Deep learning

Regularisation & Sequential modelling

Announcements

- Environment
 - It is slower than we want, trying to resolve.
 - If you want, we have created instructions for local development.
 - Docker image updated to 1.1 for today.
- Assignment back on track
 - Deadline 9th of April.
 - Grading will be 0, 1, 2
- Mid-course evaluation.

- (supervised) Machine learning tasks
 - Regression

layer_dense(unit = 1, activation = "sigmoid") + loss = "binary_crossentropy"

- Classification
- layer_dense(unit = 10, activation = "softmax") + loss = "categorical_crossentropy"

 Multi-class classification

layer_dense(unit = 1) + loss = "mse"

 Output many things at once!

1.Binary Classification 2. Multiclass Classification 3.Regression NN model Layers Activation Activation NN model Layers NN model Layers input input sigmoid softmax input input input function function input $output = \frac{1}{1 + e^{-v}}$ Dense Dense Dense output output Dense Dense output activate Softmax activate output Sigmoid y=417 output output output error output v1 v2 y=0.9 y1=0.2 y2=0.1 y3=0.7 label error t=520 error label label t=1.0 t1=0.0 t2=0.0 t3=1.0 Cross Entropy(CE) Mean Squared Error(MSE) $L = \frac{1}{2}(t - y)^2$

- Improving networks
 - Optimisers

- Improving networks
 - Batch normalisation

```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\};

Parameters to be learned: \gamma, \beta

Output: \{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}

\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad \text{// mini-batch mean}
\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad \text{// mini-batch variance}
\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad \text{// normalize}
y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad \text{// scale and shift}
```

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.

- Reducing overfitting
 - Dropout

(a) Standard Neural Net

(b) After applying dropout.

Overview

Today we will cover

- Regularisation
 - L2 regularisation
- Practice BN, Dropout and L2
- Sequential modelling
 - Understanding sequential data
 - Basic sequential model (Recurrent Neural Network, RNN)
- Practice working with sequential data

Reducing overfitting

- What is regularisation?
- Any kind of technique which helps you select one model over another using a structured approach.
- We will add extra terms to the loss function (L2)
- We will add intermediary layers to the network (Dropout)

L2 Regularisation Reducing overfitting

- We add a new term to the total loss function.
- This term adds additional loss to the function which takes the value of the weights into account.
- We then optimise this new loss function instead.
- A new **hyperparameter**, λ is added. This is usually a small value and we will need trial and error to find an acceptable value. It can be considered as a discount factor.

L2 Regularisation

Reducing overfitting

- Why does L2 regularisation work?
- We some cost to the weights, thus making a "more complex" model "more expensive".

- If some learnt weight is high (say, 10) it "costs more" than a weight with value 1.
- Thus, our model becomes "simpler" by forcing the weights down.
- When some weights are forced to 0, we are effectively "removing connections".

Set weight to 0

L2 Regularisation Reducing overfitting

 We use L2 regularisation to fight overfitting, because it makes our model less expressive.

- We use it after we have fitted the data.
- It will increase the training loss during training and hopefully reduce the test loss.
- Also known as weight decay.

Set weight to 0

L2 Regularisation

Reducing overfitting

Total loss =
$$J(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} (l(f(x_i, \mathbf{w}), y_i))$$

Now becomes

$$J(w) = \frac{1}{n} \sum_{i=1}^{n} (l(f(x_i, w), y_i) + \frac{\lambda}{2n} \sum_{j=1}^{n} w_j^2)$$

Hands-on

Go to https://dba.projects.sda.surfsara.nl/

Notebook: 04a-regularisation.ipynb

Break at 11:00 / 15:00

Second part at 11:10 / 15:10

Notebook recap

- We were not really able to improve the baseline much, but made it converge faster.
- We saw that we really need to test if the regularisation technique is helping us.
 - L2 regularisation was not very stable. Dropout was better.
- It depends on the task, architecture, ..., trial and error.

- Data is sequential when the data has some order.
- The whole dataset can consist of a single order (sunspots) or many individual orders (sentences).

the cat sat on the mat the book is open .

in deep learning

- Machine translation
- Speech recognition
- Music generation
- Sentiment classification
- Video activity recognition

•

- In previous lectures our data have been made up from a single example.
- A single example can have many features.
 - Temperature, air pressure, etc.
- Now each example is made from a single sequence.
 - "Hi, hoe gaat het?"
- Each sequence has many examples.
 - "Hi", "hoe", "gaat", "het"
- That is, in each iteration we process a single sequence, many examples.

Classic example

Now is

Sequence dataset

sequence length = 3

#examples = n

Feed-Forward Network Data

Recurrent Network Data

Data = (examples, features)

Data = (examples, sequence_length, features)

Source: https://www.oreilly.com/library/view/deep-learning/9781491924570/ch04.html

Which task?

- Given a sequence we can try to solve many supervised learning tasks.
 - Regression
 - Predict temperature tomorrow given the last few days.
 - Classification
 - Is this a question?
 - Is the person yelling?
 - Just add the output layer required along with the loss.

How to model?

Naive model

- Why not create a network which accepts multiple inputs at once?
 - For this we will need VERY many parameters.
 - The sequence length might vary between examples.
 - We can often process each element independently and equally.
 - "gaat" is the same word regardless of position in a sentence.

Naive sequence model

How to model?

- A more clever approach is to use the same, smaller, network for each element in the sequence.
- Then we pass information to the next time step.
- An RNN cell.

passing information

- Read the sequence, step by step.
- Until the sequence has been read.

passing information

- Use the same network for each time-step.
- RNN cell contains the parameters

The same network, with the same weights, replicated

passing information

- Pass information forward in a "memory".
- "Memory" is updated each step.

Naive sequence model \hat{y}_i Network \uparrow $\chi_i^{<1>}\chi_i^{<2>}$... $\chi_i^{<t>}$

The same network, with the same weights, replicated

Passing a vector with information forward "memory"

passing information

- Hopefully good information is stored.
- Task is just the last layer.

sharing parameters

- For each time-step we use the same network, it just gets different "memory" passed to it.
- This allows us to share parameters in different locations of the model.
- Sharing parameters reduces the number of parameters in the model.
- More intuitive and works better.
- The idea behind an RNN.

We process "the" in the same way.

Summary

- Sequential data is ordered to it.
- Sequential data needs to be processed using dimensions, (examples, sequence length, features).
- We feed each time-step of the sequence into the same RNN cell and remember what we have seen.
- The last layer still takes care of the task.
- Allows us to share parameters.

Notebook

- The Jena weather dataset.
- A long sequence of weather measurements.
- Each measurement consists of 15 variables.
- We see a timedependent pattern in the data.

Hands-on

Go to https://dba.projects.sda.surfsara.nl/

Notebook: 04b-time-series-prediction.ipynb

Wrap-up at 12:20 / 16:20

Summary

- Regularisation
 - L2 regularisation
- Practice BN, Dropout and L2
- Sequential modelling
 - Understanding sequential data
 - Basic sequential model (Recurrent Neural Network, RNN)
- Practice working with sequential data