accretion (experimental;
		not included in git release at present)
SINK_RADIUS	FIXED_ABSOLUTE:	Absolute value (in AU in params.dat file;
		same for all sinks)
	FIXED_HMULT:	Multiple of mean h at sink density (same for
		all sinks)
	HMULT:	Multiple of h at sink density (individual val-
		ues for sinks)
SINK_REMOVE_ANGMOM	1:	Deposit sink ang. mom. on nearby particles
		(Experimental, not included in git release at
		present)
	0:	Sink particle retain ang. mom. of accreted
		particles
SINK_GRAVITY_ONLY	0:	Consider all physical sources of gravity
	KS:	Sinks only source of gravity using Kernel-
		softened gravity for 2-body forces
	NBODY:	Sinks only source of gravity using Newton's
		gravitational law for all 2-body forces
NBODY_INTEGRATION	HERMITE4:	4th-order Hermite integration scheme
		(Makino & Aarseth 1992)
	LFKDK:	2nd-order Leapfrog KDK integration scheme
BINARY_STATS	1:	Calculate binary statistics and output to file
	0:	No binary calculations
BINARY_COM_MOTION	1:	Advance COM of binary stars instead of ex-
		plicitly integrating (experimental)
	0:	No special treatment for binaries
FORCE_SPLITTING	1:	Split force calculation between stars and gas
		in N-body/SPH mode (experimental)
	0:	No force splitting
TREE	0:	No tree (all quantities calculated by direct
		summation)
	BH:	Use Barnes-Hut tree (octal-spatial; Barnes &
		Hut 1985)
	BINARY:	Use Binary-number tree (experimental)
MULTIPOLE	0:	No higher-order multipole terms
	QUADRUPOLE :	Include quadrupole moment terms in gravity
		calculations

Variable	Options	
	OCTUPOLE :	Include both octupole and quadrupole mo-
		ment terms
MAC	GEOMETRIC:	Use standard Barnes-Hut geometric opening
		angle criterion (Barnes & Hut 1985)
	GADGET:	Use Gadget-style higher-order moment crite-
		rion (Springel et al. 2002)
	GADGET2:	Use Gadget 2.0 moment (Springel 2005)
	EIGEN:	Use Eigenvalues of Q tensor to compute ap-
		propriate MAC (Hubber et al. 2010)
REORDER	PARTICLES:	Re-order particles in arrays according to tree-
		walk order
	0:	No re-ordering
CELL_WALK	1:	Walk the tree with a group of particles (Ex-
		perimental)
	0:	Walk the tree with individual particles
SORT	INSERTION:	Use insertion sort for sorting lists
	HEAP:	Use heapsort for sorting lists
TIMESTEP	ADAPTIVE :	Block timestep levels adjusted at resync
	FIXED:	Fixed block timestep levels, with maximum
		level set by the dt_fixed parameter
	RESTRICTED :	Timestep levels can only take certain values
		(dt_fixed parameter times integer power of 2),
		but are readjusted at resync
CHECK_NEIB_TIMESTEP	2:	Ensure neighbours have similar timesteps
	1:	As option 2, but doesn't change timestep in
		middle of current step
	0:	No neighbour timestep comparison
SIGNAL_VELOCITY_DT	1:	Use signal velocity for Courant timestep
VELCUE OVER VOTO	0:	Use velocity divergence for Courant timestep
NEIGHBOURLISTS	1:	Store neighbour lists in memory
WEDNEL TARKE	0:	Do not store neighbour lists in memory
KERNEL_TABLES	1:	Tabulate kernels in arrays for quick lookup
DELICOTE OTTELLED	0:	Use inline function calls for kernel functions
REMOVE_OUTLIERS	1:	Remove outlying particles from the simula-
	0.	tion (Experimental)
TIMING_CODE	0:	No removal of outliers
TIMING_CODE	1:	Use custom subroutines to produce timing
	0.	statistics
DIMENSIONI ESS	0:	No timing output
DIMENSIONLESS	1:	Dimensionless simulation (all scaling vari-
	0.	ables set to zero) Scaled variables (units specified in
	0:	` *
TEST	EDEEEAII.	params.dat)
1E91	FREEFALL : SPIEGEL :	Freefall collapse test Spiegel (ref??) test
	BINARY:	Orbitting binary stars test
	PLUMMER:	Plummer sphere stability test
	ENTROPY:	Entropy core test
	0:	No test flags
	J 0 .	110 test nags

2.5 Debug flags

The SEREN Makefile contains a number of debug flags below the main options which can be switched on or off by uncommenting them or commenting them out. Most of the debug flags produce verbose output of each routine, and in some cases produce extra files with more important information. The full list of debugging options with additional output is shown in the table below.

Table 3: List of special debugging options available in SEREN

Variable	Options
DEBUG_DIV_A	*
DEBUG_ACCRETE	
DEBUG_ALLOCATE_MEMORY	
DEBUG_BHTREEBUILD	
DEBUG_BHTREESTOCK	
DEBUG_BHTREEWALK	
DEBUG_BHTREEGRAVITY	
DEBUG_BINARYPROPERTIES	Ouput binary properties to screen when calculated
DEBUG_BINARY_SEARCH	
DEBUG_BLOCK_TIMESTEPS	Outputs occcupation of timestep levels
DEBUG_COPY_PARTICLE_DATA	
DEBUG_CREATE_SINK	
DEBUG_CREATE_HP_SOURCE	
DEBUG_DENSITY	
DEBUG_DIV_V	
DEBUG_DUDTRAD	
DEBUG_ENERGY_EQN	
DEBUG_FOLIATE	
DEBUG_FORCES	Records individual grav, hydro, magnetic forces
DEBUG_FREEFALL	
DEBUG_GATHER_NEIB	
DEBUG_GET_NEIB	
DEBUG_GRAD_H_SPH	
DEBUG_HEAPSORT	
DEBUG_HERMITE4	
DEBUG_H_GATHER	
DEBUG_H_GATHER_DENSITY	
DEBUG_H_GUESS	
DEBUG_HP_IF	
DEBUG_HP_OUTPUT	Outputs various ionization properties to files
DEBUG_HP_SPLIT_ACTIVE_RAYS	
DEBUG_HP_WALK_ALL_RAYS	
DEBUG_HP_WALK_RAY	
DEBUG_INTEGRATE	Outputs file 'Iramal dat'
DEBUG_KERNEL	Outputs file 'kernel.dat'
DEBUG_MHD	
DEBUG_NBODYSETUP	
DEBUG_PARAMETERS DEBUG_PLOT_DATA	Outputs regular debug files with speech at files Files
DEBUG_FLUI_DAIA	Outputs regular debug files with snapshot files. Files are simple column-data files where the information of each
	column is written to the run_id.params file.
	commit is written to the run_la.params me.

