Lezioni di Ricerca Operativa

Università degli Studi di Salerno

Lezione n° 4

- Problemi di Programmazione Matematica
- Problemi Lineari e Problemi Lineari Interi
- Forma Canonica. Forma Standard

R. Cerulli – F. Carrabs

Problema di Ottimizzazione

Data una funzione $f: \mathbb{R}^n \to \mathbb{R}$ e $X \subseteq \mathbb{R}^n$ un **problema di** Ottimizzazione (PO) può essere formulato come:

Quindi un problema di Ottimizzazione consiste nel determinare, se esiste, un punto di minimo della funzione f tra i punti dell'insieme X.

Problemi di Programmazione Matematica

Quando l'insieme delle soluzioni ammissibili di un problema di ottimizzazione viene espresso attraverso un sistema di equazioni e disequazioni, tale problema prende il nome di **problema di Programmazione Matematica** (PM).

Problemi di Programmazione Lineare

Un problema di Programmazione Matematica è **lineare** quando:

- ightharpoonup la funzione obiettivo è lineare: $f(\underline{x}) = \underline{c}^T \underline{x}$
- \triangleright l'insieme X è espresso in termini di relazioni (uguaglianze e disuguaglianze) lineari

Forma esplicita

Forma compatta

$$\begin{array}{ll}
\min & \underline{c}^T \underline{x} \\
\text{s.t.} & A\underline{x} \ge \underline{b}
\end{array}$$

$$X \underbrace{\{\underline{x} \in \mathbb{R}^n : A\underline{x} \ge \underline{b}\}}_{\{\underline{x} \in \mathbb{Z}^n : A\underline{x} \ge \underline{b}\}}$$

variabili \underline{x} continue

Programmazione Lineare Continua (PL) variabili \underline{x} intere

Programmazione Lineare Intera (PLI)

Esempio

Forma esplicita

min
$$500x_1 + 700x_2 + 350x_3 + 400x_4 + 200x_5$$

s.t. left hand side

right hand side

$$8x_1 + 10x_2 + 5x_4 + 7x_5 = 96$$

$$5x_1 + 12x_2 + 4x_3 = 96$$

$$20x_1 + 20x_2 + 20x_3 + 20x_4 + 20x_5 = 384$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0$$

Forma compatta

min
$$\underline{c}^T \underline{x}$$

s.t. $\underline{A}\underline{x} = \underline{b}$
 $\underline{x} \ge 0$

$$\underline{c}^{T} = \begin{bmatrix} 500 & 700 & 350 & 400 & 200 \end{bmatrix} \quad \underline{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix}$$

$$A = \begin{bmatrix} 8 & 10 & 0 & 5 & 7 \\ 5 & 12 & 4 & 0 & 0 \\ 20 & 20 & 20 & 20 & 20 \end{bmatrix} \quad \underline{b} = \begin{bmatrix} 96 \\ 96 \\ 384 \end{bmatrix}$$

- <u>x</u> è il vettore *nx1* delle **variabili decisionali**;
- <u>c</u> è il vettore nx1 dei coefficienti di costo della funzione obiettivo;
- b è il vettore mx1 dei termini noti dei vincoli;
- A è la matrice mxn dei coefficienti tecnologici.

Esempio

Forma esplicita

min
$$500x_1 + 700x_2 + 350x_3 + 400x_4 + 200x_5$$

s.t. left hand side

right hand side

$$8x_1 + 10x_2 + 5x_4 + 7x_5 = 96$$

$$5x_1 + 12x_2 + 4x_3 = 96$$

$$20x_1 + 20x_2 + 20x_3 + 20x_4 + 20x_5 = 384$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0$$

Forma compatta

min
$$\underline{c}^T \underline{x}$$

s.t. $\underline{A}\underline{x} = \underline{b}$
 $x \ge 0$

$$\underline{c}^{T} = \begin{bmatrix} 500 & 700 & 350 & 400 & 200 \end{bmatrix} \quad \underline{x} = \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \end{bmatrix}$$

$$A = \begin{bmatrix} 8 & 10 & 0 & 5 & 7 \\ 5 & 12 & 4 & 0 & 0 \\ 20 & 20 & 20 & 20 & 20 \end{bmatrix} \quad \underline{b} = \begin{bmatrix} 96 \\ 96 \\ 384 \end{bmatrix}$$

