Software Information

TESPy Version: 0.4.3 - dev Commit: 0.4.3 - dev

CoolProp version: 6.4.0

Python version: 3.7.6 (default, Jan 8 2020, 20:23:39) [MSC v.1916 64 bit (AMD64)]

Documentation generated: May 14, 2021

1 Connections in design mode

1.1 Specified connection parameters

label	p in bar (1)	T in °C (2)
consumer back flow:out1_district heating pump:in1	10.000	50.000
$condenser:out2_consumer:in1$	-	90.000
ambient air:out1_pump:in1	1.000	8.000
evaporator:out1_sink ambient 1:in1	1.000	4.000
intercooler:out2_sink ambient 2:in1	-	10.000

Table 1: Specified connection parameters

1.2 Equations applied

$$0 = p - p_{\text{spec}} \tag{1}$$

$$0 = T(p,h) - T_{\text{spec}} \tag{2}$$

1.3 Specified fluids

label	NH3 (3)	air (4)	water (5)
coolant cycle closer:out1_condenser:in1	1.000	0.000	0.000
consumer back flow:out1_district heating pump:in1	0.000	0.000	1.000
ambient air:out1_pump:in1	0.000	0.000	1.000

Table 2: Specified fluids

1.4 Equations applied

$$0 = x_{\text{NH3}} - x_{\text{NH3,spec}} \tag{3}$$

$$0 = x_{\text{air}} - x_{\text{air,spec}} \tag{4}$$

$$0 = x_{\text{water}} - x_{\text{water,spec}} \tag{5}$$

1.5 Referenced values for mass flow

label	reference	factor in -	delta in kg/s
evaporator reciculation pump:out1_evaporator:in2	valve:out1_drum:in1	1.250	0

Table 3: Referenced values for mass flow

1.6 Equation applied

$$0 = value - value_{ref} \cdot factor + delta$$
 (6)

1.7 Referenced values for pressure

label	reference	factor in -	delta in bar
consumer:out1_consumer feed flow:in1	consumer back flow:out1_district heating pump:in1	1	0

Table 4: Referenced values for pressure

1.8 Equation applied

$$0 = \text{value} - \text{value}_{\text{ref}} \cdot \text{factor} + \text{delta} \tag{7}$$

1.9 Referenced values for enthalpy

label	reference	factor in -	delta in kJ/kg
consumer:out1_consumer feed flow:in1	consumer back flow:out1_district heating pump:in1	1	0

Table 5: Referenced values for enthalpy

1.10 Equation applied

$$0 = value - value_{ref} \cdot factor + delta$$
 (8)

2 User defined equations in design mode

3 Components in design mode

3.1 Components of type CycleCloser

3.1.1 Mandatory constraints

$$0 = p_{\text{in},i} - p_{\text{out},i} \ \forall i \in [1]$$

$$0 = h_{\text{in},i} - h_{\text{out},i} \ \forall i \in [1]$$

$$\tag{10}$$

3.2 Components of type Condenser

3.2.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \ \forall i \in [1,2]$$

$$\tag{11}$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \,\forall fl \in \text{network fluids}, \,\forall i \in [1,2]$$
(12)

$$0 = \dot{m}_{\text{in},1} \cdot (h_{\text{out},1} - h_{\text{in},1}) + \dot{m}_{\text{in},2} \cdot (h_{\text{out},2} - h_{\text{in},2})$$
(13)

3.2.2 Inputs specified

label	ttd_u (14)	pr1 (15)	pr2 (16)	subcooling (17)
condenser	5.000	0.990	0.990	True

Table 6: Parameters of components of type Condenser

3.2.3 Equations applied

$$0 = ttd_{u} - T_{sat}(p_{in,1}) + T_{out,2}$$
(14)

$$0 = p_{\text{in},1} \cdot pr1 - p_{\text{out},1} \tag{15}$$

$$0 = p_{\text{in},2} \cdot pr2 - p_{\text{out},2} \tag{16}$$

$$0 = h_{\text{out},1} - h\left(p_{\text{out},1}, x = 0\right) \tag{17}$$

3.3 Components of type Pump

3.3.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \ \forall i \in [1] \tag{18}$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \ \forall fl \in \text{network fluids}, \ \forall i \in [1]$$
(19)

3.3.2 Inputs specified

label	eta_s (20)
district heating pump	0.800
evaporator reciculation pump	0.800
pump	0.750

Table 7: Parameters of components of type Pump

3.3.3 Equations applied

$$0 = -(h_{\text{out}} - h_{\text{in}}) \cdot \eta_{\text{s}} + (h_{\text{out,s}} - h_{\text{in}})$$
(20)

3.4 Components of type HeatExchangerSimple

3.4.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \,\forall i \in [1]$$

$$(21)$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \ \forall fl \in \text{network fluids}, \ \forall i \in [1]$$
 (22)

3.4.2 Inputs specified

Table 8: Parameters of components of type HeatExchangerSimple

3.4.3 Equations applied

$$0 = p_{\text{in},1} \cdot pr - p_{\text{out},1} \tag{23}$$

3.5 Components of type Valve

3.5.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \,\forall i \in [1] \tag{24}$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \,\forall fl \in \text{network fluids}, \,\forall i \in [1]$$
(25)

$$0 = h_{\text{in},i} - h_{\text{out},i} \ \forall i \in [1]$$

(28)

