SOC 4015/5050: Lab-06 - Difference of Means Tests by Hand

Christopher Prener, Ph.D.

Fall 2018

Directions

Please complete all steps below. Your your work "by hand" should be scanned and included in your Lab-06 assignment submission. Unlike the previous lab, you only need to include your *p*-value calculations in your notebook. All work should be uploaded to your GitHub assignment repository by 4:15pm on Monday, October 15th, 2018.

Analysis Development: Create a Project Folder System

- a. Using RStudio, add an R Project to the *existing* directory in your assignments repository named Lab-06.
- b. Add new folders named docs and source to you project.
- c. Create a new text file for your README.md. In the body of your README.md file, use Markdown formatting to write a sentance or two describing the purpose of this project. Then create an outline using bullets of the contents of the project itself.¹
- d. Create a new notebook with an expanded YAML heading.
- e. Make sure your notebook has *completed* introductory, package loading, and data loading sections before proceeding with the parts below.
- f. Be sure to "knit" your notebook at the end of the assignment!

This initial section follows the project workflow that is available in the lecture-03 repo!

¹ See my write-up of the Markdown syntax in *Sociospatial Data Science* for details on creating lists.

Part 1: One-sample T-test

Variable	0k	os M	lean Sto	d. Dev.	Min I	Max
	+					
math	20	00 52.	645 9.3	368448	33	75

- 1. Using the above data, test to see whether the sample data comes from a population where the average score on the math portion of a standardized test is 52. Be sure to provide a complete interpretation of the results.
- 2. Test to see whether the sample data comes from a population where the average score on the math portion of a standardized test is 54. Be sure to provide a complete interpretation of the results.

Part 2: Independent T-test

Writing Scores by Gender

Group	0bs	Mean	Std. Err.		[95% Conf.	-
male female	91 109	50.12088 54.99083	1.080274 .7790686	10.30516 8.133715	47.97473 53.44658	52.26703 56.53507
combined	200	52.775	.6702372	9.478586	51.45332	54.09668

- 3. Assuming equal variances, test to see whether there is a significant difference in writing scores between men and women in this sample. Be sure to provide a complete interpretation of the results.
- 4. Based on your answer to question 3, calculate and interpret the appropriate effect size.
- 5. Assuming unequal variances, test to see whether there is a significant difference in writing scores between men and women in this sample. Be sure to provide a complete interpretation of the results.
- 6. Based on your answer to question 5, calculate and interpret the appropriate effect size.

Part 3: Dependent T-test

Variable	0b	s Mean	Std. Err	. Std. Dev.	[95% Con	f. Interval]
math science	20 20	52.645 51.85	.6624493 .7000987	9.368448 9.900891	51.33868 50.46944	53.95132 53.23056
diff	20	. 795	.5864593	8.293787	3614723	1.951472

- 7. Since there is overlap between math and science skills, it is possible that these two scores are not independent. Test to see whether there is a significant difference in math and science scores in this sample. Be sure to provide a complete interpretation of the results.
- 8. Based on your answer to question 7, calculate and interpret the appropriate effect size.

Part 4: Reshaping Data

The following data include Gini coefficients at two different time periods for three of the four so-called "BRIC" countries (Brazil, Russia, India, and China), which represent major developing countries. Gini coefficients range from o (complete income equality) to 1 (complete income inequality).

country	period	gini
Brazil	2008	.544
Brazil	2012	.527
China	2008	.428
China	2012	.422
Russia	2008	.414
Russia	2012	.416

- 9. If we wanted to reshape these data, which verb is most appropriate? Why?
- 10. What is the key?
- 11. What is the value?
- 12. Draw out a reshaped data table with new variable names and values filled in.

The following data include population counts for three cities in the United States at two different time periods.

country	pop1900	pop2000
Los Angeles	102479	3695364
New York	3437202	8008278
St. Louis	575328	346904

- 13. If we wanted to reshape these data, which verb is most appropriate? Why?
- 14. What could we name the key?
- 15. What could we name the value?
- 16. Which variables (i.e. columns) will contribute to the values?
- 17. Draw out a reshaped data table with new variable names and values filled in.