

Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Monterrey

Escuela de ingeniería y ciencias

Inteligencia Artificial Avanzada para la Ciencia de Datos I (Grupo 101)

Momento de Retroalimentación: Módulo 2 Análisis y Reporte sobre el Desempeño del Modelo (Portafolio Análisis)

Alumnos:

Amy Murakami Tsutsumi

A01750185

Profesor:

Iván Mauricio Amaya Contreras

Fecha:

09/09/2022

Nombre del archivo a revisar

MomRetroM2Analisis.py MomentoRetroM2Analisis.pdf

Librería

La librería principal utilizada fue sklearn.neural_network- MLPClassifier para poder implementar el algoritmo de redes neuronales.

Otras librerías que se utilizarán son:

- pandas : para la creación y operaciones de dataframes.
- numpy : para la creación de vectores y matrices.
- sklearn.preprocessing StandardScaler: para el escalamiento de datos.
- sklearn.model_selection train_test_split : para la división de los datos en subconjuntos de entrenamiento y prueba.
- sklearn.metrics confusion_matrix & classification_report : para la visualización de desempeño del algoritmo y las métricas de clasificación.
- matplotlib.pyplot: para la generación de gráficos.
- seaborn : basada en matplotlib para la graficación de datos estadísticos.
- mlxtend.plotting plot_learning_curves: para la graficación de las learning curves.

Dataset

Para este portafolio de implementación se utilizará el dataset de "Heart Failure Prediction Dataset" que se obtuvo de la siguiente liga:

https://www.kaggle.com/datasets/fedesoriano/heart-failure-prediction

Este dataset contiene información con atributos que se utilizarán para determinar y predecir si una persona es propensa a tener un ataque cardiaco. Estos atributos son:

- 1. Age: edad del paciente
- 2. Sex: sexo del paciente [M: Hombre, F: Mujer]
- 3. ChestPainType: tipo de dolor en el pecho [TA: Angina típica, ATA: Angina atípica, NAP: Dolor no anginoso, ASY: Asintomático]
- 4. RestingBP: presión arterial en reposo [mm Hg]
- 5. Cholesterol: colesterol sérico [mm/dl]
- 6. FastingBS: glucemia en ayunas [1: si FastingBS > 120 mg/dl, 0: en caso contrario]
- 7. RestingECG: resultados del electrocardiograma [Normal: Normal, ST: con anormalidad de la onda ST-T (inversiones de la onda T y/o elevación o depresión del ST de > 0,05 mV), HVI: que muestra hipertrofia ventricular izquierda probable o definitiva según los criterios de Estes].
- 8. MaxHR: frecuencia cardíaca máxima alcanzada [Valor numérico entre 60 y 202]

- 9. ExerciseAngina: angina inducida por el ejercicio [Y: Sí, N: No]
- 10. Oldpeak: oldpeak = ST [Valor numérico medido en depresión]
- 11. ST_Slope: la pendiente del segmento ST máximo del ejercicio [Up: pendiente ascendente, Flat: plano, Down: pendiente descendente]
- 12. HeartDisease: clase de salida [1: enfermedad cardiaca, 0: Normal]

Este dataset cuenta con 918 registros de pacientes.

Separación y evaluación del modelo con un conjunto de prueba y un conjunto de validación (Train/Test/Validation)

Ahora se separará un conjunto de datos para realizar la validación. Se utilizó el dataset de entrenamiento y se dividió para que el 20% se utilizara para validación. Por lo tanto, los datos se dividen en 60% para entrenamiento, 20% para validarlo y 20% para probarlo.

▼ Escalamiento de datos

Ahora se realizará el escalamiento de datos para que los modelos puedan encontrar facilmente convergencia entre los datos. Esto se realiza con fin de optimizar el método.

