Portas Lógicas: AND, OR, NOT, XOR, NAND e NOR Arquitetura de Computadores

Charles Tim Batista Garrocho

Instituto Federal do Paraná – IFPR Campus Goioerê

charles.garrocho.com/AC2016

charles.garrocho@ifpr.edu.br

Técnico em Informática

Porta AND

A operação **AND** simula uma multiplicação binária, permitindo os possíveis resultados conforme mostra a tabela.

	Entrada		Saída
	Α	В	X = A.B
/	0	0	0
•	0	1	0
	1	0	0
	1	1	1

Porta OR

A operação **OR** simula uma soma binária, permitindo os possíveis resultados conforme mostra a tabela.

	Entrada		Saída	
	Α	В	X = A + B	
γ	0	0	0	
'	0	1	1	
	1	0	1	
	1	1	1	

Porta NOT

A operação **NOT** realiza a inversão de um dígito binário, permitindo os possíveis resultados conforme mostra a tabela.

Porta XOR

A operação **XOR** possui como principal função a verificação de igualdade, permitindo os possíveis resultados conforme mostra a tabela.

Porta NAND e NOR

As operações lógicas **NAND** e **OR** são realizadas em dois passos: primeiro a operação AND ou OR e, em seguida, o seu resultado é invertido.

Figura: Porta NAND.

Figura: Porta NOR.

Símbolos gráficos e equações booleanas de portas lógicas

Função Lógica Básica	Símbolo Gráfico da Porta	Equação Booleana
AND	A	Y = A.B
OR	A	Y = A+B
XOR	A	$Y = A \oplus B$
NOT	A — Y	$Y = \overline{A}$
NAND	A	$Y = \overline{A.B}$
NOR	A	$Y = \overline{A + B}$

Circuito Combinatório

Exercícios: Desenhe os circuitos que implementam as seguintes expressões booleanas:

a)
$$S = \overline{AB} + \overline{CD}$$

b)
$$S = (AB\overline{C} + \overline{CD}) \oplus D$$

c)
$$S = A B + (CD E)$$

d)
$$S = A + (B + C D)(B + A)$$

Exercícios: Escreva a expressão booleana executada pelos circuitos abaixo:

