Quaternions

Oskar Mampe

9th October 2019

Problem

An artist has given you two keyframe rotation matrices of an object. At time step 0, the artist wants the object rotated by 45° CCW around vector (2,1,4) and at time step 100, the object should be rotated by 123° CW around vector (0,1,1). Use quaternions to determine the axis and angle of rotation required to achieve this rotation in 100 steps. Show all work.

All calculations are rounded to 5 decimal places.

Solution

A vector $\vec{v} = (2, 1, 4)$ is formed using the information given above. Also, the angle 45° CCW becomes $\theta_0 = \frac{45}{2} = 22.5$.

$$q_0 = (\cos(\theta_0), \sin(\theta_0) \times |\vec{v}|))$$

$$||\vec{v}|| = \sqrt{2^2 + 1^2 + 4^2} = \sqrt{21} = 4.58258$$

$$|\vec{v}| = \frac{\vec{v}}{||\vec{v}||} = \frac{(2, 1, 4)}{4.58258} = (0.43644, 0.21822, 0.87287)$$

$$\cos(\theta_0) = 0.92388$$

$$\sin(\theta_0) = 0.38268$$

$$q_0 = (0.92388, 0.38268 \times 0.43644, 0.38268 \times 0.21822, 0.38268 \times 0.87287)$$

$$q_0 = 0.92388 + 0.16702i + 0.08351j + 0.33403k$$

A vector $\vec{w}=(0,1,1)$ is formed using the information given above. Also, the angle 123° CW becomes $\theta_{100}=-\frac{123}{2}=-61.5$.

$$\begin{split} q_{100} &= (\cos(\theta_{100}), \sin(\theta_{100}) \times |\vec{w}|)) \\ ||w|| &= \sqrt{0^2 + 1^2 + 1^2} = \sqrt{2} = 1.41421 \\ |w| &= \frac{|w|}{||w||} = \frac{(0, 1, 1)}{1.41421} = (0, 0.70711, 0.70711) \\ &\cos(\theta_{100}) = 0.47716 \\ &\sin(\theta_{100}) = -0.87882 \\ &q_{100} = (0.47716, 0, -0.87882 \times 0.70711, -0.87882 \times 0.70711) \\ &q_{100} = 0.47716 + 0i - 0.62142j - 0.62142k \end{split}$$

Next, to find the quaternion required q_{δ} , the quaternion q_{Δ} needs to be calculated by multiplying quaternions q_{100} and the inverse of q_0 . Since q_0 is a unit quaternion, its magnitude is 1, so only taking the conjugate q_0^* is required, as $q_0^{-1} = \frac{q_0^*}{||q_0||} = \frac{q_0^*}{1} = q_0^*$.

$$\begin{split} q_0^* &= 0.92388 - 0.16702i - 0.08351j - 0.33403k \\ q_{100} &= 0.47716 + 0i - 0.62142j - 0.62142k \\ q_{\Delta} &= q_0^* \times q_{100} \\ q_{\Delta} &= 0.44084 + 0i - 0.57412j - 0.57412k \\ &- 0.07970i - 0i^2 + 0.10379ij + 0.10379ik \\ &- 0.03985j - 0ji + 0.05189j^2 + 0.05189jk \\ &- 0.15939k - 0ki + 0.20757kj + 0.20757k^2 \\ &= 0.44084 - 0.57412j - 0.57412k - 0.07970i \\ &+ 0.10379k - 0.10379j - 0.03985j - 0.05189 \\ &+ 0.05189i - 0.15939k - 0.20757i - 0.20757 \\ q_{\Delta} &= 0.18138 - 0.23538i - 0.71776j - 0.62972k \\ \end{split}$$

Now that q_{Δ} is found, θ_{Δ} and \vec{v}_{Δ} can be found. Then the quaternion q_{δ} can be formed by using $\frac{\theta_{\Delta}}{100}$ and \vec{v}_{Δ} .

$$\begin{split} (q_{\delta})^{100} &= q_{\Delta} \\ \theta_{\delta} &= \frac{\theta_{\Delta}}{100} \\ \theta_{\Delta} &= \arccos(0.18138) = 79.54985 \\ \theta_{\delta} &= \frac{79.54985}{100} \\ \theta_{\delta} &= 0.79550 \\ \sin(79.54985) &= 0.98341 \\ \vec{v}_{\delta} &= (-\frac{0.23538}{0.98341}, -\frac{0.71776}{0.98341}, -\frac{0.62972}{0.98341}) \\ \vec{v}_{\delta} &= (-0.23935, -0.72987, -0.64034) \end{split}$$

Finally, the quaternion q_{δ} with the required angle and axis can be formed:

```
\begin{aligned} \cos(0.79550) &= 0.99990 \\ \sin(0.79550) &= 0.01388 \\ q_{\delta} &= (0.99990, 0.01388 \times -0.23935, 0.01388 \times -0.72987, 0.01388 \times -0.64034) \\ q_{\delta} &= 0.99990 - 0.00332i - 0.01013j - 0.00889k \end{aligned}
```