In [2]: import numpy as np
 import pandas as pd
 import seaborn as sns
 import matplotlib.pyplot as plt
 from sklearn.model_selection import train_test_split
 from sklearn import preprocessing,svm
 from sklearn.linear_model import LinearRegression

In [3]: df=pd.read_csv(r"C:\Users\Lenovo\OneDrive\Desktop\Data Sets\fiat500_VehicleSele
 df

Out[3]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon
0	1	lounge	51	882	25000	1	44.907242	8.611560
1	2	рор	51	1186	32500	1	45.666359	12.241890
2	3	sport	74	4658	142228	1	45.503300	11.417840
3	4	lounge	51	2739	160000	1	40.633171	17.634609
4	5	pop	73	3074	106880	1	41.903221	12.495650
1533	1534	sport	51	3712	115280	1	45.069679	7.704920
1534	1535	lounge	74	3835	112000	1	45.845692	8.666870
1535	1536	pop	51	2223	60457	1	45.481541	9.413480
1536	1537	lounge	51	2557	80750	1	45.000702	7.682270
1537	1538	рор	51	1766	54276	1	40.323410	17.568270
4500		•						

1538 rows × 9 columns

In [4]: df.head()

Out[4]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	price
0	1	lounge	51	882	25000	1	44.907242	8.611560	8900
1	2	рор	51	1186	32500	1	45.666359	12.241890	8800
2	3	sport	74	4658	142228	1	45.503300	11.417840	4200
3	4	lounge	51	2739	160000	1	40.633171	17.634609	6000
4	5	рор	73	3074	106880	1	41.903221	12.495650	5700
4 -									

```
In [5]: df.tail()
```

Out[5]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	ķ
1533	1534	sport	51	3712	115280	1	45.069679	7.70492	_{;
1534	1535	lounge	74	3835	112000	1	45.845692	8.66687	4
1535	1536	pop	51	2223	60457	1	45.481541	9.41348	•
1536	1537	lounge	51	2557	80750	1	45.000702	7.68227	ţ
1537	1538	pop	51	1766	54276	1	40.323410	17.56827	-
4									

In [6]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1538 entries, 0 to 1537 Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype			
0	ID	1538 non-null	int64			
1	model	1538 non-null	object			
2	engine_power	1538 non-null	int64			
3	age_in_days	1538 non-null	int64			
4	km	1538 non-null	int64			
5	previous_owners	1538 non-null	int64			
6	lat	1538 non-null	float64			
7	lon	1538 non-null	float64			
8	price	1538 non-null	int64			
dtvn	dtypes: float64(2), int64(6), object(1)					

memory usage: 108.3+ KB

In [8]: df.describe()

Out[8]:

	ID	engine_power	age_in_days	km	previous_owners	lat	
count	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1
mean	769.500000	51.904421	1650.980494	53396.011704	1.123537	43.541361	
std	444.126671	3.988023	1289.522278	40046.830723	0.416423	2.133518	
min	1.000000	51.000000	366.000000	1232.000000	1.000000	36.855839	
25%	385.250000	51.000000	670.000000	20006.250000	1.000000	41.802990	
50%	769.500000	51.000000	1035.000000	39031.000000	1.000000	44.394096	
75%	1153.750000	51.000000	2616.000000	79667.750000	1.000000	45.467960	
max	1538.000000	77.000000	4658.000000	235000.000000	4.000000	46.795612	
4							

In [10]: df.shape

Out[10]: (1538, 9)

Out[13]: <seaborn.axisgrid.PairGrid at 0x2c2345047d0>

In [14]: sns.displot(['Price'])

Out[14]: <seaborn.axisgrid.FacetGrid at 0x2c24bce64d0>

In [15]: sns.displot(df['price'])

Out[15]: <seaborn.axisgrid.FacetGrid at 0x2c24bac3e10>

In [16]: sns.displot(df['engine_power'])

Out[16]: <seaborn.axisgrid.FacetGrid at 0x2c24bd28650>

Out[17]: <Axes: >


```
Out[18]: <Axes: >
```



```
In [20]: from sklearn.model_selection import train_test_split
    X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3,random_state=1
    from sklearn.linear_model import LinearRegression
    regr=LinearRegression()
    regr.fit(X_train,y_train)
    print(regr.intercept_)
```

8971.195683500262

Out[21]:

	coefficient
ID	-0.046704
engine_power	11.646408
age_in_days	-0.898018
km	-0.017232
previous_owners	26.400886
lat	32.189709
lon	0.161073

In [22]: predictions=regr.predict(X_test)
 plt.scatter(y_test,predictions)

Out[22]: <matplotlib.collections.PathCollection at 0x2c24e17fa50>

In [23]: sns.displot((y_test,predictions),bins=50)#without semicolon

Out[23]: <seaborn.axisgrid.FacetGrid at 0x2c24de1c7d0>


```
In [24]: sns.displot((y_test,predictions),bins=50);#with semicolon
```



```
In [25]: from sklearn import metrics
    print('MAE:',metrics.mean_absolute_error(y_test,predictions))
    print('MSE:',metrics.mean_squared_error(y_test,predictions))
    print('MAE:',np.sqrt(metrics.mean_squared_error(y_test,predictions)))
```

MAE: 593.0876179519996 MSE: 551442.6799691911 MAE: 742.59186635001

```
In [26]: #accuracy
    regr=LinearRegression()
    regr.fit(X_train,y_train)
    regr.fit(X_train,y_train)
    print(regr.score(X_test,y_test))
```

0.859713670430884

```
In [27]: df.fillna(method='ffill',inplace=True)
```

```
In [28]: | x=np.array(df['age_in_days']).reshape(-1,1)
         y=np.array(df['km']).reshape(-1,1)
         df.dropna(inplace=True)
In [29]: X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
         regr.fit(X_train,y_train)
         regr.fit(X_train,y_train)
Out[29]:
          ▼ LinearRegression
          LinearRegression()
In [30]: y_pred=regr.predict(X_test)
         plt.scatter(X_test,y_test,color='y')
         plt.plot(X_test,y_pred,color='b')
         plt.show()
           175000
           150000
           125000
           100000
            75000
            50000
            25000
                            1000
                                          2000
                                                        3000
                                                                      4000
In [ ]:
```