Работа 3.3.2

Исследование вольт-амперной характеристики вакуумного диода

Гаврилин Илья Дмитриевич Б01-101

27.09.2022

1 Аннотация

В работе рассчитывается удельный заряд электрона (заряд на единицу массы: e/m). Для его определения применяется закон "трех вторых": $I = A_0 U^{3/2}$. В качестве элемента, на котором выполняется данный закон используется вакуумная лампа, для которой измеряется зависимость анодного напряжения от анодного тока, при различных значениях тока накала.

2 Теоретические сведения

В работе исследуется зависимости прямого тока, проходящего через вакуумный диод, в зависимости от напряжения на нем, а именно та часть вольт-амперной характеристики, в которой электронное облако существенно влияет на распределение электрического поля между катодом и анодом.

Распределение потенциала по радиусу внутри диода определяется уравнением Пуассона в цилиндрических координатах:

$$\Delta V = \frac{d^2V}{dr^2} + \frac{1}{r} + \frac{dV}{dr} = -\frac{\rho(r)}{\epsilon_0} \tag{1}$$

При этом плотность заряда $\rho(r)$ связана с текущим через слой диода толщины l током I формулой $I=-2\pi r \rho(r)v(r)l$. При этом из закона сохранения энергии мы легко находим скорость v(r) электронов , прошедших через разность потенциалов V(r): $\frac{mv^2}{2}=eV(r)$. Отсюда мы получаем уравнение

$$r\frac{d^2V}{dr^2} + \frac{dV}{dr} = \frac{I}{2\pi\epsilon_0}\sqrt{\frac{m}{2eV}}$$
 (2)

Однако, в дифференциальном уравнении 2-ого порядка относительно V(r) нам неизвестен ток I, зависящий от V. Для доопределения уравнения будем полагать:

$$\left. \frac{dV}{dt} \right|_{r=r} = 0 \tag{3}$$

Наше предположение означает что вблизи катода пространственный заряд электронов полностью экранирует поле анодной разности потенциалов.

Уравнение (2) является нелинейным. Попробуем найти некое частное решение, где $V_a=V_{a0}$, при котором ток $I=I_0$. Тогда выражения

$$I = I_o \left(\frac{V_a}{Va0}\right)^{3/2}, \qquad V(r) = V_{a0}(r)\frac{V_a}{V_{a0}}$$
 (4)

являются решением уравнения (2), что проверяется подстановкой. В общем виде решение записывается в виде

$$I = \frac{8\sqrt{2}\pi\epsilon_0 l}{9} \sqrt{\frac{e}{m}} \frac{1}{r_a \beta^2} V^{3/2} \tag{5}$$

Это и есть так называемый «закон трех вторых» – ток в вакуумном диоде пропорционален напряжению на нем в степени 3/2. Он справедлив при любой геометрии электродов, если ток не слишком велик (т.е. пока выполнено условие (3)).

Так как нам нужно найти удельный заряд электрона, выпишем в явном виде его из уравнения (5):

$$\frac{e}{m} = \frac{81r_a^2 \beta^4}{128\pi^2 \epsilon_0^2 l^2} \frac{I^2}{V^2} = k \frac{I^2}{V^3} = k \left(\frac{dI}{dV^{3/2}}\right)^2 \tag{6}$$

Таким образом, удельный заряд электрона определяется из отношения квадрата тока к кубу напряжения, умноженный на коэффициент, зависящий от параметров установки.

3 Ход работы

3.1 Рассчет к

В работе используется диод 2Ц2С с косвенным накалом. Радиус его катода $r_k=0.9$ мм, радиус анода $r_a=9.5$ мм, коэффициент $\beta^2=0.98$, длина слоя центральной части катода, покрытой оксидным слоем l=9 мм.

Для подогрева катода и анода используются стабилизированные источники постоянного тока и напряжения. В цепь накала включено предохранительное напряжение R. Анодное напряжение измеряется вольтметром источника питания, анодный ток — многопредельным мультиметром GDM-8245.

Рис. 1: Схема экспериментальной установки

Вычислим коэффициент k:

$$k = \frac{81r_a^2\beta^4}{128\pi^2\epsilon_0^2l^2} = \frac{81\cdot(9.5\cdot10^{-3})^2\cdot0.98^4}{64\cdot2\cdot3.14^2\cdot(8.85\cdot10^{-12})^2\cdot(9\cdot10^{-3})^2} \approx 8.4\cdot10^{20}$$
(7)

3.2 Замеры

Проведем замеры анодной ВАХ для диода, на 4-ех различных значениях накального тока: 1.3, 1.4, 1.5, 1.6 A.

