

Relational Interpreters for Search Problems

Petr Lozov, Kate Verbitskaia, Dmitry Boulytchev

JetBrains Research, Programming Languages and Tools Lab Saint Petersburg State University

22.08.2019

Recognition vs Search

$$X$$
 — alphabet

$$L \subseteq X^*$$

if $\omega \in L$, denote the witness of this fact p_{ω}

Recognition:
$$V(\omega, p_{\omega}) = \begin{cases} 1, & \omega \in L \\ 0, & \omega \notin L \end{cases}$$

Search: $S(\omega) = p_{\omega}$

Propositional Formulas: Recognition

```
let rec eval st = function
  Conj (1, r) \rightarrow eval st 1 && eval st r
  Disj (1, r) \rightarrow \text{eval st } 1 \mid | \text{eval st } r
  Neg e \rightarrow not (eval st e)
  Var \quad x \quad \rightarrow \ List.assoc \ x \ st
# eval [('x,true);('y,false)] (Conj (Var 'x) (Neg (Var 'y)));;
-: bool = true
```

Propositional Formulas: Search

```
let rec solve env b = function
  Var n \rightarrow (match assoc_opt n env with)
                   None \rightarrow [extend env n b]
                   Some b' when b \Longrightarrow b' \rightarrow [env]
                   \rightarrow [])
  Conj (1, r) when b \rightarrow
     concat @@
     map (\lambda \text{ env } \rightarrow \text{ solve env b r}) @@
     solve env b l
  Conj (1, r) \rightarrow solve env b 1 @ solve env b r
  Neg e \rightarrow solve env (not b) e
  Disj (1, r) \rightarrow \text{solve env b } (\text{Neg } (\text{Conj } (\text{Neg } 1, \text{Neg } r)))
```

Search is Hard¹

Is it possible to generate a search procedure by a recognizer?

¹compared to recognition

Relational Interpreter

$$V^R(\omega,p_\omega,q)$$
 $V^R(\omega,p_\omega,1), \quad ext{if} \ \omega\in L, p_\omega - ext{witness}$ $V^R(\omega,p_\omega,0), \quad ext{otherwise}$

Relational Interpretation for Recognition and Search

$$V^R(\omega, p_\omega, ?) \rightsquigarrow V(\omega, p_\omega)$$

$$V^R(\omega, ?, 1) \rightsquigarrow S(\omega)$$

Only one program to implement!

Propositional Formulas: Relational Interpreter

```
let rec eval<sup>o</sup> st f u =
  fresh (x y z v w) (
     conde [
        ?& [f \equiv conj x y; eval<sup>o</sup> st x v; eval<sup>o</sup> st y w; and<sup>o</sup> v w u];
       ?& [f \equiv disj x y; eval<sup>o</sup> st x v; eval<sup>o</sup> st y w; or<sup>o</sup> v w u];
       ?& [f \equiv neg x ; eval<sup>o</sup> st x v; not<sup>o</sup> v u];
       ?& [f \equiv var z ; assoc° z st u];
```

Relational Programming is Hard²

```
let eval hanoi a b c moves a' b' c' =
  conde [
     ?& [moves \equiv nil (); a \equiv a'; b \equiv b'; c \equiv c';];
     fresh (f t moves' pin_f pin_t pin_f_res pin_t_res a'' b'' c'') (
        ?& [ moves ≡ (pair f t) % moves';
               conde [
                  ?& [f = !!A; t = !!B; pin_f = a; pin_f_res = a''; pin_t = b; pin_t_res = b''; c'' = c];
?& [f = !!A; t = !!C; pin_f = a; pin_f_res = a''; pin_t = c; pin_t_res = c''; b'' = b];
                  ?& [f \equiv !!B; t \equiv !!A; pin_f \equiv b; pin_f_res \equiv b'; pin_t \equiv a; pin_t_res \equiv a'; c' \equiv c];
?& [f \equiv !!B; t \equiv !!C; pin_f \equiv b; pin_f_res \equiv b'; pin_t \equiv c; pin_t_res \equiv c'; a' \equiv a];
                  ?& [f ≡ !!C; t ≡ !!A; pin_f ≡ c; pin_f_res ≡ c''; pin_t ≡ a; pin_t_res ≡ a''; b'' ≡ b];
                  ?& [f \equiv !!C; t \equiv !!B; pin_f \equiv c; pin_f_res \equiv c''; pin_t \equiv b; pin_t_res \equiv b''; a'' \equiv a];
               fresh (top f rest f) (
                  ?&_ [
                         pin_f = top_f % rest_f;
                         conde [ pin_t ≡ nil ();
                                     fresh (top_t rest_t) (
                                        ?& [pin_t = top_t % rest_t;
                                             lto top_f top_t truo; [)];
                         pin f res = rest f:
                         pin_t_res = top_f % pin_t;
                         eval_hanoi a'' b'' c'' moves' a' b' c':[)[)[)
```

