1. Scientific and statistical abstraction

- (a) (5) All plants received the same amount of water at the same time each day.
- (b) (4) No; variety is an inherent trait of the plant that is not randomly assigned.
- (c) (8) Let X_i be a random variable associated with the survival indicator for plant i from variety A, where i = 1, 2. The sample space for X_i is $\{0, 1\}$. Let Y_i be a random variable associated with the survival indicator for plant i from variety B, where i = 1, 2, 3. The sample space for Y_i is $\{0, 1\}$.
- 2. (6) The data are binary
- 3. Inference for the variety B probability
 - (a) (5) $2\log(p_B) + \log(1 p_B)$
 - (b) **(5)** $U(p_B) = 2/p_B 1/(1 p_B)$
 - (c) (5) The MLE \hat{p}_B satisfies $U(\hat{p}_B) = 0$. Solving for \hat{p}_B gives $\hat{p}_B = 2/3$.
 - (d) (4) A general form for the score equation is

$$U(p_B) = \frac{n\bar{y}}{p_B} - \frac{n(1-\bar{y})}{1-p_B}.$$

Differentiating $U(p_B)$ with respect to p_B and taking the negative sign gives as the observed information,

$$I_3(p_B) = 3\bar{y}/p_B^2 + 3(1-\bar{y})/(1-p_B)^2,$$

where $\bar{Y} = 3^{-1}(Y_1 + Y_2 + Y_3)$. Taking the expectation gives as the expected information

$$\bar{I}_3(p_B) = E[I_3(p_B)] = 3\left(\frac{1}{p_B} + \frac{1}{1 - p_B}\right) = \frac{3}{p_B(1 - p_B)}.$$

(e) (8) The estimated variance of \hat{p}_B is

$$\hat{V}\{\hat{p}_B\} = \frac{1}{3}(2/3)(1/3) = 0.074,$$

and the standard error is $SE(\hat{p}_B)=0.272$. A 95% Wald interval is $2/3\pm1.96(0.272)$. This is [0.133,1].

(f) (6) The estimate is

$$\hat{\theta} = \log(2/3/(1-2/3)) = 0.693.$$

We estimate the standard deviation based on the asymptotic normal distribution of the estimator of the proportion. The derivative of θ with respect to p_B is

$$\theta' = \frac{1}{p_B} + \frac{1}{1 - p_B}.$$

An estimate of θ' is $\hat{\theta}' = 3/2 + 3 = 4.5$. Then, the standard error of $\hat{\theta} = 4.5(0.272) = 1.224$.

(g) (7) The canonical parametrization is

$$\exp[y\theta - B(\theta)],$$

where the canonical parameter is $\theta = \log(p_B/(1-p_B))$, and $B(\theta) = \log(1+exp(\theta))$. The sufficient statistic is Y.

- (h) (4) Then, the mean of Y is $B'(\theta) = \exp(\theta)(1 + \exp(\theta))^{-1}$.
- (i) **(5)** Yes
- (j) **(5)** Yes
- (k) **(5)** No
- 4. (12) Under the full model, the MLE of p_A is $\hat{p}_A = 1$. The likelihood under the full model is

$$L(\hat{p}_A, \hat{p}_B) = 1^2 (0^0) (2/3)^2 (1/3)^1 = 0.148.$$

The MLE of $p = p_A = p_B$ under the reduced model is $\hat{p} = 4/5$. The likelihood under the reduced model is

$$L(\hat{p}) = (4/5)^4 (1/5)^1 = 0.08192.$$

The log likelihood ratio statistic is

$$T_n = -2[\log(0.08192) - \log(0.148)] = 1.183.$$

A p-value is then $2P(Z<-\sqrt{1.183})$, where Z has a standard normal distribution. This is approximately 2P(Z<-1.1)=0.2714. We fail to reject the null hypothesis and conclude that the common probability appears to be appropriate.

5. (6) The study lacks replication.