Branden Fitelson

Announcements & Such

- Branden is in Chicago all of this week. He'll return next week.
- Administrative Stuff
 - HW #2 will be returned today. Resubs due Thursday (4pm, drop box).
 - Please attach your original assignment to your resub!
 - * See my "HW Tips & Guidelines" Handout. [We're now caught-up.]
 - Make sure you have problem #12 from p. 33 of the 4th printing. It's about the Mayor's election (and the council members).
- I have posted a handout with solutions to (some of) the lecture problems on logical truth, logical falsity, equivalence, consistency, etc.
- I have also posted a handout on the "short" truth-table method, which we will be going over in lecture sometime very soon.
- Today: Chapter 3, Continued (Truth-Tables and their applications etc.)

UCB Philosophy CHAPTER 3 02/16/10

				р	q	p & q		1	q	$p \vee q$
p	$\sim p$	_		Т	Т	Т		7	Т	Т
Т	\perp			Т	Т	Τ		٦	- _	Т
上	Т			\perp	Т	Т		١	_ T	Т
·				\perp	1	Τ		١	_ _	
	р	q	<i>p</i> →	q			р	q	<i>p</i> ↔	q
	Т	\dashv	Т				Т	Т	Т	
	Т	\perp	Т				Т			
	\perp	Т	Т				\perp	Т		
	\perp	Τ	Т				\perp	_	Т	
			ı					•	1	

Branden Fitelson

Philosophy 12A Notes

Branden Fitelson

UCB Philosophy

Philosophy 12A Notes

CHAPTER 3

02/16/10

Chapter 3 — An "Internal Justification" of Our Definition of →

- 1. We want a *truth-functional* semantics for \rightarrow . This is a simplifying *idealization*. Truth-functional semantics are the simplest compositional semantics for sentential logic. [A "Newtonian" semantic model.]
- 2. Given (1), the *only* way to define \rightarrow is *our* way, since it's the *only* binary truth-function that has the following three essential *logical* properties:
- (i) *Modus Ponens* [p and $\lceil p \rightarrow q \rceil$: q] is a valid sentential form.
- (ii) Affirming the consequent $[q \text{ and } \lceil p \rightarrow q \rceil \therefore p]$ is *not* a valid form.
- (iii) All sentences of the form $\lceil p \rightarrow p \rceil$ are logical truths.
- There are *non*-truth-functional semantics for the English conditional.
- These may be "closer" to the English *meaning* of "if". But, most agree with our semantics for \rightarrow , when it comes to the crucial *logical* properties (i)–(iii). Indeed, our \rightarrow captures *most* of the (intuitive) *logical* properties of "if".
- This is analogous to our treatment of the English "however" as "&".

Constructing Truth-Tables for LSL Sentences

- With the truth-table definitions of the five connectives in hand, we can now construct truth tables for arbitrary compound LSL statements.
- The procedure for constructing the truth-table of p is as follows:
 - 1. Determine the number of rows in the truth-table. This is 2^n , where nis the number of atomic sentences in the compound statement p.
- 2. The table will have n + 1 main columns: n columns for the atomic sentences in p, and one for the truth-values of p itself.
- 3. The table will also have some "quasi-columns" one for each LSL statement occurring in the compound p — which needn't be drawn explicitly, but which go into the determination of p's truth values.
- 4. Place the atomic letters in the left most columns, in alphabetical order from left to right. And, place p in the right most column.
- 5. Write in all possible combinations of truth-values for the atomic statements. There are 2^n of these — one for each row of the table.

UCB Philosophy CHAPTER 3 02/16/10

UCB Philosophy CHAPTER 3 02/16/10

Branden Fitelson

- 6. Convention: start on the nth column (farthest down the alphabet) with the pattern $\top \bot \top \bot \ldots$ repeated until the column is filled. Then, go $\top \top \bot \bot \ldots$ in the n-1st column, $\top \top \top \top \bot \bot \bot \bot \ldots$ in the n-2nd column, etc..., until the very first column has been completed.
- 7. Finally, we compute the truth-values of p in each row of the table. Here, we start from the inside-out. We first copy the truth-values of the atoms, then we compute the negations, conjunctions, etc. which compose p. Finally, we will be in a position to compute the value of the main connective of p, at which point we'll be done with the table.
- Example: Step-By-Step Truth-Table Construction of ' $A \leftrightarrow (B \& A)$.'

