Chimie des solutions

Jean-François Olivieri (jfolivie@clipper.ens.fr)

2019-03-20

Question de cours :

Distribution des espèces selon le pH (domaines de prédominance, diagrammes de distribution); exemples de calcul du pH à l'équilibre de quelques solutions simples : acide et base forts.

Exercice 1.A: Limite de dissociation de l'acide éthanoïque

On considère une solution aqueuse d'acide éthanoïque $\mathrm{CH_3COOH}$. Comment évolue le coefficient de dissociation de l'acide qu'on dilue la solution ? Calculer sa valeur limite. $pK_a(\mathrm{CH_3COOH}/\mathrm{CH_3COO^-}) = 4.8$

Exercice 2.A: Dosage de l'acide sulfurique

Le dosage d'un volume V=10 mL d'un mélange acide sulfureux, $\rm H_2SO_3$ (concentration C_1), acide sulfurique, $\rm H_2SO_4$ (concentration C_2), par de la soude à $C_0=1$ mol $\rm L^{-1}$ fait apparaître deux équivalences pour les volumes $V_a=1.5$ mL et $V_b=2.0$ mL de soude versée, marquées respectivement par le virage de l'hélianthine et de la phénolphtaleine. Déterminer C_1 et C_2 .

$${
m H_2SO_3}pK_{A,1}=2$$
 $pK_{A,2}=7$ ${
m H_2SO_4}pK'_{A,2}=2$ première acidité force

Chimie des solutions

Jean-François Olivieri (jfolivie@clipper.ens.fr)

2019-03-20

Question de cours :

Réactions acido-basiques : acides et bases dans la théorie de Brönsted : définitions, exemples ; acides et bases faibles en solution : définitions de K_e , K_a , K_b ; classement des couples.

Exercice 1.B: Dosage d'une solution d'hypochlorite

On dose 10 mL d'une solution de ClO⁻ à la concentration C par HCl à 1 mol L⁻¹. Le dosage est suivi par pHmétrie et on donne les courbes de répartition des espèces HClO et ClO⁻. Écrire la réaction de dosage puis déterminer C et le pK_a du couple HClO/ClO⁻. Quel indicateur coloré aurait-on pu utiliser pour repérer l'équivalence?

Exercice 2.B: Titrage de l'éthylènediamine

L'éthylène diamine $\rm H_2N-CH_2-CH_2-NH_2$ est une dibase. On titre un volume $V_0=10.0~\rm mL$ d'une solution d'éthylène diamine de concentration c_0 par une solution d'acide chlorhydrique de concentration $c_A=0.10~\rm mol\,L^{-1}$. On note V le volume d'acide chlorhydrique versé. On suit la réaction de dosage par pH-mètre et on obtient la courbe de dosage suivante :

1 Justifier l'existence de deux sauts de pH. Lequel convient-il d'exploiter?

- $2\,$ Écrire les équations des réactions de dosage caractérisant chaque partie de la courbe.
- 3 Déterminer la concentration c_0 en éthylène diamine de la solution à doser.
- 4 Comment peut-on retrouver les valeurs des pK_A des couples acide-base qui interviennent dans ce titrage.

Chimie des solutions

Jean-François Olivieri (jfolivie@clipper.ens.fr)

2019-03-20

Question de cours :

Acide et base faibles (effet de la dilution : loi d'Ostwald), ampholyte.

Exercice 1.C: Dosage d'acide phosphorique

On dose 10.0 mL d'une solution d'acide phosphorique H_3PO_4 à 0.150 mol L^{-1} par de la soude NaOH à 0.100 mol L^{-1} (V_b désigne le volume de soude versé). On donne la courbe $pH = f(V_b)$ et les courbes de distribution des espèces acido-basiques faibles H_3PO_4 , $H_2PO_4^{-}$, HPO_4^{2-} et PO_4^{3-} .

- 1 Attribuer chaque courbe de distribution acido-basique et déterminer les valeurs des pK_a de l'acide phosphorique.
- 2 Écrire les réactions de dosage dans les différentes plages de volume et calculer leurs constantes d'équilibre.
- 3 Relever le volume à la première équivalence et vérifier que sa valeur est cohérente avec les concentrations données.
- 4 Commenter la première partie de la courbe.
- 5 Pourquoi n'observe-t-on que deux sauts de pH alors qu'on dose un triacide?

Exercice 2.C: Conductivité - pH

Une solution aqueuse d'ammoniac ${\rm NH_3}$ de concentration $c=6.00\cdot 10^{-5}~{\rm mol\,L^{-1}}$ a une conductivité :

$$\sigma = 6.97 \cdot 10^{-4} \,\mathrm{S} \,\mathrm{m}^{-1} \tag{1}$$

- 1 Exprimer la conductivité σ de la solution en fonction des concentrations et des conductivités molaires ioniques limites.
- 2 Déterminer :
 - a le coefficient d'ionisation α (ou taux d'avancement τ de la réaction de l'ammoniac avec l'eau) de l'ammoniac ;
 - b le pH de la solution et le pK_A du couple.

Donn'ees: Conductivités molaires ioniques limites à 25 °C en mS m² mol $^{-1}$:

$$\lambda^{\circ} (H_3 O^+) = 35.0;$$

 $\lambda^{\circ} (HO^-) = 19, 9;$
 $\lambda^{\circ} (NH_4^+) = 7.4.$

$$\lambda^{\circ} (\mathrm{HO}^{-}) = 19, 9;$$

$$\lambda^{\circ} (NH_4^{+}) = 7.4.$$