Исследование объявлений о продаже квартир

В вашем распоряжении данные сервиса Яндекс.Недвижимость — архив объявлений о продаже квартир в Санкт-Петербурге и соседних населённых пунктов за несколько лет. Нужно научиться определять рыночную стоимость объектов недвижимости. Ваша задача — установить параметры. Это позволит построить автоматизированную систему: она отследит аномалии и мошенническую деятельность.

По каждой квартире на продажу доступны два вида данных. Первые вписаны пользователем, вторые — получены автоматически на основе картографических данных. Например, расстояние до центра, аэропорта, ближайшего парка и водоёма.

Откройте файл с данными и изучите общую информацию.

```
import pandas as pd
import matplotlib.pyplot as plt

data = pd.read_csv('/datasets/real_estate_data.csv', sep='\t')
data.info() #выводим общую информацию
data.head() #выводим первые пять строк таблицы
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 23699 entries, 0 to 23698 Data columns (total 22 columns):

#	Column	Non-Null Count	Dtype		
0	total_images	23699 non-null	int64		
1	last_price	23699 non-null	float64		
2	total_area	23699 non-null	float64		
3	<pre>first_day_exposition</pre>	23699 non-null	object		
4	rooms	23699 non-null	int64		
5	ceiling_height	14504 non-null	float64		
6	floors_total	23613 non-null	float64		
7	living_area	21796 non-null	float64		
8	floor	23699 non-null	int64		
9	is_apartment	2775 non-null	object		
10	studio	23699 non-null	bool		
11	open_plan	23699 non-null	bool		
12	kitchen_area	21421 non-null	float64		
13	balcony	12180 non-null	float64		
14	locality_name	23650 non-null	object		
15	airports_nearest	18157 non-null	float64		
16	cityCenters_nearest	18180 non-null	float64		
17	parks_around3000	18181 non-null	float64		
18	parks_nearest	8079 non-null	float64		
19	ponds_around3000	18181 non-null	float64		
20	ponds_nearest	9110 non-null	float64		
21	days_exposition	20518 non-null	float64		
dtypes: bool(2), float64(14), int64(3), object(3)					

memory usage: 3.7+ MB

	total_images	last_price	total_area	first_day_exposition	rooms	ceiling_height	
0	20	13000000.0	108.0	2019-03-07T00:00:00	3	2.70	
1	7	3350000.0	40.4	2018-12-04T00:00:00	1	NaN	
2	10	5196000.0	56.0	2015-08-20T00:00:00	2	NaN	
3	0	64900000.0	159.0	2015-07-24T00:00:00	3	NaN	
4	2	10000000.0	100.0	2018-06-19T00:00:00	2	3.03	
5 rows × 22 columns							

data.hist(figsize=(15, 20)) plt.show()

Предобработка данных

data.isna().sum() # определяем количество пропусков в каждом столбце

0
0
0
0
0
9195
86
1903
0
20924
0
0
2278
11519
49
5542
5519
5518
15620
5518
14589
3181

∨ Высота потолка ceiling_height

В 9195 строках не указана высота потолка. Можно предположить, что это квартиры с так называемым "стандартным" потолком, т.к если бы потолки были высокими, то, скорее всего, это было бы указано. Соответственно, заменим отстуствующие значения на среднюю высоту потолка. Воспользуемся медианой, чтобы не включать в среднее значение экстримальные показатели.

data['ceiling_height'].describe()

count	14504.000000
mean	2.771499
std	1.261056
min	1.000000
25%	2.520000

50% 2.650000 75% 2.800000 max 100.000000

Name: ceiling_height, dtype: float64

Видим очевидные аномальные значения минимума 1 м. и максимума 100 м.

data['ceiling_height'].hist(bins = 10, figsize = (7,5), range = (0,40));

Видим, что большая часть потолков 2-4,5 м. Есть значения в районе 25ти. Скорее всего это неверно записанные данные. Проверим

data.query('ceiling_height>20')

	total_images	last_price	total_area	first_day_exposition	rooms	ceiling_
355	17	3600000.0	55.2	2018-07-12T00:00:00	2	
3148	14	2900000.0	75.0	2018-11-12T00:00:00	3	
4643	0	4300000.0	45.0	2018-02-01T00:00:00	2	
4876	7	3000000.0	25.0	2017-09-27T00:00:00	0	
5076	0	3850000.0	30.5	2018-10-03T00:00:00	1	
5246	0	2500000.0	54.0	2017-10-13T00:00:00	2	
5669	4	4400000.0	50.0	2017-08-08T00:00:00	2	
5807	17	8150000.0	80.0	2019-01-09T00:00:00	2	
6246	6	3300000.0	44.4	2019-03-25T00:00:00	2	
9379	5	3950000.0	42.0	2017-03-26T00:00:00	3	
10773	8	3800000.0	58.0	2017-10-13T00:00:00	2	
11285	0	1950000.0	37.0	2019-03-20T00:00:00	1	
14382	9	1700000.0	35.0	2015-12-04T00:00:00	1	
17857	1	3900000.0	56.0	2017-12-22T00:00:00	3	
18545	6	3750000.0	43.0	2019-03-18T00:00:00	2	
20478	11	8000000.0	45.0	2017-07-18T00:00:00	1	
20507	12	5950000.0	60.0	2018-02-19T00:00:00	2	
21377	19	4900000.0	42.0	2017-04-18T00:00:00	1	
21824	20	2450000.0	44.0	2019-02-12T00:00:00	2	
22336	19	9999000.0	92.4	2019-04-05T00:00:00	2	
22869	0	15000000.0	25.0	2018-07-25T00:00:00	1	
22938	14	4000000.0	98.0	2018-03-15T00:00:00	4	

```
22 rows × 22 columns
```

Действительно похоже, что кроме 100, в значениях просто потеряна запятая. Исправим

```
data.loc[data['ceiling_height'] > 20, 'ceiling_height'] /= 10
data.query('ceiling_height>20')#проверим
```

total_images last_price total_area first_day_exposition rooms ceiling_height

0 rows × 22 columns

```
data.query('ceiling_height >= 6 or ceiling_height <= 2 ').count()</pre>
```

```
total_images
                        23
last_price
                        23
total_area
                        23
first_day_exposition
                        23
rooms
                        23
                        23
ceiling_height
floors_total
                        23
living_area
                        21
                        23
floor
is_apartment
                        3
                        23
studio
                        23
open_plan
                        19
kitchen_area
                        9
balcony
locality_name
                        23
airports_nearest
                        13
                        13
cityCenters_nearest
parks_around3000
                        13
                        8
parks_nearest
ponds_around3000
                        13
ponds_nearest
                         8
days_exposition
                        19
dtype: int64
```

23 строки со значением потолка выше 6 метров и ниже 2 м. Это меньше одного процента. Удалим их. Пропуски оставим

```
data = data.loc[(data['ceiling_height'] <= 6)&(data['ceiling_height'] >= 2)|(data['ceiling_height'] == 2)|
```

∨ Количество этажей в доме floors_total

Скорее всего значения в этих строках отсутствуют потому, что эти дома одноэтажные. Поэтому заменим значения ячеек на 1. В любом случае, эти строки не должны сильно повлиять на результат исследования, т.к их количество незначительно (86 строк)

```
data['floors_total'] = data['floors_total'].fillna(1)#заменяем значения NAN на 1 в столби data['floors_total'] = data['floors_total'].astype(int)#поменяем тип данных на целочислей
```

Жилая площадь living_area

Выбирая квартиру, покупатели чаще ориентируются на общую площадь квартиры, а не на жилую площадь. Поэтому пока оставим ячейки как есть.

```
data[['living_area']].apply (['count', 'min', 'max']).style.format("{:,.2f}")
```

living_area

count 21,785.00

min 2.00

max 409.70

data['living_area'].hist(bins = 15, figsize = (7,5));

Количество квартир с жилой площадью больше 130 кв.м. резко снижается. Посчитаем сколько их

```
data.query('living area > 130').count()
```

total_images	176
last_price	176
total_area	176
first_day_exposition	176
rooms	176
ceiling_height	118
floors_total	176
living_area	176
floor	176
is_apartment	15
studio	176
open_plan	176
kitchen_area	164
balcony	86
locality_name	176
airports_nearest	171
cityCenters_nearest	174
parks_around3000	174
parks_nearest	124
ponds_around3000	174
ponds_nearest	128
days_exposition	137
dtype: int64	

176 строк это меньше 1%, можно удалить эти строки,как редкие.

