

UNIVERSITI TEKNOLOGI MALAYSIA

ASSIGNMENT 2

(DISCRETE STRUCTURE)

NO	NAME	MATRIC NO
1	MUHAMMAD MUKHRITZ AL IMAN BIN MOHD RAFFI	A23CS0250
2	MUHAMMAD NAIM BIN ABDULLAH	A23CS0134

	No.:Date:
•	
	Q. Relation
1)	R= [(2,2) , (2,5) , (2,8) , (3,6) , (4,4) , (4,7) , (5,0)
	(5,5) (5,8) (6,8) (6,6) (7,4) (8,3) (8,5) (8,
	3
	7
	- Reflexive: x EA, (n, n) ER
	- symmetric: for each (n,y) there is (y,n)
	- transitive : for all (a,b) & (bic) ER, (a,c) ER
	R is equivalence relation
رد	Determine R & R
3)	Defending v 2 k
	$R = \{(1,9), (1,7), (3,8), (3,7)\}$
	$R^{7} = \{ (9,1), (7,1), (8,3), (9,3), (7,3) \}$
ь)	praw arrow diagram for both
	R R
	1,
,	
	9 3 8
()	Describe R in one word
	pezering K Wi out mord
	- for all (b,a) & BAA, bR'a -> b+a is even

No.:	Date:	
		-
) R= { (1,1) , (2,2) , (3,2) , (3,3) , (3,4) , (4,	(1), (4,4), (4,5), (5,4)	(5,
(12)		
5		
(3)		
1 2 3 µ 5		
in degree 3 3 1 3 2.	and the same and t	
out degree 1 1 3 3 3	a section of the sect	
	handin and a second	
- reflexive: Yes because for each MEA, (M,)		
- symmetric: Yes because for each (Mig) there is - transitive: no because (1,0) & (0,3) ER, (1,3)		
Thus R are reflexive and symmetric	7 4 1	
R= { (1,3), (2,6), (3,4), (4,13)}		
(1,1) eR, (0,0) LR REFLEXIVE: VXEA	(n,n) ER	
R is not reflexive		
R= { (1,3), (2,6), (3,9), (4,10) }		
(113) ER , (311) ER		
R is not symmetric		
R = { (1,3), (2,6), (3,9), (4,12)}	***************************************	
· (1,3) 8 (3,9) ER but (1,9) ER		
R is not transitive		

No.:	
	Date:
-	
(a)	RS
	0011 0110 0111
	. [0001] [0011] [0011].
ь	S R
	[1001] [0011] [0011]
	0 1 0 1
7)	Relation shows the relationship between input and output, and a function
	a relation which derives one output for each given input. Every function
	is relation but not every relation is a function.
6 (i)	E (213), (314), (413), (513) 3
	function because its one to one relation
	3 function because each domain have assigned
	4 to one value only.
	5 / 5
(11	£ (214), (314), (514), (4,4) }
_	(2) function because it's many to one funct
	3 function because each domain have assign
	4 10 one value only
	(5)

No	: Date:
-	
111)	E (2,3), (2,4), (5,4) }
	() not a function because it's many to
	3. mony relations.
	4. not a function, there is I domains "3" 8"4"
	didn't assigned value, Besides, domain 2
	has distance to more than I value
iv)	{ (2,3) , (3,5) , (\$,4) }
	i. / function because it's one to one
	3 telations domain "5" didn't assigned
	4 valve
	5.
v)	£ (2,2), (2,3), (4,4), (4,5)}
	onot a function because it's many
	3. 10 one function
	4 not a function, domain "3" and "3"
, .	(5) didn't assigned value, and domain "3" & "4"
	is assigned to more than I value
9)	R = { (1,6), (2,7), (3,8), (4,9), (5,10) -3
	Domain: [1,3,3,4,5]
	Range : { 6, 7, 8, 9, 10 }
0 (")	Let f(u,) = f(u,) injective / one to one
	1-2x, = 1-2 is since its injective and onto
-	- 2 x = - 2 x . Abijective
	, Y, = X ₂
_	. Y & R
	Let f(m) = y x = _ y - 1 on 10
	y = 1- 2 M

