Npatch 1.0.0

構築: Doxygen 1.8.6

2016年03月15日(火)18時49分54秒

Contents

1	ファ	イル索	引		1
	1.1	ファイ	ル一覧.		1
2	ファ	イル詳	解		3
	2.1	CalcGe	eo.h ファイ	የル	3
		2.1.1	マクロ定	Z義詳解	4
			2.1.1.1	CAL_STDVAL	4
			2.1.1.2	GEO_ALW_L	4
			2.1.1.3	GEO_ALW_V	4
			2.1.1.4	GEO_REAL	4
			2.1.1.5	INLINE	4
			2.1.1.6	PAI	4
		2.1.2	関数詳解	1	4
			2.1.2.1	Calc_3dTransAxisPntn	4
			2.1.2.2	Calc_3dTransAxisPntnInv	5
			2.1.2.3	CalcCrossPointLine	5
			2.1.2.4	CalcInProduct	5
			2.1.2.5	CalcIntersectionLine	6
			2.1.2.6	CalcIntersectionLine2	6
			2.1.2.7	CalcLineSize	6
			2.1.2.8	CalcLineVec	7
			2.1.2.9	CalcNearPosOnLine	7
			2.1.2.10	CalcNormalize	7
			2.1.2.11	CalcNormalize2	7
			2.1.2.12	CalcOutProduct	8
			2.1.2.13	CalcPlaneD	8
			2.1.2.14	CalcVec	8
			2.1.2.15	CalcVecAngle	8
			2.1.2.16	CalcVecAngleDegree	9
			2.1.2.17	CalcVecMirror	9
			01010	CaleVeePetate?	٥

iv CONTENTS

		2.1.2.19	CalcVecSize	10
2.2	CalcG	eo_Matrix.	h ファイル	11
	2.2.1	関数詳解	¥	11
		2.2.1.1	Calc_3dMat4Mov	11
		2.2.1.2	Calc_3dMat4Multi14	11
		2.2.1.3	Calc_3dMat4Multi41	12
		2.2.1.4	Calc_3dMat4Multi44	12
		2.2.1.5	Calc_3dMat4Rot2	12
		2.2.1.6	Calc_3dMat4RotAxis	13
		2.2.1.7	Calc_3dMat4TranAxis	14
		2.2.1.8	Calc_3dMat4TranAxisInv	14
2.3	FNpt.h	ファイル	<	14
	2.3.1	マクロ定	三義詳解	15
		2.3.1.1	INLINE	15
		2.3.1.2	NPT_REAL	15
	2.3.2	関数詳解	¥	15
		2.3.2.1	fnpt_correct_pnt2	15
		2.3.2.2	fnpt_correct_pnt	16
		2.3.2.3	fnpt_cvt_pos_to_eta_xi	17
		2.3.2.4	fnpt_move_vertex	18
		2.3.2.5	fnpt_param_crt	19
2.4	Npt.h	ファイル		19
	2.4.1	マクロ定	三義詳解	20
		2.4.1.1	INLINE	20
		2.4.1.2	NPT_ALW_V	20
		2.4.1.3	NPT_REAL	20
	2.4.2	関数詳解	¥	20
		2.4.2.1	npt_correct_pnt	20
		2.4.2.2	npt_correct_pnt2	21
		2.4.2.3	npt_cvt_pos_to_eta_xi	21
		2.4.2.4	npt_move_vertex	22
		2.4.2.5	npt_param_crt	23
2.5	npt_Ve	ersion.h フ	ァイル	23
	2.5.1	詳解		23
	2.5.2	マクロ定	三義詳解	24
		2.5.2.1	NPT_REVISION	24
		2.5.2.2	NPT VERSION NO	24

Chapter 1

ファイル索引

1.1 ファイル一覧

ファイル一覧です。

CalcGeo.h	3
CalcGeo_Matrix.h	11
FNpt.h	14
Npt.h	19
npt Version.h	23

Chapter 2

ファイル詳解

2.1 CalcGeo.h ファイル

```
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "CalcGeo_Matrix.h"
#include <stdbool.h>
```

マクロ定義

- #define GEO REAL float
- #define INLINE inline
- #define GEO_ALW_L (1.0e-3)
- #define GEO ALW V (1.0e-5)
- #define PAI 3.14159265358979323846 /* πの値 */
- #define CAL_STDVAL(x)

関数

- INLINE GEO REAL CalcVecSize (GEO REAL vec[3])
- INLINE GEO REAL CalcLineSize (GEO REAL pp[3], GEO REAL lp[3])
- INLINE void CalcNormalize (GEO_REAL vec[3])
- INLINE bool CalcNormalize2 (GEO_REAL vec[3], GEO_REAL vec_o[3])
- INLINE void CalcVec (GEO_REAL pp[3], GEO_REAL lp[3], GEO_REAL vec[3])
- INLINE bool CalcLineVec (GEO_REAL pp[3], GEO_REAL lp[3], GEO_REAL vec[3], GEO_REAL *length)
- INLINE GEO REAL CalcInProduct (GEO REAL vec1[3], GEO REAL vec2[3])
- INLINE void CalcOutProduct (GEO REAL vec1[3], GEO REAL vec2[3], GEO REAL vec o[3])
- INLINE GEO_REAL CalcVecAngle (GEO_REAL vec1[3], GEO_REAL vec2[3])
- INLINE GEO_REAL CalcVecAngleDegree (GEO_REAL vec1[3], GEO_REAL vec2[3])
- INLINE GEO_REAL CalcPlaneD (GEO_REAL pos[3], GEO_REAL vec[3])
- INLINE bool CalcIntersectionLine (GEO_REAL vec1[3], GEO_REAL d1, GEO_REAL vec2[3], GEO_REAL d2, GEO_REAL pos[3], GEO_REAL vec[3])
- INLINE bool CalcIntersectionLine2 (GEO_REAL vec1[3], GEO_REAL d1, GEO_REAL vec2[3], GEO_REAL d2, GEO_REAL pos[3], GEO_REAL vec[3])
- INLINE void CalcNearPosOnLine (GEO_REAL pnt[3], GEO_REAL pos[3], GEO_REAL vec[3], GEO_REAL pos x[3])
- INLINE void CalcVecRotate2 (GEO_REAL rot_vec[3], GEO_REAL rad, GEO_REAL veci[3], GEO_REAL veci[3])

