Note per il corso di *Geometria e algebra lineare* 2024-25 LT in Informatica

8 Autovalori e autovettori

8.1

Il problema dell'esistenza di una matrice diagonale associata a una funzione lineare, utilissima nelle applicazioni, è legato a due concetti importanti: quelli di autovalore e di autovettore.

Definizione 1. Sia $A \in M_n(\mathbb{K})$ una matrice quadrata. Uno scalare $\lambda \in \mathbb{K}$ si dice *autovalore* di A se esiste un vettore non nullo $x \in \mathbb{K}^n$ (detto *autovettore*) tale che $Ax = \lambda x$.

Se $T:V\to V$ è una funzione lineare (endomorfismo) su uno spazio vettoriale V su \mathbb{K} , uno scalare $\lambda\in\mathbb{K}$ si dice *autovalore* di T se esiste un vettore non nullo $v\in V$ (detto *autovettore* di T) tale che $T(v)=\lambda v$.

Gli autovalori e gli autovettori si incontrano frequentemente in problemi applicativi dell'ingegneria, della fisica, ecc. Gli autovettori di A possono rappresentare, ad esempio, gli assi di simmetria di un corpo o di una curva, le direzioni di massimo (o di minimo) sforzo, le funzioni corrispondenti ai livelli di energia di un sistema fisico.

Teorema 1. La funzione lineare $T:V\to V$ ha una matrice associata diagonale se e solo se V ha una base costituita da autovettori di T.

Dimostrazione. Sia $\mathcal{B}=\{v_1,\ldots,v_n\}$ base di V con $M_{\mathcal{B}}(T)=D$ diagonale. Allora $T(v_i)$ ha coordinate $(0,0,\ldots,d_{ii},\ldots 0)$ rispetto a \mathcal{B} (con d_{ii} in posizione i-esima), e dunque $T(v_i)=d_{ii}v_i$ e v_i è un autovettore per ogni i. Viceversa, se $\mathcal{B}=\{v_1,\ldots,v_n\}$ è base di autovettori, si ha $T(v_i)=\lambda_i v_i$ per $i=1,\ldots,n$ e quindi

$$M_{\mathcal{B}}(T) = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$

Definizione 2. Diremo che T è diagonalizzabile se ha una matrice associata diagonale. Una matrice $A \in M_n(\mathbb{K})$ sarà detta diagonalizzabile se la funzione lineare T_A è diagonalizzabile.

Due matrici quadrate rappresentano lo stesso endomorfismo se e solo se sono simili (cf.§7.5). Quindi una matrice è diagonalizzabile quando è simile alla matrice diagonale contenente gli autovalori λ_i sulla diagonale principale: $D=P^{-1}AP$, con $P=M_{\mathcal{B}}^{\mathcal{E}}(id)$. L'esistenza di una matrice diagonale associata a T semplifica molto i calcoli. Ad esempio, se si vuole calcolare una potenza D^k (corrisponde a k iterazioni di T) basta elevare alla k-esima potenza gli elementi diagonali (= gli autovalori) di D:

$$D^k = \begin{bmatrix} \lambda_1^k & 0 & \cdots & 0 \\ 0 & \lambda_2^k & \cdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n^k \end{bmatrix}.$$

Se $A=M_{\mathcal{B}}(T)$, la potenza A^k è la matrice associata a $T^k=T\circ T\circ \cdots \circ T$ (k volte) rispetto a \mathcal{B} ed è simile a D^k :

$$A^k = (PDP^{-1})^k = (PDP^{-1})(PDP^{-1})\cdots(PDP^{-1}) = PD^kP^{-1}.$$

Esempi. (1) La matrice $A=\begin{bmatrix}0&2\\-1&3\end{bmatrix}$ ha $v_1=(1,1)$ e $v_2=(2,1)$ come autovettori. Infatti $Av_1=(2,2)=2v_1$ e $Av_2=(2,1)=v_2$. Dunque 2 e 1 sono autovalori di A e A è diagonalizzabile, poiché $\{v_1,v_2\}$ è una base di \mathbb{R}^2 formata da autovettori di T.

