Lecture notes of Stochastic Process

lectured by prof. Hsueh-I Lu

pishen

AlgoLab, CSIE, NTU

May 1, 2012

Thank list

LeoSW, windker

Stochastic Process May 1, 2012

Stochastic Process

Definition

A Stochastic process is a set of random variables $\{X(t)|t\in T\}$ where T is a index (time) set.

State Space: possible value of X(t) for each t, which is defined as subset of R.

Markov Chain

Definition

A Stochastic Process X with state space S is a Markov Chain if $\exists 0 \leq p_{ij} \leq 1 \quad \forall i, j \in S \text{ such that }$

$$(a) \quad \sum_{j \in S} p_{ij} = 1 \quad \forall i \in S$$

(b)
$$P(X(t+1) = j|X(0) = i_0, X(1) = i_1, ..., X(t) = i) = p_{ij}$$

 $\forall t, i_0, i_1, ..., i_{t-1}$

 \mathbb{P} denotes the matrix form of p_{ij} with sum of any row is 1.

Lemma: $P(X(n) = i | X(0) = i) = \mathbb{P}^n[i, j]$

4 / 111

Proof of lemma

We know statement is true for (m+n)=0. For (m+n)>0:

$$\begin{split} &P(X(m+n) = j | X(0) = i) \\ &= \sum_{k \in S} P(X(m+n) = j \text{ and } X(m) = k | X(0) = i) \\ &= \sum_{k \in S} P(X(m+n) = j | X(m) = k \text{ and } X(0) = i) \\ &P(X(m) = k | X(0) = i) \\ &= \sum_{k \in S} P(X(m+n) = j | X(m) = k) \cdot P(X(m) = k | X(0) = i) \\ &= \sum_{k \in S} P^n[k,j] \cdot P^m[i,k] \\ &= \sum_{k \in S} P^m[i,k] \cdot P^n[k,j] \\ &= \mathbb{P}^n[i,j] \end{split}$$

pishen (AlgoLab) Stochastic Process May 1, 2012 5 / 111

Proof of lemma(cont)

```
= : conditional on X(m)
```

= : definition of conditional probability

= : (see next page)

= : inductive hypothesis

Proof of lemma(cont)

$$\begin{split} &P(X(m+n) = j | X(m) = k \text{ and } X(0) = i) \\ &= \sum_{r \in S} P(X(m+n) = j | \\ &X(m+n-1) = r \text{ and } X(m) = k \text{ and } X(0) = i) \cdot \\ &P(X(m+n-1) = r | X(m) = k \text{ and } X(0) = i) \\ &= \sum_{r \in S} P(X(m+n) = j | X(m+n-1) = r) \cdot \\ &P(X(m+n-1) = r | X(m) = k) \\ &= P(X(m+n) = j | X(m) = k) \end{split}$$

=: conditional on X(m+n-1)

=: first part by definition of Markov chain and second part by inductive hypothesis

pishen (AlgoLab) Stochastic Process May 1, 2012 7 / 111

Absorbing State

Let $\mathbb A$ be a set of accepting states. We would like to know the probability that $\mathbb X$ has ever entered some state in $\mathbb A$. Technique: merge all state of $\mathbb A$ into a new absorbing state a. Set matrix of $\mathbb X$ by once enter a, then probability of a goes to a is 1.

Recurrent & transient

Definition

The recurrent probability of state i of Markov chain $\mathbb X$ is

$$f_i = P(\text{there exists an index } t \ge 1 \text{ with } X(t) = i | X(0) = i)$$

- State i of X is recurrent if $f_i = 1$.
- State i of X is transient if $f_i < 1$.

Recurrent & transient (cont.)

- If state i is recurrent, by the property of Markov chain, once it re-enter the state i, we can take it as starting from X(0) again. Hence we know that it will keep re-entering the state i again and again in the process.
- If state i is transient, in each period it start going from i, it may have probability $1 - f_i$ that it won't come back anymore. Hence the probability that the process will be in state i for exactly nperiods equals $f_i^{n-1}(1-f_i)$, $n \ge 1$, which is a geometric distribution.

pishen (AlgoLab) Stochastic Process May 1, 2012 10 / 111

Recurrent & transient (cont.)

- From the preceding page, it follows that state i is recurrent if and only if, starting in state i, the expected number of steps that the process is in state i is infinite.
- We can also derive that, if the Markov chain has finite states, at least one state is recurrent.

pishen (AlgoLab) Stochastic Process May 1, 2012 11 / 1:

Expected number of visits

Let

$$I(n) = \begin{cases} 1 & \text{if } X(n) = i \\ 0 & \text{if } X(n) \neq i \end{cases}$$

we have $\sum_{n=0}^{\infty}I(n)$ represents the number of steps that the process is in state i, and

$$E\left[\sum_{n=0}^{\infty} I(n)|X(0) = i\right] = \sum_{n=0}^{\infty} E[I(n)|X(0) = i]$$

$$= \sum_{n=0}^{\infty} 1 \cdot P(X(n) = i|X(0) = i)$$

$$= \sum_{n=0}^{\infty} P_{ii}^{n}$$

We set $T = \sum_{n=0}^{\infty} I(n)$

Lemma 1

From the above statements, we prove the following

Lemma

State i is

recurrent
$$\iff \sum_{n=0}^{\infty} P_{ii}^n = \infty$$
,

transient
$$\iff \sum_{n=0}^{\infty} P_{ii}^n < \infty$$

Proof of Lemma 1

Suppose state i is transient($f_i < 1$), consider $P(T = k) = f_i^{k-1} \cdot (1 - f_i)$. Since T is a geometric distribution, we have

$$E[T] = \sum_{k=0}^{\infty} k \cdot f_i^{k-1} \cdot f_i$$
$$= \frac{1}{1 - f_i} < \infty$$

Communicated states

Definition

State i and j communicate, denoted $i \leftrightarrow j$, if there exist integers $m \geq 0$ and $n \geq 0$ such that

$$P_{ij}^m>0 \ \mathrm{and} \ P_{ji}^n>0$$

We say a Markov chain X is irreducible if $i \leftrightarrow j \quad \forall i, j \in S$

Lemma 2

Lemma

If $i \leftrightarrow j$, then the following statements hold.

- State i is recurrent if and only if state j is recurrent.
- State *i* is transient if and only if state *j* is transient.

Corollary: X is finite and irreducible \implies all states are recurrent.

- lacksquare X is finite $\Longrightarrow \exists i \in S$ is recurrent (proof later)
- By Lemma 2, all states are recurrent

Let m and n be nonnegative integers with $P^m_{ij}, P^n_{ji} > 0$. Suppose that state j is recurrent, i.e., $\sum_{t=0}^{\infty} P^t_{jj} = \infty$. We have

$$\begin{split} \sum_{t=0}^{\infty} P_{ii}^t &\geq \sum_{t=0}^{\infty} P_{ii}^{m+t+n} \\ &\geq \sum_{t=0}^{\infty} P_{ij}^m \cdot P_{jj}^t \cdot P_{ji}^n \\ &= P_{ij}^m \cdot P_{ji}^n \cdot \sum_{t=0}^{\infty} P_{jj}^t = \infty \end{split}$$

Thus, state i is also recurrent.

pishen (AlgoLab) Stochastic Process May 1, 2012 17 / 111

Infinite drunken man problem

Let the state space consist of all integers. Let X(0) = 0 (i.e. at time 0 the drunken man is in state 0). The transition probabilities are such that

$$P_{i,(i+1)} = P_{i,(i-1)} = 0.5$$

holds for all states i of X.

Stochastic Process May 1, 2012 18 / 111

Gambler's ruin

pishen (AlgoLab) Stochastic Process May 1, 2012 19 / 111

Outline

- Limiting probabilities
- Stationary distribution
- 3 Long-run proportion
- 4 (Inverse of) Expected return time

Stochastic Process May 1, 2012 20 / 111

Limiting Probabilities

Definition

Number π_j is the *limiting probability* of j if

$$\pi_j = \lim_{n \to \infty} P_{ij}^n$$

holds for all states $i \in S$ ($S \subseteq \mathbb{N}$ is the state space).

- \blacksquare π_i is independent of i.
- $\blacksquare \lim_{n \to \infty} P^n = \begin{pmatrix} \pi \\ \pi \\ \vdots \end{pmatrix}$, where $\pi = (\pi_1, \pi_2, \ldots)$

Stationary Probability Distribution

Definition

Non-negative row vector $\pi = (\pi_1, \pi_2, ...)$ is a stationary probability distribution of \mathbb{X} if $\pi \times P = \pi$ holds and $\sum_{i \in S} \pi_i = 1$

- $\blacksquare \pi$ is a normalized left eigenvector with eigenvalue = 1.
- If X(0) has distribution π , then X(t) has the same distribution π for all $t \geq 1$. π is also called as *steady-state distribution*.
- It doesn't mean that each X(t) become independent. π only means the distribution of X(t) when the previous random variable's value is unknown.

pishen (AlgoLab) Stochastic Process May 1, 2012 22 / 111

Theorem 1

Theorem

Let X be an irreducible, aperiodic, positive recurrent Markov chain, then

- The limiting probability π_i of each state j exists.
- $\pi = (\pi_1, \pi_2, ...)$ is the unique stationary probability distribution.
- The proof will be stated at page 38.

Expected return time

Definition

The expected return time of state $i \in S$ is

$$\mu_i = \sum_{n \ge 1} n \cdot f_i^{(n)}$$

where

$$f_i^{(n)} = P(\min\{t: X(t) = i, t \ge 1\} = n|X(0) = i)$$

 $f_i = \sum_{n \ge 1} f_i^{(n)}$

Positive recurrent & null recurrent

Definition

State *i* is *positive recurrent* if $\mu_i < \infty$

Definition

State *i* is *null recurrent* if $\mu_i = \infty$

- Both are recurrent states, and are class properties, which means that if state i and j communicate, they will share this property.
- If X is finite, then each recurrent state of X is positive recurrent. Proof stated at page 63.

Stochastic Process May 1, 2012 25 / 111

Example of null recurrent

Example

For a Markov chain with n states $(1, \ldots, n)$, if

$$P(X(t+1) = i+1|X(t) = i) = 1-1/n$$

and

$$P(X(t+1) = 1|X(t) = i) = 1/n$$

According to geometric distribution (taking p = 1/n), the expectation value of "steps taken for state 1 to come back" will be 1/p = n, hence $\lim_{n\to\infty} n = \infty.$

Stochastic Process May 1, 2012 26 / 111

Period of a chain

Definition

The *period* of state i is d if d is the largest integer such that

$$P_{ii}^n = 0$$

holds for all n which is not divisible by d.

Definition

If each state of X has period 1, then X is called *aperiodic*.

- If $P_{ii} > 0$ for all $i \in S$, then X is aperiodic.
- Period can be seen as the gcd of all n that have $P_{ii}^n>0$, note that $P_{ii}^{\rm gcd}>0$ is not necessary.
- The period of drunken man problem is 2.

pishen (AlgoLab) Stochastic Process May 1, 2012 27 / 111

Lemma 1

_emma

If state j has period 1 and is positive recurrent, then

$$\pi_{ij} \equiv \lim_{n \to \infty} P_{ij}^n$$

exists and is positive for all states $i \in S$.

- This can be proved by the Blackwell theorem in Renewal theory.
- It doesn't promise that $\pi_{ij} = \pi_{i'j}$ for any $i, i' \in S$. But they will be the same if we add the irreducible property ($i \leftrightarrow i'$).

Stochastic Process May 1, 2012 28 / 111

Property of lim

■ The position of lim may not be switched arbitrarily in an equation.

Example

$$1 = \lim_{n \to \infty} \lim_{m \to \infty} \frac{m}{m+n} \neq \lim_{m \to \infty} \lim_{n \to \infty} \frac{m}{m+n} = 0$$

lim would not influence the inequality.

Example

If
$$f(n) \ge g(n)$$
, then $\lim_{n\to\infty} f(n) \ge \lim_{n\to\infty} g(n)$

Stochastic Process May 1, 2012 29 / 111

Property of lim (cont.)

■ lim is linear operator under finite number of functions.

Example

For $m < \infty$,

$$\sum_{i=1}^{m} \lim_{n \to \infty} f_i(n) = \lim_{n \to \infty} \sum_{i=1}^{m} f_i(n)$$

need an example of $m=\infty$

Inequality 1

Inequality

$$\sum_{j \in S} \pi_{ij} \le 1 \quad \forall i \in S$$

pishen (AlgoLab) Stochastic Process May 1, 2012 31 / 111

$$\lim_{m \to \infty} \sum_{j=1}^{m} \pi_{ij} = \lim_{m \to \infty} \sum_{j=1}^{m} \lim_{n \to \infty} P_{ij}^{n}$$

$$= \lim_{m \to \infty} \lim_{n \to \infty} \sum_{j=1}^{m} P_{ij}^{n}$$

$$\leq \lim_{m \to \infty} \lim_{n \to \infty} \sum_{j \in S} P_{ij}^{n} = 1$$

■ The last equation works since $\sum_{j \in S} P_{ij}^n = 1$.

