

Description

The VSM1102N uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

• $V_{DS} = 110V, I_{D} = 2A$

$$\begin{split} R_{DS(ON)} <& 250 m\Omega \ @\ V_{GS} =& 10V \quad (Typ:218 m\Omega) \\ R_{DS(ON)} <& 310 m\Omega \ @\ V_{GS} =& 10V \quad (Typ:260 m\Omega) \end{split}$$

- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Excellent package for good heat dissipation

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

SOT-23-6

Schematic Diagram

Package Marking and Ordering Information

· · · J · · ·	J	<u> </u>			
Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM1102N-S6	VSM1102N	SOT-23-6	Ø180mm	8 mm	3000 units

Absolute Maximum Ratings (T_A=25 ℃ unless otherwise noted)

3. (A							
Parameter	Symbol	Limit	Unit				
Drain-Source Voltage	V _{DS}	110	V				
Gate-Source Voltage	Vgs	±20	V				
Drain Current-Continuous	I _D	2	Α				
Drain Current-Pulsed (Note 1)	I _{DM}	5	А				
Maximum Power Dissipation	P _D	1.25	W				
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 150	$^{\circ}$ C				

Thermal Characteristic

Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{\theta JA}$	100	°C/W

Electrical Characteristics (T_A=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	110	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =110V,V _{GS} =0V	-	-	1	μA

Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA		
On Characteristics (Note 3)								
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.2	1.8	2.5	V		
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =1A	-	218	250	mΩ		
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =4.5V, I _D =1A	-	260	310	mΩ		
Forward Transconductance	G FS	V _{DS} =5V,I _D =1A	1	-	-	S		
Dynamic Characteristics (Note4)								
Input Capacitance	C _{lss}	\/ F0\/\/ 0\/	-	190	-	PF		
Output Capacitance	Coss	- V _{DS} =50V,V _{GS} =0V, - F=1.0MHz	-	22	-	PF		
Reverse Transfer Capacitance	C _{rss}	F-1.0IVII 12	-	13	-	PF		
Switching Characteristics (Note 4)								
Turn-on Delay Time	t _{d(on)}		-	6	-	nS		
Turn-on Rise Time	t _r	V_{DD} =50V, I_{D} =1.3A, R_{L} =39 Ω	-	10	-	nS		
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10V, R_{G} =1 Ω	-	10	-	nS		
Turn-Off Fall Time	t _f		-	6	-	nS		
Total Gate Charge	Qg	V -F0V/I -4.2A	-	5.2		nC		
Gate-Source Charge	Q _{gs}	$V_{DS}=50V,I_{D}=1.3A,$ $V_{GS}=10V$	-	0.75	-	nC		
Gate-Drain Charge	Q_{gd}	V _{GS} -10V	-	1.4	-	nC		
Drain-Source Diode Characteristics								
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =1.3A	-	-	1.2	V		
Diode Forward Current (Note 2)	Is		-	-	2	Α		

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- **4.** Guaranteed by design, not subject to production

Test Circuit

1) E_{AS} test circuit

2) Gate charge test circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 BV_{DSS} vs Junction Temperature

Figure 8 Safe Operation Area

Figure 10 Power De-ratin

Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance