ASEN 5044, Fall 2024

Statistical Estimation for Dynamical Systems

Lecture 06: Discrete Time Linear State Space Systems

Prof. Nisar Ahmed (Nisar.Ahmed@Colorado.edu)

Thursday 9/12/2024

Announcements

- Prof. Ahmed out of country next week (SPIE Defense & Security Conference in UK)
 - No live classes next Tues 09/17 or Thurs 09/19, <u>BUT pre-recorded Lecture Videos to be</u> <u>posted – WATCH THEM!!</u> (will need them for HW 2)
 - TF Aidan to cover Prof. Ahmed's hours next Wed 09/18 4:30-6 pm, AERO N353
 - Regular in-person lectures to resume Tues 09/24
- HW 1 due tomorrow Fri 9/13 at 11:59 pm
- Submit to Gradescope (linked via Canvas)
 - All submissions must be legible!!! zero credit otherwise
- Advanced Questions: these are optional/extra credit (follow instructions)
- HW 2 will be posted today, due Fri 09/20; HW 3 to be posted next Thurs 09/19
- Quiz 3: this Friday- day via Canvas; NO QUIZ NEXT WEEK
- MIDTERM 1 TO BE RELEASED Thurs 10/03, DUE Thurs 10/10
 - Take home exam, to focus on material covered in HWs1-4 + quizzes up to that point

Overview

Last time: Linearization of nonlinear to linear SS models

Please read slides 13-16 of Lec 05 on your own!! (and work out the example on your own!)

The ase read sindes 15-16 of Lec 05 off your own: (and work out the example off your own)
$$\sqrt[4]{x} = \delta x = \begin{bmatrix} \delta x_1 \\ \delta x_2 \end{bmatrix} = \underbrace{\text{perturbation state vector}} (\neq \text{total state vector } x(t)!!)$$

 \rightarrow What is actual total state of NL system at any time (w.r.t. op. pt.)?

Overview

Today:

- Discrete time (DT) linear systems,
- Converting continuous time (CT) systems to DT systems

READ: Chapter 2.1 in Simon book (intro to probability)

Discrete Time Dynamic System Models

- State vector ="internal memory" of what system is doing at any given time
- In applications: only care to know what system is doing at fixed time instants, esp. sampled intervals for digital systems

- Some systems are naturally "episodic", i.e. agnostic to physical time
 - Baseball innings; rounds of poker, pool, squash, boxing, negotiation...
 - Finite state automata for computing, event-based systems
 - Often naturally described by finite difference equations (FDEs)

Discrete Time (DT) Dynamic System Models

- Convenient to specify dynamics as updates to internal system memory (i.e. state vector) from one discrete time step to another
- Linear DT models: matrices summarize changes between integer time steps k

$$K = 0, 1, 2, 3, \dots$$

$$X(un) = X_{un} = \begin{bmatrix} X_1(un) \\ X_2(un) \end{bmatrix} = F(u) \times (u) + G(u) \cdot u(u), \quad u(u) = \begin{bmatrix} u_1(u) \\ u_2(u) \end{bmatrix}$$

$$V(un) = Y_{un} = \begin{bmatrix} y_1(un) \\ y_2(un) \end{bmatrix} = H(un) \times (un) + M(un) \cdot u(un)$$

$$F(u) : State Transition Matrix (STM) \in IR^{NM}$$

$$G(u) : Control effect mentrix \in IR^{NM}$$

$$H(un) : Sensity mentrix \in R^{NM}$$

$$M(un) : Sinect transmission mentrix \in IR^{NM}$$

Example: Linear Car Dealer Model (episodic LTI DT system)

- You are haggling with car dealer Gary Slick for a used Ferrari
- At negotiation round k, Slick's offer = $x_1(k)$ and your offer = $x_2(k)$
- Offering algorithm (finite difference equation, FDE):
 - At each round k, you both lay down offers simultaneously
 - \circ For round k+1, you update by adding fraction μ of difference to $x_2(k)$
 - \circ For round k+1, Slick updates by subtracting fraction λ of difference from $x_1(k)$

FDE: let
$$\Delta_k = x_1(k) - x_2(k)$$
 (offer difference)

Slick's offer at time
$$k + 1$$
: $x_1(k + 1) = x_1(k) - \lambda \cdot \Delta_k = x_1(k) - \lambda[x_1(k) - x_2(k)]$

Your offer at time k + 1: $x_2(k + 1) = x_2(k) + \mu \cdot \Delta_k = x_2(k) + \mu[x_1(k) - x_2(k)]$

$$\rightarrow \text{Simplify into LTI DT SS Model: Define } x(k+1) = \begin{bmatrix} x_1(k+1) \\ x_2(k+1) \end{bmatrix} = \begin{bmatrix} (1-\lambda)x_1(k) + \lambda x_2(k) \\ \mu x_1(k) + (1-\mu)x_2(k) \end{bmatrix}$$

$$\rightarrow \text{Rewrite in } F \text{ matrix times } x(k) \text{ form: } x(k+1) = \begin{bmatrix} (1-\lambda) & \lambda \\ \mu & (1-\mu) \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} = Fx(k), \ x(k) \in \mathbb{R}^{2\times 1}$$

Converting CT Linear Models to Sampled DT Linear Models

How to translate from CT model (linear system of ODEs) for a given system?

$$\dot{x} = Ax(t) + Bu(t)$$
$$y(t) = Cx(t) + Du(t)$$

$$x_{k+1} = Fx_k + Gu_k$$
$$y_k = Hx_k + Mu_k$$

• Suppose u(k) follows a zero-order hold (ZOH) discretization of u(t):

$$u(t) = \text{some const.}, t \in [t_k, t_{k+1})$$

• Recall: general state solution x(t) is (for given $x(t_0)$):

$$x(t) = \underbrace{e^{A(t-t_0)}}_{\text{non}} x(\underline{t_0}) + \int_{t_0}^t e^{A(t-\tau)} B \underline{u(\tau)} d\tau$$

 \rightarrow If we use ZOH input u(t) with fixed Δt sample time, then:

$$x(t) = x(t_0 + \Delta t) = e^{A\Delta t}x(t_0) + \left[\int_{t_0}^t e^{A(t-\tau)}d\tau\right]Bu(t_0)$$
 Hold
$$x(k+1) = Fx(k) + Gu(k)$$

Converting CT Linear Models to Sampled DT Linear Models

• FACT: if CT LTI SS model has ZOH input u(t) applied for fixed sample periods $\Delta t = t - t_0$, then can explicitly find DT LTI matrices (F,G,H,M) such that:

$$\dot{x} = Ax(t) + Bu(t)$$

$$y(t) = Cx(t) + Du(t)$$

$$x_{k+1} = Fx_k + Gu_k$$
$$y_k = Hx_k + Mu_k$$

 $F = e^{A\Delta t}$

$$G = \left[\int_{t_0}^t e^{A(t-\tau)} d\tau \right] B$$

$$H = C$$

$$M = D$$

How to get this??

Chapter 1 of Simon book gives formula for G

if A is invertible...

...but what if A is singular generally?

$$\begin{bmatrix} 0 & 0 \end{bmatrix} \xrightarrow{\text{Inverse doesn't exist!}}$$
(note: this is A matrix

for the simple block mass problem in Lec 3!)

Computing the G matrix

- How to actually compute the G matrix integral? $G = \left[\int_{t_0}^{t} e^{A(t-\tau)} d\tau \right]$
- First look at expansion of the integral:

$$\int_{t_{0}}^{t} e^{A(t-\tau)} d\tau = \int_{0}^{\Delta t} e^{A(\Delta t-\tau)} d\tau - \int_{0}^{\Delta t} \int_{i=0}^{\infty} A^{i} \left(\underbrace{\Delta t-\tau}_{i} \right)^{i} d\tau$$

$$= \int_{0}^{\Delta t} \int_{i=0}^{\infty} A^{i} \left(\underbrace{\Delta t-\tau}_{i} \right)^{i} d\tau$$

$$= \sum_{i=0}^{\infty} \int_{0}^{\Delta t} A^{i} \left(\underbrace{\Delta t-\tau}_{i} \right)^{i} d\tau = \sum_{i=0}^{\infty} \int_{0}^{\Delta t} \underbrace{\Delta t-\tau}_{i} d\tau$$

$$= \sum_{i=0}^{\infty} \int_{0}^{\Delta t} A^{i} \left(\underbrace{\Delta t-\tau}_{i} \right)^{i} d\tau$$

$$= \sum_{i=1}^{\infty} \int_{0}^{\Delta t} A^{i} \left(\underbrace{\Delta t-\tau}_{i} \right)^{i} d\tau$$

$$= \sum_{i=1}^{\infty} \int_{0}^{\Delta t} A^{i} \left(\underbrace{\Delta t-\tau}_{i} \right)^{i} d\tau$$

$$= \sum_{i=1}^{\infty} \int_{0}^{\Delta t} A^{i} \left(\underbrace{\Delta t-\tau}_{i} \right)^{i} d\tau$$

$$= \sum_{i=1}^{\infty} \int_{0}^{\Delta t} A^{i} \left(\underbrace{\Delta t-\tau}_{i} \right)^{i} d\tau$$

$$= \sum_{i=1}^{\infty} \int_{0}^{\Delta t} A^{i} \left(\underbrace{\Delta t-\tau}_{i} \right)^{i} d\tau$$

$$= \sum_{i=1}^{\infty} \int_{0}^{\Delta t} A^{i} \left(\underbrace{\Delta t-\tau}_{i} \right)^{i} d\tau$$

$$= \sum_{i=1}^{\infty} \int_{0}^{\Delta t} A^{i} \left(\underbrace{\Delta t-\tau}_{i} \right)^{i} d\tau$$

$$= \sum_{i=1}^{\infty} \int_{0}^{\Delta t} A^{i} \left(\underbrace{\Delta t-\tau}_{i} \right)^{i} d\tau$$

$$= \sum_{i=1}^{\infty} \int_{0}^{\Delta t} A^{i} \left(\underbrace{\Delta t-\tau}_{i} \right)^{i} d\tau$$

$$= \sum_{i=1}^{\infty} \int_{0}^{\Delta t} A^{i} \left(\underbrace{\Delta t-\tau}_{i} \right)^{i} d\tau$$

$$= \sum_{i=1}^{\infty} \int_{0}^{\Delta t} A^{i} \left(\underbrace{\Delta t-\tau}_{i} \right)^{i} d\tau$$

$$= \sum_{i=1}^{\infty} \int_{0}^{\Delta t} A^{i} \left(\underbrace{\Delta t-\tau}_{i} \right)^{i} d\tau$$

$$= \sum_{i=1}^{\infty} \int_{0}^{\Delta t} A^{i} \left(\underbrace{\Delta t-\tau}_{i} \right)^{i} d\tau$$

$$= \sum_{i=1}^{\infty} \int_{0}^{\Delta t} A^{i} \left(\underbrace{\Delta t-\tau}_{i} \right)^{i} d\tau$$

$$= \sum_{i=1}^{\infty} \int_{0}^{\Delta t} A^{i} \left(\underbrace{\Delta t-\tau}_{i} \right)^{i} d\tau$$

$$= \sum_{i=1}^{\infty} \int_{0}^{\Delta t} A^{i} \left(\underbrace{\Delta t-\tau}_{i} \right)^{i} d\tau$$

$$= \sum_{i=1}^{\infty} \int_{0}^{\Delta t} A^{i} \left(\underbrace{\Delta t-\tau}_{i} \right)^{i} d\tau$$

$$= \sum_{i=1}^{\infty} \int_{0}^{\Delta t} A^{i} \left(\underbrace{\Delta t-\tau}_{i} \right)^{i} d\tau$$

$$= \sum_{i=1}^{\infty} \int_{0}^{\Delta t} A^{i} \left(\underbrace{\Delta t-\tau}_{i} \right)^{i} d\tau$$

$$= \sum_{i=1}^{\infty} \int_{0}^{\Delta t} A^{i} \left(\underbrace{\Delta t-\tau}_{i} \right)^{i} d\tau$$

$$= \sum_{i=1}^{\infty} \int_{0}^{\Delta t} A^{i} \left(\underbrace{\Delta t-\tau}_{i} \right)^{i} d\tau$$

$$= \sum_{i=1}^{\infty} \int_{0}^{\Delta t} A^{i} \left(\underbrace{\Delta t-\tau}_{i} \right)^{i} d\tau$$

$$= \sum_{i=1}^{\infty} \int_{0}^{\Delta t} A^{i} \left(\underbrace{\Delta t-\tau}_{i} \right)^{i} d\tau$$

$$= \sum_{i=1}^{\infty} \int_{0}^{\Delta t} A^{i} \left(\underbrace{\Delta t-\tau}_{i} \right)^{i} d\tau$$

$$= \sum_{i=1}^{\infty} \int_{0}^{\Delta t} A^{i} \left(\underbrace{\Delta t-\tau}_{i} \right)^{i} d\tau$$

$$= \sum_{i=1}^{\infty} \int_{0}^{\Delta t} A^{i} \left(\underbrace{\Delta t-\tau}_{i} \right)^{i} d\tau$$

$$= \sum_{i=1}^{\infty} \int_{0}^{\Delta t} A^{i} \left(\underbrace{\Delta t-\tau}_{i} \right)^{i} d\tau$$

$$= \sum_{i=1}^{\infty} \int_{0}^{\Delta t} \Delta^{i} \left(\underbrace{\Delta t-\tau}_{i} \right)^{i} d\tau$$

$$= \sum_{i=1}^{\infty} \int_{0}^{\Delta t$$

Computing the G matrix

- Turns out there is a sneaky trick to computing this series for <u>ZOH</u>
- Note that ZOH assumption implies that for any $t \in [t_0, t_0, t_0, t_0]$ that $i_i(t) = 0$

Therefore we have
$$\dot{x}(t) = A \times (t) + B u(t)$$
 $\chi(t_0) = x_0$ $u(t_0) = u_0$ [const. over Δt interval]

Define! Augmented State vector
$$x_a \triangleq \begin{bmatrix} x(t) \\ u(t) \end{bmatrix}$$

S.t. $x_a = \begin{bmatrix} A \\ O \end{bmatrix} \begin{bmatrix} X \\ U(t) \end{bmatrix}$, $x_a(t_0) = \begin{bmatrix} x_0 \\ U_0 \end{bmatrix}$

$$= \hat{A}$$

$$\Rightarrow x_a = \hat{A} \times a$$
, where $\hat{A} \in \mathbb{R}$

$$m = \text{the imputs}$$

$$\Rightarrow \text{Sol'n for}$$

$$t_0 \Rightarrow t_0 + \Delta t$$

$$x_a = \hat{A} \times a$$

Computing the G matrix

• But if we expand the matrix exponential in this case:

$$e^{A\Delta t} = I + A\Delta t + A^2 \frac{\Delta t^2}{2!} + \dots$$

where $A^2 = \begin{bmatrix} A & B \\ O & O \end{bmatrix} \begin{bmatrix} A^2 & AB \\ O & O \end{bmatrix} = \begin{bmatrix} A^3 & A^2B \\ O & O \end{bmatrix}$

$$A^3 = \begin{bmatrix} A & B \\ O & O \end{bmatrix} \begin{bmatrix} A^2 & AB \\ O & O \end{bmatrix} = \begin{bmatrix} A^3 & A^2B \\ O & O \end{bmatrix}$$

Plug into to Sec. eS:

$$e^{A\Delta t} = \begin{bmatrix} A & A^2 & A^2B \\ O & O \end{bmatrix} = \begin{bmatrix} A^3 & A^2B \\ O & O \end{bmatrix}$$

$$= \begin{bmatrix} A & A^2 & A^2B \\ O & O \end{bmatrix} = \begin{bmatrix} A^3 & A^2B \\ O & O \end{bmatrix}$$

$$= \begin{bmatrix} A & A^2 & A^2B \\ O & O \end{bmatrix} = \begin{bmatrix} A^3 & A^3B \\ O & O \end{bmatrix} = \begin{bmatrix} A^3 & A^3B \\ O & O \end{bmatrix}$$

$$= \begin{bmatrix} A & A^2 & A^2B \\ O & O \end{bmatrix} = \begin{bmatrix} A^3 & A^3B \\ O & O \end{bmatrix} = \begin{bmatrix} A^3 & A^3B \\ O & O \end{bmatrix}$$

$$= \begin{bmatrix} A & A^2 & A^2B \\ O & O \end{bmatrix} = \begin{bmatrix} A^3 & A^3B \\ O & O \end{bmatrix} = \begin{bmatrix} A^3 & A^3B \\ O & O \end{bmatrix}$$

$$= \begin{bmatrix} A & A^2 & A^2B \\ O & O \end{bmatrix} = \begin{bmatrix} A^3 & A^3B \\ O & O \end{bmatrix} = \begin{bmatrix} A^3 & A^3B \\ O & O \end{bmatrix}$$

$$= \begin{bmatrix} A & A^3 & A^3B \\ O & O \end{bmatrix} = \begin{bmatrix} A^3 & A^3B \\ O & O \end{bmatrix} = \begin{bmatrix} A^3 & A^3B \\ O & O \end{bmatrix}$$

$$= \begin{bmatrix} A & A^3 & A^3B \\ O & O \end{bmatrix} = \begin{bmatrix} A^3 & A^3B \\ O & O \end{bmatrix}$$

$$= \begin{bmatrix} A & A^3 & A^3B \\ O & O \end{bmatrix} = \begin{bmatrix} A^3 & A^3B \\ O & O \end{bmatrix}$$

$$= \begin{bmatrix} A & A^3 & A^3B \\ O & O \end{bmatrix} = \begin{bmatrix} A^3 & A^3B \\ O & O \end{bmatrix}$$

$$= \begin{bmatrix} A & A^3 & A^3B \\ O & O \end{bmatrix} = \begin{bmatrix} A^3 & A^3B \\ O & O \end{bmatrix}$$

$$= \begin{bmatrix} A & A^3 & A^3B \\ O & O \end{bmatrix} = \begin{bmatrix} A^3 & A^3B \\ O & O \end{bmatrix}$$

$$= \begin{bmatrix} A & A^3 & A^3B \\ O & O \end{bmatrix} = \begin{bmatrix} A^3 & A^3B \\ O & O \end{bmatrix}$$

$$= \begin{bmatrix} A & A^3 & A^3B \\ O & O \end{bmatrix} = \begin{bmatrix} A^3 & A^3B \\ O & O \end{bmatrix}$$

$$= \begin{bmatrix} A & A^3 & A^3B \\ O & O \end{bmatrix} = \begin{bmatrix} A^3 & A^3B \\ O & O \end{bmatrix}$$

$$= \begin{bmatrix} A & A^3 & A^3B \\ O & O \end{bmatrix} = \begin{bmatrix} A^3 & A^3B \\ O & O \end{bmatrix}$$

$$= \begin{bmatrix} A & A^3 & A^3B \\ O & O \end{bmatrix}$$

$$= \begin{bmatrix} A & A^3 & A^3B \\ O & O \end{bmatrix}$$

$$= \begin{bmatrix} A & A^3 & A^3B \\ O & O \end{bmatrix}$$

$$= \begin{bmatrix} A & A^3 & A^3B \\ O & O \end{bmatrix}$$

$$= \begin{bmatrix} A & A^3 & A^3B \\ O & O \end{bmatrix}$$

$$= \begin{bmatrix} A & A^3 & A^3B \\ O & O \end{bmatrix}$$

$$= \begin{bmatrix} A & A^3 & A^3B \\ O & O \end{bmatrix}$$

$$= \begin{bmatrix} A & A^3 & A^3B \\ O & O \end{bmatrix}$$

$$= \begin{bmatrix} A & A^3 & A^3B \\ O & O \end{bmatrix}$$

$$= \begin{bmatrix} A & A^3 & A^3B \\ O & O \end{bmatrix}$$

$$= \begin{bmatrix} A & A^3 & A^3B \\ O & O \end{bmatrix}$$

$$= \begin{bmatrix} A & A^3 & A^3B \\ O & O \end{bmatrix}$$

$$= \begin{bmatrix} A & A^3 & A^3B \\ O & O \end{bmatrix}$$

$$= \begin{bmatrix} A & A^3 & A^3B \\ O & O \end{bmatrix}$$

$$= \begin{bmatrix} A & A^3 & A^3B \\ O & O \end{bmatrix}$$

$$= \begin{bmatrix} A & A^3 & A^3B \\ O & O \end{bmatrix}$$

$$= \begin{bmatrix} A & A^3 & A^3B \\ O & O \end{bmatrix}$$

$$= \begin{bmatrix} A & A^3 & A^3B \\ O & O \end{bmatrix}$$

$$= \begin{bmatrix} A & A^3 & A^3B \\ O & O \end{bmatrix}$$

$$= \begin{bmatrix} A & A^3 & A^3B \\ O & O \end{bmatrix}$$

$$= \begin{bmatrix} A & A^3 & A^3B \\ O & O \end{bmatrix}$$

$$= \begin{bmatrix} A & A^3 & A^3B \\ O & O \end{bmatrix}$$

$$= \begin{bmatrix} A & A^3 & A^$$

Example: Convert CT SS model to DT SS model

System of 2 masses and 3 springs: 2 actuator inputs u and 2 sensor outputs y

For $k_1 = k_2 = k_3 = 1$ N/m and $m_1 = m_2 = 1$ kg, use simple physics to get CT linear SS model

$$\dot{x} = Ax(t) + Bu(t)$$
$$y(t) = Cx(t) + Du(t)$$

Two characteristic oscillatory motion "modes" (eigenvectors)

$$\dot{x}=Ax(t)+Bu(t)$$
 corresponding to eigenvalues of A with natural frequencies: $y(t)=Cx(t)+Du(t)$ $\cot x = \cos x$ $\cot x = \cos x = \cos x$ $\cot x = \cos x = \sin x = \sin$

$$A = \begin{bmatrix} 0 & 1.0 & 0 & 0 \\ -2.0 & 0 & 1.0 & 0 \\ 0 & 0 & 0 & 1.0 \\ 1.0 & 0 & -2.0 & 0 \end{bmatrix} \quad B = \begin{bmatrix} 0 & 0 \\ -1 & 0 \\ 0 & 0 \\ 1 & 1 \end{bmatrix} \quad C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \quad \begin{bmatrix} 2.72 \text{ Hz and } 1.57 \text{ Hz, resp.} \end{bmatrix} \quad A = \begin{bmatrix} A & B \\ 0 & 0 \end{bmatrix}$$

Example: Convert CT SS model to DT SS model (cont'd)

• System of 2 masses and 3 springs: 2 actuator inputs u and 2 sensor outputs y

Converted to DT SS model using the same state variables with ZOH and sample rate $\Delta t = 0.2$ sec

$$x_{k} = [q_{1}(k), \dot{q}_{1}(k), q_{2}(k), \dot{q}_{2}(k)]^{T}$$

$$x_{k+1} = Fx_{k} + Gu_{k}, \quad u_{k} = [u_{1}(k), u_{2}(k)]^{T} \qquad \hat{A} = \begin{bmatrix} A & B \\ 0 & 0 \end{bmatrix} \rightarrow e^{\hat{A}\Delta t} = \begin{bmatrix} F & G \\ 0 & I \end{bmatrix}$$

$$y_{k} = Hx_{k} + Mu_{k}, \quad y_{k} = [q_{1}(k), q_{2}(k)]^{T}$$

$$F = \begin{bmatrix} 9.6033e - 01 & 1.9735e - 01 & 1.9734e - 02 & 1.3227e - 03 \\ -3.9337e - 01 & 9.6033e - 01 & 1.9470e - 01 & 1.9734e - 02 \\ 1.9734e - 02 & 1.3227e - 03 & 9.6033e - 01 & 1.9735e - 01 \\ 1.9470e - 01 & 1.9734e - 02 & -3.9337e - 01 & 9.6033e - 01 \end{bmatrix} G = \begin{bmatrix} -1.9801e - 02 & 6.6312e - 05 \\ -1.9602e - 01 & 1.3227e - 03 \\ 1.9801e - 02 & 1.9867e - 02 \\ 1.9602e - 01 & 1.9735e - 01 \end{bmatrix} M = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Sample Input Step Response Output from DT vs CT

Sample Input Step Response Output from DT vs CT

Sample Input Step Response Output from DT vs CT

Nyquist Rate and CT System Natural Frequencies

- WARNING FOR CT \rightarrow DT conversions: cannot just pick any old Δt !!!
- For LTI systems: fundamental upper bound on how large Δt should be
- Nyquist Sampling Criterion: if sample rate (in rad/s) is $\omega_{sample} = rac{2\pi}{\Delta t}$,

need
$$\omega_{sample} > 2\omega_{sys,max} \implies \Delta t < \frac{\pi}{|\lambda_{A,max}|}$$

where $|\lambda_{A,max}|$ is largest complex magnitude among all eigenvalues of A (natural freq./ time constant)

(e.g. max Δt for 2 mass/3 spring example system is ~1.82 sec $\rightarrow \Delta t$ larger than this leads to aliasing...)