Graph the polar curve, limacon

Now you're going to learn about a polar curve known as a limaçon. (That word is French. The diacritical mark below the letter c is known as a cedilla, and it indicates that that c is pronounced as an s.)

A limaçon is the graph of a polar equation that has one of the following forms, where a and b are positive numbers and $a \neq b$:

$$r = a + b \cos \theta$$

$$r = a - b \cos \theta$$

$$r = a + b \sin \theta$$

$$r = a - b \sin \theta$$

Recall that a cardioid is the graph of a polar equation that has one of the following forms where a is a positive number:

$$r = a(1 + \cos \theta) = a + a \cos \theta$$

$$r = a(1 - \cos \theta) = a - a \cos \theta$$

$$r = a(1 + \sin \theta) = a + a \sin \theta$$

$$r = a(1 - \sin \theta) = a - a \sin \theta$$

Thus we could think of a cardioid as a special kind of limaçon (one with a=b).

Let's take a look at the range of values of r for a limaçon which is the graph of the polar equation $r = a + b \cos \theta$. Well, we know that

$$-1 \le \cos \theta \le 1$$

Since b is positive, we can multiply through by b and retain the direction of the inequalities, so

$$-b \le b \cos \theta \le b$$

Adding a throughout, we get

$$a - b \le a + b \cos \theta \le a + b$$

That is,

$$a - b < r < a + b$$

Thus r ranges from a - b to a + b. You should convince yourself that this is also the range of a limaçon which is the graph of a polar equation of any of the other three types listed earlier.

Since a+b is positive, for every limaçon there is exactly one angle θ in the interval $[0,2\pi)$ at which r=a+b.

$$r = a + b \cos \theta$$
: $r = a + b \iff \cos \theta = 1 \iff \theta = 0$

$$r = a - b \cos \theta$$
: $r = a + b \iff \cos \theta = -1 \iff \theta = \pi$

$$r = a + b \sin \theta$$
: $r = a + b \iff \sin \theta = 1 \iff \theta = \frac{\pi}{2}$

$$r = a - b \sin \theta$$
: $r = a + b \iff \sin \theta = -1 \iff \theta = \frac{3\pi}{2}$

If a > b (hence the lower limit on the value of r is a - b, which is positive), there is no angle θ at which r = 0 (hence the limaçon doesn't pass through the pole) and no angle θ at which r is negative.

If a < b (hence the lower limit on the value of r is a - b, which is negative), there is exactly one angle θ in the interval $[0,2\pi)$ at which r = a - b.

$$r = a + b \cos \theta$$
: $r = a - b \iff \cos \theta = -1 \iff \theta = \pi$

$$r = a - b \cos \theta$$
: $r = a - b \iff \cos \theta = 1 \iff \theta = 0$

$$r = a + b \sin \theta$$
: $r = a - b \iff \sin \theta = -1 \iff \theta = \frac{3\pi}{2}$

$$r = a - b \sin \theta$$
: $r = a - b \iff \sin \theta = 1 \iff \theta = \frac{\pi}{2}$

If a < b, there are two angles θ in the interval $[0,2\pi)$ at which r = 0 (hence the limaçon passes through the pole twice), and the limaçon has a loop whose endpoints are the points that correspond to those two angles.

To determine the two angles at which r=0, we'll set r to 0 and solve for θ . For example, if $r=a+b\cos\theta$, then

$$r = 0 \iff a + b \cos \theta = 0 \iff \cos \theta = -\frac{a}{b}$$

Since a and b are both positive (and a < b), we see that

$$-1 < -\frac{a}{b} < 0$$

hence that $-1 < \cos \theta < 0$ for the two points with r = 0.

The cosine function is negative (and greater than -1) in the second and third quadrants. Therefore, there is exactly one angle in the second quadrant (which we'll denote by θ_1) with a cosine of -a/b (and hence r=0), and exactly one angle in the third quadrant (which we'll denote by θ_2) with a cosine of -a/b (and hence r=0).

