Resumo de aula 6

1 Funções: exponencial e logarítmica

Funções exponenciais

Definimos a função exponencial de bade a, a > 0 e $a \neq 1$ por $f(x) = a^x$ para todo $x \in \mathbb{R}$.

O gráfico de $f(x) = a^x$ tem o seguinte aspecto:

Exemplo 1.1. Esboce o gráfico da função (a) $f(x) = 2^x$ (b) $f(x) = (\frac{1}{2})^x$

A função exponencial de base e ($e \simeq 2,718281$) $f(x) = e^x$ é chamado de função exponencial natural. Como e > 1, o gráfico de $f(x) = e^x$ tem o seguinte aspecto:

2 Funções Logarítmicas

Se a > 0 e $a \neq 1$, a função exponencial $f(x) = a^x$ ou é crescente ou é decrescente. Assim, possui uma função inversa f^{-1} chamada de função logarítmica com base a denotada por log_a (isto é, $f^{-1} = log_a$). Como

$$f^{-1}(x) = y \iff f(y) = x$$

tem - se

$$log_a x = y \iff a^y = x$$

Ainda

$$f^{-1}(f(x)) = x \iff log_a(a^x) = x \quad para \quad todo \quad x \in \mathbb{R}$$

 $f(f^{-1}(x)) = x \iff a^{log_a x} = x \quad para \quad todo \quad x > 0$

Exemplo 2.1. Esboce o gráfico da função (a) $f(x) = log_2 x$ (b) $f(x) = log_{\frac{1}{2}} x$

Os logaritmos na base e são chamados de logaritmos naturais e têm uma notação especial

$$log_e x = lnx$$

Leis dos logarítmos

Sejam $a>0, a\neq 1, b>0, b\neq 1.$ xe y forem números positivos, então

- 1. $log_a(xy) = log_a x + log_a y$
- $2. \log_a(\frac{x}{y}) = \log_a x \log_a y$
- 3. $log_a(x^r) = rlog_a x$ (onde r é qualquer número real)
- 4.(Mudançe base) $log_a x = \frac{log_b x}{log_b x}$