Homework 10

STAT 984

Emily Robinson

December 5, 2019

Exercise 8.1

Let $X_1, ..., X_n$ be a simple random sample from a Pareto distribution with density

$$f(x) = \theta c^{\theta} x^{-(\theta+1)} I\{x > c\}$$

for a known constant c > 0 and parameter $\theta > 0$. Derive the Wald, Rao, and likelihood ratio tests of $\theta = \theta_0$ against a two-sided alternative.

Exercise 8.2

Suppose that X is multinomial(n, p), where $p \in \mathbb{R}^k$. In order to satisfy the regularity condition that the parameter space be an open set, define $\theta = (p_1, ..., p_{k-1})$. Suppose that we wish to test $H_0: \theta = \theta^0$ against $H_1: \theta \neq \theta^0$.

- (a) Prove that the Wald and score tests are the same as the usual Pearson chi-square test.
- (b) Derive the likelihood ratio statistic $2\Delta_n$.

Exercise 8.8

Let $X_1, ..., X_n$ be an independent sample from an exponential distribution with mean λ , and $Y_1, ..., Y_n$ be an independent sample from an exponential distribution with mean μ . Assume that X_i and Y_i are independent. We are interested in testing the hypothesis $H_0: \lambda = \mu$ verses $H_1: \lambda > \mu$. Consider the statistic

$$T_n = 2\sum_{i=1}^n (I_i - 1/2)/\sqrt{n},$$

where I_i is the indicator variable $I_i = I(X_i > Y_i)$.

- (a) Derive the asymptotic distribution of T_n under the null hypothesis.
- (b) Use the Lindeberg Theorem to show that, under the local alternative hypothesis $(\lambda_n, \mu_n) = \lambda + n^{-1/2} \delta, \lambda$, where $\delta > 0$,

1

$$\frac{\sum_{i=1}^{n} (I_i - \rho_n)}{\sqrt{n\rho_n(1 - \rho_n)}} \stackrel{\mathbb{L}}{\to} N(0, 1), \text{ where } \rho_n = \frac{\lambda_n}{\lambda_n + \mu_n} = \frac{\lambda + n^{-1/2}\delta}{2\lambda + n^{-1/2}\lambda}.$$

Exercise 8.9

Suppose $X_1,...X_m$ is a simple random sample and $Y_1,...,Y_n$ is another simple random sample independent of the X_i , with $P(X_i \le t) = t^2$ for $t \in [0,1]$ and $P(Y_i \le t) = (t-\theta)^2$ for $t \in [\theta, \theta+1]$. Assume $m/(m+n) \to \rho$ as $m, n \to \infty$ and $0 < \theta < 1$.

Find the asymptotic distribution of $\sqrt{m+n}[g(\bar{Y}-\bar{X})-g(\theta)]$.