Глава 2. Нечебышевские Е-оптимальные планы

Настоящая глава посвящена аналитическому нахождению и исследованию E-оптимальных планов для достаточно больших симметричных отрезков. В этом случае, как было показано в предыдущей главе, существует единственный E-оптимальный план и этот план не совпадает с Чебышевским. Изучение планов в этом случае основано на применении функционального подхода. Идея этого подхода заключается в исследовании точек и весов оптимальных планов как функций длины отрезка.

В $\S 1$ исследованы экстремальные свойства разложений многочленов, положительных на полуоси, на сумму квадратов двух многочленов. В $\S 2$ получено двойственное представление для экстремального многочлена.

В $\S 3$ излагается функциональный подход к решению экстремальных задач. В $\S 4$ вводится основное уравнение, определяющее точки и веса E-оптимального плана как функции длины отрезка. Предельные значения этих функций (после некоторой нормировки) найдены в $\S 5$. В $\S 6$ исследуется вид матрицы Якоби. $\S 7$ и $\S 8$ посвящены рекуррентному построению коэффициентов рядов и оценке точности разложений.

§1. Одно свойство разложений положительных многочленов

Пусть h(x) — многочлен степени 2k+1, положительный при $x \in [0,\infty)$. Известно (Карлин, Стадден, 1976, гл.4), что такой многочлен обладает единственным представлением вида

$$h(x) = \alpha \prod_{i=1}^{k} (x - u_i)^2 + \beta x \prod_{i=1}^{k} (x - v_i)^2,$$
 (1.1)

где

$$0 < u_1 < v_1 < \dots < u_k < v_k, \alpha \ge 0, \quad \beta > 0.$$
 (1.2)

Определение 1.1. Представление (1.1) будем называть *представнением Карлина-Шепли*.

Рассмотрим класс представлений вида

$$h(x) = \varphi_1^2(x) + x\varphi_2^2(x),$$
 (1.3)

где $\varphi_1(x)=p^Tf(x)=\sum_{i=0}^k p_i x^i, \quad \varphi_2(x)=q^Tf(x)=\sum_{i=0}^k q_i x^i, \quad p=(p_0,\ldots,p_k)^T, \quad q=(q_0,\ldots,q_k)^T$ – произвольные многочлены. Представление Карлина–Шепли является одним из представлений вида (1.3), так что множество этих представлений не пусто. С другой стороны, взяв многочлены $\varphi_1^2(x)$ и $\varphi_2^2(x)$, нули которых не перемежаются, получим, что многочлен $h(x)=\varphi_1^2(x)+x\varphi_2^2(x)$ обладает по крайней мере двумя представлениями вида (1.3).

Определение 1.2. Будем говорить, что представление вида (1.3) максимально, если для него достигается максимум величины $||p||^2 + ||q||^2$ в классе всех представлений такого вида.

Теорема 1.1. Для положительных на $[0,\infty)$ многочленов степени 2k+1 максимальное представление существует, единственно и совпадает с представлением Карлина-Шепли.

Доказательство теоремы основывается на лемме о многочленах с фиксированными абсолютными значениями. Пусть

 $\varphi(x) = \sum_{i=0}^k p_i x^i$ – многочлен степени k такой, что для $0 \le x_0 < x_1 < \ldots < x_k$,

$$\varphi(x_i) = (-1)^{i+l} a_i,$$

где l=0 или $1,\ a_i>0,\ i=0,1,2,\ldots,k$. Пусть $\tilde{\varphi}(x)=\sum_{i=0}^k \tilde{p}_i x^i$ – любой многочлен степени меньшей или равной k, такой что $|\tilde{\varphi}(x_i)|\leq a_i,$ $i=0,1,\ldots,k$.

Пемма 1.1. Для описанных выше многочленов имеем соотношения $|p_i| \geq |\tilde{p}_i|, \;\; p_i(-1)^{i+l} > 0, \; l=0 \;\;$ или $1, \;\; i=0,1,\dots,k.$

Доказательство леммы. Запишем многочлен $ilde{arphi}(x)$ в виде

$$\tilde{\varphi}(x) = \sum_{i=0}^{k} \tilde{p}_{i} x^{i} = \det \begin{pmatrix} 0 & 1 & x & \dots & x^{k} \\ \tilde{a}_{0} & 1 & x_{0} & \dots & x_{0}^{k} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \tilde{a}_{k} & 1 & x_{k} & \dots & x_{k}^{k} \end{pmatrix} / \prod_{j < i} (x_{i} - x_{j}),$$

где $\tilde{a}_i = -\tilde{\varphi}(x_i)$. Действительно, рассмотрим $\tilde{\varphi}(x_i)$.

$$\det\begin{pmatrix} 0 & 1 & x_i & \dots & x_i^k \\ \tilde{a}_0 & 1 & x_0 & \dots & x_0^k \\ \vdots & \vdots & 1 & x_i & \dots & x_k^k \\ \tilde{a}_k & 1 & x_k & \dots & x_k^k \end{pmatrix} = \det\begin{pmatrix} 0 & 1 & x_i & \dots & x_i^k \\ \tilde{a}_0 & 1 & x_0 & \dots & x_0^k \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \tilde{a}_k & 1 & x_k & \dots & x_k^k \end{pmatrix} = -\tilde{a}_i \prod_{0 \le i \le k} (x_i - x_j).$$

Заметим, что

$$\tilde{p}_i = (-1)^{i+1} \det \left(\tilde{a}_j \ 1 \ \dots \ x_j^{i-1} x_j^{i+1} \ \dots \ x_j^k \right)_{j=0}^k / \Delta =$$

$$= (-1)^{i+1} \sum_{s=0}^k \tilde{a}_s (-1)^s \Delta_{i,s} / \Delta,$$

где

$$\Delta = \prod_{\substack{0 \le j < i \le k \\ \Delta_{i,s}}} (x_i - x_j) > 0,
\Delta_{i,s} = \det (1 \dots x_j^{i-1} x_j^{i+1} \dots x_j^k)_{j \ne s, j \in 0: k}.$$

Найдем $\Delta_{i,s}$. Разложим определитель Вандермонда по элементам s-той строки. Коэффициент при $(-1)^{i+s}x_s^i$ в этом разложении и есть определитель $\Delta_{i,s}$.

$$\prod_{0 \le j < l \le k} (x_l - x_j) = \prod_{j < l, l, j \ne s} (x_l - x_j) \prod_{0 \le j < s} (x_s - x_j) \prod_{s < j \le k} (x_j - x_s) = \prod_{j < l, l, j \ne s} (x_l - x_j) (-1)^{k-s} \prod_{0 \le l \le k, l \ne s} (x_s - x_l).$$

По формулам Виета находим, что коэффициент при x_s^i в выражении $\prod_{0 \le l \le k, l \ne s} (x_s - x_l)$ равен $(-1)^{k-i} \sum_{j_t \ne s} x_{j_1} \dots x_{j_{k-i}}$ (суммируются всевозможные произведения k-i различных x_j , где $j \ne s$). Таким образом,

$$\Delta_{i,s} = (-1)^{i+s} \prod_{j < l, l, j \neq s} (x_l - x_j)(-1)^{k-s} (-1)^{k-i} \sum_{j_t \neq s} x_{j_1} \dots x_{j_{k-i}},$$

отсюда

$$\Delta_{i,s} = \prod_{j < l, l, j \neq s} (x_l - x_j) \sum_{j_l \neq s} x_{j_1} \dots x_{j_{k-i}} > 0.$$

Поскольку $\tilde{a}_i = -\tilde{\varphi}(x_i)$, то для коэффициентов p_i многочлена $\varphi(x)$ имеем, аналогично:

$$p_i = (-1)^i \sum_{s=0}^k (-1)^s \varphi(x_s) \Delta_{i,s} / \Delta,$$

Так как $\varphi(x_s)=(-1)^{s+l}a_s, l=0$ или 1, то $p_i=(-1)^i\sum_{s=0}^k (-1)^la_s\Delta_{i,s}/\Delta$. Поскольку $a_s>0,\ s=0,1,\ldots,k,$ то $(-1)^{i+l}p_i>0$ (l=0 или 1) для $i = 0, 1, \dots, k$.

Так как $|\tilde{\varphi}(x_i)| \leq a_i, i = 0, 1, \dots, k$, то

$$|\tilde{p}_i| = \sum_{s=0}^k |\tilde{\varphi}(x_s)| \Delta_{i,s}/\Delta \le \sum_{s=0}^k a_s \Delta_{i,s}/\Delta = |p_i|, \quad i = 0, 1, \dots, k.$$

Лемма доказана. 🗆

Пусть $h(x) = \tilde{\varphi}_1^2(x) + x\tilde{\varphi}_2^2(x) = \varphi_1^2(x) + x\varphi_2^2(x)$, где φ_1 , φ_2 образуют представление Карлина-Шепли,

$$\tilde{\varphi}_1(x) = \sum \tilde{p}_i x^i, \quad \tilde{\varphi}_2(x) = \sum \tilde{q}_i x^i, \quad \varphi_1(x) = \sum p_i x^i, \quad \varphi_2(x) = \sum q_i x^i.$$

 $ilde{arphi}_1(x)=\sum ilde{p}_i x^i, \ \ ilde{arphi}_2(x)=\sum ilde{q}_i x^i, \ \ arphi_1(x)=\sum p_i x^i, \ \ arphi_2(x)=\sum q_i x^i.$ Точки v_i — нули многочлена $arphi_2$, поэтому $h(v_i)= ilde{arphi}_1^2(v_i)+v_i ilde{arphi}_2^2(v_i)=$ $|\varphi_1^2(v_i)|$, тогда $|\tilde{\varphi}_1(v_i)| \le a_i = |\varphi_1(v_i)|$, $i = 0, 1, \dots, k$, $v_0 = 0$.

По лемме 1.1 $|p_i| \ge |\tilde{p}_i|$, $i = 0, 1, \dots, k$.

У многочленов $\varphi_2(x)$ и $\tilde{\varphi}_2(x)$ совпадают старшие коэффициенты и,

Так как $\varphi_1(u_i) = 0$, то $h(u_i) = \tilde{\varphi}_1^2(u_i) + u_i \tilde{\varphi}_2^2(u_i) = u_i \varphi_2^2(u_i)$, тогда

$$|\tilde{\varphi}_2(u_i)| \leq |\varphi_2(u_i)|, \quad i = 1, \dots, k.$$

Рассмотрим многочлены

$$\varphi(x) = x^k \varphi_2(1/x), \quad \tilde{\varphi}(x) = x^k \tilde{\varphi}_2(1/x),$$

для них справедливы предположения леммы 1.1 при $x_0=u_0=0$ (поскольку совпадают старшие коэффициенты многочленов $\varphi_2(x)$ и $\tilde{\varphi}_2(x)$), $x_i = 1/u_i, i = 1, ..., k$. Действительно,

$$|\tilde{\varphi}(\frac{1}{u_i})| = |\frac{1}{u_i^k} \tilde{\varphi}_2(u_i)| \le |\frac{1}{u_i^k} \varphi_2(u_i)| = |\varphi(\frac{1}{u_i})|.$$

Значит, коэффициенты при x^i у $\varphi_2(x)$ больше или равны коэффициентам при x^i у $\tilde{\varphi}_2(x)$ по абсолютной величине. Отсюда $\sum p_i^2 + \sum q_i^2 \geq$ $\sum \tilde{p}_i^2 + \sum \tilde{q}_i^2$. Аналогичный результат может быть получен для многочленов четной степени. 🗆

§2. Симметричный отрезок: двойственное представление для экстремального многочлена и уравнение границы

Пусть $-r_1 = r_2 = r, \chi = [-r, r], f_i(x) = x^{i-1}, i = 1, 2, \dots, m$. В этом случае модель (2.1) главы 1 будем называть полиномиальной регрессией на симметричном отрезке.

Обозначим

$$c_j(\xi) = \sum_{i=1}^n x_i^j \mu_i, j = 0, 1, \dots, 2(m-1), \bar{c}_j(\xi) = c_{2j}(\xi), j = 0, 1, \dots, m-1.$$

Пусть m > 2 (случай m = 2 полностью исследован в §2 главы 1). В настоящем параграфе мы изучим E-оптимальные планы для случая r> r^* , где r^* — минимальный положительный корень уравнения границы.

Лемма 2.1. При m > 2 точки и веса E-оптимальных планов при m=2k, 2k+1 удовлетворяют соотношениям:

$$-x_i^* = x_{m+1-i}^*, \quad \mu_i^* = \mu_{m+1-i}^* \quad i = 1, 2, \dots, k,$$

 $a\ npu\ m=2k+1\ u$ меем $x_{k+1}^*=0$. Доказательство. Пусть $\xi^*=\{x_1^*,\dots,x_m^*;\ \mu_1^*,\dots,\mu_m^*\}$ – Е-оптимальный план. Пусть $m=2k\ ($ случай $m=2k+1\$ аналогичен). Рассмотрим план

$$\tilde{\xi} = \{\tilde{x}_1, \dots, \tilde{x}_m; \quad \tilde{\mu}_1, \dots, \tilde{\mu}_m\}: \quad \tilde{x}_i = -x_{2k+1-i}^*, \quad \tilde{\mu}_i = \mu_{2k+1-i}^*.$$

Для плана $\xi = (\xi^* + \tilde{\xi})/2$ матрица $M(\xi)$ после перестановки строк и столбцов, такой, что сначала идут четные строки и четные столбцы, принимает вид

$$\left(\begin{array}{cc} M_1 & \mathbb{O} \\ \mathbb{O} & M_2 \end{array}\right).$$

Так как минимальное собственное число матрицы M может быть представлено как

$$\min_{||p||=1} p^T M p,$$

то имеем

$$\lambda_{\min} \left(\begin{array}{cc} M_1 & \mathbb{O} \\ \mathbb{O} & M_2 \end{array} \right) \ge \lambda_{\min} \left(\begin{array}{cc} M_1 & C \\ C^T & M_2 \end{array} \right)$$

при $M_1, M_2 \ge 0$ и любой матрице C. Действительно, допустим обратное. Возьмем $p^* = (p_1^*, p_2^*)$ такое, что достигается минимум: $p^{*T}Mp^* = \min_{||p||=1} p^TMp$. Тогда

$$p^{*T}Mp^* = \min_{||p||=1} p^T Mp$$
. Тогда

$$p^{*T} \begin{pmatrix} M_1 & \mathbb{O} \\ \mathbb{O} & M_2 \end{pmatrix} p^* = p_1^{*T} M_1 p_1^* + p_2^{*T} M_2 p_2^* <$$

$$< p^{*T} \begin{pmatrix} M_1 & C \\ C^T & M_2 \end{pmatrix} p^* = p_1^{*T} M_1 p_1^* + p_1^{*T} C p_2^* + p_2^{*T} C^T p_1^* + p_2^{*T} M_2 p_2^*.$$

Отсюда $p_1^{*T}Cp_2^*>0$. Тогда, взяв вектор $p=(p_1^*,-p_2^*)$, получим противо-

Следовательно, для плана $\xi = (\xi^* + \tilde{\xi})/2$

$$\lambda_{\min}(M(\xi)) \ge \lambda_{\min}(M(\xi^*)),$$

т. е. $\xi - E$ -оптимальный план. Если точки плана ξ^* не являются симметрично расположенными относительно нуля, то $\xi \neq \xi^*$. Так как при m>2 E-оптимальный план является единственным по теореме 3.1 главы 1, полученное противоречие доказывает лемму.

Заметим, что в силу симметричности плана имеет место равенство

$$c_{2l+1}(\xi^*) = \int x^{2l+1} \xi^*(dx) = 0, l = 0, 1, \dots, m-1.$$

Как было доказано в работе (Heiligers, 1991), для полиномиальной регрессии на симметричном отрезке $dim\mathcal{P}=2$. Случай $dim\mathcal{P}=1$ уже исследован (на произвольном отрезке, для которого $dim \mathcal{P} = 1$, Eоптимальным является чебышевский план).

Рассмотрим случай $dim \mathcal{P}=2$. Для упрощения обозначений будем рассматривать лишь случай m=2k. Случай m=2k+1 рассматривается аналогично.

Определение 2.1 Ортонормированный базис $\{p_{(i)}\}_{i=1}^s$ пространства \mathcal{P} из формулировки теоремы 1.3 главы 1 будем называть \mathscr{H} ремальным базисом.

Пусть $M=M(\xi^*)$. Так как $dim\mathcal{P}=2$, то минимальные собственные числа матриц M_1 и M_2 из доказательства леммы 2.1 совпадают и равны λ^* . Обозначим через

 $p^*=(p_0^*,\dots,p_{k-1}^*)^T$ и $q^*=(q_0^*,\dots,q_{k-1}^*)^T$ нормированные младшие собственные векторы матриц M_1 и M_2 соответственно. Очевидно, что векторы

 $ar p=(p_0^*,0,p_1^*,0,\dots,p_{k-1}^*,0)^T$ и $ar q=(0,q_0^*,0,\dots,0,q_{k-1}^*)^T$ ортогональны и образуют базис пространства $\mathcal P$. Докажем, что $\{ar p,ar q\}$ — экстремальный базис.

Пемма 2.2. Для $m=2k>2,\ \chi=[-r,r]$ если $dim\mathcal{P}=2,\ mo$ любая матрица A^* из теорем 1.2 и 1.3 главы 1 имеет вид

$$A^* = \alpha \bar{p}\bar{p}^T + (1 - \alpha)\bar{q}\bar{q}^T,$$

 $ide 0 \le \alpha < 1$ определено однозначно.

Доказательство. Рассмотрим экстремальный многочлен

$$g(x) = f^{T}(x)A^{*}f(x).$$

По лемме 3.1 главы 1 этот многочлен допускает представление

$$\begin{split} g(x) &= \lambda^* + \gamma (x^2 - r^2) \prod_{i=1}^{m-1} (x - x_i^*)^2 = \\ &= \lambda^* + \gamma (x^2 - r^2) \prod_{i=1}^{k-1} (x^2 - x_i^{*2})^2, \quad \gamma > 0 \end{split}$$

Это представление показывает, что g(x) — многочлен от x^2 степени 2k-1.

Заметим, что произвольный ортогональный базис $\mathcal P$ имеет вид

$$\{p_{(1)}, p_{(2)}\}, \quad p_{(1)} = \delta \bar{p} + \sqrt{1 - \delta^2} \bar{q}, \quad p_{(2)} = \sqrt{1 - \delta^2} \bar{p} - \delta \bar{q}$$

для некоторого $\delta,\ 0\leq\delta\leq 1$. Пусть $\{p_{(1)},p_{(2)}\}$ является экстремальным базисом. Тогда любая матрица A^* имеет вид

$$A^* = \alpha p_{(1)} p_{(1)}^T + (1 - \alpha) p_{(2)} p_{(2)}^T, \quad 0 \le \alpha \le 1.$$

Так как $g(x) = f^T(x)A^*f(x)$ — многочлен от x^2 , то

$$\alpha \sum_{l=0}^{j} p_{(1)_{l}} p_{(1)_{j-l}} + (1-\alpha) \sum_{l=0}^{j} p_{(2)_{l}} p_{(2)_{j-l}} = 0, \quad j = 1, 3, \dots, 2k-1.$$

Тогда

$$0 = \alpha \sum_{l=0}^{j} \left(\delta \bar{p}_{l} + \sqrt{1 - \delta^{2}} \bar{q}_{l} \right) \left(\delta \bar{p}_{j-l} + \sqrt{1 - \delta^{2}} \bar{q}_{j-l} \right) +$$

$$+ (1 - \alpha) \sum_{l=0}^{j} \left(\sqrt{1 - \delta^{2}} \bar{p}_{l} - \delta \bar{q}_{l} \right) \left(\sqrt{1 - \delta^{2}} \bar{p}_{j-l} - \delta \bar{q}_{j-l} \right) =$$

$$= \alpha \sum_{l=0}^{j} \left(\delta^{2} \bar{p}_{l} \bar{p}_{j-l} + \delta \sqrt{1 - \delta^{2}} (\bar{p}_{l} \bar{q}_{j-l} + \bar{q}_{l} \bar{p}_{j-l}) + (1 - \delta^{2}) \bar{q}_{l} \bar{q}_{j-l} \right) +$$

$$+ (1 - \alpha) \sum_{l=0}^{j} \left((1 - \delta^{2}) \bar{p}_{l} \bar{p}_{j-l} - \delta \sqrt{1 - \delta^{2}} (\bar{p}_{l} \bar{q}_{j-l} + \bar{q}_{l} \bar{p}_{j-l}) + \delta^{2} \bar{q}_{l} \bar{q}_{j-l} \right)$$

Поскольку j — нечетное (j = 2i + 1), то

$$\sum_{l=0}^{J} \bar{p}_{l} \bar{p}_{j-l} = 0, \quad \sum_{l=0}^{J} \bar{q}_{l} \bar{q}_{j-l} = 0,$$

$$\sum_{l=0}^{j} \bar{p}_{l} \bar{q}_{j-l} = \sum_{l=0}^{i} p_{l}^{*} q_{i-l}^{*}, \quad \sum_{l=0}^{j} \bar{q}_{l} \bar{p}_{j-l} = \sum_{l=0}^{i} q_{l}^{*} p_{i-l}^{*}.$$

Следовательно,

$$\delta\sqrt{1-\delta^2}(1-2\alpha)\sum_{l=0}^i p_l^*q_{i-l}^* = 0, \quad i = 0, 1, \dots, k-1.$$

Отсюда, если $\alpha \neq 1/2$, то $\delta = 1$ или 0. Заметим, что при $\delta = 0,1$ мы имеем $\{p_{(1)},p_{(2)}\}=\{\bar{p},\bar{q}\}.$

Если $\alpha = 1/2$, то

$$A^* = \frac{1}{2}p_{(1)}p_{(1)}^T + \frac{1}{2}p_{(2)}p_{(2)}^T = \frac{1}{2}\bar{p}\bar{p}^T + \frac{1}{2}\bar{q}\bar{q}^T.$$

Заметим, что $\alpha \neq 1$, так как $(\bar{p}^T f(x))^2$ — многочлен степени 2k-2 от x^2 , а $(\bar{q}^T f(x))^2$ — многочлен степени 2k-1 от x^2 .

Заметим также, что $A^*\bar{p}=\alpha\bar{p}$ и, следовательно, α определено однозначно. \square

В §5 будет показано, что многочлены $\bar{p}^T f(x)$ и $\bar{q}^T f(x)$ не имеют общих корней и $\alpha>0$ (таким образом, экстремальный многочлен положителен для любого x) при достаточно больших r. В работе (Heiligers, 1991) было показано, что для достаточно больших r E-оптимальные планы не являются чебышевскими. Следовательно, $dim\mathcal{P}=2$ для достаточно больших r.

Пусть r^* такое, что при $r > r^*$ экстремальный многочлен положителен для любого x (в частности, это означает, что $dim \mathcal{P} = 2$).

Представление леммы 2.2 может быть переписано в следующем виде

$$g(x) = \tilde{g}(y) = \lambda^* + \gamma(y - r^2) \prod_{i=1}^{k-1} (y - y_i^*)^2 = \varphi_1^2(y) + y\varphi_2^2(y),$$

где
$$y_i^* = x_i^{*2}, \varphi_1(y) = \sqrt{\alpha} p^{*T} \tilde{f}(y), \varphi_2(y) = \sqrt{1-\alpha} q^{*T} \tilde{f}(y), \tilde{f}(y) = (1, y, \dots, y^{k-1})^T.$$

Это представление будем называть двойственным представлением, так как оно связано с теоремой двойственности.

Лемма 2.3. Для $r > r^*$ двойственное представление совпадает с представлением Карлина-Шепли.

Доказательство. Рассмотрим все возможные представления $\tilde{g}(y)=g(x),\,y=x^2,$ следующего вида

$$\tilde{g}(y) = \varphi_1^2(y) + y\varphi_2^2(y),$$
(2.1)

где $\varphi_1(y) = p^T \tilde{f}(y)$, $\varphi_2(y) = q^T \tilde{f}(y)$ и p, q — произвольные векторы. По крайней мере одно такое представление существует — это двойственное представление. Проинтегрируем обе части равенства (2.1) по мере $\tilde{\xi}^*(dy) = \xi^*(dx)$. Тогда получим

$$\lambda^* = p^T M_1(\xi^*) p + q^T M_2(\xi^*) q,$$

где матрицы M_1 и M_2 определены в доказательстве леммы 2.1. Отсюда

$$||p||^2 + ||q||^2 \le 1$$

и равенство имеет место для $p=\alpha p^*$, $q=(1-\alpha)q^*$. Так как представление Карлина-Шепли единственное, которое максимизирует $||p||^2+||q||^2$, то оно совпадает с двойственным представлением. \square

§3. О функциональном подходе к решению экстремальных задач

Пусть функция $\psi(\theta,z)$, где $\theta\in\mathbb{R}^d$, $z\in\mathbb{R}$ задана, непрерывна по z и непрерывно дифференцируема по θ при $\theta\in\Omega,\,z\in I,\,\Omega$ — замкнутое множество в $\mathbb{R}^d,\,I$ — конечный интервал. Пусть эта функция является вещественно аналитической на множестве $Int\Omega\times IntI$ и при $z=z_0\in I,\,\theta=\theta_{(0)}\in Int\Omega$ удовлетворяет системе уравнений

$$\frac{\partial}{\partial \theta_i} \psi(\theta, z) = 0, \qquad i = 1, \dots, d.$$
 (3.1)

При некотором дополнительном условии мы можем построить векторфункцию $\theta(z)$, являющуюся решением системы (3.1) в некоторой окрестности точки z_0 .

Для любой (скалярной, векторной или матричной) функции $\varphi(z)$, вещественно аналитической в некоторой окрестности точки z_0 , обозначим

$$\varphi_{(0)} = \varphi(z_0), \quad \varphi_{(s)} = \frac{1}{s!} \varphi^{(s)}(z_0), \quad s = 1, 2, \dots,
\varphi_{\langle s \rangle}(z) = \sum_{t=0}^{s} \varphi_{(t)}(z - z_0)^t.$$

Пусть $J(\theta, z)$ — матрица Якоби для системы (3.1),

$$J(\theta, z) = \left(\frac{\partial^2}{\partial \theta_i \partial \theta_j} \psi(\theta, z)\right)_{i,j=1}^d,$$

$$\bar{J}(u) = J(\theta_0, u), \quad g(\theta, z) = \left(\frac{\partial}{\partial \theta_i} \psi(\theta, z)\right)_{i=1}^d.$$

Теорема 3.1 Предположим, что функция $\psi(\theta,z)$ обладает перечисленными свойствами и $\bar{J}_{(i)}=0,\,i=0,1,\ldots,s-1,\,\det\bar{J}_{(s)}\neq 0.$ Тогда справедливы следующие утверждения:

(I) В некоторой окрестности (U) точки z_0 существует вещественно аналитическая функция $\theta(z)$ такая, что $\theta(z_0) = \theta_{(0)}$,

$$\frac{\partial}{\partial \theta_i} \psi(\theta, z) = 0, \quad i = 1, \dots, d$$

npu любом фиксированном $z \in U$ и $\theta = \theta(z)$ и psd

$$\sum_{t=0}^{\infty} \theta_{(t)} (z - z_0)^t$$

абсолютно сходится $npu \ z \in U$.

