## 0.1 CCC

The section should be a cartesian closed category. That is it should have:

- A Terminal object 1
- Binary products
- Exponentials

Further more, it should have a co-product of the terminal object 1. This is required for the beta-eta equivalence of if-then-else terms.

$$\mathbf{1} \xrightarrow{inl} A \xleftarrow{inr} \mathbf{1}$$

For each:

$$\mathbf{1} \stackrel{f}{\longrightarrow} A \stackrel{g}{\longleftarrow} \mathbf{1}$$

There exists unique  $[f,g]: \mathtt{1} + \mathtt{1} \to A$  such that:



## 0.2 Graded Pre-Monad

The category should have a graded pre-monad. That is:

- An endo-functor indexed by the po-monoid on effects:  $T:(\mathbb{E},\cdot 1,\leq) \to \mathtt{Cat}(\mathbb{C},\mathbb{C})$
- A unit natural transformation:  $\eta: \mathtt{Id} \to T_{\mathbf{1}}$
- A join natural transformation:  $\mu_{\epsilon_1,\epsilon_2}$ ,  $:T_{\epsilon_1}T_{\epsilon_2}\to T_{\epsilon_1\cdot\epsilon_2}$

Subject to the following commutative diagrams:

#### 0.2.1 Left Unit

$$T_{\epsilon}A \xrightarrow{T_{\epsilon}\eta_{A}} T_{\epsilon}T_{1}A$$

$$\downarrow Id_{T_{\epsilon}A} \downarrow \mu_{\epsilon,1,A}$$

$$T_{\epsilon}A$$

## 0.2.2 Right Unit

$$T_{\epsilon}A \xrightarrow{\eta_{T_{\epsilon}A}} T_{1}T_{\epsilon}A$$

$$\downarrow^{\operatorname{Id}_{T_{\epsilon}A}} \downarrow^{\mu_{1,\epsilon,A}}$$

$$T_{\epsilon}A$$

#### 0.2.3 Associativity

$$T_{\epsilon_{1}}T_{\epsilon_{2}}T_{\epsilon_{3}}\overset{\mu_{\epsilon_{1},\epsilon_{2},T_{\epsilon_{3}}}}{T}\overset{A}{T}_{\epsilon_{1}\cdot\epsilon_{2}}T_{\epsilon_{3}}A$$

$$\downarrow T_{\epsilon_{1}}\mu_{\epsilon_{2},\epsilon_{3},A} \qquad \downarrow \mu_{\epsilon_{1}\cdot\epsilon_{2},\epsilon_{3},A}$$

$$T_{\epsilon_{1}}T_{\epsilon_{2}\cdot\epsilon_{3}}A\overset{\mu_{\epsilon_{1},\epsilon_{2}\cdot\epsilon_{3}}}{T}\overset{A}{T}_{\epsilon_{1}\cdot\epsilon_{2}\cdot\epsilon_{3}}A$$

## 0.3 Tensor Strength

The category should also have tensorial strength over its products and monads. That is, it should have a natural transformation

$$t_{\epsilon,A,B}: A \times T_{\epsilon}B \to T_{\epsilon}(A \times B)$$

Satisfying the following rules:

#### 0.3.1 Left Naturality

$$A \times T_{\epsilon}B \xrightarrow{\operatorname{Id}_{A} \times T_{\epsilon}f} A \times T_{\epsilon}B'$$

$$\downarrow \operatorname{t}_{\epsilon,A,B} \qquad \qquad \downarrow \operatorname{t}_{\epsilon,A,B'}$$

$$T_{\epsilon}(A \times B) \xrightarrow{T_{\epsilon}(\operatorname{Id}_{A} \times f)} T_{\epsilon}(A \times B')$$

#### 0.3.2 Right Naturality

$$A \times T_{\epsilon}B \xrightarrow{f \times \operatorname{Id}_{T_{\epsilon}B}} A' \times T_{\epsilon}B$$

$$\downarrow^{\operatorname{t}_{\epsilon,A,B}} \qquad \downarrow^{\operatorname{t}_{\epsilon,A',B}}$$

$$T_{\epsilon}(A \times B) \xrightarrow{T_{\epsilon}(f \times \operatorname{Id}_{B})} T_{\epsilon}(A' \times B)$$

### 0.3.3 Unitor Law

$$1 \times T_{\epsilon} A \xrightarrow{\mathbf{t}_{\epsilon,1,A}} T_{\epsilon}(\mathbf{1} \times A)$$

$$\downarrow^{\lambda_{T_{\epsilon}A}} \qquad \downarrow^{T_{\epsilon}(\lambda_{A})} \text{ Where } \lambda : \mathbf{1} \times \mathbf{Id} \to \mathbf{Id} \text{ is the left-unitor. } (\lambda = \pi_{2})$$

$$T_{\epsilon}A$$

**Tensor Strength and Projection** Due to the left-unitor law, we can develop a new law for the commutativity of  $\pi_2$  with  $t_{..}$ 

$$\pi_{2,A,B} = \pi_{2,\mathbf{1},B} \circ (\langle \rangle_A \times \mathrm{Id}_B)$$

And  $\pi_{2,1}$  is the left unitor, so by tensorial strength:

$$T_{\epsilon}\pi_{2} \circ \mathsf{t}_{\epsilon,A,B} = T_{\epsilon}\pi_{2,1,B} \circ T_{\epsilon}(\langle \rangle_{A} \times \mathsf{Id}_{B}) \circ \mathsf{t}_{\epsilon,A,B}$$

$$= T_{\epsilon}\pi_{2,1,B} \circ \mathsf{t}_{\epsilon,1,B} \circ (\langle \rangle_{A} \times \mathsf{Id}_{B})$$

$$= \pi_{2,1,B} \circ (\langle \rangle_{A} \times \mathsf{Id}_{B})$$

$$= \pi_{2}$$

$$(1)$$

So the following commutes:

$$A \times T_{\epsilon}B \xrightarrow{\mathbf{t}_{\epsilon,A,B}} T_{\epsilon}(A \times B)$$

$$\xrightarrow{\pi_2} \qquad \downarrow T_{\epsilon}\pi_2$$

$$T_{\epsilon}B$$

### 0.3.4 Commutativity with Join

$$A \times T_{\epsilon_1} T_{\epsilon_2} B \xrightarrow{\mathbf{t}_{\epsilon_1,A,T_{\epsilon_2}B}} T_{\epsilon_1} (A \times T_{\epsilon_2} B) \xrightarrow{T_{\epsilon_1} \mathbf{t}_{\epsilon_2,A,B}} T_{\epsilon_1} T_{\epsilon_2} (A \times B) \xrightarrow{\mu_{\epsilon_1,\epsilon_2,A \times B}} A \times T_{\epsilon_1 \cdot \epsilon_2} B \xrightarrow{\mathbf{t}_{\epsilon_1 \cdot \epsilon_2,A,B}} T_{\epsilon_1 \cdot \epsilon_2} (A \times B)$$

## 0.4 Commutativity with Unit

$$\begin{array}{c} A \times B \xrightarrow{\operatorname{Id}_A \times \eta_B} A \times T_1 B \\ & & \downarrow^{\operatorname{t}_{1,A,B}} \\ & & & T_1 (A \times B) \end{array}$$

## **0.5** Commutativity with $\alpha$

Let 
$$\alpha_{A,B,C} = \langle \pi_1 \circ \pi_1, \langle \pi_2 \circ \pi_1, \pi_2 \rangle \rangle : ((A \times B) \times C) \to (A \times (B \times C))$$

$$(A \times B) \times T_{\epsilon}C \xrightarrow{\mathbf{t}_{\epsilon,(A \times B),C}} T_{\epsilon}((A \times B) \times C)$$

$$\downarrow^{\alpha_{A,B,T_{\epsilon}C}} \downarrow^{T_{\epsilon}\alpha_{A,B,C}}$$

$$A \times (B \times T_{\epsilon}C) \xrightarrow{\mathbf{t}_{\epsilon,(A \times B),C}} A \times T_{\epsilon}(B \times C) \xrightarrow{\mathbf{t}_{\epsilon,A,(B \times C)}} T_{\epsilon}(A \times (B \times C))$$

