FUNKCIJŲ TYRIMAS

G. Stepanauskas

2009 12 12

Turinys

1	Funkcijos monotoniškumas					
2		2 3 3				
3	Funkcijos grafiko išgaubtumas					
4	Funkcijos grafiko vingių taškai 4.1 Būtina funkcijos grafiko vingio taško sąlyga					
5	Funkcijos grafiko asimptotės					
6	Bendroji funkcijos tyrimo schema	9				

1 Funkcijos monotoniškumas

1 apibrėžimas. Funkcija f(x) vadinama didėjančia (mažėjančia) intervale (a, b) (intervalas gali būti ir uždaras, ir begalinis), jei

$$\forall x_1, x_2 \in (a, b), x_1 < x_2 \Rightarrow f(x_1) < f(x_2) \ (f(x_1) > f(x_2)). \tag{1}$$

 \check{Z} ymima $f(x) \uparrow (f(x) \downarrow)$.

Funkcija f(x) vadinama **nedidėjančia** (**nemažėjančia**) **intervale** (**a**, **b**) (intervalas gali būti ir uždaras, ir begalinis), jei

$$\forall x_1, x_2 \in (a, b), x_1 < x_2 \Rightarrow f(x_1) \ge f(x_2) \ (f(x_1) \le f(x_2)). \tag{2}$$

 \check{Z} ymima f(x) χ (f(x)).

Visos šios keturios rūšys funkcijų vadinamos **monotoninėmis** funkcijomis. Funkcijos, tenkinančios (1) reikalavimą, vadinamos **griežtai monotoninėmis**, o funkcijos, tenkinančios (1), vadinamos **negriežtai monotoninėmis**.

1 teorema. Tegul funkcija f(x) intervale (a,b) turi teigiamą (neigiamą) išvestinę. Tuomet f(x) didėja (mažėja) intervale (a,b).

Irodymas. Tegul $f'(x)>0 \ \forall x\in (a,b)$ ir $x_1,x_2\in (a,b),\ x_1< x_2$. Iš Lagranžo formulės gausime

$$f(x_2) - f(x_1) = f'(c)(x_2 - x_1), c \in (x_1, x_2),$$

 $\Rightarrow f(x_2) > f(x_1), \text{ t.y. } f(x) \uparrow.$

Kai $f'(x) < 0 \ \forall x \in (a, b)$, įrodymas analogiškas. Teorema įrodyta.

Teoremos sąlyga f'(x) > 0 (< 0) nėra būtina funkcijai didėti (mažėti). Teoremos teiginys yra teisingas ir tada, kai f'(x) = 0 baigtiniam intervalo (a,b) taškų skaičiui, o kituose intervalo (a,b) taškuose yra teigiama (neigiama).

2 Funkcijos ekstremumai

2 apibrėžimas. Funkcijos f(x) reikšmė $f(x_0)$ vadinama fukcijos lokaliuoju **maksimumu** (**minimumu**), jei egzistuoja tokia taško x_0 aplinka $(x_0-\delta, x_0+\delta)$, kad

$$\forall x \in (x_0 - \delta, x_0 + \delta) \Rightarrow f(x) \le f(x_0) \ (f(x) \ge f(x_0)). \tag{3}$$

Jeigu teisinga ir

$$\forall x \in (x_0 - \delta, x_0 + \delta), x \neq x_0 \Rightarrow f(x) < f(x_0) \ (f(x) > f(x_0)), \tag{4}$$

tai maksimumo (minimumo) taškas x_0 vadinamas lokaliuoju **griežtojo maksimumo** (minimumo) tašku.

Funkcijos lokalieji maksimumai ir minimumai vadinami funkcijos **ekstremu**mais.

Jeigu funkcija f(x) apibrėžta uždarame (pusiau uždarame) intervale [a, b] ([a, b) arba (a, b]), tai taškuose a ir b (viename iš jų) funkcija gali įgyti kraštinius maksimumą arba minimumą. Taškas a vadinamas **kraštinio maksimumo** (**minimumo**) tašku, jei egzistuoja tokia taško a dešininė aplinka $(a, a + \delta)$, kad

$$\forall x \in (a, a + \delta) \Rightarrow f(x) \le f(a) \ (f(x) \ge f(a)). \tag{5}$$

Analogiškai apibrėžiamas kraštinis maksimumas ir minimumas taške b.

2.1 Būtina ekstremumo sąlyga

2 teorema. Tarkime, funkcija f(x) yra abibrėžta intervale (a,b), o jo vidiniame taške c turi ekstremumą. Jei taške c funkcija f(x) turi išvestinę, tai f'(c) = 0.

Taigi **būtina ektremumo** (taške x = c) **sąlyga** – funkcijos išvestinė tame taške lygi nuliui: f'(c) = 0.

Pastebėkime, kad tai tik būtina ekstremumo sąlyga. Jei kokiame nors taške $f'(x_0) = 0$, tai dar nereiškia, kad taške x_0 funkcija turės ekstremumą. Pavyzdžiui, funkcija $f(x) = x^3$ taške x = 0 ekstremumo neturi nors f'(0) = 0.

Ekstremumas gali būti ir tokiame taške, kuriame funkcija neturi išvestinės. Pavyzdžiui, funkcija f(x) = |x| taške x = 0 neturi išvestinės, tačiau taškas x = 0 yra funkcijos minimumo taškas. Kitas pavyzdys $f(x) = \sqrt[3]{x}$. Ši funkcija taške x = 0 neturi nei išvestinės, nei ekstremumo.

Taškai, kuriuose funkcijos išvestinė lygi nuliui arba išvestinės neturi vadinami funkcijos **kritiniais taškais**.

2.2 Pakankamos ekstremumo sąlygos

3 teorema. Tarkime, kad funkcija f(x) taške x_0 yra tolydi ir taško x_0 aplinkoje $(x_0-\delta,x_0+\delta)$ (išskyrus galbūt patį tašką x_0) turi baigtinę išvestinę f'(x). Tuomet

	$(x_0 - \delta, x_0)$	$(x_0, x_0 + \delta)$	
$\int jei f'(x)$	+	_	$\Rightarrow x_0 \text{ yra } f(x) \text{ maksimumo taškas}$
$\int g dx f'(x)$	_	+	$\Rightarrow x_0 \text{ yra } f(x) \text{ minimumo taškas}$
jei f'(x)	+	+	$\Rightarrow x_0 \text{ nėra } f(x) \text{ ekstremumo taškas}$
jei f'(x)	_	_	$\Rightarrow x_0$ nėra $f(x)$ ekstremumo taškas

Irodymas. Tegul $x \in (x_0 - \delta, x_0 + \delta), x \neq x_0$. Iš Lagranžo formulės turėsime

$$f(x) - f(x_0) = f'(c)(x - x_0), c \text{ yra tarp } x \text{ if } x_0$$
 (6)

Tegul išvestinė taške x_0 keičia ženklą iš + į -, t.y. patenkinta pirma sąlyga lentelėje. Tuomet kai $x < x_0$, f'(c) > 0, o kai $x > x_0$, f'(c) < 0. Taigi dešinioji (6) lygybės pusė visada neigiama, nes daugikliai yra priešingų ženklų. Neigiama turi būti ir dešinioji (6) lygybės pusė. Todėl $f(x) < f(x_0)$, kai $x \in (x_0 - \delta, x_0 + \delta), x \neq x_0$, ir taške x_0 funkcija turi maksimumą.

Kai išvestinė taške x_0 keičia ženklą iš - į +, įrodymas analogiškas.

Kai išvestinė abiejose taško x_0 pusėse yra teigiama, t.y. turi ženklą +, tuomet $f(x) < f(x_0)$, kai $x \in (x_0 - \delta, x_0)$, ir $f(x) > f(x_0)$, kai $x \in (x_0, x_0 + \delta)$. Todėl ekstremumo taške x_0 funkcija neturės.

Kai išvestinė abiejose taško x_0 pusėse yra neigiama, t.y. turi ženklą –, samprotaujame analogiškai. Teorema įrodyta.

4 teorema. Tarkime, kad $f'(x_0) = 0$. Tuomet

$$|jei\ f''(x_0) < 0| \Rightarrow x_0 \ yra\ f(x) \ maksimumo\ taškas$$

 $|jei\ f''(x_0) > 0| \Rightarrow x_0 \ yra\ f(x) \ minimumo\ taškas$

Irodymas. Antroji funkcijos f(x) išvestinė yra pirmosios išvestinės išvestinė. Todėl

$$f''(x_0) = \lim_{x \to x_0} \frac{f'(x) - f'(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f'(x)}{x - x_0}.$$

Tegul $f''(x_0) < 0$. Iš ribos savybių turėsime, kad egzistuoja tokia taško x_0 aplinka $(x_0 - \delta, x_0 + \delta)$, kad jei

$$x \in (x_0 - \delta, x_0 + \delta) \Rightarrow \frac{f'(x)}{x - x_0} < 0.$$

Iš pastarosios nelygybės gausime, kad f'(x) taške x_0 keičia ženklą iš + į -. Taigi taške x_0 turime maksimumą.

Kai
$$f''(x_0) > 0$$
, įrodymas analogiškas. Teorema įrodyta.

5 teorema. Tarkime, kad $f'(x_0) = f''(x_0) = \cdots = f^{(n-1)}(x_0) = 0$, taške x_0 funkcija f(x) turi tolydžią n-ąją išvestinę, $f^{(n)}(x_0) \neq 0$ ir n – lyginis skaičius. Tuomet

$$|jei\ f^{(n)}(x_0) < 0| \Rightarrow x_0 \ yra\ f(x) \ maksimumo\ taškas$$

 $|jei\ f^{(n)}(x_0) > 0| \Rightarrow x_0 \ yra\ f(x) \ minimumo\ taškas$

Irodymas. Užrašykime funkcijos f(x) Teiloro formulę su Lagranžo liekamuoju nariu:

$$f(x) - f(x_0) = \frac{f'(x_0)}{1!} (x - x_0) + \frac{f''(x_0)}{2!} (x - x_0)^2 + \dots$$

$$+ \frac{f^{(n-1)}(x_0)}{(n-1)!} (x - x_0)^{n-1} + \frac{f^{(n)}(c)}{n!} (x - x_0)^n$$

$$= \frac{f^{(n)}(c)}{n!} (x - x_0)^n, c \text{ yra tarp } x \text{ if } x_0 . \tag{7}$$

Tarkime, $f^{(n)}(x_0) < 0$. Kadangi $f^{(n)}(x)$ yra tolydi funkcija taške x_0 , tai egzistuoja tokia taško x_0 aplinka $(x_0 - \delta, x_0 + \delta)$, kad joje $f^{(n)}(x) < \delta$

0. Imkime x iš minėtos aplinkos, tuomet ir c priklausys tai aplinkai ir $f^{(n)}(c) < 0$. Kadangi n yra lyginis skaičius, tai (7) lygybės dešinioji pusė visada neteigiama. Tokia turi būti ir kairioji. Taigi $f(x) \leq f(x_0)$ ir todėl funkcija f(x) taške x_0 turi maksimumą.

Kai $f^{(n)}(x_0) > 0$, įrodymas analogiškas. Teorema įrodyta.

3 Funkcijos grafiko išgaubtumas

3 apibrėžimas. Funkcijos f(x) grafikas vadinamas **išgaubtu** (iškilu) aukštyn (žemyn) intervale (a,b), jeigu visuose intervalo (a,b) taškuose egzistuoja grafiko liestinė ir jeigu visi grafiko taškai šiame intervale yra po liestine (virš liestinės), nubrėžta per bet kurį grafiko tašką $(x, f(x)), x \in (a,b)$.

6 teorema. Tegul funkcija f(x) intervale (a,b) turi neigiamą (teigiamą) antrąją išvestinę. Tuomet funkcijos f(x) grafikas intervale (a,b) yra išgaubtas aukštyn (žemyn).

Irodymas. Tarkime $f''(x) < 0, \forall x \in (a, b)$. Tegul x_0 bet kuris intervalo (a, b) taškas. Funkcijos f(x) grafiko liestinės taške x_0 lygtis yra tokia:

$$Y = f(x_0) + f'(x_0)(x - x_0). (8)$$

Užrašykime funkcijos f(x) Teiloro formule:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(c)}{2}(x - x_0)^2, c \text{ yra tarp } x \text{ if } x_0.$$
 (9)

Dabar iš (8) lygties atimkime (9) lygtį. Gausime

$$Y - f(x) = -\frac{f''(c)}{2}(x - x_0)^2.$$

Pastarosios lygybės dešinioji pusė nemažesnė už 0 $\forall x \in (a,b)$. Todėl

$$Y - f(x) \ge 0,$$

ir f(x) grafiko taškai intervale (a,b) yra po grafiko liestine. Taigi funkcijos f(x) grafikas yra išgaubtas aukštyn.

Kai $f''(x) > 0, \forall x \in (a, b)$, įrodymas analogiškas. Teorema įrodyta.

4 Funkcijos grafiko vingių taškai

4 apibrėžimas. Funkcijos f(x) grafiko taškas (c, f(c)) vadinamas grafiko **vingio** (perlinkio) tašku, jei egzistuoja grafiko liestinė taške (c, f(c)) ir tokia taško c aplinka, kurioje funkcijos f(x) grafikas į kairę ir į dešinę nuo taško c turi skirtingo išgaubtumo kryptis.

4.1 Būtina funkcijos grafiko vingio taško sąlyga

7 teorema. Tegul taškas (c, f(c)) yra funkcijos f(x) grafiko vingio taškas ir taške c funkcija turi tolydžią antrąją išvestinę. Tuomet f''(c) = 0.

Irodymas. Tarkime f''(c) > 0. Tuomet iš funkcijos f''(x) tolydumo taške c išplaukia, kad egzistuoja taško c aplinka $(c - \delta, c + \delta)$ kurioje f''(x) išlieka teigiama. Todėl intervale $(c - \delta, c + \delta)$ funkcijos grafikas bus išgaubtas aukštyn ir taškas c nebus vingio taškas. Gautoji prieštara paneigia prielaidą, kad f''(c) > 0.

Kai f''(c) < 0, samprotaujame analogiškai. Taigi f''(c) = 0. Teorema įrodyta.

Grafiko vingio taškas gali būti ir toks, kuriame funkcija neturi antrosios išvestinės. Pavyzdžiui, funkcija $f(x) = \sqrt[3]{x}$ taške x = 0 neturi net pirmosios išvestinės, tačiau taškas x = 0 yra funkcijos grafiko vingio taškas.

4.2 Pakankamos funkcijos grafiko vingio taškų sąlygos

8 teorema. Tarkime, kad funkcija f(x) taške x_0 yra tolydi ir jos grafikas turi liestinę taške $(x_0, f(x_0))$. Be to, tegul taško x_0 aplinkoje $(x_0 - \delta, x_0 + \delta)$ (išskyrus galbūt patį tašką x_0) turi baigtinę antrąją išvestinę f''(x). Tuomet

	$(x_0 - \delta, x_0)$	$(x_0, x_0 + \delta)$	
$\int e^{i} f''(x)$	+	_	$\Rightarrow (x_0, f(x_0))$ yra vingio taškas
$\int jei f''(x)$	_	+	$\Rightarrow (x_0, f(x_0))$ yra vingio taškas
jei f''(x)	+	+	$\Rightarrow (x_0, f(x_0))$ nėra vingio taškas
jei f''(x)	_	_	$\Rightarrow (x_0, f(x_0))$ nėra vingio taškas

Irodymas. Kai f''(x) į kairę ir į dešinę nuo x_0 turi skirtingus ženklus, tai, remiantis 6 teorema, iškilumo kryptis į kairę ir į dešinę nuo x_0 nevienoda. Taigi taške $(x_0, f(x_0))$ funkcijos grafikas turės vingį.

