TEST REPORT

FCC ID: Y44-S4 IC: 9932A-S4

Applicant : Stonex Europe Srl

Address : Via Zucchi 1, 20900 Monza(MB), Italy

Equipment Under Test (EUT):

Name : S4 Handheld

Model : S4H, S4C

In Accordance with: FCC PART 2; FCC PART 22H; FCC PART 24E

RSS-132, Issue 3, January 2013

RSS-133, Issue 6, January 2013

Report No : CST-TCB140729047

Date of Test : August 09- August 15, 2014

Date of Issue : August 17, 2014

Test Result: PASS

In the configuration tested, the EUT complied with the standards specified above

Authorized Signature

(Mark Zhu)

General Manager

The manufacture should ensure that all the products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

FCC ID: Y44-S4/IC: 9932A-S4

Contents

1.	Gen	eral Information	4
	1.1.	Description of Device (EUT)	4
	1.2.	Test Lab information	4
2.	Sum	nmary of test	5
	2.1.	Summary of test result	5
	2.2.	Assistant equipment used for test	6
	2.3.	Test mode	6
	2.4.	Test Environment Conditions	6
	2.5.	Measurement Uncertainty (95% confidence levels, k=2)	6
	2.6.	Test Equipment	7
3.	Con	ducted Output power	9
	3.1.	Block Diagram of Test Setup	9
	3.2.	Limit	9
	3.3.	Test Procedure	9
	3.4.	Test Result	10
4.	Rad	iated Output power	12
	4.1.	Block Diagram of Test Setup	12
	4.2.	Limit	12
	4.3.	Test Procedure	12
	4.4.	Test Result	13
5.	Occi	upied Bandwidth	14
	5.1.	B lock Diagram of Test Setup	14
	5.2.	Limit	14
	5.3.	Test Procedure	14
	5.4.	Test Result	15
	5.5.	Orginal test data	15
6.	Free	quency stability	19
	6.1.	Block Diagram of Test Setup	19
	6.2.	Limit	19
	6.3.	Test Procedure	19
	6.4.	Test Result	20
7.	Con	ducted spurious emissions	22
	7.1.	Block Diagram of Test Setup	22
	7.2.	Limit	22
	7.3.	Test Procedure	22
	7.4.	Test Result	22
8.	Rad	iated Spurious emissions	28
	8.1.	Block Diagram of Test Setup	28
	8.2.	Limit	28
	8.3.	Test Procedure	28
	8.4.	Test Result	29
9.	Ban	d Edge Compliance	31
	9.1.	Block Diagram of Test Setup	31

Report No.: CST-TCB140729047

	9.2.	Limit	31
	9.3.	Test Procedure	31
	9.4.	Test Result	32
10.		er line conducted emission	
		Block Diagram of Test Setup	
		Limit	
	10.3.	Test Procedure	34
	10.4.	Test Result	35

1. General Information

1.1. Description of Device (EUT)

EUT : S4 Handheld

Trade Name : N/A

Model No. : S4H, S4C (S4H and S4C are electrically identical, the only

difference is Model Number, S4H was tested for representative)

Power supply : DC 7.4V Supply by battery

Manufacturer: NIL

Adapter : Model No.:PSA15R-150P

Operation frequency : IEEE 802.11b: 2412 MHz – 2462 MHz

IEEE 802.11g: 2412 MHz – 2462 MHz

Bluetooth 2.0: 2402 – 2480MHz

GSM/GPRS 850: 824.2 MHz – 848.8 MHz GSM/GPRS 1900: 1850.2 MHz – 1909.8 MHz

Modulation : IEEE 802.11b: DSSS(CCK,DQPSK,DBPSK),

IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK),

Bluetooth 2.0: GFSK

GSM/GPRS: GMSK

Antenna Type : PCB Antenna, max gain -3 dBi for WIFI,

PCB Antenna, max gain -3 dBi for BT.