- INLINE void CalcVecMirror (GEO_REAL rot_vec[3], GEO_REAL veci[3], GEO_REAL veco[3])
- INLINE bool CalcCrossPointLine (GEO_REAL pp1[3], GEO_REAL lp1[3], GEO_REAL pp2[3], GEO_REAL pp2[3], GEO_REAL pps_x1[3], GEO_REAL pps_x2[3])
- INLINE void Calc_3dTransAxisPntn (GEO_REAL orig[3], GEO_REAL x_axis[3], GEO_REAL y_axis[3], GEO_REAL z_axis[3], int n, GEO_REAL pntni[][3], GEO_REAL pntno[][3])
- INLINE void Calc_3dTransAxisPntnInv (GEO_REAL orig[3], GEO_REAL x_axis[3], GEO_REAL y_axis[3], GEO_REAL z_axis[3], int n, GEO_REAL pntni[][3], GEO_REAL pntno[][3])

2.1.1 マクロ定義詳解

2.1.1.1 #define CAL_STDVAL(x)

值:

```
{
    if ((x) > 1.0) {
        (x) = 1.0;
    } else if ((x) < -1.0) {
        (x) = -1.0;
    }
}</pre>
```

- 2.1.1.2 #define GEO_ALW_L (1.0e-3)
- 2.1.1.3 #define GEO_ALW_V (1.0e-5)
- 2.1.1.4 #define GEO_REAL float

幾何演算系 実数型の指定

- デフォルトでは、GEO_REAL=float
- コンパイル時オプション-D REAL IS DOUBLE を付与することで GEO REAL=double になる
- 2.1.1.5 #define INLINE inline
- 2.1.1.6 #define PAI 3.14159265358979323846 /* πの値 */
- 2.1.2 関数詳解
- 2.1.2.1 INLINE void Calc_3dTransAxisPntn (GEO_REAL orig[3], GEO_REAL x_axis[3], GEO_REAL y_axis[3], GEO_REAL z_axis[3], int n, GEO_REAL pntni[][3], GEO_REAL pntno[][3])

点列座標を指定された座標系に変換する(ワールド-> ローカル) 引数

in	orig	指定座標系の原点となる点
in	x_axis	指定座標系のX 軸となるベクトル
in	y_axis	指定座標系のY軸となるベクトル
in	z_axis	指定座標系のZ 軸となるベクトル
in	n	点列座標数

2.1 CalcGeo.h ファイル 5

in	pnti	点列座標
in	pnto	指定座標系での点列座標

戻り値

なし

2.1.2.2 INLINE void Calc_3dTransAxisPntnInv (GEO_REAL orig[3], GEO_REAL x_axis[3], GEO_REAL y_axis[3], GEO_REAL z_axis[3], int n, GEO_REAL pntni[][3], GEO_REAL pntno[][3])

点列座標を指定された座標系に逆変換する(ローカル-> ワールド) 引数

in	orig	指定座標系の原点となる点(ワールド座標系から見た座標)
in	x_axis	指定座標系のX軸となるベクトル(ワールド座標系から見たベクトル)
in	y_axis	指定座標系のY軸となるベクトル(ワールド座標系から見たベクトル)
in	z_axis	指定座標系のZ軸となるベクトル(ワールド座標系から見たベクトル)
in	n	点列座標数
in	pnti	点列座標(入力)
in	pnto	点列座標(逆変換後)

戻り値

なし

2.1.2.3 INLINE bool CalcCrossPointLine (GEO_REAL pp1[3], GEO_REAL lp1[3], GEO_REAL pp2[3], GEO_REAL pps_x1[3], GEO_REAL pos_x2[3])

2線分の交点(最近点)を求める

引数

in	pp1	線分1始点
in	lp1	線分1終点
in	pp2	線分2始点
in	lp2	線分2終点
out	pos_x1	線分1上の最近点
out	pos_x2	線分2上の最近点

戻り値

終了コード true:成功 false:失敗 (2線分が並行など)

2.1.2.4 INLINE GEO_REAL CalcinProduct (GEO_REAL vec1[3], GEO_REAL vec2[3])

ベクトルの内積

引数

in	vec1	ベクトル 1

in	vec1	ベクトル 2
----	------	--------

戻り値

内積值

2.1.2.5 INLINE bool CalcIntersectionLine (GEO_REAL vec1[3], GEO_REAL d1, GEO_REAL vec2[3], GEO_REAL d2, GEO_REAL pos[3], GEO_REAL vec[3])

2平面の交線(無限線分)取得

引数

in	vec1	平面1の法線ベクトル (正規化済)
in	d1	平面1の原点からの距離
in	vec2	平面2の法線ベクトル (正規化済)
in	d2	平面2の原点からの距離
out	pos	面の交線の通過点(原点からの最短距離)
out	vec	面の交線のベクトル

戻り値

終了コード true:成功 false:失敗 (2平面が並行など)

2.1.2.6 INLINE bool CalcIntersectionLine2 (GEO_REAL vec1[3], GEO_REAL d1, GEO_REAL vec2[3], GEO_REAL d2, GEO_REAL pos[3], GEO_REAL vec[3])

2 平面の交線(無限線分)取得 CalcIntersectionLine と求め方と通過点の位置が違うのみ引数

in	vec1	平面1の法線ベクトル (正規化済)	
in	d1	d1 平面lの原点からの距離	
in	vec2	平面2の法線ベクトル (正規化済)	
in	d2 平面2の原点からの距離		
out	pos	面の交線の通過点(x-y 平面上、x-z 平面上、y-z 平面上のいずれか)	
out	vec	面の交線のベクトル	

戻り値

終了コード true:成功 false:失敗 (2平面が並行など)

2.1.2.7 INLINE GEO_REAL CalcLineSize (GEO_REAL pp[3], GEO_REAL lp[3])

線分の長さ取得

引数

in	рр	始点
in	lp	終点

戻り値

ベクトルのサイズ(長さ)

