ניתן למצוא $n\in\mathbb{N}$ יהא l מרחב וקטורי מעל שדה \mathbb{F} . אזי הוא מממד אינסופי לכל $n\in\mathbb{N}$ ניתן למצוא בו n וקטורים בת"ל.

<u>דוגמה 1:</u>

נתבונן ב-V מרחב וקטורי מעל $\mathbb R$ שהוא קבוצה של כל הסדרות הממשיות. נסמנו ב- $\mathbb R^\infty$ ונוכיח כי ממדו אינסופי. יהא $i \leq i \leq n$ כלשהו. לכל $i \leq n$ נתאים סדרה $i \in \mathbb R$ המוגדרת על ידי:

$$e_{ij} = \begin{cases} 1 & j = i \\ 0 & \text{אחרת} \end{cases}$$

נניח כי מתקיים: \mathbb{R} . נניח כי מתקיים: $\{a_i\}_{i=1}^n$ סקלרים כלשהם ב- $\{e_i\}_{i=1}^n$ נניח כי מתקיים:

$$\sum_{i=1}^{n} \alpha_i e_i = 0$$

וצריך להראות כי $\alpha_i=0$ לכל $\alpha_i=0$. יהא, אם כן, n שם כן, $\alpha_i=0$ כלשהו. הקואורדינטה של $\alpha_i=0$ לכל $\alpha_i=0$ וואריך להראות כי $\alpha_i=0$ ליה אם כו $\alpha_i=0$ ליה אם כו $\alpha_i=0$ ווארין במקום $\alpha_i=0$ וואריך במקום $\alpha_i=0$ ווארים בת"ל כנדרש. בת"ל כנדרש.

. לסיכום, הסדרות $\{e_i\}_{i=1}^n$ הן בת"ל ולכן על פי הגדרה ממדו של $\{e_i\}_{i=1}^n$ אינסופי

:2 דוגמה

 $1 \leq 1$ נתבונן במרחב הפונקציות הממשיות הרציפות בקטע [0,1]. נראה כי ממדו אינסוף. יהא n טבעי כלשהו, לכל $i \leq n$ נתאים פונקציה המוגדרת באופן הבא:

$$f_i(x) = \begin{cases} 2^{i+2} \left(x - \sum_{j=1}^i \frac{1}{2^j} \right) & x \in \left[\sum_{j=1}^i \frac{1}{2^j}, \sum_{j=1}^n \frac{1}{2_j} + \frac{1}{2^{i+2}} \right] \\ -2^{i+1} \left(x - \sum_{j=1}^{i+1} \frac{1}{2^i} \right) & x \in \left[\sum_{j=1}^i \frac{1}{2^j} + \frac{1}{2^{i+2}}, \sum_{j=1}^{i+1} \frac{1}{2^i} \right] \\ 0 & \text{ where } \end{cases}$$

יהא $\alpha_i=0$ סקלרים ממשיים כלשהם ונניח כי $\sum_{i=1}^n \alpha_i f_i=0$. צריך להראות כי $1\leq i\leq n$ לכל $1\leq i\leq n$ אם כן, יהא $1\leq i\leq n$ סקלרים ממשיים כלשהם ונניח כי $1\leq i\leq n$ ונשים לב כי: $1\leq i\leq n$ נתבונן ב $1\leq i\leq n$ ניהא $1\leq i\leq n$ לכל $1\leq i\leq n$

$$f_{i_0}(x_0) = 1$$

 $.i_0$ וזאת משום ש- x_0 מקבלים את הקדקוד של המשולש המתאים ל

$$\sum_{i=1}^{n} \alpha_i f_i(x_0) = 0$$

מצד שני מתקיים:

$$\sum_{i=1}^{n} \alpha_i f_i(x_0) = \alpha_{i_0} \Longrightarrow \alpha_{i_0} = 0$$

אך כאמור, הנ"ל נכון לכל $i_0 \leq i$ ולכן נסיק כי כל הסקלרים אכן מתאפסים ובאותו אופן על פי הגדרה קיבלנו כי מרחב זה אכן בעל ממד אינסופי.

- $\langle \ \ \rangle: V imes V \mapsto \mathbb{R}$ יהא פונקציה V מרחב וקטורי מעל \mathbb{R} . מכפלה פנימית על V היא פונקציה V מרחב וקטורי מעל המקיימת את התכונות הבאות:
 - $u,v\in V$ לכל $\langle u,v
 angle = \langle v,u
 angle$.
 - $lpha,eta\in\mathbb{R}$ ב. $(lpha,eta,w)=lpha\langle u,w
 angle+eta\langle v,w
 angle$ ב. $(lpha,a,eta\in\mathbb{R})$ ולכל
 - v=0 אם ורק אם $\langle v,v
 angle = 0$ ו. $\langle v,v
 angle \geq 0$

דוגמה:

ב- $(x_i)_{i=1}^n$ לכל $x=\{x_i\}_{i=1}^n$ ו- $(x_i)_{i=1}^n$ נגדיר:

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i$$

 \mathbb{R}^n וזו הינה מכפלה פנימית סטנדרטית ב

- מסמנים .v או אורך של וקטור און נורמה של וקטור או הגדרה למספר $\sqrt{\langle v,v \rangle}$ קוראים נורמה של וקטור 1.2.1 אותו בנוסף על ידי וועריי.
 - $\|u-v\|$ מוגדר להיות $u,v\in V$ מוגדר בין שני וקטורים 1.2.2
 - :מתקיים $u,v\in V$ ממ"פ מעל $\mathbb R$. אזי לכל $u,v\in V$ מתקיים שוורץ יהא

$$|\langle u, v \rangle| \leq ||u|| ||v||$$

בת"ל. u,v בת"ל.

- 1.4 טענה תכונות של נורמה:
- $v=0\Leftrightarrow \|v\|=0$ וכן $\|v\|\geq 0$ מתקיים. i
 - $\|\lambda v\| = |\lambda| \|v\|$ סקלר כלשהו, מתקיים $\lambda \in \mathbb{R}$ לכל. ii
- שוויון וויון המשולש, כלומר, לכל $u,v\in V$ מתקיים $\|u+v\|\leq \|u\|+\|v\|$. שוויון וויון המשולש, כלומר, לכל אחד מבין הוקטורים הינו כפולה בסקלר אי שלילי של השני. $v=\lambda u$ או $u=\lambda v$ כלומר כאשר קיים $\lambda \geq 0$ כך שמתקיים או

הוכחה לאי שוויון המשולש:

יהיו $v \in V$, אזי מתקיים:

$$||u + v||^2 = \langle u + v, u + v \rangle = ||u||^2 + 2\langle u, v \rangle + ||v||^2$$

וכמו כן, על פי קושי שוורץ מתקיים:

$$\langle u, v \rangle \leq ||u|| ||v||$$

ולכן:

$$||u||^2 + 2\langle u, v \rangle + ||v||^2 = ||u||^2 + 2||u|| ||v|| + ||v||^2 = (||u|| + ||v||)^2$$

כלומר קיבלנו, כי אכן מתקיים:

$$||u+v||^2 \le (||u|| + ||v||)^2 \Longrightarrow \boxed{||u+v|| \le (||u|| + ||v||)}$$