1

EE5609 Assignment 10

SHANTANU YADAV, EE20MTECH12001

1 Problem

If \mathbb{F} is a field, verify that vector space of all ordered n-tuples \mathbb{F}^n is a vector space over the field \mathbb{F} .

2 Solution

Let \mathbb{F}^n be a set of all ordered n-tuples over \mathbb{F} i.e

$$\mathbb{F}^n = \{(a_1, a_2, \dots, a_n) : a_1, a_2, \dots, a_n \in \mathbb{F}\}\$$
 (2.0.1)

For \mathbb{F}^n to be a vector space over \mathbb{F} it must satisfy the closure property of vector addition and scalar multiplication.

Vector Addition in \mathbb{F}^n :

Let $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n)$ and $\beta = (\beta_1, \beta_2, \dots, \beta_n) \in$ \mathbb{F}^n then

$$\alpha + \beta = (\alpha_1, \alpha_2, \cdots, \alpha_n) + (\beta_1, \beta_2, \cdots, \beta_n)$$
 (2.0.2)

$$= (\alpha_1 + \beta_1, \alpha_2 + \beta_2, \cdots, \alpha_n + \beta_n) \qquad (2.0.3)$$

Since

$$\alpha_i + \beta_i \in \mathbb{F} \ \forall \ i = 1, 2, \cdots, n$$
 (2.0.4)

$$\implies \alpha + \beta \in \mathbb{F}^n$$
 (2.0.5)

Scalar multiplication in \mathbb{F}^n over \mathbb{F} :

Let $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n) \in \mathbb{F}^n$ and $a \in \mathbb{F}$ then

$$a\alpha = (a\alpha_1, a\alpha_2, \cdots, a\alpha_n)$$
 (2.0.6)

Since

$$a\alpha_i \in \mathbb{F} \ \forall \ i = 1, 2 \cdots, n$$
 (2.0.7)

$$\implies a\alpha \in \mathbb{F}^n$$
 (2.0.8)

Associativity of addition in \mathbb{F}^n :

Let
$$\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n), \ \beta = (\beta_1, \beta_2, \dots, \beta_n), \ \gamma = (\gamma_1, \gamma_2, \dots, \gamma_n) \in \mathbb{F}^n$$
 then

$$\alpha + (\beta + \gamma) = (\alpha_1, \alpha_2, \dots, \alpha_n) + (\beta_1 + \gamma_1, \beta_2 + \gamma_2, \dots, \beta_n + \gamma_n)$$

$$(2.0.9)$$

$$= (\alpha_1 + \beta_1 + \gamma_1, \alpha_2 + \beta_2 + \gamma_2, \dots, \alpha_n + \beta_n + \gamma_n)$$

$$= (\alpha_1 + \beta_1, \alpha_2 + \beta_2, \cdots, \alpha_n + \beta_n) + (\gamma_1, \gamma_2, \cdots, \gamma_n)$$
(2.0.11)

$$= (\alpha + \beta) + \gamma \tag{2.0.12}$$

Existence of additive identity in \mathbb{F}^n :

We have $(0,0,\cdots,0)$ \mathbb{F}^n and α \in $(\alpha_1, \alpha_2, \cdots, \alpha_n) \in \mathbb{F}^n$ then

$$(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}) + (0, 0, \cdots, 0) = (\alpha_{1} + 0, \alpha_{2} + 0, \cdots, \alpha_{n} + 0)$$

$$(2.0.13)$$

$$= (\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n})$$

$$(2.0.14)$$

Therefore $(0,0,\cdots,0)$ is the additive identity in \mathbb{F}^n . Existence of additive inverse of each element of \mathbb{F}^n :

If $(\alpha_1, \alpha_2, \dots, \alpha_n) \in \mathbb{F}^n$ then $(-\alpha_1, -\alpha_2, \dots, -\alpha_n) \in$ \mathbb{F}^n . Also we have

$$(-\alpha_1, -\alpha_2, \cdots, -\alpha_n) + (\alpha_1, \alpha_2, \cdots, \alpha_n) = (0, 0, \cdots, 0)$$
(2.0.15)

Therefore $(-\alpha_1, -\alpha_2, \cdots, -\alpha_n)$ is the additive inverse of $(\alpha_1, \alpha_2, \dots, \alpha_n)$. Thus \mathbb{F}^n is an abelian group with respect to addition.

