50 ML INTERVIEW QUESTIONS

1. What is the difference between supervised and unsupervised learning?

- Supervised Learning: Uses labeled data to train models for predictive tasks.
 - Example: Regression (predicting continuous values) and Classification (predicting categories).
- **Unsupervised Learning:** Uses unlabeled data to find hidden patterns or groupings.
 - o Example: Clustering, Dimensionality Reduction.

2. What is the difference between classification and regression?

- Classification: Predicts discrete categories (e.g., spam or not spam).
- Regression: Predicts continuous values (e.g., house prices).
- Metrics:
 - o Classification → Accuracy, Precision, Recall, F1, AUC.
 - Regression \rightarrow MSE, MAE, R².

3. What is the bias-variance tradeoff?

- Bias: Error from overly simplistic models → causes underfitting.
- **Variance:** Error from overly complex models → causes overfitting.
- Goal: Find balance to minimize total error.

4. How to deal with overfitting and underfitting?

- Overfitting: Too complex → use regularization, cross-validation, reduce complexity, early stopping.
- Underfitting: Too simple → add features, increase model complexity, reduce regularization.

5. What is cross-validation and why is it important?

- **Definition:** Splitting data into multiple folds to test model performance reliably (e.g., k-fold CV).
- **Importance:** Prevents overfitting, gives robust performance estimates, helps tune hyperparameters.

6. What are precision, recall, and F1-score?

- **Precision:** TP / (TP + FP) → How many predicted positives are correct.
- **Recall:** TP / (TP + FN) → How many actual positives are detected.
- **F1-Score:** Harmonic mean of precision and recall balances both.

7. How to choose the right evaluation metric?

- Based on problem type, data imbalance, and business goal.
- Classification: Accuracy, F1, ROC-AUC.
- Regression: MAE, MSE, R².
- Example: Fraud detection → Recall or AUC.

8. Difference between accuracy, precision, and recall?

- Accuracy: (TP + TN) / Total → Overall correctness.
- Precision: TP / (TP + FP).
- **Recall:** TP / (TP + FN).
- Use Precision when false positives are costly; Recall when false negatives are costly.

9. What is a confusion matrix?

- Table comparing predictions vs actual outcomes.
 - o **Metrics:** Accuracy, Precision, Recall, F1-score.
 - o **Shows:** TP, TN, FP, FN.

10. How do you handle missing or corrupted data?

Methods:

- Deletion (if small % missing).
- o Imputation (mean, median, mode, KNN).
- o Flag missing values.
- o Use models handling missing data (e.g., XGBoost).

11. How to handle categorical variables?

- One-hot encoding: For non-ordered categories.
- Ordinal encoding: For ordered categories.
- Target encoding: Replace with mean target value (for high cardinality).

12. What is feature engineering and why is it crucial?

- Process of creating, transforming, or selecting features to improve model performance.
- Includes scaling, encoding, interactions, and polynomial features.

13. Difference between parametric and non-parametric models?

- **Parametric:** Fixed number of parameters (e.g., Linear Regression). Fast but less flexible.
- **Non-parametric:** Grows with data (e.g., Decision Trees, KNN). More flexible but slower.

14. What is the curse of dimensionality?

- Too many features → data becomes sparse → harder learning, overfitting.
- Fix: Use PCA, feature selection, or collect more data.

15. What is regularization?

- Penalizes large coefficients → reduces overfitting.
- Types:

- o L1 (Lasso): Shrinks some coefficients to zero.
- o L2 (Ridge): Shrinks all coefficients slightly.

16. What are assumptions of linear regression?

- 1. Linearity.
- 2. Independence.
- 3. Homoscedasticity.
- 4. Normality of residuals.
- 5. No multicollinearity.

17. Role of activation functions in logistic regression?

• Sigmoid maps linear output into probability (0–1) → allows binary classification.

18. How to interpret coefficients in logistic regression?

 Each coefficient represents the log-odds change in the dependent variable for a one-unit change in the predictor.

19. How do decision trees work?

- Recursive splits using best feature (Gini, Entropy).
- **Pros:** Simple, interpretable.
- Cons: Can overfit → use pruning or ensembles.

20. What is random forest motivation?

 Combines many decision trees (bagging) → reduces variance, improves accuracy and robustness.

21. Difference between bagging and boosting?

- **Bagging:** Parallel models, reduces variance (e.g., Random Forest).
- Boosting: Sequential models, reduces bias (e.g., AdaBoost, XGBoost).

22. Hard vs Soft Voting?

- Hard Voting: Majority class wins.
- **Soft Voting:** Average probabilities usually better accuracy.

