Tratamiento de Señales Multimedia I: señales visuales (TSM I)

Tema 0: Introducción al tratamiento de señal unidimensional

Álvaro García Martín alvaro.garcia@uam.es

Escuela Politécnica Superior

Universidad Autónoma de Madrid E28049 Madrid (SPAIN)

Video Processing and Understanding Lab

Grupo de Tratamiento e Interpretación de Vídeo

INDICE

- 1. Introducción
- 2. Señales
- 3. Sistemas
- 4. Análisis de Fourier

INDICE

Práctica 0: 1-Introducción

- 1. Introducción
- 2. Señales
- 3. Sistemas
- 4. Análisis de Fourier

INTRODUCCION

- Tratamiento digital de imágenes se basa:
 - Descomponer imágenes (señales 2D) en señales 1D para tratamiento eficiente

INTRODUCCION

- Tratamiento digital de imágenes se basa:
 - Análisis frecuencial es una técnica muy utilizada (basado en análisis 1D)
 - Algoritmos de procesamiento son vistos como 'cajas negras' (<u>sistemas</u>)

Necesaria una revisión de conceptos básicos en 1D (una dimensión)

INDICE

1. Introducción

2. Señales

- Definición
- Tipos
- Propiedades
- Transformación eje
- Delta de Dirac
- 3. Sistemas
- 4. Análisis de Fourier

SEÑAL: TIPOS

Señales continuas – x(t)

- Señales del mundo real (e.g., voltaje, velocidad)
- Continuas en el tiempo
- Escala infinitesimal
- Operaciones: integrales, derivadas,...

Señales discretas – x[n]

- Algunas señales reales y digitales (e.g., pixeles)
- Discretas en el tiempo
- Escala infinitesimal (o no)
- Operaciones: sumas, restas,....
- Utilizadas en tratamiento digital de imágenes

Muestreo de una señal continua x[n] = x(nk) - k es el tiempo de muestreo

SEÑAL: PROPIEDADES

- Periodicidad (*equivalente para x[n]*)
 - Tperiodo

$$x(n) = x(n+T),$$

donde $T > 0, \forall t$

Por ejemplo

$$cos(t+2\pi) = cos(t)$$

$$sin(t+2\pi) = sin(t)$$

$$T=2\pi$$

SEÑAL: TRANSFORMACION EJE

Transformaciones del eje de una señal

$$y(t) = x(at + b)$$

- b → desplazamiento (izquierda b>0, derecha eje b<0)
- a \rightarrow escalado (ampliación |a| > 1, compresión 0 < |a| < 1 y reflejo si a < 0).

SEÑAL: DELTA

- Función impulso unidad (delta unidad o kronecker)
 - Versión discreta: $\delta[n]$

$$\delta[n] = \begin{cases} 1, n = 0 \\ 0, n \neq 0 \end{cases}$$

Señal muy utilizada en sistemas discretos (tratamiento digital de imágenes)

SEÑAL: DELTA

- Función impulso unidad (delta unidad): propiedades
 - Área unidad

$$\sum_{n=-\infty}^{+\infty} \delta[n] = 1$$

Selección de valores de la señal

$$f[n] \cdot \delta[n] = f[0] \cdot \delta[n]$$

$$f[n] \cdot \delta[n - n_0] = f[n_0] \cdot \delta[n - n_0]$$

x[n]

 $x[-1]\delta[n+1]$

SEÑAL: DELTA

— Expresión de una señal x[n] como combinación lineal de $\delta[n]$

$$x[n] = \sum_{k=-\infty}^{+\infty} x[k]\delta[n-k]$$

INDICE

- 1. Introducción
- 2. Señales

- 3. Sistemas
 - Definición
 - Tipos
 - Ejemplos
 - Propiedades
 - Respuesta al impulso
- 4. Análisis de Fourier

SISTEMA: DEFINICION

- Sistema: procesa señales de entrada y genera señales de salida
 - Conexión: cascada, paralelo, realimentado
 - Invertible/no-invertible
 - **–** ...

SISTEMA: EJEMPLOS

Sistema (ejemplos)

$$y_1[n] = 2x[n]$$

$$y_2[n] = x[n] + 0.5x[n-1]$$

SISTEMA: PROPIEDADES

- Sistemas LTI (*Linear Time Invariant*): propiedades
 - Lineal (L)
 - El sistema responde de manera proporcional a la entrada

- Implica satisfacer dos propiedades:
 - Escalado

$$x[n] \stackrel{L}{\to} y[n]$$

$$x[n] \xrightarrow{L} y[n]$$
 $k_1 x[n] \xrightarrow{L} k_1 y[n], \forall k_1$

Aditividad

$$f_{1}[n] \xrightarrow{L} g_{1}[n] \qquad f_{2}[n] \xrightarrow{L} g_{2}[n]$$

$$k_{1}f_{1}[n] + k_{2}f_{2}[n] \xrightarrow{L} k_{1}g_{1}[n] + k_{2}g_{2}[n], \forall k_{1}, k_{2} \in \Re$$

