$X = (X_1, \dots, X_n), Y = (Y_1, \dots, Y_n), Z = (X_1, \dots, X_n, Y_1, \dots, Y_n).$

$$K_1(Z) = \sum_{i,j=1}^{n} |X_i - Y_j|, \tag{1}$$

$$K_2(Z) = (\overline{X} - \overline{Y})^2, \tag{2}$$

$$L_1(Z) = \sum_{i,j=1}^{n} \ln(1 + |X_i - Y_j|)$$
(3)

$$L_1^C(Z) = \sum_{i,j=1}^n \ln\left(1 + \left(\frac{|X_i - Y_j|}{C}\right)\right), \qquad C = \sum_{1 \le i < j \le 2n} |Z_i - Z_j| / (n(2n-1)), \tag{4}$$

$$L_2(Z) = \sum_{i,j=1}^n \ln(1+|X_i-Y_j|^2)$$
 (5)

$$L_2^C(Z) = \sum_{i,j=1}^n \ln\left(1 + \left(\frac{|X_i - Y_j|}{C}\right)^2\right), \qquad C = \sum_{1 \le i \le j \le 2n} |Z_i - Z_j| / (n(2n-1)), \tag{6}$$

$$T_1(Z) = -\left(\sum_{i=1}^n \ln(1 + [X_i - Z_{cen}]_+) + \sum_{j=1}^n \ln(1 + [Z_{cen} - Y_j]_+)\right), \quad X_{cen} \le Y_{cen}, \quad [a]_+ = a \quad if \quad a > 0,$$
 (7)

$$NC = \frac{S_X^2 + (\bar{X} - \bar{Y})^2}{S_Y^2} + \frac{S_Y^2 + (\bar{X} - \bar{Y})^2}{S_Y^2}, \tag{8}$$

$$CC^{C} = \sum_{i=1}^{n} \left\{ \ln \left(1 + \frac{|X_i - Y_{cen}|}{Y_{sd}} \right) + \ln \left(1 + \frac{|Y_i - X_{cen}|}{X_{sd}} \right) \right\}, \tag{9}$$

(10)

(12)

(13)

$$CC_2^C = -\left(\sum_{i=1}^n \left\{ \ln\left(1 + \left(\frac{|X_i - X_{cen}|}{X_{sd}}\right)^2\right) + \ln\left(1 + \left(\frac{|Y_i - Y_{cen}|}{Y_{sd}}\right)^2\right) \right\} + n(\ln(X_{sd}) + \ln(Y_{sd}))\right),$$

$$CC_3^C = \sum_{i,j=1}^n \ln\left(1 + \left|\frac{X_i}{Y_{sd}} - \frac{Y_j}{X_{sd}}\right|^2\right),\tag{11}$$

 X_{cen}, X_{sd} — max likelihood estimations of mean and standard deviation with starting points the 24% trimmed mean and half the interquartile range respectively.

Таблица 1: Мощность тестов при размерах выборок n=5

F_2	K_1	K_2	L_1	L_1^C	L_2	L_2^C	T_1	NC	CC^C	CC_2^C	CC_3^C	t	w	ks	f
C(0, 1)	0.071	0.069	0.06	0.059	0.058	0.068	0.063	0.049	0.055	0.053	0.048	0.021	0.039	0.01	0.422
C(1, 1)	0.131	0.115	0.148	0.141	0.147	0.122	0.113	0.107	0.133	0.142	0.09	0.043	0.071	0.035	0.427
C(2, 1)	0.312	0.269	0.338	0.338	0.337	0.3	0.271	0.241	0.309	0.324	0.201	0.129	0.195	0.107	0.452
C(3, 1)	0.497	0.431	0.572	0.542	0.572	0.486	0.436	0.432	0.495	0.549	0.352	0.267	0.352	0.223	0.426
C(4, 1)	0.624	0.532	0.715	0.696	0.711	0.608	0.535	0.583	0.666	0.705	0.46	0.365	0.431	0.317	0.43
C(0, 1)	0.054	0.051	0.062	0.063	0.057	0.052	0.05	0.058	0.064	0.064	0.057	0.013	0.033	0.007	0.443
C(0, 3)	0.086	0.071	0.144	0.13	0.139	0.076	0.064	0.163	0.105	0.144	0.168	0.018	0.043	0.02	0.575
C(0, 5)	0.117	0.077	0.292	0.259	0.29	0.117	0.08	0.309	0.202	0.291	0.319	0.015	0.054	0.029	0.679
C(0, 7)	0.159	0.094	0.395	0.354	0.392	0.131	0.089	0.399	0.288	0.398	0.445	0.022	0.058	0.031	0.756
C(0, 9)	0.16	0.086	0.476	0.413	0.483	0.147	0.078	0.475	0.358	0.494	0.509	0.02	0.049	0.028	0.772
C(0, 1)	0.065	0.063	0.052	0.053	0.052	0.066	0.063	0.055	0.045	0.051	0.05	0.018	0.036	0.007	0.449
C(1, 2)	0.097	0.079	0.115	0.111	0.117	0.094	0.075	0.118	0.113	0.117	0.111	0.029	0.05	0.018	0.471
C(2, 3)	0.174	0.129	0.262	0.259	0.262	0.17	0.126	0.255	0.217	0.26	0.235	0.044	0.096	0.047	0.583
C(3, 4)	0.212	0.165	0.335	0.314	0.34	0.21	0.161	0.313	0.277	0.319	0.332	0.058	0.116	0.05	0.628
C(4, 5)	0.287	0.205	0.448	0.41	0.457	0.27	0.199	0.411	0.373	0.446	0.437	0.08	0.146	0.079	0.657
C(0, 1)	0.06	0.061	0.058	0.056	0.056	0.064	0.06	0.053	0.054	0.049	0.06	0.019	0.034	0.012	0.435
C(1, 3)	0.106	0.09	0.168	0.159	0.172	0.107	0.085	0.182	0.135	0.161	0.169	0.02	0.056	0.019	0.564
C(2, 5)	0.151	0.099	0.337	0.297	0.343	0.137	0.102	0.338	0.24	0.325	0.359	0.031	0.068	0.035	0.676
C(3, 7)	0.195	0.111	0.434	0.388	0.427	0.181	0.101	0.425	0.323	0.421	0.452	0.03	0.075	0.035	0.734
C(4, 9)	0.219	0.118	0.52	0.459	0.526	0.203	0.115	0.505	0.398	0.511	0.532	0.033	0.073	0.037	0.775