A	B	A	\leftrightarrow	(B	&	A)
Т	Т	Т	Т	Т	Т	Т
Т	Т	Т	Т	Т	Т	Т
\perp	Т	\perp	Т	Т	\perp	\perp
Τ	丄	上	Т	Τ	Τ	Τ

UCB Philosophy Chapter 3 02/16/10

Logical Truth, Logical Falsity, and Contingency: Definitions

A statement is said to be logically true (or tautologous) if it is ⊤ on all interpretations. *E.g.*, any statement of the form p ↔ p is tautological.

$$\begin{array}{c|cccc} p & p & \leftrightarrow & p \\ \hline \top & \top & \top & \top \\ \hline \bot & \bot & \top & \bot \end{array}$$

• A statement is logically false (or self-contradictory) if it is \bot on all interpretations. *E.g.*, any statement of the form $p \& \neg p$ is logically false:

• A statement is **contingent** if it is *neither* tautological *nor* self-contradictory. Example: 'A' (or *any* basic sentence) is contingent.

$$\begin{array}{c|cc}
A & A \\
\hline
\top & \top \\
\bot & \bot
\end{array}$$

UCB Philosophy Chapter 3 02/16/10

Branden Fitelson

Philosophy 12A Notes

-

Logical Truth, Logical Falsity, and Contingency: Problems

- Classify the following statements as logically true (tautologous), logically false (self-contradictory), or contingent:
 - 1. $N \rightarrow (N \rightarrow N)$
 - 2. $(G \rightarrow G) \rightarrow G$
- 3. $(S \to R) & (S \& \sim R)$
- 4. $((E \rightarrow F) \rightarrow F) \rightarrow E$
- 6. $(M \rightarrow P) \lor (P \rightarrow M)$
- 11. $[(O \rightarrow P) \& (\sim O \rightarrow R)] \& \sim (P \lor R)$
- 12. $[(H \rightarrow N) \& (T \rightarrow N)] \rightarrow [(H \lor T) \rightarrow N]$
- 15. $[(F \lor E) \& (G \lor H)] \leftrightarrow [(G \& E) \lor (F \& H)]$

Branden Fitelson Philosophy 12A Notes

Equivalence, Contradictoriness, Consistency, and Inconsistency

• Statements p and q are equivalent [p
ightharpoonup q] if they have the same truth-value on all interpretations. For instance, 'A
ightharpoonup B' and ' $\sim A \lor B$ '.

A	В	A	\rightarrow	В	~	A	V	В
Т	Т	Т	T	Т	Τ	Т	Т	Т
Т	Т	Т	Т	Т		Т	Т	
	Τ	Т	Т	Т	Т	Т	Т	Т
	Τ	1	Т	Т	Т		Т	

• Statements p and q are contradictory [p
ightharpoonup
ightharpoonup
ightharpoonup q] if they have opposite truth-values on all interpretations. For instance, 'A
ightharpoonup B' and ' $A \& \sim B$ '.

A	В	A	\rightarrow	В	A	&	~	В
Т	Т	Т	Т	Т	Т	Τ	Τ	Т
Т	\perp	Т	Τ	Τ	Т	Т	Т	
Τ	\vdash	Т	Т	Т	Т	Т	Τ	Т
Τ	Т	1	Т		1	Τ	Т	Τ.

UCB Philosophy Chapter 3 02/16/10

UCB Philosophy

Chapter 3

02/16/10

9

• Statements p and q are inconsistent $[p \models \sim q]$ if there is no interpretation on which they are both true. For instance, ' $A \leftrightarrow B$ ' and ' $A \& \sim B$ ' are inconsistent [Note: they are *not* contradictory!].

A	В	A	\leftrightarrow	В	A	&	~	В
Т	Т	Т	Т	Т	Т	1	Τ	Т
Т	Τ	Т	Т	Τ	Т	Т	Т	
	Т	1	Т	Т	上	Т	Τ	Т
T	Т	T	Т	Т	T	1	Т	

• Statements p and q are consistent $[p \not\models \sim q]$ if there's an interpretation on which they are both true. *E.g.*, 'A & B' and ' $A \lor B$ ' are consistent:

	A	В	A	&	В	A	V	В
•	Т	Т	Т	Т	Т	Т	Т	Т
	Т	Т	Т	Т	Т	Т	Т	T
	\perp	Τ	\perp	1	Τ		Т	Т
•	_	Τ		Τ	Τ	\perp	T	T

UCB Philosophy Chapter 3 02/16/10

Equivalence, Contradictoriness, etc.: Some Problems

- Use truth-tables to determine whether the following pairs of statements are semantically equivalent, contradictory, consistent, or inconsistent.
 - 1. 'F & M' and ' \sim ($F \vee M$)'
 - 2. ' $R \lor \sim S$ ' and ' $S \& \sim R$ '
 - 3. ' $H \leftrightarrow \sim G$ ' and ' $(G \& H) \lor (\sim G \& \sim H)$ '
 - 4. 'N & $(A \lor \sim E)$ ' and ' $\sim A$ & $(E \lor \sim N)$ '
 - 5. 'W \leftrightarrow (B & T)' and 'W & (T $\rightarrow \sim B$)'
 - 6. 'R & $(Q \vee S)$ ' and ' $(S \vee R)$ & $(Q \vee R)$ '
 - 7. 'Z & $(C \leftrightarrow P)$ ' and ' $C \leftrightarrow (Z \& \sim P)$ '
 - 8. ' $Q \rightarrow \sim (K \vee F)$ ' and ' $(K \& Q) \vee (F \& Q)$ '

UCB Philosophy Chapter 3 02/16/10

Branden Fitelson

Philosophy 12A Notes

11

Semantic Equivalence, Contradictoriness, etc.: Relationships

• What are the logical relationships between 'p and q are equivalent', 'p and q are consistent', 'p and q are contradictory', and 'p and q are inconsistent'? That is, which of these entails which (and which don't)?

Equivalent

Contradictory

↓ ? ↑

₩ ? 1

Consistent

Inconsistent

- Answers:
 - 1. Equivalent *⇒* Consistent (*example*?)
 - 2. Consistent *⇒* Equivalent (*example*?)
 - 3. Contradictory \Rightarrow Inconsistent (*why*?)
 - 4. Inconsistent *⇒* Contradictory (*example*?)

Branden Fitelson

Branden Fitelson

Philosophy 12A Notes

12

Semantic Equivalence: Example #1

- Recall that p unless q translates in LSL as $q \to p$.
- We've said that we can also translate p unless q as $p \lor q$.
- This is because $\lceil \sim q \rightarrow p \rceil$ is *semantically equivalent to* $\lceil p \lor q \rceil$. We may demonstrate this, using the following joint truth-table.

p	q	~q	→	p	$p \vee q$
Т	Т		Т	Т	Т
Т	\perp	Т	Т	Т	Т
Τ	Т	上	Т	\perp	Т
Т	\perp	Т	Τ	\perp	Τ

- The truth-tables of $p \lor q$ and $\sim q \to p$ are the same.
- Thus, $\sim q \rightarrow p = p \lor q$.

UCB Philosophy Chapter 3 02/16/10

UCB Philosophy Chapter 3

02/16/10

Branden Fitelson

Semantic Equivalence: Example #2

- $\lceil p \leftrightarrow q \rceil$ is an abbreviation for $\lceil (p \rightarrow q) \& (q \rightarrow p) \rceil$.
- The following truth-table shows it is a *legitimate* abbreviation:

р	q	$(p \rightarrow q)$	&	$(q \rightarrow p)$	p⊶q
Т	Τ	Т	Т	Т	Т
Т	Τ		Τ	Т	Τ
\perp	Т	Т	Τ	Τ	Т
\perp	Τ	Т	Т	Т	Т

- $\lceil p \leftrightarrow q \rceil$ and $\lceil (p \to q) \& (q \to p) \rceil$ have the same truth-table.
- Thus, $p \leftrightarrow q \Rightarrow (p \rightarrow q) \& (q \rightarrow p)$.

UCB Philosophy

CHAPTER 3

02/16/10

Semantic Equivalence: Example #3

Philosophy 12A Notes

- Intuitively, the truth-conditions for *exclusive or* (\oplus) are such that ${}^{r}p \oplus q^{\gamma}$ is true if and only if *exactly* one of p or q is true.
- I said that we could say something equivalent to this using our \vee , &, and \sim . Specifically, I said $p \oplus q \Rightarrow (p \vee q) \& \sim (p \& q)$.
- The following truth-table shows that this is correct:

_	p	q	$(p \lor q)$	&	$\sim (p \& q)$	p⊕q
	Т	Τ	Т	Τ	Т	Т
	Т	Τ	Т	Т	Т	Т
	\perp	Т	Т	Т	Т	Т
	\perp	Τ	上	Τ	Т	Τ

• $\lceil p \oplus q \rceil$ and $\lceil (p \vee q) \& \sim (p \& q) \rceil$ have the same truth-table.

