Yuma Glandless, an Allelomorph of Glandless-one in Cotton, Gossypium birsutum L.¹

Scott C. McMichael²

ABSTRACT

Yuma glandless, gl₁^y, forms a multiple allelomorphic series with Gl₁ and gl₁. Yuma glandless is recessive to Gl₁ but dominant to gl₁. Normal cotton plants have glands of two distinct sizes. Yuma glandless gene eliminates the smaller glands.

Additional index word: pigment glands.

A LL species of Gossypium L. normally have conspicuous pigmented glands in aboveground parts. In Upland cotton, G. hirsutum L., McMichael (2) found glandless-one, gl₁, which had no pigment glands in the hypocotyl, stem, petiole, or carpel walls. Pigment glands of the cotyledon and leaves were unaf-

fected by gl₁. McMichael (3) discovered two additional genes, gl₂ and gl₃. The combined effect of these two genes produced completely glandless plants. Lee (1) reported two minor genes, gl₄ and gl₅, which reduced the number of glands in plant parts. Murray (5) obtained a 15:1 ratio in a cross of gl₁ with a normally glanded parent. He assumed that another locus, gl₆, was involved, although gl₆ was not isolated in a separate stock.

Previous papers dealt with the presence or absence of pigment glands, but did not mention size differences. In normal cotton plants, pigment glands occur in two sizes. Larger glands are found mainly in the hypocotyl and occasionally at nodes. Large glands are rarely found on internodes or carpel walls. The smaller glands, however, occur throughout the axial parts of the plant as well as on the hypocotyl and carpel walls. A gene in a new mutant, Yuma glandless, causes the absence of the smaller glands. This gene does not

¹ Contribution from the Crops Research Division, Agricultural Research Service, U. S. Department of Agriculture. Received Oct. 29, 1969.

² Research Geneticist, Agricultural Research Service, USDA, Shafter, California 93263.

4350635, 1970, 2. Downloaded from https://acsess.onlinelibrary.wiley.com/doi/10.2135/coppsci1970.0011 183X001000020027x by North Carolina State Universit, Wiley Online Library on [19.07.2023]. See the Terms and Conditions (https://inelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Cereative Commons

Fig. 1. Pigment glands found in hypocotyl and stem of normal glanded (Gl₁), Yuma glandless (gl₁), and glandless-one (gl₁) cotton plants. Hypocotyl (\times 2), stem (\times 1).

affect the glands found in the cotyledons or leaves, just those that are affected by gl_1 (2).

The mutant, Yuma glandless, occurred naturally in a commercial cotton field near Yuma, Ariz. A newlygerminated seedling of Yuma glandless appears to be normally glanded. After hypocotyl elongation, the larger size, as well as the reduced number of glands, are readily discernible (Fig. 1). From the true leaf stage to maturity Yuma glandless is difficult to distinguish from gl₁.

Nodal glands have been reported on glandless-one plants gl₁ gl₁ Gl₂ Gl₂ Gl₃ Gl₃ and even on glandless plants Gl₁ Gl₁ gl₂ gl₂ gl₃ gl₃.3 Nodal glands were found to be a definite feature of Yuma glandless gly₁ gly₁ Gl₂ Gl₂ Gl₃ Gl₃. It is possible that on other backgrounds Yuma glandless may or may not have nodal glands, behaving in this respect similar to glandlessone and glandless plant.

Genetic Analysis of Yuma Glandless

Yuma glandless was crossed with three stocks of known glandless genotype in regard to gl₁, gl₂, and gl₃.

- 1. Normally glanded Gl₁ Gl₂ Gl₂ Gl₃ Gl₃
- 2. Glandless-one gl₁ gl₁ Gl₂ Gl₂ Gl₃ Gl₃
- 3. Glandless plant Gl₁ Gl₂ gl₂ gl₃ gl₃

The F_1 and F_2 generations were grown from each

Table I. F2 and backcross segregation from crosses involving Yuma glandless. Presence of glands is dominant to fewer glands or absence of glands.

.1, 125:381	. 06	.9080
779: 262	.02	.9080
1,276:420:603:16	50 .55	. 95 90
42:39	. 12	. 80 70
	1,276:420:603:1	1,276:420:603:160 .55

Table 2. Genotypic composition of four phenotypes in the F₂ of the cross between Yuma glandless and glandless plants.

Phenotype	Expected ratio	Genotype	Expected ratio
Glanded hypocotyl, cotyledons, and stems	33	$Gl_1 - Gl_2 - Gl_3$ $Gl_1 - Gl_2 Gl_2 gl_3 gl_3$ $Gl_1 - gl_2 gl_2 Gl_3 Gl_3$	27 3 3
Yuma glanded hypocotyl, glanded cotyledons, glandless stems	11	$gl_{1}^{Y}gl_{1}^{Y}Gl_{2}-Gl_{3}-gl_{1}^{Y}gl_{1}^{Y}Gl_{2}Gl_{2}gl_{3}gl_{3}$ $gl_{1}^{Y}gl_{1}^{Y}gl_{2}gl_{2}Gl_{3}Gl_{3}$	9 1 1
Glandless hypocotyls, glanded cotyledon	16	G1, g	2 4 2 2 4 2
Glandless plants	4	$Gl_1 - gl_2 gl_2 gl_3 gl_3$ $gl_1^{\vee} gl_1^{\vee} gl_2 gl_2 gl_3 gl_3$	3

cross. The backcross (Yuma-glandless × glandlessone) × glandless-one was also studied.

In the cross to normally glanded, Yuma glandless was recessive in the F₁, and the F₂ segregated 3 glanded: 1 Yuma glandless (Table 1). In the cross to glandless-one, Yuma glandless acted as a domniant and segregated 3 Yuma glandless: 1 glandless-one. The backcross segregated one Yuma glandless:1 glandlessone. I assigned the gene symbol, gl^y1, to Yuma glandless which indicates that Gl₁, gl^y₁, and gl₁ form a multiple allelomorphic series at the gl₁ locus.

In the cross to glandless plant, the F1 was dominant for Yuma glandless. The F2 was classed into four easily recognized phenotypes with following genotypicphenotypic relationship (Table 2).

Instead of four phenotypic classes in the F₂ of the Yuma cross with glandless plant we combine and make two classes: (a) glanded hypocotyl, and (b) glandless hypocotyl (Tables 1 and 2). This new ratio 11:5 (44: 20) shows excellent agreement with actual count. It was shown previously (4) that the ratio of glanded hypocotyl to glandless hypocotyl is helpful in breeding for the glandless plant character in comercial cotton.

LITERATURE CITED

- 1. Lee, J. A. 1962. Genetic studies concerning the distribution of pigment glands in the cotyledons and leaves of Upland cotton. Genetics 47:131-142.
- 2. McMichael, S. C. 1954. Glandless boll in Upland cotton and its use in the study of natural crossing. Agron. J. 46:527-528.

 3. ———. 1960. Combined effects of glandless genes gl₂ and gl₃ on pigment glands in the cotton plant. Agron. J. 52:385-386.
- 1969. Selection for glandless seeded cotton plants. Crop Sci. 9:518-520.
- 5. Murray, J. C. 1965. A new locus for glanded stem in tetraploid cotton. J. Hered. 56 (1):42-44.

³ Personal correspondence.