COMPARAÇÃO DE POLÍTICAS DE ESCALONAMENTO DE TAREFAS EM CLOUD-EDGE CONTINUUM

Eduardo Pandini

Guilherme Piêgas Koslovski

Evolução do continuum

•Cloud Computing:

- Grande capacidade
- Acesso onipresente
- Centralizado
- Distante

•Edge Computing:

- Menor capacidade
- Fisicamente próximo

•Cloud-Edge Computing:

- Utiliza a colaboração entre ambos
- Capacidade da Cloud
- Proximidade do Edge

Evolução do continuum

Objetivos

Comparação de políticas de escalonamento

- ·Utilização de simulações
- Avaliar diferentes métricas

•Objetivos específicos:

- Estudo de redes Cloud e Edge
- Estudo de simulação e do simulador escolhido
- Modelagem das políticas
- Avaliação dos resultados

Sumário

- 1. Revisão de literatura
- 2. Escalonamento
- 3. EdgeSimPy
- 4. Proposta
- 5. Plano de teste
- 6. Conclusão

•Tarefas:

- Dados gerados ou requeridos pelo usuário
- Armazenamento, processamento, hospedagem...
- Aplicações existentes e emergentes
- VANETs

Tarefas realizadas na colaboração

•Quando usar Cloud/Edge?

- · Cloud tem alta latência
- Edge não tem toda a capacidade da Cloud
- Utilizar escalonamento para fazer uso de ambos

•Escalonamento:

- Decidido por políticas de escalonamento
- Depende de diversos aspectos
- Melhorar certos aspectos
- Tempo
- Consumo de energia

•Políticas:

- First-Fit
- Best-Fit
- Worst-Fit
- Round-Robin
- SJF
- FIFO
- Diferentes políticas tem diferentes parâmetros
- Diferentes objetivos
- •Qual a melhor escolha para um caso específico?

- Importante testar políticas
- Garantir funcionamento
- •Garantir eficiência

- Por que não testar em redes reais?
 - Tempo
 - Custo
 - Facilidade

•Simuladores:

- Modelo
- Cenário
- Simulador
- Simulação
- GVT

- Trabalhos relacionados
- Liu et al., 2019: política de escalonamento baseada em aprendizado de máquina
- Wang et al., 2020: política de escalonamento baseada em otimização multiobjetivo Zhang et al., 2021: política de escalonamento baseada em algoritmos genéticos.
- Souza et al. desenvolveu, testou e comparou o algoritmo Thea com outros algoritmos para distribuição de tarefas em redes edge.
 - Consumo de energia dos servidores
 - Latência
 - Violações de confiança

Simuladores:

Dos simuladores selecionados, o que cumpre com todos os requisitos desejados foi o EdgeSimPy Capaz de simular:

- Consumo de energia
- Roteamento de rede
- Mobilidade de usuário
- Escalonamento de rede
- Migração de serviços
- Operações de manutenção

EdgeSimPy

- Projetado para simulação de redes Edge
- Arquitetura modular
- Abstrações para diversos componentes da rede

- Alocação de recursos considerando diferentes métricas
- Permite definição de novos parâmetros personalizados
- Grande customizabilidade

EdgeSimPy

Proposta

- •Modelagem, simulação e avaliação de diferentes políticas
- •Inicialmente serão testadas políticas tradicionais e suas variações
- Avançar gradualmente para políticas complexas elencadas

Protocolo e cenário

- •Parâmetros métricas definidos por SOUZA et al. 2023
- Define a configuração dos servidores e tarefas
- Define métricas para avaliação
- Trabalho testado no simulador EdgeSimPy

Composição do cenário

Três modelos de servidores
Diferentes parâmetros de capacidade e consumo de energia

Modelo	CPU	RAM	Consumo inativo	Consumo máximo
Modelo 1	32 núcleos	32GB	265W	1387W
Modelo 2	48 núcleos	64GB	127W	559W
Modelo 3	36 núcleos	64GB	45W	276W

Quatro modelos de tarefas Diferentes demandas

Tamanho	Demanda de CPU	Demanda de RAM
Pequena	2 núcleos	2GB
Média	4 núcleos	4GB
Grande	8 núcleos	8GB
Enorme	16 núcleos	16GB

Composição do cenário

Topologia:

- Servidores
- Estação base
- Links de rede
- Area de cobertura hexagonal
- Um par de pontos tem latência entre si
- Usuários são designados as estações base mais próximas

Métricas para avaliação

- Tempo de conclusão do serviço
- Consumo de energia
- Tempo de execução do escalonador
- Vazão de processo no cenário
- Tempo de espera

Testes iniciais:

- Avaliação do consumo de energia utilizando First-Fit
- Simulação realizada para compreensão do simulador

Conclusões parciais

- Colaboração auxilia a mitigação de problemas na s redes cloud e edge
- Como utilizar os recursos de forma eficiente
- Políticas de escalonamento
- Simulação para teste

Continuação do trabalho

- Realizar a modelagem das políticas e cenários selecionados
- Simular as políticas
- Avaliar os resultados

Cronograma

- 1. Estudo sobre Cloud-Edge Colaboration
- 2. Estudo sobre escalonamento de tarefas em cloud-edge colaboration
- 3. Estudo e seleção de políticas da literatura
- 4. Estudo da ferramenta EdgeSimPy
- 5. Implementação e execução das simulações
- 6. Avaliação das simulações
- 7. Escrita do texto

Etapas	2023/2				2024/1						
	Ago	Set	Out	Nov	Dez	Jan	Fev	Mar	Abr	Maio	Jun
1											
2											
3											
4											
5											
6											
7											

Perguntas?

pandiniedu@gmail.com

http://www.labp2d.joinville.udesc.br

Apoio:

This work is under Creative Commons Attribution-ShareAlike 4.0 International License

https://creativecommons.org/licenses/by-sa/4.0/