Combinazione lineare delle colonne di A

$$\begin{bmatrix} 8 \\ 5 \\ 20 \end{bmatrix} x_1 + \begin{bmatrix} 10 \\ 12 \\ 20 \end{bmatrix} x_2 + \begin{bmatrix} 0 \\ 4 \\ 20 \end{bmatrix} x_3 + \begin{bmatrix} 5 \\ 0 \\ 20 \end{bmatrix} x_4 + \begin{bmatrix} 7 \\ 0 \\ 20 \end{bmatrix} x_5 = \begin{bmatrix} 96 \\ 96 \\ 384 \end{bmatrix}$$

Problemi di Programmazione Lineare

Dato il seguente problema di programmazione lineare

min
$$f(\underline{x})$$

 $s.t.$
 $g_i(\underline{x}) \ge b_i$ $i=1,...,m$

un vettore x' di \mathbb{R}^n :

- soddisfa il vincolo g_i(x) ≥ b_i se g_i(x') ≥ b_i
- viola il vincolo g_i(x) ≥ b_i se g_i(x') < b_i
- satura (o rende attivo) il vincolo g_i(x) ≥ b_i se g_i(x') = b_i

Un vettore \underline{x} di \mathbb{R}^n è soluzione ammissibile per il problema di PL se e solo se soddisfa <u>tutti</u> i vincoli del problema.

Soluzioni di un problema di PL

min
$$f(\underline{x})$$

 $s.t.$
 $g_i(\underline{x}) \ge b_i$ $i=1,...,m$

Un problema di programmazione lineare risulta:

- Inammissibile se la regione ammissibile è vuota ossia X=Ø.
- Illimitato inferiormente (perchè il problema è di minimo) se scelto un qualsiasi scalare k, esiste sempre un punto x∈X tale che f(x) < k.
- Ammettere soluzione ottima finita se esiste un punto <u>x</u>*∈X tale che f(<u>x</u>*) ≤ f(<u>x</u>) ∀<u>x</u>∈X.

Definizione (Ottimo Globale)

Un punto $\underline{x}^* \in X$ è un **ottimo globale** per la funzione di minimo $f(\underline{x})$ se e solo se: $f(\underline{x}^*) \le f(\underline{x}) \ \forall \underline{x} \in X$.

Esempio 1: Piano di produzione aziendale

Un'azienda produce tre tipi di elettrodomestici: lavatrici, frigoriferi e forni.

Per produrre una lavatrice occorrono 9 ore di lavorazione sulla macchina M1 e 8 ore di lavorazione sulla macchina M2; mentre per produrre un frigorifero occorrono 11 ore di lavorazione sulla macchina M2; infine per produrre un forno occorrono 4 ore sulla macchina M1 e 6 sulla macchina M2.

La macchina M1 è disponibile per 137 ore settimanali, mentre la macchina M2 è disponibile per 149 ore settimanali. Il numero di forni prodotti non può essere superiore alla somma dei frigoriferi e delle lavatrici prodotte. Tuttavia devono essere prodotti almeno 5 forni. Inoltre il numero di lavatrici prodotte non può essere superiore al numero di frigoriferi prodotti per al più 5 unità.

Il guadagno ottenuto dalla vendita di una lavatrice è di 375 euro, quello ottenuto per un frigorifero è 320 euro e quello per un forno è 170 euro. Si vuole conoscere la quantità di lavatrici, frigoriferi e forni da produrre settimanalmente per massimizzare il guadagno totale nel rispetto dei vincoli di produzione.

a) Si formuli il corrispondente modello di programmazione matematica.

Esempio 1: Piano di produzione aziendale

La prima cosa da fare per poter formulare un problema è individuare le variabili decisionali.

