

02. 4. 2004

日本国特許庁 JAPAN PATENT OFFICE

Rec'd PCT/PTO 27 MAY 2005

RECID 1 0 JUN 2004

PCT

WIPO

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2003年 4月 4日

出 願 番 号 Application Number:

特願2003-102178

[ST. 10/C];

[JP2003-102178]

出願人 Applicant(s):

東洋ゴム工業株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年 5月27日

【書類名】

特許願

【整理番号】

M3019GGT

【提出日】

平成15年 4月 4日

【あて先】

特許庁長官

殿

【国際特許分類】

F16F 13/00

【発明者】

【住所又は居所】

大阪府大阪市西区江戸堀1丁目17番18号 東洋ゴム

工業株式会社内

【氏名】

畠山 晋吾

【発明者】

【住所又は居所】

大阪府大阪市西区江戸堀1丁目17番18号 東洋ゴム

工業株式会社内

【氏名】

伊藤 政昭

【特許出願人】

【識別番号】

000003148

【氏名又は名称】

東洋ゴム工業株式会社

【代理人】

【識別番号】

100097386

【弁理士】

【氏名又は名称】

室之園 和人

【電話番号】

06-4809-6850

【手数料の表示】

【予納台帳番号】

161264

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【プルーフの要否】

要

【書類名】

明細書

【発明の名称】

液封入式防振装置

【特許請求の範囲】

第1取付け具と、筒状の第2取付け具と、これらを連結する 【請求項1】 ゴム状弾性材から成る防振基体と、前記第2取付け具に取付けられて前記防振基 体との間に液体封入室を形成するダイヤフラムと、前記液体封入室を前記防振基 体側の第1液室と前記ダイヤフラム側の第2液室に仕切る仕切り体と、前記第1 液室と第2液室を連通させるオリフィスとを備え、

前記仕切り体は、弾性仕切り膜と、この弾性仕切り膜を収容する筒部と、前記 筒部内の弾性仕切り膜の変位量をその両側から規制する一対の格子部とから成る 液封入式防振装置であって、

前記一対の格子部のうち一方の格子部は、前記筒部の内周面間にその筒部と一 体に連設され、

前記弾性仕切り膜の両面に、所定数の格子孔ごとにそれら格子孔を取り囲み可 能な複数のリブがそれぞれ形成されている液封入式防振装置。

【請求項2】 前記弾性仕切り膜の両面に複数の補助リブがそれぞれ分散配 置され、

前記リブは、その頂部が前記格子部と離れて位置することができるように高 さ寸法を設定され、

前記補助リブは、その頂部が前記格子部に当接するように高さ寸法を設定され 、かつ、前記リブよりも小幅になるようにリブ幅が設定されている請求項1記載 の液封入式防振装置。

【請求項3】 前記格子孔は、前記格子部の周方向に複数列配置され、

前記複数のリブは、環状に形成されて、前記格子部の径方向で各格子孔列の両 側の格子部部分に各別に当接可能に構成され、

前記複数の補助リブは前記弾性仕切り膜の軸芯に対して放射状に配置されてい る請求項2記載の液封入式防振装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、第1取付け具と、筒状の第2取付け具と、これらを連結するゴム状 弾性材から成る防振基体と、前記第2取付け具に取付けられて前記防振基体との 間に液体封入室を形成するダイヤフラムと、前記液体封入室を前記防振基体側の 第1液室と前記ダイヤフラム側の第2液室に仕切る仕切り体と、前記第1液室と 第2液室を連通させるオリフィスとを備え、

前記仕切り体は、弾性仕切り膜と、この弾性仕切り膜を収容する筒部と、前記筒 部内の弾性仕切り膜の変位量をその両側から規制する一対の格子部とから成る液 封入式防振装置に関する。

[0002]

【従来の技術】

上記の液封入式防振装置は、例えば、自動車のエンジンと車体フレームとの間に設けれられている。そして、走行路面の凹凸に起因して、大振幅の振動が生じると、液体がオリフィスを通って両液室間を流動し、その液体流動効果によって振動を減衰させる。一方、微振幅の振動が生じると、両液室間を液体流通することはなく、弾性仕切り膜が往復動変形して振動を減衰させる。

[0003]

この種の液封入式防振装置では、弾性仕切り膜が格子部に衝突したときに異音が発生しやすい。そこで、従来、特許文献1に開示されているように、格子部に放射状のリブが設けられていた。また弾性仕切り膜は、格子部とは離れて位置することができるようになっていた(特許文献1の図4参照)。

