1 Advanced Designs

1.1 Dynamische Programmierung

Anwendung

Anwendung, wenn sich Teilprobleme überlappen

- 1. Wir charakterisieren die Struktur einer optimalen Lösung
- 2. Wir definieren den Wert einer optimalen Lösung rekursiv
- 3. Wir berechnen den Wert einer optimalen Lösung (meist bottom-up Ansatz)
- 4. Wir konstruieren eine zugehörige optimale Lösung aus berechneten Daten

• Stabzerlegungsproblem

Ausgangsproblem: Stangen der Länge n cm sollen so zerschnitten werden, dass der Erlös r_n maximal ist, indem die Stange in kleinere Stäbe geschnitten wird.

Länge i	0	1	2	3	4	5	6	7	8	9	10
Preis p_i	0	1	5	8	9	10	17	17	20	24	30

Beispiel: Gesamtstange hat Länge 4. Welchen Erlös kann man max. erhalten?

Optimaler Erlös: zwei 2cm lange Stücke (5+5=10)

- Aufteilung der Stange:
 - * Stange mit Länge n kann auf 2^{n-1} Weisen zerlegt werden
 - * Position i: Distanz vom linken Ende der Stange
 - * Aufteilung in k Teilstäbe $(1 \le k \le n)$
 - * optimale Zerlegung: $n = i_1 + i_2 + ... + i_k$
 - * maximaler Erlös: $r_n = p_{i_1} + p_{i_2} + ... + p_{i_k}$
 - * z.B.: $r_4 = 10$ (siehe oben)

- Rekursive Top-Down Implementierung:

```
CUT-ROD(p,n) // p Preis-Array, n Stangenlänge

IF n == 0
    return 0;

q = -∞;
FOR i = 1 TO n // nicht Start bei 0, sonst kein Rekursionsschritt
    q = max(q, p[i] + CUT-ROD(p, n - i));
return q;
```

- Stabzerlegung via Dynamischer Programmierung:
 - * Ziel:
 Mittels dynamischer Programmierung wollen wir CUT-ROD in einen effizienten Algorithmus verwandeln.
 - * Bemerkung: Naiver rekursiver Ansatz ist **ineffizient**, da dieser immer wieder diesselben Teilprobleme löst.
 - * Ansatz: Jedes Teilproblem nur einmal lösen. Falls die Lösung eines Teilproblems nochmal benötigt wird, schlagen wir diese nach.
 - st Dynamische Programmierung wird zusätzlichen Speicherplatz benutzen um Laufzeit einzusparen.
 - * Reduktion von exponentieller auf polynomielle Laufzeit.
- Rekursiver Top-Down-Ansatz mit Memoisation:
 - * Idee: Speicherung der Lösungen der Teilprobleme
 - * Laufzeit: $\Theta(n^2)$

```
MEMOIZED-CUT-ROD(p, n)

Let r[0...] be new array
FOR i = 0 TO n
    r[i] = -∞
return MEMOIZED-CUT-ROD-AUX(p, n, r)
```

- Bottom-Up Ansatz:
 - * Laufzeit: $\Theta(n^2)$
 - * Sortieren der Teilprobleme nach ihrer Größe und lösen in dieser Reihenfolge
 - * Alle Teilprobleme kleiner als das momentane Problem sind bereits gelöst

```
EXTENDED-BOTTOM-UP-CUT-ROD(p, n)
BOTTOM-UP-CUT-ROD(p, n)
                                          Let r[0...n] and s[0...n] be new arrays
Let r[0...n] be a new array
                                          r[0] = 0, s[0] = 0
r[0] = 0
                                          FOR j = 1 TO n
FOR j = 1 TO n
                                              q = -\infty
    q = -\infty
                                              FOR i = 1 TO j
    FOR i = 1 TO j
                                                  IF q < p[i] + r[j-i]
        q = max(q, p[i] + r[j - i])
                                                      q = p[i] + r[j - i]
    r[j] = q
                                                       s[j] = i
return r[n]
                                              r[j] = q
                                          return r and s
```

* Teilproblemgraph $(i \to j$ bedeutet, dass Berechnung von r_i den Wert r_j benutzt)

• Fibonacci-Zahlen

- $F_1 = F_2 = 1$ $F_n = F_{n-1} + F_{n-2}$
- Naiver rekursiver Algorithmus:

Gleiche Teilprobleme werden wieder mehrmals gelöst

- Rekursiver Algorithmus mit Memoisation
 - \ast Wieder Abspeichern von Teilproblemen um Laufzeit einzusparen
 - * Laufzeit: $\Theta(n)$

```
MEMOIZED-FIB(n)

Let m[0...n-1] be a new array
FOR i = 0 TO n - 1
    m[i] = 0
return MEMOIZED-FIB-AUX(n, m)
```

```
MEMOIZED-FIB-AUX(n, m)

IF m[n-1] != 0
    return m[n-1];    // Auslesen von gespeicherten Werten

IF n \leq 2
    f = 1;

ELSE
    f = MEMOIZED-FIB-AUX(n-1, m) + MEMOIZED-FIB-AUX(n-2, m);

m[n-1] = f;

return f;
```

- Bottom-Up Algorithmus
 - * Hier wieder Berechnen aller Teilprobleme von unten beginnend

```
BOTTOM-UP-FIB(n)

Let m[0...n] be a new array
FOR i = 1 TO n

IF i \leq 2

f = 1;

ELSE

f = m[i-1] + m[i-2];

m[i] = f;

return m[n];
```

1.2 Greedy-Algorithmus

• Idee

- Trifft stets die Entscheidung, die in diesem Moment am besten erscheint
- Trifft lokale optimale Entscheidung (evtl. nicht global die Beste)

• Aktivitäten-Auswahl-Problem

- Definition
 - * 11 anstehende Aktivitäten $S = \{a_1, ..., a_{11}\}$
 - * Startzeit s_i und Endzeit f_i , wobei $0 \le s_i < f_i < \infty$
 - * Aktivität a_i findet im halboffenen Zeitintervall $[s_i, f_i)$ statt
 - * Zwei Aktivititäten sind kompatibel, wenn sich deren Zeitintervalle nicht überlappen

i	1	2	3	4	5	6	7	8	9	10	11	Aktivitäten: $\{a_3, a_9, a_{11}\}$
s_i	1	3	0	5	3	5	6	8	8	2	12	Aktivitäten: $\{a_1, a_4, a_8, a_{11}\}$
f_i	4	5	6	7	9	9	10	11	12	14	16	Aktivitäten: $\{a_2, a_4, a_9, a_{11}\}$

- Ansatz mittels dynamischer Programmierung
 - * Menge von Aktivitäten, die starten nachdem a_i endet und enden, bevor a_j startet $S_{ij} = \{a \in S, a = (s, f) : s \ge f_i, f < s_j\}$
 - * Definiere maximale Menge A_{ij} von paarweise kompatiblen Aktivitäten in S_{ij} . $c[i,j] = |A_{ij}|$
 - * Optimale Lösung für Menge S_{ij} die Aktivitäten a_k enthält: $c[i,j]=\max_{a_k\in S_{ij}}\{c[i,k]+c[k,j]+1\}\ (0,$ falls $S_{ij}=\emptyset)$
- Greedy-Wahl
 - * lokal die beste Wahl
 - * Auswahl der Aktivität mit geringster Endzeit (möglichst viele freie Ressourcen)
 - * Also hier Teilprobleme, die nach a_1 starten
 - * $S_k = \{a_i \in S : s_i \geq f_k\}$: Menge an Aktivitäten, die starten, nachdem a_k endet
 - * Optimale-Teilstruktur-Eigenschaft Wenn a_1 in optimaler Lösung enthalten ist, dann besteht optimale Lösung zu ursprünglichem Problem aus Aktivität a_1 und allen Aktivitäten zur einer optimalen Lösung des Teilproblems S_1

- Rekursiver Greedy-Algorithmus
 - * Voraussetzung: Aktivitäten sind monoton steigend nach der Endzeit sortiert
 - * Laufzeit: $\Theta(n)$

```
RECURSIVE-ACTIVITY-SELECTOR(s,f,k,n)

// s Anfangszeitenarray, f Endzeitenarray,
// k Index von Teilproblem, n Größe Anfangsproblem

m = k + 1;

WHILE m \le n and s[m] < f[k] // Suche nach erster Kompatibilität

m = m + 1;

IF m \le n

// Ausgabe des Elements und Berechnung weiterer Aktivitäten

return \{a_m\} \cup RECURSIVE-ACTIVITY-SELECTOR(s,f,m,n)\}

ELSE

return \emptyset
```

- Iterativer Greedy-Algorithmus
 - * Voraussetzung: Aktivitäten sind monoton steigend nach der Endzeit sortiert
 - * Laufzeit: $\Theta(n)$

1.3 Backtracking

• Suchbaum - Baum der Möglichkeiten

- Darstellung aller für ein Problem bestehenden Möglichkeiten

Problem: Aus den Buchstaben A, B soll dreimal nacheinander einer gewählt werden.

