Ray Casting II

MIT EECS 6.837, Cutler and Durand

Last Time?

- Ray Casting / Tracing
- · Orthographic Camera
- Ray Representation
 - -P(t) = origin + t * direction
- · Ray-Sphere Intersection
- Ray-Plane Intersection
- Implicit vs. Explicit Representations

MIT EECS 6.837, Cutler and Durand

Explicit vs. Implicit?

- Explicit
 - Parametric
 - Generates points
 - Hard to verify that a point is on the object
- Implicit
 - Solution of an equation
 - Does not generate points
 - Verifies that a point is on the object

MIT EECS 6.837. Cutler and Durand

Assignment 1: Ray Casting

- Write a basic ray caster
 - Orthographic camera
 - Sphere Intersection
 - Main loop rendering
 - 2 Display modes: color and distance
- We provide:
 - Ray (origin, direction)
 - Hit (t, Material)
 - Scene Parsing

MIT EECS 6.837, Cutler and Durand

Object-Oriented Design

- We want to be able to add primitives easily
 - Inheritance and virtual methods
- Even the scene is derived from Object3D!

MIT EECS 6.837, Cutler and Durand

Graphics Textbooks

 Recommended for 6.837: Peter Shirley Fundamentals of Computer Graphics AK Peters

· Ray Tracing

MIT EECS 6 837 Cutler and Durand

Linear Algebra Review Session

- Monday Sept. 20 (this Monday!)
- Room 2-105 (we hope)
- 7:30 9 PM

MIT EECS 6.837, Cutler and Durand

Questions? Image by Henrik Wann Jensen MIT EECS 6.837, Cutler and Durand 8

Overview of Today Ray-Box Intersection Ray-Polygon Intersection Ray-Triangle Intersection Ray-Bunny Intersection extra topics...

MIT EECS 6.837. Cutler and Durand

Test if Parallel

• If $R_{dx} = 0$ (ray is parallel) AND $R_{ox} < X_1 \text{ or } R_{ox} > X_2 \rightarrow \text{ no intersection}$

Find Intersections Per Dimension

• Calculate intersection distance t₁ and t₂

$$-t_1 = (X_1 - R_{ox}) / R_{dx}$$

 $-t_2 = (X_2 - R_{ox}) / R_{dx}$

Maintain t_{near} & t_{far}

· Closest & farthest intersections on the object

$$- If t_1 > t_{near}, t_{near} = t_1$$

$$- \text{ If } t_2 < t_{\text{far}}, \quad t_{\text{far}} = t_2$$

Is there an Intersection?

• If $t_{near} > t_{far} \rightarrow box is missed$

Is the Box Behind the Eyepoint?

Return the Correct Intersection

- If $t_{near} \ge t_{min} \rightarrow closest$ intersection at t_{near}
- \rightarrow closest intersection at t_{far}

Ray-Box Intersection Summary

- · For each dimension,
 - If $R_{dx} = 0$ (ray is parallel) AND $R_{ox}^{ux} < X_1 \text{ or } R_{ox} > X_2 \rightarrow \text{ no intersection}$
- · For each dimension, calculate intersection distances t1 and t2
 - $t_1 = (X_1 R_{ox}) / R_{dx}$
- $t_2 = (X_2 R_{ox}) / R_{dx}$
 - $If t_1 > t_2$, swap
 - Maintain t_{near} and t_{far} (closest & farthest intersections so far) $- If t_1 > t_{near}, t_{near} = t_1$
 - If $t_2 < t_{far}$, $t_{far} = t_2$

19

- If $t_{near} > t_{far} \rightarrow box is missed$
- If $t_{far} < t_{min} \rightarrow box is behind$
- If $t_{near} > t_{min} \rightarrow closest$ intersection at t_{near}
- \rightarrow closest intersection at t_{far}

MIT EECS 6.837, Cutler and Durand

Efficiency Issues

- + $1/R_{dx}$, $1/R_{dy}$ and $1/R_{dz}$ can be pre-computed and shared for many boxes
- Unroll the loop
 - Loops are costly (because of termination if)
 - Avoid the t_{near} & t_{far} comparison for first dimension

MIT EECS 6.837, Cutler and Durand

20

Questions? Image by Henrik Wann Jensen MIT EECS 6.837. Cutler and Durand

Overview of Today

- Ray-Box Intersection
- Ray-Polygon Intersection
- · Ray-Triangle Intersection
- · Ray-Bunny Intersection & extra topics...

MIT EECS 6.837. Cutler and Durand

Ray-Polygon Intersection

- Ray-plane intersection
- Test if intersection is in the polygon

- Solve in the 2D plane

Point Inside/Outside Polygon

- Ray intersection definition:
 - Cast a ray in any direction
 - · (axis-aligned is smarter)
 - Count intersections
 - If odd number, point is inside
- · Works for concave and star-shaped

MIT EECS 6.837, Cutler and Durand

Precision Issue

- What if we intersect a vertex?
 - We might wrongly count an intersection for exactly one adjacent edge
- Decide that the vertex is always above the ray

Alternative Definition • Sum of the signed angles from point to edges ±360°, ±720°, ... → point is inside 0° → point is outside

MIT EECS 6.837. Cutler and Durand

Ray-Triangle Intersection

- · Use ray-polygon
- · Or try to be smarter
 - Use barycentric coordinates

Barycentric Definition of a Plane

- $P(\alpha, \beta, \gamma) = \alpha a + \beta b + \gamma c$ with $\alpha + \beta + \gamma = 1$
- Is it explicit or implicit?

