Vizsga felépítés

2024. december 18., szerda

• 60-70 perc

- 3 rész:
 - Angol szakkifejezések 20 kérdés, 50%!

9:56

- 10 perces, 1 p/k
- Teszt, rövid kérdések 20 kérdés, 55%!
 - 20 perces, 1 p/k
- o **Esszé, hosszú kérdések** 5 kérdés
 - 40 perces, 5 p/k (45p)

Értékelés:

100	5
85	4
75	3
50 60	
	85 75

Követelmény – 1. lap

1. előadás

2024. december 18., szerda 10:0

Hálózati sávszélesség

- Adatátvitelhez használt kommunikációs erőforrás
- bit/sec (1 bájt = 8 bit)
- Szabányok:
 - SI mértékegységek: 10^{3n} $(n \ge 0)$ bájtok (kilo, mega, giga, stb)
 - o **IEC**: 2^{10n} $(n \ge 0)$ bájtok (kibi, mebi, gibi stb)

Hálózati hoszt:

- Számítógépes hálózattal áll összeköttetésben
- Szolgáltatást, alkalmazásokat biztosít a további csomópontoknak

Átviteli közeg/csatorna

- A közeg, ahol a kommunikáció folyik
- Koax/optikai kábel, levegő stb

Internet

- WAN (Wide Area Network), globális
- Nincs központi felügyelet, LAN-okból (Local Area Network) áll
- Követelmények:
 - O Hibatolerancia: több lehetséges útvonal a forrás és cél között
 - o Rugalmasság: erőforrásmegosztás hatékonyság érdekében (linkek száma nem túl nagy)
 - o Megfelelő csomópont kapacitás: linkek száma nem túl kicsi
- Topológia (kialakítás): switchelt hálózatok
 - o Pros: Erőforrás megosztás és csomópontok kapacitása személyre szabható
 - o Cons: Okos eszközöket igényel (forgalomirányítás, csomagtovábbítás)
- Tier-ek:
 - o Tier 1: nemzetközi, nincs szolgáltató
 - o Tier-2: nemzeti, 3-as szolgáltatóknak átjárás, legalább egy szolgáltató
 - o Tier-3: helyi, legalább egy szolgáltató

Peering

- Hálózatok közötti kölcsönös kapcsolat
- o Túl költséges lenne mindent mindennel
- IXP (Exchange Points):
 - Több hálózat összekapcsolása egy fizikai helyen

Erőforráskezelés:

- Csúcsráta: P
- Átlagos ráta: A

Előre foglalás

- Előre lefoglaljuk a kellő sávszélességet (folyam szintű multiplexálás)
- P-t foglalunk
- o A/P = kihasználtsági szint

Igény szerint

- Akkor küldünk adatot, ha szükséges (csomag szintű multiplexálás)
- o Általában nagyobb kihasználtság
- Melyik jobb?
 - o P/A kicsi => előre foglalás
 - o P/A nagy => előre foglalni pazarló

• Resource Reservation Protocol:

- Foglalási kérés
- Áramkör kialakítása
- Adatküldés
- Lebontás

- LCDOIItus	
Pros	Cons
Kiszámítható teljesítmény	Alacsony hatékonyság
 Egyszerű, gyors (miután kiépült) 	Bonyolult
	felépítés/bontás
	Hiba esetén új áramkör

Csomagkapcsolás, csomagkapcsolt hálózatok:

- o Adatküldés csomagokban
- o Minden csomagban van célcím
- Pufferelés szükséges

Pros	Cons	
 Hatékony Egyszerű Hibatolerancia	Kiszámíthatatlan telj. Pufferelés kell	

2. előadás

2024. december 18., szerda 10:51

Liskov principle:

- Modularitás az internet alapja
- Protokollokat rétegekbe rendezzük

Internet rétegmodelljei:

• TCP/IP: eleinte 4 réteg, később a hibrid változatban 5

Réteg	Protokollok	
Alkalmazási (Application)	TELNET, FTP, HTTP, DNS	
Szállítói (Transport)	TCP, UDP	
Hálózati (Internet)	IP	
Kapcsolati (Link)	ARPANET, Ethernet, LAN	

• OSI (referencia) model

- o Open System Interconnection Reference Model
- 7 réteg

· ·		
Rétegek		
Alkalmazási (Application)		
Megjelenítési (Presentation)		
Ülés (Session)		
Szállítói (Transport)		
Hálózati (<i>Network</i>)		
Adatkapcsolati (Data Link)		
Fizikai (<i>Physical</i>)		

Rétegek saját adattípusa (PDU)

o Fizikai: bit

Kapcsolati: keretek
 Hálózati: csomagok
 Szállítói: szegmensek
 Alkalmazási: üzenet

• Minden PDU-ban benne van az alatta lévő PDU tartalma

Hálózati kapcsolatok jellemzői:

- · Késleltetés (csomagméret / kapcsolati sebesség)
- Adatveszteség
- · Küldési sebesség

TCP/IP rétegek:

- Alkalmazási:
 - o Szolgáltatások nyújtása
- Szállítói:
 - o TCP vagy UDP protokollal kézbesítés
 - TCF
 - Megbízható, kétirányú
 - Szegmentálás, felügyelet
 - UDF
 - Nem megbízható, nincs felügyelet
 - Gyorsabb
- Internet:
 - Csomagtovábbítás, speciális csomagformátum
- · Kapcsolati réteg:
 - Nem specifikált, LAN-tól függ

OSI rétegek:

- Alkalmazási:
 - Konkrétan akármi
 - o Az első alkalmazás amit meglátsz a gépen/telón
- Megjelenítési:
 - Adatkonverzió
 - o Protokollok: adatformátumok és transzformációs szabályok
- Ülés:
 - o Kapcsolat menedzsment
 - o Szinkronizációs pont menedzsment
- Szállítói:
 - (De)Multiplexálás
 - o Sorrendhelyes továbbítás, üzenet küldése egy célállomásnak
 - o Protokollok: portszám, hibajavítás, folyamfelügyelet

• Hálózati:

- o Csomagtovábbítás, útvonalválasztás
- o Csomagok ütemezése, pufferelés
- o Protokollok: routing táblák karbantartása, globálisan egyedi címzés

• Adatkapcsolati:

- o Adatok tördelése, csomaggá alakítás
- o Per-hop megbízhatóság, folyamvezérlés
- Protokollok: fizikai címzés (MAC/IB address)

• Fizikai:

- o Információ átvitele két fizikailag összekötött eszköz között
- o Specifikálja egy bit átvitelét
- o Protokollok: bit kódolásának sémája

3. előadás (Physical)

2024. december 18., szerda 11:53

Fizikai réteg:

- 0-k és 1-esek: van vagy nincs feszültség/áramerősség
- Fourier-sor felhasználása:
 - o Pl karakterek kódja (digitális jel) nem periodikus
 - o De elképzelhető, hogy végtelenszer ismétlődik
- Elnyelődés (attenuation):
 - Küldési és vételi energiák hányadosa
 - o Mértékegység: decibel
 - Befolyásol tényezők: közeg, távolság
- Valódi közegben hátráltató tényezők
 - Frekvenciafüggő elnyelődés
 - Fáziseltolódás
 - Zaj
- Sávszélesség
 - Az a frekvenciatartomány, ahol a csillapítás nem túl nagy
- Vezeték nélküli átvitel:
 - o Frekvencia: elektromágneses hullám rezgésszáma / sec
 - Jele: f
 - Mértékegység: Hertz (Hz)
 - Hullámhossz: két egymást követő hullámvölgy/csúcs közötti táv
 - Jele: λ
 - Fénysebesség: $c = 3 * 10^{23} \frac{m}{s}$
 - $\circ \lambda * f = c$
- Műholdas kommunikáció:
 - Transzponderek alkalmazása
 - o Kapott jelek felerősítése, továbbítása más frekvencián

Adatátvitel:

- Szinkronizációs probléma
 - Órajel szinkronizálás
 - o Hogyan különböztessük meg a 0 értéket a nincs jeltől?
 - o Elcsúszás probléma
- Felügyelet szükséges a szinkronizációhoz
 - Explicit órajel
 - Párhuzamos átviteli csatornák
 - Rövid átvitel esetén
 - Kritikus időpontok
 - Csak szimbólom/blokk kezdetén szinkronizálunk
 - Feltételesen rövid ideig szinkronban futnak
 - Szimbólum kódok
 - Önütemező jel
 - Szignál tartalmazza az információt

Multiplexing

- Fizikai csatorna logikailag több alcsatornára bomlik = több jel átvitele egyszerre
- Szükséges eszköz: multiplexer
- Térbeli / Space-Division Multiplexing (SDM):
 - o Minden csatornához külön vezeték / antenna
- Frekvencia / Frequency-Division (FDM):
 - Minden jel más frekvencián érkezik
- Hullámhossz / Wavelength
- Időbeli / Time

Code Division Multiple Access (CDMA):

- Minden állomás egyszerre sugározhat a rendelkezésre álló frekvenciasávon
- Algoritmusa:
 - Bitidőt m darab intervallumra osztjuk
 - Minden állomáshoz tartozik egy *m* bites kód (töredéksorozat)
 - o Ha 0-t továbbítok: elküldöm a saját töredéksorozatom
 - Ha 1-et: annak az 1-es komplemensét

Átviteli közegek:

- Vezetékes
 - o Mágneses adathordozók
 - Sodort érpár
 - Koax kábel
- Vezeték nélküli:
- Rádiófrekvenciás
- Mikrohullámú
- Infravörös
- Látható fényhullámú

Műhold típusok:

- Geoszinkron
- o Közepes és alacsony röppályás

Alap és szélessávú jelátvitelAlapsáv (baseband)

- Digitális jel árammá/feszültséggé alakul
- Minden frekvencián átvitel
- Szélessáv (broadband)
 - Széles frekvenciatartományban van jelátvitel
 - Jel modulálása:
 - Amplitúdó moduláció
 - Frekvencia moduláció
 - Különböző vivőhullámok egyidejűleg való használata

Amplitúdó moduláció:

- Analóg: Vivőjel amplitúdóját illeszted a modulálandó jelre
- Digitális: Amplitúdó méretéből szűröd le a jelet

Frekvencia moduláció

- Analóg: Vivőjel frekvenciáját a modulálandó alapján változtatiuk
- Digitális: frekvencia változásból szűröd ki a jelet

Fázis moduláció: (nem nagyon

használt)

- Analóg: ugyanaz, jel amplitúdója befolyásolja a vivő fázisát
- Digitális: ugyanaz, vivő fázisváltozásából szűrsz le infót

- Adatblokk kódolása
- Hibakeresés, és esetlegesen javítás

- Bájt beszúrás:
 - FLAG bájt: adat eleje + vége
 - o ESC: biztosítja, hogy helyesen megtaláljuk a FLAG-et
- - Speciális bitmintával kezdünk és végzünk
 - Minden fix bit-részsorozat után beszúrunk egy jelző bitet
- Ha nem lehetséges mintát fogadunk: eldobjuk a keretet
- Hibák: Egyszerű bithiba: 1-ről 0-ra vagy 0-ról 1-re változik

 - Csoportos hiba:
 Olyan részsorozat, ahol az első és utolsó hibás
 - Nem létezik olyan m hosszú sorozat, ami helyes
 Ilyenkor m a védelmi övezet
- Hibadetektálás:
 - Duplaküldés = szar
 - Paritásbit
 - Egyesek száma páros legyen
 Valamennyire szar
 - Hihaiavító kódok: kevéshé meghízható helveken célszerű
 - Detektálás és újraküldés: megbízható helyen jobb
- Szükséges a redund:
 - Adatbitek: m
 - o Ellenőrző bitek (adatból számolt): r
 - Telies méret = m + r
- amming távolság: d(x,y) ahol x és y a kódszavak o Egy S halmaznál: $d(S) = \min_{x,y \in S \land x \neq y} d(x,y)$ o Ha d(S) = 1: nincs hibafelismerés

 - Ha d(S) = 2: a hiba felismerhető, de nem javítható

Minden $C \subseteq \{0,1\}^n$ kód , ahol $d(C) = k \ (\in \mathbb{N}_+)$. Akkor teljesül az alábbi összefüggés

$$|C| \sum_{i=0}^{\left\lfloor \frac{k-1}{2} \right\rfloor} {n \choose i} \le 2^n$$

- Visszacsatolás alapú (feedback-based flow control)
- Sebesség alapú (rate-based f.c.)

