Chapter 3: Greedy Algorithm Design Technique - I

Devesh C Jinwala , IIT Jammu, India

September 6, 2019

Design and Analysis of Algorithms IIT Jammu, Jammu Introduction

2 Motivating Case study

3 Applications

• The basic paradigm

- The basic paradigm
- The greedy control abstraction

- The basic paradigm
- The greedy control abstraction
- Elements of greedy strategy

- The basic paradigm
- The greedy control abstraction
- Elements of greedy strategy
- Characteristics

- The basic paradigm
- The greedy control abstraction
- Elements of greedy strategy
- Characteristics
- Some optimization problems

- The basic paradigm
- The greedy control abstraction
- Elements of greedy strategy
- Characteristics
- Some optimization problems
- Applications

- The basic paradigm
- The greedy control abstraction
- Elements of greedy strategy
- Characteristics
- Some optimization problems
- Applications
- Greedy technique to various problems

Introduction

Michael Douglas in the Wall Street

Greed is good, greed is right, greed works!!!

- Let us try to verify whether is it really so How?
- Take a number of computational problems investigate the pros & cons of short-sighted greed
- How to define a greedy algorithm ?

The Basic Greedy Criterion

In a greedy algorithm design

- build up the small solution in small steps, while working in stages to optimize some underlying criterion
- Selection of the next step is myopic and irreversible .????
- we build up the small solution in small steps while working in stages
- The goal is to optimize some underlying criterion
- Selection of the next step is myopic and irreversible

The Basic Greedy criterion...

Requirements

- The next step selected must ensure feasibility. How ?
- Such selection must lead to an optimal solution. How ?
- What are optimization problems ?

Terminologies

Greedy Design terms

- greedy criterion
- optimal solution
- feasible solution
- suboptimal solution
- constraints
- optimization problems
- heuristics
- bounded performance
- approximation algorithms

The Thirsty Baby problem

The Problem

An intelligent baby wants to quench her thirst.!!! She has a defined number of liquids available in a defined amount, to her disposal, each with a defined satisfaction quotient. Her capacity to drink all the liquids in all, is bounded. The objective is to maximize her thirst, while drinking a combination of liquids

- How to formalize the problem description ?
- Using the mathematical notations how do we state : the inputs, outputs, constraint function, optimizing function

Greedy algorithm characteristic

Irrevocability

What is irrevocability in this case?

The Container Loading Problem

The Problem description

[i+-i] A Cargo Train Bogey is to be loaded with containers each having a specific weight, so as to maximize the no of containers, such that the maximum weight carrying capacity of the bogey is not exceeded

The Formalism

- Let w_i the weight of the container i
- Let C the maximum cargo carrying capacity of a ship
- Let x_i be a boolean variable (1=container loaded, 0=container not loaded)
- The problem is to assign values x_i such that $\sum_{i=1}^{n} (x_i)$ is maximized subject to the constraint $\sum_{i=1}^{n} (w_i) \leq C$

The Container Loading Problem: An illustration

- Given that n = 8, i = [1,2,3,4,5,6,7,8], Σw_i = [100,200, 50, 90, 150, 50, 20, 80], C =400
- What is the order of loading?
- What is the $\sum x_i$?

The Container Loading Problem: Algorithm

```
for i=1 to n
1.
2.
                   x[i] = 0
3.
         t \leftarrow ALLOCATE\_MEMORY(n)
4.
         IndirectSort(w, t, n)
         while (i \leqn) and w[t[i]] \leq C
5.
6.
                   x[t[i]] = 1
7.
                   C = C - w[t[i]]
8.
                   i=i+1
9.
         delete t
```

Combinatorial Optimization problems

- Broadly the problem of finding a solution that either minimizes or maximizes the value of a particular parameter, is always subject to certain constraints.
- Combinatorial Optimization problems
 - if the parameter to be optimized is discrete such as an integer, a permutation or graph from a finite (or possibly countable infinite) set.

Combinatorial Optimization problems

- Formally, a combinatorial optimization problem is a quadruple viz. < I, f, m, g>, where
 - I is a set of problem instances
 - f(x) is the set of feasible solutions, given a specific problem instance $x \in I$
 - m(x,y) given an instance x and a feasible solution of x, m(x,y) denotes the measure of y, which is usually a positive real.
 - g is the goal function, and is either min or max

Combinatorial Optimization problems

- Formally, a combinatorial optimization problem is a quadruple viz. < I, f, m, g>, where
 - I is a set of problem instances
 - f(x) is the set of feasible solutions, given a specific problem instance $x \in I$
 - m(x,y) given an instance x and a feasible solution of x, m(x,y) denotes the measure of y, which is usually a positive real.
 - g is the goal function, and is either min or max
- The goal is then to find for some instance x, an optimal solution, that is, a feasible solution with $m(x, y) = g\{m(x, y) \mid y' \in f(x)\}$

The Knapsack Problem

• is a specialization of the Container loading problem

definition

Given n objects each with weight w_i and a value v_i a knapsack with maximum weight carrying capacity W, the goal is to optimize the value

$$\sum_{i=1}^{n} x_i * v_i, \quad 1 \le i \le n$$

such that

$$\sum_{i=1}^n w_i * x_i \leq W$$

- What could be the domain of the values x_i ?
- ullet How is the output optimization function and the W related ?