- (2) Una rotazione nel piano di un angolo θ in senso antiorario attorno all'origine ha autovettori se e solo se $\theta=k\pi$, con $k\in\mathbb{Z}$. Infatti solo in questo caso i vettori ruotati non cambiano direzione (al più il verso) e quindi sono autovettori. La rotazione è diagonalizzabile se e solo se $\theta=k\pi$.
- (3) Sia T la derivazione sullo spazio dei polinomi $\mathbb{R}_n[x]$. Esiste un polinomio $p \neq 0$ tale che $T(p) = p' = \lambda p$ se e solo se $\lambda = 0$ e $p = a_0$ è costante. Quindi 0 è l'unico autovalore e gli elementi non nulli del nucleo N(T) sono gli autovettori di T. In particolare, T non è diagonalizzabile se n > 0.
- (4) Nello spazio $C^{\infty}(\mathbb{R},\mathbb{R})$ delle funzioni reali di una variabile reale che possiedono tutte le derivate, la *derivazione* ha anche autovalori diversi da zero: ad esempio, $(e^{\lambda x})' = \lambda e^{\lambda x}$ per ogni $\lambda \in \mathbb{R}$ fissato.

Definizione 3. Sia λ un autovalore di T. Il sottospazio

$$E(\lambda) = N(T - \lambda \ id_V) = \{v \in V \mid T(v) = \lambda v\}$$

contenente il vettore nullo e gli autovettori di T con autovalore λ , è detto autospazio di T relativo all'autovalore λ . La sua dimensione (sempre maggiore o uguale a 1) è detta molteplicità geometrica di λ , denotata con $m_{qeo}(\lambda)$.

Similmente, data una matrice quadrata A, con λ autovalore di A, il sottospazio

$$E(\lambda) = N(A - \lambda I_n) = \{ x \in \mathbb{K}^n \mid Ax = \lambda x \}$$

contenente il vettore nullo e gli autovettori con autovalore λ , è detto *autospazio* di A relativo all'autovalore λ .

8.2 Polinomio caratteristico

Sia T un endomorfismo di uno spazio n-dimensionale V e sia $A=M_{\mathcal{B}}(T)$. Lo scalare λ è autovalore di T se e solo se λ è autovalore di A: se $x=T_{\mathcal{B}}(v)$,

$$T(v) = \lambda v \Leftrightarrow Ax = \lambda x.$$

Dunque λ è autovalore \Leftrightarrow il sistema lineare omogeneo $(A-\lambda I_n)x=0$ ha una soluzione non nulla $\Leftrightarrow \det(A-\lambda I_n)=0$.

Se $A'=PAP^{-1}$ è un'altra matrice associata a T , la matrice $A'-\lambda I_n$ è simile alla matrice $A-\lambda I_n$:

$$P(A - \lambda I_n)P^{-1} = PAP^{-1} - \lambda I_n = A' - \lambda I_n$$

e dunque $\det(A' - \lambda I_n) = \det(A - \lambda I_n)$.

Definizione 4. Il polinomio di grado n nella variabile λ

$$p_A(\lambda) = \det(A - \lambda I_n)$$

si dice polinomio caratteristico della matrice A e anche polinomio caratteristico $p_T(\lambda)$ dell'endomorfismo T .

Teorema 2. Uno scalare λ_0 è un autovalore di A (di T) se e solo se λ_0 è radice del polinomio caratteristico. L'autospazio $E(\lambda_0)$ ha dimensione

$$m_{qeo}(\lambda) = \dim E(\lambda_0) = n - rg(A - \lambda_0 I_n).$$

La molteplicità di λ_0 come radice di p_A o di p_T è detta molteplicità algebrica di λ_0 , denotata con $m_{alg}(\lambda_0)$. Si può vedere che è sempre maggiore o uguale alla molteplicità geometrica: $m_{alg}(\lambda_0) \geq m_{qeo}(\lambda_0)$.

