Image Analysis with Rapid and Accurate 2D Gaussian Fitting

Stephen M. Anthony^a and Steve Granick^{a,b}

Departments of Chemistry, a Materials Science and Engineering, and Physics

University of Illinois, Urbana, IL 61801

Supporting Information

Included below are sample Matlab implementations of the weighted regression algorithm developed in this paper. Gauss2dcirc.m applies a 2-dimensional circular Gaussian fit, while Gauss2dellipse applies a 2-dimensional elliptical Gaussian fit where the major and minor axes are aligned with the x and y coordinates of the pixels. Both programs assume that preprocessing has been applied such that the background offset has already been subtracted.

```
function [xc,yc,Amp,width]=gauss2dcirc(z,x,y,noiselevel)
%[xc,yc,Amp,width]=gauss2dcirc(arr,x,y,noiselevel)
%GAUSS2DCIRC.m attempts to find the best 2D circular Gaussian fit for the
%selected region of the image.
%Copyright 2008 Stephen M. Anthony, U. Illinois Urbana-Champaign
%This program is free software: you can redistribute it and/or modify
%it under the terms of the GNU General Public License as published by
%the Free Software Foundation, either version 3 of the License, or
%(at your option) any later version.
%This program is distributed in the hope that it will be useful,
%but WITHOUT ANY WARRANTY; without even the implied warranty of
%MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
%GNU General Public License for more details.
%You should have received a copy of the GNU General Public License
%along with this program. If not, see <a href="http://www.gnu.org/licenses/">http://www.gnu.org/licenses/</a>
%INPUTS: Z:
                        The subregion of the image to be fit, with each
9
                        element giving the value of one pixel.
응
                        This matrix or vector should be the same size as
                        z, with each element giving the x-coordinate of
응
                        the corresponding pixel.
응
            Y:
                        This matrix or vector should be the same size as
                        z, with each element giving the y-coordinate of
응
                        the corresponding pixel.
            NOISELEVEL: The standard deviation of the background noise.
```

```
The center of the Gaussian in x and y
%OUTPUTS:
            XC,YC:
                        The width of the Gaussian.
            W:
응
                        The amplitude of the Gaussian.
            A:
%Convert to column form, in case it is not already
x=x(:); y=y(:);
Z=z(:)+1e-15;
%The miniscule offset on Z has no significant effect, but is a shortcut to
%ensure that no element of Z equals 0. The probability that an element of
%z equals 0 is not insignificant (as we may be working with integers, the
*probability than an element equals exactly -1e-15 is negligible.
%Compute the weighting. This is approximate, as we are working in the log
*scale, where the noise will be asymmetric. Bounds were placed on this to
%avoid logs of negative numbers, but for any case the bound triggers, the
%weight will be quite low anyway.
noise=log(max(Z+noiselevel,1e-10))-log(max(Z-noiselevel,1e-20));
wght=(1./noise);
wght (Z \le 0) = 0;
n=[x y log(Z) ones(size(x))].*(wght*ones(1,4));
d=-(x.^2+y.^2).*wght;
a=n d;
%In the least squares sense, a was selected such that
% n*a = d
%or the best possible match thereof.
%Extract the desired values
xc = -.5*a(1);
yc = -.5*a(2);
width=sqrt(a(3)/2);
Amp=exp((a(4)-xc^2-yc^2)/(-2*width^2));
```

```
%[xc,yc,Amp,wx,wy]=gauss2dellipse(z,x,y,noiselevel)
%GAUSS2DCIRC.m attempts to find the best 2D circular Gaussian fit for the
%selected region of the image.
%Copyright 2008 Stephen M. Anthony, U. Illinois Urbana-Champaign
%This program is free software: you can redistribute it and/or modify
%it under the terms of the GNU General Public License as published by
%the Free Software Foundation, either version 3 of the License, or
%(at your option) any later version.
%This program is distributed in the hope that it will be useful,
%but WITHOUT ANY WARRANTY; without even the implied warranty of
%MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
%GNU General Public License for more details.
%INPUTS:
                        The square or rectangular subregion of the image to
            Z :
                        be fit, with each element giving the value of one
응
                        pixel.
응
                        This matrix or vector should be the same size as
            X:
응
                        z, with each element giving the x-coordinate of
응
                        the corresponding pixel.
                        This matrix or vector should be the same size as
            Y:
응
                        z, with each element giving the y-coordinate of
응
                        the corresponding pixel.
응
            NOISELEVEL: The standard deviation of the background noise.
응
%OUTPUTS:
            XC,YC:
                        The center of the Gaussian in x and y
응
            WX:
                        The width of the Gaussian, in the X direction
응
                        The width of the Gaussian, in the Y direction
            WY:
응
                        The amplitude of the Gaussian.
            A:
%For elliptical Gaussians, if z is a square region around the brightest
*pixel, then only a rectangular sub-region contains significant signal if
%the widths are not identical. Apply a first pass, excluding rows and
%columns which do not contain signal.
cols=find(mean(z,1)>4*noiselevel/sqrt(size(z,2)));
rows=find(mean(z,2)>4*noiselevel/sqrt(size(z,1)));
%Extract the relevant portions
z=z (rows, cols);
x=x(rows,cols);
y=y(rows,cols);
%Convert to column form, if it wasn't already
x=x(:); y=y(:);
Z=z(:)+1e-15;
%The miniscule offset on Z has no significant effect, but is a shortcut to
%ensure that no element of Z equals 0. The probability that an element of
%z equals 0 is not insignificant (as we may be working with integers, the
%probability than an element equals exactly -1e-15 is negligible.
```

function [xc,yc,Amp,wx,wy]=gauss2dellipse(z,x,y,noiselevel)

```
*Compute the weighting. This is approximate, as we are working in the log
*scale, where the noise will be asymmetric. Bounds were placed on this to
%avoid logs of negative numbers, but for any case the bound triggers, the
%weight will be quite low anyway.
noise=log(max(Z+noiselevel,1e-10))-log(max(Z-noiselevel,1e-20));
wght=(1./noise);
%Apply a threshold, to exclude points where the signal-to-noise ratio is
%too low to contribute usefully
wght(Z<=noiselevel)=0;
n=[ones(size(x)) x x.^2 y y.^2].*(wght*ones(1,5));
d=log(Z).*wght;
a=n d;
%In the least squares sense, a was selected such that
n*a = d
%or the best possible match thereof.
%Extract the desired values
wx = sqrt(-.5/a(3));
wy = sqrt(-.5/a(5));
xc=a(2)/(-2*a(3));
yc=a(4)/(-2*a(5));
Amp=exp(a(1)-a(3)*xc^2-a(5)*yc^2);
```