COMPSCI 753

Algorithms for Massive Data

Semester 2, 2020

Tutorial 2: Data stream algorithms

Ninh Pham

1 Uniformly sampling

Suppose we have a stream of tuples with the schema

Score(university, courseID, studentID, score)

Assume that universities are unique, but courseID is unique only within a university and likewise, studentID is only unique within a university. For example,

UOA, CS752, sID-001, 10 UOA, CS753, sID-001, 9 UOA, CS753, sID-002, 8 AUT, CS752, sID-001, 9 AUT, CS752, sID-002, 7 AUT, CS753, sID-002, 5

Suppose we want to answer certain queries approximately from a 1/20 samples of the data. For each query below, indicate how you would construct the sample, i.e. tell what the key attribute should be and the method for sampling.

- 1. For each course in a university, estimate the average number of students.
- 2. Estimate the fraction of students who have a GPA of 7 or more.
- 3. Estimate the fraction of courses where at least half the students got score above 7.

Solution:

- 1. We choose key as $\{university, courseID\}$, sampling with probability 1/20. Hence for each university and courseID, we can have 1/20-fraction number of students.
- 2. We choose key as {studentID}, using hash function to sample with probability 1/20. Hence 1/20-fraction of students are in our sample set and we can compute their GPA to answer the question.

3. We choose key as $\{courseID\}$, using hash function to sample with probability 1/20. Hence 1/20-fraction of courses are in our sample set and we can identify which course has at least half the students got above 7.

2 Bloom filter

Consider the same situation from our lecture with 8 billion bits and 1 billion members of the set S, calculate the false positive rate if we use numbers of hash functions as $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$?

Solution:

k	1	2	3	4	5	6	7	8	9	10
FPR	0.1175	0.0489	0.0306	0.0240	0.0217	0.0216	0.0229	0.0255	0.0292	0.0342

3 Bloom filter

Suppose we have n bits of memory available and set S has m members. Instead of using k hash functions each mapping an element to a bit in the main memory, we could divide the n bits into k subarrays (assume n is divisible by k), and then use the i-th hash function, $i \in [1..k]$, to the i-th subarray.

- 1. As a function of n, m, and k, what is the probability of a false positive?
- 2. How does it compare with using k hash functions into a single array?

Solution:

We divide n bits of memory into k arrays, n/k is the size of subarrays. Call p as the probability of a false positive of the subarray (i.e. the fraction of 1s in this array). We have $p = 1 - (1 - k/n)^m \approx 1 - e^{-km/n}$.

Since we have to check all k hash function from k subarrays, the probability of false positive for the new solution is $p_1 = (1 - e^{-km/n})^k$. This value is identical to the solution of using k hash functions into a single array, i.e. $p_2 = (1 - e^{-km/n})^k$.

4 Misra-Gries algorithm

Run the Misra-Gries algorithm with k=3 for the stream below:

$$\{32, 12, 14, 32, 7, 12, 32, 7, 6, 12, 4\}$$

Solution: The result is: $\{32, 12, 4\}$.

5 CountMin sketch

Applying CountMin sketch to estimate the frequency of each element in the stream below:

$$\{1,1,1,2,4,4,3,2,3,2,3\}$$

Our CountMin sketch uses d = 3 hash functions:

$$h_1(x) = x + 1 \mod 3,$$

$$h_2(x) = 3x + 1 \mod 3,$$

$$h_3(x) = 5x + 2 \mod 3.$$

Solution:

First we compute the positions for each element in stream:

x	1	2	3	4
$h_1(x) = x + 1 \mod 3$	2	0	1	2
$h_2(x) = 3x + 1 \mod 3$	1	1	1	1
$h_3(x) = 5x + 2 \mod 3$	1	0	2	1

Construct the CountMin Sketch:

	0	1	2
h_1	3	3	5
h_2	0	11	0
h_3	3	5	3

Estimate the frequency of each element: