マーケティング・リサーチにおける 統計的因果探索を用いた因果仮説構築に関する研究

データサイエンス研究科, 株式会社マクロミル 小西 伶児

2020年11月29日

概要

本研究では,

目次

1	序論	2
1.1	はじめに	2
2	モデルと識別可能性	3
2.1	数学的準備	3
2.2	2 次分散関数 (QVF) DAG モデル	4
2.3	QVF-DAG モデルの識別可能性	5
謝辞 8		

- 1 序論
- 1.1 はじめに

2 モデルと識別可能性

本章ではまず、本論文で用いる数学記号を導入し、非巡回有向グラフ (Directed Acyclic Graph, DAG) モデルとその識別可能性を定義する。その後、2 次分散関数 (Quadratic Variance Function, QVF)DAG モデル [3] について概説し、その識別可能性を証明する。QVF-DAG モデルの識別可能性は、Park and Raskutti(2017)[3] によって過分散スコアを用いて証明されたが、本論文では Park and Park(2019)[1] が提案したモーメント比スコアを拡張することで、識別可能条件の緩和を行う。最後に、離散変数と連続変数が混合したデータにおける DAG モデルを提案し、その識別可能性について議論する。

2.1 数学的準備

グラフは頂点 (node) の集合 $V=\{1,2,\ldots,p\}$ と、頂点同士をつなぐ辺 (edge) の集合 $E\subset V\times V$ によって、G=(V,E) と表現される。グラフの辺は有向辺 (矢線) と無向辺 (双方向矢線) に分けることができ、2つの頂点 $j,k\in V$ において、 $(j,k)\in E$ かつ $(k,j)\notin E$ のとき、j から k への矢線があるという。これを $j\to k$ と表現することもある。一方で、 $(j,k)\in E$ かつ $(k,j)\in E$ のとき、j と k の間に双方向矢線があるという。すべての辺が有向辺であるグラフを有向グラフ (directed graph) という。本論文では、特に断りのない限り、頂点 j から k への矢線がある場合、j が k の原因であるといった因果関係があることを表すとする。つまり、本論文で扱うグラフにおける矢線の有無は因果関係の有無を表しており、矢線の始点が原因で、矢線の終点が結果である。このような定性的な因果関係を表すグラフを因果グラフ (causal graph) という。また、グラフ G からすべての矢印を取り除くことによって得られるグラフを G のスケルトンという。

頂点の系列 $\alpha_1,\alpha_2,\ldots,\alpha_{n+1}$ について、すべての $i=1,2,\ldots,n$ で、 $\alpha_i\to\alpha_{i+1}$ 、または $\alpha_{i+1}\to\alpha_i$ となる矢線がある時、長さ n の道 (path) という。特に、すべての $i=1,2,\ldots,n$ で、 $\alpha_i\to\alpha_{i+1}$ となる矢線がある時、長さ n の有向道 (directed path) という。また、長さ n の有向道で、 $\alpha_1=\alpha_{n+1}$ となるものを巡回閉路 (cycle) という。一方で、巡回閉路のない有向グラフは非巡回的 (acyclic) であるという。本論文では、非巡回有向グラフ (Directed Acyclic Graph; DAG) のみを扱う。

頂点jからkへの矢線がある時、jをkの親 (parent) といい、kをjの子 (child) という。また、 $(j,k) \in E$ であるすべての頂点j からなる集合を Pa(k) と表記する。頂点j からk への有向道がある時、jをk の祖先 (ancestor)、kをjの子孫 (descendant) という。頂点kのすべての祖先からなる集合を An(k)、すべての子孫からなる集合を De(k) と表記する。また、すべての頂点からkとkの子孫を除いたものを、kの非子孫 (non-descendant) といい、その集合を $Nd(k) \equiv V \setminus (\{k\} \cup De(k))$ と表記する。さらに、因果的順序 (causal oredering) について定義する。因果的順序とは、その順序に従って変数を並び替えると、すべての矢線 $(j,k) \in E$)について、kがjの原因になることがない順序のことであり、 $\pi = (\pi_1, \dots, \pi_p)$ と表記する。DAG で表現される因果グラフには、このような順序が (一意とは限らないが) 存在するという特徴がある。つまり、因果グラフを同定することは、因果的順序を同定することとスケルトンを同定することという 2 つの工程に分解することができる。

有向グラフ G における頂点上の標本空間 \mathcal{X}_V の確率分布に従う確率変数の集合 $X \equiv (X_j)_{j \in V}$ について考える。ここで、確率変数ベクトル X は、同時確率密度関数 $f_G(X) = f_G(X_1, X_2, \ldots, X_p)$ で与えられていると仮定する。V の任意の部分集合 S について、 $X_S \equiv \{X_j: j \in S \subset V\}$ と $\mathcal{X}_S \equiv \times_{j \in S} \mathcal{X}_j$ を定義する。ただし、 \mathcal{X}_j は X_j の確率空間である。また、任意の頂点 $j \in V$ について、確率変数ベクトル X_S を与えたときの

変数 X_j の条件付き確率を $f_j(X_j|X_S)$ と表記する。すると、DAG G によるモデルは以下のように因数分解することができる [4]。

$$f_G(X) = f_G(X_1, X_2, \dots, X_p) = \prod_{j=1}^p f_j(X_j | X_{Pa(j)})$$
 (1)

ここで、 $f_j(X_j|X_{Pa(j)})$ は、 X_j の親変数 $X_{Pa(j)} \equiv \{X_k: k \in Pa(j) \subset V\}$ を与えた条件付き確率である。また、本論文では観察データから因果グラフを同定するという問題を扱うため、因果グラフの識別可能性について定義する。識別可能性を直感的に説明すると、条件付き確率分布 $f_j(X_j|X_{Pa(j)})$ に対してある仮定を置くと、同時確率密度関数 $f_G(X)$ を与えた DAG G の構造を一意に決定付けることができるということである。識別可能性について詳細に定義するために、すべての $j \in V$ に関する条件付き確率分布 $f_j(X_j|X_{Pa(j)})$ の集合を P と表記する。また、グラフ G=(V,E) について、グラフ G に関する同時分布のクラスと、分布 P のクラスを以下で定義する。

$$\mathcal{F}(G; \mathcal{P}) \equiv \{ f_G(X) = \prod_{j \in V} f_j(X_j | X_{Pa(j)}); \text{where } f_j(X_j | X_{Pa(j)}) \in \mathcal{P} \quad \forall j \in V \}$$
 (2)

続いて、p 個の変数からなる非巡回的有向グラフの集合を \mathcal{G}_p と表記する。そこで、DAG \mathcal{G}_p の空間上の確率分布のクラス \mathcal{P} における識別可能性を以下のように定義する。

定義 2.1 (識別可能性). 条件付き分布のクラス $\mathcal P$ が $\mathcal G_p$ において識別可能であるとは、 $G,G'\in\mathcal G_p$ において $G\neq G'$ であるならば、 $f_G=f_{G'}$ を満たすような $f_G\in\mathcal F(G;\mathcal P)$ と $f_G'\in\mathcal F(G';\mathcal P)$ が存在しないことである。

2.2 2次分散関数 (QVF) DAG モデル

本節では、Park and Raskutti(2017)[3] によって提案された 2 次分散関数 (QVF) DAG モデルについて概説する。QVF-DAG モデルは、各頂点の親による条件付き分布 $\mathcal P$ の分散が、平均の 2 次式で与えられているというモデルであり、以下のように定義される。

定義 2.2 (QVF-DAG モデル [3]). 2 次分散関数 (Quadratic variance function, QVF)DAG モデルは、各頂点の親による条件付き確率分布が、以下で表現される 2 次分散関数性 (quadratic variance function property) を満たすような DAG モデルである。

すべての $j \in V$ について、以下を満たすような $\beta_{i0}, \beta_{i1} \in \mathbb{R}$ が存在する。

$$Var(X_j|X_{Pa(j)}) = \beta_{j0}E(X_j|X_{Pa(j)}) + \beta_{j1}E(X_j|X_{Pa(j)})^2$$
(3)

ただし、各頂点の条件付き期待値は、任意の単調で微分可能なリンク関数 $g_j\colon \mathcal{X}_{Pa(j)}\to \mathbb{R}^+$ によって、 $E(X_j|X_{Pa(j)})=g_j(X_{Pa(j)})$ で定められる。

