PMIC Optimized For Multi-Core High-Performance System

AXP228

Datasheet

Revision 1.1

2013.01.06

Version history

Version	Modify Time	Author	Description
Revision 1.0	2012.12.12		Initial version
Revision 1.1	2013.01.06		A

X-Powers cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an X-Powers product. No circuit patent licenses, copyrights, or other intellectual property rights are implied. X-Powers reserves the right to make changes to the specifications and products at any time without notice.

Catalog

1	Overview	······································
2	Feature	5
3	Typical Application	
4	PIN	3
5	Pin List	4
6	Block Diagram	
7	Absolute Ratings	
8	Electrical Characteristics	
0	Electrical Characteristics Control and Operation	13
Ģ	9.1 Power On/Off & Reset	13
Ģ	9.2 Power Path Management (IPS)	15
Ģ	9.3 Adaptive Flash Charger	17
Ģ	9.3 Adaptive Flash Charger	20
ç	9.5 Default Voltage/Timing Set ting	21
Ģ	9.6 E-Gauge system	21
	9.7 Multi-Function Pin Description	
	9.8 Timer	
Ģ	9.9 TWSI and IRQ	23
10		
11	PACKAGE	45

1

Overview

Description

AXP228 is a highly integrated PMIC targeting at single cell Li-battery(Li-ion or Li-polymer)applications that require multi-channel power conversion outputs. It provides an easy and flexible power management solution for multi-core processors to meet the increasingly complex and accurate requirements on power control.

AXP228 comes with an adaptive USB3.0-compatible Flash Charger that supports up to 94% efficiency and 2.2A charge current. It also supports 21 channels power outputs (including 5-CH DCDC, with efficiency up to 95%). To ensure the security and stability of the power system, AXP228 provides multiple channels 12-bit ADC for voltage/current/temperature monitor and integrates protection circuits such as OVP,UVP,OTP,OCP. Moreover, AXP228s features a unique E-Gauge™ system, making power gauge easy and exact.

In addition, AXP228 embraces a fast interface for the system to dynaically adjust output voltage and enable work mode switch so that the battery life can be extended to the largest extent.

Besides, AXP228 features an IPS™ (Intelligent Power Select) circuit to transparently select power path among USB, external adaptor, Li-battery, and system load, making it possible for the system to work normally when only external input power but no battery is available.

Lastly, AXP228 is available in 8mm x 8mm x0.75mm 68-pin QFN package.

Applications

- Tablet, Smartphone, DVR
- UMPC-like, Student Computer

2 Feature

Features

- IPS™
- Input voltage range: 2.9V~6.3V (AMR: 0.3V~11V)
- Configurable IPS™ system
- Adaptive USB/AC adaptor voltage/current limit (4.4V/900mA/500mA)
- Flash Charger
- Integrated MOSFET charge current up to 2.2A
- Battery temperature monitor
- Fully support USB charge
- High charge accuracy, ±0.5% accuracy
- Support 4.1V/4.2V/4.22V/4.24V battery
- Automatic charge control
- Support LED to indicate charge status
- Automatic charge current adjustment based on system load
- Buck DC-DC Converters (5-CH)
- DC-DC1: 1.6V~3.4V adjustable,100mV/step, load current up to 1.4A
- DC-DC2: 0.6V~1.54V adjustable,20mV/step, load current up to 2.5A, support VRC (Voltage Ramp Control)
- DC-DC3: 0.6V-1.86V adjustable, 20mV/step, load current up to 2.5A
- DC-DC4: 0.6V-1.54V adjustable, 20mV/step, load current up to 0.6A
- DC-DC5: 1.0V-2.55V adjustable, 50mV/step, load current up to 2A

- LDOs (14-CH)
- RTC_VCC: 30mA, always alive
- ALDO1/2: low noise LDO,0.7V~3.3V adjustable, 100mV/step, load current up to 300mA
- ALDO3: low noise LDO,0.7V~3.3V adjustable,100mV/step, load current up to 200mA
- LDOIO0/LDOIO1: low noise LDO, 0.7V~3.3V adjustable, 100mV/step, load current up to100mA
- DLDO1/ ELDO1:0.7~3.3V djustable,100mV/step, load current up to 400mA
- DLDO2/ DLDO3/ ELDO2/ ELDO3: 0.7~3.3V adjustable,100mV/step,load current up to 200mA
- DLDO4: 0.7V~3.3V adjustable,100mV/step,load current up to 100mA
- DC5LDO: 0.7V~1.4V adjustable,100mV/step,load current up to 200mA
- · Switch(2-CH)
- DC1SW: internal resistance 100mOhm, power sourced from DCDC1
- CHGLED:100mA sink strength, can be used to drive the motor and charging LED
- Host Interface
- P2WI(Push-Pull Two Wire Interface) for host communication
- Configurable interrupt management
- Flexible pin function configuration: 2 GPIOs can be set as IO or LDO, etc
- Integrated timer

3

Typical Application

4 PIN

Figure 4-1. AXP228 PIN

5

Pin List

Num	Name	Туре	Condition	Description		
1	ELDOIN	PI		ELDO Input source		
2	ELDO2	0		Output Pin of ELDO2		
3	ELDO3	0		Output Pin of ELDO3		
4	DC5LDO	0		Output Pin of DC5LDO		
5	DCDC5	1		DC-DC5 feedback pin		
6	PGND5	G		NMOS Ground for DCDC5		
7,8	LX5	Ю		Inductor Pin for DCDC5		
9	VIN5	PI		DCDC5 input source		
10	DC5SET	I		Setting DCDC5 Output Voltage		
				VBUS to IPSOUT Selection		
			Input	GND: IPSOUT selects VBUS		
11	N_VBUSEN	Ю		High: IPSOUT does not select VBUS		
''	11_1000211	10		VBUS to IPSOUT Selection		
			Output	IPSOUT selects VBUS : GND		
				IPSOUT does not select VBUS: High		
12	PWRON		X	Power On-Off key input, Internal 100k pull high		
12	1 WIXOIN	'		to APS		
13	VIN1	PI	A	DCDC1 Input Source		
14	LX1	Ю		Inductor Pin for DCDC1		
15	PGND1	G		NMOS GND for DCDC1		
16	DLDO3	0		Output Pin of DLDO3		
17	DLDO2	0		Output Pin of DLDO2		
18	DLDOIN	PI		DLDO Input Source		
19	DLDO1	0		Output Pin of DLDO1		
20	DLDO4	0		Output Pin of DLDO4		
21	DCDC1	Ι		DC-DC1 feedback pin		
22	DC1SW	0		DCDC1 Switch Output Pin		
23	VIN2	PI		DCDC2 Input Source		
24,25	LX2	0		Inductor Pin for DCDC2		
26, 27	PGND2	G		NMOS Ground for DCDC2		
28	DCDC2	I		DC-DC2 Feedback Pin		
29	IRQ/WAKEUP	Ю		IRQ Output or Wakeup		
30	TS	1		Battery Temperature Sensor Input or an External ADC Input		
31	GPIO1/PWREN	IO	REG	GPIO1 or Low noise LDO		
	, ,	_	92H[2:0]	PWREN function set by internal program		

Num	Name	Туре	Condition	Description
				memory
32	ALDO1	0		Output Pin of ALDO1
33	DLDOIN	PI		ALDO Input Source
34	ALDO2	0		Output Pin of ALDO2
35	VREF	0		Internal reference voltage
36	ALDO3	0		Output pin of ALDO3
07	00100	10	REG	GPIO0
37	GPIO0	Ю	90H[2:0]	Low noise LDO
38	DCDC3	I		DC-DC3 feedback pin
39	VIN3	PI		DCDC3 Input Source
40, 41	LX3	Ю		Inductor Pin for DCDC3
42	PGND2	G		NMOS Ground for DCDC2
43	PWROK	0		Power Good Indication Output
4.4	0014			Clock pin for serial interface. Normally, it
44	SCK	ı		connects a 2.2K resistor to 3.3V I/O power
45	SDA	Ю		Data pin for serial interface. Normally, it
45		10		connects a 2.2K resistor to 3.3V I/O power
46	VCC_RTC	0		Output Pin of VCC_RTC
47	VINT	PO		Internal logic power, 1.8V
48	VBUS	PI		VBUS input
49	BATSENSE	I		PWM Charger Current Sense Resistance Positive Input
50	LOADOENOE			PWM Charger Current Sense Resistance
50	LOADSENSE	1		Negative Input
51	N_BATDRV	0		BAT to PS extern PMOS driver
52	CHGLED	0		charger status indication
53,54	IPSOUT	PO		System power source
55, 56	ACIN	PI		Adapter input
57	CHSENSEP	I		PWM Charger Current Limit Sense Resistance Positive Input
58	CHSENSEN	I		PWM Charger Current Limit Sense Resistance Negative Input
59	PGND_CHG	G		NMOS Ground for PWM Charger
60,61	LX_CHG	Ю		Inductor Pin for PWM Charger
62,63	VIN_CHG	I		Charger Input source
64	VIN4	I		DCDC4 input source
65	LX4	Ю		Inductor Pin for DCDC4
66	PGND4	G		NMOS Ground for DCDC4
67	DCDC4	1		Feed back to DCDC4
68	ELDO1	0		Output Pin of ELDO1
69	EP	G		Exposed Pad, need to be connected to system
				ground

Block Diagram

Figure 6-1. Block Diagram

X-Powers

7

Absolute Maximun Ratings

SYMBOL	DESCRIPTION	VALUE	UNITS
ACIN	Input Voltage	-0.3 ~ 11	V
VBUS	Input Voltage	-0.3 ~ 11	V
T_J	Operating Temperature Range	-40 ~ 130	$^{\circ}$ C
Ts	Storage Temperature Range	-40 ~150	$^{\circ}$ C
T _{LEAD}	Maximum Soldering Temperature (at leads, 10sec)	300	$^{\circ}$ C
V_{ESD}	Maximum ESD stress voltage, Human Body Model	>4000	V
P _D	Internal Power Dissipation	2700	mW

