Experimental Physik II Kapitel 15

author email

$\mathrm{May}\ 14,\ 2016$

Contents

15	Stat	ionäre El. Ströme	2
	15.1		2
		Definition: Elektrischer Strom	2
		Definition: El. Stromdichte	2
		Kontinuitätsgleichung	3
	15.2	Das Ohmsche Gesetz	4
	15.3		9
		(i) Leitung in Elektrolyten	9
		(ii) Leitung in Metallen	9
		(iii) Leitung in Halbleitern	10
		(iv) Leitung im Vakuum	11
		(v) Leitung in Gasen	13
	15.4	Leistungsumsetzung beim Ladungstransport	17
	15.5	Widerstandnetzwerke und Kirchhoffsche Regeln	18
		15.5.1 Kirchhoffsche Regeln	19
		15.5.2 Serien-(Reihen)schaltung von Widerständen	20
		15.5.3 Parallelschaltung	21
		15.5.4 Beispiel	21
	15.6	Stromquellen, elektromotorische Kraft, Urspannung, Klemmspar	1-
		nung	23
	15.7	Langsam zeitlich veränderliche Ströme	27

Stationäre El. Ströme 15

15.1

Definition: Elektrischer Strom := Bewegung von el. Ladung

Stromstärke $\mathbf{I} = \frac{dQ}{dt}$ [I] $= [\frac{Ladung}{Zeit}] = \frac{C}{s} = A$ Stationäre Ströme: Keine explizite Zeitabhängigkeit.

 $N = n \cdot \Delta V$ Ladungsträger mit der Ladung q treten im Zeitintervall Δt durch (n ist die Ø-Fläche A. Ladungsträgerdichte)

Annahme: Alle Ladungen haben die gleiche Geschwindigkeit v, dann ist die transportierte Ladung:

$$\Delta Q = N \cdot q = n \cdot \Delta V \cdot q = n \cdot q \cdot A \cdot \Delta l = n \cdot q \cdot A \cdot v \cdot \Delta t$$
$$j = \frac{\Delta Q}{\Delta t \cdot A} = n \cdot q \cdot v = \rho \cdot v$$

 $\rho := \text{Ladungsdichte } [C/m^3]$

Allgemein: $\vec{j} = \rho \cdot \vec{v}$

Stromdichte \longrightarrow Stromstärke: $I = \int\limits_A \vec{J} \cdot \mathrm{d}\vec{A}$

Kontinuitätsgleichung: Geschlossene Fläche A umschließt Volumen V.

$$I = \oint_{A} \vec{j} d\vec{A} = -\frac{dQ}{dt} = -\frac{d}{dt} \int_{V}^{=Q} \rho \, dV$$

Differenz zwischen ein. und ausgeströmter Ladung entspricht der negativen Änder der Gesamtladung im Volumen!

 $(\Rightarrow Ladungserhaltung)$

Das Ohmsche Gesetz 15.2

- ⇒ freie Ladungsträger (Ionen) notwendig, damit Strom fließt.

 \Rightarrow Dissoziation von NaCl in Na^+ und Cl^- Coulombkraft $|\vec{F_c}| = \frac{1}{4\pi\epsilon_0} \cdot \frac{q_1 \cdot q_2}{r^2} \cdot \frac{1}{\epsilon}$ $\epsilon_{H_2O} \approx 80 \Rightarrow$ Reduktion von F_c in H_2o

⇒ Dissoziation möglich!

qualtitaty: $I \sim U$

Ersetze Elektrolyt durch Metallwiederstand!