- Kódszó bitek megszámozása 1-től
- 2 hatványai ellenőrzőbitek
- A k-adik pozíciót a k értékének megfelelő 2 hatványokkal ellenőrizzük k = 13 = 1 + 4 + 8, az 1., 4. és 8. bit fogja ellenőrizni

ASCII karakter	ASCII decimālis	Üzenet forrás bitjei	Az előállt kódszavak
E	69	1000101	10100000101
L	76	1001100	10110011100
T	84	1010100	00110101100
Е	69	1000101	10100000101
	32	0100000	10001100000
1	73	1001001	11110011001
K	75	1001011	00110010011

- CRC (ciklikus redundancia)
 - A kódot \mathbb{Z}_2 alatti polinomnak értjük Kivonás és összeadás logikai XOR művelet

 - - G(x) foka r generálópolinom, mindkét fél ismeri

10100110 01010110

- G(x)-hez fűzzünk hozzá r db 0 bitet [G'(x)]
 G'(x) / G(x) mod 2
- Az osztás maradékát vonjuk ki G'(x)-ből, ennek eredménye a továbbítandó keret + ellenörző összeg [T(x)]
- Vevő megkapja T(x) + E(x)-et E(x) a hibapolinom -, és ha E(x) / G(x) nem 0, akkor hiba yan

Keret: 1101011011 Generátor: 10011

A továbbítandó üzenet: 110101101111110

d hibás bit **felismeréséhez**: $d(S) \ge d + 1$

- d hibás bit javításához: d(S) ≥ 2d + 1

- Szimplex
 - Egy irányú kommunikáció
 - Korlátozás nélküli:
 - Nincs nyugta/sorszámozás
 - Folyamatosan küld
 - Stop-and-wait:
 - Küld, nyugtát vár, ismétel
 - Fél duplex!
 - Kiegészítve számlálóval: ha nem jön válasz, újraküldi
- Fél-duplex
- o Egyszerre egy irányú kommunikáció Duplex
- - Mindkét irányba lehet egyszerre kommunikálni
- ABP (Alternáló bit protokoll):
 Egyesével küldjük, nullás sorszámmal kezdve
 Terfak corszámot és az össz
- Fogadásnál ellenőrzünk sorszámot és az összeget,
 Ha hiba eldobjuk és nem nyugtázunk
- Ha jön nyugta: sorszám növelése mod 2
 Ha nem jön nyugta akkor újraküldünk

5. előadás (Data-Link)

2024. december 18., szerda 18:23

- ó-ablak protokoll: A küldő max n-et küldhet (adási/vételi ablak)
- Fogadó n keretnek megfelelő puffert allokál
- Sorozatbeli **pozíció** adja a keret **sorszámát** Hibásakat **eldobjuk**
- Nyugta tartalmazza a sorszámot
- pelining:

 Nagy RTT kihatással lehet a **sávszélesség kihasználtságára**Adatsebesség és RTT szorzata nagy: **nagyméretű ablakok** használata (pipelining)

 Visszalépés n-el

 - Összes keret újraküldése a hibásig
 Nagyon pazarló nagy hibaarány esetén
 - Szelektív ismétlés:
 - Hibásak eldobása, többi pufferelése
 Esetleg negatív nyugta használata
 Nagy memóriaigény

Szabályok definiálása közeg megosztásához Stratégiák ütközések elkerüléséhez

- Ki férjen hozzá épp az adatszóró o Statikus csatornakiosztás:
 - - Frekvenciák felosztása felhasználók között
 Előnyös ha fix felhasználó van nagy adatforgalomigénnyel
 - Időalapú felosztás
 - Egyik se hatékony burst-ök esetén
 - Dinamikus kiosztás
 - Verseny(mentes), avagy korlátozott verseny protokollok
 Hatékonyság:

A csatornát időrésekre osztjuk, csak rések határán küldhetünk

- Átvitel, Késleltetés, Fairness (mindenki egyenrangú-e), Terhelés
- HA algoritmus Azonnal küldünk
- Mindig nyugtázunk
 Ütközésnél random ideig várunk, és újraküldjük

 - oisson tolyam (mar a nev miatt sem tetszix 1]

 Érkezés valószínűsége egy t intervallum alatt arányos t hosszával

 Nem függ t kezdetétől

 Több érkezés esélye t alatt közelít a 0-hoz
- Réselt ALOHA:

- Vivőjel érzékelés: minden állomás belehallgat
 - o Leadás előtt hallgatunk, hogy üres-e a csatorna, ha igen, azonnal
- Ütközéskor random ideig várunk, majd újraküldünk
- Nem-perzisztens:
- em-perzisszens:

 Ha hallgatunk és foglalt, akkor random ideig várunk, majd újra hallgatunk

 Amúgy ugyanaz

- várunk
 - Ez addig megy ameddig el nem küldtük a keretet, vagy más el nem kezdett küldeni, ilyenkor ütközés

6. előadás (Data-Link)

2024. december 18., szerda 19:15

- CD változat (ütközés detektálás)
 - o Küldés közben figyeljük a csatornát
 - o Ütközésnél megállunk, random ideig várakozunk, újrakezdjük

Ütközéskor "jam" jel küldése

- Binary Exponential Backoff $k \in [0,2^n-1], n \leq 10$ egyenletes eloszlás szerint, ahol n az ütközések száma
 - Várunk k időegységet az újraküldésig
 - 16 újrapróbálkozásnál eldobjuk a keretet

Minimális keretméret: 64 bájt (az állomásoknak elég idő kell az ütközés detektálásához)

Kábel minimális hossza: Táv = min(keretméret) * fénysebesség / (2 * ráta)

Maximális keretméret (Maximum Transmission Unit): 1500 bájt

- Túl hosszú csomaggal nagy javítási költség
- Több bájtba kerül a fejléc, nagyobb feldolgozási idő

ntes protokollok:

- N állomás (1-N-ig sorszámozva)
- Réselt időmodell
- Bittérkép protokol
 - Ütköztetési periódus N db időrés
 - o Ha i. állomás küldene, akkor i. időrésben küld egy 1-es bitet (broadcast)
- o Végén minden állomás ismeri a küldőket
- Bináris visszaszámlálás:
 - Minden állomás azonos hosszú bináris azonosítóval rendelkezik
 - o Küldő állomás bitenként elküldi az azonosítóját
 - o Ezek OR kapcsolatba kerülnek
 - o Ha O-t küldök, de egyet hallok vissza, akkor visszalépek, mert valaki már küld
 - Mok és Ward:
 - Sikeres átvitel után permutáljuk a címeket

tt versenyes pro

- Ötvözni a versenyhelyzetes és ütközésmentes protokollokat
- - o Kis terhelés: versenyhelyzetes
 - Nagy terhelés: ütközésmentes
- Adaptív fabejárási protokoll:
 - o 0. pillanatban mindenki küldhet (ütközésnél mélységi bejárás)
 - o Rések a fa egyes csomópontjai
 - o Ütközéskor a csomópont bal és jobb részfáján folytatódik a keresés
 - o Ha egy bitrés kihasználatlan vagy pontosan egy állomás küld, akkor vége a keresésnek

Bridging / bridge-ek:

- LAN-ok összekapcsolása
- Előnvök:
 - Korlátozzák az ütközési tartományok méretét
- o Skálázhatóság növelése
- Hátrányok:
 - Komplexebb eszközök
- Cél: teljes átlátszóság / plug-and-play, önmagát konfiguráló
- Továbbító tábla készítése, címek tanulása (küldésekkor források címei)
- Hurkok problémája: feszítőfa készítése és karbantartása (802.1)
 - o Egyik bridge a gyökér
 - Ennek meghatározása:
 - □ BPDU üzenetek
 - □ Switchek ez alapján választják ki:
 - ◆ Gyökér elemet
 - Gyökér portot
 - ◆ Következő bridge-et a gyökér felé
 - Ehhez mind megkeresi a legrövidebb utat
 - o Ennek uniója a feszítőfa

