Evènements aléatoires

Variables aléatoires

Référence : Evènements et variables aléatoires

Auteurs: Mohamed Regragui

Participants à ce document:

Nom	Email
Mohamed Regragui	

Historique du document:

N° de version Date		Auteur	Description des modifications	
Version 1	01/02/03	Mohamed Regragui	Evènements et variables aléatoires	

0.1 titre Page 2 de 12

Sommaire:

1	Evénements	. 5
1.1	Exemple	. 5
2	Algèbres des événements	. 5
2.1	Remarque	
2.2	Définition	. 5
3	Axiome de Kolmogorov	. 6
3.1	Définition	. 6
3.2	Définition	. 6
3.2.1	Exercice	6
4	Lois de probabilités conditionnelles	. 6
4.1	Définition	. 6
4.2	Définition	. 6
4.2.1	Remarque	
4.3	Formules de Bayes	. 7
5	Variables	. 7
5.1	Exemple	. 7
5.2	Exemple	. 7
5.3	Définition	. 8
5.4	Formule de répartition	. 8
5.5	Définition	. 8
6	Espérance mathématique et variance	. 8
6.1	Espérance mathématique	. 8
6.1.1	Propriété	9
6.2	Définition	. 9
6.2.1	Remarque	
6.3	Variance	. 9
6.3.1	Propriétés	9

	Définition	
6.4.1	Exercice	9
7	Lois discrètes usuelles	10
7.1	Loi discrète uniforme	10
7.2	Loi de Bernouilli de paramètres $B\left(\right. p\left. \right)$	10
7.3	Loi de Binomiale de paramètres $B(n, p)$	10
7.4	Loi de Poisson $ ho(\lambda) $	10
	Théorème	
7.5.1	Démonstration	11
7.5.2	Exercice	11
7.6	Loi hypergéométrique $H(N,n,p)$	11
7.7	Loi géométriques	12
	Exercice	

1 Evénements

Un événement peut, à la suite d'une expérience ou épreuve, être réalisée ou ne pas être réalisée. Pour qu'on puisse lui appliquer le calcul des probabilités, un événement doit être défini avec précision, c'est-à-dire que sa réalisation ne doit pas prêter à ambiguïté.

1.1 Exemple

Quand on lance une pièce de monnaie en l'air, on peut considérer l'évènement « la pièce de monnaie retombe et laisse apparaître pile », ce que nous appellerons l'évènement « pile ».

On représente le résultat d'une expérience comme un élément A de l'ensemble N de tous les résultats possibles.

2 Algèbres des événements

Soit arepsilon l'ensemble des événements; à tout événement A on associe son contraire $ar{A}$

 $ar{A}$ est la partie complémentaire de A dans Ω .

arepsilon est défini par trois axiomes :

(i)
$$\forall A \in \varepsilon, \bar{A} \in \varepsilon$$

(ii) Pour tout ensemble fini dénombrable $A_1, \dots A_3, \dots, A_n \in \mathcal{E}$

$$\bigcup_i A_i \in \mathcal{E}$$

(iii)
$$\Omega \in \varepsilon$$

2.1 Remarque

$$\phi \in \varepsilon \text{ et } \bigcap_{i} A_{i} \in \varepsilon$$

Ces propriétés définissent ce que l'on appelle une algèbre de BOOLE ou TRIBA.

2.2 Définition

On appelle espace probabilisable le couple (Ω, ε)

3 Axiome de Kolmogorov

A chaque événement on associe un nombre positif compris entre 0 et 1, sa probabilité.

3.1 Définition

On a appelle probabilité sur (Ω, ε) une application P de $\varepsilon \to [0,1]$ telle que $P(\Omega) = 1$ et $P(\bigcup_i A_i) = \sum_i P(A_i)$.

Pour tout ensemble dénombrable d'événements incompatibles $(A_i \cap A_j = \phi, \forall i \neq j)$

3.2 Définition

On appelle espace probabilisé le triplet (Ω, ε, P)

3.2.1 Exercice

- (1) $P(\phi) = 0$
- (2) $P(\bar{A}) = 1 P(A)$
- (3) $P(A) \le 1 P(B)$ si $A \subset B$
- (4) $P(A \cup B) = P(A) + P(B) P(A \cap B)$

4 Lois de probabilités conditionnelles

4.1 Définition

Soit B un événement tel que $P(B) \neq 0$, on appelle probabilité conditionnelle de A sachant B:

$$P(A/B) = \frac{P(A \cap B)}{P(B)}$$

4.2 Définition

A est indépendant de B si P(A/B) = P(A). La connaissance de B ne change pas les chances de réalisations de A .

