Lab5: FlashAttention

112065528 洪巧雲

Attention

$S = QK^{T}$

- QK: 相乘後會是一個分數,再把這個分數去做softmax(Normalization)。
- 將softmax後的結果拿去乘上V後,就會是Queing的結果。(每個row)

Multi-Head Attention

- 將D拆解成很多份,ex: emb_dim=4096, num_heads=32, head_size=128
 - N*128 -> 每個都丟進去做attention,總共做32次。
 - 。 做完後還需要把它concat起來,這樣就會是原本的size。

實驗目標

這次 lab5 的目地是要比較兩種 Attention 的實現方式 —— Flash2 與 PyTorch,在多種參數組合下的 performance,主要關注以下幾個指標:

- Forward Execution Time
- Backward Execution Time
- FLOPS
- Peak Memory Usage

實驗方法

- 1. 執行 lab5.py: 使用 lab5.py 執行不同參數下的實驗,測量不同參數組合下的性能。
- 2. parameter 設置: 測試的 parameter 範圍包括:
 - o Batch Size: 16 \ 32 \ 64
 - Sequence Length: 512 \ 1024
 - Number of Attention Heads: 16 \ 32
 - Embedding Dimension: 1024 \ 2048
 - Implementation: Flash2 \ PyTorch
 - Causality: True or False
- 3. **自動化 Script**: 使用 run_all_benchmarks sh 自動遍歷所有參數組合,並將結果保存為 JSON 檔案中。

```
# 定義要測試的參數
batch_sizes=(16 32 64)
seq_lens=(512 1024)
num_heads_list=(16 32)
```

```
emb_dims=(1024 2048)
impls=("Pytorch" "Flash2")
causal_flags=("--causal" "")
```

```
# 創建結果目錄
mkdir -p results
# 遍歷所有參數組合
for batch_size in "${batch_sizes[@]}"; do
 for seq_len in "${seq_lens[@]}"; do
    for num_heads in "${num_heads_list[@]}"; do
     for emb dim in "${emb dims[@]}"; do
       for impl in "${impls[@]}"; do
          for causal_flag in "${causal_flags[@]}"; do
           # 確保 emb dim 能被 num heads 整除
           if (( emb_dim % num_heads == 0 )); then
             # 設置輸出文件名
output_file="results/result_bs${batch_size}_sl${seq_len}_nh${num_heads}
}_ed${emb_dim}_${impl}_causal${causal_flag:+_causal}.json"
             # 運行基準測試
             python lab5.py \
               --batch_size $batch_size \
               --seq len $seq len \
               --num_heads \num_heads \
               --emb_dim $emb_dim \
               --impl $impl \
               $causal_flag \
               --repeats 30 \
               --output $output_file
           else
             echo "跳過:emb_dim=$emb_dim 不能被 num_heads=$num_heads
整除。"
           fi
         done
       done
     done
   done
 done
done
```

- 執行這個 run_all_benchmarks.sh 前需要先在 Terminal 下: chmod +x run_all_benchmarks.sh 。
- 。 生成的 JSON 檔案如下:

```
{
   "forward": {
```

```
"time(s)": 0.0011418992032607397,
    "FLOPS(TFLOPs/s)": 30.089992417793418
},
    "backward": {
        "time(s)": 0.003703039900089304,
        "FLOPS(TFLOPs/s)": 23.196980923140586
},
    "forward_backward": {
        "time(s)": 0.004844939103350043,
        "FLOPS(TFLOPs/s)": 24.821588408582183
},
    "peak_memory_usage(MB)": 324.00048828125
}
```

