

REINFORCEMENT LEARNING

Gergely Neu

REINFORCEMENT LEARNING

Gergely Neu

and now

and now the moment you all have been waiting for

and now the moment you all have been waiting for

DEEP
REINFORCEMENT
LEARNING

THE PROMISE OF DEEP REINFORCEMENT LEARNING

Parametrize Q-function/policy by a deep net

THE PROMISE OF DEEP REINFORCEMENT LEARNING

Parametrize Q-function/policy by a deep net

THE PROMISE OF DEEP REINFORCEMENT LEARNING

Parametrize Q-function/policy by a deep net

Lecture 8: The path towards deep reinforcement learning

The path towards deep RL

- 1. Least-squares TD
 - Linear function approx.
 - General function approx.
 - Deep Q networks
- 2. Policy optimization
 - The likelihood-ratio trick
 - The policy gradient theorem
 - Actor-critic algorithms

The path towards deep RL

1. Least-squares TD

- Linear function approx.
- General function approx.
- Deep Q networks

2. Policy optimization

- The likelihood-ratio trick
- The policy gradient theorem
- Actor-critic algorithms

TD(0) with LFA

Input: arbitrary param. vector $\theta_0 \in \mathbf{R}^d$ For t = 0,1,..., $\delta_t(\theta) = r_t + \gamma \theta^T \phi(x_{t+1}) - \theta^T \phi(x_t)$ $\theta_{t+1} = \theta_t + \alpha_t \delta_t(\theta_t) \phi(x_t)$

TD(0) with LFA

Input: arbitrary param. vector $\theta_0 \in \mathbf{R}^d$

For
$$t = 0, 1, ...,$$

$$\delta_t(\theta) = r_t + \gamma \theta^{\mathsf{T}} \phi(x_{t+1}) - \theta^{\mathsf{T}} \phi(x_t)$$
$$\theta_{t+1} = \theta_t + \alpha_t \delta_t(\theta_t) \phi(x_t)$$

In the limit, TD(0) finds a θ^* such that $\mathbf{E}[\delta_t(\theta^*)\phi(x_t)] = 0$

Idea: given a finite trajectory, approximate the TD fixed point by solving

$$\mathbf{E}[\delta_t(\theta)\phi(x_t)] \approx \frac{1}{T} \sum_{t=1}^{I} \delta_t(\theta)\phi(x_t) = 0$$

Idea: given a finite trajectory, approximate

the TD fixed point by solving
$$\mathbf{E}[\delta_t(\theta)\phi(x_t)] \approx \frac{1}{T} \sum_{t=1}^{T} \delta_t(\theta)\phi(x_t) = 0$$

Equivalently:

$$\frac{1}{T} \sum_{t=1}^{T} \phi(x_t) (\phi(x_t) - \gamma \phi(x_{t+1}))^{\mathsf{T}} \theta = \frac{1}{T} \sum_{t=1}^{T} r_t \phi(x_t)$$

This is a linear system $A_T\theta=b_T$

Solution:

Equivalently:

$$\frac{1}{T} \sum_{t=1}^{T} \phi(x_t) (\phi(x_t) - \gamma \phi(x_{t+1}))^{\mathsf{T}} \theta = \frac{1}{T} \sum_{t=1}^{T} r_t \phi(x_t)$$

$$A_T \qquad b_T$$

This is a linear system

$$A_T\theta = b_T$$

Solution: $\theta_T = A_T^{-1}b_T$

Equivalently:

$$\frac{1}{T} \sum_{t=1}^{T} \phi(x_t) (\phi(x_t) - \gamma \phi(x_{t+1}))^{\mathsf{T}} \theta = \frac{1}{T} \sum_{t=1}^{T} r_t \phi(x_t)$$

$$A_T \qquad b_T$$

LSTD(0)Input: trajectory $(x_t, a_t, r_t)_{t=1}^T$ $\theta_T = A_T^{-1} b_T$ $\widehat{V}_T = \theta_T^{\top} \phi$

LSTD(0) Input: trajectory $(x_t, a_t, r_t)_{t=1}^T$ $\theta_T = A_T^{-1}b_T$ $\hat{V}_T = \theta_T^{\top}\phi$

- \odot converges to same θ^* as TD(0) \odot
 - \odot no need to set step sizes α_t \odot

LSTD(0) Input: trajectory $(x_t, a_t, r_t)_{t=1}^T$ $\theta_T = A_T^{-1} b_T$ $\hat{V}_T = \theta_T^\top \phi$

 \odot converges to same θ^* as TD(0) \odot

TD(0): O(Td)

- \odot no need to set step sizes $\alpha_t \odot$
- \odot computational complexity: $O(Td^2 + d^3) \odot$
 - \odot A_T^{-1} may not exist for small $T \odot$

THE CONVERGENCE OF TD(0) AND LSTD(0)

Theorem

In the limit $T \to \infty$, LSTD(0) and TD(0) both minimize the projected Bellman error

$$L(V) = \mathbf{E}_{x \sim \mu} \left[\left(\Pi_{\phi} [T^{\pi} V(x)] - V(x) \right)^{2} \right]$$

THE CONVERGENCE OF TD(0) AND LSTD(0)

Theorem

In the limit $T \to \infty$, LSTD(0) and TD(0) both minimize the projected Bellman error

$$L(V) = \mathbf{E}_{x \sim \mu} \left[\left(\prod_{\Phi} [T^{\pi}V(x)] - V(x) \right)^{2} \right]$$

Projection onto span of features

The path towards deep RL

- 1. Least-squares TD
 - Linear function approx.
 - General function approx.
 - Deep Q networks
- 2. Policy optimization
 - The likelihood-ratio trick
 - The policy gradient theorem
 - Actor-critic algorithms

LSTD(0)

Input: trajectory $(x_t, a_t, r_t)_{t=1}^T$

$$\theta_T = A_T^{-1} b_T$$

$$\hat{V}_T = \theta_T^{\mathsf{T}} \phi$$

Idea not directly applicable to nonlinear function approximation!

LSTD FOR NON-LINEAR FUNCTION APPROXIMATION?

Can we optimize Bellman error

$$L(\theta) = \mathbf{E}_{x \sim \mu} \left[\left(T^{\pi} V_{\theta}(x) - V_{\theta}(x) \right)^{2} \right]$$

by stochastic gradient descent????

LSTD FOR NON-LINEAR FUNCTION APPROXIMATION?

Can we optimize Bellman error

$$L(\theta) = \mathbf{E}_{x \sim \mu} \left[\left(\mathbf{T}^{\pi} V_{\theta}(x) - V_{\theta}(x) \right)^{2} \right]$$

by stochastic gradient descent????

NO!!

Bellman error involves a double expectation:

$$L(\theta) = \mathbf{E}_X[\ell(\theta; X, \mathbf{E}_Y[Y|X])]$$

can't get unbiased gradients!

LSTD FOR NON-LINEAR FUNCTION APPROXIMATION?

Can we optimize Bellman error

$$L(\theta) = \mathbf{E}_{x \sim \mu} \Big[\Big(egin{array}{c} \text{The infamous} \\ \text{"double sampling"} \\ \text{issue of RL} \Big] \Big]$$

NO!!

Bellman error involves a double expectation:

$$L(\theta) = \mathbf{E}_X[\ell(\theta; X, \mathbf{E}_Y[Y|X])]$$

can't get unbiased gradients!

WHEN DO STOCHASTIC UPDATES WORK?

Stochastic optimization for least squares:

$$L(\theta) = \mathbb{E}_{X,Y}[\ell(\theta; X, Y)] = \mathbb{E}_{X,Y}[(X^{\mathsf{T}}\theta - Y)^2]$$

SGD for linear regression

Input: arbitrary param. vector $\theta_0 \in \mathbb{R}^d$

For
$$t = 0,1,...$$
,

$$\theta_{t+1} = \theta_t + \alpha_t \nabla \ell(\theta_t; X_t, Y_t)$$

= $\theta_t + \alpha_t (X_t^{\mathsf{T}} \theta_t - Y_t) X_t$

WHEN DO STOCHASTIC UPDATES WORK?

Stochastic optimization for least squares:

$$L(\theta) = \mathbb{E}_{X,Y}[\ell(\theta; X, Y)] = \mathbb{E}_{X,Y}[(X^{\mathsf{T}}\theta - Y)^2]$$

SGD for linear regression

Input: arbitrary param. vector $\theta_0 \in \mathbf{R}^d$

For
$$t = 0, 1, ...,$$

$$\theta_{t+1} = \theta_t + \alpha_t \nabla \ell(\theta_t; X_t, Y_t)$$

= $\theta_t + \alpha_t (X_t^{\mathsf{T}} \theta_t - Y_t) X_t$

Stochastic gradient is unbiased estimate of gradient:

$$\mathbb{E}[\nabla \ell(\theta_t; X_t, Y_t)] = \nabla \mathbb{E}[\ell(\theta_t; X_t, Y_t)]$$

THE DOUBLE SAMPLING PROBLEM

Bellman error:

$$L(\theta) = \mathbf{E}_{x \sim \mu} \left[\left(T^{\pi} V_{\theta}(x) - V_{\theta}(x) \right)^{2} \right]$$
$$= \mathbf{E}_{x \sim \mu} \left[\left(r(x) + \gamma \mathbf{E}_{x'} \left[V_{\theta}(x') | x \right] - V_{\theta}(x) \right)^{2} \right]$$

THE DOUBLE SAMPLING PROBLEM

Bellman error:

$$L(\theta) = \mathbf{E}_{x \sim \mu} \left[\left(T^{\pi} V_{\theta}(x) - V_{\theta}(x) \right)^{2} \right]$$
$$= \mathbf{E}_{x \sim \mu} \left[\left(r(x) + \gamma \mathbf{E}_{x'} \left[V_{\theta}(x') | x \right] - V_{\theta}(x) \right)^{2} \right]$$

Idea: replace expectations with samples:
$$\hat{L}_t(\theta) = (r(x_t) + \gamma V_{\theta}(x_{t+1}) - V_{\theta}(x_t))^2$$

THE DOUBLE SAMPLING PROBLEM

Bellman error:

$$L(\theta) = \mathbf{E}_{x \sim \mu} \left[\left(T^{\pi} V_{\theta}(x) - V_{\theta}(x) \right)^{2} \right]$$
$$= \mathbf{E}_{x \sim \mu} \left[\left(r(x) + \gamma \mathbf{E}_{x'} \left[V_{\theta}(x') | x \right] - V_{\theta}(x) \right)^{2} \right]$$

Idea: replace expectations with samples:
$$\hat{L}_t(\theta) = (r(x_t) + \gamma V_{\theta}(x_{t+1}) - V_{\theta}(x_t))^2$$

TERRIBLE IDEA!!!

$$\mathbf{E}[\hat{L}_t(\theta)] = L(\theta) + \text{Var}[r(x_t) + \gamma V_{\theta}(x_{t+1})]$$
$$\mathbf{E}[\nabla \hat{L}_t(\theta)] = \nabla L(\theta) + (\text{bias})$$

•Saddle-point optimization: $\min_{\theta} \mathbf{E}[f(\theta; X, \mathbf{E}[Y|X])^{2}]$

f: linear function

•Saddle-point optimization: $\min_{\theta} \mathbf{E}[f(\theta; X, \mathbf{E}[Y|X])^2]$

f: linear function

•Saddle-point optimization: $\min_{\theta} \mathbf{E}[f(\theta; X, \mathbf{E}[Y|X])^2] =$

$$\min_{\theta} \max_{z} \mathbf{E}[\mathbf{z}(X,Y) \cdot f(\theta;X,\mathbf{E}[Y|X])] - \mathbf{E}[\mathbf{z}^{2}(X,Y)]$$

f: linear function

•Saddle-point optimization:

$$\min_{\theta} \mathbf{E}[f(\theta; X, \mathbf{E}[Y|X])^{2}] = \min_{\theta} \max_{z} \mathbf{E}[z(X, Y) \cdot f(\theta; X, \mathbf{E}[Y|X])] - \mathbf{E}[z^{2}(X, Y)]$$

⇒ "modified Bellman residual" (Antos et al. 2008), "Gradient TD" methods (Sutton et al. 2009), SBEED (Dai et al., 2018)

TACKLING DOUBLE SAMPLING

f: linear function

Saddle-point optimization:

$$\min_{\theta} \mathbf{E}[f(\theta; X, \mathbf{E}[Y|X])^{2}] = \min_{\theta} \max_{\mathbf{z}} \mathbf{E}[\mathbf{z}(X, Y) \cdot f(\theta; X, \mathbf{E}[Y|X])] - \mathbf{E}[\mathbf{z}^{2}(X, Y)]$$

- ⇒ "modified Bellman residual" (Antos et al. 2008), "Gradient TD" methods (Sutton et al. 2009), SBEED (Dai et al., 2018)
- Iterative optimization schemes

TACKLING DOUBLE SAMPLING

f: linear function

•Saddle-point optimization:

$$\min_{\theta} \mathbf{E}[f(\theta; X, \mathbf{E}[Y|X])^{2}] = \min_{\theta} \max_{\mathbf{z}} \mathbf{E}[\mathbf{z}(X, Y) \cdot f(\theta; X, \mathbf{E}[Y|X])] - \mathbf{E}[\mathbf{z}^{2}(X, Y)]$$

- ⇒ "modified Bellman residual" (Antos et al. 2008), "Gradient TD" methods (Sutton et al. 2009), SBEED (Dai et al., 2018)
- Iterative optimization schemes

FITTED POLICY EVALUATION

Idea: compute sequence of value functions by minimizing

$$L_n(\hat{V}; \hat{V}_k) = \frac{1}{n} \sum_{t=1}^n \left(r_t + \gamma \hat{V}_k(x_{t+1}) - \hat{V}(x_t) \right)^2$$

FITTED POLICY EVALUATION

Idea: compute sequence of value functions by minimizing

$$L_n(\hat{V}; \hat{V}_k) = \frac{1}{n} \sum_{t=1}^n \left(r_t + \gamma \hat{V}_k(x_{t+1}) - \hat{V}(x_t) \right)^2$$

Target Free variable

This can be finally treated as a regression problem & solved by SGD!

FITTED POLICY ITERATION

FITTED POLICY ITERATION

ε -Greedy policy update

Computing policy needs model of P... better use Q-functions!

Fitted policy evaluation

FITTED POLICY ITERATION

ε -Greedy policy update

Computing policy needs model of P... better use Q-functions!

Fitted policy evaluation

This may take too many iterations...

$$L_n(\hat{Q}; \hat{Q}_k) = \frac{1}{n} \sum_{t=1}^n \left(r_t + \gamma \max_{a} \hat{Q}_k(x_{t+1}, a) - \hat{Q}(x_t, a_t) \right)^2$$

Target

Free variable

Familiar?

Idea: compute sequence of Q-functions by minimizing

$$L_n(\hat{Q}; \hat{Q}_k) = \frac{1}{n} \sum_{t=1}^n \left(r_t + \gamma \max_a \hat{Q}_k(x_{t+1}, a) - \hat{Q}(x_t, a_t) \right)^2$$

Target

Free variable

Familiar? Q-learning!

Idea: Let's try to

- directly learn about Q^* , and
- improve the policy on the fly!

Fitted value iteration

Input: function space F, $\widehat{Q}_0 \in F$

For
$$k = 0,1,...$$
,

- $\pi_k = G_{\varepsilon} \hat{Q}_k$
- generate trajectory

$$(x_t, a_t, r_t)_{t=1}^n \sim \pi_k$$

compute

$$\widehat{Q}_{k+1} = \operatorname{argmin}_{\widehat{Q} \in F} L_n(\widehat{Q}; \widehat{Q}_k)$$

Fitted value iteration

Input: function space F, $\hat{Q}_0 \in F$

For
$$k = 0, 1, ...,$$

- $\pi_k = G_{\varepsilon} \hat{Q}_k$
- generate trajectory

$$(x_t, a_t, r_t)_{t=1}^n \sim \pi_k$$

compute

$$\widehat{Q}_{k+1} = \operatorname{argmin}_{\widehat{Q} \in F} L_n(\widehat{Q}; \widehat{Q}_k)$$

Convergence can be guaranteed!

under very technical assumptions...

The path towards deep RL

- 1. Least-squares TD
 - Linear function approx.
 - General function approx.
 - Deep Q networks
- 2. Policy optimization
 - The likelihood-ratio trick
 - The policy gradient theorem
 - Actor-critic algorithms

DEEP Q NETWORKS

Parametrize Q-function by a deep neural net

DEEP Q NETWORKS

Minimize the loss

$$\mathbf{E}_{(X,A,R,X')\sim D}\left[\left(R+\gamma\max_{b}Q_{\theta_{k}}(X',b)-Q_{\theta}(X,A)\right)^{2}\right]$$

DEEP Q NETWORKS

Minimize the loss

$$\mathbf{E}_{(X,A,R,X')\sim D}\left[\left(R+\gamma\max_{b}Q_{\theta_{k}}(X',b)-Q_{\theta}(X,A)\right)^{2}\right]$$

+ training tricks:

- Store transitions (x, a, r, x') in replay buffer D to break dependence on recent samples
- Compute small updates by mini-batch stochastic gradient descent
- Use an older parameter vector θ_{k-m} in target to avoid oscillations

•

DEEP Q NETWORKS FOR PLAYING ATARI

The path towards deep RL

1. Least-squares TD

- Linear function approx.
- General function approx.
- Deep Q networks

2. Policy optimization

- The likelihood-ratio trick
- The policy gradient theorem
- Actor-critic algorithms

DIRECT POLICY OPTIMIZATION

DIRECT POLICY OPTIMIZATION

Idea:

- Parametrize policy $\pi_{ heta}$
- Directly improve performance by searching for better parameters θ

• Construct mapping $\theta \mapsto \pi_{\theta}$

input layer hidden layer 1 hidden layer 2 hidden layer 3 output layer $\pi_{\theta}(a|x)$

Parameter space Θ

Construct mapping $\theta \mapsto \pi_{\theta}$

 $(x,a) = \frac{1}{2} \int_{\theta}^{\theta} (a|x)$

Parameter space Θ

Construct mapping

$$\theta \mapsto \pi_{\theta}$$

Define objective function:

$$\rho(\theta) = V^{\pi_{\theta}}(x_0)$$

 $(x,a) = \frac{\pi_{\theta}(a|x)}{\pi_{\theta}(a|x)}$

Parameter space Θ

Construct mapping

$$\theta \mapsto \pi_{\theta}$$

Define objective function:

$$\rho(\theta) = V^{\pi_{\theta}}(x_0)$$

Update parameters by gradient ascent:

$$\theta_{k+1} = \theta_k + \alpha_k \nabla_{\theta} \rho(\theta_k)$$

input layer 1 Indden layer 2 Indden layer 3 Inden layer 3 Indden layer 3 Indden

Parameter space Θ

Construct mapping

$$\theta \mapsto \pi_{\theta}$$

Define objective function:

$$\rho(\theta) = V^{\pi_{\theta}}(x_0)$$

Update parameters by gradient ascent:

$$\theta_{k+1} = \theta_k + \alpha_k \nabla_{\theta} \rho(\theta_k)$$

... and hope for convergence

(x,a) output layer $\pi_{\theta}(a|x)$

Parameter space Θ

How can we estimate the gradients?

Construct mapping

$$\theta \mapsto \pi_{\theta}$$

Define objective function:

$$\rho(\theta) = V^{\pi_{\theta}}(x_0)$$

 Update parameters by gradient ascent:

$$\theta_{k+1} = \theta_k + \alpha_k \nabla_{\theta} \rho(\theta_k)$$

... and hope for convergence

The path towards deep RL

- 1. Least-squares TD
 - Linear function approx.
 - General function approx.
 - Deep Q networks
- 2. Policy optimization
 - The likelihood-ratio trick
 - The policy gradient theorem
 - Actor-critic algorithms

SOME DEFINITIONS

Consider a special case:

- Episodic MDP with episode terminating in round T
- No discounting: $\gamma = 1$

Let
$$\pi_{\theta}$$
 be a stochastic policy with $\pi_{\theta}(a|x) = \mathbf{P}[a_t = a|x_t = x]$

SOME DEFINITIONS

Consider a special case:

- Episodic MDP with episode terminating in round T
- No discounting: $\gamma = 1$

Let
$$\pi_{\theta}$$
 be a stochastic policy with $\pi_{\theta}(a|x) = \mathbf{P}[a_t = a|x_t = x]$

For a trajectory
$$\tau_T = (x_1, a_1, ..., x_T)$$
, define $p_{\theta}(\tau_T) = \mathbf{P} [\tau \text{ is generated by } \pi_{\theta}]$ and $R(\tau_T) = \sum_{x_t, a_t \in \tau_T} r(x_t, a_t)$

Notice that

$$\rho(\theta) = V^{\pi_{\theta}}(x_0) = \mathbf{E}_{\tau_T \sim p_{\theta}}[R(\tau_T)]$$

Theorem

$$\nabla_{\theta} \rho(\theta) = \mathbf{E}_{\tau_T \sim p_{\theta}} [R(\tau_T) \nabla_{\theta} \log p_{\theta}(\tau_T)]$$

Theorem

$$\nabla_{\theta} \rho(\theta) = \mathbf{E}_{\tau_T \sim p_{\theta}} [R(\tau_T) \nabla_{\theta} \log p_{\theta}(\tau_T)]$$

Proof:

$$\nabla \rho(\theta) = \nabla \mathbf{E}_{\tau \sim p_{\theta}}[R(\tau)] = \nabla \left(\sum_{\tau} p_{\theta}(\tau)R(\tau)\right)$$

Theorem

$$\nabla_{\theta} \rho(\theta) = \mathbf{E}_{\tau_T \sim p_{\theta}} [R(\tau_T) \nabla_{\theta} \log p_{\theta}(\tau_T)]$$

Proof:

$$\nabla \rho(\theta) = \nabla \mathbf{E}_{\tau \sim p_{\theta}}[R(\tau)] = \nabla \left(\sum_{\tau} p_{\theta}(\tau)R(\tau)\right)$$

$$= \sum_{\tau} \nabla p_{\theta}(\tau) R(\tau)$$

Theorem

$$\nabla_{\theta} \rho(\theta) = \mathbf{E}_{\tau_T \sim p_{\theta}} [R(\tau_T) \nabla_{\theta} \log p_{\theta}(\tau_T)]$$

Proof:

$$\nabla \rho(\theta) = \nabla \mathbf{E}_{\tau \sim p_{\theta}}[R(\tau)] = \nabla \left(\sum_{\tau} p_{\theta}(\tau) R(\tau) \right)$$
$$= \sum_{\tau} \nabla p_{\theta}(\tau) R(\tau) = \sum_{\tau} p_{\theta}(\tau) \frac{\nabla p_{\theta}(\tau)}{p_{\theta}(\tau)} R(\tau)$$

Theorem

$$\nabla_{\theta} \rho(\theta) = \mathbf{E}_{\tau_T \sim p_{\theta}} [R(\tau_T) \nabla_{\theta} \log p_{\theta}(\tau_T)]$$

Proof:

$$\nabla \rho(\theta) = \nabla \mathbf{E}_{\tau \sim p_{\theta}}[R(\tau)] = \nabla \left(\sum_{\tau} p_{\theta}(\tau) R(\tau) \right)$$

$$= \sum_{\tau} \nabla p_{\theta}(\tau) R(\tau) = \sum_{\tau} p_{\theta}(\tau) \frac{\nabla p_{\theta}(\tau)}{p_{\theta}(\tau)} R(\tau)$$

$$= \sum_{\tau} p_{\theta}(\tau) \nabla \log p_{\theta}(\tau) R(\tau)$$

 $\nabla \log f = \nabla f / f \text{ for } f > 0$

HOW DO WE COMPUTE $\nabla_{\theta} \log p_{\theta}(\tau_T)$??