PCB Antenna, max gain -3 dBi for GSM/GPRS 850/1900

Applicant : Stonex Europe Srl

Address : Via Zucchi 1,20900 Monza(MB), Italy

Manufacturer : Stonex Europe Srl

Address : Via Zucchi 1,20900 Monza(MB), Italy

1.2. Test Lab information

Alpha Product Testing Laboratory

Building B, East Area of Nanchang Second, Industrial Zone, Gushu 2nd Road

Bao'an, Shenzhen, China FCC Registered No.:197647 IC Registration Number: 12135A

2. Summary of test

2.1. Summary of test result

Description of Test Item	Standard	Results
	FCC PART 2: 2.1046	
	FCC PART 22H: 22.913 (a)	
Conducted Output power	FCC PART 24E: 24.232 (c)	PASS
	RSS-132 5.4	
	RSS-133 6.4	
	FCC PART 22H:22.913 (a)	
	FCC PART 24E:24.232(c)	DAGG
Radiated Output power(erp/eirp)	RSS-132 5.4	PASS
	RSS-133 6.4	
	FCC PART 2: 2.1049	
Occupied bandwidth	FCC PART 22H: 22.917 (b)	PASS
-	FCC PART 24E: 24.238 (b)	
	FCC PART 2: 2.1055	
	FCC PART 22H: 22.355	
Frequency stability	FCC PART 24E: 24.235	PASS
	RSS-132 5.3	
	RSS-133 6.3	
	FCC PART 2: 2.1051	
	FCC PART 22H: 22.917	
Conducted spurious emission	FCC PART 24E: 24.238	PASS
(Antenna terminal)	RSS-132 5.5	
	RSS-133 6.5	
	FCC PART 2: 2.1053	
	FCC PART 22H: 22.917	
Radiated spurious emissions	FCC PART 24E: 24.238	PASS
-	RSS-132 5.5	
	RSS-133 6.5	
	FCC PART 22H: 22.917 (b)	
	FCC PART 24E: 24.238 (b)	DAGG
Band edge compliance	RSS-132 5.5	PASS
	RSS-133 6.5	
	FCC Part 15: 15.207	2122
Power Line Conducted Emission Test	ANSI C63.4: 2003	PASS
	111	

2.2. Assistant equipment used for test

Description		Adapter		
Manufacturer		NIL		
Model No.		PSA15R-150P		
Input		AC 100-240V 50-60Hz		
Output		DC 15V, 1.0A		

2.3. Test mode

During all testing, EUT is in link mode with base station emulator at maximum power level in each test mode and channel as below:

Mode	Channel	Frequency(MHz)
	128	824.2
GSM 850	190	836.6
	251	848.8
	512	1850.2
PCS 1900	661	1880.0
	810	1909.8

2.4. Test Environment Conditions

Temperature range	21-25℃
Humidity range	40-75%
Pressure range	86-106kPa

2.5. Measurement Uncertainty (95% confidence levels, k=2)

Item	MU	Remark
Uncertainty for Power point Conducted Emissions Test	2.42dB	
Uncertainty for Radiation Emission test in 3m chamber	3.54dB	Polarize: V
(30MHz to 1GHz)	4.1dB	Polarize: H
Uncertainty for Radiation Emission test in 3m chamber	2.08dB	Polarize: H
(1GHz to 25GHz)	2.56dB	Polarize: V
Uncertainty for radio frequency	1×10-9	
Uncertainty for conducted RF Power	0.65dB	
Uncertainty for temperature	0.2°C	
Uncertainty for humidity	1%	
Uncertainty for DC and low frequency voltages	0.06%	

2.6. Test Equipment

Equipment	Manufacture	Model No.	Serial No.	Last cal.	Cal Interval
3m Semi-Anechoic	ETS-LINDGREN	N/A	SEL0017	Nov. 16, 13	1Year
Spectrum analyzer	Agilent	E4407B	MY49510055	Oct. 30, 13	1Year
Receiver	R&S	ESCI	101165	Oct. 30, 13	1Year
Receiver	R&S	ESCI	101202	Oct. 30, 13	1Year
Bilog Antenna	SCHWARZBECK	VULB 9168	9168-438	Mar.11, 14	1Year
Horn Antenna	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D(1201)	Mar.11, 14	1 Year
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA 9170 D(1432)	Mar.11, 14	1 Year
Active Loop Antenna	Beijing Daze	ZN30900A	SEL0097	Mar.12, 13	1 Year
L.I.S.N.	SCHWARZBECK	NSLK8126	8126466	Oct. 30, 13	1 Year
Cable	Resenberger	SUCOFLEX 104	MY6562/4	Oct. 30, 13	1 Year
Cable	Resenberger	SUCOFLEX 104	309972/4	Oct. 30, 13	1 Year
Cable	Resenberger	SUCOFLEX 104	329112/4	Oct. 30, 13	1 Year
Power Meter	Anritsu	ML2487A	6K00001491	Oct. 30, 13	1Year
Power sensor	Anritsu	ML2491A	32516	Oct. 30, 13	1Year
Pre-amplifier	SCHWARZBECK	BBV9743	9743-019	Oct. 30, 13	1 Year
Pre-amplifier	Quietek	AP-180C	CHM-0602012	Oct. 30, 13	1 Year
Base station	Agilent	E5515C	GB44300243	Oct. 30, 13	1 Year
Temperature controller	Terchy	MHQ	120	Oct. 30, 13	1 Year
Power divider	Anritsu	K240C	020346	Oct. 30, 13	1 Year
Signal Generator	ROHDE&SCHWA RZ	CMU200	116785	Oct. 30, 13	1 Year

Attenuator	Agilent	8491B	MY39262165	Oct. 30, 13	1 Year
X-series USB Peak and Average Power Sensor		U2021XA	MY54080020	2014.01.19	1Year
X-series USB Peak and Average Power Sensor		U2021XA	MY54110001	2014.01.19	1 Year
4 Ch.Simultaneous Sampling 14 Bits 2 MS/s		U2531A	TW54063507	2014.01.19	1 Year

3. Conducted Output power

3.1. Block Diagram of Test Setup

3.2. Limit

Cellular Telephone 850MHz	PCS 1900MHz
38.5dBm(ERP)	33dBm(EIRP)

3.3. Test Procedure

- (1) The EUT's RF output port as connected to base station.
- (2) A call is set up by the SS according to the generic call set up procedure
- (3) Set EUT at maximum power level through base station by power level command
- (4) Measure the maximum output power of EUT at each frequency band and mode by base station.

3.4. Test Result

GSM 850:

EUT: S4 Handheld M/N:S4H Power: DC 7.4V					
Ambient Temperat	ure:24°C	Relative Humidity: 62%			
Test date: 2014-08	-11	Test site: RF site	Tested by: Simple Guan	1	
Conclusion: PASS					
Mode	Channel	Frequency	Output power	Limit	
		(MHz)	(dBm)	(dBm)	
	128	824.2	32.58	38.5	
GSM 850	190	836.6	32.59	38.5	
	251	848.8	32.69	38.5	
GPRS 850	128	824.2	32.56	38.5	
(1 uplink slot)	190	836.6	32.55	38.5	
(1 upinik slot)	251	848.8	32.63	38.5	
GPRS 850	128	824.2	31.56	38.5	
(2 uplink slot)	190	836.6	31.62	38.5	
(2 upinik siot)	251	848.8	31.68	38.5	
GPRS 850	128	824.2	29.60	38.5	
(3 uplink slot)	190	836.6	29.64	38.5	
(5 upinik siot)	251	848.8	29.76	38.5	
GPRS 850	128	824.2	28.20	38.5	
(4 uplink slot)	190	836.6	28.32	38.5	
(4 upinik siot)	251	848.8	28.42	38.5	
Note: N/A					

PCS 1900:

EUT: S4 Handheld M/N:S4H Power: DC 7.4V						
Ambient Temperat	ture:24℃	Relativ	Relative Humidity: 62%			
Test date: 2014-08	3-11	Test sit	e: RF site	Tested by: Simple Guan		
Conclusion: PASS						
Mode	Channel	L	Frequency	Output power	Limit	
			(MHz)	(dBm)	(dBm)	
	512		1850.2	29.74	33	
PCS1900	661		1880.0	29.77	33	
	810		1909.8	29.81	33	
CDDC 1000	512		1850.2	29.73	33	
GPRS 1900	661		1880.0	29.76	33	
(1 uplink slot)	810		1909.8	29.81	33	
CDDC 1000	512		1850.2	28.75	33	
GPRS 1900	661		1880.0	28.77	33	
(2 uplink slot)	810		1909.8	28.81	33	
GPRS 1900	512		1850.2	26.59	33	
(3 uplink slot)	661		1880.0	26.64	33	
(3 upillik slot)	810		1909.8	26.67	33	
CDDC 1000	512		1850.2	26.10	33	
GPRS 1900	661		1880.0	26.08	33	
(4 uplink slot)	810		1909.8	26.19	33	
Note: N/A						

4. Radiated Output power

4.1. Block Diagram of Test Setup

4.2. Limit

Cellular Telephone 850MHz	PCS 1900MHz
38.5dBm(ERP)	33dBm(EIRP)

4.3. Test Procedure

- The EUT was placed on a non-conductive rotating platform with 0.8 meter height in an anechoic chamber. The radiated emission at the fundamental frequency was measured at 3 m with a test antenna and a spectrum analyzer with RBW= 3MHz, VBW= 3MHz and peak detector settings.
- 2. During the measurement, the EUT was enforced in maximum power and linked with a base station. The highest emission was recorded from analyzer power level (LVL) from the 360 degrees rotation of the turntable and the test antenna raised and lowered over a range from 1 to 4 meters in both horizontally and vertically polarized orientations
- 3. Effective Isotropic Radiated Power (EIRP) was measured by substitution method according to TIA/EIA-603-C. The EUT was replaced by dipole antenna (for frequency below 1GHz) or Horn antenna (for frequency above 1GHz) at same location with same polarize of receiving antenna and then a known power of each measure frequency from

S.G. was applied into the dipole antenna or Horn antenna through a Tx cable, and then recorded the maximum Analyzer reading through raised and lowered the test antenna. The correction factor (in dB) = S.G. - Tx Cable loss + Substitution antenna gain –Substitution antenna Loss (only for Dipole antenna) - Analyzer reading. Then the EUT's EIRP was calculated with the correction factor, EIRP= LVL + Correction factor and ERP = EIRP - 2.15

4.4. Test Result

EUT: S4 Handheld	M/N:S4H							
Power: DC 7.4V								
Ambient Temperatu	re:23°C		Relative Humidity: 60%					
Test date: 2014-08-1	11		Test site: RF site	Tested by: Sin	mple Guan			
Conclusion: PASS			•					
Mode	Channel	LVL	Correction	ERP	EIRP			
		(dBm)	factor(dB)	(dBm)	(dBm)			
	128	4.5	26.61	28.96	/			
GSM 850	190	4.5	26.86	29.21	/			
	251	4.8	26.49	29.14	/			
	512	4.5	22.27	/	26.77			
PCS 1900	661	4.5	22.66	/	27.16			
	810	4.6	22.37	/	26.97			
810 4.6 22.37 / 26.97 ERP=LVL + Correction factor -2.15								

5. Occupied Bandwidth

5.1. B lock Diagram of Test Setup

5.2. Limit

N/A

5.3. Test Procedure

- 1. The EUT' RF output port was connected to Spectrum Analyzer and Base Station via power divider.
- 2. Spectrum analyzer's occupied bandwidth measure function was used to measure 99% bandwidth and -26dBc bandwidth

.

5.4. Test Result

EUT: S4 Handheld M/N:S4H							
Power: DC 7.4V							
Ambient Temperature:23°C Relative Humidity: 60%							
Test date: 2014-08-11		Test site: RF site	Tested by: Simple Guan				
Mode	Channel	99% bandwidth	-26dBc bandwidth				
		(KHz)	(KHz)				
	128	244.35	309.7				
GSM 850	190	247.81	316.6				
	251	245.13	318.5				
	512	247.31	316.2				
PCS 1900	661	251.75	316.3				
	810	248.21	321.8				

5.5. Orginal test data

GSM 850 CH128

CH190

CH251

PCS 1900 CH512

CH661

CH810

6. Frequency stability

6.1. Block Diagram of Test Setup

6.2. Limit

Cellular Telephone 850MHz	PCS 1900MHz	
+ 2.5 ppm	Must stay within the authorized	
± 2.5 ppm	frequency block	

6.3. Test Procedure

Test Procedures for Temperature Variation:

- 1. The EUT was set up in the thermal chamber and connected with the base station.
- 2. With power OFF, the temperature was decreased to -30°C and the EUT was stabilized for three hours. Power was applied and the maximum change in frequency was recorded within one minute.
- 3. With power ON, the temperature was raised in 10°C step up to 50°C. The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute.

Test Procedures for Voltage Variation

- 1. The EUT was placed in a temperature chamber at $25\pm5^{\circ}$ C and connected with the base station.
- 2. The power supply voltage to the EUT was varied from DC 5V to 3.5V
- 3. The variation in frequency was measured for the worst case.

