MA1101: MATHEMATICS I

Solutions for Problem Sheet II

Problem 1. Denote $X = \{1, 2, 3, 4, 5\}$ and $\Delta = \{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)\}$, i.e. the *diagonal* of $X \times X$. We list examples of the described relations on X without proof below.

(i) Relations that are reflexive, not symmetric, not transitive.

$$R_{11} = \Delta \cup \{(1,2), (2,3)\},$$

$$R_{12} = \Delta \cup \{(2,3), (3,4)\},$$

$$R_{12} = \Delta \cup \{(3,4), (4,5)\}.$$

(ii) Relations that are not reflexive, are symmetric, not transitive.

$$R_{21} = \{(1,2), (2,1)\},\$$

 $R_{22} = \{(2,3), (3,2)\},\$
 $R_{22} = \{(3,4), (4,3)\}.$

(iii) Relations that are not reflexive, not symmetric, are transitive.

$$R_{31} = \{(1,2)\},\$$

 $R_{32} = \{(2,3)\},\$
 $R_{32} = \{(3,4)\}.$

(iv) Relations that are reflexive, are symmetric, not transitive.

$$R_{41} = \Delta \cup \{(1,2), (2,1), (2,3), (3,2)\},$$

$$R_{42} = \Delta \cup \{(2,3), (3,2), (3,4), (4,3)\},$$

$$R_{42} = \Delta \cup \{(3,4), (4,3), (4,5), (5,4)\}.$$

(v) Relations that are not reflexive, are symmetric, are transitive.

$$R_{51} = \emptyset,$$

 $R_{52} = \{(1,1)\},$
 $R_{52} = \{(2,2)\}.$

(vi) Relations that are reflexive, not symmetric, are transitive.

$$R_{61} = \Delta \cup \{(1,2)\},$$

$$R_{62} = \Delta \cup \{(2,3)\},$$

$$R_{62} = \Delta \cup \{(3,4)\}.$$

(vii) Relations that are not reflexive, not symmetric, not transitive.

$$R_{71} = \{(1,2), (2,3)\},\$$

$$R_{72} = \{(2,3), (3,4)\},\$$

$$R_{72} = \{(3,4), (4,5)\}.$$

Satvik Saha (ss19ms154@iiserkol.ac.in)

(viii) Relations that are reflexive, are symmetric, are transitive.

$$R_{81} = X \times X,$$

 $R_{82} = \Delta,$
 $R_{82} = \Delta \cup \{(1, 2), (2, 1)\}.$

Problem 2. Let $x \in X$ be arbitrary. Using the given property of R, there exists $a \in X$ such that xRa. By symmetry of R, we have aRx. Combining xRa and aRx using the transitivity of R, we have xRx. This proves that R is reflexive.

Problem 3.

(i) For arbitrary $(x,y) \in \mathbb{R}^2$, we have $(x,y) \sim (x,y)$, since x=x. Therefore, \sim is reflexive.

Let $(x_1, x_2), (y_1, y_2) \in \mathbb{R}^2$. If $(x_1, x_2) \sim (y_1, y_2)$, we can write $x_1 = y_1$ hence $y_1 = x_1$. Thus, we have $(y_1, y_2) \sim (x_1, x_2)$. Therefore, \sim is symmetric.

Let $(x_1, x_2), (y_1, y_2), (z_1, z_2) \in \mathbb{R}^2$. If $(x_1, x_2) \sim (y_1, y_2)$ and $(y_1, y_2) \sim (z_1, z_2)$, we can write $x_1 = y_1$ and $y_1 = z_1$. Thus, $x_1 = z_1$, giving $(x_1, x_2) \sim (z_1, z_2)$. Therefore, \sim is transitive.

Hence, \sim is an equivalence relation.