23. What is k-NN and how does it work?

- Finds k nearest neighbors → predicts based on majority vote (classification) or average (regression).
- · Requires feature scaling.

24. What is k-Means and how does it work?

- 1. Choose k centroids.
- 2. Assign points to nearest centroid.
- 3. Update centroids until stable.
- Sensitive to initial placement and requires k beforehand.

25. How to select best k in k-Means?

- Elbow Method, Silhouette Score, Gap Statistic.
- Silhouette is most interpretable.

26. What is DBSCAN and why better than K-Means?

 Density-based clustering → forms clusters of arbitrary shape, no need to specify k, robust to noise.

27. Feature selection vs feature extraction

- Selection: Choose important features.
- **Extraction:** Transform features (e.g., PCA).

28. Feature importance in tree-based models

- Based on reduction in impurity or split frequency.
- Helps in interpretability and feature selection.

29. What is PCA and when to use it?

- Dimensionality reduction by transforming data into uncorrelated components capturing most variance.
- Useful for visualization and high-dimensional data.

30. What is LDA and when to use it?

- Supervised dimensionality reduction → maximizes class separability.
- Use when improving classification accuracy with labeled data.

31. How to handle multicollinearity?

Remove correlated variables, use regularization, or apply PCA.

32. How to make models robust to outliers?

 Use robust algorithms (trees), detect/remove outliers (IQR, Z-score), use Huber loss, normalize data.

33. Difference between generative and discriminative models?

- **Generative:** Learn P(X, Y), can generate data (e.g., Naive Bayes, GANs).
- **Discriminative:** Learn P(Y|X), focus on boundaries (e.g., Logistic Regression, SVM).

34. How to choose which algorithm to use?

- Based on problem type, data size, interpretability, and resources.
- Use EDA and experiments to decide.

35. L1 vs L2 Regularization

- L1 (Lasso): Shrinks some weights to zero → feature selection.
- L2 (Ridge): Shrinks all weights slightly → stabilizes model.

36. What is the kernel trick in SVM?

 Allows linear separation in higher dimensions using kernel functions (RBF, Polynomial) without explicit mapping.

37. Batch, Mini-batch, and Stochastic Gradient Descent

- Batch: Uses all data → stable but slow.
- Mini-batch: Uses small groups → fast and stable (common in DL).
- SGD: Uses one sample → fast but noisy.

38. How does gradient descent work?

- Iteratively updates parameters opposite to gradient direction to minimize loss.
- Controlled by learning rate.

39. What is the learning rate?

- Step size for parameter updates.
 - Too high → diverge.
 - o Too low → slow convergence.

40. What are hyperparameters and tuning methods?

- **Hyperparameters:** Control training (e.g., learning rate, tree depth).
- Tuning Methods: Grid Search, Random Search, Bayesian Optimization, AutoML.

41. How to prevent overfitting during hyperparameter tuning?

- Use cross-validation, early stopping, and regularization.
- Avoid over-tuning to validation set.

42. Grid Search vs Random Search

- Grid Search: Exhaustive, best for small spaces.
- Random Search: Faster, better for large spaces.

43. What is ROC curve and AUC?

- ROC Curve: Plots TPR vs FPR at different thresholds.
- **AUC:** Area under curve higher = better discrimination.

44. What is Silhouette Score?

- Measures how well each point fits in its cluster.
 - \circ +1 \rightarrow well clustered.
 - \circ 0 \rightarrow boundary.
 - -1 → wrong cluster.

45. How to select features in high-dimensional data?

- **Filter:** Stats tests (correlation, chi-square).
- Wrapper: Model-based selection (RFE).
- **Embedded:** During training (Lasso, Trees).
- PCA: Dimensionality reduction.

46. What is R² and Adjusted R²?

- R²: % variance explained.
- Adjusted R²: Penalizes irrelevant features decreases if useless features added.

47. Difference between feature selection and extraction?

• **Selection:** Choose best original features.

• Extraction: Create new features from old ones (e.g., PCA).

48. A/B Testing vs Model Deployment

- A/B Testing: Compare versions to choose best.
- **Deployment:** Put trained model into production for real-time use.

49. Purpose of Test Set vs Validation Set

- Validation: For tuning during training.
- Test: For final evaluation on unseen data.
- **Key:** Test set used only once.

50. Stages in a Machine Learning Project

- 1. Problem Definition
- 2. Data Collection
- 3. Cleaning & Preprocessing
- 4. Exploratory Data Analysis
- 5. Feature Engineering
- 6. Model Training
- 7. Hyperparameter Tuning
- 8. Evaluation
- 9. Deployment
- 10. Monitoring & Maintenance