

Network Layer: Logical Addressing

19-1 IPv4 ADDRESSES

An IPv4 address is a 32-bit address that uniquely and universally defines the connection of a device (for example, a computer or a router) to the Internet.

Topics discussed in this section:

Address Space Notations Classful Addressing

Note

An IPv4 address is 32 bits long.

The IPv4 addresses are unique and universal (all nodes connecting Internet must have IP addresses).

The address space of IPv4 is 2³² or 4,294,967,296.

Dotted-decimal notation and binary notation for an IPv4 address

The binary, decimal, and hexadecimal conversion table illustrates the three numbering systems.

<u>Decimal</u>	<u>Hexadecimal</u>
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
10	Α
11	В
12	С
13	D
14	E
15	F
	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Obtained from http://www.wisc-online.com

Change the following IPv4 addresses from binary notation to dotted-decimal notation.

- a. 10000001 00001011 00001011 11101111
- **b.** 11000001 10000011 00011011 11111111

Change the following IPv4 addresses from binary notation to dotted-decimal notation.

- a. 10000001 00001011 00001011 11101111
- **b.** 11000001 10000011 00011011 11111111

Solution

We replace each group of 8 bits with its equivalent decimal number and add dots for separation.

- a. 129.11.11.239
- **b.** 193.131.27.255

Change the following IPv4 addresses from dotted-decimal notation to binary notation.

- a. 111.56.45.78
- **b.** 221.34.7.82

Change the following IPv4 addresses from dotted-decimal notation to binary notation.

- **a.** 111.56.45.78
- **b.** 221.34.7.82

Solution

We replace each decimal number with its binary equivalent.

- a. 01101111 00111000 00101101 01001110
- **b.** 11011101 00100010 00000111 01010010

Find the error, if any, in the following IPv4 addresses.

- **a.** 111.56.045.78
- **b.** 221.34.7.8.20
- c. 75.45.301.14
- **d.** 11100010.23.14.67

Find the error, if any, in the following IPv4 addresses.

- **a.** 111.56.045.78
- **b.** 221.34.7.8.20
- c. 75.45.301.14
- **d.** 11100010.23.14.67

Solution

- a. There must be no leading zero (045).
- b. There can be no more than four numbers.
- c. Each number needs to be less than or equal to 255.
- d. A mixture of binary notation and dotted-decimal notation is not allowed.

In classful addressing, the address space is divided into five classes: A, B, C, D, and E.

Figure 2 Finding the classes in binary and dotted-decimal notation

	First byte	Second byte	Third byte	Fourth byte
Class A	0			
Class B	10			
Class C	110			
Class D	1110			
Class E	1111			

a. Binary notation

Class D: multicast Class E: reserved

b. Dotted-decimal notation

Example 19.4

Find the class of each address.

- **a.** <u>0</u>00000001 00001011 00001011 11101111
- **b.** <u>110</u>000001 100000011 00011011 111111111
- *c.* <u>14</u>.23.120.8
- **d. 252**.5.15.111

Example 19.4

Find the class of each address.

- **a.** <u>0</u>00000001 00001011 00001011 11101111
- **b.** <u>110</u>000001 100000011 00011011 111111111
- *c.* <u>14</u>.23.120.8
- **d. 252**.5.15.111

Example 19.4

Find the class of each address.

- *a.* <u>0</u>00000001 00001011 00001011 11101111
- **b.** <u>110</u>000001 100000011 00011011 11111111
- *c.* <u>14</u>.23.120.8
- **d. 252**.5.15.111

Solution

- a. The first bit is 0. This is a class A address.
- b. The first 2 bits are 1; the third bit is 0. This is a class C address.
- c. The first byte is 14; the class is A.
- d. The first byte is 252; the class is E.

 Table 19.1
 Number of blocks and block size in classful IPv4 addressing

Class	Number of Blocks	Block Size	Application
A	128	16,777,216	Unicast
В	16,384	65,536	Unicast
С	2,097,152	256	Unicast
D	1	268,435,456	Multicast
Е	1	268,435,456	Reserved

THE END