(ii) For $(x_1, x_2) \in \mathbb{R}^2$, its equivalence class is given by

$$[(x_1, x_2)] = \{(y_1, y_2) \in \mathbb{R}^2 : (x_1, x_2) \sim (y_1, y_2)\}$$

$$= \{(y_1, y_2) \in \mathbb{R}^2 : x_1 = y_1\}$$

$$= \{(x_1, y_2) : y_2 \in \mathbb{R}\}$$

$$= \{(x_1, y) : y \in \mathbb{R}\}.$$

Therefore, the quotient set of R is given by

$$\mathbb{R}/\sim = \{L_x : x \in \mathbb{R}\},\$$

where $L_x = \{(x, y) : y \in \mathbb{R}\}$. Clearly, each equivalence class $L_x \in \mathbb{R}/\sim$ is a vertical line in the Cartesian plane, passing through (x, 0).

Problem 4.

(i) For an arbitrary $(x,y) \in \mathbb{R}^2$, we have $(x,y) \sim (x,y)$, since $x^2 + y^2 = x^2 + y^2$. Therefore, \sim is reflexive.

Let $(x_1, x_2), (y_1, y_2) \in \mathbb{R}^2$. If $(x_1, x_2) \sim (y_1, y_2)$, we can write $x_1^2 + x_2^2 = y_1^2 + y_2^2$, hence $y_1^2 + y_2^2 = x_1^2 + x_2^2$. Thus, we have $(y_1, y_2) \sim (x_1, x_2)$. Therefore, \sim is symmetric.

Let $(x_1, x_2), (y_1, y_2), (z_1, z_2) \in \mathbb{R}^2$. If $(x_1, x_2) \sim (y_1, y_2)$ and $(y_1, y_2) \sim (z_1, z_2)$, we can write $x_1^2 + x_2^2 = y_1^2 + y_2^2$ and $y_1^2 + y_2^2 = z_1^2 + z_2^2$. This gives $x_1^2 + x_2^2 = z_1^2 + z_2^2$, hence $(x_1, x_2) \sim (z_1, z_2)$. Therefore, \sim is transitive.

Hence, \sim is an equivalence relation.

(ii) For $(x_1, x_2) \in \mathbb{R}^2$, its equivalence class is given by

$$[(x_1, x_2)] = \{(y_1, y_2) \in \mathbb{R}^2 : (x_1, x_2) \sim (y_1, y_2)\}$$

= \{(y_1, y_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 = y_1^2 + y_2^2\}.

Clearly, this is a circle of radius $r = \sqrt{x_1^2 + x_2^2}$ centred at the origin. Such a circle can be denoted by $C_r = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = r^2\}$.

Therefore, the quotient set of \sim is given by

$$\mathbb{R}/\sim = \{C_r : r \ge 0\}.$$

Problem 5.

(i) For an arbitrary $(m,n) \in \mathbb{N}^2$, $(m,n) \sim (m,n)$, since m+n=n+m. Therefore, \sim is reflexive. Let $(m,n), (p,q) \in \mathbb{N}^2$. If $(m,n) \sim (p,q)$, we can write m+q=n+p, hence p+n=q+m. Thus, we have $(p,q) \sim (m,n)$. Therefore, \sim is symmetric.

Let $(m,n),(p,q),(r,s)\in\mathbb{N}^2$. Note that m+q=n+p is equivalent to m-n=p-q. If $(m,n)\sim(p,q)$ and $((p,q)\sim(r,s))$, we can write m-n=p-q and p-q=r-s, from which we have m-n=r-s, hence $(m,n)\sim(r,s)$. Therefore, \sim is transitive.

Hence, \sim is an equivalence relation.

(ii) For $(m,n) \in \mathbb{N}^2$, we its equivalence class is given by

$$[(m,n)] = \{(p,q) \in \mathbb{N}^2 : (m,n) \sim (p,q)\}$$
$$= \{(p,q) \in \mathbb{N}^2 : m+q=n+p\}$$
$$= \{(p,q) \in \mathbb{N}^2 : m-n=p-q\}.$$

Clearly, each equivalence class has its elements $(p,q) \in \mathbb{N}^2$ on the line m-n=x-y in the Cartesian plane. Note that m-n=p-q gives q=p-(m-n). Thus, $q \in \mathbb{N}$ forces p>(m-n). This gives

$$[(m,n)] = \{(p, p - (m-n)) : p \in \mathbb{N}, p > (m-n)\}$$

Therefore, the quotient set of \sim consists of 'lines' $L_d = \{(p, p - d) \in \mathbb{N}^2 : p \in \mathbb{N}, p > d\}$ for each $d \in \mathbb{Z}$.

3

Problem 6.

(i) Let all $x_i \in \mathbb{R} \setminus \{0\}$ in the following discussion.

Clearly, \sim is reflexive since $(x_1, x_2) = 1 \cdot (x_1, x_2)$.

Let $(x_1, x_2) \sim (x_3, x_4)$. Then, $(x_3, x_4) = \alpha(x_1, x_2)$ for some $\alpha \neq 0$, hence $(x_1, x_2) = \frac{1}{\alpha}(x_3, x_4)$. Therefore, \sim is symmetric.

Let $(x_1, x_2) \sim (x_3, x_4)$ and $(x_3, x_4) \sim \beta(x_5, x_6)$. Then, $(x_3, x_4) = \alpha(x_1, x_2)$ and $(x_5, x_6) = \beta(x_3, x_4)$ for some $\alpha, \beta \neq 0$. Thus, $(x_5, x_6) = (\alpha\beta) \cdot (x_1, x_2)$ and $\alpha\beta \neq 0$, so $(x_1, x_2) \sim (x_5, x_6)$. Therefore, \sim is transitive.

Hence, \sim is an equivalence relation.

(ii) For $(r,s) \in \mathbb{R} \setminus (0,0)$, its equivalence class is given by

$$[(r,s)] = \{(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\} : (r,s) \sim (x,y)\}$$
$$= \{(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\} : (x,y) = \alpha(r,s), \alpha \neq 0\}$$
$$= \{(\alpha r, \alpha s) : \alpha \in \mathbb{R} \setminus \{0\}\}.$$

Clearly, each equivalence class [(r, s)] is a line of slope s/r, through (1, s/r), excluding the origin in the Cartesian plane.

Problem 7.

(i) There are 2^{n^2} relations on X.

This is because every relation on X is simply a subset of the Cartesian product $X \times X$, and vice versa. This means that there are exactly as many relations on X as there are subsets of $X \times X$. Now, there are n^2 elements of $X \times X$, hence 2^{n^2} subsets of $X \times X$.

(ii) There are 2^{n^2-n} reflexive relations on X.

Denote $\Delta = \{(x, x) : x \in X\}$, the diagonal of $X \times X$. Clearly, there are n elements in Δ .

With this, note that a relation R on X is reflexive if and only if $\Delta \subseteq R$. This means that there are exactly as many reflexive relations on X as there are subsets of $X \times X$ which contain Δ . Of the n^2 elements of $X \times X$, we have n of them in Δ , leaving $n^2 - n$ elements free to either be or not to be in R. As a result, we have 2^{n^2-n} such subsets of $X \times X$.

(iii) There are $2^{n(n+1)/2}$ symmetric relations on X.

Enumerate $X = \{x_1, \ldots, x_n\}$. Note that when forming a symmetric relation R on X by choosing a subset of $X \times X$, the choice of any (x_i, x_j) where $i \leq j$ forces the choice of (x_j, x_i) . Furthermore, any symmetric relation on X can be formed in this way. This means that there are exactly as many symmetric relations on X are there are subsets of

$$U = \{(x_i, x_j) \in X \times X : 1 \le i \le j \le n\}.$$

Clearly U has $1+2+\cdots+n=n(n+1)/2$ elements, hence $2^{n(n+1)/2}$ subsets.

(iv) There are $2^{n(n-1)/2}$ reflexive and symmetric relations on X.

Note that when forming a reflexive and symmetric relation R on X by choosing a subset of $X \times X$, the choice of all (x_i, x_i) where $1 \le i \le n$ is forced (by reflexivity). Additionally, the choice of any (x_i, x_j) where i < j forces the choice of (x_j, x_i) . Finally, any reflexive and symmetric relation on X can be formed in this way. This means that there are exactly as many symmetric relations on X are there are subsets of

$$U' = \{(x_i, x_j) \in X \times X : 1 \le i < j \le n\}.$$

Clearly U' has $0+1+\cdots+(n-1)=n(n-1)/2$ elements, hence $2^{n(n-1)/2}$ subsets.