PANEURÓPSKA VYSOKÁ ŠKOLA FAKULTA INFORMATIKY

FI-100786-21449

VYUŽITIE MS HOLOLENS 2 VO VZDELÁVANÍ Diplomová práca

2024

Bc. Peter Drábik

PANEURÓPSKA VYSOKÁ ŠKOLA FAKULTA INFORMATIKY

VYUŽITIE MS HOLOLENS 2 VO VZDELÁVANÍ

Diplomová práca

Bc. Peter Drábik

Študijný program: Aplikovaná informatika

Študijný odbor: Informatika

Školiace pracovisko: Ústav aplikovanej informatiky

Školiteľ: RNDr. Ján Lacko, PhD.

ABSTRAKT

Tu bude abstrakt.

Kľúčové slova: kľúčové slovo1, kľúčové slovo2, kľúčové slovo3654654

ABSTRACT

Here we will have an abstract.

Keywords: keyword1, keyword2, keyword3

Poďakovanie

I would like to express a gratitude to my thesis supervisor.

Obsah

$ m \acute{U}vod$			9
1	\mathbf{Pre}	hľad problematiky v oblasti zmiešanej reality	10
	1.1	Virtuálna realita	10
	1.2	Rozšírená realita	12
	1.3	Zmiešaná realita	13
	1.4	Microsoft HoloLens 2	16
	1.5	Vývoj aplikácií pre Microsoft HoloLens 2	18
2	Vyu	ažitie umelej reality vo vzdelávaní	19
3	Ide	ntifikácia vzdelávacích miskoncepcií	21
	3.1	Bunka ako dvojrozmerný objekt	21
	3.2	Nepresnosti pri výuke problematiky nervových vzruchov	22
4	Bio	logický základ nervového systému	23
	4.1	Nervové bunky - neuróny	23
	4.2	Procesy na nervových vláknach	23
		4.2.1 Vzrušenie nervového vlákna	23
		4.2.2 Vedenie akčného potenciálu	24
		4.2.3 Iónové zmeny počas vedenia akčného potenciálu	25
Zá	iver		28
Z	znaı	n použitej literatúry	2 9
\mathbf{P}_{1}	ríloh	${f v}$	I

Zoznam ilustrácií

Obrázok 1	Zobrazovacie zariadenie Ivana Sutherlanda	1
Obrázok 2	Zjednodušená reprezentácia RV kontinua [9]	14
Obrázok 3	Headset Microsoft HoloLens 2	16

Zoznam skratiek a značiek

AR Augmented RealityCRT Cathode-Ray TubeLBS Laser Beam Scanning

MR Mixed Reality

MRTK Mixed Reality Toolkit

UI User InterfaceUX User ExperienceVR Virtual Reality

$\mathbf{\acute{U}vod}$

Tu bude krasny uvod s diakritikou atd. A mozno aj viac riadkovy uvod.

1 Prehľad problematiky v oblasti zmiešanej reality

Digitalizácia najrôznejších aspektov nášho života je prirodzeným prejavom technologického pokroku. Vďaka tomu sa pojmy, ako zmiešaná realita, rozšírená realita či virtuálna realita v priebehu posledných dekád začali stávať neoddeliteľnou súčasťou nášho jazyka. Na to, aby sme lepšie porozumeli tomu, čo to zmiešaná realita vlastne je, pokladáme za nevyhnutné venovať niekoľko odstavcov aj zvyšným dvom pojmom.

1.1 Virtuálna realita

The ultimate display would, of course, be a room within which the computer can control the existence of matter. A chair displayed in such a room would be good enough to sit in. Handcuffs displayed in such a room would be confining, and a bullet displayed in such a room would be fatal. With appropriate programming such a display could literally be the Wonderland into which Alice walked [1].

Týmito slovami v roku 1965 Ivan Sutherland vo svojom článku *The Ultimate Display* sformuloval ideu, ktorá predstavuje raný popis imerzívneho¹ displeja v dobe, keď vtedajšie zariadenia bežne umožňovali zobrazovať rovné čiary, uvažovalo sa, že zobrazovanie kriviek by mohlo byť užitočné a žiadna komerčne dostupná obrazovka nebola schopná vykresliť farbou vyplnenú plochu [1].

Sutherland vo svojom článku okrem iného zdôrazňuje, že počítačové displeje môžu umožniť zoznámenie sa s pojmami, ktoré nie sú realizovateľné vo fyzickom svete, a slúžia ako možnosť nahliadnuť do matematickej krajiny zázrakov (sic). Článok sa zaoberá aj rôznymi vstupnými zariadeniami na interakciu s počítačovými displejmi, ako sú klávesnice písacích strojov, svetelné perá, dotykové pero RAND Tabletu², tlačidlá, joysticky a hlasový vstup, pričom zdôrazňuje ich užitočnosť pri interakcii s počítačom.

Okrem toho sa v článku uvádza potenciálne využitie pohybov svalov a očí na ovládanie počítačov. Poukazuje na to, že hoci súčasné systémy využívajú na ovládanie počítača predovšetkým svaly ruky a ramena, existuje možnosť využiť na interakciu aj iné svalové skupiny.

Článok navyše uvažuje o perspektíve osvojenia si jazyka pohľadov na ovládanie počítača, navrhujúc, že prezentácia na displeji by sa mohla meniť na základe pohybov očí

¹Z angl. *immersive* - voľne preložené ako vťahujúci do deja

²Jedno z prvých digitálnych zariadení pre kreslenie rukou a prvé, ktoré bolo predávané ako "low-cost"

používateľa. Táto koncepcia otvára priestor pre vytváranie intuitívnejších a personalizovanejších rozhraní, čo môže viesť k inovatívnym spôsobom interakcie s počítačovými systémami.

Krátko potom Sutherland skonštruoval prvý interaktívny systém slúžiaci na zobrazovanie virtuálnej reality, ktorý si vyslúžil priliehavú prezývku Damoklov meč [2, s. 5], pozri obr. 1. Trojrozmerný displej s upevnením na hlavu, ktorý Sutherland vo svojej práci [3] popísal v roku 1968, pozostával zo špeciálnych okuliarov, ktoré na sebe mali upevnené dve miniatúrne obrazovky typu CRT a boli pevnou súčasťou ramena visiaceho zo stropu miestnosti. Okrem zníženia fyzickej záťaže používateľa, ktorá vznikala kvôli hmotnosti zariadenia, toto rameno slúžilo ako mechanický snímač polohy hlavy a spolu s ďalším, ultrazvukovým snímačom generovalo vstupné údaje pre výpočet rotačnej a translačnej matice. Tie boli súčasťou operácií nevyhnutných pre dynamické generovanie obrazu. Objekty, z ktorých pozostával výsledný obraz, boli poskladané z jednoduchých čiar a vytvárali tzv. wireframe model.

Obr. 1: Zobrazovacie zariadenie Ivana Sutherlanda

Sutherlandovo dielo významne prispelo k rozvoju myšlienok a technológií súvisiacimi s vizualizáciou umelého sveta. Postupom času vzniklo množstvo ďalších prototypov rôznorodých systémov, ktoré sa líšili nie len účelom použitia, ale aj spôsobom vzájomnej interakcie s človekom a aj tým, či a ako veľmi bol umelý svet prepojený s tým skutočným. Ako

príklad uvedieme systém VIDEOPLACE Myrona Kruegera z roku 1985, ktorý kombinuje zosnímanú postavu používateľa s umelo vytvoreným prostredím. Krueger navrhuje využitie tohto systému pre účely telekomunikácie uvádzajúc, že komunikácia medzi priateľmi či obchodnými partnermi nie je obmedzená len slovami, a teda je jednoznačne žiadúce, aby geograficky vzdialené osoby mohli zdieľať spoločné virtuálne prostredie [4].

Práve Kruegerov systém sprostredkúva to, čo v súčasnej terminológii môžeme označiť ako virtuálnu realitu. Tá prenesie človeka do úplne odlišného prostredia, reálne okolie a objekty v ňom nahradí počítačom generovanými, s cieľom poskytnúť používateľovi intenzívny zážitok z nového sveta, akoby sa v ňom skutočne nachádzal [5].

V deväťdesiatych rokoch minulého storočia bola snaha o rozšírenie zariadení pre virtuálnu realitu medzi bežných spotrebiteľov. Tieto zariadenia však boli cenovo nedostupné a spôsobovali používateľom nevoľnosť. Príčinou nevoľnosti bol nesúlad medzi zrakovým a vestibulárnym vnemom; ten bol spôsobený vysokou latenciou medzi pohybom hlavy používateľa a reakciou VR zariadenia na tento pohyb prekreslením virtuálnej scény.

Prelom nastal až v roku 2014, keď Palmer Luckey, zakladateľ spoločnosti Oculus, objavil spôsob, ako znížiť dobu trvania vyhodnocovania polohy hlavy za použitia gyroskopu, akcelerometra a magnetometra. Tento úspech opäť naštartoval záujem o túto technologickú oblasť [5]. V súčasnosti medzi najrozšírenejšie zariadenia patria Oculus Rift S, HTC Vive Pro, HTC Vive Cosmos, Valve Index a Samsung HMD Odyssey+ [6]. Ďalšou z možností, ktorú propagujú výrobcovia, ako Samsung, Google a LG, je použitie smartfónu ako displeja vo VR headsete, čo predstavuje cenovo dostupnú alternatívu. Ako príklad uvádzame Samsung Gear VR, ktorý je kompatibilný s akýmkoľvek modelom Samsung Galaxy; ďalší príklad je dnes už nepodporovaný Google Cardboard a Google Daydream.

1.2 Rozšírená realita

Podľa výskumu popísaného v článku [7] definícia rozšírenej reality nie je ani zďaleka tak jednoznačná, ako v prípade virtuálnej reality. Jeho autori položili desiatim osobám, ktoré sa zaoberajú virtuálnou a rozšírenou realitou v komerčnej a akademickej sfére, súbor šestnástich otázok, ktoré boli navrhnuté tak, aby odhalili rozdiely vo vnímaní toho, čo je virtuálna, rozšírená a zmiešaná realita. Autori uvádzajú, že respondenti sa nezhodovali pri vymenovávaní relevantných charakteristík rozšírenej reality. Niektorí za rozšírenú realitu pokladajú aj jednoduchú vrstvu³ s kontextuálnymi informáciami, zatiaľ čo ostatní explicitne uvádzali interakciu s reálnym prostredím a prekrývanie skutočných objektov počítačom generovanými ako jej súčasť.

³pôvodne použitý angl. termín *overlay*

Chen a Xue uvádzajú, že typický AR systém musí spĺňať tri podmienky: musí umožňovať interakciu medzi reálnym a virtuálnym obsahom, dokáže v reálnom čase prekrývať reálne objekty virtuálnymi, a musí pracovať v trojrozmernom priestore. Takáto funkcionalita vyžaduje použitie rôznych techník sledovania, zobrazovania a interakcie [8].

Techniky sledovania sú používané na zaznamenávanie a overovanie pozície a orientácie používateľov. Zohrávajú dôležitú úlohu pri zosúladení polohy reálnych a virtuálnych objektov. Pozíciu a orientáciu je možné zisťovať pomocou metód spracovania obrazu, za použitia rozličných senzorov, či kombináciou oboch spôsobov.

Zobrazovacie techniky spájajú virtuálny obsah a reálne prostredie a zobrazujú oboje naraz. V praxi sa uplatnili tri spôsoby zobrazovania: pomocou ručného zariadenia (handheld display) - napr. smartfón alebo tablet, pomocou náhlavného zariadenia (headmounted-display) a za použitia projekcie na povrch reálneho objektu (projection-based display).

Interakčné techniky zabezpečujú intuitívne používateľské prostredie a adekvátne reakcie systému. Používateľské vstupy pritom môžu byť vo forme gest, hlasových povelov, prípadne je možné použiť reálny objekt ako ovládací prvok [8].

Pomerne známym zástupcom zariadení pre rozšírenú realitu je zariadenie od spoločnosti Google s názvom Google Glass. Zariadenie v tvare bežných okuliarov, dostupné len počas pomerne krátkeho obdobia (2013 - 2015) [5] dokázalo používateľovi zobrazovat informácie na malom displeji tesne nad pravým okom.

1.3 Zmiešaná realita

Zmiešaná realita je najmenej preskúmaný typ umelej reality, pretože je spomedzi trojice VR, AR a MR najmladší. Podobne, ako v prípade rozšírenej reality, ani tu nejestvuje úplna zhoda v definícii.

Podľa [7] existuje šesť spôsobov chápania MR; ich názvy ponechávame v pôvodnom znení:

- Continuum
- Synonym
- Collaboration
- Combination
- Alignment
- Strong AR

Vymenované spôsoby chápania MR sú vysvetlené v nasledujúcich podkapitolách.

Continuum

MR je chápané v súlade s RV kontinuom⁴, ktoré je znázornené na obrázku č. 2. V tomto prípade MR predstavuje kombináciu reálnych a virtuálnych objektov v rámci spektra medzi úplne reálnym a úplne virtuálnym svetom. To znamená, že MR môže pozostávať z prevažne skutočného sveta s nejakými virtuálnymi objektmi, alebo môže pozostávať z prevažne virtuálneho sveta za prítomnosti nejakých reálnych predmetov. V rámci tohto kontextu možno chápať VR, ktoré je na okraji spektra, ako súčasť MR.

Obr. 2: Zjednodušená reprezentácia RV kontinua [9].

Synonym

V mnohých článkoch, ktoré autori [7] skúmali, sa používalo MR ako synonymum pre AR. To znamená, že tieto pojmy sa navzájom zamieňali; MR bolo použité na označenie systému, ktorý jednoznačne spadal pod AR, alebo bola použitá definícia AR na popísanie toho, čo niektorí autori skúmaných článkov chápali pod pojmom MR.