The Fractional Knapsack Problem: Illustrations

Instance 1

- Let n = 5, W = 100 and w[i] = < 10 20 30 40 50 > v[i] = < 20 30 66 40 60 >
- What are the values of

$$\sum_{i=1}^{5} w[i]$$

and

$$\sum_{i=1}^{5} v[i]$$

7

- Compute the values for the *Maximum-Value-first*, *Minimum-Weight-first*, and *Maximum-value-density-per-weight-first* approaches?
- What is the optimal answer ?
- What should be the correct approach to solve the problem ?

The 0/1 Knapsack Problem : Illustrations

Instance 1

- $i=[1 \ 2 \ 3] \ v=<20 \ 15 \ 15> \ w=<100 \ 10 \ 10> \ and \ W=105$
- i= [1 2] v = < 10 20 > w = < 5 100 > and W = 25
- $i=[1 \ 2 \ 3] \ v=<20 \ 15 \ 15>w=<40 \ 25 \ 25>$ and W=30
- Apply minimum weight/max value density criterion
- Apply minimum weight criterion
- Apply maximum value density criterion
- Compare with the optimal solutions
- What is the inference to be drawn?

The Greedy Control Abstraction

Applications

- Optimal solutions
 - simple scheduling problems
 - change making
 - Minimum Spanning Tree (MST)
 - Single-source shortest paths
 - Huffman codes
- Approximations
 - Traveling Salesman Problem (TSP)
 - Knapsack problem
 - other combinatorial optimization problems

Scheduling#1: Simple Activity Selection

Also is a type of Interval Scheduling

The Problem

- Given n activities each with a defined start time s_i and finish time f_i, the problem is to select a maximal set of mutually compatible activities
- Mutually compatible activities: if each activity i occurs during the half open interal $[s_i, f_i)$, then they are compatible if, $[s_i, f_i)$ and $[s_i, f_i)$ do not overlap?
- When do $[s_i, f_i)$ and $[s_i, f_i)$ not overlap?

Activity Selection Illustration

Greedy Choices/Variations

Consider jobs in some order. Take each job provided it's compatible with the ones already taken.

- Earliest start time Consider jobs in ascending order of start time s_i .
- Earliest finish time Consider jobs in ascending order of finish time f_i .
- Shortest interval Consider jobs in ascending order of interval length $f_j s_j$
- Fewest conflicts For each job, count the number of conflicting jobs c_j . Schedule in ascending order of conflicts c_j .

Which one of these strategies work?

Failure Cases

Solution approach

- Greedy algorithm choices
- Consider the jobs in increasing order of finish time.
- Take each job provided it is compatible with the ones already taken.

```
Algorithm Simple_ActivitySelection (Job, s_i, f_i) 
/*A=Set of selected mutually compatible jobs*/
1. Sort jobs by finish times so that f_1 \leq f_2 \leq \ldots \leq f_n.
2. A \leftarrow \phi
3. for j = 1 to n
4. if f_j \leq s_{(j+1)} /*(job (j+1) is compatible with A)*/
5. A = A \cup {J}
6. return Selected_Jobs
```

Complexity

Time taken by the algorithm to execute?

Dry-run of the algoithm

Dry-run

Animation in the PPT demointervalscheduling.ppt

• For the interval scheduling problem, let the set $A=i_1,i_2,i_3,.....i_k$ with |A|=k be the set of intervals returned by the algorithm as the answer and

- For the interval scheduling problem, let the set $A=i_1,i_2,i_3,.....i_k$ with |A|=k be the set of intervals returned by the algorithm as the answer and
- Let the set $O = j_1, j_2, j_3, ... j_m$ be the optimal set of intervals that would be returned by an oracle.

- For the interval scheduling problem, let the set $A=i_1,i_2,i_3,.....i_k$ with |A|=k be the set of intervals returned by the algorithm as the answer and
- Let the set $O = j_1, j_2, j_3, ... j_m$ be the optimal set of intervals that would be returned by an oracle.
- What should be our goal to prove that our interval scheduling algorithm is optimal ?

- For the interval scheduling problem, let the set $A=i_1,i_2,i_3,.....i_k$ with |A|=k be the set of intervals returned by the algorithm as the answer and
- Let the set $O = j_1, j_2, j_3, ... j_m$ be the optimal set of intervals that would be returned by an oracle.
- What should be our goal to prove that our interval scheduling algorithm is optimal?
- The goal is to prove that k = m i.e. to prove that the r^{th} accepted request in the algorithm's finishes no later than the r th request in the optimal schedule.

Analysis and Proof: Why the algorithm works?

- For the interval scheduling problem, let the set $A=i_1,i_2,i_3,.....i_k$ with |A|=k be the set of intervals returned by the algorithm as the answer and
- Let the set $O = j_1, j_2, j_3, ... j_m$ be the optimal set of intervals that would be returned by an oracle.
- What should be our goal to prove that our interval scheduling algorithm is optimal?
- The goal is to prove that k = m i.e. to prove that the rth accepted request in the algorithm's finishes no later than the r th request in the optimal schedule.
- What is this equivalent to proving?

Analysis and Proof by Mathematical Induction

- For the interval scheduling problem, let the set $A=i_1,i_2,i_3,.....i_k$ with |A|=k be the set of intervals returned by the algorithm as the answer and
- Let the set $O = j_1, j_2, j_3, ... j_m$ be the optimal set of intervals that would be returned by an oracle.

- How are $f_{j(r-1)}$ and $s_{j(r-1)}$ related ?
- How are $fi_{(r-1)}$ and sj_r related ?

Machine scheduling problem II

Minimize Average Completion time

Jobs $j_1, j_2, j_3, \ldots, j_n$ with running times $t_1, t_2, t_3, \ldots, t_n$ to be scheduled on a single processor such as to minimize the avg completion time

Process ID	Execution Time in units
J_1	15
J_2	8
J_3	3
J_4	10

How to implement the above algorithm? What is the time complexity?

Machine scheduling problem II...

Minimize Average Completion time

Jobs $j_1, j_2, j_3, \ldots, j_n$ with running times $t_1, t_2, t_3, \ldots, t_n$ to be scheduled on a single processor such as to minimize the avg completion time

Shortest Job First Scheduling

Proof of the algorithm

Prove that the shortest job first assignment for JJobs $j_1, j_2, j_3, \ldots, j_n$ with running times $t_1, t_2, t_3, \ldots, t_n$ to be scheduled on a single processor such as to minimize the avg completion time is an optimal assignment.

Machine scheduling problem III

Minimum Response time with multiprocessors

• Jobs $j_1, j_2, j_3, \ldots, j_n$ with running times $t_1, t_2, t_3, \ldots, t_n$ to be scheduled on multiprocessors such as to minimize the average completion time

\mathbf{j}_1	\mathbf{j}_2	j ₃	j ₄	j 5	j 6	j 7	j ₈	j ₉
3	5	6	10	11	14	15	18	20

Machine scheduling problem III

Minimum Response time with multiprocessors

• Jobs $j_1, j_2, j_3, \ldots, j_n$ with running times $t_1, t_2, t_3, \ldots, t_n$ to be scheduled on multiprocessors such as to minimize the average completion time

32 / 54

Machine Scheduling Problem IV

Minimizing the Final Completion time with multiprocessors

- Jobs $j_1, j_2, j_3, \dots, j_n$ with running times $t_1, t_2, t_3, \dots, t_n$ to be scheduled on multiprocessors such that
 - no machine processes more than one process at a time
 - no process is executed by more than one machine
 - there is non-preemptive scheduling
 - the final completion time is minimized.
- What is the final completion time?
- How to solve this for the given jobmix ?

iı	12	13	i 4	15	16	i 7	18	10
JI	JZ	J^{σ}	JT	J	Jo	J,	Jo	J
3	5	6	10	11	14	15	18	20

Machine Scheduling Problem IV...

Understanding what is Final Completion time....

- What is the final completion time for this job mix?
- How to solve this?

Machine Scheduling Problem IV...

Minimizing the Final Completion time with multiprocessors

• What is the final completion time for this job mix?

\mathbf{j}_1	\mathbf{j}_2	j ₃	j ₄	j ₅	j 6	j 7	j ₈	j ₉
3	5	6	10	11	14	15	18	20

- What is the final completion time for this job mix?
- How to solve this?

Minimizing the final completion time

TThe problem is NP-hard

- No polynomial time algorithm to run in $O(n^k m^l)$ for any constants k and l
- With an approximation algorithm the schedule lengths are though not optimal but at the most $(\frac{4}{3} \frac{1}{3m})$ of the optimal schedule

Review

Reviewing the summary of the scheduling variations discussed

Machine Scheduling V

Scheduling a class time table

- But the goal is to minimize the number of classrooms used
- Assume that a lecture j starts at s_j and finishes at f_j, then the goal
 is to find the minimum number of classrooms to schedule all
 lectures, so that no two occur at the same time in the same room.
- An example schedule with 4 classrooms to schedule 10 lectures

Machine Scheduling V...

Scheduling a class time table

- Lecture j starts at s_j and finishes at f_j .
- This schedule uses only 3.

Machine Scheduling V...

One Solution approach

- Arrange the lectures in their increasing order of start times
- Keep track of availability times of classrooms i.e. let availability time of a classroom be M1.
- Then, assign the lecture i_1 , completing at time t_1 , mark its availability time as t_1 and check compatibility, when scheduling the next lecture l_2

Machine Scheduling V...

A typical schedule and approach

task	start_ time	finish_ time	time required	availability time now on respective classroom	scheduling order
Α	0	2	2	2(M1)	1
В	3	7	4	7(M1)	3
С	4	7	3	7(M3)	4
D	9	11	2	11(M3)	7
E	7	10	3	10(M1)	6
F	1	5	4	5(M2)	2
G	6	8	2	8(M2)	5

Solution stragtegy

Algorithm approach

- Consider lectures in increasing order of start time
- assign lecture to any compatible classroom.
- For each classroom k, maintain the finish time of the last job added.
- Keep the classrooms in a priority queue.

Solution approach

```
Algorithm Classroom_Scheduling(Interval[], s[], f[]))

1. Sort intervals by starting time so that \setminus \setminus s_1 \leq s_2 \leq s_3 \leq ...s_n = s_n \leq s
```

Complexity

Time taken by the algorithm to execute?

IP: Lower Bound on Optimal Solution

- def: The depth of a set of open intervals is the maximum number of the intervals contained, at a unique time
- Key observation: Prove that the number of resources (classrooms) needed is at least the depth.

Algorithm Correctness

Theorem

IF we use the greedy algorithm above, every lecture will be assigned a classroom and no two overlapping lectures will receive the same classroom

The Optimal Tape Storage Problem

- Given n files of length $m_1, m_2, m_3, m_4, \dots, m_n$ find the best order in which the files can be stored on a sequential storage device.
- e.g. if n=3 and m1=5, m2=10 and m3=3
- There can be 3! possible orderings.
- Which one is the best ?

Scheduling to minimize the lateness

- Single resource processes one job at a time.
- Job j requires t_i units of processing time and is due at time d_i . If j starts at time s_i , it finishes at time $f_i = s_i + t_i$.
- Lateness: $I_i = \max 0$, $f_i d_i$.
- Goal: schedule all jobs to minimize the maximum lateness L = maximum lateness l_i .

How to minimize maximum lateness?

Greedy template. Consider jobs in some order.

- Shortest processing time first: Consider jobs in ascending order of processing time t_i .
- Earliest deadline first: Consider jobs in ascending order of deadline d_j.
- Smallest slack: Consider jobs in ascending order of slack d_j t_j .

Minimizing lateness: Counterexamples

Shortest processing time first does not work

Figure: Can we and if so how can one achieve lateness 0 above?

Shortest slack time first does not work

Figure: Can we and if so how can one achieve lateness 0 above?

Solution approach

```
Algorithm EarliestDeadlineFirst(Job[], s[], f[])) 1. Sort n jobs by deadline so that d_1 \leq d_2 \leq \ldots d_n 2. t \leftarrow 0 3. for j=1 to n 4. Assign job j to interval [t,t+t_j] 5. s_j \leftarrow t, f_j \leftarrow t+t_j, t \leftarrow t+t_j 6. output intervals [s_i,f_i]
```

Proving Correctness of a greedy algorithm

- Greedy algorithm stays ahead.
 - Show that after each step of the greedy algorithm, its solution is at least as good as any other algorithm's.
- Exchange argument
 - Gradually transform any solution to the one found by the greedy algorithm without hurting its quality.
- Structural
 - Discover a simple structural bound asserting that every possible solution must have a certain value. Then show that your algorithm always achieves this bound.

Two vital properties of a Greedy Algorithm

- Greedy-choice property
 - a globally optimal solution can be arrived from a locally optimal choice.
 - algorithm proceeds in a top down fashion reducing the given problem instance into smaller ones
- Optimal Sub-structure property
 - an optimal solution to a problem contains within it other optimal solutions to smaller subproblems

Blank

Blank