Klasifikacija singulariteta

1. Ispitati prirodu singulariteta sledećih funkcija i naći ostatke u njima:

a)
$$f(z) = \frac{e^z - 1}{z}$$

b)
$$f(z) = \frac{1}{z^5 + z^3}$$
;

c)
$$f(z) = \frac{\sin z}{z^2}$$

a)
$$f(z) = \frac{e^z - 1}{z}$$
; b) $f(z) = \frac{1}{z^5 + z^3}$; c) $f(z) = \frac{\sin z}{z^2}$; d) $f(z) = \frac{1 - \cos z}{z^2}$.

Rešenje:

a) Singularitet funkcije $f(z) = \frac{e^z - 1}{z}$ je z = 0.

 $\underline{1.\ \mathrm{na\check{c}in}}$: Nula imenioca i brojioca funkcije f(z) je z=0 jednostruka nula,
tako da dobijamo da je z=0prividan singularitet, a ostatak je Res(f(z), 0) = 0.

2. način: Razvijemo funkciju u Loranov red u okolini te tačke:

$$f(z) = \frac{e^z - 1}{z} = \frac{1}{z} \cdot e^z - \frac{1}{z} = \frac{1}{z} \cdot \sum_{n=0}^{\infty} \frac{z^n}{n!} - \frac{1}{z} = \sum_{n=0}^{\infty} \frac{z^{n-1}}{n!} - \frac{1}{z} = \sum_{n=1}^{\infty} \frac{z^{n-1}}{n!},$$

odavde sledi da je z = 0 prividan singularitet i Res(f(z), 0) = 0.

3. način: Kako je

$$\lim_{z \to 0} f(z) = \lim_{z \to 0} \frac{e^z - 1}{z} = 1$$

sledi da je z=0 prividan singularitet i Res(f(z),0)=0.

b) Singulariteti funkcije $f(z) = \frac{1}{z^3(z-i)(z+i)}$ su z=0, z=i i z=-i.

Nule imenioca racionalne funkcije f(z) su z=0 trostruka nula, z=i i z=-i jednostruke nule, pa kako u ovim tačkama brojilac nije nula, dobijamo da je z=0 pol trećeg reda, a z=i i z=-i polovi prvog

$$Res(f(z),0) = \frac{1}{2!} \cdot \lim_{z \to 0} \left(z^3 \cdot \frac{1}{z^3(z^2 + 1)} \right)'' = \frac{1}{2} \cdot \lim_{z \to 0} \left(\frac{1}{z^2 + 1} \right)'' \stackrel{(*)}{=} \frac{1}{2} \cdot \lim_{z \to 0} \frac{2(3z^2 - 1)}{(z^2 + 1)^3} = -1$$

$$Res(f(z),i) = \frac{1}{0!} \cdot \lim_{z \to i} \left((z - i) \cdot \frac{1}{z^3(z - i)(z + i)} \right) = \lim_{z \to i} \frac{1}{z^3(z + i)} = \frac{1}{i^3 \cdot 2i} = \frac{1}{2}$$

$$Res(f(z),-i) = \frac{1}{0!} \cdot \lim_{z \to -i} \left((z + i) \cdot \frac{1}{z^3(z - i)(z + i)} \right) = \lim_{z \to -i} \frac{1}{z^3(z - i)} = \frac{1}{(-i)^3 \cdot (-2i)} = \frac{1}{2}$$

$$(*) \left(\frac{1}{z^2+1}\right)' = \frac{-2z}{(z^2+1)^2}$$

$$\left(\frac{1}{z^2+1}\right)'' = \left(\frac{-2z}{(z^2+1)^2}\right)' = \frac{-2(z^2+1)^2 + 2z \cdot 2(z^2+1) \cdot 2z}{(z^2+1)^4} = \frac{-2z^2 - 2 + 8z^2}{(z^2+1)^3} = \frac{2(3z^2-1)}{(z^2+1)^3}$$

c) Singularitet funkcije $f(z) = \frac{\sin z}{z^2}$ je z = 0.

Nula imenioca funkcije f(z) je z=0 dvostruka nula, a nula brojilaca je z=0 jednostruka nula, tako da dobijamo da je z=0 pol prvog reda.

$$Res(f(z),0) = \frac{1}{0!} \cdot \lim_{z \to 0} \left(z \cdot \frac{\sin z}{z^2} \right) = \lim_{z \to 0} \frac{\sin z}{z} = 1$$

d) Singularitet funkcije $f(z) = \frac{1 - \cos z}{z^2}$ je z = 0.

Nula imenioca i brojilaca funkcije f(z) je z=0 dvostruka nula,
tako da dobijamo da je z=0 prividan singularitet, a ostatak je Res(f(z), 0) = 0.

2. Ispitati prirodu singulariteta sledećih funkcija u proširenoj kompleksnoj ravni i naći ostatke u njima:

a)
$$f(z) = \frac{z^2 + 2z + 5}{z}$$
;

b)
$$f(z) = e^{\frac{2z-1}{2-z}}$$
.

Rešenje:

- a) Funkcija $f(z)=\frac{z^2+2z+5}{z}=z+2+\frac{5}{z}$ ima pol prvog reda u tački z=0 i njen ostatak je Res(f(z),0)=5.

 Tačka $z=\infty$ je singularna, jer funkcija $f\left(\frac{1}{u}\right)=\frac{1}{u}+2+5u$ ima pol prvog reda u tački u=0, samim tim funkcija f(z) ima pol prvog reda u $z=\infty$ i njen ostatak je $Res(f(z),\infty)=-Res(f(z),0)=-5$.
- b) Funkcija $f(z) = e^{\frac{2z-1}{2-z}}$ ima esencijalni singularitet u tački z=2 što se vidi iz njenog razvoja u Loranov red u okolini te tačke:

$$f(z) = e^{\frac{2z-1}{2-z}} = e^{\frac{-2(2-z)+3}{2-z}} = e^{-2} \cdot e^{\frac{3}{2-z}} = e^{-2} \cdot \sum_{n=0}^{\infty} \frac{1}{n!} \cdot \frac{(-3)^n}{(z-2)^n},$$

i njen ostatak je $Res(f(z), 2) = a_{-1} = -\frac{3}{e^2}$.

Tačka $z=\infty$ je regularna, jer je $f\left(\frac{1}{u}\right)=e^{\frac{\frac{2}{u}-1}{2-\frac{1}{u}}}=e^{\frac{2-u}{2u-1}}$ analitička funkcija u tački u=0 i njen ostatak je $Res(f(z),\infty)=-Res(f(z),2)=\frac{3}{e^2}.$

3. Ispitati prirodu singulariteta funkcije $f(z) = \frac{1}{z(e^z-1)}$ i naći ostatke u njima.

Rešenje: Funkcija $f(z) = \frac{1}{z(e^z - 1)}$ ima singularitet u tačkama gde je $z(e^z - 1) = 0$, odnosno kada je z = 0 ili $e^z - 1 = 0$. Tako dobijamo u tački z = 0 pol drugog reda, i u tačkama $z = 2k\pi i$, $k \in \mathbb{Z} \setminus \{0\}$ polovi prvog reda. Njihovi ostaci su:

$$\begin{split} Res(f(z),0) &= \frac{1}{1!} \cdot \lim_{z \to 0} \left(z^2 \cdot \frac{1}{z(e^z - 1)} \right)' = \lim_{z \to 0} \left(\frac{z}{e^z - 1} \right)' = \lim_{z \to 0} \frac{e^z - 1 - z \cdot e^z}{(e^z - 1)^2} \\ &\stackrel{LP}{=} \lim_{z \to 0} \frac{e^z - e^z - z \cdot e^z}{2(e^z - 1) \cdot e^z} = \lim_{z \to 0} \frac{-z}{2(e^z - 1)} \stackrel{LP}{=} \lim_{z \to 0} \frac{-1}{2e^z} = -\frac{1}{2}. \end{split}$$

$$\begin{split} Res(f(z), 2k\pi i) &= \frac{1}{0!} \cdot \lim_{z \to 2k\pi i} \left((z - 2k\pi i) \cdot \frac{1}{z(e^z - 1)} \right) = \lim_{z \to 2k\pi i} \frac{z - 2k\pi i}{z(e^z - 1)} \overset{LP}{=} \lim_{z \to 2k\pi i} \frac{1}{e^z + ze^z - 1} \\ &= \frac{1}{2k\pi i \cdot e^{2k\pi i}} = -\frac{i}{2k\pi}. \end{split}$$

4. Izračunati $\int_C \frac{e^z}{z \cdot (z^2 + 16)} dz$, ako je $C = \{z \in \mathbb{C} : |z - 3| = r, r > 0, r \neq 3, r \neq 5\}$ pozitivno orijentisana.

Rešenje: Neka je $f(z) = \frac{e^z}{z \cdot (z^2 + 16)}$. Singulariteti funkcije f(z) su $z_1 = 0$, $z_2 = 4i$ i $z_3 = -4i$. Sva tri singulariteta su polovi prvog reda (jednostruka nula imenioca funkcije f(z) i nije nula brojioca funkcije f(z)). Odgovarajući reziduumi u singularitetima su:

$$\begin{aligned} &Res(f(z),0) = \frac{1}{0!} \cdot \lim_{z \to 0} \left(z \cdot \frac{e^z}{z(z^2 + 16)} \right) = \lim_{z \to 0} \frac{e^z}{z^2 + 16} = \frac{1}{16}; \\ &Res(f(z),4i) = \frac{1}{0!} \cdot \lim_{z \to 4i} \left((z - 4i) \cdot \frac{e^z}{z(z - 4i)(z + 4i)} \right) = \lim_{z \to 4i} \frac{e^z}{z(z + 4i)} = \frac{e^{4i}}{4i \cdot 8i} = -\frac{e^{4i}}{32}; \\ &Res(f(z),-4i) = \frac{1}{0!} \cdot \lim_{z \to -4i} \left((z + 4i) \cdot \frac{e^z}{z(z - 4i)(z + 4i)} \right) = \lim_{z \to -4i} \frac{e^z}{z(z - 4i)} = \frac{e^{-4i}}{-4i \cdot (-8i)} = -\frac{e^{-4i}}{32}. \\ &\text{U zavisnosti od vrednosti za } r \text{ razlikujemo sledeće slučajeve.} \end{aligned}$$

Za 0 < r < 3:

$$\int\limits_{C}f(z)dz=0$$
 $(f(z)$ je analitička u oblasti $C\cup \mathrm{int}(C));$

$$\int_{C} f(z)dz = 2\pi i Res(f(z), 0) = \frac{2\pi i}{16} = \frac{\pi i}{8};$$

za r > 5:

$$\int_C f(z)dz = 2\pi i (Res(f(z), 0) + Res(f(z), 4i) + Res(f(z), -4i)) = 2\pi i \left(\frac{1}{16} - \frac{e^{4i}}{32} - \frac{e^{-4i}}{32}\right)$$
$$= \pi i \cdot \frac{2 - e^{4i} - e^{-4i}}{16} = \frac{\pi i (1 - \cos 4)}{8}.$$

5. Izračunati $\int_C \frac{\sin\frac{1}{z}}{(z-1)^2} dz$, ako je $C=\{z\in\mathbb{C}:\,|z|=2\}$ pozitivno orijentisana.

Rešenje: Neka je $f(z) = \frac{\sin \frac{1}{z}}{(z-1)^2}$. Singulariteti funkcije f(z) su $z_1 = 1$ i $z_2 = 0$. Tačka $z_1 = 1$ je pol drugog reda (dvostruka nula imenioca funkcije f(z) i nije nula brojioca funkcije f(z)). Tačka $z_2 = 0$ je esencijalni singularitet. Odgovarajući reziduumi u singularitetima su:

$$Res(f(z),1) = \frac{1}{1!} \cdot \lim_{z \to 1} \left((z-1)^2 \cdot \frac{\sin \frac{1}{z}}{(z-1)^2} \right)' = \lim_{z \to 1} \left(\sin \frac{1}{z} \right)' = \lim_{z \to 1} \sin \frac{1}{z} = -\lim_{z \to 1} \frac{\cos \frac{1}{z}}{z^2} = -\cos 1;$$

Da bi našli Res(f(z), 0) moramo naći koeficijent a_{-1} uz $\frac{1}{z}$ u Loranovom razvoju. Stoga imamo

$$\frac{1}{(z-1)^2} = \left(\frac{1}{z-1}\right)' = \left(\sum_{n=0}^{\infty} z^n\right)' = \sum_{n=1}^{\infty} n \cdot z^{n-1} = \sum_{n=0}^{\infty} (n+1) \cdot z^n,$$

$$\sin\frac{1}{z} = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \cdot \frac{1}{z^{2n+1}}$$

$$f(z) = (1 + 2z + 3z^2 + 4z^3 + \dots) \cdot \left(\frac{1}{z} - \frac{1}{3! \cdot z^3} + \frac{1}{5! \cdot z^5} - \frac{1}{7! \cdot z^7} + \dots\right).$$

Odavde dobijamo da je:

$$Res(f(z),0) = a_{-1} = 1 - \frac{3}{3!} + \frac{5}{5!} - \frac{7}{7!} + \dots = 1 - \frac{1}{2!} + \frac{1}{4!} - \frac{1}{6!} + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} = \cos 1.$$

Tako da je

$$\int_C \frac{\sin\frac{1}{z}}{(z-1)^2} dz = 2\pi i (Res(f(z),1) + Res(f(z),0)) = 2\pi i (-\cos 1 + \cos 1) = 0.$$