0.1. RINGS

0.1 Rings

Definition 0.1.1 (Rings). R is an abelian group with addition + and additive identity 0, a monoid with multiplication \cdot and multiplicative identity 1, and distributive, $a \cdot (b+c) = a \cdot b + a \cdot c$, $(a+b) \cdot c = a \cdot c + b \cdot c$

Definition 0.1.2. Ring R is commutative if ab = ba

Definition 0.1.3. u is a unit if there exists $v \in R$ such that uv = vu = 1. The set of units R^{\times} is a multiplicative group

Definition 0.1.4. A **semiring** or **rig** is a ring without negatives

Definition 0.1.5. A **rng** is ring without identity

0.2Commutative rings

Definition 0.2.1. The determinant of a matrix is

Definition 0.2.2. $I, J \leq R$ are ideals, the *ideal quotient* $(I:J) = \{r \in R | rJ \subseteq I\}$ is also an ideal

Definition 0.2.3. $S \subseteq R$ is multiplictive closed, the localization $S^{-1}R$ of R with respect to S is $R \times S/\sim$, $(r,s)\sim (r',s')$ iff there exists $t\in S$ such that t(rs'-sr)=0. $S^{-1}R$ has the universal property that for any $f: R \to T$ such that maps S to units, then there exists a unique $q: S^{-1}R \to T$ such that qi = f

$$R \xrightarrow{i} S^{-1}R$$

$$\downarrow g$$

$$\downarrow g$$

$$\downarrow g$$

$$\uparrow g$$

Definition 0.2.4. Given a ring R and a proper ideal I, we can define an associated graded $ring\ gr_IR:=igoplus_{n=0}^\infty I^n/I^{n+1},$ if M is a left R-module, we can define associated graded module $gr_IM:=igoplus_{n=0}^\infty I^nM/I^{n+1}M$

$$gr_IM := \bigoplus_{n=0}^{\infty} I^n M / I^{n+1} M$$

Definition 0.2.5. R is a local ring if it has a unique maximal ideal m. The residue field is k = R/m

Definition 0.2.6. R is a semilocal ring if it has only finitely many maximal ideal

Proposition 0.2.7. Let R be a UFD, f a prime element, then ht(f) = 1

Proof. Suppose there exists prime ideal P such that $0 \subseteq P \subseteq (f)$, then we can find a prime element in $g \in P$, thus we have $0 \subsetneq (g) \subseteq P \subsetneq (f)$, but then g = fh for some h, but since fis prime, thus (f) = (g) which is a contradiction, such a prime element exists since we can pick any element $0 \neq q = q_1 \cdots q_m \in P$ where q_i 's are prime, but then at least one of them has to be in P

Theorem 0.2.8. Let $A \subseteq B$ be finitely generated k-algebras, and A, B are both domains, $0 \neq b \in B \Rightarrow \exists 0 \neq a \in A$ such that for any k-algebra homomorphism $\alpha: A \to k$ with $\alpha(a) \neq 0$ can be extended to k-algebra homomorphism $\beta: B \to k$ with $\beta(b) \neq 0$

Definition 0.2.9. Suppose R is a commutative ring with identity, a prime element $p \in R$ is an element which is nonzero nor a unit and $p|fg \Rightarrow p|f$ or p|g

Definition 0.2.10. A graded ring R is a ring such that $R = \bigoplus_{i=1}^{n} R_i$ is a direct sum of abelian groups and $R_i R_j \subseteq R_{i+j}$

An ideal is called a homogeneous ideal if it consists of only homogeneous elements

Theorem 0.2.11 (Chinese remainder theorem). Let R be a commutative ring, and $I_1, \dots, I_n \leq$ R be pairwise coprime ideals, then $R \cong R/I_1 \times \cdots R/I_n, r \mapsto (r \mod I_1, \cdots, r \mod I_n)$

Definition 0.2.12. An integral domain is a commutative ring R such that (0) is a prime ideal. Equivalently, $rs \in R \Rightarrow r \in R$ or $s \in R$

Definition 0.2.13. Suppose R is a domain, K is the field of fractions, a fractional ideal is an R submodule $I \leq K$ such that $rI \subseteq R$ for some nonzero $r \in R$. I is invertible if IJ = R for some other fractional ideal J

Definition 0.2.14. A *Dedekind domain* is an integral domain such that every proper ideal is a product of prime ideal

Definition 0.2.15. A discrete valuation ring(DVR) is a PID with a unique nonzero prime ideal

Definition 0.2.16. A local ring homomorphism $\phi: R \to S$ between local rings is such that $\phi(m_R) \subseteq m_S$

Definition 0.2.17. R is a commutative ring. An R-linear category $\mathscr C$ is a category enriched over R-modules, i.e. $\operatorname{Hom}(A,B)$ are R-modules, $\operatorname{Hom}(B,C)\otimes_R\operatorname{Hom}(A,B)\to\operatorname{Hom}(A,C)$ is R-bilinear

Definition 0.2.18. A unital associative R-algebra A is a monoid in the monoidal category of R-modules, coalgebras are comonoids

Definition 0.2.19. Commutative ring R is a preadditive category with a single object \bullet . An R-algebra is an additive functor $\phi \in R^{RMod}$, write $\phi(\bullet) = S$, $\phi(r)s = rs$. A ring A is an R algebra is a ring homomorphism $R \xrightarrow{\phi} A$, $ra = \phi(r)a$

Definition 0.2.20. A coalgebra is the categorical dual to a unital associative algebra

Definition 0.2.21. A is finite or ϕ is finite if A is a finitely generated R module ϕ is of finite type if A is finitely generated R algebra

Definition 0.2.22. For $p \in \operatorname{Spec} A$, $q \in \operatorname{Spec} B$, $A \subseteq B$, p lies under q or q lies over p if $q \cap A = p$ $A \subseteq B$ satisfies lying over property if every $p \in \operatorname{Spec} A$ lies under some $q \in \operatorname{Spec} B$ $A \subseteq B$ satisfies the incomparability property if different prime ideals q, q' both lie over p are incomparable, i.e. they don't contain each other

 $A \subseteq B$ satisfies going up property if for any chain of prime ideals $p_1 \subseteq \cdots \subseteq p_n$, $q_1 \subseteq \cdots \subseteq q_m$ with q_i lies over p_i and m < n can be extended to a chain of prime ideals $q_1 \subseteq \cdots \subseteq q_n$ with q_i lies over p_i

 $A \subseteq B$ satisfies going down property if for any chain of prime ideals $p_1 \supseteq \cdots \supseteq p_n, q_1 \supseteq \cdots \supseteq q_m$ with q_i lies over p_i and m < n can be extended to a chain of prime ideals $q_1 \supseteq \cdots \supseteq q_n$ with q_i lies over p_i

Definition 0.2.23. $R \subseteq S$ are commutative rings, $a \in S$ is *integral* over R if it is a root of some monic polynomial in R[x]. The *integral closure* of R in S are the integral elements of S

Going up and Going down theorems

Theorem 0.2.24. B is integral over A, then $A \subseteq B$ satisfies going up property and incomparability property

Definition 0.2.25. The *height* of prime ideal p is $\operatorname{ht} p = \sup_{d} p_0 \subsetneq \cdots \subsetneq p_d = p$. The *Krull dimension* of a ring R is $\dim R = \sup_{d} p_0 \subsetneq \cdots \subsetneq p_d = \sup_{p} \operatorname{ht} p$, p_i are prime ideals

Theorem 0.2.26 (Krull's height theorem). R is Noetherian, I is an ideal which can be generated by n elements, then the minimal prime over I is of height at most n

Proposition 0.2.27. A is a integral domain, finitely generated over some subfield k, then $\dim A = \operatorname{trdeg}(\operatorname{Frac} A/k)$

Definition 0.2.28. A finitely presented algebra over R is of the form $R[x_1, \dots, x_n]/I$, I is a finitely generated ideal