No.:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Date:
-		
i	$f(n) = sn^2 - 1 \qquad f = R \rightarrow R$	
	1e+ f(x,) = f(x,)	f(n) = sx3-1
	8 1 -1 = 5 1 -1	5 m ² -1 # - 2
	s r, 1 - S _{x, 2}	- not onto
	x, 1 = x, 2	
		- not bijective
	- not injective (one to one)	
	7	
· ·	f = R→R f(n) = x 4	
	Let f(x,) = f(r,)	find = " , range [0, to]
	x 1 = x 1	n" # -2
	Since x = x is possible,	- not ontu
	- not injective	- nat bijeczive
ii	$t = k \rightarrow K' t(x) = \left(\frac{1-3}{1-3}\right)$	
	$\left(\begin{array}{c} x_1-\lambda \\ x_1-\lambda \end{array}\right) = \left(\begin{array}{c} x_1-\lambda \\ x_1-\lambda \end{array}\right)$	
	$(x_3 - 3)(x_1 - 3) = (x_1 - 3)(x_3 - 3)$	
	x1x2-3x1-3x2+6= x2x1	
	x' = x?	
	- injective, one to one	
	- 131 ective	
	onto peranse leat numbe	er can be obtained
	Strown Few Hullylde	Y CD SIN
(ir)	$f(n) = 3n - 1$ $g(n) = n^2 - 1$	(g(o) = 3(a)3-4 = -4
	f (g (n)) = 3 (n²-1)-1	fg(1) = 3(1) = 4 = -1
_	= 3 n ² - 3 -1	(g(s) = 3(s) ² -4 = 8
	(g(n) = 3n² - 4	(9(3) = 3(3) = 4 = 23
	79117 3 4 - 4	
-	Alle	
-		2
		· · · · · · · · · · · · · · · · · · ·

No.:

Date:

×	$f(n) = u^2$, $g(n) = 5n - 6$	fg(0) = 25(0) - 60(0) + 36 =
	fg(n) = (sn-6)2	fg(1) = 21(1) - 60(1) +31 = 1
	fg(n) = 25x ² - 60 4 1 3 6	fg(a) = 25(a) - 60(a) + 31 = 16
		fg(3)=25(3)2-60(3) 136 = 81

$$f(n) = x-1, g(n) = n^{3}+1 \qquad fg(o) = o^{3} = o$$

$$fg(n) = (n^{3}+1)-1 \qquad fg(i) = 1^{3} = 1$$

$$fg(o) = n^{3} \qquad fg(o) = o^{3} = o$$

$$fg(o) = o^{3} = o$$

$$fg(o) = o^{3} = o$$

$$fg(o) = o^{3} = o$$

	No.:	Date:
-		
	2 - 10 - 70 - 1 0 = 6	8 - 94
12)	$a_n = 6a_{n-1} - 9a_{n-2} ; a_n = 1 , a_1 = 6$	
	2 -1	
	9, = 1 a ₁ = 6	
	$a_{2} = 6(6) - 9(1)$	
	= 27	
	98 = 6(27) - 9(6)	
	= 108	
	94 : 6(108) - 9(27)	
	= 405	
	95 = 6(HOS) - 9(108)	
	= 1458	
	xiii) an = 6an, - 11an-2 + 6an-3, a= 2	a, = 5 q = 15
	۹.= ۵	
	a, = s	
	a, = 15	
	9 = 6(15) - 11(8) + 6(2)	
	= 47	
	94 = 6(47) - 11(18) + 6(8)	
	= 147	
	98 = 6(147) - 11(47) + 6(16)	
	= 455	
	96 = 6(HS6) - 11 (147) + 6(47)	
	= 1398	

	No.:	Date:
Vix	an = - 39n-1 - 39n-2 + 9n-3 , 90-1, a	, = -0 , q ₀ = -1
		, ,
	d ° = ,	
	a, = - 5	
	q _{* '} - '	
	93 = -3(-1) - 3(-2)+1	
	- 10	
	a4 = -3(10) -3(-1) + (-2)	
	= -99	
	a; = -3(-0a) -3(10)+(-1)	
	= 56	
	9 (= -3(56) - 3(-24)+16	
	= -71	
-		
		·

	No.:	Date:
13	a, , a, , a,	
	an = san - 3 ' a = k	
	9, in term of k	
	q = 5q, -3 q ² = 5k - 3	
	9 = 59,-3 a = 5(5k-3)-3	
	an - sa, -3 qn = 5(5(5k-8)-3)-3	
	9 m = 5 (25 k - 1 k) - 3	
	an = 185k - 90 - 5	
	9 m = 12 S k - 9 3	
•		
ii)) q _n = 7	
	7 - 1254-93	
	128 = 7 193	
	197 K = 190	~~~~
	K = H	
, , , ,		