6.4. Test Result

EUT: S4 Handheld M	I/N:S4H		
Power: DC 7.4V			
Ambient Temperature:2	23°C	Relative Humidity: 60%)
Test date: 2014-08-11		Test site: RF site	Tested by: Simple Guan
Conclusion: PASS			
Mode	Voltage	Frequency error	frequency error
	(V)	(Hz)	(ppm)
	8.5V	17.78	0.02
CCM 050	7.5V	-18.42	-0.02
GSM 850	6.5V	15.24	0.02
CH 190	6.4V	-16.35	-0.02
	6.3V	-16.32	-0.02
	8.5V	-26.35	-0.01
DCG 1000	7.5V	36.32	0.02
PCS 1900 CH661	6.5V	-29.18	-0.02
	6.4V	30.35	0.02
	6.3V	-28.36	-0.02

Mode	Temperature	Frequency error	frequency error
	(℃)	(Hz)	(ppm)
	-30	28.68	0.03
	-20	25.32	0.03
	-10	23.22	0.03
CCM 050	0	20.86	0.02
GSM 850 CH190	10	-15.22	-0.02
Cn190	20	18.44	0.02
	30	-12.85	-0.02
	40	-13.12	-0.02
	50	-23.05	-0.01
	-30	42.56	0.02
	-20	41.08	0.02
	-10	39.26	0.02
PCS 1900	0	39.52	0.02
CH661	10	-25.98	-0.01
	20	33.95	0.02
	30	-25.16	-0.01
	40	20.88	0.02
	50	-15.22	-0.02

7. Conducted spurious emissions

7.1. Block Diagram of Test Setup

7.2. Limit

The mean power of emissions must be attenuated below the mean power of the unmodulated carrier (P) on any frequency outside the frequency band by at least $(43 + 10 \log P) dB$, in this case, -13dBm.

7.3. Test Procedure

- 1. The EUT was connected to spectrum analyzer and base station via power divider.
- 2. The low, middle and high channels of each band and mode's spurious emissions for 30MHz to 10th Harmonic were measured by Spectrum analyzer.

7.4. Test Result

PASS

Test Mode: GSM 850 CH 128

Test Mode: GSM 850 CH 190

Test Mode: GSM 850 CH 251

Test Mode: GSM 1900 CH 512

Test Mode: GSM 1900 CH 661

Test Mode: GSM 1900 CH 810

8. Radiated Spurious emissions

8.1. Block Diagram of Test Setup

8.2. Limit

The mean power of emissions must be attenuated below the mean power of the unmodulated carrier (P) on any frequency outside the frequency band by at least $(43 + 10 \log P) dB$, in this case, -13dBm.

8.3. Test Procedure

- 1. The EUT was placed on an non-conductive rotating platform with 0.8 meter height in an anechoic chamber. The radiated spurious emissions from 30MHz to 10th harmonious of fundamental frequency were measured at 3m with a test antenna and a spectrum analyzer with RBW= 1MHz, VBW= 1MHz ,peak detector settings.
- 2. During the measurement, the EUT was enforced in maximum power and linked with a base station. All the spurious emissions (record as LVL) at 3m were measured by rotation of the turntable and the test antenna raised and lowered over a range from 1 to 4 meters in both horizontally and vertically polarized orientations.
- 3. Final spurious emissions levels were measured by substitution method according to TIA/EIA-603-C. The EUT was replaced by dipole antenna (for frequency below 1GHz) or Horn antenna (for frequency above 1GHz) at same location with same polarize of receiver antenna and then a known power of each measure frequency from S.G. was

applied into the dipole antenna or Horn antenna through a Tx cable, and then recorded the maximum Analyzer reading through raised and lowered the test antenna. The correction factor (in dB) = S.G. - Tx Cable loss + Substitution antenna gain –Substitution antenna loss (only for Dipole antenna) - Analyzer reading. Then final spurious emissions were calculated with the correction factor, EIRP= LVL + Correction factor and ERP = EIRP – $2.15\,$

8.4. Test Result

EUT:S4 Handl	neld M/N:S4H						
Power: DC 7.4	V						
Test Date: 201	4-08-11	Test site: RF	Chamber	Tested by: Sin	Tested by: Simple Guan		
Ambient Temp	perature: 24°C	Relative Hur	Relative Humidity: 60%				
Conclusion: PA	ASS						
			Test result				
Test Mode: G	SM 850 CH	128					
Frequency	Antenna	LVL	Correction	Result	Limit	Margin	
(MHz)	polarization	(dBm)	factor(dB)	(ERP)(dBm)	(dBm)	(dB)	
537.31	Н	-58.01	-58.01 -6.53		-13.00	51.54	
537.31	V	-61.27	-61.27 -6.53		-13.00	54.80	
1648.4	Н	-56.32	-56.32 11.50		-13.00	31.82	
1648.4	V	-46.48	10.56	-35.92	-13.00	22.92	
Test Mode:	GSM 850 CH	I190					
1673.2	Н	-55.76	10.94	-44.82	-13.00	31.82	
1673.2	V	-52.18	10.90	-41.28	-13.00	28.28	
Test mode: GSM 850 CH251							
1697.6	Н	-48.94 11.67 -37.27 -13.00 24					
1697.6	V	-44.63	11.13	-33.5	-13.00	20.5	