[0004]

【特許文献1】

特開平6-221368号公報

[0005]

【発明が解決しようとする課題】

上記従来の構成によれば、格子部にリブを設けたことで、大振幅の振動状態において、弾性仕切り膜と格子部とが重合したときに、液体が隣合う格子孔間を流通し、そのために、より高い防振性能を発揮しにくかった。

[0006]

本発明の目的は、異音を低減でき、防振性能をより向上させることができる液 封入式防振装置を提供する点にある。

[0007]

【課題を解決するための手段】

本発明の特徴は、冒頭に記載した液封入式防振装置において、前記一対の格子 部のうち一方の格子部は、前記筒部の内周面間にその筒部と一体に連設され、

前記弾性仕切り膜の両面に、所定数の格子孔ごとにそれら格子孔を取り囲み可能な複数のリブがそれぞれ形成されている点にある。

[0008]

[A] 上記の構成によれば、振動に伴って弾性仕切り膜が格子部に衝突する場合に、リブがクッションの役割を果たし、弾性仕切り膜を格子部に緩やかに衝突させることができる。そして、大振幅の振動状態においては、リブの頂部が格子部に当接したときに、リブが所定数の格子孔ごとにそれらを取り囲むから、所定数の格子孔と、これらとは別の格子孔との間で液体が流動するのを回避でき、防振性能の低下を防止することができる。

[0009]

[B] 一対の格子部のうち一方の格子部は、筒部の内周面間にその筒部と一体に連設されているから、例えばいずれの格子部も筒部とは別部材から成る構造に比べると、筒部に対する格子部の姿勢(例えば、筒部の軸芯に対する直角度)を正確に設定することができる。さらに、別の格子部を筒部に取付けたときの両格子部同士の間隔を正確に設定できて、弾性仕切り膜と両格子部との間の隙間を正確に設定することができる。これにより、防振性能を上げることができる。

[0010]

本発明において、前記弾性仕切り膜の両面に複数の補助リブがそれぞれ分散配置され、

前記リブは、その頂部が前記格子部と離れて位置することができるように高 さ寸法を設定され、

前記補助リブは、その頂部が前記格子部に当接するように高さ寸法を設定され

[0011]

[C] 複数のリブがその頂部を格子部から離間させ、弾性仕切り膜のいずれの面の側においても、複数の補助リブがその頂部を格子部に当接させている状態にすることができる。これにより、振動に伴って弾性仕切り膜が格子部に向かう場合に、補助リブが抵抗になって、リブの頂部を格子部に緩やかに衝突させることができる。補助リブは弾性仕切り膜の面に分散配置されているから、複数の補助リブの抵抗力が弾性仕切り膜の一部分に集中するのを回避できる。また、補助リブはリブよりも小幅にして剛性を弱くしてあるから、弾性仕切り膜が往復動しにくくなるのを回避することができる。

[0012]

そして、大振幅の振動状態においては、リブの頂部が格子部に当接したときに、リブが所定数の格子孔ごとにそれらを取り囲むから、前記所定数の格子孔と、これらとは別の格子孔との間で液体が流動するのを回避でき、防振性能の低下を防止することができる。

[0013]

本発明において、前記格子孔は、前記格子部の周方向に複数列配置され、 前記複数のリブは、環状に形成されて、前記格子部の径方向で各格子孔列の両 側の格子部部分に各別に当接可能に構成され、

前記複数の補助リブは前記弾性仕切り膜の軸芯に対して放射状に配置されていると、次の作用を奏することができる。

[0014]

[D] 大振幅の振動状態においては、リブの頂部が格子部に当接したときに、複数のリブが各格子孔列ごとにそれらの格子孔を取り囲む。そして、任意の格子孔列の格子孔と、これに隣合う別の格子孔列の格子孔との間で液体が流動するのを回避でき、防振性能の低下を防止することができる。

[0015]

補助リブは弾性仕切り膜の軸芯に対して放射状に配置されているから、複数の

補助リブの抵抗力が弾性仕切り膜の一部分に集中するのを回避できる。

[0016]

【発明の実施の形態】

以下、本発明の実施の形態を図面に基づいて説明する。図1に液封入式防振装置を示してある。この防振装置は、自動車のエンジンに取付けられる第1取付け金具1と、エンジンの下方の車体フレームに取付けられる筒状の第2取付け金具2と、これらを連結するゴム状弾性材から成る防振基体3とを備えている。

