IBM Data Science Capstone Project Space X

Ming-Hsuan Yen 12. Aug 2025

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Summary of methodologies
- Summary of all results

Introduction

Project background and context

We predicted if the Falcon 9 first stage will land successfully. SpaceX advertises Falcon 9 rocket launches on its website, with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because SpaceX can reuse the first stage. Therefore, if we can determine if the first stage will land, we can determine the cost of a launch. This information can be used if an alternate company wants to bid against SpaceX for a rocket launch.

Common problems that needed solving

- What influences if the rocket will land successfully?
- The effect each relationship with certain rocket variables will impact in determining the success rate of a successful landing.
- What conditions does SpaceX have to achieve to get the best results and ensure the best rocket success landing rate.

Section 1 Methodology

Methodology

Executive Summary

- Data collection methodology:
 - SpaceX API & Web Scrapping
- Perform data wrangling
 - Transforming data for Machine Learning
 - One hot Encoding data fields for Machine Learning and dropping irrelevant columns
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - How to build, tune, evaluate classification models

Data Collection

- SpaceX launch data is gathered from the SpaceX API
- Another way is that obtain Falcon 9 Launch data by web scrapping using BeautifulSoup.

Data Collection - SpaceX API

- 1. Get Response from API
- 2. Convert Response to .json file
- 3. Appy custom functions to clean data
- 4. Assign list to dictionary
- 5. Filter dataframe and export to flatfile (.csv)

GitHub URL to Notebook

Data Collection - Web Scrapping

- 1. Get Response from HTML
- 2. Create BeautifulSoup Object
- 3. Find tables
- 4. Get column names
- 5. Append data to keys
- 6. Convert dictionary to dataframe
- 7. Export dataframe to flatfile (.csv)

GitHub URL to Notebook

Data Wrangling

In our data set:

there are several different cases where the booster did not land successfully. Sometimes a landing was attempted but failed due to an accident:

- True Ocean means the mission outcome was successfully landed to a specific region of the ocean.
- False Ocean means the mission outcome was unsuccessfully landed to a specific region of the ocean.
- True RTLS means the mission outcome was successfully landed to a ground pad.
- False RTLS means the mission outcome was unsuccessfully landed to a ground pad.
- True ASDS means the mission outcome was successfully landed on a drone ship.
- False ASDS means the mission outcome was unsuccessfully landed on a drone ship.

We mainly convert outcomes into Training Labels:

- 1 means the booster successfully landed
- 0 means it was unsuccessful.

EDA with Data Visualization

Scatter Graphs:

- Flight Number vs. Payload Mass
- Flight Number vs. Launch Site
- Payload vs. Launch Site
- Orbit vs. Flight Number
- Payload vs. Orbit Type
- Orbit vs. Payload Mass

*Scatter plots show how much one variable is affected by another. The relationship between two variables is called their correlation. Scatter plots usually consist of a large body of data.

Bar Graphs:

Abar diagram makes it easy to compare sets of data between different groups at a glance. The graph represents categories on one axis and a discrete value in the other. The goal is to show the relationship between the two axes. Bar charts can also show big changes in data over time.

Line Graphs:

• Success Rate vs. Year

Line graphs are useful in that they show data variables and trends very clearly and can help to make predictions about the results of data not yet recorded

EDA with SQL

Performed SQL queries to gather information about the dataset.

Questions we are using SQL queries to get the answers in the dataset :

- Displaying the names of the unique launch sites in the space mission
- Displaying 5 records where launch sites begin with the string 'KSC'
- Displaying the total payload mass carried by boosters launched by NASA (CRS)
- Displaying average payload mass carried by booster version F9 v1.1
- Listing the date where the successful landing outcome in drone ship was achieved.
- Listing the names of the boosters which have success in ground pad and have payload mass greater than 4000 but less than 6000
- Listing the total number of successful and failure mission outcomes
- Listing the names of the booster versions which have carried the maximum payload mass.
- Listing the records which will display the month names, successful landing outcomes in ground pad, booster versions, launch site for the months in year 2017
- Ranking the count of successful landing outcomes between the date 2010-06-04 and 2017-03-20 in descending order.

Build an Interactive Map with Folium

To visualize the Launch Data into an interactive map.