Jeigu f''(x) į kairę ir į dešinę nuo x_0 turi vienodus ženklus, tai iškilumo kryptis į kairę ir į dešinę nuo x_0 ta pati. Todėl taške $(x_0, f(x_0))$ funkcijos grafikas vingio neturės. Teorema įrodyta.

9 teorema. Tarkime, kad funkcija f(x) taške x_0 turi baigtinę trečiąją išvestinę, $f''(x_0) = 0$, o $f'''(x_0) \neq 0$. Tuomet taškas $(x_0, f(x_0))$ yra funkcijos f(x) grafiko vingio taškas.

Irodymas. Kadangi funkcija taške x_0 turi trečiąją išvestinę, tai kažkokioje taško x_0 aplinkoje turi antrąją ir pirmąją išvestines. Todėl f(x) yra tolydi taške x_0 ir jos grafikas turi liestinę taške $(x_0, f(x_0))$.

Tarkime, $f'''(x_0) > 0$. Pagal išvestinės apibrėžimą

$$f'''(x_0) = \lim_{x \to x_0} \frac{f''(x) - f''(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f''(x)}{x - x_0}.$$

Iš ribos savybių išplaukia, kad egzistuoja tokia taško x_0 aplinka, kurioje

$$\frac{f''(x)}{x - x_0} > 0.$$

Iš pastarosios nelygybės turime, kad f''(x) į kairę nuo x_0 yra neigiama, o į dešinę nuo x_0 yra teigiama. Iš 8 teoremos gauname, kad taškas $(x_0, f(x_0))$ yra funkcijos f(x) grafiko vingio taškas.

Kai $f'''(x_0) < 0$, samprotaujame analogiškai. Teorema įrodyta.

10 teorema. Tarkime, kad $f''(x_0) = f'''(x_0) = \cdots = f^{(n-1)}(x_0) = 0$, taške x_0 funkcija f(x) turi tolydžią n-ąją išvestinę, $f^{(n)}(x_0) \neq 0$ ir n – nelyginis skaičius. Tuomet taškas $(x_0, f(x_0))$ yra funkcijos f(x) grafiko vingio taškas.

Irodymas. Pagal teoremos sąlygas grafiko liestinė taške $(x_0, f(x_0))$ egzistuoja, nes funkcija f(x) turi pirmąją išvestinę taške x_0 , ir pati funkcija taške x_0 yra tolydi. Užrašykime Teiloro formulę funkcijai f''(x):

$$f''(x) = f''(x_0) + \frac{f'''(x_0)}{1!}(x - x_0) + \frac{f^{IV}(x_0)}{2!}(x - x_0)^2 + \dots$$

$$+ \frac{f^{(n-1)}(x_0)}{(n-3)!}(x - x_0)^{n-3} + \frac{f^{(n)}(c)}{(n-2)!}(x - x_0)^{n-2}$$

$$= \frac{f^{(n)}(c)}{(n-2)!}(x - x_0)^{n-2}, c \text{ yra tarp } x \text{ ir } x_0 . \quad (10)$$

Tarkime, $f^{(n)}(x_0) < 0$. Kadangi $f^{(n)}(x)$ yra tolydi funkcija taške x_0 , tai egzistuoja tokia taško x_0 aplinka $(x_0 - \delta, x_0 + \delta)$, kad joje $f^{(n)}(x) < 0$. Imkime x iš minėtos aplinkos, tuomet ir c priklausys tai aplinkai ir $f^{(n)}(c) < 0$. Kadangi n yra nelyginis skaičius, tai (10) lygybės dešinioji pusė bus teigiama, kai $x \in (x_0 - \delta, x_0)$, ir neigiama, kai $x \in (x_0, x_0 + \delta)$. Tokia turi būti ir kairioji. Iš 8 teoremos gauname, kad taškas $(x_0, f(x_0))$ yra funkcijos f(x) grafiko vingio taškas.

Kai $f^{(n)}(x_0) > 0$, įrodymas analogiškas. Teorema įrodyta.

5 Funkcijos grafiko asimptotės

5 apibrėžimas. Tiesė x = a vadinama funkcijos f(x) grafiko **vertikaliąja** asimptote, jei bent viena iš ribų

$$\lim_{x \to a+0} f(x) \quad ar \quad \lim_{x \to a-0} f(x)$$

yra lygi $+\infty$ arba $-\infty$.

6 apibrėžimas. Tegul funkcija f(x) yra apibrėžta pakankamai dideliems x, t.y. kai $x \to +\infty$ (dideliems neigiamiems skaičiams, t.y. kai $x \to -\infty$). Tiesė

$$Y = kx + b$$

vadinama funkcijos f(x) grafiko **pasvirąja asimptote**, kai $x \to +\infty$ $(x \to -\infty)$, jei

$$\lim_{x \to +\infty} (f(x) - kx - b) = 0 \left(\lim_{x \to -\infty} (f(x) - kx - b) = 0 \right).$$

Kai k = 0 pasviroji asimptotė vadinama horizontaliąja.

11 teorema. Funkcijos f(x) grafikas turi pasvirąją asimptotę Y = kx + b, kai $x \to +\infty$ $(x \to -\infty)$, tada ir tik tada, kai

$$\lim_{x \to +\infty} \frac{f(x)}{x} = k \quad \text{ir} \quad \lim_{x \to +\infty} (f(x) - kx) = b$$

$$\left(\lim_{x \to -\infty} \frac{f(x)}{x} = k \quad \text{ir} \quad \lim_{x \to -\infty} (f(x) - kx) = b\right).$$
(11)

Irodymas. $B\bar{u}tinumas.$ Tegul funkcijos grafikas turi pasvirąją asimptotę. Tuomet

$$\lim_{x \to +\infty} (f(x) - kx - b) = 0$$

$$\Rightarrow \lim_{x \to +\infty} (f(x) - kx) = b$$

$$\Rightarrow \lim_{x \to +\infty} \frac{f(x) - kx}{x} = \lim_{x \to +\infty} \frac{b}{x}$$

$$\Rightarrow \lim_{x \to +\infty} \left(\frac{f(x)}{x} - k\right) = 0$$

$$\Rightarrow \lim_{x \to +\infty} \frac{f(x)}{x} = k$$

 \Rightarrow teoremos (11) sąlygos patenkintos.

Teoremos sąlygų būtinumas įrodytas.

Pakankamumas. Tegul teoremos (11) sąlygos yra patenkintos. Tuomet

$$\lim_{x \to +\infty} (f(x) - kx) = b$$

$$\Rightarrow \lim_{x \to +\infty} (f(x) - kx - b) = 0$$

⇒ funkcijos grafikas turi pasvirają asimptotę.

Teoremos sąlygų pakankamumas įrodytas.

Kai $x \to -\infty$ įrodymas yra lygiai toks pat. Teorema įrodyta.

6 Bendroji funkcijos tyrimo schema

- 1. Nustatoma funkcijos apibrėžimo sritis. Jeigu yra trūkio taškai, apskaičiuojamos funkcijos ribos jiems iš kairės ir iš dešinės. Apskaičiuojamos ribos apibrėžimo srities galuose.
- 2. Randami koordinatinių ašių ir funkcijos grafiko susikirtimo taškai.
- 3. Randamos funkcijos grafiko vertikaliosios ir pasvirosios asimptotės arba nustatoma, kad jų nėra.
- 4. Surandami funkcijos monotoniškumo intervalai bei ekstremumo taškai. Suskaičiuojamos funkcijos reikšmės ekstremumo taškuose.
- 5. Surandami funkcijos grafiko pastovios krypties išgaubtumo intervalai bei grafiko vingio taškai.
- 6. Pagal gautus duomenis braižomos funkcijos grafiko asimptotės ir funkcijos grafikas.
- 7. Nustatoma funkcijos reikšmių kitimo sritis.