

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Relační datový model I.

Ing. Zbyněk Pospěch

Základní informace

II-S1-05

Název: Relační datový model I.

Autor: Ing. Zbyněk Pospěch

Anotace: výukový materiál objasňuje původ do relačního systému řízení báze dat, relační datový model, terminologie relačního modelu, vlastnosti relace, integritní omezení, schéma a instance relační databáze, hodnota NULL, super klíč, kandidátní klíč a primární klíč.

Studijní obor: Informační technologie Ročník: I.

Předmět: Relační databázové systémy Forma DUM: Prezentace

Datum vytvoření: 17.10. 2012 Datum aktualizace: 21.6.2013

Předseda komise: Ing. Marta Murínová Metodik DUM: Ing. Roman Wyka

Jazyková korekce: Mgr. Jarmila Kotásková

Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky.

Relační systém řízení báze dat (RSŘBD)

- Mezi používanými SŘBD v současnosti převládá.
- Je založen na relačním modelu dat navrženém E. F. Codd v roce 1970.
- Cíle relačního modelu:
 - vysoký stupeň nezávislosti dat
 - zabezpečení sémantiky, konzistence a redundance dat pomocí tzv. " normalizovaných relací "
 - využití množinově orientovaných jazyků pro manipulaci s daty

Relační datový model

formální zápis

- relace R nad množinou atributů $A=\{A_1, A_2 ... A_n\}$
- jména atributů A₁, A₂ ..., A_n
- domény atributů D_i=dom(A_i)
- jméno relace R
- schéma relace R(A₁:D₁, A₂:D₂, A_n:D_n) nebo zkráceně R(A)
- hodnoty atributů jsou atomické => 1. normální forma (1NF) viz dále
- relace $R*(A) \subset D_1 \times D_2 \times ... \times D_n$
- \rightarrow n-tice (a_1 , a_2 a_n)

Relační datový model - příklad

Žáci					
Rodné číslo	Jméno	Příjmení	Datum přijetí	Třída	Ročník
9002011234	Jan	Nový	1.9.2012	Α	1
9105035555	Petr	Tichý	10.9.2012	В	1
9061230001	Jana	Malá	1.9.2011	Α	2

Relační datový model - příklad

Jméno relace:

Žáci

Jména atributů:

Jméno, Příjmení, Datum narození, Třída, Ročník.

Domény atributů:

- Řetězec znaků -> Jméno, Příjmení a Třída, Rodné číslo (není číslo),
- Celé čísla -> Ročník,
- Datum -> Datum přijetí.

Schéma relace:

 Žáci (Jméno: Řetězec znaků, Příjmení: Řetězec znaků, Datum přijetí: Datum, Třída: Řetězec znaků, Ročník: Celá čísla).

Datové n-tice:

- (9002011234, Jan, Nový, 1.9.2012, A, 1);
- (9105035555, Petr, Tichý, 10.9.2012, B, 1);
- ° (9061230001, Jana, Malá, 1.9.2011, A, 2).

Vlastnosti relace

- Relace má jedinečné jméno, jež ji odlišuje od jiných relací v databázi.
- Každý atribut musí mít v relaci jedinečné jméno.
- Datové n-tice mohou být v libovolném pořadí. Poznámka: Prakticky pořadí může ovlivnit efektivitu přístupu.
- Atributy mohou být v libovolném pořadí.
- Všechny atributy v relaci musí být elementární nedělitelné – 1.NF.
- Každá datová n-tice musí být jedinečná, neexistují duplicitní datové n-tice.
- Všechny hodnoty v daného atributu musí být ze stejné domény.

Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky.

Integritní omezení (Relační integrita)

- V relaci existuje omezená množina přípustných hodnot daných atributů.
- Množina přípustných hodnot je definována doménou a integritním omezením (I).
- Příklady integritního omezení:
 - IO1 Každý žák má jedinečné rodné číslo.
 - IO2 Žáci mohou navštěvovat pouze třídu A nebo B, neboli atribut Třída={ A, B }
 - IO3 Žáci mohou navštěvovat pouze Ročník={ 1, 2, 3, 4, 5 }

Úplná definice integritních omezení je vysvětlena ve výukovém materiálu číslo II–S1–06.

Schéma a instance relační databáze

- Úplná definice schématu relace = schéma relační databáze (R,I)
 - $R = \{R_1, R_2, ..., R_k\}$ všechny relace v databázi
 - I množina integritních omezení
- Množina všech přípustných relačních databází se schématem (R,I) je množina relací R₁*, R₂*, ... R_k* takových, že jejich prvky vyhovují I.
- Instance relačního databázového schématu
 - Je jedinečný výskyt relační databáze odpovídající danému relačnímu databázovému schématu (R,I).

Terminologie relačního modelu

- Terminologie relačního modelu je poměrně složitá, dána vícevrstvou architekturou, pro každou fázi návrhu jsou definovány obsahově jiné termíny.
- Relační datový model má následující hlavní složky.

Terminologie relační datové struktury dle modelu.

Realita	Konceptuální model (E-R model)	Logická úroveň – Relační datový model	Fyzická úroveň – SQL
Objekt	Entita	Relace	Tabulka
Vlastnost objektu	Atribut	Atribut	Pole (sloupec)
Množina přípustných hodnot pro jednu nebo více vlastností	Doména	Doména	Datový typ
	V širším kontextu to jsou všechny hodnoty odpovídající pravidlům integritních relačních schémat.		
Typ objektu	Schéma entity	Schéma relace	Struktura tabulky
Instance objektu	Výskyt entity	Datová n-tice	Záznam (řádek)
Skupina objektů, jež jsou ve vzájemných vztazích	Model	Relační databáze	Kolekce normalizovaných tabulek
Vztahy mezi objekty	Relace	Vztah	Relace

Hodnoty NULL

- Jedná se o hodnotu atributu, která není definována.
- V praxi se jedná o hodnotu nezadanou nebo neznámou.
- Hodnota NULL musí být v definici doménového omezení daného atributu povolena. Pokud v daném atributu není hodnota NULL povolena, je povinnost zadat u daného atributu hodnotu ve všech datových n-ticích.

Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky.

NULL není nula

- Příklad chybné záměny hodnoty NULL za 0: Žák číslo 1 nepsal test číslo 5 a 3, byla mu chybně zadána známka 0.
- Výsledný průměr známek je (5+0+3+0)/4=2 !!!

Chybně zadáné hodnoty NULL		
ID_testu	ID_žáka	Známka
1	1	5
5	1	0
4	1	3
3	1	0

Správně zadáné hodnoty NULL		
ID_testu	ID_žáka	Známka
1	1	5
5	1	.NULL.
4	1	3
3	1	.NULL.

Super klíč a kandidátní klíč

Super klíč

- atribut nebo množina atributů jednoznačně identifikující datovou n-tici v relaci
- Může obsahovat nadbytečné atributy, které pro jednoznačné určení datové n-tice nejsou potřebné.

Kandidátní klíč

- Super klíč, který obsahuje minimální počet atributů k jedinečné identifikaci záznamů.
- vlastnosti kandidátního klíče:
 - jedinečnost jednoznačně identifikující datovou n-tici v relaci
 - neredukovatelnost žádná vlastní podmnožina atributů kandidátního klíče nezajišť uje jedinečné určení záznamů

Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky.

Příklad superklíčů a kandidátního klíče

Předpoklad relace Známky: V daném ročníku a pololetí přidělí jeden učitel jednomu žáku v jeden den z jednoho předmětu z jednoho tématu jednu známku.

Relace Známky

- RČ_žák
- Předmět
- · RČ_Učitel
- Ročník
- Pololetí
- Téma
- Váha_známky
- Datum
- Klasifikace
- Poznámky

Superklíč 1.

- RČ_žák
- Předmět
- RČ_Učitel
- Ročník
- Pololetí
- Téma
- Váha_známky
- Datum
- Klasifikace
- Poznámky

Superklíč 2.

- · RČ_žák
- Předmět
- RČ_Učitel
- Ročník
- Pololetí
- Téma
- Váha_známky
- Datum
- Klasifikace

Superklíč 3.

- RČ_žák
- Předmět
- RČ_Učitel
- Ročník
- Pololetí
- · Téma
- Váha_známky
- Datum

Superklíč 4.