```
data = data.loc[(data['living_area'] < 130)|(data['living_area'].isna())]</pre>
```

∨ Количество балконов balcony

Отсутствующие значения количества балконов заменим на 0, т.к. скорее всего они не указаны по причине отсутствия балкона в квартире.

```
data['balcony'] = data['balcony'].fillna(0) #заменяем значения NAN на 0 в столбце количе data['balcony'] = data['balcony'].astype(int) #заменим тип данных на целочисленный.
```

✓ Площадь kitchen_area

Пока не хватает данных, чтобы сделать замену отсутстсвующих значений по площади кухни. Ни среднее арифметическое, ни медиана не подходят, т.к все квартиры отличаются площадью и брать средеее просто некорректно. Можем предположить, что площадь кухни не указана в апартаментах и студиях, т.к она объединина с жилой и общей площадью.

Проверим это предположение, построив графики зависимости отсутствия значения о площади кухни в апартаментах и студиях

no_kitch_sq = data[data['kitchen_area'].isnull()] #вводим переменную со значением NaN в и #строим график, проверяем в скольких апартаментах не указана площадь кухни no_kitch_sq['is_apartment'].value_counts().plot(kind='pie', figsize = (7,7)) plt.show() #убираем служебную информацию #строим график, проверяем в скольких студиях не указана площадь кухни no_kitch_sq['studio'].value_counts().plot(kind='pie', figsize = (7,7)) plt.show()

data[['kitchen_area']].apply (['count', 'min', 'max']).style.format("{:,.2f}")

kitchen_area

count 21,244.00

min 1.30 **max** 107.00

data['kitchen_area'].hist(bins = 15, figsize = (7,5));

Значения больше 50 довольно редки, посчитаем их

data.query('kitchen_area > 50').count()

total_images	35
last_price	35
total_area	35
first_day_exposition	35
rooms	35
ceiling_height	25
floors_total	35
living_area	33
floor	35
is_apartment	5
studio	35
open_plan	35
kitchen_area	35
balcony	35
locality_name	35
airports_nearest	34
cityCenters_nearest	34
parks_around3000	34
parks_nearest	24
ponds_around3000	34
ponds_nearest	20
days_exposition	28
dtype: int64	

35 строк. Можем удалить, как редко встречающиеся

```
data = data.loc[(data['kitchen_area'] < 50)|(data['kitchen_area'].isna())]</pre>
```

По графикам видно, что отсутствие данных о площади кухни никак не зависит от того квартира это, апартаменты или студия. Оставим значения ячеек как есть.

Город locality_name

49 строк с пропущенными значениями местоположения квартир удалим из датафрейма. Т.к расположение является одним из главных критереев выбора жилья, строки где этих значений нет, не имеют смысла.

data.loc[data['locality_name'].isna() == True] #посмотрим на данные без указания населен

	total_images	last_price	total_area	first_day_exposition	rooms	ceiling_
1097	3	8600000.0	81.70	2016-04-15T00:00:00	3	
2033	6	5398000.0	80.00	2017-05-30T00:00:00	3	
2603	20	3351765.0	42.70	2015-09-20T00:00:00	1	
2632	2	5130593.0	62.40	2015-10-11T00:00:00	2	
3574	10	4200000.0	46.50	2016-05-28T00:00:00	2	
4151	17	17600000.0	89.50	2014-12-09T00:00:00	2	
4189	7	9200000.0	80.00	2015-12-10T00:00:00	3	
4670	1	5500000.0	83.00	2015-08-14T00:00:00	3	
5343	19	13540000.0	85.50	2016-01-20T00:00:00	3	
5707	7	3700000.0	30.00	2016-04-29T00:00:00	1	
6765	20	4895892.0	60.70	2015-03-12T00:00:00	2	
7114	5	4250000.0	56.00	2016-03-16T00:00:00	3	
7330	8	5100000.0	63.00	2015-01-27T00:00:00	3	
7600	8	6800000.0	70.00	2016-01-31T00:00:00	3	
8568	10	16000000.0	155.00	2016-05-09T00:00:00	3	
8986	10	4850000.0	103.10	2018-07-10T00:00:00	3	
9821	13	0.000008	94.50	2015-01-21T00:00:00	4	
10122	5	8200000.0	83.00	2015-06-24T00:00:00	4	
11248	12	6300000.0	63.10	2015-01-16T00:00:00	4	
12879	12	4400000.0	39.20	2016-04-26T00:00:00	1	
12936	6	6800000.0	73.00	2015-11-01T00:00:00	3	
13223	1	2919911.0	29.40	2015-03-12T00:00:00	1	
13690	7	3500000.0	71.00	2016-06-23T00:00:00	3	
14273	2	4422000.0	60.00	2016-03-23T00:00:00	2	
14342	3	3611000.0	53.50	2017-04-27T00:00:00	1	
15686	13	4700000.0	44.00	2015-12-01T00:00:00	2	
15866	10	3950000.0	44.00	2016-04-16T00:00:00	2	
16499	2	4995573.0	56.90	2016-06-17T00:00:00	2	
16561	3	2450000.0	30.00	2016-06-02T00:00:00	1	
16610	11	11940000.0	112.00	2015-11-19T00:00:00	3	
17535	2	5985000.0	79.80	2018-07-30T00:00:00	3	
17764	9	8400000.0	94.00	2016-01-24T00:00:00	3	

3:29		fd5b7f55-	-4f26-4509-bd80-2b	edae166434.ipynb - Colaboratory		
18526	3	10800000.0	86.00	2016-06-24T00:00:00	4	
18917	3	2660000.0	37.99	2017-08-17T00:00:00	1	
19045	6	4650000.0	48.00	2016-01-25T00:00:00	2	
19972	20	4361004.0	62.40	2015-09-20T00:00:00	2	
20057	13	11500000.0	102.00	2015-10-14T00:00:00	2	
20382	8	1750000.0	72.90	2018-10-27T00:00:00	3	
20590	7	3380000.0	56.00	2017-11-06T00:00:00	2	
20654	7	6100000.0	43.00	2016-01-13T00:00:00	1	
21119	8	3500000.0	43.20	2018-11-11T00:00:00	2	
21276	0	17122148.0	178.30	2017-02-10T00:00:00	1	
21333	10	5900000.0	58.00	2015-03-12T00:00:00	3	
21715	2	6047550.0	80.10	2018-07-30T00:00:00	2	
21898	2	5886750.0	83.50	2018-07-30T00:00:00	2	
22474	7	24000000.0	128.00	2015-07-24T00:00:00	4	
22717	9	3000000.0	35.00	2018-01-02T00:00:00	1	
22933	20	3176015.0	33.30	2015-04-22T00:00:00	1	
23214	3	7990000.0	56.00	2016-05-31T00:00:00	2	
49 rows × 22 columns						

data = data.dropna(subset = ['locality_name']) #ничего выделяющегося на первый взгляд в :

Расстояние до аэропорта airports_nearest, расстояние до ценнтра cityCenters_nearest

Отсутствующие значения расстояния до аэропорта и до центра города имеет смысл заменить на медианные значения, сгруппировав по населенному пункту

```
#for row in data['locality_name'].unique():
# data.loc[(data['locality_name'] == row) & (data['airports_nearest'].isna()), 'airports_nearest'].median()
# data.loc[(data['locality_name'] == row), 'airports_nearest'].median()
```

При проверке, получаем предупреждение от Python, что заставляет задуматься, а есть ли аэропорт в тех локациях, где ячейки со значением NaN. Т.к. оценить наверняка очень сложно, будем отталкиваться от того, что аэропорт находится в Санкт-Петербурге. Проверим, есть ли незаполненные ячейки с локацией там.

```
data.query('airports_nearest.isna() and airports_nearest == "Санкт-Петербург"')
```

```
total_images last_price total_area first_day_exposition rooms ceiling_height
```

0 rows × 22 columns

Нет. Таких строк нет. Будем иметь в виду, что если значение не заполнено, значит аэропорт где-то далеко. Значения менять не будем.

- ✓ Апартаменты is_apartment
 - Заменим все недостающие знгачения на False

```
pd.set_option('mode.chained_assignment', None)
#уберем предупреждение, связанное с особенностью библиотеки, оно не влияет на результат
data['is_apartment'] = data['is_apartment'].fillna(False)
```

Парки поблизости parks_around3000, водоемы поблизости ponds_around3000

Заменим эти значения на 0, т.к. скорее всего парков и водоемов поблизости просто нет

```
data['parks_around3000'] = data['parks_around3000'].fillna(0)
data['ponds_around3000'] = data['ponds_around3000'].fillna(0)
```

Расстояние до ближайшего парка parks_nearest, расстояние до ближайшего водоема ponds_nearest

Замениить отсутствующие значения на 0 мы не можем, т.к. в этом случае получится, что квартира находится в непосредственной близости от парка/водоема. Поэтому эти значения оставим как есть/

∨ Количество дней, на которе было размещено объявление days_exposition

Пропуски в ['days_exposition'] говорят нам, что квартиры еще не проданы. Оставляем. data[['days_exposition']].apply (['count', 'min', 'max']).style.format("{:,.2f}")

days_exposition

count 20,285.00

min 1.00 max 1,580.00

data.days_exposition.hist(bins = 15, figsize = (15,3), range = (1,1600))
plt.show()

Видим низкое количесвто значений после 1150. Проверим сколько это строк

data[data['days_exposition'] > 1000].count()

total_images	266
last_price	266
total_area	266
first_day_exposition	266
rooms	266
ceiling_height	180
floors_total	266
living_area	242
floor	266
is_apartment	266
studio	266
open_plan	266
kitchen_area	251
balcony	266
locality_name	266
airports_nearest	225
cityCenters_nearest	225
parks_around3000	266
parks_nearest	112
ponds_around3000	266
ponds_nearest	145
days_exposition	266
dtype: int64	

256 строк - это около 1%, можем удалить

data = data.loc[(data['days_exposition'] < 1000)|(data['days_exposition'].isna())]</pre>

∨ Цена

```
data['last_price'] = data['last_price'].astype(int)
```

data[['last_price']].apply (['count', 'min', 'max']).style.format("{:,.2f}")

last_price

count 23,149.00

min 12,190.00

max 330,000,000.00

data.last_price.hist(bins = 100, figsize = (10,6), range = (0, 1.4e+07)) plt.show()

data['last price'].describe()

2.314900e+04 count mean 6.032660e+06 6.555309e+06 std 1.219000e+04 min 25% 3.400000e+06 50% 4.600000e+06 75% 6.650000e+06 3.300000e+08

max

Name: last_price, dtype: float64

data[data['last_price'] > 3.0e+07].count() # квартиры стоимостью выше 30 млн

total_images 190 last_price 190

```
190
total_area
first_day_exposition
                       190
rooms
                        190
ceiling_height
                        124
floors_total
                       190
living_area
                        155
floor
                        190
is_apartment
                       190
studio
                       190
open_plan
                        190
kitchen_area
                       163
                       190
balcony
locality_name
                        190
airports_nearest
                       184
cityCenters_nearest
                       184
parks_around3000
                       190
parks_nearest
                        138
ponds_around3000
                       190
ponds_nearest
                        148
days_exposition
                        136
dtype: int64
```

```
data = data.loc[(data['last_price'] < 3.0e+07)|(data['last_price'].isna())]</pre>
```

✓ Дата публикации first_day_exposition

В столбце Дата публикации поменяем тип данных на datetime и проверим

```
data['first_day_exposition'] = pd.to_datetime(data['first_day_exposition'], format = '%Y
data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 22952 entries, 0 to 23698
Data columns (total 22 columns):
```

	`	,	
#	Column	Non-Null Count	Dtype
0	total_images	22952 non-null	int64
1	last_price	22952 non-null	int64
2	total_area	22952 non-null	float64
3	<pre>first_day_exposition</pre>	22952 non-null	<pre>datetime64[ns]</pre>
4	rooms	22952 non-null	int64
5	ceiling_height	14015 non-null	float64
6	floors_total	22952 non-null	int64
7	living_area	21115 non-null	float64
8	floor	22952 non-null	int64
9	is_apartment	22952 non-null	bool
10	studio	22952 non-null	bool
11	open_plan	22952 non-null	bool
12	kitchen_area	20739 non-null	float64
13	balcony	22952 non-null	int64
14	locality_name	22952 non-null	object
15	airports_nearest	17475 non-null	float64
16	cityCenters_nearest	17495 non-null	float64
17	parks_around3000	22952 non-null	float64
18	parks_nearest	7648 non-null	float64

```
19 ponds_around3000 22952 non-null float64
20 ponds_nearest 8629 non-null float64
21 days_exposition 19877 non-null float64
```

dtypes: bool(3), datetime64[ns](1), float64(11), int64(6), object(1)
memory usage: 3.6+ MB

Теперь разберемся с дубликатами.

```
duplicated_data = data[data.duplicated()]
duplicated_data
```

total_images last_price total_area first_day_exposition rooms ceiling_height

0 rows × 22 columns

Полных дубликатов нет. Поищем неявные дубликаты

data['locality_name'].unique()

```
деревня вор , поселок станции свирь , поселок перово , высоцк ,
             'поселок Гарболово', 'село Шум', 'поселок Котельский',
             'поселок станции Лужайка', 'посёлок Стеклянный',
             'деревня Большая Пустомержа', 'поселок Красносельское',
             'деревня Вахнова Кара', 'деревня Пижма',
             'коттеджный поселок Кивеннапа Север', 'поселок Коробицыно',
             'поселок Ромашки', 'посёлок Перово', 'деревня Каськово',
             'деревня Куровицы', 'посёлок Плоское', 'поселок Сумино',
             'поселок городского типа Большая Ижора', 'поселок Кирпичное', 'деревня Ям-Тесово', 'деревня Раздолье', 'деревня Терпилицы',
             'посёлок Шугозеро', 'деревня Ваганово', 'поселок Пушное',
             'садовое товарищество Садко', 'посёлок Усть-Ижора',
             'деревня Выскатка', 'городской посёлок Свирьстрой',
             'поселок Громово', 'деревня Кисельня', 'посёлок Старая Малукса',
             'деревня Трубников Бор', 'поселок Калитино', 'посёлок Высокоключевой', 'садовое товарищество Приладожский',
             'посёлок Пансионат Зелёный Бор', 'деревня Ненимяки',
             'поселок Пансионат Зелёный Бор', 'деревня Снегирёвка',
             'деревня Рапполово', 'деревня Пустынка', 'поселок Рабитицы',
             'деревня Большой Сабск', 'деревня Русско', 'посёлок Лисий Нос',
             'деревня Лупполово', 'деревня Большое Рейзино',
             'деревня Малая Романовка', 'поселок Дружноселье', 'поселок Пчевжа',
             'поселок Володарское', 'деревня Нижняя',
             'коттеджный посёлок Лесное', 'деревня Тихковицы',
             'деревня Борисова Грива', 'посёлок Дзержинского'], dtype=object)
# check
data['locality_name'].nunique()
     363
# Используем метод replace()
data['locality_name'] = data['locality_name'].str.replace('посёлок','поселок')
data['locality name'] = (
    data['locality_name'].str.replace('поселок Мурино','Мурино')
    .str.replace('деревня Кудрово','Кудрово')
    .str.replace('поселок городского типа Рябово', 'Рябово')
)
#проверим
pd.set_option('display.max_columns', None) #строчки, чтобы Юпитер полностью вывел таблиц
pd.set_option('display.max_rows', None)
data['locality_name'].value_counts()
     Санкт-Петербург
                                                                     15109
     Мурино
                                                                       584
     Кудрово
                                                                       466
                                                                       436
     поселок Шушары
                                                                       394
     Всеволожск
     Пушкин
                                                                       356
                                                                       335
     Колпино
     поселок Парголово
                                                                       326
                                                                       307
     Гатчина
                                                                       236
     Выборг
     Петергоф
                                                                       195
                                                                       181
     Сестрорецк
     Красное Село
                                                                       175
```

13:29	34.ipynb - Colaboratory
деревня Новое Девяткино	142
Сертолово	138
Ломоносов	132
Кириши	124
поселок Бугры	112
Сланцы	112
Волхов	111
Кингисепп	104
Тосно	104
Кронштадт	94
Никольское	93
Сосновый Бор	87
Коммунар	86
Кировск	84
Отрадное	79
городской поселок Янино-1	68
поселок Металлострой	66
Приозерск	66
деревня Старая	64
Шлиссельбург	56
Луга	56
Тихвин	49
поселок Стрельна	43
поселок Тельмана	40
Павловск	36
Волосово	36
поселок Романовка	36
поселок городского типа имени Свердлова	36
поселок городского типа Кузьмоловский	35
поселок городского типа Рощино	34
поселок городского типа Сиверский	29
Ивангород	28
городской поселок Новоселье	28
городской поселок Мга	26
Сясьстрой	24
Зеленогорск	24
поселок Щеглово	23
поселок Новый Свет	22
поселок городского типа Синявино	21
поселок городского типа Вырица	21
деревня Вартемяги	20
поселок городского типа Токсово	20
поселок Понтонный	20
поселок Новогорелово	20
лепевня Лесколово	20

data['locality_name'].nunique()

327

Найдем аномальные значения. Выведем таблицу методом describe

data.describe()

	total_images	last_price	total_area	rooms	ceiling_height	floors_
count	22952.000000	2.295200e+04	22952.000000	22952.000000	14015.000000	22952.0
mean	9.844284	5.645989e+06	57.383432	2.019127	2.713378	10.€
std	5.653254	3.865348e+06	25.779422	0.983738	0.258572	6.6
min	0.000000	1.219000e+04	12.000000	0.000000	2.000000	1.0
25%	6.000000	3.400000e+06	40.000000	1.000000	2.500000	5.0
50%	9.000000	4.590000e+06	51.000000	2.000000	2.650000	9.0
75%	14.000000	6.550000e+06	68.000000	3.000000	2.800000	16.0
max	50.000000	2.999900e+07	441.980000	9.000000	5.800000	60.0

Если посмотреть на минимальные, максимальные значения, становятся очевидными выбросы в столбцах floors_total (максимальное значение 60 этажей, тогда как в Санкт-Петербурге самое высокое здание Лахта-центр имеет 35 этажей) rooms (минммальное значение 0)

data.query('floors_total > 35') #проверим много ли выбросов по этажности

397 15 5990000 54.0 2018-03-22 2		total_images	ges last_price	total_area	first_day_exposition	rooms	ceiling_he:
0000 40 0000000 45 5 0040 00 00	397	15	15 5990000	54.0	2018-03-22	2	
2253 12 3800000 45.5 2018-06-28 2	2253	12	12 3800000	45.5	2018-06-28	2	
5807 17 8150000 80.0 2019-01-09 2	5807	17	17 8150000	80.0	2019-01-09	2	
11079 16 9200000 75.0 2019-02-22 2	11079	16	16 9200000	75.0	2019-02-22	2	
16731 9 3978000 40.0 2018-09-24 1	16731	9	9 3978000	40.0	2018-09-24	1	

6 строк имееют значение этажности здания более 35 эт. 36 и 37 этажей значение очень близкое к 35, поэтому их оставим. Вдруг где-то в пригороде и правда уже построили здание выше Лахта-центра. Строки со значением 52 и 60 явно ошибочные. Удалим их.

```
data = data.loc[(data['floors_total'] <= 37)|(data['last_price'].isna())]
#оставляем в таблице значения меньше 37 этажей</pre>
```

```
# check
data.info()
     <class 'pandas.core.frame.DataFrame'>
     Int64Index: 22754 entries, 0 to 23698
     Data columns (total 22 columns):
         Column
                               Non-Null Count Dtype
     --- -----
                               -----
                               22754 non-null int64
     0
         total_images
      1
         last_price
                               22754 non-null int64
         total_area
      2
                              22754 non-null float64
         first_day_exposition 22754 non-null datetime64[ns]
      3
      4
         rooms
                               22754 non-null int64
      5
        ceiling_height
                               13932 non-null float64
                               22754 non-null int64
      6
         floors_total
                               20930 non-null float64
      7
         living_area
      8
         floor
                               22754 non-null int64
      9
        is_apartment
                              22754 non-null bool
      10 studio
                               22754 non-null bool
      11 open_plan
                              22754 non-null bool
      12 kitchen_area
                              20737 non-null float64
                               22754 non-null int64
      13 balcony
     14 locality_name22754 non-null object15 airports_nearest17356 non-null float64
      16 cityCenters_nearest
                               17376 non-null float64
      17 parks_around3000 22754 non-null float64
      18 parks_nearest
                               7618 non-null float64
                               22754 non-null float64
      19
         ponds around3000
      20 ponds_nearest
                               8560 non-null float64
      21 days_exposition
                               19693 non-null float64
     dtypes: bool(3), datetime64[ns](1), float64(11), int64(6), object(1)
     memory usage: 3.5+ MB
# check
# Показатели о кол-ве объявлений в датасете, минимальных и максимальных значениях
# в выбранных параметрах о продаже квартир
# сырые данные
(
    data[['rooms', 'total_area', 'ceiling_height', 'days_exposition', 'last_price', 'liv:
          'floor', 'floors total']]
    .apply (['count', 'min', 'max'])
    .style.format("{:,.2f}")
)
            rooms total_area ceiling_height days_exposition last_price
                                                                    living_area kitchen_area
     count 22,754.00 22,754.00 13,932.00
                                         19,693.00
                                                                    20,930.00 20,737.00
                                                        22,754.00
      min 1.00
                   12.00
                            2.00
                                         1.00
                                                                              1.30
                                                        12,190.00
                                                                    2.00
       0.00
                   111 00
                            E 20
                                         000 00
                                                        20 000 000 00 420 00
                                                                              10 10
# check
data.rooms.value_counts().to_frame()
```

rooms

1 7959 2 7802 3 5610 1067 4 5 242 6 53 7 18 8 2 9 1 data.query('rooms > 7').count() total_images 3 last_price 3 total_area 3 first_day_exposition 3 3 rooms ceiling_height 3 floors_total 3 2 living_area floor 3 is_apartment 3 3 studio 3 open_plan 2 kitchen_area 3 balcony 3 locality_name 3 airports_nearest 3 cityCenters_nearest 3 parks_around3000 3 parks_nearest ponds around3000 3 1 ponds_nearest 2 days_exposition dtype: int64 data[['rooms']].apply (['count', 'min', 'max']).style.format("{:,.2f}") rooms count 22,754.00 **min** 1.00 max 9.00

3 строк - это почти ничего, можем их удалить

data = data.loc[(data['rooms'] <= 7)|(data['rooms'].isna())]</pre>

check data.total_area.hist(bins = 150, figsize = (15,3));

check
data.total_area.hist(bins = 150, figsize = (15,3), range = (180,500));

check
data.total_area.hist(bins = 15, figsize = (15,3), range = (180,500));

data.query('total_area > 250').count()

total_images	6
last_price	6
total_area	6
first_day_exposition	6
rooms	6
ceiling_height	3

```
floors_total
                              6
                              3
     living_area
     floor
                              6
     is apartment
                              6
     studio
                              6
                              6
     open_plan
     kitchen_area
                              5
     balcony
                              6
     locality_name
                              6
     airports_nearest
                              6
     cityCenters_nearest
                              6
     parks_around3000
                              6
     parks_nearest
                              2
     ponds around3000
                              6
     ponds_nearest
                              2
                              4
     days_exposition
     dtype: int64
data = data.loc[(data['total area'] <= 250)|(data['total area'].isna())]</pre>
# check
# Значения параметров объектов недвижимости на разных квантилях
(
    data[['rooms', 'total_area', 'ceiling_height', 'days_exposition', 'last_price', 'liv:
        'kitchen_area', 'floor', 'floors_total']]
    .quantile([0.0012, 0.01, .5, .99, .9988]) # выбираем размах в 0,9976 квантилей
    .style.format("{:,.2f}")
)
```

	rooms	total_area	ceiling_height	days_exposition	last_price	living_area	kitchen_area	a fl
0.0012	1.00	20.62	2.30	3.00	560,000.00	10.00	3.67	1.
0.01	1.00	27.00	2.50	4.00	1,000,000.00	13.00	5.00	1.
0.5	2.00	51.40	2.65	93.00	4,600,000.00	30.00	9.00	4.
0.99	5.00	151.56	3.66	863.00	22,000,000.00	92.33	30.00	2:
1	2.00	100.00	4.00	070.00	00 555 070 74	100.00	10.00	>

