#### **Statistics**

Week 8: Chi-squared Test (Chapter 9)

ESD, SUTD

Term 5, 2017



Established in collaboration with MIT

### Outline

- Chi-squared test
  - Goodness of fit
  - Independence

### Goodness of fit – discrete

We can use the chi-squared test to determine whether a specified distribution fits our data!

We first look at an example involving a discrete distribution.

#### Example – number of passengers per car

Does the data suggest that the numbers of passengers follow a Poisson distribution? Use  $\alpha = 0.01$ .

| Number    | 0   | 1   | 2  | 3  | 4 |
|-----------|-----|-----|----|----|---|
| Frequency | 678 | 227 | 56 | 28 | 8 |

Recall the Poisson distribution has the pmf

$$p(i) = e^{-\lambda} \frac{\lambda^i}{i!}.$$

The (unknown) parameter  $\lambda$  is, conveniently, also the mean.

# Discrete example

Refer to the Excel file.

- We can *estimate*  $\lambda$  from sample mean,  $\hat{\lambda} = 0.456$ .
- Use the exp and fact commands to compute  $e_i = n p(i)$  (except for  $e_4$ ).
- Rule 1: every time we estimate a parameter, we lose 1 extra degree of freedom.
- Rule 2: make sure that each  $e_i \geq 5$ , in particular, no  $e_i$  should be < 1. Try to combine small  $e_i$ 's with adjacent ones (and do the same to the corresponding observed values).

Final result:  $\chi^2 = 72.2$ ,  $\chi^2_{2.0.99} = 9.21$ .

## Continuous example

See *Excel* for an example testing whether some waiting times can be modeled by an exponential distribution (expon.dist).

- Since the mean is  $1/\lambda$ , we can estimate  $\lambda$  by 1/(sample mean).
- The sample mean calculation can be simplified if we had all the data values.
- There are different ways to group the data, e.g. another way is to make the expected probability constant across the categories.

Final result:  $\chi^2 = 6.09$ ,  $\chi^2_{4,0.95} = 9.49$ .

# Two-way tables

The  $\chi^2$  statistic can also be computed for two-way tables, to test if the two variables involved are **independent**. (For more information, see textbook Section 9.4.)

See Excel example for Income vs Job Satisfaction, using  $\alpha=0.05$ .

- If the null hypothesis (that the variables are independent) is true, then the expected number for each cell in the table is (row sum) × (column sum) / (grand sum)
- $\chi^2$  is calculated using the same formula, but with a double sum.
- For an  $n \times m$  table, the degree of freedom is (n-1)(m-1).

Final result:  $\chi^2 = 12.0$ ,  $\chi^2_{9.0.95} = 16.9$ .

#### Further notes

- You may find the chi-squared test very useful for your project.
- The chi-squared test tends to work well when n is very large (several hundreds, or several thousands).
- A weakness of the chi-squared test is that different groupings of the data may result in different conclusions.
  - (The K-S test overcomes this problem.)