Guillaume T. 04-2025

Arbres et Forets

GRE

4 - Arbres et Forets

Abstract

Definition

Table des matières

l.	Définition	2
	1.1. Propriétés	
	Arbres et forêts	
	2.1. Recouvrant	
	2.2. Arbre recouvrant minimal	
	2.2.1. Algorithmes gloutons	3
	2.2.1.1. Algorithme de Kruskal (1956)	3
	2.2.1.2. Algorithme de Prim (1957)	

Guillaume T. 04-2025

1. Définition

1.1. Propriétés

Les propriétés des arbres et forêts sont les suivantes :

- Un arbre est une forêt connexe.
- Chaque composante connexe d'une forêt est un arbre.
- Forêts et arbres sont des graphes simples ! En effet, toute boucle ou toute paire d'arêtes parallèles crée un cycle simple.
- Dans un arbre (ou une forêt) les sommets pendants (sommet de degré 1) sont souvent appelés des feuilles.
- Tout arbre comptant au moins 2 sommets possède au moins 2 feuilles.

Guillaume T. 04-2025

2. Arbres et forêts

2.1. Recouvrant

Un arbre recouvrant d'un graphe non orienté connexe est un arbre qui contient tous les sommets du graphe initial. Cela est pareil pour une forêt recouvrante.

2.2. Arbre recouvrant minimal

2.2.1. Algorithmes gloutons

2.2.1.1. Algorithme de Kruskal (1956)

L'algorithme de Kruskal consisite à partir d'une forêt vide ne contenant que les sommets du graphe puis diminuer progressivement le nombre de composantes connexes en reliant à chaque fois de la façon la plus économique possible deux composantes de la forêt actuelle.

2.2.1.2. Algorithme de Prim (1957)

L'algorithme de Prim consiste à partir d'un arbre vide ne contenant qu'un sommet du graphe puis ajouter progressivement des sommets au graphe en choisissant à chaque fois le sommet le plus proche de l'arbre actuel.

====q Algorithme de Borůvka (1926) L'algorithme de Borůvka consiste à partir d'une forêt vide ne contenant que les sommets du graphe puis diminuer progressivement le nombre de composantes connexes en reliant à chaque fois de la façon la plus économique possible deux composantes de la forêt actuelle.