(II) Коэффициенты $heta_{(t)}$ могут быть вычислены по формуле

$$\theta_{(t)} = -\frac{1}{(t+s)!} \bar{J}_{(s)} \Big(g \Big(\theta_{< t-1>}(z), z \Big) \Big)^{(t+s)} \Big|_{z=z_0}.$$

(III) Если при $z=z_0$ решение $\theta=\theta_{(0)}$ системы уравнений (3.1) единственно, то при любом $z\in U$ решение этой системы единственно.

Утверждения (I) и (III) теоремы вытекают из теоремы о неявном отображении [12], более подробное доказательство можно найти в работе [9]. В этой же работе дано доказательство утверждения (II).

Для применения теоремы 3.1 к исследованию оптимальных планов нужно записать необходимые условия оптимальности в виде уравнения (3.1), решить (аналитически или численно) систему уравнений (3.1) в некоторой точке z_0 и проверить условие невырожденности матрицы Якоби.

Для случая E-оптимальных планов полиномиальной регрессии на симметричном отрезке эти шаги будут описаны в следующем разделе. Основная идея состоит в том, чтобы включить в вектор θ параметры решения обеих задач — прямой и двойственной.

§4. Основное уравнение для Е-оптимальных планов

Рассмотрим полиномиальную регрессионную модель $(f_i(x) = x^{i-1}, i = 1, 2, ..., m)$ на симметричном отрезке $\mathfrak{X} = [-r, r]$.

Согласно лемме 2.1 точки и веса E-оптимального плана ξ^* симметричны, поэтому в случае m=2k обозначим план ξ^* следующим образом:

$$\xi^* = \left\{ \begin{array}{ccccc} -r & -x_{k-1}^* & \dots & -x_1^* & x_1^* & \dots & x_{k-1}^* & r \\ \mu_k^* & \mu_{k-1}^* & \dots & \mu_1^* & \mu_1^* & \dots & \mu_{k-1}^* & \mu_k^* \end{array} \right\}$$

Рассмотрим экстремальный многочлен

$$g(x) = f^{T}(x)A^{*}f(x),$$

где A^* — матрица из теоремы двойственности. Используя представление для экстремального многочлена из леммы 3.1 главы 1 и двойственное представление (см. §2 настоящей главы), в случае m=2k получаем

$$\lambda^* + \gamma (y - r^2) \prod_{i=1}^{k-1} (y - y_i^*)^2 = \alpha \left(p^{*T} \tilde{f}(y) \right)^2 + (1 - \alpha) y \left(q^{*T} \tilde{f}(y) \right)^2, \tag{4.1}$$

где $y=x^2,\ y_i^*=x_i^{*2},\ i=1,\ldots,k-1,\ \gamma>0,\ 0\leqslant\alpha<1,\ \tilde{f}(y)=(1,y,\ldots,y^{k-1})^T,\ p^*=(p_0^*,p_1^*,\ldots,p_{k-1}^*)^T$ и $q^*=(q_0^*,q_1^*,\ldots,q_{k-1}^*)^T$ нормированные младшие собственные векторы матриц $M_1(\xi^*)$ и $M_2(\xi^*)$ соответственно.

Введем новые обозначения. Для векторов $p \in \mathbb{R}^k$, $q \in \mathbb{R}^k$ определим векторы π , π_{α} и матрицу P_{π} :

векторы
$$\pi$$
, π_{α} и матрицу P_{π} :
$$\pi=(p^T,q^T)^T,\,\pi_{\alpha}=(\sqrt{\alpha}p^T,\sqrt{1-\alpha}q^T)^T\,\,\text{при }0\leq\alpha\leq1\,\,\text{и}$$

$$P_{\pi} = \begin{pmatrix} p_0 & p_1 & \dots & p_{k-1} \\ & p_0 & p_1 & \dots & p_{k-1} \\ \dots & \dots & \dots & \dots & \dots \\ & & p_0 & p_1 & \dots & p_{k-1} & 0 \\ 0 & q_0 & q_1 & \dots & q_{k-1} & \\ & 0 & q_0 & q_1 & \dots & q_{k-1} \\ \dots & \dots & \dots & \dots & \dots \\ & 0 & q_0 & q_1 & \dots & q_{k-1} \end{pmatrix}$$

(размер матрицы $2k \times 2k$, всюду где ничего не написано, подразумеваются нули).

Непосредственным вычислением получаем следующее представление

$$g(x)=\tilde{g}(y)={\pi_{\alpha^*}^*}^TP_{\pi_{\alpha^*}^*}f(y),$$
где $\pi_{\alpha}=\pi_{\alpha^*}^*=\left(\sqrt{\alpha^*}p^{*T},\sqrt{1-\alpha^*}q^{*T}\right)$ и $\alpha^*\in(0,1)$ такое, что

$$A^* = \alpha^* \bar{p}\bar{p}^T + (1 - \alpha^*)\bar{q}\bar{q}^T,$$

$$\bar{p}=(p_0^*,0,p_1^*,0,\dots,p_{k-1}^*,0)^T,\ \bar{q}=(0,q_0^*,0,\dots,0,q_{k-1}^*)^T.$$
 Поделим обе части (4.1) на $\gamma=(1-\alpha)q_{k-1}^{*2}$ и сделаем замену
$$p=\frac{\sqrt{\alpha}p^*}{\sqrt{1-\alpha}q_{k-1}^*},\ q=\frac{q^*}{q_{k-1}^*}.$$
 Получим

$$\frac{\lambda^*}{\gamma} + (y - r^2) \prod_{i=1}^{k-1} (y - y_i^*)^2 = (p_0 + p_1 y + \dots + p_{k-1} y^{k-1})^2 + y(q_0 + q_1 y + \dots + q_{k-2} y^{k-2} + y^{k-1})^2,$$
(4.2)

причем
$$\gamma=\frac{1}{\pi^T\pi},\,\pi^T=(p_0,p_1,\dots,p_{k-1},q_0,q_1,\dots,q_{k-2},1).$$
 Обозначим $z=1/r^2.$ Произведем замену переменных: $yz\to y,\,\tilde{y}_i^*=1$

 $y_i^* z, i = 2, \dots, k-1$. Умножим обе части (4.2) на z^{2k-1} , получим

$$\frac{\lambda^*}{\gamma} z^{2k-1} + (y-1)(y-y_1^*z)^2 \prod_{i=2}^{k-1} (y-\tilde{y}_i^*)^2 =
= (p_0 z^{k-1} \sqrt{z} + p_1 z^{k-2} \sqrt{z} y + \dots + p_{k-1} \sqrt{z} y^{k-1})^2 +
+ y(q_0 z^{k-1} + q_1 z^{k-2} y + \dots + y^{k-1})^2.$$
(4.3)

Обозначим
$$\tilde{p}_0^* = p_0 z^{k-1} \sqrt{z}, \ \tilde{p}_1^* = p_1 z^{k-2} \sqrt{z}, \dots, \ \tilde{p}_{k-1}^* = p_{k-1} \sqrt{z};$$
 $\tilde{q}_0^* = q_0 z^{k-1}, \ \tilde{q}_1^* = q_1 z^{k-2}, \dots, \ \tilde{q}_{k-2}^* = q_{k-2} z.$ Таким образом, $\tilde{p}^* = z^{k-1} \sqrt{z} Z^{-1} p, \ \tilde{q}^* = z^{k-1} Z^{-1} q,$ $Z = diag\{1, z, z^2, \dots, z^{k-1}\}$ и $\pi_{\alpha^*}^* \to \tilde{\pi} = (\tilde{p}^T, \ \tilde{q}^T)^T$, где

Таким образом,
$$\tilde{p}^* = z^{k-1}\sqrt{z}Z^{-1}p$$
, $\tilde{q}^* = z^{k-1}Z^{-1}q$, $Z = diag f 1$, $z^2 = z^{k-1}$ н. $z^* = \tilde{z} = (\tilde{p}^T - \tilde{q}^T)^T$ пл

$$Z=diag\{1,z,z^2,\ldots,z^{k-1}\}$$
 и $\pi^*_{lpha^*} o ilde{\pi}=(ilde{p}^T,\, ilde{q}^T)^T,$ где

$$\tilde{\pi} = (Z_1^{-1} \pi_{\alpha^*}^* / (\sqrt{1 - \alpha^*} q_{k-1}^*) \sqrt{z} z^{k-1}),$$

$$Z_1 = diag\{1, z, \dots, z^{k-1}, \sqrt{z}, \dots, \sqrt{z}z^{k-1}\}.$$

Переходя к новым обозначениям, можно переписать (4.3) в следующем виде $(\tilde{g}(y)z^{2k-1}/\gamma = \tilde{\pi}^T P_{\tilde{\pi}}f(\tilde{y}))$:

$$\frac{\lambda^*}{\gamma} z^{2k-1} + (y-1)(y-y_1^*z)^2 \prod_{i=2}^{k-1} (y-\tilde{y}_i^*)^2 =
= (\tilde{p}_0 + \tilde{p}_1 y + \dots + \tilde{p}_{k-1} y^{k-1})^2 + y(\tilde{q}_0 + \tilde{q}_1 y + \dots + y^{k-1})^2.$$
(4.4)

Заметим, что решения прямой и двойственной задач выражаются через величины

$$y_1^* = x_1^{*2}, \dots, y_{k-1}^* = x_{k-1}^{*2},$$

$$\nu_2^* = 2\mu_2^*, \dots, \nu_k^* = 2\mu_k^*,$$

$$p_0^*, \dots, p_{k-1}^*, q_0^*, \dots, q_{k-2}^*.$$

Обозначим $\tilde{\nu}_i^* = \nu_i^*/z$. Нам удобнее будет искать нормированные величины (в случае m=2k не нормируется только величина y_1^*). Поэтому введем следующее определение:

Определение 4.1. Вектор

$$\tilde{\theta}^* = \tilde{\theta}^*(z) = (\tilde{p}_0^*, \dots, \tilde{p}_{k-1}^*, \tilde{q}_0^*, \dots, \tilde{q}_{k-2}^*, \tilde{\nu}_2^*, \dots, \tilde{\nu}_k^*, y_1^*, \tilde{y}_2^*, \dots, \tilde{y}_{k-1}^*)^T$$

назовем вектором параметров решения пары двойственных задач в случае симметричных промежутков.

Подставляя в (4.4) вместо y значения $y_1^*z, \tilde{y}_2^*, \dots, \tilde{y}_{k-1}^*, 1$ и суммируя с соответствующими весами, получим формулу:

$$\lambda(\tilde{\theta}^*, z) = \frac{\tilde{\pi}^T P_{\tilde{\pi}} \tilde{c}}{\tilde{\pi}^T Z_{\cdot} \tilde{\pi}},$$

где
$$Z_* = Z_1^2$$
, $\tilde{c} = \sum_{i=2}^k (f(\tilde{y}_i) - f(y_1 z)) \tilde{\nu}_i z + f(y_1 z)$.
Очевидно, $\lambda(z, \tilde{\theta}^*) = \lambda^*(z) = \lambda_{min}(M(\xi^*))$.