We took the Latitude and Longitude Coordinates at each launch site and added a Circle Marker around each launch site with a label of the name of the launch site.

We assigned the dataframe launch_outcomes (failures, successes) to *classes 0 and 1* with Green and Red markers on the map in a MarkerCluster()

Using Haversine's formula we calculated the distance from the Launch Site to various landmarks to find various trends about what is around the Launch Site to measure patterns. **Lines** are drawn on the map to measure distance to landmarks

Example of some trends in which the Launch Site is situated in.

- Are launch sites in close proximity to railways? No
- Are launch sites in close proximity to highways? No
- Are launch sites in close proximity to coastline? Yes
- Do launch sites keep certain distance away from cities? Yes

Build a Dashboard with Plotly Dash

The dashboard is built with Flask and Dash web framework.

Graphs

Pie Chart showing the total launches by a certain site/all sites

- display relative proportions of multiple classes of data.
- size of the circle can be made proportional to the total quantity it represents.

Scatter Graph showing the relationship with Outcome and Payload Mass (Kg) for the different Booster Versions

- It shows the relationship between two variables.
- It is the best method to show you a non-linear pattern.
- The range of data flow, i.e. maximum and minimum value, can be determined.
- Observation and reading are straightforward.

URL Link to live website

GitHub URL to Notebook

Predictive Analysis (Classification)

Building model

- load our dataset into NumPy and Pandas
- transform Data
- split our data into training and test data sets
- check how many test samples we have
- decide which type of machine learning algorithms we want to use
- set our parameters and algorithms to GridSearchCV
- fit our datasets into the GridSearchCV objects and train our dataset.

Evaluating model

- check accuracy for each model
- get tuned hyperparameters for each type of algorithms
- plot Confusion Matrix

Improving model

- feature Engineering
- algorithm Tuning

Finding the best performing classification model

- the model with the best accuracy score wins the best performing model
- in the notebook there is a dictionary of algorithms with scores at the bottom of the notebook.

GitHub URL to Notebook

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Section 2 Insight in EDA

Flight Number vs. Launch Site

The more amount of flights at a launch site the greater the success rate at a launch site.

Payload vs. Launch Site

The greater the payload mass for Launch Site CCAFS SLC 40 the higher the success rate for the Rocket.

There is not quite a clear pattern to be found using this visualization to make a decision if the Launch Site is dependant on Pay Load Mass for a success launch.

Success Rate vs. Orbit Type

Orbit GEO, HEO, SSO, ES-L1 has the best Success Rate

Flight Number vs. Orbit Type

In the LEO orbit the Success appears related to the number of flights; on the other hand, there seems to be no relationship between flight number when in GTO orbit.

Payload vs. Orbit Type

Heavy payloads have a negative influence on GTO orbits and positive on GTO and Polar LEO (ISS) orbits.

Launch Success Yearly Trend

the success rate since 2013 kept increasing till 2020

All Launch Site Names

select DISTINCT Launch_Site from tblSpaceX

Unique Launch Sites
CCAFS LC-40
CCAFS SLC-40
CCAFS SLC-40
KSC LC-39A
VAFB SLC-4E

QUERY EXPLAINATION

Using the word **DISTINCT** in the query means that it will only show Unique values in the **Launch_Site** column from **tblSpaceX**

Launch Site Names Begin with 'CCA'

Select TOP5 * from tblSpaceX WHERE Launch_SiteLIKE'KSC%'

QUERY EXPLAINATION

Using the word **TOP 5** in the query means that it will only show 5 records from **tblSpaceX** and **LIKE** keyword has a wild card with the words **'KSC%'** the percentage in the end suggests that the Launch_Site name must start with KSC.