```
# check
```

	rooms	total_area	ceiling_height	days_exposition	last_price	living_area	kitchen_area
count	22,745.00	22,745.00	13,926.00	19,687.00	22,745.00	20,925.00	20,730.00
min	1.00	12.00	2.00	1.00	12,190.00	2.00	1.30
may	7 00	250 00	E 3U	000 00	20 000 000 00	120 00	40.40

```
# check
data.hist(column = 'days_exposition', bins = 50, figsize = (15,3), range = (0,5));
data.hist(column = 'days_exposition', bins = 50, figsize = (15,3), range = (0,5))
plt.ylim(0, 40);
```


data.query('days_exposition < 3').count()</pre>

total_images	4
last_price	4
total_area	4
first_day_exposition	4
rooms	4
ceiling_height	3
floors_total	4
living_area	3
floor	4
is_apartment	4
studio	4
open_plan	4
kitchen_area	3
balcony	4
locality_name	4
airports_nearest	4
cityCenters_nearest	4
parks_around3000	4

```
parks_nearest 2
ponds_around3000 4
ponds_nearest 1
days_exposition 4
dtype: int64
```

data = data.loc[(data['days_exposition'] > 3)|(data['days_exposition'].isna())]

∨ Посчитайте и добавьте в таблицу новые столбцы

Посчитаем среднюю цену за квадратный метр и внесем данные в отдельный столбец.

data['price_m'] = data['last_price']/data['total_area'] # добавим столбец с ценой за ме
data['price_m'] = data['price_m'].astype('int') # поменяем тип данных на целочисленный
data.head() #проверим

	total_images	last_price	total_area	first_day_exposition	rooms	ceiling_height
0	20	13000000	108.0	2019-03-07	3	2.70
1	7	3350000	40.4	2018-12-04	1	NaN
2	10	5196000	56.0	2015-08-20	2	NaN
4	2	10000000	100.0	2018-06-19	2	3.03
5	10	2890000	30.4	2018-09-10	1	NaN

Добавим новые столбцы со значениями дня недели, мексяца и года размещения объявления на сайте

```
data['weekday'] = data['first_day_exposition'].dt.weekday
#определяем день недели размещеничя объявления, помещаем в отдельный столбец
data['month'] = data['first_day_exposition'].dt.month # месяц
data['year'] = data['first_day_exposition'].dt.year # год
data.head()
```

	total_images	last_price	total_area	first_day_exposition	rooms	ceiling_height
0	20	13000000	108.0	2019-03-07	3	2.70
1	7	3350000	40.4	2018-12-04	1	NaN
2	10	5196000	56.0	2015-08-20	2	NaN
4	2	10000000	100.0	2018-06-19	2	3.03
5	10	2890000	30.4	2018-09-10	1	NaN

Сделаем категоризацию этажей: "первый", "порследний", "другой"

```
# создаем функцию для категоризации типов этажей def type_floor(data):
    if data['floor'] == 1:
        return 'первый'
    elif data['floor'] < data['floors_total']:
        return 'другой'
    elif data['floor'] == data['floors_total']:
        return 'последний'
    elif data['floor'] <= 0:
        return 'ошибка'
    else:
        return 'не найдено'
```

data['type_floor'] = data.apply(type_floor,axis=1) # вызываем функцию и складываем значе

Переведем значения расстояния до центра города в километры и округлим до целого

```
data['cityCenters_nearest'] = round(data['cityCenters_nearest'] /1000)
data.tail(10) #проверим
```

	total_images	last_price	total_area	first_day_exposition	rooms	ceiling_he:
23689	13	3550000	35.30	2018-02-28	1	
23690	3	5500000	52.00	2018-07-19	2	
23691	11	9470000	72.90	2016-10-13	2	
23692	2	1350000	30.00	2017-07-07	1	
23693	9	4600000	62.40	2016-08-05	3	
23694	9	9700000	133.81	2017-03-21	3	
23695	14	3100000	59.00	2018-01-15	3	
23696	18	2500000	56.70	2018-02-11	2	
23697	13	11475000	76.75	2017-03-28	2	
23698	4	1350000	32.30	2017-07-21	1	

Проведем исследовательский анализ данных

Общая площадь

plt.ylim(0, 150) #выставляем значения по оси y
data.boxplot('total_area') # строим диаграмму размаха
plt.show()

data['total_area'].describe()

count	22741.000000
mean	57.552796
std	25.252299
min	12.000000
25%	40.000000
50%	51.400000
75%	68.000000
max	250.000000

Name: total_area, dtype: float64

Стандартное отклонение в 2 раза ниже среднего. Это говорит о том, что значения набора данных имеют большой разброс. Это действительно так, учитывая, что у нас есть квартира 12 квадратов и 250 квадратов. По диаграмме размаха можем определить, что большинство квартир имеют площадь от 40 до 70 кв. м. - это значения, которые входят в "ящик". Минимальное значение 12 кв.м., верхний ус примерно на 110 кв.м. Остальные значения считаем выбросами. Медиана проходит примерно на 50

data.plot(y = 'total_area', kind = 'hist', bins = 500, grid=True, range = (0,200), figsi:
plt.show()

Ориентируясь на гистограмму и диаграмму размаха возьмем значения выше 120 за выбросы

Построим гистограмму минимальных значений

```
data.hist(column = 'total_area', bins = 50, figsize = (15,3), range = (11,30))
plt.ylim(0, 40);
```


data.query('total_area < 20').count()</pre>

total_images	19
last_price	19
total area	19
<u>—</u>	19
first_day_exposition	
rooms	19
ceiling_height	10
floors_total	19
living_area	11
floor	19
is_apartment	19
studio	19
open_plan	19
kitchen_area	4
balcony	19
locality_name	19
airports_nearest	14
cityCenters_nearest	14
parks_around3000	19
parks_nearest	6
ponds_around3000	19
ponds_nearest	9
days_exposition	19
price_m	19
weekday	19
month	19
year	19
type_floor	19
dtype: int64	
acype. Incoa	

Т.к строк со значениями ниже 20 всего 19, можем взять 20 за минимальное значение

data = data.loc[(data['total_area'] >=20)&(data['total_area'] <=120)|(data['total_area']</pre>

Жилая площадь

Проверим сразу нет ли значений жилой площади кухни превышающих значенияе общей площади квартиры

data.query('living_area > total_area or kitchen_area > total_area').count()

total_images	0
last_price	0
total_area	0
first_day_exposition	0
rooms	0
ceiling_height	0
floors_total	0
living_area	0
floor	0
is_apartment	0
studio	0
open_plan	0
kitchen_area	0
balcony	0
locality_name	0
airports_nearest	0
cityCenters_nearest	0
parks_around3000	0
parks_nearest	0
ponds_around3000	0
ponds_nearest	0
days_exposition	0
price_m	0
weekday	0
month	0
year	0
type_floor	0
dtype: int64	

Таких значений нет

plt.ylim(0, 100) #выставляем значения по оси y
data.boxplot('living_area') # строим диаграмму размаха
plt.show()

data.plot(y = 'living_area', kind = 'hist', bins = 500, grid=True, range = (0, 80), figs: #построим гистограмму plt.show()

data['living_area'].describe()

count	20333.000000
mean	31.380894
std	13.799247
min	2.000000
25%	18.400000
50%	30.000000
75%	40.500000
max	101.000000

Name: living_area, dtype: float64

<class 'pandas.core.frame.DataFrame'>

Правильно, что мы не стали менять пропуски на среднее значение. Среднее значение выше, чем общая площадь самой маленькой квартиры. Верний ус примерно 78. Нижний - минимум - 2 кв.м., это очень мало, но и такое может быть, если это студия. Большая часть квартир имеет жилую площадь от 19 до 42 кв.м. - вполне сравнимо с общей площадью (от 40 до 70 кв. м.)

