H(건님 정리

- · Vector: objects that can be added together and multiplied by a scalar.
- · Gtoup: 686767 FE 69 set.

47/2/321. O clossore

- @ Associativity. (209)@ = 20 (902)
- ③ Heuthal element e lo z = z (专家的)

⊕ | Nurse element 2 ⊗ g = €

if 20g=g@2

=> Abelian group.

* Vector space: A real-halled vector space $V=(V,t,\cdot)$ is a set V with two operation (inner operation, enter operation)

O Distributivity 2. (2+8) = 22429.

是 Vector spuce 对外科

@ Associativity A. (p. 2) = (2 p)2

@ Neutral element -> 1. (outer operation), O (inner operation)

· lector subspace. ; V(lector space) $U \subseteq V$; $U \neq \emptyset$, U : (in Net operation of closure.)

ex) Homogeneous system (Az=0) =) solution set a solution of fill effect = $R^n = solorpace$.

(Null space)

inhomogeneous system (Az=b) =) Not sobspace of Rn

· Linear independence.

 $\sum_{s=1}^{k} \lambda_s z_s = 0$. \longrightarrow $z_s = 0$ \longrightarrow $z_s = 0$ z

It oolofofster > linearly independent.

ex) 22,-72+523=0. => 72=22,+523 (linearly leproduct)

키카 같은 명보 표현 되지 않는다 (linearly independent)

linear independence? check # by # : 6 Gaussian elimination.

Luechts for Marks PES G. ESIN.

BE columnol plust column = linear interpredence.

" (tentating set (spanning set) and span.

Vector space V7 Va sobseto A= 32,22, ~ 2K)

API element = 18814 Linear combination = ster = optes Vector space V7+ Holder.

=) At generating set (spanning set). V= span [A]

" Basis.

Basis of V (vector space) = minimal generating set of V = Maximal linearly independent sobcet of V.

 $\lambda = \sum_{i=1}^{K} \lambda_i b_i = \sum_{i=1}^{K} \psi b_i \rightarrow \lambda_i = \psi_i \quad j=1...F. \quad \text{basist} \quad \text{define}$ b= 36 -- by lector space of the dela vectors basis & St linear combination 02 Unique 計划 斑镜气器、

是 (lector space & basis 39 2714 99的对象

(Dector spaced) of 21 Basist 25 + 25).

Basis vectors THE = Dim(V).

· Rank: Mattxolly linearly independent & colomns 对于. (rk(A) 213 豆冠). \$0 H(大)=H(下)

- · linear mapping.: Vector space V +1141 Vector space W 3 mapping 可控义. 更(v) = w (v EV, w EW)
- · Coordinate vector.

Vector space V on W.

(othered basis B= (b1, b) -- ba)

a E V

2= XIbitX2b2 -- Xnbn

コ X1,02·Xn量 Vector主張発 (basis ? Soll Vector Space of 9/2 Vector? linear combinations 나타州 계代記 Ohique)

· Mattle representation of a linear mapping.

basis: B, C (BEV, CEW) \emptyset by = a_{13} c, ... a_{mj} cm = $\frac{m}{a_{1j}}$ a_{1j} c₃

料 tranformation matrix about the vector spaced 处 basis3 引起.

=> 013tralle a EV other 29 colordinate vcctor 2
g = Hora g EW old Je1 11

6 Equivalent.

A,
$$\tilde{A}$$
: equivalent =) $\tilde{A} = T^{-1}AS$ ($S \in \mathbb{R}^{n \times n}$, $T \in \mathbb{R}^{m \times m}$)

 $\mathbb{R}^{m \times n}$

Similar \longrightarrow Equivalent ($\frac{1}{3}$ $\frac{1}{3}$

o Similat

$$A, \tilde{A} \in \mathbb{R}^{n \times n} \Rightarrow \tilde{A} = S^{\dagger} A S \left(S \in \mathbb{R}^{n \times n} \right)$$