Poiché il nostro obiettivo è quello di definire il numero di lavatrici, frigoriferi e forni da produrre, associamo ad ogni tipo di elettrodomestico una variabile distinta:

 x_1 = numero di lavatrici da produrre

 x_2 = numero di frigoriferi da produrre

 x_3 = numero di forni da produrre

$$\max z = 375x_1 + 320x_2 + 170x_3$$

$$9x_1 + 4x_3 \le 137$$

$$8x_1 + 11x_2 + 6x_3 \le 149$$

$$x_3 \le x_1 + x_2$$

$$x_3 \ge 5$$

$$x_1 \le 5 + x_2$$

$$x_1, x_2, x_3 \ge 0, intere$$

Scrivere quali sono i vettori <u>c</u> e <u>b</u> e quale è la matrice A per questo problema.

Esempio 1: Piano di produzione aziendale

 x_1 = numero di lavatrici da produrre

 x_2 = numero di frigoriferi da produrre

 x_3 = numero di forni da produrre

$$\underline{x} = \begin{bmatrix} 9 \\ 4 \\ x_2 \\ 5 \end{bmatrix} x_3$$

Soluzione ammissibile

$$z = c^T x = 375 \cdot 9 + 320 \cdot 4 + 170 \cdot 5 = 5505$$

Valore della funzione obiettivo in <u>x</u>

Ci sono vincoli attivi associati alla soluzione x?

Forma Canonica di Minimo

Definizione (Forma Canonica di Minimo)

Un problema di programmazione lineare di minimo è in **forma canonica** se tutti i suoi vincoli sono di maggiore o uguale e tutte le sue variabili sono maggiori o uguali a zero.

$$\min z = \underline{c}^T \underline{x}$$

$$A\underline{x} \ge \underline{b}$$

$$\underline{x} \ge 0, \ \underline{x} \in \mathbb{R}^n$$

Forma Standard di Minimo

Definizione (Forma Standard di Minimo)

Un problema di programmazione lineare di minimo è in **forma standard** se tutti i suoi vincoli sono di uguaglianza e tutte le sue variabili sono maggiori o uguali a zero. Inoltre vale che $b \ge 0$.

$$\min z = \underline{c}^T \underline{x}$$

$$A\underline{x} = \underline{b} \qquad (1)$$

$$\underline{x} \ge 0, \ \underline{x} \in \mathbb{R}^n \qquad (2)$$

- Un vettore <u>x</u> che soddisfano i vincoli (1) rappresenta una soluzioni del sistema di equazioni.
- Un vettore <u>x</u> che soddisfano i vincoli (1) e (2) rappresenta una soluzioni ammissibili del problema di PL.

D'ora in avanti si assumono soddisfatte le seguenti ipotesi:

- > m < n
- \rightarrow m = rango(A)

L'ipotesi *m*<*n* (più variabili che vincoli) non rappresenta una perdita di generalità.

E' noto infatti che il sistema di equazioni lineari (1), se consistente, può:

- ammettere una soluzione unica se m=n
- □ ammettere ∞^{n-m} soluzioni se *m*<*n*

Solo il secondo caso è significativo dal punto di vista dei problemi di ottimizzazione.

Definizione (Problemi equivalenti)

Due problemi di programmazione lineare (P) e (P'), di minimo (di massimo) sono **equivalenti** se, per ogni soluzione ammissibile \underline{x} di (P) con valore obiettivo z, possiamo costruire una soluzione ammissibile \underline{x}' di (P') con lo stesso valore z e, per ogni soluzione ammissibile \underline{x}' di (P') con valore obiettivo z, possiamo costruire una soluzione ammissibile x di (P) con lo stesso valore z.

Osservazione 1

Se due problemi di programmazione lineare sono equivalenti allora i valori delle rispettive soluzioni ottime coincidono.

Osservazione 2

Qualunque problema di PL può essere trasformato in un problema equivalente in forma canonica o standard.