 $I \propto U$

Ohmsches Gesetz: Wird eine Potenzialdifferenz U and das Ende eines el. Leiters appliziert, so fließt ein el. Strom I, dessen Stromstärke proportional zu U ist.

$$I = \frac{1}{R} \cdot U$$

Empirischer Befund:

$$\begin{split} I &\sim (\phi_2 - \phi_1) \\ I &= \frac{1}{R} (\phi_2 - \phi_1) \\ &= \frac{A}{l} \cdot \frac{1}{\rho} (\phi_2 - \phi_1) \end{split}$$

Definition:

$$\boxed{R := \rho \cdot \frac{l}{A}}$$
el. Widerstand $[R] = \frac{V}{A} = \Omega = 1$ Ohm

 ρ : Materialkonstante: spezifischer el. Widerstand $[\rho]=\Omega m$

 $\frac{I}{A}$: Geometrie parameter Ohmsches Gesetz: $I = \frac{U}{R}$

$$\begin{split} \frac{I}{A} &= \frac{1}{\rho} \cdot \frac{\varphi_2 - \varphi_1}{l} \\ \left| \vec{j} \right| &= \frac{1}{\rho} \cdot \left| \vec{E} \right| \\ \left| \vec{j} \right| &= \sigma \cdot \left| \vec{E} \right| \end{split}$$

$$\frac{1}{\rho} = \sigma :=$$
el. Leitfähigkeit $[\sigma] = \mathit{Ohm}^{-1} m^{-1} = \frac{A}{Vm}$

Empirischer Befund: $\vec{j_m} = \sigma_{mn} \vec{E_n}$ Allegemeines Ohmsches Gesetz

Mikroskopische betrachtung - Drende Modell

Metall: positiv geladene Atomrümpfe; Elektronen dazwischen beweglich.

a.) ohne potenzialdifferenz: thermische ungeorndete bewegung.

 $<\vec{v}>=0\Rightarrow$ Im Mittel kein Transport

obwohl:
$$\sqrt{\langle v^2 \rangle} = \frac{\sqrt{3K_BT}}{m_e} \approx 10^5 \frac{m}{s}$$
 bei $(T=RT)$

b.) $\phi_2-\phi_1\neq 0\Rightarrow$ El. Feld im Leiter Zwischen Stößen Beschleunigt durch el. Feld:

 \Rightarrow "Drift" mit Geschwindigkeit $v_D,$ die der thermischen Bewegung überlagert ist.

Kraft auf Elektron:
$$\vec{F} = q_{el} \cdot \vec{E}$$

$$\Rightarrow \vec{a} = \frac{q_{el}}{m} \cdot \vec{E}$$

$$\Rightarrow \vec{v_D} = \frac{q_{el}}{m} \cdot \vec{E} \cdot \Delta t$$

Betrachte Ohmsches Gesetz.

$$\begin{split} \vec{j} &= \sigma \cdot \vec{E}; \vec{j} = q_{el} \cdot n \cdot v_D^{\dagger} \\ \underline{\text{Beträge:}} \ j &= \frac{q_{el} \cdot n \cdot v_D}{E} \cdot E = \sigma \cdot E \\ \Rightarrow \sigma &= \frac{n \cdot q_{el} \cdot v_D}{E} = const. \\ \Rightarrow \frac{|\vec{v_D}|}{|\vec{E}|} &= const. \end{split}$$

 $|\vec{v_D}| = \mu \cdot |\vec{E}|$ μ : Beweglichkeit (unabh. von \vec{E})!

Damit sich im el. Feld ein Konstates v_D einstellt, muss es etwas geben wie \Rightarrow Exp.Phy.I: geschwindigkeitsabhängige Reibung! Stokes- \Rightarrow Makroskopisch: (1-dim) Reibung

$$m\ddot{x} + \frac{m}{\tau}\dot{x} = q_{el}E$$

$$\dot{x} = \frac{q_{el}}{m} \cdot E \cdot \tau \cdot (1 - exp(-t/t))$$

 τ ; Relaxationszeit: Gibt an, nach welcher Zeit v auf v/e abgenommen hat.

- \Rightarrow Mikroskopisch:
- τ : Zeit zwischen zwei Stößen ("Stößzeit")

$$\Rightarrow m \cdot \vec{v_D} = q_{el} \cdot \vec{E} \cdot \tau$$

$$\Rightarrow \vec{j} = n \cdot q_{el} \cdot \vec{v_D} = \frac{n \cdot q_{el}^2 \cdot \tau}{m} \cdot \vec{E}$$

$$\sigma = \frac{n \cdot q_{el}^2 \cdot \tau}{m}$$
Drude-Leitfähigkeit
$$\Rightarrow \mu = \frac{q_{el} \cdot \tau}{m}$$

$$[\mu] = \frac{m^2}{V_S}$$

- \Rightarrow Voraussetzung für Gültigkeit des Ohmschen Gesetz:
 - 1. Transport durch Stöße dominiert
 - 2. n unabhängig von \vec{E}
 - 3. τ unabhängig von \vec{E}

 τ klein $\Rightarrow v_D$ klein (und beobachtbar!)