Collaboration

Další pohľad vníma MR ako druh spolupráce. V tomto prípade MR predstavuje interakciu medzi rôznymi používateľmi AR a VR, ktorí sa nemusia spoločne nachádzať v jednom priestore. Súčasťou tohto typu MR je rekonštrukcia prostredia, v ktorom sa nachádza používateľ AR, pre druhého používateľa prostredníctvom VR.

Combination

V tomto prípade je MR chápané ako kombinácia AR a VR v zmysle systému, ktorý využíva oddelené časti postavené na VR, respektíve AR. Hoci tieto časti medzi sebou dokážu

⁴Reality-Virtuality Continuum

interagovať, nie sú navzájom pevne prepojené; systém prípadne dokáže podľa potreby prepínať medzi AR a VR. Autori [7] uvádzajú ako príklad aplikáciu Pokémon GO, kde samotné chytanie Pokémonov je realizované v AR, zatiaľ čo prehľad mapy je plne virtuálny.

Alignment

MR ako zarovnanie prostredí⁵ predstavuje synchronizáciu medzi skutočným a virtuálnym prostredím. Takýto systém kombinuje virtuálne a skutočné prvky, vďaka čomu tu nájdeme čiastočný prienik s *Combination*, ale prostredia samotné nemusia nutne byť AR a VR. Podobnosť jestvuje aj s *Collaboration*, ale bez prítomnosti aspektu spolupráce a bez toho, aby boli prostredia fyzicky oddelené. Ako príklad sa uvádza systém prenášajúci pohyb človeka v reálnom svete do plne imerzívneho virtuálneho prostredia prostredníctvom zariadenia Leap Motion Controller.

Strong AR

Posledný pohľad na túto problematiku chápe MR ako silnejšiu verziu AR. Zmiešaná realita je tu charakterizovaná pokročilým vnímaním prostredia a pokročilými interakciami medzi používateľom a virtuálnymi objektmi, ako aj medzi virtuálnymi objektmi a prostredím. To vytvára predpoklad, že MR závisí na konkrétnom hardvéri alebo zariadení, ktoré dokáže poskytnúť požadovanú funkcionalitu. Taktiež sa predpokladá, že obyčajné AR nemá takéto schopnosti, a tým pádom je MR evolúciou AR.

O niečo jednoduchší pohľad na problematiku ponúka Brigham [5]. Zmiešaná realita (MR) sa opisuje ako spojenie fyzického a virtuálneho sveta, ktoré vytvára nové prostredia, v ktorých fyzické a virtuálne objekty koexistujú a interagujú v reálnom čase. MR kombinuje hlavné črty AR aj VR. Umožňuje používateľom vidieť a komunikovať s prvkami reálneho aj virtuálneho sveta, ktoré sú uveriteľné a responzívne. Ak je napríklad v MR prostredí virtuálny objekt umiestnený pod skutočným stolom, používateľ sa musí zohnúť, aby ho videl, rovnako ako v prípade skutočného objektu. Táto integrácia virtuálnych prvkov do reálneho sveta v MR umožňuje viac imerzívny zážitok v porovnaní s AR, kde sú reálne objekty jednoducho prekryté virtuálnymi prvkami bez akejkoľvek interakcie alebo vnímania hĺbky.

Brigham konštatuje, že MR je v porovnaní s AR a VR relatívne menej známa, najmä preto, že ide o novší koncept a mnohé zariadenia a technológie MR sú stále vo vývoji. Terminológia MR sa používa na vytvorenie rozdielu medzi určitými zariadeniami a softvérom

⁵z angl. alignment of environments, súosovosť

v MR a AR. Spoločnosti ako Microsoft so svojimi HoloLens, Meta s náhlavnou súpravou Meta 2 a Magic Leap sa uvádzajú ako príklady spoločností vyvíjajúcich technológiu MR.

Spomenieme, že autor sa zaoberá aj obavami súvisiacimi so zavádzaním a prijímaním technológií na báze umelej reality, ako je MR. Tieto obavy zahŕňajú technické otázky, použiteľnosť, súkromie, bezpečnosť a etické aspekty. Napríklad zariadenia MR, ktoré neustále mapujú okolie používateľa, vyvolávajú otázky týkajúce sa ochrany umiestnenia a bezpečnosti týchto údajov. Brigham predpokladá, že so zvyšujúcou sa popularitou týchto technológií sa do popredia dostanú obavy o súkromie a bezpečnosť, najmä v súvislosti so zhromažďovaním a používaním údajov.

1.4 Microsoft HoloLens 2

Microsoft HoloLens 2 je MR zariadenie, ktoré dokáže fungovať samostatne, bez potreby pripojenia k počítaču. Je to druhá generácia tohto zariadenia spoločnosti Microsoft a ponúka niekoľko zlepšení a zdokonalení oproti svomu predchodcovi. Je postavený na platforme Snapdragon 850 od spoločnosti Qualcomm, ktorá je dostatočne výkonná na to, aby na HoloLense dokázal bežať samostatný operačný systém. Microsoft pre tento headset vytvoril upravenú verziu ich operačného systému Windows 10 pod názvom Windows Holographic OS.

Obr. 3: Headset Microsoft HoloLens 2.

HoloLens 2 využíva na zobrazovanie obrazu dva priehľadné holografické displeje typu LBS, každý s rozlíšením 1440x936 pixelov a obnovovaciou frekvenciou 60 Hz [10]. LBS dokáže poskytnúť široké zorné pole; v spojení s vysokým rozlíšením umožňuje v prostredí používateľa zobraziť hologramy s vysokou úrovňou detailov.

Súčasťou HoloLensu sú taktiež rôzne senzory a kamery, ktoré umožňujú snímať a vyhodnocovať prostredie, v ktorom sa používateľ práve nachádza [11]. Dáta o prostredí sú získavané pomocou nasledujúceho vybavenia:

- Kamery sledujúce prostredie vo viditeľnom spektre⁶
- Hĺbková kamera
- Farebná kamera
- Pohybové senzory
- Infračervené kamery
- Pole mikrofónov

Štvorica kamier sledujúcich prostredie vo viditeľnom spektre snímajú obraz v škále šedej; ich obraz sa používa na sledovanie pohybu hlavy a vytváranie priestorovej mapy. Hĺbková kamera sníma priestor v dvoch režimoch. Prvý režim sníma priestor rýchlosťou 45 snímkov za sekundu a slúži primárne na zaznamenávanie pohybu rúk; presnú vzdialenosť dokáže detegovať približne do jedného metra. V druhom režime, ktorý je určený na priestorové mapovanie, je rýchlosť snímania v rozmedzí jeden až päť snímkov za sekundu. V oboch režimoch však kamera dokáže poskytovať obrázky v infračervenom spektre, ktoré nie sú ovplyvnené ambientným svetlom.

Pohybové senzory, ktoré HoloLens používa, sú nasledovné:

- akcelerometer, ktorý sníma zrýchlenie na všetkých osiach,
- gyroskop, ktorý slúži na detekciu rotácie, a
- magnetometer, ktorý pomáha určiť absolútnu orientáciu.

Farebná kamera umožňuje snímať obrázky v rozlíšení 8 megapixelov, alebo natáčať video v rôznych rozlíšeniach. Medzi jej funkcie patrí automatické zaostrovanie, vyváženie bielej, automatické nastavenie expozície a i. Pomocou tejto kamery je možné zaznamenávať MR zážitok a zdieľať ho s ostatnými ľuďmi tak, ako ho vidí používateľ prostredníctvom funkcie Mixed Reality Capture.

Pomocou infračerevných kamier zabudovaných v headsete je možné sledovať pohyb očí používateľa. Táto funkcia umožňuje detegovať používateľov pohľad a reagovať naň, vďaka

 $^{^6{}m Visible}$ Light Environment Tracking

čomu môže byť MR zážitok intenzívnejší a interakcia s virtuálnym svetom dokáže byť intuitívnejšia. Prostým pohľadom dokáže používateľ presúvať virtuálne objekty, posúvať čítaný text; taktiež je možné sledovať pozornosť používateľa v danom okamihu [12]. Táto funkcia je oproti predchádzajúcej verzii headsetu novinkou.

Prostredníctvom poľa mikrofónov dokáže HoloLens reagovať na hlasové povely, čo v spojení so sledovaním pohybu očí umožňuje efektívne používanie headsetu aj bez použitia rúk.

1.5 Vývoj aplikácií pre Microsoft HoloLens 2

Microsoft vývojárom poskytuje MRTK (Mixed Reality Toolkit), čo je multiplatformová knižnica, ktorá významne urýchľuje a zjednodušuje prácu vývojárov pri tvorbe aplikácií pre umelú realitu. Prostredníctvom tejto knižnice je možné rýchle prototypovanie aplikácií za použitia rôznych UI/UX nástrojov, predpripravených šablón objektov (napr. tlačidiel) a hotových príkladov aplikácií [13].

MRTK je dostupný pre populárny herný engine Unity. Unity je dostupné bezplatne pre osobné použitie, čo robí takýto vývoj prístupný širokému spektru záujemcov. Programový kód aplikácií vyvíjaných v tomto prostredí je písaný v jazyku C#. Samostatná verzia MRTK existuje aj pre nástroj s názvom Unreal Engine. Unreal Engine sme si zvolili na realizáciu aplikácie tejto diplomovej práce; jeho detailnejšiemu popisu a dôvodom jeho voľby sa budeme venovať v kapitole.

cislo kapitoly

Okrem HoloLens 2 je podporovaných niekoľko ďalších zariadení, napr. Meta Quest [14]. Takztiež sú podporované platformy postavené na platforme iOS a Android. Jednou z výhod multiplatformovosti je aj jednoduchý prenos aplikácie napísanej pre pôvodnu verziu HoloLens na verziu 2. Rovnako sa dá veľká časť programu otestovať na jednom zariadení, a na ostatných zariadeniach, s ktorými sa pri vývoji počíta, sa už len dolaďujú špecifické detaily.

Na to, aby dokázal vývojár otestovať svoju aplikáciu, nemusí mať prístup k headsetu ako takému. Nástroj s názvom HoloLens Emulator umožňuje odskúšanie takejto aplikácie na počítači, pričom vstupy sú simulované pomocou myši, klávesnice, prípadne ovládača Xbox. Pre použitie v emulátore nie je nutné aplikáciu žiadnym spôsobom upravovať. Pohyb v priestore je ovládaný rovnako, ako v typickej počítačovej hre (klávesy W, A, S a D), pohybom myši sa simuluje pohyb rúk a hlavy [15].

2 Využitie umelej reality vo vzdelávaní

Umelá realita sa čoraz viac využíva vo vzdelávaní v oblasti biológie. Imerzívne zážitky, ktoré využívajú ľudské zmysly, sú vo vzdelávaní v oblasti biológie obzvlášť prínosné, pretože umožňujú študentom oboznámiť sa s komplexnými biologickými systémami, ktoré nie je ľahké realizovať vo fyzickom svete, ako sú napríklad štruktúry bielkovín alebo bunkové procesy. Napríklad VR platformy, ako sú VRLab Academy, Labster a ClassVR, simulujú biologické a chemické experimenty v prostredí VR, čím zlepšujú zážitok z učenia [16].

Turhan ďalej tvrdí, že randomizované štúdie ukázali, že stereoskopické 3D nástroje pomáhajú pri učení anatómie a študenti ich prijímajú veľmi pozitívne. Zvyšujúca sa dostupnosť vzdelávacích platforiem a nástrojov vo VR svedčí o jej rastúcej úlohe vo vzdelávaní v oblasti biológie. Využívanie herných mechanizmov v týchto platformách, ako je napríklad VR nástroj Peppy založený na Unity, pomáha pri pochopení zložitých biologických štruktúr a procesov. Tieto imerzívne vizualizácie uľahčujú pochopenie abstraktných pojmov, ktoré sú tradične náročné na pochopenie prostredníctvom fyzických modelov alebo 2D reprezentácií.

Potenciál VR vo vzdelávaní v oblasti biológie je významný, pretože ponúka nové spôsoby skúmania, experimentovania a pochopenia zložitých biologických údajov a konceptov. S ďalším vývojom technológií sa očakáva, že využívanie umelej reality vo vzdelávaní v oblasti biológie sa bude rozširovať a bude ponúkať interaktívnejšie a pútavejšie vzdelávacie skúsenosti.

Pozitívna spätná väzba od študentov a preukázaná účinnosť pri napomáhaní k hlbšiemu pochopeniu biologických systémov ďalej motivujú výskumníkov k vývoju a integrácii týchto technológií do vzdelávacích osnov. Prispôsobiteľnosť umelej reality rôznym vzdelávacím kontextom spolu s rýchlym technologickým pokrokom otvára nespočetné možnosti budúcich aplikácií nielen v biológii, ale aj v iných oblastiach vedy a vzdelávania.

Malone vo svojej metaanalýze vyhodnocuje vplyvy využitia AR vo vzdelávaní počas posledných tridsiatich rokov [17]. Ústredným zistením tejto štúdie je zistenie, že AR má konzistentný a stredne silný vplyv na výsledky vzdelávania v rôznych vzdelávacích prostrediach. Výskum dokazuje, že účinnosť AR presahuje hranice akademických disciplín, demografických charakteristík účastníkov a typov výsledkov vzdelávania. Táto široká použiteľnosť zdôrazňuje úlohu AR ako univerzálneho vzdelávacieho nástroja, ktorý dokáže zlepšiť kvalitu vzdelávania v rôznych spektrách výuky.

Štúdia skúma, ako AR ako technologický nástroj ovplyvňuje procesy a výsledky vzdelávania. Syntézou údajov zo širokého spektra štúdií predstavuje holistický pohľad na

úlohu AR vo vzdelávaní. Výskum sa zaoberá potenciálnymi vplyvmi rôznych faktorov, ako sú disciplína, charakteristiky účastníkov a typ vzdelávacích výsledkov. Dochádza však k záveru, že tieto faktory významne nemenia účinnosť AR. Toto zistenie je kľúčové a poukazuje na potenciál AR ako univerzálneho nástroja vo vzdelávaní, ktorý sa môže využívať v rôznych vzdelávacích prostrediach a s rôznymi skupinami učiacich sa.

Štúdia ďalej potvrdzuje potrebu neustáleho výskumu v tejto oblasti a poukazuje na možnosti budúceho skúmania uplatnenia AR vo vzdelávaní. Napriek určitým obmedzeniam poskytujú zistenia silný základ pre pochopenie možností AR pri zlepšovaní vzdelávacích procesov a výsledkov. V štúdii sa tiež zdôrazňuje kvalita zahrnutých metaanalýz, pričom sa konštatuje ich všeobecne prijateľná až dobrá kvalita, čo prispieva k spoľahlivosti zistení.

3 Identifikácia vzdelávacích miskoncepcií

3.1 Bunka ako dvojrozmerný objekt

Vijapurkar uvádza, že problém pri vzdelávaní študentov, pokiaľ ide o presnú vizualizáciu buniek, vyplýva z ich hlboko zakorenenej mylnej predstavy o bunkách ako dvojrozmerných štruktúrach [18]. Aj keď sú bunky na ilustráciách znázornené ako trojrozmerné, tieto snahy často nepomáhajú študentom vytvoriť si správnu trojrozmernú predstavu. Tento problém sa neobmedzuje len na nedostatok trojrozmernosti v mentálnych modeloch študentov; ide aj o ich neschopnosť vnímať bunky ako dynamické, funkčné jednotky života, čo je v biológii kľúčový koncept.

Jedným z kľúčových faktorov, ktoré prispievajú k tomuto problému, je charakter ilustrácií v učebniciach. Učebnice a vzdelávacie materiály sa zvyčajne vo veľkej miere spoliehajú na 2D projekcie 3D objektov. Hoci tieto ilustrácie majú znázorňovať trojrozmerné štruktúry, často to študentom účinne nesprostredkujú. Je to preto, že prevod 2D projekcie na 3D koncept je zložitá kognitívna úloha, najmä pre mladších študentov. Problém ešte znásobuje skutočnosť, že bunky, ktoré sú mikroskopické, sú mimo rozsahu bežnej ľudskej skúsenosti, čo sťažuje študentom pochopiť a predstaviť si ich skutočnú povahu a rozsah.

Štúdia zdôraznila, že aj keď sa študentom ukážu skutočné fotografie buniek, ktoré ich zobrazujú ako 3D objekty, ich už existujúce 2D mentálne modely môžu narušiť ich interpretáciu týchto obrázkov. Táto nesprávna interpretácia naznačuje, že problém nespočíva len v spôsobe zobrazovania buniek, ale aj v tom, ako sa študenti učia chápať tieto zobrazenia.

Ďalej Vijapurkar spomína, že keď sa študenti v triede venovali vytváraniu fyzických modelov buniek, ich prvé pokusy stále odrážali 2D perspektívu, pričom modely mali podhodnotený tretí rozmer. Ako však vyučovanie postupovalo so zameraním na spochybňovanie a pretváranie ich mentálnych modelov, následné modely študentov vykazovali výrazné zlepšenie v zobrazovaní 3D povahy buniek. Tento prechod podčiarkuje význam aktívnych, praktických skúseností pri učení sa, ktoré pomáhajú študentom vytvárať presné mentálne modely.

Pretrvávajúca povaha tohto problému s 2D vizualizáciou naznačuje, že by mohli byť potrebné interaktívnejšie a imerzívnejšie vyučovacie metódy. Tu môžu zohrávať kľúčovú úlohu počítačové 3D modely a aplikácie zmiešanej reality (MR). Tieto pokročilé technologické nástroje môžu študentom poskytnúť interaktívne trojrozmerné reprezentácie buniek, ktoré im umožnia preskúmať a pochopiť zložité štruktúry intuitívnejším a pútavejším

spôsobom. Najmä aplikácie MR ponúkajú imerzívny zážitok, ktorý môže preklenúť rozdiely medzi 2D reprezentáciami a 3D realitou a pomôcť študentom lepšie pochopiť koncept buniek ako dynamických trojrozmerných štruktúr. Kombináciou vizuálnych, sluchových a hmatových podnetov môže MR vytvoriť komplexnejší vzdelávací zážitok, ktorý môže účinne riešiť a korigovať hlboko zakorenené mylné predstavy študentov o povahe buniek.

Na záver možno konštatovať, že hoci tradičné metódy zobrazovania buniek v 3D nestačia na to, aby pomohli študentom vytvoriť si presné vizuálne predstavy, začlenenie moderných technológií, ako sú počítačové 3D modely a aplikácie zmiešanej reality, by mohlo poskytnúť účinnejšie riešenie pri pretváraní študentských predstáv o bunkách ako komplexných, dynamických a trojrozmerných štruktúrach.

3.2 Nepresnosti pri výuke problematiky nervových vzruchov

Odomova štúdia [19] identifikuje osem kľúčových konceptov týkajúcich sa akčného potenciálu a hodnotí ich presnosť a obsiahnutie v šiestich stredoškolských učebniciach biológie. Zistenia odhaľujú rôznorodosť rozsahu pokrytia konceptov súvisiacich s nervovým vzruchom, pričom niektoré učebnice poskytujú komplexnejšie a presnejšie informácie ako iné. Uvádza sa, že väčšina učebníc prezentuje pojmy prostredníctvom textu alebo ilustrácií, pričom chýbajú praktické úlohy v laboratóriu.

V dokumente sa tiež uvádzajú konkrétne miskoncepcie zistené v vyhodnocovaných učebniciach, ako napríklad nepresnosti týkajúce sa úlohy sodíkovo-draslíkovej pumpy pri repolarizácii a zavádzajúce analógie porovnávajúce nervové vzruchy s elektrickým prúdom v drôtoch.

Okrem toho štúdia ďalej zdôrazňuje nevyhnutnosť presného a komplexného pokrytia problematiky nervových vzruchov v učebniciach biológie, najmä vzhľadom na zásadnú úlohu neurobiológie pri porozumení biológie človeka. V článku sa tiež pojednáva o vývoji modelov a počítačových simulácií na pomoc pri výučbe pojmov akčného potenciálu, pričom sa poukazuje na potrebu praktických skúseností študentov na pochopenie týchto abstraktných konceptov.

4 Biologický základ nervového systému

4.1 Nervové bunky - neuróny

Nervové bunky (neuróny) predstavujú základnú morfologickú a funkčnú jednotku nervového tkaniva. Sú to bunky s charakteristickými výbežkami, pomocou ktorých sa sústreďujú v rôznych častiach nervovej sústavy, v sivej hmote mozgu a miechy, na sietnici, v cerebrospinálnych a vo vegetatívnych uzloch. Odlišujú sa od seba tvarom, veľkosťou a funkčne.

