实变函数简明教程第三章习题解答

Xiaoyu Chen

习题 1. 证明: 可测集 E 上的可测函数在其任何子集上可测.

解 1. 证明. 考虑 E 上的可测函数 f, 因为 f 可测, 我们可以知道对于 $\forall a \in \mathbb{R}$, 都有 E(f > a) 可测. 对于任何 E 的可测子集 E_0 , $E_0(f > a) = E_0 \cap E(f > a)$. 因为可测集的交集也是可测的, 所以容易发现 E(f > a) 对于所有 $a \in \mathbb{R}$ 都是可测的. 所以 f 在 E_0 上可测.

习题 2. 证明: 若函数 f(x) 在 $E_1, E_2 \subset \mathbb{R}^n$ 上可测, 又若 f 分别作为 E_1, E_2 上的函数, 在 $x \in E_1 \cap E_2$ 上的值相同,则 f 在 $E_1 \cup E_2$, $E_1 \setminus E_2$, $E_1 \cap E_2$ 可测.

解 2. 证明. f 在 E_1, E_2 上可测 $\Rightarrow \forall a \in \mathbb{R}, E_1(f > a), E_2(f > a)$ 都可测. 所以

$$E_1(f > a) \cap E_2(f > a)$$

$$E_1(f > a) \cup E_2(f > a)$$

$$E_1(f > a) \setminus E_2(f > a)$$

都是可测的.

习题 3. 若每个 $f_k(x)$, $(k=1,2,\cdots)$ 在可测集 $E\subset\mathbb{R}^n$ 上几乎处处连续 (间断点构成零测集), 极限 $f(x)=\lim_{k\to\infty}f_k(x)$ 在 E 上几乎处处有意义, 证明 f(x) 在 E 可测.

解 3. 证明. 因为 $f_k(x)$ 在 E 上几乎处处连续, 所以 $f_k(x)$ 在 E 上几乎处处有限且可测. \square