Computer Vision - Notes

Marco Mustacchi

1 OPENCV

Preprocessor: source file \rightarrow code edited Compiler: code edited \rightarrow object file Linker: object file \rightarrow executable

Dynamic libraries

- \rightarrow save disk space (one installation serves all)
- \rightarrow can be recompiled without touching the executables
- → SO (Shared Object) under Linux, DLL (Dynamic Linking Library) under Windows

Static libraries

- \rightarrow generate execs that can't be broken at a later stage
- \rightarrow self-contained

standard library

Standard Template Library (STL)

- \rightarrow a special section of the standard library
- \rightarrow based on the concept of template

OpenCV library

OpenCV depends on other libraries \rightarrow not self-contained Header of OpenCV files \rightarrow .hpp extension

cv::Mat \rightarrow elements accessed using img.at; $\xi(i,j)$ cv::Vec

- \rightarrow elements accessed using []
- ightarrow class used for dealing with tuples
- \rightarrow used to describe the triplet of color pixels img.at; Vec3b; (i,j)[0]

2 IMAGE PROCESSING

2.1 IMAGE CODING

coordinate system (c,r)

Spatial resolution \to # of pixels per unit distance \to smallest detectable detail in the image Depth \to # bits per pixel

Gray-level/intensity resolution \rightarrow # bits per pixel \rightarrow smallest detectable change in gray level Contrast \rightarrow difference between highest and lowest intensity value in the image

2.2 TRANSFORMING AN IMAGE

GEOMETRIC TRANSFORMATIONS

Two steps:

- 1. coordinate transform \rightarrow works on geometrical points
- 2. image resampling \rightarrow works on pixels

difference between forward e backward mapping

Affine transform

Preserves \rightarrow point collinearity \rightarrow distance ratios along a line

SINGLE PIXEL OPERATIONS

functions that change the gray levels of an image examples:

Negative

 $Logarithm \rightarrow if underexposed$

Gamma (tunable): \rightarrow gamma;1 if underexposed, \rightarrow gamma;1 if overexposed

Measurements for contrast: RMS/RMSC

Slicing

- \rightarrow enables to consider only a subset of the given image intensity slicing
- \rightarrow Logarithm \rightarrow intensity slicing
- \rightarrow bit plane slicing

[see graphs for: constrast strecthing, thresholding, intensity slicing x2]

2.3 HISTOGRAM

The CDF (cumulative distribution function) is the T(r) transformation used to equalize the histogram Output not perfectly flat (caused by the discrete nature of data)

- 1. Histogram equalization
- 2. Local histogram equalization
- 3. Histogram specification
 - \rightarrow define the desired probability density function
 - \rightarrow evaluate

3 FILTERING

In general, the bigger the filter, the higher the smoothing (or in general the effect)

Image restoration \rightarrow based on \rightarrow averaging \rightarrow Gaussian filter \rightarrow Median filter [slides 101: Vedere differenza tra sobel mask e laplacian-derived mask, both cases non isotropic (4 directions available)] (in teoria laplacian isotropic + double line effect, in pratica implementando con mask e' anisotropic)

The filter weights can change the image brightness, if sum(wi)=1 unchanged, if sum(wi);1 brightness decreased, if sum(wi);1 brightness increased

In general: Average filter \rightarrow smoothing Derivative filter \rightarrow sharpening (affilamento)

+ Derivative filters highlights edges int the image

Gaussian filter

- \rightarrow spatial filter (the weight assigned to each pixel depends on how far it is from the central one)
- \rightarrow takes only spatial distance into account
- \rightarrow Kernel is everywhere the same
- \rightarrow losing edge information

Bilateral filter

- \rightarrow consider not only spatial distance, but also color distance
- \rightarrow non-linear filter
- \rightarrow Kernel is not everywhere the same
- \rightarrow edge preserving

4 IMAGES IN FREQUENCY

Aliasing caused by Undersampling

- \rightarrow artifacts
- \rightarrow can be compensated by means of a Low Pass Filter

The DFT of an image can be decomposed into

 \rightarrow Spectrum

 \rightarrow Phase

Translation \rightarrow does not affect the spectrum

Rotation \rightarrow affects the spectrum Filtering in frequency

Low pass filter \rightarrow Smoothing (ringing effect is present)

- \rightarrow Ideal \rightarrow cut-off frequency \rightarrow ringing effect
- \rightarrow Butterworth
- \rightarrow Gaussian

High pass filter \rightarrow Sharpening (ringing is present as in lowpass filtering)

- \rightarrow Ideal
- \rightarrow Butterworth
- \rightarrow Gaussian

Band pass filter

Band reject filter \rightarrow Notch filter

5 EDGE DETECTION

Gradient edge detector

- \rightarrow gradient is a vector pointing towards the fastest varying direction (\perp to the edge direction)
- \rightarrow magnitude and phase are scalars

6 SEGMENTATION

Thresholding \rightarrow not connected regions \rightarrow discontinuity

Region Growing

- \rightarrow connected regions \rightarrow similarity
- \rightarrow 3 elements: image, seed array, predicate

Watershed

- \rightarrow connected regions \rightarrow similarity
- \rightarrow flood the surface from the minima

Watershed: Questi bacini vengono allagati e vengono identificate le aree in cui le acque di piena dei diversi bacini si incontrano. (Morphological interpretation \rightarrow a set of subsequent dilations)

In queste aree vengono costruite delle barriere sotto forma di pixel.

Di conseguenza, queste barriere agiscono come partizioni nell'immagine e l'immagine viene considerata segmentata.

 \rightarrow Infatti se considero solo grayscale, le watershed lines possonono essere molto spesse, in questo modo ottengo solo delle lines

Watershed on Gradient \rightarrow catchment basins correspond to homogeneous graylevel regions \rightarrow extract

uniform regions (colore costante)

Watershed with Markers

- \rightarrow the number of markers determines the number of regions that will be created by the algorithm (evitare overfitting)
 - \rightarrow Internal markers:

Mean shift: Kernel density estimation

- \rightarrow Kernel density gradient estimation
- \rightarrow steepest ascend method

Markov Random Fields (MRF)

Segmentation as a per-pixel labelling task

Assign a label to each pixel in order to minimize an energy function

Energy function composed of two terms

 \rightarrow Data term \rightarrow depends on specific feature at the pixel location

 \rightarrow Smooth term \rightarrow depends on the labels in the neighboring pixels (commonly 4 neighbors considered)

Active Contours: The primary use of active contours in image processing is to define smooth shapes in images and to construct closed contours for regions.

The curvature of the models is determined using several contour techniques that employ external and internal forces. External energy is described as the sum of forces caused by the picture that is specifically used to control the location of the contour onto the image, and internal energy, which is used to govern deformable changes.

Active snake models, often known as snakes, are generally configured by the use of spline

ACTIVE CONTOUR MODEL

Contour is moving, scissors \rightarrow user input snakes

- \rightarrow without any interaction with the user
- \rightarrow energy balance
 - \rightarrow Internal energy \rightarrow keeps the snake in shape with the contour
- External energy \rightarrow what inside the image attracts the snake, for instance strong edges Internal energy: where alpha(s) and beta(s) are user-defined weights; these control the internal energy function's sensitivity to the amount of stretch in the snake and the amount of curvature in the snake, respectively, and thereby control the number of constraints on the shape of the snake. In practice, a large weight alpha(s) for the continuity term penalizes changes in distances between points in the contour. A large weight beta(s) for the smoothness term penalizes oscillations in the contour and will cause the contour to act as a thin plate.

7 FEATURES

Feature detection (keypoint detection) \rightarrow find points easily recognizable Feature description \rightarrow describe a region around the keypoint to make matching easy Feature matching \rightarrow find similar descriptors in two images Feature tracking \rightarrow find similar descriptors in a neighborhood in the same image similarity is applied to the descriptor (not to the keypoint) using a distance!!

HARRIS CORNER

Consider a patch and a shifted version of the patch

Similarity is measured by means of the autocorrelation (a weighted sum function of the displacement) Approximate this autocorrelation using the Taylor series (use of derivatives)

Autocorrelation function is weighted, two main choices

- \rightarrow Box (1 inside the patch, 0 elsewhere)
- \rightarrow Gaussian

Study of the eigenvectors and eigenvalues

- \rightarrow two small eigenvalues \rightarrow flat region
- \rightarrow one large and one small \rightarrow edge
- \rightarrow two large eigenvalues \rightarrow corner
- !! Not invariant to scaling !!

USAN/SUSAN

MSER (Maximally Stable Extremal Regions) \rightarrow Blob detector \rightarrow apply a series of threshold

SIFT

features are local \rightarrow robust to occlusion approximating LoG using DoG

Steps:

Keypoint localization

- Interpolation of nearby data for accurate position \rightarrow The interpolation is done using the quadratic Taylor expansion D(x) of the Difference-of-Gaussian scale-space function
- Discarding low contrast (low gradient) keypoints \rightarrow using the value of the second-order Taylor expansion D(x)
- Discard edge points \rightarrow eigenvalues

Keypoints orientation

Each keypoint comes with its scale

The gaussian smoothed image closest to that scale is selected, called L

Descriptor calculation

In the image L corresponding to the keypoint scale

Considering coordinates that are rotated based on the measure keypoint orientation

SIFT PCA

maximizes variance minimizes mean squared distance from 3042 to 36

SURF

speed up computations by fast approximation of Hessian matrix \rightarrow Integral image \rightarrow Box filters Orientation \rightarrow Evaluate gradients in x and y using the Haar wavelets (again type of box filter) \rightarrow quantize bins of 60* Descriptor \rightarrow considero 16 regioni, ma 4 elementi per region

SIFT

Descriptor \rightarrow considero 16 regioni, ma 8 histogram value per region \rightarrow values weighted gaussian function

FEATURE MATCHING

- Matching strategy \rightarrow what features to compare?
 - \rightarrow Brute force (BF) matcher (all)
 - \rightarrow threshold on maximum distance (more than one)
 - \rightarrow Nearest Neighbor (NN) (in general one)
 - \rightarrow Nearest Neighbor Distance Ratio (NNDR)
- Match evaluation \rightarrow assign a value to the match \rightarrow Euclidean distance or Hamming distance
- Match performance \rightarrow Precision and Recall \rightarrow use of: True positives, True negatives, False positives, False negatives

DESCRIPTOR ALGORITHMS, OTHER APPROACHES:

- GLOH \rightarrow log polar location grid
- Shape context
- Localy Binary Pattern (LBP)
- Brief
 - \rightarrow not rotation invariance
 - \rightarrow consider random point in the neighborhood \rightarrow compared using the Hamming distance (XOR)

DETECTOR ALGORITHMS

FAST \rightarrow no orientation component and no multiscale features ORB (Oriented FAST and Rotated BRIEF)

- \rightarrow rotated BRIEF introduces rotation invariance \rightarrow orientation assignment based on the centroid
- → intensity wrt the central pixel (in general they don't coincide)

8 IMAGE RESAMPLING

Image resampling

- \rightarrow change the image resolution
- \rightarrow Decimation: smaller image
- \rightarrow Interpolation: larger image
 - Nearest neighbor interpolation \rightarrow closest pixel
 - Bilinear interpolation \rightarrow closest 4 samples
 - Bicubic interpolation \rightarrow 16 closest samples

9 OBJECT DETECTION

Viola Jones algorithm \rightarrow Haar cascade classifier (in particular detection on faces)