また、本論文の後半では、各頂点間の関係について線形性を仮定するため、QVF-DAG モデルの特殊系として、QVF 構造方程式モデル (structural quation model, SEM) を導入する。QVF-SEM は、リンク関数 g_j がパラメータに関して線形であることを仮定したものである。

$$g_j(X_{Pa(j)}) = g_j \left(\theta_j + \sum_{k \in Pa(j)} \theta_{jk} X_k\right)$$
(4)

ここで、 $(\theta_{jk})_{k\in Pa(j)}$ は親変数の重み付け係数である。例えば、ある頂点の条件付き確率分布がポアソン分布の場合、 $g_j(X_{Pa(j)})=\exp(\theta_j+\sum_{k\in Pa(j)}\theta_{jk}X_k)$ となる。

より一般的には、指数分布族の定義を用いて、以下のように表現することができる。

$$P(X_j|X_{Pa(j)}) = \exp\left(\theta_{jj}X_j + \sum_{(k,j)\in E} \theta_{jk}X_kX_j - B_j(X_j) - A_j\left(\theta_{jj} + \sum_{(k,j)\in E} \theta_{jk}X_k\right)\right)$$
(5)

ここで、 $A_j(\cdot)$ は対数分配関数 (log-partition function)、 $B_j(\cdot)$ は指数分布族によって決まる関数、 $\theta_{jk} \in \mathbb{R}$ は頂点 j に対応するパラメータである。DAG モデルの因数分解 (1) 式により、QVF-DAG モデルの同時確率分布は、以下のように記述することができる。

$$P(X) = \exp\left(\sum_{j \in V} \theta_{jj} X_j + \sum_{(k,j) \in E} \theta_{jk} X_k X_j - \sum_{j \in V} B_j(X_j) - \sum_{j \in V} A_j \left(\theta_{jj} + \sum_{(k,j) \in E} \theta_{jk} X_k\right)\right)$$
(6)

このモデルは、各条件付き分布がそれぞれ異なる分布に従っているような混合 DAG モデルにも拡張することが可能である。また、各頂点の分布 $\mathcal P$ が (3) 式で定義される 2 次分散関数性を満たす場合、非線形モデルやノンパラメトリックモデルに拡張することも可能である。

2.3 QVF-DAG モデルの識別可能性

本節では QVF-DAG モデルが識別可能であることを証明する。QVF-DAG モデルの識別可能性は Park and Raskutti(2017)[3] によって初めて証明されたが、本論文では Park and Park(2019)[1] のアイデアを用いることにより、識別可能条件の緩和も行う。

まず初めに、QVF-DAG モデルにおけるモーメント (積率) について以下のような関係性が成立していることを示し、識別可能性の証明に利用する。

命題 2.3. リンク関数 $(g_j(X_{Pa(j)}))_{j\in V}$ が非退化である QVF-DAG モデル (3) において、任意の頂点 $j\in V$ 、任意の集合 $S_j\subset Nd(j)$ に関して、以下のモーメント関係が成立している。

$$\frac{E(X_j^2)}{E\left[\beta_0 E(X_i|X_{S_s}) + (\beta_1 + 1)E(X_i|X_{S_s})^2\right]} \ge 1 \tag{7}$$

同様に、

$$E(Var(E(X_j|X_{Pa(j)})|X_{S_j})) \ge 0 \tag{8}$$

等号成立は、 S_i が頂点 j の親変数すべてを含むとき $(Pa(j) \subset S_i)$ である。

証明. 分散とモーメントの関係性と、2次分散関数性の定義を利用すると、2次分散関数性を満たす確率変数 X のモーメントについて、以下の関係性が成り立つ。

$$Var(X) = E(X^2) - E(X)^2$$
 分散の公式より
= $\beta_0 E(X) + \beta_1 E(X)^2$ 2次分散関数性の定義より

よって、

$$E(X^2) = \beta_0 E(X) + (\beta_1 + 1) E(X)^2$$

ここで、記号の簡単のために、 $f(\mu)=\beta_0\mu+(\beta_1+1)\mu^2$ と関数を定義する。すると、任意の頂点 $j\in V$ 、任意の空でない集合 $S_i\subset Nd(j)$ について、以下のように書ける。

$$E(X_j^2|S_j) = E(E(X_j^2|X_{Pa(j)})|S_j)$$

$$= E(f(E(X_j|X_{Pa(j)}))|S_j)$$
(9)