Esempi. (1) La matrice reale $A=\begin{bmatrix}0&-3&-1\\6&11&3\\10&15&7\end{bmatrix}$ ha polinomio caratteristico

$$p_A(\lambda) = \det(A - \lambda I_3) = \det\begin{bmatrix} -\lambda & -3 & -1 \\ 6 & 11 - \lambda & 3 \\ 10 & 15 & 7 - \lambda \end{bmatrix} = \det\begin{bmatrix} -\lambda & 0 & -1 \\ 6 & 2 - \lambda & 3 \\ 10 & 3\lambda - 6 & 7 - \lambda \end{bmatrix}$$

$$= (2 - \lambda) \det \begin{bmatrix} -\lambda & 0 & -1 \\ 6 & 1 & 3 \\ 10 & -3 & 7 - \lambda \end{bmatrix} = (2 - \lambda)(-\lambda(16 - \lambda) + 28) = (2 - \lambda)(\lambda^2 - 16\lambda + 28)$$
$$= -(\lambda - 2)^2(\lambda - 14).$$

Dunque A ha autovalori 2 e 14, con autovettori rispettivamente

$$E(2) = N(A - 2I_3) = N \begin{bmatrix} -2 & -3 & -1 \\ 6 & 9 & 3 \\ 10 & 15 & 5 \end{bmatrix} = N \begin{bmatrix} -2 & -3 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \langle (1, 0, -2), (0, 1, -3) \rangle$$

$$\mathsf{e} \qquad E(14) = N(A - 14I_3) = N \begin{bmatrix} -14 & -3 & -1 \\ 6 & -3 & 3 \\ 10 & 15 & -7 \end{bmatrix} = N \begin{bmatrix} 1 & 0 & 1/5 \\ 0 & 1 & -3/5 \\ 0 & 0 & 0 \end{bmatrix} = \langle (1, -3, -5) \rangle \, .$$

Le molteplicità algebriche e geometriche coincidono per i due autovalori. La matrice è diagonalizzabile, poiché l'insieme di autovettori

$$\mathcal{B} = \{(1,0,-2), (0,1,-3), (1,-3,-5)\}$$

forma una base di \mathbb{R}^3 , rispetto alla quale l'endomorfismo definito da A ha matrice associata diagonale

$$D = M_{\mathcal{B}}(T_A) = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 14 \end{bmatrix}.$$

Mettendo in colonna la base di autovettori, si ottiene la matrice di transizione $P=M_{\mathcal{B}}^{\mathcal{E}}(id)=$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -3 \\ -2 & -3 & -5 \end{bmatrix} \text{, da cui si ricava la matrice } P^{-1} = M_{\mathcal{E}}^{\mathcal{B}}(id) = \frac{1}{12} \begin{bmatrix} 14 & 3 & 1 \\ -6 & 3 & -3 \\ -2 & -3 & -1 \end{bmatrix} \text{ tale che } P^{-1}AP = D \text{.}$$

(2) Sia
$$T:\mathbb{R}^3 \to \mathbb{R}^3$$
 definita da

$$T(x_1, x_2, x_3) = \left(\frac{8}{5}x_1 + \frac{3}{5}x_3, x_1 + 2x_2 + x_3, \frac{2}{5}x_1 + \frac{7}{5}x_3\right).$$

Essendo
$$M_{\mathcal{E}}(T)=B=egin{bmatrix} 8/5 & 0 & 3/5 \\ 1 & 2 & 1 \\ 2/5 & 0 & 7/5 \end{bmatrix}$$
 , T ha polinomio caratteristico

$$p_T(\lambda) = p_B(\lambda) = \det(B - \lambda I_3) = \det\begin{bmatrix} 8/5 - \lambda & 0 & 3/5 \\ 1 & 2 - \lambda & 1 \\ 2/5 & 0 & 7/5 - \lambda \end{bmatrix}$$

$$=(2-\lambda)(\lambda^2-3\lambda+2)=-(\lambda-2)^2(\lambda-1)$$
 e autospazi

$$E(1) = N(B - I_3) = N \begin{bmatrix} 3/5 & 0 & 3/5 \\ 1 & 1 & 1 \\ 2/5 & 0 & 2/5 \end{bmatrix} = N \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \langle (-1, 0, 1) \rangle$$

$$E(2) = N(B - 2I_3) = N \begin{bmatrix} -2/5 & 0 & 3/5 \\ 1 & 0 & 1 \\ -3/5 & 0 & 2/5 \end{bmatrix} = N \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} = \langle (0, 1, 0) \rangle$$

T (e la matrice B) non è diagonalizzabile, poiché si possono scegliere al più due autovettori linearmente indipendenti. In questo caso un autovalore (quello doppio $\lambda=2$) ha molteplicità geometrica minore di quella algebrica.

Attenzione: negli esempi precedenti sono state applicate le operazioni elementari sulle righe delle matrici $A-\lambda_i I_n$ per calcolare gli autovettori di A. Inoltre ogni matrice triangolare ha sulla diagonale esattamente i propri autovalori. Ma non è possibile usare lo stesso procedimento anche per calcolare gli autovalori di A, poiché la matrice EA, con E matrice elementare, ottenuta facendo sulle righe di A un'operazione elementare, ha in generale autovalori differenti da quelli di A.

8.3 Criterio di diagonalizzabilità

Proposizione 1. Sia $T:V\to V$ lineare. Se v_1,\ldots,v_k sono autovettori di T corrispondenti ad autovalori distinti $\lambda_1,\ldots,\lambda_k$, allora v_1,\ldots,v_k sono linearmente indipendenti.

Dimostrazione. Vediamo il caso k=2. Sia

$$a_1v_1 + a_2v_2 = 0.$$

Applicando T si ha anche $a_1T(v_1) + a_2T(v_2) = 0$, cioè

$$a_1\lambda_1v_1 + a_2\lambda_2v_2 = 0.$$

Sottraendo la prima uguaglianza moltiplicata per λ_1 dall'ultima, si ottiene

$$a_2(\lambda_2 - \lambda_1)v_2$$

da cui $a_2=0$ essendo $\lambda_1 \neq \lambda_2$ e $v_2 \neq 0$ poiché autovettore. Tornando alla prima equaglianza, si ha $a_1v_1=0$, da cui anche $a_1=0$ poiché $v_1\neq 0$.

In particolare, si ha le seguente condizione *sufficiente* di diagonalizzabilità: se T ha esattamente n autovalori distinti, scegliendo n autovettori relativi agli autovalori distinti si ottiene una base, e quindi T è diagonalizzabile.

Diretta conseguenza della proposizione precedente è la seguente:

Proposizione 2. L'insieme $\mathcal B$ di vettori ottenuto unendo basi degli autospazi di T è linearmente indipendente.

Dimostrazione. Se \mathcal{B} fosse linearmente dipendente, almeno uno dei vettori sarebbe combinazione lineare degli altri. Essendo gli elementi di ogni base indipendenti, nella combinazione dovrebbero comparire anche elementi di altri autospazi, e si otterrebbe allora un autovettore come combinazione lineare di autovettori appartenenti ad altri autospazi. Ma questo non può accadere per la Proposizione precedente.

Teorema 3. Siano $\lambda_1, \ldots, \lambda_h$ gli autovalori distinti di T ($h \le n = \dim V$). T è diagonalizzabile se e solo se la somma delle molteplicità geometriche è uguale alla dimensione di V:

$$\sum_{i=1}^{h} m_{geo}(\lambda_i) = \sum_{i=1}^{h} \dim E(\lambda_i) = \dim V.$$

Dimostrazione. Se T ha una matrice associata diagonale D, il polinomio caratteristico è

$$p_T(\lambda) = \det(D - \lambda I_n) = \prod_{i=1}^h (\lambda_i - \lambda)^{m_i}$$

dove m_i è la molteplicità algebrica di λ_i . In particolare, questo mostra che il polinomio caratteristico di un endomorfismo diagonalizzabile ha tutte le sue radici (gli autovalori) nel campo $\mathbb K$ degli scalari.

