

479	T CTCACACTTTGCTTGAATTTAATACAGAC	AGACACCTGAGACATGCTGAAATTATTTCT	21
118	CCACCACCTTATTCACCTTAAGAGCCAGCG ProProProTyrSerPro	GCTTATGAGAACTCTCTGCAGAACAGTCA AlaTyrGluLysLeuSerAlaGluGlnSer	60
359	TGTGAACCTGTGGTTCCCAATGCTCCACCT CysGluProValValProAsnAlaProPro	GACAGCAAAGTGTCTCTTCAAGAGAAAAC AspSerLysValSerLeuGlnGluLysAsn	01
300	AGATGCCCACAAGAAGGGTTTGATCATCGG ArgCysProGlnGluGlyPheAspHisArg	CATGTTGGCACTCAATGTGCCTTAACAAGA HisValGlyThrGlnCysAlaLeuThrArg	40
239	GGATACAGAGCCTTGATGGATAAAAGTCTT GlyTyrArgAlaLeuMetAspLysSerLeu	ATCGGCTGTTGGTATTGTAGAAGACGAAAT IleGlyCysTrpTyrCysArgArgAsn	8144
180	CTGACAGTGATCCTGGGAGTCTTACTGCTC LeuThrValIleLeuGlyValLeuLeuLeu	ACGGCTGAAGAGGCCGCTGGGATCGGCATC ThrAlaGluGluAlaAlaGlyIleGlyIle	20
119	CCCAAGAAGGGGCACGGCCACTCTTACACC ProLysLysGlyHisGlyHisSerTyrThr	AGAGAAGATGCTCACTTCATCTATGGTTAC ArgGluAspAlaHisPheIleTyrGlyTyr	9
200	TGTCCTGTGCCCTGACCAAGATGCCA MetPro	AGCAGACAGGACTCTCATTAAGGAAGG	Н

540 660 719 719 780 959 1079 11199 11319 1380	1500
AAAATGCAAGCCATCTCTAATAATAAGTC GTACTAATCATGTGAGAAAA GTTGCAATGCATGATACTATCTGTGCCAGA TCTGAGAGACAGAATTCAAGTGGGGTATTCT TTGGCTAATAACAACTAGTCAGGTTTTCG TTGTTCCAGTACTATGGAGTGCTCACAAG ACTGCCTATTTATCTGATCAAGAACTG CCCTTTTGTTGCCCAGGCTGAACATG TCCCAGGTTCAAGCAATTCTCCTGAGGTGCATG TCCCAGGTTCAAGCAATTTTTTTTTT	TACCTATGGCAATTTAGCTCTCTTGGGTTC CCAAATCCCTCTCACAAGAATGTGCAGAAG AAATCATAAAGGATCAGAGATTCTGAAAAA AAAAAAAAAA
ATCTAATGTTCTCCTTTGGAATGGTGTAGG AGTGTTAAAATTTTAGTAGGTCCGCTAGCA TATTAAATTGGGAAAACTCCATCAATAAAT GGTAATGTTAGTAAATCCATGGTGTTATTT GGGCCATCCAATTTCTCTTTACTTGAAAT AACCTTGACCGACATGAACTGTACACAGAA GATACTTTTACAGGTTAAGACTGTACACAGAA CAGCAATGTCTCTTTGTGCTCTAAAATTCT CTATAGCTCTTTTTTTTTT	TACCTATGGCAATTTAGCTCTCTTGGGTTC AAATCATAAAGGATCAGAGATTCTGAAAAA
480 600 661 720 720 781 840 960 1021 1200 1200 1261 1320	1440

Peptide concentration (ug/ml)

2

FIG. 3A

FIG. 3B

GTCGACGCC	ATTACCAATC	GCGACCGGGA	AGAACACA <u>AT</u>	40
<u>G</u> GATCTGGTG	CTAAAAAGAT	GCCTTCTTCA	TTTGGCTGTG	80
ATAGGTGCTT	TGCTGGCTGT	GGGGGCTACA	AAAGTACCCA	120
GAAACCAGGA	CTGGCTTGGT	GTCTCAAGGC	AACTCAGAAC	160
CAAAGCCTGG	AACAGGCAGC	TGTATCCAGA	GTGGACAGAA	200
GCCCAGAGAC	TTGACTGCTG	GAGAGGTGGT	CAAGTGTCCC	240
TCAAGGTCAG	TAATGATGGG	CCTACACTGA	TTGGTGCAAA	280
TGCCTCCTTC	TCTATTGCCT	TGAACTTCCC	TGGAAGCCAA	320
AAGGTATTGC	CAGATGGGCA	GGTTATCTGG	GTCAACAATA	360
CCATCATCAA	TGGGAGCCAG	GTGTGGGGAG	GACAGCCAGT	400
GTATCCCCAG	GAAACTGACG	ATGCCTGCAT	CTTCCCTGAT	440
GGTGGACCTT	GCCCATCTGG	CTCTTGGTCT	CAGAAGAGAA	480
GCTTTGTTTA	TGTCTGGAAG	ACCTGGGGCC	AATACTGGCA	520
ATTTCTAGGG	GGCCCAGTGT	CTGGGCTGAG	CATTGGGACA	560
GGCAGGGCAA	TGCTGGGCAC	ACACACCATG	GAAGTGACTG	600
TCTACCATCG	CCGGGGATCC	CGGAGCTATG	TGCCTCTTGC	640
TCATTCCAGC	TCAGCCTTCA	CCATTACTGA	CCAGGTGCCT	680
TTCTCCGTGA	GCGTGTCCCA	GTTGCGGGCC	TTGGATGGAG	720
GGAACAAGCA	CTTCCTGAGA	AATCAGCCTC	TGACCTTTGC	760
CCTCCAGCTC	CATGACCCCA	GTGGCTATCT	GGCTGAAGCT	800
GACCTCTCCT	ACACCTGGGA	CTTTGGAGAC	AGTAGTGGAA	840
CCCTGATCTC	TCGGGCACTT	GTGGTCACTC	ATACTTACCT	880
GGAGCCTGGC	CCAGTCACTG	CCCAGGTGGT	CCTGCAGGCT	920
GCCATTCCTC	TCACCTCCTG	TGGCTCCTCC	CCAGTTCCAG	960
GCACCACAGA	TGGGCACAGG	CCAACTGCAG	AGGCCCCTAA	1000
CACCACAGCT	GGCCAAGTGC	CTACTACAGA	AGTTGTGGGT	1040
ACTACACCTG	GTCAGGCGCC	AACTGCAGAG	CCCTCTGGAA	1080
CCACATCTGT	GCAGGTGCCA	ACCACTGAAG	TCATAAGCAC	1120
		FIG. 4A		

TGCACCTGTG	CAGATGCCAA	CTGCAGAGAG	CACAGGTATG	1160
ACACCTGAGA	AGGTGCCAGT	TTCAGAGGTC	ATGGGTACCA	1200
CACTGGCAGA	GATGTCAACT	CCAGAGGCTA	CAGGTATGAC	1240
ACCTGCAGAG	GTATCAATTG	TGGTGCTTTC	TGGAACCACA	1280
GCTGCACAGG	TAACAACTAC	AGAGTGGGTG	GAGACCACAG	1320
CTAGAGAGCT	ACCTATCCCT	GAGCCTGAAG	GTCCAGATGC	1360
CAGCTCAATC	ATGTCTACGG	AAAGTATTAC	AGGTTCCCTG	1400
GGCCCCTGC	TGGATGGTAC	AGCCACCTTA	AGGCTGGTGA	1440
AGAGACAAGT	CCCCTGGAT	TGTGTTCTGT	ATCGATATGG	1480
TTCCTTTTCC	GTCACCCTGG	ACATTGTCCA	GGGTATTGAA	1520
AGTGCCGAGA	TCCTGCAGGC	TGTGCCGTCC	GGTGAGGGG	1560
ATGCATTTGA	GCTGACTGTG	TCCTGCCAAG	GCGGGCTGCC	1600
CAAGGAAGCC	TGCATGGAGA	TCTCATCGCC	AGGGTGCCAG	1640
CCCCCTGCCC	AGCGGCTGTG	CCAGCCTGTG	CTACCCAGCC	1680
CAGCCTGCCA	GCTGGTTCTG	CACCAGATAC	TGAAGGGTGG	1720
CTCGGGGACA	TACTGCCTCA	ATGTGTCTCT	GGCTGATACC	1760
AACAGCCTGG	CAGTGGTCAG	CACCCAGCTT	ATCATGCCTG	1800
GTCAAGAAGC	AGGCCTTGGG	CAGGTTCCGC	TGATCGTGGG	1840
CATCTTGCTG	GTGTTGATGG	CTGTGGTCCT	TGCATCTCTG	1880
ATATATAGGC	GCAGACTTAT	GAAGCAAGAC	TTCTCCGTAC	1920
CCCAGTTGCC	ACATAGCAGC	AGTCACTGGC	TGCGTCTACC	1960
CCGCATCTTC	TGCTCTTGTC	CCATTGGTGA	GAACAGCCCC	2000
CTCCTCAGTG	GGCAGCAGGT	CTGAGTACTC	TCATA <u>TGA</u> TG	2040
CTGTGATTTT	CCTGGAGTTG	ACAGAAACAC	CTATATTTCC	2080
CCCAGTCTTC	CCTGGGAGAC	TACTATTAAC	TGAAATAAAT	2120
ACTCAGAGCC	TGAAAAAAA	ТАААААААА	ААААААААА	2160
АААААААА	AA			2172

FIG. 4B

```
MDLVLKRCLL HLAVIGALLA VGATKVPRNQ DWLGVSRQLR TKAWNRQLYP
 1
     EWTEAORLDC WRGGOVSLKV SNDGPTLIGA NASFSIALNF PGSQKVLPDG
 51
     QVIWVNNTII NGSQVWGGQP VYPQETDDAC IFPDGGPCPS GSWSQKRSFV
101
     YVWKTWGQYW QFLGGPVSGL SIGTGRAMLG THTMEVTVYH RRGSRSYVPL
151
     AHSSSAFTIT DQVPFSVSVS QLRALDGGNK HFLRNQPLTF ALQLHDPSGY
201
     LAEADLSYTW DFGDSSGTLI SRALVVTHTY LEPGPVTAQV VLQAAIPLTS
251
     CGSSPVPGTT DGHRPTAEAP NTTAGQVPTT EVVGTTPGQA PTAEPSGTTS
301
     VQVPTTEVIS TAPVQMPTAE STGMTPEKVP VSEVMGTTLA EMSTPEATGM
351
     TPAEVSIVVL SGTTAAQVTT TEWVETTARE LPIPEPEGPD ASSIMSTESI
401
     TGSLGPLLDG TATLRLVKRQ VPLDCVLYRY GSFSVTLDIV QGIESAEILQ
451
     AVPSGEGDAF ELTVSCQGGL PKEACMEISS PGCQPPAQRL CQPVLPSPAC
501
     QLVLHQILKG GSGTYCLNVS LADTNSLAVV STQLIMPGQE AGLGQVPLIV
551
     GILLVLMAVV LASLIYRRRL MKQDFSVPQL PHSSSHWLRL PRIFCSCPIG
601
     ENSPLLSGQQ V
651
```

FIG. 5A

```
M-----V-----Q-----P-----VPGILLT-----LLSGQQV
Pmel17
        M----V----Q----L---- \dots
ME20
        \texttt{M-----V----Q-----L----}
gp100
        M----F----Q----L----
cDNA25FL
                 Q-----PPQWAAGLSTLI
cDNA25TR
                         588
                                   649
                 236
                    274
        1
            162
```

FIG. 5B

Melanoma Probe C32 WM 115 HS 695T Mel 697 Mel 693 Mel 693 Mel 694 Mel 695 Mel 693 Mel 694 Mel 695 Mel 695 Mel 695 Mel 696 Mel 696 Mel 696 Mel 697 Mel 698 Mel 698 Mel 698 Mel 698 Mel

FIG. 6C