Трофические связи

Вадим Михайлович Хайтов к.б.н. кафедра Зоологии беспозвоночных polydora@rambler.ru

В основе трофических связей лежит потребление энергии

- Автотрофы для обеспечения энергией не обязательно должны вступать во взаимодействие с другими видами.
- Гетеротрофы неизбежно взаимодействуют с другими видами.

Многообразие способов получения пищи гетеротрофами

- Микрофаги потребляют часть среды, содержащей питательные частицы (фильтраторы, грунтоеды и т.п.)
- Макрофаги потребляют конкретный пищевой объект или его часть (фитофаги, настоящие хищники и т.п.)

Многообразие трофических связей

- Потребитель питается частями тела производителя (*саркофагия*)
 - Съедает целиком тело
 - Съедает лишь часть тела
 - Потребитель питается неживыми частями тела производителя.
- Потребитель питается выделениями производителя (ксенофагия).
- Потребитель питается мертвыми останками производителя (*некрофагия*)

Ксенофагия

• Piscicola geometra питается слизью рыб.

Некрофагия

• Это все, что осталось от селедки за 8 часов на дне арктического фьорда

Саркофагия

Питание мертвыми частями тела

• Пухоеды питаются мертвыми клетками перьев.

	Теснота связи с жертвой			
Летальность		Высокая	Средняя	Низкая
	Высокая	Паразитоиды *	«Сублетальные» хищники	Настоящие Хищники
	Средняя	Паразиты	«Сублетальные» хищники	Пастбищные хищники (grazers)
	Низкая	Паразиты	«Сублетальные» хищники	Пастбище хищники (grazers)

^{*} Помимо паразитоидов в эту категорию попадают некоторые паразиты (про то, в чем разница, будет на отдельной лекции)

• Истинные хищники (хищники в узком смысле).

• Хищники с пастбищным типом питания (Grazers)

Функциональная классификация хищников

• «Сублетальные» хищники потребляют лишь некоторую часть тела жертвы, оставляя при этом жертву живой и способной к регенерации утраченных частей.

• Паразитоиды временно входят в симбиотические отношения с организмом-ресурсом, но при этом используют хозяина исключительно в качестве источника пищи, убивая его.

• Паразиты

Плюсы и минусы

- Жертва дает энергию
- Хищник уменьшает уровень благосостояния жертвы, но...

Жертвы vs Хищники: Гонка вооружений

- Растения-жертвы
 - Выделение токсинов
 - Образование шипов
 - Уплотнение покровов
- Животные-жертвы
 - Выделение токсинов
 - Мимикрия
 - Покровительственная окраска
 - Химическая сигнализация

Macoma VS Carcinus: Химические сигналы от жертв

M. balthica воспринимает сигналы от маком, подвергшихся атаке со стороны крабов, и адекватно реагирует.

Journal of Experimental Marine Biology and Ecology xx (2005) xxx-xxx

Journal of
EXPERIMENTAL
MARINE BIOLOGY
AND ECOLOGY

www.elsevier.com/locate/jembe

Chemically induced predator avoidance behaviour in the burrowing bivalve *Macoma balthica*

C.L. Griffiths a, C.A. Richardson b,*

Основной вопрос хищничества - что поесть

- Состав диеты потребителей зависит от
 - Доступности пищевых объектов
 - Их энергетической ценности
 - Опыта потребителя
- Группы хищников в отношении структуры диеты:
 - Монофаги
 - Олигофаги
 - Полифаги
- Группы хищников в отношении разнообразия жертв
 - Генералисты (едят всех, кого найдут)
 - Специалисты (едят только определнные разновидности жертв)

Монофаги

• Очень узкая специализация: большое количество поведенческих и физиологических адаптаций направлено на взаимодействие с видом жертвы. Часто среди паразитоидов.

Полифаги

• Имеются анатомические, физиологические и биохимические адаптации пищеварительной системы к полифагии (набор пищеварительных ферментов очень широкий). Часто в биоценозах с бедным видовым составом. Многие переключаются с саркофагии на некрофагию.

Пищевое предпочтение

Ранжированная диета: Хищники обычно предпочитают те виды жертв, которые за минимальное время обработки дают максимальное количество энергии.

Но... не всегда

Хищник может предпочитать менее калорийную, но более безопасную пищу

Discriminating Eaters: Sea Stars Asterias rubens L. Feed Preferably on Mytilus trossulus Gould in Mixed Stocks of Mytilus trossulus and Mytilus edulis L.

VADIM KHAITOV^{1,2,*}, ANNA MAKARYCHEVA¹, MIKHAIL GANTSEVICH³, NATALIA LENTSMAN², MARIA SKAZINA², ANASTASIA GAGARINA^{2,4}, MARINA KATOLIKOVA5, AND PETR STRELKOV2,6

M.trossulus - Гибкие створки

M.edulis - Прочные створки

Пищевое предпочтение

Сбалансированная диета - хищник выбирает не какой-то один пищевой объект, а питается смешанным набором объектов. Выбор пищи осуществляется не по ее энергетической ценности.

- При смешанной диете может наблюдаться оптимальное соотношение между потребляемой энергией и поглощаемым попутно токсинами и прочими нежелательными веществами.
- При смешанном питании затраты на поиск оптимальной пищи меньше, чем при ранжированной диете.

Что делать, если предпочитаемой пищи нет?

Переключение пищевых предпочтений

SWITCHING IN GENERAL PREDATORS: EXPERIMENTS ON PREDATOR SPECIFICITY AND STABILITY OF PREY POPULATIONS¹

WILLIAM W. MURDOCH
Department of Biological Sciences, University of California, Santa Barbara

Хищные улитки Acanthina переключаются с одного вида жертвы на другой в зависимости от соотношения обилия жертв

M. edulis

Acanthina sp.

Balanus glandula

Переключение пищевых предпочтений

SWITCHING IN GENERAL PREDATORS: EXPERIMENTS ON PREDATOR SPECIFICITY AND STABILITY OF PREY POPULATIONS¹

WILLIAM W. MURDOCH
Department of Biological Sciences, University of California, Santa Barbara

Хищные улитки *Thais* не переключаются с одного вида жертвы на другой, вне зависимости от соотношения обилия жертв

M. californianus

Thais sp.

M. edulis

Почему в каких-то случаях происходит переключение, а в каких-то нет?

Теория оптимального фуражирования

Базовые посылки теории

- Поведение хищника, которое он демонстрирует в настоящем, является результатом отбора, действовавшего в прошлом
- Наиболее высокое благосостояние хищника определяется тем, сколько энергии он получил

Базовое выражение

- Пусть у хищника есть выбор между несколькими видами жертв
- E_i энергия потребляемая от *i*-го вида
- h_i время, затраченное на обработку добычи (handling time) *i*-го вида
- s_i время затраченное на поиск i-го вида

Оптимальный выбор

$$E_i / h_i \ge \overline{E} / (\overline{s} + \overline{h})$$

$$E_i / (h_i + s_i) \to \max$$

Предсказания модели

- Хищник, у которого время обработки значительно меньше времени поиска должен быть генералистом:
 - Насекомоядные птицы долго ищут, но едят всех найденных насекомых.
- Хищник, у которого время обработки пищи значительно больше времени поиска, должен быть специалистом
 - Львы живут рядом с жертвами, но обрабатывать ее (ловить, убивать и т.д.) долго и энергозатратно надо специализироваться на старых, молодых или больных.

Предсказания модели

- Хищники должны иметь более разнообразную диету в бедных сообществах и более однообразную в богатых.
 - Большинство хищников в арктических сообществах могут переходить на некрофагию.
 - Медведи в более богатых рыбой реках поедают не всю рыбу, а только самую энергетически ценную (самок с икрой).
- Менее энергетически ценная добыча должна игнорироваться вне зависимости от ее обилия.
 - Даже при очень высоком обилии молодых моллюсков кулики-сороки будут искать более крупных особей.

