In the Claims

- 1. (currently amended) A Mmethod for the preparation of a comb or star copolymer comprising
- a) polymerising polymerizing in a first step one or more epoxy group containing monomers to obtain a polyether, wherein at least one monomer is of formula (I)

wherein L is a linking group selected from the group consisting of C_1 - C_{18} alkylene, phenylene, phenylene- C_1 - C_{18} alkylene, C_1 - C_{18} alkylene-phenylene, C_1 - C_{18} alkylene-phenylene-oxy and C_5 - C_{12} cycloalkylene;

R_p and R_q are independently tertiary bound C₄-C₂₈alkyl groups which are unsubstituted or substituted by one or more electron withdrawing groups or by phenyl; or

R_p and R_q together form a 5 or 6 membered heterocyclic ring which is substituted at least by 4 C₁-C₄alkyl groups and which may be interrupted by a further nitrogen or oxygen atom;

and in a second step

- b) adding to the polymer obtained in step a) at least one ethylenically unsaturated monomer<u>or</u> <u>oligomer</u>, heating the resulting mixture to a temperature where cleavage of the nitroxylether bond occurs and radical polymerization starts; and polymerizing to the desired degree.
- 2. (currently amended) A methodprocess according to claim 1 wherein the monomer of formula (I) is of formula (II)

wherein

R₁, R₂, R₃ and R₄ are independently of each other C₁-C₄alkyl;

R₅ is hydrogen or C₁-C₄alkyl;

 R'_{6} is hydrogen and R_{6} is H, OR_{10} , $NR_{10}R_{11}$, -O-C(O)- R_{10} or NR_{11} -C(O)- R_{10} ;

 R_{10} and R_{11} independently are hydrogen, C_1 - C_{18} alkyl, C_2 - C_{18} alkenyl, C_2 - C_{18} alkinyl or C_2 - C_{18} alkyl which is substituted by at least one hydroxy group or, if R_6 is $NR_{10}R_{11}$, taken together, form a C_2 - C_{12} alkylene bridge or a C_2 - C_{12} -alkylene bridge interrupted by at least one O atom; or

R₆ and R'₆ together are both hydrogen, a group =O or =N-O-R₂₀ wherein

 R_{20} is H, straight or branched C_1 - C_{18} alkyl, C_3 - C_{18} alkenyl or C_3 - C_{18} alkinyl, which may be unsubstituted or substitued, by one or more OH, C_1 - C_8 alkoxy, carboxy, C_1 - C_8 alkoxycarbonyl;

C₅-C₁₂cycloalkyl or C₅-C₁₂cycloalkenyl;

phenyl, C₇-C₉phenylalkyl or naphthyl which may be unsubstituted or substituted by one or more C₁-C₈alkyl, halogen, OH, C₁-C₈alkoxy, carboxy, C₁-C₈alkoxycarbonyl;

-C(O)-C₁-C₃₆alkyl, or an acyl moiety of a α , β -unsaturated carboxylic acid having 3 to 5 carbon atoms or of an aromatic carboxylic acid having 7 to 15 carbon atoms;

 $-SO_3^-Q^+$, $-PO(O^-Q^+)_2$, $-P(O)(OR_2)_2$, $-SO_2^-R_2$, $-CO-NH-R_2$, $-CONH_2$, $COOR_2$, or $Si(Me)_3$, wherein Q^+ is H^+ , ammnonium or an alkali metal cation; or

 R_6 and R_6 ' are independently $-O-C_1-C_{12}$ alkyl, $-O-C_3-C_{12}$ alkenyl, $-O-C_3-C_{12}$ alkinyl, $-O-C_5-C_8$ cycloalkyl,

-O-phenyl, -O-naphthyl, -O-C7-C9phenylalkyl; or

R₆ and R'₆ together form one of the bivalent groups -O-C(R₂₁)(R₂₂)-CH(R₂₃)-O-,

 $-O-CH(R_{21})-CH_{22}-C(R_{22})(R_{23})-O-, \ -O-CH(R_{22})-CH_2-C(R_{21})(R_{23})-O-, \ -O-CH_2-C(R_{21})(R_{22})-CH(R_{23})-O-, \ -O-CH_2-C(R_{21})(R_{22})-CH(R_{23})-O-, \ -O-CH_2-C(R_{21})(R_{22})-CH(R_{23})-O-, \ -O-CH_2-C(R_{21})(R_{22})-CH(R_{22})-CH(R_{23})-O-, \ -O-CH_2-C(R_{21})(R_{22})-CH(R_{23})-O-, \ -O-CH_2-C(R_{21})(R_{22})-CH(R_{23})-O-, \ -O-CH_2-C(R_{21})(R_{22})-CH(R_{22})-CH(R_{22})-CH(R_{22})-CH(R_{23})-O-, \ -O-CH_2-C(R_{21})(R_{22})-CH(R_{22})-CH(R_{22})-CH(R_{23})-O-, \ -O-CH_2-C(R_{21})(R_{22})-CH(R_{22})-CH(R_{22})-CH(R_{22})-CH(R_{23})-O-, \ -O-CH_2-C(R_{21})(R_{22})-CH(R_{22})-CH(R_{22})-CH(R_{22})-CH(R_{22})-CH(R_{22})-CH(R_{22})-CH(R_{23})-CH$

