| Marlon Henry Schweigert                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                       |
| Análise de arquiteturas de microsserviços empregados a jogos<br>MMORPG voltada a otimização do uso de recursos de<br>gerenciamento de mundos virtuais |
|                                                                                                                                                       |
|                                                                                                                                                       |
|                                                                                                                                                       |
|                                                                                                                                                       |
|                                                                                                                                                       |
|                                                                                                                                                       |
|                                                                                                                                                       |
|                                                                                                                                                       |
|                                                                                                                                                       |
|                                                                                                                                                       |
|                                                                                                                                                       |
|                                                                                                                                                       |
| Joinville                                                                                                                                             |

#### UNIVERSIDADE DO ESTADO DE SANTA CATARINA BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

#### Marlon Henry Schweigert

# ANÁLISE DE ARQUITETURAS DE MICROSSERVIÇOS EMPREGADOS A JOGOS MMORPG VOLTADA A OTIMIZAÇÃO DO USO DE RECURSOS DE GERENCIAMENTO DE MUNDOS VIRTUAIS

Trabalho de conclusão de curso submetido à Universidade do Estado de Santa Catarina como parte dos requisitos para a obtenção do grau de Bacharel em Ciência da Computação

Charles Christian Miers
Orientador

# ANÁLISE DE ARQUITETURAS DE MICROSSERVIÇOS EMPREGADOS A JOGOS MMORPG VOLTADA A OTIMIZAÇÃO DO USO DE RECURSOS DE GERENCIAMENTO DE MUNDOS VIRTUAIS

#### Marlon Henry Schweigert

| Este Trabalho de Conclusão de Curso | foi julgado adequado para a obtenção do título de |
|-------------------------------------|---------------------------------------------------|
| Bacharel em Ciência da Computação e | aprovado em sua forma final pelo Curso de Ciência |
| da Computação Integral do CCT/UD    | ESC.                                              |
|                                     |                                                   |
|                                     |                                                   |
|                                     |                                                   |
| Banca Examinadora                   |                                                   |
| Danca Exammadora                    |                                                   |
|                                     |                                                   |
|                                     |                                                   |
|                                     |                                                   |
|                                     | Charles Christian Miers - Doutor (orientador)     |
|                                     |                                                   |
|                                     |                                                   |
|                                     |                                                   |
|                                     | Débora Cabral Nazário - Doutora                   |
|                                     |                                                   |
|                                     |                                                   |
|                                     |                                                   |

Guilherme Piegas Koslovski - Doutor

### Agradecimentos

AGRADECIMENTOS

#### Resumo

crescente popularização de jogos massivos demanda por novas abordagens tecnológicas a fim de suprir as necessidades dos usuários com menor custo de recursos computacionais. Projetar essas arquiteturas, do ponto de vista da rede, é algo pertinente e impactante para o sucesso desses jogos. O objetivo deste trabalho é propor uma análise voltada a identificar abordagens para otimização dos recursos computacionais consumidos pelas arquiteturas identificadas. Esse objetivo será atingido após realizar uma pesquisa referenciada, seguida de uma análise das principais arquiteturas e, preferencialmente, a execução de simulações usando uma nuvem computacional para auxiliar na identificação de gargalos de recursos. Os resultados obtidos auxiliarão provedores de serviços Massively multiplayer online roleplaying game (MMORPG) a reduzir gastos de manutenção e melhorar a qualidade de tais serviços.

Palavras-chaves: Arquitetura de microsserviços, Desenvolvimento de jogos, Rede de jogos, Jogos massivos, Otimização de recursos, Nuvens computacionais

#### Abstract

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

**Keywords:** Cloud computing, Traffic characterization, Management network, Traffic monitoring system, Performance analysis, OpenStack.

#### Sumário

| Li           | Lista de Figuras                |                                                 |    |  |  |  |  |  |  |  |
|--------------|---------------------------------|-------------------------------------------------|----|--|--|--|--|--|--|--|
| Li           | Lista de Tabelas                |                                                 |    |  |  |  |  |  |  |  |
| Li           | sta d                           | le Abreviaturas                                 | 7  |  |  |  |  |  |  |  |
| l Introdução |                                 |                                                 |    |  |  |  |  |  |  |  |
| 2            | Fun                             | damentação Teórica                              | 9  |  |  |  |  |  |  |  |
|              | 2.1                             | Jogos Eletrônicos                               | 9  |  |  |  |  |  |  |  |
|              |                                 | 2.1.1 Árvore de gêneros de jogos eletrônicos    | 10 |  |  |  |  |  |  |  |
|              | 2.2                             | Jogos Massivos                                  | 13 |  |  |  |  |  |  |  |
|              | 2.3                             | Arquitetura de Serviços MMORPG                  | 14 |  |  |  |  |  |  |  |
|              | 2.4                             | Arquitetura de Microsserviços                   | 16 |  |  |  |  |  |  |  |
|              | 2.5                             | Arquitetura de Microsserviços para jogos MMORPG | 16 |  |  |  |  |  |  |  |
|              |                                 | 2.5.1 Protocolos Utilizados                     | 16 |  |  |  |  |  |  |  |
|              | 2.6                             | Trabalhos Relacionados                          | 16 |  |  |  |  |  |  |  |
| 3            | Pro                             | posta para caracterização de tráfego            | 17 |  |  |  |  |  |  |  |
| 4            | Considerações & Próximos passos |                                                 |    |  |  |  |  |  |  |  |
| R            | Referências 19                  |                                                 |    |  |  |  |  |  |  |  |

## Lista de Figuras

| 2.1 Árv | ore de gêneros | simplificada. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 13 |
|---------|----------------|---------------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|----|
|---------|----------------|---------------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|----|

#### Lista de Tabelas

#### Lista de Abreviaturas

 $\mathbf{FPS} \; \textit{First-person shooter}$ 

MMO Massively multiplayer online

 $\mathbf{MMORPG}\ \mathit{Massively\ multiplayer\ online\ role-playing\ game}$ 

MOBA Multiplayer online battle arena

NPCs Non-Playable Characters

RPG Role-playing game

RTS Real-time strategy

**TPS** Third-person shooter

 $\mathbf{POF}\ \mathit{Point}\ \mathit{of}\ \mathit{View}$ 

#### 1 Introdução

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

#### 2 Fundamentação Teórica

#### 2.1 Jogos Eletrônicos

O primeiro sistema de entretenimento interativo foi construído em 1947, utilizando como base de exibição um tubo de raios catódicos, criado por Thomas Goldsmith Jr. e Estle Ray Mann. Essa criação foi patenteada em janeiro de 1948, datando então o início dos jogos eletrônicos (ADAMS, 2014; GOLDSMITH, 1947).

O jogo eletrônico, ou entretenimento interativo, é uma atividade intelectual que integra um sistema de regras, na qual utiliza tal sistema a fim de definir seus objetivos ou pontuação por meio de um computador com o objetivo de dispertar alguma emoção ao jogador (HANNA, 2015). Os jogos eletrônicos são aplicações convencionais, que executam sobre algum sistema operacional ou hardware apropriado a este fim. O sistema operacional, hardware ou base de execução da aplicação gráfica define a sua plataforma, e.g., GNU/Linux, MS-Windows, Sony PS4, MS-XBox, web (ADAMS, 2006).

Inicialmente os jogos eram implementados de forma simples por conta da limitação das plataformas dos anos 80. As implementações de jogos para videogames eram desenhadas diretamente para algum hardware proprietário, sem sistema operacional, por muitas vezes sem utilizar comunicação por rede ou memória de disco (ADAMS, 2006). Já os jogos de computadores utilizando algum serviço online eram inviabilizados pelo custo de manutenção de tais serviços e pela baixa demanda de jogadores (ADAMS, 2006). Na década de 80, o videogame Atari foi uma plataforma popular, vendendo 30.000 unidades em seu lançamento contra apenas 2.000 unidades do seu concorrente Intellivision (YARUSSO, 2006). A sua especificação era:

O crescente recurso computacional disponível em computadores pessoais e videogames após os anos 90 permitiu que desenvolvedores criassem novos estilos de jogos que utilizavam de hardware mais especificado (ADAMS, 2006). Dentre esses hardwares, iniciou-se o uso da rede de computadores para prover a interação entre jogadores de má-

2.1 Jogos Eletrônicos

10

quinas distintas (STATISTA, 2018a). Jogos como EA Habitat<sup>1</sup>, CipSoft Tibia<sup>2</sup> e Jajex Runescape<sup>3</sup> começam a utilizar, como requisito obrigatório do jogo, a conexão com a Internet. Tais jogos popularizaram trazendo uma inovação em seu quesito de jogabilidade e desafio proposto, criando uma nova subcategoria.

#### 2.1.1 Árvore de gêneros de jogos eletrônicos

A classificação por gênero é uma ferramenta tradicional para auxiliar a fácil identificação de características de alguma literatura, arte e outras mídias. Dentro de jogos eletrônicos, o gênero permite que jogadores comprem jogos com características próximas conforme o seu gosto(CLARKE; LEE; CLARK, 2015).

Um gênero de jogo eletrônico é uma categoria específica para agrupar estilos de jogabilidade parecidos. Porém, gêneros não definem definitivamente o conteúdo expresso em algum título, mas sim um desafio comum presente no título analisado (ADAMS, 2006; HANNA, 2015). Cada gênero de jogo contém várias variações, para uma melhor classificação. A árvore pode ser visualizada pelo diagrama na Figura 2.1. O contexto breve de cada gênero é:

- Estratégia: Jogos de estratégia são focados em uma jogabilidade que exija habilidades de raciocínio e/ou gerenciamento de recurso. Neste gênero, o jogador tem uma boa visualização do mundo, controlando indiretamente as suas tropas disponíveis (ROLLINGS; ADAMS, 2003). É comum encontrar jogos que disponibilizam algum modo de competição entre jogadores em uma rede local ou via Internet (ADAMS, 2006).
  - Real-time strategy (RTS): Esse utiliza as características de um jogo de estratégia, porém esse subgênero indica que as jogadas dos jogadores não são atômicas (ADAMS, 2006).
- Jogos Massivos: Esse gênero de jogo preza pela interação com outros jogadores em um mundo compartilhado (ADAMS, 2006). SecondLife<sup>4</sup> é um jogo focado na

<sup>&</sup>lt;sup>1</sup>EA Habitat: http://www.mobygames.com/game/c64/habitat/credits

<sup>&</sup>lt;sup>2</sup>Tibia: http://www.tibia.com/

<sup>&</sup>lt;sup>3</sup>Jajex Runescape: https://www.runescape.com <sup>4</sup>SecondLife: https://www.secondlife.com/

interação social, com artifícios de comércio e relacionamentos em um mundo fictício criado pela comunidade (KLEINA, 2018).

- Multiplayer online battle arena (MOBA): Este gênero coloca um número fixo de jogadores separados em dois times, no qual o time com maior estratégia de posicionamento e gerenciamento de recursos em equipe ganha a partida. Jogos MOBA perdem algumas características breves do gênero Role-playing game (RPG), deixando de lado a interpretação e contextualização de um mundo, fixando-se somente em um comate estratégico e momentânio (distribuído em partidas átomas) entre as equipes, carregando consigo somente as características de comércio e comunidade dos jogos Massively multiplayer online (MMO) (ADAMS, 2006). Tal subgênero é popularmente conhecido pelos títulos Blizzard Dota 2<sup>5</sup> e Riot League of Legends<sup>6</sup>. O jogo League of Legends obteve 100 milhões de usuários ativos em 2016 (STATISTA, 2018b), além de ter um torneio nacional e mundial (SPORTV, 2018).
- MMORPG: Esse gênero herda características dos gêneros ação e aventura, RPG, e MMO diretamente. Nesse gênero, o jogo permite interações em um mundo na qual outros jogadores também estão jogando, permitindo a interação entre outros jogadores (herdado dos jogos MMO), com o mundo (herdado dos jogos de ação e aventura), e com objetivos guiados por Non-Playable Characters (NPCs) (herdados de jogos RPG) (ADAMS, 2006). Um título popular para esse gênero é o jogo Word of WarCraft<sup>7</sup>. Esse gênero será melhor abordado na Seção 2.2.
- Aventura: Este jogo é caracterizado por desafios envolvendo ações com diversos
   NPCs ou com o ambiente para solucionar desafios (ADAMS, 2006).
  - Ação e Aventura: Esse gênero herda características da categoria de Ação e Aventura. O jogador é imerso em um mundo para iteragir com o ambiente e com NPCs, além de se preocupar com a movimentação no cenário (ADAMS, 2006).
     Um título popularmente conhecido desse gênero é a série de jogos nomeada Nintendo The Legend of Zelda<sup>8</sup>.

<sup>&</sup>lt;sup>5</sup>Blizzard Dota 2: http://br.dota2.com/

<sup>&</sup>lt;sup>6</sup>Riot League of Legends: https://br.leagueoflegends.com/pt/

<sup>&</sup>lt;sup>7</sup>Word of WarCraft: https://worldofwarcraft.com/pt-br/

<sup>&</sup>lt;sup>8</sup>Nintendo The Legend of Zelda: https://www.zelda.com/

- Simulação: Esse gênero de jogos são desenhados sobre aspéctos reais ou fictícios da realidade. Temas comums nesse gênero são jogos de construção e gerenciamento, animais de estimação, vida social e simulação de veículos (ADAMS, 2006).
  - Esportes: Esse sub-gênero da simulação trata somente da simulação de esportes, nos quais o(s) time(s) podem ser controlados tanto por uma inteligência artificial quanto por jogadores online (ADAMS, 2006). O jogo FIFA<sup>9</sup> é um título popular nesse segmento.
- Ação: Essa categoria de jogos preza pela habilidade de coordenação motora e reflexos do jogador, para tomar uma atitude a fim de passar seus objetivos no cenário. Nesse gênero os objetivos são passar por uma série de desafios que incluam movimentação e posicionamento de outros objetos no cenário (ADAMS, 2006).
  - Jogos de Tiro: Em jogos de tiro, o jogador usa um número finito de armas para executar ações a distância. O posicionamento, movimentação estratégia e mira são fatores de desafio ao jogador nesse gênero (ADAMS, 2006).
    - \* First-person shooter (FPS): Nesse subgênero, o jogo utiliza o método de gravação conhecido como Point of View (POF). Nesse método, o modo de exibição do mundo é dado como a visão de um personagem do jogo, na qual o personagem não tem visão de sí próprio se não por reflexos (HANNA, 2015; ADAMS, 2006).
    - \* Third-person shooter (TPS): Diferente dos jogos FPS, os jogos TPS utilizam cameras soltas no cenário no qual o jogador é visível na cena exibida (HANNA, 2015; ADAMS, 2006).
- Jogos sérios: Esse gênero de jogo tem como objetivo transmitir um conteúdo educacional (HANNA, 2015). O jogo Sherlock Dengue 8 (BUCHINGER, 2014) é um título desenvolvido com o objetivo de conscientizar os problemas e a prevenção da Dengue no Brasil.

O gênero abordado no atual documento refere-se à MMORPG. O desenvolvimento desse gênero segue determinados padrões, tais como a necessidade de um serviço e um cliente (definidos na Seção 2.2), problemas comuns com a indisponibilidade ou baixo desempenho do serviço e o custo de manutenção de tais serviços.

<sup>&</sup>lt;sup>9</sup>FIFA: https://www.easports.com/br/fifa



Figura 2.1: Árvore de gêneros simplificada.

