My advanced calculus exercises

Evgeny Markin

2023

Contents

1	Starting points																2												
	1.1																						 						2
	1.2																						 						2
	1.3																			 			 						:

Chapter 1

Starting points

1.1

Evaluate

$$\int_0^\infty \frac{dx}{1+x^2}$$

and

$$\int_{-\infty}^{1} \frac{dx}{1+x^2}$$

$$\int_0^\infty \frac{dx}{1+x^2} = [\tan^{-1}]_0^\infty = \pi/2 - 0 = \pi/2$$

$$\int_{-\infty}^{1} \frac{dx}{1+x^2} = [\tan^{-1}]_{-\infty}^{1} = [\pi/4 + \pi/2] = \frac{3}{4}\pi$$

1.2

Determine

$$\int \frac{xdx}{1+x^2}$$

Which type of substitution did you use?

$$\int \frac{xdx}{1+x^2} = \frac{1}{2} \int \frac{2xdx}{1+x^2}$$

let $u(x) = 1 + x^2$. Then u'(x) = 2x and therefore

$$\frac{1}{2} \int \frac{2xdx}{1+x^2} = \frac{1}{2} \int \frac{du}{u} = \frac{1}{2} \ln(u) = \frac{1}{2} \ln(1+x^2)$$

I've used push-forward substitution here.

1.3

Carry out a change of variables to evaluate the integral and determite the type of substitution used.

$$\int_{-R}^{R} \sqrt{R^2 - x^2} dx$$

Let's try $x = R\sin(s)$ (the idea is to use the identity $\sin^2(x) + \cos^2(x) = 1$ here somewhere)

$$\int_{-R}^{R} \sqrt{R^2 - x^2} dx = \int_{-R}^{R} \sqrt{R^2 - R^2 \sin^2(s)} R \cos(x) ds = \int_{-R}^{R} |R| R \sqrt{1 - \sin^2(s)} \cos(s) ds =$$

$$= |R| R \int_{-R}^{R} |\cos(s)| \cos(s) ds$$

Although this one didn't give us the desired result, given that expression under the intergral is pretty awful, this gave us a pretty interesting idea. $\cos(x) = |\cos(x)|$ for $-\pi/2 < x < \pi/2$. Thus

$$-\frac{\pi}{2} < x < \frac{\pi}{2}$$

$$-1 < \frac{2x}{\pi} < 1$$

$$-R < \frac{2Rx}{\pi} < R$$

therefore for

$$-R < \frac{2R}{\pi}x < R$$

, we've got that $\cos(\frac{2R}{\pi}x) = \left|\cos(\frac{2R}{\pi}x)\right|$. Therefore let's try to plug in this god-awful thing into our integral

Let $x = R \sin(\frac{2Rs}{\pi})$. Then we get that $dx = \frac{2R^2}{\pi} \cos(\frac{2Rs}{\pi}) ds$. Thus

$$\int_{-R}^{R} \sqrt{R^2 - x^2} dx = \int_{-R}^{R} \sqrt{R^2 - R^2 \sin^2(\frac{2Rs}{\pi})} \frac{2R^2}{\pi} \cos(\frac{2Rs}{\pi}) ds =$$

$$= \int_{-R}^{R} |R| |\cos(\frac{2Rs}{\pi})| \frac{2R^2}{\pi} \cos(\frac{2Rs}{\pi}) ds = \frac{2R^2|R|}{\pi} \int_{-R}^{R} |\cos(\frac{2Rs}{\pi})| \cos(\frac{2Rs}{\pi}) ds =$$

$$= \frac{2R^2|R|}{\pi} \int_{-R}^{R} \cos^2(\frac{2Rs}{\pi}) ds = R|R| \frac{1}{2} [\sin(2\pi x)] \cos(\frac{2Rs}{\pi}) ds =$$