EE 232E Graphs and Network Flows

Project 1 Report

Pingyuan Yue: 504737715

Ke Xu: 604761427

Yuanyi Ding: 404773978

Table of Contents

1. Setup the graph and curve it	3
2. Generate the personal network of node 1	4
3. Analyze the community structure of core nodes	4
4. Analyze the subgraph without core nodes	6
5. Embeddedness and Dispersion	7
6. Community 1	1
7. Tagged Relationship 1	2

1. Setup the graph and curve it

We just utilized the edge list file to setup the graph using function read.graph(), the graph is connected and the diameter is 8. Figure 1.1 shows the distribution of degree of this graph.

Figure 1.1 Degree Distribution of generated graph

As for the fitting curve, we use the stat_smooth() function to generate the statistics model. After studying the shape of the curve, we determine to try four models, which are $y \sim \log(x)$, $y \sim I(1/x*a) + b*x$, $y \sim I(1/x*a) + b$ and $y \sim I(\exp(1)^{(a + b * x)})$ respectively. And as we can see from figure 1.2, the curve of $y \sim I(\exp(1)^{(a + b * x)})$ fits best.

Figure 1.2 Fitting curves with different models

The conclusion of the best model:

Formula: $y \sim I(exp(1)^(a + b * x))$ where a=-3.594 and b=-0.029 Residual standard error: 0.0006342 on 1043 degrees of freedom

Number of iterations to convergence: 15 Achieved convergence tolerance: 7.799e-07

And the MSE (total mean squared error) is 4.016458e-07 and average degree is 43.69101.

2. Generate the personal network of node 1

We generate the personal network which is the subgraph of the whole graph with node 1 and its neighbors, we can see from figure 2.1 that all the nodes (except for node 1) share a mutual friend node 1. The total edges of this personal network are 2866 and the total nodes are 348.

figure 2.1 personal network of node 1

3. Analyze the community structure of core nodes

We just implemented a for loop and totally found 40 such core nodes in the graph and the average degree of such nodes are 279.375. We selected node 1 to analyze, which is a core node, in details.

Figure 3.1 shows the community structure of personal network 1 using fast-greedy algorithm; figure 3.2 shows the community structure using edge-betweenness algorithm and figure 3.3 shows the community structure using infomap algorithms respectively.

Figure 3.1 Community Structure using fast-greedy algorithm

Figure 3.2 Community Structure using edge-betweenness algorithm

Figure 3.3 Community Structure using infomap algorithm

We see that, though determined using different algorithms, the communities in different graph have some apparent overlap, which mean these community structures have distinguish features. And it can be seen that edge-betweenness algorithm tends to break the graph into more partitions than other two algorithms.

And the modularity of 3 algorithms are 0.4131014, 0.3533022 and 0.3891185 respectively. The following figure shows community structure of the 3 algorithms.

Figure 3.4 community structure of the 3 algorithms

4. Analyze the subgraph without core nodes

Firstly we generated a graph without the core node 1 and then checked the community structure again as done above using three different algorithms. The results are shown in figure 4.1-4.3.

Figure 4.1 Community Structure using fast-greedy algorithm

Figure 4.2 Community Structure using edge-betweenness algorithm

Figure 4.3 Community Structure using infomap algorithm

Looking further into those community structures, we can find out that though they are structured without the core node, the partitions are actually similar. And this can be testified by examine the modularity of structures of problem 3 and problem 4.

And the modularity of 3 algorithms are 0.4418533, 0.4161461 and 0.4180077 respectively. The difference of modularity is about 10% between two parts.

5. Embeddedness and Dispersion

In this problem, we are required to calculate embeddedness and dispersion about the nodes in the network. Embeddedness is the number of mutual friends, which means the larger the embeddedness is, the more mutual friends you have while dispersion is the sum of distance among all mutual friends, that is to say, the larger the dispersion is, the more likely mutual friends don't know well about each other. The calculation and analysis are shown below.

It is found in problem 3 that there are 40 core nodes in the network. The distribution of embeddedness and dispersion over all core nodes are plotted below:

Embeddedness Distribution

Fig 5.1 The Embeddedness Distribution

Dispersion Distribution

Fig 5.2 The Dispersion over Distribution

Then we randomly pick 3 core nodes, node 1, node 10 and node 15, for further analysis in this problem. For each node, we generate the personal network respectively, and calculate the embeddedness and dispersion over each personal network. Then we plot 3 personal network structures with highlight of maximum dispersion node, maximum embeddedness node and maximum dispersion/embeddedness node.

