

Faculty of Veterinary and Agricultural Sciences

Neuromuscular junction and Molecular basis of skeletal muscle contraction

Dr Babatunde Ayodele awodeleb@unimelb.edu.au

Neuromuscular Junction

Neuromuscular Junction

- Also known as NMJ or myoneural junction
- Site where an axon and muscle fiber meet

Parts to know:

- Motor neuron
- Motor end plate (synapse)
- Synaptic cleft
- Synaptic vesicles
- Neurotransmitters

Motor Unit

- Single motor neuron and all muscle fibers controlled by the motor neuron
 - As few as four fibers
 - As many as 1000's of muscle fibers

Motor Unit

Stimulus for Contraction

- Acetylcholine (ACh)
- Nerve impulse causes release of ACh from synaptic vesicles
- ACh binds to ACh receptors on motor end plate
- Generates a muscle impulse
- Muscle impulse eventually reaches the SR and the cisternae

Animation: Function of the Neuromuscular Junction

Skeletal Muscle Fibers

- Sarcolemma
- Sarcoplasm
- Sarcoplasmic reticulum (SR)
- Transverse ('T') tubule
- Triad
 - Cisternae of SR
 - T tubule
- Myofibril
- Actin myofilaments
- Myosin myofilaments
- Sarcomere

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Skeletal Muscle Contraction

- Movement within the myofilaments
- I band (thin)
- A band (thick and thin)
- H zone (thick)
- Z line (or disc)
- M line

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Myofilaments

- Thick myofilaments
 - Composed of myosin protein
 - Form the cross-bridges

- Thin myofilaments
 - Composed of actin protein
 - Associated with troponin and tropomyosin proteins

Thick Myofilaments

(a) Myosin molecule

(b) Thick filament

Thin Myofilaments

Thin Myofilaments

Excitation-Contraction Coupling

- Muscle impulses cause SR to release calcium ions into cytosol
- Calcium binds to troponin to change its shape
- The position of tropomyosin is altered
- Binding sites on actin are now exposed
- Actin and myosin molecules bind via myosin cross-bridges

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Summary Role of Calcium

The Sliding Filament Model of Muscle Contraction

- When sarcomeres shorten, thick and thin filaments slide past one another
- H zones and I bands narrow
- Z lines move closer together

Cross Bridge Cycling

- Myosin cross-bridge attaches to actin binding site
- Myosin cross-bridge pulls thin filament
- ADP and phosphate released from myosin
- New ATP binds to myosin
- Linkage between actin and myosin cross-bridge break
- ATP splits
- Myosin cross-bridge goes back to original position
- ATP splits

Relaxation

- Acetylcholinesterase rapidly decomposes Ach remaining in the synapse
- Muscle impulse stops
- Stimulus to sarcolemma and muscle fiber membrane ceases
- Calcium moves back into sarcoplasmic reticulum (SR) by SERCA (SERCA – sarcoplasmic/endoplasmic reticulum Ca²⁺-ATPase pump)
- Myosin and actin binding prevented
- Muscle fiber relaxes

Animation: Action Potentials and Muscle Contraction

Recording of a Muscle Contraction

- Recording a Muscle Contraction
 - Twitch
 - Latent period
 - Period of contraction
 - Period of relaxation
 - Refractory period
 - All-or-none response

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Summary

Length-Tension Relationship

Summation

- Process by which individual twitches combine
- Produces sustained contractions
- Can lead to tetanic contractions

Recruitment of Motor Units

- Recruitment increase in the number of motor units activated for contraction
- Whole muscle composed of many motor units
- More precise movements are produced with fewer muscle fibers within a motor unit
- As intensity of stimulation increases, recruitment of motor units continues until all motor units are activated

Recruitment of Motor Units

- O Monitor unit 1 recruited
- O Monitor unit 2 recruited
- Monitor unit 3 recruited

Sustained Contractions

- Smaller motor units (smaller diameter axons) recruited first
- Larger motor units (larger diameter axons) recruited later
- Produce smooth movements

Fast Twitch and Slow Twitch Muscle Fibers

- Slow-oxidative fibers (Type I)
 - Always oxidative
 - Resistant to fatigue
 - Red fibers
 - Most myoglobin
 - Good blood supply

- Fast-oxidative fibers (Type IIa)
 - Intermediate fibers
 - Oxidative
 - Intermediate amount of myoglobin
 - Pink to red in color
 - Resistant to fatigue
- Fast glycolytic fibers (Type IIb)
 - White fibers (less myoglobin)
 - Poorer blood supply
 - Susceptible to fatigue

Faculty of Veterinary and Agricultural Sciences

The end

Dr Babatunde Ayodele awodeleb@unimelb.edu.au