Variable	Options
DEBUG_RAD	Outputs 'run_id.rad' file for RAD_WS tests
DEBUG_REDUCE_TIMESTEP	
DEBUG_REMOVE_OUTLIERS	
DEBUG_RSPH_OUTPUT	Outputs files in RSPH format
DEBUG_SINKCORRECTION	
DEBUG_SINK_REMOVE_ANGMOM	
DEBUG_SINK_SEARCH	
DEBUG_SINK_TIMESTEP	
DEBUG_SKELETON	
DEBUG_SPH_UPDATE	
DEBUG_SWAP_PARTICLE_DATA	
DEBUG_TIMESTEP_SIZE	
DEBUG_TRACK_PARTICLE	Outputs single file ('track1.dat') which contains large
	amount of information (same as that ouputted by debug
	files including the time) of one single chosen particle (set
	by parameter ptrack in params.dat file) which is printed
DEDUC TREE DUILD	every timestep.
DEBUG_TREE_BUILD DEBUG_TREE_GRAVITY	
DEBUG_TREESTOCK DEBUG_TREEWALK	
DEBUG_TREEWALK DEBUG_TYPES	
DEBUG_VISC_BALSARA	
DEBUG VISC PATTERN REC	
DEDUCTIBETAL LEKINEREC	

2.6 Parameter file

Unlike DRAGON, SEREN contains all simulation information in a single parameter file, called params.dat. The information contained in the parameters file in version 1.0 is shown in the following table.

Table 4: List of user parameters in SEREN

Variable	Type	Description
run_id	char(256)	Run identifier string
run_dir	char(256)	Output directory name
in_file	char(256)	Name of initial conditions file
in_file_form	char(50)	Format of initial conditions file
out_file_form	char(50)	Format of output snapshot files
restart	logical	Is this a restart or a new run?
com_frame	logical	Change to centre of mass frame?
rseed	int	Random number seed
ptrack	int	i.d. of tracked particle
sph_endtime	DP	End time of SPH simulation
nbody_sph_endtime	DP	End time of hybrid N-body/SPH simulation
nbody_endtime	DP	End time of N-body simulation
firstsnap	DP	Time of first snapshot
snaptime	DP	Snapshot time interval (in real time)
noutputstep	int	Screen output interval (in integer steps)
ntempstep	int	Temporary snapshot interval (in integer steps)
ndiagstep	int	Integer time interval between diagnostic output
nsinkstep	int	Sink output time interval (in integer time)
nsnapstep	int	Snapshot time interval (in integer time)
courant_mult	DP	Courant timestep multiplication factor
accel_mult	DP	Acceleration timestep multiplication factor
sink_mult	DP	Sink accel. timestep multiplication factor
nbody_timemult	DP	Timestep factor for N-body simulations
nlevels	int	Number of multiple timestep levels
dt_fixed	DP	Fixed ref. time for creating timestep levels
runit	char(256)	Length scaling unit
munit	char(256)	Mass scaling unit
tunit	char(256)	Time scaling unit
vunit	char(256)	Velocity scaling unit
aunit	char(256)	Acceleration scaling unit
rhounit	char(256)	Density scaling unit
sigmaunit	char(256)	Column density scaling unit
Punit	char(256)	Pressure scaling unit
funit	char(256)	force scaling unit
Eunit	char(256)	Energy scaling unit
momunit	char(256)	Momentum scaling unit
angmomunit	char(256)	Angular momentum scaling unit
angvelunit	char(256)	Angular velocity scaling unit
dmdtunit	char(256)	Accretion rate scaling unit
Lunit	char(256)	Luminosity scaling unit
kappaunit	char(256)	Opacity scaling unit
Bunit	char(256)	Magnetic field (B-field) scaling unit
Qunit	char(256)	Electric charge unit
Junit	char(256)	Current density unit

Variable	Type	Description
uunit	char(256)	Specific internal energy unit
dudtunit	char(256)	Rate of change of specific internal energy unit
rscale	DP	Length scaling factor
mscale	DP	Mass scaling factor
periodic_min(1)	PR	Size of periodic box in x-dimension
periodic_max(1)	PR	Size of periodic box in x-dimension
periodic_min(2)	PR	Size of periodic box in y-dimension
$periodic_max(2)$	PR	Size of periodic box in y-dimension
periodic_min(3)	PR	Size of periodic box in z-dimension
$periodic_max(3)$	PR	Size of periodic box in z-dimension
rspheremax	PR	Radius of spherical wall
psphere	int	Mirror origin id (0 : co-ordinates origin; p : SPH particle;
		-s : sink particle)
pp_gather	int	Neighbours required to determine <i>h</i>
hmin	PR	Minimum allowed smoothing length
h_fac	PR	grad-h density-h iteration factor
boundaryeos	char(256)	Boundary particle equation-of-state
icmeos	char(256)	ICM particle equation-of-state
gaseos	char(256)	Gas particle equation-of-state
isotemp	PR	Temperature for isothermal, barotropic EOSs (K)
rhobary	PR	Adiabatic density for barotropic density (cgs units)
gamma	PR	Ratio of specific heats
mu_bar	PR	Mean gas particle mass (in a.m.u.)
Kpoly	PR	Polytropic constant
Pext	PR	External pressure
cooling_law	char(256)	Cooling law used
alpha	PR	α -viscosity value
beta	PR	β -viscosity value
alpha_min	PR	Minimum value of α
abserror	PR	Absolute error fraction in GADGET MAC
thetamaxsqd	PR	Maximum opening angle squared (Geometric MAC)
nbuildstep	int	Frequency of DRAGON tree builds (in integer time units)
rhosink	PR	Sink formation density (cgs units)
sinkrad	PR	Sink radius (in units of <i>h</i> or in AU depending on options)
nsearchstep	int	No. of integer timesteps between sink search
rho_search	logical	Calculate density for selecting sink candidates
potmin_search	logical	Only consider particles at potential minimum
hill_sphere_search	logical	Hill spheres of sinks must not overlap
energy_search	logical	Only create sinks from bound objects
thermal_search	logical	Only create sinks from thermally bound objects
div_v_search	logical	Only create sinks from converging objects
div_a_search	logical	Do not create sinks if particles are accelerating apart
timescale_search	logical	Compare timescales for sink formation
energy_accrete	logical	Only accrete bound particles
alpha_ss	PR	Sunyaev-Shakura viscosity parameter
smooth_accrete_frac	PR	Fraction of mass for instant accretion
$smooth_accrete_dt$	PR	Timestep fraction for instant accretion
$f_{-accretion}$	PR	Fraction of accretion energy radiated as luminosity
feedback_tdelay	PR	Time delay between sink formation and feedback