Recall that the inverse cosine function, $\cos^{-1}(\theta)$, is defined on the interval $[0,\pi]$. Therefore,

$$\theta_1 = \cos^{-1}\left(-\frac{a}{b}\right)$$

By the reference angle theorem,

$$\pi - \theta_1 = \theta_2 - \pi$$

Solving this equation for θ_2 , we find that

$$\theta_2 = 2\pi - \theta_1 = 2\pi - \cos^{-1}\left(-\frac{a}{b}\right)$$

For limaçons with a < b, let's determine the subinterval(s) of the interval $[0,2\pi)$ on which $r = a + b \cos \theta$ is negative:

$$r = a + b\cos\theta < 0 \Longleftrightarrow b\cos\theta < -a \Longleftrightarrow \cos\theta < -\frac{a}{b}$$

Given what we've already found in regard to the angles θ_1 and θ_2 at which r=0 (and the fact that -a/b is negative), this shows that (within the interval $[0,2\pi)$) the value of r is negative at the angles θ at which the value of the cosine function is "more negative" than it is at θ_1 and θ_2 . That happens precisely on the interval (θ_1,θ_2) . Moreover, the loop of the limaçon

109

is "inside" the rest of the limaçon, so the loop corresponds to the angles θ with the smallest values of r - in particular, to those at which $r \leq 0$.

Similar considerations enable us to determine the angles θ_1 and θ_2 in the interval $[0,2\pi)$ at which $\theta_1 < \theta_2$ and r=0, and the subinterval(s) of $[0,2\pi)$ on which r is negative, for the other three types of limaçons with a < b. These characteristics of limaçons are summarized in the table below. For all four types of limaçons with a < b, the loop corresponds to the angles θ at which $r \le 0$.

Polar	θ_1		$ heta_2$		Interval(s)
equation	Measure	Quadrant	Measure	Quadrant	on which $r < 0$
$r = a + b\cos\theta$	$\cos^{-1}\left(-\frac{a}{b}\right)$	II	$2\pi - \cos^{-1}\left(-\frac{a}{b}\right)$	III	$(heta_1, heta_2)$
$r = a - b\cos\theta$	$\cos^{-1}\left(\frac{a}{b}\right)$	I	$2\pi - \cos^{-1}\left(\frac{a}{b}\right)$	IV	$(0,\theta_1),(\theta_2,2\pi)$
$a + b \sin \theta = 0$	$\pi + \sin^{-1}\left(\frac{a}{b}\right)$	III	$2\pi - \sin^{-1}\left(\frac{a}{b}\right)$	IV	$(heta_1, heta_2)$
$a - b\sin\theta = 0$	$\sin^{-1}\left(\frac{a}{b}\right)$	I	$\pi - \sin^{-1}\left(\frac{a}{b}\right)$	II	(θ_1,θ_2)

Example

Graph the limaçon $r = 3 + 4\cos\theta$.

In the following table, the values of $\cos\theta$ and $r=3+4\cos\theta$ are shown for a number of angles θ in the interval $[0,2\pi)$. In the table, we also give one pair of polar coordinates, (r,θ) , for points where the equation $r=3+4\cos\theta$ yields a positive value of r, and we give two pairs of polar coordinates, (r,θ) and $(-r,\theta+\pi)$, where that equation yields a negative value of r.

