Homework 3.2 Linear Algebra Math 524 Stephen Giang

Section 3.D Problem 2: Suppose V is finite-dimensional and dim V > 1. Prove that the set of noninvertible operators on V is not a subspace of $\mathcal{L}(V)$.

Solution 3.D.2. Let V be finite-dimensional with dim V = n, $n \in \mathbb{Z}^{>1}$. Let $\{v_1, ..., v_n\}$ be a basis of V. Let $S, T \in \mathcal{L}(V)$

$$Sv_1 = v_1$$
 $Sv_2 = 0$ $Sv_k = 0$ $Tv_1 = 0$ $Tv_2 = v_2$ $Tv_k = v_k$

So S, T are both noninvertible operators on V, such that S is not injective, and T is not surjective

$$(S+T)v_1 = Sv_1 + Tv_1 = v_1$$

$$(S+T)v_k = Sv_k + Tv_k = v_k$$

Because (S+T) is injective and surjective, (S+T) is invertible, so S,T is not closed under addition, thus they are not a subspace of $\mathcal{L}(V)$

Section 3.D Problem 3: Suppose V is finite-dimensional, U is a subspace of V, and $S \in \mathcal{L}(V)$. Prove there exists an invertible operator $T \in \mathcal{L}(V)$ such that Tu = Su for every $u \in U$ if and only if S is injective.

Solution 3.D.3. Let V be finite-dimensional, $U \subseteq V$, and $S \in \mathcal{L}(V)$. (=>) Let $T \in \mathcal{L}(V)$ be invertible, and Tu = Su, $\forall u \in U$.

Because T is invertible, T is injective, such that Tu = 0, u is exclusively 0. And because Tu = Su = 0 only when u is exclusively 0, S is injective as well.

(<=) Let S be injective, and $\{u_1,...,u_m,v_1,...,v_n\}$ be an extended Basis of V from U.

Because S is injective, we can have $\{Su_1, ..., Su_m, w_1, ..., w_n\}$ be an extended Basis of V from S. Let T be defined as:

$$Tu_k = Su_k \quad 1 \le k \le m$$

 $Tv_j = w_j \quad 1 \le j \le n$

Because T maps the entire basis $\{u_1, ..., u_m, v_1, ..., v_n\}$ to another basis entirely, $\{Su_1, ..., Su_m, w_1, ..., w_n\}$, T is invertible $\in \mathcal{L}(V)$.

Section 3.E Problem 2: Suppose $V_1, ..., V_m$ are vector spaces such that $V_1 \times \cdots \times V_m$ is finite dimensional. Prove that V_j is finite-dimensional for each j = 1, ..., m

Solution 3.E.2. Let $V_1, ..., V_m$ be vector spaces such that $V_1 \times \cdots \times V_m$ is finite dimensional.

By Theorem 3.76, Dim $(V_1 \times \cdots \times V_m) = \sum_{k=1}^m \text{Dim } (V_k)$.

If any V_k was not finite dimensional, then the dimension of V_k would be infinite, such that the sum with the other dimensions would not be finite, as integers are closed under addition.

Section 3.E Problem 4: Suppose $V_1, ..., V_m$ are vector spaces.

Prove that $\mathcal{L}(V_1 \times \cdots \times V_m, W)$ and $\mathcal{L}(V_1, W) \times \cdots \times \mathcal{L}(V_m, W)$ are isomorphic vector spaces.

Solution 3.E.4. Let $V_1, ..., V_m$ be vector spaces.

Let $f \in \mathcal{L}(V_1 \times \cdots \times V_m, W)$, with $f_i : V_i \to W$,

$$f_i(v_i) = f(0, 0, 0, v_i, 0, 0, 0) \in \mathcal{L}(V_i, W) \quad 1 \le i \le m$$

Let $\Gamma: \mathcal{L}(V_1 \times \cdots \times V_m, W) \to \mathcal{L}(V_1, W) \times \cdots \times \mathcal{L}(V_m, W)$ such that

$$\Gamma(f) = (f_1, ..., f_m)$$

Let $\Gamma^{-1}: \mathcal{L}(V_1, W) \times \cdots \times \mathcal{L}(V_m, W) \to \mathcal{L}(V_1 \times \cdots \times V_m, W)$ such that

$$\Gamma^{-1}(f_1, ..., f_m) = (f_1(v_1), ..., f_m(v_m))$$

Because Γ is linear and has an inverse, $\mathcal{L}(V_1 \times \cdots \times V_m, W)$ and $\mathcal{L}(V_1, W) \times \cdots \times \mathcal{L}(V_m, W)$ are isomorphic vector spaces.