Chapter 0 Exercises

David Piper

September 20, 2020

- 0.1 (a) Proof. Given the functions $f(n) = n^2$ and $g(n) = 2n^2 + 100\sqrt{n}$ we may observe that f = o(g). This follows from the fact that $n^2 < 2n^2$ for all $n \in \mathbb{N}^+$. To prove this we simply use the definition of f = o(g) if for every $\epsilon > 0$, $f(n) \le \epsilon \cdot g(n)$ for every sufficiently large n. From the equation we can observe that $\epsilon = 2$ and that this is true for all $n \ge 1$. That is, $1^2 < 2 \cdot 1^2$ or 1 < 2. Q.E.D.
 - (b) Proof. Q.E.D.