2.1 CalcGeo.h ファイル 7

2.1.2.8 INLINE bool CalcLineVec (GEO_REAL pp[3], GEO_REAL lp[3], GEO_REAL vec[3], GEO_REAL * length) 線分のベクトルと長さ取得

引数

in,out	vec	方向ベクトル out:長さ1に変更	

戻り値

true 正常 false 同一点

2.1.2.9 INLINE void CalcNearPosOnLine (GEO_REAL pnt[3], GEO_REAL pos[3], GEO_REAL vec[3], GEO_REAL pos_x[3])

点から線分上に垂線を下した点を求める

引数

in	pnt	点座標	
in	pos	線分の通過点	
in	vec	線分の方向ベクトル(単位ベクトル)	
out	pos_x	点から線分に下した垂線との交点	

戻り値

終了コード なし

2.1.2.10 INLINE void CalcNormalize (GEO_REAL vec[3])

ベクトルを正規化する(長さ1のベクトルとする)

引数

in,out vec 方向ベクトル out:長さ l に変更

戻り値

なし

2.1.2.11 INLINE bool CalcNormalize2 (GEO_REAL vec[3], GEO_REAL vec_o[3])

ベクトルを正規化する(長さ1のベクトルとする)

引数

in,out	vec	方向ベクトル out:長さ l に変更
--------	-----	---------------------

戻り値

true 正常 false 同一点

2.1.2.12 INLINE void CalcOutProduct (GEO_REAL vec1[3], GEO_REAL vec2[3], GEO_REAL vec_0[3])

ベクトルの外積

引数

in	vec1	ベクトル 1
in	vec1	ベクトル 2
out	vec_o	外積ベクトル

戻り値

なし

2.1.2.13 INLINE GEO_REAL CalcPlaneD (GEO_REAL pos[3], GEO_REAL vec[3])

点と方向ベクトルより平面の方程式のD を求める 平面の方程式 Ax + By + Cz = D 引数

in	pos	点座標
in	vec	方向ベクトル(正規化済)

戻り値

平面の方程式のD(原点からの距離+-あり)

2.1.2.14 INLINE void CalcVec (GEO_REAL pp[3], GEO_REAL lp[3], GEO_REAL vec[3])

線分のベクトル作成(単位ベクトルではない)

引数

in.out	vec	「ベクトル (単位ベクトルではない)
111 , 0 a c	VCC	

戻り値

なし

2.1.2.15 INLINE GEO_REAL CalcVecAngle (GEO_REAL vec1[3], GEO_REAL vec2[3])

ベクトル間の角度(ラジアン)を求める

引数

in	vec1	ベクトル1(単位ベクトル)
in	vec2	ベクトル2(単位ベクトル)

戻り値

ベクトル間の角度($0 \sim \pi$ ラジアン) 3 次元のため、裏側からも見れるため角度は($0 \sim \pi$)で返す $> \pi$ の角度を求めるためには見る方向も指定する必要あり

2.1.2.16 INLINE GEO_REAL CalcVecAngleDegree (GEO_REAL vec1[3], GEO_REAL vec2[3])

ベクトル間の角度(度数)を求める

引数

.n	vec1	ベクトル1	(単位ベクトル)
.n	vec2	ベクトル2	(単位ベクトル)

戻り値

ベクトル間の角度 $(0 \sim 180 \text{ g})$ 3次元のため、裏側からも見れるため角度は $(0 \sim 180)$ で返す > 180 度の角度を求めるためには見る方向も指定する必要あり

2.1.2.17 INLINE void CalcVecMirror (GEO_REAL rot_vec[3], GEO_REAL veci[3], GEO_REAL veco[3])

ベクトルのミラー 線対称のベクトル取得 ベクトルの回転の 180 度固定版 単位ベクトルである必要はありません

引数

in	rot_vec	回転軸のベクトル	
in	veci	入力ベクトル	
out	veco	線対称にミラーしたベクトル	

戻り値

終了コード なし

2.1.2.18 INLINE void CalcVecRotate2 (GEO_REAL rot_vec[3], GEO_REAL rad, GEO_REAL veci[3], GEO_REAL veci[3])

ベクトルの回転

引数

in	rot_vec	回転軸のベクトル
in	rad	回転角 (rad)
in	veci	入力ベクトル
out	veco	回転後のベクトル

戻り値

終了コード なし

2.1.2.19 INLINE GEO_REAL CalcVecSize (GEO_REAL vec[3])

ベクトルのサイズ(長さ)を求める

引数

in vec 方向ベクトル	l 1n	vec	方向ベクトル

戻り値

ベクトルのサイズ(長さ)

2.2 CalcGeo Matrix.h ファイル

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

関数

- INLINE void Calc_3dMat4Multi14 (GEO_REAL matA[4], GEO_REAL matB[4][4], GEO_REAL matC[4])
- INLINE void Calc_3dMat4Multi41 (GEO_REAL matA[4][4], GEO_REAL matB[4], GEO_REAL matC[4])
- INLINE void Calc_3dMat4Multi44 (GEO_REAL matA[4][4], GEO_REAL matB[4][4], GEO_REAL matC[4][4])
- INLINE void Calc_3dMat4Mov (GEO_REAL mov_x, GEO_REAL mov_y, GEO_REAL mov_z, GEO_REAL matA[4][4])
- INLINE void Calc_3dMat4RotAxis (GEO_REAL x_axis[3], GEO_REAL y_axis[3], GEO_REAL z_axis[3], GEO_REAL matA[4][4])
- INLINE void Calc_3dMat4TranAxis (GEO_REAL orig[3], GEO_REAL x_axis[3], GEO_REAL y_axis[3], GEO_REAL x_axis[3], GEO_REAL matA[4][4])
- INLINE void Calc_3dMat4TranAxisInv (GEO_REAL orig[3], GEO_REAL x_axis[3], GEO_REAL y_axis[3], GEO_REAL x_axis[3], GEO_REAL matA[4][4])
- INLINE void Calc_3dMat4Rot2 (GEO_REAL pos[3], GEO_REAL vec[3], GEO_REAL th_rad, GEO_REAL matA[4][4])

2.2.1 関数詳解

2.2.1.1 INLINE void Calc_3dMat4Mov (GEO_REAL mov_x, GEO_REAL mov_y, GEO_REAL mov_z, GEO_REAL matA[4][4])

平行移動用の4×4変換マトリクスを求める

引数

in	mov_x	X軸平行移動量
in	mov_y	Y軸平行移動量
in	mov_z	Z軸平行移動量
out	mat4	4×4変換マトリクス(行ベクトル系)

戻り値

終了コード なし

2.2.1.2 INLINE void Calc_3dMat4Multi14 (GEO_REAL matA[4], GEO_REAL matB[4][4], GEO_REAL matC[4])

マトリック演算 (行ベクトル系) 4×1マトリクスと4×4マトリクスの積を求める 引数

in	matA	4×1マトリクス A
in	matB	4×4マトリクス B
out	matC	1×4マトリクス C

戻り値

終了コード なし

2.2.1.3 INLINE void Calc_3dMat4Multi41 (GEO_REAL matA[4][4], GEO_REAL matB[4], GEO_REAL matC[4]) 4×4マトリクスと4×1マトリクスの積を求める

引数

in	matA	4×4マトリクス A
in	matB	4×1マトリクス B
out	matC	4×1マトリクス C

戻り値

終了コードなし

2.2.1.4 INLINE void Calc_3dMat4Multi44 (GEO_REAL matA[4][4], GEO_REAL matB[4][4], GEO_REAL matC[4][4])

4×4マトリクスと4×4マトリクスの積を求める

引数

in	matA	4×4マトリクス A
in	matB	4×4マトリクス B
out	matC	4×4マトリクス C (演算結果)

戻り値

終了コード なし

2.2.1.5 INLINE void Calc_3dMat4Rot2 (GEO_REAL pos[3], GEO_REAL vec[3], GEO_REAL th_rad, GEO_REAL matA[4][4])

回転用4×4変換マトリクスを求める(任意軸)

引数

in	pos	回転軸上の1点の座標
in	vec	回転軸のベクトル
in	th_rad	回転角 (rad)
out	matA	回転用4×4変換マトリクス(行ベクトル系)

戻り値

終了コード なし

2.2.1.6 INLINE void Calc_3dMat4RotAxis (GEO_REAL x_axis[3], GEO_REAL y_axis[3], GEO_REAL z_axis[3], GEO_REAL matA[4][4])

座標軸回転用4×4変換マトリクスを求める

引数

in	x_axis	新座標系のX 軸となるベクトル
in	y_axis	新座標系のY 軸となるベクトル
in	z_axis	新座標系のZ 軸となるベクトル
out	matA	4×4変換マトリクス(行ベクトル系)

戻り値

終了コード なし

2.2.1.7 INLINE void Calc_3dMat4TranAxis (GEO_REAL orig[3], GEO_REAL x_axis[3], GEO_REAL y_axis[3], GEO_REAL z_axis[3], GEO_REAL matA[4][4])

任意座標軸設定用4×4変換マトリクスを求める (ワールド -> ローカル座標変換)

2.3 FNpt.h ファイル 15

引数

in	orig	新座標軸の原点となる点
in	x_axis	新座標系のX 軸となるベクトル
in	y_axis	新座標系のY軸となるベクトル
in	z_axis	新座標系のZ 軸となるベクトル
out	mat4	4×4変換マトリクス(行ベクトル系)

戻り値

終了コード なし

2.2.1.8 INLINE void Calc_3dMat4TranAxisInv (GEO_REAL orig[3], GEO_REAL x_axis[3], GEO_REAL y_axis[3], GEO_REAL z_axis[3], GEO_REAL matA[4][4])

任意座標軸設定用4×4変換マトリクスを求める (ローカル -> ワールド座標変換)

引数

in	orig	任意座標軸の原点となる点(ワールド座標系で指定)
in	x_axis	任意座標系のX 軸となるベクトル(ワールド座標系で指定)
in	y_axis	任意座標系のY 軸となるベクトル(ワールド座標系で指定)
in	z_axis	任意座標系のZ 軸となるベクトル(ワールド座標系で指定)
out	mat4	4×4変換マトリクス(行ベクトル系)

戻り値

終了コード なし

2.3 FNpt.h ファイル

#include <stdio.h>
#include <stdlib.h>
#include <string>
#include <math.h>
#include "Npt.h"

マクロ定義

- #define NPT_REAL float
- #define INLINE inline

関数

- void fnpt_param_crt_ (NPT_REAL p1[3], NPT_REAL norm1[3], NPT_REAL p2[3], NPT_REAL norm2[3], NPT_REAL p3[3], NPT_REAL norm3[3], NPT_REAL cp_side1_1[3], NPT_REAL cp_side1_2[3], NPT_REAL cp_side2_1[3], NPT_REAL cp_side3_2[3], NPT_REAL cp_side3_2[3], NPT_REAL cp_center[3], int *ret)
- void fnpt_cvt_pos_to_eta_xi_ (NPT_REAL pos[3], NPT_REAL p1[3], NPT_REAL p2[3], NPT_REAL p3[3], NPT_REAL *eta, NPT_REAL *xi)
- void fnpt_correct_pnt_ (NPT_REAL *eta, NPT_REAL *xi, NPT_REAL p1[3], NPT_REAL p2[3], NPT_REAL p3[3], NPT_REAL cp_side1_1[3], NPT_REAL cp_side1_2[3], NPT_REAL cp_side2_1[3], NPT_REAL cp_side3_1[3], NPT_REAL cp_side3_2[3], NPT_REAL cp_center[3], NPT_REAL pos_0[3])

void fnpt_correct_pnt2_ (NPT_REAL pos[3], NPT_REAL p1[3], NPT_REAL p2[3], NPT_REAL p3[3], NPT_REAL cp_side1_1[3], NPT_REAL cp_side2_1[3], NPT_REAL cp_side2_1[3], NPT_REAL cp_side3_2[3], NPT_REAL cp_side3_2[3], NPT_REAL cp_center[3], NPT_REAL pos_o[3])

void fnpt_move_vertex_ (NPT_REAL p1[3], NPT_REAL p2[3], NPT_REAL p3[3], NPT_REAL cp_side1_-1[3], NPT_REAL cp_side1_2[3], NPT_REAL cp_side2_1[3], NPT_REAL cp_side2_2[3], NPT_REAL cp_side3_1[3], NPT_REAL cp_side3_2[3], NPT_REAL cp_center[3], NPT_REAL p1_n[3], NPT_REAL p2_n[3], NPT_REAL p3_n[3], NPT_REAL cp_side1_1_n[3], NPT_REAL cp_side1_2_n[3], NPT_REAL cp_side2_1_n[3], NPT_REAL cp_side3_2_n[3], NPT_REAL cp_side3_2_n[3], NPT_REAL cp_center_n[3])

