МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Вятский государственный университет»

Факультет автоматики и вычислительной техники Кафедра электронных вычислительных машин

ИЗУЧЕНИЕ ПРИНЦИПОВ ОРГАНИЗАЦИИ ПАМЯТИ

Отчет Лабораторная работа №2 по дисциплине «Организация памяти ЭВМ»

Выполнил студент группы ИВТ-31	/Кудяшев Я.Ю./
Проверил преподаватель	/Мельцов В.Ю./

1. Цель работы:

- Изучение принципов организации памяти и алгоритмов ее работы;
- Изучение основных режимов работы БИС памяти.

Задание:

Необходимо разработать подмикропрограмму, выполняющую следующие функции:

- 1. Записать в ячейки АЗУ произвольные константы в любые 6-7 ячеек.
- 2. Загрузить в регистр маски RgM маску по тем разрядам, по которым будет осуществляться ассоциативный поиск (от 3 до 5 бит).
- 3. Загрузить во входной регистр RgI эталонное значение для выполнения ассоциативного поиска.
 - 4. Выполнить чтение из АЗУ.
- 5. Количество чтений необходимо выполнить столько раз, пока в регистре сдвига RgSH не будет установлен код 0.
- 6. Дозагрузить свободные ячейки АЗУ данными и повторить выполнение п.2 для различных значений эталонов в RgI и RgM.
- 7. При исследованиях (при записи в АЗУ и чтении) необходимо следить за формированием осведомительных сигналов с выходов логической схемы LS2. Обнаруженные совпадения с ассоциативным признаком в памяти выделяются цветом.

2. Окно микропрограммы АЗУ

Nº	Адр.	Т Данные			CI	CA	~EO	~WR	~RD	Комментарии
				CM						110121011145131
00	0000	00110101	11010010	0	1	1	1	1	1	RgA=MA RgI=MД
01	0000	00000000	00000000	0	0	0	1	0	1	D=RqI
02	0001	10100010	10111010	0	1	1	1	1	1	RgA=MA RgI=MД
03	0000	00000000	00000000	0	0	0	1	0	1	D=RgI
04	0010	10100010	10111010	0	1	1	1	1	1	RgA=MA RgI=MД
05	0000	00000000	00000000	0	0	0	1	0	1	D=RgI
06	0011	10100010	10111010	0	1	1	1	1	1	RgA=MA RgI=MД
07	0000	00000000	00000000	0	0	0	1	0	1	D=RgI
08	0100	10100010	10111010	0	1	1	1	1	1	RgA=MA RgI=MД
09	0000	00000000	00000000	0	0	0	1	0	1	D=RgI
0A	0101	10100010	10111010	0	1	1	1	1	1	RgA=MA RgI=MД
0в	0000	00000000	00000000	0	0	0	1	0	1	D=RgI
0C	0000	00000000	11100000	1	0	0	1	1	1	Загрузка маски
0 D	0000	00000000	10100000	0	1	0	1	1	1	Загрузка эталона
0E	0000	00000000	00000000	0	0	0	1	1	0	RgSH
0F	0000	00000000	00000000	0	0	0	1	1	0	RgO=DO
10	0000	00000000	00000000	0	0	0	0	1	1	MД=RgO
11	0000	00000000	00000000	0	0	0	1	1	0	RgO=DO
12	0000	00000000	00000000	0	0	0	0	1	1	MД=RgO
13	0000	00000000	00000000	0	0	0	1	1	0	RgO=DO
14	0000	00000000	00000000	0	0	0	0	1	1	MД=RgO
15	0000	00000000	00000000	0	0	0	1	1	0	RgO=DO
16	0000	00000000	00000000	0	0	0	0	1	1	MД=RgO
17	0000	00000000	00000000	0	0	0	0	1	1	RgA=MA; RgI=MД
18	0000	00000000	00000000	0	0	0	1	0	1	DI=RgI
19	0000	00000000	0001110	1	0	0	1	1	1	Загрузка маски
1A	0000	00000000	00001100	0	1	0	1	1	1	Загрузка эталона
1В	0000	00000000	00000000	0	0	0	1	1	0	RgSH
1C	0000	00000000	00000000	0	0	0	1	1	0	RgO=DO
1D	0000	00000000	00000000	0	0	0	0	1	1	MД=RgO
1E										
	L	L			L				L	l

3. ΓCA

Граф-схема алгоритма чтения и записи АЗУ представлена на рисунке 1.

Рис 1. – ГСА чтения и записи АЗУ

4. ФСА

Функциональная схема LS1 представлена на рисунке 2.

Рисунок 2 – Функциональная схема LS1

 $D_{ij}-i$ -ый разряд j-ой ячейки памяти;

 RgI_i-i -ый разряд регистра эталона;

 $RgM_{\rm i}-i$ -ый разряд регистра маски;

d_i – бит достоверности j-ой ячейки памяти;

 $RgSH_j - j$ -ый разряд регистра совпадений.

Функциональная схема LS2 представлена на рисунке 3.

Рисунок 3 – Функциональная схема LS2

5. Экранные формы

Рисунок 4 – Запись чисел в АЗУ

Рисунок 5 – Чтение чисел из АЗУ

6. Вывод

При выполнении лабораторной работы были исследованы основные принципы работы некоторых видов ЗУ: АЗУ.

Ассоциативное ЗУ имеет сложную структуру, а следовательно, и цену, но обладает высоким быстродействием. Поиск данных в нём производится сразу по всем ячейкам памяти с использованием маски.