Additional exercises for MA505250

Exercise 1. Let X be a Banach space and $\mathcal{J}_1: X \to \mathbb{R}$, $\mathcal{J}_2: X \to \mathbb{R}$ two functionals. Prove that then

- (a) If \mathcal{J}_1 and \mathcal{J}_2 are weak l.s.c., $\alpha \geqslant 0$, then $\alpha \mathcal{J}_i$ and $\mathcal{J}_1 + \mathcal{J}_2$ are weak l.s.c.
- (b) If \mathcal{J}_1 is weak l.s.c. and $\varphi: \mathbb{R} \to \mathbb{R}$ is monotonically increasing and l.s.c., then $\varphi \circ \mathcal{J}_1$ is weak l.s.c.
- (c) If \mathcal{J}_1 is weak l.s.c. then for a Banach space Y and weak sequentially continuous $\Phi: \mathcal{Y} \to X$ it follows that $\mathcal{J}_1 \circ \Phi$ is weak l.s.c.
- (d) For any (non-empty) family of weak l.s.c. functionals $\mathcal{J}_i: X \to \mathbb{R}, i \in I$ we have that $\sup_{i \in I} \mathcal{J}_i$ is weak l.s.c.
- (e) Let $\varphi: K \to \mathbb{R}$ be l.s.c., where K is either \mathbb{R} or \mathbb{C} , and $x^* \in X^*$. Then the functional

$$L_{x^*,\varphi} = \varphi \circ \langle x^*, \cdot \rangle_{X^* \times X},$$

is weak l.s.c. in X.

Collect what you have proven (as appropriate) and show that $\varphi(\|u\|_X)$ is weak l.s.c. for any $\varphi:[0,\infty)\to\mathbb{R}$ that is monotonically increasing and l.s.c.

Solution.

(a) \mathcal{J}_1 and \mathcal{J}_2 are weak l.s.c., then

$$\alpha \mathcal{J}_1(u) \leqslant \alpha \liminf_{n \to \infty} \mathcal{J}_1(u_n)$$

= $\liminf_{n \to \infty} (\alpha \mathcal{J}_1)(u_n),$

and

$$(\mathcal{J}_{1} + \mathcal{J}_{2})(u) \leqslant \liminf_{n \to \infty} \mathcal{J}_{1}(u_{n}) + \liminf_{n \to \infty} \mathcal{J}_{2}(u_{n})$$

$$\leqslant \liminf_{n \to \infty} (\mathcal{J}_{1} + \mathcal{J}_{2})(u_{n}).$$

(b)

$$\varphi(\mathcal{J}_1(u)) \underbrace{\leqslant}_{\text{monotonicity}} \varphi\left(\liminf_{n \to \infty} \mathcal{J}_1(u_n)\right)$$
$$\underbrace{\leqslant}_{l.s.c.} \liminf_{n \to \infty} \varphi(\mathcal{J}_1(u_n)).$$

(c) Since Φ is weak sequentially continuous we have that if $u_n \rightharpoonup u$ in Y that $\Phi(u_n) \rightharpoonup \Phi(u)$ in X and hence

$$\mathcal{J}_1\left(\Phi(u)\right) \leqslant \liminf_{n \to \infty} \mathcal{J}_1\left(\Phi(u_n)\right).$$

(d) For all n and $i \in I$ we have that

$$\mathcal{J}_i(u_n) \leqslant \sup_{i \in I} \mathcal{J}_i(u_n),$$

and hence

$$\mathcal{J}_i(u) \leqslant \liminf_{n \to \infty} \mathcal{J}_i(u_n) \leqslant \liminf_{n \to \infty} \sup_{i \in I} \mathcal{J}_i(u_n).$$

Taking the sup on the left hand side in the above inequality we get

$$\sup_{i \in I} \mathcal{J}_i(u) \leqslant \liminf_{n \to \infty} \sup_{i \in I} \mathcal{J}_i(u_n).$$

(e) We consider $u_n \rightharpoonup u$ in X, that is

$$\lim_{n \to \infty} \langle u_n, u^* \rangle = \langle u, u^* \rangle \quad \forall u^* \in X^*.$$

Hence, $\langle u, u^* \rangle$ is continuous and hence the assertion follows from (c).

