Atividade 4

Convergência estocástica

Paulo Ricardo Seganfredo Campana

3 de maio de 2023

1.

Seja (A_n) sequência de eventos em $(\Omega,\mathcal{F},\mathbf{P})$. $\forall n$, defina $X_n=\mathbbm{1}_{A_n}$ (indicadora de A_n). Mostre que $\mathbf{P}(A_n)\longrightarrow 0 \Longleftrightarrow X_n\stackrel{\mathbf{P}}{\longrightarrow} 0$.

$$\begin{split} X_n & \xrightarrow{\mathbf{P}} \mathbf{0} \Longleftrightarrow \lim_{n \to \infty} \mathbf{P}(|X_n - \mathbf{0}| > \varepsilon) = \mathbf{0} \\ & \Longleftrightarrow \lim_{n \to \infty} \mathbf{P}\left(|\mathbbm{1}_{A_n}| > \varepsilon\right) = \mathbf{0} \\ & \Longleftrightarrow \lim_{n \to \infty} \mathbf{P}\left(\mathbbm{1}_{A_n} = \mathbf{1}\right) = \mathbf{0} \\ & \Longleftrightarrow \lim_{n \to \infty} \mathbf{P}(\omega \in A_n) = \mathbf{0} \\ & \Longleftrightarrow \lim_{n \to \infty} \mathbf{P}(A_n) = \mathbf{0} \\ & \Longleftrightarrow \mathbf{P}(A_n) \longrightarrow \mathbf{0} \end{split}$$

Seja (X_n) sequência de variáveis aleatórias tal que $\mathrm{E}(X_n)=\alpha$ para todo n e $\mathrm{Var}(X_n)\longrightarrow 0$ quando $n\to\infty$. Mostre que $X_n\stackrel{\mathrm{P}}{\longrightarrow}\alpha$ (Dica: use a desigualdade clássica de Chebyshev).

$$\begin{split} \mathbf{P}(|X_n - \mathbf{E}(X_n)| \geq \alpha) & \leq \frac{1}{\alpha^2} \mathrm{Var}(X_n) \\ \lim_{n \to \infty} \mathbf{P}(|X_n - \alpha| \geq \alpha) & \leq \lim_{n \to \infty} \frac{1}{\alpha^2} \mathrm{Var}(X_n) \\ \lim_{n \to \infty} \mathbf{P}(|X_n - \alpha| \geq \alpha) & \leq 0 \\ \lim_{n \to \infty} \mathbf{P}(|X_n - \alpha| \geq \varepsilon) & = 0 \\ X_n \xrightarrow{\mathbf{P}} \alpha \end{split}$$

3.

Seja X, X_1, X_2, X_3, \dots sequência de variáveis aleatórias tal que $X_n = \frac{n}{n+1}X$, para todo n.

Mostre que a sequência converge em média quadrática para zero se $\mathrm{E}(X^2)<\infty,$ mas não em caso contrário.

$$\begin{split} X_n & \stackrel{r=2}{\longrightarrow} 0 \implies \lim_{n \to \infty} \mathrm{E}(|X_n - 0|^2) = 0 \\ & \implies \lim_{n \to \infty} \mathrm{E}(X_n^2) = 0 \\ & \implies \lim_{n \to \infty} \frac{n^2}{(n+1)^2} \mathrm{E}(X^2) = 0 \\ & \implies \mathrm{E}(X^2) = 0 \end{split}$$

 $X_n \xrightarrow{r=2} 0$ apenas quando $\mathrm{E}(X^2) = 0$.

Seja (X_n) sequência de variáveis aleatórias discretas tal que

$${\rm P}(X_n=0)=1-\frac{1}{n^2},\; {\rm P}(X_n=n)=\frac{1}{n^2},\; \forall n$$

Prove que $X_n \stackrel{\text{q.c.}}{\longrightarrow} 0$.

$$\sum_{n=1}^{\infty} P(X_n = n) = \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} < \infty$$

Pelo lema de Borel-Cantelli, $\mathrm{P}(\limsup[X_n=n])=0$

$$\begin{split} \mathbf{P}(\limsup[X_n = n]) &= 0 \implies \mathbf{P}(\limsup[X_n > \varepsilon]) = 0 \\ &\implies \mathbf{P}(\limsup[|X_n - 0| > \varepsilon]) = 0 \\ &\implies X_n \stackrel{\text{q.c.}}{\longrightarrow} 0 \end{split}$$