Futher we observe that

1) If
$$a \in \mathbb{F}$$
 and $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n), \beta = (\beta_1, \beta_2, \dots, \beta_n) \in \mathbb{F}^n$ then

$$a(\alpha + \beta) = a(\alpha_{1} + \beta_{1}, \alpha_{2} + \beta_{2}, \cdots, \alpha_{n} + \beta_{n})$$

$$(2.0.16)$$

$$= (a[\alpha_{1} + \beta_{1}], a[\alpha_{2} + \beta_{2}], \cdots, a[\alpha_{n} + \beta_{n}])$$

$$(2.0.17)$$

$$= (a\alpha_{1} + a\beta_{1}, a\alpha_{2} + a\beta_{2}, \cdots, a\alpha_{n} + a\beta_{n})$$

$$(2.0.18)$$

$$= (a\alpha_{1}, a\alpha_{2}, \cdots, a\alpha_{n}) + (a\beta_{1}, a\beta_{2}, \cdots, a\beta_{n})$$

$$(2.0.19)$$

$$= a(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}) + a(\beta_{1}, \beta_{2}, \cdots, \beta_{n})$$

$$(2.0.20)$$

$$= (\alpha_{1}, \alpha_{2}, \dots, \alpha_{n}) + (\beta_{1} + \gamma_{1}, \beta_{2} + \gamma_{2}, \dots, \beta_{n} + \gamma_{n})$$

$$= (\alpha_{1}, \alpha_{2}, \dots, \alpha_{n}) + (\beta_{1} + \gamma_{1}, \beta_{2} + \gamma_{2}, \dots, \beta_{n}) + \alpha(\beta_{1}, \beta_{2}, \dots, \beta_{n})$$

$$= (\alpha_{1} + \beta_{1} + \gamma_{1}, \alpha_{2} + \beta_{2} + \gamma_{2}, \dots, \alpha_{n} + \beta_{n} + \gamma_{n})$$

$$= (\alpha_{1} + \beta_{1} + \gamma_{1}, \alpha_{2} + \beta_{2} + \gamma_{2}, \dots, \alpha_{n} + \beta_{n} + \gamma_{n})$$

$$= (\alpha_{1} + \beta_{1}, \alpha_{2} + \beta_{2}, \dots, \alpha_{n} + \beta_{n}) + (\gamma_{1}, \gamma_{2}, \dots, \gamma_{n})$$

$$= (\alpha_{1} + \beta_{1}, \alpha_{2} + \beta_{2}, \dots, \alpha_{n} + \beta_{n}) + (\gamma_{1}, \gamma_{2}, \dots, \gamma_{n})$$

$$= (\alpha_{1} + \beta_{1}, \alpha_{2} + \beta_{2}, \dots, \alpha_{n} + \beta_{n}) + (\gamma_{1}, \gamma_{2}, \dots, \gamma_{n})$$

$$= (\alpha_{1} + \beta_{1}, \alpha_{2} + \beta_{2}, \dots, \alpha_{n} + \beta_{n}) + (\gamma_{1}, \gamma_{2}, \dots, \gamma_{n})$$

$$= (\alpha_{1} + \beta_{1}, \alpha_{2} + \beta_{2}, \dots, \alpha_{n} + \beta_{n}) + (\gamma_{1}, \gamma_{2}, \dots, \gamma_{n})$$

$$= (\alpha_{1} + \beta_{1}, \alpha_{2} + \beta_{2}, \dots, \alpha_{n} + \beta_{n}) + (\gamma_{1}, \gamma_{2}, \dots, \gamma_{n})$$

$$= (\alpha_{1} + \beta_{1}, \alpha_{2} + \beta_{2}, \dots, \alpha_{n}) + \alpha(\beta_{1}, \beta_{2}, \dots, \beta_{n})$$