Point	heta	$\cos \theta$	$r = 3 + 4\cos\theta$	Polar coordinates (r, θ)	Polar coordinates $(-r, \theta + \pi)$ r negative
A	0	1	7	(7,0)	
В	$\frac{\pi}{6}$	$\frac{\sqrt{3}}{2}$	$3+2\sqrt{3}$	$\left(3+2\sqrt{3}, \frac{\pi}{6}\right)$	
\mathbf{C}	$rac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$3+2\sqrt{2}$	$\left(3+2\sqrt{2},rac{\pi}{4} ight)$	
D	$rac{\pi}{3}$	$\frac{1}{2}$	5	$\left(5, \frac{\pi}{3}\right)$	
\mathbf{E}	$rac{\pi}{2}$	0	3	$\left(3, \frac{\pi}{2}\right)$	
\mathbf{F}	$\frac{2\pi}{3}$	$-\frac{1}{2}$	1	$\left(1, \frac{2\pi}{3}\right)$	
G	$rac{3\pi}{4}$	$-\frac{\sqrt{2}}{2}$		$\left(3-2\sqrt{2},\frac{3\pi}{4}\right)$	
H	$\frac{5\pi}{6}$	$-\frac{\sqrt{3}}{2}$	$3-2\sqrt{3}$	$\left(3-2\sqrt{3},\frac{5\pi}{6}\right)$	$\left(-3+2\sqrt{3},rac{11\pi}{6} ight)$
I	π	-1	-1	$(-1,\pi)$	$(1,2\pi)^*$
J	$\frac{7\pi}{6}$	$-\frac{\sqrt{3}}{2}$	$3-2\sqrt{3}$	$\left(3-2\sqrt{3}, \frac{7\pi}{6}\right)$	$\left(-3+2\sqrt{3},rac{13\pi}{6} ight)^{\dagger}$
K	$\frac{5\pi}{4}$	$-\frac{\sqrt{2}}{2}$	$3-2\sqrt{2}$	$\left(3-2\sqrt{2},rac{5\pi}{4} ight)$	
${f L}$	$rac{4\pi}{3}$	$-\frac{1}{2}$	1	$\left(1,\frac{4\pi}{3}\right)$	
M	$\frac{3\pi}{2}$	0	3	$\left(3, \frac{3\pi}{2}\right)$	
N	$\frac{5\pi}{3}$	$\frac{1}{2}$	5	$\left(5, rac{5\pi}{3} ight)$	
O	$rac{7\pi}{4}$	$\frac{\sqrt{2}}{2}$	$3+2\sqrt{2}$	$\left(3+2\sqrt{2},rac{7\pi}{4} ight)$	
P	$\frac{11\pi}{6}$	$\frac{\sqrt{3}}{2}$	$3+2\sqrt{3}$	$\left(3+2\sqrt{3},rac{11\pi}{6} ight)$	

^{*}Still another pair of polar coordinates of point I is (1,0). †Still another pair of polar coordinates of point J is $\left(-3+2\sqrt{3},\frac{\pi}{6}\right)$.

As derived earlier (in regard to all limaçons with a < b), the value of $r = a + b \cos \theta$ is equal to 0 at exactly two angles in the interval $[0,2\pi)$, namely θ_1 and θ_2 , where θ_1 is in the second quadrant, θ_2 is in the third quadrant, and they satisfy the equations

$$\theta_1 = \cos^{-1}\left(-\frac{a}{b}\right)$$

and

$$\theta_2 = 2\pi - \theta_1$$

respectively.

In this case, a=3 and b=4, so with the aid of a calculator (set to radians!), we find that

112

$$\theta_1 = \cos^{-1}\left(-\frac{3}{4}\right) \approx 2.42$$
 (radians) $=\left(\frac{2.42}{\pi}\right)\pi$ (radians) $\approx 0.77\pi$

and

$$\theta_2 = 2\pi - \theta_1 \approx 2\pi - 0.77\pi = 1.23\pi$$

Also, we found that the value of r is negative at all θ in the interval (θ_1, θ_2) , and positive at all θ in the intervals $[0,\theta_1)$ and $(\theta_2,2\pi)$, and that the points on the loop of the limaçon are those with $r \leq 0$ (equivalently, the points that correspond to angles θ in the interval $[\theta_1,\theta_2]$).

