Totorial 9: Autonomous Equations Solutions $\chi' = -\chi(\chi - 2)(\chi + 2)$ f(x) =2. The steady-states one $\chi_1^* = 0$, $\chi_2^* = 2$, $\chi_3^* = -2$. 2. $f(x) = -n(n^2 - 4) = -\kappa^3 + 4\kappa$. $\Rightarrow f'(x): -3x^2 + 4$ $\frac{\partial \eta}{\partial t} = \left(-3x^2 + \frac{y}{2}\right)\eta. \quad \text{is the Unevized equation.}$ $x_i^*=0$: $d\eta = +/\eta$. Since $f(x_i^*) = f'(0) = +/\gamma$, $x_i^*=0$ $x_{2}^{*}=2: d\eta = (-3.4+4)\eta = -8\eta.$ $x_{3}^{*}=-2: d\eta = -8\eta.$ $x_{3}^{*}=-2: d\eta = -8\eta.$ $x_{4}^{*}=-8\eta.$ $x_{5}^{*}=-8\eta.$ $x_{5}^{*}=-8\eta.$

5. $x' = -x^2(1-x) = -n^2 + x^3$. Steady. states x=0,1. Think f(x) is a einic polynomial the cost at 0 has multiplicity 2. The earfficient of x3 You can solve do this with a linear stability analysis