

of sequential covered in the

Searching sequential: worst case: $\Theta(n)$ binary: worst case: $\Theta(\log_2 n)$

to improve to $\theta(1)$, we sacrifice space Hash Tables: efficient look up, insertion and deletion of key-value pairs

hashing: process of using a hash for to map data of arbitrary size to fixed-size values or keys point of hashing

hash function collision & its resolution deleting a key resizing hash table

· hash fn : 1 all possible keys } -> 10,1,2..., h-1} index (Value)
index Value
hash slot

nash table

if n records are stored in a table with h slots Load factor is $\alpha = \frac{n}{h}$.

 α 1, time complexity? The range from 0.6 \rightarrow 0.75 resure as $\alpha \rightarrow 1 \ (\psi p)$ d -) d max/4 (down) f : key space - hash code

hash functions

must map all possible values within the range of the hash table uniquely

mapping should achieve an even distribution of

easy & fast, minimise collision

1. modulo

H(R) = R mod h table size if key is: decimal \rightarrow h \$ power of 10 binary patturn \rightarrow h \$ power of 2 'real" data \rightarrow h = prime number, not close to a power of 2

2. folding (all birs contribute to the result)

partition the key into several parts and combine the parts in a convenient way shift folding: divide the key into a few parts and add them up.

"ab celef" -> 599 (add eaun ascii code)

3. Mid-square (example of folding)
Rey is squared and the middle part is used.

luiked list for multiple

entries at ender

collision

soln

- 4 multiplicative congruential method
 pruedo-random number generator
- $0 = 8 \left(\frac{h}{23} \right) + 5$
 - H(K) = (axk) mod h
 - redone next --- ways of hashing
 - · direct address table
 - closed address hashing
 - open address nashing linear probling
 - linear probling - quad. probling - double hashing
- closed worst case: all in same list: $\theta(n)$
- ang case $\frac{n}{h} \sim \theta(\alpha)$

Direct Address Table every key in the universe is mapped to a finite number of hash slot , key domain dearly, collisions will occur) soln World Jopen address hashing Closed Address Mashing maintains original horshed address records hashed to the same slot are linked into a list address is closed (fixed). each key has a corresponding fixed address $\alpha = \frac{n}{h}$ load factor no of shots n records: number of elements per list on an ang analysis all elements in 2 slot worst case behavior: & unsuccessful: n searches successful: I \(\sum_{i} = \text{n+1}\)

sequential search

each item has equal prob of being hashed into any of the h slots. average case unsuccessful: n ky umpanisons pur list - a no of compansons on an avg successful: because the key is inserted at the end, we have to imagine its not there yet. (ith being inserted): any length of all lists: (i-1)to find newsor one: $1 + \left(\frac{i-1}{h}\right)$ companions ong over n time $\frac{1}{n} \sum_{j=1}^{n} 1 + \underbrace{(i-1)}_{h} = \underbrace{1}_{n} \sum_{j=1}^{n} \underbrace{(1)}_{n-1} + \underbrace{1}_{n} \sum_{j=1}^{n} \underbrace{(i-1)}_{h}$ $= 1 + \underbrace{1}_{n} \sum_{j=1}^{n} i$ $= \frac{1 + n-1}{2h} = \frac{n}{2h} + \frac{1-1}{2h}$ h is constaut $\frac{1}{n} = \frac{1}{n} = \frac{1}$ $\lim_{x \to \infty} \frac{\frac{\alpha_{12}^{2} + 1 - 1/2h}{1 + d}}{\frac{\alpha_{12}^{2} + 1 - c}{1 + d}} : \frac{\frac{\alpha_{12}^{2} + 1 - c}{1 + d}}{\frac{1}{1 + d}} : \frac{1}{1} = \frac{1}{2} + \text{constant}.$

	deleting insert in first deleted stot always insert in first deleted stot always insert in fixer occurs after also if not then go back and add it there
	Open Address Mashing
	V
•	all elements in the hash table
	α = n/h ≤ 1 ··· J
•	when collisión: probe
1.	linear probing
2. 3.	linear probing Quadratic proloting Double Hastring
<u> </u>	Double Husting
	1. Linear Probing
	J
•	if filled, go to next
	M(R,i) = (kti) mod h (af hashing
	for i = 1, 2 h-1 until an empty slot
	problem: primary dustering
	Algorithm 3 Searching a Key time (
	1: function Search(k) 2: $code \leftarrow hash(k)$

 $loc \leftarrow code$

3:

(af hashing f^n is knodh) in empty slot is found. time complexity

Success $\frac{1}{2}\left(1+\frac{1}{1-a}\right)$ $ans \leftarrow \emptyset$ while $H[loc] \neq \emptyset$ do 5: if H[loc].key == k then 6: $ans \leftarrow H[loc]$ 7: · unsuces sful : $\frac{1}{2} \left(1 + \left(\frac{1}{1-\alpha} \right)^2 \right)$ break else 9: $loc \leftarrow probe(loc)$ 10: if loc == code then 11: break 12: don't numorisa

C1, C2, h must be selected carefully to ensure all slots are probed

$$h=2^n \longrightarrow c_1=c_2=1/2$$
avoids primary clustering, results in second

· avoids primary clustering, results in secondary clustering lwateh...

time complexity

$$\frac{1}{2}$$
unsuccess: $\frac{1}{1-d} = d - lin(1-\alpha)$

	3. Pouble Mashing
	more random method $M(k,i) = (k+iD(k)) \mod h$ $\hookrightarrow D(k)$ is another hash f^n and $i \in [0, h-1]$
·	h should be prime: impossible for any number to divide it everly: probe sequence will check out every stot.
,	Tum complexity
dont memoris	success: I ln I d I-d unsuccess: I I-d
	unsuccess: 1
	note: all complexities are f's of 1
	ra

TIME COMPLEXITY OF BINARY SEARCH

$$\Theta(\log_2(n))$$

in a binary tree w/ height $2^{h} - 1 < n < 2^{h+1} - 1$ $2^{h} \le n < 2^{h+1}$

h < log_n < h+1

 $2^{R} < n+1 \le 2^{R+1}$ $R < Log_{2}(n+1) \le R+1$

: minimal height = L log2 n J

worst case: - search till end and Hill not find. $\uparrow(n) = \uparrow\left(\frac{n-1}{2}\right) + c$ TNode* findBSTNode(BTNode *cur, char c){ T(n)if (cur == NULL) {
 printf("Not Found\n"); return cur;

if(c<cur->item)
 return findBSTNode(cur->left,c);
else
 return findBSTNode(cur->right,c); $=\frac{1}{2^k}$ - → T((n-1)/2)

 $\lceil \log_2 n \rceil = k$

average time for successful search why? t=1 0 assume: $n = 2^k - 1$ (complete tree) $\frac{1}{2}$ t=2 0 0 2^{t-1} position require t companisons t=3 0 0 0 0 $A = \frac{1}{h} \sum_{t=1}^{k} t 2^{t-1}$ $= \frac{(k-1)2^{k}+1}{n} = \log_{2}(n+1)-1 + \log_{L}(n+1)$

$$n^{2} + \frac{n^{2}}{4} + \frac{n^{4}}{16} + \dots$$

$$\frac{n^{2} + \left(\frac{n^{2}}{4}\right)^{1} + \left(\frac{n^{2}}{4^{2}}\right)^{2} + \dots}{\left(\frac{n+1}{4}\right)^{2}}$$

$$2$$

$$+ \text{tower of hanoi} : T(n) = 2T(n-1)+1$$