Formulazioni equivalenti:

Funzione Obiettivo

$$\max \ \underline{c}^{T} \underline{x} \iff -\min \ -\underline{c}^{T} \underline{x}$$

Esempio

$$\max 3x_1 + 5x_2 \Leftrightarrow -\min -3x_1 - 5x_2$$

Formulazioni equivalenti:

Vincoli

$$A\underline{x} \ge \underline{b} \iff -A\underline{x} \le -\underline{b}$$

$$A\underline{x} = \underline{b} \quad \Longleftrightarrow \quad \begin{cases} A\underline{x} \ge \underline{b} \\ A\underline{x} \le \underline{b} \end{cases}$$

Formulazioni equivalenti: vincoli ≤

$$\sum_{j=1}^{n} a_{ij} x_j \le b_i \quad \Longleftrightarrow \quad \sum_{j=1}^{n} a_{ij} x_j + x_{n+i} = b_i$$
$$x_{n+i} \ge 0$$

La nuova variabile x_{n+i} introdotta prende il nome di variabile di slack (scarto) ed il suo valore è pari a:

$$x_{n+i} = b_i - \sum_{j=1}^{n} a_{ij} x_j$$

Esempio:

$$3x_1 + 5x_2 + 2x_3 \le 7 \iff 3x_1 + 5x_2 + 2x_3 + x_4 = 7$$

 $x_4 \ge 0$

Formulazioni equivalenti: vincoli ≥

$$\sum_{j=1}^{n} a_{ij} x_j \ge b_i \quad \Longleftrightarrow \quad \sum_{j=1}^{n} a_{ij} x_j - x_{n+i} = b_i$$
$$x_{n+i} \ge 0$$

La nuova variabile x_{n+i} introdotta prende il nome di variabile di surplus (scarto) ed il suo valore è pari a:

$$x_{n+i} = \sum_{j=1}^{n} a_{ij} x_j - b_i$$

Esempio:

$$2x_1 + x_2 + 5x_3 \ge 7 \iff 2x_1 + x_2 + 5x_3 - x_4 = 7$$
$$x_4 \ge 0$$

Formulazioni equivalenti: variabili non vincolate

$$x_j$$
 n.v. $\implies x_j = (x'_j - x''_j)$ con $x'_j \ge 0$, $x''_j \ge 0$

<u>Sostituiamo</u> la variabile x_j , con la differenza tra x'_j e x''_j , ovunque appaia nel modello matematico (vincoli e funzione obiettivo).

- Ogni soluzione \hat{x} del nuovo problema (P') corrisponde ad una soluzione ammissibile \underline{x} del problema originale (P) dove $x_j = \hat{x}'_j \hat{x}''_j$ ed il valore della funzione obiettivo è lo stesso.
- Ogni soluzione ammissibile \underline{x} del problema originale (P) corrisponde ad una soluzione \hat{x} del nuovo problema (P') dove:

$$\hat{x}_j' = x_j$$
 e $\hat{x}_j'' = 0$ se $x_j \ge 0$
 $\hat{x}_j' = 0$ e $\hat{x}_j'' = -x_j$ se $x_j < 0$

I due problemi hanno lo stesso valore della funzione obiettivo a prescindere dal segno della variabile x_i .

Per quanto detto sopra abbiamo che (P) e (P') sono equivalenti.

Formulazioni equivalenti: variabili non vincolate

$$x_j \le 0 \implies x_j = -x_j' \quad \text{con} \quad x_j' \ge 0$$

Sostituiamo la variabile x_j , con $-x'_j$, ovunque appaia nel modello matematico (vincoli e funzione obiettivo).

- Ogni soluzione $\underline{\hat{x}}$ del nuovo problema (P') corrisponde ad una soluzione ammissibile \underline{x} del problema originale (P) dove $x_j = -\hat{x}_j'$ ed il valore della funzione obiettivo è lo stesso.
- Ogni soluzione ammissibile \underline{x} del problema originale (P) corrisponde ad una soluzione $\hat{\underline{x}}$ del nuovo problema (P') dove $\hat{x}'_j = -x_j$ ed il valore della funzione obiettivo è lo stesso.

Per quanto detto sopra abbiamo che (P) e (P') sono equivalenti.

