CSC D70: Compiler Optimization Static Single Assignment (SSA)

Prof. Gennady Pekhimenko
University of Toronto
Winter 2018

From Last Lecture

What is a Loop?

Dominator Tree

Natural Loops

Back Edges

Finding Loops: Summary

- Define loops in graph theoretic terms
- Definitions and algorithms for:
 - Dominators
 - Back edges
 - Natural loops

Where Is a Variable Defined or Used?

- <u>Example</u>: Loop-Invariant Code Motion
 - Are B, C, and D only defined outside the loop?
 - Other definitions of A inside the loop?
 - Uses of A inside the loop?
- <u>Example</u>: Copy Propagation
 - For a given use of X:
 - Are all reaching definitions of X:
 - copies from same variable: e.g., X = Y
 - Where **Y** is not redefined since that copy?
 - If so, substitute use of X with use of Y

- It would be nice if we could traverse directly between related uses and def's
 - this would enable a form of sparse code analysis (skip over "don't care" cases)

Appearances of Same Variable Name May Be Unrelated

- The values in reused storage locations may be provably independent
 - in which case the compiler can optimize them as separate values
- Compiler could use renaming to make these different versions more explicit

Definition-Use and Use-Definition Chains

- Use-Definition (UD) Chains:
 - for a given definition of a variable X, what are all of its uses?
- <u>Definition-Use (DU) Chains:</u>
 - for a given use of a variable X, what are all of the reaching definitions of X?

DU and UD Chains Can Be Expensive

```
foo(int i, int j) {
                                   In general,
   switch (i) {
                                            N defs
   case 0: x=3;break;
   case 1: x=1; break;
                                            M uses
   case 2 : x = 6; break;
                                            \Rightarrow O(NM) space and time
        3: x=7; break;
   default: x =
   case v=x=7; break;
   case 1 = v = x + 4; break;
   case 2: v=x-2; break;
   case 3: y=x+1; break;
   default: y=x+9;
             One solution: limit each variable to ONE definition site
```

DU and UD Chains Can Be Expensive (2)

```
foo(int i, int j) {
   switch (i) {
  case 0: x=3; break;
  case 1: x=1; break;
  case 2: x=6;
  case 3: x=7;
  default: x = 11;
   x1 is one of the above x's
   switch (j) {
   case 0: y=x1+7;
   case 1: y=x1+4;
   case 2: y=x1-2;
   case 3: y=x_1+1;
  default: y=x1+9;
             One solution: limit each variable to ONE definition site
```

Static Single Assignment (SSA)

- Static single assignment is an IR where every variable is assigned a value at most once in the program text
- Easy for a basic block (reminiscent of Value Numbering):
 - Visit each instruction in program order:
 - LHS: assign to a fresh version of the variable
 - RHS: use the *most recent version* of each variable

$$\begin{array}{c} a \leftarrow x + y \\ b \leftarrow a + x \\ a \leftarrow b + 2 \\ c \leftarrow y + 1 \\ a \leftarrow c + a \end{array} \qquad \begin{array}{c} a_1 \leftarrow x + y \\ b_1 \leftarrow a_1 + x \\ a_2 \leftarrow b_1 + 2 \\ c_1 \leftarrow y + 1 \\ a_3 \leftarrow c_1 + a_2 \end{array}$$

What about Joins in the CFG?

 \rightarrow Use a notational fiction: a Φ function

Merging at Joins: the Φ function

The Φ function

- At a basic block with p predecessors, there are p arguments to the Φ function.

$$x_{new} \leftarrow \Phi(x_1, x_1, x_1, ..., x_p)$$

- How do we choose which x_i to use?
 - We don't really care!
 - If we care, use moves on each incoming edge

"Implementing" Φ

Trivial SSA

- Each assignment generates a fresh variable.
- At each join point insert Φ functions for all live variables.

Too many Φ functions inserted.

Minimal SSA

- Each assignment generates a fresh variable.
- At each join point insert Φ functions for all live variables with multiple outstanding defs.

Another Example

When Do We Insert Φ ?

If there is a def of \mathbf{a} in block 5, which nodes need a $\Phi()$?

When do we insert Φ ?

- We insert a Φ function for variable A in block Z iff:
 - A was defined more than once before
 - (i.e., A defined in X and Y AND $X \neq Y$)
 - There exists a non-empty path from x to z, P_{xz} ,
 - and a non-empty path from y to z, P_{yz} , s.t.
 - $P_{xz} \cap P_{yz} = \{z\}$

(Z is only common block along paths)

- $z \notin P_{xq}$ or $z \notin P_{yr}$ where $P_{xz} = P_{xq} \rightarrow z$ and $P_{yz} = P_{yr} \rightarrow z$ (at least one path reaches Z for first time)
- Entry block contains an implicit def of all vars
- Note: v = Φ(...) is a def of v

Path Convergence

Dominance Property of SSA

- In SSA, definitions dominate uses.
 - If x_i is used in $x \leftarrow \Phi(..., x_i, ...)$, then BB(x_i) dominates ith predecessor of BB(PHI)
 - If x is used in $y \leftarrow ... x ...,$ then BB(x) dominates BB(y)

 We can use this for an efficient algorithm to convert to SSA

Dominance

x strictly dominates w (x sdom w) iff x dom w AND $x \neq w$

x strictly dominates w (x sdom w) iff x dom w AND $x \neq w$

Dominance Frontier and Path Convergence

If there is a def of **a** in block **5**, nodes in DF(**5**) need a Φ () for **a**

Using Dominance Frontier to Compute SSA

- place all $\Phi()$
- Rename all variables

Using Dominance Frontier to Place Φ()

- Gather all the defsites of every variable
- Then, for every variable
 - foreach defsite
 - foreach node in DominanceFrontier(defsite)
 - if we haven't put Φ () in node, then put one in
 - if this node didn't define the variable before, then add this node to the defsites

• This essentially computes the Iterated Dominance Frontier on the fly, inserting the minimal number of Φ () neccesary

Using Dominance Frontier to Place $\Phi()$

```
foreach node n {
   foreach variable v defined in n {
    orig[n] \cup = \{v\}
    defsites[v] \cup = \{n\}
foreach variable v {
  W = defsites[v]
  while W not empty {
    n = remove node from W
     foreach y in DF[n]
    if y \notin PHI[v] {
       insert "v \leftarrow \Phi(v,v,...)" at top of y
       PHI[v] = PHI[v] \cup \{y\}
       if v \notin orig[y]: W = W \cup \{y\}
```

Renaming Variables

- Algorithm:
 - Walk the D-tree, renaming variables as you go
 - Replace uses with more recent renamed def
- For straight-line code this is easy
- What if there are branches and joins?
 - use the closest def such that the def is above the use in the D-tree
- Easy implementation:
 - for each var: rename (v)
 - rename(v): replace uses with top of stack

at def: push onto stack

call rename(v) on all children in D-tree for each def in this block pop from stack

Compute Dominance Tree

Compute Dominance Frontiers

Insert $\Phi()$

Insert $\Phi()$

Rename Vars

Rename Vars

Computing DF(n) n c

n dom a n dom b !n dom c

Computing DF(n) DF(b) n dom a DF(a) n dom b !n dom c

Computing the Dominance Frontier

```
The Dominance Frontier of a node x =
compute-DF(n)
                                    w | x dom pred(w) AND !(x sdom w)}
          S = \{\}
          foreach node y in succ[n]
                    if idom(y) \neq n
                              S = S \cup \{y\}
          foreach child of n, c, in D-tree
                    compute-DF(c)
                    foreach w in DF[c]
                              if !n dom w
                                        S = S \cup \{w\}
          DF[n] = S
```

SSA Properties

- Only 1 assignment per variable
- Definitions dominate uses

Constant Propagation

- If "v ← c", replace all uses of v with c
- If "v ← Φ(c,c,c)" (each input is the same constant), replace all uses of v with

```
W ← list of all defs
while !W.isEmpty {
       Stmt S ← W.removeOne
       if ((S has form "\mathbf{v} \leftarrow \mathbf{c}'') ||
             (S has form "\mathbf{v} \leftarrow \Phi(\mathbf{c},...,\mathbf{c})")) then {
             delete S
             foreach stmt U that uses v {
                replace v with c in U
                W. add (U)
```

Other Optimizations with SSA

- Copy propogation
 - delete "x $\leftarrow \Phi(y,y,y)$ " and replace all x with y
 - delete "x
 v" and replace all x with y

- Constant Folding
 - (Also, constant conditions too!)

Not a very exciting result (yet)...

$\begin{array}{c|c} \mathbf{i}_1 \leftarrow \mathbf{1} \\ \mathbf{j}_1 \leftarrow \mathbf{1} \\ \mathbf{k}_1 \leftarrow \mathbf{0} \end{array}$

Conditional Constant Propagation

- Does block 6 ever execute?
- Simple Constant Propagation can't tell
- But "Conditional Const. Prop." can tell:
 - Assumes blocks don't execute until proven otherwise
 - Assumes values are constants until proven otherwise

Conditional Constant Propagation Algorithm

Keeps track of:

- Blocks
 - assume unexecuted until proven otherwise
- Variables
 - assume not executed (only with proof of assignments of a non-constant value do we assume not constant)
 - Lattice for representing variables:

not executed

we have seen evidence that the variable has been assigned a constant with the value

we have seen evidence that the variable can hold different values at different times

Conditional Constant Propagation

Conditional Constant Propagation

CSC D70: Compiler Optimization Static Single Assignment (SSA)

Prof. Gennady Pekhimenko
University of Toronto
Winter 2018

Backup Slides