-O-o-phenylene-O-, -O-1,2-cyclohexyliden-O-,

R₂₁ is hydrogen, C₁-C₁₂alkyl, COOH, COO-(C₁-C₁₂)alkyl or CH₂OR₂₄;
R₂₂ and R₂₃ are independently hydrogen, methyl ethyl, COOH or COO-(C₁-C₁₂)alkyl;
R₂₄ is hydrogen, C₁-C₁₂alkyl, benzyl, or a monovalent acyl residue derived from an aliphatic, cycloaliphatic or aromatic monocarboxylic acid having up to 18 carbon atoms; and R₇ and R₈ are independently hydrogen or C₁-C₁₈alkyl.

- **3.** (original) A method according to claim **2** wherein R_1 , R_2 , R_3 , R_4 are methyl, or R_1 and R_3 are ethyl and R_2 and R_4 are methyl, or R_1 and R_2 are ethyl and R_3 and R_4 are methyl.
- 4. (original) A method according to claim 2 wherein R₅ is hydrogen or methyl.
- 5. (original) A method according to claim 2 wherein

 R_{6}' is hydrogen and R_{6} is H, OR_{10} , $NR_{10}R_{11}$, -O-C(O)- R_{10} or NR_{11} -C(O)- R_{10} ;

 R_{10} and R_{11} independently are hydrogen, C_1 - C_{18} alkyl, C_2 - C_{18} alkenyl, C_2 - C_{18} alkinyl or C_2 - C_{18} alkyl which is substituted by at least one hydroxy group or, if R_6 is $NR_{10}R_{11}$, taken together, form a C_2 - C_{12} alkylene bridge or a C_2 - C_{12} -alkylene bridge interrupted by at least one O atom; or

R₆ and R'₆ together are both hydrogen, a group =O or =N-O-R₂₀ wherein

R₂₀ is H or straight or branched C₁-C₁₈alkyl.

6. (currently amended) A method according to claim 2 wherein

 R_6 and R'_6 together form one of the bivalent groups -O-C(R_{21})(R_{22})-CH(R_{23})-O-,

- $O-CH(R_{21})-CH_{22}-C(R_{22})(R_{23})-O-, \ O-CH(R_{22})-CH_{2}-C(R_{21})(R_{23})-O- \hbox{\hbox{$[[,]]$ or }}$
- -O-CH₂-C(R₂₁)(R₂₂)-CH(R₂₃)-O-, whereand R₂₁, R₂₂ and R₂₃ have the meaning as defined in claim 2.

- 7. (currently amended) A method according to claim 1 where step a) comprises polymerizing an wherein the epoxy group containing monomer different from formula (I), which monomer is selected from the group consisting of ethylene oxide, propylene oxide, 2,3-epoxypropyl-phenylether, 2,3-epoxypropyl-4-nonyl-phenylether, epichlorohydrine and 2,3-epoxypropyl-2,2,3,3,4,4,5,5-octafluoropentylether.
- 8. (currently amended) A method according to claim 1 wherein in <u>stepStepp</u> a) the weight ratio of the monomer of formula (I) to the sum of the other monomers is from 99:1 to 1:99.
- 9. (currently amended) A method according to claim 1 wherein in step b) the ethylenically unsaturated monomer or oligomer is selected from the group consisting of styrene, substituted styrene, conjugated dienes, vinyl acetate, vinylpyrrolidone, vinylimidazole, maleic anhydride, (alkyl)acrylic acid_anhydrides, (alkyl)acrylic acid salts, (alkyl)acrylic esters, (meth)acrylonitriles, (alkyl)acrylamides, vinyl halides and vinylidene halides.
- 10. (currently amended) A method according to claim 9 wherein in step b) the ethylenically unsaturated monomers are styrene, methylacrylate, ethylacrylate, butylacrylate, isobutylacrylate, tert[[.]] butylacrylate, hydroxyethylacrylate, hydroxypropylacrylate, dimethylaminoethylacrylate, methyl(meth)acrylate, ethyl(meth)acrylate, butyl(meth)acrylate, hydroxyethyl(meth)acrylate, hydroxypropyl(meth)acrylate, dimethylaminoethyl(meth)acrylate, acrylamide, methacrylamide or dimethylaminopropyl-methacrylamide.
- **11. (original)** A method according to claim **1** wherein in step b) the weight ratio between the polyether prepared in step a) and the ethylenically unsaturated monomer is from 90:10 to 10:90.
- **12.** (original) A method according to claim **1** wherein in step b) the polymerization temperature is from 80° C to 160° C.

13. (currently amended) A composition comprising a compound of formula (II) as defined in claim 2, at least one epoxy functional monomer different from that of formula (II) and optionally water or an organic solvent or a mixture [[s]] thereof.

where the compound of formula (II) is

<u>wherein</u>

R₁, R₂, R₃ and R₄ are independently of each other C₁-C₄alkyl;

R₅ is hydrogen or C₁-C₄alkyl;

 R_{6} is hydrogen and R_{6} is H, OR_{10} , $NR_{10}R_{11}$, $-O-C(O)-R_{10}$ or $NR_{11}-C(O)-R_{10}$;

 R_{10} and R_{11} independently are hydrogen, C_1 - C_{18} alkyl, C_2 - C_{18} alkenyl, C_2 - C_{18} alkinyl or C_2 - C_{18} alkyl which is substituted by at least one hydroxy group or, if R_6 is $NR_{10}R_{11}$, taken together, form a C_2 - C_{12} alkylene bridge or a C_2 - C_{12} -alkylene bridge interrupted by at least one O atom; or

R₆ and R'₆ together are both hydrogen, a group =O or =N-O-R₂₀ wherein

 R_{20} is H, straight or branched C_1 - C_{18} alkyl, C_3 - C_{18} alkenyl or C_3 - C_{18} alkinyl, which may be unsubstituted or substitued, by one or more OH, C_1 - C_8 alkoxy, carboxy, C_1 - C_8 alkoxycarbonyl;

C₅-C₁₂cycloalkyl or C₅-C₁₂cycloalkenyl;

phenyl, C₇-C₉phenylalkyl or naphthyl which may be unsubstituted or substituted by one or more C₁-C₈alkyl, halogen, OH, C₁-C₈alkoxy, carboxy, C₁-C₈alkoxycarbonyl;

-C(O)-C₁-C₃₆alkyl, or an acyl moiety of a α ,β-unsaturated carboxylic acid having 3 to 5 carbon atoms or of an aromatic carboxylic acid having 7 to 15 carbon atoms;

 $-SO_3^-Q^+$, $-PO(O^-Q^+)_2$, $-P(O)(OR_2)_2$, $-SO_2$ -R₂, -CO-NH-R₂, -CONH₂, $COOR_2$, or $Si(Me)_3$, wherein Q^+ is H⁺, ammnonium or an alkali metal cation; or

 R_6 and R_6 ' are independently $-O-C_1-C_{12}$ alkyl, $-O-C_3-C_{12}$ alkenyl, $-O-C_3-C_{12}$ alkinyl, $-O-C_5-C_8$ cycloalkyl, -O-phenyl, -O-naphthyl, $-O-C_7-C_9$ phenylalkyl; or R_6 and R'_6 together form one of the bivalent groups $-O-C(R_{21})(R_{22})-CH(R_{23})-O-$, $-O-CH(R_{21})-CH_{22}-C(R_{22})(R_{23})-O-$, $-O-CH(R_{22})-CH_2-C(R_{21})(R_{23})-O-$, $-O-CH_2-C(R_{21})(R_{22})-CH(R_{23})-O-$, $-O-CH_2-C(R_{21})(R_{22})-CH(R_{22})-CH(R_{22})-CH(R_{23})-O-$, $-O-CH_2-C(R_{21})(R_{22})-CH(R_{22})-$

 R_{21} is hydrogen, C_1 - C_{12} alkyl, COOH, COO- $(C_1$ - C_{12})alkyl or CH_2OR_{24} ; R_{22} and R_{23} are independently hydrogen, methyl ethyl, COOH or COO- $(C_1$ - C_{12})alkyl; R_{24} is hydrogen, C_1 - C_{12} alkyl, benzyl, or a monovalent acyl residue derived from an aliphatic, cycloaliphatic or aromatic monocarboxylic acid having up to 18 carbon atoms; and R_7 and R_8 are independently hydrogen or C_1 - C_{18} alkyl.

- **14.** (currently amended) A polyether obtainedable according to step a) of the method of claim 1.
- **15.** (currently amended) A polyether <u>obtained according to step a) of claim 2,</u> having a repetitive strucural element of formula IIIa or IIIb

wherein R₄, R₂, R₃, R₄, R₅, R₆, R'₆ and L are as defined above [[,]]m and n are number from 10 to 1000 and

 $X \text{ is H, CH}_3, \text{ CH}_2\text{-O-C}_6\text{H}_5, \text{ CH}_2\text{-O-C}_6\text{H}_5\text{-C}_9\text{H}_{19}, \text{ -CH}_2\text{Cl or CH}_2\text{-O-CH}_2\text{-(CF}_2)_3\text{CHF}_2.$

- 16. (currently amended) A comb or star copolymer obtainedable according to the method of claim1.
- 17. (currently amended) A comb or star copolymer according to claim 16 wherein the ethylenically unsaturated monomer-forming the comb or star is selected from the group consisting of styrene, substituted styrene, (alkyl)acrylic acidanhydrides, (alkyl)acrylic acid salts, (alkyl)acrylic esters, (meth)-acrylonitriles and (alkyl)acrylamides.

18. (canceled)

19. (currently amended) Use of a A composition comprising a comb or star copolymer obtainedable according to the method of claim 1 as adhesive, surface modifier, surfactant or compatibilizer in and a thermoplastic, elastic or thermosetting polymer[[s]]-or as plastic material for extrusion or injection-molding for shaping parts.