pishen (AlgoLab) Stochastic Process May 1, 2012 32 / 111

Inequality 2

Inequality

For state $j \in S$, we have

$$\pi_{ij} \ge \sum_{k \in S} \pi_{ik} P_{kj}$$

Proof

For $m \ge 1$ and $n \ge 1$,

$$P_{ij}^{n+1} = \sum_{k \in S} P_{ik}^n P_{kj} \ge \sum_{k=1}^m P_{ik}^n P_{kj}$$

then

$$\pi_{ij} = \lim_{n \to \infty} P_{ij}^{n+1} \ge \lim_{n \to \infty} \sum_{k=1}^{m} P_{ik}^{n} P_{kj} = \sum_{k=1}^{m} \lim_{n \to \infty} P_{ik}^{n} P_{kj} = \sum_{k=1}^{m} \pi_{ik} P_{kj}$$

hence, we know

$$\lim_{m \to \infty} \pi_{ij} = \pi_{ij} \ge \lim_{m \to \infty} \sum_{k=1}^{m} \pi_{ik} P_{kj} = \sum_{k \in S} \pi_{ik} P_{kj}$$

pishen (AlgoLab) Stochastic Process May 1, 2012 34 / 111

Equality 1

Equality

$$\pi_{ij} = \sum_{k \in S} \pi_{ik} P_{kj}$$

Proof

Assume for contradiction $\pi_{ij} > \sum_{k \in S} \pi_{ik} P_{kj}$, then

$$\begin{split} \lim_{m \to \infty} \sum_{j=1}^{m} &> \lim_{m \to \infty} \sum_{j=1}^{m} \lim_{p \to \infty} \sum_{k=1}^{p} \pi_{ik} P_{kj} \\ &= \lim_{m \to \infty} \lim_{p \to \infty} \sum_{j=1}^{m} \sum_{k=1}^{p} \pi_{ik} P_{kj} \\ &= \lim_{m \to \infty} \lim_{p \to \infty} \sum_{k=1}^{p} \pi_{ik} \sum_{j=1}^{m} P_{kj} \\ &= \lim_{p \to \infty} \sum_{k=1}^{p} \pi_{ik} \lim_{m \to \infty} \sum_{j=1}^{m} P_{kj} \\ &= \lim_{p \to \infty} \sum_{k=1}^{p} \pi_{ik} \cdot 1 = \lim_{p \to \infty} \sum_{k=1}^{p} \pi_{ik} \end{split}$$

pishen (AlgoLab) Stochastic Process May 1, 2012 36 / 111

Proof (cont.)

- Since a value cannot be greater than itself, we got contradiction.
- In the 4th line, two lim can be switched because the value can only get larger when applying lim on it. not sure

pishen (AlgoLab) Stochastic Process May 1, 2012 37 / 111

Proof of theorem 1

- **Step 0**: existence of limiting probability.
- **Step 1**: existence of stationary probability distribution.
- **Step 2**: uniqueness.

0. Existence of limiting probability

Proof.

By lemma 1, we know that there exists a π_j for row i. Since the Markov chain is irreducible and all the states are positive recurrent, for any state i' other than i, we know that i' surely will visit i in finite steps. Therefore, the π_j value at row i' will equal to the π_j value at row i, which means that all the π_j for column j are the same, and is the limiting probability. \square

still not clear enough

1. Existence of stationary probability distribution

We want to prove that

Target

There's a vector $s = (s_1, s_2, ...)$ such that

- $\sum_{i \in S} s_i = 1$
- $2 s \times P = s$

Proof.

By lemma 1, we know that there exists a $\pi=(\pi_1,\pi_2,\ldots)$. And by equality 1, we know that

$$(\pi_1,\pi_2,\ldots)\times P=(\pi_1,\pi_2,\ldots)$$

Hence π can satisfy the 2nd part of our target.

Then, we take $k=\sum_{i\in S}\pi_i$. By inequality 1, we know that $k<\infty$, and can get

$$\left(\frac{\pi_1}{k}, \frac{\pi_2}{k}, \ldots\right) \times P = \left(\frac{\pi_1}{k}, \frac{\pi_2}{k}, \ldots\right)$$

where $\sum_{i \in S} \frac{\pi_i}{k} = 1$ also satisfy the 1st part of our target.

Therefore, this vector can be s, which means that it exists.

pishen (AlgoLab) Stochastic Process May 1, 2012 41 / 111

2. Uniqueness

Target

If $s = (s_1, s_2, ...)$ is a stationary distribution of X, then $s = \pi$.

■ We'll prove this by inequality 3 & 4.

Stochastic Process May 1, 2012 42 / 111

Inequality 3

Inequality

$$s_j \ge \pi_j, \forall j \in S$$

pishen (AlgoLab) Stochastic Process May 1, 2012 43 / 111

Proof.

Let the distribution of X(0) be s, by the property of stationary distribution, we have

$$s_{j} = P(X(n) = j) = \sum_{i \in S} P(X(n) = j | X(0) = i) P(X(0) = i)$$

$$= \sum_{i \in S} P_{ij}^{n} \cdot s_{i}$$

$$\geq \sum_{i=1}^{m} P_{ij}^{n} \cdot s_{i}$$

$$\Rightarrow s_{j} = \lim_{m \to \infty} \lim_{n \to \infty} s_{j}$$

$$\geq \lim_{m \to \infty} \lim_{n \to \infty} \sum_{i=1}^{m} P_{ij}^{n} \cdot s_{i} = \lim_{m \to \infty} \sum_{i=1}^{m} \pi_{j} \cdot s_{i} = \pi_{j}$$

pishen (AlgoLab) Stochastic Process May 1, 2012

44 / 111

Inequality 4

Inequality

$$s_j \le \pi_j, \forall j \in S$$

Proof.

Similar in the proof above, $\forall m, n \geq 1$, we have

$$s_{j} = \sum_{i \in S} P_{ij}^{n} \cdot s_{i}$$

$$\leq \sum_{i=1}^{m} P_{ij}^{n} \cdot s_{i} + \sum_{i=m+1}^{\infty} s_{i}$$

$$\Rightarrow s_{j} = \lim_{m \to \infty} \lim_{n \to \infty} s_{j}$$

$$\leq \lim_{m \to \infty} \lim_{n \to \infty} \left(\sum_{i=1}^{m} P_{ij}^{n} \cdot s_{i} + \sum_{i=m+1}^{\infty} s_{i} \right)$$

$$= \pi_{j}$$

pishen (AlgoLab) Stochastic Process May 1, 2012 46 / 111

An example Markov chain

Example

$$P = \begin{pmatrix} \alpha & 1 - \alpha \\ \beta & 1 - \beta \end{pmatrix}, 0 < \alpha, \beta < 1$$
$$\pi = \left(\frac{\beta}{1 + \beta - \alpha}, \frac{1 - \alpha}{1 + \beta - \alpha}\right)$$

pishen (AlgoLab) Stochastic Process May 1, 2012 47 / 111

Real world example: Hardy-Weinberg Law

Example

There're two kinds of allele:

- dominant: A
- recessive: a

And three kinds of senotype with population proportion as follow:

- AA: p
- aa: *q*
- Aa: r = 1 (p + q)

Example (cont.)

$$P = \begin{array}{ccc} AA & aa & Aa \\ AA & p + \frac{r}{2} & 0 & q + \frac{r}{2} \\ 0 & q + \frac{r}{2} & p + \frac{r}{2} \\ \frac{p}{2} + \frac{r}{4} & \frac{p}{2} + \frac{r}{4} & \frac{p+q+r}{2} \end{array}$$

we get $\pi = (p, q, r)$ when

$$p = (p + \frac{r}{2})^2$$

$$q = (q + \frac{r}{2})^2$$

Long-run proportion

Definition

We say that r_i is the *long-run proportion* of state $j \in S$ if

$$r_j = \lim_{n \to \infty} \frac{1}{n} \sum_{1 \le t \le n} P_{ij}^t$$

holds for each state $i \in S$.