Предсказания модели

- Естественный отбор должен способствовать образованию более тесного контакта хищника и жертвы (уменьшение времени обработки)
 - Паразитоиды и паразиты часто являются результатом эволюции хищников.
- Естественный отбор должен способствовать эволюции в сторону полифагии (уменьшение времени поиска)
 - Монофаги довольно редки. Большое количество хищников могут потреблять разные виды жертв.

Теория оптимального фуражирования в действии

Are oystercatchers (*Haematopus ostralegus*) selecting the most profitable mussels (*Mytilus edulis*)?

P. M. MEIRE & A. ERVYNCK

Laboratorium voor Oecologie der Dieren, Zoögeografie en Natuurbehoud, Rijksuniversiteit Gent, Ledeganckstraat 35, B-9000-GENT, Belgium

Mussel Length (mm)

Кулики-сороки выбирают мидий с менее крепкой раковиной, но при этом достаточно крупных.

Динамика популяции хищников и жертв

Как зависит потребляемость жертв от их обилия?

Три типа функциональных ответов хищников на обилие жертв

Количество потребленных жертв

Плотность популяции жертв

NB! На самом деле типов функциональных ответов может быть значительно больше

Тип I (Тип II очень близок)

- Потребление жертв пропорционально их обилию: $N_{consumed} = (aP)N$
- Потребление жертв перестает расти по мере увеличения плотности жертв, хищник не способен обрабатывать столько добычи.
- По мере увеличения численности жертв хищник потребляет только тех у кого E/h максимально.

Для многих видов жертв - на этом основана защитная реакция в виде образований скоплений жертв.

Тип III

- Потребление жертв перестает расти по мере увеличения плотности жертв.
- Если численность жертвы очень низка, то хищник почти ее не потребляет, он переключается на другие виды жертв (может даже с меньшим E/h).
- Более хараткерно для позвоночных.

От типа функционального ответа хищника зависит связь его популяции с популяцией жертвы

Система уравнений Лотки-Вольтера

Alfred James Lotka

Vito Volterra

В основе модели лежит функциональный ответ I типа, то есть потребление жертвы пропорционально ее обилию.

Система уравнений Лотки-Вольтерра

$$\frac{dN}{dt} = rN(1 - \frac{N}{K}) + aNP$$

$$\frac{dP}{dt} = faNP + qP$$

N - численность жертв

r - мальтузианский параметр для жертвы

К - емкость среды для жертвы

Р - численность хищника

а - интенсивность атак со стороны хищника

f - уровень «вклада» жертв в рождаемость хищников

q - уровень смертности хищника при отсутствии жертв

Отрицательное влияние хищника на жертву (здесь и находится функциональный ответ хищника)

Степень зависимости хищника от жертвы

Положиетльное влияние жертвы на хищника

Предсказания модели

- Циклическое изменение численности хищника и жертвы
- Фазовый сдвиг пики численности хищника смещены относительно сдвигов жертв
- Затухающие циклы (переход к стабильному сосуществованию)

Предсказания модели

• При некоторых сочетаниях параметров должны наблюдаться регулярные циклы

Предсказания модели

Фазовые портреты

А как в природе?

Опыты Г. Ф. Гаузе (1934)

EXPERIMENTAL DEMONSTRATION OF VOLTERRA'S PERIODIC OSCILLATIONS IN THE NUMBERS OF ANIMALS

By G. F. GAUSE.

(Zoological Institute, Moscow University.)

• В динамике численности *Paramecium aurelia* (хищник) и дрожжей (жертва) есть намек на циклические изменения.

