Model Explainability

Presenter: Kshitij Srivastava

September 23, 2020

Amazon reportedly scraps internal AI recruiting tool that was biased against women

21 🟴

The secret program penalized applications that contained the word "women's"

Microsoft's news Al publishes stories about its own racist failures

An Artificial Intelligence (AI) tool developed by Google failed during real-world testing. It was supposed to detect signs of blindness.

Need for Explainable ML

Picture Credits: https://www.darpa.mil/program/explainable-artificial-intelligence

Gartner Hype Cycle 2020

Package ecosystem for Explainable ML

DALEX wraps models created by different factories into a uniform structure that can be then used by model explainers

Credits:

https://github.com/ModelOriented/DrWhy/blob/master/README.md

Explaining ML predictions with Titanic dataset

2. Load the dataset {r} ## ¥ ▶ head(titanic_imputed) gender <fctr> embarked fare sibsp parch class survived male Southampton 7.11 42 3rd 0 male 13 3rd Southampton 20.05 Southampton 20.05 3 male 16 3rd 0 39 3rd Southampton female 20.05 Southampton 7.13 female 16 3rd male 25 3rd Southampton 7.13 0 6 rows

- •gender a factor with levels male and female.
- •age a numeric value with the persons age on the day of the sinking.
- •class a factor specifying the class for passengers or the type of service aboard for crew members.
- •embarked a factor with the persons place of of embarkment (Belfast/Cherbourg/Queenstown/Southampton).
- •country a factor with the persons home country.
- •fare a numeric value with the ticket price (0 for crew members, musicians and employees of the shipyard company).
- •sibsp an ordered factor specifying the number if siblings/spouses aboard;
- •parch an ordered factor specifying the number of parents/children aboard;
- *survived a factor with two levels (no and yes) specifying whether the person has survived the sinking.

Fit RF

```
## 3. Fit a random forest and a lr with splines

\[
\begin{align*} \{r\} \\
\text{#fits a simple random forest with default hp model_ranger <- ranger(survived \simple ., data = titanic_imputed, classification = TRUE, probability = TRUE)

# using restricted cubic splines. Frank Harrell, the creator of rms package notes here: https://stats.stackexchange.com/questions/328545/reporting-the-effect-of-a-predictor-in-a-logistic-regress ion-fitted-with-a-restr that the coefficients of a rcs shouldn't be interpreted like usual lr. Instead a partial effect plot or a nomogram can be used. model_rms <- lrm(survived \simple rcs(age)*gender + rcs(fare) + class, data = titanic_imputed)
```

Fast implementation of Random Forests: https://cran.r-project.org/web/packages/ranger/ranger.pdf

Cubic Splines visualization:

https://pclambert.net/interactivegraphs/spline eg/spline eg

Create a model explainer object

```
## 4. Create an explainer for random forest
```{r}
 ⊕ ≚ ▶
exp_ranger <- explain(model_ranger,
 data = titanic_imputed[,1:7].
 y = titanic_imputed$survived)
predict(exp_ranger, titanic_imputed[1,])
 Preparation of a new explainer is initiated
 -> model label
 : ranger (default)
 -> data
 : 2207 rows 7 cols
 -> target variable : 2207 values
 -> predict function : vhat.ranger will be used (default)
 -> predicted values : numerical. min = 0.01304684 . mean = 0.3220136 . max = 0.9884273
 -> model_info : package ranger . ver. 0.12.1 . task classification (default)
 -> residual function : difference between v and vhat (default)
 -> residuals : numerical. min = -0.7811852 . mean = 0.0001431836 . max = 0.8837261
 A new explainer has been created!
 0.1037679
5. Create an explainer for lr with splines
```{r}
exp_rms <- explain(model_rms,
                  data = titanic_imputed[,1:7],
                  y = titanic_imputed$survived,
                  predict_function = function(m, x)
                   predict(m, x, type = "fitted"),
                  label = "Logistic with splines")
 Preparation of a new explainer is initiated
  -> model label
                  : Logistic with splines
                      : 2207 rows 7 cols
  -> data
  -> target variable : 2207 values
  -> predict function : function(m, x) predict(m, x, type = "fitted")
  -> predicted values : numerical, min = 0.01182128 , mean = 0.3221568 , max = 0.9589928
  -> model_info : package rms , ver. 6.0.1 , task classification ( default )
  -> residual function : difference between y and yhat ( default )
                    : numerical, min = -0.9508948, mean = -2.68076e-09, max = 0.9733383
  A new explainer has been created!
```


Measures of Performance

```
mp_ranger <- model_performance(exp_ranger)

## 7. Plot comparison charts

```{r}
plot(mp_ranger, mp_rms, geom = "roc")</pre>
```

#### Receiver Operator Characteristic





#### **Shapley Values**

```
Shapley Values
sh_ranger <- predict_parts(exp_ranger, titanic_imputed[4,], type = "shap", B = 1)
plot(sh_ranger, show_boxplots = FALSE) +
 ggtitle("Shapley values for single observation","")</pre>
```





https://towardsdatascience.com/shap-explained-the-way-i-wish-someone-explained-it-to-me-ab81cc69ef30



#### **Break down Values**

```
bd_ranger <- predict_parts(exp_ranger, titanic_imputed[4,], type = "break_down_interactions")
bd_ranger|
plot(bd_ranger, show_boxplots = FALSE) +
 ggtitle("Break down values for a single observation","") +
 scale_y_continuous("",limits = c(0.01,0.8))</pre>
```





More about breakdown methodology: <a href="https://arxiv.org/abs/1804.01955">https://arxiv.org/abs/1804.01955</a>



## Variable Importance

```
mp_ranger <- model_parts(exp_ranger, type = "difference")

plot(mp_ranger, show_boxplots = FALSE) +
 ggtitle("Variable importance","")</pre>
```





## Variable Importance

```
mp_ranger <- model_parts(exp_ranger, type = "difference")

plot(mp_ranger, show_boxplots = FALSE) +
 ggtitle("Variable importance","")</pre>
```





#### Ceteris Paribus profile

```
cp_ranger <- predict_profile(exp_ranger, titanic_imputed[4,])|
plot(cp_ranger, variables = c("age", "fare"))</pre>
```





#### Partial Dependence plot

```
mp_ranger <- model_profile(exp_ranger)

plot(mp_ranger, variables = "age")

plot(mp_ranger, variables = "age", geom = "points") +
 ggtitle("Partial dependence","")</pre>
```

#### Partial dependence





#### More resources

- https://modeloriented.github.io/DALEX/articles/vignette\_t itanic.html
- https://github.com/ModelOriented/DALEX
- https://github.com/ModelOriented/DrWhy/blob/master/R EADME.md
- https://www.darpa.mil/program/explainable-artificialintelligence



Questions?

