Démonstration du Théorème d'Al-Kashi

Le théorème d'Al-Kashi permet de <u>généraliser le théorème de Pythagore</u> dans un triangle quelconque. Nous allons démontrer ce théorème en utilisant le langage des vecteurs.

1. Énoncé du Théorème d'Al-Kashi

Soit un triangle ABC avec a=BC, b=AC, c=AB. Le théorème d'Al-

Kashi énonce que : pythagon

$$c^2 = a^2 + b^2 - 2ab\cos(\theta),$$
 $a^2 = b^2 + c^2 - 2bc$

où θ est l'angle opposé au côté c.

Exemple Numérique

Considérons un triangle ABC tel que a=5, b=4 et $\theta=60^\circ$. La longueur du côté c est donnée par :

$$c^2 = 5^2 + 4^2 - 2 \times 5 \times 4 \times \cos(60^\circ).$$

En utilisant la relation $\cos(60^\circ)=rac{1}{2}$, on trouve :

$$c^2 = 25 + 16 - 20 = 21.$$
 $c = \sqrt{21} \approx 4.58.$

La longueur du côté c est donc d'environ 4.58 unités.

2. Vecteurs dans le Triangle

Plaçons les points A, B et C dans le plan vectoriel. Soient : \subset

- $\vec{AB} = \vec{u}$.
- $\vec{AC} = \vec{v}$

Le vecteur \vec{BC} est donné par :

3. Calcul de la Norme du Vecteur

La norme au carré de \vec{BC} est :

 $\| \vec{BC} \|^2 = (\vec{v} - \vec{u}) \cdot (\vec{v} - \vec{u}).$ rappel produit scalaire:

uit scalaire: $\vec{x} \cdot \vec{x} = \| \vec{x} \|^2$ En développant le produit scalaire :

$$\|\vec{BC}\|^2 = \|\vec{v}\|^2 + \|\vec{u}\|^2 - 2(\vec{v} \cdot \vec{u}).$$

On sait que:

- $\|\vec{u}\| = \mathcal{B}$ (longueur du côté AC),
- $\| \vec{v} \| = \mathcal{U}$ (longueur du côté AB), ا
- $\vec{u} \cdot \vec{v} = ab \cos(\theta)$ (définition du produit scalaire).

4. Expression Finale

En remplaçant dans l'expression précédente : $a^2 = b^2 + C^2 - 2bc$ co α

$$a^2 = b^2 + c^2 - 2bc$$
 on a $b^2 + b^2 - 2ab\cos(\theta)$.

Nous obtenons l'expression du théorème d'Al-Kashi, qui est une généralisation du théorème de Pythagore lorsque l'angle θ n'est pas droit.

Remarque:

Lorsque $heta=90^\circ$, on retrouve $c^2=a^2+b^2$, ce qui correspond au théorème de Pythagore.

Soit un triangle DEF avec d=5, f=4 et $heta=60^\circ$ l'angle opposé à e. Calcule la longueur du côté & e avec la formule Démontre que, de façon générale, $e^2=d^2+f^2-2df\cos(heta)$. $||\widehat{DF}||^2 = (\cdot - \cdot) \cdot (\cdot - \cdot)$

Condition d'Orthogonalité de Deux Vecteurs

La condition d'orthogonalité de deux vecteurs repose sur le fait que leur produit scalaire est nul si les vecteurs sont perpendiculaires.

1. Énoncé de la Condition

Soient \vec{u} et \vec{v} deux vecteurs du plan ou de l'espace. La condition d'orthogonalité est :

rthogonalité est :
$$\vec{u}\cdot\vec{v}=0 \iff \theta=90^\circ.$$

Où θ est l'angle entre \vec{u} et \vec{v} .

2. Exemple d'Application

Prenons $\vec{u}=(3,4)$ et $\vec{v}=(-4,3)$. Calculons le produit scalaire :

$$ec{u}\cdotec{v}=3 imes(-4)\oplus 4 imes 3=-12+12=0.$$

Le produit scalaire est nul, donc les vecteurs \vec{u} et \vec{v} sont orthogonaux.

3. Condition de Colinéarité de Deux Vecteurs

La condition de colinéarité de deux vecteurs repose sur le fait qu'il existe un réel k tel que : $\frac{1}{N} = 2. \frac{1}{N}$

$$ec{v}=kec{u}.$$

Cela signifie que $ec{u}$ et $ec{v}$ sont alignés et ont la même direction (si k>0) ou des directions opposées (si k < 0).

4. Exemple d'Application

Considérons les vecteurs $\vec{a}=(2,\stackrel{\downarrow}{4},6)$ et $\vec{b}=(\stackrel{\downarrow}{1},2,3)$. Calculons le rapport des composantes :

2025-01-07

$$\begin{array}{cccc} \bullet & \frac{2}{1} = \textcircled{2} \\ \bullet & \frac{4}{2} = \textcircled{2} \\ \bullet & \frac{6}{3} = \textcircled{2} \end{array} \qquad \begin{array}{c} \textcircled{1} \\ \textcircled{2} \\ \textcircled{3} \end{array} , \qquad \textcircled{2} \Rightarrow \begin{pmatrix} \textcircled{2} \\ \textcircled{4} \\ \textcircled{6} \end{pmatrix}$$

Puisque ce rapport est constant (égal à 2), on a bien $ec{a}=2ec{b}$. Les vecteurs sont donc colinéaires.

5. Conclusion

Les vecteurs \vec{u} et \vec{v} sont colinéaires s'il existe un réel k tel que $\vec{v}=k\vec{u}$. En revanche, ils sont orthogonaux si leur produit scalaire est nul.

Exercice:

Montrez que les vecteurs $\vec{c}=(3,6,21)$ et $\vec{d}=(1,2,7)$ sont colinéaires en calculant le rapport des composantes.

$$\frac{3}{1} = 3 \qquad \frac{6}{2} = 3 \qquad \frac{21}{7} = 3$$

$$3 \cdot \overrightarrow{d} = \overrightarrow{c}$$

$$3 \cdot \left(\frac{1}{2}\right) = \left(\frac{3}{6}\right)$$

$$1 \cdot \left(\frac{3}{2}\right) = \left(\frac{3}{6}\right)$$

Exercices sur les Vecteurs en 3D

1. Colinéarité de Vecteurs en 3D

Déterminez la valeur du paramètre pour que deux vecteurs soient colinéaires.

Exercice 1:

Soient les vecteurs $\vec{u}=(2,-1,3)$ et $\vec{v}=(k,-2,6)$. Trouvez la valeur de k pour que \vec{u} et \vec{v} soient colinéaires.

2. Orthogonalité de Vecteurs en 3D

Déterminez la valeur du paramètre pour que deux vecteurs soient orthogonaux.

Exercice 2:

Soient $\vec{a}=(1,4,2)$ et $\vec{b}=(p,-1,3)$. Trouvez la valeur de p pour que \vec{a} et \vec{b} soient orthogonaux.

Application à la géométrie :

Comment montrer que deux droites sont orthogonales dans l'espace ?

Comment montrer que deux droites sont parallèles ?

Illustre tes réponses par un schéma

Je choisis un vecteur sur chaque droite. Si leur produit s-calaire est mul, alors les droites sont orthogonales.

Je choisis un vecteur sur chaque droite, se les recteurs virifient la condition de colinéanté, alors les droites sont parallélès.