```
# check
data.info()
```

```
Int64Index: 22069 entries, 0 to 23698
Data columns (total 27 columns):
    Column
#
                          Non-Null Count Dtype
0
   total_images
                          22069 non-null int64
 1
    last_price
                          22069 non-null int64
 2
    total area
                          22069 non-null float64
 3
    first_day_exposition 22069 non-null datetime64[ns]
 4
                          22069 non-null int64
    rooms
 5
     ceiling_height
                          13461 non-null float64
    floors_total
                          22069 non-null int64
```

```
20333 non-null float64
7
   living_area
8
   floor
                         22069 non-null int64
9
   is_apartment
                         22069 non-null bool
10 studio
                         22069 non-null bool
11 open_plan
                         22069 non-null bool
12 kitchen_area
                         20128 non-null float64
13 balcony
                         22069 non-null int64
14 locality_name
                         22069 non-null object
15 airports_nearest
                         16703 non-null float64
                         16722 non-null float64
16 cityCenters_nearest
17 parks_around3000
                         22069 non-null float64
                         7204 non-null
                                        float64
18 parks_nearest
                         22069 non-null float64
19
   ponds_around3000
                                       float64
20 ponds nearest
                         8145 non-null
21 days_exposition
                         19195 non-null float64
                         22069 non-null int64
22 price_m
23 weekday
                         22069 non-null int64
24 month
                         22069 non-null int64
25 year
                         22069 non-null int64
26 type_floor
                         22069 non-null object
```

dtypes: bool(3), datetime64[ns](1), float64(11), int64(10), object(2)

memory usage: 4.3+ MB

data.hist(column = 'living_area', bins = 50, figsize = (15,3), range = (0,12)) plt.ylim(0, 40);

data.query('living area < 10').count()</pre>

total_images	21
last_price	21
total_area	21
first_day_exposition	21
rooms	21
ceiling_height	15
floors_total	21
living_area	21
floor	21
is_apartment	21
studio	21
open_plan	21
kitchen_area	21
balcony	21
locality_name	21
airports_nearest	21
cityCenters_nearest	21

parks_around3000	21	
parks_nearest	10	
ponds_around3000	21	
ponds_nearest	9	
days_exposition	18	
price_m	21	
weekday	21	
month	21	
year	21	
type_floor	21	
dtype: int64		

Возьмем значение за минимум и избавимся от 21 строки с меньшими значениями

data = data.loc[(data['living_area'] >=10)&(data['living_area'] <=78)|(data['living_area #оставляем лишь значения в пределах нормальных значений

```
# check
data.shape[0]
21973
```

Площадь кухни

```
plt.ylim(0, 30) #выставляем значения по оси y
data.boxplot('kitchen_area') # строим диаграмму размаха
plt.show()
```


data['kitchen_area'].describe()

count	20040.000000
mean	9.911968
std	4.339390
min	1.300000
25%	7.000000
50%	9.000000

75% 11.300000 max 49.400000

Name: kitchen_area, dtype: float64

История похожа на предыдущие. Разброс данных от 1кв.м до 30. Стандартное отклонение высокое. Выбросы за пределами 17кв.м. В основном кухни 6- 12 кв.м

data.plot(y = 'kitchen_area', kind = 'hist', bins = 500, grid=True, range = (0,60), figs: #построим гистограмму plt.show()

check
data.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 21973 entries, 0 to 23698
Data columns (total 27 columns):

#	Column	Non-Null Count	Dtype
0	total_images	21973 non-null	int64
1	last_price	21973 non-null	int64
2	total_area	21973 non-null	float64
3	<pre>first_day_exposition</pre>	21973 non-null	<pre>datetime64[ns]</pre>
4	rooms	21973 non-null	int64
5	ceiling_height	13394 non-null	float64
6	floors_total	21973 non-null	int64
7	living_area	20237 non-null	float64
8	floor	21973 non-null	int64
9	is_apartment	21973 non-null	bool
10	studio	21973 non-null	bool
11	open_plan	21973 non-null	bool
12	kitchen_area	20040 non-null	float64
13	balcony	21973 non-null	int64
14	locality_name	21973 non-null	object

```
16615 non-null float64
15
   airports_nearest
                         16633 non-null float64
16 cityCenters_nearest
                         21973 non-null float64
17 parks_around3000
   parks_nearest
                         7153 non-null
                                        float64
18
19 ponds_around3000
                         21973 non-null float64
20 ponds_nearest
                         8093 non-null
                                        float64
21 days_exposition
                         19120 non-null float64
                         21973 non-null int64
22 price_m
23 weekday
                         21973 non-null int64
                         21973 non-null int64
24
   month
25
   year
                         21973 non-null int64
26 type_floor
                         21973 non-null object
```

dtypes: bool(3), datetime64[ns](1), float64(11), int64(10), object(2)

memory usage: 4.3+ MB

check data.plot(y = 'kitchen_area', kind = 'hist', bins = 15, grid=True, range = (20,60), figs:

Все, что больше 40 возьмем за выбросы

data.hist(column = 'kitchen_area', bins = 50, figsize = (15,3), range = (0,6))
plt.ylim(0, 40);

data.query('kitchen_area < 4').count()</pre>

total_images 25 last_price 25

```
total_area
                         25
first_day_exposition
                         25
rooms
                         25
ceiling_height
                         17
floors_total
                         25
living_area
                         25
floor
                         25
                         25
is_apartment
                         25
studio
                         25
open_plan
                         25
kitchen_area
                         25
balcony
locality_name
                         25
                         20
airports_nearest
cityCenters_nearest
                         20
                         25
parks_around3000
parks_nearest
                          5
ponds_around3000
                         25
ponds_nearest
                         12
days_exposition
                         23
price_m
                         25
                         25
weekday
                         25
month
year
                         25
                         25
type_floor
dtype: int64
```

Все, что меньше 4 возьмем за выбросы

∨ Цена

```
data['last_price'].describe()
```

```
count
         2.192400e+04
mean
         5.288666e+06
std
         3.143623e+06
min
         4.300000e+05
25%
         3.400000e+06
50%
         4.500000e+06
75%
         6.300000e+06
         2.990000e+07
max
```

Name: last_price, dtype: float64

```
plt.ylim(-3e+04, 1.4e+07)
data.boxplot('last_price')
plt.show()
```


Разброс цен огромен. Не удивительно, ведь расположены они в разных местах. Большая часть квартир стоит 3,5 - 7 млн. руб.

```
data.plot(y = 'last_price', kind = 'hist', bins = 1000, grid=True, range = (0,3.0e+07),
#построим гистограмму
plt.show()
```


По гистограмме видно, что самая частая цена около 4 млн.руб

data = data.loc[(data['last_price'] <=2.0e+07)] #избавляемся от выбросов

```
# check
data.shape[0]
21816
```

Количество комнат

data['rooms'].describe()

count	2183	16.0000	3 0
mean		1.9663	55
std		0.8875	15
min		1.00000	90
25%		1.00000	3 0
50%		2.00000	90
75%		3.00000	90
max		7.00000	3 0
Name:	rooms,	dtype:	float64

data.plot(y = 'rooms', kind = 'hist', bins = 10, grid=True, range = (0,7), figsize = (8,!
plt.show()

По гистограмме видим, что чаще всего продают однокомнатные и двухкомнатные квартиры.

```
plt.ylim(0,10)
data.boxplot('rooms')
plt.show()
```


Семикомнатные попали в выбросы. Но мы их оставим, как интересные для исследования

Высота потолков

data['ceiling_height'].describe()

```
13289.000000
count
             2.695765
mean
             0.240063
std
min
             2.000000
25%
             2.500000
50%
             2.600000
75%
             2.760000
             5.300000
max
```

Name: ceiling_height, dtype: float64

```
data.plot(y = 'ceiling_height', kind = 'hist', bins = 20, grid=True, range = (2,6), figs:
#построим гистограмму
plt.show()
```


plt.ylim(2, 3.5)
data.boxplot('ceiling_height')
plt.show()

Средняя высота потолка 2,6 м. Минимальная высота сейчас 2,2 м., а максимум 5,3 м.. Т.к такие значения имеют место быть в реальности, не будем удалять их из таблицы, как выбросы.

У Этаж

data['floor'].describe()

count	21816.000000
mean	5.899936
std	4.885771
min	1.000000
25%	2.000000

50% 4.000000 75% 8.000000 max 33.000000 Name: floor, dtype: float64

data.plot(y = 'floor', kind = 'hist', bins = 50, grid=True, range = (0,30), figsize = (10
plt.show()

Самые часто встречающиеся значения 1-5. Очень похоже на правду. Стандартное отклонение небольшое, что говорит о небольшом разбросе значений.

Проверим на аномалии значения количества этажей в здании. Нет ли таких строк, где этаж больше количества этажей в здании.

data.query('floor > floors_total').count()

total_images	71
last_price	71
total_area	71
first_day_exposition	71
rooms	71
ceiling_height	7
floors_total	71
living_area	47
floor	71
is_apartment	71
studio	71
open_plan	71
kitchen_area	35
balcony	71
locality_name	71
airports_nearest	65

```
cityCenters_nearest
                         65
parks_around3000
                         71
parks_nearest
                         31
ponds_around3000
                         71
                         43
ponds_nearest
days_exposition
                         63
price_m
                         71
                         71
weekday
                         71
month
                         71
year
type_floor
                         71
dtype: int64
```

```
data.loc[data['floor'] > data['floors_total'], 'floors_total'] = data['floor']
```

Такие строки есть. Поменяем значения общего количества этажей на этаж, приняв его за последний. 72 строки - это меньше 1%.

Тип этажа

```
data['type_floor'].value_counts().plot(kind='pie')
plt.show()
```


Квартир на первом и последнем этажах практически поровну.

Общее количество этажей в доме

data['floors_total'].describe()

count	21816.000000
mean	10.749908
std	6.597222
min	1.000000
25%	5.000000
50%	9.000000

75% 16.000000 max 36.000000

Name: floors_total, dtype: float64

data.plot(y = 'floors_total', kind = 'hist', bins = 50, grid=True, range = (0,30), figsi: #построим гистограмму plt.show()

Чаще всего дома имеют 5 и 9 этажей. Так и есть.

∨ Расстояние до центра города

data['cityCenters_nearest'].describe()

count	16485.000000
mean	14.722414
std	8.511493
min	0.000000
25%	10.000000
50%	13.000000
75%	17.000000
max	66.000000

Name: cityCenters_nearest, dtype: float64

data.plot(y = 'cityCenters_nearest', kind = 'hist', bins = 100, grid=True, range = (0,60
#построим гистограмму
plt.show()

Меньше всего квартир находится в центре города. А некоторые расположены аж в 60 км.

```
plt.ylim(0, 35)
data.boxplot('cityCenters_nearest')
plt.show()
```


Большая часть квартир расположена на расстоянии 11-18 км от центра города. Нижний ус на отметке 2. Значит кто-то живет в центре. Верхний ус на 26 км. Остальное считаем выбросами

∨ Расстояние до аэропорта

```
plt.ylim(0, 100000)
data.boxplot('airports_nearest')
plt.show()
```


В основном расстояние до аэропорта в значениях от 18 до 39 км. Но мы помним, что во многих строках значения просто отсутствовали

data.plot(y = 'airports_nearest', kind = 'hist', bins = 250, grid=True, range = (0,100000
#построим гистограмму
plt.show()

Расстояние до ближайшего парка

```
data.plot(y = 'parks_nearest', kind = 'hist', bins = 200, grid=True, range = (0,3000), f:
#построим гистограмму
plt.show()
```



```
plt.ylim(-200, 3000)
data.boxplot('parks_nearest')
plt.show()
```


data['parks_nearest'].describe()

count	7066.000000
mean	493.430795
std	339.088390
min	1.000000
25%	289.000000
50%	458.000000
75%	616.000000
max	3190.000000

Name: parks_nearest, dtype: float64

В основном в продаже квартиры недалеко от парка, в 300-600 метрах. Но кому-то очень повезет и до парка будет 1 м.

∨ День и месяц публикации

data.plot(y = 'weekday', kind = 'hist', bins = 7, grid=True, range = (0,7), figsize = (10,7), figsize

Чаще всего размещают объявления по четвергам, а реже всего по воскресеньям

data.plot(y = 'month', kind = 'hist', bins = 24, grid=True, range = (1,12), figsize = (1; plt.show()

Самый насыщенный на объявления месяц февраль. В мае размещают объявления реже всего

```
# сheck

# Показатели о кол-ве объявлений в датасете, минимальных и максимальных значениях

# в выбранных параметрах о продаже квартир

(
    data[['rooms', 'total_area', 'ceiling_height', 'days_exposition', 'last_price', 'liv:
        'floor', 'floors_total']]
    .apply (['count', 'min', 'max'])
    .style.format("{:,.2f}")
)
```

```
rooms total_area ceiling_height days_exposition last_price
                                                                       living_area kitchen_area
count 21,816.00 21,816.00 13,289.00
                                        19,009.00
                                                         21,816.00
                                                                       20,097.00
                                                                                  19,897.00
 min 1.00
               20.00
                                                         430.000.00
                                                                                  4.00
                          2.00
                                        3.00
                                                                       10.00
                120 በበ
                                        ററെ ററ
                                                         20 000 000 00 70 00
may 7 00
                          こ つつ
                                                                                  10 OO
```

```
# check
data.hist(column = 'kitchen_area', bins = 50, figsize = (15,3), range = (0,5));
```


Как быстро продавались квартиры

```
data_corr_days = data.query('~days_exposition.isna() and days_exposition >= 1')
# делаем выборку без нулевых значений и пустых строк

data_corr_days.plot(y = 'days_exposition', kind = 'hist', bins = 400, grid=True, range = #построим гистограмму
plt.show()
```


data_corr_days['days_exposition'].describe()

count	19009.000000
mean	163.562944
std	184.226479
min	3.000000
25%	44.000000
50%	91.000000
75%	216.000000
max	999.000000

Name: days_exposition, dtype: float64

```
plt.ylim(-200, 600)
data_corr_days.boxplot('days_exposition')
plt.show()
```


Большая часть объявлений висела на сайте от 50 до 200 дней. Все, что больше 500 возьмем за выбросы. Построим гистограмму без них

#построим гистограмму
data_corr_days.plot(y = 'days_exposition', kind = 'hist', bins = 100, grid=True, range = plt.show()

Чаще всего объявления висят около трех месяцев, но бывает, что квартиры продаются за 1 день или, наоборот, очень долго не продаются, как та, что висела дольше 4 лет.

Изучив сайт Яндекс.Недвижимость, видим, что срок публикации объявления для квартир от 10 млн — 90 дней. Поэтому на графике мы видим скачок. Это не значит, что квартиры проданы. Скорее всего у них просто закнчился срок объявления. Тоже самое происходит и с квартирами до 4,5 млн. — 45 дней, от 4,5 до 10 млн — 60 дней

data.plot(y = 'year', kind = 'hist', bins = 100, grid=True, range = (2012,2022), figsize
plt.show()

Либо продажи росли по годам, либо данные вводили регулярнее. Скорее всего данные в таблице не до конца 2019 г.

Изучим какие факторы больше всего влияют на общую стоимость объекта

Зависимость цены от общей площади

Корреляция положительная. Коэффициент Пирсона в 0.73 говорит о наличии связи, и довольно сильной. Выходит, увеличение площади сопровождается увеличением цены, но так бывает не всегда.

```
data.plot(x = 'last_price', y = 'total_area', kind = 'scatter', alpha = 0.3)
plt.show()
```


Есть основная масса точек с наиболее частыми сочетаниями цены и площади. При этом с увеличением площади увеличивается и цена. Это мы можем увидеть на графике. Но лишь в среднем. Можно найти уникальные примеры квартир с высокой ценой и не очень большой площадью.

Завсисимость цены от жилой площади

```
data['last_price'].corr(data['living_area'])
```

0.5935695614314986

data.pivot_table(index = 'living_area', values = 'last_price').plot()
plt.show()

Очень похоже на общую площадь. Коэффициент Пирсона еще ниже, 0,59. Значит зависимость цены от жилой площади ниже, чем от общей

🗸 Завсисимость цены от площади кухни

data['last_price'].corr(data['kitchen_area'])

0.5464135120612365

data.pivot_table(index = 'kitchen_area', values = 'last_price').plot()
plt.show()

А зависимость цены от площади кухни еще ниже. Хочется посмотреть как зависит жилая площадь и площадь кухни от общей площади

#создадим перемеенную для столбцов общая площадь, жилая площадь и площадь кухни data_corr_area = data.filter(['total_area','kitchen_area','living_area'], axis=1) #корреляция по трем столбцам data_corr_area.corr()

	total_area	kitchen_area	living_area
total_area	1.000000	0.482685	0.909565
kitchen_area	0.482685	1.000000	0.191732
living_area	0.909565	0.191732	1.000000

Видим сильную связь между общей и жилой площадью. А вот связь между общей площадью и кухней низкая. Это значит, что и в больших квартирах часто встречаются маленькие кухни.

∨ Завсисимость цены от количества комнат

```
data['last_price'].corr(data['rooms'])
```

0.43332704396276617

Коэффициент корреляции низкий, значит зависимость цены от количества комнат слабая

∨ Завсисимость цены от этажа, на котором расположена квартира

```
data['last_price'].corr(data['floor'])
```

0.1218105319163859

Корреляция цены и этажа очень слабая, всего 0,12.