Пусть $\tilde{\theta} = (\tilde{p}_0, \dots, \tilde{p}_{k-1}, \tilde{q}_0, \dots, \tilde{q}_{k-2}, \tilde{\nu}_2, \dots, \tilde{\nu}_k, y_1, \tilde{y}_2, \dots, \tilde{y}_{k-1})^T$ — произвольный вектор, и пусть выполняются соотношения:

$$\tilde{q}_{k-1} = 1, \quad \tilde{y}_k = 1.$$

Рассмотрим производные $\lambda(\tilde{\theta},z)=rac{\tilde{\pi}P_{\tilde{\pi}}\tilde{c}}{\tilde{\pi}^TZ_*\tilde{\pi}}$ по $\tilde{\theta}_i,\,i=1,\ldots,4k-1$:

$$\lambda_{\tilde{\pi}}' = \frac{2(P_{\tilde{\pi}}\tilde{c})^T - 2\tilde{\pi}^T Z_* \lambda}{\tilde{\pi}^T Z_* \tilde{\pi}},$$

$$\lambda'_{\tilde{\nu}_i} = \frac{\tilde{\pi}^T P_{\tilde{\pi}}(f(\tilde{y}_i) - f(y_1 z))z}{\tilde{\pi}^T Z_* \tilde{\pi}}, \quad \lambda'_{\tilde{\nu}_k} = \frac{\tilde{\pi}^T P_{\tilde{\pi}}(f(1) - f(y_1 z))z}{\tilde{\pi}^T Z_* \tilde{\pi}},$$

$$\lambda'_{y_1} = \frac{\tilde{\pi}^T P_{\tilde{\pi}} f'(y_1 z) (1 + \tilde{\nu}_1 z) z}{\tilde{\pi}^T Z_* \tilde{\pi}}, \quad \lambda'_{\tilde{y}_i} = \frac{\tilde{\pi}^T P_{\tilde{\pi}} f'(\tilde{y}_i) \tilde{\nu}_i z}{\tilde{\pi}^T Z_* \tilde{\pi}}, \quad i = 2, \dots, k - 1,$$

$$\tilde{\nu}_1 = -\sum_{i=2}^k \tilde{\nu}_i.$$

Лемма 4.1. При m>2 для любого $z,\,0< z< z^*,$ где $z^*=1/r^{*2}$ и r^*- минимальный положительный корень уравнения границы, вектор $\tilde{\theta}^*(z)$ является решением уравнения

$$\frac{\partial \lambda(\tilde{\theta}, z)}{\partial \tilde{\theta}} = 0, \tag{4.5}$$

причем $\lambda(\tilde{\theta}^*(z),z)=\lambda^*(z).$

Доказательство. Заметим, что равенство

$$\lambda_{\tilde{\pi}}'(\tilde{\theta}^*, z) = 0 \tag{4.6}$$

эквивалентно равенству $P_{\tilde{\pi}}\tilde{c}=\lambda Z_*\tilde{\pi}$, где $\lambda=\lambda(\tilde{\theta}^*,z)$, а последнее эквивалентно $M(\tilde{\xi})\tilde{\pi}=\lambda Z_*\tilde{\pi}$, где

$$Z_* = diag \left\{ 1, z^2, \dots, z^{2k-2}, z, z^3, \dots, z^{2k-1} \right\},$$

$$\tilde{\xi} = \tilde{\xi}^*(z) = \left\{ \begin{array}{cccc} -1 & -x_{k-1}^* \sqrt{z} & \dots & -x_1^* \sqrt{z} & x_1^* \sqrt{z} & \dots & x_{k-1}^* \sqrt{z} & 1 \\ \mu_k^* & \mu_{k-1}^* & \dots & \mu_1^* & \mu_1^* & \dots & \mu_{k-1}^* & \mu_k^* \end{array} \right\}$$

$$M(\tilde{\xi}) = \begin{pmatrix} M_1(\tilde{\xi}) & O \\ O & M_2(\tilde{\xi}) \end{pmatrix},$$

$$M_1(\tilde{\xi}) = \sum_{i=1}^k \tilde{f}(\tilde{y}_i^*) \tilde{f}^T(\tilde{y}_i^*) \nu_i^*, \quad M_2(\tilde{\xi}) = \sum_{i=1}^k \tilde{y}_i^* \tilde{f}(\tilde{y}_i^*) \tilde{f}^T(\tilde{y}_i^*) \nu_i^*.$$

Поскольку $\tilde{f}(\tilde{y}) = Z\tilde{f}(y), Z = diag\{1, z, z^2, \dots, z^{k-1}\}$ то

$$M_1(\tilde{\xi}) = \sum_{i=1}^k Z\tilde{f}(y_i^*)\tilde{f}^T(y_i^*)Z\nu_i^* = ZM_1(\xi^*)Z,$$

$$M_2(\tilde{\xi}) = \sum_{i=1}^k z y_i^* Z \tilde{f}(y_i^*) \tilde{f}^T(y_i^*) Z \nu_i^* = z Z M_2(\xi^*) Z.$$

 $M_1(\tilde{\xi})\tilde{p}^*=\lambda Z^2\tilde{p}^*$ эквивалентно $ZM_1(\xi^*)Z\tilde{p}^*=\lambda Z^2\tilde{p}^*,$ а $\tilde{p}^*=z^{k-1}\sqrt{z}Z^{-1}p$ по определению, т.е. $M_1(\xi^*)p=\lambda p$.

 $M_2(\tilde{\xi})\tilde{q}^*=\lambda zZ^2\tilde{q}^*$ эквивалентно $zZM_2(\xi^*)Z\tilde{q}^*=\lambda zZ^2\tilde{q}^*,$ а $\tilde{q}^*=z^{k-1}Z^{-1}q$ по определению, т.е. $M_2(\xi^*)q=\lambda q$.

Таким образом, пришли к утверждению $M_1(\xi^*)p = \lambda p$, $M_2(\xi^*)q = \lambda q$, т. е. к тому, что собственное число $\lambda = \lambda(\tilde{\theta}^*, z)$ имеет кратность 2. Таким образом, (4.6) есть необходимое условие E-оптимальности плана ξ^* .

Далее, равенства

$$\lambda'_{u_1}(\tilde{\theta}^*, z) = 0, \quad \lambda'_{\tilde{u}_i}(\tilde{\theta}^*, z) = 0, \quad \lambda'_{\tilde{\nu}_i}(\tilde{\theta}^*, z) = 0 \tag{4.7}$$

эквивалентны равенствам

$$\tilde{\pi}^T P_{\tilde{\pi}} f'(y_i) = 0, \quad \tilde{\pi}^T P_{\tilde{\pi}}(y_k) = \tilde{\pi}^T P_{\tilde{\pi}} f(y_i),$$

где $\tilde{\pi} = \pi_{\alpha^*}^*$, $y_i = y_i^*$, $i = 1, 2, \ldots, k-1$. Так как ${\pi_{\alpha^*}^*}^T P_{\pi_{\alpha^*}^*} f(y)$ — экстремальный многочлен, то условия (4.7) являются необходимыми условиями E-оптимальности плана ξ^* .

Равенство $\lambda(\tilde{\theta}^*, z) = \lambda^*$ получено выше. \square

Уравнение

$$\frac{\partial \lambda(\tilde{\theta}, z)}{\partial \tilde{\theta}} = 0$$

будем называть основным уравнением.

Будем изучать вектор $\tilde{\theta}^* = \tilde{\theta}^*(z)$.

Утверждение 4.1. При любом $z \in (0, 1/r^{*2})$ вектор $\tilde{\theta}^*(z)$ определен единственным образом.

Доказательство. По теореме 3.1 векторы $(\tilde{y}_1^*,\dots,\tilde{y}_{k-1}^*)^T$ и $(\nu_2^*,\dots,\nu_k^*)^T$ определены единственным образом. Согласно лемме 2.3 вектор $\pi_{\alpha^*}^*$ определен единственным образом. Следовательно, и вектор $\tilde{\pi}$ определен единственным образом. \square

Случай нечетных m рассматривается аналогично.

В случае m = 2k + 1 план ξ^* имеет следующий вид:

где
$$1 - \sum_{i=1}^{k} 2\mu_i^* > 0.$$

Используя два представления для экстремального многочлена, получим:

$$\frac{\lambda^*}{\gamma} + y(y - \frac{1}{z}) \prod_{i=1}^{k-1} (y - y_i^*)^2 = (p_0 + p_1 y + \dots + p_{k-1} y^{k-1} + y^k)^2 + y(q_0 + q_1 y + \dots + q_{k-1} y^{k-1})^2, \quad y_i^* = x_i^{*2},$$

причем
$$\gamma = \frac{1}{\pi^T \pi}$$
, $\pi^T = (p_0, p_1, \dots, p_{k-1}, 1, q_0, q_1, \dots, q_{k-1})$.

Заметим, что
$$\tilde{g}(y) = \frac{\pi^T P_{\pi} f(y)}{\pi^T \pi}$$
, где

(размер матрицы $(2k+1) \times (2k+1)$).

Проделав преобразования, аналогичные (4.2)—(4.4), и осуществив замену $\tilde{\pi}=z^kZ_1^{-1}\pi$, $Z_1=diag\left\{1,z,\ldots,z^k,\sqrt{z},\ldots,z^{k-1}\sqrt{z}\right\}$, получим

$$\lambda(\tilde{\theta}^*, z) = \frac{\tilde{\pi}^T P_{\tilde{\pi}} \tilde{c}}{\tilde{\pi}^T Z_* \tilde{\pi}},$$

где
$$Z_*=Z_1^2,\; \tilde{c}=\sum\limits_{i=1}^k(f(\tilde{y}_i)-f(0))\tilde{\nu}_iz+f(0),\; \tilde{\nu}_i^*=2\mu_i^*/z,\; \tilde{y}_i^*=y_i^*z,\; i=1,\ldots,k-1.$$

Вектор параметров решения пары двойственных задач в случае нечетных m имеет вид:

$$\tilde{\theta}^* = \tilde{\theta}^*(z) = (\tilde{p}_0^*, \dots, \tilde{p}_{k-1}^*, \tilde{q}_0^*, \dots, \tilde{q}_{k-1}^*, \tilde{\nu}_1^*, \dots, \tilde{\nu}_k^*, \tilde{y}_1^*, \tilde{y}_2^*, \dots, \tilde{y}_{k-1}^*)^T.$$

Лемма 4.1 и утверждение 4.1 для нечетных m доказываются аналогично

§5. Предельный план

Пусть $T_n(x)$ — многочлен Чебышева первого рода, а $U_n(x)$ — многочлен Чебышева второго рода степени n, и пусть $\tilde{y}^* = (\tilde{y}_1^*, \dots, \tilde{y}_k^*)^T$, $\tilde{y}_k^* \equiv 1$, $\tilde{p}^* = (\tilde{p}_0^*, \dots, \tilde{p}_{k-1}^*)^T$, $\tilde{q}^* = (\tilde{q}_0^*, \dots, \tilde{q}_{k-2}^*, 1)^T$.

Теорема 5.1

При m=2k существуют пределы векторов $\tilde{p}^*(z),~\tilde{q}^*(z),~\tilde{y}^*(z)$ при $z\to +0,$ причем

$$(1, x^2, \dots, x^{2k-2}) \tilde{p}_{(0)}^* = |\tilde{p}_{0_{(0)}}| T_{2(k-1)}(x),$$

$$(x, x^3, \dots, x^{2k-1}) \tilde{q}_{(0)}^* = |\tilde{p}_{0_{(0)}}| (x^2 - 1) U_{2k-3}(x),$$

$$\tilde{y}_{i_{(0)}}^* = t_{k+i-1}^2, \quad i = 1, 2, \dots, k,$$

где $0=t_k < t_{k+1} < \cdots < t_{2k-1} = 1$ — неотрицательные экстремальные точки многочлена $T_{2(k-1)}(t)$ на отрезке [0,1].

Доказательство.

Пусть m = 2k > 2, $z = 1/r^2$,

$$\xi^*(z) = \left\{ \begin{array}{ccccc} -r & -x_{k-1}^* & \dots & -x_1^* & x_1^* & \dots & x_{k-1}^* & r \\ \mu_k^* & \mu_{k-1}^* & \dots & \mu_1^* & \mu_1^* & \dots & \mu_{k-1}^* & \mu_k^* \end{array} \right\}$$

где $x_i^* = x_i^*(z)$, $\nu_i^* = \nu_i^*(z)$, $i = 1, 2, \dots, k$, $x_k^* = r = 1/\sqrt{z}$, является единственным E-оптимальным планом для полиномиальной регрессии на отрезке [-r, r].

Рассмотрим равенство

$$\lambda + \gamma (y - \frac{1}{z}) \prod_{i=1}^{k-1} (y - y_i)^2 = \frac{(p^T \tilde{f}(y))^2 + y(q^T \tilde{f}(y))^2}{p^T p + q^T q},$$
 (5.1)

где $\tilde{f}(y) = (1, y, \dots, y^{k-1})^T$, $0 < y_1 < \dots < y_{k-1} < 1/z$, $\lambda \leqslant 1$.

По лемме 3.1 главы 1 и лемме 2.1 левая часть этого равенства при $\lambda=\lambda^*(z),\,y_i=x_i^{*2},\,i=1,2,\ldots,k-1$ и $\gamma>0$ совпадает с $\tilde{g}(y)=g(\sqrt{y}),$ где g(x)— экстремальный многочлен (см. определение 2.1). Поскольку $\lambda^*(z)<1$, то по лемме 3.1 главы 1 и лемме 2.2 правая часть равенства (5.1) при

$$\frac{p}{\sqrt{p^T p + q^T q}} = \sqrt{\alpha} p^*, \qquad \frac{q}{\sqrt{p^T p + q^T q}} = \sqrt{1 - \alpha} q^*,$$

 $(p^*, q^* - \text{нормированные младшие собственные векторы матриц } M_1(\xi^*)$ и $M_2(\xi^*)$ соответственно) также равна $\tilde{g}(y)$.