For node 1:

Fig 5.3.1 Network Structure of Node 0 with Maximum Dispersion Highlighted

Fig 5.3.2 Network Structure of Node 0 with Maximum Embeddedness Highlighted

Max dispersion/embeddedness rate

Fig.5.3.3 Network Structure of Node 0 with Maximum Rate Highlighted

For node 10:

Max dispersion

Fig 5.4.1 Network Structure of Node 10 with Maximum Dispersion Highlighted

Fig 5.4.2 Network Structure of Node 10 with Maximum Embeddedness Highlighted

Max dispersion/embeddedness rate

Fig 5.4.3 Network Structure of Node 10 with Maximum Rate Highlighted

For node 15:

 $Fig\ 5.5.1\ Network\ Structure\ of\ Node\ 30\ with\ Maximum\ Dispersion\ Highlighted$

Fig 5.5.2 Network Structure of Node 30 with Maximum Embeddedness Highlighted

Max dispersion/embeddedness rate

Fig 5.5.3 Network Structure of Node 30 with Maximum Rate Highlighted Analysis:

From the result above, it could be concluded that the embeddedness indicates the closeness between two people. Dispersion means that how far away between your friends. Larger dispersion means that your mutual friends are not likely to know each other. The dispersion/embeddedness rate is the combination of the previous two features which could more accurate.

6. Community

Communities in personal network can translate into different aspects of one's life. For example, friends in your Facebook can be characterized as high school friends, college friends, and colleagues, etc. So, in this part of the project, we continue analyzing the Facebook data, we try to find out features to determine the communities with size larger than 10 that belongs to certain kind of types. Here we decide to use intimacy to distinguish two different communities. We choose to use degree, clustering coefficient and density to determine the intimacy. Below are the results:

	Type 1			Type 2		
Core-Node	Max	Max	Max	Min	Min	Min
	Degree	Clustering	Density	Degree	Clustering	Density
		Coefficient			Coefficient	
1	0.8047337	0.8909091	0.8717949	0.1911357	0.3701419	0.1963016
2	0.7202216	0.8878505	0.7818182	0.0822	0.3956786	0.0830303
3	0.6371191	0.8001407	0.6725146	0.2231445	0.4891128	0.2266865
4	0.4943464	0.7102949	0.5014085	0.3525762	0.5441022	0.356327
5	0.6082231	0.7332656	0.6149068	0.6008652	0.7060839	0.6085686
6	0.6780508	0.8099441	0.6921769	0.56375	0.7063263	0.5782051
7	0.7063712	0.8479592	0.75	0.5330161	0.6548621	0.5463415
8	0.6017287	0.7258199	0.606089	0.585851	0.7100395	0.5939878
9	0.6943483	0.7748131	0.7082353	0.6522445	0.7541058	0.6677741
10	0.855556	0.8987867	0.8850575	0.6325	0.7122071	0.6487179
11	0.7990488	0.8694466	0.8275862	0.4623757	0.6304599	0.4687976

