Лекция 3

Независимые события.

События A и B называются <u>независимыми</u>, если выполнено одно из соотношений

$$P(A|B)=P(A)$$
или $P(B|A)=P(B)$,
или $P(AB)=P(A)\cdot P(B)$,

т.е. если условная вероятность события A совпадает с его безусловной вероятностью или

События $A_1, A_2, ..., A_n$ называются <u>независимыми</u>

<u>в совокупности</u>, если для любого подмножества событий вероятность произведения событий, входящих в это подмножество, равна произведению вероятностей отдельных событий, т.е. $\forall \ r \le n, \ 1 \le j_1 < ... < j_r \le n, \ A_{j_1},...,A_{j_r}$:

$$P\left(\bigcap_{k=1}^r A_{j_k}\right) = \prod_{k=1}^r P(A_{j_k}).$$

Из попарной независимости событий не следует независимость событий в совокупности.

Пример Бернитейна. Имеется правильная пирамидка, 3 грани которой одноцветные (красная, черная и белая), а 4-я грань трехцветная (красно-черно-белая). В результате бросания может произойти одно из событий: A_1 ={выпадет грань, на которой есть красный цвет}, A_2 ={выпадет грань, на которой есть черный цвет}, A_3 ={выпадет грань, на которой есть белый цвет}. Вычислим

$$P(A_1) = P(A_2) = P(A_3) = \frac{2}{4};$$

$$\mathbf{P}(A_1A_2) = \mathbf{P}(A_2A_3) = \mathbf{P}(A_1A_3) = \mathbf{P}(A_1A_2A_3) = \frac{1}{4}.$$

Поскольку

$$\mathbf{P}(A_1 A_2) = \mathbf{P}(A_1) \cdot \mathbf{P}(A_2), \quad \mathbf{P}(A_2 A_3) = \mathbf{P}(A_2) \cdot \mathbf{P}(A_3),$$

$$\mathbf{P}(A_1 A_3) = \mathbf{P}(A_1) \cdot \mathbf{P}(A_3),$$

$$\mathbf{P}(A_1 A_2 A_3) \neq \mathbf{P}(A_1) \cdot \mathbf{P}(A_2) \cdot \mathbf{P}(A_3),$$

то события попарно независимы, но зависимы в совокупности.

Формулы умножения вероятностей.

- 1. Для независимых событий $P\left(\bigcap_{k=1}^{n} A_{k}\right) = P(A_{1}) \cdot P(A_{2}) \cdot ... \cdot P(A_{n}).$
- 2. Для совместных событий $P(AB)=P(A) \cdot P(B|A)=P(B) \cdot P(A|B)$.

3.
$$P\left(\bigcap_{k=1}^{n} A_{k}\right) = P\left(A_{1} \cap \left(\bigcap_{k=2}^{n} A_{k}\right)\right) =$$

$$= P(A_{1}) \cdot P(A_{2} \mid A_{1}) \cdot P(A_{3} \mid A_{1} A_{2}) \dots \cdot P(A_{n} \mid A_{1} \dots A_{n-1})$$

Способ вывода

$$P(ABC) = P(A \cap (BC)) =$$

$$= P(A) \cdot P(BC \mid A) = P(A) \cdot P(B \mid A) \cdot P(C \mid AB)$$

Пример 1. Студент знает 10 из 30 вопросов. Определить вероятность получения зачета, если для этого необходимо либо на оба предложенных вопроса, либо на один из них и один дополнительный.

Решение.

Обозначим: $A_j = \{ j$ -й вопрос студент знает $\}, j = 1, 2, 3;$

B={студент получит зачет}. Вычислим искомую вероятность, применяя формулы сложения и умножения вероятностей:

$$P(B) = P(A_{1}A_{2} + A_{1}\overline{A_{2}}A_{3} + \overline{A_{1}}A_{2}A_{3}) = P(A_{1}A_{2}) + P(A_{1}\overline{A_{2}}A_{3}) + P(\overline{A_{1}}A_{2}A_{3}) =$$

$$= P(A_{1}) \cdot P(A_{2} | A_{1}) + P(A_{1}) \cdot P(\overline{A_{2}} | A_{1}) \cdot P(A_{3} | \overline{A_{2}}A_{1}) +$$

$$+ P(\overline{A_{1}}) \cdot P(A_{2} | \overline{A_{1}}) \cdot P(A_{3} | \overline{A_{1}}A_{2}) =$$

$$= \frac{10}{30} \cdot \frac{10 - 1}{30 - 1} + \frac{10}{30} \cdot \frac{20}{30 - 1} \cdot \frac{10 - 1}{30 - 2} + \frac{20}{30} \cdot \frac{10}{30 - 1} \cdot \frac{10 - 1}{30 - 2}.$$