2.3.1 マクロ定義詳解

2.3.1.1 #define INLINE inline

2.3.1.2 #define NPT_REAL float

長田パッチ 関数 (Fortran インターフェース) 実数型の指定

- デフォルトでは、NPT_REAL=float
- コンパイル時オプション-D_REAL_IS_DOUBLE_を付与することで NPT_REAL=double になる

2.3.2 関数詳解

2.3.2.1 void fnpt_correct_pnt2_ (NPT_REAL pos[3], NPT_REAL p1[3], NPT_REAL p2[3], NPT_REAL p3[3], NPT_REAL cp_side1_1[3], NPT_REAL cp_side1_2[3], NPT_REAL cp_side2_1[3], NPT_REAL cp_side2_2[3], NPT_REAL cp_side3_1[3], NPT_REAL cp_side3_2[3], NPT_REAL cp_center[3], NPT_REAL pos_o[3])

長田パッチ 近似曲面補正

引数

in	pos	入力点座標(p1p2p3 三角形上の座標)
in	р1	長田パッチ 頂点 1 座標
in	p2	長田パッチ 頂点2座標
in	рЗ	長田パッチ 頂点3座標
in	cp_side1_1	長田パッチ p1p2 辺の 3 次ベジェ制御点 1
in	cp_side1_2	
in	cp_side2_1	長田パッチ p2p3 辺の 3 次ベジェ制御点 1
in	cp_side2_2	
in	cp_side3_1	長田パッチ p3p1 辺の 3 次ベジェ制御点 1
in	cp_side3_2	
in	cp_center	長田パッチ 三角形中央の3次ベジェ制御点
out	pos_o	出力点座標(曲面補正後の点)

戻り値

なし

注意

入力点座標が p1p2p3 三角形平面内でない場合、出力座標は保証されない pos,p1,p2,p3,cp*,pos o は同一座標系とする。(cp*系は相対座標ではない)

2.3 FNpt.h ファイル 17

2.3.2.2 void fnpt_correct_pnt_ (NPT_REAL * eta, NPT_REAL * xi, NPT_REAL p1[3], NPT_REAL p2[3], NPT_REAL p3[3], NPT_REAL cp_side1_1[3], NPT_REAL cp_side1_2[3], NPT_REAL cp_side2_1[3], NPT_REAL cp_side2_2[3], NPT_REAL cp_side3_1[3], NPT_REAL cp_side3_2[3], NPT_REAL cp_center[3], NPT_REAL p0s_0[3])

長田パッチ 近似曲面補正 入力: η 、 ξ パラメータ

引数

in	eta	入力点座標 長田パッチ η パラメータ
in	xi	入力点座標 長田パッチ そパラメータ
in	р1	長田パッチ 頂点 1 座標
in	p2	長田パッチ 頂点2座標
in	рЗ	長田パッチ 頂点3座標
in	cp_side1_1	長田パッチ p1p2 辺の 3 次ベジェ制御点 1
in	cp_side1_2	
in	cp_side2_1	長田パッチ p2p3 辺の 3 次ベジェ制御点 1
in	cp_side2_2	
in	cp_side3_1	長田パッチ p3p1 辺の 3 次ベジェ制御点 1
in	cp_side3_2	長田パッチ p3p1 辺の 3 次ベジェ制御点 2
in	cp_center	長田パッチ 三角形中央の3次ベジェ制御点
out	pos_o	出力点座標(曲面補正後の点)

戻り値

なし

注意

 η と ξ のパラメータで 3 角形上の座標が決まる (例) 頂点 1 eta = 0.0; xi = 0.0; 頂点 2 eta = 1.0; xi = 0.0; 頂点 3 eta = 1.0; xi = 1.0; 辺 1 の中点 eta = 0.5; xi = 0.0; 辺 2 の中点 eta = 1.0; xi = 0.5; 辺 3 の中点 eta = 0.5; xi = 0.5; 3 角形の重心 eta = 2.0/3.0, xi = 0.5*2.0/3.0; p1,p2,p3,cp_*,pos_o は同一座標系とする。(cp_* 系は相対座標ではない)

2.3.2.3 void fnpt_cvt_pos_to_eta_xi_(NPT_REAL pos[3], NPT_REAL p1[3], NPT_REAL p2[3], NPT_REAL p3[3], NPT_REAL * eta, NPT_REAL * xi)

長田パッチ 曲面補間 関数 長田パッチ(3次多項式) η 、 ξ パラメータ取得 入力座標より η 、 ξ パラメータを求める

引数

in	pos	入力点座標(p1p2p3 三角形上の座標)
in	р1	長田パッチ 頂点 1 座標
in	p2	長田パッチ 頂点2座標
in	рЗ	長田パッチ 頂点3座標
out	eta	長田パッチ η パラメータ
out	xi	長田パッチ ξ パラメータ

戻り値

なし

注意

入力点座標が p1p2p3 三角形平面内でない場合、 η 、 ξ のパラメータは保証されない (例) 頂点 1 eta = 0.0; xi = 0.0; 頂点 2 eta = 1.0; xi = 0.0; 頂点 3 eta = 1.0; xi = 1.0; 辺 1 の中点 eta = 0.5; xi = 0.0; 辺 2 の中点 eta = 1.0; xi = 0.5; 辺 3 の中点 eta = 0.5; xi = 0.5; 3 角形の重心 eta = 2.0/3.0, xi = 0.5*2.0/3.0; pos,p1,p2,p3 は同一座標系とする。

