Assignment 3

Consider the cantilever structure on pages 7-10 of the lecture notes. Simplify the setting by omitting the displacement transducer rods and weight of the cantilever. Represent the mass loading as a force moment pair acting on the axis of the cantilever and use the Bernoulli beam boundary value problem

$$\frac{d^4w}{dx^4} = 0$$
 in $(0, L)$, $\frac{d^2w}{dx^2} = 0$ and $\frac{d^3w}{dx^3} = \frac{mg}{EI}$ at $x = L$, $w = \frac{dw}{dx} = 0$ at $x = 0$

to find the vertical displacement w (positive upwards) at the free end x = L in terms of the geometric and material parameters of the structure.

Solution

Repetitive integrations in the differential equation give the generic solution

$$\frac{d^4w}{dx^4} = 0 \text{ in } x \in]0, L[\Rightarrow w = a + bx + cx^2 + dx^3,$$

which depends on four parameters a,b,c,d to be determined by using the boundary conditions. Substituting the generic solution

$$w = \frac{dw}{dx} = 0$$
 at $x = 0 \implies a = b = 0$,

$$\frac{d^3w}{dx^3} = \frac{mg}{EI}$$
 and $\frac{d^2w}{dx^2} = 0$ at $x = L$ \Rightarrow $d = \frac{1}{6}\frac{mg}{EI}$ and $c = -3dL = -\frac{1}{2}\frac{mgL}{EI}$.

Therefore
$$w(x) = -\frac{1}{2} \frac{mgL}{EI} x^2 + \frac{1}{6} \frac{mg}{EI} x^3 = \frac{mg}{EI} (\frac{1}{6} x^3 - \frac{1}{2} L x^2)$$

Solution at the free end $w(L) = -\frac{1}{3} \frac{mgL^3}{EI}$.