4.2.1 Remarque

 $P(A \cap B) = P(A).P(B)$ ssi A et B sont indépendants.

0.1 titre Page 6 de 12

4.3 Formules de Bayes

La première formule est $P(B/A) = \frac{P(A/B).P(B)}{P(A)}$ (1) on a $P(A/B) = \frac{P(A \cap B)}{P(B)}$

et
$$P(B/A) = \frac{P(A \cap B)}{P(A)} = \frac{P(A/B).P(B)}{P(A)}$$
.

Soit B_i un système complet d'événements:

$$B_i \cap B_j = \phi$$
, $i \neq j$ et $\bigcup_i B_i = \Omega$.

$$A = \bigcup_{i} (A \cap B_i), P(A \cap B_i) = P(A/B_i).P(B_i)$$

$$P(A) = \sum_{i} P(A \cap B_i) = \sum_{i} P(A/B_i).P(B_i)$$

En appliquant (1):
$$P(B_i / A) = \frac{P(A / B_i).P(B_i)}{\sum_{k} P(A / B_k).P(B_k)}$$
 (2)

C'est la deuxième formule de Bayes.

5 Variables

5.1 Exemple

Considérons le lancer de 2 dés parfaitement équilibrés. Cette expérience se traduit par:

 $\Omega = \{(1,1); (1,2); ...; (6,6)\}$ muni de la probabilité $P(w) = \frac{1}{36}$ si on s'intéresse à la somme des points marqués par les deux dés. On définit ainsi une application:

$$S: \Omega \to E = \{2,3,...,12\}$$

$$w \to S(w)$$

5.2 Exemple

$$P(S = 5) = \{(1,4); (2,3); (3,2); (4,1)\} = \frac{4}{36} = \frac{1}{9}$$

et généralement $P(S = s) = P(\{S^{-1}(s)\})$.

Si X est une application de (Ω, ε, P) dans E il faut que E soit probabilisable c'est-à-dire muni d'une tribu $\mathfrak T$ et que l'image réciproque de tout élément de $\mathfrak T$ soit un élément de ε on dit que la variable aléatoire X est une application mesurable de $(\Omega, \varepsilon, P) \to (E, \mathfrak T)$.

0.1 titre Page 7 de 12

Lorsque $E=\Re$ on utilise comme tribu la σ algèbre engendré par les intervalles de \Re (tribu Borélienne).

5.3 Définition

Une variable aléatoire réelle est une application mesurable de (Ω, ε, P) dans \Re muni de sa tribu borélienne (\Re, B) . Pour tout borélien $B: P(B) = P(X^{-1}(B))$.

5.4 Formule de répartition

La fonction de répartition d'une variable aléatoire X est l'application:

 $F: \Re \to [0,1]$ définie par F(x) = P[X < x] telle que F est monotone croissante continue à gauche et $F(-\infty) = 0, F(+\infty) = 1$.

5.5 Définition

Soit X une v.a réelle continue une loi de probabilité $P_x(I) = \int_i f(x) dx$. F est alors dérivable et admet f pour dérivée: $P[a < X < b] = \int_a^b f(x) dx = F(b) - F(a)$.

Une densité de f est donc une fonction positive telle que $\int_{\Re} f(x) dx = 1$

6 Espérance mathématique et variance

6.1 Espérance mathématique

Pour une variable discrète X, on d''finit l'espérance E(X) par la formule: $E(X) = \sum_i P[X = x_i] \quad \text{pour une variable continue} \quad X \quad \text{admettant une densité:}$ $E(X) = \int_{\Re} x f(x) dx$

0.1 titre Page 8 de 12

6.1.1 Propriété

E est un opérateur linéaire.

6.2 Définition

Soit $\varsigma(X)$ une fonction de la v.a X:

$$E[\varsigma(X)] = \sum_{i} \varsigma(x_{i}P[X = x_{i}])$$
 si X est discrète et $E[\varsigma(X)] = \int_{\Re} \varsigma(x) f(x) dx$

Si X est continue.

6.2.1 Remarque

Lorsque X et Y sont indépendantes E(XY) = E(X)E(Y)

6.3 Variance

On appelle variance de X notée V(X) ou σ^2 la quantité définie par $\sigma^2 = E((X-m)^2)$ où m = E(X).

