Assignment

Praveen Kumar Roy

November 13, 2024

1 Probability

2 Assignment-2

(Answer-1) Let X and Y are discrete. Then,

$$\begin{split} E[X+Y] &= \sum_{x \in X} \sum_{y \in Y} (x+y) p_{X,Y}(x,y) \\ &= \sum_{x \in X} \sum_{y \in Y} x p_{X,Y}(x,y) + \sum_{x \in X} \sum_{y \in Y} y p_{X,Y}(x,y) \\ &= \sum_{x \in X} x \sum_{y \in Y} p_{X,Y}(x,y) + \sum_{y \in Y} y \sum_{x \in X} p_{X,Y}(x,y) \\ &= \sum_{x \in X} x p_{X}(x) + \sum_{y \in Y} y p_{Y}(y) \\ &= E[X] + E[Y]. \end{split}$$

Similarly, we can show E[X + Y] = E[X] + E[Y], when X and Y are continuous.

(Answer-2) Variance of a random variable X is defined as

$$Var(X) = E[(X - E[X])^{2}].$$

Therefore,

$$\begin{split} Var(X+Y) &= E[(X+Y-E[X+Y])^2] \\ &= E[(X+Y-E[X+Y])^2] \\ &= E[((X-E[X])+(Y-E[Y]))^2] \\ &= Var(X)+Var(Y)+2E[(X-E[X])(Y-E[Y])] \\ &= Var(X)+Var(Y)+2(E[XY]-E[X]E[Y]) \\ &= Var(X)+Var(Y)+2Cov(X,Y). \end{split}$$

(Answer-3) Cov(X, Y) = 0 implies

$$E[XY] = E[X]E[Y]$$

$$\Rightarrow \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f_{X,Y}(x,y) dx dy = \int_{-\infty}^{\infty} x f_{X}(x) dx \int_{-\infty}^{\infty} y f_{Y}(y) dy$$

This implies $f_{X,Y} = f_X \cdot f_Y$ and therefore, X and Y are functionally independent.

(Answer-4) Let $X_1, X_2, ..., X_n$ are *i.i.d.* random variable each having mean $E[X_i] = \mu$. Weak law of large numbers states that

$$\lim_{n \to \infty} P\left(\left| \frac{\sum_{i} X_i}{n} - \mu \right| > \varepsilon \right) = 0.$$

Chebyshev's Inequality: Let X be a random variable with finite mean μ and finite variance σ^2 and let k > 0 be a positive integer. Then

$$P(|X - \mu| \ge k) \le \frac{\sigma^2}{k^2}.$$

Let

$$\bar{X} := \frac{1}{n} \sum_{i=1}^{n} X_i$$

Then,

$$E[\bar{X}] = \frac{1}{n} \sum_{i=1}^{n} E[X_i] = \frac{1}{n} n \mu = \mu$$
$$Var(\bar{X}) = \sum_{i=1}^{n} \frac{1}{n^2} Var(X_i) = \frac{\sigma^2}{n}.$$

Now, the Chebyshev's inequality for the random variable \bar{X} gives:

$$P(|\bar{X} - \mu| \ge \varepsilon) \le \frac{\sigma^2}{n\varepsilon^2}$$

$$\Rightarrow \lim_{n \to \infty} P(|\bar{X} - \mu| \ge \varepsilon) = 0. \quad \text{(Since } \sigma^2 < \infty\text{)}$$

(Answer-5) Let $X_1, ..., X_n$ are i.i.d random variable with distribution as shown in the following figure.

$$(0,10)(0,10)(0,10)(0,10) \circ \circ \circ$$

It is clear that the distribution has finite mean (approximately 5), but the variance is infinite. Actually not, the above also has finite variance. We need to modify a bit:

The following distribution has mean 5 and infinite variance. Note that, by making small adjustment to the graph, it can have infinite mean as well.

Let X_i has distribution as above, if we randomly choose numbers from X_i , it is clear that the sum $\frac{1}{n}\sum_i X_i$ will not converge to $\mu = 5$. This illustrate that the law of large number does not hold, in general, if we have infinite variance.

(Answer-6 & 7) Let X be a random variable the Moment generating function, denoted ϕ_X and Characteristic function, denoted Φ are defined as follows:

$$\phi_X(t) := E[\exp^{tX}]$$

$$\Phi_X(t) := E[\exp^{itX}]$$

Note that $\phi_X(t)$ exist only if Taylor series expansion of \exp^{tX} around t=0 exist, whereas $\Phi_X(t)$ always exist.

Now, let $X_1, ..., X_n$ are i.i.d random variable with mean μ and variance σ . The Central Limit Theorem states

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i - n\mu}{\sigma\sqrt{n}} \sim N(0, 1) =: Y$$

Assuming that $\phi_{\bar{X}}(t)$ exist, we will show it to be equal to $\phi_Y(t) = E[\exp^{tY}]$.

Note that, since E[Y] = 0 and $E[Y^2] = Var(Y) = 1$, we have

$$E[\exp^{tY}] = 1 + tE[Y] + \frac{t^2 E[Y^2]}{2} + \dots$$

 $\approx 1 + \frac{t^2}{2}.$

Now,

$$\phi_{\bar{X}}(t) = E[\exp^{t\sum_{i=1}^{n} \frac{(X_i - \mu)}{\sigma\sqrt{n}}}]$$

$$= E[\prod e^{t\frac{(X_i - \mu)}{\sigma\sqrt{n}}}]$$

$$= \prod_{i=1}^{n} E[e^{t\frac{(X_i - \mu)}{\sigma\sqrt{n}}}]$$

$$= \left(E[e^{t\frac{(X_1 - \mu)}{\sigma\sqrt{n}}}]\right)^n$$

$$= \left(1 + t\frac{(E[X_1] - \mu)}{\sigma\sqrt{n}} + t^2\frac{E[(X_1 - \mu)^2]}{2(\sigma\sqrt{n})^2} + \ldots\right)^n$$

$$\approx \left(1 + t^2\frac{\sigma^2}{2(\sigma\sqrt{n})^2}\right)^n$$

$$= \left(1 + \frac{t^2}{2n}\right)^n$$

Taking $n \mapsto \infty$, we get $\exp^{t^2/2}$.

If we would have used $\Phi_{\bar{X}}(t)$ instead, we would have got $\left(1 - \frac{t^2}{2n}\right)^n$ and further taking $n \mapsto \infty$, we get the limit to be $\exp^{-t^2/2}$.