For bivary search of ai torted array, $T(N) = 1. T(\frac{N}{2}) + O(1).$ C(-) constant):. 01=1; b,=/2; g(u)=0(1)=C Now, and, P+ a2 62+ ----= = 1 D) 1×(=) P=1 2) 1=28 2) P=0 Now, By Akra bazzi's formula, :. T(N) = 0 (NEP + NP) (g(U) du) $= 0 \left(1 + 1 \times , \int \frac{-e^{-7}}{u} du \right)$ = 0 (1+ [logu],"). = 0 (if logN - logi) = 0 (log N) -> Time complexity

J Binary Search. And, space complenity = 0 (1) (: no new lent sa space in created)

- (7) Recursion not started yet. i=> 1-> (in(n); conde for updatation=) i=ixe 2. 1=1,2,4,8,..., € (last ferm) > P As, the above progression seems like a C.P. : les : ... Const. of G.P = 2 = 8 = ---. co. la == 2 P (last term.) = 2 And provided that, all collar term) < n 2 2 K N DP log 2 < log n -) P < log n log 2 «. Time Complexity = 0 (log n) = 0 (log n) ... Space Complexity = O(1) (: no entra space is created) (9) $i \gg 1 \longrightarrow \gamma$ i. Time complexity = 0 (n) And as no entra space is created/used, i. Space complexity = 0(1)
 - (a) from (a).), Time complexity = 0 (log N)

 L Shace Complexity = 0(1)

(13)
$$i \Rightarrow 0 \rightarrow (N-1)$$
 & $j = (i+1) \rightarrow (N-1)$
 $i = (i+1) \downarrow 3,...$
 $i = (i+1) \rightarrow (N-1)$
 $i = ($

 $i \rightarrow 1 \rightarrow N$; $j \rightarrow 1 \rightarrow i$ (1, 2,3,4) for literation (5) 4j=t) .. Time complexity = O(NXN)

= 0 (N2)

(x is a constant)

.. Space complexity = O(1)

I space complexity = O(1)

- (20) $j \Rightarrow 0 \rightarrow \mathbb{R}^{2N}$; $j \Rightarrow 0 \rightarrow \mathbb{R}^{2(N-1)}$ in Time complexity = $O((2^{N}+1)\times(N-X+t))$ = $O(.2^{N}\times N)$ = $O(.N\cdot2^{N})$
 - : Space complexity = 0 (N)

 (as, the array "subset" is being increased dynamically.)
- (22) $i \rightarrow 10 \rightarrow N$; $j \rightarrow 1 \rightarrow N$ i. Time complexity = $O(N^2)$ i. Shace complexity = O(1)
- 23) $i \Rightarrow 1 \rightarrow N$; $j \Rightarrow 1 \rightarrow N$ in Time complexity = $O(N^2)$ in Space complexity = O(1)

(24) $i \Rightarrow 1 \rightarrow (\frac{1}{2})$:Time Complexity = $O(\frac{1}{2}) = O(N)$:Space complexity = O(1)

(25) $i \rightarrow 1 \rightarrow N$ $l j \rightarrow 1 \rightarrow K$ (let, length(Matrin[o]) = K:Time Complexity = $O(N \times K)$ in worst case) = O(NK)

:. Share complexity = O(NK)

(26) $i \Rightarrow 1 \rightarrow N$ (in worst case), i. Time complexity = O(N)is space complexity = O(1)

(27) $i \Rightarrow 1 \longrightarrow N$, :. Time complexity = O(N):. Share complexity = O(N)

(28) $i \Rightarrow 1 \rightarrow N$ & $i = (i \times 2)$... Time Complexity = $O(\log N)$... Share Complexity = O(1)

(29)
$$i \Rightarrow 1 \rightarrow N$$
; $j \Rightarrow i \rightarrow 1$
 $(1/2,3,...,N)$
 $i \cdot Time$ Complexity = $O(N^2)$
 $i \cdot Shace$ Complexity = $O(N^2)$
 $i \cdot Time$ Complexity = $O(N^2 + N^2)$
 $i \cdot Shace$ Complexity = $O(N^2 + N^2)$
 $i \cdot Shace$ Complexity = $O(1)$
BONUS MCQS $i \cdot N^2$
 $i \cdot Shace$ Complexity = $O(1)$
BONUS MCQS $i \cdot N^2$
 $i \cdot Shace$ Complexity = $O(1)$
 $i \cdot Shace$ Complexit

large \
input
size