Пример 2. В партии 2 дефектных и 8 годных изделий. Случайным образом по одному извлекаются изделия для контроля. Найти вероятность того, что второе извлеченное изделие дефектное.

Решение. Обозначим $A_j = \{j$ -е извлеченное изделие дефектное $\}$, j = 1, 2, ..., 10; $B = \{$ второе извлеченное изделие дефектное $\}$. Вычислим искомую вероятность, применяя формулы сложения и умножения вероятностей:

$$P(B) = P(A_1 A_2 + \overline{A_1} A_2) = P(A_1 A_2) + P(\overline{A_1} A_2) =$$

$$= P(A_1) \cdot P(A_2 | A_1) + P(\overline{A_1}) \cdot P(A_2 | \overline{A_1}) = \frac{2}{10} \cdot \frac{1}{9} + \frac{8}{10} \cdot \frac{2}{9} = \frac{18}{90} = \frac{1}{5}.$$

Независимые испытания. Формула умножения вероятностей для н/з испытаний.

Испытания <u>независимые</u>, если исход одного из них не влияет на исход (не связан с исходом) любого другого.

Если события $A_1, A_2, ..., A_n$ являются результатами различных независимых испытаний, то они являются причинно (физически)

независимыми. Тогда
$$P\left(\bigcap_{k=1}^{n}A_{k}\right)=\prod_{k=1}^{n}P\left(A_{k}\right)$$

Формальное определение независимых испытаний. Пусть вероятностные пространства $(\Omega_i, \mathfrak{A}_i, P_i), i = 1, ..., n$ соответствуют n различным испытаниям. Если для любых $A_i \in \mathfrak{A}_i$ i = 1, ..., n выполнено соотношение $P\left(\bigcap_{k=1}^n A_k\right) = \prod_{k=1}^n P\left(A_k\right)$, то испытания независимы.

Пример 1. В охраняемое помещение можно пройти, преодолев 3 уровня безопасности. Вероятности преодоления каждого из них равны 0,2, 0,1 и 0,05 соответственно. Найти надежность (вероятность безотказной работы) этой системы безопасности.

Решение.

Вероятность попасть в охраняемое помещение

$$P(A_1A_2A_3) = 0, 2 \cdot 0, 1 \cdot 0, 05 = 0, 01$$

Надежность системы безопасности равна

$$1 - 0,01 = 0,99$$

Пример 2. P(A) = P(B) = 1. Являются ли события A, B независимыми событиями?

Решение.

$$P(AB) = P(A) + P(B) - P(A \cup B) = 2 - P(A \cup B) \ge 1 \Rightarrow P(AB) = 1.$$

Вывод. События A, B независимы.

Формула полной вероятности.

Условие ее применимости. Известно, что событие A может произойти совместно только с одним из событий $H_1, H_2, ..., H_k$, образующих полную группу событий и называемых гипотезами.

Тогда, если до проведения испытания известны $\mathbf{P}(H_i)$ – *априорные вероятности* гипотез H_i , и условные вероятности $\mathbf{P}(A/H_i)$, то полную вероятность события A можно найти по

формуле:
$$\mathbf{P}(A) = \sum_{i=1}^{k} \mathbf{P}(AH_i) = \sum_{i=1}^{k} \mathbf{P}(H_i) \cdot \mathbf{P}(A|H_i).$$