SISTEMA: PROPIEDADES

- Sistemas LTI (*Linear Time Invariant*): propiedades
 - Invariante temporal (Time Invariant TI)
 - La respuesta del sistema no varía dada la misma señal de entrada (independientemente del instante temporal)

$$f[n] \stackrel{TI}{\to} g[n]$$

$$f[n] \stackrel{TI}{\rightarrow} g[n]$$
 $f[n-n_0] \stackrel{TI}{\rightarrow} g[n-n_0], \forall n_0 \in Z$

$$y[n] = 2x[n]$$

$$y[n] = 2x[n]$$

$$x_2[n] = x_1[n-1]$$

$$y_2[n] = y_1[n-1]$$

SISTEMAS: RESPUESTA AL IMPULSO

- Respuesta al impulso h[n]:
 - Salida del sistema cuando introducimos $\delta[n]$

— Invariancia temporal (sistemas LTI) y h[n]

$$\delta[n] \overset{LTI}{\longrightarrow} h[n] \Rightarrow \delta[n-n_0] \overset{TI}{\rightarrow} h[n-n_0], \forall n_0 \in Z$$

SISTEMAS: RESPUESTA AL IMPULSO

 Si representamos una señal mediante un tren de deltas:

$$x[n] = \sum_{k=-\infty}^{+\infty} x[k]\delta[n-k]$$

• Entonces, podemos calcular la respuesta al sistema mediante h[n]:

$$x[n] = \sum_{k=-\infty}^{+\infty} x[k]\delta[n-k] \xrightarrow{LTI} y[n] = \sum_{k=-\infty}^{+\infty} x[k]h[n-k] = x[n] * h[n]$$

$$y[0] = \sum_{k=-\infty}^{+\infty} x[k]h[0-k]$$

$$y[1] = \sum_{k=-\infty}^{+\infty} x[k]h[1-k]$$

SISTEMAS: RESPUESTA AL IMPULSO

Convolución (ejemplo donde x[n] = h[n])

Ejemplo extraído de http://en.wikipedia.org/wiki/Convolution

INDICE

- 1. Introducción
- 2. Señales
- 3. Sistemas

- 4. Análisis de Fourier
 - Idea intuitiva
 - Transformada de Fourier
 - Respuesta de un sistema LTI a exponenciales periódicas
 - Respuesta de un sistema LTI a señales cualquiera

IDEA INTUITIVA

Transformada de Fourier: representación de señales

Cualquier función periódica se puede expresar como suma de senos y cosenos de diferentes frecuencias, cada una multiplicada por diferentes coeficientes (serie de Fourier)

IDEA INTUITIVA

Transformada de Fourier: representación de señales

Ejemplo extraído de Curso 'DT228/4 Digital Image Processing', School of Computing at the Dublin Institute of Technology.

Obsérvese que a medida que utilizamos más frecuencias con distinta amplitud (funciones cos y sen), representamos con mayor precisión la función original.

- Transformada de Fourier en tiempo discreto (DTFT):
 - Representación compleja: $F(e^{j\omega})$ o $F(\omega)$
 - Representa la variación temporal de la señal original

$$f[n] \xrightarrow{DTFT} F(e^{j\omega})$$

Obsérvese que $e^{j\omega n}=e^{j(\omega+2k\pi)n}$, $\forall k\in Z$. Por lo tanto $F(e^{j\omega})$ es periódica de periodo 2π

- Transformada de Fourier en tiempo discreto (DTFT):
 - $-\omega$ representa la pulsación (frecuencia) entre -2π y 2π
 - Frecuencias bajas ~0 (+2 $k\pi$)
 - Frecuencias altas $\sim \pi \ (+2k\pi)$

$$f[n] = \cos(w_0 n)$$

Ejemplos extraídos de http://blogs.mathworks.com/steve/2009/12/31/discrete-time-fourier-transform-dtft/

- Transformada de Fourier en tiempo discreto (DTFT):
 - Frecuencias bajas ~0 (+2 $k\pi$)
 - Frecuencias altas $\sim \pi \ (+2k\pi)$

- Transformada de Fourier en tiempo discreto (DTFT):
 - Frecuencias bajas ~0 (+2 $k\pi$)
 - Frecuencias altas $\sim \pi \ (+2k\pi)$

- Transformada de Fourier en tiempo discreto (DTFT):
 - Frecuencias bajas ~0 (+2 $k\pi$)
 - Frecuencias altas $\sim \pi \ (+2k\pi)$

- Transformada de Fourier en tiempo discreto (DTFT):
 - Linealidad (sistemas LTI)

$$x[n] = \sin(0.5n) + \sin(2n)$$

$$w_1 = 0.5, \qquad w_2 = 2$$

$|F(\omega)|$

RESPUESTA DE UN SISTEMA LTI

Respuesta de un sistema LTI a señales cualquiera

$$f[n] \xrightarrow{LTI} g[n] = f[n] * h[n]$$

$$F(e^{j\omega}) \xrightarrow{LTI} G(e^{j\omega}) = F(e^{j\omega}) \cdot H(e^{j\omega})$$

→ Ventaja computacional: convolución (costosa) versus multiplicación