 σ : s'appelle l'écart-type.

La variance mesure la dispersion de X autour de m = E(X).

6.3.1 Propriétés

(1)
$$E((X-a)^2) = V(X) + (E(X)-a)^2$$
, $\forall a \in \Re$ formule de König Huggens

(2)
$$V(\alpha X) = \alpha^2 V(X)$$

6.4 Définition

On appelle covariance de X et Y: cov(X,Y) = E(XY) - E(X)E(Y)

6.4.1 Exercice

Démontrer que $V(X + Y) = V(X) + V(Y) + 2 \operatorname{cov}(X, Y)$

7 Lois discrètes usuelles

7.1 Loi discrète uniforme

$$X = \{1, 2, 3, ..., n\}$$
 $P[X = k] = \frac{1}{n}$ $E(X) = \frac{n+1}{2}, V(X) = \frac{n^2-1}{12}$

7.2 Loi de Bernouilli de paramètres B(p)

$$X = \begin{cases} 1 & \text{avec la probabilité p} \\ 0 & \end{cases}$$

$$E(X) = p, V(X) = p(1 - p)$$

7.3 Loi de Binomiale de paramètres B(n, p)

$$X = \sum_{i=1}^{n} X_i$$
 somme de v.a indépendantes de Bernouilli $E(X) = np, V(X) = np (1 - p)$.

Loi de probabilité $P[X = k] = C_n^k p^k (1 - p)^{n-k}$

7.4 Loi de Poisson $\rho(\lambda)$

C'est la loi d'une v.a entière positive ou nulle qui vérifie $P[X = k] = e^{-\lambda} \lambda^k / k! \quad \forall k \in IN$.

On vérifie bien que
$$\sum^{+\infty} e^{-\lambda} \left. X^{k} \right/\!\!\! k! = 1$$
 .

On obtient alors la loi de Poisson comme approximation de la loi binomiale: Soit A un événement de probabilité p très faible (p < 0,1) que l'on essaie d'obtenir quelques fois en répétant l'expèrience un grand nombre de fois (n > 50) alors $B(n,p) \sim \rho(np)$.

0.1 titre Page 10 de 12

7.5 Théorème

 X_n une suite de variables binomiales B(n,p) telles que $n \to +\infty$ et $p \to 0$ avec $np \to \lambda$ alors la suite de variables aléatoires X_n converge en loi vers une variable de poisson $\rho(\lambda)$.

7.5.1 <u>Démonstration</u>

$$C_{n}^{x} p^{x} (1-p)^{n-x} = \frac{(n-1)...(n-x+1)}{x!} p^{x} (1-p)^{n-x}$$

$$= \frac{(np)^{x}}{x!} \underbrace{(1-\frac{1}{n})(1-\frac{2}{n})...(1-p)^{n-x}}_{1} - \underbrace{\qquad \qquad }_{1}$$
Ouand $n \to +\infty$

Or
$$(1-p)^{n-x} = (1-p)^n (1-p)^{-x}$$
 avec $(1-p)^{-x} \to 1$ car $p \to 0$.

$$(1-p)^n \sim (1-\frac{\lambda}{n})^n \xrightarrow[n \to +\infty]{} e^{-\lambda}$$

Finalement
$$C_n^x p^x (1-p)^{n-x} \xrightarrow{n \to +\infty} (\frac{np}{x!})^x e^{-\lambda}$$
 Poisson $\rho(\lambda)$

7.5.2 Exercice

Montrer que $E(X) = \lambda, V(X) = \lambda$ si $X \to \rho(\lambda)$ (Poisson).

7.6 Loi hypergéométrique H(N, n, p)

Soit une population $\,N\,$ individus parmi lesquels une proportion $\,p\,$ possède une propriété. On prélève un échantillon de n individus (tirage sans remise).

Soit X le nombre aléatoire d'individus de l'échantillon possédant le caractère:

$$P[X = n] = \frac{C_{Np}^{x} C_{N-Np}^{n-x}}{C_{Np}^{n}}$$

0.1 titre Page 11 de 12

7.7 Loi géométriques

La loi géométrique est la loi du nombre d'essais nécessaires pour faire apparaı̂tre un événement de probabilité $p\,$.

$$P[X = x] = p(1 - p)^{x-1}$$
 $x = 1,2,...$

7.7.1 Exercice

$$E(X) = \frac{1}{p} \text{ et } V(X) = \frac{q}{p^2} \text{ où } q = 1 - p$$