

1. Digitalni sustavi i obrada podataka

Sadržaj predavanja

- analogni i digitalni prikaz veličina
- binarno zapisivanje podataka
- predstavljanje binarnih podataka električnim veličinama
- prijenos binarnih podataka
- problemi elektroničke implementacije
- osnovna struktura digitalnog sustava

Podaci i informacija

- opažanje različitih pojava ~ obilježja
- mjerljiva obilježja ~ veličine
 - kontinuirane
 - diskretne (vremenski/prostorno)
- prikaz veličina:
 - analogni oblik
 - *digitalni* oblik
- izmjerena vrijednost neke veličine ~ podatak
- proces pretvorbe skupa podataka u informaciju
 ~ obrada podataka

Analogni prikaz veličina

- mjerena (fizikalna) veličina:
 izražavanje (drugom) odgovarajućom veličinom
 - razmak između dva zareza na štapu
 - električka veličina analogna fizikalnoj veličini
 ~ "analogna" veličina

izražavanje veličine ~ "mjerenje":
 broj + oznaka standardne jedinice

analogno-diskretni prikaz

- digitalni sustav u stvarnom svijetu: unos i obrada podataka, vraćanje rezultata
- fizikalne veličine:
 - kontinuirane u prostoru (po amplitudi)
 - kontinuirane u vremenu
- analogne veličine
 - → digitalne veličine (brojevi)

- mjerni pretvornik:
 pretvorba mjerene (fizikalne) veličine u
 analognu kontinuiranu električku veličinu
 ~ napon!
- informacija o ponašanju kontinuirane veličine:
 - uzimanje uzoraka amplitude analognog napona (uzorkovanje, engl. sampling)
 - uzorkovanje *u jednakim vremenskim razmacima* diskretizacija po vremenu
- obrada (brojeva!) u digitalnom sustavu:
 u diskretnim koracima, u skladu s nekim algoritmom

- Shannonov teorem uzorkovanja (1949.): informacija će biti očuvana ako se uzorci uzimaju u diskretnim intervalima ∆t, tako da je ∆t ≤ 1/(2 f_g)
- f_g: gornja granična frekvencija spektra valnog oblika ("signala") iz kojeg se uzimaju uzorci
- vremenski diskretan analogni prikaz

- analogni oblik → digitalni oblik: analogno-digitalna pretvorba (engl. analog-to-digital conversion, ADC) napona
- diskretizacija po amplitudi
 proces kvantizacije (dobivanje brojeva)
- kvant ~ jedinica mjere
- pogreška kvantizacije:
 - najbliži cjelobrojni višekratnik kvanta
 - manji kvanti?

prikaz broja kvanata

Prednosti digitalnog prikaza i obrade

- prikazivanje podataka diskretnim električkim signalima (impulsima), mahom naponskima
- informacija nije sadržana u amplitudi nego u prisutnosti/neprisutnosti impulsa
- manja podložnost smetnjama, veća pouzdanost
- objedinjeni prikaz i obrada numeričkih i nenumeričkih (simboličkih) veličina
- točnost ovisi o broju bitova (brojnih mjesta kojim prikazujemo podatke)

Sadržaj predavanja

- analogni i digitalni prikaz veličina
- binarno zapisivanje podataka
- predstavljanje binarnih podataka električnim veličinama
- prijenos binarnih podataka
- problemi elektroničke implementacije
- osnovna struktura digitalnog sustava

Binarno zapisivanje podataka

- prikaz podataka *brojevima* proizvoljni *brojevni sustav*
- ostvarivanje u tehničkom sustavu
 - predočavanje znamenki posebnim fizičkim stanjem,
 "na prikladan način"
- različita stanja:
 - jasno prepoznavanje
 - jasno međusobno razlikovanje
- najjednostavnije i najefikasnije ~ ostvarenje 2 stanja
 - ⇒ binarni sustav je osnova svih digitalnih elektroničkih sustava

Binarno zapisivanje podataka

- binarna znamenka (0 ili 1) naziva se bit (engl. binary digit)
- grupiranje bitova u digitalnim sustavima radi prikaza podataka:
 - grupa od 8 bitova: oktet (engl. byte)
 - grupa od 4 bita: *kvartet* (engl. nibble)
 - osnovna grupa bitova: riječ (engl. word);
 tipično 8, 16, 32, 64, ... bita

Binarno zapisivanje podataka

- veće grupiranje riječi ~ blokovi:
 - pohrana na magnetskim medijima (diskovi, trake)
 koriste se elektromagnetski uređaji (spori!)
 - vrijeme pristupa usporedivo s vremenom čitanja podataka
- efikasnost pristupa (čitanja/pisanja)

Ostvarenje binarnog zapisa

- binarne znamenke: 0 i 1
- fizičko predočavanje:
 - mehanička sklopka
 - papirna traka
 - magnetski medij
 - tranzistorska sklopka (elektronički sklop!)
- nositelj informacije:
 - pozitivni i negativni impulsi (struja ili napon) ~ 0, 1
 - nizovi impulsa ~ grupe 0, 1