The only points in our table that have a negative value of r are H, I, and J, which are the only points in our table that (on our graph) lie on the loop of the limaçon $r = 3 + 4\cos\theta$. For points H and J (the two points that are on the loop and closest to the pole),

$$r = 3 - 2\sqrt{3} \approx 3 - 2(1.732) = 3 - 3.464 = -0.464 < 0$$

Point H corresponds to $\theta = 5\pi/6$, and point J corresponds to $\theta = 7\pi/6$. Also, point I corresponds to $\theta = \pi$, so

$$r = 3 + 4\cos\pi = 3 + 4(-1) = 3 - 4 = -1 < 0$$

For the points G and K in our table (the two points that on our graph are just outside the loop of the limaçon and closest to the pole),

$$r = 3 - 2\sqrt{2} \approx 3 - 2(1.414) = 3 - 2.828 = 0.172 > 0$$

Points G and K correspond to angles $\theta = 3\pi/4$ and $\theta = 5\pi/4$, respectively.

Summarizing these results in terms of θ and the sign of r:

Notice that the graph of the polar equation $r=3+4\cos\theta$ is symmetric with respect to the horizontal axis. Just as for all "cosine" cardioids, this is true for all "cosine" limaçons. Another similarity to "cosine" cardioids is that (as a curve) the limaçon $a-b\cos\theta$ is a reflection in the vertical axis of the limaçon $a+b\cos\theta$. This is true regardless of whether a>b or a< b.

Example

Graph the limaçon $r = 3 - 4\cos\theta$.

Point	heta	$\cos \theta$	$r = 3 - 4\cos\theta$	Polar coordinates (r, θ)	Polar coordinates $(-r, \theta + \pi)$ r negative
A	0	1	-1	(-1, 0)	$(1,\pi)$
В	$\frac{\pi}{6}$	$\frac{\sqrt{3}}{2}$	$3-2\sqrt{3}$	$\left(3-2\sqrt{3}, \frac{\pi}{6}\right)$	$\left(-3+2\sqrt{3}, \frac{7\pi}{6}\right)$
\mathbf{C}	$rac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$3-2\sqrt{2}$	$\left(3-2\sqrt{2}, \frac{\pi}{4} ight)$	
D	$rac{\pi}{3}$	$\frac{1}{2}$	1	$\left(1,\frac{\pi}{3}\right)$	
${f E}$	$rac{\pi}{2}$	0	3	$\left(3, \frac{\pi}{2}\right)$	
\mathbf{F}	$\frac{2\pi}{3}$	$-\frac{1}{2}$	5	$\left(5, \frac{2\pi}{3}\right)$	
G	$\frac{3\pi}{4}$	$-rac{\sqrt{2}}{2}$	$3+2\sqrt{2}$	$\left(3+2\sqrt{2},rac{3\pi}{4} ight)$	
H	$\frac{5\pi}{6}$	$-\frac{\sqrt{3}}{2}$	$3+2\sqrt{3}$	$\left(3+2\sqrt{3},rac{5\pi}{6} ight)$	
I	π	-1	7	$(7,\pi)$	
J	$\frac{7\pi}{6}$	$-\frac{\sqrt{3}}{2}$	$3+2\sqrt{3}$	$\left(3+2\sqrt{3}, \frac{7\pi}{6}\right)$	
K	$rac{5\pi}{4}$	$-rac{\sqrt{2}}{2}$	$3+2\sqrt{2}$	$\left(3+2\sqrt{2},rac{5\pi}{4} ight)$	
${f L}$	$\frac{4\pi}{3}$	$-\frac{1}{2}$	5	$\left(5, rac{4\pi}{3} ight)$	
M	$\frac{3\pi}{2}$	0	3	$\left(3, \frac{3\pi}{2}\right)$	
N	$\frac{5\pi}{3}$	$\frac{1}{2}$	1	$\left(1, \frac{5\pi}{3}\right)$	
O	$rac{7\pi}{4}$	$\frac{\sqrt{2}}{2}$	$3-2\sqrt{2}$	$\left(3-2\sqrt{2}, \frac{7\pi}{4}\right)$	
P	$\frac{11\pi}{6}$	$\frac{\sqrt{3}}{2}$	$3-2\sqrt{3}$	$\left(3-2\sqrt{3},\frac{11\pi}{6}\right)$	$\left(-3+2\sqrt{3},\frac{17\pi}{6}\right)^*$

^{*}Still another pair of polar coordinates of point P is $\left(-3+2\sqrt{3},\frac{5\pi}{6}\right)$.

