

PROVA DE FÍSICA MATEMÁTICA II – GEOMETRIA DIFERENCIAL

Sandro Dias Pinto Vitenti

Departamento de Física – CCE – UEL

- 1. Dado um círculo unitário definido por $S^1 = \{(x,y) \in \mathbb{R}^2; x^2 + y^2 = 1\}$, mostre explicitamente que S^1 é uma variedade diferenciável. Para isso faça os itens abaixo:
 - (a) Encontre um conjunto mínimo de cartas (U_i, ϕ_i) para 0 < i < m (onde m é o número de cartas) e mostre que ele cobre toda a variedade.
 - (b) Mostre que as funções $\phi_1 \circ \phi_2^{-1}$ e $\phi_2 \circ \phi_1^{-1}$ são suaves em $U_1 \cap U_2$.
- 2. Seja o mapa $h: \mathbb{R}^2 \to \mathbb{R}^3$ dado por

$$h(x,y) = \begin{pmatrix} u(x,y) \\ v(x,y) \\ w(x,y) \end{pmatrix} = \begin{pmatrix} x \\ y \\ x^2 + y^2 \end{pmatrix}$$
 (1)

E um campo vetorial

$$V = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y},$$

calcule o campo em \mathbb{R}^3 definido pelo *push-forward* $h_*V \in T_{h(x,y)}\mathbb{R}^3$ (lembre-se que h_*V é uma derivação em $C^\infty(\mathbb{R}^3)$). **Item bonus** (ponto extra na prova), calcule as curvas integrais de V, ou seja, as curvas cuja a tangente coincide com V ao longo de suas trajetórias.

- 3. Em quais situações podemos calcular soluções usando a série de Taylor e em quais é necessário usar o método de Frobenius? Em quais casos o método de Frobenius **não** pode ser aplicado? Dê um exemplo para cada uma dessas situações.
- 4. Dada a equação de Legendre

$$(1-x^2)y^{\prime\prime}-2xy^{\prime}+\lambda(\lambda+1)y=0,$$

onde y(x) está definida em $x \in [-1,1]$, resolva a equação em um dos pontos singulares regulares usando o método de Frobenius e encontre duas soluções linearmente independentes em torno desse ponto. Responda as perguntas:

- (a) O que acontece nos pontos singulares regulares se λ não for um número inteiro?
- (b) Quais restrições temos sobre λ ?