Çağrı Çöltekin ccoltekin@sfs.uni-tuebingen.de

Winter Semester 2020/21

Shortest path

- Finding shortest paths on a weighted (directed) graph is one of the most common problems in many fields
- Applications include Navigation
 - Navigation
 Routing in computer networks
 Optimal construction of electronic circuits, VLSI chips
 Robotics, transportation, finance, ...

Shortest paths on weighted graphs

- · Different versions of the problem: Single source shortest path: find shortest path from a source node to all others
 Single target (semetimes called sink) shortest path: find shortest path from all nodes to a target node
- Source to target: from a particular source node to a particular target node
 All pairs: shortest paths between all pairs of nodes
 Restrictions on weights:
 - Euclidean weights
 Non-negative weights
 Arbitrary weights

We maintain a list D of mi

know distances to each node

Dijkstra's algorithm Dijkstra's algorithm

- Dijkstra's algorithm is a 'weighted' version of the BPS The algorithm finds shortest path from a single source node to all connected
- nodes
- Weights has to be non-negative

Shortest paths on unweighted graphs

· A BPS search tree gives the sho path from the source node to all other nodes

· The BFS is not enough on weighted graphs Shortest-cost path may be longer in

- . It is a greedy algorithm that grows a 'cloud' of nodes for which we know the shortest paths from the source node
- The new nodes are included in the cloud in order of their shortest paths from

- the source node The algorithm is also similar to Prim-Jamik algorithm used for finding MST

Can be more efficient if Q is implemented using a (adaptable) priority queue

· At each step

for each node $v \neq s$ do $D[v] \leftarrow \infty$ $Q \leftarrow nodes$

4: Q ← nodes
5: while Q is not empty do
6: Find the node v with min D[v]
7: for each edge (v, w) do
8: if D[v] + w[(v, w)] < D[w] then
9: D[v] ← D[v] + w[(v, w)]

1: D[s] ← 0

10: D contains the shortest distances from s

Dijkstra's algorithm

Dijkstra's algorithm 2

Dijkstra's algorithm