To prove the last claim we are going to use what we have proven so far. Since X is a Banach space we have

$$||u||_X = \sup_{||u^*||_{X^*} \le 1} |\langle u^*, u \rangle| = \sup_{||u^*||_{X^*} \le 1} L_{x^*, |\cdot|}(u).$$

Hence, by (d) and (e) the norm is weak l.s.c. and by (b) so is $\varphi(||u||_X)$.

Exercise 2. For a given noisy image $g \in L^2(\Omega)$ and rectangular image domain $\Omega \subset \mathbb{R}^2$ we consider the following variational problem

$$u_{\alpha} = \operatorname{argmin}_{u \in L^{2}(\Omega)} \left\{ \alpha \|Du\|_{2}^{2} + \|u - g\|_{2}^{2} \right\},$$

for $\alpha > 0$. Prove that there exists a unique minimiser u_{α} to the above problem. Show further, that under the additional assumption that $L \leq g \leq R$ a.e. in Ω the minimiser u_{α} of the above problem also fulfils $L \leq u_{\alpha} \leq R$ a.e. in Ω .

Solution. We consider a minimising sequence of $\mathcal{J}(u) = \alpha \|Du\|_2^2 + \|u - g\|_2^2$ (assuming that $g \in L^2(\Omega)$ the functional is bounded from below by 0). Then, we have

$$||Du_n||_2 < \infty$$
$$||u_n||_2 < \infty,$$

and hence there exists a subsequence (still denoted by u_n) such that $u_n \rightharpoonup u$ in H^1 and in particular in L^2 . (As a side remark, we even get strong convergence in L^2 because of the compact embedding of H^1 in L^2). Because the norm $\|\cdot\|_2$ is l.s.c. with respect to weak convergence in L^2 and the l.s.c. of $\|D\cdot\|_2$ w.r.t. weak convergence in H^1 , we are done.

Uniqueness follows from strict convexity of \mathcal{J} .

Now, to prove the second claim we consider a minimiser u_{α} and the function $u = \min(R, \max(L, u_{\alpha}))$. If $u_{\alpha}(x) \geq R$ for all $x \in \Omega$, then

$$|u(x) - g(x)| = |R - g(x)| \le |u_{\alpha}(x) - g(x)|.$$

Analogously, if $u_{\alpha}(x) \leq L$ then

$$|u(x) - g(x)| \le |u_{\alpha}(x) - g(x)|,$$

and hence

$$\frac{1}{2}||u-g||_2^2 \leqslant \frac{1}{2}||u_\alpha - g||_2^2.$$

Moreover, $u \in H^1(\Omega)$ with $Du = Du_{\alpha}$ a.e. on $\{L \leq u_{\alpha} \leq R\}$ and Du = 0 everywhere else (this follows from the chain rule for Sobolev functions: Let $\varphi : \mathbb{R} \to \mathbb{R}$ continuously differentiable with $\|\varphi'\|_{\infty} \leq C$ for a C > 0. Then the mapping $u \mapsto \varphi \circ u$ maps $H^1 \to H^1$ and $D(\varphi \circ u) = \varphi'(u) \cdot Du$.). Hence we have

$$\frac{1}{2} \int_{\Omega} |Du|^2 dx \leqslant \frac{1}{2} \int_{\Omega} |Du_{\alpha}| dx,$$

and hence $\mathcal{J}(u) \leqslant \mathcal{J}(u_{\alpha})$ and since u_{α} is the unique minimiser we have that $u = u_{\alpha}$.