Notice that (as a curve) the limaçon $r=3-4\cos\theta$ is indeed a reflection of the limaçon $r=3+4\cos\theta$ in the vertical axis, and that both curves are symmetric with respect to the horizontal axis. Also, in both curves, the maximum value of r is

$$a + b = 3 + 4 = 7$$

and the minimum value of r is

$$a - b = 3 - 4 = -1$$

In the limaçon $r=3+4\cos\theta$, the maximum and minimum values of r occur at $\theta=0$ and $\theta=\pi$, respectively, whereas just the opposite is true of the locations of the maximum and minimum values of r in the limaçon $r=3-4\cos\theta$.

Now we'll consider limaçons with a > b. In particular, we'll look at a pair of "sine" limaçons, to get a flavor for what such curves look like and how they differ from limaçons with a < b and from "cosine" limaçons.

Example

Graph the limaçons $r = 3 + 2 \sin \theta$ and $r = 3 - 2 \sin \theta$.

Point	heta	$\sin heta$	$r=3+2\sin heta$	Polar coordinates (r, θ)
A	0	0	3	(3,0)
В	$\frac{\pi}{6}$	$\frac{1}{2}$	4	$\left(4, \frac{\pi}{6}\right)$
\mathbf{C}	$rac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$3+\sqrt{2}$	$\left(3+\sqrt{2},rac{\pi}{4} ight)$
D	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$3+\sqrt{3}$	$\left(3+\sqrt{3}, rac{\pi}{3} ight)$
\mathbf{E}	$rac{\pi}{2}$	1	5	$\left(5, \frac{\pi}{2}\right)$
\mathbf{F}	$\frac{2\pi}{3}$	$\frac{\sqrt{3}}{2}$	$3+\sqrt{3}$	$\left(3+\sqrt{3},\frac{2\pi}{3}\right)$
\mathbf{G}	$\frac{3\pi}{4}$	$\frac{\sqrt{2}}{2}$	$3+\sqrt{2}$	$\left(3+\sqrt{2},rac{3\pi}{4} ight)$
H	$\frac{5\pi}{6}$	$\frac{1}{2}$	4	$\left(4, \frac{5\pi}{6}\right)$
Ι	π	0	3	$(3,\pi)$
J	$\frac{7\pi}{6}$	$-\frac{1}{2}$	2	$\left(2, rac{7\pi}{6} ight)$
K	$rac{5\pi}{4}$	$-rac{\sqrt{2}}{2}$	$3-\sqrt{2}$	$\left(3-\sqrt{2}, rac{5\pi}{4} ight)$
${f L}$	$\frac{4\pi}{3}$	$-\frac{\sqrt{3}}{2}$	$3-\sqrt{3}$	$\left(3-\sqrt{3}, \frac{4\pi}{3}\right)$
M	$\frac{3\pi}{2}$	-1	1	$\left(1, \frac{3\pi}{2}\right)$
N	$\frac{5\pi}{3}$	$-rac{\sqrt{3}}{2}$	$3-\sqrt{3}$	$\left(3-\sqrt{3},\frac{5\pi}{3}\right)$
O	$rac{7\pi}{4}$	$-rac{\sqrt{2}}{2}$	$3-\sqrt{2}$	$\left(3-\sqrt{2}, \frac{7\pi}{4}\right)$
P	$\frac{11\pi}{6}$	$-\frac{1}{2}$	2	$\left(2, \frac{11\pi}{6}\right)$

