The tutorial to build shared Al services

--Session 1

Suqiang Song (Jack)
Director & Chapter Leader of Data/AI Engineering @ Mastercard jackssqcyy@gmail.com
https://www.linkedin.com/in/suqiang-song-72041716/

Agenda Session 1: Jan. 30th Wed 10am-12pm PT

Module 1: Case study: Al as a Service (30 mins)

- A typical end to end AI Service
- Hidden truths of Al
- Options of AI as a Service
- The journey of AI as a Service
- Challenges of traditional machine learning
- How deep learning can improve
- · Enterprise requirements for AI as a Service
- Deep learning approaches evaluation

Code Lab 1 (45 mins)

- Build a Docker image and run a Keras on Spark container
- Run the NCF deep learning pipeline for User Item Propensity model

Module 2: Keras on Spark (30 mins)

- Keras introduction
- Options of Keras on Spark
- Use case for user item propensity model
- Build a User Item Propensity model with deep learning algorithms
- Neural Collaborative Filtering deep learning algorithm

Q & A (15 mins)

Course Prerequisites

- Install Docker at your local laptop
- Download two Docker images from shared drive URL keras-py27-jupyter-cpu.tar and demo-whole.tar

https://1drv.ms/f/s!AsXKHMXBWUIBiBpaYk9FFjdoUifg

passcode : jack

Load images to your Docker environment

```
$ docker load -i keras-py27-jupyter-cpu.tar
```

\$ docker load -i demo-whole.tar

Module 1

Published Recommendation Services (Open APIs)

Hidden truths for Al

"Hidden Technical Debt in Machine Learning Systems," Google NIPS 2015

Figure 1: Only a small fraction of real-world ML systems is composed of the ML code. The required surrounding infrastructure is vast and complex. These include boundary erosion, entanglement, hidden feedback loops, undeclared consumers, data dependencies, configuration issues, changes in the external world, and a variety of system-level anti-patterns

Hidden truths for AI - Where the debts?

Hidden truths for AI -- continue

A Long and Expense Journey

Options of AI as a Service

- Machine learning frameworks:
 Provide stable and secure
 environments and consolidate
 integrated wrappers on top of
 variable technologies for regular
 machine learning works
- Applications build silos from scratch

- Fully managed machine learning servic es use templates, pre-built models and drag-and-drop development tools to si mplify and expedite the process of usin g a machine learning framework
- Applications share templates and prebuilt models, assembly and infer them into pipelines or business context

- Automation Services, tasks like explora tory data analysis, pre-processing of da ta, hyper-parameter tuning, model sele ction and putting models into producti on can be automated
- "God's Return to God, Satan's Return to Satan, Math's Return AI, Business's Return Biz"

Journey 1:Machine learning frameworks

Example: Machine Learning Sandbox

Journey 2: Fully managed machine learning services

Example: Data Science Workbench (Microsoft ML Studio)

Journey 3: Automation Services

Example: Netflix, Amazon Sage Maker...

What we can learn from Netflix?

https://www.slideshare.net/FaisalZakariaSiddiqi/ml-infra-for-netflix-recommendations-ai-nextcon-talk

What we can learn from Amazon?

Amazon SageMaker Components

What we can learn from Amazon? -- Continue

What we can learn from Prediction IO?

http://predictionio.apache.org/

Challenges of traditional machine learning

Learning

Feature engineering bottlenecks

Pre-calculate hundreds or thousands Long Term Variables take lots of resources and times (greater than 70%)

Model scalability limitations

Trade-off between automation in parallel and scaling machine learning to ever larger datasets and ever more complicated models

Heavily relies on human machine learning experts

Relies on human to perform the most of tasks, such as features selection, model selection, model hyper parameters tuning, critically analyze the results obtained...

Serving

Less integration with end to end data pipelines and serving multiple contexts

Gap to bring machine learning process into the existing enterprise data pipelines and application contexts including offline, streaming and real-time

Isolated non-reusable APIs and CI/CD pipelines

Application teams spent lots of time with data scientist to build high level serving APIs, back and force. Most of time are using different technical stacks and non-reusable pipelines.

Isolated promotions and operation readiness without automate CI/CD

How deep learning can help -- Feature engineering bottlenecks

- spends /visits for merchants list, category list divided by week, months and years
- The computation time for LTV features took > 70% of the data processing time for the whole lifecycle and occupied lots of resources which had huge impact to other critical workloads.
- Miss the feature selection optimizations which could save the data engineering efforts a lot

Improvements

- When build model, only focus on few pre-defined sliding features and custom overlap features (Users only need to identify the columns names from data source)
- Remove most of the LTV pre-calculations works, saved hours time and lots of resources
- Deep learning algorithm generates exponential growth of hidden embedding features, do the internal features selections and optimization automatically when it does cross validation at training stage

How deep learning can help -- Heavily relies on human machine learning experts

Improvements

- Common neural network "tricks", including initialization, L2 and dropout regularization, Batch normalization, gradient checking
- A variety of optimization algorithms, such as mini-batch gradient descent, Momentum, RMSprop and Adam
- Provides optimization-as-a-service using an ensemble of optimization strategies, allowing practitioners to efficiently optimize models faster and cheaper than standard approaches.

How deep learning can help -- Model scalability

- All the pipelines separated by items and generate one model for each item
 Have to pre-calculate the correlation
- matrix between items

 Lots of redundant duplications and
- Lots of redundant duplications and computations at feature engineering ,training and testing process
- Run items in parallel and occupied most of cluster resources when executed
 Pad motifier for items with form
- Bad metrics for items with few transactions
- It is very hard to scale more items , from hundreds to millions ?

Improvements

• Scale models in deeper and wider without decreasing metrics

Enterprise requirements for AI as a Service

Collocated with mass data storage

 Analyze a large amount of data on the same Big Data clusters where the data are stored (HDFS, HBase, Hive, etc.) rather than move or duplicate data

Seamless integration with Products Internal & External

 Add deep learning capabilities to existing Analytic Applications and/or machine learning workflows rather than rebuild all of them

Data governance with restricted Processing

 Follow data privacy, regulation and compliance (such as PCI/PII compliance and GDPR rather than operate data in unsecured zones

Shared infrastructure with Multitenant isolated resources

 Leverage existing Big Data clusters and deep learning workloads should be managed and monitored with other workloads (ETL, data warehouse, traditional ML etc..) rather than run ML/DL workloads standalone in separate clusters

Adopt structured sparse data sets

 More challenges also more benefits to adopt structured high dimensional sparse data sets rather than non-structured dense data sets

Automation and easy to go

- End to end automation rather than manual efforts
- Easy API enablement rather than big learning curve or depend on special experts

Deep learning approaches evaluation -- Super Stars

 Claimed that the GPU computing are better than CPU which requires new hardware infrastructure (very long timeline normally)

• Success requires many engineer-hours (Impossible to Install a Tensor Flow Cluster at STAGE ...)

Low level APIs with steep learning curve (Where is your PhD degree ?)

 Not well integrated with other enterprise tools and need data movements (couldn't leverage the existing ETL, data warehousing and other analytic relevant data pipelines, technologies and tool sets. And it is also a big challenge to make duplicate data pipelines and data copy to the capacity and performance.)

Tedious and fragile to distribute computations (less monitoring)

The concerns of Enterprise Maturity and InfoSec (such as use GPU cluster with Tensor Flow from Google Cloud)

Module 2

Keras introduction

-- Introduce a simple play ground, not just for Keras

https://github.com/ufoym/deepo

build passing docker pulls 49k license MIT

Deepo is a series of *Docker* images that

- allows you to quickly set up your deep learning research environment
- supports almost all commonly used deep learning frameworks
- supports GPU acceleration (CUDA and cuDNN included), also works in CPU-only mode
- works on Linux (CPU version/GPU version), Windows (CPU version) and OS X (CPU version)

and their Dockerfile generator that

- allows you to customize your own environment with Lego-like modules
- automatically resolves the dependencies for you

Keras introduction -- Basic concepts

Keras: an API for specifying & training differentiable programs

Keras is the official high-level API of TensorFlow

Keras API

TensorFlow / CNTK / MXNet / Theano / ...

GPU

CPU

TPU

tf.keras

TensorFlow

GPU

CPU

TPU

Keras introductionThree API styles

The Sequential Model

- - Dead simple
- - Only for single-input, single-output, sequential layer stacks
- Good for 70+% of use cases

The functional API

- - Like playing with Lego bricks
- Multi-input, multi-output, arbitrary static graph topologies
- Good for 95% of use cases

Model subclassing

- Maximum flexibility
- Larger potential error surface

Keras introduction

-- Example for entry: MINST by MLP and CNN

Code time!