A switchek a bridge egy speciális esetei, minden port egy hoszthoz kapcsolódik

7. előadás (Network)

2024. december 19., csütörtök 15:39

Forgalomirányító algoritmusok

- Elvárások: igazságos, optimális
- · Osztályok:
 - o Adaptív: topológia és forgalom is befolyásolhatja a döntés
 - o Nem-adaptív: offline meghatározás
- Optimalitási elv:
 - Ha J router az I-től K-ig menő optimális úton helyezkedik el, akkor J-től K-ig is ugyanez az optimális út
 - Egy célba tartó optimális utak fája: nyelőfa
- · Legrövidebb út alapú forgalomirányítás
 - Routerek és linkek súlyozott gráfot alkotnak
 - Linkek súlyai alapján megkeresni a legkisebb súllyal rendelkező utat
- Adaptív algoritmus alosztályok:
 - Távolságvektor alapú
 - Minden routernek saját táblázata van minden célhoz ismert legrövidebb távolságról és ennek azonosítójáról
 - Szomszédoktól kapott információk alapján frissítik
 - RIP (Routing Information Protocol)
 - Kapcsolatállapot alapú
 - Szomszédok felkutatása (HELLO) és késleltetés/költség (ECHO) mérése
 - Ezekből csomag összeállítása és elküldés az összes többi routernek
 - Minden router kiszámolja a legrövidebb utat (Dijkstra)
 - OSPF: cégek (átfedő területek)
 - IS-IS: internetszolgáltatók (hierarchikus)

Forgalomirányítás:

- Unicast:
 - o Forrás és cél egyedi IP azonosítóval rendelkezik
- Broadcast
 - Külön csomag mindenkinek: pazarló
 - o Elárasztás: kétpontos kommunikációhoz nem megfelelő
 - o Többcélú routing: csomagban egy lista minden célról, router minden megfelelő irányba küld egy másolatot
 - Nyelőfával: minden irányba továbbküldjük, amik a feszítőfához tartoznak, kivéve azt, amin jött
 - Visszairányú továbbítás: ha csomag érkezett, megnézzük hogy onnan jött-e, amerre általában mi szoktuk-e ezeket küldeni, ha igen, akkor tovább küldöm minden irányba, ha nem, eldobom
- Multicast:
 - Csoportkezelés szükséges
 - o Kiszámítunk egy olyan feszítőfát, ahol az ágak a csoporton belüli tagokhoz vezetnek, csak erre továbbítunk

Címzési struktúrák:

- Sík (Flat):
 - o Minden hosztot egy egyedi 48 bites MAC címmel azonosítunk
 - O Minden címhez kéne egy bejegyzés a routing táblába
 - Túl nagy, lassú, nehéz karbantartani

Hierarchiku

- Szegmensekre osztható címek
- Minden szegmens egy réteget ír le

D címzás

- 4 bájtos címek
- Több évtizedig osztályos
 - A: 0.0.0.0- (első bájt hálózat)
 - o B: 128.0.0.0- (első 2)
 - o C: 192.0.0.0- (első 3)
 - o D: 224.0.0.0-
 - o E: 240.0.0.0-
- Minden hálózat utolsó kiosztható címe a broadcast cím

Alhálózatok használata

- Kívülről egynek néz ki
- Belülről többre osztható
- o Alhálózati maszk használata (routernek ismernie kell)

CIDR címzés

- Címek elfogytak
- Osztályok nélküli környezetek és közöttük forgalomirányítás
- o Forgalomirányítás bonyolódik
- o Túl sok bejegyzés: csoportos bejegyzések
- Minden bejegyzéshez ip, alhálózati maszk, kimeneti vonal

IAT:

- Minden belső hálózathoz egy vagy kevés IP cím kerül kiosztásra
- Hálózaton belül egyedi címek használata

Címtartományok:

- 0 10.0.0.0/8
- 0 172.16.0.0/12
- 0 192.168.0.0/16
- Port mezők használata mutatók tárolására
- NAT boxban fordítási tábla

8. előadás (Network)

2024. december 19., csütörtök 19:03

Hierarchikus forgalomirányítás:

- Indok: nagyobb hálózatnál nagyobb a routerek erőforrás igénye
- Többszintű hierarchia alkalmazása
 - o N router esetén In(N) szint
- Gerinchálózatok
- Ezekhez területi / regionális kiszolgálók csatlakoznak
- IP protokoll
- IP-fragmentáció:
 - o Minden hálózatnak megvan az MTU-ja (Maximum Transmission Unit)
 - o Szétvágjuk, ahol kisebb MTU szükséges, majd a fogadó összerakja
 - o Költséges, ha lehet, elkerülni
 - MTU felderítő protokoll:
 - DON'T FRAGMENT bittel csomagküldés
 - Addig küldünk, amíg egy meg nem érkezik
 - CAN'T FRAGMENT hiba routertől, tartalmazza a hálózat MTU méretét
 - Darabok kezelését speciális hardver végzi

Dv6.

- IPv4 címek fogynak / elfogytak
- 128 bites címek (16 bájt)
- Átalakult fejléc, számos mező hiányzik
- Teljesítmény növekedés:
 - Nincs checksum
 - o Nincs fragmentáció kezelés
 - o Egyszerű routing tábla szerkezet
 - Egyszerű auto-konfig (Neighbour Discovery Protocol)

Esetleges lehetőségek

- Mobil IP
- o Forrás routing
- Privacy kiterjesztés
- Átmenetben az internet magja a probléma
 - o Használjunk tunneleket IPv6 csomagok becsomagolására :DDD

Internet forgalomirányítás:

- 2 szintű hierarchia
 - o Első szint: autonóm rendszerek (AS)
 - Intra-domain protokollok
 - RIP, OSPF
 - Második szint:
 - Inter-domain protokollok
- Miértttt?
 - Routing algoritmusok nem elég hatékonyak, hogy a teljes interneten működjenek
 Szervezetek más-más politika alapján vezérelnék
 - Szervezetek elrejthetik a belső hálózatok szerkezetét / eldöntsék, merre akarnak forgalmazni
- ASN: AS számok, azonosítók (16 vagy 32 bites)
- Inter-domain routing:
 - o Minden AS-nek ugyanazt kell használnia, szemben az Intra-domainnel
 - Rugalmas, skálázható

Border Gateway Protocol:

- Eszerint csak AS-ek és közöttük kapcsolatok vannak
- o Politikai szabályok támogatása (ne menjen erre arra stb)
- Hálózat típusok:
 - Csonka: egy összeköttetés
 - Többszörösen bekötött: használható átmenő forgalomhoz, de letiltja
 - Tranzit: megkötéssel / fizetségért átengedi a forgalmat
- Útvonalak szomszédoktól
- o Pontozzuk az útvonalakat, végtelen érték a szabályoknak nem megfelelőeknek
- Útvonal vektor protokoll (PVP):
 - Hurkok / körök detektálása
 - o Routing a leghosszabb megegyező prefix alapján

9. előadás (Network, Transport)

2024. december 19., csütörtök 19:

Internet Message Control Protocol:

• Váratlan események kezelése / jelentése

Address Resolution Protocol:

- IP cím megfeleltetése MAC (fizikai) címnek
- Broadcast üzenet segítségével, a válasz tartalmazza a címet

Dynamic Host Configuration Protocol:

- Hálózati azonosítók automatikus kiosztása a hostoknak
- IP címet pl tud osztani MAC cím alapján, vagy teljesen dinamikusan
- Ezeket a címeket bérbe adja (lease time)
 - o Ez meghosszabítható vagy idő előtt lemondható

Virtual Personal Networks:

- A internettől logikailag elkülönülő magánhálózat
- "Fizikailag távoli hostok logikailag egy hálózatot alkotnak"
- Hostok egymás normál módon elérik
- Virtuális linkek alagutak segítségével
- IPSEC:
 - o IP réteg biztonságossá tétele
 - o Bizalmas, autentikált