Para $n\geq 1$, sejam $X_n\sim \mathrm{Unif}(0,1)$ variáveis aleatórias i.i.d. Defina $Y_n=X_{(1)}=\min\{X_1,X_2,\dots,X_n\}$ e $U_n=nY_n.$ Mostre que

a)

$$Y_n \stackrel{\mathrm{P}}{\longrightarrow} 0.$$

$$\begin{split} F_{Y_n}(u) & & P(Y_n > \varepsilon) & & \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) \\ &= 1 - (1 - F_{X_n}(u))^n & &= 1 - P(Y_n < \varepsilon) & &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) \\ &= 1 - F_{Y_n}(\varepsilon) & &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) \\ &= 1 - F_{Y_n}(\varepsilon) & &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) \\ &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) & &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) \\ &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) & &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) \\ &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) & &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) \\ &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) & &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) \\ &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) & &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) \\ &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) & &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) \\ &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) & &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) \\ &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) & &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) \\ &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) & &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) \\ &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) & &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) \\ &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) & &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) \\ &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) & &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) \\ &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) & &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) \\ &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) & &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) \\ &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) & &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) \\ &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) & &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) \\ &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) & &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) \\ &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) & &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) \\ &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) & &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) \\ &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) & &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) \\ &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) & &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) \\ &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) & &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) \\ &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) & &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) \\ &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) & &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) \\ &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) & &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) \\ &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) & &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) \\ &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) & &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) \\ &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) & &= \lim_{n \to \infty} P(|Y_n - 0| > \varepsilon) \\ &= \lim_{n$$

 $\lim_{n\to\infty} \mathrm{P}(|Y_n-0|>\varepsilon)=0,\, \text{portanto}\,\, Y_n \stackrel{\mathrm{P}}{\longrightarrow} 0.$

b)

 $U_n \stackrel{\mathrm{D}}{\longrightarrow} U$, sendo $U \sim \mathrm{Exp}(1)$.

$$\begin{split} F_{U_n}(u) &= \mathrm{P}(U_n \leq u) \\ &= \mathrm{P}(nY_n \leq u) \\ &= \mathrm{P}\Big(Y_n \leq \frac{u}{n}\Big) \\ &= F_{Y_n}\left(\frac{u}{n}\right) \\ &= 1 - \left(1 - \frac{u}{n}\right)^n \end{split}$$

 $\lim_{n\to\infty}F_{U_n}(u)=F_U(u), \, \text{portanto} \,\, U_n \stackrel{\mathrm{D}}{\longrightarrow} U.$

Seja (X_n) sequência de variáveis aleatórias. Mostre que

a)

Se X_n não converge em probabilidade para 0, então $\sum_{n=1}^{\infty} \mathrm{P}(|X_n|>\varepsilon)=\infty$

$$\begin{split} X_n & \xrightarrow{\mathbf{P}} \mathbf{0} \implies \lim_{n \to \infty} \mathbf{P}(|X_n| > \varepsilon) \neq \mathbf{0} \\ & \implies \sum_{n=1}^{\infty} \mathbf{P}(|X_n| > \varepsilon) \longrightarrow \infty \end{split}$$

Pois séries de sequências que não convergem para 0 divergem.

b)

Se as variáveis aleatórias são independentes e $X_n \stackrel{\text{q.c.}}{\longrightarrow} 0$, então, para todo $\varepsilon>0$, temos que $\sum_{n=1}^\infty \mathrm{P}(|X_n|>\varepsilon)<\infty$

$$\begin{split} X_n & \xrightarrow{\text{q.c.}} 0 \implies \mathrm{P}(\limsup[|X_n| > \varepsilon]) = 0 \\ & \implies \sum_{n=1}^\infty \mathrm{P}(|X_n| > \varepsilon) < \infty \end{split}$$

Pois são independentes e pelo lema de Borel-Cantelli.

Seja (X_n) sequência de variáveis aleatórias independentes tal que $X_n \sim \text{Bernoulli}(1/n), \ \forall n.$ Mostre que $X_n \stackrel{\text{P}}{\longrightarrow} 0$ porém X_n não converge para zero q.c.

$$\begin{split} \sum_{n=1}^{\infty} \mathrm{P}(|X_n| > \varepsilon) &= \sum_{n=1}^{\infty} 1 - \mathrm{P}(X_n \leq \varepsilon) \\ &= \sum_{n=1}^{\infty} 1 - F(\varepsilon) \\ &= \sum_{n=1}^{\infty} 1 - (1 - 1/n) \\ &= \sum_{n=1}^{\infty} 1/n \longrightarrow \infty \\ &\implies \mathrm{P}(\limsup[|X_n| > \varepsilon]) = 1 \neq 0 \\ &\implies X_n \overset{\mathrm{q.c.}}{\nrightarrow} 0 \end{split}$$

Pois são independentes e pelo lema de Borel-Cantelli.

9.