Таким образом, равенство (5.1) имеет место при $\lambda = \lambda^*(z)$, $y_i = x_i^{*2}$, $i = 1, 2, \dots, k-1$,

$$\frac{p}{\sqrt{p^T p + q^T q}} = \sqrt{\alpha} p^*, \qquad \frac{q}{\sqrt{p^T p + q^T q}} = \sqrt{1 - \alpha} q^*,$$

для некоторого $\gamma > 0$. Приравнивая коэффициенты при y^{2k-1} в обеих частях этого равенства, мы получаем соотношение

$$\gamma = \frac{q_{k-1}^2}{p^T p + q^T q}.$$

Умножим обе части (5.1) на z^{2k-1}/γ и сделаем замену $yz \to y, \ \tilde{y}_i = y_i z, \quad \tilde{p}_i = \frac{p_i}{q_{k-1}} z^{k-1-i} \sqrt{z}, \quad \tilde{q}_i = \frac{q_i}{q_{k-1}} z^{k-1-i}.$ Таким образом,

$$\tilde{p} = z^{k-1} \sqrt{z} Z^{-1} \hat{p}, \quad \tilde{q} = z^{k-1} Z^{-1} \hat{q},$$
(5.2)

где
$$Z=diag\{1,z,z^2,\dots,z^{k-1}\}$$
 и $\hat{p}=rac{p_i}{q_{k-1}},\,\hat{q}=rac{q_i}{q_{k-1}}.$

Переходя к новым обозначениям, можно переписать (5.1) в следующем виде:

$$\frac{\lambda}{\gamma} z^{2k-1} + (y-1) \prod_{i=1}^{k-1} (y - \tilde{y}_i)^2 =
= (\tilde{p}_0 + \tilde{p}_1 y + \dots + \tilde{p}_{k-1} y^{k-1})^2 + \tilde{y} (q_0 + \tilde{q}_1 y + \dots + y^{k-1})^2.$$
(5.3)

При этом

$$\gamma = \frac{q_{k-1}^2}{p^T p + q^T q} = \frac{1}{\hat{p}^T \hat{p} + \hat{q}^T \hat{q}} = \frac{z^{2k-1}}{\tilde{p}^T Z^2 \tilde{p} + z \tilde{q}^T Z^2 \tilde{q}} = \frac{z^{2k-1}}{\Delta}, \text{ где}$$

$$\Delta = \tilde{p}_0^2 + \tilde{p}_1^2 z^2 + \dots + \tilde{p}_{k-1}^2 z^{2k-2} + \tilde{q}_0^2 z + \tilde{q}_1^2 z^3 + \dots + z^{2k-1}.$$

Равенство (5.3) можно записать по-другому:

$$\lambda + \frac{1}{\Delta} (y - 1) \prod_{i=1}^{k-1} (y - \tilde{y}_i)^2 = \frac{1}{\Delta} \left[\left(\tilde{p}^T \tilde{f}(y) \right)^2 + y \left(\tilde{q}^T \tilde{f}(y) \right)^2 \right].$$
 (5.4)

В силу леммы 2.3 нули многочленов $\tilde{p}^T \tilde{f}(y)$ и $\tilde{q}^T \tilde{f}(y)$ принадлежат отрезку [0,1]. Так как $\tilde{q}_{k-1} \equiv 1$, то все величины $\tilde{q}_i = \tilde{q}_i(z)$ ограничены при $z \in (0,z^*)$. Кроме того, по определению, $\tilde{y}_i^* \in [0,1], \ i=1,\dots,k-1$. Приравнивая коэффициенты при y^0 и y^{2k-2} в (5.3), получим:

$$\frac{\lambda}{\gamma} z^{2k-1} - \prod_{i=1}^{k-1} \tilde{y}_i^2 = \tilde{p}_0^2, \quad \tilde{p}_{k-1}^2 = -2\tilde{q}_{k-2} - 2\sum_{i=1}^{k-1} \tilde{y}_i^* - 1,$$

откуда \tilde{p}_{k-1} , а значит, и все величины \tilde{p}_i , $i=0,\ldots,k-1$ ограничены при $z\in[0,1]$. Поэтому все величины \tilde{y}_i^* , \tilde{p}_i и \tilde{q}_i $(i=1,\ldots,k-1)$ стремятся к конечным пределам при $z\to+0$.

Теперь находим выражения для λ :

$$\lambda = \frac{\tilde{p}_0^2 + \prod\limits_{i=1}^{k-1} \tilde{y}_i^2}{\tilde{p}_0^2 + \tilde{p}_1^2 z^2 + \dots + \tilde{p}_{k-1}^2 z^{2k-2} + \tilde{q}_0^2 z + \tilde{q}_1^2 z^3 + \dots + z^{2k-1}} = \frac{\tilde{p}_0^2 + \prod\limits_{i=1}^{k-1} \tilde{y}_i^2}{\Delta}.$$

Так как $\lambda^*(z)<1$ в силу леммы 3.1 главы 1, и, значит, $\lim_{z\to 0}\lambda(z)\leq 1$, получаем, что $\tilde y_{(0)}=0$ (в силу упорядоченности $\tilde y_i$) и при $z\to 0$

$$\lambda = 1 - \frac{\tilde{q}_{0(0)}^2}{\tilde{p}_{0(0)}^2} z + o(z).$$

Приравнивая коэффициенты при y в первой степени в (5.3), получим:

$$\prod_{i=1}^{k-1} \tilde{y}_i^2 + \sum_{j=1}^{k-1} 2\tilde{y}_j \prod_{i \neq j} \tilde{y}_i^2 = \tilde{q}_0^2 + 2\tilde{p}_0 \tilde{p}_1.$$

Отсюда $\tilde{q}^2_{0_{(0)}}=-2\tilde{p}_{0_{(0)}}\tilde{p}_{1_{(0)}},$ так как $\tilde{y}^*_{1_{(0)}}=0.$ Тогда

$$\lambda_{(1)} = 2 \frac{\tilde{p}_{1_{(0)}}}{\tilde{p}_{0_{(0)}}}.$$

Обозначим

$$\lambda(z, \tilde{p}, \tilde{q}) = (\tilde{p}_0^2 + \prod_{i=1}^{k-1} \tilde{y}_i^2)/\Delta.$$

Заметим, что минимум $\lambda(z, \tilde{p}, \tilde{q})$ для всех векторов \tilde{p} и $\tilde{q} \in \mathbb{R}^k$ таких, что $\tilde{q}_{k-1} = 1$ и

$$\left(\tilde{p}^T \tilde{f}(\tilde{y}_i^*)\right)^2 + \tilde{y}_i^* \left(\tilde{q}^T \tilde{f}(\tilde{y}_i^*)\right)^2 = C, \quad i = 1, 2, \dots, k,$$
 (5.5)

где C — некоторое положительное число, равен $\lambda^*(z)$.

Более того, этот минимум достигается если и только если $\tilde{p} = \tilde{p}^*$ и $\tilde{q} = \tilde{q}^*$, где \tilde{p}^* и \tilde{q}^* удовлетворяют уравнению (5.4) с $\lambda = \lambda^*(z)$, $\tilde{y}_i = \tilde{y}_i^*$, $i = 1, 2, \ldots, k-1$.

Умножим обе части (5.5) на ν_i^*/Δ и просуммируем по $i=1,2,\ldots,k$.

Тогда, используя (5.2), получим

$$\begin{split} &\frac{C}{\Delta} = \frac{\sum\limits_{i=1}^{k} \left(\tilde{p}^T \tilde{f}(\tilde{y}_i^*)\right)^2 \nu_i^* + \sum\limits_{i=1}^{k} \tilde{y}_i^* \left(\tilde{q}^T \tilde{f}(\tilde{y}_i^*)\right)^2 \nu_i^*}{\tilde{p}^T Z^2 \tilde{p} + z \tilde{q}^T Z^2 \tilde{q}} = \\ &= \frac{z^{2k-1} \left(\hat{p}^T M_1(\xi^*) \hat{p} + \hat{q}^T M_2(\xi^*) \hat{q}\right)}{z^{2k-1} \hat{p}^T \hat{p} + z^{2k-1} \hat{q}^T \hat{q}} = \frac{p^T M_1(\xi^*) p + q^T M_2(\xi^*) q}{p^T p + q^T q} \geqslant \\ &\geqslant &\lambda_{min}(M(\xi^*(z))) = \lambda^*(z), \end{split}$$

поскольку $\tilde{f}(\tilde{y})=Z\tilde{f}(y),\ Z=diag\left\{1,z,z^2,\ldots,z^{k-1}\right\}$. Равенство имеет место если и только если $\tilde{p}=\tilde{p}^*,\ \tilde{q}=\tilde{q}^*.$

Переходя к пределу в (5.4) при $z \to 0$ мы получим, что $\tilde{p}_{(0)}$ и $\tilde{q}_{(0)}$ доставляют минимум выражения

$$\lim_{z \to 0} \frac{\lambda(z) - \lambda(0)}{z} = 2\tilde{p}_{1_{(0)}} / \tilde{p}_{0_{(0)}}$$

при условии

$$\varphi^2(y_i) + y_i \psi^2(y_i) = 1, \quad i = 1, 2, \dots, k,$$

где $y_i = \tilde{y}_{i_{(0)}}^*, \ i = 1, 2, \dots, k,$

$$\varphi(y) = \frac{\tilde{p}_{(0)}^T \tilde{f}(y)}{|\tilde{p}_{0(0)}|}, \quad \psi(y) = \frac{\tilde{q}_{(0)}^T \tilde{f}(y)}{|\tilde{p}_{0(0)}|}.$$

Перепишем условие в виде

$$|\varphi(y_i)| = \sqrt{1 - y_i \psi^2(y_i)}, \ y_i = \tilde{y}_{i_{(0)}}^*, \ i = 1, 2, \dots, k.$$
 5.6

По лемме 1.1 максимум абсолютной величины коэффициента многочлена φ при y (равного $\tilde{p}_{1_{(0)}}/\tilde{p}_{0_{(0)}})$ будет достигаться при ограничениях (5.6), если

$$\varphi(y_i) = (-1)^{i-l} \sqrt{1 - y_i \psi(y_i)}, \quad i = 1, \dots, k,$$

где

$$l=0$$
 и 1, $\psi(y_i)=0$, $y_i=\tilde{y}^*_{i_{(0)}},\ i=2,\ldots,k.$

Из последних равенств следует, что

$$\psi(y) = \frac{1}{|\tilde{p}_{0(0)}|} \prod_{i=2}^{k} (y - \tilde{y}_{i(0)}^*)$$

Введем полиномы

$$h_1(t) = \varphi(t^2), \quad h_2(t) = \frac{t}{|\tilde{p}_{0(0)}|} \prod_{i=2}^{k-1} (t^2 - \tilde{y}_{i(0)}^*).$$

Перепишем равенство (5.4) в следующем виде

$$\lambda \Delta + (y-1) \prod_{i=1}^{k-1} (y - \tilde{y}_i^*)^2 = \left(\tilde{p}^T \tilde{f}(y) \right)^2 + y \left(\tilde{q}^T \tilde{f}(y) \right)^2.$$

Поделим обе части равенства на $\tilde{p}_{0_{(0)}}^2$ и перейдем к пределу при $z \to 0$. Получим

$$1 + \frac{y^2(y-1)}{\tilde{p}_{0(0)}^2} \prod_{i=2}^{k-1} (y - \tilde{y}_{i(0)}^*)^2 = \varphi^2(y) + y\psi^2(y).$$
 (5.7)

Заметим, что

$$y\psi^2(y) - \frac{y^2(y-1)}{\tilde{p}_{0(0)}^2} \prod_{i=2}^{k-1} (y-\tilde{y}_{i(0)}^*)^2 = \frac{y(1-y)}{\tilde{p}_{0(0)}^2} \prod_{i=2}^{k-1} (y-\tilde{y}_{i(0)}^*)^2 = (1-y)h_2^2(\sqrt{y}).$$

Тогда в равенстве 5.7 получим $1 = \varphi^2(y) + (1-y)h_2^2(\sqrt{y})$, или

$$1 = h_1^2(t) + (1 - t^2)h_2^2(t).$$

Это тождество выполнимо на множестве многочленов тогда и только тогда, когда $h_1(t)$ и $h_2(t)$ — многочлены Чебышева первого и второго родов, соответственно, с точностью до знака (Карлин, Стадден, 1976). Таким образом, учитывая степени $h_1(t)$ и $h_2(t)$, получим

$$h_1(t) = T_{2k-2}(t), h_2(t) = U_{2k-3}(t).$$

Отсюда

$$(1,x^2,\dots,x^{2k-2})\tilde{p}_{(0)}=constT_{2(k-1)}(x)$$
, где $const=|\tilde{p}_{0_{(0)}}|.$

Неотрицательные точки альтернанса $T_{2k-2}(t)$: $0 = t_k < t_{k+1} < \cdots < t_{2k-1} = 1$. Поскольку $h_1(t) \leqslant 1$, то имеем:

$$\tilde{y}_{1_{(0)}}^* = t_k^2 = 0, \quad \tilde{y}_{i_{(0)}}^* = t_{k+i-1}^2, \quad i = 2, \dots, k-1, \quad \tilde{y}_k^* = t_{2k-1}^2 = 1.$$

Поскольку

$$\sqrt{y}\psi(y)\frac{\sqrt{y}(y-1)}{|\tilde{p}_{0(0)}|}\prod_{i=2}^{k-1}(y-\tilde{y}_{i(0)}^*)(y-1)U_{2k-3}(\sqrt{y}),$$

то получаем утверждение:

$$\tilde{q}_{0(0)}x + \tilde{q}_{1(0)}x^3 + \dots + x^{2k-1} = |\tilde{p}_{0(0)}|(x^2 - 1)U_{2k-3}(x).$$

Теорема доказана. 🗆

Найдем теперь значение $y_{1_{(0)}}^*$ и предельные значения весов $\tilde{\nu}_i^*$. Так как $\nu_i^*(z)=2\mu_i^*(z)>0$ и $\sum_{i=1}^k\nu_i^*(z)=1$, то существуют пределы $\nu_{i_{(0)}}^*=\lim_{z\to 0}\nu_i^*(z),\ i=1,2,\ldots,k$. Найдем эти пределы. Пусть

$$\tilde{\xi} = \tilde{\xi}^*(z) = \left\{ \begin{array}{cccc} -1 & -x_{k-1}^* \sqrt{z} & \dots & -x_1^* \sqrt{z} & x_1^* \sqrt{z} & \dots & x_{k-1}^* \sqrt{z} & 1 \\ \mu_k^* & \mu_{k-1}^* & \dots & \mu_1^* & \mu_1^* & \dots & \mu_{k-1}^* & \mu_k^* \end{array} \right\}$$