Обоснование формулы: события $\left\{ H_{j} \right\}$ — несовместны, поэтому

события
$$\left\{AH_{j}\right\}$$
— несовместны и $A=\sum_{j=1}^{\kappa}AH_{j}$. Тогда

$$\mathbf{P}(A) = \mathbf{P}(A \cdot \Omega) = \mathbf{P}\left(A \cdot (H_1 + H_2 + \dots + H_k)\right) = \mathbf{P}\left(\sum_{i=1}^k (AH_i)\right) = \sum_{i=1}^k \mathbf{P}(AH_i)$$

Пример 1 (задача про две урны). Имеются 2 урны, в каждой из которых 6 белых и 4 черных шаров. И 1-й урны во вторую случайным образом извлекаются 2 шара и перекладываются во вторую урну. Затем из 2-й урны извлекается 1 шар. Найти вероятность того, он окажется белым.

Решение.

Пусть $A = \{$ из 2-й урны будет извлечен белый шар $\}$.

<u>Предварительные рассуждения.</u> Невозможно воспользоваться формулой КВ, поскольку не определен состав шаров 2-й урны. Эту стохастическую неопределенность можно устранить, определяя следующие гипотезы:

 $H_1 = \{$ во 2-ю урну переложат 2 белых шара $\}$,

 $H_2 = \{$ во 2-ю урну переложат 1 белый шар и 1 черный шар $\}$,

 $H_3 = \{$ во 2-ю урну переложат 2 черных шара $\}$.

Применяя формулу полной вероятности, получим

$$\mathbf{P}(A) = \sum_{i=1}^{3} \mathbf{P}(H_i) \cdot \mathbf{P}(A | H_i) =$$

$$= \frac{C_6^2}{C_{10}^2} \cdot \frac{8}{12} + \frac{6 \cdot 4}{C_{10}^2} \cdot \frac{7}{12} + \frac{C_4^2}{C_{10}^2} \cdot \frac{6}{12} = \frac{120 + 168 + 36}{45 \cdot 12} = \frac{324}{540} = 0,6$$

Формула Байеса. В описанных выше условиях стало известно, что событие A произошло. Формула Байеса позволяет найти $\mathbf{P}(H_j \mid A) - \underline{anocmepuophie\ beposition}$ (вероятности по данным эксперимента) гипотез:

$$\mathbf{P}(H_j|A) = \frac{\mathbf{P}(H_jA)}{\mathbf{P}(A)} = \frac{\mathbf{P}(H_jA)}{\sum_{i=1}^k \mathbf{P}(AH_i)} = \frac{\mathbf{P}(H_j) \cdot \mathbf{P}(A|H_j)}{\sum_{i=1}^k \mathbf{P}(H_i) \cdot \mathbf{P}(A|H_i)}$$

Продолжение пример 1 (задача про две урны). Извлеченный из 2-й урны шар оказался белым. Какие 2 шара скорее всего были переложены?

Применяем формулу Байеса:

Применяем формулу Баиеса:
$$\mathbf{P}(H_1|A) = \frac{\mathbf{P}(H_1) \cdot \mathbf{P}(A|H_1)}{\sum_{i=1}^{3} \mathbf{P}(H_i) \cdot \mathbf{P}(A|H_i)} = \frac{\frac{C_6^2}{C_{10}^2} \cdot \frac{8}{12}}{0,6} = \frac{2 \cdot 5}{9 \cdot 3} = \frac{10}{27} = \frac{50}{135}$$

$$\mathbf{P}(H_2|A) = \frac{\mathbf{P}(H_2) \cdot \mathbf{P}(A|H_2)}{\sum_{i=1}^{3} \mathbf{P}(H_i) \cdot \mathbf{P}(A|H_i)} = \frac{\frac{6 \cdot 4}{C_{10}^2} \cdot \frac{7}{12}}{0,6} = \frac{70}{135}$$

$$\mathbf{P}(H_3|A) = \frac{\mathbf{P}(H_3) \cdot \mathbf{P}(A|H_3)}{\sum_{i=1}^{3} \mathbf{P}(H_i) \cdot \mathbf{P}(A|H_i)} = \frac{\frac{C_4^2}{C_{10}^2} \cdot \frac{6}{12}}{0,6} = \frac{15}{135}$$
Bubout exoree Beefo H_3

Вывод: скорее всего H_2

Пример 2. Двурукий бандит — это автомат с двумя ручками, причем вероятности успеха, соответствующие нажатию на ту или иную ручку, различны и равны $p_1, p_2, \alpha = p_1 / p_2 > 1$. Каждый раз игрок может нажать лишь одну ручку. Пусть $A = \{$ произойдет выигрыш при нажатии случайно выбранной ручки $\}$. Найти апостериорную вероятность события

 $H_1 = \{$ следует нажать левую ручку $\}$.

