1 Problem Definition

The primary goal of document-level dense passage retrieval is to retrieve the most relevant passage p^* from a given document D_i for a specific query q. Formally, we aim to find:

$$p^* = \arg\max_{p \in P_i} \sin(q, p)$$

where P_i is the set of all passages in D_i , and sim(q, p) is the similarity function defined between query q and passage p. The similarity function sim(q, p) between a query q and a passage p is defined as:

$$sim(q, p) = E_Q(q)^{\top} E_P(p)$$

where the query and passage encoders are denoted as E_Q and E_P respectively, where $E_Q:Q\to\mathbb{R}^d$ and $E_P:P\to\mathbb{R}^d$.

2 Training Objective

Let $D = \{D_1, D_2, \ldots, D_n\}$ be the set of training documents, where each D_i consists of passages P_i and associated queries Q_i . During training, we optimize over one document in a single batch. Given a document D, we extract a batch of n unique query-passage pairs $(q_1, p_1), \ldots, (q_n, p_n)$.

The embeddings for the queries and the passages are defined as:

$$Q_e = [E_Q(q_1), E_Q(q_2), \dots, E_Q(q_n)]$$

 $P_e = [E_P(p_1), E_P(p_2), \dots, E_P(p_n)]$

We calculate the logits as the scaled dot-product of the embeddings:

logits =
$$Q_e \cdot P_e^{\top} \times \exp(t)$$

where t is a learned temperature parameter.

The cross-entropy loss for queries loss_q and passages loss_p are computed as follows:

$$loss_q = CrossEntropy(logits, labels)$$

$$loss_p = CrossEntropy(logits^\top, labels)$$

where $labels = [1, 2, \dots, n]$.

Finally, the symmetric contrastive loss \mathcal{L} is defined as the average of loss_q and loss_p:

$$\mathcal{L} = \frac{\log_q + \log_p}{2}$$