РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук

Кафедра информационных технологий

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №5

Дисциплина: Интеллектуальный анализ данных

Студент: Леонова Алина

Группа: НФИбд-02-17

Москва 2020

Вариант №21

Arrhythmia Data Set

Название файла: arrhythmia.data

Ссылка: http://archive.ics.uci.edu/ml/datasets/Arrhythmia (http://archive.ics.uci

Первый признак: Q wave of channel DI (столбец No 161)

Второй признак: R wave of channel DI (столбец No 162)

Третий признак: S wave of channel DI (столбец No 163)

Класс: Sex (столбец No 2)

localhost:8888/lab 1/12

Постановка задачи:

- 1. Считайте из заданного набора данных репозитария UCI значения трех признаков и метки класса.
- 1. Если среди меток класса имеются пропущенные значения, то удалите записи с пропущенными метками класса. Если в признаках имеются пропущенные значения, то замените их на средние значения для того класса, к которому относится запись с пропущенным значением.
- 1. Масштабируйте признаки набора данных на интервал от 0 до 1.
- 1. Визуализируйте набор данных в виде точек пространства с координатами, соответствующими трем признакам, отображая точки различных классов разными цветами. Подпишите оси и рисунок, создайте легенду набора данных.
- 1. Используя разделение набора данных из трех признаков на обучающую и тестовую выборки в соотношении 75% на 25%, проведите классификацию тестовой выборки с помощью наивного байесовского классификатора.
- 1. Постройте и выведите на экран отчет о классификации и матрицу ошибок.
- 1. Найдите точность классификации набора данных при помощи наивного байесовского классификатора методом кросс-валидации по 5 блокам.
- 1. Используя разделение набора данных из трех признаков на обучающую и тестовую выборки в соотношении 75% на 25%, проведите классификацию тестовой выборки с помощью метода К ближайших соседей для различных значений К и определите оптимальное значение параметра К с минимальной долей ошибок.
- 1. Найдите точность классификации набора данных при помощи метода К ближайших соседей для найденного значения К методом кросс-валидации по 5 блокам.
- 1. Определите, какой из методов классификации позволяет получить более высокую точность классификации набора данных при кросс-валидации по 5 блокам.
- 1. Проведите классификацию точек набора данных лучшим методом и визуализируйте набор данных в виде точек пространства с координатами, соответствующими трем признакам, отображая точки различных прогнозируемых классов разными цветами. Подпишите оси и рисунок, создайте легенду набора данных.

localhost:8888/lab 2/12

1. Считайте из заданного набора данных репозитария UCI значения трех признаков и метки класса.

```
Первый признак: Q wave of channel DI (столбец No 161)
Второй признак: R wave of channel DI (столбец No 162)
Третий признак: S wave of channel DI (столбец No 163)
Класс: Sex (столбец No 2)
```

In [1]:

```
import numpy as np
import pandas as pd

url = \
"http://archive.ics.uci.edu/ml/machine-learning-databases/arrhythmia/arrhythmia.data"
data = pd.read_csv( url, header=None, prefix="V", usecols = [2-1, 161-1, 162-1, 163-1])
print(data[0:5])
```

```
V1 V160 V161 V162
0
   0
       0.0
            6.1 -1.0
       0.0
            7.2 0.0
1
   1
     0.0
           4.5 -2.8
2
   0
            7.8 -0.7
3
   0
       0.0
4
   0
       0.0
            5.2 -1.4
```

2. Если среди меток класса имеются пропущенные значения, то удалите записи с пропущенными метками класса. Если в признаках имеются пропущенные значения, то замените их на средние значения для того класса, к которому относится запись с пропущенным значением.

localhost:8888/lab 3/12

In [2]:

```
df = data.replace('?',np.NaN)

print( "Типы:\n", df.dtypes)
print('\nЧисло записей = %d' % (df.shape[0]))
print('Число признаков = %d' % (df.shape[1]))

print('Число отсутствующих значений:')
for col in df.columns:
    print('\t%s: %d' % (col,df[col].isna().sum()))

Типы:
```

```
۷1
           int64
V160
        float64
V161
        float64
V162
        float64
dtype: object
Число записей = 452
Число признаков = 4
Число отсутствующих значений:
        V1: 0
        V160: 0
        V161: 0
        V162: 0
```

Набор полон.

3. Масштабируйте признаки набора данных на интервал от 0 до 1.

