CSE 252B Assignment 1 Ajitesh Gupta January 18, 2018

Problem 1 Line plane intersection

A line in 3D is defined by joining the points $X_1 = (x_1, y_1, z_1, t_1)^T$ and $X_2 = (x_2, y_2, z_2, t_2)^T$, and can be represented as $L = X_1 X_2^T - X_1^T X_2$ or as a pencil $X(\lambda) = \lambda X_1 + (1 - \lambda) X_2$. A plane in 3D is given by $\pi = (a, b, c, d)^T$ and the line L intersects the plane at $X_L = L\pi$ and $L\pi = X(\lambda_{\pi})$ and λ_{π} is determined by $X(\lambda_{\pi})\pi = 0$ or that the point $X(\lambda_{\pi})$ lies on plane π .

$$X(\lambda_{\pi})\pi = 0$$

$$\lambda_{\pi}X_{1}^{T}\pi + (1 - \lambda_{\pi})X_{2}^{T}\pi = 0$$

$$\lambda_{\pi}(X_{1}^{T} - X_{2}^{T})\pi + X_{2}^{T}\pi = 0$$

$$\lambda_{\pi} = \frac{X_{2}^{T}\pi}{(X_{2}^{T} - X_{1}^{T})\pi}$$

Substituting λ calculated above

$$X_{L} = \frac{X_{1}X_{2}^{T}\pi}{(X_{2}^{T} - X_{1}^{T})\pi} - \frac{X_{1}^{T}X_{2}\pi}{(X_{2}^{T} - X_{1}^{T})\pi}$$

$$= \frac{X_{1}X_{2}^{T}\pi - X_{1}^{T}X_{2}\pi}{(X_{2}^{T} - X_{1}^{T})\pi}$$

$$= \frac{L_{\pi}}{(X_{2}^{T} - X_{1}^{T})\pi}$$

$$= \frac{X(\lambda_{\pi})}{(X_{2}^{T} - X_{1}^{T})\pi}$$

Therefore we can see that X_L is defined upto scale in terms of $X(\lambda_{\pi})$ where scale term is $\frac{1}{(X_2^T - X_1^T)\pi}$

Problem 2 Line-Quadric Intersection

A 3D line may intersect a 0, 1 or 2 points. Let Q denote the quadric. As discussed above a line can be defined as a pencil $X(\lambda) = \lambda X_1 + (1 - \lambda)X_2$. Hence let $X(\lambda_Q)$ be the point intersecting the quadric Q and lies on the line L.

We can reduce the above system to a quadratic equation in λ_Q which may look like $a_2\lambda_Q^2 + a_1\lambda_Q + a_0 = 0$ in the steps that follow. $X(\lambda_Q)$ is determined as following:

$$X(\lambda_Q)^T Q X(\lambda_Q) = 0$$

$$(\lambda_Q X_1 + (1 - \lambda_Q) X_2)^T Q (\lambda_Q X_1 + (1 - \lambda_Q) X_2) = 0$$

$$\lambda_Q^2 (X_1^T Q X_1 - 2 X_1^T Q X_2 + X_2^T Q X_2) + \lambda_Q (2 (X_1^T Q X_2 - X 2^T Q X_2)) + X_2^T Q X_2 = 0$$
 comparing to $a_2 \lambda_Q^2 + a_1 \lambda_Q + a_0 = 0$
$$a_2 = (X_1^T Q X_1 - 2 X_1^T Q X_2 + X_2^T Q X_2)$$

$$a_1 = (2 (X_1^T Q X_2 - X 2^T Q X_2))$$

Problem 3 Feature detection

 $a_0 = X_2^T Q X_2$

Parameter	Image1	Image2
Feature detection window size	7	7
Minor eigen value threshold	$0.0002 * w^2 = 0.01$	$0.0002 * w^2 = 0.01$
NMS Window	11	11
Features detected	615	629

Problem 4 Feature matching

Parameter	Value
Feature matching window size	11
Correlation Coeff Threshold	0.55
Distance ratio	0.8
Proximity threshold	150
Matches	200