Recitation 1, Spring 2020

24-352 Dynamic Systems and Controls

January 21, 2020

Robot Landing

A robot with mass m is dropped and hits the ground at time t = 0 with a velocity of $v(0) = -v_0$. The robot's leg motors are programmed to exert a downward force of F(t) on the ground, resulting in a upward force of F(t) on the robot. The force F(t) can be written as

$$F(t) = F_q + F_s(t), \tag{1}$$

where F_g is a gravity compensation force used to hold the robot's weight at rest $(F_g = mg)$, and $F_s(t)$ is a stopping force used to slow the robot's fall until the robot comes to rest. Note that $F_s(t)$ is equivalent to the total sum of forces on the robot.

When the robot's legs hits the ground, but its body is still traveling downwards (legs are compressing), $F_s(t)$ is programmed to be a constant force, f_s . When the robot's body stops traveling downwards and comes to rest, $F_s(t)$ is programmed to be 0.

$$F_s(t) = \begin{cases} f_s & \text{if } t \ge 0 \text{ and } v(t) < 0\\ 0 & \text{otherwise} \end{cases}$$
 (2)

- (a) Plot $F_s(t)$.
- (b) Find the Laplace transform of $F_s(t)$.
- (c) Find $\int_0^\infty F_s(t)dt$. What is this value equivalent to?
- (d) What happens to $F_s(t)$ as f_s is increased? What happens to $\int_0^\infty F_s(t)dt$?
- (e) If the robot's motors are replaced with fixed joints, then the robot will hit the ground and come to rest immediately. In this case, what does the plot of $F_s(t)$ look like? What happens to $\int_0^\infty F_s(t)dt$?

Magnetic Microswimmer

A magnetic microswimmer can be pulled through a fluid in the x-direction using a force due to a magnetic field gradient, $F_{\nabla B}$. $F_{\nabla B}$ is dependent on the position of the swimmer, x. The swimmer will also experience some hydrodynamic drag, F_h , which is proportional to its velocity, \dot{x} , and it will ultimately accelerate towards the source of the magnetic field. We can write the equation of motion of the swimmer in the x-direction as:

$$m\ddot{x} = F_{\nabla B} - F_h \tag{3}$$

$$= \nabla Bx - c_h \dot{x} \tag{4}$$

For this problem, let us assume that the following initial conditions are true:

$$x(0) = 1, \dot{x}(0) = 0 \tag{5}$$

- (a) Write the equation of motion in the frequency domain as an expression for X(s).
- (b) Let the coefficients have the following values: $m = 1, c_h = 1, \nabla B = 20$. Now write the equation of motion in the time domain as an expression for x(t).
- (c) Use the Initial Value Theorem to check your work.
- (d) Can you use the Final Value Theorem to calculate the steady state value for this second-order system? Why or why not?
- (e) If we change the drag coefficient and the magnetic field gradient coefficient to $c_h = 5$ and $\nabla B = -6$, what happens to the stability of the system? Can you use Final Value Theorem in this case?