Point	θ	$\sin heta$	$r=3-2\sin heta$	Polar coordinates (r, θ)
A	0	0	3	(3, 0)
В	$\frac{\pi}{6}$	$\frac{1}{2}$	2	$\left(2, \frac{\pi}{6}\right)$
\mathbf{C}	$rac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$3-\sqrt{2}$	$\left(3-\sqrt{2}, \frac{\pi}{4} ight)$
D	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$3-\sqrt{3}$	$\left(3-\sqrt{3}, \frac{\pi}{3}\right)$
\mathbf{E}	$rac{\pi}{2}$	1	1	$\left(1,\frac{\pi}{2}\right)$
\mathbf{F}	$\frac{2\pi}{3}$	$\frac{\sqrt{3}}{2}$	$3-\sqrt{3}$	$\left(3-\sqrt{3},\frac{2\pi}{3}\right)$
\mathbf{G}	$\frac{3\pi}{4}$	$\frac{\sqrt{2}}{2}$	$3-\sqrt{2}$	$\left(3-\sqrt{2}, \frac{3\pi}{4}\right)$
H	$\frac{5\pi}{6}$	$\frac{1}{2}$	2	$\left(2, \frac{5\pi}{6}\right)$
I	π	0	3	$(3,\pi)$
J	$\frac{7\pi}{6}$	$-\frac{1}{2}$	4	$\left(4, rac{7\pi}{6} ight)$
K	$\frac{5\pi}{4}$	$-\frac{\sqrt{2}}{2}$	$3+\sqrt{2}$	$\left(3+\sqrt{2}, \frac{5\pi}{4}\right)$
${f L}$	$\frac{4\pi}{3}$	$-\frac{\sqrt{3}}{2}$	$3+\sqrt{3}$	$\left(3+\sqrt{3},rac{4\pi}{3} ight)$
\mathbf{M}	$\frac{3\pi}{2}$	-1	5	$\left(5, \frac{3\pi}{2}\right)$
N	$\frac{5\pi}{3}$	$-\frac{\sqrt{3}}{2}$	$3+\sqrt{3}$	$\left(3+\sqrt{3},rac{5\pi}{3} ight)$
O	$\frac{7\pi}{4}$	$-rac{\sqrt{2}}{2}$	$3+\sqrt{2}$	$\left(3+\sqrt{2},rac{7\pi}{4} ight)$
P	$\frac{11\pi}{6}$	$-\frac{1}{2}$	4	$\left(4, \frac{11\pi}{6}\right)$

As you may have expected (given your knowledge of "sine" cardioids), all "sine" limaçons are symmetric with respect to the vertical axis, and the limaçon $r = a - b \sin \theta$ is the reflection in the horizontal axis of the limaçon $r = a + b \sin \theta$.

Perhaps the most noticeable feature of limaçons with a>b is that they have no loop. Instead, they have what could perhaps best be described as a depression.

You might be wondering what happens if we have limaçons with the same value of b and different values of the ratio a/b. In particular, let's graph several "cosine" limaçons with b=4 and different values of a < b (namely, a=1, a=2, and a=3).

Notice that as a increases from 1 to 2, and then to 3, the size of the loop decreases. In fact, it would decrease to a single point if a got all the way up to b. Therefore, if we have a sequence of limaçons with the same value of b and larger and larger values of a < b, the limaçons look more and more like a "cosine" cardioid.

Now let's graph several "sine" limaçons with b=2 and different values of a>b (namely, a=5, a=4, and a=3).

As a decreases from 5 to 4, and then to 3, these limaçons have depressions that are more and more pronounced, and the limaçons look more and more like a "sine" cardioid as a gets closer and closer to b.

We can conclude from these considerations that limaçons for which the ratio a/b gets closer and closer to 1 look more and more like cardioids, which is what you might expect because the distinguishing characteristic of a cardioid is that a = b.

