ESCOLA TÈCNICA SUPERIOR D'ENGINYERIA DE TELECOMUNICACIO ENGINYERIA DE TELECOMUNICACIÓ DEPARTAMENT DE TEORIA DEL SENYAL I COMUNICACIONS MICROONES, PRIMAVERA 2004-05

EXAMEN FINAL

PROFESSORS: A. AGUASCA, A. COMERÓN

I. CORBELLA, N. DUFFO

Barcelona, 15 de juny de 2005

Data de publicació de notes provisionals:27 de juny Data límit per a al·legacions:28 de juny Data de publicació de notes definitives:30 de juny

Cal realitzar **només tres** dels quatre problemes proposats Temps: 3 hores. Comenci cada exercici en un full apart.

PROBLEMA 1

La figura representa un filtre pas banda de Chebyschev dissenyat a la freqüència central f_0 =1GHz. Z_0 =50 Ω

- a) Trobeu el valor de la capacitat C
- b) Trobeu l'ample de banda del filtre, així com les frequències f₁ i f₂
- c) Trobeu els paràmetres [S] del filtre a la freqüència f₀ (freqüència central). És recomanable fer servir la propietat de simetria del circuit.

Dades:

Filtre de Chebyschev d'arrisat 0.5 dB. Valors dels elements.					
ordre	g ₁	g ₂	g ₃	g ₄	9 5
1	0.6987	1.0000			
2	1.4029	0.7071	1.9841		
3	1.5963	1.0967	1.5963	1.0000	
4	1.6704	1.1925	2.3662	0.8419	1.9841

Formulari

$\overline{J}_{01} = \sqrt{\frac{\pi W}{2g_1}}$	$\overline{J}_{i,i+1} = \frac{\pi W}{2\sqrt{g_i g_{i+1}}}$	$\overline{J}_{n,n+1} = \sqrt{\frac{\pi W}{2g_n g_{n+1}}}$	
$\left \overline{X} \right = \frac{1 - \overline{J}^2}{\overline{J}}$	$\ell = \frac{1}{2\beta} \operatorname{arctg} \frac{2}{\overline{X}}$		

PROBLEMA 2

L'estructura següent actua com un divisor de potència, amb l'avantatge de reduir la longitud de les línies de transmissió (amb Z_0 '=100 Ω), a un valor inferior a λ /4.

- a) Enumeri les propietats que acompleix la matriu S de la xarxa.
- b) Determini quina és la longitud ℓ_2 i ℓ_3 (en mm) i el valor del condensador **C** (en pF) perquè l'estructura actuï com a divisor, adaptat a l'accés1, a la freqüència de **2GHz**. (és recomanable utilitzar la Carta de Smith, i en cas d'emprar-la, lliuri-la amb la resolució del problema).
- c) Calculi els paràmetres S_{22} , S_{33} , S_{23} i S_{32} en mòdul i fase. (Recomanació: aprofiti el fet que per trobar aquests paràmetres es pot arribar a aplicar la propietat de simetria).

NOTA: ϵ_{reff} = 4 per totes les línies, i Z_0 =50 Ω el valor de la impedància de referència de la xarxa divisor de potència.

PROBLEMA 3

Es vol dissenyar un biport que bloquegi el corrent continu i adapti una impedància $Z_0/4$ a una impedància de referència Z_0 a una freqüència f_0 . Per això es farà servir un acoblador direccional de línies acoblades de longitud I, amb els accessos 2 i 3 acabats en circuit obert (vegeu figura).

- a) Trobeu la matriu de paràmetres S del biport al que s'accedeix pels accessos 1 i 4 quan els accessos 2 i 3 estan en circuit obert. Expresseu el resultat en funció de s_{12} i s_{13} . Particularitzeu el resultat per $l=\lambda/4$ i $\alpha^2=0.1$.
- b) Si els paràmetres S anteriors estan referits a $Z_0' \neq Z_0$, quina ha de ser la relació entre Z_0' i Z_0 perquè el coeficient de reflexió d'entrada referit a Z_0 que presenta l'accés 1 sigui 0 quan l'accés 4 està acabat amb $Z_0/4$? **Suggeriment**: utilitzeu les propietats d'un inversor d'impedància.
- c) Si $Z_0 = 50~\Omega$, determineu Z_{0e} i Z_{0e} per a l'acoblador.
- d) Si el circuit es fa en stripline sobre un substrat de $\varepsilon_r = 2.32$ i gruix total $b = 1.6 \ mm$, i $f_0 = 10 \ GHz$ determineu l, i, de manera aproximada, utilitzant la gràfica adjunta, l'amplada W de les línies i la separació S entre elles.

Dades: 1. Per a un acoblador direccional de línies acoblades, $s_{12} = \frac{\sqrt{1-\alpha^2}}{\sqrt{1-\alpha^2}\cos\phi + j\sin\phi}$,

$$s_{13} = \frac{j\alpha\sin\phi}{\sqrt{1-\alpha^2}\cos\phi + j\sin\phi} \qquad \alpha = \frac{Z_{0e} - Z_{0o}}{Z_{0e} + Z_{0o}}$$

2. Per a un inversor d'impedància

$$\overline{K}^2 = \frac{1 + s_{11}}{1 - s_{11}}$$

PROBLEMA 4

La figura mostra un oscil·lador que utilitza un dispositiu de resistència negativa i una xarxa d'adaptació realitzada en tecnologia microstrip. Se sap que la potència màxima que pot generar el dispositiu és P_{max} =27dBm i que la seva impedància <u>en petit senyal</u> a 2 GHz és Z_{d0} =-30-j47,5 Ω .

- a) Si la part imaginària és lineal i la part real és no lineal i es pot modelar com $R_d(|I|)=R_{d0}+b|I|^2$ on |I| és l'amplitud del fasor de corrent de RF que hi circula, calculeu R_{d0} , b i X_d .
- b) Calculeu ℓ_1 , ℓ_2 , w_1 i w_2 per tal de que el circuit generi la màxima potència a 2 GHz.

Substrat: ε_r =2,2. h=0,6 mm

$$\frac{w}{h} = \frac{2}{\pi} \left(B - 1 - \ln(2B - 1) + \frac{\varepsilon_r - 1}{2\varepsilon_r} \left[\ln(B - 1) + 0.39 - \frac{0.61}{\varepsilon_r} \right] \right); \quad B = \frac{60\pi^2}{Z_0 \sqrt{\varepsilon_r}}$$

$$\varepsilon_{ref} = \frac{\varepsilon_r + 1}{2} + \frac{\varepsilon_r - 1}{2} \frac{1}{\sqrt{1 + 10\frac{h}{w}}}$$