Semiconductor Fundamentals

Material developed by Prof. C. Z. Zhao

last lecture: 3 key points

- 1. Moores' Law
- 2. Technology Node Definition
- 3. Yield Definition

1. Moores' Law:

the number of transistors on a chip <u>doubled</u> every 18 to 24 months.

2. Technology Node Definition

Images courtesy of Fairchild Semiconductor. Used without permission.

B

"D" represents IC technology level.

The names of "D", nowadays:

"D technology", or

"Generation D", or "D node"

ITRS: http://www.itrs.net/home.html

The International Technology Roadmap for Semiconductors, known throughout the world as the ITRS, is the fifteen-year assessment of the semiconductor industry's future technology requirements.

ITRS Technology Node Definitions

Individual roadmaps are defined for high-performance, low-power, etc.

3. Yield

Die yield =
$$\frac{\text{No. of good chips per wafer}}{\text{Total number of chips per wafer}} \times 100\%$$

$$Die cost = \frac{Wafer cost}{Dies per wafer \times Die yield}$$

- in Fig.1, the yield is 50% and the die cost is £250 (If this wafer costs £500).
- In Fig.2, the yield is 87% and the chip cost is £36 (If this wafer costs £500).

Chapter 2 Outline

Semiconductor Fundamentals-(I)

- 2.1 Atomic structures
- 2.2 Crystal structures

Semiconductor Fundamentals-(II)

- 2.3 Energy bands
- 2.4 The doping of semiconductors

Semiconductor Fundamentals-(III)

- 2.5 Boltzmann approximation & E_F, n, p
- 2.6 Carrier drift and diffusion

Semiconductor Fundamentals – (I)

2.1 Atomic structures

原子结构

2.2 Crystal structures

晶体结构

2.1 Atomic Structures

- Elements
- Bohr's theory orbits 轨道
- Distribution of electrons
 - Valence electrons 价电子
- Bonding
 - lonised bond
 - Covalent bond

离子键

共价键

元素周期表 Element periodic table

Silicon Integrated Circuit Periodic Table

Semiconductor Materials

		III	IV	V	
•					
		Boron (B)	Carbon (C)		
	•	Aluminum (Al)	Silicon (Si)	Phosphorus (P)	
		Gallium (Ga)	Germanium (Ge)	Arsenic (As)	
			•	Antimony (Sb)	
			•		

Semiconductor Materials

2.1 Atomic Structures

- Elements
- Bohr's theory orbits
- Distribution of electrons
 - Valence electrons
- Bonding
 - Ionised bond
 - Covalent bond

Bohr's Theory - Orbits

 The electrons of an atom can only stay on a number of orbits. The radius of orbits changes discontinuously.

For example, hydrogen atom,

电子伏

-3.4 eV

•The orbit with smaller radius has lower energy₁₅

http://winter.group.shef.ac.uk/orbitron/

Orbits

- Electrons reside in stable configurations (orbits, orbitals)
- These orbitals are numbered (in order of increasing energy): 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f ...
- Each orbital can have up to two electrons
- "s" levels: two electron states
- Each "p" level is 3fold degenerate: six electron states
- Historical: "s" was chosen because the optical emission related to transitions for these levels gives "sharp" lines (similarly: "principal", "diffuse" etc.)

n=3: 3s, 3p, 3d

n=4: 4s, 4p, 4d, 4f

2.1 Atomic Structures

- Elements
- Bohr's theory orbits
- Distribution of electrons
 - Valence electrons
- Bonding
 - Ionised bond
 - Covalent bond

Distribution of electrons in atoms

Maximum number of electrons in an orbit is fixed

- > 1st orbit: 2 (1s)
- > 2nd orbit: 8 (2s, 2p) (3rd orbit: 3s, 3p, 3d)
- Orbit with lowest energy is filled first, since the lower energy, the more stable.
- The orbit with smaller radius has lower energy.
- Electrons in the outmost orbit: 'valence electrons'.
- Property of atoms depends on valence electrons

From Hydrogen to Silicon

n=3: 3s, 3p, 3d

		# of Electrons						
		1 2		3		3		
Z	Name	1s	2s	2p	3s	Зр	3d	Notation
1	Н	1						1s ¹
2	He	2						1s ²
3	Li	2	1					1s ² 2s ¹
4	Ве	2	2					$1s^2 2s^2$
5	В	2	2	1				1s ² 2s ² 2p ¹
6	С	2	2	2				$1s^2 2s^2 2p^2$
7	N	2	2	3				$1s^2 2s^2 2p^3$
8	0	2	2	4				$1s^2 2s^2 2p^4$
9	F	2	2	5				$1s^2 2s^2 2p^5$
10	Ne	2	2	6				$1s^2 2s^2 2p^6$
11	Na	2	2	6	1			$1s^2 2s^2 2p^6 3s^1$
12	Mg	2	2	6	2			$1s^2 2s^2 2p^6 3s^2$
13	Al	2	2	6	2	1		$1s^2 2s^2 2p^6 3s^2 3p^1$
14	Si	2	2	6	2	2		$1s^2 2s^2 2p^6 3s^2 3p^2$
15	Р	2	2	6	2	3		$1s^2 2s^2 2p^6 3s^2 3p^3$
16	S	2	2	6	2	4		$1s^2 2s^2 2p^6 3s^2 3p^4$
17	Cl	2	2	6	2	5		$1s^2 2s^2 2p^6 3s^2 3p^5$
18	Ar	2	2	6	2	6		$1s^2 2s^2 2p^6 3s^2 9p^6$

Valence Electrons of B, Si & Sb

 The electrons in the outermost shell of an atom are called valence electrons; they dictate the nature of the chemical reactions of the atom and largely determine the electrical nature of solid matter.

Valence Electrons of Si & Ge

 Solid state electronics arises from the unique properties of silicon and germanium, each of which has four <u>valence electrons</u> and which form <u>crystal lattices</u>.

2.1 Atomic Structures

- Elements
- Bohr's theory orbits
- Distribution of electrons
 - Valence electrons
- Bonding
 - Ionised bond
 - Covalent bond

Bonding

 An unstable atom can achieve a quasi-stable structure by bonding with other atoms.

• Ionized bonds:

orbit

The atoms are ionized first and then bonded through electrostatic force.

8 electrons: stable situation

Covalent bonds

- Valence electrons are <u>shared</u>
- Notation of a covalent bond (can't be "seen")

标记法 Si Si Si Si Si Si Si

 Si shares its 4 valence electrons with four other Si atoms by forming covalent bonds.

Covalent bonds

bond.

 The bonds are of equal length and angular separation to produce a crystal structure.

25

2.2 Crystal Structures

General material properties

Crystal structures

Crystallographic notation

Bohr's theory – energy level & band

Material Properties

- generally crystalline in structure for IC devices
 - In recent years, however, non-crystalline semiconductors have become commercially very important

Transmission Electron Microscope透射电子显微镜

2.2 Crystal Structures

General material properties

Crystal structures

Crystallographic notation

Bohr's theory – energy level & band

Silicon Crystallography

晶格

- Lattice: periodic arrangement of atoms in a crystal
- Unit Cell: smallest volume segment representative of entire lattice 晶胞

Crystal: Atoms + Lattice

 Silicon Lattice = Diamond Lattice: atoms with four covalent bonds, cubic lattice

Lattice and Crystal

Figure 1. A crystal can be thought of as being like wallpaper. The motif is analogous to the basis and the <u>arrangement</u> of the motif over the surface is like the lattice.

The Si Crystal: Unit Cell

- Each Si atom has 4 nearest neighbors
- lattice constant= 5.431Å

"diamond cubic" lattice

Silicon crystal structure

- Silicon is a crystalline material: long range atomic arrangement
- Diamond lattice: atoms tetrahedrally bonded by sharing valence electrons (covalent bonding)
- Each atom shares 8 electrons: low energy and stable situation

Si atomic density: 5 ×10²² cm⁻³

$$\frac{\#Atoms}{Volume} = \frac{8 \times 1/8 + 6 \times 1/2 + 4}{a_0^3} = \frac{8}{(5.43 \times 10^{-8} cm)^3}$$

Silicon crystal structure: summary

- Silicon atoms form covalent bonds and can crystallize into a regular lattice.
- The main point here is that a silicon atom has four electrons which it can share in covalent bonds with its neighbors.
- Silicon crystallizes in the same pattern as <u>diamond</u>.
- The bold lines between silicon atoms in the lattice illustration indicate nearest-neighbor bonds.