Figure 0-1. Absolute ratings

8

Electrical Characteristics

 V_{IN} =5V, BAT=3.8V, T_A = 25°C

Vout IPS Output Voltage PIN to PIN, ACIN to I20 mΩ	SYMBOL	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNITS
IouT	ACIN						
Loading BAT	V _{IN}	ACIN Input Voltage		3.8		6.3	V
Vout IPS Output Voltage PIN to PIN, ACIN to PSOUT	I _{OUT}		500mV Voltage Drop		3500		mA
Name	V _{UVLO}	ACIN Under Voltage Lockout			3.8	1	V
VBUS VBUS Input Voltage 3.8 6.3 V	V _{OUT}	IPS Output Voltage		2.9		5.0	V
Vin	R _{ACIN}	Internal Ideal Resistance)	120	mΩ
Iout	VBUS		L			l .	I
Loading BAT	V _{IN}	VBUS Input Voltage		3.8		6.3	V
Vout IPS Output Voltage PIN to PIN, VBUS to Internal Ideal Resistance PIN to PIN, VBUS to IPSOUT 160 mΩ	I _{OUT}		X		1500	900	mA
R_VBUS Internal Ideal Resistance PIN to PIN, VBUS to IPSOUT 160 mΩ	V_{UVLO}	VBUS Under Voltage Lockout	7		3.8		V
PSOUT Battery Charger VTRGT BAT Charge Target Voltage -0.5% 4.2 +0.5% V V V V V V V V V	V _{OUT}	IPS Output Voltage		2.9		5.0	V
V _{TRGT} BAT Charge Target Voltage -0.5% 4.2 +0.5% V I _{CHRG} Charge Current 1200 2200 mA I _{TRKL} Trickle Charge Current 10% I _{CHRG MA} V _{TRKL} Trickle Charge Threshold Voltage -100 V Voltage Recharge Battery Threshold Voltage Relative to V _{TARGET} -100 mV Voltage Relative to V _{TARGET} -100 Min Termination Time Trickle Mode 50 Min Termination Time CC Mode 480 Min Termination Time Termination Time CV Mode 10% 15% I _{CHRG MA} NTC Cold Temperature Fault Threshold Voltage Discharge 0 3.264 V V _{TH} Hot Temperature Fault Threshold Voltage Discharge 0 0.397 0.282 √ Discharge Discharge 0 0.397 0.282 √ Discharge Discharge 0 0.397 0.282 √ V _{TH} Hot Temperature Fault Threshold Voltage Discharge Discharge Discharge 0 0.397 0.282 √ V _{TR} Discharge Discharge	R _{VBUS}	Internal Ideal Resistance				160	mΩ
I_{CHRG}	Battery C	harger		•		•	
Trickle Charge Current	V_{TRGT}	BAT Charge Target Voltage	Y	-0.5%	4.2	+0.5%	V
V _{TRKL} Trickle Charge Threshold Voltage 3.0 V Δ V _{RECHG} Recharge Battery Threshold Voltage Relative to V _{TARGET} -100 mV T _{TIMER1} Charger Safety Timer Trickle Mode 50 Min T _{TIMER2} Charger Safety Timer Trickle Mode 480 Min I _{END} End of Charge Indication CV Mode 10% 15% I _{CHRG} MA NTC V _{TL} Cold Temperature Fault Threshold Voltage Charge 0 2.112 (3.226) 3.264 V V _{TH} Hot Temperature Fault Threshold Voltage Charge Discharge 0 0.397 (0.397) (0.282) 3.264 V	I _{CHRG}	Charge Current			1200	2200	mA
Voltage A V _{RECHG} Recharge Battery Threshold Voltage Relative to V _{TARGET} -100 mV T _{TIMER1} Charger Safety Timer Termination Time Trickle Mode 50 Min T _{TIMER2} Charger Safety Timer Termination Time CC Mode 480 Min I _{END} End of Charge Indication CV Mode Current Ratio CV Mode 10% 15% I _{CHRG} MA NTC V _{TL} Cold Temperature Fault Threshold Voltage Discharge 0 2.112 / 3.264 3.264 V V _{TH} Hot Temperature Fault Threshold Voltage Charge Discharge 0 0.397 / 0.282 3.264 V	I _{TRKL}	Trickle Charge Current			10%		I _{CHRG} mA
Voltage Relative to V _{TARGET} 50 Min T _{TIMER1} Charger Safety Timer Termination Time CC Mode 480 Min T _{TIMER2} Charger Safety Timer Termination Time CC Mode 10% 15% I _{CHRG} I _{END} End of Charge Indication CV Mode Current Ratio CV Mode 10% 15% I _{CHRG} MA NTC V _{TL} Cold Temperature Fault Threshold Voltage Charge Discharge 0 2.112 3.264 3.264 V V _{TH} Hot Temperature Fault Threshold Voltage Charge Discharge 0 0.397 0.282 3.264 V	V_{TRKL}				3.0		V
Termination Time	ΔV_{RECHG}				-100		mV
Termination Time	T _{TIMER1}		Trickle Mode		50		Min
NTC V _{TL} Cold Temperature Threshold Voltage Fault Discharge Charge Discharge 0 2.112 3.264 V V _{TH} Hot Temperature Threshold Voltage Fault Discharge Charge Discharge 0 0.397 0.282 3.264 V	T _{TIMER2}	_	CC Mode		480		Min
V _{TL} Cold Temperature Threshold Voltage Fault Discharge Charge Discharge 0 2.112 3.264 V V _{TH} Hot Temperature Threshold Voltage Fault Discharge Charge Discharge 0 0.397 0.282 0.282 V	I _{END}	_	CV Mode		10%	15%	I _{CHRG} mA
Threshold Voltage V _{TH} Hot Temperature Fault Charge Threshold Voltage Discharge 0 3.226 3.264 V 0.397 0.282 V 0.282	NTC		L	Į.	I	l .	I
V _{TH} Hot Temperature Fault Charge 0 0.397 Threshold Voltage Discharge 0 0.282	V_{TL}	•		0		3.264	V
, , , , , , , , , , , , , , , , , , ,	V _{TH}	Hot Temperature Fault	Charge	0	0.397	3.264	V
	V _{TE}	NTC Disable Threshold	Falling Threshold		0.2		V

١	1	/oltogo	Hystorosis		
ı	V	rollage	пуѕіетеѕіѕ		1

SYMBO	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNITS
Off Mode	Current					
I _{BATOFF}	OFF Mode Current	BAT=3.8V		40		μΑ
I _{SUSPEND}	USB VBUS suspend Mode	BAT=3.8V,		86		μA
-303FLND	current	VBUS=5V,				, and the second
		N_VBUSEN=1				
Logic					. (
V _{IL}	Logic Low Input Voltage			0.3		V
V _{IH}	Logic High Input Voltage			1.2	7	V
TWSI						
V _{CC}	Input Supply Voltage		1.8		3.3	V
ADDRE	TWSI Address			0x68		
SS		0				
f _{SCK}	Clock Operating Frequency	X		400	1200	kHZ
t _f	Clock Data Fall Time	2.2Kohm Pull High		60		ns
t _r	Clock Data Rise Time	2.2Kohm Pull High		100		ns
DCDC		0.				
f _{OSC}	Oscillator Frequency	Default		3		MHz
DCDC1		. ^)				
I _{VIN1}	Input Current	PFM Mode		50		μА
	A	I _{DC1OUT} =0				
I _{LIM1}	PMOS Switch Current Limit	PWM Mode		2200		mA
I _{DC1OUT}	Available Output Current	PWM Mode		1400		mA
V _{DC1OUT}	Output Voltage	Default	1.6	3.0	3.4	V
DCDC2		I				
I _{VIN2}	Input Current	PFM Mode		50		μΑ
		I _{DC2OUT} =0				·
I _{LIM2}	PMOS Switch Current Limit	PWM Mode		3000		mA
I _{DC2OUT}	Available Output Current	PWM Mode		2500		mA
V _{DC2OUT}	Output Voltage Range		0.6	1.1	1.54	V
DCDC3		L				
I _{VIN3}	Input Current	PFM Mode		50		uA
		I _{DC3OUT} =0				
I _{LIM3}	PMOS Switch Current Limit	PWM Mode		3000		mA
I _{DC3OUT}	Available Output Current	PWM Mode		2500		mA
V _{DC3OUT}	Output Voltage Range		0.6	1.1	1.86	V
DCDC4		1	1	l	1	
I _{VIN3}	Input Current	PFM Mode		42		uA
VIIVO		I _{DC3OUT} =0				·

I _{LIM3}	PMOS Switch Current Limit	PWM Mode		1200		mA
I _{DC3OUT}	Available Output Current	PWM Mode		600		mA
V _{DC3OUT}	Output Voltage Range		0.6	1.1	1.54	V
DCDC5						
I _{VIN3}	Input Current	PFM Mode		45		uA
		I _{DC3OUT} =0				
I _{LIM3}	PMOS Switch Current Limit	PWM Mode		2600		mA
I _{DC3OUT}	Available Output Current	PWM Mode		2000		mA
V _{DC3OUT}	Output Voltage Range		1.0	1.5	2.55	V

SYMBOL	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNITS
RTC_VCC	DEGOKII FIGH	GONDINIONS			III UC	00
V _{RTC_VCC}	Output Voltage	I _{RTC VCC} =1mA	-1%	1.2	1%	V
I _{RTC_VCC}	Output Current	KTO_VOO		100		mA
ALDO1			1		<u> </u>	
V _{ALDO1}	Output Voltage	I _{ALDO1} =1mA	-1%	0.7	1%	V
I _{ALDO1}	Output Current			300		mA
Ι _Q	Quiescent Current		/	67		μА
PSRR	Power Supply Rejection Ratio	I _{ALDO1} =60mA, 1KHz		TBD		dB
e _N	Output Noise,20-80KHz	Vo=3.3V , Io=20mA		31		μV_{RMS}
ALDO2				•	'	
V_{ALDO2}	Output Voltage	I _{ALDO2} =1mA	-1%	1.8	1%	V
I _{ALDO2}	Output Current			300		mA
IQ	Quiescent Current	Y		67		μΑ
PSRR	Power Supply Rejection Ratio	I _{ALDO2} =10mA,1KHz		TBD		dB
e _N	Output Noise,20-80KHz	Vo=3.3V , Io=20mA		31		μV_{RMS}
ALDO3						
V _{ALDO3}	Output Voltage	I _{ALDO3} =1mA	-1%	3.0	1%	V
I _{ALDO3}	Output Current			200		mA
IQ	Quiescent Current			67		μΑ
PSRR	Power Supply Rejection Ratio	I _{ALDO3} =10mA, 1KHz		TBD		dB
e _N	Output Noise,20-80KHz	Vo=3.3V, Io=20mA		43		μV_{RMS}
DLDO1						
V _{DLDO1}	Output Voltage	I _{DLDO1} =1mA	-1%	0.7	1%	V
I _{DLDO1}	Output Current			400		mA
IQ	Quiescent Current			60		μΑ
PSRR	Power Supply Rejection Ratio	I _{DLDO1} =10mA, 1KHz		TBD		dB
e _N	Output Noise,20-80KHz	Vo=3.3V, Io=20mA		100		μV_{RMS}
DLDO2						
V _{DLDO2}	Output Voltage	I _{DLDO2} =1mA	-1%	0.7	1%	V
I _{DLDO2}	Output Current			200		mA
IQ	Quiescent Current			60		μΑ
PSRR	Power Supply Rejection Ratio	I _{DLDO2} =10mA, 1KHz		TBD		dB

