Philly Area Apache Spark Meetup

By

Nava Nomula

nnomula@Jornaya.com

Nava@LinkedIn

Jornaya

Who am I?

Nava Nomula

Current: Senior Data Engineer @ Jornaya Inc

Past: Teradata Enterprise Data Warehouse (Massive Parallel Processing) background, consultant at Teradata, Comcast, Enterprise Rent-A-Car, Altria, Unilever, Wynn||Encore and few other clients.

Topics for today:

Introduction to Spark

Understanding Spark architecture Spark Internals & Spark UI

Data Normalization

Understanding Data Normalization

How it helps processing performance

Data Shuffle

What is data shuffle in Spark world

Why and when it happens How to manage shuffle

Data Joins

How to join two large datasets How to avoid the data skew

3

Introduction to Spark

- Apache Spark is an open-source distributed general-purpose cluster-computing framework – Wikipedia
- Apache Spark is a lightningfast unified analytics engine for big data and machine learning -Data bricks
- Spark eco system

Spark Architecture

- Driver
- Spark Context
- Cluster Manager
- Master Node
- Worker/Core Node

Spark Internals & UI

- Executors A process launched for an application on a worker node, that runs tasks and keeps data in memory or disk storage across them. Each application has its own executors
- Core Number of CPU cores per executor
- Memory memory configured per executor
- Job A parallel computation consisting of multiple tasks that gets spawned in response to a Spark action (e.g. save, collect)
- ► Stage Each job gets divided into smaller sets of tasks called *stages* that depend on each other
- ► Task A unit of work that will be sent to one executor
- ▶ RDD Resilient Distributed Dataset
- ▶ DAG Directed Acyclic Graph
- ▶ Partition a chunk of data in memory (or) disk

Spark Jobs (?)

User: jacek

Total Uptime: 35 s Scheduling Mode: FIFO

Active Jobs: 1

Completed Jobs: 1

Failed Jobs: 1

▶ Event Timeline

Active Jobs (1)

Job Id →	Description	Submitted	Duration	Stages: Succeeded/Total	Tasks (for all stages): Succeeded/Total
2	show at <console>:24</console>	2016/09/29 14:01:20	5 s	0/1	0/1

Completed Jobs (1)

Job Id →	Description	Submitted	Duration	Stages: Succeeded/Total	Tasks (for all stages): Succeeded/Total
0	show at <console>:24</console>	2016/09/29 14:01:07	0.3 s	1/1	1/1

Failed Jobs (1)

Job Id ▼	Description	Submitted	Duration	Stages: Succeeded/Total	Tasks (for all stages): Succeeded/Total
1	show at <console>:24</console>	2016/09/29 14:01:14	87 ms	0/1 (1 failed)	0/1 (1 failed)

Spark UI

Spark Optimizer

- Unresolved logical plan
- ► Resolved logical plan
- Physical plan

Spark Optimizer Plans

>>> df1.join(df2, df1.key1 == df2.key2).explain(True)

```
== Parsed Logical Plan ==
                                                      == Physical Plan ==
Join Inner, (key1#573L = key2#577L)
                                                      *(5) SortMergeJoin [key1#573L], [key2#577L], Inner
:- SubqueryAlias `default`.`unbucketed`
                                                      :- *(2) Sort [key1#573L ASC NULLS FIRST], false, o
                                                      : +- Exchange hashpartitioning(key1#573L, 800)
: +- Relation[key1#573L,class1#574] parquet
+- SubqueryAlias `default`.`bucketed`
                                                      : +- *(1) Project [key1#573L, class1#574]
 +- Relation[key2#577L,class2#578] parquet
                                                           +- *(1) Filter isnotnull(key1#573L)
                                                            +- *(1) FileScan parquet default.unbucketed[kev1#573L.class1#574]
== Optimized Logical Plan ==
                                                      Batched: true, Format: Parquet, Location: InMemoryFileIndex[hdfs://ip-172-
Join Inner, (key1#573L = key2#577L)
                                                      31-16-101.ec2.internal:8020/user/spark/warehouse/unbucketed],
:- Filter isnotnull(key1#573L)
                                                      PartitionFilters: [], PushedFilters: [IsNotNull(key1)], ReadSchema:
: +- Relation[key1#573L,class1#574] parquet
                                                      struct<key1:bigint,class1:int>
+- Filter isnotnull(key2#577L)
                                                      +- *(4) Sort [key2#577L ASC NULLS FIRST], false, o
 +- Relation[key2#577L,class2#578] parquet
                                                       +- Exchange hashpartitioning(key2#577L, 800)
== Analyzed Logical Plan ==
                                                         +- *(3) Project [key2#577L, class2#578]
key1: bigint, class1: int, key2: bigint, class2: int
                                                           +- *(3) Filter isnotnull(key2#577L)
Join Inner, (key1#573L = key2#577L)
                                                            +- *(3) FileScan parquet default.bucketed[key2#577L,class2#578]
                                                      Batched: true, Format: Parquet, Location: InMemoryFileIndex[hdfs://ip-172-
:- SubqueryAlias `default`.`unbucketed`
: +- Relation[key1#573L,class1#574] parquet
                                                      31-16-101.ec2.internal:8020/user/spark/warehouse/bucketed],
                                                      PartitionFilters: [], PushedFilters: [IsNotNull(key2)], ReadSchema:
+- SubqueryAlias `default`.`bucketed`
 +- Relation[key2#577L,class2#578] parquet
                                                      struct<key2:bigint,class2:int>, SelectedBucketsCount: 100 out of 100
```

Spark Memory Management

How many executors?

- Assign based on your system capacity
- Dynamic allocation is preferred (it decides based on load)

How many cores?

 Assign based on how much parallelism your application need

How much memory?

 Assign based on size of biggest partition after shuffle

Spark configuration example

```
"Classification": "spark-defaults",
"Properties": {
    "spark.sql.shuffle.partitions": "800",
    "spark.executor.instances": "10",
    "spark.executor.cores": "12",
    "spark.executor.memory": "128G"
    }
}
```

Spark Memory Allocation

- ▶ Shuffle Memory It is an in-memory available for executor (default is ~60-70 % of total). If this is full then the spilling takes place to disk.
 - Execution for transformations
 - Storage for cache
- ► User Memory default ~40% (can be controlled by changing the memory fraction)
- **Example:**
 - Request → ("spark.executor.cores": "12", "spark.executor.memory": "128G")
 - Get \rightarrow ~82GB per executor; ~7GB per core

How to configure the right capacity?

Begin at looking the source data involved

What is the size of data to scan and process How many partitions it got stored as source How many shuffle operations your application perform

• Aggregations, Joins, repartitions, partition by Are you enforcing any parallelism (setting default partitions)

How many partitions your application expecting to write the output

Look at your system capacity

How many nodes? (worker nodes) What is the node configuration?

Cores and memory

How to configure the right capacity?

EC2 Capacity (r5.24xlarge)	Spark Configs	Allocated (after provision)
2 x : 96 v Core, 768G	Executors : Dynamic Cores : 12 Memory : 128G	depends on load (10 max) 12 81.9G
2 x : 96 v Core, 768G	Cores : 6 Memory : 128G	10 12 81.9G
2 x : 96 v Core, 768G	Executors: 10 Cores: 12 Memory: 128G	10 12 81.9G

Data Shuffle

- Transformations always lazy
 - Narrow transformations – always map and part of single stage
 - Wide transformationinitiate the shuffle,these are expensive
- Actions
 - Collect, take, save, write etc.,

Wide Transformations (shuffles)

1 to N

Narrow Transformations 1 to 1

Controlling shuffle

- Shuffles can be defaulted at spark application level
- ► Shuffles can be managed within spark application by
 - Repartition() to increase even partition (write in-memory)
 - Coalesce() to decrease (write inmemory)
 - Partition By() partition by element (write to disk)
 - Bucket By() partition by element (write to disk)

df.rdd.getNumPartitions()

dd = df.rdd.mapPartitionsWithIndex(lambda x,it: [(x,sum(1 for _ in it))]).collect()

min(dd,key=lambda item:item[1]) max(dd,key=lambda item:item[1])

Data Joins

Join operations

- SortMergeJoins (Standard) Both sides are large
- Broadcast Joins (Fastest) One side is small
- Skew Joins (Salting)
 - Add Column to each side with random int between o and spark.sql.shuffle.partitions – 1 to both sides
 - Add join clause to include join on generated column above
 - Drop temp columns from result
- Skewed Aggregates

```
df.groupBy("city", "state").agg(<f(x)>).orderBy(col.desc)
val saltVal = random(o, spark.conf.get(org...shuffle.partitions) - 1)
df.withColumn("salt", lit(saltVal)) .groupBy("city", "state", "salt")
.agg(<f(x)>)
.drop("salt") .orderBy(col.desc)
```

17

Data Shuffle examples

```
spark.range(1, 100000001, 1, 100)\
    .select(col('id').alias('key1'), (rand(101) * 100).cast(IntegerType()).alias('class1'))\
    .write.format("parquet")\
    .saveAsTable("unbucketed")

spark.range(1, 100000001, 1, 100)\
    .select(col('id').alias('key2'), (rand(101) * 100).cast(IntegerType()).alias('class2'))\
    .write.format("parquet")\
    .bucketBy(100, "key2").sortBy("class2")\
    .saveAsTable("bucketed")

df1 = spark.table("unbucketed")

df2 = spark.table("bucketed")

df3 = spark.table("bucketed")
```

Data Shuffle examples

JOIN OPERATION	DATA SHUFFLE UNDER THE HOOD	PERFORMANCE
df1.join(df2, df1.key1 == df2.key2).explain()	df1 & df2 both shuffled across into (default) partitions by key	Very expensive & Very Slow great chance of OOM
df1.repartition('key1').join(df2, df1.key1 == df2.key2).explain()	df1 shuffled across into (default) partitions by key	Expensive & Slow chance of OOM
<pre>df1.repartition(100, 'key1').join(df2, df1.key1 == df2.key2).explain()</pre>	df1 shuffled across into 100 partitions by key	Least expensive & Slow
df3.join(df2, df3.key2 == df2.key2).explain()	No shuffling	Cheap and Fastest

Persistence Vs. Broadcast

Attempt to send compute to the data

Data availability guaranteed -> each executor has entire dataset

Expensive Operations

- Repartition
 - Use Coalesce or Shuffle Partition
 Count
- Count Do you really need it?
- DistinctCount
 - use approxCountDistinct()
- ► If distinct is required, put it in the right place
 - Use dropDuplicates
 - dropDuplicates BEFORE the join
 - dropDuplicates BEFORE the groupBy

Other recommendations

- Utilize Lazy Loading (Data Skipping)
- Maximize Your Hardware
- Right Size Spark Partitions
- Balance
- Optimized Joins
- Minimize Data Movement
- Minimize Repetition

Data Normalization

- ▶ It's a practice to avoid the redundancy
- ▶ Minimal storage without missing information
- ► Easy to scan less data
- ► Less capacity required to process
- **E**xample:

Student	Student Assessment		Date
Dave	English	В	11/01/2019
Dave	English	В	11/02/2019
Dave	English	В	11/03/2019
Dave	English	В	11/04/2019
Dave	English	A	11/05/2019
Dave	English	A	11/06/2019

Student	Assessment	Grade	Start Date	End Date
Dave	English	В	11/01/2019	11/04/2019
Dave	English	A	11/05/2019	11/06/2019

DEMO

Data Normalization

Data Shuffle

Data Joins

Questions?

25