

KARTIK ASLIA

asliakartik@gmail.com 4 91+ 7701923367

Kh No. 235/36, Gali number 7, Basi enclave part 3, Gurugram, Haryana, India

skizzy-create

PROFESSIONAL EXPERIENCE

WanderMore Ai

08/2023 - 01/2024 Remote,

United Kingdom

- Machine Learning Engineer -INTERN
- Enhanced itinerary creation in a Travel Guide by fine-tuning a Large Language Model (LLM) using Retrieval-Augmented Generation (RAG) and Self-RAG.
- Increased search context by 47% by establishing a pipeline using Serper to connect LLM to the internet.
- · Improved cost tracking accuracy by 30% by developing and implementing a token cost logger feature.

EDUCATION

Bachelors's of Engineering

Chandigarh University

08/2022 - present Gharuan, Mohali, India

SKILLS

Machine Learning

Supervised, Unsupervised, Reinforcement

Database Management

MongoDB, PostgressDB, ORM's

Deep Learning

ANNs, CNNs, LSTMs, GAN's

Leadership and Resilience

Efficiency, Productivity, Innovation, Collaboration

Artificial Intelligence

Transformers, BERT, GPT

Backend Development

Backend Developer ,JavaScript, TypeScript, MERN, Prisma

PROJECTS

Fashion Image Generation Using GAN

GANs, Fashion MNIST

- Trained a Generative Adversarial Networkusing the Fashion MNIST dataset.
- Implemented a custom training loop for simultaneous training of both the generator and discriminator models.
- Reduced training time from 7 days to 12hours through GPU acceleration

Satellite Image Processing for Road Extraction

CNN's UNET Architecture

- Developed a U-Net model for road extraction from satellite images, achieving an accuracy of 99.4%.
- Constructed a comprehensive data pipeline covering data loading, model training, prediction, and post-processing.
- Leveraged TensorFlow, OpenCV (cv2), and CUDA for model development and data processing, reducing training time by 93%.

Hybrid Model Architecture for Position Estimation

ANN's & RNN's Hybrid Model

- Developed a hybrid model combining Dense and LSTM layers for accurate 3D position prediction of ballistic projectiles with an accuracy of 99.6%.
- · Applied z-score normalization and efficient data handling techniques, increasing model accuracy from 46% to 95.4%.
- Integrated GPU support for model training, significantly reducing computation time from 3 days to 33 hours and enhancing training efficiency.

09/2023 - 10/2023

06/2023 - 07/2023

01/2024 - 02/2024