Der Suchraum ist die Menge aller für ein Problem bestehende Möglichkeiten.

• Backtracking - Idee

- Lösung finden via Trial and error
- Schrittweises Herantasten an die Gesamtlösung
- -Falls Teillösung inkorrekt \rightarrow Gehe einen Schritt zurück und probiere eine andere Möglichkeit
- Voraussetzung:
 - * Lösung setzt sich aus Komponenten zusammen (Sudoku, Labyrinth,..)
 - * Mehrere Wahlmöglichkeiten für jede Komponente
 - * Teillösung kann auf Korrektheit getestet werden

• Allgemeiner Backtracking-Algorithmus

```
IF alle Komponenten richtig gesetzt
return true;

ELSE
WHILE auf aktueller Stufe gibt es Wahlmöglichkeiten
wähle einen neuen Teillösungsschritt
Teste Lösungsschritt gegen vorliegende Einschränkungen
IF keine Einschränkung THEN
setze die Komponente
ELSE
Auswahl(Komponente) rückgängig machen
BACKTRACKING(A, s + 1)
```

Damenproblem

Auf einem Schachbrett der Größe $n \cdot n$ sollen n Damen so positioniert werden, dass sie sich gegenseitig nicht schlagen können. Wie viele Möglichkeiten gibt es, n Damen so aufzustellen, dass keine Damen eine andere schlägt.

- * n=8:4 Milliarden Positionierungen
- * Optimierte Suche: In jeder Zeile/Spalte nur eine Dame
- * Reduziert Problem auf 40.000 Positionierungen (ohne Diagonale)

```
PLACE-QUEENS(Q,r) // Q Array von Damenpositionen, r Index der ersten leeren Zeile

IF r == n
    return Q;

ELSE

FOR j = 0 TO n - 1 // Mögliche Positionierungen

legal = true;

FOR i = 0 TO r - 1 // Evaluation der mgl. Bedrohungen

IF (Q[i] == j) OR (Q[i == j + r - i]) OR (Q[i] == j - r + i)

legal = false;

IF legal == true

Q[r] = j;

PLACE-QUEENS(Q, r + 1)
```


1.4 Metaheuristiken

• Optimierungsproblem

- * Lösungsstrategien:
 - · Exakte Methode
 - \cdot Approximations methode
 - · Heuristische Methode
- * Einschränkungen
 - \cdot Antwortzeit
 - · Problemgröße
 - \Rightarrow exkludieren oft exakte Methoden

• Heuristik

- Technik um Suche zur Lösung zu führen
- Metaheuristik (Higher-Level-Strategie)
 - $\ast\,$ soll z.B. Hängenbleiben bei lokalem Maxima verhindern
- Leiten einer Suche
 - (a) Finde eine Lösung (z.B. mit Greedy-Algorithmus)
 - (b) Überprüfe die Qualität der Lösung
 - (c) Versuche eine bessere Lösung zu finden
 - * Herausfinden in welcher Richtung bessere Lösung evtl. liegt
 - * ggf. Wiederholung dieses Prozesses
- Finden einer besseren Lösung
 - $\ast\,$ Modifikation der Lösung durch erlaubte Operationen
 - st Dadurch erhalten wir Nachbarschaftslösungen
 - \Rightarrow Suche nach besseren Lösungen in der Nachbarschaft

Rucksackproblem

	1	2	3	4	5	6	7	8	9
Wert	79	32	47	18	26	85	33	40	45
Größe	85	26	48	21	22	95	43	45	55

