Problème de la ruine du joueur

Arnaud GIRAND

5 juillet 2012

Référence :

- [Ouv00], p.394–398

Prérequis:

- décomposition de Doob;
- premier théorème d'arrêt;
- martingales équi-intégrables.

On considère le problème suivant : un joueur compulsif joue à pile où face avec une pièce truquée. S'il obtient pile, la banque lui donne un euro et s'il obtient face il donne un euro à la banque. Le joueur étant compulsif il joue jusqu'à sa propre ruine ou celle de la banque.

Modèle:

On note $a \in \mathbb{N}^*$ (resp. $b \in \mathbb{N}^*$) la fortune initiale du joueur (resp. de la banque) et p la probabilité d'obtenir pile en lançant la pièce. On se place alors sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$ et on se donne une suite $(Y_n)_n$ de variables aléatoires i.i.d de loi $p\delta_1 + q\delta_{-1}$ (avec bien entendu q = 1 - p), la variable Y_n représentant l'impact de la n-ième partie sur le pécule du joueur. On peut alors modéliser sa fortune au bout n parties par le processus aléatoire suivant :

$$\forall n \ge 0, \ S_n := a + \sum_{j=1}^n Y_j$$

Si on pose $Y_0:=a$ les filtrations $(\sigma(S_i\,|\,0\leq i\leq n))_{n\in\mathbb{N}}$ et $(\sigma(Y_i\,|\,0\leq i\leq n))_{n\in\mathbb{N}}$ sont égales : notons les (la?) $(\mathcal{A}_n)_n$. On définit enfin le temps d'arrêt T du jeu :

$$T := \inf\{n \ge 1 \mid S_n \in \{0, a+b\}\}\$$

On cherche à calculer la probabilité $\rho := \mathbb{P}(S_T = a + b)$ de non-ruine du joueur, ainsi que la probabilité $\mathbb{P}(T < \infty)$ que la partie s'achève un jour et sa durée moyenne $\mathbb{E}(T)$ le cas échéant.

Étude:

- Nature du processus S.

$$\forall n \ge 1, \ \mathbb{E}(S_n | \mathcal{A}_{n-1}) = a + \sum_{j=1}^n \mathbb{E}(Y_j | \mathcal{A}_{n-1})$$

$$= a + \sum_{j=1}^{n-1} \underbrace{\mathbb{E}(Y_j | \mathcal{A}_{n-1})}_{=Y_j \text{ car } Y_j \in m(\mathcal{A}_{n-1})} + \underbrace{\mathbb{E}(Y_n | \mathcal{A}_{n-1})}_{=Y_n \text{ car } Y_n \perp \mathcal{A}_{n-1}}$$

$$= S_{n-1} + p - q$$

De fait S est une martingale (resp. sous, sur) si $p=q=\frac{1}{2}$ (resp. $p>q,\,p< q$) intégrable.

- Cas $p \neq q$. Par exemple, supposons que p > q (S est alors une sous-martingale). On définit le processus aléatoire suivant :

$$A_0 := 0$$
 et $\forall n \in \mathbb{N}^*$, $A_n - A_{n-1} := \mathbb{E}(S_n - S_{n-1} | \mathcal{A}_{n-1})$ i.e (par récurrence) $A_n = n(p-q)$

Il est alors évident que $(A_n)_n$ est un processus croissant prévisible. Par décomposition de Doob ¹ on a alors que M := S - A est une martingale intégrable. Pour $n \geq 0$, le premier théorème d'arrêt appliqué à la martingale M et au temps d'arrêt borné $T \wedge n$ s'écrit alors :

$$\mathbb{E}(S_0) = \mathbb{E}(M_{T \wedge n})$$
 i.e $a = \mathbb{E}(S_{T \wedge n}) - (p - q)\mathbb{E}(T \wedge n)$

De fait comme $\mathbb{E}(S_{T \wedge n}) \leq a + b$ par construction on a :

$$0 \le (p - q)\mathbb{E}(T \land n) \le b \tag{1}$$

Commençons par remarquer que $T \wedge n \xrightarrow[n \to \infty]{} T$ p.s. En effet, sur $\{T = \infty\}, T \wedge n = n \xrightarrow[n \to \infty]{} \infty$ et si $\omega \in \{T < \infty\}$ il va exister $N \in \mathbb{N}$ tel que $\forall n \geq N, n \geq T(\omega)$ i.e $(T \wedge n)(\omega) = T(\omega)$ et donc $(T \wedge n)(\omega) \xrightarrow[n \to \infty]{} T(\omega)$, d'où le résultat.

La suite $(T \wedge n)$ étant croissante, positive, intégrable et convergeant vers T p.s, le théorème de Beppo-Levi nous affirme que $\limsup_{n\to\infty}\mathbb{E}(T\wedge n)=\mathbb{E}(T)$. En passant à la limite (sup) dans (1) on obtient alors que $T\in L^1$ ergo $\mathbb{P}(T<\infty)=1$. De plus, pour tout $k,n\geq 1,\, S_{T\wedge n}1_{\{T=k\}}=S_{k\wedge n}=S_k$ pour n assez grand, i.e $S_{T\wedge n}1_{\{T=k\}}=S_T1_{\{T=k\}}$ et donc $S_{T\wedge n}\xrightarrow[n\to\infty]{}S_T$ p.s.

En appliquant le théorème de convergence dominée (combiné à Beppo-Levi, cf supra) avec domination $0 \le S_{T \wedge n} \le a + b$ dans (1) on obtient 2 de fait :

$$0 \le (p-q)\mathbb{E}(T) = \mathbb{E}(S_T) - a \tag{2}$$

Par définition de T on a également :

$$\mathbb{E}(S_T) = (a+b)\mathbb{P}(S_T = a+b) + 0\mathbb{P}(S_T = 0) = (a+b)\rho$$

D'où, via (2),
$$\mathbb{E}(T) = \frac{(a+b)\rho - a}{p-q}$$
.

Posons à présent $\forall n \geq 0, U_n := \left(\frac{q}{p}\right)^{S_n}$. Alors U est une martingale. En effet :

$$\forall n \geq 1, \ \mathbb{E}(U_n | \mathcal{A}_{n-1}) = \mathbb{E}\left(\left(\frac{q}{p}\right)^{S_{n-1}} \left(\frac{q}{p}\right)^{Y_n} \middle| \mathcal{A}_{n-1}\right)$$

$$= \left(\frac{q}{p}\right)^{S_{n-1}} \mathbb{E}\left(\left(\frac{q}{p}\right)^{Y_n} \middle| \mathcal{A}_{n-1}\right) \operatorname{car}\left(\frac{q}{p}\right)^{S_{n-1}} \in m(\mathcal{A}_{n-1})$$

$$= \left(\frac{q}{p}\right)^{S_{n-1}} \mathbb{E}\left(\left(\frac{q}{p}\right)^{Y_n}\right) \operatorname{car}\left(\frac{q}{p}\right)^{Y_n} \bot Ar_{n-1}$$

$$= U_{n-1}\left(\frac{q}{p}p + \frac{p}{q}q\right)$$

$$= U_{n-1}$$

Comme $\frac{q}{p} < 1, \forall n \in \mathbb{N}, U_{T \wedge n} \in [0, 1]$ et donc :

$$\forall a \ge 1, \int_{|U_{T \wedge n}| > a} |U_{T \wedge n}| d\mathbb{P} = 0$$

Ce qui signifie que la martingale arrêtée $U^T:=(U_{T\wedge n})$ est équi–intégrable donc converge dans L^1 et \mathbb{P} -p.s vers une variable aléatoire X. Or $S_{T\wedge n}\xrightarrow[n\to\infty]{} S_T$ p.s donc on a nécessairement $X=U_T$. Remarquons à présent que :

$$\mathbb{E}(U_T) = \left(\frac{q}{p}\right)^0 \mathbb{P}(S_T = 0) + \left(\frac{q}{p}\right)^{a+b} \mathbb{P}(S_T = a+b)$$

^{1.} Le processus croissant prévisible dans cette dernière étant nécessairement le processus des accroissements.

^{2.} En "passant à la limsup".

I.e :

$$\mathbb{E}(U_T) = 1 - \rho + \left(\frac{q}{p}\right)^{a+b} \rho \tag{3}$$

En outre, par le premier théorème d'arret on a :

$$\forall n \in \mathbb{N}, \ \mathbb{E}(U_{T \wedge n}) = \mathbb{E}(U_0) = \left(\frac{q}{p}\right)^a$$

Et appliquant le théorème de convergence dominé à $U_{T\wedge n} \leq \left(\frac{q}{p}\right)^{a+b} \in L^1$ on obtient :

$$\mathbb{E}(U_T) = \left(\frac{q}{p}\right)^a$$

En utilisant les égalités (2) et (3) on obtient alors le résultat recherché :

$$\rho := \frac{1 - \left(\frac{q}{p}\right)^a}{1 - \left(\frac{q}{p}\right)^{a+b}} \text{ et } \mathbb{E}(T) = \frac{1}{p-q} \left((a+b)\frac{1 - \left(\frac{q}{p}\right)^a}{1 - \left(\frac{q}{p}\right)^{a+b}} - a\right)$$

- $Cas\ p = q = \frac{1}{2}$. Les Y_n étant L^{∞} , S est alors une martingale L^2 . On définit un processus aléatoire B comme suit :

$$B_0 := 0 \text{ et } \forall n \ge 1, B_n - B_{n-1} := \mathbb{E}((S_n - S_{n-1})^2 | \mathcal{A}_{n-1}) = \mathbb{E}(Y_n^2 | \mathcal{A}_{n-1})$$

Le processus B est alors croissant prévisible et comme $Y_n^2 \perp A_{n-1}$ alors $B_n - B_{n-1} = \mathbb{E}(Y_n^2) = p + q = 1$, d'où $\forall n \geq 0, B_n = n$.

Par décomposition de Doob, comme S^2 est une sous-martingale, le processus $(S_n^2 - n)_n$ est alors une martingale et on obtient en lui appliquant le premier théorème d'arrêt que :

$$\forall n \ge 0, \ a^2 = \mathbb{E}(S_0^2 - 0) = \mathbb{E}(S_{T \land n}^2 - T \land n)$$
 (4)

Comme $S_{T\wedge n}^2 \leq (a+b)^2$ on a :

$$\mathbb{E}(T \wedge n) = \mathbb{E}(S_{T \wedge n}^2) - a^2 \le (a+b)^2 - a^2$$

En procédant exactement comme dans le cas $p \neq q$ on montre (en utilisant Beppo-Levi) que $\limsup_n \mathbb{E}(T \wedge n) = \mathbb{E}(T)$ d'où par passage à la limite $\mathbb{E}(T) \leq (a+b)^2 - a^2$. De fait $T \in L^1$ et donc $\mathbb{P}(T < \infty) = 1$ ce qui nous permet, toujours de façon analogue au cas précédent, de conclure que $S_{T \wedge n} \xrightarrow[n \to \infty]{} S_T$. En appliquant le théorème de convergence dominée, avec domination $0 \leq S_{T \wedge n} \leq a+b$ on obtient que $(S_{T \wedge n})_n$ converge dans L^1 et L^2 vers S_T . Par premier théorème d'arrêt on a également que $\mathbb{E}(S_{T \wedge n}) = \mathbb{E}(S_0) = a$ donc en passant à la limite on trouve $\mathbb{E}(S_T) = a$. Or $\mathbb{E}(S_T) = (a+b)\rho$ ergo:

$$\rho = \frac{a}{a+b}$$

Pour finir, remarquons que l'on peut à présent passer à la limite dans (4), obtenant :

$$\mathbb{E}(T) = \mathbb{E}(S_T^2) - a^2$$

Or:

$$\mathbb{E}(S_T^2) = (a+b)^2 \rho = a(a+b)$$

D'où le résultat :

$$\mathbb{E}(T) = ab$$

Détails supplémentaires :

- Motivation du choix de U.Fixons s > 0 et posons $\forall n \geq 0, U_n := s^{S_n}$. Recherchons pour quelle(s) valeur(s) de s ce processus définit une martingale.

$$\forall n \ge 1, \ \mathbb{E}(U_n | \mathcal{A}_{n-1}) = \mathbb{E}(s^{S_{n-1}} s^{Y_n} | \mathcal{A}_{n-1})$$

$$= s^{S_{n-1}} \mathbb{E}(s^{Y_n} | \mathcal{A}_{n-1}) \text{ car } s^{S_{n-1}} \in m(\mathcal{A}_{n-1})$$

$$= s^{S_{n-1}} \mathbb{E}(s^{Y_n}) \text{ car } s^{Y_n} \bot Ar_{n-1}$$

$$= U_{n-1} \left(sp + \frac{1}{s} q \right)$$

Or:

$$sp + \frac{1}{s}q = 1 \Leftrightarrow s^2p - s + q = 0 \Leftrightarrow s \in \left\{1, \frac{q}{p}\right\}$$

Si s=1, la martingale U est remarquablement peu intéressante s=1, tandis que so $s=\frac{q}{p}$ elle est non constante. On choisit donc $s:=\frac{p}{q}$.

– Rappel. On dit qu'une famille $(X_i)_{i\in I}$ de v.a est équi–intégrable si :

$$\lim_{a \to \infty} \sup_{i \in I} \int_{|X_i| > a} |X_i| d\mathbb{P} = 0$$

Références

[Ouv00] Jean-Yves Ouvrard. Probabilités 2. Cassini, 2000.

^{3.} Mais d'une facilité d'étude assez déconcertante, vous en conviendrez.