3.6 Components of type Drum

3.6.1 Mandatory constraints

$$0 = \sum \dot{m}_{\text{in},i} - \sum \dot{m}_{\text{out},j} \ \forall i \in \text{inlets}, \forall j \in \text{outlets}$$
 (27)

$$0 = x_{fl,\text{in},1} - x_{fl,\text{out},j} \ \forall fl \in \text{network fluids}, \ \forall j \in \text{outlets}$$

$$0 = \sum_{i} (\dot{m}_{\text{in},i} \cdot h_{\text{in},i}) - \sum_{j} (\dot{m}_{\text{out},j} \cdot h_{\text{out},j}) \ \forall i \in \text{inlets } \forall j \in \text{outlets}$$
 (29)

$$0 = p_{\text{in},1} - p_{\text{in},i} \ \forall i \in \text{inlets} \setminus \{1\}$$

$$0 = p_{\text{in},1} - p_{\text{out},j} \ \forall j \in \text{outlets}$$
(30)

$$0 = h_{\text{out},1} - h (p_{\text{out},1}, x = 0)$$

$$0 = h_{\text{out},2} - h (p_{\text{out},2}, x = 1)$$
(31)

3.7 Components of type HeatExchanger

3.7.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \ \forall i \in [1,2]$$

$$\tag{32}$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \ \forall fl \in \text{network fluids}, \ \forall i \in [1,2]$$
(33)

$$0 = \dot{m}_{\text{in},1} \cdot (h_{\text{out},1} - h_{\text{in},1}) + \dot{m}_{\text{in},2} \cdot (h_{\text{out},2} - h_{\text{in},2})$$
(34)

3.7.2 Inputs specified

label	ttd_u (35)	ttd_l (36)	pr1 (37)	pr2 (38)
evaporator	2.000	5.000	0.980	0.990
superheater		-	0.980	0.990
intercooler		-	0.990	0.980

Table 9: Parameters of components of type HeatExchanger

3.7.3 Equations applied

$$0 = ttd_{\rm u} - T_{\rm in,1} + T_{\rm out,2} \tag{35}$$

$$0 = ttd_1 - T_{\text{out},1} + T_{\text{in},2} \tag{36}$$

$$0 = p_{\text{in},1} \cdot pr1 - p_{\text{out},1} \tag{37}$$

$$0 = p_{\text{in},2} \cdot pr2 - p_{\text{out},2} \tag{38}$$

3.8 Components of type Splitter

3.8.1 Mandatory constraints

$$0 = \sum \dot{m}_{\text{in},i} - \sum \dot{m}_{\text{out},j} \ \forall i \in \text{inlets}, \forall j \in \text{outlets}$$
(39)

$$0 = x_{fl,\text{in}} - x_{fl,\text{out},j} \ \forall fl \in \text{network fluids}, \ \forall j \in \text{outlets}$$
 (40)

$$0 = h_{in} - h_{\text{out},j} \ \forall j \in \text{outlets}$$
 (41)

$$0 = p_{\text{in},1} - p_{\text{in},i} \ \forall i \in \text{inlets} \setminus \{1\}$$

$$0 = p_{\text{in},1} - p_{\text{out},j} \ \forall j \in \text{outlets}$$
(42)

3.9 Components of type Compressor

3.9.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \ \forall i \in [1] \tag{43}$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \,\forall fl \in \text{network fluids}, \,\forall i \in [1]$$
(44)

3.9.2 Inputs specified

label	eta_s (45)	pr (46)
compressor 1	0.900	-
compressor 2	0.900	3.000

Table 10: Parameters of components of type Compressor

3.9.3 Equations applied

$$0 = -(h_{\text{out}} - h_{\text{in}}) \cdot \eta_{\text{s}} + (h_{\text{out,s}} - h_{\text{in}})$$
(45)

$$0 = p_{\text{in.1}} \cdot pr - p_{\text{out.1}} \tag{46}$$

4 Busses in design mode

4.1 Bus "total compressor power"

This bus is used for postprocessing only.

label	$\dot{E}_{ m comp}$	$\dot{E}_{ m bus}$	η
compressor 1	$\dot{m}_{ m in} \cdot (h_{ m out} - h_{ m in})$	$\dot{E}_{ m comp} \cdot \eta$	f(X)(1)
compressor 2	$\dot{m}_{ m in} \cdot (h_{ m out} - h_{ m in})$	$\dot{E}_{ m comp} \cdot \eta$	f(X)(2)
pump	$\dot{m}_{ m in} \cdot (h_{ m out} - h_{ m in})$	$\dot{E}_{ m comp} \cdot \eta$	f(X)(3)
district heating pump	$\dot{m}_{\mathrm{in}} \cdot (h_{\mathrm{out}} - h_{\mathrm{in}})$	$\dot{E}_{ m comp} \cdot \eta$	f(X)(4)
evaporator reciculation pump	$\dot{m}_{ m in} \cdot (h_{ m out} - h_{ m in})$	$\dot{E}_{\mathrm{comp}} \cdot \eta$	f(X)(5)

Table 11: total compressor power

Figure 1: Bus efficiency characteristic

Figure 2: Bus efficiency characteristic

Figure 3: Bus efficiency characteristic

Figure 4: Bus efficiency characteristic

Figure 5: Bus efficiency characteristic

4.2 Bus "total delivered heat"

Specified total value of energy flow: $\dot{E}_{\rm bus} = -2240000.000\,{\rm W}$

$$0 = \dot{E}_{\text{bus}} - \sum_{i} \dot{E}_{\text{bus},i} \tag{47}$$

label	$\dot{E}_{ m comp}$	$\dot{E}_{ m bus}$	η
condenser	$\dot{m}_{\mathrm{in},1}\cdot(h_{\mathrm{out},1}-h_{\mathrm{in},1})$	$\dot{E}_{ m comp} \cdot \eta$	1.000

Table 12: total delivered heat