I_H , A	1.3	1.4	1.5	1.6
$U_{\rm a},{ m B}$	$I_{\rm a},\mu A$	$I_{\rm a}, \mu A$	$I_{\rm a},\mu A$	$I_{\rm a},\mu A$
0.5	4.19	8.21	15.76	22.97
1.0	12.56	19.68	27.46	40.85
1.5	24.50	32.75	44.71	58.90
2.0	40.84	48.38	62.94	77.85
2.5	56.10	66.74	82.44	101.50
3.0	74.21	86.33	104.42	122.59
3.5	93.26	110.53	126.56	146.34
4.0	115.00	130.04	149.13	171.78
4.5	138.76	157.73	175.74	197.36
5.0	160.84	179.68	203.47	229.12
5.5	188.38	206.56	231.02	255.30
6.0	211.97	231.84	255.75	285.96
7.0	268.20	291.45	321.18	352.82
8.0	330.72	357.62	386.84	423.84
9.0	397.92	428.73	458.31	496.30
10.0	494.00	496.77	570.50	609.50
15.0	906.40	954.00	1002	1062
20.0	1417	1476	1545	1609
25.0	2005	2090	2165	2235
30.0	2642	2753	2838	2930
35.0	3323	3470	3565	3654
40.0	4036	4226	4345	4444
45.0	4781	5046	5243	5365
50.0	5646	6000	6141	6270

Таблица 1: Замеры ВАХ вакуумного диода

3.3 Построение графиков

Построим зависимость $I=f(U^{3/2})$, из коэффициента наклона определим значение производной: $\frac{dI}{dV^{3/2}}$. При построении графика учтем что BAX может в некоторых местах не совпадать с законом «трех

При построении графика учтем что ВАХ может в некоторых местах не совпадать с законом «трех вторых», поэтому при аппроксимации прямой в качестве данных будем брать точки начиная с некоторой (4-5 точка для всех графиков), для меньших значений анодного напряжения понижается точность замера тока мультиметром.

По линейности графика на большинстве замеров можем сделать выводы о справедливости закона, продолжим расчеты удельного заряда электрона, используя полученные данные.

Рис. 2: Зависимость $I = f(U^{3/2})$, для $I_H = 1.3~{
m A}$

Рис. 3: Зависимость $I=f(U^{3/2})$, для $I_H=1.4~{
m A}$

Рис. 4: Зависимость $I=f(U^{3/2})$, для $I_H=1.5~{
m A}$

Рис. 5: Зависимость $I=f(U^{3/2})$, для $I_H=1.6~{
m A}$

3.4 Рассчет удельного заряда электрона

В пункте (3.1) получили значение введенного нами коэффициента k, а в пункте (3.3) получили значения требуемых производных, отсюда, по формуле (6), вычислим удельный заряд электрона.

I_H , A	$\frac{dI}{dV^{3/2}}$	$\sigma(\frac{dI}{dV^{3/2}})$	$\frac{e}{m}$, ·10 ¹¹ , Кл/кг	$\sigma(\frac{e}{m}), \cdot 10^{11}, \mathrm{K}\pi/\mathrm{K}\Gamma$
1.3	16.000	0.028	2.150	0.008
1.4	16.844	0.036	2.383	0.010
1.5	17.279	0.025	2.508	0.007
1.6	17.611	0.026	2.605	0.008

Таблица 2: Зависимость удельного заряда электрона от накального тока

4 Выводы

- 1) В работе проверили справедливость закона «трех вторых»
- 2) Сняли ВАХ вакуумного диода при различных значениях тока.
- 3) Рассчитали удельный заряд электрона:

Экспериментально: $\frac{e}{m}=(2.412\pm0.008)\cdot10^{11},\ \mathrm{K}\pi/\mathrm{k}\Gamma$ Табличное значение: $\frac{e}{m}=1.76\cdot10^{11},\ \mathrm{K}\pi/\mathrm{k}\Gamma$

Полученное значение сходно по порядку с табличным, однако не попадает в полученную погрешность. Причиною данному могут быть: износ лампы, плохой контакт. Также, видим тенденцию роста при увеличении накального тока, это может быть обусловлено узкой полосой накального тока при котором лампа работает в идеальном режиме (без перегрева и тд.)