Решение. Априорные вероятности $\mathbf{P}(H_1) = \mathbf{P}(H_2) = \frac{1}{2}, H_2 = \overline{H_1}.$ Тогда

$$\mathbf{P}(H_1|A) = \frac{\mathbf{P}(H_1A)}{\mathbf{P}(A)} = \frac{p_1 \cdot \frac{1}{2}}{p_1 \cdot \frac{1}{2} + p_2 \cdot \frac{1}{2}} = \frac{\alpha}{\alpha + 1} > \frac{1}{2}.$$

Пример 3 (ошибки классификации). Изделие проверяется на стандартность одним из товароведов. Вероятность того, что изделие попадет к первому товароведу, равна 0,55, а ко второму – 0,45. Вероятность того, что изделие будет признано стандартным первым товароведом, равна 0,9, а вторым – 0,98. а) Найти вероятность того, что первое изделие в результате проверки будет забраковано. б) Найти вероятность того, что первое изделие проверял второй товаровед, если оно было признано стандартным. Решение. Определим события:

 $A = \{$ проверяемое изделие будет признано годным $\},$ $H_1 = \{$ изделие проверит 1-й товаровед $\},$

 H_2 ={ изделие проверит 2-й товаровед}. По условию

$$P(H_1) = 0.55; P(H_2) = 0.45;$$

$$\mathbf{P}(\overline{A} \mid H_1) = 1 - 0.9 = 0.1; \mathbf{P}(\overline{A} \mid H_2) = 1 - 0.98 = 0.02.$$

Найдем по формуле полной вероятности

$$\mathbf{P}(\overline{A}) = \mathbf{P}(H_1) \cdot \mathbf{P}(\overline{A} | H_1) + \mathbf{P}(H_2) \cdot \mathbf{P}(\overline{A} | H_2) = 0,55 \cdot 0,1 + 0,45 \cdot 0,02 = 0,055 + 0,009 = 0,064.$$

Применим формулу Байеса:

$$\mathbf{P}(H_2 \mid A) = \frac{\mathbf{P}(H_2) \cdot \mathbf{P}(A \mid H_2)}{\mathbf{P}(A)} = \frac{0,45 \cdot 0,98}{1 - 0,064} = \frac{0,441}{0,936} = 0,47;$$

Пример 4. При рентгеновском обследовании вероятность обнаружить заболевание туберкулезом у больного туберкулезом равна $1-\beta$. Вероятность принять здорового человека за больного равна α . Доля больных туберкулезом по отношению ко всему населению равна γ . а) Найти вероятность того, что человек здоров, если он был признан больным при обследовании. б) Вычислить найденную в пункте а) вероятность при следующих числовых значениях: $1-\beta=0.95$, $\alpha=0.01$, $\gamma=0.001$.

Решение. Определим события:

 $A = \{$ обследуемый человек будет признан больным $\}$,

 $H_1 = \{$ обследуемый человек болен $\}$,

 $H_2 = {\text{обследуемый человек здоров}}.$

По условию

$$P(H_1) = \gamma; P(H_2) = 1 - \gamma; P(A | H_1) = 1 - \beta; P(A | H_2) = \alpha.$$

Теперь, используя формулы полной вероятности и Байеса, найдем последовательно

$$P(A) = P(H_1) \cdot P(A | H_1) + P(H_2) \cdot P(A | H_2) = \gamma (1 - \beta) + (1 - \gamma)\alpha;$$

$$P(H_2 | A) = \frac{P(H_2) \cdot P(A | H_2)}{P(A)} = \frac{(1 - \gamma)\alpha}{\gamma (1 - \beta) + (1 - \gamma)\alpha} =$$

$$= \frac{0.999 \cdot 0.01}{0.001 \cdot 0.95 + 0.999 \cdot 0.01} = \frac{0.00999}{0.01094} = 0.91$$

Вывод. Не надо преждевременно расстраиваться. Надо сначала дообследоваться.

Тема 4. Схема независимых повторных испытаний

Описание схемы независимых повторных испытаний с двумя исходами: успех и неудача. Вычисление вероятностей наблюдения определенного числа успешных испытаний с помощью формулы Бернулли. Приближенные вычисления вероятностей в схеме независимых повторных испытаний с помощью предельных теорем. Теорема Пуассона. Локальная теорема Муавра-Лапласа. Интегральная теорема Муавра-Лапласа. Следствия из интегральной теоремы об относительной частоте случайного события и вероятности наблюдения определенного числа успешных испытаний числа.

Независимые испытания. Формула умножения вероятностей для н/з испытаний.

Испытания <u>независимые</u>, если исход одного из них не влияет на исход (не связан с исходом) любого другого.

Пусть события $A_1, A_2, ..., A_n$ являются результатами различных независимых испытаний. Они являются *причинно* (физически)

независимыми. Тогда
$$Pigg(\bigcap_{k=1}^n A_kigg) = \prod_{k=1}^n Pig(A_kig)$$

Схема независимых повторных испытаний. Формула Бернулли

Схема испытаний Бернулли. Осуществляются n независимых испытаний, исходом каждого из которых могут быть одно из противоположных событий A и \overline{A} (успех или неудача). При этом в любом испытании $\mathbf{P}(A) = p$ и $\mathbf{P}(\overline{A}) = 1 - p = q$ постоянны. Эту вероятностную модель называют *схемой независимых повторных испытаний Бернулли*.

<u>Примеры испытаний Бернулли</u>: страхование клиентов, контроль штучных изделий, функционирование элементов, рождение детей,

Далее X — число появлений (частота) события A в n испытаниях.

Основные вероятностные задачи в схеме Бернулли.

 $3a\partial a 4a$ 1. Найти $\mathbf{P}(X=m) \equiv P_n(m)$ — вероятность того, что число успешных испытаний будет равно m.

 $3a\partial a va~2$. Найти $\mathbf{P}(m_1 \le X \le m_2) \equiv P_n(m_1, m_2)$ — вероятность того, что число успешных испытаний будет лежать в пределах от m_1 до m_2 .

Эти задачи решаются с помощью формулы Бернулли:

1)
$$P_n(m) = C_n^m p^m q^{n-m}, m = 0,1,...n$$
 (формула Бернулли);

2)
$$P_n(m_1, m_2) = P_n(m_1) + \dots + P_n(m_2) = \sum_{m=m_1}^{m_2} C_n^m p^m q^{n-m}$$
.

Задача 3. Вычисление наивероятнейшего числа успехов m_0 – числа успехов, которому соответствует наибольшее значение биномиальной вероятности $P_n(m) = C_n^m p^m q^{n-m}$.

Наивероятнейшее число успехов определяется путем решения неравенства: $np - q \le m_0 \le np + p$. Количество решений неравенства – одно или два.

Приближенные вычисления в схеме Бернулли

При $n \to \infty$ нахождение вероятности по формуле Бернулли сопряжено с преодолением проблемы вычислительного характера. Эта проблема решается либо с помощью нормального приближения, либо с помощью пуассоновского приближений. Также полезной оказывается формула Стирлинга.

Формула Стирлинга. При $n \to \infty$ $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$ или

$$n! = \sqrt{2\pi n} \cdot n^n e^{-n} \cdot e^{-\theta_n}, \left| \theta_n \right| \leq \frac{1}{12n}.$$

Пример. Точное значение $20! = 2,43 \cdot 10^{18}, 10! = 3628800;$ приближенное значение $20! \approx 2,42 \cdot 10^{18}, 10! = 3600000.$

Рекомендации по выбору пуассоновского или нормального приближения. Считается, что $n \to \infty$ при $n \ge 50$ (еще лучше, если $n \ge 100$).

Если выполняются условия npq > 9 и $\frac{1}{n+1} , то используется$ *нормальное*приближение.