12 0.7534626 0.8698594 0.7953216 0.09947665 0.3177334 0.1001143 13 0.7039239 0.7832022 0.7121091 0.5419403 0.7031564 0.5494673 14 0.7469008 0.8138012 0.7642706 0.5761317 0.7216312 0.5982906 15 0.5460414 0.6867534 0.5498867 0.4602361 0.6494837 0.4672094 16 0.641484 0.744532 0.6478354 0.4460425 0.6237254 0.4492059 17 0.5762167 0.7361703 0.5850816 0.5700601 0.6959259 0.5743463 18 0.5269901 0.6837864 0.5308368 0.4876908 0.6400903 0.4918951 19 0.7146814 0.8296767 0.754386 0.1568696 0.4015702 0.1583495 20 0.8322902 0.8850978 0.840293 0.6037709 0.7547022 0.6088876 21 0.845679 0.9088146 0.8954248 0.4013841 0.6357616 0.4264706 22 <							
14 0.7469008 0.8138012 0.7642706 0.5761317 0.7216312 0.5982906 15 0.5460414 0.6867534 0.5498867 0.4602361 0.6494837 0.4672094 16 0.641484 0.744532 0.6478354 0.4460425 0.6237254 0.4492059 17 0.5762167 0.7361703 0.5850816 0.5700601 0.6959259 0.5743463 18 0.5269901 0.6837864 0.5308368 0.4876908 0.6400903 0.4918951 19 0.7146814 0.8296767 0.754386 0.1568696 0.4015702 0.1583495 20 0.8322902 0.8850978 0.840293 0.6037709 0.7547022 0.6088876 21 0.845679 0.9088146 0.8954248 0.4013841 0.6357616 0.4264706 22 0.7926743 0.8430165 0.7978215 0.6955111 0.7975296 0.7120709 23 0.8888889 0.9710145 0.8903625 0.6122449 0.6588486 0.6593407 25 <t< td=""><td>12</td><td>0.7534626</td><td>0.8698594</td><td>0.7953216</td><td>0.09947665</td><td>0.3177334</td><td>0.1001143</td></t<>	12	0.7534626	0.8698594	0.7953216	0.09947665	0.3177334	0.1001143
15 0.5460414 0.6867534 0.5498867 0.4602361 0.6494837 0.4672094 16 0.641484 0.744532 0.6478354 0.4460425 0.6237254 0.4492059 17 0.5762167 0.7361703 0.5850816 0.5700601 0.6959259 0.5743463 18 0.5269901 0.6837864 0.5308368 0.4876908 0.6400903 0.4918951 19 0.7146814 0.8296767 0.754386 0.1568696 0.4015702 0.1583495 20 0.8322902 0.8850978 0.840293 0.6037709 0.7547022 0.6088876 21 0.845679 0.9088146 0.8954248 0.4013841 0.6357616 0.4264706 22 0.7926743 0.8430165 0.7978215 0.6955111 0.7975296 0.7120709 23 0.8888889 0.9710145 0.969697 0.4146939 0.6174561 0.4268908 24 0.823379 0.86417 0.828771 0.5636147 0.7104485 0.5837438 26 0.7	13	0.7039239	0.7832022	0.7121091	0.5419403	0.7031564	0.5494673
16 0.641484 0.744532 0.6478354 0.4460425 0.6237254 0.4492059 17 0.5762167 0.7361703 0.5850816 0.5700601 0.6959259 0.5743463 18 0.5269901 0.6837864 0.5308368 0.4876908 0.6400903 0.4918951 19 0.7146814 0.8296767 0.754386 0.1568696 0.4015702 0.1583495 20 0.8322902 0.8850978 0.840293 0.6037709 0.7547022 0.6088876 21 0.845679 0.9088146 0.8954248 0.4013841 0.6357616 0.4264706 22 0.7926743 0.8430165 0.7978215 0.6955111 0.7975296 0.7120709 23 0.8888889 0.9710145 0.969697 0.4146939 0.6174561 0.4268908 24 0.82327526 0.9071845 0.8903625 0.6122449 0.6588486 0.6593407 25 0.8238379 0.86417 0.828771 0.5636147 0.7104485 0.5837438 26 0	14	0.7469008	0.8138012	0.7642706	0.5761317	0.7216312	0.5982906
17 0.5762167 0.7361703 0.5850816 0.5700601 0.6959259 0.5743463 18 0.5269901 0.6837864 0.5308368 0.4876908 0.6400903 0.4918951 19 0.7146814 0.8296767 0.754386 0.1568696 0.4015702 0.1583495 20 0.8322902 0.8850978 0.840293 0.6037709 0.7547022 0.6088876 21 0.845679 0.9088146 0.8954248 0.4013841 0.6357616 0.4264706 22 0.7926743 0.8430165 0.7978215 0.6955111 0.7975296 0.7120709 23 0.8888889 0.9710145 0.969697 0.4146939 0.6174561 0.4268908 24 0.8827526 0.9071845 0.8903625 0.6122449 0.6588486 0.6593407 25 0.8238379 0.86417 0.828771 0.5636147 0.7104485 0.5837438 26 0.7943099 0.8430899 0.7995356 0.6771228 0.7834786 0.6932447 27	15	0.5460414	0.6867534	0.5498867	0.4602361	0.6494837	0.4672094