イェンセンの不等式と関数 $f(\cdot)$ が凸であることを利用すると、以下が導ける。

$$E(f(E(X_j|X_{Pa(j)}))|S_j) \ge f(E(E(X_j|X_{Pa(j)})|S_j))$$

$$= f(E(X_j|S_j))$$
(10)

ここで、モデルの定義より、 $E(X_j|X_{Pa(j)})=g_j(X_{Pa(j)})$ であり、関数 $g_j(\cdot)$ は非退化であることを利用すると、等号は S_j が頂点 j の親変数すべてを含むとき $(Pa(j)\subset S_j\subset (Nd)(j))$ のみ成立する。 式 (9) と式 (10) を整理すると、

$$E(X_j^2|S_j) - f(E(X_j|S_j)) \ge 0$$

$$E(X_j^2|S_j) - (\beta_0 E(X_j|S_j) + (\beta_1 + 1)E(X_j|S_j)^2) \ge 0$$

となり、さらに期待値を取ることで、

$$E(X_i^2) - E(\beta_0 E(X_i|S_i) + (\beta_1 + 1)E(X_i|S_i)^2) \ge 0$$

が得られる。よって、以下が成り立つ。

$$\frac{E(X_j^2)}{E(\beta_0 E(X_j|S_j) + (\beta_1 + 1)E(X_j|S_j)^2)} \ge 1$$

ここからは、 $E(X_j^2) \geq E\left(\beta_0 E(X_j|S_j) + (\beta_1 + 1)E(X_j|S_j)^2\right)$ が、 $E(Var(E(X_j|X_{Pa(j)})|X_{S_j})) \geq 0$ と同値であることを証明する。分散の公式を用いると… ここ書く…

直感的な理解を得るために、各頂点の親変数による条件付き確率分布がポアソン分布である 2 変数 DAG モデルを例にその識別可能性を証明する。そこで、図 1 のような DAG モデルを考える。

- $G_1: X_1 \sim Poisson(\lambda_1), \quad X_2 \sim Poisson(\lambda_2)$ ただし、 X_1 と X_2 は独立
- $G_2: X_1 \sim Poisson(\lambda_1), \quad X_2|X_1 \sim Poisson(g_2(X_1))$
- $G_3: X_2 \sim Poisson(\lambda_2), \quad X_1|X_2 \sim Poisson(g_1(X_2))$ ただし、 g_1 と g_2 は非退化な任意の関数である。 $(g_1,g_2: \mathbb{N} \cup \{0\} \rightarrow \mathbb{R}^+)$

図 1 2 変数の DAG モデル

命題 2.3 より、 G_1 におけるすべての頂点 $j \in \{1,2\}$ について、 $E(X_j^2) = E(X_j) + E(X_j)^2$ である。 G_2 においては、以下が成り立つ。

$$E(X_1^2) = E(X_1) + E(X_1)^2$$
, and $E(X_2^2) > E(X_2) + E(X_2)^2$

同様に、 G_3 においては、以下が成り立つ。

$$E(X_1^2) > E(X_1) + E(X_1)^2$$
, and $E(X_2^2) = E(X_2) + E(X_2)^2$

つまり、モーメント比 $E(X_j^2)/(E(X_j)+E(X_j)^2)$ によって、真のグラフ構造を同定することが可能である。

参考文献

- [1] Gunwoong Park and Sion Park. High-Dimensional poisson structural equation model learning via ℓ_1 -Regularized regression. J. Mach. Learn. Res., Vol. 20, No. 95, pp. 1–41, 2019.
- [2] Gunwoong Park and Garvesh Raskutti. Learning Large-Scale poisson DAG models based on OverDispersion scoring. In C Cortes, N D Lawrence, D D Lee, M Sugiyama, and R Garnett, editors, Advances in Neural Information Processing Systems 28, pp. 631–639. Curran Associates, Inc., 2015.
- [3] Gunwoong Park and Garvesh Raskutti. Learning quadratic variance function (QVF) DAG models via overdispersion scoring (ODS). J. Mach. Learn. Res., Vol. 18, No. 1, pp. 8300–8342, January 2017.
- [4] Judea Pearl. Causality: Models, Reasoning and Inference. Cambridge University Press, USA, 2nd edition, 2009.

謝辞

ありがとうございました.