Лабораторная работа №1

Тема: Знакомство с программой Proteus. Закон Ома в электрических цепях. Последовательное и параллельное соединение резисторов.

Цель занятия: Познакомиться с основами работы в программе **Proteus** для моделирования электрических цепей и систем.

Proteus Professional 8 Proteus — программа конструирования электронных схем. Используется как для учебных целей, так и для промышленного производства сложных электронных устройств.

Proteus объединяет в себе две основных программы: ISIS – редактор электронных схем с возможностью имитации их работы и ARES – программное обеспечение для проектирования печатных плат.

Работа в программе Proteus состоит из нескольких этапов:

Создание принципиальной схемы устройства. (ISIS)

Имитация работы схемы. (ISIS)

Расположение элементов и разводка печатной платы. (ARES)

Создание трёхмерной модели платы. (ARES)

Создание собственных, нестандартных, элементов для библиотеки. (ISIS, ARES)

Подготовка комплекта файлов для автоматизированного производства печатной платы. (ARES)

Основные понятия:

Закон ома для участка цепи: Сила тока в участке цепи прямо пропорциональна напряжению на его концах и обратно пропорциональна его сопротивлению. I = U / R.

Рези́стор (англ. resistor, от лат. resisto — сопротивляюсь), также сопротивление — пассивный элемент электрических цепей, обладающий определённым постоянным или переменным значением электрического сопротивления, предназначенный для линейного преобразования силы тока в напряжение и напряжения в силу тока, ограничения тока, поглощения электрической энергии и других видов перераспределения электрической энергии. Весьма широко используемый компонент практически всех электрических и электронных устройств.

Виды резисторов:

Постоянные резисторы с проволочными выводами

Переменный резистор

Подстроечные резисторы

Прецизионный многооборотный подстроечный резистор

Резисторы для поверхностного монтажа (SMD)

Наименование единиц измерения электрического сопротивления:

Ом — единица измерения электрического сопротивления в СИ. Ом; международное: Ω . Десятичные кратные и дольные единицы Ом образуются с помощью стандартных приставок СИ. Например: килоом (кОм) — 10^3 Ом; мегааом (МОм) — 10^6 Ом;

Практика:

1.Создание нового проекта. Запустите программу Proteus 8, далее:

Меню => Файл => Новый проект или нажмите значок:

В окне мастера создания проекта впишите свое название проекта (поддерживается кириллица и латиница) и путь, затем нажмите «Далее»

Выбираем размер рабочего поля, например A2 и нажимаем «Далее»:

Тип печатной платы, выбираем «Не создавать макет печатной платы»

В следующем окне выбираем пункт «Нет встроенного проекта» и нажимаем «Далее»

Затем «Finish»

Откроется рабочее поле:

2. Добавление компонентов.

Нажимаем значок «Компоненты», затем «Р»:

Откроется библиотека компонентов. В окне поиска пишем «resistor», далее выбираем, например, «0.6W metal film», «MINRES10K» (металлопленочный резистор, 0.6Bт, 10 кОм), номинал не важен, его можно изменить непосредственно в рабочей области, и нажимаем «ОК»:

Компонент добавился в список доступных:

3. Создание простой схемы. Изучение закона Ома. Измерительные приборы в Proteus.

Добавьте компонент «лампочка», для этого в окне поиска компонентов введите «lamp»:

Еще понадобится кнопка:

Далее собираем простую схему:

«землю» берем тут:

Источник питания:

Собираем схему, затем кликаем на источнике питания и выставляем напряжение 12 вольт:

Запускаем симуляцию кнопкой в нижнем левом углу:

И нажимаем кнопку:

Если все сделано правильно, лампочка должна загораться.

4. Соберите схему как на рисунке. Установите напряжение источника 12В. Установите различные значения сопротивление резистора (100кОм ... 10 ОМ) и понаблюдайте как изменятся показания приборов.

Для добавления элемента на рабочее поле, сначала кликните на элементе в списке, затем в нужной области рабочего поля:

Добавление источника питания:

Добавьте значок на рабочее поле, дважды кликните на нем и установите тип и величину напряжения:

Добавление приборов. Кликните на значок виртуальных инструментов и выберите вольтметр и амперметр постоянного тока, разместите их на рабочем поле:

Добавляем «землю»:

Соедините все элементы, как на схеме:

Дважды щёлкните на значке резистора и установите значение сопротивления 100 Ом:

Запустите симуляцию, для этого нажмите значок в левом нижнем углу экрана

и посмотрите на показания приборов:

Понаблюдайте как изменятся показания приборов, при изменении сопротивления резистора (1..1000 ОМ) и сделайте выводы.

Результаты измерений занесите в таблицу:

Uвх, B	R, Om	I, A
12	100	Ş
12	500	Ş
12	1000	,

3. Последовательное соединение резисторов.

Соберите схему:

Понаблюдайте за показаниями приборов при различных значениях резисторов и занесите результаты измерений в таблицу:

Uвх, В	R1, Om	U1, B	R2, Om	U2, B	I, A
12	100		100		
12	100		200		
12	20		200		

3. Параллельное соединение резисторов.

Соберите схему:

Понаблюдайте за показаниями приборов при различных значениях резисторов и занесите результаты измерений в таблицу:

Uвх, В	R1, Om	I1, B	R2, Om	12, B	I, A
12	100		200		
12	100		100		
12	20		200		

Отчет по лабораторной работе должен содержать:

- скриншоты рабочего пространства программы Proteus со схемами;
- таблицы с результатами измерений;
- выводы.

Отчеты отправлять сюда: colledge20education23@gmail.com

Github: https://github.com/ShViktor72/Education/tree/main/electronics%20practice