	Date	Time_UTC	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	0rbit	Customer	Mission_Outcome	Landing_Outcome
9	19-02-2017	2021-07-02 14:39:00.0000000	F9 FT B1031.1	KSC LC-39A	SpaceX CRS-10	2490	LEO (ISS)	NASA (CRS)	Success	Success (ground pad)
1	16-03-2017	2021-07-02 06:00:00.0000000	F9 FT B1030	KSC LC-39A	EchoStar 23	5600	GTO	EchoStar	Success	No attempt
2	30-03-2017	2021-07-02 22:27:00.0000000	F9 FT B1021.2	KSC LC-39A	SES-10	5300	GTO	SES	Success	Success (drone ship)
3	01-05-2017	2021-07-02 11:15:00.0000000	F9 FT B1032.1	KSC LC-39A	NROL-76	5300	LE0	NRO	Success	Success (ground pad)
4	15-05-2017	2021-07-02 23:21:00.0000000	F9 FT B1034	KSC LC-39A	Inmarsat-5 F4	6070	GT0	Inmarsat	Success	No attempt

Total Payload Mass

Select SUM(PAYLOAD_MASS_KG_)
TotalPayloadMass from tblSpaceX where
Customer='NASA(CRS)"','TotalPayloadMass

QUERY EXPLAINATION

Using the function **SUM** summates the total in the column **PAYLOAD_MASS_KG_**The **WHERE** clause filters the dataset to only perform calculations on **Customer NASA** (CRS)

Average Payload Mass by F9 v1.1

Select AVG(PAYLOAD_MASS_KG_)
AveragePayloadMass from tblSpaceX where
Booster_Version='F9v1.1'

QUERY EXPLAINATION

Using the function **AVG** works out the average in the column

PAYLOAD_MASS_KG_

The **WHERE** clause filters the dataset to only perform calculations on

Booster_version F9 v1.1

First Successful Ground Landing Date

Select MIN(Date) SLO from tblSpaceX where Landing_Outcome="Success(droneship)"

QUERY EXPLAINATION

Using the function **MIN** works out the minimum date in the column **Date**The **WHERE**clause filters the dataset to only perform calculations on **Landing_Outcome Success (drone ship)**

Date which first Successful landing outcome in drone ship was acheived.

0

06-05-2016

Successful Drone Ship Landing with Payload between 4000 and 6000

Select Booster_Version from tblSpaceX where Landing_Outcome='Success(groundpad)'
AND Payload_MASS_KG_> 4000 AND
Payload_MASS_KG_< 6000

QUERY EXPLAINATION

Selecting only **Booster_Version**The **WHERE**clause filters the dataset to **Landing_Outcome = Success (drone ship)**The **AND** clause specifies additional filter conditions

Payload_MASS_KG_ > 4000 AND
Payload_MASS_KG_ < 6000</pre>

```
Date which first Successful landing outcome in drone ship was acheived.

F9 FT B1032.1
F9 B4 B1040.1
F9 B4 B1043.1
```

Total Number of Successful and Failure Mission Outcomes

SELECT (SELECTCount(Mission_Outcome) from tblSpaceX where Mission_OutcomeLIKE'%Success%') as Successful_Mission_Outcomes, (SELECTCount(Mission_Outcome) from tblSpaceX where Mission_Outcome LIKE'%Failure%') as Failure_Mission_Coutcomes

QUERY EXPLAINATION

a much harder query I must say, we used subqueries here to produce the results. The **LIKE '%foo%'** wildcard shows that in the record the **foo** phrase is in any part of the string in the records for example.

PHRASE "(Drone Ship was a Success)" LIKE '%Success%'

Word 'Success' is in the phrase the filter will include it in the dataset

Boosters Carried Maximum Payload

SELECT DISTINCT Booster_Version, MAX(PAYLOAD_MASS_KG_) AS [MaximumPayloadMass] FROM tblSpaceX GROUPBY Booster_Version ORDERBY [MaximumPayloadMass] DESC

QUERY EXPLAINATION

Using the word **DISTINCT** in the query means that it will only show Unique values in the **Booster_Version** column from **tblSpaceX GROUP BY** puts the list in order set to a certain condition.

DESC means its arranging the dataset into descending order

	Booster_Version	Maximum Payload Mass			
9	F9 B5 B1048.4	15600			
1	F9 B5 B1048.5	15600			
2	F9 B5 B1049.4	15600			
3	F9 B5 B1049.5	15600			
4	F9 B5 B1049.7	15600			
92	F9 v1.1 B1003	500			
93	F9 FT B1038.1	475			
94	F9 B4 B1045.1	362			
95	F9 v1.0 B0003	Ø			
96	F9 v1.0 B0004	Ø			
97 rows × 2 columns					

2017 Launch Records

SELECT DATENAME(month, DATEADD(month, MONTH(CONVERT(date, Date, 105)), 0) -1) AS Month, Booster_Version, Launch_Site, Landing_Outcome FROM tblSpaceX WHERE (Landing_Outcome LIKE N'%Success%') AND (YEAR(CONVERT(date, Date, 105)) = '2017')

QUERY EXPLAINATION

a much more complex query as I had my **Date** fields in SQL Server stored as **NVARCHAR** the **MONTH** function returns name month. The function **CONVERT** converts **NVARCHAR** to **Date**.

