LMSC-F11580

Development For Space Station.

nal Report) 68 p CSCL 10A

Unclas 009414 FACE

TATICE

ANCED

N89-10407

N.AL REVIEW

Lockheed Missiles & Space Company

ADVANCED PLANAR ARRAY DEVELOPMENT FOR SPACE STATION

the state of the s

TROGAR LARO LANIA 7861, 1987

SUBMITTED TO

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
MARSHALL SPACE FLIGHT CENTER

CONTRACT NO. NAS8-36419

e e	y ever a second	to the constant of the	e e to to the constant	See a second	g y .g	rend seed

•

.

AGENDA

- OBTECLINES
- APPROACH
- IVZK DEZCKIBIION
- PROJECT FLOW DIAGRAM
- SCHEDNIE
- PROGRESS
- MODULE DESIGN (TASK 1.0) - SUPERSTRATE AND CONVENTIONAL
- PROCESS DEVELOPMENT
- FABRICATION AND TEST (TASK 2.0)
- THERMAL CYCLE TESTING (TASK 2.1)
- THERMAL BALANCE TESTING (TASK 2.2)
- 12" X 50" PANEL SEGMENT (TASK 2.3)
- Y SAMMUS .
- · VDDIIIONYF MOKK

The Vision

OBJECTIVES

- **EVBRICATION AND TEST** DEMONSTRATE SUPERSTRATE TECHNOLOGY THROUGH
- MING DESIGN DEAFTON VALUE A PRELIMINARY SOLAR ARRAY
- · FABRICATE A WING SEGMENT BASED ON THE WING DESIGN

TASK DESCRIPTION

- 1.3.1 GROUND HANDLING ENVIRONMENT 1.3 ENVIRONMENT/ANALYSIS 1.2 DETAIL DESIGN * I.1 DEVELOP PRELIMINARY DESIGN OF A SOLAR ARRAY WING TASK 1.0 WING DESIGN AND ANALYSIS
- 1.3.2 SHUTTLE ORBITER LAUNCH AND REENTRY ENVIRONMENTS
- 1.3.3 LOW EARTH ORBIT OPERATIONAL ENVIRONMENT
- 1.3.4 RESULTANT ELECTRICAL PERFORMANCE
- * 2.2 THERMAL BALANCE TESTING * 2.1 THERMAL CYCLE TESTING TASK 2.0 MODULE FABRICATION AND TESTS
- *2.3 15" X 50" DELIVERABLE MODULE
- TASK 3.0 PANEL FABRICATION AND TESTING
- 3.2 DEVELOPMENT TESTING 3.1 FABRICATE SOLAR ARRAY PANELS
- 3.3 STOWAGE AND SMALL SEGMENT TESTING
- TASK 4.0 DELIVERABLES
- 4.1 FINAL REPORT
- 4.2 ALL MODULES TESTED IN TASK 2.0
- 4.4 MING SEGMENT AND DEPLOYER * 4.3 15" X 50" MSFC TEST MODULE
- * 5.1 MONTHLY PROGRESS REPORTS AND TASK 5.0 REPORTING
- * 5.2 MID-TERM ORAL PRESENTATIONS MANAGEMENT (FINANCIAL) REPORTS
- * 5.3 FINAL ORAL PRESENTATION
- 5.4 FINAL COMPREHENSIVE REPORT
- * COMPLETED

PROJECT ORGANIZATION

on 18 min haar home kan kalenderika berida akalan berida bigala berakan belan berakan birakan bebida birber bi

PROJECT FLOW DIAGRAM

PROGRAM SCHEDULE

ORIGINAL PAGE IS OF POOR QUALITY

MODULE ASSEMBLY - SUPERSTRATE VS CONVENTIONAL

LARGE AREA SOLAR CELL DESCRIPTION

- 5.9 X 5.9 CM ROUNDED CORNERS (8 MILS THICK)
- MRAPAROUND "N" CONTACT
- GRIDDED "P" CONTACT
- S OHM-CM MATERIAL
- ELECTRICAL EFFICIENCY 13.2% AMO € 25°C
- BACK SURFACE TREATMENT
- OPTICAL COATING TO ENHANCE TRANSMISSION

on that person from the second of the second of the second of the first of the second of the second of the second