Szállítói réteg:

User Datagram Protocol:

- 8 bájtos fejléc
- o Forrás és célportszámok használata (demultiplexálás)
- Hiba detektálása csak, semmi más
- Kapcsolatmentes

• Transmission Control Protocol:

- o Megbízható, sorrendhelyes
- o Kétirányú kommunikáció
- o 20 bájtos fejléc
- o SYN, ACK, FIN flagek kapcsolatépítéshez (SYN flood = DoS)
- o Transzferelt bájtfolyamatot szegmensekre bontjuk
- o Minden bájt számozott (32 bites érték, körbeér idő után, random kezdés)
- Ccúczóablak
 - Túl sok csomag: túlterheli a vevőt
 - Vevő átküldi a buffer méretét (n)
 - Maximum ekkora (n) méretű üzenet küldhető ACK nélkül

Nyugták:

- Minden csomaghoz
- Kumulált (n sorszám minden k<n csomagot nyugtáz)
- Negatív nyugta (NACK, nem megérkezett csomag jelzése)
- Szelektív (SACK, melyik érkezett meg, nem feltétlen sorrendben)

10/13. előadás (Application)

2024. december 19., csütörtök 21:35

DNS (Domain Name System):

- Elosztott adatbázis alapú
- Hierarchikus névtér (.com -> google.com -> mail.google.com)
 - Egy fát képez
 - o Max mélység 128
 - o Minden domain név egy részfa
- Nincs névütközés
- · Zónákra bomlik a fa
 - o Mindegyik zónáért egy szervezet felel
- Egy szerver csak a zónájához tartozó hostok és domainek rekordjait tárolja
- Ismeri a Root szerver címét
 - o Root minden TLD-t ismer
- Top Level Domains:
 - o 22+ általános (.com, .edu, .gov)
 - Kb 250 államoknak
- Minden ISP-nél / cégnél lokális névszerverek, itt kezdődik egy lekérdezés
 - o Iteratív lekérdezés: lokális adja a választ, vagy hogy kinél kell keresni
 - Jó ha magas a szerver terhelése
 - Rekurzív: lokális keresi ki és adja a választ
 - Jobb teljesítmény kliens szempontból
- Könnyű mozgatni szervert: rekordban IP cím kicserélése
- Aliasing: egy gépnek több neve lehet
- Load Balaning: egy névhez több szerver is tartozhat
- DNSSEC: kritikus rekordok kriptografikus aláírással biztosítva

HTTP:

- Kliens-szerver model
- Statikus weboldal:
 - Nem változik, csak kézi átírásra
- Dinamikus weboldal:
 - JavaScript, PHP
- Persistent / Non-persistent HTTP:
 - Egyszerre több / egy objektum küldhető egy TCP kapcsolattal
- Request és Response üzenetek
 - o ASCII formátum
 - o GET, POST, HEAD
- Feltöltés POST-tal vagy URL segítségével
- Cookie-k (leszarom)

11. előadás (Transport)

2024. december 19., csütörtök 22:08

Hiba detektálás:

- Kontrollösszeg detektálja
- Sorszámokkal helyes átviteli sorrend
 - o Duplikáltakat eldobni
 - Hiányzó sorszám = elveszett csomag
- Küldő oldalon: elveszett csomag = nincs nyugta
 - o Timeout használata
- RTT: Round Trip Time

Torlódás:

- Nagyobb a terhelés, mint a hálózat kapacitása
- Csomagvesztés, elvesztegetett sávszélesség
- Advertised Window:
 - o Csak a fogadót védi
 - Legyen állítható
- Megoldások:
 - o Erőforrás foglalás
 - o Dinamikus beállítás
 - Próbák használata
- TCP torlódásvezérlés:
 - o Minden kapcsolat rendelkezik ablakkal
 - o Detektálás nyugtával (vagy hiányával)
 - Ráta beállítás
 - Cwnd növelése/csökkentése nyugta esetén/hiányában
 - Lassú indulással (additive increase)
 - o Reno: gyors újraküldés

12. előadás

2024. december 19., csütörtök 22:38

Ha ebből akármit is kérdez bassza meg