WHERE clause filters Year to be 2017

Month	Booster_Version	Launch_Site	Landing_Outcome
January	F9 FT B1029.1	VAFB SLC-4E	Success (drone ship)
February	F9 FT B1031.1	KSC LC-39A	Success (ground pad)
March	F9 FT B1021.2	KSC LC-39A	Success (drone ship)
May	F9 FT B1032.1	KSC LC-39A	Success (ground pad)
June	F9 FT B1035.1	KSC LC-39A	Success (ground pad)
June	F9 FT B1029.2	KSC LC-39A	Success (drone ship)
June	F9 FT B1036.1	VAFB SLC-4E	Success (drone ship)
August	F9 B4 B1039.1	KSC LC-39A	Success (ground pad)
August	F9 FT B1038.1	VAFB SLC-4E	Success (drone ship)
September	F9 B4 B1040.1	KSC LC-39A	Success (ground pad)
October	F9 B4 B1041.1	VAFB SLC-4E	Success (drone ship)
0ctober	F9 FT B1031.2	KSC LC-39A	Success (drone ship)
0ctober	F9 B4 B1042.1	KSC LC-39A	Success (drone ship)
December	F9 FT B1035.2	CCAFS SLC-40	Success (ground pad)

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

```
SELECT COUNT(Landing_Outcome)
FROM tblSpaceX
WHERE (Landing_Outcome LIKE '%Success%')
AND (Date > '04-06-2010')
AND (Date < '20-03-2017')
```

QUERY EXPLAINATION

Function **COUNT** counts records in column **WHERE** filters data **LIKE** (wildcard) **AND** (conditions)AND (conditions)

Section 3 Launch site analysis

All launch sites global map markers

Colour Labelled Markers

Florida Launch Sites

California Launch Sites

Green Marker shows successful Launches
Red Marker shows Failures

Working out Launch Sites distance to landmarks to find trends with Haversine formula using CCAFS-SLC-40 as a reference

Section 4 Build a dashboard with Plotly Dash

The success percentage of launches by all sites

The success rate of the highest launch site

KSC LC-39A achieved a 76.9% success rate while getting a 23.1% failure rate

Payload vs. Launch for all sites, with different payload selected in the range slider

Low Weighted Payload 0kg - 4000kg

Low Weighted Payload 4000kg - 10000kg

We can see the success rates for low weighted payloads is higher than the heavy weighted payloads Section 5
Predictive analysis
(classification)

Classification Accuracy

As you can see our accuracy is extremely close but we do have a winner its down to decimal places! using this function

bestalgorithm = max(algorithms, key=algorithms.get)

	Accuracy	Algorithm
9	0.653571	KNN
1	0.667857	Tree
2	0.667857	LogisticRegression

The tree algorithm wins!!

After selecting the best hyperparameters for the decision tree classifier using the validation data, we achieved 83.33% accuracy on the test data.

```
Best Algorithm is Tree with a score of 0.6678571428571429
Best Params is : {'criterion': 'gini', 'max_depth': 2, 'max_features': 'auto', 'min_samples_leaf': 1, 'min_samples_split': 2, 'splitter': 'best'}
```

Confusion Matrix

Examining the confusion matrix, we see that Tree can distinguish between the different classes. We see that the major problem is false positives.

Conclusions

- The Tree Classifier Algorithm is the best for Machine Learning for this dataset
- Low weighted payloads perform better than the heavier payloads
- The success rates for SpaceX launches is directly proportional time in years they will eventually perfect the launches
- We can see that KSC LC-39A had the most successful launches from all the sites
- Orbit GEO, HEO, SSO, ES-L1 has the best Success Rate

Thank you!