$$= (\alpha_{1} + \beta_{1} + \gamma_{1}, \alpha_{2} + \beta_{2} + \gamma_{2}, \dots, \alpha_{n} + \beta_{n} + \gamma_{n})$$

$$= (\alpha_{1} + \beta_{1} + \gamma_{1}, \alpha_{2} + \beta_{2} + \gamma_{2}, \dots, \alpha_{n} + \beta_{n} + \gamma_{n})$$

$$= (\alpha_{1} + \beta_{1} + \gamma_{1}, \alpha_{2} + \beta_{2} + \gamma_{2}, \dots, \alpha_{n} + \beta_{n} + \gamma_{n})$$

$$= (\alpha_{1} + \beta_{1} + \gamma_{1}, \alpha_{2} + \beta_{2} + \gamma_{2}, \dots, \alpha_{n} + \beta_{n} + \gamma_{n})$$

$$= (\alpha_{1} + \beta_{1} + \gamma_{1}, \alpha_{2} + \beta_{2} + \gamma_{2}, \dots, \alpha_{n} + \beta_{n} + \gamma_{n})$$

$$= (\alpha_{1} + \beta_{1} + \gamma_{1}, \alpha_{2} + \beta_{2} + \gamma_{2}, \dots, \alpha_{n} + \beta_{n} + \gamma_{n})$$

$$= (\alpha_{1} + \beta_{1} + \gamma_{1}, \alpha_{2} + \beta_{2} + \gamma_{2}, \dots, \alpha_{n} + \beta_{n} + \gamma_{n})$$

$$= (\alpha_{1} + \beta_{1} + \gamma_{1}, \alpha_{2} + \beta_{2} + \gamma_{2}, \dots, \alpha_{n} + \beta_{n} + \gamma_{n})$$

$$= (\alpha_{1} + \beta_{1} + \gamma_{1}, \alpha_{2} + \beta_{2} + \gamma_{2}, \dots, \alpha_{n} + \beta_{n} + \gamma_{n})$$

$$= (\alpha_{1} + \beta_{1} + \beta_{2} + \beta_{2} + \gamma_{2}, \dots, \alpha_{n} + \beta_{n} + \gamma_{n})$$

$$= (\alpha_{1} + \beta_{1} + \beta_{2} +$$

(2.0.22)

$$= (a\alpha_1 + b\alpha_1, a\alpha_2 + b\alpha_2, \cdots, a\alpha_n + b\alpha_n)$$

$$(2.0.23)$$

$$= (a\alpha_1, a\alpha_2, \cdots, a\alpha_n) + (b\alpha_1, b\alpha_2, \cdots, b\alpha_n)$$

$$(2.0.24)$$

$$= a(\alpha_1, \alpha_2, \cdots, \alpha_n) + b(\alpha_1, \alpha_2, \cdots, \alpha_n)$$

$$(2.0.25)$$

$$= a\alpha + b\alpha$$

$$(2.0.26)$$

3) If $a,b \in \mathbb{F}$ and $(\alpha_1,\alpha_2,\cdots,\alpha_n) \in \mathbb{F}^n$ then

$$(ab)\alpha = ([ab]\alpha_1, [ab]\alpha_2, \cdots, [ab]\alpha_n)$$
 (2.0.27)
= $(a[b\alpha_1], a[b\alpha_2], \cdots, a[b\alpha_n])$ (2.0.28)
= $a(b\alpha_1, b\alpha_2, \cdots, b\alpha_n)$ (2.0.29)
= $a(b\alpha)$ (2.0.30)

4) If 1 is the unity element of \mathbb{F} and $\alpha = (\alpha_1, \alpha_2, \alpha_n) \in \mathbb{F}^n$ then

$$1\alpha = (1\alpha_1, 1\alpha_2, \dots, 1\alpha_n)$$
 (2.0.31)
= $(\alpha_1, \alpha_2, \dots, \alpha_n)$ (2.0.32)
= α (2.0.33)

Hence \mathbb{F}^n is a vector space over \mathbb{F} .