e _N	Output Noise,20-80KHz	Vo=3.3V, Io=20mA		100		μV_{RMS}
DLDO3	Output 140/36,20-00/11/12	V0-3.5V, 10-20111A		100		μVRMS
V _{DLDO3}	Output Voltage	I _{DLDO3} =1mA	-1%	3.0	1%	V
I _{DLDO3}	Output Current	T DLDO3— TTTI/ C	1 70	200	170	mA
I _Q	Quiescent Current			60		μΑ
PSRR	Power Supply Rejection Ratio	I _{DLDO3} =10mA, 1KHz		TBD		dΒ
e _N	Output Noise,20-80KHz	Vo=3.3V, Io=20mA		100		μV _{RMS}
DLDO4	- Catput 140/00,20 COTT 12	V0-0.0V, 10-2011//		100		μ v RMS
V _{DLDO4}	Output Voltage	I _{DLDO4} =1mA	-1%	3.0	1%	V
I _{DLDO4}	Output Current	TDLDO4—TTTI/ C	1 70	100	170	mA
I _Q	Quiescent Current			60		μА
PSRR	Power Supply Rejection Ratio	I _{DLDO4} =10mA, 1KHz		TBD	7	dΒ
e _N	Output Noise,20-80KHz	Vo=3.3V, Io=20mA		100		μV _{RMS}
ELDO1	Odtpdt 140/30,20 00/11/12	V0-0.0V, 10-2011//		100		μVRMS
V _{ELDO1}	Output Voltage	I _{ELDO1} =1mA	-1%	0.7	1%	V
	Output Current	TELDO1-TITIA	-170	400	1 70	mA
I _{ELDO1}	Quiescent Current			60		
I _Q PSRR	Power Supply Rejection Ratio	I _{ELDO1} =10mA, 1KHz		TBD		μA dB
	Output Noise,20-80KHz	Vo=3.3V, Io=20mA		100		
e _N	Output Noise,20-60KH2	V0=3.3V, 10=2011IA		100		μV_{RMS}
V _{ELDO2}	Output Voltage	I _{ELDO2} =1mA	-1%	0.7	1%	V
_	Output Vollage Output Current	I ELDO2—IIIIA	-1 /0	200	1 /0	mA
I _{ELDO2}	Quiescent Current	X		60		
I _Q PSRR		10m A 1KHz		TBD		μA dB
	Power Supply Rejection Ratio	I _{ELDO2} =10mA, 1KHz		100		
e _N	Output Noise,20-80KHz	Vo=3.3V, Io=20mA		100		μV_{RMS}
	Output Voltage	1 m A	-1%	0.7	1%	V
V _{ELDO3}	Output Voltage	I _{ELDO3} =1mA	-1%	200	1%	
I _{ELDO3}	Output Current					mA_
I _Q	Quiescent Current	1 40m A 41/11=		60 TDD		μA
PSRR	Power Supply Rejection Ratio	I _{ELDO3} =10mA, 1KHz		TBD		dB
e _N	Output Noise,20-80KHz	Vo=3.3V, Io=20mA		100		μV_{RMS}
DC5LDO	Outrast Voltage	1 1	40/	0.7	40/	V
V _{DC5LDO}	Output Voltage	I _{DC5LDO} =1mA	-1%	0.7	1%	
DC5LDO	Output Current			200		mA_
I _Q	Quiescent Current	101		60		μA
PSRR	Power Supply Rejection Ratio	I _{DC5LDO} =10mA , 1KHz		TBD		dB
e _N	Output Noise,20-80KHz	Vo=3.3V, Io=20mA		100		μV_{RMS}
LDOio0						
V _{LDOio0}	Output Voltage	I _{LDOio0} =1mA	-1%	3.3	1%	V
I _{LDOio0}	Output Current			100		mA
IQ	Quiescent Current			40		μА
PSRR	Power Supply Rejection Ratio	I _{LDOio0} =10mA, 1KHz		TBD		dB
e _N	Output Noise,20-80KHz	Vo=3.3V, Io=20mA		40		μV_{RMS}
		1				

X-Powers

LDOio1						
V _{LDOio1}	Output Voltage	I _{LDOio1} =1mA	-1%	3.3	1%	V
I _{LDOio1}	Output Current			100		mA
IQ	Quiescent Current			40		μΑ
PSRR	Power Supply Rejection Ratio	I _{LDOio1} =10mA, 1KHz		TBD		dB
e _N	Output Noise,20-80KHz	Vo=3.3V, Io=20mA		40		μV_{RMS}
DC1SW						
R _{DC1SW}	Internal Ideal Resistance	PIN to PIN, DCDC1		156		mΩ
		同 DC1SW				
IQ	Quiescent Current			40		μΑ
CHGLED						
R _{DC1SW}	Internal Ideal Resistance	Vin =0.3V		2000		mΩ

9

Control and Operation

Once AXP228 is powered on, SCK/SDA pin of TWSI will be pulled up to IO Power and then Host can adjust and monitor AXP228 with rich feedback information.

Remarks: "Host" here refers to system processor.

Remarks: "External Power" below includes ACIN and VBUS input.

9.1 Power On/Off & Reset

Power Enable Key (PEK)

The Power Key (PEK) can be connected between PWRON pin and GND of AXP228. AXP228 can automatically identify the four status (Long-press ,Short-press ,Key Down ,Key Up) and then correspond respectively.

Power on Source

- 1. ACIN, VBUS Insert
- 2. PEK

Power On

System power-on is initiated whenever the following conditions occur:

- 1. If a valid power source has plugged in (ACIN or VBUS>3.8V), AXP228 will be turned on or not by the default the configure module configuration.
- 2. Press PEK can power on AXP228.

After power on, DC-DC and LDO will be soft booted in preset timing sequence, and then either Host or PWREN pin can enable/disable corresponding power.

Power Off

When you push-and-hold PEK longer than IRQLEVEL, HOST can write "1" into "REG32H [7]" to inform AXP228 to shutdown, which can disable all power output except LDO1.

System power-off is initiated whenever the following conditions occur:

- 1. input voltage is too low(Low-Power Protection)
- 2. Power output voltage(DCDC) is too low due to overload(Overload Protection)
- 3. Input voltage is too high(Overvoltage Protection)(See more details in chapter "Intelligent Power Select"
- 4. Push PEK longer more than OFFLEVEL(Default 6s), and system will cut off all power output except LDO1(there is no need for an extra RESET key)

Remarks: With the automatic protection mechanism, AXP228 can protect whole system by preventing components from damage due to system abnormality.

Sleep and wakeup

When the running system needs to enter Sleep mode, Maybe one or several power outputs should be disabled or change to other voltage. Wakeup can be initiated by the following sources:

- 1., ACIN/VBUS insert/remove
- 2,PEK short/long press
- 3,PEK nedge
- 4,Low power warning level 1/2
- 5,GPIO[1:0] Posedg or negedge
- 6,Software wakeup by Set the REG31H[5]

These sources will make the PMU wakeup and all power outputs resume to default voltage in default power on timing sequence.

See control process under sleep and wakeup modes as below:

System Reset and Output Monitoring (PWROK)

The PWROK pin can be used as the reset signal of application system. During AXP228 startup, PWROK outputs low level, which will then be pulled high to startup the system after output voltage reaches the regulated value.

When application system works normally, AXP228 will be always monitoring the voltage and load status. If overload or under-voltage occurs, the PWROK will instantly output low level to reset the system and prevent

malfunction or data errors.

9.2 Power Path Management (IPS)

The input sources of AXP228 include Li- Battery, external power ACIN (such as AC adapter or USB VBUS input). IPS can select proper power allotting method according to external power and Li- Battery status.

- o If only Li- Battery is available, and no external power input, Li- Battery is used for power input;
- o If external power is available (VBUS or ACIN), it is preferred in power supply
- o If Li-Battery is available, it will "Seamlessly" switch to Li-Battery once external power is removed
- When both VBUS and ACIN are available, ACIN will be applied to supply power in priority, and Li-Battery will be charged.
- If the current of ACIN path is not enough, VBUS will be enabled to achieve ACIN/VBUS common power supply
- o If the current is still insufficient, charge current will be reduced to zero, and Battery is used for one of power sources

Therefore, compatibility of the system with external powers of different drive ability can be dramatically improved, and no special customized adapters are required to be provided on the part of manufacturers. Please refer to the following diagram.

As shown above, when ACIN provides insufficient load ability, IPSOUT voltage will fall, and BAT will change from charge status to discharge to supply load current together with ACIN.

Host can set IPS parameters and read the feedback by visiting internal registers in AXP228 via TWSI.

Voltage-Limit/ Current-Limit Mode and Direct Mode

In order not to affect the USB communication, VBUS is always working under VBUS Voltage-Limit mode by

default. In this mode, AXP228 ensures that VBUS voltage remains above a configurable reference voltage VHOLD which can meet the USB specification. The default VHOLD is 4.4V, adjustable in Reg30H [5:3] register

If the system need to limit the current obtained from USB VBUS, a current-limit mode is provided (See REG30H [1] register), with 900mA/500mA (Reg30H [1:0]) selectable.

If the system just utilizes the USB for power supply rather than communication, or the USB power adapter is utilized, AXP228 can be Set to "VBUS Direct Mode" by modifying register REG30H[6], and then AXP228 will give priority to the application power demand. When the drive ability of USB Host is insufficient or system power consumption is large so that the VBUS voltage is lower than VHOLD, AXP228 will release IRQ to indicate the weak power supply ability of Host VBUS, which may affect USB communication, and then Host software will follow up.

AXP228's Reaction to External Power Supply Plugin

AXP228 can automatically detect the plug-in of external powers and judge whether the power is usable or not. The result will be set in corresponding registers, and IRQ will be released to inform the Host at the same time.

The following table has listed the status bits and meanings of external power registers.

Register Status Bits	Bits Description	
REG00H[7]	Indicating the presence of external ACIN	
REG00H[6]	Indicating whether the external ACIN is usable or not	
REG00H[5]	Indicating the presence of external VBUS	
REG00H[4]	Indicating whether the external VBUS is usable or not	
REG00H[3] Indicating whether the VBUS voltage is above V _{HOLD} when used		
REG00H[1] Indicating whether ACIN/VBUS short circuits on PCB or not		
REG00H[0]	Indicating whether the system is triggered to startup by ACIN/VBUS or not	

The status bit of "indicating whether the VBUS voltage is above V_{HOLD} or not when used" enables the Host to judge when it receives IRQ7 (indicating weak supply ability) whether VBUS is pulled low by system load input or the external power itself is below V_{HOLD} , which may facilitate Host software to decide either to keep on working in Voltage-Limit mode or switch to Direct mode.

When to Select VBUS as Input Power

N VBUSEN and register REG30H[7]: is used to determined when shall VBUS be used as power supply.

REG30_[7]	REG8F_[4]	N_VBUSEN	REG30H[2]	是否选用
0	0	High	0	No
0	0	Low	1	Yes
0	1	High	X	No
0	1	Low	X	Yes
1	X	X	X	Yes

Low-Power Warning and Low-Power Protection (Automatic Power-off)

With AXP228, the value of $V_{WARNING}$ (low-power warning voltage) and V_{OFF} (automatic shutdown voltage) can be Set . If the Battery level is found to be lower than $V_{WARNING}$, IRQ20/IRQ21 will be released. If ALDOIN is lower than V_{OFF} , AXP228 will automatically enter Shutdown Mode, and disable all other outputs except LDO1.

The two $V_{WARNING}$, namely, LEVEL 1 and LEVEL 2, which can be defined differently in applications. For example, use LEVEL1 to indicate insufficient power while LEVEL 2 can be used to indicate the oncoming shutdown.

Over-Voltage Protection

If the external power voltage exceeds 6.3V, AXP228 will release IRQ1/4 for indication. If the external power voltage exceeds 7V, AXP228 will automatically shutdown the system.

9.3 Adaptive Flash Charger

AXP228 integrates a constant current/voltage PWM charger to automatically control the charge cycle, with a built-in safety clock capable of automatic charge termination without processor intervention. This charger features automatic charge current scaling in accordance with the system power consumption, as well as Battery detection, trickle charge and activation. In addition, the built-in temperature detection circuit can automatically stop the charge current when the temperature is too high or too low.

Adaptive Charge Startup

The default state of the charger is "Enable". (It can be programmed via registers. Refer to register REG33H.) When external power is plugged in, AXP228 will automatically start the charge, and send IRQ to Host for indication. At the same time, CHGLED pin will output low level to drive external LED to indicate the charging state.

Charge Voltage/Current

Two Symbolic Voltages

 V_{TRGT} =charge target voltage. The V_{TRGT} is 4.2V by default, which can be Set by register (Refer to "REG33H[6:5]") . At the same time, AXP228 will automatically adjust the charge target voltage when external power voltage is low.

 V_{RCH} =automatic recharge voltage. V_{RCH} = V_{TRGT} -0.1 V_{\circ}

The charge current is 450mA or 1200mA by default, which can be Set by REG33H [3:0].

Charge Process

If the Battery voltage is lower than 3.0V, the charger will automatically enter the pre-charge mode, with charge current be 1/10 of the preset value. If the Battery voltage is still below 3.0V 40 minutes later (adjustable, see "REG34H"), charger will automatically enter the Battery activate mode. Refer to "Battery Activate Mode" section for details.

Once the Battery voltage exceeds 3.0V, the charger enters constant current mode. If the charge current is below 65% of the preset value, the system will release IRQ17 to indicate that "drive ability of external power is insufficient, as a result, the charge current is lower than the pre-set value, which may lead to longer charge time, so stronger power is preferred, or the power-consuming functions should be disabled to shorten the charge time."

When the Battery voltage reaches the V_{TRGT} , the charger will switch from the constant current mode to constant voltage mode, and the charge current will fall.

When the charge current is lower than 10% or 15% (adjustable, see register "REG33H") of the preset value, a charge cycle ends, and AXP228 will release IRQ18 while the CHGLED pin will stop indicating the charging state. When the Battery voltage is below V_{RCH} again, the automatic charge will restart, and IRQ17 will be released.

In non-precharge mode, if the charge cycle is not ending after 480 minutes (adjustable, refer to register "REG34H"), the charger will automatically enter the Battery activate mode.

Battery Activate Mode

At the enterring the Battery activate mode from either pre-charge mode or constant current mod (the timer expires), AXP228 will release IRQ10 in both cases to indicate that the Battery may be damaged.

In Battery activate mode, the charger always inputs relatively low current to batteries. AXP228 will exit activate mode and release IRQ11 only if the Battery voltage has reached V_{RCH} .

AXP228 will indicate whether the charger is in Battery activate mode or not in register REG01H.

CHGLED

CHGLED pin is used to indicate charge state and warning. There are four states, namely, charging, not charging, Battery abnormal warning, and external power over-voltage warning. CHGLED is NMOS Open Drain output, so a LED can be directly driven by a current-limit resistor to show the four states. The following table has displayed its two operation modes.

米型		$\overline{}$
公 型	A)
	-	

Status	表现	注释
正在 Charge	低电平	
不在 Charge	高阻	
Battery 异常	25% duty 1Hz 跳变	Charge 器进入 Battery激活模式,或者 Battery温度过高、
		过低
过压	25% duty 4Hz 跳变	外部 Power 输入 Voltage 过高

类型 B

Status	表现	注释		
正在 Charge	25% duty 1Hz 跳变			
不在 Charge	高阻			
Battery 异常及	25% duty 1Hz 跳变	Charge 器进入 Battery 激活模式,或者 Battery 温度过高、		
输入过压		过低以及 Output Voltage 过高		
无 Battery	低电平	无 Battery 接入		

Battery Temperature Detection

AXP228 can connect a temperature-sensitive resistor via the TS pin to monitor the Battery temperature when the Battery is charging or discharging. The diagram is shown below.

In the diagram above, VTH/VTL refer to the high temperature threshold and low temperature threshold, which is programmable via registers REG38H/39H/3CH/3DH respectively. VTE=0.2V. The temperature-sensitive resistor is suggested to choose the NTC temperature-sensitive resistor, which is 10Kohm and 1% accuracy at 25°C. AXP228 will send constant current via TS pin, and the current can be Set as 20uA、40uA、60uA、and 80uA (See registerREG84H) to adapt to different NTC resistors. When the current goes through the temperature-sensitive resistor, a test voltage is generated, which will be measured by ADC, and compared with regulated value to release corresponding IRQ or suspend the charge.

If the resistance value of temperature-sensitive resistor is too high or too low, extra resistors can be serial or parallel connected to expand the detect extent.

If the Battery is free from temperature-sensitive resistor, TS pin can be linked to the ground, and in that case, AXP228 will automatically disable the Battery temperature monitoring function.

Battery Detection

AXP228 will automatically detect the Battery presence, record the result in registers (refer to REG01H) and release IRQ8, IRQ9.

The Battery detection can be enabled and disabled by Host. (Refer to register REG32H.)

9.4 Multi-Power Outputs

The following table has listed the multi-power outputs and their functions of AXP228.

Output Path	类型	默认 Voltage	启动步骤	应用举例	最大驱动能力
DCDC1	BUCK	3.3V	1	3.3V I/O	1400 mA
DCDC2	BUCK	1.1V	7 1	1.1V CPU	2500 mA
DCDC3	BUCK	1.1V	1	1.1VGPU	2500 mA
DCDC4	BUCK	1.1V	1	1.1V Core	600mA
DCDC5	BUCK	1.5/DC5SET 设定	1	1.5V DDR	2000mA
RTC-LDO	LDO	3.0V	1	RTC	30 mA
ALDO1	LDO	OFF	OFF	N/A	300 mA
ALDO2	LDO	1.8V	1	N/A	300 mA
ALDO3	LDO	3.0V	1	N/A	200mA
LDO _{IO0}	LDO	OFF	OFF	N/A	100 mA
LDO _{IO1}	LDO	OFF	OFF	N/A	100 mA
DLDO1	LDO	OFF	OFF	N/A	400 mA
DLDO2	LDO	OFF	OFF	N/A	200 mA
DLDO3	LDO	OFF	OFF	N/A	200mA
DLDO4	LDO	OFF	OFF	N/A	200 mA
ELDO1	LDO	OFF	OFF	N/A	400 mA
ELDO2	LDO	OFF	OFF	N/A	200 mA
ELDO3	LDO	OFF	OFF	N/A	200mA
DC5LDO	LDO	1.1V	1	N/A	200mA
DC1SW	Switch	OFF	OFF	N/A	400mA

AXP228 includes five synchronous step-down DC-DCs, fourteen LDOs, two switches, as well as multiple timing and controlling configuration. The work frequency of DC-DC is 3MHz by default, which is adjustable via registers. External small inductors and capacitors can be connected as well. In addition, both DC-DCs can be Set in fixed PWM mode or auto mode (automatically switchable according to the load). See register REG80H.

DC-DC1/2/3/4/5

DCDC3 output voltage ranges from 0.6 V to 1.86V, and output voltage of DCDC2 is ranged from 0.6-1.54V, which can be programmed via registers.(refer to "register REG23H 27H").

The output capacitor is recommended to use small ESR ceramic capacitors, for example 10uF X7R. The saturation current of inductors used must 50% higher than the output current

LDO₁

LDO1 is always on and can be used to supply continuous power for application RTC with 30mA drive ability 30mA.

ALDO1/2/3

Low noise LDO, output current is 300mA/300mA/200mA

LDOio0/LDOio1

Low noise LDO, output current is 100mA

Soft Start

All DC-DCs and LDOs support soft start which can avoid the impact of dramatic current change on the input path in system boot stage.

All DC-DCs do not require external Schottky diodes and resister divider feedback circuits. If a certain DC-DC is unnecessary in application, just float the corresponding LX pins.

9.5 Default Voltage/Timing Set ting

The default voltage and power on/off sequence of each power can be Set by AXP228.

Power on Timing includes eight levels, and the interval between each level can be Set as 1, 2, 4, 16 and 32mS.

Default voltage Set ting: each DC-DC/LDO Set ting ranges from the lowest voltage to the highest voltage.

DC3SET PIN is used to Set the default voltage of DC-DC3:

DC3SET	DC3SETGND	DC3SETto OAPS	DC3SET floating
DC-DC3 voltage	1.8V	3.3V/2.5V	1.2V/1.5V

9.6 E-Gauge system

Ordinary Battery monitor is to estimate the Battery energy by measuring the Battery voltage. However, the multiple 12-bit ADCs in AXP228 can measure Battery voltage, as well as Battery current. It also integrates the gauge algorithm. According to these data, Host can get the remaining percentage Battery energy and other Battery data, such as the system real-time consumption, remaining Battery energy, Battery charge progress, remaining Battery

using time and charge time, etc.

The Enable state controlling and sampling rate of each ADC can be Set via register 84H. The sampling results will be saved in corresponding registers, register REG00H[2] is used to indicate the Battery charge/discharge current directions.

Channel	000H	STEP	FFFH
Battery Voltage	0mV	1.1mV	4.5045V
Bat discharge current	0mA	1mA	4.095A
Bat charge current	0mA	1mA	4.095A
Internal temperature	-267.7℃	0.1℃	165.8℃
TS pin input	0mV	0.8mV	3.276V

9.7 Multi-Function Pin Description

GPIO[1:0]

Can be defined as GPIO[1:0], or LDO, etc. Please refer to REG90H-92H Instruction for details

CHGLED

Features charge state indication, over-temperature/over-voltage warning, and GPO. Please refer to REG32H Instruction section for details.

9.8 Timer

AXP228 features a 7-bit internal timer, whose values can be programmed via register REG8AH[6:0]. The minimum time step of timer is one minute, and the timing range is $1\sim127$ minutes.

9.9 TWSI and IRQ

Figure 9-1: Single Read and Write

Figure 9-2. Multi Read and Write

Host can communication with AXP228 registers via the TWSI interface, and the operation timing is listed above. Standard 100KHz or 400KHz frequency is supported, and the highest rate can reach 1.2MHz. In addition, multi read and write operation is supported, and the device addresses are 69H (READ) and 68H (WRITE).

When certain events occur, AXP228 will inform Host by pulling down to the IRQ interrupt mechanism, and the interrupt state will be reserved in interrupt state registers (See registers REG48H, REG49H, REG4AH, REG4BH and REG4CH). The interrupt can be cleared by writing 1 to corresponding state register bit. When there is no interrupt, IRQ output will be pulled high (51K resistance higher through the external). Each interrupt can be masked via interrupt control registers (Refer to registers REG40H, REG41H, REG42H, REG43H, and REG44H).

Bit	IRQ	DESCRIPTION	Bit	IRQ	DESCRIPTION
REG48_[7]	IRQ1	ACIN over voltage	REG4B_[7]		
REG48_ [6]	IRQ2	ACIN insert	REG4B_ [6]		
REG48_ [5]	IRQ3	ACIN remove	REG4B_ [5]		Reserved
REG48_ [4]	IRQ4	VBUS over voltage	REG4B_ [4]		Reserved
REG48_ [3]	IRQ5	VBUS insert	REG4B_ [3]		1
REG48_ [2]	IRQ6	VBUS remove	REG4B_ [2]		
REG48_[1]	IRQ7	VBUS lower than	REG4B_[1]	IRQ20	Battery low level
		V_{HOLD}			warning1
REG48_ [0]		reversed	REG4B_ [0]	IRQ21	Battery low level
					warning2
REG49_[7]	IRQ8	Battery present	REG4C_[7]	IRQ22	Timer timeout
REG49_[6]	IRQ9	Battery remove	REG4C_[6]	IRQ23	PEK posedge
REG49_ [5]	IRQ10	Battery active	REG4C_ [5]	IRQ24	PEK negedge
		mode			
REG49_ [4]	IRQ11	Exit Battery active	REG4C_[4]		Reserved
		mode	,		
REG49_[3]	IRQ12	Charging	REG4C_[3]		
REG49_ [2]	IRQ13	Charge finish	REG4C_[2]		
REG49_[1]	IRQ14	Battery over	REG4C_[1]	IRQ25	GPIO1 edge trigger
		temperature			
REG49_ [0]	IRQ15	Battery under	REG4C_[0]	IRQ26	GPIO0 edge trigger
		temperature			
REG4A_ [7]	IRQ16	IC over temperature			
REG4A_ [6]	IRQ17	Charge current not			
		enough			
REG4A_ [5]		Reserved			
REG4A_ [4]					
REG4A_ [3]					
REG4A_ [2]					
REG4A_[1]	IRQ18	PEK short press			
REG4A_[0]	IRQ19	PEK long press			

10

REGISTER

Control Register List

Address	Description	R/W	Default
00	Status REG	R	
01	Mode and charge status REG	R	
04-0F	Data bugger REG	R/W	00H
10	DCDC1/2/3/4/5&ALDO1/2&DC5LDO Control REG	R/W	BFH
12	ELDO1/2/3&DLDO1/2/3/4&DC1SW Control REG	R/W	00H
13	ADLDO1/2/3 woke mode REG	R/W	81H
15	DLDO1 Voltage Set REG	R/W	00H
16	DLDO2 Voltage Set REG	R/W	00H
17	DLDO3 Voltage Set REG	R/W	00H
18	DLDO4 Voltage Set REG	R/W	00H
19	ELDO1 Voltage Set REG	R/W	00H
1A	ELDO2 Voltage Set REG	R/W	00H
1B	ELDO3 Voltage Set REG	R/W	00H
1C	DC5LDO Voltage Set REG	R/W	04H
21	DC-DC1 Voltage Set REG	R/W	11H
22	DC-DC2 Voltage Set REG	R/W	19H
23	DC-DC3 Voltage Set REG	R/W	19H
24	DC-DC4 Voltage Set REG	R/W	19H
25	DC-DC5 Voltage Set REG	R/W	0AH
27	DC-DC2/3 Ramp control REG	R/W	00H
28	ALDO1 Voltage Set REG	R/W	00H
29	ALDO2 Voltage Set REG	R/W	0BH
2A	ALDO3 Voltage Set REG	R/W	17H
30	VBUS-IPSOUT Path control REG	R/W	60H
31	Sleep/wakeup and power off control REG	R/W	03H
32	Power off and Battery detection REG	R/W	43H
33	Charge control REG1	R/W	C6H
34	Charge control REG2	R/W	45H
35	Charge control REG3	R/W	0EH
36	PEK parameter Set REG	R/W	5DH
37	DCDC converter work frequency REG	R/W	08H
38	Battery under temperature Set REG when charging	R/W	A5H
39	Battery over temperature Set REG when charging	R/W	1FH
3C	Battery under temperature Set REG when	R/W	FCH
	discharging		
3D	Battery over temperature Set REG when	R/W	16H

Address	Description		Default
	discharging		
80	DCDC work mode Set REG	R/W	E0H
82	ADC Enable Set REG1	R/W	E0H
84	ADC Sample rate, TS pin Control REG	R/W	32H
85	TS ADC sample rate Set REG	R/W	00H
8A	Timer Set REG	R/W	00H
8C/8D	PWREN Set REG	R/W	00H
8F	Over temperature operation Set REG	R/W	01H

GPIO Set Register List

Address	Description	R/W	Default
90	GPIO0 Set REG	R/W	07H
91	GPIO0 LDO mode output voltage Set REG	R/W	1FH
92	GPIO1 control REG	R/W	07H
93	GPIO1 LDO mode output voltage Set REG	R/W	1FH
94	GPIO[1:0] signal REG	R/W	00H
97	GPIO[1:0] pull down Set REG	R/W	00H

Interrupt Register List

Address	Description	R/W	Default
40	IRQ enable Set REG1	R/W	D8H
41	IRQ enable Set REG2	R/W	FFH
42	IRQ enable Set REG3	R/W	03H
43	IRQ enable Set REG4	R/W	03H
44	IRQ enable Set REG5	R/W	00H
48	IRQ status REG1	R/W	00H
49	IRQ status REG2	R/W	00H
4A 💮	IRQ status REG3	R/W	00H
4B	IRQ status REG4	R/W	00H
4C	IRQ status REG5	R/W	00H

ADC Data Register List

Address	Description	R/W
56	AXP228 internal temperature monitor ADC Data highest 8 bit	R
57	AXP228 internal temperature monitor ADC Data lowest 4 bit	R
58	TS ADC Data highest 8 bit, Battery temperature	R
59	TS ADC Data lowest 4 bit, Battery temperature	R
78	Battery voltage highest 8 bit	R

79	Battery voltage lowest 4 bit	R
7A	Charge current highest 8 bit	R
7B	Charge current lowest 5 bit	R
7C	Discharge current highest 8 bit	R
7D	Discharge current lowest 5 bit	R

Address	Description	R/W	Default
B8	Coulomb counter control REG	R/W	00H
B9	Gauge result (%)	R	64H
E0	Battery full capacity bit[14:8]	R/W	00H
E1	Battery full capacity bit[7:0]	R/W	00H
E6	Battery low level warning Set REG	R/W	A0H

Note: Battery full capacity unit :1.456mAH

Register Description

REG 00H: Power Input Status

Bit	Description	R/W
7	ACIN presence indication	R
	0:ACIN not exist; 1:ACIN exists	
6	Indicating whether ACIN is usable	R
5	VBUS presence indication	R
	0:VBUS not exist; 1:VBUS exists	
4	Indicating whether VBUS is usable	R
3	Indicating whether the VBUS voltage is above VHOLD before used.	R
2	Indicating the Battery current direction	R
	0: the Battery is discharging; 1: the Battery is charging	
1	Indicating whether ACIN and VBUS input short circuit on PCB	R
0	Indicating whether the boot source is ACIN or VBUS	R
	0: Boot source isn't ACIN/VBUS; 1: Boot source is ACIN/VBUS.	

REG 01H: Power Working Mode and Charge Status Indication

Bit	Description	R/W
7	Indicating whether AXP202 is over-temperature	R
	0: not over-temperature; 1: over-temperature	
6	Charge indication	R
	0:not charge or charge finished; 1: in charging	
5	Battery existence indication	R
	0:no Battery connected to AXP202; 1: Battery already connected to AXP202	

4	Reserved and unchangeable	R
3	Indicating whether the Battery enters the activate mode	
	0: not enter the activate mode; 1: already entered the activate mode	
2-0	Reserved and unchangeable	R

REG 04-0FH: Data Buffer

Note: As long as one of the external powers, batteries or backup batteries exists, this data will be reserved and free from the startup and shutdown influence.

REG 10H: DCDC1/2/3/4/5&ALDO1/2&DC5LDO Enable Set

Default: XXH

Bit	Des	scription	R/W	Default
7	ALDO2 Enable Set	0:Off; 1:On	RW	X
6	ALDO1 Enable Set		RW	X
5	DC-DC5 Enable Set	Y	RW	X
4	DC-DC4 Enable Set		RW	X
3	DC-DC3 Enable Set		RW	Х
2	DC-DC2 Enable Set	X	RW	X
1	DC-DC1 Enable Set		RW	Х
0	DC5LDO Enable Set		RW	Х

Note: X means that decided by the internal memory Set

REG 12H: Power Output Control

Default: XXH

Bit	Description		R/W	Default
7	DC1SW Enable Set	0:Off; 1:On	RW	0
6	DLDO4 Enable Set		RW	0
5	DLDO3 Enable Set		RW	0
4	DLDO2 Enable Set		RW	0
3	DLDO1 Enable Set		RW	X
2	ELDO3 Enable Set		RW	0
1	ELDO2 Enable Set		RW	0
0	ELDO1 Enable Set		RW	Х

REG 13H:Power Output Control

Default:01H

Bit	Description		R/W	Default
7	ALDO3 Enable Set	0:Off; 1:On	RW	0
6-0	Reserved and unchangeable		RW	0

REG 15H:DLD01 Output Voltage Set

Default: 00H

		4		
Bit	Des	scription	R/W	Default
7-5	Reserved and unchangeable			
4	DLDO1 Output Voltage Set Bit4	0.7-3.3V,100mV/step	RW	0
3	DLDO1 Output Voltage Set Bit3		RW	0
2	DLDO1 Output Voltage Set Bit2	$C_{i}(x)$	RW	0
1	DLDO1 Output Voltage Set Bit1	X	RW	0
0	DLDO1 Output Voltage Set Bit0		RW	0

REG 16H:DLD02 Output Voltage Set

Default: 00H

Bit	Description		R/W	Default
7-5	Reserved and unchangeable			
4	DLDO2 Output Voltage Set Bit4	0.7-3.3V,100mV/step	RW	0
3	DLDO2 Output Voltage Set Bit3		RW	0
2	DLDO2 Output Voltage Set Bit2		RW	0
1	DLDO2 Output Voltage Set Bit1		RW	0
0	DLDO2 Output Voltage Set Bit0		RW	0

REG 17H:DLD03 Output Voltage Set

Default: 00H

Bit	Des	Description		Default
7-5	Reserved and unchangeable			
4	DLDO3 Output Voltage Set Bit4	0.7-3.3V,100mV/step	RW	0
3	DLDO3 Output Voltage Set Bit3		RW	0
2	DLDO3 Output Voltage Set Bit2		RW	0
1	DLDO3 Output Voltage Set Bit1		RW	0

_				
	0	DLDO3 Output Voltage Set Bit0	RW	0

REG 18H: DLDO4 Output Voltage Set

Default: 00H

Bit	Description		R/W	Default
7-5	Reserved and unchangeable			
4	DLDO4 Output Voltage Set Bit4	0.7-3.3V,100mV/step	RW	0
3	DLDO4 Output Voltage Set Bit3		RW	0
2	DLDO4 Output Voltage Set Bit2		RW	0
1	DLDO4 Output Voltage Set Bit1		RW	0
0	DLDO4 Output Voltage Set Bit0		RW	0

REG 19H: ELDO1 Output Voltage Set

Default: 00H

Bit	Des	Description		Default
7-5	Reserved and unchangeable			
4	ELDO1 Output Voltage Set Bit4	0.7-3.3V,100mV/step	RW	0
3	ELDO1 Output Voltage Set Bit3	X	RW	0
2	ELDO1 Output Voltage Set Bit2		RW	0
1	ELDO1 Output Voltage Set Bit1	Y	RW	0
0	ELDO1 Output Voltage Set Bit0		RW	0

REG 1AH:ELDO2 Output Voltage Set

Default: 00H

Bit	Description		R/W	Default
7-5	Reserved and unchangeable			
4	ELDO2 Output Voltage Set Bit4	0.7-3.3V,100mV/step	RW	0
3	ELDO2 Output Voltage Set Bit3		RW	0
2	ELDO2 Output Voltage Set Bit2		RW	0
1	ELDO2 Output Voltage Set Bit1		RW	0
0	ELDO2 Output Voltage Set Bit0		RW	0

REG 1BH:ELDO3 Output Voltage Set

Default: 00H

Bit	Description	R/W	Default
	2000	,	20.00.0

7-5	Reserved and unchangeable			
4	ELDO3 Output Voltage Set Bit4	0.7-3.3V,100mV/step	RW	0
3	ELDO3 Output Voltage Set Bit3		RW	0
2	ELDO3 Output Voltage Set Bit2		RW	0
1	ELDO3 Output Voltage Set Bit1		RW	0
0	ELDO3 Output Voltage Set Bit0		RW	0

REG 1CH:DC5LD0 Output Voltage Set

Default: 04H

Bit	Description		R/W	Default	
7-3	Reserved and unchangeable				
2	DC5LDO Output Voltage Set Bit2	0.7-1.4V,100mV/step		RW	1
1	DC5LDO Output Voltage Set Bit1			RW	0
0	DC5LDO Output Voltage Set Bit0		OY	RW	0

REG 21H: DC-DC1 Output Voltage Set

Default: 11H

Bit	Des	Description		Default
7-5	Reserved and unchangeable	1		
4	DC-DC1 Output Voltage Set Bit4	1.6-3.4V, 100mV/step	RW	1
3	DC-DC1 Output Voltage Set Bit3		RW	0
2	DC-DC2 Output Voltage Set Bit2		RW	0
1	DC-DC2 Output Voltage Set Bit1		RW	0
0	DC-DC2 Output Voltage Set Bit0		RW	1

REG 22H: DC-DC2 Output Voltage Set

Default:19H

Bit	Description		R/W	Default
7-6	Reserved and unchangeable			
5	DC-DC2 Output Voltage Set Bit5	0.6-1.54V, 20mV/step	RW	0
4	DC-DC2 Output Voltage Set Bit4		RW	1
3	DC-DC2 Output Voltage Set Bit3		RW	1
2	DC-DC2 Output Voltage Set Bit2		RW	0
1	DC-DC2 Output Voltage Set Bit1		RW	0
0	DC-DC2 Output Voltage Set Bit0		RW	1

REG 23H: DC-DC3 Output Voltage Set

Default: 19H

Bit	Description		R/W	Default
7-6	Reserved and unchangeable			
5	DC-DC3 Output Voltage Set Bit5	0.6-1.86V, 20mV/step	RW	0
4	DC-DC3 Output Voltage Set Bit4		RW	1
3	DC-DC3 Output Voltage Set Bit3		RW	_1
2	DC-DC3 Output Voltage Set Bit2		RW	0
1	DC-DC3 Output Voltage Set Bit1		RW	0
0	DC-DC3 Output Voltage Set Bit0		RW) 1

REG 24H: DC-DC4 Output Voltage Set

Default: 19H

Bit	Description		R/W	Default
7-6	Reserved and unchangeable			
5	DC-DC4 Output Voltage Set Bit5	0.6-1.54V, 20mV/step	RW	0
4	DC-DC4 Output Voltage Set Bit4		RW	1
3	DC-DC4 Output Voltage Set Bit3		RW	1
2	DC-DC4 Output Voltage Set Bit2		RW	0
1	DC-DC4 Output Voltage Set Bit1		RW	0
0	DC-DC4 Output Voltage Set Bit0	Y	RW	1

REG 25H: DC-DC5 Output Voltage Set

Default:0AH

Bit	Des	cription	R/W	Default
7-5	Reserved and unchangeable			
4	DC-DC5 Output Voltage Set Bit4	1.0-2.55V, 50mV/step	RW	0
3	DC-DC5 Output Voltage Set Bit3		RW	1
2	DC-DC5 Output Voltage Set Bit2		RW	0
1	DC-DC5 Output Voltage Set Bit1		RW	1
0	DC-DC5 Output Voltage Set Bit0		RW	0

REG 27H: DC-DC2/3 Dynamic Voltage Scaling Parameter Set

Default: 00H

|--|

7-4	Reserved and unchangeable			
3	DC-DC3 VRC Enable Control		RW	0
	0:On; 1:Off			
2	DC-DC2 VRC Enable Control		RW	0
	0:On; 1:Off			
1	DC-DC3 VRC Voltage ramp 0	0: 20mV/15.625us=1.6mV/us	RW	0
	Control 1	1: 20mV/31.250us=0.8mV/us		
0	DC-DC2 VRC Voltage ramp 0	0: 20mV/15.625us=1.6mV/us	RW	0
	Control 1	1: 20mV/31.250us=0.8mV/us		. 1

REG 28H: ALDO1 Output Voltage Set

Default: 00H

Bit	Description		R/W	Default
7-5	Reserved and unchangeable			
4	ALDO1 Output Voltage Set Bit4	0.7-3.3V,100mV/step	RW	0
3	ALDO1 Output Voltage Set Bit3		RW	0
2	ALDO1 Output Voltage Set Bit2	y	RW	0
1	ALDO1 Output Voltage Set Bit1		RW	0
0	ALDO1 Output Voltage Set Bit0		RW	0

REG 29H: ALDO2 Output Voltage Set

Default: 0BH

Bit	Description		R/W	Default
7-5	Reserved and unchangeable			
4	ALDO2 Output Voltage Set Bit4	0.7-3.3V,100mV/step	RW	0
3	ALDO2 Output Voltage Set Bit3		RW	1
2	ALDO2 Output Voltage Set Bit2		RW	0
1	ALDO2 Output Voltage Set Bit1		RW	1
0	ALDO2 Output Voltage Set Bit0		RW	1

REG 2AH:ALDO3 Output Voltage Set

Default: 17H

Bit	Description		R/W	Default
7-5	Reserved and unchangeable			
4	ALDO3 Output Voltage Set Bit4	0.7-3.3V,100mV/step	RW	1

