1 1 D Nº2 Exi Decharge d'un condensateur un condensateur de capacite C=40 por a une charge G= Eiple On large le condensateur se decharge p trovois un conduc-Teur Amique de resistance R=E, ohm 1) Blakkr l'égt donnant la hoi de la variation en 2) Deberminer l'intensité du Convant et la charge du conden-3) Delerminer la sursiance électriq dissipé dans le conducteur d'instant t-roms 4) Calculor la durée ne cesseure pour que l'energie slocker des le constinateur attemaçõe sób de sa valeur initial. 1) Calculer le champ magnetig bier par un segment jourcours par un courant d'intensité I en un point 11 situe à la disen a du segment on appellera Es et & les angles entre la perpendiculaire au fil issu de M et les droites joingnant m en extremité du segment a Examiner le cas du fil viectidropre infini. hebrouver la guestion puccedent Cehang our par un fil infini) en appliquant de theoreme d'ampère East une source pholosorme de rayon B parcouru par un Cavant d'intensité I

1) Determiner de chomp mongrétique orée en un point de 15 de la spire en situé à une distance 2 du centre de celle 2) Tracer la courbe Bz D'après la loi de brot et savoit dB = MoI (dl N. PM3) = MOT (de n ii) con PHO = 1 A PHO PHO = MoI al sm (# - 8) OB = MOI dlesso = Mo I xlorex ado or tano = l = atomo = del = ado costo (000 = 0 PM = 0000 dB = Mo I a do x Coso ar ob = MoI cosodo $B = \frac{16I}{4\pi\alpha} \int_{0.000}^{0.2} \cos d\theta$ B= MoI [sumo] B2 B = Mo I (sunda - sun da) - /zowi un Fil rectiligne infini 82= = 1 1 01=- N B= Mo I (2m) - 2m (-1) =) / B= Mo I 2 TO

Etu appliquant le théorème d'ampère on on s $\delta \vec{B} \cdot d\vec{l} = \mu_0 \vec{I}$

Exercise 3

$$dB = \frac{1001}{4\pi} \left[dln \frac{11}{PH^2} \right]$$

$$= \frac{M_0 I}{4\pi PH^2} \left[dl^2 \wedge \overline{i} \right]$$

ndB=dBzlos(\$-0)=dBzemoez

on l= OR = dl= Rdo et PM= Z2+ R2

$$dB_{Z} = \frac{M_{0} I R sind d\theta}{4 \overline{m} (Z^{2} + R^{2})} \Rightarrow B_{Z} = \int_{0}^{2 \overline{m}} \frac{M_{0} I R}{4 \overline{m} (Z^{2} + R^{2})} and d\theta$$
on sind = $\frac{R}{PM} \Rightarrow sin \theta = \frac{R}{(R^{2} + Z^{2})^{1/2}}$

$$B_{Z} = \frac{M_{0} I R}{4 \overline{m} (Z^{2} + R^{2})} \times \frac{R}{(R^{2} + Z^{2})^{1/2}} \int_{0}^{2 \overline{m}} d\theta$$

$$B_{2} = \frac{M_{0} \Gamma R^{2}}{4 \pi^{2} (R^{2} + Z^{2})^{3/2}} \left[\frac{2 \pi - 0}{4 \pi^{2} (R^{2} + Z^{2})^{3/2}} \right]$$

$$B_{2} = \frac{M_{0} \Gamma R^{2}}{2 (R^{2} + Z^{2})^{3/2}} e_{2}^{2}$$

$$B_{2} = \frac{M_{0} \Gamma R^{2}}{2 (R^{2} + Z^{2})^{3/2}} e_{2}^{2}$$

8 | Trace de Bz

$$\frac{dBz}{dz} = \frac{d}{dz} \left(\frac{M_0 I R^2}{2} (R^2 + Z^2)^{3/2} \right)$$

$$= \frac{M_0 I R^2}{2} x - \frac{3}{2} x 2 Z (R^2 + Z^2)^{-5/2}$$

1 -		
1	0	+20
dB2	A 2 - 193	A Aller
02	Man to	
	A STATE OF THE STA	
R		
12		
	I ICA CLA	

Elablissons l'équation donnant la loi de la variation Mc Mps En appliquant la loi d'additivité des tensions on'a: on Un= Ri= - Rd9 et CUc=9 =1 Uc= 9 - + R dq = 0 R9 + 9 = 0 = 9 + 1 = 9 = 0. @ 0) Delerminons l'intensité du courant et la charge du Condensateur Resolution de l'égt @ 9 = 9 + 1 RC9 = 0 = 1 1 + 1 RC9 = 0 $= \frac{1}{4t} = -\frac{1}{Rc}q$ a) = - 1 dt $\int \frac{d\eta}{q} = -\int \frac{1}{Rc} dt$ In 9 = - fitter) 9(b = encth = 9(b) = enche powr 6=0 = 91t=01=en=Q 1961= Q e- nct/ 9/6=0101) = 50×10× e 8000× 40×10€ ×0101 it = dat = lit = Q enet/ 1 (t=0,01) = 50×106 = 1000×40×106 la puissance electrique dissipé dons un conducteur d'une 3) Determinons Fitt= Unit). id on Unit= Rit P(t) = Rilt1 => P(t) = Bx | Q = Rct) => P(t) = Q = 20 P(t) = Rcz e Rc

P(t=0,01)= 4/ Calculons la durée necessaire pour que l'energie stoker dans le condensateur atterne 10 % de sa valeur initial Eo = Q2 Re $E = \frac{0^{7}}{2c} = E = \frac{0^{2}e^{\frac{2}{Rc}t}}{2c}$ $E = \frac{0^{2}}{2c}e^{\frac{2}{Rc}t}$ B= to ethet 0/1to=to e Fict of 0/1= exet A 5=0/16 ln 101 = -2t t= Rch10 ANIt = 50×10 ×40×10 × ln 10 EXENCICES