Так как $\lambda_{\tilde{\pi}}'=0,$ то $M\tilde{\pi}=\lambda Z_*\tilde{\pi},$ где

$$Z_* = diag \left\{ 1, z^2, \dots, z^{2k-2}, z, z^3, \dots, z^{2k-1} \right\},$$

$$M = \begin{pmatrix} M_1(\tilde{\xi}) & O \\ O & M_2(\tilde{\xi}) \end{pmatrix},$$

$$M_1(\tilde{\xi}) = \sum_{i=1}^k \tilde{f}(\tilde{y}_i^*) \tilde{f}^T(\tilde{y}_i^*) \nu_i^*,$$

$$M_2(\tilde{\xi}) = \sum_{i=1}^k \hat{f}(\tilde{y}_i^*) \hat{f}^T(\tilde{y}_i^*) \nu_i^*,$$

$$\hat{f}(y) = (\sqrt{y}, \dots, y^{k-1}\sqrt{y})^T.$$

Рассмотрим равенство:

$$M_1(\tilde{\xi})\tilde{p} = \lambda diag\left\{1, z^2, \dots, z^{2k-2}\right\}\tilde{p}.$$
 (5.8)

Перейдем в этом равенстве к пределу при $z \to +0$:

$$M_{1_{(0)}}\tilde{p}_{(0)} = \lambda_{(0)}\tilde{p}_{0_{(0)}}e_1.$$
 (5.9)

Вспомним, что

$$\frac{\tilde{p}_{(0)}^T \tilde{f}(\tilde{y}_{i_{(0)}}^*)}{|\tilde{p}_{0_{(0)}}|} = \varphi(\tilde{y}_{i_{(0)}}^*) = T_{2k-2}(\sqrt{\tilde{y}_{i_{(0)}}^*}) = (-1)^{i+k}.$$
 (5.10)

Тогда

$$\sum_{i=1}^k \tilde{f}(\tilde{y}_{i_{(0)}}^*)\tilde{f}^T(\tilde{y}_{i_{(0)}}^*)\nu_{i_{(0)}}^*\tilde{p}_{(0)} = \sum_{i=1}^k \tilde{f}(\tilde{y}_{i_{(0)}}^*)\nu_{i_{(0)}}^*(-1)^{i+k}|\tilde{p}_{(0)}| = F\nu_{(0)}^*(-1)^{k-1}|\tilde{p}_{(0)}|,$$

где
$$F = \left(\tilde{y}_{j_{(0)}}^{*i-1} (-1)^{j-1} \right)_{i,j=1}^k$$
. Равенство (5.9) примет вид:

$$F\nu_{(0)}^*(-1)^{k-1}|\tilde{p}_{(0)}|=\tilde{p}_{0_{(0)}}e_1.$$

В силу теоремы 5.1 выражение $\frac{\tilde{p}_{0_{(0)}}}{|\tilde{p}_{0_{(0)}}|}$ равно свободному члену полинома Чебышева $T_{2k-2}(x)$, т.е.

$$\frac{\tilde{p}_{0_{(0)}}}{|\tilde{p}_{0_{(0)}}|} = (-1)^{k-1}. (5.11)$$

Тогда $F\nu_{(0)}^*=e_1$, отсюда $\nu_{(0)}^*=e_1$.

Используя это предельное значение, получим

$$M_{1_{(0)}} = \tilde{f}(\tilde{y}_{1_{(0)}}^*) \tilde{f}^T(\tilde{y}_{1_{(0)}}^*) = e_1 e_1^T,$$

$$M_{2_{(0)}} = \left[\sum_{i=1}^k \hat{f}(\tilde{y}_i^*) \hat{f}^T(\tilde{y}_i^*) \nu_i^* \right]_{(0)} = \hat{f}(0) \hat{f}^T(0) = \mathbb{O}.$$

Рассмотрим теперь равенство:

$$M_2(\xi)\tilde{q} = \lambda diag\{z, z^3, \dots, z^{2k-1}\}\tilde{q}.$$

Разделим это равенство на z и перейдем к пределу при $z \to +0$, получим:

$$M_{2(1)}\tilde{q}_{(0)} + M_{2(0)}\tilde{q}_{(1)} = \lambda_{(0)}\tilde{q}_{0(0)}e_1, \quad e_1 = (1, 0, \dots, 0)^T.$$

Поскольку $M_{2_{(0)}}$ — нулевая матрица, имеем:

$$\sum_{i=2}^{k} \hat{f}(\tilde{y}_{i_{(0)}}^{*}) \hat{f}^{T}(\tilde{y}_{i_{(0)}}^{*}) \tilde{\nu}_{i_{(0)}} \tilde{q}_{(0)} + y_{1_{(0)}}^{*} e_{1} e_{1}^{T} \tilde{q}_{(0)} = \lambda_{(0)} \tilde{q}_{0_{(0)}} e_{1}$$

(здесь используется обозначение $\tilde{\nu}_1 z = -\sum_{i=2}^k \tilde{\nu}_i z.$) Согласно теореме 5.1, $\hat{f}^T(y)\tilde{q}_{(0)} = |\tilde{p}_{0_{(0)}}|(y-1)U_{2k-3}(\sqrt{y}).$ Отсюда следует, что $\hat{f}^T(\tilde{y}_k^*)\tilde{q}_{(0)} = \hat{f}^T(1)\tilde{q}_{(0)} = 0.$ По определению $U_n(x) = \frac{1}{n+1}\frac{dT_{n+1}(x)}{dx}$, а $\sqrt{\tilde{y}_{i_{(0)}}^*}$ — экстремальные точки многочлена $T_{2k-2}(t)$ на отрезке [0,1], следовательно,

$$U_{2k-3}\left(\sqrt{\tilde{y}^*_{i_{(0)}}}
ight) = 0$$
 для $1 < i < k.$

Тогда имеем:

$$y_{1_{(0)}}^* \tilde{q}_{0_{(0)}} = \lambda_{(0)} \tilde{q}_{0_{(0)}},$$

следовательно,

$$y_{1_{(0)}}^* = 1. (5.12)$$

Вернемся теперь к равенству (5.8) и разделим обе части его на z. Перейдем к пределу при $z \to +0$, получим:

$$M_{1_{(1)}}(\xi)\tilde{p}_{(0)} + e_1 e_1^T \tilde{p}_{(1)} = \lambda_{(0)}\tilde{p}_{0_{(1)}}e_1 + \lambda_{(1)}\tilde{p}_{0_{(0)}}e_1. \tag{5.13}$$

Здесь
$$M_{1_{(0)}}=e_1e_1^T,\,e_1=(1,0,\dots,0)^T,\,\lambda_{(1)}=2rac{ ilde{p}_{1_{(0)}}}{ ilde{p}_{0_{(0)}}}.$$

Так как все пределы в правой части равенства (5.13) конечны, то существуют конечные пределы $\tilde{\nu}_i^*(z)=\nu_i^*(z)/z,\,i=1,2,\ldots,k.$

Используя значения $\nu_{(0)}^*=e_1,\,y_{1_{(0)}}^*=1,$ мы находим матрицу $M_{1_{(1)}}$:

$$\begin{split} M_{1_{(1)}} &= \left[\sum_{i=1}^k \tilde{f}(\tilde{y}_i^*) \tilde{f}^T(\tilde{y}_i^*) \tilde{\nu}_i^* z + \tilde{f}(y_1^* z) \tilde{f}^T(y_1^* z) \right]_{(1)} = \\ &= \sum_{i=1}^k \tilde{f}(\tilde{y}_{i_{(0)}}^*) \tilde{f}^T(\tilde{y}_{i_{(0)}}^*) \tilde{\nu}_{i_{(0)}}^* + e_1 e_2^T + e_2 e_1^T. \end{split}$$

Теперь, используя соотношение (5.10), приведем (5.13) к виду:

$$|\tilde{p}_{0(0)}| \sum_{i=1}^{k} f_{1}(\tilde{y}_{i(0)}^{*})(-1)^{i+k} \tilde{\nu}_{i(0)} + \tilde{p}_{1(0)} e_{1} + \tilde{p}_{0(0)} e_{2} = \lambda_{(1)} \tilde{p}_{0(0)} e_{1}.$$

Так как $\lambda_{(1)}=2rac{ ilde{p}_{1_{(0)}}}{ ilde{p}_{0_{(0)}}},$ то получаем формулу:

$$\begin{pmatrix} -\sum_{i=2}^{k} \tilde{\nu}_{i_{(0)}} \\ \tilde{\nu}_{2_{(0)}} \\ \cdots \\ \tilde{\nu}_{k_{(0)}} \end{pmatrix} = (-1)^{k} F^{-1} \left(2 \frac{\tilde{p}_{1_{(0)}}}{\tilde{p}_{0_{(0)}}} \frac{\tilde{p}_{0_{(0)}}}{|\tilde{p}_{0_{(0)}}|} e_{1} - \frac{\tilde{p}_{1_{(0)}}}{|\tilde{p}_{0_{(0)}}|} e_{1} - \frac{\tilde{p}_{0_{(0)}}}{|\tilde{p}_{0_{(0)}}|} e_{2} \right),$$

$$F = \left((-1)^{j} \tilde{y}_{j_{(0)}}^{*^{i-1}} \right)_{i=1}^{k}.$$

Тогда, используя (5.11), получим

$$\begin{pmatrix} -\sum_{i=2}^{k} \tilde{\nu}_{i(0)} \\ \tilde{\nu}_{2(0)} \\ \dots \\ \tilde{\nu}_{k(0)} \end{pmatrix} = F^{-1} \left((-1)^{k} \frac{\tilde{p}_{1(0)}}{|\tilde{p}_{0(0)}|} e_{1} + e_{2} \right).$$
 (5.14)

Таким образом, доказана следующая теорема.

Теорема 5.2. При m=2k>2 вектор $\tilde{\theta}^*(z)$ при $z\to +0$ стремится к предельному вектору $\tilde{\theta}^*_{(0)}$, компоненты которого определены теоремой 5.1 и формулами (5.12) и (5.14).

Из этой теоремы мы получаем, что многочлены $\bar{p}^T f(x)$ и $\bar{q}^T f(x)$ не имеют общих корней при достаточно больших r, так как соответствующие предельные многочлены не имеют общих корней.

Случай m = 2k + 1 рассматривается аналогично.

Пусть
$$\tilde{p}^* = (\tilde{p}_0^*, \dots, \tilde{p}_{k-1}^*, 1)^T, \tilde{q}^* = (\tilde{q}_0^*, \dots, \tilde{q}_{k-1}^*, 1)^T, \tilde{\nu}^* = (\tilde{\nu}_1^*, \dots, \tilde{\nu}_k^*)^T.$$

Теорема 5.3. При m=2k+1>2 вектор $\tilde{\theta}^*(z)$ при $z\to +0$ стремится к предельному вектору $\tilde{\theta}^*_{(0)}$, компоненты которого определены формулами:

$$(1, x^2, \dots, x^{2k}) \tilde{p}_{(0)}^* = |\tilde{p}_{0(0)}|(x^2 - 1) U_{2(k-1)}(x),$$

$$(x, x^3, \dots, x^{2k-1}) \tilde{q}_{(0)}^* = |\tilde{p}_{0(0)}| T_{2k-1}(x),$$

$$\tilde{y}_{i_{(0)}}^* = t_{k+i}^2, \quad i = 1, 2, \dots, k,$$

где $0 < t_{k+1} < t_{k+2} < \dots < t_{2k} = 1$ — неотрицательные экстремальные точки многочлена $T_{2k-1}(t)$ на отрезке [0,1],

$$\tilde{\nu}_{(0)}^* = \frac{\tilde{q}_{0_{(0)}}}{|\tilde{p}_{0_{(0)}}|} F^{-1} e_1, \ \text{ide } F = \left((-1)^{j+k} \sqrt{\tilde{y}_{j_{(0)}}^*} \tilde{y}_{j_{(0)}}^{*^{i-1}} \right)_{i,j=1}^k.$$

§6. Исследование матрицы Якоби

Введем матрицу Якоби системы уравнений $\frac{\partial \lambda(\tilde{\theta},z)}{\partial \tilde{\theta}_{:}}=0$:

$$J = J(\tilde{\theta}, z) = \left(\frac{\tilde{\pi}^T Z_* \tilde{\pi}}{2} \frac{\partial^2 \lambda(\tilde{\theta}, z)}{\partial \tilde{\theta}_i \partial \tilde{\theta}_j}\right)_{i, i=1}^s,$$

где s=2m-3 —размер вектора $\tilde{\theta}$.

Используя явное представление для $\lambda(\theta,z)$ получим, что матрица J имеет вид:

$$J = \left(\begin{array}{ccc} \tilde{M} - \lambda Z_* & z P_{\tilde{\pi}} Y & z P_{\tilde{\pi}} H \\ (z P_{\tilde{\pi}} Y)^T & \mathbb{O} & \mathbb{O} \\ (z P_{\tilde{\pi}} H)^T & \mathbb{O} & z E \end{array} \right) \ .$$

В случае m=2k (s=4k-3) знак "_" у матрицы в правой части означает, что нее вычеркнуты 2k-я строка и 2k-й столбец, а матрицы $\tilde{M},\,Y,\,H$ и E имеют вид, соответственно:

$$\begin{split} \tilde{M} &= \begin{pmatrix} \tilde{c}_0 & \cdots & \tilde{c}_{k-1} & 0 & 0 & 0 \\ \tilde{c}_{k-1} & \cdots & \tilde{c}_{2k-2} & 0 & 0 & 0 \\ 0 & 0 & 0 & \tilde{c}_1 & \cdots & \tilde{c}_k \\ 0 & 0 & 0 & \tilde{c}_k & \cdots & \tilde{c}_{2k-1} \end{pmatrix}, \\ \text{где } \tilde{c} &= \sum_{i=2}^k (f(\tilde{y}_i) - f(y_1 z)) \tilde{\nu}_i z + f(y_1 z). \\ Y &= (f(\tilde{y}_i) - f(y_1 z))_{i=2}^k, \\ H &= \left(f'(y_1 z) (1 + \tilde{\nu}_1 z) \vdots (f'(\tilde{y}_i) \tilde{\nu}_i)_{i=2}^{k-1} \right), \quad \tilde{\nu}_1 = -\sum_{i=2}^k \tilde{\nu}_i, \\ E &= \frac{1}{2} diag \left\{ \tilde{\pi}^T P_{\tilde{\pi}} f''(y_1 z) z (1 + \tilde{\nu}_1 z) \vdots \left(\tilde{\pi}^T P_{\tilde{\pi}} f''(\tilde{y}_i) \tilde{\nu}_i \right)_{i=2}^{k-1} \right\}. \end{split}$$

В этом представлении опущены функциональные члены, принимающие нулевое значение, например, вида $\tilde{\pi}^T P_{\tilde{\pi}} f'(\tilde{y}_i)$.

В случае m=2k+1 (s=4k-1) знак "_ "у матрицы в правой части означает, что у нее вычеркнуты (k+1)-я строка и (k+1)-й столбец).

Напомним, что вектор $\tilde{\theta}$ в случае нечетного m имеет вид

$$\tilde{\theta} = (\tilde{p}_0, \tilde{p}_1, \dots, \tilde{p}_{k-1}, \tilde{q}_0, \tilde{q}_1, \dots, \tilde{q}_{k-1}, \tilde{\nu}_1, \dots, \tilde{\nu}_k, \tilde{y}_1, \dots, \tilde{y}_{k-1})^T.$$

Матрицы $\tilde{M},\,Y,\,H$ и E в случае нечетного m имеют вид, соответственно:

$$\tilde{M} = \begin{pmatrix} \tilde{c}_0 & \cdots & \tilde{c}_k & 0 & 0 & 0 \\ \tilde{c}_k & \cdots & \tilde{c}_{2k} & 0 & 0 & 0 \\ 0 & 0 & 0 & \tilde{c}_1 & \cdots & \tilde{c}_k \\ 0 & 0 & 0 & \tilde{c}_k & \cdots & \tilde{c}_{2k-1} \end{pmatrix},$$

$$\tilde{c} = \sum_{i=1}^k \left(f(\tilde{y}_i) - f(0) \right) \tilde{\nu}_i z + f(0), \quad \tilde{y}_k = 1,$$

$$Y = \left(f(\tilde{y}_i) - f(0) \right)_{i=1}^k, \quad H = \left(f'(\tilde{y}_i) \tilde{\nu}_i \right)_{i=1}^{k-1},$$

$$E = \frac{1}{2} diag \left\{ \left(\tilde{\pi}^T P_{\tilde{\pi}} f''(\tilde{y}_i) \tilde{\nu}_i \right)_{i=1}^{k-1} \right\}.$$

Лемма 6.1. Для m>2 $\det J(z)\neq 0$ npu $z\in (0,\hat{z}),$ где $\hat{z}-$ некоторое число, такое, что $0<\hat{z}\leqslant z^*.$

Доказательство. Пусть m=2k (случай m=2k+1 аналогичен). Пусть A – матрица J с вычеркнутыми k-м столбцом и k-й строкой, a – удаленный столбец с вычеркнутым k-м элементом, $a^*=J_{kk}$. Заметим, что матрица A имеет следующий вид:

$$A = \begin{pmatrix} \mathcal{C} & \mathcal{B} \\ \mathcal{B}^T & \mathcal{D} \end{pmatrix}, \tag{6.1}$$

где \mathcal{C} — матрица $\tilde{M}-\lambda Z_*$ с вычеркнутыми k-м и 2k-м столбцами и k-й и 2k-й строками, \mathcal{B} — матрица $\left(zP_{\tilde{\pi}}Y^{\dot{}}:zP_{\tilde{\pi}}H\right)$ с вычеркнутыми k-й и 2k-й строками, матрица \mathcal{D} имеет вид:

$$\mathcal{D} = \begin{pmatrix} \mathbb{O} & \mathbb{O} \\ \mathbb{O} & zE \end{pmatrix}.$$

Поскольку матрица $Z_1 \tilde{M} Z_1$ имеет минимальное собственное число кратности не более двух, а вектор $\tilde{\pi}^*$ не имеет нулевых элементов, то матрица $\mathcal C$ положительно определена.

Из неравенства нулю определителя Вардермонда вытекает, что матрица $\left(Y \middle: H\right)$ имеет полный ранг. Так как многочлены $\hat{p}^T f(x)$ и $\hat{q}^T f(x)$

не имеют общих множителей, а $P_{\tilde{\pi}}$ является матрицей результанта этих многочленов, то $\det P_{\tilde{\pi}} \neq 0$ (см. ван дер Варден, 1976). Следовательно, матрица \mathcal{B} — полного ранга.

Рассмотрим диагональную матрицу \mathcal{D} . Используя соотношение (4.4), запишем

$$\tilde{\pi}^T P_{\tilde{\pi}} f''(y) = \left((y - 1)(y - y_1 z)^2 \prod_{i=2}^{k-1} (y - \tilde{y}_i)^2 \right)_y''.$$

Продифференцировав, получим:

$$\tilde{\pi}^T P_{\tilde{\pi}} f''(y_1 z) = 2(y_1 z - 1) \prod_{i=2}^{k-1} (y_1 z - \tilde{y}_i)^2,$$

$$\tilde{\pi}^T P_{\tilde{\pi}} f''(\tilde{y}_s) = 2(\tilde{y}_s - 1)(\tilde{y}_s - y_1 z)^2 \prod_{i=2, i \neq s}^{k-1} (\tilde{y}_s - \tilde{y}_i)^2, \quad s = 2, \dots, k-1.$$

Так как $0 < y_1 z < \tilde{y}_2 < \dots < \tilde{y}_{k-1} < 1$, то, очевидно, все элементы диагональной матрицы E отрицательны, а, значит, $\mathcal{D} \leq \ell$.

По формуле Фробениуса (см. Федоров, 1971) имеем

$$\det A = \det \mathcal{C} \det(\mathcal{D} - \mathcal{B}^T \mathcal{C}^{-1} \mathcal{B}).$$

Так как матрица \mathcal{B} полного ранга, то $\mathcal{B}^T \mathcal{C}^{-1} \mathcal{B} > 0$.

Поскольку все элементы матрицы \mathcal{D} неположительны и $-\mathcal{D} \geq 0$, то отсюда вытекает, что

$$\det A > 0$$
,

так как размер матриц \mathcal{D} и $\mathcal{B}^T \mathcal{C}^{-1} \mathcal{B}$ равен $(2k-2) \times (2k-2)$.

Докажем теперь, что $\det J(z) \neq 0$ при $z \in (0,\hat{z})$. Умножая 2-ю, 3-ю, ..., k-ю строки матрицы J(z) на $\tilde{p}_1,\ldots,\tilde{p}_{k-1}$, соответственно и добавляя их к первой строке, умноженной на \tilde{p}_0 , а затем осуществляя ту же операцию со столбцами, получим матрицу

$$\begin{pmatrix} 0 & b_{(1)}^T & b_{(2)}^T \\ b_{(1)} & \mathcal{C} & \mathcal{B} \\ b_{(2)} & \mathcal{B}^T & \mathcal{D} \end{pmatrix},$$

где
$$b_{(1)}^T = (\underbrace{0,0\ldots,0}_{2k-2}),\, b_{(2)}^T$$
 имеет вид:

$$\left(\left(\tilde{p}^T \tilde{f}(\tilde{y}_2) \right)^2 z - \left(\tilde{p}^T \tilde{f}(y_1 z) \right)^2 z, \dots, \left(\tilde{p}^T \tilde{f}(\tilde{y}_k) \right)^2 z - \left(\tilde{p}^T \tilde{f}(y_1 z) \right)^2 z, \\
\left(\left(\tilde{p}^T \tilde{f}(y_1 z) \right)^2 \right)' z (1 + \tilde{\nu}_1 z), \dots, \left(\left(\tilde{p}^T \tilde{f}(\tilde{y}_{k-1}) \right)^2 \right)' \tilde{\nu}_{k-1} z \right).$$

Заметим, что вектор $b_{(2)} \neq 0$, так как в противном случае $\tilde{p}^T \tilde{f}(y)$ являлся бы чебышевским полиномом, что невозможно. Следовательно,

$$\det J(z) = \det A \left(-\left(b_{(1)}^T, b_{(2)}^T\right) A^{-1} \left(b_{(1)}^T, b_{(2)}^T\right)^T \right) =$$

$$= -(\det A) b_{(2)}^T (\mathcal{D} - \mathcal{B}^T \mathcal{C}^{-1} \mathcal{B})^{-1} b_{(2)}.$$

Таким образом, $\det J(z) \neq 0$. Лемма доказана. \square

Используя теорему 5.2, легко проверить, что для любого m>2 при $z\to 0$ матрица $J(\tilde{\theta}^*(z),z)$ стремится к нулевой матрице:

$$J_{(0)} = \lim_{z \to 0} J(\tilde{\theta}^*(z), z) = \mathbb{O}.$$

Рассмотрим матрицу $J_{(1)}$. Очевидно, что в точке $z_0=0$ $J_{(1)}=\lim_{z\to 0}(\frac{1}{z}J)$, так как $J_{(0)}=\mathbb{O}$.

Лемма 6.2. $\det J_{(1)} \neq 0$. Доказательство. Матрица $J_{(1)}$ имеет вид:

$$J_{(1)} = \begin{pmatrix} M_{(1)} - (\lambda Z_*)_{(1)} & P_{\tilde{\pi}_{(0)}} Y_{(0)} & P_{\tilde{\pi}_{(0)}} H_{(0)} \\ (P_{\tilde{\pi}_{(0)}} Y_{(0)})^T & \mathbb{O} & \mathbb{O} \\ (P_{\tilde{\pi}_{(0)}} H_{(0)})^T & \mathbb{O} & E_{(0)} \end{pmatrix} .$$

Пусть m=2k. Рассмотрим сначала матрицу $M_{(1)}-(\lambda Z_*)_{(1)}.$

$$(\lambda Z_*)_{(1)} = \lambda_{(1)} e_1 e_1^T + \lambda_{(0)} e_{k+1} e_{k+1}^T = -\frac{\tilde{q}_{0_{(0)}}^2}{\tilde{p}_{0_{(0)}}^2} e_1 e_1^T + e_{k+1} e_{k+1}^T.$$

$$M_{(1)}\begin{pmatrix} M_{1_{(1)}} & \mathbb{O} \\ \mathbb{O} & M_{2_{(1)}} \end{pmatrix},$$

$$M_{1_{(1)}}\begin{pmatrix} 0 & \tilde{c}_{1_{(1)}} & \cdots & \tilde{c}_{k-1_{(1)}} \\ \tilde{c}_{1_{(1)}} & \cdots & \cdots & \tilde{c}_{k_{(1)}} \\ \tilde{c}_{k-1_{(1)}} & \cdots & \cdots & \tilde{c}_{2k-2_{(1)}} \end{pmatrix},$$

$$M_{2_{(1)}}\begin{pmatrix} \tilde{c}_{1_{(1)}} & \cdots & \tilde{c}_{k_{(1)}} \\ \tilde{c}_{k_{(1)}} & \cdots & \tilde{c}_{2k-1_{(1)}} \end{pmatrix}, \quad \Gamma$$

$$\tilde{c}_{1_{(1)}} = \left(\sum_{j=2}^{k} (\tilde{y}_j - y_1 z) \tilde{\nu}_j z + y_1 z\right)_{(1)} = \sum_{j=2}^{k} \tilde{y}_{j_{(0)}} \tilde{\nu}_{j_{(0)}} + y_{1_{(0)}},$$

$$\tilde{c}_{i_{(1)}} \left(\sum_{j=2}^{k} (\tilde{y}_j^i - y_1^i z^i) \tilde{\nu}_j z + y_1^i z^i\right)_{(1)} = \sum_{j=2}^{k} \tilde{y}_{j_{(0)}}^i \tilde{\nu}_{j_{(0)}}, \quad i = 2, \dots, 2k - 1.$$

