Factorial Designs

Why do we use factorial designs?

- Factorial designs find better optima.
- Factorial designs are more efficient.
- Factorial designs make better estimates of effect sizes.

What is a factorial design?

Factorial designs find better optima.

Interactions are the problem.

Interaction plots for diagnosis.

Table 3.1 Mooney Viscosity of Silica B at 100° C

Naphthene Oil (phr)			Filler	(phr)		
	0	12	24	36	48	60
0	25	30	35	40	50	60
10	18	21	24	28	33	41
20	13	15	17	20	24	29
30	11	14	15	17	18	25

Figure 3.4 Interaction Plot of Filler and Naphthene Oil

Why do we use factorial designs?

- Factorial designs find better optima.
- Factorial designs are more efficient.
- Factorial designs make better estimates of effect sizes.

Factorial designs seem less efficient.

- Imagine an experiment with four variables, each with two levels (0, +). We want three replicates for each level.
- One-at-a-time Design
 3 runs at level 0
 4 variables x 3 runs at level +
 15 total experiments
- Factorial design
 2⁴=16 levels x 3 runs
 48 total experiments?

One-at-a-time design

+	0	0	0
+	0	0	0
+	0	0	0
0	+	0	0
0	+	0	0
0	+	0	0
0	0	+	0
0	0	+	0
0	0	+	0
0	0	0	+
0	0	0	+
0	0	0	+
0	0	0	0
0	Ō	Ō	0
+++000000000000	0000+++00000000	000000+++000000	000000000+++0000
_	•	•	

One-at-a-time design

Factorial Design

+	0	0	0
+	0	0	0
+	0	0	0
0	+	0	0
0	+	0	0
0	+	0	0
0	0	+	0
0	0	+	0
0	0	+	0
0	0	0	+
0	0	0	+
0	0	0	+

0	0	0	0
+	0	0	0
0	+	0	0 0 0 0 0
+	+	0	0
+ 0	+ 0 0	+	0
+	0	+	0
0	+	+	0
+	+	+	0
0	0	0	+
+	0	0	+
0	+	0	+
+	+	0	+
0	+ 0 0	+	+
+	0	+	+
Ö	+	+	+
+	+	+	+

Factorial designs give more replicates per additional run.

- Imagine a design with p variables with k levels.
- After the initial design, adding another replicate requires

pk runs for a one-at-a-time design

k runs for a factorial design

Why do we use factorial designs?

- Factorial designs find better optima.
- Factorial designs are more efficient.
- Factorial designs make better estimates of effect sizes.

One-at-a-time design

+	0	0	0
+	0	0	0
+ + 0 0	0	0	0
0	+	0	0
0	+	0	0
0	+	0	0
0	0	+	0
0	0	+	0
0	0	+ + + 0	0
0	0	\cap	+
		O	<u>I</u>
0	0	0	+ + +

Factorial Design

What do the effect sizes quantify?

• In one-at-a-time designs, β_i is the effect of moving x_i from 0 to + while all other variables held at 0.

• In factorial designs, β_i is the average effect of moving x_i from 0 to + across the entire design space.

Factorial Design

when $x_3 = 0$:

0	0	0	0
+	0	0	0
0	+	0	0
+	+	0	0
0	0	+	0
+	0	+	0
0	+	+	0
+	+	+	0
0	0	0	+
+	0	0	+
0	+	0	+
+	+	0	+
0	0	+	+
+	0	+	+
0+0+0+0+0+0+0+0+	0++00++00++	0000++++00000++++	0000000++++++++
+	+	+	+

$$0 & 0 \\ + & 0 \\ 0 & + \\ + & + \\ 0 & 0 \\ + & 0 \\ 0 & + \\ + & + \\ when $x_3 = +$:$$