P is the barycenter: the single point upon which the plane would balance if weights of size α , β , & γ are placed on points a, b, & c.

[Möbius, 1827]

Barycentric Definition of a Triangle

- $P(\alpha, \beta, \gamma) = \alpha a + \beta b + \gamma c$ with $\alpha + \beta + \gamma = 1$
- AND $0 < \alpha < 1$ & $0 < \beta < 1$ & $0 < \gamma < 1$

How Do We Compute α , β , γ ?

- Ratio of opposite sub-triangle area to total area $-\alpha = A_a/A$ $\beta = A_b/A$ $\gamma = A_c/A$
- Use signed areas for points outside the triangle

Intuition Behind Area Formula

- P is barycenter of a and Q
- A_a is the interpolation coefficient on \overline{aQ}
- All points on lines parallel to \overline{bc} have the same α (All such triangles have same height/area)

Simplify

• Since $\alpha + \beta + \gamma = 1$, we can write $\alpha = 1 - \beta - \gamma$ $P(\alpha, \beta, \gamma) = \alpha a + \beta b + \gamma c$ $P(\beta, \gamma) = (1 - \beta - \gamma)a + \beta b + \gamma c$ $= a + \beta(b-a) + \gamma(c-a)$ cNon-orthogonal coordinate system of the plane a bMIT EECS 6.837, Cutler and Durand 36

Intersection with Barycentric Triangle

• Set ray equation equal to barycentric equation

$$P(t) = P(\beta, \gamma)$$

$$R_o + t * R_d = a + \beta(b-a) + \gamma(c-a)$$

• Intersection if $\beta + \gamma < 1$ & $\beta > 0$ & $\gamma > 0$

MIT EECS 6.837, Cutler and Durand

Intersection with Barycentric Triangle

•
$$R_o + t * R_d = a + \beta(b-a) + \gamma(c-a)$$

$$\begin{cases} R_{ox} + tR_{dx} = a_x + \beta(b_{\bar{x}} \quad a) + \gamma(c_{\bar{x}} \quad a) \\ R_{oy} + tR_{dy} = a_y + \beta(b_{\bar{y}} \quad a) + \gamma(c_{\bar{y}} \quad a) \\ R_{oz} + tR_{dz} = a_z + \beta(b_{\bar{z}} \quad a) + \gamma(c_{\bar{z}} \quad a) \end{cases}$$
3 equations, 3 unknowns

• Regroup & write in matrix form:

$$\begin{bmatrix} a_{x} - b_{x} & a_{x} - c_{x} & R_{dx} \\ a_{y} - b_{y} & a_{y} - c_{y} & R_{dy} \\ a_{z} - b_{z} & a_{z} - c_{z} & R_{dz} \end{bmatrix} \begin{bmatrix} \beta \\ \gamma \\ t \end{bmatrix} = \begin{bmatrix} a_{x} - R_{ox} \\ a_{y} - R_{oy} \\ a_{z} - R_{oz} \end{bmatrix}$$

MIT EECS 6.837, Cutler and Durand

38

Cramer's Rule

• Used to solve for one variable at a time in system of equations

$$\beta = \frac{\begin{vmatrix} a_x - R_{ox} & a_x - c_x & R_{dx} \\ a_y - R_{oy} & a_y - c_y & R_{dy} \\ a_z - R_{oz} & a_z - c_z & R_{dz} \end{vmatrix}}{|A|} \qquad \gamma = \frac{\begin{vmatrix} a_x - b_x & a_x - R_{ox} & R_{dx} \\ a_y - b_y & a_y - R_{oy} & R_{dy} \\ a_z - b_z & a_z - R_{oz} & R_{dz} \end{vmatrix}}{|A|}$$

$$= \begin{vmatrix} a_x - b_x & a_x - c_x & a_x - R_{ox} \\ a_y - b_y & a_y - c_y & a_y - R_{oy} \\ a_z - b_z & a_z - c_z & a_z - R_{oz} \end{vmatrix}$$

Advantages of Barycentric Intersection

- · Efficient
- Stores no plane equation
- · Get the barycentric coordinates for free - Useful for interpolation, texture mapping

MIT EECS 6.837. Cutler and Durand

Questions?

Image computed using the RADIANCE system by Greg Ward

MIT EECS 6.837, Cutler and Durance

Overview of Today

- · Ray-Box Intersection
- · Ray-Polygon Intersection
- · Ray-Triangle Intersection
- · Ray-Bunny Intersection & extra topics...

MIT EECS 6.837, Cutler and Durand

