Corrigé du devoir maison 9.

Exercice

Structure d'espace vectoriel

 $\mathbf{1}^{\circ}$) Soit $u = (x, y, z) \in \mathbb{R}^3$.

$$u \in F \iff x^2 + 2x + 1 + z - 4y = x^2 - 2x + 1$$
$$\iff 4x - 4y + z = 0$$
$$\iff z = -4x + 4y$$

Donc $F = \{(x, y, -4x + 4y) / (x, y) \in \mathbb{R}^2\} = \{x(1, 0, -4) + y(0, 1, 4) / (x, y) \in \mathbb{R}^2\}.$ On reconnaît F = Vect((1, 0, -4), (0, 1, 4)).

Ainsi, F est un sous-espace vectoriel de \mathbb{R}^3

2°) On note u = (1, 0, 0) et v = (0, 1, 0). $u \in F$ et $v \in F$. Or $u + v = (1, 1, 0) \notin F$. F n'est pas stable pour +.

Donc | F n'est pas un sous-espace vectoriel de \mathbb{R}^3 |.

- **3°)** Montrons que F est un sous-espace vectoriel de $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$.
 - $\bigstar F \subset E$
 - ★ On note $f: x \mapsto 0$. f est croissante sur \mathbb{R} donc $f f \in F$. Ainsi $F \neq \emptyset$.
 - * Soit $(h_1, h_2) \in F^2, \lambda \in \mathbb{R}$. Montrons que $\underbrace{\lambda h_1 + h_2}_{\text{noté }h} \in F$.

 h_1 et h_2 s'écrivent : $\begin{cases} h_1 = f_1 - g_1 \\ h_2 = f_2 - g_2 \end{cases}$ où les fonctions f_i et g_i sont croissantes sur \mathbb{R} .

 $h = \lambda(f_1 - g_1) + f_2 - g_2 = \lambda f_1 - \lambda g_1 + f_2 - g_2.$

Supposons $\lambda \geq 0$. Alors λf_1 et λg_1 sont croissantes sur \mathbb{R} .

 $h = (\lambda f_1 + f_2) - (\lambda g_1 + g_2).$

 $\lambda f_1 + g_1$ et $\lambda f_2 + g_2$ sont croissantes sur \mathbb{R} comme sommes de fonctions croissantes. Ainsi, $h \in F$.

Supposons $\lambda < 0$. Alors $-\lambda > 0$ donc $(-\lambda)f_1$ et $(-\lambda)g_1$ sont croissantes sur \mathbb{R} .

 $h = (f_2 + (-\lambda)g_1) - (g_2 + (-\lambda)f_1).$

 $f_2 + (-\lambda)g_1$ et $g_2 + (-\lambda)f_1$ sont croissantes sur \mathbb{R} comme sommes de fonctions croissantes. Donc $h \in F$.

Dans les 2 cas, $h \in F$.

Ainsi, |F| est un sous-espace vectoriel de E.

Intersection de sous-espaces vectoriels

 $\mathbf{4}^{\circ}$) ★ Soit $u \in F \cap G$. Alors, pour tout $n \in \mathbb{N}$,

$$\begin{cases} u_{n+2} &= -u_{n+1} + 2u_n \\ u_{n+2} &= u_{n+1} + 6u_n \end{cases} \text{donc } -u_{n+1} + 2u_n = u_{n+1} + 6u_n \text{ d'où } 2u_{n+1} = -4u_n \text{ i.e. } u_{n+1} = -2u_n.$$

u est donc une suite géométrique de raison -2 donc, pour tout $n \in \mathbb{N}$, $u_n = u_0(-2)^n$.

Ainsi, $u \in \text{Vect}(\alpha)$ où α est la suite définie par : $\forall n \in \mathbb{N}, \alpha_n = (-2)^n$.

Donc, $F \cap G \subset \text{Vect}(\alpha)$.

★ Réciproquement, soit $u \in \text{Vect}(\alpha)$. Alors, $\exists \lambda \in \mathbb{R}, \forall n \in \mathbb{N}, u_n = \lambda(-2)^n$. $\forall n \in \mathbb{N},$

$$u_{n+2} + u_{n+1} - 2u_n = \lambda((-2)^{n+2} + (-2)^{n+1} - 2 \times (-2)^n)$$

= $\lambda(-2)^n (4 - 2 - 2)$
= 0

De même, $u_{n+2} - u_{n+1} - 6u_n = \lambda(-2)^n(4+2-6) = 0.$

Ainsi, $u \in F$ et $u \in G : u \in F \cap G$.

Donc, $Vect(\alpha) \subset F \cap G$.

Ainsi, $F \cap G = \text{Vect}(\alpha)$. Comme α n'est pas la suite nulle, $F \cap G$ est une droite vectorielle

- 5°) ★ On a bien $\{0\} \subset F \cap H$.
 - \star Réciproquement, soit $u \in F \cap H$. Alors, pour tout $n \in \mathbb{N}$,

$$\begin{cases} u_{n+2} &= -u_{n+1} + 2u_n \\ u_{n+2} &= 2u_{n+1} + 3u_n \end{cases} \text{ donc } -u_{n+1} + 2u_n = 2u_{n+1} + 3u_n \text{ d'où } u_{n+1} = -\frac{u_n}{3}.$$

u est donc une suite géométrique de raison $-\frac{1}{3}$.