3	ALDO3 Output Voltage Set Bit3
2	ALDO3 Output Voltage Set Bit2
1	ALDO3 Output Voltage Set Bit1
0	ALDO3 Output Voltage Set Bit0

REG 30H: VBUS-IPSOUT Path set

Default: 6XH

Bit	Des	cription	R/W	Default
7	VBUS-IPSOUT Path select Contro	VBUS-IPSOUT Path select Control when VBUS valid		0
	0:decided by N_VBUSEN pin, N_V	BUSEN=0,the path is on		
	1:VBUS-IPSOUT Path is On			
6	VBUS V _{HOLD} voltage limit set		RW	1
	0:not limited; 1:limited			
5	V _{HOLD} Set Bit 2	000: 4.0V; 001: 4.1V; 010: 4.2V	RW	1
4	V _{HOLD} Set Bit 1	011: 4.3V; 100: 4.4V; 101: 4.5V	RW	0
3	V _{HOLD} Set Bit 0	110: 4.6V; 111: 4.7V	RW	0
2	DRIVEVBUS as GPO, Output Con	trol	RW	0
	0: Output Low 1: Output High	n (IPSOUT)		
1:0	VBUS current limit Control Set		RW	Х
	00 -900mA; 01-500mA; 1x-no cu	rrent limit		

REG 31H: Wakeup Control and Voff Voltage Set

Default:X3H

Bit	Desc	ription			R/W	Default
7	PWROK status when Wakeup				RW	0
	0: do not output low 1: output low					
6	Soft re-startup Control, write 1 to re-	startup, the	n it self-clear		RW	0
5	Software Wakeup Control, write 1	to restore t	he output vo	Itage, then it	RW	0
	self-clear					
4	When Wakeup function Enabled, If	RQ triggere	d PMU Wake	eup and IRQ		
	masked or not when Wakeup					
	0: IRQ triggered Wakeup, When W	akeup, all l	IRQ masked			
	1: IRQ work normal, but not triggered Wakeup					
3	Wakeup Function Enable Set when	Sleep				
	0: Wakeup function Off					
	1: Wakeup function On					
	It self-clear after write 1					
2	V _{OFF} Set Bit2	000-2.6V;	001-2.7V;	010-2.8V;	RW	0
1	V _{OFF} Set Bit1	011-2.9V;	100-3.0V;	101-3.1V;	RW	1

F					
	0	V _{OFF} Set Bit0	110-3.2V; 111-3.3V	RW	1

REG 32H: Power off Set , Battery detection and CHGLED Control

Default:43H

Bit	Des	cription	R/W	Default
7	Power off Control	Power off Control		0
	Write 1 to power off all output exce	pt LDO1		
6	Battery detection Set : 0:Off; 1:O	n	RW	1
5-4	CHGLED PIN Set	00: High-Z	RW	00
		01: 25% 0.5Hz toggle		
		10: 25% 2Hz toggle		
		11: Output Low		
3	CHGLED PIN Control Set	0: REGREG 32HBit[5:4] Control	RW	0
		1: Controlled by charge module		
2	Sequence when Power Output Off	$C_{i}(x)$	RW	0
	0: All Power Output Off at the san	ne time		
	1: Reverse to the power on seque	ence		
1-0	PWROK delay after Power	00: 8ms; 01: 16ms;	RW	10
	Output ready	10: 32ms; 11:64ms		

REG 33H: Charge Control1

Default: CXH

Bit	Description	R/W	Default
7	Charge Enable Control		1
	0:Off, 1:On		
6:5	Charge Voltage Set	RW	10
	00:4.1V; 01:4.22V; 10:4.2V; 11:4.24V		
4	Charge end current Set	RW	0
	0: 10%		
	1: 15%		
3-0	Charge current Set	RW	Х
	0000:300mA; 0001:450mA; 0010:600mA; 0011:750mA;		
	0100:900mA; 0101:1050mA; 0110:1200mA; 0111:1350mA;		
	1000:1500mA; 1001:1650mA; 1010:1800mA; 1011:1950mA;		
	1100:2100mA; 1101:2250mA; 1110:2400mA; 1111:2550mA		

REG 34H: Charge Control2

Default: 45H

Bit	Des	cription	R/W	Default
7	Pre-Charge timeout Set Bit1	00: 40 min; 01: 50min;	RW	0
6	Pre-Charge timeout Set Bit0	10: 60min; 11: 70min	RW	1
5	Charge Output Off or On when cha	arge finished	RW	000
	0: Off; 1: On			
4	CHGLED function type			0
	0: A 1: B			
3	Reserved and unchangeable			0
2	Charge target voltage follow with the	ne charge current or not		0
	0: On 1: Off			
2	Charge external Path Enable Set	<u></u>	RW	0
	0:Off; 1:On			
1	Constant Current timeout set Bit1	00: 6Hours; 01: 8Hours;	RW	0
0	Constant Current timeout set Bit0	10: 10Hours; 11: 12Hours	RW	1

REG 35H: Charge Control3

Default: 22H

Bit	Description		Default
7: 4	Reserved and unchangeable		
3:0	Charge loop current limit Set	RW	1110
	0000:300mA; 0001:450mA; 0010:600mA; 0011:750mA;		
	0100:900mA; 0101:1050mA; 0110:1200mA; 0111:1350mA;		
	1000:1500mA; 1001:1650mA; 1010:1800mA; 1011:1950mA;		
	1100:2100mA; 1101:2250mA; 1110:2400mA; 1111:2550mA		

REG 36H:PEK Parameter Set

Default:5DH

Bit	Description		R/W	Default
7	Power on Time Set Bit1	00: 128mS; 01: 1S;	RW	0
6	Power on Time Set Bit0	10: 2S; 11: 3S.	RW	1
5	Long key Time Set Bit1	00: 1S; 01: 1.5S;	RW	0
4	Long key Time Set Bit0	10: 2S; 11: 2.5S.	RW	1
3	Hardwar Power off function Set when key down time longer than Power		RW	1
	off Time			
	0:Off; 1:On			

2	Re-startup or not after hardware po	ower off	RW	1
	0:no; 1:yes			
1	Power off time Set Bit1	00: 4S; 01: 6S;	RW	0
0	Power off time Set Bit0	10: 8S; 11: 10S	RW	1

REG 37H:DC-DC work frequency Set

Default: 08H

Bit	Desc	cription	R/W	Default
7	DC-DC and charger frequency-spread Set			0
	0: Off 1: On	4		
6	DC-DC and charger spread frequer	ncy Set		0
	0: 50KHz 1: 100KHz			
5	Reserved and unchangeable			
4	DC-DC 2&3 Poly-phase Function S	et		Х
	0: Off 1: On	$C_{i}(x)$		
3	DC-DCSwitch frequency Set Bit 3	5%/step, Default 3MHz	RW	1
2	DC-DCSwitch frequency Set Bit 2		RW	0
1	DC-DCSwitch frequency Set Bit 1		RW	0
0	DC-DCSwitch frequency Set Bit 0		RW	0

REG 38H:VLTF-charge Battery Charge under temperature Set

Default:A5H

Bit	Description		R/W	Default
7-0	Battery under temperature Set	M*10H	RW	A5H
	when charge, M	M=A5H:2.112V		
		Range:0V~3.264V		

 $V_{LTF-charge} = M *10H * 0.0008V$

REG 39H: VHTF-charge Battery Charge over temperature Set

Default:1FH

Bit	Description		R/W	Default	
7-0	Battery over temperature	Set	N*10H	RW	1FH
	when charge,N		N=1FH:0.397V		
			range:0V~3.264V		

 $\overline{V_{\text{HTF-charge}}} = N *10H * 0.0008V$

REG 3CH: VLTF-discharge Battery under temperature Set

Default: FCH

Bit	Description		R/W	Default
7-0	Battery under temperature Set	M*10H	RW	FCH
	when discharge, M	M=FCH:3.226V		
		Range:0V~3.264V		

 $V_{LTF\text{-discharge}} = M *10H* 0.0008V$

REG 3DH:VHTF-discharge Battery over temperature Set

Default:16H

Bit	Description		R/W	Default	
7-0	Battery over temperature	Set	N*10H	RW	16H
	when discharge, N		N=16H:0.282V		
			Range:0V~3.264V		

 $V_{LTF\text{-discharge}} = N *10H* 0.0008V$

REG 80H:DC-DC Work mode

Default:80H

Bit	Description		R/W	Default
7-5	Reserved and unchangeable			
4	DC-DC5 Work mode Control	0:PFM/PWM auto switch	RW	0
3	DC-DC4 Work mode Control	1:fixed PWM	RW	0
2	DC-DC3 Work mode Control		RW	0
1	DC-DC2 Work mode Control		RW	0
0	DC-DC1 Work mode Control		RW	0

REG 82H: ADC Enable

Default:83H

Bit	Description		R/W	Default
7	Battery Voltage ADC Enable	0:Off, 1:On	RW	1
6	Battery Current ADC Enable		RW	0
5	Internal temperature ADC Enable		RW	0
4-1	Reserved and unchangeable			
0	TS Pin ADC Enable	0:Off, 1:On	RW	1

REG 84H:ADC Sample rate Set , TS Pin Control

Default:32H

Bit	Des	cription	R/W	Default
7	ADC Sample rate Set Bit 1	10×2 ⁿ	RW	0
6	ADC Sample rate Set Bit 0	Sample rate:	RW	0
		100, 200, 400, 800Hz		
5-4	TS Pin Output Current Set :		RW	11
	00:20uA; 01:40uA; 10:60uA;	11:80uA		
3	Reserved and unchangeable			
2	TS Pin function		RW	0
	0: Battery temperature detection,	1:ADC Input		
	TS Pin Current Output Set	00:Off	RW	1
1-0		01: Output Current when charging	RW	0
		10:Output Current when ADC sample		
		11: always On		

REG 85H:TS ADC Sample rate set

Default:X0H

Bit	Description		R/W	Default
7	TS ADC Sample rate Set 1	10×2 ⁿ	RW	0
6	TS ADC Sample rate Set 0	Sample rate 分别为100,200,400,	RW	0
	10	800Hz		
5-0	Reserved and unchangeable)		

REG 8AH: Timer Control

Default:00H

Bit	Description	R/W	Default
7	Timer Timeout status:	RW	0
	1:timeout		
	Write 1 to clear this bit		
6-0	Timer set, 1min/step	RW	0000000
	Write 0 to disable the timer		