Neurón pozostáva z častí:

- telo nervovej bunky (neurocit, perikaryon),
- výbežky (dendrity) výbežky slúžiace k príjmu podráždenia, vedú vzruchy smerom k telu bunky (celulipetálne),
- neurit (axón) výbežok odvádzajúci vzruchy z bunkového tela na perifériu (celulifugálne),
- nervové zakončenie (telodendrie) konečné vetvičky axónu, ktoré sú súčasťou synapsií.

Neurón, vzhľadom na jeho tvar a morfologické zvláštnosti, je bunkou rôznorodého vzhľadu a veľkosti. Telo nervovej bunky je trofickým centrom neurónu. Prijíma a spracováva prichádzajúce podnety a prevádza ich do neuritu. Tvar tela nervových buniek je rozmanitý, Závisí od počtu výbežkov, od druhu nervových buniek a ich lokalizácie, napr. v kôre mozgu sú bunky tvaru štíhlych pyramíd (pyramídové bunky), v mieche sa nachádzajú multipolárne neuróny hviezdicového tvaru, v mozočku má telo tvar guľovitý, resp. hruškovitý. [20]

4.2 Procesy na nervových vláknach

Na nervových vláknach prebiehajú dva procesy:

- vzrušenie (excitácia), teda vznik nervového vzruchu
- vedenie nervového vzruchu (kondukcia, šírenie, propagácia)

4.2.1 Vzrušenie nervového vlákna

Nervový vzruch je stereotypný sled depolarizácie a repolarizácie vzrušivej membrány nervového vlákna, ktorý vzniká spontánne vždy, keď depolarizácia dosiahne úroveň prahovej depolarizácie. Nervový vzruch sa tiež nazýva akčný potenciál. Ak nervové vlákno dráždime

slabými podnetmi, voltáž membránového potenciálu sa síce zníži, ale táto depolarizácia nedosiahne úroveň prahovej depolarizácie a akčný potenciál nevznikne. Takéto podnety nazývame podprahovými podnetmi. Až prahový podnet depolarizuje membránu k prahovej úrovni a zrodí sa akčný potenciál.

4.2.2 Vedenie akčného potenciálu

Sú dva typy vedenia akčného potenciálu - vedenie po nemyelinizovanom a vedenie po myelinizovanom nervovom vlákne.

Vedenie na nemyelinizovanom vlákne. Vzrušený úsek vlákna má obrátenú polaritupovrch je elektronegatívny a vnútro elektropozitívne. Zo susedného normálne polarizovaného miesta (povrch pozitívny, vnútro negatívne) prechádzajú kladné náboje k vzrušenému
elektronegatívnemu miestu a potom spolu s Na⁺ vnikajú dovnútra a tam idú niekoľko milimetrov opačným smerom. Týmto pohybom nábojov sa oslabuje elektropozitivita susedného
miesta zvonku a posilňuje zvnútra. Oslabovanie elektropozitivity znamená oslabovanie
polarizácie, pokles membránového potenciálu až k úrovni prahovej depolarizácie, čím sa
vyvolá akčný potenciál už na novom mieste. Posun akčného potenciálu je plynulý, no
rýchlosť jeho vedenia je relatívne malá.

Vedenie na myelinizovanom vlákne. Myelinizované nervové vlákna sú obalené myelínovými obalmi (pošvami). Tie nie sú súvislé, ale prerušované v miestach Ranvierovych zárezov. Iba v týchto miestach je vodivá membrána v styku s mimobunkovou tekutinou a teda len v týchto miestach je polarizovaná. Ak sa akčný potenciál práve nachádza v jednom Ranvierovom záreze, povrch membrány je tu elektronegatívny a jej vnútorná strana elektropozitívna. Opäť je tu prítomný fenomén oslabovania elektropozitivity, tentokrát ale najbližšieho Ranvierovho zárezu, ktorý môže byť vzdialený jeden až dva milimetre. Aj tu platí, že ak depolarizácia membrány v susednom záreze dosiahne prahovú hodnotu, zrodí sa v ňom nervový vzruch. Ten sa naň teda presunul skokom. Tento typ vedenia možno charakterizovať týmito vlastnosťami:

- ióny nemôžu prestupovať cez myelínový obal, len cez obnaženú membránu v Ranvierovom záreze,
- nervový vzruch "skáče" zo zárezu do zárezu, preto hovoríme o saltatórnom vedení ("vedení skokom"),
- dĺžka jedného myelinizovaného úseku (internódium) závisí od priemeru vlákna čím je hrubšie, tým je myelinizovaný úsek (a teda i skok) dlhší,

- čas jedného skoku nezávisí od dĺžky internódia, je rovnaký pri dlhých i krátkych internódiach. Ak sú dlhšie (na hrubších vláknach), ich počet je menší a teda i počet skokov na jednotku dĺžky vlákna bude menší. To zvyšuje rýchlosť vedenia a následne napr. reflexný a reakčný čas,
- iónové prúdy sú obmedzené len na Ranvierove zárezy, teda menej iónov prechádza na jednotku povrchu nervového vlákna a sekundárne menej energie treba na udržovanie a obnovu koncentračných rozdielov Na⁺ a K⁺ v mimobunkovej a vnútrobunkovej tekutine.

Saltatórne vedenie je takto nielen veľmi rýchle, ale i veľmi hospodárne. Je obdivuhodne dômyselnou inováciou informačných tokov v živých systémoch [21].

4.2.3 Iónové zmeny počas vedenia akčného potenciálu

Zmenou polarizácie membrány oproti pokojovým podmienkam sa výrazne mení jej priepustnosť pre ióny Na⁺ - pri depolarizácii sa priepustnosť pre Na⁺ zvyšuje, pri hyperpolarizácii sa znižuje. Zmena priepustnosti pre Na⁺ sa uskutočňuje prostredníctvom napäťovo závislých sodíkových kanálov. Depolarizácia membrány vyvoláva aj otváranie pomalých draslíkových kanálov.

Pri podprahových stimuláciách , na ktoré reaguje membrána iba miestnym podráždením, t.j. stupňovaným potenciálom, výstup K_+ prevažuje nad vstupom Na^+ . Úroveň depolarizácie sa už teda nemôže ďalej zvyšovať a membrána sa vracia do pokojového stavu. Ak má však podnet prahovú úroveň, resp. stupeň depolarizácie membrány dosahuje spúšťaciu úroveň -55 mV, sodíkové kanály sa prudko otvárajú, priepustnosť pre Na^+ sa niekoľkostonásobne zvyšuje a vstup Na^+ v smere koncentračného aj elektrického gradientu mnohonásobne prevyšuje výstup K^+ . Tieto rýchle zmeny iónového rozloženia na membráne majú za následok prudkú depolarizáciu až transpolarizáciu membrány, korešpondujúcu so vzostupným ramenom hrotového potenciálu.

Sodíkové kanály sa aj napriek pretrvávajúcej depolarizácii veľmi rýchlo inaktivujú, čo sprevádza rýchle znižovanie priepustnosti membrány pre ióny $\mathrm{Na^+}$. Táto zmena je spoločne so zvýšením permeability pre ióny $\mathrm{K^+}$ zodpovedná za rýchly návrat hrotového potenciálu na pokojovú úroveň. Pri následnej hyperpolarizácii už dosahuje priepustnosť membrány pre $\mathrm{Na^+}$ východiskovú úroveň , kým pre $\mathrm{K^+}$ zostáva zvýšená nad pokojový stav.

Na následnej hyperpolarizácii (pozitívny následný potenciál) sa zúčastňuje aj elektrogénny efekt sodíkovo-draslíkovej pumpy, ktorá participuje i na obnovení pôvodného rozloženia iónov. Intracelulárnemu hromadeniu Na⁺ a zvyšovaniu extracelulárnej kon-

centrácie K⁺ zabraňuje trvalé pôsobenie sodíkovo-draslíkovej pumpy ktorá udržuje stály pokojový membránový potenciál. [22]

kapitola

kapitola

Na realizáciu aplikácie boli použité nástroje Blender a Unreal Engine. Blender je slobodný a otvorený softvér pre prácu s trojrozmernou grafikou. Používa sa na 3D modelo- ross vanie, animáciu, tvorbu vizuálnych efektov, a pod. Unreal Engine je herný engine vyvíjaný spoločnosťou Epic Games. Pôvodne bol určený pre vývoj FPS hier , no dnes má širokú rps škálu použitia od vývoja najrôznejších herných titulov a tvorbu filmových efektov až po architektonické vizualizácie a tvorbu aplikácií určených pre virtuálnu, rozšírenú a zmiešanú realitu.

Model neurónu sme si pripravili v Blenderi. Prvým krokom bolo vytvorenie nového projektu voľbou General v úvodnom dialógu po spustení Blendera. Štandardne sú v novom projekte umiestnené vzorové objekty (kocka, zdroj svetla a kamera). Tieto neboli pre naše použitie potrebné, odstránili sme ich. Do projektu sme pridali nový objekt typu UV Sphere, ktorý nám poslúžil ako základ pre ďalšie tvarovanie pomocou techniky zvanej sculpting.

Sculpting v digitálnom modelovaní je podobný tradičnému sochárstvu, kde 3D grafik formuje a upravuje digitálny objekt ručne. Tento proces zahŕňa použitie rôznych nástrojov a techník, ako je napríklad Snake hook slúžiaci na vyťahovanie dlhých, tiahlych tvarov, Inflate pre dodanie objemu alebo zväčšenie špecifických oblastí modelu, Crease pre vytváranie ostrých línií a zárezov, alebo Smooth pre vyhladzovanie povrchov. Tento prístup je obzvlášť vhodný pre modelovanie prírodných objektov, ako sú neuróny, ktoré majú komplexnú a nepravidelnú štruktúru. Na rozdiel od iných metód modelovania, kde sa kladie dôraz na geometrickú presnosť a dodržiavanie technických výkresov, sculpting umožňuje väčšiu flexibilitu a intuitívnosť. Týmto spôsobom sme mohli efektívne zachytiť jedinečné a zložité tvary neurónu, čo by bolo pri použití iných modelovacích techník náročnejšie. Táto metóda poskytuje slobodu v tvorbe a umožňuje dosiahnuť vyššiu úroveň vizuálnej autenticity, čo je kľúčové pre správne reprezentovanie organických štruktúr, akými sú neuróny.

UV Sphere, ktorý sme v predošlom kroku vytvorili, sme použili pre vytvorenie tela neurónu. To zahŕňalo formovanie základnej štruktúry neurónu, kde sme sa zamerali na vytvorenie výbežkov, ktoré predstavovali základ pre dendrity. Následne sme tento základ rozvetvili do komplexnejšej stromovej štruktúry.

Po prepnutí sa do režimu sculpting sme v pravom paneli zaškrtli voľbu Dyntopo, čo je skratka pre Dynamic topology. Táto funkcia Blenderu umožňnuje dynamickú zmenu topológie pri sculptingových úpravách. Flexibilita pri práci, ktorá sa vykonáva pomocou

sa pracuje. To znamená, že pri používaní rôznych sculptingových nástrojov sa topológia mení automaticky podľa potreby. Pre vytváranie výbežkov sme použili nástroje Snake hook a Elastic deform, ktoré nám umožnili presne a flexibilne modelovať ich dlhé a tenké štruktúry. Po vytvorení základných výbežkov sme prešli k detailnejšej práci na stromových štruktúrach na koncoch výbežkov. Na ich tvorbu sme využili rovnaké nástroje, pričom sme dbali na to, aby rozloženie a hustota vetiev reflektovala vyobrazenie neurónu v dostupných

vzorove obrazky

Ďalším krokom bolo vymodelovanie axónu. Ako základ axónu sme použili Bézierovú krivku. Bézierová krivka je parametrická krivka umožňujúca tvorbu hladkých zakrivených tvarov, pričom výsledný tvar je jednoducho modifikovateľný pomocou riadiacich bodov. Do projektu sme vložili novú Bézierovu krivku. Jej umiestnenie v priestore sme volili tak, aby jeden koniec zasahoval do tela neurónu a druhý koniec sa nachádzal v adekvátnej vzdialenosti - v mieste, kde sme mali v úmysle neskôr vytvoriť zakončenia axónu. Po vhodnom vytvarovaní krivky sme v záložke Object Data Properties v sekcii Geometry \rightarrow Bevel nastavili parameter Depth tak, aby táto krivka nadobudla adekvátny objem. Následne sme túto krivku prekonvertovali na mesh, aby sme ju neskôr mohli detailnejšie tvarovať pomocou sculptingu. Pomocou nástroja Inflate sme zväčšili objem meshu v oblasti konca krivky a tiež v mieste, kde sa krivka spája s telom neurónu.

materiáloch.

sculptingu, by bola významne obmedzená pevne definovaným počtom polygónov. *Dyntopo* tento problém rieši tým, že automaticky pridáva alebo odoberá v oblastiach, s ktorými

Popisat join?

Poslednou časťou neurónu, ktorú sme potrebovali zahrnúť do modelu, bola myelínová pošva. Ako jej základ poslúžil objekt typu Cylinder, ktorý sme viacnásobným použitím nástroja Bevel postupne upravili do zodpovedajúceho tvaru pripomínajúceho súdok. Tento objekt sme následne zduplikovali celkom desaťkrát a jednotlivé kópie sme umiestnili za sebou na vymodelovaný axón tak, aby medzi nimi boli medzery reprezentujúce Ranvierove zárezy.

Záver

Zaver bude tu.