- Rucksack hat eine Kapazität von 101, 9 verschiedene Gegenstände
- Ziel: Höchster Wert der Gegenstände im Rucksack
- Beispiellösung: Gegenstand 3 + 5 (Wert 73, Größe 70)
- Nachbarschaftslösungen:
 - * Gegenstände 2,3 und 5: Wert 105, Größe 96
 - * Gegenstände 1,3 und 5: Wert 152, Größe 155 (Gewichtsüberschreitung problematisch)
 - * Gegenstand 3: Wert 47, Größe 48

Nachbarschaft:

- $\ast\,$ Suchraum Skann sehr groß sein
- $\ast\,$ Einschränkung des Suchraums in der Nähe der Startlösung x
- * Distanz
funktion $d:SxS\to\mathbb{R}$
- * Nachbarschaft: $N(x) = \{y \in S : d(x, y) \le \epsilon\}$

Zufällige Suche

- Idee und Ablauf
 - * Suche nach globalem Optimum
 - * Anwenden der Technik auf aktuelle Lösung im Suchraum
 - $\ast\,$ Wahl einer neuen zufälligen Lösung in jeder Iteration
 - * Falls die neue Lösung besseren Wert liefert \Rightarrow als neue **aktuelle** Lösung setzen
 - * Terminierung, falls keine weiteren Verbesserungen auffindbar oder Zeit vorbei
- Code

RANDOM-SEARCH best <- irgendeine initiale zufällige Lösung REPEAT S <- zufällige Lösung // von "best" unabhängig IF (Quality(S) > Quality(best)) THEN best <- S UNTIL best ist die ideale Lösung oder Zeit ist vorbei return best

- Nachteile
 - * Potentiell lange Laufzeit
 - * Laufzeit abhängig von der initialien Konfiguration
- Vorteile
 - * Algorithmus kann beim globalen Optimum terminieren

• Bergsteigeralgorithmus

- Idee und Ablauf
 - * Nutzung einer iterativen Verbesserungstechnik
 - * Anwenden der Technik auf aktuelle Lösung im Suchraum
 - * Auswahl einer neuen Lösung aus Nachbarschaft in jeder Iteration
 - * Falls diese besseren Wert liefert, überschreiben der aktuellen Lösung
 - * Falls nicht, Wahl einer anderen Lösung aus Nachbarschaft
 - * Terminierung, falls keine weiteren Verbesserungen auffindbar oder Zeit vorbei
- Code

```
HILL-CLIMBER
   T <- Distribution von möglichen Zeitintervallen
   S <- irgendeine initiale zufällige Lösung
   best <- S
   REPEAT
       time <- zufälliger Zeitpunkt in der Zukunft aus T
       REPEAT
           wähle R aus der Nachbarschaft von S
           IF Quality(R) > Quality(S) THEN
               S < - R
       UNTIL S ist ideale Lösung oder time ist erreicht oder totale Zeit erreicht
10
       IF Quality(S) > Quality(best) THEN
           best <- S
       S <- irgendeine zufällige Lösung
   UNTIL best ist die ideale Lösung oder totale Zeit erreicht
   return best
```

- Nachteile
 - * Algorithmus terminiert in der Regel bei lokalem Optimum
 - * Keine Auskunft, inwiefern sich lokale Lösung von Globaler unterscheidet
 - * Optimum abhängig von Initialkonfiguration
- Vorteile
 - * Einfach anzuwenden

• Iterative lokale Suche

- Idee und Ablauf
 - * Suche nach anderen lokalen Optima bei Fund eines lokalen Optimas
 - * Lösungen nur in der Nähe der "Homebase"
 - * Entscheidung, ob neue oder alte Lösung
 - * Bergsteigeralgo zu Beginn, danach aber großen Sprung um anderes Optimum zu finden
- Code

```
ITERATIVE-LOCAL-SEARCH
   T <- Distribution von möglichen Zeitintervallen
     <- irgendeine initiale zufällige Lösung
   H <- S
               // Wahl des Homebasepunktes
   best <- S
   REPEAT
        time <- zufälliger Zeitpunkt in der Zukunft aus T
       REPEAT
           wähle R aus der Nachbarschaft von S
           IF Quality(R) > Quality(S) THEN
               S <- R
10
       UNTIL S ist ideale Lösung oder time ist erreicht oder totale Zeit erreicht
       IF Quality(S) > Quality(best) THEN
           best <- S
14
         <- NewHomeBase(H,S)
       S <- Perturb(H)
   UNTIL best ist die ideale Lösung oder totale Zeit erreicht
   return best
```