- It represents the average appearance times of state i in the whole process.
- We will show that (in theorem 3) if X is irreducible, then the long-run proportion of all states exist.

Stochastic Process May 1, 2012 50 / 111

Theorem 2

Theorem (type 1)

If r_j exists for each $j \in S$ and $\sum_{i \in S} r_i > 0$, then $r = (r_1, r_2, ...)$ is the unique stationary distribution of X.

or

Theorem (type 2)

If r_i exists for each $i \in S$ and a stationary distribution exists, then $r = (r_1, r_2, ...)$ is the unique stationary distribution of X.

Stochastic Process May 1, 2012 51 / 111

Proof

Existence of stationary distribution in type 1:

Let

$$R = \begin{pmatrix} r \\ r \\ \vdots \end{pmatrix} = \lim_{n \to \infty} \frac{1}{n} \sum_{1 \le t \le n} P^t$$

then

$$R \times P = \lim_{n \to \infty} \frac{1}{n} \sum_{1 \le t \le n} P^{t+1}$$
$$= \lim_{n \to \infty} \frac{1}{n} \sum_{1 \le t \le n} P^t + \lim_{n \to \infty} \frac{1}{n} (P^{n+1} - P)$$
$$= R$$

As stated later, $\sum_{j \in S} r_j \le 1$, hence by normalizing r, we prove that stationary distribution exist.

- $(\lim f(n)) \cdot g(n) = \lim f(n) \cdot g(n)?$
- can replace the proof on page 40?

pishen (AlgoLab) Stochastic Process May 1, 2012 52 / 111

Proof (cont.)

Uniqueness:

Let π be an arbitrary stationary distribution, then

$$\begin{split} r &= \pi \times R \\ &= \pi \times \lim_{n \to \infty} \frac{1}{n} \sum_{1 \le t \le n} P^t \\ &= \lim_{n \to \infty} \frac{1}{n} \sum_{1 \le t \le n} \pi \times P^t \\ &= \lim_{n \to \infty} \frac{1}{n} \sum_{1 \le t \le n} \pi \\ &= \pi \end{split}$$

can replace the proof for page 42?

Proof (cont.)

Prove that $\sum_{j \in S} r_j \leq 1$:

$$\sum_{j \in S} r_j = \lim_{m \to \infty} \sum_{j=1}^m \lim_{n \to \infty} \frac{1}{n} \sum_{t=1}^n P_{ij}^t$$

$$= \lim_{m \to \infty} \lim_{n \to \infty} \frac{1}{n} \sum_{t=1}^n \sum_{j=1}^m P_{ij}^t$$

$$\leq \lim_{m \to \infty} \lim_{n \to \infty} \frac{1}{n} \sum_{t=1}^n \sum_{j \in S} P_{ij}^t$$

$$= \lim_{m \to \infty} \lim_{n \to \infty} \frac{1}{n} \sum_{t=1}^n 1 = 1$$

pishen (AlgoLab) Stochastic Process May 1, 2012 54 / 111

Example 1

On a highway, if we know the probability that

- A truck is followed by a truck: 1/4
- A truck is followed by a car: 3/4
- A car is followed by a truck: 1/5
- \blacksquare A car is followed by a car: 4/5

We can construct a matrix

$$\begin{array}{ccc}
T & C \\
T & 1/4 & 3/4 \\
C & 1/5 & 4/5
\end{array}$$

and get the portion of trucks and cars on the whole highway as the eigenvector (4/19,15/19) (we will know that long-run proportion exists by Theorem 3).

Example 2

For a system which has several good and bad states, we have a matrix P:

pishen (AlgoLab) Stochastic Process May 1, 2012 56 / 111

Example 2 (cont.)

Q1: Breakdown rate (breakdown times / total time)
The long-run frequency of going to a bad state from a good state is

$$\sum_{i \in q} \sum_{j \in b} r_i P_{ij}$$

Example 2 (cont.)

Q2: The expected time μ_G (resp. μ_B) of staying in good (resp. bad) states once we reach a good (resp. bad) state?

Ans:

For each t=1,2,..., let G_t (resp. B_t) be the length of the t-th good (resp. bad) phase of consecutive good (resp. bad) states. By the strong law of large numbers,

$$P\left(\lim_{t \to \infty} \frac{G_1 + B_1 + G_2 + B_2 + \dots + G_t + B_t}{t} = \mu_G + \mu_B\right) = 1$$

Since the reciprocal of above is the breakdown rate, we get equation (1):

$$P\left(\sum_{i \in G} \sum_{j \in B} \pi_i P_{ij} = \frac{1}{\mu_G + \mu_B}\right) = 1$$

pishen (AlgoLab) Stochastic Process May 1, 2012 58 / 111

Example 2 (cont.)

Also, with probability 1, we get equation (2):

$$P\left(\sum_{i \in G} r_i = \lim_{t \to \infty} \frac{G_1 + G_2 + \dots + G_t}{G_1 + B_1 + \dots + G_t + B_t} = \frac{\mu_G}{\mu_G + \mu_B}\right) = 1$$

Then, by (2)/(1), we get that

$$P\left(\mu_G = \frac{\sum_{i \in G} r_i}{\sum_{i \in G} \sum_{j \in B} r_i P_{ij}}\right) = 1$$

 $\blacksquare \lim \frac{f(n)}{g(n)} = \frac{\lim f(n)}{\lim g(n)}?$

pishen (AlgoLab) Stochastic Process May 1, 2012 59 / 111

Theorem 3

Theorem

If $\mathbb X$ is irreducible, then the long-run proportion r_i exists with probability 1, moreover,

- I If state i is positive recurrent (i.e. $0 < \mu_i < \infty$), then $P(r_i = \frac{1}{\mu_i}) = 1$.
- 2 If state i is null recurrent (i.e. $\mu_i = \infty$) or transient, then $P(r_i = 0) = 1$.

where μ_i is the expected return time of state i

Proof

Part 1:

Suppose X(0) = i, T_k is the number of steps required for the k-th i goes to (k+1)-st i, then by the strong law of large number,

$$P\left(\lim_{k\to\infty}\frac{T_1+T_2+\cdots+T_k}{k}=\mu_i\right)=1$$

$$\Rightarrow P\left(r_i=\lim_{k\to\infty}\frac{k}{T_1+T_2+\cdots+T_k}=\frac{1}{\mu_i}\right)=1$$

 \blacksquare $\lim(A/B) = \frac{1}{\lim(B/A)}$?

Stochastic Process May 1, 2012 61 / 111

Proof (cont.)

Part 2:

f I If i is transient, i will only appear finite times in the long-run, hence

$$r_i = \frac{finite}{\infty} = 0$$

2 If i is null recurrent, μ_i is ∞ , then

$$P\left(\lim_{k\to\infty}\frac{T_1+T_2+\cdots+T_k}{k}=\infty\right)=1$$

$$P\left(r_{i} = \lim_{k \to \infty} \frac{k}{T_{1} + T_{2} + \dots + T_{k}} = 0\right) = 1$$

(The first equation is not promised by the strong law of large number. But if it's not ∞ , we can say that μ_i is not ∞ , which is a contradiction.)