15.3

(i) Leitung in Elektrolyten

- Stofftransport (Ionen) und Ablagerung an Kontakten (Elektroden)
- geringe Beweglichkeit
- geringe Ladunsträgerkonzentration

(i) Leitung in Metallen

- Ladungstransport <u>nur</u> durch Elektronen
- Jedes Atom gibt 1 Elektron ab \Rightarrow hohe Ladungsträgerdichte (LT)
- Beispiel:

Cu,
$$n = 8, 4 \cdot 10^{28} Ladungen/m^3$$

= $8, 4 \cdot 10^{22} Ladungen/cm^3$

• Beweglichkeit:

$$\mu = \frac{\sigma}{n \cdot q} = \frac{5 \cdot 10^7 (\Omega m)^{-1}}{8, 4 \cdot 10^{28} m^{-3} \cdot 1, 6 \cdot 10^{-19} C}$$
$$= 4 \cdot 10^{-3} \frac{m^2}{Vs} = 40 \frac{cm^2}{Vs}$$

 $|\vec{E}|$?

$$\begin{split} |\vec{j_{max}}| &\approx \frac{5A}{mm^2} = 5 \cdot 0^6 A/m^2 \\ |\vec{E_{max}}| &= \frac{|\vec{j_{max}}|}{\sigma} = 0, 1V/m \\ &< v_D > = \mu |\vec{E}| = 4 \cdot 10^{-4} m/s \approx 0, 4 \frac{mm}{s} \\ &< v_D > \ll v_{therm} (\ddot{a}hnlich \ wie \ Elektrolyt) \\ &\tau = \mu \cdot \frac{m}{q} = \underline{2, 3 \cdot 10^{-14} s} \end{split}$$

Hauptunterschied Metall/Elektrolyt: μ, n !

Mittlere freie Weglänge:
$$\lambda = v_{therm} \cdot \tau = 10^5 m/s \cdot \tau$$

$$= 20 \cdot 10^{-10} m$$

$$= 20 \text{Å}$$

⇒ca. 20 Atomdistanzen zw. zwei Stößen!

Temperaturabhängigkeit:

In el. Leitern gilt: R = R(T)

Fe-Widerstand:

Abkühlen auf LN_2 -Temp: $I \longrightarrow I \times 2$ Aufheizen mit Brenner : $I \longrightarrow I/2$

Konstantandraht (Legierung): nahezu keine Änderung

n sei temperaturunabhängig! $\Rightarrow T \uparrow \Rightarrow \tau \downarrow, \sigma \downarrow$:

Durch thermische Anregung mehr Gitterschwingungen; mehr Stöße! (⇒Kürzere Stoßzeit)

Konstantan-Legierung: Streuung vornehmlich an Fremdatomen deren Dichte ist T-unabhängig!

(iii) Leitung in Halbleitern

 $T \uparrow$: σ Grund:

Starke Temp.-abhängigkeit von n durch thermische Anregung von Ladunsträgern über eine Energielücke

Erhöhung und Kontrolle von σ durch Einbringen von Fremdatomen in Konzentration von $10^{15}cm^{-3}...10^{20}cm^{-3}$: Dotierung

 $\Rightarrow \tau$ nimmt auch mit zunehmender Tab, aber Zunahme von nüberwiegt!

(iv) Leitung im Vakuum

Leitung im wesentlichen durch freie Elektronen. El- Feld zur Beschleunigung \Rightarrow Ladungstransport

Erzeugung von freien Elektronen:

U[V]	I [mA]
20	0,25
40	0,5
60	0,75
80	1,05
100	1,3
120	1,6
140	1,9
160	2,15
180	2,35
200	2,5
220	2,6
240	2,65
260	2,7
280	2,75
300	2,7

 \Rightarrow Umkehrung der Beschleunigungsspannung: Kein Strom!