- * Perturb:
 - · ausreichend weiter Sprung (außerhalb der Nachbarschaft)
 - \cdot Aber nicht soweit, dass es eine zufällige Wahl ist
- * NewHomeBase:
 - \cdot wählt die neue Startlösung aus
 - · Annahme neuer Lösungen nur, wenn die Qualität besser ist

Simulated Annealing

- Idee und Ablauf
 - * Wenn neue Lösung besser, dann wird diese immer gewählt
 - * Wenn neue Lösung schlechter, wird diese mit gewisser Wahrscheinlichkeit gewählt: $Pr(R,S,t) = e^{\frac{Quality(R) Quality(S)}{t}}$
 - * Der Bruch ist negativ, da R schlechter ist als S
- Code

- Tabu-Search

- * Idee und Ablauf
 - · Speichert alle bisherigen Lösungen und Liste und nimmt diese nicht nochmal
 - · Kann sich jedoch wieder von der optimalen Lösung entfernen
 - · Tabu List hat maximale Größe, falls voll, werden älteste Lösungen gelöscht
- * Code

```
TABU-SEARCH
    l <- maximale Grö∖ss{}e der Tabu List
    n <- Anzahl der zu betrachtenden Nachbarschaftslösungen
3
4
5
6
7
8
9
10
11
12
13
14
15
16
    S <- irgendeine initiale zufällige Lösung
    best <- S
     L <- { } Tabu List der Länge l
    Füge S in L ein
    REPEAT
         IF Length(L) > 1 THEN
             Entferne ältestes Element aus L
         wähle R aus Nachbarschaft von S
         FOR n - 1 mal DO
              Wähle W aus Nachbarschaft von S
              IF W \notin L und (Quality(W) > Quality(R)) oder R \in L) THEN
                  R <- W
         \text{IF R} \notin \text{L THEN}
              S <- R
              Füge R in L ein
         IF Quality(S) > Quality(best) THEN
   best <- S</pre>
    UNTIL best ist die ideale Lösung oder totale Zeit erreicht
     return best
```

Populationsbasierte Methode

- Bisher: Immer nur Betrachtung einer einzigen Lösung
- Hier: Betrachtung einer Stichprobe von möglichen Lösungen
- Bei der Bewertung der Qualität spielt die Stichprobe die Hauptrolle
- z.B. Evolutionärer Algorithmus

• Evolutionärer Algorithmus

- Idee und Ablauf
 - * Algorithmus aus der Klasse der Evolutionary Computation
 - * generational Algorithmus: Aktualisierung der gesamten Stichprobe pro Iteration
 - * steady-state Algorithmus: Aktualisierung einzelner Kandidaten der Probe pro Iteration
 - * Resampling-Technik: Generierung neuer Strichproben basierend auf vorherigen Resultaten
- Abstrakter Code (Allgemeiner Breed und Join)

```
ABSTRACT-EVOLUTIONARY-ALGORITHM

P <- generiere initiale Population
best <- \boxdot // leere Menge
REPEAT

AssesFitness(P)
FOR jedes individuelle P_i \in P DO

IF best = \boxdot oder Fitness(P_i) > Fitness(best) THEN
best <- P_i
P <- Join(P, Breed(P))
UNTIL best ist die ideale Lösung oder totale Zeit erreicht
return best
```

- * Breed: Erstellung neuer Stichprobe mithilfe Fitnessinformation
- * Join: Fügt neue Population der Menge hinzu
- Initialisierung der Population
 - * Initialisierung durch zufälliges Wählen der Elemente
 - $\ast\,$ Beeinflussung der Zufälligkeit bei Vorteilen möglich
 - * Diversität der Population (alle Elemente in Population einzigartig)
 - * Falls neue zufällige Wahl eines Individuums
 - · Entweder Vergleich mit allen bisherigen Individuen $(O(n^2))$
 - Oder besser: Nutzen eines Hashtables zur Überprüfung auf Einzigartigkeit (O(n))