Variable	Type	Description
feedback_minmass	PR	
rho_remove	logical	Remove particles below density threshold?
energy_remove	logical	Remove unbound particles from system?
rad_remove	logical	Remove distant particles?
rholost	PR	Density removal threshold
rad_lost	PR	Distance removal threshold
nbody_frac	PR	Fraction of mass accreted before switching to N-body
ptemp0	PR	Disc temperature at $r = 1$ AU from star (K)
temp_inf	PR	Disc temperature at infinity (K)
ptemp_r0	PR	Temperature softening radius (≪ 1 AU)
ptemp_q	PR	Temperature power law index
fcolumn	PR	Column polytrope factor
nionallstep	int	Integer steps inbetween HEALPix walk
f1	PR	Integration step accuracy variable
f2	PR	HEALPix resolution factor
f3	PR	Temperature smoothing parameter
f4	PR	Density interpolation parameter
Tneut	PR	Temperarure of neutral gas
Tion	PR	Temperature of ionized gas
Xfrac	PR	Fraction of hydrogen
a_star	PR	Recombination coefficient
N_LyC	PR	No. of ionizing photons per second
rstatic	PR(1:3)	Location of single static ionizing source
lmax_hp	PR	Maximum allowed number of HEALPix levels
M_loss	PR	Wind mass loss rate from source
v_wind	PR	Wind velocity from star

3 Generating initial conditions

SEREN contains a large number of small programs which can be used to generate initial conditions to run simulations. These programs are contained in the sub-directory /seren/ic and can be compiled. To compile any initial conditions program of some name ic_name, simply type

make ic_name

Some of the initial conditions programs require their own separate parameters file, a template of which can be found in the seren/datafiles sub-directory. These parameters files must be copied into the main seren run directory in order to be accessed by the initial conditions program. To run the initial conditions program, type

./ic_name

3.1 ic_BB

ic_BB sets-up the Boss-Bodenheimer test (Boss & Bodenheimer 1979), i.e. a uniform density sphere with an azimuthal density perturbation in solid-body rotation. Program reads in a uniform density sphere of unit radius (centred at the origin), scales to the required density and radius, and then adds the azimuthal perturbation and a solid-body velocity field. The original Boss-Bodenheimer test considered simply an isothermal EOS, but many subsequent studies have used barotropic and other EOSs. Parameters read in from file BBparams.dat.

- NDIM = 3
- SPH = STANDARD/GRAD_H_SPH
- HYDRO = 1
- GRAVITY = KS
- DIMENSIONLESS = 0

Variable	Type	Description
in_file	char(256)	Input filename (file containing uniform density sphere of
		unit radius)
in_file_form	char(256)	Input file format
out_file	char(256)	Output filename
out_file_form	char(256)	Output file format
mass	PR	Mass of cloud
munit	char(256)	Mass unit
rcloud	PR	Radius of cloud
runit	char(256)	Length unit
temp_cloud	PR	Temperature of cloud
angvel	PR	Angular velocity of cloud
angvelunit	char(256)	Angular velocity unit
mpert	integer	Order of azimuthal perturbation (usually mpert=2)
amp	PR	Amplitude of density perturbation (usually 0.1 or 0.5)

3.2 ic_binary

ic_binary sets up a binary system from two polytropes (or other self-gravitating structures) read in from files. Parameters read in from file binaryparams.dat.

Required Makefile options:

- NDIM = 3
- HYDRO = 1
- DIMENSIONLESS = 1

Variable	Type	Description
in_file1	char(256)	Input filename 1
in_file2	char(256)	Input filename 2
in_file_form1	char(256)	Input file 1 format
in_file_form2	char(256)	Input file 2 format
out_file	char(256)	Output filename
out_file_form	char(256)	Output file format
abin	PR	Separation (semi-major axis) of binary
ecc	PR	Eccentricity of binary
corot	logical	Are stars co-rotating with binary orbit?

3.3 ic_core

ic_core creates a spherically symmetric density distribution for any given density function (as a function of radial distance). Currently only contains the distribution for a plummer-like density profile and a radial power-law density function. Requires the params file core.dat.

- NDIM = 3
- HYDRO = 1
- SELF_GRAVITY = KS
- DIMENSIONLESS = 0

3.4 ic_jeans

ic_jeans sets-up the Jeans instability test (Hubber et al. 2006) which tests the ability of SEREN to resolve the Jeans gravitational instability. Program reads in a relaxed unit cube (with the cube placed in positive octant) and stretches the particle distribution to produce a 1-D sinusoidal density perurbation. Currently reads in parameters from the command line rather than via a separate parameters file.

- NDIM = 3
- PERIODIC = 1
- PERIODIC₋X = 1
- PERIODIC_Y = 1
- PERIODICZ = 1
- SPH = STANDARD/GRAD_H_SPH
- HYDRO = 1
- GRAVITY = KS
- EWALD = 1
- DIMENSIONLESS = 1

Variable	Type	Description
in_file	char(256)	Input filename (File containing unit-uniform density
		sphere)
in_file_form	char(256)	Input file format
out_file	char(256)	Output filename
out_file_form	char(256)	Output file format
npert	int	No. of wavelengths
amp	PR	Amplitude of sinuosoidal perturbation

3.5 ic_KH

ic_KH creates the initial conditions for the Kelvin-Helmholtz instability test. Requires KHparams.dat file.

3.6 ic_lattice_cube

ic_lattice_cube creates a cubic-lattice distribution of particles with side-length length and ppd particles in each dimension. Therefore the total number of particles in the lattice is ppd^{NDIM} . In 1-D, the program produces a uniformly-spaced line of particles, in 2-D a square-grid of particles, and in 3-D a cubic lattice. The lattice extends from 0 to length in each dimension. Parameters are currently read in from the command-line.

Required Makefile options:

- NDIM = 1/2/3
- DIMENSIONLESS = 1

Variable	Type	Description
ppd	integer	Particles per dimension in lattice (Must be a positive in-
		teger)
length	PR	Total length of lattice edge (For a unit cube, length = 1)
out_file	char(256)	Output filename
out_file_form	char(256)	Output file format

3.7 ic_NTSI

 $ic_NTSI\ generates\ the\ initial\ conditions\ for\ the\ non-linear\ thin-shell\ instability\ (NTSI)\ test.\ Requires\ the\ parameters\ file\ NTSI\ params.dat.$

3.8 ic_plummer

ic_plummer generates the a Plummer sphere, either with stars, gas, cdm particles, or a mixture of the three. Requires the parameters file plummer.dat.

3.9 ic_polytrope

Creates a finite polytrope/infinite polytrope with surrounding medium from a uniform-density sphere of unit radius centred at the origin. For an isothermal polytrope (e.g. a Bonner-Ebert sphere), the inputted sphere is divided into 4 regions; the polytrope (self-gravitating gas), the gas envelope (self-gravitating gas), the surrounding inter-cloud medium (non-self gravitating gas) and a static outer-wall (boundary particles). The outer-three regions are optional depending on the parameters selected in polytrope.dat.

- NDIM = 3
- THERMAL = ISOTHERMAL/POLYTROPIC/BAROTROPIC
- HYDRO = 1
- SELF_GRAVITY = KS
- DIMENSIONLESS = 0

Variable	Type	Description
in_file	char(256)	Input filename (File containing unit-uniform density
		sphere)
in_file_form	char(256)	Input file format
out_file	char(256)	Output filename
out_file_form	char(256)	Output file format
isocloud	logical	Flag true if isothermal polytrope (if true, gas_eos must equal isothermal)
etapoly	PR	Polytropic index
xi_bound	PR	Dimensionless cloud boundary (6.35 for a mariginally stable Bonner-Ebert sphere)
mpoly	PR	Mass of cloud
munit	char(256)	Mass unit (e.g. m_sun)
rho0	PR	Central density of cloud (Only if $mflag = rho0$)
rhounit	char(256)	Density unit
mflag	char(20)	Set the total mass (mass) or central density (rho0) of the polytrope
Kpoly	PR	Polytropic constant, or a_0^2 for isothermal polytrope
vunit	char(256)	Velocity unit (unit of isothermal speed of gas if isothermal polytrope is selected)
menvelope	PR	Mass of gas envelope around polytrope (distributed uniformly around the polytrope with the same density and pressure as the polytrope at its surface)
micm	PR	Mass of IcM envelope which surrounds gas (distributed uniformly around the polytrope/gas envelope with the same density and pressure as the polytrope at its surface)
hboundary	PR	Size of static boundary zone (in units of the mean
		smoothing length; should be 3 or 4 to ensure no edge effects occur for interior gas particles)

3.10 ic_radtest

ic_radtest creates the initial conditions to perform the Masunaga-Inutsuka test (Masunaga & Inutsuka ????) using the radiative cooling method of Stamatellos et al. (2007; RAD_WS option).

3.11 ic_random_cube

ic_random_cube creates a line, sheet or cube (depending on the dimensionality) of randomlly-placed particles. Distributes particles between 0 and length in each dimension. Parameters are currently read in from the command-line rather than a separate parameters file.

Required Makefile options:

- NDIM = 1/2/3
- DIMENSIONLESS = 1

Variable	Type	Description
ptot	int	Total number of particles
length	PR	Total length of lattice edge
out_file	char(256)	Output filename
out_file_form	char(256)	Output file format

3.12 ic_replicate_cubes

Loads in a unit cube (from 0 to 1 in each dimension) and creates nrepeat periodic replicas in each dimension. The larger cube is then scaled to a unit cube itself. Used to create large-relaxed uniform density fields from smaller files. Parameters are read in from the command-line rather than a separate parameters file.

- NDIM = 1/2/3
- DIMENSIONLESS = 1

Variable	Type	Description
in_file	char(256)	Input filename (File containing unit cube)
in_file_form	char(256)	Input file format
nrepeat	int	No. of replicas in each dimension (must be a positive
		integer)
out_file	char(256)	Output filename
out_file_form	char(256)	Output file format

3.13 ic_RT

Generates initial conditions for Rayleigh-Taylor instability test. Prepares two layers of gas with different densities in hydrostatuc balance on top of each other with a sinusoidal density perturbation to seed the instability. A cubic grid of particles is generated rather than reading in a file. Parameters are read in from the file RTparams.dat.

- NDIM = 2
- PERIODIC = 1
- PERIODIC₋X = 1
- PERIODIC_Y = 1
- ENERGY_EQN = 1
- HYDRO = 1
- SELF_GRAVITY = 0
- DIMENSIONLESS = 1

Variable	Type	Description
out_file	char(256)	Output filename
out_file_form	char(256)	Output file format
pertmode	char(20)	Perturbation mode (1=velocity, 2=boundary)
ppd1,ppd2	int	Particles per dimension
nlayers1,nlayers2	int	No. of layers of particles (in y-direction)
rho1,rho2	PR	Densities
Press1	PR	Pressure
acc_grav	PR	External y-gravitational acceleration
gamma	PR	Ratio of specific heats
xsize	PR	X
amp	PR	Amplitude of y-velocity perturbation
lambda	PR	Wavelength of perturbation
pp_gather	PR	Required no. of SPH neighbours
hmin	PR	Minimum smoothing length
h_fac	PR	'grad-h' SPH factor

3.14 ic_sedov

Creates initial conditions for Sedov blast-wave test from inputted unit-uniform density sphere. Requires inputting a unit-sphere. A 'point-explosion' is added by giving the central particle and its neighbours a total energy of unity (weighted by the kernel from the centre, while the rest of the particles equally share an energy of total 10^{-6} . Parameters are read in from the file sedovparams.dat.

- NDIM = 3
- PERIODIC = 0
- PERIODIC $_X = 0$
- PERIODIC_Y = 0
- PERIODICZ = 0
- HYDRO = 1
- ENERGY_EQN = 1
- SELF_GRAVITY = 0
- DIMENSIONLESS = 1

Variable	Type	Description
in_file	char(256)	Input filename (File contains unit sphere)
in_file_form	char(256)	Input file format
out_file	char(256)	Output filename
out_file_form	char(256)	Output file format
rho0	PR	Density of sphere
radius	char(20)	Radius of sphere after rescaling

3.15 ic_shocktube

Generates initial conditions for general 2-part shocktube tests (e.g. Sod 1978). Reads in two relaxed cubic density distribution, creates periodic replicas in the x-direction to elongate the shocktube and sets particle properties to create the desired test problem. Parameters are read in from the file sodparams.dat.

- NDIM = 1/2/3
- PERIODIC = 1
- PERIODIC₋X = 1
- PERIODIC $_Y = 1$
- PERIODICZ = 1
- HYDRO = 1
- ARTIFICIAL_VISCOSITY = AB/MON97
- SELF_GRAVITY = 0
- DIMENSIONLESS = 1

Variable	Type	Description
out_file	char(256)	Output filename
out_file_form	char(256)	Output file format
file1	char(256)	Input filename
file1_form	char(256)	Input file format
file2	char(256)	Input filename
file2_form	char(256)	Input file format
p1, p2	int, int	No. of particles in file 1, 2
n1, n2	int, int	No. of replicas for LHS/RHS
rho1, rho2	PR, PR	Density of LHS/RHS layers
Press1, Press2	PR, PR	Pressure for LHS/RHS
x1, x2	PR, PR	X
y1, y2	PR, PR	y
z1, z2	PR, PR	Z
v1(1), v2(1)	PR, PR	VX
v1(2), v2(2)	PR, PR	vy
v1(3), v2(3)	PR, PR	VZ
B1(1), B2(1)	PR, PR	Bx
B1(2), B2(2)	PR, PR	Ву
B1(3), B2(3)	PR, PR	Bz

3.16 ic_sphere

Creates a spherical distribution of particles of unit radius and centred on the origin containing an exact number of particles. First, loads in a unit cube and then iterates to find the radius that contains the correct number of particles. Finally the spherical cut is rescaled and placed at the origin. Will fail to find the required number of particles if the inputted unit cube has too few particles. Sphere parameters are read in from the file sphereparams.dat.

- NDIM = 3
- PERIODIC = 0
- PERIODIC $_X = 0$
- PERIODIC_Y = 0
- PERIODICZ = 0
- DIMENSIONLESS = 1

Variable	Type	Description
in_file	char(256)	Input filename
in_file_form	char(256)	Input file format
out_file	char(256)	Output filename
out_file_form	char(256)	Output file format
rcloud	PR	Required radius of sphere
nwant	int	Required number of particles in sphere

3.17 ic_vel_pert.F90

Adds a variety of perturbations to any inputted (spherical) density distribution. Requires parameters file velpert.dat.

- NDIM = 3
- DIMENSIONLESS = 0

Variable	Type	Description
in_file	char(256)	Input filename
in_file_form	char(256)	Input file format
out_file	char(256)	Output filename
out_file_form	char(256)	Output file format
densmode	char(20)	Mode of density perturbation (not used yet)
amp	PR	Amplitude of azimuthal perturbation (not used yet)
mpert	integer	Azimuthal perturbation mode (not used yet)
fenhance	PR	Density enhancement factor (increase all particle masses
		by fenhance; used to make stable polytropes unstable)
vpower	PR	Turbulent velocity power spectrum index
eturb	PR	Ratio of turbulent to gravitational energy
ngrid	integer	No. of grid points for vel field (determines resolution of
		velocity field; must be a multiple of 2)
iseed1	integer	Random No. seed 1
iseed2	integer	Random No. seed 2
velradmode	char(20)	Radial velocity mode (energy, dvdr or none)
dvdr	PR	Radial velocity gradient
erad	PR	Ratio of radial kinetic to gravitational energy
velrotmode	char(20)	Rotational mode (energy, angmom, angvel or none)
angmom	PR	Total angular momentum (if velrotmode = angmom)
angmomunit	char(256)	angular momentum unit
angpower	PR	Angular velocity power law (angular velocity is a func-
		tion of axial distance, $\omega \propto r^{\text{angpower}}$)
angvel	PR	Angular velocity
angvelunit	char(256)	Angular velocity unit
erot	PR	Ratio of rotational kinetic energy to gravitational energy

4 Running the SEREN bash test script

SEREN contains a bash script designed to run batches of tests of SEREN for development and debugging purposes. The script, and all related files for running the tests, is located in the /seren/testsuite sub-directory. In the testsuite directory, there is the test-seren.sh bash script and further sub-directories which contain files used by test-seren.sh when performing batch tests.

A test is launched from the command line as in the following example:

./test-seren.sh -gfortran -openmp -debug1 -test POLYRAD1-AB

The current list of command line options for the script are (TBD): The list of tests currently set-up for use with the test script are (TBD):

Table 5: List of automated tests in SEREN

Test name	Description
ADSOD-3D	Classic SOD test of two initially static columns of gas in contact which
	then interact forming a shock. Gas is non-radiative so the energy equa-
	tion is solved and no energy escapes the system (i.e. it is adiabatic).
BURRAU1	Burrau 3-body problem (Burrau 19??); also known as the Pythagorean
	problem. Three stars with masses 3, 4 and 5 placed on the corners of a
	right-angled triangle all with zero-velocity and allowed to evolve until
	the system dissolves into a single star and a binary star.
COL-3D	Two columns of uniform density gas collide supersonically to produce
	a dense shocked layer.
EIGEN1	Gravitational force accuracy using eigenvalue MAC
FIGURE8	Figure-8 3-body test for N-body integrator (????).
FREEFALL1	Free-fall collapse test.
GEO1	Gravitational force accuracy using geometric MAC
ISOFREEFALL1	Isothermal free-fall collapse test
KH-2D	2D Kelvin-Helmholtz instability test
NTSI-2D	2D Non-linear thin shell instability test
POLYRAD1	Masunaga & Inutsuka (????) collapse test
SEDOV-3D	Sedov blast wave test (Sedov 19??).
SHEAR-2D	2-D shearing layer test.
SIT1-AB	A variation of the Boss-Bodenheimer (1979) test. A uniform-density
	spherical cloud is given a sinusoidal azimuthal density perturbation and
	a solid-body rotationaal velocity field such that it collapses to form a
	dense filament with a star on each end and eventually bound binary
	system.
STATPOLY1	Relax a polytropic gas to hydrostatic balance.

5 Coding style of SEREN

5.1 Design philosophy of SEREN

SEREN is a highly modular code written in Fortran 90 which comprises of several layers of subroutine calls in performing basic simulations. Each subroutine is designed to perform one single task. If a long procedure consists of a number of independent steps (i.e. not using the same local variables), then it is broken down into a sequence of smaller subroutines. Also, each .F90 file contains one single subroutine (with the exception of sanitycheck.F90 which has two extra smaller subroutines for clarity).

For the benefit of anyone reading through the source code, or for those wishing to develop new routines, we discuss here in detail some of the more important coding conventions that are used in SEREN . We do not discuss the particular features of any one subroutine (since each routine is extensively commented), but focus on the style used in most subroutines of SEREN .

5.2 Macros

SEREN uses C-like macros throughout the source code, both for the clarity (by reducing the number of lines) and the efficiency and runtime speed of the code. Macros are strings (conventionally in upper case as in C) which are substituted for some user-defined value or expression by the *pre-processor*, i.e. before the compiler generates machine code from the source code. This can improve the runtime performance somewhat by removing common variable references.

Macros are defined in two separate locations in SEREN . Some are defined in the Makefile (e.g. NDIM). Most macros however are defined in the header file /headers/macros.h. In order to make use of the macros, we must import the file /headers/macros.h into the subroutine by way of the pre-processor command #include "macros.h". The majority of macros in SEREN are straight-forward numerical substitutions of important information, such as array sizes or physical constants.

5.2.1 Function-like macros

Function-like macros are macros that look like functions/subroutines by their syntax, but work by the substitution of a string of commands, rather than calling a subroutine elsewhere in memory (thereby eliminating the extra cost associated with a subroutine call). In SEREN, we use function-like macros as a compact and concise way of writing debugging information to the screen when in debug mode. For example, we define the debug1 macro in the following way.

```
#ifdef DEBUG1
#define debug1(x) write (6,*) x
#else
#define debug1(x)
#endif
```

If we wished to write debug information to screen (e.g. in order to indicate the current location in the code), we could write in long-hand:

```
\label{eq:problem} \begin{split} &\# if def\ DEBUG1 \\ & \ write (6,^*)\ \text{``Calculating smoothing lengths''} \\ &\# end if \\ & \ In\ SEREN\ ,\ we\ can\ instead\ write\ the\ short-hand\ form \\ & \ debug1(\text{``Calculating\ smoothing\ lengths''}) \end{split}
```

If the DEBUG1 compiler flag is defined in the Makefile, then the debug1() macro is replaced with write(6,*) "Calculating smoothing lengths". If DEBUG1 is not defined in the Makefile, then debug1() macro is replaced with nothing. For subroutines (particularly those in development) that contain many debugging statements, these

macros allow us to write code with more clarity and fewer lines. We use four levels of debug macros, which are all defined in /headers/macros.h.

5.3 Real variable types

Rather than hard-wiring in the precision of real variables in the source code, SEREN allows the user to specify the precision through one of the options in the Makefile (PRECISION). The precision is controlled by several lines in the module definitions (in modules.F90):

```
integer, parameter :: DP = selected_real_kind(p=15) integer, parameter :: SP = selected_real_kind(p=6) #if defined(DOUBLE_PRECISION) integer, parameter :: PR = DP #else integer, parameter :: PR = SP #endif
```

The first two lines use the intrinsic selected_real_kind function to define the precision independent of the processor type (i.e. whether it is 32-bit or 64-bit). The conditional compilation section then defines the precision used in the code (i.e. PR) depending on the option selected in the Makefile. Any real variable in the code must be defined in the following way, e.g.

```
real(kind=PR) :: drmag
```

If we wish to declare a double or single precision variable irrespective of the general precision (e.g. any summation variables in /main/diagnostics.F90 always use double precision), then we use DP or SP in place of PR.

If we wish to convert a variable to a real variable of required precision, we must specify the kind (i.e. PR, DP or SP) as a second parameter in the real function, e.g. to convert the integer variable i to a real variable of precision PR, we write

```
ireal = real(i,PR)
```

5.4 Particle data arrays

SEREN mainly uses simple arrays to store particle data. However, data which are important in gravity calculations are stored differently. The position, mass and smoothing length information are grouped together in a single array, parray(1:NDIM+2,1:ptot). The position of particle p is stored in the elements parray(1:NDIM,p), the mass is stored in the element parray(MASS,p), and the smoothing length is stored in the element parray(SMOO,p) (See /seren/headers/macros.h for macro definitions).

5.5 Particle types

SEREN accomodates the following particle types:

- Static boundary particles (pboundary)
- Non-gravitating inter-cloud medium (IcM) particles (picm)
- Self-gravitating gas particles (pgas)
- Dark-matter particles (pcdm)
- Dust particles (pdust)
- Ion particles (pion)

• Sink particles (stot)

where the variable names indicate the number of each particle type present in the simulation. All data for the first three (boundary, IcM and self-gravitating gas particles) are stored in the main arrays, which contain ptot elements where ptot = pboundary + picm + pgas + pcdm + pdust + pdust. The data is stored such that the first pboundary elements contain the information for boundary particles, the next picm elements contain the information for the IcM particles, and the next pgas elements contain the information for the gas particles, and the final pcdm elements contain the information for the cdm particles. Although provision has been made for their use in future versions of SEREN, dust and ion particles are not currently active.