In [3]:

```
[0. 1. 0.307 0.928]

[1. 1. 0.362 1. ]

[0. 1. 0.226 0.797]

[0. 1. 0.392 0.949]

[0. 1. 0.261 0.899]]
```

4. Визуализируйте набор данных в виде точек пространства с координатами, соответствующими трем признакам, отображая точки различных классов разными цветами. Подпишите оси и рисунок, создайте легенду набора данных.

localhost:8888/lab 4/12

In [4]:

```
from mpl toolkits import mplot3d
import matplotlib.pyplot as plt
fig = plt.figure(figsize=(12,10))
ax = plt.axes(projection='3d')
xs = rescaledX[:,1]
ys = rescaledX[:,2]
zs = rescaledX[:,3]
c = rescaledX[:,0]
sc = ax.scatter( xs, ys, zs, c=c, s=100)
leg = ax.legend(*sc.legend_elements(), loc="lower left", title="Classes")
ax.add_artist(leg)
ax.set_xlabel('V160')
ax.set_ylabel('V161')
ax.set_zlabel('V162')
ax.view_init( azim=-120, elev=25 )
ax.set_title('Визуализация набора данных')
plt.show()
```


5 Используя разделение набора данных из трех признаков на обучающую и тестовую выборки в соотношении 75% на 25%, проведите классификацию тестовой выборки с помощью наивного байесовского классификатора.

localhost:8888/lab 5/12

In [5]:

```
resX = pd.DataFrame(data=rescaledX, columns=["V1", "V160", "V161", "V162"])
resX[['V1']] = resX[['V1']].astype(int)
print(resX[0:5])
```

```
V1 V160 V161 V162

0 0 1.0 0.306533 0.927536

1 1 1.0 0.361809 1.000000

2 0 1.0 0.226131 0.797101

3 0 1.0 0.391960 0.949275

4 0 1.0 0.261307 0.898551
```

Разделение набора

In [6]:

```
from sklearn.model_selection import train_test_split

test_size=0.25 # mecmoвая выборка 25%

X = resX.drop('V1',axis=1)
y = resX['V1']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_s
tate=101)
# random_state чтобы деление не менялось
```

Наивная байесовская классификация

In [7]:

```
from sklearn.naive_bayes import GaussianNB

nbc = GaussianNB()
nbc.fit(X_train,y_train);

y_pred_bayes = nbc.predict(X_test)
mislabel = np.sum((y_test!=y_pred_bayes))
print('Количество неправильно классифицированных точек из {} точек тестового множества равно {}'.format(len(y_test),mislabel))
```

Количество неправильно классифицированных точек из 113 точек тестового мно жества равно 49

6. Постройте и выведите на экран отчет о классификации и матрицу ошибок.

localhost:8888/lab 6/12

In [8]:

```
from sklearn.metrics import classification_report
print("Отчет о классификации:\n")
print(classification_report(y_test,y_pred_bayes))
```

Отчет о классификации:

	precision	recall	f1-score	support
0	0.52	0.24	0.33	50
1	0.58	0.83	0.68	63
accuracy			0.57	113
macro avg	0.55	0.53	0.50	113
weighted avg	0.55	0.57	0.52	113

In [9]:

```
from sklearn.metrics import confusion_matrix
cm = (confusion_matrix(y_test,y_pred_bayes))
cmdf = pd.DataFrame(cm,index=[0,1], columns=[0,1])
print("Матрица ошибок:\n", cmdf)
```

Матрица ошибок:

```
0 1
0 12 38
1 11 52
```

7. Найдите точность классификации набора данных при помощи наивного байесовского классификатора методом кросс-валидации по 5 блокам.

In [10]:

```
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
num_folds = 5
kfold = KFold(n_splits=num_folds)

res_bayes = cross_val_score(nbc, X, y, cv=kfold)
print("Точность: {:.3f} ({:.3f})".format(res_bayes.mean()*100.0, res_bayes.std()*100.0
))
```

Точность: 57.944 (6.625)

8. Используя разделение набора данных из трех признаков на обучающую и тестовую выборки в соотношении 75% на 25%, проведите классификацию тестовой выборки с помощью метода К ближайших соседей для различных значений К и определите оптимальное значение параметра К с минимальной долей ошибок.

localhost:8888/lab 7/12

In [11]:

Out[11]:

Text(0, 0.5, 'Доля ошибок')

Судя по графику, с таким разбиением меньше всего ошибок с К=28

9. Найдите точность классификации набора данных при помощи метода К ближайших соседей для найденного значения К методом кросс-валидации по 5 блокам.