Observe that
$$p_{\theta}(\tau_T) = p_{\theta}(\tau_{T-1}) P(x_T | x_{T-1}, a_{T-1}) \pi_{\theta}(a_{T-1} | x_{T-1})$$

HOW DO WE COMPUTE $\nabla_{\theta} \log p_{\theta}(\tau_T)$??

Observe that
$$p_{\theta}(\tau_{T}) = p_{\theta}(\tau_{T-1})P(x_{T}|x_{T-1}, a_{T-1})\pi_{\theta}(a_{T-1}|x_{T-1})$$
$$= p(x_{0})\prod_{t=0}^{T-1}P(x_{t+1}|x_{t}, a_{t})\pi_{\theta}(a_{t}|x_{t})$$

HOW DO WE COMPUTE $\nabla_{\theta} \log p_{\theta}(\tau_T)$??

Observe that
$$p_{\theta}(\tau_{T}) = p_{\theta}(\tau_{T-1})P(x_{T}|x_{T-1}, a_{T-1})\pi_{\theta}(a_{T-1}|x_{T-1})$$

$$= p(x_{0})\prod_{t=0}^{T-1}P(x_{t+1}|x_{t}, a_{t})\pi_{\theta}(a_{t}|x_{t})$$
So we have
$$\log p_{\theta}(\tau_{T}) = \log p(x_{0}) + \sum_{t=0}^{T-1}\log P(x_{t+1}|x_{t}, a_{t}) + \sum_{t=0}^{T-1}\log \pi_{\theta}(a_{t}|x_{t})$$

HOW DO WE COMPUTE $\nabla_{\theta} \log p_{\theta}(\tau_T)$??

Observe that
$$p_{\theta}(\tau_{T}) = p_{\theta}(\tau_{T-1})P(x_{T}|x_{T-1}, a_{T-1})\pi_{\theta}(a_{T-1}|x_{T-1})$$

$$= p(x_{0})\prod_{t=0}^{T-1}P(x_{t+1}|x_{t}, a_{t})\pi_{\theta}(a_{t}|x_{t})$$
So we have
$$\log p_{\theta}(\tau_{T}) = \log p(x_{0}) + \sum_{t=0}^{T-1}\log P(x_{t+1}|x_{t}, a_{t}) + \sum_{t=0}^{T-1}\log \pi_{\theta}(a_{t}|x_{t})$$

Only this part depends on $\theta!!$

THE LIKELIHOOD-RATIO GRADIENT

The gradient then becomes

$$\nabla_{\theta} \log p_{\theta}(\tau_T) = \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t | x_t)$$

THE LIKELIHOOD-RATIO GRADIENT

The gradient then becomes

$$\nabla_{\theta} \log p_{\theta}(\tau_T) = \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t | x_t)$$

Theorem

$$\nabla_{\theta} \rho(\theta) = \mathbf{E}_{\tau_T \sim p_{\theta}} [R(\tau_T) \nabla_{\theta} \log p_{\theta}(\tau_T)]$$

THE LIKELIHOOD-RATIO GRADIENT

The gradient then becomes

$$\nabla_{\theta} \log p_{\theta}(\tau_T) = \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t | x_t)$$

Theorem

Theorem
$$\nabla_{\theta} \rho(\theta) = \mathbf{E}_{\tau_T \sim p_{\theta}} [R(\tau_T) \nabla_{\theta} \log p_{\theta}(\tau_T)]$$

$$= \mathbf{E}_{\tau_T \sim p_{\theta}} \left[R(\tau_T) \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t | x_t) \right]$$

WHY IS THIS GOOD?

Theorem

$$abla_{ heta}
ho(heta) = \mathbf{E}_{ au_T \sim p_{ heta}} \left| R(au_T) \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t | x_t) \right|$$

Gradient can be written as an expectation!!!!

Can be used for SGD!!!

REINFORCE: A STOCHASTIC POLICY GRADIENT ALGORITHM

REINFORCE

Input: arbitrary initial θ_0

For k = 0,1,...

- Draw a sample trajectory $(x_t, a_t, r_t)_{t=1}^T$
- Let $R_k = \sum_{t=1}^T r_t$
- Let $g_k = R_k \sum_{t=1}^T \nabla_{\theta} \log \pi_{\theta_k}(a_t | x_t)$
- Update $\theta_{k+1} = \theta_k + \alpha_k g_k$

REINFORCE: A STOCHASTIC POLICY

GRADIENT ALGORITH

$\mathbf{E}[g_k] = \nabla_{\theta} \rho(\theta_k)$

- ⇒ this is a stochastic gradient ascent algorithm
- ⇒ converges to local optimum

REINFORCE

Input: arbitrary ir

For
$$k = 0,1,...$$

- Draw a sample trajectory $(x_t, a_t, r_t)_{t=1}^T$
- Let $R_k = \sum_{t=1}^T r_t$
- Let $g_k = R_k \sum_{t=1}^T \nabla_{\theta} \log \pi_{\theta_k}(a_t|x_t)$
- Update $\theta_{k+1} = \theta_k + \alpha_k g_k$

EXAMPLE: SOFTMAX POLICY

Define a feature map $\phi: X \times A \to \mathbb{R}^d$

Softmax policy:
$$\pi_{\theta}(a|x) = \frac{\exp(\langle \theta, \phi(x, a) \rangle)}{\sum_{a'} \exp(\langle \theta, \phi(x, a') \rangle)} = \frac{\exp(\langle \theta, \phi(x, a) \rangle)}{Z_{\theta}}$$

Score function:

$$\nabla_{\theta} \log \pi_{\theta}(a|x) = \nabla_{\theta} \langle \theta, \phi(x, a) \rangle - \nabla_{\theta} \log Z_{\theta}$$

$$= \phi(x, a) - \frac{\nabla_{\theta} Z_{\theta}}{Z_{\theta}} = \phi(x, a) - \frac{\sum_{a'} \nabla_{\theta} \exp(\langle \theta, \phi(x, a') \rangle)}{Z_{\theta}}$$

$$= \phi(x, a) - \frac{\sum_{a'} \phi(x, a') \exp(\langle \theta, \phi(x, a') \rangle)}{Z_{\theta}}$$

$$= \phi(x, a) - \sum_{a'} \pi_{\theta}(a'|x)\phi(x, a')$$

ON THE LIKELIHOOD RATIO TRICK

© Gives unbiased gradient estimates ©

© Also works for black-box optimization, MCMC,... ©

ON THE LIKELIHOOD RATIO TRICK

© Gives unbiased gradient estimates ©

© Also works for black-box optimization, MCMC,... ©

⊗ HUGE variance **⊗**

☼ Doesn't make use of the Bellman equations ☺

Adding a baseline preserves expectation, but may reduce variance:

Theorem

For any $b \in \mathbb{R}$,

$$\nabla_{\theta} \rho(\theta) = \mathbf{E}_{\tau_T \sim p_{\theta}} [(R(\tau_T) - b) \nabla_{\theta} \log p_{\theta}(\tau_T)]$$

Adding a baseline preserves expectation, but may reduce variance:

Theorem

For any $b \in \mathbb{R}$,

$$\nabla_{\theta} \rho(\theta) = \mathbf{E}_{\tau_T \sim p_{\theta}} [(R(\tau_T) - b) \nabla_{\theta} \log p_{\theta}(\tau_T)]$$

$$\nabla \rho(\theta) = \nabla \mathbf{E}_{\tau \sim p_{\theta}} [R(\tau) - b]$$

Adding a baseline preserves expectation, but may reduce variance:

Theorem

For any $b \in \mathbb{R}$,

$$\nabla_{\theta} \rho(\theta) = \mathbf{E}_{\tau_T \sim p_{\theta}} [(R(\tau_T) - b) \nabla_{\theta} \log p_{\theta}(\tau_T)]$$

$$\nabla \rho(\theta) = \nabla \mathbf{E}_{\tau \sim p_{\theta}} [R(\tau) - b]$$
$$= \nabla \mathbf{E}_{\tau \sim p_{\theta}} [R(\tau)] - \nabla \mathbf{E}_{\tau \sim p_{\theta}} [b]$$

Adding a baseline preserves expectation, but may reduce variance:

Theorem

For any $b \in \mathbb{R}$,

$$\nabla_{\theta} \rho(\theta) = \mathbf{E}_{\tau_T \sim p_{\theta}} [(R(\tau_T) - b) \nabla_{\theta} \log p_{\theta}(\tau_T)]$$

$$\begin{split} \nabla \rho(\theta) &= \nabla \mathbf{E}_{\tau \sim p_{\theta}}[R(\tau) - b] \\ &= \nabla \mathbf{E}_{\tau \sim p_{\theta}}[R(\tau)] - \nabla \mathbf{E}_{\tau \sim p_{\theta}}[b] \\ &= \nabla \mathbf{E}_{\tau \sim p_{\theta}}[R(\tau)] - \nabla b \end{split}$$

Adding a baseline preserves expectation, but may reduce variance:

Theorem

For any $b \in \mathbb{R}$,

$$\nabla_{\theta} \rho(\theta) = \mathbf{E}_{\tau_T \sim p_{\theta}} [(R(\tau_T) - b) \nabla_{\theta} \log p_{\theta}(\tau_T)]$$

$$\begin{split} \nabla \rho(\theta) &= \nabla \mathbf{E}_{\tau \sim p_{\theta}}[R(\tau) - b] \\ &= \nabla \mathbf{E}_{\tau \sim p_{\theta}}[R(\tau)] - \nabla \mathbf{E}_{\tau \sim p_{\theta}}[b] \\ &= \nabla \mathbf{E}_{\tau \sim p_{\theta}}[R(\tau)] - \nabla b \\ &= \nabla \mathbf{E}_{\tau \sim p_{\theta}}[R(\tau)] \end{split}$$

The path towards deep RL

- 1. Least-squares TD
 - Linear function approx.
 - General function approx.
 - Deep Q networks
- 2. Policy optimization
 - The likelihood-ratio trick
 - The policy gradient theorem
 - Actor-critic algorithms

MAKING USE OF THE BELLMAN EQS: THE POLICY GRADIENT THEOREM

Theorem

For any function $\overline{b:X\to R}$, we have

$$\nabla_{\theta} \rho(\theta) = \sum_{t=1}^{r} \mathbf{E}_{\tau_{T} \sim p_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(a_{t}|x_{t}) \left(Q^{\pi_{\theta}}(x_{t}, a_{t}) - b(x_{t}) \right) \right]$$

MAKING USE OF THE BELLMAN EQS: THE POLICY GRADIENT THEOREM

Theorem

For any function $b: X \to R$, we have

$$\nabla_{\theta} \rho(\theta) = \sum_{t=1}^{I} \mathbf{E}_{\tau_{T} \sim p_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(a_{t}|x_{t}) \left(Q^{\pi_{\theta}}(x_{t}, a_{t}) - b(x_{t}) \right) \right]$$

Likelihood-ratio gradient on steroids:

- Replaces total rewards by Q-function
- State-dependent baseline
- Also works beyond episodic case

REINFORCE WITH THE PG THEOREM

REINFORCE v2

Input: arbitrary initial θ_0

For k = 0,1,...

- Draw a sample trajectory $(x_t, a_t, r_t)_{t=1}^T$
- Estimate $Q^{\pi_{ heta_k}}pprox \widehat{Q}_k$ by Monte Carlo
- Estimate $\nabla_{\theta} \rho(\theta_k) \approx g_k$ by the average of $g_{k,t} = \nabla_{\theta} \log \pi_{\theta_k}(a_t|x_t) \hat{Q}_k(x_t,a_t)$
- Update $\theta_{k+1} = \theta_k + \alpha_k g_k$

REINFORCE WITH THE PG THEOREM

REINFORCE v2

Input: arbitrary init

For
$$k = 0,1,...$$

$\mathbf{E}[g_k] = \nabla_{\theta} \rho(\theta_k)$

- ⇒ this is a stochastic gradient ascent algorithm
- ⇒ converges to local optimum
- Draw a sample trajectory $(x_t, a_t, r_t)_{t=1}^T$
- Estimate $Q^{\pi_{ heta_k}}pprox \widehat{Q}_k$ by Monte Carlo
- Estimate $\nabla_{\theta} \rho(\theta_k) \approx g_k$ by the average of $g_{k,t} = \nabla_{\theta} \log \pi_{\theta_k}(a_t|x_t) \hat{Q}_k(x_t,a_t)$
- Update $\theta_{k+1} = \theta_k + \alpha_k g_k$

REINFORCE AS DIRECT POLICY OPTIMIZATION

REINFORCE AS DIRECT POLICY OPTIMIZATION

Policy gradient update

- \odot direct method: no explicit approximation of V^{π} \odot
- © converges to local optimum ©
 - © less aggressive updates ©
 - $\ \ \otimes$ large variance of $g_k \ \ \otimes$

The path towards deep RL

- 1. Least-squares TD
 - Linear function approx.
 - General function approx.
 - Deep Q networks
- 2. Policy optimization
 - The likelihood-ratio trick
 - The policy gradient theorem
 - Actor-critic algorithms

ACTOR-CRITIC METHODS

Typical actor: policy gradient updates

Critic:

- Monte Carlo ⇒ REINFORCE
- TD(λ)
- LSTD(λ)
- DQN, ...

A TYPICAL DEEP RL ARCHITECTURE: A3C

Parametrize policy by a deep neural net

A TYPICAL DEEP RL ARCHITECTURE: A3C

Parametrize policy by a deep neural net

+ another neural net to estimate $V^{\pi_{\theta}}$ and to estimate $Q^{\pi_{\theta}}$ by bootstrapped Monte Carlo + asynchronous updates + entropy regularization of the gradients

Next week: Robustness and exploration in RL