\$ docker run -it -p 8888:8888 --ipc=host ufoym/deepo:all-py27-jupyter-cpu jupyter notebook --no-browser --ip=0.0.0.0 --allow-root --NotebookApp.token="demo" -- notebook-dir='/root'

Why Spark?

What does Spark offer for deep learning?

Integrations with existing DL librāries

- Deep Learning Pipelines (from Databricks)
 Caffe (CaffeOnSpark)
 Keras (Elephas)

- mxnet
- Paddle
- TensorFlow (TensorFlow on Spark, TensorFrames)
- CNTK (mmlspark)

Implementations of DL on Spark

- BigDL+ Analytic Zoo
- DeepDist
- DeepLearning4J
- SparkCL
- SparkNet

Options of Keras on Spark

Why BigDL?

Deep Learning Building Blocks Layers, Optimizers, Criterion Deep Learning Models

Scala* and Python* support
Spark ML Pipeline integration
Jupyter* notebook integration
Tensorboard* integration
OpenCV* support
Model Interoperability
(Caffe*/TensorFlow*/Keras*)

HEALTH

CONSUMER

CALL CENTER ROUTING ANALYSIS OF 3D MRI IMAGE SIMILARITY SEARCH MODELS FOR KNEE SMART JOB SEARCH DEGRADATION

FINANC

FRAUD DETECTION RECOMMENDATION CUSTOMER/MERCHANT PROPENSITY RETAIL

IMAGE FEATURE EXTRACTION

MANUFACTURING

STEEL SURFACE DEFECT DETECTION

SCIENTIFIC COMPUTING

WEATHER FORECASTING

Why Analytics Zoo?

Analytics Zoo -> Unified Analytics + AI Platform for Spark and BigDL

Reference Use Cases	Anomaly detection, sentiment analysis, fraud detection, chatbot, sequence prediction, etc.
Built-In Algorithms and Models	Image classification, object detection, text classification, recommendations, GAN, etc.
Feature Engineering and Transformations	Image, text, speech, 3D imaging, time series, etc.
High-Level Pipeline APIs	DataFrames, ML Pipelines, Autograd, Transfer Learning, etc.
Runtime Environment	Spark, BigDL, Python, etc.

https://github.com/intel-analytics/analytics-zoo

Use case for user item propensity model

- Propensity to buy
- Propensity to use
- Propensity to engage
- Propensity to contract
- Etc.

- Life Insurance
- Auto Insurance
- · Homeowner's Insurance
- Mortgage
- Re-Financing
- Credit cards
- Personal Loans
- Investments
- Satellite TV
- Cable
- Netflix
- · Online banking
- Online money management
- Voting
- Disease

https://catalog.data.gov/dataset/purchase-card-pcard-fiscal-year-2014

Purchase Card (PCard) Fiscal Year 2014

□ Metadata Updated: September 15, 2016

This dataset contains information on purchases made through the purchase card programs administered by the state and higher ed institutions. The purchase card information will be updated monthly after the end of the month. For example, July information will be added in August.

Build a User Item Propensity model with deep learning algorithms

Logistic regression

Collaborative Filtering

Neural Collaborative Filtering deep learning algorithm

https://arxiv.org/pdf/1708.05031.pdf

https://github.com/hexiangnan/neural_collaborative_filtering

Code Lab 1

\$ docker run -it -p 8080:8080 -p 8443:8443 -p 10000:10000 -p 8998:8998 -p 12345:12345 -p 8088:8088 -p 4040:4040 -p 7077:7077 -e NotebookPort=12345 -e NotebookToken="demo" -e RUNTIME_DRIVER_CORES_ENV=1 -e RUNTIME_DRIVER_MEMORY=2g -e RUNTIME_EXECUTOR_CORES=1 -e RUNTIME_EXECUTOR_MEMORY=4g -e RUNTIME_TOTAL_EXECUTOR_CORES=1 --name demo -h demo demo:latest bash

Build a Docker image and run a Keras on Spark container

https://github.com/jack1981/AaaSDemo

Run the NCF deep learning pipeline for User Item Propensity model

https://github.com/jack1981/AaaSDemo

Q & A