The sink particles are stored in separate data structures, since they can have many additional properties that are not possessed by normal SPH particles and thus require their own data structures. We use Fortran types (equivalent to C structures) to hold sink data. The main array that contains each sink structure is called sink data and elements can be accessed using the Fortran % notation (e.g. the mass element of sink s is sink data(s)%m).

6 Units

Dimensionless units are used in numerical simulations so that all values are as close to unity as possible, to avoid having very large or very small values that may result in significant rounding errors. SEREN contains a flexible system of units which allows the user to select from a wide range of commonly used astrophysical units, or easily construct their own set of units. All variables related to units and scaling are determined in units.F90. Each quantity, X, has four scaling variables associated with it: Xunit, Xscale, X_SI and Xcgs.

- Xunit is a string which contains the name of the unit that the quantity X is measured in; e.g. for length units, runit may take the values pc, au, r_sun, etc. All Xunit strings are defined in the parameters file. The available options in version 1.0 of the code are given in the following table:
- Xscale is a real variable that allows us to convert between physical and code units. In order to convert any
 variable from physical to code units (where the physical variable is measured in units specified by Xunit),
 then we divide the physical unit by Xscale. Conversely, to convert any code variable to physical units, we
 multiply the code value by Xscale
- X_SI is a real variable that allows us to convert between the unit specified by Xunit and S.I. units. In order to convert from Xunit to S.I. units, we multiply the variable (in units of Xunit) by X_SI.
- Xcgs is a real variable that allows us to convert between the unit specified by Xunit and cgs units. In a similar way to converting to S.I. units, in order to convert from Xunit to cgs units, we multiply the variable (in units of Xunit) by Xcgs.

In a self-gravitating code like SEREN, we choose a set of units so as to make the gravitational constant G equal to unity. We are free to choose the values of rscale and mscale. The value of tscale is then set to ensure G = 1 in the new system of units. Therefore, the value of tscale can be obtained using

$$tscale \times t_SI = \frac{(rscale \times r_SI)^{3/2}}{\sqrt{G \times mscale \times m_SI}}$$
(1)

where G is the gravitational constant in c.g.s. units, i.e. $G = 6.67 \times 10^{-8} \, \text{cm}^3 \, \text{g}^{-1} \, \text{s}^{-2}$. All other scaling factors can be determined in a similar way using:

$$vscale \times v_SI = \frac{rscale \times r_SI}{tscale \times t_SI}$$
 (2)

$$ascale \times a_SI = \frac{rscale \times r_SI}{(tscale \times t_SI)^2}$$
(3)

$$rhoscale \times rho_SI = \frac{mscale \times m_SI}{(rscale \times r_SI)^3}$$
(4)

$$sigmascale \times sigma_SI = \frac{mscale \times m_SI}{(rscale \times r_SI)^2}$$
 (5)

$$Pscale \times P_SI = \frac{mscale \times m_SI}{rscale \times r_SI \times (tscale \times t_SI)^2}$$
(6)

$$fscale \times f_SI = \frac{mscale \times m_SI \times rscale \times r_SI}{(tscale \times t_SI)^2}$$
(7)

$$Escale \times E_SI = \frac{mscale \times m_SI \times rscale \times r_SI}{(tscale \times t_SI)^2}$$
(8)

$$momscale \times mom_SI = \frac{mscale \times m_SI \times rscale \times r_SI}{tscale \times t_SI}$$

$$(9)$$

$$angmomscale \times angmom_SI = \frac{mscale \times m_SI \times rscale^2 \times r_SI^2}{tscale \times t_SI}$$
(10)

$$dmdtscale \times dmdt_SI = \frac{mscale \times m_SI}{tscale \times t_SI}$$
 (11)

$$Lscale \times L_SI = \frac{Escale \times E_SI}{tscale \times t_SI}$$
(12)

$$kappascale \times kappa_SI = \frac{(rscale \times r_SI)^2}{mscale \times m_SI}$$
(13)

In MHD, we must also introduce the unit of charge and associated units such as magnetic field and current density. As with gravitational problems, we can scale the units of the magnetic field such that the permiability of free space, μ_0 , is equal to unity. **to be completed**.

$$Jscale \times J_SI = \frac{Qscale \times Q_SI}{tscale \times t_SI \times rscale^2 \times r_SI^2}$$
(14)

Table 6: List of unit options in SEREN

Xunit	Options	Description
runit	mpc	megaparsecs
	kpc	kiloparsecs
	pc	parsecs
	au	astronomical units
	r_sun	solar radii
	r_earth	Earth radii
	km	kilometres
	m	metres
	cm	centimetres
munit	m_sun	solar masses
	m_jup	Jupiter masses
	m_earth	Earth masses
	kg	kilograms
	g	grams
tunit	gyr	gigayears
	myr	megayears
	yr	years
	day	days
	sec	seconds
vunit	km_s	kilometres per second
	au_yr	astronomical units per year
	m_s	metres per second
	cm_s	centimetres per second
aunit	km_s2	kilometres per second squared
	au_yr2	astronomical units per year squared
	m_s2	metres per second squared
	cm_s2	centimetres per second squared
rhounit	m_sun_pc3	solar masses per cubic parsec
	g_cm3	grams per cubic centimetre
sigmaunit	m_sun_pc2	solar masses per parsec squared
	g_cm2	grams per centimetre squared
Punit	Pa	pascals
	bar	bars

Xunit	Options	Description
	g_cms2	grams per centimetre per second squared
funit	N	newtons
	dyn	dynes
Eunit	J	joules
	erg	ergs
	GJ	gigajoules
momunit	m_sunkm_s	solar masses kilometres per second
	m_sunau_yr	solar masses astronomical units per year
	kgm_s	kilomgram metres per second
angmomunit	kgm2_s	kilogram metres squared per second
	gcm2_s	gram centimetres squared per second
angvelunit	rad_s	radians per second
dmdtunit	m_sun_myr	solar masses per megayear
	m_sun_yr	solar masses per year
	kg_s	kilograms per second
	g_s	grams per second
Lunit	L_sun	solar luminosities
kappaunit	m2_kg	metre squared per kilogram
	cm_g	centimetre per gram
Bunit	tesla	tesla
	gauss	gauss
Qunit	С	coulombs
Junit	C_m2_s	coulombs per second per metre squared
uunit	J_kg	Joules per kilogram
	erg_g	ergs per gramme