Example 1

Example (type 1)

If X is **irreducible** and finite, then X has no null recurrent states.

Example (type 2)

If X is finite, then X has no null recurrent states.

Finite irreducible imply positive recurrent.

Stochastic Process May 1, 2012 63 / 111

Proof

■ Type 1:

If there's a state which is null recurrent, by irreducible, all the states will be null recurrent. Then, all states have $P(r_i=0)=1$. By changing the proof in page 54 into finite states version, we know that $\sum r_i=1$. So it's impossible for finite r_i , which are all close to 0, to sum up to 1.

■ Type 2:

If it's not irreducible, the finite set of communicated null recurrent states still form an irreducible and finite Markov chain, which can fit the requirement of type 1.

pishen (AlgoLab) Stochastic Process May 1, 2012 64 / 111

Example 2

Example

In the drunken man problem with infinite states, no state will be positive recurrent.

Infinite drunken man imply no positive recurrent. Note that it doesn't mean all infinite irreducible Markov chain has no positive recurrent state.

pishen (AlgoLab) Stochastic Process May 1, 2012 65 / 111

Proof

If all the states are positive recurrent, then by theorem 3, we know that all the $r_i>0$ and is a finite value. Since each state of drunken man problem has the same structure, all the r_i has same value. We then set $r=\epsilon \cdot r_i$ $(0<\epsilon<1)$ such that $r_i>r>0, \forall i$. And get

$$\sum_{i \in S} r_i > \sum_{i \in S} r = \infty > 1$$

which is contradiction to page 54.

Example 3: Poisson Hotel

Example

There's a hotel, with N representing the number of newly occupied rooms each day (N is a poisson distribution with parameter λ). And the number of consecutive check-in days of each room is a geometric distribution with probability p (p is the probability of check-out). X(t) is the number of occupied rooms in day t.

pishen (AlgoLab) Stochastic Process May 1, 2012 67 / 111

Q1: $P_{ij} = ?$

We set R_i as a binomial distribution with parameter (i, 1-p), which represents the number of rooms which will remain occupied in the next day, then

$$P_{ij} = P(R_i + N = j)$$

$$= \sum_{k \ge 0} P(R_i + N = j | R_i = k) P(R_i = k)$$

$$= \sum_{k \ge 0} P(N = j - k) P(R_i = k)$$

$$= \sum_{0 \le k \le \min(i,j)} \frac{e^{-\lambda} \cdot \lambda^{j-k}}{(j-k)!} \binom{i}{k} (1-p)^k p^{1-k}$$

pishen (AlgoLab) Stochastic Process May 1, 2012 68 / 111

Q2: $r_i = ?$

We guess (by a dream?) there's a stationary distribution which is a poisson distribution with parameter λ_0 . Setting X(0) with this distribution. And let R as the number of rooms in X(0) which remain check-in in the next day (R is a poisson distribution with parameter $\lambda_0(1-p)$). X(1) will have distribution R+N, which is a poisson distribution with parameter $\lambda_0(1-p)+\lambda$. Then since X(0) is a stationary distribution, it will have the same distribution with X(1), which means that $\lambda_0=\lambda_0(1-p)+\lambda$, and we get $\lambda_0=\lambda/p$. After getting r_i , we get that with probability 1,

$$\mu_i = \frac{1}{P(X(0) = i)} = \frac{i!}{e^{-\lambda/p} \cdot (\lambda/p)^i}$$

not clear enough

pishen (AlgoLab) Stochastic Process May 1, 2012 69 / 111

Corollary of theorem 2 & 3

Corollary

If X is irreducible, then

 \mathbb{X} is positive recurrent $\iff \mathbb{X}$ admits a stationary distribution.

pishen (AlgoLab) Stochastic Process May 1, 2012 70 / 111

Moving to transient states

For transient states i and j, we define the following:

1 Expected steps in a transient state:

Definition

E is a matrix where E_{ij} is the expected number of steps t with X(t) = iwhen X(0) = i.

2 Probability of reaching a transient state:

Definition

F is a matrix where

$$F_{ij} = P(X(t) = j \text{ for some } t \ge 1 | X(0) = i)$$

pishen (AlgoLab) Stochastic Process May 1, 2012 71 / 111

Computing E & F

Theorem

For a Markov chain X consisting finite transient states,

$$E = (I - T)^{-1}$$

where I is an identity matrix, T is the induced matrix of P by all the transient states in P. Moreover,

$$F_{ij}=rac{E_{ij}-\delta_{ij}}{E_{jj}}$$
 ,where $\delta_{ij}=egin{cases} 1 & ext{if } i=j \ 0 & ext{if } i
eq j \end{cases}$

Conditioned on X(1), we have

$$E_{ij} = \underbrace{\delta_{ij}}_{\text{step}=0} + \underbrace{\sum_{k} P_{ik} \cdot E_{kj}}_{\text{step} \geq 1} = \delta_{ij} + \sum_{k} T_{ik} \cdot E_{kj}$$

The 2nd equation works since the process will not go back to transient state once it enter a recurrent state. Then, we have

$$I \times E = E = I + T \times E$$

$$\Longrightarrow (I - T) \times E = I$$

$$\Longrightarrow E = (I - T)^{-1}$$

pishen (AlgoLab) Stochastic Process May 1, 2012 73 / 111

Conditioned on whether or not X(t)=j holds for some $t\geq 1$, we have

$$E_{ij} = \underbrace{\delta_{ij}}_{\text{step}=0} + \underbrace{F_{ij} \cdot E_{jj}}_{\text{steps} \ge \text{ the first } j}$$

therefore,

$$F_{ij} = \frac{E_{ij} - \delta_{ij}}{E_{jj}}$$

Example: Gambler's ruin

pishen (AlgoLab) Stochastic Process May 1, 2012 75 / 111

Branching process

In the beginning, there're X(0) life forms, each life form has probability p_i of becoming i life forms in the next step.

- state 0 is recurrent (absorbing).
- if $p_0 > 0$, all other states (1, 2, ...) are transient since $P(X(t+1) = 0 | X(t) = i) = p_0^i > 0$

We'll show that

$$E[X(n)] = \mu^n \cdot X(0)$$

where

$$\mu = \sum_{j>1} j \cdot p_j = E[Z_k]$$

and Z_k is the number of offspring of the k-th life form, all Z_k are i.i.d.

$$E[X(n)] = E[E[X(n)|X(n-1)]]$$

$$= E\left[E\left[\sum_{k=1}^{X(n-1)} Z_k | X(n-1)\right]\right]$$

$$= E[X(n-1) \cdot \mu]$$

$$= \mu \cdot E[X(n-1)]$$

$$= \mu^n \cdot X(0)$$

pishen (AlgoLab) Stochastic Process May 1, 2012 77 / 111

Probability of extinction

Definition

 e_i is the probability of extinction when X(0) = i.

