EDEM

Máster en Data Analytics

Estadística con Python III Miguel Rua del Barrio

Inferencia estadística

- Hace referencia a obtener conclusiones poblacionales a través de resultados muestrales.
- Trataremos de no sólo valorar los resultados obtenidos sino también ver en qué medida podemos trasladar dichas conclusiones a una población (que en la mayoría de los casos) no podremos actuar directamente.
- Es la forma que tiene la estadística para adquirir conocimiento

Distintas formas de hacer inferencia

- Estimación de parámetros: puntual y por intervalos
- Contrastes de hipótesis:
 - Test de normalidad
 - T-test con una muestra
 - T-test con dos muestras independientes
 - T-test con dos muestras pareadas
 - Test de igualdad de varianzas (homocedasticidad)
 - Pruebas de chi-cuadrado (bondad de ajuste e independencia
 - ANOVA (Análisis de la varianza)

Distintas formas de hacer inferencia

Primera parte práctica de la sesión:

1. Estimación de parámetros: puntual y por intervalos

- Se denomina hipótesis nula (H0) a la hipótesis que se desea contrastar.
- Esta será la hipótesis que mantendremos a no ser que los datos digan lo contrario.
- A partir de una muestra del estudio obtendremos un estadístico (un valor que es función de la muestra) cuya distribución de probabilidad esté relacionada con la hipótesis en estudio y sea conocida.
- Como es conocida, se obtendrá como región de rechazo el conjunto de valores más improbables bajo la hipótesis nula.

Errores de Tipo I y Tipo II

Una vez realizado el contraste, se habrá optado por rechazar o no rechazar H0.

Este cuadro muestra los cuatro posibles casos que pueden ocurrir:

	H_0 es cierta	H_1 es cierta
Se escogió $H_{ m 0}$	No hay error	Error de tipo II
Se escogió H_1	Error de tipo I	No hay error

Le llamaremos potencia del test a:

 $P(\text{escoger } H_1|H_1 \text{ es cierta}) = 1 - \beta.$

A las probabilidades de cometer los errores les llamaremos:

$$P(ext{escoger } H_1|H_0 ext{ es cierta}) = lpha \ P(ext{escoger } H_0|H_1 ext{ es cierta}) = eta$$

Lista contrastes y estadísticos

 Depende el tipo de contraste que queramos realizar se calculará un estadístico distinto, que tendrá un comportamiento propio y conocido

• Enlace donde se indican los diferentes tipos de test y sus estadísticos: Lista

Contraste bilateral (media):

Contraste bilateral (proporción):

Contraste unilateral:

Práctica con Python

Segunda parte práctica de la sesión:

2. Contrastes de hipótesis (T-test)

Práctica con Python

Segunda parte práctica de la sesión:

3. Contrastes de hipótesis (Chi-cuadrado)

Resumen

Durante esta unidad hemos visto:

- Estimación puntual y por intervalos.
- Contrastes de hipótesis.

Siguientes objetivos:

ANOVA.

¡GRACIAS POR VUESTRA ATENCIÓN!

miguel.ruadelbarrio@ams-europe.com

linkedin.com/in/miguel-rua-del-barrio-5214661b5