2.3 FNpt.h ファイル 19

2.3.2.4 void fnpt_move_vertex_(NPT_REAL p1[3], NPT_REAL p2[3], NPT_REAL p3[3], NPT_REAL cp_side1_1[3], NPT_REAL cp_side1_2[3], NPT_REAL cp_side2_1[3], NPT_REAL cp_side2_2[3], NPT_REAL cp_side3_1[3], NPT_REAL cp_side3_2[3], NPT_REAL cp_center[3], NPT_REAL p1_n[3], NPT_REAL p2_n[3], NPT_REAL p3_n[3], NPT_REAL cp_side1_1_n[3], NPT_REAL cp_side1_2_n[3], NPT_REAL cp_side2_1_n[3], NPT_REAL cp_side3_1_n[3], NPT_REAL cp_side3_2_n[3], NPT_REAL cp_center_n[3])

長田パッチ 頂点移動に伴う長田パッチパラメータ更新 長田パッチパラメータの実体は制御点である。 頂点 座標が移動するとそれに応じてパラメータを更新する必要がある

引数

in	p1	長田パッチ 頂点 1 座標
in	p2	長田パッチ 頂点2座標
in	рЗ	長田パッチ 頂点3座標
in	cp_side1_1	長田パッチ p1p2 辺の 3 次ベジェ制御点 1
in	cp_side1_2	長田パッチ p1p2 辺の 3 次ベジェ制御点 2
in	cp_side2_1	長田パッチ p2p3 辺の 3 次ベジェ制御点 1
in	cp_side2_2	長田パッチ p2p3 辺の 3 次ベジェ制御点 2
in	cp_side3_1	長田パッチ p3p1 辺の 3 次ベジェ制御点 1
in	cp_side3_2	長田パッチ p3p1 辺の 3 次ベジェ制御点 2
in	cp_center	長田パッチ 三角形中央の3次ベジェ制御点
in	p1_n	長田パッチ 移動後 頂点 1 座標
in	p2_n	長田パッチ 移動後 頂点 2 座標
in	p3_n	長田パッチ 移動後 頂点 3 座標
out	cp_side1_1_n	長田パッチ 移動後 p1p2 辺の 3 次ベジェ制御点 1
out	cp_side1_2_n	長田パッチ 移動後 p1p2 辺の3次ベジェ制御点2
out	cp_side2_1_n	長田パッチ 移動後 p2p3 辺の 3 次ベジェ制御点 1
out	cp_side2_2_n	長田パッチ 移動後 p2p3 辺の 3 次ベジェ制御点 2
out	cp_side3_1_n	長田パッチ 移動後 p3p1 辺の 3 次ベジェ制御点 1
out	cp_side3_2_n	長田パッチ 移動後 p3p1 辺の3次ベジェ制御点2
out	cp_center_n	長田パッチ 移動後 三角形中央の3次ベジェ制御点

戻り値

なし

注意

長田パッチパラメータ更新は速くないので、可能であれば 頂点移動時に同時に長田パッチパラメータ (制御点) を更新することを推奨する

2.3.2.5 void fnpt_param_crt_ (NPT_REAL p1[3], NPT_REAL norm1[3], NPT_REAL p2[3], NPT_REAL norm2[3], NPT_REAL p3[3], NPT_REAL norm3[3], NPT_REAL cp_side1_1[3], NPT_REAL cp_side1_2[3], NPT_REAL cp_side2_1[3], NPT_REAL cp_side3_1[3], NPT_REAL cp_side3_2[3], NPT_REAL cp_center[3], int * ret)

長田パッチ パラメータ生成 関数長田パッチパラメータ生成 引数

in	p1	長田パッチ 頂点 1 座標
in	norm1	長田パッチ 頂点 1 法線ベクトル(単位ベクトル)
in	p2	長田パッチ 頂点2座標
in	norm2	長田パッチ 頂点 2 法線ベクトル(単位ベクトル)
in	рЗ	長田パッチ 頂点3座標
in	norm3	長田パッチ 頂点 3 法線ベクトル(単位ベクトル)
out	cp_side1_1	長田パッチ p1p2 辺の 3 次ベジェ制御点 1
out	cp_side1_2	長田パッチ p1p2 辺の 3 次ベジェ制御点 2
out	cp_side2_1	長田パッチ p2p3 辺の 3 次ベジェ制御点 1
out	cp_side2_2	長田パッチ p2p3 辺の 3 次ベジェ制御点 2
out	cp_side3_1	長田パッチ p3p1 辺の 3 次ベジェ制御点 1
out	cp_side3_2	長田パッチ p3p1 辺の 3 次ベジェ制御点 2
out	cp_center	長田パッチ 三角形中央の3次ベジェ制御点
out	ret	リターンコード =0 正常 !=0 異常

2.4 Npt.h ファイル 21

戻り値

戻り値なし

注意

エラー:許容誤差

2.4 Npt.h ファイル

```
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "CalcGeo.h"
```

マクロ定義

- #define NPT REAL float
- #define NPT_ALW_V 0.005
- #define INLINE inline

関数

- int npt_param_crt (NPT_REAL p1[3], NPT_REAL norm1[3], NPT_REAL p2[3], NPT_REAL norm2[3], NPT_REAL p3[3], NPT_REAL norm3[3], NPT_REAL cp_side1_1[3], NPT_REAL cp_side1_2[3], NPT_REAL cp_side2_1[3], NPT_REAL cp_side3_2[3], NPT_REAL cp_side3_2[3], NPT_REAL cp_center[3])
- INLINE void npt_cvt_pos_to_eta_xi (NPT_REAL pos[3], NPT_REAL p1[3], NPT_REAL p2[3], NPT_REAL p3[3], NPT_REAL *eta, NPT_REAL *xi)
- INLINE void npt_correct_pnt (NPT_REAL eta, NPT_REAL xi, NPT_REAL p1[3], NPT_REAL p2[3], NPT_REAL p3[3], NPT_REAL cp_side1_1[3], NPT_REAL cp_side1_2[3], NPT_REAL cp_side2_1[3], NPT_REAL cp_side2_2[3], NPT_REAL cp_side3_1[3], NPT_REAL cp_side3_2[3], NPT_REAL cp_center[3], NPT_REAL pos o[3])
- INLINE void npt_correct_pnt2 (NPT_REAL pos[3], NPT_REAL p1[3], NPT_REAL p2[3], NPT_REAL p3[3], NPT_REAL cp_side1_1[3], NPT_REAL cp_side2_1[3], NPT_REAL cp_side2_1[3], NPT_REAL cp_side3_1[3], NPT_REAL cp_side3_2[3], NPT_REAL cp_center[3], NPT_REAL pos_o[3])
- INLINE void npt_move_vertex (NPT_REAL p1[3], NPT_REAL p2[3], NPT_REAL p3[3], NPT_REAL cp_side1_1[3], NPT_REAL cp_side1_2[3], NPT_REAL cp_side2_1[3], NPT_REAL cp_side2_2[3], NPT_REAL cp_side3_1[3], NPT_REAL cp_side3_2[3], NPT_REAL cp_center[3], NPT_REAL p1_n[3], NPT_REAL p2_n[3], NPT_REAL p3_n[3], NPT_REAL cp_side1_1_n[3], NPT_REAL cp_side1_2_n[3], NPT_REAL cp_side2_1_n[3], NPT_REAL cp_side3_2_n[3], NPT_REAL cp_center_n[3])
- 2.4.1 マクロ定義詳解
- 2.4.1.1 #define INLINE inline
- 2.4.1.2 #define NPT ALW V 0.005
- 2.4.1.3 #define NPT_REAL float

長田パッチ 関数 (C++/C) 実数型の指定

- デフォルトでは、NPT_REAL=float
- コンパイル時オプション-D REAL IS DOUBLE を付与することで NPT REAL=double になる

2.4.2 関数詳解

2.4.2.1 INLINE void npt_correct_pnt (NPT_REAL eta, NPT_REAL xi, NPT_REAL p1[3], NPT_REAL p2[3], NPT_REAL p3[3], NPT_REAL cp_side1_1[3], NPT_REAL cp_side1_2[3], NPT_REAL cp_side2_1[3], NPT_REAL cp_side2_2[3], NPT_REAL cp_side3_1[3], NPT_REAL cp_side3_2[3], NPT_REAL cp_center[3], NPT_REAL pos_o[3])

長田パッチ 近似曲面補正 入力: η 、 ξ パラメータ 引数

in	eta	入力点座標 長田パッチ η パラメータ
in	xi	入力点座標 長田パッチ 崔パラメータ
in	p1	長田パッチ 頂点 1 座標
in	p2	長田パッチ 頂点2座標
in	рЗ	長田パッチ 頂点3座標
in	cp_side1_1	長田パッチ p1p2 辺の 3 次ベジェ制御点 1
in	cp_side1_2	
in	cp_side2_1	長田パッチ p2p3 辺の 3 次ベジェ制御点 1
in	cp_side2_2	
in	cp_side3_1	長田パッチ p3p1 辺の 3 次ベジェ制御点 1
in	cp_side3_2	長田パッチ p3p1 辺の 3 次ベジェ制御点 2
in	cp_center	長田パッチ 三角形中央の3次ベジェ制御点
out	pos_o	出力点座標(曲面補正後の点)

戻り値

なし

注意

 η と ξ のパラメータで 3 角形上の座標が決まる (例) 頂点 1 eta = 0.0; xi = 0.0; 頂点 2 eta = 1.0; xi = 0.0; 頂点 3 eta = 1.0; xi = 1.0; 辺 1 の中点 eta = 0.5; xi = 0.0; 辺 2 の中点 eta = 1.0; xi = 0.5; 辺 3 の中点 eta = 0.5; xi = 0.5; 3 角形の重心 eta = 2.0/3.0, xi = 0.5*2.0/3.0; p1,p2,p3,cp_*,pos_o は同一座標系とする。(cp_* 系は相対座標ではない)

2.4.2.2 INLINE void npt_correct_pnt2 (NPT_REAL pos[3], NPT_REAL p1[3], NPT_REAL p2[3], NPT_REAL p3[3], NPT_REAL cp_side1_1[3], NPT_REAL cp_side2_2[3], NPT_REAL cp_side2_2[3], NPT_REAL cp_side3_2[3], NPT_REAL cp_side3_2[3], NPT_REAL cp_center[3], NPT_REAL pos_o[3])

長田パッチ 近似曲面補正

2.4 Npt.h ファイル 23

引数

in	pos	入力点座標(p1p2p3 三角形上の座標)
in	р1	長田パッチ 頂点 1 座標
in	p2	長田パッチ 頂点2座標
in	рЗ	長田パッチ 頂点3座標
in	cp_side1_1	長田パッチ p1p2 辺の 3 次ベジェ制御点 1
in	cp_side1_2	
in	cp_side2_1	長田パッチ p2p3 辺の 3 次ベジェ制御点 1
in	cp_side2_2	長田パッチ p2p3 辺の 3 次ベジェ制御点 2
in	cp_side3_1	長田パッチ p3p1 辺の 3 次ベジェ制御点 1
in	cp_side3_2	
in	cp_center	長田パッチ 三角形中央の3次ベジェ制御点
out	pos_o	出力点座標(曲面補正後の点)

戻り値

なし

注意

入力点座標が p1p2p3 三角形平面内でない場合、出力座標は保証されない $pos,p1,p2,p3,cp_*,pos_o$ は同一座標系とする。 $(cp_*$ 系は相対座標ではない)

2.4.2.3 INLINE void npt_cvt_pos_to_eta_xi (NPT_REAL pos[3], NPT_REAL p1[3], NPT_REAL p2[3], NPT_REAL * eta, NPT_REAL * xi)

長田パッチ 曲面補間 関数(インライン展開あり) 長田パッチ(3次多項式) η 、 ξ パラメータ取得 入力 座標より η 、 ξ パラメータを求める

引数

in	pos	入力点座標(p1p2p3 三角形上の座標)
in	p1	長田パッチ 頂点 1 座標
in	p2	長田パッチ 頂点2座標
in	рЗ	長田パッチ 頂点3座標
out	eta	長田パッチ η パラメータ
out	xi	長田パッチ ξ パラメータ

戻り値

なし

注意

入力点座標が p1p2p3 三角形平面内でない場合、 η 、 ξ のパラメータは保証されない (例) 頂点 1 eta = 0.0; xi = 0.0; 頂点 2 eta = 1.0; xi = 0.0; 頂点 3 eta = 1.0; xi = 1.0; 辺 1 の中点 eta = 0.5; xi = 0.0; 辺 2 の中点 eta = 1.0; xi = 0.5; 辺 3 の中点 eta = 0.5; xi = 0.5; 3 角形の重心 eta = 2.0/3.0, xi = 0.5*2.0/3.0; pos,p1,p2,p3 は同一座標系とする。

2.4.2.4 INLINE void npt_move_vertex (NPT_REAL p1[3], NPT_REAL p2[3], NPT_REAL p3[3], NPT_REAL cp_side1_1[3], NPT_REAL cp_side1_2[3], NPT_REAL cp_side2_1[3], NPT_REAL cp_side2_2[3], NPT_REAL cp_side3_1[3], NPT_REAL cp_side3_2[3], NPT_REAL cp_center[3], NPT_REAL p1_n[3], NPT_REAL p2_n[3], NPT_REAL p3_n[3], NPT_REAL cp_side1_1_n[3], NPT_REAL cp_side1_2_n[3], NPT_REAL cp_side2_1_n[3], NPT_REAL cp_side3_1_n[3], NPT_REAL cp_side3_2_n[3], NPT_REAL cp_center_n[3])

長田パッチ 頂点移動に伴う長田パッチパラメータ更新 長田パッチパラメータの実体は制御点である。 頂点 座標が移動するとそれに応じてパラメータを更新する必要がある

2.4 Npt.h ファイル 25

引数

in	p1	長田パッチ 頂点1座標
in	p2	長田パッチ 頂点 2 座標
in	p3	長田パッチ頂点3座標
in	cp_side1_1	長田パッチ p1p2 辺の 3 次ベジェ制御点 1
in	cp_side1_2	長田パッチ p1p2 辺の 3 次ベジェ制御点 2
in	cp_side2_1	長田パッチ p2p3 辺の 3 次ベジェ制御点 1
in	cp_side2_2	長田パッチ p2p3 辺の 3 次ベジェ制御点 2
in	cp_side3_1	長田パッチ p3p1 辺の 3 次ベジェ制御点 1
in	cp_side3_2	長田パッチ p3p1 辺の 3 次ベジェ制御点 2
in	cp_center	長田パッチ 三角形中央の3次ベジェ制御点
in	p1_n	長田パッチ 移動後 頂点 1 座標
in	p2_n	長田パッチ 移動後 頂点 2 座標
in	p3_n	長田パッチ 移動後 頂点 3 座標
out	cp_side1_1_n	長田パッチ 移動後 p1p2 辺の 3 次ベジェ制御点 1
out	cp_side1_2_n	長田パッチ 移動後 p1p2 辺の 3 次ベジェ制御点 2
out	cp_side2_1_n	長田パッチ 移動後 p2p3 辺の 3 次ベジェ制御点 1
out	cp_side2_2_n	長田パッチ 移動後 p2p3 辺の 3 次ベジェ制御点 2
out	cp_side3_1_n	長田パッチ 移動後 p3p1 辺の 3 次ベジェ制御点 1
out	cp_side3_2_n	長田パッチ 移動後 p3p1 辺の 3 次ベジェ制御点 2
out	cp_center_n	長田パッチ 移動後 三角形中央の3次ベジェ制御点

戻り値

なし

注意

長田パッチパラメータ更新は速くないので、可能であれば 頂点移動時に同時に長田パッチパラメータ (制御点) を更新することを推奨する

2.4.2.5 int npt_param_crt (NPT_REAL p1[3], NPT_REAL norm1[3], NPT_REAL p2[3], NPT_REAL norm2[3], NPT_REAL p3[3], NPT_REAL norm3[3], NPT_REAL cp_side1_1[3], NPT_REAL cp_side1_2[3], NPT_REAL cp_side2_1[3], NPT_REAL cp_side3_1[3], NPT_REAL cp_side3_2[3], NPT_REAL cp_center[3])

長田パッチ パラメータ生成 関数(インライン展開なし)長田パッチパラメータ生成 引数

in	р1	長田パッチ 頂点 1 座標
in	norm1	長田パッチ 頂点 1 法線ベクトル(単位ベクトル)
in	p2	長田パッチ 頂点2座標
in	norm2	長田パッチ 頂点 2 法線ベクトル(単位ベクトル)
in	рЗ	長田パッチ 頂点3座標
in	norm3	長田パッチ 頂点 3 法線ベクトル(単位ベクトル)
out	cp_side1_1	長田パッチ p1p2 辺の 3 次ベジェ制御点 1
out	cp_side1_2	長田パッチ p1p2 辺の 3 次ベジェ制御点 2
out	cp_side2_1	長田パッチ p2p3 辺の 3 次ベジェ制御点 1
out	cp_side2_2	長田パッチ p2p3 辺の 3 次ベジェ制御点 2
out	cp_side3_1	長田パッチ p3p1 辺の 3 次ベジェ制御点 1
out	cp_side3_2	長田パッチ p3p1 辺の 3 次ベジェ制御点 2
out	cp_center	長田パッチ 三角形中央の3次ベジェ制御点

戻り値

リターンコード =0 正常!=0 異常

注意

エラー: 許容誤差

2.5 npt_Version.h ファイル

マクロ定義

- #define NPT_VERSION_NO "1.0.0"
- #define NPT_REVISION "20160215_1000"

2.5.1 詳解

バージョン情報のヘッダーファイル

- 2.5.2 マクロ定義詳解
- 2.5.2.1 #define NPT_REVISION "20160215_1000"

Npatch ライブラリのリビジョン

2.5.2.2 #define NPT_VERSION_NO "1.0.0"

Npatch ライブラリのバージョン