Diode:

Triode:

 \Rightarrow Verstärkerschaltung möglich!

(v) Leitung in Gasen

Alle Gase haben sehr kleine Leitfähigkeit
 (→Entladung des Kondesators an Atmosphäre)
 (→Gasentladung)

• Ladungsträger müssen erzeugt werden: Elektronen, Ionen Ionisation ist mäglich druch: Ionisierende Strahlung; Stoßionisation

Ionisation braucht Energie! Stoßionisation:

Source: https://de.wikipedia.org/wiki/Datei:ImpactIonization.PNG

Photoionisation:

Elektron wird Energie hv zugeführt

- Thermische Ionisation ist möglich.
- Glüemission ist auch möglich; Radioaktivität ⇒ ionisierende Strahlung
- Rekombination von Ionen und Elektronen ist möglich

$$\text{Strom: } I = \underbrace{N}_{\text{\#LT (sehr klein)}} \cdot \underbrace{z \cdot e}^{\text{Ladung: } z \in \mathbb{N}} \cdot \underbrace{\mu}_{\mu_{\text{Flüssigkeit}} < \mu < \mu_{\text{Metalle}}} \cdot |\vec{E}|$$

(i) Unselbstständige Gasentladung

Spannung ist sehr groß, Elektronen werden start beschleunigt, hohe Elektronenenergie Stoßionisation: Lawineneffekt

Strom wird unabhängig von Zahl der Ionisation generierten Ladungsträger.

- \Rightarrow 1 Strompuls pro Ionisierungsereignis oder pro asgelöstem e^- !
- \Rightarrow Selbstständige Gasentladung
 - Aufrechterhaltung der Entladung ohne äußeren Einsatz!
 - Voraussetzung: Hohe kinetische Energie (→ hohe Spannung!)
 - Häufig auch Lichtemission (Rekombination von e^- und Ion oder Relaxation angeregter Zustände)
 - UV-Emission in Plasmen und in Leuchtstoffröhren genutzt

15.4 Leistungsumsetzung beim Ladungstransport

- Elektrolyte: Ladungstransport durch Ionen.
- Ladungstransport durch Elektronen: Stöße mit Gitterionen

Elektrische Energie $\longrightarrow E_{kin}$ + Wärmeenergie. Leistung im Ohmschen Widerstand R:

$$U=arphi_2-arphi_1, \quad W=\int ec F\cdot dec r=q\int ec Edec r=\int qdU=U\cdot q$$

Bei N Ladungen: $W=NUq=UQ$

Leistung
$$P = \frac{dW}{dt} = \frac{dQ}{dt}U = I \cdot U$$
 $|(U = R \cdot I)|$
 $\Rightarrow P = I^2R = \frac{1}{R}U^2$ $[P] = W = VA$

Anwendung: - Elektrisch Betriebene Heizung

Exp: \longrightarrow Hitzdrahtmesswerk

15.5 Widerstandnetzwerke und Kirchhoffsche Regeln

- Netzwerk: Leitsystem, in das Bauelemente eingefügt sind
- Hier nur Verbindungen von Widerständen und Stromquellen
- Alle Elemente: 2 Pole \longrightarrow 2 Anschlüsse Widerstände: passive 2 Pole, Stromquellen: aktive 2 Pole
- Richtungen/Vorzeichen: Strompfeile: geben formal Richtung positiver Ladungsträger an.

 ${\rm passiv:} \; + \longrightarrow - \qquad \quad {\rm aktiv:} \; - \longrightarrow +$

Spannungspfeile: $+ \longrightarrow -$

→ Ersetzen durch 1 Ersatzwiderstand

15.5.1 Kirchhoffsche Regeln

→ Verallgemeinerung des Ohmschen Gesetzes, dass zu Gleichungssystem führt, mit dem immer alle unbekannten Ströme und Spannungen berechnet werden können. (G.R. Kirchhoff: 1845 (1824-1887))

1. Kontenregeln

In einem Knoten kann keine Ladung gespeichert werden.

$$\Sigma$$
Zufließende Ströme = Σ Abfließende Ströme
$$\Sigma_j I_j = 0 \qquad (\forall \text{Knoten und "folgt" aus der Ladungserhaltung})$$

2. Maschenregel

Spannungen sind Potenzialdifferenzen. Für Maschen ohne elektromotorische Kraft gilt:

In Masche:
$$0 = \sum_{j} uj = \sum_{j} R_{j}U_{j}$$
 (Umlaufspannung = 0!)

Beispiel:

$$U_1 = \phi_b - \phi_a$$
 $U_3 = \phi_d - \phi_c$ $U_4 = \phi_a - \phi_d$
$$\sum_{i=1}^4 U_i = 0$$

Mit diesen Regeln lassen sich die Ströme I Spannungen in einem beliebigen Netzwerk durch ein Gleichungssystem berechnen.

15.5.2 Serien-(Reihen)schaltung von Widerständen

$$U_{ges} = U_1 + U_2$$

 $I_1R_1 + I_2R_2 = I_{ges}R_{ges}$
 $I_1 = I_2 = I_{ges} \Rightarrow \boxed{R_1 + R_2 = R_{ges}}$

15.5.3 Parallelschaltung

$$U_{ges} = U_1 = U_2$$

$$I_{ges} = I_1 + I_2$$

$$\Rightarrow \frac{U_{ges}}{R_{ges}} = \frac{U_1}{R_1} + \frac{U_2}{R_2} \quad | \cdot U_{ges}^{-1}|$$

$$\Rightarrow \frac{1}{R_{ges}} = \frac{1}{R_1} + \frac{1}{R_2}$$

15.5.4 Beispiel

Wheatstonesche Messbrücke

KR:

(1):
$$I_0 = I_1 + I_2$$
 (3): $I_4 = I_2 + I_5$

(3):
$$I_4 = I_2 + I_5$$

(2):
$$I_1 = I_3 + I_5$$

MR:

$$l: I_1R_1 + I_5R_5 - I_2R_2 = 0$$

 $r{:}\ I_3R_3+I_4R_4-I_5R_5=0\Rightarrow 5$ Bestimmungsgleichungen für $I_1,...,I_5$ Bei Vorgabe von \mathcal{I}_0 ist dieses Problem lösbar

"⇒" Durch Veränderung von R_2 und R_4 kann erreicht werden, dass $I_5=0$. Dies kann genutzt werden um Widerstände zu Messen.

$$I_5 \stackrel{!}{=} 0 \Rightarrow I_1 = I_3, \ I_2 = I_4$$
 $\stackrel{MR}{\Rightarrow} I_1 R_1 = I_2 R_2, \ I_3 R_3 = I_4 R_4 \Rightarrow I_1 R_3 = I_2 R_4$
 $\Rightarrow \frac{R_1}{R_3} = \frac{R_2}{R_4} \Rightarrow \text{ermittel } R_1$

15.6 Stromquellen, elektromotorische Kraft, Urspannung, Klemmspannung

offenes galvanisches Element

 $\underline{\mathrm{innen}}$

<u>außen</u>

$$U_R = \phi_A - \phi_B = \underbrace{(\phi_A - \phi_{el}) + (\phi_{el} - \phi_B)}_{U_0: \text{ Urspannung (Elektromotorische Kraft)}} = U_0$$

offenes galvanisches Element ${\cal U}_R={\cal U}_0$

Belastet

 R_i : Innenwiderstand

 $\underline{\mathrm{innen}}$

$\underline{\mathrm{au}\mathfrak{B}\mathrm{en}}$

$$U_R = \phi_A - \phi_B = (\phi_A - \phi_{el}) - I \cdot R_i + (\phi_{el} - \phi_B)$$

$$\boxed{U_R = U_0 - I \cdot R_i}$$

Kurzschlussstromstärke $I_R = \frac{U_0}{R_I}$

Im Schaltbild:

Hilfe:

- Elektromotorische Kraft \equiv Urspannung Diese ist die Differenz $E_{Kathode} E_{Anode} = \Delta E$ Die Formale Definition ist $\mathcal{E} = -\int_A^B \vec{E}_{CS} \cdot d\vec{\ell}$, wobei \vec{E}_{CS} das Elektrostatische Feld von/zwischen A und B ist.
- Stromquellen werden häufig als Spannungsquelle bezeichnet bzw. diese ist gemeint
- An einer realen Spannungsquelle greift man die Klemmspannung (U_K) ab. Diese ist *nicht* gleich der Quellenspannung (*)
- Quellspannung wird hier als U_0 bezeichnet, häufiger aber U_Q
- Klemmspannung wird hier als U_R bezeichnet, häufiger aber U_K

15.7 Langsam zeitlich veränderliche Ströme

Auf- und Entladen eines Kondensators

a.) Aufladen

I(t)? : $U_C(t)$? BILD S schließen bei t=0

Maschenregel:

$$U_0 = U_R + U_C = I(t) \cdot R + C^{-1} \cdot Q(t) \quad | \cdot \frac{d}{dt}$$

$$\frac{d}{dt}U_0 = R \cdot \dot{I}(t) + C^{-1}\frac{dQ(t)}{dt}$$

$$\iff 0 = C^{-1} \cdot I(t) + R \cdot \dot{I}(t)$$
DGL für $I(t)$: $\dot{I}(t) + \frac{1}{RC}I(t) = 0$

Lösung der DGL durch Separation der Variabeln:

$$\frac{dI(t)}{dt} = -\frac{1}{RC}I(t)$$

$$\frac{dI(t)}{I(t)} = -\frac{1}{RC} \cdot dt$$

$$\Rightarrow \int \frac{dI(t)}{I} = -\frac{1}{RC} \int dt$$

$$\ln I(t) = -\frac{1}{RC} \cdot t + \underline{const}$$

$$= -\frac{t}{RC} + \underline{\ln I_0}$$

$$\ln \frac{I(t)}{I_0} = -\frac{t}{RC}$$

$$\frac{\Rightarrow I(t) = I_0 \cdot \exp(-\frac{t}{RC})}{=}$$

Anfangsbedingungen: t=0 : $U_C=0$; $U_0=I_0\cdot R$

$$I(t=0) = I_0 = \frac{U_0}{R}$$

außerdem $I(t \to \infty) = 0$ (Kondensator aufgeladen) au = RC: Relaxationszeit: $[au] = \frac{V}{A} \cdot \frac{As}{V} = s$ ("RC-Konstante")

Spannung am Kondensator:

$$U_C(t) = U_0 - U_R = U_0 - R \cdot I(t) = I_0 \cdot R - R \cdot I(t)$$

= $U_0(1 - \exp(-t/RC))$ mit $U_0 = I_0 \cdot R$

$$t = 0 : U_C = 0$$

 $t = \tau : U_C(t) = (1 - e^{-1}) \cdot U_0$
 $t \to \infty : U_C \to U_0$

BILD BILD

$$C = 200 \mu F; R = 2,6 k\Omega; \tau \approx 0.5 s$$
_{100 \(\mu F\)}

b.) Entladen

$$I(t)$$
? : $U_C(t)$?

BILD 2.KG:

BILD 2.KG.
$$U_R + U_C = 0 \text{ (Keine EMK!)}$$

$$I(t) \cdot R = -\frac{Q(t)}{C}$$

$$\frac{dQ(t)}{Q(t)} = -\frac{1}{RC}dt$$
Lösung:

$$\Rightarrow Q(t) = Q_0 \cdot \exp(-t(RC)^{-1})$$

$$\Rightarrow Q(t) = Q_0 \cdot \exp(-t(RC)^{-1})$$

$$\Rightarrow I(t) = \frac{dQ(t)}{dt} = -\frac{Q_0}{RC} \cdot \exp(-t(RC)^{-1})$$

$$U_C(t) = -U_R(t) = \frac{Q_0}{C} \cdot \exp(-t(RC)^{-1})$$

$$U_C(t) = -U_R(t) = \frac{Q_0}{C} \cdot \exp(-t(RC)^{-1})$$
BILD