- Evolutionsstrategien Ideen
 - * Generiere Population zufällig
 - * Beurteile Qualität jedes Individuums
 - * Lösche alle bis auf die μ besten Individuen
 - * Generie $\frac{\lambda}{\mu}$ -viele Nachfahren pro bestes Individuum
 - * Join Funktion: Die Nachfahren ersetzen die Individuen
- Algorithmus der Evolutionsstrategie

```
(\mu, \lambda)-EVOLUTION-STRATEGY
\mu <- Anzahl der Eltern (initiale Lösung)
\lambda <- Anzahl der Kinder
P <- {}
FOR \lambda-oft DO
     P <- {neues zufälliges Individuum}
best <- ⊡
REPEAT
     FOR jedes individuelle P_i \in P DO
          \mathsf{AssesFitness}(P_i)
          IF best = \odot oder Fitness(P_i) > Fitness(best) THEN
               best <- P_i
     Q <- die \mu Individueen deren Fitness() am Grö\slashss{}ten ist
     P <- {}
     FOR jedes Element Q_j \in Q DO
          FOR \frac{\lambda}{\mu}-oft DO \mathsf{P} <- \mathsf{P} \cup {MUTATE(Q_j)}
UNTIL best ist die ideale Lösung oder totale Zeit erreicht
return best
```

1.5 Amortisierte Analyse

• Kosten von Operationen

- Bisher: Betrachtung von Algorithmen, die Folge von Operationen auf Datenstrukturen ausführen
- Abschätzung der Kosten von n Operationen im Worst-Case
- Dies liefert die obere Schranke für die Gesamtkosten der Operationenfolge
- Nun: Amortisierte Analyse: Genauere Abschätzung des Worst Case
- Voraussetzung: Nicht alle Operationen in der Operationenfolge gleich teuer
- z.B. eventuell abhängig vom aktuellen Zustand der Datenstruktur
- Amortisierte Analyse garantiert die mittlere Performanz jeder Operation im Worst-Case

• Beispiel Binärzähler

- Eigenschaften
 - * k-Bit Binärzähler hier als Array
 - * Codierung der Zahl als $x = \sum_{i=0}^{k-1} 2^i b_i$
 - * Initialer Array für x = 0:

b_{k-1}	b_{k-2}			b_2	b_1	b_0
0	0			0	0	0

- Inkrementieren eines Binärzählers
 - * Erhöhe x um 1
 - * Beispiel: x = 3
 - * INCREMENT kostet 3, da sich drei Bitpositionen ändern

- Teuerste INCREMENT-Operation
 - * INCREMENT flippt k-1 Bits von 1 zu 0 und 1 Bit von 0 auf 1
 - * Kosten nicht konstant, stark abhängig von Datenstruktur

- Traditionelle Worst-Case Analyse
 - \ast Worst-Case Kosten von n INCREMENT-Operationen auf k-BitBinärzähler
 - * Anfangswert x = 0
 - * Schlimmster Kostenfall: INCREMENT-Operation hat k Bitflips
 - * n-mal inkrementieren sorgt für Kosten: $T(n) \leq n \cdot k \in O(kn)$

• Aggregat Methode - Beispiel Binärzähler

- Eigenschaften
 - * Methode für Amortisierte Analyse
 - * Sequenz von n-Operationen kostet Zeit T(n)
 - * Durchschnittliche Kosten pro Operation $\frac{T(n)}{n}$
 - * Ziel: T(n) genau berechnen, **ohne** jedes Mal Worst-Case anzunehmen
 - * Ansatz: Aufsummation der tatsächlich anfallenden Kosten aller Operationen

- Durchführung

- Genauere Kostenanalyse
 - * Nun in der Lage T(n) genau auszurechnen
 - * Bei n Operationen ändert sich das Bit b_i genau $\left|\frac{n}{2^i}\right|$ -mal
 - $\ast\,$ Bits b_i mit $i>log_2$ n ändern sich nie
 - \ast Über alle k Bits aufsummieren liefert:

$$T(n) = \sum_{i=0}^{k-1} \left \lfloor \frac{n}{2^i} \right \rfloor = n \sum_{i=0}^{k-1} \frac{1}{2^i} < n \sum_{i=0}^{\infty} \frac{1}{2^i} \le 2n \in O(n)$$

- * Obere Schranke: $T(n) \leq 2n$
- * Kosten jeder ${\tt INCREMENT-}{\tt Operation}$ im Durchschnitt: $\frac{2n}{n}=2\in O(1)$