This took 3 people 6 hours to implement it

²compared to functional programming

Ways to Create Relational Interpreters

- Manual implementation
- Relational interpretation of functional programs
- Using relational conversion

Ways to Create Relational Interpreters

- Manual implementation
- Relational interpretation of functional programs
- Using relational conversion

Relational Interpretation of Functional Programs

- Implement good relational interpreter of a turing-complete language
- Implement functional recognizer
- Run functional recognizer with a relational interpreter

Interpretation Overhead

Running relational interpreter comes with a price Are there ways to get rid of it?

Specialization

Interpreter:

eval prog input == output

Consider that a part of the input is known: input == (static, dynamic)

Specializer:

spec prog static \Rightarrow prog_{spec} eval prog (static, dynamic) == eval $prog_{spec}$ dynamic

Jones-Optimality

- Specializers also introduce interpretation overhead
- Jones-optimal specializer: the specialized program is not slower than the interpretation
- There exists a Jones-optimal specializer for a logical language [Leuschel, 2004]
- Not for miniKanren
- Jones-optimality is hard to achieve

Ways to Create Relational Interpreters

- Manual implementation
- Relational interpretation of functional programs
- Using relational conversion

Relational Conversion for Relational Interpreter

- Implement a functional recognizer (verifier)
- Transform it into a relation
- Specialize for the backward direction
- The result is a search routine

Relational Conversion [Byrd 2009]

Relational programming is complicated, why not let users write a verifier as a function and then translate it into miniKanren?

- Introduce a new variable for each subexpression
- For every n-ary function create an (n+1)-ary relation, where the last argument is unified with the result
- Transform if -expressions and pattern matchings into disjunctions with unifications for patterns
- Introduce into scope free variables (with fresh)
- Pop unifications to the top

Introduce a new variable for each subexpression

```
let rec append a b =
  match a with
    | | \rightarrow b
  | x :: xs \rightarrow
    x :: append xs b
```

```
let rec append a b =
  match a with
  \mid x :: xs \rightarrow
    let q = append xs b in
    x :: q
```

Introduce a new variable for each subexpression

let rec append^o a b $c = \dots$ let rec append a b = ...

Transform if -expressions and pattern matchings into disjunctions with unifications for patterns

```
let rec append a b =
  match a with
   \mathtt{x} :: \mathtt{xs} 	o
    let q = append xs b in
    x :: q
```

```
let rec append<sup>o</sup> a b c =
  (a \equiv [] \land b \equiv c) \lor
  ( (a \equiv x :: xs) \land
      (append^o xs b q) \land
      (c \equiv x :: q)
```

Introduce free variables into scope (with **fresh**)

```
let rec append<sup>o</sup> a b c =
  (a \equiv [] \land b \equiv c) \lor
  ( (a \equiv x :: xs) \land
      (append^o xs b q) \land
      (c \equiv x :: q)
```

```
let rec append<sup>o</sup> a b c =
  (a \equiv [] \land b \equiv c) \lor
  (fresh (x xs q) (
      (a \equiv x :: xs) \land
      (append^o xs b q) \land
      (c \equiv x :: q)))
```

Pop unifications to the top

```
let rec append<sup>o</sup> a b c =
  (a \equiv [] \land b \equiv c) \lor
  (fresh (x xs q) (
      (a \equiv x :: xs) \land
      (appendo xs b q) \wedge
      (c \equiv x :: q))
```

```
let rec append<sup>o</sup> a b c =
  (a \equiv [] \land b \equiv c) \lor
  (fresh (x xs q) (
      (a \equiv x :: xs) \land
      (c \equiv x :: q) \land
      (append^o xs b q))
```

Forward Execution is Efficient. Backward Execution is not

Forward execution is efficient, since it mimics the execution of a function

Relational conversion for $f_1 x_1 \&\& f_2 x_2$:

```
\lambda res \rightarrow
   fresh (p) (
      (f_1 x_1 p) \wedge
       (conde [
          (p \equiv \uparrow false \land res \equiv \uparrow false);
          (p \equiv \uparrow true \land f_2 x_2 res)))
```

Computes f_2 x_2 res only if f_1 x_1 p fails

It is not the best strategy, if res is known

Relational Conversion Aimed at Backward Execution

This coversion of $f_1 x_1 \&\& f_2 x_2$ is better for backward execution, but not forward

```
\lambda \text{ res } \rightarrow
       conde [
           (res \equiv \uparrow false \land f_1 x_1 \uparrow false);
           (f_1 x_1 \uparrow true \land f_2 x_2 res)
```