Seja (X_n) sequência de variáveis aleatórias, sendo $X_n \sim \mathrm{Unif}(a,b_n), \forall n.$ Se $b_n \longrightarrow a$ quando $n \to \infty,$ mostre que $X_n \stackrel{\mathrm{D}}{\longrightarrow} a.$

$$\begin{split} \lim_{n \to \infty} F_{X_n}(x) &= \lim_{n \to \infty} \begin{cases} 0, & \text{se } x < a \\ \frac{x-a}{b_n-a}, & \text{se } a \leq x < b_n \\ 1, & \text{se } x \geq b_n \end{cases} \\ &= \begin{cases} 0, & \text{se } x < a \\ 1, & \text{se } x \geq a \end{cases} \\ &= F_a(x) \\ &\Longrightarrow X_n \overset{\mathrm{D}}{\longrightarrow} a \end{split}$$

Seja (Ω, \mathcal{F}, P) , em que $\Omega = (0,1]$, $\mathcal{F} = (0,1]$ (borelianos no intervalo (0,1]) e P é a medida de Lebesgue em (0,1], ou seja, para todo $0 < a < b \le 1$, temos que P((a,b]) = b - a. Para cada n, seja $X_n = n\mathbb{1}_{(0,1/n^2]}$.

a)

Mostre que $X_n \xrightarrow{\text{q.c.}} 0$.

$$\begin{split} \mathbf{P}(\limsup[|Xn|>\varepsilon]) &= \mathbf{P}\left(\limsup[n\mathbbm{1}_{(0,1/n^2]}>\varepsilon]\right) \\ &= \mathbf{P}\left(\limsup[\mathbbm{1}_{(0,1/n^2]}>\varepsilon/n]\right) \\ &= \mathbf{P}\left(\limsup[\mathbbm{1}_{(0,1/n^2]}=1]\right) \\ &= \mathbf{P}(\limsup[0,1/n^2]) \\ &= \mathbf{P}([0,0]) \\ &= \mathbf{P}(\emptyset) \\ \mathbf{P}(\limsup[|Xn|>\varepsilon]) &= 0 \\ &\Longrightarrow X_n \overset{\text{q.c.}}{\longrightarrow} 0 \end{split}$$

b)

Para que valores de r temos que $X_n \stackrel{\mathrm{r}}{\longrightarrow} 0$?

$$\begin{split} \lim_{n \to \infty} \mathbf{E}(|X_n|^r) &= \lim_{n \to \infty} \mathbf{E}\left((n\mathbbm{1}_{(0,1/n^2]})^r\right) & X_n \overset{\mathbf{r}}{\longrightarrow} 0 \iff \lim_{n \to \infty} \mathbf{E}(|X_n|^r) = 0 \\ &= \lim_{n \to \infty} n^r \mathbf{E}\left((\mathbbm{1}_{(0,1/n^2]})^r\right) & \iff \frac{1}{r+1} \lim_{n \to \infty} n^{-r-2} = 0 \\ &= \lim_{n \to \infty} n^r \int\limits_0^{1/n^2} x^r dx & \iff r > -2 \end{split}$$

$$= \lim_{n \to \infty} n^r \frac{(1/n^2)^{r+1}}{r+1}$$

$$= \frac{1}{r+1} \lim_{n \to \infty} n^{-r-2}$$

 $X_n \stackrel{\mathbf{r}}{\longrightarrow} 0$ apenas para r > -2.

Seja (X_n) sequência de variáveis aleatórias, em que para cada $n,\ X_n$ tem função de distribuição acumulada dada por

$$F_{X_n}(x) = \left\{ \begin{array}{ll} 0, & \text{se } x < 0 \\ 1 - \left(1 - \frac{\lambda x}{n}\right)^n, & \text{se } 0 \leq x < n/\lambda \\ 1, & \text{se } x \geq n/\lambda \end{array} \right.$$

em que $\lambda>0.$ Mostre que $X_n \stackrel{\mathrm{D}}{\longrightarrow} X,$ sendo $X \sim \mathrm{Exp}(\lambda).$

$$\begin{split} \lim_{n \to \infty} F_{X_n}(x) &= \lim_{n \to \infty} \left\{ \begin{array}{l} 0, & \text{se } x < 0 \\ 1 - \left(1 - \frac{\lambda x}{n}\right)^n, & \text{se } 0 \leq x < n/\lambda \\ 1, & \text{se } x \geq n/\lambda \end{array} \right. \\ &= \left\{ \begin{array}{l} 0, & \text{se } x < 0 \\ 1 - e^{-\lambda x}, & \text{se } x \geq 0 \end{array} \right. \\ &= F_X(x) \\ &\Longrightarrow X_n \stackrel{\mathcal{D}}{\longrightarrow} X \end{split}$$

Pois $\lim_{n \to \infty} \left(1 + \frac{a}{n} \right)^{bn} = e^{ab}$.