# 0.6 Sub-Effecting

For each instance of the pre-order  $(\mathbb{E}, \leq)$ ,  $\epsilon_1 \leq \epsilon_2$ , there exists a natural transformation  $[\![\epsilon_1 \leq \epsilon_2]\!]: T_{\epsilon_1} \to T_{\epsilon_2}$  that commutes with  $t_{,,:}$ :

## 0.6.1 Sub-Effecting and Tensor Strength

$$\begin{array}{c} A \times T_{\epsilon_1} B \xrightarrow{\operatorname{Id}_A \times \llbracket \epsilon_1 \leq \epsilon_2 \rrbracket} A \times T_{\epsilon_2} B \\ \downarrow \operatorname{t}_{\epsilon_1,A,B} & \downarrow \operatorname{t}_{\epsilon_2,A,B} \\ T_{\epsilon_1} (A \times B) \xrightarrow{\Vert \epsilon_1 \leq \epsilon_2 \Vert} A \times T_{\epsilon_2} (A \times B) \end{array}$$

#### 0.6.2 Sub-effecting and Monadic Join

Since the monoid operation on effects is monotone, we can introduce the following diagram.

$$\begin{split} T_{\epsilon_{1}}T_{\epsilon_{2}} & \xrightarrow{T_{\epsilon_{1}} \llbracket \epsilon_{2} \leq \epsilon_{2}' \rrbracket_{M}} T_{\epsilon_{1}}T_{\epsilon_{2}'} \xrightarrow{\llbracket \epsilon_{1} \leq \epsilon_{1}' \rrbracket_{M,T_{\epsilon_{2}'}}} T_{\epsilon_{1}'}T_{\epsilon_{2}'} \\ & \downarrow^{\mu_{\epsilon_{1},\epsilon_{2},}} & \downarrow^{\mu_{\epsilon_{1},\epsilon_{2}',\epsilon_{2}'}} \\ T_{\epsilon_{1}\cdot\epsilon_{2}} & \xrightarrow{\llbracket \epsilon_{1}\cdot\epsilon_{2} \leq \epsilon_{1}'\cdot\epsilon_{2}' \rrbracket_{M}} T_{\epsilon_{1}'\cdot\epsilon_{2}'} \end{split}$$

# 0.7 Sub-typing

The denotation of ground types  $\llbracket \_ \rrbracket_M$  is a functor from the pre-order category of ground types  $(\gamma, \leq :_{\gamma})$  to  $\mathbb C$ . This pre-ordered sub-category of  $\mathbb C$  is extended with the rule for function sub-typing to form a larger pre-ordered sub-category of  $\mathbb C$ .

$$(\text{Function Subtyping}) \frac{f = [\![A' \leq : A]\!]_M \ g = [\![B \leq : B']\!]_M \ h = [\![\epsilon_1 \leq \epsilon_2]\!]}{rhs = [\![A \rightarrow \mathsf{M}_{\epsilon_1} B \leq : A' \rightarrow \mathsf{M}_{\epsilon_2} B']\!]_M : (T_{\epsilon_1} B)^A \rightarrow (T_{\epsilon_2} B')^{A'}}$$

$$rhs = (h_{B'} \circ T_{\epsilon_1} g)^{A'} \circ (T_{\epsilon_1} B)^f$$

$$= \operatorname{cur}(h_{B'} \circ T_{\epsilon_1} g \circ \operatorname{app}) \circ \operatorname{cur}(\operatorname{app} \circ (\operatorname{Id}_{T_{\epsilon_1} B^{A'}} \times f))$$
(2)