Во всех остальных случаях – пуассоновское приближение.

Теорема Пуассона. Пусть в схеме испытаний Бернулли число испытаний неограниченно растет $n \to \infty$, а $p \to 0$ так, что $np \to \lambda, \lambda > 0$. Тогда

$$\lim_{n\to\infty} P_n(m) = \frac{\lambda^m}{m!} \cdot e^{-\lambda}, m = 0, 1, \dots$$

Верно

$$P_{n}(m) = \frac{n(n-1) \cdot ... \cdot (n-m+1)}{m!} \cdot p^{m} q^{n-m} = \frac{n(n-1)...(n-m+1)}{n^{m}} \cdot \underbrace{\frac{(np)^{m}}{m!}}_{B_{n}} \cdot \underbrace{(1-p)^{n-m}}_{C_{n}} \xrightarrow{n \to \infty} \frac{\lambda^{m}}{m!} \cdot e^{-\lambda},$$

поскольку

$$\lim_{n\to\infty} A_n = 1; \lim_{n\to\infty} B_n = \frac{\lambda^m}{m!}; \lim_{n\to\infty} C_n = e^{-\lim_{n\to\infty} (-p)(n-m)} = e^{-\lambda}. \blacksquare$$

Следствие. При $n \to \infty$ и $np \to \lambda$

$$\lim_{n\to\infty} P_n(m_1, m_2) = \left[\frac{\lambda^{m_1}}{m_1!} + \frac{\lambda^{m_1+1}}{(m_1+1)!} + \dots + \frac{\lambda^{m_2}}{m_2!}\right] e^{-\lambda}.$$

Примечание. При конечном n вычисления проводятся по формуле

$$P_{n}(m) \simeq \frac{\lambda^{m}}{m!} \cdot e^{-\lambda},$$

$$P_{n}(m_{1}, m_{2}) \simeq \left[\frac{\lambda^{m_{1}}}{m_{1}!} + \frac{\lambda^{m_{1}+1}}{(m_{1}+1)!} + \dots + \frac{\lambda^{m_{2}}}{m_{2}!} \right],$$

полагая $\lambda = np$.

Точность пуассоновской аппроксимации характеризуется величиной np^2 .

Нормальное приближение вероятностей $P_n(m)$ и $P_n\left(m_1,m_2\right)$

Введем обозначения:

1)
$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$
 — плотность стандартного нормального

распределения;

2)
$$\Phi(x) = \int_{-\infty}^{x} \varphi(t)dt = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$$
 — функция распределения

стандартной нормальной величины.

Свойства функций $\phi(x), \Phi(x)$.

- 1) $\varphi(-x) = \varphi(x)$ четная функция, $\varphi(x)$ убывает относительно |x|.
- 2) $\Phi(x)$ возрастает от $\Phi(-\infty) = 0$ до $\Phi(\infty) = 1$.
- 3) $\Phi(-x) = 1 \Phi(x)$ (используется для расчета при x < 0).
- 4) $\Phi(0) = 0.5$. 5) При $x \ge 4$ $\Phi(x) = 1,0000$ (погрешность вычислений не превышает одну десятитысячную).

Интегральная теорема Муавра-Лапласа. Пусть X — число появлений события A в n независимых повторных испытаниях, $0 . Тогда при <math>n \to \infty$ для любых действительных x_1, x_2

$$\mathbf{P}\left(x_1 \le \frac{X - np}{\sqrt{npq}} \le x_2\right) = \Phi(x_2) - \Phi(x_1) + \mathbf{O}\left(\frac{1}{\sqrt{n}}\right).$$

Следствие 1. Если в условиях теоремы Муавра-Лапласа m_1 и m_2 изменяются таким образом, что значения $\left| \frac{m_i - np}{\sqrt{npq}} \right|, i = 1, 2$, остаются

ограниченными, то при $n \to \infty$

$$P_n(m_1, m_2) = \Phi\left(\frac{m_2 - np}{\sqrt{npq}}\right) - \Phi\left(\frac{m_1 - np}{\sqrt{npq}}\right) + \mathbf{O}\left(\frac{1}{\sqrt{n}}\right).$$