UCB Philosophy Chapter 3 02/16/10

Branden Fitelson

Philosophy 12A Notes

15

Some More Semantic Equivalences

• Here is a simultaneous truth-table which establishes that

$$A \leftrightarrow B \Rightarrow (A \& B) \lor (\sim A \& \sim B)$$

A	В	A	\leftrightarrow	В	(A	&	B)	V	(~	A	&	~	B)
Т	Т	Т	Т	Т	Т	Т	Т	Т	Τ	Т	Τ	Τ	Т
Т	Τ	Т	Т	Τ	Т	Т	Τ	Т	Τ	Т	Т	Т	
	Τ		1	Т		Т	Т	Т	Т			Т	Т
	Τ	1	Т	Τ	1	Т	1	Т	Т		Т	Т	

CHAPTER 3

- Can you prove the following equivalences with truth-tables?
 - $\sim (A \& B) \Rightarrow = \sim A \lor \sim B$
 - $\sim (A \vee B) = -A \& \sim B$
 - $-A = (A \& B) \lor (A \& \sim B)$
 - $-A = A \otimes (B \rightarrow B)$
 - $-A = A \lor (B \& \sim B)$

Branden Fitelson

UCB Philosophy

Philosophy 12A Notes

16

A More Complicated Equivalence (Distributivity)

• The following simultaneous truth-table establishes that

$$p\,\&\,(q\vee r) \mathrel{\dashv}\vDash (p\,\&\, q)\vee (p\,\&\, r)$$

p	q	r	р	&	$(q \vee r)$	(<i>p</i> & <i>q</i>)	V	(p&r)
Т	Т	Т	Т	Т	Τ	Т	Т	Т
Т	Т	\perp	Т	Т	Т	Т	Т	\perp
Т	\perp	Т	Т	Т	Т		Т	Т
Т	\perp	\perp	Т	\perp	Τ	上	\perp	\perp
\perp	Т	Т	Τ	\perp	Т		\perp	\perp
\perp	Т	\perp	Τ	\perp	Т		\perp	\perp
\perp	\perp	Т	Τ	\perp	Т		\perp	\perp
\perp	\perp	\perp	Τ	\perp	Τ	上	\perp	\perp

• This is *distributivity* of & over \vee . It also works for \vee over &.

02/16/10

CHAPTER 3

02/16/10

UCB Philosophy

Branden Fitelson Philosophy 12A Notes 17

The Exhaustive Truth-Table Method for Testing Validity

• Remember, an argument is **valid** if it is *impossible* for its premises to be true while its conclusion is false. Let p_1, \ldots, p_n be the premises of a LSL argument, and let q be the conclusion of the argument. Then, we have:

 $\begin{array}{c}
p_1 \\
\vdots \\
p_n \\
\hline
\vdots \\
q
\end{array}$ is valid if and only if there is no row in the simultaneous

truth-table of p_1, \ldots, p_n , and q which looks like the following:

atoms premises conclusion

• We will use simultaneous truth-tables to prove validities and invalidities. For example, consider the following valid argument:

UCB Philosophy Chapter 3 02/16/10

Branden Fitelson Philosophy 12A Notes 18

	ato	ms		pren	nises	conclusion	
A	A	В	\boldsymbol{A}	A	→	В	В
$A \rightarrow B$	Т	Т	Т	Т	Т	Т	Т
	Т	Τ	Т	Т	1	Τ	
∴ <i>B</i>		Τ	1	Т	Т	Т	Т
		\perp	1		Т	\perp	

- ℰ VALID there is no row in which *A* and *A* → *B* are both \top , but *B* is \bot .
- In general, we'll use the following procedure for evaluating arguments:
 - 1. Translate and symbolize the the argument (if given in English).
- 2. Write out the symbolized argument (as above).
- 3. Draw a simultaneous truth-table for the symbolized argument, outlining the columns representing the premises and conclusion.
- 4. Is there a row of the table in which all premises are \top but the conclusion is \bot ? If so, the argument is invalid; if not, it's valid.
- We will practice this on examples. But, first, a "short-cut" method.

UCB Philosophy Chapter 3 02/16/10