Festkörperphysik, SoSe 2023 Übungsblatt 1

Prof. Dr. Thomas Michely

Dr. Wouter Jolie (wjolie@ph2.uni-koeln.de)

II. Physikalisches Institut, Universität zu Köln

Ausgabe: Mittwoch, 12.04.2023

Mittwoch, 19.04.2023, bis 8 Uhr über ILIAS Abgabe:

Aufgabe Nr.:	1	2	3	4	Summe
Points:	5	5	5	5	20
Punkte:					

Bitte Aufgaben zusammen mit Aufgabenblatt als PDF hochladen. Namen, Matrikelnummer und Gruppennummer deutlich lesbar eintragen (sonst Punktabzug). Abgabe in Gruppen zu 2, max. 3 Personen erwünscht. Die Teammitglieder müssen in der gleichen Übungsgruppe sein.

1. [5 Punkte] Kurzfragen

Markieren Sie im folgenden die richtigen Satzenden (Mehrfachauswahl möglich).
• Die Physik der kondensierten Materie
– beinhaltet die Plasmaphysik als Teilgebiet. \square
$-$ beschäftigt sich auch mit Gelen. \square
$-$ beinhaltet nicht die Festkörperphysik. \square
$-$ beinhaltet die Physik von Flüssigkristallen. \square
• Die Festkörperphysik ist dadurch gekennzeichnet, dass
$-$ sie Körper mit periodischer Anordnung der Bausteine behandelt. \square
$-$ sie sich mit den Eigenschaften von Kristallen beschäftigt. \square
$-$ sie aufgrund der periodischen Anordnung der Kristallbausteine keine Näherungsverfahren benötigt. \Box
$-$ sie kein Teilgebiet der Physik der kondensierten Materie ist. \square
$-$ als Teilbereich der Physik insbesondere durch die Entdeckung der Supraleitung Anwendungsrelevanz erhalten hat. \Box
• Ein Bravaisgitter
$-$ hat als Basis drei primitive Translationen. \square
 ist eine unendlich ausgedehnte Anordnung von Punkten, die gleich aussieht, egal von welchem Gitterpunkt aus man es betrachtet. □

– ist eine Kristallstruktur, die eine Basis besitzt. \square
$-$ ist eine Kristallstruktur, die eindeutige primitive Translationen besitzt. \square
• Eine primitive Einheitszelle
$-$ repräsentiert als Wigner-Seitz Zelle nicht die volle Symmetrie des zugrundeliegenden Gitters. \Box
 wird durch die primitiven Translationen des Gitters aufgespannt und hat das Volumen des Spatproduktes.
$-$ ist identisch mit der konventionellen Einheitszelle, wenn diese die volle Symmetrie des Gitters repräsentiert. \Box
– enthält genau einen Bravaisgitterpunkt. \square
• Die primitiven Einheitszellen folgender Kristallstrukturen besitzen eine zweiatomige Basis:
$-$ Diamant \square
$-$ Iridium \square
– Silizium □
– NaCl □
– Polonium 🗌

2. [5 Punkte] Einheits- versus primitive Zelle

Geben Sie für das sc-, bcc- und fcc-Gitter die Anzahl der Gitterpunkte in der konventionellen Einheitszelle, das Volumen der jeweiligen primitiven Zelle und die Koordinationszahl an. Die Koordinationszahl ist die Anzahl nächster Nachbarn zu einem Gitterpunkt.

3. [5 Punkte] Perowskitstruktur

(a) SrTiO₃ kristallisiert in der Perowskitstruktur. Dabei besetzen die Sr-Atome die Ecken, die Ti-Atome die Raumzentren und die O-Atome die Flächenzentren eines Einheitswürfels. Geben Sie den Bravaistyp dieses Gitters, die jeweilige Anzahl nächster Nachbarn der verschiedenen Atome und die Basisvektoren an.

(b) Damit ein Kristall der Summenformel ABO₃ in der Perowskitstruktur vorliegen kann, muss der sogenannte Toleranzfaktor t ungefähr 1 betragen. Der Toleranzfaktor ergibt sich aus den Radien der jeweiligen Atome durch $t=\frac{r_A+r_O}{\sqrt{2}(r_B+r_O)}$. Diskutieren Sie die Bedeutung von t und berechnen Sie für SrTiO₃ den Toleranzfaktor und die Packungsdichte. Die Ionenradien betragen $r_{Sr^{2+}}=1.44\text{Å}$, $r_{Ti^{4+}}=0.605\text{Å}$, $r_{O^{2-}}=1.35\text{Å}$ und die Gitterkonstante von SrTiO₃ ist a=3.905Å.

4. [5 Punkte] Graphen und Graphit

Graphen bildet eine zweidimensionale Honigwabenstruktur. Dabei ist jedes Kohlenstoffatom im Winkel von 120° von drei weiteren Atomen umgeben. Für die Untersuchung der ungewöhnlichen Eigenschaften von Graphen erhielten Geim und Novoselov 2010 den Nobelpreis in Physik.

- (a) Skizzieren Sie die Struktur von Graphen und geben Sie die beiden Gittervektoren des zweidimensionalen Bravaisgitters in kartesischen Koordinaten an. Stellen Sie ebenfalls die Wigner-Seitz-Zelle graphisch dar.
- (b) Skizzieren Sie die Kristallstruktur von Graphit. Geben Sie die Beträge der Gittervektoren (mit Quellenangabe) und die Wigner-Seitz-Zelle des zugehörigen Gitters an.

Erreichbare Gesamtpunktzahl: 20