Действительно при $n \to \infty$

$$P_{n}(m_{1}, m_{2}) = \mathbf{P}(m_{1} \le X \le m_{2}) = \mathbf{P}\left(\frac{m_{1} - np}{\sqrt{npq}} \le \frac{X - np}{\sqrt{npq}} \le \frac{m_{2} - np}{\sqrt{npq}}\right) \simeq$$

$$\simeq \Phi\left(\frac{m_{2} - np}{\sqrt{npq}}\right) - \Phi\left(\frac{m_{1} - np}{\sqrt{npq}}\right)$$

Следствие 2 (оценка вероятности отклонения частости от вероятности на заданную величину).

$$\mathbf{P}\left(\left|\frac{m(A)}{n}-p\right|<\varepsilon\right)\simeq 2\Phi\left(\varepsilon\sqrt{\frac{n}{pq}}\right)-1.$$

Примечание. Для вычисления вероятностей $\mathbf{P}(X \le m)$ лучше использовать поправку на дискретность

$$\mathbf{P}(X \le m) \simeq \Phi\left(\frac{m+0,5-np}{\sqrt{npq}}\right).$$

При $np^{3/2} > 1,07$ ошибка такой аппроксимации не превышает 0,05. В таком случае

$$P_n(m_1, m_2) \simeq \Phi\left(\frac{m_2 + 0.5 - np}{\sqrt{npq}}\right) - \Phi\left(\frac{(m_1 - 1) + 0.5 - np}{\sqrt{npq}}\right).$$

Локальная теорема Муавра-Лапласа. Если в схеме независимых повторных испытаний число испытаний неограниченно растет $(n \to \infty)$, а m изменяется таким образом, что $\left| \frac{m - np}{\sqrt{npq}} \right|$ остается

ограниченным, то

$$P_n(m) = \frac{1}{\sqrt{npq}} \cdot \varphi\left(\frac{m - np}{\sqrt{npq}}\right) + \mathbf{O}\left(\frac{1}{\sqrt{n}}\right).$$

Пример 1 (использование локальной теоремы Муавра-Лапласа).

Анализ итогов года показал, что лишь 20% держателей страховых полисов потребовали возмещения страховых сумм. Найти в этих условиях вероятность того, что из 60 клиентов, вновь заключивших договор страхования, 15 клиентов также потребуют возмещения страховых сумм.

Решение. В условиях примера: испытание — страхование клиента, $A = \{$ наступление страхового события для отдельного клиента $\}$, X - число страховых событий на 60 клиентов. Тогда

$$p = 0, 2; n = 60;$$
 $np = 60 \cdot 0, 2 = 12;$ $npq = 60 \cdot 0, 2 \cdot 0, 8 = 9, 6 > 9;$

$$P(X=15) = \frac{1}{\sqrt{9,6}} \varphi\left(\frac{15-12}{\sqrt{9,6}}\right) = \frac{1}{3,1} \varphi(0,97) = \frac{0,334}{3,1} = 0,108.$$

Пример 2 (использование интегральной теоремы Муавра-Лапласа). Для мужчины, дожившего до 30-летнего возраста, вероятность смерти на 31-м году жизни равна 0,005. Застрахована группа в 10000 человек 30-летнего возраста, причем каждый застрахованный внес в качестве взноса 1,2 рубля, В случае смерти застрахованного страховая компания выплачивает наследникам 100 руб. Какова вероятность того, что к концу года: а) компания окажется в убытке; б) чистый доход компании будет не менее 9000 рублей; в) чистый доход компании будет в пределах от 4000 до 5500 рублей.