Таблица 2: Мощность тестов при размерах выборок n=50

F_2	K_1	K_2	L_1	L_1^C	L_2	L_2^C	T_1	NC	CC^C	CC_2^C	CC_3^C	t	w	ks	f
C(0, 1)	0.052	0.048	0.061	0.05	0.056	0.049	0.049	0.054	0.061	0.061	0.061	0.02	0.055	0.045	0.829
C(0.5, 1)	0.175	0.071	0.28	0.225	0.268	0.159	0.194	0.043	0.373	0.326	0.171	0.041	0.283	0.3	0.829
C(1, 1)	0.533	0.126	0.809	0.719	0.792	0.432	0.458	0.063	0.883	0.851	0.617	0.068	0.744	0.805	0.84
C(1.5, 1)	0.842	0.222	0.979	0.957	0.979	0.727	0.803	0.061	0.99	0.985	0.939	0.154	0.949	0.981	0.823
C(2, 1)	0.968	0.285	1	0.997	1	0.862	0.922	0.102	1	1	0.997	0.205	0.984	0.999	0.818
C(0, 1)	0.05	0.051	0.055	0.048	0.061	0.05	0.045	0.053	0.048	0.048	0.055	0.023	0.038	0.034	0.824
C(0, 2)	0.242	0.042	0.48	0.382	0.484	0.196	0.042	0.173	0.275	0.539	0.638	0.014	0.038	0.172	0.845
C(0, 3)	0.622	0.049	0.901	0.807	0.901	0.468	0.051	0.312	0.762	0.929	0.956	0.018	0.053	0.434	0.892
C(0, 4)	0.823	0.044	0.985	0.957	0.985	0.638	0.049	0.445	0.934	0.987	0.998	0.015	0.052	0.675	0.912
C(0, 5)	0.919	0.043	0.997	0.985	0.997	0.764	0.055	0.536	0.986	0.998	0.999	0.014	0.065	0.858	0.934
C(0, 1)	0.051	0.055	0.042	0.047	0.047	0.049	0.053	0.053	0.043	0.046	0.044	0.016	0.047	0.04	0.834
C(0.5, 1.5)	0.209	0.058	0.367	0.306	0.362	0.196	0.149	0.117	0.346	0.402	0.393	0.028	0.213	0.247	0.845
C(1, 2)	0.514	0.084	0.828	0.709	0.821	0.402	0.267	0.153	0.776	0.863	0.834	0.037	0.401	0.645	0.832
C(1.5, 2.5)	0.754	0.106	0.966	0.911	0.964	0.615	0.452	0.27	0.957	0.98	0.973	0.064	0.607	0.865	0.866
C(2, 3)	0.88	0.129	0.996	0.977	0.996	0.755	0.587	0.328	0.994	0.998	0.996	0.078	0.744	0.952	0.892
C(0, 1)	0.051	0.042	0.036	0.043	0.038	0.057	0.042	0.052	0.054	0.037	0.044	0.021	0.04	0.037	0.824
C(0.5, 2)	0.336	0.06	0.618	0.492	0.613	0.273	0.122	0.172	0.479	0.68	0.705	0.036	0.17	0.335	0.861
C(1, 3)	0.698	0.078	0.947	0.876	0.945	0.568	0.197	0.333	0.87	0.968	0.978	0.037	0.265	0.694	0.908
C(1.5, 4)	0.901	0.091	0.997	0.981	0.996	0.745	0.276	0.448	0.981	0.998	0.998	0.047	0.371	0.904	0.924
C(2, 5)	0.963	0.094	1	0.996	1	0.842	0.302	0.564	0.999	1	1	0.048	0.417	0.959	0.932