

11. The following truth table defines the logic conditions for a particular application.

	Inp	outs		Output	
D	С	В	Α	Q	
0	0	0	0	0	
0	0	0	1	0	
0	0	1	0	1	A.B.C.5 A.B.C.5
0	0	1	1	1	A.B. C. T
0	1	0	0	0	
0	1	0	1	0	
0	1	1	0	0	
0	1	1	1	0	
1	0	0	0	1	A.B.C.D A.B.C.D
1	0	0	1	1	A.T. T. D
1	0	1	0	0	
1	0	1	1	0	
1	1	0	0	1	A. B.C.D
1	1	0	1	1	A.B.C.D A.B.C.D
1	1	1	0	0	
1	1	1	1	0	

Write the simplified Boolean expression for the truth table

بهادي

B. C. D + B. C. D + B. C. D

Complete the Karnaugh map below for the same logic function using either the truth table or your logic expression from (a)

B.D + 8.C.D

Draw the circuit

Α ----

4	_	
	ь.	
м		

U.				
D	С	В	Α	Q
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

	BA			
DC	00	01	11	10
00				
01			,	
11		Į.		
10				

A.C

10.

$$\mathbf{Q} = \overline{\mathbf{A}}.\overline{\mathbf{B}}.\overline{\mathbf{C}}.\overline{\mathbf{D}} + \overline{\mathbf{A}}.\overline{\mathbf{B}}.\overline{\mathbf{C}}.\overline{\mathbf{D}} + \overline{\mathbf{B}}.\overline{\mathbf{C}}.\overline{\mathbf{D}} + \overline{\mathbf{B}}.\overline{\mathbf{C}}.\overline{\mathbf{D}}$$

Use the rules of Boolean algebra to join the expression in column 1 to the equivalent expression in column 2 with a line. One has already been done for you.

(b) Apply DeMorgan's theorem to the following expression and simplify the result.

$$Q = \overline{(\overline{\overline{A} + B}).A.\overline{B}}$$

$\overline{A}+B+\overline{A}.\overline{8}$
A+B+ A+B
A + B
[3]

The diagram shows an 8:1 multiplexer used as a programmable logic system.

(a) Complete the truth table for this system.

	Output		
С	В	Α	Q
0	0	0	0
0	0	1	0
0	1	0	
0	1	1	O
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	

(b) Write down the Boolean expression for the output **Q**, in terms of **A**, **B** and **C**.

Q= A.B.C+A.B.C

[2]

[2]

1. A Schmitt trigger circuit has the following characteristic.

(ii) What are the switching thresholds for this Schmitt trigger?

1.5 and [1]

(b) Draw the output for this Schmitt trigger when the following analogue signal is applied to the input. [3]

1. (a) Redraw the following logic circuit using 2 input NAND gates only.

2. (a) Redraw the following logic circuit using 2 input NAND gates only.

A logic system behaves according to this Boolean expression.

$$Q = C.\overline{B}.A + C.B + \overline{C}.B.\overline{A}$$

Complete the truth table for this system.

C	В	A	Q
0	0	0	
0	0	1	
0	1	0	1
0	1	1	
1	0	0	
1	0	1	ļ
1	1	0	1
1	1	1 .	

Use a Karnaugh map or Boolean algebra to simplify the expression for Q.

C.A + A.B

BA				
c /	00	01	11	10
0	\bigcirc	0	0	(
1	0	(ſ	J

[1]

[3]

Apply DeMorgan's theorem to the following expression and simplify the result. [3]

$$Q = \overline{(A + B).(A.B)}$$

 $\overline{A}_{+}\overline{g} + \overline{A}_{\cdot}B$