There is no one strategy suitable for all cases

Better is to use an automatic specializer

Specialization

```
Interpreter: given a program and input computes an output
eval prog input == output
Consider that a part of the input is known: input == (static, dynamic)
Specializer: given a program and static input, generates a new program,
which evaluates to the same output as the original
spec prog static \Rightarrow prog<sub>spec</sub>
eval prog (static, dynamic) == eval prog_{spec} dynamic
```

Conjunctive Partial Deduction

- Fully automatic program transformation
- For pure logic language
- Features:
 - Specialization
 - Deforestation
 - Tupling

Deforestation

Deforestation — program transformation which eliminates intermediate data structures

```
let doubleAppend° x y z xyz =
  (fresh (t) (
      (append^{\circ} x y t) \wedge
                                            let rec doubleAppend° x y z xyz = conde [
      (append° t z xyz)))
                                               (x \equiv nil () \land append^{\circ} y z xyz);
                                               (fresh (h t t') (
let rec append^{\circ} x y xy = conde [
                                                   (x \equiv h \% t) \land
  (x \equiv nil () \land xy \equiv y);
                                                   (xyz \equiv h \% t') \land
  (fresh (h t ty) (
                                                   (doubleAppendo t y z t')))]
      (x \equiv h \% t) \land
      (xy \equiv h \% t') \land
      (appendo t y t')))]
```

Tupling

Tupling — program transformation which eliminates multiple traversals of the same data structure

```
let maxLength° xs m 1 = max° xs m \land length° xs 1
let rec length  xs l = conde [
  (xs \equiv nil () \land l \equiv zero ());
  (fresh (h t m) (
     xs \equiv h \% t \land l \equiv succ m \land length^o t m)
let \max^{\circ} xs m = \max_{1}^{\circ} xs (zero ()) m
let rec max_1^o xs n m = conde [
  (xs \equiv nil () \land m \equiv n);
  (fresh (h t) (
     (xs \equiv h \% t) \land
     (conde [
       (le° h n \true \wedge max_1° t n m);
       (gt^{\circ} h n \uparrow true \land max_1^{\circ} t h m)])))]
```

Tupling

Tupling — program transformation which eliminates multiple traversals of the same data structure

```
let maxLength<sup>o</sup> xs m 1 = maxLength<sup>o</sup> xs m (zero ()) 1
let rec maxLength<sup>o</sup> xs m n l = conde [
  (xs \equiv nil () \wedge m \equiv n \wedge l \equiv zero ());
  (fresh (h t l_1)
       (xs \equiv h \% t) \land
       (1 \equiv succ l_1) \land
       (conde [
          (le^{\circ} h n \wedge maxLength_1^{\circ} t m n 1);
          (gt^{\circ} h n \land maxLength_{1}^{\circ} t m h 1)]))]
```

CPD: Intuition

- Local control: compute a partial SLDNF-tree per a relation of interest
 - Having a conjunction of atoms, which atom should be selected?
 - When to stop building a tree?
- Global control: determine which relations are of interest
 - Do not process the same conjunction twice
 - If a conjunction *embeds* something processed before, *generalize* it
 - How to define embedding?
 - How to generalize?

CPD: Implementation

- Local control
 - Deterministic unfold (only one nondeterministic unfold per tree)
 - Selectable conjunct: leftmost atom which do not have any predecessor embedded into it
 - Variant check
 - Stop when there are no selectable atoms
- Global control
 - Variant check
 - Generalization: split conjunction in maximally connected subconjunctions + most specific generalization
 - Homeomorphic embedding extended for conjunctions
- Residualization
 - A definition per a partial SLDNF-tree
 - Redundant Argument Filtering

Evaluation

Compare

- Unnesting
- Unnesting strategy aimed at backward execution
- Unnesting + CPD
- Interpretation of functional verifier with relational interpreter

Tasks

- Path search
- Search for a unifier of two terms

Path Search

Directed graph is a tuple (N, E, start, end), where:

- N set of nodes
- E set of edges
- Functions start, end : $E \to N$ return a start (end) node of an edge

Path is a sequence $\langle n_0, e_0, n_1, e_1, \dots, n_k, e_k, n_{k+1} \rangle$, such that

$$\forall i \in \{0 \dots k\} : n_i = start(e_i) \text{ and } n_{i+1} = end(e_i)$$

Path search problem is to find the set of paths in a given graph

Path Search: Relational Conversion

```
let rec isPath ns g =
    match ns with
\mid x_1 :: x_2 :: xs \rightarrow elem (x_1, x_2) g && isPath (x_2 :: xs) g
    | [_]

ightarrow true
```

Path Search: Relational Conversion

```
let rec isPath ns g =
    match ns with
\mid x_1 :: x_2 :: xs 
ightarrow elem (x_1, x_2) g && isPath (x_2 :: xs) g
   | [_]

ightarrow true
  let rec isPath ns g res = conde [
     (fresh (el) ((ns \equiv el % nil ()) \land (res \equiv \uparrowtrue));
     (fresh (x_1 x_2 xs resElem resIsPath) (
       (ns \equiv x_1 \% (x_2 \% xs)) \land
       (elem<sup>o</sup> (pair x_1 x_2) g resElem) \wedge
       (isPath<sup>o</sup> (x_2 \% xs) g resIsPath) \land
       (conde [
          (resElem \equiv \uparrow false \land res \equiv \uparrow false);
          (resElem \equiv \uparrow true \land res \equiv resIsPath))))
  This relation is inefficient for "isPath" q <graph> true"
```

Path Search: Specialized Relation

```
let rec isPath^{\circ} ns g res = conde [
  (fresh (el) ((ns \equiv el % nil ()) \land (res \equiv \uparrowtrue)));
  (fresh (x<sub>1</sub> x<sub>2</sub> xs resElem resIsPath) (
     (resElem \equiv \uparrow true) \land
     (resIsPath \equiv \uparrow true) \land
     (ns \equiv x_1 \% (x_2 \% xs)) \land
     (elem<sup>o</sup> (pair x_1 x_2) g resElem) \wedge
     (isPath^{o} (x_{2} \% xs) g resIsPath)))]
Better performance for "isPath" q <graph> true"
```

Path Search: Specialized Relation

```
let rec isPath^{\circ} ns g res = conde [
  (fresh (el) ((ns \equiv el % nil ()) \land (res \equiv \uparrowtrue)));
  (fresh (x<sub>1</sub> x<sub>2</sub> xs resElem resIsPath) (
     (resElem \equiv \uparrow true) \land
     (resIsPath \equiv \uparrow true) \land
     (ns \equiv x_1 \% (x_2 \% xs)) \land
     (elem<sup>o</sup> (pair x_1 x_2) g resElem) \wedge
     (isPath^{o} (x_{2} \% xs) g resIsPath)))]
Better performance for "isPath" q <graph> true"
```

This can be achieved automatically with CPD

Evaluation: Path Search

Path length	5	7	9	11	13	15
Only conversion	0.01	1.39	82.13	>300	_	_
Backward oriented conversion	0.01	0.37	2.68	2.91	4.88	10.63
Conversion and CPD	0.01	0.06	0.34	2.66	3.65	6.22
Scheme interpreter	0.80	8.22	88.14	191.44	>300	_

Table: Searching for paths in the graph (seconds)

Unification

Term:

- Variable (*X*, *Y*,...)
- Some constructor applied to terms (nil, cons(H, T),...)

Substitution maps variables to terms

Substitution can be applied to a term by simultaneously substituting variables for their images

Unifier is a substitution σ which equalizes terms: $t\sigma = s\sigma$

Problem: given two terms with free variables, find their unifier

Unification: Functional Verifier

```
let rec check_uni subst t1 t2 =
 match t1, t2 with
    Constr (n1, a1), Constr (n2, a2) \rightarrow
      eq_nat n1 n2 && forall2 subst a1 a2
    Var_v , Constr(n, a) \rightarrow
    begin match get_term v subst with
      None \rightarrow false
      Some t \rightarrow check uni subst t t2
    end
    Constr (n, a) , Var_ v
    begin match get_term v subst with
      None \rightarrow false
      Some t \rightarrow check uni subst t1 t
    end
    Var_ v1 , Var_ v2
    match get_term v1 subst with
      Some t1' \rightarrow check_uni subst t1' t2
                → match get_term v2 subst with
                   \mid Some \rightarrow false
                    None \rightarrow eq_nat v1 v2
```

Unification: Relational Conversion

Does not fit the slide.

Evaluation: Unification

Terms	f(X, a) f(a, X)	f(a % b % nil, c % d % nil, L) f(X % XS, YS, X % ZS)	$\begin{array}{c c} f(X, X, g(Z, t)) \\ \hline f(g(p, L), Y, Y) \end{array}$
Only conversion	0.01	>300	>300
Backward oriented conversion	0.01	0.11	2.26
Conversion and CPD	0.01	0.07	0.90
Scheme interpreter	0.04	5.15	>300

Table: Searching for a unifier of two terms (seconds)

Conclusion & Future Work

Funcional verifier + unnesting + specialization = solver **Future**

- Generate functional program from relational to reduce interpretation overhead
- Another specialization technique, less ad-hoc than CPD