04012022-UNIT1

04 January 2022 13:32

Unit1-Slides

CSO322: Theory of Computation
Unit-1: Formal Languages and Finite Automata

Dr. Lavanya Selvaganesh

Let Σ be an alphabet. Let Σ^* be the set of all strings over Σ . A language is a subset of Σ^* .

Formal Languages

Definition

Let Σ be an alphabet. Let Σ^* be the <u>set of all strings over Σ </u>. A language is a subset of Σ^*

Example Let $\Sigma = \{a, b\}$. $\Sigma^* = \{\epsilon, a, b, aa, bb, ab, ba, aaa, ...\}$. Examples of languages over Σ are $L_1 = \{\epsilon, a, aa, aab\}$.

Definition

Let Σ be an alphabet. Let Σ^* be the set of all strings over Σ . A language is a subset of Σ^* .

Let $\Sigma = \{a, b\}$. $\Sigma^* = \{\epsilon, a, b, aa, bb, ab, ba, aaa, ...\}$.

Examples of languages over Σ are

- $2 L_2 = \{ \underline{x} \in \Sigma^* : |x| \le 8 \}.$

Formal Languages

Definition

Let Σ be an alphabet. Let Σ^* be the set of all strings over Σ . A language is a subset of Σ^* .

Example

Let $\Sigma = \{a, b\}$. $\Sigma^* = \{\epsilon, a, b, aa, bb, ab, ba, aaa, ...\}$.

Examples of languages over Σ are

- **1** $L_1 = \{\epsilon, a, aa, aab\}.$
- $L_3 = \{X \in \Sigma^* : n_a(X) \ge n_b(X)\}$ On one point on processing the number of a's and b's in x respectively.

Formal Languages

Definition

Let Σ be an alphabet. Let Σ^* be the set of all strings over Σ . A language is a subset of Σ^* .

Example

Let $\Sigma = \{a, b\}$. $\Sigma^* = \{\epsilon, a, b, aa, bb, ab, ba, aaa, ...\}$.

Examples of languages over Σ are

- \bullet $L_1 = \{\epsilon, a, aa, aab\}.$
- ② $L_2 = \{x \in \Sigma^* : |x| \leq 8\}.$
- **3** $L_3 = \{x \in \Sigma^* : n_a(x) \ge n_b(x)\}$

where n_a and n_b are the number of a's and b's in x respectively.

Formal Languages

New languages can be constructed using set operations, since languages are sets of strings.

- New languages can be constructed using set operations, since languages are sets of strings.
 - ▶ For any two languages over an alphabet Σ , their union, intersection and difference are also languages over Σ .

Formal Languages

- New languages can be constructed using set operations, since languages are sets of strings.
 - For any two languages over an alphabet Σ, their union, intersection
 - and difference are also languages over Σ .

 Complement of a language over Σ is defined by $L' = \Sigma^* L$.

- New languages can be constructed using set operations, since languages are sets of strings.
 - For any two languages over an alphabet Σ, their union, intersection and difference are also languages over Σ .

 - and difference are also languages over Σ .

 Complement of a language over Σ is defined by $L' = \Sigma^* L$.

 Suppose $L_1 \subseteq \Sigma_1^*$ and $L_2 \subseteq \Sigma_2^*$, then L_1 and L_2 are languages over $(\Sigma_1 \cup \Sigma_2)^*$ i.e. $L_1, L_2 \subseteq (\Sigma_1 \cup \Sigma_2)^*$

- New languages can be constructed using set operations, since languages are sets of strings.
 - For any two languages over an alphabet Σ, their union, intersection and difference are also languages over Σ.
 - ▶ Complement of a language over Σ is defined by $L' = \Sigma^* L$.
 - ▶ Suppose $L_1 \subseteq \Sigma_1^*$ and $L_2 \subseteq \Sigma_2^*$, then L_1 and L_2 are languages over $(\Sigma_1 \cup \Sigma_2)^*$ i.e.

 $L_1, L_2 \subseteq (\Sigma_1 \cup \Sigma_2)^*$

► However, there is a possibility for complement of L₁ to be either

 $L_1 = \Sigma_1^* - L_1 \text{ or } L_1' = (\Sigma_1 \cup \Sigma_2)^* - L_1.$

Depending on the context, it will be clear which alphabet is referred to

4 D +	(5)	121	12:	Mark	200

Formal Languages

Concatenation operation on strings will allow us to construct new languages.

- Concatenation operation on strings will allow us to construct new languages.
 - If x and y are elements of Σ*, the concatenation of x and y is the string xy formed by writing the symbols of x followed by symbols of y.

- Concatenation operation on strings will allow us to construct new languages.
 - If x and y are elements of Σ*, the concatenation of x and y is the string xy formed by writing the symbols of x followed by symbols of y.

Example

If x = abb and y = ba, then xy = abbba and yx = baabb.

		+ 🖂 +	10	121	121	100	200
Dr. Lavanya Selvaganesh	CSO322						4/46

Formal Languages

- Concatenation operation on strings will allow us to construct new languages.
 - If x and y are elements of Σ*, the concatenation of x and y is the string xy formed by writing the symbols of x followed by symbols of y.

Example

If x = abb and y = ba, then xy = abbba and yx = baabb.

For any string x, $x\epsilon = \epsilon x = x$.

E e E L = { E} empty string. L= \$ = empty string. L= \$ - empty languige

Dr. Lavanya Selvaganesh CSO322 4/4

Formal Languages

- Concatenation operation on strings will allow us to construct new languages.
 - If x and y are elements of Σ*, the concatenation of x and y is the string xy formed by writing the symbols of x followed by symbols of y.

Example

If x = abb and y = ba, then xy = abbba and yx = baabb.

- ▶ For any string x, $x\epsilon = \epsilon x = x$.
- For strings x, y, z; (xy)z = x(yz) i.e. concatenation is associative.

by 12 or sulys)

- Substring of a string
 - x is a substring of another string y, if there are strings w and z, either or both may be null, so that y = wxz.

Substring of a string

x is a substring of another string y, if there are strings w and z, either or both may be null, so that y = wxz.

Example

The string "car" is a substring of "descartes", "vicar", "cartridge" and "car", but not a substring of "charity".

Formal Languages

Substring of a string

x is a substring of another string y, if there are strings w and z, either or both may be null, so that y = wxz.

Example

The string "car" is a substring of "descartes", "cartridge" and "car", but not a substring of "charity".

► A **prefix** of a string is an initial substring. Example - Prefixes of <u>abaa</u> – ε, a, ab, aba, abaa.

Formal Languages

Substring of a string

x is a substring of another string y, if there are strings w and z, either or both may be null, so that y = wxz.

Example

The string "car" is a substring of "descartes", "vicar", "cartridge" and "car", but not a substring of "charity".

- A **prefix** of a string is an initial substring. Example Prefixes of $abaa \epsilon$, a, ab, aba, aba.
- A suffix of a string is a final substring.
 Example Suffixes of abaa ε, a, aa, baa, abaa.

Concatenation of languages is also possible.

► If
$$L_1, L_2 \subseteq \Sigma^*, L_1L_2 = \{xy | x \in L_1, y \in L_2\}$$

Dr. Lavanya Selvaganesh	CSO322				6/46
		10 1 15 1	451451	100	200

$$\qquad \qquad \textbf{If } L_1, L_2 \subseteq \Sigma^*, L_1L_2 = \{xy | x \in L_1, y \in L_2\}$$