[0017]

第1取付け金具1は板状に形成され、その周縁部に複数の上向きの取付けボルト6が突設されている。第2取付け金具2は、防振基体3が加硫成形される筒状金具4と、カップ状の底金具5とから成り、底金具5の中央部に下向きの取付けボルト6が突設されている。

[0018]

防振基体3は円錐台形状に形成されている。そして、その上端面が第1取付け 金具1に、下端部が、筒状金具4の上広がり状の上端開口部にそれぞれ加硫接着 されている。この防振基体3の下面部に上窄まりの中空部が形成され、防振基体 3の下端部に、筒状金具4の内周面を覆うゴム膜7が連なっている。

[0019]

第2取付け金具2に、防振基体3の下面との間に液体封入室8を形成するゴム膜から成る部分球状のダイヤフラム9が取付けられ、液体封入室8に液体が封入されている。ダイヤフラム9は底金具5に覆われている。

[0020]

図10,図11にも示すように、液体封入室8を防振基体3側の第1液室11 Aとダイヤフラム側の第2液室11Bに仕切る仕切り体12が設けられている。 仕切り体12は、第2取付け金具2の内周部側に設けた挟持部材14と防振基体 3とにより挟持固定されている。

[0021]

詳しくは、仕切り体12は、ゴム膜から成る円板状の弾性仕切り膜15と、この弾性仕切り膜15を収容して内周面間の格子壁18 (格子部に相当)で受止め

る筒部材16 (筒部に相当)と、この筒部材16の一端部側の開口を覆う格子円板状の仕切り膜変位規制部材17 (格子部に相当)とから成る。つまり、格子壁18と仕切り膜変位規制部材17とが弾性仕切り膜15の変位量をその膜15の両側から規制している。格子壁18は、筒部16の内周面間にその筒部16と一体に連設されている。

[0022]

前記第1液室11Aと第2液室11B同士を連通させるオリフィス25を、筒部材16の外周面と第2取付け金具2の内周面との間に形成してある。図2,図3,図4に示すように、オリフィス流路は筒部材16の軸芯0周りに2周している。すなわち、上側の1周分のオリフィス流路R1と、下側の1周分のオリフィス流路R2とから成る。22はオリフィス形成壁である。上側のオリフィス流路R1は、仕切り膜変位規制部材17の開口19(図5参照)と切欠き55を介して連通している。下側のオリフィス流路R2は、挟持部材14の開口58を介して第2液室11Bと連通している(図1参照)。

[0023]

図1に示すように挟持部材14は、外周部側平板部28と、ゴム膜7の下端部に内嵌する第1筒部29と、筒部材16の他端部に押圧作用する中間部側平板部30と、筒部材16の他端部24側の開口部に内嵌する第2筒部31とから成る。外周部側平板部28は、ダイヤフラム9の取付け板10・筒状金具4・底金具5と共にかしめ固定されている。

[0024]

図5,図6に示すように、仕切り膜変位規制部材17は外周側に円筒部20を備え、これが筒部材16の一端部に外嵌されている。そして防振基体3の段部57に筒部材16の軸芯方向で受止められている。仕切り膜変位規制部材17の格子孔54は、中心側の格子孔54Cと、仕切り膜変位規制部材17の周方向に2列に並ぶ格子孔54A、54Bとから成る。内側の列の格子孔54Aの数は4個、外側の列の格子孔54Bの数は8個である。それぞれ均等な角度(90度又は45度)ごとに配置されている。そして、内側の列の格子孔54Aを、外側の列の90度ごとの格子孔54Bと周方向における位置を合わせてある。格子孔列の

形状は、前記周方向に沿う環状の孔を放射状に分断して成る形状である。19は第1液室11Aとオリフィス25を連通させる開口である。

[0025]

格子壁18の格子孔54も、中心側の格子孔54Cと、格子壁18の周方向に2列に並ぶ格子孔54A、54Bとから成る。そのパターン(個数・形状・格子壁18の軸芯O周りでの位置等)は仕切り膜変位規制部材17側のパターンと同じである。ただし、格子壁18の格子孔54A、54Bと仕切り膜変位規制部材17の格子孔54A、54Bとが周方向で位置ずれするように、仕切り膜変位規制部材17の筒部20を筒部材16に外嵌してある(図10参照)。中心側の格子孔54C同士の位置は同一である。

