Network Intrusion Detection

DATA 586

Avishek Saha, Vimaljeet Singh, Noman Mohammad

BACKGROUND INFORMATION - INTRUSIONS

Detecting whether a network connection is genuine or an anomaly is crucial for network security.

Causes: Malicious attacks, software bugs, or hardware failures.

<u>Consequences</u>: Data breaches, system downtime, or loss of sensitive information.

<u>Requirement</u>: Strong understanding of network protocols, traffic patterns, and behavior.

<u>Aids</u>: Machine Learning Algorithms, Anomaly Detection Models, and Intrusion Detection Systems.

BACKGROUND INFORMATION - DATA SET

NSL-KDD dataset used.

Helps researchers compare different intrusion detection methods.

Redundant records removed.

 Evaluation results are consistent and can be compared across different research studies.

RESEARCH OBJECTIVES

Importance: Accurate detection of network anomalies for robust network security

Approach: Utilize features from the dataset to classify connections as normal or attacks

Key Features: Duration, Protocol_type, Service, Flag, Src_bytes, Etc...

Goal: Using the most significant features for classifying network connections as normal or attacks using advanced ML tools

EXPERIMENTAL PROCEDURES

- Data pre-processing
 - Configuring training and testing sets
- EDA
 - o Categorical / Numerical, Continuous / Discrete
 - Categorize the attack types into DOS, Probe, U2R, R2L
 - Check occurrence of each attack and decide what constitutes a normal vs suspicious connection
- Feature Engineering
 - Variable selection
- Model Training
 - Logistic Regression, NN (all features), NN (selected features)

RESULT & ANALYSIS

- Accuracy Assessment
 - Highlighting the best model

Accuracy: 0.822658

Precision: 0.823464

Recall: 0.822658

F1 score: 0.819620

Demo

o user-friendly interface for testing new data