Case 1: $\mu < 1$

$$1 - e_i = \lim_{n \to \infty} P(X(n) \ge 1 | X(0) = i)$$

$$= \lim_{n \to \infty} \sum_{j \ge 1} P(X(n) = j | X(0) = i)$$

$$\le \lim_{n \to \infty} \sum_{j \ge 1} j \cdot P(X(n) = j | X(0) = i)$$

$$= \lim_{n \to \infty} E[X(n) | X(0) = i]$$

$$= \lim_{n \to \infty} \mu^n \cdot i = 0$$

pishen (AlgoLab) Stochastic Process May 1, 2012 78 / 111

Probability of extinction (cont.)

Case 2:
$$\mu \geq 1$$

$$e_2 = e_1^2, \quad e_3 = e_2 \cdot e_1, \quad \dots$$

$$e_1 = P(\mathsf{extinct} | X(0) = 1)$$

$$= \sum_{j \ge 0} P(\mathsf{extinct} | X(1) = j) \cdot P_{1j}$$

$$= \sum_{j \ge 0} e_j \cdot p_j$$

$$= \sum_{j \ge 0} e_1^j \cdot p_j$$

We then solve the above equation to get e_1 .

pishen (AlgoLab) Stochastic Process May 1, 2012 79 / 111

Example

$$p_0 = p_1 = 0.25, \quad p_2 = 0.5$$

 $\implies \mu = 1 \cdot 0.25 + 2 \cdot 0.5 > 1$
 $\implies e_1 = e_1^0 \cdot 0.25 + e_1^1 \cdot 0.25 + e_1^2 \cdot 0.5$
 $\implies e_1 = \{1/2, 1\}$

Since $\mu>1$, we know $\lim_{n\to\infty} E[X(n)]=\infty$. But if $e_1=1$, we have $\lim_{n\to\infty} P(X(n)=0)=1$, which would not make $\lim_{n\to\infty} E[X(n)]=\infty$, hence $e_1\neq 1$.

pishen (AlgoLab) Stochastic Process May 1, 2012 80 / 111

Reversed Markov chain

Definition

Let X (resp. Y) be a Markov chain with matrix P (resp. Q). We say that \mathbb{Y} is the *reversed chain* of \mathbb{X} if there exists a stationary distribution π of \mathbb{X} such that

$$\pi_i \cdot Q_{ij} = \pi_j \cdot P_{ji}$$

holds for all states $i, j \in S$.

Stochastic Process May 1, 2012 81 / 111

Observation 1

Observation

The reversed sequence \mathbb{Y} of \mathbb{X} is a Markov chain.

pishen (AlgoLab) Stochastic Process May 1, 2012 82 / 111

$$\begin{split} &P(Y(n)=i_0|Y(n-1)=i_1,Y(n-2)=i_2,\ldots,Y(n-k)=i_k)\\ &=P(X(n)=i_0|X(n+1)=i_1,X(n+2)=i_2,\ldots,X(n+k)=i_k)\\ &=\frac{P(X(n)=i_0,X(n+1)=i_1,\ldots,X(n+k)=i_k)}{P(X(n+1)=i_1,\ldots,X(n+k)=i_k)}\\ &=\frac{P(X(n)=i_0)\cdot P(X(n+1)=i_1|X(n)=i_0)\cdot P_{i_1i_2}\cdots P_{i_{k-1}i_k}}{P(X(n+1)=i_1)\cdot P_{i_1i_2}\cdots P_{i_{k-1}i_k}}\\ &=\frac{P(X(n)=i_0,X(n+1)=i_1)}{P(X(n+1)=i_1)}\\ &=P(X(n)=i_0|X(n+1)=i_1)\\ &=P(Y(n)=i_0|Y(n-1)=i_1) \end{split}$$

pishen (AlgoLab) Stochastic Process May 1, 2012 83 / 111

Observation 2

Observation

If $\mathbb Y$ is the reversed sequence of Markov chain $\mathbb X$ and π is a stationary distribution of $\mathbb X$, then

$$\pi_i \cdot Q_{ij} = \pi_j \cdot P_{ji}$$

holds for all $i, j \in S$, where Q is the transition matrix of \mathbb{Y} .

Let X and Y have distribution π

$$\pi_{i} \cdot Q_{ij} = P(Y(n-1) = i) \cdot P(Y(n) = j | Y(n-1) = i)$$

$$= P(Y(n-1) = i, Y(n) = j)$$

$$= P(Y(n-1) = i | Y(n) = j) \cdot P(Y(n) = j)$$

$$= P(X(n+1) = i | X(n) = j) \cdot P(X(n) = j) = \pi_{j} \cdot P_{ji}$$

pishen (AlgoLab) Stochastic Process May 1, 2012 85 / 111

Observation

Let P (resp. Q) be the transition matrix of $\mathbb X$ (resp. $\mathbb Y$), if vector π satisfy the following

- $\pi_i \geq 0 \quad \forall i \in S$
- $\blacksquare \ \pi_i \cdot Q_{ij} = \pi_j \cdot P_{ji} \quad \forall i, j \in S$

then \mathbb{Y} is the reversed sequence of \mathbb{X} .

- The long-run proportion of $i \to j$ in the sequence of $\mathbb Y$ is equal to the long-run proportion of $j \to i$ in the sequence of $\mathbb X$.
- Reversed Markov chain is the reversed sequence.

From the third property, we have

$$\sum_{j \in S} \pi_i \cdot Q_{ij} = \pi_i = \sum_{j \in S} \pi_j \cdot P_{ji} \quad \forall i \in S$$

From the 2nd equation, we know that $\pi \times P = \pi$, hence π is a stationary distribution of \mathbb{X} .

Then by observation 2, we know that for any π , there's a reversed sequence \mathbb{Y}' , whose transition matrix Q' satisfy

$$\pi_i \cdot Q'_{ij} = \pi_j \cdot P_{ji} \quad \forall i, j \in S$$

hence $\mathbb{Y} = \mathbb{Y}'$, which is a reversed sequence of \mathbb{X} .

Example: Bulb's life

There's a room which need to be lighted by one bulb, when the bulb in use fails, it will be replaced by a new one on next day.

- lacksquare X(n)=i if the bulb in use on day n is in its ith day of use.
- $lue{L}$ is a random variable representing the lifetime of a bulb.

We want to know the stationary probability π_i of state i.

pishen (AlgoLab) Stochastic Process May 1, 2012 88 / 111

Example: Bulb's life (cont.)

 $\mathbb X$ is a irreducible, positive recurrent, aperiodic Markov chain which has the sequence like this:

$$1, 2, 3, 1, 2, 3, 4, 5, 1, 1, 2, 1, 2, 3, 4, \dots$$

We know that

$$P_{i1}=P({
m buld}, {
m on its} \ i{
m th day of use, fails})=rac{P(L=i)}{P(L\geq i)}=1-P_{i(i+1)}$$

And the expected return time of state 1 is E[L], which means that the long-run proportion of state 1 is 1/E[L] by page 60.

pishen (AlgoLab) Stochastic Process May 1, 2012 89 / 111

Example: Bulb's life (cont.)

Take \mathbb{Y} (with matrix Q) as the reversed chain of \mathbb{X} , we know that for all $i \in S$.

- $Q_{(i+1)i} = 1$
- $Q_{1i} = P(L=i)$
- $\blacksquare \pi_1 \cdot Q_{1i} = \pi_i \cdot P_{i1}$

Hence.

$$\pi_i = \frac{\pi_1 \cdot Q_{1i}}{P_{i1}} = \frac{P(L=i) \cdot P(L \ge i)}{E[L] \cdot P(L=i)} = \frac{P(L \ge i)}{E[L]}$$

pishen (AlgoLab) Stochastic Process May 1, 2012 90 / 111

Time-reversible

Definition

X is time-reversible if X is the reversed chain of X.

pishen (AlgoLab) Stochastic Process May 1, 2012 91 / 111

Example: Reversed drunken man

- $0 < p_0 \le 1$
- $0 \le p_m < 1$

The long-run proportion of transition $i \to i+1$ and $i+1 \to i$ are the same, since one must go back to i from i+1 in order to go to i+1 from i.

Hence the drunken man problem is time-reversible.

pishen (AlgoLab) Stochastic Process May 1, 2012 92 / 111

Example: Reversed drunken man (cont.)

$$\pi_{0} \cdot p_{0} = \pi_{1} \cdot (1 - p_{1})$$

$$\pi_{1} \cdot p_{1} = \pi_{2} \cdot (1 - p_{2})$$

$$\vdots$$

$$\pi_{m-1} \cdot p_{m-1} = \pi_{m} \cdot (1 - p_{m})$$

Thus,

$$\pi_{1} = \pi_{0} \cdot p_{0} / (1 - p_{1})$$

$$\pi_{2} = \pi_{1} \cdot p_{1} / (1 - p_{2})$$

$$\vdots$$

$$\pi_{m} = \pi_{m-1} \cdot p_{m-1} / (1 - p_{m})$$

Example: Reversed drunken man (cont.)

$$\pi_{i} = \underbrace{\frac{\prod_{j=0}^{i-1} p_{j}}{\prod_{j=1}^{i} (1 - p_{j})}}_{q_{i}} \cdot \pi_{0} \quad \forall i = 1, \dots m$$

$$\Longrightarrow \pi_{0} + \sum_{i=1}^{m} \pi_{i} = 1 = \pi_{0} + \sum_{i=1}^{m} q_{i} \cdot \pi_{0}$$

$$\Longrightarrow \pi_{0} = \frac{1}{1 + \sum_{i=1}^{m} q_{i}}$$

$$\Longrightarrow \pi_{k} = \frac{q_{k}}{1 + \sum_{i=1}^{m} q_{i}} \quad \forall k = 0, 1, \dots m$$

pishen (AlgoLab) Stochastic Process May 1, 2012 94 / 111

Example: Two bukkits of balls

There're two bukkits contain total m balls.

In each step, we randomly choose one ball and put it in another bukkit. Let X(n) represent the number of balls in the first bukkit, it's the Markov chain of previous example with

$$p_0 = 1, \ p_m = 0, \ p_i = \frac{m-i}{m} \quad \forall i = 1, \dots, m-1$$

We can get that

$$q_{i} = \frac{\prod_{j=0}^{i-1} \frac{m-j}{m}}{\prod_{j=1}^{i} \frac{j}{m}} = \frac{\prod_{j=0}^{i-1} m - j}{\prod_{j=1}^{i} j} = \binom{m}{i} \quad \forall i = 1, \dots m$$

$$\implies \pi_{0} = \frac{1}{1 + \sum_{i=1}^{m} \binom{m}{i}} = \frac{1}{2^{m}} \implies \pi_{k} = \frac{\binom{m}{k}}{2^{m}} \quad \forall k = 0, 1, \dots m$$

pishen (AlgoLab) Stochastic Process May 1, 2012 95 / 111

Example: A random walk

$$P_{ij} = \frac{w(i,j)}{\sum_{k} w(i,k)}$$

where w(a, b) is the weight of edge (a, b). To make it as a time-reversible chain, we let

$$\pi_i = \frac{\sum_k w(i, k)}{\sum_{\ell} \sum_k w(\ell, k)} \quad \forall i$$

We can see that

$$\pi_i \cdot P_{ij} = \pi_j \cdot P_{ji} \quad \forall i, j$$

96 / 111

Hastings-Metropolis sampling algorithm

Design an irreducible Markov chain $\mathbb X$ such that the unique stationary distribution of $\mathbb X$ is the distribution of random variable Y. Since the long-run proportion of state i is P(Y=i),

$$\lim_{n \to \infty} \frac{X(1) + X(2) + \dots + X(n)}{n} = \sum_{i \in S} i \cdot P(Y = i) = E[Y] = \mu$$

While computing μ by the law of large number is difficult (hard to sample on Y), we use this alternative method to compute μ by generating a sequence of $\mathbb X$, which is sometime easier.

pishen (AlgoLab) Stochastic Process May 1, 2012 97 / 111

Hastings-Metropolis sampling algorithm (cont.)

There's a random variable Y such that

$$P(Y=i) = \frac{b_i}{C}$$

for some unknown (or intractable) $C = \sum_{i \in S} b_i$. We then design a Markov chain $\mathbb X$ that

- $P_{ii} = Q_{ii} + \sum_{k \in S, k \neq i} Q_{ik} \cdot (1 q_{ik})$
- $P_{ij} = Q_{ij} \cdot q_{ij} \quad \forall j \neq i$

where

- Q is the transition matrix of an arbitrary irreducible Markov chain X which has the same state space as Y.
- $lue{q}$ is a matrix to be determined later.

Hastings-Metropolis sampling algorithm (cont.)

For n = 0, 1, ...,

- If X(n) = i, set Z such that $P(Z = j) = Q_{ij} \quad \forall j \in S$.
- 2 If Z = j, set X(n+1) such that
 - $P(X(n+1) = j) = q_{ij}$
 - $P(X(n+1) = i) = 1 q_{ij}$

One can see that this satisfies the requirement on previous page.

Hastings-Metropolis sampling algorithm (cont.)

Then, we let

$$q_{ij} = \min\left(\frac{b_j \cdot Q_{ji}}{b_i \cdot Q_{ij}}, 1\right)$$

$$\implies b_i \cdot Q_{ij} \cdot q_{ij} = b_j \cdot Q_{ji} \cdot q_{ji}$$

$$\implies \frac{b_i}{C} \cdot P_{ij} = \frac{b_j}{C} \cdot P_{ji}$$

By observation 3 on page 86, we know that $(b_1/C, b_2/C,...)$ is the stationary distribution of X.

pishen (AlgoLab) Stochastic Process May 1, 2012 100 / 111

Example: Space of permutations

Example

Let S consist of all the permutations (x_1, x_2, \ldots, x_n) of $\{1, 2, \ldots, n\}$ that

$$\sum_{k=1}^{n} k \cdot x_k \ge \frac{n^3}{4}$$

- This is same as Y in page 98 with C = |S| and $b_i = 1 \ \forall i$.
- S is hard to compute.
- We need to design a matrix Q such that when given a permutation x, it's efficient to compute the value of $Q_{xy} \forall y \in S$.

pishen (AlgoLab) Stochastic Process May 1, 2012 101 / 111

Example: Space of permutations (cont.)