7 File formats

SEREN 1.5.0 uses both the DRAGON file format and the native SEREN file format for reading in initial conditions and writing out snapshots. Unlike in DRAGON, the format of the initial conditions file need not be the same as the format of the output snapshots. This is controlled by the two input parameters in the parameters file, in_file_form and out_file_form. The possible values for these parameters are:

- ascii Simple (ASCII) column format
- dragon_form Formatted (ASCII) DRAGON snapshot files
- dragon_unform Unformatted (binary) DRAGON snapshot files
- seren_form Formatted (ASCII) SEREN snapshot files
- seren_unform Unformatted (binary) SEREN snapshot files (Not yet working)

As well as standard snapshot files, SEREN can also produce a simple ASCII output which is useful for debugging purposes. This can be enabled by using the -DDEBUG_PLOT_DATA compiler flag.

7.1 ASCII format

Seren can use a simple flexible ASCII column-format. The data is stored in columns with width N_{COLUMNS} and length N (where N is the total number of particles of all types). The data descriptor of each column is contained in a file labelled asciicolumns.dat (a template copy should be stored in the /datafiles sub-directory). The possible data descriptors currently enabled in SEREN are

- ptype Particle type. The following particle types are available in SEREN:
 - -1: sink/star
 - 0 : dead particle
 - 1: gas
 - 6: boundary particle
 - 9: ICM particle
 - 10 : cold-dark matter particle
- x or y or z Cartesian position coordinates
- vx or vy or vz Cartesian velocity components
- h Smoothing length
- m Mass
- u Specific internal energy
- temp Temperature (in K)

The only constraint on the column order is that the first column must be ptype. Thereafter, the remaining columns can be arranged in any order. In the file containing the data, the data must match up to the chosen columns correctly, or the particle data will be read-in incorrectly. All physical quantities are measured in the units defined in the params.dat file. Due to the simplicity of this format, it contains no extra information (e.g. time, gamma, etc.), and therefore is perhaps not of long-term practical use, but should be suitable for those who wish to generate their own initial conditions from other programmes without learning all the complications of the other available formats.

7.2 Dragon format

To be written

7.3 Seren format

To be written

8 Structure of code

8.1 Basic directory structure

Subroutines in SEREN are not all contained in a single source directory, but are grouped in several sub-directories depending on their purpose. In version 1.0, the following sub-directories exist:

- /seren/src/advance integration routines
- /seren/src/analyse analysis routines
- /seren/src/BHtree Barnes-Hut octal tree subroutines
- /seren/src/binarytree Binary-number tree subroutines
- /seren/datafiles Contains initial conditions parameters files
- /seren/docs Contains latest version of the userguide
- /seren/src/gravity subroutines that calculate gravitational forces
- /seren/src/headers macro and modules files
- /seren/src/healpix HEALPix ioniaztion routines
- /seren/src/ic programs to generate initial conditions for regularly used configurations (e.g. relaxed rectangular cubes, spheres)
- /seren/src/io subroutines that read and write files
- /seren/src/main contains important and commonly used subroutines
- /seren/src/mhd contains magneto-hydrodynamics routines
- /seren/src/nbody N-body routines
- /seren/src/nbody_sim N-body simulation subroutines
- /seren/src/nbody_sph_sim Hybrid N-body/SPH simulation routines
- /seren/src/radiation contains radiation transfer subroutines
- /seren/src/setup contains subroutines called during initialization of SEREN .
- $\bullet \ / \mathrm{seren} / \mathrm{src} / \mathrm{sinks}$ subroutines that search for, create and advance sink particles.
- /seren/src/sorts subroutines for sorting lists
- /seren/src/sph subroutines that perform important SPH functions
- /seren/src/sph_sim SPH simulation routines (e.g. h-finding, neighbour searching)
- /seren/src/tests test programs
- /seren/src/timestep timestepping routines
- /seren/testsuite bash script for running batch tests of seren

9 Variable conventions

In SEREN, the names of all commonly used local variables are kept as consistent as possible between different subroutines. Here we list the names of all common local integer and real variables.

9.1 Integer variables

c Cell identifier
cc Child cell identifier

i Auxiliary counter (often used when looping over neighbour lists)

k Dimension counter

l Level counter (for BH tree and HEALPix)

p Particle identifier pp Neighbour identifier

pp_pot No. of potential neighbours (e.g. after a tree walk)

pp_templist(1:pp_limit) Temporary list of neighbour identifiers pp_tot Total number of neighbours for particle p

s Sink particle identifier ss Secondary sink counter

9.2 Real variables

dr(1:NDIM) Relative position vector

drmag Distance

drsqd Distance squared dr_unit(1:NDIM) Unit position vector

hp Smoothing length of particle p

hpp Smoothing length of neighbouring particle pp

mp Mass of particle p

mpp Mass of neighbouring particle pp

ms Mass of sink particle s

invdrmag Reciprocal of distance, i.e. 1 / drmag invdrsqd Reciprocal of distance squared, i.e. 1 / drsqd

 $\begin{array}{ll} {\rm invhp} & {\rm Reciprical\ of\ smoothing\ length\ of\ p,\ i.e.\ 1\ /\ hp} \\ {\rm invhpp} & {\rm Reciprical\ of\ smoothing\ length\ of\ pp,\ i.e.\ 1\ /\ hpp} \end{array}$

qc(1:NQUAD) Quadrupole moment tensor for cell c

rp(1:NDIM) Position of particle p

rpp(1:NDIM) Position of neighbouring particle pp

rs(1:NDIM) Position of sink particle s sound_p Sound speed of particle p

sound_pp Sound speed of neighbouring particle pp up Specific internal energy of particle p

upp Specific internal energy of neighbouring particle pp

vp(1:NDIM) Velocity of particle p

vpp(1:NDIM) Velocity of neighbouring particle pp

vs(1:NDIM) Velocity of sink particle s