La matrice $D-\lambda_i I_n$ ha rango $n-m_i$ e quindi $\dim E(\lambda_i)=n-(n-m_i)=m_i$. Dunque $\sum_{i=1}^h \dim E(\lambda_i)=\operatorname{grado}(p_T)=n$.

Viceversa, se vale la condizione del teorema, l'insieme $\mathcal B$ ottenuto unendo basi degli autospazi di T contiene n elementi, che sono linearmente indipendenti per la Proposizione precedente, e quindi forma una base di autovettori di V.

Osservazione. Nel caso in cui il polinomio caratteristico di T abbia tutte le sue radici nel campo \mathbb{K} , la condizione del teorema è equivalente all'uguaglianza delle molteplicità algebriche e geometriche per ogni autovalore di T (e basta controllare l'uguaglianza per gli autovalori multipli di T):

$$m_{alg}(\lambda_i) = m_{geo}(\lambda_i) \quad \text{per ogni } i = 1, \dots, h \,.$$

Esempio. (1) La matrice di rotazione

$$R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

ha polinomio caratteristico $p_{R_{\theta}}(\lambda)=(\cos\theta-\lambda)^2+\sin^2\theta=\lambda^2-2(\cos\theta)\lambda+1$, il cui discriminante è $\Delta=4(\cos^2\theta-1)$, che è non negativo solo per $\theta=k\pi$, k intero. Dunque R_{θ} ha autovalori reali ($\lambda=1$ e $\lambda=-1$ doppi) solo quando $R_{\theta}=\pm I_2$. Negli altri casi non è diagonalizzabile su \mathbb{R} .

Sul campo complesso la matrice ha due autovalori distinti se $R_{\theta} \neq \pm I_2$ e quindi è diagonalizzabile per ogni valore di θ . Gli autovalori sono $\lambda_1 = e^{i\theta} = \cos\theta + i\sin\theta$ e

 $\lambda_2=e^{-i\theta}=\cos\theta-i\sin\theta$, con autospazi $E(e^{i\theta})=\langle(1,-i)\rangle$, $E(e^{-i\theta})=\langle(1,i)\rangle$. Dunque R_{θ} è simile a una matrice diagonale:

$$\begin{bmatrix} 1 & 1 \\ -i & i \end{bmatrix}^{-1} R_{\theta} \begin{bmatrix} 1 & 1 \\ -i & i \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & i \\ 1 & -i \end{bmatrix} R_{\theta} \begin{bmatrix} 1 & 1 \\ -i & i \end{bmatrix} = \begin{bmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{bmatrix}.$$

(2) La matrice

$$M_{\theta} = \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix}$$

ha polinomio caratteristico $p_{M_{\theta}}(\lambda) = -(\cos\theta - \lambda)(\cos\theta + \lambda) - \sin^2\theta = \lambda^2 - 1 = (\lambda - 1)(\lambda + 1)$. Dunque M_{θ} è sempre diagonalizzabile sui reali ed è simile alla matrice diagonale $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$. Quale trasformazione geometrica del piano rappresenta? (cf. gli esempi in §7.4)

Gli autovettori sono i multipli di

$$v_1 = (-\sin\theta, \cos\theta - 1)$$
 e $v_2 = (-\sin\theta, \cos\theta + 1)$,

che sono una coppia di vettori ortogonali di \mathbb{R}^2 . Si osservi che la matrice M_θ è simmetrica, diversamente da R_θ . Vedremo più avanti che ogni matrice reale simmetrica ha proprietà analoghe a quelle di M_θ .

Osservazione. Se 0 è autovalore di una funzione lineare T, allora l'autospazio E(0) coincide con il nucleo di T. In particolare, 0 è autovalore se e solo se T non è iniettiva.