Donc, pour tout $n \in \mathbb{N}$, $u_n = u_0 \left(-\frac{1}{3}\right)^n$.

$$\forall n \in \mathbb{N}, u_{n+2} + u_{n+1} - 2u_n = u_0 \left(-\frac{1}{3} \right)^n \left(\frac{1}{9} - \frac{1}{3} - 2 \right) = -\frac{20}{9} u_0 \left(-\frac{1}{3} \right)^n.$$

Or $u \in F$ donc, pour tout $n \in \mathbb{N}$, $u_{n+2} + u_{n+1} - 2u_n = 0$ donc $u_0 = 0$. Ainsi, u est la suite nulle.

Donc $F \cap H \subset \{0\}$.

Finalement $F \cap H = \{0\}$. Ce qui signifie que F et H sont en somme directe.

Sous-espaces vectoriels supplémentaires et applications linéaires

6°) Remarque : $V = \text{Ker}(f - i \text{id}_E)$ et $W = \text{Ker}(f + i \text{id}_E)$, ce sont bien des sev de E.

Soit $x \in E$.

 \bigstar Analyse : On suppose que x = v + w où $v \in V$ et $w \in W$.

Alors, par linéarité de f, f(x) = f(v) + f(w) donc f(x) = iv - iw.

On a alors :
$$\begin{cases} ix &= iv + iw \\ f(x) &= iv - iw \end{cases}$$

Donc, en sommant, 2iv = ix + f(x) donc $v = \frac{1}{2}(x - if(x))$.

v est donc unique. Puis $w = x - v = x - \frac{1}{2}(x - if(x)) = \frac{1}{2}(x + if(x))$.

Donc w est unique.

Si la décomposition existe alors elle est unique.

* Synthèse: Réciproquement, on pose $\begin{cases} v = \frac{1}{2}(x - if(x)) \\ w = \frac{1}{2}(x + if(x)) \end{cases}$.

On a bien v + w = x.

De plus,

$$f(v) = \frac{1}{2}(f(x) - if^{2}(x)) \quad \text{par } \mathbb{C}\text{-lin\'earit\'e de } f$$

$$= \frac{1}{2}(f(x) + ix) \quad \text{car } f \circ f = -\operatorname{id}_{E}$$

$$= \frac{i}{2}(x - if(x))$$

$$= iv$$

De même,
$$f(w) = \frac{1}{2}(f(x) + if^2(x)) = \frac{1}{2}(f(x) - ix) = -\frac{i}{2}(x + if(x)) = -iw$$
.
Ainsi, $v \in V$ et $w \in W$.

D'où l'existence de la décomposition.

On a montré que $E = V \oplus W$

Projection

7°) \star Montrons que $p \in \mathcal{L}(E)$. Soit $(A, B) \in E^2, \lambda \in \mathbb{R}$.

$$\begin{split} p(\lambda A + B) &= \frac{1}{2}(\lambda A + B + {}^{\mathrm{t}}(\lambda A + B)) \\ &= \frac{1}{2}(\lambda A + B + \lambda {}^{\mathrm{t}}A + {}^{\mathrm{t}}B) \qquad \text{par linéarité de la transposition} \\ &= \frac{\lambda}{2}(A + {}^{\mathrm{t}}A) + \frac{1}{2}(B + {}^{\mathrm{t}}B) \\ &= \lambda p(A) + p(B) \end{split}$$

Donc p est linéaire. De plus, p va de E dans E. Donc $p \in \mathcal{L}(E)$.

On pouvait aussi remarquer que $p=\frac{1}{2}id_E+\frac{1}{2}\varphi$ où φ est l'endomorphisme de E $A\mapsto {}^tA$, donc p est une combinaison linéaire d'endomorphismes de E, c'est donc un endomorphisme de E.

★ Montrons que $p \circ p = p$. Soit $A \in E$.

$$\begin{aligned} p \circ p(A) &= p(p(A)) \\ &= \frac{1}{2}(p(A) + {}^{\mathrm{t}}p(A)) \\ &= \frac{1}{2} \left(\frac{1}{2}(A + {}^{\mathrm{t}}A) + \frac{1}{2}({}^{\mathrm{t}}A + {}^{\mathrm{t}}({}^{\mathrm{t}}A)) \right) \text{ par linéarité de la transposition} \\ &= \frac{1}{4} \left(A + {}^{\mathrm{t}}A + {}^{\mathrm{t}}A + A \right) \\ &= \frac{1}{2}(A + {}^{\mathrm{t}}A) \\ &= p(A) \end{aligned}$$

Ainsi, $p \circ p = p$.

On en déduit que p est un projecteur de E.

p est nécessairement la projection sur Im(p) parallèlement à Ker(p).

Or $Im(p) = \{A \in E/p(A) = A\}$ et $Ker(p) = \{A \in E/p(A) = 0\}$.

Soit $A \in E$.

$$p(A) = A \iff \frac{1}{2}(A + {}^{t}A) = A$$

$$\Leftrightarrow A + {}^{t}A = 2A$$

$$\Leftrightarrow A = {}^{t}A$$

$$\Leftrightarrow A \in \mathcal{S}_{n}(\mathbb{R})$$

$$p(A) = 0 \iff A + {}^{t}A = 0$$

$$\Leftrightarrow A = -{}^{t}A$$

$$\Leftrightarrow A \in \mathcal{A}_{n}(\mathbb{R})$$

On en déduit que $\operatorname{Im}(p) = \mathcal{S}_n(\mathbb{R})$ et $\operatorname{Ker}(p) = \mathcal{A}_n(\mathbb{R})$. p est la projection sur $\mathcal{S}_n(\mathbb{R})$ parallèlement à $\mathcal{A}_n(\mathbb{R})$.