#### 2.2 Jogos Massivos

Jogos MMORPG são utilizados como negócio viável e lucrativo, sendo que experiência de jogabilidade na qual o usuário final será submitido é um fator crítico para o sucesso. O mercado de jogos MMORPG vem crescendo desde 2012 (BILTON, 2011), sendo no ano de 2016 um dos mais lucrativos (STATISTA, 2016). A sua projeção para 2018 é que sejam arrecadados mais de 30 bilhões de dólares americanos com esta categoria de jogos (STATISTA, 2017), um aumento de 20% a mais sobre o ano de 2016.

MMORPG são jogos de interpretação de papéis massivos, originados dos gêneros RPG. A principal característica desse estilo de jogo é a comunicação e representação virtual de um mundo fantasia no qual cada jogador pode interagir com objetos virtuais compartilhados ou tomar ações sobre outros jogadores em tempo real, tendo como principais objetivos a resolução de problemas conforme a sua regra de *design*, o desenvolvimento do personagem e a interação entre os jogadores(HANNA, 2015).

Um jogo MMORPG é arquitetado em duas partes (KIM; KIM; PARK, 2008):

• Serviço: É o macrosserviço que implementa as regras de negócio e requisitos do jogo. O serviço disponibiliza uma interface com ações possíveis ao cliente sobre algum protocolo de rede.

• Cliente: É a aplicação que realizará as requisições com a interface do macrosserviço, exibindo o estado de jogo de forma imersiva ao jogador.

A maioria dos jogos MMORPG disponíveis no mercado estão implementados sobre uma arquitetura que executa sobre diversos servidores (WILLSON, 2017), nos quais o desempenho destes servidores influencia tanto na experiência de jogabilidade do usuário final, quanto no custo de manutenção destes serviços (HUANG; YE; CHENG, 2004). Em especial, o presente trabalho tratará com maiores detalhes as arquiteturas utilizadas no serviço dessa categoria de jogos.

#### 2.3 Arquitetura de Serviços MMORPG

A maioria dos jogos MMORPG disponíveis no mercado estão implementados sobre uma arquitetura que executa sobre diversos servidores (WILLSON, 2017), nos quais o desempenho destes servidores influencia tanto na experiência de jogabilidade do usuário final, quanto no custo de manutenção destes serviços (HUANG; YE; CHENG, 2004). Modelar um sistema de alto desempenho torna-se um trabalho essencial para a satisfação do usuário final (HUANG; YE; CHENG, 2004). As ocorrências geradas por um sistema de baixo desempenho podem acarretar em frustração do usuário com o serviço e/ou aumento dos gastos com recurso computacional para manter o serviço. Uma ocorrência é qualquer tipo de mal funcionamento em uma aplicação, não necessariamente aparente ao usuário final (HUANG; YE; CHENG, 2004). Evitar ou eliminar as ocorrências durante o projeto e desenvolvimento das arquiteturas do serviço é um processo crítico para o bom funcionamento desses jogos.

Uma métrica popular para mensurar o desempenho de um serviço MMORPG é o número de conexões (HUANG; YE; CHENG, 2004) simultâneas suportadas. Em geral, caso o serviço ultrapasse o limite para o qual este foi projetado, diversas falhas de conexão, problemas de lentidão ou dessincronização com o cliente podem ocorrer. Neste contexto, as ocorrências comuns são (HUANG; YE; CHENG, 2004):

- Longo tempo de resposta aos clientes: implica em uma qualidade insatisfatória de jogabilidade ao usuário ou até mesmo impossibilitando o uso do serviço.
- Dessincronização com os clientes: realiza reversão na aplicação. Reversão é

definida pela situação na qual uma requisição é solicitada ao servidor, um préprocessamento aparente é executado e essa requisição é negada, sendo necessário desfazer o pré-processamento aparente realizado ao cliente.

- Problemas internos ao serviço: podem estar relacionados a diversos outros erros internos de implementação ou a capacidade de recurso computacional (e.g., sobrecarga no banco de dados, gerenciamento lento do espaço ou inconsistências dentro do jogo perante a regra de negócios).
- Falha de conexão entre o cliente e os microsserviços: causa a negação de serviço ao usuário final.