Sadržaj predavanja

- analogni i digitalni prikaz veličina
- binarno zapisivanje podataka
- predstavljanje binarnih podataka električnim veličinama
- prijenos binarnih podataka
- problemi elektroničke implementacije
- osnovna struktura digitalnog sustava

Predočavanje binarnih veličina

mehanička sklopka ("kontakt")

bušena papirna traka/bušene papirne kartice

Predočavanje binarnih veličina

primjer tranzistorske sklopke

Predstavljanje naponskim razinama

ostvarenje elektroničkim sklopovima:
 0 i 1 → naponske razine (N, V)

npr. 0 V (N)
$$\rightarrow$$
 "0", +5 V (V) \rightarrow "1"

problemi tehničke izvedbe
 (tolerancije, opterećenja, otpornost na smetnje)
 ⇒ naponska područja umjesto razina

Predstavljanje naponskim razinama

- unipolarni signali: unutar digitalnog sustava
- bipolarni signali: između digitalnih sustava
 mogućnost otkrivanja prekida linije

Sadržaj predavanja

- analogni i digitalni prikaz veličina
- binarno zapisivanje podataka
- predstavljanje binarnih podataka električnim veličinama
- prijenos binarnih podataka
- problemi elektroničke implementacije
- osnovna struktura digitalnog sustava

Prijenos binarnih podataka

- prijenos podataka (informacija)
 ~ primanje i slanje:
 - unutar digitalnog sustava, između njegovih dijelova
 - *između* izdvojenih digitalnih sustava
- prijenos binarnih podataka (riječ, blok podataka):
 - serijski (po bitu), između digitalnih sustava, radi štednje
 - paralelno (po bitu), unutar digitalnog sustava, radi brzine

Serijski prijenos

- po jednom vodu:
 - vremenski niz bitova

- bitovi slijede u jednakim razmacima
- razlučiti trenutke očitanja vrijednosti pojedinog bita
 ⇒ sinkronizacijski (taktni) impulsi, CP (Clock Pulse)

Paralelni prijenos

- prijenos bitova jedne riječi po više vodova
 - paralelni (istovremeni) prijenos bitova pojedine grupe (riječi)
 - slijedni (serijski) prijenos pojedine grupe (riječi)
- tipično ostvarenje: prijenos podataka po sabirnicama digitalnog sustava
 - više paralelnih vodova (izjetkano na pločici, kabeli)

Sadržaj predavanja

- analogni i digitalni prikaz veličina
- binarno zapisivanje podataka
- predstavljanje binarnih podataka električnim veličinama
- prijenos binarnih podataka
- problemi elektroničke implementacije
- osnovna struktura digitalnog sustava

Problemi elektroničke implementacije

- tok podataka u digitalnom sustavu
 ~ niz pravokutnih naponskih impulsa
- u realnim uvjetima električki impulsi nisu idealno pravokutni
 - ⇒ impulsna elektronika

Parazitne kapacitivnosti

tipični uzrok izobličenja impulsa
 djelovanje parazitnih kapacitivnosti između voda signala i mase

Parazitne kapacitivnosti

Parametri impulsa

- vrijeme porasta t_r
- vrijeme pada t_f
- vrijeme trajanja T

- povećanje frekvencije impulsa:
 - skraćenje vremena t_r, t_f i T
 - "spori" i "brzi" impulsi

Vrijeme kašnjenja

- na ulaz digitalnog sklopa dovode se električki impulsi (signali) koji uzrokuju električnu promjenu na izlazu
- pri prolazu kroz sklopovlje impulsima je potrebno neko vrijeme

Vrijeme kašnjenja

- vrijeme kašnjenja sklopa t_d
 - vrijeme od polovice promjene ulaznog napona do polovice promjene izlaznog napona
- važan parametar: pri prolazu kroz više sklopova vrijeme kašnjenja se akumulira, što može dovesti do pogrešaka u radu sustava
- uz statičku potrebna i dinamička analiza rada sklopovlja

Sadržaj predavanja

- analogni i digitalni prikaz veličina
- binarno zapisivanje podataka
- predstavljanje binarnih podataka električnim veličinama
- prijenos binarnih podataka
- problemi elektroničke implementacije
- osnovna struktura digitalnog sustava

Osnovna struktura digitalnog sustava

- funkcije digitalnog sustava:
 - obrada podataka
 - obavljanje aritmetičkih i logičkih operacija
 - donošenje odluka
- u općem slučaju 5 podsustava:
 - ulazna jedinica
 - izlazna jedinica
 - memorija
 - aritmetičko-logička jedinica
 - upravljačka jedinica

Osnovna struktura digitalnog sustava

Osnovna struktura digitalnog sustava

- univerzalni digitalni sustav: promjena funkcije *programiranjem* ⇒ računalo (engl. computer)
- računalo ~ univerzalni stroj za:
 - obradu podataka
 - upravljanje sustavima
 - distribuciju informacija
- raširenost i prožimanje digitalnih sustava i računala u svakodnevni život

Literatura

U. Peruško, V. Glavinić: *Digitalni sustavi*, Poglavlje 1: Digitalni sustavi i obrada podataka; str. 13-29