Amphoteric Oxides

Table 7A lists some common oxides of main-group elements. You can see that the active metal oxides are basic and that the nonmetal oxides are acidic. Between these lies a group of oxides, the *amphoteric oxides*. The bonding in amphoteric oxides is intermediate between ionic and covalent bonding. As a result, oxides of this type show behavior intermediate between that of acidic oxides and basic oxides, and react as both acids and bases.

Aluminum oxide, Al₂O₃, is a typical amphoteric oxide. With hydrochloric acid, aluminum oxide acts as a base. The reaction produces a salt and water.

$$Al_2O_3(s) + 6HCl(aq) \longrightarrow 2AlCl_3(aq) + 3H_2O(l)$$

With aqueous sodium hydroxide, aluminum oxide acts as an acid. The reaction forms a soluble ionic compound and water. That compound contains aluminate ions, AlO_2^- . (The AlO_2^- formula is used here rather than the more precise hydrated aluminate formula, $Al(OH)_4^-$.)

$$Al_2O_3(s) + 2NaOH(aq) \longrightarrow 2NaAlO_2(aq) + H_2O(l)$$

Reactions of Oxides

In the reaction between an acid and a metal oxide, the products are a salt and water—the same as the products in a neutralization reaction. For example, when magnesium oxide reacts with dilute sulfuric acid, magnesium sulfate and water are produced.

$$MgO(s) + H_2SO_4(dil. aq) \longrightarrow MgSO_4(aq) + H_2O(l)$$

The reaction between a basic metal oxide, such as MgO, and an acidic nonmetal oxide, such as CO_2 , tends to produce an oxygen-containing salt. The dry oxides are mixed and heated without water. Salts such as metal carbonates, phosphates, and sulfates can be made by this synthesis reaction.

$$MgO(s) + CO_2(g) \longrightarrow MgCO_3(s)$$

 $6CaO(s) + P_4O_{10}(s) \longrightarrow 2Ca_3(PO_4)_2(s)$
 $CaO(s) + SO_3(g) \longrightarrow CaSO_4(s)$

Reactions of Hydroxides with Nonmetal Oxides

Nonmetal oxides tend to be acid anhydrides. The reaction of a hydroxide base with a nonmetal oxide is an acid-base reaction. The product is either a salt or a salt and water, depending on the identities and relative quantities of reactants. For example, 2 mol of the hydroxide base sodium hydroxide and 1 mol of the nonmetal oxide carbon dioxide form sodium carbonate, which is a salt, and water.

$$CO_2(g) + 2NaOH(aq) \longrightarrow Na_2CO_3(aq) + H_2O(l)$$

However, if sodium hydroxide is limited, only sodium hydrogen carbonate is produced.

$$CO_2(g) + NaOH(aq) \longrightarrow NaHCO_3(aq)$$

TABLE 7A Periodicity of Acidic and Basic Oxides of Main-Group Elements						
Group Number						
1	2	13	14	15	16	17
Li ₂ O basic	BeO amphoteric	B ₂ O ₃ acidic	CO ₂ acidic	N ₂ O ₅ acidic		
Na ₂ O basic	MgO basic	Al ₂ O ₃ amphoteric	SiO ₂ acidic	P ₄ O ₁₀ acidic	SO ₃ acidic	Cl ₂ O acidic
K ₂ O basic	CaO basic	Ga ₂ O ₃ amphoteric	GeO ₂ amphoteric	As ₄ O ₆ amphoteric	SeO ₃ acidic	
Rb ₂ O basic	SrO basic	In ₂ O ₃ basic	SnO ₂ amphoteric	Sb ₄ O ₆ amphoteric	TeO ₃ acidic	I ₂ O ₅ acidic
Cs ₂ O basic	BaO basic	Tl ₂ O ₃ basic	PbO ₂ amphoteric	Bi ₂ O ₃ basic		