Modelos de predicción

Ahora se realizarán 5 modelos diferentes de redes neuronales para encontrar el más eficiente.

```
modelo3 = MLPClassifier(random state = 1,
                                       hidden_layer_sizes = (10, 8, 10),
                                       activation = "relu",
                                       verbose = False,
                                       solver = "adam",
                                       learning_rate = "adaptive",
                                       max_iter = 10000)
       modelo4 = MLPClassifier(random_state = 1,
                                       hidden_layer_sizes = (10, 15, 10, 4),
                                       activation = "relu",
                                       verbose = False,
                                       solver = "adam",
                                       learning_rate = "adaptive",
                                       max_iter = 10000)
       modelo5 = MLPClassifier(random_state = 1,
                                       hidden layer sizes = (10, 9, 9, 10),
                                       activation = "relu",
                                       verbose = False,
                                       solver = "adam",
                                       learning_rate = "adaptive",
                                       max_iter = 10000)
  modelo1.fit(x train, y train)
       modelo2.fit(x_train, y_train)
       modelo3.fit(x_train, y_train)
       modelo4.fit(x_train, y_train)
       modelo5.fit(x train, y train)
       print("Training score modelo 1: ", modelo1.score(x_train,y_train))
       print("Validation score modelo 1: ", modelo1.score(x_val, y_val))
       print("Test score modelo 1: ", modelo1.score(x_test, y_test))
       print("\nTraining score modelo 2: ", modelo2.score(x_train,y_train))
       print("Validation score modelo 2: ", modelo2.score(x_val, y_val))
       print("Test score modelo 2: ", modelo2.score(x_test, y_test))
       print("\nTraining score modelo 3: ", modelo3.score(x train,y train))
       print("Validation score modelo 3: ", modelo3.score(x_val, y_val))
       print("Test score modelo 3: ", modelo3.score(x_test, y_test))
       print("\nTraining score modelo 4: ", modelo4.score(x_train,y_train))
       print("Validation score modelo 4: ", modelo4.score(x_val, y_val))
       print("Test score modelo 4: ", modelo4.score(x_test, y_test))
       print("\nTraining score modelo 5: ", modelo5.score(x_train,y_train))
       print("Validation score modelo 5: ", modelo5.score(x_val, y_val))
```

print("Test score modelo 5: ", modelo5.score(x_test, y_test))

Training score modelo 1: 0.8746594005449592
Validation score modelo 1: 0.9387755102040817
Test score modelo 1: 0.8097826086956522

Training score modelo 2: 0.8623978201634878
Validation score modelo 2: 0.9251700680272109
Test score modelo 2: 0.842391304347826

Training score modelo 3: 0.8746594005449592
Validation score modelo 3: 0.9319727891156463
Test score modelo 3: 0.8206521739130435

Training score modelo 4: 0.8583106267029973
Validation score modelo 4: 0.9251700680272109
Test score modelo 4: 0.842391304347826

Training score modelo 5: 0.8828337874659401
Validation score modelo 5: 0.9387755102040817
Test score modelo 5: 0.842391304347826

Podemos visualizar que los modelos 1, 3 y 5 son los más precisos con los datos de entrenamiento. Sin embargo, los modelos más precisos con los datos de validación son el 1 y 5. Además los modelos más precisos para los datos de prueba son el 2, 4 y 5.

Predicciones

Ahora se realizarán las predicciones de los cinco modelos.

```
pred1 = modelo1.predict(x_test)
pred2 = modelo2.predict(x_test)
pred3 = modelo3.predict(x_test)
pred4 = modelo4.predict(x_test)
pred5 = modelo5.predict(x_test)
```

La siguiente tabla muestra los valores de entrada de las predicciones, el valor real esperado, los resultados de las predicciones y validación del modelo que indica si el valor real esperado es el mismo que el de la predicción.

```
pd.set_option('max_columns', None)

dfEntPred = x_test.copy()

dfEntPred["Valor Real Esperado"] = y_test

dfEntPred["Predicción Modelo 1"] = pred1

dfEntPred["Validación Pred 1"] = np.where(dfEntPred["Valor Real Esperado"] == dfEntPred["Predicción Modelo 1"], "\cdot\", "\cdot\")

dfEntPred["Predicción Modelo 2"] = pred2

dfEntPred["Validación Pred 2"] = np.where(dfEntPred["Valor Real Esperado"] == dfEntPred["Predicción Modelo 2"], "\cdot\", "\cdot\")

dfEntPred["Validación Pred 3"] = pred3

dfEntPred["Validación Pred 3"] = np.where(dfEntPred["Valor Real Esperado"] == dfEntPred["Predicción Modelo 3"], "\cdot\", "\cdot\", "\cdot\")

dfEntPred["Validación Pred 4"] = np.where(dfEntPred["Valor Real Esperado"] == dfEntPred["Predicción Modelo 4"], "\cdot\", "\cdo
```

```
Age RestingBP Cholesterol FastingBS MaxHR Oldpeak Sex_M ASY ATA NAP TA LVH Normal ST ExAn_Y Down Flat Up
     440
          52
                   128
                                 0
                                           0
                                               180
                                                        3.0
                                                                    0
                                                                        0
                                                                            1 0
                                                                                    0
                                                                                            0 1
                                                                                                       0
                                                                                                                  0 1
                   115
                                 0
                                                                             0
                                                                                            1
                                                                                               0
                                                                                                                  1
     382
          43
                                           0
                                               145
                                                        20
                                                                                                       1
     567
          71
                   130
                               221
                                           0
                                               115
                                                        0.0
                                                                        0
                                                                             0
                                                                                0
                                                                                    0
                                                                                            0 1
                               315
                                                                                0
     230
          37
                   130
                                           0
                                               158
                                                        0.0
                                                                        0
                                                                             0
                                                                                     Ω
                                                                                            1
                                                                                               0
                                                                                                       0
                                                                                                                  0
     470
          53
                   126
                                           0
                                               106
                                                        0.0
                                                                        0
                                                                             0
                                                                               0
                                                                                            1 0
                                                                                                       0
  Valor
         Predicción Validación Predicción Validación Predicción Validación Predicción Validación Predicción Validación
   Real
                                              Pred 2
                        Pred 1
                                 Modelo 2
                                                       Modelo 3
                                                                    Pred 3
                                                                              Modelo 4
                                                                                           Pred 4
                                                                                                    Modelo 5
Esperado
                           ~
                                                 ✓
                                                                        ~
                                                                                              ~
                                                                                                                     ✓
                           ✓
                                                 ✓
                                                              1
                                                                        ✓
                                                                                              ✓
                                                                                                                     ✓
                                       1
                           ✓
                                                                        ✓
                                                                                              ✓
                                                                                                                     ✓
      0
                 0
                           ✓
                                                  ~
                                                                        ~
                                                                                              ✓
                                       0
                                                              0
                                                                                    0
                                                                                                          0
```

```
Modelo 1:
[[0.96910751 0.03089249]]
Heart Disease? Estimated: [0] Real: 0

Modelo 2:
[[0.93545654 0.06454346]]
Heart Disease? Estimated: [0] Real: 0

Modelo 3:
[[0.97683472 0.02316528]]
Heart Disease? Estimated: [0] Real: 0

Modelo 4:
[[0.91801577 0.08198423]]
Heart Disease? Estimated: [0] Real: 0

Modelo 5:
[[0.96310434 0.03689566]]
Heart Disease? Estimated: [0] Real: 0
```

Podemos observar que en todos los modelos se está realizando la predicción de manera correcta. Como primer valor muestra la probabilidad de que el HeartDisease tenga un valor de 0 y 1. Después se muestra el valor estimado con los modelos y el valor real. En todos los modelos coinciden que el valor estimado por cada modelo y el valor real es 0, por lo que se puede confirmar que son modelos efectivos para la predicción de enfermedades cardiacas.

Validación

Para la etapa de validación se utilizarán matrices de confusión y reportes de clasificación.

```
♠ #Modelo 1
    print('Modelo 1: ')
    sns.set()
    f, ax = plt.subplots()
    matriz1 = confusion_matrix(y_test,pred1)
    print(classification_report(y_test,pred1))
    print('\nMatriz de confusión: ')
    sns.heatmap(matriz1, annot=True, ax=ax, cbar=False, fmt='g', cmap='Dark2_r')
Modelo 1:
                 precision recall f1-score support
                    0.84 0.75 0.79
0.79 0.86 0.82
                                                  89
                                        0.82
                                                  95
              1
                                                184
                                        0.81
       accuracy
                0.81 0.81 0.81
0.81 0.81 0.81
      macro avg
                                                 184
    weighted avg
                                                 184
```

Matriz de confusión: <matplotlib.axes._subplots.AxesSubplot at 0x7fb79ba10810>

Para el primer modelo podemos observar que el valor de f1-score es 0.81 lo que indica que es un buen modelo de predicción. Por otro lado, en la matriz de confusión se tienen 67 valores true positive y 82 valores true negative; es decir, valores predecidos que coinciden con el valor real. Además, se tienen 22 valores false positive y 13 false negative es decir valores erróneos.

```
#Modelo 2
 print('Modelo 2: ')
 sns.set()
 f, ax = plt.subplots()
 matriz2 = confusion matrix(y test,pred2)
 print(classification_report(y_test,pred2))
 print('\nMatriz de confusión: ')
 sns.heatmap(matriz2, annot=True, ax=ax, cbar=False, fmt='g', cmap='Paired')
Modelo 2:
               precision recall f1-score
                                               support
            0
                    0.88
                              0.78
                                        0.83
                                                    89
            1
                    0.81
                              0.91
                                        0.86
                                                   95
     accuracy
                                        0.84
                                                  184
    macro avg
                    0.85
                              0.84
                                        0.84
                                                  184
 weighted avg
                   0.85
                             0.84
                                        0.84
                                                  184
```

Matriz de confusión: <matplotlib.axes._subplots.AxesSubplot at 0x7fb79b9b6cd0>

Para el segundo modelo podemos observar que el valor de f1-score es 0.84 lo que indica que es un mejor modelo de predicción que el primero. Por otro lado, en la matriz de confusión se tienen 69 valores true positive y 86 valores true negative; es decir, valores predecidos que coinciden con el valor real. Además, se tienen 20 valores false positive y 9 false negative es decir valores erróneos.

```
#Modelo 3
    print('Modelo 3: ')
    sns.set()
    f, ax = plt.subplots()
    matriz3 = confusion_matrix(y_test,pred3)
    print(classification_report(y_test,pred3))
    print('\nMatriz de confusión: ')
    sns.heatmap(matriz3, annot=True, ax=ax, cbar=False, fmt='g', cmap='Pastel1')
Modelo 3:
                 precision recall f1-score
                                                support
                               0.76
              0
                      0.85
                                         0.80
                                                     89
              1
                      0.80
                               0.87
                                         0.83
                                                    95
                                         0.82
                                                    184
       accuracy
      macro avg
                      0.82
                              0.82
                                         0.82
                                                   184
   weighted avg
                      0.82
                              0.82
                                         0.82
                                                   184
```

Matriz de confusión: <matplotlib.axes._subplots.AxesSubplot at 0x7fb79b950710>

Para el tercer modelo podemos observar que el valor de f1-score es 0.82 lo que indica que es un buen modelo, pero no tiene la misma precisión que el segundo. Por otro lado, en la matriz de confusión se tienen 68 valores true positive y 83 valores true negative; es decir, valores predecidos que coinciden con el valor real. Además, se tienen 21 valores false positive y 12 false negative es decir valores erróneos.

```
#Modelo 4
 print('Modelo 4: ')
 sns.set()
 f, ax = plt.subplots()
 matriz4 = confusion_matrix(y_test,pred4)
 print(classification_report(y_test,pred4))
 print('\nMatriz de confusión: ')
 sns.heatmap(matriz4, annot=True, ax=ax, cbar=False, fmt='g', cmap='Pastel2')
Modelo 4:
               precision
                           recall f1-score
                                               support
            0
                    0.91
                              0.75
                                        0.82
                                                    89
            1
                    0.80
                              0.93
                                        0.86
                                                    95
    accuracy
                                        0.84
                                                   184
                              0.84
                                        0.84
                                                   184
                    0.85
    macro avg
```

0.84

184

0.84

weighted avg

0.85

Matriz de confusión: <matplotlib.axes._subplots.AxesSubplot at 0x7fb79b8f4a10>

Para el cuarto modelo podemos observar que el valor de f1-score es 0.84 lo que indica que es de los mejores modelos hasta ahora. Por otro lado, en la matriz de confusión se tienen 67 valores true positive y 88 valores true negative; es decir, valores predecidos que coinciden con el valor real. Además, se tienen 22 valores false positive y 7 false negative es decir valores erróneos.

```
#Modelo 5
 print('Modelo 5: ')
 sns.set()
 f, ax = plt.subplots()
 matriz5 = confusion_matrix(y_test,pred5)
 print(classification_report(y_test,pred5))
 print('\nMatriz de confusión: ')
 sns.heatmap(matriz5, annot=True, ax=ax, cbar=False, fmt='g', cmap='PuRd')
Modelo 5:
               precision recall f1-score
                                               support
                    0.87
                              0.80
                                        0.83
                                                    89
                                                    95
            1
                    0.82
                              0.88
                                        0.85
                                        0.84
                                                   184
     accuracy
                   0.84
                              0.84
                                        0.84
                                                   184
    macro avg
 weighted avg
                   0.84
                              0.84
                                        0.84
                                                   184
```

Matriz de confusión: <matplotlib.axes._subplots.AxesSubplot at 0x7fb79b86a790>

Por último, para el quinto modelo podemos observar que el valor de f1-score es 0.84 lo que indica que es de los mejores modelos junto con el modelo 2 y 4. Por otro lado, en la matriz de confusión se tienen 71 valores true positive y 84 valores true negative; es decir, valores predecidos que coinciden con el valor real. Además, se tienen 18 valores false positive y 11 false negative es decir valores erróneos.

```
fig, ax =plt.subplots(1,2)
sns.countplot(pred4, ax=ax[0], palette="Accent")
sns.countplot(y_test, ax=ax[1], palette="RdBu_r")
fig.show()
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: Fut
FutureWarning
/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: Fut
FutureWarning

En la gráfica anterior se muestra del lado izquierdo los número de valores predecidos con el modelo cuatro y del lado derecho los valores reales. Se puede observar que los datos predecidos con valor 1 se acercan bastante a los valores reales. Sin embargo, hay una diferencia significativa en los valores igual a cero.

Diagnóstico y explicación del nivel de ajuste del modelo: underfitt fitt overfitt

- ▼ Análisis
- ▼ Diagnóstico sobre el nivel de ajuste del modelo

Ahora se graficaran las learning curves para determinar si es underfitting u overfitting. Primero graficaremos las learning curves utilizando los datos de entrenamiento y pruebas para el modelo 4 que fue el más preciso.

```
plot_learning_curves(x_train, y_train, x_test, y_test, modelo4)
plt.title("Modelo 4 Learning Curves (train y test)")
plt.show()
```


Podemos observar que tanto los valores de training como los del test son muy similares, esto significa que el error es mínimo.


```
from sklearn import metrics
print("Error absoluto medio:", metrics.mean_absolute_error(y_test, pred4))
print("Error cuadrático medio: ", metrics.mean_squared_error(y_test, pred4))
```

Error absoluto medio: 0.15760869565217392 Error cuadrático medio: 0.15760869565217392

Podemos observar que tanto los valores de training como los de validation son muy similares. Por lo tanto, se podría decir que el modelo está bien ajustado ya que el error tanto del training y del test es bajo. En este caso, el error absoluto es de 0.1576. De hecho, debido a que el error del test es más bajo que el del training se podría decir que el modelo está generalizando bien, porque lo que aprende en la etapa de entrenamiento lo utiliza en el test.

Diagnóstico y explicación del grado de bias o sesgo: bajo medio alto

Debido a que en el diagnóstico sobre el nivel de ajuste del modelo se obtuvo que el modelo estaba bien ajustado y el error absoluto medio fue de 0.1576, entonces se puede concluir que el modelo tiene un sesgo o bias bajo porque tiene un mínimo de error.

Diagnóstico y explicación del grado de varianza: bajo medio alto

Debido a que en el diagnóstico sobre el nivel de ajuste del modelo se obtuvo que el modelo estaba bien ajustado y el error medio absoluto fue de 0.1576, entonces se puede concluir que el modelo tiene una varianza baja. Por lo tanto, existe un pequeño desajuste lo que hace que el modelo tenga un rendimiento predictivo un poco deficiente.

Uso de técnicas de regularización o ajuste de parámetros para mejorar el desempeño del modelo

▼ Técnicas de regularización o el ajuste de parámetros para mejorar el desempeño del modelo

Debido a que ambas gráficas de learning curves mostraron que el modelo 4 está bien ajustado, pero tiene un grado de sesgo y varianza bajo entonces se implementará un modelo más con mayor complejidad.

Como muestran los datos anteriores, el modelo 6 es preciso, pero los valores obtenidos son muy parecidos a los primeros cinco modelos. Por lo tanto, se realizarán las learning curves para analizar el nuevo modelo.


