Accès à l'information - Cours sur l'inférence exacte

François Yvon

18 janvier 2017

Élimination des variables

Écrire le plus précisément possible l'algorithme d'élimination des variables adapté au calcul du mode, en incluant la recherche de l'argmax.

Double HMM

On étend le modèle classique du HMM en ajoutant une seconde observation $y_{[1:T]}$. La loi jointe s'écrit alors :

$$P(X_{[1:T]},Y_{[1:T]},Q_{[1:T]}) = P(Q_1)P(X_1 | Q_1)P(Y_1 | Q_1)\prod_{t=2}^{T}P(Q_t | Q_{t-1})P(X_t | Q_t)P(Y_t | Q_t)$$

Observant $X_{[1:T]} = x_{[1:T]}$, on cherche à trouver la séquence $Y_{[1:T]}$ la plus probable.

- 1. On considère tout d'abord la procédure suivante :
 - calculer la séquence $q_{[1:T]}^*$ maximisant $P(q_{[1:T]} | x_{[1:T]})$
 - calculer la séquence $y_{[1:T]}^*$ maximisant $P(y_{[1:T]} | q_{[1:T]}^*)$ Expliquer comment réaliser efficacement ces deux étapes de calcul.

2. Que pensez-vous du programme $\operatorname{argmax} P(Y_{\lceil 1:T \rceil} | x_{\lceil 1:T \rceil})$? Est-il possible de le résoudre efficacement? Si oui, avec quel algorithme? Si non, expliquer pourquoi.

Refaire des calculs

- 1. Vérifiez que Forward-Backward est effectivement comme le passage de mes-
- 2. Vérifiez que la normalisation locale ne change pas les résultats du passage de message

Applications du JTA (1)

On considère la distribution :

$$P(X_1, X_2, X_3, X_4) = \phi(X_1, X_2)\phi(X_2, X_3)\phi(X_3, X_4)\phi(X_4, X_1)$$

- 1. Calculer un arbre de jonction pour cette distribution
- 2. Appliquer l'algorithme de passage de message et montrer qu'il donne une valeur correcte pour la loi marginale de X_1 .

Applications du JTA (2)

On considère la distribution :

$$P(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8, X_9) = P(X_1) P(X_2 | X_1) P(X_3 | X_1) P(X_4 | X_1) P(X_5 | X_2)$$

$$P(X_6 | X_3) P(X_7 | X_4) P(X_8 | X_5, X_6) P(X_9 | X_6, X_7)$$

- 1. Dessiner le réseau bayésien correspondant à cette distribution
- 2. Dessiner le graphe une fois moralisé
- 3. Dessiner le graphe une fois triangularisé
- 4. Dessiner un arbre de jonction pour cette distribution (en affectant les facteurs aux cliques)
- 5. Expliciter une procédure de passage des messages

Regardez des films

D. Koller sur coursera

- Elimination des variables: https://www.youtube.com/watch?v=jz02X3hByac&index=38&list=PL50E6E80E8525B59C
- Passage de message (sum product) https://www.youtube.com/watch? v=ASsKAaHlhCU
- Passage de message (max sum) https://www.youtube.com/watch? v=CH1bCDe6k88
- Propagation de croyances: https://www.youtube.com/watch?v=ASsKAaHlhCU&index=42&list=PL50E6E80E8525B59C