Aux-AIRL: End-to-End Self-Supervised Reward Learning for Extrapolating beyond Suboptimal Demonstrations

Yuchen Cui*, Bo Liu*, Akanksha Saran, Stephen Giguere, Peter Stone, Scott Niekum

Abstract

Real-world human demonstrations are often suboptimal. How to extrapolate beyond suboptimal demonstration is an important open research question.

In this ongoing work, we analyze the success of a previous state-of-the-art self-supervised reward learning method that requires four sequential optimization steps, and propose a simple end-to-end imitation learning method Aux-ARIL that extrapolates from suboptimal demonstrations without requiring multiple optimization steps.

Aux-AIRL

$$L_{\text{aux}}(\theta) = \mathbb{E}_{\eta \ge \eta_0} \left[V_{\theta}^{\pi^{\eta}} - V_{\theta}^{\pi} \right] - \mathbb{E}_{\eta < \eta_0} \left[V_{\theta}^{\pi^{\eta}} - V_{\theta}^{\pi} \right]$$
$$= \mathbb{E}_{\eta \ge \eta_0, \tau \sim \pi^{\eta}} \left[\sum_{t=0}^{\infty} \gamma^t A_{\theta}^{\pi}(s, a) \right]$$
$$- \mathbb{E}_{\eta < \eta_0, \tau \sim \pi^{\eta}} \left[\sum_{t=0}^{\infty} \gamma^t A_{\theta}^{\pi}(s, a) \right].$$

$$A_{\theta}^{\pi}(s, a) = \mathbb{E}_{s' \sim T(\cdot \mid s, a)}[f_{\xi, \phi}(s, a, s')]$$

= $\mathbb{E}_{s' \sim T(\cdot \mid s, a)}[g_{\xi}(s, a) + \gamma h_{\phi}(s') - h_{\phi}(s)].$

Method	HalfCheetah-v3	Hopper-v3
Demonstration	1085	1130
AIRL (Fu et al., 2017)	1872.81 ± 87.13	1188.93±31.00
Aux-AIRL	2191.64±103.34	1453.61±15.09

Table 3. Imitation learning performance of Aux-AIRL and AIRL evaluated on the ground-truth reward throughout the training.

Aux-AIRL vs SSRR

Analysis on SSRR

Domain	Metric	Target Regression Function Form (fitted)			
	Metric	Sigmoid (SSRR)	Linear	Quadratic	Exponential
HalfCheetah-V3	Avg. Return GT Corr.	1148.98 ±945.36 0.965	821.34 ±208.60 0.934	774.66 ±418.97 0.956	476.42 ±881.49 0.952
Hopper-V3	Avg. Ret. GT Corr.	$1916.72 \pm 102.36 \\ 0.948$	2447.04 ±199.35 0.966	1630.26 ±339.61 0.949	2529.09 ±315.39 0.966

Table 1. Ground truth reward (with standard error) and correlation coefficients of different target regression functions.

Target Regression Function Form (hand-picked)					
Sigmoid	Linear	Quadratic	Exponential		
3375.67	4946.85	2520.87	2045.53		
± 638.00	± 514.95	± 798.11	± 1228.59		
0.977	0.978	0.958	0.983		

Table 2. Ground truth reward (with standard error) and correlation coefficients of different hand-picked regression functions (no fitting) in HalfCheetah-V3.