- RČ_žák
- Předmět
- · RČ_Učitel
- Ročník
- Pololetí
- Téma
- Datum
- Klasifikace

Kandidátní klíč

- · RČ_žák
- Předmět
- · RČ_Učitel
- · Ročník
- Pololetí
- Téma
- · Datum

Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky.

Primární klíč

- Kandidátní klíč, který je vybrán, aby jedinečně určoval záznamy v tabulce.
- Klíč K schématu R(A) je minimální množina atributů z A, jejichž hodnoty jednoznačně určují prvky z R*.
- Je-li K klíč schématu R(A), pak pro každou přípustnou relaci R* platí: Jsou-li a a b dvě různé n-tice z R*, pak existuje alespoň jeden atribut Ai ∈ K takový, že a[K] ≠ b[K].
- Každá relace má definován právě jediný primární klíč.

Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky.

Primární klíč (PK)

- Druhy primárního klíče dle počtu atributů
 - Jednoduchý primární klíč PK je založen na jediném atributu.
 - 2. Složený primární klíč PK je založen na dvou nebo více atributech.

Přirozený primární klíč

PK je nastaven nad atributem nebo atributy, které přirozeně jednoznačně identifikují datovou n-tici relace.

Entita	Atribut přirozeného primárního klíče
Osoba	Rodné číslo
Faktura	Číslo faktury
Majetek	Inventární číslo majetku
Známka	Složený klíč obsahuje příliš mnoho atributů: RČ_Žák + Předmět + RČ_Učitel + Téma + Váha_známky + Ročník + Pololetí + Datum, vhodnější bude klíč syntetický ID_ZNAMKY

Syntetický (umělý) primární klíč

- Používá se, pokud neexistuje přirozený atribut PK nebo se jedná o složený PK, který je příliš složitý a jehož použití je nepraktické.
- PK založen na umělém atributu obsahující pořadové nebo pseudonáhodné jedinečné číslo.
- Obvykle se označuje jako IDENTIFIKÁTOR, ve jménu atributu začínající zkratkou ID_

Otázky k opakování

- Teoretické otázky:
- Vysvětlete strukturu relačního datového modelu.
- 2. Vyjmenujte vlastnosti relace.
- 3. Definujte schéma relační databáze.
- 4. Vysvětlete hodnotu NULL a uveďte příklady.
- 5. Co je to integritní omezení? Uveďte příklad.
- 6. Co jsou to klíče, jaké klíče znáte a jak jsou definovány? Uveďte příklady klíčů.

Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky.

Otázky k opakování

- Praktický úkol:
- Navrhněte tři nezávislé relace Faktury, Žáci a Katalog_Zboží,
- 2. Určete atributy relace a domény atributů.
- 3. Zajistěte, aby relace odpovídaly 1. normální formě.
- 4. Zajistěte entitní a doménovou integritu.
- 5. Zvolte vhodně pro atributy relace povolení nebo zakázání hodnot NULL.
- 6. Určete superklíče, kandidátní a primární klíče relace.

Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky.

Informační zdroje

- 1. CONOLLY, Thomas, Carolyn E BEGG a Richard HOLOWCZAK. *Mistrovství databáze*: *profesionální průvodce tvorbou efektivních databází*. Vyd. 1. Brno: Computer Press, 2009, 584 s. ISBN 978-80-251-2328-7.
- DUBOIS, Paul. MySQL profesionálně: komplexní průvodce použitím, programováním a správou MySQL. Vyd. 1. Překlad Jan Pokorný. Brno: Mobil Media, 2003, 1071 s. ISBN 80-865-9341-X.
- 3. TELNAROVÁ, Zdeňka. OSTRAVSKÁ UNIVERZITA. Relační databáze: Distanční výuková podpora. Aktualizovaná verze 2006. Ostrava: pouze v elektronické formě, 2006. ISBN (bez uvození).

Citace obrázků

- Všechny obrázky jsou vytvořeny autorem prezentace, 2012.
- Ve schématech využil autor ikony z galerie Microsoft Office 2010.

Děkuji za pozornost

>>> Ing. Zbyněk Pospěch