```
[256] plot_learning_curves(x_train, y_train, x_val, y_val, modelo6)
    plt.title("Modelo 6 Learning Curves (train y validation)")
    plt.show()
```



```
pred6 = modelo6.predict(x_test)
print("Error absoluto medio:", metrics.mean_absolute_error(y_test, pred6))
print("Error cuadrático medio: ", metrics.mean_squared_error(y_test, pred6))

Error absoluto medio: 0.15217391304347827
Error cuadrático medio: 0.15217391304347827
```

Las gráficas anteriores muestran una mejora significativa de los datos. Sobre todo en la gráfica con los datos de entrenamiento y prueba. Ya que el modelo tiene un buen balance, tiene un error aceptable en el entrenamiento y un error aceptable de generalización en el subset de validación que son menores al error del modelo 4. Incluso, el error absoluto de este modelo (0.15217391304347827) es menor que el error absoluto del modelo 4 (0.15760869565217392). Por lo tanto, muestra un diagnóstico deseado.

Comparación del desempeño del modelo antes y después de incluir las mejoras

Para comparar el desempeño del modelo antes y después se utilizarán el modelo 1 y modelo 4 implementados antes de las modificaciones y el modelo 6 en el que se ajustaron los parámetros para mejorar su desempeño.

```
os print("Modelo 1")
        print("Training score modelo 1: ", modelo1.score(x_train,y_train))
        print("Validation score modelo 1: ", modelo1.score(x_val, y_val))
        print("Test score modelo 1: ", modelo1.score(x_test, y_test))
        print("\nModelo 4")
        print("Training score modelo 4: ", modelo4.score(x_train,y_train))
        print("Validation score modelo 4: ", modelo4.score(x_val, y_val))
        print("Test score modelo 4: ", modelo4.score(x test, y test))
        print("\nModelo 6")
        print("Training score modelo 6: ", modelo6.score(x_train,y_train))
        print("Validation score modelo 6: ", modelo6.score(x_val, y_val))
        print("Test score modelo 6: ", modelo6.score(x_test, y_test))
   Modelo 1
       Training score modelo 1: 0.8746594005449592
       Validation score modelo 1: 0.9387755102040817
       Test score modelo 1: 0.8097826086956522
       Modelo 4
       Training score modelo 4: 0.8583106267029973
       Validation score modelo 4: 0.9251700680272109
       Test score modelo 4: 0.842391304347826
       Modelo 6
       Training score modelo 6: 0.8637602179836512
       Validation score modelo 6: 0.9251700680272109
       Test score modelo 6: 0.8478260869565217
```

Como se puede observar tanto los valores de training score y validation score del modelo 1 es más preciso que los otros modelos. Sin embargo, la precisión del test score del modelo 1 es el menos preciso. Por lo tanto, a pesar de que el primer modelo sea el que tiene mejor desempeño en las primeras etapas, tiene el peor desempeño con el subset de test.

```
#Modelo 1
       print('\nModelo 1: ')
       print(modelo1.predict_proba([df_x.loc[0]]))
       print('Heart Disease? Estimated: ', modelo1.predict([df_x.loc[0]]),
              'Real: ', df_y.loc[0])
       #Modelo 4
       print('\nModelo 4: ')
       print(modelo4.predict_proba([df_x.loc[0]]))
       print('Heart Disease? Estimated: ', modelo4.predict([df_x.loc[0]]),
              'Real: ', df_y.loc[0])
       #Modelo 6
       print('\nModelo 6: ')
       print(modelo6.predict_proba([df_x.loc[0]]))
       print('Heart Disease? Estimated: ', modelo6.predict([df_x.loc[0]]),
              'Real: ', df_y.loc[0])
₽
    Modelo 1:
    [[0.96910751 0.03089249]]
    Heart Disease? Estimated: [0] Real: 0
```

Modelo 1:
 [[0.96910751 0.03089249]]
 Heart Disease? Estimated: [0] Real: 0

 Modelo 4:
 [[0.91801577 0.08198423]]
 Heart Disease? Estimated: [0] Real: 0

 Modelo 6:
 [[0.95623503 0.04376497]]
 Heart Disease? Estimated: [0] Real: 0

Ahora, al realizar las predicciones se puede observar que ambos modelos están realizando la predicción de manera correcta. Como primer valor muestra la probabilidad de que el HeartDisease tenga un valor de 0 y 1. Después se muestra el valor estimado con los modelos y el valor real. En todos los modelos coinciden que el valor estimado por cada modelo y el valor real es 0, por lo que se puede confirmar que son modelos efectivos para la predicción de enfermedades cardiacas.

```
#Modelo 1
    print('Modelo 1: ')
    sns.set()
    f, ax = plt.subplots()
    matriz1 = confusion_matrix(y_test,pred1)
    print(classification_report(y_test,pred1))
    print('\nMatriz de confusión: ')
    sns.heatmap(matriz1,\ annot=True,\ ax=ax,\ cbar=False,\ fmt='g',\ cmap='Pastel2')
Modelo 1:
                 precision recall f1-score support
                     0.84
                             0.75
                                        0.79
                                                    89
                     0.79
                              0.86
                                        0.82
                                                   95
                                        0.81
                                                  184
       accuracy
                     0.81
                             0.81
                                        0.81
                                                 184
      macro avg
   weighted avg
                     0.81
                             0.81
                                       0.81
                                                 184
```

Matriz de confusión: <matplotlib.axes._subplots.AxesSubplot at 0x7f62220255d0>


```
#Modelo 4
    print('Modelo 4: ')
   sns.set()
   f, ax = plt.subplots()
    matriz4 = confusion matrix(y test,pred4)
    print(classification_report(y_test,pred4))
    print('\nMatriz de confusión: ')
    sns.heatmap(matriz4, annot=True, ax=ax, cbar=False, fmt='g', cmap='Pastel2')
Modelo 4:
               precision recall f1-score support
                  0.91
                           0.75
                                    0.82
                                              89
                            0.93
             1
                   0.80
                                     0.86
                                               95
                                          184
                                     0.84
      accuracy
      macro avg
                  0.85 0.84
                                   0.84
                                             184
   weighted avg
                  0.85
                           0.84
                                    0.84
                                             184
```

Matriz de confusión: <matplotlib.axes._subplots.AxesSubplot at 0x7fb79b31c590>


```
#Modelo 6
pred6 = modelo6.predict(x_test)
print('Modelo 6: ')
sns.set()
f, ax = plt.subplots()
matriz6 = confusion_matrix(y_test,pred6)
print(classification_report(y_test,pred6))
print('\nMatriz de confusión: ')
sns.heatmap(matriz6, annot=True, ax=ax, cbar=False, fmt='g', cmap='Pastel2')
```

Modelo 6:

precision	recall	f1-score	support
0.91	0.76	0.83	89
0.81	0.93	0.86	95
		0.85	184
0.86 0.86	0.85 0.85	0.85 0.85	184 184
	0.91 0.81	0.91 0.76 0.81 0.93 0.86 0.85	0.91 0.76 0.83 0.81 0.93 0.86 0.85 0.85 0.85

Matriz de confusión: <matplotlib.axes._subplots.AxesSubplot at 0x7fb79b7da150>

Para el primer modelo podemos observar que el valor de f1-score es 0.81. En la matriz de confusión se tienen 67 valores true positive y 82 valores true negative; es decir, valores predecidos que coinciden con el valor real. Además, se tienen 22 valores false positive y 13 false negative es decir valores erróneos.

Para el cuarto modelo podemos observar que el valor de f1-score es 0.84. En la matriz de confusión se tienen 67 valores true positive y 88 valores true negative; es decir, valores predecidos que coinciden con el valor real. Además, se tienen 22 valores false positive y 7 false negative es decir valores erróneos.

Por otro lado, en el sexto modelo se muestra un valor de f1-score de 0.85 lo que indica una mejora en el desempeño de este modelo. En la matriz de confusión se tienen 68 valores true positive y 88 valores true negative; es decir, valores predecidos que coinciden con el valor real. Además, se tienen 21 valores false positive y 7 false negative es decir valores erróneos.

En conclusión, podemos observar una pequeña mejora en el modelo 6 ya que únicamente se tienen 28 valores erróneos mientras que en los modelos 1 y 4 se tienen 35 y 29 respectivamente.

En la gráfica anterior se muestra del lado izquierdo el número de valores predecidos con el primer modelo, después con el cuatro, en medio el número de valores predecidos con el modelo seis y del lado derecho los valores reales. Se puede observar que los datos predecidos con valor 1 en todas las gráficas (modelo 1, 4 y 6) se acercan bastante a los valores reales. A pesar de que hay una diferencia significativa en los valores igual a cero de los modelos y los valores reales, los que más se acercan son el modelo 1 y 6.