Далее, матрицы $Y_{(0)}$, $H_{(0)}$ и $E_{(0)}$ имеют вид:

$$\begin{split} Y_{(0)} &= \left(f(\tilde{y}_{2_{(0)}}) - e_1, \dots, f(1) - e_1 \right), \\ H_{(0)} &= \left(e_2, f'(\tilde{y}_{2_{(0)}}) \tilde{\nu}_{2_{(0)}}, \dots, f'(\tilde{y}_{k-1_{(0)}}) \tilde{\nu}_{k-1_{(0)}} \right) \\ E_{(0)} &= \frac{1}{2} diag \left\{ 0, \tilde{\pi}_{(0)}^T P_{\tilde{\pi}_{(0)}} f''(\tilde{y}_{i_{(0)}}) \tilde{\nu}_{i_{(0)}} \right\}_{i=2}^{k-1}. \end{split}$$

В случае m=2k+1 матрица $M_{(1)}-(\lambda Z_*)_{(1)}$ имеет вид:

$$(\lambda Z_*)_{(1)} \lambda_{(1)} e_1 e_1^T + \lambda_{(0)} e_{k+2} e_{k+2}^T - \frac{\tilde{q}_{0(0)}^2}{\tilde{p}_{0(0)}^2} e_1 e_1^T + e_{k+2} e_{k+2}^T.$$

$$M_{(1)} \begin{pmatrix} M_{1_{(1)}} & \mathbb{O} \\ \mathbb{O} & M_{2_{(1)}} \end{pmatrix},$$

$$M_{1_{(1)}} \begin{pmatrix} 0 & \tilde{c}_{1_{(1)}} & \cdots & \tilde{c}_{k_{(1)}} \\ \tilde{c}_{1_{(1)}} & \cdots & \cdots & \tilde{c}_{k+1_{(1)}} \\ \tilde{c}_{k_{(1)}} & \cdots & \cdots & \tilde{c}_{2k_{(1)}} \end{pmatrix},$$

$$\begin{split} M_{2_{(1)}} & \left(\frac{\tilde{c}_{1_{(1)}} \dots \tilde{c}_{k_{(1)}}}{\tilde{c}_{k_{(1)}} \dots \tilde{c}_{2k-1_{(1)}}} \right), \quad \Gamma \\ \tilde{c}_{i_{(1)}} &= \sum_{j=1}^{k} \tilde{y}_{j_{(0)}} \tilde{\nu}_{j_{(0)}}, \ i = 1, 2 \dots, 2k. \end{split}$$

$$\begin{aligned} Y_{(0)} &= \left(f(\tilde{y}_{1_{(0)}}) - e_1, \dots, f(1) - e_1 \right), \\ H_{(0)} &= \left(f'(\tilde{y}_{1_{(0)}}) \tilde{\nu}_{1_{(0)}}, \dots, f'(\tilde{y}_{k-1_{(0)}}) \tilde{\nu}_{k-1_{(0)}} \right) \\ E_{(0)} &= \frac{1}{2} diag \left\{ \tilde{\pi}_{(0)}^T P_{\tilde{\pi}_{(0)}} f''(\tilde{y}_{i_{(0)}}) \tilde{\nu}_{i_{(0)}} \right\}_{i=1}^{k-1}. \end{split}$$

Соотношение $\det J_{(1)} \neq 0$ можно проверить следующим образом. Матрица $P_{\tilde{\pi}_{(0)}}H_{(0)}$ имеет полный ранг в силу тех же аргументов, что и в доказательстве леммы 6.1. И так же, как в доказательстве этой леммы, мы можем проверить, что необходимое и достаточное условие равенства $\det J_{(1)}=0$ не выполняется. Лемма доказана.

Для примера найдем матрицу $J_{(1)}$ в случае m=4.

$$J_{(1)} = \begin{pmatrix} M_{(1)} - (\lambda Z_*)_{(1)} & P_{\tilde{\pi}_{(0)}}(f(1) - e_1) & P_{\tilde{\pi}_{(0)}}e_2 \\ (P_{\tilde{\pi}_{(0)}}(f(1) - e_1))^T & 0 & 0 \\ (P_{\tilde{\pi}_{(0)}}e_2)^T & 0 & 0 \end{pmatrix} .$$

Согласно теореме 5.2, имеем:

$$\tilde{p}_{0_{(0)}} = -\frac{1}{2}, \ \ \tilde{p}_{1_{(0)}} = 1, \ \ \tilde{q}_{0_{(0)}} = -1, \ \ \tilde{\nu}_{(0)} = 1, \ \ y_{1_{(0)}} = 1.$$

Тогда

$$P_{\tilde{\pi}_{(0)}} = \begin{pmatrix} -1/2 & 1 & 0 & 0 \\ 0 & -1/2 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{pmatrix},$$

$$\tilde{c}_{1_{(1)}} = \tilde{y}_2 \tilde{\nu}_{(0)} + y_{1_{(0)}} = 2, \quad \tilde{c}_{2_{(1)}} = \tilde{y}_2^2 \tilde{\nu}_{(0)} = 1.$$

Матрица $J_{(1)}$ будет иметь вид:

$$J_{(1)} = \begin{pmatrix} 4 & 2 & 0 & 1 & 1 \\ 2 & 1 & 0 & 1/2 & -1/2 \\ 0 & 0 & 1 & 0 & -1 \\ 1 & 1/2 & 0 & 0 & 0 \\ 1 & 1/2 & -1 & 0 & 0 \end{pmatrix}.$$

§7. Рекуррентное построение коэффициентов рядов

Обозначим

$$G(\tilde{\theta}, z) \frac{\tilde{\pi}^T Z_* \tilde{\pi}}{2} \frac{\partial \lambda(\tilde{\theta}, z)}{\partial \tilde{\theta}},$$

$$\theta_{< n>}(z) = \sum_{i=1}^n \tilde{\theta}_{(i)} z^i + \tilde{\theta}_{(0)}.$$

В нашем случае $G(\tilde{\theta},z)=z\tilde{G}(\tilde{\theta},z)$, причем, согласно лемме 6.2, $\det J_{(1)}\neq 0$, где $J_{(1)}\left.\frac{\partial \tilde{G}(\tilde{\theta},z)}{\partial \tilde{\theta}}\right|_{z=0}$.

Тогда по теореме 3.1 $\tilde{\theta}_{(n)}, n \ge 1$ можно вычислить по формуле:

$$\tilde{\theta}_{(n)} = -\frac{1}{(n+1)!} J_{(1)}^{-1} \left. \frac{\partial^{n+1} G(\theta_{< n-1>}(z), z)}{\partial z^{n+1}} \right|_{z=0}.$$

Эту формулу можно записать по-другому:

$$\tilde{\theta}_{(n)} = -J_{(1)}^{-1} \left[G(\theta_{< n-1>}(z), z) \right]_{(n+1)}, \tag{7.1}$$

где $[G(\tilde{\theta},z)]_{(n)}$ — коэффициент при z^n в разложении функции $G(\tilde{\theta},z)$ в ряд Тейлора.

Для примера опишем, как вычисляется вектор коэффициентов $\theta_{(1)}$ в случае m=4, k=2. По теореме 5.2 вектор $\tilde{\theta}_{(0)}$ имеет вид:

$$\tilde{\theta}_{(0)} = \left(-\frac{1}{2}, 1, -1, 1, 1\right)^T.$$

Вектор $\tilde{\theta}_{(1)}$ можно вычислить по формуле

$$\tilde{\theta}_{(1)} = -J_{(1)}^{-1} \left[G(\tilde{\theta}_{(0)}, z) \right]_{(2)}.$$

Вид матрицы $J_{(1)}$ описан в конце предыдущего параграфа. Найдем $\left[G(\tilde{\theta}_{(0)},z)\right]_{(2)}$.

$$\frac{\tilde{\pi}^T Z_* \tilde{\pi}}{2} \frac{\partial \lambda(\tilde{\theta}, z)}{\partial \tilde{\pi}} (P_{\tilde{\pi}} \tilde{c})^T - \tilde{\pi}^T Z_* \lambda,
\frac{\tilde{\pi}^T Z_* \tilde{\pi}}{2} \frac{\partial \lambda(\tilde{\theta}, z)}{\partial \tilde{\nu}_2} \frac{1}{2} \tilde{\pi}^T P_{\tilde{\pi}} (f(1) - f(y_1 z)) z,
\frac{\tilde{\pi}^T Z_* \tilde{\pi}}{2} \frac{\partial \lambda(\tilde{\theta}, z)}{\partial y_1} \frac{1}{2} \tilde{\pi}^T P_{\tilde{\pi}} f'(y_1 z) (1 - \tilde{\nu}_2 z) z.$$

 $\tilde{c} = f(1)\tilde{\nu}z + f(y_1z)(1-\tilde{\nu}z), Z_* = diag\{1, z^2, z, z^3\}, \text{ поэтому}$

$$\begin{split} & \left[\left. \left((P_{\tilde{\pi}} \tilde{c})^T - \tilde{\pi}^T Z_* \lambda \right) \right|_{\tilde{\theta} = \tilde{\theta}_{(0)}} \right]_{(2)} = \\ = & P_{\tilde{\pi}_{(0)}} \left(-y_{1_{(0)}} \tilde{\nu}_{(0)} + y_{1_{(0)}}^2 e_3 \right) - \tilde{\pi}_{(0)} diag \left\{ \left[\lambda(\tilde{\theta}_{(0)}, z) \right]_{(2)}, \lambda_{(0)}, \lambda_{(1)}, 0 \right\} = \\ = & P_{\tilde{\pi}_{(0)}} (e_3 - e_2) - \tilde{\pi}_{(0)} diag \{ 8, 1, -4, 0 \} = (3, 1/2, -2, -1)^T, \\ & \text{ так как } \lambda_{(0)} = 1, \ \lambda_{(1)} = 2 \tilde{p}_{1_{(0)}} / \tilde{p}_{0_{(0)}} = -4, \end{split}$$

$$\begin{split} \left[\lambda(\tilde{\theta}_{(0)},z)\right]_{(2)} &\left[\frac{\tilde{\pi}_{(0)}^T P_{\tilde{\pi}_{(0)}} \left(f(1)\tilde{\nu}_{(0)}z+f(y_{1_{(0)}}z)(1-\tilde{\nu}_{(0)}z)\right)}{\tilde{\pi}_{(0)}^T Z_* \tilde{\pi}_{(0)}}\right]_{(2)} = \\ &= \left[\frac{(1/4,0,-1,1)(1,2z-z^2,z+z^2-z^3,z+z^3-z^4)^T}{1/4+z+z^2+z^3}\right]_{(2)} = \\ &= \left[(1-4z^2+o(z^2))(1-4z-4z^2+16z^2+o(z^2))\right]_{(2)} = 8. \end{split}$$

Далее

$$[G_4(\tilde{\theta}_{(0)}, z)]_{(2)} = \frac{1}{2} \tilde{\pi}_{(0)}^T P_{\tilde{\pi}_{(0)}}(-y_{1_{(0)}}) e_2 \frac{1}{2} (1/4, 0, -1, 1)(-e_2) = 0,$$

$$[G_5(\tilde{\theta}_{(0)}, z)]_{(2)} = \frac{1}{2} \tilde{\pi}_{(0)}^T P_{\tilde{\pi}_{(0)}} (2y_{1_{(0)}} e_3 - \tilde{\nu}_{(0)} e_2) =$$

$$= \frac{1}{2} (1/4, 0, -1, 1)(0, -1, 2, 0)^T = -1.$$

Таким образом, $\left[G(\tilde{\theta}_{(0)},z)\right]_{(2)}=(3,1/2,-2,0,-1)^T$. Тогда

$$\tilde{\theta}_{(1)} = -\begin{pmatrix} 4 & 2 & 0 & 1 & 1 \\ 2 & 1 & 0 & 1/2 & -1/2 \\ 0 & 0 & 1 & 0 & -1 \\ 1 & 1/2 & 0 & 0 & 0 \\ 1 & 1/2 & -1 & 0 & 0 \end{pmatrix}^{-1} \begin{pmatrix} 3 \\ 1/2 \\ -2 \\ 0 \\ -1 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ 1 \\ -2 \\ -1 \end{pmatrix}.$$

§8. Оценка точности разложений

Посмотрим, насколько найденный нами план ξ близок к Е-оптимальному плану ξ^* при различном количестве используемых коэффициентов разложений.

Пусть $\xi_{(n)}$ — план, построенный на основе n коэффициентов разложений $(n=0,1,2,\dots),$ а $g_n(y)$ — многочлен, который получается из экстремального многочлена $g(y)=\frac{\tilde{\pi}^T P_{\tilde{\pi}}f(y)}{\tilde{\pi}^T Z_*\tilde{\pi}}$ заменой $\tilde{\pi}$ на его приближенное значение, вычисляемое с помощью первых n коэффициентов.

Согласно теореме двойственности,

$$\min_{A \in \mathcal{A}} \max_{x \in \chi} f^T(x) A f(x) \max_{\xi} \lambda_{\min}(M(\xi) = \lambda_{\min}(M(\xi^*)),$$

где \mathcal{A} — класс всех неотрицательно определенных матриц A, таких, что trA=1.

Следовательно, для нашего плана $\xi_{(n)}$ должно выполняться соотношение:

$$\lambda_1 = \lambda_{\min}(M(\xi_{(n)})) \le \lambda^* \le \max_{0 \le y \le 1} g_n(y) = \lambda_2.$$

Разность между $\max_{y\in[0,1]}g_n(y)$ и $\lambda_{\min}(M(\xi_{(n)}))$ и показывает точность наших вычислений.

В следующей главе приведены таблицы значений λ_1 и λ_2 при различном количестве используемых коэффициентов разложений для некоторых значений z.