יש להגיש את הפתרונות עד יום רביעי בשעה 23:59 בשבוע שאחרי זה בו המטלה ניתנה.

שאלות להגשה

- 1. נוסחא כוללת היא נוסחא מהצורה $\forall x\psi(x,y)$ כאשר ψ חסרת-כמתים (x ו-y מספר כלשהו של משתנים). בהנתן תורה \mathbb{T} , נסמן ב- \mathbb{T} את קבוצת כל הפסוקים הכוללים ϕ שנובעים לוגית מ- \mathbb{T} (כלומר, ϕ). נאמר שתורה היא כוללת אם היא מורכבת מפסוקים כוללים. תהי \mathbb{T} תורה כלשהי.
 - \mathbb{T}_0 של מודל של מודל אז גם \mathcal{N} אז גם \mathcal{N} ו- \mathcal{N} , ו- \mathcal{N} תת-מבנה של אז גם \mathcal{M} מודל של (א)
- (ב) אם \mathcal{M} מודל של \mathbb{T}_{\forall} , נרחיב את החתימה על-ידי הוספת קבוע $m\in\mathcal{M}$ לכל $m\in\mathcal{M}$ מהסוג המתאים). נרחיב את התורה \mathbb{T} לתורה \mathbb{T} בחתימה החדשה, על-ידי הוספת הפסוק $\phi(c_{m_1},\ldots,c_{m_k})$ לכל נוסחא חסרת $\mathbb{T}_{\mathcal{M}}$ ולכל $\mathbb{T}_{\mathcal{M}}$ ספיקה. הוכיחו (בעזרת משפט הקומפקטיות) ש $\mathbb{T}_{\mathcal{M}}$ ספיקה.
- המבנים שהם בפרט מחלקת בפרט מודל של \mathbb{T}_{\forall} הוא תת-מבנה של מודל של \mathbb{T} . בפרט מחלקת המבנים שהם תתי-מבנים של מודלים של \mathbb{T} היא אלמנטרית.
 - (ד) הסיקו שתורה $\mathbb T$ מקיימת שכל תת-מבנה של מודל הוא תת-מודל אם ורק אם היא שקולה לתורה כוללת