4. **數據處理與可視化**: 最後就是寫一個 python 去讀取 JSON 結果並進行數據可視化的處理,生成視覺 化圖表以便分析。這部分我是用:

```
import os
import json
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

這幾個 python 套件做的。

lab5.py

- benchmark_attention function:
 - 。 這個 function 主要是用來接收 test parameters 如 batch size、Sequence Length、Number of Attention Heads、Embedding Dimension 等等。
 - 。 並且使用 Flash2 或 PyTorch 的注意力機制實現進行前向與反向計算。
 - 。 測量以下指標:
 - 前向執行時間
 - 反向執行時間
 - 浮點運算效能 (FLOPS)
 - 峰值記憶體使用量(Peak Memory Usage)
 - 。 最後將測試結果保存為 JSON 檔案。
- flops function:
 - 。 計算浮點運算次數 (FLOPS) ,用於評估運算效率。
- time_fwd_bwd function :
 - 計算前向與反向傳遞的平均時間,返回時間數據供後續分析。

Experiment Result

1. 前向執行時間與序列長度的關係

在運行效率方面,Flash2 的執行時間顯著低於 PyTorch。隨著序列長度的增加,Flash2 的執行時間增長速率較為平緩,這表明其在處理長序列時具有更優越的性能。相較之下,PyTorch 的執行時間隨著序列長度的增加呈現出更為明顯的線性增長趨勢,這代表在長序列處理上,Flash2 更加高效。

2. 前向執行時間與批量大小的關係

可以從圖表中看到,當批量大小增加時,Flash2 的執行時間增長幅度較小,顯示出其對大批量運算具有良好適應性。相對地,PyTorch 對批量大小的變化更為敏感,執行時間明顯增加。這代表 Flash2 的設計在處理大批量數據時更加高效,能夠有效縮短運算時間。

3. 前向 FLOPS 與序列長度的關係

Flash2 通過先進的運算優化技術,使其在處理長序列時展現出更高的效率。這些優化措施包括更高效的算法設計和硬體資源的充分利用,使得 Flash2 能夠在面對長序列時保持低延遲和高吞吐量,顯著提升了整體運算效能。

在浮點運算次數(FLOPS)方面,Flash2 的 FLOPS 隨著序列長度的增加而快速提升,這表明其能夠更有效地利用計算資源。相比之下,PyTorch 的 FLOPS 整體較低,且增長幅度有限,顯示出在高運算需求下,Flash2 能夠實現更高的運算效能,進一步證明其在大規模運算上的優勢。

4. 峰值內存使用量與嵌入維度的關係

Flash2 在記憶體使用量上顯著低於 PyTorch,這意味著在相同的運算任務下,Flash2 能夠更節省記憶體資源。隨著嵌入維度的增加,兩者的記憶體使用量均呈線性增長,但 Flash2 的記憶體管理更加高效,使其在處理更大嵌入維度時依然保持優越的性能表現。

5. 前向執行時間與注意力頭數的關係

當注意力頭數增加時,PyTorch 的執行時間顯著增長,顯示出對多頭注意力機制的計算負荷較大。然而, Flash2 幾乎不受注意力頭數增加的影響,這表明 Flash2 在多頭注意力機制上的優化更加顯著,能夠在保持高 效運算的同時,支持更多的注意力頭數,提升模型的表現能力。

6. 前向執行時間與因果性的關係

在啟用因果性時,PyTorch 的執行時間大幅增加,這對於需要因果注意力的應用來說是一個挑戰。相對地, Flash2 的執行時間僅受到較小的影響,這說明 Flash2 對因果注意力的計算進行了深度優化,使其在需要因果 注意力的場景中依然能夠保持高效運算,提升模型的實用性。

7. 前向執行時間與實現方式的關係

Flash2 的前向執行時間顯著低於 PyTorch,特別是在大規模運算中更為明顯。這主要得益於 Flash2 更加高效的實現方式,包括優化的運算流程和更好的硬體資源利用,從而在大規模數據處理時顯著縮短了前向傳播的時間,提升了整體模型的運行速度。

8. Flash2 在批量大小與內存使用上的優勢

隨著批量大小的增長,Flash2 的 FLOPS 顯著高於 PyTorch,這表明 Flash2 能夠更好地利用硬體加速,支持 更高的批量大小。此外,Flash2 的內存使用量隨序列長度增加而增長較慢,遠低於 PyTorch 的內存使用量。 這種高效的內存管理使 Flash2 更適合處理長序列,提升了在大規模運算中的實用性和效能。

Conclusion

Flash2 在多個關鍵指標上顯著優於 PyTorch,無論是在執行時間、浮點運算次數(FLOPS)還是記憶體使用量方面,尤其在處理大規模參數設置時,Flash2 展現出更高的效率,能夠更快地完成複雜的運算任務。這使得 Flash2 成為需要高性能運算的應用場景中的理想選擇,無論是在研究還是實際應用中,都能提供穩定且卓越的運算表現。此外,Flash2 在資源利用方面表現出色,特別是在內存管理上更加高效,這意味著它能夠處理更大的批量數據和更長的序列,而不會大幅增加系統的負擔。高效的內存利用不僅提升了運算速度,還減少了資源浪費,使得整體系統運行更加流暢。無論是處理大量數據還是運行複雜模型,Flash2 都能夠充分發揮硬體資源的潛力,提供更好的性能表現。更重要的是,Flash2 特別適合那些對計算性能要求極高的應用場景,例如需要處理長序列或多頭注意力機制的任務。在自然語言處理、圖像識別以及其他需要大量計算資源的領域,Flash2 都能夠提供穩定且高效的運算支持。其優化的運算架構和高效的資源利用能力,使得 Flash2 在這些複雜且計算密集的任務中,依然能夠保持卓越的運行效率,滿足現代應用對高性能計算的嚴苛需求。綜合來看,Flash2 的全面性能優勢、高效的資源利用以及適用於高效能計算的廣泛應用場景,使其在現代深度學習和大數據處理領域中,成為不可或缺的強大工具。