Test Mode: GSM 1900 CH512							
Frequency	Antenna	ntenna LVL Correction		Result	Limit	Margin	
(MHz)	polarization	(dBm)	factor(dB)	(EIRP)(dBm)	(dBm)	(dB)	
537.31	Н	-58.36	-6.53	-64.89	-13.00	51.89	
537.31	V	-57.36	-6.53	-63.89	-13.00	50.89	
3700.4	Н	-54.37	8.57	-45.8	-13.00	32.8	
3700.4	V	-53.69	8.37	-45.32	-13.00	32.32	
Test Mode:	GSM 1900 C	H661					
3760	Н	-55.87	8.75	-47.12	-13.00	34.12	
3760	V	-53.46	8.55	-44.91	-13.00	31.91	
Test mode: GS	M 1900 CH8	10					
3819.6	Н	-58.63	8.94	-49.69	-13.00	36.69	
3819.6	V	-55.32	8.72	-46.6	-13.00	33.6	
Note: All the other emissions not recorded were too low to read, and deemed to comply with limit.							

9. Band Edge Compliance

9.1. Block Diagram of Test Setup

9.2. Limit

The mean power of emissions must be attenuated below the mean power of the unmodulated carrier (P) on any frequency outside the frequency band by at least $(43 + 10 \log P) dB$, in this case, -13dBm.

9.3. Test Procedure

- 1. The EUT was connected to Spectrum Analyzer and Base Station via power divider.
- 2. The band edges of low and high channels for the highest RF powers were measured.

9.4. Test Result

PASS

Test Mode: GSM 850

Test Mode: GSM 1900

10. Power line conducted emission

10.1.Block Diagram of Test Setup

10.2.Limit

	Maximum RF Line Voltage				
Frequency	Quasi-Peak Level	Average Level			
	$dB(\mu V)$	$dB(\mu V)$			
150kHz ~ 500kHz	66 ~ 56*	56 ~ 46*			
500kHz ~ 5MHz	56	46			
5MHz ~ 30MHz	60	50			

Notes: 1. * Decreasing linearly with logarithm of frequency.

10.3.Test Procedure

- (1) The EUT was placed on a non-metallic table, 80cm above the ground plane.
- (2) Setup the EUT and simulator as shown in 10.1
- (3) The EUT Power connected to the power mains through a power adapter and a line impedance stabilization network (L.I.S.N1). The other peripheral devices power cord connected to the power mains through a line impedance stabilization network (L.I.S.N1), this provided a 50-ohm coupling impedance for the EUT (Please refer to the block diagram of the test setup and photographs). Both sides of power line were checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.4 2009 and ANSI C64.10:2009 on conducted Emission test.
- (4) The bandwidth of test receiver is set at 10 kHz.
- (5) The frequency range from 150 KHz to 30MHz is checked.

^{2.} The lower limit shall apply at the transition frequencies.

10.4. Test Result

PASS. (See below detailed test data)

Iten	a Freq	Read		Preamp Factor		Level	Limit	Margin	Remark
	MHz	dBuV	dB	dB	dB	dBuV	dBuV	dBuV	
5110011111111					GUG DETE				2000000
1	0.166	41.67	0.03	-9.72	0.10	51.52	65.16	-13.64	Peak
2	0.262	28.95	0.03	-9.72	0.10	38.80	61.38	-22.58	Peak
3	0.779	24.63	0.00	-9.71	0.10	34.44	56.00	-21.56	Peak
4	3.472	22.89	0.08	-9.69	0.12	32.78	56.00	-23.22	Peak
5	9.302	28.08	0.17	-9.39	0.19	37.83	60.00	-22.17	Peak
6	16.055	23.70	0.25	-9.40	0.27	33.62	60.00	-26.38	Peak

Remarks: Level = Read + LISN Factor - Preamp Factor + Cable loss

-----END OF THE REPORT-----

Remark