Zoznam použitej literatúry

- 1. SUTHERLAND, Ivan E. The Ultimate Display. In: *Proceedings of the Congress of the Internation Federation of Information Processing (IFIP)*. 1965, zv. 2, s. 506–508. Dostupné tiež z: https://my.eng.utah.edu/~cs6360/Readings/UltimateDisplay.pdf.
- 2. SCHMALSTIEG, D. a HÖLLERER, Tobias. Augmented Reality: Principles and Practice. Boston: Addison-Wesley, 2016. Addison-Wesley Usability and HCI Series. ISBN 978-0-321-88357-5.
- 3. SUTHERLAND, Ivan E. A Head-Mounted Three Dimensional Display. In: Proceedings of the December 9-11, 1968, Fall Joint Computer Conference, Part I on AFIPS '68 (Fall, Part I) [online]. San Francisco, California: ACM Press, 1968, s. 757 [cit. 2023-01-10]. Dostupné z DOI: 10.1145/1476589.1476686.
- 4. KRUEGER, Myron W., GIONFRIDDO, Thomas and HINRICHSEN, Katrin. VIDEO-PLACE an Artificial Reality. In: *Proceedings of the SIGCHI Conference on Human Factors in Computing Systems CHI '85* [online]. San Francisco, California, United States: ACM Press, 1985, s. 35–40 [cit. 2023-01-11]. ISBN 978-0-89791-149-8. Dostupné z DOI: 10.1145/317456.317463.
- BRIGHAM, Tara J. Reality Check: Basics of Augmented, Virtual, and Mixed Reality. *Medical Reference Services Quarterly* [online]. 2017, vol. 36, no. 2, s. 171–178 [cit. 2023-01-10]. ISSN 0276-3869, ISSN 1540-9597. Dostupné z DOI: 10.1080/02763869. 2017.1293987.
- 6. ANGELOV, Vladislav, PETKOV, Emiliyan, SHIPKOVENSKI, Georgi a KALUSH-KOV, Teodor. Modern Virtual Reality Headsets. In: 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA) [online]. Ankara, Turkey: IEEE, 2020, s. 1–5 [cit. 2023-01-25]. ISBN 978-1-72819-352-6. Dostupné z DOI: 10.1109/HORA49412.2020.9152604.
- 7. SPEICHER, Maximilian, HALL, Brian D. and NEBELING, Michael. What Is Mixed Reality? In: *Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems* [online]. Glasgow Scotland Uk: ACM, 2019, s. 1–15 [cit. 2023-01-10]. ISBN 978-1-4503-5970-2. Dostupné z DOI: 10.1145/3290605.3300767.

- 8. CHEN, Ke and XUE, Fan. The Renaissance of Augmented Reality in Construction: History, Present Status and Future Directions. *Smart and Sustainable Built Environment* [online]. 2022, vol. 11, no. 3, s. 575–592 [cit. 2023-01-15]. ISSN 2046-6099. Dostupné z DOI: 10.1108/SASBE-08-2020-0124.
- 9. MILGRAM, Paul, TAKEMURA, Haruo, UTSUMI, Akira a KISHINO, Fumio. Augmented Reality: A Class of Displays on the Reality-Virtuality Continuum. In: DAS, Hari (ed.) [online]. Boston, MA, 1995, s. 282–292 [cit. 2023-01-25]. Dostupné z DOI: 10.1117/12.197321.
- 10. Microsoft HoloLens 2: Full Specification [online]. [cit. 2023-01-29]. Dostupné z: https://vr-compare.com/headset/microsofthololens2.
- 11. Advancing the MR Experience with HoloLens 2 Research Mode [online]. [cit. 2022-01-29]. Dostupné z: https://www.valoremreply.com/post/hololens_research_mode/.
- 12. Eye Tracking on HoloLens 2 [online]. [cit. 2023-01-29]. Dostupné z: https://learn.microsoft.com/en-us/windows/mixed-reality/design/eye-tracking.
- 13. REPLY, Valorem. 3 Ways Microsoft Mixed Reality Tool Kit Saves Time and Money [online]. [cit. 2023-02-01]. Dostupné z: https://www.valoremreply.com/post/mrt k/.
- 14. MICROSOFT. What Is Mixed Reality Toolkit 2? [online]. [cit. 2023-02-01]. Dostupné z: https://learn.microsoft.com/en-us/windows/mixed-reality/mrtk-unity/mrtk2/?view=mrtkunity-2022-05.
- 15. MICROSOFT. *Using the HoloLens Emulator* [online]. [cit. 2023-02-01]. Dostupné z: https://learn.microsoft.com/en-us/windows/mixed-reality/develop/advanced-concepts/using-the-hololens-emulator.
- 16. TURHAN, Berk a GÜMÜŞ, Zeynep H. A Brave New World: Virtual Reality and Augmented Reality in Systems Biology. Frontiers in Bioinformatics [online]. 2022, roč. 2, s. 873478 [cit. 2023-01-10]. ISSN 2673-7647. Dostupné z DOI: 10.3389/fbinf .2022.873478.
- 17. MALONE, Sarah, GARZÓN, Juan a KUHN, Jochen. Three Decades of Augmented Reality in Education: A Second-Order Meta-Analysis and Research Synthesis [online]. 2023-07-04. [cit. 2023-12-09]. preprint. Open Science Framework. Dostupné z DOI: 10.31219/osf.io/amw4t.

- 18. VIJAPURKAR, Jyotsna, KAWALKAR, Aisha and NAMBIAR, Priya. What Do Cells Really Look Like? An Inquiry into Students' Difficulties in Visualising a 3-D Biological Cell and Lessons for Pedagogy. Research in Science Education [online]. 2014, vol. 44, no. 2, s. 307–333 [cit. 2023-12-09]. ISSN 0157-244X, ISSN 1573-1898. Dostupné z DOI: 10.1007/s11165-013-9379-5.
- 19. ODOM, Arthur Louis. Action Potentials & Biology Textbooks: Accurate, Misconceptions or Avoidance? *The American Biology Teacher* [online]. 1993, vol. 55, no. 8, s. 468–472 [cit. 2023-12-08]. ISSN 0002-7685. Dostupné z DOI: 10.2307/4449717.
- HOLECOVÁ, Milada, SCHLARMANNOVÁ, Janka, ORSZÁGHOVÁ, Zlatica a MA-TEJOVIČOVÁ, Barbora. Anatómia a Morfológia Živočíchov. Bratislava: Univerzita Komenského, 2016. ISBN 978-80-223-4029-8.
- 21. BÉDER, Igor, BABINSKÁ, Katarína, BÉDEROVÁ, Alžbeta, BUKOVSKÝ, Igor, GABAŠOVÁ, Eva, HÁJEK, Július, KITTOVÁ, Margita, KURTANSKÝ, Alexander, MICHALÍK, Dušan, OKKELOVÁ, Janette, OSTATNÍKOVÁ, Daniela, SLEZÁKOVÁ, Oľga a VAŽAN, Rastislav. Fyziológia Človeka. 1. vyd. Bratislava: Vydavateľstvo UK, 2005. ISBN 80-223-2028-5.
- 22. JAVORKA, Kamil. Lekárska Fyziológia. Učebnica Pre Lekárske Fakulty. Martin: Osveta, 2001. ISBN 80-8063-023-2.

Prílohy