We let

$$Q_{xy}=rac{1}{N(x)}$$
 , if y can be obtained from x by one swap

where N(x) is the number of permutations that can be obtained from x by one swap. For example:

$$\underbrace{\left(1,2,3,4,5\right)}_{y} \leftrightarrow \underbrace{\left(1,3,2,4,5\right)}_{x} \leftrightarrow \underbrace{\left(1,3,4,2,5\right)}_{y}$$

This chain is irreducible since each $x \in S$ can go to (x_1, x_2, \ldots, x_n) , where $x_1 \leq x_2 \leq \ldots \leq x_n$, by several swaps.

Also, given a x, finding all the obtainable y can be done efficiently.

pishen (AlgoLab) Stochastic Process May 1, 2012 102 / 111

Counting process

Definition

A collection \mathbb{N} of random variables is a *counting process* if N(t) denotes the total number of events that occur by time t.

- \blacksquare N(t) is a nonnegative integer.
- The value of N(t) is increasing as t increase.
- N(t) N(s) is the number of events that occur between time index s and t, where t > s.

pishen (AlgoLab) Stochastic Process May 1, 2012 103 / 111

Two properties

Independent increments:

Definition

A counting process is *independent increments* if the number of events in two non-overlapping time intervals are independent.

■ For example, N(s) - N(0) and N(s+t) - N(s) are independent.

Stationary increments:

Definition

A counting process is *stationary increments* if the number of events in any time interval depends only on the length of the interval.

■ For example, $P(N(s_1 + t) - N(s_1) = k) = P(N(s_2 + t) - N(s_2) = k)$.

pishen (AlgoLab) Stochastic Process May 1, 2012 104 / 111

Poisson process

Definition

A Poisson process with rate λ is a counting process with independent increments and stationary increments such that

$$P(N(s+t) - N(s) = n) = \frac{e^{-\lambda t} \cdot (\lambda t)^n}{n!}$$

holds for all nonnegative integers.

lacksquare N(s+t)-N(s) is Poisson distributed with parameter $\lambda t.$

pishen (AlgoLab) Stochastic Process May 1, 2012 105 / 111

An operational definition

Theorem

Let $\mathbb N$ be a counting process with independent increments and stationary increments. Then $\mathbb N$ is a Poisson process if and only if the following two conditions hold:

- $P(N(t) = 1) = \lambda \cdot t + o(t)$
- $P(N(t) \ge 2) = o(t)$
- We say that f(t) = o(t) if

$$\lim_{t \to 0} \frac{f(t)}{t} = 0$$

Proof

(⇒⇒):

Since N(t) is Poisson distributed with parameter λt ,

$$P(N(t) = 1) = \frac{(\lambda t) \cdot e^{-\lambda t}}{1!} = \lambda t \cdot \left(1 - \frac{\lambda t}{1!} + \frac{(\lambda t)^2}{2!} - \cdots\right)$$
$$= \lambda t - \lambda^2 t^2 + \cdots$$
$$= \lambda t + o(t)$$

$$P(N(t) = 2) = \frac{(\lambda t)^2 \cdot e^{-\lambda t}}{2!} = \frac{(\lambda t)^2}{2!} \cdot \left(1 - \frac{\lambda t}{1!} + \frac{(\lambda t)^2}{2!} - \cdots\right)$$
$$= o(t)$$

One can prove that P(N(t)=k)=o(t) for all $k\geq 2$, hence $P(N(t)\geq 2)=o(t)$.

pishen (AlgoLab) Stochastic Process May 1, 2012 107 / 111

(⇐=):

The moment-generating function of a random variable X is

$$\phi(u) = E[e^{u \cdot X}]$$

We say that two random variables have the same distribution if their mement-generating function are the same.

And if X is Poisson distributed with parameter λt , then

$$E[e^{u \cdot X}] = e^{(e^u - 1) \cdot \lambda t}$$

pishen (AlgoLab) Stochastic Process May 1, 2012 108 / 111

We define $\phi_u(t) = E[e^{u \cdot N(t)}]$, then we know that

$$\begin{split} \phi_u(s+t) &= E[e^{u \cdot N(s+t)}] \\ &= E[e^{u \cdot (N(s)-N(0))} e^{u \cdot (N(s+t)-N(s))}] \\ &= E[e^{u \cdot N(s)}] \cdot E[e^{u \cdot (N(s+t)-N(s))}] \\ &= E[e^{u \cdot N(s)}] \cdot E[e^{u \cdot N(t)}] \\ &= \phi_u(s) \cdot \phi_u(t) \end{split}$$

The 3rd equation is because two independent random variables X and Y will make

$$E[X \cdot Y] = E[X] \cdot E[Y]$$

pishen (AlgoLab) Stochastic Process May 1, 2012 109 / 111

By the two conditions in page 106, we know

$$P(N(t) = 0) = 1 - \lambda t + o(t)$$

Therefore,

$$\phi_{u}(t) = E[e^{u \cdot N(t)}]$$

$$= e^{u \cdot 0} \cdot (1 - \lambda t + o(t)) + e^{u \cdot 1} \cdot (\lambda t + o(t))$$

$$+ (e^{u \cdot 2} + e^{u \cdot 3} + \cdots) \cdot o(t)$$

$$= 1 - \lambda t + e^{u} \cdot \lambda t + o(t)$$

$$= 1 + (e^{u} - 1) \cdot \lambda t + o(t)$$

And

$$\phi_u(s+t) = \phi_u(s) \cdot \phi_u(t) = \phi_u(s) \cdot (1 + (e^u - 1) \cdot \lambda t + o(t))$$

pishen (AlgoLab) Stochastic Process May 1, 2012 110 / 111

Differential on $\phi_u(s)$, we can get

$$\phi_u'(s) = \lim_{t \to 0} \frac{\phi_u(s+t) - \phi_u(s)}{t} = \lim_{t \to 0} (\phi_u(s) \cdot (e^u - 1) \cdot \lambda + o(t))$$
$$= \phi_u(s) \cdot (e^u - 1) \cdot \lambda$$

By $\frac{\phi_u'(s)}{\phi_u(s)} = (e^u - 1) \cdot \lambda$, we have

$$\ln \phi_u(s) = \int (e^u - 1) \cdot \lambda \, ds = (e^u - 1) \cdot \lambda s + C$$

By $\phi_u(0)=1$ and $\ln 1=0$, we know C=0, hence

$$\phi_u(s) = e^{(e^u - 1) \cdot \lambda s} \quad \forall s, u$$

which means that N(s) is Poisson distributed for all s.

pishen (AlgoLab) Stochastic Process May 1, 2012 111 / 111