A Large Dimensional Analysis of Kernel LS-SVM ED STIC reception meeting 2019-2020

Zhenyu Liao

joint work with Romain Couillet CentraleSupélec, Université Paris-Saclay, France.

Nov 28, 2019

Motivation: counterintuitive phenomena in large dimensional learning

- Big Data era: large dimensional and massive amount of data
- data number n and dimension p both large and comparable: analysis with Random Matrix Theory
- "curse of dimensionality" in large dimensional classification:

$$\mathcal{C}_1: \mathcal{N}(-\mu, \mathbf{I}_p)$$
 versus $\mathcal{C}_2: \mathcal{N}(+\mu, \mathbf{I}_p)$

 $\mathbf{x} \in \mathbb{R}^p$ has norm $\|\mathbf{x}\| = O(\sqrt{p})$ with spread $\|\mathbf{x}\| - \mathbb{E}[\|\mathbf{x}\|] = O(1)$.

 $+\mu$ \rightarrow $-\mu$ \leftarrow

• indeed, for $\mathbf{x}_i \in \mathcal{C}_a$, $\mathbf{x}_j \in \mathcal{C}_b$, $a \in \{1,2\}$

$$\frac{1}{p}\|\mathbf{x}_i - \mathbf{x}_j\|^2 \simeq \tau$$

for *p* large, regardless of the classes C_a , C_b !

Consequences to large kernel matrices: Gaussian mixture

Classify data $\mathbf{x}_1, \dots, \mathbf{x}_n$ into \mathcal{C}_1 or \mathcal{C}_2 with distance-based kernel $\mathbf{K}_{ij} = e^{-\frac{1}{2p}\|\mathbf{x}_i - \mathbf{x}_j\|^2}$.

(a)
$$p = 5, n = 500$$

$$\mathbf{K}=egin{bmatrix} \mathcal{C}_1 & \mathcal{C}_2 \ \mathcal{C}_1 & & \ \mathcal{C}_2 \ \mathcal{C}_2 & & \ \mathcal{C}_2 & \ \mathcal{C}_2 & & \ \mathcal{C}_2 & \$$

(b)
$$p = 250, n = 500$$

Consequences to large kernel matrices: real-world datasets

Distance-based kernel $\mathbf{K}_{ij} = e^{-\frac{1}{2p}\|\mathbf{x}_i - \mathbf{x}_j\|^2}$ on MNIST and Fashion-MNIST data.

(a) MNIST

(b) Fashion-MNIST

Question: impact of large *p* on performance of kernel-based methods, e.g., LS-SVM?

Reminder on least-squares support vector machine

• find classifier $g(\mathbf{x}) = \mathbf{w}^{\mathsf{T}} \varphi(\mathbf{x}) + b$ by minimizing

$$L(\mathbf{w}, b) = \frac{\gamma}{n} \sum_{i=1}^{n} \left(y_i - \mathbf{w}^\mathsf{T} \varphi(\mathbf{x}_i) - b \right)^2 + \|\mathbf{w}\|^2$$

on training set $\{(\mathbf{x}_i, y_i)\}_{i=1}^n, y_i \in \{-1, +1\}.$

• "kernel trick": $g(\mathbf{x}) = \boldsymbol{\alpha}^{\mathsf{T}} \{k(\mathbf{x}, \mathbf{x}_i)\}_{i=1}^n + b$ with

$$\alpha = \mathbf{Q}(\mathbf{y} - b\mathbf{1}_n), \quad b = \frac{\mathbf{1}_n^\mathsf{T} \mathbf{Q} \mathbf{y}}{\mathbf{1}_n^\mathsf{T} \mathbf{Q} \mathbf{1}_n}$$

where $\mathbf{Q} \equiv \left(\mathbf{K} + \frac{\gamma}{n}\mathbf{I}_n\right)^{-1}$ resolvent of kernel matrix

$$\mathbf{K} \equiv \{k(\mathbf{x}_i, \mathbf{x}_j)\}_{i,j=1}^n = \{f(\|\mathbf{x}_i - \mathbf{x}_j\|^2/p)\}_{i,j=1}^n.$$

• for new \mathbf{x} , assign to \mathcal{C}_1 if $g(\mathbf{x}) < 0$ and \mathcal{C}_2 otherwise.

Key observation: $\frac{1}{n} ||\mathbf{x}_i - \mathbf{x}_i||^2 \simeq \tau$ for large p, K only depends on $f(\tau)$, $f'(\tau)$ and $f''(\tau)$!

Main result: exact performance of LS-SVM

Main result

Under a binary Gaussian mixture model $C_1 : \mathcal{N}(\mu_1, \mathbf{C}_1)$ vs. $C_2 : \mathcal{N}(\mu_2, \mathbf{C}_2)$, **decision function** $g(\mathbf{x})$ is asymptotically Gaussian

$$g(\mathbf{x} \mid \mathbf{x} \in C_a) \sim \mathcal{N}(E_a, V_a), \quad a = \{1, 2\}$$

that depends on <u>data statistics</u> (μ_a , C_a), <u>hyperparameter</u> γ and <u>kernel function</u> f "locally".

 \Rightarrow direct access to classification performance via Gaussian tail $Q(x) = \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} e^{-\frac{t^2}{2}} dt$.

When applied to real world datasets

(b) Fashion-MNIST

Why?

- MNIST and Fashion-MINIT data are clearly NOT mixture of Gaussian vectors
- when n, p large, algorithms tend to work AS IF they were: use only 1st and 2nd order statistical info.

¹Means and covariances of data empirically estimated from the whole database.

Conclusion and take-away message

- counterintuitive phenomena in real-world large dimensional learning
- RMT as a tool to assess exact performance, understand and improve large dimensional learning
- in this work: "curse of dimensionality" \Rightarrow exact performance of kernel LS-SVM
- more to be done in the general context of large dimensional learning!

Some references and related works:

- Zhenyu Liao and Romain Couillet. "A Large Dimensional Analysis of Least Squares Support Vector Machines". In: IEEE Transactions on Signal Processing 67.4 (2019), pp. 1065–1074
- Cosme Louart, Zhenyu Liao, and Romain Couillet. "A Random Matrix Approach to Neural Networks". In: The Annals of Applied Probability 28.2 (2018), pp. 1190–1248
- Zhenyu Liao and Romain Couillet. "On the Spectrum of Random Features Maps of High Dimensional Data". In: Proceedings of the 35th International Conference on Machine Learning. Vol. 80. PMLR, 2018, pp. 3063–3071
- Zhenyu Liao and Romain Couillet. "The Dynamics of Learning: A Random Matrix Approach". In: Proceedings of the 35th International Conference on Machine Learning. Vol. 80. PMLR, 2018, pp. 3072–3081
- Xiaoyi Mai and Romain Couillet. "A Random Matrix Analysis and Improvement of Semi-supervised Learning for Large Dimensional Data". In: The Journal of Machine Learning Research 19.1 (2018), pp. 3074–3100
- Mohamed El Amine Seddik, Mohamed Tamaazousti, and Romain Couillet. "Kernel Random Matrices of Large Concentrated Data: the Example of GAN-Generated Images". In: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2019, pp. 7480-7484

Thank you

Thank you!