Account Methode - Beispiel Binärzähler

- Eigenschaften
 - * Besteuerung einiger Operationen, so dass sie Kosten anderer Operationen mittragen
 - * Zuweisung von höherern Kosten (Amortisierte Kosten), als ihre tatsächlichen Kosten sind
 - * Guthaben: Differenz zwischen amortisierten und tatsächlichen Kosten
 - * Nutzung dieses Guthabens für Operationen bei denen amortisiert < tatsächlich gilt
 - $\ast\,$ Guthaben darf nicht negativ werden:

Summe amortisierte Kosten > Summe tatsächliche Kosten

- Wahl der Amortisierten Kosten Binärzähler
 - * Setzen eines Bits von $0 \to 1$ zahlt 2 Einheiten ein / Bezeichnung f_i
 - * Setzen eines Bits von $1 \to 0$ zahlt 0 Einheiten ein / Bezeichnung e_i
 - * Tatsächliche Kosten t_i : Anzahl der Bitflips bei der i-ten INCREMENT-Operation $t_i=e_i+f_i$
 - * Amortisierte Kosten betragen: $a_i = 0 \cdot e_i + 2 \cdot f_i$
- Kostenbeispiel
 - * Jede Bitflip Operation kostet zusätzlich 1 Einheit
 - * Setzen Bit $0 \to 1$: Zahlt 2 ein, kostet aber $1 \to +1$ Guthaben
 - * Setzen Bit 1 \rightarrow 0: Zahlt 0 ein, kostet aber 1 \rightarrow -1 Guthaben

- Obere Schranken der Kosten
 - * Guthaben auf dem Konto entspricht der Anzahl der auf 1 gesetzten Bits
 - * Kosten: $T(n) \sum_{i=1}^n t_i \leq v \sum_{i=1}^n a_i$, für ein konstantes v
 - * Nun Abschätzung dieser Formel zum Erhalten einer oberen Schranke
 - $\ast\,$ Beobachtung: Bei jeder <code>INCREMENT</code> höchstens ein neues Bit von 0 auf 1
 - * Für alle i gilt damit $f_i \leq 1$
 - * Amortisierte Kosten jeder Operation höchstens $2 \cdot f_i \leq 2$
 - * Insgesamt: $T(n) = \sum_{i=1}^n t_i \le \sum_{i=1}^n a_i \le 2n \in O(n)$

• Potential-Methode - Beispiel Binärzähler

- Eigenschaften
 - * Betrachtung welchen Einfluss die Operationen auf die Datenstruktur haben
 - * Potentialfunktion $\phi(i)$: Hängt vom aktuellen Zustand der Datenstruktur nach i-ter Operation ab
 - * Ausgangspotential sollte vor jeglicher Operation nicht negativ sein: $\phi(0) \geq 0$
- Amortisierte Kosten
 - * Amortisierte Kosten der *i*-ten Operation: (Summe tatsächliche Kosten + Potentialänderung) $a_i = t_i + \phi(i) \phi(i-1)$
 - * Summe der amortisierten Kosten:

$$\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} (t_i + \phi(i) - \phi(i-1)) = \sum_{i=1}^{n} t_i + \phi(n) - \phi(0)$$

* Wenn für jedes i gilt $\phi(i) \geq \phi(0)$:

Summe der amor. Kosten ist gültige obere Schranke an Summe der tatsächlichen Kosten

- Potential-Methode anhand des Binärzählers
 - * $\phi(i)$: Anzahl der 1-en im Array nach *i*-ter INCREMENT-Operation $\to \phi(i)$ nie negativ und $\phi(0)=0$
 - * Angenommen i-te Operation setzt e_i Bits von 1 auf 0, dann hat diese Operation Kosten $t_i \leq e_i + 1$
 - * Neues Potential: $\phi(i) \le \phi(i-1) e_i + 1 \Leftrightarrow \phi(i) \phi(i-1) \le e_i$
 - * Amortisierte Kosten der i-ten INCREMENT-Operation:

$$a_i = t_i + \phi(i) - \phi(i-1) \le e_i + 1 + 1 - e_i = 2$$

* Insgesamt: $T(n) = \sum_{i=1}^n t_i \leq \sum_{i=1}^n a_i \leq 2n \in O(n)$