Existem algumas causas comuns para essas as ocorrências descritas (HUANG; YE; CHENG, 2004):

- Baixo poder computacional do servidor: poder computacional baixo para a qualidade de experiência de jogabilidade do usuário final desejada.
- Complexidade de algoritmos: o serviço usa algoritmos de alta complexidade ou regras de negócios que demandam por um algoritmo complexo.
- Limitado pela própria arquitetura: está limitado diretamente pelo número de conexões, não suportando a carga recebida.

Tais ocorrências estão diretamente correlacionadas a carga a qual tais serviços estão submetidos e podem ser amenizadas utilizando técnicas de provisionamento de recursos e balanceamento de carga (HUANG; YE; CHENG, 2004), mas não suficiente para eliminar tais ocorrências.

A área de desenvolvimento web compartilha várias ocorrências comuns geradas por sobrecarga do serviço (KHAZAEI et al., 2016). Em desenvolvimento web é comum utilizar a abordagem de microsserviços para resolver o problema de sobrecarga, modularizar ando o funcionamento em módulos menores. Da mesma forma, faz sentido modularizar um serviço MMORPG em microsserviços para suportar cargas maiores e diminuir o custo de manutenção (VILLAMIZAR et al., 2016).

Entretanto, se faz necessário compreender o funcionamento e padronização de desenvolvimento de microsserviços atuais. Para isso, essas arquiteturas serão melhores abordadas na Seção 2.4.

- 2.4 Arquitetura de Microsserviços
- 2.5 Arquitetura de Microsserviços para jogos MMORPG
- 2.5.1 Protocolos Utilizados
- 2.6 Trabalhos Relacionados

# 3 Proposta para caracterização de tráfego

CAP 3

# 4 Considerações & Próximos passos

CONCLUSÃO

#### Referências

- ADAMS, A. R. E. Fundamentals of Game Design (Game Design and Development Series). Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 2006. ISBN 0131687476.
- ADAMS, E. Fundamentals of Game Design. New Riders Publishing, 2014. ISBN 978-032192967-9. Disponível em: <a href="https://www.amazon.com.br/Fundamentals-Game-Design-Ernest-Adams/dp/0321929675">https://www.amazon.com.br/Fundamentals-Game-Design-Ernest-Adams/dp/0321929675</a>.
- BILTON, N. Search Bits SEARCH Video Game Industry Continues Major Growth, Gartner Says. 2011. Acessado em: 19/01/2018. Disponível em: <a href="https://bits.blogs-nytimes.com/2011/07/05/video-game-industry-continues-major-growth-gartner-says/">https://bits.blogs-nytimes.com/2011/07/05/video-game-industry-continues-major-growth-gartner-says/</a>.
- BUCHINGER, D. Sherlock Dengue 8: The Neighborhood Um jogo sério colaborativo-cooperativo para combate à dengue. 2014. Online; accessed 17. Apr. 2018. Disponível em: <a href="http://www.udesc.br/arquivos/cct/id\_cpmenu/1024-/diego buchinger">http://www.udesc.br/arquivos/cct/id\_cpmenu/1024-/diego buchinger</a> 1 15167055468902 1024.pdf>.
- CLARKE, R. I.; LEE, J. H.; CLARK, N. Why Video Game Genres Fail: A Classificatory Analysis. *SURFACE*, 2015.
- GOLDSMITH, T. "Cathode-ray tube amusement device". 1947. "Online; accessed 15. Apr. 2018". Disponível em: <a href="https://patents.google.com/patent/US2455992">https://patents.google.com/patent/US2455992</a>.
- HANNA, P. Video Game Technologies. 2015. Acessado em: 19/01/2018. Disponível em: <a href="https://www.di.ubi.pt/~agomes/tjv/teoricas/01-genres.pdf">https://www.di.ubi.pt/~agomes/tjv/teoricas/01-genres.pdf</a>>.
- HUANG, G.; YE, M.; CHENG, L. Modeling system performance in mmorpg. In: *IEEE Global Telecommunications Conference Workshops*, 2004. GlobeCom Workshops 2004. Northwestern University, USA: IEEE, 2004. p. 512–518.
- KHAZAEI, H. et al. Efficiency analysis of provisioning microservices. In: 2016 IEEE International Conference on Cloud Computing Technology and Science (CloudCom). Luxembourg, Austria: IEEE, 2016. p. 261–268.
- KIM, J. Y.; KIM, J. R.; PARK, C. J. Methodology for verifying the load limit point and bottle-neck of a game server using the large scale virtual clients. In: 2008 10th International Conference on Advanced Communication Technology. Phoenix Park, Korea: IEEE, 2008. v. 1, p. 382–386. ISSN 1738-9445.
- KLEINA, N. 8 dos maiores mundos virtuais que já conhecemos. 2018. [Online; accessed 17. Apr. 2018]. Disponível em: <a href="https://www.tecmundo.com.br/internet/129103-habbo-second-life-8-maiores-mundos-virtuais-conhecemos.htm">https://www.tecmundo.com.br/internet/129103-habbo-second-life-8-maiores-mundos-virtuais-conhecemos.htm</a>.
- ROLLINGS, A.; ADAMS, E. Andrew Rollings and Ernest Adams on Game Design. New Riders, 2003. (NRG Series). ISBN 9781592730018. Disponível em: <a href="https://books.google.com.br/books?id=Qc19ChiOUI4C">https://books.google.com.br/books?id=Qc19ChiOUI4C</a>.

