Target-Small Decoy Search Strategy for False Discovery Rate

2020.06 김현우 한국과학기술정보연구원

Peptide identification

Target DB

- False Discovery Rate (FDR)
 - 1% FDR

- False Discovery Rate (FDR)
 - 1% FDR

1	LNRSDHFHSR
2	LDMSFHSR

•

i-1	TPCCSWK
i	DHGIFHSR
i+1	MGIFHSR

•

<i>n</i> – 1	SRCHSHK
n	YEYEVDKDFSSK

- False Discovery Rate (FDR)
 - 1% FDR

$$\frac{1}{100} \times n$$
 7# FALSE!

1	LNRSDHFHSR
2	LDMSFHSR

•

i-1	TPCCSWK
i	DHGIFHSR
i+1	MGIFHSR

•

<i>n</i> – 1	SRCHSHK
n	YEYEVDKDFSSK

FDR estimation

• Target-decoy search strategy

FDR estimation

FDR estimation

FDR estimation

$$\frac{\#Decoy}{\#Target} = FDR$$

- Target-decoy search strategy
 - Increases running time to search peptides against a protein database
 - The database size is twice as large as original protein database size

Have an important problem of sensitivity

Small Decoy database

- Decoy sequences are generated by reversing target sequences
- Small decoy sequences are randomly selected in the decoy sequences

Peptide identification using small decoy database

Target ? Decoy ? ??%

Peptide identification using small decoy database

Target ? Decoy ?

$$\frac{\#Decoy \times 2}{\#Target \times 1} = FDR$$

- Target-small decoy search
 - How to calculate the probability of target and decoy false positives

- Target-small decoy search
 - How to calculate the probability of target and decoy false positives
 - → Shifted MS/MS data

- Target-small decoy search
 - How to calculate the probability of target and decoy false positives
 - → Shifted MS/MS data
 - Precursor masses of MS/MS data are shifted by 10 Da

Target-decoy search strategy

Comet

precursor mass tolerance = 10 ppm fragment tolerance = 0.02 Da number of tryptic termini (NTT) = 2 maximum missed cleavage = 2 fixed modification of carbamidomethyl on Cys

HEK293 cell line data

Target-small decoy search strategy

- There is a difference
 - The ratio of the size of a target and a decoy database
 - The ratio of the number of target and decoy PSMs

The size of database

The number of PSMs

FDR estimation using small decoy database

$$\frac{\#Decoy \times 1}{\#Target \times 2} = FDR$$

FDR estimation using small decoy database

FDR estimation using small decoy database

- Candidate peptides within tolerance of precursor masses instead of proteins are used for peptide identification
- Because of this reason, we expected that the ratio of target and decoy peptides in databases are almost same as the ratio of random hits

- Almost the same
 - The ratio of the number of a target and a decoy peptides
 - The ratio of the number of target and decoy PSMs

Decoy — PSMRatio 450,000 400,000 8.00 350,000 7.00 Number of PSMs 300,000 6.00 5.00 250,000 4.00 200,000 3.00 150,000 100,000 2.00 50,000 1.00 0 0.00 1/6 orignal 1/2 1/4 1/8 **#TARGET: (#DECOY/N)**

The number of peptides

The number of PSMs

- Almost the same
 - The ratio of the number of a target and a decoy peptides
 - The ratio of the number of target and decoy PSMs

How to estimate the FDR

$$FDR_{TDS} = \frac{\#Decoy}{\#Target}$$
 $FDR_{TSDS} = \frac{\#Decoy}{\#Target} \times FPratio$

- #*Target* is the number of target PSMs
- #Decoy is the number of decoy PSMs
- FPratio is the ratio of target and decoy peptides

• 1% FDR

- Target-decoy search strategy: $FDR_{TDS} = 0.01$
- Target-small decoy search strategy: $FDR_{TDS} = 0.01/FPratio$

RESULT

Comparison PSMs

RESULT

Comparison time

CONCLUSION

- Target-small decoy search strategy
 - Efficient as target-decoy search strategy
 - Easily estimate the FDR
 - Reduce the database search time

