Binary representations

```
I Codes (direct, inverse, complementary) for signed integers and subunitary numbers.
Representation on 16 bits.
```

- 1. +5674
- 2. +489
- 3. -945
- 4. -1897
- 5. +0.15
- 6. +11/16
- 7. -0,45
- 8. -9/16

Results:

- 1. $[x]_D = 0|001011000101010$, $[x]_T = 0|001011000101010$, $[x]_C = 0|001011000101010$
- 2. $[x]_D = 0|000000111101001, [x]_I = 0|000000111101001, [x]_C = 0|000000111101001$
- 3. $[x]_D=1|000001110110001$, $[x]_I=1|111110001001110$, $[x]_C=1|111110001001111$
- 4. $[x]_D=1|000011101101001$, $[x]_I=1|111100010010110$, $[x]_C=1|111100010010111$

- 5. $[x]_D = 0|001001100110011, [x]_I = 0|001001100110011, [x]_C = 0|001001100110011$
- 6. $[x]_D = 0|1011000000000000$, $[x]_L = 0|101100000000000$, $[x]_C = 0|1011000000000000$
- 7. $[x]_D=1|011100110011001, [x]_T=1|100011001100110, [x]_C=1|100011001100111$
- 8. $[x]_D=1|1001000000000000, [x]_L=1|0110111111111111, [x]_C=1|011100000000000$

II Addition in complementary code (on 8 bits) for signed integers and subunitary numbers:

- 9. +19 and +26
- 10. +94 and -85
- 11. -46 and +63
- 12. -84 and -79
- 13. +0.81 and +0.73
- 14. +0,51 and -0,76
- 15. -0,88 and +0,93
- 16. -0.12 and -0.34

Results:

9. $[19 + 26]_{C} = 0|0101101$

10.
$$[94 - 85]_{\rm C} = \frac{1}{10}|0001001$$

11.
$$[-63+46]_{C} = _1|1101111$$

12.
$$[-84 - 79]_{\text{C}} = \frac{10}{1011101}$$
, overflow

13.
$$[0.81 + 0.73]_{\text{C}} = 1 | 1000100$$
, overflow

$$14. [0,51-0,76]_{C} = 1|1100000$$

15.
$$[-0.88 + 0.93]_{C} = \frac{1}{4}0|0000111$$
,

16.
$$[-0.12 - 0.34]_{C} = \frac{1}{4}1|1000110$$

III Fixed-point representation on 16 bits, I=9 and F=6:

I, F 0|000010101|101010 !!overflow 17. +1045,67

The most significant 2 binary digits from the integer part are lost!

18. + 43.120|000101011|000111

1|000001100|000001 19. -12.03 20. -8097,48

1|110100001|011110 overflow

The most significant 4 binary digits from the integer part are lost!

IV Floating-point representation, single precision, m<1. $^{\text{S}}$

	3	c,	m	
21. +5941,36	0 100	001100 101	1100110101010111	0000
22. +0,018	0 011	111010 100	1001101110100101	1110
236948,27	1 100	001100 110	1100100100010001	0100
240,071	1 011	111100 100	1000101101000011	1001

IV Floating-point representation, single precision, m>1. $\frac{1}{2}$

	5	С	,		m	
25. +6948,27	0 1000	101	1 101	100100	100010	000101000
26. +0,041	0 0111	1010	0 010	011111	101111	10011101
272914,73	1 1000	1010	0 011	011000	101011	10101110
280,009	1 0111	1000	0 001	001101	110100	010111100