

董波 数学科学学院 大连理工大学

幂法、反幂法作用

求方阵的全部特征值

求特征多项式的方法 计算量大

实际应用中仅需矩阵的极端特征值

模最大特征值

幂法

模最小特征值

反幂法

应用: Pagerank

$$A \longleftrightarrow B$$

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \lambda = 1 \quad x = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}$$

$$\lambda = 1 \quad x = \begin{pmatrix} 1 \\
1 \end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 \\
1/2 & 0 & 1 \\
1/2 & 0 & 0
\end{pmatrix}$$

$$\lambda = 1 \quad x = \begin{pmatrix} 2 \\
2 \\
1 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1/2 & 0 & 1/3 \\ 1/3 & 0 & 1 & 1/3 \\ 1/3 & 0 & 0 & 1/3 \\ 1/3 & 1/2 & 0 & 0 \end{pmatrix} \lambda = 1 \quad x = \begin{pmatrix} 3 \\ 4 \\ 2 \\ 3 \end{pmatrix} \quad \begin{array}{c} \text{最大特征值1对应} \\ \text{的特征向量反映} \\ \text{重要性} \\ 3 \end{pmatrix}$$

$$\lambda=1$$
 $x=\begin{bmatrix} 4\\2\\2 \end{bmatrix}$

幂法

假定n阶方阵A可对角化,其特征值和对应的特征向量分别为

$$|\lambda_1 \lambda_2| > |\lambda_2| \geq \dots \geq |\lambda_n|$$
 $x_1 \quad x_2 \quad \dots \quad x_n$

对任一n维向量v,均可表示为 $v = \alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_n x_n$.故

$$Av = A(\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n) = \alpha_1 \lambda_1 x_1 + \alpha_2 \lambda_2 x_2 + \dots + \alpha_n \lambda_n x_n$$

从而

$$A^{k}v = \alpha_{1}\lambda_{1}^{k}x_{1} + \alpha_{2}\lambda_{2}^{k}x_{2} + \dots + \alpha_{n}\lambda_{n}^{k}x_{n} = \lambda_{1}^{k}\left(\alpha_{1}x_{1} + \alpha_{2}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k}x_{2} + \dots + \alpha_{n}\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k}x_{n}\right)$$

有

$$\frac{A^k v}{\lambda_1^k} \to \alpha_1 x_1 \qquad \frac{A^k v}{A^{k-1} v} \to \lambda_1$$

收敛速度取决于比值 λ_2/λ_1 的大小

幂法流程

幂法的本质是 $v_k = A^k v_0$

算法流程:

任取一个非零初始向量 $v_0 \in R^n$

$$v_1 = Av_0$$

$$v_2 = A^2 v_0 = A v_1$$

$$v_{k+1} = A^{k+1} v_0 = A v_k$$

存在问题:

 $\alpha_1 = 0$ 将会怎样?

重新选择初始向量

迭代向量的各个不等于零的分量将随k→∞而趋于无穷

规范化迭代向量

幂法

假定n阶方阵 A具有n个线性无关的特征向量

$$X_1$$
 X_2 \dots X_n

且对应的特征值满足

$$\left|\lambda_{1}\right| > \left|\lambda_{2}\right| \geq \ldots \geq \left|\lambda_{n}\right|$$

则对任一n维非零向量 v_0 , 经使用迭代过程

$$v_k = A^k v_0$$

计算可得

$$v_k = \alpha_1 \lambda_1^k x_1, \qquad \alpha_1 \neq 0 \qquad \frac{v_k}{v_{k-1}} = \lambda_1$$

幂法改进

任取初始向量: $v_0 \neq 0$

迭代

$$v_1 = Av_0,$$

$$v_2 = Au_1 = \frac{A^2v_0}{\max(Av_0)},$$

$$v_{k} = Au_{k-1} = \frac{A^{k}v_{0}}{\max(A^{k-1}v_{0})},$$

•

规范化

$$u_1 = \frac{v_1}{\max(v_1)} = \frac{Av_0}{\max(Av_0)}$$

$$u_2 = \frac{v_2}{\max(v_2)} = \frac{A^2 v_0}{\max(A^2 v_0)}$$

$$u_k = \frac{v_k}{\max(v_k)} = \frac{A^k v_0}{\max(A^k v_0)}$$

则有迭代向量序列 $\{v_k\}$ 及规范化向量序列 $\{u_k\}$ 。

收敛性分析

$$u_{k} = \frac{v_{k}}{\max(v_{k})} = \frac{\lambda_{1}^{k} \left(\alpha_{1}x_{1} + \alpha_{2}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k} x_{2} + \dots + \alpha_{n}\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k} x_{n}\right)}{\max\left(\lambda_{1}^{k} \left(\alpha_{1}x_{1} + \alpha_{2}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k} x_{2} + \dots + \alpha_{n}\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k} x_{n}\right)\right)} \rightarrow \frac{x_{1}}{\max(x_{1})}$$

$$v_{k} = \frac{A^{k}v_{0}}{\max(A^{k-1}v_{0})} = \frac{\lambda_{1}^{k} \left(\alpha_{1}x_{1} + \alpha_{2}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k} x_{2} + \dots + \alpha_{n}\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k} x_{n}\right)}{\max\left(\lambda_{1}^{k-1}\left(\alpha_{1}x_{1} + \alpha_{2}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k-1} x_{2} + \dots + \alpha_{n}\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k-1} x_{n}\right)\right)}$$

于是,
$$\mu_k = \max(v_k) \rightarrow \lambda_1$$

复杂情形

$$ightharpoons$$
 重特征值 $\lambda_1 = \lambda_2 = \cdots = \lambda_r$

$$\triangleright$$
 $\lambda_1 = \lambda_2 = \cdots = \lambda_r = -\lambda_{r+1} = \cdots = -\lambda_{r+s}$

$$\rightarrow$$
 $\lambda_1 = \lambda_2 = \cdots = \lambda_r = \overline{\lambda}_{r+1} = \cdots = \overline{\lambda}_{r+s}$

反幂法

作用:反幂法用来计算矩阵A按模最小的特征值及对应的特征向量

- 1. 假设实矩阵A具有n个线性无关的特征向量 $x_1, x_2, ..., x_n$
- 2. 相应的特征值满足 $|\lambda_1| \ge |\lambda_2| \ge ... \ge |\lambda_{n-1}| > |\lambda_n| > 0$

反幂法:对于 A^{-1} 应用幂法:对于给的初始向量 V_0

$$\begin{cases} u_k = A^{-1}v_{k-1} \\ v_k = u_k / \max(u_k) \end{cases}$$
 连免求逆
$$\begin{cases} Au_k = v_{k-1} \\ v_k = u_k / \max(u_k) \end{cases}$$
 A=LU
$$\begin{cases} Lw_k = v_{k-1} \\ Uu_k = w_k \\ v_k = u_k / \max(u_k) \end{cases}$$

带原点平移的反幂法: $对(A-pI)^{-1}$ 用幂法

$$\begin{cases} u_k = (A - pI)^{-1} v_{k-1} & \text{if } f(A - pI) u_k = v_{k-1} \\ v_k = u_k / \max(u_k) & v_k = u_k / \max(u_k) \end{cases} \xrightarrow{\text{A-pI=LU}} \begin{cases} Lw_k = v_{k-1} \\ Uu_k = w_k \\ v_k = u_k / \max(u_k) \end{cases}$$