Esercizio

Scrivere la forma canonica e la forma standard per il seguente problema di programmazione lineare.

$$\max x_1 + 3x_2 + 3x_3
-3x_1 - x_2 + x_3 \le -3
2x_1 - 3x_2 - 2x_3 \ge 4
2x_1 - x_2 = 2
x_1 \ge 0
x_2 \le 0
x_3 n.v.$$

Esercizio

Forma standard

$$\max x_1 + 3x_2 + 3x_3
-3x_1 - x_2 + x_3 \le -3
2x_1 - 3x_2 - 2x_3 \ge 4
2x_1 - x_2 = 2
x_1 \ge 0
x_2 \le 0
x_3 n.v.$$

Soluzione ottima

$$x_2 = -x_2' = 0$$

$$x_3 = x_3' - x_3'' = 0 - 1 = -1$$

$$\underline{x}^* = \begin{bmatrix} x_1 & x_2 & x_3 \\ 1 & 0 & -1 \end{bmatrix}$$

Valore ottimo

$$z^* = -2$$

$-(-)\min -x_1 + 3x'_2 - 3x'_3 + 3x''_3$ $3x_1 - x'_2 - x'_3 + x''_3 - x_4 = 3$ $2x_1 + 3x'_2 - 2x'_3 + 2x''_3 - x_5 = 4$ $2x_1 + x'_2 = 2$ $x_1, x'_2, x'_3, x''_3, x_4, x_5 \ge 0$

Soluzione ottima

$$\underline{x}^* = \begin{bmatrix} x_1 & x_2' & x_3' & x_3'' & x_4 & x_5 \\ 1 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$

Valore ottimo (trascurando il meno davanti la f.o.)

$$z^* = 2$$

tramite il segno meno davanti alla funzione obiettivo si ottiene il valore ottimo (-2) del problema di partenza.

Esercizio: Problema della dieta

Una dieta prescrive che giornalmente devono essere assimilate quantità predeterminate di calorie, proteine e calcio, intese come fabbisogni minimi giornalieri, disponendo di cinque alimenti (pane, pasta, pesce, carne, dolce). Tali fabbisogni minimi sono di 2000 calorie, 50 g di proteine, 700 mg di calcio. Dalle tabelle dietetiche si ricavano i seguenti contenuti di calorie (in cal.), proteine (in g.), calcio (in mg.) per ogni singola porzione di ciascun alimento, intendendo come porzione una quantità espressa in grammi e quindi frazionabile.

	Pane	Pasta	Pesce	Carne	Dolce
Calorie	140	255	180	330	510
Proteine	5	12	14	22	3
Calcio	3	70	90	65	40

I costi e il numero massimo di porzioni tollerate giornalmente sono i seguenti.

	Pane	Pasta	Pesce	Carne	Dolce
Costo	0.5€	1.2€	11€	9€	4.5€
Porzione	4	1	2	1	2

Determinare una dieta a costo minimo che soddisfi le prescrizioni richieste.

Esercizio: Miniere

Un'industria dell'acciaio dispone di due miniere M1 e M2 e di tre impianti di produzione P1, P2, e P3. Il minerale estratto deve essere giornalmente trasportato agli impianti di produzione soddisfacendo le rispettive richieste. Le miniere M1 e M2 producono giornalmente rispettivamente 140 e 115 tonnellate di minerale. Gli impianti richiedono giornalmente le seguenti quantità (in tonnellate) di minerale:

P1	P2	P3
70	65	120

Il costo del trasporto (per tonnellata) da ciascuna miniera a ciascun impianto di produzione è riportato nella seguente tabella:

	P1	P2	Р3
M1	6400€	12900€	7600€
M2	5900€	14300€	6800€

Formulare un modello che descriva il trasporto dalle miniere agli impianti di produzione in modo da minimizzare il costo globale del trasporto.

Esercizio: Ufficio Postale

Per poter svolgere il proprio lavoro in modo efficiente, un ufficio postale richiede, per ogni giorno della settimana, un certo numero di impiegati. Ogni impiegato deve lavorare 5 giorni consecutivi e poi riposare per due giorni. La seguente tabella riporto per ogni giorni il numero di impiegati richiesti:

Giorno della settimana	Numero di impiegati richiesto
Lunedì	20
Martedì	16
Mercoledì	19
Giovedì	15
Venerdì	22
Sabato	10
Domenica	5

Scrivere un modello matematico per il problema il cui obiettivo è quello di minimizzare il numero di impiegati da assumere per poter soddisfare la richiesta giornaliera.