18 0.5269901 0.6837864 0.5308368 0.4876908 0.6400903 0.4918951 19 0.7146814 0.8296767 0.754386 0.1568696 0.4015702 0.1583495 20 0.8322902 0.8850978 0.840293 0.6037709 0.7547022 0.6088876 21 0.845679 0.9088146 0.8954248 0.4013841 0.6357616 0.4264706 22 0.7926743 0.8430165 0.7978215 0.6955111 0.7975296 0.7120709 23 0.8888889 0.9710145 0.969697 0.4146939 0.6174561 0.4268908 24 0.8827526 0.9071845 0.8903625 0.6122449 0.6588486 0.6593407 25 0.8238379 0.86417 0.828771 0.5636147 0.7104485 0.5837438 26 0.7943099 0.8430899 0.7995356 0.6771228 0.7834786 0.6932447 27 0.802361 0.8551278 0.8073758 0.7045455 0.7772587 0.7209302 28 0	16	0.641484	0.744532	0.6478354	0.4460425	0.6237254	0.4492059
19 0.7146814 0.8296767 0.754386 0.1568696 0.4015702 0.1583495 20 0.8322902 0.8850978 0.840293 0.6037709 0.7547022 0.6088876 21 0.845679 0.9088146 0.8954248 0.4013841 0.6357616 0.4264706 22 0.7926743 0.8430165 0.7978215 0.6955111 0.7975296 0.7120709 23 0.8888889 0.9710145 0.969697 0.4146939 0.6174561 0.4268908 24 0.8827526 0.9071845 0.8903625 0.6122449 0.6588486 0.6593407 25 0.8238379 0.86417 0.828771 0.5636147 0.7104485 0.5837438 26 0.7943099 0.8430899 0.7995356 0.6771228 0.7834786 0.6932447 27 0.802361 0.8551278 0.8073758 0.7045455 0.7772587 0.7209302 28 0.8711111 0.9370277 0.9333333 0.7455621 0.8048808 0.7538462 29 0	17	0.5762167	0.7361703	0.5850816	0.5700601	0.6959259	0.5743463
20 0.8322902 0.8850978 0.840293 0.6037709 0.7547022 0.6088876 21 0.845679 0.9088146 0.8954248 0.4013841 0.6357616 0.4264706 22 0.7926743 0.8430165 0.7978215 0.6955111 0.7975296 0.7120709 23 0.8888889 0.9710145 0.969697 0.4146939 0.6174561 0.4268908 24 0.8827526 0.9071845 0.8903625 0.6122449 0.6588486 0.6593407 25 0.8238379 0.86417 0.828771 0.5636147 0.7104485 0.5837438 26 0.7943099 0.8430899 0.7995356 0.6771228 0.7834786 0.6932447 27 0.802361 0.8551278 0.8073758 0.70454555 0.7772587 0.7209302 28 0.8711111 0.9370277 0.9333333 0.7455621 0.8048808 0.7538462 29 0.8550013 0.8913101 0.8618413 0.5612245 0.6774194 0.6043956 30 <td< td=""><td>18</td><td>0.5269901</td><td>0.6837864</td><td>0.5308368</td><td>0.4876908</td><td>0.6400903</td><td>0.4918951</td></td<>	18	0.5269901	0.6837864	0.5308368	0.4876908	0.6400903	0.4918951
21 0.845679 0.9088146 0.8954248 0.4013841 0.6357616 0.4264706 22 0.7926743 0.8430165 0.7978215 0.6955111 0.7975296 0.7120709 23 0.8888889 0.9710145 0.969697 0.4146939 0.6174561 0.4268908 24 0.8827526 0.9071845 0.8903625 0.6122449 0.6588486 0.6593407 25 0.8238379 0.86417 0.828771 0.5636147 0.7104485 0.5837438 26 0.7943099 0.8430899 0.7995356 0.6771228 0.7834786 0.6932447 27 0.802361 0.8551278 0.8073758 0.7045455 0.7772587 0.7209302 28 0.8711111 0.9370277 0.9333333 0.7455621 0.8048808 0.7538462 29 0.85550013 0.8913101 0.8618413 0.5612245 0.6774194 0.6043956 30 0.7178218 0.8046302 0.721393 0.7178218 0.8046302 0.721393 31	19	0.7146814	0.8296767	0.754386	0.1568696	0.4015702	0.1583495
22 0.7926743 0.8430165 0.7978215 0.6955111 0.7975296 0.7120709 23 0.8888889 0.9710145 0.969697 0.4146939 0.6174561 0.4268908 24 0.8827526 0.9071845 0.8903625 0.6122449 0.6588486 0.6593407 25 0.8238379 0.86417 0.828771 0.5636147 0.7104485 0.5837438 26 0.7943099 0.8430899 0.7995356 0.6771228 0.7834786 0.6932447 27 0.802361 0.8551278 0.8073758 0.7045455 0.7772587 0.7209302 28 0.871111 0.9370277 0.9333333 0.7455621 0.8048808 0.7538462 29 0.8550013 0.8913101 0.8618413 0.5612245 0.6774194 0.6043956 30 0.7178218 0.8046302 0.721393 0.7178218 0.8046302 0.721393 31 0.7781178 0.841428 0.7823012 0.6666667 0.8174387 0.7227227 32 0.	20	0.8322902	0.8850978	0.840293	0.6037709	0.7547022	0.6088876
23 0.8888889 0.9710145 0.969697 0.4146939 0.6174561 0.4268908 24 0.8827526 0.9071845 0.8903625 0.6122449 0.6588486 0.6593407 25 0.8238379 0.86417 0.828771 0.5636147 0.7104485 0.5837438 26 0.7943099 0.8430899 0.7995356 0.6771228 0.7834786 0.6932447 27 0.802361 0.8551278 0.8073758 0.7045455 0.7772587 0.7209302 28 0.871111 0.9370277 0.9333333 0.7455621 0.8048808 0.7538462 29 0.8550013 0.8913101 0.8618413 0.5612245 0.6774194 0.6043956 30 0.7178218 0.8046302 0.721393 0.7178218 0.8046302 0.721393 31 0.7781178 0.841428 0.7823012 0.6666667 0.8174387 0.7272727 32 0.7535322 0.8195464 0.7576953 0.4142012 0.6386139 0.4487179 33 0.	21	0.845679	0.9088146	0.8954248	0.4013841	0.6357616	0.4264706
24 0.8827526 0.9071845 0.8903625 0.6122449 0.6588486 0.6593407 25 0.8238379 0.86417 0.828771 0.5636147 0.7104485 0.5837438 26 0.7943099 0.8430899 0.7995356 0.6771228 0.7834786 0.6932447 27 0.802361 0.8551278 0.8073758 0.7045455 0.7772587 0.7209302 28 0.8711111 0.9370277 0.9333333 0.7455621 0.8048808 0.7538462 29 0.8550013 0.8913101 0.8618413 0.5612245 0.6774194 0.6043956 30 0.7178218 0.8046302 0.721393 0.7178218 0.8046302 0.721393 31 0.7781178 0.841428 0.7823012 0.6666667 0.8174387 0.7272727 32 0.7535322 0.8195464 0.7576953 0.4142012 0.6386139 0.4487179 33 0.7636031 0.834086 0.7679172 0.664952 0.7707755 0.6711665 34 0.	22	0.7926743	0.8430165	0.7978215	0.6955111	0.7975296	0.7120709
25 0.8238379 0.86417 0.828771 0.5636147 0.7104485 0.5837438 26 0.7943099 0.8430899 0.7995356 0.6771228 0.7834786 0.6932447 27 0.802361 0.8551278 0.8073758 0.7045455 0.7772587 0.7209302 28 0.8711111 0.9370277 0.9333333 0.7455621 0.8048808 0.7538462 29 0.8550013 0.8913101 0.8618413 0.5612245 0.6774194 0.6043956 30 0.7178218 0.8046302 0.721393 0.7178218 0.8046302 0.721393 31 0.7781178 0.841428 0.7823012 0.66666667 0.8174387 0.72272727 32 0.7535322 0.8195464 0.7576953 0.4142012 0.6386139 0.4487179 33 0.7636031 0.834086 0.7679172 0.664952 0.7707755 0.6711665 34 0.7701048 0.8326006 0.7744557 0.6736111 0.7734894 0.5434592 36	23	0.888889	0.9710145	0.969697	0.4146939	0.6174561	0.4268908
26 0.7943099 0.8430899 0.7995356 0.6771228 0.7834786 0.6932447 27 0.802361 0.8551278 0.8073758 0.7045455 0.7772587 0.7209302 28 0.8711111 0.9370277 0.9333333 0.7455621 0.8048808 0.7538462 29 0.8550013 0.8913101 0.8618413 0.5612245 0.6774194 0.6043956 30 0.7178218 0.8046302 0.721393 0.7178218 0.8046302 0.721393 31 0.7781178 0.841428 0.7823012 0.6666667 0.8174387 0.7272727 32 0.7535322 0.8195464 0.7576953 0.4142012 0.6386139 0.4487179 33 0.7636031 0.834086 0.7679172 0.664952 0.7707755 0.6711665 34 0.7701048 0.8326006 0.7744557 0.6736111 0.7734894 0.7028986 35 0.8546221 0.8945076 0.8631683 0.7426036 0.8040176 0.7664618 37 <td< td=""><td>24</td><td>0.8827526</td><td>0.9071845</td><td>0.8903625</td><td>0.6122449</td><td>0.6588486</td><td>0.6593407</td></td<>	24	0.8827526	0.9071845	0.8903625	0.6122449	0.6588486	0.6593407