Exercise 3. Let the functional $\mathcal{J}: X \to \mathbb{R}$ be convex on a real Banach space X. Prove that:

- (a) For $p \in \partial \mathcal{J}(u)$ and $q \in \partial J(u)$ we have $tp + (1-t)q \in \partial \mathcal{J}(u)$ for all $t \in [0,1]$.
- (b) Let \mathcal{J} be l.s.c. and consider a sequence $((u_n, p_n))$ in $X \times X^*$ with $p_n \in \partial \mathcal{J}(u_n)$, $u_n \to u$ and $p_n \stackrel{*}{\rightharpoonup} p$. Then $p \in \partial \mathcal{J}(u)$.
- (c) For $u \in X$ the set $\partial \mathcal{J}(u)$ is weak* sequentially closed, that is:

For
$$p_n \stackrel{*}{\rightharpoonup} p$$
, we have that $p \in \partial \mathcal{J}(u)$.

Solution. (a) If $p, q \in \partial J(u)$, then $J(v) - J(u) \geqslant \langle p, v - u \rangle$ and $J(v) - J(u) \geqslant \langle q, v - u \rangle$ for all $v \in X$. The result follows by linearity of the inner product.

(b) For all v, $J(v) - J(u_n) \ge \langle p_n, v - u_n \rangle$. Since J is lsc, $\lim_{n \to \infty} (J(v) - J(u_n)) \le J(v) - J(u)$. On the other hand,

$$|\langle p_n, v - u_n \rangle - \langle p, v - u \rangle| = |\langle p_n - p, v \rangle + \langle p - p_n, u \rangle + \langle p_n, u - u_n \rangle| \to 0, \qquad n \to \infty.$$

For the first 2 terms, this convergence to zero is clear by assumption, For the last term, we know that $||p_n||$ is uniformly bounded (by the uniform boundedness principle).

(c) For all $v, J(v) - J(u) \ge \langle p_n, v - u \rangle$. Since $p_n \stackrel{*}{\rightharpoonup} p$, we have that $J(v) - J(u) \ge \langle p, v - u \rangle$.

Exercise 4. Let \mathcal{U} be a Banach space and let \mathcal{V} be a Hilbert space. Let $A:\mathcal{U}\to\mathcal{V}$ be a bounded linear operator. Let $J:\mathcal{U}\to[0,\infty]$ absolute one-homogeneous and coercive. Consider the problems

$$\sup_{v:A^*v\in\partial\mathcal{J}(0)}\langle f,\,v\rangle = -\inf_v\langle -f,\,v\rangle + \iota_{\partial J(0)}(A^*v) \tag{\mathcal{P}_0}$$

and

$$\inf_{u:Au=f} \mathcal{J}(u) = \inf_{u \in \mathcal{U}} \iota_{\{f\}}(Au) + \mathcal{J}(u)$$
 (D₀)

Prove that $0 \in \operatorname{int}(\partial J(0))$ and hence deduce strong duality between (\mathcal{P}_0) and (\mathcal{D}_0) .

Solution.

Claim: For $J: \mathcal{U} \to [0, \infty]$ absolute one-homogeneous and coercive, we have $0 \in \operatorname{int}(\partial J(0))$.

Proof. Since J is absolute one-homogeneous, J(0)=0. So, $p\in\partial J(0)$ means that $J(u)\geqslant\langle u,p\rangle$ for all $u\in\mathcal{U}$. Note that clearly, $0\in\partial J(0)$. Suppose that $0\not\in\operatorname{int}(\partial J(0))$. Then, there exist $p_n\not\in\partial J(0)$ such that $\|p_n\|\to 0$. So, there exists u_n such that $J(u_n)<\langle p_n,u_n\rangle$. Since J is one-homogeneous, we can assume that $\|u_n\|=1$. Therefore, $\lim_{n\to\infty}J(u_n)\leqslant\lim_{n\to\infty}\|p_n\|\,\|u_n\|=0$. Letting $\lambda_n=1/J(u_n)$, we have $\|\lambda_nu_n\|\to+\infty$ but $J(\lambda_nu_n)=1$. This contradicts the assumption that J is coercive.

The result now comes from applying Fechel-Duality theorem to (\mathcal{P}_0) , since $\iota_{\partial J(0)}$ is continuous at zero.