Решение. В условиях примера: испытание — страхование клиента, $A = \{$ смерть клиента $\}$, X — число умерших клиентов из числа 10000 застрахованных. Тогда

 $p = 0.005; n = 10000; np = 10000 \cdot 0.005 = 50; npq = 50 \cdot 0.995 = 49.75;$

a)
$$\mathbf{P}(12000 - 100X < 0) = \mathbf{P}(X > 120) = \mathbf{P}(121 \le X \le 10000) =$$

= $\Phi\left(\frac{10000 - 50}{\sqrt{49,75}}\right) - \Phi\left(\frac{121 - 50}{\sqrt{49,75}}\right) = \Phi(1411) - \Phi(10) =$;

$$=1.0000-1.0000=0$$

6) $\mathbf{P}(12000-100X \ge 9000) = \mathbf{P}(X \le 30) = \mathbf{P}(0 \le X \le 30) =$

$$= \Phi\left(\frac{30-50}{\sqrt{49,75}}\right) - \Phi\left(\frac{0-50}{\sqrt{49,75}}\right) =$$

$$= \Phi\left(-2,83\right) - \Phi\left(-7,09\right) = 1 - 0,9975 - 0 = 0,0025;$$

в) $\mathbf{P}(4000 \le 12000 - 100X \le 5500) = \mathbf{P}(65 \le X \le 80) =$

$$= \Phi\left(\frac{80-50}{\sqrt{49,75}}\right) - \Phi\left(\frac{65-50}{\sqrt{49,75}}\right) =$$

$$= \Phi(4,25) - \Phi(2,13) = 1,000 - 0,949 = 0,001.$$

Пример 3 (использование теоремы Пуассона). В районе проживают 1000 человек. Каждый из них независимо друг от друга с вероятностью 0,002 посещает аптеку. Найти вероятности событий: $B = \{ \text{в аптеку обратятся 3 человека} \}$, $C = \{ \text{в аптеку обратятся менее трех человек} \}$, $D = \{ \text{в аптеку обратятся хотя бы 2 человека} \}$, $E = \{ \text{в аптеку обратятся от двух до трех человек} \}$.

Решение. В условиях примера: испытание — проживание отдельного человека в районе, A={обращение гражданина в аптеку}, X— суммарное число обращений в аптеку граждан проживающих в районе. Тогда

 $p = 0.002; n = 1000; \quad np = 1000 \cdot 0.002 = 2; \quad npq = 2 \cdot 0.998 = 1.996 < 9.$

Воспользуемся в вычислениях приближением Пуассона:

$$\mathbf{P}(B) = \mathbf{P}(X = 3) = \frac{2^3}{3!}e^{-2} = 0.180;$$

$$\mathbf{P}(C) = \mathbf{P}(X < 3) = \mathbf{P}(X = 0) + \mathbf{P}(X = 1) + \mathbf{P}(X = 2) =$$

$$= \frac{2^{0}}{0!}e^{-2} + \frac{2^{1}}{1!}e^{-2} + \frac{2^{2}}{2!}e^{-2} = 0,135 + 0,271 + 0,271 = 0,677;$$

$$\mathbf{P}(D) = \mathbf{P}(X \ge 2) = 1 - \mathbf{P}(X < 2) = 1 - \left[\mathbf{P}(X = 0) + \mathbf{P}(X = 1)\right] =$$

$$= 1 - \frac{2^{0}}{0!}e^{-2} - \frac{2^{1}}{1!}e^{-2} = 1 - 0,135 - 0,271 = 0,594;$$

$$\mathbf{P}(E) = \mathbf{P}(2 \le X \le 3) = \mathbf{P}(X = 2) + \mathbf{P}(X = 3) =$$

$$= \frac{2^{2}}{2!}e^{-2} + \frac{2^{3}}{3!}e^{-2} = 0,271 + 0,180 = 0,451.$$

Локальная теорема для арифметического (решетчатого) распределения.

Существует обобщение локальной теоремы Муавра-Лапласа.

Опр. Случайная величина X имеет решетчатое распределение, если при некотором h > 0 $\sum_{k} \mathbf{P}(X = a + kh) = 1$. Наибольшее такое h

называется шагом распределения.

Локальная теорема. Пусть $\{X_n\}$ — последовательность независимых одинаково распределенных случайных величин (НОРСВ), имеющих арифметическое распределение с шагом h, причем существуют $\mathbf{M}[X_1] = a$, $\mathbf{D}[X_1] = b^2$. Тогда при $|m-na| \le cb\sqrt{n}$, где c — некоторая константа:

$$\mathbf{P}(X_1 + ... + X_n = m) \sim \frac{1}{b\sqrt{2\pi n}} \exp\left\{-\frac{(m - na)^2}{2nb^2}\right\}.$$