27 0.802361 0.8551278 0.8073758 0.7045455 0.7772587 0.7209302 28 0.8711111 0.9370277 0.9333333 0.7455621 0.8048808 0.7538462 29 0.8550013 0.8913101 0.8618413 0.5612245 0.6774194 0.6043956 30 0.7178218 0.8046302 0.721393 0.7178218 0.8046302 0.721393 31 0.7781178 0.841428 0.7823012 0.6666667 0.8174387 0.7272727 32 0.7535322 0.8195464 0.7576953 0.4142012 0.6386139 0.4487179 33 0.7636031 0.834086 0.7679172 0.664952 0.7707755 0.6711665 34 0.7701048 0.8326006 0.7744557 0.6736111 0.7734894 0.7028986 35 0.8753909 0.9030825 0.8819237 0.5354671 0.6415334 0.5434592 36 0.8546221 0.8945076 0.8631683 0.7426036 0.8040176 0.7664618 37 <td< td=""><td>25</td><td>0.8238379</td><td>0.86417</td><td>0.828771</td><td>0.5636147</td><td>0.7104485</td><td>0.5837438</td></td<>	25	0.8238379	0.86417	0.828771	0.5636147	0.7104485	0.5837438
28 0.8711111 0.9370277 0.9333333 0.7455621 0.8048808 0.7538462 29 0.8550013 0.8913101 0.8618413 0.5612245 0.6774194 0.6043956 30 0.7178218 0.8046302 0.721393 0.7178218 0.8046302 0.721393 31 0.7781178 0.841428 0.7823012 0.6666667 0.8174387 0.7272727 32 0.7535322 0.8195464 0.7576953 0.4142012 0.6386139 0.4487179 33 0.7636031 0.834086 0.7679172 0.664952 0.7707755 0.6711665 34 0.7701048 0.8326006 0.7744557 0.6736111 0.7734894 0.7028986 35 0.8753909 0.9030825 0.8819237 0.5354671 0.6415334 0.5434592 36 0.8546221 0.8945076 0.8631683 0.7426036 0.8040176 0.7664618 37 0.7830744 0.8464978 0.7880941 0.5535754 0.7227248 0.5577376 38 <t< td=""><td>26</td><td>0.7943099</td><td>0.8430899</td><td>0.7995356</td><td>0.6771228</td><td>0.7834786</td><td>0.6932447</td></t<>	26	0.7943099	0.8430899	0.7995356	0.6771228	0.7834786	0.6932447
29 0.8550013 0.8913101 0.8618413 0.5612245 0.6774194 0.6043956 30 0.7178218 0.8046302 0.721393 0.7178218 0.8046302 0.721393 31 0.7781178 0.841428 0.7823012 0.6666667 0.8174387 0.7272727 32 0.7535322 0.8195464 0.7576953 0.4142012 0.6386139 0.4487179 33 0.7636031 0.834086 0.7679172 0.664952 0.7707755 0.6711665 34 0.7701048 0.8326006 0.7744557 0.6736111 0.7734894 0.7028986 35 0.8753909 0.9030825 0.8819237 0.5354671 0.6415334 0.5434592 36 0.8546221 0.8945076 0.8631683 0.7426036 0.8040176 0.7664618 37 0.7830744 0.8464978 0.7880941 0.5535754 0.7227248 0.5577376 38 0.7871585 0.8382447 0.7924062 0.7091837 0.8260638 0.77777778 39 <	27	0.802361	0.8551278	0.8073758	0.7045455	0.7772587	0.7209302
30 0.7178218 0.8046302 0.721393 0.7178218 0.8046302 0.721393 31 0.7781178 0.841428 0.7823012 0.6666667 0.8174387 0.7272727 32 0.7535322 0.8195464 0.7576953 0.4142012 0.6386139 0.4487179 33 0.7636031 0.834086 0.7679172 0.664952 0.7707755 0.6711665 34 0.7701048 0.8326006 0.7744557 0.6736111 0.7734894 0.7028986 35 0.8753909 0.9030825 0.8819237 0.5354671 0.6415334 0.5434592 36 0.8546221 0.8945076 0.8631683 0.7426036 0.8040176 0.7664618 37 0.7830744 0.8464978 0.7880941 0.5535754 0.7227248 0.5577376 38 0.7871585 0.8382447 0.7924062 0.7091837 0.8260638 0.7354497 39 0.7779021 0.8783784 0.8030303 0.7361111 0.8329676 0.7777778	28	0.8711111	0.9370277	0.9333333	0.7455621	0.8048808	0.7538462
31 0.7781178 0.841428 0.7823012 0.6666667 0.8174387 0.7272727 32 0.7535322 0.8195464 0.7576953 0.4142012 0.6386139 0.4487179 33 0.7636031 0.834086 0.7679172 0.664952 0.7707755 0.6711665 34 0.7701048 0.8326006 0.7744557 0.6736111 0.7734894 0.7028986 35 0.8753909 0.9030825 0.8819237 0.5354671 0.6415334 0.5434592 36 0.8546221 0.8945076 0.8631683 0.7426036 0.8040176 0.7664618 37 0.7830744 0.8464978 0.7880941 0.5535754 0.7227248 0.5577376 38 0.7871585 0.8382447 0.7924062 0.7091837 0.8260638 0.7354497 39 0.7779021 0.8783784 0.8030303 0.7361111 0.8329676 0.7777778	29	0.8550013	0.8913101	0.8618413	0.5612245	0.6774194	0.6043956
32 0.7535322 0.8195464 0.7576953 0.4142012 0.6386139 0.4487179 33 0.7636031 0.834086 0.7679172 0.664952 0.7707755 0.6711665 34 0.7701048 0.8326006 0.7744557 0.6736111 0.7734894 0.7028986 35 0.8753909 0.9030825 0.8819237 0.5354671 0.6415334 0.5434592 36 0.8546221 0.8945076 0.8631683 0.7426036 0.8040176 0.7664618 37 0.7830744 0.8464978 0.7880941 0.5535754 0.7227248 0.5577376 38 0.7871585 0.8382447 0.7924062 0.7091837 0.8260638 0.7354497 39 0.7779021 0.8783784 0.8030303 0.7361111 0.8329676 0.7777778	30	0.7178218	0.8046302	0.721393	0.7178218	0.8046302	0.721393
33 0.7636031 0.834086 0.7679172 0.664952 0.7707755 0.6711665 34 0.7701048 0.8326006 0.7744557 0.6736111 0.7734894 0.7028986 35 0.8753909 0.9030825 0.8819237 0.5354671 0.6415334 0.5434592 36 0.8546221 0.8945076 0.8631683 0.7426036 0.8040176 0.7664618 37 0.7830744 0.8464978 0.7880941 0.5535754 0.7227248 0.5577376 38 0.7871585 0.8382447 0.7924062 0.7091837 0.8260638 0.7354497 39 0.7779021 0.8783784 0.8030303 0.7361111 0.8329676 0.7777778	31	0.7781178	0.841428	0.7823012	0.6666667	0.8174387	0.7272727
34 0.7701048 0.8326006 0.7744557 0.6736111 0.7734894 0.7028986 35 0.8753909 0.9030825 0.8819237 0.5354671 0.6415334 0.5434592 36 0.8546221 0.8945076 0.8631683 0.7426036 0.8040176 0.7664618 37 0.7830744 0.8464978 0.7880941 0.5535754 0.7227248 0.5577376 38 0.7871585 0.8382447 0.7924062 0.7091837 0.8260638 0.7354497 39 0.7779021 0.8783784 0.8030303 0.7361111 0.8329676 0.7777778	32	0.7535322	0.8195464	0.7576953	0.4142012	0.6386139	0.4487179
35 0.8753909 0.9030825 0.8819237 0.5354671 0.6415334 0.5434592 36 0.8546221 0.8945076 0.8631683 0.7426036 0.8040176 0.7664618 37 0.7830744 0.8464978 0.7880941 0.5535754 0.7227248 0.5577376 38 0.7871585 0.8382447 0.7924062 0.7091837 0.8260638 0.7354497 39 0.7779021 0.8783784 0.8030303 0.7361111 0.8329676 0.7777778	33	0.7636031	0.834086	0.7679172	0.664952	0.7707755	0.6711665
36 0.8546221 0.8945076 0.8631683 0.7426036 0.8040176 0.7664618 37 0.7830744 0.8464978 0.7880941 0.5535754 0.7227248 0.5577376 38 0.7871585 0.8382447 0.7924062 0.7091837 0.8260638 0.7354497 39 0.77779021 0.8783784 0.8030303 0.7361111 0.8329676 0.7777778	34	0.7701048	0.8326006	0.7744557	0.6736111	0.7734894	0.7028986
37 0.7830744 0.8464978 0.7880941 0.5535754 0.7227248 0.5577376 38 0.7871585 0.8382447 0.7924062 0.7091837 0.8260638 0.7354497 39 0.7779021 0.8783784 0.8030303 0.7361111 0.8329676 0.7777778	35	0.8753909	0.9030825	0.8819237	0.5354671	0.6415334	0.5434592
38 0.7871585 0.8382447 0.7924062 0.7091837 0.8260638 0.7354497 39 0.7779021 0.8783784 0.8030303 0.7361111 0.8329676 0.7777778	36	0.8546221	0.8945076	0.8631683	0.7426036	0.8040176	0.7664618
39 0.7779021 0.8783784 0.8030303 0.7361111 0.8329676 0.7777778	37	0.7830744	0.8464978	0.7880941	0.5535754	0.7227248	0.5577376
	38	0.7871585	0.8382447	0.7924062	0.7091837	0.8260638	0.7354497
40 0.8571429 0.9250535 0.9230769 0.1795482 0.3726708 0.1826981	39	0.7779021	0.8783784	0.8030303	0.7361111	0.8329676	0.7777778
	40	0.8571429	0.9250535	0.9230769	0.1795482	0.3726708	0.1826981