Definition 0.2.29. W(R) = 1 + tR[[t]] is the ring of Witt vectors, 1 - t is the multiplicative identity. Formally every element can be factored as

$$f(t) = \prod_{i=1}^{\infty} (1 - r_i t^i)$$

Definition 0.2.30. A commutative ring R is a λ ring if it has λ operations λ^k satisfying

$$\lambda^0(x)=1, \lambda^1(x)=x, \lambda^k(x+y)=\sum_{i=0}^k \lambda^i(x)\lambda^{k-i}(y)$$

The last condition is equivalent to homomorphism

$$\lambda_t: R \to W(R) = 1 + tR[[t]]$$

$$x \mapsto \sum \lambda^k(x)t^k$$

An λ ideal is an ideal $I \leq R$ such that $\lambda^k(I) \subseteq I$ for any k A special λ ring is a λ ring such that

$$\lambda^k(1) = 0, k > 2$$

$$\lambda^k(xy) = P_k(\lambda^1(x), \dots, \lambda^k(x), \lambda^1(y), \dots, \lambda^k(y))$$

$$\lambda^n(\lambda^k(x)) = P_{n,k}(\lambda^1(x), \dots, \lambda^{nk}(x))$$

 $P_n, P_{n,k}$ are defined through

$$\sum P_{n,k}(s_1(X),\cdots,s_{nk}(X))t^n = \prod_{1 \leq X_{i_1} \leq \cdots \leq X_{i_n} \leq nk} (1 + tX_{i_1} \cdots X_{i_n})$$

$$\sum P_n(s_1(X), \cdots, s_n(X), s_1(Y), \cdots, s_n(Y))t^n = \prod_{i,j=1}^n (1 + tX_iX_j)$$

 s_i 's are elementary symmetric polynomials

Example 0.2.31. A binomial ring is a \mathbb{Q} algebra R with $\lambda_t = (1+t)^k$, formally $\lambda^k(x) = \binom{x}{k}$

Example 0.2.32. $K_0(R)$ is a λ ring with $\lambda^k(P) = \bigwedge^k P$

Definition 0.2.33. $R \xrightarrow{\varepsilon} \mathbb{Z}$ is the augmentation. The Adams operation ψ is defined by

$$\psi_t(x) = \sum \psi^k(x) t^k = arepsilon(x) - t rac{d}{dt} \log \lambda_{-t}(x)$$

Proposition 0.2.34. If R satisfies splitting principle, then ψ^k 's are endomorphisms of R and $\psi^j \psi^k = \psi^{jk}$

Definition 0.2.35. Let $s = \frac{t}{1-t}$, then $t = \frac{s}{1+s}$, R[[t]] = R[[s]]. The γ operation is defined by

$$\gamma_t(x) = \sum \gamma^k(x) t^k = \lambda_s(x)$$

Example 0.2.36. $\gamma^k(x) = \lambda^k(x+k-1) = {x+k-1 \choose k} = (-1)^k {-x \choose k}$

Definition 0.2.37. The γ dimension $\dim_{\gamma} x$ is the greatest integer k such that $\gamma^k(x-\varepsilon(x)) \neq 0$, $\dim_{\gamma} R = \sup_{x} \dim_{\gamma} x$. The γ filtration is

$$R = F_{\gamma}^{0} R \supseteq F_{\gamma}^{1} R \supseteq \cdots$$

Here $F_{\gamma}^1 R = \ker \varepsilon$, $F_{\gamma}^k R$ is the ideal generated by products $\gamma^{i_1}(x) \cdots \gamma^{i_m}(x)$ whereas $\sum i_j \geq k$, $x_j \in F_{\gamma}^1 R$

5

0.3 Hopf algebra

Definition 0.3.1. Topological space X is an H-space if there is a continuous map $\mu: X \times X \to X$ and an identity element e such that $\mu(x,e) = \mu(e,x) = e$

Definition 0.3.2. A Hopf algebra H is a bialgebra with an antipode $S: H \to H$ such that the following diagram commutes