localhost:8888/lab 8/12

In [12]:

```
knn = KNeighborsClassifier(n_neighbors=28)
knn.fit(X_train,y_train)

pred = knn.predict(X_test)

from sklearn.metrics import classification_report,confusion_matrix
conf_mat=confusion_matrix(y_test,pred)
print("Матрица ошибок:\n", conf_mat)
print("Отчет о классификации:\n", classification_report(y_test,pred))
print("Доля ошибок неправильной классификации:",round(np.mean(pred!=y_test),3))

# Кросс-валидация
num_folds = 5
kfold = KFold(n_splits=num_folds)

res_knn = cross_val_score(knn, X, y, cv=kfold)
print("Точность: {:.3f} ({:.3f})".format(res_knn.mean()*100.0, res_knn.std()*100.0))
```

Матрица ошибок:

[[17 33] [8 55]]

Отчет о классификации:

precision	recall	f1-score	support
0.68	0.34	0.45	50
0.62	0.87	0.73	63
		0.64	113
0.65 0.65	0.61 0.64	0.59 0.61	113 113
	0.68 0.62 0.65	0.680.340.620.870.650.61	0.68 0.34 0.45 0.62 0.87 0.73 0.64 0.65 0.61 0.59

Доля ошибок неправильной классификации: 0.363

Точность: 55.509 (6.310)

10. Определите, какой из методов классификации позволяет получить более высокую точность классификации набора данных при кросс-валидации по 5 блокам.

In [13]:

```
print('Точность классификации при кросс-валидации по 5 блокам\n')
print('\tHаивной байесовской : {:.3f} ({:.3f})'.format(res_bayes.mean()*100.0, res_baye
s.std()*100.0))
print('\tK ближайших соседей : {:.3f} ({:.3f})'.format(res_knn.mean()*100.0, res_knn.st
d()*100.0))
```

Точность классификации при кросс-валидации по 5 блокам

Наивной байесовской : 57.944 (6.625) К ближайших соседей : 55.509 (6.310)

Метод наивной бейсовской классификации показал большую точность

localhost:8888/lab 9/12

11. Проведите классификацию точек набора данных лучшим методом и визуализируйте набор данных в виде точек пространства с координатами, соответствующими трем признакам, отображая точки различных прогнозируемых классов разными цветами. Подпишите оси и рисунок, создайте легенду набора данных.

In [14]:

```
fig = plt.figure(figsize=(12,10))
ax = plt.axes(projection='3d')

xs = np.array(X_test['V160'])
ys = np.array(X_test['V161'])
zs = np.array(X_test['V162'])
c = y_pred_bayes

sc = ax.scatter( xs, ys, zs, c=c, s=100)

leg = ax.legend(*sc.legend_elements(), loc="lower left", title="Classes")
ax.add_artist(leg)

ax.set_xlabel('V160')
ax.set_ylabel('V161')
ax.set_zlabel('V162')
ax.view_init( azim=-120, elev=25 )
ax.set_title('Визуализация классификации методом наивной бейсовской классификации')
plt.show()
```


Тренироваочные + спрогронизорованные :

localhost:8888/lab 10/12

01.11.2020 ida L5

In [15]:

```
import matplotlib.pyplot as plt
fig = plt.figure(figsize=(12,10))
ax = plt.axes(projection='3d')
# тренировочные
xs = np.array(X_train['V160'])
ys = np.array(X_train['V161'])
zs = np.array(X_train['V162'])
c = y_train
sc = ax.scatter(xs, ys, zs, c=c, s=100)
# спрогнозированные
xs = np.array(X_test['V160'])
ys = np.array(X_test['V161'])
zs = np.array(X_test['V162'])
c = y_pred_bayes
sc = ax.scatter( xs, ys, zs, c=c, s=100)
leg = ax.legend(*sc.legend_elements(), loc="lower left", title="Classes")
ax.add artist(leg)
ax.set_xlabel('V160')
ax.set_ylabel('V161')
ax.set_zlabel('V162')
ax.view_init( azim=-120, elev=25 )
ax.set_title('Визуализация классификации методом наивной бейсовской классификации (test
+train)')
plt.show()
```

Визуализация классификации методом наивной бейсовской классификации (test+train)

localhost:8888/lab 11/12

Ещё раз реальный набор:

In [16]:

```
fig = plt.figure(figsize=(12,10))
ax = plt.axes(projection='3d')

xs = rescaledX[:,1]
ys = rescaledX[:,2]
zs = rescaledX[:,0]

sc = ax.scatter( xs, ys, zs, c=c, s=100)

leg = ax.legend(*sc.legend_elements(), loc="lower left", title="Classes")
ax.add_artist(leg)

ax.set_xlabel('V160')
ax.set_ylabel('V161')
ax.set_zlabel('V162')
ax.view_init( azim=-120, elev=25 )
ax.set_title('Визуализация набора данных')
plt.show()
```


Визуально вышло довольно близко к правде

localhost:8888/lab 12/12