Знаменитые данные компании Гудзонова залива

- Динамика добычи зайцев и рысей.
- Но.... не все так просто

- Данные в бухгалтерских книгах с заметным лагом (охотники не сразу сдают добычу).
- «Численность» может зависеть от цен на мех.
- Зайцы могут взаимодействовать со своей пищей, а вовсе не с рысями.
- Могут быть связи с паразитами и т.д. и т. п....

Всегда надо рассматривать конкурирующие гипотезы

Динамика лесных вредителей

- Явно динамика второго порядка есть какие-то взаимоотношения.
- Гипотеза материнского эффекта
- Гипотеза качества пищи (ответная реакция лиственницы)
- Паразитоидная гипотеза

Логика поиска механизма динамики

- 1. Временной ряд, отражающий изменения численности
- 2. Гипотезы о механизмах изменений
- 3. Построение «болванок» моделей
- 4. Оценка параметров моделей на основе реальных данных (временной ряд, эксперименты, наблюдения)
- 5. Подстановка параметров в модели
- 6. Оценка соответствия реальных данных и предсказанных моделей
- 7. Сравнение предсказаний от моделей, построенных для разных гипотез.
- 8. Выбор модели, наиболее согласующейся с данными

Данные по отстрелу куропаток при спортивной охоте в Англии

- Не все, что демонстрирует колебания может быть следствием отношений между видами.
- У куропаток естественных врагов очень мало.
- Гипотеза внутривидовой конкуренции.
- Паразитарная гипотеза.

При анализе временных рядов мелочей не бывает

Лемминги сложнее, чем кажутся....

- Форма пиков у полевок соответствует предсказаниям для жертв (взаимодействие с хищниками).
- Форма пиков в динамике леммингов ответствует предсказаниям для хищников (взаимодействие с растениями).

Take home message

- Трофические связи всегда основаны на потреблении энергии, но не сводятся только к отношениями хищник-жертва (саркофагия).
- В рассмотрение трофических связей надо включать также и некрофагию и ксенофагию.
- Потребителей в рамках саркофагии можно классифицировать по степени близости отношений с жертвой и степени летальности их воздействия.
- Между хищниками и жертвами всегда есть эволюционная гонка вооружений.
- Пищевое предпочтение основывается на соотношении получаемой энергии и затрат на ее получение.

Take home message

- Теория оптимального фуражирования дает основания для объяснения структуры диеты хищников и причин ее изменчивости
- Динамика популяции хищника сопряжена с динамикой популяции жертвы.
- Модели предсказывают стабильное сосуществование хищника и жертвы, циклические или хаотические изменения в их популяциях.
- Многочисленные наблюдения циклических процессов в природе не всегда позволяют говорить о роли взаимодействия хищников и жертв в формировании циклического паттерна.

Что почитать

- Begon, M., Townsend, C. R., & Harper, J. L. (2006). Ecology: from individuals to ecosystems. **Chapter 9**.
- Бигон М., Харпер Дж., Таунсенд К. Экология. Особи, популяции и сообщества. Т.1. М.: Мир. 1989. Глава 8, 9.
- Бродский А. К. Общая экология: учебник для высших заведений. 2-е изд. М. издательский центр «Академия». 2007. 256 с. Глава 6, 8.
- Turchin, Peter. Complex population dynamics: a theoretical/empirical synthesis. Vol. 35. Princeton university press, 2003.

Опорный глоссарий

- «Сублетальные» хищники
- Автотрофы
- Время обработки добычи
- Время поиска добычи
- Гетеротрофы
- Ксенофагия
- Макрофаги
- Микрофаги
- Модель Лотки-Вольтерра
- Монофаги
- Некрофагия
- Олигофаги
- Паразитоиды
- Паразиты
- Пастбищные хищники (grazers)

- Переключение пищевого предпочтения
- Пищевое предпочтение
- Полифаги
- Ранжированная диета
- Саркофагия
- Сбалансированная диета
- Теория оптимального фуражирования
- Фазовый портрет
- Функциональный ответ хищников
- Хищники
- Хищники-генералисты
- Хищники-специалисты