REFERÊNCIAS 20

SPORTV. League of Legends ganha torneio de fim de ano organizado pela ABCDE. 2018. [Online; accessed 17. Apr. 2018]. Disponível em: <a href="https://sportv.globo.com/site-/e-sportv/noticia/league-of-legends-ganha-torneio-de-fim-de-ano-organizado-pela-abcde-ghtml">https://sportv.globo.com/site-/e-sportv/noticia/league-of-legends-ganha-torneio-de-fim-de-ano-organizado-pela-abcde-ghtml</a>.

- STATISTA. Statistics and Facts on MMO/MMORPG gaming. 2016. Acessado em: 19/01/2018. Disponível em: <a href="https://www.statista.com/topics/2290/mmo-gaming/">https://www.statista.com/topics/2290/mmo-gaming/</a>.
- STATISTA. Games market revenue worldwide in 2015, 2016 and 2018, by segment and screen (in billion U.S. dollars). 2017. Acessado em: 19/01/2018. Disponível em: <a href="https://www.statista.com/statistics/278181/video-games-revenue-worldwide-from-2012-to-2015-by-source/">https://www.statista.com/statistics/278181/video-games-revenue-worldwide-from-2012-to-2015-by-source/</a>.
- STATISTA. Global internet gaming traffic 2021 | Statistic. 2018. [Online; accessed 19. Apr. 2018]. Disponível em: <a href="https://www.statista.com/statistics/267190/traffic-forecast-for-internet-gaming">https://www.statista.com/statistics/267190/traffic-forecast-for-internet-gaming</a>.
- STATISTA. LoL player share by region 2017. 2018. Online; accessed 17. Apr. 2018. Disponível em: <a href="https://www.statista.com/statistics/711469/league-of-legends-lol-player-distribution-by-region">https://www.statista.com/statistics/711469/league-of-legends-lol-player-distribution-by-region</a>.
- VILLAMIZAR, M. et al. Infrastructure cost comparison of running web applications in the cloud using aws lambda and monolithic and microservice architectures. In: 2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid). Cartagena, Colombia: IEEE, 2016. p. 179–182.
- WILLSON, S. C. Guild Wars Microservices and 24/7 Uptime. 2017. Disponível em: <http://twvideo01.ubm-us.net/o1/vault/gdc2017/Presentations/Clarke-Willson\\_Guild Wars 2 microservices.pdf>.
- YARUSSO, A. 2600 Consoles and Clones. 2006. Disponível em: <a href="http://www.atariage.com/2600/archives/consoles.html">http://www.atariage.com/2600/archives/consoles.html</a>.