- ALUMINUM 2000-4000 ANGSTROM REFLECTOR

FULL KAPTON

THERMAL CYCLE TEST

THERMAL CYCLE TEST

MODULE INTERCONNECTS

FULL KAPTON

COI-AWAY KAPTON

THERMAL BALANCE TEST MODULES

MODNIE INTERCONNECTS

CONVENTIONAL MODULE ASSEMBLY

SUPERSTRATE MODULE ASSEMBLY

SUPERSTRATE HINGE

CONVENTIONAL LAYUP SEQUENCE

- 1. MANUFACTURE SOLAR CELL ASSEMBLIES.
- 2. PLACE SOLAR CELL ASSEMBLIES IN WELDING FIXTURE.
- 3. PLACE COPPER/KAPTON INTERCONNECT OVER SOLAR CELL ASSEMBLIES AND ALIGN WELD PADS TO ELECTRICAL CONTACTS.
- 4. TAPE COPPERVKAPTON INTERCONNECT TO SOLAR CELLS WITH LOW TACK TAPE.
- 5. WELD CIRCUIT TO SOLAR CELLS AND REMOVE TAPE.
- 6. ELECTRICAL TEST AND INSPECT.

SUPERSTRATE LAYUP SEQUENCE

- 1. 9.56" X 15.00" X .020" OR 9.56" X 15.00" X .009" MICROSHEET
- CLASS

 OLASS

 OLASS

 OLOTH AND DC 93-500 ADHESIVE TO MICROSHEET
- 3. PRE-CURE GLASS, SCRIM, AND ADHESIVE IN OVEN.
- 4. PLACE SOLAR CELLS IN SUPERSTRATE BONDING TOOL (ELECTRICAL CONTACTS FACING UP).
- 5. MASK SOLAR CELLS WITH LOW TACK TAPE.
- 6. FLIP SOLAR CELLS OVER AND POSITION IN SUPERSTRATE BONDING TOOL.
- 7. APPLY DC 93-500 ADHESIVE IN CENTER OF SOLAR CELLS.
- 8. PLACE PREPARED GLASS ON SOLAR CELLS AND SPREAD ADHESIVE WITH ROLLER.
- 9. CURE IN OVEN.
- 10. BOND HINGES 10 SUPERSTRATE GLASS USING DC 93-500 ADHESIVE
- 11. WELD COPPER/KAPTON INTERCONNECT TO ELECTRICAL CONTACTS OF
- 2 FIFTIBILA 1FST AND INSPECT
- 15. ELECTRICAL TEST AND INSPECT.

SUPERSTRATE BONDING TOOL

SOLAR CELLS POSITIONED IN BONDING TOOL

MASKED SOLAR CELLS USING LOW TACK TAPE

SOLAR CELLS FACE UP IN BONDING TOOL

APPLY DC 93-500 ADHESIVE TO SOLAR CELLS

CRUCHIME PAGE IS

INITIAL APPLICATION OF DC 93-500 ADHESIVE

ORIGINAL PACE IS OF POOR QUALITY

SUPERSTRATE GLASS WITH PRE CURED SCRIM CLOTH

DE POCR QUALITY

SUPERSTRATE ASSEMBLY WITH ADHESIVE EVENLY DISTRIBUTED

ORGENSAL PAGE IN

WEIGHT PLACED ON SUPERSTRATE ASSEMBLY BEFORE OVEN CURE

HINGE BONDING TOOL

SUPERSTRATE ASSEMBLY POSITIONED IN BONDING TOOL

OF STATE IS OF POOR CUALITY

WELDER SET UP FOR WELDING SUPERSTRATE ASSEMBLY

WELDING OF COPPER/KAPTON INTERCONNECT TO SUPERSTRATE ASSEMBLY

(CONVENTIONAL) -CELL MODULES	NUMBER OF 24 (SUPERSTRATE)	3SN	ITEM
0	S	THERMAL CYCLE AT MSFC	(COOD ELECTRICAL)
1	٤	THERMAL CYCLE	4 MODULES
1	ζ	THERMAL BALANCE AT BOEING	(600D ELECTRICAL) 3 MODULES
7	01 :53	.017L 24-CELL MODULI	1

MODNIE FABRICATION BREAKDOWN

MODULE THERMAL CYCLE TEST SEQUENCE

ORIGINAL PAGE IS OF POOR QUALITY

THERMAL CYCLE SAMPLES - FRONT SIDE

THERMAL BALANCE TESTING OBJECTIVES

- VERIFY PREDICTED PERFORMANCE OF IR TRANSPARENT SOLAR ARRAY MODULES IN A LOW EARTH ORBIT
- DEMONSTRATE IMPROVED THERMAL PERFORMANCE OF IR

