Série Nº2 : Application linéaire, Endomorphisme et isomorphisme

Exercice 1

- 1. Montrer que $(\mathbb{R}^2, +, \cdot)$ est un espace vectoriel sur \mathbb{R} .
- 2. Soient $E = \{(x, -x); x \in \mathbb{R}\}\$ et $F = \{(x, x); x \in \mathbb{R}\}\$ deux ensembles.
 - (a) Montrer que E et F sont deux sous-espaces vectoriels de \mathbb{R}^2 .
 - (b) Montrer que E et F sont supplémentaires dans \mathbb{R}^2 .

Exercice 2

Soit $\mathcal{M}_2(\mathbb{R})$ l'ensemble des matrices d'ordre 2 à coefficients réels.

- 1. Montrer que $(\mathcal{M}_2(\mathbb{R}), +, \cdot)$ est un \mathbb{R} -espace vectoriel.
- 2. On considère $E = \left\{ M_{a,b} = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}; \quad (a,b) \in \mathbb{R}^2 \right\}$
 - (a) Montrer que E est un espace vectoriel sur \mathbb{R} .
 - (b) On pose $J=\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Montrer que le système $\{I,J\}$ est une base de E où $I=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
 - (c) On pose $E_1 = \left\{ \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}; a \in \mathbb{R} \right\}$ et $E_2 = \left\{ \begin{pmatrix} 0 & b \\ -b & 0 \end{pmatrix}; b \in \mathbb{R} \right\}$. Montrer que $E = E_1 \oplus E_2$.

Exercice 3

Soit
$$E = \left\{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}; (a, b) \in \mathbb{R}^2 \right\}$$

- 1. (a) Montrer que E un espace vectoriel sur \mathbb{R} .
 - (b) Trouver une base de E.
- 2. Soit $f: E \to \mathbb{R}$, $\begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \to a + b$
 - (a) Montrer que f est linéaire.
 - (b) Déterminer Ker f, noyau de f.
 - (c) Déterminer G le supplémentaire de Kerf dans E.

Exercice 4

Soit $(\mathcal{F}(\mathbb{R}), +, \cdot)$ l'espace vectoriel sur \mathbb{R} des fonctions numérique de \mathbb{R} dans \mathbb{R} . On considère $E = \{ f \in \mathcal{F}(\mathbb{R}) \mid \forall x \in \mathbb{R} : f(-x) = f(x) \}$ et $F = \{ f \in \mathcal{F}(\mathbb{R}) \mid \forall x \in \mathbb{R} : f(-x) = -f(x) \}$

- 1. Soit E et F sont des sous-espaces vectoriels de $\mathcal{F}(\mathbb{R})$.
- 2. Soit $f \in \mathcal{F}(\mathbb{R})$. On pose

$$g(x) = \frac{1}{2} (f(x) + f(-x))$$
 et $h(x) = \frac{1}{2} (f(x) - f(-x))$.

Vérifier que $g \in E$ et $h \in F$.

3. en déduire $\mathcal{F}(\mathbb{R}) = E \oplus F$.

Exercice 5

On considère l'espace vectoriel \mathbb{R}^2 muni de la base canonique (e_1, e_2) où $e_1(1,0)$ et $e_2(0,1)$:

- 1. Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$, $(x,y) \mapsto (x-y,x+y)$.
 - (a) Montrer que f est linéaire.
 - (b) Écrire la matrice de f relativement à la base (e_1, e_2) .
- 2. Soit g un endomorphisme de \mathbb{R}^2 dont la matrice relativement à la base (e_1, e_2) est $A = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$ Déterminer l'ensemble Img, image de g.

Exercice 6

Soit E un K-espace vectoriel. On désigne par id_E l'endomorphisme identique de E.

- 1. Montrer que p est un projecteur si et seulement si $id_E p$ est un projecteur.
- 2. Soi p un projecteur de E.
 - (a) Montrer que $E = Im(p) \oplus ker(p)$.
 - (b) Montrer que $Im(id_E p) = ker(p)$ et $ker(id_E p) = Im(p)$
- 3. Soit $f \in \mathcal{L}(E)$ tel que $f(\ker(p)) \subseteq \ker(p)$ et $f(\operatorname{Im}(p)) \subseteq \operatorname{Im}(p)$. Montrer que $f \circ p = p \circ f$.

Exercice 7

Soit $\mathcal{C}(\mathbb{R})$ le \mathbb{R} -espace vectoriel des fonctions numériques continues sur \mathbb{R} . Soit $\mathcal{C}^2(\mathbb{R})$ l'ensemble des fonctions $f: \mathbb{R} \to \mathbb{R}$ de classe \mathcal{C}^2 sur \mathbb{R} .

- 1. Vérifier que $\mathcal{C}^2(\mathbb{R})$ est un sous-ensemble de $\mathcal{C}(\mathbb{R})$. Que peut-on déduire?
- 2. Soit Φ une application de $\mathcal{C}^2(\mathbb{R})$ dans $\mathcal{C}(\mathbb{R})$, qui a une fonction f de $\mathcal{C}^2(\mathbb{R})$ associe la fonction g = f'' + 2f' + f.
 - (a) Exprimer l'écriture symbolique de l'application Φ , puis montrer que Φ est un homomorphisme d'espaces vectoriels.
 - (b) Déterminer le noyau Ker(f) de Φ . L'application Φ est-elle injective?
 - (c) Le noyau Ker(f) est-il de dimension finie? **Justifier**
 - (d) L'application Φ est-elle surjective? est-elle un isomorphisme d'espaces vectoriels?

Exercice 8

Soit $E = \{(u_n)_{n \in \mathbb{N}} / u_{n+2} = a u_{n+1} + b u_n; (a, b) \in \mathbb{R}^2 \}$

- 1. Montrer que E est un espace vectoriel sur \mathbb{R} .
- 2. Soit $\varphi: E \to \mathbb{R}^2$, $(u_n)_{n \in \mathbb{N}} \mapsto (u_0, u_1)$. Montrer que φ est un isomorphisme d'espaces vectoriels, puis en déduire la dimension de E.
- 3. On considère l'équation :

$$(Q): x^2 - ax - b = 0$$

Montrer que si l'équation (Q) admet deux solutions complexes z_1 et z_2 , alors les suites $(\alpha_n)_{n\in\mathbb{N}}$ et $(\beta_n)_{n\in\mathbb{N}}$ forment une base de E avec

$$\alpha_n = \frac{1}{2}(z_1^n + z_2^n)$$
 et $\beta_n = \frac{1}{2i}(z_1^n - z_2^n)$

4. **Application** : Déterminer u_n en fonction de n dans le cas suivant :

$$u_{n+2} = 2u_{n+1} - 2u_n$$
, $u_0 = 1$, $u_1 = 2$.