```
data_floor = data.groupby('type_floor')['last_price'].mean()
data_floor.plot()
plt.show()
```


data_floor

type_floor другой 5.432199e+06 не найдено 6.294832e+06 первый 4.228888e+06 последний 4.800969e+06 Name: last_price, dtype: float64

Самые дешевые квартиры на первом этаже, далее на последнем, остальные дороже.

Завсисимость цены от даты размещения

#создадим перемеенную для столбцов даты и цены.
#Т.к столбец Дата публикации имеет тип данных datetime и корреляцию по нему сделать нево:
data_corr_date = data.filter(['last_price','weekday','month','year'], axis=1)
#корреляция по четырем столбцам
data_corr_date.corr()

	last_price	weekday	month	year
last_price	1.000000	-0.012034	0.006185	0.000945
weekday	-0.012034	1.000000	0.009439	-0.006376
month	0.006185	0.009439	1.000000	-0.276299
year	0.000945	-0.006376	-0.276299	1.000000

Корреляция цены и даты начинается с сотых значений, значит она очень слабая

data.pivot_table(index = 'weekday', values = 'last_price').plot()
plt.show()

data.pivot_table(index = 'month', values = 'last_price').plot()
plt.show()

Посчитаем среднюю цену за квадратный метр в 10 населенных пунктах с наибольшим числом объявлений

```
top10_price_m = data.pivot_table(index = 'locality_name', values = 'price_m', aggfunc=['count', 'mean']
top10_price_m = top10_price_m.sort_values('count', ascending = False)
top10_price_m.head(10)
```

	count	mean
locality_name		
Санкт-Петербург	14146	108603.074085
Мурино	553	85498.848101
Кудрово	445	95142.062921
поселок Шушары	429	78224.370629
Всеволожск	384	67194.148438
Пушкин	341	101938.712610
Колпино	334	75316.068862
поселок Парголово	321	90374.937695
Гатчина	304	68919.016447
Выборг	229	58243.454148

Выведем минимальное и максимальное значение стоимости квадратного метра.

```
top10_price_m.sort_values(by = 'mean').head(1)
```

count mean
locality_name

деревня Старополье 3 11206.0

top10_price_m.sort_values(by = 'mean', ascending = False).head(1)

count mean
locality_name

поселок Лисий Нос 2 113728.0

Самый дешевый квадратный метр в деревне Старополье 10368 руб. Самый дорогой в Санкт-Петербурге 103796 руб.

top10_price_m = top10_price_m.head(10)
top10_price_m.sort_values(by = 'mean').plot(kind= 'bar', figsize = (10,6))
plt.show()

Изучим зависимость стоимости объектов от расстояния до центра города

data.query('locality_name == "Caнκτ-Πετερбург"').pivot_table(index = 'cityCenters_neares'
plt.show()

По графику видно, как средняя цена за квадратный метр уменьшается с отдалением от центра. Выведем сводную таблицу со средними значениями цен за каждый километр.

Изучим причину выбросов на 27 км.

data.query('cityCenters_nearest < 28 and cityCenters_nearest > 26')

	total_images	last_price	total_area	first_day_exposition	rooms	ceiling_
140	8	16912000	105.70	2016-12-09	2	
439	9	8570000	72.00	2018-08-11	3	
556	0	3500000	28.50	2018-06-06	1	
558	13	4500000	65.50	2017-10-27	3	
748	13	14350000	74.00	2017-11-28	2	
931	8	6650000	69.00	2017-06-20	3	
1138	1	8000000	84.40	2017-08-22	3	
1675	4	3300000	31.00	2017-02-20	1	
1719	12	4200000	38.00	2018-02-12	1	
1904	14	5150000	50.00	2018-11-11	2	
2104	11	3150000	32.00	2018-02-25	1	
2460	15	7500000	78.00	2018-09-19	3	
2776	8	10500000	105.00	2017-12-06	4	
2929	0	5830000	50.00	2017-11-11	2	
2948	23	11350000	75.00	2017-08-15	3	
2953	13	4500000	61.30	2017-10-05	3	
3185	19	4700000	74.20	2017-11-27	4	
3575	7	3680000	42.00	2017-10-31	2	
3579	18	2400000	31.40	2017-09-15	1	
3858	8	5200000	56.00	2019-03-16	2	
3961	11	3500000	31.10	2019-03-13	1	
4400	4	12300000	78.65	2017-09-09	3	
4676	18	3700000	48.10	2018-12-18	2	
4678	11	4300000	59.00	2018-03-14	3	
4822	10	3100000	30.00	2018-09-18	1	
4842	10	3900000	52.40	2019-01-18	2	
4911	14	2999000	36.00	2018-02-12	1	

26.02.2024, 13:29	fd5b7f55-4f26-4509-bd80-2bedae166434.ipynb - Colabora				
5168	7	3650000	33.80	2018-01-21	1
5261	8	3200000	31.60	2016-04-02	1
5961	6	2250000	32.00	2018-02-27	1
5968	1	2800000	31.00	2017-12-26	1
6028	5	3350000	30.00	2016-06-26	1
6079	2	3600000	35.20	2019-01-06	1
6223	9	3730000	57.70	2017-06-02	3
6316	5	3200000	30.00	2017-08-07	1
6676	12	3300000	45.00	2018-07-02	2
6872	9	6000000	56.50	2018-12-12	3
7103	10	3650000	35.20	2018-10-15	1
7128	8	3180000	30.00	2018-12-18	1
7295	14	7950000	50.00	2017-07-06	1
7555	4	4700000	63.00	2018-10-23	3
7793	10	3500000	43.00	2018-10-05	2
7936	20	5650000	48.60	2018-10-03	2
7996	17	16600000	106.00	2017-12-02	4
8213	0	2800000	29.54	2016-09-30	1
8262	11	3900000	44.00	2019-02-14	2
8281	17	2290000	31.70	2017-05-29	1
8285	1	3550000	30.00	2017-11-16	1
8466	20	4800000	60.00	2017-12-08	3
9147	5	3500000	42.00	2018-07-18	2
9241	14	7990000	68.00	2017-10-09	2
9883	0	4800000	60.00	2016-05-26	3
10098	9	7400000	70.00	2016-01-27	3
10117	0	4250000	67.00	2015-07-09	3
10162	11	8000000	56.79	2017-10-01	2
10968	4	2850000	39.00	2016-01-12	1

11002	20	5500000	51.00	2019-03-12	2
11230	8	3080000	32.00	2018-03-08	1
11311	14	5790000	50.60	2016-11-08	2
11352	4	3300000	36.00	2017-06-18	1
12022	7	3500000	30.50	2019-03-18	1
12144	10	6300000	52.80	2018-03-06	2
12179	9	4240000	55.30	2017-09-20	3
12466	11	15000000	89.60	2017-01-31	3
12886	5	2450000	35.00	2017-05-26	1
13375	3	3650000	31.00	2016-07-01	1
13620	9	3500000	32.60	2019-01-28	1
15019	1	2870000	38.80	2018-06-30	1
15379	12	3900000	43.50	2019-01-27	2
15415	11	3800000	43.00	2018-03-29	2
15578	20	16000000	101.90	2018-01-08	2
15696	1	5350000	66.10	2018-06-01	3
15721	17	7500000	70.00	2019-01-22	2
15918	9	7600000	63.00	2017-08-03	1
15939	6	3850000	44.20	2018-08-31	2
16097	12	4800000	75.00	2016-05-26	4
16233	10	7700000	63.60	2014-12-10	3
16303	0	4350000	58.00	2017-09-10	3