 TRANSPARENT MODULES OVER CONVENTIONAL MODULES

grand same a resource common common service that we can resource except their society which interesting signific

BOEING SPACE CHAMBER B

- THERMAL VACCUUM CHAMBER EQUIPPED WITH SOLAR AND ALBEDO SIMULATING LAMPS
- A1200 SOLAR SIMULATOR
- XSEL ALBEDO SIMULATOR
- FLUXES UNIFORM ACROSS TEST MODULES (+ 5%)
- COLLIMATION ANGLE < 2 DEGREES
- PRESSURE < 10⁻⁵ TORR
- - 300 F LN 2 COLDWALL
- TEMPERATURE CONTROLLED CONE SIMULATES EARTH IR

TEST SETUP

SOLAR ARRAY TEST MODULES

- 24 CELLS ARRANGED IN A 6X4 MATRIX
- 3 MODULES FABRICATED AND TESTED
- · CONVENTIONAL OPAQUE MODULE
- BACK SURFACE REFLECTING CELLS
- FULL KAPTON SUBSTRATE
- IR TRANSPARENT MODULE WITH FULL KAPTON SUBSTRATE
- GRIDDED BACK SURFACE CELLS
- SELECTIVELY TRANSMITS WAVELENGTHS BEYOND
- 1 MICHON
- IN TRANSPARENT MODULE WITH CUTAWAY SUBSTRATE
 60% OF KAPTON SUBSTRATE CUTAWAY

where the state of the property of the A and A are the property of the A and A and A are the property of the A and A are the property of the A and A are the A and A are the A are the A and A are the A are th

NO BONDING BETWEEN CELL AND SUBSTRATE

SOLAR CELL ELECTRICAL CIRCUITS

FOUR CELLS INDIVIDUALLY CONTROLLED

THERMAL BALANCE TESTING

- · FIVE TEST CONDITIONS FOR EACH OF THE THREE TEST MODULES
- AAJOS 76.0 •
- 1.03 SOLAR
- 1.00 SOLAR
- 1.00 SOLAR, 0.30 ALBEDO
- 1.00 SOLAR, 0.40 ALBEDO
- CONDITION

 SEVERAL ELECTRICAL POWER SETTINGS FOR EACH TEST
- OPEN CIRCUIT
- POINT

 POINT
- TEMPERATURES AND CELL POWER DATA RECORDED AT
 MINUTE INTERVALS

and have the service of the service

THERMAL MODELLING

- ONLY ONE CELL MODELLED
- SOLAR AND ALBEDO FLUXES UNIFORM OVER TEST MODULE
- HIGH THERMAL RESISTANCE BETWEEN CELLS
- · SIMILIAR VIEW FACTORS TO CHAMBER SURFACES
- NEGLECT CONDUCTION LOSSES FROM TEST MODULES
- CHAMBER SURFACES

 RADIATION NETWORK CREATED BY COMPUTER MODELLING OF
- ELECTRICAL POWER SUBTRACTED FROM TOTAL ABSORBED HEAT
- THERMAL SURFACE PROPERTIES OF ARRAY MATERIALS INTEGRATED WITH RESPECT TO SOLAR AND ALBEDO SIMULATORS' SPECTRAL DISTRIBUTIONS OF ENERGY
- ABSORBED HEAT LOAD INCLUDES SECONDARY TERMS DUE TO REFLECTION AND TRANSMISSION OF ENERGY WITHIN MODULE

CELL THERMAL MODEL

THERMAL SURFACE PROPERTIES

61.0	08.0	72.0	- -	-	-	71.0	12.0	29.0	TRANSPARENT CELL ASSEMBLY (CELL, ADHESIVE, SUPERSTRATE)
-	-	_	L1.0	\$1.0	69.0	71.0	12.0	29.0	TRANSPARENT CELL ASSEMBLY FRONTFACE (CELL, ADHESIVE, SUPERSTRATE)
0.0	26.0	80.0	-	-	_	0.0	26.0	80.0	(CETT' ADHESIVE, COVERSLIDE) OPAQUE CELL ASSEMBLY
_	-	-	0.0	82.0	ζΓ.0	0.0	28.0	89.0	OPAQUE CELL ASSEMBLY (CELL, ADHESIVE, COVERSLIDE)
ı	d	$\boldsymbol{\mathfrak{D}}$	1	d	\mathfrak{D}	1	d	\mathfrak{p}	
ROTAJI	IMIS	VEEDO	ROTAJU		SOLAR		NNS		<u> JAIRƏTAM</u>
XS2F		00S1A							

EOB V-1500 SECLEVE ENERGY DISTRIBUTION MEASUREMENT

	1:00/1	1:00(1	(:007		74101	7
	1.00€1	1.00€1	3.08S		101AL	-
4.05-	8.61	8.21	h. E	02.2-02.5	hi	
1:11-	8.64	6.8€	h. 8	05.5-08.1	E1	
€.0	0.78	5.78	5.41	08.1-02.1	21 }	l
8.3-	4:111	8.601	4.55	02.1-05.1	11	
6.£-	9.021	6.211	0.25	05.1-00.1	01	
€.8-	6.58	0.91	4.31	00.1-06.0	6	
h.0	€.66	7.66	2,15	06.0-08.0	8	l
7.8	7.651	4.461	0.65	08.0-07.0	L .	
€.91	5.121	1.971	0.86	07.0-03.0	9	N
1.71	0.771	S. 70S	<u> </u>	09.0-02.0	5	
1.0	6.001	0.101	8.15	08.0-84.0	ъ.	
h	8.38	0.68 •	6.71	Sh.O-0H.O	٤	
2. T	6.95	5.18	5.61	ዐኯ.ዐ-୧೯.ዐ	2	
6.29-	٦.85	6.61	£. H	? €.0-?5.0	ţ	
DEVIATION	ENG STANDARD	MORNALIZED MATCHED DATA TO DNE SOLAR CONSTANT (W/m*2)	MATCHED ATAQ	BANDWIDTH (MICRONS)	BAND NO.	

100% VB20KP1101

18

SPECTRAL ENERGY DISTRIBUTION MEASUREMENT

	1.00€1	1,0061	S. THS		1A101	
۵.٤	8.91	۶.0s	6.E	02,S-05,S	h1	
1.41	B.FH	0.08	5.6	05.5-08.1	61	
5.15	0.78	5.78	5.81	08.1-02.1	21 }	IB
1.25	h:111	4.981	5.92	05.1-05.1	11	
L. T1	9.021	0.541	0.75	05.1-00.1	01	
5.21	6°28	L.26	5.81	00.1-06.0	6	
9.6	€.66	6.80I	T.05	06.0-08.0	8	
1.0-	1.651	9.651	2.65	08.0-07.0	L	
8.1-	5.181	8.841	€.85	07.0-03.0	9	NOIÎ
6 · h-	0.771	£.831	0.56	09.0-02.0	5	8
£.05-	6.001	٦.08	٤٠٤١	05·0-5h·0	h	
9.71-	8.48	5°11	9.61	SH'0-0H'0	٤	
6.21-	6.95	6°£h	1.6	04.0-26.0	г	
h·69-	5.85	6.71	H. E	? €.0- ? S.0	1	
DEVIATION	ENG STANDARD	MORMALIZED MATCHED DATA TO ONE SOLAR CONSTANT (W/mxxz)	GЭНЭТАН ATAG	BANDWIDTH (AICRONS)	BAND . ON	

100% 01199028A

OFRQUE CELL WITH FULL SUBSTRATE

INFX 33 LEZLZ

SOLAR=1.0, ALBRDO= 0.0

THERMOCOUPLE #3, POWER CIRCUIT #3

TRANSPARENT CELL WITH FULL SUBSTRATE

JULY 25 TESTS

SOLAR=1.03, ALBEDO= 0.0

THERMOCOUPLE #4, POWER CIRCUIT #4

TRANSPARENT CELL WITH CUTAWAY SUBSTRATE

INTA 34 LEZLE

SOLAR=1.00, ALBEDO= 0.30

THERMOCOUPLE #3, POWER CIRCUIT #3

CORRELATION BETWEEN MODEL RESULTS AND TEST DATA

- OPAQUE TEST MODULE
- MODEL RESULTS AND TEST DATA WITHIN 5 F IN 17 OF 20 CASES AT ALL STEADY STATE CONDITIONS
- TRANSPARENT TEST MODULE WITH FULL SUBSTRATE
- MODEL RESULTS AND TEST DATA WITHIN 10 F IN 12 OF 15 CASES AT ALL STEADY STATE CONDITONS
- MODEL RESULTS WARMER THAN TEST DATA
- TRANSPARENT TEST MODULE WITH CUTAWAY SUBSTRATE
 MODEL RESULTS AND TEST DATA WITHIN 5 F IN ALL 20
- CASES AT ALL STEADY STATE CONDITIONS
 MODEL RESULTS PREDICT MORE RAPID TRANSIENT RESPONSE
 THAN TEST DATA SHOWS

PREDICTED SOLAR CELL TEST TEMPERATURES

EOR THREE ARRAY DESIGNS

$O\Gamma VIE = 1.0$, ALBEDO = 0.0

BOMER CIRCUIL 63

PREDICTED SOLAR CELL TEST TEMPERATURES

FOR THREE ARRAY DESIGNS

SORMR = 1.0, ALBEDO = 0.30

BOMER CIRCUIT 93

DESIGN CHANGES TO IMPROVE CELL THERMAL PERFORMANCE

- BOND SUBSTRATE TO CELL BACKFACE WHERE POSSIBLE
- · REDUCES RADIATION SHIELD EFFECT
- · ACRYLIC TRANSFER TAPE OR SILICONE ADHESIVE
- WITH CUTAWAY SUBSTRATE ADD COATING TO INCREASE

EMMISSIVITY OF CELL BACKFACE

- INCHEASE EMMISSIVITY FROM 0.6 TO 0.85
- TRANSPARENT TO SOLAR WAVELENGTHS

PREDICTED CELL TEMPERATURES ON ORBIT

SOLAR LOAD HORMAL TO ARRAY

PANEL SEGMENT ACCEPTANCE TEST

PANEL SEGMENT ACCEPTANCE TEST - FRONT SIDE

SUPERSTRATE PANEL SEGMENT - FRONT SIDE

CKIGNAL POST SE

SUPERSTRATE PANEL SEGMENT - BACK SIDE

CLOSEUP OF COMPLETED SUPERSTRATE PANEL SEGMENT

FORMED FIBERGLASS/MOLY HINGES FOR PANEL SEGMENT

FIBERGLASS/MOLY HINGES FOR PANEL SEGMENT

MODULES WITH JUMPER - BACK SIDE ELECTRICALLY CONNECTING TWO SUPERSTRATE

WELDED TO SUPERSTRATE ASSEMBLY CLOSEUP OF CUT-AWAY KAPTON INTERCONNECT

URESTALL PAGE TO OF POOR QUALITY

SETUP FOR ELECTRICAL TESTING OF PANEL SEGMENT

CHUSTAL PAGE IS

YAAMMUS

- DEVELOPED PROCESS FOR MANUFACTURING SUPERSTRATE
- CONVENTIONAL MODULES AND TWO CONVENTIONAL MODULES
- "QUICK LOOK" THERMAL CYCLE CHAMBER

 THERMAL CYCLED THREE MODULES 2000 CYCLES IN LMSC'S
- PERFORMED THERMAL BALANCE TEST AT BOEING
- 10131d 11111d

• DELIVERED PANEL SEGMENT 10 MSFC

- ONTIL FUTURE FUNDS ARE AVAILABLE

 ONTIL FUTURE FUNDS ARE AVAILABLE
- FABRICATION OF WING SEGMENT CANCELLED UNTIL FUTURE FUNDS ARE AVAILABLE

ADDITIONAL WORK

- COMPLETE REMAINDER OF TASKS FOR ADVANCED PLANAR
- SUPERSTRATE GLASS
 INVESTIGATE EDGE PREPARATION TECHNIQUES FOR
- LOB 20bEB21BV1E BONDING
 INVESTIGATE USING STRICONE SHEET ADHESIVE (DC X4-46435)
- PROTECTS AGAINST ATOMIC OXYGEN EROSION
 EVALUATE GLASS ENCAPSULATED SUPERSTRATE MODULES

,我们也是我们的时候就是一块的。""是我们的,我们就我的,我们就是一块的。""我们的,我们的,我们的人的,我们的人的人的,我们的人的人的,我们就是一个人,我们

- LONGER THERMAL CYCLING CAPABILITY