

PES University, Bangalore

(Established under Karnataka Act No. 16 of 2013)

UE19CS203 – STATISTICS FOR DATA SCIENCE

Unit - 3 - Probability Distributions

QB SOLVED

Principles of Point Estimation - Mean Squared Error

Exercises for Section 4.9

- 1. Let $X_1 ext{} X_n$ be a random sample from $N(\mu, \sigma^2)$ population. For any constant k > 0, define $\widehat{\sigma_k} = \frac{\sum_{i=1}^n (X_i \bar{X})^2}{k}$. Consider $\widehat{\sigma_k}^2$ as an estimator of σ^2 .
 - a) Compute bias of $\hat{\sigma}_k^2$ in terms of k. [Hint: The sample variance s^2 is unbiased and $\hat{\sigma}_k^2 = (n-1)s^2/k$].
 - b) Compute the variance of $\hat{\sigma}_k^2$ in terms of k. [Hint: $\sigma_{s^2}^2 = 2\sigma^4/(n-1)$, and $\hat{\sigma}_k^2 = (n-1)s^2/k$].
 - c) Compute mean squared error of $\hat{\sigma}_k^2$ in terms of k.
 - d) For what value of k is the mean squared error of $\hat{\sigma}_k^2$ minimized?

[Text Book Exercise – Section 4.9 – Q. No. 4 – Pg. No. 284,285] Solution:

a) Compute bias of $\hat{\sigma}_k^2$ in terms of k. [Hint: The sample variance s^2 is unbiased and $\hat{\sigma}_k^2 = (n-1)s^2/k$].

Given that
$$\widehat{\sigma_k} = \frac{\sum_{i=1}^n (X_i - \bar{X})^2}{k}$$

The sample variance is given by, $s^2 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1}$

Multiply and divide $\widehat{\sigma_k}$ by n-1,

$$= \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1} \cdot \frac{n-1}{k} = \frac{(n-1)s^2}{k}$$

It is given that sample variance is unbiased, that is $\mu_{s^2} = \sigma^2$, so bias is,

$$\mu_{\widehat{\sigma_k^2}} - \sigma^2 = \mu_{\underbrace{(n-1)s^2}{k}} - \sigma^2$$

$$= \frac{n-1}{k} \mu_{s^2} - \sigma^2$$

$$= \frac{n-1}{k} \sigma^2 - \sigma^2$$

$$Bias = \frac{n-k-1}{k} \sigma^2$$

b) Compute the variance of $\hat{\sigma}_k^2$ in terms of k. [Hint: $\sigma_{s^2}^2 = 2\sigma^4/(n-1)$, and $\hat{\sigma}_k^2 = (n-1)s^2/k$].

It is given that, sample variance s^2 is equal to $2\sigma^4/n - 1$. The variance is,

$$\sigma^{2}_{\widehat{\sigma_{k}}^{2}} = \sigma^{2}_{\frac{(n-1)s^{2}}{k}}$$

$$= \frac{(n-1)^{2}}{k^{2}} \sigma^{2}_{s^{2}}$$

$$= \frac{2\sigma^{4}(n-1)^{2}}{(n-1)k^{2}}$$

$$Variance = \frac{2(n-1)}{k^{2}} \sigma^{4}$$

c) Compute mean squared error of $\hat{\sigma}_k^2$ in terms of k.

The mean squared error of $\hat{\sigma}_k^2$ is,

$$\begin{split} MSE_{\widehat{\sigma}_{k}}{}^{2} &= (\mu_{\widehat{\sigma}_{k}^{2}} - \sigma^{2})^{2} + \sigma^{2}_{\widehat{\sigma_{k}^{2}}} \\ &= \frac{(n-k-1)^{2}}{k^{2}} \sigma^{4} + \frac{2(n-1)}{k^{2}} \sigma^{4} \\ &= \frac{n^{2} + k^{2} - 2nk - 2k - 1}{k^{2}} \sigma^{4} \\ MSE_{\widehat{\sigma}_{k}}{}^{2} &= \frac{n^{2} + k^{2} - 2nk + 2k - 1}{k^{2}} \sigma^{4} \end{split}$$

d) For what value of k is the mean squared error of $\hat{\sigma}_k^2$ minimized?

To find the value that minimize the $MSE_{\hat{\sigma}_k}^2$. We will take derivative of k and set it equal to 0.

$$= \frac{d}{dk} \left(\frac{n^2 + k^2 - 2nk + 2k - 1}{k^2} \sigma^4 \right)$$

$$= \frac{2(nk - k - n^2 + 1)}{k^3} \sigma^4$$

$$\frac{2(nk - k - n^2 + 1)}{k^3} \sigma^4 = 0$$

$$nk - k - n^2 + 1 = 0$$

$$k(n - 1) = n^2 - 1$$

$$k = \frac{n^2 - 1}{n - 1}$$

$$k = n + 1.$$