Data Science Course Understanding swarm behaviour

Felicia Burtscher, Frederik Eistrup, José Senart

Freie Universität Berlin August 4, 2017

Presentation Overview

- Introductory models: simple speed coupling, couzin model, vicsek model
- Module 1: Effective leadership and decision-making in animal groups on the move (Couzin et al)
- Module 2: Self-Propelled Particles with Soft-Core Interactions: Patterns, Stability, and Collapse (D'Orsogna et al)

Introductory models (Speed coupling & Vicsek)

Simple speed coupling: weighted speed Particle adapts a fraction of its nearest neighbour's speed

Vicsek model: alignment of directions

- introduce interaction zones: repulsion $(r < R_{rep})$ and orientation $(R_{rep} < r < R_{orient})$
- add noise term

Introductory models (Couzin)

Couzin model

 different zones of neighbourhoods: repulsion, orientation, attraction

Figure: Zone scheme: zor = zone of repulsion, zoo = zone of orientation, zoa = zone of attraction. $\alpha = field$ of perception

Module 1: Effective leadership and decision-making in animal groups on the move (Couzin et al): czn2

- introduce a bias: orientation of ≥ 1 particle ("scout")
- merge orientation and attraction zone

THEORY

New parameters: bias direction \vec{g} , weight of bias ω , proportion of bias prop

Goal: Which parameter sets give a nice group movement, and how does the behaviour change when we change the parameters?

Direction update in each zone:

$$\begin{split} \mathbf{d}_i(t+\Delta t) &= -\sum_{j\neq i} \frac{\mathbf{c}_j(t) - \mathbf{c}_i(t)}{|(\mathbf{c}_j(t) - \mathbf{c}_i(t))|} \\ \mathbf{d}_i(t+\Delta t) &= \sum_{j\neq i} \frac{\mathbf{c}_j(t) - \mathbf{c}_i(t)}{|(\mathbf{c}_j(t) - \mathbf{c}_i(t))|} + \sum_{j=1} \frac{\mathbf{v}_j(t)}{|\mathbf{v}_j(t)|} \\ \mathbf{d}_i'(t+\Delta t) &= \frac{\hat{\mathbf{d}}_i(t+\Delta t) + \omega \mathbf{g}_i}{|\hat{\mathbf{d}}_i(t+\Delta t) + \omega \mathbf{g}_i|} \end{split}$$

with position vector $c_i(t)$, direction vector $v_i(t)$

Module 1: Effective leadership and decision-making in animal groups on the move (Couzin et al): czn2

IMPLEMENTATION

- periodic boundary conditions
- · virtual interaction of agents
- explicit Euler method: $v_{n+1} = v_n + \tau \cdot \frac{dv_n}{dt}$
- $\frac{dv_n}{dt} = s \cdot d_i$ (with s constant)

QUANTIFICATION

- Agents dispersion Did a proper swarm form?
- Accuracy Do the leaders influence the group?
- Elongation Does the movement deform the group?

What to expect

Dispersion

Accuracy

Elongation

Motivation: Simulate multiagent interaction under a model which shows **milling** behaviour (observed in *M. xanthus* cells)

The model consists of:

- self-propulsion (α)
- friction (β)
- interaction between particles: repulsion and attraction $(\vec{\nabla} U)$

Consider N interacting, self-propelled particles governed by the following equations of motion

$$F = m \frac{d\vec{v_i}}{dt} = (\alpha - \beta |\vec{v_i}|^2) \vec{v_i} - \vec{\nabla_i} U(\vec{x_i})$$
 (1)

where U is a pairwise interaction potential and $\alpha, \beta > 0$ are values for propulsion and friction forces.

For *U* we choose the *Morse potential*

$$U(\vec{x_i}) = \sum_{j \neq i} \left[-C_a e^{-|\vec{x_i} - \vec{x_j}|/l_a} + \underbrace{C_r e^{-|\vec{x_i} - \vec{x_j}|/l_r}}_{\text{repulsion}} \right]$$
(2)

where C_a , C_r denote attractive and repulsive strengths and I_a , I_r their respective length scales.

IMPLEMENTATION

- rigid boundary conditions (no virtual interactions)
- initial conditions of random distribution
- explicit Euler method: $\vec{v}_{n+1} = \vec{v}_n + \frac{d\vec{v_n}}{dt} \cdot \tau$
- $\frac{d\vec{v}_n}{dt} = \frac{1}{m}(propulsion friction \vec{\nabla}U)$

SIMULATION

Milling Ring formed out of proper choice of parameters

Figure: Catastrophic geometry.
(a) Clumps. (b) Ring Clumping. (c) Rings.

Figure: H-stability phase diagram of the Morse potential

SIMULATION:

Region I, Region IV, Region VI, Region VII

QUANTIFICATION (Goals of Observation)

- Parameter Sets for different Stability Regions
- Confirming Ring formation:
 - R_{max} , R_{mean} , R_{min} converge to same value
 - $v_{radial}
 ightarrow 0$ and $v_{tangential}
 ightarrow |v_i|$ for $t
 ightarrow \infty$

Quantification mill (Region II: Convergence to Ring)

Quantification mill (Region II: Convergence to Ring)

Quantification mill (Goals of Observation)

- Parameter Sets for different Stability Regions
- Confirming Ring formation:
 - R_{max} , R_{mean} , R_{min} converge to same value
 - $v_{radial} o 0$ and $v_{tangential} o |v_i|$ for $t o \infty$
- $R \propto \frac{\alpha m}{\beta}$ (from $F_{centrifugal} = F_{centripetal}$)

Quantification mill (Goals of Observation)

- Parameter Sets for different Stability Regions
- Confirming Ring formation:
 - R_{max} , R_{mean} , R_{min} converge to same value
 - $v_{radial} o 0$ and $v_{tangential} o |v_i|$ for $t o \infty$
- ullet $R \propto rac{lpha m}{eta}$ (from $F_{centrifugal} = F_{centripetal}$)
- $|\vec{v}|^2 \xrightarrow{t \to \infty} \alpha/\beta$ (at steady state $(\alpha |\vec{v}|^2\beta)\vec{v} = 0$)

Quantification mill (Region II: Influence of α)

Quantification mill (Region II: Influence of α)

Quantification mill (Goals of Observation)

- Parameter Sets for different Stability Regions
- Confirming Ring formation:
 - R_{max} , R_{mean} , R_{min} converge to same value
 - $v_{radial}
 ightarrow 0$ and $v_{tangential}
 ightarrow |v_i|$ for $t
 ightarrow \infty$
- $R \propto rac{lpha m}{eta}$ (from $F_{centrifugal} = F_{centripetal}$)
- $|\vec{v}|^2 \xrightarrow{t \to \infty} \alpha/\beta$ (at steady state $(\alpha |\vec{v}|^2\beta)\vec{v} = 0$)
- influence of increasing N

Quantification mill (Region II: influence of N)

Quantification mill (Region II: influence of N)

Quantification mill (Region VII: Torus Ring)