The maximum values of the above three features indicate that the community share a high intimacy, we believe this kind of community should be "classmate" type. The minimum values of the above three features indicate that the community share a low intimacy, we believe this kind of community should be like "normal friends" or "friends just meet" type.

7. Tagged Relationship

In this part of the project, we analyze another real social network called Google+ ego networks. We created personal network for users who have more than 2 circles and extract the community structure of each personal network using both Walktrap and Infomap algorithms. Due to the scale of our network is very large, in the report we choose to present the structures of two random chosen users.

First user:

The ID of the user with more than 2 circles is 7, with number of circles equals to 4.

Overlap of the 1 st circle				
Community 1	0			
Community 2	0.01433121			
Community 3	0.11053985			
Community 4	0			
Overlap of the 2 nd circle				
Community 1	0.01785714			
Community 2	0.35509554			
Community 3	0.01542416			
Community 4	0.13157895			
Overlap of the 3 rd circle				
Community 1	0.05357143			
Community 2	0.61783439			
Community 3	0.02570694			
Community 4	0.80701754			
Overlap of the 4 th circle				
Community 1	0.03571429			
Community 2	0.08917197			
Community 3	0.37017995			
Community 4	0.01754386			

Second user:

The ID of the user with more than 2 circles is 12, with number of circles equals to 3

Overlap of the 1 st circle			
Community 1	0.05579399		
Community 2	0		
Community 3	0		
Community 4	0.7053292		
Overlap of the 2 nd circle			
Community 1	0.07296137		
Community 2	0		
Community 3	0		
Community 4	0.3134796		
Overlap of the 3 rd circle			
Community 1	0.05150215		
Community 2	0		
Community 3	0		
Community 4	0.1128527		