8.2 Vilém Zouhar

BMerge

a)

Pro n=1 (nenastane) vracíme x_0 , pro $n\leq 2$ pak $min(x_0,x_1), max(x_0,x_1)$ a je setřízeno. Pokud začneme od listů (takhle bude stejně konstruovaná síť), pak z indukce stačí rozhodnout už jen obecný případ. Jestliže máme v (a_0,\ldots,a_{n-1}) a (b_0,\ldots,b_{n-1}) setřízené, pak máme setřízené (x_0,\ldots,x_{n-1}) jednotlivě na sudých a lichých místech. Pak spouštíme porovnání C_i na $C(x_{2i},x_{2i+1}) \forall i\in \frac{n}{2}$) a podle velikosti je prohodíme. Po tomto porovnání budou tyto dvě čísla seřazená, ale nutně musí být i seřazená s dvojicí vedle, neboť $x_{2i+1}\leq x_{2i+3} \wedge x_{2i} \leq x_{2i+2}$. Můžeme to rozebrat po příkladech:

- C_i , C_{i+2} prohodí, pak nemůže být $x_{2i} \geq x_{2i+3}$, jinak by $x_{2i+1} \geq x_{2i+3}$
- C_i , C_{i+2} neprohodí, pak nemůže být $x_{2i+1} \ge x_{2i+2}$ opět z tranzitivity
- C_i prohodí, C_{i+2} neprohodí, nebo naopak, pak nemůže být $x_{2i} \ge x_{2i+2}$, resp $x_{2i+1} \ge x_{2i+3}$ přímo z definice setřízených posloupností

b)

Pokud máme vstup délky n, pak uděláme dvě subsítě pro liché a sudé prvky a přidáme mezi každé obdvojice komparátor (prvky této obdvojice však nemusí být v síti vedle sebe; subsítě jsou proloženy přes sebe). Triviální komparátor použijeme pro n=2.