Conjuntos e Funções

O texto apresentado neste documento é uma adaptação de:

https://pt.wikipedia.org/wiki/Conjunto

https://pt.wikipedia.org/wiki/Teoria dos conjuntos

https://pt.wikipedia.org/wiki/Fun%C3%A7%C3%A3o (matem%C3%A1tica)

Alguns conceitos matemáticos que serão úteis no curso são abordados, como conjuntos e funções.

Conjuntos

Um *conjunto* é uma coleção de objetos. A relação básica entre um objeto e o conjunto é a relação de pertinência: quando um objeto *x* é um dos elementos que compõem o conjunto *A*, dizemos que *x* pertence a *A*. Nos conjuntos, a ordem e a quantidade de vezes que os elementos estão listados na coleção não é relevante.

A notação padrão em Matemática lista os elementos separados por vírgulas e delimitados por chaves. Um certo conjunto A, por exemplo, poderia ser representado como:

$$A = \{1, 2, 3\}$$

Um certo conjunto A também fica definido (ou determinado, ou caracterizado) quando se dá uma regra que permita decidir se um objeto arbitrário pertence ou não a A. Por exemplo, a frase "B é o conjunto dos triângulos retângulos" define perfeitamente o conjunto B, já que permite decidir se um objeto qualquer é ou não elemento de B. O mesmo conjunto A do parágrafo anterior poderia ser representado por uma regra como:

$$A = \Big\{ x \, | \, x$$
 é um número inteiro tal que $0 < x < 4 \Big\}$

ou ainda:

$$A = \Big\{ x \,:\, x
otin \mathrm{um}\, \mathrm{n\'umero}\, \mathrm{natural}\, \mathrm{tal}\, \mathrm{que}\, 1 \leq x \leq 3 \Big\}$$

Note que as propriedades ou descrições de um conjunto são representadas dentro das {}, após os elementos e separadas destes por : ou por |. Também é possível representar graficamente os conjuntos. O <u>Diagrama de Venn-Euler</u> é a representação gráfica dos conjuntos, através de entidades geométricas.

Conceitos essenciais:

- Conjunto: representa uma coleção de objetos, geralmente representado por letras maiúsculas;
- **Elemento**: qualquer um dos componentes de um conjunto, geralmente representado por letras minúsculas;
- **Pertinência**: é a característica associada a um elemento que faz parte de um conjunto. Se a é um elemento do conjunto A, podemos dizer que o elemento a pertence ao conjunto A e podemos escrever $a \in A$. Se a não é um elemento de A, nós podemos dizer que o elemento a não pertence ao conjunto A e podemos escrever a $\notin A$.

Conjunto vazio

É o conjunto que não possui elemento. Ele é representado pelos símbolos { } ou Ø.

Cardinalidade

Se um conjunto tem n elementos, onde n é um número natural (possivelmente 0), então diz-se que o conjunto é um conjunto finito com uma cardinalidade de n. A cardinalidade de um conjunto A é denotada por |A|.

Conjunto potência ou das partes

O conjunto de todos os subconjuntos de um dado conjunto A é chamado de conjunto potência (ou conjunto das partes) de A, denotado por P(A). Sendo o conjunto A finito, com n elementos, prova-se que o número de subconjuntos ou o número de elementos do conjunto potência ou conjunto das partes de A é 2^n , ou seja, a cardinalidade do conjunto das partes de A é igual a 2^n . É usual representar-se P(A) por 2^A .

Produto cartesiano

O produto cartesiano de dois conjuntos A e B é o conjunto de pares ordenados:

$$A imes B = \{(a,b): a \in A \land b \in B\}$$

Operações com conjuntos

Operação	Operador	Definição
União	U	$A \cup B = \{ \forall x x \in A \lor x \in B \}$
Interseção	\cap	$A\cap B=\{orall x x\in A\wedge x\in B\}$
Complemento	\overline{A} ou A^c	$A^c = \{ orall x x \in U \wedge x otin A \}$
Diferença	\ ou -	$A\setminus B=\{orall x x\in A\wedge x ot\in B\}$

Leis de DeMorgan:

i)
$$\overline{(X \cup Y)} = \overline{X} \cap \overline{Y}$$

ii)
$$\overline{(X \cap Y)} = \overline{X} \cup \overline{Y}$$

Propriedades de operações binárias:

Propriedade	Definição	
Fechamento	Uma operação binária # é	∀ a,b ∈ S, (a # b) ∈ S.
	fechada em um conjunto S se:	ν α,b c ο, (a π b) c ο.
Identidade	Uma identidade para # sobre S	$\forall x,\; (x\;\#\;e) = x \land\; (e\;\#\;x) = x$
	é um elemento e em S para o	
	qual:	
Comutatividade	Uma operação binária # é	$\forall x \forall y, \; (x \;\#\; y) = (y \;\#\; x)$
	comutativa se:	(x, y, (x + y) - (y + x))
Associatividade	Uma operação binária # é	$\forall x, \forall y, \forall z, \; x \;\#\; (y \;\#\; z) = (x \;\#\; y) \;\#\; z$
	associativa se:	$\forall x, \forall y, \forall z, x \# (y \# z) - (x \# y) \# z$
Distributividade	Uma operação binária \$ é dita distributiva sobre # se:	$\forall x \forall y \forall z, \ x \ \$ \ (y \ \# \ z) = (x \ \$ \ y) \ \# \ (x \ \$ \ z)$
		$orall x orall y orall z,\; (x\;\#\;y)\;\$\;z = (x\;\$\;z)\;\#\;(y\;\$\;z)$
Elemento Inverso	Seja e a identidade para #	$\forall x\ (x\ \#\ x^{-1}) = e, (x^{-1}\ \#\ x) = e$
	sobre S. O elemento x-1 é um	
	inverso de x com respeito a #	
	sobre S se:	

Para refletir:

Que propriedades de operações binárias se aplicam a cada operação com conjuntos estudada?

Funções

Uma função é uma relação de um conjunto A com um conjunto B. Usualmente, denotamos uma tal função por

$$f: A \to B, \quad y = f(x)$$

onde f é o nome da função, A é chamado de domínio, B é chamado de contra-domínio e y=f(x) expressa a lei de correspondência (relação) dos elementos $x \in A$ com os elementos $y \in B$.

Seja P o conjunto dos pares ordenados $\{(a,b) \in A \times B; a \text{ se relaciona com } b \text{ por } f\}$. Então f é uma função se, e somente se, $\forall a \in A$ existe no máximo um $b \in B$ tal que a se relaciona com b.

Exemplos:

