

# GEOMETRÍA

Capítulo 15

3rd SECONDARY

SEGMENTOS PROPORCIONALES







#### 1. PROPORCIÓN ÁUREA

También llamada sección áurea, se halla presente en la naturaleza, el arte y la arquitectura.

Los griegos la conocieron en el estudio del cuerpo humano y la utilizaron, en la escultura y la arquitectura y la definieron como una característica fundamental en su estética.

























#### Razón geométrica de dos segmentos

Es el cociente que se obtiene al dividir las longitudes de dos segmentos que tienen la misma unidad de medida.

#### Ejemplo:



 $\frac{2}{3}$ : razón geométrica de  $\overline{AB}$  y  $\overline{CD}$ 

#### Segmentos proporcionales

Si la razón geométrica de 2 segmentos es igual a la de otros dos, dichos pares de segmentos son proporcionales.



# Teorema de Tales



Si: 
$$\overrightarrow{L_1} /\!\!/ \overrightarrow{L_2} /\!\!/ \overrightarrow{L_3}$$

$$\frac{a}{b} = \frac{m}{n}$$

# **Corolario de Tales**



# Teorema de la Bisectriz

# Teorema del Incentro



# **Teorema de Ceva**

# Teorema de Menelao



$$(a)(b)(c) = (m)(n)(p)$$





1. Se tiene una escalera con peldaños paralelos tal que AB = FG, BC = 25 cm, EF = 16 cm y GH = 24 cm. Calcule CD.



# Resolución

- Piden: CD=x
- Del gráfico:  $\overrightarrow{L_1}$  //  $\overrightarrow{L_2}$  //  $\overrightarrow{L_3}$  //  $\overrightarrow{L_4}$
- Aplicando teorema de Tales

$$\frac{a}{25} = \frac{16}{a}$$

$$a^{2} = 400$$

$$a = 20$$

$$\frac{25}{x} = \frac{20}{24} = \frac{5}{6}$$

$$150 = 5x$$

$$30 = x$$

$$CD = 30 \text{ cm}$$









## Resolución

• Piden: x

$$\frac{\stackrel{1}{\cancel{a}}}{\cancel{2a}} = \frac{5}{QC}$$

$$QC = 10$$

 △QLC: Notable de 30° y 60°

$$x = 30^{\circ}$$

3. En un triángulo ABC, se traza la bisectriz interior  $\overline{BD}$ ,  $(D \in \overline{AC})$ , si AB = DC, AD = 8 m y BC = 18 m. Calcule el perímetro del triángulo ABC.

## Resolución





Piden: 2p<sub>ABC</sub>

$$\frac{a}{18} = \frac{8}{a}$$

$$a^2 = 144$$

$$a = 12$$

Luego:

$$2p_{ABC} = AB + BC + AC$$

$$2p_{ABC} = 12 + 18 + 20$$

$$2p_{ABC} = 50m$$



# 4. En la figura CD = 2(AD) y AB = 15 cm. Halle BD.





### Resolución

• Dato: CD = 2(AD) CD = 2a

- Prolongamos  $\overline{AB}$
- BC es bisectriz exterior del △ABD

Luego:

$$\frac{15}{BD} = \frac{3\cancel{a}}{2\cancel{a}}$$
$$30 = 3(BD)$$
$$10 = BD$$



# 5. En la figura, halle el valor de x.





### Resolución

- Piden: x
- Aplicando teorema de Ceva

$$(2)(a)(2n) = (2)(6)(n)$$
  
 $a = 3$ 

△ABQ: notable de 37° y 53°

$$x = 53^{\circ}$$



6. Se muestra las rectas paralelas y coplanares  $\overrightarrow{L_1}$ ,  $\overrightarrow{L_2}$  y  $\overrightarrow{L_3}$ . Si 3(AB) = 2(BC), DE = 4 m y EF =  $x\sqrt{2}$ . Halle el valor de x.



## Resolución

• Dato: 
$$3(AB) = 2(BC)$$
  
 $\frac{AB}{2} = \frac{BC}{3} = k$   $AB = 2k$   
 $BC = 3k$ 

- Prolongamos DE hasta H
- ⊿EHF: notable de 45° y 45°
- Aplicando teorema de Tales



$$\frac{2 k}{3 k} = \frac{4}{x}$$

$$2x = 12$$

$$x = 6 \text{ m}$$



# 7. En la figura, halle el valor de x.



## Resolución





 △CFH: notable de 37° y 53°

$$HC = 5k$$

 △CAD: Corolario de Tales

$$AF = 4a \wedge FC = 5a$$

En ABC: Teorema de la bisectriz interior.

$$\frac{20}{x} = \frac{4z}{5z}$$

$$100 = 4x$$

$$x = 25$$