REG 8CH:PWRENControl Set 1

Default:00H

Bit	Description		R/W	Default
7	DC-DC1 controlled by PWREN	0: yes 1: no	RW	0
6	DC-DC2 controlled by PWREN		RW	0
5	DC-DC3 controlled by PWREN		RW	0
4	DC-DC4 controlled by PWREN		RW	0
3	DC-DC5 controlled by PWREN		RW	0
2	ALDO1 controlled by PWREN		RW	0
1	ALDO2 controlled by PWREN		RW	0
0	ALDO3 controlled by PWREN		RW	0

REG 8DH:PWRENControl Set 2

Default:00H

Bit	Descript	Description		Default
7	DLDO1 controlled by PWREN	0: yes 1: no	RW	0
6	DLDO2 controlled by PWREN		RW	0
5	DLDO3 controlled by PWREN		RW	0
4	DLDO4 controlled by PWREN	Y	RW	0
3	ELDO1 controlled by PWREN		RW	0
2	ELDO2 controlled by PWREN		RW	0
1	ELDO3 controlled by PWREN		RW	0
0	DC5LDO controlled by PWREN		RW	0

REG 8FH:IC over temperature Power off function Set

Default:01H

Bit	Description	R/W	Default
7	IRQ PIN triggered Power on or Wakeup function Set	RW	0
	0: Off 1: On		
6	ACIN/VBUS In-short function Set	RW	0
	0: auto detection 1: set by REG8F_[5]		
5	ACIN/VBUS In-short status and Set	RW	0
	0: not In-short 1: In-short		
4	N_VBUSEN PIN function Control	RW	Х
	0: Output Pin , as DRIVEVBUS function (Output to enable the OTG 5V		
	Boost module)		
	1: Input Pin , Control VBUS Path		
3	Reserved and unchangeable		
2	AXP228 internal over temperature Power off function Set	RW	0
	0:do not Power off; 1: Power off		
1-0	Reserved and unchangeable	RW	01

REG 90H:GPI00 function Set

Default:07H

Bit	De	scription	R/W	Default
7	GPIO0 posedge triggered IRQ/wa	akeup or not when as input	RW	0
	0: no 1: yes			
6	GPIO0 negedge triggered IRQ/wakeup or not when as input		RW	0
	0: no 1: yes			
5-3	Reserved and unchangeable			
2	GPIO0 Pin Function Set Bit 2	000: Output low	RW	1
		001: Output High	7	
		010:input Function		
1	GPIO0 Pin Function Set Bit 1	011: low noise LDO Function On	RW	1
		100:low noise LDO Function Off		
0	GPIO0 Pin Function Set Bit 0	101-111: floating	RW	1

REG 91H:GPI00 work as LDO mode and Output voltage Set

Default:1FH

Bit	Desc	cription	R/W	Default
7-5	Reserved and unchangeable			
4	GPIO0 LDO Output Voltage Set	0.7-3.3V,100mV/step	RW	0
	Bit4			
3	GPIO0 LDO Output Voltage Set		RW	0
	Bit3			
2	GPIO0 LDO Output Voltage Set		RW	0
	Bit2			
1	GPIO0 LDO Output Voltage Set		RW	0
	Bit1			
0	GPIO0 LDO Output Voltage Set		RW	0
	Bit0			

REG 92H:GPI01 Function Set

Default:07H

Bit	Description		Default
7	GPIO1 posedge triggered IRQ/wakeup or not when as input		0
	0: no 1: yes		
6	GPIO1 negedge triggered IRQ/wakeup or not when as input	RW	0
	0: no 1: yes		

5-3	Reserved and unchangeable			
2	GPIO1 Pin Function Set Bit 2	000: Output low	RW	1
		001: Output High		
		010: input Function		
1	GPIO1 Pin Function Set Bit 1	011: low noise LDO Function On	RW	1
		100:low noise LDO Function Off		
0	GPIO1 Pin Function Set Bit 0	101-111: floating	RW	1

REG 93H:GPI01 work as LDO mode and Output voltage Set

Default:1FH

Bit	Des	cription	R/W	Default
7-5	Reserved and unchangeable			
4	GPIO1 LDO Output Voltage Set	0.7-3.3V,100mV/step	RW	0
	Bit4			
3	GPIO1 LDO Output Voltage Set	C(C)	RW	0
	Bit3	X		
2	GPIO1 LDO Output Voltage Set	Y	RW	0
	Bit2	,		
1	GPIO1 LDO Output Voltage Set		RW	0
	Bit1			
0	GPIO1 LDO Output Voltage Set		RW	0
	Bit0			

REG 94H:GPIO[1:0] input status

Default:00H

Bit	Description		R/W	Default
7-2				
1	GPIO1 input status	0:Low	R	
0	GPIO0input status	1:High	R	

REG 97H:GPIO[1:0] pull down resister Set

Default:00H

Bit	Description		R/W	Default
7-2	Reserved and unchangeable			
1	GPIO1 pull down Control when work as input	0:pull down resistor off 1:pull down resistor on	RW	0
	work as input	1.puli down resistor on		

0	GPIO0 pull down Control when	RW	0
	work as input		

REG 40H: IRQ Enable 1

Default:D8H

Bit	Description		Default
7	ACIN over voltage IRQ Enable		1
6	ACIN insert IRQ Enable	RW	1
5	ACIN remove IRQ Enable		0
4	VBUS over voltage IRQ Enable		1
3	VBUS insert IRQ Enable		1
2	VBUS remove IRQ Enable		0
1	VBUS valid but lower than V _{HOLD} IRQ Enable		0
0	Reserved and unchangeable	RW	0

REG 41H: IRQ Enable 2

Default:FFH

Bit	Description	R/W	Default
7	Battery present IRQ Enable	RW	1
6	Battery remove IRQ Enable	RW	1
5	Battery enter active mode IRQ Enable	RW	1
4	Exit Battery active mode IRQ Enable	RW	1
3	Charging IRQ Enable	RW	1
2	Charge finished IRQ Enable	RW	1
1	Battery over temperature IRQ Enable	RW	1
0	Battery under temperature IRQ Enable	RW	1

REG 42H: IRQ Enable 3

Default:3BH

Bit	Description	R/W	Default
7	AXP228 internal over temperature IRQ Enable	RW	0
6-2	Reserved and unchangeable		
1	Short key IRQ Enable	RW	1
0	Long key IRQ Enable	RW	1

REG 43H: IRQ Enable 4

Default:C1H

Bit	Description		Default
7-2	Reserved and unchangeable		
1	Battery energy low warning level 1 IRQ Enable(information)	RW	1
0	Battery energy low warning level 2 IRQ Enable(need to Power off)	RW	1

REG 44H: IRQ Enable 5

Default:00H

Bit	Description	R/W	Default
7	Timer Timeout IRQ Enable	RW	0
6	PEK posedge IRQ Enable	RW	0
5	PEK negedge IRQ Enable	RW	0
4-2	Reserved and unchangeable		
1	GPIO1 edge IRQ Enable	RW	0
0	GPIO0 edge IRQ Enable	RW	0

REG 48H: IRQ Status 1

Default:00H

Bit	Description	R/W	Default
7	ACIN over voltage IRQ	RW	0
6	ACIN insert IRQ	RW	0
5	ACIN remove IRQ	RW	0
4	VBUS over voltage IRQ	RW	0
3	VBUS insert IRQ	RW	0
2	VBUS remove IRQ	RW	0
1	VBUS valid but lower than V _{HOLD} IRQ	RW	0
0	Reserved and unchangeable	RW	0

REG 49H: IRQ Status 2

Default:00H

Bit	Description	R/W	Default
7	Battery present IRQ	RW	0
6	Battery remove IRQ	RW	0
5	Battery enter active mode IRQ	RW	0

4	Exit Battery active mode IRQ	RW	0
3	Charging IRQ	RW	0
2	Charge finished IRQ	RW	0
1	Battery over temperature IRQ	RW	0
0	Battery under temperature IRQ	RW	0

REG 4AH: IRQ Status 3

Default:00H

Bit	Description	R/W	Default
7	AXP228 internal over temperature IRQ	RW	0
6-2	Reserved and unchangeable		
1	Short key IRQ	RW	0
0	Long key IRQ	RW	0

REG 4BH: IRQ Status 4

Default:00H

Bit	Description	R/W	Default
7-2	Reserved and unchangeable		
1	Battery energy low warning level 1 IRQ (information)	RW	0
0	Battery energy low warning level 2 IRQ (need to Power off)	RW	0

REG 4CH: IRQ Status 5

Default:00H

Bit	Description	R/W	Default
7	Timer Timeout IRQ	RW	0
6	PEK posedge IRQ	RW	0
5	PEK negedge IRQ	RW	0
4-2	Reserved and unchangeable		
1	GPIO1 edge IRQ	RW	0
0	GPIO0 edge IRQ	RW	0

Note: Write 1 to these bit will clear the IRQ status

REG B8H:E-Gauge Control

Default:C0H

Bit	Description	R/W	Default
7	Gauge system Enable Control	RW	1
	0: Off 1: On		
6	Coulomb counter Enable Control	RW	1
	0: Off 1: On		
5	Battery full capacity calibration Function Enable	RW	1
	0: Off 1: On		
4	Battery capacity calibration Status	RW	0
	0: do not at calibration status 1: calibrating now		
3-0	Reserved and unchangeable	RW	0

REG B9H: Battery Gauge result

Default:64H

Bit	Description		R/W	Default
7	Battery result indication	C. () '	R	0
	0: be calculated yet 1: calculating now	X		
6-0	Battery gauge result	0%~100%	R	64

REG EOH: Battery full design capacity Set 1

Default:00H

Bit	Description	R/W	Default
7	Battery full design capacity configured or not	RW	0
	0: not be configured 1:has been configured		
6-0	Battery full design capacity bit[14:8]	RW	

Battery full design capacity = Value * 1.456mAh

REG E1H: Battery full design capacity Set 2

Default:00H

Bit	Description	R/W	Default
7-0	Battery full design capacity bit[7:0]	RW	_

REG E6H: Battery low power warning level Set

Default:A0H

Bit	Description	R/W	Default
7:4 Ba	attery low power warning level 1 Set	RW	1010

	0000-1111: 5%-20%		
6-0	Battery low power warning level 2 Set	RW	0000
	0000-1111: 0%-15%		

11

PACKAGE