Compound Semiconductors

闪锌矿

- "zinc blende" structure
 Simply the diamond structure in which the species of atoms alternate
- III-V compound semiconductors: GaAs, GaP, GaN, etc.
 - √ important for optoelectronics and high-speed ICs

中等能量离子散射谱 How do we know crystal structures?

the Daresbury MEIS facility, UK

Elastic scattering

2.2 Crystal Structures

General material properties

Crystal structures

- Crystallographic notation 晶面表示法
- Bohr's theory energy level & band

Crystallographic Notation

 Miller indices are a notation system in <u>crystallography</u> for planes and directions in <u>crystal lattices</u>.

39

Crystallographic Notation: directions

Miller Indices:

Notation	Interpretation
[hkl]	crystal direction
$\langle h k l \rangle$	equivalent directions

Sample direction vectors and their corresponding Miller indices.

Crystallographic Notation: planes

Miller Indices:

Assignment:

Intercepts: ½ a , a , ∞

Fractional intercepts: ½,1,∞

Miller Indices: (210)

Notation	Interpretation
(hkl)	crystal plane
$\{hkl\}$	equivalent planes

截距

h: inverse x-intercept of plane

k: inverse y-intercept of plane

l: inverse *z*-intercept of plane

(Intercept values are in multiples of the lattice constant;

h, k and l are reduced to 3 integers having the same ratio.)

截距的倒数

截距的倒数的整数

Crystallographic Notation: planes

Crystallographic Planes and Si Wafers

Silicon wafers are usually cut along a {100} plane with a flat or notch to orient the wafer during IC fabrication:

2.2 Crystal Structures

General material properties

Crystal structures

Crystallographic notation

能级能带

Bohr's theory – energy level & band

Bohr's Theory

 The electrons of an atom can only stay on a number of orbits. The radius of orbits changes <u>discontinuously</u>.

For example, hydrogen atom,

The Bohr model

Energy levels and possible electronic transitions in a hydrogen atom. Shown are the first six energy levels, as well as three possible transitions involving the lowest energy level (n = 1)

Energy Bands

- Energy level of an isolated atom
- In solids, atoms interact with each other
- The orbits of electrons will be altered by interaction, which leads to splitting in energy level.

Energy Bands

- Energy level of an isolated atom
- In solids, atoms interact with each other
- The orbits of electrons will be altered by interaction, which leads to splitting in energy level.

Energy Bands

- Energy level of an isolated atom
- In solids, atoms interact with each other
- The orbits of electrons will be altered by interaction, which leads to splitting in energy level.

Si: From Atom to Crystal

Si: From Atom to Crystal

Energy levels in Si atom → energy bands in Si crystal

- The highest nearly-filled band is the valence band
- The lowest nearly-empty band is the conduction band

Formation of Energy Bands

- Many atom interactions form energy bands.
- Valence band: where valence electrons stay
- Conduction band: where free electrons stay
- Eg: The minimum energy required to free an electron from an atom.
 - Eg≈0 for metals (conductors)
 - Eg=1.12eV for Si (Semiconductors)

>4eV for insulators

Conduction band

Allowed Forbidden Eg

Bands Yalence band

Energy Band Diagram

Simplified version of energy band model, indicating

- bottom edge of the conduction band (E_c)
- top edge of the valence band (E_v)
- \succ $E_{\rm c}$ and $E_{\rm v}$ are separated by the **band gap energy** $E_{\rm g}$

Real band structures

NS

- The highest nearly-filled band is the valence band
- The lowest nearly-empty band is the conduction band

Summary of Section 2.1 & 2.2

- Crystalline Si:
 - 4 valence electrons per atom
 - diamond lattice
 - each atom has 4 nearest neighbors
 - > 5 x 10²² atoms/cm³
- Crystallographic notation
 - Miller indices are used to designate planes and directions within a crystalline lattice
- Ec, Ev and Eg

Outline

Semiconductor Fundamentals-(I)

- 2.1 Atomic structures
- 2.2 Crystal structures

Semiconductor Fundamentals-(II)

- 2.3 Energy bands
- 2.4 The doping of semiconductors

Semiconductor Fundamentals-(III)

- 2.5 Boltzmann approximation & E_F, n, p
- 2.6 Carrier drift and diffusion