[0026]

図7,図8,図9に示すように、弾性仕切り膜15の両面にリブ群50がそれぞれ突設されている。一方の面のリブ群50のパターンと、他方の面のリブ群50のパターンとは同一である。このリブ群50は、複数の格子孔54ごとにそれらを取り囲み可能な複数の第1リブ51(リブに相当)と、弾性仕切り膜15の全面にわたって分散配置された複数の第2リブ52(補助リブに相当)とから成る。

[0027]

複数の第1リブ51は、環状に形成されて、格子壁18(又は仕切り膜変位規制部材17)の径方向で各格子孔列の両側の格子部部分53(図2,図5参照)に各別に当接可能に構成されている。これにより前記各列(内側の列、外側の列)ごとに格子孔54を取り囲む。また、第1リブ51は、その頂部が格子壁18(又は仕切り膜変位規制部材17)と離れて位置することができるように高さ寸法を設定されている(図11参照)。

[0028]

第2リブ52は弾性仕切り膜15の軸芯Pに対して放射状に配置されている。 そして、その頂部が格子壁18(又は仕切り膜変位規制部材17)に当接するように高さ寸法を設定され、かつ、第1リブ51よりも小幅になるようにリブ幅が設定されている。組付け状態では、図9の拡大図に示すように、弾性仕切り膜1

[0029]

[別実施形態]

[1]前記リブ群50は、1個の格子孔54ごとにそれらを取り囲み可能な複数の第1リブ51と、弾性仕切り膜15の両面に分散配置された複数の第2リブ52とから成っていてもよい。この場合、[2]でも述べるように、第2リブ52のパターンは放射状以外のパターンであってもよい。

[0030]

[2] 前記格子孔54のパターンや第1リブ51や第2リブ52のパターンは 上記の実施形態のパターンに限られるものではない。

[0031]

【発明の効果】

本発明によれば、第1リブの頂部を格子部面に緩やかに衝突させることができて、異音を低減でき、大振幅の振動状態においては、第1リブの頂部が格子部に当接したときに、所定数の格子孔と、これらとは別の格子孔との間で液体が流動するのを防止することができ、しかも、筒部に対する格子部の姿勢を正確に設定することができ、弾性仕切り膜と両格子部との間の隙間を正確に設定することができて、防振性能をより向上させることができる液封入式防振装置を提供することができた。

【図面の簡単な説明】

【図1】

液封入式防振装置の縦断図

図2]

筒部の平面図

【図3】

筒部の縦断正面図

筒部の側面図

【図5】

仕切り膜変位規制部材の平面図

【図6】

仕切り膜変位規制部材の正面図

【図7】

弾性仕切り膜の平面図

【図8】

図7のA-A断面図

[図9]

図7のB-B断面図

【図10】

仕切り体の平面図

【図11】

図10のC-O-C断面図

【符号の説明】

1	耸 1	取付け旦
.	ו בוכי	71 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 第2取付け具

3 防振基体

8 液体封入室

9 ダイヤフラム

11A 第1液室

1 1 B 第 2 液室

12 仕切り体

15 弾性仕切り膜

16 筒部

17 格子部

18 格子部

_	_	_			,
2	5	オリ	リフ	ィ	ス

50 リブ群

51 リブ

52 補助リブ

5 3 格子部部分

54A, 54B, 54C 格子孔

P 弾性仕切り膜の軸芯

【書類名】

図面

【図1】

【図3】

【図4】

【図5】

【図7】

【図8】

【図9】

[図10]

【図11】

1/E

【書類名】

要約書

【要約】

【課題】異音を低減でき、防振性能をより向上させることができる液封入式防振 装置を提供する。

【解決手段】第1取付け具1と第2取付け具2と防振基体3とダイヤフラム9と 仕切り体12とオリフィス25とを備え、仕切り体12は、弾性仕切り膜15と 、一対の格子部17,18とから成り、一対の格子部17,18のうち一方の格 子部18は、筒部16の内周面間にその筒部16と一体に連設され、弾性仕切り 膜15の両面に、所定数の格子孔54ごとにそれらを取り囲み可能な複数のリブ 51が形成されている。

【選択図】

図 1

特願2003-102178

出願人履歴情報

識別番号

[000003148]

1. 変更年月日 [変更理由]

1990年 8月 9日

住所氏名

新規登録 大阪府大阪市西区江戸堀1丁目17番18号

東洋ゴム工業株式会社