

CONCOURS D'ENTREE EN LICENCE

EPREUVE: MATHEMATIQUES

Durée: 1h30

Sur la feuille « GRILLES DE REPONSES », cochez dans chacun des cas la bonne réponse. Une réponse juste apporte 2 points, une réponse fausse retranche 1 point. L'absence de réponse ne rapporte ni ne retranche de point

Q1. Soit (u_n) une suite géométrique de premier terme $u_0 = 2$ et de raison $q = \frac{1}{2}$. Alors pour tout entier naturel n:

A: $u_{n+1} = 2u_{n+1}$;

B: $u_{n+1} = u_n + 2$

C: $u_{n+1} = \frac{1}{2}u_n$;

B: $u_{n+1} = u_n + 2$ D: $u_{n+1} = u_n + \frac{1}{2}$

Q2. La suite (u_n) définie par $u_n=4\left(\frac{4}{5}\right)^n$ pour tout entier naturel n a pour limite :

Q3. Pour tout réel, le nombre réel $e^{a/2}$ est égal à :

 $A:\sqrt{e^a}$; $B:\frac{e^a}{2}$;

D: $e\sqrt{a}$

Q4. L'équation $lnx = \frac{1}{2}$ a pour solution réelle :

 $A: \frac{1}{2}e$; B: 2 ; $C: \sqrt{e}$

Q5. Une primitive de la fonction f(x) = lnx sur]0;+ ∞ [est :

 $A: \frac{1}{x}$; B: xlnx; C: xlnx - x; $D: e^x$

Q6. Soit f la fonction définie sur]0 ;+ ∞ [par $f(x) = \frac{\ln x}{x}$. La dérivée de f est :

A: $f'(x) = \frac{\ln x - 1}{x^2}$; B: $f'(x) = \frac{1 - \ln x}{x^2}$; C: $f'(x) = \frac{1}{x^2}$; D: $f'(x) = \frac{1 + \ln x}{x^2}$.

Session: 2017

Q7. Soit la fonction f définie sur $]0;+\infty[$ par f(x)=2x-xlnx.

A: f(3e) = 6e - 3eln3; B: f(3e) = 3e(1 - ln3)

C: $f(3e) = 3e^2 \ln(3e)$; D: $f(3e) = e \ln 3$

Q8. Soit la fonction f définie sur $[0 : +\infty[$ par $f(x) = x \ln x.$

A: f'(x) = lnx + 1; B: f'(x) = 1; C: f'(x) = lnx; D: $f'(x) = \frac{1}{x}$

Q9. Soit la fonction f définie sur \mathbb{R} par $f(x) = xe^{-x}$

A: f(ln2) = ln2 ; B: f(ln2) = -2ln2 ;

C: f(ln2) = 2ln2 ; D: $f(ln2) = \frac{1}{2}ln2$

Q10. L'intégrale $\int_2^6 \frac{5}{x} dx$ vaut :

A: 5(ln6 - ln2); B: 5(ln6 + ln2)

 $C: \frac{1}{5}(ln6 - ln2)$; D: ln12

Q11. Soit
$$I = \int_0^1 3e^{3x} dx$$
. La valeur de I est
A: $I = e^3 - 1$; B: $I = 3e^3 - 3$; C: $I = 19,1$; D: $I = 1 - e^3$

Q12. On considère l'équation différentielle (E) : y''(x) + 2y'(x) + 2y(x) = 0 pour tout réel x. Une solution de (E) est la fonction définie sur $\mathbb R$ par :

A:
$$f(x) = e^{-x} \sin x$$
; B: $f(x) = e^{-x} \cos x$;

C:
$$f(x) = 2e^{-x} \sin x$$
; D: $f(x) = e^{-x} \sin \left(x + \frac{\pi}{4}\right)$

Q13. Le réel $ln4ln(\sqrt{2})$ est égal à :

A:
$$\ln (4 + \sqrt{2})$$
; B: $\ln (4\sqrt{2})$; C: $(\ln 2)^2$

Q14. Soit la fonction f définie sur \mathbb{R} par $f(x) = (x^2 + x + 1)e^{-x} + 1$. $\lim_{x \to +\infty} f(x)$ vaut $A: +\infty$; B: 0; C: -1; $D: -\infty$

Q15. Soit la fonction f définie sur \mathbb{R} par $f(x) = (x^2 + x + 1)e^{-x} - 1$. La courbe de f admet une asymptote d'équation :

$$A: x = 1$$

B:
$$v = -1$$
;

A:
$$x = 1$$
; B: $y = -1$; C: $y = x - 1$; D: $y = 1$

$$D: y = 1$$

Q16. Un argument de $z = \frac{1+i}{1-i\sqrt{3}}$ est :

A:
$$-\frac{\pi}{12}$$

$$B:\frac{\pi}{12}\;;$$

A:
$$-\frac{\pi}{12}$$
; B: $\frac{\pi}{12}$; C: $\frac{5\pi}{12}$; D: $\frac{7\pi}{12}$

D:
$$\frac{7\pi}{12}$$

Q17. Une de ces équations admet deux solutions complexes conjuguées.

A:
$$z^2 + 3iz + 4 = 0$$
; B: $z^2 + 3iz - 4 = 0$;

B:
$$z^2 + 3iz - 4 = 0$$
;

C:
$$z^2 + 3z + 4 = 0$$
; D: $z^2 + 3z - 4 = 0$

D:
$$z^2 + 3z - 4 = 0$$

Q18. La fonction qui vérifie f(x + y) = f(x)f(y) pour tous les x et y dans son domaine de définition est :

$$A: f(x) = \ln(2x)$$

A:
$$f(x) = \ln(2x)$$
; B: $f(x) = \frac{1}{2}\ln(x)$; C: $f(x) = e^{2x}$; D: $f(x) = \frac{1}{2}e^{x}$

$$C: f(x) = e^{2x} ;$$

$$D: f(x) = \frac{1}{2}e^{x}$$

Q19. La suite réelle $(u_n)_{n\geq 0}$ définie par $u_n=2n+(-1)^n$ est :

A: croissante;

B: décroissante;

C: non monotone;

D : croissante et décroissante selon la parité de n

Q20. Si on fait le changement de variable u=at (a>0) dans l'intégrale $\int_0^1 f(t)dt$ on obtient :

$$A: \int_0^1 f(\frac{u}{a}) du ;$$

$$\mathrm{B}: \int_0^a f(\frac{u}{a}) du \ ;$$

$$B: \int_0^a f(\frac{u}{a}) du ; \qquad C: a \int_0^1 f(\frac{u}{a}) du ; \qquad D: \frac{1}{a} \int_0^a f(\frac{u}{a}) du$$

D:
$$\frac{1}{a} \int_0^a f(\frac{u}{a}) du$$

CONCOURS D'ENTREE EN LICENCE

SESSION 2017

EPR	REUVE DE MATHEMATI	QUES	GNATURE DU CANDIDAT
N° DE TABLE :			
NOM: PRENOMS: Date de naissance:			A NONYMAT
	GRILLES DE R	EPONSES	ANONYMAT
E	EPREUVE DE MATHEMA	TIQUES	
Date: / / 201	.7		
Signatures des surveill	llants		
1)	3)		
2)			
Q1	A B C D	A B	C D
Q2		Q12	
Q3		Q13 🔲 🔲	
Q4		Q14 🔲 🔲	
Q5		Q15 🗌 🔲	
Q6		Q16 🗌 🔲	
Q7		Q17 🗌 🔲	
Q8		Q18	
Q9		Q19 🔲 🔲	
Q10		Q20	
	-	1	

/40	/20
	/40