Лабораторная работа №1

Создание "истории о данных" (Data Storytelling)

Выполнил: Борисочкин М. И. ИУ5-21М

Задание

- Выбрать набор данных (датасет). Для лабораторных работ не рекомендуется выбирать датасеты очень большого размера.
- Создать "историю о данных" в виде юпитер-ноутбука, с учетом следующих требований:
- 1. История должна содержать не менее 5 шагов (где 5 рекомендуемое количество шагов). Каждый шаг содержит график и его текстовую интерпретацию.
- 2. На каждом шаге наряду с удачным итоговым графиком рекомендуется в юпитерноутбуке оставлять результаты предварительных "неудачных" графиков.
- 3. Не рекомендуется повторять виды графиков, желательно создать 5 графиков различных видов.
- 4. Выбор графиков должен быть обоснован использованием методологии data-to-viz. Рекомендуется учитывать типичные ошибки построения выбранного вида графика по методологии data-to-viz. Если методология Вами отвергается, то просьба обосновать Ваше решение по выбору графика.
- 5. История должна содержать итоговые выводы. В реальных "историях о данных" именно эти выводы представляют собой основную ценность для предприятия.
- Сформировать отчет и разместить его в своем репозитории на github.

Импорт библиотек

```
In [29]: import pandas as pd
  import matplotlib.pyplot as plt
  import seaborn as sns
  import squarify

%matplotlib inline
  sns.set(style="whitegrid")
```

Описание набора данных

В качестве набора данных, о котором будет писаться история, был выбран датасет Coffee Distribution Across 94 Counties. В нём содержатся данные о производстве,

поставке и распределении кофе в 94 странах мира в период с 1960 по 2023 год.

Исходный набор данных содержит следующие столбцы:

- Country. Страна
- Year. Год
- Arabica Production. Производство арабики
- Bean Exports. Экспорт зёрен
- Bean Imports. Импорт зёрен
- Beginning Stocks. Начальные акции на кофе
- Domestic Consumption. Потребление кофе в стране-производителе
- Ending Stocks. Финальные акции на кофе
- Exports. Экспорт кофе
- Imports. Импорт кофе
- Other Production. Другая продукция
- Production. Производство кофе
- Roast & Ground Exports. Экспорт обжаренных зёрен и молотого кофе
- Roast & Ground Imports. Импорт обжаренных зёрен и молотого кофе
- Robusta Production. Производство робусты
- Rst,Ground Dom. Consum. Потребление обжаренных зёрен и молотого кофе в стране-производителе
- Soluble Dom. Cons. Потребление растворимого кофе в стране-производителе
- Soluble Exports. Экспорт растворимого кофе
- Soluble Imports. Импорт растворимого кофе
- Total Distribution. Итоговое распределение кофе
- Total Supply. Итоговое количество поставок кофе

Примечание: все числовые характеристики, связанные с кофе, считаются в тысячах мешках, номиналом в 60 кг.

Загрузка набора данных

	Country	Year	Arabica Production	Bean Exports	Bean Imports	Beginning Stocks	Domestic Consumption	Ending Stocks	E
5460	United Kingdom	1980	0	0	0	0	0	0	
4367	Rwanda	1975	434	436	0	47	2	43	
1227	Costa Rica	1971	1551	1216	0	337	149	523	
2253	Guyana	1973	0	0	0	0	10	0	
79	Algeria	1975	0	0	0	0	0	0	
2394	Honduras	1986	1535	1398	0	91	140	88	
605	Brazil	1989	22500	16330	0	19863	8000	19533	
4669	Sierra Leone	2021	0	30	0	0	10	0	
3003	Korea, South	2019	0	0	2660	0	2980	0	
1504	Dominican Republic	1992	680	462	0	314	312	217	

10 rows × 21 columns

1. Экспорт зёрен в 2023 году

```
In [4]: # Создание новой подвыборки для решения необходимой задачи
data_export_2023 = data[data["Year"] == 2023].copy()
data_export_2023 = data_export_2023[["Country", "Bean Exports"]]
data_export_2023.head()
```

```
Out[4]:
                Country Bean Exports
                                    0
          63
                Albania
         127
                                    0
                 Algeria
         191
                 Angola
                                   15
                                    0
         255
             Argentina
                                    0
         319
                Armenia
```

```
In [5]: # Неудачный пример графика
_, ax = plt.subplots()
ax.stem(data_export_2023["Country"], data_export_2023["Bean Exports"], orientation
plt.show()
```


График выше является неудачным примером визуализации: слишком много стран, среди которых много с нулевыми значениями. Попробуем вывести только те страны, у которых экспорт больше 0.

```
In [13]: # Всё ещё неудачный пример графика
data_export_2023 = data_export_2023[data_export_2023["Bean Exports"] > 0]

_, ax = plt.subplots()
ax.stem(data_export_2023["Country"], data_export_2023["Bean Exports"], orientation
plt.show()
```


Уже лучше, но стран всё равно много. Возьмём только топ 10. Также отсортируем их, уберём красную полосу, добавим назвнание графику и оси абсцисс.

```
In [28]: # Правильный график
data_export_2023_top10 = data_export_2023.sort_values(by="Bean Exports", ascending=
data_export_2023_top10 = data_export_2023_top10.sort_values(by="Bean Exports")

plt.hlines(y=data_export_2023_top10["Country"], xmax=data_export_2023_top10["Bean E
plt.plot(data_export_2023_top10["Bean Exports"], data_export_2023_top10["Country"],
plt.title("Ton 10 стран по экспорту зёрен кофе в 2023 году")
plt.xlabel('Зёрна кофе, тыс. мешков')
plt.show()
```


Итог: В топ 10 вошли страны из южной/центральной америки, африки и юговосточной азии. Лидером по экспорту оказалась Бразилия, на втором месте Вьетнам, на третьем — Колумбия

Зёрна кофе, тыс. мешков

Шаг 2. История экспорта зёрен стран из топ 3 экспорта в 2023 году

Out[39]:

	Country	Year	Bean Exports
620	Brazil	2004	24505
1029	Colombia	1965	6199
5729	Vietnam	1993	2639
611	Brazil	1995	9650
5750	Vietnam	2014	19828
587	Brazil	1971	18567
1082	Colombia	2018	12400
1041	Colombia	1977	8274
1070	Colombia	2006	10460
5748	Vietnam	2012	23783
5740	Vietnam	2004	14275
1087	Colombia	2023	10800

In [40]: # Первоначальный вариант графика (неудачный) sns.lineplot(data=data_export_history_top3, x="Year", y="Bean Exports", hue="Countr plt.show()

Здесь полное искажение исходных данных. Создадим группу из трёх графиков

Итог: Бразилия и Колумбия всегда экспортировали много зёрен. Вьетнам вступил в гонку только в 90x-00x.

Шаг 3. Топ 10 потребителей кофе за 2023

Country Domestic Consumption

```
In [107... # Создание подвыборки для данного случая data_consumption_2023 = data[(data["Year"] == 2023) & (data["Domestic Consumption"] data_consumption_2023.sample(10, random_state=1)
```

Out[107...

2815

4799

1535 Dominican Republic 110 4479 Saudi Arabia 1000 767 Cameroon 80 5567 **United States** 25475 4351 Russia 4250 2175 Guatemala 625 3263 Madagascar 290 2751 Japan 7317

Jordan

South Africa

650

750

Все страны на treemap — это много. Как и на первом шаге выберем только ограниченное число стран: топ 5.

```
In [129... # Хороший график data_consumption_2023_top5 = data_consumption_2023.sort_values(by="Domestic Consump squarify.plot(sizes=data_consumption_2023_top5["Domestic Consumption"], label=data_consumption_2023_top5["Country"], alpha=.8, color=sns.colo plt.axis('off') plt.title("Топ 5 стран потребителей кофе за 2023 год") plt.show()
```

Топ 5 стран потребителей кофе за 2023 год

Итог: Наибольшими потребителями кофе оказались США, ЕС и Бразилия.

Шаг 4. Распределение между обжаренными зёрнами и растворимым кофе

Посмторим какой тип кофе больше пьют за 2023 год в топ 5 странах по потреблению

Out [146... Country Rst, Ground Dom. Consum Soluble Dom. Cons.

	•		
639	Brazil	21600	960
1919	European Union	41000	2125
2751	Japan	6817	500
4287	Philippines	600	6350
5567	United States	24675	800

```
In [148...
```

In [161...

plt.show()

```
# Построение группового barplot-a (неудачного)
data_coffee_types_top5_melt = data_coffee_types_top5.melt(id_vars=["Country"], valu
                                                          var_name="Coffee type", v
sns.barplot(data=data_coffee_types_top5_melt, x="Country", y="Quantity", hue="Coffe
plt.show()
```


Групповой barplot не очень хорошо себя показывает. Разделим его на два графика

```
# Хороший график
colors = sns.color_palette("deep", 2)
fig, ax = plt.subplots(1, 2, sharex='col', figsize=(14,4))
sns.barplot(data=data_coffee_types_top5, x="Country", y="Rst,Ground Dom. Consum", a
```

```
sns.barplot(data=data_coffee_types_top5, x="Country", y="Soluble Dom. Cons.", ax=ax
ax[0].set_title("Молотый кофе")
ax[0].set_ylabel("")
ax[1].set_title("Растворимый кофе")
ax[1].set_ylabel("")
fig.suptitle("Виды кофе, которые предпочитают топ 5 потребителей", fontsize=12)
```


Итог: Страны, которые пьют больше всего кофе, в большинстве употребляют молотый кофе, кроме Филиппин: там предпочитают растворимый

Шаг 5. Распредение потребляемых видов кофе за последнии пять лет в мире

```
In [272... # Создание нужного набора данных для построения графика
data_coffee_types_5years = data[(data["Year"] >= 2018)][["Year", "Rst,Ground Dom. C
data_coffee_types_5years = data_coffee_types_5years.groupby(["Year"]).sum()

data_coffee_types_5years["% Rst"] = data_coffee_types_5years["Rst,Ground Dom. Consu
data_coffee_types_5years["% Soluble"] = data_coffee_types_5years["Soluble Dom. Cons

In [281... # График по видам потребляемого кофе с 2018 по 2023 год
sns.pointplot(data=data_coffee_types_5years,x="Year", y="% Rst", label="Молотый коф
sns.pointplot(data=data_coffee_types_5years,x="Year", y="% Soluble", label="Растов
plt.ylabel("%")
plt.ylim(0, 100)
plt.legend(loc="right")
plt.show()
```


Итог: За последние пять лет уровень потребления молотого и растворимого кофе стабилен и равен примерно 85 и 15 % соответственно.

Итог

В результате нашего исследования выяснилось следующее:

- 1. Больше всего кофейные зёрна экспортируют Бразилия, Вьетнам и Колумбия;
- 2. Бразилия и Колумбия на всём временном диапазоне были крупными экспортёрами, а Вьетнам стал таковым только в 90x-00x;
- 3. Больше всего кофе потребляют США, ЕС, Бразилия, Япония и Филиппины;
- 4. Среди топ 5 потребителей кофе все, кроме Филиппин, предпочитают молотый кофе.
- 5. За последние 5 лет уровень потребления молотого и растворимого кофе стабилен и равен примерно 85 и 15 % соответственно.