# Obsah

| Úvodní slovo                                                                    | 5  |
|---------------------------------------------------------------------------------|----|
| Průběh studia                                                                   | 5  |
| Průběžná kontrola studia                                                        | 6  |
| Zápis do ročníku a zápis předmětů                                               | 8  |
| Zkoušky a zápočty                                                               | 8  |
| Státní závěrečná zkouška                                                        | 9  |
| Výuka jazyků                                                                    | 9  |
| Tělesná výchova                                                                 | 10 |
| Péče o studenty se speciálními potřebami                                        | 10 |
| Několik rad závěrem                                                             | 11 |
| Podrobný harmonogram akademického roku 2023/2024                                | 13 |
| Přehled bakalářských studijních programů na MFF UK                              | 17 |
| Garanti studijních programů                                                     | 18 |
| Přehled navazujících magisterských studijních programů na MFF UK                | 19 |
| Garanti studijních programů                                                     | 20 |
| Studijní plány oblasti vzdělávání MATEMATIKA                                    |    |
| Bakalářské studium od akad. roku 2019/20                                        | 23 |
| 1. Základní informace                                                           | 23 |
| Studijní programy bakalářského studia                                           | 23 |
| Všeobecné zásady studia                                                         | 24 |
| 2. Studijní plány jednotlivých programů                                         | 26 |
| 2.1 Obecná matematika                                                           |    |
| Studijní plán N                                                                 | 27 |
| Studijní plán S                                                                 | 40 |
| 2.2 Finanční matematika                                                         | 53 |
| 2.3 Matematika pro informační technologie                                       | 58 |
| 2.4 Matematické modelování                                                      |    |
| Navazující magisterské studium od akademického roku 2020/21                     |    |
| 1. Základní informace                                                           | 69 |
| Studijní programy nav. magisterského studia v oblasti vzdělávání                |    |
| Matematika                                                                      |    |
| Všeobecné zásady studia                                                         |    |
| 2. Studijní plány jednotlivých programů                                         |    |
| 2.1 Matematické struktury                                                       |    |
| 2.2 Matematika pro informační technologie                                       | 76 |
| 2.3 Matematická analýza                                                         |    |
| Studijní plán pro studenty s počátkem studia v roce 2022 nebo později $\ \dots$ |    |
| Studijní plán pro studenty s počátkem studia v roce 2020 nebo 2021              |    |
| 2.4 Numerická a výpočtová matematika                                            |    |
| 2.5 Matematické modelování ve fyzice a technice                                 |    |
| 2.6 Pravděpodobnost, matematická statistika a ekonometrie                       |    |
| 2.6.1 Pravděpodobnost, matematická statistika a ekonometrie, plán N             | 96 |

| Společná část studijního plánu                                                | 96    |
|-------------------------------------------------------------------------------|-------|
| Specializace Ekonometrie                                                      | 97    |
| Specializace Matematická statistika                                           | 98    |
| Specializace Pravděpodobnost                                                  | . 100 |
| Státní závěrečná zkouška                                                      | . 102 |
| $2.6.2$ Pravděpodobnost, matematická statistika a ekonometrie, plán P $\dots$ | . 103 |
| 2.7 Finanční a pojistná matematika                                            | . 104 |
| 2.7.1 Finanční a pojistná matematika, plán N                                  | . 105 |
| 2.7.2 Finanční a pojistná matematika, plán P                                  | . 109 |
| Studijní plány oblasti vzdělávání FYZIKA                                      | . 115 |
| Bakalářské studium od akad. roku 2023/24                                      | . 115 |
| 1. Základní informace                                                         | . 115 |
| 2. Studijní plán od akad. roku 2023/24                                        | . 116 |
| Bakalářské studium od akad. roku 2019/20                                      | . 127 |
| 1. Základní informace                                                         | . 127 |
| 2. Studijní plán od akad. roku $2019/20$                                      | . 129 |
| Navazující magisterské studium od akademického roku 2023/24                   | . 141 |
| 1. Základní informace                                                         | . 141 |
| Studijní programy nav. magisterského studia v oblasti vzdělávání Fyzika       | . 141 |
| 2. Studijní plány jednotlivých programů                                       | . 141 |
| 1. Astronomie a astrofyzika                                                   | . 141 |
| 2. Geofyzika a fyzika planet                                                  | . 147 |
| 3. Fyzika atmosféry, meteorologie a klimatologie                              |       |
| 4. Teoretická fyzika                                                          |       |
| 5. Fyzika kondenzovaných soustav a materiálů                                  |       |
| 6. Optika a optoelektronika                                                   |       |
| 7. Fyzika povrchů a plazmatu                                                  |       |
| 8. Biofyzika a chemická fyzika                                                |       |
| Specializace: Experimentální biofyzika a chemická fyzika                      |       |
| Specializace: Teoretická biofyzika a chemická fyzika                          |       |
| 9. Částicová a jaderná fyzika                                                 |       |
| 10. Matematické a počítačové modelování ve fyzice                             |       |
| Studijní plány oblasti vzdělávání INFORMATIKA                                 |       |
| Bakalářské studium od akad. roku 2019/20                                      |       |
| 1. Základní informace                                                         |       |
| 2. Studijní plány jednotlivých specializací                                   |       |
| 1. Obecná informatika                                                         |       |
| 2. Programování a vývoj software                                              |       |
| 3. Systémové programování                                                     |       |
| 4. Webové a datově orientované programování                                   |       |
| 5. Umělá inteligence                                                          |       |
| 6. Počítačová grafika, vidění a vývoj her                                     |       |
| Navazující magisterské studium od akademického roku 2020/21                   |       |
| 1. Základní informace                                                         |       |
| 2. Studijní plány jednotlivých programů                                       |       |
| 1. Informatika - Diskrétní modely a algoritmy                                 |       |
| 2. Informatika - Teoretická informatika                                       | . 253 |

| 3. Informatika - Softwarové a datové inženýrství               | 257 |
|----------------------------------------------------------------|-----|
| 4. Informatika - Softwarové systémy                            | 263 |
| 5. Informatika - Jazykové technologie a počítačová lingvistika | 267 |
| 6. Informatika - Umělá inteligence                             | 271 |
| 7. Informatika – Vizuální výpočty a vývoj počítačových her     | 277 |
| Studijní plány oblasti vzdělávání UČITELSTVÍ                   | 287 |
| Bakalářské studium od akad. roku 2019/20                       |     |
| 1. Základní informace                                          |     |
| 2. Studijní plány jednotlivých studijních programů             | 288 |
| 1. Fyzika se zaměřením na vzdělávání                           | 288 |
| 2. Matematika se zaměřením na vzdělávání                       | 294 |
| Český jazyk a literatura se zaměřením na vzdělávání            | 302 |
| Anglický jazyk a literatura se zaměřením na vzdělávání         |     |
| Německý jazyk a literatura se zaměřením na vzdělávání          | 304 |
| Francouzský jazyk a literatura se zaměřením na vzdělávání      | 305 |
| 3. Deskriptivní geometrie se zaměřením na vzdělávání           | 307 |
| 4. Informatika se zaměřením na vzdělávání                      | 312 |
| Navazující magisterské studium od akademického roku 2020/21    | 323 |
| 1. Základní informace                                          | 323 |
| 2. Studijní plány jednotlivých studijních programů             | 327 |
| 1. Učitelství fyziky pro střední školy                         | 327 |
| 2. Učitelství matematiky pro střední školy                     | 332 |
| Učitelství českého jazyka a literatury pro střední školy       | 337 |
| Učitelství německého jazyka a literatury pro střední školy     | 337 |
| Učitelství francouzského jazyka a literatury pro střední školy | 338 |
| 3. Učitelství deskriptivní geometrie pro střední školy         | 339 |
| 4. Učitelství informatiky pro střední školy                    | 342 |

# Úvodní slovo

Vážené studentky a vážení studenti,

tato publikace, nazývaná též Oranžová Karolinka, slouží jako aktuální a důkladný průvodce bakalářskými a na ně navazujícími magisterskými studijními programy, které nabízí Matematicko-fyzikální fakulta Univerzity Karlovy. Publikace je každoročně aktualizovaná a obsahuje podrobné informace o studijních plánech těchto studijních programů. Další, detailnější, informace o jednotlivých předmětech naleznete ve Studijním informačním systému.

Studium každého studenta je řízeno studijními a dalšími předpisy. Z hlediska průběhu studia jsou nejdůležitější dva předpisy, a to **Studijní a zkušební řád UK** a **Pravidla pro organizaci studia na MFF UK**; odkazy na tyto dokumenty najdete na fakultní webové stránce http://www.mff.cuni.cz/fakulta/predpisy/studijni.htm. Na stejném místě jsou i ostatní předpisy důležité pro úspěšný průběh studia, jako např. Stipendijní řád nebo Disciplinární řád pro studenty.

## Průběh studia

Bakalářské studijní programy akreditované na MFF mají standardní dobu studia 3 roky a navazující magisterské studijní programy akreditované na MFF mají standardní dobu studia 2 roky. Standardní doba studia je doba, za kterou je možno studijní program zdárně vystudovat při studiu podle doporučených studijních plánů. Doporučený průběh studia je pro každý program vypracován tak, aby na sebe povinné předměty navazovaly, aby student získal každý rok kredity potřebné pro zápis do dalšího roku studia a aby včas splnil podmínky pro přihlášení ke státní zkoušce. Doporučený průběh studia je podporován také při tvorbě celofakultního rozvrhu.

Studium je ukončeno státní závěrečnou zkouškou a její úspěšné složení vede k získání titulu bakalář (Bc.) v bakalářských studijních programech a k získání titulu magistr (Mgr.) v magisterských studijních programech. Pokud standardní dobu studia přesáhnete o více než jeden rok, jste povinni hradit fakultě tzv. poplatek za delší studium, jehož výše je určena Přílohou č. 2 Statutu UK Poplatky spojené se studiem. Maximální doba studia v bakalářských studijních programech je 6 let a v magisterských studijních programech 5 let; pokud během této doby nesložíte státní záverečnou zkoušku, bude vám studium ukončeno.

Studium je členěno do tzv. úseků studia, což jsou většinou ročníky (v bakalářských studijních programech v prvním roce studia semestry). Studium ve studijním programu se řídí studijním plánem příslušného studijního programu, případně specializace, pokud studijní program specializace obsahuje. Studijní plán určuje, které předměty jsou povinné (ty je třeba v každém případě před státní závěrečnou zkouškou úspěšně absolvovat), které předměty jsou povinně volitelné (těch je třeba úspěšně absolvovat tolik, abyste získali předepsaný počet kreditů), které jsou volitelné, jaké jsou mezi předměty

časové návaznosti, a dále požadavky ke státní zkoušce. Na konci každého úseku studia probíhá tzv. průběžná kontrola studia, při které se ověřuje, zda výsledky vašeho dosavadního studia umožňují zápis do dalšího úseku studia. Pokud jste letos nastoupili ke studiu v nějakém bakalářském studijním programu, první průběžná kontrola vás čeká již po konci zkouškového období po prvním semestru (viz Podrobný harmonogram ak. roku).

Výuka předmětů probíhá v českém nebo anglickém jazyce. Povinné předměty jsou vyučovány každý rok, povinně volitelné předměty alespoň jednou za dva roky.

Pokud během svého bakalářského studia absolvujete nad rámec svých povinností některý z povinných nebo povinně volitelných předmětů magisterského studia, můžete později v magisterském studiu požádat děkana o uznání kreditů za splnění této povinnosti. Přesné podmínky pro uznávání těchto kreditů se řídí čl. 12 Pravidel pro organizaci studia na MFF UK účinných od 1.10.2017.

Díky programu **Erasmus**+ a některým dalším meziuniverzitním dohodám máte možnost jeden či dva semestry studia absolvovat na některé zahraniční univerzitě; podrobné informace najdete na stránce http://www.mff.cuni.cz/studium/zahranici/.

#### Průběžná kontrola studia

Průběžnou kontrolou studia se rozumí kontrola celkového počtu kreditů získaných za vaše dosavadní studium; tato kontrola se koná na konci každého úseku studia. Započítávají se do ní vždy pouze kredity získané do konce předchozího zkouškového období. To je podstatné hlavně po prvním úseku bakalářského studia, kdy se kredity získané po konci zimního zkouškového období již započítají do druhého, nikoli do prvního úseku studia.

Získáte-li v dosavadních úsecích studia celkem nejméně tzv. minimální počet kreditů, máte právo na zápis do dalšího úseku studia. Pokud se vám ale podaří získat tzv. normální počet kreditů (odpovídající obvykle součtu kreditů při studijním plánem doporučeném průběhu studia v dosavadních úsecích studia) a zároveň dosáhnete určitého průměru, splníte tím základní podmínku pro přiznání **stipendia** za vynikající studijní výsledky; podrobnosti jsou popsány v Pravidlech pro přiznávání stipendií na MFF UK. Nezískáte-li alespoň minimální počet kreditů, posuzuje se tato skutečnost jako nesplnění požadavků vyplývajících ze studijního programu, což vede k ukončení studia. Normální a minimální počty kreditů nutné pro zápis do dalšího úseku studia jsou stanoveny takto (bez závorky jsou uvedeny normální počty kreditů a v závorce minimální počty kreditů):

#### Normální a minimální počty kreditů

Bakalářské studijní programy

- a) 30 (12) kreditů pro zápis do druhého úseku studia (tj. letního semestru 1. ročníku),
- b) 60 (45) kreditů pro zápis do třetího úseku studia (tj. 2. ročníku),
- c) 120 (90) kreditů pro zápis do čtvrtého úseku studia (tj. 3. ročníku),
- d) 180 (135) kreditů pro zápis do pátého úseku studia (tj. 4. ročníku),
- e) 240 (180) kreditů pro zápis do šestého úseku studia (tj. 5. ročníku),
- f) 300 (225) kreditů pro zápis do sedmého úseku studia (tj. 6. ročníku).

Magisterské studijní programy - pro všechny studenty

a) 60 (45) kreditů pro zápis do druhého úseku studia (tj. 2. ročníku),

- b) 120 (90) kreditů pro zápis do třetího úseku studia (tj. 3. ročníku),
- c) 180 (120) kreditů pro zápis do čtvrtého úseku studia (tj. 4. ročníku),
- d) 240 (165) kreditů pro zápis do pátého úseku studia (tj. 5. ročníku).

Pro účely průběžné kontroly studia se započítávají všechny kredity za absolvované povinné a povinně volitelné předměty; za absolvované volitelné předměty se započítávají kredity až do následujícího rozsahu (v závorce je uveden procentuální podíl tohoto počtu kreditů vzhledem k normálnímu počtu kreditů příslušnému dané průběžné kontrole studia):

#### Maximální počty kreditů za volitelné předměty v oblastech vzdělávání Matematika, Fyzika a Informatika

Bakalářské studijní programy

- a) 4 kredity (15 %) pro zápis do druhého úseku studia,
- b) 9 kreditů (15 %) pro zápis do třetího úseku studia,
- c) 18 kreditů (15 %) pro zápis do čtvrtého úseku studia,
- d) 54 kreditů (30 %) pro zápis do pátého úseku studia,
- e) 72 kreditů (30 %) pro zápis do šestého úseku studia,
- f) 90 kreditů (30 %) pro zápis do sedmého úseku studia.

#### Magisterské studijní programy

- a) 18 kreditů (30 %) pro zápis do druhého úseku studia,
- b) 60 kreditů (50 %) pro zápis do třetího úseku studia,
- c) 126 kreditů (70 %) pro zápis do čtvrtého úseku studia,
- d) 167 kreditů (70 %) pro zápis do pátého úseku studia.

# Maximální počty kreditů za volitelné předměty v oblasti vzdělávání Učitelství

Bakalářské studijní programy - pro studenty zapsané od ak. roku 2019/2020 a později

- a) 3 kredity (10 %) pro zápis do druhého úseku studia,
- b) 6 kreditů (10 %) pro zápis do třetího úseku studia,
- c) 12 kreditů (10 %) pro zápis do čtvrtého úseku studia,
- d) 45 kreditů (25 %) pro zápis do pátého úseku studia,
- e) 60 kreditů (25 %) pro zápis do šestého úseku studia,
- f) 75 kreditů (25 %) pro zápis do sedmého úseku studia.

# Magisterské studijní programy - pro studenty zapsané od ak. roku 2019/2020 a později

- a) 6 kreditů (10 %) pro zápis do druhého úseku studia,
- b) 24 kreditů (20 %) pro zápis do třetího úseku studia,
- c) 81 kreditů (45 %) pro zápis do čtvrtého úseku studia,
- d) 108 kreditů (45 %) pro zápis do pátého úseku studia.

## Zápis do ročníku a zápis předmětů

Nárok na zápis do prvního úseku studia jste získali rozhodnutím děkana o přijetí na fakultu. Splníte-li požadavky průběžné kontroly studia, máte nárok na zápis do dalšího úseku studia. Zápis do úseku studia je potvrzením toho, že v daném úseku studia na fakultě studujete.

Každý rok studia je tvořen zimním a letním semestrem. Na jejich začátku máte během několika týdnů čas (viz Podrobný harmonogram akademického roku) vybrat si, které předměty chcete v daném semestru absolvovat, a tyto předměty si pak zapsat. Zápis předmětů probíhá elektronicky prostřednictvím Studijního informačního systému. Období pro zápis předmětů je rozděleno do dvou fází: ve fázi tzv. přednostního zápisu (Pozor, toto období končí týden před začátkem každého semestru!) si můžete zapisovat pouze ty předměty, které jsou pro vás primárně určené (stanovením programu, kroužku v prvním ročníku), případně i ty, na něž zápis není takto omezen; ve fázi tzv. volného zápisu si můžete zapsat i libovolné další předměty (až do naplnění kapacity předmětu). Volba předmětů je ponechána na vás, ale je třeba zohledňovat požadavky vašeho studijního plánu i počty kreditů požadované při průběžné kontrole studia na konci každého úseku studia. U všech zapisovaných předmětů je povinný zápis do rozvrhu. Další podrobnosti o termínech zápisu předmětů i zápisu do rozvrhu najdete na stránce http://www.mff.cuni.cz/studium/bcmgr/os/zapis.htm.

Zápis předmětu může být omezen určitými podmínkami, z nichž nejčastější jsou následující:

**prerekvizita** – pro zápis předmětu X je vyžadováno absolvování jiného předmětu nebo předmětů,

**korekvizita** – pro zápis předmětu X je vyžadován současný zápis jiného předmětu nebo předmětů, nebo jejich absolvování

**neslučitelnost** – zápis předmětu X je vyloučen předchozím absolvováním nebo současným zápisem jiného předmětu

V některých případech je stanoveno, že absolvování jednoho předmětu Y je z hlediska plnění studijního plánu považováno za absolvování jiného předmětu X (tzv. **záměnnost**).

Informace o těchto vztazích mezi předměty jsou popsány ve Studijním informačním systému v modulu Předměty (https://is.cuni.cz/studium/predmety) a v Seznamu předmětů MFF UK (tzv. Bílá Karolinka). Protože tyto vztahy jsou nedílnou součástí studijních plánů, doporučujeme jim věnovat patřičnou pozornost: nesplnění předmětu, který je prerekvizitou jiného, který máte v úmyslu si zapsat, může mít za následek prodloužení studia.

Prerekvizity a korekvizity předmětu se nevztahují na studenty těch studijních programů nebo plánů, ve kterých daný předmět (ani žádný předmět s ním záměnný) není povinný ani povinně volitelný (viz Pravidla pro organizaci studia na MFF UK, čl. 6).

### Zkoušky a zápočty

U většiny předmětů vyučovaných na fakultě potřebujete pro jejich úspěšné absolvování na konci semestru získat zápočet (klasifikace započteno - Z, v případě neúspěchu pak nezapočteno - K) nebo složit zkoušku (klasifikace výborně, velmi dobře,

dobře, neprospěl/a) nebo obojí; u některých předmětů je formou kontroly studia předmětu klasifikovaný zápočet. Zkouška může obsahovat písemnou i ústní část. O úspěšné složení zkoušky se můžete pokusit nejvýše třikrát. Je-li pro absolvování předmětu předepsán zápočet i zkouška, není získání zápočtu podmínkou pro konání zkoušky z daného předmětu, pokud garant předmětu nestanoví na začátku semestru v SIS jinak. Je-li zápočet klasifikován K, není již možné v daném úseku studia předmět úspěšně absolvovat. Podmínky pro získání zápočtu oznamuje vyučující po schválení garantem předmětu na začátku semestru (viz Pravidla pro organizaci studia na MFF UK, čl. 8). Pokud se Vám některý zapsaný předmět nepodaří v daném semestru úspěšně absolvovat, máte možnost si ho zapsat v některém dalším úseku studia znovu, ale během celého studia celkem nejvýše dvakrát.

#### Státní závěrečná zkouška

Státní závěrečná zkouška se skládá z několika částí (podle odpovídajícího studijního plánu), z nichž jednou je v bakalářských studijních programech vždy obhajoba bakalářské práce a v magisterských studijních programech obhajoba diplomové práce. S výjimkou učitelských studijních programů je předpokladem pro přihlášení se k první části státní zkoušky absolvování povinných a povinně volitelných předmětů v rozsahu stanoveném studijním plánem a dále v případě bakalářského studia získání alespoň 174 kreditů a v případě magisterského studia získání alespoň 105 kreditů; předpoklady pro konání jednotlivých částí státní závěrečné zkoušky v učitelských programech jsou podrobně rozepsány v kapitole Studijní plány učitelského studia. Požadované znalosti ke státní zkoušce a přesné podmínky pro přihlášení se ke státní zkoušce nebo její části jsou součástí studijních plánů a jsou podrobně popsány u jednotlivých studijních programů.

Další informace o zadání, vypracování, odevzdání a obhajobě bakalářské (diplomové) práce najdete v Průvodci po bakalářské (diplomové) práci na stránkách http://www.mff.cuni.cz/studium/bcmgr/prace/bp\_pruvodce.htm (http://www.mff.cuni.cz/studium/bcmgr/prace/dp\_pruvodce.htm).

## Výuka jazyků

Výuku jazyků na fakultě zajišťuje Katedra jazykové přípravy (KJP). Ve všech bakalářských studijních programech poskytuje výuku angličtiny na různých úrovních jako přípravu na povinnou zkoušku z anglického jazyka.

Po složení povinné zkoušky se studentům doporučuje dále pokračovat ve specializovaných kurzech odborné angličtiny (Angličtina pro matematiky, Angličtina pro fyziky, Angličtina pro informatiky, Obchodní angličtina, Akademická angličtina) a v přípravných kurzech na mezinárodní zkoušky (First Certificate in English, Certificate in Advanced English, Certificate of Proficiency in English).

KJP, jako člen mezinárodní organizace CERCLES (Confédération Européenne des Centres de Langues de l'Enseignement Supérieur) a akreditované testovací centrum Unicert(Unicert®Language Accreditation Unit for Universities in Central Europe), umožňuje svým studentům skládat mezinárodní univerzitní zkoušku z odborného anglického jazyka English for Mathematicians, UNIcert®III na úrovni C1 dle mezinárodní klasifikace úrovní jazykových zkoušek. Studenti mohou navštěvovat další jazykové kurzy (francouzština, němčina, španělština, ruština a čeština pro

cizince) na různých stupních pokročilosti. Podrobnosti najdete na webové stránce http://www.mff.cuni.cz/fakulta/kjp/.

## Tělesná výchova

Výuku tělesné výchovy zajišťuje Katedra tělesné výchovy (KTV). Student v bakalářském studijním programu musí povinně získat 4 kredity z tělesné výchovy, z toho alespoň 3 kredity za absolvování pravidelné semestrální výuky. Čtvrtý kredit lze získat formou absolvování dalšího semestru, nebo účastí na letním nebo zimním výcvikovém kurzu.

Kromě těchto aktivit nabízí KTV zájmovou tělesnou výchovu, která je určena zejména pro studenty se splněnými studijními povinnostmi z TV, buď ve formě pravidelné semestrální výuky nebo letních a zimních výcvikových kurzů.

V nabídce KTV najdete mimo jiné plavání, volejbal, fotbal, basketbal, florbal, softbal, tenis, stolní tenis, badminton. Další podrobnosti najdete na webové stránce http://ktv.mff.cuni.cz/.

## Péče o studenty se speciálními potřebami

Prvním předpokladem toho, aby se fakulta mohla postarat o studenty se speciálními potřebami, je to, že o nich musí vědět. Typicky se to dozví již prostřednictvím přihlášek uchazečů ke studiu. Uchazeči mohou vyznačit již při podání přihlášky, zda mají nějaké znevýhodnění a zda potřebují modifikaci přijímacího řízení (např. prodloužený čas, technická úprava zadání).

Jsou-li studenti přijati, jsou informováni o možnosti podpůrných služeb, a v případě, že je potřebují, jsou studijním oddělením odkázáni na kontaktní osobu, která je bude jejich studiem provázet. Kontaktní osoba s každým studentem vždy dělá osobní pohovor, aby zjistila vše potřebné, a domluví se na dalším postupu, frekvenci dalších konzultací apod. Student je poslán na funkční diagnostiku a následně s hotovou diagnostikou na studijní oddělení, kde se registruje jako student se speciálními potřebami. Kontaktní osoba pak pomáhá studentovi zajistit služby a modifikace, které z funkční diagnostiky vyplynou.

Pokud by se nutnost speciálního přístupu objevila až v průběhu studia, může student kdykoliv kontaktovat buď svou příslušnou referentku studijního oddělení, nebo přímo kancelář kontaktní osoby, která je v současnosti personálně obsazená kontaktní osobou Mgr. Veronikou Jonákovou.

## Několik rad závěrem

Na tomto místě bych rád využil rady, které do předešlých vydání této publikace napsal můj předchůdce ve funkci, doc. Kolman. Dávají totiž podle mého názoru nejlepší návod na překonání potíží, které vás zejména při studiu v prvním ročníku bakalářských programů mohou potkat. Proto je doporučuji zejména těm z vás, kteří se studiem na naší fakultě letos začínáte.

Ptejte se. Nikdo učený z nebe nespadl. Nebojte se zeptat, když něčemu nerozumíte. Ptejte se přednášejícího na přednášce nebo po ní, cvičícího na cvičení nebo po něm, spolužáků, kteří (dělají, že) tomu rozumějí. Domluvte si konzultaci s vyučujícím a ptejte se tam. Máte-li otázky týkající se skladby předmětů ve vašem studijním programu, ptejte se garanta vašeho programu. Máte-li obecné otázky týkající se studia, ptejte se na Studijním oddělení.

**Pište si.** Většinou se toho více naučíte, když si budete nejen číst a poslouchat, ale také psát. K řadě přednášek jsou dnes k dispozici výborné psané materiály, přesto pro řadu z vás bude užitečné dělat si při přednášce vlastní poznámky. Především si ale pište a počítejte při učení na zkoušky. Myslíte si, že už rozumíte důkazu? Celý si ho pěkně z hlavy napište, s potřebnými detaily. A chcete-li se naučit dobře programovat, programujte.

**Pracujte.** A to i tehdy, když vás k tomu nikdo nenutí. Na rozdíl od střední školy vás během semestru písemka či domácí úkol potká spíše ojediněle, zato na konci semestru vás toho na vyzkoušení bude čekat hromada. Počítejte s tím a nenechte si všechno učení až na zkouškové období, ale pracujte už během semestru. Ze školy si toho více odnesete a zkouškové bude lehčí.

**Plánujte.** Souvisí s předešlým. Na zkoušku se málokdy naučíte za jednu noc. Počítejte s tím a učení si rozvrhněte. Nechte si dost času na přípravu na zkoušky, na zápočtové programy a úkoly, na protokoly a měření. Ať máte čas i na případné opravné termíny. Strategické plánování zkouškových termínů je důležitým krokem k úspěchu. Neodkládejte na další semestr či rok, co byste měli udělat teď. Často už to nedohoníte.

**Přemýšlejte.** Ne vše, co se dočtete na internetu, je dobře. Dokonce ne vše, co uslyšíte na přednášce, je vždy správně (i mistr tesař se někdy utne). Snažte se všemu porozumět. Nespokojte se s odpověďmi na otázky jak, ptejte se proč? Máte-li otázku, snažte se nejdřív najít odpověd sami, než sáhnete po knize či začnete hledat na internetu.

S přáním zdárného akademického roku

doc. RNDr. Vladislav Kuboň, Ph.D. proděkan pro koncepci studia

# Podrobný harmonogram akademického roku 2023/2024

| 27. 8. – 4. 9. 2023                 | Seznamovaci kurz budoucich studentů 1. r. Bc. studia na<br>Albeři (bez zápisů do studia)                                                               |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. 9. 2023                          | Zápis studentů do 1. ročníku Bc. studia, kteří již studovali na MFF                                                                                    |
| 4. 9. 2023                          | Zápis studentů do 1. r. Mgr. studia                                                                                                                    |
| 4. – 26. 9. 2023                    | Elektronický zápis předmětů vyučovaných v ZS (studenti si zapisují předměty výhradně prostřednictvím systému UK SIS) - přednostní - začíná ve 20 hodin |
| $57.\ 9.\ 2023$                     | Zápis studentů do 1. ročníku Bc. studia                                                                                                                |
| $12 13. \ 9. \ 2023$                | Zápis studentů do 1. ročníku Bc. studia                                                                                                                |
| 14. 9. 2023                         | Zápis studentů do 1. r. Mgr. studia                                                                                                                    |
| 22. 9. 2023                         | Zápis studentů do 1. r. Mgr. studia                                                                                                                    |
| 26. 9. – 8. 10. 2023                | Elektronický zápis předmětů vyučovaných v ZS (studenti si zapisují předměty výhradně prostřednictvím systému UK SIS) - volný - začíná ve 20 hodin      |
| 30. 9. 2023                         | Průběžná kontrola studia za ak. r. 2022/2023 a zápis studentů do 2. a vyšších ročníků Bc., Mgr. studia do ak. r. 2023/2024                             |
| 1. 10. 2023                         | Zahájení akademického roku a zimního semestru akademického roku 2023/2024                                                                              |
| 2. 10. 2023                         | Doporučený termín vypsání témat diplomových<br>a bakalářských prací                                                                                    |
| $2.\ 10.\ 2023-12.\ 1.\ 2024$       | Výuka v zimním semestru                                                                                                                                |
| 9. – 20. 10. 2023                   | Studijní oddělení provede kontrolu a potvrzení<br>elektronického zápisu předmětů                                                                       |
| 25. 10. 2023                        | Imatrikulace studentů 1. ročníku Bc. a Mgr. studia                                                                                                     |
| 1. 11. 2023                         | Doporučený termín zadání bakalářských prací                                                                                                            |
| 2. 11. 2023                         | Děkanský sportovní den                                                                                                                                 |
| 9. 11. 2023                         | Promoce - Bc. studium                                                                                                                                  |
| 14. 11. 2023                        | Promoce - Bc. studium                                                                                                                                  |
| 21. 11. 2023                        | Den otevřených dveří                                                                                                                                   |
| 30. 11. 2023                        | Promoce - Mgr. studium (pro absolventy letního a podzimního termínu SZZ)                                                                               |
| $23. \ 12. \ 2023 - 1. \ 1. \ 2024$ | Vánoční prázdniny                                                                                                                                      |
| 3. 1. 2024                          | Zahájení výuky po vánočních prázdninách                                                                                                                |

| 11. 1. 2024          | Odevzdání bakalářských a diplomových prací pro zimní termín státních závěrečných zkoušek - elektronická verze                                                                             |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15. 1. 2024          | práce<br>Odevzdání bakalářských a diplomových prací pro zimní<br>termín státních závěrečných zkoušek - listinná verze práce                                                               |
| 15. 1. – 18. 2. 2024 | Zkouškové období v ZS                                                                                                                                                                     |
| 21. 1. 2024          | Kontrola splnění všech podmínek závěrečných ročníků bakalářského a magisterského studia pro připuštění k zimnímu termínu SZZ                                                              |
|                      | Přihlášení se k zimnímu termínu bakalářských                                                                                                                                              |
|                      | a magisterských státních závěrečných zkoušek                                                                                                                                              |
| 5. – 18. 2. 2024     | Zimní termín bakalářských a magisterských státních závěrečných zkoušek                                                                                                                    |
| 4. – 13. 2. 2024     | Elektronický zápis předmětů vyučovaných v LS (studenti si zapisují předměty výhradně prostřednictvím systému UK SIS) - přednostní - začíná ve 20 hodin                                    |
| 13. 2. – 10. 3. 2024 | Elektronický zápis předmětů vyučovaných v LS (studenti si zapisují předměty výhradně prostřednictvím systému UK SIS) - volný - začíná ve 20 hodin                                         |
| 16. 2. 2024          | Doporučený termín zadání diplomových prací                                                                                                                                                |
| 19. 2. 2024          | Zahájení letního semestru akademického roku 2023/2024                                                                                                                                     |
| 19. 2. – 24. 5. 2024 | Výuka v letním semestru (u předmětů zařazených v doporučeném průběhu Bc. studia do 6. semestru jen do 17. 5. 2024)                                                                        |
| 29. 2. 2024          | Průběžná kontrola studia po 1. úseku studia bakalářského studia a zápis do 2. úseku bakalářského studia                                                                                   |
| $11 22. \ 3. \ 2024$ | Studijní oddělení provede kontrolu a potvrzení                                                                                                                                            |
|                      | elektronického zápisu předmětů                                                                                                                                                            |
| 16. 4. 2024          | Promoce - Mgr. studium (pro absolventy ze zimního termínu SZZ - termín promoce může být změněn, pokud se bude, pro nedostatek absolventů MFF, konat společná promoce s jinou fakultou UK) |
| 2. 5. 2024           | Odevzdání diplomových prací pro letní termín státních<br>závěrečných zkoušek - elektronická verze práce                                                                                   |
| 7. 5. 2024           | Odevzdání diplomových prací pro letní termín státních<br>závěrečných zkoušek - listinná verze práce                                                                                       |
| 9. 5. 2024           | Odevzdání bakalářských prací pro letní termín<br>bakalářských státních závěrečných zkoušek - elektronická<br>verze práce                                                                  |
| 13. 5. 2024          | Odevzdání bakalářských prací pro letní termín<br>bakalářských státních závěrečných zkoušek - listinná verze<br>práce                                                                      |
| 14. 5. 2024          | Rektorský den                                                                                                                                                                             |
| 20. 5. 2024          | Kontrola splnění všech podmínek závěrečných ročníků magisterského studia pro připuštění k letnímu termínu SZZ                                                                             |

| 27. 5. – 30. 6. 2024 | Přihlášení se k letnímu termínu magisterských státních<br>závěrečných zkoušek<br>Zkouškové období v LS                                                                          |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. 6. 2024           | Kontrola splnění všech podmínek závěrečných ročníků bakalářského studia pro připuštění k letnímu termínu SZZ                                                                    |
|                      | Přihlášení se k letnímu termínu bakalářských státních závěrečných zkoušek                                                                                                       |
| 3. – 16. 6. 2024     | Letní termín státních závěrečných zkoušek magisterského studia                                                                                                                  |
| 17. – 30. 6. 2024    | Letní termín státních závěrečných zkoušek bakalářského studia                                                                                                                   |
| 1. 7. – 31. 8. 2024  | Letní prázdniny                                                                                                                                                                 |
| 18. 7. 2024          | Odevzdání bakalářských a diplomových prací pro podzimní termín státních závěrečných zkoušek - elektronická verze práce                                                          |
| 19. 7. 2024          | Kontrola splnění všech podmínek závěrečných ročníků bakalářského a magisterského studia pro připuštění k podzimnímu termínu SZZ Přihlášení se k podzimnímu termínu bakalářských |
|                      | a magisterských státních závěrečných zkoušek                                                                                                                                    |
| 22. 7. 2024          | Odevzdání bakalářských a diplomových prací pro podzimní termín státních závěrečných zkoušek - listinná verze práce                                                              |
| $2 15. \ 9. \ 2024$  | Podzimní termín bakalářských státních závěrečných zkoušek                                                                                                                       |
|                      | Podzimní termín magisterských státních závěrečných zkoušek                                                                                                                      |
| $16 22. \ 9. \ 2024$ | Zkouškové období                                                                                                                                                                |
| 30. 9. 2024          | Průběžná kontrola studia za ak. r. 2023/2024 a zápis studentů do 2. a vyšších ročníků Bc., Mgr. studia do ak. r. 2024/2025                                                      |
|                      | Konec akademického roku 2023/2024                                                                                                                                               |

# Přehled bakalářských studijních programů na MFF UK

#### Oblast vzdělávání Matematika

- Obecná matematika
- Finanční matematika
- Matematické modelování
- Matematika pro informační technologie

#### Oblast vzdělávání Fyzika

• Fyzika

#### Oblast vzdělávání Informatika

• Informatika

Tento program má šest specializací:

- Obecná informatika
- Programování a vývoj software
- Sytémové programování
- Webové a datově orientované programování
- Umělá inteligence
- Počítačová grafika, vidění a vývoj her

#### Oblast vzdělávání Učitelství

- Fyzika se zaměřením na vzdělávání
- Matematika se zaměřením na vzdělávání
- Informatika se zaměřením na vzdělávání
- Deskriptivní geometrie se zaměřením na vzdělávání

Studijní program Matematika se zaměřením na vzdělávání je možno studovat v kombinaci také s některými studijními programy Filozofické fakulty, Přírodovědecké fakulty a Fakulty tělesné výchovy a sportu.

#### Studijní program Bioinformatika

Uskutečňován spolu s Přírodovědeckou fakultou UK. Studenti jsou zapsáni na PřF UK.

## Garanti studijních programů

Obecná matematika:

Finanční matematika:

Matematika pro informační technologie:

Matematické modelování:

Fyzika:

Informatika:

Fyzika se zaměřením na vzdělávání:

Matematika se zaměřením na vzdělávání:

Deskr. geometrie se zaměř. na vzdělávání:

Informatika se zaměřením na vzdělávání:

doc. Mgr. Štěpán Holub, Ph.D.

doc. RNDr. Ing. Miloš Kopa, Ph.D.

doc. RNDr. David Stanovský, Ph.D.

prof. RNDr. Josef Málek, CSc., DSc.

doc. RNDr. Helena Valentová, Ph.D.

prof. RNDr. Ondřej Čepek, Ph.D.

doc. RNDr. Mgr. Vojtěch Žák, Ph.D.

doc. RNDr. Jarmila Robová, CSc.

doc. RNDr. Zbyněk Šír, Ph.D.

doc. RNDr. Pavel Töpfer, CSc.

# Přehled navazujících magisterských studijních programů na MFF UK

#### Oblast vzdělávání Matematika

- Finanční a pojistná matematika
- Matematická analýza
- Matematické modelování ve fyzice a technice
- Matematické struktury
- Matematika pro informační technologie
- Numerická a výpočtová matematika
- Pravděpodobnost, matematická statistika a ekonometrie Tento program má tři specializace:
  - Ekonometrie
  - Matematická statistika
  - Pravděpodobnost

#### Oblast vzdělávání Fyzika

- Astronomie a astrofyzika
- Geofyzika a fyzika planet
- Fyzika atmosféry, meteorologie a klimatologie
- Teoretická fyzika
- Fyzika kondenzovaných soustav a materiálů
- Optika a optoelektronika
- Fyzika povrchů a plazmatu
- Biofyzika a chemická fyzika

Tento program má dvě specializace:

- Experimentální biofyzika a chemická fyzika
- Teoretická biofyzika a chemická fyzika
- Částicová a jaderná fyzika
- Matematické a počítačové modelování ve fyzice

#### Oblast vzdělávání Informatika

- Informatika Diskrétní modely a algoritmy
- Informatika Jazykové technologie a počítačová lingvistika
- Informatika Softwarové a datové inženýrství
- Informatika Softwarové systémy
- Informatika Teoretická informatika
- Informatika Umělá inteligence
- Informatika Vizuální výpočty a vývoj počítačových her

#### Oblast vzdělávání Učitelství

- Učitelství fyziky pro střední školy
- Učitelství matematiky pro střední školy
- Učitelství informatiky pro střední školy
- Učitelství deskriptivní geometrie pro střední školy

Studijní program Učitelství matematiky pro střední školy je možno studovat v kombinaci také s některými studijními programy Filozofické fakulty, Přírodovědecké fakulty a Fakulty tělesné výchovy a sportu.

# Garanti studijních programů

Astronomie a astrofyzika: Biofyzika a chemická fyzika:

Částicová a jaderná fyzika:

Finanční a pojistná matematika:

Fyzika atmosféry, meteorologie

a klimatologie:

Fyzika kondenzovaných soustav

a materiálů:

Fyzika povrchů a plazmatu:

Geofyzika a fyzika planet:

Informatika - Diskrétní modely

a algoritmy:

Informatika - Jazykové technologie

a počítačová lingvistika:

Informatika - Softwarové

a datové inženýrství:

Informatika - Softwarové systémy:

Informatika - Teoretická informatika:

Informatika - Umělá inteligence:

Informatika - Vizuální výpočty

a vývoj počítačových her:

Matematická analýza:

Matematické a počítačové modelování

ve fyzice:

Matematické modelování

ve fyzice a technice:

Matematické struktury:

Matematika pro informační technologie:

Numerická a výpočtová matematika:

Optika a optoelektronika:

Pravděpodobnost, matematická

statistika a ekonometrie:

Teoretická fyzika:

prof. RNDr. David Vokrouhlický, DrSc.

prof. RNDr. Marek Procházka, Ph.D.

prof. RNDr. Pavel Cejnar, Dr., DSc.

doc. RNDr. Martin Branda, Ph.D.

prof. RNDr. Petr Pišoft, Ph.D.

doc. RNDr. Stanislav Daniš, Ph.D.

doc. RNDr. Jan Wild, CSc.

prof. RNDr. Ondřej Čadek, CSc.

doc. RNDr. Martin Klazar, Dr.

doc. Mgr. Barbora Vidová Hladká, Ph.D.

prof. RNDr. Tomáš Skopal, Ph.D.

prof. Ing. Petr Tůma, Dr.

prof. Mgr. Michal Koucký, Ph.D.

prof. RNDr. Roman Barták, Ph.D.

doc. RNDr. Tomáš Dvořák, CSc.

prof. RNDr. Ondřej Kalenda, Ph.D., DSc.

doc. RNDr. Martin Čížek, Ph.D.

prof. RNDr. Josef Málek, CSc., DSc.

doc. RNDr. Jan Šťovíček, Ph.D.

doc. Mgr. Pavel Příhoda, Ph.D.

doc. RNDr. Václav Kučera, Ph.D.

prof. RNDr. Petr Malý, DrSc.

doc. Ing. Marek Omelka, Ph.D.

prof. RNDr. Jiří Podolský, CSc., DSc.

Učitelství deskriptivní geometrie

pro střední školy:

Učitelství fyziky pro střední školy:

Učitelství informatiky pro střední školy:

Učitelství matematiky pro střední školy:

Učitelství matematiky pro střední školy:

doc. RNDr. Zbyněk Šír, Ph.D.

doc. RNDr. Zdeněk Drozd, Ph.D.

doc. RNDr. Cyril Brom, Ph.D..

doc. RNDr. Jarmila Robová, CSc.

# Studijní plány oblasti vzdělávání MATEMATIKA

# Bakalářské studium od akad. roku 2019/20

#### 1. Základní informace

#### Studijní programy bakalářského studia

V oblasti vzdělávání Matematika nabízíme na bakalářském stupni studia čtyři odborné programy.

| Obecná matematika                     | 2.1 |
|---------------------------------------|-----|
| Finanční matematika                   | 2.2 |
| Matematika pro informační technologie | 2.3 |
| Matematické modelování                | 2.4 |

V rámci oblasti vzdělávání jsou akreditovány také programy určené pro studenty, kteří po absolvování bakalářského studia chtějí pokračovat v navazujícím magisterském studiu učitelství matematiky, a to *Matematika se zaměřením na vzdělávání* a *Deskriptivní geometrie se zaměřením na vzdělávání*. Studijní plány učitelských programů jsou uvedeny ve zvláštní části této publikace.

Program *Obecná matematika* poskytuje širší teoretický základ a je výbornou průpravou pro navazující magisterské studium.

Program Finanční matematika je určen zejména pro studenty, kteří chtějí pokračovat v navazujícím magisterském studiu v programu Finanční a pojistná matematika, nebo kteří plánují po ukončení přechod do praxe. Tomu odpovídají dvě zaměření, ze kterých si student vybírá předměty ve třetím ročníku. Studenti získají matematický základ doplněný o speciální znalosti financí a pojišťovnictví.

Program *Matematika pro informační technologie* nabízí poměrně široký teoretický základ, který je doplněn několika klíčovými předměty tak, aby vedle studia stejnojmenného navazujícího magisterského programu byl možný i přímý přechod do praxe.

Program *Matematické modelování* nabízí studium na pomezí matematiky a fyziky. Studenti získají základní teoretické znalosti o matematických analytických a numerických metodách potřebných pro matematické modelování přírodních jevů. Absolventi mohou pokračovat ve studiu v navazujícím magisterském programu, možný je i přímý přechod do praxe.

#### Všeobecné zásady studia

#### Základní informace

Celkem je požadováno získání minimálně 180 kreditů za celé tříleté studium. Pro úspěšné ukončení studia je nutné absolvovat všechny předměty, které jsou studijním plánem stanoveny jako povinné, nebo předměty s nimi záměnné. Studijní plán může též vyžadovat získání určitého počtu kreditů z jednotlivých skupin povinně volitelných předmětů.

#### Studijní plány

Studijní plán předepisuje povinné předměty programu, požadované počty kreditů z jednotlivých skupin povinně volitelných předmětů, podmínky pro přihlášení ke státní závěrečné zkoušce a požadavky u státní závěrečné zkoušky. Průběh studia není studijními plány pevně určen. Student si zapisuje povinné, povinně volitelné a volitelné předměty tak, aby průběžně splňoval kreditní limity pro zápis do dalšího roku studia a aby splnil podmínky pro přihlášení ke státní závěrečné zkoušce.

#### Předmětové rekvizity

Zápis předmětů může být podmíněn splněním určitých podmínek stanovených v předmětových rekvizitách. Některé předměty vyžadují předchozí absolvování (prerekvizita) nebo alespoň zápis (korekvizita) jiných předmětů. Naopak, předchozí zápis jiného předmětu může znemožnit zápis předmětu, o který má student zájem (neslučitelnost). Předchozí absolvování jiného předmětu může být automaticky uznáno jako splnění předmětu, který student potřebuje (záměnnost). Předmětové rekvizity jsou uvedeny v Seznamu předmětů MFF UK ("bílé Karolince") a předmětovém modulu Studijního informačního systému.

Doporučujeme všem studentům, aby při zápisu předmětů věnovali předmětovým rekvizitám nejvyšší pozornost. Je zejména vhodné si ověřit, zdali zapsaný předmět není prerekvizitou dalších důležitých předmětů. Nesplnění takového předmětu může mít za následek prodloužení studia.

#### Doporučený průběh studia

V následujících částech jsou uvedeny studijní plány pro jednotlivé programy a doporučené průběhy studia, které rozepisují povinné předměty a některé povinně volitelné předměty do jednotlivých ročníků a uvádějí další podrobnosti studijních plánů. Povinné předměty jsou v tabulkách uvedeny **tučně**, povinně volitelné předměty obyčejným písmem a volitelné předměty *kurzívou*. V této kapitole jsou rovněž specifikovány podmínky pro přihlášení ke státní závěrečné zkoušce a požadavky k ústní části SZZ.

Doporučený průběh studia není závazný, je však vhodné jej co nejvíce dodržovat, protože je sestaven s ohledem na rekvizity, návaznosti předmětů, tvorbu rozvrhu a na podmínky pro přihlášení ke státní závěrečné zkoušce.

#### Ukončení studia

Bakalářské studium je ukončeno státní závěrečnou zkouškou.

Na odborném studiu má státní závěrečná zkouška dvě části: obhajobu bakalářské práce a ústní zkoušku. Známkou je hodnocena jak každá část státní závěrečné zkoušky zvlášť, tak celá zkouška dohromady. Při neúspěchu opakuje student ty části státní závěrečné zkoušky, ve kterých dosud neuspěl. Každou část SZZ lze opakovat nejvýše dvakrát.

Požadavky k ústní části státní závěrečné zkoušky jsou uvedeny u studijních plánů jednotlivých programů.

Bakalářská práce je zadávána zpravidla na počátku 3. ročníku. Doporučujeme vybírat si téma především z nabídky pracoviště garantujícího zvolený studijní program; v případě zájmu o téma z nabídky jiného pracoviště nebo o téma vlastní důrazně doporučujeme konzultovat vhodnost tématu s garantem studijního programu.

Termíny pro zadání bakalářské práce, odevzdání bakalářské práce a podání přihlášky ke státní závěrečné zkoušce určuje harmonogram školního roku.

#### **Projekt**

Od druhého roku studia může student požádat děkana o zadání projektu. Jeho ohodnocení (max. 9 kreditů) stanoví děkan na základě doporučení zadávajícího učitele a garanta studijního programu.

#### Převádění kreditů

Převádění kreditů za předměty absolvované v bakalářském studiu do magisterského studia upravuje čl. 12 Pravidel pro organizaci studia na Matematicko-fyzikální fakultě.

#### Tělesná výchova a angličtina

Studijní plány všech matematických programů vyžadují absolvování čtyř semestrů tělesné výchovy a složení zkoušky z anglického jazyka.

Výuka tělesné výchovy je v doporučeném průběhu studia rozmístěna do prvních čtyř semestrů, je však možné ji plnit kdykoli v průběhu bakalářského studia. Vyžaduje se absolvování těchto předmětů:

| Kód     | Název                              | Kredity | ZS                | LS                |
|---------|------------------------------------|---------|-------------------|-------------------|
|         | Tělesná výchova I <sup>1</sup>     | 1       | 0/2 Z             |                   |
| NTVY015 | Tělesná výchova II <sup>1</sup>    | 1       |                   | $0/2 \mathrm{~Z}$ |
| NTVY016 | i Tělesná výchova III <sup>1</sup> | 1       | $0/2 \mathrm{~Z}$ |                   |
| NTVY017 | ′ Tělesná výchova IV <sup>1</sup>  | 1       |                   | $0/2 \mathrm{~Z}$ |
| NTVY018 | Letní výcvikový kurz <sup>2</sup>  | 1       | _                 | $0/0 \mathrm{Z}$  |
| NTVY019 | Zimní výcvikový kurz <sup>2</sup>  | 1       | $0/0 \mathrm{~Z}$ | <u>-</u>          |

 $<sup>^1</sup>$  Pro splnění je nezbytné splnit nejméně tři z předmětů NTVY014, NTVY015, NTVY016 a NTVY017 a nejvýše jeden z nich lze nahradit absolvováním letního výcvikového kursu NTVY018 nebo zimního výcvikového kursu NTVY019.

Zkouška z angličtiny vyžaduje zápis povinného předmětu

| Kód     | Název                                    | Kredity | ZS                 | LS     |
|---------|------------------------------------------|---------|--------------------|--------|
| NJAZ091 | Anglický jazyk — zkouška pro<br>bakaláře | 1       | $0/0 \mathrm{~Zk}$ | 0/0 Zk |

Tento předmět lze zapsat jak v zimním tak v letním semestru. Zkouška z anglického jazyka je v doporučených studijních plánech umístěna do letního semestru 2. ročníku, je však možné ji splnit kdykoli v průběhu bakalářského studia.

Před zápisem zkoušky z angličtiny doporučujeme absolvovat čtyřsemestrální kurs anglického jazyka, a to nejlépe během prvních čtyř semestrů studia. Pro mírně pokročilé jsou určeny předměty:

<sup>&</sup>lt;sup>2</sup> Tyto kursy může student absolvovat kdykoli v průběhu bakalářského studia.

 $<sup>^{1,2}</sup>$ Z důvodu zaměnitelnosti libovolného z předmětů jedním ze dvou kurzů, se evidenčně jedná o dvě skupiny povinně volitelných předmětů.

| Kód     | Název                                                                            | Kredity | ZS                | LS               |
|---------|----------------------------------------------------------------------------------|---------|-------------------|------------------|
|         | Anglický jazyk pro mírně pokročilé I<br>Anglický jazyk pro mírně<br>pokročilé II | 1<br>1  | 0/4 Z<br>—        |                  |
| NJAZ075 | Anglický jazyk pro mírně<br>pokročilé III                                        | 1       | $0/4 \mathrm{~Z}$ | _                |
| NJAZ089 | Anglický jazyk pro mírně<br>pokročilé IV                                         | 1       | _                 | $0/4~\mathrm{Z}$ |

Středně pokročilým a pokročilým stačí zapsat předměty s poloviční hodinovou dotací:

| Kód     | Název                                       | Kredity | ZS                | LS                |
|---------|---------------------------------------------|---------|-------------------|-------------------|
| NJAZ070 | Anglický jazyk pro středně<br>pokročilé I   | 1       | $0/2 \mathrm{~Z}$ | _                 |
| NJAZ072 | Anglický jazyk pro středně<br>pokročilé II  | 1       |                   | $0/2 \mathrm{~Z}$ |
| NJAZ074 | Anglický jazyk pro středně<br>pokročilé III | 1       | $0/2 \mathrm{~Z}$ |                   |
| NJAZ090 | Anglický jazyk pro středně<br>pokročilé IV  | 1       | _                 | 0/2 Z             |
| nebo    |                                             |         |                   |                   |
| Kód     | Název                                       | Kredity | ZS                | LS                |
| NJAZ170 | Anglický jazyk pro pokročilé I              | 1       | $0/2 \mathrm{~Z}$ | _                 |
| NJAZ172 | Anglický jazyk pro pokročilé II             | 1       | <u> </u>          | $0/2 \mathrm{~Z}$ |
| NJAZ174 | Anglický jazyk pro pokročilé III            | 1       | $0/2 \mathrm{~Z}$ |                   |
| NJAZ176 | Anglický jazyk pro pokročilé IV             | 1       |                   | $0/2 \mathrm{~Z}$ |

Po absolvování kurzů připravujících k povinné zkoušce z angličtiny doporučujeme studentům, aby navštěvovali semináře z odborné angličtiny:

| Kód | Název                                                               | Kredity | ZS         | LS |
|-----|---------------------------------------------------------------------|---------|------------|----|
|     | Anglický jazyk pro matematiky I<br>Anglický jazyk pro matematiky II | 3<br>3  | 0/2 Z<br>— |    |

## 2. Studijní plány jednotlivých programů

#### 2.1 Obecná matematika

Garantující pracoviště: Matematická sekce

Garant programu: doc. Mgr. Štěpán Holub, Ph.D.

Program Obecná matematika má dva studijní plány.

- Studijní plán N je určen pro studenty, kteří zahájili studium v roce 2023
- Studijní plán S je určen pro studenty, kteří zahájili studium nejpozději v roce 2022

#### Studijní plán N

Doporučený průběh studia pro první dva ročníky obsahuje téměř výhradně povinné předměty, je společný pro celý program a poskytuje všeobecný matematický základ. Před zápisem do 3. ročníku by si měl student zvolit zaměření, kterému se bude chtít dále věnovat a podle něj si vybrat jeden ze čtyř doporučených průběhů studia pro 3. ročník. Pro hladké navázání studia zvoleného zaměření je potřeba dodržet doporučený průběh prvních dvou ročníků.

Doplňující informace o programu Obecná matematika je možné nalézt na https://www.mff.cuni.cz/cs/math/pro-studenty/bc-prog/bc-om-garant/momp.

#### Doporučený průběh studia

#### 1. rok studia

| Kód     | Název                             | Kredity | ZS                | LS                |
|---------|-----------------------------------|---------|-------------------|-------------------|
| NMMA10  | 1 Matematická analýza 1           | 10      | 4/4 Z+Zk          | _                 |
| NMAG11  | l Lineární algebra 1              | 10      | 4/2 Z+Zk          |                   |
| NMIN111 | Programování 1                    | 3       | $0/2 \mathrm{~Z}$ |                   |
| NMIN105 | Diskrétní matematika              | 5       | 2/2 Z+Zk          |                   |
| NTVY014 | 4 Tělesná výchova I <sup>1</sup>  | 1       | $0/2 \mathrm{~Z}$ |                   |
|         | Anglický jazyk                    | 1       | $0/2 \mathrm{~Z}$ |                   |
| NMMA10  | 2Matematická analýza 2            | 10      | <u> </u>          | 4/4 Z+Zk          |
| NMAG11  | 2 Lineární algebra 2              | 10      |                   | 4/2 Z+Zk          |
| NMIN112 | Programování 2                    | 8       |                   | 2/4 Z+Zk          |
| NTVY015 | ó Tělesná výchova II <sup>1</sup> | 1       |                   | $0/2 \mathrm{~Z}$ |
|         | Anglický jazyk                    | 1       |                   | 0/2 Z             |

 $<sup>^{1}</sup>$  Viz podrobnosti v obecném úvodu.

#### Doporučené volitelné předměty

Studentům, kteří si na začátku studia chtějí procvičit a zdokonalit základní matematické dovednosti potřebné ke studiu, doporučujeme předměty NMTM161 a NMTM162.

| Kód     | Název                              | Kredity | ZS                | LS                |
|---------|------------------------------------|---------|-------------------|-------------------|
| NMTM16  | 1 Matematický proseminář I         | 2       | 0/2 Z             |                   |
| NMMA16  | 1 Proseminář z Matematické analýzy | 2       | $0/2 \mathrm{~Z}$ |                   |
| NMMA46  | 5 Řešitelský seminář               | 3       | $0/2 \mathrm{~Z}$ | $0/2 \mathrm{~Z}$ |
| NMTM16  | 2 Matematický proseminář II        | 2       | <u> </u>          | $0/2 \mathrm{~Z}$ |
| NMMA16  | 2 Proseminář z Matematické analýzy | 2       |                   | $0/2 \mathrm{~Z}$ |
| NMSA170 | ) Pravděpodobnostní a statistické  | 2       |                   | $0/2 \mathrm{~Z}$ |
|         | $probl\'emy$                       |         |                   | •                 |
| NMAG16  | 0 Proseminář z teorie čísel        | 2       |                   | $0/2 \mathrm{~Z}$ |
| NMAG16  | 4 Variace na invarianci            | 2       |                   | 0/2 Z             |
| -       |                                    |         |                   |                   |

#### 2. rok studia

| Kód    | Název                      | Kredity | ZS       | LS |
|--------|----------------------------|---------|----------|----|
| NMMA20 | 1 Matematická analýza 3    | 8       | 4/2 Z+Zk |    |
| NMMA20 | 5Teorie míry a integrálu 1 | 5       | 2/2 Z+Zk |    |

| NMNM201 Základy numerické matematiky               | 8 | 4/2 Z+Zk          | _                 |
|----------------------------------------------------|---|-------------------|-------------------|
| NMAG211 Geometrie 1                                | 5 | 2/2 Z+Zk          |                   |
| NTVY016 Tělesná výchova III <sup>1</sup>           | 1 | $0/2 \mathrm{~Z}$ |                   |
| $Anglick \acute{y}~jazyk$                          | 1 | $0/2 \mathrm{~Z}$ |                   |
| NMMA204 <b>Matematická analýza 4</b>               | 5 |                   | 2/2 Z+Zk          |
| NMSA202 Pravděpodobnost                            | 8 |                   | 4/2 Z+Zk          |
| a matematická statistika                           |   |                   |                   |
| NMAG206 Algebra                                    | 8 |                   | 4/2 Z+Zk          |
| NMMA301Úvod do komplexní analýzy *                 | 5 |                   | 2/2 Z+Zk          |
| NTVY017 Tělesná výchova IV <sup>1</sup>            | 1 |                   | $0/2 \mathrm{~Z}$ |
| $Anglick \acute{y}~jazyk$                          | 1 |                   | $0/2 \mathrm{~Z}$ |
| NJAZ091 <b>Anglický jazyk</b> — <b>zkouška pro</b> | 1 |                   | $0/0 \mathrm{Zk}$ |
| bakaláře                                           |   |                   |                   |
| Povinně volitelné a volitelné                      | 3 |                   |                   |
| $p\check{r}edm\check{e}ty$                         |   |                   |                   |

Viz podrobnosti v obecném úvodu.

#### Doporučené volitelné předměty pro 2. ročník

| Kód     | Název                                                                                  | Kredity | ZS                | LS                |
|---------|----------------------------------------------------------------------------------------|---------|-------------------|-------------------|
| NMSA260 | Principy statistického myšlení                                                         | 2       | $0/2 \mathrm{~Z}$ |                   |
| NMMA26  | 1 Proseminář z Matematické<br>analýzy 3                                                | 2       | 0/2 Z             | _                 |
| NMMA26  | 3 Proseminář z Matematické<br>analýzy 4                                                | 2       | _                 | $0/2 \mathrm{~Z}$ |
| NMFM26  | 0Ekonomie                                                                              | 5       |                   | 2/2 Z+Zk          |
| NMAG26  | 2 Konvexní tělesa                                                                      | 3       |                   | $2/0 \mathrm{Zk}$ |
| NMAG26  | 1 Proseminář z algebry                                                                 | 2       |                   | $0/2 \mathrm{~Z}$ |
| NMFM20  | $4\ 	ilde{U}vod\ do\ optimalizace$                                                     | 5       | 2/2 Z+Zk          | <del></del>       |
| NMMB20  | 6 Teorie čísel                                                                         | 5       | <u> </u>          | 2/2 Z+Zk          |
| NMSA262 | Proseminář z pravděpodobnosti<br>a matematické statistiky                              | 2       |                   | $0/2 \mathrm{~Z}$ |
| NMFY160 | ) Fyzika pro matematiky 1 –<br>mechanika                                               | 5       | 2/2 Z+Zk          | _                 |
| NTMF034 | 4 Fyzika pro matematiky 2 –<br>elektromagnetické pole a speciální<br>teorie relativity | 5       | _                 | 2/1 Zk            |

#### Rozšiřující výuka programování

Pro zájemce o informatiku, výpočetní techniku a programování nabízíme následující volitelné kursy zaměřené na aspekty informatiky užitečné pro matematiky.

| Kód     | Název                        | Kredity | ZS                | LS       |
|---------|------------------------------|---------|-------------------|----------|
| NMIN201 | Programování 3               | 5       | 2/2 Z+Zk          | <u> </u> |
| NMIN263 | Principy počítačů a operační | 3       | $2/0 \mathrm{Zk}$ |          |
|         | $syst\'{e}my$                |         |                   |          |

 $<sup>^{\</sup>ast}$  Předmět Úvod do komplexní analýzy bude v akademickém roce 2023/2024 vyučován v obou semestrech. Od roku 2024/2025 bude vyučován v semestru letním.

| NMIN264 | Mathematica pro začátečníky * Mathematica pro pokročilé | 2 2 | 0/2 Z<br>— | 0/2 Z<br>0/2 Z    |
|---------|---------------------------------------------------------|-----|------------|-------------------|
| NMIN266 | Aplikace a využití počítačů v matematice                | 2   |            | $0/2 \mathrm{~Z}$ |

 $<sup>^{\</sup>ast}$  Jedná se o jednosemestrální kurz vyučovaný v letním i zímním semestru.

#### 3. rok studia

Na začátku 3. roku studia je potřeba vybrat jedno ze čtyř zaměření. Zaměření určuje jaká užší oblast matematiky bude hlouběji studována a pomáhá studentům vybírat vhodné předměty.

Program Obecná matematika umožňuje specializaci na jedno ze čtyř nabízených zaměření:

- 1. Zaměření **Stochastika** (STOCH) je určeno k přípravě na navazující magisterské studium programů *Pravděpodobnost, matematická statistika a ekonometrie* a *Finanční a pojistná matematika*.
- 2. Zaměření **Matematické struktury** (STR) je určeno k přípravě na navazující magisterské studium programů *Matematické struktury* a *Matematika pro informační technologie*.
- 3. Zaměření **Matematická analýza** (AN) je určeno k přípravě na navazující magisterské studium programu *Matematická analýza*.
- 4. Zaměření **Numerická analýza a matematické modelování** (NM) je určeno k přípravě na navazující magisterské studium programů *Numerická a výpočtová matematika* a *Matematické modelování ve fyzice a technice*.

#### Volba zaměření

Volba zaměření zahrnuje čtyři postupné kroky:

- o *Výběr jedné ze čtyř variant předmětu "Bakalářské konzultace*". Pozor, tento předmět se zapisuje až na počátku posledního semestru studia.
- o Výběr povinně volitelných předmětů podle "Bakalářských konzultací", typicky v třetím ročníku.
- o Výběr tématu bakalářské práce, typicky na počátku třetího ročníku.
- Výběr volitelného okruhu ústní části státní závěrečné zkoušky, při přihlašování ke státní závěrečné zkoušce.

#### Volba povinně volitelných předmětů

Volba povinně volitelných předmětů je usměrňována pomocí prerekvizit jednotlivých variant předmětu "Bakalářské konzultace". Každá varianta vyžaduje splnění určitých požadavků na absolvování předmětů zvoleného zaměření. Tyto prerekvizity se neověřují při zápise předmětu "Bakalářské konzultace", takže tento předmět je možné si zapsat i bez toho, že by student všechny prerekvizity splňoval. Ověřují se však při kontrole plnění studijních povinností, takže student, který v této fázi nesplňuje prerekvizity předmětu "Bakalářské konzultace", nemůže uzavřít studium.

#### Referativní seminář k bakalářské práci

V posledním semestru bakalářského studia doporučujeme absolvování volitelného "Referativního semináře k bakalářské práci". V tomto semináři se studenti nejdříve

seznámí se základy sazby matematických textů pomocí programu LaTeX a zásady prezentace matematických výsledků. Poté si je sami vyzkoušejí na referátech o jejich bakalářských pracích.

#### 3. rok studia — zaměření Stochastika

| Kód     | Název                              | Kredity | ZS                | LS               |
|---------|------------------------------------|---------|-------------------|------------------|
| NMSA331 | Matematická statistika 1           | 8       | 4/2 Z+Zk          |                  |
| NMSA333 | Teorie pravděpodobnosti 1          | 8       | 4/2 Z+Zk          |                  |
| NMMA34  | 3 Teorie míry a integrálu 2        | 3       | $2/0 \mathrm{Zk}$ |                  |
| NMSA332 | Matematická statistika 2           | 5       | <u> </u>          | 2/2 Z+Zk         |
| NMSA334 | Náhodné procesy 1                  | 8       |                   | 4/2  Z+Zk        |
| NMMA34  | 2 Vybrané partie z funkcionální    | 5       |                   | 2/2 Z+Zk         |
|         | analýzy *                          |         |                   |                  |
| NMSA351 | Bakalářské konzultace: Stochastika | 6       |                   | $0/4~\mathrm{Z}$ |
| NMAT362 | 2 Referativní seminář k bakalářské | 4       |                   | 0/2 Z            |
|         | $prcute{a}ci$                      |         |                   |                  |
|         | Povinně volitelné a volitelné      | 8       |                   |                  |
|         | $p\check{r}edm\check{e}ty$         |         |                   |                  |

 $<sup>^{\</sup>ast}$  Předmět Vybrané partie z funkcionální analýzy bude od akademického roku 2024/2025 vyučován v zimním semestru.

Volba povinně volitelných předmětů je určena prerekvizitami předmětu NMSA351 "Bakalářské konzultace: Stochastika". Ten vyžaduje absolvování *všech* těchto předmětů:

| Kód     | Název                           | Kredity | ZS                | LS        |
|---------|---------------------------------|---------|-------------------|-----------|
| NMSA331 | Matematická statistika 1        | 8       | 4/2 Z+Zk          |           |
| NMSA333 | Teorie pravděpodobnosti 1       | 8       | 4/2 Z+Zk          |           |
| NMMA34  | 3 Teorie míry a integrálu 2     | 3       | $2/0 \mathrm{Zk}$ |           |
| NMSA332 | Matematická statistika 2        | 5       |                   | 2/2 Z+Zk  |
| NMSA334 | Náhodné procesy 1               | 8       |                   | 4/2  Z+Zk |
| NMMA34  | 2 Vybrané partie z funkcionální | 5       |                   | 2/2 Z+Zk  |
|         | analýzy *                       |         |                   |           |

 $<sup>^{\</sup>ast}$  Předmět Vybrané partie z funkcionální analýzy bude od akademického roku 2024/2025 vyučován v zimním semestru.

#### Další doporučené předměty pro 3. ročník, zaměření Stochastika

| Kód     | Název                          | Kredity | ZS               | LS       |
|---------|--------------------------------|---------|------------------|----------|
|         | 1 Analýza maticových výpočtů 1 | 5       | 2/2 Z+Zk         | _        |
| NMSA230 | Úvod do programování v R       | 1       | $0/1 \mathrm{Z}$ |          |
| NMFM33  | 1 Matematika ve financích      | 5       | <del>-</del>     | 2/2 Z+Zk |

Dále doporučujeme ostatní povinně volitelné předměty ze Skupiny II níže.

#### 3. rok studia — zaměření Matematické struktury

| Kód     | Název                            | Kredity | ZS        | LS |
|---------|----------------------------------|---------|-----------|----|
| NMAG305 | ó Úvod do komutativní algebry    | 6       | 3/1  Z+Zk | _  |
| NMAG335 | ő Úvod do analýzy na varietách * | 5       | 2/2 Z+Zk  |    |

| NMAG351 Bakalářské konzultace: Matematické struktury | 6        | <br>$0/4~\mathrm{Z}$  |
|------------------------------------------------------|----------|-----------------------|
| NMAT362 Referativní seminář k bakalářské práci       | 4        | <br>$0/2 \mathrm{~Z}$ |
| Povinně volitelné předměty ze<br>Skupiny STR         | 8        |                       |
| Povinně volitelné předměty<br>Volitelné předměty     | 14<br>12 |                       |

<sup>\*</sup> Předmět Úvod do analýzy na varietách bude od akademického roku 2024/2025 vyučován v letním semestru.

Volba povinně volitelných předmětů je určena prerekvizitami předmětu NMAG351 "Bakalářské konzultace: Matematické struktury". Ten vyžaduje absolvování všech těchto předmětů:

| Kód    | Název                               | Kredity | ZS        | LS       |
|--------|-------------------------------------|---------|-----------|----------|
| _      | $2$ Geometrie $2^{-1}$              | 5       | _         | 2/2 Z+Zk |
|        | 5 Úvod do komutativní algebry       | 6       | 3/1  Z+Zk |          |
| NMAG33 | 5 Úvod do analýzy na varietách $^2$ | 5       | 2/2 Z+Zk  |          |

 $<sup>^1</sup>$  Předmět Geometrie 2 nebude v akademickém roce 2023/2024 vyučován. Bude vyučován v zimním semestru 2024/2025.

Dále "Bakalářské konzultace: Matematické struktury" vyžadují získání alespoň 8 kreditů ze Skupiny STR.

#### Skupina STR:

| Kód                                          | Název                               | Kredity | ZS       | LS                |  |  |
|----------------------------------------------|-------------------------------------|---------|----------|-------------------|--|--|
| NMAG337 Úvod do teorie grup (S) 5 2/2 Z+Zk — |                                     |         |          |                   |  |  |
| NMAG33                                       | 9 Úvod do teorie reprezentací (S)   | 5       | 2/2 Z+Zk |                   |  |  |
|                                              | 2 Úvod do matematické logiky (S, T) | 3       |          | $2/0 \mathrm{Zk}$ |  |  |
| NMAG33                                       | 6 Úvod do teorie kategorií (S)      | 6       |          | 3/1  Z+Zk         |  |  |
| NMAG33                                       | 4 Úvod do teorie Lieových grup (S)  | 5       |          | 2/2 Z+Zk          |  |  |
| NMIN331                                      | Základy kombinatoriky a teorie      | 5       |          | 2/2 Z+Zk          |  |  |
|                                              | grafů (S, T)                        |         |          |                   |  |  |

# Další doporučené povinně volitelné předměty pro 3. ročník, zaměření Matematické struktury

| Kód     | Název                             | Kredity | ZS        | LS        |
|---------|-----------------------------------|---------|-----------|-----------|
| NPGR002 | 2 Digitální zpracování obrazu (T) | 4       | 3/0  Zk   |           |
| NMMB43  | 4 Geometrické modelování (T)      | 6       | 2/2 Z+Zk  |           |
| NMMA34  | 5Obecná topologie 1 (S)           | 6       | 3/1  Z+Zk |           |
| NMMB30  | 9 Počítačová algebra (T)          | 6       | 3/1  Z+Zk |           |
| NMMB33  | 7 Samoopravné kódy (T)            | 6       | 3/1  Z+Zk |           |
| NMMB20  | 6 Teorie čísel (S, T)             | 5       |           | 2/2 Z+Zk  |
| NMMB21  | 0 Teorie informace (T)            | 6       |           | 3/1  Z+Zk |
| NMMB21  | 2Úvod do kryptografie (T)         | 5       |           | 2/2 Z+Zk  |

 $<sup>^2</sup>$  Předmět Úvod do analýzy na varietách bude od akademického roku 2024/2025 vyučován v letním semestru.

| NMAG337 Úvod do teorie grup (S)<br>NMAG336 Úvod do teorie kategorií (S) | 5<br>6 | $^{2/2}$ Z+Zk $^{-}$ | - $3/1 Z+Zk$ |
|-------------------------------------------------------------------------|--------|----------------------|--------------|
| NMAG334 Úvod do teorie Lieových grup (S)                                | 5      |                      | 2/2 Z+Zk     |
| NMAG338 Úvod do teorie množin $(S)^1$                                   | 6      |                      | 3/1  Z+Zk    |
| NMAG339 Úvod do teorie reprezentací (S)                                 | 5      | 2/2 Z+Zk             |              |
| NMMA342Vybrané partie z funkcionální                                    | 5      |                      | 2/2 Z+Zk     |
| analýzy $(S)^2$                                                         |        |                      |              |
| NMIN331 Základy kombinatoriky a teorie                                  | 5      |                      | 2/2 Z+Zk     |
| grafů (T, S)                                                            |        |                      |              |

 $<sup>\</sup>frac{1}{2}$  Předmět Úvod do teorie množin bude od akademického roku 2024/2025 vyučován v zimním semestru.

Pro zájemce o navazující studijní program Matematické struktury doporučujeme předměty označené S. Pro zájemce o navazující studijní program Matematika pro informační technologie doporučujeme předměty označené T.

Předměty NMMB206, NMMB210, NMMB212, NMAG162 a NMAG338 je možné absolvovat už ve druhém roce studia.

#### 3. rok studia — zaměření Matematická analýza

| Kód     | Název                                | Kredity | ZS                | LS                |
|---------|--------------------------------------|---------|-------------------|-------------------|
| NMMA33  | 9Úvod do parciálních diferenciálních | 5       | 2/2 Z+Zk          | _                 |
|         | rovnic                               |         |                   |                   |
| NMMA34  | 3Teorie míry a integrálu 2           | 3       | $2/0 \mathrm{Zk}$ |                   |
| NMMA33  | 1Úvod do funkcionální analýzy        | 8       | 4/2 Z+Zk          |                   |
| NMMA34  | 5Obecná topologie 1                  | 6       | 3/1  Z+Zk         |                   |
| NMMA33  | 6Obyčejné diferenciální rovnice      | 5       |                   | 2/2 Z+Zk          |
| NMMA35  | 1 Bakalářské konzultace: Matematická | 6       |                   | $0/4~{ m Z}$      |
|         | analýza                              |         |                   |                   |
| NMAT362 | 2 Referativní seminář k bakalářské   | 4       |                   | $0/2 \mathrm{~Z}$ |
|         | $prcute{a}ci$                        |         |                   |                   |
|         | Povinně volitelné předměty           | 6       |                   |                   |
|         | Volitelné předměty                   | 12      |                   |                   |

Volba povinně volitelných předmětů je určena prerekvizitami předmětu NMMA351 "Bakalářské konzultace: Matematická analýza". Ten vyžaduje absolvování  $v \check{s} e c h$  těchto předmětů:

| Kód                                                   | Název                                | Kredity | ZS                | LS       |  |
|-------------------------------------------------------|--------------------------------------|---------|-------------------|----------|--|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |                                      |         |                   |          |  |
| NMMA33                                                | 9Úvod do parciálních diferenciálních | 5       | 2/2 Z+Zk          | _        |  |
|                                                       | rovnic                               |         |                   |          |  |
|                                                       | 3 Teorie míry a integrálu 2          | 3       | $2/0 \mathrm{Zk}$ |          |  |
| NMMA33                                                | 1Úvod do funkcionální analýzy        | 8       | 4/2 Z+Zk          |          |  |
| NMMA33                                                | 6Obyčejné diferenciální rovnice      | 5       | _                 | 2/2 Z+Zk |  |

Předmět Geometrie 2 nebude v akademickém roce 2023/2024 vyučován. Bude vyučován v zimním semestru 2024/2025.

 $<sup>^2</sup>$  Předmět Vybrané partie z funkcionální analýzy bude od akademického roku 2024/2025 vyučován v zimním semestru.

Doporučené povinně volitelné předměty pro 3. ročník, zaměření Matematická analýza

| Kód     | Název                                       | Kredity | ZS                | LS                |
|---------|---------------------------------------------|---------|-------------------|-------------------|
| NMMA33  | 7Seminář z teorie reálných funkcí 1         | 2       | $0/2 \mathrm{~Z}$ |                   |
| NMMA34  | 7Seminář ze základních vlastností           | 2       | $0/2 \mathrm{~Z}$ |                   |
|         | prostorů funkcí 1                           |         |                   |                   |
| NMMA34  | 5Obecná topologie 1                         | 6       | 3/1  Z+Zk         |                   |
| NMAG335 | 5 Úvod do analýzy na varietách <sup>1</sup> | 5       | 2/2 Z+Zk          |                   |
| NMMA34  | 0Seminář z teorie reálných funkcí 2         | 2       | <u> </u>          | $0/2 \mathrm{~Z}$ |
| NMMA34  | 8Seminář ze základních vlastností           | 2       |                   | $0/2 \mathrm{~Z}$ |
|         | prostorů funkcí 2                           |         |                   |                   |
| NMAG162 | 2 Úvod do matematické logiky                | 3       |                   | 2/0  Zk           |
| NMAG338 | 8 Úvod do teorie množin <sup>2</sup>        | 6       |                   | 3/1  Z+Zk         |
| NMNM33  | 8 Numerické řešení parciálních              | 5       |                   | 2/2 Z+Zk          |
|         | diferenciálních rovnic                      |         |                   |                   |
| NMNM33  | 6Úvod do metody konečných prvků             | 5       | <del></del>       | 2/2 Z+Zk          |
| NMNM33  | 4Úvod do matematického modelování           | 5       | —                 | 3/0 Zk            |

 $<sup>^1</sup>$  Předmět Úvod do analýzy na varietách bude od akademického roku 2024/2025 vyučován v letním semestru.

#### 3. rok studia — zaměření Numerická analýza a matematické modelování

| Kód     | Název                                | Kredity | ZS       | LS                |
|---------|--------------------------------------|---------|----------|-------------------|
| NMNM33  | 1 Analýza maticových výpočtů 1       | 5       | 2/2 Z+Zk | _                 |
| NMMA33  | 9Úvod do parciálních diferenciálních | 5       | 2/2 Z+Zk |                   |
|         | rovnic                               |         |          |                   |
| NMMA33  | 1Úvod do funkcionální analýzy        | 8       | 4/2 Z+Zk |                   |
| NMNM33  | 8Numerické řešení parciálních        | 5       |          | 2/2 Z+Zk          |
|         | diferenciálních rovnic               |         |          |                   |
| NMMA33  | 6Obyčejné diferenciální rovnice      | 5       |          | 2/2 Z+Zk          |
| NMNM33  | 4Úvod do matematického modelování    | 5       |          | 3/0  Zk           |
| NMAT362 | 2 Referativní seminář k bakalářské   | 4       |          | $0/2 \mathrm{~Z}$ |
|         | $prcute{a}ci$                        |         |          |                   |
| NMNM35  | 1 Bakalářské konzultace: Numerická   | 6       |          | $0/4 \mathrm{~Z}$ |
|         | analýza a matematické modelování     |         |          |                   |
|         | Volitelné předměty                   | 12      |          |                   |

Volba povinně volitelných předmětů je určena prerekvizitami předmětu NMNM351 "Bakalářské konzultace: Numerická analýza a matematické modelování". Ten vyžaduje absolvování  $v\check{s}ech$  těchto předmětů:

| Kód    | Název                          | Kredity | ZS       | LS       |
|--------|--------------------------------|---------|----------|----------|
| NMAG21 | 2 Geometrie 2 <sup>1</sup>     | 5       | <u> </u> | 2/2 Z+Zk |
| NMNM33 | 1 Analýza maticových výpočtů 1 | 5       | 2/2 Z+Zk |          |

 $<sup>^2</sup>$  Předmět Úvod do teorie množin bude od akademického roku 2024/2025 vyučován v zimním semestru. Jako volitelné předměty doporučujeme ostatní povinně volitelné předměty ze Skupiny II níže.

| _        |
|----------|
|          |
| 2/2 Z+Zk |
|          |
| 2/2 Z+Zk |
| 3/0 Zk   |
|          |

 $<sup>^1</sup>$  Předmět Geometrie 2 nebude v akademickém roce 2023/2024 vyučován. Bude vyučován v zimním semestru 2024/2025.

# Další doporučené předměty pro 3. ročník, zaměření Numerická analýza a matematické modelování

| Kód     | Název                           | Kredity | ZS       | LS       |
|---------|---------------------------------|---------|----------|----------|
| NOFY003 | Teoretická mechanika            | 7       | 3/2 Z+Zk | _        |
| NMMB43  | 4 Geometrické modelování        | 6       | 2/2 Z+Zk |          |
|         | 2 Analýza maticových výpočtů 2  | 5       |          | 2/2 Z+Zk |
| NMNM33  | 6Úvod do metody konečných prvků | 5       |          | 2/2 Z+Zk |

#### Shrnutí studijního plánu

Je potřeba splnit všechny povinnosti z povinných předmětů.

#### Povinné předměty

| Kód     | Název                                  | Kredity | ZS                | LS                 |
|---------|----------------------------------------|---------|-------------------|--------------------|
| NMMA10  | l Matematická analýza 1                | 10      | 4/4 Z+Zk          | _                  |
| NMAG111 | Lineární algebra 1                     | 10      | 4/2 Z+Zk          |                    |
| NMIN111 | Programování 1                         | 3       | $0/2 \mathrm{~Z}$ |                    |
| NMIN105 | Diskrétní matematika                   | 5       | 2/2 Z+Zk          |                    |
| NTVY014 | Tělesná výchova I <sup>1</sup>         | 1       | $0/2 \mathrm{~Z}$ |                    |
| NMMA10  | 2Matematická analýza 2                 | 10      |                   | 4/4 Z+Zk           |
| NMAG112 | Lineární algebra 2                     | 10      |                   | 4/2 Z+Zk           |
| NMIN112 | Programování 2                         | 8       |                   | 2/4 Z+Zk           |
| NTVY015 | Tělesná výchova II <sup>1</sup>        | 1       |                   | $0/2 \mathrm{~Z}$  |
| NMMA20  | l Matematická analýza 3                | 8       | 4/2 Z+Zk          |                    |
| NMMA20  | <sup>5</sup> Teorie míry a integrálu 1 | 5       | 2/2 Z+Zk          |                    |
| NMNM20  | 1 <b>Z</b> áklady numerické matematiky | 8       | 4/2 Z+Zk          |                    |
| NMAG211 | Geometrie 1                            | 5       | 2/2 Z+Zk          |                    |
| NTVY016 | Tělesná výchova III <sup>1</sup>       | 1       | $0/2 \mathrm{~Z}$ |                    |
| NMMA20  | 4Matematická analýza 4                 | 5       |                   | 2/2 Z+Zk           |
| NMSA202 | Pravděpodobnost                        | 8       |                   | 4/2 Z+Zk           |
|         | a matematická statistika               |         |                   |                    |
| NMAG206 | 3 Algebra                              | 8       |                   | 4/2 Z+Zk           |
| NTVY017 | Tělesná výchova IV <sup>1</sup>        | 1       |                   | $0/2 \mathrm{~Z}$  |
| NJAZ091 | Anglický jazyk — zkouška pro           | 1       |                   | $0/0 \mathrm{~Zk}$ |
|         | bakaláře                               |         |                   | •                  |
| NMMA30  | 1Úvod do komplexní analýzy *           | 5       | _                 | 2/2 Z+Zk           |

 $<sup>^{1}</sup>$  Viz podrobnosti v obecném úvodu.

#### Povinně volitelné předměty

#### Skupina I.

Čtyři varianty předmětu "Bakalářské konzultace" určené pro jednotlivá zaměření tvoří oddělenou skupinu povinně volitelných předmětů. K úspěšnému ukončení studia je nutné si jednu z těchto variant vybrat a získat z ní zápočet.

Z této skupiny je třeba získat alespoň 6 kreditů. V závorce jsou uvedena zaměření, pro něž je předmět doporučen.

| Kód     | Název                                                                          | Kredity | ZS | LS                |
|---------|--------------------------------------------------------------------------------|---------|----|-------------------|
| NMAG35  | 1 Bakalářské konzultace: Matematické struktury (STR)                           | 6       | _  | 0/4 Z             |
| NMMA35  | 1 Bakalářské konzultace: Matematická analýza (AN)                              | 6       |    | $0/4 \mathrm{~Z}$ |
| NMNM35  | 1 Bakalářské konzultace: Numerická<br>analýza a matematické<br>modelování (NM) | 6       |    | 0/4 Z             |
| NMSA351 | Bakalářské konzultace:<br>Stochastika (STOCH)                                  | 6       | _  | $0/4~\mathrm{Z}$  |

Volba povinně volitelných předmětů ze Skupiny II je usměrňována pomocí prerekvizit jednotlivých variant předmětu "Bakalářské konzultace". Každá varianta vyžaduje splnění určitých požadavků na absolvování předmětů zvoleného zaměření. Tyto prerekvizity se neověřují při zápise předmětu "Bakalářské konzultace", takže tento předmět je možné si zapsat i bez toho, že by student všechny prerekvizity splňoval. Ověřují se však při kontrole plnění studijních povinností, takže student, který v této fázi nesplňuje prerekvizity předmětu "Bakalářské konzultace", nemůže uzavřít studium.

#### Prerekvizity bakalářských konzultací

#### Stochastika

Předmět NMSA351 "Bakalářské konzultace: Stochastika" vyžaduje absolvování  $v\check{s}ech$ těchto předmětů:

| Kód     | Název                          | Kredity | ZS        | LS        |
|---------|--------------------------------|---------|-----------|-----------|
| NMSA331 | Matematická statistika 1       | 8       | 4/2 Z+Zk  |           |
| NMMA34  | 3 Teorie míry a integrálu 2    | 3       | 2/0  Zk   |           |
| NMSA333 | Teorie pravděpodobnosti 1      | 8       | 4/2  Z+Zk |           |
| NMSA332 | Matematická statistika 2       | 5       |           | 2/2 Z+Zk  |
| NMSA334 | Náhodné procesy 1              | 8       |           | 4/2  Z+Zk |
| NMMA34  | 2Vybrané partie z funkcionální | 5       |           | 2/2 Z+Zk  |
|         | analýzy *                      |         |           |           |

 $<sup>^{\</sup>ast}$  Předmět Vybrané partie z funkcionální analýzy bude od akademického roku 2024/2025 vyučován v zimním semestru.

#### Matematické struktury

Předmět NMAG351 "Bakalářské konzultace: Matematické struktury" vyžaduje absolvování  $v\check{s}ech$  předmětů uvedených níže.

 $<sup>^{\</sup>ast}$  Předmět Úvod do komplexní analýzy bude v akademickém roce 2023/2024 vyučován v obou semestrech. Od roku 2024/2025 bude vyučován v semestru letním.

| Kód    | Název                                                                                                      | Kredity     | ZS                        | LS           |
|--------|------------------------------------------------------------------------------------------------------------|-------------|---------------------------|--------------|
| NMAG30 | 2 Geometrie 2 <sup>1</sup><br>5 Úvod do komutativní algebry<br>5 Úvod do analýzy na varietách <sup>2</sup> | 5<br>6<br>5 | —<br>3/1 Z+Zk<br>2/2 Z+Zk | 2/2 Z+Zk<br> |

<sup>&</sup>lt;sup>1</sup> Předmět Geometrie 2 nebude v akademickém roce 2023/2024 vyučován. Bude vyučován v zimním semestru 2024/2025.

Dále předmět "Bakalářské konzultace: Matematické struktury" vyžaduje získání alespoň 8 kreditů z následujících předmětů:

| Kód     | Název                          | Kredity | ZS       | LS                |
|---------|--------------------------------|---------|----------|-------------------|
|         | 7 Úvod do teorie grup          | 5       | 2/2 Z+Zk | _                 |
| NMAG33  | 9 Úvod do teorie reprezentací  | 5       | 2/2 Z+Zk |                   |
| NMAG16  | 2 Úvod do matematické logiky   | 3       |          | $2/0 \mathrm{Zk}$ |
| NMAG33  | 6 Úvod do teorie kategorií     | 6       |          | 3/1  Z+Zk         |
| NMAG33  | 4 Úvod do teorie Lieových grup | 5       |          | 2/2 Z+Zk          |
| NMIN331 | Základy kombinatoriky a teorie | 5       |          | 2/2 Z+Zk          |
|         | grafů                          |         |          |                   |

#### Matematická analýza

Předmět NMMA351 "Bakalářské konzultace: Matematická analýza" vyžaduje absolvování *všech* předmětů uvedených níže. Pro úspěšné studium magisterského programu Matematická analýza je navíc žádoucí znalost látky z předmětu NMMA345 Obecná topologie 1.

| Kód                              | Název                                | Kredity | ZS       | LS       |
|----------------------------------|--------------------------------------|---------|----------|----------|
| NMAG212 Geometrie 2 <sup>1</sup> |                                      | 5       | _        | 2/2 Z+Zk |
| NMMA33                           | 9Úvod do parciálních diferenciálních | 5       | 2/2 Z+Zk |          |
|                                  | rovnic                               |         |          |          |
|                                  | 3 Teorie míry a integrálu 2          | 3       | 2/0  Zk  |          |
| NMMA33                           | 1Úvod do funkcionální analýzy        | 8       | 4/2 Z+Zk |          |
| NMMA33                           | 6Obyčejné diferenciální rovnice      | 5       |          | 2/2 Z+Zk |

 $<sup>^1</sup>$  Předmět Geometrie 2 nebude v akademickém roce 2023/2024 vyučován. Bude vyučován v zimním semestru 2024/2025.

#### Numerická analýza a matematické modelování

Předmět NMNM351 "Bakalářské konzultace: Numerická analýza a matematické modelování" vyžaduje absolvování  $v\check{s}ech$  těchto předmětů:

| Kód                                  | Název                                | Kredity | ZS       | LS       |
|--------------------------------------|--------------------------------------|---------|----------|----------|
| NMAG212 Geometrie 2 <sup>1</sup>     |                                      | 5       |          | 2/2 Z+Zk |
| NMNM331 Analýza maticových výpočtů 1 |                                      | 5       | 2/2 Z+Zk |          |
| NMMA33                               | 9Úvod do parciálních diferenciálních | 5       | 2/2 Z+Zk |          |
|                                      | rovnic                               |         |          |          |
| NMMA33                               | 1Úvod do funkcionální analýzy        | 8       | 4/2 Z+Zk |          |

 $<sup>^2</sup>$  Předmět Úvod do analýzy na varietách bude od akademického roku 2024/2025 vyučován v letním semestru.

| NMNM338Numerické řešení parciálních<br>diferenciálních rovnic                    | 5      |   | 2/2 Z+Zk          |
|----------------------------------------------------------------------------------|--------|---|-------------------|
| NMMA336Obyčejné diferenciální rovnice<br>NMNM334Úvod do matematického modelování | 5<br>5 | _ | 2/2 Z+Zk $3/0$ Zk |

 $<sup>^1</sup>$  Předmět Geometrie 2 nebude v akademickém roce 2023/2024 vyučován. Bude vyučován v zimním semestru 2024/2025.

#### Skupina II.

Z této skupiny je třeba získat alespoň 38 kreditů. V závorce jsou uvedena zaměření, pro něž je předmět doporučen.

| Kód     | Název                                                             | Kredity | ZS                | LS                |
|---------|-------------------------------------------------------------------|---------|-------------------|-------------------|
| NMNM33  | 1 Analýza maticových<br>výpočtů 1 (STOCH, NM)                     | 5       | 2/2 Z+Zk          | _                 |
| NMNM33  | 2 Analýza maticových výpočtů 2 (NM)                               | 5       |                   | 2/2 Z+Zk          |
| NPGR002 | Digitální zpracování obrazu (STR)                                 | 4       | $3/0 \mathrm{Zk}$ | <del>-</del>      |
| NMMB43  | 4 Geometrické modelování (STR, NM)                                | 6       | 2/2 Z+Zk          |                   |
| NMAG212 | 2 Geometrie 2 (STOCH, STR, MA, NM) <sup>1</sup>                   | 5       | _                 | 2/2 Z+Zk          |
| NMAG30  | 5 Úvod do komutativní algebry (STR)                               | 6       | 3/1  Z+Zk         |                   |
| NMSA331 | Matematická statistika 1 (STOCH)                                  | 8       | 4/2 Z+Zk          |                   |
| NMSA332 | Matematická statistika 2 (STOCH)                                  | 5       |                   | 2/2 Z+Zk          |
| NMSA334 | Náhodné procesy 1 (STOCH)                                         | 8       |                   | 4/2 Z+Zk          |
| NMNM33  | 8 Numerické řešení parciálních<br>diferenciálních rovnic (MA, NM) | 5       |                   | 2/2 Z+Zk          |
| NMFM33  | 1 Matematika ve financích (STOCH)                                 | 5       | _                 | 2/2 Z+Zk          |
| NMMA34  | 5 Obecná topologie 1 (MA, STR)                                    | 6       | 3/1  Z+Zk         |                   |
| NMMA33  | 6 Obyčejné diferenciální rovnice (MA, NM)                         | 5       | <u> </u>          | 2/2 Z+Zk          |
| NMMB30  | 9 Počítačová algebra (STR)                                        | 6       | 3/1  Z+Zk         |                   |
|         | 7 Samoopravné kódy (STR)                                          | 6       | 3/1  Z+Zk         |                   |
|         | 7 Seminář z teorie reálných<br>funkcí 1 (MA)                      | 2       | 0/2 Z             | _                 |
| NMMA34  | 0Seminář z teorie reálných<br>funkcí 2 (MA)                       | 2       | _                 | $0/2 \mathrm{~Z}$ |
| NMMA34  | 7Seminář ze základních vlastností<br>prostorů funkcí 1 (MA)       | 2       | $0/2 \mathrm{~Z}$ | _                 |
| NMMA34  | 8Seminář ze základních vlastností<br>prostorů funkcí 2 (MA)       | 2       | _                 | $0/2 \mathrm{~Z}$ |
| NOFY003 | Teoretická mechanika (NM)                                         | 7       | 3/2 Z+Zk          |                   |
|         | 6 Teorie čísel (STR)                                              | 5       |                   | 2/2 Z+Zk          |
|         | Teorie informace (STR)                                            | 6       |                   | 3/1  Z+Zk         |
|         | 3 Teorie míry a integrálu 2 (STOCH, MA)                           | 3       | 2/0 Zk            | <del></del>       |
| NMSA230 | Úvod do programování<br>v R (STOCH)                               | 1       | $0/1 \mathrm{~Z}$ |                   |
| NMSA333 | Teorie pravděpodobnosti 1 (STOCH)                                 | 8       | 4/2 Z+Zk          |                   |

| NMAG335 Úvod do analýzy na varietách (STR, $MA$ ) <sup>2</sup>             | 5 | 2/2 Z+Zk | _         |
|----------------------------------------------------------------------------|---|----------|-----------|
| NMMA331 Úvod do funkcionální analýzy (MA, NM)                              | 8 | 4/2 Z+Zk | _         |
| NMMB212 Úvod do kryptografie (STR)                                         | 5 |          | 2/2 Z+Zk  |
| NMAG162 Úvod do matematické logiky (STR, MA)                               | 3 | _        | 2/0 Zk    |
| NMNM334 Úvod do matematického<br>modelování (MA, NM)                       | 5 |          | 3/0  Zk   |
| NMNM336 Úvod do metody konečných<br>prvků (NM)                             | 5 | _        | 2/2 Z+Zk  |
| NMMA339 Úvod do parciálních diferenciálních rovnic (MA, NM)                | 5 | 2/2 Z+Zk | _         |
| NMAG337 Úvod do teorie grup (STR)                                          | 5 | 2/2 Z+Zk |           |
| NMAG336 Úvod do teorie kategorií (STR)                                     | 6 |          | 3/1  Z+Zk |
| NMAG334 Úvod do teorie Lieových grup (STR)                                 | 5 |          | 2/2 Z+Zk  |
| NMAG338 Úvod do teorie množin (STR, MA) <sup>4</sup>                       | 6 |          | 3/1  Z+Zk |
| NMAG339 Úvod do teorie reprezentací (STR)                                  | 5 | 2/2 Z+Zk | <u> </u>  |
| NMMA342<br>Vybrané partie z funkcionální analýzy (STOCH, STR) <sup>3</sup> | 5 | <u>.</u> | 2/2 Z+Zk  |
| NMIN331 Základy kombinatoriky a teorie grafů (STR)                         | 5 | _        | 2/2 Z+Zk  |

 $<sup>^1</sup>$  Předmět Geometrie 2 nebude v akademickém roce 2023/2024 vyučován. Bude vyučován v zimním semestru 2024/2025.

#### Státní závěrečná zkouška

#### Podmínky pro přihlášení ke státní závěrečné zkoušce

- Získání alespoň 174 kreditů.
- Získání alespoň 180 kreditů, jedná-li se o poslední část závěrečné zkoušky.
- Splnění všech povinných předmětů studijního plánu.
- Splnění povinně volitelných předmětů ze skupiny II v rozsahu alespoň 38 kreditů.
- Splnění podmínek pro příslušnou část závěrečné zkoušky.

#### Podmínky pro přihlášení k obhajobě bakalářské práce:

- Splnění povinně volitelných předmětů ze skupiny I v rozsahu alespoň 6 kreditů.
- Odevzdání vypracované bakalářské práce ve stanoveném termínu.

#### Podmínky pro přihlášení k ústní části závěrečné zkoušky:

Splnění prerekvizit k jednomu z povinně volitelných předmětů ze skupiny I odpovídajícímu vybranému volitelnému okruhu ústní části závěrečné zkoušky.

 $<sup>^2</sup>$  Předmět Úvod do analýzy na varietách bude od akademického roku 2024/2025 vyučován v letním semestru.

<sup>&</sup>lt;sup>3</sup> Předmět Vybrané partie z funkcionální analýzy bude od akademického roku 2024/2025 vyučován v zimním semestru.

<sup>&</sup>lt;sup>4</sup> Předmět Úvod do teorie množin bude od akademického roku 2024/2025 vyučován v zimním semestru.

#### Ústní část státní závěrečné zkoušky

Zkouška má přehledový charakter. Žádá se, aby posluchač prokázal pochopení základních pojmů, principů a výsledků, byl schopen je ilustrovat na příkladech a předvedl určitou míru syntézy.

Ústní část státní závěrečné zkoušky se skládá ze tří tématických okruhů, z každého dostane student jednu otázku. Dva okruhy (Základy matematické analýzy, Lineární a obecná algebra) jsou povinné, třetí okruh je volitelný a odpovídá zvolenému zaměření. Student si může vybrat třetí okruh z možností:

- Stochastika
- Matematické struktury
- Matematická analýza
- Numerická analýza a matematické modelování

Podrobnosti o organizaci státních závěrečných zkoušek lze najít na stránkách https://www.mff.cuni.cz/cs/math/pro-studenty/bc-prog/bc-prace

#### Požadavky pro ústní část státní závěrečné zkoušky

#### 1. Základy matematické analýzy

Posloupnosti a řady čísel a funkcí. Diferenciální a integrální počet funkcí jedné reálné proměnné. Diferenciální počet funkcí více proměnných. Obyčejné diferenciální rovnice.

#### 2. Lineární a obecná algebra

Matice a determinanty, soustavy lineárních rovnic, vektorové prostory, lineární a bilineární formy, základy teorie grup a komutativních okruhů.

#### 3. Volitelný okruh

#### 3A. Stochastika

Teorie pravděpodobnosti: pravděpodobnostní prostor, nezávislost, náhodné veličiny a vektory, zákony velkých čísel, centrální limitní věta. Matematická statistika: náhodný výběr, uspořádaný náhodný výběr, základy teorie odhadu a testování hypotéz.

#### 3B. Matematické struktury

Základy teorie funkcí komplexní proměnné. Rozšíření těles. Kořenová a rozkladová nadtělesa. Galoisova teorie. Polynomiální okruhy. Základy diferenciální geometrie křivek a ploch. Varieta a její tečný prostor. Diferenciální formy. Stokesova věta. Integrace funkcí na plochách a na Riemannově varietě.

#### 3C. Matematická analýza

Základy teorie Lebesgueova integrálu. Banachovy a Hilbertovy prostory. Spojitá lineární zobrazení. Fourierovy řady v Hilbertových prostorech. Bodové chování klasických Fourierových řad. Základy teorie funkcí komplexní proměnné.

#### 3D. Numerická analýza a matematické modelování

Aproximace funkcí, numerická integrace, numerické řešení nelineárních algebraických rovnic, numerické řešení obyčejných diferenciálních rovnic. Přímé a iterační metody řešení lineárních algebraických rovnic. Klasická teorie a numerické řešení parciálních diferenciálních rovnic. Základy matematického modelování ve fyzice kontinua.

Podrobnější vysvětlení požadavků pro ústní část státní závěrečné zkoušky lze najít na stránkách https://www.mff.cuni.cz/cs/math/pro-studenty/bc-prog/bc-om-garant/momp/sbz-new

## Studijní plán S

Doporučený průběh studia pro první dva ročníky obsahuje téměř výhradně povinné předměty, je společný pro celý program a poskytuje všeobecný matematický základ. Před zápisem do 3. ročníku by si měl student zvolit zaměření, kterému se bude chtít dále věnovat a podle něj si vybrat jeden ze čtyř doporučených průběhů studia pro 3. ročník. Pro hladké navázání studia zvoleného zaměření je potřeba dodržet doporučený průběh prvních dvou ročníků.

Doplňující informace o programu Obecná matematika je možné nalézt na https://www.mff.cuni.cz/cs/math/pro-studenty/bc-prog/bc-om-garant/momp.

## Doporučený průběh studia

#### 1. rok studia

| Kód     | Název                             | Kredity | ZS                | LS                |
|---------|-----------------------------------|---------|-------------------|-------------------|
| NMMA10  | 1 Matematická analýza 1           | 10      | 4/4 Z+Zk          | _                 |
| NMAG11  | l Lineární algebra 1              | 10      | 4/2 Z+Zk          |                   |
| NMIN111 | Programování 1                    | 3       | $0/2 \mathrm{~Z}$ |                   |
| NMIN105 | Diskrétní matematika              | 5       | 2/2 Z+Zk          |                   |
| NTVY014 | 1 Tělesná výchova I <sup>1</sup>  | 1       | $0/2 \mathrm{~Z}$ |                   |
|         | Anglický jazyk                    | 1       | $0/2 \mathrm{~Z}$ |                   |
| NMMA10  | 2Matematická analýza 2            | 10      |                   | 4/4 Z+Zk          |
| NMAG11  | 2 Lineární algebra 2              | 10      |                   | 4/2 Z+Zk          |
| NMIN112 | Programování 2                    | 8       |                   | 2/4 Z+Zk          |
| NTVY015 | 5 Tělesná výchova II <sup>1</sup> | 1       |                   | $0/2 \mathrm{~Z}$ |
|         | Anglický jazyk                    | 1       |                   | $0/2 \mathrm{~Z}$ |

Viz podrobnosti v obecném úvodu.

#### Doporučené volitelné předměty

Studentům, kteří si na začátku studia chtějí procvičit a zdokonalit základní matematické dovednosti potřebné ke studiu, doporučujeme předměty NMTM161 a NMTM162.

| Kód                                        | Název                                                          | Kredity | ZS                | LS                |  |
|--------------------------------------------|----------------------------------------------------------------|---------|-------------------|-------------------|--|
| NMTM161 Matematický proseminář I 2 0/2 Z — |                                                                |         |                   |                   |  |
| NMMA16                                     | 1 Proseminář z Matematické analýzy                             | 2       | $0/2 \mathrm{~Z}$ |                   |  |
| NMMA46                                     | $5 \check{R}e\check{s}itelsk\acute{y}semincute{lpha}\check{r}$ | 3       | $0/2 \mathrm{~Z}$ | $0/2 \mathrm{~Z}$ |  |
| NMTM16                                     | 2 Matematický proseminář II                                    | 2       | <u> </u>          | $0/2 \mathrm{~Z}$ |  |
| NMMA16                                     | 2 Proseminář z Matematické analýzy                             | 2       |                   | $0/2 \mathrm{~Z}$ |  |
| NMSA170                                    | ) Pravděpodobnostní a statistické                              | 2       |                   | $0/2 \mathrm{~Z}$ |  |
|                                            | $probl\'emy$                                                   |         |                   |                   |  |
| NMAG16                                     | O Proseminář z teorie čísel                                    | 2       | <del></del>       | $0/2 \mathrm{~Z}$ |  |
| NMAG16                                     | 4 Variace na invarianci                                        | 2       | _                 | 0/2 Z             |  |

#### 2. rok studia

| Kód     | Název                                  | Kredity | ZS                | LS                |
|---------|----------------------------------------|---------|-------------------|-------------------|
| NMMA20  | 1 Matematická analýza 3                | 8       | 4/2 Z+Zk          |                   |
| NMMA20  | <sup>5</sup> Teorie míry a integrálu 1 | 5       | 2/2 Z+Zk          |                   |
| NMNM20  | 1 <b>Z</b> áklady numerické matematiky | 8       | 4/2 Z+Zk          |                   |
| NMAG211 | l Geometrie 1                          | 5       | 2/2 Z+Zk          |                   |
| NTVY016 | Tělesná výchova III <sup>1</sup>       | 1       | $0/2 \mathrm{~Z}$ |                   |
|         | Anglický jazyk                         | 1       | $0/2 \mathrm{~Z}$ |                   |
| NMMA20  | 4Matematická analýza 4                 | 5       |                   | 2/2 Z+Zk          |
| NMSA202 | Pravděpodobnost                        | 8       |                   | 4/2 Z+Zk          |
|         | a matematická statistika               |         |                   |                   |
| NMAG206 | 3 Algebra                              | 8       |                   | 4/2 Z+Zk          |
| NMAG212 | 2 Geometrie 2 <sup>1</sup>             | 5       |                   | 2/2 Z+Zk          |
| NTVY017 | $I$ $T$ ě $lesná výchova IV ^1$        | 1       |                   | $0/2 \mathrm{~Z}$ |
|         | Anglický jazyk                         | 1       |                   | $0/2 \mathrm{~Z}$ |
| NJAZ091 | Anglický jazyk — zkouška pro           | 1       |                   | $0/0 \mathrm{Zk}$ |
|         | bakaláře                               |         |                   |                   |
|         | Povinně volitelné a volitelné          | 3       |                   |                   |
|         | předměty                               |         |                   |                   |

## Doporučené volitelné předměty pro 2. ročník

| Kód     | Název                                                                                  | Kredity | ZS                | LS                |
|---------|----------------------------------------------------------------------------------------|---------|-------------------|-------------------|
| NMSA260 | ) Principy statistického myšlení                                                       | 2       | $0/2 \mathrm{~Z}$ | _                 |
| NMMA26  | 1 Proseminář z Matematické<br>analýzy 3                                                | 2       | $0/2 \mathrm{~Z}$ |                   |
| NMMA26  | 3 Proseminář z Matematické<br>analýzy 4                                                | 2       |                   | 0/2 Z             |
| NMFM26  | 0Ekonomie                                                                              | 5       |                   | 2/2 Z+Zk          |
| NMAG262 | 2 Konvexní tělesa                                                                      | 3       |                   | $2/0 \mathrm{Zk}$ |
| NMAG26  | 1 Proseminář z algebry                                                                 | 2       |                   | $0/2 \mathrm{~Z}$ |
| NMFM20  | $4\ 	ilde{U}vod\ do\ optimalizace$                                                     | 5       | 2/2 Z+Zk          |                   |
| NMMB20  | 6 Teorie čísel                                                                         | 5       |                   | 2/2 Z+Zk          |
| NMSA262 | Proseminář z pravděpodobnosti<br>a matematické statistiky                              | 2       |                   | 0/2 Z             |
| NMFY160 | ) Fyzika pro matematiky 1 –<br>mechanika                                               | 5       | 2/2 Z+Zk          | _                 |
| NTMF034 | 4 Fyzika pro matematiky 2 –<br>elektromagnetické pole a speciální<br>teorie relativity | 5       | _                 | 2/1 Zk            |

#### Rozšiřující výuka programování

Pro zájemce o informatiku, výpočetní techniku a programování nabízíme následující volitelné kursy zaměřené na aspekty informatiky užitečné pro matematiky.

 $<sup>^1</sup>$  Viz podrobnosti v obecném úvodu.  $^1$  Předmět Geometrie 2 nebude v akademickém roce 2023/2024 vyučován. Bude vyučován v zimním semestru 2024/2025.

| Kód     | Název                         | Kredity | ZS                | LS                |
|---------|-------------------------------|---------|-------------------|-------------------|
| NMIN201 | Programování 3                | 5       | 2/2 Z+Zk          |                   |
| NMIN263 | Principy počítačů a operační  | 3       | 2/0  Zk           |                   |
|         | $syst\'{e}my$                 |         |                   |                   |
| NMIN203 | Mathematica pro začátečníky * | 2       | $0/2 \mathrm{~Z}$ | $0/2 \mathrm{~Z}$ |
| NMIN264 | Mathematica pro pokročilé     | 2       | <u> </u>          | $0/2 \mathrm{~Z}$ |
| NMIN266 | Aplikace a využití počítačů   | 2       |                   | $0/2 \mathrm{~Z}$ |
|         | $v\ matematice$               |         |                   |                   |

 $<sup>^{\</sup>ast}$  Jedná se o jednosemestrální kurz vyučovaný v letním i zímním semestru.

#### 3. rok studia

Na začátku 3. roku studia je potřeba vybrat jedno ze čtyř zaměření. Zaměření určuje jaká užší oblast matematiky bude hlouběji studována a pomáhá studentům vybírat vhodné předměty.

Program Obecná matematika umožňuje specializaci na jedno ze čtyř nabízených zaměření:

- 1. Zaměření **Stochastika** (STOCH) je určeno k přípravě na navazující magisterské studium programů *Pravděpodobnost, matematická statistika a ekonometrie* a *Finanční a pojistná matematika*.
- 2. Zaměření **Matematické struktury** (STR) je určeno k přípravě na navazující magisterské studium programů *Matematické struktury* a *Matematika pro informační technologie*.
- 3. Zaměření **Matematická analýza** (AN) je určeno k přípravě na navazující magisterské studium programu *Matematická analýza*.
- 4. Zaměření **Numerická analýza a matematické modelování** (NM) je určeno k přípravě na navazující magisterské studium programů *Numerická a výpočtová matematika* a *Matematické modelování ve fyzice a technice*.

#### Volba zaměření

Volba zaměření zahrnuje čtyři postupné kroky:

- o Výběr jedné ze čtyř variant předmětu "Bakalářské konzultace". Pozor, tento předmět se zapisuje až na počátku posledního semestru studia.
- o Výběr povinně volitelných předmětů podle "Bakalářských konzultací", typicky v třetím ročníku.
- o Výběr tématu bakalářské práce, typicky na počátku třetího ročníku.
- Výběr volitelného okruhu ústní části státní závěrečné zkoušky, při přihlašování ke státní závěrečné zkoušce.

#### Volba povinně volitelných předmětů

Volba povinně volitelných předmětů je usměrňována pomocí prerekvizit jednotlivých variant předmětu "Bakalářské konzultace". Každá varianta vyžaduje splnění určitých požadavků na absolvování předmětů zvoleného zaměření. Tyto prerekvizity se neověřují při zápise předmětu "Bakalářské konzultace", takže tento předmět je možné si zapsat i bez toho, že by student všechny prerekvizity splňoval. Ověřují se však při kontrole plnění studijních povinností, takže student, který v této fázi nesplňuje prerekvizity předmětu "Bakalářské konzultace", nemůže uzavřít studium.

#### Referativní seminář k bakalářské práci

V posledním semestru bakalářského studia doporučujeme absolvování volitelného "Referativního semináře k bakalářské práci". V tomto semináři se studenti nejdříve seznámí se základy sazby matematických textů pomocí programu LaTeX a zásady prezentace matematických výsledků. Poté si je sami vyzkoušejí na referátech o jejich bakalářských pracích.

#### 3. rok studia — zaměření Stochastika

| Kód     | Název                              | Kredity | ZS          | LS                |
|---------|------------------------------------|---------|-------------|-------------------|
| NMMA30  | $1$ Úvod do komplexní analýzy $^1$ | 5       |             | 2/2 Z+Zk          |
| NMSA331 | Matematická statistika 1           | 8       | 4/2 Z+Zk    |                   |
| NMSA333 | 3 Teorie pravděpodobnosti 1        | 8       | 4/2 Z+Zk    |                   |
| NMMA34  | 3 Teorie míry a integrálu 2        | 3       | 2/0  Zk     |                   |
| NMSA332 | 2 Matematická statistika 2         | 5       |             | 2/2 Z+Zk          |
| NMSA334 | Náhodné procesy 1                  | 8       |             | 4/2  Z+Zk         |
| NMMA34  | 2 Vybrané partie z funkcionální    | 5       |             | 2/2 Z+Zk          |
|         | analýzy <sup>2</sup>               |         |             |                   |
| NMSA351 | Bakalářské konzultace: Stochastika | 6       |             | $0/4~\mathrm{Z}$  |
| NMAT362 | 2 Referativní seminář k bakalářské | 4       | <del></del> | $0/2 \mathrm{~Z}$ |
|         | $pr\!\acute{a}ci$                  |         |             |                   |
|         | Povinně volitelné a volitelné      | 8       |             |                   |
|         | $p\check{r}edm\check{e}ty$         |         |             |                   |

 $<sup>^1</sup>$  Předmět Úvod do komplexní analýzy bude v akademickém roce 2023/2024 vyučován v obou semestrech. Od roku 2024/2025 bude vyučován v semestru letním.

Volba povinně volitelných předmětů je určena prerekvizitami předmětu NMSA351 "Bakalářské konzultace: Stochastika". Ten vyžaduje absolvování *všech* těchto předmětů:

| Kód     | Název                           | Kredity | ZS       | LS       |
|---------|---------------------------------|---------|----------|----------|
| NMSA331 | Matematická statistika 1        | 8       | 4/2 Z+Zk | _        |
| NMSA333 | Teorie pravděpodobnosti 1       | 8       | 4/2 Z+Zk |          |
| NMMA34  | 3 Teorie míry a integrálu 2     | 3       | 2/0  Zk  |          |
| NMSA332 | Matematická statistika 2        | 5       |          | 2/2 Z+Zk |
| NMSA334 | Náhodné procesy 1               | 8       |          | 4/2 Z+Zk |
| NMMA34  | 2 Vybrané partie z funkcionální | 5       |          | 2/2 Z+Zk |
|         | analýzy *                       |         |          |          |

 $<sup>^{\</sup>ast}$  Předmět Vybrané partie z funkcionální analýzy bude od akademického roku 2024/2025 vyučován v zimním semestru.

#### Další doporučené předměty pro 3. ročník, zaměření Stochastika

| Kód     | Název                          | Kredity | ZS               | LS       |
|---------|--------------------------------|---------|------------------|----------|
|         | 1 Analýza maticových výpočtů 1 | 5       | 2/2 Z+Zk         | _        |
| NMSA230 | ) Úvod do programování v R     | 1       | $0/1 \mathrm{Z}$ |          |
| NMFM33  | 1 Matematika ve financích      | 5       | _                | 2/2 Z+Zk |

Dále doporučujeme ostatní povinně volitelné předměty ze Skupiny II níže.

 $<sup>^2</sup>$  Předmět Vybrané partie z funkcionální analýzy bude od akademického roku 2024/2025 vyučován v zimním semestru.

#### 3. rok studia — zaměření Matematické struktury

| Kód     | Název                                       | Kredity | ZS        | LS                |
|---------|---------------------------------------------|---------|-----------|-------------------|
| NMMA30  | 1Úvod do komplexní analýzy <sup>1</sup>     | 5       | _         | 2/2 Z+Zk          |
| NMAG30  | 5 Úvod do komutativní algebry               | 6       | 3/1  Z+Zk |                   |
| NMAG33  | 5 Úvod do analýzy na varietách <sup>2</sup> | 5       | 2/2 Z+Zk  |                   |
| NMAG35  | 1 Bakalářské konzultace: Matematické        | 6       | <u> </u>  | $0/4 \mathrm{~Z}$ |
|         | struktury                                   |         |           |                   |
| NMAT362 | 2 Referativní seminář k bakalářské          | 4       |           | $0/2 \mathrm{~Z}$ |
|         | $prcute{a}ci$                               |         |           |                   |
|         | Povinně volitelné předměty ze               | 8       |           |                   |
|         | Skupiny STR                                 |         |           |                   |
|         | Povinně volitelné předměty                  | 14      |           |                   |
|         | Volitelné předměty                          | 12      |           |                   |

 $<sup>^1</sup>$  Předmět Úvod do komplexní analýzy bude v akademickém roce 2023/2024 vyučován v obou semestrech. Od roku 2024/2025 bude vyučován v semestru letním.

Volba povinně volitelných předmětů je určena prerekvizitami předmětu NMAG351 "Bakalářské konzultace: Matematické struktury". Ten vyžaduje absolvování všech těchto předmětů:

| Kód    | Název                                       | Kredity | ZS        | LS       |
|--------|---------------------------------------------|---------|-----------|----------|
|        | 2 Geometrie 2 <sup>1</sup>                  | 5       |           | 2/2 Z+Zk |
|        | 5 Úvod do komutativní algebry               | 6       | 3/1  Z+Zk |          |
| NMAG33 | 5 Úvod do analýzy na varietách <sup>2</sup> | 5       | 2/2 Z+Zk  |          |

 $<sup>^1</sup>$  Předmět Geometrie 2 nebude v akademickém roce 2023/2024 vyučován. Bude vyučován v zimním semestru 2024/2025.

Dále "Bakalářské konzultace: Matematické struktury" vyžadují získání alespoň 8 kreditů ze Skupiny STR.

### Skupina STR:

| Kód     | Název                               | Kredity | ZS       | LS        |
|---------|-------------------------------------|---------|----------|-----------|
| NMAG33  | 7 Úvod do teorie grup (S)           | 5       | 2/2 Z+Zk | _         |
| NMAG33  | 9 Úvod do teorie reprezentací (S)   | 5       | 2/2 Z+Zk |           |
|         | 2 Úvod do matematické logiky (S, T) | 3       |          | 2/0  Zk   |
| NMAG33  | 6 Úvod do teorie kategorií (S)      | 6       |          | 3/1  Z+Zk |
| NMAG33  | 4 Úvod do teorie Lieových grup (S)  | 5       |          | 2/2 Z+Zk  |
| NMIN331 | Základy kombinatoriky a teorie      | 5       |          | 2/2 Z+Zk  |
|         | grafů (S, T)                        |         |          |           |

Další doporučené povinně volitelné předměty pro 3. ročník, zaměření Matematické struktury

| Kód     | Název                             | Kredity | ZS      | LS |
|---------|-----------------------------------|---------|---------|----|
| NPGR002 | 2 Digitální zpracování obrazu (T) | 4       | 3/0  Zk | _  |

 $<sup>^2</sup>$  Předmět Úvod do analýzy na varietách bude od akademického roku 2024/2025 vyučován v letním semestru.

 $<sup>^2</sup>$  Předmět Úvod do analýzy na varietách bude od akademického roku 2024/2025 vyučován v letním semestru

| NMMB434 Geometrické modelování (T)       | 6 | 2/2  Z+Zk |             |
|------------------------------------------|---|-----------|-------------|
| NMMA345 Obecná topologie 1 (S)           | 6 | 3/1  Z+Zk |             |
| NMMB309 Počítačová algebra (T)           | 6 | 3/1  Z+Zk |             |
| NMMB337 Samoopravné kódy (T)             | 6 | 3/1  Z+Zk |             |
| NMMB206 Teorie čísel (S, T)              | 5 |           | 2/2 Z+Zk    |
| NMMB210 Teorie informace (T)             | 6 |           | 3/1  Z+Zk   |
| NMMB212 Úvod do kryptografie (T)         | 5 |           | 2/2 Z+Zk    |
| NMAG337 Úvod do teorie grup (S)          | 5 | 2/2 Z+Zk  |             |
| NMAG336 Úvod do teorie kategorií (S)     | 6 |           | 3/1  Z+Zk   |
| NMAG334 Úvod do teorie Lieových grup (S) | 5 |           | 2/2 Z+Zk    |
| NMAG338 Úvod do teorie množin $(S)^1$    | 6 |           | 3/1  Z+Zk   |
| NMAG339 Úvod do teorie reprezentací (S)  | 5 | 2/2 Z+Zk  | <del></del> |
| NMMA342Vybrané partie z funkcionální     | 5 |           | 2/2 Z+Zk    |
| analýzy $(S)^2$                          |   |           |             |
| NMIN331 Základy kombinatoriky a teorie   | 5 |           | 2/2 Z+Zk    |
| grafů (T, S)                             |   |           | •           |
|                                          |   |           |             |

 $<sup>^{1}</sup>$  Předmět Úvod do teorie množin bude od akademického roku 2024/2025 vyučován v zimním semestru.

Pro zájemce o navazující studijní program Matematické struktury doporučujeme předměty označené S. Pro zájemce o navazující studijní program Matematika pro informační technologie doporučujeme předměty označené T.

Předměty NMMB206, NMMB210, NMMB212, NMAG162 a NMAG338 je možné absolvovat už ve druhém roce studia.

#### 3. rok studia — zaměření Matematická analýza

| Kód     | Název                               | Kredity | ZS        | LS                |
|---------|-------------------------------------|---------|-----------|-------------------|
| NMMA301 | Úvod do komplexní analýzy *         | 5       | _         | 2/2 Z+Zk          |
| NMMA339 | Úvod do parciálních diferenciálních | 5       | 2/2 Z+Zk  |                   |
|         | rovnic                              |         |           |                   |
| NMMA343 | Teorie míry a integrálu 2           | 3       | 2/0 Zk    |                   |
| NMMA331 | Úvod do funkcionální analýzy        | 8       | 4/2 Z+Zk  |                   |
| NMMA345 | Obecná topologie 1                  | 6       | 3/1  Z+Zk |                   |
| NMMA336 | Obyčejné diferenciální rovnice      | 5       |           | 2/2 Z+Zk          |
| NMMA351 | Bakalářské konzultace: Matematická  | 6       |           | $0/4 \mathrm{~Z}$ |
|         | analýza                             |         |           |                   |
| NMAT362 | Referativní seminář k bakalářské    | 4       |           | $0/2 \mathrm{~Z}$ |
|         | $prcute{a}ci$                       |         |           |                   |
|         | Povinně volitelné předměty          | 6       |           |                   |
|         | Volitelné předměty                  | 12      |           |                   |

 $<sup>^{\</sup>ast}$  Předmět Úvod do komplexní analýzy bude v akademickém roce 2023/2024 vyučován v obou semestrech. Od roku 2024/2025 bude vyučován v semestru letním.

Volba povinně volitelných předmětů je určena prerekvizitami předmětu NMMA351 "Bakalářské konzultace: Matematická analýza". Ten vyžaduje absolvování  $v\check{s}ech$  těchto předmětů:

 $<sup>^2</sup>$  Předmět Vybrané partie z funkcionální analýzy bude od akademického roku 2024/2025 vyučován v zimním semestru.

| Kód    | Název                                | Kredity | ZS                                       | LS       |
|--------|--------------------------------------|---------|------------------------------------------|----------|
| NMAG21 | 2 Geometrie 2 <sup>1</sup>           | 5       |                                          | 2/2 Z+Zk |
| NMMA33 | 9Úvod do parciálních diferenciálních | 5       | 2/2 Z+Zk                                 |          |
|        | rovnic                               |         |                                          |          |
|        | 3 Teorie míry a integrálu 2          | 3       | 2/0  Zk                                  |          |
| NMMA33 | 1Úvod do funkcionální analýzy        | 8       | $2/0 \mathrm{Zk}$<br>$4/2 \mathrm{Z+Zk}$ |          |
| NMMA33 | 6Obyčejné diferenciální rovnice      | 5       |                                          | 2/2 Z+Zk |

 $<sup>^1</sup>$  Předmět Geometrie 2 nebude v akademickém roce 2023/2024 vyučován. Bude vyučován v zimním semestru 2024/2025.

#### Doporučené povinně volitelné předměty pro 3. ročník, zaměření Matematická analýza

| Kód    | Název                                       | Kredity | ZS                | LS                |
|--------|---------------------------------------------|---------|-------------------|-------------------|
| NMMA33 | 7Seminář z teorie reálných funkcí 1         | 2       | $0/2 \mathrm{~Z}$ | _                 |
| NMMA34 | 7Seminář ze základních vlastností           | 2       | $0/2 \mathrm{~Z}$ |                   |
|        | prostorů funkcí 1                           |         |                   |                   |
|        | 5 Obecná topologie 1                        | 6       | 3/1  Z+Zk         |                   |
| NMAG33 | 5 Úvod do analýzy na varietách <sup>1</sup> | 5       | 2/2 Z+Zk          |                   |
| NMMA34 | 0Seminář z teorie reálných funkcí 2         | 2       |                   | $0/2 \mathrm{~Z}$ |
| NMMA34 | 8Seminář ze základních vlastností           | 2       |                   | $0/2  \mathrm{Z}$ |
|        | prostorů funkcí 2                           |         |                   |                   |
|        | 2 Úvod do matematické logiky                | 3       |                   | 2/0  Zk           |
| NMAG33 | 8 Úvod do teorie množin <sup>2</sup>        | 6       |                   | 3/1  Z+Zk         |
| NMNM33 | 8Numerické řešení parciálních               | 5       |                   | 2/2 Z+Zk          |
|        | diferenciálních rovnic                      |         |                   |                   |
| NMNM33 | 6Úvod do metody konečných prvků             | 5       |                   | 2/2 Z+Zk          |
| NMNM33 | 4Úvod do matematického modelování           | 5       | _                 | $3/0 \mathrm{Zk}$ |

 $<sup>^{1}</sup>$  Předmět Úvod do analýzy na varietách bude od akademického roku 2024/2025vyučován v letním semestru.

## 3. rok studia — zaměření Numerická analýza a matematické modelování

| Kód     | Název                                | Kredity | ZS       | LS                |
|---------|--------------------------------------|---------|----------|-------------------|
| NMMA30  | 1Úvod do komplexní analýzy *         | 5       | _        | 2/2 Z+Zk          |
| NMNM33  | 1 Analýza maticových výpočtů 1       | 5       | 2/2 Z+Zk |                   |
| NMMA33  | 9Úvod do parciálních diferenciálních | 5       | 2/2 Z+Zk |                   |
|         | rovnic                               |         |          |                   |
| NMMA33  | l Úvod do funkcionální analýzy       | 8       | 4/2 Z+Zk |                   |
| NMNM33  | 8 Numerické řešení parciálních       | 5       | <u> </u> | 2/2 Z+Zk          |
|         | diferenciálních rovnic               |         |          |                   |
| NMMA33  | 6Obyčejné diferenciální rovnice      | 5       |          | 2/2 Z+Zk          |
| NMNM33  | 4Úvod do matematického modelování    | 5       |          | 3/0  Zk           |
| NMAT362 | Referativní seminář k bakalářské     | 4       |          | $0/2 \mathrm{~Z}$ |
|         | $prcute{a}ci$                        |         |          |                   |

 $<sup>^2</sup>$  Předmět Úvod do teorie množin bude od akademického roku 2024/2025 vyučován v zimním semestru. Jako volitelné předměty doporučujeme ostatní povinně volitelné předměty ze Skupiny II níže.

| NMNM351Bakalářské konzultace: Numerická | 6  | <br>$0/4~{ m Z}$ |
|-----------------------------------------|----|------------------|
| analýza a matematické modelování        |    |                  |
| Volitelné předměty                      | 12 |                  |

 $<sup>^{\</sup>ast}$  Předmět Úvod do komplexní analýzy bude v akademickém roce 2023/2024 vyučován v obou semestrech. Od roku 2024/2025 bude vyučován v semestru letním.

Volba povinně volitelných předmětů je určena prerekvizitami předmětu NMNM351 "Bakalářské konzultace: Numerická analýza a matematické modelování". Ten vyžaduje absolvování  $v\check{s}ech$  těchto předmětů:

| Kód Název                                      | Kredity | ZS       | LS        |
|------------------------------------------------|---------|----------|-----------|
| $\overline{\mathrm{NMAG212}}$ Geometrie 2 $^1$ | 5       | _        | 2/2 Z+Zk  |
| NMNM331 Analýza maticových výpočtů 1           | 5       | 2/2 Z+Zk |           |
| NMMA339Úvod do parciálních diferenciálních     | 5       | 2/2 Z+Zk |           |
| rovnic                                         |         |          |           |
| NMMA331 Úvod do funkcionální analýzy           | 8       | 4/2 Z+Zk |           |
| NMNM338Numerické řešení parciálních            | 5       |          | 2/2 Z+Zk  |
| diferenciálních rovnic                         |         |          |           |
| NMMA336Obyčejné diferenciální rovnice          | 5       |          | 2/2  Z+Zk |
| NMNM334<br>Úvod do matematického modelování    | 5       |          | 3/0 Zk    |

 $<sup>^1</sup>$  Předmět Geometrie 2 nebude v akademickém roce 2023/2024 vyučován. Bude vyučován v zimním semestru 2024/2025.

## Další doporučené předměty pro 3. ročník, zaměření Numerická analýza a matematické modelování

| Kód     | Název                           | Kredity | ZS       | LS       |
|---------|---------------------------------|---------|----------|----------|
| NOFY003 | Teoretická mechanika            | 7       | 3/2 Z+Zk | _        |
| NMMB43  | 4 Geometrické modelování        | 6       | 2/2 Z+Zk |          |
|         | 2Analýza maticových výpočtů 2   | 5       |          | 2/2 Z+Zk |
| NMNM33  | 6Úvod do metody konečných prvků | 5       | _        | 2/2 Z+Zk |

#### Shrnutí studijního plánu

Je potřeba splnit všechny povinnosti z povinných předmětů.

#### Povinné předměty

| Kód     | Název                                   | Kredity | ZS                | LS                |
|---------|-----------------------------------------|---------|-------------------|-------------------|
| NMMA10  | 1 Matematická analýza 1                 | 10      | 4/4 Z+Zk          | _                 |
| NMAG11  | l Lineární algebra 1                    | 10      | 4/2 Z+Zk          |                   |
| NMIN111 | Programování 1                          | 3       | $0/2 \mathrm{~Z}$ |                   |
| NMIN105 | Diskrétní matematika                    | 5       | 2/2 Z+Zk          |                   |
| NTVY014 | 4 <i>Tělesná výchova I</i> <sup>1</sup> | 1       | $0/2 \mathrm{~Z}$ |                   |
| NMMA10  | 2Matematická analýza 2                  | 10      |                   | 4/4 Z+Zk          |
| NMAG11  | 2 Lineární algebra 2                    | 10      |                   | 4/2 Z+Zk          |
| NMIN112 | Programování 2                          | 8       |                   | 2/4 Z+Zk          |
| NTVY015 | 5 Tělesná výchova II <sup>1</sup>       | 1       |                   | $0/2 \mathrm{~Z}$ |
| NMMA20  | 1 Matematická analýza 3                 | 8       | 4/2 Z+Zk          |                   |
| NMMA20  | <sup>5</sup> Teorie míry a integrálu 1  | 5       | 2/2 Z+Zk          |                   |

| NMNM201 <b>Základy numerické matematiky</b><br>NMAG211 <b>Geometrie 1</b><br>NTVY016 <i>Tělesná výchova III 1</i> | 8<br>5<br>1 | 4/2 Z+Zk<br>2/2 Z+Zk<br>0/2 Z |                    |
|-------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------|--------------------|
| NMMA204 <b>Matematická analýza 4</b>                                                                              | 5           | —                             | 2/2 Z+Zk           |
| NMSA202 Pravděpodobnost                                                                                           | 8           |                               | 4/2 Z+Zk           |
| a matematická statistika                                                                                          |             |                               |                    |
| NMAG206 Algebra                                                                                                   | 8           |                               | 4/2 Z+Zk           |
| NTVY017 Tělesná výchova IV <sup>1</sup>                                                                           | 1           |                               | $0/2 \mathrm{~Z}$  |
| NJAZ091 Anglický jazyk — zkouška pro                                                                              | 1           |                               | $0/0 \mathrm{~Zk}$ |
| bakaláře                                                                                                          |             |                               |                    |
| ${ m NMMA301 \acute{U}vod\ do\ komplexn\'i\ anal\acute{y}zy\ ^*}$                                                 | 5           | _                             | 2/2 Z+Zk           |

<sup>&</sup>lt;sup>1</sup> Viz podrobnosti jsou v obecném úvodu.

#### Povinně volitelné předměty

#### Skupina I.

Čtyři varianty předmětu "Bakalářské konzultace" určené pro jednotlivá zaměření tvoří oddělenou skupinu povinně volitelných předmětů. K úspěšnému ukončení studia je nutné si jednu z těchto variant vybrat a získat z ní zápočet.

Z této skupiny je třeba získat alespoň 6 kreditů. V závorce jsou uvedena zaměření, pro něž je předmět doporučen.

| Kód     | Název                                                                          | Kredity | ZS | LS               |
|---------|--------------------------------------------------------------------------------|---------|----|------------------|
| NMAG35  | 1 Bakalářské konzultace: Matematické struktury (STR)                           | 6       | _  | $0/4~\mathrm{Z}$ |
| NMMA35  | 1 Bakalářské konzultace: Matematická analýza (AN)                              | 6       |    | $0/4~\mathrm{Z}$ |
| NMNM35  | 1 Bakalářské konzultace: Numerická<br>analýza a matematické<br>modelování (NM) | 6       | _  | 0/4 Z            |
| NMSA351 | Bakalářské konzultace:<br>Stochastika (STOCH)                                  | 6       |    | 0/4 Z            |

Volba povinně volitelných předmětů ze Skupiny II je usměrňována pomocí prerekvizit jednotlivých variant předmětu "Bakalářské konzultace". Každá varianta vyžaduje splnění určitých požadavků na absolvování předmětů zvoleného zaměření. Tyto prerekvizity se neověřují při zápise předmětu "Bakalářské konzultace", takže tento předmět je možné si zapsat i bez toho, že by student všechny prerekvizity splňoval. Ověřují se však při kontrole plnění studijních povinností, takže student, který v této fázi nesplňuje prerekvizity předmětu "Bakalářské konzultace", nemůže uzavřít studium.

#### Prerekvizity bakalářských konzultací

#### Stochastika

Předmět NMSA351 "Bakalářské konzultace: Stochastika" vyžaduje absolvování  $v\check{s}ech$ těchto předmětů:

 $<sup>^{\</sup>ast}$  Předmět Úvod do komplexní analýzy bude v akademickém roce 2023/2024 vyučován v obou semestrech. Od roku 2024/2025 bude vyučován v semestru letním.

| Kód     | Název                           | Kredity | ZS       | LS       |
|---------|---------------------------------|---------|----------|----------|
| NMSA331 | Matematická statistika 1        | 8       | 4/2 Z+Zk |          |
| NMMA34  | 3Teorie míry a integrálu 2      | 3       | 2/0  Zk  |          |
| NMSA333 | Teorie pravděpodobnosti 1       | 8       | 4/2 Z+Zk |          |
| NMSA332 | Matematická statistika 2        | 5       | <u> </u> | 2/2 Z+Zk |
| NMSA334 | Náhodné procesy 1               | 8       |          | 4/2 Z+Zk |
| NMMA34  | 2 Vybrané partie z funkcionální | 5       |          | 2/2 Z+Zk |
|         | analýzy *                       |         |          |          |

 $<sup>^{\</sup>ast}$  Předmět Vybrané partie z funkcionální analýzy bude od akademického roku 2024/2025 vyučován v zimním semestru.

#### Matematické struktury

Předmět NMAG351 "Bakalářské konzultace: Matematické struktury" vyžaduje absolvování  $v\check{s}ech$  předmětů uvedených níže.

| Kód    | Název                               | Kredity | ZS        | LS       |
|--------|-------------------------------------|---------|-----------|----------|
|        | $2$ Geometrie $2^{-1}$              | 5       | _         | 2/2 Z+Zk |
|        | 5 Úvod do komutativní algebry       | 6       | 3/1  Z+Zk |          |
| NMAG33 | 5 Úvod do analýzy na varietách $^2$ | 5       | 2/2 Z+Zk  |          |

 $<sup>^1</sup>$  Předmět Geometrie 2 nebude v akademickém roce 2023/2024 vyučován. Bude vyučován v zimním semestru 2024/2025.

Dále předmět"Bakalářské konzultace: Matematické struktury" vyžaduje získání alespoň 8 kreditů z následujících předmětů:

| Kód     | Název                          | Kredity | ZS       | LS                |
|---------|--------------------------------|---------|----------|-------------------|
| NMAG33  | 7 Úvod do teorie grup          | 5       | 2/2 Z+Zk |                   |
| NMAG339 | 9 Úvod do teorie reprezentací  | 5       | 2/2 Z+Zk |                   |
| NMAG162 | 2 Úvod do matematické logiky   | 3       |          | $2/0 \mathrm{Zk}$ |
| NMAG336 | i Úvod do teorie kategorií     | 6       |          | 3/1  Z+Zk         |
| NMAG33  | 4 Úvod do teorie Lieových grup | 5       |          | 2/2 Z+Zk          |
| NMIN331 | Základy kombinatoriky a teorie | 5       |          | 2/2 Z+Zk          |
|         | grafů                          |         |          |                   |

#### Matematická analýza

Předmět NMMA351 "Bakalářské konzultace: Matematická analýza" vyžaduje absolvování *všech* předmětů uvedených níže. Pro úspěšné studium magisterského programu Matematická analýza je navíc žádoucí znalost látky z předmětu NMMA345 Obecná topologie 1.

| Kód Název                                   | Kredity | ZS       | LS       |
|---------------------------------------------|---------|----------|----------|
| $ m NMAG212~Geometrie~2^{-1}$               | 5       | _        | 2/2 Z+Zk |
| NMMA339 Úvod do parciálních diferenciálních | 5       | 2/2 Z+Zk |          |
| rovnic                                      |         |          |          |
| NMMA343 Teorie míry a integrálu 2           | 3       | 2/0  Zk  |          |
| NMMA331 Úvod do funkcionální analýzy        | 8       | 4/2 Z+Zk | _        |

 $<sup>^2</sup>$  Předmět Úvod do analýzy na varietách bude od akademického roku 2024/2025 vyučován v letním semestru.

| NMMA336Obyčejné diferenciální rovnice      | 5 — | 2/2  Z+Zk |
|--------------------------------------------|-----|-----------|
| 1 (1/11/11/11/11/11/11/11/11/11/11/11/11/1 | •   | -/        |

 $<sup>^1</sup>$  Předmět Geometrie 2 nebude v akademickém roce 2023/2024 vyučován. Bude vyučován v zimním semestru 2024/2025.

#### Numerická analýza a matematické modelování

Předmět NMNM351 "Bakalářské konzultace: Numerická analýza a matematické modelování" vyžaduje absolvování  $v\check{s}ech$  těchto předmětů:

| Kód     | Název                                | Kredity | ZS       | LS                 |
|---------|--------------------------------------|---------|----------|--------------------|
| NMAG212 | 2 Geometrie 2 <sup>1</sup>           | 5       | _        | 2/2 Z+Zk           |
|         | 1 Analýza maticových výpočtů 1       | 5       | 2/2 Z+Zk |                    |
| NMMA33  | 9Úvod do parciálních diferenciálních | 5       | 2/2 Z+Zk |                    |
|         | rovnic                               |         |          |                    |
| NMMA33  | 1Úvod do funkcionální analýzy        | 8       | 4/2 Z+Zk |                    |
| NMNM33  | 8Numerické řešení parciálních        | 5       |          | 2/2 Z+Zk           |
|         | diferenciálních rovnic               |         |          |                    |
| NMMA33  | 6Obyčejné diferenciální rovnice      | 5       |          | 2/2 Z+Zk           |
|         | 4Úvod do matematického modelování    | 5       | _        | $3/0 \mathrm{~Zk}$ |

 $<sup>^1</sup>$  Předmět Geometrie 2 nebude v akademickém roce 2023/2024 vyučován. Bude vyučován v zimním semestru 2024/2025.

#### Skupina II.

Z této skupiny je třeba získat alespoň 38 kreditů. V závorce jsou uvedena zaměření, pro něž je předmět doporučen.

| Kód     | Název                               | Kredity | ZS                | LS       |
|---------|-------------------------------------|---------|-------------------|----------|
| NMNM331 | Analýza maticových                  | 5       | 2/2 Z+Zk          | _        |
|         | výpočtů 1 (STOCH, NM)               |         |                   |          |
| NMNM332 | Analýza maticových výpočtů 2 (NM)   | 5       |                   | 2/2 Z+Zk |
| NPGR002 | Digitální zpracování obrazu (STR)   | 4       | $3/0 \mathrm{Zk}$ |          |
|         | Geometrické modelování (STR, NM)    | 6       | 2/2 Z+Zk          |          |
| NMAG212 | Geometrie 2 (STOCH, STR, MA,        | 5       |                   | 2/2 Z+Zk |
|         | $(NM)^1$                            |         |                   |          |
|         | Úvod do komutativní algebry (STR)   | 6       | 3/1  Z+Zk         |          |
|         | Matematická statistika 1 (STOCH)    | 8       | 4/2 Z+Zk          |          |
|         | Matematická statistika 2 (STOCH)    | 5       |                   | 2/2 Z+Zk |
|         | Náhodné procesy 1 (STOCH)           | 8       | <del></del>       | 4/2 Z+Zk |
| NMNM338 | Numerické řešení parciálních        | 5       |                   | 2/2 Z+Zk |
|         | diferenciálních rovnic (MA, NM)     |         |                   |          |
| NMFM331 | Matematika ve financích (STOCH)     | 5       |                   | 2/2 Z+Zk |
|         | Obecná topologie 1 (MA, STR)        | 6       | 3/1  Z+Zk         | _        |
| NMMA336 | Obyčejné diferenciální rovnice (MA, | 5       |                   | 2/2 Z+Zk |
|         | NM)                                 |         |                   |          |
|         | Počítačová algebra (STR)            | 6       | 3/1  Z+Zk         | _        |
| NMMB337 | Samoopravné kódy (STR)              | 6       | 3/1  Z+Zk         | _        |
| NMMA337 | Seminář z teorie reálných           | 2       | $0/2 \mathrm{~Z}$ |          |
|         | funkcí 1 (MA)                       |         |                   |          |

| NMMA340Seminář z teorie reálných                     | 2 | _                 | $0/2 \mathrm{~Z}$ |
|------------------------------------------------------|---|-------------------|-------------------|
| funkcí 2 (MA)                                        |   |                   |                   |
| NMMA347Seminář ze základních vlastností              | 2 | $0/2 \mathrm{~Z}$ |                   |
| prostorů funkcí 1 (MA)                               |   |                   |                   |
| NMMA348Seminář ze základních vlastností              | 2 |                   | $0/2 \mathrm{~Z}$ |
| prostorů funkcí 2 (MA)                               |   |                   |                   |
| NOFY003 Teoretická mechanika (NM)                    | 7 | 3/2 Z+Zk          |                   |
| NMMB206 Teorie čísel (STR)                           | 5 | <u>.</u>          | 2/2 Z+Zk          |
| NMMB210 Teorie informace (STR)                       | 6 |                   | 3/1  Z+Zk         |
| NMMA343 Teorie míry a integrálu 2 (STOCH,            | 3 | $2/0 \mathrm{Zk}$ | <u>.</u>          |
| MA)                                                  |   |                   |                   |
| NMSA230 Úvod do programování                         | 1 | $0/1 \mathrm{~Z}$ |                   |
| v R (STOCH)                                          |   |                   |                   |
| NMSA333 Teorie pravděpodobnosti 1 (STOCH)            | 8 | 4/2 Z+Zk          |                   |
| NMAG335 Úvod do analýzy na varietách (STR,           | 5 | 2/2 Z+Zk          |                   |
| $\mathrm{MA})^2$                                     |   |                   |                   |
| NMMA331 Úvod do funkcionální analýzy (MA,            | 8 | 4/2 Z+Zk          |                   |
| NM)                                                  |   |                   |                   |
| NMMB212 Úvod do kryptografie (STR)                   | 5 |                   | 2/2 Z+Zk          |
| NMAG162 Úvod do matematické logiky (STR,             | 3 |                   | $2/0 \mathrm{Zk}$ |
| MA)                                                  |   |                   |                   |
| NMNM334 Úvod do matematického                        | 5 |                   | $3/0 \mathrm{Zk}$ |
| modelování (MA, NM)                                  |   |                   |                   |
| NMNM336 Úvod do metody konečných                     | 5 |                   | 2/2 Z+Zk          |
| prvků (NM)                                           |   |                   | •                 |
| NMMA339 Úvod do parciálních diferenciálních          | 5 | 2/2 Z+Zk          |                   |
| rovnic (MA, NM)                                      |   | ,                 |                   |
| NMAG337 Úvod do teorie grup (STR)                    | 5 | 2/2 Z+Zk          |                   |
| NMAG336 Úvod do teorie kategorií (STR)               | 6 | <u>.</u>          | 3/1  Z+Zk         |
| NMAG334 Úvod do teorie Lieových grup (STR)           | 5 |                   | 2/2 Z+Zk          |
| NMAG338 Úvod do teorie množin (STR, MA) <sup>4</sup> | 6 |                   | 3/1  Z+Zk         |
| NMAG339 Úvod do teorie reprezentací (STR)            | 5 | 2/2 Z+Zk          | <u>.</u>          |
| NMMA342 Vybrané partie z funkcionální                | 5 | <u> </u>          | 2/2 Z+Zk          |
| analýzy (STOCH, STR) $^3$                            |   |                   |                   |
| NMIN331 Základy kombinatoriky a teorie               | 5 |                   | 2/2 Z+Zk          |
| grafů (STR)                                          |   |                   | •                 |
|                                                      |   |                   |                   |

 $<sup>^{1}</sup>$  Předmět Geometrie 2 nebude v akademickém roce 2023/2024 vyučován. Bude vyučován v zimním semestru 2024/2025.

 $<sup>^2</sup>$  Předmět Úvod do analýzy na varietách bude od akademického roku 2024/2025 vyučován v letním semestru.

 $<sup>^3</sup>$  Předmět Vybrané partie z funkcionální analýzy bude od akademického roku 2024/2025 vyučován v zimním semestru.

 $<sup>^4</sup>$  Předmět Úvod do teorie množin bude od akademického roku 2024/2025 vyučován v zimním semestru.

#### Státní závěrečná zkouška

#### Podmínky pro přihlášení ke státní závěrečné zkoušce

- Získání alespoň 174 kreditů.
- Získání alespoň 180 kreditů, jedná-li se o poslední část závěrečné zkoušky.
- Splnění všech povinných předmětů studijního plánu.
- Splnění povinně volitelných předmětů ze skupiny II v rozsahu alespoň 38 kreditů.
- Splnění podmínek pro příslušnou část závěrečné zkoušky.

#### Podmínky pro přihlášení k obhajobě bakalářské práce:

- Splnění povinně volitelných předmětů ze skupiny I v rozsahu alespoň 6 kreditů.
- Odevzdání vypracované bakalářské práce ve stanoveném termínu.

#### Podmínky pro přihlášení k ústní části závěrečné zkoušky:

Splnění prerekvizit k jednomu z povinně volitelných předmětů ze skupiny I odpovídajícímu vybranému volitelnému okruhu ústní části závěrečné zkoušky.

#### Ústní část státní závěrečné zkoušky

Zkouška má přehledový charakter. Žádá se, aby posluchač prokázal pochopení základních pojmů, principů a výsledků, byl schopen je ilustrovat na příkladech a předvedl určitou míru syntézy.

Ústní část státní závěrečné zkoušky se skládá ze tří tématických okruhů, z každého dostane student jednu otázku. Dva okruhy (Základy matematické analýzy, Lineární a obecná algebra) jsou povinné, třetí okruh je volitelný a odpovídá zvolenému zaměření. Student si může vybrat třetí okruh z možností:

- Stochastika
- Matematické struktury
- Matematická analýza
- Numerická analýza a matematické modelování

Podrobnosti o organizaci státních závěrečných zkoušek lze najít na stránkách https://www.mff.cuni.cz/cs/math/pro-studenty/bc-prog/bc-prace

#### Požadavky pro ústní část státní závěrečné zkoušky

#### 1. Základy matematické analýzy

Posloupnosti a řady čísel a funkcí. Diferenciální a integrální počet funkcí jedné reálné proměnné. Diferenciální počet funkcí více proměnných. Obyčejné diferenciální rovnice.

#### 2. Lineární a obecná algebra

Matice a determinanty, soustavy lineárních rovnic, vektorové prostory, lineární a bilineární formy, základy teorie grup a komutativních okruhů.

#### 3. Volitelný okruh

#### 3A. Stochastika

Teorie pravděpodobnosti: pravděpodobnostní prostor, nezávislost, náhodné veličiny a vektory, zákony velkých čísel, centrální limitní věta. Matematická statistika: náhodný výběr, uspořádaný náhodný výběr, základy teorie odhadu a testování hypotéz.

#### 3B. Matematické struktury

Základy teorie funkcí komplexní proměnné. Rozšíření těles. Kořenová a rozkladová nadtělesa. Galoisova teorie. Polynomiální okruhy. Základy diferenciální geometrie křivek a ploch. Varieta a její tečný prostor. Diferenciální formy. Stokesova věta. Integrace funkcí na plochách a na Riemannově varietě.

#### 3C. Matematická analýza

Základy teorie Lebesgueova integrálu. Banachovy a Hilbertovy prostory. Spojitá lineární zobrazení. Fourierovy řady v Hilbertových prostorech. Bodové chování klasických Fourierových řad. Základy teorie funkcí komplexní proměnné.

#### 3D. Numerická analýza a matematické modelování

Aproximace funkcí, numerická integrace, numerické řešení nelineárních algebraických rovnic, numerické řešení obyčejných diferenciálních rovnic. Přímé a iterační metody řešení lineárních algebraických rovnic. Klasická teorie a numerické řešení parciálních diferenciálních rovnic. Základy matematického modelování ve fyzice kontinua.

Podrobnější vysvětlení požadavků pro ústní část státní závěrečné zkoušky lze najít na stránkách https://www.mff.cuni.cz/cs/math/pro-studenty/bc-prog/bc-om-garant/momp/sbz-new

#### 2.2 Finanční matematika

Garantující pracoviště: Katedra pravděpodobnosti a matematické statistiky Garant programu: doc. RNDr. Ing. Miloš Kopa, Ph.D.

#### Doporučený průběh studia

#### 1. rok studia

| Kód     | Název                     | Kredity | ZS                | LS                 |
|---------|---------------------------|---------|-------------------|--------------------|
| NMAG11  | 3 Lineární algebra 1      | 10      | 4/2 Z+Zk          |                    |
| NMTM10  | 1 Matematická analýza I   | 8       | 4/2 Z+Zk          |                    |
| NMIN111 | Programování 1            | 3       | $0/2 \mathrm{~Z}$ |                    |
| NMFM10  | l Účetnictví 1            | 5       | 2/2 Z+Zk          |                    |
| NTVY014 | 4 Tělesná výchova I       | 1       | $0/2 \mathrm{~Z}$ |                    |
|         | $Anglick \acute{y}~jazyk$ | 1       | $0/2 \mathrm{~Z}$ |                    |
| NMAG11  | 4 Lineární algebra 2      | 10      |                   | 4/2 Z+Zk           |
| NMMA12  | 2Kalkulus 1               | 10      |                   | 4/4 Z+Zk           |
| NMFM10  | 4 Úvod do financí         | 3       |                   | $2/0 \mathrm{~Zk}$ |
| NTVY015 | o Tělesná výchova II      | 1       |                   | $0/2 \mathrm{~Z}$  |
|         | $Anglick \acute{y}~jazyk$ | 1       |                   | $0/2 \mathrm{~Z}$  |
|         | Volitelné předměty        | 7       |                   |                    |

Pro splnění je nezbytné splnit nejméně tři z předmětů NTVY014, NTVY015, NTVY016 a NTVY017 a nejvýše jeden z nich lze nahradit absolvováním letního výcvikového kursu NTVY018 nebo zimního výcvikového kursu NTVY019. Podrobnosti jsou v obecném úvodu.

#### Doporučené volitelné předměty

Velice doporučujeme navštěvovat kursy anglického jazyka. Jejich výběr je popsán v úvodní části oblasti vzdělávání Matematika.

Studentům, kteří si na začátku studia chtějí procvičit a zdokonalit základní matematické dovednosti potřebné ke studiu, doporučujeme předměty NMTM161 a NMTM162.

| Kód        | Název                                    | Kredity | ZS                | LS                 |
|------------|------------------------------------------|---------|-------------------|--------------------|
| NMTM161    | 1 Matematický proseminář I               | 2       | 0/2 Z             |                    |
| NMTM162    | 2 Matematický proseminář II              | 2       | <del>_</del>      | $0/2 \mathrm{~Z}$  |
| NMIN112    | Programování 2                           | 8       |                   | 2/4 Z+Zk           |
| NMSA170    | Pravděpodobnostní a statistické problémy | 2       | _                 | $0/2 \mathrm{~Z}$  |
| 2. rok stu | dia                                      |         |                   |                    |
| Kód        | Název                                    | Kredity | ZS                | LS                 |
| NMMA22     | l Kalkulus 2                             | 8       | 4/2 Z+Zk          |                    |
| NMFM204    | l Úvod do optimalizace                   | 5       | 2/2 Z+Zk          |                    |
| NMFM207    | Matematické metody ve                    | 5       | 2/2 Z+Zk          |                    |
|            | financích                                |         |                   |                    |
| NMFM205    | í Matematika ve financích                | 6       | $4/0 \mathrm{Zk}$ |                    |
|            | a pojišťovnictví                         |         |                   |                    |
| NTVY016    | Tělesná výchova III                      | 1       | $0/2 \mathrm{~Z}$ |                    |
|            | Anglický jazyk                           | 1       | $0/2 \mathrm{~Z}$ |                    |
| NMFM202    | Pravděpodobnost pro finanční             | 8       | <u> </u>          | 4/2 Z+Zk           |
|            | matematiky                               |         |                   |                    |
| NMNM21     | l Úvod do numerické matematiky           | 8       |                   | 4/2 Z+Zk           |
| NMFM201    | Finanční management                      | 3       |                   | $2/0 \mathrm{~Zk}$ |

2

1

1

10

 $0/2 \ Z$ 

 $0/2 \ Z$ 

 $0/0 \mathrm{Zk}$ 

 $0/2 \ Z$ 

#### Doporučené volitelné předměty

NTVY017 Tělesná výchova IV

bakaláře

 $Anglický\ jazyk$ 

Volitelné předměty

NMIN203 Mathematica pro začátečníky

NJAZ091 Anglický jazyk — zkouška pro

| Kód           | Název                                                               | Kredity     | ZS | LS                      |
|---------------|---------------------------------------------------------------------|-------------|----|-------------------------|
| NMFM26        | 6 Veřejné finance<br>0 Ekonomie<br>0 Principy statistického myšlení | 3<br>5<br>2 |    | 2/0 Zk<br>2/2 Z+Zk<br>— |
| _ :_:_:511_00 | - · ·····r y · · · · · · · · · · · · · ·                            | _           | ·/ |                         |

#### 3. rok studia

Na začátku 3. roku studia je potřeba vybrat jedno ze dvou zaměření. Zaměření určuje jaká užší oblast finanční matematiky bude hlouběji studována a pomáhá studentům vybírat vhodné předměty.

Program Finanční matematika umožňuje specializaci na jedno ze dvou nabízených zaměření:

<sup>&</sup>lt;sup>1</sup> Pro splnění je nezbytné splnit nejméně tři z předmětů NTVY014, NTVY015, NTVY016 a NTVY017 a nejvýše jeden z nich lze nahradit absolvováním letního výcvikového kursu NTVY018 nebo zimního výcvikového kursu NTVY019. Podrobnosti jsou v obecném úvodu.

- 1. Zaměření **Finančně-pojistné výpočty** je určeno pro studenty, kteří chtějí po ukončení bakalářského studia odejít do praxe.
- 2. Zaměření **Finanční modelování** je určeno k přípravě na navazující magisterské studium programu *Finanční a pojistná matematika*.

| D v /      | 0 I VI   | r·       |            |
|------------|----------|----------|------------|
| Doporučený | prubeh - | Financhi | modelovani |

| · · · · · · · · · · · · · · · · · · · |                                                        |           |          |                   |
|---------------------------------------|--------------------------------------------------------|-----------|----------|-------------------|
| Kód                                   | Název                                                  | Kredity   | ZS       | LS                |
| NMFM301                               | Statistika pro finanční<br>matematiky                  | 8         | 4/2 Z+Zk |                   |
| NMFM308                               | Výpočetní prostředky finanční<br>a pojistné matematiky | 8         | 4/2 Z+Zk |                   |
| NMFM311                               | Úvod do pojišťovnictví                                 | 5         | 2/2 Z+Zk |                   |
|                                       | Kalkulus 3                                             | 8         | 4/2 Z+Zk |                   |
|                                       | Pojišťovací právo                                      | 3         | 2/0  Zk  |                   |
|                                       | Statistika pro finanční<br>matematiky 2                | 5         |          | 2/2 Z+Zk          |
| NMFM334                               | Základy regrese                                        | 5         |          | 2/2 Z+Zk          |
|                                       | Referativní seminář k bakalářské práci                 | 4         | _        | 0/2 Z             |
| NSZZ031                               | Vypracování a konzultace<br>bakalářské práce           | 6         | _        | $0/4~\mathrm{Z}$  |
|                                       | Volitelné předměty                                     | 8         |          |                   |
| Doporučený                            | průběh - Finančně-pojistné výpočty                     |           |          |                   |
| Kód                                   | Název                                                  | Kredity   | ZS       | LS                |
| NMFM301                               | Statistika pro finanční<br>matematiky                  | 8         | 4/2 Z+Zk | _                 |
| NMFM308                               | Výpočetní prostředky finanční<br>a pojistné matematiky | 8         | 4/2 Z+Zk | _                 |
| NMFM311                               | Úvod do pojišťovnictví                                 | 5         | 2/2 Z+Zk |                   |
| NMFM305                               | Pojišťovací právo                                      | 3         | 2/0  Zk  |                   |
|                                       | Finančně-pojistná praxe                                | 15        |          | $0/2 \mathrm{~Z}$ |
| NMFM338                               | Vybrané pojistně-matematické<br>metody                 | 3         | _        | 2/0 Zk            |
|                                       | Referativní seminář k bakalářské práci                 | 4         | _        | $0/2 \mathrm{~Z}$ |
| NSZZ031                               | Vypracování a konzultace<br>bakalářské práce           | 6         | _        | $0/4~\mathrm{Z}$  |
|                                       | Volitelné předměty                                     | 8         |          |                   |
| Doporučené                            | volitelné předměty                                     |           |          |                   |
|                                       | učujeme zapsání semináře NMAT362.                      | Dále dopo | ručujeme |                   |
| Kód                                   | Název                                                  | Kredity   | ZS       | LS                |
| NMFM309                               | Bankovnictví a řízení rizik                            | 5         | 2/2 Z+Zk | _                 |
|                                       | Praktické aspekty měření a řízení                      | 3         | 2/0  Zk  |                   |
|                                       | finančních rizik                                       |           | •        |                   |

| NMIN264 Mathematica pro pokročilé | 2 — | $0/2  \mathrm{Z}$  |
|-----------------------------------|-----|--------------------|
| ${ m NMFM461}\ Demografie$        | 3 — | $2/0 \mathrm{~Zk}$ |

## Shrnutí studijního plánu

## Povinné předměty

Všechny předměty z této skupiny je potřeba úspěšně absolvovat.

| Kód     | Název                           | Kredity | ZS                 | LS                  |
|---------|---------------------------------|---------|--------------------|---------------------|
| NMAG11  | 3 Lineární algebra 1            | 10      | 4/2 Z+Zk           | <del></del>         |
|         | 1 Matematická analýza I         | 8       | 4/2  Z+Zk          |                     |
| NMIN111 | Programování 1                  | 3       | $0/2 \mathrm{~Z}$  |                     |
| NMFM10  | 1 Účetnictví 1                  | 5       | 2/2 Z+Zk           | _                   |
| NTVY014 | 1 Tělesná výchova I             | 1       | $0/2 \mathrm{~Z}$  |                     |
| NMAG11  | 4 Lineární algebra 2            | 10      |                    | 4/2  Z+Zk           |
| NMMA12  | 2Kalkulus 1                     | 10      |                    | 4/4 Z+Zk            |
| NMFM10  | 4 Úvod do financí               | 3       |                    | $2/0 \mathrm{Zk}$   |
| NTVY01  | 5 Tělesná výchova II            | 1       |                    | $0/2 \mathrm{~Z}$   |
|         | 1 Kalkulus 2                    | 8       | 4/2 Z+Zk           |                     |
| NMFM20  | 4 Úvod do optimalizace          | 5       | 2/2 Z+Zk           |                     |
| NMFM20  | 7 Matematické metody ve         | 5       | 2/2 Z+Zk           |                     |
|         | financích                       |         |                    |                     |
| NMFM20  | 5 Matematika ve financích       | 6       | $4/0 \mathrm{~Zk}$ |                     |
|         | a pojišťovnictví                |         |                    |                     |
| NTVY016 | o Tělesná výchova III           | 1       | $0/2 \mathrm{~Z}$  |                     |
| NMFM20  | 2 Pravděpodobnost pro finanční  | 8       |                    | 4/2  Z+Zk           |
|         | matematiky                      |         |                    |                     |
| NMNM21  | 1Úvod do numerické matematiky   | 8       |                    | 4/2  Z+Zk           |
| NMFM20  | 1 Finanční management           | 3       |                    | 2/0  Zk             |
| NMIN203 | Mathematica pro začátečníky     | 2       |                    | $0/2 \mathrm{~Z}$   |
| NTVY017 | 7 Tělesná výchova IV            | 1       |                    | $0/2 \mathrm{~Z}$   |
| NJAZ091 | Anglický jazyk — zkouška pro    | 1       |                    | $0/0 \mathrm{\ Zk}$ |
|         | bakaláře                        |         |                    |                     |
| NMFM30  | 1 Statistika pro finanční       | 8       | 4/2 Z+Zk           |                     |
|         | matematiky                      |         |                    |                     |
| NMFM30  | 8 Výpočetní prostředky finanční | 8       | 4/2 Z+Zk           |                     |
|         | a pojistné matematiky           |         | ,                  |                     |
| NMFM31  | 1 Úvod do pojišťovnictví        | 5       | 2/2 Z+Zk           |                     |
|         | 5 Pojišťovací právo             | 3       | $2/0 \mathrm{~Zk}$ | _                   |
|         | Vypracování a konzultace        | 6       |                    | $0/4 \mathrm{~Z}$   |
|         | bakalářské práce                |         |                    | ,                   |
|         |                                 |         |                    |                     |

 $<sup>^1</sup>$  Pro splnění je nezbytné splnit nejméně tři z předmětů NTVY014, NTVY015, NTVY016 a NTVY017 a nejvýše jeden z nich lze nahradit absolvováním letního výcvikového kursu NTVY018 nebo zimního výcvikového kursu NTVY019. Podrobnosti jsou v obecném úvodu.

#### Povinně volitelné předměty

Z této skupiny je potřeba získat alespoň 18 kreditů. V závorce uvádíme, zda je předmět určen pro teoretické zaměření Finanční modelování (FM) nebo praktické zaměření Finančně-pojistné výpočty (FPV).

| Kód                                  | Název                           | Kredity | ZS | LS                |
|--------------------------------------|---------------------------------|---------|----|-------------------|
| NMMA341 Kalkulus 3 (FM) 8 4/2 Z+Zk — |                                 |         |    |                   |
| NMFM332 Statistika pro finanční      |                                 | 5       |    | 2/2 Z+Zk          |
|                                      | matematiky 2 (FM)               |         |    |                   |
| NMFM33                               | 4 Základy regrese (FM)          | 5       |    | 2/2 Z+Zk          |
|                                      | 6 Finančně-pojistná praxe (FPV) | 15      |    | $0/2 \mathrm{~Z}$ |
| NMFM33                               | 8 Vybrané pojistně-matematické  | 3       |    | 2/0  Zk           |
|                                      | metody (FPV)                    |         |    |                   |

#### Doporučené volitelné předměty

| Kód     | Název                             | Kredity | ZS                | LS                |
|---------|-----------------------------------|---------|-------------------|-------------------|
| NMTM16  | 1 Matematický proseminář I        | 2       | 0/2 Z             | _                 |
| NMTM16  | 2 Matematický proseminář II       | 2       |                   | $0/2 \mathrm{~Z}$ |
| NMFM26  | O.Ekonomie                        | 5       |                   | 2/2 Z+Zk          |
| NMIN112 | Programování 2                    | 8       |                   | 2/4 Z+Zk          |
| NMSA160 | Pravděpodobnostní a statistické   | 5       |                   | 2/2 Z+Zk          |
|         | $probl\'emy$                      |         |                   |                   |
| NMSA260 | Principy statistického myšlení    | 2       | $0/2 \mathrm{~Z}$ |                   |
| NMFM309 | 9 Bankovnictví a řízení rizik     | 5       | 2/2 Z+Zk          |                   |
| NMFM30  | ô Veřejné finance                 | 3       | <u> </u>          | $2/0 \mathrm{Zk}$ |
| NMFM46  | 1 Demografie                      | 3       | <del></del>       | $2/0 \mathrm{Zk}$ |
| NMIN264 | Mathematica pro pokročilé         | 2       | <del></del>       | $0/2 \mathrm{~Z}$ |
| NMFP463 | Praktické aspekty měření a řízení | 3       | 2/0  Zk           |                   |
|         | finančních rizik                  |         | ·                 |                   |
| NMAT362 | Referativní seminář k bakalářské  | 4       |                   | $0/2 \mathrm{~Z}$ |
|         | $prcup{a}ci$                      |         |                   | ,                 |
|         |                                   |         |                   |                   |

#### Státní závěrečná zkouška

#### Podmínky pro přihlášení ke státní závěrečné zkoušce

Podmínky pro přihlášení k poslední části státní závěrečné zkoušky

- Získání alespoň 180 kreditů.
- Splnění všech povinných předmětů studijního plánu.
- Získání alespoň 18 kreditů ze skupiny povinně volitelných předmětů.
- Odevzdání vypracované bakalářské práce ve stanoveném termínu.

#### Podmínky pro přihlášení k jiné než poslední části státní závěrečné zkoušky

V návaznosti na změnu (z roku 2023) vnitřního předpisu "Pravidla pro organizaci studia na MFF UK" jsou podmínky stanoveny následovně:

- Získání alespoň 174 kreditů.
- Získání alespoň 18 kreditů ze skupiny povinně volitelných předmětů.

- Pokud je jinou než poslední částí státní závěrečné zkoušky její ústní část, je nutné splnění všech povinných předmětů zvoleného studijního plánu s výjimkou "NSZZ031 Vypracování a konzultace bakalářské práce".
- Pokud je jinou než poslední částí státní závěrečné zkoušky obhajoba, je nutné splnění všech povinných předmětů studijního plánu a odevzdání vypracované bakalářské práce ve stanoveném termínu.

Podrobnosti o organizaci státních závěrečných zkoušek a také podrobnější vysvětlení požadavků pro ústní část státní závěrečné zkoušky lze najít na stránkách http://garant.karlin.mff.cuni.cz/stud/bc\_szz\_main.shtml.

#### Ústní část státní závěrečné zkoušky

Zkouška má přehledový charakter. Jsou kladeny jen širší otázky a žádá se, aby posluchač prokázal pochopení základních problémů, byl schopen je ilustrovat na konkrétních situacích a osvědčil určitou míru syntézy a hlubšího pochopení. Z každého z tematických okruhů 1-3 dostane student jednu otázku.

#### 1. tématický okruh: Matematika

Diferenciální počet. Integrální počet. Vázané extrémy funkcí více proměnných. Vektorové prostory. Matice a determinanty, lineární soustavy rovnic. Lineární a bilineární formy.

#### 2. tématický okruh: Finanční matematika a účetnictví

Časová hodnota peněz. Výnosové křivky. Hodnocení finančních investic včetně derivátů. Míry rizika. Metody analýzy trhu cenných papírů. Optimalizace portfolia. Podvojné účetnictví. Oceňování majetku v účetnictví.

#### 3. tématický okruh: Pravděpodobnost a statistika

Náhodné veličiny a vektory, rozdělení, kovariance, korelace, podmíněné rozdělení. Konvergence posloupností náhodných veličin. Odhady parametrů a testy hypotéz. Kontingenční tabulky a analýza rozptylu.

#### 2.3 Matematika pro informační technologie

Garantující pracoviště: Katedra algebry

Garant programu: doc. RNDr. David Stanovský, Ph.D.

#### Doporučený průběh studia

#### 1. rok studia

| NMAG111 Lineární algebra 1 10 4/2 Z+Zk —           |                 |
|----------------------------------------------------|-----------------|
|                                                    |                 |
| NMMA101 <b>Matematická analýza 1</b> 10 4/4 Z+Zk — |                 |
| NMIN105 <b>Diskrétní matematika</b> 5 2/2 Z+Zk —   |                 |
| NMIN111 <b>Programování 1</b> 3 0/2 Z —            |                 |
| NTVY014 <i>Tělesná výchova I</i> 1 0/2 Z —         |                 |
| $Anglick\acute{y}~jazyk$ 1 0/2 Z —                 |                 |
| NMAG112 Lineární algebra 2 10 — 4/2 Z              | $\mathrm{Z+Zk}$ |
| NMMA102 <b>Matematická analýza 2</b> 10 — 4/4 2    | $\mathrm{Z+Zk}$ |
| NMIN112 <b>Programování 2</b> 8 — 2/4 2            | m Z + Zk        |
| NTVY015 <i>Tělesná výchova II</i> 1 — 0/2 Z        | 7               |
| $Anglick\acute{y}\ jazyk$ 1 — 0/2 2                | Z               |

Velice doporučujeme navštěvovat volitelné kursy anglického jazyka. Jejich výběr je popsán v úvodní části oblasti vzdělávání Matematika.

Studentům, kteří si na začátku studia chtějí procvičit a zdokonalit základní matematické dovednosti potřebné ke studiu, doporučujeme předměty NMTM161 a NMTM162.

| Kód        | Název                           | Kredity | ZS                | LS                 |
|------------|---------------------------------|---------|-------------------|--------------------|
| NMTM161    | Matematický proseminář I        | 2       | $0/2 \mathrm{~Z}$ |                    |
|            | 2 Matematický proseminář II     | 2       |                   | $0/2 \mathrm{~Z}$  |
| NMSA170    | Pravděpodobnostní a statistické | 2       |                   | $0/2 \mathrm{~Z}$  |
|            | $probl\'emy$                    |         |                   | •                  |
| NMAG160    | Proseminář z teorie čísel       | 2       | _                 | $0/2 \mathrm{~Z}$  |
| 2. rok stu | dia                             |         |                   |                    |
| Kód        | Název                           | Kredity | ZS                | LS                 |
| NMAG211    | Geometrie 1                     | 5       | 2/2 Z+Zk          |                    |
| NMMA201    | Matematická analýza 3           | 8       | 4/2  Z+Zk         |                    |
| NMSA211    | Pravděpodobnost                 | 6       | 2/2 Z+Zk          |                    |
| NMMB203    | Základy numerické lineární      | 4       | 2/1  Z+Zk         |                    |
|            | algebry                         |         |                   |                    |
| NMIN201    | Programování 3                  | 5       | 2/2 Z+Zk          |                    |
| NTVY016    | Tělesná výchova III             | 1       | $0/2 \mathrm{~Z}$ |                    |
|            | Anglický jazyk                  | 1       | $0/2 \mathrm{~Z}$ |                    |
| NMAG206    | Algebra                         | 8       |                   | 4/2 Z+Zk           |
|            | Teorie informace                | 6       |                   | 3/1  Z+Zk          |
| NMMB212    | LÚvod do kryptografie           | 5       |                   | 2/2 Z+Zk           |
| NTVY017    | Tělesná výchova IV              | 1       | _                 | $0/2  { m Z}$      |
| NJAZ091    | Anglický jazyk — zkouška pro    | 1       | _                 | $0/0 \mathrm{~Zk}$ |
|            | bakaláře                        |         |                   |                    |
|            | Anglický jazyk                  | 1       |                   | $0/2 \mathrm{~Z}$  |
|            | Povinně volitelné a volitelné   | 8       |                   |                    |
|            | předměty                        |         |                   |                    |

 $<sup>^1</sup>$  Pro splnění je nezbytné splnit nejméně tři z předmětů NTVY014, NTVY015, NTVY016 a NTVY017 a nejvýše jeden z nich lze nahradit absolvováním letního výcvikového kursu NTVY018 nebo zimního výcvikového kursu NTVY019. Podrobnosti jsou v obecném úvodu.

#### Povinně volitelné předměty

Z povinně volitelných předmětů je potřeba dohromady ve druhém a třetím roce studia získat 26 kreditů. Předměty vhodné ve druhém ročníku jsou:

| Kód | Název                                          | Kredity | ZS | LS                |
|-----|------------------------------------------------|---------|----|-------------------|
|     | 6 Teorie čísel<br>2 Úvod do matematické logiky | 9       | _  | 2/2 Z+Zk $2/0$ Zk |

Pro splnění je nezbytné splnit nejméně tři z předmětů NTVY014, NTVY015, NTVY016 a NTVY017 a nejvýše jeden z nich lze nahradit absolvováním letního výcvikového kursu NTVY018 nebo zimního výcvikového kursu NTVY019. Podrobnosti jsou v obecném úvodu.

Samozřejmě doporučujeme jako volitelné předměty zapisovat povinně volitelné předměty uvedené výše. Dále doporučujeme

| Kód    | Název                         | Kredity | ZS | LS                |
|--------|-------------------------------|---------|----|-------------------|
| NMAG26 | 1 Proseminář z algebry        | 2       | _  | $0/2 \mathrm{~Z}$ |
| NMAG21 | $2 \text{ Geometrie } 2^{-1}$ | 5       |    | 2/2 Z+Zk          |

 $<sup>^1</sup>$  Předmět Geometrie 2 nebude v akademickém roce 2023/2024 vyučován. Bude vyučován v zimním semestru 2024/2025.

#### 3. rok studia

| Kód     | Název                         | Kredity | ZS        | LS                |
|---------|-------------------------------|---------|-----------|-------------------|
| NMMB43  | 4 Geometrické modelování      | 6       | 2/2 Z+Zk  |                   |
| NMAG30  | í Úvod do komutativní algebry | 6       | 3/1  Z+Zk |                   |
| NMMB30  | 9Počítačová algebra           | 6       | 3/1  Z+Zk |                   |
| NMAT362 | Referativní seminář           | 4       | <u> </u>  | $0/2 \mathrm{~Z}$ |
|         | k bakalářské práci            |         |           |                   |
| NSZZ031 | Vypracování a konzultace      | 6       | _         | $0/4~\mathrm{Z}$  |
|         | bakalářské práce              |         |           | •                 |
|         | Povinně volitelné a volitelné | 32      |           |                   |
|         | předměty                      |         |           |                   |

#### Povinně volitelné předměty

Pokud jste ještě neabsolvovali povinně volitelné předměty doporučené v druhém roce studia, můžete si je zapsat nyní. Další povinně volitelné předměty vhodné pro třetí ročník studia jsou:

| Kód     | Název                          | Kredity | ZS        | LS        |
|---------|--------------------------------|---------|-----------|-----------|
| NMNM33  | 1 Analýza maticových výpočtů 1 | 5       | 2/2 Z+Zk  |           |
| NPGR002 | Digitální zpracování obrazu    | 4       | 3/0  Zk   |           |
| NMMB33  | 5 Matematická kryptografie     | 4       | 2/1  Z+Zk |           |
|         | a kryptoanalýza I              |         |           |           |
| NPFL129 | Úvod do strojového učení       | 5       | 2/2 Z+Zk  | _         |
|         | v Pythonu                      |         | •         |           |
| NMMB33  | 7Samoopravné kódy              | 6       | 3/1  Z+Zk |           |
| NSWI141 | Úvod do počítačových sítí      | 3       | 2/0  KZ   |           |
| NMMB33  | 2 Aplikovaná kryptografie      | 4       | <u> </u>  | 2/1  Z+Zk |
| NMMB33  | 4Datové a procesní modely      | 5       |           | 2/2 Z+Zk  |
| NMMB33  | 6 Matematická kryptografie     | 3       |           | 2/0  Zk   |
|         | a kryptoanalýza II             |         |           |           |
| NMIN331 | Základy kombinatoriky a teorie | 5       |           | 2/2 Z+Zk  |
|         | grafů                          |         |           | •         |

#### Doporučené volitelné předměty

Opět můžete čerpat z povinně volitelných předmětů. Dále doporučujeme

| Kód    | Název                | Kredity | ZS                | LS                |
|--------|----------------------|---------|-------------------|-------------------|
| NMMA46 | 5 Řešitelský seminář | 3       | $0/2 \mathrm{~Z}$ | $0/2 \mathrm{~Z}$ |

| NMNV361 Fraktály        | a chaotická dynamika   | $3 \qquad 2$ | 2/0  Zk  |
|-------------------------|------------------------|--------------|----------|
| 1111111 V OOL 1 Tandady | a creatition agreement | 0 2          | 1/ U ZIX |

## Shrnutí studijního plánu

### Povinné předměty

Všechny předměty z této skupiny je potřeba úspěšně absolvovat.

| NMAG111 Lineární algebra 1       10       4/2 Z+Zk       —         NMMA101 Matematická analýza 1       10       4/4 Z+Zk       —         NMIN105 Diskrétní matematika       5       2/2 Z+Zk       —         NMIN111 Programování 1       3       0/2 Z       —         NTVY014 Tělesná výchova I       1       0/2 Z       —         NMAG112 Lineární algebra 2       10       —       4/2 Z+Zk         NMMA102 Matematická analýza 2       10       —       4/4 Z+Zk         NMIN112 Programování 2       8       —       2/4 Z+Zk         NTVY015 Tělesná výchova II       1       —       0/2 Z         NMAG211 Geometrie 1       5       2/2 Z+Zk       —         NMSA211 Pravděpodobnost       6       2/2 Z+Zk       —         NMMB203 Základy numerické lineární       4       2/1 Z+Zk       —         NMMB203 Programování 3       5       2/2 Z+Zk       —         NTVY016 Tělesná výchova III       1       0/2 Z       —         NMMB210 Teorie informace       6       —       3/1 Z+Zk         NMMB212 Úvod do kryptografie       5       —       2/2 Z+Zk         NTYV017 Tělesná výchova IV       1       —       0/2 Z         NTYV017 T                                                                                                                          | Kód     | Název                                | Kredity | ZS                | LS                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------|---------|-------------------|-------------------|
| NMIN105       Diskrétní matematika       5       2/2 Z+Zk       —         NMIN111       Programování 1       3       0/2 Z       —         NTVY014       Tělesná výchova I       1       0/2 Z       —         NMAG112       Lineární algebra 2       10       —       4/2 Z+Zk         NMMA102       Matematická analýza 2       10       —       4/4 Z+Zk         NMIN112       Programování 2       8       —       2/4 Z+Zk         NTVY015       Tělesná výchova II       1       —       0/2 Z         NMAG211       Geometrie 1       5       2/2 Z+Zk       —         NMMA201       Matematická analýza 3       8       4/2 Z+Zk       —         NMMB203       Základy numerické lineární       4       2/1 Z+Zk       —         NMMB203       Základy numerické lineární       4       2/1 Z+Zk       —         NMMB203       Programování 3       5       2/2 Z+Zk       —         NTVY016       Tělesná výchova III       1       0/2 Z       —         NMMB210       Teorie informace       6       —       3/1 Z+Zk         NMMB212       Úvod do kryptografie       5       —       2/2 Z+Zk         NTYY017 <td>NMAG11</td> <td>l Lineární algebra 1</td> <td>10</td> <td>4/2 Z+Zk</td> <td></td>                                                                    | NMAG11  | l Lineární algebra 1                 | 10      | 4/2 Z+Zk          |                   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NMMA10  | 1 Matematická analýza 1              | 10      | 4/4  Z+Zk         |                   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NMIN105 | Diskrétní matematika                 | 5       | 2/2 Z+Zk          | _                 |
| NMAG112 Lineární algebra 2       10       —       4/2 Z+Zk         NMMA102 Matematická analýza 2       10       —       4/4 Z+Zk         NMIN112 Programování 2       8       —       2/4 Z+Zk         NTVY015 Tělesná výchova II       1       —       0/2 Z         NMAG211 Geometrie 1       5       2/2 Z+Zk       —         NMMA201 Matematická analýza 3       8       4/2 Z+Zk       —         NMSA211 Pravděpodobnost       6       2/2 Z+Zk       —         NMMB203 Základy numerické lineární algebry       4       2/1 Z+Zk       —         NMIN201 Programování 3       5       2/2 Z+Zk       —         NTVY016 Tělesná výchova III       1       0/2 Z       —         NMMB210 Teorie informace       6       —       3/1 Z+Zk         NMMB212 Úvod do kryptografie       5       —       2/2 Z+Zk         NTVY017 Tělesná výchova IV       1       —       0/2 Z         NJAZ091 Anglický jazyk — zkouška pro bakaláře       1       —       0/0 Zk         NMMB309 Počítačová algebra       6       3/1 Z+Zk       —         NMMB309 Počítačová algebra       6       3/1 Z+Zk       —         NMMB309 Počítačová algebra       6       3/1 Z+Zk       — </td <td>NMIN111</td> <td>Programování 1</td> <td>3</td> <td><math>0/2 \mathrm{~Z}</math></td> <td></td>   | NMIN111 | Programování 1                       | 3       | $0/2 \mathrm{~Z}$ |                   |
| NMMA102 Matematická analýza 2       10       —       4/4 Z+Zk         NMIN112 Programování 2       8       —       2/4 Z+Zk         NTVY015 Tělesná výchova II       1       —       0/2 Z         NMAG211 Geometrie 1       5       2/2 Z+Zk       —         NMMA201 Matematická analýza 3       8       4/2 Z+Zk       —         NMSA211 Pravděpodobnost       6       2/2 Z+Zk       —         NMMB203 Základy numerické lineární       4       2/1 Z+Zk       —         NMMB201 Programování 3       5       2/2 Z+Zk       —         NTVY016 Tělesná výchova III       1       0/2 Z       —         NMAG206 Algebra       8       —       4/2 Z+Zk         NMMB210 Teorie informace       6       —       3/1 Z+Zk         NMMB212 Úvod do kryptografie       5       —       2/2 Z+Zk         NTVY017 Tělesná výchova IV       1       —       0/2 Z         NJAZ091 Anglický jazyk — zkouška pro bakaláře       1       —       0/0 Zk         NMMB309 Počítačová algebra       6       3/1 Z+Zk       —         NMMB309 Počítačová algebra       6       3/1 Z+Zk       —         NMAT362 Referativní seminář       4       —       0/2 Z <td< td=""><td>NTVY014</td><td>1 Tělesná výchova I</td><td>1</td><td><math>0/2 \mathrm{~Z}</math></td><td><del></del></td></td<> | NTVY014 | 1 Tělesná výchova I                  | 1       | $0/2 \mathrm{~Z}$ | <del></del>       |
| NMIN112 Programování 2       8       —       2/4 Z+Zk         NTVY015 Tělesná výchova II       1       —       0/2 Z         NMAG211 Geometrie 1       5       2/2 Z+Zk       —         NMMA201 Matematická analýza 3       8       4/2 Z+Zk       —         NMSA211 Pravděpodobnost       6       2/2 Z+Zk       —         NMMB203 Základy numerické lineární       4       2/1 Z+Zk       —         NMMB203 Tělesná výchova III       1       0/2 Z       —         NTVY016 Tělesná výchova III       1       0/2 Z       —         NMMB210 Teorie informace       6       —       3/1 Z+Zk         NMMB212 Úvod do kryptografie       5       —       2/2 Z+Zk         NTVY017 Tělesná výchova IV       1       —       0/2 Z         NJAZ091 Anglický jazyk — zkouška pro bakaláře       1       —       0/0 Zk         NMMB344 Geometrické modelování       6       2/2 Z+Zk       —         NMMB309 Počítačová algebra       6       3/1 Z+Zk       —         NMMB309 Počítačová algebra       6       3/1 Z+Zk       —         NMAT362 Referativní seminář       4       —       0/2 Z         k bakalářské práci       NSZZ031 Vypracování a konzultace       6       —                                                                                                     | NMAG11  | 2 Lineární algebra 2                 | 10      | <u> </u>          | 4/2  Z+Zk         |
| NTVY015 Tělesná výchova II       1       —       0/2 Z         NMAG211 Geometrie 1       5       2/2 Z+Zk       —         NMMA201 Matematická analýza 3       8       4/2 Z+Zk       —         NMSA211 Pravděpodobnost       6       2/2 Z+Zk       —         NMMB203 Základy numerické lineární       4       2/1 Z+Zk       —         NMMB203 Programování 3       5       2/2 Z+Zk       —         NTVY016 Tělesná výchova III       1       0/2 Z       —         NMAG206 Algebra       8       —       4/2 Z+Zk         NMMB210 Teorie informace       6       —       3/1 Z+Zk         NMMB212 Úvod do kryptografie       5       —       2/2 Z+Zk         NTVY017 Tělesná výchova IV       1       —       0/2 Z         NJAZ091 Anglický jazyk — zkouška pro bakaláře       1       —       0/0 Zk         NMMB344 Geometrické modelování       6       2/2 Z+Zk       —         NMMB309 Počítačová algebra       6       3/1 Z+Zk       —         NMMT362 Referativní seminář       4       —       0/2 Z         k bakalářské práci       NSZZ031 Vypracování a konzultace       6       —       0/4 Z                                                                                                                                                                    | NMMA10  | 2Matematická analýza 2               | 10      |                   | 4/4 Z+Zk          |
| NMAG211 Geometrie 1       5       2/2 Z+Zk       —         NMMA201 Matematická analýza 3       8       4/2 Z+Zk       —         NMSA211 Pravděpodobnost       6       2/2 Z+Zk       —         NMMB203 Základy numerické lineární       4       2/1 Z+Zk       —         algebry       NMIN201 Programování 3       5       2/2 Z+Zk       —         NTVY016 Tělesná výchova III       1       0/2 Z       —         NMAG206 Algebra       8       —       4/2 Z+Zk         NMMB210 Teorie informace       6       —       3/1 Z+Zk         NMMB212 Úvod do kryptografie       5       —       2/2 Z+Zk         NTVY017 Tělesná výchova IV       1       —       0/2 Z         NJAZ091 Anglický jazyk — zkouška pro bakaláře       1       —       0/0 Zk         NMMB344 Geometrické modelování       6       2/2 Z+Zk       —         NMMB309 Počítačová algebra       6       3/1 Z+Zk       —         NMAT362 Referativní seminář       4       —       0/2 Z         k bakalářské práci       NSZZ031 Vypracování a konzultace       6       —       0/4 Z                                                                                                                                                                                                                     | NMIN112 | Programování 2                       | 8       |                   | 2/4 Z+Zk          |
| NMMA201 Matematická analýza 3       8       4/2 Z+Zk       —         NMSA211 Pravděpodobnost       6       2/2 Z+Zk       —         NMMB203 Základy numerické lineární       4       2/1 Z+Zk       —         algebry       NMIN201 Programování 3       5       2/2 Z+Zk       —         NTVY016 Tělesná výchova III       1       0/2 Z       —         NMAG206 Algebra       8       —       4/2 Z+Zk         NMMB210 Teorie informace       6       —       3/1 Z+Zk         NMMB212 Úvod do kryptografie       5       —       2/2 Z+Zk         NTVY017 Tělesná výchova IV       1       —       0/2 Z         NJAZ091 Anglický jazyk — zkouška pro bakaláře       1       —       0/0 Zk         NMMB434 Geometrické modelování       6       2/2 Z+Zk       —         NMMB309 Počítačová algebra       6       3/1 Z+Zk       —         NMAT362 Referativní seminář       4       —       0/2 Z         k bakalářské práci       NSZZ031 Vypracování a konzultace       6       —       0/4 Z                                                                                                                                                                                                                                                                                | NTVY015 | o Tělesná výchova II                 | 1       |                   | $0/2 \mathrm{~Z}$ |
| NMSA211 Pravděpodobnost       6       2/2 Z+Zk       —         NMMB203 Základy numerické lineární       4       2/1 Z+Zk       —         algebry       NMIN201 Programování 3       5       2/2 Z+Zk       —         NTVY016 Tělesná výchova III       1       0/2 Z       —         NMAG206 Algebra       8       —       4/2 Z+Zk         NMMB210 Teorie informace       6       —       3/1 Z+Zk         NMMB212 Úvod do kryptografie       5       —       2/2 Z+Zk         NTVY017 Tělesná výchova IV       1       —       0/2 Z         NJAZ091 Anglický jazyk — zkouška pro bakaláře       1       —       0/0 Zk         NMMB434 Geometrické modelování       6       2/2 Z+Zk       —         NMMB309 Počítačová algebra       6       3/1 Z+Zk       —         NMAT362 Referativní seminář       4       —       0/2 Z         k bakalářské práci       NSZZ031 Vypracování a konzultace       6       —       0/4 Z                                                                                                                                                                                                                                                                                                                                                     | NMAG21  | 1 Geometrie 1                        | 5       | 2/2 Z+Zk          |                   |
| NMMB203 Základy numerické lineární       4       2/1 Z+Zk       —         algebry       NMIN201 Programování 3       5       2/2 Z+Zk       —         NTVY016 Tělesná výchova III       1       0/2 Z       —         NMAG206 Algebra       8       —       4/2 Z+Zk         NMMB210 Teorie informace       6       —       3/1 Z+Zk         NMMB212 Úvod do kryptografie       5       —       2/2 Z+Zk         NTVY017 Tělesná výchova IV       1       —       0/2 Z         NJAZ091 Anglický jazyk — zkouška pro bakaláře       1       —       0/0 Zk         NMMB434 Geometrické modelování       6       2/2 Z+Zk       —         NMMB309 Počítačová algebra       6       3/1 Z+Zk       —         NMAT362 Referativní seminář       4       —       0/2 Z         k bakalářské práci       NSZZ031 Vypracování a konzultace       6       —       0/4 Z                                                                                                                                                                                                                                                                                                                                                                                                                    | NMMA20  | 1 Matematická analýza 3              | 8       | 4/2 Z+Zk          |                   |
| NMIN201   Programování 3   5   2/2 Z+Zk   — NTVY016   Tělesná výchova III   1   0/2 Z   — NMAG206   Algebra   8   —   4/2 Z+Zk   NMMB210   Teorie informace   6   —   3/1 Z+Zk   NMMB212 Úvod do kryptografie   5   —   2/2 Z+Zk   NTVY017   Tělesná výchova IV   1   —   0/2 Z   NJAZ091   Anglický jazyk — zkouška pro   1   —   0/0 Zk   bakaláře   NMMB434   Geometrické modelování   6   2/2 Z+Zk   — NMAG305 Úvod do komutativní algebry   6   3/1 Z+Zk   — NMMB309   Počítačová algebra   6   3/1 Z+Zk   — NMAT362   Referativní seminář   4   —   0/2 Z   k bakalářské práci   NSZZ031   Vypracování a konzultace   6   —   0/4 Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NMSA211 | Pravděpodobnost                      | 6       | 2/2 Z+Zk          |                   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NMMB20  | 3 <b>Z</b> áklady numerické lineární | 4       | 2/1  Z+Zk         |                   |
| NTVY016 Tělesná výchova III       1       0/2 Z       —         NMAG206 Algebra       8       —       4/2 Z+Zk         NMMB210 Teorie informace       6       —       3/1 Z+Zk         NMMB212 Úvod do kryptografie       5       —       2/2 Z+Zk         NTVY017 Tělesná výchova IV       1       —       0/2 Z         NJAZ091 Anglický jazyk — zkouška pro bakaláře       1       —       0/0 Zk         NMMB434 Geometrické modelování       6       2/2 Z+Zk       —         NMAG305 Úvod do komutativní algebry       6       3/1 Z+Zk       —         NMMB309 Počítačová algebra       6       3/1 Z+Zk       —         NMAT362 Referativní seminář       4       —       0/2 Z         k bakalářské práci       NSZZ031 Vypracování a konzultace       6       —       0/4 Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | algebry                              |         |                   |                   |
| NTVY016 Tělesná výchova III       1       0/2 Z       —         NMAG206 Algebra       8       —       4/2 Z+Zk         NMMB210 Teorie informace       6       —       3/1 Z+Zk         NMMB212 Úvod do kryptografie       5       —       2/2 Z+Zk         NTVY017 Tělesná výchova IV       1       —       0/2 Z         NJAZ091 Anglický jazyk — zkouška pro bakaláře       1       —       0/0 Zk         NMMB434 Geometrické modelování       6       2/2 Z+Zk       —         NMAG305 Úvod do komutativní algebry       6       3/1 Z+Zk       —         NMMB309 Počítačová algebra       6       3/1 Z+Zk       —         NMAT362 Referativní seminář       4       —       0/2 Z         k bakalářské práci       NSZZ031 Vypracování a konzultace       6       —       0/4 Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NMIN201 | Programování 3                       | 5       | 2/2 Z+Zk          |                   |
| NMMB210 Teorie informace 6 — 3/1 Z+Zk NMMB212 Úvod do kryptografie 5 — 2/2 Z+Zk NTVY017 Tělesná výchova IV 1 — 0/2 Z NJAZ091 Anglický jazyk — zkouška pro 1 — 0/0 Zk bakaláře  NMMB434 Geometrické modelování 6 2/2 Z+Zk — NMAG305 Úvod do komutativní algebry 6 3/1 Z+Zk — NMMB309 Počítačová algebra 6 3/1 Z+Zk — NMAT362 Referativní seminář 4 — 0/2 Z k bakalářské práci  NSZZ031 Vypracování a konzultace 6 — 0/4 Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NTVY016 | i Tělesná výchova III                | 1       |                   |                   |
| NMMB212 Úvod do kryptografie 5 — 2/2 Z+Zk NTVY017 Tělesná výchova IV 1 — 0/2 Z NJAZ091 Anglický jazyk — zkouška pro 1 — 0/0 Zk bakaláře  NMMB434 Geometrické modelování 6 2/2 Z+Zk — NMAG305 Úvod do komutativní algebry 6 3/1 Z+Zk — NMMB309 Počítačová algebra 6 3/1 Z+Zk — NMAT362 Referativní seminář 4 — 0/2 Z k bakalářské práci  NSZZ031 Vypracování a konzultace 6 — 0/4 Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NMAG20  | 6 Algebra                            | 8       |                   | 4/2  Z+Zk         |
| NTVY017 Tělesná výchova IV  NJAZ091 Anglický jazyk — zkouška pro bakaláře  NMMB434 Geometrické modelování  NMAG305 Úvod do komutativní algebry  NMMB309 Počítačová algebra  NMAT362 Referativní seminář  k bakalářské práci  NSZZ031 Vypracování a konzultace  1 — 0/2 Z  0/0 Zk  2/2 Z+Zk —  3/1 Z+Zk —  3/1 Z+Zk —  0/2 Z  0/2 Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NMMB21  | 0 Teorie informace                   | 6       |                   | 3/1  Z+Zk         |
| NJAZ091 Anglický jazyk — zkouška pro bakaláře  NMMB434 Geometrické modelování 6 2/2 Z+Zk —  NMAG305 Úvod do komutativní algebry 6 3/1 Z+Zk —  NMMB309 Počítačová algebra 6 3/1 Z+Zk —  NMAT362 Referativní seminář 4 — 0/2 Z  k bakalářské práci  NSZZ031 Vypracování a konzultace 6 — 0/4 Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NMMB21  | 2Úvod do kryptografie                | 5       |                   | 2/2 Z+Zk          |
| bakaláře  NMMB434 Geometrické modelování 6 2/2 Z+Zk —  NMAG305 Úvod do komutativní algebry 6 3/1 Z+Zk —  NMMB309 Počítačová algebra 6 3/1 Z+Zk —  NMAT362 Referativní seminář 4 — 0/2 Z  k bakalářské práci  NSZZ031 Vypracování a konzultace 6 — 0/4 Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NTVY017 | 7 Tělesná výchova IV                 | 1       |                   | $0/2 \mathrm{~Z}$ |
| NMMB434 Geometrické modelování 6 2/2 Z+Zk — NMAG305 Úvod do komutativní algebry 6 3/1 Z+Zk — NMMB309 Počítačová algebra 6 3/1 Z+Zk — NMAT362 Referativní seminář 4 — 0/2 Z k bakalářské práci NSZZ031 Vypracování a konzultace 6 — 0/4 Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NJAZ091 | Anglický jazyk — zkouška pro         | 1       |                   | 0/0  Zk           |
| NMAG305 Úvod do komutativní algebry  NMMB309 Počítačová algebra  NMAT362 Referativní seminář  k bakalářské práci  NSZZ031 Vypracování a konzultace  6 3/1 Z+Zk —  0/2 Z  k bakalářské práci  0/4 Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | bakaláře                             |         |                   |                   |
| NMMB309 Počítačová algebra 6 3/1 Z+Zk — NMAT362 Referativní seminář 4 — 0/2 Z k bakalářské práci  NSZZ031 Vypracování a konzultace 6 — 0/4 Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NMMB43  | 4 Geometrické modelování             | 6       | 2/2 Z+Zk          |                   |
| NMAT362 Referativní seminář 4 — 0/2 Z<br>k bakalářské práci<br>NSZZ031 Vypracování a konzultace 6 — 0/4 Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NMAG30  | 5 Úvod do komutativní algebry        | 6       | 3/1  Z+Zk         |                   |
| NMAT362 Referativní seminář 4 — 0/2 Z<br>k bakalářské práci<br>NSZZ031 Vypracování a konzultace 6 — 0/4 Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NMMB30  | 9Počítačová algebra                  | 6       | 3/1  Z+Zk         |                   |
| NSZZ031 <b>Vypracování a konzultace</b> 6 — 0/4 Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NMAT362 | 2 Referativní seminář                | 4       | ·                 | $0/2 \mathrm{~Z}$ |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | k bakalářské práci                   |         |                   | •                 |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NSZZ031 | Vypracování a konzultace             | 6       | _                 | $0/4~\mathrm{Z}$  |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | bakalářské práce                     |         |                   | ,                 |

 $<sup>^1</sup>$  Pro splnění je nezbytné splnit nejméně tři z předmětů NTVY014, NTVY015, NTVY016 a NTVY017 a nejvýše jeden z nich lze nahradit absolvováním letního výcvikového kursu NTVY018 nebo zimního výcvikového kursu NTVY019. Podrobnosti jsou v obecném úvodu.

#### Povinně volitelné předměty

Z této skupiny je potřeba získat alespoň 26 kreditů.

| Kód    | Název                          | Kredity | ZS       | LS                |
|--------|--------------------------------|---------|----------|-------------------|
|        | 6 Teorie čísel                 | 5       | _        | 2/2 Z+Zk          |
| NMAG16 | 2 Úvod do matematické logiky   | 3       |          | $2/0 \mathrm{Zk}$ |
| NMNM33 | 1 Analýza maticových výpočtů 1 | 5       | 2/2 Z+Zk | <del></del>       |

| NPGR002 Digitální zpracování obrazu    | 4 | 3/0  Zk   |           |
|----------------------------------------|---|-----------|-----------|
| NMMB335 Matematická kryptografie       | 4 | 2/1  Z+Zk |           |
| a kryptoanalýza I                      |   | ,         |           |
| NPFL129 Úvod do strojového učení       | 5 | 2/2 Z+Zk  |           |
| v Pythonu                              |   | ,         |           |
| NMMB332 Aplikovaná kryptografie        | 4 |           | 2/1  Z+Zk |
| NMMB334Datové a procesní modely        | 5 |           | 2/2 Z+Zk  |
| NMMB336 Matematická kryptografie       | 3 | _         | 2/0  Zk   |
| a kryptoanalýza II                     |   |           | ,         |
| NMMB337 Samoopravné kódy               | 6 | 3/1  Z+Zk |           |
| NSWI141 Úvod do počítačových sítí      | 3 | 2/0  KZ   |           |
| NMIN331 Základy kombinatoriky a teorie | 5 | <u>.</u>  | 2/2 Z+Zk  |
| grafů                                  |   |           | •         |

| Kód     | Název                                                               | Kredity | ZS                 | LS                |
|---------|---------------------------------------------------------------------|---------|--------------------|-------------------|
| NMTM16  | 1 Matematický proseminář I                                          | 2       | $0/2 \mathrm{~Z}$  | _                 |
| NMTM16  | 2 Matematický proseminář II                                         | 2       |                    | $0/2 \mathrm{~Z}$ |
| NMSA170 | Pravděpodobnostní a statistické                                     | 2       |                    | $0/2 \mathrm{~Z}$ |
|         | problémy                                                            |         |                    |                   |
| NMAG160 | ) Proseminář z teorie čísel                                         | 2       | <del></del>        | $0/2 \mathrm{~Z}$ |
| NMAG26  | 1 Proseminář z algebry                                              | 2       |                    | $0/2 \mathrm{~Z}$ |
| NMMA46  | $5 \check{R}e \check{s}itelsk \acute{y}\; semin \acute{a}\check{r}$ | 3       | $0/2 \mathrm{~Z}$  | $0/2 \mathrm{~Z}$ |
| NMNV36  | l Fraktály a chaotická dynamika                                     | 3       | $2/0 \mathrm{~Zk}$ |                   |

#### Státní závěrečná zkouška

#### Podmínky pro přihlášení ke státní závěrečné zkoušce

Podmínky pro přihlášení k poslední části státní závěrečné zkoušky

- Získání alespoň 180 kreditů.
- Splnění všech povinných předmětů studijního plánu.
- Získání alespoň 26 kreditů ze skupiny povinně volitelných předmětů.
- Odevzdání vypracované bakalářské práce ve stanoveném termínu.

#### Podmínky pro přihlášení k jiné než poslední části státní závěrečné zkoušky

V návaznosti na změnu (z roku 2023) vnitřního předpisu "Pravidla pro organizaci studia na MFF UK" jsou podmínky stanoveny následovně:

- Získání alespoň 174 kreditů.
- Získání alespoň 26 kreditů ze skupiny povinně volitelných předmětů.
- Pokud je jinou než poslední částí státní závěrečné zkoušky její ústní část, je nutné splnění všech povinných předmětů zvoleného studijního plánu s výjimkou "NSZZ031 Vypracování a konzultace bakalářské práce".
- Pokud je jinou než poslední částí státní závěrečné zkoušky obhajoba, je nutné splnění všech povinných předmětů studijního plánu a odevzdání vypracované bakalářské práce ve stanoveném termínu.

#### Ústní část státní závěrečné zkoušky

Zkouška má přehledový charakter. Jsou kladeny jen širší otázky a žádá se, aby posluchač prokázal pochopení základních problémů, byl schopen je ilustrovat na konkrétních situacích a osvědčil určitou míru syntézy a hlubšího pochopení. Student dostane po jedné otázce z tematických okruhů 1., 2. a 3., přičemž u tematického okruhu 3 si student volí jednu z variant 3A nebo 3B.

#### 1. Lineární algebra, geometrie a analýza

- Maticový počet, soustavy lineárních rovnic, skalární součin, kvadratické formy. - Afinní a projektivní geometrie, grupy transformací - Posloupnosti a řady, diferenciální počet jedné a více proměnných

#### 2. Obecná algebra

- Základy teorie grup (Lagrangeova věta, cyklické grupy) - Základy komutativní algebry (obory gaussovské, eukleidovské, hlavních ideálů) - Okruhy polynomů, Hilbertova věta o bázi a o nulách

#### 3A. Informační bezpečnost

- Základy pravděpodobnosti, entropie, Shannonova věta - Základní algoritmy pro práci s polynomy, rychlá Fourierova transformace - Základní kryptografické koncepty, RSA, výměna klíče

#### 3B. Počítačová geometrie

- Základy geometrického modelování, Beziérovy křivky a plochy - Maticové rozklady

#### 2.4 Matematické modelování

Garantující pracoviště: Matematický ústav UK

Garant programu: prof. RNDr. Josef Málek, CSc., DSc.

#### Doporučený průběh studia

#### 1. rok studia

| Kód     | Název                         | Kredity | ZS                | LS                |
|---------|-------------------------------|---------|-------------------|-------------------|
| NOFY151 | Matematická analýza I         | 9       | 4/3 Z+Zk          |                   |
| NMAG111 | l Lineární algebra 1          | 10      | 4/2 Z+Zk          |                   |
| NOFY021 | Mechanika a molekulová fyzika | 8       | 4/2 Z+Zk          |                   |
| NTVY014 | Tělesná výchova I             | 1       | $0/2 \mathrm{~Z}$ |                   |
|         | Anglický jazyk                | 1       | $0/2 \mathrm{~Z}$ |                   |
| NOFY152 | Matematická analýza II        | 9       |                   | 4/3  Z+Zk         |
| NMAG112 | 2 Lineární algebra 2          | 10      |                   | 4/2 Z+Zk          |
| NOFY018 | Elektřina a magnetismus       | 8       |                   | 4/2 Z+Zk          |
| NTVY015 | Tělesná výchova II            | 1       |                   | $0/2 \mathrm{~Z}$ |
|         | Anglický jazyk                | 1       |                   | $0/2 \mathrm{~Z}$ |
|         | Volitelné předměty            | 2       |                   |                   |

<sup>&</sup>lt;sup>1</sup> Pro splnění je nezbytné splnit nejméně tři z předmětů NTVY014, NTVY015, NTVY016 a NTVY017 a nejvýše jeden z nich lze nahradit absolvováním letního výcvikového kursu NTVY018 nebo zimního výcvikového kursu NTVY019. Podrobnosti jsou v obecném úvodu.

Velice doporučujeme navštěvovat kurzy anglického jazyka. Jejich výběr je popsán v úvodní části společné pro oblast vzdělávání Matematika. Studentům, kteří si na začátku studia chtějí procvičit a zdokonalit základní matematické dovednosti potřebné ke studiu, doporučujeme matematické prosemináře NMTM161 a NMTM162 a dále proseminář NOFY002 zaměřený na matematické techniky používané ve fyzice. Pro procvičení základů mechaniky doporučujeme seminář NOFY071 a dále experimentálně zaměřené semináře NOFY067 a NOFY068. Připomínáme, že jako volitelný předmět si lze zapsat jakýkoliv vyučovaný předmět na Matematicko-fyzikální fakultě.

| Kód     | Název                            | Kredity | ZS                | LS                |
|---------|----------------------------------|---------|-------------------|-------------------|
| NMTM16  | 1 Matematický proseminář I       | 2       | 0/2 Z             |                   |
| NMTM16  | 2 Matematický proseminář II      | 2       | <u> </u>          | $0/2 \mathrm{~Z}$ |
| NMAG16  | 3 Ukázky aplikací matematiky     | 3       |                   | 2/0  Zk           |
| NOFY002 | Proseminář z matematických metod | 2       | $0/2 \mathrm{~Z}$ |                   |
|         | fyziky                           |         |                   |                   |
| NOFY071 | Procvičovací seminář z mechaniky | 2       | $0/2 \mathrm{~Z}$ |                   |
| NOFY067 | Fyzika v experimentech I         | 1       | $0/1 \mathrm{Z}$  |                   |
| NOFY068 | Fyzika v experimentech II        | 1       | <u>.</u>          | $0/1 \mathrm{~Z}$ |
|         |                                  |         |                   |                   |

#### 2. rok studia

| Kód     | Název                                     | Kredity | ZS                | LS                |
|---------|-------------------------------------------|---------|-------------------|-------------------|
| NOFY161 | Matematika pro fyziky I                   | 8       | 4/2 Z+Zk          |                   |
| NMNM20  | 1 <b>Z</b> áklady numerické matematiky    | 8       | 4/2 Z+Zk          |                   |
| NOFY003 | Teoretická mechanika                      | 7       | 3/2 Z+Zk          |                   |
| NMSA211 | Pravděpodobnost                           | 6       | 2/2 Z+Zk          |                   |
| NTVY016 | Tělesná výchova III                       | 1       | $0/2 \mathrm{~Z}$ |                   |
|         | Anglický jazyk                            | 1       | $0/2 \mathrm{~Z}$ |                   |
| NOFY162 | Matematika pro fyziky II                  | 8       |                   | 4/2 Z+Zk          |
| NGEO111 | Mechanika kontinua                        | 4       |                   | 2/1  Z+Zk         |
| NMMA33  | 6Obyčejné diferenciální rovnice           | 5       |                   | 2/2 Z+Zk          |
| NMMO21  | 2Počítačové řešení fyzikálních            | 5       |                   | $0/4~\mathrm{KZ}$ |
|         | úloh                                      |         |                   |                   |
| NTVY017 | Tělesná výchova IV                        | 1       |                   | $0/2 \mathrm{~Z}$ |
| NJAZ091 | Anglický jazyk — zkouška pro              | 1       |                   | $0/0 \mathrm{Zk}$ |
|         | bakaláře                                  |         |                   |                   |
|         | Anglický jazyk                            | 1       |                   | $0/2 \mathrm{~Z}$ |
|         | Povinně volitelné a volitelné<br>vředmětu | 3       |                   | ·                 |
|         | předměty                                  | ა       |                   |                   |

Pro splnění je nezbytné splnit nejméně tři z předmětů NTVY014, NTVY015, NTVY016 a NTVY017 a nejvýše jeden z nich lze nahradit absolvováním letního výcvikového kursu NTVY018 nebo zimního výcvikového kursu NTVY019. Podrobnosti jsou v obecném úvodu.

#### Povinně volitelné předměty

Z povinně volitelných předmětů je nutné během celého studia celkem získat alespoň 10 kreditů. Povinně volitelné předměty vhodné pro druhý rok studia jsou:

| Kód     | Název                       | Kredity | ZS                | LS       |
|---------|-----------------------------|---------|-------------------|----------|
| NMIN111 | Programování 1              | 3       | $0/2 \mathrm{~Z}$ |          |
| NOFY023 | Speciální teorie relativity | 3       | 2/0  Zk           |          |
| NMIN112 | Programování 2              | 8       | _                 | 2/4 Z+Zk |
| NOFY127 | Úvod do kvantové mechaniky  | 5       |                   | 2/2 Z+Zk |
| NOFY126 | Klasická elektrodynamika    | 5       | _                 | 2/2 Z+Zk |

Jako volitelné předměty doporučujeme zapisovat povinně volitelné předměty uvedené výše. Zajímavé by pro vás mohly být i následující předměty:

| Kód        | Název                                     | Kredity | ZS                | LS                |
|------------|-------------------------------------------|---------|-------------------|-------------------|
| NMIN263    | Principy počítačů a operační<br>systémy   | 3       | 2/0 Zk            | _                 |
| NMIN266    |                                           | 2       | _                 | 0/2 Z             |
| 3. rok stu | dia                                       |         |                   |                   |
| Kód        | Název                                     | Kredity | ZS                | LS                |
| NOFY163    | Rovnice matematické fyziky                | 5       | 2/1 Z+Zk          |                   |
| NOFY036    | Termodynamika a statistická               | 6       | 3/2 Z+Zk          |                   |
|            | fyzika                                    |         |                   |                   |
| NMNM33     | l Analýza maticových výpočtů 1            | 5       | 2/2 Z+Zk          | _                 |
| NMMO32     | 7Seminář k bakalářské práci               | 3       | $0/2 \mathrm{~Z}$ |                   |
| NMNM338    | Numerické řešení parciálních              | 5       | <u> </u>          | 2/2 Z+Zk          |
|            | diferenciálních rovnic                    |         |                   |                   |
| NMMO302    | 2Funkcionální analýza pro fyziky          | 8       |                   | 4/2 Z+Zk          |
| NMMO328    | Seminář k bakalářské práci                | 3       |                   | $0/2 \mathrm{~Z}$ |
| NSZZ031    | Vypracování a konzultace                  | 6       |                   | $0/4 \mathrm{~Z}$ |
|            | bakalářské práce                          |         |                   |                   |
|            | Povinně volitelné a volitelné<br>předměty | 19      |                   |                   |

#### Povinně volitelné předměty

Pokud jste ještě neabsolvovali povinně volitelné předměty doporučené v druhém roce studia, můžete si je zapsat nyní. Další povinně volitelné předměty vhodné pro třetí ročník studia jsou:

| Kód     | Název                           | Kredity | ZS       | LS       |
|---------|---------------------------------|---------|----------|----------|
| NMIN201 | Programování 3                  | 5       | 2/2 Z+Zk |          |
| NMAG211 | 1 Geometrie 1                   | 5       | 2/2 Z+Zk |          |
| NMIN105 | Diskrétní matematika            | 5       | 2/2 Z+Zk |          |
| NMMB43  | 4 Geometrické modelování        | 6       | 2/2 Z+Zk |          |
| NMAG212 | 2 Geometrie 2 <sup>1</sup>      | 5       | <u> </u> | 2/2 Z+Zk |
| NMNM33  | 2 Analýza maticových výpočtů 2  | 5       |          | 2/2 Z+Zk |
| NMNM33  | 6Úvod do metody konečných prvků | 5       | _        | 2/2 Z+Zk |

Jako volitelné předměty doporučujeme zapisovat povinně volitelné předměty uvedené výše. Zajímavé by pro vás mohly být i následující předměty:

| Kód     | Název                       | Kredity | ZS                | LS                |
|---------|-----------------------------|---------|-------------------|-------------------|
| NMIN203 | Mathematica pro začátečníky | 2       | $0/2 \mathrm{~Z}$ | _                 |
| NMIN264 | Mathematica pro pokročilé   | 2       | _                 | $0/2 \mathrm{~Z}$ |

## Shrnutí studijního plánu

#### Povinné předměty

Všechny předměty z této skupiny je nutné úspěšně absolvovat.

| Kód Název                                    | Kredity |                   | LS                |
|----------------------------------------------|---------|-------------------|-------------------|
| NOFY151 Matematická analýza I                | 9       | 4/3  Z+Zk         |                   |
| NMAG111 Lineární algebra 1                   | 10      | 4/2 Z+Zk          |                   |
| NOFY021 Mechanika a molekulová fyzika        | 8       | 4/2  Z+Zk         |                   |
| NTVY014 Tělesná výchova I                    | 1       | $0/2 \mathrm{~Z}$ |                   |
| NOFY152 <b>Matematická analýza II</b>        | 9       | <del>-</del>      | 4/3  Z+Zk         |
| NMAG112 <b>Lineární algebra 2</b>            | 10      |                   | 4/2  Z+Zk         |
| NOFY018 Elektřina a magnetismus              | 8       |                   | 4/2 Z+Zk          |
| NTVY015 Tělesná výchova II                   | 1       |                   | $0/2 \mathrm{~Z}$ |
| NOFY161 Matematika pro fyziky I              | 8       | 4/2 Z+Zk          |                   |
| NMNM201 Základy numerické matematiky         | 8       | 4/2 Z+Zk          |                   |
| NOFY003 Teoretická mechanika                 | 7       | 3/2 Z+Zk          |                   |
| NMSA211 Pravděpodobnost                      | 6       | 2/2 Z+Zk          |                   |
| NTVY016 Tělesná výchova III                  | 1       | $0/2 \mathrm{~Z}$ |                   |
| NOFY162 Matematika pro fyziky II             | 8       |                   | 4/2 Z+Zk          |
| NGEO111 Mechanika kontinua                   | 4       |                   | 2/1  Z+Zk         |
| NMMA336Obyčejné diferenciální rovnice        | 5       |                   | 2/2 Z+Zk          |
| NMMO212 <b>Počítačové řešení fyzikálních</b> | 5       |                   | $0/4~\mathrm{KZ}$ |
| úloh                                         |         |                   |                   |
| NTVY017 Tělesná výchova IV                   | 1       |                   | $0/2 \mathrm{~Z}$ |
| NJAZ091 Anglický jazyk — zkouška pro         | 1       | $0/0 \mathrm{Zk}$ | 0/0  Zk           |
| bakaláře                                     |         | ,                 | •                 |
| NOFY163 Rovnice matematické fyziky           | 5       | 2/1  Z+Zk         |                   |
| NOFY036 Termodynamika a statistická          | 6       | 3/2  Z+Zk         |                   |
| fyzika                                       |         | ,                 |                   |
| NMNM331 Analýza maticových výpočtů 1         | 5       | 2/2 Z+Zk          |                   |
| NMMO327Seminář k bakalářské práci            | 3       | $0/2 \mathrm{~Z}$ |                   |
| NMNM338Numerické řešení parciálních          | 5       | <del></del>       | 2/2 Z+Zk          |
| diferenciálních rovnic                       |         |                   | ,                 |
| NMMO302Funkcionální analýza pro fyziky       | 8       |                   | 4/2 Z+Zk          |
| NMMO327Seminář k bakalářské práci            | 3       | $0/2 \mathrm{~Z}$ | <del></del>       |
| NSZZ031 Vypracování a konzultace             | 6       | $0/4 \mathrm{~Z}$ | $0/4 \mathrm{~Z}$ |
| bakalářské práce                             |         | <i>I</i>          | -, -              |

 $<sup>^1</sup>$  Předmět Geometrie 2 nebude v akademickém roce 2023/2024 vyučován. Bude vyučován v zimním semestru 2024/2025.

#### Povinně volitelné předměty

Z této skupiny je nutné získat alespoň 10 kreditů.

| Kód     | Název                           | Kredity | ZS                | LS          |
|---------|---------------------------------|---------|-------------------|-------------|
| NMIN111 | Programování 1                  | 3       | $0/2 \mathrm{~Z}$ | _           |
| NOFY023 | Speciální teorie relativity     | 3       | $2/0 \mathrm{Zk}$ |             |
| NMIN112 | Programování 2 *                | 8       | <u> </u>          | 2/4 Z+Zk    |
| NOFY127 | Úvod do kvantové mechaniky      | 5       |                   | 2/2 Z+Zk    |
| NOFY126 | Klasická elektrodynamika        | 5       |                   | 2/2 Z+Zk    |
| NMIN201 | Programování 3                  | 5       | 2/2 Z+Zk          | <del></del> |
| NMAG211 | 1 Geometrie 1                   | 5       | 2/2 Z+Zk          |             |
| NMIN105 | Diskrétní matematika            | 5       | 2/2 Z+Zk          |             |
| NMMB43  | 4 Geometrické modelování        | 6       | 2/2 Z+Zk          |             |
| NMAG212 | 2 Geometrie 2 <sup>1</sup>      | 5       | <u> </u>          | 2/2 Z+Zk    |
| NMNM33  | 2Analýza maticových výpočtů 2   | 5       |                   | 2/2 Z+Zk    |
| NMNM33  | 6Úvod do metody konečných prvků | 5       | _                 | 2/2 Z+Zk    |

 $<sup>^1</sup>$  Předmět Geometrie 2 nebude v akademickém roce 2023/2024 vyučován. Bude vyučován v zimním semestru 2024/2025.

#### Doporučené volitelné předměty

| Kód | Název                                                    | Kredity       | ZS         | LS             |
|-----|----------------------------------------------------------|---------------|------------|----------------|
|     | Mathematica pro začátečníky<br>Mathematica pro pokročilé | $\frac{2}{2}$ | 0/2 Z<br>— | 0/2 Z<br>0/2 Z |

#### Státní závěrečná zkouška

Podmínky pro přihlášení k poslední části státní závěrečné zkoušky

- Získání alespoň 180 kreditů.
- Splnění všech povinných předmětů studijního plánu.
- Získání alespoň 10 kreditů ze skupiny povinně volitelných předmětů.
- Odevzdání vypracované bakalářské práce ve stanoveném termínu.

#### Podmínky pro přihlášení k jiné než poslední části státní závěrečné zkoušky

V návaznosti na změnu (z roku 2023) vnitřního předpisu "Pravidla pro organizaci studia na MFF UK" jsou podmínky stanoveny následovně:

- Získání alespoň 174 kreditů.
- Získání alespoň 10 kreditů ze skupiny povinně volitelných předmětů.
- Pokud je jinou než poslední částí státní závěrečné zkoušky její ústní část, je nutné splnění všech povinných předmětů zvoleného studijního plánu s výjimkou "NSZZ031 Vypracování a konzultace bakalářské práce".
- Pokud je jinou než poslední částí státní závěrečné zkoušky obhajoba, je nutné splnění všech povinných předmětů studijního plánu a odevzdání vypracované bakalářské práce ve stanoveném termínu.

<sup>&</sup>lt;sup>1</sup> Pro splnění je nezbytné splnit nejméně tři z předmětů NTVY014, NTVY015, NTVY016 a NTVY017 a nejvýše jeden z nich lze nahradit absolvováním letního výcvikového kursu NTVY018 nebo zimního výcvikového kursu NTVY019. Podrobnosti jsou v obecném úvodu.

#### Ústní část státní závěrečné zkoušky

Zkouška má přehledový charakter. Jsou kladeny jen širší otázky a žádá se, aby posluchač prokázal pochopení základních problémů, byl schopen je ilustrovat na konkrétních situacích a osvědčil určitou míru syntézy a hlubšího pochopení. Student zodpoví jednu otázku z každého níže uvedeného tematického okruhu.

#### 1. Základy matematické analýzy, lineární algebry a funkcionální analýzy

Posloupnosti a řady čísel a funkcí, diferenciální a integrální počet funkcí jedné reálné proměnné, diferenciální počet funkcí více proměnných, křivkový a plošný integrál, Stokesova věta. Obyčejné diferenciální rovnice, variační počet. Konečně dimenzionální vektorové prostory, skalární součin, maticový počet, vlastní čísla matice, soustavy lineárních rovnic, lineární a bilineární formy. Funkce komplexní proměnné, holomorfní funkce, mocninné řady, reziduová věta. Lebesgueův integrál, Lebesgueova míra, prostory funkcí, Hilbertovy prostory, ortonormální systémy, Rieszova věta o reprezentaci, spojitý lineární operátor, kompaktní operátor, samoadjungovaný operátor, spektrum operátoru.

#### 2. Základy klasické mechaniky a termodynamiky

Mechanika hmotného bodu a soustav hmotných bodů (Newtonovy zákony, variační formulace, Lagrangeovy rovnice, Hamiltonovy rovnice), kinematika a dynamika tuhého tělesa, kinematika a dynamika spojitého prostředí (tenzor malých deformací, Cauchyho tenzor napětí, Reynoldsova věta o transportu, bilanční rovnice, Eulerovy a Navierovy-Stokesovy rovnice, rovnice linearizované pružnosti). Klasická rovnovážná termodynamika (teplo, teplota, první a druhý zákon termodynamiky, termodynamické potenciály, stavová rovnice, ideální plyn).

#### 3. Numerická analýza a rovnice matematické fyziky

Aproximace funkcí, numerická integrace, numerické řešení nelineárních algebraických rovnic, numerické řešení obyčejných diferenciálních rovnic, přímé a iterační metody řešení lineárních algebraických rovnic, LU a QR rozklady a jejich stabilita, problém nejmenších čtverců, Schurova věta, metody pro řešení částečného problému vlastních čísel. Klasická teorie lineárních parciálních diferenciálních rovnic a jejich numerického řešení, metoda charakteristik pro transportní rovnici, rovnice vedení tepla, vlnová rovnice, Poissonova rovnice, princip maxima pro eliptické a parabolické rovnice druhého řádu, metoda konečných diferencí, stabilita, konvergence.

# Navazující magisterské studium od akademického roku 2020/21

## 1. Základní informace

## Studijní programy nav. magisterského studia v oblasti vzdělávání Matematika

V oblasti vzdělávání Matematika nabízíme na magisterském stupni studia sedm odborných programů.

| Matematické struktury                       | 2.1 |
|---------------------------------------------|-----|
| Matematika pro informační technologie       | 2.2 |
| Matematická analýza                         | 2.3 |
| Numerická a výpočtová matematika            | 2.4 |
| Matematické modelování ve fyzice a technice | 2.5 |
| Pravděpodobnost, matematická statistika     | 2.6 |
| a ekonometrie                               |     |
| Finanční a pojistná matematika              | 2.7 |

Programy Matematické struktury, Matematická analýza, Numerická a výpočtová matematika a Pravděpodobnost, matematická statistika a ekonometrie navazují na příslušná zaměření bakalářského programu Obecná matematika.

Programy Matematika pro informační technologie, Matematické modelování ve fyzice a technice a Finanční a pojistná matematika navazují na odpovídající specializované bakakářské programy.

Součástí oblasti vzdělávání Matematika jsou i programy připravující budoucí učitele, zejména *Učitelství matematiky pro střední školy* a *Učitelství deskriptivní geometrie pro střední školy*. Studijní plány učitelských programů jsou uvedeny ve zvláštní části této publikace.

## Všeobecné zásady studia

#### Přechod z bakalářského studia

Jednotlivé programy mají specifické vstupní požadavky na znalosti, které se předpokládají na počátku studia. Studenti, kteří tyto požadavky nesplňují, studují podle individuálního studijního plánu stanoveného garantem studijního programu dle čl. 5 Pravidel pro organizaci studia na Matematicko-fyzikální fakultě.

Některé povinné či povinně volitelné předměty magisterského studia mohl student absolvovat již v průběhu studia bakalářského. Splnění těchto předmětů může být uznáno na základě podané žádosti o uznání splněných studijních povinností. Převádění kreditů za předměty absolvované v bakalářském studiu do magisterského studia upravuje čl. 12 Pravidel pro organizaci studia na Matematicko-fyzikální fakultě. Pokud převedení kreditů za předměty absolvované v bakalářském studiu není možné, důrazně doporučujeme, aby si studenti nechali uznat tyto předměty bez kreditů a kredity do magisterského studia

získávali výhradně zápisem a splněním předmětů, které v bakalářském studiu neabsolvovali.

#### Základní informace

Standardní doba studia magisterských programů je dva roky. Celkem je požadováno získání minimálně 120 kreditů za celé studium. Pro úspěšné ukončení studia je nutné absolvovat všechny předměty, které jsou studijním plánem stanoveny jako povinné, nebo předměty s nimi záměnné. Studijní plán může též vyžadovat získání určitého počtu kreditů z jednotlivých skupin povinně volitelných předmětů.

#### Studijní plány

Studijní plán předepisuje povinné předměty programu, požadované počty kreditů z jednotlivých skupin povinně volitelných předmětů, podmínky pro přihlášení ke státní závěrečné zkoušce a požadavky u státní závěrečné zkoušky. Průběh studia není studijními plány pevně určen. Student si zapisuje povinné, povinně volitelné a volitelné předměty tak, aby průběžně splňoval kreditní limity pro zápis do dalšího roku studia a aby splnil podmínky pro přihlášení ke státní závěrečné zkoušce.

#### Předmětové rekvizity

Zápis předmětů může být podmíněn splněním určitých podmínek stanovených v předmětových rekvizitách. Některé předměty vyžadují předchozí absolvování (prerekvizita) nebo alespoň zápis (korekvizita) jiných předmětů. Naopak, předchozí zápis jiného předmětu může znemožnit zápis předmětu, o který má student zájem (neslučitelnost). Předchozí absolvování jiného předmětu může být automaticky uznáno jako splnění předmětu, který student potřebuje (záměnnost). Předmětové rekvizity jsou uvedeny v Seznamu předmětů MFF UK ("bílé Karolince") a předmětovém modulu Studijního informačního systému.

Doporučujeme všem studentům, aby při zápisu předmětů věnovali předmětovým rekvizitám nejvyšší pozornost.

#### Doporučený průběh studia

V následujících částech jsou uvedeny studijní plány pro jednotlivé programy a doporučené průběhy studia, které rozepisují povinné předměty a některé povinně volitelné předměty do jednotlivých ročníků a uvádějí další podrobnosti studijních plánů. Povinné předměty jsou v tabulkách uvedeny **tučně**, povinně volitelné předměty obyčejným písmem a volitelné předměty *kurzívou*. V této kapitole jsou rovněž specifikovány podmínky pro přihlášení ke státní závěrečné zkoušce a požadavky k ústní části SZZ.

Doporučený průběh studia není závazný, je však vhodné jej co nejvíce dodržovat, protože je sestaven s ohledem na rekvizity, návaznosti předmětů, tvorbu rozvrhu a na podmínky pro přihlášení ke státní závěrečné zkoušce.

#### Ukončení studia

Magisterské studium je ukončeno státní závěrečnou zkouškou.

Na odborných programech má státní závěrečná zkouška dvě části: *obhajobu* diplomové práce a *ústní zkoušku*. Známkou je hodnocena jak každá část státní závěrečné zkoušky zvlášť, tak celá zkouška dohromady. Při neúspěchu opakuje student ty části státní závěrečné zkoušky, ve kterých dosud neuspěl. Každou část SZZ lze opakovat nejvýše dvakrát.

Požadavky k ústní části státní závěrečné zkoušky jsou uvedeny u studijních plánů jednotlivých programů.

Diplomová práce je zadávána zpravidla v průběhu 1. ročníku. Doporučujeme vybírat si téma především z nabídky pracoviště garantujícího zvolený studijní program; v případě zájmu o téma z nabídky jiného pracoviště nebo o téma vlastní důrazně doporučujeme konzultovat vhodnost tématu s garantem studijního programu. V souvislosti s diplomovou prací jsou vyžadovány zápočty z předmětů

| Kód     | Název               | Kredity | ZS                | LS                 |
|---------|---------------------|---------|-------------------|--------------------|
| NSZZ023 | Diplomová práce I   | 6       | _                 | $0/4 \mathrm{~Z}$  |
| NSZZ024 | Diplomová práce II  | 9       | $0/6 \mathrm{~Z}$ |                    |
| NSZZ025 | Diplomová práce III | 15      |                   | $0/10 \mathrm{~Z}$ |

Tyto předměty si posluchač zapisuje po dohodě s vedoucím práce, nejdříve však v letním semestru 1. ročníku a nejpozději během posledního semestru svého studia. Nezbytnou podmínkou pro zapsání kteréhokoli z těchto předmětů je předchozí zadání tématu diplomové práce. Jinak lze tyto předměty zapisovat v libovolném semestru a v libovolném pořadí. Zápočty z těchto předmětů uděluje vedoucí diplomové práce. Podmínkou udělení zápočtu z posledního z těchto předmětů je dovedení diplomové práce do téměř dokončené formy.

Termíny pro zadání diplomové práce, odevzdání diplomové práce a podání přihlášky ke státní závěrečné zkoušce určuje harmonogram školního roku.

#### **Projekt**

Student může požádat děkana o zadání projektu. Jeho ohodnocení (max. 9 kreditů) stanoví děkan na základě doporučení zadávajícího učitele a garanta studijního programu.

## 2. Studijní plány jednotlivých programů

## 2.1 Matematické struktury

Garantující pracoviště: Katedra algebry

Garant programu: doc. RNDr. Jan Šťovíček, Ph.D.

Program matematické struktury je na magisterské úrovni zaměřen na rozšíření všeobecného matematického základu (algebraická geometrie a topologie, Riemannova geometrie, universální algebra a teorie modelů) a na získání hlubších znalostí ve zvolených partiích algebry, geometrie, logiky, či kombinatoriky. Cílem je poskytnout na jedné straně dostatečnou všeobecnou znalost moderní strukturní matematiky, na straně druhé dovést posluchače na práh samostatné tvůrčí činnosti. Důraz je kladen na disciplíny, ve kterých jsou k dispozici vyučující, kteří se světové špičce blíží nebo do ní přímo patří.

Absolvent má velmi pokročilé znalosti algebry, geometrie, kombinatoriky a logiky, které mu v rámci hlouběji studovaného zvoleného užšího zaměření umožnily být v tvůrčím kontaktu s aktuálními vědeckými výsledky. Abstraktní povaha, rozsah a náročnost
studia u absolventa podpořily rozvoj schopnosti analyzovat, strukturovat a řešit problémy složité a náročné povahy. Uplatnění nalezne vedle akademické sféry v nejrůznějších oblastech lidské činnosti na místech, kde je potřeba zvládat a využívat nové
poznatky a rozsáhlé systémy.

#### Vstupní požadavky

Předpokládáme, že student tohoto programu má na počátku prvního ročníku dostatečné znalosti z následujících oborů a oblastí:

- Kvalitní základy lineární algebry, komplexní a reálné analýzy, teorie pravděpodobnosti.
- Základy teorie grup a jejich reprezentací (Sylowovy věty, volné grupy, nilpotence, Maschkeho věta), analýzy na varietách, komutativní algebry (Galoisova teorie a celistvá rozšíření), matematické logiky (výroková logika a logika prvního řádu, neúplnost, nerozhodnutelnost), teorie množin a teorie kateogrií.
- Pasivní znalost angličtiny umožňující dostatečné porozumění matematickým přednáškám a odborným textům.

U konkrétních zaměření je pak výhodou (ale ne nezbytností) hlubší znalost kombinatoriky, teorie reprezentací asociativních algeber (podmínky konečnosti, projektivita a injektivita modulu) nebo teorie Lieových grup a algeber.

Studentům, kteří tyto požadavky nesplňují, může garant studijního programu stanovit způsob jejich doplnění, například absolvováním vybraných předmětů bakalářského studia v rámci individuálního studijního plánu.

#### Doporučený průběh studia

Program matematické struktury je charakteristický širokým výběrem předmětů ke studiu a problémů k řešení v diplomové práci. Při výběru volitelných a povinně volitelných předmětů je potřeba pouze splnit podmínky pro přihlášení ke státní závěrečné zkoušce (níže) a připravit se k této zkoušce na jedno ze čtyř užších zaměření programu. Konkrétně je tedy v průběhu studia kromě povinných předmětů nutné

- získat alespoň 8 kreditů za předměty ze skupiny Povinně volitelné předměty 2 a
- absolvovat předměty poskytující odpovídající znalosti ke státní závěrečné zkoušce podle podrobnějších informací na stránce https://www.mff.cuni.cz/cs/math/ pro-studenty/magisterske-statnice/str

Podrobnější informace k doporučenému průběhu studia lze najít na strán-kách https://www.mff.cuni.cz/cs/math/pro-studenty/magisterske-statnice/doporuceny-prubeh-str.

#### 1. rok studia

| Kód     | Název                         | Kredity | ZS       | LS                |
|---------|-------------------------------|---------|----------|-------------------|
| NMAG401 | Algebraická geometrie         | 5       | 2/2 Z+Zk | _                 |
| NMAG409 | Algebraická topologie 1       | 5       | 2/2 Z+Zk |                   |
| NMAG411 | Riemannova geometrie 1        | 5       | 2/2 Z+Zk |                   |
| NSZZ023 | Diplomová práce I             | 6       |          | $0/4 \mathrm{~Z}$ |
|         | Volitelné a povinně volitelné | 39      |          |                   |
|         | $p\check{r}edm\check{e}ty$    |         |          |                   |

#### 2. rok studia

| Kód     | Název               | Kredity | ZS               | LS                 |
|---------|---------------------|---------|------------------|--------------------|
| NSZZ024 | Diplomová práce II  | 9       | $0/6 \mathrm{Z}$ | _                  |
| NSZZ025 | Diplomová práce III | 15      | <u>.</u>         | $0/10 \mathrm{~Z}$ |

| Volitelné a povinně volitelné | 36 |
|-------------------------------|----|
| $p\check{r}edm\check{e}ty$    |    |

# Shrnutí studijního plánu

# Povinné předměty

| Kód     | Název                     | Kredity | ZS                | LS                 |
|---------|---------------------------|---------|-------------------|--------------------|
| NMAG40  | l Algebraická geometrie   | 5       | 2/2 Z+Zk          | <del>_</del>       |
| NMAG409 | 9 Algebraická topologie 1 | 5       | 2/2 Z+Zk          |                    |
| NMAG41  | l Riemannova geometrie 1  | 5       | 2/2 Z+Zk          |                    |
| NSZZ023 | Diplomová práce I         | 6       |                   | $0/4 \mathrm{~Z}$  |
| NSZZ024 | Diplomová práce II        | 9       | $0/6 \mathrm{~Z}$ |                    |
| NSZZ025 | Diplomová práce III       | 15      | _                 | $0/10 \mathrm{~Z}$ |

# Povinně volitelné předměty 1

Je třeba získat alespoň 48 kreditů z povinně volitelných předmětů.

| Kód     | Název                                        | Kredity              | ZS                | LS                  |
|---------|----------------------------------------------|----------------------|-------------------|---------------------|
| NDMI009 | Základy kombinatorické a výpočetní geometrie | 5                    | 2/2 Z+Zk          | _                   |
| NDMI013 | Kombinatorická a výpočetní geometrie 2       | 5                    | _                 | 2/2 Z+Zk            |
| NDMI014 | Topologické metody<br>v kombinatorice        | 5                    | _                 | 2/2 Z+Zk            |
| NDMI028 | Aplikace lineární algebry v kombinatorice *  | 5                    | 2/2 Z+Zk          |                     |
| NDMI045 | Analytická a kombinatorická teorie čísel     | 3                    | _                 | 2/0 Zk              |
| NDMI073 | Kombinatorika a grafy 3                      | 5                    | 2/2 Z+Zk          |                     |
| NMAG331 | Matematická logika                           | 3                    | $2/0 \mathrm{Zk}$ |                     |
| NMAG403 | 3 Kombinatorika                              | 5                    | 2/2 Z+Zk          |                     |
| NMAG405 | i Universální algebra 1                      | 5                    | 2/2 Z+Zk          |                     |
| NMAG407 | Teorie modelů                                | 3                    | $2/0 \mathrm{Zk}$ |                     |
| NMAG430 | Algebraická teorie čísel                     | 6                    |                   | 3/1  Z+Zk           |
| NMAG431 | Kombinatorická teorie grup                   | 6                    |                   | 3/1  Z+Zk           |
| NMAG433 | Riemannovy plochy                            | 3                    | $2/0 \mathrm{Zk}$ |                     |
| NMAG434 | Kategorie modulů a homologická<br>algebra    | 6                    | 3/1 Z+Zk          |                     |
| NMAG435 | o Teorie svazů                               | 3                    | 2/0 Zk            |                     |
|         | Křivky a funkční tělesa                      | 6                    | = 2/ 0 ZK         | 3/1  Z+Zk           |
|         | Seminář z diferenciální geometrie            | $\overset{\circ}{3}$ | $0/2 \mathrm{~Z}$ | 0/2 Z               |
|         | Reprezentace grup 1                          | 5                    | <del></del>       | 2/2 Z+Zk            |
|         | Úvod do teorie množin 2                      | 3                    | 2/0 Zk            |                     |
|         | 2 Teorie reprezentací                        | 6                    | <u></u>           | 3/1  Z+Zk           |
|         | konečně-dimenzionálních algeber              | -                    |                   | 5/ 2 2 1 <b>211</b> |
|         | Kombinatorika na slovech *                   | 3                    | $2/0 \mathrm{Zk}$ |                     |
| NMAG446 | S Logika a složitost *                       | 3                    |                   | 2/0  Zk             |

| NMAG448 Klasické grupy a jejich invarianty          | 5                     |                    | 2/2 Z+Zk          |
|-----------------------------------------------------|-----------------------|--------------------|-------------------|
| NMAG450 Universální algebra 2                       | $\stackrel{\circ}{4}$ |                    | 2/1  Z+Zk         |
| NMAG454 Fibrované prostory a kalibrační pole        | 6                     |                    | 3/1  Z+Zk         |
| NMAG455 Kvadratické formy a třídová                 | 3                     | $2/0 \mathrm{Zk}$  | <del></del>       |
| tělesa I *                                          |                       | 1                  |                   |
| NMAG456 Kvadratické formy a třídová                 | 3                     |                    | 2/0  Zk           |
| tělesa II *                                         |                       |                    | , -               |
| NMAG458 Algebraické invarianty v teorii uzlů        | 4                     | 2/1  Zk            |                   |
| NMAG462 Modulární formy a L-funkce I *              | 3                     | $2/0 \mathrm{~Zk}$ |                   |
| NMAG473 Modulární formy a L-funkce II *             | 3                     |                    | $2/0 \mathrm{Zk}$ |
| NMAG475 Výběrový seminář z MSTR                     | 2                     | $0/2 \mathrm{~Z}$  | $0/2 \mathrm{~Z}$ |
| NMAG481 Seminář z harmonické analýzy                | 3                     | $0/2 \mathrm{~Z}$  | $0/2 \mathrm{~Z}$ |
| NMAG498 Výběrová přednáška z MSTR 1                 | 3                     | $2/0 \mathrm{~Zk}$ | <del></del>       |
| NMAG499 Výběrová přednáška z MSTR 2                 | 3                     | <u> </u>           | $2/0 \mathrm{Zk}$ |
| NMAG531 Aproximace modulů                           | 3                     |                    | 2/0  Zk           |
| NMAG532 Algebraická topologie 2                     | 5                     |                    | 2/2 Z+Zk          |
| NMAG533 Principy harmonické analýzy *               | 6                     | 3/1  Z+Zk          | <u> </u>          |
| $\rm NMAG534$ Nekomutativní harmonická analýza $^*$ | 6                     | <u> </u>           | 3/1  Z+Zk         |
| NMAG535 Výpočetní logika                            | 5                     | 2/2 Z+Zk           |                   |
| NMAG536 Důkazová složitost a P vs. NP               | 3                     |                    | $2/0 \mathrm{Zk}$ |
| problém *                                           |                       |                    |                   |
| NMAG537 Vybraná témata z teorie množin *            | 3                     | $2/0 \mathrm{Zk}$  |                   |
| NMAG538 Komutativní algebra                         | 6                     |                    | $4/0 \mathrm{Zk}$ |
| NMAG563 Úvod do složitosti CSP                      | 3                     | $2/0 \mathrm{Zk}$  | <u> </u>          |
| NMAG569 Matematické metody kvantové teorie          | 3                     | $0/2 \mathrm{~Z}$  | $0/2 \mathrm{~Z}$ |
| pole                                                |                       |                    |                   |
| NMAG575 Forsing *                                   | 3                     | $2/0 \mathrm{Zk}$  |                   |
| NMAL430 Latinské čtverce a neasociativní            | 3                     | <u> </u>           | 2/0  Zk           |
| struktury                                           |                       |                    |                   |
| NMMB413 Algoritmy na polynomech                     | 4                     | 2/1  Z+Zk          |                   |
| NMMB415 Automaty a výpočetní složitost              | 6                     | 3/1  Z+Zk          |                   |
| NMMB430 Algoritmy na eliptických křivkách           | 4                     | <u>.</u>           | 2/1  Z+Zk         |
| NMMB432 Náhodnost a výpočty                         | 4                     |                    | 2/1  Zk           |
| NMMB433 Geometrie pro počítačovou grafiku           | 3                     |                    | 2/0  Zk           |
| NMMB538 Eliptické křivky a kryptografie             | 6                     | 3/1  Z+Zk          |                   |
| NTIN022 Pravděpodobnostní techniky                  | 5                     | 2/2 Z+Zk           |                   |

<sup>\*</sup> Předmět je vyučován pouze jednou za dva roky.

# Povinně volitelné předměty 2

Tyto předměty jsou také prvky skupiny Povinně volitelných předmětů 1. Alespoň 8 kreditů ze 48 kreditů ze skupiny Povinně volitelných předmětů 1 musí být z následujícího užšího výběru.

| Kód     | Název                   | Kredity | ZS       | LS |
|---------|-------------------------|---------|----------|----|
| NMAG403 | 3 Kombinatorika         | 5       | 2/2 Z+Zk | _  |
| NMAG405 | i Universální algebra 1 | 5       | 2/2 Z+Zk |    |
| NMAG407 | Teorie modelů           | 3       | 2/0  Zk  |    |

| NMAG438 Reprezentace grup 1            | 5 |           | 2/2 Z+Zk |
|----------------------------------------|---|-----------|----------|
| NMMB415 Automaty a výpočetní složitost | 6 | 3/1  Z+Zk | <u> </u> |

#### Státní závěrečná zkouška

#### Podmínky pro přihlášení ke státní závěrečné zkoušce

Podmínky pro přihlášení k poslední části státní závěrečné zkoušky

- Získání alespoň 120 kreditů.
- Splnění všech povinných předmětů studijního plánu.
- Splnění Povinně volitelných předmětů 1 v rozsahu alespoň 48 kreditů. Z toho alespoň 8 kreditů z užšího výběru Povinně volitelných předmětů 2.
- Odevzdání vypracované diplomové práce ve stanoveném termínu.

#### Podmínky pro přihlášení k jiné než poslední části státní závěrečné zkoušky

Rámcové podmínky jsou stanoveny vnitřním předpisem Pravidla pro organizaci studia na MFF UK a v programu Matematícké struktury je nutné splnit tyto podmínky:

- Získání alespoň 105 kreditů.
- Pokud je jinou než poslední částí státní závěrečné zkoušky její ústní část, je nutné splnění všech povinných předmětů studijního plánu s výjimkou NSZZ025 Diplomová práce III.
- Pokud je jinou než poslední částí státní závěrečné zkoušky obhajoba, je nutné splnění všech povinných předmětů a odevzdání vypracované diplomové práce ve stanoveném termínu.
- Splnění Povinně volitelných předmětů 1 v rozsahu alespoň 48 kreditů. Z toho alespoň 8 kreditů z užšího výběru Povinně volitelných předmětů 2.

#### Ústní část státní závěrečné zkoušky

Ústní část státní závěrečné zkoušky studijního programu Matematické struktury se skládá ze společných požadavků z tematického okruhu 1. Matematické struktury a z požadavků užšího zaměření. Toto zaměření si posluchač určí volbou jednoho z tematických okruhů 2, 3, 4 nebo 5 uvedených níže.

Podrobnější vysvětlení požadavků k ústní části státní závěrečné zkoušky lze najít na stránkách https://www.mff.cuni.cz/cs/math/pro-studenty/mgr-programy/mgr-str-garant/str.

# Požadavky k ústní části státní závěrečné zkoušky

## Společné požadavky

#### 1. Matematické struktury

Algebraická geometrie. Algebraická topologie.

#### Užší zaměření

#### 2. Algebra a logika

Konečné grupy a jejich reprezentace. Kombinatorická teorie grup. Binární systémy. Pokročilá universální algebra. Složitost a vyčíslitelnost. Logika prvního řádu. Nerozhodnutelnost v algebraických systémech. Eliminace kvantifikátorů.

#### 3. Geometrie

Harmonická analýza a invarianty klasických grup. Riemannovy plochy. Fíbrované prostory a kovariantní derivace.

## 4. Teorie reprezentací

Reprezentace grup. Reprezentace konečně dimenzionálních algeber. Kombinatorická teorie grup. Homologická algebra.

#### 5. Kombinatorika

Aplikace lineární algebry a užití pravděpodobnostní metody v kombinatorice a teorii grafů. Analytická a kombinatorická teorie čísel. Kombinatorická a výpočetní geometrie. Strukturální a algoritmická teorie grafů.

# 2.2 Matematika pro informační technologie

Garantující pracoviště: Katedra algebry

Garant programu: doc. Mgr. Pavel Příhoda, Ph.D.

Studijní program je orientován zejména na prohloubení a algoritmické uchopení teoretických znalostí matematických oborů, které nacházejí uplatnění v informačních technologiích. V rámci studijního programu se lze zaměřit na kryptologii, počítačové vidění a robotiku nebo zpracování obrazu a počítačovou grafiku. Absolvent má rozvinuté analytické schopnosti, je schopen identifikovat matematickou podstatu problémů z IT praxe a umí aplikovat složitější matematickou teorii a další odborné znalosti k řešení těchto problémů. Absolventi naleznou uplatnění ve firmách zaměřených na vývoj náročných, specializovaných aplikací.

#### Vstupní požadavky

Předpokládáme, že student tohoto programu má na počátku prvního ročníku dostatečné znalosti z následujících oborů a oblastí:

- Kvalitní základy lineární algebry, reálné analýzy a teorie pravděpodobnosti.
- Základy obecné algebry pokrývající dělitelnost v obecných oborech integrity, vlastnosti polynomiáních okruhů, konečná tělesa, základy teorie grup a Galoisovy teorie, elementární teorie čísel.
- Výpočetní aspekty uvedených disciplín: základní maticové algoritmy, diskrétní Fourierova transformace a modulární aritmetika, aritmetika polynomů. Základní ponětí o aplikacích (kryptografie, samoopravné kódy, geometrické modelování). Základy algoritmizace a programování v jazyce Python.
- Pasivní znalost angličtiny umožňující dostatečné porozumění matematickým přenáškám a odborným textům.

Studentům, kteří tyto požadavky nesplňují, může garant studijního programu stanovit způsob jejich doplnění, například absolvováním vybraných předmětů bakalářského studia v rámci individuálního studijního plánu.

#### Doporučený průběh studia

Podrobnější informace k doporučenému průběhu studia lze najít na stránkách http://garant.karlin.mff.cuni.cz/stud/nmgr\_mit\_20.shtml. Při volbě povinně volitelných předmětů v průběhu studia je potřeba přihlédnout k požadavkům ke státní závěrečné zkoušce.

#### 1. rok studia

| Kód    | Název                   | Kredity | ZS       | LS |
|--------|-------------------------|---------|----------|----|
| NMMB40 | 9 Konvexní optimalizace | 9       | 4/2 Z+Zk | _  |

|         | l Algoritmy na mřížích<br>l Algoritmy na polynomech | $\frac{4}{4}$ | 2/1 Z+Zk<br>2/1 Z+Zk |                   |
|---------|-----------------------------------------------------|---------------|----------------------|-------------------|
| NMMB41  | 5 Automaty a výpočetní složitost                    | 6             | 3/1  Z+Zk            |                   |
| NSZZ023 | Diplomová práce I                                   | 6             | <u> </u>             | $0/4 \mathrm{~Z}$ |
|         | Volitelné a povinně volitelné<br>předměty           | 31            |                      |                   |

## 2. rok studia

| Kód     | Název                         | Kredity | ZS       | LS               |
|---------|-------------------------------|---------|----------|------------------|
| NSZZ024 | Diplomová práce II            | 9       | 0/6 Z    | _                |
| NSZZ025 | Diplomová práce III           | 15      | <u> </u> | $0/10 \; { m Z}$ |
|         | Volitelné a povinně volitelné | 36      |          |                  |
|         | $p\check{r}edm\check{e}ty$    |         |          |                  |

# Shrnutí studijního plánu

# Povinné předměty

| Kód     | Název                            | Kredity | ZS               | LS                 |
|---------|----------------------------------|---------|------------------|--------------------|
| NMMB40  | 9Konvexní optimalizace           | 9       | 4/2 Z+Zk         | _                  |
| NMMB41  | 1 Algoritmy na mřížích           | 4       | 2/1  Z+Zk        |                    |
| NMMB41  | 3 Algoritmy na polynomech        | 4       | 2/1  Z+Zk        |                    |
| NMMB41  | 5 Automaty a výpočetní složitost | 6       | 3/1  Z+Zk        |                    |
| NSZZ023 | Diplomová práce I                | 6       |                  | $0/4 \mathrm{~Z}$  |
| NSZZ024 | Diplomová práce II               | 9       | $0/6 \mathrm{Z}$ |                    |
| NSZZ025 | Diplomová práce III              | 15      |                  | $0/10 \mathrm{~Z}$ |

# Povinně volitelné předměty 1

Z těchto předmětů je potřeba získat alespoň 46 kreditů. V závorce je uvedeno, ke kterému tématu státní zkoušky se přednáška vztahuje. Předměty, u kterých tato informace není, jsou obecného charakteru.

| Kód     | Název                            | Kredity | ZS       | LS        |
|---------|----------------------------------|---------|----------|-----------|
| NDMI018 | Aproximační a online algoritmy * | 5       |          | 2/2 Z+Zk  |
| NDMI025 | Pravděpodobnostní algoritmy *    | 5       |          | 2/2 Z+Zk  |
| NMAG33  | 1 Matematická logika             | 3       | 2/0  Zk  |           |
| NMAG40  | 1 Algebraická geometrie          | 5       | 2/2 Z+Zk |           |
| NMAG40  | 3 Kombinatorika                  | 5       | 2/2 Z+Zk |           |
| NMAG430 | O Algebraická teorie čísel       | 6       | <u> </u> | 3/1  Z+Zk |
| NMAG430 | 6 Křivky a funkční tělesa (2C)   | 6       |          | 3/1  Z+Zk |
| NMAG53  | 5 Výpočetní logika (2A)          | 5       | 2/2 Z+Zk |           |
| NMAG56  | 3 Úvod do složitosti CSP         | 3       | 2/0  Zk  |           |
| NMMB33  | 1 Booleovské funkce (2C)         | 3       | 2/0  Zk  |           |
| NMMB33  | 3Základy analýzy dat             | 5       | 2/2 Z+Zk |           |
| NMMB40  | 2 Číselné algoritmy (2A)         | 4       | <u> </u> | 2/1  Z+Zk |
| NMMB40  | 4 Kryptoanalýza (2C)             | 6       |          | 3/1  Z+Zk |
| NMMB43  | 0 Algoritmy na eliptických       | 4       |          | 2/1  Z+Zk |
|         | křivkách (2A,2C)                 |         |          | •         |

| NMMB432 Náhodnost a výpočty (2C)               | 4 |                                       | 2/1 Zk              |
|------------------------------------------------|---|---------------------------------------|---------------------|
| NMMB433 Geometrie pro počítačovou grafiku (2E) | 3 | _                                     | $2/0 \mathrm{Zk}$   |
| NMMB437 Právní aspekty ochrany dat (2C)        | 3 | $2/0 \mathrm{~Zk}$                    |                     |
| NMMB438 Základy spojité optimalizace (2B)      | 6 |                                       | 2/2 Z+Zk            |
| NMMB440 Geometrie počítačového vidění (2D)*    | 6 |                                       | 2/2 Z+Zk            |
| NMMB442 Geometrické problémy                   | 6 | 2/2 Z+Zk                              |                     |
| v robotice $(2D)^*$                            |   | ,                                     |                     |
| NMMB460Kryptoanalýza na úrovni                 | 4 |                                       | $0/4 \mathrm{~Z}$   |
| instrukcí (2C)                                 |   |                                       |                     |
| NMMB464 Úvod do výpočetní                      | 4 |                                       | 2/1  Z+Zk           |
| topologie (2A,2D,2E)                           |   |                                       | •                   |
| NMMB498 Výběrová přednáška MIT 1               | 3 | $2/0 \mathrm{~Zk}$                    |                     |
| NMMB499 Výběrová přednáška MIT 2               | 3 | <del></del>                           | $2/0 \mathrm{~Zk}$  |
| NMMB501 Zabezpečení síťových protokolů (2C)    | 5 | 2/2 Z+Zk                              |                     |
| NMMB531 Číselné síto (2A)                      | 3 | 2/0  Zk                               |                     |
| NMMB532 Standardy a kryptografie (2C)          | 3 |                                       | $2/0 \mathrm{~Zk}$  |
| NMMB534 Kvantová informace                     | 6 |                                       | 3/1  Z+Zk           |
| NMMB538 Eliptické křivky a kryptografie (2C)   | 6 | 3/1  Z+Zk                             |                     |
| NMMO537Sedlobodové úlohy a jejich              | 5 | = = = = = = = = = = = = = = = = = = = | 2/2 Z+Zk            |
| řešení (2B)                                    | 0 |                                       |                     |
| NMNV411 Algoritmy maticových iteračních        | 5 | 2/2 Z+Zk                              |                     |
| metod (2B)                                     |   | ,                                     |                     |
| NMNV412 Analýza maticových iteračních          | 6 |                                       | $4/0 \mathrm{~Zk}$  |
| metod – principy a souvislosti (2B)            |   |                                       | ,                   |
| NMNV503 Numerické metody                       | 6 | 3/1  Z+Zk                             |                     |
| optimalizace 1 (2B)                            | Ū | 0/ 1                                  |                     |
| NMNV531 Inverzní úlohy a regularizace (2B)     | 5 | 2/2 Z+Zk                              |                     |
| NMNV532 Paralelní maticové výpočty (2B)        | 5 |                                       | 2/2 Z+Zk            |
| NMNV533 Řídké matice v numerické               | 5 | 2/2 Z+Zk                              | =                   |
| matematice (2B)                                | 9 |                                       |                     |
| NOPT016 Celočíselné programování (2B)*         | 5 |                                       | 2/2 Z+Zk            |
| NPFL138 Hluboké učení                          | 8 | <del></del>                           | 3/4  Z+Zk           |
|                                                | 5 |                                       | 3/4  Z+ZK           |
| NPGR010 Pokročilá 3D grafika pro film          | Э | 2/2 Z+Zk                              | <del></del>         |
| a hry (2E)                                     | 0 |                                       | 0 /0 71             |
| NPGR013 Speciální funkce a transformace ve     | 3 |                                       | $2/0 \mathrm{Zk}$   |
| zpracování obrazu (2E)                         | _ |                                       | - /                 |
| NPGR016 Aplikovaná výpočetní                   | 5 | _                                     | 2/1  Z+Zk           |
| geometrie $(2D,2E)$                            |   |                                       |                     |
| NPGR029 Variační metody ve zpracování          | 3 |                                       | $2/0 \mathrm{\ Zk}$ |
| obrazu (2E)                                    |   |                                       |                     |
| NTIN022 Pravděpodobnostní techniky             | 5 | 2/2 Z+Zk                              | _                   |
| NTIN104 Foundations of theoretical             | 4 | 2/1 Z+Zk                              | _                   |
| cryptography (2C)                              |   |                                       |                     |
|                                                |   |                                       |                     |

| NMNV468 Numerical Linear Algebra for data | 5 | <br>2/2 Z+Zk |
|-------------------------------------------|---|--------------|
| science and informatics (2E)              |   |              |

<sup>\*</sup> Předmět je obvykle vyučován pouze jednou za dva roky.

# Povinně volitelné předměty 2

Tyto předměty pokrývají témata zkoušená u státních závěrečných zkoušek. V závorce je uvedeno, ke kterému tématu státní zkoušky se vztahují. Tyto předměty jsou také prvky skupiny Povinně volitelných předmětů 1. Alespoň 17 kreditů ze 46 kreditů ze skupiny Povinně volitelných předmětů 1 musí být z následujícího užšího výběru.

| Kód     | Název                                | Kredity | ZS        | LS                |
|---------|--------------------------------------|---------|-----------|-------------------|
| NMMB33  | 1 Booleovské funkce (2C)             | 3       | 2/0  Zk   | _                 |
| NMMB40  | 2 Číselné algoritmy (2A)             | 4       |           | 2/1  Z+Zk         |
| NMMB40  | 4 Kryptoanalýza (2C)                 | 6       |           | 3/1  Z+Zk         |
| NMMB43  | 2 Náhodnost a výpočty (2C)           | 4       |           | $2/1 \mathrm{Zk}$ |
| NMMB43  | 3 Geometrie pro počítačovou          | 3       |           | $2/0 \mathrm{Zk}$ |
|         | grafiku (2E)                         |         |           |                   |
| NMMB44  | 0 Geometrie počítačového vidění (2D) | 6       |           | 2/2 Z+Zk          |
| NMMB44  | 2 Geometrické problémy               | 6       | 2/2 Z+Zk  |                   |
|         | v robotice (2D)                      |         |           |                   |
| NMNV41  | l Algoritmy maticových iteračních    | 5       | 2/2 Z+Zk  |                   |
|         | metod (2B)                           |         |           |                   |
| NMNV503 | 3 Numerické metody                   | 6       | 3/1  Z+Zk |                   |
|         | optimalizace 1 (2B)                  |         |           |                   |
| NMNV53  | BŘídké matice v numerické            | 5       | 2/2 Z+Zk  |                   |
|         | matematice (2B)                      |         |           |                   |
| NPGR013 | Speciální funkce a transformace ve   | 3       |           | $2/0 \mathrm{Zk}$ |
|         | zpracování obrazu (2E)               |         |           | ,                 |
| NPGR029 | Variační metody ve zpracování        | 3       |           | $2/0 \mathrm{Zk}$ |
|         | obrazu (2E)                          |         |           | •                 |
|         |                                      |         |           |                   |

## Povinně volitelné předměty 3

Tuto skupinu tvoří vybrané vědecké či pracovní semináře. Za předměty z této skupiny je třeba získat alespoň 4 kredity.

| Kód    | Název                               | Kredity | ZS                | LS                |
|--------|-------------------------------------|---------|-------------------|-------------------|
| NMMB36 | 1 Kryptografické otázky současnosti | 2       | $0/2 \mathrm{~Z}$ | 0/2  Z            |
| NMMB45 | 1 Aplikace matematiky v informatice | 3       | <u> </u>          | $0/2 \mathrm{~Z}$ |
| NMMB47 | 3 Matematické modelování            | 2       | $0/2 \mathrm{~Z}$ | $0/2 \mathrm{~Z}$ |
|        | bezpečnosti                         |         |                   |                   |
| NMMB45 | 2 Seminář z matematiky inspirované  | 3       | $0/2 \mathrm{~Z}$ | $0/2 \mathrm{~Z}$ |
|        | kryptografií                        |         | ,                 | ,                 |
| NMMB45 | 3 Studentský logický seminář        | 2       | $0/2 \mathrm{~Z}$ | $0/2 \mathrm{~Z}$ |
| NMMB47 | 1 Výběrový seminář z MIT            | 2       | $0/2 \mathrm{~Z}$ | $0/2 \mathrm{~Z}$ |
| NMMB55 | 1 Seminář z kombinatorické,         | 2       | $0/2 \mathrm{~Z}$ | $0/2 \mathrm{~Z}$ |
|        | algoritmické a finitní algebry      |         |                   |                   |
| NMNV45 | 1 Seminář numerické matematiky      | 2       | $0/2 \mathrm{~Z}$ | $0/2 \mathrm{~Z}$ |

#### Státní závěrečná zkouška

#### Podmínky pro přihlášení ke státní závěrečné zkoušce

Podmínky pro přihlášení k poslední části státní závěrečné zkoušky

- Získání alespoň 120 kreditů.
- Splnění všech povinných předmětů studijního plánu.
- Splnění Povinně volitelných předmětů 1 v rozsahu alespoň 46 kreditů. Z toho má být alespoň 17 kreditů z užšího výběru Povinně volitelných předmětů 2.
- Splnění Povinně volitelných předmětů 3 v rozsahu alespoň 4 kredity.
- Odevzdání vypracované diplomové práce ve stanoveném termínu.

## Podmínky pro přihlášení k jiné než poslední části státní závěrečné zkoušky

Rámcové podmínky jsou stanoveny vnitřním předpisem Pravidla pro organizaci studia na MFF UK a v programu Matematika pro informační technologie je nutné splnit tyto podmínky:

- Získání alespoň 105 kreditů.
- Pokud je jinou než poslední částí státní závěrečné zkoušky její ústní část, je nutné splnění všech povinných předmětů studijního plánu s výjimkou NSZZ025 Diplomová práce III a splnění Povinně volitelných předmětů 3 v rozsahu alespoň 4 kredity.
- Pokud je jinou než poslední částí státní závěrečné zkoušky obhajoba, je nutné splnění všech povinných předmětů a odevzdání vypracované diplomové práce ve stanoveném termínu.
- Splnění Povinně volitelných předmětů 1 v rozsahu alespoň 46 kreditů. Z toho alespoň 17 kreditů z užšího výběru Povinně volitelných předmětů 2.

#### Ústní část státní závěrečné zkoušky

Ústní část státní závěrečné zkoušky studijního programu Matematika pro informační technologie se skládá z dvou tematických okruhů. Z tematického okruhu 1 dostane student jednu otázku. Tématický okruh 2 je rozdělen na podokruhy 2A, 2B, 2C, 2D, 2E. Student si vybere dva z nich a ke každému zvolenému tématu dostane jednu otázku. Očekávané kombinace 2A + 2C, 2B + 2D, 2B + 2E odpovídají volbě zaměření.

Podrobnější vysvětlení požadavků k ústní části státní závěrečné zkoušky lze najít na stránkách http://garant.karlin.mff.cuni.cz/stud/nmgr\_mit\_20\_szz.shtml.

## Požadavky k ústní části státní závěrečné zkoušky

## Tématický okruh 1

#### 1. Matematika pro informační technologie

Výpočetní modely, algoritmická rozhodnutelnost, základní složitostní třídy, regulární jazyky. Základní metody konvexní optimalizace. Gröbnerovy báze a Buchbergerův algoritmus. Mříže a algoritmus LLL.

#### Tématický okruh 2

## 2A Algebraické a číselné algoritmy

Rozklady polynomů: Berlekampův algoritmus, Henselovo zdvihání a Berlekampův-Henselův algoritmus. Aplikace Gröbnerových bází v algebraické geometrii. Číselné algoritmy: Pollardova rho a p-1 metoda, algoritmus CFRAC, ECM, kvadratické síto. Souvislost faktorizace a diskrétního algoritmu.

#### 2B Algoritmy pro lineární algebru a optimalizaci

Řídký Choleského a LU rozklad, řídký QR rozklad. Krylovovské iterační metody pro řešení soustav lineárních algebraických rovnic a lineárních aproximačních problémů, včetně konstrukce algebraických předpodmínění. Metody pro řešení nelineárních algebraických rovnic a jejich soustav, metody pro minimalizaci funkcionálu bez omezení, lokální a globální konvergence metod.

#### 2C Kryptologie

Základy Booleovských funkcí (ohnuté funkce, APN a AB funkce, ekvivalence, S-boxy, Walshova transformace a LAT, diferenční uniformita a DDT). Posloupnosti dané posuvnými registry. Základní kryptoanalytické útoky na blokové šifry (diferenciální a lineární kryptoanalýza, útoky vyšších řádů, meet-in-the-middle) a proudové šifry (korelace, algebraické útoky), útoky postranním kanálem. Aplikace mříží: NTRU, aplikace LLL (např. útok na RSA s malým veřejným exponentem). Pravděpodobnostní složitostní třídy, pseudonáhodné generátory.

#### 2D Počítačové vidění a robotika

Matematický model perspektivní kamery. Výpočet pohybu kalibrované kamery z obrazů neznámé scény. 3D rekonstrukce ze dvou obrazů neznámé scény. Geometrie tří kalibrovaných kamer. Denavit-Hartenbergův popis kinematiky manipulátoru. Inverzní kinematická úloha pro šestistupňový sériový manipulátor – formulace a řešení. Kalibrace parametrů manipulátoru – formulace a řešení.

#### 2E Zpracování obrazu a počítačová grafika

Modelování inverzních problémů, regularizační metody, digitalizace obrazu, zaostřování a odšumování obrazu, detekce hran, obrazová registrace, komprese, syntéza obrazu, metody compressed sensing, analytická, kinematická a diferenciální geometrie.

# 2.3 Matematická analýza

Garantující pracoviště: Katedra matematické analýzy Garant programu: prof. RNDr. Ondřej Kalenda, Ph.D., DSc.

Matematická analýza zahrnuje řadu oblastí matematiky — teorii funkcí reálné a komplexní proměnné, teorii míry a integrálu, funkcionální analýzu, obyčejné i parciální diferenciální rovnice, teorii potenciálu aj. Jejich vývoj byl inspirován také potřebami fyziky, biologie, ekonomie a jiných věd. Díky velmi vysoké adaptabilitě získané studiem a schopnosti podílet se tvořivě na řešení problémů z celé řady oborů je uplatnění absolventů značně univerzální a není omezeno na pracoviště s čistě badatelským zaměřením.

Studijní program Matematická analýza má dva studijní plány — jeden pro studenty, kteří začali studovat v roce 2020 nebo 2021, a jeden pro studenty, kteří začali studovat v roce 2022 nebo později.

# Studijní plán pro studenty s počátkem studia v roce 2022 nebo později

#### Vstupní požadavky

Předpokládáme, že student tohoto programu má na počátku prvního ročníku dostatečné znalosti z následujících oborů a oblastí:

- Znalost angličtiny na úrovni umožňující studium odborné literatury a sledování odborných přednášek v angličtině
- Diferenciální počet jedné a několika reálných proměnných
- Integrální počet jedné reálné proměnné
- Teorie míry, Lebesgueova míra a Lebesgueův integrál
- Základy algebry (maticový počet, vektorové prostory)
- Základy obecné topologie (metrické a topologické prostory, úplnost a kompaktnost)
- Základy komplexní analýzy (Cauchyova věta, reziduová věta)
- Základy funkcionální analýzy (Banachovy a Hilbertovy prostory, duály, slabá konvergence, omezené operátory, kompaktní operátory, Fourierova transformace)
- Základy teorie obyčejných diferenciálních rovnic (základní vlastnosti řešení a maximálních řešení, soustavy lineárních rovnic, stabilita)
- Základy teorie parciálních diferenciálních rovnic (kvazilineární rovnice prvního řádu, Laplaceova rovnice a rovnice vedení tepla klasické řešení a princip maxima, vlnová rovnice klasické řešení, konečná rychlost šíření vlny)

Studentům, kteří tyto požadavky nesplňují, může garant studijního programu stanovit způsob jejich doplnění, například absolvováním vybraných předmětů bakalářského studia v rámci individuálního studijního plánu.

## Doporučený průběh studia

Doplňující informace k doporučenému průběhu studia lze najít na stránkách https://www.mff.cuni.cz/cs/math/pro-studenty/mgr-programy/mgr-analyza-garant/ma-dopln-sp.

#### 1. rok studia

| Kód     | Název                              | Kredity | ZS        | LS                |
|---------|------------------------------------|---------|-----------|-------------------|
| NMMA40  | l Funkcionální analýza 1           | 8       | 4/2 Z+Zk  |                   |
| NMMA40  | 3Reálné funkce 1                   | 4       | 2/0  Zk   |                   |
| NMMA40  | 5Parciální diferenciální rovnice 1 | 6       | 3/1  Z+Zk |                   |
| NMMA40  | 7Obyčejné diferenciální rovnice 2  | 5       | 2/2 Z+Zk  |                   |
| NMMA40  | 2Funkcionální analýza 2            | 6       | <u> </u>  | 3/1  Z+Zk         |
| NMMA40  | 6Parciální diferenciální rovnice 2 | 6       |           | 3/1  Z+Zk         |
| NMMA41  | 0 <b>Komplexní analýza</b>         | 6       |           | 3/1  Z+Zk         |
| NSZZ023 | Diplomová práce I                  | 6       |           | $0/4 \mathrm{~Z}$ |
|         | Volitelné a povinně volitelné      | 13      |           |                   |
|         | $p\check{r}edm\check{e}ty$         |         |           |                   |

#### 2. rok studia

| Kód     | Název                                     | Kredity | ZS                | LS                 |
|---------|-------------------------------------------|---------|-------------------|--------------------|
|         | Diplomová práce II                        | 9       | $0/6 \mathrm{~Z}$ | _                  |
| NSZZ025 | Diplomová práce III                       | 15      | _                 | $0/10 \mathrm{~Z}$ |
|         | Volitelné a povinně volitelné<br>předměty | 36      |                   |                    |

# Shrnutí studijního plánu

## Povinné předměty

| Kód Název                             | Kredity         | ZS                | LS                |
|---------------------------------------|-----------------|-------------------|-------------------|
| NMMA401 Funkcionální analýza 1        | 8               | 4/2 Z+Zk          | _                 |
| NMMA402 <b>Funkcionální analýza 2</b> | 6               |                   | 3/1  Z+Zk         |
| NMMA403 <b>Reálné funkce 1</b>        | 4               | $2/0 \mathrm{Zk}$ |                   |
| NMMA405 Parciální diferenciální rov   | nice 1 6        | 3/1  Z+Zk         |                   |
| NMMA406 Parciální diferenciální rov   | <b>nice 2</b> 6 |                   | 3/1  Z+Zk         |
| NMMA407 Obyčejné diferenciální rov    | nice 2 5        | 2/2 Z+Zk          |                   |
| NMMA410 <b>Komplexní analýza</b>      | 6               |                   | 3/1  Z+Zk         |
| NSZZ023 Diplomová práce I             | 6               |                   | $0/4 \mathrm{~Z}$ |
| NSZZ024 Diplomová práce II            | 9               | $0/6 \mathrm{~Z}$ |                   |
| NSZZ025 Diplomová práce III           | 15              | _                 | $0/10~\mathrm{Z}$ |

## Povinně volitelné předměty

#### Skupina I.

Tuto skupinu tvoří přednášky, které jsou úvodem do jednotlivých oblastí výzkumu v matematické analýze, do aplikací matematické analýzy či do vybraných oblastí jiných oborů, které s matematickou analýzou souvisejí. Za předměty z této skupiny je třeba získat alespoň 21 kreditů. Některé z těchto předmětů nejsou vyučovány každý rok, ale pouze jednou za dva roky.

Část kreditů z tohoto počtu je možné získat za předměty absolvované během stáží na zahraničních univerzitách, pokud jsou tyto předměty ekvivalentní některému z vyjmenovaných. Kromě toho lze započítat až 8 kreditů za předměty absolvované během stáží, i když nejsou ekvivalentní žádnému z vyjmenovaných, pokud splňují podmínky pro povinně volitelné přednášky uvedené v první větě předchozího odstavce a pokud je předem schválí garant programu.

| Kód     | Název                                | Kredity | ZS                | LS                 |
|---------|--------------------------------------|---------|-------------------|--------------------|
| NMAG409 | Algebraická topologie 1              | 5       | 2/2 Z+Zk          | _                  |
| NMAG433 | 3 Riemannovy plochy                  | 3       | 2/0  Zk           |                    |
| NMMA40  | 4Reálné funkce 2                     | 4       |                   | $2/0 \mathrm{~Zk}$ |
| NMMA43  | 3Deskriptivní teorie množin 1        | 4       | 2/0  Zk           |                    |
| NMMA43  | 4Deskriptivní teorie množin 2        | 4       |                   | $2/0 \mathrm{~Zk}$ |
| NMMA43  | 5 Topologické metody ve funkcionální | 4       | 2/0  Zk           |                    |
|         | analýze 1                            |         |                   |                    |
| NMMA43  | 6 Topologické metody ve funkcionální | 4       | <del></del>       | $2/0 \mathrm{Zk}$  |
|         | analýze 2                            |         |                   | ·                  |
| NMMA43  | 7Derivace a integrál pro pokročilé 1 | 4       | $2/0 \mathrm{Zk}$ |                    |
| NMMA43  | 8Derivace a integrál pro pokročilé 2 | 4       | <u> </u>          | $2/0 \mathrm{Zk}$  |
| NMMA44  | ODiferenciální rovnice v Banachových | 4       |                   | $2/0 \mathrm{~Zk}$ |
|         | prostorech                           |         |                   |                    |
| NMMA50  | 1 Nelineární funkcionální analýza 1  | 5       | 2/2 Z+Zk          |                    |
| NMMA50  | 2 Nelineární funkcionální analýza 2  | 5       | <u>.</u>          | 2/2 Z+Zk           |
| NMMA53  | 1 Parciální diferenciální rovnice 3  | 4       | $2/0 \mathrm{Zk}$ | <u> </u>           |
| NMMA53  | 3Úvod do teorie interpolací 1        | 4       | 2/0 Zk            |                    |

| NMMA534Úvod do teorie interpolací 2   | 4 | _        | $2/0 \mathrm{~Zk}$ |
|---------------------------------------|---|----------|--------------------|
| NMMO401Mechanika kontinua             | 6 | 2/2 Z+Zk |                    |
| NMMO532Matematická teorie             | 3 | <u> </u> | $2/0 \mathrm{Zk}$  |
| Navierových-Stokesových rovnic        |   |          |                    |
| NMMO536Matematické metody v mechanice | 3 |          | $2/0 \mathrm{Zk}$  |
| stlačitelných tekutin                 |   |          |                    |
| NMNV405 Metoda konečných prvků 1      | 5 | 2/2 Z+Zk |                    |

# Skupina II.

Tuto skupinu tvoří vybrané vědecké či pracovní semináře. Za předměty z této skupiny je třeba získat alespoň 12 kreditů (za každý z těchto seminářů lze získat 3 kredity za každý semestr). Semináře lze zapisovat opakovaně.

| Kód    | Název                                                           | Kredity | ZS                | LS                 |
|--------|-----------------------------------------------------------------|---------|-------------------|--------------------|
| NMMA   | 431 Seminář z diferenciálních rovnic                            | 3       | $0/2 \mathrm{~Z}$ | $0/2 \mathrm{~Z}$  |
| NMMA   | 452 Seminář z parciálních diferenciálních rovnic                | 3       | 0/2 Z             | $0/2 \mathrm{~Z}$  |
| NMMA   | 454 Seminář z prostorů funkcí                                   | 3       | $0/2 \mathrm{~Z}$ | $0/2 \mathrm{~Z}$  |
|        | 455 Seminář z reálné a abstraktní<br>analýzy                    | 3       | 0/2 Z             | 0/2 Z              |
| NMMA   | 456 Seminář z teorie reálných funkcí                            | 3       | $0/2 \mathrm{Z}$  | $0/2 \mathrm{~Z}$  |
| NMMA   | 457 Seminář ze základních vlastností<br>prostorů funkcí         | 3       | 0/2 Z             | $0/2 \mathrm{~Z}$  |
| NMMA   | 458 Topologický seminář                                         | 3       | $0/2 \mathrm{Z}$  | $0/2 \mathrm{~Z}$  |
| NMMA   | 459Seminář ze základů funkcionální<br>analýzy                   | 3       | $0/2 \mathrm{~Z}$ | 0/2 Z              |
| Doporu | čené volitelné předměty                                         |         |                   |                    |
| Kód    | Název                                                           | Kredity | ZS                | LS                 |
| NMMA   | 462 Obecná topologie 2                                          | 6       | _                 | 2/2 Z+Zk           |
| NMMA   | 466 Aplikace diferenciálních rovnic v biologii                  | 3       | _                 | 2/0 Zk             |
| NMMA   | 479 Kapitoly z diskrétních dynamických systémů                  | 3       | 2/0 Zk            |                    |
| NMMA   | 481 Vybrané partie z harmonické<br>analýzy 1                    | 3       | 2/0 Zk            | _                  |
| NMMA   | 482 Vybrané partie z harmonické<br>analýzy 2                    | 3       | _                 | $2/0 \mathrm{~Zk}$ |
| NMMA   | 563 Derivace a integrál pro pokročilé 3                         | 3       | 2/0  Zk           |                    |
|        | 564 Derivace a integrál pro pokročilé 4                         | 3       |                   | $2/0 \mathrm{~Zk}$ |
|        | 565 Úvod do teorie aproximací 1                                 | 3       | 2/0  Zk           |                    |
|        | 566 Úvod do teorie aproximací 2                                 | 3       |                   | $2/0 \mathrm{~Zk}$ |
|        | 575 Topologické a geometrické vlastnosti<br>konvexních množin 1 | 3       | 2/0 Zk            | <u>'</u>           |
| NMMA   | 576 Topologické a geometrické vlastnosti<br>konvexních množin 2 | 3       | _                 | $2/0 \mathrm{~Zk}$ |

| NMMA561 Operátorové algebry 1<br>NMMA562 Operátorové algebry 2<br>NMMA574 Vybrané kapitoly z teorie<br>dynamických systémů | 3<br>3<br>3 | 2/0 Zk<br> | $-2/0 \; { m Zk} \ 2/0 \; { m Zk}$ |
|----------------------------------------------------------------------------------------------------------------------------|-------------|------------|------------------------------------|
| NMMA577 Zobrazení s konečnou distorzí 1                                                                                    | 3           | 2/0 Zk     | $2/0  Zk$ $2/0  Zk$                |
| NMMA578 Zobrazení s konečnou distorzí 2                                                                                    | 3           | —          |                                    |
| NMMA654 Úvod do topologických grup                                                                                         | 3           | —          |                                    |

#### Státní závěrečná zkouška

#### Podmínky pro přihlášení ke státní závěrečné zkoušce

Podmínky pro přihlášení k poslední části státní závěrečné zkoušky

- Získání alespoň 120 kreditů.
- Splnění všech povinných předmětů studijního plánu.
- Splnění povinně volitelných předmětů ze skupiny I. v rozsahu alespoň 21 kreditů.
- Splnění povinně volitelných předmětů ze skupiny II. v rozsahu alespoň 12 kreditů.
- Odevzdání vypracované diplomové práce ve stanoveném termínu.

#### Podmínky pro přihlášení k jiné než poslední části státní závěrečné zkoušky

Tyto podmínky jsou stanoveny vnitřním předpisem Pravidla pro organizaci studia na MFF UK. Pokud je jinou než poslední částí státní závěrečné zkoušky její ústní část, nutnou podmínkou pro přihlášení se k této části státní závěrečné zkoušky je navíc:

- Splnění všech povinných předmětů studijního plánu s výjimkou předmětu NSZZ025
   Diplomová práce III.
- Splnění povinně volitelných předmětů ze skupiny I. v rozsahu alespoň 21 kreditů.
- Splnění povinně volitelných předmětů ze skupiny II. v rozsahu alespoň 12 kreditů.

#### Ústní část státní závěrečné zkoušky

Ústní část státní závěrečné zkoušky studijního programu Matematická analýza se skládá ze čtyř okruhů, jimiž jsou Reálná a komplexní analýza, Funkcionální analýza, Obyčejné diferenciální rovnice a Parciální diferenciální rovnice. Z každého okruhu dostane uchazeč zpravidla jednu otázku.

Podrobnější vysvětlení požadavků k ústní části státní závěrečné zkoušky lze najít na stránkách https://www.mff.cuni.cz/cs/math/pro-studenty/mgr-programy/mgr-analyza-garant/ma-szz.

#### Požadavky k ústní části státní závěrečné zkoušky

Tematické okruhy pro ústní část SZZ:

## 1. Reálná a komplexní analýza

Teorie míry — znaménkové míry, Radonovy míry. Absolutně spojité funkce a funkce s konečnou variací. Hausdorffova míra a dimenze. Meromorfní funkce. Konformní zobrazení. Harmonické funkce dvou proměnných. Nulové body holomorfních funkcí.

#### 2. Funkcionální analýza

Lokálně konvexní prostory a slabé topologie. Spektrální teorie v Banachových algebrách. Spektrum omezených i neomezených operátorů. Integrální transformace. Teorie distribucí.

#### 3. Obyčejné diferenciální rovnice

Carathéodoryova teorie řešení. Soustavy lineárních rovnic prvního řádu. Stabilita a asymptotická stabilita. Dynamické systémy. Bifurkace.

## 4. Parciální diferenciální rovnice

Lineární a kvazilineární rovnice prvního řádu. Lineární a nelineární eliptické rovnice. Lineární a nelineární parabolické rovnice. Lineární hyperbolické rovnice. Sobolevovy prostory.

# Studijní plán pro studenty s počátkem studia v roce 2020 nebo 2021

Tento studijní plán je popsán v Karolince pro rok 2021/2022 nebo pro rok 2022/2023.

# 2.4 Numerická a výpočtová matematika

Garantující pracoviště: Katedra numerické matematiky Garant programu: doc. RNDr. Václav Kučera, Ph.D.

Numerická a výpočtová matematika se zabývá zpracováním matematických modelů pomocí výpočetní techniky. Realizuje přechod od teoretické matematiky k prakticky použitelným výsledkům. S jejím použitím se lze setkat v technice a v přírodních vědách, v ekonomice, lékařských vědách aj. Student se seznámí jak s teorií výpočtových procesů a algoritmů, tak s aplikacemi v oblastech počítačového modelování, simulace a řízení složitých struktur a procesů. Důraz je kladen též na tvořivou práci s počítačem a vytváření software na vysoké úrovni.

Absolventi nacházejí uplatnění především tam, kde se systematicky používá výpočetní technika (průmysl, školství, základní i aplikovaný výzkum, veřejná správa, justice, banky apod.).

#### Vstupní požadavky

Předpokládáme, že student tohoto programu má na počátku prvního ročníku dostatečné znalosti z následujících oborů a oblastí:

- Znalost angličtiny na úrovni umožňující studium odborné literatury a sledování odborných přednášek v angličtině.
- Diferenciální počet pro funkce jedné a několika reálných proměnných.
- Integrální počet pro funkce jedné reálné proměnné.
- Teorie míry, Lebesgueova míra a Lebesgueův integrál.
- Základy lineární algebry (maticový počet, vektorové prostory).
- Základy funkcionální analýzy (Banachovy a Hilbertovy prostory, duály, omezené operátory, kompaktní operátory).
- Základy teorie obyčejných diferenciálních rovnic (základní vlastnosti řešení a maximálních řešení, soustavy lineárních rovnic, stabilita).
- Základy teorie parciálních diferenciálních rovnic (kvazilineární rovnice prvního řádu, Laplaceova rovnice, rovnice vedení tepla, vlnová rovnice).
- Základy numerické matematiky (numerická kvadratura, základy numerického řešení obyčejných diferenciálních rovnic, metoda konečných diferencí pro parciální diferenciální rovnice).
- Základy analýzy maticových výpočtů (Schurova věta, ortogonální transformace, rozklady matic, základní iterační metody).

Studentům, kteří tyto požadavky nesplňují, může garant studijního programu stanovit způsob jejich doplnění, například absolvováním vybraných předmětů bakalářského studia v rámci individuálního studijního plánu.

# Doporučený průběh studia

Podrobnější informace k doporučenému průběhu studia lze najít na stránkách https://www.mff.cuni.cz/cs/math/pro-studenty/mgr-programy.

## 1. rok studia

| Kód Název                  |                           | Kredity | ZS                | LS                |
|----------------------------|---------------------------|---------|-------------------|-------------------|
| NMMA405 Parciáln           | í diferenciální rovnice 1 | 6       | 3/1 Z+Zk          |                   |
| NMNV401 Funkcion           | nální analýza             | 5       | 2/2 Z+Zk          |                   |
| NMNV403 Numeric            | cký software 1            | 5       | 2/2 Z+Zk          |                   |
| NMNV405 <b>Metoda</b>      | konečných prvků 1         | 5       | 2/2 Z+Zk          |                   |
| NMNV411 <b>Algoritm</b>    | ny maticových             | 5       | 2/2 Z+Zk          |                   |
| iteračníc                  | h metod                   |         |                   |                   |
| NMNV451 Seminář r          | numerické matematiky      | 2       | $0/2 \mathrm{~Z}$ |                   |
| NMNV406 <b>Nelineár</b>    | ní diferenciální rovnice  | 5       |                   | 2/2 Z+Zk          |
| NMNV412 <b>Analýza</b>     | maticových iteračních     | 6       |                   | $4/0 \mathrm{Zk}$ |
| ${f metod}$ $-$            | principy a souvislosti    |         |                   |                   |
| NSZZ023 <b>Diplomo</b>     | vá práce I                | 6       |                   | $0/4 \mathrm{~Z}$ |
| NMNV451 Seminář r          | numerické matematiky      | 2       |                   | $0/2 \mathrm{~Z}$ |
| $Voliteln\'e$              | a povinně volitelné       | 13      |                   |                   |
| $p\check{r}edm\check{e}ty$ |                           |         |                   |                   |

#### 2. rok studia

| Kód     | Název                                | Kredity | ZS                | LS                |
|---------|--------------------------------------|---------|-------------------|-------------------|
| NMNV50  | 3 Numerické metody<br>optimalizace 1 | 6       | 3/1 Z+Zk          |                   |
| NSZZ024 | Diplomová práce II                   | 9       | $0/6 \mathrm{~Z}$ |                   |
| NMNV45  | 1 Seminář numerické matematiky       | 2       | $0/2 \mathrm{~Z}$ |                   |
| NSZZ025 | Diplomová práce III                  | 15      |                   | $0/10   { m Z}$   |
| NMNV45  | 1 Seminář numerické matematiky       | 2       |                   | $0/2 \mathrm{~Z}$ |
|         | Volitelné a povinně volitelné        | 26      |                   |                   |
|         | $p\check{r}edm\check{e}ty$           |         |                   |                   |

# Shrnutí studijního plánu

# Povinné předměty

| Kód    | Název                              | Kredity | ZS       | LS       |
|--------|------------------------------------|---------|----------|----------|
| NMMA40 | 5Parciální diferenciální rovnice 1 | 6       | 3/1 Z+Zk |          |
| NMNV40 | 1 Funkcionální analýza             | 5       | 2/2 Z+Zk |          |
| NMNV40 | 3 Numerický software 1             | 5       | 2/2 Z+Zk |          |
| NMNV40 | 5 Metoda konečných prvků 1         | 5       | 2/2 Z+Zk |          |
| NMNV40 | 6 Nelineární diferenciální rovnice | 5       |          | 2/2 Z+Zk |
| NMNV41 | 1 Algoritmy maticových             | 5       | 2/2 Z+Zk |          |
|        | iteračních metod                   |         |          |          |

|                    | nalýza maticových iteračních<br>etod – principy a souvislosti | 6  | _                 | $4/0 \mathrm{~Zk}$ |
|--------------------|---------------------------------------------------------------|----|-------------------|--------------------|
| NMNV503 <b>N</b> u | ımerické metody                                               | 6  | 3/1 Z+Zk          |                    |
| op                 | timalizace 1                                                  |    |                   |                    |
| NSZZ023 <b>Di</b>  | plomová práce I                                               | 6  |                   | $0/4~{ m Z}$       |
| NSZZ024 <b>Di</b>  | plomová práce II                                              | 9  | $0/6 \mathrm{~Z}$ |                    |
| NSZZ025 <b>Di</b>  | plomová práce III                                             | 15 | <u>.</u>          | $0/10 \mathrm{~Z}$ |

# Povinně volitelné předměty

Je třeba získat alespoň 30 kreditů z povinně volitelných předmětů.

| Kód     | Název                                | Kredity | ZS       | LS                 |
|---------|--------------------------------------|---------|----------|--------------------|
| NMMA40  | 6Parciální diferenciální rovnice 2   | 6       | _        | 3/1  Z+Zk          |
| NMNV404 | 4 Numerický software 2               | 5       |          | 2/2 Z+Zk           |
| NMNV436 | 6 Metoda konečných prvků 2           | 5       |          | 2/2 Z+Zk           |
| NMNV46  | l Techniky aposteriorního odhadování | 3       | 2/0  Zk  |                    |
|         | chyby                                |         |          |                    |
| NMNV464 | 4 Aposteriorní numerická analýza     | 3       |          | $2/0 \mathrm{~Zk}$ |
|         | metodou vyvážených toků *            |         |          |                    |
| NMNV53  | l Inverzní úlohy a regularizace      | 5       | 2/2 Z+Zk |                    |
| NMNV532 | 2 Paralelní maticové výpočty         | 5       |          | 2/2 Z+Zk           |
| NMNV53  | BŘídké matice v numerické            | 5       | 2/2 Z+Zk |                    |
|         | matematice                           |         |          |                    |
| NMNV53  | 7 Matematické metody v mechanice     | 3       | 2/0  Zk  |                    |
|         | tekutin 1                            |         |          |                    |
| NMNV538 | 8 Matematické metody v mechanice     | 3       |          | $2/0 \mathrm{Zk}$  |
|         | tekutin 2                            |         |          |                    |
| NMNV539 | 9 Numerické řešení ODR               | 5       | 2/2 Z+Zk | <del></del>        |
| NMNV540 | Základy nespojité Galerkinovy        | 3       | <u> </u> | $2/0 \mathrm{Zk}$  |
|         | metody                               |         |          | ·                  |
| NMNV543 | 3 Aproximace funkcí 1                | 5       | 2/2 Z+Zk | <del></del>        |
| NMNV54  | 4 Numerické metody optimalizace 2    | 5       | <u>.</u> | 2/2 Z+Zk           |

<sup>\*</sup> Předmět není vyučován každý rok.

# Doporučené volitelné předměty

| Kód    | Název                            | Kredity | ZS                 | LS                 |
|--------|----------------------------------|---------|--------------------|--------------------|
| NMMO40 | 1 Mechanika kontinua             | 6       | 2/2 Z+Zk           |                    |
| NMMO40 | 3Počítačové řešení úloh fyziky   | 5       | <u>.</u>           | 2/2 Z+Zk           |
|        | kontinua                         |         |                    |                    |
| NMMO59 | 9 Počítačové řešení úloh fyziky  | 5       | 2/2 Z+Zk           |                    |
|        | $kontinua\ II$                   |         |                    |                    |
| NMMO46 | 1 Seminář z mechaniky kontinua   | 2       | $0/2 \mathrm{~Z}$  | $0/2 \mathrm{~Z}$  |
| NMMO53 | 5 Matematické metody v mechanice | 3       | $2/0 \mathrm{~Zk}$ |                    |
|        | pevných látek                    |         |                    |                    |
| NMMO53 | 6 Matematické metody v mechanice | 3       |                    | $2/0 \mathrm{~Zk}$ |
|        | stlačitelných tekutin            |         |                    |                    |

| NMMO537 Sedlobodové úlohy a jejich řešení                            | 5 |                    | 2/2 Z+Zk           |
|----------------------------------------------------------------------|---|--------------------|--------------------|
| NMMO539 Matematické metody v mechanice<br>nenewtonovských tekutin    | 3 | $2/0 \mathrm{~Zk}$ | <u></u>            |
| NMNV361 Fraktály a chaotická dynamika                                | 3 | $2/0 \mathrm{Zk}$  | _                  |
| NMNV451 Seminář numerické matematiky                                 | 2 | $0/2 \mathrm{~Z}$  | $0/2 \mathrm{~Z}$  |
| NMNV462 Numerické modelování problémů elektrotechniky                | 3 |                    | $2/0 \mathrm{~Zk}$ |
| NMNV468 Numerical Linear Algebra for data<br>science and informatics | 5 | _                  | 2/2 Z+Zk           |
| NMNV561 Bifurkační analýza dynamických systémů 1 *                   | 3 | 2/0 Zk             |                    |
| NMNV562 Bifurkační analýza dynamických systémů 2 *                   | 3 | _                  | $2/0 \mathrm{~Zk}$ |
| NMNV565 High-Performance Computing for<br>Computational Science      | 5 | 2/2 Z+Zk           |                    |
| NMNV568 Aproximace funkcí 2 *                                        | 3 | _                  | $2/0 \mathrm{Zk}$  |
| NMNV571 Víceúrovňové metody                                          | 3 |                    | 2/0  Zk            |
| NMST442 Maticové výpočty ve statistice *                             | 5 | _                  | 2/2 Z+Zk           |

<sup>\*</sup> Předmět není vyučován každý rok.

#### Státní závěrečná zkouška

## Podmínky pro přihlášení ke státní závěrečné zkoušce

Podmínky pro přihlášení k poslední části státní závěrečné zkoušky

- Získání alespoň 120 kreditů.
- Splnění všech povinných předmětů studijního plánu.
- Splnění povinně volitelných předmětů v rozsahu alespoň 30 kreditů.
- Odevzdání vypracované diplomové práce ve stanoveném termínu.

#### Podmínky pro přihlášení k jiné než poslední části státní závěrečné zkoušky

Rámcové podmínky jsou stanoveny vnitřním předpisem Pravidla pro organizaci studia na MFF UK. V programu Numerická a výpočtová matematika je nutné splnit tyto podmínky:

- Získání alespoň 105 kreditů.
- Pokud je jinou než poslední částí státní závěrečné zkoušky její ústní část, je nutné splnění všech povinných předmětů studijního plánu s výjimkou NSZZ025 Diplomová práce III.
- Pokud je jinou než poslední částí státní závěrečné zkoušky obhajoba, je nutné splnění všech povinných předmětů studijního plánu a odevzdání vypracované diplomové práce ve stanoveném termínu.
- Splnění povinně volitelných předmětů v rozsahu alespoň 30 kreditů.

#### Ústní část státní závěrečné zkoušky

Při ústní zkoušce budou každému studentovi zadány tři otázky z níže uvedených tematických okruhů. Obsah těchto okruhů pokrývají povinné předměty.

Podrobnější vysvětlení požadavků k ústní části státní závěrečné zkoušky lze najít na stránkách https://www.mff.cuni.cz/cs/math/pro-studenty/mgr-programy.

#### Požadavky k ústní části státní závěrečné zkoušky

#### 1. Parciální diferenciální rovnice

Lineární eliptické, parabolické a hyperbolické rovnice, nelineární diferenciální rovnice v divergenčním tvaru; Sobolevovy prostory; variační formulace; existence a vlastnosti řešení; monotónní a potenciální operátory.

#### 2. Metoda konečných prvků

Prostory konečných prvků a jejich aproximační vlastnosti; Galerkinova aproximace lineárních eliptických úloh; odhady chyby; řešení nelineárních rovnic v divergenčním tvaru.

#### 3. Numerická lineární algebra

Základní přímé a iterační maticové metody; krylovovské metody; projekce a problém momentů; souvislost spektrální informace a konvergence.

## 4. Adaptivní diskretizační metody

Numerická kvadratura, odhady chyby, adaptivita; numerické metody pro obyčejné diferenciální rovnice, odhady lokální chyby, adaptivní volba časového kroku.

#### 5. Numerické metody optimalizace

Metody pro řešení nelineárních algebraických rovnic a jejich soustav; metody pro minimalizaci funkcionálu bez omezení; lokální a globální konvergence metod.

# 2.5 Matematické modelování ve fyzice a technice

Garantující pracoviště: Matematický ústav UK

Garant programu: prof. RNDr. Josef Málek, CSc., DSc.

Studijní program Matematické modelování ve fyzice a technice je mezioborovým studiem, které spojuje matematiku a fyziku.

Fyzikální část vede studenta k získání schopnosti formulovat matematické modely pro kvantitativní i kvalitativní analýzu fyzikálních systémů, přičemž studium je zaměřeno především na fyzikálními systémy v termodynamice spojitého prostředí. (Proudění tekutin a jejich směsí, deformace pevných látek, vzájemná interakce pevných látek a tekutin a další.) V rámci rozsáhlé spolupráce s dalšími pracovišti Univerzity Karlovy či Akademie věd se ovšem studenti mohou věnovat i matematickému modelování v jiných oborech přírodních či společenských věd.

Matematická část studia je zaměřena na teorii parciálních diferenciálních rovnic. Student se důkladně seznámí s moderními metodami pro teoretickou analýzu systémů nelineárních parciálních diferenciálních rovnic, a dále také s příslušnými numerickými metodami pro jejich řešení, a to včetně implementace daných metod s pomocí moderních softwarových nástrojů.

Obecným cílem studia je připravit studenta k tvůrčímu využití soudobých matematických prostředků při zkoumání rozmanitých jevů reálného světa a souvisejících ryze matematických problémů. Absolventi matematického modelování jsou připraveni působit jak v akademickém tak v komerčním sektoru, a to nejen díky vynikajícím znalostem matematiky a fyziky, ale také díky samostatnosti, schopnosti rychle se zorientovat v nové problematice a schopnosti konzultovat a řešit problémy ve spolupráci se specialisty z různých vědních oborů jako jsou například fyzikové, inženýři, lékaři, ekonomové a programátoři.

## Vstupní požadavky

Předpokládáme, že student tohoto programu má na počátku prvního ročníku dostatečné znalosti z následujících oborů a oblastí:

- Diferenciální počet jedné a několika reálných proměnných. Integrální počet jedné reálné proměnné. Křivkový a plošný integrál, objemový integrál. Teorie míry, Lebesgueův integrál.
- Základy lineární algebry (vektorové prostory, matice, determinanty, Jordanův kanonický tvar, ortogonalizace, vlastní čísla a vlastní vektory, základy multilineární algebry, kvadratické formy). Numerické řešení soustav lineárních algebraických rovnic (Schurova věta, QR rozklad, LU rozklad, singulární rozklad, úlohy nejmenších čtverců, částečný problém vlastních čísel, metoda sdružených gradientů, GMRES, zpětná chyba, citlivost a numerická stabilita, QR algoritmus).
- Základy komplexní analýzy (Cauchyova věta, reziduová věta, konformní zobrazení, Laplaceova transformace).
- Základy funkcionální analýzy a teorie metrických prostorů (Banachovy a Hilbertovy prostory, operátory a funkcionály, Hahn-Banachova věta, duální prostory, omezené operátory, kompaktní operátory, základy teorie distribucí).
- Základy teorie obyčejných diferenciálních rovnic (základní vlastnosti řešení a maximálních řešení, soustavy lineárních rovnic, stabilita) a parciálních diferenciálních rovnic (kvazilineární rovnice prvního řádu, Laplaceova rovnice a rovnice vedení tepla fundamentální řešení a princip maxima, vlnová rovnice fundamentální řešení, konečná rychlost šíření vlny).
- Základy klasické mechaniky (Newtonovy pohybové zákony, Lagrangeovy rovnice, Hamiltonovy rovnice, variační formulace, mechanika tuhého tělesa, setrvačníky).
- Pasivní znalost angličtiny umožňující dostatečné porozumění matematickým přednáškám a odborným textům.

Studentům, kteří tyto požadavky nesplňují, může garant studijního programu stanovit způsob jejich doplnění, například absolvováním vybraných předmětů bakalářského studia v rámci individuálního studijního plánu.

#### Doporučený průběh studia

Podrobnější informace k doporučenému průběhu studia lze najít na stránkách https://mod.karlin.mff.cuni.cz.

#### 1. rok studia

| Kód     | Název                               | Kredity | ZS        | LS                |
|---------|-------------------------------------|---------|-----------|-------------------|
| NMMA40  | l Funkcionální analýza 1            | 8       | 4/2 Z+Zk  | _                 |
| NMMA40  | 5 Parciální diferenciální rovnice 1 | 6       | 3/1  Z+Zk |                   |
| NMMO40  | $1{f Mechanika\ kontinua}$          | 6       | 2/2 Z+Zk  |                   |
| NOFY036 | Termodynamika a statistická         | 6       | 3/2 Z+Zk  |                   |
|         | fyzika                              |         |           |                   |
| NMNV405 | ó Metoda konečných prvků 1          | 5       | 2/2 Z+Zk  |                   |
| NMNV411 | l Algoritmy maticových              | 5       | 2/2 Z+Zk  |                   |
|         | iteračních metod                    |         |           |                   |
| NMMA40  | 6Parciální diferenciální rovnice 2  | 6       |           | 3/1  Z+Zk         |
| NSZZ023 | Diplomová práce I                   | 6       |           | $0/4 \mathrm{~Z}$ |

| NMMO40                                                                               | 2Termodynamika a mechanika                                                                                                                                                                                                                                                                                                                                                  | 5                                    | _                                                             | 2/1 Z+Zk                      |
|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------|-------------------------------|
|                                                                                      | nenewtonovských tekutin                                                                                                                                                                                                                                                                                                                                                     |                                      |                                                               | - /                           |
| NMMO40                                                                               | 3Počítačové řešení úloh fyziky                                                                                                                                                                                                                                                                                                                                              | 5                                    |                                                               | 2/2  Z+Zk                     |
|                                                                                      | kontinua                                                                                                                                                                                                                                                                                                                                                                    |                                      |                                                               |                               |
| NMMO40                                                                               | 4Termodynamika a mechanika                                                                                                                                                                                                                                                                                                                                                  | 5                                    | _                                                             | 2/1  Z+Zk                     |
|                                                                                      | pevných látek                                                                                                                                                                                                                                                                                                                                                               |                                      |                                                               |                               |
|                                                                                      | Volitelné a povinně volitelné                                                                                                                                                                                                                                                                                                                                               | 1                                    |                                                               |                               |
|                                                                                      | předměty                                                                                                                                                                                                                                                                                                                                                                    |                                      |                                                               |                               |
| 2. rok stu                                                                           | dia                                                                                                                                                                                                                                                                                                                                                                         |                                      |                                                               |                               |
| Kód                                                                                  | Název                                                                                                                                                                                                                                                                                                                                                                       | Kredity                              | ZS                                                            | LS                            |
| NSZZ024                                                                              | Diplomová práce II                                                                                                                                                                                                                                                                                                                                                          | 9                                    | 0/6 Z                                                         | _                             |
| NSZZ025                                                                              | Diplomová práce III                                                                                                                                                                                                                                                                                                                                                         | 15                                   |                                                               | $0/10 \mathrm{~Z}$            |
|                                                                                      | Volitelné a povinně volitelné                                                                                                                                                                                                                                                                                                                                               | 30                                   |                                                               | ,                             |
|                                                                                      | předměty                                                                                                                                                                                                                                                                                                                                                                    |                                      |                                                               |                               |
| Shrnutí s                                                                            | tudijního plánu                                                                                                                                                                                                                                                                                                                                                             |                                      |                                                               |                               |
| D                                                                                    | Y 1 Y                                                                                                                                                                                                                                                                                                                                                                       |                                      |                                                               |                               |
| Povinné p                                                                            | oredmety                                                                                                                                                                                                                                                                                                                                                                    |                                      |                                                               |                               |
| Povinne p<br>Kód                                                                     | Název                                                                                                                                                                                                                                                                                                                                                                       | Kredity                              | ZS                                                            | LS                            |
| Kód                                                                                  | Název                                                                                                                                                                                                                                                                                                                                                                       | Kredity 8                            |                                                               | LS                            |
| Kód<br>NMMA40                                                                        | •                                                                                                                                                                                                                                                                                                                                                                           |                                      | 4/2 Z+Zk                                                      | LS                            |
| Kód<br>NMMA40<br>NMMA40                                                              | Název<br>l <b>Funkcionální analýza 1</b>                                                                                                                                                                                                                                                                                                                                    | 8                                    |                                                               |                               |
| Kód<br>NMMA40<br>NMMA40<br>NMMA40                                                    | Název<br>l Funkcionální analýza 1<br>5 Parciální diferenciální rovnice 1                                                                                                                                                                                                                                                                                                    | 8 6                                  | 4/2 Z+Zk                                                      | LS<br>—<br>—<br>3/1 Z+Zk<br>— |
| Kód<br>NMMA40<br>NMMA40<br>NMMO40                                                    | Název<br>l Funkcionální analýza 1<br>5 Parciální diferenciální rovnice 1<br>6 Parciální diferenciální rovnice 2                                                                                                                                                                                                                                                             | 8<br>6<br>6                          | 4/2 Z+Zk<br>3/1 Z+Zk<br>—                                     |                               |
| Kód<br>NMMA40<br>NMMA40<br>NMMO40                                                    | Název  l Funkcionální analýza 1  l Parciální diferenciální rovnice 1  l Parciální diferenciální rovnice 2  l Mechanika kontinua                                                                                                                                                                                                                                             | 8<br>6<br>6<br>6                     | 4/2 Z+Zk<br>3/1 Z+Zk<br>—                                     |                               |
| NMMA40<br>NMMA40<br>NMMA40<br>NMMO40<br>NMMO40                                       | Název  1 Funkcionální analýza 1 5 Parciální diferenciální rovnice 1 6 Parciální diferenciální rovnice 2 1 Mechanika kontinua 2 Termodynamika a mechanika                                                                                                                                                                                                                    | 8<br>6<br>6<br>6                     | 4/2 Z+Zk<br>3/1 Z+Zk<br>—                                     |                               |
| NMMA40<br>NMMA40<br>NMMA40<br>NMMO40<br>NMMO40                                       | Název  1 Funkcionální analýza 1 5 Parciální diferenciální rovnice 1 6 Parciální diferenciální rovnice 2 1 Mechanika kontinua 2 Termodynamika a mechanika nenewtonovských tekutin                                                                                                                                                                                            | 8<br>6<br>6<br>6<br>5                | 4/2 Z+Zk<br>3/1 Z+Zk<br>—                                     |                               |
| NMMA40<br>NMMA40<br>NMMA40<br>NMMO40<br>NMMO40                                       | Název  1 Funkcionální analýza 1 5 Parciální diferenciální rovnice 1 6 Parciální diferenciální rovnice 2 1 Mechanika kontinua 2 Termodynamika a mechanika nenewtonovských tekutin 3 Počítačové řešení úloh fyziky                                                                                                                                                            | 8<br>6<br>6<br>6<br>5                | 4/2 Z+Zk<br>3/1 Z+Zk<br>—                                     |                               |
| NMMA40<br>NMMA40<br>NMMA40<br>NMMO40<br>NMMO40                                       | Název  1 Funkcionální analýza 1 5 Parciální diferenciální rovnice 1 6 Parciální diferenciální rovnice 2 1 Mechanika kontinua 2 Termodynamika a mechanika nenewtonovských tekutin 3 Počítačové řešení úloh fyziky kontinua                                                                                                                                                   | 8<br>6<br>6<br>6<br>5                | 4/2 Z+Zk<br>3/1 Z+Zk<br>—                                     |                               |
| Kód  NMMA40  NMMA40  NMMO40  NMMO40  NMMO40  NMMO40                                  | Název  1 Funkcionální analýza 1 5 Parciální diferenciální rovnice 1 6 Parciální diferenciální rovnice 2 1 Mechanika kontinua 2 Termodynamika a mechanika nenewtonovských tekutin 3 Počítačové řešení úloh fyziky kontinua 4 Termodynamika a mechanika                                                                                                                       | 8<br>6<br>6<br>6<br>5                | 4/2 Z+Zk<br>3/1 Z+Zk<br>—                                     |                               |
| Kód  NMMA40 NMMA40 NMMO40 NMMO40 NMMO40 NMMO40 NMMO40                                | Název  1 Funkcionální analýza 1 5 Parciální diferenciální rovnice 1 6 Parciální diferenciální rovnice 2 1 Mechanika kontinua 2 Termodynamika a mechanika nenewtonovských tekutin 3 Počítačové řešení úloh fyziky kontinua 4 Termodynamika a mechanika pevných látek                                                                                                         | 8<br>6<br>6<br>6<br>5<br>5           | 4/2 Z+Zk<br>3/1 Z+Zk<br>—<br>2/2 Z+Zk<br>—                    |                               |
| Kód  NMMA40 NMMA40 NMMO40 NMMO40 NMMO40 NMMO40 NMMO40                                | Název  1 Funkcionální analýza 1 5 Parciální diferenciální rovnice 1 6 Parciální diferenciální rovnice 2 1 Mechanika kontinua 2 Termodynamika a mechanika nenewtonovských tekutin 3 Počítačové řešení úloh fyziky kontinua 4 Termodynamika a mechanika pevných látek 5 Metoda konečných prvků 1                                                                              | 8<br>6<br>6<br>6<br>5<br>5<br>5      | 4/2 Z+Zk 3/1 Z+Zk - 2/2 Z+Zk 2/2 Z+Zk - 2/2 Z+Zk              |                               |
| Kód  NMMA40  NMMA40  NMMA40  NMMO40  NMMO40  NMMO40  NMMO40  NMMV408  NMNV411        | Název  1 Funkcionální analýza 1 5 Parciální diferenciální rovnice 1 6 Parciální diferenciální rovnice 2 1 Mechanika kontinua 2 Termodynamika a mechanika nenewtonovských tekutin 3 Počítačové řešení úloh fyziky kontinua 4 Termodynamika a mechanika pevných látek 6 Metoda konečných prvků 1 1 Algoritmy maticových                                                       | 8<br>6<br>6<br>6<br>5<br>5<br>5      | 4/2 Z+Zk 3/1 Z+Zk — 2/2 Z+Zk — — — 2/2 Z+Zk 2/2 Z+Zk 2/2 Z+Zk |                               |
| Kód  NMMA40  NMMA40  NMMA40  NMMO40  NMMO40  NMMO40  NMMO40  NMMV408  NMNV411        | Název  1 Funkcionální analýza 1 5 Parciální diferenciální rovnice 1 6 Parciální diferenciální rovnice 2 1 Mechanika kontinua 2 Termodynamika a mechanika nenewtonovských tekutin 3 Počítačové řešení úloh fyziky kontinua 4 Termodynamika a mechanika pevných látek 5 Metoda konečných prvků 1 1 Algoritmy maticových iteračních metod *                                    | 8<br>6<br>6<br>6<br>5<br>5<br>5      | 4/2 Z+Zk 3/1 Z+Zk - 2/2 Z+Zk 2/2 Z+Zk - 2/2 Z+Zk              |                               |
| Kód  NMMA40  NMMA40  NMMA40  NMMO40  NMMO40  NMMO40  NMMO40  NMMV408  NMNV411        | Název  1 Funkcionální analýza 1 5 Parciální diferenciální rovnice 1 6 Parciální diferenciální rovnice 2 1 Mechanika kontinua 2 Termodynamika a mechanika nenewtonovských tekutin 3 Počítačové řešení úloh fyziky kontinua 4 Termodynamika a mechanika pevných látek 5 Metoda konečných prvků 1 1 Algoritmy maticových iteračních metod * Termodynamika a statistická        | 8<br>6<br>6<br>6<br>5<br>5<br>5      | 4/2 Z+Zk 3/1 Z+Zk — 2/2 Z+Zk — — — 2/2 Z+Zk 2/2 Z+Zk 2/2 Z+Zk |                               |
| Kód  NMMA40 NMMA40 NMMA40 NMMO40 NMMO40 NMMO40 NMMO40 NMMO40 NMMV408 NMNV411 NOFY036 | Název  I Funkcionální analýza 1 5 Parciální diferenciální rovnice 1 6 Parciální diferenciální rovnice 2 1 Mechanika kontinua 2 Termodynamika a mechanika nenewtonovských tekutin 3 Počítačové řešení úloh fyziky kontinua 4 Termodynamika a mechanika pevných látek 5 Metoda konečných prvků 1 1 Algoritmy maticových iteračních metod * Termodynamika a statistická fyzika | 8<br>6<br>6<br>6<br>5<br>5<br>5<br>5 | 4/2 Z+Zk 3/1 Z+Zk — 2/2 Z+Zk — — — 2/2 Z+Zk 2/2 Z+Zk 2/2 Z+Zk |                               |

 $<sup>^{\</sup>ast}$  Předmět nahrazuje povinný předmět NMNV412 ze studijních plánů platných před rokem 2021/2022.

# Povinně volitelné předměty

Je třeba získat alespoň 16 kreditů z povinně volitelných předmětů.

| Kód    | Název                               | Kredity | ZS                | LS |
|--------|-------------------------------------|---------|-------------------|----|
| NMMA40 | 7Obyčejné diferenciální rovnice 2   | 5       | 2/2 Z+Zk          |    |
| NMMA53 | 1 Parciální diferenciální rovnice 3 | 4       | $2/0 \mathrm{Zk}$ |    |

| termodynamika  NMMO532Matematická teorie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NMMO432Klasické úlohy mechaniky kontinua<br>NMMO463GENERIC — nerovnovážná | 4 |                                        | 2/1 Z+Zk<br>2/1 Z+Zk                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---|----------------------------------------|-------------------------------------------|
| NMMO532Matematická teorie Navierových-Stokesových rovnic         3         —         2/0 Zk           NMMO533Nelineární diferenciální rovnice a nerovnice 1         6         3/1 Z+Zk         —           NMMO534Nelineární diferenciální rovnice a nerovnice 2         6         —         3/1 Z+Zk           NMMO535Matematické metody v mechanice pevných látek         3         2/0 Zk         —           NMMO536Matematické metody v mechanice stlačitelných tekutin         3         —         2/2 Z+Zk           NMMO539Matematické metody v mechanice nenewtonovských tekutin         5         —         2/2 Z+Zk           NMMO539Matematické metody v mechanice nenewtonovských tekutin         5         3/0 Z+Zk         —           NMMO541Teorie směsí         4         2/1 Z+Zk         —           NMMO567Simulation and Theory of Biological and Soft Matter Systems I - Biopolymers, Ions and Small Molecules         3         —         2/0 Zk           NMMO568Simulation and Theory of Biological and Soft Matter Systems II — Interfaces, Self-Assembly and Networks         3         —         2/0 Zk           NMMV0660Nerovnovážná termodynamika elektrochemie         5         2/2 Z+Zk         —           NMNV403 Numerický software 1         5         2/2 Z+Zk         —           NMNV403 Numerický software 2         5         —         2/2 Z+Zk |                                                                           | 4 |                                        | 2/1 Z   ZR                                |
| NMMO533Nelineární diferenciální rovnice a nerovnice 1         6         3/1 Z+Zk         —           NMMO534Nelineární diferenciální rovnice a nerovnice 2         6         —         3/1 Z+Zk           NMMO535Matematické metody v mechanice pevných látek         3         2/0 Zk         —           NMMO536Matematické metody v mechanice stlačitelných tekutin         3         —         2/0 Zk           NMMO537Sedlobodové úlohy a jejich řešení         5         —         2/2 Z+Zk           NMMO539Matematické metody v mechanice nenewtonovských tekutin         3         2/0 Zk         —           NMMO541Teorie směsí         4         2/1 Z+Zk         —           NMMO543Modelování v biomechanice         5         3/0 Z+Zk         —           NMMO567Simulation and Theory of Biological and Soft Matter Systems I         3         2/0 Zk         —           NMMO668Simulation and Theory of Biological and Soft Matter Systems II         —         1         2/0 Zk           NMMO660Nerovnovážná termodynamika elektrochemie         4         —         2/1 Z+Zk           NMNV403 Numerický software 1         5         2/2 Z+Zk           NMNV412 Analýza maticových iteračních metod – principy a souvislosti         6         —         4/0 Zk           NMNV532 Paralelní maticové výpočty         5         —         2/2                         | NMMO532Matematická teorie                                                 | 3 | _                                      | 2/0 Zk                                    |
| NMMO534Nelineární diferenciální rovnice a nerovnice 2         6         —         3/1 Z+Zk           NMMO535Matematické metody v mechanice pevných látek         3         2/0 Zk         —           NMMO536Matematické metody v mechanice stlačitelných tekutin         3         —         2/0 Zk           NMMO537Sedlobodové úlohy a jejich řešení         5         —         2/2 Z+Zk           NMMO539Matematické metody v mechanice nenewtonovských tekutin         3         2/0 Zk         —           NMMO541Teorie směsí         4         2/1 Z+Zk         —           NMMO543Modelování v biomechanice         5         3/0 Z+Zk         —           NMMO567Simulation and Theory of Biological and Soft Matter Systems I - Biopolymers, Ions and Small Molecules         3         —         2/0 Zk           NMMO660Simulation and Theory of Biological and Soft Matter Systems II — Interfaces, Self-Assembly and Networks         3         —         2/0 Zk           NMMV660Nerovnovážná termodynamika elektrochemie         4         —         2/1 Z+Zk           NMNV403 Numerický software 2         5         —         2/2 Z+Zk           NMNV404 Aumerický software 2         5         —         2/2 Z+Zk           NMNV503 Numerické metody optimalizace 1         6         3/1 Z+Zk         —           NMNV503 Matematické metody v mechanice tekuti       | NMMO533Nelineární diferenciální rovnice                                   | 6 | 3/1 Z+Zk                               | _                                         |
| NMMO535 Matematické metody v mechanice pevných látek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NMMO534Nelineární diferenciální rovnice                                   | 6 | _                                      | 3/1 Z+Zk                                  |
| NMMO536Matematické metody v mechanice stlačitelných tekutin         3         —         2/0 Zk           NMMO537Sedlobodové úlohy a jejich řešení         5         —         2/2 Z+Zk           NMMO539Matematické metody v mechanice nenewtonovských tekutin         3         2/0 Zk         —           NMMO541Teorie směsí         4         2/1 Z+Zk         —           NMMO543Modelování v biomechanice         5         3/0 Z+Zk         —           NMMO567Simulation and Theory of Biological and Soft Matter Systems I - Biopolymers, Ions and Small Molecules         3         —         2/0 Zk           NMMO568Simulation and Theory of Biological and Soft Matter Systems II — Interfaces, Self-Assembly and Networks         3         —         2/0 Zk           NMMO660Nerovnovážná termodynamika elektrochemie         4         —         2/1 Z+Zk           NMNV403 Numerický software 1         5         2/2 Z+Zk         —           NMNV404 Numerický software 2         5         —         2/2 Z+Zk           NMNV403 Numerické metody optimalizace 1         6         3/1 Z+Zk         —           NMNV503 Numerické metody optimalizace 1         5         2/2 Z+Zk           NMNV537 Matematické metody v mechanice tekutin 1         3         —         2/2 Z+Zk           NMNV538 Matematické metody v mechanice tekutin 2         3                   | ${\rm NMMO535Matematick\acute{e}}$ metody v mechanice                     | 3 | 2/0 Zk                                 | _                                         |
| NMMO537Sedlobodové úlohy a jejich řešení 5 — 2/2 Z+Zk NMMO539Matematické metody v mechanice nenewtonovských tekutin  NMMO541Teorie směsí 4 2/1 Z+Zk — NMMO543Modelování v biomechanice 5 3/0 Z+Zk — NMMO567Simulation and Theory of Biological and Soft Matter Systems I — Biopolymers, Ions and Small Molecules  NMMO568Simulation and Theory of Biological and Soft Matter Systems II — Interfaces, Self-Assembly and Networks  NMMO660Nerovnovážná termodynamika 4 — 2/1 Z+Zk elektrochemie  NMNV403 Numerický software 1 5 2/2 Z+Zk — NMNV404 Numerický software 2 5 — 2/2 Z+Zk NMNV412 Analýza maticových iteračních 6 — 4/0 Zk metod – principy a souvislosti  NMNV503 Numerické metody optimalizace 1 6 3/1 Z+Zk — NMNV532 Paralelní maticové výpočty 5 — 2/2 Z+Zk NMNV537 Matematické metody v mechanice tekutin 1  NMNV538 Matematické metody v mechanice 3 2/0 Zk  rekutin 1  NMNV565 High-Performance Computing for Computational Science  NOFY026 Klasická elektrodynamika 5 — 2/2 Z+Zk NTMF034 Fyzika pro matematiky 2 — elektromagnetické pole a speciální                                                                                                                                                                                                                                                                                                                     | NMMO536Matematické metody v mechanice                                     | 3 |                                        | $2/0 \mathrm{~Zk}$                        |
| NMMO539Matematické metody v mechanice nenewtonovských tekutin  NMMO541Teorie směsí NMMO543Modelování v biomechanice NMMO567Simulation and Theory of Biological and Soft Matter Systems I - Biopolymers, Ions and Small Molecules  NMMO568Simulation and Theory of Biological and Soft Matter Systems II — Interfaces, Self-Assembly and Networks  NMMO560Nerovnovážná termodynamika elektrochemie  NMNV403 Numerický software 1  NMNV403 Numerický software 2  NMNV404 Numerický software 2  NMNV412 Analýza maticových iteračních metod – principy a souvislosti  NMNV503 Numerické metody optimalizace 1  NMNV503 Numerické metody optimalizace 1  NMNV503 Namerické metody v mechanice tekutin 1  NMNV538 Matematické metody v mechanice tekutin 2  NMNV566 Klasická elektrodynamika  NOFY026 Klasická elektrodynamika  Fyzika pro matematiky 2 – elektromagnetické pole a speciální                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *                                                                         | 5 |                                        | 2/2 Z+Zk                                  |
| NMMO541 Teorie směsí 4 2/1 Z+Zk — NMMO543 Modelování v biomechanice 5 3/0 Z+Zk — NMMO567 Simulation and Theory of Biological and Soft Matter Systems I - Biopolymers, Ions and Small Molecules NMMO568 Simulation and Theory of Biological and Soft Matter Systems II — Interfaces, Self-Assembly and Networks NMMO660 Nerovnovážná termodynamika elektrochemie NMNV403 Numerický software 1 5 2/2 Z+Zk — NMNV404 Numerický software 2 5 — 2/2 Z+Zk NMNV412 Analýza maticových iteračních metod – principy a souvislosti NMNV503 Numerické metody optimalizace 1 6 3/1 Z+Zk — NMNV532 Paralelní maticové výpočty 5 — 2/2 Z+Zk NMNV537 Matematické metody v mechanice tekutin 1 NMNV538 Matematické metody v mechanice tekutin 1 NMNV565 High-Performance Computing for Computational Science NOFY026 Klasická elektrodynamika 5 — 2/2 Z+Zk NTMF034 Fyzika pro matematiky 2 — 5 — 2/1 Zk elektromagnetické pole a speciální                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NMMO539Matematické metody v mechanice                                     |   | $2/0 \mathrm{~Zk}$                     |                                           |
| NMMO543 Modelování v biomechanice 5 3/0 Z+Zk — NMMO567 Simulation and Theory of Biological and Soft Matter Systems I - Biopolymers, Ions and Small Molecules NMMO568 Simulation and Theory of Biological and Soft Matter Systems II — Interfaces, Self-Assembly and Networks NMMO660 Nerovnovážná termodynamika elektrochemie NMNV403 Numerický software 1 5 2/2 Z+Zk — NMNV404 Numerický software 2 5 — 2/2 Z+Zk NMNV412 Analýza maticových iteračních metod – principy a souvislosti NMNV503 Numerické metody optimalizace 1 6 3/1 Z+Zk — NMNV532 Paralelní maticové výpočty 5 — 2/2 Z+Zk NMNV537 Matematické metody v mechanice tekutin 1 NMNV538 Matematické metody v mechanice tekutin 1 NMNV565 High-Performance Computing for Computational Science NOFY026 Klasická elektrodynamika 5 — 2/2 Z+Zk NTMF034 Fyzika pro matematiky 2 — 5 — 2/1 Zk elektromagnetické pole a speciální                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                           | 4 | 2/1  Z+Zk                              |                                           |
| NMMO567Simulation and Theory of Biological and Soft Matter Systems I - Biopolymers, Ions and Small Molecules  NMMO568Simulation and Theory of Biological and Soft Matter Systems II — Interfaces, Self-Assembly and Networks  NMMO660Nerovnovážná termodynamika elektrochemie  NMNV403 Numerický software 1 5 2/2 Z+Zk — NMNV404 Numerický software 2 5 — 2/2 Z+Zk NMNV412 Analýza maticových iteračních metod – principy a souvislosti  NMNV503 Numerické metody optimalizace 1 6 3/1 Z+Zk — NMNV532 Paralelní maticové výpočty 5 — 2/2 Z+Zk NMNV537 Matematické metody v mechanice tekutin 1  NMNV538 Matematické metody v mechanice tekutin 1  NMNV538 Matematické metody v mechanice 3 — 2/0 Zk — Computational Science  NOFY026 Klasická elektrodynamika 5 — 2/2 Z+Zk NTMF034 Fyzika pro matematiky 2 — 5 — 2/1 Zk elektromagnetické pole a speciální                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NMMO543Modelování v biomechanice                                          |   |                                        |                                           |
| NMMO568Simulation and Theory of Biological and Soft Matter Systems II — Interfaces, Self-Assembly and Networks  NMMO660Nerovnovážná termodynamika elektrochemie  NMNV403 Numerický software 1 5 2/2 Z+Zk — NMNV404 Numerický software 2 5 — 2/2 Z+Zk NMNV412 Analýza maticových iteračních 6 — 4/0 Zk metod – principy a souvislosti  NMNV503 Numerické metody optimalizace 1 6 3/1 Z+Zk — NMNV532 Paralelní maticové výpočty 5 — 2/2 Z+Zk NMNV537 Matematické metody v mechanice 3 2/0 Zk — tekutin 1  NMNV538 Matematické metody v mechanice 3 — 2/0 Zk tekutin 2  NMNV565 High-Performance Computing for 5 — 2/2 Z+Zk NMNV565 High-Performance Computing for Computational Science  NOFY026 Klasická elektrodynamika 5 — 2/2 Z+Zk NTMF034 Fyzika pro matematiky 2 — 5 — 2/1 Zk elektromagnetické pole a speciální                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | and Soft Matter Systems I -<br>Biopolymers, Ions and Small                | 3 | $2/0~{ m Zk}$                          | _                                         |
| and Soft Matter Systems II — Interfaces, Self-Assembly and Networks  NMMO660 Nerovnovážná termodynamika elektrochemie  NMNV403 Numerický software 1  NMNV404 Numerický software 2  NMNV412 Analýza maticových iteračních metod – principy a souvislosti  NMNV503 Numerické metody optimalizace 1  NMNV532 Paralelní maticové výpočty  NMNV537 Matematické metody v mechanice tekutin 1  NMNV538 Matematické metody v mechanice tekutin 2  NMNV565 High-Performance Computing for Computational Science  NOFY026 Klasická elektrodynamika  Sometod – 2/2 Z+Zk  NTMF034 Fyzika pro matematiky 2 – elektromagnetické pole a speciální                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                           | 9 |                                        | 0 /0 71-                                  |
| Interfaces, Self-Assembly and Networks  NMMO660Nerovnovážná termodynamika elektrochemie  NMNV403 Numerický software 1  NMNV404 Numerický software 2  NMNV412 Analýza maticových iteračních metod – principy a souvislosti  NMNV503 Numerické metody optimalizace 1  NMNV532 Paralelní maticové výpočty  NMNV537 Matematické metody v mechanice tekutin 1  NMNV538 Matematické metody v mechanice tekutin 2  NMNV565 High-Performance Computing for Computational Science  NOFY026 Klasická elektrodynamika  Fyzika pro matematiky 2 – elektromagnetické pole a speciální                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · · · · · · · · · · · · · · · · · · ·                                     | 3 | <del>_</del>                           | 2/0 ZK                                    |
| Networks  NMMO660 Nerovnovážná termodynamika elektrochemie  NMNV403 Numerický software 1 5 2/2 Z+Zk — NMNV404 Numerický software 2 5 — 2/2 Z+Zk NMNV412 Analýza maticových iteračních 6 — 4/0 Zk metod – principy a souvislosti  NMNV503 Numerické metody optimalizace 1 6 3/1 Z+Zk — NMNV532 Paralelní maticové výpočty 5 — 2/2 Z+Zk NMNV537 Matematické metody v mechanice tekutin 1  NMNV538 Matematické metody v mechanice 3 2/0 Zk tekutin 2  NMNV565 High-Performance Computing for 5 2/2 Z+Zk Computational Science  NOFY026 Klasická elektrodynamika 5 — 2/2 Z+Zk NTMF034 Fyzika pro matematiky 2 — 5 — 2/1 Zk elektromagnetické pole a speciální                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | · · · · · · · · · · · · · · · · · · ·                                     |   |                                        |                                           |
| NMMO660Nerovnovážná termodynamika elektrochemie  NMNV403 Numerický software 1  NMNV404 Numerický software 2  NMNV412 Analýza maticových iteračních metod – principy a souvislosti  NMNV503 Numerické metody optimalizace 1  NMNV532 Paralelní maticové výpočty  NMNV537 Matematické metody v mechanice tekutin 1  NMNV538 Matematické metody v mechanice tekutin 2  NMNV565 High-Performance Computing for Computational Science  NOFY026 Klasická elektrodynamika  NTMF034 Fyzika pro matematiky 2 – elektromagnetické pole a speciální                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                           |   |                                        |                                           |
| elektrochemie  NMNV403 Numerický software 1 5 2/2 Z+Zk —  NMNV404 Numerický software 2 5 — 2/2 Z+Zk  NMNV412 Analýza maticových iteračních 6 — 4/0 Zk  metod – principy a souvislosti  NMNV503 Numerické metody optimalizace 1 6 3/1 Z+Zk —  NMNV532 Paralelní maticové výpočty 5 — 2/2 Z+Zk  NMNV537 Matematické metody v mechanice tekutin 1  NMNV538 Matematické metody v mechanice tekutin 2  NMNV565 High-Performance Computing for Computational Science  NOFY026 Klasická elektrodynamika 5 — 2/2 Z+Zk  NTMF034 Fyzika pro matematiky 2 — 5 — 2/1 Zk  elektromagnetické pole a speciální                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                           | 4 |                                        | 2 /1 7 + 7l-                              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                           | 4 |                                        | 2/1 Z+ZK                                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                           | 5 | $9/9.7 + 71_{c}$                       |                                           |
| NMNV412 Analýza maticových iteračních metod – principy a souvislosti  NMNV503 Numerické metody optimalizace 1 6 3/1 Z+Zk —  NMNV532 Paralelní maticové výpočty 5 — 2/2 Z+Zk  NMNV537 Matematické metody v mechanice 3 2/0 Zk —  tekutin 1  NMNV538 Matematické metody v mechanice 3 — 2/0 Zk  tekutin 2  NMNV565 High-Performance Computing for 5 2/2 Z+Zk —  Computational Science  NOFY026 Klasická elektrodynamika 5 — 2/2 Z+Zk  NTMF034 Fyzika pro matematiky 2 — 5 — 2/1 Zk  elektromagnetické pole a speciální                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · · · · · · · · · · · · · · · · · · ·                                     |   | 2/2 Z+ZK                               | $\frac{-}{2/2} \frac{7}{7} + \frac{7}{4}$ |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · ·                                                                       |   |                                        |                                           |
| NMNV503 Numerické metody optimalizace 1 6 3/1 Z+Zk — NMNV532 Paralelní maticové výpočty 5 — 2/2 Z+Zk NMNV537 Matematické metody v mechanice 3 2/0 Zk — tekutin 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · · · · · · · · · · · · · · · · · · ·                                     | U |                                        | 4/0 ZK                                    |
| NMNV532 Paralelní maticové výpočty 5 — 2/2 Z+Zk NMNV537 Matematické metody v mechanice 3 2/0 Zk — tekutin 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 10                                                                      | 6 | 3/1  Z+Zk                              |                                           |
| NMNV537 Matematické metody v mechanice tekutin 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · -                                                                       |   | —————————————————————————————————————— | 2/2 Z+Zk                                  |
| tekutin 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | * <del>-</del> *                                                          |   | 2/0  Zk                                |                                           |
| NMNV538 Matematické metody v mechanice tekutin 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | v                                                                         |   | _/ =                                   |                                           |
| tekutin 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                           | 3 |                                        | 2/0  Zk                                   |
| Computational Science $ \begin{array}{ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · ·                                                                       |   |                                        | , -                                       |
| Computational Science $ \begin{array}{ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NMNV565 High-Performance Computing for                                    | 5 | 2/2 Z+Zk                               |                                           |
| NOFY026 Klasická elektrodynamika 5 — 2/2 Z+Zk NTMF034 Fyzika pro matematiky 2 — 5 — 2/1 Zk elektromagnetické pole a speciální                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |   | ,                                      |                                           |
| NTMF034 Fyzika pro matematiky 2 – 5 — 2/1 Zk elektromagnetické pole a speciální                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                           | 5 |                                        | 2/2 Z+Zk                                  |
| elektromagnetické pole a speciální                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · · · · · · · · · · · · · · · · · · ·                                     |   |                                        | •                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · · · · · · · · · · · · · · · · · · ·                                     |   |                                        | ,                                         |
| record relativity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | teorie relativity                                                         |   |                                        |                                           |

| Doporučené volitelné předměty | Doporu | ičené | volite | lné pì | ředměty |
|-------------------------------|--------|-------|--------|--------|---------|
|-------------------------------|--------|-------|--------|--------|---------|

| Kód     | Název                                                                       | Kredity | ZS                 | LS                 |
|---------|-----------------------------------------------------------------------------|---------|--------------------|--------------------|
| NMMA45  | 2 Seminář z parciálních diferenciálních rovnic                              | 3       | 0/2 Z              | 0/2 Z              |
| NMMA46  | $1RegularitaNavier-Stokesov\acute{y}ch$ $rovnic$                            | 3       | $0/2 \mathrm{~Z}$  | $0/2 \mathrm{~Z}$  |
| NMMA58  | 3 Kvalitativní vlastnosti slabých řešení parciálních diferenciálních rovnic | 3       | 2/0 Zk             |                    |
| NMMA58  | 4 Regularita slabých řešení parciálních diferenciálních rovnic              | 3       |                    | $0/2 \mathrm{~Z}$  |
| NMMO46  | 1 Seminář z mechaniky kontinua                                              | 2       | $0/2 \mathrm{~Z}$  | $0/2 \mathrm{~Z}$  |
| NMMO56  | 1 Regularita řešení Navier-Stokesových rovnic                               | 3       | 2/0 Zk             | _                  |
| NMMO56  | 4 Vybrané problémy matematického<br>modelování                              | 3       |                    | $0/2 \mathrm{~Z}$  |
| NMNV40  | 6 Nelineární diferenciální rovnice                                          | 5       | _                  | 2/2 Z+Zk           |
| NMNV54  | 1 Tvarová a materiálová<br>optimalizace 1                                   | 3       | $2/0 \mathrm{~Zk}$ | <u> </u>           |
| NMNV542 | $2\ Tvarov\'a\ a\ materi\'alov\'a\ optimalizace\ 2$                         | 3       |                    | $2/0 \mathrm{~Zk}$ |
| NMMO59  | 9 Počítačové řešení úloh fyziky<br>kontinua II                              | 5       | 2/2 Z+Zk           | _                  |

#### Státní závěrečná zkouška

# Podmínky pro přihlášení ke státní závěrečné zkoušce

- Získání alespoň 120 kreditů.
- Splnění všech povinných předmětů studijního plánu.
- Splnění povinně volitelných předmětů v rozsahu alespoň 16 kreditů.
- Odevzdání vypracované diplomové práce ve stanoveném termínu.

#### Podmínky pro přihlášení k jiné než poslední části státní závěrečné zkoušky

Rámcové podmínky jsou stanoveny vnitřním předpisem "Pravidla pro organizaci studia na MFF UK". V programu Matematické modelování ve fyzice a technice je nutné splnit tyto podmínky:

- Získání alespoň 105 kreditů.
- Pokud je jinou než poslední částí státní závěrečné zkoušky její ústní část, je nutné splnění všech povinných předmětů studijního plánu s výjimkou NSZZ025 Diplomová práce III.
- Pokud je jinou než poslední částí státní závěrečné zkoušky obhajoba, je nutné splnění všech povinných předmětů studijního plánu a odevzdání vypracované diplomové práce ve stanoveném termínu.
- Splnění povinně volitelných předmětů v rozsahu alespoň 16 kreditů.

#### Ústní část státní závěrečné zkoušky

Student po předchozí přípravě ústně zodpoví šest otázek z teorie parciálních diferenciálních rovnic (jedna otázka), funkcionální analýzy (jedna otázka), teorie metody

konečných prvků (jedna otázka), teorie řešení algebraických rovnic (jedna otázka), kinematiky a dynamiky kontinua (jedna otázka) a teorie konstitutivních vztahů pro tekutiny a pevné látky (jedna otázka).

Podrobnější vysvětlení požadavků k ústní části státní závěrečné zkoušky lze najít na stránkách https://mod.karlin.mff.cuni.cz/studium/matematicke-modelovani-ve-fyzice-a-technice.

#### Požadavky pro ústní část státní závěrečné zkoušky

#### 1. Termodynamika a mechanika kontinua

Kinematika. Tensor napětí. Bilanční rovnice. Konstitutivní vztahy. Modely pro pevné látky a tekutiny.

#### 2. Funkcionální analýza a parciální diferenciální rovnice

Lineární operátory a funkcionály, kompaktní operátory. Distribuce. Prostory funkcí. Slabá řešení lineárních eliptických, parabolických a hyperbolických úloh druhého řádu – základní existenční teorie a kvalitativní vlastnosti řešení.

#### 3. Numerické metody

Numerické metody řešení diferenciálních rovnic. Metoda konečných prvků. Maticové iterační metody.

## 2.6 Pravděpodobnost, matematická statistika a ekonometrie

Garantující pracoviště: Katedra pravděpodobnosti a matematické statistiky Garant programu: doc. Ing. Marek Omelka, Ph.D.

Program Pravděpodobnost, matematická statistika a ekonometrie je určen pro zájemce o získání teoretických i aplikovaných poznatků v oblasti matematiky náhodných jevů. Hlavní charakteristikou programu je soulad mezi rigorózní matematickou teorií, hloubkou vhledu do jednotlivých oblastí oboru (pravděpodobnost, statistika, ekonometrie) a aplikacemi v nejrůznějších oblastech života. Studenti získávají společný základ absolvováním povinných předmětů z pravděpodobnosti, optimalizace, statistického modelování a náhodných procesů, na které navazují vlastním výběrem povinně volitelných a volitelných přednášek a seminářů, čímž si rozšiřují vzdělání a volí si oblast, které se budou hlouběji věnovat. Na seminářích se učí samostatně pracovat a řešit rozsáhlejší projekty samostatně i v týmu. Velký důraz je kladen na rozvoj analytického a kritického myšlení. Pravděpodobnost, matematická statistika a ekonometrie má blízký vztah k ostatním matematickým oborům (matematické analýze, numerické matematice, diskrétní matematice). V aplikacích se program inspiruje problémy z ekonomie, lékařství, techniky, přírodních věd a fyziky, informatiky. Hlavním cílem programu je připravit absolventy pro úspěšné uplatnění jak v praxi (finance, průmysl, telekomunikace, marketing, lékařství, přírodní vědy), tak i v akademické kariéře.

Absolvent programu Pravděpodobnost, matematická statistika a ekonometrie je do hloubky seznámen s matematickým modelováním náhodných jevů a procesů a jeho aplikacemi v praxi. Vyzná se v základech teorie pravděpodobnosti, matematické statistiky, teorie náhodných procesů a teorie optimalizace. Všeobecný základ si rozšířil o hlubší znalosti teorie náhodných procesů a stochastické analýzy, moderních metod matematické statistiky, nebo pokročilé optimalizace a analýzy časových řad. Rozumí podstatě studovaných metod, má přehled o jejich vzájemném vztahu a je schopen je aktivně rozvíjet a kriticky používat. Teoretické poznatky umí tvůrčím způsobem aplikovat v praxi.

Své schopnosti logicky myslet, analyzovat problémy a nalézat řešení netriviálních úloh využívá k tvůrčí a samostatné práci s přesahem do dalších vědních oborů v praxi nebo v akademické oblasti.

#### Vstupní požadavky

Předpokládáme, že student tohoto programu má na počátku prvního ročníku dostatečné znalosti z následujících oborů a oblastí:

- Diferenciální a integrální počet více proměnných, teorie míry a Lebesgueův integrál, vektorové prostory a maticová algebra, základy funkcionální a komplexní analýzy.
- Základy teorie pravděpodobnosti.
- Základy matematické statistiky a analýzy dat.
- Teorie markovských řetězců.
- Pasivní znalost angličtiny umožňující dostatečné porozumění matematickým přednáškám a odborným textům.

Studentům, kteří tyto požadavky nesplňují, může garant studijního programu stanovit způsob jejich doplnění, například absolvováním vybraných předmětů bakalářského studia v rámci individuálního studijního plánu.

## Studijní plány

Studijní program PMSE má dva studijní plány. Studijní plán N je určen pro posluchače, kteří zahájili studium v akademickém roce 2022/2023 (nebo později). Studijní plán P je určen pro posluchače, kteří zahájili studium v akademickém roce 2020/2021 nebo 2021/2022.

# 2.6.1 Pravděpodobnost, matematická statistika a ekonometrie, plán N

Studijní plán N je určen pro posluchače, kteří zahájili studium v akademickém roce 2022/2023 (nebo později). Tento studijní plán má společný první semestr, který je tvořen povinnými předměty celého programu. Od druhého semestru se plány liší, přičemž rozlišuje následující tři specializace:

- Ekonometrie
- Matematická statistika
- Pravděpodobnost

Každá specializace má své vlastní povinné a povinně volitelné předměty. Specializaci si studenti vybírají v souladu se studijními předpisy v průběhu prvního ročníku studia. V následujícím nejdříve popíšeme společnou část studijního plánu a poté části studijních plánů, které příslušejí různým specializacím.

Podrobnější informace k doporučenému průběhu studia lze najít na stránkách https://pmse.karlin.mff.cuni.cz/student.php.

# Společná část studijního plánu

# 1. rok studia (zimní semestr)

| Kód     | Název                     | Kredity | ZS       | LS |
|---------|---------------------------|---------|----------|----|
| NMSA405 | Teorie pravděpodobnosti 2 | 5       | 2/2 Z+Zk | _  |
| NMSA407 | Lineární regrese          | 8       | 4/2 Z+Zk |    |

| NMSA4  | 09 Náhodné procesy 2             | 8       | 4/2 Z+Zk |    |
|--------|----------------------------------|---------|----------|----|
| NMSA4  | 13 Teorie optimalizace           | 8       | 4/2 Z+Zk |    |
|        | Volitelné a povinně volitelné    | 1       | ·        |    |
|        | $p\check{r}edm\check{e}ty$       |         |          |    |
| Doporu | čené volitelné předměty          |         |          |    |
| Kód    | Název                            | Kredity | ZS       | LS |
| NMSA4  | 31 Stochastické problémy ve vědě | 1       | 0/1 Z    | _  |
|        | $a \ praxi$                      |         |          |    |

# Specializace Ekonometrie

Povinné předměty prvního semestru společné pro všechny specializace jsou uvedeny v úvodní části.

## Doporučený průběh studia

Podrobnější informace k doporučenému průběhu studia lze najít na stránkách https://pmse.karlin.mff.cuni.cz/student.php.

# 1. rok studia (letní semestr)

| $\operatorname{K\'{o}d}$ | Název                         | Kredity | ZS | LS                |
|--------------------------|-------------------------------|---------|----|-------------------|
| NMEK412                  | 2 Optimalizace s aplikací ve  | 5       | _  | 2/2 Z+Zk          |
|                          | financích                     |         |    |                   |
| NMEK450                  | ) Ekonometrický seminář 1     | 2       |    | $0/2 \mathrm{~Z}$ |
| NMST412                  | Zobecněné lineární modely     | 5       |    | 2/2 Z+Zk          |
| NMST414                  | Časové řady                   | 8       |    | 4/2 Z+Zk          |
|                          | Volitelné a povinně volitelné | 10      |    |                   |
|                          | $p\check{r}edm\check{e}ty$    |         |    |                   |

## 2. rok studia

| Kód     | Název                         | Kredity | ZS                | LS                 |
|---------|-------------------------------|---------|-------------------|--------------------|
| NMEK511 | Ekonometrie                   | 8       | 4/2 Z+Zk          |                    |
| NMEK521 | Ekonometrický projektový      | 6       | $0/2 \mathrm{~Z}$ |                    |
|         | seminář                       |         |                   |                    |
| NMEK531 | Matematická ekonomie          | 5       | 2/2 Z+Zk          |                    |
| NSZZ023 | Diplomová práce I             | 6       | $0/4 \mathrm{~Z}$ |                    |
| NSZZ024 | Diplomová práce II            | 9       |                   | $0/6 \mathrm{~Z}$  |
| NSZZ025 | Diplomová práce III           | 15      |                   | $0/10 \mathrm{~Z}$ |
|         | Volitelné a povinně volitelné | 11      |                   |                    |
|         | $p\check{r}edm\check{e}ty$    |         |                   |                    |

# Shrnutí studijního plánu pro specializaci Ekonometrie

# Povinné předměty

| Kód    | Název                       | Kredity | ZS       | LS |
|--------|-----------------------------|---------|----------|----|
| NMSA40 | 5 Teorie pravděpodobnosti 2 | 5       | 2/2 Z+Zk |    |
| NMSA40 | 7 Lineární regrese          | 8       | 4/2 Z+Zk |    |

|             | 9                                       |          |                                               |                   |
|-------------|-----------------------------------------|----------|-----------------------------------------------|-------------------|
| NMSA409     | Náhodné procesy 2                       | 8        | 4/2 Z+Zk                                      | _                 |
|             | Teorie optimalizace                     | 8        | 4/2  Z+Zk                                     |                   |
| NMEK412     | Optimalizace s aplikací ve              | 5        |                                               | 2/2 Z+Zk          |
|             | financích                               |          |                                               | ,                 |
| NMEK450     | Ekonometrický seminář 1                 | 2        |                                               | $0/2 \mathrm{~Z}$ |
|             | Ekonometrie                             | 8        | 4/2 Z+Zk                                      |                   |
| NMEK521     | Ekonometrický projektový                | 6        | $0/2 \mathrm{~Z}$                             |                   |
|             | seminář                                 |          | ,                                             |                   |
| NMEK531     | Matematická ekonomie                    | 5        | 2/2 Z+Zk                                      |                   |
| NMST412     | Zobecněné lineární modely               | 5        |                                               | 2/2 Z+Zk          |
|             | Časové řady                             | 8        |                                               | 4/2  Z+Zk         |
| NSZZ023     | Diplomová práce I                       | 6        | $0/4 \mathrm{~Z}$                             |                   |
| NSZZ024     | Diplomová práce II                      | 9        | <u></u>                                       | $0/6 \mathrm{~Z}$ |
| NSZZ025     | Diplomová práce III                     | 15       | _                                             | 0/10  Z           |
|             |                                         |          |                                               |                   |
|             | olitelné předměty                       |          |                                               |                   |
| Z této      | skupiny je zapotřebí získat alespoň 10  | kreditů. |                                               |                   |
| Kód         | Název                                   | Kredity  | ZS                                            | LS                |
| NMEK436     | Výpočetní aspekty optimalizace          | 5        |                                               | 2/2 Z+Zk          |
| NMFP533     | Analýza investic                        | 5        | 2/2 Z+Zk                                      | <u>.</u>          |
| NMFP436     | Data Science 2                          | 5        | <u></u>                                       | 2/2 Z+Zk          |
| NMST422     | Longitudinální a panelová data          | 5        |                                               | 2/2 Z+Zk          |
| NMST424     | Matematická statistika 3                | 5        | _                                             | 2/2 Z+Zk          |
| NMST539     | Mnohorozměrná analýza                   | 5        | 2/2 Z+Zk                                      | <u> </u>          |
| Doporuče    | né volitelné předměty                   |          |                                               |                   |
| Kód         | Název                                   | Kredity  | ZS                                            | LS                |
|             |                                         |          |                                               |                   |
| NMSA431     | Stochastické problémy ve vědě           | 1        | $0/1 \mathrm{~Z}$                             |                   |
|             | a praxi                                 |          |                                               |                   |
| NMFM437     | Matematika ve financích                 | 6        | $4/0 \mathrm{Zk}$                             | _                 |
|             | a pojišťovnictví                        |          |                                               |                   |
| NMFM438     | Matematika ve financích                 | 6        |                                               | $4/0 \mathrm{Zk}$ |
|             | a pojišťovnictví (E)                    |          |                                               |                   |
| NMFP405     | $Pravd\check{e}podobnost\ pro\ finance$ | 4        | 2/1  Z+Zk                                     |                   |
|             | a pojišťovnictví                        |          |                                               |                   |
| NMFP461     | Kreditní riziko v bankovnictví          | 3        | $2/0 \mathrm{Zk}$                             |                   |
| NMFP465     | Finanční deriváty 1                     | 3        | 2/0 Zk                                        |                   |
| NMFP466     | Finanční deriváty 2                     | 3        | 2/0 Zk                                        |                   |
|             | Stochastické modely ve financích 1      | 5        | 2/2 Z+Zk                                      |                   |
|             | Stochastické modely ve financích 2      | 3        | <u>,                                     </u> | $2/0 \mathrm{Zk}$ |
|             | Matematická statistika 4                | 3        | 2/0  Zk                                       | <del>.</del>      |
|             | Stochastická analýza                    | 8        | <u>.</u>                                      | 4/2 Z+Zk          |
| - NIVLLE437 | DIOCHUSIICKU UHUIUZU                    | 0        |                                               | 4/4 A+AK          |

# Specializace Matematická statistika

Povinné předměty prvního semestru společné pro všechny specializace jsou uvedeny v úvodní části.

# Doporučený průběh studia

Podrobnější informace k doporučenému průběhu studia lze najít na stránkách https://pmse.karlin.mff.cuni.cz/student.php.

# 1. rok studia (letní semestr)

| Kód     | Název                          | Kredity | ZS | LS                |
|---------|--------------------------------|---------|----|-------------------|
| NMST412 | Zobecněné lineární modely      | 5       | _  | 2/2 Z+Zk          |
| NMST422 | Longitudinální a panelová data | 5       |    | 2/2 Z+Zk          |
| NMST424 | Matematická statistika 3       | 5       |    | 2/2 Z+Zk          |
| NMST431 | Bayesovské metody              | 5       |    | 2/2 Z+Zk          |
| NMST450 | Statistický seminář 1          | 2       |    | $0/2 \mathrm{~Z}$ |
|         | Volitelné a povinně volitelné  | 8       |    |                   |
|         | $p\check{r}edm\check{e}ty$     |         |    |                   |

## 2. rok studia

| Kód     | Název                          | Kredity | ZS                | LS                 |
|---------|--------------------------------|---------|-------------------|--------------------|
| NMST511 | Analýza censorovaných dat      | 6       | 3/2 Z+Zk          | _                  |
| NMST539 | Mnohorozměrná analýza          | 5       | 2/2 Z+Zk          |                    |
| NMST551 | Statistický projektový seminář | 5       | $0/2 \mathrm{~Z}$ |                    |
| NSZZ023 | Diplomová práce I              | 6       | $0/4 \mathrm{~Z}$ |                    |
| NSZZ024 | Diplomová práce II             | 9       |                   | $0/6 \mathrm{~Z}$  |
| NSZZ025 | Diplomová práce III            | 15      |                   | $0/10 \mathrm{~Z}$ |
|         | Volitelné a povinně volitelné  | 14      |                   |                    |
|         | $p\check{r}edm\check{e}ty$     |         |                   |                    |

# Shrnutí studijního plánu pro specializaci Matematická statistika

## Povinné předměty

| Kód     | Název                          | Kredity | ZS                | LS                |
|---------|--------------------------------|---------|-------------------|-------------------|
| NMSA405 | Teorie pravděpodobnosti 2      | 5       | 2/2 Z+Zk          |                   |
| NMSA407 | Lineární regrese               | 8       | 4/2 Z+Zk          |                   |
| NMSA409 | Náhodné procesy 2              | 8       | 4/2 Z+Zk          |                   |
| NMSA413 | Teorie optimalizace            | 8       | 4/2 Z+Zk          |                   |
| NMST412 | Zobecněné lineární modely      | 5       |                   | 2/2 Z+Zk          |
| NMST422 | Longitudinální a panelová data | 5       |                   | 2/2 Z+Zk          |
| NMST424 | Matematická statistika 3       | 5       |                   | 2/2 Z+Zk          |
| NMST431 | Bayesovské metody              | 5       |                   | 2/2 Z+Zk          |
| NMST450 | Statistický seminář 1          | 2       |                   | $0/2 \mathrm{~Z}$ |
| NMST511 | Analýza censorovaných dat      | 6       | 3/2 Z+Zk          |                   |
| NMST539 | Mnohorozměrná analýza          | 5       | 2/2 Z+Zk          |                   |
| NMST551 | Statistický projektový seminář | 5       | $0/2 \mathrm{~Z}$ |                   |
| NSZZ023 | Diplomová práce I              | 6       | $0/4 \mathrm{~Z}$ |                   |
| NSZZ024 | Diplomová práce II             | 9       |                   | $0/6 \mathrm{~Z}$ |
| NSZZ025 | Diplomová práce III            | 15      |                   | 0/10 Z            |

#### Povinně volitelné předměty

Z této skupiny je zapotřebí získat alespoň 11 kreditů. Upozorňujeme, že některé předměty nemusí být vyučovány každý rok.

| Kód     | Název                           | Kredity | ZS                | LS                |
|---------|---------------------------------|---------|-------------------|-------------------|
| NMFP436 | Data Science 2                  | 5       |                   | 2/2 Z+Zk          |
| NMEK511 | Ekonometrie                     | 8       | 4/2  Z+Zk         |                   |
| NMST414 | Časové řady                     | 8       |                   | 4/2 Z+Zk          |
| NMST436 | Návrhy experimentů              | 5       | 2/2 Z+Zk          |                   |
| NMST438 | Výběrová šetření                | 5       | 2/2 Z+Zk          |                   |
| NMST444 | Robustní statistické metody     | 3       |                   | $2/0 \mathrm{Zk}$ |
| NMST532 | Plánování a analýza lékařských  | 5       |                   | 2/2 Z+Zk          |
|         | studií                          |         |                   |                   |
| NMST535 | Simulační metody                | 5       |                   | 2/2 Z+Zk          |
| NMST541 | Statistická kontrola jakosti    | 5       |                   | 2/2 Z+Zk          |
| NMST543 | Prostorová statistika *         | 5       | 2/2 Z+Zk          | <u> </u>          |
| NMST545 | Matematická statistika 4        | 3       | 2/0  Zk           |                   |
| NMST547 | Pokročilé aspekty prostředí R   | 3       | $0/2 \mathrm{~Z}$ |                   |
| NMST552 | Statistické konzultace          | 2       | $0/2 \mathrm{~Z}$ | $0/2 \mathrm{~Z}$ |
| NMTP434 | Principy invariance             | 6       |                   | $4/0 \mathrm{Zk}$ |
| NMTP438 | 3 Prostorové modelování         | 8       |                   | 4/2 Z+Zk          |
| NMTP539 | Metody Markov Chain Monte Carlo | 5       | 2/2 Z+Zk          | _                 |

 $<sup>^{\</sup>ast}$  Tento předmět má prerekvizitu NMTP438 Prostorové modelování.

# Doporučené volitelné předměty

| Kód     | Název                              | Kredity | ZS                | LS                |
|---------|------------------------------------|---------|-------------------|-------------------|
| NMSA431 | Stochastické problémy ve vědě      | 1       | $0/1 \mathrm{~Z}$ | _                 |
|         | a praxi                            |         |                   |                   |
| NMST564 | Aplikace statistiky ve výzkumném   | 1       |                   | $0/1 \mathrm{~Z}$ |
|         | procesu                            |         |                   |                   |
| NMST570 | Statistické metody v psychometrii  | 3       | 1/1  Z+Zk         |                   |
| NMTP432 | 2 Stochastická analýza             | 8       |                   | 4/2  Z+Zk         |
| NPFL054 | Úvod do strojového učení v systému | 5       |                   | 2/2 Z+Zk          |
|         | R                                  |         |                   |                   |

# Specializace Pravděpodobnost

Povinné předměty prvního semestru společné pro všechny specializace jsou uvedeny v úvodní části.

## Doporučený průběh studia

Podrobnější informace k doporučenému průběhu studia lze najít na stránkách https://pmse.karlin.mff.cuni.cz/student.php.

## 1. rok studia (letní semestr)

| Kód    | Název                  | Kredity ZS | LS       |
|--------|------------------------|------------|----------|
| NMTP43 | 2 Stochastická analýza | 8 —        | 4/2 Z+Zk |

| NMTP434    | Principy invariance           | 6       |                   | $4/0 \mathrm{~Zk}$ |
|------------|-------------------------------|---------|-------------------|--------------------|
|            | Prostorové modelování         | 8       | _                 | 4/2  Z+Zk          |
| NMTP450    | Pravděpodobnostní seminář 1   | 2       |                   | $0/2 \mathrm{~Z}$  |
|            | Volitelné a povinně volitelné | 6       |                   |                    |
|            | $p\check{r}edm\check{e}ty$    |         |                   |                    |
| 2. rok stu | dia                           |         |                   |                    |
| Kód        | Název                         | Kredity | ZS                | LS                 |
| NMTP521    | Pravděpodobnostní seminář 2   | 2       | 0/2 Z             | _                  |
| NSZZ023    | Diplomová práce I             | 6       | $0/4 \mathrm{~Z}$ |                    |
| NSZZ024    | Diplomová práce II            | 9       | <u> </u>          | $0/6 \mathrm{Z}$   |
| NSZZ025    | Diplomová práce III           | 15      |                   | $0/10 \mathrm{~Z}$ |
|            | Volitelné a povinně volitelné | 28      |                   |                    |
|            | $p\check{r}edm\check{e}ty$    |         |                   |                    |
|            | 1 0                           |         |                   |                    |

# Shrnutí studijního plánu pro specializaci Pravděpodobnost

# Povinné předměty

| Kód     | Název                       | Kredity | ZS                | LS                 |
|---------|-----------------------------|---------|-------------------|--------------------|
| NMSA413 | Teorie optimalizace         | 8       | 4/2 Z+Zk          |                    |
| NMSA405 | Teorie pravděpodobnosti 2   | 5       | 2/2 Z+Zk          |                    |
| NMSA407 | Lineární regrese            | 8       | 4/2 Z+Zk          |                    |
| NMSA409 | Náhodné procesy 2           | 8       | 4/2 Z+Zk          |                    |
| NMTP432 | 2 Stochastická analýza      | 8       |                   | 4/2 Z+Zk           |
| NMTP434 | Principy invariance         | 6       |                   | $4/0 \mathrm{~Zk}$ |
| NMTP438 | Prostorové modelování       | 8       |                   | 4/2 Z+Zk           |
| NMTP450 | Pravděpodobnostní seminář 1 | 2       |                   | $0/2 \mathrm{~Z}$  |
| NMTP521 | Pravděpodobnostní seminář 2 | 2       | $0/2 \mathrm{~Z}$ |                    |
| NSZZ023 | Diplomová práce I           | 6       | $0/4 \mathrm{~Z}$ |                    |
| NSZZ024 | Diplomová práce II          | 9       |                   | $0/6 \mathrm{~Z}$  |
| NSZZ025 | Diplomová práce III         | 15      | _                 | $0/10 \mathrm{~Z}$ |

# Povinně volitelné předměty

Z této skupiny je zapotřebí získat alespoň 21 kreditů. Upozorňujeme, že některé předměty nemusí být vyučovány každý rok.

| Kód     | Název                                          | Kredity | ZS                | LS                |
|---------|------------------------------------------------|---------|-------------------|-------------------|
| NMST543 | Prostorová statistika                          | 5       | 2/2 Z+Zk          |                   |
| NMST424 | Matematická statistika 3                       | 5       | <u>.</u>          | 2/2 Z+Zk          |
| NMST545 | Matematická statistika 4                       | 3       | $2/0 \mathrm{Zk}$ | <u> </u>          |
| NMTP462 | 2 Diferenciální rovnice pro                    | 3       | <u> </u>          | $2/0 \mathrm{Zk}$ |
|         | pravděpodobnost                                |         |                   |                   |
| NMTP532 | 2 Ergodická teorie                             | 4       |                   | $3/0 \mathrm{Zk}$ |
| NMTP533 | B Aplikovaná stochastická analýza              | 5       | 2/2 Z+Zk          | <u> </u>          |
| NMTP566 | o Pokročilé Markovovy řetězce                  | 3       | <u>.</u>          | $2/0 \mathrm{Zk}$ |
| NMTP537 | <sup>7</sup> Limitní věty pro součty náhodných | 3       | $2/0 \mathrm{Zk}$ | <u> </u>          |
|         | veličin                                        |         |                   |                   |

|          | •                                  |         |                   |                    |
|----------|------------------------------------|---------|-------------------|--------------------|
| NMTP539  | Metody Markov Chain Monte Carlo    | 5       | 2/2 Z+Zk          |                    |
|          | Stochastická geometrie             | 3       |                   | $2/0 \mathrm{Zk}$  |
| NMTP543  | Stochastické diferenciální rovnice | 6       | $4/0 \mathrm{Zk}$ |                    |
| NMTP545  | Teorie pravděpodobnostních         | 3       | 2/0 Zk            |                    |
|          | rozdělení                          |         |                   |                    |
| NMTP569  | Entropie v pravděpodobnostních     | 3       | <del></del>       | $2/0 \mathrm{~Zk}$ |
|          | dynamických systémech              |         |                   |                    |
| Doporuče | né volitelné předměty              |         |                   |                    |
| Kód      | Název                              | Kredity | ZS                | LS                 |
| NMSA431  | Stochastické problémy ve vědě      | 1       | 0/1 Z             |                    |
|          | a praxi                            |         | •                 |                    |
| NMSA571  | Teorie informace ve financích      | 3       |                   | $2/0 \mathrm{~Zk}$ |
|          | $a\ statistice$                    |         |                   |                    |
| NMFP505  | Stochastické modely ve financích 1 | 5       | 2/2 Z+Zk          |                    |
| NMFP534  | Stochastické modely ve financích 2 | 3       | _                 | $2/0 \mathrm{~Zk}$ |
| NMTP561  | Malliavinův počet                  | 3       | $2/0 \mathrm{Zk}$ |                    |
| NMTP562  | Markovské procesy                  | 6       |                   | $4/0 \mathrm{~Zk}$ |
| NMTP567  | Vybrané partie ze stochastické     | 3       | $2/0 \mathrm{Zk}$ |                    |
|          | $anal \acute{y}zy$                 |         |                   |                    |
| NMTP576  | Struktury podmíněné nezávislosti   | 3       |                   | $2/0 \mathrm{Zk}$  |
| NMTP578  | Teorie kvantové pravděpodobnosti   | 3       |                   | $2/0 \mathrm{Zk}$  |

#### Státní závěrečná zkouška

#### Podmínky pro přihlášení ke státní závěrečné zkoušce

Podmínky pro přihlášení k poslední části státní závěrečné zkoušky

- Získání alespoň 120 kreditů.
- Splnění všech povinných předmětů zvoleného studijního plánu (tj. povinných předmětů ze společné části a povinných předmětů dané specializace).
- Splnění povinně volitelných předmětů zvolené specializace ve stanoveném rozsahu.
- Odevzdání vypracované diplomové práce ve stanoveném termínu.

#### Podmínky pro přihlášení k jiné než poslední části státní závěrečné zkoušky

V návaznosti na vnitřní předpis "Pravidla pro organizaci studia na MFF UK" jsou pravidla stanovena následovně:

- Získání alespoň 105 kreditů.
- Pokud je jinou než poslední částí státní závěrečné zkoušky její ústní část, je nutné splnění všech povinných předmětů zvoleného studijního plánu s výjimkou NSZZ025 Diplomová práce III. Dále pak splnění všech povinně volitelných předmětů zvolené specializace ve stanoveném rozsahu.
- Pokud je jinou než poslední částí státní závěrečné zkoušky obhajoba, je nutné splnění všech povinných předmětů zvoleného studijního plánu a odevzdání vypracované diplomové práce ve stanoveném termínu. Dále pak součet kreditů z povinných a povinně volitelných předmětů (zvoleného stud. plánu) musí být alespoň 100.

#### Ústní část státní závěrečné zkoušky

Ústní část státní závěrečné zkoušky se skládá ze dvou okruhů. První okruh, Základy pravděpodobnosti, statistiky a náhodných procesů, je společný pro všechny posluchače programu. Druhý okruh vychází z povinných předmětů dané specializace.

Podrobnější vysvětlení požadavků k ústní části státní závěrečné zkoušky lze najít na stránkách https://pmse.karlin.mff.cuni.cz/student.php.

# Požadavky pro ústní část státní závěrečné zkoušky Společný okruh

I. Základy pravděpodobnosti, statistiky a náhodných procesů

Základy teorie markovských řetězců. Stacionární posloupnosti a procesy. Lineární regresní model. Podmíněná střední hodnota. Martingaly s diskrétním časem. Optimalizace, lineární a nelineární programování.

Specializace Ekonometrie: IIa. Ekonometrické a optimalizační metody.

Stacionární posloupnosti a časové řady. Ekonometrie. Pokročilá optimalizace. Matematická ekonomie. Zobecněné lineární modely.

Specializace Matematická statistika: IIb. Pokročilá statistická analýza.

Analýza censorovaných dat. Bayesovské metody. Mnohorozměrná analýza. Pokročilé metody matematické statistiky. Zobecněné lineární modely.

Specializace Pravděpodobnost: IIc. Náhodné procesy v čase i v prostoru Principy invariance. Prostorové modelování. Stochastická analýza.

# ${\bf 2.6.2~Pravd\check{e}podobnost},$ matematická statistika a ekonometrie, plán P

Studijní plán P je určen pro posluchače, kteří zahájili studium v akademickém roce 2020/2021 nebo 2021/2022. V doporučeném průběhu studia je třeba si dát pozor na některé změny ve vyučovaných předmětech, které jsou podrobně popsány v Karolínce pro rok 2022/2023 ve studijním plánu P (programu Pravděpodobnost, matematická statistika a ekonometrie).

V návaznosti na nedávnou změnu vnitřní předpisu "Pravidla pro organizaci studia na MFF UK" jsou však následujícím způsobem upraveny podmínky pro přihlašování ke státní závěrečné zkoušce.

#### Podmínky pro přihlášení ke státní závěrečné zkoušce

Podmínky pro přihlášení k poslední části státní závěrečné zkoušky

- Získání alespoň 120 kreditů.
- Splnění všech povinných předmětů studijního plánu.
- Splnění povinně volitelných předmětů ze skupiny I. v rozsahu alespoň 7 kreditů.
- Splnění povinně volitelných předmětů ze skupiny II. v rozsahu alespoň 43 kreditů.
- Odevzdání vypracované diplomové práce ve stanoveném termínu.

#### Podmínky pro přihlášení k jiné než poslední části státní závěrečné zkoušky

- Získání alespoň 105 kreditů.
- Splnění povinně volitelných předmětů ze skupiny I. v rozsahu alespoň 7 kreditů.

- Pokud je jinou než poslední částí státní závěrečné zkoušky její ústní část, je nutné splnění všech povinných předmětů studijního plánu s výjimkou NSZZ025 Diplomová práce III. Dále pak splnění povinně volitelných předmětů ze skupiny II. v rozsahu alespoň 43 kreditů.
- Pokud je jinou než poslední částí státní závěrečné zkoušky obhajoba, je nutné splnění všech povinných předmětů zvoleného studijního plánu a odevzdání vypracované diplomové práce ve stanoveném termínu. Dále pak splnění povinně volitelných předmětů ze skupiny II. v rozsahu alespoň 35 kreditů.

# 2.7 Finanční a pojistná matematika

Garantující pracoviště: Katedra pravděpodobnosti a matematické statistiky Garant programu: doc. RNDr. Martin Branda, Ph.D.

Cílem studijního programu Finanční a pojistná matematika je odborná příprava na výkon profese matematika ve finančních institucích či pro samostatnou vědeckou činnost v oblastech financí a pojišťovnictví včetně případné akademické dráhy. Absolvent tohoto studijního programu získá hlubší znalosti základních matematických disciplín a speciální znalosti z oblastí teorie pravděpodobnosti a matematická statistika, ekonometrie a stochastické procesy, matematické metody ve financích, životní a neživotní pojištění, risk management, účetnictví (včetně účetnictví pojišťoven) a strojové učení. Výuka se z velké části opírá o matematické modelování a pokročilou analýzu dat s použitím moderních softwarových prostředků. To vše umožňuje absolventům provádět vysoce efektivní modelování finančních a pojistných produktů, jejich analýzu z hlediska rizika, ziskovosti a jiných charakteristik potřebných pro efektivní finanční řízení.

Absolventi studijního programu Finanční a pojistná matematika se uplatní v bankách, pojišťovnách, penzijních a investičních fondech a dalších finančních institucích a rovněž ve státní správě (Ministerstvo financí, ČNB a další). Profese, které poté zastávají, zahrnují pojistné matematiky, risk manažery a data scientisty. Současná poptávka zmíněných institucí po těchto profesích především z komerční sféry je vysoká a tento trend se patrně v budoucnosti nezmění. V neposlední řadě absolventi získají vzdělání, které je základem pro udělení osvědčení o způsobilosti vykonávat aktuárskou činnost, které vydává Česká společnost aktuárů svým členům splňujícím kritéria mezinárodně uznávaného aktuárského vzdělání (osvědčení pak platí pro celou EU).

#### Vstupní požadavky

Předpokládáme, že student tohoto programu má na počátku prvního ročníku dostatečné znalosti z následujících oborů a oblastí:

- Diferenciální a integrální počet více proměnných, základy teorie míry a Lebesgueův integrál, vektorové prostory a maticová algebra.
- Základy teorie pravděpodobnosti, matematické statistiky a analýzy dat. Teorie markovských řetězců. Lineární regrese.
- Základy finanční matematiky a účetnictví.
- Pasivní znalost angličtiny umožňující dostatečné porozumění matematickým přednáškám a odborným textům.

Studentům, kteří tyto požadavky nesplňují, může garant studijního programu po dohodě doporučit způsob jejich doplnění, například absolvováním vybraných předmětů bakalářského studia v rámci individuálního studijního plánu.

#### Studijní plány

Studijní program FPM má dva studijní plány. Studijní plán N je určen pro posluchače, kteří zahájili studium v akademickém roce 2022/2023 (nebo později). Studijní plán P je určen pro posluchače, kteří zahájili studium v akademickém roce 2020/2021 nebo 2021/2022.

# 2.7.1 Finanční a pojistná matematika, plán N

Studijní plán N je určen pro posluchače, kteří zahájili studium v akademickém roce 2022/2023 (nebo později).

#### Volba zaměření

Program Finanční a pojistná matematika vyžaduje specializaci na jedno ze dvou nabízených zaměření:

- 1. Zaměření **Pojistná matematika** je určeno pro studenty, kteří se chtějí po ukončení magisterského studia věnovat profesi pojistného matematika.
- 2. Zaměření **Data science a finance** je určeno k přípravě na kariéru v oblasti data science, pokročilé analytiky dat nebo risk managementu primárně ve finančních institucích.

Volba zaměření zahrnuje tři postupné kroky:

- o *Výběr povinně volitelných předmětů* dle příslušného doporučeného průběhu studia, typicky od letního semestru prvního ročníku.
- o Výběr jedné ze dvou variant předmětu "Diplomová práce III" . Pozor, tento předmět se zapisuje obvykle až na počátku posledního semestru studia.
- o Výběr volitelného okruhu ústní části státní závěrečné zkoušky, při přihlašování ke státní závěrečné zkoušce.

#### Volba povinně volitelných předmětů

Volba povinně volitelných předmětů je usměrňována pomocí prerekvizit jednotlivých variant předmětu "Diplomová práce III". Každá varianta vyžaduje splnění určitých požadavků na absolvování předmětů zvoleného zaměření. Tyto prerekvizity se neověřují při zápise předmětu "Diplomová práce III", takže tento předmět je možné si zapsat i bez toho, že by student všechny prerekvizity splňoval. Ověřují se však při kontrole plnění studijních povinností, takže student, který v této fázi nesplňuje prerekvizity předmětu "Diplomová práce III", nemůže uzavřít studium.

#### Doporučený průběh studia - Pojistná matematika

#### 1. rok studia

V letním semestru 1. ročníku studia je potřeba vybrat jedno ze dvou zaměření a podle něj si zapsat odpovídající povinně volitelné předměty. Specifická skladba studijního plánu pokračuje i ve druhém ročníku.

| Kód     | Název                       | Kredity | ZS        | LS |
|---------|-----------------------------|---------|-----------|----|
| NMFP401 | Finanční ekonometrie        | 4       | 2/1 Z+Zk  |    |
| NMFP403 | Náhodné procesy 2           | 8       | 4/2 Z+Zk  |    |
| NMFP405 | Pravděpodobnost pro finance | 4       | 2/1  Z+Zk |    |
|         | a pojišťovnictví            |         |           |    |

| NMFP407 Matematika životního<br>pojištění 1   | 5 | 2/2 Z+Zk    | _                |
|-----------------------------------------------|---|-------------|------------------|
| NMFP409 Matematika neživotního<br>pojištění 1 | 5 | 2/2 Z+Zk    | _                |
| NMFP402 <b>Z</b> obecněné lineární modely     | 5 |             | 2/2 Z+Zk         |
| NMFP404 Časové řady                           | 8 |             | 4/2  Z+Zk        |
| NMFP406 Data Science 1                        | 3 |             | 2/0  Zk          |
| NSZZ023 Diplomová práce I                     | 6 |             | $0/4 \mathrm{Z}$ |
| NMFP432 Matematika životního pojištění 2      | 5 | <del></del> | 2/2 Z+Zk         |
| NMFP434 Matematika neživotního pojištění 2    | 5 |             | 2/2 Z+Zk         |
| Volitelné předměty                            | 2 |             | •                |

## 2. rok studia

| Kód     | Název                               | Kredity | ZS                | LS                 |
|---------|-------------------------------------|---------|-------------------|--------------------|
| NMFP501 | Aktuárský seminář 1                 | 2       | $0/2 \mathrm{~Z}$ |                    |
| NMFP503 | Teorie rizika 1                     | 4       | 2/1  Z+Zk         |                    |
| NMFP505 | Stochastické modely ve              | 5       | 2/2 Z+Zk          |                    |
|         | financích 1                         |         |                   |                    |
| NMFP531 | Teorie rizika 2                     | 4       | 2/1  Z+Zk         |                    |
| NMFP537 | Účetnictví a solventnost pojišťoven | 5       | 2/2 Z+Zk          |                    |
| NSZZ024 | Diplomová práce II                  | 9       |                   | $0/6 \mathrm{~Z}$  |
| NMFP532 | Aktuárský seminář 2                 | 2       |                   | $0/2 \mathrm{~Z}$  |
| NMFP558 | Diplomová práce III z pojistné      | 15      |                   | $0/10 \mathrm{~Z}$ |
|         | matematiky                          |         |                   |                    |
|         | Volitelné předměty                  | 14      |                   |                    |

# Doporučený průběh studia – Data science a finance

# 1. rok studia

V letním semestru 1. ročníku studia je potřeba vybrat jedno ze dvou zaměření a podle něj si zapsat odpovídající povinně volitelné předměty. Specifická skladba studijního plánu pokračuje i ve druhém ročníku.

| Kód     | Název                                  | Kredity | ZS        | LS                 |
|---------|----------------------------------------|---------|-----------|--------------------|
| NMFP401 | Finanční ekonometrie                   | 4       | 2/1  Z+Zk | _                  |
| NMFP403 | Náhodné procesy 2                      | 8       | 4/2 Z+Zk  | _                  |
| NMFP405 | Pravděpodobnost pro finance            | 4       | 2/1  Z+Zk |                    |
|         | a pojišťovnictví                       |         |           |                    |
| NMFP407 | Matematika životního                   | 5       | 2/2 Z+Zk  |                    |
|         | pojištění 1                            |         |           |                    |
| NMFP409 | Matematika neživotního                 | 5       | 2/2 Z+Zk  | _                  |
|         | pojištění 1                            |         |           |                    |
| NMFP402 | Zobecněné lineární modely              | 5       |           | 2/2 Z+Zk           |
| NMFP404 | Časové řady                            | 8       |           | 4/2  Z+Zk          |
| NMFP406 | Data Science 1                         | 3       |           | $2/0 \mathrm{~Zk}$ |
| NSZZ023 | Diplomová práce I                      | 6       |           | $0/4 \mathrm{~Z}$  |
| NMEK412 | 2 Optimalizace s aplikací ve financích | 5       |           | 2/2 Z+Zk           |

| NMFP436    | Data Science 2                     | 5       | _         | 2/2 Z+Zk         |
|------------|------------------------------------|---------|-----------|------------------|
|            | Volitelné předměty                 | 2       |           | ,                |
| 2. rok stu | dia                                |         |           |                  |
| Kód        | Název                              | Kredity | ZS        | LS               |
| NMFP501    | Aktuárský seminář 1                | 2       | 0/2 Z     |                  |
| NMFP503    | Teorie rizika 1                    | 4       | 2/1  Z+Zk | _                |
| NMFP505    | Stochastické modely ve             | 5       | 2/2 Z+Zk  |                  |
|            | financích 1                        |         | •         |                  |
| NMFP533    | Analýza investic                   | 5       | 2/2 Z+Zk  | _                |
| NMFP535    | Data Science 3                     | 5       | 2/2 Z+Zk  |                  |
| NSZZ024    | Diplomová práce II                 | 9       | <u></u>   | $0/6 \mathrm{Z}$ |
| NMFP534    | Stochastické modely ve financích 2 | 3       | _         | 2/0  Zk          |
| NMFP556    | Diplomová práce III z financí      | 15      |           | $0/10 \; { m Z}$ |
|            | Volitelné předměty                 | 12      |           | •                |

# Shrnutí studijního plánu

# Povinné předměty

Všechny předměty z této skupiny je potřeba úspěšně absolvovat.

| Kód     | Název                       | Kredity | ZS                | LS                 |
|---------|-----------------------------|---------|-------------------|--------------------|
| NMFP401 | Finanční ekonometrie        | 4       | 2/1 Z+Zk          |                    |
| NMFP403 | Náhodné procesy 2           | 8       | 4/2 Z+Zk          |                    |
| NMFP405 | Pravděpodobnost pro finance | 4       | 2/1  Z+Zk         |                    |
|         | a pojišťovnictví            |         |                   |                    |
| NMFP407 | Matematika životního        | 5       | 2/2 Z+Zk          |                    |
|         | pojištění 1                 |         |                   |                    |
| NMFP409 | Matematika neživotního      | 5       | 2/2 Z+Zk          |                    |
|         | pojištění 1                 |         |                   |                    |
| NMFP402 | Zobecněné lineární modely   | 5       | <del></del>       | 2/2 Z+Zk           |
| NMFP404 | Časové řady                 | 8       |                   | 4/2 Z+Zk           |
| NMFP406 | Data Science 1              | 3       |                   | $2/0 \mathrm{~Zk}$ |
| NSZZ023 | Diplomová práce I           | 6       |                   | $0/4~{ m Z}$       |
| NMFP501 | Aktuárský seminář 1         | 2       | $0/2 \mathrm{~Z}$ |                    |
| NMFP503 | Teorie rizika 1             | 4       | 2/1  Z+Zk         |                    |
| NMFP505 | Stochastické modely ve      | 5       | 2/2 Z+Zk          |                    |
|         | financích 1                 |         |                   |                    |
| NSZZ024 | Diplomová práce II          | 9       |                   | $0/6 \mathrm{~Z}$  |

# Povinně volitelné předměty

Za povinně volitelné předměty je během studia nutno získat alespoň 21 kreditů.

## Pojistná matematika

Volba povinně volitelných předmětů zaměření  $Pojistná\ matematika$  je určena prerekvizitami předmětu "Diplomová práce III z pojistné matematiky", který vyžaduje absolvování  $v\check{s}ech$  těchto předmětů:

| Kód     | Název                               | Kredity | ZS        | LS                |
|---------|-------------------------------------|---------|-----------|-------------------|
| NMFP432 | Matematika životního pojištění 2    | 5       | _         | 2/2 Z+Zk          |
| NMFP434 | Matematika neživotního pojištění 2  | 5       |           | 2/2  Z+Zk         |
| NMFP531 | Teorie rizika 2                     | 4       | 2/1  Z+Zk |                   |
| NMFP537 | Účetnictví a solventnost pojišťoven | 5       | 2/2 Z+Zk  |                   |
| NMFP532 | Aktuárský seminář 2                 | 2       |           | $0/2 \mathrm{~Z}$ |

#### Data science a finance

Volba povinně volitelných předmětů zaměření  $Data\ science\ a\ finance$  je určena prerekvizitami předmětu "Diplomová práce III z financí", který vyžaduje absolvování  $v\check{s}ech$  těchto předmětů:

| Kód     | Název                                  | Kredity | ZS       | LS                 |
|---------|----------------------------------------|---------|----------|--------------------|
| NMEK412 | 2 Optimalizace s aplikací ve financích | 5       | _        | 2/2 Z+Zk           |
| NMFP436 | 5 Data Science 2                       | 5       |          | 2/2 Z+Zk           |
| NMFP533 | 3 Analýza investic                     | 5       | 2/2 Z+Zk |                    |
| NMFP535 | 5 Data Science 3                       | 5       | 2/2 Z+Zk |                    |
| NMFP534 | Stochastické modely ve financích 2     | 3       | <u> </u> | $2/0 \mathrm{~Zk}$ |

## Doporučené volitelné předměty

Jako doporučené volitelné předměty slouží nejen tento seznam, ale studenti daného zaměření mohou jako volitelné předměty využít povinně volitelné předměty zaměření druhého.

| Kód     | Název                              | Kredity | ZS       | LS       |
|---------|------------------------------------|---------|----------|----------|
| NMFP461 | Kreditní riziko v bankovnictví     | 3       | 2/0 Zk   | _        |
| NMFP465 | Finanční deriváty 1                | 3       | 2/0  Zk  |          |
| NMSA413 | Teorie optimalizace                | 8       | 4/2 Z+Zk |          |
| NPFL129 | Úvod do strojového učení v Pythonu | 5       | 2/2 Z+Zk |          |
| NMEK436 | 3 Výpočetní aspekty optimalizace   | 5       |          | 2/2 Z+Zk |
| NMFP462 | 2. Demografie                      | 3       |          | 2/0  Zk  |
| NMEK531 | l Matematická ekonomie             | 5       | 2/2 Z+Zk |          |
| NMFP463 | Praktické aspekty měření a řízení  | 3       | 2/0  Zk  |          |
|         | finančních rizik                   |         |          |          |
| NMFP466 | Finanční deriváty 2                | 3       | 2/0 Zk   |          |

#### Státní závěrečná zkouška

#### Podmínky pro přihlášení ke státní závěrečné zkoušce

Podmínky pro přihlášení k poslední části státní závěrečné zkoušky

- Získání alespoň 120 kreditů.
- Splnění všech povinných předmětů studijního plánu.
- Splnění všech povinně volitelných předmětů pro dané zaměření.
- Odevzdání vypracované diplomové práce ve stanoveném termínu.

#### Podmínky pro přihlášení k jiné než poslední části státní závěrečné zkoušky

Rámcové podmínky jsou stanoveny vnitřním předpisem Pravidla pro organizaci studia na MFF UK a v programu Finanční a pojistná matematika je nutné splnit tyto podmínky:

- Získání alespoň 105 kreditů.
- Pokud je jinou než poslední částí státní závěrečné zkoušky její ústní část, je nutné splnění všech povinných předmětů studijního plánu a všech povinně volitelných předmětů pro dané zaměření s výjimkou Diplomová práce III (dle volby zaměření NMFP556 nebo NMFP558).
- Pokud je jinou než poslední částí státní závěrečné zkoušky obhajoba, je nutné splnění všech povinných předmětů studijního plánu a všech povinně volitelných předmětů pro dané zaměření a odevzdání vypracované diplomové práce ve stanoveném termínu.

### Ústní část státní závěrečné zkoušky

Ústní část státní závěrečné zkoušky se skládá ze tří tématických okruhů, z každého dostane student jednu otázku. Dva okruhy (Základy pravděpodobnosti, matematické statistiky a ekonometrie; Základy finanční a pojistné matematiky) jsou povinné, třetí okruh je volitelný a odpovídá zvolenému zaměření. Student si musí vybrat třetí okruh z možností:

- Pokročilé partie pojistné matematiky a účetnictví pojišťoven (odpovídá zaměření Pojistná matematika)
- Pokročilé partie financí a analýzy dat (odpovídá zaměření Data science a finance)

Podrobnější vysvětlení požadavků k ústní části státní závěrečné zkoušky lze najít na stránkách garanta programu https://www2.karlin.mff.cuni.cz/~branda/garantfpm.html.

### Požadavky pro ústní část státní závěrečné zkoušky

### 1. Základy pravděpodobnosti, matematické statistiky a ekonometrie

Pravděpodobnost pro finance a pojišťovnictví, ekonometrické modely, náhodné procesy a časové řady, zobecněné lineární modely.

### 2. Základy finanční a pojistné matematiky

Základy matematiky životního a neživotního pojištění, teorie rizika, stochastické modely ve financích.

### 3. Volitelný okruh

### 3A. Pokročilé partie pojistné matematiky a účetnictví pojišťoven

Pokročilé partie životního a neživotního pojištění, teorie rizika, účetnictví a solventnost pojišťoven.

### 3B. Pokročilé partie financí a analýzy dat

Optimalizace s aplikacemi ve financích, analýza investic, investiční modely, míry rizika, pokročilé stochastické modely ve financích, vícerozměrné statistické modely.

### 2.7.2 Finanční a pojistná matematika, plán P

Studijní plán P je určen pro posluchače, kteří zahájili studium v akademickém roce 2020/2021 nebo 2021/2022. V doporučeném průběhu studia je třeba si dát pozor na následující vyznačené změny:

- Většina předmětů již není vyučována. U těchto předmětů je uvedeno, které nové předměty tyto nevyučované předměty nahrazují.
- U některých předmětů došlo ke změně semestru výuky.

### Doporučený průběh studia

### 1. rok studia

| Kód     | Název                                            | Kredity | ZS       | LS                |
|---------|--------------------------------------------------|---------|----------|-------------------|
| NMFM40  | l Matematika neživotního                         | 5       | 2/2 Z+Zk | _                 |
|         | pojištění 1 $^{1}$                               |         |          |                   |
| NMFM40  | $5 {f \check{Z}ivotn\'i}$ pojištění $1^{-2}$     | 5       | 2/2 Z+Zk |                   |
| NMSA407 | Lineární regrese                                 | 8       | 4/2 Z+Zk |                   |
| NMSA409 | Náhodné procesy 2                                | 8       | 4/2 Z+Zk |                   |
| NMFM40  | 2 Matematika neživotního                         | 5       |          | 2/2 Z+Zk          |
|         | ${f poji}$ štění 2 $^3$                          |         |          |                   |
| NMFM40  | 4 Vybraný software pro finance                   | 3       |          | $2/0 \mathrm{Zk}$ |
|         | a pojišťovnictví <sup>4</sup>                    |         |          |                   |
| NMFM40  | $6 {f \check{Z}ivotn\'i}$ pojištění ${f 2}^{ 5}$ | 3       |          | 2/0  Zk           |
| NMFM41  | 6 Životní pojištění 2, cvičení <sup>5</sup>      | 2       |          | $0/2 \mathrm{~Z}$ |
| NMFM40  | 8 Pravděpodobnost pro finance                    | 3       |          | $2/0 \mathrm{Zk}$ |
|         | a pojišťovnictví <sup>6</sup>                    |         |          |                   |
| NMFM410 | 0 Účetnictví pojišťoven <sup>7</sup>             | 5       |          | 2/2 Z+Zk          |
| NSZZ023 | Diplomová práce I                                | 6       |          | $0/4 \mathrm{Z}$  |
|         | Volitelné a povinně volitelné                    | 7       |          |                   |
|         | předměty                                         |         |          |                   |

 $<sup>^{1}</sup>$  Tento předmět již není vyučován. Je nahrazen předmětem NMFP409 Matematika neživotního pojištění 1.

### 2. rok studia

| Kód     | Název                              | Kredity | ZS                | LS                 |
|---------|------------------------------------|---------|-------------------|--------------------|
| NMFM50  | l Aktuárský seminář 1 <sup>8</sup> | 2       | $0/2 \mathrm{~Z}$ | _                  |
| NMFM503 | 3 Teorie rizika <sup>9</sup>       | 8       | 4/2 Z+Zk          |                    |
| NMFM507 | 7 Pokročilé partie finančního      | 2       | 2/0  Zk           |                    |
|         | ${f managementu}^{\ 10}$           |         |                   |                    |
| NMST537 | Časové řady <sup>11</sup>          | 8       | 4/2 Z+Zk          |                    |
| NSZZ024 | Diplomová práce II                 | 9       | $0/6 \mathrm{Z}$  |                    |
| NMFM502 | $2{f Aktuárský seminář}{f 2}^{12}$ | 1       |                   | $0/2 \mathrm{~Z}$  |
| NMFM50  | Stochastické modely pro finance    | 5       |                   | 2/2 Z+Zk           |
|         | a pojišťovnictví <sup>13</sup>     |         |                   |                    |
| NSZZ025 | Diplomová práce III                | 15      | _                 | $0/10 \mathrm{~Z}$ |

tění 1.  $$^2$$  Tento předmět již není vyučován. Je nahrazen předmětem NMFP407 Matematika životního pojištění 1.

tění 1.  $$^3$$  Tento předmět již není vyučován. Je nahrazen předmětem NMFP434 Matematika neživotního pojištění 2.

 $<sup>^4</sup>$  Tento předmět již není vyučován. Je nahrazen předmětem NMFP406 Data science 1.

 $<sup>^5</sup>$  Tyto předměty již nejsou vyučovány. Jsou nahrazeny předmětem NMFP432 Matematika životního pojištění 2 (2/2 Z+Zk).

<sup>&</sup>lt;sup>6</sup> Tento předmět již není vyučován. Je nahrazen předmětem vyučovaným v zimním semestru NMFP405 Pravděpodobnost pro finance a pojišťovnictví (2/1 Z+Zk).

 $<sup>^7</sup>$  Tento předmět již není vyučován. Je nahrazen předmětem vyučovaným v zimním semestru NMFP537 Účetnictví a solventnost pojišťoven.

Volitelné a povinně volitelné 10 předměty

 $^{8}$  Tento předmět již není vyučován. Je nahrazen předmětem NMFP501 Aktuárský seminář1.

Tento předmět již není vyučován. Je nahrazen předmětem NMFP533 Analýza investic.

 $^{12}$  Tento předmět již není vyučován. Je nahrazen předmětem NMFP532 Aktuárský seminář2.

### Shrnutí studijního plánu

### Povinné předměty

| Kód Název                                                              | Kredity | ZS                | LS                |
|------------------------------------------------------------------------|---------|-------------------|-------------------|
| NMFM401 <b>Matematika neživotního</b>                                  | 5       | 2/2 Z+Zk          | _                 |
| ${f poji}$ štění 1 $^{1}$                                              |         |                   |                   |
| NMSA407 Lineární regrese                                               | 8       | 4/2 Z+Zk          |                   |
| $ m NMFM405 {f \check{z}ivotn\'i poji\check{s}t\check{e}n\'i 1}^{\ 2}$ | 5       | 2/2 Z+Zk          |                   |
| NMSA409 <b>Náhodné procesy 2</b>                                       | 8       | 4/2 Z+Zk          |                   |
| NMFM402 Matematika neživotního                                         | 5       |                   | 2/2 Z+Zk          |
| ${f poji\check{s}t\check{e}n\acute{i}}$ 2 $^3$                         |         |                   |                   |
| NMFM404 Vybraný software pro finance                                   | 3       |                   | 2/0  Zk           |
| a pojišťovnic ${ m tv}$ í $^4$                                         |         |                   |                   |
| $ m NMFM406 {f \check{z}ivotn\'i poji\check{s}t\check{e}n\'i 2}$       | 3       |                   | 2/0  Zk           |
| NMFM416 <b>Životní pojištění 2, cvičení</b> <sup>5</sup>               | 2       |                   | $0/2 \mathrm{~Z}$ |
| NMFM410 Účetnictví pojišťoven                                          | 5       |                   | 2/2 Z+Zk          |
| NMFM408 Pravděpodobnost pro finance                                    | 3       |                   | $2/0 \mathrm{Zk}$ |
| a pojišťovnic ${f t}$ ví $^6$                                          |         |                   |                   |
| $ m NMFM501~{f Aktuárský~seminář~1}^{7}$                               | 2       | $0/2 \mathrm{~Z}$ |                   |
| $ m NMFM503$ <b>Teorie rizika</b> $^{8}$                               | 8       | 4/2 Z+Zk          |                   |
| NMFM507 Pokročilé partie finančního                                    | 2       | 2/0  Zk           |                   |
| ${f manage mentu}\ ^9$                                                 |         |                   |                   |
| $ m NMST537$ Časové řady $^{10}$                                       | 8       | 4/2 Z+Zk          |                   |
| NMFM502 <b>Aktuárský seminář 2</b> <sup>11</sup>                       | 1       |                   | $0/2 \mathrm{~Z}$ |
| NMFM505 Stochastické modely pro finance                                | 5       |                   | 2/2 Z+Zk          |
| a pojišťovnic ${f t}$ ví $^{12}$                                       |         |                   |                   |
| NSZZ023 Diplomová práce I                                              | 6       |                   | $0/4~\mathrm{Z}$  |
| NSZZ024 Diplomová práce II                                             | 9       | $0/6 \mathrm{~Z}$ |                   |
| NSZZ025 Diplomová práce III                                            | 15      |                   | 0/10 Z            |

<sup>&</sup>lt;sup>1</sup> Tento předmět již není vyučován. Je nahrazen předmětem NMFP409 Matematika neživotního pojiš-

 $<sup>^9</sup>$  Tento předmět již není vyučován. Je nahrazen předměty NMFP503 Teorie rizika 1 (2/1 Z+Zk) a NMFP531 Teorie rizika 2 (2/1 Z+Zk).

 $<sup>^{11}</sup>$  Tento předmět již není vyučován. Je nahrazen předmětem vyučovaným v letním semestru NMFP404 Časové řady.

 $<sup>^{13}</sup>$  Tento předmět již není vyučován. Je nahrazen předmětem NMFP505 Stochastické modely ve finan-

tění 1.  $$^2$$  Tento předmět již není vyučován. Je nahrazen předmětem NMFP407 Matematika životního pojištění

 $<sup>^3</sup>$  Tento předmět již není vyučován. Je nahrazen předmětem NMFP434 Matematika neživotního pojištění 2.  $$^4$$  Tento předmět již není vyučován. Je nahrazen předmětem NMFP406 Data science 1.

- $^5$  Tyto předměty již nejsou vyučovány. Jsou nahrazeny předmětem NMFP432 Matematika životního pojištění 2 (2/2 Z+Zk).
- $^6$  Tento předmět již není vyučován. Je nahrazen předmětem vyučovaným v zimním semestru NMFP405 Pravděpodobnost pro finance a pojišťovnictví (2/1 Z+Zk).
  - <sup>7</sup> Tento předmět již není vyučován. Je nahrazen předmětem NMFP501 Aktuárský seminář 1.
- $^8$  Tento předmět již není vyučován. Je nahrazen předměty NMFP503 Teorie rizika 1 (2/1 Z+Zk) a NMFP531 Teorie rizika 2 (2/1 Z+Zk).
  - <sup>9</sup> Tento předmět již není vyučován. Je nahrazen předmětem NMFP533 Analýza investic.
- $^{10}$  Tento předmět již není vyučován. Je nahrazen předmětem vyučovaným v letním semestru NMFP404 Časové řady.
  - <sup>11</sup> Tento předmět již není vyučován. Je nahrazen předmětem NMFP532 Aktuárský seminář 2.
- $^{12}$  Tento předmět již není vyučován. Je nahrazen předmětem NMFP505 Stochastické modely ve financích 1.

### Povinně volitelné předměty

Je třeba získat alespoň 5 kreditů z povinně volitelných předmětů.

| Kód     | Název                                         | Kredity | ZS       | LS |
|---------|-----------------------------------------------|---------|----------|----|
| NMFM43  | 1 Analýza investic                            | 5       | 2/2 Z+Zk | _  |
| NMFM53  | 1 Finanční deriváty 1 <sup>1</sup>            | 3       | 2/0  Zk  |    |
| NMFM53  | 2 Finanční deriváty 2 <sup>2</sup>            | 3       | 2/0  Zk  |    |
| NMSA403 | <sup>3</sup> Teorie optimalizace <sup>3</sup> | 5       | 2/2 Z+Zk |    |
| NMST531 | Analýza censorovaných dat                     | 5       | 2/2 Z+Zk |    |
| NMST539 | Mnohorozměrná analýza <sup>4</sup>            | 5       | 2/2 Z+Zk | _  |

<sup>&</sup>lt;sup>1</sup> Tento předmět již není vyučován. Je nahrazen předmětem NMFP465 Finanční deriváty 1.

### Doporučené volitelné předměty

| Kód     | Název                                               | Kredity | ZS                | LS                |
|---------|-----------------------------------------------------|---------|-------------------|-------------------|
| NMEK432 | 2 Ekonometrie <sup>1</sup>                          | 8       |                   | 4/2 Z+Zk          |
|         | 2 Optimalizace s aplikací ve financích <sup>2</sup> | 8       |                   | 4/2 Z+Zk          |
| NMFM46  | $1\ Demografie\ ^3$                                 | 3       |                   | $2/0 \mathrm{Zk}$ |
| NMFM46  | 2 Praktické aspekty měření a řízení                 | 3       | $2/0 \mathrm{Zk}$ |                   |
|         | finančních rizik <sup>4</sup>                       |         |                   |                   |
| NMFM53' | 7 Kreditní riziko v bankovnictví <sup>5</sup>       | 3       | 2/0  Zk           |                   |
| NMFP436 | 5 Data Science 2                                    | 5       | <u> </u>          | 2/2 Z+Zk          |
| NMFP534 | Stochastické modely ve financích 2                  | 3       | _                 | $2/0 \mathrm{Zk}$ |

 $<sup>^1</sup>$  Tento předmět již není vyučován. Může být nahrazen předměty vyučovanými v zimním semestru NMFP401 Finanční ekonometrie (2/1 Z+Zk) nebo NMEK511 Ekonometrie (4/2 Z+Zk).

 $<sup>^2</sup>$  Tento předmět již není vyučován. Je nahrazen předmětem NMFP466 Finanční deriváty 2.

<sup>&</sup>lt;sup>3</sup> Tento předmět již není vyučován. Je nahrazen předmětem NMSA413 Teorie optimalizace (4/2 Z+Zk).

<sup>&</sup>lt;sup>4</sup> Tento předmět již není vyučován. Je nahrazen předmětem NMFP535 Data Science 3.

 $<sup>^2</sup>$  Tento předmět již není vyučován. Je nahrazen předmětem NMEK412 Optimalizace s aplikací ve financích (2/2 Z+Zk).

<sup>&</sup>lt;sup>3</sup> Tento předmět již není vyučován. Je nahrazen předmětem NMFP462 Demografie.

<sup>&</sup>lt;sup>4</sup> Tento předmět již není vyučován. Je nahrazen předmětem NMFP463 Praktické aspekty měření a řízení finančních rizik.

<sup>&</sup>lt;sup>5</sup> Tento předmět již není vyučován. Je nahrazen předmětem NMFP461 Kreditní riziko v bankovnictví.

### Státní závěrečná zkouška

### Podmínky pro přihlášení ke státní závěrečné zkoušce

Podmínky pro přihlášení k poslední části státní závěrečné zkoušky:

- Získání alespoň 120 kreditů.
- Splnění všech povinných předmětů studijního plánu.
- Splnění povinně volitelných předmětů v rozsahu alespoň 5 kreditů.
- Odevzdání vypracované diplomové práce ve stanoveném termínu.

### Podmínky pro přihlášení k jiné než poslední části státní závěrečné zkoušky

Rámcové podmínky jsou stanoveny vnitřním předpisem Pravidla pro organizaci studia na MFF UK a v programu Finanční a pojistná matematika je nutné splnit tyto podmínky:

- Získání alespoň 105 kreditů.
- Pokud je jinou než poslední částí státní závěrečné zkoušky její ústní část, je nutné splnění všech povinných předmětů studijního plánu s výjimkou NSZZ025 Diplomová práce III.
- Pokud je jinou než poslední částí státní závěrečné zkoušky obhajoba, je nutné splnění všech povinných předmětů studijního plánu a odevzdání vypracované diplomové práce ve stanoveném termínu.
- Splnění povinně volitelných předmětů v rozsahu alespoň 5 kreditů

### Ústní část státní závěrečné zkoušky

Ústní část státní závěrečné zkoušky studijního programu Finanční a pojistná matematika se skládá z okruhů Pravděpodobnost a statistika, Životní a neživotní pojištění a Finance a účetnictví.

Podrobnější vysvětlení požadavků k ústní části státní závěrečné zkoušky lze najít na stránkách https://www2.karlin.mff.cuni.cz/~branda/garantfpm.html.

### Požadavky pro ústní část státní závěrečné zkoušky

### 1. Pravděpodobnost a statistika

Náhodné veličiny, charakteristiky jejich rozdělení. Náhodné vektory, sdružené rozdělení, kovariance, modelování a měření závislostí. Podmíněné rozdělení. Rozdělení pravděpodobností v pojistné matematice. Odhady parametrů a jejich vlastnosti. Interval spolehlivosti. Principy testování hypotéz. Metoda maximální věrohodnosti a metoda momentů. Jednovýběrové, párové a dvouvýběrové testy. Analýza rozptylu. Model lineární regrese. Bayesův princip. Zákon velkých čísel a centrální limitní věta. Markovovy řetězce. Stacionární procesy. Časové řady. Teorie kredibility. Model kolektivního rizika. Základy stochastické analýzy.

### 2. Životní a neživotní pojištění

Demografický model životního pojištění. Kapitálové a důchodové pojištění. Rezervy pojistného životních pojištění. Modely pojištění osob s více dekrementy. Pojištění více životů. Solventnost pojišťovny, zajištění. Technické rezervy neživotního pojištění. Tarifování.

### 3. Finance a účetnictví

Základy financí. Cenné papíry a jejich oceňování. Aplikace stochastických modelů ve financích. Měření a řízení finančních rizik. Metody analýzy akciového trhu. Účetnictví.

## Studijní plány oblasti vzdělávání FYZIKA

### Bakalářské studium od akad. roku 2023/24

Garant programu: doc. RNDr. Helena Valentová, Ph.D. Garantující pracoviště: Kabinet výuky obecné fyziky

Za výuku některých povinně volitelných a doporučených volitelných předmětů zodpovídají pracoviště garantující jednotlivé navazující magisterského studijní programy.

### 1. Základní informace

Bakalářský studijní program Fyzika má standardní dobu studia 3 roky a maximální dobu studia 6 let. Studium je zakončeno státní závěrečnou zkouškou a její úspěšné složení vede k získání titulu bakalář. Bakalářský studijní program Fyzika se nedělí na specializace.

Průběh studia není studijními plány pevně určen, posluchač si volí předměty tak, aby vyhověl požadavkům programu a získal potřebný počet kreditů požadovaných při kontrole studia po prvním semestru a na konci každého studijního roku. Je však vhodné dodržovat doporučený průběh studia, protože je sestaven s ohledem na návaznosti mezi jednotlivými předměty i na podmínky pro přihlášení ke státní závěrečné zkoušce.

První dva roky studia studijního programu Fyzika jsou společné a tvoří je především povinné předměty doplněné o doporučené volitelné předměty. Samostatný blok povinně volitelných předmětů tvoří výuka programování. Ve třetím roce má student možnost volby dalších povinně volitelných předmětů, volitelných předmětů a tématu své bakalářské práce absolvovat jeden z bloků, na které pak navazuje odpovídající magisterské studium.

Dohromady je požadováno získání minimálně 180 kreditů za celé tříleté studium. Z toho 140 kreditů posluchač obdrží za povinné předměty, včetně 4 kreditů za výuku tělesné výchovy, 1 kreditu za zkoušku z anglického jazyka a 6 kreditů za vypracování bakalářské práce. Dalších celkem 22 kreditů musí získat za povinně volitelné předměty. Ty jsou rozčleněny do tří skupin: Za výuku programování musí získat alespoň 5 kreditů, ve druhé skupině (volba mezi předmětem Praktikum IV anebo Rovnice matematické fyziky) musí získat alespoň 5 kreditů, ve třetí skupině (volba předmětů z některého ze třinácti bloků) musí získat alespoň 12 kreditů. Za povinné a povinně volitelné předměty tak posluchač získá alespoň 162 kreditů. Zbylých 18 kreditů si doplní absolvováním volitelných předmětů, které si může vybrat libovolně (nejlépe z nabídky předmětů navazujícího magisterského programu, v němž posluchač hodlá pokračovat). Dále se doporučuje 4 z těchto kreditů získat za výuku anglického jazyka v prvních čtyřech semestrech.

### 2. Studijní plán od akad. roku 2023/24

### Charakteristika studijního programu:

Studijní program Fyzika poskytuje základní znalosti z experimentální a teoretické fyziky, matematiky a programování. Ve třetím roce studia si student volí povinně volitelné předměty a téma bakalářské práce (zpravidla podle oboru zamýšleného budoucího navazujícího magisterského studia) a získá prakticky orientované znalosti v některém z následujících zaměření: Astronomie a astrofyzika, Geofyzika a fyzika planet, Fyzika atmosféry, meteorologie a klimatologie, Teoretická fyzika, Fyzika kondenzovaných soustav a materiálů, Optika a optoelektronika, Fyzika povrchů a plazmatu, Biofyzika a chemická fyzika, Částicová a jaderná fyzika, Matematické a počítačové modelování ve fyzice. Absolvent je tak optimálně připraven na navazující magisterské studium těchto oborů fyziky. Pokud bakalář nechce v dalším studiu pokračovat, je schopen po absolvování zvoleného specifického bloku Aplikovaná fyzika pracovat jak ve vědeckých tak průmyslových laboratořích, obsluhovat technicky náročná zařízení, vyhodnocovat výsledky experimentů či počítačových modelací.

#### Cile studia:

Cílem studia studijního programu Fyzika je poskytnout studentům ucelené základní vzdělání pokrývající všechny obory fyziky, odpovídající (poměrně rozsáhlé) znalosti z matematiky a základy programování. Na tento základ navazují ve třetím roku studia povinně volitelné a volitelné předměty, s jejichž pomocí může student získat další znalosti v některém z deseti oborů fyziky a připravit se na navazující magisterské studium nebo uzavřít své vzdělání na bakalářské úrovni.

### Profil absolventa:

Absolvent studijního programu Fyzika má ucelené znalosti v experimentální a teoretické fyzice pokrývající všechny obory fyziky. Současně získává i velmi solidní znalosti z matematiky a osvojí si i základy programování. Volbou povinně volitelných a doporučených volitelných předmětů student může získat prohloubené znalosti v jednom z deseti oborů fyziky. Vzhledem k šíři vzdělání, přizpůsobivosti a všeobecně oceňované schopnosti abstraktního a tvořivého myšlení je student výborně připraven jak na navazující magisterské studium, tak na zaměstnání v řadě prakticky orientovaných oborů, kde jsou tyto schopnosti vyžadovány.

### Doporučený průběh studia

Předměty **povinné** ke státní závěrečné zkoušce jsou vytištěny **tučně**, povinně volitelné předměty normálním písmem, doporučené *volitelné* předměty *kurzívou*.

#### 1. rok studia

| Kód     | Název                          | Kredity | ZS                | LS       |
|---------|--------------------------------|---------|-------------------|----------|
| NOFY021 | Mechanika a molekulová fyzika  | 8       | 4/2 Z+Zk          |          |
| NOFY055 | Úvod do praktické fyziky       | 2       | $0/2 \mathrm{Z}$  |          |
| NOFY151 | Matematická analýza I          | 9       | 4/3  Z+Zk         |          |
| NOFY141 | Lineární algebra I             | 5       | 2/2 Z+Zk          |          |
| NTVY014 | Tělesná výchova I <sup>1</sup> | 1       | $0/2 \mathrm{~Z}$ |          |
| NOFY018 | Elektřina a magnetismus        | 8       |                   | 4/2 Z+Zk |
| NOFY066 | Praktikum I - Mechanika        | 5       |                   | 0/3  KZ  |
|         | a molekulová fyzika            |         |                   | •        |

| NOFY152 Matematická analýza II                               | 9 |                   | $4/3 \mathrm{Z+Zk}$ |
|--------------------------------------------------------------|---|-------------------|---------------------|
| NOFY142 Lineární algebra II                                  | 5 |                   | 2/2 Z+Zk            |
| NTVY015 <b>Tělesná výchova II</b> <sup>1</sup>               | 1 |                   | $0/2 \mathrm{~Z}$   |
| Kurz bezpečnosti práce I <sup>2</sup>                        | 0 |                   |                     |
| NJAZ070 Anglický jazyk pro středně pokročilé I <sup>3</sup>  | 1 | $0/2 \mathrm{~Z}$ |                     |
| NOFY002 Proseminář z matematických metod<br>fyziky           | 2 | $0/2 \mathrm{~Z}$ |                     |
| NOFY067 Fyzika v experimentech I                             | 1 | $0/1 \mathrm{~Z}$ | _                   |
| NOFY071 Procvičovací seminář z mechaniky                     | 2 | $0/2 \mathrm{~Z}$ |                     |
| NJAZ072 Anglický jazyk pro středně pokročilé II <sup>3</sup> | 1 |                   | $0/2~{ m Z}$        |
| NOFY011 Proseminář z elektrodynamiky                         | 2 |                   | $0/2 \mathrm{~Z}$   |
| NOFY068 Fyzika v experimentech II                            | 1 |                   | 0/1 Z               |

### Povinně volitelné předměty – skupina 1 (5 kreditů)

Tuto skupinu předmětů tvoří výuka programování.

| Kód     | Název                                | Kredity | ZS                 | LS                |
|---------|--------------------------------------|---------|--------------------|-------------------|
| NOFY056 | Programování pro fyziky              | 5       | 2/2 Z+Zk           | <del></del>       |
| NOFY087 | Práce s počítačem a programování     | 4       | $2/1~\mathrm{KZ}$  |                   |
| NOFY078 | Programování a zpracování dat        | 4       |                    | 1/2  KZ           |
|         | v Pythonu                            |         |                    |                   |
| NOFY081 | Programování prakticky               | 3       |                    | 0/2  KZ           |
| NOFY082 | C++ pro fyziky                       | 3       |                    | $1/1~\mathrm{KZ}$ |
| NOFY083 | Fortran pro fyziky                   | 3       |                    | $1/1~\mathrm{KZ}$ |
| NOFY084 | Použití počítačů ve fyzice           | 3       |                    | 0/2  KZ           |
| NOFY178 | Programování a zpracování dat        | 4       | $1/2 \mathrm{~KZ}$ |                   |
|         | v Pythonu <sup>4,5</sup>             |         |                    |                   |
| NOFY077 | Úvod do Linuxu <sup>5</sup>          | 3       | $1/1~\mathrm{KZ}$  |                   |
| NOFY080 | Praktické programování               | 4       | 2/1  KZ            |                   |
|         | v experimentální fyzice <sup>5</sup> |         |                    |                   |
| NOFY085 | Úvod do programování v prostředí     | 4       |                    | 1/2  KZ           |
|         | MATLAB, Octave a Scilab <sup>5</sup> |         |                    |                   |
| NOFY086 | Programování v IDL — zpracování      | 3       | 1/1  KZ            | <del></del>       |
|         | a vizualizace dat $^5$               |         |                    |                   |
|         |                                      |         |                    |                   |

<sup>&</sup>lt;sup>1</sup>Místo jednoho z předmětů NTVY014, NTVY015, NTVY016 a NTVY017 je možné si zapsat letní výcvikový kurz NTVY018 nebo zimní výcvikový kurz NTVY019. Tyto kurzy může student absolvovat kdykoli v průběhu bakalářského studia.

<sup>&</sup>lt;sup>2</sup>Podmínkou pro samostatnou práci v laboratoři (zahájení praktik a experimentální bakalářské práce) je absolvování kurzu bezpečnosti práce, který je organizován pro všechny studenty fyziky Kabinetem výuky obecné fyziky, a to jednorázově. Platnost kurzu je dva roky. Informace jsou dostupné na stránce https://physics.mff.cuni.cz/vyuka/zfp/.

 $<sup>^3</sup>$  Výuka anglického jazyka NJAZ070, NJAZ072, NJAZ074, NJAZ090 v rozsahu 0/2 v každém semestru je určena pro středně pokročilé a pokročilé. Začátečníci a mírně pokročilí si místo ní zapíší předměty NJAZ071, NJAZ073, NJAZ075, NJAZ089 s rozsahem výuky 0/4 v každém semestru.

<sup>&</sup>lt;sup>4</sup> Předmět je vyučován v angličtině.

<sup>&</sup>lt;sup>5</sup> Doporučeno pro 2. a 3. ročník studia.

| $\sim$ |     |      |      |
|--------|-----|------|------|
| '      | rok | stuc | tıa. |

| Kód     | Název                                         | Kredity | ZS                | LS                  |
|---------|-----------------------------------------------|---------|-------------------|---------------------|
| NOFY022 | Optika                                        | 7       | 3/2 Z+Zk          |                     |
|         | Praktikum II — Elektřina                      | 4       | 0/3  KZ           | _                   |
|         | a magnetismus                                 |         | •                 |                     |
| NOFY161 | Matematika pro fyziky I                       | 8       | 4/2 Z+Zk          |                     |
| NOFY003 | Teoretická mechanika                          | 7       | 3/2 Z+Zk          |                     |
| NOFY023 | Speciální teorie relativity                   | 3       | 2/0  Zk           |                     |
| NTVY016 | Tělesná výchova III <sup>1</sup>              | 1       | $0/2 \mathrm{~Z}$ |                     |
| NOFY125 | Atomová fyzika a elektronová                  | 5       |                   | 3/1  Z+Zk           |
|         | struktura látek                               |         |                   |                     |
| NOFY028 | Praktikum III — Optika                        | 5       |                   | $0/4~\mathrm{KZ}$   |
| NOFY162 | Matematika pro fyziky II                      | 8       |                   | 4/2 Z+Zk            |
| NOFY126 | Klasická elektrodynamika                      | 5       |                   | 2/2 Z+Zk            |
| NOFY127 | Úvod do kvantové mechaniky                    | 5       |                   | 2/2 Z+Zk            |
| NTVY017 | Tělesná výchova IV <sup>1</sup>               | 1       | <del></del>       | $0/2 \mathrm{~Z}$   |
| NJAZ091 | Anglický jazyk — zkouška pro                  | 1       | <del></del>       | $0/0 \mathrm{\ Zk}$ |
|         | bakaláře <sup>2</sup>                         |         |                   |                     |
| NOFY062 | $Pravd\check{e}podobnostn\'i\ metody\ fyziky$ | 4       | _                 | 2/1 Z+Zk            |
| NJAZ074 | Anglický jazyk pro středně                    | 1       | $0/2 \mathrm{~Z}$ | _                   |
|         | pokročilé III <sup>2</sup>                    |         |                   |                     |
| NOFY010 | Proseminář z optiky                           | 2       | $0/2 \mathrm{~Z}$ | _                   |
| NOFY069 | Proseminář z teoretické mechaniky             | 2       | $0/2 \mathrm{~Z}$ | _                   |
|         | Problémy současné fyziky I                    | 2       | $0/2 \mathrm{~Z}$ |                     |
|         | Experimentální metody fyziky I                | 2       | $0/2 \mathrm{~Z}$ |                     |
|         | Filozofické problémy fyziky                   | 1       | $0/1 \mathrm{~Z}$ |                     |
| NJAZ090 | Anglický jazyk pro středně                    | 1       |                   | $0/2 \mathrm{~Z}$   |
|         | pokročilé IV <sup>2</sup>                     |         |                   |                     |
|         | Experimentální metody fyziky II               | 2       | <del></del>       | $0/2 \mathrm{~Z}$   |
|         | Proseminář z kvantové mechaniky               | 2       | <del></del>       | $0/2 \mathrm{~Z}$   |
| NOFY057 | Proseminář moderních trendů ve                | 2       |                   | $0/2 \mathrm{~Z}$   |
|         | fyzice pevných látek                          |         |                   |                     |
|         | Proseminář z teoretické fyziky                | 2       |                   | $0/2 \mathrm{~Z}$   |
|         | Fyzika jako dobrodružství poznání             | 3       |                   | $0/3 \mathrm{Z}$    |
|         | Problémy současné fyziky II                   | 2       | <del></del>       | $0/2 \mathrm{~Z}$   |
| NGEO111 | Mechanika kontinua                            | 4       |                   | 2/1  Z+Zk           |

Místo jednoho z předmětů NTVY014, NTVY015, NTVY016 a NTVY017 je možné si zapsat letní výcvikový kurz NTVY018 nebo zimní výcvikový kurz NTVY019. Tyto kurzy může student absolvovat kdykoli v průběhu bakalářského studia.

### 3. rok studia

| Kód     | Název                      | Kredity | ZS       | LS |
|---------|----------------------------|---------|----------|----|
| NOFY029 | Jaderná a částicová fyzika | 6       | 3/1 Z+Zk | _  |

v průběhu bakalářského studia.  $$^2$$  Výuka anglického jazyka NJAZ070, NJAZ072, NJAZ074, NJAZ090 v rozsahu 0/2 v každém semestru je určena pro středně pokročilé a pokročilé. Začátečníci a mírně pokročilí si místo ní zapíší předměty NJAZ071, NJAZ073, NJAZ075, NJAZ089 s rozsahem výuky 0/4 v každém semestru.

| NOEV075   | Kvantová teorie I <sup>1</sup>         | 8 | 4 /9 <b>7</b> + <b>7</b> 1, |                     |
|-----------|----------------------------------------|---|-----------------------------|---------------------|
|           |                                        |   | 4/2 Z+Zk                    |                     |
| NOFY076   | Kvantová teorie I $^1$                 | 8 | 4/2 Z+Zk                    | _                   |
| NOFY031   | Termodynamika a statistická            | 7 | 3/2  Z+Zk                   | _                   |
|           | fyzika <sup>2</sup>                    |   |                             |                     |
| NTMF043   | Termodynamika a statistická            | 7 | 3/2 Z+Zk                    | _                   |
|           | fyzika I $^{2}$                        |   | ,                           |                     |
| NSZZ031   | Vypracování a konzultace               | 6 | _                           | $0/4 \mathrm{~Z}$   |
|           | bakalářské práce                       |   |                             | ,                   |
|           | Kurz bezpečnosti práce II <sup>3</sup> | 0 |                             |                     |
| NJSF148   | Proseminář z jaderné a částicové       | 2 | $0/2 \mathrm{~Z}$           | _                   |
|           | fyziky                                 |   | ,                           |                     |
| NBCM144   | Proseminář termodynamiky               | 2 | $0/2 \mathrm{~Z}$           | _                   |
| 1,201,111 | a statistické fyziky                   | _ | o/ <b>=</b> =               |                     |
| NOEWOGA   | • • •                                  | 4 | 0/2 1/7                     |                     |
| NOF Y 004 | Výpočetní technika ve fyzikálním       | 4 | 0/3  KZ                     |                     |
|           | experimentu                            |   |                             |                     |
| NMAF006   | Vybrané partie z matematiky pro        | 3 |                             | $2/0 \mathrm{Zk}$   |
|           | fyziky                                 |   |                             |                     |
| NGEO090   | Proseminář věd o Zemi                  | 2 |                             | $0/2 \mathrm{~Z}$   |
| NOFY065   | Výběrové praktikum z elektroniky       | 4 | _                           | $0/3~{ m KZ}$       |
|           | a počítačové techniky                  | - |                             | 5/ <del>5 222</del> |
|           |                                        |   |                             |                     |

<sup>&</sup>lt;sup>1</sup> Studenti si zapisují právě jeden z těchto alternativních předmětů. Předmět NOFY076 je určen především pro budoucí studenty programů Teoretická fyzika a Částicová a jaderná fyzika.

### Povinně volitelné předměty – skupina 2 (5 kreditů)

V této skupině má student možnost volby mezi předměty Praktikum IV a Rovnice matematické fyziky. Může ale absolvovat i oba dva.

| Kód     | Název                                      | Kredity | ZS                | LS |
|---------|--------------------------------------------|---------|-------------------|----|
| NOFY130 | Praktikum IV — Atomová a jaderná<br>fyzika | 5       | $0/3~\mathrm{KZ}$ | _  |
| NOFY163 | Rovnice matematické fyziky                 | 5       | 2/1 Z+Zk          | _  |

### Povinně volitelné předměty – skupina 3 (12 kreditů)

Povinně volitelné předměty z této rozsáhlé skupiny jsou uspořádány do třinácti bloků. Bloky 1–10 odpovídají příslušným fyzikálním programům navazujícího magisterského studia na MFF UK. Zájemcům o toto studium fyziky se proto doporučuje příslušný blok absolvovat, neboť uvedené předměty tvoří základ znalostí nezbytných pro úspěšné absolvování těchto programů. Výuku předmětů zajišťují příslušná pracoviště.

Studenti, kteří nemají zájem o navazující magisterské studium, si mohou zapsat předměty dle vlastního uvážení. S ohledem na získání ucelených znalostí je však i v tomto případě vhodné dát přednost předmětům jednoho z bloků 11–13 nazvaných

<sup>&</sup>lt;sup>2</sup> Studenti si zapisují právě jeden z těchto alternativních předmětů. Předmět NTMF043 je určen především pro budoucí studenty programu Teoretická fyzika.

<sup>&</sup>lt;sup>3</sup> Kurz je nezbytný pro studenty, kteří mají zadanou experimentální bakalářskou práci, konají práci v laboratoři nebo navštěvují praktika (například předměty NOFY130, NOFY065, NFPL151, NJSF150 atd.). Kurz zajišťují jednotlivá pracoviště.

Aplikovaná fyzika, případně se poradit s příslušným garantem programu o zapsání dalších vybraných přednášek z navazujícího magisterského studia.

Povinně volitelné předměty jsou vytištěny normálním písmem, doporučené volitelné předměty kurzívou.

| předměty k | urzívou.                                              |         |                   |                     |
|------------|-------------------------------------------------------|---------|-------------------|---------------------|
| 1. Astron  | omie a astrofyzika                                    |         |                   |                     |
| Kód        | Název                                                 | Kredity | ZS                | LS                  |
| NAST035    | Základy astronomie a astrofyziky                      | 12      |                   | 6/2 Z+Zk            |
| NAST036    | Analýza dat a modelování<br>v astronomii              | 3       |                   | 2/0 Zk              |
| NTMF111    | Obecná teorie relativity                              | 4       |                   | $3/0 \mathrm{Zk}$   |
| NAST023    | Astrofyzika pro fyziky                                | 3       | $2/0 \mathrm{Zk}$ | <u>.</u>            |
|            | Fyzika sluneční soustavy                              | 3       | 2/0  Zk           |                     |
| NAST110    | Seminář Astronomického ústavu UK<br>(PV)              | 3       | $0/2 \mathrm{~Z}$ | $0/2 \mathrm{~Z}$   |
| NAST026    | Dějiny astronomie                                     | 3       | $1/1 \mathrm{~Z}$ | $1/1 \mathrm{~Z}$   |
| NAST021    | Vybrané kapitoly z astrofyziky                        | 3       | 2/0 Zk            |                     |
| 2. Geofyz  | ika a fyzika planet                                   |         |                   |                     |
| Kód        | Název                                                 | Kredity | ZS                | LS                  |
| NGEO110    | Přehled geofyziky                                     | 4       | 2/1 Z+Zk          |                     |
| NPRF051    | Počítače v geofyzice                                  | 4       | 2/1  Z+Zk         |                     |
| NGEO111    | Mechanika kontinua                                    | 4       | <u></u>           | 2/1  Z+Zk           |
| NGEO112    | Fourierova spektrální analýza                         | 4       |                   | 2/1  Z+Zk           |
| NGEO076    | Obrácené úlohy a modelování ve fyzice                 | 3       | _                 | $2/0 \mathrm{~Zk}$  |
| NMAF001    | Vybrané kapitoly z parciálních diferenciálních rovnic | 3       |                   | 2/0  Zk             |
| NGEO096    | $\hat{U}vod\ do\ plane to logie$                      | 3       |                   | $2/0 \mathrm{\ Zk}$ |
| 3. Fyzika  | atmosféry, meteorologie a klimato                     | ologie  |                   |                     |
| Kód        | Název                                                 | Kredity | ZS                | LS                  |
| NMET034    | Hydrodynamika                                         | 6       | 3/1 Z+Zk          | _                   |

| Kód     | Název                                 | Kredity | ZS                | LS                |
|---------|---------------------------------------|---------|-------------------|-------------------|
| NMET034 | Hydrodynamika                         | 6       | 3/1 Z+Zk          |                   |
| NMET004 | Šíření akustických                    | 4       | 3/0  Zk           |                   |
|         | a elektromagnetických vln             |         |                   |                   |
|         | v atmosféře                           |         |                   |                   |
| NMET012 | 2 Všeobecná klimatologie              | 6       |                   | 3/1  Z+Zk         |
| NMET050 | Statistické metody analýzy            | 6       |                   | $2/2 \mathrm{Zk}$ |
|         | fyzikálních dat                       |         |                   |                   |
| NMET035 | Synoptická meteorologie I             | 3       |                   | $2/0 \mathrm{Zk}$ |
| NMAF026 | i Deterministický chaos               | 3       |                   | 2/0  Zk           |
| NMET076 | i Zpracování fyzikálních dat v R      | 3       | 1/1  Z+Zk         |                   |
| NMET021 | Meteorologické přístroje a pozorovací | 4       | $3/0 \mathrm{Zk}$ |                   |
|         | metody                                |         |                   |                   |
| NPRF031 | Programování v meteorologii           | 6       | _                 | 2/2  KZ           |

| 4. | Teoretická | fyzika |
|----|------------|--------|
|----|------------|--------|

| Kód     | Název                                         | Kredity | ZS       | LS                |
|---------|-----------------------------------------------|---------|----------|-------------------|
| NOFY079 | Kvantová teorie II                            | 6       |          | 3/1  Z+Zk         |
| NTMF111 | Obecná teorie relativity                      | 4       |          | $3/0 \mathrm{Zk}$ |
| NMAF006 | i Vybrané partie z matematiky pro             | 3       |          | $2/0 \mathrm{Zk}$ |
|         | fyziky                                        |         |          |                   |
| NGEO111 | Mechanika kontinua                            | 4       |          | 2/1  Z+Zk         |
| NJSF179 | Kvantová teorie – vybraná témata <sup>1</sup> | 3       |          | 1/1  Z+Zk         |
| NTMF112 | ? Kvantová teorie — vybrané                   | 3       |          | 1/1  Zk           |
|         | $aplikace$ $^{1}$                             |         |          |                   |
| NTMF044 | l Termodynamika a statistická                 | 7       |          | 3/2 Z+Zk          |
|         | fyzika II                                     |         |          | •                 |
| NTMF059 | Geometrické metody teoretické                 | 6       | 2/2 Z+Zk |                   |
|         | fyziky I                                      |         | ,        |                   |
| NTMF061 | Teorie grup a její aplikace ve fyzice         | 6       | 2/2 Z+Zk |                   |
|         | Odborné soustředění ÚTF                       | 2       | 0/1  Z   |                   |

 $<sup>^{1}</sup>$  Vyučován je vždy pouze jeden z těchto předmětů.

### 5. Fyzika kondenzovaných soustav a materiálů

| Kód     | Název                                             | Kredity | ZS                 | LS                |
|---------|---------------------------------------------------|---------|--------------------|-------------------|
| NFPL252 | Úvod do krystalografie a strukturní<br>analýzy    | 4       | 2/1 Z+Zk           | _                 |
| NFPL502 | Úvod do fyziky pevných látek                      | 6       |                    | 3/1  Z+Zk         |
| NFPL505 | Úvod do fyziky měkkých materiálů                  | 3       | _                  | 1/1  Z+Zk         |
| NBCM208 | Základy makromolekulární fyziky                   | 4       |                    | 3/0  Zk           |
| NFPL211 | Mechanické vlastnosti materiálů                   | 4       | 2/1  Z+Zk          |                   |
| NFPL168 | Fyzika a technika nízkých teplot                  | 3       | 2/0  Zk            |                   |
| NFPL192 | Proseminář fyziky kondenzovaných soustav          | 3       | <u> </u>           | $0/2~\mathrm{KZ}$ |
| NOFY034 | Metody zpracování fyzikálních<br>měření           | 3       | _                  | 2/0 Zk            |
| NBCM072 | 2 Základy molekulární elektroniky                 | 3       | 2/0  Zk            |                   |
|         | Fyzika povrchů a tenkých vrstev<br>polymerů       | 3       | 2/0 Zk             | _                 |
| NEVF105 | Vakuová technika                                  | 5       | _                  | 2/1 Z+Zk          |
| NFPL161 | Perspektivní materiály a jejich<br>příprava       | 3       | _                  | 2/0 Zk            |
| NFPL043 | Úvod do fyziky organických<br>polovodičů          | 3       | $2/0 \mathrm{~Zk}$ | _                 |
| NFPL059 | Fyzikální akustika                                | 3       | 1/1  KZ            |                   |
| NFPL310 | Praktická transmisní elektronová<br>mikroskopie I | 5       | $0/4 \mathrm{~Z}$  |                   |
| NFPL092 | Radiofrekvenční spektroskopie<br>pevných látek    | 3       | _                  | 2/0 Zk            |
| NFPL095 | Základy kryotechniky                              | 3       | 2/0 Zk             | _                 |

| NFPL115                                                                                                                                              | Elektronová mikroskopie                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                   | 2/0  Zk     |                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------|-------------------------------------------------------------------|
| NFPL136                                                                                                                                              | Speciální praktikum fyziky materiálů                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                   |             | $0/3 \mathrm{~Z}$                                                 |
| NFPL141                                                                                                                                              | Kvantová teorie II                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                   |             | 2/1 Z+Zk                                                          |
| NFPL151                                                                                                                                              | Experimentální cvičení FPL                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                                   |             | $0/2 \ Z$                                                         |
| NFPL155                                                                                                                                              | Experimentální studium reálné                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{3}{4}$                       | 2/1 Z+Zk    | 0/2 Z                                                             |
| MT1 L199                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                   | 2/1 Z+ZK    | <del></del>                                                       |
| NIEDI 100                                                                                                                                            | struktury pevných látek                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                   |             | 0 /0 71                                                           |
| NFPL163                                                                                                                                              | Fyzika magnetických materiálů                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                   | <del></del> | 2/0  Zk                                                           |
| NFPL169                                                                                                                                              | Hyperjemné interakce a jaderný                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                   |             | $2/0 \mathrm{Zk}$                                                 |
|                                                                                                                                                      | magnetismus                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |             |                                                                   |
| NFPL307                                                                                                                                              | Praktické užití skenovací elektronové                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                                   |             | $0/3 \mathrm{~Z}$                                                 |
|                                                                                                                                                      | mikroskopie                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |             |                                                                   |
| NFPL212                                                                                                                                              | Zpracování obrazu                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                   |             | $1/1~\mathrm{KZ}$                                                 |
| NFPL213                                                                                                                                              | Příprava monokrystalů pro                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\overline{4}$                      |             | 1/2 Z+Zk                                                          |
| 1111 11210                                                                                                                                           | materiálový výzkum                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                   |             | 1/22/21                                                           |
| NEDI 914                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9                                   |             | 1 /1 7 + 71-                                                      |
| NFPL214                                                                                                                                              | Úvod do pozitronové anihilace                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                   | <del></del> | 1/1  Z+Zk                                                         |
| NFPL215                                                                                                                                              | Dielektrické a magnetické vlastnosti                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                   |             | $1/1 \mathrm{Z+Zk}$                                               |
|                                                                                                                                                      | $lcute{a}tek$                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     |             |                                                                   |
| NBCM237                                                                                                                                              | Základy přípravy a charakterizace                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                   |             | 1/2  Z+Zk                                                         |
|                                                                                                                                                      | tenkých vrstev                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     |             |                                                                   |
| NBCM238                                                                                                                                              | Technologie vakuové přípravy vrstev                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                                   | _           | 1/3  Z+Zk                                                         |
|                                                                                                                                                      | $a\ nanostruktur$                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |             | ,                                                                 |
|                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |             |                                                                   |
| 6. Optika                                                                                                                                            | a optoelektronika                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |             |                                                                   |
| T7 / 1                                                                                                                                               | NT/                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T. 1.                               | 70          | TC                                                                |
| Kód                                                                                                                                                  | Název                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Kredity                             | ZS          | LS                                                                |
|                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |             |                                                                   |
| NOOE021                                                                                                                                              | Vlnová optika                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9                                   |             | 4/2 Z+Zk                                                          |
| NOOE021<br>NOOE001                                                                                                                                   | Vlnová optika<br>Základy optické spektroskopie                                                                                                                                                                                                                                                                                                                                                                                                                             | 9 3                                 |             | 4/2 Z+Zk<br>2/0 Zk                                                |
| NOOE021<br>NOOE001                                                                                                                                   | Vlnová optika<br>Základy optické spektroskopie<br>Numerické metody zpracování                                                                                                                                                                                                                                                                                                                                                                                              | 9                                   |             | 4/2 Z+Zk                                                          |
| NOOE021<br>NOOE001<br>NMAF035                                                                                                                        | Vlnová optika<br>Základy optické spektroskopie<br>Numerické metody zpracování<br>experimentálních dat                                                                                                                                                                                                                                                                                                                                                                      | 9 3 3                               |             | 4/2 Z+Zk<br>2/0 Zk                                                |
| NOOE021<br>NOOE001<br>NMAF035                                                                                                                        | Vlnová optika Základy optické spektroskopie Numerické metody zpracování experimentálních dat Základy konstrukce a výroby                                                                                                                                                                                                                                                                                                                                                   | 9 3                                 |             | 4/2 Z+Zk<br>2/0 Zk                                                |
| NOOE021<br>NOOE001<br>NMAF035<br>NOOE048                                                                                                             | Vlnová optika Základy optické spektroskopie Numerické metody zpracování experimentálních dat Základy konstrukce a výroby optických prvků                                                                                                                                                                                                                                                                                                                                   | 9 3 3                               |             | 4/2 Z+Zk<br>2/0 Zk                                                |
| NOOE021<br>NOOE001<br>NMAF035<br>NOOE048                                                                                                             | Vlnová optika Základy optické spektroskopie Numerické metody zpracování experimentálních dat Základy konstrukce a výroby                                                                                                                                                                                                                                                                                                                                                   | 9<br>3<br>3<br>1                    |             | 4/2 Z+Zk<br>2/0 Zk                                                |
| NOOE021<br>NOOE001<br>NMAF035<br>NOOE048                                                                                                             | Vlnová optika Základy optické spektroskopie Numerické metody zpracování experimentálních dat Základy konstrukce a výroby optických prvků                                                                                                                                                                                                                                                                                                                                   | 9<br>3<br>3                         |             | 4/2 Z+Zk<br>2/0 Zk<br>2/0 Zk<br>—                                 |
| NOOE021<br>NOOE001<br>NMAF035<br>NOOE048<br>NOOE114<br>NOOE116                                                                                       | Vlnová optika Základy optické spektroskopie Numerické metody zpracování experimentálních dat Základy konstrukce a výroby optických prvků Nové materiály a technologie                                                                                                                                                                                                                                                                                                      | 9<br>3<br>3<br>1                    |             | 4/2 Z+Zk<br>2/0 Zk<br>2/0 Zk<br>—<br>2/0 Zk                       |
| NOOE021<br>NOOE001<br>NMAF035<br>NOOE048<br>NOOE114<br>NOOE116                                                                                       | Vlnová optika Základy optické spektroskopie Numerické metody zpracování experimentálních dat Základy konstrukce a výroby optických prvků Nové materiály a technologie Základy fotoniky                                                                                                                                                                                                                                                                                     | 9<br>3<br>3<br>1<br>3<br>3          |             | 4/2 Z+Zk<br>2/0 Zk<br>2/0 Zk<br>—<br>2/0 Zk                       |
| NOOE021<br>NOOE001<br>NMAF035<br>NOOE048<br>NOOE114<br>NOOE116                                                                                       | Vlnová optika Základy optické spektroskopie Numerické metody zpracování experimentálních dat Základy konstrukce a výroby optických prvků Nové materiály a technologie Základy fotoniky Základní přístroje optické spektroskopie                                                                                                                                                                                                                                            | 9<br>3<br>3<br>1<br>3<br>4          |             | 4/2 Z+Zk<br>2/0 Zk<br>2/0 Zk<br>—<br>2/0 Zk                       |
| NOOE021<br>NOOE001<br>NMAF035<br>NOOE048<br>NOOE114<br>NOOE116<br>NOOE135                                                                            | Vlnová optika Základy optické spektroskopie Numerické metody zpracování experimentálních dat Základy konstrukce a výroby optických prvků Nové materiály a technologie Základy fotoniky Základní přístroje optické spektroskopie Kvantová teorie II                                                                                                                                                                                                                         | 9<br>3<br>3<br>1<br>3<br>3          |             | 4/2 Z+Zk<br>2/0 Zk<br>2/0 Zk<br>—<br>2/0 Zk                       |
| NOOE021<br>NOOE001<br>NMAF035<br>NOOE048<br>NOOE114<br>NOOE116<br>NOOE135<br>NFPL141<br>7. Fyzika                                                    | Vlnová optika Základy optické spektroskopie Numerické metody zpracování experimentálních dat Základy konstrukce a výroby optických prvků Nové materiály a technologie Základy fotoniky Základní přístroje optické spektroskopie Kvantová teorie II                                                                                                                                                                                                                         | 9<br>3<br>3<br>1<br>3<br>4          |             | 4/2 Z+Zk 2/0 Zk 2/0 Zk  2/0 Zk 2/0 Zk 2/0 Zk                      |
| NOOE021<br>NOOE001<br>NMAF035<br>NOOE048<br>NOOE114<br>NOOE116<br>NOOE135                                                                            | Vlnová optika Základy optické spektroskopie Numerické metody zpracování experimentálních dat Základy konstrukce a výroby optických prvků Nové materiály a technologie Základy fotoniky Základní přístroje optické spektroskopie Kvantová teorie II                                                                                                                                                                                                                         | 9<br>3<br>3<br>1<br>3<br>4          |             | 4/2 Z+Zk<br>2/0 Zk<br>2/0 Zk<br>—<br>2/0 Zk                       |
| NOOE021<br>NOOE001<br>NMAF035<br>NOOE048<br>NOOE114<br>NOOE116<br>NOOE135<br>NFPL141<br>7. Fyzika<br>Kód                                             | Vlnová optika Základy optické spektroskopie Numerické metody zpracování experimentálních dat Základy konstrukce a výroby optických prvků Nové materiály a technologie Základy fotoniky Základní přístroje optické spektroskopie Kvantová teorie II povrchů a plazmatu Název                                                                                                                                                                                                | 9 3 3 1 3 4 5 Kredity               |             | 4/2 Z+Zk 2/0 Zk 2/0 Zk                                            |
| NOOE021<br>NOOE001<br>NMAF035<br>NOOE048<br>NOOE114<br>NOOE116<br>NOOE135<br>NFPL141<br>7. Fyzika<br>Kód                                             | Vlnová optika Základy optické spektroskopie Numerické metody zpracování experimentálních dat Základy konstrukce a výroby optických prvků Nové materiály a technologie Základy fotoniky Základní přístroje optické spektroskopie Kvantová teorie II povrchů a plazmatu Název Základy fyziky pevných látek                                                                                                                                                                   | 9 3 3 1 1 3 4 5 Kredity 5           |             | 4/2 Z+Zk 2/0 Zk 2/0 Zk                                            |
| NOOE021<br>NOOE001<br>NMAF035<br>NOOE048<br>NOOE114<br>NOOE135<br>NFPL141<br>7. Fyzika<br>Kód<br>NEVF158<br>NEVF169                                  | Vlnová optika Základy optické spektroskopie Numerické metody zpracování experimentálních dat Základy konstrukce a výroby optických prvků Nové materiály a technologie Základy fotoniky Základní přístroje optické spektroskopie Kvantová teorie II  povrchů a plazmatu Název Základy fyziky pevných látek Teoretické základy fyziky plazmatu                                                                                                                               | 9 3 3 1 1 3 4 5 Kredity 5 5         |             | 4/2 Z+Zk 2/0 Zk 2/0 Zk  2/0 Zk 2/0 Zk 2/0 Zk LS 3/1 Z+Zk 3/1 Z+Zk |
| NOOE021<br>NOOE001<br>NMAF035<br>NOOE048<br>NOOE114<br>NOOE116<br>NOOE135<br>NFPL141<br>7. Fyzika<br>Kód<br>NEVF158<br>NEVF169<br>NEVF140            | Vlnová optika Základy optické spektroskopie Numerické metody zpracování experimentálních dat Základy konstrukce a výroby optických prvků Nové materiály a technologie Základy fotoniky Základní přístroje optické spektroskopie Kvantová teorie II povrchů a plazmatu Název Základy fyziky pevných látek Teoretické základy fyziky plazmatu Úvod do fyziky povrchů                                                                                                         | 9 3 3 1 1 3 4 5 Kredity 5 5 3       |             | 4/2 Z+Zk 2/0 Zk 2/0 Zk                                            |
| NOOE021<br>NOOE001<br>NMAF035<br>NOOE048<br>NOOE114<br>NOOE116<br>NOOE135<br>NFPL141<br>7. Fyzika<br>Kód<br>NEVF158<br>NEVF169<br>NEVF140<br>NEVF100 | Vlnová optika Základy optické spektroskopie Numerické metody zpracování experimentálních dat Základy konstrukce a výroby optických prvků Nové materiály a technologie Základy fotoniky Základní přístroje optické spektroskopie Kvantová teorie II  povrchů a plazmatu Název  Základy fyziky pevných látek Teoretické základy fyziky plazmatu Úvod do fyziky plazmatu                                                                                                      | 9 3 3 1 1 3 4 5 Kredity 5 5 3 3     |             | 4/2 Z+Zk 2/0 Zk 2/0 Zk                                            |
| NOOE021 NOOE001 NMAF035 NOOE048 NOOE114 NOOE116 NOOE135 NFPL141 7. Fyzika Kód NEVF158 NEVF169 NEVF140 NEVF100 NEVF104                                | Vlnová optika Základy optické spektroskopie Numerické metody zpracování experimentálních dat Základy konstrukce a výroby optických prvků Nové materiály a technologie Základy fotoniky Základní přístroje optické spektroskopie Kvantová teorie II povrchů a plazmatu Název Základy fyziky pevných látek Teoretické základy fyziky plazmatu Úvod do fyziky povrchů Úvod do fyziky povrchů a plazmatu Seminář fyziky povrchů a plazmatu                                     | 9 3 3 1 1 3 4 5 Kredity 5 5 3 3 1   |             | 4/2 Z+Zk 2/0 Zk 2/0 Zk                                            |
| NOOE021 NOOE001 NMAF035 NOOE048 NOOE114 NOOE116 NOOE135 NFPL141 7. Fyzika Kód NEVF158 NEVF169 NEVF140 NEVF100 NEVF104                                | Vlnová optika Základy optické spektroskopie Numerické metody zpracování experimentálních dat Základy konstrukce a výroby optických prvků Nové materiály a technologie Základy fotoniky Základní přístroje optické spektroskopie Kvantová teorie II  povrchů a plazmatu Název  Základy fyziky pevných látek Teoretické základy fyziky plazmatu Úvod do fyziky povrchů Úvod do fyziky plazmatu Seminář fyziky povrchů a plazmatu Měření a zpracování dat                     | 9 3 3 1 1 3 4 5 Kredity 5 5 3 3     |             | 4/2 Z+Zk 2/0 Zk 2/0 Zk                                            |
| NOOE021 NOOE001 NMAF035 NOOE048 NOOE114 NOOE116 NOOE135 NFPL141 7. Fyzika Kód NEVF158 NEVF169 NEVF140 NEVF100 NEVF104 NEVF104                        | Vlnová optika Základy optické spektroskopie Numerické metody zpracování experimentálních dat Základy konstrukce a výroby optických prvků Nové materiály a technologie Základy fotoniky Základní přístroje optické spektroskopie Kvantová teorie II povrchů a plazmatu Název Základy fyziky pevných látek Teoretické základy fyziky plazmatu Úvod do fyziky povrchů Úvod do fyziky povrchů Seminář fyziky povrchů a plazmatu Měření a zpracování dat v materiálovém výzkumu | 9 3 3 1 1 3 4 5 Kredity 5 5 3 3 1 3 |             | 4/2 Z+Zk 2/0 Zk 2/0 Zk                                            |
| NOOE021 NOOE001 NMAF035 NOOE048 NOOE114 NOOE116 NOOE135 NFPL141 7. Fyzika Kód NEVF158 NEVF169 NEVF140 NEVF100 NEVF104 NEVF104                        | Vlnová optika Základy optické spektroskopie Numerické metody zpracování experimentálních dat Základy konstrukce a výroby optických prvků Nové materiály a technologie Základy fotoniky Základní přístroje optické spektroskopie Kvantová teorie II  povrchů a plazmatu Název  Základy fyziky pevných látek Teoretické základy fyziky plazmatu Úvod do fyziky povrchů Úvod do fyziky plazmatu Seminář fyziky povrchů a plazmatu Měření a zpracování dat                     | 9 3 3 1 1 3 4 5 Kredity 5 5 3 3 1   |             | 4/2 Z+Zk 2/0 Zk 2/0 Zk                                            |

fyziky

aplikace 1

NTMF112 Kvantová teorie — vybrané

NJSF179

Kvantová teorie – vybraná témata <sup>1</sup>

3

3

1/1 Z+Zk

 $1/1 \mathrm{Zk}$ 

| -          |                                                  |                      |                                               |                     |
|------------|--------------------------------------------------|----------------------|-----------------------------------------------|---------------------|
| NJSF148    | Proseminář z jaderné a částicové<br>fyziky       | 2                    | $0/2 \mathrm{~Z}$                             | _                   |
| NJSF081    | Software a zpracování dat ve fyzice<br>částic I  | 3                    | 1/1 Zk                                        |                     |
| NJSF109    | Software a zpracování dat ve fyzice<br>částic II | 4                    | _                                             | $2/1 \mathrm{~Zk}$  |
| 1 Vyučo    | ován je vždy pouze jeden z těchto předmětů.      |                      |                                               |                     |
| 10. Mater  | natické a počítačové modelování                  | ve fyzice            |                                               |                     |
| Kód        | Název                                            | Kredity              | ZS                                            | LS                  |
| NMNM20     | l Základy numerické matematiky                   | 8                    | 4/2 Z+Zk                                      |                     |
|            | 2Počítačové řešení fyzikálních úloh              | $\overset{\circ}{5}$ |                                               | $0/4~\mathrm{KZ}$   |
|            | Mechanika kontinua                               | $\overline{4}$       |                                               | 2/1  Z+Zk           |
|            | 6 Obyčejné diferenciální rovnice                 | 5                    |                                               | 2/2 Z+Zk            |
|            | Pravděpodobnost a statistika 1                   | 5                    |                                               | 2/2 Z+Zk            |
|            | 6 Úvod do metody konečných prvků                 | 5                    |                                               | 2/2 Z+Zk $2/2$ Z+Zk |
|            |                                                  |                      |                                               | 2/2 2   21          |
| _          | ovaná fyzika: Materiály a optoelel               |                      | <b>5</b> 00                                   | T 0                 |
| Kód        | Název                                            | Kredity              | ZS                                            | LS                  |
| NAFY102    | Chemie pro fyziky                                | 4                    | 2/1  Z+Zk                                     | _                   |
| NAFY103    | Základy elektroniky                              | 4                    | 2/1  Z+Zk                                     |                     |
| NAFY084    | Experimentální metody fyziky materiálů I         | 6                    | 3/1 Z+Zk                                      | _                   |
| NFPL211    | Mechanické vlastnosti materiálů                  | 4                    | 2/1  Z+Zk                                     |                     |
| NAFY085    | Experimentální metody fyziky<br>materiálů II     | 6                    | <u>,                                     </u> | 3/1 Z+Zk            |
| NOOE116    | Základy fotoniky                                 | 3                    |                                               | $2/0 \mathrm{Zk}$   |
|            | Nové materiály a technologie                     | 3                    |                                               | $2/0 \mathrm{~Zk}$  |
|            | Speciální praktikum pro OOE II                   | 6                    |                                               | $0/4~{ m KZ}$       |
|            | Fotovoltaika                                     | 3                    |                                               | 2/0  Zk             |
| NFPL161    | Perspektivní materiály a jejich<br>příprava      | 3                    | _                                             | 2/0 Zk              |
| NAFY038    | Experimentální cvičení z přístrojové techniky    | 3                    | _                                             | $0/2 \mathrm{~Z}$   |
| 12. Apliko | ovaná fyzika: Fyzika v biomedicín                | ě                    |                                               |                     |
| Kód        | Název                                            | Kredity              | ZS                                            | LS                  |
|            |                                                  |                      |                                               |                     |
|            | Fyzikální metody a technika<br>v biomedicíně I   | 9                    | 4/2 Z+Zk                                      |                     |
|            | Radiobiologie                                    | 3                    | $2/0 \mathrm{Zk}$                             | <del></del>         |
|            | Fyzika živých organismů                          | 4                    | _                                             | 2/1 Z+Zk            |
| NBCM139    | Aplikace nerovnovážného plazmatu<br>v lékařství  | 3                    | 2/0  Zk                                       |                     |
| NBCM010    | Bioorganická chemie                              | 5                    | 2/1  Z+Zk                                     | <del></del>         |
|            | Biochemie                                        | 3                    | -                                             | $2/0 \mathrm{~Zk}$  |
|            |                                                  |                      |                                               | *                   |

| 13  | Anlikov | raná fr | zika. | Meteorol | logie |
|-----|---------|---------|-------|----------|-------|
| IJ. | Aphkov  | 'ana n  | zika: | Mereoro  | ogie  |

| Kód     | Název                           | Kredity | ZS      | LS                   |
|---------|---------------------------------|---------|---------|----------------------|
| NAFY105 | Základy fyziky atmosféry        | 3       | 2/0  Zk | _                    |
| NAFY106 | Aplikovaná klimatologie         | 3       | 2/0  Zk |                      |
| NAFY107 | Základy aplikované meteorologie | 4       |         | 2/1  Z+Zk            |
| NAFY108 | Předpovědní a pozorovací metody | 3       | _       | $1/1 \mathrm{~Z+Zk}$ |

### Státní závěrečná zkouška

Studium je zakončeno státní závěrečnou zkouškou, která se skládá ze dvou částí:

- z obhajoby bakalářské práce
- z ústní části zkoušky

### Podmínky pro přihlášení ke státní závěrečné zkoušce

Podmínky pro přihlášení k jiné než poslední části státní závěrečné zkoušky jsou stanoveny vnitřním předpisem Pravidla pro organizaci studia na MFF UK.

### Podmínky pro přihlášení k poslední části státní závěrečné zkoušky

- získání alespoň 180 kreditů
- splnění všech povinných předmětů programu
- splnění povinně volitelných předmětů v rozsahu alespoň 22 kreditů (z toho musí být alespoň 5 kreditů ze skupiny 1, 5 kreditů ze skupiny 2, 12 kreditů ze skupiny 3)
- odevzdání vypracované bakalářské práce ve stanoveném termínu

### Bakalářská práce

Bakalářská práce se zpravidla zadává v zimním semestru třetího roku studia. Téma bakalářské práce si student volí z nabídky fyzikálních pracovišt.

### Požadavky k ústní části státní závěrečné zkoušky

Zkouška má přehledový charakter. Jsou kladeny jen širší otázky a žádá se, aby posluchač prokázal pochopení základních problémů, byl schopen je ilustrovat na konkrétních situacích a osvědčil určitou míru syntézy a hlubšího pochopení. Kromě znalosti teorie jevu se tedy předpokládá i znalost základní metodiky měření příslušných veličin. Předmětem zkoušky jsou následující partie fyziky:

#### 1. Mechanika hmotných bodů

Základní kinematické veličiny, Newtonovy pohybové zákony. Inerciální a neinerciální soustavy. První a druhá impulzová věta. Keplerovy zákony. Harmonický oscilátor (netlumený, tlumený, vynucené kmity). Pohyb s vazbami, d'Alembertův princip. Lagrangeovy rovnice 2. druhu. Hamiltonovy kanonické rovnice a Poissonovy závorky. Hamiltonův variační princip.

### 2. Mechanika tuhého tělesa

Eulerovy úhly a Eulerovy kinematické rovnice. Tenzor setrvačnosti. Eulerovy dynamické rovnice, pohyb jednoduchých setrvačníků.

### 3. Mechanika kontinua

Tenzor napětí a deformace, Hookův zákon. Rovnice struny a její řešení. Pohybová rovnice ideální tekutiny, rovnice kontinuity, Bernoulliova rovnice. Viskózní tekutiny, Navierovy-Stokesovy rovnice, laminární a turbulentní proudění.

### 4. Speciální teorie relativity

Otázka éteru a Michelsonův-Morleyův experiment. Výchozí principy teorie relativity, Lorentzova transformace. Minkowského prostoročas, světelný kužel. Relativistická pohybová rovnice, ekvivalence hmotnosti a energie. Maxwellovy rovnice ve čtyřrozměrném formalizmu.

### 5. Termodynamika a statistická fyzika

Teplo, teplota, tepelná kapacita, tlak. Vnitřní energie, termodynamické potenciály. Hlavní zákony termodynamiky, entropie. Ideální plyn, stavová rovnice, Carnotův cyklus. Fázový prostor, rozdělovací funkce, Liouvilleova rovnice. Maxwellovo-Boltzmannovo rozdělení. Základní statistická rozdělení, statistická entropie.

### 6. Elektrostatika, stacionární elektrické a magnetické pole

Elektrostatické pole ve vakuu (Gaussův a Coulombův zákon, elektrostatický potenciál). Elektrostatické pole v přítomnosti vodičů a v dielektrikách (polarizace, multipólový rozvoj, susceptibilita a permitivita). Stacionární elektrické pole a elektrický proud. Stacionární magnetické pole (Biotův-Savartův a Ampérův zákon). Magnetické pole v látkovém prostředí (magnetizace, typy magnetických látek, susceptibilita a permeabilita).

### 7. Elektrodynamika

Elektromagnetická indukce. Kvazistacionární elektrické a magnetické pole. Elektrické obvody (stacionární, střídavé, neustálený stav, metody řešení lineárních obvodů, Kirchhoffova pravidla). Maxwellovy rovnice. Elektromagnetické potenciály a jejich vlastnosti. Zákony zachování v teorii elektromagnetického pole.

### 8. Elektromagnetické vlny

Vlnová rovnice, rovinná elektromagnetická vlna. Polarizační vlastnosti elektromagnetické vlny. Šíření elektromagnetické vlny v látkovém prostředí (konstanta šíření, útlum, komplexní index lomu, disperze). Odraz a lom elektromagnetických vln na rozhraní dvou prostředí (Fresnelovy vzorce). Elektromagnetické vlny ve vlnovodech. Dipólové elektromagnetické záření.

### 9. Optika

Interference světla, optické interferometry. Koherence světla. Ohyb světla (Fraunhoferova a Fresnelova aproximace, optická ohybová mřížka, Braggova rovnice). Šíření světla v anizotropních látkách (použití dvojlomných látek). Geometrická optika (eikonálová rovnice, geometrická optika sférických ploch, zobrazovací rovnice). Optické zobrazovací přístroje. Spektrální přístroje a základní metody optické spektroskopie. Základy holografie. Princip laseru. Tepelné záření, zákony záření absolutně černého tělesa.

### 10. Struktura atomů, molekul a kondenzovaných látek

Dualismus vlna-částice, fotoefekt, Comptonův rozptyl. Bohrův model atomu. Základní typy vazeb mezi atomy, meziatomový potenciál. Popis symetrie molekul a krystalů pomocí grup, kvazikrystaly. Krystalová struktura látek, základní typy mříží, prostorové grupy. Experimentální studium struktury látek pomocí rtg. záření, difrakční podmínky, strukturní faktor. Einsteinův a Debyeův model vibrací atomů v kondenzovaných látkách. Molekulové orbitaly, metoda LCAO, hybridizace orbitalů. Model volných a téměř volných elektronů, pásová struktura pevných látek, Blochův teorém.

#### 11. Formalismus kvantové teorie

Popis stavů kvantového systému (princip superpozice, vlnová funkce, relace neurčitosti). Reprezentace fyzikálních veličin, diskrétní a spojité spektrum, stacionární Schrödingerova rovnice. Souřadnicová, impulsová a maticová formulace kvantové mechaniky. Variační metoda a stacionární poruchová metoda hledání vázaných stavů.

### 12. Kvantová dynamika

Nestacionární Schrödingerova rovnice, rovnice kontinuity, Ehrenfestovy rovnice. Evoluce obecného kvantového systému, kvantové měření. Integrály pohybu, kvantová čísla, symetrie v kvantové mechanice.

### 13. Jednoduché kvantové systémy

Kvantování energie pro vázanou částici: pravoúhlá potenciálová jáma a harmonický oscilátor. Volná částice, vlnové balíky, průchod částice potenciálovou bariérou. Orbitální a spinový moment hybnosti, základy skládání momentů hybnosti. Částice ve sféricky symetrickém potenciálu, atom vodíku. Částice v elektromagnetickém poli: Zeemanovo štěpení hladin, Larmorova precese. Systémy s více částicemi: nerozlišitelnost, Pauliho princip, jednočásticová aproximace.

### 14. Jaderné záření

Interakce jaderného záření s látkou. Detekce a spektroskopie jaderného záření. Využití jaderného záření.

### 15. Atomové jádro

Základní vlastnosti a charakteristiky jádra. Jaderné síly, vazbová energie jádra. Radioaktivita, jaderné reakce. Jaderné zdroje energie.

### 16. Částicová fyzika

Fundamentální částice (kvarky, leptony, intermediální bosony). Hadrony (baryony a mezony). Základní interakce mezi částicemi, zákony zachování. Částicové experimenty.

### Bakalářské studium od akad. roku 2019/20

Garant programu: doc. RNDr. Helena Valentová, Ph.D.

Garantující pracoviště: Kabinet výuky obecné fyziky

Za výuku některých povinně volitelných a doporučených volitelných předmětů zodpovídají pracoviště garantující jednotlivé navazující magisterského studijní programy.

### 1. Základní informace

Bakalářský studijní program Fyzika má standardní dobu studia 3 roky a maximální dobu studia 6 let. Studium je zakončeno státní závěrečnou zkouškou a její úspěšné složení vede k získání titulu bakalář. Bakalářský studijní program Fyzika se nedělí na specializace.

Průběh studia není studijními plány pevně určen, posluchač si volí předměty tak, aby vyhověl požadavkům programu a získal potřebný počet kreditů požadovaných při kontrole studia po prvním semestru a na konci každého studijního roku. Je však vhodné dodržovat doporučený průběh studia, protože je sestaven s ohledem na návaznosti mezi jednotlivými předměty i na podmínky pro přihlášení ke státní závěrečné zkoušce.

První dva roky studia studijního programu Fyzika jsou společné a tvoří je především povinné předměty doplněné o doporučené volitelné předměty. Samostatný blok povinně volitelných předmětů tvoří výuka programování. Ve třetím roce má student možnost volby dalších povinně volitelných předmětů, volitelných předmětů a tématu své bakalářské práce absolvovat jeden z bloků, na které pak navazuje odpovídající magisterské studium.

Dohromady je požadováno získání minimálně 180 kreditů za celé tříleté studium. Z toho 140 kreditů posluchač obdrží za povinné předměty, včetně 4 kreditů za výuku tělesné výchovy, 1 kreditu za zkoušku z anglického jazyka a 6 kreditů za vypracování bakalářské práce. Dalších celkem 22 kreditů musí získat za povinně volitelné předměty. Ty jsou rozčleněny do tří skupin: Za výuku programování musí získat alespoň 5 kreditů, ve druhé skupině (volba mezi předmětem Praktikum IV anebo Rovnice matematické fyziky) musí získat alespoň 5 kreditů, ve třetí skupině (volba předmětů z některého ze třinácti bloků) musí získat alespoň 12 kreditů. Za povinné a povinně volitelné předměty tak posluchač získá alespoň 162 kreditů. Zbylých 18 kreditů si doplní absolvováním volitelných předmětů, které si může vybrat libovolně (nejlépe z nabídky předmětů navazujícího magisterského programu, v němž posluchač hodlá pokračovat). Dále se doporučuje 4 z těchto kreditů získat za výuku anglického jazyka v prvních čtyřech semestrech.

### 2. Studijní plán od akad. roku 2019/20

Charakteristika studijního programu:

Studijní program Fyzika poskytuje základní znalosti z experimentální a teoretické fyziky, matematiky a programování. Ve třetím roce studia si student volí povinně volitelné předměty a téma bakalářské práce (zpravidla podle oboru zamýšleného budoucího navazujícího magisterského studia) a získá prakticky orientované znalosti v některém z následujících zaměření: Astronomie a astrofyzika, Geofyzika a fyzika planet, Fyzika atmosféry, meteorologie a klimatologie, Teoretická fyzika, Fyzika kondenzovaných soustav a materiálů, Optika a optoelektronika, Fyzika povrchů a plazmatu, Biofyzika a chemická fyzika, Částicová a jaderná fyzika, Matematické a počítačové modelování ve fyzice. Absolvent je tak optimálně připraven na navazující magisterské studium těchto oborů fyziky. Pokud bakalář nechce v dalším studiu pokračovat, je schopen po absolvování zvoleného specifického bloku Aplikovaná fyzika pracovat jak ve vědeckých tak průmyslových laboratořích, obsluhovat technicky náročná zařízení, vyhodnocovat výsledky experimentů či počítačových modelací.

#### Cile studia:

Cílem studia studijního programu Fyzika je poskytnout studentům ucelené základní vzdělání pokrývající všechny obory fyziky, odpovídající (poměrně rozsáhlé) znalosti z matematiky a základy programování. Na tento základ navazují ve třetím roku studia povinně volitelné a volitelné předměty, s jejichž pomocí může student získat další znalosti v některém z deseti oborů fyziky a připravit se na navazující magisterské studium nebo uzavřít své vzdělání na bakalářské úrovni.

### Profil absolventa:

Absolvent studijního programu Fyzika má ucelené znalosti v experimentální a teoretické fyzice pokrývající všechny obory fyziky. Současně získává i velmi solidní znalosti z matematiky a osvojí si i základy programování. Volbou povinně volitelných a doporučených volitelných předmětů student může získat prohloubené znalosti v jednom z deseti oborů fyziky. Vzhledem k šíři vzdělání, přizpůsobivosti a všeobecně oceňované schopnosti abstraktního a tvořivého myšlení je student výborně připraven jak na navazující magisterské studium, tak na zaměstnání v řadě prakticky orientovaných oborů, kde jsou tyto schopnosti vyžadovány.

### Doporučený průběh studia

Předměty **povinné** ke státní závěrečné zkoušce jsou vytištěny **tučně**, povinně volitelné předměty normálním písmem, doporučené *volitelné* předměty *kurzívou*.

#### 1. rok studia

| Kód     | Název                          | Kredity | ZS                | LS       |
|---------|--------------------------------|---------|-------------------|----------|
| NOFY021 | Mechanika a molekulová fyzika  | 8       | 4/2 Z+Zk          |          |
| NOFY055 | Úvod do praktické fyziky       | 2       | $0/2 \mathrm{Z}$  |          |
| NOFY151 | Matematická analýza I          | 9       | 4/3  Z+Zk         |          |
| NOFY141 | Lineární algebra I             | 5       | 2/2 Z+Zk          |          |
| NTVY014 | Tělesná výchova I <sup>1</sup> | 1       | $0/2 \mathrm{~Z}$ |          |
| NOFY018 | Elektřina a magnetismus        | 8       |                   | 4/2 Z+Zk |
| NOFY066 | Praktikum I - Mechanika        | 5       |                   | 0/3  KZ  |
|         | a molekulová fyzika            |         |                   |          |

| NOFY152 Matematická analýza II                              | 9 | _                 | 4/3  Z+Zk         |
|-------------------------------------------------------------|---|-------------------|-------------------|
| NOFY142 Lineární algebra II                                 | 5 |                   | 2/2  Z+Zk         |
| NTVY015 <b>Tělesná výchova II</b> <sup>1</sup>              | 1 |                   | $0/2 \mathrm{~Z}$ |
| Kurz bezpečnosti práce I <sup>2</sup>                       | 0 |                   |                   |
| NJAZ070 Anglický jazyk pro středně pokročilé I <sup>3</sup> | 1 | $0/2 \mathrm{~Z}$ |                   |
| NOFY002 Proseminář z matematických metod                    | 2 | $0/2 \mathrm{~Z}$ |                   |
| fyziky                                                      |   |                   |                   |
| NOFY067 Fyzika v experimentech I                            | 1 | $0/1 \mathrm{~Z}$ |                   |
| NOFY071 Procvičovací seminář z mechaniky                    | 2 | $0/2 \mathrm{~Z}$ |                   |
| NJAZ072 Anglický jazyk pro středně                          | 1 | <u> </u>          | $0/2 \mathrm{~Z}$ |
| pokročilé II <sup>3</sup>                                   |   |                   |                   |
| NOFY011 Proseminář z elektrodynamiky                        | 2 |                   | $0/2 \mathrm{~Z}$ |
| NOFY068 Fyzika v experimentech II                           | 1 |                   | $0/1 \mathrm{Z}$  |

### Povinně volitelné předměty – skupina 1 (5 kreditů)

Tuto skupinu předmětů tvoří výuka programování.

| Kód     | Název                                | Kredity | ZS                | LS          |
|---------|--------------------------------------|---------|-------------------|-------------|
| NOFY056 | Programování pro fyziky              | 5       | 2/2 Z+Zk          |             |
| NOFY087 | Práce s počítačem a programování     | 4       | 2/1  KZ           |             |
| NOFY078 | Programování a zpracování dat        | 4       |                   | 1/2  KZ     |
|         | v Pythonu                            |         |                   |             |
| NOFY081 | Programování prakticky               | 3       |                   | 0/2  KZ     |
| NOFY082 | C++ pro fyziky                       | 3       |                   | 1/1  KZ     |
| NOFY083 | Fortran pro fyziky                   | 3       |                   | 1/1  KZ     |
| NOFY084 | Použití počítačů ve fyzice           | 3       |                   | 0/2  KZ     |
| NOFY178 | Programování a zpracování dat        | 4       | 1/2  KZ           | <del></del> |
|         | v Pythonu <sup>4,5</sup>             |         |                   |             |
| NOFY077 | Úvod do Linuxu $^5$                  | 3       | 1/1  KZ           |             |
| NOFY080 | Praktické programování               | 4       | 2/1  KZ           |             |
|         | v experimentální fyzice <sup>5</sup> |         | ,                 |             |
| NOFY085 | Úvod do programování v prostředí     | 4       |                   | 1/2  KZ     |
|         | MATLAB, Octave a Scilab <sup>5</sup> |         |                   | ,           |
| NOFY086 | Programování v IDL — zpracování      | 3       | $1/1~\mathrm{KZ}$ |             |
|         | a vizualizace dat <sup>5</sup>       |         | ,                 |             |

 $<sup>^1\</sup>mathrm{M}$ ísto jednoho z předmětů NTVY014, NTVY015, NTVY016 a NTVY017 je možné si zapsat letní výcvikový kurz NTVY018 nebo zimní výcvikový kurz NTVY019. Tyto kurzy může student absolvovat kdykoli v průběhu bakalářského studia.

<sup>&</sup>lt;sup>2</sup>Podmínkou pro samostatnou práci v laboratoři (zahájení praktik a experimentální bakalářské práce) je absolvování kurzu bezpečnosti práce, který je organizován pro všechny studenty fyziky Kabinetem výuky obecné fyziky, a to jednorázově. Platnost kurzu je dva roky. Informace jsou dostupné na stránce https://physics.mff.cuni.cz/vyuka/zfp/.

 $<sup>^3</sup>$  Výuka anglického jazyka NJAZ070, NJAZ072, NJAZ074, NJAZ090 v rozsahu 0/2 v každém semestru je určena pro středně pokročilé a pokročilé. Začátečníci a mírně pokročilí si místo ní zapíší předměty NJAZ071, NJAZ073, NJAZ075, NJAZ089 s rozsahem výuky 0/4 v každém semestru.

<sup>&</sup>lt;sup>4</sup> Předmět je vyučován v angličtině.

<sup>&</sup>lt;sup>5</sup> Doporučeno pro 2. a 3. ročník studia.

| 2. rok studi | a                                                        |         |                   |                   |
|--------------|----------------------------------------------------------|---------|-------------------|-------------------|
| Kód          | Název                                                    | Kredity | ZS                | LS                |
| NOFY022      | Optika                                                   | 7       | 3/2 Z+Zk          |                   |
| NOFY024      | Praktikum II — Elektřina                                 | 4       | 0/3  KZ           |                   |
|              | a magnetismus                                            |         |                   |                   |
| NOFY161      | Matematika pro fyziky I                                  | 8       | 4/2 Z+Zk          |                   |
| NOFY003      | Teoretická mechanika                                     | 7       | 3/2 Z+Zk          |                   |
| NOFY023      | Speciální teorie relativity                              | 3       | 2/0  Zk           |                   |
| NTVY016      | Tělesná výchova III <sup>1</sup>                         | 1       | $0/2 \mathrm{~Z}$ |                   |
| NOFY125      | Atomová fyzika a elektronová                             | 5       |                   | 3/1  Z+Zk         |
|              | struktura látek                                          |         |                   |                   |
| NOFY028      | Praktikum III — Optika                                   | 5       |                   | $0/4~\mathrm{KZ}$ |
|              | Matematika pro fyziky II                                 | 8       |                   | 4/2 Z+Zk          |
| NOFY126      | Klasická elektrodynamika                                 | 5       |                   | 2/2 Z+Zk          |
| NOFY127      | Úvod do kvantové mechaniky                               | 5       |                   | 2/2 Z+Zk          |
| NTVY017      | Tělesná výchova IV <sup>1</sup>                          | 1       |                   | $0/2 \mathrm{~Z}$ |
| NJAZ091      | Anglický jazyk — zkouška pro                             | 1       |                   | $0/0 \mathrm{Zk}$ |
|              | bakaláře <sup>2</sup>                                    |         |                   |                   |
| NOFY062      | Pravděpodobnostní metody fyziky                          | 4       |                   | 2/1  Z+Zk         |
| NJAZ074      | Anglický jazyk pro středně<br>pokročilé III <sup>2</sup> | 1       | $0/2 \mathrm{~Z}$ | _                 |
| NOFY010      | Proseminář z optiky                                      | 2       | $0/2 \mathrm{~Z}$ |                   |
| NOFY069      | Proseminář z teoretické mechaniky                        | 2       | $0/2 \mathrm{~Z}$ |                   |
| NOFY047      | Problémy současné fyziky I                               | 2       | $0/2 \mathrm{~Z}$ | _                 |
| NOFY059      | Experimentální metody fyziky I                           | 2       | $0/2 \mathrm{Z}$  |                   |
| NPOZ007      | Filozofické problémy fyziky                              | 1       | $0/1 \mathrm{Z}$  |                   |
| NJAZ090      | Anglický jazyk pro středně<br>pokročilé IV <sup>2</sup>  | 1       |                   | $0/2 \mathrm{~Z}$ |
| NOFY060      | Experimentální metody fyziky II                          | 2       |                   | $0/2 \mathrm{~Z}$ |
|              | Proseminář z kvantové mechaniky                          | 2       |                   | $0/2 \mathrm{~Z}$ |
| NOFY057      | Proseminář moderních trendů ve                           | 2       | _                 | $0/2 \mathrm{~Z}$ |
|              | fyzice pevných látek                                     |         |                   | •                 |
| NOFY070      | Proseminář z teoretické fyziky                           | 2       |                   | $0/2 \mathrm{~Z}$ |
|              | Fyzika jako dobrodružství poznání                        | 3       |                   | $0/3 \mathrm{~Z}$ |
|              | Problémy současné fyziky II                              | 2       |                   | $0/2 \mathrm{~Z}$ |
|              | Mechanika kontinua                                       | 4       |                   | 2/1 Z+Zk          |

Místo jednoho z předmětů NTVY014, NTVY015, NTVY016 a NTVY017 je možné si zapsat letní výcvikový kurz NTVY018 nebo zimní výcvikový kurz NTVY019. Tyto kurzy může student absolvovat kdykoli v průběhu bakalářského studia.

### 3. rok studia

| Kód     | Název                      | Kredity | ZS        | LS |
|---------|----------------------------|---------|-----------|----|
| NOFY029 | Jaderná a částicová fyzika | 6       | 3/1  Z+Zk | _  |

v průběhu bakalářského studia.  $$^2$$  Výuka anglického jazyka NJAZ070, NJAZ072, NJAZ074, NJAZ090 v rozsahu 0/2 v každém semestru je určena pro středně pokročilé a pokročilé. Začátečníci a mírně pokročilí si místo ní zapíší předměty NJAZ071, NJAZ073, NJAZ075, NJAZ089 s rozsahem výuky 0/4 v každém semestru.

| NOFY075   | Kvantová teorie I <sup>1</sup>         | 8 | 4/2  Z+Zk         |                    |
|-----------|----------------------------------------|---|-------------------|--------------------|
| NOFY076   | Kvantová teorie I $^1$                 | 8 | 4/2 Z+Zk          |                    |
| NOFY031   | Termodynamika a statistická            | 7 | 3/2 Z+Zk          |                    |
|           | fyzika <sup>2</sup>                    |   | ,                 |                    |
| NTMF043   | Termodynamika a statistická            | 7 | 3/2 Z+Zk          |                    |
|           | fyzika I $^2$                          |   |                   |                    |
| NSZZ031   | Vypracování a konzultace               | 6 | _                 | $0/4 \mathrm{~Z}$  |
|           | bakalářské práce                       |   |                   | •                  |
|           | Kurz bezpečnosti práce II <sup>3</sup> | 0 |                   |                    |
| NJSF148   | Proseminář z jaderné a částicové       | 2 | $0/2 \mathrm{~Z}$ |                    |
|           | fyziky                                 |   | •                 |                    |
| NBCM144   | Proseminář termodynamiky               | 2 | $0/2 \mathrm{~Z}$ |                    |
|           | a statistické fyziky                   |   | ,                 |                    |
| NOFY064   | Výpočetní technika ve fyzikálním       | 4 | 0/3  KZ           |                    |
|           | experimentu                            |   | ,                 |                    |
| NMAF006   | Vybrané partie z matematiky pro        | 3 |                   | $2/0 \mathrm{~Zk}$ |
|           | fyziky                                 |   |                   | _/ 5               |
| NGEO090   | Proseminář věd o Zemi                  | 2 |                   | $0/2 \mathrm{~Z}$  |
|           | Výběrové praktikum z elektroniky       | 4 |                   | 0/3  KZ            |
| 1101 1000 | a počítačové techniky                  | 4 |                   | 0/0 112            |
|           | a pocuacove iecinimy                   |   |                   |                    |

<sup>&</sup>lt;sup>1</sup> Studenti si zapisují právě jeden z těchto alternativních předmětů. Předmět NOFY076 je určen především pro budoucí studenty programů Teoretická fyzika a Částicová a jaderná fyzika.

### Povinně volitelné předměty – skupina 2 (5 kreditů)

V této skupině má student možnost volby mezi předměty Praktikum IV a Rovnice matematické fyziky. Může ale absolvovat i oba dva.

| Kód     | Název                                      | Kredity | ZS                | LS |
|---------|--------------------------------------------|---------|-------------------|----|
| NOFY130 | Praktikum IV — Atomová a jaderná<br>fyzika | 5       | $0/3~\mathrm{KZ}$ |    |
| NOFY163 | Rovnice matematické fyziky                 | 5       | 2/1 Z+Zk          | _  |

### Povinně volitelné předměty – skupina 3 (12 kreditů)

Povinně volitelné předměty z této rozsáhlé skupiny jsou uspořádány do třinácti bloků. Bloky 1–10 odpovídají příslušným fyzikálním programům navazujícího magisterského studia na MFF UK. Zájemcům o toto studium fyziky se proto doporučuje příslušný blok absolvovat, neboť uvedené předměty tvoří základ znalostí nezbytných pro úspěšné absolvování těchto programů. Výuku předmětů zajišťují příslušná pracoviště.

Studenti, kteří nemají zájem o navazující magisterské studium, si mohou zapsat předměty dle vlastního uvážení. S ohledem na získání ucelených znalostí je však i v tomto případě vhodné dát přednost předmětům jednoho z bloků 11–13 nazvaných

<sup>&</sup>lt;sup>2</sup> Studenti si zapisují právě jeden z těchto alternativních předmětů. Předmět NTMF043 je určen především pro budoucí studenty programu Teoretická fyzika.

Kurz je nezbytný pro studenty, kteří mají zadanou experimentální bakalářskou práci, konají práci v laboratoři nebo navštěvují praktika (například předměty NOFY130, NOFY065, NFPL151, NJSF150 atd.). Kurz zajišťují jednotlivá pracoviště.

Aplikovaná fyzika, případně se poradit s příslušným garantem programu o zapsání dalších vybraných přednášek z navazujícího magisterského studia.

Povinně volitelné předměty jsou vytištěny normálním písmem, doporučené volitelné předměty kurzívou.

### 1. Astronomie a astrofyzika

|           | onne a astroryzika                                       |         |                  |                   |
|-----------|----------------------------------------------------------|---------|------------------|-------------------|
| Kód       | Název                                                    | Kredity | ZS               | LS                |
| NAST035   | Základy astronomie a astrofyziky                         | 12      | _                | 6/2 Z+Zk          |
| NAST036   | Analýza dat a modelování<br>v astronomii                 | 3       | _                | 2/0 Zk            |
| NTMF111   | Obecná teorie relativity                                 | 4       |                  | $3/0 \mathrm{Zk}$ |
| NAST023   | Astrofyzika pro fyziky                                   | 3       | 2/0  Zk          | <u> </u>          |
| NAST020   | Fyzika sluneční soustavy                                 | 3       | 2/0  Zk          |                   |
| NAST110   | $Semin lpha \check{r}$ $Astronomického ústavu UK$ $(PV)$ | 3       | 0/2 Z            | $0/2 \mathrm{~Z}$ |
| NAST026   | Dějiny astronomie                                        | 3       | $1/1 \mathrm{Z}$ | $1/1 \mathrm{~Z}$ |
| NAST021   | Vybrané kapitoly z astrofyziky                           | 3       | 2/0 Zk           | <u>-</u>          |
| 2. Geofyz | ika a fyzika planet                                      |         |                  |                   |
| Kód       | Název                                                    | Kredity | ZS               | LS                |

| Kód     | Název                          | Kredity | ZS       | LS                |
|---------|--------------------------------|---------|----------|-------------------|
| NGEO110 | Přehled geofyziky              | 4       | 2/1 Z+Zk |                   |
| NPRF051 | Počítače v geofyzice           | 4       | 2/1 Z+Zk |                   |
| NGEO111 | Mechanika kontinua             | 4       |          | 2/1  Z+Zk         |
| NGEO112 | Fourierova spektrální analýza  | 4       |          | 2/1  Z+Zk         |
| NGEO076 | Obrácené úlohy a modelování ve | 3       |          | 2/0  Zk           |
|         | fyzice                         |         |          |                   |
| NMAF001 | Vybrané kapitoly z parciálních | 3       |          | 2/0  Zk           |
|         | diferenciálních rovnic         |         |          | ·                 |
| NGEO096 | Úvod do planetologie           | 3       |          | $2/0 \mathrm{Zk}$ |
|         | -                              |         |          | ,                 |

### 3. Fyzika atmosféry, meteorologie a klimatologie

| Kód     | Název                                    | Kredity | ZS                   | LS                |
|---------|------------------------------------------|---------|----------------------|-------------------|
| NMET034 | Hydrodynamika                            | 6       | 3/1 Z+Zk             |                   |
| NMET004 | l Šíření akustických                     | 4       | 3/0 Zk               |                   |
|         | a elektromagnetických vln<br>v atmosféře |         |                      |                   |
| NMET012 | 2 Všeobecná klimatologie                 | 6       |                      | 3/1  Z+Zk         |
| NMET050 | ) Statistické metody analýzy             | 6       |                      | $2/2 \mathrm{Zk}$ |
|         | fyzikálních dat                          |         |                      |                   |
| NMET035 | Synoptická meteorologie I                | 3       |                      | $2/0 \mathrm{Zk}$ |
| NMAF026 | i Deterministický chaos                  | 3       |                      | 2/0  Zk           |
| NMET076 | S Zpracování fyzikálních dat v R         | 3       | $1/1 \mathrm{~Z+Zk}$ |                   |
| NMET021 | Meteorologické přístroje a pozorovací    | 4       | 3/0  Zk              |                   |
|         | metody                                   |         |                      |                   |
| NPRF031 | Programování v meteorologii              | 6       | _                    | 2/2  KZ           |

| 4. | Teoretická    | fyzika     |  |
|----|---------------|------------|--|
| 1. | T COI CUICINA | 1,9 211110 |  |

| Kód     | Název                                               | Kredity | ZS               | LS                   |
|---------|-----------------------------------------------------|---------|------------------|----------------------|
| NOFY079 | Kvantová teorie II                                  | 6       |                  | 3/1  Z+Zk            |
| NTMF044 | Termodynamika a statistická                         | 7       |                  | 3/2 Z+Zk             |
|         | fyzika II                                           |         |                  |                      |
| NTMF111 | Obecná teorie relativity                            | 4       |                  | $3/0 \mathrm{Zk}$    |
| NGEO111 | Mechanika kontinua                                  | 4       |                  | 2/1 Z+Zk             |
| NMAF006 | S Vybrané partie z matematiky pro                   | 3       |                  | $2/0 \mathrm{~Zk}$   |
|         | fyziky                                              |         |                  |                      |
| NJSF179 | $Kvantovcute{a} teorie - vybrancute{a} temata^{-1}$ | 3       |                  | $1/1 \mathrm{~Z+Zk}$ |
| NTMF112 | l Kvantová teorie — vybrané                         | 3       |                  | $1/1 \mathrm{\ Zk}$  |
|         | $aplikace \ ^1$                                     |         |                  |                      |
| NTMF059 | Geometrické metody teoretické                       | 6       | 2/2 Z+Zk         |                      |
|         | fyziky I                                            |         |                  |                      |
| NTMF061 | Teorie grup a její aplikace ve fyzice               | 6       | 2/2 Z+Zk         |                      |
| NTMF100 | Odborné soustředění ÚTF                             | 2       | $0/1 \mathrm{Z}$ |                      |

 $<sup>^{1}</sup>$  Vyučován je vždy pouze jeden z těchto předmětů.

### 5. Fyzika kondenzovaných soustav a materiálů

| Kód     | Název                                             | Kredity | ZS                 | LS                |
|---------|---------------------------------------------------|---------|--------------------|-------------------|
| NFPL252 | Úvod do krystalografie a strukturní<br>analýzy    | 4       | 2/1 Z+Zk           |                   |
| NFPL502 | Úvod do fyziky pevných látek                      | 6       | _                  | 3/1  Z+Zk         |
| NFPL505 | Úvod do fyziky měkkých materiálů                  | 3       |                    | 1/1  Z+Zk         |
|         | Základy makromolekulární fyziky                   | 4       |                    | 3/0  Zk           |
| NFPL211 | Mechanické vlastnosti materiálů                   | 4       | 2/1  Z+Zk          |                   |
| NFPL168 | Fyzika a technika nízkých teplot                  | 3       | 2/0  Zk            |                   |
| NFPL192 | Proseminář fyziky kondenzovaných soustav          | 3       | _                  | $0/2~\mathrm{KZ}$ |
| NOFY034 | Metody zpracování fyzikálních<br>měření           | 3       | _                  | 2/0 Zk            |
| NBCM072 | 2 Základy molekulární elektroniky                 | 3       | $2/0 \mathrm{~Zk}$ |                   |
|         | ) Fyzika povrchů a tenkých vrstev<br>polymerů     | 3       | 2/0 Zk             | _                 |
| NEVF105 | $Vakuov\'a\ technika$                             | 5       | <del>_</del>       | 2/1  Z+Zk         |
| NFPL161 | Perspektivní materiály a jejich<br>příprava       | 3       | _                  | 2/0 Zk            |
| NFPL043 | Úvod do fyziky organických<br>polovodičů          | 3       | $2/0 \mathrm{~Zk}$ | _                 |
| NFPL059 | Fyzikální akustika                                | 3       | $1/1~\mathrm{KZ}$  |                   |
| NFPL310 | Praktická transmisní elektronová<br>mikroskopie I | 5       | $0/4 \mathrm{~Z}$  | _                 |
| NFPL092 | Radiofrekvenční spektroskopie<br>pevných látek    | 3       |                    | 2/0 Zk            |
| NFPL095 | Základy kryotechniky                              | 3       | 2/0 Zk             | _                 |

| NFPL115                                                                                                                                                         | Elektronová mikroskopie                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                               | $2/0 \mathrm{Zk}$                   |                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------|--------------------------------------------------------------------------------------|
| NFPL136                                                                                                                                                         | Speciální praktikum fyziky materiálů                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                               |                                     | $0/3 \mathrm{Z}$                                                                     |
| NFPL141                                                                                                                                                         | Kvantová teorie II                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                               |                                     | 2/1  Z+Zk                                                                            |
| NFPL151                                                                                                                                                         | Experimentální cvičení FPL                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                               |                                     | $0/2 \mathrm{~Z}$                                                                    |
| NFPL155                                                                                                                                                         | Experimentální studium reálné                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4                               | 2/1  Z+Zk                           | <del></del>                                                                          |
| 111111100                                                                                                                                                       | struktury pevných látek                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                               | <b>2</b> / 1 <b>2</b>   <b>2</b> 11 |                                                                                      |
| NFPL163                                                                                                                                                         | Fyzika magnetických materiálů                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                               |                                     | $2/0 \mathrm{~Zk}$                                                                   |
| NFPL169                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                               | <del></del>                         | ,                                                                                    |
| NFFL109                                                                                                                                                         | Hyperjemné interakce a jaderný                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                               | <del></del>                         | 2/0  Zk                                                                              |
|                                                                                                                                                                 | magnetismus                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                                     | - /                                                                                  |
| NFPL307                                                                                                                                                         | Praktické užití skenovací elektronové                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                               | _                                   | $0/3 \mathrm{~Z}$                                                                    |
|                                                                                                                                                                 | mikroskopie                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                                     |                                                                                      |
| NFPL212                                                                                                                                                         | Zpracování obrazu                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                               |                                     | $1/1~\mathrm{KZ}$                                                                    |
| NFPL213                                                                                                                                                         | Příprava monokrystalů pro                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                               |                                     | 1/2  Z+Zk                                                                            |
|                                                                                                                                                                 | materiálový výzkum                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |                                     | ,                                                                                    |
| NFPL214                                                                                                                                                         | Úvod do pozitronové anihilace                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                               |                                     | 1/1  Z+Zk                                                                            |
| NFPL215                                                                                                                                                         | Dielektrické a magnetické vlastnosti                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                               |                                     | 1/1  Z+Zk                                                                            |
| 111111111                                                                                                                                                       | látek                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · ·                             |                                     | 1/12/21                                                                              |
| NRCM937                                                                                                                                                         | Základy přípravy a charakterizace                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                               |                                     | 1/2 Z+Zk                                                                             |
| NDOM251                                                                                                                                                         | tenkých vrstev                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4                               |                                     |                                                                                      |
| NDCMoo                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F                               |                                     | 1 /9 77 + 771                                                                        |
| NBCM238                                                                                                                                                         | Technologie vakuové přípravy vrstev                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                               | <del></del>                         | 1/3  Z+Zk                                                                            |
|                                                                                                                                                                 | a nanostruktur                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |                                     |                                                                                      |
| 6. Optika                                                                                                                                                       | a optoelektronika                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                                     |                                                                                      |
| Kód                                                                                                                                                             | Název                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Kredity                         | ZS                                  | LS                                                                                   |
|                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                     |                                                                                      |
| NOODOOL                                                                                                                                                         | 371 / 11                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |                                     | 4 /0 7 + 71                                                                          |
|                                                                                                                                                                 | Vlnová optika                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9                               | _                                   | 4/2 Z+Zk                                                                             |
| NOOE001                                                                                                                                                         | Základy optické spektroskopie                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                               |                                     | $2/0 \mathrm{~Zk}$                                                                   |
| NOOE001                                                                                                                                                         | Základy optické spektroskopie<br>Numerické metody zpracování                                                                                                                                                                                                                                                                                                                                                                                                   |                                 |                                     | ,                                                                                    |
| NOOE001<br>NMAF035                                                                                                                                              | Základy optické spektroskopie<br>Numerické metody zpracování<br>experimentálních dat                                                                                                                                                                                                                                                                                                                                                                           | 3                               |                                     | $2/0 \mathrm{~Zk}$                                                                   |
| NOOE001<br>NMAF035                                                                                                                                              | Základy optické spektroskopie<br>Numerické metody zpracování                                                                                                                                                                                                                                                                                                                                                                                                   | 3                               |                                     | $2/0 \mathrm{~Zk}$                                                                   |
| NOOE001<br>NMAF035                                                                                                                                              | Základy optické spektroskopie<br>Numerické metody zpracování<br>experimentálních dat                                                                                                                                                                                                                                                                                                                                                                           | 3                               |                                     | $2/0 \mathrm{~Zk}$                                                                   |
| NOOE001<br>NMAF035<br>NOOE048                                                                                                                                   | Základy optické spektroskopie<br>Numerické metody zpracování<br>experimentálních dat<br>Základy konstrukce a výroby<br>optických prvků                                                                                                                                                                                                                                                                                                                         | 3                               |                                     | 2/0 Zk<br>2/0 Zk<br>—                                                                |
| NOOE001<br>NMAF035<br>NOOE048<br>NOOE114                                                                                                                        | Základy optické spektroskopie Numerické metody zpracování experimentálních dat Základy konstrukce a výroby optických prvků Nové materiály a technologie                                                                                                                                                                                                                                                                                                        | 3<br>3<br>1                     |                                     | 2/0 Zk<br>2/0 Zk<br>—<br>2/0 Zk                                                      |
| NOOE001<br>NMAF035<br>NOOE048<br>NOOE114<br>NOOE116                                                                                                             | Základy optické spektroskopie Numerické metody zpracování experimentálních dat Základy konstrukce a výroby optických prvků Nové materiály a technologie Základy fotoniky                                                                                                                                                                                                                                                                                       | 3<br>3<br>1<br>3<br>3           | <i>_</i>                            | 2/0 Zk<br>2/0 Zk<br>—                                                                |
| NOOE001<br>NMAF035<br>NOOE048<br>NOOE114<br>NOOE116                                                                                                             | Základy optické spektroskopie Numerické metody zpracování experimentálních dat Základy konstrukce a výroby optických prvků Nové materiály a technologie Základy fotoniky Základní přístroje optické                                                                                                                                                                                                                                                            | 3<br>3<br>1<br>3                |                                     | 2/0 Zk<br>2/0 Zk<br>—<br>2/0 Zk                                                      |
| NOOE001<br>NMAF035<br>NOOE048<br>NOOE114<br>NOOE116<br>NOOE135                                                                                                  | Základy optické spektroskopie Numerické metody zpracování experimentálních dat Základy konstrukce a výroby optických prvků Nové materiály a technologie Základy fotoniky Základní přístroje optické spektroskopie                                                                                                                                                                                                                                              | 3<br>3<br>1<br>3<br>4           |                                     | 2/0 Zk<br>2/0 Zk<br>—<br>2/0 Zk                                                      |
| NOOE001<br>NMAF035<br>NOOE048<br>NOOE114<br>NOOE116<br>NOOE135<br>NFPL141                                                                                       | Základy optické spektroskopie Numerické metody zpracování experimentálních dat Základy konstrukce a výroby optických prvků Nové materiály a technologie Základy fotoniky Základní přístroje optické spektroskopie Kvantová teorie II                                                                                                                                                                                                                           | 3<br>3<br>1<br>3<br>3           | <i>_</i>                            | 2/0 Zk<br>2/0 Zk<br>—<br>2/0 Zk                                                      |
| NOOE001<br>NMAF035<br>NOOE048<br>NOOE114<br>NOOE116<br>NOOE135<br>NFPL141                                                                                       | Základy optické spektroskopie Numerické metody zpracování experimentálních dat Základy konstrukce a výroby optických prvků Nové materiály a technologie Základy fotoniky Základní přístroje optické spektroskopie                                                                                                                                                                                                                                              | 3<br>3<br>1<br>3<br>4           |                                     | 2/0 Zk<br>2/0 Zk<br>—<br>2/0 Zk                                                      |
| NOOE001<br>NMAF035<br>NOOE048<br>NOOE114<br>NOOE116<br>NOOE135<br>NFPL141                                                                                       | Základy optické spektroskopie Numerické metody zpracování experimentálních dat Základy konstrukce a výroby optických prvků Nové materiály a technologie Základy fotoniky Základní přístroje optické spektroskopie Kvantová teorie II                                                                                                                                                                                                                           | 3<br>3<br>1<br>3<br>4           |                                     | 2/0 Zk<br>2/0 Zk<br>—<br>2/0 Zk                                                      |
| NOOE001<br>NMAF035<br>NOOE048<br>NOOE114<br>NOOE135<br>NFPL141<br>7. Fyzika<br>Kód                                                                              | Základy optické spektroskopie Numerické metody zpracování experimentálních dat Základy konstrukce a výroby optických prvků Nové materiály a technologie Základy fotoniky Základní přístroje optické spektroskopie Kvantová teorie II povrchů a plazmatu Název                                                                                                                                                                                                  | 3 3 1 3 4 5 Kredity             |                                     | 2/0 Zk 2/0 Zk  2/0 Zk 2/0 Zk 2/0 Zk LS                                               |
| NOOE001<br>NMAF035<br>NOOE048<br>NOOE114<br>NOOE116<br>NOOE135<br>NFPL141<br>7. Fyzika<br>Kód<br>NEVF158                                                        | Základy optické spektroskopie Numerické metody zpracování experimentálních dat Základy konstrukce a výroby optických prvků Nové materiály a technologie Základy fotoniky Základní přístroje optické spektroskopie Kvantová teorie II  povrchů a plazmatu Název Základy fyziky pevných látek                                                                                                                                                                    | 3 3 1 3 3 4 5 Kredity 5         |                                     | 2/0 Zk 2/0 Zk  2/0 Zk 2/0 Zk 2/0 Zk LS 3/1 Z+Zk                                      |
| NOOE001<br>NMAF035<br>NOOE048<br>NOOE114<br>NOOE116<br>NOOE135<br>NFPL141<br>7. Fyzika<br>Kód<br>NEVF158<br>NEVF169                                             | Základy optické spektroskopie Numerické metody zpracování experimentálních dat Základy konstrukce a výroby optických prvků Nové materiály a technologie Základy fotoniky Základní přístroje optické spektroskopie Kvantová teorie II povrchů a plazmatu Název Základy fyziky pevných látek Teoretické základy fyziky plazmatu                                                                                                                                  | 3 3 1 3 3 4 5 Kredity 5 5       |                                     | 2/0 Zk 2/0 Zk                                                                        |
| NOOE001<br>NMAF035<br>NOOE048<br>NOOE114<br>NOOE116<br>NOOE135<br>NFPL141<br>7. Fyzika<br>Kód<br>NEVF158<br>NEVF169<br>NEVF140                                  | Základy optické spektroskopie Numerické metody zpracování experimentálních dat Základy konstrukce a výroby optických prvků Nové materiály a technologie Základy fotoniky Základní přístroje optické spektroskopie Kvantová teorie II povrchů a plazmatu Název Základy fyziky pevných látek Teoretické základy fyziky plazmatu Úvod do fyziky povrchů                                                                                                           | 3 3 1 3 4 5 Kredity 5 5 3       |                                     | 2/0 Zk 2/0 Zk                                                                        |
| NOOE001<br>NMAF035<br>NOOE048<br>NOOE114<br>NOOE116<br>NOOE135<br>NFPL141<br>7. Fyzika<br>Kód<br>NEVF158<br>NEVF169<br>NEVF140<br>NEVF100                       | Základy optické spektroskopie Numerické metody zpracování experimentálních dat Základy konstrukce a výroby optických prvků Nové materiály a technologie Základy fotoniky Základní přístroje optické spektroskopie Kvantová teorie II  povrchů a plazmatu Název Základy fyziky pevných látek Teoretické základy fyziky plazmatu Úvod do fyziky plazmatu Úvod do fyziky plazmatu                                                                                 | 3 3 1 3 3 4 5 Kredity 5 5 3 3   |                                     | 2/0 Zk 2/0 Zk                                                                        |
| NOOE001<br>NMAF035<br>NOOE048<br>NOOE114<br>NOOE116<br>NOOE135<br>NFPL141<br>7. Fyzika<br>Kód<br>NEVF158<br>NEVF169<br>NEVF140<br>NEVF100<br>NEVF100            | Základy optické spektroskopie Numerické metody zpracování experimentálních dat Základy konstrukce a výroby optických prvků Nové materiály a technologie Základy fotoniky Základní přístroje optické spektroskopie Kvantová teorie II povrchů a plazmatu Název Základy fyziky pevných látek Teoretické základy fyziky plazmatu Úvod do fyziky povrchů Úvod do fyziky povrchů spektroskopie                                                                      | 3 3 1 3 4 5 Kredity 5 5 3 3 1   |                                     | 2/0 Zk 2/0 Zk                                                                        |
| NOOE001<br>NMAF035<br>NOOE048<br>NOOE114<br>NOOE116<br>NOOE135<br>NFPL141<br>7. Fyzika<br>Kód<br>NEVF158<br>NEVF169<br>NEVF140<br>NEVF100<br>NEVF100            | Základy optické spektroskopie Numerické metody zpracování experimentálních dat Základy konstrukce a výroby optických prvků Nové materiály a technologie Základy fotoniky Základní přístroje optické spektroskopie Kvantová teorie II  povrchů a plazmatu Název  Základy fyziky pevných látek Teoretické základy fyziky plazmatu Úvod do fyziky povrchů Úvod do fyziky plazmatu Seminář fyziky povrchů a plazmatu Měření a zpracování dat                       | 3 3 1 3 3 4 5 Kredity 5 5 3 3   |                                     | 2/0 Zk 2/0 Zk                                                                        |
| NOOE001<br>NMAF035<br>NOOE048<br>NOOE114<br>NOOE116<br>NOOE135<br>NFPL141<br>7. Fyzika<br>Kód<br>NEVF158<br>NEVF169<br>NEVF140<br>NEVF100<br>NEVF104<br>NEVF104 | Základy optické spektroskopie Numerické metody zpracování experimentálních dat Základy konstrukce a výroby optických prvků Nové materiály a technologie Základy fotoniky Základní přístroje optické spektroskopie Kvantová teorie II  povrchů a plazmatu Název  Základy fyziky pevných látek Teoretické základy fyziky plazmatu Úvod do fyziky povrchů Úvod do fyziky povrchů Seminář fyziky povrchů a plazmatu Měření a zpracování dat v materiálovém výzkumu | 3 3 1 3 4 5 Kredity 5 5 3 3 1 3 |                                     | 2/0 Zk 2/0 Zk  2/0 Zk 2/0 Zk 2/0 Zk LS 3/1 Z+Zk 3/1 Z+Zk 2/0 Zk 2/0 Zk 2/0 Zk 0/1 KZ |
| NOOE001<br>NMAF035<br>NOOE048<br>NOOE114<br>NOOE116<br>NOOE135<br>NFPL141<br>7. Fyzika<br>Kód<br>NEVF158<br>NEVF169<br>NEVF140<br>NEVF100<br>NEVF104<br>NEVF104 | Základy optické spektroskopie Numerické metody zpracování experimentálních dat Základy konstrukce a výroby optických prvků Nové materiály a technologie Základy fotoniky Základní přístroje optické spektroskopie Kvantová teorie II  povrchů a plazmatu Název  Základy fyziky pevných látek Teoretické základy fyziky plazmatu Úvod do fyziky povrchů Úvod do fyziky plazmatu Seminář fyziky povrchů a plazmatu Měření a zpracování dat                       | 3 3 1 3 4 5 Kredity 5 5 3 3 1   |                                     | 2/0 Zk 2/0 Zk                                                                        |

| NEVF102     | Úvod do počítačové fyziky                     | 6                    |                    | 2/2 Z+Zk           |
|-------------|-----------------------------------------------|----------------------|--------------------|--------------------|
|             | Technika tenkých vrstev                       | 5                    | _                  | 2/1  Z+Zk          |
|             | Vakuová technika                              | 5                    |                    | 2/1  Z+Zk          |
| NEVF119     | Elektronika povrchů                           | 3                    |                    | $2/0 \mathrm{~Zk}$ |
| NEVF164     | Úvod do statistického zpracování dat          | 3                    |                    | $2/0 \mathrm{~Zk}$ |
|             | ve fyzice povrchů a plazmatu                  |                      |                    | •                  |
| NEVF165     | Moderní přístroje ve fyzikálních              | 4                    |                    | 2/1  Z+Zk          |
|             | experimentech                                 |                      |                    | ,                  |
| NEVF166     | Pokročilé metody zkoumání povrchů             | 4                    | _                  | 2/1 Z+Zk           |
| 8. Biofyzii | ka a chemická fyzika                          |                      |                    |                    |
| Kód         | Název                                         | Kredity              | ZS                 | LS                 |
| NBCM183     | Obecná chemie                                 | 4                    | _                  | 2/1 Z+Zk           |
| NMAF035     | Numerické metody zpracování                   | 3                    |                    | $2/0 \mathrm{~Zk}$ |
|             | experimentálních dat                          |                      |                    | ,                  |
| NBCM094     | Úvod do problémů současné                     | 3                    |                    | $0/2~\mathrm{KZ}$  |
|             | biofyziky                                     | -                    |                    | /                  |
| NBCM112     | Metody magnetické rezonance                   | 4                    |                    | $3/0 \mathrm{Zk}$  |
| <b>-</b>    | v biofyzice                                   | _                    |                    | -,                 |
| NOFY079     | Kvantová teorie II                            | 6                    |                    | 3/1  Z+Zk          |
|             | Kvantová elektrodynamika                      | 3                    |                    | 2/0  Zk            |
|             | Měřicí technika ve fyzice                     | $\frac{3}{4}$        | $0/3 \mathrm{~Z}$  |                    |
|             | Symetrie molekul                              | 5                    | 2/1  Z+Zk          |                    |
|             | Počítačové modelování biomolekul              | $\overset{\circ}{4}$ | 1/2 Z+Zk           | 1/2 Z+Zk           |
|             | Astrobiologie                                 | $\overline{4}$       | 3/0  Zk            | -/ - <b>-</b>      |
|             | Proseminář kvantové chemie                    | $\overline{4}$       | $1/2 \mathrm{Z}$   | $1/2 \mathrm{~Z}$  |
|             | Struktura, dynamika a funkce                  | 3                    | 2/0  Zk            | -, <b>-</b> -      |
|             | biologických membrán                          | J                    | ,                  |                    |
| NBCM102     | Základy klasické radiometrie                  | 3                    | $2/0 \mathrm{~Zk}$ |                    |
| 11102       | a fotometrie                                  | 0                    | 2/ U ZIX           |                    |
| NBCM114     | Optická mikroskopie a vybrané                 | 3                    |                    | $2/0 \mathrm{Zk}$  |
| 11DOM114    | biofyzikální zobrazovací techniky             | J                    |                    | 2/0 LK             |
| MRCMose     | Experimentální technika                       | 3                    |                    | $2/0 \mathrm{~Zk}$ |
| 14DOM070    | v molekulární spektroskopii                   | J                    | <u> </u>           | 4/U ZK             |
|             |                                               |                      |                    |                    |
|             | vá a jaderná fyzika                           |                      |                    | _ a                |
| Kód         | Název                                         | Kredity              | ZS                 | LS                 |
| NOFY079     | Kvantová teorie II                            | 6                    |                    | 3/1 Z+Zk           |
| NJSF103     | Experimentální metody jaderné                 | 6                    |                    | 3/1  Z+Zk          |
|             | a částicové fyziky                            |                      |                    |                    |
| NJSF150     | Praktikum jaderné a částicové                 | 5                    |                    | $0/4~\mathrm{KZ}$  |
|             | fyziky                                        |                      |                    | ,                  |
| NJSF179     | Kvantová teorie – vybraná témata <sup>1</sup> | 3                    |                    | 1/1  Z+Zk          |
|             | Kvantová teorie — vybrané                     | 3                    |                    | 1/1  Zk            |
|             | aplikace 1                                    | 9                    |                    | -/                 |
|             | apwoo                                         |                      |                    |                    |

|                                         |                                                  |           |                   | Fyzika Bc           |
|-----------------------------------------|--------------------------------------------------|-----------|-------------------|---------------------|
| NJSF148                                 | Proseminář z jaderné a částicové<br>fyziky       | 2         | $0/2 \mathrm{~Z}$ | _                   |
| NJSF081                                 | Software a zpracování dat ve fyzice<br>částic I  | 3         | $1/1 \mathrm{Zk}$ |                     |
| NJSF109                                 | Software a zpracování dat ve fyzice<br>částic II | 4         | _                 | $2/1 \mathrm{~Zk}$  |
| <sup>1</sup> Vyučo                      | ván je vždy pouze jeden z těchto předmětů.       |           |                   |                     |
|                                         | natické a počítačové modelování v                | ve fyzice |                   |                     |
| Kód                                     | Název                                            | Kredity   | ZS                | LS                  |
| NMNM201                                 | Základy numerické matematiky                     | 8         | 4/2 Z+Zk          |                     |
|                                         | Počítačové řešení fyzikálních úloh               | 5         |                   | $0/4~\mathrm{KZ}$   |
|                                         | Mechanika kontinua                               | 4         |                   | 2/1  Z+Zk           |
|                                         | S Obyčejné diferenciální rovnice                 | 5         |                   | 2/1 Z+Zk $2/2$ Z+Zk |
|                                         | Pravděpodobnost a statistika 1                   | 5         |                   | 2/2 Z+Zk $2/2$ Z+Zk |
|                                         | _                                                | 5         |                   | •                   |
| 111111111111111111111111111111111111111 | SÚvod do metody konečných prvků                  | <u></u>   | <del></del>       | 2/2 Z+Zk            |
| 11. Apliko                              | ovaná fyzika: Materiály a optoelek               | tronika   |                   |                     |
| Kód                                     | Název                                            | Kredity   | ZS                | LS                  |
| NAFY102                                 | Chemie pro fyziky                                | 4         | 2/1 Z+Zk          |                     |
| NAFY103                                 | Základy elektroniky                              | 4         | 2/1  Z+Zk         | _                   |
|                                         | Experimentální metody fyziky materiálů I         | 6         | 3/1  Z+Zk         |                     |
| NFPL211                                 | Mechanické vlastnosti materiálů                  | 4         | 2/1 Z+Zk          |                     |
|                                         | Fyzika polovodičů                                | 4         | <del></del>       | 2/1  Z+Zk           |
|                                         | Experimentální metody fyziky<br>materiálů II     | 6         | _                 | 3/1  Z+Zk           |
| NOOE116                                 | Základy fotoniky                                 | 3         |                   | $2/0 \mathrm{Zk}$   |
|                                         | Nové materiály a technologie                     | 3         |                   | 2/0  Zk             |
|                                         | Speciální praktikum pro OOE II                   | 6         |                   | 0/4  KZ             |
|                                         | Fotovoltaika                                     | 3         |                   | 2/0  Zk             |
|                                         | Perspektivní materiály a jejich                  | 3         |                   | 2/0  Zk $2/0  Zk$   |
| TVI I LIUI                              | příprava                                         | 0         |                   | 2/0 ZK              |
| NAFY038                                 | Experimentální cvičení z přístrojové techniky    | 3         | _                 | $0/2 \mathrm{~Z}$   |
| 12. Apliko                              | ovaná fyzika: Fyzika v biomedicíne               | ě         |                   |                     |
| Kód                                     | Název                                            | Kredity   | ZS                | LS                  |
| NAFY101                                 | Fyzikální metody a technika<br>v biomedicíně I   | 9         | 4/2 Z+Zk          | _                   |
| NAFY037                                 | Radiobiologie                                    | 3         | 2/0  Zk           |                     |
|                                         | Fyzika živých organismů                          | 4         |                   | 2/1 Z+Zk            |
|                                         | Aplikace nerovnovážného plazmatu                 | 3         | 2/0  Zk           | _,                  |
|                                         | v lékařství                                      |           | ,                 |                     |
| NBCM010                                 | Bioorganická chemie                              | 5         | 2/1  Z+Zk         |                     |

| NBCM012 Biochemie                   |                                 | 3       | _       | 2/0 Zk    |
|-------------------------------------|---------------------------------|---------|---------|-----------|
| 13. Aplikovaná fyzika: Meteorologie |                                 |         |         |           |
| Kód                                 | Název                           | Kredity | ZS      | LS        |
| NAFY105                             | Základy fyziky atmosféry        | 3       | 2/0 Zk  | _         |
| NAFY106                             | Aplikovaná klimatologie         | 3       | 2/0  Zk |           |
| NAFY107                             | Základy aplikované meteorologie | 4       |         | 2/1  Z+Zk |
| NAFY108                             | Předpovědní a pozorovací metody | 3       | _       | 1/1 Z+Zk  |

#### Státní závěrečná zkouška

Studium je zakončeno státní závěrečnou zkouškou, která se skládá ze dvou částí:

- z obhajoby bakalářské práce
- z ústní části zkoušky

### Podmínky pro přihlášení ke státní závěrečné zkoušce

Podmínky pro přihlášení k jiné než poslední části státní závěrečné zkoušky jsou stanoveny vnitřním předpisem Pravidla pro organizaci studia na MFF UK.

### Podmínky pro přihlášení k poslední části státní závěrečné zkoušky

- získání alespoň 180 kreditů
- splnění všech povinných předmětů programu
- splnění povinně volitelných předmětů v rozsahu alespoň 22 kreditů (z toho musí být alespoň 5 kreditů ze skupiny 1, 5 kreditů ze skupiny 2, 12 kreditů ze skupiny 3)
- odevzdání vypracované bakalářské práce ve stanoveném termínu

### Bakalářská práce

Bakalářská práce se zpravidla zadává v zimním semestru třetího roku studia. Téma bakalářské práce si student volí z nabídky fyzikálních pracovišt.

### Požadavky k ústní části státní závěrečné zkoušky

Zkouška má přehledový charakter. Jsou kladeny jen širší otázky a žádá se, aby posluchač prokázal pochopení základních problémů, byl schopen je ilustrovat na konkrétních situacích a osvědčil určitou míru syntézy a hlubšího pochopení. Kromě znalosti teorie jevu se tedy předpokládá i znalost základní metodiky měření příslušných veličin. Předmětem zkoušky jsou následující partie fyziky:

### 1. Mechanika hmotných bodů

Základní kinematické veličiny, Newtonovy pohybové zákony. Inerciální a neinerciální soustavy. První a druhá impulzová věta. Keplerovy zákony. Harmonický oscilátor (netlumený, tlumený, vynucené kmity). Pohyb s vazbami, d'Alembertův princip. Lagrangeovy rovnice 2. druhu. Hamiltonovy kanonické rovnice a Poissonovy závorky. Hamiltonův variační princip.

### 2. Mechanika tuhého tělesa

Eulerovy úhly a Eulerovy kinematické rovnice. Tenzor setrvačnosti. Eulerovy dynamické rovnice, pohyb jednoduchých setrvačníků.

### 3. Mechanika kontinua

Tenzor napětí a deformace, Hookův zákon. Rovnice struny a její řešení. Pohybová rovnice ideální tekutiny, rovnice kontinuity, Bernoulliova rovnice. Viskózní tekutiny, Navierovy-Stokesovy rovnice, laminární a turbulentní proudění.

### 4. Speciální teorie relativity

Otázka éteru a Michelsonův-Morleyův experiment. Výchozí principy teorie relativity, Lorentzova transformace. Minkowského prostoročas, světelný kužel. Relativistická pohybová rovnice, ekvivalence hmotnosti a energie. Maxwellovy rovnice ve čtyřrozměrném formalizmu.

### 5. Termodynamika a statistická fyzika

Teplo, teplota, tepelná kapacita, tlak. Vnitřní energie, termodynamické potenciály. Hlavní zákony termodynamiky, entropie. Ideální plyn, stavová rovnice, Carnotův cyklus. Fázový prostor, rozdělovací funkce, Liouvilleova rovnice. Maxwellovo-Boltzmannovo rozdělení. Základní statistická rozdělení, statistická entropie.

### 6. Elektrostatika, stacionární elektrické a magnetické pole

Elektrostatické pole ve vakuu (Gaussův a Coulombův zákon, elektrostatický potenciál). Elektrostatické pole v přítomnosti vodičů a v dielektrikách (polarizace, multipólový rozvoj, susceptibilita a permitivita). Stacionární elektrické pole a elektrický proud. Stacionární magnetické pole (Biotův-Savartův a Ampérův zákon). Magnetické pole v látkovém prostředí (magnetizace, typy magnetických látek, susceptibilita a permeabilita).

### 7. Elektrodynamika

Elektromagnetická indukce. Kvazistacionární elektrické a magnetické pole. Elektrické obvody (stacionární, střídavé, neustálený stav, metody řešení lineárních obvodů, Kirchhoffova pravidla). Maxwellovy rovnice. Elektromagnetické potenciály a jejich vlastnosti. Zákony zachování v teorii elektromagnetického pole.

### 8. Elektromagnetické vlny

Vlnová rovnice, rovinná elektromagnetická vlna. Polarizační vlastnosti elektromagnetické vlny. Šíření elektromagnetické vlny v látkovém prostředí (konstanta šíření, útlum, komplexní index lomu, disperze). Odraz a lom elektromagnetických vln na rozhraní dvou prostředí (Fresnelovy vzorce). Elektromagnetické vlny ve vlnovodech. Dipólové elektromagnetické záření.

### 9. Optika

Interference světla, optické interferometry. Koherence světla. Ohyb světla (Fraunhoferova a Fresnelova aproximace, optická ohybová mřížka, Braggova rovnice). Šíření světla v anizotropních látkách (použití dvojlomných látek). Geometrická optika (eikonálová rovnice, geometrická optika sférických ploch, zobrazovací rovnice). Optické zobrazovací přístroje. Spektrální přístroje a základní metody optické spektroskopie. Základy holografie. Princip laseru. Tepelné záření, zákony záření absolutně černého tělesa.

### 10. Struktura atomů, molekul a kondenzovaných látek

Dualismus vlna-částice, fotoefekt, Comptonův rozptyl. Bohrův model atomu. Základní typy vazeb mezi atomy, meziatomový potenciál. Popis symetrie molekul a krystalů pomocí grup, kvazikrystaly. Krystalová struktura látek, základní typy mříží, prostorové grupy. Experimentální studium struktury látek pomocí rtg. záření, difrakční

podmínky, strukturní faktor. Einsteinův a Debyeův model vibrací atomů v kondenzovaných látkách. Molekulové orbitaly, metoda LCAO, hybridizace orbitalů. Model volných a téměř volných elektronů, pásová struktura pevných látek, Blochův teorém.

### 11. Formalismus kvantové teorie

Popis stavů kvantového systému (princip superpozice, vlnová funkce, relace neurčitosti). Reprezentace fyzikálních veličin, diskrétní a spojité spektrum, stacionární Schrödingerova rovnice. Souřadnicová, impulsová a maticová formulace kvantové mechaniky. Variační metoda a stacionární poruchová metoda hledání vázaných stavů.

### 12. Kvantová dynamika

Nestacionární Schrödingerova rovnice, rovnice kontinuity, Ehrenfestovy rovnice. Evoluce obecného kvantového systému, kvantové měření. Integrály pohybu, kvantová čísla, symetrie v kvantové mechanice.

### 13. Jednoduché kvantové systémy

Kvantování energie pro vázanou částici: pravoúhlá potenciálová jáma a harmonický oscilátor. Volná částice, vlnové balíky, průchod částice potenciálovou bariérou. Orbitální a spinový moment hybnosti, základy skládání momentů hybnosti. Částice ve sféricky symetrickém potenciálu, atom vodíku. Částice v elektromagnetickém poli: Zeemanovo štěpení hladin, Larmorova precese. Systémy s více částicemi: nerozlišitelnost, Pauliho princip, jednočásticová aproximace.

### 14. Jaderné záření

Interakce jaderného záření s látkou. Detekce a spektroskopie jaderného záření. Využití jaderného záření.

### 15. Atomové jádro

Základní vlastnosti a charakteristiky jádra. Jaderné síly, vazbová energie jádra. Radioaktivita, jaderné reakce. Jaderné zdroje energie.

### 16. Částicová fyzika

Fundamentální částice (kvarky, leptony, intermediální bosony). Hadrony (baryony a mezony). Základní interakce mezi částicemi, zákony zachování. Částicové experimenty.

# Navazující magisterské studium od akademického roku 2023/24

### 1. Základní informace

### Studijní programy nav. magisterského studia v oblasti vzdělávání Fyzika

V oblasti vzdělávání Fyzika nabízíme na magisterském stupni studia deset studijních programů.

| Astronomie a astrofyzika                      | 1  |
|-----------------------------------------------|----|
| Geofyzika a fyzika planet                     | 2  |
| Fyzika atmosféry, meteorologie a klimatologie | 3  |
| Teoretická fyzika                             | 4  |
| Fyzika kondenzovaných soustav a materiálů     | 5  |
| Optika a optoelektronika                      | 6  |
| Fyzika povrchů a plazmatu                     | 7  |
| Biofyzika a chemická fyzika                   | 8  |
| Částicová a jaderná fyzika                    | 9  |
| Matematické a počítačové modelování ve fyzice | 10 |

### 2. Studijní plány jednotlivých programů

### 1. Astronomie a astrofyzika

Garantující pracoviště: Astronomický ústav UK

Garant programu: prof. RNDr. David Vokrouhlický, DrSc.

Charakteristika studijního programu:

Magisterské studium programu Astronomie a astrofyzika zdokonaluje základní znalosti z fyziky, matematiky a programování. Studenti jsou vedeni k porozumění základům klasické astronomie, tj. astrometrie a nebeské mechaniky, a základům klasické astrofyziky, tj. fyzice plazmatu ve vesmíru, stavbě a vývoji hvězd, teorii hvězdných atmosfér, fyzice těles sluneční soustavy a stavbě a dynamice galaxií. Seznamují se rovněž se sluneční fyzikou, relativistickou astrofyzikou, extragalaktickou astronomií a kosmologií. Prostřednictvím pravidelných seminářů, diplomové práce, praxe na observatořích a tematicky zaměřených přednášek externích odborníků získávají studenti představu o současných problémech řešených v jednotlivých oborech astronomie a astrofyziky a o metodách vědecké práce.

Profil absolventa studijního programu a cíle studia:

Absolventi mají pokročilé znalosti v hlavních partiích klasické a moderní astronomie, astrofyziky a kosmologie, opírající se o spolehlivý základ v obecných oblastech fyziky – teoretické mechanice, kvantové fyzice, termodynamice, statistické fyzice a obecné teorii relativity. Mají přehled o moderní pozorovací technice a metodách, jsou připraveni

na analýzy pozorovacích dat a tvorbu numerických modelů. Jsou rovněž zběhlí ve sdělování odborných poznatků formou prezentací nebo psaných textů, a to též v anglickém jazyce. U většiny absolventů se předpokládá nástup profesní dráhy vědeckého pracovníka. Nabyté obecné vzdělání ve fyzice dovoluje absolventům uplatnění i v příbuzných oborech a všude, kde je třeba abstraktní uvažování nebo řešení náročných problémů.

### Doporučený průběh studia

Předpokladem úspěšného magisterského studia tohoto programu je získání základních znalostí na úrovni NAST035 Základy astronomie a astrofyziky. Tento předmět se obvykle zapisuje ve třetím roce studia bakalářského programu Fyzika. Pokud posluchač tento předmět neabsolvoval, měl by si ho ve vlastním zájmu zapsat jako volitelný v prvním roce navazujícího magisterského studia. Obsah uvedeného předmětu je součástí společných požadavků státní závěrečné zkoušky.

### 1. rok magisterského studia

| Kód     | Název                          | Kredity | ZS                | LS                 |
|---------|--------------------------------|---------|-------------------|--------------------|
| NAST013 | Astrofyzika I                  | 6       | $4/0 \mathrm{Zk}$ | _                  |
| NAST008 | Kosmická elektrodynamika       | 5       | 3/1  Z+Zk         |                    |
| NAST005 | Nebeská mechanika I            | 6       | $4/0 \mathrm{Zk}$ |                    |
| NTMF037 | Relativistická fyzika I        | 9       | 4/2 Z+Zk          |                    |
| NAST017 | Speciální praktikum I          | 3       | $0/2 \mathrm{~Z}$ |                    |
| NAST014 | Astrofyzika II                 | 6       |                   | $4/0 \mathrm{Zk}$  |
| NSZZ023 | Diplomová práce I              | 6       |                   | $0/4 \mathrm{~Z}$  |
| NAST024 | Elementární procesy v kosmické | 4       |                   | $3/0 \mathrm{~Zk}$ |
|         | fyzice                         |         |                   |                    |
| NAST003 | Galaktická a extragalaktická   | 4       |                   | $3/0 \mathrm{Zk}$  |
|         | astronomie I                   |         |                   |                    |
| NAST009 | Kosmologie I                   | 4       |                   | $3/0 \mathrm{Zk}$  |
| NAST001 | Sluneční fyzika I              | 3       |                   | 2/0  Zk            |
| NAST018 | Speciální praktikum II         | 3       |                   | $0/2 \mathrm{~Z}$  |
| NAST002 | Hvězdné atmosféry              | 4       |                   | $3/0 \mathrm{~Zk}$ |
| NAST011 | Nebeská mechanika II           | 6       |                   | $4/0 \mathrm{~Zk}$ |
| NTMF038 | Relativistická fyzika II       | 9       |                   | 4/2 Z+Zk           |
| NAST031 | Diplomový seminář              | 3       | $0/2 \mathrm{~Z}$ | $0/2 \mathrm{~Z}$  |

### 2. rok magisterského studia

| Kód     | Název                          | Kredity | ZS                | LS                 |
|---------|--------------------------------|---------|-------------------|--------------------|
| NSZZ024 | Diplomová práce II             | 9       | $0/6 \mathrm{~Z}$ | _                  |
| NSZZ025 | Diplomová práce III            | 15      |                   | $0/10 \mathrm{~Z}$ |
| NAST020 | Fyzika sluneční soustavy       | 3       | $2/0 \mathrm{Zk}$ |                    |
| NAST004 | Galaktická a extragalaktická   | 4       | 3/0  Zk           |                    |
|         | astronomie II                  |         |                   |                    |
| NAST039 | Kosmologie II                  | 4       | 3/0  Zk           |                    |
| NAST037 | Sluneční fyzika II             | 3       | 2/0  Zk           |                    |
| NAST021 | Vybrané kapitoly z astrofyziky | 3       | 2/0  Zk           |                    |
|         |                                |         |                   |                    |

| NAST110   | Seminář Astronomického ústavu UK (PV)      | 3       | $0/2 \mathrm{~Z}$ | $0/2~\mathrm{Z}$   |
|-----------|--------------------------------------------|---------|-------------------|--------------------|
| Povinně v | volitelné předměty                         |         |                   |                    |
| Kód       | Název                                      | Kredity | ZS                | LS                 |
| NAST002   | Hvězdné atmosféry                          | 4       |                   | $3/0 \mathrm{Zk}$  |
| NAST011   | Nebeská mechanika II                       | 6       |                   | $4/0 \mathrm{Zk}$  |
| NTMF038   | Relativistická fyzika II                   | 9       |                   | 4/2  Z+Zk          |
| NAST031   | Diplomový seminář                          | 3       | $0/2 \mathrm{~Z}$ | $0/2 \mathrm{~Z}$  |
| NAST020   | Fyzika sluneční soustavy                   | 3       | 2/0  Zk           | <u>.</u>           |
| NAST004   | Galaktická a extragalaktická astronomie II | 4       | 3/0  Zk           |                    |
| NAST039   | Kosmologie II                              | 4       | $3/0 \mathrm{Zk}$ |                    |
|           | Sluneční fyzika II                         | 3       | 2/0  Zk           |                    |
| NAST021   | Vybrané kapitoly z astrofyziky             | 3       | 2/0  Zk           |                    |
|           | Seminář Astronomického ústavu UK (PV)      | 3       | 0/2 Z             | $0/2 \mathrm{~Z}$  |
| Volitelné | předměty                                   |         |                   |                    |
| Kód       | Název                                      | Kredity | ZS                | LS                 |
| NAST012   | Vznik a vývoj galaxií                      | 3       | 2/0  Zk           |                    |
| NAST019   | Dvojhvězdy                                 | 3       |                   | $2/0 \mathrm{~Zk}$ |
| NAST026   | Dějiny astronomie                          | 3       | $1/1 \mathrm{~Z}$ | $1/1 \mathrm{~Z}$  |
|           | Aktivní galaxie                            | 3       |                   | $2/0 \mathrm{~Zk}$ |
| NAST034   | Fyzika galaxií a kompaktních<br>objektů    | 3       | $0/2 \mathrm{~Z}$ | $0/2 \mathrm{~Z}$  |
| NAST036   | Analýza dat a modelování<br>v astronomii   | 3       | _                 | 2/0 Zk             |
| NAST038   | Pokročilé metody sluneční fyziky           | 3       | $2/0 \mathrm{Zk}$ | _                  |
|           | Úvod do radioastronomie                    | 3       | 2/0  Zk           |                    |
| NAST041   | Exoplanety                                 | 3       | 2/0 Zk            | _                  |

Některé předměty se přednášejí ve dvouletém intervalu anebo se zaměřují každý rok na jiná témata. Zapisuje se ten předmět, který se v daném školním roce koná.

### Podmínky pro přihlášení ke státní závěrečné zkoušce

Podmínky pro přihlášení k jiné než poslední části státní závěrečné zkoušky jsou stanoveny vnitřním předpisem Pravidla pro organizaci studia na MFF UK.

Podmínky pro přihlášení k poslední části státní závěrečné zkoušky:

- získání alespoň 120 kreditů
- splnění všech povinných předmětů zvoleného programu
- -splnění povinně volitelných předmětů zvoleného programu v rozsahu alespo<br/>ň $25\,$ kreditů
- odevzdání vypracované diplomové práce ve stanoveném termínu

Předmět lze splnit jeho úspěšným absolvováním či uznáním z předchozího studia.

### Požadavky k ústní části státní závěrečné zkoušky

### A. Společné požadavky

### 1. Astronomie a astronomická pozorování

Astrometrie a poziční astronomie: Souřadnicové systémy a jejich transformace. Pohyb pozorovatele a zdroje záření, aberace, Dopplerův jev. Vliv atmosféry na pozorování, refrakce, extinkce. Paralaxa. Precese, nutace. Vlastní pohyby hvězd. Metody určování souřadnic. Čas a jeho měření.

Efemeridová astronomie a astrodynamika: Problém dvou těles, elementy dráhy, eliptické rozvoje, výpočet efemeridy. Určování drah těles sluneční soustavy a dvojhvězd. Zatmění a zákryty. Omezený problém tří těles — kruhový a eliptický. Jacobiho integrál. Tisserandovo kritérium a parametr. Hillovy plochy nulové rychlosti. Hillova úloha.

Sluneční soustava: Popis pohybu Měsíce. Planetky, satelity planet, komety. Meziplanetární plyn a magnetické pole, prach a drobná pevná tělíska, vliv záření na jejich pohyb. Meteority. Metody datování. Charakteristické procesy ve vývoji terestrických a obřích planet. Představy o tvorbě planetárních soustav. Základní charakteristiky exoplanetárních soustav.

Přístroje a metody pozorování: Optické systémy, jejich vady, metody navrhování. Dalekohledy. Zpracování snímků fotografických, CCD. Fotometrie. Instrumenty družicových observatoří. Spektrografy, spektroskopie. Radioastronomie, detekce gravitačních vln a neutrin.

Základy spektroskopie: Spojité a čárové spektrum. Stavba atomu vodíku, hélia a těžších prvků. Vlivy určující profily spektrálních čar. Zeemanův jev. Metastabilní hladiny, zakázané čáry, masery. Termodynamická rovnováha — lokální LTE, non-LTE, Boltzmannova a Sahova rovnice, rovnice statistické rovnováhy. Rovnice přenosu záření. Modelování hvězdných atmosfér, šedá atmosféra. Redistribuce.

Stelární astronomie: Fotometrické systémy, magnitudy. Určování hmotností kosmických objektů, dynamická paralaxa, funkce hmotnosti. Určování rozměrů hvězd, efektivní teplota, úhlové průměry. Teploty hvězd, spektrální klasifikace. Hertzsprungův-Russellův diagram (HRD). Vztah hmotnost–zářivý výkon.

Dvojhvězdy: Fotometrie a spektroskopie dvojhvězd, určování elementů. Zvláštnosti vývoje těsných dvojhvězd. Kataklyzmické proměnné. Vícenásobné systémy.

### 2. Astrofyzika, hvězdy, galaxie

Astrofyzikální procesy: Záření urychleného náboje; brzdné záření. Opacita Thompsonova rozptylu; opacita rozptylu na volných elektronech v poli iontů. Liouvilleův teorém a zachování intenzity podél paprsku. Momenty Boltzmannovy rovnice pro fotony — rovnice přenosu záření. Synchrotronové záření. Comptonův rozptyl; inverzní Comptonův rozptyl. Sunyaevův-Zel'dovičův jev. Základní model pulzaru — vyrovnaný rotátor. Částice a tekutiny v astrofyzice — základní dynamické rovnice. Sféricky symetrická, ustálená akrece. Hvězda letící mlhovinou — Bondiho akrece. Disková akrece — model tenkého disku.

Fyzika plazmatu: Základy statistické fyziky. Rozdělovací funkce, Liouvilleův teorém, Liouvilleova rovnice. Boltzmannova rovnice a její momenty. Termodynamická rovnováha. Maxwellovo-Boltzmannovo rozdělení. Sahova rovnice. Definice plazmatu, teplota, kolektivní chování, kvazineutralita. Debyeova délka. Pohyb nabité testovací částice v magnetických a elektrických polích, Larmorova frekvence a poloměr, drifty. Magnetická zrcadla. Magnetický moment. Radiační pásy. Základy magnetohydrodynamiky. Dvoutekutinový a jednotekutinový model plazmatu. Vlny v plazmatu. Alfvénova rychlost. Difúze a odpor v plazmatu. Ambipolární difúze. Specifický odpor plazmatu. Stabilita plazmatu. Hydromagnetická rovnováha. Parametr beta. Difúze magnetického pole do plazmatu. Plazmové nestability. Landauův útlum.

Vnitřní stavba hvězd: Jaderné reakce ve hvězdách, stavová rovnice hvězdné látky, opacita. Základní rovnice vnitřní stavby, počáteční a okrajové podmínky, numerické řešení. Vývoj osamocených hvězd, stopy a izochrony na HR diagramu, fáze vývoje. Způsoby srovnání s pozorováním; polytropy, Laneova-Emdenova rovnice. Hvězdný vítr, rotace hvězd, vývoj dvojhvězd, Rocheův model. Pulzace, asteroseismologie; protohvězdy, supernovy, příčiny proměnnosti hvězd.

Sluneční fyzika: Globální parametry Slunce, jeho vývoj. Konvekce, teorie směšovací délky. Lineární adiabatické oscilace nerotujícího Slunce ve sférické geometrii. Globální a lokální helioseismologie, přímé a inverzní úlohy. Rotace Slunce, von Zeipelův paradox, velkorozměrový systém proudění v konvektivní zóně. Sluneční magnetismus, cyklus, dynamo. Sluneční skvrny. Protuberance a erupce. Atmosféra Slunce, koróna, ohřev koróny. Sluneční vítr. Kosmické počasí.

Mezihvězdná látka: Rozložení prachu a plynu v Galaxii, typy útvarů mezihvězdné látky, metody pozorování. Atomy a molekuly v mezihvězdném prostoru — spektra, chemické reakce. Oblasti ionizovaného vodíku (HII) a jejich fyzika. Prachová zrna, fyzikální vlastnosti a optické projevy — extinkce, polarizace. Magnetická pole v Galaxii, Faradayova rotace. Dynamika mezihvězdné látky. Vícesložkový model mezihvězdného plynu, role supernov, fyzika rázových vln. Funkce ohřevu a ochlazování. Stabilita oblaků mezihvězdné látky, Jeansovo kritérium, fragmentace, tvoření hvězd, turbulence. Věta o viriálu. Čára 1420 MHz, rozložení a rychlosti vodíku HI. Hmotnost galaxií a skrytá hmota. Molekulární vodík, molekuly CO, molekulární oblaka, anomálie v rozdělení HI.

Galaktická astronomie: Stavba galaxie, hvězdné populace. Rotační křivky galaxií. Oortovy konstanty, elipsoid rychlostí. Pohyb v epicyklu, pohyb kolmo na disk. Dynamická hustota. Boltzmannova rovnice. Jeansovy teorémy. Relaxační čas hvězdných soustav. Jeansovy rovnice. Teorém o viriálu. Dvojice potenciál hustota. Modely galaxií, klasifikace galaxií. Určování vzdáleností, rozložení galaxií ve vesmíru.

Relativistická fyzika, astrofyzika a kosmologie: Prostoročas, čtyřrozměrný formalismus. Paralelní přenos a rovnice geodetiky, kovariatní derivace. Posun frekvence v gravitačním poli. Křivost prostoročasu. Tenzor energie a hybnosti. Einsteinovy rovnice gravitačního pole. Schwarzschildovo a Kerrovo řešení Einsteinových rovnic. Gravitační kolaps a černé díry. Relativistické modely hvězd. Separace sil krátkého a dlouhého dosahu. Rovnice pro hmotu a pro gravitační potenciál; TOV rovnice. Bílí trpaslíci, neutronové hvězdy a Chandrasekharova mez. Stavové rovnice pro chladnou hmotu a jejich integrace. Linearizovaná teorie gravitace a rovinné gravitační vlny. Homogenní a izotropní kosmologické modely. Hubbleův zákon, funkce expanze, decelerační parametr. Role látky a záření, kosmologická konstanta.

#### B. Užší zaměření

Student si volí jeden z následujících čtyř tematických okruhů.

#### 1. Nebeská mechanika a fyzika těles sluneční soustavy

Nebeská mechanika: Základy teorie poruch. Lagrangeova a Gaussova forma rovnic poruchového počtu. Nesingulární proměnné. Sekulární a periodické členy aproximativního řešení rovnic poruchového počtu. Rozvoj gravitačního pole kosmických těles do

multipólní řady, zonální, teserální a sektorální členy, Stokesovy koeficienty. Sekulární změny dráhy družice vlivem  $J_2$  a  $J_3$  potenciálů. Relativní a Jacobiho souřadnice problému N-těles. Kozaiova úloha, sekulární řešení. Lagrangeova-Laplaceova sekulární teorie pohybu planet, fundamentální frekvence systému, sekulární pohyb asteroidu v gravitačním poli planet, sekulární rezonance.

Fyzika těles sluneční soustavy: Protoplanetární disk, akrece, planetesimály a embrya, migrace planet. Měsíce a slapy, planetky a jejich rodiny, modely srážek. Komety, dynamika prachu, klasifikace meteoritů, radiometrie.

## 2. Galaktická a extragalaktická astronomie

Morfologie galaxií, příčky a prstence. Chemický vývoj galaxií. Klasifikace dle Hubblea a de Vaucouleurse. Epicyklická aproximace. Dynamika v poli příčky. Lindbladovy rezonance, výměna momentu hybnosti na Lindbladových rezonancích a korotaci. Jeansova gravitační nestabilita. Nestability v rotujících systémech. Nestability v dvourozměrných systémech — Toomreho kritérium. Teorie Lina a Shu.

Relaxační čas. Dynamické tření. Věta o viriálu. Gravotermální katastrofa. Jeansův teorém. Polytropické modely hvězdokup (Plummerova sféra, izotermální sféra). Fokkerova-Planckova aproximace. Rosenbluthovy potenciály. Relaxační procesy v systémech s dominantní černou dírou — Bahcalovo-Wolfovo rozdělení. Rezonanční relaxace.

Aktivní galaktická jádra — observační přehled. Standardní model AGN. Vertikálně průměrovaná řešení akrečních disků (slim disky). S-diagram. Viskózní a termální stabilita akrečních disků.

## 3. Sluneční fyzika a hvězdné atmosféry

Struktury magnetického pole. Extrapolace magnetických polí. Rekonexe magnetických polí. Emisní procesy v plazmatu. Kvazilineární teorie. Urychlování částic. Svazky částic a jejich nestability. Numerické MHD a částicové kódy. Sluneční rádiová vzplanutí. Sluneční erupce a výrony koronální hmoty.

Opacita, emisivita, rozptyl záření, rovnice přenosu záření, zdrojová funkce. Zářivé a srážkové přechody v čarách a kontinuích. TE a LTE, non-LTE problém pro dvouhladinový model atomu. Vícehladinový atom s kontinuem, rovnice statistické rovnováhy. Metody řešení non-LTE problému (kompletní linearizace, ALI metody). Modelování hvězdných atmosfér, specifické modely (sluneční atmosféra, sférické modely hvězd, vícerozměrný přenos záření). Základy zářivé (magneto)-hydrodynamiky, časově-závislá excitace a ionizace. Fyzikální podmínky konkrétních typů hvězd, planet a akrečních disků a jejich zahrnutí do modelů.

#### 4. Relativistická fyzika a kosmologie

Naivní kosmologické modely (Bruno, Galilei, Newton, Halley,...). Homogenita a izotropie rozložení extragalaktických objektů, vzdálenosti a časové škály ve vesmíru. Olbersův paradox. Rudý posuv a Hubbleův vztah. Homogenita a izotropie; Killingovy vektory, maximálně symetrické variety a podvariety. Ricciho tenzor, Ricciho skalár. Minkowského, de Sitterova a anti-de Sitterova metrika. Metrika steady-state modelu. Friedmannova metrika. Kosmologický princip. Konformní čas. Einsteinovy rovnice bez přítomnosti tlaku a s tlakem, kritická hustota. Kosmologická konstanta. Decelerační parametr. Reliktní záření. Zastoupení helia ve vesmíru. Zrychleně expandující vesmír. Zákony zachování v obecné teorii relativity. 3+1 rozštěpení a počáteční problém v obecné teorii relativity, lagrangeovský a hamiltonovský formalismus.

## 2. Geofyzika a fyzika planet

Garantující pracoviště: Katedra geofyziky

Garant programu: prof. RNDr. Ondřej Čadek, CSc.

#### Charakteristika studijního programu:

Obor Geofyzika a fyzika planet se zabývá studiem Země a planetárních těles fyzikálními metodami. Zahrnuje fyziku zemětřesení a problematiku šíření seismických vln, termální vývoj a deformaci zemského tělesa na různých časových škálách, studium tíhového a elektromagnetického pole Země pozemskými i satelitními metodami a výzkum planet a jejich měsíců. K interpretaci geofyzikálních jevů používá metod matematického modelování. Studium prohlubuje základní znalosti fyziky, matematiky a programování a rozvíjí dovednosti potřebné pro uplatnění v základním i aplikovaném geofyzikálním výzkumu. Při výuce je kladen důraz na úzké sepětí studia s posledním vývojem vědeckého bádání, do něhož se studenti zpravidla zapojují již v rámci své diplomové práce.

## Profil absolventa studijního programu a cíle studia:

Absolvent má spolehlivé znalosti v obecných oblastech fyziky, zejména v mechanice kontinua, termodynamice a teorii elektromagnetického a gravitačního pole, a hlubší znalosti a dovednosti v hlavních oblastech geofyzikálního výzkumu. Je schopen tvořivě řešit problémy související se vznikem zemětřesení a šířením seismických vln zemským nitrem, analyzovat a interpretovat jevy pozorované v elektromagnetickém a tíhovém poli Země a planet a provádět počítačové simulace termálního a deformačního vývoje planet a jejich měsíců. Při řešení těchto problémů používá metody numerické matematiky a matematického modelování, které dokáže efektivně počítačově implementovat. Výsledky své odborné práce je schopen přehledně a srozumitelně sdělovat formou prezentací a odborných textů v češtině i angličtině.

### Doporučený průběh studia

## 1. rok magisterského studia

| Kód     | Název                         | Kredity | ZS          | LS                |
|---------|-------------------------------|---------|-------------|-------------------|
| NGEO035 | Dynamika pláště a litosféry   | 6       | 2/2 Z+Zk    |                   |
| NGEO080 | Geomagnetismus a geoelektřina | 6       | 3/1  Z+Zk   |                   |
| NGEO069 | Mechanika kontinua II         | 6       | 2/2 Z+Zk    |                   |
| NGEO082 | Seismologie                   | 5       | 2/1  Z+Zk   |                   |
| NGEO002 | Šíření seismických vln        | 5       | 2/1  Z+Zk   |                   |
| NSZZ023 | Diplomová práce I             | 6       |             | $0/4 \mathrm{~Z}$ |
| NGEO057 | Metody zpracování             | 5       |             | 2/1  Z+Zk         |
|         | geofyzikálních dat            |         |             |                   |
| NGEO022 | Numerické metody ve Fortranu  | 6       |             | 3/1  Z+Zk         |
| NGEO081 | Obrácené úlohy a modelování   | 6       |             | 2/2 Z+Zk          |
|         | v geofyzice                   |         |             |                   |
| NGEO072 | Desková tektonika a subdukce  | 3       | <del></del> | $2/0 \mathrm{Zk}$ |
|         | litosféry                     |         |             | ,                 |
| NGEO061 | Elektromagnetická indukce     | 5       |             | 2/1  Z+Zk         |
|         | a vodivost Země               |         |             | ,                 |
| NGEO074 | Fyzika zemětřesného zdroje    | 5       |             | 2/1 Z+Zk          |
|         | Praktikum ze seismologie      | 3       |             | $0/2 \mathrm{~Z}$ |
|         | 9                             |         |             | ,                 |

| NGEO106<br>NMAF001 | Struktura a dynamika planet Termodynamika přírodních systémů Vybrané kapitoly z parciálních diferenciálních rovnic Programování ve Fortranu | 3<br>5<br>3 |                    | 2/0 Zk<br>2/1 Z+Zk<br>2/0 Zk |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------|------------------------------|
|                    | Metoda konečných prvků v geofyzice                                                                                                          | 3           |                    | $0/2 \mathrm{~Z}$            |
| 2. rok mag         | gisterského studia                                                                                                                          |             |                    |                              |
| Kód                | Název                                                                                                                                       | Kredity     | ZS                 | LS                           |
|                    | Diplomová práce II                                                                                                                          | 9           | 0/6 Z              |                              |
|                    | Stavba Země                                                                                                                                 | 4           | 3/0  Zk            |                              |
|                    | Tíhové pole Země a planet                                                                                                                   | 5           | 2/1  Z+Zk          |                              |
| NSZZ025            | Diplomová práce III                                                                                                                         | 15          | _                  | $0/10 \mathrm{~Z}$           |
| NGEO102            | Inverzní modelování v geodynamice                                                                                                           | 3           | $2/0 \mathrm{~Zk}$ | <del></del>                  |
| NGEO032            | Paprskové metody v seismice                                                                                                                 | 5           | 2/1  Z+Zk          |                              |
| NGEO030            | Rotace Země                                                                                                                                 | 4           | 3/0  Zk            |                              |
| NGEO034            | Seismické povrchové vlny                                                                                                                    | 5           | 2/1  Z+Zk          |                              |
| NGEO103            | Seismologie silných pohybů                                                                                                                  | 3           | 2/0  Zk            |                              |
|                    | Vybrané partie z teorie geodynama                                                                                                           | 3           | 2/0  Zk            |                              |
|                    | Fortran 95 a paralelní programování                                                                                                         | 3           |                    | $2/0 \mathrm{Zk}$            |
|                    | Fyzika ionosféry a magnetosféry                                                                                                             | 3           |                    | 2/0 Zk                       |
|                    | Základy rotační seismologie                                                                                                                 | 3           |                    | 2/0 Zk                       |
|                    | Geochemie a kosmochemie                                                                                                                     | 5           | 2/1 Z+Zk           |                              |
|                    | Povrchové procesy a tektonika                                                                                                               | 3           | 2/0  Zk            |                              |
| 11020100           | planet                                                                                                                                      | 9           | <b>2</b> / 0 211   |                              |
| Povinně v          | olitelné předměty                                                                                                                           |             |                    |                              |
| Kód                | Název                                                                                                                                       | Kredity     | ZS                 | LS                           |
| NGEO072            | Desková tektonika a subdukce<br>litosféry                                                                                                   | 3           | _                  | 2/0 Zk                       |
| NGEO061            | Elektromagnetická indukce<br>a vodivost Země                                                                                                | 5           |                    | 2/1 Z+Zk                     |
| NGEO074            | Fyzika zemětřesného zdroje                                                                                                                  | 5           |                    | 2/1 Z+Zk                     |
| NGEO011            | Praktikum ze seismologie                                                                                                                    | 3           |                    | $0/2 \mathrm{~Z}$            |
| NGEO099            | Struktura a dynamika planet                                                                                                                 | 3           |                    | 2/0  Zk                      |
| NGEO106            | Termodynamika přírodních systémů                                                                                                            | 5           |                    | 2/1  Z+Zk                    |
| NMAF001            | Vybrané kapitoly z parciálních<br>diferenciálních rovnic                                                                                    | 3           | _                  | 2/0 Zk                       |
| NCEO102            | Inverzní modelování v geodynamice                                                                                                           | 3           | $2/0 \mathrm{~Zk}$ |                              |
|                    | Paprskové metody v seismice                                                                                                                 | 5           | ,                  |                              |
|                    | Rotace Země                                                                                                                                 |             | 2/1 Z+Zk $3/0$ Zk  |                              |
|                    |                                                                                                                                             | 4           | ,                  |                              |
|                    | Seismické povrchové vlny                                                                                                                    | 5           | 2/1  Z+Zk          | _                            |
|                    | Seismologie silných pohybů                                                                                                                  | 3           | 2/0 Zk             |                              |
|                    | Vybrané partie z teorie geodynama                                                                                                           | 3           | $2/0 \mathrm{~Zk}$ |                              |
|                    | Fortran 95 a paralelní programování                                                                                                         | 3           | _                  | $2/0 \mathrm{Zk}$            |
| INTERNATION MANAGE | Fyzika ionosféry a magnetosféry                                                                                                             | 3           |                    | $2/0 \mathrm{Zk}$            |

|          | Základy rotační seismologie<br>Spektrální metody řešení parciálních<br>diferenciálních rovnic v geofyzice | 3<br>3  |                                               | 2/0 Zk<br>—       |
|----------|-----------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------|-------------------|
| Doporuče | né volitelné předměty                                                                                     |         |                                               |                   |
| Kód      | Název                                                                                                     | Kredity | ZS                                            | LS                |
| NPRF017  | Programování ve Fortranu                                                                                  | 3       | 2/0 Zk                                        |                   |
| NGEO107  | Metoda konečných prvků v geofyzice                                                                        | 3       | <u>,                                     </u> | $0/2 \mathrm{~Z}$ |
| NGEO109  | Geochemie a kosmochemie                                                                                   | 5       | 2/1  Z+Zk                                     | <del></del>       |
| NGEO108  | Povrchové procesy a tektonika                                                                             | 3       | 2/0 Zk                                        | _                 |
|          | planet                                                                                                    |         |                                               |                   |
| NGEO084  | Geodynamický seminář                                                                                      | 3       | $0/2 \mathrm{~Z}$                             | $0/2 \mathrm{~Z}$ |
| NGEO083  | Seismický seminář                                                                                         | 5       | $0/3 \mathrm{Z}$                              | $0/3 \mathrm{~Z}$ |

## Podmínky pro přihlášení ke státní závěrečné zkoušce

Podmínky pro přihlášení k jiné než poslední části státní závěrečné zkoušky jsou stanoveny vnitřním předpisem Pravidla pro organizaci studia na MFF UK.

Podmínky pro přihlášení k poslední části státní závěrečné zkoušky:

- získání alespoň 120 kreditů
- splnění všech povinných předmětů zvoleného programu
- splnění povinně volitelných předmětů zvoleného programu v rozsahu alespoň 24 kreditů
- odevzdání vypracované diplomové práce ve stanoveném termínu

Předmět lze splnit jeho úspěšným absolvováním či uznáním z předchozího studia.

### Požadavky k ústní části státní závěrečné zkoušky

## A. Společné požadavky

#### 1. Tíhové pole a pohyby Země a planet

Tíhový potenciál. Legendreovy polynomy a sférické harmonické funkce. Multipólový rozvoj pro gravitační potenciál. Tenzor setrvačnosti a Darwinova-Radauova rovnice. Geoid, gravitační anomálie a jejich vztah k hustotní struktuře Země. Izostáze, elastická flexe litosféry a dynamická topografie. Inverze gravitačního pole. Určování skutečného tvaru Země a planet. Rotace planetárních těles. Liouvilleova rovnice. Slapový potenciál.

#### 2. Vnitřní stavba Země a těles sluneční soustavy

Sféricky symetrické modely Země, planet a měsíců. Clapeyronova rovnice, exotermní a endotermní fázové přechody. Fázové přechody. Látkové složení zemského nitra a terestrických planet. Laterální nehomogenity v Zemi, globální modely seismické tomografie.

#### 3. Dynamické procesy

Soustava rovnic popisující přenos tepla a její různé aproximace. Zdroje tepla, tepelný tok. Radioaktivita hornin a stáří povrchu. Tepelná bilance Země a planet. Termální modely oceánské a kontinentální litosféry. Adiabatický gradient. Teplota tání

v plášti a jádře. Reologie materiálů, viskozita a její změny s hloubkou. Desková tektonika a procesy na deskových hranicích. Subdukce litosféry, horké skvrny a plášťové chocholy. Srovnání dynamických procesů v terestrických tělesech.

#### 4. Seismické vlny

Pohybová rovnice v elastickém anizotropním a izotropním prostředí. Separace pohybových rovnic, vlnové rovnice, podélné a příčné vlny. Rovinné vlny v elastickém prostředí, Christoffelova rovnice. Povrchové Rayleighovy a Loveovy vlny, disperze. Vlny ve vertikálně nehomogenním prostředí. Fermatův princip a rovnice paprsku, rovnice hodochrony. Greenův tenzor. Reprezentační teorém. Útlum vln v lineární viskoelasticitě.

## 5. Seismologie

Makroseismická intenzita, magnitudo a energie zemětřesení. Seismické přístroje a záznamy, seismické sítě. Lokace zemětřesení. Magnitudově četnostní vztahy, seismicita. Seismické vlny v 1D modelech Země, paprsky, hodochrony. Základy seismické tomografie pomocí prostorových vln. Povrchové vlny na kontinentálních a oceánických trasách. Jednoduchý model tektonického zemětřesení, vývoj trhliny na zlomu, mechanizmus ohniska, seismický moment, velikost zlomu, pokles napětí. Společensky přínosné produkty (ShakeMap, PAGER).

### 6. Geomagnetismus a geoelektřina

Fenomenologický popis magnetického pole Země a jeho časových změn. Geomagnetická měření. Matematický popis geomagnetického pole. Paleomagnetismus. Generování zemského magnetického pole. Magnetohydrodynamika, soustava rovnic magnetického dynama. Kinematická a dynamická teorie dynama. Vnější magnetické pole, jeho časové změny. Elektromagnetická indukce v Zemi vyvolaná změnami vnějšího magnetického pole. Výzkum elektrické vodivosti v Zemi. Pohyb částice v homogenním a nehomogenním magnetickém poli, pohyb v poli magnetického dipólu.

## 7. Mechanika kontinua

Geometrie deformace, lagrangeovský a eulerovský popis, deformační gradient, tenzor deformace. Materiálová a prostorová časová derivace, Reynoldsův transportní teorém. Objemové a povrchové síly, tenzor napětí. Základní zákony zachování v globálním a lokálním tvaru: rovnice kontinuity, pohybová rovnice, symetrie tenzoru napětí. Základní konstitutivní vztahy: elastická, viskózní a plastická deformace. Zákon zachování energie, disipace mechanické energie. Hraniční podmínky. Předpjatá prostředí, termální napětí. Různé aplikace mechaniky kontinua: termální konvekce v plášti, viskoelastická relaxace Země, proudění oceánů.

#### 8. Metody zpracování časových řad

Fourierovy řady, Fourierův integrál, Laplaceova transformace, Hilbertova transformace. Spektrální analýza diskrétních signálů, vzorkovací teorém, efekt alias, Z-transformace. Analytické signály. Filtrace časových řad, typy filtrů. Náhodný signál, autokorelace, výkonová spektrální hustota. Parametrické a neparametrické odhady výkonových spektrálních hustot.

## 9. Řešení obrácených úloh

Apriorní, datová a teoretická informace. Definice řešení obrácené úlohy. Lineární úlohy. Gaussova hypotéza a analytické řešení ve smyslu nejmenších čtverců. Nelineární obrácené úlohy. Analýza chyby a rozlišení. Stabilizace obrácené úlohy. Globální a lokální

62 Meteorologie a klimatologie metody. Obrácené úlohy v obecné  $L_p$  normě, zvláště v  $L_1$  a  $L_{nekonečno}$ . Adjungované úlohy. Asimilace dat. Praktické geofyzikální aplikace.

## 10. Aplikace metod numerické matematiky v geofyzice

Řešení soustav lineárních algebraických rovnic. Aproximace a interpolace. Numerické integrování a derivování. Řešení nelineárních rovnic. Řešení soustav obyčejných diferenciálních rovnic s počátečními a okrajovými podmínkami. Diskretizace soustav parciálních diferenciálních rovnic.

#### B. Užší zaměření

Student si volí jeden z následujících tří tematických okruhů.

## 1. Seismologie

Kinematický a dynamický model zemětřesení. Vlnové pole a seismický zdroj, blízká a daleká zóna, nevratné posunutí. Momentový tenzor, smykové a nesmykové složky. Časová funkce zdroje, směrovost. Momentové magnitudo. Seismická energie a pokles napětí. Coulombovo napětí. Měření ze skupinových stanic. Disperze povrchových vln, určování fázové a grupové rychlosti. Seismický šum, Greenovy funkce z křížových korelací šumu. Rychlostní modely z povrchových vln. Odhad seismického ohrožení, pravděpodobnostní a deterministický přístup, empirické útlumové křivky. Modelování silných pohybů při zemětřesení, efekty seismického zdroje a lokální efekty. Empirické Greenovy funkce. Vlastní kmity Země, pohybová rovnice, klasifikace kmitů.

## 2. Geodynamika

Konvekce jako nelineární dynamický systém, počátek konvekce. Koeficienty v rovnici přenosu tepla a jejich vliv na styl plášťového tečení. Kompoziční nehomogenity v plášti a termochemická konvekce. Modely chladnutí Země. Nelineární reologie a subdukce litosférických desek. Topografie a gravitační pole: korelace a admitance pro různé modely vnitřní struktury a dynamiky. Membránová aproximace deformace litosféry, kompenzační koeficient. Termální a elastická litosféra. Dynamický geoid a určování viskozity v plášti. Viskoelastická deformace Země, postglaciální výzdvih a putování zemské rotační osy. Vícefázové systémy. Zemská kůra – složení, vznik a vývoj, reologie a tektonická napětí. Slapová deformace těles sluneční soustavy. Geofyzikální studium terestrických planet. Termální vývoj planet a jejich měsíců. Pokročilé partie z teorie geodynama: Magnetostrofická aproximace, Taylorovo dynamo, téměř symetrická dynama.

#### 3. Planetologie

Vývoj sluneční soustavy, Niceský model. Pohyby planetárních těles a jejich vzájemné působení. Procesy určující termální vývoj terestrických a ledových těles. Teplota povrchu a jeho stáří. Vnitřní dynamika jednodeskových těles. Základní charakteristiky planet sluneční soustavy, jejich vnitřní struktura a modely jejich termálního vývoje. Dynamické procesy v ledových měsících. Fázové přechody v ledu a jejich role při vývoji ledových těles. Reologie ledu a slapová disipace. Simulace proudění v podpovrchových oceánech ledových měsíců. Exoplanety a možnosti jejich geofyzikálního výzkumu. Magnetické pole Slunce, planet a měsíců. Struktura ionosféry a magnetosféry. Sluneční vítr. Polární záře. Plazma v kosmickém prostoru. Experimentální metody kosmické fyziky. Topologie zemské magnetosféry. Ionosféra. Radiační pásy. Magnetosférická dynamika. Magnetosféry planet.

## 3. Fyzika atmosféry, meteorologie a klimatologie

Garantující pracoviště: Katedra fyziky atmosféry Garant programu: prof. RNDr. Petr Pišoft, Ph.D.

Charakteristika studijního programu:

Studijní program "Fyzika atmosféry, meteorologie a klimatologie" vede studenty a studentky k získávání znalostí a dovedností v oblasti chování atmosféry a souvisejících procesů. V rámci Univerzity Karlovy se jedná o program, který je jedinečný v komplexním pohledu na dynamický systém zemské atmosféry v širokých interdisciplinárních vazbách. I v rámci ČR se jedná o jediný program poskytující komplexní vzdělání v oblasti fyziky atmosféry, meteorologie a klimatologie. Studijní program navazuje na bakalářské studium fyziky, ve kterém si studenti a studentky osvojují potřebné matematické znalosti spolu s vědomostmi ze základních oblastí fyziky (mechanika, termodynamika, elektřina a magnetismus, optika a další). Předměty studijního programu jsou nejprve zaměřeny na získávání základních teoretických znalostí v oblasti atmosférické fyziky (hydrodynamika a termodynamika atmosféry), čímž se rozvíjí dříve nabyté znalosti v této oblasti. Dále se studium týká osvojování dovedností potřebných pro praktickou i vědeckou činnost v oboru fyziky atmosféry, tedy především v oblasti numerické matematiky, matematické statistiky, práce s daty a jejich vizualizace. Část předmětů má za cíl připravit absolventy a absolventky v základních aplikacích atmosférické fyziky, a to v předpovědi počasí, problematice znečištění ovzduší a výzkumu klimatu (včetně modelování a výzkumu vyšších vrstev atmosféry). Další předměty programu slouží k užšímu zaměření studentů a studentek či k rozšíření znalostí v oblastech blízkých jiným fyzikálním oborům (např. elektrické, optické a akustické jevy v atmosféře či děje v oceánech). Součástí studia je i vypracování diplomové práce, v rámci které se předpokládá aplikace kompetencí nabytých během absolvování předmětů a zároveň spolupráce na řešení vědeckého problému definovaného zadáním práce.

Profil absolventů a absolventek studijního programu a cíle studia:

Absolventi a absolventky disponují širokým spektrem znalostí a kompetencí v celé oblasti fyziky atmosféry, meteorologie a klimatologie. Získané znalosti umožňují jak profesní zaměření na základní a aplikovaný výzkum, tak i uplatnění v komerčním sektoru. Absolventi a absolventky mají širokou perspektivu v akademické sféře, ve výzkumných ústavech a na pracovištích vysokých škol, v průmyslových vývojových centrech zaměřených na studium proudění. V komerčním prostředí mohou využít expertní znalosti postupů statistického modelování, v oblasti krizového managementu své znalosti extrémních meteorologických jevů. Mohou nalézt uplatnění také v řadě hospodářských odvětví ovlivňovaných atmosférickými ději jako je energetika, doprava nebo zemědělství.

Absolventi a absolventky mají rozsáhlé a komplexní znalosti fyziky atmosféry, včetně statiky, dynamiky a termodynamiky atmosféry, atmosférické cirkulace všech prostorových měřítek, problematiky šíření elektromagnetických a akustických vln v atmosférickém prostředí, teorie hydrodynamických vlnových procesů, teorie nelineárních dynamických systémů, struktury a vývoje klimatického systému, přirozených i antropogenních klimatických změn. Ovládají soudobé metody distančního sondování atmosféry (meteorologické radiolokátory, lidary, sodary, technologie družicových pozorování). Umí zpracovánat rozsáhlé a složitě strukturované meteorologické a klimatologické datové

soubory, jsou detailně obeznámeni s metodami matematické statistiky a s aplikacemi informačních technologií.

## Doporučený průběh studia

Předpokladem úspěšného magisterského studia tohoto oboru je získání základních znalostí na úrovni následujících předmětů: NMET034 Hydrodynamika, NMET004 Šíření akustických a elektromagnetických vln v atmosféře, NMET012 Všeobecná klimatologie, NMET050 Statistické metody zpracování fyzikálních dat, NMET035 Synoptická meteorologie I, NMAF02 Deterministický chaos. Tyto předměty se obvykle zapisují ve třetím roce bakalářského studia programu Fyzika jako povinně volitelné. Pokud posluchač tyto nebo jim ekvivalentní předměty neabsolvoval, měl by si je ve vlastním zájmu zapsat jako volitelné v prvním roce navazujícího magisterského studia.

## 1. rok magisterského studia

| Kód        | Název                               | Kredity | ZS                | LS                |
|------------|-------------------------------------|---------|-------------------|-------------------|
| NMET074    | Dynamika atmosféry                  | 6       | 3/2 Z+Zk          | _                 |
| NMET002    | Fyzika mezní vrstvy                 | 5       | 3/1  Z+Zk         |                   |
| NMET020    | Metody dálkového průzkumu           | 5       | 3/1  Z+Zk         |                   |
|            | atmosféry                           |         |                   |                   |
| NMAF013    | Metody numerické                    | 3       | 2/0 Zk            |                   |
|            | matematiky I                        |         |                   |                   |
|            | Synoptická meteorologie II          | 4       | 3/0 Zk            | _                 |
| NMET078    | Analýza a interpretace              | 6       |                   | 3/2  KZ           |
|            | povětrnostních map                  |         |                   |                   |
|            | a prognostických polí               |         |                   |                   |
|            | Fyzika oblaků a srážek              | 4       |                   | $3/0 \mathrm{Zk}$ |
| NMET010    | Klimatické změny a jejich           | 4       |                   | 2/1  Z+Zk         |
|            | příčiny                             |         |                   |                   |
|            | Stratosféra                         | 5       |                   | 2/2 Z+Zk          |
|            | Diplomová práce I                   | 6       |                   | $0/4 \mathrm{~Z}$ |
|            | Dynamické předpovědní metody        | 7       |                   | 3/2 Z+Zk          |
| NMET009    | Regionální klimatologie             | 6       | $4/0 \mathrm{Zk}$ |                   |
|            | a klimatografie ČR                  |         |                   |                   |
|            | Statistická analýza komplexních dat | 6       | 2/2 Z+Zk          |                   |
|            | Klimatické extrémy a jejich modely  | 3       |                   | $2/0 \mathrm{Zk}$ |
|            | Meteorologický počítačový seminář   | 4       |                   | 0/3 Z             |
| NMET079    | Metody dálkového průzkumu           | 3       |                   | 1/1  Z+Zk         |
|            | atmosféry II                        |         |                   |                   |
|            | Metody numerické matematiky II      | 6       |                   | 2/2 Z+Zk          |
|            | Metody analýzy časových řad         | 5       |                   | 2/1  Z+Zk         |
| NMET025    | Vlnové procesy a energetika         | 4       |                   | $3/0 \mathrm{Zk}$ |
|            | atmosféry                           |         |                   |                   |
| 2. rok mag | gisterského studia                  |         |                   |                   |
| Kód        | Název                               | Kredity | ZS                | LS                |
| NMET019    | Chemismus atmosféry                 | 5       | 3/1 Zk            |                   |
|            | Projektový seminář I                | 3       | 1/1 Z             |                   |
|            |                                     |         |                   |                   |

| NMET062 <b>Projektový seminář II</b><br>NSZZ024 <b>Diplomová práce II</b> | 3<br>9 | <br>0/6 Z         | 1/1 Z<br>—      |
|---------------------------------------------------------------------------|--------|-------------------|-----------------|
| NSZZ025 Diplomová práce III                                               | 15     |                   | $0/10   { m Z}$ |
| NMET064 Aerosolové inženýrství                                            | 3      | 2/0  Zk           |                 |
| NMET031 Mezosynoptická meteorologie                                       | 3      | 2/0  Zk           |                 |
| NMET068 Oceány v klimatickém systému                                      | 6      | 2/2 Z+Zk          |                 |
| NMET005 Šíření exhalací v atmosféře                                       | 3      | $2/0 \mathrm{Zk}$ |                 |
| NMET059 Techniky modelování pro numerickou                                | 3      | $0/2 \mathrm{~Z}$ |                 |
| předpověď počasí                                                          |        |                   |                 |
| NMET032 Turbulence v atmosféře                                            | 4      | 3/0  Zk           |                 |
| NMET071 Užitá klimatologie I                                              | 3      | 2/0  Zk           |                 |
| NMET001 Atmosférická elektřina                                            | 3      |                   | 2/0  Zk         |
| NMET073 Silná konvekce v atmosféře                                        | 5      |                   | 3/1  Z+Zk       |
| NMET072 Užitá klimatologie II                                             | 3      |                   | 2/0 Zk          |
|                                                                           |        |                   |                 |

## Seznam bloků podle akreditace:

- 319 Fyzika atmosféry, meteorologie a klimatologie povinné předměty (P)
- 320 Fyzika atmosféry, meteorologie a klimatologie předměty pro zpracování závěrečné práce (P)
- 321 Fyzika atmosféry, meteorologie a klimatologie povinně volitelné předměty (PV)
- 322 Fyzika atmosféry, meteorologie a klimatologie doporučené volitelné předměty (V)

319 (P) Fyzika atmosféry, meteorologie a klimatologie - povinné předměty

| Kód     | Název                      | Kredity | ZS                | LS                 |
|---------|----------------------------|---------|-------------------|--------------------|
| NMET074 | Dynamika atmosféry         | 6       | 3/2 Z+Zk          | <u> </u>           |
| NMET002 | ? Fyzika mezní vrstvy      | 5       | 3/1  Z+Zk         |                    |
| NMET020 | Metody dálkového průzkumu  | 5       | 3/1  Z+Zk         |                    |
|         | atmosféry                  |         |                   |                    |
| NMAF013 | 3 Metody numerické         | 3       | $2/0 \mathrm{Zk}$ |                    |
|         | matematiky I               |         |                   |                    |
| NMET036 | Synoptická meteorologie II | 4       | 3/0  Zk           |                    |
| NMET078 | Analýza a interpretace     | 6       | <del></del>       | 3/2  KZ            |
|         | povětrnostních map         |         |                   |                    |
|         | a prognostických polí      |         |                   |                    |
| NMET003 | B Fyzika oblaků a srážek   | 4       |                   | $3/0 \mathrm{~Zk}$ |
| NMET010 | Klimatické změny a jejich  | 4       |                   | 2/1  Z+Zk          |
|         | příčiny                    |         |                   |                    |
| NMET067 | ' Stratosféra              | 5       |                   | 2/2 Z+Zk           |
| NMET019 | Chemismus atmosféry        | 5       | $3/1 \mathrm{Zk}$ |                    |
| NMET061 | Projektový seminář I       | 3       | $1/1 \mathrm{~Z}$ |                    |
| NMET062 | Projektový seminář II      | 3       |                   | $1/1 \mathrm{~Z}$  |

 $320~(\mathrm{P})$ Fyzika atmosféry, meteorologie a klimatologie - předměty pro zpracování závěrečné práce

| Kód     | Název             | Kredity ZS | LS           |
|---------|-------------------|------------|--------------|
| NSZZ023 | Diplomová práce I | 6 —        | $0/4~{ m Z}$ |

| NSZZ024 | Diplomová práce II  | 9  | $0/6 \ { m Z}$ | <del></del>       |
|---------|---------------------|----|----------------|-------------------|
| NSZZ025 | Diplomová práce III | 15 |                | $0/10~\mathrm{Z}$ |

 $321~(\mathrm{PV})$ Fyzika atmosféry, meteorologie a klimatologie - povinně volitelné předměty

| Kód     | Název                               | Kredity | ZS                | LS                 |
|---------|-------------------------------------|---------|-------------------|--------------------|
| NMET024 | Dynamické předpovědní metody        | 7       | _                 | 3/2 Z+Zk           |
| NMET009 | Regionální klimatologie             | 6       | $4/0 \mathrm{Zk}$ | <u>.</u>           |
|         | a klimatografie ČR                  |         |                   |                    |
| NMET011 | Statistická analýza komplexních dat | 6       | 2/2 Z+Zk          |                    |
| NMET075 | Klimatické extrémy a jejich modely  | 3       | <del>,</del>      | $2/0 \mathrm{Zk}$  |
| NMET066 | Meteorologický počítačový seminář   | 4       |                   | $0/3 \mathrm{Z}$   |
| NMET079 | Metody dálkového průzkumu           | 3       |                   | 1/1  Z+Zk          |
|         | atmosféry II                        |         |                   |                    |
| NMAF014 | Metody numerické matematiky II      | 6       |                   | 2/2 Z+Zk           |
| NMET063 | Metody analýzy časových řad         | 5       |                   | 2/1 Z+Zk           |
| NMET025 | Vlnové procesy a energetika         | 4       |                   | 3/0  Zk            |
|         | atmosféry                           |         |                   |                    |
| NMET064 | Aerosolové inženýrství              | 3       | 2/0 Zk            |                    |
| NMET031 | Mezosynoptická meteorologie         | 3       | 2/0 Zk            |                    |
| NMET068 | Oceány v klimatickém systému        | 6       | 2/2 Z+Zk          |                    |
| NMET005 | Šíření exhalací v atmosféře         | 3       | 2/0  Zk           |                    |
| NMET059 | Techniky modelování pro numerickou  | 3       | $0/2 \mathrm{~Z}$ |                    |
|         | předpověď počasí                    |         |                   |                    |
| NMET032 | Turbulence v atmosféře              | 4       | 3/0  Zk           |                    |
| NMET071 | Užitá klimatologie I                | 3       | 2/0  Zk           |                    |
| NMET001 | Atmosférická elektřina              | 3       | _                 | $2/0 \mathrm{~Zk}$ |
| NMET073 | Silná konvekce v atmosféře          | 5       |                   | 3/1  Z+Zk          |
| NMET072 | Užitá klimatologie II               | 3       |                   | 2/0  Zk            |

 $322~(\mathrm{V})$ Fyzika atmosféry, meteorologie a klimatologie - doporučené volitelné předměty

| Kód     | Název                                                            | Kredity | ZS                 | LS                  |
|---------|------------------------------------------------------------------|---------|--------------------|---------------------|
| NMET034 | 1 Hydrodynamika                                                  | 6       | 3/1  Z+Zk          |                     |
| NMET021 | Meteorologické přístroje a pozorovací metody                     | 4       | $3/0 \mathrm{~Zk}$ |                     |
| NMET004 | A Šíření akustických<br>a elektromagnetických vln<br>v atmosféře | 4       | 3/0  Zk            | _                   |
| NOFY077 | Úvod do Linuxu                                                   | 3       | 1/1  KZ            |                     |
| NMAF026 | i Deterministický chaos                                          | 3       |                    | $2/0 \mathrm{~Zk}$  |
| NOFY078 | Programování a zpracování dat<br>v Pythonu                       | 4       |                    | $1/2~\mathrm{KZ}$   |
| NMET050 | ) Statistické metody analýzy<br>fyzikálních dat                  | 6       |                    | 2/2 Zk              |
| NMET035 | Synoptická meteorologie I                                        | 3       |                    | $2/0 \mathrm{\ Zk}$ |

3/1 Z+Zk

## Podmínky pro přihlášení ke státní závěrečné zkoušce

Podmínky pro přihlášení k jiné než poslední části státní závěrečné zkoušky jsou stanoveny vnitřním předpisem Pravidla pro organizaci studia na MFF UK.

Podmínky pro přihlášení k poslední části státní závěrečné zkoušky:

- získání alespoň 120 kreditů
- splnění všech povinných předmětů zvoleného programu
- splnění povinně volitelných předmětů zvoleného programu v rozsahu alespoň 25 kreditů
- odevzdání vypracované diplomové práce ve stanoveném termínu

Předmět lze splnit jeho úspěšným absolvováním či uznáním z předchozího studia.

## Požadavky k ústní části státní závěrečné zkoušky

## A. Společné požadavky

## 1. Statika a dynamika atmosféry

Atmosféra v hydrostatické rovnováze - homogenní, adiabatická, izotermní atmosféra. Vertikální stabilita atmosféry - metoda částice, metoda vrstvy a metoda vtahování, teplotní inverze a příčiny jejich vzniku. Kinematika a dynamika proudění vzduchu, vliv tření na proudění, základní typy proudění (geostrofický, ageostrofický vítr a jeho složky, gradientový, divergentní, nedivergentní proud apod.). Změny větru s výškou, střih větru, termální vítr. Vorticita a cirkulace - cirkulační teorémy, rovnice vorticity, divergenční teorém, balanční rovnice a jejich použití. Druhy a metody výpočtu vertikálních pohybů, rovnice omega a její diskuse. Předpověď konvekce. Energetika atmosféry, transformace energie v atmosféře, dostupná potenciální energie, vlnové pohyby a kmity v atmosféře.

#### 2. Termodynamické děje v atmosféře

Termodynamicky ideální plyn a reálné plyny, stavové veličiny, základní termodynamické děje (polytropický, izotermický, izobarický, izosterický, adiabatický děj), termodynamické solenoidy, termodynamická práce, I. a II. hlavní termodynamická věta, entropie, entalpie, měrná a skupenská tepla, stavové rovnice, Poissonovy rovnice, Gibbsova-Dühemova rovnice, fázové přechody, Clausius—Clapeyronova rovnice, termodynamické potenciály. Termodynamika suchého, vlhkého a nasyceného vzduchu, závislost tlaku nasycené vodní páry na teplotě, analýza fázového diagramu vody, vlhkostní charakteristiky, vratné adiabatické děje v atmosféře, tzv. pseudoadiabatický děj, fázové změny vody, konzervativnost Gibbsova termodynamického potenciálu při fázových změnách aplikace na vícesložkové systémy (např. roztoky, Raoultův zákon), na závislost tlaku nasycené vodní páry na zakřivení vodního nebo ledového povrchu, na vysvětlení existence přechlazených vodních kapiček a kvantitativní vyjádření jejich přechlazení apod.

#### 3. Fyzika oblaků a srážek

Mikrostruktura a makrostruktura oblaků, morfologická klasifikace oblaků, termodynamické a dynamické podmínky pro vznik a vývoj oblaků, vodní, smíšené a ledové oblaky, nukleace vodní páry, kondenzace vodní páry v atmosférických podmínkách, úloha a mechanismy působení kondenzačních jader, kondenzační růst a zamrzání oblačných kapek, koalescence vodních kapek, ledová jádra, nukleace ledu, přechlazená voda

v oblacích, primární a sekundární produkce ledu v oblacích, růst ledových částic, agregace, spektra velikostí oblačných, dešťových kapek a ledových krystalů, tvary ledových částic, vodní obsah oblaků, mechanismy vzniku srážek, vývoj srážek ve vrstevnatých a konvektivních oblacích.

#### 4. Mezní vrstva atmosféry

Pojem mezní vrstvy atmosféry. Teorie vazkého proudění, Navierovy-Stokesovy rovnice, dynamická podobnost, Reynoldsovo číslo. Turbulence v atmosféře, Reynoldsovy rovnice turbulentního proudění,Reynoldsova napětí, směšovací délka, koeficient turbulentní difúze, přízemní a spirální vrstva, vertikální profily proudění v přízemní vrstvě, Ekmanova spirála. Konvektivní mezní vrstva, stabilní mezní vrstva, denní chod mezní vrstvy, charakteristické profily teploty, rychlosti proudění a turbulentních toků, oblačnost v mezní vrstvě. Interakce mezní vrstvy a zemského povrchu, toky hybnosti, tepla a vlhkosti, radiační a tepelná bilance zemského povrchu. Transformace kinetické energie v mezní vrstvě, turbulentní kinetická energie a její mechanická a termická produkce, izotropní a neizotropní turbulence, spektrum turbulentní kinetické energie. Teorie podobnosti a škálování, Richardsonovo číslo, Obuchovova délka, Moniova a Obuchovova teorie podobnosti, bezrozměrné vertikální profily složek hybnosti, teploty a vlhkosti. Mezní vrstva atmosféry v městských oblastech, proudění přes horské překážky. Problém uzávěru, modely mezní vrstvy atmosféry, simulace velkých vírů. Metody pozorování mezní vrstvy, experimentální metody pro výzkum turbulentního proudění.

## 5. Synoptická meteorologie a meteorologické jevy

Horizontální a vertikální rozdělení meteorologických prvků, denní a roční chody. Vzduchové hmoty - vznik, rozdělení, transformace, charakteristiky a podmínky počasí. Atmosférické fronty - definice, dynamická a kinematická podmínka, tlakové pole, druhy front, podmínky počasí. Frontogeneze a frontolýza. Tlakové útvary - barotropní a baroklinní instabilita. Stavba a vývoj tlakových útvarů, regenerace, změny tlaku, změny teplot, podmínky počasí v cyklonálním a anticyklonálním tlakovém poli, výškové frontální zóny, rapidní cyklogeneze. Tryskové proudění. Oblaky frontálních systémů a oblaky uvnitř vzduchových hmot, buněčná cirkulace v oblacích, struktura bouřkových oblaků (Cb), silné konvektivní bouře a s nimi spojené extrémní meteorologické jevy, multicely, supercely, tornáda. Tropické cyklony. Fén.

## 6. Klima a klimatický systém

Klimatický systém, pozorovaný stav atmosféry a oceánů (teplotní struktura, srážky, salinita), definice klimatu. Radiační a tepelná bilance zemského povrchu, atmosféry, soustavy Země-atmosféra (fyzikální zákony, sluneční radiace, dlouhovlnná radiace, rovnice radiačních přenosů). Skleníkový jev, skleníkové plyny v atmosféře, uhlíkový cyklus. Tok tepla do litosféry a hydrosféry. Denní a roční chody jednotlivých složek radiační a tepelné bilance. Vliv aktivního povrchu na radiační a tepelnou bilanci. Vodní bilance atmosféry, kontinentů, oceánů. Cirkulace atmosféry. Všeobecná cirkulace troposféry a stratosféry, pasátová a monzunová cirkulace, intertropická zóna konvergence, místní cirkulační systémy. Typy klimatu a jeho klasifikace. Základní rysy klimatu ČR. Cirkulace v oceánech. Interakce atmosféra-oceán, módy variability, dálkové vazby. Přirozené a antropogenní změny klimatu, příčiny klimatických změn, Milankovičova teorie klimatu. citlivost klimatického systému na vnější a vnitřní vlivy, zpětné vazby, globální a regionální klimatické modely. Metody statistické analýzy klimatických prvků a polí. Specifika klimatu v městských oblastech.

## 7. Vyšší vrstvy atmosféry

Stratosféra a mezosféra, přechodové vrstvy, vertikální profily a horizontální rozložení základních meteorologických prvků, cirkulace ve střední atmosféře. Roční chody teploty a proudění, charakteristiky polární cirkulace, srovnání severní a jižní hemisféry. Náhlé stratosférické oteplení, klasifikace, vývoj oteplení, vliv různých faktorů, dopady na další části atmosféry. Transport ve střední atmosféře, Brewer-Dobsonova cirkulace, vznik a základní charakteristiky, roční chod, výměna mezi troposférou a stratosférou. Radiační procesy. Gravitační vlny, planetární vlny, role vlnových procesů v dynamice střední atmosféry. Ozon ve stratosféře, vznik a destrukce ozonu, související chemické reakce, role halogenovaných uhlovodíků a dalších chemických skupin, ozonová díra, její vznik a vývoj, dlouhodobé trendy koncentrací ozonu. Vliv vulkanických erupcí a sluneční aktivity.

## 8. Metody dálkového průzkumu atmosféry

Družicová pozorování, měření meteorologických veličin a složení atmosféry. Meteorologické geostacionární družice, polární družice. Spektrální pásma a spektrální kanály, jejich základní vlastnosti. Odrazivost, propustnost, emisivita, jasová teplota. Základní spektrální vlastnosti oblačnosti a zemského povrchu. Současné operativní družice, základní metody zpracování družicových snímků, družicové snímání atmosférických sloupců plynů (ozón, NO2, SO2, formaldehyd, CO), aerosolů, optické vlastnosti aerosolů. Radarová měření. Princip funkce a použití radaru v meteorologii, radiolokační odrazivost, data Dopplerovských rychlostí, polarimetrická měření. Radiolokační rovnice, mikrovlnná refrakce, útlum, pozemní odrazy. Radiolokační odhady srážek, kombinace se srážkoměrnými daty. Metody snímání a zpracování dat. Interpretace radiolokačních měření, radiolokační charakteristiky konvektivní a vrstevnaté oblačnosti. Radiolokační síť v ČR. Detekce blesků, metoda stanovení času příchodu, metoda určení směru zdroje. Měření pomocí lidarů, pozemní lidary, letecké lidary. Měření pomocí sodaru, rozptyl zvukových vln v atmosféře. Využití GPS dat, radiookultační (RO) metoda.

#### B. Užší zaměření

Studenti a studentky si volí dva z následujících čtyř tematických okruhů.

#### 1. Atmosférická chemie a kvalita ovzduší

Složení atmosféry, základy chemické kinetiky, základy troposférické a stratosférické chemie, atmosférická chemie pozadí, chemie oxidů dusíku, alkanů, alkenů, karbonylová chemie, alkoholy, aromáty, polycyklické aromatické uhlovodíky, dusíkaté organické sloučeniny, halogenované uhlovodíky, látky ohrožující ozonosféru, radikály a jejich role v chemismu atmosféry, antropogenní a biogenní těkavé organické látky a jejich reakce, fotochemický smog, prekurzory ozonu, reakce oxidů síry, heterogenní reakce, oxidace síry a dusíku, procesy tvorby aerosolů, primární a sekundární atmosférické aerosoly, spektra aerosolových částic. Typické antropogenní příměsi a jejich zdroje, emise, imise, emisní bilance a databáze, difúze příměsí v atmosféře, suchá a mokrá depozice příměsí. Typizace meteorologických podmínek pro účely ochrany čistoty ovzduší, monitorování znečištění vzduchu, hlavní typy modelů pro transport znečišťujících příměsí v atmosféře, lagrangeovské a eulerovské modely, gaussovské modely, vlečkové modely, tzv. puff modely, disperzní a receptorové modelování, fyzikální modelování, značkovací látky.

### 2. Klimatické modely, jejich druhy, struktura a aplikace

Typy klimatických modelů a jejich aplikace. Struktura energetických a radiačně konvekčních modelů, parametrizace mezišířkových přenosů energie a radiačních pro-

cesů, zpětné vazby. Globální klimatické modely, modely systému Země (ESM). Metody statistického downscalingu a regionální klimatické modely, jejich aplikace. Struktura modelů, parametrizace základních fyzikálních procesů, interpretace výstupů. Validace modelových výstupů. Emisní scénáře. Konstrukce scénářů změny klimatu. Zdroje neurčitostí ve výstupech klimatických modelů. Multimodelové a skupinové simulace a projekce.

## 3. Metody numerického modelování atmosféry

Formulace rovnic atmosférických modelů, zjednodušující aproximace, zahrnutí vlnových pohybů, modely v hydrostatickém přiblížení, rovnice mělké vody, formulace počátečních a okrajových úloh (globální model, model na omezené oblasti), horizontální i vertikální souřadnice používané v modelech, příprava vstupních údajů, objektivní analýza a asimilace dat, inicializace, normální módy, metody prostorové diskretizace a časové integrace rovnic meteorologických modelů, stabilita a konvergence numerických schémat, parametrizace fyzikálních dějů. Synoptická interpretace výstupů modelů, hlavní faktory limitující úspěšnou předpověď meteorologických polí, prediktabilita atmosférických procesů, teoretické a praktické meze prediktability.

## 4. Šíření elektromagnetických a akustických vln v atmosféře

Maxwellovy rovnice a jejich aplikace v atmosféře, vlnové rovnice, lom, odraz, rozptyl a útlum elektromagnetických vln v atmosféře, radiolokační rovnice, Rayleighův rozptyl, Mieův rozptyl, astronomická refrakce, spodní, svrchní a boční zrcadlení, fata morgána, snížení a zvednutí obzoru, deformace a laminace slunečního disku, zelený záblesk, barvy oblohy, soumrak a soumrakové jevy, duhy, koróny, glórie, halové jevy, dohlednost, polarizace světla oblohy. Šíření zvuku v atmosféře, rychlost zvuku, akustický index lomu, akustické stíny, anomální slyšitelnost, rázové vlny, útlum zvuku v atmosférickém prostředí. Elektrické pole v atmosféře, sférický kondenzátor, ionizace a elektrická vodivost vzduchu, vertikální elektrické proudy, oblačná a bouřková elektřina, elektrické vlastnosti oblaků, elektrický náboj ve srážkách, elektrická struktura kumulonimbů, mechanismy generování elektrických nábojů v oblacích, hrotové výboje, blesky, atmosfériky, TLE, bilance transportu elektrického náboje v atmosféře.

## 4. Teoretická fyzika

Garantující pracoviště: Ústav teoretické fyziky

Garant programu: prof. RNDr. Jiří Podolský, CSc., DSc.

Charakteristika studijního programu:

Pojem teoretická fyzika označuje specifický přístup k vědeckému zkoumání, nikoli konkrétní oblast fyzikálního bádání. Metodologicky se tedy uplatňuje téměř ve všech oborech fyziky a astronomie, v oborech přírodovědných i v řadě pokročilých technologických aplikací. Absolvent programu Teoretická fyzika získává ucelený a fundovaný přehled o základních oborech fyziky i znalosti stěžejních směrů teoretické fyziky, především kvantové teorie, obecné teorie relativity a statistické fyziky. Podle výběru ze široké nabídky povinně volitelných předmětů se dále profiluje v některé ze specializovaných oblastí, jako například ve fyzice plazmatu, v astrofyzice a kosmologii, v atomové a molekulové fyzice, fyzice mnohočásticových systémů či fyzice částic a vysokých energií.

Profil absolventa studijního programu a cíle studia:

Absolvent má velmi dobré znalosti stěžejních teorií moderní fyziky — kvantové teorie, teorie relativity a statistické fyziky. Díky tématické šíři nabídky povinně voli-

telných přednášek může získat hlubší vědomosti i v řadě konkrétních oblastí teoretické fyziky. Na druhé straně znalost obecně použitelných pokročilých matematických metod zaručuje absolventovi velkou přizpůsobivost, tedy schopnost uplatnit se nejen v různých oblastech fyziky, ale i v jiných oborech a při činnostech, které vyžadují logické myšlení a analýzu složitých problémů.

Cílem studia je poskytnout absolventovi dobrou znalost základních matematických metod a základních metod teoretické fyziky, které mu umožní rychlé přizpůsobení výzkumným postupům v široké oblasti fyzikálních, ale i mimofyzikálních aplikací.

## Doporučený průběh studia

Předpokladem úspěšného magisterského studia tohoto programu je získání základních znalostí na úrovni následujících předmětů:

| Kód     | Název                                                | Kredity | ZS       | LS                |
|---------|------------------------------------------------------|---------|----------|-------------------|
| NOFY076 | $Kvantov\'a\ teorie\ I\ ^1$                          | 8       | 4/2 Z+Zk | _                 |
| NTMF043 | Termodynamika a statistická<br>fyzika I <sup>1</sup> | 7       | 3/2 Z+Zk | _                 |
| NOFY079 | Kvantová teorie II                                   | 6       |          | 3/1  Z+Zk         |
| NTMF111 | Obecná teorie relativity                             | 4       |          | $3/0 \mathrm{Zk}$ |

 $<sup>^{\</sup>rm 1}$  Ve studijních plánech bakalářského programu Fyzika jde o povinný předmět.

Tyto předměty se obvykle zapisují ve třetím roce studia bakalářského programu Fyzika jako povinné a povinně volitelné. Pokud posluchač tyto nebo jim ekvivalentní předměty neabsolvoval, měl by si je ve vlastním zájmu zapsat jako volitelné v prvním roce navazujícího magisterského studia. Obsah uvedených předmětů je součástí společných požadavků státní závěrečné zkoušky.

## 1. rok magisterského studia

| Kód     | Název                         | Kredity | ZS                | LS                 |
|---------|-------------------------------|---------|-------------------|--------------------|
| NTMF037 | Relativistická fyzika I       | 9       | 4/2 Z+Zk          |                    |
| NJSF068 | Kvantová teorie pole I $^{1}$ | 9       | 4/2 Z+Zk          |                    |
| NJSF145 | Kvantová teorie pole I $^{1}$ | 9       | 4/2 Z+Zk          |                    |
| NTMF057 | Numerické metody pro          | 5       | 2/1  Z+Zk         |                    |
|         | teoretické fyziky I           |         |                   |                    |
| NTMF020 | Základy teorie plazmatu       | 3       | $2/0 \mathrm{Zk}$ |                    |
| NTMF044 | Termodynamika a statistická   | 7       | <u> </u>          | 3/2 Z+Zk           |
|         | fyzika II                     |         |                   |                    |
| NFPL108 | Teorie kondenzovaného stavu I | 3       |                   | $2/0 \mathrm{~Zk}$ |
| NSZZ023 | Diplomová práce I             | 6       | _                 | $0/4 \mathrm{~Z}$  |

<sup>&</sup>lt;sup>1</sup> Studenti si zapisují právě jeden z těchto alternativních předmětů.

#### 2. rok magisterského studia

| Kód | Název               | Kredity | ZS    | LS     |
|-----|---------------------|---------|-------|--------|
|     | Diplomová práce II  | 9       | 0/6 Z | —      |
|     | Diplomová práce III | 15      | —     | 0/10 Z |

| Kód         | Název                                                                                                          | Kredity       | ZS                 | LS                                            |
|-------------|----------------------------------------------------------------------------------------------------------------|---------------|--------------------|-----------------------------------------------|
| Matema      | tické metody                                                                                                   |               |                    |                                               |
| NMAF00      | 6 Vybrané partie z matematiky pro<br>fyziky                                                                    | 3             |                    | $2/0 \mathrm{Zk}$                             |
| NTMF059     | 9 Geometrické metody teoretické<br>fyziky I                                                                    | 6             | 2/2 Z+Zk           | _                                             |
| NTMF060     | ) Geometrické metody teoretické<br>fyziky II                                                                   | 4             | _                  | 3/0 Zk                                        |
| NTMF06      | l Teorie grup a její aplikace ve fyzice                                                                        | 6             | 2/2 Z+Zk           |                                               |
|             | 4 Symetrie rovnic matematické fyziky<br>a zákony zachování                                                     | 3             | <u></u>            | $2/0 \mathrm{~Zk}$                            |
| NMAF03      | 7 Pokročilá lineární algebra pro fyziky                                                                        | 3             | $2/0 \mathrm{~Zk}$ |                                               |
| NMAF03      | 8 Pokročilé partie z teorie grup pro                                                                           | 4             | <u></u>            | 2/1 Z+Zk                                      |
| D 1 / 1     | fyziky                                                                                                         |               |                    |                                               |
|             | stická teorie gravitace                                                                                        | 0             |                    | 4/9.7 + 71-                                   |
|             | 8 Relativistická fyzika II<br>8 Přesné prostoročasy <sup>1</sup>                                               | $\frac{9}{3}$ |                    | 4/2 Z+Zk $2/0$ Zk                             |
|             | 9 Gravitační vlny I <sup>1</sup>                                                                               | 3             |                    | 2/0  Zk $2/0  Zk$                             |
|             | 9 Gravitační vlny I<br>9 Gravitační vlny II <sup>1</sup>                                                       | 3             |                    | 2/0  Zk $2/0  Zk$                             |
|             |                                                                                                                |               |                    | ,                                             |
| N I WIF US. | 1 Methods for exact solutions of<br>gravity theories: isometries and<br>classification of tensors <sup>1</sup> | 3             | _                  | $2/0 \mathrm{~Zk}$                            |
| NTMF06      | 5 Úvod do kvantové teorie pole na<br>křivém pozadí <sup>1</sup>                                                | 4             | $2/1 \mathrm{~Zk}$ | _                                             |
| NTMF08      | 2 Selected topics in AdS/CFT correspondence <sup>1</sup>                                                       | 4             | $2/1 \mathrm{Zk}$  | _                                             |
| NTMF06      | 3 Vybrané partie obecné relativity I <sup>1</sup>                                                              | 3             | $2/0 \mathrm{~Zk}$ |                                               |
|             | 3 Vybrané partie obecné relativity II <sup>1</sup>                                                             | 3             | $2/0 \mathrm{~Zk}$ |                                               |
| Teoretic    | ká astrofyzika a kosmologie                                                                                    |               |                    |                                               |
| NTMF090     | O Astrophysics of gravitational wave sources <sup>1</sup>                                                      | 3             |                    | $2/0 \mathrm{~Zk}$                            |
| NTMF09      | Black hole thermodynamics: classical and quantum <sup>1</sup>                                                  | 3             | _                  | 2/0 Zk                                        |
| NTMF07      | ) Zářivé procesy v astrofyzice <sup>1</sup>                                                                    | 3             |                    | $2/0 \mathrm{Zk}$                             |
|             | 2 Teoretická kosmologie I <sup>1</sup>                                                                         | 3             | $2/0 \mathrm{~Zk}$ | <u>,                                     </u> |
| NTMF33      | 3 Teoretická kosmologie II $^{1}$                                                                              | 3             | <u></u>            | 2/0 Zk                                        |
|             | á kvantová mechanika                                                                                           |               |                    |                                               |
| NTMF03      | 3 Interpretace kvantové mechaniky <sup>1</sup>                                                                 | 4             | $2/1 \mathrm{Zk}$  |                                               |
| NTMF030     | ) Kvantová teorie rozptylu                                                                                     | 6             | 3/1  Z+Zk          |                                               |
| NTMF130     | ) Teorie srážek atomů a molekul                                                                                | 6             |                    | 3/1  Z+Zk                                     |
| NTMF11      | 2 Kvantová teorie — vybrané                                                                                    | 3             |                    | $1/1 \; \mathrm{Zk}$                          |
|             | aplikace <sup>1</sup>                                                                                          |               |                    |                                               |

|           | _                                                                         |        |                    |                    |
|-----------|---------------------------------------------------------------------------|--------|--------------------|--------------------|
| NJSF179   | Kvantová teorie – vybraná témata <sup>1</sup>                             | 3      |                    | 1/1  Z+Zk          |
| Kvantova  | á teorie pole                                                             |        |                    |                    |
| NJSF069   | Kvantová teorie pole II <sup>2</sup>                                      | 9      |                    | 4/2 Z+Zk           |
| NJSF146   | Kvantová teorie pole II <sup>2</sup>                                      | 9      |                    | 4/2 Z+Zk           |
| NJSF082   | Vybrané partie teorie kvantovaných polí I                                 | 4      | $3/0 \mathrm{Zk}$  |                    |
| NJSF083   | Vybrané partie teorie kvantovaných polí II                                | 4      | _                  | 3/0  Zk            |
| NTMF022   | Teorie kalibračních polí                                                  | 4      | 3/0  Zk            | _                  |
| NJSF085   | Základy teorie elektroslabých interakcí                                   | 6      | <u> </u>           | 2/2 Z+Zk           |
| Pokročila | á statistická fyzika                                                      |        |                    |                    |
| NTMF031   | Statistická fyzika kvantových<br>mnohočásticových systémů I <sup>1</sup>  | 3      | $2/0 \mathrm{~Zk}$ |                    |
| NTMF032   | Statistická fyzika kvantových<br>mnohočásticových systémů II <sup>1</sup> | 3      |                    | $2/0 \mathrm{~Zk}$ |
| NFPL109   | Teorie kondenzovaného stavu II                                            | 3      | $2/0 \mathrm{Zk}$  | _                  |
| NTMF062   | Vybrané kapitoly z nerovnovážné<br>statistické fyziky I                   | 3      | 2/0 Zk             |                    |
| NTMF068   | S Vybrané kapitoly z nerovnovážné<br>statistické fyziky II                | 3      |                    | $2/0 \mathrm{~Zk}$ |
| NTMF071   | Fyzika komplexních systémů                                                | 3      |                    | $2/0 \mathrm{Zk}$  |
| NTMF027   | Pravděpodobnost a matematika<br>fázových přechodů I                       | 3      | _                  | 2/0 Zk             |
| Teorie pl | lazmatu a záření                                                          |        |                    |                    |
| NTMF028   | Teorie kosmického plazmatu                                                | 3      | <del>_</del>       | 2/0  Zk            |
| NTMF120   | Teorie vysokoteplotního plazmatu                                          | 3      |                    | 2/0  Zk            |
| NTMF014   | Klasická teorie záření                                                    | 3      | _                  | 2/0 Zk             |
| Pokročile | é numerické metody a počítačová                                           | fyzika |                    |                    |
| NTMF058   | Numerické metody pro teoretické<br>fyziky II                              | 5      |                    | 2/1 Z+Zk           |
| NTMF021   | Simulace ve fyzice mnoha částic                                           | 6      | 3/1 Z+Zk           | _                  |
| NTMF024   | Pokročilé simulace ve fyzice mnoha částic <sup>1</sup>                    | 3      | <u>·</u>           | 2/0 Zk             |

 $<sup>^{1}\,</sup>$  Tyto předměty se přednášejí ve dvouletém intervalu.

## Doporučené volitelné předměty

| Kód     | Název                              | Kredity | ZS                | LS                |
|---------|------------------------------------|---------|-------------------|-------------------|
| NTMF008 | 3 Seminář ústavu teoretické fyziky | 3       | $0/2 \mathrm{~Z}$ | $0/2 \mathrm{~Z}$ |
| NTMF006 | i Relativistický seminář           | 3       | $0/2 \mathrm{~Z}$ | $0/2 \mathrm{~Z}$ |
| NTMF045 | Seminář atomové fyziky             | 3       | $0/2 \mathrm{~Z}$ | $0/2 \mathrm{~Z}$ |

 $<sup>^2</sup>$  Studenti si zapisují právě jeden z těchto alternativních předmětů.

| NTMF101 New developments in astrophysics<br>and theoretical physics | 2 | $0/1~\mathrm{Z}$  | $0/1~\mathrm{Z}$ |
|---------------------------------------------------------------------|---|-------------------|------------------|
| NTMF100 Odborné soustředění ÚTF                                     | 2 | $0/1 \mathrm{~Z}$ |                  |

## Podmínky pro přihlášení ke státní závěrečné zkoušce

Podmínky pro přihlášení k jiné než poslední části státní závěrečné zkoušky jsou stanoveny vnitřním předpisem Pravidla pro organizaci studia na MFF UK.

Podmínky pro přihlášení k poslední části státní závěrečné zkoušky:

- získání alespoň 120 kreditů
- splnění všech povinných předmětů
- splnění povinně volitelných předmětů v rozsahu alespoň 36 kreditů
- odevzdání vypracované diplomové práce ve stanoveném termínu

Předmět lze splnit jeho úspěšným absolvováním či uznáním z předchozího studia.

## Požadavky k ústní části státní závěrečné zkoušky

## A. Společné požadavky

## 1. Relativistická fyzika

Výchozí principy speciální a obecné teorie relativity. Prostoročas, čtyřrozměrný formalismus, transformace souřadnic. Paralelní přenos a rovnice geodetiky, metrika a afinní konexe, kovariantní derivace. Posun frekvence v gravitačním poli. Křivost prostoročasu. Tenzor energie a hybnosti, zákony zachování a pohybové rovnice. Einsteinovy rovnice gravitačního pole. Schwarzschildovo řešení Einsteinových rovnic. Homogenní a izotropní kosmologické modely.

#### 2. Kvantová fyzika

Popis stavu a pozorovatelných v kvantové teorii. Unitární časový vývoj. Kvantová teorie momentu hybnosti. Základy teorie skládání momentů hybnosti. Systémy několika nerozlišitelných částic. Stacionární poruchová teorie. Ritzův variační princip. Časově závislá poruchová teorie. Částice ve sféricky symetrickém poli. Rovnice relativistické kvantové mechaniky pro částice se spinem 0, 1/2 a 1. Diracova rovnice pro částici v elektromagnetickém poli. Kvantování volných polí a jejich částicová interpretace. Interakce polí: příklady interakčních lagrangiánů. S-matice a jednoduché Feynmanovy diagramy. Výpočet pravděpodobnosti rozpadu a účinného průřezu reakce.

#### 3. Statistická fyzika

Statistický popis termodynamiky. Základní statistické soubory. Fluktuace termodynamických veličin. Kvantová statistická mechanika. Ideální Boseho-Einsteinův plyn hmotných částic. Plyn nehmotných bosonů. Degenerovaný elektronový plyn. Základy teorie neideálních plynů. Základy nerovnovážné statistické fyziky.

### 4. Fyzika plazmatu a pevných látek

Základní pojmy teorie plazmatu. Drifty plazmatu v elektrickém a magnetickém poli, adiabatické invarianty. Kinetická teorie plazmatu, Landauův útlum. Srážkový člen a relaxace. Magnetohydrodynamický popis plazmatu. Pevná látka jako kvantově mechanický problém mnoha částic. Harmonické přiblížení pohybu atomů. Difrakce na mřížce. Elektronová pásová struktura. Termodynamické vlastnosti krystalů.

## 5. Numerické metody

Reprezentace reálných čísel na počítači, zaokrouhlovací chyba. Stabilita algoritmu a podmíněnost úlohy. Aproximace a interpolace funkcí. Numerická derivace funkcí, konečné diference. Numerická integrace funkcí. Řešení nelineárních rovnic. Řešení soustav lineárních rovnic. Základní metody integrace obyčejných diferenciálních rovnic.

## B. Užší zaměření

Student si volí dva z následujících osmi tematických okruhů.

#### 1. Matematické metody

Základy teorie míry. Banachovy a Hilbertovy prostory, lineární operátory a funkcionály. Rovnice matematické fyziky a jejich základní vlastnosti, speciální funkce. Definice distribuce a základní operace s distribucemi. Fourierova transformace funkcí a distribucí. Diferencovatelné variety a jejich tečné prostory, vnější kalkulus. Riemannova geometrie a kovariantní derivace. Vektorové bandly. Lieovy grupy a Lieovy algebry. Základy teorie reprezentací grup. Reprezentace grup SO(3) a SU(2).

## 2. Relativistická teorie gravitace

Lieova derivace, symetrie a Killingovy vektory. Riemannův a Weylův tenzor křivosti, geodetická deviace. Algebraická klasifikace prostoročasů. Časupodobné a světelné kongruence. Prostory konstantní křivosti (Minkowski, de Sitter, anti-de Sitter). Přesná řešení Einsteinových rovnic popisující stacionární černé díry, zákony dynamiky. Linearizovaná teorie gravitace a rovinné gravitační vlny. Přesné prostoročasy s gravitačními vlnami. Lagrangeovský formalismus v obecné relativitě, zákony zachování. 3+1 rozštěpení prostoročasu, počáteční problém a Hamiltonovský formalismus v obecné relativitě.

## 3. Teoretická astrofyzika a kosmologie

Klasická a relativistická teorie hvězdné stavby, radiální oscilace a stabilita. Hvězdný vývoj a jeho závěrečné etapy, gravitační kolaps, supernovy, černé díry. Stavové rovnice pro degenerovaný plyn, bílí trpaslíci, neutronové hvězdy. Nerelativistické zářivé procesy v astrofyzice. Relativistické zářivé procesy v astrofyzice. Homogenní a izotropní kosmologické modely. Kosmologické vzdálenosti, šíření světla, gravitační čočkování. Raný vesmír a jeho tepelná historie. Vývoj kosmického plazmatu v lineární perturbační teorii. Vývoj hustotních perturbací, vznik struktur. Reliktní záření a jeho anizotropie.

### 4. Pokročilá kvantová mechanika

Základy kvantové teorie rozptylu částice na vnějším potenciálu. Rozptyl na sféricky symetrickém potenciálu a analytické vlastnosti rozptylových veličin. Základy mnohokanálové teorie rozptylu. Přibližné metody pro vícečásticové systémy. Struktura atomů a molekul. Přibližné metody teorie rozptylu a jejich aplikace. Dekoherence a efektivní redukce. Kvantová mechanika a teorie skrytých proměnných. Feynmanovská formulace kvantové mechaniky. Interpretace kvantové mechaniky.

#### 5. Kvantová teorie pole

Propagátor kvantovaného pole. Kovariantní kvantování elektromagnetického pole. Systematika Dysonova rozvoje S-matice v interakční reprezentaci. Procesy 2. řádu v kvantové elektrodynamice. Diagramy s uzavřenou smyčkou vnitřních linií: ultrafialové divergence a jejich regularizace. Index divergence jednočásticově ireducibilního diagramu. Techniky praktického výpočtu jednosmyčkových Feynmanových diagramů. Příklady spočitatelných diagramů bez ultrafialových divergencí. Základní techniky renormalizace. Typy renormalizačních kontrčlenů v kvantové elektrodynamice.

#### 6. Pokročilá statistická fyzika

Fázové přechody. Kritické jevy a univerzalita. Komplexní systémy. Diagramatické metody pro mnohočásticové kvantové systémy. Systémy interagujících fermionů. Teorie supravodivosti. Teorie lineární odezvy. Mnohočásticové kvantové systémy mimo rovnováhu. Kinetické rovnice. Stochastické procesy.

## 7. Teorie plazmatu a záření

Vysokoteplotní a termonukleární plazma. Magnetohydrodynamická rovnováha. Magnetohydrodynamická stabilita. Principy udržení plazmatu. Transport v plazmatu. Zářivé procesy. Zářivá (magneto)hydrodynamika. Obecně-relativistická kinetická teorie. Numerické modelování plazmatu.

## 8. Pokročilé numerické metody a počítačová fyzika

Faktorizace matic a jejich využití v numerické lineární algebře. Iterační metody numerické lineární algebry. Integrace obyčejných diferenciálních rovnic. Metoda konečných diferenciální diferenciální rovnice. Metoda konečných prvků pro okrajové úlohy. Diskrétní Fourierova transformace a její využití. Základy metody Monte Carlo. Základy metody molekulární dynamiky.

## 5. Fyzika kondenzovaných soustav a materiálů

Garantující pracoviště: Katedra fyziky kondenzovaných látek

Garant programu: doc. RNDr. Stanislav Daniš, Ph.D.

Charakteristika studijního programu:

Program je věnován experimentálnímu a teoretickému studiu vlastností kondenzovaných soustav, jejich mikrofyzikální interpretaci a možnostem aplikací, zejména se zřetelem na současný rozvoj materiálového výzkumu. K výuce společné pro celý program si studenti mohou volit jedno ze zaměření: Fyzika atomových a elektronových struktur, Fyzika makromolekulárních látek, Fyzika materiálů, Fyzika nízkých teplot, Fyzika povrchových modifikací. Každý z uvedených tématických bloků zabezpečuje obecné vzdělání v oboru na současné úrovni poznání a profiluje absolventa ve zvoleném zaměření.

Profil absolventa studijního programu a cíle studia:

Absolventi mají široké znalosti základů kvantové teorie, termodynamiky a statistické fyziky kondenzovaných soustav a příslušných výpočetních metod. Dovedou popsat strukturu těchto látek v různých formách, jejich mechanické, elektrické, magnetické i optické vlastnosti. Mají přehled o řadě experimentálních metod charakterizace struktury, složení i vlastností kondenzovaných látek, jako jsou metody difrakční, spektroskopické i mikroskopické, a dovedou je prakticky používat. Vhodným uplatněním jsou zejména pracoviště základního fyzikálního, chemického a biomedicínského výzkumu, vysoké školy uvedeného zaměření, laboratoře aplikovaného materiálového výzkumu a vývoje, zkušební laboratoře a pracoviště v hygienické a ekologické službě.

Cílem studia je poskytnout široké vzdělání v kvantové teorii, termodynamice a statistické fyzice ve vazbě na současné přístupy teorie kondenzovaných soustav, a to soustav jak anorganických, tak organických a makromolekulárních. Současně je cílem studia poskytnout studentům přehled principů moderních experimetálních metod a technologických postupů. Ve vybraném zaměření je studentům poskytnuto hlubší vzdělání a praktické dovednosti.

## Doporučený průběh studia

## 1. rok magisterského studia

Předpokladem úspěšného magisterského studia tohoto programu je získání základních znalostí na úrovni následujících předmětů:

| Kód     | Název                            | Kredity | ZS       | LS                   |
|---------|----------------------------------|---------|----------|----------------------|
| NBCM110 | Kvantová teorie I                | 9       | 4/2 Z+Zk | _                    |
| NFPL141 | $Kvantov\'a\ teorie\ II\ ^1$     | 5       |          | 2/1  Z+Zk            |
| NFPL502 | Úvod do fyziky pevných látek     | 6       |          | 3/1  Z+Zk            |
| NFPL505 | Úvod do fyziky měkkých materiálů | 3       |          | $1/1 \mathrm{~Z+Zk}$ |
| NFPL192 | Proseminář fyziky kondenzovaných | 3       |          | $0/2~\mathrm{KZ}$    |
|         | soustav                          |         |          |                      |

 $<sup>^{1}</sup>$  Pro magisterské studium zaměření: Fyzika atomových a elektronových struktur a Fyzika nízkých teplot.

Tyto předměty se obvykle zapisují ve třetím roce studia bakalářského programu Fyzika jako povinné a povinně volitelné. Pokud posluchač tyto nebo jim ekvivalentní předměty neabsolvoval, měl by si je ve vlastním zájmu zapsat jako volitelné v prvním roce navazujícího magisterského studia. Obsah uvedených předmětů je součástí společných požadavků státní závěrečné zkoušky.

# Povinné a povinně volitelné předměty profilujícího základu (25 kreditů z povinně volitelných předmětů profilujícího základu celkem za oba roky studia)

Studenti si volí jedno z pěti zaměření - Fyzika atomových a elektronových struktur, Fyzika makromolekulárních látek, Fyzika matriálů, Fyzika nízkých teplot a Fyzika povrchových modifikací.

#### 1. rok magisterského studia

| Kód       | Název                                | Kredity | ZS                | LS                |
|-----------|--------------------------------------|---------|-------------------|-------------------|
| NFPL145   | Experimentální metody fyziky         | 9       | 3/3 Z+Zk          |                   |
|           | kondenzovaných soustav I             |         |                   |                   |
| NFPL146   | Experimentální metody fyziky         | 9       |                   | 3/3 Z+Zk          |
|           | kondenzovaných soustav II            |         |                   |                   |
| NFPL800   | Termodynamika                        | 5       | 2/1  Z+Zk         |                   |
|           | kondenzovaných soustav               |         |                   |                   |
| NFPL801   | Oborový seminář I <sup>1</sup>       | 3       | $0/2 \mathrm{~Z}$ |                   |
| NFPL802   | Oborový seminář II <sup>1</sup>      | 3       |                   | $0/2 \mathrm{~Z}$ |
| NSZZ023   | Diplomová práce I                    | 6       |                   | $0/4~\mathrm{Z}$  |
| Fyzika at | tomových a elektronových struktu     | r       |                   |                   |
| NFPL143   | Fyzika pevných látek I               | 9       | 4/2 Z+Zk          | _                 |
| NFPL144   | Struktura látek a strukturní analýza | 7       | 3/2 Z+Zk          |                   |
| NFPL147   | Fyzika pevných látek II              | 9       |                   | 4/2 Z+Zk          |
| Fyzika m  | nakromolekulárních látek             |         |                   |                   |
| NBCM066   | Základy makromolekulární chemie      | 5       | 2/1 Z+Zk          |                   |
| NBCM208   | Základy makromolekulární fyziky      | 4       |                   | $3/0 \mathrm{Zk}$ |
|           |                                      |         |                   |                   |

| NBCM038 Elektrické a optické vlastnosti polymerů   NBCM231 Aplikovaná termodynamika   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NIDOMORO D. I. Y. Y. J. Y. J. Y.           | 0                |                    | 2 /0 771          |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------|--------------------|-------------------|--|--|--|
| Polymerů   NBCM231 Aplikovaná termodynamika   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NBCM058 Relaxační chování polymerů         | 3                | <del></del>        | 2/0  Zk           |  |  |  |
| NBCM231 Aplikovaná termodynamika   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <del>-</del>                               | 3                | <del></del>        | 2/0 ZK            |  |  |  |
| NFPL132   Teorie kondenzovaných látek   6   3/1 Z+Zk   — NFPL133   Struktura materiálů   4   3/0 Zk   — NFPL135   Fyzika materiálů   1   4   2/1 Z+Zk   — NFPL139   Fyzika materiálů   1   4   —   2/1 Z+Zk   NFPL137   Technologie materiálů   3   —   2/0 Zk   NFPL136   Speciální praktikum fyziky   4   0/3 Z   0/3 Z   materiálů                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - v                                        | 0                |                    | 0 /0 71           |  |  |  |
| NFPL132         Teorie kondenzovaných látek         6         3/1 Z+Zk         —           NFPL133         Struktura materiálů I         4         3/0 Zk         —           NFPL135         Fyzika materiálů II         4         2/1 Z+Zk         —           NFPL139         Fyzika materiálů II         4         —         2/0 Zk           NFPL137         Technologie materiálů         3         —         2/0 Zk           NFPL136         Speciální praktikum fyziky         4         0/3 Z         0/3 Z           NFPL136         Speciální praktikum fyziky         4         0/3 Z         0/3 Z           NFPL136         Speciální praktikum fyziky         4         0/3 Z         0/3 Z           NFPL143         Fyzika pevných látek I         9         4/2 Z+Zk         —           NFPL148         Fyzika pevných látek I         9         4/2 Z+Zk         —           NFPL168         Fyzika pevných interakce a jaderný         3         2/0 Zk         —           NFPL169         Hyperjemné interakce a jaderný         3         —         2/0 Zk           NFPL209         Radiofrekvenční spektroskopie         3         —         2/0 Zk                                             | NBCM231 Aplikovana termodynamika           | 3                | <del></del>        | 2/0  Zk           |  |  |  |
| NFPL133         Struktura materiálů I         4         3/0 Zk         —           NFPL135         Fyzika materiálů II         4         2/1 Z+Zk         —           NFPL137         Technologie materiálů II         4         —         2/0 Zk           NFPL137         Technologie materiálů         3         —         2/0 Zk           NFPL136         Speciální praktikum fyziky         4         0/3 Z         0/3 Z           Fyzika nízkých teplot           NFPL143         Fyzika pevných látek I         9         4/2 Z+Zk         —           NFPL168         Fyzika a technika nízkých teplot         3         2/0 Zk         —           NFPL103         Anihilace pozitronů v pevných         3         2/0 Zk         —           NFPL169         Hyperjemné interakce a jaderný magnetismus         3         —         2/0 Zk           NFPL092         Radiofrekvenční spektroskopie pevných látek         3         —         2/0 Zk           NFPL206         Vybrané kapitoly z kvantové fyziky pevných látek         7         —         3/2 Z+Zk           NBCM213 Fyzika přípravy tenkých vrstev         3         2/0 Zk         —           NBCM23 Metody analýzy povrchů a tenkých vrst | Fyzika materiálů                           | Fyzika materiálů |                    |                   |  |  |  |
| NFPL135 Fyzika materiálů II 4 2/1 Z+Zk — NFPL139 Fyzika materiálů II 4 — 2/1 Z+Zk NFPL137 Technologie materiálů 3 — 2/0 Zk NFPL136 Speciální praktikum fyziky 4 0/3 Z 0/3 Z materiálů  Fyzika nízkých teplot  NFPL143 Fyzika pevných látek I 9 4/2 Z+Zk — NFPL168 Fyzika a technika nízkých teplot 3 2/0 Zk — NFPL103 Anihilace pozitronů v pevných 3 2/0 Zk — látkách  NFPL169 Hyperjemné interakce a jaderný 3 — 2/0 Zk — NFPL092 Radiofrekvenční spektroskopie pevných látek  NFPL206 Vybrané kapitoly z kvantové fyziky pevných látek  Fyzika povrchových modifikací  NBCM266 Základy makromolekulární chemie NBCM213 Fyzika přípravy tenkých vrstev NBCM233 Metody analýzy povrchů a tenkých vrstev  NBCM214 Procesy plazmové polymerace 3 2/0 Zk —                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NFPL132 Teorie kondenzovaných látek        | 6                | 3/1  Z+Zk          |                   |  |  |  |
| NFPL139 Fyzika materiálů II 4 — 2/1 Z+Zk NFPL137 Technologie materiálů 3 — 2/0 Zk NFPL136 Speciální praktikum fyziky 4 0/3 Z 0/3 Z  Fyzika nízkých teplot  NFPL143 Fyzika pevných látek I 9 4/2 Z+Zk — NFPL168 Fyzika a technika nízkých teplot 3 2/0 Zk — NFPL103 Anihilace pozitronů v pevných 3 2/0 Zk — NFPL169 Hyperjemné interakce a jaderný magnetismus  NFPL092 Radiofrekvenční spektroskopie 3 — 2/0 Zk  NFPL206 Vybrané kapitoly z kvantové fyziky 7 — 3/2 Z+Zk  pevných látek  Fyzika povrchových modifikací  NBCM066 Základy makromolekulární chemie 5 2/1 Z+Zk — NBCM213 Fyzika přípravy tenkých vrstev 3 2/0 Zk  NBCM233 Metody analýzy povrchů a tenkých 5 2/1 Z+Zk — NBCM214 Procesy plazmové polymerace 3 2/0 Zk —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NFPL133 Struktura materiálů                | 4                | 3/0  Zk            |                   |  |  |  |
| NFPL137 Technologie materiálů  NFPL136 Speciální praktikum fyziky materiálů  Fyzika nízkých teplot  NFPL143 Fyzika pevných látek I NFPL168 Fyzika a technika nízkých teplot  NFPL103 Anihilace pozitronů v pevných látkách  NFPL169 Hyperjemné interakce a jaderný magnetismus  NFPL092 Radiofrekvenční spektroskopie pevných látek  NFPL206 Vybrané kapitoly z kvantové fyziky pevných látek  Fyzika povrchových modifikací  NBCM066 Základy makromolekulární chemie NBCM213 Fyzika přípravy tenkých vrstev NBCM233 Metody analýzy povrchů a tenkých vrstev  NBCM214 Procesy plazmové polymerace  3 — 2/0 Zk - 2/0 Zk - 3/2 Z+Zk - 3/2 Z+Zk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NFPL135 Fyzika materiálů I                 | 4                | 2/1  Z+Zk          |                   |  |  |  |
| NFPL136 Speciální praktikum fyziky ateriálů  Fyzika nízkých teplot  NFPL143 Fyzika pevných látek I 9 4/2 Z+Zk — NFPL168 Fyzika a technika nízkých teplot 3 2/0 Zk — NFPL103 Anihilace pozitronů v pevných 3 2/0 Zk — NFPL169 Hyperjemné interakce a jaderný 3 — 2/0 Zk — NFPL092 Radiofrekvenční spektroskopie 3 — 2/0 Zk pevných látek  NFPL206 Vybrané kapitoly z kvantové fyziky 7 — 3/2 Z+Zk pevných látek  Fyzika povrchových modifikací  NBCM066 Základy makromolekulární chemie 5 2/1 Z+Zk — NBCM213 Fyzika přípravy tenkých vrstev 3 2/0 Zk — NBCM233 Metody analýzy povrchů a tenkých 5 2/1 Z+Zk — NBCM214 Procesy plazmové polymerace 3 2/0 Zk —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NFPL139 Fyzika materiálů II                | 4                | <u> </u>           | 2/1  Z+Zk         |  |  |  |
| materiálů  Fyzika nízkých teplot  NFPL143 Fyzika pevných látek I 9 4/2 Z+Zk —  NFPL168 Fyzika a technika nízkých teplot 3 2/0 Zk —  NFPL103 Anihilace pozitronů v pevných 3 2/0 Zk —  NFPL169 Hyperjemné interakce a jaderný 3 — 2/0 Zk magnetismus  NFPL092 Radiofrekvenční spektroskopie 3 — 2/0 Zk pevných látek  NFPL206 Vybrané kapitoly z kvantové fyziky 7 — 3/2 Z+Zk pevných látek  Fyzika povrchových modifikací  NBCM066 Základy makromolekulární chemie 5 2/1 Z+Zk —  NBCM213 Fyzika přípravy tenkých vrstev 3 2/0 Zk —  NBCM233 Metody analýzy povrchů a tenkých 5 2/1 Z+Zk —  vrstev  NBCM214 Procesy plazmové polymerace 3 2/0 Zk —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NFPL137 Technologie materiálů              | 3                | _                  | $2/0 \mathrm{Zk}$ |  |  |  |
| Fyzika nízkých teplot  NFPL143 Fyzika pevných látek I 9 4/2 Z+Zk —  NFPL168 Fyzika a technika nízkých teplot 3 2/0 Zk —  NFPL103 Anihilace pozitronů v pevných 3 2/0 Zk —  látkách  NFPL169 Hyperjemné interakce a jaderný 3 — 2/0 Zk magnetismus  NFPL092 Radiofrekvenční spektroskopie 3 — 2/0 Zk pevných látek  NFPL206 Vybrané kapitoly z kvantové fyziky pevných látek  Fyzika povrchových modifikací  NBCM066 Základy makromolekulární chemie 5 2/1 Z+Zk —  NBCM213 Fyzika přípravy tenkých vrstev 3 2/0 Zk —  NBCM233 Metody analýzy povrchů a tenkých 5 2/1 Z+Zk —  vrstev  NBCM214 Procesy plazmové polymerace 3 2/0 Zk —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NFPL136 Speciální praktikum fyziky         | 4                | $0/3 \mathrm{~Z}$  | $0/3 \mathrm{~Z}$ |  |  |  |
| NFPL143 Fyzika pevných látek I 9 4/2 Z+Zk — NFPL168 Fyzika a technika nízkých teplot 3 2/0 Zk — NFPL103 Anihilace pozitronů v pevných 3 2/0 Zk — látkách NFPL169 Hyperjemné interakce a jaderný 3 — 2/0 Zk magnetismus NFPL092 Radiofrekvenční spektroskopie 3 — 2/0 Zk pevných látek NFPL206 Vybrané kapitoly z kvantové fyziky 7 — 3/2 Z+Zk pevných látek  Fyzika povrchových modifikací  NBCM213 Fyzika přípravy tenkých vrstev 3 2/0 Zk — NBCM233 Metody analýzy povrchů a tenkých 5 2/1 Z+Zk — vrstev  NBCM214 Procesy plazmové polymerace 3 2/0 Zk —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | materiálů                                  |                  |                    |                   |  |  |  |
| NFPL168 Fyzika a technika nízkých teplot NFPL103 Anihilace pozitronů v pevných látkách NFPL169 Hyperjemné interakce a jaderný magnetismus NFPL092 Radiofrekvenční spektroskopie pevných látek NFPL206 Vybrané kapitoly z kvantové fyziky pevných látek  Fyzika povrchových modifikací  NBCM066 Základy makromolekulární chemie NBCM213 Fyzika přípravy tenkých vrstev NBCM233 Metody analýzy povrchů a tenkých vrstev  NBCM214 Procesy plazmové polymerace  3 2/0 Zk  2/0 Zk  3/2 Z+Zk  2/0 Zk  2/1 Z+Zk  2/1 Z+Zk  2/1 Z+Zk  2/1 Z+Zk  3 2/2 Zk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Fyzika nízkých teplot                      |                  |                    |                   |  |  |  |
| NFPL168 Fyzika a technika nízkých teplot NFPL103 Anihilace pozitronů v pevných látkách NFPL169 Hyperjemné interakce a jaderný magnetismus NFPL092 Radiofrekvenční spektroskopie pevných látek NFPL206 Vybrané kapitoly z kvantové fyziky pevných látek  Fyzika povrchových modifikací  NBCM066 Základy makromolekulární chemie NBCM213 Fyzika přípravy tenkých vrstev NBCM233 Metody analýzy povrchů a tenkých vrstev  NBCM214 Procesy plazmové polymerace  3 2/0 Zk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NFPL143 Fyzika pevných látek I             | 9                | 4/2 Z+Zk           |                   |  |  |  |
| látkách  NFPL169 Hyperjemné interakce a jaderný 3 — 2/0 Zk magnetismus  NFPL092 Radiofrekvenční spektroskopie 3 — 2/0 Zk pevných látek  NFPL206 Vybrané kapitoly z kvantové fyziky 7 — 3/2 Z+Zk pevných látek  Fyzika povrchových modifikací  NBCM066 Základy makromolekulární chemie 5 2/1 Z+Zk — NBCM213 Fyzika přípravy tenkých vrstev 3 2/0 Zk — NBCM233 Metody analýzy povrchů a tenkých 5 2/1 Z+Zk — vrstev  NBCM214 Procesy plazmové polymerace 3 2/0 Zk —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - ·                                        | 3                | ,                  |                   |  |  |  |
| NFPL169 Hyperjemné interakce a jaderný 3 — 2/0 Zk magnetismus  NFPL092 Radiofrekvenční spektroskopie 3 — 2/0 Zk pevných látek  NFPL206 Vybrané kapitoly z kvantové fyziky 7 — 3/2 Z+Zk pevných látek  Fyzika povrchových modifikací  NBCM066 Základy makromolekulární chemie 5 2/1 Z+Zk — NBCM213 Fyzika přípravy tenkých vrstev 3 2/0 Zk — NBCM233 Metody analýzy povrchů a tenkých 5 2/1 Z+Zk — vrstev  NBCM214 Procesy plazmové polymerace 3 2/0 Zk —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NFPL103 Anihilace pozitronů v pevných      | 3                | $2/0 \mathrm{~Zk}$ | _                 |  |  |  |
| magnetismus  NFPL092 Radiofrekvenční spektroskopie 3 — 2/0 Zk  pevných látek  NFPL206 Vybrané kapitoly z kvantové fyziky 7 — 3/2 Z+Zk  pevných látek  Fyzika povrchových modifikací  NBCM066 Základy makromolekulární chemie 5 2/1 Z+Zk —  NBCM213 Fyzika přípravy tenkých vrstev 3 2/0 Zk —  NBCM233 Metody analýzy povrchů a tenkých 5 2/1 Z+Zk —  vrstev  NBCM214 Procesy plazmové polymerace 3 2/0 Zk —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | látkách                                    |                  |                    |                   |  |  |  |
| NFPL092 Radiofrekvenční spektroskopie 3 — 2/0 Zk pevných látek  NFPL206 Vybrané kapitoly z kvantové fyziky 7 — 3/2 Z+Zk pevných látek  Fyzika povrchových modifikací  NBCM066 Základy makromolekulární chemie 5 2/1 Z+Zk — NBCM213 Fyzika přípravy tenkých vrstev 3 2/0 Zk — NBCM233 Metody analýzy povrchů a tenkých 5 2/1 Z+Zk — vrstev  NBCM214 Procesy plazmové polymerace 3 2/0 Zk —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NFPL169 Hyperjemné interakce a jaderný     | 3                |                    | $2/0 \mathrm{Zk}$ |  |  |  |
| pevných látek  NFPL206 Vybrané kapitoly z kvantové fyziky 7 — 3/2 Z+Zk  pevných látek  Fyzika povrchových modifikací  NBCM066 Základy makromolekulární chemie 5 2/1 Z+Zk —  NBCM213 Fyzika přípravy tenkých vrstev 3 2/0 Zk —  NBCM233 Metody analýzy povrchů a tenkých 5 2/1 Z+Zk —  vrstev  NBCM214 Procesy plazmové polymerace 3 2/0 Zk —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | magnetismus                                |                  |                    |                   |  |  |  |
| NFPL206 Vybrané kapitoly z kvantové fyziky pevných látek  Fyzika povrchových modifikací  NBCM066 Základy makromolekulární chemie 5 2/1 Z+Zk — NBCM213 Fyzika přípravy tenkých vrstev 3 2/0 Zk — NBCM233 Metody analýzy povrchů a tenkých 5 2/1 Z+Zk — vrstev  NBCM214 Procesy plazmové polymerace 3 2/0 Zk —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NFPL092 Radiofrekvenční spektroskopie      | 3                |                    | $2/0 \mathrm{Zk}$ |  |  |  |
| pevných látek  Fyzika povrchových modifikací  NBCM066 Základy makromolekulární chemie 5 2/1 Z+Zk — NBCM213 Fyzika přípravy tenkých vrstev 3 2/0 Zk — NBCM233 Metody analýzy povrchů a tenkých 5 2/1 Z+Zk — vrstev  NBCM214 Procesy plazmové polymerace 3 2/0 Zk —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | pevných látek                              |                  |                    | ,                 |  |  |  |
| pevných látek  Fyzika povrchových modifikací  NBCM066 Základy makromolekulární chemie 5 2/1 Z+Zk — NBCM213 Fyzika přípravy tenkých vrstev 3 2/0 Zk — NBCM233 Metody analýzy povrchů a tenkých 5 2/1 Z+Zk — vrstev  NBCM214 Procesy plazmové polymerace 3 2/0 Zk —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NFPL206 Vybrané kapitoly z kvantové fyziky | 7                |                    | 3/2 Z+Zk          |  |  |  |
| NBCM066 Základy makromolekulární chemie 5 2/1 Z+Zk — NBCM213 Fyzika přípravy tenkých vrstev 3 2/0 Zk — NBCM233 Metody analýzy povrchů a tenkých 5 2/1 Z+Zk — vrstev  NBCM214 Procesy plazmové polymerace 3 2/0 Zk —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | pevných látek                              |                  |                    | •                 |  |  |  |
| NBCM213 Fyzika přípravy tenkých vrstev 3 2/0 Zk — NBCM233 Metody analýzy povrchů a tenkých 5 2/1 Z+Zk — vrstev  NBCM214 Procesy plazmové polymerace 3 2/0 Zk —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Fyzika povrchových modifikací              |                  |                    |                   |  |  |  |
| NBCM213 Fyzika přípravy tenkých vrstev 3 2/0 Zk — NBCM233 Metody analýzy povrchů a tenkých 5 2/1 Z+Zk — vrstev  NBCM214 Procesy plazmové polymerace 3 2/0 Zk —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NBCM066 Základy makromolekulární chemie    | 5                | 2/1 Z+Zk           |                   |  |  |  |
| NBCM233 Metody analýzy povrchů a tenkých 5 2/1 Z+Zk — vrstev  NBCM214 Procesy plazmové polymerace 3 2/0 Zk —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | v                                          |                  | ,                  |                   |  |  |  |
| vrstev  NBCM214 Procesy plazmové polymerace 3 2/0 Zk —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |                  | ,                  | _                 |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · · · · · · ·                              |                  | •                  |                   |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NBCM214 Procesy plazmové polymerace        | 3                | $2/0 \mathrm{~Zk}$ |                   |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NBCM231 Aplikovaná termodynamika           |                  |                    | $2/0 \mathrm{Zk}$ |  |  |  |

<sup>&</sup>lt;sup>1</sup> Jako Oborový seminář studenti navštěvují právě jeden z následujících seminářů: Seminář strukturní analýzy (NFPL037), Seminář teorie kondenzovaného stavu (NFPL062), Seminář z magnetismu (NFPL118), Seminář z fyziky nízkých teplot (NFPL098), Seminář fyziky materiálů (NFPL113), Seminář z fyziky polymerů (NBCM091), Studijní seminář plazmových polymerů (NBCM200).

## 2. rok magisterského studia

| Kód                                       | Název                        | Kredity | ZS       | LS                 |  |
|-------------------------------------------|------------------------------|---------|----------|--------------------|--|
| NSZZ024                                   | Diplomová práce II           | 9       | 0/6 Z    |                    |  |
| NFPL124                                   | Experimentální metody fyziky | 6       | 2/2 Z+Zk |                    |  |
|                                           | kondenzovaných látek III     |         |          |                    |  |
| NSZZ025                                   | Diplomová práce III          | 15      |          | $0/10 \mathrm{~Z}$ |  |
| Fyzika atomových a elektronových struktur |                              |         |          |                    |  |

\_\_\_

| Fyzika m  | akromolekulárních látek                                   |          |                                                         |                   |
|-----------|-----------------------------------------------------------|----------|---------------------------------------------------------|-------------------|
| NBCM217   | Moderní směry ve fyzice<br>makromolekul                   | 4        | $3/0 \mathrm{Zk}$                                       | _                 |
| NBCM142   | Diplomový seminář KMF                                     | 3        |                                                         | $0/2 \mathrm{~Z}$ |
| Fyzika m  | ateriálů                                                  |          |                                                         |                   |
|           |                                                           |          |                                                         |                   |
| Fyzika n  | ízkých teplot                                             |          |                                                         |                   |
|           |                                                           |          |                                                         |                   |
|           | ovrchových modifikací                                     |          |                                                         |                   |
| NBCM219   | Vybrané problémy fyziky reálných<br>povrchů               | 3        | 2/0  Zk                                                 | <del></del>       |
| NBCM142   | Diplomový seminář KMF                                     | 3        |                                                         | $0/2 \mathrm{~Z}$ |
| Povinně v | volitelné předměty - 15 kreditů cel                       | kem za o | ba roky stu                                             | dia               |
| Kód       | Název                                                     | Kredity  | ZS                                                      | LS                |
| Fyzika at | tomových a elektronových struktu                          | r        |                                                         |                   |
| NFPL115   | Elektronová mikroskopie                                   | 3        | 2/0  Zk                                                 | _                 |
|           | Magnetické vlastnosti pevných látek                       | 3        | $2/0 \mathrm{~Zk}$                                      |                   |
|           | Dielektrické vlastnosti pevných<br>látek                  | 3        | 2/0 Zk                                                  | _                 |
| NFPL040   | Aplikovaná strukturní analýza                             | 3        | _                                                       | 1/1  Z+Zk         |
| NFPL154   | <del>-</del>                                              | 6        |                                                         | 2/2 Z+Zk          |
|           | v magnetických látkách                                    |          |                                                         | , .               |
| NFPL030   | Rtg metody studia struktury<br>a mikrostruktury materiálů | 5        | _                                                       | 2/1 Z+Zk          |
| NFPL082   | Magnetismus a elektronová struktura<br>kovových systémů   | 3        | 2/0 Zk                                                  | _                 |
| NFPL013   | Rozptyl rtg záření na tenkých<br>vrstvách                 | 3        | 2/0 Zk                                                  | _                 |
| NFPL155   | Experimentální studium reálné<br>struktury pevných látek  | 4        | 2/1 Z+Zk                                                | _                 |
| NFPL157   | Fyzika ve vysokých magnetických<br>polích                 | 3        | 2/0 Zk                                                  | _                 |
| NFPL156   | Fyzika ve vysokých tlacích                                | 3        | $2/0 \mathrm{~Zk}$                                      |                   |
|           | Magnetické struktury                                      | 6        | 2/0 Zk $2/2$ Z+Zk                                       |                   |
| NFPL550   | Tepelná kapacita pevných látek                            | 3        | $2/2$ Z + Z $^{\prime}$ $2/0$ Z $^{\prime}$ $^{\prime}$ |                   |
| NFPL011   | Výpočtová fyzika a návrh materiálů                        | 3        | 2/0  Zk                                                 |                   |
| NFPL004   | Nerovnovážná statistická fyzika<br>a termodynamika        | 3        | 2/0  Zk                                                 | _                 |
| NFPL039   | Metody řešení a upřesňování                               | 3        | _                                                       | 1/1  Z+Zk         |
| 1,111000  | krystalových struktur monokrystalů                        | 9        |                                                         | -/ - 2   2K       |
| NFPL159   | Moderní materiály s aplikačním<br>potenciálem             | 3        |                                                         | 2/0 Zk            |
|           | •                                                         |          |                                                         |                   |

| NFPL551  | Korelace v mnohoelektronových systémech                                         | 3 | _                  | 2/0 Zk            |
|----------|---------------------------------------------------------------------------------|---|--------------------|-------------------|
| Fyzika m | akromolekulárních látek                                                         |   |                    |                   |
| NBCM098  | Rentgenová a elektronová strukturní<br>analýza biomolekul a makromolekul        | 3 | $2/0 \mathrm{~Zk}$ | _                 |
| NBCM211  | Měřicí metody elektrických<br>vlastností polovodivých a nevodivých<br>materiálů | 3 | 1/1 Z+Zk           | _                 |
| NFPL018  | Transportní a povrchové vlastnosti<br>pevných látek                             | 3 | $2/0 \mathrm{~Zk}$ |                   |
| NBCM230  | NMR spektroskopie polymerů                                                      | 3 | _                  | $2/0 \mathrm{Zk}$ |
| NBCM209  | Pravděpodobnostní metody fyziky<br>makromolekul                                 | 3 | _                  | 2/0 Zk            |
| NBCM076  | Teorie polymerních struktur                                                     | 3 | $2/0 \mathrm{Zk}$  |                   |
| NBCM072  | Základy molekulární elektroniky                                                 | 3 | $2/0 \mathrm{Zk}$  |                   |
| NBCM062  | Strukturní teorie relaxačního chování polymerů                                  | 3 | $2/0 \mathrm{~Zk}$ |                   |
| NBCM204  | Statistická termodynamika<br>kondenzovaných soustav                             | 5 | 2/1 Z+Zk           |                   |
| NBCM353  | Speciální praktikum fyziky<br>makromolekulárních látek<br>a nanomateriálů       | 4 | _                  | 0/3 Z             |
| Fyzika m | ateriálů                                                                        |   |                    |                   |
| NFPL107  | Základy krystalografie                                                          | 3 | 1/1  Z+Zk          | _                 |
| NFPL115  | Elektronová mikroskopie                                                         | 3 | 2/0  Zk            |                   |
| NFPL055  | Kinetika fázových transformací                                                  | 3 |                    | $2/0 \mathrm{Zk}$ |
| NFPL305  | Magnetismus materiálů                                                           | 3 |                    | $2/0 \mathrm{Zk}$ |
| NFPL197  | Základy mechaniky kontinua a teorie dislokací                                   | 3 |                    | $2/0 \mathrm{Zk}$ |
| NFPL198  | Teorie poruch krystalu                                                          | 3 |                    | $2/0 \mathrm{Zk}$ |
| NFPL080  | Akustika ve fyzice kondenzovaného stavu                                         | 6 |                    | 3/1  KZ           |
| NFPL140  | Fyzika materiálů III <sup>1</sup>                                               | 3 | $2/0 \mathrm{Zk}$  | $2/0 \mathrm{Zk}$ |
| NFPL103  | Anihilace pozitronů v pevných látkách                                           | 3 | $2/0 \mathrm{~Zk}$ |                   |
| Fyzika n | ízkých teplot                                                                   |   |                    |                   |
| NFPL171  | Makroskopické kvantové jevy I                                                   | 3 | 2/0  Zk            |                   |
| NFPL172  | Makroskopické kvantové jevy II                                                  | 3 | <u></u>            | $2/0 \mathrm{Zk}$ |
| NFPL093  | Vybrané kapitoly z teorie<br>a metodiky magnetické rezonance                    | 3 | 2/0  Zk            | <u></u>           |
| NFPL097  | Jaderně spektroskopické metody<br>studia hyperjemných interakcí                 | 3 |                    | 1/1 Z+Zk          |
| NFPL174  |                                                                                 | 3 | 2/0 Zk             | _                 |

| NEDI 910 Thukulanaa                                           | า             | 9 /0 71-                 |                   |
|---------------------------------------------------------------|---------------|--------------------------|-------------------|
| NFPL210 Turbulence                                            | $\frac{3}{3}$ | $\frac{2}{0} \text{ Zk}$ | <del>_</del>      |
| NFPL096 Mössbauerova spektroskopie                            |               | 2/0 Zk                   | <del></del>       |
| NFPL175 NMR v magneticky uspořádaných látkách                 | 3             | 1/1  Z+Zk                | <del></del>       |
|                                                               | 0             | 0 /0 771                 |                   |
| NFPL129 Jaderné metody studia magnetických<br>systémů         | 3             | $2/0 \mathrm{Zk}$        | <del>_</del>      |
| NFPL095 Základy kryotechniky                                  | 3             | 2/0  Zk                  |                   |
| NFPL128 Vybrané partie z pozitronové anihilační spektroskopie | 3             | 1/1  Z+Zk                | 1/1  Z+Zk         |
| NFPL184 Seminář radiofrekvenční                               | 3             | $0/2 \mathrm{~Z}$        | $0/2 \mathrm{~Z}$ |
| spektroskopie kondenzovaných látek                            |               | - /                      | - /               |
| NFPL204 Magnetické nanočástice                                | 3             | 2/0  Zk                  | _                 |
| NFPL179 Kvantový popis NMR                                    | 5             |                          | 2/1 Z+Zk          |
| v 1 1                                                         |               |                          | , .               |
| Fyzika povrchových modifikací                                 |               |                          |                   |
| NFPL107 Základy krystalografie                                | 3             | $1/1 \mathrm{~Z+Zk}$     |                   |
| NBCM234 Konstrukce depozičních aparatur                       | 5             | $2/1 \mathrm{~Z+Zk}$     |                   |
| NBCM235 Základy fyziky plazmatu                               | 3             | $2/0 \mathrm{Zk}$        | _                 |
| NFPL149 Rentgenografické studium reálné                       | 3             | <del></del>              | $2/0 \mathrm{Zk}$ |
| struktury tenkých vrstev                                      |               |                          |                   |
| NBCM215 Modifikace povrchů a její aplikace                    | 3             |                          | $2/0 \mathrm{Zk}$ |
| NBCM236 Nanokompozitní                                        | 3             |                          | $2/0 \mathrm{Zk}$ |
| a nanostrukturované tenké vrstvy                              |               |                          |                   |
| NBCM220 Tvrdé a supertvrdé vrstvy a jejich aplikace           | 3             | $2/0 \mathrm{~Zk}$       |                   |
| NBCM232 Elektrické vlastnosti tenkých vrstev                  | 3             | $2/0 \mathrm{Zk}$        | _                 |
| NBCM222 Optické vlastnosti tenkých vrstev                     | 3             | $2/0 \mathrm{~Zk}$       | _                 |
| NBCM353 Speciální praktikum fyziky                            | 4             |                          | $0/3 \mathrm{~Z}$ |
| makromolekulárních látek                                      |               |                          | ,                 |
| a nanomateriálů                                               |               |                          |                   |
|                                                               |               |                          |                   |

 $<sup>^{1}</sup>$  Předmět lze zapsat buď v letním nebo v zimním semestru.

# Fyzika kondenzovaných soustav a materiálů - doporučené volitelné předměty

| Kód     | Název                                               | Kredity | ZS                 | LS     |
|---------|-----------------------------------------------------|---------|--------------------|--------|
| NFPL038 | Difrakce rentgenového záření<br>dokonalými krystaly | 3       | 2/0 Zk             | _      |
| NFPL130 | Fyzikální metalurgie hliníkových slitin pro tváření | 3       | $2/0 \mathrm{~Zk}$ |        |
| NFPL199 | Fyzikální metody studia<br>nanostruktur             | 3       | _                  | 2/0 Zk |
| NEVF106 | Mikroskopie povrchů a tenkých<br>vrstev             | 5       | 2/1 Z+Zk           |        |
| NFPL120 | Moderní problémy fyziky materiálů                   | 3       | $2/0 \mathrm{~Zk}$ |        |
| NFPL006 | Řešení výpočetně náročných úloh ve<br>fyzice        | 3       | 1/1 Z+Zk           | _      |

| NFPL177 | Supravodivost                                                                      | 5 | 2/1 Z+Zk           |                                               |
|---------|------------------------------------------------------------------------------------|---|--------------------|-----------------------------------------------|
| NFPL072 | Systémy s korelovanými f-elektrony                                                 | 3 | 2/0  Zk            |                                               |
| NFPL141 | Kvantová teorie II                                                                 | 5 | 2/1  Z+Zk          | 2/1  Z+Zk                                     |
| NFPL051 | Mechanické vlastnosti nekovových<br>materiálů                                      | 3 | 2/0 Zk             | <u>,                                     </u> |
| NFPL500 | Praktické užití mikroskopie<br>atomárních sil (AFM)                                | 2 | _                  | $0/2 \mathrm{~Z}$                             |
| NFPL192 | Proseminář fyziky kondenzovaných soustav                                           | 3 | _                  | 0/2  KZ                                       |
| NFPL505 | Úvod do fyziky měkkých materiálů                                                   | 3 |                    | 1/1  Z+Zk                                     |
| NFPL502 | Úvod do fyziky pevných látek                                                       | 6 |                    | 3/1  Z+Zk                                     |
| NBCM060 | Základy vytváření polymerních<br>struktur                                          | 3 | _                  | 2/0  Zk                                       |
| NFPL310 | Praktická transmisní elektronová<br>mikroskopie I                                  | 5 | $0/4~\mathrm{Z}$   | $0/4 \mathrm{~Z}$                             |
| NFPL311 | Praktická transmisní elektronová<br>mikroskopie II                                 | 5 | $0/4~\mathrm{Z}$   | $0/4 \mathrm{~Z}$                             |
| NFPL312 | Praktická transmisní elektronová<br>mikroskopie III                                | 5 | $0/4~\mathrm{Z}$   | $0/4~\mathrm{Z}$                              |
| NFPL307 | Praktické užití skenovací elektronové<br>mikroskopie                               | 4 | $0/3 \mathrm{~Z}$  | $0/3 \mathrm{~Z}$                             |
| NFPL251 | Pokročilé rentgenografické rozptylové<br>metody pro výzkum nanomateriálů           | 3 | 2/0 Zk             |                                               |
| NBCM070 | Termodynamika nerovnovážných procesů                                               | 3 | 2/0 Zk             |                                               |
| NFPL304 | Technologie a vlastnosti materiálů na<br>bázi železa <sup>1</sup>                  | 3 | 2/0 Zk             | 2/0 Zk                                        |
| NBCM352 | Stochastická termodynamika<br>a Aktivní hmota                                      | 3 | _                  | 2/0 Zk                                        |
| NFPL306 | Slitiny lehkých kovů                                                               | 3 | $2/0 \mathrm{~Zk}$ | $2/0 \mathrm{~Zk}$                            |
|         | Linux ve fyzikální laboratoři                                                      | 3 | 1/1  Z+Zk          | 1/1  Z+Zk                                     |
| NFPL041 | Pokročilé zpracování dat pro moderní<br>HPC                                        | 5 | 2/2 Z+Zk           |                                               |
| NFPL019 | Simulation and fitting of X-ray scattering experiments using matrix-based language | 3 | 2/0 Zk             | 2/0 Zk                                        |
| NFPL027 | Current problems and research in<br>Condensed Matter Physics                       | 3 | $0/2 \mathrm{~Z}$  | $0/2~\mathrm{Z}$                              |

## Podmínky pro přihlášení ke státní závěrečné zkoušce

Podmínky pro přihlášení k jiné než poslední části státní závěrečné zkoušky jsou stanoveny vnitřním předpisem Pravidla pro organizaci studia na MFF UK.

Podmínky pro přihlášení k poslední části státní závěrečné zkoušky:

- -získání alespo<br/>ň 120 kreditů
- splnění všech povinných předmětů zvoleného zaměření

- získání alespoň 25 kreditů z povinně volitelných předmětů profilujícího základu
- získání alespoň 15 kreditů z povinně volitelných předmětů
- odevzdání diplomové práce ve stanoveném termínu

Předmět lze splnit jeho úspěšným absolvováním či uznáním z předchozího studia.

## Požadavky k ústní části státní závěrečné zkoušky

## A. Společné požadavky

Elektronové stavy v pevných látkách - pásová struktura a metody jejího výpočtu: jednoelektronové přiblížení a metody řešení efektivních rovnic (metoda LCAO, téměř volné elektrony, LAPW, pseudopotenciály). Adiabatická aproximace, variační princip a poruchový počet.

Interakce mezi elektrony - druhé kvantování, Hartree-Fockova aproximace, teorie funkcionálu hustoty. Kvazičástice v kondenzovaných soustavách.

Interakce elektromagnetického záření s látkou - absorpce a emise fotonu. Stimulovaná a spontánní emise, výběrová pravidla. Doba života kvantových stavů, přirozená šířka spektrální čáry.

## 2. Termodynamika a statistická fyzika kondenzovaných soustav

Termodynamická rovnováha, stavové veličiny a stavové rovnice. Hlavní termodynamické věty a jejich důsledky, entropie a absolutní teplota. Termodynamické potenciály, podmínky rovnováhy a stability. Kritické jevy, fázové přechody, Landauova teorie fázových přechodů. Popis nerovnovážných procesů, lineární nerovnovážná termodynamika. Statistický popis stavu, distribuční funkce a matice hustoty. Liouvilleova rovnice. Gibbsovy stacionární soubory, souborové středování, odvození stavových rovnic. Klasické a kvantové systémy neinteragujících částic. Brownův pohyb, difuze ve vnějším poli.

#### 3. Základy fyziky kondenzovaných látek

Struktura kondenzovaných soustav - krystalová struktura, bodová a translační symetrie, základy krystalografie. Reciproký prostor, Brillouinova zóna.

Reálná struktura látek - poruchy krystalové struktury, uspořádání na dlouhou a krátkou vzdálenost. Amorfní látky a jejich popis, párové distribuční funkce. Popis topologie, prostorové a elektronové struktury makromolekul.

Pohyb atomů a molekul v kondenzovaných látkách - difuze, kmity mřížky, fonony, tepelná kapacita.

Elektrické vlastnosti - polarizační mechanismy, dielektrická susceptibilita. Interakce mřížky iontového krystalu s elektromagnetickou vlnou. Vedení elektrického proudu - Sommerfeldův model, elektrony v periodickém poli, pásová struktura kovů a polovodičů. Základní poznatky o supravodivosti.

Magnetické vlastnosti - diamagnetismus a paramagnetismus, magnetizace, magnetická susceptibilita. Spontánní uspořádání magnetických momentů. Magnetizační procesy ve feromagnetikách.

Mechanické silové pole - elastická a plastická deformace, viskozita. Viskoelasticita a kaučuková elasticita polymerních systémů, skelný přechod, princip časově-teplotní superpozice.

#### 4. Experimentální metody

Metody určování struktury - základní difrakční metody: difrakce a rozptyl rtg záření, elektronů, neutronů, atomů a iontů. Mikroskopické metody - světelná, řádkovací a transmisní elektronová mikroskopie.

Makroskopické a mikroskopické metody studia mechanických, tepelných, dielektrických, optických, transportních a magnetických vlastností látek.

Základní spektroskopické metody (radiofrekvenční, mikrovlnné, optické, rentgenové, gama, fotoemisní) a jejich použití.

#### B. Užší zaměření

Student si volí okruh otázek odpovídající jeho zaměření.

## 1. Fyzika atomových a elektronových struktur

Atomová struktura látek

Bodové a prostorové grupy. Symetrie fyzikálních vlastností. Struktura krystalů, kvazikrystalů, modulovaných struktur a amorfních látek. Používání strukturních databází. Kinematická teorie difrakce - rozptyl na elektronu, atomu a molekule; rozptyl na periodických a nízkodimenzionálnálních strukturách. Základy dynamické teorie difrakce. Využití neutronů a synchrotronového záření ke studiu struktury látek. Počítačové simulace, ab-initio výpočty.

## Elektronová strutkura a fyzikální vlastnosti látek

Vodivostní elektrony v materiálech (klasický a kvantový popis), elektrony v periodickém potenciálu. Elektronová struktura kovů, polovodičů a izolátorů, optické vlastnosti. Chemická vazba, koheze, hybridizace elektronových stavů. Elektron-fononová interakce, elektrický a tepelný transport. Coulombovská a výměnná interakce, elektronové korelace, vznik magnetického momentu. Magnetické uspořádání, symetrie. Mikroskopické modely magnetismu. Nízkodimenzionální systémy. Měrné teplo, teplotní roztažnost. Magnetotransportní a magnetoelastické jevy. Dielektrika, elektrická permitivita, feroelektrika a antiferoelektrika. Elektrooptické a magnetooptické jevy. Využití mikroskopických a makroskopických metod. Vliv vnějšího tlaku, fyzika ve vysokých magnetických polích. Ab initio výpočty elektronové struktury a fyzikálních vlastností. Aplikační využití elektronových vlastností materiálů. Nanomateriály.

#### Kolektivní jevy

Spontánní narušení symetrie a parametr uspořádání. Mikroskopický popis fázových přechodů, teorie středního pole, fluktuace. Strukturní a magnetické fázové přechody. Spontánní uspořádání jaderných momentů. Kondo mřížka a systémy s těžkými fermiony. Bose-Einsteinova kondenzace atomu. Supravodivost a supratekutost. Kooperativní jevy mimo rovnováhu, lasery.

#### 2. Fyzika makromolekulárních látek

#### Struktura makromolekul

Konfigurace, konformace, takticita a stereoregularita polymerních řetězců. Architektura makromolekulárních systémů. Způsoby přípravy makromolekulárních systémů, chemická struktura polymerů, způsoby výstavby polymerních sítí, bod gelace. Distribuce a průměry molárních hmotností.

## Fyzikální vlastnosti makromolekulárních systémů

Relaxační vlastnosti, skelný přechod a teorie volného objemu, časově-teplotní superpozice. Pojem lineární viskoelasticity, viskoelastické funkce, Boltzmannův princip superpozice. Termodynamika polymerních roztoků, směsí a blokových kopolymerů — fázové diagramy. Flory-Hugginsova teorie, botnací rovnováha. Koligativní vlastnosti polymerních roztoků. Přechod klubko-globule. Krystalizace polymerů. Elektrické a optické vlastnosti polymerů, generace a transport náboje v organických strukturách.

## $Experimentální\ metody$

Metody studia skelného přechodu, měření reologických a viskoelastických vlastností, dynamická mechanická analýza. Měření dielektrických a elektrických vlastností, termální depolarizace. Detekce teplotních přechodů, diferenciální skenovací kalorimetrie. Metody určování molekulových hmotností a struktury polymerů. Difrakční/rozptylové a spektroskopické metody pro studium struktury makromolekulárních systémů.

## 3. Fyzika materiálů

#### Poruchy krystalové mřížky

Krystalová mřížka, vakance, intersticiály, vrstevné chyby, subhranice, hranice zrn, dvojčata, inkluze, dispersoidy, precipitáty. Interakce poruch krystalové mřížky. Experimentální metody studia poruch krystalové mřížky: mechanické zkoušky, difrakční a zobrazovací metody, termická analýza, akustická emise.

### Mechanické vlastnosti

Plastická deformace, teorie zpevnění, creep a lom. Statické a dynamické odpevnění, zotavení poruch mřížky, superplasticita, nestabilita plastické deformace, tvarová paměť.

## Termodynamika vícesložkových systémů

Binární a ternární fázové diagramy, model párových vazeb, pákové pravidlo, intermediální fáze. Fázové transformace, tuhnutí slitin, segregační procesy. Difuzní a bezdifuzní transformace v pevných látkách, TTT-diagramy, Avramiho rovnice. Difuze v pevných látkách.

## Moderní materiály a technologie

Intermetalické sloučeniny, keramické a kompozitní materiály, submikrokrystalické a nanokrystalické materiály, kvazikrystaly, materiály s tvarovou pamětí, technologie přípravy moderních materiálů.

## 4. Fyzika nízkých teplot

#### Elektronová struktura pevných látek

Metody výpočtu elektronové struktury. Elektronová struktura a magnetické vlastnosti pevných látek. Magnetické momenty volného atomu/iontu, interakce s krystalovým polem, korelační jevy, výměnné interakce, lokalizované a itinerantní magnetické momenty.

## Fyzika a technika nízkých teplot

Metody získávání nízkých a velmi nízkých teplot, základní vlastnosti kryokapalin. Nízkoteplotní termometrie.

#### Makroskopické kvantové jevy

Supravodivost, Cooperovy páry, Meissnerův jev, slabá supravodivost. Supravodiče I. a II. druhu, vysokoteplotní supravodivost. Supratekutost <sup>4</sup>He, <sup>3</sup>He, makroskopická vlnová funkce, Boseova-Einsteinova kondenzace.

### Hyperjemné interakce a jaderný magnetismus

Elektrické a magnetické momenty atomových jader, elektrická a magnetická hyperjemná interakce. Spinový hamiltonián, hyperjemné štěpení energetických hladin, role symetrie okolí jádra.

Experimentální metody studia hyperjemných interakcí (jaderná magnetická rezonance, elektronová paramagnetická rezonance, mionová spinová rotace, Mössbauerův

jev, jaderná orientace, metoda porušených úhlových korelací) a jejich využití pro studium atomové, elektronové a magnetické struktury.

## 5. Fyzika povrchových modifikací

Fyzika povrchů

Vazba molekuly na povrchu, absorpce, ideální a reálný povrch, elektronová struktura povrchů, povrchové stavy, výstupní práce, emise nabitých částic, emise elektronu, princip elektronové spektroskopie, interakce částic a záření s povrchem, fotoemise, princip fotoelektronové spektroskopie, sekundární elektronové emise, difrakce. Energie povrchů a rozhraní.

Experimentální metody studia povrchu

Metody elektronové spektroskopie (AES, REED), metody iontové spektroskopie (SIMS, SNMS), metody fotoelektronové spektroskopie (UPS, XPS) a jejich praktické použití. Metody elektronové mikroskopie. Měření povrchové energie: statické a dynamické metody měření kontaktního úhlu. Infračervená spektroskopie ATR FTIR, metody rtg. difrakce — maloúhlový rozptyl.

Příprava tenkých vrstev

Definice tenké vrstvy, pojem tloušťky tenké vrstvy, počáteční stadium a mechanismy růstu vrstvy. Základní metody jejich přípravy: vypařování ve vakuu, stejnoměrné a vysokofrekvenční rozprašování, CVD, PE CVD anorganických a organických vrstev (plazmová polymerace). Metody diagnostiky růstu tenké vrstvy, měření rychlosti nanášení a tloušťky, určování struktury a morfologie, mechanických, elektrických a optických vlastností. Modifikace povrchu, změny povrchové energie a chemické aktivity. Použití tenkých vrstev — tvrdá, oděruvzdorná pokrytí, ochranné a pasivační vrstvy, optické tenké vrstvy, vrstvy pro mikroelektroniku.

## 6. Optika a optoelektronika

Garantující pracoviště: Katedra chemické fyziky a optiky

Garant programu: prof. RNDr. Petr Malý, DrSc.

Charakteristika studijního programu:

Program je nabízen studentům, kteří chtějí získat širší fyzikální rozhled a detailní znalosti i praktické dovednosti potřebné k výzkumné a vědecké činnosti v oboru optiky a optoelektroniky. Výuka připravuje studenty jak pro samostatnou tvůrčí činnost, tak i pro týmovou spolupráci. Získaný širší přehled vytváří předpoklady také pro práci v mezioborových oblastech na rozhraní fyziky, biologie a technických oborů. Důraz je kladen na vysokou profesionalitu v optice a optoelektronice s dobrou znalostí výpočetní techniky. Student si vybírá podle zájmu a tématu diplomové práce jedno ze dvou zaměření. Kromě obecných společných základů tak získává hlubší znalosti ve zvolených oblastech. Zaměření Kvantová a nelineární optika se soustředí zejména na vlastnosti světelných polí v rámci klasické i kvantové optiky, na nelineárně optické jevy a na metody laserové spektroskopie. Zaměření Optoelektronika a fotonika se podrobně zabývá interakcí světla s pevnými látkami, detekcí světla a technologií přípravy polovodičových materiálů pro optoelektronické a fotonické aplikace. Součástí studijního plánu na obou zaměřeních je praktická výuka vedená v laboratořích vybavených na současné světové úrovni, která zajišťuje kompetence absolventů v oblasti experimentálního výzkumu, optické spektroskopie, aplikované optiky, optoelektroniky a spintroniky. Výběrové přednášky pokrývají ve světě se nově rozvíjející obory jako opto-spintronika, fyzika metamateriálů

či terahertzová spektroskopie. Zasahování optiky do řady oborů (fyzika, biologie, chemie, medicína) i její stále rostoucí aplikace v každodenním životě zvyšují adaptibilitu absolventů a možnosti jejich uplatnění ve vědecké práci i v praxi. Absolventi jsou zcela připraveni k dalšímu doktorskému studiu v ČR nebo v zahraničí.

Profil absolventa studijního programu a cíle studia:

Absolvent má hluboké teoretické i experimentální znalosti z klasické i kvantové optiky a optoelektroniky. Zvládá matematické modelování fyzikálních procesů v optice a optoelektronice. Tyto znalosti a dovednosti je schopen uplatnit ve výzkumné a vědecké činnosti v oborech optika, optoelektronika, spintronika, fotonika, fyzika laserů, statistická a koherenční optika, nelineární optika, optické sdělování a zpracování informace, přístrojová optika, i v řadě oborů, kde se optika nebo optická spektroskopie využívá (biologie, chemie, medicína). Fyzikální vzdělání spojené se získáním dovedností v oblasti počítačového programování, informačních technologií i organizace týmové vědecké práce zvyšuje možnosti uplatnění na vysokých školách a vědeckých ústavech i v průmyslu. Absolvent je schopen odborně komunikovat v českém i anglickém jazyce a má zkušenosti s přípravou a navrhováním grantových projektů a s organizací vědecké práce. Je mu otevřena možnost dalšího doktorského studia nebo vědecké a pedagogické činnosti na vysokých školách a vědeckých ústavech v ČR i v zahraničí. Absolventi se uplatní i jako vědecko-výzkumní a vývojoví pracovníci nebo řídící pracovníci v soukromých firmách a institucích.

#### Doporučený průběh studia

Předpokladem úspěšného magisterského studia tohoto programu je získání základních znalostí na úrovni následujících předmětů:

| Kód     | Název                         | Kredity | ZS | LS                |
|---------|-------------------------------|---------|----|-------------------|
| NOOE021 | Vlnová optika                 | 9       |    | 4/2 Z+Zk          |
| NOOE001 | Základy optické spektroskopie | 3       |    | $2/0 \mathrm{Zk}$ |

Tyto předměty se obvykle zapisují ve třetím roce bakalářského studia programu Fyzika jako povinně volitelné. Pokud posluchač tyto nebo jim ekvivalentní předměty neabsolvoval, měl by si je ve vlastním zájmu zapsat jako volitelné v prvním roce navazujícího magisterského studia. Obsah uvedených předmětů je součástí společných požadavků státní závěrečné zkoušky.

## Povinné a povinně volitelné předměty

Studenti si volí jedno ze dvou zaměření: Kvantová a nelineární optika, Optoelektronika a fotonika. Vzhledem k odlišným požadavkům k ústní části státní závěrečné zkoušky se doporučuje v rámci povinně výběrových předmětů volba předmětů profilujícího základu takto: pro zaměření Kvantová a nelineární optika předměty Kvantová optika I, Kvantová optika II, Integrovaná a vláknová optika; pro zaměření Optoelektronika a fotonika předměty Fyzika polovodičů pro optoelektroniku II, Fyzika polovodičů pro optoelektroniku III, Elektronový transport v kvantových systémech.

## 1. rok magisterského studia

| Kód     | Název                   | Kredity | ZS                 | LS |
|---------|-------------------------|---------|--------------------|----|
| NOOE002 | 2 Fyzika polovodičů pro | 3       | $2/0 \mathrm{~Zk}$ | _  |
|         | optoelektroniku I       |         |                    |    |

| NOOE003 Optoelektronické materiály         | 3 | $2/0 \mathrm{~Zk}$ |                   |
|--------------------------------------------|---|--------------------|-------------------|
| a technologie                              |   | 7                  |                   |
| NOOE046 Speciální praktikum pro OOE I      | 6 | $0/4~\mathrm{KZ}$  |                   |
| NFPL182 <b>Teorie pevných látek</b>        | 9 | 4/2 Z+Zk           |                   |
| NOOE027 Základy kvantové a nelineární      | 6 | 3/1  Z+Zk          |                   |
| optiky I                                   |   |                    |                   |
| NSZZ023 Diplomová práce I                  | 6 |                    | $0/4 \mathrm{~Z}$ |
| NOOE016 Speciální praktikum pro            | 6 | _                  | $0/4~\mathrm{KZ}$ |
| OOE II                                     |   |                    |                   |
| NOOE072 Teorie prostorových symetrií       | 3 |                    | 2/0  Zk           |
| pro optiku                                 |   |                    |                   |
| NOOE028 Základy kvantové a nelineární      | 6 |                    | 3/1  Z+Zk         |
| optiky II                                  |   |                    |                   |
| NBCM067 Kvantová optika I $^{\rm 1}$       | 5 | 2/1  Z+Zk          |                   |
| NBCM093 Kvantová optika II $^1$            | 5 |                    | 2/1  Z+Zk         |
| NBCM096 Elektronový transport v kvantových | 5 | _                  | 2/1 Z+Zk          |
| systémech $^2$                             |   |                    |                   |
| NOOE008 Fyzika polovodičů pro              | 3 |                    | $2/0 \mathrm{Zk}$ |
| optoelektroniku II $^{2}$                  |   |                    |                   |

 $<sup>\</sup>frac{1}{2}$ Doporučeno pro zaměření Kvantová a nelineární optika.  $\frac{2}{2}$ Doporučeno pro zaměření Optoelektronika a fotonika.

# 2. rok magisterského studia

| Kód     | Název                                      | Kredity | ZS                | LS                 |
|---------|--------------------------------------------|---------|-------------------|--------------------|
| NSZZ024 | Diplomová práce II                         | 9       | 0/6 Z             | _                  |
| NOOE061 | Nelineární optika                          | 5       | 2/1  Z+Zk         |                    |
|         | polovodičových nanostruktur                |         |                   |                    |
| NSZZ025 | Diplomová práce III                        | 15      |                   | $0/10 \mathrm{~Z}$ |
| NOOE005 | Fyzika polovodičů pro                      | 5       | 2/1  Z+Zk         |                    |
|         | optoelektroniku III <sup>2</sup>           |         |                   |                    |
| NOOE007 | Integrovaná a vláknová optika <sup>1</sup> | 3       | $2/0 \mathrm{Zk}$ |                    |
| NOOE033 | Speciální seminář z kvantové               | 3       | $0/2 \mathrm{~Z}$ | $0/2 \mathrm{~Z}$  |
|         | a nelineární optiky <sup>1</sup>           |         |                   | ·                  |
| NOOE010 | Speciální seminář                          | 3       | $0/2 \mathrm{~Z}$ | $0/2 \mathrm{~Z}$  |
|         | z optoelektroniky <sup>2</sup>             |         | ,                 | ,                  |

 $<sup>^1</sup>$ Doporučeno pro zaměření Kvantová a nelineární optika.  $^2$ Doporučeno pro zaměření Optoelektronika a fotonika.

## Povinně volitelné předměty

| Kód     | Název                                | Kredity | ZS        | LS                 |
|---------|--------------------------------------|---------|-----------|--------------------|
| NBCM067 | 7 Kvantová optika I                  | 5       | 2/1  Z+Zk | _                  |
| NBCM096 | i Elektronový transport v kvantových | 5       |           | 2/1  Z+Zk          |
|         | systémech                            |         |           |                    |
| NOOE008 | 8 Fyzika polovodičů pro              | 3       |           | $2/0 \mathrm{~Zk}$ |
|         | optoelektroniku II                   |         |           |                    |

|                                                                                                         | Kvantová optika II                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                         |                                                                       | 2/1  Z+Zk         |
|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------|-------------------|
| NOOE005                                                                                                 | Fyzika polovodičů pro<br>optoelektroniku III                                                                                                                                                                                                                                                                                                                                                                                               | 5                                         | 2/1  Z+Zk                                                             |                   |
| NOOE007                                                                                                 | Integrovaná a vláknová optika                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                         | $2/0 \mathrm{Zk}$                                                     |                   |
|                                                                                                         | Teorie laseru                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{3}{3}$                             | 2/0  Zk $2/0  Zk$                                                     |                   |
|                                                                                                         | Ultrakrátké laserové pulzy                                                                                                                                                                                                                                                                                                                                                                                                                 | $\frac{3}{3}$                             | 2/0  Zk $2/0  Zk$                                                     |                   |
|                                                                                                         | Speciální seminář z kvantové                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                         | •                                                                     | $0/2 \mathrm{~Z}$ |
| NOOE033                                                                                                 | a nelineární optiky                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                         | $0/2 \mathrm{~Z}$                                                     | 0/2 Z             |
| NOOE010                                                                                                 | Speciální seminář z optoelektroniky                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                         | $0/2 \mathrm{~Z}$                                                     | $0/2 \mathrm{~Z}$ |
| NOOE035                                                                                                 | Luminiscenční spektroskopie polovodičů                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                         | 2/0  Zk                                                               | _                 |
| NOOE029                                                                                                 | Mikrodutiny                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                         | 2/0  Zk                                                               |                   |
|                                                                                                         | Nanooptika                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                                         | 2/0  Zk                                                               |                   |
|                                                                                                         | Optika periodických struktur pro<br>fotoniku                                                                                                                                                                                                                                                                                                                                                                                               | 3                                         | 2/0 Zk                                                                |                   |
| NOOF190                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                         |                                                                       | 2/0.71            |
|                                                                                                         | Optická spektroskopie ve spintronice                                                                                                                                                                                                                                                                                                                                                                                                       | $\frac{3}{3}$                             | 2/0.71                                                                | 2/0  Zk           |
| NOOE025                                                                                                 | Spektroskopie s vysokým časovým rozlišením                                                                                                                                                                                                                                                                                                                                                                                                 | ა                                         | 2/0  Zk                                                               | <del></del>       |
| NOOE132                                                                                                 | Magnetizmus v pevných látkách                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                         | 2/1 Z+Zk                                                              |                   |
| Doporuče                                                                                                | né volitelné předměty                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           |                                                                       |                   |
| Kód                                                                                                     | Název                                                                                                                                                                                                                                                                                                                                                                                                                                      | Kredity                                   | ZS                                                                    | LS                |
| NRCM101                                                                                                 | Detekce a spektroskopie jednotlivých                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                         | $2/0 \mathrm{Zk}$                                                     |                   |
| TIBOWIOI                                                                                                | molekul                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                         | 2/0 ZK                                                                |                   |
|                                                                                                         | molekul                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                         | ,                                                                     | _                 |
|                                                                                                         | molekul<br>Fotonické struktury                                                                                                                                                                                                                                                                                                                                                                                                             |                                           | 2/0 Zk                                                                | _                 |
| NOOE124                                                                                                 | molekul<br>Fotonické struktury<br>a elektromagnetické metamateriály                                                                                                                                                                                                                                                                                                                                                                        | 3                                         | 2/0 Zk                                                                | _                 |
| NOOE124<br>NOOE047                                                                                      | molekul Fotonické struktury a elektromagnetické metamateriály Integrovaná optika                                                                                                                                                                                                                                                                                                                                                           | 3                                         | 2/0 Zk<br>2/0 Zk                                                      | _<br>_<br>_       |
| NOOE124<br>NOOE047<br>NOOE113                                                                           | molekul Fotonické struktury a elektromagnetické metamateriály Integrovaná optika Laserová metrologie                                                                                                                                                                                                                                                                                                                                       | 3<br>3<br>3                               | 2/0 Zk<br>2/0 Zk<br>2/0 Zk                                            | _<br>_<br>_       |
| NOOE124<br>NOOE047<br>NOOE113<br>NFPL004                                                                | molekul Fotonické struktury a elektromagnetické metamateriály Integrovaná optika Laserová metrologie Nerovnovážná statistická fyzika                                                                                                                                                                                                                                                                                                       | 3                                         | 2/0 Zk<br>2/0 Zk                                                      |                   |
| NOOE124<br>NOOE047<br>NOOE113<br>NFPL004                                                                | molekul Fotonické struktury a elektromagnetické metamateriály Integrovaná optika Laserová metrologie Nerovnovážná statistická fyzika a termodynamika                                                                                                                                                                                                                                                                                       | 3<br>3<br>3<br>3                          | 2/0 Zk<br>2/0 Zk<br>2/0 Zk<br>2/0 Zk                                  |                   |
| NOOE124<br>NOOE047<br>NOOE113<br>NFPL004<br>NBCM305                                                     | molekul Fotonické struktury a elektromagnetické metamateriály Integrovaná optika Laserová metrologie Nerovnovážná statistická fyzika a termodynamika Optické senzory                                                                                                                                                                                                                                                                       | 3<br>3<br>3<br>3                          | 2/0 Zk<br>2/0 Zk<br>2/0 Zk<br>2/0 Zk<br>2/0 Zk                        |                   |
| NOOE124<br>NOOE047<br>NOOE113<br>NFPL004<br>NBCM305<br>NOOE074                                          | molekul Fotonické struktury a elektromagnetické metamateriály Integrovaná optika Laserová metrologie Nerovnovážná statistická fyzika a termodynamika Optické senzory Teorie magnetooptiky                                                                                                                                                                                                                                                  | 3<br>3<br>3<br>3<br>3                     | 2/0 Zk                      |                   |
| NOOE124<br>NOOE047<br>NOOE113<br>NFPL004<br>NBCM305<br>NOOE074                                          | molekul Fotonické struktury a elektromagnetické metamateriály Integrovaná optika Laserová metrologie Nerovnovážná statistická fyzika a termodynamika Optické senzory                                                                                                                                                                                                                                                                       | 3<br>3<br>3<br>3                          | 2/0 Zk<br>2/0 Zk<br>2/0 Zk<br>2/0 Zk<br>2/0 Zk                        |                   |
| NOOE124<br>NOOE047<br>NOOE113<br>NFPL004<br>NBCM305<br>NOOE074<br>NOOE133                               | molekul Fotonické struktury a elektromagnetické metamateriály Integrovaná optika Laserová metrologie Nerovnovážná statistická fyzika a termodynamika Optické senzory Teorie magnetooptiky Topologické vlastnosti světla                                                                                                                                                                                                                    | 3<br>3<br>3<br>3<br>3                     | 2/0 Zk                      |                   |
| NOOE124<br>NOOE047<br>NOOE113<br>NFPL004<br>NBCM305<br>NOOE074<br>NOOE133                               | molekul Fotonické struktury a elektromagnetické metamateriály Integrovaná optika Laserová metrologie Nerovnovážná statistická fyzika a termodynamika Optické senzory Teorie magnetooptiky Topologické vlastnosti světla a hmoty                                                                                                                                                                                                            | 3<br>3<br>3<br>3<br>3<br>3                | 2/0 Zk        |                   |
| NOOE124 NOOE047 NOOE113 NFPL004 NBCM305 NOOE074 NOOE133 NBCM102                                         | molekul Fotonické struktury a elektromagnetické metamateriály Integrovaná optika Laserová metrologie Nerovnovážná statistická fyzika a termodynamika Optické senzory Teorie magnetooptiky Topologické vlastnosti světla a hmoty Základy klasické radiometrie a fotometrie Základy konstrukce a výroby                                                                                                                                      | 3<br>3<br>3<br>3<br>3<br>3                | 2/0 Zk        |                   |
| NOOE124 NOOE047 NOOE113 NFPL004 NBCM305 NOOE074 NOOE133 NBCM102 NOOE048                                 | molekul Fotonické struktury a elektromagnetické metamateriály Integrovaná optika Laserová metrologie Nerovnovážná statistická fyzika a termodynamika Optické senzory Teorie magnetooptiky Topologické vlastnosti světla a hmoty Základy klasické radiometrie a fotometrie Základy konstrukce a výroby optických prvků                                                                                                                      | 3<br>3<br>3<br>3<br>3<br>3                | 2/0 Zk |                   |
| NOOE124 NOOE047 NOOE113 NFPL004 NBCM305 NOOE074 NOOE133 NBCM102 NOOE048 NOOE119                         | molekul Fotonické struktury a elektromagnetické metamateriály Integrovaná optika Laserová metrologie Nerovnovážná statistická fyzika a termodynamika Optické senzory Teorie magnetooptiky Topologické vlastnosti světla a hmoty Základy klasické radiometrie a fotometrie Základy konstrukce a výroby optických prvků Nelineární optická spektroskopie                                                                                     | 3<br>3<br>3<br>3<br>3<br>3<br>1           | 2/0 Zk |                   |
| NOOE124 NOOE047 NOOE113 NFPL004 NBCM305 NOOE074 NOOE133 NBCM102 NOOE048 NOOE119                         | molekul Fotonické struktury a elektromagnetické metamateriály Integrovaná optika Laserová metrologie Nerovnovážná statistická fyzika a termodynamika Optické senzory Teorie magnetooptiky Topologické vlastnosti světla a hmoty Základy klasické radiometrie a fotometrie Základy konstrukce a výroby optických prvků                                                                                                                      | 3<br>3<br>3<br>3<br>3<br>3                | 2/0 Zk |                   |
| NOOE124 NOOE047 NOOE113 NFPL004 NBCM305 NOOE074 NOOE133 NBCM102 NOOE048 NOOE119 NOOE011                 | molekul Fotonické struktury a elektromagnetické metamateriály Integrovaná optika Laserová metrologie Nerovnovážná statistická fyzika a termodynamika Optické senzory Teorie magnetooptiky Topologické vlastnosti světla a hmoty Základy klasické radiometrie a fotometrie Základy konstrukce a výroby optických prvků Nelineární optická spektroskopie Optika tenkých vrstev a vrstevnatých struktur Rentgenové lasery a rentgenová        | 3<br>3<br>3<br>3<br>3<br>3<br>1           | 2/0 Zk | ,                 |
| NOOE124 NOOE047 NOOE113 NFPL004 NBCM305 NOOE074 NOOE133 NBCM102 NOOE048 NOOE119 NOOE011 NOOE130         | molekul Fotonické struktury a elektromagnetické metamateriály Integrovaná optika Laserová metrologie Nerovnovážná statistická fyzika a termodynamika Optické senzory Teorie magnetooptiky Topologické vlastnosti světla a hmoty Základy klasické radiometrie a fotometrie Základy konstrukce a výroby optických prvků Nelineární optická spektroskopie Optika tenkých vrstev a vrstevnatých struktur Rentgenové lasery a rentgenová optika | 3<br>3<br>3<br>3<br>3<br>3<br>1<br>3<br>3 | 2/0 Zk | 2/0 Zk            |
| NOOE124 NOOE047 NOOE113 NFPL004 NBCM305 NOOE074 NOOE133 NBCM102 NOOE048 NOOE119 NOOE011                 | molekul Fotonické struktury a elektromagnetické metamateriály Integrovaná optika Laserová metrologie Nerovnovážná statistická fyzika a termodynamika Optické senzory Teorie magnetooptiky Topologické vlastnosti světla a hmoty Základy klasické radiometrie a fotometrie Základy konstrukce a výroby optických prvků Nelineární optická spektroskopie Optika tenkých vrstev a vrstevnatých struktur Rentgenové lasery a rentgenová optika | 3 3 3 3 3 1 3 3 2                         | 2/0 Zk | 2/0 Zk            |
| NOOE124 NOOE047 NOOE113 NFPL004 NBCM305 NOOE074 NOOE133 NBCM102 NOOE048 NOOE119 NOOE011 NOOE130 NOOE015 | molekul Fotonické struktury a elektromagnetické metamateriály Integrovaná optika Laserová metrologie Nerovnovážná statistická fyzika a termodynamika Optické senzory Teorie magnetooptiky Topologické vlastnosti světla a hmoty Základy klasické radiometrie a fotometrie Základy konstrukce a výroby optických prvků Nelineární optická spektroskopie Optika tenkých vrstev a vrstevnatých struktur Rentgenové lasery a rentgenová optika | 3 3 3 3 3 1 3 3 3                         | 2/0 Zk | 2/0  Zk $2/0  Zk$ |

| NOOE073 Moderní mikroskopie<br>NOOE126 Seminář femtosekundové laserové   | $\frac{3}{2}$ | $2/0 \mathrm{~Zk}$ $0/2 \mathrm{~Z}$ | $2/0 \mathrm{\ Zk}$ $0/2 \mathrm{\ Z}$ |
|--------------------------------------------------------------------------|---------------|--------------------------------------|----------------------------------------|
| spektroskopie<br>NBCM323 Seminář teorie otevřených<br>kvantových systémů | 1             | $0/1 \mathrm{~Z}$                    | 0/1 Z                                  |

## Podmínky pro přihlášení ke státní závěrečné zkoušce

Podmínky pro přihlášení k jiné než poslední části státní závěrečné zkoušky jsou stanoveny vnitřním předpisem Pravidla pro organizaci studia na MFF UK.

Podmínky pro přihlášení k poslední části státní závěrečné zkoušky:

- získání alespoň 120 kreditů
- splnění všech povinných předmětů
- získání alespoň 31 kreditů z povinně volitelných předmětů
- odevzdání vypracované diplomové práce ve stanoveném termínu

Předmět lze splnit jeho úspěšným absolvováním či uznáním z předchozího studia.

## Požadavky k ústní části státní závěrečné zkoušky

Poznámka: Student dostane dvě otázky z části A a jednu otázku z části B. V části B si student volí okruh otázek podle svého zaměření.

## A Společné požadavky

## 1. Pokročilá kvantová mechanika, kvantová teorie pevných látek

Role symetrie ve fyzice, vlastní stavy a jejich degenerace. Výběrová pravidla fyzikálních procesů v atomech, molekulách a pevných látkách. Problém mnoha částic v kvantové teorii. Atomy a molekuly. Elektronové a vibrační vlastnosti pevných látek. Druhé kvantování. Kvantování elektromagnetického pole. Interakce atomu se zářením. Základy relativistické kvantové teorie elektronu. Jednoelektronová aproximace v kvantové teorii pevných látek, Blochův teorém, Brillouinovy zóny. Vliv porušení translační symetrie, Wannierův teorém, supermřížky a kvantové struktury. Termodynamika a statistická fyzika elementárních excitací. Pohyb elektronu v elektrickém a magnetickém poli. Dielektrické vlastnosti pevných látek. Kvazičástice v pevných látkách.

#### 2. Vlnová optika, základy kvantové a nelineární optiky

Světlo jako elektromagnetické vlnění. Polarizace světla a její matematický popis. Optické konstanty, Kramers-Kronigovy relace. Jevy na rozhraní mezi prostředími. Světelné vlny v absorbujícím prostředí. Komplexní reprezentace optických polí. Vlnová teorie optické koherence. Skalární teorie difrakce. Fourierovská optika a holografie. Gaussovské svazky, další typy optických svazků. Optické rezonátory. Šíření světla ve vlnovodech, optická vlákna. Interakce světla s látkou, klasický a semiklasický popis. Popis laseru, aproximace kinetických rovnic a semiklasická teorie. Dynamické vlastnosti laseru. Typy laserů. Lineární a nelineární optika. Nelineární jevy druhého řádu. Nelineární jevy třetího řádu. Spontánní a stimulované rozptyly. Nestacionární koherentní jevy.

#### 3. Základy fyziky a technologie polovodičů pro optoelektroniku

Polovodičové materiály a jejich parametry. Fázové rovnováhy. Růst krystalů. Poruchy krystalů. Příměsi v krystalech. Pasivace a metalizace povrchů. Příprava monokrystalů a tenkých vrstev. Elektrony, díry, pásová struktura objemových polovodičů.

Drift, difúze, generace, rekombinace, zachycení a tunelování nosičů náboje. Nízkodimenzionální polovodičové struktury. Lineární a nelineární optické vlastnosti polovodičů a jejich nanostruktur.

## 4. Experimentální metody

Metody měření vlastností optického záření. Měření parametrů světelných svazků. Zdroje a detektory optického záření. Spektroskopické přístroje. Metody měření optických konstant látek. Spektroskopické metody zkoumání látek podle druhu interakce. Základní experimenty klasické a kvantové optiky.

#### B Užší zaměření

## Zaměření Kvantová a nelineární optika

#### 1. Kvantová optika

Kvantování elektromagnetického pole. Fotonové, koherentní a tepelné stavy pole. Interakce světla s látkou. Spontánní, stimulovaná emise a absorpce. Doba života, tvar spektrální čáry. Interakce atomu s koherentním světlem. Blochovy rovnice. Redukovaná matice hustoty. Relaxace v otevřených systémech, řídicí rovnice, stochastická kvantová dynamika. Kubova teorie odezvy. Korelace polí prvního a druhého řádu, Mach-Zenderův a Hanbury Brown-Twissův interferometr. Štěpení svazku. Mnohomodové světlo. Spojitá frekvenční a časová reprezentace. Fotonové echo. Einstein-Podolsky-Rosenův paradox. Entanglované stavy. Kvantová kryptografie a teleportace. Metody kvantového popisu laseru, kinetické rovnice. Fluktuace v kvantových systémech, stabilita laseru, statistika výstupního pole. Kvantový popis nelineárních optických procesů.

## 2. Integrovaná a vláknová optika

Optika rozhraní, tenkých filmů a multivrstev. Maticový popis šíření světla vrstevnatými strukturami. Periodické struktury. Základy teorie fotonických krystalů. Křemíková fotonika. Fotonická pásová struktura. Mikrodutiny. Metody charakterizace vlnovodných struktur. Základy technologie integrované optiky. Pasivní struktury a dynamické součástky integrované optiky. Šíření optických vln ve vlnovodech, módy. Charakteristiky vlnovodů. Vazební prvky pro optické vlnovody. Cylindrický dielektrický vlnovod. Jednomódová a mnohomódová optická vlákna. Aplikace struktur integrované fotoniky v optickém sdělování, informačních technologiích a senzorech.

#### 3. Metody optické spektroskopie

Optická absorpční a luminiscenční spektroskopie. Luminiscenční spektroskopie polovodičů. Studium vlastností elektronů, excitonů, fotonů, příměsových stavů. Efekty silného buzení. Stimulovaná emise v polovodičích a jejich nanostrukturách. Způsoby generace a detekce spinově polarizovaných nosičů náboje. Metody optické spektroskopie pro studium spinově polarizovaných nosičů v polovodičích. Vlastnosti ultrakrátkých laserových pulsů a jejich šíření prostředím. Metody spektroskopie s vysokým časovým rozlišením.

### Zaměření Optoelektronika a fotonika

#### 1. Fyzika polovodičů pro optoelektroniku

Metody excitace nosičů náboje v polovodičích. Rekombinace nosičů náboje v polovodičích. Zářivé a nezářivé přechody. Horké nosiče, relaxace. Fotovodivost při nehomogenní excitaci. Povrchové stavy, povrchová vodivost a rekombinace. Přechod P-N a jeho charakteristiky. Schottkyho kontakt, základní přístupy k transportu náboje. Struktura MIS. Heterogenní přechody. Nízkodimenzionální polovodičové struktury, elektronové

stavy kvantových mříží, drátů a bodů. Fotovoltaické jevy, ozářený přechod P-N, ozářený Schottkyho kontakt.

#### 2. Optické a transportní vlastnosti polovodičů a jejich nanostruktur

Disperzní relace a obecné vlastnosti optických konstant. Kramers-Kronigovy relace. Kvantová teorie optických přechodů. Mezipásové přechody. Dovolené a zakázané, přímé a nepřímé přechody. Příměsová absorpce. Reflexe v oblasti kmitů mříže. Neporuchový popis interakcí v krystalu, kvazičástice (fonon, plasmon, exciton, polariton). Model volných elektronů. Plazmová hrana. Mezipásová rekombinace. Stimulovaná emise. Nízkodimenzionální polovodičové struktury, jejich optické vlastnosti, magnetotransport a rezonanční tunelování. Klasický, semiklasický a kvantově-mechanický popis elektronového transportu. Aharonův-Bohmův jev. Rezonanční tunelování a Coulombická blokáda. Kvantový Hallův jev. Spintronika.

# 3. Optoelektronické a fotonické prvky

Polovodičové zdroje optického záření. Elektroluminiscenční vrstvy, luminiscenční diody. Polovodičové lasery. Kvantové kaskádové lasery. Polovodičové detektory, faktory ovlivňující detektivitu. Fotoodpory, fotodiody, lavinové fotodiody, fototransistory. Polovodičové snímací prvky. Vidikon, struktury s přenosem náboje. Fotovoltaické články. Struktury integrované optiky. Mikrorezonátory, křemíková fotonika. Fotonická zrcadla, vlnovody, vlákna, rezonátory, optické filtry, zařízení založená na negativním indexu lomu. Plazmonické struktury.

# 7. Fyzika povrchů a plazmatu

Garantující pracoviště: Katedra fyziky povrchů a plazmatu

Garant programu: doc. RNDr. Jan Wild, CSc.

Charakteristika studijního programu:

Fyzika povrchů a plazmatu je magisterský studijní program interdisciplinárního charakteru, který zahrnuje fundamentální poznatky o interakcích neutrálních a nabitých částic ve vakuu, plynu i kondenzované fázi a na rozhraních těchto prostředí. Program poskytuje odborné znalosti z fyziky povrchů a tenkých vrstev, zejména o atomárních a molekulárních nanostrukturách na površích pevných látek s významnou vazbou na fyzikálně—chemické a transportní děje s aplikacemi na poli katalyzátorů, senzorů nebo molekulární elektroniky. Program v oblasti fyziky laboratorního a kosmického plazmatu zasahuje do oborů plazmochemie, laserových směsí, horkého a fúzního plazmatu a některých partií astrofyziky. Během studia je možno si osvojit použití moderních diagnostických metod v materiálovém výzkumu, ve vakuových a plazmových technologiích a při analýze různých druhů kosmického plazmatu či řízené termonukleární fúze. Jednotlivé disciplíny přitom mohou být orientovány experimentálně, teoreticky nebo řešeny metodami počítačové fyziky.

Profil absolventa studijního programu a cíle studia:

Absolvent studijního programu Fyzika povrchů a plazmatu má široké znalosti fyzikálních základů oboru a prokazuje porozumění příslušnému matematickému aparátu včetně schopnosti ho aplikovat. Ovládá pokročilé diagnostické metody i vytváření počítačových modelů, což mu umožňuje porozumět jednak chování atomárních a molekulárních struktur na površích pevných látek a s ním spojeným významným problémům aplikačním, jednak fundamentálním procesům v ionizovaných prostředích charakteristickým pro rozličné obory od astrofyziky přes plazmochemii až po magnetohydrodyna-

miku. Absolvent je dále schopen samostatně formulovat hypotézy, vytvářet počítačové simulace a kriticky analyzovat výstupy. Své poznatky a závěry dokáže představit odborné i laické veřejnosti formou prezentací nebo psaných textů, a to i v cizím jazyce. Získané znalosti, dovednosti a tvůrčí schopnosti uplatňuje také v příbuzných oborech zaměřených jak na základní, tak aplikovaný výzkum na vysokých školách, v ústavech Akademie, ve vědeckých a technologických centrech (např. synchrotrony, ITER, ELI, ESA), ale i v průmyslové sféře a veřejné správě.

## Doporučený průběh studia

Předpokladem úspěšného magisterského studia tohoto programu je získání základních znalostí na úrovni následujících předmětů:

| Kód     | Název                              | Kredity | ZS          | LS                |
|---------|------------------------------------|---------|-------------|-------------------|
|         | Úvod do fyziky plazmatu            | 3       | <del></del> | 2/0  Zk           |
| NEVF140 | Úvod do fyziky povrchů             | 3       | _           | $2/0 \mathrm{Zk}$ |
| NEVF158 | Základy fyziky pevných látek       | 5       | _           | 3/1  Z+Zk         |
| NEVF169 | Teoretické základy fyziky plazmatu | 5       |             | 3/1 Z+Zk          |

Tyto předměty se obvykle zapisují ve třetím roce bakalářského studia programu Fyzika jako povinně volitelné. Pokud posluchač tyto nebo jim ekvivalentní předměty neabsolvoval, měl by si je ve vlastním zájmu zapsat jako volitelné v prvním roce navazujícího magisterského studia. Obsah uvedených předmětů je součástí společných požadavků státní závěrečné zkoušky.

# 1. rok magisterského studia

| Kód     | Název                    | Kredity | ZS                | LS                |
|---------|--------------------------|---------|-------------------|-------------------|
| NEVF122 | Fyzika plazmatu          | 5       | 2/1  Z+Zk         |                   |
| NEVF129 | Fyzika povrchů           | 5       | 2/1  Z+Zk         |                   |
| NEVF191 | Odborné soustředění I    | 2       | $0/2 \mathrm{~Z}$ |                   |
| NEVF151 | Diplomový seminář FPP I  | 3       | $0/2 \mathrm{~Z}$ |                   |
| NEVF154 | Diplomový seminář FPP II | 3       |                   | $0/2 \mathrm{~Z}$ |
| NSZZ023 | Diplomová práce I        | 6       |                   | $0/4 \mathrm{~Z}$ |

#### 2. rok magisterského studia

| Kód     | Název                     | Kredity | ZS                | LS                |
|---------|---------------------------|---------|-------------------|-------------------|
| NEVF192 | Odborné soustředění II    | 2       | $0/2 \mathrm{~Z}$ | _                 |
| NEVF152 | Diplomový seminář FPP III | 1       | $0/1 \mathrm{~Z}$ |                   |
| NEVF153 | Diplomový seminář FPP IV  | 1       | _                 | $0/1 \mathrm{~Z}$ |
| NSZZ024 | Diplomová práce II        | 9       | $0/6 \mathrm{~Z}$ |                   |
| NSZZ025 | Diplomová práce III       | 15      | _                 | $0/10~\mathrm{Z}$ |

#### Tematické bloky odpovídající okruhům otázek ke státní závěrečné zkoušce

Předpokládá se, že si studenti zapíší povinně volitelné předměty z alespoň tří tematických bloků, ze kterých budou později skládat státní závěrečnou zkoušku. V jednotlivých blocích jsou uvedené i rozšiřující volitelné předměty (psané *kurzívou*), jejichž absolvování není pro vykonání státní závěrečné zkoušky nezbytné.

| Kód                | Název                                     | Kredity  | ZS                 | LS                                            |  |  |
|--------------------|-------------------------------------------|----------|--------------------|-----------------------------------------------|--|--|
| Fyzika p           | Fyzika plazmatu                           |          |                    |                                               |  |  |
| NEVF120            | Pokročilá fyzika plazmatu                 | 7        | _                  | 2/2 Z+Zk                                      |  |  |
| NEVF121            | Horké plazma, problematika fúze           | 3        | $2/0 \mathrm{~Zk}$ | _                                             |  |  |
| NEVF149            | Elementární procesy a reakce v plazmatu   | 5        | _                  | 2/1 Z+Zk                                      |  |  |
| Procesy            | v plazmatu a jejich diagnostika           |          |                    |                                               |  |  |
| NEVF123            | Kvantová elektronika                      | 5        | 2/1 Z+Zk           |                                               |  |  |
|                    | a optoelektronika                         |          | ·                  |                                               |  |  |
| NEVF162            | Optická spektroskopie plazmatu            | 5        | 2/1  Z+Zk          |                                               |  |  |
| NEVF130            | Vybrané partie z fyzikální chemie         | 5        | <u></u>            | 2/1 Z+Zk                                      |  |  |
| Kosmick            | á fyzika                                  |          |                    |                                               |  |  |
| NEVF145            | Plazma v kosmickém prostoru               | 5        | _                  | 2/1 Z+Zk                                      |  |  |
| NEVF117            | Vlny v plazmatu                           | 5        | 2/1  Z+Zk          |                                               |  |  |
| NEVF173            | Měřící metody v kosmickém                 | 5        | 2/1 Z+Zk           |                                               |  |  |
|                    | plazmatu                                  |          |                    |                                               |  |  |
| Fyzika p           | ovrchů a tenkých vrstev                   |          |                    |                                               |  |  |
| NEVF170            | Fyzikální elektronika povrchů             | 5        | _                  | 2/1  Z+Zk                                     |  |  |
| NEVF114            | Fyzika tenkých vrstev                     | 5        | 2/1  Z+Zk          | <del>-</del>                                  |  |  |
| NEVF134            | Adsorpce na pevných látkách               | 5        | <del></del>        | 2/1  Z+Zk                                     |  |  |
| NEVF109            | Vybrané partie z fyziky tenkých<br>vrstev | 3        |                    | 2/0  Zk                                       |  |  |
| NEVF163            | $Vybran\'e\ kapitoly\ z\ nanoelektroniky$ | 3        | 2/0 Zk             |                                               |  |  |
| Struktur           | a a morfologie povrchů a tenkých          | vrstev   |                    |                                               |  |  |
| NEVF103            | Technika tenkých vrstev                   | 5        |                    | 2/1  Z+Zk                                     |  |  |
| NEVF106            | Mikroskopie povrchů a tenkých vrstev      | 5        | 2/1 Z+Zk           | <u>,                                     </u> |  |  |
| NEVF136            | Struktura povrchů a elektronová difrakce  | 5        | 2/1 Z+Zk           | _                                             |  |  |
| NEVE179            | Nanomateriály a jejich vlastnosti         | 3        |                    | $2/0 \mathrm{~Zk}$                            |  |  |
|                    | Materiály pro vodíkové technologie        | 3        | $\frac{-}{2/0}$ Zk | 2/0 ZK                                        |  |  |
| NEVF174<br>NEVF175 | v <del>-</del>                            | 3        | 2/0 ZK             | $\frac{-}{2/0}$ Zk                            |  |  |
| NEVITIO            | energie                                   | 0        |                    | 2/0 ZK                                        |  |  |
| Fyzikáln           | ě chemické vlastnosti povrchů a te        | enkých v | rstev              |                                               |  |  |
| NEVF113            | Elektronové spektroskopie                 | 5        | _                  | 2/1 Z+Zk                                      |  |  |
| NEVF168            | Iontové a vibrační spektroskopie          | 5        | 2/1 Z+Zk           |                                               |  |  |
| NEVF171            | Metody operando                           | 5        | 2/1 Z+Zk           |                                               |  |  |
| NEVF108            | Pokročilé metody ve fyzice povrchů        | 3        | $2/0 \mathrm{Zk}$  |                                               |  |  |
| NEVF148            | Molekulová a iontová spektroskopie        | 3        | $2/0 \mathrm{Zk}$  | _                                             |  |  |
| NEVF167            | Elektrochemie povrchů a rozhraní          | 3        |                    | $2/0 \mathrm{~Zk}$                            |  |  |

| Vakuová   | fyzika                              |         |                   |                   |
|-----------|-------------------------------------|---------|-------------------|-------------------|
| NEVF126   | Vakuová fyzika                      | 5       | 2/1 Z+Zk          |                   |
| NEVF105   | Vakuová technika                    | 5       | <u></u>           | 2/1  Z+Zk         |
| NEVF125   | Hmotnostní spektrometrie            | 5       | 2/1 Z+Zk          | <u> </u>          |
| Automat   | izace experimentu a sběr dat        |         |                   |                   |
| NEVF115   | Elektronika pro fyziky              | 5       | 2/1  Z+Zk         |                   |
| NEVF127   | Kybernetizace experimentu I         | 5       |                   | 2/1  Z+Zk         |
| NEVF144   | Vysokofrekvenční technika ve fyzice | 5       | 2/1 Z+Zk          |                   |
| NEVF128   | Kybernetizace experimentu II        | 3       | $2/0 \mathrm{Zk}$ | _                 |
| NEVF116   | $Aplikovancute{a}\ elektronika$     | 5       |                   | 2/1 Z+Zk          |
| Počítačov | vá fyzika                           |         |                   |                   |
| NEVF141   | Základy počítačové fyziky I         | 7       | 2/2 Z+Zk          |                   |
| NEVF138   | Základy počítačové fyziky II        | 3       |                   | $2/0 \mathrm{Zk}$ |
| NEVF160   | Moderní počítačová fyzika I         | 5       | $2/1~\mathrm{KZ}$ |                   |
| NEVF161   | Moderní počítačová fyzika II        | 5       |                   | $2/1~\mathrm{KZ}$ |
| Další dop | oručené volitelné předměty          |         |                   |                   |
| Kód       | Název                               | Kredity | ZS                | LS                |
| NEVF135   | Programování v IDL — zpracování     | 3       | $1/1~\mathrm{KZ}$ | _                 |
|           | a vizualizace dat                   |         |                   |                   |
| NEVF143   | Statistika a teorie informace       | 3       | 2/0  Zk           |                   |
|           | C++ $pro$ $fyziky$                  | 3       |                   | $1/1~\mathrm{KZ}$ |
|           | Fortran 90/95 pro fyziky            | 3       |                   | 1/1  KZ           |
|           | Fluktuace ve fyzikálních systémech  | 3       | _                 | 2/0 Zk            |

## Podmínky pro přihlášení ke státní závěrečné zkoušce

Podmínky pro přihlášení k jiné než poslední části státní závěrečné zkoušky jsou stanoveny vnitřním předpisem Pravidla pro organizaci studia na MFF UK.

Podmínky pro přihlášení k poslední části státní závěrečné zkoušky:

- získání alespoň 120 kreditů,
- splnění všech povinných předmětů
- splnění povinně volitelných předmětů v rozsahu alespoň 55 kreditů
- odevzdání vypracované diplomové práce ve stanoveném termínu

Předmět lze splnit jeho úspěšným absolvováním či uznáním z předchozího studia.

# Požadavky k ústní části státní závěrečné zkoušky

Student dostane jednu otázku ze společného základu, tj. z tematických okruhů 1 až 3, a tři otázky z užšího volitelného zaměření, tj. z tematických okruhů 4 až 12 dle zvoleného zaměření.

# A. Společný základ

#### 1. Fyzika pevných látek

Krystalografie a struktura pevných látek (PL). Typy vazeb, struktura prvků a jednoduchých sloučenin, rtg difrakce. Kmity krystalové mříže, optické a akustické fonony,

interakce s elektromagnetickým zářením. Sommerfeldův model kovu, elektronový plyn, hustota stavů, Fermiho energie. Elektronová struktura PL, pásová teorie, pohyb nosičů náboje v PL. Vlastní a příměsové polovodiče, P–N přechod, fotoelektrické vlastnosti polovodičů.

## 2. Fyzika ionizovaných prostředí

Základy kinetické teorie plynů. Pohyb nabitých částic v elektromagnetických polích. Popis plazmatu, základní pojmy a druhy plazmatu. Kinetický popis plazmatu. Transportní procesy v plazmatu. Spojitý popis plazmatu.

# 3. Základy fyziky plazmatu, povrchů a tenkých vrstev

Morfologie povrchů, krystalografická a elektronová struktura povrchů. Interakce záření a částic s povrchy pevných látek. Experimentální metody fyziky povrchů a tenkých vrstev — difrakční, fotoemisní a v blízkém poli. Výboje v plynech. Srážkové a elementární procesy v plazmatu. Diagnostika plazmatu.

#### B. Volitelná část dle zaměření:

Student si předem volí tři tematické okruhy.

#### 4. Fyzika plazmatu

Kolektivní chování plazmatu. Transportní jevy v plazmatu. Pokročilé výboje v plynech. Plazmatické světelné zdroje. Magnetohydrodynamický popis plazmatu a jeho nestabilit. Podmínky fúze v horkém plazmatu, inerciální udržení. Udržení horkého plazmatu v magnetickém poli. Diagnostika horkého plazmatu. Reakční kinetika v plazmatu. Reakce iontů s molekulami a vliv molekulární excitace. Experimentální metody pro studium elementárních procesů v plazmatu. Elementární procesy v plazmatu — rekombinace, relaxační procesy, interakce s povrchy.

#### 5. Procesy v plazmatu a jejich diagnostika

Základy kvantové elektroniky, inverze hladin, stimulovaná emise. Kvantové zesilovače a generátory v mikrovlnném pásmu. Druhy a vlastnosti laserů. Použití laserů, optické komunikace. Základní pojmy absorpční a emisní spektroskopie. Spektra atomů a molekul. Metody emisní a absorpční spektroskopie. Vyhodnocení parametrů plazmatu z naměřených spekter. Molekulová struktura a chemická vazba. Určování molekulární struktury. Chemické reakce, reakční kinetika a dynamika. Experimentální techniky fyzikální chemie.

#### 6. Kosmická fyzika

Slunce, sluneční vítr, meziplanetární magnetické pole. Interakce slunečního větru s překážkami. Magnetosféra a ionosféra. Přepojování magnetických polí, geomagnetická aktivita. Disperzní relace vln v plazmatu. Polarizace vln v magnetizovaném plazmatu. Hvizdový mód v kosmickém plazmatu. Radiové emise v kosmickém plazmatu. Měření parametrů plazmatu a rozdělovacích funkcí elektronů, iontů. Metody určení hmotového spektra, detektory částic, detekce kosmického prachu. Měření elektrických a magnetických polí na družicích, potenciál družice. Pozemní měření pro studium procesů v ionosféře a magnetosféře, geomagnetické indexy.

#### 7. Fyzika povrchů a tenkých vrstev

Elektronová struktura povrchů, povrchové stavy, ohyb pásů. Emise elektronů, výstupní práce. Interakce záření a částic s pevnou látkou (excitace, rozptyl). Jevy na rozhraní pevných látek. Mody a fáze růstu TV, základní procesy při depozici. Migrace adatomů, nukleace, vliv schodů na růst TV. Kinetické rovnice pro popis růstu TV. Amorfní,

polykrystalické a epitaxní vrstvy. Vliv pnutí při heteroepitaxi — Stranski–Krastanov růst. Adsorpce molekul na povrchu, klasifikace a popis interakce povrchu s molekulami plynů, potenciálová teorie adsorpce. Kinetika a dynamika adsorpce a desorpce, adsorpční izotermy. Metody založené na interakci povrchu s molekulami plynů (MB, TPD/TPR, BET). Reakce na povrchu pevné látky, reakční mechanizmy, reakční kinetika a dynamika.

#### 8. Struktura a morfologie povrchů a tenkých vrstev

Vakuové napařování. Naprašování vrstev. Metody měření depoziční rychlosti a tloušťky tenkých vrstev. Iontové leptání, litografie. Elektronové mikroskopie a kontrast v různých módech zobrazování. Mikroskopie s atomárním rozlišením. Elektronová struktura povrchu a spektroskopie tunelujících elektronů. Skenovací mikroskopie v blízkém poli (STM, AFM, SNOM). Struktura a popis ideálního povrchu. Geometrická struktura povrchu — relaxace, rekonstrukce, ideální a reálný povrch. Teorie difrakce (geometrická a kinematická). Elektronové difrakční metody.

# 9. Fyzikálně chemické vlastnosti povrchů a tenkých vrstev

Přehled elektronových spektroskopií, srovnání, experimentální požadavky, přístrojové vybavení (zdroje, analyzátory, detektory). Fotoelektronové spektroskopie. Spektroskopie Augerových elektronů. Spektroskopie charakteristických ztrát elektronů. Vibrační a rotační stavy molekul, teoretický popis a klasifikace. Spektroskopické metody založené na (ro-)vibračních excitacích — IR a Ramanova spektroskopie. Interakce iontů s povrchem pevné látky. Iontové metody zkoumání povrchů (LEIS, SIMS). Základní fyzikální principy a přehled metod operando (experimentální uspořádání, výhody a omezení, příklady aplikací). Operando spektroskopie. Operando mikroskopie. Aplikace operando metod v heterogenní katalýze.

#### 10. Vakuová fyzika

Transportní jevy při nízkých tlacích. Reálné plyny, tenze par, vypařování a kondenzace. Interakce plynu s pevnou látkou na jejím povrchu a v objemu. Proudění plynu, režimy proudění, vakuová vodivost. Vakuový systém a jeho parametry, teorie čerpacího procesu. Fyzikální principy metod získávání nízkých tlaků. Fyzikální principy měření nízkých tlaků, totální a parciální tlak. Vakuové měřicí metody. Principy hmotnostních analyzátorů. Ionizační techniky, elektronová ionizace. Metody detekce iontů. Interpretace spekter, kvalitativní a kvantitativní analýza.

#### 11. Automatizace experimentu a sběr dat

Analýza stejnosměrných a střídavých elektrických obvodů s lineárními prvky. Operační zesilovače, vlastnosti a základní aplikace. Základy analogového zpracování signálů, filtrace, potlačování šumu. Zdroje napětí a proudů. Sběr dat a řízení fyzikálních experimentů, převodníky fyzikálních veličin. Techniky a problémy převodu A-D a D-A. Číslicové zpracování signálů, aplikace mikroprocesorů. Základy regulace, dynamické vlastnosti regulačního obvodu, regulátory PI, PID. Obvody při velmi vysokých frekvencích, skin efekt a vnitřní impedance. Parametry dlouhého homogenního vedení. Vlnovody a rezonátory. Generování vysokofrekvenčního výkonu.

#### 12. Počítačová fyzika

Numerické metody v počítačové fyzice, hledání řešení rovnic a minim funkcí, integrace. Modelování metodou molekulární dynamiky, pohyb ve vnějších polích, problémy mnoha těles. Stochastické metody v počítačové fyzice, generování a charakterizace náhodných veličin. Spojité a hybridní modelování, srovnání s čistě částicovými

modely. Řešení obyčejných diferenciálních rovnic, přesnost operací, chyby výpočtů, stabilita algoritmů. Řešení soustav lineárních rovnic a parciálních diferenciálních rovnic. Integrální transformace v počítačové fyzice, rychlá Fourierova transformace. Metoda konečných prvků. Evoluční programování, kódování, ohodnocení, operátory, evoluční algoritmy. Genetický algoritmus a genetické programování, křížení, NP problémy, syntaktické stromy. Efektivní výpočet silového působení mnoha těles. Modelování srážek.

# 8. Biofyzika a chemická fyzika

Garantující pracoviště: Fyzikální ústav UK

Garant programu: prof. RNDr. Marek Procházka, Ph.D.

Charakteristika studijního programu:

Těžiště tohoto programu leží na rozhraní fyziky, biologie a chemie. Výuka navazuje na základní fyzikální vzdělání, které prohlubuje v oblastech teoretické a experimentální fyziky důležitých pro popis a zkoumání molekul, biopolymerů, nadmolekulárních soustav a biologických objektů. Absolvent získá znalosti z kvantové teorie a statistické fyziky molekul a molekulárních systémů, z experimentálních metod biofyziky a chemické fyziky, zejména optických a dalších spektroskopických metod, strukturní analýzy a zobrazovacích technik. Studenti si vybírají jednu ze dvou specializací: teoretická nebo experimentální biofyzika a chemická fyzika. V teoretické specializaci získají hlubší znalosti v oblasti kvantové chemie, molekulární dynamiky či pokročilé teoretické spektroskopie; v experimentální v oblasti biochemie a molekulární biologie, biofyziky fotosyntézy či strukturních metod. Prostřednictvím pravidelných seminářů, diplomové práce a tematicky zaměřených přednášek získávají studenti představu o současných problémech řešených v jednotlivých oborech a o metodách vědecké práce. Díky širokému okruhu znalostí mají absolventi možnost uplatnění ve výzkumných i aplikovaných oborech souvisejících s fyzikou, biologií, chemií, medicínou, materiálovým výzkumem, bioa nano-technologiemi, farmacií apod.

Profil absolventa studijního programu a cíle studia:

Absolvent má znalosti z kvantové teorie a statistické fyziky molekul a molekulárních systémů, z experimentálních metod biofyziky a chemické fyziky, zejména optických a dalších spektroskopických metod, strukturní analýzy a zobrazovacích technik. Absolventi teoretické specializace získají hlubší znalosti v oblasti kvantové chemie, molekulární dynamiky či pokročilé teoretické spektroskopie. Absolventi experimentální specializace získají hlubší znalosti v oblasti v oblasti biochemie a molekulární biologie, biofyziky fotosyntézy či strukturních metod. Prostřednictvím pravidelných seminářů získají studenti představu o současných problémech řešených v jednotlivých oborech a o metodách vědecké práce. Jsou zběhlí ve sdělování odborných poznatků formou prezentací anebo psaných textů, a to též v anglickém jazyce. U mnoha absolventů se předpokládá nástup profesní dráhy vědeckého pracovníka. Nabyté vzdělání nabízí absolventům uplatnění i v mezioborových týmech zabývajících se fyzikou, biologií, chemií, medicínou, materiálovým výzkumem, bio- a nano-technologiemi či farmacií.

#### Doporučený průběh studia

Program nabízí studentům dvě specializace – experimentální a teoretickou. Výběr specializace studenti standardně provádějí po ukončení prvního semestru (1. ročník NMgr. studia, zimní semestr). Do té doby je průběh studia v obou specializacích shodný.

V rámci každé specializace mají studenti možnost dalšího užšího zaměření studia, které se projeví ve volbě okruhů otázek ke státní závěrečné zkoušce. Studenti si vybírají dva tematické okruhy (ze tří možných) a k nim předměty z povinně volitelných předmětů skupiny I. U experimentální specializace se jedná o okruhy: 1. Biochemie a molekulární biologie (předměty NBCM012, NBCM008), 2. Optická spektroskopie a biofyzika fotosyntézy (předměty NBCM179, NBCM088) a 3. Strukturní metody (předměty NBCM098, NBCM112). U teoretické specializace se jedná o okruhy: 1. Kvantová chemie (předměty NBCM121, NBCM122, NBCM155), 2. Molekulární dynamika a statistika (předměty NBCM346, NBCM100, NFPL004) a 3. Pokročilá teoretická spektroskopie (předměty NBCM154, NBCM027, NOOE119).

Součástí společných požadavků státní závěrečné zkoušky je i obsah dvou předmětů (Kvantová teorie I, kód NBCM110 nebo NOFY075 a Obecná chemie, kód NBCM035 nebo NBCM183) zapisovaných obvykle ve třetím roce bakalářského studijního programu Fyzika jako povinně volitelné. Pokud posluchač tyto nebo jim ekvivalentní předměty neabsolvoval, měl by si je ve vlastním zájmu zapsat jako volitelné v prvním roce navazujícího magisterského studia.

# Specializace: Experimentální biofyzika a chemická fyzika Povinné a povinně volitelné předměty – skupina I (25 kreditů)

# 1. rok magisterského studia

| Kód       | Název                              | Kredity | ZS                | LS                 |
|-----------|------------------------------------|---------|-------------------|--------------------|
| NBCM010   | Bioorganická chemie                | 5       | 2/1 Z+Zk          |                    |
| NBCM177   | Experimentální metody              | 6       | 4/0 Zk            |                    |
|           | biofyziky a chemické fyziky I      |         |                   |                    |
| NBCM160   | Klasická a kvantová statistická    | 4       | 3/0  Zk           |                    |
|           | fyzika molekulárních systémů       |         |                   |                    |
| NBCM039   | Kvantová teorie molekul            | 7       | 3/2 Z+Zk          |                    |
| NBCM095   | Praktikum z experimentálních       | 7       | $0/5~\mathrm{KZ}$ |                    |
|           | metod biofyziky a chemické         |         |                   |                    |
|           | fyziky I                           |         |                   |                    |
| NSZZ023   | Diplomová práce I                  | 6       |                   | $0/4 \mathrm{~Z}$  |
| NBCM178   | Experimentální metody              | 3       |                   | $2/0 \mathrm{Zk}$  |
|           | biofyziky a chemické fyziky II     |         |                   |                    |
| NBCM088   | Biofyzika fotosyntézy              | 3       |                   | $2/0 \mathrm{Zk}$  |
| NBCM012   | Biochemie                          | 3       |                   | $2/0 \mathrm{Zk}$  |
| NBCM112   | Metody magnetické rezonance        | 4       |                   | $3/0 \mathrm{~Zk}$ |
|           | v biofyzice                        |         |                   |                    |
| NBCM179   | Pokročilé metody optické           | 4       |                   | $3/0 \mathrm{~Zk}$ |
|           | spektroskopie                      |         |                   |                    |
| NBCM103   | Praktikum z experimentálních metod | 7       |                   | 0/5  KZ            |
|           | biofyziky a chemické fyziky II     |         |                   |                    |
| 2. rok ma | gisterského studia                 |         |                   |                    |
| Kód       | Název                              | Kredity | ZS                | LS                 |
| NSZZ024   | Diplomová práce II                 | 9       | 0/6 Z             |                    |

| -         |                                                                       |          |                    |                    |
|-----------|-----------------------------------------------------------------------|----------|--------------------|--------------------|
| NBCM175   | Seminář z biofyziky a chemické fyziky I                               | 3        | 0/2 Z              | _                  |
| NSZZ025   | Diplomová práce III                                                   | 15       | _                  | $0/10 \mathrm{~Z}$ |
|           | Seminář z biofyziky a chemické<br>fyziky II                           | 3        | _                  | 0/2 Z              |
| NBCM008   | Molekulární a buněčná biologie pro<br>biofyziky                       | 4        | 3/0 Zk             | _                  |
| NBCM098   | Rentgenová a elektronová strukturní analýza biomolekul a makromolekul | 3        | 2/0 Zk             | _                  |
| NBCM165   | Teoretické základy molekulární spektroskopie                          | 3        | 2/0 Zk             | _                  |
| Povinně v | olitelné předměty skupiny II (15 k                                    | creditů) |                    |                    |
| Kód       | Název                                                                 | Kredity  | ZS                 | LS                 |
| NBCM101   | Detekce a spektroskopie jednotlivých molekul                          | 3        | 2/0 Zk             |                    |
| NBCM033   | Fyzikální základy fotosyntézy                                         | 3        | $2/0 \mathrm{~Zk}$ |                    |
| NFPL185   | Pokročilá NMR spektroskopie<br>vysokého rozlišení                     | 5        | 2/1 Z+Zk           |                    |
| NBCM158   | Praktické aspekty zpracování experimentálních dat                     | 3        | $1/1 \mathrm{Zk}$  | _                  |
| NBCM014   | Struktura, dynamika a funkce<br>biologických membrán                  | 3        | $2/0 \mathrm{~Zk}$ | _                  |
| NBCM023   | Význam a funkce kovových iontů v biologických systémech               | 3        | 2/0  Zk            |                    |
| NBCM102   | Základy klasické radiometrie<br>a fotometrie                          | 3        | 2/0 Zk             |                    |
| NBCM026   | Experimentální technika<br>v molekulární spektroskopii                | 3        |                    | $2/0 \mathrm{~Zk}$ |
| NFPL179   | Kvantový popis NMR                                                    | 5        |                    | 2/1 Z+Zk           |
| NBCM114   | Optická mikroskopie a vybrané<br>biofyzikální zobrazovací techniky    | 3        |                    | $2/0 \mathrm{~Zk}$ |
| NOOE012   | Rozptylové metody v optické<br>spektroskopii                          | 3        |                    | $2/0 \mathrm{~Zk}$ |
| NBCM097   | Spektroskopie povrchem zesíleného<br>Ramanova rozptylu                | 3        |                    | $2/0 \mathrm{~Zk}$ |
| NBCM172   | Dvoudimenzionální elektronová spektroskopie                           | 3        | 1/1 Z+Zk           | 1/1 Z+Zk           |
| NBCM316   | Počítačové modelování biomolekul                                      | 4        | 1/2 Z+Zk           | 1/2 Z+Zk           |
| NBCM018   | Turnusová praktika z biochemie                                        | 4        | $0/3 \mathrm{~Z}$  | $0/3 \mathrm{~Z}$  |
| Doporuče  | né volitelné předměty                                                 |          |                    |                    |
| Kód       | Název                                                                 | Kredity  | ZS                 | LS                 |
| NBCM121   | Ab-initio metody a teorie hustotního<br>funkcionálu I                 | 5        | _                  | 2/1 Z+Zk           |

| NBCM122 Ab-initio metody a teorie hustotního                         | 3             | 2/1 Z+Zk                                      |                                                                       |
|----------------------------------------------------------------------|---------------|-----------------------------------------------|-----------------------------------------------------------------------|
| $funkcion\'alu\ II$                                                  |               |                                               |                                                                       |
| NBCM173 Ab-initio metody pro periodické systémy                      | 3             | $2/0 \mathrm{~Zk}$                            | _                                                                     |
| NBCM307 Astrobiologie                                                | 4             | $3/0 \mathrm{Zk}$                             | _                                                                     |
| NBCM024 Biologie kvasinek                                            | 3             | <u></u>                                       | $2/0 \mathrm{Zk}$                                                     |
| NBCM150 Fyzikální pozorování nanoobjektů                             | 5             | 2/1  Z+Zk                                     | 2/1  Z+Zk                                                             |
| NBCM330 Funkční biorozhraní pro biofyzikální a biosenzorové aplikace | 3             | 2/0 Zk                                        | <del>,</del>                                                          |
| NAFY018 Chemie pro fyziky                                            | 4             | 2/1  Z+Zk                                     |                                                                       |
| NBCM106 Chemie pro fyziky II — Analytická chemie                     | 6             | <u>,                                     </u> | 2/2 Z+Zk                                                              |
| NBCM156 Chiroptická spektroskopie                                    | 3             |                                               | $2/0 \mathrm{~Zk}$                                                    |
| NBCM154 Kvantová elektrodynamika                                     | 3             |                                               | $2/0 \mathrm{~Zk}$                                                    |
| NBCM134 Kvantová teorie rezonancí                                    | 3             |                                               | $2/0 \mathrm{~Zk}$                                                    |
| NBCM051 Metody molekulové dynamiky<br>a Monte Carlo                  | 5             | 2/1 Z+Zk                                      |                                                                       |
| NBCM346 Molekulární dynamika I                                       | 5             | _                                             | 2/1  Z+Zk                                                             |
| NBCM347 Molekulární dynamika II                                      | 5             | 2/1  Z+Zk                                     |                                                                       |
| NBCM181 Molekulární dynamika — výpočty volné energie                 | 3             | 1/2  KZ                                       | $1/2~\mathrm{KZ}$                                                     |
| NBCM055 Molekulární simulace při řešení struktur materiálů           | 5             |                                               | 2/1 Z+Zk                                                              |
| NBCM149 Nanotechnologie v biologii                                   | 3             | _                                             | $2/0 \mathrm{~Z}$                                                     |
| NOOE119 Nelineární optická spektroskopie                             | 3             |                                               | $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ |
| NOOE219 Cvičení z nelineární optické<br>spektroskopie                | 1             |                                               | 0/1 Z                                                                 |
| NBCM351 Proseminář kvantové chemie                                   | 4             | $1/2 \mathrm{~Z}$                             | $1/2 \mathrm{Z}$                                                      |
| NFPL004 Nerovnovážná statistická fyzika                              | 3             | 2/0  Zk                                       |                                                                       |
| $a\ termodynamika$                                                   | 0             | 2/ 0 ZK                                       |                                                                       |
| NBCM305 Optické senzory                                              | 3             | $2/0 \mathrm{Zk}$                             |                                                                       |
| NBCM099 Praktická cvičení z kvantové teorie                          | 4             | 2/0 ZK                                        | $0/3 \mathrm{~Z}$                                                     |
| molekul I                                                            | 1             |                                               | 0/02                                                                  |
| NBCM116 Praktická cvičení z kvantové teorie<br>molekul II            | 4             | $0/3 \mathrm{~Z}$                             |                                                                       |
| NAFY080 <i>Příprava biologických vzorků</i>                          | 3             |                                               | $2/0 \mathrm{Zk}$                                                     |
| NOOE015 Seminář                                                      | $\frac{3}{2}$ |                                               | $0/1 \mathrm{Z}$                                                      |
| NFPL186 Seminář spektroskopie NMR                                    | 3             | $0/2 \mathrm{~Z}$                             | 0/1 Z = 0/2 Z                                                         |
| vysokého rozlišení                                                   | o o           | 0/22                                          | 0/22                                                                  |
| NBCM027 Symetrie molekul                                             | 5             | 2/1 Z+Zk                                      |                                                                       |
| NFPL003 Syntetické problémy kvantové teorie                          | 3             | 2/1 Z   ZK                                    | $2/0 \mathrm{~Z}$                                                     |
| NBCM115 Vědecká fotografie a příbuzné                                | 3             | $1/1 \; \mathrm{Zk}$                          | 2/0 Z                                                                 |
| zobrazovací techniky                                                 | J             | 1/1 211                                       |                                                                       |
| NPRF005 UNIX a LINUX pro fyziky                                      | 3             | $2/0 \mathrm{~Z}$                             |                                                                       |
| NBCM159 Úvod do počítačového řízení                                  | $\frac{3}{4}$ |                                               | 1/2  KZ                                                               |
| experimentu                                                          | •             |                                               | -/                                                                    |

| NBCM308 Úvod do studia struktury proteinů<br>NBCM324 Cvičení ze statistické fyziky molekul<br>NBCM100 Výpočetní experimenty v teorii<br>molekul I | 3<br>3<br>4 | <br>0/2 Z<br>      | $\frac{2/0 \text{ Zk}}{0/3 \text{ KZ}}$ |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------|-----------------------------------------|
| NBCM125 Výpočetní experimenty v teorii                                                                                                            | 6           | _                  | $0/4~\mathrm{KZ}$                       |
| molekul II<br>NBCM041 Základy teorie přenosu energie                                                                                              | 3           | 2/0 Zk             | _                                       |
| v molekulárních systémech I<br>NBCM186 Molekulární sondy biologických                                                                             | 3           | $2/0 \mathrm{~Zk}$ | _                                       |
| $proces \mathring{u}$                                                                                                                             |             |                    |                                         |

# Specializace: Teoretická biofyzika a chemická fyzika

Povinné a povinně volitelné předměty – skupina I (25 kreditů)

# 1. rok magisterského studia

| Kód           | Název                                               | Kredity | ZS                | LS                 |
|---------------|-----------------------------------------------------|---------|-------------------|--------------------|
| NBCM010       | Bioorganická chemie                                 | 5       | 2/1 Z+Zk          | _                  |
| NBCM177       | Experimentální metody                               | 6       | 4/0 Zk            |                    |
|               | biofyziky a chemické fyziky I                       |         |                   |                    |
| NBCM160       | Klasická a kvantová statistická                     | 4       | 3/0  Zk           |                    |
|               | fyzika molekulárních systémů                        |         |                   |                    |
|               | Kvantová teorie molekul                             | 7       | 3/2 Z+Zk          | <del></del>        |
| NBCM095       | Praktikum z experimentálních                        | 7       | $0/5~\mathrm{KZ}$ |                    |
|               | metod biofyziky a chemické                          |         |                   |                    |
| 11000000      | fyziky I                                            |         |                   | 2/1.7              |
|               | Diplomová práce I                                   | 6       |                   | 0/4  Z             |
| NBCM178       | Experimentální metody                               | 3       |                   | 2/0  Zk            |
| NID CD (101   | biofyziky a chemické fyziky II                      | _       |                   | 0 /1 7 . 71        |
| NBCM121       | Ab-initio metody a teorie hustotního                | 5       |                   | 2/1  Z+Zk          |
| 31D C3 54 × 4 | funkcionálu I                                       | 0       |                   | 2 / 2 71           |
|               | Kvantová elektrodynamika                            | 3       |                   | 2/0 Zk             |
|               | Molekulární dynamika I                              | 5       | _                 | 2/1  Z+Zk          |
| NBCM100       | Výpočetní experimenty v teorii<br>molekul I         | 4       | _                 | 0/3  KZ            |
| 2. rok mag    | gisterského studia                                  |         |                   |                    |
| Kód           | Název                                               | Kredity | ZS                | LS                 |
| NSZZ024       | Diplomová práce II                                  | 9       | 0/6 Z             | _                  |
| NBCM175       | Seminář z biofyziky a chemické                      | 3       | $0/2 \mathrm{Z}$  |                    |
|               | fyziky I                                            |         | ·                 |                    |
| NSZZ025       | Diplomová práce III                                 | 15      |                   | $0/10 \mathrm{~Z}$ |
| NBCM176       | Seminář z biofyziky a chemické                      | 3       |                   | $0/2 \mathrm{~Z}$  |
|               | fyziky II                                           |         |                   |                    |
| NBCM122       | Ab-initio metody a teorie hustotního funkcionálu II | 3       | 2/1 Z+Zk          | _                  |

| NBCM155   | Metody teorie pole v teorii mnoha<br>částic                   | 3        | 2/0 Zk             | _                  |
|-----------|---------------------------------------------------------------|----------|--------------------|--------------------|
| NFPL004   | Nerovnovážná statistická fyzika<br>a termodynamika            | 3        | 2/0 Zk             |                    |
| NBCM027   | Symetrie molekul                                              | 5        | 2/1 Z+Zk           |                    |
|           | Teoretické základy molekulární<br>spektroskopie               | 3        | $2/0 \mathrm{~Zk}$ |                    |
| NOOE119   | Nelineární optická spektroskopie                              | 3        | _                  | $2/0 \mathrm{~Zk}$ |
| Povinně v | olitelné předměty skupiny II (15 l                            | kreditů) |                    |                    |
| Kód       | Název                                                         | Kredity  | ZS                 | LS                 |
| NBCM067   | Kvantová optika I                                             | 5        | 2/1 Z+Zk           |                    |
| NBCM347   | Molekulární dynamika II                                       | 5        | 2/1  Z+Zk          |                    |
| NBCM131   | Pokročilé metody molekulové<br>dynamiky                       | 3        | 2/0 Zk             |                    |
| NBCM041   | Základy teorie přenosu energie<br>v molekulárních systémech I | 3        | 2/0 Zk             | _                  |
| NBCM093   | Kvantová optika II                                            | 5        | _                  | 2/1  Z+Zk          |
|           | Kvantová teorie rezonancí                                     | 3        |                    | 2/0  Zk            |
|           | Praktická cvičení z kvantové teorie<br>molekul I              | 4        | _                  | $0/3 \mathrm{Z}$   |
| NBCM116   | Praktická cvičení z kvantové teorie<br>molekul II             | 4        | $0/3 \mathrm{~Z}$  |                    |
| NBCM125   | Výpočetní experimenty v teorii<br>molekul II                  | 6        | _                  | $0/4~\mathrm{KZ}$  |
| NBCM055   | Molekulární simulace při řešení<br>struktur materiálů         | 5        | _                  | 2/1 Z+Zk           |
| NBCM180   | Teoretický seminář biofyziky<br>a chemické fyziky             | 4        | 0/1 Z              | $0/1 \mathrm{~Z}$  |
| Doporuče  | né volitelné předměty                                         |          |                    |                    |
| Kód       | Název                                                         | Kredity  | ZS                 | LS                 |
| NBCM173   | Ab-initio metody pro periodické<br>systémy                    | 3        | 2/0 Zk             | _                  |
| NBCM307   | Astrobiologie                                                 | 4        | $3/0 \mathrm{Zk}$  |                    |
|           | Asymptotické metody ve fyzice                                 | 5        | 2/1  Z+Zk          |                    |
|           | Biofyzika fotosyntézy                                         | 3        |                    | $2/0 \mathrm{Zk}$  |
|           | Biochemie                                                     | 3        |                    | 2/0  Zk            |
|           | Detekce a spektroskopie jednotlivých<br>molekul               | 3        | 2/0 Zk             |                    |
| NBCM172   | Dvoudimenzionální elektronová spektroskopie                   | 3        | 1/1 Z+Zk           | 1/1 Z+Zk           |
| NBCM026   | Experimentální technika<br>v molekulární spektroskopii        | 3        | _                  | $2/0 \mathrm{~Zk}$ |
| NBCM324   | Cvičení ze statistické fyziky molekul                         | 3        | $0/2 \mathrm{~Z}$  | _                  |
|           |                                                               |          |                    |                    |

| NBCM150 | Fyzikální pozorování nanoobjektů    | 5 | 2/1 Z+Zk            | 2/1 Z+Zk          |
|---------|-------------------------------------|---|---------------------|-------------------|
|         | Fyzikální základy fotosyntézy       | 3 | 2/0  Zk             |                   |
|         | Chiroptická spektroskopie           | 3 |                     | $2/0 \mathrm{Zk}$ |
|         | Kvantová optika I                   | 5 | 2/1  Z+Zk           |                   |
|         | Kvantový popis NMR                  | 5 |                     | 2/1 Z+Zk          |
|         | Metody magnetické rezonance         | 4 |                     | 3/0  Zk           |
|         | $v\ biofyzice$                      | - |                     | 3/ 0 211          |
|         | Metody molekulové dynamiky          | 5 | 2/1  Z+Zk           |                   |
|         | a Monte Carlo                       | J | _/                  |                   |
|         | Molekulární a buněčná biologie pro  | 4 | 3/0  Zk             |                   |
|         | biofyziky                           | • | 0/ 0 ZK             |                   |
|         | Molekulární dynamika — výpočty      | 3 | 1/2  KZ             | 1/2  KZ           |
|         | volné energie                       | 9 | 1/2 112             | 1/2 112           |
|         | Optická mikroskopie a vybrané       | 3 |                     | $2/0 \mathrm{Zk}$ |
|         | biofyzikální zobrazovací techniky   | J |                     | 2/0 ZK            |
|         | Počítačové modelování biomolekul    | 1 | 1 /2 7 + 71-        | 1 /2 7 + 71-      |
|         | Pokročilá kvantová teorie           | 4 | 1/2  Z+Zk           | 1/2 Z+Zk          |
|         |                                     | 6 | 3/1  Z+Zk           | 0/1 7             |
|         | Cvičení z nelineární optické        | 1 | _                   | $0/1 \mathrm{~Z}$ |
|         | spektroskopie                       | 4 | 1 /0 7              | 1 /0 7            |
|         | Proseminář kvantové chemie          | 4 | 1/2 Z               | $1/2 \mathrm{Z}$  |
|         | Pokročilá NMR spektroskopie         | 5 | 2/1  Z+Zk           |                   |
|         | vysokého rozlišení                  |   |                     | 0 /0 51           |
|         | Pokročilé metody optické            | 4 | _                   | 3/0  Zk           |
|         | spektroskopie                       |   |                     |                   |
|         | Praktické aspekty zpracování        | 3 | $1/1 \mathrm{Zk}$   |                   |
|         | experimentálních dat                |   |                     |                   |
| NBCM103 | Praktikum z experimentálních metod  | 7 | _                   | $0/5~\mathrm{KZ}$ |
|         | biofyziky a chemické fyziky II      |   |                     |                   |
| NBCM098 | Rentgenová a elektronová strukturní | 3 | $2/0 \mathrm{Zk}$   |                   |
|         | analýza biomolekul a makromolekul   |   |                     |                   |
| NOOE012 | Rozptylové metody v optické         | 3 |                     | $2/0 \mathrm{Zk}$ |
|         | spektroskopii                       |   |                     |                   |
| NOOE015 | $Semincute{lpha}$                   | 2 | _                   | $0/1 \mathrm{~Z}$ |
| NFPL186 | Seminář spektroskopie NMR           | 3 | $0/2 \mathrm{~Z}$   | $0/2 \mathrm{~Z}$ |
|         | vysokého rozlišení                  |   | ,                   | ,                 |
| NFPL003 | Syntetické problémy kvantové teorie | 3 |                     | $2/0 \mathrm{Z}$  |
|         | UNIX a LINUX pro fyziky             | 3 | $2/0 \mathrm{~Z}$   |                   |
|         | Úvod do počítačového řízení         | 4 |                     | 1/2  KZ           |
|         | experimentu                         |   |                     | ,                 |
|         | Úvod do studia struktury proteinů   | 3 |                     | 2/0  Zk           |
|         | Vědecká fotografie a příbuzné       | 3 | $1/1 \mathrm{\ Zk}$ | <del>-</del>      |
|         | zobrazovací techniky                | 9 | -/                  |                   |
|         | Základy klasické radiometrie        | 3 | 2/0  Zk             |                   |
|         | a fotometrie                        | 5 | 2/ U ZIX            |                   |
|         | a journeer we                       |   |                     |                   |

NBCM042 Základy teorie přenosu energie v molekulárních systémech II - 2/0 Zk

3

## Podmínky pro přihlášení ke státní závěrečné zkoušce

Podmínky pro přihlášení k jiné než poslední části státní závěrečné zkoušky jsou stanoveny vnitřním předpisem Pravidla pro organizaci studia na MFF UK.

Podmínky pro přihlášení k poslední části státní závěrečné zkoušky:

- získání alespoň 120 kreditů
- splnění všech povinných předmětů zvoleného programu
- získání alespoň 25 kreditů z povinně volitelných předmětů programu ze skupiny I
- získání alespoň 15 kreditů z povinně volitelných předmětů programu ze skupiny II
- odevzdání vypracované diplomové práce ve stanoveném termínu

Předmět lze splnit jeho úspěšným absolvováním či uznáním z předchozího studia.

## Požadavky k ústní části státní závěrečné zkoušky

## A. Společné požadavky

- 1. Kvantová teorie a statistická fyzika molekul a molekulárních systémů (jedna otázka u SZZ)
  - Antisymetrie vlnové funkce, výměnná interakce.
  - Bornova-Oppenheimerova a adiabatická aproximace.
  - Molekula vodíku. Atomové a molekulové orbitaly.
  - Metoda LCAO a metoda valenčních vazeb, klasifikace elektronových hladin, Hückelova metoda.
  - Jednočásticová aproximace, Hartreeho a Hartreeho-Fockovy rovnice, Roothaanovy rovnice.
  - Základy teorie hustotního funkcionálu, Hohenbergovy-Kohnovy teorémy.
  - Úvod do metod konfigurační interakce, vázaných klastrů a poruchové teorie, základní rovnice a vlastnosti, Brillouinův theorém.
  - Pauliho a Diracova rovnice. Spin-orbitální a spin-spinová interakce.
  - Orbitální a spinový magnetický moment a jejich interakce s vnějšími poli.
  - Kvantování elektromagnetického pole, interakce elektromagnetického záření s molekulami. Fermiho zlaté pravidlo.
  - Absorpce, stimulovaná a spontánní emise. Dipólová aproximace, výběrová pravidla.
  - Silová pole v molekulárních soustavách.
  - Základní statistické soubory a distribuce, ergodický teorém.
  - Metoda Monte Carlo.
  - Klasická molekulární dynamika.
  - Liouvillova rovnice.
  - Matice hustoty. Wignerova hustota.
  - Základní kvantová statistická rozdělení.
  - Evoluce matice hustoty (Liouvillova-von Neumannova rovnice).
  - Kvantové řídicí rovnice, redukované hustoty.

## 2. Experimentální metody biofyziky a chemické fyziky (jedna otázka u SZZ)

- Zdroje, detektory a spektrální analyzátory v optické spektroskopii.
- Interakce optického záření s izolovanou molekulou. Výběrová pravidla pro elektronové, vibrační a rotační optické přechody.
- Metody a použití elektronové absorpční spektroskopie. Metoda excitace a sondování.
- Metody a použití vibrační absorpční spektroskopie.
- Metody elastického, dynamického a Brillouinova rozptylu a jejich využití.
- Ramanův rozptyl, metody měření a využití.
- Použití polarizovaného záření a jeho analýzy v optické spektroskopii. Lineární a cirkulární dichroismus, emisní anizotropie.
- Principy a základní pojmy luminiscence (typy luminescence, Jablonského diagram, kinetiky, kvantový výtěžek, doby života, Franck-Condonův princip).
- Vliv mezimolekulárních interakcí na parametry luminiscence (vliv prostředí, rezonanční přenos energie, zhášení emise).
- Single-molekulární spektroskopie. Vliv interakce s okolím na tvar spektrální čáry.
- Měření stacionární a časově rozlišené luminiscence.
- Rozptyl a difrakce rentgenového záření, elektronů a neutronů.
- Principy základních difrakčních metod. Symetrie a struktura krystalů a jejich určení z difrakčního obrazu.
- Elektronová mikroskopie, mikroskopie atomárních sil a skenovací tunelová mikroskopie.
- Hmotnostní spektrometrie.
- Jaderná magnetická rezonance: princip, experimentální uspořádání, excitace a detekce signálu, základní pulsní sekvence.
- NMR vysokého rozlišení organických látek v kapalinách: interpretace spekter.
- Elektronová paramagnetická rezonance: princip, experimentální uspořádání, použití
- Separační metody (centrifugace, chromatografie, elektroforéza).

#### B Specializace Experimentální biofyzika a chemická fyzika

Třetí otázka SZZ je volena ze dvou tematických okruhů, které si student vybere dle svého zaměření.

#### 1. Biochemie a molekulární biologie

- Složení a struktura základních biomolekul (nukleové kyseliny, proteiny, sacharidy).
- Glykolýza a glykolytické reakce. Anaerobní odbourávání cukrů. Coriho cyklus.
- Aerobní odbourávání cukrů. Vznik acetylkoenzymu A.
- Citrátový cyklus a jeho amfibolická povaha. Oxidativní fosforylace.
- Biologické membrány, selektivní permeabilita biologických membrán, typy transportu biologickou membránou.
- Struktura bakteriálních a eukaryotických buněk, buněčné dělení, buněčný cyklus.
- Uspořádání DNA v buňkách, struktura a funkce chromosomů, chromatinu a nukleosomů, funkce centromer a telomer, histony, epigenetická dědičnost a priony.
- Zpracování genetické informace, replikace DNA, transkripce a úpravy RNA, RNA svět, prokaryotická a eukaryotická translace.

- Základní principy regulace genové exprese, regulace prokaryotické a eukaryotické iniciace transkripce, umlčování genů.
- Mutace a mutageneze, poškození DNA a reparace poškozené DNA, oprava chyb vzniklých při replikaci DNA.
- Metody studia DNA a genové exprese, genové inženýrství, fluorescenční proteiny.

## 2. Optická spektroskopie a biofyzika fotosyntézy

- Fluorescenční značky a sondy, fluorescenční proteiny, fluorescence proteinů.
- Nelineární metody Ramanova rozptylu (HRS, SRS, CARS), Ramanova optická aktivita (ROA).
- Pokročilé techniky Ramanovy spektroskopie (SERS, CRM, DCDR).
- Generace a charakterizace femtosekundových pulsů. Základy 2DES spektroskopie.
- Nelineární optické jevy a jejich využití v optické spektroskopii.
- Metody vysokého spektrálního rozlišení. Nízkoteplotní spektroskopie.
- Přenos a zhášení excitace ve fotosyntetických anténách.
- Rozdělení a přenos náboje v nízko- a vysokopotenciálových reakčních centrech.
- Přenos elektronu fotosyntetickou membránou, fosforylace, srovnání s respirační membránou.
- Fixace uhlíku ve fotosyntéze.
- Biofyzikální metody zkoumání a měření fotosyntézy (variabilní fluorescence, gazometrie, fotoakustická spektroskopie).

# 3. Strukturní metody

- Teplotní kmity a jejich vliv na difrakční záznam. Pattersonova funkce a její využití při řešení krystalových struktur.
- Metody řešení fázového problému strukturní analýzy.
- Strukturní faktor a Friedelův zákon.
- Přednostní orientace krystalitů textura.
- Porovnání, konstrukce a použití transmisního a skenovacího elektronového mikroskopu.
- Principy a zásady přípravy preparátů pro TEM a SEM. Mechanismus tvorby obrazu v TEM a SEM.
- Elektrické a magnetické momenty atomových jader, energie v elektrickém a magnetickém poli, jev jaderné magnetické rezonance. Jaderný paramagnetismus, relaxační procesy.
- NMR spektroskopie vysokého rozlišení v kapalné a pevné fázi: spinový hamiltonián, typy interakci a jejich projevy ve spektrech, metody vysokého rozlišení v pevné fázi.
- Jedno- a více-dimenzionální pulzní NMR: koncepce, základní pulzní sekvence, využití koherentního transferu polarizace a nukleárního Overhauserova jevu.
- Zobrazování MR: přístrojové vybavení, princip dosažení prostorového rozlišení, metody získání kontrastu, speciální aplikace (angiografie, fMRI, spektroskopie MRI).
- Elektronová spinová (paramagnetická) rezonance: kontinuální a pulsní metodika experimentu, spinový hamiltonián, interakce a jejich projevy ve spektrech.

#### B Specializace Teoretická biofyzika a chemická fyzika

Třetí otázka SZZ je volena ze dvou tematických okruhů, které si student vybere dle svého zaměření.

#### 1. Kvantová chemie

- Porovnání restricted a unrestricted Hartreeho-Fockových rovnic a jejich vlastností.
- Metody konfigurační interakce, formulace a charakteristika.
- Použití poruchové teorie k výpočtu korelační energie, Møllerova-Plessetova metoda.
- Metoda vázaných klastrů, excitační operátory, rovnice a základní vlastnosti.
- Koncepční teorie hustotního funkcionálu chemický potenciál, tvrdost a měkkost elektronové hustoty, Fukuiho funkce, časově závislá teorie.
- Slabé mezimolekulové interakce, multipolová aproximace.

## 2. Molekulární dynamika a statistika

- Numerické propagátory odvozené z Liouvillova operátoru.
- Algoritmy pro kontrolu tlaku, algoritmy pro kontrolu teploty. Fixace a omezení stupňů volnosti.
- Nerovnovážná molekulární dynamika.
- Molekulární mechanika, parametrizace silových polí.
- Metody molekulárních simulací započítávání nevazebných interakcí, analýza trajektorií.
- Stochastické procesy (Langevinovské dynamiky, normální a anomální difuze).
- Stochastická kvantová dynamika.
- Entropie v nerovnovážných dějích (Boltzmannův H-, Jarzynského a fluktuační teorémy).

#### 3. Pokročilá teoretická spektroskopie

- Symetrie v kvantové mechanice (kvantová čísla, bloková diagonalizace hamiltoniánu).
- Symetrie ve spektroskopii atomů a molekul (výběrová pravidla, povolené a zakázané přechody, snížení symetrie ve vnějších elektromagnetických polích).
- Rozptyl fotonů na atomu (Rayleighův, Ramanův, rezonanční a Thomsonův rozptyl).
- Radiační korekce k atomovým spektrům (Lambův posuv, vlastní energie elektronu a fotonu).
- Tvar absorpční čáry (teorie lineární odezvy, korelační funkce lázně).
- Poruchová teorie pro časově rozlišené nelineární spektroskopie (metoda excitace a sondování, fotonové echo).

# 9. Částicová a jaderná fyzika

Garantující pracoviště: Ústav částicové a jaderné fyziky Garant programu: prof. RNDr. Pavel Cejnar, Dr., DSc.

Charakteristika studijního programu:

Částicová fyzika (fyzika vysokých energií, subjaderná fyzika) zkoumá strukturu hmoty na úrovni elementárních částic a jejich fundamentálních interakcí. Jaderná fyzika studuje strukturu atomových jader a obecněji chování konečných kvantových soustav vzájemně interagujících částic. Studium je založeno na komplexních kursech teoretické a experimentální částicové a jaderné fyziky, opřené o rozsáhlé kursy kvantové mechaniky a kvantové teorie pole. Důraz je kladen na zvládnutí relevantních teoretických výpočetních postupů a na osvojení si metod získávání a zpracování experimentálních dat,

včetně efektivního ovládnutí výpočetní techniky a pokročilých softwarových nástrojů. S pomocí výběrových přednášek a diplomové práce studenti získávají hlubší vzdělání ve vybrané oblasti a volí tak příklon k teorii nebo experimentu.

Profil absolventa studijního programu a cíle studia:

Absolventi mají pokročilé znalosti částicové a jaderné fyziky, a to jak v experimentální, tak v teoretické oblasti. Ovládají kvantovou teorii, rozumí základním přístupům k popisu mikrosvěta a znají experimentální techniky jeho studia. Nacházejí uplatnění především v základním experimentálním a teoretickém výzkumu, ale také v relevantním aplikovaném výzkumu, např. ve fyzice detektorů, nukleární medicíně apod. Absolventi jsou připraveni tvůrčím způsobem rozvíjet oblast svého odborného zaměření a začlenit se do mezinárodních výzkumných týmů. Zběhlost v práci s pokročilými softwarovými nástroji otevírá možnost uplatnění např. v oblasti informačních technologií.

## Doporučený průběh studia

Předpokladem úspěšného magisterského studia tohoto programu je získání základních znalostí na úrovni následujících předmětů:

| Kód     | Název                            | Kredity | ZS                | LS                |
|---------|----------------------------------|---------|-------------------|-------------------|
| NOFY076 | Kvantová teorie I                | 8       | 4/2 Z+Zk          | _                 |
| NOFY079 | Kvantová teorie II               | 6       |                   | 3/1  Z+Zk         |
| NJSF103 | Experimentální metody jaderné    | 6       |                   | 3/1  Z+Zk         |
|         | a částicové fyziky               |         |                   |                   |
| NJSF150 | Praktikum jaderné a částicové    | 5       |                   | $0/4~\mathrm{KZ}$ |
|         | fyziky                           |         |                   | •                 |
| NJSF148 | Proseminář z jaderné a částicové | 2       | $0/2 \mathrm{~Z}$ |                   |
|         | fyziky                           |         |                   |                   |

Tyto předměty se obvykle zapisují ve třetím roce studia bakalářského programu Fyzika jako povinné a povinně volitelné. Pokud posluchač tyto nebo jim ekvivalentní předměty neabsolvoval, měl by si je ve vlastním zájmu zapsat jako volitelné v prvním roce navazujícího magisterského studia. Obsah uvedených předmětů je součástí společných požadavků státní závěrečné zkoušky.

#### 1. rok magisterského studia

| Kód     | Název                         | Kredity | ZS       | LS                |
|---------|-------------------------------|---------|----------|-------------------|
| NJSF041 | Experimentální a aplikovaná   | 6       | 4/0  Zk  |                   |
|         | jaderná fyzika                |         |          |                   |
| NJSF064 | Fyzika atomového jádra        | 7       | 3/2 Z+Zk |                   |
| NJSF105 | Fyzika elementárních částic   | 7       | 3/2 Z+Zk |                   |
| NJSF068 | Kvantová teorie pole I $^{1}$ | 9       | 4/2 Z+Zk |                   |
| NJSF145 | Kvantová teorie pole I $^{1}$ | 9       | 4/2 Z+Zk |                   |
| NJSF086 | Kvarky, partony a kvantová    | 6       |          | 2/2 Z+Zk          |
|         | chromodynamika                |         |          |                   |
| NJSF037 | Mikroskopická teorie jádra    | 6       |          | $4/0 \mathrm{Zk}$ |
| NJSF085 | Základy teorie elektroslabých | 6       |          | 2/2 Z+Zk          |
|         | interakcí                     |         |          |                   |
| NSZZ023 | Diplomová práce I             | 6       |          | 0/4 Z             |

 $<sup>^{1}</sup>$ Studenti si zapisují právě jeden z těchto alternativních předmětů.

| <b>2.</b> 1 | rok | magisterského | studia |
|-------------|-----|---------------|--------|
|-------------|-----|---------------|--------|

| Kód      | Název                                         | Kredity | ZS                 | LS                 |
|----------|-----------------------------------------------|---------|--------------------|--------------------|
| NJSF191  | Seminář částicové a jaderné<br>fyziky III     | 3       | 0/2 Z              |                    |
| NJSF192  | Seminář částicové a jaderné<br>fyziky IV      | 3       | _                  | 0/2 Z              |
| NSZZ024  | Diplomová práce II                            | 9       | $0/6 \mathrm{~Z}$  | _                  |
| NSZZ025  | Diplomová práce III                           | 15      |                    | 0/10 Z             |
| Povinně  | volitelné předměty                            |         |                    |                    |
| Kód      | Název                                         | Kredity | ZS                 | LS                 |
| Kvantova | á teorie pole                                 |         |                    |                    |
| NJSF069  | Kvantová teorie pole II $^{\rm 1}$            | 9       |                    | 4/2  Z+Zk          |
| NJSF146  | Kvantová teorie pole II $^{1}$                | 9       |                    | 4/2 Z+Zk           |
| NJSF139  | Částicová fyzika za standardním modelem I     | 4       | 2/1  Zk            |                    |
| NJSF140  | Částicová fyzika za standardním<br>modelem II | 4       |                    | $2/1 \mathrm{Zk}$  |
| NJSF082  | Vybrané partie teorie kvantovaných polí I     | 4       | 3/0 Zk             | _                  |
| NJSF083  | Vybrané partie teorie kvantovaných polí II    | 4       |                    | $3/0 \mathrm{~Zk}$ |
| NTMF022  | ? Teorie kalibračních polí                    | 4       | 3/0  Zk            |                    |
| NJSF084  | Chirální symetrie silných interakcí           | 3       | <del></del>        | 2/0 Zk             |
| NJSF030  | Kvantová teorie pole při konečné<br>teplotě   | 3       | _                  | $2/0 \mathrm{~Zk}$ |
| NJSF129  | Pokročilé koncepty symetrie                   | 5       |                    | 2/2 Zk             |
| NJSF142  | Teorie grup a algeber v částicové fyzice      | 4       | _                  | 2/1  Zk            |
| Teorie m | nohočásticových systémů                       |         |                    |                    |
| NJSF196  | Mikroskopická teorie jádra II                 | 3       | $2/0 \mathrm{~Zk}$ | <del></del>        |
| NJSF107  | Statistická jaderná fyzika                    | 3       | $2/0 \mathrm{Zk}$  |                    |
| NJSF193  | Kolektivní dynamika                           | 3       | $2/0 \mathrm{Zk}$  |                    |
| _        | mnohočásticových systémů                      |         |                    |                    |
| NJSF031  | Klasický a kvantový chaos                     | 3       |                    | $2/0 \mathrm{Zk}$  |
| NJSF157  | Fyzika máločásticových jaderných<br>systémů   | 3       | 2/0  Zk            | _                  |
| NJSF158  | Úvod do počítačové jaderné fyziky             | 3       | $1/1 \mathrm{Zk}$  |                    |
|          | entální částicová fyzika                      |         |                    |                    |
| NJSF073  | Experimentální prověrka                       | 4       |                    | 2/1 Z+Zk           |
|          | standardního modelu                           |         |                    |                    |

| NJSF195   | Silná interakce při vysokých energiích                | 3    | 2/0 Zk              |                    |
|-----------|-------------------------------------------------------|------|---------------------|--------------------|
| NJSF102   | Jaderná astrofyzika                                   | 3    | $2/0 \mathrm{~Zk}$  |                    |
| NJSF130   | Kosmické záření                                       | 3    |                     | $2/0 \mathrm{~Zk}$ |
| NJSF131   | Difrakce v částicové fyzice                           | 4    | $2/1 \mathrm{\ Zk}$ |                    |
| Experim   | entální metody, zpracování dat, aplil                 | kace |                     |                    |
| NJSF070   | Detektory a urychlovače částic                        | 3    | $2/0 \mathrm{Zk}$   |                    |
| NJSF159   | Fyzika urychlovačů částic                             | 4    | $2/1 \mathrm{Zk}$   |                    |
| NJSF101   | Polovodičové detektory v jaderné a subjaderné fyzice. | 3    | 2/0 Zk              |                    |
| NJSF081   | Software a zpracování dat ve fyzice<br>částic I       | 3    | $1/1 \mathrm{\ Zk}$ | _                  |
| NJSF109   | Software a zpracování dat ve fyzice<br>částic II      | 4    |                     | 2/1 Zk             |
| NJSF143   | Statistické metody ve fyzice<br>vysokých energií      | 4    | $3/0 \mathrm{~Zk}$  |                    |
| NJSF067   | Metody sběru dat v částicové<br>a jaderné fyzice      | 4    | 2/1 Zk              | _                  |
| NJSF138   | Neuronové sítě v částicové fyzice                     | 4    | $2/1 \mathrm{Zk}$   |                    |
| NJSF024   | Jaderné analytické metody                             | 3    | 2/0  Zk             |                    |
| NJSF008   | Biologické účinky ionizujícího záření                 | 3    | <del>-</del>        | $2/0 \mathrm{Zk}$  |
| NJSF141   | Zpracování experimentálních dat                       | 3    |                     | $2/0 \mathrm{~Zk}$ |
| Další pov | vinně volitelné předměty                              |      |                     |                    |
| NJSF091   | Seminář částicové a jaderné fyziky I                  | 3    | $0/2 \mathrm{~Z}$   |                    |
| NJSF092   | Seminář částicové a jaderné fyziky II                 | 3    | _                   | $0/2 \mathrm{~Z}$  |

<sup>&</sup>lt;sup>1</sup> Studenti si zapisují právě jeden z těchto alternativních předmětů.

# Doporučené volitelné předměty

| Kód     | Název                            | Kredity | ZS       | LS                 |
|---------|----------------------------------|---------|----------|--------------------|
| NJSF079 | Kvantová teorie pole III         | 9       | 4/2 Z+Zk | _                  |
| NJSF132 | Teorie nanoskopických systémů I  | 3       | 2/0  Zk  |                    |
| NJSF133 | Teorie nanoskopických systémů II | 3       |          | $2/0 \mathrm{~Zk}$ |

# Podmínky pro přihlášení ke státní závěrečné zkoušce

Podmínky pro přihlášení k jiné než poslední části státní závěrečné zkoušky jsou stanoveny vnitřním předpisem Pravidla pro organizaci studia na MFF UK.

Podmínky pro přihlášení k poslední části státní závěrečné zkoušky:

- získání alespoň 120 kreditů
- splnění všech povinných předmětů
- splnění povinně volitelných předmětů v rozsahu alespoň 25 kreditů
- odevzdání vypracované diplomové práce ve stanoveném termínu

Předmět lze splnit jeho úspěšným absolvováním či uznáním z předchozího studia.

# Požadavky k ústní části státní závěrečné zkoušky

Student dostane celkem 3 otázky z následujících tematických okruhů A, B a C (po jedné otázce z každého okruhu):

#### A. Kvantová teorie

#### 1. Formalismus kvantové teorie

Hilbertův prostor. Čisté a smíšené stavy. Kompatibilní a nekompatibilní veličiny. Diskrétní a spojité spektrum. Otevřené systémy. Klasická limita.

#### 2. Evoluce kvantového systému

Schrödingerova rovnice a evoluční operátor. Greenuv operátor. Reprezentace časového vývoje. Evoluce generovaná časově závislým hamiltoniánem.

#### 3. Symetrie a zákony zachování v kvantové mechanice

Spojité časoprostorové symetrie a jejich generátory. Inverze prostoru a času. Zákony zachování. Skaláry, vektory a spinory.

# 4. Poruchový počet v kvantové mechanice

Stacionární poruchová teorie pro nedegenerované a degenerované spektrum. Nestacionární poruchová metoda, skoková a periodická porucha, Fermiho pravidlo.

## 5. Moment hybnosti v kvantové mechanice

Kvantování momentu hybnosti. Skládání 2 či více momentů hybnosti. Tenzorové operátory, výběrová pravidla

#### 6. Teorie rozptylu

Lippmanova-Schwingerova rovnice. Amplituda rozptylu, Bornova řada. Metoda parciálních vln.

#### 7. Systémy nerozlišitelných částic

Bosony a fermiony. Fokův prostor, reprezentace obsazovacích čísel. Kreační a anihilační operátory, n-částicové operátory.

# 8. Rovnice relativistické kvantové mechaniky pro volnou částici se spinem 0, 1/2 a 1

Klein-Gordonova a Diracova rovnice, řešení s kladnou a zápornou energií, rovnice kontinuity, vlastnosti symetrie. Weylova rovnice. Procova rovnice.

#### 9. Diracova rovnice pro částici v elektromagnetickém poli

Přechod k Pauliho rovnici a spinový magnetický moment. Atom vodíkového typu a jemná struktura hladin energie.

#### 10. Kvantování volných polí a jejich částicová interpretace

Metoda kanonického kvantování. Energie a impuls kvantovaného pole. Částice a antičástice. Diracovo pole, antikomutační relace. Elektromagnetické a Procovo pole. Propagátor kvantovaného pole.

#### 11. Interakce polí, poruchový rozvoj S-matice a Feynmanovy diagramy

Příklady interakčních lagrangiánů, princip kalibrační symetrie. Dysonův rozvoj v interakční reprezentaci. Feynmanovy diagramy na stromové úrovni. Pravděpodobnost rozpadu a účinný průřez.

#### 12. Základy kvantové elektrodynamiky

Rozptyl nabité částice ve vnějším elektromagnetickém poli. Procesy druhého řádu. Příklady diagramů s uzavřenou smyčkou.

## B. Fyzika elementárních částic

## 1. Klasifikace elementárních částic

Leptony, hadrony, nositelé interakcí. Přibližná symetrie SU(3) a multiplety hadronů. Kvarkový model. Barva, experimentální evidence pro barvy kvarků. Kvarky u, d, s. Těžké kvarky c a b. Rozpady hadronů (neutronu, pionů, podivných částic)

## 2. Vlastnosti hadronů a jejich měření

Spin, magnetický moment, prostorová, nábojová a G-parita, izospin, podivnost, hypernáboj. Zákony zachování v jednotlivých typech interakcí. Příklady měření.

#### 3. Vlastnosti leptonů

Slabé a elektromagnetické interakce leptonů: produkce mionového páru v elektron-pozitronové anihilaci, neutrinový rozptyl, rozpad mionu a leptonu tau. Helicita neutrina, oscilace neutrin, nezachování P a CP. Neutrinové experimenty.

## 4. Metody měření a identifikace částic v experimentech

Měření energie, hybnosti a doby letu, čerenkovské a přechodové záření, invariantní hmota produktů rozpadu. Příklady použití detekčních technik při objevech elementárních částic.

# 5. Experimenty na urychlovačích částic

Lineární a kruhové urychlovače částic, vstřícné svazky, luminozita. Současné urychlovače. Produkce částic v hadronových a leptonových srážkách.

# 6. Pojmové základy standardního modelu elektroslabých interakcí

Kalibrační invariance. Yang-Millsovo pole. Higgsův mechanismus.

# 7. Typy interakcí částic ve standardním modelu elektroslabých interakcí

Interakce vektorových bosonů, interakce Higgsova bosonu, neutrální a nabité proudy. Objev vektorových bosonů W a Z, objev Higgsova bosonu.

## 8. Směšování v kvarkovém sektoru standardního modelu

Generování hmot prostřednictvím yukawovských interakcí, Cabibbo-Kobayashi-Maskawova matice, narušení CP. Objev kvarků c, b a t.

# 9. Systémy neutrálních mezonů

Oscilace a regenerace. Přímé a nepřímé narušení CP a jejich projevy.

#### 10. Struktura nukleonu a partonový model

Pružný rozptyl elektronu na protonu a formfaktory. Hluboce nepružný rozptyl, strukturní funkce, Bjorkenovo škálovaní. Formulace partonového modelu a pojem partonové distribuční funkce.

#### 11. Aplikace partonového modelu

Popis základních procesů v partonovém modelu: produkce hadronů v elektronpozitronové anihilaci, Drell-Yanův proces. Fragmentační funkce, hluboce nepružný rozptyl, měření strukturních funkcí nukleonu a distribučních funkcí partonů. Produkce jetů, objev gluonu.

#### 12. Kvantová chromodynamika

Lagrangián QCD a princip kalibrační invariance. Běžící vazbová konstanta, asymptotická volnost, uvěznění barvy. Popis kvarkonií. Infračervené a kolineární singularity, jety, evoluční rovnice pro partonové distribuční funkce.

# C. Jaderná fyzika

# 1. Charakteristiky jader a jejich měření

Vazbová energie, Weizsäckerova formule. Spin, parita. Magnetický dipólový a elektrický kvadrupólový moment. Parametry deformace.

# 2. Rozpady jader a radioaktivita

Rozpad beta, spektrum elektronu/pozitronu, výběrová pravidla, záchyt elektronu. Rozpad alfa, rozpadové řady. Rozpady gama, základy teorie elektromagnetických přechodů, typy a multipolarity, výběrová pravidla.

#### 3. Nukleon-nukleonové interakce

Fenomenologické a mikroskopické nukleon-nukleonové potenciály, principy symetrie, izospin, výměny mezonů a jejich kvarková interpretace. Efektivní interakce v jaderném prostředí. Deuteron.

# 4. Střední pole a jednočásticové pohyby v jádrech

Hartree-Fokova metoda konstrukce středního pole. Spin-orbitální vazba, magická čísla. Nilssonův model, deformace.

## 5. Párování nukleonů a jeho důsledky

Zbytkové interakce krátkého dosahu. Bardeen-Cooper-Schriefferova teorie supravodivosti. Projevy párování v jádrech.

# 6. Kolektivní pohyby jader

Rotační a vibrační spektra jader a jejich fenomenologický a mikroskopický popis. Gigantické rezonance. Štěpení jader.

# 7. Jaderné reakce a vysoce excitované stavy

Přímé reakce a reakce přes složené jádro, příklady a charakteristické vlastnosti, základy teoretického popisu. Produkce excitovaných stavů a statistické modelování jejich rozpadu, yrast linie.

#### 8. Průchod ionizujícího záření prostředím

Procesy při průchodu těžkých a lehkých nabitých částic látkou. Interakce záření gama s látkou. Průchod neutronů.

#### 9. Principy detekce jaderného záření

Spektrometrie nabitých a neutrálních částic. Základní typy používaných detektorů a jejich charakteristiky.

#### 10. Využití jaderné fyziky k materiálovým analýzám a datování

Měření prvkových a izotopických příměsí. Jaderné sondy v materiálech. Jaderné metody datování.

# 11. Aplikace jaderné fyziky v medicíně

Zobrazování pomocí jaderného záření, funkční tomografie. Radioterapie a hadronová terapie.

# 12. Jaderná energie

Štěpení a fúze jader. Jaderný reaktor, tokamak. Jaderné procesy ve hvězdách.

# 10. Matematické a počítačové modelování ve fyzice

Garantující pracoviště: Ústav teoretické fyziky Garant programu: doc. RNDr. Martin Čížek, Ph.D. Na koncepci matematické části studijního programu a přípravě státních zkoušek se podstatně podílí Matematický ústav UK. Kontaktní osobou je Mgr. Vít Průša, Ph.D. *Charakteristika studijního programu:* 

Studijní program "Matematické a počítačové modelování ve fyzice" je mezioborovým studiem, které spojuje matematiku a fyziku. Ve společném základu si studenti prohlubují znalosti z moderních partií matematiky s důrazem na diferenciální rovnice a numerické metody. V oblasti fyzikálních disciplín si vyberou jeden směr užšího zaměření, v němž získají hlubší znalosti a složí příslušnou část státní závěrečné zkoušky. Fyzikální předměty jsou přednášeny odborníky z řad fyziků, matematické předměty jsou pak prezentovány specialisty z řad matematiků. Studijní program je svou náplní obdobný programu "Matematické modelování ve fyzice a technice" oblasti vzdělávání Matematika, liší se ale tím, že absolventi bakalářského studia vstupují do magisterského studia s hlubším základem z fyziky a naopak si více doplňují svůj matematický rozhled. Znalosti z fyziky si pak prohlubují především v jednom zvoleném směru užšího zaměření.

Profil absolventa studijního programu a cíle studia:

Velmi dobré znalosti matematických i fyzikálních disciplín, vysoká flexibilita, schopnost problémy formulovat, analyzovat a následně i numericky řešit, jsou zárukou velmi dobrého uplatnění v řadě oblastí a to v akademických (nejen v oblastech aplikované matematiky a fyziky, ale i v jiných vědních oborech jako např. vědě o materiálech, biologii, lékařství) i v komerčních sférách (bankovnictví, softwarové firmy, průmysl).

# Doporučený průběh studia

Předpokladem úspěšného magisterského studia tohoto programu je získání základních znalostí na úrovni následujících předmětů:

| Kód     | Název                                 | Kredity | ZS        | LS       |
|---------|---------------------------------------|---------|-----------|----------|
| NOFY076 | Kvantová teorie I <sup>1</sup>        | 8       | 4/2 Z+Zk  | _        |
|         | 1 Základy numerické matematiky        | 8       | 4/2  Z+Zk |          |
| NMMA33  | 4 Úvod do parciálních diferenciálních | 10      |           | 4/4 Z+Zk |
|         | rovnic                                |         |           |          |

<sup>&</sup>lt;sup>1</sup> Znalosti z tohoto předmětu jsou nutné pro užší zaměření Mnohočásticové systémy, Kvantové systémy a Částicová fyzika. Místo této přednášky lze také absolvovat NOFY075 Kvantová teorie I nebo NOFY042 Základy kvantové teorie.

Tyto předměty se obvykle zapisují ve třetím roce studia bakalářského programu Fyzika jako povinné a povinně volitelné. Pokud posluchač tyto nebo jim ekvivalentní předměty neabsolvoval, měl by si je ve vlastním zájmu zapsat jako volitelné v prvním roce navazujícího magisterského studia. Obsah uvedených předmětů je součástí společných požadavků státní závěrečné zkoušky.

#### 1. rok magisterského studia

| Kód     | Název                               | Kredity | ZS        | LS |
|---------|-------------------------------------|---------|-----------|----|
| NMNM93  | l Analýza maticových výpočtů 1      | 5       | 2/2 Z+Zk  |    |
|         | $(\mathbf{M})$                      |         |           |    |
| NMNV40  | 5 Metoda konečných prvků 1          | 5       | 2/2 Z+Zk  |    |
| NMNV539 | 9 Numerické řešení ODR              | 5       | 2/2 Z+Zk  |    |
| NMMA40  | 5 Parciální diferenciální rovnice 1 | 6       | 3/1  Z+Zk | _  |

|               | Simulace ve fyzice mnoha částic<br>l Úvod do funkcionální analýzy<br>(O) | 6<br>8  | 3/1 Z+Zk  4/2 Z+Zk |                     |
|---------------|--------------------------------------------------------------------------|---------|--------------------|---------------------|
|               | 6Parciální diferenciální rovnice 2<br>Diplomová práce I                  | 6<br>6  |                    | 3/1 Z+Zk $0/4$ Z    |
|               |                                                                          |         |                    |                     |
| 2. rok ma     | gisterského studia                                                       |         |                    |                     |
| Kód           | Název                                                                    | Kredity | ZS                 | LS                  |
| NMNV412       | 2 Analýza maticových iteračních<br>metod – principy a souvislosti        | 6       | _                  | $4/0 \mathrm{~Zk}$  |
| NSZZ024       | Diplomová práce II                                                       | 9       | $0/6 \mathrm{~Z}$  |                     |
| NSZZ025       | Diplomová práce III                                                      | 15      |                    | 0/10 Z              |
|               |                                                                          |         |                    |                     |
|               | volitelné předměty                                                       |         | _                  | -                   |
| Kód           | Název                                                                    | Kredity | ZS                 | LS                  |
| Mechani       | ka kontinua                                                              |         |                    |                     |
| NMMO40        | 1 Mechanika kontinua                                                     | 6       | 2/2 Z+Zk           |                     |
| NMNV503       | 3 Numerické metody optimalizace 1                                        | 6       | 3/1  Z+Zk          |                     |
| NMMO54        | 1 Teorie směsí                                                           | 4       | 2/1  Z+Zk          |                     |
| NMMO40        | 3Počítačové řešení úloh fyziky                                           | 5       |                    | 2/2 Z+Zk            |
|               | kontinua                                                                 |         |                    | - /                 |
| NMMO40        | 2Termodynamika a mechanika                                               | 5       |                    | 2/1  Z+Zk           |
| NIN (I) (O 40 | nenewtonovských tekutin                                                  | _       |                    | 0/1 7 + 71          |
| NMMO40        | 4Termodynamika a mechanika<br>pevných látek                              | 5       |                    | 2/1  Z+Zk           |
| 7.6           | -                                                                        |         |                    |                     |
|               | ásticové systémy                                                         |         | - /                |                     |
|               | Moderní počítačová fyzika I                                              | 5       | $2/1~\mathrm{KZ}$  |                     |
|               | Metody matematické statistiky                                            | 5       |                    | 2/1  Z+Zk           |
| N'I'MF'024    | Pokročilé simulace ve fyzice mnoha částic <sup>1</sup>                   | 3       |                    | $2/0 \mathrm{\ Zk}$ |
| NTMF044       | Termodynamika a statistická                                              | 7       | _                  | 3/2 Z+Zk            |
|               | fyzika II                                                                |         |                    | ,                   |
| NBCM316       | S Počítačové modelování biomolekul                                       | 4       | 1/2 Z+Zk           | 1/2 Z+Zk            |
| Kvantov       | é systémy                                                                |         |                    |                     |
| NTMF030       | Kvantová teorie rozptylu                                                 | 6       | 3/1  Z+Zk          |                     |
|               | Teorie grup a její aplikace ve fyzice                                    | 6       | 2/2 Z+Zk           |                     |
| NOFY079       | Kvantová teorie II                                                       | 6       |                    | 3/1 Z+Zk            |
| NBCM039       | Kvantová teorie molekul                                                  | 7       | 3/2 Z+Zk           |                     |
| NTMF130       | Teorie srážek atomů a molekul                                            | 6       |                    | 3/1  Z+Zk           |
| NTMF112       | Kvantová teorie — vybrané aplikace <sup>1</sup>                          | 3       | _                  | 1/1 Zk              |
| NJSF179       | Kvantová teorie – vybraná témata <sup>1</sup>                            | 3       | _                  | 1/1 Z+Zk            |

| Relativis    | tická fyzika                                     |   |                     |                     |
|--------------|--------------------------------------------------|---|---------------------|---------------------|
| NTMF059      | Geometrické metody teoretické<br>fyziky I        | 6 | 2/2 Z+Zk            | _                   |
| NTMF037      | <sup>7</sup> Relativistická fyzika I             | 9 | 4/2 Z+Zk            | _                   |
|              | 5 Úvod do analýzy na varietách                   | 5 | $^{-/-}$ Z+Zk       |                     |
|              | Základy numerického studia                       | 4 | $3/0 \mathrm{~Zk}$  |                     |
|              | prostoročasů                                     |   | ,                   |                     |
| NTMF060      | Geometrické metody teoretické                    | 4 | _                   | $3/0 \mathrm{Zk}$   |
| 27772 5774 4 | fyziky II                                        |   |                     | 0.40.50             |
| NTMF111      | Obecná teorie relativity                         | 4 |                     | $3/0 \mathrm{\ Zk}$ |
| Částicov     | á fyzika                                         |   |                     |                     |
| NJSF134      | Částice a pole I                                 | 5 | $2/2 \mathrm{~Zk}$  |                     |
| NJSF105      | Fyzika elementárních částic                      | 7 | 3/2 Z+Zk            |                     |
| NJSF138      | Neuronové sítě v částicové fyzice                | 4 | $2/1 \mathrm{Zk}$   |                     |
| NJSF081      | Software a zpracování dat ve fyzice<br>částic I  | 3 | $1/1 \mathrm{Zk}$   | _                   |
| NJSF082      | Vybrané partie teorie kvantovaných polí I        | 4 | 3/0 Zk              | _                   |
| NJSF086      | Kvarky, partony a kvantová<br>chromodynamika     | 6 | _                   | 2/2 Z+Zk            |
| NJSF109      | Software a zpracování dat ve fyzice<br>částic II | 4 | _                   | $2/1 \mathrm{~Zk}$  |
| NJSF085      | Základy teorie elektroslabých interakcí          | 6 | _                   | 2/2 Z+Zk            |
| Další po     | vinně volitelné předměty                         |   |                     |                     |
| NMMA40       | 1 Funkcionální analýza 1                         | 8 | 4/2 Z+Zk            | _                   |
| NMMA40       | 7Obyčejné diferenciální rovnice 2                | 5 | 2/2 Z+Zk            | <del></del>         |
| NMMA53       | 1 Parciální diferenciální rovnice 3              | 4 | $2/0 \mathrm{Zk}$   |                     |
| NJSF132      | Teorie nanoskopických systémů I                  | 3 | $2/0 \mathrm{\ Zk}$ |                     |
| NEVF161      | Moderní počítačová fyzika II                     | 5 |                     | $2/1~\mathrm{KZ}$   |
| NMMO46       | 3GENERIC — nerovnovážná                          | 4 |                     | 2/1 Z+Zk            |
|              | termodynamika                                    |   |                     |                     |
| NMMO66       | 0Nerovnovážná termodynamika<br>elektrochemie     | 4 | _                   | 2/1 Z+Zk            |

 $<sup>^{1}</sup>$  Předměty se učí jednou za dva roky.

# Doporučené volitelné předměty

| Kód    | Název                                 | Kredity | ZS       | LS                |
|--------|---------------------------------------|---------|----------|-------------------|
| NMNM20 | 1 Základy numerické matematiky        | 8       | 4/2 Z+Zk | _                 |
| NMNV53 | 2 Paralelní maticové výpočty          | 5       | <u> </u> | 2/2 Z+Zk          |
| NMMA33 | 4 Úvod do parciálních diferenciálních | 10      |          | 4/4 Z+Zk          |
|        | rovnic                                |         |          |                   |
| NMMO56 | 4 Vybrané problémy matematického      | 3       |          | $0/2  \mathrm{Z}$ |
|        | $modelov\'an\'i$                      |         |          |                   |

NMMO461 Seminář z mechaniky kontinua

2 0/2 Z

 $0/2 \ {\rm Z}$ 

## Podmínky pro přihlášení ke státní závěrečné zkoušce

Podmínky pro přihlášení k jiné než poslední části státní závěrečné zkoušky jsou stanoveny vnitřním předpisem Pravidla pro organizaci studia na MFF UK.

Podmínky pro přihlášení k poslední části státní závěrečné zkoušky:

- získání alespoň 120 kreditů
- splnění všech povinných předmětů zvoleného programu
- splnění povinně volitelných předmětů zvoleného programu v rozsahu alespoň 30 kreditů
- odevzdání vypracované diplomové práce ve stanoveném termínu

Předmět lze splnit jeho úspěšným absolvováním či uznáním z předchozího studia.

# Požadavky k ústní části státní závěrečné zkoušky

#### A. Společné požadavky

#### 1. Parciální diferenciální rovnice

Sobolevovy prostory. Slabá řešení pro lineární eliptické rovnice na omezené oblasti. Slabá řešení pro nelineární eliptické rovnice na omezené oblasti. Lineární parabolické rovnice 2. řádu, Lineární hyperbolické rovnice 2. řádu.

#### 2. Numerická matematika

Metoda konečných prvků pro řešení eliptických rovnic. Metody pro řešení soustav algebraických rovnic a výpočet vlastních čísel.

#### 3. Funkcionální analýza

Hilbertovy a Banachovy prostory. Spojitá lineární zobrazení. Věty o pevných bodech. Integrální transformace a základy teorie distribucí.

# B. Užší zaměření

Student si volí jeden z následujících pěti tematických okruhů odpovídající jeho zaměření.

#### 1. Mechanika kontinua

Kinematika kontinua. Dynamika kontinua. Jednoduché konstitutivní vztahy. Nenewtonské tekutiny. Pevné látky. Reologické modely.

#### 2. Mnohočásticové systémy

Základy statistické fyziky. Základy simulace fyzikálních systémů metodou Monte Carlo. Základy molekulární dynamiky. Určování termodynamických a strukturních vlastností ze simulací. Pokročilé metody simulace mnoha částic. Základy modelování fyziky plazmatu.

#### 3. Kvantové systémy

Základy kvantové mechaniky. Řešitelné systémy. Moment hybnosti a spin. Základní přibližné metody. Teorie rozptylu. Základní metody mnohočásticové kvantové fyziky. Výpočetní metody teorie rozptylu.

#### 4. Relativistická fyzika

Výchozí principy speciální a obecné teorie relativity. Einsteinův gravitační zákon a jeho důsledky. Relativistická astrofyzika a kosmologie. Vlastnosti Einsteinových rovnic.

# 5. Částicová fyzika

Základní představy a metody kvantové teorie pole. Klasifikace a vlastnosti elementárních částic. Struktura hadronů. Základy standardního modelu elementárních částic. Interakce částic s prostředím a metody měření částic v experimentech. Metody analýzy dat v experimentech fyziky částic.

# Studijní plány oblasti vzdělávání INFORMATIKA

# Bakalářské studium od akad. roku 2019/20

Garant studijního programu: doc. RNDr. Ondřej Čepek, Ph.D.

# 1. Základní informace

# Studijní specializace

Bakalářský studijní program Informatika má společný první ročník a od druhého ročníku se dělí na šest specializací:

- Obecná informatika
- Programování a vývoj software
- Systémové programování
- Webové a datově orientované programování
- Umělá inteligence
- Počítačová grafika, vidění a vývoj her

Specializaci si studenti vybírají v souladu se studijními předpisy v průběhu druhého ročníku studia.

# Studijní plány

Studium v jednotlivých specializacích je určeno studijními plány. Studijní plány určují skladbu povinných a povinně volitelných předmětů a dále požadavky ke státní zkoušce. Povinně volitelné předměty jsou pro každou specializaci rozděleny do několika skupin. Kromě celkového minimálního počtu kreditů za všechny povinně volitelné předměty může být také pro některé skupiny těchto předmětů určen minimální počet kreditů, který je z dané skupiny třeba získat před přihlášením se ke státní zkoušce. Vedle povinných předmětů a předepsaného množství povinně volitelných předmětů si může každý student podle vlastního výběru zapisovat další předměty vyučované na naší fakultě, v případě zájmu i na jiných fakultách naší univerzity (tzv. volitelné předměty). V souladu s platnou akreditací mohou být některé povinné a povinně volitelné předměty, které jsou doporučené pro druhý a třetí ročník, vyučovány v angličtině.

Všech šest specializací má rozsáhlou společnou část tvořenou povinnými předměty pokrývajícími základy matematiky, teoretické informatiky, programování a softwarových systémů. Většina těchto povinných předmětů spadá do prvního ročníku studia, který je pro celý studijní program Informatika společný. Níže uvedený doporučený průběh studia v 1. ročníku zahrnuje všechny povinné předměty pro 1. ročník vyznačené tučně a několik volitelných předmětů vyznačených kurzívou.

| -4  | 1   |     | 1.   |
|-----|-----|-----|------|
| 1 1 | rnk | stu | เสเล |

| Kód     | Název                               | Kredity | ZS                 | LS                |
|---------|-------------------------------------|---------|--------------------|-------------------|
| NPRG062 | Algoritmizace                       | 4       | 2/1 Z+Zk           |                   |
| NPRG030 | Programování 1                      | 5       | $2/2 \mathrm{~Z}$  | _                 |
| NSWI120 | Principy počítačů                   | 3       | $2/0 \mathrm{~Zk}$ | _                 |
| NSWI141 | Úvod do počítačových sítí           | 3       | 2/0  KZ            | _                 |
| NDMI002 | Diskrétní matematika                | 5       | 2/2 Z+Zk           |                   |
| NMAI057 | Lineární algebra 1                  | 5       | 2/2 Z+Zk           |                   |
| NTVY014 | Tělesná výchova I <sup>1</sup>      | 1       | $0/2 \mathrm{~Z}$  |                   |
| NMAI069 | Matematické dovednosti <sup>2</sup> | 2       | $0/2 \mathrm{Z}$   |                   |
| NJAZ070 | Anglický jazyk pro středně          | 1       | $0/2 \mathrm{~Z}$  |                   |
|         | pokročilé I <sup>3</sup>            |         |                    |                   |
| NTIN060 | Algoritmy a datové struktury 1      | 5       | <del></del>        | 2/2 Z+Zk          |
| NPRG031 | Programování 2                      | 5       | <del></del>        | 2/2 Z+Zk          |
| NSWI170 | Počítačové systémy                  | 5       | <del></del>        | 2/1  Z+Zk         |
| NSWI177 | Úvod do Linuxu                      | 4       |                    | 1/2  KZ           |
| NMAI054 | Matematická analýza 1               | 5       | <del></del>        | 2/2 Z+Zk          |
| NMAI058 | Lineární algebra 2                  | 5       |                    | 2/2 Z+Zk          |
| NTVY015 | Tělesná výchova II <sup>1</sup>     | 1       |                    | $0/2 \mathrm{~Z}$ |
| NJAZ072 | 3 03 0 1                            | 1       |                    | $0/2 \mathrm{~Z}$ |
|         | pokročilé II <sup>3</sup>           |         |                    |                   |

Místo jednoho z předmětů NTVY014 a NTVY015 je možné si zapsat letní výcvikový kurz NTVY018 nebo zimní výcvikový kurz NTVY019. Tyto kurzy může student absolvovat kdykoli v průběhu studia.

Menší počet povinných předmětů společných pro všechny specializace pak spadá do 2. a 3. ročníku. Níže je jejich seznam doplněný o volitelné předměty výuky anglického jazyka.

Společné povinné předměty v 2. a 3. roku studia a výuka angličtiny

| Kód     | Název                            | Kredity | ZS                | LS                |
|---------|----------------------------------|---------|-------------------|-------------------|
| NTIN061 | Algoritmy a datové struktury 2   | 5       | 2/2 Z+Zk          | _                 |
| NDBI025 | Databázové systémy               | 5       | 2/2 Z+Zk          |                   |
| NDMI011 | Kombinatorika a grafy 1          | 5       | 2/2 Z+Zk          |                   |
| NAIL062 | Výroková a predikátová logika    | 5       | 2/2 Z+Zk          |                   |
| NTVY016 | Tělesná výchova III <sup>4</sup> | 1       | $0/2 \mathrm{~Z}$ |                   |
| NJAZ074 | Anglický jazyk pro středně       | 1       | $0/2 \mathrm{~Z}$ |                   |
|         | pokročilé III <sup>5</sup>       |         |                   |                   |
| NTIN071 | Automaty a gramatiky             | 5       |                   | 2/2 Z+Zk          |
| NMAI059 | Pravděpodobnost a statistika 1   | 5       |                   | 2/2 Z+Zk          |
| NPRG045 | Ročníkový projekt <sup>6</sup>   | 4       |                   | $0/1 \mathrm{~Z}$ |
| NSZZ031 | Vypracování a konzultace         | 6       |                   | $0/4~\mathrm{Z}$  |
|         | bakalářské práce                 |         |                   |                   |

<sup>&</sup>lt;sup>2</sup> Předmět NMAI069 Matematické dovednosti je určen a vřele doporučen studentům, kteří si chtějí osvojit a procvičit základní matematické dovednosti používané v matematických předmětech na MFF. Důraz je kladen na korektní matematické vyjadřování a základní důkazové techniky.

 $<sup>^3</sup>$  Výuka anglického jazyka NJAZ070, NJAZ072 v rozsahu 0/2 v každém semestru je určena pro středně pokročilé a pokročilé. Pro začátečníky a mírně pokročilé jsou určeny předměty NJAZ071, NJAZ073 s rozsahem výuky 0/4 v každém semestru.

|         | Tělesná výchova IV <sup>4</sup> Anglický jazyk pro středně pokročilé IV <sup>5</sup> | 1<br>1 | <u> </u> | $0/2 \; { m Z} \ 0/2 \; { m Z}$ |
|---------|--------------------------------------------------------------------------------------|--------|----------|---------------------------------|
| NJAZ091 | Anglický jazyk — zkouška pro<br>bakaláře <sup>7</sup>                                | 1      | _        | $0/0~{ m Zk}$                   |

<sup>&</sup>lt;sup>4</sup> Pokud student splnil předměty NTVY014 a NTVY015, tak je možné si místo jednoho z předmětů NTVY016 a NTVY017 zapsat letní výcvikový kurz NTVY018 nebo zimní výcvikový kurz NTVY019. Výcvikové kurzy může student absolvovat kdykoli v průběhu studia.

 $^6$  Předmět NPRG045 lze zapsat v ZS i v LS, standardně je zapisován v LS.

Pro jednotlivé specializace jsou předepsány další povinné předměty a skupiny povinně volitelných předmětů. Detailní studijní plány pro jednotlivé specializace jsou uvedeny v dalším textu.

## Doporučený průběh studia v 2. a 3. roku studia

Doporučený průběh studia je pro každou specializaci vypracován tak, aby na sebe povinné předměty navazovaly, aby student získal včas kredity potřebné pro zápis do dalšího úseku studia a aby včas splnil podmínky pro přihlášení se ke státní zkoušce. Většina povinných předmětů je v doporučeném průběhu studia zařazena do 1. a 2. ročníku studia a jenom minimum z nich je ponecháno do 3. ročníku, ve kterém je větší prostor ponechán na předměty povinně volitelné a volitelné. Doporučený průběh studia je podporován také při tvorbě celofakultního rozvrhu. Doporučené průběhy studia pro jednotlivé specializace jsou uvedeny v další části textu u popisu specializací.

#### Zaměření

Některé specializace se dále člení na zaměření. Jednotlivá zaměření téže specializace se od sebe liší požadavky posledního okruhu bakalářské státní zkoušky z informatiky. Posluchač má sám možnost přizpůsobit výběr svých povinně volitelných a volitelných předmětů tomu, v jakém zaměření bude studium končit a jaké odborné znalosti k tomu bude potřebovat. Volbu svého zaměření oznámí s přihláškou k bakalářské státní závěrečné zkoušce.

# Státní závěrečná zkouška a ukončení studia

Státní závěrečná zkouška se skládá ze dvou částí:

- obhajoba bakalářské práce
- zkouška z matematiky a informatiky

Každá část státní závěrečné zkoušky je hodnocena známkou. Na základě obou známek je pak určena celková známka státní závěrečné zkoušky. Ke každé části státní závěrečné zkoušky se posluchač může přihlásit samostatně. Studium je úspěšně zakončeno úspěšným absolvováním obou částí. Při neúspěchu opakuje student ty části státní závěrečné zkoušky, ve kterých neuspěl. Opakovat část státní závěrečné zkoušky lze nejvýše dvakrát.

Podmínky pro přihlášení ke státní závěrečné zkoušce

Podmínky pro přihlášení k jiné než poslední části státní závěrečné zkoušky jsou stanoveny vnitřním předpisem Pravidla pro organizaci studia na MFF UK. Podmínky pro přihlášení k poslední části státní závěrečné zkoušky jsou následující:

 $<sup>^5</sup>$  Výuka anglického jazyka NJAZ074, NJAZ090 v rozsahu 0/2 v každém semestru je určena pro středně pokročilé a pokročilé. Pro začátečníky a mírně pokročilé jsou určeny předměty NJAZ075, NJAZ089 s rozsahem výuky 0/4 v každém semestru.

 $<sup>^{7}</sup>$  Povinnou zkoušku z anglického jazyka NJAZ091 je možné absolvovat jak v ZS tak v LS.

- získání alespoň 180 kreditů
- splnění všech povinných předmětů zvolené specializace
- splnění povinně volitelných předmětů zvolené specializace ve stanoveném rozsahu
- odevzdání vypracované bakalářské práce ve stanoveném termínu (pro přihlášení k obhajobě bakalářské práce).

Bakalářská práce je zadávána zpravidla na počátku 3. ročníku. Typicky má charakter softwarového díla, které může navazovat na ročníkový projekt (viz studijní plány), nebo odborné teoretické práce. Doporučujeme vybírat si téma především z nabídky pracoviště garantujícího zvolenou specializaci; v případě zájmu o téma z nabídky jiného pracoviště nebo o téma vlastní důrazně doporučujeme konzultovat vhodnost tématu s garantem specializace.

Seznam požadavků ke zkouškám z matematiky a informatiky je rozdělen na část společnou pro všechny specializace a na část specializační. Seznam společných požadavků je uveden níže pod tímto odstavcem, specializační seznamy požadavků jsou specifikovány v textech věnovaných studijním plánům jednotlivých specializací.

# Požadavky znalostí ke státní závěrečné zkoušce společné pro všechny specializace

#### Matematika

## 1. Základy diferenciálního a integrálního počtu

Posloupnosti reálných čísel a jejich vlastnosti. Reálné funkce jedné reálné proměnné. Spojitost, limita funkce v bodě. Derivace: definice a základní pravidla, průběhy funkcí, Taylorův polynom se zbytkem. Primitivní funkce: definice, jednoznačnost, existence, metody výpočtu.

# Související předměty:

NMAI054 Matematická analýza 1

#### 2. Algebra a lineární algebra

Grupy a podgrupy, tělesa. Vektorové prostory a podprostory. Skalární součin, norma. Kolmost, ortonormální báze. Soustavy lineárních rovnic, Gaussova a Gaussova-Jordanova eliminace. Matice a operace s maticemi, hodnost matice. Vlastní čísla a vlastní vektory matice. Charakteristický polynom, vztah vlastních čísel s kořeny polynomů.

# Související předměty:

- NMAI057 Lineární algebra 1
- NMAI058 Lineární algebra 2

#### 3. Diskrétní matematika

Relace, vlastnosti binárních relací. Ekvivalence a rozkladové třídy. Částečná uspořádání. Funkce, typy funkcí. Permutace a jejich základní vlastnosti. Kombinační čísla, binomická věta. Princip inkluze a exkluze. Hallova věta o systému různých reprezentantů, párování v bipartitním grafu.

#### Související předměty:

- NDMI002 Diskrétní matematika
- NDMI011 Kombinatorika a grafy 1

## 4. Teorie grafů

Základní pojmy, základní příklady grafů. Souvislost grafů, komponenty souvislosti. Stromy, jejich vlastnosti, ekvivalentní charakteristiky stromů. Rovinné grafy, Eulerova formule a maximální počet hran rovinného grafu. Barevnost grafů, klikovost grafů. Hranová a vrcholová souvislost grafů, Mengerova věta. Orientované grafy, silná a slabá souvislost. Toky v sítích.

# Související předměty:

- NDMI002 Diskrétní matematika
- NDMI011 Kombinatorika a grafy 1

#### 5. Pravděpodobnost a statistika

Náhodné jevy, podmíněná pravděpodobnost, nezávislost náhodných jevů, Bayesův vzorec, aplikace. Náhodné veličiny, střední hodnota, rozdělení náhodných veličin, geometrické, binomické a normální rozdělení. Lineární kombinace náhodných veličin, linearita střední hodnoty. Bodové odhady, intervaly spolehlivosti, testování hypotéz.

# Související předměty:

- NDMI002 Diskrétní matematika
- NMAI059 Pravděpodobnost a statistika 1

## 6. Logika

Syntaxe - jazyk, otevřená a uzavřená formule. Normální tvary výrokových formulí, prenexní tvary formulí predikátové logiky, převody na normální tvary, použití pro algoritmy (SAT, rezoluce). Sémantika, pravdivost, lživost, nezávislost formule vzhledem k teorii, splnitelnost, tautologie, důsledek, pojem modelu teorie, extenze teorií.

#### Související předměty:

NAIL062 Výroková a predikátová logika

#### Informatika

# 1. Automaty a jazyky

Regulární jazyky, konečné automaty (deterministické, nedeterministické), regulární gramatiky. Bezkontextové jazyky, zásobníkové automaty, bezkontextové gramatiky. Rekurzivně spočetné jazyky, Turingův stroj, gramatika typu 0. Algoritmicky nerozhodnutelné problémy. Chomského hierarchie.

# Související předměty:

- NTIN071 Automaty a gramatiky

#### 2. Algoritmy a datové stuktury

Časová a prostorová složitost algoritmů, asymptotická notace. Třídy složitosti P a NP, NP-těžkost a NP-úplnost. Algoritmy "rozděl a panuj", výpočet časové složitosti těchto algoritmů, příklady. Binarní vyhledávací stromy, AVL stromy. Třídící algoritmy. DFS, BFS a jejich aplikace. Nejkratší cesty. Minimální kostry. Toky v sítích.

# Související předměty:

- NTIN060 Algoritmy a datové struktury 1
- NTIN061 Algoritmy a datové struktury 2

# 3. Programovací jazyky

Principy abstrakce, zapouzdření a polymorfismu a s nimi související konstrukce jazyka C++, C# nebo Java. Primitivní a objektové typy a jejich reprezentace. Generické typy a další generické konstrukce v jazycích C++, C# nebo Java. Funkcionální prvky procedurálních programovacích jazyků. Životní cyklus objektů a správa paměti. Mechanismy pro ošetření chyb, zajištění korektní manipulace se zdroji v případě výskytu chyb. Implementace základních prvků objektových jazyků. Nativní a interpretovaný běh, AOT a JIT kompilace, řízení překladu a sestavení programu, vazba na operační systém.

# Související předměty:

- NPRG030 Programování 1
- NPRG031 Programování 2
- NSWI120 Principy počítačů
- Podle volby programovacího jazyka: NPRG035 Programování v jazyce C# nebo
   NPRG041 Programování v C++ nebo NPRG013 Programování v jazyce Java

## 4. Architektura počítačů a operačních systémů

Základní architektura počítače, reprezentace dat a programů. Instrukční sada, vazba na prvky vyšších programovacích jazyků. Operační systémy, plánování, virtuální paměť. Paralelismus, synchronizace.

## Související předměty:

- NSWI120 Principy počítačů
- NSWI170 Počítačové systémy
- NSWI141 Úvod do počítačových sítí
- NSWI177 Úvod do Linuxu
- Podle volby programovacího jazyka: NPRG035 Programování v jazyce C# nebo
   NPRG041 Programování v C++ nebo NPRG013 Programování v jazyce Java

# 2. Studijní plány jednotlivých specializací

Další text je rozčleněn podle jednotlivých specializací. Pro každou specializaci je uveden seznam povinných a povinně volitelných předmětů, doporučený průběh studia a požadavky znalostí ke státní závěrečné zkoušce.

#### 1. Obecná informatika

**Garantující pracoviště:** Informatický ústav Univerzity Karlovy a Katedra aplikované matematiky

Koordinátor specializace: doc. Mgr. Robert Sámal, Ph.D.

Specializace obecná informatika je určena především studentům se zájmem o důkladné základy informatiky i matematiky, kteří mají v úmyslu po absolvování bakalářského studia pokračovat v navazujícím magisterském studiu. Zároveň je připraví na přímé uplatnění v praxi. Specializace dovoluje studentovi zaměřit se na algoritmy, optimalizaci, na jejich teoretické principy a také na diskrétní matematiku.

#### Povinné předměty studijního programu Informatika

Povinné předměty společné pro všechny specializace jsou uvedeny v úvodní části.

# Povinné předměty specializace

| Kód     | Název                         | Kredity | ZS       | LS       |
|---------|-------------------------------|---------|----------|----------|
| NPRG005 | Neprocedurální programování   | 5       | _        | 2/2 Z+Zk |
| NOPT048 | Lineární programování         | 5       |          | 2/2 Z+Zk |
|         | a kombinatorická optimalizace |         |          |          |
| NMAI055 | Matematická analýza 2         | 5       | 2/2 Z+Zk |          |

# Povinně volitelné předměty – skupina 1

Podmínkou pro přihlášení ke státní závěrečné zkoušce je získání 30 kreditů za předměty z této skupiny.

| Kód     | Název                              | Kredity | ZS       | LS                 |
|---------|------------------------------------|---------|----------|--------------------|
| NDMI084 | Úvod do aproximačních              | 5       | 2/1 Z+Zk | _                  |
|         | a pravděpodobnostních algoritmů    |         |          |                    |
| NDMI098 | Algoritmická teorie her            | 5       | 2/2 Z+Zk |                    |
| NDMI010 | Grafové algoritmy                  | 3       | 2/0  Zk  |                    |
| NDMI012 | Kombinatorika a grafy 2            | 5       |          | 2/2 Z+Zk           |
| NDMI110 | Grafy a sítě                       | 5       |          | 2/2 Z+Zk           |
| NDMI009 | Základy kombinatorické a výpočetní | 5       | 2/2 Z+Zk |                    |
|         | geometrie                          |         |          |                    |
| NOPT046 | Diskrétní a spojitá optimalizace   | 5       |          | 2/2 Z+Zk           |
| NMAI062 | Algebra 1                          | 5       | 2/2 Z+Zk |                    |
| NMAI076 | Algebra 2                          | 4       |          | 2/1  Z+Zk          |
| NMAI056 | Matematická analýza 3              | 5       |          | 2/2 Z+Zk           |
| NMAI042 | Numerická matematika               | 5       |          | 2/2 Z+Zk           |
| NMAI073 | Pravděpodobnost a statistika 2     | 5       | 2/2 Z+Zk |                    |
| NAIL063 | Teorie množin                      | 3       |          | $2/0 \mathrm{~Zk}$ |
| NAIL124 | Cvičení z teorie množin            | 3       |          | $0/2  \mathrm{Z}$  |
| NDMI100 | Úvod do kryptografie               | 3       |          | $2/0 \mathrm{~Zk}$ |

# Povinně volitelné předměty – skupina 2

Podmínkou pro přihlášení ke státní závěrečné zkoušce je získání 5 kreditů za předměty z této skupiny (tzn. je třeba splnit alespoň jeden předmět z této skupiny).

| Kód     | Název                      | Kredity | ZS       | LS |
|---------|----------------------------|---------|----------|----|
| NPRG041 | Programování v C++         | 5       | 2/2 Z+Zk | _  |
| NPRG013 | Programování v jazyce Java | 5       | 2/2 Z+Zk |    |
| NPRG035 | Programování v jazyce C#   | 5       | 2/2 Z+Zk |    |

# Povinně volitelné předměty – skupina 3

Podmínkou pro přihlášení ke státní závěrečné zkoušce je získání alespoň 45 kreditů za povinně volitelné předměty všech tří skupin. Samostatný limit pro třetí skupinu není.

| Kód     | Název                              | Kredity | ZS       | LS       |
|---------|------------------------------------|---------|----------|----------|
| NPFL129 | Úvod do strojového učení           | 5       | 2/2 Z+Zk | _        |
|         | v Pythonu                          |         |          |          |
| NPFL054 | Úvod do strojového učení v systému | 5       |          | 2/2 Z+Zk |
|         | R                                  |         |          |          |

| NPGR035 Strojové učení v počítačovém vidění | 5                    | 2/2 Z+Zk              |                    |
|---------------------------------------------|----------------------|-----------------------|--------------------|
| NAIL120 Úvod do umělé inteligence           | 5                    | <u> </u>              | 2/2 Z+Zk           |
| NPGR003 Základy počítačové grafiky          | 5                    | 2/2 Z+Zk              |                    |
| NPGR002 Digitální zpracování obrazu         | $\overset{\circ}{4}$ | 3/0  Zk               | _                  |
| NPGR038 Základy vývoje počítačových her     | 5                    |                       | 2/2 Z+Zk           |
| NPFL124 Zpracování přirozeného jazyka       | 4                    |                       | 2/1  Z+Zk          |
| NPFL012 Úvod do počítačové lingvistiky      | 3                    | $2/0 \mathrm{Zk}$     |                    |
| NSWI200 Operační systémy                    | 5                    | $2^{'}\!\!/2~{ m KZ}$ |                    |
| NPRG036 Datové formáty                      | 5                    | 2/2  Z+Zk             |                    |
| NSWI090 Počítačové sítě                     | 3                    | <u></u>               | $2/0 \mathrm{~Zk}$ |
| NSWI143 Architektura počítačů               | 3                    |                       | $2/0 \mathrm{~Zk}$ |
| NDBI007 Principy organizace dat             | 4                    | 2/1  Z+Zk             |                    |
| NDBI040 Moderní databázové systémy          | 5                    |                       | 2/2 Z+Zk           |
| NSWI098 Principy překladačů                 | 6                    | 2/2  KZ               | <u>.</u>           |
| NPRG042 Programování v paralelním           | 6                    |                       | 2/2  KZ            |
| prostředí                                   |                      |                       |                    |
| NSWI142 Programování webových aplikací      | 5                    | 2/2 Z+Zk              |                    |
| NPRG054 Vývoj vysoce výkonného software     | 6                    |                       | $2/2~\mathrm{KZ}$  |
| NPRG051 Pokročilé programování v C++        | 5                    | _                     | 2/2 Z+Zk           |
| NPRG021 Pokročilé programování v jazyce     | 5                    |                       | 2/2 Z+Zk           |
| Java                                        |                      |                       | •                  |
| NPRG038 Pokročilé programování v jazyce     | 5                    |                       | 2/2 Z+Zk           |
| C#                                          |                      |                       | ,                  |
|                                             |                      |                       |                    |

# Doporučený průběh studia

Doporučený průběh studia zahrnuje všechny povinné předměty a některé další povinně volitelné nebo volitelné předměty. Posluchač si ho musí sám doplnit dalšími povinně volitelnými a volitelnými předměty podle vlastního výběru. Povinné předměty jsou v tabulkách doporučeného průběhu studia vyznačeny tučně, povinně volitelné běžným písmem a volitelné kurzívou.

# 1. rok studia

Společné pro všechny specializace, viz předchozí část.

# 2. rok studia

| Název                            | Kredity                                                                                                                                                                                                                                                  | ZS                                                                                                                                                                                                                                                           | LS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Algoritmy a datové struktury 2   | 5                                                                                                                                                                                                                                                        | 2/2 Z+Zk                                                                                                                                                                                                                                                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Výroková a predikátová logika    | 5                                                                                                                                                                                                                                                        | 2/2 Z+Zk                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Matematická analýza 2            | 5                                                                                                                                                                                                                                                        | 2/2 Z+Zk                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Kombinatorika a grafy 1          | 5                                                                                                                                                                                                                                                        | 2/2 Z+Zk                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Programování v jazyce            | 5                                                                                                                                                                                                                                                        | 2/2 Z+Zk                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Java/C++/C#                      |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Anglický jazyk pro středně       | 1                                                                                                                                                                                                                                                        | $0/2 \mathrm{~Z}$                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| pokročilé III <sup>1</sup>       |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Tělesná výchova III <sup>3</sup> | 1                                                                                                                                                                                                                                                        | $0/2 \mathrm{~Z}$                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Automaty a gramatiky             | 5                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                              | 2/2 Z+Zk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Neprocedurální programování      | 5                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                              | 2/2 Z+Zk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                  | Algoritmy a datové struktury 2 Výroková a predikátová logika Matematická analýza 2 Kombinatorika a grafy 1 Programování v jazyce Java/C++/C# Anglický jazyk pro středně pokročilé III <sup>1</sup> Tělesná výchova III <sup>3</sup> Automaty a gramatiky | Algoritmy a datové struktury 2 5 Výroková a predikátová logika 5 Matematická analýza 2 5 Kombinatorika a grafy 1 5 Programování v jazyce 5 Java/ $C++/C\#$ Anglický jazyk pro středně 1 pokročilé III $^1$ Tělesná výchova III $^3$ 1 Automaty a gramatiky 5 | Algoritmy a datové struktury 2 5 $2/2$ Z+Zk Výroková a predikátová logika 5 $2/2$ Z+Zk Matematická analýza 2 5 $2/2$ Z+Zk Kombinatorika a grafy 1 5 $2/2$ Z+Zk Programování v jazyce 5 $2/2$ Z+Zk Java/C++/C# 1 $0/2$ Z $0/2$ Z+Zk $0/2$ Z $0/2$ Z+Zk $0/2$ Z $0/2$ Z+Zk $0/2$ Z $0/2$ |

| NOPT048       | Lineární programování               | 5 |  | 2/2  Z+Zk          |
|---------------|-------------------------------------|---|--|--------------------|
|               | a kombinatorická optimalizace       |   |  | ,                  |
| NMAI059       | Pravděpodobnost a statistika 1      | 5 |  | 2/2 Z+Zk           |
| NPRG045       | Ročníkový projekt                   | 4 |  | $0/1 \mathrm{Z}$   |
| NJAZ090       | Anglický jazyk pro středně          | 1 |  | $0/2 \mathrm{~Z}$  |
|               | pokročilé IV <sup>1</sup>           |   |  |                    |
| NJAZ091       | Anglický jazyk — zkouška pro        | 1 |  | $0/0 \mathrm{~Zk}$ |
|               | bakaláře <sup>2</sup>               |   |  | ,                  |
| NTVY017       | Tělesná výchova IV <sup>3</sup>     | 1 |  | $0/2 \mathrm{~Z}$  |
|               | Povinně volitelný předmět skupiny 1 | 5 |  | 2/2  Z+Zk          |
|               | Povinně volitelné předměty          |   |  | ,                  |
|               | Volitelné předměty                  |   |  |                    |
| 3. rok studia |                                     |   |  |                    |

| Kód     | Název                      | Kredity | ZS       | LS                |
|---------|----------------------------|---------|----------|-------------------|
| NDBI025 | Databázové systémy         | 5       | 2/2 Z+Zk | _                 |
| NSZZ031 | Vypracování a konzultace   | 6       |          | $0/4 \mathrm{~Z}$ |
|         | bakalářské práce           |         |          |                   |
|         | Povinně volitelné předměty | 35      |          |                   |
|         | Volitelné předměty         | 14      |          |                   |

 $<sup>^{1}</sup>$  Výuka anglického jazyka NJAZ070, NJAZ072, NJAZ074, NJAZ090 v rozsahu 0/2 v každém semestru je určena pro středně pokročilé a pokročilé. Pro začátečníky a mírně pokročilé jsou určeny předměty NJAZ071,  $\rm NJAZ073,\;NJAZ075,\;NJAZ089\;s$ rozsahem výuky0/4v každém semestru.

## Doporučené povinně volitelné předměty

Pro přípravu ke státním zkouškám, jakož i pro další studium informatiky, doporučujeme zejména následující předměty.

| Kód     | Název                                        | Kredity | ZS                | LS       |
|---------|----------------------------------------------|---------|-------------------|----------|
| NOPT046 | Diskrétní a spojitá optimalizace             | 5       |                   | 2/2 Z+Zk |
| NDMI084 | Úvod do aproximačních                        | 5       | 2/1 Z+Zk          |          |
|         | a pravděpodobnostních algoritmů              |         |                   |          |
| NDMI010 | Grafové algoritmy                            | 3       | $2/0 \mathrm{Zk}$ |          |
| NDMI009 | Základy kombinatorické a výpočetní geometrie | 5       | 2/2 Z+Zk          | _        |
| NDMI012 | Kombinatorika a grafy 2                      | 5       | _                 | 2/2 Z+Zk |
| NAIL063 | Teorie množin                                | 3       |                   | 2/0 Zk   |
| NMAI062 | Algebra 1                                    | 5       | 2/2 Z+Zk          |          |

## Požadavky znalostí ke státní závěrečné zkoušce

V první části studijních plánů programu jsou popsány okruhy státní zkoušky společné pro všechny specializace. Studenti specializace Obecná informatika budou navíc zkoušení podle rozpisu níže z témat 1.-3. a ze dvou témat vybraných z 4.-7. Výběr těchto

 $<sup>^2</sup>$ Zkoušku z anglického jazyka NJAZ091 je možné absolvovat v zimním nebo v letním semestru.

 $<sup>^3</sup>$  Místo jednoho z předmětů NTVY<br/>014, NTVY015, NTVY016 a NTVY017 je možné si zapsat letní výcvikový kurz NTVY018 nebo zimní výcvikový kurz NTVY019. Tyto kurzy může student absolvovat kdykoli v průběhu bakalářského studia.

dvou témat student oznámí při přihlášení ke státní zkoušce. Pro každou oblast je uveden orientační přehled témat a předměty v rámci specializace, které danou oblast pokrývají. V případě tématického překryvu s požadavky ze společné části závěrečné zkoušky se v rámci specializace očekává hlubší pochopení problematiky. Detailnější přehled požadavků odrážející požadovanou hloubku znalostí bude k dispozici v elektronické podobě v dostatečném předstihu před konáním státní závěrečné zkoušky.

## 1. Základy sítí

Taxonomie počítačových sítí. Architektura ISO/OSI. Přehled síťového modelu TCP/IP. Směrování. Koncept adresy, portu, socketu. Architektura klient/server. Základy fungování protokolů HTTP, FTP a SMTP.

## Související předměty:

NSWI141 Úvod do počítačových sítí

#### 2. Kombinatorika

Vytvořující funkce. Odhady faktoriálů a kombinačních čísel. Ramseyovy věty. Samoopravné kódy.

## Související předměty:

- NDMI011 Kombinatorika a grafy 1
- NDMI012 Kombinatorika a grafy 2

## 3. Diferenciální a integrální počet ve více rozměrech

Riemannův integrál. Extrémy funkcí více proměnných. Metrický prostor, otevřené a uzavřené množiny, kompaktnost.

## Související předměty:

– NMAI055 Matematická analýza 2

#### 4. Optimalizace

Mnohostěny, Minkowského-Weylova věta. Základy lineárního programování, věty o dualitě, metody řešení. Edmondsův algoritmus. Celočíselné programování. Aproximační algoritmy pro kombinatorické problémy (splnitelnost, nezávislé množiny, množinové pokrytí, rozvrhování). Použití lineárního programování pro aproximační algoritmy. Využití pravděpodobnosti při návrhu algoritmů.

### Související předměty:

- NOPT048 Lineární programování a kombinatorická optimalizace
- NOPT046 Diskrétní a spojitá optimalizace

## 5. Pokročilé algoritmy a datové struktury

Výpočetní model RAM. Dynamické programování. Komponenty silné souvislosti orientovaných grafů. Maximální toky: algoritmy, aplikace. Toky a cesty v celočíselně ohodnocených grafech. Vyhledávání v textu. Diskrétní Fourierova transformace a její aplikace. Aproximační algoritmy a schémata. Paralelní algoritmy v hradlových a komparátorových sítích.

## Související předměty:

- NTIN060 Algoritmy a datové struktury 1
- NTIN061 Algoritmy a datové struktury 2
- NDMI010 Grafové algoritmy

#### 6. Geometrie

Základní věty o konvexních množinách (Hellyho, Radonova, o oddělování). Minkowského věta o mřížkách. Konvexní mnohostěny (zákadní vlastnosti, V-mnohostěny, H-mnohostěny, kombinatorická složitost). Geometrická dualita. Voroného diagramy, arrangementy (komplexy) nadrovin, incidence bodů a přímek, základní algoritmy výpočetní geometrie (konstrukce arrangementu přímek v rovině, konstrukce konvexního obalu v rovině).

## Související předměty:

– NDMI009 Základy kombinatorické a výpočetní geometrie

#### 7. Pokročilá diskrétní matematika

Barvení grafů (Brooksova a Vizingova věta). Tutteova věta. Extremální kombinatorika (Turánova věta, Erdös-Ko-Radova věta). Kreslení grafů na plochách. Množiny a zobrazení. Subvalence a ekvivalence množin. Dobré uspořádání. Axiom výběru (Zermelova věta, Zornovo lemma).

## Související předměty:

- NDMI012 Kombinatorika a grafy 2
- NAIL063 Teorie množin

## 2. Programování a vývoj software

Garantující pracoviště: Katedra softwarového inženýrství

Koordinátor specializace: RNDr. Filip Zavoral, Ph.D.

Specializace Programování a vývoj software je zaměřena na principy, technologie, jazyky a nástroje využitelné v oblasti návrhu, vývoje a údržby softwarových systémů. Výuka zahrnuje solidní teoretické základy informatiky, principy fungování počítačů a operačních systémů, programovací jazyky, moderní paralelní, mobilní a internetové technologie i metody softwarového inženýrství.

## Společné povinné předměty programu Informatika

Povinné předměty společné pro všechny specializace jsou uvedeny v předchozí části.

### Povinné předměty specializace

| Kód     | Název                       | Kredity | ZS       | LS                 |
|---------|-----------------------------|---------|----------|--------------------|
| NSWI200 | Operační systémy            | 5       | 2/2  KZ  |                    |
| NPRG041 | Programování v C++          | 5       | 2/2 Z+Zk |                    |
| NSWI142 | Programování webových       | 5       | 2/2 Z+Zk |                    |
|         | aplikací                    |         |          |                    |
| NSWI154 | Nástroje pro vývoj software | 2       |          | $0/2 \mathrm{~Z}$  |
| NSWI041 | Úvod do softwarového        | 5       |          | 2/2 Z+Zk           |
|         | inženýrství                 |         |          |                    |
| NPRG043 | Doporučené postupy          | 5       | _        | $2/2 \mathrm{~KZ}$ |
|         | v programování              |         |          | ,                  |

### Povinně volitelné předměty

Podmínkou pro přihlášení ke státní závěrečné zkoušce je získání celkem 37 kreditů za všechny povinně volitelné předměty.

## Povinně volitelné předměty – skupina 1

Podmínkou pro přihlášení ke státní závěrečné zkoušce je získání 5 kreditů za předměty z této skupiny.

| Kód     | Název                      | Kredity | ZS                                          | LS |
|---------|----------------------------|---------|---------------------------------------------|----|
|         | Programování v jazyce Java |         | <b>-</b> / <b>- 2</b>   <b>2</b>   <b>3</b> | _  |
| NPRG035 | Programování v jazyce C#   | 5       | 2/2 Z+Zk                                    |    |

## Povinně volitelné předměty – skupina 2

Podmínkou pro přihlášení ke státní závěrečné zkoušce je získání 10 kreditů za předměty z této skupiny.

| Kód     | Název                           | Kredity | ZS                | LS       |
|---------|---------------------------------|---------|-------------------|----------|
| NPRG051 | Pokročilé programování v C++    | 5       | _                 | 2/2 Z+Zk |
| NPRG021 | Pokročilé programování v jazyce | 5       |                   | 2/2 Z+Zk |
|         | Java                            |         |                   |          |
| NPRG038 | Pokročilé programování v jazyce | 5       |                   | 2/2 Z+Zk |
|         | C#                              |         |                   |          |
| NSWI153 | Pokročilé programování webových | 5       |                   | 2/2 Z+Zk |
|         | aplikací                        |         |                   |          |
| NPRG056 | Programování mobilních zařízení | 3       | $0/2 \mathrm{~Z}$ |          |
|         |                                 |         |                   |          |

## Povinně volitelné předměty – skupina 3

Podmínkou pro přihlášení ke státní závěrečné zkoušce je získání 10 kreditů za předměty z této skupiny.

| Kód     | Název                             | Kredity | ZS       | LS                 |
|---------|-----------------------------------|---------|----------|--------------------|
| NPRG024 | Návrhové vzory                    | 3       | _        | $0/2~{ m KZ}$      |
| NSWI143 | Architektura počítačů             | 3       |          | $2/0 \mathrm{~Zk}$ |
| NPRG036 | Datové formáty                    | 5       | 2/2 Z+Zk |                    |
| NSWI130 | Architektury softwarových systémů | 5       | 2/2 Z+Zk |                    |
| NSWI090 | Počítačové sítě                   | 3       |          | $2/0 \mathrm{~Zk}$ |

## Povinně volitelné předměty – skupina 4

Podmínkou pro přihlášení ke státní závěrečné zkoušce je získání 6 kreditů za předměty z této skupiny.

| Kód     | Název                           | Kredity | ZS      | LS      |
|---------|---------------------------------|---------|---------|---------|
| NSWI098 | Principy překladačů             | 6       | 2/2  KZ | _       |
| NPRG054 | Vývoj vysoce výkonného software | 6       |         | 2/2  KZ |
| NPRG042 | Programování v paralelním       | 6       |         | 2/2  KZ |
|         | prostředí                       |         |         |         |

## Povinně volitelné předměty – skupina 5

Samostatný limit pro skupinu 5 není stanoven. Z této skupiny tedy není nutné absolvovat žádný předmět, pokud je splněn celkový počet 37 kreditů za absolvované předměty z předchozích skupin.

| Kód     | Název                           | Kredity | ZS                | LS                |
|---------|---------------------------------|---------|-------------------|-------------------|
| NPGR038 | Základy vývoje počítačových her | 5       |                   | 2/2 Z+Zk          |
| NPGR003 | Základy počítačové grafiky      | 5       | 2/2 Z+Zk          | <u> </u>          |
| NDBI007 | Principy organizace dat         | 4       | 2/1  Z+Zk         |                   |
| NDBI040 | Moderní databázové systémy      | 5       | <u> </u>          | 2/2 Z+Zk          |
| NSWI162 | Sémantika programů              | 1       | $0/1 \mathrm{~Z}$ |                   |
| NDMI100 | Úvod do kryptografie            | 3       | <u> </u>          | $2/0 \mathrm{Zk}$ |
| NAIL120 | Úvod do umělé inteligence       | 5       |                   | 2/2 Z+Zk          |
| NPFL129 | Úvod do strojového učení        | 5       | 2/2 Z+Zk          | <u> </u>          |
|         | v Pythonu                       |         |                   |                   |
| NPRG005 | Neprocedurální programování     | 5       |                   | 2/2 Z+Zk          |
| NMAI055 | Matematická analýza 2           | 5       | 2/2 Z+Zk          | <del></del>       |

## Doporučený průběh studia

Doporučený průběh studia zahrnuje všechny povinné předměty a některé další povinně volitelné nebo volitelné předměty. Posluchač si ho musí sám doplnit dalšími povinně volitelnými a volitelnými předměty podle vlastního výběru. Povinné předměty jsou v tabulkách doporučeného průběhu studia vyznačeny tučně, povinně volitelné běžným písmem a volitelné kurzívou.

## 1. rok studia

Společné pro všechny specializace, viz předchozí část.

## 2. rok studia

| Kód     | Název                                                    | Kredity | ZS                | LS                |
|---------|----------------------------------------------------------|---------|-------------------|-------------------|
|         | Programování v jazyce<br>Java/C++/C#                     | 5       | 2/2 Z+Zk          |                   |
| NDBI025 | Databázové systémy                                       | 5       | 2/2 Z+Zk          |                   |
| NSWI142 | Programování webových<br>aplikací                        | 5       | 2/2 Z+Zk          |                   |
| NTIN061 | Algoritmy a datové struktury 2                           | 5       | 2/2 Z+Zk          |                   |
| NAIL062 | Výroková a predikátová logika                            | 5       | 2/2 Z+Zk          |                   |
| NDMI011 | Kombinatorika a grafy 1                                  | 5       | 2/2 Z+Zk          |                   |
| NJAZ074 | Anglický jazyk pro středně<br>pokročilé III <sup>1</sup> | 1       | 0/2 Z             |                   |
| NTVY016 | Tělesná výchova III <sup>3</sup>                         | 1       | $0/2 \mathrm{~Z}$ |                   |
|         | Pokročilé programování v jazyce Java/C++/C#              | 5       | _                 | 2/2 Z+Zk          |
| NTIN071 | Automaty a gramatiky                                     | 5       |                   | 2/2 Z+Zk          |
| NMAI059 | Pravděpodobnost a statistika 1                           | 5       |                   | 2/2 Z+Zk          |
| NSWI154 | Nástroje pro vývoj software                              | 2       |                   | $0/2 \mathrm{~Z}$ |
| NPRG043 | Doporučené postupy<br>v programování <sup>5</sup>        | 5       | _                 | 2/2  KZ           |
| NPRG045 | Ročníkový projekt                                        | 4       |                   | $0/1 \mathrm{~Z}$ |
| NJAZ090 | Anglický jazyk pro středně<br>pokročilé IV <sup>1</sup>  | 1       | _                 | $0/2 \mathrm{~Z}$ |

| NJAZ091    | Anglický jazyk — zkouška pro<br>bakaláře <sup>2</sup>                                | 1 |   | $0/0~{ m Zk}$    |
|------------|--------------------------------------------------------------------------------------|---|---|------------------|
| NTVY017    | <b>Tělesná výchova IV</b> <sup>3</sup> Povinně volitelné předměty Volitelné předměty | 1 | _ | $0/2~\mathrm{Z}$ |
| 2 nole stu | dia                                                                                  |   |   |                  |

#### 3. rok studia Kredity ZS Kód Název LS NSWI200 Operační systémy 5 2/2 KZProgramování v jazyce 5 2/2 Z+Zk Java/C++/C# 4 Pokročilé programování v jazyce 2/2 Z+Zk 5 $Java/C++/C\#^4$ NSWI041 Úvod do softwarového 5 2/2 Z+Zkinženýrství <sup>5</sup> NSWI098 Principy překladačů <sup>6</sup> 6 2/2 KZNPRG054 Vývoj vysoce výkonného 2/2 KZsoftware $^6$ NPRG042 Programování v paralelním 2/2 KZprostředí <sup>6</sup> NSZZ031 Vypracování a konzultace 0/4 Zbakalářské práce Povinně volitelné předměty Volitelné předměty

#### Požadavky znalostí ke státní závěrečné zkoušce

## 1. Architektura počítačů, operačních systémů a sítí

Všechny body dle zkušebního okruhu "4. Architektura počítačů a operačních systémů" ve společné části a dále: Organizace paměti za běhu programů. Paměťová reprezentace datových struktur. Cache a její vliv na výkonnost. Virtuální paměť. Provádění instrukcí procesorem. Procesy a vlákna, přepínání kontextu. Multicore, multisocket. Síťová, linková a transportní vrstva. Směrování, VLAN, NAT. Adresování v TCP/IP.

## Související předměty

- NSWI120 Principy počítačů
- NSWI170 Počítačové systémy

 $<sup>^1</sup>$  Výuka anglického jazyka NJAZ070, NJAZ072, NJAZ074, NJAZ090 v rozsahu 0/2 v každém semestru je určena pro středně pokročilé a pokročilé. Pro začátečníky a mírně pokročilé jsou určeny předměty NJAZ071, NJAZ073, NJAZ075, NJAZ089 s rozsahem výuky 0/4 v každém semestru.

<sup>&</sup>lt;sup>2</sup> Zkoušku z anglického jazyka NJAZ091 je možné absolvovat v zimním nebo v letním semestru.

 $<sup>^3</sup>$  Místo jednoho z předmětů NTVY014, NTVY015, NTVY016 a NTVY017 je možné si zapsat letní výcvikový kurz NTVY018 nebo zimní výcvikový kurz NTVY019. Tyto kurzy může student absolvovat kdykoli v průběhu bakalářského studia.

 $<sup>^4</sup>$  Studenti si ve 3. ročníku typicky zapisují ten z vybraných programovacích jazyků, který neabsolvovali v 2. ročníku.

 $<sup>^{5}</sup>$  Předmět lze s ohledem na další studijní povinnosti absolvovat i ve3.ročníku.

 $<sup>^6</sup>$  Pro splnění předepsaného počtu kreditů je nutné absolvovat alespoň jeden z těchto předmětů. Předměty je vhodné kvůli návaznostem absolvovat ve 3. ročníku.

- NSWI143 Architektura počítačů
- NSWI090 Počítačové sítě

## 2. Programovací jazyky

Všechny body dle zkušebního okruhu "3. Programovací jazyky" ve společné části a dále: Paralelní programování a synchronizace. Návrhové vzory. Komponenty, dependency injection. Reflexe a introspekce. Statický vs. dynamický polymorfismus, generické programování, typová dedukce. Principy dynamických jazyků. Principy WWW, HTTP, HTTPS, URL. Statické webové stránky. Principy webových aplikací, programování na straně klienta. API webových aplikací, bezpečnost.

## Související předměty

- NSWI170 Počítačové systémy
- Pokročilé programování v jazyce Java/C++/C#
- NSWI142 Programování webových aplikací
- NPRG024 Návrhové vzory

## 3. Softwarové inženýrství

Procesy vývoje software, analýza požadavků, testování a údržba software. Návrh architektury software. Správa verzí. Sestavování. Měření výkonnosti. Návrh API, tříd a metod, objektový návrh. Základy bezpečnosti webových aplikací.

## Související předměty

- NSWI041 Úvod do softwarového inženýrství
- NPRG043 Doporučené postupy v programování
- NSWI154 Nástroje pro vývoj software
- NSWI130 Architektury softwarových systémů

## 4. Databáze

Architektury databázových systémů. Konceptuální, logická a fyzická úroveň pohledů na data. Algoritmy návrhu schémat relací, normální formy, referenční integrita. Transakční zpracování. Přehled SQL. Základní dotazy, seskupování dat a agregace, spojování tabulek, vnořené dotazy. Uložené procedury, triggery, funkce. Moderní databázové systémy, NoSQL databáze, grafové databáze.

## Související předměty

- NDBI025 Databázové systémy
- NDBI007 Principy organizace dat
- NDBI040 Moderní databázové systémy

## 3. Systémové programování

Garantující pracoviště: Katedra distribuovaných a spolehlivých systémů Koordinátor specializace: doc. Ing. Lubomír Bulej, Ph.D.

Specializace Systémové programování je zaměřena na pochopení principů a rozvoj znalostí a dovedností potřebných pro návrh, vývoj a údržbu efektivního systémového software, který poskytuje základní stavební prvky pro software aplikační. Tematické okruhy proto zahrnují architektury počítačů, operační systémy, a paralelní a distribuované systémy. Důraz je kladen také na hlubší znalost moderních programovacích jazyků

používaných pro vývoj systémového software a schopnost používat moderní vývojové nástroje a postupy.

## Společné povinné předměty programu Informatika

Povinné předměty společné pro všechny specializace jsou uvedeny v předchozí části.

## Povinné předměty specializace

| Kód     | Název                     | Kredity | ZS                 | LS                 |
|---------|---------------------------|---------|--------------------|--------------------|
| NSWI200 | Operační systémy          | 5       | 2/2  KZ            |                    |
| NPRG041 | Programování v C++        | 5       | 2/2 Z+Zk           |                    |
| NSWI143 | Architektura počítačů     | 3       |                    | $2/0 \mathrm{~Zk}$ |
| NSWI090 | Počítačové sítě           | 3       |                    | $2/0 \mathrm{Zk}$  |
|         | Principy překladačů       | 6       | $2/2 \mathrm{~KZ}$ |                    |
|         | Sémantika programů        | 1       | $0/1 \mathrm{~Z}$  | _                  |
| NPRG042 | Programování v paralelním | 6       | _                  | $2/2~\mathrm{KZ}$  |
|         | prostředí                 |         |                    |                    |
| NDMI100 | Úvod do kryptografie      | 3       |                    | $2/0 \mathrm{Zk}$  |

## Povinně volitelné předměty

Podmínkou pro přihlášení ke státní závěrečné zkoušce je získání celkem 27 kreditů za všechny povinně volitelné předměty.

## Povinně volitelné předměty – skupina 1

Podmínkou pro přihlášení ke státní závěrečné zkoušce je získání 5 kreditů za předměty z této skupiny.

| Kód     | Název                      | Kredity | ZS       | LS |
|---------|----------------------------|---------|----------|----|
| NPRG035 | Programování v jazyce C#   | 5       | 2/2 Z+Zk | _  |
| NPRG013 | Programování v jazyce Java | 5       | 2/2 Z+Zk |    |

## Povinně volitelné předměty – skupina 2

Podmínkou pro přihlášení ke státní závěrečné zkoušce je získání 5 kreditů za předměty z této skupiny.

| Kód     | Název                                   | Kredity | ZS | LS       |
|---------|-----------------------------------------|---------|----|----------|
|         | Pokročilé programování v C++            | 5       | _  | 2/2 Z+Zk |
| NPRG038 | Pokročilé programování v jazyce<br>C#   | 5       | _  | 2/2 Z+Zk |
| NPRG021 | Pokročilé programování v jazyce<br>Java | 5       |    | 2/2 Z+Zk |

## Povinně volitelné předměty – skupina 3

Podmínkou pro přihlášení ke státní závěrečné zkoušce je získání 7 kreditů za předměty z této skupiny.

| Kód | Název                                             | Kredity | ZS | LS                               |
|-----|---------------------------------------------------|---------|----|----------------------------------|
|     | Nástroje pro vývoj software<br>Doporučené postupy | 2<br>5  | _  | $0/2 \text{ Z} \ 2/2 \text{ KZ}$ |
|     | v programování                                    |         |    |                                  |

|         | Návrhové vzory<br>Úvod do softwarového inženýrství | 3<br>5 | _        | $0/2~\mathrm{KZ}$ $2/2~\mathrm{Z+Zk}$ |
|---------|----------------------------------------------------|--------|----------|---------------------------------------|
|         | Softwarové inženýrství pro spolehlivé              | 3      |          | $0/2 \mathrm{~Z}$                     |
|         | systémy                                            |        |          |                                       |
| NSWI130 | Architektury softwarových systémů                  | 5      | 2/2 Z+Zk |                                       |

## Povinně volitelné předměty – skupina 4

Podmínkou pro přihlášení ke státní závěrečné zkoušce je získání 10 kreditů za předměty z této skupiny.

| Kód     | Název                               | Kredity | ZS          | LS       |
|---------|-------------------------------------|---------|-------------|----------|
| NPRG054 | Vývoj vysoce výkonného software     | 6       | _           | 2/2  KZ  |
| NMAI055 | Matematická analýza 2               | 5       | 2/2 Z+Zk    |          |
| NPRG005 | Neprocedurální programování         | 5       |             | 2/2 Z+Zk |
| NPFL054 | Úvod do strojového učení v systému  | 5       |             | 2/2 Z+Zk |
|         | R <sup>1</sup>                      |         |             |          |
| NPFL129 | Úvod do strojového učení            | 5       | 2/2 Z+Zk    |          |
|         | v Pythonu <sup>1</sup>              |         | •           |          |
| NAIL120 | Úvod do umělé inteligence           | 5       | <del></del> | 2/2 Z+Zk |
| NPGR035 | Strojové učení v počítačovém vidění | 5       | 2/2 Z+Zk    | <u> </u> |
| NPGR002 | Digitální zpracování obrazu         | 4       | 3/0  Zk     |          |
| NPGR036 | Počítačové vidění                   | 5       |             | 2/2 Z+Zk |
| NPGR003 | Základy počítačové grafiky          | 5       | 2/2 Z+Zk    |          |
| NPGR019 | Realtime grafika na GPU             | 5       |             | 2/2 Z+Zk |
| NAIL028 | Úvod do robotiky                    | 5       | 2/2 Z+Zk    |          |
| NPRG037 | Programování mikrokontrolerů        | 5       | 2/2 Z+Zk    |          |
| NPGR038 | Základy vývoje počítačových her     | 5       | _           | 2/2 Z+Zk |

 $<sup>^{1}\,</sup>$  Kurzy NPFL129 a NPFL054 jsou neslučitelné a student si vybírá jeden z nich.

## Doporučený průběh studia

Doporučený průběh studia zahrnuje všechny povinné předměty a některé další povinně volitelné nebo volitelné předměty. Posluchač si ho musí sám doplnit dalšími povinně volitelnými a volitelnými předměty podle vlastního výběru. Povinné předměty jsou v tabulkách doporučeného průběhu studia vyznačeny tučně, povinně volitelné běžným písmem a volitelné kurzívou.

## 1. rok studia

Doporučený průběh je společný pro všechny specializace, viz předchozí část.

## 2. rok studia

| Kód     | Název                          | Kredity | ZS                | LS |
|---------|--------------------------------|---------|-------------------|----|
| NTIN061 | Algoritmy a datové struktury 2 | 5       | 2/2 Z+Zk          |    |
| NAIL062 | Výroková a predikátová logika  | 5       | 2/2 Z+Zk          |    |
| NSWI200 | Operační systémy               | 5       | 2/2  KZ           |    |
| NPRG041 | Programování v C++             | 5       | 2/2 Z+Zk          |    |
|         | Programování v jazyce C#/Java  | 5       | 2/2 Z+Zk          |    |
| NJAZ074 | Anglický jazyk pro středně     | 1       | $0/2 \mathrm{~Z}$ |    |
|         | pokročilé III <sup>1</sup>     |         |                   |    |

| NTVY016 | Tělesná výchova III <sup>3</sup> | 1 | $0/2 \mathrm{~Z}$ |                    |
|---------|----------------------------------|---|-------------------|--------------------|
| NTIN071 | Automaty a gramatiky             | 5 | <u>.</u>          | 2/2 Z+Zk           |
| NMAI059 | Pravděpodobnost a statistika 1   | 5 |                   | 2/2 Z+Zk           |
| NSWI090 | Počítačové sítě                  | 3 |                   | $2/0 \mathrm{Zk}$  |
| NSWI143 | Architektura počítačů            | 3 |                   | $2/0 \mathrm{~Zk}$ |
|         | Pokročilé programování v jazyce  | 5 |                   | 2/2 Z+Zk           |
|         | C++/C#/Java                      |   |                   |                    |
| NPRG045 | Ročníkový projekt                | 4 |                   | $0/1 \mathrm{~Z}$  |
| NJAZ090 | Anglický jazyk pro středně       | 1 |                   | $0/2 \mathrm{~Z}$  |
|         | pokročilé IV <sup>1</sup>        |   |                   |                    |
| NJAZ091 | Anglický jazyk — zkouška pro     | 1 |                   | $0/0 \mathrm{Zk}$  |
|         | bakaláře <sup>2</sup>            |   |                   | ·                  |
| NTVY017 | Tělesná výchova IV <sup>3</sup>  | 1 |                   | $0/2 \mathrm{~Z}$  |
|         | Povinně volitelné předměty       |   |                   | ,                  |
|         | Volitelné předměty               |   |                   |                    |

#### 3. rok studia

| Kód     | Název                      | Kredity | ZS                | LS                |
|---------|----------------------------|---------|-------------------|-------------------|
| NDMI011 | Kombinatorika a grafy 1    | 5       | 2/2 Z+Zk          |                   |
| NDBI025 | Databázové systémy         | 5       | 2/2 Z+Zk          |                   |
| NSWI098 | Principy překladačů        | 6       | 2/2  KZ           |                   |
| NSWI162 | Sémantika programů         | 1       | $0/1 \mathrm{~Z}$ |                   |
| NPRG042 | Programování v paralelním  | 6       |                   | $2/2~\mathrm{KZ}$ |
|         | prostředí                  |         |                   |                   |
| NDMI100 | Úvod do kryptografie       | 3       |                   | $2/0 \mathrm{Zk}$ |
| NSZZ031 | Vypracování a konzultace   | 6       |                   | $0/4 \mathrm{~Z}$ |
|         | bakalářské práce           |         |                   |                   |
|         | Povinně volitelné předměty |         |                   |                   |
|         | Volitelné předměty         |         |                   |                   |

 $<sup>^1</sup>$  Výuka anglického jazyka NJAZ070, NJAZ072, NJAZ074, NJAZ090 v rozsahu 0/2 v každém semestru je určena pro středně pokročilé a pokročilé. Pro začátečníky a mírně pokročilé jsou určeny předměty NJAZ071, NJAZ073, NJAZ075, NJAZ089 s rozsahem výuky 0/4 v každém semestru.

## Požadavky znalostí ke státní závěrečné zkoušce

V první části studijních plánů programu jsou popsány okruhy státní zkoušky společné pro všechny specializace. Studenti specializace Systémové programování budou navíc zkoušeni v rámci tématických oblastí uvedených níže. Pro každou oblast je uveden orientační přehled témat a předměty v rámci specializace, které danou oblast pokrývají. V případě tématického překryvu s požadavky ze společné části závěrečné zkoušky se v rámci specializace očekává hlubší pochopení problematiky. Detailnější přehled požadavků odrážející požadovanou hloubku znalostí bude k dispozici v elektronické podobě v dostatečném předstihu před konáním státní závěrečné zkoušky.

<sup>&</sup>lt;sup>2</sup> Zkoušku z anglického jazyka NJAZ091 je možné absolvovat v zimním nebo v letním semestru.

 $<sup>^3</sup>$  Místo jednoho z předmětů NTVY014, NTVY015, NTVY016 a NTVY017 je možné si zapsat letní výcvikový kurz NTVY018 nebo zimní výcvikový kurz NTVY019. Tyto kurzy může student absolvovat kdykoli v průběhu bakalářského studia.

## 1. Architektura počítačů

Výkonnost počítače a procesoru, metriky a omezení. Zpracování instrukcí procesorem, paralelismus, predikce a spekulace. Architektura paměťového subsystému, architektura cache. Multi-core a multi-socket systémy, koherence cache. Komunikace se zařízeními.

## Související předměty:

- NSWI143 Architektura počítačů

## 2. Operační systémy

Správa procesů a vláken, plánování, komunikace, synchronizace. Správa paměti, stránkování, správa paměti uvnitř procesů, sdílení paměti. Souborové systémy, koncepty a rozhraní, typické diskové struktury. Správa periferií, ovladače zařízení.

## Související předměty:

- NSWI200 Operační systémy

### 3. Počítačové sítě

Linková vrstva, adresace v Ethernetu, VLAN. Síťová vrstva, adresace v IPv4 a IPv6, statické směrování, NAT, IP tunely, VPN. Transportní vrstva, adresace v TCP a UDP, spolehlivost, řízení toku. Aplikační rozhraní a abstrakce pro síťovou komunikaci. Zabezpečení komunikace, autentizace, šifrování.

## Související předměty:

- NSWI090 Počítačové sítě

## 4. Překladače a programovací jazyky

Architektura překladače, AOT a JIT překlad. Vnitřní reprezentace programu. Optimalizace programu překladačem. Generování kódu pro cílový procesor.

## Související předměty:

NSWI098 Principy překladačů

Správa paměti v běhových prostředích, životní cyklus objektů. Polymorfismus, generické programování, typová inference. Významné prvky standardních knihoven a jejich aplikace.

### Související předměty:

Témata jsou pokryta povinnými a povinně volitelnými předměty zaměřenými na programovací jazyky. V rámci specializace je nutné absolvovat minimálně 3 takové předměty:

- NPRG041 Programování v C++
- V rámci PV předmětů skupiny 1: NPRG013 Programování v jazyce Java nebo NPRG035 Programování v jazyce C#.
- V rámci PV předmětů skupiny 2: NPRG051 Pokročilé programování v C++ nebo NPRG021 Pokročilé programování v jazyce Java nebo NPRG038 Pokročilé programování v jazyce C#.

## 5. Návrh a tvorba software

Principy objektového návrhu, návrh API, tříd a metod, návrhové vzory.

## Související předměty:

Téma prostupuje řadou povinných a povinně volitelných předmětů zaměřených na programování. Specificky v tomto případě se očekává doplnění znalostí absolvováním vhodné kombinace PV předmětů ze skupiny 3.

- NPRG043 Doporučené postupy v programování nebo NPRG024 Návrhové vzory
- NSWI041 Úvod do softwarového inženýrství nebo NSWI130 Architektury softwarových systémů nebo NSWI054 Softwarové inženýrství pro spolehlivé systémy

Paralelní programování, paměťový model, atomické operace a neblokující datové struktury.

## Související předměty:

– NPRG042 Programování v paralelním prostředí

Správa verzí, systémy pro sestavování software, nástroje pro testování software.

## Související předměty:

– NSWI154 Nástroje pro vývoj software

V rámci specializace se očekává, že získání potřebných znalostí a dovedností v této oblasti bude primárně výsledkem absolvování předmětů, u kterých je tvorba programů důležitým aspektem hodnocení. Základem jsou povinné a povinně volitelné předměty (skupiny 1 a 2) věnované programovacím jazykům doplněné o vhodný výběr povinně volitelných předmětů ze skupiny 3.

## 4. Webové a datově orientované programování

Garantující pracoviště: Katedra softwarového inženýrství

Koordinátor specializace: Doc. RNDr. Irena Holubová, Ph.D.

Specializace Webové a datově orientované programování nabízí škálu předmětů zaměřených na databázové a webové metody a technologie, analýzu dat, databázovou administraci, programování a vývoj tradičních, webových, databázových a datově intenzivních aplikací. Důraz je kladen na relační i nerelační databáze, analýzu sociálních sítí, webové a multimediální vyhledávače, metody extrakce vlastností z dat. Vedle tohoto profilujícího zaměření nabízí specializace také tradiční informatický základ, který absolventa připraví na navazující magisterské studium informatiky.

## Společné povinné předměty programu Informatika

Povinné předměty společné pro všechny specializace jsou uvedeny v předchozí části.

### Povinné předměty specializace

| Kód     | Název                             | Kredity | ZS       | LS                |
|---------|-----------------------------------|---------|----------|-------------------|
| NSWI142 | Programování webových<br>aplikací | 5       | 2/2 Z+Zk | _                 |
|         | Vývoj databázových aplikací       | 4       | _        | $1/2~\mathrm{KZ}$ |
| NDBI040 | Moderní databázové systémy        | 5       |          | 2/2 Z+Zk          |
| NPRG036 | Datové formáty                    | 5       | 2/2 Z+Zk | _                 |

| NDBI046 | Úvod do datového inženýrství | 5 — | 2/2 Z+Zk |
|---------|------------------------------|-----|----------|
|---------|------------------------------|-----|----------|

## Povinně volitelné předměty

Podmínkou pro přihlášení ke státní závěrečné zkoušce je získání celkem 37 kreditů za všechny povinně volitelné předměty.

## Povinně volitelné předměty – skupina 1

Podmínkou pro přihlášení ke státní závěrečné zkoušce je získání 20 kreditů za předměty z této skupiny.

| Kód     | Název                           | Kredity | ZS       | LS        |
|---------|---------------------------------|---------|----------|-----------|
| NPRG041 | Programování v C++              | 5       | 2/2 Z+Zk |           |
| NPRG013 | Programování v jazyce Java      | 5       | 2/2 Z+Zk |           |
| NPRG035 | Programování v jazyce C#        | 5       | 2/2 Z+Zk |           |
| NPRG051 | Pokročilé programování v C++    | 5       |          | 2/2 Z+Zk  |
| NPRG021 | Pokročilé programování v jazyce | 5       |          | 2/2 Z+Zk  |
|         | Java                            |         |          | ·         |
| NPRG038 | Pokročilé programování v jazyce | 5       | _        | 2/2 Z+Zk  |
|         | C#                              |         |          | ,         |
| NPRG005 | Neprocedurální programování     | 5       |          | 2/2 Z+Zk  |
| NSWI153 | Pokročilé programování webových | 5       |          | 2/2  Z+Zk |
|         | aplikací                        |         |          | ,<br>     |

## Povinně volitelné předměty – skupina 2

Podmínkou pro přihlášení ke státní závěrečné zkoušce je získání 8 kreditů za předměty z této skupiny.

| Kód     | Název                             | Kredity | ZS                | LS                |
|---------|-----------------------------------|---------|-------------------|-------------------|
| NDBI013 | Administrace Oracle               | 2       | _                 | 0/2  Z            |
| NSWI090 | Počítačové sítě                   | 3       |                   | $2/0 \mathrm{Zk}$ |
| NPRG056 | Programování mobilních zařízení   | 3       | $0/2 \mathrm{~Z}$ |                   |
| NDBI038 | Vyhledávání na webu               | 4       |                   | 2/1  Z+Zk         |
| NDBI007 | Principy organizace dat           | 4       | 2/1  Z+Zk         |                   |
| NSWI130 | Architektury softwarových systémů | 5       | 2/2 Z+Zk          |                   |

## Povinně volitelné předměty – skupina 3

Podmínkou pro přihlášení ke státní závěrečné zkoušce je získání 4 kreditů za předměty z této skupiny.

| Kód     | Název                                                     | Kredity | ZS       | LS                |
|---------|-----------------------------------------------------------|---------|----------|-------------------|
| NSWI166 | Úvod do doporučovacích systémů a uživatelských preferencí | 4       | _        | 2/1 Z+Zk          |
| NAIL120 | Úvod do umělé inteligence                                 | 5       |          | 2/2 Z+Zk          |
| NPFL054 | Úvod do strojového učení v systému R                      | 5       |          | 2/2 Z+Zk          |
| NPFL129 | Úvod do strojového učení<br>v Pythonu                     | 5       | 2/2 Z+Zk |                   |
| NAIL121 | Seminář dobývání znalostí                                 | 4       |          | $1/2~\mathrm{KZ}$ |

| 4 | $3/0 \mathrm{~Zk}$ |                                                    |
|---|--------------------|----------------------------------------------------|
| 5 |                    | 2/2 Z+Zk                                           |
| 5 |                    | 2/2 Z+Zk                                           |
| 5 | 2/2 Z+Zk           | <u> </u>                                           |
| 5 | $2/2~\mathrm{KZ}$  |                                                    |
| 5 | 2/2 Z+Zk           |                                                    |
|   | 5<br>5<br>5        | $egin{array}{cccccccccccccccccccccccccccccccccccc$ |

Podmínkou pro přihlášení ke státní závěrečné zkoušce je získání dalších 5 kreditů za libovolné předměty ze skupin 1, 2 a 3.

## Doporučený průběh studia

Doporučený průběh studia zahrnuje všechny povinné předměty a některé další povinně volitelné nebo volitelné předměty. Posluchač si ho musí sám doplnit dalšími povinně volitelnými a volitelnými předměty podle vlastního výběru. Povinné předměty jsou v tabulkách doporučeného průběhu studia vyznačeny tučně, povinně volitelné běžným písmem a volitelné kurzívou.

## 1. rok studia

Společné pro všechny specializace, viz předchozí část.

## 2. rok studia

| Kód        | Název                                                   | Kredity | ZS                | LS                     |
|------------|---------------------------------------------------------|---------|-------------------|------------------------|
|            | Programování v jazyce                                   | 5       | 2/2 Z+Zk          |                        |
|            | Java/C++/C#                                             |         |                   |                        |
| NDBI025    | Databázové systémy                                      | 5       | 2/2 Z+Zk          |                        |
| NSWI142    | Programování webových                                   | 5       | 2/2 Z+Zk          |                        |
|            | aplikací                                                |         |                   |                        |
| NTIN061    | Algoritmy a datové struktury 2                          | 5       | 2/2 Z+Zk          |                        |
| NAIL062    | Výroková a predikátová logika                           | 5       | 2/2 Z+Zk          |                        |
| NDMI011    | Kombinatorika a grafy 1                                 | 5       | 2/2 Z+Zk          |                        |
| NJAZ074    | Anglický jazyk pro středně                              | 1       | $0/2 \mathrm{~Z}$ |                        |
|            | pokročilé III <sup>2</sup>                              |         |                   |                        |
| NTVY016    | Tělesná výchova III <sup>4</sup>                        | 1       | $0/2 \mathrm{~Z}$ |                        |
| NTIN071    | Automaty a gramatiky                                    | 5       |                   | 2/2 Z+Zk               |
| NMAI059    | Pravděpodobnost a statistika 1                          | 5       |                   | 2/2 Z+Zk               |
| NPRG045    | Ročníkový projekt                                       | 4       |                   | $0/1 \mathrm{~Z}$      |
| NJAZ090    | Anglický jazyk pro středně<br>pokročilé IV <sup>2</sup> | 1       |                   | 0/2 Z                  |
| NJAZ091    | Anglický jazyk — zkouška pro                            | 1       | _                 | 0/0 Zk                 |
|            | bakaláře <sup>3</sup>                                   |         |                   |                        |
| NTVY017    | ${f T}$ ělesná výchova ${f IV}$ $^4$                    | 1       |                   | $0/2 \mathrm{~Z}$      |
|            | Povinně volitelné předměty                              |         |                   |                        |
|            | Volitelné předměty                                      |         |                   |                        |
| 3. rok stu | dia                                                     |         |                   |                        |
| Kód        | Název                                                   | Kredity | ZS                | LS                     |
| NDBI026    | Vývoj databázových aplikací                             | 4       |                   | 1/2  KZ                |
|            | Moderní databázové systémy                              | 5       | _                 | $^{\prime}\!\!/2$ Z+Zk |

| NPRG036 | Datové formáty               | 5 | 2/2 Z+Zk |                   |
|---------|------------------------------|---|----------|-------------------|
| NDBI046 | Úvod do datového inženýrství | 5 | <u> </u> | 2/2 Z+Zk          |
| NSZZ031 | Vypracování a konzultace     | 6 |          | $0/4 \mathrm{~Z}$ |
|         | bakalářské práce             |   |          |                   |
|         | Povinně volitelné předměty   |   |          |                   |
|         | Volitelné předměty           |   |          |                   |

 $<sup>^2</sup>$  Výuka anglického jazyka NJAZ070, NJAZ072, NJAZ074, NJAZ090 v rozsahu 0/2 v každém semestru je určena pro středně pokročilé a pokročilé. Pro začátečníky a mírně pokročilé jsou určeny předměty NJAZ071, NJAZ073, NJAZ075, NJAZ089 s rozsahem výuky 0/4 v každém semestru.

## Požadavky znalostí ke státní závěrečné zkoušce

#### 1. Databáze

Architektury databázových systémů. Konceptuální, logická a fyzická úroveň pohledů na data. Konceptuální modelování a návrh schémat relací, normální formy, referenční integrita. Transakční zpracování. Přehled SQL. Základní dotazy. Seskupování dat a agregace. Spojování tabulek. Vnořené dotazy. Uložené procedury, triggery, funkce. Big Data. Moderní databázové systémy. MapReduce. NoSQL databáze. Grafové databáze. Multi-model databáze.

## Související předměty

- NDBI025 Databázové systémy
- NDBI026 Vývoj databázových aplikací
- NDBI040 Moderní databázové systémy

### 2. Datový management

Datové formáty. Datové modely pro strukturovaná data, příklady užití. Formáty pro grafová, hierarchická a tabulková data, datová schémata a jazyky pro transformaci dat. Formáty pro geodata. Základy grafických, multimediálních a tiskových formátů. Sémantický popis dat, slovníky. Procesy zpracování dat. Katalogizace dat, metadata. Základy šifrování a komprese dat. Základy indexování. Typy organizace souborů, přímé/nepřímé indexování, primární/sekundární index. Hashování na vnější paměti. Hierarchické indexování, Indexování v prostorových databázích, prostorové spojení, prostorové dotazování.

## Související předměty

- NPRG036 Datové formáty
- NDBI046 Úvod do datového inženýrství
- NDBI007 Principy organizace dat

## 3. Web

Principy www, HTML, XHTML, HTML5 a CSS. Architektury, základní principy, návrhové vzory a techniky webových aplikací. Programování na straně klienta, JavaScript, standardní API v prohlížeči. API webových aplikací a webové služby. Singlepage aplikace, udržování stavu a uživatelské relace. Programování na straně serveru, CGI a CGi-like aplikace. Základy bezpečnosti webových aplikací. Vyhledávání na webu.

<sup>3</sup> Zkoušku z anglického jazyka NJAZ091 je možné absolvovat v zimním nebo v letním semestru.

<sup>&</sup>lt;sup>4</sup> Místo jednoho z předmětů NTVY014, NTVY015, NTVY016 a NTVY017 je možné si zapsat letní výcvikový kurz NTVY018 nebo zimní výcvikový kurz NTVY019. Tyto kurzy může student absolvovat kdykoli v průběhu bakalářského studia.

Booleovské a vektorové modely, word<br/>2vec. Vyhledávání v hypertextu, ranking, Page-Rank, SEO. Doporučovací systémy. Podobnostní vyhledávání v multimediálních databázích. Metrické indexování podobnosti.

## Související předměty

- NSWI142 Programování webových aplikací
- NSWI153 Pokročilé programování webových aplikací
- NDBI038 Vyhledávání na webu
- NSWI166 Úvod do doporučovacích systémů a uživatelských preferencí
- NDBI045 Vyhledávání ve videu

## 5. Umělá inteligence

Garantující pracoviště: Katedra teoretické informatiky a matematické logiky Koordinátor specializace: Prof. RNDr. Roman Barták, Ph.D.

Specializace Umělá inteligence klade důraz na propojení základních teoretických znalostí informatiky s jejich praktickým využitím při návrhu systémů pro řešení komplexních úloh, jako je automatické rozhodování, plánování a rozvrhování akcí, zpracování přirozeného jazyka, textové, obrazové a multimediální informace, strojové učení, zpracování velkých dat, vytěžování znalostí z dat, autonomní robotika a počítačové vidění. Vychází z porozumění základních principů počítačových systémů založených na matematických a logických základech a zahrnuje jejich praktické využití při návrhu inteligentních systémů.

Studijní specializace Umělá inteligence nabízí následující zaměření:

- Robotika
- Strojové učení
- Zpracování přirozeného jazyka

Pro všechna zaměření platí stejné podmínky studia, stejné povinné a povinně volitelné předměty a společný první zkušební okruh bakalářské státní závěrečné zkoušky. Jednotlivá zaměření pak mají vlastní zkušební okruh přizpůsobený požadavkům svých disciplin.

## Společné povinné předměty programu Informatika

Povinné předměty společné pro všechny specializace jsou uvedeny v předchozí části.

## Povinné předměty specializace

| Kód     | Název                       | Kredity | ZS       | LS       |
|---------|-----------------------------|---------|----------|----------|
| NAIL120 | Úvod do umělé inteligence   | 5       | _        | 2/2 Z+Zk |
| NPRG005 | Neprocedurální programování | 5       |          | 2/2 Z+Zk |
| NMAI055 | Matematická analýza 2       | 5       | 2/2 Z+Zk |          |

## Povinně volitelné předměty – skupina 1

Podmínkou pro přihlášení ke státní závěrečné zkoušce je získání 25 kreditů za předměty z této skupiny.

| Kód     | Název                       | Kredity | ZS                | LS |
|---------|-----------------------------|---------|-------------------|----|
| NAIL028 | Úvod do robotiky            | 5       | 2/2 Z+Zk          |    |
| NPGR002 | Digitální zpracování obrazu | 4       | $3/0 \mathrm{Zk}$ |    |

|         | Počítačové vidění<br>Úvod do strojového učení v systému<br>R <sup>1</sup> | 5<br>5 |                   | 2/2 Z+Zk $2/2$ Z+Zk |
|---------|---------------------------------------------------------------------------|--------|-------------------|---------------------|
| NPFL129 | Úvod do strojového učení<br>v Pythonu <sup>1</sup>                        | 5      | 2/2 Z+Zk          |                     |
| NPGR035 | Strojové učení v počítačovém vidění                                       | 5      | 2/2 Z+Zk          | _                   |
| NAIL121 | Seminář dobývání znalostí                                                 | 4      | <u>-</u>          | 1/2  KZ             |
| NDMI098 | Algoritmická teorie her                                                   | 5      | 2/2 Z+Zk          | <del>-</del>        |
| NPFL012 | Úvod do počítačové lingvistiky                                            | 3      | 2/0  Zk           |                     |
| NPFL125 | Základy jazykových technologií                                            | 3      | 0/2  KZ           |                     |
| NPFL124 | Zpracování přirozeného jazyka                                             | 4      | <u> </u>          | 2/1  Z+Zk           |
| NPFL101 | Soutěžní strojový překlad                                                 | 3      | $0/2 \mathrm{~Z}$ | <del></del>         |
| NPFL123 | Dialogové systémy                                                         | 5      |                   | 2/2 Z+Zk            |
| NAIL119 | Přírodou inspirované algoritmy                                            | 5      | _                 | 2/2 Z+Zk            |

 $<sup>^{1}</sup>$  Kurzy NPFL129 a NPFL054 jsou neslučitelné a student si vybírá jeden z nich.

## Povinně volitelné předměty – skupina 2

Podmínkou pro přihlášení ke státní závěrečné zkoušce je získání 10 kreditů za předměty z této skupiny.

| Kód     | Název                      | Kredity | ZS       | LS |
|---------|----------------------------|---------|----------|----|
| NPRG041 | Programování v C++         | 5       | 2/2 Z+Zk | _  |
| NPRG013 | Programování v jazyce Java | 5       | 2/2 Z+Zk |    |
| NPRG035 | Programování v jazyce C#   | 5       | 2/2 Z+Zk |    |

## Povinně volitelné předměty – skupina 3

Podmínkou pro přihlášení ke státní závěrečné zkoušce je získání 10 kreditů za předměty z této skupiny.

| Kód     | Název                            | Kredity | ZS          | LS                |
|---------|----------------------------------|---------|-------------|-------------------|
| NPRG051 | Pokročilé programování v C++     | 5       | _           | 2/2 Z+Zk          |
| NPRG021 | Pokročilé programování v jazyce  | 5       |             | 2/2 Z+Zk          |
|         | Java                             |         |             |                   |
| NPRG038 | Pokročilé programování v jazyce  | 5       |             | 2/2 Z+Zk          |
|         | C#                               |         |             |                   |
| NPRG042 | Programování v paralelním        | 6       | _           | $2/2~\mathrm{KZ}$ |
|         | prostředí                        |         |             |                   |
| NPRG036 | Datové formáty                   | 5       | 2/2 Z+Zk    |                   |
| NMAI073 | Pravděpodobnost a statistika 2   | 5       | 2/2 Z+Zk    |                   |
|         | Vyhledávání ve videu             | 5       | <del></del> | 2/2 Z+Zk          |
|         | Diskrétní a spojitá optimalizace | 5       | <del></del> | 2/2 Z+Zk          |
|         | Základy vývoje počítačových her  | 5       | <del></del> | 2/2 Z+Zk          |
| NPRG037 | Programování mikrokontrolerů     | 5       | 2/2 Z+Zk    |                   |

## Doporučený průběh studia

Doporučený průběh studia zahrnuje všechny povinné předměty a některé další povinně volitelné nebo volitelné předměty. Posluchač si ho musí sám doplnit dalšími

povinně volitelnými a volitelnými předměty podle vlastního výběru. Povinné předměty jsou v tabulkách doporučeného průběhu studia vyznačeny tučně, povinně volitelné běžným písmem a volitelné kurzívou.

## 1. rok studia

Společné pro všechny specializace, viz předchozí část.

## 2. rok studia

| Kód       | Název                                     | Kredity | ZS                | LS                 |
|-----------|-------------------------------------------|---------|-------------------|--------------------|
| NAIL062   | Výroková a predikátová logika             | 5       | 2/2 Z+Zk          |                    |
| NTIN061   | Algoritmy a datové struktury 2            | 5       | 2/2 Z+Zk          |                    |
| NDMI011   | Kombinatorika a grafy 1                   | 5       | 2/2 Z+Zk          |                    |
| NMAI055   | Matematická analýza 2                     | 5       | 2/2 Z+Zk          |                    |
| NAIL028   | Úvod do robotiky                          | 5       | 2/2 Z+Zk          |                    |
| NPRG041   | Programování v C++ <sup>1</sup>           | 5       | 2/2 Z+Zk          |                    |
| NPRG013   | Programování v jazyce Java <sup>1</sup>   | 5       | 2/2 Z+Zk          |                    |
| NPRG035   | Programování v jazyce C# <sup>1</sup>     | 5       | 2/2 Z+Zk          |                    |
| NJAZ074   | Anglický jazyk pro středně                | 1       | $0/2 \mathrm{~Z}$ |                    |
|           | pokročilé III <sup>2</sup>                |         |                   |                    |
| NTVY016   | Tělesná výchova III <sup>4</sup>          | 1       | $0/2 \mathrm{~Z}$ |                    |
| NTIN071   | Automaty a gramatiky                      | 5       | <u> </u>          | 2/2 Z+Zk           |
| NMAI059   | Pravděpodobnost a statistika 1            | 5       |                   | 2/2 Z+Zk           |
| NPRG045   | Ročníkový projekt                         | 4       |                   | $0/1 \mathrm{Z}$   |
| NPRG051   | Pokročilé programování v C++ <sup>1</sup> | 5       |                   | 2/2 Z+Zk           |
| NPRG021   | Pokročilé programování v jazyce           | 5       |                   | 2/2 Z+Zk           |
|           | Java <sup>1</sup>                         |         |                   |                    |
| NPRG038   | Pokročilé programování v jazyce           | 5       |                   | 2/2 Z+Zk           |
|           | C# 1                                      |         |                   | ,                  |
| NAIL120   | Úvod do umělé inteligence                 | 5       |                   | 2/2 Z+Zk           |
|           | Neprocedurální programování               | 5       |                   | 2/2 Z+Zk           |
|           | Anglický jazyk pro středně                | 1       |                   | $0/2 \mathrm{~Z}$  |
|           | pokročilé IV <sup>1</sup>                 |         |                   | ,                  |
| NJAZ091   | Anglický jazyk — zkouška pro              | 1       |                   | $0/0 \mathrm{~Zk}$ |
|           | bakaláře <sup>3</sup>                     |         |                   | - / -              |
| NTVY017   | Tělesná výchova IV <sup>4</sup>           | 1       |                   | $0/2 \mathrm{~Z}$  |
| 1.1, 1011 | Povinně volitelné předměty                | -       |                   | o, <b>-</b> 2      |
|           | Volitelné předměty                        |         |                   |                    |
|           | , state producty                          |         |                   |                    |

## 3. rok studia

| $\operatorname{K\'{o}d}$ | Název                                   | Kredity | ZS                | LS |
|--------------------------|-----------------------------------------|---------|-------------------|----|
| NDBI025                  | Databázové systémy                      | 5       | 2/2 Z+Zk          | _  |
| NPFL129                  | Úvod do strojového učení                | 5       | 2/2 Z+Zk          |    |
|                          | v Pythonu <sup>5</sup>                  |         |                   |    |
| NPRG041                  | Programování v C++ <sup>1</sup>         | 5       | 2/2 Z+Zk          |    |
| NPRG013                  | Programování v jazyce Java <sup>1</sup> | 5       | 2/2 Z+Zk          |    |
|                          | Programování v jazyce C# $^1$           | 5       | 2/2 Z+Zk          |    |
| NPFL012                  | Úvod do počítačové lingvistiky          | 3       | $2/0 \mathrm{Zk}$ |    |

|                    | Počítačové vidění<br>Úvod do strojového učení v systému<br>R. <sup>5</sup>                                                                                     | 5<br>5           | <br>$^{2/2}$ Z+Zk $^{2/2}$ Z+Zk      |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------|
| NPRG036<br>NAIL121 | Zpracování přirozeného jazyka Datové formáty Seminář dobývání znalostí Vypracování a konzultace bakalářské práce Povinně volitelné předměty Volitelné předměty | 4<br>5<br>4<br>6 | <br>2/1 Z+Zk<br>—<br>1/2 KZ<br>0/4 Z |

<sup>&</sup>lt;sup>1</sup> Student si zvolí jeden z programovacích jazyků s pokročilou verzí ve druhém roce (pro zájemce o robotiku doporučujeme C++) a druhý z jazyků ve třetím roce.

## Požadavky znalostí ke státní závěrečné zkoušce

Zkušební okruh Základy umělé inteligence je požadován ve všech zaměřeních. Jednotlivá zaměření mají dále vlastní zkušební okruh.

## Základy umělé inteligence

Řešení úloh prohledáváním (algoritmus A\*); splňování podmínek. Logické uvažování (dopředné a zpětné řetězení, rezoluce, SAT); pravděpodobnostní uvažování (Bayesovské sítě); reprezentace znalostí (situační kalkulus, Markovské modely). Automatické plánování; Markovské rozhodovací procesy. Hry a teorie her. Strojové učení (rozhodovací stromy, regrese, zpětnovazební učení).

## Související předměty:

| Kód     | Název                     | Kredity ZS | LS       |
|---------|---------------------------|------------|----------|
| NAIL120 | Úvod do umělé inteligence | 5 —        | 2/2 Z+Zk |

## Robotika

Kinematika: pohyb a transformace, řešení základních úloh. Řídicí systémy: architektury, implementace, specifická běhová prostředí. Pohyb, senzorika: způsob pohybu, základní typy aktuátorů a senzorů, zpětnovazební řízení, zpracování vstupních dat. Lokalizace a mapování: způsoby určování polohy, typy map, volba použití v modelových situacích, simultánní lokalizace a mapování. Zpracování obrazu a počítačové vidění: vyhledávání a sledování objektů.

## Související předměty:

| Kód     | Název                        | Kredity | ZS       | LS       |
|---------|------------------------------|---------|----------|----------|
|         | Úvod do robotiky             | 5       | 2/2 Z+Zk | _        |
| NPGR036 | Počítačové vidění            | 5       |          | 2/2 Z+Zk |
| NPRG037 | Programování mikrokontrolerů | 5       | 2/2 Z+Zk |          |

 $<sup>^2</sup>$  Výuka anglického jazyka NJAZ070, NJAZ072, NJAZ074, NJAZ090 v rozsahu 0/2 v každém semestru je určena pro středně pokročilé a pokročilé. Pro začátečníky a mírně pokročilé jsou určeny předměty NJAZ071, NJAZ073, NJAZ075, NJAZ089 s rozsahem výuky 0/4 v každém semestru.

<sup>3</sup> Zkoušku z anglického jazyka NJAZ091 je možné absolvovat v zimním nebo v letním semestru.

<sup>&</sup>lt;sup>4</sup> Místo jednoho z předmětů NTVY014, NTVY015, NTVY016 a NTVY017 je možné si zapsat letní výcvikový kurz NTVY018 nebo zimní výcvikový kurz NTVY019. Tyto kurzy může student absolvovat kdykoli v průběhu bakalářského studia.

 $<sup>^{5}</sup>$  Kurzy NPFL129 a NPFL054 jsou neslučitelné a student si vybírá jeden z nich.

## Strojové učení

Učení s učitelem: klasifikace a regrese, míry chyby, ohodnocení modelu (testovací data, křížová validace, maximální věrohodnost), přeučení a regularizace, prokletí dimenzionality. Učení založené na příkladech, lineární a logistická regrese, rozhodovací stromy, prořezávání, kombinace více modelů (bagging, boosting, náhodný les), metoda podpůrných vektorů. Statistické testy t-test, chí-kvadrát. Učení bez učitele, shlukování.

## Související předměty:

| Kód     | Název                                                            | Kredity | ZS                   | LS          |
|---------|------------------------------------------------------------------|---------|----------------------|-------------|
| NPFL054 | Úvod do strojového učení v systému                               | 5       | _                    | 2/2 Z+Zk    |
| NPFL129 | R<br>Úvod do strojového učení<br>v Pythonu                       | 5       | 2/2 Z+Zk             | _           |
|         | Seminář dobývání znalostí<br>Strojové učení v počítačovém vidění | 4<br>5  | $\frac{-}{2/2}$ Z+Zk | 1/2 KZ<br>— |

## Zpracování přirozeného jazyka

Roviny popisu jazyka, morfologická a syntaktická analýza. Základy teorie pravděpodobnosti a teorie informace. Statistické metody zpracování přirozeného jazyka, jazykové modely. Strojové učení, klasifikace, regrese. Odhad generalizační chyby, přetrénování, regularizace. Vektorové reprezentace slov, základy hlubokého strojového učení. Aplikace zpracování přirozeného jazyka, příklady evaluačních měr.

## Související předměty:

| Kód     | Název                                                           | Kredity                              | ZS          | LS                   |
|---------|-----------------------------------------------------------------|--------------------------------------|-------------|----------------------|
| NPFL054 | Úvod do strojového učení v systému                              | 5                                    | _           | 2/2 Z+Zk             |
| NPFL129 | R<br>Úvod do strojového učení<br>v Pythonu                      | 5                                    | 2/2 Z+Zk    | _                    |
|         | Úvod do počítačové lingvistiky<br>Zpracování přirozeného jazyka | $\begin{matrix} 3 \\ 4 \end{matrix}$ | 2/0 Zk<br>— | $\frac{-}{2/1}$ Z+Zk |

## 6. Počítačová grafika, vidění a vývoj her

Garantující pracoviště: Katedra softwaru a výuky informatiky

Koordinátor specializace: RNDr. Josef Pelikán

Specializace Počítačová grafika, vidění a vývoj her je určena studentům se zájmem o vizuální obory informatiky – syntézu obrazu, analýzu obrazu a programování počítačových her. V magisterském studiu potom mohou navázat studiem oboru Vizuální výpočty a vývoj počítačových her, kde se budou věnovat svému oboru ještě více do hloubky. Již absolvování bakalářské specializace však postačí k dobrému uplatnění v praxi (podle jednotlivých zaměření):

- Návrh a vývoj grafických aplikací, například vizuálních efektů nebo fotorealistické visualizace (postprodukční týmy, architektonické visualizace, vývoj realistických herních enginů a shaderů, apod.)
- Uplatnění všude tam, kde se využívá digitální zpracování obrazu a počítačové vidění (strojírenský a elektrotechnický průmysl, vývoj robotických systémů, medicína, ochrana a bezpečnost, automatická kontrola, dálkový průzkum Země, apod.)

- Vývoj počítačových her na mnoha úrovních (programátor herního engine, GPU programátor /shadery/, nástroje pro přípravu obsahu hry, logika hry, programování a konfigurace herní umělé inteligence, příprava dat /levelů/ hry, apod.)

Studijní specializace Počítačová grafika, vidění a vývoj her nabízí následující zaměření:

- Počítačová grafika
- Počítačové vidění
- Vývoj počítačových her

Pro všechna zaměření platí stejné podmínky studia, stejné povinné a povinně volitelné předměty a společné tři zkušební okruhy bakalářské státní závěrečné zkoušky (jedná se o okruhy 1. až 3. – viz níže). Jednotlivá zaměření pak mají odlišné zkušební okruhy přizpůsobené požadavkům svých disciplin.

## Povinné předměty programu Informatika

Povinné předměty společné pro všechny specializace jsou uvedeny v předchozí části.

## Povinné předměty specializace

| Kód     | Název                      | Kredity | ZS       | LS |
|---------|----------------------------|---------|----------|----|
| NPGR003 | Základy počítačové grafiky | 5       | 2/2 Z+Zk | _  |
| NMAI055 | Matematická analýza 2      | 5       | 2/2 Z+Zk |    |
| NPRG041 | Programování v C++         | 5       | 2/2 Z+Zk |    |
| NPRG035 | Programování v jazyce C#   | 5       | 2/2 Z+Zk | _  |

## Povinně volitelné předměty

Podmínkou pro přihlášení ke státní závěrečné zkoušce je získání 43 kreditů za povinně volitelný předměty. Konkrétní výběr předmětů by měl být prováděn na základě zaměření, ke kterému studium směřuje. Zkušební okruhy u státních zkoušek jsou totiž dalším vodítkem při rozhodování, které předměty je třeba studovat.

| Kód     | Název                               | Kredity | ZS                 | LS                |
|---------|-------------------------------------|---------|--------------------|-------------------|
| NPGR025 | Introduction to Colour Science      | 3       | $2/0 \mathrm{~Zk}$ | _                 |
| NPGR002 | Digitální zpracování obrazu         | 4       | 3/0  Zk            |                   |
| NPGR035 | Strojové učení v počítačovém vidění | 5       | 2/2 Z+Zk           |                   |
| NPGR037 | Praktikum z Matlabu                 | 3       | $0/2 \mathrm{~Z}$  |                   |
| NCGD003 | Programování herních mechanik       | 5       | 2/2 Z+Zk           |                   |
| NCGD006 | Praktikum z vývoje počítačových     | 2       | $0/1 \mathrm{~Z}$  | $0/1 \mathrm{~Z}$ |
|         | her v limitovaném čase <sup>1</sup> |         |                    |                   |
| NPGR004 | Fotorealistická grafika             | 5       |                    | 2/2 Z+Zk          |
| NPGR019 | Realtime grafika na GPU             | 5       |                    | 2/2 Z+Zk          |
| NPGR020 | Geometrie pro počítačovou grafiku   | 3       |                    | $2/0 \mathrm{Zk}$ |
| NPGR036 | Počítačové vidění                   | 5       |                    | 2/2 Z+Zk          |
| NPGR038 | Základy vývoje počítačových her     | 5       |                    | 2/2 Z+Zk          |
|         | Operační systémy                    | 5       | $2/2~\mathrm{KZ}$  | _                 |
| NAIL028 | Úvod do robotiky                    | 5       | 2/2 Z+Zk           |                   |
| NMAI073 | Pravděpodobnost a statistika 2      | 5       | 2/2 Z+Zk           | _                 |
| NMAI056 | Matematická analýza 3               | 5       |                    | 2/2 Z+Zk          |

| NPRG051 Pokročilé programování v C++<br>NPRG038 Pokročilé programování v jazyce<br>C#     | 5<br>5 | _        | $^{2/2}$ Z+Zk $^{2/2}$ Z+Zk                                    |
|-------------------------------------------------------------------------------------------|--------|----------|----------------------------------------------------------------|
| NPRG005 Neprocedurální programování                                                       | 5      | <u> </u> | 2/2 Z+Zk                                                       |
| NAIL120 Úvod do umělé inteligence                                                         | 5      |          | 2/2 Z+Zk                                                       |
| NPRG054 Vývoj vysoce výkonného software<br>NPRG042 Programování v paralelním<br>prostředí | 6<br>6 |          | $2/2~\mathrm{KZ}$ $2/2~\mathrm{KZ}$                            |
| NMAI042 Numerická matematika                                                              | 5      | _        | $2/2  \mathrm{Z+Zk}$ $2/2  \mathrm{Z+Zk}$ $2/2  \mathrm{Z+Zk}$ |
| NDBI045 Vyhledávání ve videu                                                              | 5      | _        |                                                                |
| NOPT046 Diskrétní a spojitá optimalizace                                                  | 5      | _        |                                                                |

<sup>&</sup>lt;sup>1</sup> Předmět Praktikum z vývoje počítačových her je vyučován v obou semestrech a smí se zapisovat opakovaně (za každý absolvovaný semestr jsou dva kredity). Studentům zaměření Vývoj počítačových her doporučujeme absolvovat ho minimálně jednou.

## Doporučený průběh studia

Doporučený průběh studia zahrnuje všechny povinné předměty a některé další povinně volitelné nebo volitelné předměty – tzv. profilující předměty – pro jednotlivá zaměření.

Protože mají tři různá zaměření různé požadavky ke státním zkouškám, uvádíme zde příklady tří průběhů studia. Pro úplnost byly vytvořeny kompletní průběhy včetně volitelných předmětů. Formálně povinné předměty jsou v tabulkách vyznačeny tučně, povinně volitelné běžným písmem a volitelné kurzívou.

Volitelnost předmětů by se však mohla chápat více prakticky – vůči konkrétnímu zaměření. To znamená, že některá přednáška může být obecně pro celou specializaci povinně volitelná, ale pro konkrétní zaměření může být důležitá (profilující), protože znalosti jsou potřeba ke státním zkouškám. V jiném zaměření však poslouží třeba jen jako výběrový předmět, protože ke státním zkouškám potřeba není.

V následujících ukázkách průchodů se k naznačení důležitosti předmětu používají poznámky pod čarou: profilující předměty (znalosti ke státním zkouškám) jsou označeny jedničkou<sup>1</sup>, předměty doporučované dvojkou<sup>2</sup>. Pokud není předmět vysázený tučně ani nemá jednu z těchto poznámek<sup>1,2</sup>, je pro dané zaměření úplně volitelný a lze ho libovolně nahradit.

## 1. rok studia

Společné pro všechny specializace, viz předchozí část.

## 2. rok studia – počítačová grafika

| Kód     | Název                          | Kredity | ZS                | LS |
|---------|--------------------------------|---------|-------------------|----|
| NTIN061 | Algoritmy a datové struktury 2 | 5       | 2/2 Z+Zk          |    |
| NDMI011 | Kombinatorika a grafy 1        | 5       | 2/2 Z+Zk          |    |
| NMAI055 | Matematická analýza 2          | 5       | 2/2 Z+Zk          |    |
| NPRG041 | Programování v C++             | 5       | 2/2 Z+Zk          |    |
| NPRG035 | Programování v jazyce C#       | 5       | 2/2 Z+Zk          |    |
| NPGR003 | Základy počítačové grafiky     | 5       | 2/2 Z+Zk          |    |
| NJAZ074 | Anglický jazyk pro středně     | 1       | $0/2 \mathrm{~Z}$ |    |
|         | pokročilé III <sup>3</sup>     |         |                   |    |

| NTVY016 <b>Tělesná výchova III</b> <sup>5</sup>   | 1 | $0/2 \mathrm{~Z}$ | _                 |
|---------------------------------------------------|---|-------------------|-------------------|
| NTIN071 Automaty a gramatiky                      | 5 | _                 | 2/2 Z+Zk          |
| NMAI059 Pravděpodobnost a statistika 1            | 5 |                   | 2/2  Z+Zk         |
| NPRG045 <b>Ročníkový projekt</b>                  | 4 |                   | $0/1 \mathrm{~Z}$ |
| NPGR004 Fotorealistická grafika <sup>1</sup>      | 5 |                   | 2/2  Z+Zk         |
| NMAI056 Matematická analýza 3 <sup>2</sup>        | 5 |                   | 2/2  Z+Zk         |
| NPRG051 Pokročilé programování v C++ <sup>2</sup> | 5 | _                 | 2/2 Z+Zk          |
| NMAI042 Numerická matematika                      | 5 |                   | 2/2  Z+Zk         |
| NJAZ090 Anglický jazyk pro středně                | 1 |                   | $0/2 \mathrm{~Z}$ |
| pokročilé IV <sup>3</sup>                         |   |                   |                   |
| NJAZ091 Anglický jazyk — zkouška pro              | 1 |                   | $0/0 \mathrm{Zk}$ |
| bakaláře <sup>4</sup>                             |   |                   | ,                 |
| NTVY017 <b>Tělesná výchova IV</b> $^5$            | 1 |                   | $0/2~\mathrm{Z}$  |

## 3. rok studia – počítačová grafika

| Kód     | Název                                          | Kredity | ZS                | LS                 |
|---------|------------------------------------------------|---------|-------------------|--------------------|
| NAIL062 | Výroková a predikátová logika                  | 5       | 2/2 Z+Zk          |                    |
| NDBI025 | Databázové systémy                             | 5       | 2/2 Z+Zk          |                    |
| NPGR025 | Introduction to Colour Science <sup>1</sup>    | 3       | 2/0  Zk           |                    |
| NPGR002 | Digitální zpracování obrazu <sup>2</sup>       | 4       | 3/0  Zk           |                    |
| NMAI073 | Pravděpodobnost a statistika 2 <sup>2</sup>    | 5       | 2/2 Z+Zk          |                    |
| NPGR037 | Praktikum z Matlabu                            | 3       | $0/2 \mathrm{~Z}$ |                    |
| NSWI200 | Operační systémy                               | 5       | 2/2  KZ           |                    |
| NSZZ031 | Vypracování a konzultace                       | 6       |                   | $0/4 \mathrm{~Z}$  |
|         | bakalářské práce                               |         |                   |                    |
| NPGR020 | Geometrie pro počítačovou grafiku <sup>1</sup> | 3       | <del></del>       | $2/0 \mathrm{~Zk}$ |
| NPGR036 | Počítačové vidění <sup>2</sup>                 | 5       | <del></del>       | 2/2 Z+Zk           |
| NPRG054 | Vývoj vysoce výkonného software                | 6       |                   | 2/2  KZ            |
| NOPT046 | Diskrétní a spojitá optimalizace               | 5       |                   | 2/2 Z+Zk           |
| NPGR019 | Realtime grafika na GPU                        | 5       | _                 | 2/2 Z+Zk           |

 $<sup>^{\</sup>rm 1}$  Profilové předměty k danému zaměření. Okruhy státních zkoušek jsou na jejich znalosti založené.

## 2. rok studia – počítačové vidění

| Kód     | Název                          | Kredity | ZS       | LS |
|---------|--------------------------------|---------|----------|----|
| NTIN061 | Algoritmy a datové struktury 2 | 5       | 2/2 Z+Zk | _  |
| NDMI011 | Kombinatorika a grafy 1        | 5       | 2/2 Z+Zk |    |
| NMAI055 | Matematická analýza 2          | 5       | 2/2 Z+Zk |    |

<sup>&</sup>lt;sup>2</sup> Další doporučované předměty pro dané zaměření. Formálně Vás nic nenutí si je zapsat, my bychom Vám to však doporučovali. Předměty, které nejsou povinné a nemají žádnou poznámku, lze libovolně nahradit jinými podle Vašeho zájmu.

 $<sup>^3</sup>$  Výuka anglického jazyka NJAZ070, NJAZ072, NJAZ074, NJAZ090 v rozsahu 0/2 v každém semestru je určena pro středně pokročilé a pokročilé. Pro začátečníky a mírně pokročilé jsou určeny předměty NJAZ071, NJAZ073, NJAZ075, NJAZ089 s rozsahem výuky 0/4 v každém semestru.

<sup>&</sup>lt;sup>4</sup> Zkoušku z anglického jazyka NJAZ091 je možné absolvovat v zimním nebo v letním semestru.

 $<sup>^5</sup>$  Místo jednoho z předmětů NTVY014, NTVY015, NTVY016 a NTVY017 je možné si zapsat letní výcvikový kurz NTVY018 nebo zimní výcvikový kurz NTVY019. Tyto kurzy může student absolvovat kdykoli v průběhu bakalářského studia.

| NPRG035     | Programování v jazyce C#                         | 5              | 2/2 Z+Zk                              |                    |
|-------------|--------------------------------------------------|----------------|---------------------------------------|--------------------|
|             | Základy počítačové grafiky                       | 5              | 2/2 Z+Zk                              |                    |
|             | Digitální zpracování obrazu <sup>1</sup>         | 4              | 3/0  Zk                               |                    |
|             | Praktikum z Matlabu <sup>2</sup>                 | 3              | $0/2 \mathrm{~Z}$                     |                    |
|             | Anglický jazyk pro středně                       | 1              | $0/2 \ { m Z}$                        |                    |
|             | pokročilé III <sup>3</sup>                       | _              | ·/                                    |                    |
| NTVY016     | Tělesná výchova III <sup>5</sup>                 | 1              | $0/2 \mathrm{~Z}$                     |                    |
|             | Automaty a gramatiky                             | $\overline{5}$ | <del></del>                           | 2/2 Z+Zk           |
|             | Pravděpodobnost a statistika 1                   | 5              |                                       | 2/2 Z+Zk           |
|             | Ročníkový projekt                                | $\overline{4}$ |                                       | $0/1 \ { m Z}$     |
|             | Počítačové vidění <sup>1</sup>                   | 5              |                                       | 2/2 Z+Zk           |
|             | Geometrie pro počítačovou grafiku <sup>2</sup>   | 3              | _                                     | 2/0  Zk            |
|             | Matematická analýza 3 <sup>2</sup>               | 5              |                                       | 2/2 Z+Zk           |
|             | Diskrétní a spojitá optimalizace <sup>2</sup>    | 5              |                                       | 2/2 Z+Zk           |
| NJAZ090     | - · · -                                          | 1              |                                       | 0/2  Z + 2  K      |
| 110112000   | pokročilé IV $^3$                                | 1              |                                       | 0/2 2              |
| NJAZ091     | Anglický jazyk — zkouška pro                     | 1              |                                       | $0/0 \mathrm{~Zk}$ |
|             | bakaláře <sup>4</sup>                            |                |                                       | ,                  |
| NTVY017     | Tělesná výchova IV $^{5}$                        | 1              | _                                     | $0/2  \mathrm{Z}$  |
| 9 male atus | dia na žíta žavá vidžní                          |                |                                       |                    |
|             | dia – počítačové vidění                          | T. 11.         | <b>P</b> C                            | T. C.              |
| Kód         | Název                                            | Kredity        | ZS                                    | LS                 |
| NAIL062     | Výroková a predikátová logika                    | 5              | 2/2 Z+Zk                              |                    |
| NDBI025     | Databázové systémy                               | 5              | 2/2 Z+Zk                              |                    |
| NPRG041     | Programování v C++                               | 5              | 2/2 Z+Zk                              |                    |
| NPGR035     | Strojové učení v počítačovém vidění <sup>1</sup> | 5              | 2/2 Z+Zk                              |                    |
| NAIL028     | Úvod do robotiky <sup>2</sup>                    | 5              | 2/2 Z+Zk                              |                    |
|             | Pravděpodobnost a statistika 2 <sup>2</sup>      | 5              | 2/2 Z+Zk                              |                    |
|             | Vypracování a konzultace                         | 6              | = = = = = = = = = = = = = = = = = = = | $0/4 \mathrm{~Z}$  |
| 11022001    | bakalářské práce                                 | O              |                                       | 0/12               |
| NMAI042     | Numerická matematika <sup>2</sup>                | 5              |                                       | 2/2 Z+Zk           |
| NPGR004     | Fotorealistická grafika                          | 5              |                                       | 2/2 Z+Zk           |
|             | Realtime grafika na GPU                          | 5              |                                       | 2/2 Z+Zk           |
|             | Vývoj vysoce výkonného software                  | 6              | _                                     | $2/2~{ m KZ}$      |
| 2. rok stu  | dia – vývoj počítačových her                     |                |                                       |                    |
| Kód         | Název                                            | Kredity        | ZS                                    | LS                 |
| NTIN061     | Algoritmy a datové struktury 2                   | 5              | 2/2 Z+Zk                              |                    |
|             | Kombinatorika a grafy 1                          | 5              | 2/2 Z+Zk                              |                    |
|             | Matematická analýza 2                            | 5              | 2/2 Z+Zk $2/2$ Z+Zk                   |                    |
|             | Programování v jazyce C#                         | 5              | 2/2 Z+Zk $2/2$ Z+Zk                   |                    |
|             | Programování v C++                               | 5              | 2/2 Z+Zk                              |                    |
|             | Základy počítačové grafiky                       | 5              | 2/2 Z+Zk $2/2$ Z+Zk                   |                    |
| NJAZ074     | <i>v</i> -                                       |                | •                                     |                    |
|             | Anglický jazyk pro středně                       | 1              | $0/2 \mathrm{~Z}$                     |                    |

| NTVY016    | Tělesná výchova III <sup>5</sup>                                       | 1       | $0/2 \mathrm{~Z}$ |                    |
|------------|------------------------------------------------------------------------|---------|-------------------|--------------------|
|            | Automaty a gramatiky                                                   | 5       |                   | 2/2 Z+Zk           |
|            | Pravděpodobnost a statistika 1                                         | 5       |                   | 2/2  Z+Zk          |
|            | Ročníkový projekt                                                      | 4       |                   | $0/1 \mathrm{~Z}$  |
| NPGR019    | Realtime grafika na GPU <sup>1</sup>                                   | 5       |                   | 2/2 Z+Zk           |
| NPGR038    | Základy vývoje počítačových her <sup>1</sup>                           | 5       |                   | 2/2 Z+Zk           |
| NPRG038    | Pokročilé programování v jazyce C# $^2$                                | 5       | _                 | 2/2 Z+Zk           |
| NPRG051    | Pokročilé programování v C++ <sup>2</sup>                              | 5       | _                 | 2/2 Z+Zk           |
| NJAZ090    | Anglický jazyk pro středně<br>pokročilé IV <sup>3</sup>                | 1       |                   | $0/2 \mathrm{~Z}$  |
| NJAZ091    | Anglický jazyk — zkouška pro<br>bakaláře <sup>4</sup>                  | 1       | _                 | $0/0 \mathrm{~Zk}$ |
| NTVY017    | Tělesná výchova IV $^{5}$                                              | 1       |                   | $0/2 \mathrm{~Z}$  |
| 3. rok stu | dia – vývoj počítačových her                                           |         |                   |                    |
| Kód        | Název                                                                  | Kredity | ZS                | LS                 |
| NAIL062    | Výroková a predikátová logika                                          | 5       | 2/2 Z+Zk          |                    |
| NDBI025    | Databázové systémy                                                     | 5       | 2/2 Z+Zk          |                    |
| NCGD003    | Programování herních mechanik <sup>2</sup>                             | 5       | 2/2 Z+Zk          |                    |
| NCGD006    | Praktikum z vývoje počítačových<br>her v limitovaném čase <sup>2</sup> | 2       | $0/1 \mathrm{~Z}$ | $0/1 \mathrm{~Z}$  |
| NAIL028    | Úvod do robotiky                                                       | 5       | 2/2 Z+Zk          |                    |
| NSWI200    | Operační systémy                                                       | 5       | 2/2  KZ           |                    |
| NPGR002    | Digitální zpracování obrazu                                            | 4       | 3/0  Zk           |                    |
| NSZZ031    | Vypracování a konzultace                                               | 6       |                   | $0/4 \mathrm{~Z}$  |
|            | bakalářské práce                                                       |         |                   |                    |
| NPGR020    | Geometrie pro počítačovou grafiku <sup>1</sup>                         | 3       |                   | $2/0 \mathrm{~Zk}$ |
| NAIL120    | Úvod do umělé inteligence                                              | 5       |                   | 2/2 Z+Zk           |

## Požadavky znalostí ke státní závěrečné zkoušce

Některá témata studijního oboru Informatika jsou požadována ve všech specializacích, viz první část.

5

Pro studenty specializace Počítačová grafika, vidění a vývoj her jsou pro další okruhy 1. až 3. souvisejícími předměty NMAI055 Matematická analýza 2 a NPGR003 Základy počítačové grafiky.

### 1. Matematická analýza

Diferenciální a integrální počet ve více rozměrech. Riemannův integrál. Extrémy funkcí více proměnných. Metrický prostor, otevřené a uzavřené množiny, kompaktnost.

## 2. Základy 2D počítačové grafiky

NPGR004 Fotorealistická grafika

NPGR036 Počítačové vidění

Základy lidského vidění, barvy, jejich vnímání a reprezentace na počítači, barevné systémy RGB, CMY a HSV. HDR grafika. Průhlednost (alfa-kanál). Rastrová a vektorová grafika, příklady rastrových a vektorových formátů a jejich použití. Základy rasterizace (vykreslování tvarů do 2D rastru).

2/2 Z+Zk

2/2 Z+Zk

## 3. Základy 3D počítačové grafiky

Systémy 3D souřadnic a transformací, Skládání praktických složitějších transformací, reprezentace orientace. Projekce pro zobrazování 3D scén. Základy GPU knihovny OpenGL. Architektura GPU, formáty dat posílané do GPU, princip programování shaderů. Reprezentace 3D scén v počítači, hierarchické reprezentace, základy stínování a princip rekurzivního sledování paprsku.

## Požadavky pro jednotlivá zaměření

Studenti jednotlivých zaměření se musí dále připravit na zkušební okruhy vycházející z příslušných profilových předmětů.

## Požadavky pro zaměření Počítačová grafika

Pro zkušební okruhy 4. až 6. jsou souvisejícími předměty NPGR004 Fotorealistická grafika, NPGR025 Introduction to Colour Science a NPGR020 Geometrie pro počítačovou grafiku.

## 4. Fotorealistická grafika

Rekurzivní sledování paprsku: vlastnosti naivního algoritmu. Výpočet průsečíků paprsku s 3D scénou a jeho urychlování. Modely odrazu světla na povrchu těles: empirické a fyzikálně věrnější přístupy. Textury, modelování přírodních fenoménů, spojité šumové funkce. Anti-aliasing v paprskově založených metodách, vzorkovací algoritmy, distribuované sledování paprsku. Moderní Monte-Carlo přístupy v realistickém zobrazování.

## 5. Základy vědy o barvách

Fundamental causes of colour, human eye and function of its parts. Colour spaces and colour collections, gamuts, color mixing, color matching experiments. Examples of Colour ordering systems (Munsell, Pantone). Colour measurement devices. Printing technology, ICC profiles.

### 6. Geometrie pro počítačovou grafiku

Eukleidovské shodnosti v rovině a prostoru, jejich aplikace, animace spojitého pohybu. Kvaterniony a jejich využití pro animaci a pohyb v prostoru, LERP a SLERP. Projektivní prostor a projektivní zobrazení, aplikace na panoramatické lepení fotografií a rekonstrukci scény. Dvojpoměr a jeho využití při odečítání velikostí ze snímků.

## Požadavky pro zaměření Počítačové vidění

Pro zkušební okruhy 7. až 9. jsou souvisejícími předměty NPGR002 Digitální zpracování obrazu, NPGR036 Počítačové vidění a NPGR035 Strojové učení v počítačovém vidění.

### 7. Digitální zpracování obrazu

Vzorkování a kvantizace obrazu, Shannonova věta. Základní operace nad obrázky, histogram, změny kontrastu, redukce šumu, zvyšování ostrosti. lineární filtrace obrazu v obrazovém a spektrálním prostoru. Konvoluce a Fourierova transformace. Detekce hran a rohů. Matematické modelování degradace obrazu. Potlačování základních zkreslení obrazu (rozmazání pohybem, rozostření), inverzní a Wienerův filtr.

## 8. Počítačové vidění

Pořizování obrazu, vlastnosti digitálního obrazu. Matematická morfologie. Segmentace obrazu. Registrace a porovnávání obrazu. Popis plošných objektů – základní principy. Invarianty pro rozpoznávání 2D objektů. Detekce, popis a párování lokálních příznaků. Významné oblasti v obraze. Detekce a Sledování objektů, optický tok.

## 9. Strojové učení

Výběr a předzpracování příznaků. Bayesovská teorie rozhodování, kritérium minimální chyby. Rozhodovací stromy. Diskriminační analýza, lineární klasifikátor. Rozpoznávání objektů, klasifikátory s učitelem (k-NN, lineární, Bayes). Support Vector Machines (SVM). Shluková analýza, iterační a hierarchické metody. Hodnocení kvality klasifikace.

## Požadavky pro zaměření Vývoj počítačových her

Pro zkušební okruhy 10., 11. a 6. jsou souvisejícími předměty NPGR038 Základy vývoje počítačových her, NPGR019 Realtime grafika na GPU a NPGR020 Geometrie pro počítačovou grafiku.

## 10. Vývoj počítačových her

2D hry: sprite-based animace, 2D kostra, parallax scrolling, dlaždicové systémy, pixel art. 3D hry: 3D scény, modely, kosterní animace, rigging. 3D rendering: shadery, stíny, částicové systémy, billboards, screenspace efekty. Zvuk: zvukové efekty, 3D zvuk, sound engine, kompozice zvuku. Návrh architektury herního kódu, návrhové vzory pro počítačové hry. Herní design: definice, historie, taxonomie hráčů. Úvod do architektury herních engine, engine Unity. Řízení vývoje počítačových her a životní cyklus herního projektu.

## 11. GPU grafika

Princip fungování programovatelné rasterizační pipeliny na GPU. Buffery, constant buffery, efektivní předávání dat do GPU. Textury a texturovací jednotky, funkce jednotlivých druhů shaderů. Vyšší programovací jazyky shaderů (GLSL, HLSL). Řešení osvětlení ve scéně (materiály, výpočet stínů). Stencil buffer a jeho použití. Víceprůchodový rendering, deffered shading a screen-space efekty. Realtime raytracing. GPGPU – masivně paralelní algoritmy na GPU, základy CUDA/OpenCL.

## 6. Geometrie pro počítačovou grafiku

Eukleidovské shodnosti v rovině a prostoru, jejich aplikace, animace spojitého pohybu. Kvaterniony a jejich využití pro animaci a pohyb v prostoru, LERP a SLERP. Projektivní prostor a projektivní zobrazení, aplikace na panoramatické lepení fotografií a rekonstrukci scény. Dvojpoměr a jeho využití při odečítání velikostí ze snímků.

# Navazující magisterské studium od akademického roku 2020/21

## 1. Základní informace

## Studijní programy a jejich zaměření

- 1. Informatika Diskrétní modely a algoritmy
- diskrétní matematika a algoritmy
- geometrie a matematické struktury v informatice
- optimalizace
- 2. Informatika Teoretická informatika

- 3. Informatika Softwarové a datové inženýrství
- softwarové inženýrství
- vývoj software
- webové inženýrství
- databázové systémy
- analýza a zpracování rozsáhlých dat
- 4. Informatika Softwarové systémy
- systémové programování
- spolehlivé systémy
- výkonné systémy
- 5. Informatika Jazykové technologie a počítačová lingvistika
- počítačová a formální lingvistika
- statistické metody a metody strojového učení pro zpracování jazyka
- 6. Informatika Umělá inteligence
- inteligentní agenti
- strojové učení
- robotika
- 7. Informatika Vizuální výpočty a vývoj počítačových her
- vizuální výpočty
- vývoj počítačových her

Uchazeči o navazující magisterské studium se hlásí na zvolený studijní program. Volba konkrétního zaměření je ponechána na pozdější rozhodnutí posluchače. Pro každý studijní program je stanoveno garantující pracoviště zajišťující převážnou část výuky v tomto programu a je jmenován garant studijního programu.

Informatika je dynamicky se rozvíjející disciplínou, a proto důležitým novým trendům průběžně přizpůsobujeme i obsah studia. Posluchači by ve vlastním zájmu měli sledovat aktuální stav studijních plánů, kde může docházet k rozšíření a úpravě nabídky předmětů, případně k dalším drobným změnám. Některé předměty mohou být vyučovány anglicky.

## Návaznost na bakalářské studium

Pro úspěšné absolvování magisterského studia informatiky se předpokládají vstupní znalosti alespoň v rozsahu výuky povinných bakalářských předmětů NDMI002 Diskrétní matematika, NTIN060 Algoritmy a datové struktury 1, NTIN061 Algoritmy a datové struktury 2, NTIN071 Automaty a gramatiky, NAIL062 Výroková a predikátová logika. Pokud posluchač ve svém dřívějším studiu neabsolvoval tyto nebo obsahově podobné předměty, měl by si ve vlastním zájmu zapsat v prvním roce magisterského studia ty z uvedených bakalářských předmětů, jejichž znalosti mu chybějí.

V magisterském studiu se dále předpokládá dobrá znalost matematiky alespoň na úrovni povinných bakalářských předmětů NMAI054 Matematická analýza 1, NMAI058 Lineární algebra 2, NMAI059 Pravděpodobnost a statistika 1. Chybějící znalosti z uvedených předmětů by si měl každý posluchač rovněž doplnit v prvním roce magisterského studia.

Pro úspěšné absolvování studia je nezbytná také dobrá znalost programování alespoň v rozsahu základních kurzů NPRG030 Programování 1 a NPRG031 Programování 2. Posluchačům, kteří podobný kurz neabsolvovali ve svém předchozím studiu, doporučujeme zapsat si v úvodu magisterského studia uvedené předměty.

Pokud posluchač ve svém předchozím bakalářském studiu na MFF úspěšně absolvoval některý z povinných nebo povinně volitelných předmětů studovaného programu, může požádat o uznání splnění těchto povinností. Posluchač přicházející na MFF po získání bakalářského vzdělání na jiné vysoké škole může požádat o uznání povinného nebo povinně volitelného předmětu na základě předchozího absolvování obdobného předmětu. Udělování kreditů za předměty absolvované v bakalářském studiu do magisterského studia upravuje čl. 12 Pravidel pro organizaci studia na Matematicko-fyzikální fakultě.

## Týmový projekt

Studijní plány magisterských studijních programů v oblasti vzdělávání Informatika nabízejí studentům možnost účasti v týmovém projektu. V programech Softwarové systémy, Softwarové a datové inženýrství, Vizuální výpočty a vývoj počítačových her je týmový projekt povinný, v programech Umělá inteligence, Jazykové technologie a počítačová lingvistika je povinně volitelný. Týmový projekt se nabízí ve třech typech, ze kterých si student vybírá jeden - Softwarový projekt, Výzkumný projekt, Firemní projekt. Softwarový projekt je klasickým ryze studentským projektem, kde tým 3-6 studentů realizuje větší softwarové dílo. Výzkumný projekt umožňuje studentovi zapojit se do stávajících výzkumných projektů na fakultě a stát se dočasně členem již existujícího týmu, v rámci něhož realizuje dílčí výzkumně-softwarový úkol. Firemní projekt umožňuje studentovi realizovat týmový softwarový projekt vně fakulty, ve firemním prostředí, za podmínek srovnatelných s ostatními typy projektů. V případě náročnějšího zadání lze prostřednictvím předmětu Zvýšený rozsah projektu získat vyšší kreditové ohodnocení projektu. Schvalování a hodnocení projektu se řídí aktuálními pokyny garanta příslušného studijního programu.

## Státní závěrečná zkouška

Studium je zakončeno státní závěrečnou zkouškou. Ta má dvě části, jimiž jsou obhajoba diplomové práce a ústní část. K oběma částem státní závěrečné zkoušky se posluchač může přihlásit samostatně. Studium je úspěšně zakončeno po úspěšném absolvování obou těchto částí.

#### Podmínky pro přihlášení ke státní závěrečné zkoušce

Podmínky pro přihlášení k jiné než poslední části státní závěrečné zkoušky jsou stanoveny vnitřním předpisem Pravidla pro organizaci studia na MFF UK.

Podmínky pro přihlášení k poslední části státní závěrečné zkoušky:

- získání alespoň 120 kreditů
- splnění všech povinných předmětů zvoleného studijního programu
- splnění povinně volitelných předmětů zvoleného programu, resp. zaměření, ve stanoveném rozsahu
- odevzdání vypracované diplomové práce ve stanoveném termínu

Předmět lze splnit jeho úspěšným absolvováním či uznáním z předchozího studia.

## Diplomová práce

Téma diplomové práce si posluchač typicky vybere na konci zimního semestru předposledního roku studia. Doporučujeme vybírat si téma především z nabídky pracoviště garantujícího zvolený studijní program; v případě zájmu o téma z nabídky jiného

pracoviště nebo o téma vlastní důrazně doporučujeme konzultovat vhodnost tématu s garantem studijního programu.

Po zadání diplomové práce si každý posluchač postupně zapíše povinné předměty společné pro všechny programy:

| Kód     | Název               | Kredity | ZS            | LS                 |
|---------|---------------------|---------|---------------|--------------------|
| NSZZ023 | Diplomová práce I   | 6       | _             | $0/4~\mathrm{Z}$   |
| NSZZ024 | Diplomová práce II  | 9       | $0/6  { m Z}$ |                    |
| NSZZ025 | Diplomová práce III | 15      | _             | $0/10 \mathrm{~Z}$ |

Zápočty z povinných předmětů NSZZ023 Diplomová práce I, NSZZ024 Diplomová práce II, NSZZ025 Diplomová práce III uděluje vedoucí diplomové práce jako doklad o úspěšné práci posluchače na stanoveném diplomovém úkolu. Předmět Diplomová práce I si posluchač zapíše zpravidla v letním semestru předposledního roku studia, předměty Diplomová práce II a Diplomová práce III pak návazně v zimním a v letním semestru posledního roku svého studia. V případě potřeby lze zvolit i jiné uspořádání, každý z těchto předmětů je možné zapsat v zimním nebo v letním semestru v období zápisu vymezeném v harmonogramu akademického roku.

#### Ústní část SZZ

Ústní část státní závěrečné zkoušky má na všech studijních programech oblasti vzdělávání Informatika podobnou strukturu. Posluchač je zkoušen ze znalostí několika zkušebních okruhů, z nichž některé mohou být povinné a další volitelné. Podrobnější popis najdete u jednotlivých studijních programů.

## 2. Studijní plány jednotlivých programů

U každého studijního programu je uvedeno garantující pracoviště, garant programu a podmínky pro absolvování studia (povinné a povinně volitelné předměty). Pro každý studijní program a všechna jeho zaměření jsou pak vypsány zkušební okruhy ke státní závěrečné zkoušce a požadavky znalostí k jednotlivým zkušebním okruhům.

## 1. Informatika - Diskrétní modely a algoritmy

Garantující pracoviště: Katedra aplikované matematiky

Garant programu: Doc. RNDr. Martin Klazar, Dr.

## Zaměření:

- diskrétní matematika a algoritmy
- geometrie a matematické struktury v informatice
- optimalizace

Studijní program Diskrétní modely a algoritmy poskytuje široké vzdělání v teoretických a matematických základech informatiky. Student získá znalosti v oblasti diskrétních modelů a souvisejících algoritmických a datových technik a různých matematických metod pro jejich návrh. Program studenta seznámí jak se současnými poznatky v oblasti diskrétních modelů, algoritmů a optimalizace, tak s možnostmi a omezeními řešení souvisejících algoritmických problémů. Student získá důkladné matematické znalosti potřebné pro analýzu a návrh diskrétních modelů a algoritmů.

Absolvent dobře ovládá problematiku modelování pomocí diskrétních struktur spolu s jeho praktickými algoritmickými a výpočetními aspekty. Tím pádem rozumí modelům výpočtů a jejich vzájemným vztahům a zná omezení efektivních výpočtů. Má povědomí o algoritmických technikách a datových strukturách. Má také přehled o některých optimalizačních postupech, technikách a výsledcích. Absolvent se během studia seznámil s matematickými přístupy k diskrétním modelům a algoritmům, což vedle vždy přítomné kombinatoriky a diskrétní matematiky zahrnuje geometrické, topologické, algebraické, číselně-teoretické, logické a v neposlední řadě pravděpodobnostní metody. Absolvent umí posoudit vhodnost a použitelnost těchto metod pro konkrétní diskrétní model. Rovněž dokáže sledovat nejnovější výzkumné trendy v daných oblastech. Absolvent nalezne uplatnění při návrhu a analýze diskrétních modelů a jejich algoritmické implementace a při vývoji odpovídajících technologií. Může tedy pracovat ve špičkových společnostech a institucích zabývajících se vývojem a výzkumem nových technologií, analýzou dat či modelováním reálných procesů (doprava, finance, ekonomie a podobně). Je připraven pro následné doktorské studium teoretické informatiky a příbuzných oborů u nás i ve světě.

## Povinné předměty

| Kód     | Název                 | Kredity | ZS       | LS                 |
|---------|-----------------------|---------|----------|--------------------|
| NTIN090 | Základy složitosti    | 4       | 2/1 Z+Zk |                    |
|         | a vyčíslitelnosti     |         |          |                    |
| NTIN066 | Datové struktury 1    | 6       | 2/2 Z+Zk |                    |
| NMAI064 | Matematické struktury | 5       | <u> </u> | 2/2 Z+Zk           |
| NSZZ023 | Diplomová práce I     | 6       |          | $0/4 \mathrm{~Z}$  |
| NSZZ024 | Diplomová práce II    | 9       | 0/6 Z    |                    |
| NSZZ025 | Diplomová práce III   | 15      | <u>.</u> | $0/10 \mathrm{~Z}$ |
|         |                       |         |          |                    |

### Povinně volitelné předměty - skupina 1

Je požadováno splnění povinně volitelných předmětů z následujícího seznamu v rozsahu alespoň 45 kreditů. Předměty NDMI055 a NDMI056 mohou navštěvovat studenti magisterského i doktorského studia.

| Kód     | Název                            | Kredity | ZS                 | LS                 |
|---------|----------------------------------|---------|--------------------|--------------------|
| NAIL076 | Logické programování 1           | 3       | 2/0  Zk            | _                  |
| NDMI010 | Grafové algoritmy                | 3       | 2/0  Zk            |                    |
| NDMI013 | Kombinatorická a výpočetní       | 5       |                    | 2/2 Z+Zk           |
|         | geometrie 2                      |         |                    |                    |
| NDMI014 | Topologické metody               | 5       |                    | 2/2 Z+Zk           |
|         | v kombinatorice                  |         |                    |                    |
| NDMI015 | Kombinatorické počítání          | 3       |                    | $2/0 \mathrm{Zk}$  |
| NDMI018 | Aproximační a online algoritmy   | 5       |                    | 2/2 Z+Zk           |
| NDMI025 | Pravděpodobnostní algoritmy      | 5       |                    | 2/2 Z+Zk           |
| NDMI028 | Aplikace lineární algebry        | 5       | 2/2 Z+Zk           |                    |
|         | v kombinatorice                  |         |                    |                    |
| NDMI036 | Kombinatorické struktury         | 3       | _                  | $2/0 \mathrm{~Zk}$ |
| NDMI037 | Geometrické reprezentace grafů 1 | 3       | $2/0 \mathrm{~Zk}$ | <del>-</del>       |

| NDMI045 Analytická a kombinatorická teorie<br>čísel     | 3 | _                   | 2/0 Zk             |
|---------------------------------------------------------|---|---------------------|--------------------|
| NDMI055 Vybrané kapitoly z kombinatoriky 1              | 3 | $2/0 \mathrm{~Zk}$  |                    |
| NDMI056 Vybrané kapitoly z kombinatoriky 2              | 3 | <u>-</u>            | $2/0 \mathrm{~Zk}$ |
| NDMI059 Grafové minory a stromové rozklady              | 3 |                     | 2/0  Zk            |
| NDMI060 Barevnost grafů a kombinatorických              | 3 | $2/0 \mathrm{~Zk}$  |                    |
| $\operatorname{struktur}$                               |   | -/ °                |                    |
| NDMI064 Aplikovaná diskrétní matematika                 | 3 | $2/0 \mathrm{~Zk}$  |                    |
| NDMI065 Teorie matroidů                                 | 5 |                     | 2/2 Z+Zk           |
| NDMI066 Algebraická teorie čísel                        | 3 | $2/0 \mathrm{\ Zk}$ |                    |
| NDMI067 Toky, cesty a řezy                              | 3 | $2/0 \mathrm{\ Zk}$ |                    |
| NDMI074 Algoritmy a jejich implementace                 | 5 |                     | 2/2 Z+Zk           |
| NDMI087 Analytická kombinatorika                        | 4 |                     | $2/1 \mathrm{Zk}$  |
| NDMI088 Grafové algoritmy 2                             | 3 |                     | $2/0 \mathrm{Zk}$  |
| NMAG337 Úvod do teorie grup                             | 5 | 2/2 Z+Zk            |                    |
| NMAI040 Úvod do teorie čísel                            | 3 | $2/0 \mathrm{\ Zk}$ |                    |
| NMAI065 Základy teorie kategorií pro                    | 3 | $2/0 \mathrm{~Zk}$  | _                  |
| informatiky                                             |   |                     |                    |
| NMAI066 Topologické a algebraické metody                | 3 |                     | 2/0  Zk            |
| NMAI067 Logika v informatice                            | 3 | $2/0 \mathrm{Zk}$   |                    |
| NMAI071 Matematika++                                    | 5 |                     | 2/2 Z+Zk           |
| NMMA901 Úvod do komplexní analýzy (O)                   | 5 | 2/2 Z+Zk            |                    |
| NMMA931 Úvod do funkcionální analýzy (O)                | 8 | 4/2 Z+Zk            |                    |
| NOPT008 Algoritmy nelineární optimalizace               | 5 |                     | 2/2 Z+Zk           |
| NOPT016 Celočíselné programování                        | 5 |                     | 2/2 Z+Zk           |
| NOPT017 Vícekriteriální optimalizace                    | 3 |                     | $2/0 \mathrm{Zk}$  |
| NOPT034 Matematické programování                        | 4 |                     | 2/1  Z+Zk          |
| a polyedrální kombinatorika                             |   |                     | ·                  |
| NOPT042 Programování s omezujícími                      | 5 | 2/2 Z+Zk            |                    |
| podmínkami                                              | - | 0/07/71             |                    |
| NOPT051 Intervalové metody                              | 5 | 2/2 Z+Zk            | 0 /0 71            |
| NTIN017 Paralelní algoritmy                             | 3 |                     | $2/0 \mathrm{~Zk}$ |
| NTIN022 Pravděpodobnostní techniky                      | 5 | 2/2 Z+Zk            |                    |
| NTIN023 Dynamické grafové datové struktury              | 3 | $2/0 \mathrm{\ Zk}$ | 0/1/7+71           |
| NTIN063 Složitost                                       | 4 | _                   | 2/1  Z+Zk          |
| NTIN064 Vyčíslitelnost                                  | 3 | _                   | 2/0  Zk            |
| NTIN067 Datové struktury 2                              | 3 |                     | 2/0  Zk            |
| NTIN100 Základy přenosu a zpracování informace          | 4 | _                   | 2/1  Z+Zk          |
| NTIN103 Introduction to Parameterized                   | 5 | 2/2 Z+Zk            |                    |
| Algorithms                                              | 9 |                     | 9/0.771            |
| NDMI113 Extremal combinatorics                          | 3 |                     | 2/0 Zk             |
| NOPT059 Optimalizace velkých problémů:<br>přesné metody | 5 |                     | 2/2 Z+Zk           |
| NOPT061 Optimalizace velkých problémů:                  | 5 | _                   | 2/2 Z+Zk           |
| metaheuristiky                                          |   |                     |                    |

## Povinně volitelné předměty - skupina 2<sup>1</sup>

Je požadováno splnění povinně volitelných předmětů z následujícího seznamu v rozsahu alespoň 5 kreditů:

| Kód     | Název                           | Kredity | ZS       | LS |
|---------|---------------------------------|---------|----------|----|
| NDMI073 | Kombinatorika a grafy 3         | 5       | 2/2 Z+Zk | _  |
| NOPT018 | Základy nelineární optimalizace | 5       | 2/2 Z+Zk |    |

<sup>&</sup>lt;sup>1</sup>Pro dvě zaměření Diskrétní matematika a algoritmy a Geometrie a matematické struktury v informatice je doporučen předmět NDMI073, pro zaměření Optimalizace předmět NOPT018. Po absolvování jednoho předmětu ze skupiny 2 jsou kredity počítány pouze do skupiny 2, která je tak splněna. Jsou-li absolvovány oba předměty ze skupiny 2, jsou kredity za druhý z nich započítány v rámci kreditů pro volbu studenta.

## Doporučené volitelné předměty

Seznam doporučených volitelných předmětů obsahuje pouze jeden předmět, daný požadavky zkušebního okruhu Kombinatorická a výpočetní geometrie. Další volitelné předměty lze volit ze široké nabídky předmětů na MFF UK.

| Kód     | Název                                        | Kredity | ZS       | LS |
|---------|----------------------------------------------|---------|----------|----|
| NDMI009 | Základy kombinatorické a výpočetní geometrie | 5       | 2/2 Z+Zk | _  |

#### Státní závěrečná zkouška

Student dostane pět otázek, dvě ze společného základu (jednu z Úvodu do složitosti a vyčíslitelnosti a jednu z Datových struktur) a po jedné ze tří studentem zvolených zkušebních okruhů uvedených v následujících seznamech. Alespoň dva z těchto zkušebních okruhů musejí náležet do zvoleného studentova zaměření, jeden zkušební okruh může být z jiného zaměření.

### Zkušební okruhy

- 1. Úvod do složitosti a vyčíslitelnosti
- 2. Datové struktury

## Zkušební požadavky

## 1. Úvod do složitosti a vyčíslitelnosti

Výpočetní modely (Turingovy stroje, RAM). Základní třídy složitosti a jejich vztahy. Aproximační algoritmy a schémata.

## Doporučené předměty

| Kód     | Název                                | Kredity | ZS       | LS |
|---------|--------------------------------------|---------|----------|----|
| NTIN090 | Základy složitosti a vyčíslitelnosti | 4       | 2/1 Z+Zk |    |

## Zkušební požadavky

## 2. Datové struktury

Vyhledávací stromy ((a,b)-stromy, splay stromy). Haldy (regulární, binomiální). Hašování, řešení kolizí, univerzální hašování, výběr hašovací funkce.

## Doporučené předměty

| Kód     | Název              | Kredity | ZS       | LS |
|---------|--------------------|---------|----------|----|
| NTIN066 | Datové struktury 1 | 6       | 2/2 Z+Zk | _  |

## a) Zaměření Diskrétní matematika a algoritmy

## Zkušební okruhy

- 1. Kombinatorika a teorie grafů
- 2. Pravděpodobnostní techniky a kombinatorická enumerace
- 3. Polyedrální optimalizace
- 4. Grafové algoritmy

## Zkušební požadavky

## 1. Kombinatorika a teorie grafů

Barevnost grafů a její varianty, např. tzv. vybíravost. Grafové minory, stromová šířka a její souvislost se složitostí. Geometrické reprezentace grafů (charakterizační věty, rozpoznávací algoritmy), algebraické vlastnosti grafů, teorie párování. Ramseyova teorie a Szemerédiho lemma o regularitě. Množinové systémy, např. Steinerovy systémy trojic a konečné geometrie.

## Doporučené předměty

| Kód     | Název                              | Kredity | ZS                 | LS                |
|---------|------------------------------------|---------|--------------------|-------------------|
| NDMI037 | Geometrické reprezentace grafů 1   | 3       | $2/0 \mathrm{~Zk}$ | _                 |
| NDMI059 | Grafové minory a stromové rozklady | 3       |                    | $2/0 \mathrm{Zk}$ |
| NDMI060 | Barevnost grafů a kombinatorických | 3       | 2/0  Zk            |                   |
|         | struktur                           |         |                    |                   |
| NDMI073 | Kombinatorika a grafy 3            | 5       | 2/2 Z+Zk           | _                 |

## 2. Pravděpodobnostní techniky a kombinatorická enumerace

Kombinatorické počítání, vytvořující funkce, rekurence, asymptotické odhady funkcí. Základní pravděpodobnostní modely, linearita střední hodnoty, použití rozptylu, Markovova nerovnost a aplikace na konkrétní příklady. Černovova nerovnost. Lovászovo lokální lemma. Pravděpodobnostní konstrukce a algoritmy.

## Doporučené předměty

| Kód     | Název                       | Kredity | ZS       | LS                |
|---------|-----------------------------|---------|----------|-------------------|
| NDMI015 | Kombinatorické počítání     | 3       | _        | 2/0  Zk           |
| NDMI087 | Analytická kombinatorika    | 4       |          | $2/1 \mathrm{Zk}$ |
| NDMI025 | Pravděpodobnostní algoritmy | 5       |          | 2/2 Z+Zk          |
| NTIN022 | Pravděpodobnostní techniky  | 5       | 2/2 Z+Zk |                   |

## 3. Polyedrální optimalizace

Teorie mnohostěnů, problém obchodního cestujícího, speciální matice, celočíselnost, párování a toky v sítích, teorie matroidů, elipsoidová metoda.

## Doporučené předměty

| Kód     | Název                                                   | Kredity | ZS       | LS       |
|---------|---------------------------------------------------------|---------|----------|----------|
|         | Základy složitosti a vyčíslitelnosti                    | 4       | 2/1 Z+Zk |          |
| NDMI065 | Teorie matroidů                                         | 5       |          | 2/2 Z+Zk |
| NOPT034 | Matematické programování<br>a polyedrální kombinatorika | 4       |          | 2/1 Z+Zk |

## 4. Grafové algoritmy

Pokročilé algoritmy pro nejkratší cesty, tranzitivní uzávěr, toky v sítích, řezy, párování a minimální kostry, testování rovinnosti grafů a kreslení do roviny. Grafové datové struktury: union-find, link/cut stromy, E-T stromy, plně dynamické udržování komponent souvislosti, společní předchůdci ve stromech (LCA).

## Doporučené předměty

| Kód     | Název               | Kredity | ZS      | LS                |
|---------|---------------------|---------|---------|-------------------|
| NDMI010 | Grafové algoritmy   | 3       | 2/0  Zk | _                 |
| NDMI088 | Grafové algoritmy 2 | 3       |         | $2/0 \mathrm{Zk}$ |
| NTIN067 | Datové struktury 2  | 3       |         | 2/0 Zk            |

## b) Zaměření Geometrie a matematické struktury v informatice

## Zkušební okruhy

- 1. Kombinatorická a výpočetní geometrie
- 2. Struktury v informatice
- 3. Topologie v informatice a kombinatorice
- 4. Teorie kategorií v informatice
- 5. Teorie čísel v informatice

## Zkušební požadavky

## 1. Kombinatorická a výpočetní geometrie

Základní věty o konvexních množinách (Hellyho, Radonova, Carathéodoryho, o oddělování) a jejich rozšíření (zlomková Hellyho věta, barevná Carathéodoryho věta, Tverbergova věta), Minkowského věta o mřížkách, incidence bodů a přímek, geometrická dualita, konvexní mnohostěny (základní vlastnosti, kombinatorická složitost), Voroného diagramy, konvexně nezávislé množiny, půlící přímky, složitost dolní obálky úseček.

### Doporučené předměty

| Kód     | Název                                                  | Kredity | ZS       | LS       |
|---------|--------------------------------------------------------|---------|----------|----------|
| NDMI009 | Základy kombinatorické a výpočetní                     | 5       | 2/2 Z+Zk | _        |
| NDMI013 | geometrie<br>Kombinatorická a výpočetní<br>geometrie 2 | 5       | _        | 2/2 Z+Zk |

### 2. Struktury v informatice

Relace a relační struktury. Částečně uspořádané množiny. Suprema a infima, polosvazy a svazy. Věty o pevných bodech. Distributivní svazy, Booleovy a Heytingovy algebry. Základy univerzální algebry. Základy obecné topologie a základní topologické konstrukce. Scottova topologie. DCPO a domény.

## Doporučené předměty

| Kód | Název                                                     | Kredity | ZS | LS                                                                      |
|-----|-----------------------------------------------------------|---------|----|-------------------------------------------------------------------------|
|     | Matematické struktury<br>Topologické a algebraické metody | 5<br>3  | _  | $\begin{array}{c} 2/2 \ \mathrm{Z+Zk} \\ 2/0 \ \mathrm{Zk} \end{array}$ |

## 3. Topologie v informatice a kombinatorice

Základy metrické a obecné topologie. Topologické konstrukce, speciální prostory, kompaktnost a souvislost. Simpliciální komplexy, simpliciální zobrazení. Jordanova věta o kružnici (informativně, její místo v diskrétní matematice). Borsukova–Ulamova věta a její aplikace: věta o sendviči, věta o náhrdelníku, barevnost Kneserových grafů. Brouwerova věta o pevném bodu.

## Doporučené předměty

| Kód     | Název                                 | Kredity | ZS | LS       |
|---------|---------------------------------------|---------|----|----------|
|         | Matematické struktury                 | 5       | _  | 2/2 Z+Zk |
| NDMI014 | Topologické metody<br>v kombinatorice | 5       | _  | 2/2 Z+Zk |

## 4. Teorie kategorií v informatice

Kategorie, funktory, transformace, konkrétní příklady. Limity a kolimity, speciální konstrukce a vytváření dalších. Adjunkce, vztah ke kategoriálním konstrukcím. Reflexe a koreflexe. Konkrétní příklady adjungovaných situací. Kartézsky uzavřené kategorie. Kategorie a struktury, zejména struktury užívané v informatice. Monadické algebry.

## Doporučené předměty

| Kód     | Název                                    | Kredity | ZS                 | LS |
|---------|------------------------------------------|---------|--------------------|----|
| NMAI065 | Základy teorie kategorií pro informatiky | 3       | $2/0 \mathrm{~Zk}$ | _  |

## 5. Teorie čísel v informatice

Diofantické aproximace (Dirichletova věta, Fareyovy zlomky, transcendentní čísla). Diofantické rovnice (Pellova rovnice, Thueho rovnice, věta o čtyřech čtvercích, desátý Hilbertův problém). Prvočísla (odhady počtů prvočísel, Dirichletova věta). Geometrie čísel (mřížky, Minkowskiho věta). Kongruence (kvadratické zbytky). Číselné rozklady (rozkladové identity, např. pentagonální identita).

## Doporučené předměty

| Kód     | Název                | Kredity | ZS                 | LS |
|---------|----------------------|---------|--------------------|----|
| NMAI040 | Úvod do teorie čísel | 3       | $2/0 \mathrm{~Zk}$ | _  |

## c) Zaměření **Optimalizace**

### Zkušební okruhy

- 1. Nelineární programování
- 2. Diskrétní optimalizační procesy
- 3. Vícekriteriální a celočíselné programování
- 4. Parametrické programování a intervalové metody

### Zkušební požadavky

## 1. Nelineární programování

Vlastnosti konvexních množin a konvexních funkcí. Zobecnění konvexních funkcí. Nutné a postačující podmínky optimality pro volné a vázané extrémy úloh nelineárního programování. Kvadratické programování. Semidefinitní programování. Dualita

v nelineárním programování. Metody řešení úloh na volný a vázaný extrém, včetně penalizačních a bariérových metod. Jednorozměrná optimalizace.

## Doporučené předměty

| Kód | Název                                                                | Kredity | ZS | LS       |
|-----|----------------------------------------------------------------------|---------|----|----------|
|     | Algoritmy nelineární optimalizace<br>Základy nelineární optimalizace | 5<br>5  |    | 2/2 Z+Zk |

#### 2. Diskrétní optimalizační procesy

Algoritmická teorie her, volební mechanismy, elektronické aukce, využití submodulárních funkcí v ekonomii. Optimalizace pomocí enumerací, generující funkce hranových řezů a perfektních párování, enumerační duality, problém maximálního řezu pro grafy vnořené na plochách.

### Doporučené předměty

| Kód     | Název                           | Kredity | ZS                 | LS          |
|---------|---------------------------------|---------|--------------------|-------------|
| NDMI064 | Aplikovaná diskrétní matematika | 3       | $2/0 \mathrm{~Zk}$ | <del></del> |
| NOPT018 | Základy nelineární optimalizace | 5       | 2/2 Z+Zk           | _           |

#### 3. Vícekriteriální a celočíselné programování

Různé přístupy k řešení úloh s více kritérii. Funkcionál přiřazený k dané úloze vektorového programování. Pareto-optimální řešení. Úlohy lineární a nelineární vektorové optimalizace. Metody pro získání Pareto-optimálních řešení. Úlohy lineárního programování s podmínkami celočíselnosti, resp. s binárními proměnnými. Nelineární optimalizační problémy s podmínkami celočíselnosti.

#### Doporučené předměty

| Kód | Název                                                    | Kredity | ZS | LS                                                                |
|-----|----------------------------------------------------------|---------|----|-------------------------------------------------------------------|
|     | Celočíselné programování<br>Vícekriteriální optimalizace | 0       | _  | $\begin{array}{c} 2/2 \text{ Z+Zk} \\ 2/0 \text{ Zk} \end{array}$ |

#### 4. Parametrické programování a intervalové metody

Obory stability řešení, jednoparametrické a víceparametrické programování, vztah k vícekriteriální optimalizaci. Intervalová lineární algebra (soustavy lineárních rovnic, regularita, vlastní čísla). Lineární programování s nepřesnými daty. Deterministická globální optimalizace, horní a dolní odhady na účelovou funkci a optimální hodnotu.

#### Doporučené předměty

| Kód | Název                                              | Kredity | ZS | LS     |
|-----|----------------------------------------------------|---------|----|--------|
|     | Vícekriteriální optimalizace<br>Intervalové metody | •       |    | 2/0 Zk |

#### 2. Informatika - Teoretická informatika

Garantující pracoviště: Katedra teoretické informatiky a matematické logiky, Informatický ústav Univerzity Karlovy

Garant programu: Prof. Mgr. Michal Koucký, Ph.D.

## Program se nedělí na zaměření

Cílem tohoto studijního programu je poskytnout studentům široké vzdělání v teoretických základech informatiky. Program předpokládá dobré matematické základy a rozvíjí schopnosti přesného myšlení. Absolventi a absolventky získají přehled a porozumění v mnoha oblastech současné teoretické informatiky - od kryptografie a limitů výpočetních systémů po pokročilé algoritmické techniky. Zároveň se dostanou v oblastech svého zájmu ke hranicím současného poznání. Součástí studia tak může být práce v mezinárodních týmech vedených předními odborníky například při řešení diplomové práce. Absolventi a absolventky jsou vyhledávání firmami vyvíjející technologie pro budoucnost založené na nynějším výzkumu. Zároveň je studijní program znamenitě připraví pro doktorské studium na kterékoliv světové univerzitě.

Část výuky může probíhat v anglickém jazyce.

### Povinné předměty

| Kód     | Název                        | Kredity | ZS                | LS                 |
|---------|------------------------------|---------|-------------------|--------------------|
| NTIN090 | Základy složitosti           | 4       | 2/1 Z+Zk          | _                  |
|         | a vyčíslitelnosti            |         |                   |                    |
| NTIN066 | Datové struktury 1           | 6       | 2/2 Z+Zk          |                    |
| NTIN022 | Pravděpodobnostní techniky   | 5       | 2/2 Z+Zk          |                    |
| NTIN063 | Složitost                    | 4       |                   | 2/1  Z+Zk          |
| NTIN100 | Základy přenosu a zpracování | 4       |                   | 2/1  Z+Zk          |
|         | informace                    |         |                   |                    |
| NSZZ023 | Diplomová práce I            | 6       |                   | $0/4 \mathrm{~Z}$  |
| NSZZ024 | Diplomová práce II           | 9       | $0/6 \mathrm{~Z}$ |                    |
| NSZZ025 | Diplomová práce III          | 15      | _                 | $0/10 \mathrm{~Z}$ |

## Povinně volitelné předměty

Je požadováno splnění povinně volitelných předmětů z následujícího seznamu v rozsahu alespoň 35 kreditů. Posluchači, kteří zahájili studium před rokem 2022, musí získat alespoň 47 kreditů.

| Kód     | Název                               | Kredity | ZS                 | LS                |
|---------|-------------------------------------|---------|--------------------|-------------------|
| NAIL021 | Booleovské funkce a jejich aplikace | 3       | $2/0 \mathrm{~Zk}$ | _                 |
| NTIN096 | Pseudo-Booleovská optimalizace      | 3       |                    | 2/0  Zk           |
| NAIL094 | Rozhodovací procedury a SAT/SMT     | 5       |                    | 2/2 Z+Zk          |
|         | řešiče                              |         |                    |                   |
| NDMI010 | Grafové algoritmy                   | 3       | 2/0  Zk            |                   |
| NDMI018 | Aproximační a online algoritmy      | 5       |                    | 2/2 Z+Zk          |
| NDMI025 | Pravděpodobnostní algoritmy         | 5       |                    | 2/2 Z+Zk          |
| NSWI072 | Algoritmy komprese dat              | 3       | 2/0  Zk            | <del></del>       |
| NTIN067 | Datové struktury 2                  | 3       |                    | 2/0  Zk           |
| NDMI074 | Algoritmy a jejich implementace     | 5       |                    | 2/2 Z+Zk          |
| NTIN081 | Výpočetní složitost a interaktivni  | 3       |                    | $2/0 \mathrm{Zk}$ |
|         | protokoly                           |         |                    |                   |
| NTIN082 | Neuniformní výpočetní modely        | 3       | _                  | $2/0 \mathrm{Zk}$ |
| NTIN087 | Textové algoritmy                   | 3       | 2/0  Zk            | <u>.</u>          |
| NTIN097 | Struktury v hyperkrychlich          | 3       | 2/0  Zk            | _                 |
|         |                                     |         |                    |                   |

| NTIN099     | Algoritmy pro reprezentaci znalostí  | 3 | _                  | $2/0 \mathrm{~Zk}$ |
|-------------|--------------------------------------|---|--------------------|--------------------|
| NTIN103     | Introduction to Parameterized        | 5 | 2/2 Z+Zk           |                    |
|             | Algorithms                           |   | •                  |                    |
| NOPT034     | Matematické programování             | 4 |                    | 2/1  Z+Zk          |
|             | a polyedrální kombinatorika          |   |                    | , .                |
| NTIN104     | Foundations of theoretical           | 4 | 2/1  Z+Zk          |                    |
| _           | cryptography                         |   | , .                |                    |
| NDMI067     | v -                                  | 3 | 2/0  Zk            |                    |
|             | Algoritmy pro specifické třídy grafů | 3 |                    | $2/0 \mathrm{~Zk}$ |
|             | Grafové algoritmy 2                  | 3 |                    | 2/0  Zk            |
|             | 6 Důkazová složitost a P vs. NP      | 3 |                    | 2/0  Zk            |
| 11111110100 | problém                              | J |                    | _, 0               |
| NMAI067     | -                                    | 3 | 2/0  Zk            | _                  |
|             | Paralelní algoritmy                  | 3 |                    | $2/0 \mathrm{Zk}$  |
| NTIN023     | Dynamické grafové datové struktury   | 3 | 2/0  Zk            |                    |
|             | Vyčíslitelnost                       | 3 |                    | $2/0 \mathrm{~Zk}$ |
|             | Rekurze                              | 3 | $2/0 \mathrm{~Zk}$ |                    |
| NTIN084     | Bioinformatické algoritmy            | 5 | 2/2 Z+Zk           |                    |
| NTIN085     | Vybrané kapitoly z výpočetní         | 4 | 2/1  Z+Zk          |                    |
|             | složitosti I                         |   | , .                |                    |
| NTIN086     | Vybrané kapitoly z výpočetní         | 4 |                    | 2/1  Z+Zk          |
|             | složitosti II                        |   |                    | , .                |
| NTIN101     | Selected Topics in Algorithms        | 3 | 2/0  Zk            |                    |
| NTIN111     | Selected Topics in Algorithms II     | 3 |                    | $2/0 \mathrm{Zk}$  |
| NTIN110     | Vybrané kapitoly z datových          | 3 | $2/0 \mathrm{Zk}$  |                    |
|             | struktur                             |   | 1                  |                    |
| NTIN088     | Algoritmická náhodnost               | 3 |                    | $2/0 \mathrm{Zk}$  |
| NTIN102     | Seminář z teoretické informatiky     | 3 | $0/2 \mathrm{~Z}$  | $0/2 \mathrm{~Z}$  |
| NDMI093     | Seminář z algoritmů a datových       | 3 |                    | $0/2 \mathrm{~Z}$  |
|             | struktur                             |   |                    | ,                  |
| NTIN106     | Implementace algoritmů a datových    | 3 | $0/2 \mathrm{~Z}$  |                    |
|             | struktur                             |   | 1                  |                    |
| NOPT059     | Optimalizace velkých problémů:       | 5 |                    | 2/2 Z+Zk           |
|             | přesné metody                        |   |                    | , .                |
| NOPT061     | Optimalizace velkých problémů:       | 5 |                    | 2/2 Z+Zk           |
| - 70-       | metaheuristiky                       | - |                    | ,                  |
|             | ·                                    |   |                    |                    |

Některé předměty jsou vyučovány pouze jednou za dva roky.

## Doporučené volitelné předměty

Uvedený seznam volitelných předmětů obsahuje předměty, které přímo navazují a rozšiřují látku relevantní pro tento studijní program. Student má dále možnost vybrat si další předměty volitelně ze široké nabídky informatických předmětů nabízených MFF UK.

| Kód     | Název                    | Kredity | ZS | LS        |
|---------|--------------------------|---------|----|-----------|
| NDMI007 | Kombinatorické algoritmy | 5       |    | 2/2  Z+Zk |

|         | Sociální sítě a jejich analýza<br>Programování s omezujícími |   | 2/2 2   21    |   |
|---------|--------------------------------------------------------------|---|---------------|---|
| NAIL076 | podmínkami<br>Logické programování 1                         | 3 | $2/0~{ m Zk}$ | _ |

#### Státní závěrečná zkouška

Student si zvolí tři okruhy z následující nabídky, z nichž dostane po jedné otázce. Otázky k jednotlivým okruhům vychází z látky probrané v rámci povinných předmětů a předmětů doporučených k jednotlivým okruhům. Celkem tedy každý student dostane tři otázky.

### Zkušební okruhy

- 1. Složitost a kryptografie
- 2. Reprezentace znalostí v binární doméně
- 3. Algoritmy
- 4. Datové struktury

### Zkušební požadavky

### 1. Složitost a kryptografie

Výpočty s orákuly a relativizované výpočetní třídy. Polynomiální hierarchie. Pravděpodobnostní výpočetní třídy. Neuniformní modely výpočtu. Interaktivní protokoly. Komunikační složitost. Vztahy a separace různých tříd složitosti. Kryptografie založená na předpokladech výpočetní obtížnosti. Jednosměrné funkce a hard-core predikáty. Pseudonáhodné generátory. Integrita dat (message authentication codes). Kryptografické hašovací funkce. Schémata pro commitment. Zero-knowledge důkazové systémy.

#### Doporučené předměty

| Kód     | Název                                        | Kredity | ZS       | LS                 |
|---------|----------------------------------------------|---------|----------|--------------------|
| NTIN063 | Složitost                                    | 4       | _        | 2/1  Z+Zk          |
| NTIN081 | Výpočetní složitost a interaktivni protokoly | 3       |          | 2/0  Zk            |
| NTIN082 | Neuniformní výpočetní modely                 | 3       |          | $2/0 \mathrm{~Zk}$ |
| NTIN104 | Foundations of theoretical cryptography      | 4       | 2/1 Z+Zk | <u> </u>           |

#### 2. Reprezentace znalostí v binární doméně

Rezoluce a její úplnost. Dualizace. Třídy booleovských funkcí a formulí se speciálními vlastnostmi. Exponenciální algoritmy pro k-SAT a obecný SAT. Parametrizované algoritmy pro SAT. Algoritmy pro MAXSAT. Reprezentace znalostí založené na NNF. Řešiče pro SAT založené na DPLL a CDCL a jejich využití pro SMT. Parciální krychle a mediánové grafy. Grayovy kódy. Isoperimetrické nerovnosti a lineární rozvržení. Turánovské problémy. Obvody, třída P/poly a její vlastnosti. QBF a jejich vlastnosti vzhledem k polynomiální hierarchii a třídě PSPACE. Algoritmy pro rozhodování QBF. Samo-opravné kódy.

| Kód     | Název                               | Kredity | ZS | LS                |
|---------|-------------------------------------|---------|----|-------------------|
| NTIN099 | Algoritmy pro reprezentaci znalostí | 3       |    | $2/0 \mathrm{Zk}$ |

| NAIL094 | Rozhodovací procedury a SAT/SMT řešiče                            | 5      | _                                     | 2/2 Z+Zk |
|---------|-------------------------------------------------------------------|--------|---------------------------------------|----------|
|         | Struktury v hyperkrychlích<br>Booleovské funkce a jejich aplikace | 3<br>3 | $2/0 \mathrm{~Zk}$ $2/0 \mathrm{~Zk}$ | _        |

#### 3. Algoritmy

Pokročilé grafové algoritmy, toky v síti. Lineární a semidefinitní programování, polynomiální algoritmy pro ně, použití v grafových a aproximačních algoritmech. Kombinatorické aproximační algoritmy a schémata. Pseudopolynomiální algoritmy, silná NP-úplnost. Parametrizované algoritmy - FPT, parametrizované dolní odhady, parametrizované aproximační algoritmy. Pravděpodobnostní algoritmy, přibližné počítání, hašování a jeho aplikace. Interaktivní protokoly a verifikace, PCP věta a její aplikace.

## Doporučené předměty

| Kód     | Název                          | Kredity | ZS       | LS       |
|---------|--------------------------------|---------|----------|----------|
| NDMI010 | Grafové algoritmy              | 3       | 2/0 Zk   | _        |
| NDMI018 | Aproximační a online algoritmy | 5       |          | 2/2 Z+Zk |
| NDMI025 | Pravděpodobnostní algoritmy    | 5       |          | 2/2 Z+Zk |
| NTIN103 | Introduction to Parameterized  | 5       | 2/2 Z+Zk |          |
|         | Algorithms                     |         |          |          |

## 4. Datové struktury

Výpočetní modely (RAM a jeho varianty). Entropie a informace. Samoopravné kódy. Komprese dat. Vyhledávací stromy. Hešování. Pokročilé haldy. Datové struktury pro práci s celými čísly. Vícerozměrné datové struktury. Datové struktury pro práci s řetězci. Textové algoritmy. Struktury pro práci s grafy. Dynamizace a persistence. Práce s paměťovou hierarchií. Data-streamové problémy.

#### Doporučené předměty

| Kód     | Název                        | Kredity | ZS      | LS        |
|---------|------------------------------|---------|---------|-----------|
| NTIN100 | Základy přenosu a zpracování | 4       | _       | 2/1  Z+Zk |
|         | informace                    |         |         |           |
| NTIN067 | Datové struktury 2           | 3       |         | 2/0  Zk   |
| NTIN087 | Textové algoritmy            | 3       | 2/0  Zk |           |
| NDMI010 | Grafové algoritmy            | 3       | 2/0  Zk |           |
| NSWI072 | Algoritmy komprese dat       | 3       | 2/0 Zk  | _         |

# 3. Informatika - Softwarové a datové inženýrství

Garantující pracoviště: Katedra softwarového inženýrství Garant programu: Prof. RNDr. Tomáš Skopal, Ph.D.

#### Zaměření:

- softwarové inženýrství
- vývoj software
- webové inženýrství
- databázové systémy
- analýza a zpracování rozsáhlých dat

Absolvent má hluboké softwarově a datově inženýrské znalosti v rámci zvoleného zaměření. Tyto znalosti nesledují pouze aktuální technologické trendy, ale jejich jádro je tvořeno hlubokým teoretickým základem. Absolvováním zaměření Softwarové inženýrství umí absolvent analyzovat požadavky na kvalitu a funkcionalitu softwarových řešení, navrhovat odpovídající architekturu a řídit proces vývoje a monitorování kvality. Absolvent zaměření Vývoj software je schopen navrhovat architekturu software a vést jeho implementaci v různých prostředích včetně paralelních nebo cloudových. Zaměření Webové inženýrství učí absolventy navrhovat a implementovat software fungující v prostředí webu, cloudu a dalších síťových technologií s důrazem na škálovatelnost, robustnost a bezpečnost. Se zaměřením Databázové systémy je absolvent připraven navrhovat a integrovat schémata v různých typech databází a na jejich základě pak implementovat a administrovat databázové aplikace. Absolvent zaměření Analýza a zpracování rozsáhlých dat se uplatní jako vědecky orientovaný odborník na dobývání znalostí z dat a jejich interpretaci uživateli, např. jako datový analytik (data scientist).

### Povinné předměty

| Kód     | Název               | Kredity | ZS            | LS                 |
|---------|---------------------|---------|---------------|--------------------|
| NTIN090 | Základy složitosti  | 4       | 2/1 Z+Zk      | _                  |
|         | a vyčíslitelnosti   |         |               |                    |
| NTIN066 | Datové struktury 1  | 6       | 2/2 Z+Zk      |                    |
| NSZZ023 | Diplomová práce I   | 6       |               | $0/4 \mathrm{~Z}$  |
| NSZZ024 | Diplomová práce II  | 9       | $0/6  { m Z}$ |                    |
| NSZZ025 | Diplomová práce III | 15      | _             | $0/10 \mathrm{~Z}$ |

## Týmový projekt

Student si volí právě jeden z trojice předmětů Softwarový projekt, Výzkumný projekt a Firemní projekt.

| Kód     | Název                   | Kredity | ZS                | LS                  |
|---------|-------------------------|---------|-------------------|---------------------|
| NPRG069 | Softwarový projekt      | 12      | 0/8 Z             | 0/8 Z               |
| NPRG070 | Výzkumný projekt        | 9       | $0/6 \mathrm{Z}$  | $0/6 \mathrm{Z}$    |
| NPRG071 | Firemní projekt         | 6       | $0/4 \mathrm{~Z}$ | $0/4 \mathrm{~Z}$   |
| NPRG072 | Zvýšený rozsah projektu | 3       | 0/2 Z             | $0/2 \; \mathrm{Z}$ |

#### Povinně volitelné profilující předměty

Je požadováno splnění povinně volitelných profilujících předmětů z následujícího seznamu v rozsahu alespoň 41 kreditů. Předměty je doporučené volit tak, aby pokrývaly zvolené studijní okruhy státní závěrečné zkoušky.

| Kód     | Název                                    | Kredity | ZS                | LS                |
|---------|------------------------------------------|---------|-------------------|-------------------|
| NPRG014 | Koncepty moderních programovacích jazyků | 4       | $0/3 \mathrm{~Z}$ | _                 |
| NPRG042 | Programování v paralelním prostředí      | 6       |                   | 2/2  KZ           |
| NPRG043 | Doporučené postupy<br>v programování     | 5       | _                 | 2/2  KZ           |
| NPRG024 | Návrhové vzory                           | 3       |                   | $0/2~\mathrm{KZ}$ |

| NSWI126 | Pokročilé nástroje pro vývoj       | 2 | $0/2 \; \mathrm{Z}$                           |                   |
|---------|------------------------------------|---|-----------------------------------------------|-------------------|
|         | a monitorování software            | _ | 37 = =                                        |                   |
| NSWI150 | Virtualizace a cloud computing     | 3 | $2/0 \mathrm{~Zk}$                            |                   |
| NSWI153 | Pokročilé programování webových    | 5 | <u>,                                     </u> | 2/2 Z+Zk          |
|         | aplikací                           |   |                                               |                   |
| NSWI145 | Webové služby                      | 5 | _                                             | 2/2 Z+Zk          |
| NSWI144 | Data na Webu                       | 5 |                                               | 2/1  Z+Zk         |
| NSWI130 | Architektury softwarových systémů  | 5 | 2/2 Z+Zk                                      |                   |
| NSWI026 | Pokročilé aspekty softwarového     | 5 | <del></del>                                   | 2/2 Z+Zk          |
|         | inženýrství                        |   |                                               |                   |
| NTIN043 | Formální základy softwarového      | 5 | 2/2 Z+Zk                                      |                   |
|         | inženýrství                        |   |                                               |                   |
| NDBI034 | Vyhledávání multimediálního obsahu | 4 | $2/1 \mathrm{~Z+Zk}$                          |                   |
|         | na webu                            |   |                                               |                   |
| NDBI040 | Moderní databázové systémy         | 5 |                                               | 2/2 Z+Zk          |
| NDBI048 | Data Science                       | 5 | 2/2 Z+Zk                                      |                   |
| NDBI042 | Techniky vizualizace dat           | 4 | _                                             | 2/1  Z+Zk         |
|         | Hluboké učení <sup>1</sup>         | 7 | _                                             | 3/2 Z+Zk          |
| NPFL138 | Hluboké učení <sup>1</sup>         | 8 | <del></del>                                   | 3/4 Z+Zk          |
| NDBI023 | Dobývání znalostí                  | 5 | _                                             | 2/2 Z+Zk          |
| NDBI016 | Transakce                          | 3 | <del></del>                                   | $2/0 \mathrm{Zk}$ |
| NDBI049 | Dotazovací jazyky 1                | 3 | $2/0 \mathrm{~Zk}$                            |                   |
| NDBI050 | Dotazovací jazyky 2                | 3 | <del></del>                                   | $2/0 \mathrm{Zk}$ |
| NDBI021 | Uživatelské preference a pokročilé | 4 |                                               | 2/1  Z+Zk         |
|         | metody doporučování                |   |                                               |                   |
| NSWI072 | Algoritmy komprese dat             | 3 | $2/0 \mathrm{Zk}$                             |                   |

 $<sup>^1</sup>$  Předmět NPFL114 byl vyučován do roku 2022/2023, předmět NPFL138 je vyučován od roku 2023/2024, předměty jsou vzájemně neslučitelné.

## Povinně volitelné předměty

Je požadováno splnění povinně volitelných předmětů z následujícího seznamu v rozsahu alespoň 15 kreditů.

| Kód     | Název                               | Kredity | ZS       | LS                 |
|---------|-------------------------------------|---------|----------|--------------------|
| NMAI060 | Pravděpodobnostní metody            | 3       | 2/0  Zk  |                    |
| NPRG054 | Vývoj vysoce výkonného software     | 6       | <u> </u> | $2/2~\mathrm{KZ}$  |
| NPRG058 | Pokročilé programování v paralelním | 6       | 2/2 Z+Zk |                    |
|         | prostředí                           |         |          |                    |
| NSWI035 | Principy distribuovaných systémů    | 3       | 2/0  Zk  |                    |
| NSWI080 | Middleware                          | 4       |          | $2/1~\mathrm{KZ}$  |
| NSWI101 | Modely a verifikace chování systémů | 5       | 2/2 Z+Zk |                    |
| NSWI131 | Vyhodnocování výkonnosti            | 4       |          | 2/1  Z+Zk          |
|         | počítačových systémů                |         |          |                    |
| NSWI149 | Softwarové inženýrství v praxi      | 3       |          | $2/0 \mathrm{~Z}$  |
| NSWI152 | Vývoj cloudových aplikací           | 3       |          | $0/2 \mathrm{~Z}$  |
| NTIN067 | Datové struktury 2                  | 3       |          | $2/0 \mathrm{~Zk}$ |

| NSWI166 | Úvod do doporučovacích systémů                                      | 4 |          | 2/1 Z+Zk |
|---------|---------------------------------------------------------------------|---|----------|----------|
| NPFL129 | a uživatelských preferencí<br>Úvod do strojového učení<br>v Pythonu | 5 | 2/2 Z+Zk | _        |

#### Státní závěrečná zkouška

Student si vybere tři okruhy podle zvoleného zaměření. Dva z těchto okruhů jsou povinné pro zvolené zaměření, třetí je volitelný.

#### Zkušební okruhy

- 1. Analýza a architektury software (povinný pro zaměření: Softwarové inženýrství)
- 2. Rozšířené programování (povinný pro zaměření: Softwarové inženýrství, Vývoj software)
- 3. Softwarové technologie (povinný pro zaměření: Vývoj software)
- 4. Webové technologie (povinný pro zaměření: Webové inženýrství)
- 5. Formální základy databázových systémů a dotazovací jazyky (povinný pro zaměření: Webové inženýrství, Databázové systémy)
- 6. Implementace databázových systémů (povinný pro zaměření: Databázové systémy)
- 7. Zpracování rozsáhlých a nestrukturovaných dat (povinný pro zaměření: Analýza a zpracování rozsáhlých dat)
- 8. Data mining (povinný pro zaměření: Analýza a zpracování rozsáhlých dat)

## Zkušební požadavky

#### 1. Analýza a architektury software

Procesy vývoje SW a jejich fáze. Analýza požadavků na SW - principy, postupy, využití jazyka UML (popis struktury a chování SW). Principy a postupy návrhu SW. Testování SW (V-model, činnosti v testování, typy testů, testovací techniky). Projektové řízení (SW projekt, metody projektového řízení, plánování SW projektů). SW architektura a její význam v procesu vývoje SW. Notace pro modelování a dokumentaci SW architektury (Bass, 4+1, ArchiMate, C4 model, apod). Druhy pohledů na SW architekturu a jejich význam. Klasifikace atributů kvality SW architektury, jejich popis pomocí scénářů a taktik. Architektonické vzory. Monolit, modularizovaný monolit, microservices, servisně orientovaná architektura, doménově-řízená architektura. Algebraické metody formálních specifikací, vícedruhové algebry, iniciální modely. Temporální logika. Formální základy jazyka UML. OCL jako specifikační jazyk a formální základy dle specifikace.

#### Doporučené předměty

| Kód     | Název                                         | Kredity | ZS       | LS       |
|---------|-----------------------------------------------|---------|----------|----------|
| NSWI130 | Architektury softwarových systémů             | 5       | 2/2 Z+Zk | _        |
| NSWI026 | Pokročilé aspekty softwarového<br>inženýrství | 5       | _        | 2/2 Z+Zk |
| NTIN043 | Formální základy softwarového<br>inženýrství  | 5       | 2/2 Z+Zk | _        |

#### 2. Rozšířené programování

Moderní konstrukce a pokročilé aspekty programovacích jazyků. Generické programování a metaprogramování, generika a šablony, politiky, traits, typová dedukce, re-

flexe. Výjimky a bezpečné programování v prostředí s výjimkami. Implementace objektových vlastností, běhová podpora, volací konvence, garbage collection. Paralelní programování, Amdahlův zákon, synchronizační primitiva, task stealing. Návrhové vzory a jejich využití. Skriptovací jazyky, prototype-based jazyky. Domain Specific Languages. Funkcionální programování. Principy tvorby kvalitního kódu, doporučené postupy, refaktorizace. Testování funkčnosti, hledání chyb, monitorování programů.

## Doporučené předměty

| Kód     | Název                                    | Kredity | ZS    | LS                 |
|---------|------------------------------------------|---------|-------|--------------------|
| NPRG014 | Koncepty moderních programovacích jazyků | 4       | 0/3 Z |                    |
| NPRG024 | Návrhové vzory                           | 3       |       | $0/2 \mathrm{~KZ}$ |
| NPRG043 | Doporučené postupy<br>v programování     | 5       | _     | 2/2  KZ            |
| NPRG042 | Programování v paralelním prostředí      | 6       | _     | 2/2 KZ             |

#### 3. Softwarové technologie

Architektury operačních systémů, správa procesů, správa paměti, komunikace a synchronizace, paralelismus, virtualizace, stránkování. Souborové systémy, přístupová práva a bezpečnost. Multiplatformní a přenositelné aplikace. Testování a monitorování funkčnosti a výkonnosti. Architektura webových aplikací, skriptování na straně serveru a klienta. Cloudové služby, IaaS, PaaS a SaaS. Virtualizace, hardwarově asistovaná virtualizace, paravirtualizace, kontejnery, Linux namespaces, cgroups, docker, orchestrace, edge computing, IoT. Vyvažování zátěže, vysoká dostupnost. MapReduce.

#### Doporučené předměty

| Kód     | Název                                                   | Kredity | ZS                 | LS       |
|---------|---------------------------------------------------------|---------|--------------------|----------|
| NSWI126 | Pokročilé nástroje pro vývoj<br>a monitorování software | 2       | $0/2 \mathrm{~Z}$  | _        |
| NSWI153 | Pokročilé programování webových aplikací                | 5       | <del></del>        | 2/2 Z+Zk |
| NSWI150 | Virtualizace a cloud computing                          | 3       | $2/0 \mathrm{~Zk}$ | _        |

#### 4. Webové technologie

Obecný přehled základní webových technologií. Síťové služby pro webové technologie. Webové služby. Architektura klient-server aplikací, skriptování na straně serveru a klienta, webové frameworky. Použití databázových systémů ve webových aplikacích, NoSQL databáze, multimediální databáze. Indexace a prohledávání dokumentů, principy fungování webových vyhledávačů. Linked Data - principy, datový model RDF a jeho serializace, dotazovací jazyk SPARQL, často používané slovníky, SHACL, Solid.

| Kód     | Název                             | Kredity | ZS       | LS       |
|---------|-----------------------------------|---------|----------|----------|
| NSWI130 | Architektury softwarových systémů | 5       | 2/2 Z+Zk |          |
| NSWI153 | Pokročilé programování webových   | 5       |          | 2/2 Z+Zk |
|         | aplikací                          |         |          |          |
| NSWI144 | Data na Webu                      | 5       |          | 2/1 Z+Zk |

|         | Webové služby<br>Vyhledávání multimediálního obsahu | $\frac{5}{4}$ | $\frac{-}{2/1}$ Z+Zk | $^{2/2} \ Z{+}Zk \\ -$ |
|---------|-----------------------------------------------------|---------------|----------------------|------------------------|
| NDBI040 | na webu<br>Moderní databázové systémy               | 5             | _                    | 2/2 Z+Zk               |

## 5. Formální základy databázových systémů a dotazovací jazyky

Relační kalkuly, relační algebry. Relační úplnost. Bezpečné výrazy, ekvivalence relačních dotazovacích jazyků. Věta o tranzitivním uzávěru relace. Sémantika SQL. Standardy SQL. Objektové rozšíření relačního modelu dat. Databáze textů – Booleovský a vektorový model, vyhledávání a indexování, uspořádání odpovědí, top-k operátor. Datalog. Rekurze v SQL. Datový model XML. Datový model RDF a jeho serializace, dotazovací jazyk SPARQL, RDF Schema a reasoning/inference. Podobnostní vyhledávání v multimediálních databázích, modelování a extrakce deskriptorů, metrické indexační metody.

## Doporučené předměty

| Kód     | Název                              | Kredity | ZS                | LS                |
|---------|------------------------------------|---------|-------------------|-------------------|
| NSWI144 | Data na Webu                       | 5       | _                 | 2/1 Z+Zk          |
| NDBI034 | Vyhledávání multimediálního obsahu | 4       | 2/1 Z+Zk          |                   |
|         | na webu                            |         |                   |                   |
| NDBI049 | Dotazovací jazyky 1                | 3       | $2/0 \mathrm{Zk}$ |                   |
| NDBI050 | Dotazovací jazyky 2                | 3       |                   | $2/0 \mathrm{Zk}$ |
| NDBI021 | Uživatelské preference a pokročilé | 4       |                   | 2/1 Z+Zk          |
|         | metody doporučování                |         |                   |                   |

#### 6. Implementace databázových systémů

Transakce – ACID a vlastnosti rozvrhů; uzamykací protokoly a uváznutí; distribuované transakce (2PC protokol); zotavení z chyb, žurnály. Distribuce s horizontální fragmentací, implementace NoSQL databází, CAP teorém. Indexace relačních dat. Přístupové metody k prostorovým objektům. Algoritmy implementace relačních operací, agregačních funkcí. Vyhodnocování a optimalizace dotazů. Komprese dat: Huffmanovo kódování, aritmetické kódování, LZ algoritmy, Burrows-Wheelerova transformace.

#### Doporučené předměty

| Kód     | Název                      | Kredity | ZS       | LS                |
|---------|----------------------------|---------|----------|-------------------|
| NDBI016 | Transakce                  | 3       |          | $2/0 \mathrm{Zk}$ |
| NSWI072 | Algoritmy komprese dat     | 3       | 2/0  Zk  |                   |
| NDBI040 | Moderní databázové systémy | 5       |          | 2/2 Z+Zk          |
| NTIN066 | Datové struktury 1         | 6       | 2/2 Z+Zk |                   |

#### 7. Zpracování rozsáhlých a nestrukturovaných dat

Distribuce s horizontální fragmentací, implementace NoSQL databází, CAP teorém. Big Data management - distribuce, škálování, replikace, transakce. Paralelní a distribuované zpracování rozsáhlých dat, MapReduce. Úložiště typu klíč - hodnota. Sloupcová úložiště. Dokumentová úložiště. Modely pro fulltextové dotazování - vektorový, booleovský model, uspořádání odpovědí, top-k operátor. Podobnostní vyhledávání v multimediálních databázích, modelování a extrakce deskriptorů, metrické indexační

metody. Techniky vizualizace dat - redukce dimenze (PCA, MDS, t-SNE, UMAP), vizualizace grafových dat (force directed placement algoritmy, multi-scale algoritmy). Data science a metoda CRISP-DM - příprava, modelování a vyhodnocení. Základní statistické modely v data science. Modelování preferencí, varianty zpětné vazby od uživatele, doporučovací systémy.

### Doporučené předměty

| Kód     | Název                              | Kredity | ZS           | LS        |
|---------|------------------------------------|---------|--------------|-----------|
| NDBI040 | Moderní databázové systémy         | 5       | _            | 2/2 Z+Zk  |
| NDBI034 | Vyhledávání multimediálního obsahu | 4       | 2/1 Z+Zk     |           |
|         | na webu                            |         |              |           |
| NDBI042 | Techniky vizualizace dat           | 4       |              | 2/1  Z+Zk |
| NDBI048 | Data Science                       | 5       | 2/2 Z+Zk     |           |
| NDBI021 | Uživatelské preference a pokročilé | 4       | <del>-</del> | 2/1 Z+Zk  |
|         | metody doporučování                |         |              |           |

#### 8. Data mining

Základní principy databázových systémů, datových skladů a technologie OLAP. Dobývání znalostí z databází - příprava dat a jejich předzpracování, techniky pro popis konceptů, metody pro dobývání asociativních pravidel, metody pro klasifikaci a predikci dat, metody pro klastrovou analýzu, dobývání znalostí v databázových systémech. Statistické metody pro data mining. Hledání různých typů závislostí. Bayesovská analýza, bayesovské sítě. Pravděpodobnostní modely dokumentografického informačního systému. Metody řízeného učení pro klasifikaci a regresi. Support Vector Machines a kernelové funkce. Evaluace experimentů. Techniky vizualizace dat - redukce dimenze (PCA, MDS, t-SNE, UMAP), vizualizace grafových dat (force directed placement algoritmy, multi-scale algoritmy). Data science a metoda CRISP-DM - příprava, modelování a vyhodnocení. Základní statistické modely v data science.

## Doporučené předměty

| Kód     | Název                    | Kredity | ZS       | LS                |
|---------|--------------------------|---------|----------|-------------------|
| NDBI023 | Dobývání znalostí        | 5       | _        | 2/2 Z+Zk          |
| NAIL029 | Strojové učení           | 3       |          | $2/0 \mathrm{Zk}$ |
| NDBI042 | Techniky vizualizace dat | 4       |          | 2/1  Z+Zk         |
| NDBI048 | Data Science             | 5       | 2/2 Z+Zk |                   |

# 4. Informatika - Softwarové systémy

Garantující pracoviště: Katedra distribuovaných a spolehlivých systémů

Garant programu: Prof. Ing. Petr Tůma, Dr.

#### Zaměření:

- systémové programování
- spolehlivé systémy
- výkonné systémy

Tento program je určen studentům se zájmem o hluboké znalosti z oblasti programovacích jazyků a počítačových systémů. Nabízí tři zaměření - Systémové programování, které vybaví absolventa znalostmi o moderních operačních systémech a souvisejících technologiích jako middleware či virtual machines, Spolehlivé systémy, které se soustředí na metody systematické konstrukce systémů s vysokou spolehlivostí, a konečně Výkonné systémy, které kladou důraz na znalosti potřebné pro vývoj software na moderních paralelních a distribuovaných systémech.

## Povinné předměty

| Kód     | Název               | Kredity | ZS       | LS                 |
|---------|---------------------|---------|----------|--------------------|
| NTIN066 | Datové struktury 1  | 6       | 2/2 Z+Zk | _                  |
| NTIN090 | Základy složitosti  | 4       | 2/1 Z+Zk |                    |
|         | a vyčíslitelnosti   |         |          |                    |
| NSZZ023 | Diplomová práce I   | 6       |          | $0/4 \mathrm{~Z}$  |
| NSZZ024 | Diplomová práce II  | 9       | 0/6 Z    |                    |
| NSZZ025 | Diplomová práce III | 15      | _        | $0/10 \mathrm{~Z}$ |

## Povinně volitelné předměty

Hlavní náplň programu představují následující povinně volitelné předměty, u kterých program požaduje studium podle preferencí studenta v objemu nejméně 48 kreditů. Při volbě předmětů je vhodné zohlednit také budoucí zaměření odborné části státní závěrečné zkoušky.

| Kód     | Název                                                   | Kredity | ZS                 | LS                 |
|---------|---------------------------------------------------------|---------|--------------------|--------------------|
| NSWI151 | Administrace virtualizační infrastruktury               | 3       | _                  | 0/2 Z              |
| NSWI132 | Analýza programů a verifikace kódu                      | 5       |                    | 2/2 Z+Zk           |
| NSWI176 | Dynamický překlad prakticky                             | 2       |                    | $0/2 \mathrm{~Z}$  |
| NSWI133 | Firemní semináře                                        | 2       | $0/2 \mathrm{~Z}$  |                    |
| NTIN043 | Formální základy softwarového inženýrství               | 5       | 2/2 Z+Zk           |                    |
| NPRG014 | Koncepty moderních programovacích jazyků                | 4       | $0/3 \mathrm{~Z}$  | _                  |
| NSWI109 | Konstrukce překladačů                                   | 4       |                    | 2/1  Z+Zk          |
| NSWI080 | Middleware                                              | 4       |                    | $2/1~\mathrm{KZ}$  |
| NSWI164 | Modelem řízený vývoj                                    | 2       | $0/1 \mathrm{~Z}$  |                    |
| NSWI101 | Modely a verifikace chování systémů                     | 5       | 2/2 Z+Zk           |                    |
| NSWI089 | Ochrana informací 1                                     | 3       | 2/0  Zk            |                    |
| NSWI071 | Ochrana informací 2                                     | 3       |                    | $2/0 \mathrm{~Zk}$ |
| NSWI026 | Pokročilé aspekty softwarového<br>inženýrství           | 5       | _                  | 2/2 Z+Zk           |
| NSWI126 | Pokročilé nástroje pro vývoj<br>a monitorování software | 2       | 0/2 Z              |                    |
| NSWI161 | Pokročilé operační systémy                              | 3       |                    | 2/0  Zk            |
| NPRG058 | Pokročilé programování v paralelním prostředí           | 6       | 2/2 Z+Zk           | _                  |
| NMAI060 | Pravděpodobnostní metody                                | 3       | $2/0 \mathrm{~Zk}$ | _                  |

|         | Principy distribuovaných systémů                                 | 3 | 2/0 Zk            |                   |
|---------|------------------------------------------------------------------|---|-------------------|-------------------|
| NAIL094 | Rozhodovací procedury a SAT/SMT řešiče                           | 5 | <del></del>       | 2/2 Z+Zk          |
| NSWI054 | Softwarové inženýrství pro spolehlivé systémy                    | 3 |                   | $0/2 \mathrm{~Z}$ |
| NDBI042 | Techniky vizualizace dat                                         | 4 |                   | 2/1  Z+Zk         |
| NSWE001 | Vestavěné systémy a systémy reálného času                        | 5 | _                 | 2/2 Z+Zk          |
| NSWI150 | Virtualizace a cloud computing                                   | 3 | $2/0 \mathrm{Zk}$ |                   |
| NSWI131 | Vyhodnocování výkonnosti<br>počítačových systémů                 | 4 | _                 | 2/1 Z+Zk          |
| NSWI057 | Výběrový seminář z distribuovaných<br>a komponentových systémů I | 3 | $0/2 \mathrm{~Z}$ | $0/2 \mathrm{~Z}$ |
| NSWI152 | Vývoj cloudových aplikací                                        | 3 |                   | $0/2 \mathrm{~Z}$ |
| NPRG075 | Design programovacích jazyků                                     | 2 | $0/2 \mathrm{~Z}$ | <del></del>       |
| NPRG076 | Virtualní stroje a běhová prostředí                              | 3 | <del></del>       | $1/1~\mathrm{KZ}$ |
| NPRG077 | Napište si vlastní programovací mini-systém(y)!                  | 2 | $0/2 \mathrm{~Z}$ | _                 |

## Povinně volitelné předměty z bakalářského programu

Program dává prostor pro další studium předmětů předchozího bakalářského programu v objemu nejméně 8 kreditů. Tuto povinnost je možné splnit také uznáním předmětů z předchozího bakalářského studia podle platných studijních předpisů. Započítané předměty bakalářského programu jsou:

| Kód     | Název                                    | Kredity | ZS                | LS                                           |
|---------|------------------------------------------|---------|-------------------|----------------------------------------------|
| NPRG038 | Pokročilé programování v jazyce          | 5       | <u>—</u>          | 2/2 Z+Zk                                     |
|         | C#                                       |         |                   |                                              |
|         | Pokročilé programování v C++             | 5       |                   | 2/2 Z+Zk                                     |
| NPRG021 | Pokročilé programování v jazyce<br>Java  | 5       | _                 | 2/2 Z+Zk                                     |
| NSWI153 | Pokročilé programování webových aplikací | 5       | _                 | 2/2 Z+Zk                                     |
| NPRG043 | Doporučené postupy<br>v programování     | 5       | _                 | $2/2~\mathrm{KZ}$                            |
| NPRG054 | Vývoj vysoce výkonného software          | 6       | _                 | $2/2~\mathrm{KZ}$                            |
| NPRG056 | Programování mobilních zařízení          | 3       | $0/2 \mathrm{~Z}$ | <del>-</del>                                 |
| NPRG042 | Programování v paralelním                | 6       | <u> </u>          | 2/2  KZ                                      |
|         | prostředí                                |         |                   |                                              |
| NSWI143 | Architektura počítačů                    | 3       |                   | $2/0 \mathrm{Zk}$                            |
| NSWI098 | Principy překladačů                      | 6       | $2/2~\mathrm{KZ}$ | <u>,                                    </u> |

## Povinně volitelné předměty týmového projektu

Program požaduje absolvovat jeden z předmětů týmového projektu:

| Kód     | Název                | Kredity | ZS                | LS    |
|---------|----------------------|---------|-------------------|-------|
| NPRG069 | ) Softwarový projekt | 12      | $0/8 \mathrm{~Z}$ | 0/8 Z |

| NPRG070 Výzkumný projekt | 9 | $0/6 \mathrm{~Z}$ | $0/6 \mathrm{~Z}$ |
|--------------------------|---|-------------------|-------------------|
| NPRG071 Firemní projekt  | 6 | $0/4 \mathrm{~Z}$ | $0/4 \mathrm{~Z}$ |

#### Státní závěrečná zkouška

Požadavky k odborné části státní závěrečné zkoušky jsou dány zvoleným zaměřením programu.

## a) Zaměření Systémové programování

Toto zaměření ověřuje znalosti a dovednosti týkající se systémového programování a vnitřní funkce softwarových systémů, zkoušené v rozsahu následujících profilujících předmětů:

| Kód     | Název                                                                               | Kredity     | ZS     | LS                    |
|---------|-------------------------------------------------------------------------------------|-------------|--------|-----------------------|
| NPRG014 | Koncepty moderních programovacích jazyků                                            | 4           | 0/3 Z  | _                     |
| NSWI161 | Middleware Pokročilé operační systémy Pokročilé programování v paralelním prostředí | 4<br>3<br>6 |        | 2/1 KZ<br>2/0 Zk<br>— |
| NSWI035 | Principy distribuovaných systémů                                                    | 3           | 2/0 Zk | _                     |

## b) Zaměření **Spolehlivé systémy**

Toto zaměření ověřuje znalosti a dovednosti týkající se konstrukce spolehlivých softwarových systémů, zkoušené v rozsahu následujících profilujících předmětů:

| Kód     | Název                               | Kredity | ZS                | LS       |
|---------|-------------------------------------|---------|-------------------|----------|
| NSWI132 | Analýza programů a verifikace kódu  | 5       | _                 | 2/2 Z+Zk |
| NTIN043 | Formální základy softwarového       | 5       | 2/2 Z+Zk          | _        |
|         | inženýrství                         |         |                   |          |
| NSWI164 | Modelem řízený vývoj                | 2       | $0/1 \mathrm{~Z}$ |          |
| NSWI101 | Modely a verifikace chování systémů | 5       | 2/2 Z+Zk          |          |
| NSWE001 | Vestavěné systémy a systémy         | 5       |                   | 2/2 Z+Zk |
|         | reálného času                       |         |                   |          |

## c) Zaměření **Výkonné systémy**

Toto zaměření ověřuje znalosti a dovednosti týkající se konstrukce softwarových systémů s vysokým výpočetním výkonem, zkoušené v rozsahu následujících profilujících předmětů:

| Kód     | Název                               | Kredity | ZS                | LS        |
|---------|-------------------------------------|---------|-------------------|-----------|
| NSWI109 | Konstrukce překladačů               | 4       | _                 | 2/1 Z+Zk  |
| NPRG058 | Pokročilé programování v paralelním | 6       | 2/2 Z+Zk          | _         |
|         | prostředí                           |         |                   |           |
| NSWI035 | Principy distribuovaných systémů    | 3       | 2/0  Zk           |           |
| NSWI150 | Virtualizace a cloud computing      | 3       | $2/0 \mathrm{Zk}$ |           |
| NSWI131 | Vyhodnocování výkonnosti            | 4       |                   | 2/1  Z+Zk |
|         | počítačových systémů                |         |                   |           |

## 5. Informatika - Jazykové technologie a počítačová lingvistika

Garantující pracoviště: Ústav formální a aplikované lingvistiky Garant programu: Doc. Mgr. Barbora Vidová Hladká, Ph.D.

#### Zaměření:

- počítačová a formální lingvistika
- statistické metody a metody strojového učení pro zpracování jazyka

Absolventa charakterizuje porozumění matematicko-informatickým základům počítačového zpracování přirozených jazyků a teoretickým základům jejich formálního popisu. Má dobrou znalost obecných metod strojového učení, a to včetně nejmodernějších metod hlubokého učení. Získané znalosti je schopen uplatňovat v návrhu a realizaci systémů pro zpracování přirozených jazyků v psané i mluvené formě stejně jako systémů pro práci s rozsáhlými kolekcemi nestrukturovaných i strukturovaných dat obecně (ve finančnictví, ekonomice, biologii, lékařství a dalších oborech využívajících metod umělé inteligence). Absolvent disponuje potřebnými znalostmi a praktickými dovednostmi (programování, práce v týmu), které najdou uplatnění v informačních a komunikačních technologiích (ICT).

## Povinné předměty

| Název                         | Kredity                                                                                                                                                                                  | ZS                                                                                                                                                                                                     | LS                                                   |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Datové struktury 1            | 6                                                                                                                                                                                        | 2/2 Z+Zk                                                                                                                                                                                               | _                                                    |
| Základy složitosti            | 4                                                                                                                                                                                        | 2/1  Z+Zk                                                                                                                                                                                              |                                                      |
| a vyčíslitelnosti             |                                                                                                                                                                                          |                                                                                                                                                                                                        |                                                      |
| Úvod do obecné lingvistiky    | 4                                                                                                                                                                                        | 2/1  Z+Zk                                                                                                                                                                                              |                                                      |
| Statistické metody zpracování | 5                                                                                                                                                                                        | 2/2 Z+Zk                                                                                                                                                                                               |                                                      |
| přirozených jazyků I          |                                                                                                                                                                                          |                                                                                                                                                                                                        |                                                      |
| Hluboké učení                 | 8                                                                                                                                                                                        |                                                                                                                                                                                                        | 3/4 Z+Zk                                             |
| Diplomová práce I             | 6                                                                                                                                                                                        |                                                                                                                                                                                                        | $0/4 \mathrm{~Z}$                                    |
| Diplomová práce II            | 9                                                                                                                                                                                        | $0/6 \mathrm{Z}$                                                                                                                                                                                       |                                                      |
| Diplomová práce III           | 15                                                                                                                                                                                       |                                                                                                                                                                                                        | $0/10   { m Z}$                                      |
|                               | Datové struktury 1 Základy složitosti a vyčíslitelnosti Úvod do obecné lingvistiky Statistické metody zpracování přirozených jazyků I Hluboké učení Diplomová práce I Diplomová práce II | Datové struktury 1 6 Základy složitosti 4 a vyčíslitelnosti Úvod do obecné lingvistiky 4 Statistické metody zpracování 5 přirozených jazyků I Hluboké učení 8 Diplomová práce I 6 Diplomová práce II 9 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

#### Povinně volitelné předměty - skupina 1

Je požadováno splnění povinně volitelných předmětů z následujícího seznamu v rozsahu alespoň 24 kreditů.

| Kód     | Název                                                  | Kredity | ZS       | LS                 |
|---------|--------------------------------------------------------|---------|----------|--------------------|
| NPFL006 | Úvod do formální lingvistiky                           | 3       | 2/0  Zk  | _                  |
| NPFL038 | Základy rozpoznávání a generování mluvené řeči         | 5       | 2/2 Z+Zk | _                  |
| NPFL068 | Statistické metody zpracování<br>přirozených jazyků II | 5       |          | 2/2 Z+Zk           |
| NPFL070 | Zdroje jazykových dat                                  | 4       | 1/2  KZ  |                    |
| NPFL075 | Závislostní gramatiky a korpusy                        | 3       | <u> </u> | $1/1 \mathrm{~KZ}$ |
| NPFL079 | Algoritmy rozpoznávání mluvené<br>řeči                 | 5       | _        | 2/2 Z+Zk           |
| NPFL082 | Informační struktura věty<br>a výstavba diskurzu       | 2       | _        | $0/2 \mathrm{~Z}$  |

| NPFL083  | Lingvistické teorie a gramatické formalismy | 5 |                   | 2/2 Z+Zk          |
|----------|---------------------------------------------|---|-------------------|-------------------|
| NDEL 007 | v                                           | E |                   | 9/9 7 + 71-       |
|          | Statistický strojový překlad                | 5 |                   | 2/2 Z+Zk          |
| NPFL093  | Aplikace NLP                                | 4 |                   | 2/1  KZ           |
| NPFL094  | Morfologická a syntaktická analýza          | 3 | 2/0  KZ           |                   |
| NPFL095  | Moderní metody v počítačové                 | 3 | $0/2  \mathrm{Z}$ |                   |
|          | lingvistice                                 |   |                   |                   |
| NPFL097  | Neřízené strojové učení v NLP               | 3 | $1/1 \mathrm{Z}$  |                   |
| NPFL099  | Statistické dialogové systémy               | 4 | 2/1  Z+Zk         |                   |
| NPFL100  | Variabilita jazyků v čase a prostoru        | 2 | $1/1 \mathrm{Z}$  |                   |
| NPFL103  | Vyhledávání informací                       | 5 | 2/2 Z+Zk          |                   |
|          | Metody strojového učení                     | 4 |                   | 1/2 Z+Zk          |
| NPFL122  | Hluboké zpětnovazební učení $^2$            | 5 | 2/2 Z+Zk          |                   |
| NPFL139  | Hluboké zpětnovazební učení <sup>2</sup>    | 8 |                   | 3/4 Z+Zk          |
| NPFL128  | Jazykové technologie v praxi                | 4 |                   | $2/1~\mathrm{KZ}$ |

 $<sup>^2</sup>$  Předmět NPFL122 byl vyučován do roku 2022/2023, předmět NPFL139 je vyučován od roku 2023/2024, předměty jsou vzájemně neslučitelné.

## Povinně volitelné předměty - skupina 2 (projektové předměty)

Je požadováno splnění povinně volitelných předmětů z následujícího seznamu v rozsahu alespoň 6 kreditů. Má-li student zájem o absolvování více jak jednoho projektového předmětu, může k tomu využít volitelné předměty NPRG078 Softwarový projekt II, NPRG079 Výzkumný projekt II či NPRG080 Firemní projekt II.

| Kód     | Název              | Kredity | ZS                | LS                |
|---------|--------------------|---------|-------------------|-------------------|
| NPRG069 | Softwarový projekt | 12      | 0/8 Z             | 0/8 Z             |
| NPRG070 | Výzkumný projekt   | 9       | $0/6 \mathrm{~Z}$ | $0/6 \mathrm{~Z}$ |
| NPRG071 | Firemní projekt    | 6       | $0/4 \mathrm{~Z}$ | $0/4 \mathrm{~Z}$ |

#### Povinně volitelné předměty - skupina 3 (doplňující předměty)

Je požadováno splnění povinně volitelných předmětů z následujícího seznamu v rozsahu alespoň 10 kreditů.

| Kód     | Název                             | Kredity | ZS                | LS                 |
|---------|-----------------------------------|---------|-------------------|--------------------|
| NAIL025 | Evoluční algoritmy 1              | 5       | 2/2 Z+Zk          | <del></del>        |
| NAIL069 | Umělá inteligence 1               | 4       | 2/1  Z+Zk         |                    |
| NAIL070 | Umělá inteligence 2               | 3       |                   | $2/0 \mathrm{~Zk}$ |
| NAIL104 | Pravděpodobnostní grafické modely | 3       | $2/0 \mathrm{Zk}$ |                    |
| NPGR036 | Počítačové vidění                 | 5       |                   | 2/2 Z+Zk           |

#### Státní závěrečná zkouška

Studijní program Informatika - Jazykové technologie a počítačová lingvistika má jeden společný povinný okruh pro obě zaměření (okruh 1), jeden povinný okruh dle zvoleného zaměření (okruh 2, nebo okruh 3) a jeden okruh si student vybírá z volitelných okruhů (okruhy 4 a 5). Jako tento poslední okruh si student může zvolit také povinný okruh druhého zaměření tohoto programu. Celkem tedy každý student dostane otázky ze tří okruhů.

### Zkušební okruhy

- 1. Základy počítačového zpracování přirozeného jazyka (povinný okruh pro obě zaměření)
- 2. Lingvistické teorie a formalismy (povinný okruh pro zaměření počítačová a formální lingvistika)
- 3. Statistické metody a strojové učení v počítačové lingvistice (povinný okruh pro zaměření statistické metody a metody strojového učení pro zpracování jazyka)
- 4. Zpracování řeči, dialogové systémy a multimodální systémy (volitelný okruh)
- 5. Aplikace metod zpracování přirozeného jazyka (volitelný okruh)

### Zkušební požadavky

## 1. Základy počítačového zpracování přirozeného jazyka

Úrovně popisu jazyka: fonetika, fonologie, morfologie, syntax, sémantika, pragmatika. Základní pojmy z teorie informace. Markovovy modely. Jazykové modely a vyhlazování. Třídy slov. Anotované korpusy. Návrh a vyhodnocení lingvistických experimentů, evaluační metriky. Morfologické značkování. Přehled základních klasifikačních a regresních algoritmů.

## Doporučené předměty

| Kód     | Název                         | Kredity | ZS       | LS       |
|---------|-------------------------------|---------|----------|----------|
| NPFL063 | Úvod do obecné lingvistiky    | 4       | 2/1 Z+Zk | <u> </u> |
| NPFL067 | Statistické metody zpracování | 5       | 2/2 Z+Zk |          |
|         | přirozených jazyků I          |         |          |          |
| NPFL138 | Hluboké učení                 | 8       |          | 3/4 Z+Zk |
| NPFL070 | Zdroje jazykových dat         | 4       | 1/2  KZ  |          |

#### 2. Lingvistické teorie a formalismy

Funkční generativní popis. Pražský závislostní korpus. Universal Dependencies. Další gramatické formalismy - přehled a základní charakteristika. Fonetika, fonologie. Počítačová morfologie. Povrchová a hloubková stavba věty; valence. Aktuální členění věty; informační struktura, diskurz. Koreference. Typologie jazyků. Parsing.

#### Doporučené předměty

| Kód     | Název                              | Kredity | ZS                | LS                 |
|---------|------------------------------------|---------|-------------------|--------------------|
|         | Úvod do obecné lingvistiky         | 4       | 2/1 Z+Zk          | _                  |
| NPFL006 | Úvod do formální lingvistiky       | 3       | $2/0 \mathrm{Zk}$ |                    |
| NPFL075 | Závislostní gramatiky a korpusy    | 3       |                   | $1/1 \mathrm{~KZ}$ |
| NPFL083 | Lingvistické teorie a gramatické   | 5       |                   | 2/2 Z+Zk           |
|         | formalismy                         |         |                   |                    |
| NPFL094 | Morfologická a syntaktická analýza | 3       | $2/0~\mathrm{KZ}$ |                    |

#### 3. Statistické metody a strojové učení v počítačové lingvistice

Generativní a diskriminativní modely. Metody řízeného učení pro klasifikaci a regresi (lineární modely, ostatní metody: naive Bayes, rozhodovací stromy, učení založené na příkladech, SVM a kernely, logistická regrese). Metody neřízeného učení. Jazykové modely a modely kanálu. Vyhlazování modelů, kombinace modelů. HMM, trellis, Viterbi, Baum-Welch. Algoritmy pro statistický tagging. Algoritmy pro složkový a zá-

vislostní statistický parsing. Strojové učení s využitím neuronových sítí. Konvoluční a rekurentní sítě. Slovní embeddingy.

### Doporučené předměty

| Kód     | Název                                                                   | Kredity | ZS       | LS                  |
|---------|-------------------------------------------------------------------------|---------|----------|---------------------|
| NPFL067 | Statistické metody zpracování<br>přirozených jazyků I                   | 5       | 2/2 Z+Zk | _                   |
|         | Hluboké učení<br>Statistické metody zpracování<br>přirozených jazyků II | 8<br>5  |          | 3/4 Z+Zk $2/2$ Z+Zk |

## 4. Zpracování řeči, dialogové systémy a multimodální systémy

Základy tvoření a vnímání mluvené řeči. Metody zpracování řečového signálu. Modelování akustiky fonémů pomocí HMM. Implementace Baum-Welch a Viterbi algoritmu pro rozpoznávání řeči. Neuronové modely řeči. Metody syntézy řeči. Řečové aplikace. Základní komponenty dialogového systému. Porozumění jazyku v dialogových systémech. Sledování dialogového stavu. Metody řízení dialogu. End-to-end neuronové dialogové systémy. Architektury pro dialogové systémy v otevřené doméně. Generování přirozeného jazyka. Evaluace dialogových systémů. Vizuální dialog a multimodální systémy.

## Doporučené předměty

| Kód     | Název                                             | Kredity | ZS       | LS       |
|---------|---------------------------------------------------|---------|----------|----------|
| NPFL038 | Základy rozpoznávání a generování<br>mluvené řeči | 5       | 2/2 Z+Zk | _        |
| NPFL079 | Algoritmy rozpoznávání mluvené<br>řeči            | 5       |          | 2/2 Z+Zk |
| NPFL099 | Statistické dialogové systémy                     | 4       | 2/1 Z+Zk |          |

#### 5. Aplikace metod zpracování přirozeného jazyka

Kontrola překlepů, kontrola gramatické správnosti. Strojový překlad. Počítačem podporovaný překlad. Statistické metody ve strojovém překladu. Strojový překlad mluvené řeči. Vyhodnocování kvality překladu a překladu mluvené řeči. Vyhledávání informací, modely pro vyhledávání informací. Rozšiřování dotazů a relevance feedback. Shlukování dokumentů. Hledání blízkých duplicit. Evaluace vyhledávání informací. Postojová analýza (sentiment analysis). Předtrénované modely a jejich využití v úlohách klasifikační povahy a úlohách generování.

| Kód     | Název                        | Kredity | ZS       | LS                |
|---------|------------------------------|---------|----------|-------------------|
| NPFL087 | Statistický strojový překlad | 5       |          | 2/2 Z+Zk          |
| NPFL093 | Aplikace NLP                 | 4       |          | 2/1  KZ           |
| NPFL103 | Vyhledávání informací        | 5       | 2/2 Z+Zk |                   |
| NPFL128 | Jazykové technologie v praxi | 4       |          | $2/1~\mathrm{KZ}$ |

## 6. Informatika - Umělá inteligence

Garantující pracoviště: Katedra teoretické informatiky a matematické logiky

Garant programu: Prof. RNDr. Roman Barták, Ph.D.

#### Zaměření:

- inteligentní agenti
- strojové učení
- robotika

Cílem programu Informatika - Umělá inteligence je vychovávat absolventy, kteří dokáží používat a vyvíjet techniky umělé inteligence zejména pak v následujících oblastech: řešení úloh a rozhodovacích problémů, automatické plánování a rozvrhování, přírodou inspirované techniky, strojové učení včetně neuronových sítí a robotika včetně práce s přirozeným jazykem a obrazem. Absolvent programu dokáže aplikovat a dále rozvíjet různé techniky návrhu inteligentních systémů, jako je automatické řešení úloh, řízení autonomních agentů (jak virtuálních, tak fyzických), plánování, strojové učení a dolování dat. Je schopen analyzovat a formálně popsat komplexní rozhodovací problém, navrhnout vhodnou řešící techniku a tuto techniku také implementovat. Program má tři zaměření: inteligentní agenti, strojové učení a robotika.

## Povinné předměty

| Kód     | Název               | Kredity | ZS                | LS                 |
|---------|---------------------|---------|-------------------|--------------------|
| NAIL069 | Umělá inteligence 1 | 4       | 2/1 Z+Zk          | <u> </u>           |
| NAIL070 | Umělá inteligence 2 | 3       |                   | $2/0 \mathrm{Zk}$  |
| NTIN066 | Datové struktury 1  | 6       | 2/2 Z+Zk          |                    |
| NTIN090 | Základy složitosti  | 4       | 2/1  Z+Zk         |                    |
|         | a vyčíslitelnosti   |         |                   |                    |
| NSZZ023 | Diplomová práce I   | 6       |                   | $0/4~{ m Z}$       |
|         | Diplomová práce II  | 9       | $0/6 \mathrm{~Z}$ |                    |
| NSZZ025 | Diplomová práce III | 15      |                   | $0/10 \mathrm{~Z}$ |

#### Povinně volitelné profilující předměty

Je požadováno splnění povinně volitelných předmětů z následujícího seznamu v rozsahu alespoň 38 kreditů. Předměty je doporučené volit tak, aby pokrývaly zvolené studijní okruhy státní závěrečné zkoušky.

| Kód     | Název                            | Kredity | ZS                | LS                 |
|---------|----------------------------------|---------|-------------------|--------------------|
| NAIL002 | Neuronové sítě                   | 8       | 4/2 Z+Zk          |                    |
| NAIL013 | Aplikace teorie neuronových sítí | 3       | <u> </u>          | $2/0 \mathrm{Zk}$  |
| NAIL025 | Evoluční algoritmy 1             | 5       | 2/2 Z+Zk          | <u> </u>           |
| NAIL029 | Strojové učení                   | 3       | <u> </u>          | $2/0 \mathrm{~Zk}$ |
| NAIL060 | Implementace neuronových sítí 1  | 5       | 2/2 Z+Zk          | <u> </u>           |
| NAIL065 | Evoluční robotika                | 4       | <u> </u>          | 2/1  Z+Zk          |
| NAIL068 | Umělé bytosti                    | 5       |                   | 2/2 Z+Zk           |
| NAIL071 | Plánování a rozvrhování          | 3       |                   | $2/0 \mathrm{Zk}$  |
| NAIL076 | Logické programování 1           | 3       | $2/0 \mathrm{Zk}$ | <u> </u>           |
| NAIL078 | Lambda-kalkulus a funkcionální   | 4       | 2/1 Z+Zk          |                    |
|         | programování 1                   |         |                   |                    |

| NAII 006 | Evolužní obrovitny 2              | 5 |                   | 2 /2 7 + 71- |
|----------|-----------------------------------|---|-------------------|--------------|
| NAIL086  | Evoluční algoritmy 2              |   | <del></del>       | 2/2 Z+Zk     |
| NAIL094  | Rozhodovací procedury a SAT/SMT   | 5 |                   | 2/2 Z+Zk     |
|          | řešiče                            |   |                   |              |
| NAIL101  | Pravděpodobnostní robotika        | 5 | 2/2 Z+Zk          |              |
| NAIL104  | Pravděpodobnostní grafické modely | 3 | 2/0  Zk           |              |
| NAIL105  | Internet a klasifikační metody    | 2 |                   | 1/1  Z+Zk    |
| NAIL106  | Multiagentní systémy              | 5 |                   | 2/2 Z+Zk     |
| NAIL107  | Strojové učení v bioinformatice   | 5 |                   | 2/2 Z+Zk     |
| NAIL108  | Mobilní robotika                  | 3 |                   | 1/1  KZ      |
| NAIL116  | Sociální sítě a jejich analýza    | 5 | 2/2 Z+Zk          |              |
| NAIL126  | Základy robotiky                  | 5 | 2/2 Z+Zk          |              |
| NOPT042  | Programování s omezujícími        | 5 | 2/2 Z+Zk          |              |
|          | podmínkami                        |   |                   |              |
| NDBI023  | Dobývání znalostí                 | 5 |                   | 2/2 Z+Zk     |
| NSWE001  | Vestavěné systémy a systémy       | 5 |                   | 2/2 Z+Zk     |
|          | reálného času                     |   |                   | •            |
| NSWI035  | Principy distribuovaných systémů  | 3 | $2/0 \mathrm{Zk}$ | _            |
| NPGR036  | Počítačové vidění                 | 5 | <del></del>       | 2/2 Z+Zk     |
| NPFL067  | Statistické metody zpracování     | 5 | 2/2 Z+Zk          | <u></u>      |
|          | přirozených jazyků I              |   | •                 |              |
| NPFL103  | Vyhledávání informací             | 5 | 2/2 Z+Zk          |              |
|          | •                                 |   | ,                 |              |

# Povinně volitelné předměty rozšiřující

Je požadováno splnění povinně volitelných předmětů z následujícího seznamu v rozsahu alespoň 15 kreditů.

| Kód     | Název                               | Kredity | ZS                | LS                |
|---------|-------------------------------------|---------|-------------------|-------------------|
| NAIL004 | Seminář z umělé inteligence 1       | 2       | $0/2 \mathrm{~Z}$ |                   |
| NAIL015 | Implementace neuronových sítí 2     | 5       |                   | 2/2 Z+Zk          |
| NAIL021 | Booleovské funkce a jejich aplikace | 3       | $2/0 \mathrm{Zk}$ |                   |
| NAIL052 | Seminář z umělé inteligence 2       | 2       |                   | $0/2 \mathrm{~Z}$ |
| NAIL061 | Seminář z mobilní robotiky          | 3       |                   | $0/2 \mathrm{~Z}$ |
| NAIL073 | Robot 1                             | 3       | $0/2 \mathrm{~Z}$ |                   |
| NAIL074 | Robot 2                             | 3       |                   | $0/2 \mathrm{~Z}$ |
| NAIL077 | Logické programování 2              | 3       |                   | $2/0 \mathrm{Zk}$ |
| NAIL079 | Lambda-kalkulus a funkcionální      | 4       |                   | 2/1  Z+Zk         |
|         | programování 2                      |         |                   |                   |
| NAIL087 | Informatika a kognitivní vědy 1     | 6       | 3/1  Z+Zk         |                   |
| NAIL088 | Informatika a kognitivní vědy 2     | 6       |                   | 3/1  Z+Zk         |
| NAIL109 | Aplikace metod výpočetní            | 5       | $0/4 \mathrm{~Z}$ |                   |
|         | inteligence                         |         |                   |                   |
| NOPT021 | Algoritmy moderní teorie her        | 5       | 2/2 Z+Zk          |                   |
| NMAI060 | Pravděpodobnostní metody            | 3       | 2/0  Zk           |                   |
| NMAI067 | Logika v informatice                | 3       | 2/0  Zk           |                   |
| NPFL114 | Hluboké učení <sup>1</sup>          | 7       |                   | 3/2 Z+Zk          |
| NPFL138 | Hluboké učení <sup>1</sup>          | 8       |                   | 3/4 Z+Zk          |
| NPFL122 | Hluboké zpětnovazební učení $^{2}$  | 5       | 2/2 Z+Zk          |                   |

|         | Hluboké zpětnovazební učení <sup>2</sup><br>Dialogové systémy | 8<br>5             | _                 | 3/4 Z+Zk<br>2/2 Z+Zk |
|---------|---------------------------------------------------------------|--------------------|-------------------|----------------------|
|         | Statistické metody v systémech pro<br>dobývání znalostí z dat | $\frac{\sigma}{2}$ | 1/1 Z+Zk          |                      |
| NPGR001 | 3D počítačové vidění                                          | 5                  | $2/2 \mathrm{Zk}$ | _                    |
| NPGR002 | Digitální zpracování obrazu                                   | 4                  | 3/0  Zk           |                      |
| NPGR035 | Strojové učení v počítačovém vidění                           | 5                  | 2/2 Z+Zk          | _                    |
| NSWI054 | Softwarové inženýrství pro spolehlivé systémy                 | 3                  | <u>'</u>          | $0/2 \mathrm{~Z}$    |
| NPRG037 | Programování mikrokontrolerů                                  | 5                  | 2/2 Z+Zk          |                      |
| NPRG069 | Softwarový projekt                                            | 12                 | $0/8 \mathrm{Z}$  | $0/8 \mathrm{~Z}$    |
| NPRG070 | Výzkumný projekt                                              | 9                  | $0/6 \mathrm{Z}$  | 0/6  Z               |
| NPRG071 | Firemní projekt                                               | 6                  | $0/4 \mathrm{~Z}$ | $0/4 \mathrm{~Z}$    |
|         | Zvýšený rozsah projektu                                       | 3                  | 0/2 Z             | $0/2 \mathrm{~Z}$    |

Předmět NPFL114 byl vyučován do roku 2022/2023, předmět NPFL138 je vyučován od roku 2023/2024, předměty jsou vzájemně neslučitelné.

#### Státní závěrečná zkouška

Student si zvolí tři okruhy z nabídky daného zaměření a z každého dostane po jedné otázce. Jeden okruh si může student vybrat z nabídky jiného zaměření programu. Celkově tedy každý student dostane tři otázky.

### a) Zaměření Inteligentní agenti

#### Zkušební okruhy

- 1. Reprezentace znalostí a řešení úloh
- 2. Neprocedurální programování
- 3. Multiagentní systémy
- 4. Přírodou inspirované počítání

#### Zkušební požadavky

#### 1. Reprezentace znalostí a řešení úloh

Výroková a predikátová logika; splnitelnost a dokazatelnost, strojové dokazování vět, model checking (DPLL), dopředné a zpětné řetězení, rezoluční metoda a unifikace. Podmíněná nezávislost, Bayesovské sítě, výpočet v Bayesovské síti, markovské rozhodovací procesy, částečně pozorovatelné markovské rozhodovací procesy, zpětnovazební učení. Prohledávací algoritmy; stavový prostor, stromové, grafové a lokální prohledávání, neinformované a heuristické prohledávání. Hry a základy teorie her. Splňování omezujících podmínek; konzistenční techniky, globální podmínky. Automatické plánování; plánovací doména a problém, plánovací operátory, základní plánovací techniky a algoritmy.

| Kód     | Název                   | Kredity | ZS       | LS                 |
|---------|-------------------------|---------|----------|--------------------|
| NAIL069 | Umělá inteligence 1     | 4       | 2/1 Z+Zk | _                  |
| NAIL070 | Umělá inteligence 2     | 3       |          | $2/0 \mathrm{~Zk}$ |
| NAIL071 | Plánování a rozvrhování | 3       |          | 2/0  Zk            |

<sup>&</sup>lt;sup>2</sup> Předmět NPFL122 byl vyučován do roku 2022/2023, předmět NPFL139 je vyučován od roku 2023/2024, předměty jsou vzájemně neslučitelné.

| NOPT042 | Programování s omezujícími         | 5 | 2/2 Z+Zk           |          |
|---------|------------------------------------|---|--------------------|----------|
|         | podmínkami                         |   |                    |          |
| NAIL094 | Rozhodovací procedury a SAT/SMT $$ | 5 |                    | 2/2 Z+Zk |
|         | řešiče                             |   |                    |          |
| NAIL104 | Pravděpodobnostní grafické modely  | 3 | $2/0 \mathrm{~Zk}$ |          |

#### 2. Neprocedurální programování

Odlišnost procedurálního a neprocedurálního způsobu programování. Principy funkcionálního a logického programování. Lambda kalkulus, syntax, principy redukce. Churchova a Rosserova vlastnost a konsistence kalkulu. Věty o pevném bodu. Normální tvar objektů. Typovaný lambda kalkul. Substituce a unifikace. Hornovy klauzule, SLD-rezoluce a logické programy. Čistý Prolog, negace definovaná neúspěchem, obecné logické programy. Postačující podmínky ukončení výpočtu. Implementace Prologu. Logické programování s omezujícími podmínkami.

## Doporučené předměty

| Kód     | Název                          | Kredity | ZS       | LS                |
|---------|--------------------------------|---------|----------|-------------------|
| NAIL076 | Logické programování 1         | 3       | 2/0  Zk  | _                 |
| NAIL077 | Logické programování 2         | 3       | <u> </u> | $2/0 \mathrm{Zk}$ |
| NAIL078 | Lambda-kalkulus a funkcionální | 4       | 2/1 Z+Zk | <del></del>       |
|         | programování 1                 |         |          |                   |
| NOPT042 | Programování s omezujícími     | 5       | 2/2 Z+Zk |                   |
|         | podmínkami                     |         |          |                   |

#### 3. Multiagentní systémy

Architektura autonomního agenta; percepce, mechanismus výběru akcí, paměť; psychologické inspirace. Metody pro řízení agentů; symbolické a konekcionistické reaktivní plánování, hybridní přístupy. Problém hledání cesty; navigační pravidla, reprezentace terénu. Komunikace a znalosti v multiagentních systémech, ontologie, řečové akty, FIPA-ACL, protokoly. Distribuované řešení problémů, kooperace, Nashova ekvilibria, Paretova efektivita, alokace zdrojů, aukce. Etologické motivace, modely populační dynamiky. Metody pro učení agentů; zpětnovazební učení, základní formy učení zvířat. Metodologie návrhu, jazyky a prostředí multiagentních systémů.

## Doporučené předměty

| Kód | Název                                 | Kredity | ZS | LS                   |
|-----|---------------------------------------|---------|----|----------------------|
|     | Multiagentní systémy<br>Umělé bytosti | 5<br>5  |    | 2/2 Z+Zk<br>2/2 Z+Zk |

#### 4. Přírodou inspirované počítání

Genetické algoritmy, genetické a evoluční programování. Teorie schémat, pravděpodobnostní modely jednoduchého genetického algoritmu. Evoluční strategie, diferenciální evoluce, koevoluce, otevřená evoluce. Rojové optimalizační algoritmy. Memetické algoritmy, hill climbing, simulované žíhání. Aplikace evolučních algoritmů (evoluce expertních systémů, neuroevoluce, řešení kombinatorických úloh, vícekriteriální optimalizace).

| Kód     | Název                | Kredity | ZS       | LS |
|---------|----------------------|---------|----------|----|
| NAIL025 | Evoluční algoritmy 1 | 5       | 2/2 Z+Zk | _  |

| NAIL086 | Evoluční algoritmy 2 | 5 | <br>2/2  Z+Zk |
|---------|----------------------|---|---------------|
| NAIL065 | Evoluční robotika    | 4 | <br>2/1  Z+Zk |

## b) Zaměření **Strojové učení**

#### Zkušební okruhy

- 1. Strojové učení a jeho aplikace
- 2. Neuronové sítě
- 3. Dobývání znalostí

#### Zkušební požadavky

#### 1. Strojové učení a jeho aplikace

Strojové učení; učení s učitelem a bez učitele, zpětnovazební učení, teoretické aspekty strojového učení. Pravděpodobnostní přístupy; neorientované grafické modely, Gaussovské procesy. Evoluční algoritmy; základní pojmy a teoretické poznatky, hypotéza o stavebních blocích, koevoluce, aplikace evolučních algoritmů. Strojové učení v počítačové lingvistice. Algoritmy pro analýzu biologických sekvencí; hledání motivů v DNA, Markovské modely a strategie pro detekci genů či predikci struktury proteinů.

#### Doporučené předměty

| Kód     | Název                                                   | Kredity | ZS            | LS                 |
|---------|---------------------------------------------------------|---------|---------------|--------------------|
| NAIL029 | Strojové učení                                          | 3       | _             | $2/0 \mathrm{~Zk}$ |
| NPFL067 | Statistické metody zpracování<br>přirozených jazyků I   | 5       | 2/2 Z+Zk      |                    |
|         | Evoluční algoritmy 1<br>Strojové učení v bioinformatice | 5<br>5  | $^{2/2}$ Z+Zk | -2/2 Z+Zk          |

#### 2. Neuronové sítě

Modely pro učení s učitelem; algoritmus zpětného šíření, strategie pro urychlení učení, regularizační techniky a generalizace. Asociativní paměti; Hebbovské učení a hledání suboptimálních řešení, stochastické modely. Umělé neuronové sítě založené na principu učení bez učitele. Modulární, hierarchické a hybridní modely neuronových sítí. Modely hlubokých neuronových sítí; konvoluční neuronové sítě, sítě typu DBN a LSTM-sítě. Evoluční učení neuronových sítí a jeho aplikace.

#### Doporučené předměty

| Kód     | Název                            | Kredity | ZS       | LS                |
|---------|----------------------------------|---------|----------|-------------------|
| NAIL002 | Neuronové sítě                   | 8       | 4/2 Z+Zk | _                 |
| NAIL060 | Implementace neuronových sítí 1  | 5       | 2/2 Z+Zk |                   |
| NAIL013 | Aplikace teorie neuronových sítí | 3       |          | $2/0 \mathrm{Zk}$ |
| NAIL065 | Evoluční robotika                | 4       |          | 2/1 Z+Zk          |

#### 3. Dobývání znalostí

Základní paradigmata dobývání znalostí. Příprava dat; výběr atributů a metody pro analýzu jejich relevance. Metody pro dobývání znalostí; asociační pravidla, přístupy založené na principu učení s učitelem a klastrová analýza. Metody pro extrakci charakteristických diskriminačních pravidel a měření jejich zajímavosti. Reprezentace, vyhodnocování a vizualizace získaných znalostí. Modely pro analýzu sociálních sítí; míry

centrality, detekce komunit. Praktické využití technik pro dobývání znalostí a analýzu sociálních sítí.

## Doporučené předměty

| Kód     | Název                          | Kredity | ZS                | LS        |
|---------|--------------------------------|---------|-------------------|-----------|
| NDBI023 | Dobývání znalostí              | 5       | _                 | 2/2 Z+Zk  |
| NAIL116 | Sociální sítě a jejich analýza | 5       | 2/2 Z+Zk          |           |
| NAIL105 | Internet a klasifikační metody | 2       |                   | 1/1  Z+Zk |
| NAIL099 | Seminář strojového učení       | 2       | $0/1 \mathrm{~Z}$ |           |
|         | a modelování 1                 |         |                   |           |

## c) Zaměření **Robotika**

## Zkušební okruhy

- 1. Lokalizace a mapování
- 2. Řídící systémy
- 3. Robotické systémy
- 4. Plánování a navigace

## Zkušební požadavky

#### 1. Lokalizace a mapování

Základní typy lokalizace. Pravděpodobnostní lokalizace, částicové filtry, metody Monte-Carlo. Reprezentace prostředí, reprezentace map, problém korespondence, mapování v dynamickém prostředí. Vztah lokalizace a mapování, SLAM.

## Doporučené předměty

| Kód     | Název                      | Kredity | ZS                                            | LS                |
|---------|----------------------------|---------|-----------------------------------------------|-------------------|
| NAIL126 | Základy robotiky           | 5       | 2/2 Z+Zk                                      |                   |
| NAIL101 | Pravděpodobnostní robotika | 5       | 2/2 Z+Zk                                      |                   |
| NAIL108 | Mobilní robotika           | 3       | <u>,                                     </u> | $1/1~\mathrm{KZ}$ |

#### 2. Řídící systémy

Řídící systémy robotů. Zpracování signálu, rozpoznávání, feature matching and tracking. Systémy pro modelování, virtuální robotika, simulátory. Distribuované algoritmy, systémy řízení pro multirobotické systémy, komunikace, synchronizace, koordinace. Softwarová realizace, programování pro specifické běhové prostředí, ladící prostředky a postupy.

#### Doporučené předměty

| Kód     | Název                            | Kredity | ZS                | LS |
|---------|----------------------------------|---------|-------------------|----|
| NAIL126 | Základy robotiky                 | 5       | 2/2 Z+Zk          | _  |
| NPGR001 | 3D počítačové vidění             | 5       | 2/2 Zk            | _  |
| NPGR002 | Digitální zpracování obrazu      | 4       | $3/0 \mathrm{Zk}$ | _  |
| NSWI035 | Principy distribuovaných systémů | 3       | 2/0  Zk           | _  |

#### 3. Robotické systémy

Základní kinematický a dynamický model, inverzní kinematika a dynamika. Nízkoúrovňový hardware a software, vestavěné systémy. Typy senzorů a aktuátorů, principy a typické oblasti použití. Vysokoúrovňové robotické systémy a jejich řízení: manipulátory, mobilní robotika, autonomní robotika.

## Doporučené předměty

| Kód     | Název                       | Kredity | ZS       | LS       |
|---------|-----------------------------|---------|----------|----------|
| NAIL126 | Základy robotiky            | 5       | 2/2 Z+Zk | _        |
| NAIL108 | Mobilní robotika            | 3       |          | 1/1  KZ  |
| NSWE001 | Vestavěné systémy a systémy | 5       |          | 2/2 Z+Zk |
|         | reálného času               |         |          |          |

#### 4. Plánování a navigace

Základní navigační postupy: dead-reckoning, odometrie, triangulace a trilaterace, inerciální navigace. Navigační a prohledávací algoritmy. Plánování akcí, formulace plánovacího problému, základní plánovací algoritmy, plánování s časem a zdroji.

#### Doporučené předměty

| Kód     | Název                   | Kredity | ZS       | LS                |
|---------|-------------------------|---------|----------|-------------------|
| NAIL126 | Základy robotiky        | 5       | 2/2 Z+Zk | _                 |
| NAIL108 | Mobilní robotika        | 3       | <u> </u> | $1/1~\mathrm{KZ}$ |
| NAIL071 | Plánování a rozvrhování | 3       |          | 2/0 Zk            |

# 7. Informatika – Vizuální výpočty a vývoj počítačových her

Garantující pracoviště: Katedra softwaru a výuky informatiky

Garant programu: Doc. RNDr. Tomáš Dvořák, CSc.

Studijní plán nabízí posluchačům dvě úzce propojená zaměření, která se liší okruhy, z nichž jsou pokládány otázky u státní závěrečné zkoušky. Předměty je vhodné volit tak, aby svým obsahem tyto zkušební okruhy pokryly. Část výuky může probíhat v anglickém jazyce.

#### Zaměření:

- vizuální výpočty
- vývoj počítačových her

Absolvent je zdatným programátorem v jazycích typu C++, C či Java, umí vytvářet programy pro klasické i masivně paralelní procesory (GPU) a pro malá zařízení (tablety, mobilní telefony). Umí využívat nástroje pro správu rozsáhlých softwarových projektů, je schopen navrhnout a realizovat komplexní grafický systém anebo počítačovou hru. Podle zvoleného zaměření je vybaven buď hlubokými znalostmi z počítačové grafiky a analýzy obrazu, anebo - v zaměření na vývoj počítačových her - jeho znalosti pokrývají programování rozsáhlých herních projektů, aplikací pracujících v reálném čase, programování malých zařízení, jakožto i základy umělé inteligence a základy počítačové grafiky v kontextu počítačových her. Absolvent umí tyto znalosti aplikovat při řešení konkrétních praktických úkolů.

| Povinné | předměty |
|---------|----------|
| Povimie | preamety |

| Kód     | Název                                   | Kredity | ZS                | LS                 |
|---------|-----------------------------------------|---------|-------------------|--------------------|
| NTIN090 | Základy složitosti<br>a vyčíslitelnosti | 4       | 2/1 Z+Zk          | _                  |
| NTIN066 | Datové struktury 1                      | 6       | 2/2 Z+Zk          | <del></del>        |
| NSZZ023 | Diplomová práce I                       | 6       | <u> </u>          | $0/4 \mathrm{~Z}$  |
| NSZZ024 | Diplomová práce II                      | 9       | $0/6 \mathrm{~Z}$ |                    |
| NSZZ025 | Diplomová práce III                     | 15      | _                 | $0/10 \mathrm{~Z}$ |

## Povinně volitelné předměty

Je požadováno splnění povinně volitelných předmětů z následujícího seznamu v rozsahu alespoň 53 kreditů, přitom je jako povinně volitelný třeba zvolit jeden z předmětů NPRG069 Softwarový projekt, NPRG070 Výzkumný projekt a NPRG071 Firemní projekt. Má-li posluchač zájem o další předmět z této trojice, může k tomu využít předměty NPRG078 Softwarový projekt II, NPRG079 Výzkumný projekt II či NPRG080 Firemní projekt II, které se počítají již jen jako volitelné.

| Kód     | Název                               | Kredity | ZS                                            | LS                 |
|---------|-------------------------------------|---------|-----------------------------------------------|--------------------|
| NPRG071 | Firemní projekt                     | 6       | 0/4 Z                                         | $0/4 \mathrm{~Z}$  |
|         | Výzkumný projekt                    | 9       | $0/6 \mathrm{Z}$                              | $0/6 \mathrm{Z}$   |
| NPRG069 | Softwarový projekt                  | 12      | $0/8 \mathrm{Z}$                              | $0/8 \mathrm{Z}$   |
| NPRG072 | Zvýšený rozsah projektu             | 3       | $0/2 \mathrm{~Z}$                             | $0/2 \mathrm{~Z}$  |
| NMAI060 | Pravděpodobnostní metody            | 3       | 2/0  Zk                                       |                    |
| NMAI061 | Metody matematické statistiky       | 5       |                                               | 2/1  Z+Zk          |
| NPGR001 | 3D počítačové vidění                | 5       | 2/2 Zk                                        | <u> </u>           |
| NPGR010 | Pokročilá 3D grafika pro film a hry | 5       | 2/2 Z+Zk                                      |                    |
| NPGR013 | Speciální funkce a transformace ve  | 3       |                                               | $2/0 \mathrm{Zk}$  |
|         | zpracování obrazu                   |         |                                               |                    |
| NPGR016 | Aplikovaná výpočetní geometrie      | 5       | _                                             | 2/1  Z+Zk          |
| NPGR021 | Geometrické modelování              | 5       | 2/2 Z+Zk                                      | <u>.</u>           |
| NPGR024 | Seminář z vědecké práce             | 3       | <u>,                                     </u> | $0/2 \mathrm{~Z}$  |
|         | Predictive Image Synthesis          | 4       | <del></del>                                   | 2/1  Z+Zk          |
|         | Technologies                        |         |                                               | ·                  |
| NPGR027 | Shading Languages                   | 5       |                                               | 2/1  Z+Zk          |
|         | Variační metody ve zpracování       | 3       |                                               | $2/0 \mathrm{~Zk}$ |
|         | obrazu                              |         |                                               | ,                  |
| NPGR033 | Počítačová grafika pro vývoj her    | 5       |                                               | 2/2 Z+Zk           |
|         | Vybrané kapitoly z počítačového     | 5       | 2/2 Z+Zk                                      |                    |
|         | vidění                              |         | ,                                             |                    |
| NCGD001 | Vývoj počítačových her 1            | 6       |                                               | 2/2 Z+Zk           |
|         | Programování herních mechanik       | 5       | 2/2 Z+Zk                                      |                    |
|         | Úvod do herního designu             | 3       | 1/1  Z+Zk                                     |                    |
|         | Úvod do herního designu             | 4       | 1/2  Z+Zk                                     |                    |
|         | Konstrukce herního zážitku          | 3       | 1/1  Z+Zk                                     |                    |
|         | Praktikum z herního vývoje          | 3       | $0/2 \mathrm{~Z}$                             |                    |
|         | v nativním kódu                     |         | ,                                             |                    |

| NCGD008     | Praktikum z herního vývoje                    | 3 | $0/2 \mathrm{~Z}$  | _                  |
|-------------|-----------------------------------------------|---|--------------------|--------------------|
|             | s řízeným kódem                               |   |                    |                    |
| NAFF003     | Introduction to Game Studies                  | 3 | $0/2 \mathrm{~Zk}$ |                    |
| NAFF004     | Contemporary Issues in Game                   | 3 |                    | $0/2 \mathrm{~Zk}$ |
|             | Studies                                       |   |                    |                    |
| NPRG043     | Doporučené postupy                            | 5 |                    | $2/2~\mathrm{KZ}$  |
|             | v programování                                |   |                    |                    |
| NPRG058     | Pokročilé programování v paralelním prostředí | 6 | 2/2 Z+Zk           |                    |
| NSWI026     | Pokročilé aspekty softwarového                | 5 |                    | 2/2 Z+Zk           |
|             | inženýrství                                   |   |                    | ,                  |
| NSWI072     | Algoritmy komprese dat                        | 3 | $2/0 \mathrm{Zk}$  |                    |
| NSWI130     | Architektury softwarových systémů             | 5 | 2/2 Z+Zk           |                    |
| NSWI131     | Vyhodnocování výkonnosti                      | 4 | <u> </u>           | 2/1 Z+Zk           |
|             | počítačových systémů                          |   |                    |                    |
|             | Webové služby                                 | 5 |                    | 2/2 Z+Zk           |
| NSWI153     | Pokročilé programování webových               | 5 | _                  | 2/2 Z+Zk           |
|             | aplikací                                      |   |                    |                    |
| NTIN043     | Formální základy softwarového                 | 5 | 2/2 Z+Zk           | <del></del>        |
|             | inženýrství                                   |   |                    |                    |
| NDBI034     | Vyhledávání multimediálního obsahu            | 4 | 2/1  Z+Zk          |                    |
|             | na webu                                       |   |                    |                    |
| NAIL068     | Umělé bytosti                                 | 5 |                    | 2/2 Z+Zk           |
| NAIL069     | Umělá inteligence 1                           | 4 | 2/1 Z+Zk           |                    |
| NAIL070     | Umělá inteligence 2                           | 3 | <del></del>        | 2/0  Zk            |
| NAIL106     | Multiagentní systémy                          | 5 |                    | 2/2 Z+Zk           |
| NAIL122     | Umělá inteligence pro počítačové              | 3 | 1/1  Z+Zk          |                    |
| NI A II 100 | hry                                           |   |                    | 1 /1 7 . 71        |
| NAIL123     | Procedurální generování obsahu                | 3 |                    | 1/1  Z+Zk          |
| NICCD011    | počítačových her                              | 4 |                    | 1 /1 77 - 771      |
| NCGD011     | Procedurální generování obsahu                | 4 |                    | 1/1  Z+Zk          |
| NIDET 114   | počítačových her                              | - |                    | 9/9/7 : 71         |
|             | Hluboké učení <sup>1</sup>                    | 7 |                    | 3/2  Z+Zk          |
| NPFL138     | Hluboké učení <sup>1</sup>                    | 8 |                    | 3/4 Z+Zk           |

 $<sup>^1</sup>$  Předmět NPFL114 byl vyučován do roku 2022/2023, předmět NPFL138 je vyučován od roku 2023/2024, předměty jsou vzájemně neslučitelné.

## Doporučené volitelné předměty

Seznam doporučených volitelných předmětů obsahuje pouze předměty, které doplňují či rozšiřují látku podstatnou pro tento studijní program. Volba dalších je ponechána na posluchači, který může volit ze široké nabídky předmětů nabízených na fakultě.

| Kód     | Název                                    | Kredity | ZS    | LS                |
|---------|------------------------------------------|---------|-------|-------------------|
|         | Fotorealistická grafika                  | 5       |       | 2/2 Z+Zk          |
| NPGR005 | Seminář z počítačové grafiky<br>a vidění | 2       | 0/2 Z | $0/2 \mathrm{~Z}$ |

|                               | Realtime grafika na GPU<br>Speciální seminář ze zpracování                             | $5\\2$      | -0/2 Z                                   | $^{2/2} \ Z+Zk$ $^{0/2} \ Z$         |
|-------------------------------|----------------------------------------------------------------------------------------|-------------|------------------------------------------|--------------------------------------|
| NPGR036<br>NCGD012            | obrazu Optika pro počítačovou grafiku Počítačové vidění Vývoj počítačových her 2       | 3<br>5<br>5 | $^{2/0} \ { m Zk} \ - \ 1/2 \ { m Z+Zk}$ |                                      |
|                               | Praktikum z vývoje počítačových<br>her v limitovaném čase<br>Programování v paralelním | 2<br>6      | _                                        | $0/1 \mathrm{~Z}$ $2/2 \mathrm{~KZ}$ |
|                               | prostředí<br>Vývoj vysoce výkonného software<br>Programování mobilních zařízení        | 6<br>3      | $-0/2~{ m Z}$                            | 2/2 KZ<br>—                          |
|                               | Úvod do softwarového inženýrství<br>Seminář z počítačových her<br>Evoluční algoritmy 1 | 5<br>3<br>5 |                                          | 2/2 Z+Zk<br>0/2 Z<br>—               |
|                               | Úvod do robotiky<br>Plánování a rozvrhování<br>Seminář z umělých bytostí               | 5<br>3<br>3 | 2/2 Z+Zk<br>—<br>0/2 Z                   | $2/0  Zk$ $0/2  Z$                   |
| NAIL082<br>NAIL108<br>NDBI045 | Informatika a kognitivní vědy 1<br>Mobilní robotika<br>Vyhledávání ve videu            | 6<br>3<br>5 | 3/1 Z+Zk<br>—<br>—                       |                                      |

#### Státní závěrečná zkouška

Posluchač si zvolí tři okruhy z nabídky daného zaměření dle podmínek specifikovaných níže. Z každého zvoleného okruhu obdrží po jedné otázce.

## a) Zaměření Vizuální výpočty

Posluchač si zvolí alespoň dva z okruhů 1 až 3. Třetí okruh zvolí libovolně ze všech okruhů nabízených v zaměřeních Vizuální výpočty a Vývoj počítačových her kromě okruhu "Počítačová grafika pro hry".

#### Zkušební okruhy

- 1. Realistická syntéza obrazu
- 2. Analýza a zpracování obrazu, komprese obrazu, počítačové vidění
- 3. Geometrické modelování a výpočetní geometrie

#### Zkušební požadavky

## 1. Realistická syntéza obrazu

Metody reprezentace 3D scén, výpočet viditelnosti, výpočet vržených stínů, modely osvětlení a stínovací algoritmy, rekurzivní sledování paprsku, textury, anti-aliasing, generování izoploch. Architektura grafického akcelerátoru, předávání dat do GPU, textury v GPU, programování GPU - shaderů, základy OpenGL, jazyka HLSL a GLSL, CUDA. Fyzikální model šíření světla (radiometrie, BRDF, zobrazovací rovnice), Monte Carlo integrování (importance sampling a MIS), Monte Carlo přístupy ve výpočtu osvětlení (path tracing, bi-directional path tracing), přibližné metody globálního osvětlení (photon mapping, irradiance caching). Monte Carlo metody výpočtu spektrálního osvětlení, participating media, měření a verifikace zobrazovacích metod. Stínovací jazyky

(Renderman shading language, OSL). Obecné a specifické techniky pro urychlování ray-tracingu.

## Doporučené předměty

| Kód     | Název                               | Kredity | ZS       | LS        |
|---------|-------------------------------------|---------|----------|-----------|
| NPGR010 | Pokročilá 3D grafika pro film a hry | 5       | 2/2 Z+Zk | _         |
| NPGR026 | 3 Predictive Image Synthesis        | 4       |          | 2/1  Z+Zk |
|         | Technologies                        |         |          |           |
| NPGR027 | Shading Languages                   | 5       |          | 2/1 Z+Zk  |

#### 2. Analýza a zpracování obrazu, komprese obrazu, počítačové vidění

Změna kontrastu a jasu, HDR, odstranění šumu, detekce hran. Určení vzájemné polohy snímků, korespondence bodu a objektu, odstranění geometrických zkreslení, detekce hranic objektu, detekce oblastí. Příznaky pro popis a rozpoznávání 2D objektů, momentové invarianty, vlnková transformace a její použití. Statistická teorie rozpoznávání, klasifikace s učením a bez učení, konvoluční sítě. Komprese rastrové 2D grafiky, skalární a vektorová kvantizace, prediktivní komprese, transformační kompresní metody, komprese videosignálu, časová predikce (kompenzace pohybu), standardy JPEG a MPEG. Geometrie jedné a více kamer, esenciální matice, rekonstrukce 3D scény.

#### Doporučené předměty

| Kód     | Název                                                   | Kredity       | ZS                                     | LS      |
|---------|---------------------------------------------------------|---------------|----------------------------------------|---------|
| NPGR041 | Vybrané kapitoly z počítačového vidění                  | 5             | 2/2 Z+Zk                               | _       |
| NPGR029 | Variační metody ve zpracování obrazu                    | 3             | _                                      | 2/0  Zk |
| NPGR013 | Speciální funkce a transformace ve<br>zpracování obrazu | 3             | _                                      | 2/0  Zk |
|         | Algoritmy komprese dat<br>3D počítačové vidění          | $\frac{3}{5}$ | $2/0 \mathrm{Zk}$<br>$2/2 \mathrm{Zk}$ | _       |
|         | •                                                       |               | ,                                      |         |

#### 3. Geometrické modelování a výpočetní geometrie

Diferenciální geometrie křivek a ploch, jejich aproximace a interpolace. Bézierovy křivky a plochy, de Casteljau algoritmus. B-spline funkce a křivky, de Boor algoritmus, racionální křivky a plochy, NURBS, Coonsův plát.

Geometrické vyhledávání. Konvexní obálky. Voroného diagramy, jejich aplikace a zobecnění. Rovinné triangulace množiny bodů a jejich aplikace. Tetrahedronizace a jejich aplikace. Triangulace polygonu. Střední osa. Průsečíky a průniky.

#### Doporučené předměty

| Kód | Název                                                    | Kredity | ZS            | LS           |
|-----|----------------------------------------------------------|---------|---------------|--------------|
|     | Geometrické modelování<br>Aplikovaná výpočetní geometrie | 5<br>5  | 2/2 Z+Zk<br>— | - $2/1$ Z+Zk |

## b) Zaměření Vývoj počítačových her

Posluchač obdrží po jedné otázce z následujících okruhů:

1. Okruh "Vývoj počítačových her", který je pro zaměření Vývoj počítačových her povinný.

- 2. Buď okruh "Počítačová grafika pro hry", nebo libovolný z okruhů ze zaměření Vizuální výpočty dle výběru posluchače.
- 3. Jeden ze zkušebních okruhů 3 až 7 dle výběru posluchače.

### Zkušební okruhy

- 1. Vývoj počítačových her (povinný okruh pro zaměření Vývoj počítačových her)
- 2. Počítačová grafika pro hry
- 3. Umělá inteligence pro počítačové hry
- 4. Počítačové hry jako sociokulturní fenomén
- 5. Analýza a architektury softwaru
- 6. Webové technologie
- 7. Vývoj výkonných systémů

### Zkušební požadavky

#### 1. Vývoj počítačových her

Programování počítačových her; problematika herních mechanik, herní návrhové vzory, skriptování her. Architektura herních engine; vrstvy architektur, výpočetní modely, entity-component system, správa paměti, příklady konkrétních instancí architektur. Herní design; kdo je herní designér, osy herního designu, herní žánry, specifika herních platforem, game design dokument (vlastnosti, struktura, UML diagramy pro popis herních mechanismů, herní prostor, postavy, specifikace dialogů), historie herního trhu. Vývojový cyklus počítačové hry; fáze vývojového cyklu, herní design řízený daty, správa dat, testování počítačových her, vývojářské role, herní analytiky, vodopádový model a agilní metodiky návrhu her, obchodní modely komercializace her. Narativita a hry; rozdíl mezi games of emergence a games of progression, chtěná a nechtěná emergence, environmentální storytelling, procedurální rétorika, ludonarativní disonance.

#### Doporučené předměty

| Kód     | Název                         | Kredity | ZS       | LS       |
|---------|-------------------------------|---------|----------|----------|
|         | Vývoj počítačových her 1      | 6       | _        | 2/2 Z+Zk |
|         | Programování herních mechanik | 5       | 2/2 Z+Zk |          |
| NCGD010 | Úvod do herního designu       | 4       | 1/2 Z+Zk |          |

#### 2. Počítačová grafika pro hry

Homogenní souřadnice, afinní a projektivní transformace v rovině a v prostoru, kvaterniony. Spline funkce, interpolace kubickými spliny, Bézierovy křivky, Catmull-Rom spliny, B-spliny. Vzorkování a kvantování obrazu, anti-aliasing, textury, změna kontrastu a jasu, kompozice poloprůhledných obrázků. Reprezentace 3D scén, výpočet viditelnosti, výpočet vržených stínů, měkké stíny, rozptyl světla pod povrchem, modely osvětlení a stínovací algoritmy, rekurzivní sledování paprsku, fyzikální model šíření světla (radiometrie, zobrazovací rovnice), algoritmus sledování cest, předpočítané globální osvětlení, výpočet globálního osvětlení v reaálném čase, stínování založené na sférických harmonických funkcích, předpočítaný přenos radiance. Animace postav, skinning, rigging, morphing. Architektura grafického akcelerátoru, předávání dat do GPU, textury a GPU buffery, programování GPU - shaderů. Základy OpenGL, GLSL, CUDA a OpenCL. Principy komprese rastrové 2D grafiky, standard JPEG, komprese videosignálu.

### Doporučené předměty

| Kód | Název                                                      | Kredity | ZS      | LS            |
|-----|------------------------------------------------------------|---------|---------|---------------|
|     | Počítačová grafika pro vývoj her<br>Algoritmy komprese dat | 5<br>3  | -2/0 Zk | 2/2 Z+Zk<br>— |

#### 3. Umělá inteligence pro počítačové hry

Architektura autonomního agenta; percepce, mechanismus výběru akcí, paměť; psychologické inspirace. Metody pro řízení agentů; symbolické a konekcionistické reaktivní plánování, hybridní přístupy, prostor rozhodování, if-then pravidla, skriptování, sekvenční konečný automat, stromy chování. Problém hledání cesty; lokální navigační pravidla (Raynoldsovy steeringy, VO, RVO, Context steering), hledání cesty (A\*, JPS+, goal bounding, RRT, RRT\*, LPA\*, MPAA\*, obousměrné prohledávání), reprezentace prostoru (geometrie, viditelnost). Komunikace a znalosti v multiagentních systémech, ontologie, řečové akty, FIPA-ACL, protokoly. Distribuované řešení problémů, kooperace, Nashova ekvilibria, Paretova efektivita, alokace zdrojů, aukce. Metody pro učení agentů; zpětnovazební učení, základní formy učení zvířat. Procedurální modelování stavového prostoru (forward model) a jeho prohledávání; A\*, ABCD, MCTS a UCB a další varianty, PGS, PGS-II, prostor skriptů (Kiting, AV, NOK-AV), efektivní implementace. Klasifikace metod procedurálního generování. Přístupy pro generování terénu, vizuálních efektů, hudby, předmětů, bludišť a dungeonů. Šumové funkce (Perlin, Simplex, Worley). Celulární automaty, L-systémy, grafové a tvarové gramatiky. Answer set programming. Algoritmus kolapsu vlnové funkce. Metody smíšené iniciativy.

## Doporučené předměty

| Kód     | Název                                              | Kredity | ZS        | LS          |
|---------|----------------------------------------------------|---------|-----------|-------------|
| NAIL068 | Umělé bytosti                                      | 5       | _         | 2/2 Z+Zk    |
| NAIL106 | Multiagentní systémy                               | 5       |           | 2/2 Z+Zk    |
| NAIL122 | Umělá inteligence pro počítačové                   | 3       | 1/1  Z+Zk | <del></del> |
|         | hry                                                |         |           |             |
| NCGD011 | Procedurální generování obsahu<br>počítačových her | 4       |           | 1/1  Z+Zk   |

#### 4. Počítačové hry jako sociokulturní fenomén

Teorie herních studií; definice herních studií, vztah herních studií k dalším vědním oborům, kulturní, sociální a politické aspekty počítačových her, definice počítačové hry, rozdíl mezi počítačovými hrami a jiných audiovizuálních médií a implikace pro výzkum. Historie počítačových her; okolnosti vzniku počítačových her, technologické a kulturní kořeny počítačových her, klíčové milníky historie počítačových her, archeologie médii v herních studiích, konvergentní evoluce. Metody výzkumu v herních studiích; druhy metod výzkumu, formální obsahová analýza her. Výzkum systémů pravidel ve hrách; metody výzkumu, subjektivní zkušenost ze hry, hráčské komunity. Sociální aspekty počítačových her; pozitivní a negativní sociální aspekty počítačových her, herní komunita, demografický profil hráče počítačových her a jeho vývoj v čase, MMO a výzkum sociálních aspektů her. Psychologické a kognitivní aspekty počítačových her; pozitivní a negativní psychologické aspekty počítačových her, metody výzkumu, vliv paměti, emoce, pozornost a motivace hráče na herní zážitek, vztah mezi násilím zobrazeným ve hrách a agresivním chování, vliv krátkodobého a dlouhodobého hraní her na rozvoj

kognitivních schopností, imerze a flow ve vztahu k počítačovým hrám. Vážné, výukové a persvazivní hry; definice, procedurální rétorika a její význam pro herní studia, teoretické základy koncepce výuky pomocí počítačových her, výhody a nevýhody zapojení počítačových her do formální výuky, počítačové hry a jejich vliv na postoje hráčů, gamifikace a její výhody a limity.

### Doporučené předměty

| Kód     | Název                        | Kredity | ZS        | LS     |
|---------|------------------------------|---------|-----------|--------|
| NCGD005 | Konstrukce herního zážitku   | 3       | 1/1  Z+Zk | _      |
| NAFF003 | Introduction to Game Studies | 3       | 0/2  Zk   |        |
| NAFF004 | Contemporary Issues in Game  | 3       | _         | 0/2 Zk |
|         | Studies                      |         |           |        |

#### 5. Analýza a architektury softwaru

Procesy vývoje SW a jejich fáze. Podnikové procesy a jejich modelování pomocí BPMN. UML a jeho využití pro analýzu a návrh struktury a chování SW. Návrhové vzory. Testování SW, dopadová a změnová analýza. Plánování SW projektů, odhad nákladů, úrovně řízení projektů. Právní aspekty SW, hlavní zákony důležité pro IT projekty. Typy pohledů na SW architekturu. Modelování a dokumentace SW architektury. Klasifikace atributů kvality SW architektury, jejich popis pomocí scénářů a taktik. Servisně orientované architektury. Algebraické metody, vícedruhové algebry, iniciální modely. Formální základy jazyka UML. OCL jako specifikační jazyk a formální základy dle specifikace. Formální základy RDF a jazyka OWL, deskripční logika.

#### Doporučené předměty

| Kód     | Název                                         | Kredity | ZS       | LS       |
|---------|-----------------------------------------------|---------|----------|----------|
| NSWI130 | Architektury softwarových systémů             | 5       | 2/2 Z+Zk | _        |
| NSWI026 | Pokročilé aspekty softwarového<br>inženýrství | 5       |          | 2/2 Z+Zk |
| NTIN043 | Formální základy softwarového<br>inženýrství  | 5       | 2/2 Z+Zk |          |

## 6. Webové technologie

Obecný přehled základní webových technologií. Síťové služby pro webové technologie. Webové služby. Architektura klient-server aplikací, skriptování na straně serveru a klienta, webové frameworky. Použití databázových systémů ve webových aplikacích, NoSQL databáze, multimediální databáze. Indexace a prohledávání dokumentů, principy fungování webových vyhledávačů. Linked Data, integrace sémantických dat do webových stránek. Zajištění bezpečnosti informačních systémů v prostředí internetu, autentizace, autorizace, bezpečnostní modely, základy šifrování, ochrana dat.

| Kód     | Název                             | Kredity | ZS       | LS       |
|---------|-----------------------------------|---------|----------|----------|
| NSWI130 | Architektury softwarových systémů | 5       | 2/2 Z+Zk | _        |
| NSWI153 | Pokročilé programování webových   | 5       |          | 2/2 Z+Zk |
|         | aplikací                          |         |          |          |
| NSWI145 | Webové služby                     | 5       |          | 2/2 Z+Zk |

| NDBI034 | Vyhledávání multimediálního obsahu              | 4 | 2/1 Z+Zk | _                 |
|---------|-------------------------------------------------|---|----------|-------------------|
| NPRG043 | na webu<br>Doporučené postupy<br>v programování | 5 | _        | $2/2~\mathrm{KZ}$ |

# 7. Vývoj výkonných systémů

Toto zaměření ověřuje znalosti a dovednosti týkající se konstrukce softwarových systémů s vysokým výpočetním výkonem, zkoušené v rozsahu následujících profilujících předmětů:

| Kód     | Název                                            | Kredity | ZS       | LS       |
|---------|--------------------------------------------------|---------|----------|----------|
| NPRG058 | Pokročilé programování v paralelním prostředí    | 6       | 2/2 Z+Zk | _        |
| NSWI131 | Vyhodnocování výkonnosti<br>počítačových systémů | 4       | _        | 2/1 Z+Zk |

# Studijní plány oblasti vzdělávání UČITELSTVÍ

Vedle odborných studijních programů nabízí MFF UK také studium několika programů učitelského zaměření. Celé studium vedoucí k získání kvalifikace pro učitelské povolání je rozděleno na tříleté bakalářské a na něj navazující dvouleté magisterské studium.

V obou stupních studia jde o sdružené studium sestávající ze dvou studijních programů. V tom, který si student zvolil jako hlavní, studuje podle hlavního studijního plánu (maior), ve druhém programu studuje podle přidruženého studijního plánu (minor). V hlavním studijním programu absolvuje student pedagogicko-psychologickou průpravu a předměty univerzitního základu; v každém z obou programů pak předměty týkající se oboru, pro jehož výuku je připravován (včetně didaktiky daného oboru a pedagogické praxe). Na MFF UK je student na oba zvolené obory připravován ve stejném rozsahu a stejně kvalitně nezávisle na tom, který studijní program má jako hlavní a který jako přidružený. Bakalářskou práci student vypracovává jen v hlavním studijním programu; tím je přirozeně ovlivněno téma dané práce.

# Bakalářské studium od akad. roku 2019/20

## 1. Základní informace

V rámci bakalářského studia má MFF UK od akademického roku 2019/2020 akreditovány následující bakalářské studijní programy (se studijními plány maior a minor) týkající se učitelství:

- Fyzika se zaměřením na vzdělávání
- Matematika se zaměřením na vzdělávání
- Deskriptivní geometrie se zaměřením na vzdělávání
- Informatika se zaměřením na vzdělávání

Tyto studijní programy se ve sdruženém studiu kombinují. V současné době jsou nabízeny kombinace:

Fyzika se zaměřením na vzdělávání - Matematika se zaměřením na vzdělávání,

Fyzika se zaměřením na vzdělávání - Informatika se zaměřením na vzdělávání,

Matematika se zaměřením na vzdělávání - Deskriptivní geometrie se zaměřením na vzdělávání,

Matematika se zaměřením na vzdělávání - Informatika se zaměřením na vzdělávání. Každý student si může zvolit, který ze studijních programů je pro něj hlavní a který přidružený.

Se studijními programy Matematika se zaměřením na vzdělávání a Fyzika se zaměřením na vzdělávání se sdružují i jiné studijní programy z dalších fakult UK.

### Studijní plány

Studijní plány určují skladbu povinných a povinně volitelných předmětů a dále požadavky ke státní závěrečné zkoušce. Povinně volitelné předměty jsou rozděleny do několika skupin a pro každou skupinu je určen minimální počet kreditů, který je z dané skupiny třeba získat před přihlášením ke státní závěrečné zkoušce. Vedle povinných předmětů a povinně volitelných předmětů si může každý student podle vlastního výběru zapisovat další předměty vyučované na naší fakultě, v případě zájmu i na jiných fakultách naší univerzity (tzv. volitelné předměty). Ve studijních plánech jsou přitom pro každý studijní program uvedeny některé volitelné předměty jako doporučené.

## Doporučený průběh studia

Doporučený průběh studia je pro každý studijní program vypracován tak, aby na sebe povinné předměty navazovaly, aby student získal včas kredity potřebné pro zápis do dalšího úseku studia a aby včas splnil podmínky pro přihlášení ke státní závěrečné zkoušce. Doporučený průběh studia je podporován také při tvorbě celofakultního rozvrhu. Doporučené průběhy studia jsou uvedeny v další části textu u popisu jednotlivých studijních programů.

#### Státní závěrečná zkouška

Bakalářské studium je zakončeno státní závěrečnou zkouškou, která má tři části:

- obhajoba bakalářské práce (v rámci hlavního studijního plánu),
- ústní zkouška dle požadavků v hlavním studijním plánu (maior),
- ústní zkouška dle požadavků v přidruženém studijním plánu (minor).

Nezáleží přitom na pořadí, v jakém jsou tyto části skládány. Podmínky pro přihlášení ke státní závěrečné zkoušce jsou následující:

Pro první část SZZ je požadováno 140 kreditů. (Jde o jedinou podmínku, kontrola předmětů studijního plánu v tomto okamžiku není vyžadována.)

K poslední části SZZ je požadováno 180 kreditů (včetně splnění povinných předmětů a předepsaného minimálního počtu kreditů z povinně volitelných předmětů dle studijního plánu). K poslední části SZZ tedy musí být splněny tři podmínky: počet kreditů, splnění povinných předmětů a splnění požadovaného minima kreditů z povinně volitelných předmětů.

# 2. Studijní plány jednotlivých studijních programů

# 1. Fyzika se zaměřením na vzdělávání

Garantující pracoviště: Katedra didaktiky fyziky Garant studijního programu: doc. RNDr. Mgr. Vojtěch Žák, Ph.D.

#### Doporučený průběh studia

Předměty **povinné** jsou vytištěny **tučně**, povinně volitelné předměty normálním písmem, *doporučené volitelné* předměty *kurzívou*.

V následujících studijních plánech jsou uvedeny jen některé doporučené volitelné předměty. S nabídkou dalších volitelných předmětů jsou studenti seznamováni na začátku každého semestru na schůzce katedry didaktiky fyziky.

#### Hlavní studijní plán (maior)

| Kód     | Název                                                   | Kredity | ZS                | LS                 |
|---------|---------------------------------------------------------|---------|-------------------|--------------------|
| NFUF101 | Mechanika                                               | 8       | 4/2 Z+Zk          |                    |
| NFUF102 | Úvod do fyzikálních měření                              | 1       | $0/1 \mathrm{~Z}$ |                    |
| NMTM110 | Informační technologie pro                              | 3       | 1/2  KZ           |                    |
|         | učitele                                                 |         |                   |                    |
| NTVY014 | Tělesná výchova I <sup>1</sup>                          | 1       | $0/2 \mathrm{~Z}$ |                    |
| NJAZ070 | Anglický jazyk pro středně<br>pokročilé I <sup>2</sup>  | 1       | $0/2 \mathrm{~Z}$ |                    |
| NFUF801 | Fyzika I prakticky                                      | 1       | $0/1 \mathrm{~Z}$ | <del></del>        |
| NFUF802 | Řešení problémů                                         | 1       | $0/1 \mathrm{Z}$  |                    |
| NFUF803 | Seminář z mechaniky                                     | 1       | $0/1 \mathrm{Z}$  |                    |
| NFUF804 | Úvod do matematických metod<br>fyziky                   | 3       | $0/3 \mathrm{~Z}$ |                    |
| NFUF808 | Praxe v mimoškolním fyzikálním<br>vzdělávání I          | 1       | 0/1 Z             |                    |
| NOFY067 | Fyzika v experimentech I                                | 1       | $0/1 \mathrm{~Z}$ |                    |
| NFUF103 | Elektřina a magnetismus                                 | 8       | <u></u>           | 4/2 Z+Zk           |
| NFUF104 | Molekulová fyzika                                       | 2       | _                 | $2/0 \mathrm{Zk}$  |
| NFUF105 | Praktikum I - Mechanika                                 | 3       | _                 | $0/3 \mathrm{~KZ}$ |
|         | a molekulová fyzika                                     |         |                   |                    |
| NFUF106 | Matematické metody ve fyzice                            | 4       |                   | 2/2 Z+Zk           |
| NTVY015 | Tělesná výchova II <sup>1</sup>                         | 1       | _                 | $0/2 \mathrm{~Z}$  |
| NJAZ072 | Anglický jazyk pro středně<br>pokročilé II <sup>2</sup> | 1       | _                 | $0/2 \mathrm{~Z}$  |
| NFUF805 | Elektřina a magnetizmus krok za krokem                  | 2       |                   | $0/2 \mathrm{~Z}$  |
| NFUF806 | Molekulová fyzika                                       | 2       |                   | $0/2 \mathrm{~Z}$  |
|         | Elektřina kolem nás                                     | 2       |                   | $0/2 \mathrm{~Z}$  |
| NFUF809 | Praxe v mimoškolním fyzikálním<br>vzdělávání II         | 1       | _                 | 0/1 Z              |
| NOFY068 | Fyzika v experimentech II                               | 1       |                   | $0/1 \mathrm{~Z}$  |
|         | Kurz bezpečnosti práce I <sup>3</sup>                   | 0       |                   | ,<br>              |

Místo jednoho z předmětů NTVY014, NTVY015, NTVY016, NTVY017 je možné si zapsat Letní výcvikový kurz NTVY018 nebo Zimní výcvikový kurz NTVY019. Tyto kurzy může student absolvovat kdykoli v průběhu studia.

 $<sup>^2</sup>$  Výuka anglického jazyka NJAZ070, NJAZ072 v rozsahu 0/2 v každém semestru je určena pro středně pokročilé a pokročilé. Pro začátečníky a mírně pokročilé jsou určeny předměty NJAZ071, NJAZ073 s rozsahem výuky 0/4 v každém semestru.

 $<sup>^3</sup>$  Kurz je organizován jednorázově zpravidla v letním semestru. Informace jsou vždy před začátkem semestru na http://physics.mff.cuni.cz/vyuka/zfp/ .

| •  | 1   |        | 1.  |
|----|-----|--------|-----|
| 2. | rok | St.116 | ดเท |

| Kód     | Název                            | Kredity | ZS                | LS                 |
|---------|----------------------------------|---------|-------------------|--------------------|
| NFUF201 | Optika                           | 7       | 3/2 Z+Zk          |                    |
| NFUF202 | Teoretická mechanika             | 2       | 2/0  Zk           |                    |
| NFUF203 | Praktikum II — Elektřina         | 3       | 0/3  KZ           |                    |
|         | a magnetismus                    |         |                   |                    |
| NTVY016 | Tělesná výchova III <sup>1</sup> | 1       | $0/2 \mathrm{~Z}$ |                    |
| NJAZ074 | Anglický jazyk pro středně       | 1       | $0/2 \mathrm{Z}$  |                    |
|         | pokročilé III <sup>2</sup>       |         |                   |                    |
| NFUF812 | Matematické metody ve fyzice II  | 3       | $0/2 \mathrm{~Z}$ | _                  |
| NFUF813 | Optika krok za krokem            | 3       | $0/2 \mathrm{~Z}$ |                    |
| NFUF814 | Teoretická mechanika             | 3       | $0/2 \mathrm{~Z}$ |                    |
| NFUF204 | Úvod do kvantové mechaniky       | 8       | <u> </u>          | 4/2 Z+Zk           |
|         | a kvantové teorie                |         |                   | ,                  |
| NFUF205 | Klasická elektrodynamika         | 2       | _                 | $2/0 \mathrm{~Zk}$ |
| NFUF206 | Praktikum III — Optika           | 3       | <del></del>       | 0/3  KZ            |
|         | a atomová fyzika                 |         |                   | ,                  |
| NTVY017 | Tělesná výchova IV <sup>1</sup>  | 1       |                   | $0/2 \mathrm{~Z}$  |
| NJAZ090 | Anglický jazyk pro středně       | 1       |                   | $0/2 \mathrm{~Z}$  |
|         | pokročilé IV <sup>2</sup>        |         |                   | ,                  |
| NJAZ091 | Anglický jazyk — zkouška pro     | 1       | 0/0  Zk           | $0/0 \mathrm{Zk}$  |
|         | bakaláře <sup>3</sup>            |         | ı                 | ,                  |

 $<sup>^{1}</sup>$  Místo jednoho z předmětů NTVY014, NTVY015, NTVY016, NTVY017 je možné si zapsat Letní výc<br/>vikový kurz NTVY018 nebo Zimní výc<br/>vikový kurz NTVY019. Tyto kurzy může student absolvovat kdykoli v průběhu studia.

| Název                         | Kredity                                                                                                                                                                                                     | ZS                                                                                                                                                                                                                                                                                                                                              | LS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Atomová fyzika                | 5                                                                                                                                                                                                           | 2/2 Z+Zk                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Termodynamika a statistická   | 7                                                                                                                                                                                                           | 3/2 Z+Zk                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| fyzika                        |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Praktický úvod do elektroniky | 2                                                                                                                                                                                                           | $0/2 \mathrm{~Z}$                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Úvod do psychologie           | 3                                                                                                                                                                                                           | 2/0  Zk                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Pedagogická propedeutika      | 3                                                                                                                                                                                                           | <del>-</del>                                                                                                                                                                                                                                                                                                                                    | $0/2 \mathrm{~Z}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Proseminář výuky fyziky I     | 2                                                                                                                                                                                                           | $0/2 \mathrm{~Z}$                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Speciální teorie relativity   | 2                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                 | $2/0 \mathrm{Zk}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Vypracování a konzultace      | 6                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                 | $0/0 \mathrm{~Z}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| bakalářské práce              |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Pedagogická praxe z fyziky I  | 2                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                 | 1 den týdně Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Bakalářský seminář z fyziky   | 2                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                 | $0/2~{ m Z}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                               | 1                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                               | $0/1 \mathrm{~Z}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                               | Atomová fyzika Termodynamika a statistická fyzika Praktický úvod do elektroniky Úvod do psychologie Pedagogická propedeutika Proseminář výuky fyziky I Speciální teorie relativity Vypracování a konzultace | Atomová fyzika 5 Termodynamika a statistická 7 fyzika Praktický úvod do elektroniky 2 Úvod do psychologie 3 Pedagogická propedeutika 3 Proseminář výuky fyziky I 2 Speciální teorie relativity 2 Vypracování a konzultace 6 bakalářské práce Pedagogická praxe z fyziky I 2 Bakalářský seminář z fyziky 2 Psychologická a pedagogická reflexe 1 | Atomová fyzika  Termodynamika a statistická fyzika  Praktický úvod do elektroniky  Vvod do psychologie  Pedagogická propedeutika  Proseminář výuky fyziky I  Speciální teorie relativity  Vypracování a konzultace bakalářské práce  Pedagogická praxe z fyziky I  Bakalářský seminář z fyziky  Psychologická a pedagogická reflexe  5  2/2 Z+Zk  7  3/2 Z+Zk  7  2/2 Z+Zk  2/2 Z+ |

 $<sup>^2</sup>$  Výuka anglického jazyka NJAZ074, NJAZ090 v rozsahu 0/2 v každém semestru je určena pro středně pokročilé a pokročilé. Pro začátečníky a mírně pokročilé jsou určeny předměty NJAZ075, NJAZ089 s rozsahem výuky 0/4 v každém semestru. Povinnou zkoušku z anglického jazyka NJAZ091 je možné absolvovat v ZS nebo v LS.

|           | Povinně volitelné předměty                | 4       |                   |                   |
|-----------|-------------------------------------------|---------|-------------------|-------------------|
| Povinně v | rolitelné předměty (minimálně 4 k         | redity) |                   |                   |
| Kód       | Název                                     | Kredity | ZS                | LS                |
| NPEP601   | Rétorika a komunikace s lidmi I           | 2       | $0/2 \mathrm{~Z}$ | _                 |
| NPEP602   | Sociální dovednosti a práce s lidmi I     | 2       | $0/2 \mathrm{Z}$  |                   |
| NPEP603   | Rétorika a komunikace s lidmi II          | 2       |                   | $0/2 \mathrm{~Z}$ |
| NPEP604   | Sociální dovednosti a práce<br>s lidmi II | 2       |                   | $0/2 \mathrm{~Z}$ |

# Přidružený studijní plán (minor)

# 1. rok studia

| Kód     | Název                           | Kredity | ZS                | LS                |
|---------|---------------------------------|---------|-------------------|-------------------|
| NFUF101 | Mechanika                       | 8       | 4/2 Z+Zk          |                   |
| NFUF102 | Úvod do fyzikálních měření      | 1       | $0/1 \mathrm{Z}$  |                   |
| NFUF801 | Fyzika I prakticky              | 1       | $0/1 \mathrm{Z}$  |                   |
| NFUF802 | Řešení problémů                 | 1       | $0/1 \mathrm{~Z}$ |                   |
| NFUF803 | Seminář z mechaniky             | 1       | $0/1 \mathrm{~Z}$ |                   |
| NFUF804 | Úvod do matematických metod     | 3       | $0/3 \mathrm{~Z}$ |                   |
|         | fyziky                          |         |                   |                   |
| NFUF808 | Praxe v mimoškolním fyzikálním  | 1       | $0/1 \mathrm{~Z}$ |                   |
|         | vzdělávání I                    |         |                   |                   |
| NOFY067 | $Fyzika\ v\ experimentech\ I$   | 1       | $0/1 \mathrm{Z}$  |                   |
| NFUF103 | Elektřina a magnetismus         | 8       |                   | 4/2 Z+Zk          |
| NFUF104 | Molekulová fyzika               | 2       |                   | $2/0 \mathrm{Zk}$ |
| NFUF105 | Praktikum I - Mechanika         | 3       |                   | 0/3  KZ           |
|         | a molekulová fyzika             |         |                   |                   |
| NFUF106 | Matematické metody ve fyzice    | 4       |                   | 2/2 Z+Zk          |
| NFUF805 | Elektřina a magnetizmus krok za | 2       |                   | $0/2 \mathrm{~Z}$ |
|         | krokem                          |         |                   |                   |
| NFUF806 | Molekulová fyzika               | 2       |                   | $0/2 \mathrm{~Z}$ |
| NFUF807 | Elektřina kolem nás             | 2       |                   | $0/2 \mathrm{~Z}$ |
| NFUF809 | Praxe v mimoškolním fyzikálním  | 1       |                   | $0/1 \mathrm{~Z}$ |
|         | vzdělávání II                   |         |                   |                   |
| NOFY068 | Fyzika v experimentech II       | 1       | <del></del>       | $0/1 \mathrm{~Z}$ |
|         | Kurz bezpečnosti práce I $^{1}$ | 0       |                   |                   |

 $<sup>^1</sup>$  Kurz je organizován jednorázově zpravidla v letním semestru. Informace jsou vždy před začátkem semestru na http://physics.mff.cuni.cz/vyuka/zfp/ .

| Kód     | Název                | Kredity | ZS                | LS |
|---------|----------------------|---------|-------------------|----|
| NFUF201 | Optika               | 7       | 3/2 Z+Zk          |    |
| NFUF202 | Teoretická mechanika | 2       | $2/0 \mathrm{Zk}$ | _  |

| NFUF203 | Praktikum II — Elektřina<br>a magnetismus | 3 | $0/3~\mathrm{KZ}$ |                    |
|---------|-------------------------------------------|---|-------------------|--------------------|
| NUFY085 | Matematické metody ve fyzice II           | 3 | $0/2 \mathrm{Z}$  |                    |
| NUFY113 | Optika krok za krokem                     | 3 | $0/2 \mathrm{Z}$  |                    |
| NUFY029 | Teoretická mechanika                      | 3 | $0/2 \mathrm{~Z}$ |                    |
| NFUF204 | Úvod do kvantové mechaniky                | 8 | _                 | 4/2  Z+Zk          |
|         | a kvantové teorie                         |   |                   | ·                  |
| NFUF205 | Klasická elektrodynamika                  | 2 | _                 | $2/0 \mathrm{~Zk}$ |
| NFUF206 | Praktikum III — Optika                    | 3 | _                 | 0/3  KZ            |
|         | a atomová fyzika                          |   |                   | ,                  |

#### 3. rok studia

| Kód     | Název                         | Kredity | ZS                | LS                             |
|---------|-------------------------------|---------|-------------------|--------------------------------|
| NFUF301 | Atomová fyzika                | 5       | 2/2 Z+Zk          | _                              |
| NFUF302 | Termodynamika a statistická   | 7       | 3/2 Z+Zk          |                                |
|         | fyzika                        |         |                   |                                |
| NFUF303 | Praktický úvod do elektroniky | 2       | $0/2 \mathrm{~Z}$ |                                |
| NFUF305 | Proseminář výuky fyziky I     | 2       | $0/2 \mathrm{~Z}$ |                                |
| NFUF304 | Speciální teorie relativity   | 2       | _                 | $2/0 \mathrm{~Zk}$             |
| NFUF306 | Pedagogická praxe z fyziky I  | 2       |                   | $1 \operatorname{den}$ týdně Z |

#### Požadavky ke státní závěrečné zkoušce

Studentovi jsou zadána tři z níže uvedených témat (jsou rozdělena do šesti okruhů a jednotlivá témata jsou očíslována). Student si během vymezeného času připraví písemný podklad k ústní části zkoušky. Prověřována je jak hloubka porozumění tématům, tak také šíře jejich pochopení v souvislostech (včetně souvislostí s běžným životem a technickou praxí).

#### A. Klasická mechanika

1. Kinematika a dynamika hmotného bodu, Newtonovy pohybové zákony (z.). 2. Soustava hmotných bodů, její kinematický a dynamický popis. 3. Tuhé těleso, rotace, moment setrvačnosti. 4. Rovnováha soustav hmotných bodů a těles, princip virtuální práce. 5. Síly a silová pole, vztah síly a energie, zobecněné síly. 6. Hybnost, první věta impulzová, zákon zachování hybnosti (ZZ), zobecněná hybnost. 7. Moment hybnosti, druhá věta impulzová, ZZ momentu hybnosti. 8. Kinetická a potenciální energie, ZZ mechanické energie. 9. Lagrangeovy rovnice druhého druhu, Hamiltonovy rovnice. 10. Využití variačního počtu v klasické mechanice, brachistochrona. 11. Inerciální soustavy, Galileiho transformace, klasický princip relativity, souvislost s STR. 12. Neinerciální soustavy, setrvačné síly, beztížný stav. 13. Odporové síly, pohyb pod vlivem odporových sil. 14. Pohyb v poli centrální síly, Keplerovy zákony. 15. Pružné a nepružné srážky, rozptyl, Rutherfordův pokus. 16. Harmonický oscilátor, netlumené a tlumené kmity, kyvadlo. 17. Buzené kmity a rezonance. 18. Vázané kmity, malé kmity soustav hmotných bodů. 19. Rovnice struny, postupné a stojaté vlnění. 20. Kontinuum, popis napětí a deformace. 21. Vztah napětí a deformace v kontinuu, pružnost, reologická klasifikace látek. 22. Hydrostatika, rovnováha tekutin, Pascalův z. a Archimedův z. 23. Pohyb ideálních a viskózních tekutin, rovnice kontinuity.

#### B. Elektřina, magnetismus a klasická elektrodynamika

1. Maxwellovy rovnice. 2. Elektrický náboj, Coulombův z., elektrostatické pole, Gaussův z. elektrostatiky. 3. Intenzita a potenciál elektrostatického pole, Laplaceova rovnice. 4. Vodič v elektrostatickém poli, elektrostatické pole vodičů. 5. Kapacita a kondenzátory. 6. Dielektrika v elektrostatickém poli. 7. Stacionární elektrický proud, ZZ elektrického náboje, rovnice kontinuity. 8. Elektrické obvody se stacionárním proudem. 9. Odpor vodičů, prvky elektrických obvodů. 10. Magnetické pole permanentních magnetů a stacionárního proudu, Ampèrův z. 11. Elektrický a magnetický dipól. 12. Magnetické pole v látkovém prostředí. 13. Pohyb nabité částice v homogenním elektrickém a homogenním magnetickém poli, působení magnetického pole na vodič s proudem. 14. Faradayův z. elektromagnetické (elmag.) indukce. 15. Indukčnost, cívky. 16. Přechodové jevy v obvodech s kondenzátorem a cívkou. 17. Střídavý proud. 18. Rezistor, kondenzátor a cívka v obvodu střídavého proudu. 19. LC a RLC oscilační obvody. 20. Transformátor. 21. Polovodičové prvky a jejich aplikace. 22. Vektorový a skalární elmag. potenciál. 23. Vlnová rovnice pro elmag. vlny ve vakuu, dielektriku a ve vodiči. 24. Kvazistacionární pole ve vodiči a mimo vodič. 25. ZZ energie v elmag. poli. 26. ZZ hybnosti v elmag. poli. 27. Klasická elektrodynamika jako součást klasické fyziky a její meze.

#### C. Optika

1. Rovinná a kulová harmonická elmag. vlna – parametry, polarizace, energie (okamžité a časové střední hodnoty). 2. Skládání elmag. vln – koherence, Youngův interferenční pokus, interference na planparalelní desce. 3. Difrakce na štěrbině a kruhovém otvoru. 4. Difrakce na optické mřížce. 5. Odraz a lom elmag. vln na rovinném rozhraní. 6. Optické hranoly – odrazné a disperzní (rozkladné). 7. Kolineární zobrazení, zobrazení kulovou odraznou a lámavou plochou v aproximaci paraxiálních paprsků. 8. Zobrazení zrcadlem a čočkou, jejich vady. 9. Jednoduché optické přístroje – lupa, mikroskop, dalekohled. 10. Lidské oko – stavba, zobrazovací funkce, vnímání barev, vady. 11. Optická anizotropie – šíření elmag. vln v jednoosém krystalu, praktické využití. 12. Foton a jeho vlastnosti. 13. Absorpce, spontánní a stimulovaná emise optického záření. 14. Princip laseru.

#### D. Termodynamika, statistická fyzika a molekulová fyzika

1. Východiska a výchozí pojmy termodynamiky, termodynamické postuláty a teplota. 2. První termodynamický zákon a jeho důsledky. 3. Vlastnosti ideálního a reálného plynu, jednoduché děje. 4. Druhý termodynamický zákon a Carnotův cyklus. 5. Fázový diagram a klasifikace fázových přechodů. 6. Východiska statistické fyziky – fázový prostor, ergodická hypotéza, Liouvilleův teorém. 7. Kanonický soubor a jeho rozdělení. 8. Statistická rozdělení nerozlišitelných částic. 9. Entropie z termodynamického i statistického pohledu. 10. Ekvipartiční teorém. 11. Zákony záření černého tělesa. 12. Rozdělení rychlostí molekul plynu. 13. Rozdělení molekul plynu v konzervativním silovém poli. 14. Transportní jevy v plynech. 15. Vlastnosti povrchové vrstvy kapalin.

#### E. Atomová a kvantová fyzika

- 1. Vývoj názorů na podstatu světla, experimentální důvody vzniku kvantové teorie. 2. Atomová hypotéza a modely atomu. 3. Popis stavu jedné částice a popis fyzikálních veličin v kvantové mechanice, axiom o měření. 4. Časový vývoj v kvantové mechanice. 5. Rozptylové a vázané stavy v 1D případech. 6. Atom vodíku a jeho optické spektrum.
- 7. Základní myšlenky metod přibližného řešení úloh v kvantové mechanice. 8. Mo-

ment hybnosti a magnetický moment. 9. Systémy mnoha částic v kvantové mechanice. 10. Základy chemické vazby. 11. Odlišné chování objektů v mikrosvětě a přechod mezi klasickou a kvantovou mechanikou.

#### F. Speciální teorie relativity

1. Základní principy speciální teorie relativity (STR) a pokusy, které k nim vedly. 2. Lorentzova transformace, kontrakce délek, dilatace času. 3. Relativita současnosti, nadsvětelné rychlosti, STR a kauzalita. 4. Skládání rychlostí v STR a jeho aplikace. 5. Prostor a čas v klasické mechanice a v STR, prostoročasové diagramy. 6. Hybnost a energie v STR. 7. Relativistická pohybová rovnice, aplikace na pohyb nabité částice. 8. Ekvivalence hmotnosti a energie. 9. Dopplerův jev, optický vzhled pohybujících se těles. 10. Vztah STR a klasické mechaniky.

#### 2. Matematika se zaměřením na vzdělávání

Garantující pracoviště: Katedra didaktiky matematiky Garantka studijního programu: doc. RNDr. Jarmila Robová, CSc.

#### Doporučený průběh studia

Předměty **povinné** jsou vytištěny **tučně**, povinně volitelné předměty normálním písmem, *doporučené volitelné* předměty *kurzívou*.

Hlavní studijní plán (maior)

#### 1. rok studia

| Kód     | Název                             | Kredity | ZS                | LS                |
|---------|-----------------------------------|---------|-------------------|-------------------|
|         | Povinné předměty – obecná část:   |         |                   |                   |
| NTVY014 | ${f T}$ ělesná výchova I $^{tv}$  | 1       | $0/2 \mathrm{~Z}$ |                   |
| NTVY015 | ${f T}$ ělesná výchova II $^{tv}$ | 1       | <u> </u>          | $0/2 \mathrm{~Z}$ |
| NMTM11  | 0Informační technologie pro       | 3       | 1/2  KZ           | 1/2  KZ           |
|         | uči $\mathbf{tele}^{\ it}$        |         |                   |                   |
|         | Anglický jazyk <sup>a</sup>       |         |                   |                   |
|         | Povinné předměty – oborová část:  |         |                   |                   |
| NMTM10  | l Matematická analýza I           | 8       | 4/2 Z+Zk          |                   |
| NMTM10  | 3Lineární algebra I               | 4       | 2/2 Z+Zk          |                   |
| NMTM10  | 5 Aritmetika a algebra I          | 3       | 2/1 Z+Zk          |                   |
| NMTM10  | 2 Matematická analýza II          | 4       |                   | 2/2 Z+Zk          |
| NMTM10  | 4Lineární algebra II              | 4       |                   | 2/2 Z+Zk          |
| NMTM10  | 6 <b>Z</b> áklady planimetrie     | 4       | _                 | 2/2 Z+Zk          |

it Tento předmět si studenti postupující dle plánu Fyzika se zaměřením na vzdělávání (plán maior i minor) a Informatika se zaměřením na vzdělávání (plán maior i minor) zapisují v zimním semestru. V letním semestru si předmět zapisují studenti postupující dle plánu Deskriptivní geometrie se zaměřením na vzdělávání (plán maior i minor) a studenti Matematika se zaměřením na vzdělávání v kombinaci s dalším programem na FF UK.

| Kód     | Název                                                                       | Kredity | ZS    | LS                |
|---------|-----------------------------------------------------------------------------|---------|-------|-------------------|
|         | Povinné předměty – obecná část:<br><b>Tělesná výchova III</b> <sup>tv</sup> | 1       | 0/2 Z |                   |
| NTVY017 | $^{\prime}$ Tělesná výchova IV $^{tv}$                                      | 1       |       | $0/2  \mathrm{Z}$ |

| ${\rm NJAZ091}~$ Anglický jazyk — zkouška probakaláře $^a$ | 1 | $0/0 \mathrm{\ Zk}$ | $0/0 \mathrm{\ Zk}$ |
|------------------------------------------------------------|---|---------------------|---------------------|
| Povinné předměty – oborová část:                           |   |                     |                     |
| NMTM201 <b>Matematická analýza III</b>                     | 4 | 2/2 Z+Zk            |                     |
| NMTM203 <b>Geometrie I</b>                                 | 4 | 2/2 Z+Zk            |                     |
| NMTM205 <b>Stereometrie</b>                                | 3 | 1/2  Z+Zk           |                     |
| NMTM207 Finanční matematika                                | 2 | $0/2 \mathrm{~Z}$   |                     |
| NMTM202 <b>Matematická analýza IV</b>                      | 4 | <del></del>         | 2/2 Z+Zk            |
| NMTM204 Geometrie II                                       | 4 |                     | 2/2 Z+Zk            |
| NMTM206 Aritmetika a algebra II                            | 3 |                     | 2/1  Z+Zk           |
| NMTM208 Kombinatorika                                      | 3 |                     | $2/0 \mathrm{~Zk}$  |

 $<sup>^</sup>a$  Jednosemestrální předmět NJAZ091 se skládá pouze z povinné zkoušky z anglického jazyka, kterou je možno absolvovat buď v ZS, nebo v LS. Před povinnou zkouškou doporučujeme absolvovat výuku anglického jazyka v rámci volitelných předmětů dle své úrovně. Pro mírně pokročilé: NJAZ071, NJAZ073, NJAZ075, NJAZ089, pro středně pokročilé: NJAZ070, NJAZ072, NJAZ074, NJAZ090, pro pokročilé: NJAZ170, NJAZ172, NJAZ174, NJAZ176.

#### 3. rok studia

| Kód     | Název                               | Kredity | ZS                  | LS                 |
|---------|-------------------------------------|---------|---------------------|--------------------|
|         | Povinné předměty – obecná část:     |         |                     |                    |
| NPEP301 | Úvod do psychologie                 | 3       | $2/0 \mathrm{Zk}$   |                    |
| NPEP302 | Pedagogická propedeutika            | 3       |                     | $0/2 \mathrm{~Z}$  |
| NMTM31  | 4Vypracování a konzultace           | 6       | $0/0 \mathrm{~Z}$   | $0/0 \mathrm{~Z}$  |
|         | bakalářské práce $^{\ bc}$          |         |                     |                    |
|         | Povinně volitelné předměty – obecná | 4       |                     |                    |
|         | část                                |         |                     |                    |
|         | Povinně volitelné předměty –        | 2       |                     |                    |
|         | oborová část                        |         |                     |                    |
|         | Povinné předměty – oborová část:    |         |                     |                    |
| NMTM30  | 1 <b>D</b> iferenciální geometrie   | 4       | 2/2 Z+Zk            |                    |
| NMTM30  | 3Základy zobrazovacích metod        | 2       | 1/1  KZ             |                    |
| NMTM30  | 5 <b>D</b> ějiny matematiky I       | 2       | $2/0 \mathrm{\ Kv}$ |                    |
| NMTM30  | 7 Metody řešení matematických       | 2       | $0/2 \mathrm{~Z}$   |                    |
|         | úloh                                |         |                     |                    |
| NMTM30  | 6 <b>Dějiny matematiky II</b>       | 2       |                     | $2/0  \mathrm{Kv}$ |
| NMTM31  | 0Pedagogická praxe                  | 2       |                     | $0/1 \mathrm{Z}$   |
|         | z matematiky I                      |         |                     |                    |

 $<sup>^{</sup>bc}$  Předmět je jednosemestrální, je možno si jej zapsat v zimním, nebo v letním semestru. Doporučený semestr: letní.

#### Povinně volitelné předměty – obecná část (alespoň 4 kredity)

| Kód     | Název                                 | Kredity | ZS                | LS |
|---------|---------------------------------------|---------|-------------------|----|
| NPEP601 | Rétorika a komunikace s lidmi I       | 2       | $0/2 \mathrm{~Z}$ | _  |
| NPEP602 | Sociální dovednosti a práce s lidmi I | 2       | $0/2 \ {\rm Z}$   | _  |

tv Místo kteréhokoli z předmětů NTVY014, NTVY015, NTVY016, NTVY017 (ale nejvýše jednoho z nich) si lze zapsat buď Letní výcvikový kurz NTVY018, nebo Zimní výcvikový kurz NTVY019. Tyto kurzy může student absolvovat kdykoli v průběhu studia.

|           | Rétorika a komunikace s lidmi II<br>Sociální dovednosti a práce | 2 2      | _                 | 0/2 Z<br>0/2 Z |
|-----------|-----------------------------------------------------------------|----------|-------------------|----------------|
| -         | s lidmi II                                                      |          |                   |                |
| Povinně v | volitelné předměty – oborová část                               | (alespoň | 2 kredity)        |                |
| Kód       | Název                                                           | Kredity  | ZS                | LS             |
| NMTM33    | 1 Bakalářský seminář                                            | 2        | $0/2 \mathrm{~Z}$ | _              |
|           | z matematiky I $^{1}$                                           |          |                   |                |
| NINTENES  | 2Bakalářský seminář                                             | 0        |                   | $0/2 \ { m Z}$ |

 $<sup>^{1}\</sup>mathrm{P}$ ředměty Bakalářský seminář z matematiky I a II si lze zapsat oba, nebo kterýkoli z nich.

# Doporučené volitelné předměty

z matematiky II <sup>1</sup>

| Kód     | Název                                                                     | Kredity | ZS                                            | LS                |
|---------|---------------------------------------------------------------------------|---------|-----------------------------------------------|-------------------|
| NMTM16  | 1 Matematický proseminář I                                                | 2       | 0/2 Z                                         |                   |
| NMTM16  | 2 Matematický proseminář II                                               | 2       | <del>-</del>                                  | $0/2  \mathrm{Z}$ |
| NMTM26  | $4Ku\check{z}elose\check{c}ky$                                            | 2       |                                               | $0/2 \mathrm{~Z}$ |
| NMIN203 | Mathematica pro začátečníky <sup>2</sup>                                  | 2       | $0/2 \mathrm{~Z}$                             | $0/2 \mathrm{~Z}$ |
| NMIN264 | Mathematica pro pokročilé <sup>3</sup>                                    | 2       |                                               | $0/2 \mathrm{~Z}$ |
| NMUM36  | 5 Seminář z kombinatoriky a teorie grafů                                  | 2       | _                                             | $0/2 \mathrm{~Z}$ |
| NMTM46  | 2 Rozvíjení konceptuálních znalostí ve<br>školské matematice <sup>2</sup> | 3       | $0/2 \mathrm{~Z}$                             | 0/2 Z             |
| NMUG36  | 1 Aplikace deskriptivní geometrie                                         | 2       | $2/0 \mathrm{Z}$                              |                   |
| NMTD30  | l Počítačová geometrie I                                                  | 5       | 2/2 Z+Zk                                      |                   |
| NMTD30  | 2 Počítačová geometrie II                                                 | 7       |                                               | 2/4 Z+Zk          |
| NUMV09  | 0 Teorie her                                                              | 2       |                                               | $2/0 \mathrm{~Z}$ |
| NUMV04  | 7 Pravděpodobnost a finanční<br>matematika pro střední školu              | 3       | 0/2 Z                                         |                   |
| NUMV04  | 8 Statistika a pojistná matematika pro<br>střední školu                   | 3       |                                               | $0/2 \mathrm{~Z}$ |
| NUMV05  | 8 Řecké matematické texty I                                               | 3       | $0/2 \mathrm{~Z}$                             |                   |
|         | Dětské programovací jazyky                                                | 4       | <u>,                                     </u> | $1/2 \mathrm{~Z}$ |
| NDIN011 | Aplikační software                                                        | 4       | $2/1~\mathrm{KZ}$                             |                   |

 $<sup>\</sup>frac{2}{3}$  Volitelný předmět je jednosemestrální, je možno jej absolvovat v zimním, nebo v letním semestru. Volitelný předmět bývá vyučován zpravidla jednou za dva roky.

Některé volitelné předměty nemusejí být v tomto akademickém roce vyučovány.

## Přidružený studijní plán (minor)

| Kód    | Název                       | Kredity | ZS        | LS       |
|--------|-----------------------------|---------|-----------|----------|
| NMTM10 | 1 Matematická analýza I     | 8       | 4/2 Z+Zk  |          |
| NMTM10 | 3 <b>Lineární algebra I</b> | 4       | 2/2 Z+Zk  |          |
| NMTM10 | 5 Aritmetika a algebra I    | 3       | 2/1  Z+Zk |          |
| NMTM10 | 2Matematická analýza II     | 4       | <u> </u>  | 2/2 Z+Zk |

|           | 04 <b>L</b> ineární algebra II<br>06 <b>Z</b> áklady planimetrie | 4<br>4      | _                 | 2/2 Z+Zk $2/2$ Z+Zk |
|-----------|------------------------------------------------------------------|-------------|-------------------|---------------------|
| 2. rok st | tudia                                                            |             |                   |                     |
| Kód       | Název                                                            | Kredity     | ZS                | LS                  |
| NMTM2     | 201 Matematická analýza III                                      | 4           | 2/2 Z+Zk          |                     |
| NMTM2     | 203 Geometrie I                                                  | 4           | 2/2 Z+Zk          |                     |
| NMTM2     | 205 Stereometrie                                                 | 3           | 1/2 Z+Zk          |                     |
| NMTM2     | 207 Finanční matematika                                          | 2           | $0/2 \mathrm{~Z}$ |                     |
| NMTM2     | 202 Matematická analýza IV                                       | 4           |                   | 2/2 Z+Zk            |
| NMTM2     | 204 Geometrie II                                                 | 4           |                   | 2/2 Z+Zk            |
|           | 206 Aritmetika a algebra II                                      | 3           |                   | 2/1  Z+Zk           |
| NMTM2     | 208 Kombinatorika                                                | 3           |                   | $2/0 \mathrm{Zk}$   |
| 3. rok st | tudia                                                            |             |                   |                     |
| Kód       | Název                                                            | Kredity     | ZS                | LS                  |
|           | Povinně volitelné předměty –<br>oborová část                     | 2           |                   |                     |
| NMTM3     | 301 Diferenciální geometrie                                      | 4           | 2/2 Z+Zk          |                     |
| NMTM3     | 803 <b>Z</b> áklady zobrazovacích metod                          | 2           | 1/1  KZ           | _                   |
| NMTM3     | 305 Dějiny matematiky I                                          | 2           | 2/0  Kv           |                     |
| NMTM3     | 807 Metody řešení matematických<br>úloh                          | 2           | $0/2 \mathrm{~Z}$ |                     |
| NMTM3     | 306 Dějiny matematiky II                                         | 2           |                   | $2/0 \mathrm{\ Kv}$ |
|           | 310 Pedagogická praxe<br>z matematiky I                          | 2           | _                 | $0/1 \mathrm{~Z}$   |
| Povinně   | volitelné předměty – oborová čás                                 | t (2 kredit | y)                |                     |
| Kód       | Název                                                            | Kredity     | ZS                | LS                  |
| NMTM3     | 331 Bakalářský seminář<br>z matematiky I <sup>1</sup>            | 2           | $0/2 \mathrm{~Z}$ | _                   |
| NMTM3     | 332Bakalářský seminář<br>z matematiky II <sup>1</sup>            | 2           | _                 | $0/2 \mathrm{~Z}$   |

 $<sup>^{1}\</sup>mathrm{P}$ ředměty Bakalářský seminář z matematiky I a II si lze zapsat oba, nebo kterýkoli z nich.

# Doporučené volitelné předměty

| Kód                                                  | Název                                    | Kredity | ZS                                            | LS                |
|------------------------------------------------------|------------------------------------------|---------|-----------------------------------------------|-------------------|
| NMTM110 <b>Informační technologie pro</b><br>učitele |                                          |         |                                               | $1/2~\mathrm{KZ}$ |
| NMTM16                                               | 1 Matematický proseminář I               | 2       | $0/2 \mathrm{~Z}$                             |                   |
| NMTM16                                               | 2 Matematický proseminář II              | 2       |                                               | $0/2 \mathrm{~Z}$ |
| NMTM26                                               | $4Ku\check{z}elose\check{c}ky$           | 2       |                                               | $0/2 \mathrm{~Z}$ |
| NMIN203                                              | Mathematica pro začátečníky <sup>2</sup> | 2       | $0/2 \mathrm{~Z}$                             | $0/2 \mathrm{~Z}$ |
| NMIN264                                              | Mathematica pro pokročilé <sup>3</sup>   | 2       | <u>,                                     </u> | 0/2 Z             |

| NMUM365 Seminář z kombinatoriky a teorie grafů                                  | 2 | _                 | $0/2 \mathrm{~Z}$ |
|---------------------------------------------------------------------------------|---|-------------------|-------------------|
| NMTM462 Rozvíjení konceptuálních znalostí ve<br>školské matematice <sup>2</sup> | 3 | $0/2 \mathrm{~Z}$ | $0/2 \mathrm{~Z}$ |
| NMUG361 Aplikace deskriptivní geometrie                                         | 2 | $2/0 \mathrm{~Z}$ |                   |
| NMTD301 Počítačová geometrie I                                                  | 5 | 2/2 Z+Zk          |                   |
| NMTD302 Počítačová geometrie II                                                 | 7 | <del>-</del>      | 2/4 Z+Zk          |
| NUMV090 Teorie her                                                              | 2 |                   | $2/0 \mathrm{Z}$  |
| NUMV047 Pravděpodobnost a finanční<br>matematika pro střední školu              | 3 | $0/2 \mathrm{~Z}$ | <u> </u>          |
| NUMV048 Statistika a pojistná matematika pro<br>střední školu                   | 3 | _                 | $0/2 \mathrm{~Z}$ |
| NUMV058 Řecké matematické texty I                                               | 3 | $0/2 \mathrm{~Z}$ |                   |
| NDIN019 Dětské programovací jazyky                                              | 4 |                   | $1/2 \mathrm{Z}$  |
| NDIN011 Aplikační software                                                      | 4 | $2/1~\mathrm{KZ}$ | <u>-</u>          |

 $<sup>^2</sup>$  Volitelný předmět je jednosemestrální, je možno jej absolvovat v zimním, nebo v letním semestru.

Některé volitelné předměty nemusejí být v tomto akademickém roce vyučovány.

#### Požadavky znalostí ke státní závěrečné zkoušce

#### Matematická analýza

1. Posloupnosti reálných čísel, limity.

Limita posloupnosti (vlastní a nevlastní), Bolzanova-Cauchyova podmínka. Věty o limitách. Vybrané posloupnosti.

2. Elementární funkce a jejich zavedení.

Goniometrické funkce a cyklometrické funkce. Exponenciální funkce, přirozený a obecný logaritmus, obecná mocnina, odmocnina. Vlastnosti těchto funkcí a jejich vzájemné vztahy.

3. Diferenciální počet funkcí jedné reálné proměnné. Vlastnosti spojitých funkcí na uzavřeném intervalu. Průběh funkce, užití vyšších derivací.

Limita funkce, aritmetika limit, limita složené funkce, limitní přechod v nerovnosti, limita monotónní funkce. Spojitost funkce v bodě a na intervalu, Heineova definice spojitosti, vlastnosti spojitých funkcí na uzavřeném intervalu. Derivace funkce, početní pravidla pro derivování, derivace inverzní funkce. Věty o střední hodnotě: Rolleova, Lagrangeova a Cauchyova. L'Hospitalovo pravidlo. Vztah derivace a monotonie funkce, nutné a postačující podmínky pro extrém. Taylorův polynom, Taylorova věta. Konvexnost a konkávnost a jejich souvislost s druhou derivací funkce. Asymptoty.

4. Primitivní funkce, Newtonův integrál.

Základní primitivní funkce. Integrace per partes. První a druhá věta o substituci. Integrace racionálních funkcí, základní typy substitucí.

5. Riemannův integrál.

Zavedení Riemannova integrálu, geometrická interpretace. Riemannův integrál jako funkce horní meze. Newtonova-Leibnizova formule. Existenční věty pro Riemannův integrál. Nevlastní integrál. Délka křivky zadané parametricky, objem rotačního tělesa a povrch jeho pláště, obsah plochy zadané parametricky.

<sup>&</sup>lt;sup>3</sup> Volitelný předmět bývá vyučován zpravidla jednou za dva roky.

#### 6. Nekonečné číselné řady, mocninné řady.

Součet řady, konvergentní a divergentní řady, Bolzanova-Cauchyova podmínka, nutná podmínka konvergence. Řady s nezápornými členy a kritéria jejich konvergence: srovnávací, odmocninové, podílové a integrální kritérium, limitní tvary kritérií. Řady se střídavými znaménky, Leibnizovo kritérium. Absolutně a neabsolutně konvergentní řady. Mocninná řada a její konvergence, poloměr konvergence. Derivace a integrace mocninné řady člen po členu.

#### 7. Diferenciální rovnice.

Věty o existenci a jednoznačnosti řešení počáteční úlohy. Metody řešení diferenciálních rovnic (rovnice se separovanými proměnnými, lineární rovnice prvního a vyššího řádu). Lineární rovnice prvního a vyššího řádu: existence a jednoznačnost řešení, struktura množiny řešení, variace konstant, rovnice s konstantními koeficienty, speciální tvary pravé strany.

#### 8. Funkce více proměnných.

Limita a spojitost. Parciální derivace, derivace ve směru, totální diferenciál, gradient. Derivace složené funkce. Věta o inverzní funkci. Věta o implicitní funkci. Lokální extrémy, vázané extrémy, metoda Lagrangeových multiplikátorů.

#### Algebra a lineární algebra

#### 1. Relace, zobrazení a jejich základní vlastnosti.

Relace a jejich vlastnosti, asociativita skládání relací. Ekvivalence, uspořádání, úplné uspořádání, příklady. Rozklad množiny podle ekvivalence. Zobrazení (injektivní, surjektivní a bijektivní), skládání zobrazení.

## 2. Vektorové prostory, homomorfismy, skalární součin.

Příklady vektorových prostorů, lineární závislost a nezávislost, báze a dimenze konečně generovaného vektorového prostoru, věta o dimenzích spojení a průniku. Vlastnosti homomorfismu, věta o hodnosti a defektu. Skalární součin na reálném vektorovém prostoru, ortonormální báze, ortogonální doplněk podprostoru. Prostor se skalárním součinem, Cauchyova-Schwarzova nerovnost, trojúhelníková nerovnost, Gramův-Schmidtův ortogonalizační proces.

#### 3. Matice a jejich vlastnosti, užití k řešení soustav lineárních rovnic. Podobnost matic.

Hodnost matice, regulární a singulární matice, inverzní matice, matice homomorfismu. Frobeniova věta o řešitelnosti soustavy lineárních rovnic. Věta o dimenzi vektorového prostoru všech řešení homogenní soustavy. Užití matic k řešení soustav lineárních rovnic, Gaussova eliminační metoda. Vlastní čísla a vlastní vektory, podobnost matic, Jordanova báze, Jordanův kanonický tvar. Charakteristický a minimální polynom.

#### 4. Lineární a bilineární formy.

Lineární formy, duální prostor, duální báze. Bilineární a kvadratické formy a jejich matice, polární báze, normální báze, Sylvesterův zákon setrvačnosti kvadratických forem, signatura.

#### 5. Determinanty a jejich vlastnosti, Cramerovo pravidlo.

Definice determinantu, Sarrusovo pravidlo, věta o rozvoji determinantu, charakterizace regulárních matic pomocí determinantů. Výpočet inverzní matice pomocí determinantů. Věta o násobení determinantů. Řešení soustav lineárních rovnic pomocí Cramerova pravidla.

#### 6. Přirozená a celá čísla, dělitelnost.

Přirozená čísla, Peanovy axiomy, matematická indukce, dobré uspořádání. Konstrukce oboru integrity celých čísel. Eukleidův algoritmus a Bézoutova věta, Eukleidovo lémma, Základní věta aritmetiky. Numerační soustavy o různých základech. Prvočísla, Eratosthenovo síto, mohutnost množiny všech prvočísel. Fermatova čísla a prvočísla, Mersennova čísla a dokonalá čísla. Kongruence modulo n, odvození kritérií dělitelnosti. Malá Fermatova věta.

#### 7. Čísla racionální, reálná a komplexní.

Konstrukce pole racionálních čísel, podílové pole. Reálná čísla (Dedekindovy řezy, desetinné rozvoje, cauchyovské posloupnosti, axiomatický popis R). Řetězové zlomky, konvergenty, aproximace reálných čísel racionálními. Algebraická a transcendentní čísla. Pole komplexních čísel, zavedení, vlastnosti. Algebraický a goniometrický tvar, operace a jejich geometrické znázornění, Moivreova věta a její aplikace. Mohutnosti číselných oborů.

# 8. Grupy a jejich homomorfismy. Algebraické struktury se dvěma binárními operacemi.

Binární operace na množině. Pojem grupy, příklady, grupa permutací, grupy symetrií pravidelných *n*-úhelníků. Cyklické grupy a jejich vlastnosti. Lagrangeova věta. Faktorizace grupy podle normální podgrupy, faktorizace grupy podle kongruence. Okruh, obor integrity, těleso, pole, příklady.

#### 9. Základní pojmy dělitelnosti v komutativním oboru integrity.

Relace dělitelnosti a asociovanosti v oboru integrity. Příklady eukleidovských oborů integrity, příklady na užití Eukleidova algoritmu. Ireducibilní prvek, prvočinitel.

#### 10. Rovnice.

Základní věta algebry a její důsledky. Rovnice 1., 2. a 3. stupně, metody jejich řešení řešení, casus irreducibilis. Vietovy vzorce. Reciproké rovnice. Lineární diofantické rovnice, Pellova rovnice.

#### 11. Posloupnosti, průměry.

Aritmetická a geometrická posloupnost. Aritmetický, geometrický a harmonický průměr, jejich vztah a geometrické znázornění.

#### Geometrie

Syntetická geometrie

#### 1. Planimetrie (věty i s důkazy).

Pojmy: části přímky (úsečka, polopřímka), vzájemná poloha dvou přímek v rovině, odchylka přímek, části roviny (úhel, polorovina, rovinný pás), dvojice úhlů (vrcholové, vedlejší, souhlasné, střídavé úhly).

Základní věty geometrie trojúhelníku: Thalétova, Eukleidovy, Pýthagorova a její zobecnění (např. Hippokratovy měsíčky), sinová, kosinová, součet vnitřních úhlů. Trojúhelníková nerovnost. Těžiště a ortocentrum, Eulerova přímka, střední příčky, osy stran a osy úhlů, kružnice opsaná, vepsaná a připsaná. Konstrukce trojúhelníku z daných prvků. Aplikace vět o shodnosti a podobnosti trojúhelníků.

Klasifikace a vlastnosti čtyřúhelníků, konstrukce; vlastnosti tečnových a tětivových čtyřúhelníků (Ptolemaiova věta, součty vnitřních úhlů). Konvexní mnohoúhelníky (součet vnitřních úhlů, počet úhlopříček), pravidelné n-úhelníky a jejich vlastnosti.

Kružnice a její vlastnosti (tečny, tětivy, obvodové a středové úhly, úsekový úhel, mocnost bodu ke kružnici, chordála dvou kružnic), konstrukce. Vzájemná poloha dvou kružnic. Apollóniovy úlohy.

Obvody a obsahy rovinných útvarů, např. obsah trojúhelníku, Hérónův vzorec, obsah čtyřúhelníku a *n*-úhelníku. Obsah a obvod kruhu a jeho částí.

Shodnosti, podobnosti, stejnolehlost. Užití shodností a stejnolehlosti v konstrukčních úlohách. Skládání shodností, posunutá souměrnost. Kruhová inverze.

Axiomatický přístup k výstavbě geometrie.

#### 2. Stereometrie (věty i s důkazy).

Obrazy těles ve volném rovnoběžném promítání. Základní stereometrické věty a jejich důkazy (rovnoběžnost přímky a roviny, rovnoběžnost dvou rovin, vzájemná poloha tří rovin, kolmost přímky a roviny, kolmost dvou rovin). Průnik přímky s tělesem, průsečnice rovin, řezy mnohostěnů. Vzdálenosti a odchylky bodů, přímek, rovin. Mnohostěny, Eulerova věta. Pravidelné mnohostěny (Platónská tělesa, jejich počet a vlastnosti). Objem a povrch těles a jejich částí, Cavalieriho princip. Geometrická zobrazení v prostoru (shodnosti, podobnosti).

#### 3. Zobrazovací metody.

Princip rovnoběžného a středového promítání. Osová afinita, elipsa jako afinní obraz kružnice, konstrukce elipsy vycházející z osové afinity (Rytzova, trojúhelníková), užití osové afinity při konstrukci řezů hranolů a válců. Základy Mongeova promítání. Základy kosoúhlého promítání a průměty jednoduchých těles. Základy lineární perspektivy.

Analytická geometrie

#### 1. Afinní prostor.

Afinní prostor a jeho zaměření. Lineární kombinace bodů. Lineární soustava souřadnic. Podprostor a jeho parametrické vyjádření. Obecná rovnice nadroviny (odvození pomocí lineárních forem), podprostor jako průnik nadrovin, obecné rovnice podprostoru. Vzájemná poloha podprostorů. Orientace afinního prostoru.

#### 2. Eukleidovský prostor.

Skalární součin, eukleidovský prostor a jeho podprostory, obecná rovnice nadroviny. Vnější součin, vektorový součin a jejich základní vlastnosti. Kartézská soustava souřadnic. Kolmost podprostorů. Odchylka dvou přímek, dvou nadrovin, přímky a nadroviny, odchylka přímky a podprostorů. Vzdálenost bodu od podprostorů, vzdálenost bodu od nadroviny, vzdálenost podprostorů; osa dvou mimoběžných podprostorů, Gramův determinant. Příklady v  $E^2$  a  $E^3$ .

#### 3. Množiny bodů daných vlastností, kuželosečky.

Kuželosečky jako řezy kuželové plochy, Quételetova-Dandelinova věta pro elipsu. Definice, vlastnosti a klasifikace kuželoseček. Kanonické rovnice kuželoseček a jejich transformace, aplikace determinantů matic a vlastních čísel. Parametrické vyjádření kuželoseček a rovnice kuželoseček v polárních souřadnicích. Bodové konstrukce elipsy (proužková součtová a rozdílová, trojúhelníková, bodová podle definice), paraboly (bodová dle definice), hyperboly (bodová dle definice). Tečna kuželosečky, asymptoty.

#### 4. Grupy geometrických zobrazení.

Dělicí poměr, afinní zobrazení, asociovaný homomorfismus. Afinity (základní afinity, homothetie), samodružné body a směry, příklady v A<sup>2</sup> a A<sup>3</sup> včetně analytického vyjádření. Projekce. Shodnosti, podobnosti, samodružné body a směry, příklady v E<sup>2</sup>

a  $E^3$  včetně analytického vyjádření, klasifikace v  $E^2$ . Analytické vyjádření a vlastnosti kruhové inverze. Grupy geometrických transformací.

Diferenciální geometrie

#### 1. Křivky v rovině a v prostoru.

Parametrické vyjádření křivky, příklady. Délka křivky, parametrizace obloukem. Frenetův repér a Frenetovy vzorce v rovině a v prostoru, křivost a torze.

#### 2. Plochy v prostoru.

Parametrické vyjádření plochy, příklady. Tečná rovina, normála. První a druhá základní forma plochy a jejich užití. Hlavní směry a hlavní křivosti plochy, střední a Gaussova křivost. Zobrazení mezi plochami (izometrie, konformní zobrazení).

#### Kombinace se studijními programy Filozofické fakulty

Studijní program Matematika se zaměřením na vzdělávání (maior) lze také sdružovat s některým z následujících studijních programů (minor):

- Český jazyk a literatura se zaměřením na vzdělávání
- Anglický jazyk a literatura se zaměřením na vzdělávání
- Německý jazyk a literatura se zaměřením na vzdělávání
- Francouzský jazyk a literatura se zaměřením na vzdělávání

Tyto studijní plány i s příslušnými komentáři a upozorněním na prerekvizity jsou dostupné na stránce

https://www.ff.cuni.cz/studium/studijni-obory-plany/studijni-plany/

Téma bakalářské práce může být buď matematické, nebo může být (po podání příslušné žádosti) zaměřeno na oblast studovanou v rámci programu minor.

# Český jazyk a literatura se zaměřením na vzdělávání

Přidružený studijní plán (minor)

#### 1. rok studia

| Kód       | Název                           | Kredity | ZS                | LS                |
|-----------|---------------------------------|---------|-------------------|-------------------|
| ABO100930 | Úvodní jazykový seminář         | 7       | 0/4 Z+Zk          | _                 |
| ABO100888 | Fonetika a fonologie češtiny    | 4       | $2/0 \mathrm{Zk}$ |                   |
| AUVODLV0  | lÚvod do literární vědy         | 3       | $2/0 \mathrm{Z}$  |                   |
| ABO500816 | Čtení z děl české literatury    | 3       | $2/0 \mathrm{Z}$  |                   |
|           | 20. století II                  |         |                   |                   |
| ABO500801 | Dějiny češtiny                  | 4       |                   | $1/2 \mathrm{Zk}$ |
| ABO100911 | Základy literární historie      | 3       |                   | 2/2  Zk           |
| ABO500643 | Poetika poezie, prózy a dramatu | 6       |                   | 2/2 Z+Zk          |
|           | ve vzdělávacím kontextu se      |         |                   |                   |
|           | zaměřením na soudobou           |         |                   |                   |
|           | literaturu                      |         |                   |                   |

| Kód       | Název                     | Kredity | ZS       | LS |
|-----------|---------------------------|---------|----------|----|
| ABO500802 | Lexikologie a slovotvorba | 4       | 1/2 Z+Zk | _  |
| ABO500803 | Morfologie                | 4       | 2/1 Z+Zk |    |

| ABO100773     | Úvodní náslechová praxe         | 2       |                   | 13 hodin 2         |
|---------------|---------------------------------|---------|-------------------|--------------------|
| ABO500804     | Syntax                          | 4       | _                 | 2/1  Z+Zk          |
| ABO500805     | •                               | 4       | _                 | 1/2  Z+Zk          |
| 2. a 3. rok s | tudia                           |         |                   |                    |
| Kód           | Název                           | Kredity | ZS                | LS                 |
| ABO600101     | Starší česká literatura I       | 3       | $0/2 \mathrm{~Z}$ |                    |
| ABO600103     | Česká literatura 19. století I  | 3       | $0/2 \mathrm{Z}$  |                    |
| ABO600105     | Česká literatura 1. poloviny    | 3       | $0/2 \mathrm{Z}$  |                    |
|               | 20. století I                   |         | ,                 |                    |
| ABO600102     | Starší česká literatura II      | 3       |                   | $0/2 \mathrm{Zk}$  |
| ABO600104     | Česká literatura 19. století II | 3       |                   | $0/2 \mathrm{~Zk}$ |
| ABO600106     | Česká literatura 1. poloviny    | 3       |                   | $0/2 \mathrm{~Zk}$ |
|               | 20. století II                  |         |                   | ,                  |
| 3. rok studi  | a                               |         |                   |                    |
| Kód           | Název                           | Kredity | ZS                | LS                 |
| ABO500674     | Aplikovaná lingvistika          | 5       |                   | 2/2  Zk            |
|               |                                 |         |                   |                    |

# Anglický jazyk a literatura se zaměřením na vzdělávání

Přidružený studijní plán (minor)

| Kód          | Název                             | Kredity | ZS                | LS                |
|--------------|-----------------------------------|---------|-------------------|-------------------|
| AAU230101    | Seminář anglického jazyka pro     | 3       | 0/2 Z             |                   |
|              | učitele I                         |         |                   |                   |
| AAA130032    | Lingvistická propedeutika         | 3       | $2/0 \mathrm{Z}$  |                   |
| AAA130021    | Fonetika a fonologie angličtiny I | 3       | $1/1 \mathrm{~Z}$ |                   |
| AAA230101    | Praktický jazyk - kulturní        | 2       | $0/2 \mathrm{~Z}$ |                   |
|              | komunikace I B                    |         |                   |                   |
| AAA230111    | Úvod do literárních studií I B    | 2       | $0/2 \mathrm{Z}$  |                   |
| AAU230102    | Seminář anglického jazyka pro     | 3       | <u> </u>          | $0/2 \mathrm{~Z}$ |
|              | učitele II                        |         |                   |                   |
| AAA230022    | Fonetika a fonologie              | 3       | _                 | $1/1 \mathrm{Z}$  |
|              | angličtiny II                     |         |                   |                   |
| AAA230041    | Anglická mluvnice: morfologie I   | 3       |                   | $1/2 \mathrm{~Z}$ |
| AAA230102    | Praktický jazyk – kulturní        | 3       | _                 | $0/2 \mathrm{~Z}$ |
|              | komunikace II B                   |         |                   |                   |
| AAA230112    | Úvod do literárních studií II B   | 3       | _                 | $0/2 \mathrm{~Z}$ |
| 2. rok studi | a                                 |         |                   |                   |
| Kód          | Název                             | Kredity | ZS                | LS                |
| AAU230042    | Anglická mluvnice:                | 3       | 1/2 Z             |                   |
|              | morfologie II                     |         |                   |                   |

| 0 010012011 201 |                                  |         |                   |                   |
|-----------------|----------------------------------|---------|-------------------|-------------------|
| AAA230155       | Literatury na Britských          | 3       | 2/2 Z             |                   |
|                 | ostrovech: od renesance do       |         |                   |                   |
|                 | období Restaurace                |         |                   |                   |
| AAA230165       | Americká a kanadská literatura:  | 3       | $1/2 \mathrm{~Z}$ |                   |
|                 | od počátků do Války Severu       |         |                   |                   |
|                 | proti Jihu                       |         |                   |                   |
| AAU230001       | Úvodní náslechová praxe          | 2       |                   | 13 hodin Z        |
| AAU230187       | Anglická mluvnice: syntax        | 3       |                   | $1/2 \mathrm{~Z}$ |
| AAA130188       | Anglická mluvnice: souborná      | 3       |                   | ${ m Zk}$         |
|                 | zkouška                          |         |                   |                   |
| AAA230156       | Literatury na Britských          | 3       |                   | $2/2 \mathrm{~Z}$ |
|                 | ostrovech: od klasicismu do      |         |                   |                   |
|                 | konce viktoriánské éry           |         |                   |                   |
| AAA230166       | Americká a kanadská literatura:  | 3       |                   | $1/2  \mathrm{Z}$ |
|                 | od Války Severu proti Jihu do    |         |                   |                   |
|                 | 2. světové války                 |         |                   |                   |
| 3. rok studi    | a                                |         |                   |                   |
| Kód             | Název                            | Kredity | ZS                | LS                |
| AAA230071       | Dějiny anglického jazyka I       | 3       | 2/0 Z             |                   |
| AAA230157       | Literatury na Britských          | 4       | 2/2 Z+Zk          | _                 |
|                 | ostrovech: od modern. do souč.   |         | •                 |                   |
| AAA230167       | Americká a kanadská literatura:  | 4       | 1/2 Z+Zk          | _                 |
|                 | od 2. světové války do           |         | •                 |                   |
|                 | současnosti                      |         |                   |                   |
| AAU230002       | Teorie a praxe jazykové akvizice | 3       | _                 | $0/2 \mathrm{~Z}$ |
|                 | pro učitele angličtiny           |         |                   | ,                 |
|                 | (didaktická propedeutika)        |         |                   |                   |
| AAA230072       | Dějiny anglického jazyka II      | 3       |                   | $2/0 \mathrm{~Z}$ |
| AAA230158       | Literatury na Britských          | 3       |                   | $2/0 \mathrm{~Z}$ |
|                 | ostrovech: období středověku     |         |                   | -                 |
|                 |                                  |         |                   |                   |

# Německý jazyk a literatura se zaměřením na vzdělávání

Přidružený studijní plán (minor)

| Kód       | Název                         | Kredity | ZS               | LS               |
|-----------|-------------------------------|---------|------------------|------------------|
| ALINUVOD  | 1Úvod do lingvistiky          | 3       | 2/0  Zk          |                  |
| AUVODLV0  | 1Úvod do literární vědy       | 3       | $2/0 \mathrm{Z}$ |                  |
| ADE110003 | Dějiny a reálie německé       | 3       | $2/0 \mathrm{Z}$ | _                |
|           | jazykové oblasti I            |         |                  |                  |
| ADE220001 | Lingvistický proseminář pro   | 3       | _                | $0/2 \mathrm{Z}$ |
|           | germanisty                    |         |                  |                  |
| ADE220002 | Literárněvědný proseminář pro | 3       | _                | $0/2 \mathrm{Z}$ |
|           | germanisty                    |         |                  |                  |

| ADE110004                               | Dějiny a reálie německé<br>jazykové oblasti II                                                                          | 4             | _      | $2/0 \mathrm{~Zk}$                           |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------|--------|----------------------------------------------|
| ADE220007                               | Grammatik der deutschen                                                                                                 | 5             | _      | 2/2 Zk                                       |
|                                         | Gegenwartssprache I /<br>Gramatika současné němčiny I                                                                   |               |        |                                              |
| 2. rok studi                            | a                                                                                                                       |               |        |                                              |
| Kód                                     | Název                                                                                                                   | Kredity       | ZS     | LS                                           |
| ADE220008                               | Grammatik der deutschen<br>Gegenwartssprache II /                                                                       | 5             | 2/2 Zk | _                                            |
| ADE220012                               | Gramatika současné němčiny II                                                                                           | 9             |        | 13 hodin 2                                   |
| ADE220012<br>ADE220009                  | Úvodní náslechová praxe<br>Grammatik der deutschen                                                                      | $\frac{2}{5}$ |        | $\frac{13 \text{ nodin } 2}{2/2 \text{ Zk}}$ |
| 111111111111111111111111111111111111111 | Gegenwartssprache III / Gramatika současné němčiny III                                                                  | Ü             |        | 2/ 2 ZK                                      |
| ADE110012                               | Lexikologie und Wortbildung in<br>der deutschen<br>Gegenwartssprache /<br>Lexikologie a slovotvorba<br>současné němčiny | 4             | _      | 1/1 Zk                                       |
| 3. rok studi                            | a                                                                                                                       |               |        |                                              |
| Kód                                     | Název                                                                                                                   | Kredity       | ZS     | LS                                           |
| ADE220010                               | Grammatik der deutschen<br>Gegenwartssprache IV /<br>Gramatika současné němčiny<br>IV                                   | 5             | 2/2 Zk | _                                            |

#### Povinně volitelné předměty:

PVP 1: Předměty s přímým oborově-didaktickým zaměřením (6 kreditů)

PVP 2: Předměty zaměřené na jazyk a jazykové kompetence (6 kreditů)

PVP 3: Přednášky z literatury a kultury (8 kreditů)

PVP 4: Semináře z německé literatury a kultury (6 kreditů)

# Francouzský jazyk a literatura se zaměřením na vzdělávání

Přidružený studijní plán (minor)

| Kód       | Název                                                  | Kredity | ZS                | LS |
|-----------|--------------------------------------------------------|---------|-------------------|----|
| AFR111005 | Langue pratique I / Jazykový<br>seminář I              | 3       | $0/2 \mathrm{~Z}$ |    |
| AFR111001 | Phonétique du français I /<br>Fonetika francouzštiny I | 3       | $1/1 \mathrm{~Z}$ | _  |

| AFR111003     | Přehled dějin francouzské<br>literatury I                                                                  | 3       | $2/1~{ m Z}$      | _                 |
|---------------|------------------------------------------------------------------------------------------------------------|---------|-------------------|-------------------|
| ALINUVOD      | 1Úvod do lingvistiky                                                                                       | 3       | $2/0 \mathrm{~Z}$ | _                 |
|               | Phonétique du français II / Fonetika francouzštiny II                                                      | 4       |                   | $1/1 \mathrm{Zk}$ |
| AFR111004     | Přehled dějin francouzské<br>literatury II                                                                 | 4       | _                 | $2/1 \mathrm{Zk}$ |
| AFR111006     | Langue pratique II / Jazykový<br>seminář II                                                                | 3       | _                 | $0/2~\mathrm{Z}$  |
| 2. rok studia | a                                                                                                          |         |                   |                   |
| Kód           | Název                                                                                                      | Kredity | ZS                | LS                |
| AFR211002     | Littératures francophones –<br>littérature québécoise /<br>Frankofonní literatury –<br>quebecká literatura | 4       | 1/1 Zk            | _                 |
| AFR211003     | Grammaire normative I /<br>Normativní mluvnice I                                                           | 3       | $2/0 \mathrm{~Z}$ | _                 |
| AFR211005     | Histoire de la littérature<br>française III / Přehled dějin<br>francouzské literatury III                  | 3       | $2/1~\mathrm{Z}$  | _                 |
| AFR111007     | Langue pratique III / Jazykový<br>seminář III                                                              | 3       | $0/2 \mathrm{~Z}$ | _                 |
| AFR211001     | Úvodní náslechová praxe                                                                                    | 2       |                   | 13 hodin 2        |
| AFR211004     | Grammaire normative II /<br>Normativní mluvnice II                                                         | 4       |                   | 2/0 Zk            |
| AFR211006     | Histoire de la littérature<br>française IV / Přehled dějin<br>francouzské literatury IV                    | 4       | _                 | 2/1  Zk           |
| AFR111008     | Langue pratique IV / Jazykový seminář IV                                                                   | 3       | _                 | 0/2 Z             |
| 3. rok studia | a                                                                                                          |         |                   |                   |
| Kód           | Název                                                                                                      | Kredity | ZS                | LS                |
| AFR211007     | Langue française contemporaine  – Lexicologie / Současná francouzština – lexikologie                       | 3       | 1/1 Z             | _                 |
| AFR211009     | Littérature française du XXe<br>siècle I / Francouzská literatura<br>20. století I                         | 3       | $2/1~\mathrm{Z}$  | _                 |
| AFR211011     | Úvod do didaktiky<br>francouzského jazyka<br>a literatury I                                                | 4       | 1/1 Zk            | _                 |
| AFR211008     | Syntaxe du français / Syntax<br>francouzštiny                                                              | 4       | _                 | $1/1~{ m Z}$      |

| AFR211010 | Littérature française du XXe<br>siècle II / Francouzská literatura             | 4 |   | 2/1 Zk        |
|-----------|--------------------------------------------------------------------------------|---|---|---------------|
| AFR211012 | 20. století II<br>Úvod do didaktiky<br>francouzského jazyka<br>a literatury II | 4 | _ | $1/1~{ m Zk}$ |

# 3. Deskriptivní geometrie se zaměřením na vzdělávání

Garantující pracoviště: Katedra didaktiky matematiky Garant studijního programu: doc. RNDr. Zbyněk Šír, Ph.D. (MÚ UK)

#### Doporučený průběh studia

Předměty **povinné** jsou vytištěny **tučně**, povinně volitelné předměty normálním písmem, *doporučené volitelné* předměty *kurzívou*.

Hlavní studijní plán (maior)

| Kód         | Název                            | Kredity | ZS                   | LS                |
|-------------|----------------------------------|---------|----------------------|-------------------|
|             | Povinné předměty – obecná část:  |         |                      |                   |
| NTVY014     | ${f T}$ ělesná výchova I $^{tv}$ | 1       | $0/2 \mathrm{~Z}$    |                   |
| NTVY015     | Tělesná výchova II $^{tv}$       | 1       |                      | $0/2 \mathrm{~Z}$ |
| NMTM110     | Informační technologie pro       | 3       |                      | $1/2~\mathrm{KZ}$ |
|             | učitele                          |         |                      |                   |
|             | Anglický jazyk <sup>a</sup>      |         |                      |                   |
|             | Povinné předměty – oborová část: |         |                      |                   |
| NMTD101     | Deskriptivní geometrie I         | 10      | $4/3 \mathrm{~Z+Zk}$ |                   |
| NMTD103     | Programování pro deskriptivní    | 3       | $0/2 \mathrm{~Z}$    |                   |
|             | geometrii I                      |         |                      |                   |
| NMTD102     | Deskriptivní geometrie II        | 5       |                      | 2/2 Z+Zk          |
| NMTD104     | Programování pro deskriptivní    | 4       |                      | 2/2 Z+Zk          |
|             | geometrii II                     |         |                      |                   |
| NMTD108     | Grafický software                | 2       | _                    | $0/2 \mathrm{~Z}$ |
| 2. rok stud | lia                              |         |                      |                   |
| Kód         | Název                            | Kredity | ZS                   | LS                |
|             | Povinné předměty – obecná část:  |         |                      |                   |
| NTVY016     | Tělesná výchova III $^{tv}$      | 1       | $0/2 \mathrm{~Z}$    |                   |
| NTVY017     | Tělesná výchova IV <sup>tv</sup> | 1       |                      | $0/2 \mathrm{~Z}$ |
| NJAZ091     | Anglický jazyk — zkouška pro     | 1       | $0/0 \mathrm{Zk}$    | $0/0 \mathrm{Zk}$ |
|             | bakaláře <sup>a</sup>            |         |                      |                   |
|             | Povinné předměty – oborová část: |         |                      |                   |
| NMTD201     | Deskriptivní geometrie III       | 7       | 4/2 Z+Zk             |                   |
| NMTD203     | Seminář z deskriptivní           | 2       | $0/2 \mathrm{~Z}$    |                   |
|             | geometrie I                      |         |                      |                   |
| NMTD205     | Projektivní geometrie I          | 5       | 2/2 Z+Zk             |                   |
| NMTD202     |                                  |         |                      |                   |

| NMTD204 Seminář z deskriptivní   | 2 | _ | $0/2 \; \mathrm{Z}$ |
|----------------------------------|---|---|---------------------|
| geometrie II                     |   |   |                     |
| NMTD206 Projektivní geometrie II | 5 |   | 2/2 Z+Zk            |

 $<sup>^</sup>a$  Jednosemestrální předmět NJAZ091 se skládá pouze z povinné zkoušky z anglického jazyka, kterou je možno absolvovat buď v ZS, nebo v LS. Před povinnou zkouškou doporučujeme absolvovat výuku anglického jazyka v rámci volitelných předmětů dle své úrovně. Pro mírně pokročilé: NJAZ071, NJAZ073, NJAZ075, NJAZ089, pro středně pokročilé: NJAZ070, NJAZ072, NJAZ074, NJAZ090, pro pokročilé: NJAZ170, NJAZ172, NJAZ174, NJAZ176.

#### 3. rok studia

| Kód     | Název                               | Kredity | ZS                 | LS                |
|---------|-------------------------------------|---------|--------------------|-------------------|
|         | Povinné předměty – obecná část:     |         |                    |                   |
| NPEP301 | Úvod do psychologie                 | 3       | $2/0 \mathrm{~Zk}$ |                   |
| NPEP302 | Pedagogická propedeutika            | 3       | <del>-</del>       | $0/2 \mathrm{~Z}$ |
| NMTD314 | 4 Vypracování a konzultace          | 6       | $0/0 \mathrm{~Z}$  | $0/0 \mathrm{Z}$  |
|         | bakalářské práce $^{\ bc}$          |         |                    |                   |
|         | Povinně volitelné předměty – obecná | 4       |                    |                   |
|         | část                                |         |                    |                   |
|         | Povinné předměty – oborová část:    |         |                    |                   |
| NMTD301 | l Počítačová geometrie I            | 5       | 2/2 Z+Zk           |                   |
| NMTD303 | 3 Vybrané kapitoly z deskriptivní   | 2       | $0/2 \mathrm{~KZ}$ |                   |
|         | geometrie                           |         |                    |                   |
| NMTD305 | Dějiny deskriptivní geometrie       | 2       | $2/0 \mathrm{~Zk}$ |                   |
| NMTD302 | 2 Počítačová geometrie II           | 7       |                    | 2/4 Z+Zk          |
| NMTD310 | ) Pedagogická praxe                 | 2       |                    | $0/1 \mathrm{~Z}$ |
|         | z deskriptivní geometrie I          |         |                    |                   |

bc Předmět je jednosemestrální, je možno si jej zapsat v zimním, nebo v letním semestru. Doporučený semestr: letní.

## Povinně volitelné předměty – obecná část (alespoň 4 kredity)

| Kód      | Název                                 | Kredity | ZS                | LS                |
|----------|---------------------------------------|---------|-------------------|-------------------|
| NPEP601  | Rétorika a komunikace s lidmi I       | 2       | 0/2 Z             | _                 |
| NPEP602  | Sociální dovednosti a práce s lidmi I | 2       | $0/2 \mathrm{~Z}$ |                   |
| NPEP603  | Rétorika a komunikace s lidmi II      | 2       |                   | $0/2 \mathrm{~Z}$ |
| NPEP604  | Sociální dovednosti a práce           | 2       |                   | $0/2 \mathrm{~Z}$ |
|          | s lidmi II                            |         |                   |                   |
| Doporuče | né volitelné předměty                 |         |                   |                   |
| Kód      | Název                                 | Kredity | ZS                | LS                |
| NMUG264  | Stereotomie                           | 2       | _                 | $2/0 \mathrm{~Z}$ |
| NMUG361  | Aplikace deskriptivní geometrie       | 2       | $2/0 \mathrm{~Z}$ |                   |

Některé volitelné předměty nemusejí být v tomto akademickém roce vyučovány.

tv Místo kteréhokoli z předmětů NTVY014, NTVY015, NTVY016, NTVY017 (ale nejvýše jednoho z nich) si lze zapsat buď Letní výcvikový kurz NTVY018, nebo Zimní výcvikový kurz NTVY019. Tyto kurzy může student absolvovat kdykoli v průběhu studia.

#### Přidružený studijní plán (minor)

#### 1. rok studia

| 1. rok stu   | dia                                             |         |                   |                   |
|--------------|-------------------------------------------------|---------|-------------------|-------------------|
| Kód          | Název                                           | Kredity | ZS                | LS                |
| NMTD101      | Deskriptivní geometrie I                        | 10      | 4/3 Z+Zk          |                   |
| NMTD103      | Programování pro deskriptivní geometrii I       | 3       | 0/2 Z             | _                 |
| NMTD102      | Deskriptivní geometrie II                       | 5       |                   | 2/2 Z+Zk          |
|              | Programování pro deskriptivní<br>geometrii II   | 4       | _                 | 2/2 Z+Zk          |
| NMTD108      | Grafický software                               | 2       | _                 | $0/2 \mathrm{~Z}$ |
| 2. rok stu   | dia                                             |         |                   |                   |
| Kód          | Název                                           | Kredity | ZS                | LS                |
| NMTD201      | Deskriptivní geometrie III                      | 7       | 4/2 Z+Zk          | _                 |
| NMTD203      | Seminář z deskriptivní<br>geometrie I           | 2       | $0/2 \mathrm{~Z}$ |                   |
| NMTD205      | Projektivní geometrie I                         | 5       | 2/2 Z+Zk          |                   |
| NMTD202      | Deskriptivní geometrie IV                       | 7       |                   | 2/4 Z+Zk          |
| NMTD204      | Seminář z deskriptivní<br>geometrie II          | 2       | _                 | $0/2 \mathrm{~Z}$ |
| NMTD206      | Projektivní geometrie II                        | 5       | _                 | 2/2 Z+Zk          |
| 3. rok stu   | dia                                             |         |                   |                   |
| Kód          | Název                                           | Kredity | ZS                | LS                |
| NMTD301      | Počítačová geometrie I                          | 5       | 2/2 Z+Zk          |                   |
|              | Vybrané kapitoly z deskriptivní geometrie       | 2       | 0/2  KZ           | _                 |
| NMTD305      | Dějiny deskriptivní geometrie                   | 2       | 2/0 Zk            |                   |
| NMTD302      | Počítačová geometrie II                         | 7       | _                 | 2/4 Z+Zk          |
|              | Pedagogická praxe<br>z deskriptivní geometrie I | 2       | _                 | 0/1 Z             |
|              | né volitelné předměty                           |         |                   |                   |
| Kód          | Název                                           | Kredity | ZS                | LS                |
| NMUG264      | Stereotomie                                     | 2       |                   | 2/0 Z             |
| NIN ITTO COS | A 1:1 1 1 : .: /                                | 0       | 0/07              |                   |

Některé volitelné předměty nemusejí být v tomto akademickém roce vyučovány.

2

 $2/0 \ Z$ 

#### Požadavky znalostí ke státní závěrečné zkoušce

NMUG361 Aplikace deskriptivní geometrie

Zobrazovací metody

#### Základy konstrukční geometrie

#### 1. Planimetrie a stereometrie.

Bod, přímka, rovina, incidence geometrických útvarů, polohové a metrické vlastnosti geometrických útvarů v rovině, svazek přímek, euklidovské konstrukce, tečna ke

kružnici, společné tečny dvou kružnic, stejnolehlost, středový a obvodový úhel, Thalétova kružnice, konstrukce pravidelných n-úhelníků, mocnost bodu ke kružnici, chordála, potenční střed, svazek kružnic. Polohové a metrické vlastnosti geometrických útvarů v trojrozměrném prostoru (včetně definic a kritérií rovnoběžnosti přímky a roviny, rovnoběžnosti dvou rovin, kolmosti přímky a roviny, kolmosti dvou rovin), příčky mimoběžek. Tečné roviny těles. Řezy těles, průniky přímky a těles.

#### 2. Osová afinita, perspektivní kolineace.

Perspektivní kolineace mezi dvěma různoběžnými rovinami. Perspektivní kolineace v rovině, střed, osa, úběžnice a protiúběžnice kolineace. Využití perspektivní kolineace při konstrukci řezů těles a při konstrukci kuželoseček.

Osová afinita mezi dvěma rovinami, osová afinita v rovině; osa, směr a charakteristika osové afinity. Dělení afinit. Využití osové afinity při konstrukci řezů těles a v úlohách o elipse (speciálně při odvození trojúhelníkové konstrukce elipsy a Rytzově konstrukci vrcholů elipsy).

#### 3. Kuželosečky.

Definice jednotlivých kuželoseček, společná poměrová definice kuželoseček, ohniskové vlastnosti kuželoseček, kuželosečky jako řezy kuželových ploch, Quételetovy-Dandelinovy věty. Konstrukce tečen kuželoseček, konstrukce středů hyperoskulačních kružnic. Bodové konstrukce kuželoseček. Konstrukce kuželoseček z různých podmínek.

#### Zobrazovací metody

#### 1. Základní vlastnosti středového a rovnoběžného promítání.

Dělení promítání, princip promítání (středového, rovnoběžného). Vlastnosti rovnoběžného (speciálně pravoúhlého) promítání. Volné rovnoběžné promítání. Zobrazení přímek a rovin.

#### 2. Kótované promítání.

Princip promítání (směr promítání, průmětna, orientace poloprostorů, kóta, zobrazení bodu). Zobrazení přímky, stopník přímky, promítací rovina přímky a její sklápění do průmětny, skutečná velikost úsečky, odchylka přímky od průmětny, stupňování přímky, spád a interval přímky. Zobrazení roviny, stopa roviny, hlavní a spádové přímky roviny, stupňování roviny, spád a interval roviny, zobrazení dvojice rovin. Průsečnice dvou rovin, průsečík přímky s rovinou, přímka kolmá k rovině, rovina kolmá k přímce, vzdálenost bodu od roviny, otáčení roviny, zobrazení útvarů v obecné rovině. Zobrazení hranatých těles, skutečný a zdánlivý obrys. Zobrazení kružnice, kulové plochy.

#### 3. Mongeovo promítání.

Princip promítání (směr promítání, průmětny, zobrazení bodu, půdorys a nárys bodu, základnice, ordinála). Zobrazení přímky, stopníky přímky, půdorysně a nárysně promítací roviny přímky a jejich sklápění do průměten. Zobrazení roviny, stopy roviny, hlavní a spádové přímky roviny. Průsečnice dvou rovin, průsečík přímky s rovinou, přímka kolmá k rovině, rovina kolmá k přímce, vzdálenost bodu od roviny. Odchylka roviny od průměten, otáčení roviny. Třetí průmětna. Rovina totožnosti a rovina souměrnosti. Zobrazení hranatých těles, jejich řezy rovinami, průnik přímky a těles, viditelnost. Vzájemné průniky hranatých těles. Zobrazení kružnice, kulové plochy, řezy kulové plochy. Zobrazení válcových a kuželových ploch, jejich řezy rovinami, průnik přímky a válcové nebo kuželové plochy. Osvětlení.

#### 4. Kosoúhlé promítání.

Princip promítání (směr promítání, průmětny, trimetrie, dimetrie, izometrie, zobrazení bodu). Zobrazení přímky, stopníky přímky. Zobrazení roviny, stopy roviny, hlavní přímky roviny. Průsečnice dvou rovin, průsečík přímky s rovinou, přímka kolmá k rovině, vzdálenost bodu od roviny. Otáčení obecné roviny. Zobrazení útvarů (včetně kružnice) v souřadnicových rovinách i v obecné rovině. Zobrazení tělesa v kosoúhlém promítání ze znalosti jeho pravoúhlých průmětů. Zobrazení těles s podstavami v pomocných průmětnách i v obecných rovinách. Řezy hranatých těles, průnik přímky a tělesa. Vzájemné průniky hranatých těles. Zobrazení kulové, kuželové, válcové plochy. Řezy kuželových a válcových ploch, průnik přímky a válcové nebo kuželové plochy. Osvětlení.

#### 5. Pravoúhlá axonometrie.

Princip promítání (směr promítání, průmětny, axonometrický trojúhelník, axonometrický osový kříž, zobrazení bodu). Zobrazení přímky, stopníky přímky. Zobrazení roviny, stopy roviny, hlavní přímky roviny. Průsečnice dvou rovin, průsečík přímky s rovinou. Otáčení obecné roviny. Zobrazení útvarů (včetně kružnic) v souřadnicových rovinách i v obecné rovině. Axonometrická stopa roviny a axonometrický stopník přímky. Přímka kolmá k rovině, rovina kolmá k přímce. Rovina rovnoběžná s některou ze souřadnicových os a zobrazení útvarů (včetně kružnice) v ní ležících. Vzdálenost bodu od axonometrické průmětny, vzdálenost bodu od počátku souřadnicového systému, skutečná délka úsečky. Zobrazení těles s podstavami v pomocných průmětnách i v obecných rovinách. Zářezová metoda. Řezy hranatých těles, průnik přímky a tělesa. Vzájemné průniky hranatých těles. Zobrazení kulové, kuželové, válcové plochy. Řezy kuželových a válcových ploch, průnik přímky a válcové nebo kuželové plochy. Osvětlení.

#### 6. Kosoúhlá axonometrie.

Princip promítání (směr promítání, průmětny, zobrazení bodu). Pohlkeova věta.

#### 7. Středové promítání.

Princip promítání (střed promítání, průmětna, hlavní bod, distance, zobrazení bodu, středový a pravoúhlý průmět bodu). Zobrazení přímky, stopník a úběžník přímky, dělicí bod, skutečná velikost úsečky. Zobrazení roviny, stopa a úběžnice roviny, hlavní a spádová přímka roviny, úběžník spádových přímek, normála k rovině, úběžník normál, rovina kolmá k přímce. Průsečnice dvou rovin, průsečík přímky s rovinou, otáčení roviny. Středový průmět kružnice (přesná konstrukce, osmibodová konstrukce). Středové průměty jednoduchých těles, jejich řezy rovinami. Rovnoběžné osvětlení ve středovém promítání (stín vlastní, vržený, do dutiny).

#### Projektivní geometrie

#### 1. Projektivní geometrie syntetická.

Projektivní rozšíření roviny, princip duality. Projektivita a perspektivita lineárních soustav, direkční přímka, involuce. Projektivní vytvoření bodové a přímkové kuželosečky, asymptoty, střed elipsy a hyperboly, směr osy paraboly. Věta Pascalova a Brianchonova. Involuce na kuželosečce, pól a polára. Osy středových kuželoseček, ohniska.

#### 2. Projektivní geometrie analytická.

Definice projektivního prostoru, homogenní souřadnice, vnoření afinního prostoru do projektivního. Volba souřadnic, Pappova věta, dvojpoměr, projektivní zobrazení, kolineace, involuce. Kuželosečky v reálné projektivní rovině, polarita, projektivní a afinní klasifikace, projektivní, afinní a eukleidovské pojmy (střed, sdružené směry, vrcholy,

osy). Projektivní a afinní klasifikace kvadrik v reálném projektivním prostoru. Projektivní roviny nad konečnými tělesy (aplikace) a projektivní přímka nad komplexními čísly (Möbiovy transformace).

#### Aplikace deskriptivní geometrie a počítačová geometrie

#### 1. Plochy stavební praxe.

Rotační plochy. Vlastnosti obecných rotačních ploch (osa plochy, rovnoběžkové kružnice, meridián, tečná rovina plochy, normála plochy, eliptické, parabolické a hyperbolické body na ploše), jejich zobrazení v rovnoběžných promítáních a užití v praxi. Anuloid (parametrické vyjádření, řez anuloidu rovinou rovnoběžnou s osou, řez bitangenciální rovinou), rotační plochy druhého stupně (obrazy v prostorové afinitě a kolineaci). Obrysy, řezy rovinami, průniky rotačních ploch a jejich osvětlení v rovnoběžných promítáních.

Přímkové plochy. Rozvinutelné a zborcené přímkové plochy (stupně 2, 3 a 4, hyperbolický paraboloid, zborcený hyperboloid, konoidy). Chaslesova věta. Vlastnosti přímkových ploch (řídicí křivky, stupeň plochy, regulární a torzální přímky plochy, kuspidální body), tečná rovina plochy, jejich zobrazení v rovnoběžných promítáních a užití v praxi.

Šroubové plochy (šroubovice, přímkové a cyklické šroubové plochy). Vlastnosti šroubových ploch, tečná rovina plochy a užití v praxi.

Další významné plochy technické praxe – translační, klínové, součtové a obalové plochy, jejich vlastnosti a zobrazování, konstrukce tečné roviny.

#### 2. Počítačová geometrie.

Algoritmy počítačové geometrie. Transformace v rovině a v prostoru. Analytická vyjádření zobrazovacích metod. Geometrické modelování (zobrazování těles, určování viditelnosti). Geometrické vyhledávání, operace s konvexními množinami, teorie grafů, triangulace. Křivky a plochy počítačové grafiky – interpolace a aproximace: Lagrangeův a Newtonův tvar interpolačního polynomu, Hermitova interpolace, metoda nejmenších čtverců. Bézierovy křivky, Fergusonova a Coonsova kubika, B-spline a NURBS křivky. Plochy vzniklé rotací, šroubováním, vytažením a šablonováním. Plochy zadané okrajovými křivkami, Bézierovy, B-spline a NURBS plochy.

#### 3. Další aplikace deskriptivní geometrie.

Lineární perspektiva – princip zobrazení, jedno-, dvou- a tříúběžníková perspektiva, průsečná metoda, volné metody, osvětlení, zrcadlení ve svislé a vodorovné rovině. Stereoskopické promítání (anaglyfy). Perspektivní reliéf – konstrukce reliéfu bodů, přímek, rovin, prostorových útvarů, afinní reliéf jako speciální případ perspektivního reliéfu. Konstruktivní fotogrammetrie – rekonstrukce svislého a šikmého snímku. Aplikace deskriptivní geometrie v technických oborech (stavebnictví, architektura apod.) a umění. Teoretické řešení střech. Topografické plochy (zabudování komunikací a plošin do terénu).

#### 4. Informatika se zaměřením na vzdělávání

Garantující pracoviště: Katedra softwaru a výuky informatiky Garant studijního programu: doc. RNDr. Pavel Töpfer, CSc.

#### Doporučený průběh studia

Předměty **povinné** jsou vytištěny **tučně**, povinně volitelné předměty normálním písmem, *doporučené volitelné* předměty *kurzívou*.

#### Hlavní studijní plán (maior)

#### 1. rok studia

| Kód     | Název                                | Kredity | ZS                | LS                |
|---------|--------------------------------------|---------|-------------------|-------------------|
| NDMI002 | Diskrétní matematika                 | 5       | 2/2 Z+Zk          |                   |
| NPRG062 | Algoritmizace                        | 4       | 2/1  Z+Zk         |                   |
| NPRG030 | Programování 1                       | 5       | $2/2 \mathrm{~Z}$ |                   |
| NMTM11  | OInformační technologie pro          | 3       | 1/2  KZ           |                   |
|         | učitele                              |         |                   |                   |
| NTVY014 | Tělesná výchova I <sup>1</sup>       | 1       | $0/2 \mathrm{~Z}$ |                   |
| NJAZ070 | Anglický jazyk pro středně           | 1       | $0/2 \mathrm{~Z}$ |                   |
|         | pokročilé I <sup>2</sup>             |         |                   |                   |
| NTIN060 | Algoritmy a datové struktury 1       | 5       |                   | 2/2 Z+Zk          |
| NPRG031 | Programování 2                       | 5       |                   | 2/2 Z+Zk          |
| NUIN022 | Proseminář z matematiky <sup>3</sup> | 2       |                   | $0/2 \mathrm{~Z}$ |
| NTVY015 | Tělesná výchova II <sup>1</sup>      | 1       |                   | $0/2 \mathrm{~Z}$ |
| NJAZ072 | Anglický jazyk pro středně           | 1       |                   | $0/2 \mathrm{~Z}$ |
|         | pokročilé II <sup>2</sup>            |         |                   |                   |

<sup>&</sup>lt;sup>1</sup> Místo jednoho z předmětů NTVY014, NTVY015, NTVY016, NTVY017 je možné si zapsat letní výcvikový kurz NTVY018 nebo zimní výcvikový kurz NTVY019. Tyto kurzy může student absolvovat kdykoli

| Kód     | Název                            | Kredity | ZS                 | LS                 |
|---------|----------------------------------|---------|--------------------|--------------------|
| NUIN021 | Algoritmy a automaty pro         | 5       | 2/2 Z+Zk           | _                  |
|         | učitele                          |         |                    |                    |
| NSWI120 | Principy počítačů                | 3       | 2/0  Zk            |                    |
| NSWI141 | Úvod do počítačových sítí        | 3       | $2/0~\mathrm{KZ}$  |                    |
| NDIN011 | Aplikační software               | 4       | $2/1 \mathrm{~KZ}$ |                    |
| NTVY016 | Tělesná výchova III <sup>1</sup> | 1       | $0/2 \mathrm{~Z}$  |                    |
| NJAZ074 | Anglický jazyk pro středně       | 1       | $0/2 \mathrm{~Z}$  |                    |
|         | pokročilé III <sup>2</sup>       |         |                    |                    |
| NSWI170 | Počítačové systémy               | 5       |                    | 2/1  Z+Zk          |
| NSWI177 | Úvod do Linuxu                   | 4       |                    | 1/2  KZ            |
| NDIN019 | Dětské programovací jazyky       | 4       |                    | $1/2 \mathrm{~Z}$  |
| NTVY017 | Tělesná výchova IV <sup>1</sup>  | 1       |                    | $0/2 \mathrm{~Z}$  |
| NJAZ090 | 3 0 0 0 1                        | 1       |                    | $0/2 \mathrm{~Z}$  |
|         | pokročilé IV <sup>2</sup>        |         |                    |                    |
| NJAZ091 |                                  | 1       | $0/0 \mathrm{Zk}$  | $0/0 \mathrm{~Zk}$ |
|         | bakaláře <sup>3</sup>            |         |                    |                    |

 $<sup>^{1}\,</sup>$  Místo jednoho z předmětů NTVY014, NTVY015, NTVY016, NTVY017 je možné si zapsat letní výc<br/>vikový kurz NTVY018 nebo zimní výcvikový kurz NTVY019. Tyto kurzy může student absolvovat k<br/>dykoli v průběhu studia.

<sup>&</sup>lt;sup>2</sup> Výuka anglického jazyka NJAZ070, NJAZ072 v rozsahu 0/2 v každém semestru je určena pro středně pokročilé a pokročilé. Pro začátečníky a mírně pokročilé jsou určeny předměty NJAZ071, NJAZ073 s rozsahem výuky 0/4 v každém semestru. Předmět není povinný pro posluchače, kteří zahájili studium před rokem 2022.

#### 3. rok studia

| Kód     | Název                                                      | Kredity | ZS                | LS                |
|---------|------------------------------------------------------------|---------|-------------------|-------------------|
| NDBI025 | Databázové systémy                                         | 5       | 2/2 Z+Zk          |                   |
| NUIN018 | Vývoj počítačových her — pro                               | 4       | $2/1~\mathrm{KZ}$ |                   |
|         | učitele                                                    |         |                   |                   |
|         | Úvod do psychologie                                        | 3       | $2/0 \mathrm{Zk}$ |                   |
| NSWI090 | Počítačové sítě <sup>1</sup>                               | 3       |                   | $2/0 \mathrm{Zk}$ |
| NAIL120 | $ m \acute{U}vod~do~um \check{e}l\acute{e}~inteligence~^2$ | 5       |                   | 2/2 Z+Zk          |
| NPEP302 | Pedagogická propedeutika                                   | 3       |                   | $0/2  \mathrm{Z}$ |
| NSZZ031 | Vypracování a konzultace                                   | 6       |                   | $0/4 \mathrm{~Z}$ |
|         | bakalářské práce                                           |         |                   |                   |
| NDIN006 | Pedagogická praxe                                          | 2       |                   | 1 týden Z         |
|         | z informatiky 1                                            |         |                   |                   |
|         | Povinně volitelné předměty                                 | 4       |                   |                   |

 $<sup>^1</sup>$ Předmět není povinný pro posluchače, kteří zahájili studium v roce 2022 nebo později. Předmět není povinný pro posluchače, kteří zahájili studium před rokem 2022.

# Povinně volitelné předměty (minimálně 4 kredity)

| Kód     | Název                                 | Kredity | ZS                | LS                |
|---------|---------------------------------------|---------|-------------------|-------------------|
| NPEP601 | Rétorika a komunikace s lidmi I       | 2       | $0/2 \mathrm{~Z}$ | _                 |
| NPEP602 | Sociální dovednosti a práce s lidmi I | 2       | $0/2 \mathrm{~Z}$ |                   |
| NPEP603 | Rétorika a komunikace s lidmi II      | 2       |                   | $0/2 \mathrm{~Z}$ |
| NPEP604 | Sociální dovednosti a práce           | 2       | _                 | $0/2 \mathrm{~Z}$ |
|         | s lidmi II                            |         |                   |                   |

## Doporučené volitelné předměty

| Kód     | Název                                                        | Kredity | ZS                 | LS                |
|---------|--------------------------------------------------------------|---------|--------------------|-------------------|
| NMIN201 | Programování 3                                               | 5       | 2/2 Z+Zk           |                   |
| NPRG013 | Programování v jazyce Java                                   | 5       | 2/2 Z+Zk           |                   |
| NPRG035 | Programování v jazyce C#                                     | 5       | 2/2 Z+Zk           |                   |
| NAIL028 | Úvod do robotiky                                             | 5       | 2/2 Z+Zk           |                   |
| NPFL012 | Úvod do počítačové lingvistiky                               | 3       | $2/0 \mathrm{Zk}$  |                   |
| NPRG036 | $Datov\'e\ form\'aty$                                        | 5       | 2/2 Z+Zk           |                   |
| NPED045 | Multimediální vzdělávání v pojetí                            | 3       | $1/1 \mathrm{~KZ}$ |                   |
|         | psychologického výzkumu                                      |         |                    |                   |
| NPRG005 | Neprocedurální programování                                  | 5       |                    | 2/2 Z+Zk          |
| NAIL120 | $\acute{U}vod\ do\ um\check{e}l\acute{e}\ inteligence\ ^{1}$ | 5       |                    | 2/2 Z+Zk          |
| NDBI046 | Úvod do datového inženýrství                                 | 5       |                    | 2/2 Z+Zk          |
| NPRG003 | Metodika programování a filozofie                            | 3       |                    | 2/0  Zk           |
|         | programovacích jazyků                                        |         |                    |                   |
| NPRG045 | Ročníkový projekt                                            | 4       | _                  | $0/1 \mathrm{~Z}$ |

 $<sup>^2</sup>$  Výuka anglického jazyka NJAZ074, NJAZ090 v rozsahu 0/2 v každém semestru je určena pro středně pokročilé a pokročilé. Pro začátečníky a mírně pokročilé jsou určeny předměty NJAZ075, NJAZ089 s rozsahem výuky 0/4 v každém semestru.

<sup>3</sup> Povinnou zkoušku z anglického jazyka NJAZ091 je možné absolvovat v ZS nebo v LS.

## Přidružený studijní plán (minor)

#### 1. rok studia

| Kód     | Název                          | Kredity | ZS                | LS                |
|---------|--------------------------------|---------|-------------------|-------------------|
| NDMI002 | Diskrétní matematika           | 5       | 2/2 Z+Zk          | <del>_</del>      |
| NPRG062 | Algoritmizace                  | 4       | 2/1  Z+Zk         |                   |
| NPRG030 | Programování 1                 | 5       | $2/2 \mathrm{~Z}$ |                   |
| NTIN060 | Algoritmy a datové struktury 1 | 5       |                   | 2/2 Z+Zk          |
|         | Programování 2                 | 5       |                   | 2/2 Z+Zk          |
| NUIN022 | Proseminář z matematiky $^1$   | 2       |                   | $0/2 \mathrm{~Z}$ |

<sup>&</sup>lt;sup>1</sup> Předmět není povinný pro posluchače, kteří zahájili studium před rokem 2022.

#### 2. rok studia

| Kód     | Název                               | Kredity | ZS                | LS                |
|---------|-------------------------------------|---------|-------------------|-------------------|
| NUIN021 | Algoritmy a automaty pro<br>učitele | 5       | 2/2 Z+Zk          | _                 |
| NSWI120 | Principy počítačů                   | 3       | $2/0 \mathrm{Zk}$ |                   |
| NSWI141 | Úvod do počítačových sítí           | 3       | 2/0  KZ           |                   |
| NDIN011 | Aplikační software                  | 4       | 2/1  KZ           |                   |
|         | Počítačové systémy                  | 5       |                   | 2/1 Z+Zk          |
| NSWI177 | Úvod do Linuxu                      | 4       |                   | 1/2  KZ           |
| NDIN019 | Dětské programovací jazyky          | 4       |                   | $1/2 \mathrm{~Z}$ |

## 3. rok studia

| Kód     | Název                                                    | Kredity | ZS                | LS                  |
|---------|----------------------------------------------------------|---------|-------------------|---------------------|
| NDBI025 | Databázové systémy                                       | 5       | 2/2 Z+Zk          | _                   |
| NUIN018 | Vývoj počítačových her — pro                             | 4       | $2/1~\mathrm{KZ}$ |                     |
|         | učitele                                                  |         |                   |                     |
| NSWI090 | Počítačové sítě <sup>1</sup>                             | 3       |                   | 2/0  Zk             |
| NAIL120 | $\acute{	extbf{U}}	extbf{vod}$ do umělé inteligence $^2$ | 5       |                   | 2/2 Z+Zk            |
| NDIN006 | Pedagogická praxe                                        | 2       |                   | $1$ týden ${\bf Z}$ |
|         | z informatiky 1                                          |         |                   |                     |

 $<sup>\</sup>frac{1}{2}$  Předmět není povinný pro posluchače, kteří zahájili studium v roce 2022 nebo později. Předmět není povinný pro posluchače, kteří zahájili studium před rokem 2022.

# Doporučené volitelné předměty

| Kód     | Název                          | Kredity | ZS       | LS |
|---------|--------------------------------|---------|----------|----|
| NMIN201 | Programování 3                 | 5       | 2/2 Z+Zk |    |
| NPRG013 | Programování v jazyce Java     | 5       | 2/2 Z+Zk |    |
| NPRG035 | Programování v jazyce C#       | 5       | 2/2 Z+Zk |    |
| NAIL028 | Úvod do robotiky               | 5       | 2/2 Z+Zk |    |
| NPFL012 | Úvod do počítačové lingvistiky | 3       | 2/0  Zk  |    |

<sup>&</sup>lt;sup>1</sup> Předmět je povinný pro posluchače, kteří zahájili studium v roce 2022 nebo později.

|            | Datové formáty<br>Multimediální vzdělávání v pojetí<br>psychologického výzkumu | 5<br>3 | $^{2/2}$ Z+Zk $^{1/1}$ KZ | _                    |
|------------|--------------------------------------------------------------------------------|--------|---------------------------|----------------------|
| NPRC005    | Neprocedurální programování                                                    | 5      |                           | 2/2 Z+Zk             |
|            | $\dot{U}vod\ do\ um\check{e}l\acute{e}\ inteligence\ ^{1}$                     | 5      |                           | 2/2 Z+Zk $2/2$ Z+Zk  |
|            | Úvod do datového inženýrství                                                   | 5      |                           | 2/2 Z+Zk $2/2$ Z+Zk  |
|            | Metodika programování a filozofie                                              | 3      |                           | 2/2  Z+ZK<br>2/0  Zk |
| 111 110005 | programovacích jazyků                                                          | 3      |                           | 2/0 ZK               |
| NPRC045    | Ročníkový projekt                                                              | 1      |                           | 0/1 7                |
| 111 110040 | Twentinoug projekt                                                             | 4      |                           | 0/1 2                |

 $<sup>^{1}</sup>$  Předmět je povinný pro posluchače, kteří zahájili studium v roce 2022 nebo později.

# Požadavky znalostí ke státní závěrečné zkoušce z informatiky (zahájení studia před rokem 2022)

#### 1. Algoritmy a datové struktury

Časová složitost algoritmů: čas a prostor výpočtu pro konkrétní vstup, časová a prostorová složitost algoritmu, složitost v nejlepším, nejhorším a průměrném případě, asymptotická notace. Třídy složitosti: třídy P a NP, převoditelnost problémů, NP-těžkost a NP-úplnost, příklady NP-úplných problémů a převodů mezi nimi.

Metoda "rozděl a panuj": princip rekurzivního dělení problému na podproblémy, výpočet složitosti pomocí rekurentních rovnic, kuchařková věta (Master theorem), aplikace (Mergesort, násobení dlouhých čísel, Strassenův algoritmus). Dynamické programování.

Binární vyhledávací stromy: definice vyhledávacího stromu, operace s nevyvažovanými stromy, AVL stromy (jen definice). Haldy: binární halda. Hešování: hešování s přihrádkami, otevřená adresace.

Třídění: primitivní třídicí algoritmy (Bubblesort, Insertsort apod.), třídění haldou (Heapsort), Quicksort, dolní odhad složitosti porovnávacích třídicích algoritmů, přihrádkové třídění čísel a řetězců.

Grafové algoritmy: prohledávání do šířky a do hloubky, detekce komponent souvislosti, topologické třídění orientovaných grafů, nejkratší cesty v ohodnocených grafech (Dijkstrův algoritmus), minimální kostra grafu (Kruskalův, Jarníkův a Borůvkův algoritmus), toky v sítích (algoritmus Fordův-Fulkersonův).

Algoritmy vyhledávání v textu. Algebraické algoritmy: Eukleidův algoritmus.

#### 2. Programovací jazyky

Typické prostředky programovacích jazyků. Pojmy a principy objektového návrhu: třídy, rozhraní, metody, atributy, dědičnost, vícenásobná dědičnost a její problémy, polymorfismus, primitivní typy vs. objekty (implementace primitivních typů, paměťová reprezentace složených typů a objektů), implementace virtuálních metod (tabulka virtuálních metod), životnost objektů (alokace objektů statická, na zásobníku, na haldě), konstruktory, explicitní delete/dispose, garbage collector, výjimky (šíření a odchytávání výjimek: try-catch-finally). Oddělený překlad, sestavení, řízení překladu: kompilace vs. interpretace, role sestavení.

Neprocedurální programování, logické programování.

#### 3. Automaty a jazyky

Regulární jazyky: konečný automat, jazyk přijímaný konečným automatem, deterministický, nedeterministický, lambda přechody, regulární výrazy, Kleeneho věta, iterační (pumping) lemma pro konečné automaty, Nerodova věta, regulární gramatiky.

Bezkontextové jazyky: bezkontextová gramatika, jazyk generovaný gramatikou, zásobníkový automat, třídy jazyků přijímaných nedeterministickými a deterministickými zásobníkovými automaty.

Turingův stroj: gramatika typu 0, diagonální jazyk, univerzální jazyk.

Chomského hierarchie: určení ekvivalence či inkluze tříd jazyků generovaných výše uvedenými automaty a gramatikami, schopnost zařazení konkrétního jazyka do Chomského hierarchie (zpravidla sestrojení odpovídajícího automatu či gramatiky a důkaz iteračním lemmatem, že jazyk není v nižší třídě).

#### 4. Databáze

Podstata a architektury databázových systémů. Konceptuální, logická a fyzická úroveň pohledů na data, B-stromy a jejich varianty. Relační datový model, relační algebra, normální formy, referenční integrita. Základy jazyka SQL. Transakční zpracování, vlastnosti transakcí.

#### 5. Architektury počítačů, operačních systémů a sítí

Reprezentace dat: kódování a způsob uložení dat v paměti, bitové operace a jejich využití.

Organizace počítače: von Neumannova a harvardská architektura, operační a sekundární paměti, adresové prostory, vstupně/výstupní zařízení. Architektura počítače: typické architektury, instrukce procesoru, běžné konstrukce vyššího programovacícho jazyka a jejich reprezentace pomocí instrukcí, základní představa o SMP multiprocesoru se sdílenou pamětí.

Operační systémy: boot počítače a operačního systému, jádro OS, ovladače zařízení, privilegovaný a neprivilegovaný režim CPU, rozhraní mezi OS a programovacím jazykem, správa uživatelů a jejich oprávnění. Rozhraní HW a OS: ovladače zařízení a driver stack, obsluha přerušení na úrovni CPU a OS, výjimky procesoru a jejich obsloužení a vazba na runtime programovacího jazyka. Procesy a vlákna: kontext procesu a vlákna, kooperativní a preemptivní multitasking, plánování, typické stavy vlákna, aktivní vs. pasivní čekání. Race condition, kritická sekce, vzájemné vyloučení, synchronizační primitiva, deadlock a livelock (znalost konceptu). Typická rozhraní pro přístup a práci se soubory a sockety, file descriptory, použití souborového API pro přístup k zařízením v OS, standardní vstup a výstup a jejich přesměrování, roury (pipes) jako meziprocesová komunikace.

Bezpečnost, autentifikace, autorizace, přístupová práva. ISO/OSI vrstevnatá architektura sítí. TCP/IP. Spojované a nespojované služby, spolehlivost, zabezpečení protokolů.

# Požadavky znalostí ke státní závěrečné zkoušce z informatiky (zahájení studia v roce 2022 nebo později)

#### 1. Algoritmy a datové struktury

#### Časová složitost algoritmů:

Definovat čas a prostor výpočtu pro konkrétní vstup, časovou a prostorovou složitost algoritmu (v nejlepším, nejhorším a průměrném případě). Vysvětlit, v jakých jednotkách se čas a prostor měří.

- Umět stanovit časovou a prostorovou složitost algoritmu.
- Definovat asympotickou notaci (O, Omega, Theta) a použít ji pro zápis složitosti. Vysvětlit motivaci použítí asymptotiky.

#### Základní algoritmy s čísly:

- Vysvětlit Eukleidův algoritmus, Hornerovo schéma a Eratosthenovo síto.
- Vysvětlit algoritmy pro test prvočíselnosti, prvočíselný rozklad a vyčíslení výrazu.

#### Třídění:

- Vysvětlit primitivní třídicí algoritmy (Bubblesort, Insertsort apod.).
- Definovat haldu a vysvětlit, jak se použije pro třídění (Heapsort).
- Vysvětlit rekurzivní třídicí algoritmy Mergesort a Quicksort.
- Srovnat složitost jednotlivých třídicích algoritmů.
- Vysvětlit dolní odhad složitosti porovnávacích třídicích algoritmů a jeho důkaz.
- Vysvětlit myšlenku přihrádkového třídění a ukázat, jak se používá pro čísla a řetězce.

#### Grafové algoritmy:

- Ukázat různé způsoby reprezentace grafu v paměti.
- Vysvětlit prohledávání grafů do šířky a do hloubky. Ukázat, jak jejich složitost závisí na reprezentaci grafu. Uvést, jak se prohledáním grafu zjistí komponenty souvislosti.
- Definovat topologické uspořádání orientovaného grafu a ukázat, jak ho efektivně nalézt.
- Vysvětlit algoritmy pro nejkratší cesty v ohodnocených grafech (Dijkstrův algoritmus) a minimální kostru grafu (Kruskalův, Jarníkův a Borůvkův algoritmus).
- Definovat tok v síti, vysvětlit algoritmus na nalezení maximálního toku (Fordův-Fulkersonův) a důkaz jeho korektnosti.

#### Datové struktury:

- Definovat binární vyhledávací strom, vysvětlit operace s nevyvažovanými stromy a problémy s degenerací stromu. Definovat AVL strom a naznačit, jak pomůže.
- Definovat binární haldu a vysvětlit operace s ní.
- Vysvětlit princip hešování, demonstrovat ho na hešování s přihrádkami a otevřené adresaci.

#### Metoda "rozděl a panuj":

- Vysvětlit princip rekurzivního dělení problému na podproblémy.
- Vysvětlit metody výpočtu složitosti rekurzivních algoritmů pomocí rekurentních rovnic, úvahou o stromu rekurze a kuchařkovou větou (Master theorem).
- Ukázat aplikace (Mergesort, násobení dlouhých čísel, Strassenův algoritmus) a umět spočítat jejich složitost.

#### Dynamické programování:

- Vysvětlit princip řešení podproblémů od nejmenších k největším.
- Ukázat příklady algoritmů založených na dynamickém programování.

#### Algoritmy vyhledávání v textu:

- Zavést základní pojmy týkající se řetězců: abeceda, slovo, podslovo, prefix a suffix.
- Vysvětlit vyhledávání v textu pomocí automatu (algoritmy Knuth-Morris-Pratt a Aho-Corasicková).

#### Třídy složitosti:

- Vysvětlit třídy rozhodovacích problémů P a NP.
- Vysvětlit převoditelnost problémů, NP-těžkost a NP-úplnost.
- Uvést příklady NP-úplných problémů a převodů mezi nimi.

#### 2. Programování

#### Programovací jazyky:

- vysvětlit, k čemu potřebujeme programovací jazyky, jaké jsou základní stavební prvky (procedurálního) programovacího jazyka
- popsat rozdíl mezi staticky a dynamicky typovanými jazyky, uvést příklady implicitní a explicitní konverze typů, určit rozsah viditelnosti a platnosti konkrétní proměnné v programu
- popsat různé způsoby předávání parametrů a jejich výhody
- navrhnout sadu testů pro funkci zadanou zkoušejícím
- určit, které proměnné jsou primitivní (hodnotové typy) a které objektové (referenční typy) a vědět, k jakým chybám může vést jejich nerozlišování (více odkazů na tentýž objekt)
- určit, které proměnné v konkrétním kódu jsou alokovány staticky, které na zásobníku a které na haldě
- navrhnout rozklad řešení úlohy zadané zkoušejícím na funkce, na moduly a na objekty
- popsat význam konstruktoru, destruktoru a garbage-collectoru

#### Programování počítačových her:

- popsat danou konkrétní hru z pohledu programátora a identifikovat v ní jednotlivé prvky: scény, kamery, světla, herní objekty; popsat vlastnosti herních objektů týkající se jejich zobrazování a chování (kolize, fyzika, skripty)
- porozumět jednoduchému konkrétnímu skriptu pro herní objekt
- vypracovat a vysvětlit návrh pro konkrétní danou hru

#### 3. Základy teoretické informatiky

#### Konečné automaty:

- Definovat konečný automat, jeho výpočet a jazyk přijímaný automatem.
- Vysvětlit princip nedeterministického automatu a lambda-přechodů. Ukázat ekvivalenci takto rozšířených automatů s původním deterministickým automatem.
- Vysvětlit regulární výrazy a ukázat, že generují přesně regulární jazyky (Kleeneho věta).
- Umět sestrojit automat a regulární výraz pro zadaný jazyk.

#### Gramatiky:

- Definovat regulární a bezkontextovou gramatiku a jazyk generovaný gramatikou.
- Vysvětlit algoritmus pro příslušnost slova do bezkontextového jazyka (například algoritmus CYK).
- Umět sestrojit gramatiku pro zadaný jazyk.

#### Turingovy stroje:

- Definovat Turingův stroj, jeho výpočet a jazyk přijímaný a rozpoznávaný strojem.
- Vysvětlit rozhodnutelné a částečně rozhodnutelné jazyky a vyčíslitelné funkce.
- Vysvětlit univerzální Turingův stroj a diagonální jazyk.
- Ukázat příklady jazyků, které nejsou rozhodnutelné nebo částečně rozhodnutelné (problém zastavení). Ukázat, jak se může lišit rozhodnutelnost jazyka a jeho doplňku (Postova věta).
- Umět sestrojit Turingův stroj rozhodující daný jazyk.

#### 4. Databáze a práce s daty

#### Základy reprezentace dat:

- Vysvětlit rozdíl mezi informacemi a daty.
- Vysvětlit rozdíl mezi datovým modelem a datovým formátem. Znát základní zástupce datových modelů (relační, grafový a dokumentový) a datových formátů (CSV, XML, JSON).
- Vysvětlit pojem otevřených dat a roli katalogů dat při vyhledávání existujících dat.
- Vysvětlit co je konceptuální model a ukázat příklad konceptuálního modelu v podobě ER diagramu nebo UML diagramu tříd. Z příkladu odvodit schéma relační databáze.

#### Jazyk SQL:

- Pomocí SQL vytvořit dvě tabulky s několika sloupci a definovat pro ně základní integritní omezení (primární klíče, cizí klíč v jedné tabulce na jinou tabulku) a pomocí SQL naplnit daty.
- Pomocí SQL vyfiltrovat řádky a sloupce z tabulek dle zadaných kritérií, pomocí SQL umět obě definované tabulky spojit.

#### Architektury databázových systémů:

- Vysvětlit roli databázového systému v architektuře aplikačního software.
- Popsat základní architektury databázových systémů (centralizovaná databáze, distribuovaná databáze), jejich výhody a nevýhody.

#### Optimalizace databází:

- Vysvětlit na příkladu (např. relační databázové tabulky) co je databázový index a k čemu je dobrý.
- Vysvětlit na příkladu normální formy v relačním modelu dat a k čemu slouží při návrhu struktury relační databáze.

#### 5. Architektury počítačových systémů a sítí

#### Reprezentace dat:

- Vysvětlit motivaci používání dvojkové soustavy, převádět celá čísla z desítkové reprezentace do reprezentace s dvojkovým doplňkem a zpět, převádět desetinná čísla do reprezentace IEEE 754 a zpět, na obou formátech demonstrovat omezení rozsahu a přesnosti
- Vysvětlit motivaci používání šestnáctkové soustavy, převádět celá čísla z desítkové reprezentace do šestnáctkové soustavy a zpět
- Použít bitové operace (AND, OR, NOT, XOR, posuny) k manipulaci hodnot bitových polí
- Vysvětlit a s použitím tabulek převádět text do a z ASCII kódování, vysvětlit motivaci kódování UNICODE ve variantách UTF-8 a UTF-16
- Vysvětlit rozdíl mezi rastrovou a vektorovou grafikou, na příkladech uvést výběr vhodné reprezentace počítačového obrazu. Vysvětlit reprezentaci barev na počítači.

#### Organizace a architektura počítače:

- Načrtnout strukturu počítače s procesorem, operační pamětí, základními zařízeními a sběrnicemi mezi nimi, správně identifikovat tyto komponenty v reálném počítači a vysvětlit jejich základní funkci, správně přiřadit názvy aktuálních technologií (jako PCI Express, USB, DDR)
- Vysvětlit rozdíl mezi analogovým a digitálním přenosem.
- Na jednoduchých příkladech jednotek instrukcí (na úrovni základních instrukcí: load a store, aritmetické a bitové operace, nepodmíněný skok, podmíněné skoky) demonstrovat funkci procesoru, použít tyto instrukce k implementaci jednoduchých konstrukcí vyššího programovacího jazyka (vyčíslení výrazu, volání funkce s parametry a lokálními proměnnými, cyklus s celočíselným čítačem)

#### Operační systémy:

- Vysvětlit základní abstrakce poskytované operačním systémem (proces a vlákno jako abstrakce procesoru, adresový prostor jako abstrakce operační paměti, soubor jako abstrakce externí paměti, socket jako abstrakce navázaného spojení), ovladače zařízení
- Vysvětlit, jakým způsobem operační systém nabízí služby (API) a jak se rozdíly v API odráží na přenositelnosti aplikací mezi operačními systémy
- Zdůvodnit privilegovanou pozici jádra operačního systému, správně rozlišit příklady privilegovaných a neprivilegovaných operací

#### Procesy a vlákna:

- Vysvětlit základní myšlenku paralelního běhu vláken a procesů pomocí přepínání kontextu
- V sémantice prokládání instrukcí na jednoduchých příkladech demonstrovat race conditions mezi vlákny

Použití souborového API pro přístup k zařízením v OS, standardní vstup a výstup a jejich přesměrování, roury (pipes) jako meziprocesová komunikace:

• Použít rozhraní operačního systému pro přístup k obsahu souborů (open, seek, read, write, close) v jednoduchých programech

• Vysvětlit roli standardního vstupu a výstupu, na jednoduchých příkladech řetězení příkazů (cat, grep, cut, sort, head) demonstrovat skládání procesů a přesměrování, napsat vlastní program vhodný pro začlenění do podobné sekvence

#### Elektronický podpis, šifrování, certifikáty:

- Vysvětlit roli veřejného a soukromého klíče ve vytváření elektronického podpisu
- Vysvětlit význam end-to-end šifrování pro komunikaci na Internetu; popsat, jakým způsobem jsou standardně šifrované emaily, vysvětlit roli veřejného a soukromého klíče při asymetrickém šifrování.
- Vysvětlit pojmy certifikát a certifikační autorita.

#### Základy fungování sítí:

- Vysvětlit roli IP adresy při síťové komunikaci, důvody pro zavedení IPv6.
- Vysvětlit roli doménových jmen a způsob převodu na IP adresy.
- Vysvětlit strukturu URL jako prostředku adresace služeb v prostředí internetu
- Nakreslit zjednodušené schéma komunikace v internetu s hlavními účastníky (klient, sekvence routerů, server) a pomocí něj vysvětlit paketový přenos, včetně principu spolehlivého doručování paketů pomocí pozitivního potvrzování
- Vysvětlit fungování statických i dynamických HTML stránek na internetu v krocích od zadání URL do prohlížeče až k zobrazení HTML dokumentu (struktura URL, DNS, TCP přenos dotazu a odpovědi, zobrazení HTML)

#### 6. Umělá inteligence

#### Řešení úloh prohledáváním:

- Formulovat, co je dobře definovaná úloha
- Vysvětlit principy a rozdíly stromového a grafového prohledávání
- Popsat základní algoritmy neinformovaného prohledávání (DFS, BFS, uniform-cost search)
- Vysvětlit algoritmus A\*, definovat přípustné a konzistentní heuristiky a popsat jejich vztah k typu prohledávání

#### Logické uvažování:

- Definovat formuli ve výrokové logice a popsat konjunktivní a disjunktivní normální formu
- Vysvětlit pojmy model, logický důsledek a splnitelnost
- Vysvětlit algoritmus DPLL a rezoluční metodu (rezoluční krok)

#### Pravděpodobnostní uvažování:

- Definovat pojmy úplná sdružená distribuce, náhodná proměnná a nezávislost
- Vysvětlit Bayesovo pravidlo
- Definovat Bayesovskou síť, popsat její konstrukci a základní metody odvozování

#### Teorie rozhodování:

- Vysvětlit pojem racionálního agenta a formuli pro výběr akce (maximální očekávaný užitek)
- Definovat Markovský rozhodovací problém (MDP) a jeho řešení; vysvětlit Bellmanovu rovnici a popsat metody řešení MDP

#### Automatické plánování:

- Formulovat plánovací problém včetně definice operátoru
- Popsat metody dopředného a zpětného plánování

#### Hry a teorie her:

- Definovat hru dvou hráčů a popsat algoritmy Minimax a alfa-beta prořezávání
- Vysvětlit pojmy vězňovo dilema a Nashovo ekvilibrium

#### Strojové učení:

- Popsat základní druhy učení (s učitelem, bez učitele, zpětnovazební)
- Definovat rozhodovací stromy a popsat jejich konstrukci
- Popsat metodu regrese
- Vysvětlit koncept umělé neuronové sítě
- Popsat základní techniky zpětnovazebního učení a rozdíly mezi pasivním a aktivním učením

# Navazující magisterské studium od akademického roku 2020/21

Vedle odborných studijních programů nabízí MFF také studium několika programů učitelského zaměření. Celé studium vedoucí k získání kvalifikace pro učitelské povolání je rozděleno na tříleté bakalářské a na něj navazující dvouleté magisterské studium.

Stejně jako v bakalářském stupni studia, jedná se i u studia magisterského o sdružené studium sestávající ze dvou studijních programů: maior a minor. V tom programu, který si student zvolil jako hlavní, studuje podle hlavního studijního plánu (maior), v druhém programu studuje podle přidruženého studijního plánu (minor). V hlavním studijním programu absolvuje student pedagogicko-psychologickou průpravu a v každém z obou programů pak předměty týkající se oboru, pro jehož výuku je připravován (včetně didaktiky daného oboru a pedagogické praxe). Na MFF UK je student na oba zvolené obory připravován ve stejném rozsahu a stejně kvalitně nezávisle na tom, který studijní program má jako hlavní a který jako přidružený. Diplomovou práci student vypracovává jen v hlavním studijním programu. Tím je přirozeně ovlivněno téma dané práce.

# 1. Základní informace

V rámci navazujícího magisterského studia má MFF UK od akademického roku 2020/21 akreditovány následující magisterské studijní programy (se studijními plány maior a minor) týkající se učitelství:

- Učitelství fyziky pro střední školy
- Učitelství matematiky pro střední školy
- Učitelství deskriptivní geometrie pro střední školy
- Učitelství informatiky pro střední školy

Tyto studijní programy se ve sdruženém studiu kombinují. V současné době jsou nabízeny kombinace:

Fyzika pro střední školy - Matematika pro střední školy,

Matematika pro střední školy - Deskriptivní geometrie pro střední školy,

Matematika pro střední školy - Informatika pro střední školy.

Každý posluchač si může zvolit, který ze studijních programů je pro něj hlavní a který přidružený.

Se studijními programy Učitelství matematiky pro střední školy a Učitelství fyziky pro střední školy se sdružují i jiné studijní programy z dalších fakult UK.

#### Studijní plány

Studijní plány určují skladbu povinných a povinně volitelných předmětů a dále požadavky ke státní závěrečné zkoušce. Povinně volitelné předměty jsou pro každý studijní program rozděleny do několika skupin a pro každou skupinu je určen minimální počet kreditů, který je z dané skupiny třeba získat před přihlášením se ke státní závěrečné zkoušce. Vedle povinných předmětů a povinně volitelných předmětů si může každý student podle vlastního výběru zapisovat další předměty vyučované na naší fakultě, v případě zájmu i na jiných fakultách naší univerzity (tzv. volitelné předměty). Ve studijních plánech jsou přitom pro každý studijní program uvedeny některé volitelné předměty jako doporučené.

#### Doporučený průběh studia

Doporučený průběh studia je pro každý studijní program vypracován tak, aby na sebe povinné předměty navazovaly, aby student získal včas kredity potřebné pro zápis do dalšího úseku studia a aby včas splnil podmínky pro přihlášení ke státní závěrečné zkoušce. Doporučený průběh studia je podporován také při tvorbě celofakultního rozvrhu. Doporučené průběhy studia jsou uvedeny v další části textu u popisu jednotlivých studijních programů.

#### Státní závěrečná zkouška

Magisterské studium je zakončeno státní závěrečnou zkouškou, která má tyto části:

- obhajoba diplomové práce (v rámci hlavního studijního plánu),
- ústní zkouška dle požadavků v hlavním (maior) studijním plánu,
- ústní zkouška dle požadavků v přidruženém (minor) studijním plánu,
- ústní zkouška z pedagogiky a psychologie.

Nezáleží přitom na pořadí, v jakém jsou tyto části skládány.

#### Podmínky pro přihlášení ke státní závěrečné zkoušce

Pro část státní závěrečné zkoušky z pedagogiky a psychologie je nutné mít absolvované předměty Pedagogika I, Pedagogika II, Psychologie a Pedagogické praxe II z obou předmětů (podle plánu maior a minor). Státní závěrečnou zkoušku z pedagogiky a psychologie může student skládat nejdříve v letním semestru 1. ročníku.

Pro první ze zbývajících tří částí státní závěreční zkoušky je požadováno 90 kreditů. (Jde o jedinou podmínku, kontrola předmětů studijního plánu v tomto okamžiku není vyžadována.)

Pro poslední část státní závěrečné zkoušky je požadováno 120 kreditů (včetně splnění povinných předmětů a požadovaného počtu kreditů z povinně volitelných předmětů

dle studijního plánu). K poslední části tedy musí být splněny tři podmínky: počet kreditů, splnění povinných předmětů a splnění požadovaného minima kreditů z povinně volitelných předmětů.

# Požadavky znalostí ke státní závěrečné zkoušce z pedagogiky a psychologie

Při zkoušce student prokáže znalost základních pedagogických a psychologických pojmů a dovednost používat je v odpovídajících souvislostech. Dokáže analyzovat konkrétní pedagogické situace, identifikovat v nich obsažené problémy, zaujmout k nim vlastní stanovisko a zdůvodnit je v kontextu jiných možných řešení. Prokáže schopnost integrovat poznatky z psychologie osobnosti, vývojové psychologie, pedagogické psychologie, sociální psychologie a školní psychologie. Je schopen aplikovat poznatky z pedagogiky a psychologie na daný problém. Při rozpravě nad konkrétními pedagogickými situacemi bude schopen hlouběji analyzovat a vyhodnotit jevy edukační reality a prokáže tak připravenost k převzetí role učitele. Prokáže rovněž, na základě předložené studijní literatury, připravenost k samostatnému dalšímu vzdělávání v oblasti pedagogiky a psychologie. Specifikace otázek, problémů a situací bude odpovídat stupni školy, pro který je student připravován. Zkouška se koná ústní formou.

# Témata z oblasti pedagogiky

# 1. Cíle vzdělávání a výchovy

Cíle vzdělávání a výchovy, jejich hierarchizace a taxonomie. Znalosti, dovednosti, kompetence, gramotnosti jako cílové kategorie a možnosti jejich ověřování. Bloomova taxonomie kognitivních cílů. Cíle v činnosti učitele a žáků, plánování výuky. Cíle v aktuálních kurikulárních dokumentech v ČR.

## 2. Obsah vzdělávání

Kultura, věda, technika, umění jako zdroj vzdělávacích obsahů. Didaktická transformace a její úrovně. Obsah vzdělávání, kurikulum, učivo. Materiální a formální vzdělávání, všeobecné a odborné vzdělávání. Snahy o modernizaci vzdělávacích obsahů: strukturalismus, exemplární přístup, základní učivo. Integrace předmětů, integrace přírodovědného vzdělávání, mezipředmětové vztahy. Základní školské dokumenty vymezující obsah vzdělávání. Učební plán, učební osnovy, rámcové vzdělávací programy, školní vzdělávací programy, katalogy požadavků ke společné části maturitní zkoušky. Učebnice, metodické příručky, další literatura pro žáky a učitele rozvíjející vzdělávací obsah a podporující práci učitele a žáka s ním.

## 3. Vyučovací metody a organizační formy

"Neuvědomělý" metodický přístup učitele: intuice a nápodoba. Vyučovací metody a organizační formy výuky a jejich rámcová klasifikace. Metody aktivizující žáka a jejich zavádění do výuky. Strategie řešení problémů, problémové vyučování, projektová výuka, kooperativní výuka, heuristická metoda, diskuse, týmové vyučování, případová metoda, inscenační metoda. Didaktické hry a soutěže. Konstruktivistický přístup. Zážitková pedagogika. Vyučovací hodina, její typy a fáze. Frontální, skupinová a individuální výuka. Diferenciace a individualizace ve vyučování. Žáci se speciálními vzdělávacími potřebami a jejich integrace do běžných tříd. Vliv nových technologií: distanční výuka, multimediální prostředky.

## 4. Hodnocení a evaluace ve vzdělávání

Hodnocení výsledků učení žáků učitelem, jeho cíle, funkce, typy a metody. Formativní hodnocení. Diagnostické a klasifikační metody. Didaktické testy. Mezinárodní

výzkumy výsledků vzdělávání. Přijímací zkoušky na víceletá gymnázia a střední školy. Maturitní zkouška. Česká školní inspekce a její činnost. Autoevaluace škol. Kvalita a efektivita ve vzdělávání, kritéria a indikátory.

# 5. Učitel a jeho sociální role

Osobnost učitele, výukové styly. Role učitele v proměnách času, autorita. Sociální dovednosti učitele. Kompetence učitelů. Problémy začínajících učitelů. Učitel v sociální interakci se žáky a rodiči. Hodnocení a sebehodnocení učitele, podpora profesního růstu učitele. Příprava a další vzdělávání učitelů.

# 6. Vzdělávací soustava

Druhy a typy škol, vzdělávací soustava v ČR, školy a školská zařízení. Základní legislativní dokumenty. Mezinárodní klasifikace stupňů vzdělávání. Vzdělávací soustava ve vybrané zemi. Řízení škol a odpovědnost. Financování škol. Autonomie škol. Alternativní a inovativní školy - příklady a charakteristika. Domácí vzdělávání. Současné otázky stavu vývoje vzdělávací soustavy v ČR. Inkluzivní vzdělávání. Pedagogický výzkum.

## Témata z oblasti psychologie

# 1. Psychologie osobnosti učitele a učitelské profese

Analýza učitelské profese - učitelská profese a její nároky (klinická náročnost učitelství, nejistoty, ambivalence a dilemata učitelství, prestiž a obtížnost učitelské profese). Posuny v žákovské populaci a jejich dopady na učitelskou profesi. Subjektivní zodpovědnost za úspěchy a neúspěchy žáků. Autodiagnostika učitele - individuální pojetí učitelství, zjišťování vlastních specifik pedagogického působení.

# 2. Sociální aspekty vzdělávání. Socializace

Pojem a podstata socializace. Mechanismy socializace (sociální učení). Stávání se žákem. Rozdíly mezi rodinnou a školní socializací. Psychologické aspekty spolupráce s rodinou. Interakce učitel - žák (žáci). Sociální poznávání a hodnocení. Percepce žáka učitelem. Zákonitosti procesu připisování příčin po úspěchu a neúspěchu. Kauzální atribuce a školní výkon. Učitelova očekávání ("sebenaplňující proroctví"). Vznik, funkce a změna postojů. Předsudky a stereotypy Typizování žáků, preferenční postoje učitele, kategorizace učitelů žáky. Struktura a dynamika malé sociální skupiny. Psychologie školní třídy a možnosti intervence v práci se třídou. Činitelé ovlivňující stav a vývoj školní třídy. Sociometrie, metody zjišťování vztahů ve skupině (SORAD). Klima ve školní třídě a ve škole - pojem a základní dimenze (diagnostika třídního a školního klimatu).

## 3. Psychický vývoj

Periodizace lidského života, základní pojmy vývojové psychologie (vývoj, zrání, učení). Hlavní vývojové oblasti (tělesná, motorická, percepční, kognitivní, řečová a jazyková, osobnostní, sociální, morální). Vývoj v jednotlivých životních etapách: předškolní věk, mladší a starší školní věk, adolescence, dospělost a stáří. Hlavní vývojové koncepce (Erikson, Piaget, Vygotskij).

## 4. Motivace ve škole

Motivace učební činnosti (struktura žákovské motivace: výkonová motivace, poznávací motivace, sociální motivace, instrumentální motivace, odměny a tresty). Diagnostika žákovské motivace k učení. Krátkodobé i dlouhodobé strategie ovlivňování žákovské motivace. Žákovské zaujetí školní prací (úkolem). Žák v širších biodromálních souvislostech. Vztah k budoucnosti jako činitel žákovské motivace. Volní procesy

a jejich diagnostika. Postoje žáků ke škole a vyučovacím předmětům. Žákovská nemotivovanost a motivační vlivy převážně snižující školní výkon (strach a nuda ve škole, motivační konflikty). Překonávání motivačních krizí ve vztahu ke škole. Psychologická rizika a úskalí spojená s hodnocením. Školní úspěšnost - pojetí školní úspěšnosti (rozvoj potencialit žáka - facilitující a inhibující faktory).

# 5. Učení a poznávání

Pojem učení - podoby učení, vybrané teorie učení a druhy učení. Učení ve školním kontextu: Učení a chyba - práce s chybou. Autoregulace učení - vzdělávací autoregulace (diagnostika a rozvoj). Strategie efektivního učení. Individuální zvláštnosti učení: Kognitivní styl, učební styl (žákovo pojetí učení, učební strategie, učební přístupy). Dětská interpretace světa - žákovo pojetí učiva. Pojem metakognice. Specifické poruchy učení - výskyt, nejčastější projevy, diagnostika, přístup učitele, náprava. Žáci se specifickými edukačními potřebami - žáci s potížemi při učení, žáci pracující pod a nad své schopnosti, nadaní žáci, žáci s poruchami chování.

# 6. Systém poradenských služeb ve školství

Odborné kompetence pracovníků v systému poradenských služeb ve školství: výchovní poradci, školní metodik prevence, odborník na reedukaci SPU, školní psycholog. Spolupráce s PPP, SPC, SVP. Náročné životní situace. Stres a jeho zvládání. Copingové strategie. Krizová intervence. Lidský vztah jako součást profese. Syndrom vyhoření a jeho prevence. Žáci s poruchami chování. Šikana ve škole a její prevence.

# 2. Studijní plány jednotlivých studijních programů

# 1. Učitelství fyziky pro střední školy

Garantující pracoviště: Katedra didaktiky fyziky Garant programu: doc. RNDr. Zdeněk Drozd, Ph.D.

## Doporučený průběh studia

Předměty **povinné** jsou vytištěny **tučně**, povinně volitelné předměty normálním písmem, *doporučené volitelné* předměty *kurzívou*.

Hlavní studijní plán (maior)

| Kód     | Název                         | Kredity | ZS                | LS                |
|---------|-------------------------------|---------|-------------------|-------------------|
| NPEP401 | Pedagogika I                  | 3       | $1/1 \mathrm{~Z}$ | _                 |
| NFUF401 | Fyzika kondenzovaného stavu   | 4       | 3/0  Zk           |                   |
| NFUF402 | Praktikum školních pokusů I   | 3       | $0/3 \mathrm{~Z}$ |                   |
| NFUF403 | Didaktika fyziky I            | 4       | 2/1  Z+Zk         |                   |
| NFUF404 | Pedagogická praxe z fyziky II | 5       |                   | 2 týdny Z         |
| NFUF701 | Praktické aplikace fyziky     | 3       | $0/2 \mathrm{~Z}$ |                   |
|         | kondenzovaného stavu          |         |                   |                   |
| NPEP402 | Pedagogika II                 | 3       |                   | $1/1 \mathrm{~Z}$ |
| NPEP403 | Psychologie                   | 6       |                   | $2/2 \mathrm{~Z}$ |
| NFUF405 | Jaderná a částicová fyzika    | 3       |                   | 2/1  Zk           |

| NEUE406         | Praktikum školních pokusů II                  | 3       |                   | 0/4 Z              |
|-----------------|-----------------------------------------------|---------|-------------------|--------------------|
| NF UF 400       | Fraktikum skolmen pokusu 11                   | ა       |                   | 0/4 Z              |
| Doporuče        | né volitelné předměty                         |         |                   |                    |
| Kód             | Název                                         | Kredity | ZS                | LS                 |
| NPEP801         | Pedagogický seminář I                         | 3       | $0/2 \mathrm{~Z}$ |                    |
| NFUF820         | Heuristické metody ve výuce fyziky I          | 3       | $0/2 \mathrm{~Z}$ |                    |
| ${\rm NPEP802}$ | Pedagogický seminář II                        | 3       |                   | $0/2 \mathrm{~Z}$  |
| NFUF822         | Heuristické metody ve výuce<br>fyziky II      | 3       |                   | $0/2 \mathrm{~Z}$  |
| NFUF831         | Problémy fyzikálního vzdělávání               | 3       | $0/2 \mathrm{~Z}$ | $0/2 \mathrm{~Z}$  |
| 2. rok stu      | dia                                           |         |                   |                    |
| Kód             | Název                                         | Kredity | ZS                | LS                 |
| NPEP501         | Diagnostika a autodiagnostika                 | 2       | 0/1 Z             | _                  |
|                 | pro učitele                                   |         |                   |                    |
| NFUF501         | Astronomie a astrofyzika                      | 3       | $2/0 \mathrm{Zk}$ |                    |
| NFUF502         | Didaktika fyziky II                           | 3       | $0/2 \mathrm{~Z}$ |                    |
| NFUF503         | Fyzikální obraz světa                         | 3       | 2/0  Zk           |                    |
| ${\bf NFUF555}$ | Diplomová práce I                             | 8       | $0/6 \mathrm{Z}$  |                    |
| ${\rm NFUF407}$ | Pedagogická praxe z fyziky III                | 5       | 2 týdny Z         |                    |
| NFUF704         | Obecná teorie relativity pro učitele          | 2       | 2/0  Zk           | _                  |
| NFUF703         | Nové materiály a technologie                  | 2       | 2/0  Zk           | _                  |
| NFUF702         | Vybrané partie ze základů                     | 2       | 2/0  Zk           |                    |
|                 | elektrotechniky pro budoucí učitele<br>fyziky |         | ,                 |                    |
| NFUF556         | Diplomová práce II                            | 12      |                   | $0/10 \mathrm{~Z}$ |
| <br>Doporuče    | né volitelné předměty                         |         |                   |                    |
| Kód             | Název                                         | Kredity | ZS                | LS                 |
| NFUF832         | Praktikum školních pokusů III                 | 4       | $0/3 \mathrm{~Z}$ |                    |
|                 | Praktikum školních pokusů IV                  | 4       | <u>.</u>          | $0/3 \ { m Z}$     |
|                 | Praktikum školních pokusů V                   | 4       |                   | $0/3 \ { m Z}$     |

# Přidružený studijní plán (minor)

| Kód     | Název                         | Kredity | ZS                | LS                |
|---------|-------------------------------|---------|-------------------|-------------------|
| NFUF401 | Fyzika kondenzovaného stavu   | 4       | 3/0  Zk           | _                 |
| NFUF402 | Praktikum školních pokusů I   | 3       | $0/3 \mathrm{~Z}$ |                   |
| NFUF403 | Didaktika fyziky I            | 4       | 2/1  Z+Zk         |                   |
| NFUF404 | Pedagogická praxe z fyziky II | 5       |                   | 2  týdny Z        |
| NFUF701 | Praktické aplikace fyziky     | 3       | $0/2 \mathrm{~Z}$ |                   |
|         | kondenzovaného stavu          |         |                   |                   |
| NFUF405 | Jaderná a částicová fyzika    | 3       |                   | $2/1 \mathrm{Zk}$ |

| NFUF406       | Praktikum školních pokusů II               | 3       | _                 | 0/4 Z             |  |
|---------------|--------------------------------------------|---------|-------------------|-------------------|--|
| Doporuče      | né volitelné předměty                      |         |                   |                   |  |
| Kód           | Název                                      | Kredity | ZS                | LS                |  |
| NPEP801       | Pedagogický seminář I                      | 3       | 0/2 Z             |                   |  |
| NFUF820       | Heuristické metody ve výuce fyziky I       | 3       | $0/2 \mathrm{~Z}$ |                   |  |
| NPEP802       | Pedagogický seminář II                     | 3       | <u></u>           | $0/2 \mathrm{~Z}$ |  |
| NFUF822       | Heuristické metody ve výuce<br>fyziky II   | 3       |                   | $0/2 \mathrm{~Z}$ |  |
| NFUF831       | Problémy fyzikálního vzdělávání            | 3       | 0/2 Z             | $0/2 \mathrm{~Z}$ |  |
| 2. rok studia |                                            |         |                   |                   |  |
| Kód           | Název                                      | Kredity | ZS                | LS                |  |
| NFUF501       | Astronomie a astrofyzika                   | 3       | 2/0  Zk           | _                 |  |
| NFUF502       | Didaktika fyziky II                        | 3       | $0/2 \mathrm{~Z}$ |                   |  |
| NFUF503       | Fyzikální obraz světa                      | 3       | 2/0  Zk           |                   |  |
| NFUF407       | Pedagogická praxe z fyziky III             | 5       | 2 týdny Z         |                   |  |
| NFUF704       | Obecná teorie relativity pro učitele       | 2       | 2/0  Zk           |                   |  |
| NFUF703       | Nové materiály a technologie               | 2       | 2/0  Zk           |                   |  |
| NFUF702       | Vybrané partie ze základů                  | 2       | 2/0  Zk           |                   |  |
|               | elektrotechniky pro budoucí učitele fyziky |         |                   |                   |  |
| Doporuče      | né volitelné předměty                      |         |                   |                   |  |
| Kód           | Název                                      | Kredity | ZS                | LS                |  |
| NFUF832       | Praktikum školních pokusů III              | 4       | 0/3 Z             |                   |  |
| NFUF833       | Praktikum školních pokusů IV               | 4       | <u>,</u>          | $0/3 \mathrm{~Z}$ |  |
|               | Praktikum školních pokusů V                | 4       | _                 | 0/3 Z             |  |

# Požadavky znalostí ke státní závěrečné zkoušce z fyziky a didaktiky fyziky Odborná témata

Studentovi jsou zadána tři z níže uvedených témat (jsou rozdělena do sedmi okruhů a jednotlivá témata jsou číslována). Jedna otázka je přitom z okruhu A a zbylé dvě z ostatních okruhů. Student si během vymezeného času připraví písemný podklad k ústní části zkoušky. Prověřována je jak hloubka porozumění tématům, tak také šíře jejich pochopení v souvislostech (včetně souvislostí s běžným životem a technickou praxí). Student by měl také prokázat, že téma dokáže přizpůsobit studentům na střední škole a to bez nepřiměřeného zkreslení.

## A. Přehledové otázky

1. Energie. 2. Hybnost. 3. Zákony zachování. 4. Rovnice kontinuity. 5. Potenciály. 6. Pohybové rovnice. 7. Oscilace. 8. Vlny. 9. Postuláty základních teorií. 10. Měření, přesnost a nejistota. 11. Vztah teorie, experimentu a pozorování. 12. Meze a vztahy fyzikálních teorií.

#### B. Mechanika

1. Kinematický popis a pohybové rovnice soustavy hmotných bodů. 2. Kinematika a dynamika tuhého tělesa. 3. Inerciální a neinerciální soustavy souřadnic. 4. Pohyb částic v homogenním a centrálním silovém poli. 5. Mechanika tekutin. 6. Mechanické kmitání a vlnění. 7. Výchozí principy speciální teorie relativity (STR), význam a důsledky Lorentzovy transformace. 8. Relativistická dynamika. 9. Prostor, čas a kauzalita; čtyřrozměrný prostoročas. 10. Gravitace a její popis v klasické mechanice a v obecné teorii relativity (OTR).

# C. Elektrodynamika

1. Maxwellovy rovnice, materiálové vztahy a okrajové podmínky. 2. Statické elektrické a magnetické pole. 3. Stacionární elektromagnetické pole. 4. Kvazistacionární elektromagnetické pole. 6. Paralely a rozdíly mezi elektrickým a magnetickým polem.

# D. Termodynamika, statistická a kvantová fyzika

- 1. Přehled základních termodynamických postulátů a zákonů, jejich důsledky. 2. Teoretická východiska statistické fyziky a statistická rozdělení (klasická i kvantová).
- 3. Teplota a entropie v termodynamice a statistické fyzice. 4. Popis ideálního a reálného plynu z mikroskopického i termodynamického hlediska. 5. Experimenty vedoucí ke vzniku kvantové fyziky, příklady odlišného chování mikroskopických objektů. 6. Formální schéma kvantové mechaniky (přehled postulátů a jejich hlavních důsledků).
- 7. Popis soustav nerozlišitelných částic, záření černého tělesa. 8. Paradoxy kvantového světa, princip superpozice, provázanost. 9. Stavba atomu, elektronový obal, molekuly.

# E. Jaderná a částicová fyzika

1. Objev atomového jádra a princip rozptylového experimentu. 2. Základní charakteristiky (rozměr, hmotnost, spin, ...), složení, modely jader. 3. Co to je a kde se bere, síly mezi nukleony, závislost vazebné energie na hmotnostním čísle, využití při štěpení a fúzi jader. 4. Využití štěpení a fúze v energetice, bezpečnost jaderných elektráren. 5. Rozpad jader, vznik a charakteristika záření alfa, beta a gama, údolí stability, mapa izotopů. 6. Příklady jaderných reakcí a rozpadů a jejich využití: štěpení, fúze (reakce ve Slunci), vznik C14 v atmosféře a datování, radiodiagnostika (vč. PET). 7. Záření alfa, beta a gama, další ionizující a neionizující záření, procesy ovlivňující průchod jednotlivých záření látkou, principy stínění. 8. Základní interakce a jejich vlastnosti, přehled částic a jejich vlastnosti dle Standardního modelu, fundamentální (kvarky, leptony a bosony interakcí vč. Higgsova) a elementární (leptony, baryony a mezony) částice. 9. Základní principy urychlovačů a detektorů částic, příklady významných světových laboratoří a experimentů (současných i v minulosti).

## F. Fyzika kondenzovaného stavu

1. Difrakce rentgenového záření na krystalech. 2. Rentgenografické difrakční experimenty. 3. Elektrony v pevných látkách. 4. Poruchy krystalových struktur. 5. Plastická deformace monokrystalů a polykrystalů. 6. Polovodiče a vybrané polovodičové součástky. 7. Tepelné vlastnosti pevných látek. 8. Základy supravodivosti.

## G. Fyzika hvězd a vesmíru

1. Sférická astronomie: orientace na obloze, refrakce, precese, nutace, aberace, paralaxa. 2. Země a Měsíc: fáze Měsíce, slapy, zatmění Slunce a Měsíce. 3. Sluneční soustava: tělesa zemského typu, velké planety, malá tělesa. 4. Nebeská mechanika: Keplerovy zákony, Keplerova rovnice a její řešení, viriálová věta. 5. Záření hvězd: hvězdné

velikosti, Pogsonova rovnice, záření ČT, Planckův zákon, Stefanův-Boltzmannův zákon. 6. Základy astrofyziky: spektrální klasifikace hvězd, Hertzsprungův-Russellův diagram, jaderné reakce ve hvězdách. 7. Vývoj hvězd: Jeansovo kritérium, vývojové stopy v HR-diagramu, závěrečná stádia vývoje hvězd. 8. Naše Galaxie: hvězdokupy a asociace, stavba a rotace Galaxie.

## Didaktická témata

Didaktická část státní závěrečné zkoušky je realizována jedním z následujících dvou způsobů:

- 1. Didaktický výstup. Student v rámci didaktického výstupu zprostředkuje konkrétní fyzikální téma na úrovni střední školy. Do výstupu je integrován fyzikální experiment, ať již demonstrační či žákovský. Student je schopen diskutovat cíl výstupu, jeho zasazení do kontextu, případná alternativní provedení experimentu atd. Orientaci v situaci prokazuje schopností adekvátně reagovat na dotazy komise. Seznam témat pro aktuální akademický rok je zveřejněn na webu katedry didaktiky fyziky.
- 2. Reflexe vlastní výuky. Student formou řízené diskuse se členy komise reflektuje úryvek ze své vlastní výukové praxe. V rámci diskuse je student schopen identifikovat přednosti a limity předložené výukové situace, případně navrhnout či podle možností realizovat alternativy k reflektované situaci. Úryvek je zkušební komisi poskytnut formou videozáznamu ve stanoveném termínu před konáním státní závěrečné zkoušky. Videozáznam musí splňovat náležitosti popsané na webu katedry.

Z uvedených dvou způsobů si student volí právě jeden. V případě, že student vybere možnost reflektovat vlastní výuku, ale nedodá ve stanoveném termínu požadovaný úryvek výuky, realizuje didaktickou část státní závěrečné zkoušky formou výstupu dle bodu 1.

# Témata výstupů

- 1. Zákon zachování hybnosti
- 2. Rovnoměrně zrychlený přímočarý pohyb
- 3. Archimédův zákon pro kapaliny a plyny
- 4. Hydrostatická tlaková síla a hydrostatický tlak
- 5. Mechanické vlnění
- 6. Mechanické kmitání
- 7. Odraz a lom světla
- 8. Jednoduché optické přístroje (lupa, mikroskop, dalekohled)
- 9. Interference světla
- 10. Přenos tepla (vedením, prouděním, zářením)
- 11. Teplotní roztažnost (délková i objemová)
- 12. Elektrostatická indukce
- 13. Ohmův zákon
- 14. Magnetické pole vodiče a cívky s proudem
- 15. Elektromagnetická indukce
- 16. Transformátor
- 17. Polovodičová dioda a její použití
- 18. Bipolární tranzistor a jeho užití jako spínače nebo zesilovače
- 19. Obvod střídavého proudu s R, L, C

# 2. Učitelství matematiky pro střední školy

Garantující pracoviště: Katedra didaktiky matematiky Garant programu: doc. RNDr. Jarmila Robová, CSc.

## Doporučený průběh studia

Předměty **povinné** jsou vytištěny **tučně**, povinně volitelné předměty normálním písmem, *doporučené volitelné* předměty *kurzívou*.

Hlavní studijní plán (maior)

| Kód     | Název                               | Kredity | ZS                | LS                 |
|---------|-------------------------------------|---------|-------------------|--------------------|
| NMTM40  | l Matematická analýza V             | 4       | 2/2 Z+Zk          |                    |
| NMTM40  | $3\mathbf{Pravd\check{e}podobnost}$ | 4       | 2/2 Z+Zk          |                    |
|         | a matematická statistika I          |         |                   |                    |
| NMTM40  | 5Didaktika matematiky I             | 5       | 2/2 Z+Zk          |                    |
| NPEP401 | Pedagogika I                        | 3       | $1/1 \mathrm{~Z}$ |                    |
| NMTM40  | 2Matematická analýza VI             | 3       |                   | 2/2 Z+Zk           |
| NMTM40  | 4Pravděpodobnost                    | 2       |                   | $2/0 \mathrm{~Zk}$ |
|         | a matematická statistika II         |         |                   |                    |

| NMTM406 Didaktika matematiky II<br>NMTM410 Pedagogická praxe<br>z matematiky II | 5<br>5 | <br>2/2 Z+Zk $2$ týdny Z            |
|---------------------------------------------------------------------------------|--------|-------------------------------------|
| NPEP402 <b>Pedagogika II</b><br>NPEP403 <b>Psychologie</b>                      | 3<br>6 | <br>$1/1 \; { m Z} \ 2/2 \; { m Z}$ |

# 2. rok studia

| Kód     | Název                         | Kredity | ZS               | LS                 |
|---------|-------------------------------|---------|------------------|--------------------|
| NMTM50  | 1 <b>A</b> lgebra             | 2       | 2/0 Zk           | _                  |
| NMTM50  | 3Logika a teorie množin       | 2       | 2/0  Zk          |                    |
| NMTM50  | $5\mathrm{Geometrie}$         | 2       | 2/0  Zk          |                    |
| NMTM51  | 1 Pedagogická praxe           | 5       | 2 týdny Z        |                    |
|         | z matematiky III              |         |                  |                    |
| NSZZ501 | Diplomová práce I             | 8       | $0/6 \mathrm{Z}$ |                    |
| NPEP501 | Diagnostika a autodiagnostika | 2       | $0/1 \mathrm{Z}$ |                    |
|         | pro učitele                   |         |                  |                    |
| NSZZ502 | Diplomová práce II            | 12      |                  | $0/10 \mathrm{~Z}$ |
|         |                               |         |                  |                    |

# Doporučené volitelné předměty

| $\operatorname{K\'{o}d}$ | Název                                       | Kredity | ZS                | LS                |
|--------------------------|---------------------------------------------|---------|-------------------|-------------------|
| NMUM46                   | 8 Praktické aspekty vyučování               | 2       | _                 | $0/2 \mathrm{~Z}$ |
|                          | matematice                                  |         |                   |                   |
| NMTM46                   | 2 Rozvíjení konceptuálních znalostí ve      | 3       | $0/2 \mathrm{~Z}$ | $0/2 \mathrm{~Z}$ |
|                          | $\check{s}kolsk\acute{e}\ matematice\ ^{1}$ |         |                   |                   |
| NUMV090                  | ) Teorie her                                | 2       |                   | $2/0 \mathrm{Z}$  |
| NMUG404                  | 4 Vybrané kapitoly z diferenciální          | 5       |                   | 2/2 Z+Zk          |
|                          | geometrie                                   |         |                   |                   |
| NMUM36                   | 5 Seminář z kombinatoriky a teorie          | 2       |                   | $0/2 \mathrm{~Z}$ |
|                          | $graf\mathring{u}$                          |         |                   |                   |
| NMIN203                  | Mathematica pro začátečníky <sup>1</sup>    | 2       | $0/2 \mathrm{~Z}$ | $0/2 \mathrm{~Z}$ |
| NMIN264                  | Mathematica pro pokročilé <sup>2</sup>      | 2       |                   | $0/2 \mathrm{~Z}$ |
| NMUG36                   | 1 Aplikace deskriptivní geometrie           | 2       | $2/0 \mathrm{~Z}$ |                   |
| NUMV047                  | 7 Pravděpodobnost a finanční                | 3       | $0/2 \mathrm{~Z}$ |                   |
|                          | matematika pro střední školu                |         |                   |                   |
| NUMV048                  | 8 Statistika a pojistná matematika pro      | 3       |                   | $0/2 \mathrm{~Z}$ |
|                          | střední školu                               |         |                   |                   |

Některé volitelné předměty nemusí být v tomto akademickém roce vyučovány.

 $<sup>^{1}</sup>$  Volitelný předmět je jednosemestrální, je možno jej absolvovat v zimním nebo v letním semestru.

 $<sup>^2</sup>$  Volitelný předmět bývá vyučován zpravidla jednou za dva roky.

# Přidružený studijní plán (minor)

## 1. rok studia

| Kód    | Název                                                  | Kredity | ZS       | LS        |
|--------|--------------------------------------------------------|---------|----------|-----------|
| NMTM40 | l Matematická analýza V                                | 4       | 2/2 Z+Zk |           |
| NMTM40 | 3 Pravděpodobnost                                      | 4       | 2/2 Z+Zk |           |
|        | a matematická statistika I                             |         |          |           |
| NMTM40 | 5Didaktika matematiky I                                | 5       | 2/2 Z+Zk |           |
| NMTM40 | 2Matematická analýza VI                                | 3       | <u> </u> | 2/2 Z+Zk  |
| NMTM40 | $4\mathbf{Pravd} \check{\mathbf{e}}\mathbf{podobnost}$ | 2       |          | 2/0  Zk   |
|        | a matematická statistika II                            |         |          |           |
| NMTM40 | 6Didaktika matematiky II                               | 5       |          | 2/2 Z+Zk  |
| NMTM41 | 0Pedagogická praxe                                     | 5       |          | 2 týdny Z |
|        | z matematiky II                                        |         |          |           |

#### 2. rok studia

| Kód    | Název                   | Kredity | ZS                | LS |
|--------|-------------------------|---------|-------------------|----|
| NMTM50 | 1 Algebra               | 2       | $2/0 \mathrm{Zk}$ |    |
| NMTM50 | 3Logika a teorie množin | 2       | $2/0 \mathrm{Zk}$ |    |
| NMTM50 | 5 <b>Geometrie</b>      | 2       | $2/0 \mathrm{Zk}$ |    |
| NMTM51 | 1Pedagogická praxe      | 5       | 2 týdny Z         |    |
|        | z matematiky III        |         |                   |    |

# Doporučené volitelné předměty

Doporučujeme stejné volitelné předměty jako u plánu maior.

# Požadavky znalostí ke státní závěrečné zkoušce z matematiky a didaktiky matematiky

## Matematická analýza

Teorie míry a integrálu

Základy teorie míry, Lebesgueova míra, měřitelné funkce. Lebesgueův integrál funkcí jedné a více proměnných, Fubiniova věta, věta o substituci, příklady substitucí (polární souřadnice, sférické, válcové souřadnice). Aplikace vícerozměrných integrálů (objemy, obsahy ploch zadaných parametricky, těžiště). Záměna pořadí limity a integrálu (věta Leviho a Lebesgueova).

## Fourierovy řady

Ortonormální systémy, Fourierovy koeficienty, Parsevalova rovnost, Besselova nerovnost; bodová konvergence.

## Metrické prostory

Metrické prostory, normované lineární prostory, prostory se skalárním součinem. Metrické pojmy: průměr množiny, omezené množiny, vzdálenosti bodů a množin. Otevřené a uzavřené množiny, vnitřek, hranice, uzávěr, klasifikace bodů. Limita posloupnosti, cauchyovská posloupnost. Vztah mezi konvergencí, uzávěrem a hromadnými body.

Spojitá zobrazení, nutné a postačující podmínky pro spojitost. Lipschitzovská zobrazení a kontrakce. Úplné prostory, Cantorova věta, Banachova věta o pevném bodu a její aplikace (výpočet odmocnin, existence a jednoznačnost řešení ODR).

# Pravděpodobnost a matematická statistika

## Kombinatorika

Pravidla součinu a součtu, variace, permutace, kombinace, kombinační čísla a Pascalův trojúhelník. Princip inkluze a exkluze, permutace bez pevných bodů. Řešení rekurentních rovnic, generující funkce. Fibonacciho čísla.

# $Pravd\check{e}podobnost$

Pravděpodobnostní prostor, různé definice pravděpodobnosti. Podmíněná pravděpodobnost a nezávislost náhodných jevů. Náhodné veličiny – základní charakteristiky, nezávislost. Diskrétní a spojitá rozdělení náhodných veličin. Náhodné vektory. Zákon velkých čísel, centrální limitní věta.

## Matematická statistika

Popisná statistika. Korelace, regresní přímka. Odhady parametrů a testy hypotéz. Lineární model a jeho speciální případy, lineární regrese.

# Algebra

Definice polynomu a polynomiální funkce. Hornerovo schéma, Lagrangeova interpolace. Základní věta algebry a její důsledky. Derivace polynomu, násobnost kořenů polynomu. Lagrangeova postupná symetrizace na příkladu kubické rovnice, normální řada pro obecnou kubickou a kvartickou rovnici, věta o řešitelnosti algebraické rovnice v radikálech. Hlavní věta o symetrických polynomech. Diskriminant, vyjádření pomocí determinantů. Prvopole konečného i nekonečného pole, struktura konečných polí. Kroneckerova věta, aplikace při zavedení komplexních čísel.

# Geometrie

Konstruovatelnost pravítkem a kružítkem

Eukleidovsky konstruovatelné body a čísla; zdvojení krychle, trisekce úhlu, kvadratura kruhu, rektifikace kružnice. Konstruovatelnost pravidelných n-úhelníků.

## Klasifikace qeometrií

Základní orientace v tématech: Axiomatizace eukleidovské geometrie, absolutní geometrie, Lobačevského pangeometrie. Neeukleidovské geometrie a jejich modely. Kleinův Erlangenský program, klasifikace geometrií. Riemannovská klasifikace geometrií, hyperbolické a eliptické geometrie.

## Logika a teorie množin

Axiomatická teorie množin, ZFC. Množina, třída, Russellův paradox. Konečné, spočetné a nespočetné množiny. Dobré uspořádání. Kardinální a ordinální čísla. Axiom výběru a jeho ekvivalenty (zejména Zornovo lémma). Model přirozených čísel v teorii množin. Čísla celá, racionální, reálná. Mohutnosti oborů přirozených, celých, racionálních a reálných čísel. Cantorova věta (potenční množina má větší kardinalitu než množina sama), Cantorova-Bernsteinova věta. Hypotéza kontinua.

## Didaktika matematiky

Student prokáže znalost cílů a obsahu matematického vzdělávání na střední škole a druhém stupni základní školy. Je schopen transformovat znalosti z matematiky zís-

kané na vysoké škole do roviny školské matematiky. Vysvětlí souvislosti mezi partiemi probíranými na základní škole a na škole střední.

Student dokáže aplikovat metody vhodné pro výuku školské matematiky, metody řešení matematických úloh včetně diagnostických metod. Užívá účelně množinovělogickou symboliku. Student prokáže schopnost vyložit zadané téma z následujících okruhů učiva. Zaměří se na motivaci pojmů a vět s důrazem na matematické modely a na objekty z reálného světa, na zavedení pojmů a studium jejich vlastností. Umí je využívat při řešení matematických úloh včetně úloh z praxe.

- Množiny, výroky (induktivní a deduktivní postupy, metody důkazů).
- Číselné obory (čísla přirozená, celá, racionální, reálná a komplexní).
- Výrazy s proměnnými (mocniny a odmocniny, mnohočleny, lomené výrazy).
- Poměry a procenta.
- Funkce a jejich vlastnosti (lineární, kvadratické, mocninné, lineární lomené, exponenciální a logaritmické, goniometrické).
- Rovnice, nerovnice a jejich soustavy včetně úloh s parametry (lineární, s absolutními hodnotami, kvadratické, exponenciální a logaritmické, goniometrické).
- Posloupnosti a nekonečné řady (aritmetická a geometrická posloupnost, jednoduché a složené úročení, limita posloupnosti, nekonečná geometrická řada).
- Trigonometrie (Pýthagorova věta, Eukleidovy věty, sinová a kosinová věta).
- Planimetrie (množiny bodů dané vlastnosti, konstrukční úlohy, shodnost, podobnost a stejnolehlost; obvody a obsahy rovinných útvarů).
- Stereometrie (vzájemná poloha přímek a rovin, řezy těles, odchylky a vzdálenosti; povrchy a objemy těles), rozvíjení prostorové představivosti.
- Analytická geometrie (operace s vektory, skalární a vektorový součin, rovnice přímek a rovin, odchylky a vzdálenosti, kuželosečky).
- Kombinatorika, pravděpodobnost a statistika (variace, permutace, kombinace, binomická věta; náhodný jev a jeho pravděpodobnost, nezávislé jevy, podmíněná pravděpodobnost; relativní četnost, charakteristiky polohy a variability).
- Základy diferenciálního a integrálního počtu (spojitost funkce, limita, derivace, průběh funkce, primitivní funkce, určitý integrál).

# Kombinace se studijními programy Filozofické fakulty

Studijní program Učitelství matematiky pro střední školy (maior) lze také sdružovat s některým z následujících studijních programů (minor):

- Učitelství českého jazyka a literatury pro střední školy
- Učitelství anglického jazyka a literatury pro střední školy
- Učitelství německého jazyka a literatury pro střední školy
- Učitelství francouzského jazyka a literatury pro střední školy

Tyto studijní plány i s příslušnými komentáři a upozorněním na prerekvizity jsou dostupné na stránce

https://www.ff.cuni.cz/studium/studijni-obory-plany/studijni-plany/

Pořadí plnění jednotlivých předmětů není předepsáno a závisí na vlastní volbě každého studenta a na realizaci jednotlivých předmětů v každém roce.

Téma diplomové práce může být buď matematické, nebo může být (po podání příslušné žádosti) zaměřeno na oblast studovanou v rámci programu minor.

Učitelství anglického jazyka a literatury pro střední školy bude v akademickém roce 2023/24 otevřeno, jeho studijní plány ale nebyly před uzávěrkou této publikce ještě známy.

# Učitelství českého jazyka a literatury pro střední školy

Přidružený studijní plán (minor)

# Pedagogická praxe

| Kód         | Název                                       | Kredity | ZS                | LS                |
|-------------|---------------------------------------------|---------|-------------------|-------------------|
| ABO900700   | Praxe průběžná I.                           | 4       | _                 | $0/2 \; { m Z}$   |
| ABO900400   | Praxe souvislá                              | 6       | 52 hodin Z        |                   |
| Povinné obo | prové předměty                              |         |                   |                   |
| Kód         | Název                                       | Kredity | ZS                | LS                |
| ABO700229   | Lingvistická analýza pro učitele            | 3       | $0/2 \mathrm{~Z}$ | _                 |
| ABO500948   | Jazyk mládeže ve školním věku               | 3       | $0/2 \mathrm{~Z}$ |                   |
| ABO500391   | Didaktika vyučování českého                 | 8       | 2/2 Z+Zk          |                   |
|             | jazyka a komunikační výchovy                |         |                   |                   |
| ABO500882   | Metody literární teorie pro                 | 5       | $0/2 \mathrm{~Z}$ |                   |
|             | učitele                                     |         |                   |                   |
| ABO500777   | Literatura pro děti a mládež pro<br>učitele | 3       | <u> </u>          | $0/2 \mathrm{~Z}$ |

7

# Učitelství německého jazyka a literatury pro střední školy

Přidružený studijní plán (minor)

ABO500731 Didaktika literatury

# Pedagogická praxe

| Kód         | Název                                     | Kredity | ZS                | LS                |
|-------------|-------------------------------------------|---------|-------------------|-------------------|
| ADE620001   | 1 00 1                                    | 4       |                   | $0/2 \mathrm{~Z}$ |
| ADE620002   | Souvislá pedagogická praxe                | 6       | 52 hodin Z        |                   |
| Povinné obo | prové předměty                            |         |                   |                   |
| Kód         | Název                                     | Kredity | ZS                | LS                |
| ADE620003   | Didaktik Deutsch als                      | 3       | $1/1 \mathrm{~Z}$ | _                 |
|             | Fremdsprache I / Didaktika<br>němčiny I   |         |                   |                   |
| ADE620004   | Didaktik Deutsch als                      | 5       |                   | 1/2  Zk           |
|             | Fremdsprache II / Didaktika<br>němčiny II |         |                   |                   |
| ADE510006   | Entwicklungstendenzen der                 | 4       | $1/1 \mathrm{Z}$  | —                 |
|             | deutschen Sprache / Vývojové              |         |                   |                   |
|             | tendence německého jazyka                 |         |                   |                   |

2/2 Z+Zk

| ADE620005 | Literaturtheorie und<br>Methodologie der<br>Literaturwissenschaft / Teorie<br>literatury a metodologie              | 3 | _             | 1/1 Z |
|-----------|---------------------------------------------------------------------------------------------------------------------|---|---------------|-------|
| ADE510001 | literární vědy Ausgewählte Partien der deutschen Grammatik: Syntax / Vybrané partie německé gramatiky: syntax       | 5 | $1/1~{ m Zk}$ | _     |
| ADE510012 | Deutsche Literatur und<br>Interkulturalität in den<br>böhmischen Ländern / Německá<br>literatura a interkulturalita | 3 | 2/0 Z         | _     |
| ADE510009 | v českých zemích<br>Deutsche Literatur bis 1700 /<br>Německá literatura do r. 1700                                  | 3 | 2/0 Z         | _     |

# Povinně volitelné předměty:

PVP 1: Semináře s didaktickým zaměřením (3 kredity)

# Učitelství francouzského jazyka a literatury pro střední školy

Přidružený studijní plán (minor)

| <b>T</b> | • 1 /   |       |
|----------|---------|-------|
| PAda     | ന്നസ്മ  | nrava |
| ı cua    | gogická | pranc |

| Kód        | Název                                                    | Kredity | ZS         | LS    |
|------------|----------------------------------------------------------|---------|------------|-------|
|            | Pedagogická praxe průběžná<br>Pedagogická praxe souvislá | 4       |            | 0/2 Z |
| AF N000002 | redagogicka praxe souvisia                               | 0       | 52 HOGHI Z |       |
| Povinné ob | orové předměty                                           |         |            |       |
| Kód        | Název                                                    | Kredity | 7S         | LS    |

| Kód       | Název                          | Kredity | ZS                 | LS                |
|-----------|--------------------------------|---------|--------------------|-------------------|
| AFR600003 | Littérature française dans     | 5       | $2/1 \mathrm{~Zk}$ | _                 |
|           | l'enseignement / Francouzská   |         |                    |                   |
|           | literatura v pedagogické praxi |         |                    |                   |
| AFR600004 | Syntaxe II A / Syntax II A     | 3       | $2/0 \mathrm{~Z}$  |                   |
| AFR600005 | Syntaxe II B / Syntax II B     | 4       |                    | $2/0 \mathrm{Zk}$ |
| AFR600006 | Lexikologie I                  | 3       | $2/0 \mathrm{~Z}$  | _                 |
| AFR600007 | Didaktika francouzštiny I      | 3       | $2/1 \mathrm{~Z}$  | _                 |
| AFR600008 | Didaktika francouzštiny II     | 5       |                    | 2/2 Zk            |

# Povinně volitelné předměty:

# PVP 1: Oborová specializace (6 kreditů)

| Kód       | Název          | Kredity ZS | LS                      |
|-----------|----------------|------------|-------------------------|
| AFR600009 | Praktická stáž | 3          | $\overline{\mathbf{Z}}$ |

| AFR600010 | Compétences de communication interculturelle dans l'enseignement du FLE – | 3 | $0/2~\mathrm{Z}$ | _                 |
|-----------|---------------------------------------------------------------------------|---|------------------|-------------------|
|           | Interkulturní komunikační                                                 |   |                  |                   |
|           | kompetence ve výuce FJ                                                    |   |                  |                   |
| AFR600011 | Nouvelles technologies dans                                               | 3 |                  | $0/2 \mathrm{~Z}$ |
|           | l'enseignement du FLE – Nové                                              |   |                  | ,                 |
|           | technologie ve výuce FJ                                                   |   |                  |                   |
| AFR600012 | Vedení jazykového kroužku                                                 | 3 | 0/2              | $0/2 \mathrm{~Z}$ |

# 3. Učitelství deskriptivní geometrie pro střední školy

Garantující pracoviště: Katedra didaktiky matematiky

Garant programu: doc. RNDr. Zbyněk Šír, Ph.D.

# Doporučený průběh studia

Předměty **povinné** jsou vytištěny **tučně**, povinně volitelné předměty normálním písmem, doporučené volitelné předměty kurzívou.

Hlavní studijní plán (maior)

## 1. rok studia

| Kód Název                                | Kredity | ZS                | LS                |
|------------------------------------------|---------|-------------------|-------------------|
| NMTD401 Neeukleidovská geometrie         | 4       | 2/2 Z+Zk          |                   |
| NMTD403 <b>Algebraická geometrie</b>     | 3       | 2/2 Z+Zk          |                   |
| NMTD405 <b>Didaktika deskriptivní</b>    | 5       | 2/2 Z+Zk          |                   |
| ${f geometrie}\; {f I}$                  |         |                   |                   |
| NPEP401 <b>Pedagogika I</b>              | 3       | $1/1 \mathrm{~Z}$ |                   |
| NMTD402 Vybrané kapitoly z diferenciální | 4       |                   | 2/2 Z+Zk          |
| ${f geometrie}$                          |         |                   |                   |
| NMTD404 Kartografie                      | 2       |                   | $2/0 \mathrm{Zk}$ |
| NMTD406 <b>Didaktika deskriptivní</b>    | 5       |                   | 2/2 Z+Zk          |
| ${f geometrie}\; {f II}$                 |         |                   |                   |
| NMTD410 <b>Pedagogická praxe</b>         | 5       |                   | 2 týdny Z         |
| z deskriptivní geometrie II              |         |                   |                   |
| NPEP402 <b>Pedagogika II</b>             | 3       |                   | $1/1 \mathrm{~Z}$ |
| NPEP403 Psychologie                      | 6       |                   | $2/2 \mathrm{~Z}$ |

Některé předměty mohou být vyučovány jednou za dva roky.

| Kód     | Název                          | Kredity | ZS                | LS |
|---------|--------------------------------|---------|-------------------|----|
| NMTD501 | Kinematická geometrie          | 4       | 2/2 Z+Zk          |    |
| NMTD503 | 3 Vybrané kapitoly z geometrie | 2       | 2/0  Zk           |    |
| NMTD511 | Pedagogická praxe              | 5       | 2 týdny $Z$       |    |
|         | z deskriptivní geometrie III   |         |                   |    |
| NSZZ501 | Diplomová práce I              | 8       | $0/6 \mathrm{~Z}$ |    |
| NPEP501 | Diagnostika a autodiagnostika  | 2       | $0/1 \mathrm{Z}$  |    |
|         | pro učitele                    |         |                   |    |

# $ext{NSZZ502}$ Diplomová práce II 12 — $0/10 ext{ Z}$

Některé předměty mohou být vyučovány jednou za dva roky.

# Doporučené volitelné předměty

| Kód     | Název                                       | Kredity | ZS                | LS                |
|---------|---------------------------------------------|---------|-------------------|-------------------|
|         | Aplikace deskriptivní geometrie             | 2       | $2/0 \mathrm{~Z}$ |                   |
| NMUM46  | 8 Praktické aspekty vyučování<br>matematice | 2       |                   | $0/2 \mathrm{~Z}$ |
| NMIN203 | Mathematica pro začátečníky <sup>1</sup>    | 2       | $0/2 \mathrm{~Z}$ | $0/2 \mathrm{~Z}$ |
|         | Mathematica pro pokročilé <sup>2</sup>      | 2       |                   | $0/2 \; { m Z}$   |

Některé volitelné předměty nemusí být v tomto akademickém roce vyučovány.

# Přidružený studijní plán (minor)

# 1. rok studia

| Kód     | Název                              | Kredity | ZS       | LS                 |
|---------|------------------------------------|---------|----------|--------------------|
| NMTD40  | l Neeukleidovská geometrie         | 4       | 2/2 Z+Zk |                    |
| NMTD403 | 3 Algebraická geometrie            | 3       | 2/2 Z+Zk |                    |
| NMTD40  | o Didaktika deskriptivní           | 5       | 2/2 Z+Zk |                    |
|         | geometrie I                        |         |          |                    |
| NMTD402 | 2 Vybrané kapitoly z diferenciální | 4       |          | 2/2 Z+Zk           |
|         | geometrie                          |         |          |                    |
| NMTD404 | 4 Kartografie                      | 2       |          | $2/0 \mathrm{~Zk}$ |
| NMTD406 | Didaktika deskriptivní             | 5       |          | 2/2 Z+Zk           |
|         | geometrie II                       |         |          |                    |
| NMTD410 | ) Pedagogická praxe                | 5       |          | 2 týdny Z          |
|         | z deskriptivní geometrie II        |         |          | • •                |

Některé předměty mohou být vyučovány jednou za dva roky.

# 2. rok studia

| Kód    | Název                                                     | Kredity | ZS                 | LS |
|--------|-----------------------------------------------------------|---------|--------------------|----|
| NMTD50 | 1 Kinematická geometrie<br>3 Vybrané kapitoly z geometrie | 4 2     | 2/2 Z+Zk<br>2/0 Zk |    |
| NMTD51 | l Pedagogická praxe<br>z deskriptivní geometrie III       | 5       | 2 týdny Z          |    |

Některé předměty mohou být vyučovány jednou za dva roky.

# Doporučené volitelné předměty

Doporučujeme stejné volitelné předměty jako u plánu maior.

<sup>&</sup>lt;sup>1</sup> Volitelný předmět je jednosemestrální, je možno jej absolvovat v zimním nebo v letním semestru.

<sup>&</sup>lt;sup>2</sup> Volitelný předmět bývá vyučován zpravidla jednou za dva roky.

# Požadavky znalostí ke státní závěrečné zkoušce z deskriptivní geometrie a didaktiky deskriptivní geometrie

#### Odborná témata

## 1. Neeukleidovská a projektivní geometrie

Axiomatická výstavba geometrie, absolutní geometrie, axiom rovnoběžnosti a věty s ním ekvivalentní, Saccheriho a Lambertův čtyřúhelník, základní pojmy a vztahy hyperbolické geometrie: Lobačevského rovnoběžky, základní vlastnosti různoběžek, souběžek a rozběžek, úhel rovnoběžnosti a Lobačevského funkce, defekt trojúhelníka, definice a vlastnosti kružnice, horocyklu a ekvidistanty. Modely neeukleidovské geometrie: Poincarého polorovinný, Beltrami-Kleinův: přímky a kružnice, vzdálenosti a úhly v těchto modelech.

Afinní a projektivní rovina a prostor, afinní a homogenní souřadnice, afinní a projektivní zobrazení, afinní a projektivní klasifikace kuželoseček a kvadrik.

# 2. Algebraická geometrie

Algebraická křivka, algebraická plocha. Regulární a singulární body. Společné body přímky a algebraické plochy. Polarita. Hessián. Inflexní body algebraické křivky. Průnik křivek, resultant. Plückerovy vzorce. Tečnová rovnice křivky.

# 3. Kinematická geometrie

Kinematická geometrie (základní pojmy, definice nejdůležitějších pojmů a popis jejich vlastností, speciální pohyby). Základy kinematické geometrie v rovině, určenost pohybu pomocí trajektorií a obálek. Pevná a hybná polodie, jejich konstrukce. Vratný pohyb. První a druhá základní věta kinematické geometrie. Ponceletova konstrukce trajektorií a obálek. Speciální pohyby (kardioidický, eliptický, cyklický, konchoidální, úpatnicový). Středy křivostí trajektorií a obálek.

# 4. Diferenciální geometrie a její aplikace

Znaménková křivost a rotační index rovinné křivky. Obsahy rovinných útvarů, izoperimetrické úlohy pro mnohoúhelníky a uzavřené křivky. Geodetické křivky na plochách, souvislost s hledáním nejkratší spojnice dvou bodů na ploše. Geodetiky na rotačních plochách, Clairautova věta. Geodetické polární souřadnice. Gaussova křivost, Mindingova věta, rozvinutelné plochy.

# 5. Kartografie

Přehled kartografických zobrazení a jejich vlastností. Souřadnicové soustavy (zeměpisné a kartografické souřadnice), důležité křivky (loxodroma, ortodroma), kartografická zkreslení. Zobrazení elipsoidu na kulovou plochu, aplikace deskriptivní geometrie v kartografii (konstrukce sítí poledníků a rovnoběžek v jednoduchých zobrazeních).

## Didaktika deskriptivní geometrie

Klasifikace promítacích metod deskriptivní geometrie a jejich porovnání z hlediska názornosti, obtížnosti řešení úloh, aplikovatelnosti v praxi. Mezipředmětové vztahy deskriptivní geometrie. Využití technologií ve výuce deskriptivní geometrie. Evaluace práce žáků, přijímací a závěrečné zkoušky z deskriptivní geometrie.

Znalost obsahu a metody výkladu následujících témat, jejich pozice ve středoškolském kurikulu, vzájemné vazby mezi nimi a různé postupy při řešení úloh:

Kótované promítání (průmět bodu, přímky, roviny; hlavní a spádové přímky roviny; polohové a metrické úlohy o přímkách a rovinách; kolmice k rovině; sklopení

promítací roviny do průmětny; otočení obecné roviny do průmětny; průmět mnohoúhelníku a mnohostěnu).

- Mongeovo promítání (průmět bodu, přímky, roviny; hlavní a spádové přímky roviny; polohové a metrické úlohy o přímkách a rovinách; kolmice k rovině; sklopení promítací roviny do průmětny; otočení obecné roviny do průmětny; 3. průmět mnohoúhelníku a kružnice; průmět mnohostěnu, koule, válce, kužele; průnik tělesa s přímkou/rovinou).
- Pravoúhlá axonometrie (axonometrický kříž a trojúhelník; průmět bodu, přímky, roviny; otočení pomocné průmětny do axonometrické roviny; sklopení promítací roviny souřadnicové osy do axonometrické průmětny; hlavní a spádové přímky roviny; polohové úlohy o přímkách a rovinách; průmět rovinného útvaru v rovině rovnoběžné s pomocnou průmětnou; průmět hranolu, jehlanu, válce a kužele s podstavou v rovině rovnoběžné s pomocnou průmětnou a jejich řezy vhodnými rovinami; průmět koule a její řez rovinou rovnoběžnou s pomocnou průmětnou; zářezová metoda).
- Kosoúhlé promítání (průmět bodu, přímky, roviny; přidružené Mongeovo promítání; průmět mnohostěnu, koule, válce, kužele; průnik tělesa s přímkou/rovinou).
- Středové promítání (průmět bodu, přímky, roviny; úběžník a úběžnice; speciálně lineární perspektiva, průsečná metoda).
- Středová kolineace a osová afinita jejich zavedení a užití v deskriptivní geometrii.
- Kuželosečky (klasifikace kuželoseček; kuželosečka jako řez kuželové plochy; definice a ohniskové vlastnosti elipsy, paraboly, hyperboly; afinní obraz kružnice).
- Křivky a plochy technické praxe (kuželosečky; cykloida; šroubovice; rotační plochy
  2. stupně; přímkové a translační plochy).
- Rovnoběžné osvětlení (osvětlení rovinného útvaru; osvětlení základních těles vlastní a vržený stín a jejich mez).

# 4. Učitelství informatiky pro střední školy

Garantující pracoviště: Katedra softwaru a výuky informatiky

Garant programu: doc. Mgr. Cyril Brom, Ph.D.

## Doporučený průběh studia

Předměty **povinné** jsou vytištěny **tučně**, povinně volitelné předměty normálním písmem, *doporučené volitelné* předměty *kurzívou*.

Hlavní studijní plán (maior)

| Kód     | Název                               | Kredity | ZS       | LS                |
|---------|-------------------------------------|---------|----------|-------------------|
| NPEP401 | Pedagogika I                        | 3       | 1/1 Z    | _                 |
| NPGR003 | Základy počítačové grafiky          | 5       | 2/2 Z+Zk |                   |
| NUIN019 | Základy tvorby webu <sup>1</sup>    | 4       | 1/2  KZ  |                   |
| NPEP402 | Pedagogika II                       | 3       | _        | $1/1 \mathrm{~Z}$ |
| NPEP403 | Psychologie                         | 6       |          | $2/2 \mathrm{~Z}$ |
| NUIN014 | Informační technologie <sup>1</sup> | 4       | _        | 2/1 Z+Zk          |
| NDIN015 | Didaktika informatiky <sup>1</sup>  | 5       |          | $2/1 \mathrm{~Z}$ |
| NDIN012 | Didaktika uživatelského             | 3       |          | $0/2 \mathrm{~Z}$ |
|         | software <sup>1</sup>               |         |          |                   |

| NDIN007 Pedagogická praxe   | 5 | 2 týdny Z |
|-----------------------------|---|-----------|
| ${f z}$ informatiky ${f 2}$ |   |           |

 $<sup>^{1}</sup>$  Předmět není vyučován v každém akademickém roce, je vyučován zpravidla jednou za dva roky. Zapište si jej podle toho v 1. nebo ve 2. roce svého studia.

# 2. rok studia

| Kód     | Název                               | Kredity | ZS               | LS                 |
|---------|-------------------------------------|---------|------------------|--------------------|
| NPEP501 | Diagnostika a autodiagnostika       | 2       | 0/1 Z            |                    |
|         | pro učitele                         |         |                  |                    |
| NTIN090 | Základy složitosti                  | 4       | 2/1  Z+Zk        |                    |
|         | a vyčíslitelnosti                   |         |                  |                    |
| NUIN019 | Základy tvorby webu <sup>1</sup>    | 4       | 1/2  KZ          |                    |
| NDIN008 | Pedagogická praxe                   | 5       | 2 týdny Z        |                    |
|         | z informatiky 3                     |         |                  |                    |
| NSZZ501 | Diplomová práce I                   | 8       | $0/6 \mathrm{Z}$ |                    |
| NUIN014 | Informační technologie <sup>1</sup> | 4       |                  | 2/1  Z+Zk          |
| NDIN015 | Didaktika informatiky $^{1}$        | 5       |                  | $2/1 \mathrm{~Z}$  |
| NDIN012 | Didaktika uživatelského             | 3       |                  | $0/2  \mathrm{Z}$  |
|         | software <sup>1</sup>               |         |                  |                    |
| NUIN017 | Speciální oborový seminář           | 3       |                  | $0/2 \mathrm{~Z}$  |
| NSZZ502 | Diplomová práce II                  | 12      |                  | $0/10 \mathrm{~Z}$ |
|         |                                     |         |                  |                    |

 $<sup>^{1}</sup>$  Předmět není vyučován v každém akademickém roce, je vyučován zpravidla jednou za dva roky. Zapište si jej podle toho v 1. nebo ve 2. roce svého studia.

# Doporučené volitelné předměty

| Kód     | Název                             | Kredity | ZS                | LS                |
|---------|-----------------------------------|---------|-------------------|-------------------|
| NPFL012 | Úvod do počítačové lingvistiky    | 3       | 2/0  Zk           |                   |
| NAIL028 | Úvod do robotiky                  | 5       | 2/2 Z+Zk          |                   |
| NPRG036 | $Datov\'e\ form\'aty$             | 5       | 2/2 Z+Zk          |                   |
| NPED045 | Multimediální vzdělávání v pojetí | 3       | 1/1  KZ           |                   |
|         | psychologického výzkumu           |         |                   |                   |
| NPED015 | Pedagogický seminář I             | 3       | $0/2 \mathrm{~Z}$ |                   |
| NAIL120 | Úvod do umělé inteligence         | 5       |                   | 2/2 Z+Zk          |
| NDBI046 | Úvod do datového inženýrství      | 5       |                   | 2/2 Z+Zk          |
| NPRG003 | Metodika programování a filozofie | 3       |                   | $2/0 \mathrm{Zk}$ |
|         | programovacích jazyků             |         |                   |                   |
| NPED016 | Pedagogický seminář II            | 3       | _                 | $0/2 \mathrm{~Z}$ |
| NAIL127 | $AI\ v\ kontextu$                 | 3       | $1/1 \mathrm{~Z}$ | 1/1 Z             |

# Přidružený studijní plán (minor)

| Kód     | Název                        | Kredity | ZS       | LS |  |
|---------|------------------------------|---------|----------|----|--|
| NPGR003 | 3 Základy počítačové grafiky | 5       | 2/2 Z+Zk |    |  |

| NUIN019 | Základy tvorby webu $^1$            | 4 | $1/2~\mathrm{KZ}$ |                   |
|---------|-------------------------------------|---|-------------------|-------------------|
| NUIN014 | Informační technologie <sup>1</sup> | 4 |                   | 2/1  Z+Zk         |
| NDIN015 | Didaktika informatiky <sup>1</sup>  | 5 |                   | $2/1 \mathrm{Z}$  |
| NDIN012 | Didaktika uživatelského             | 3 |                   | $0/2 \mathrm{~Z}$ |
|         | software $^1$                       |   |                   |                   |
| NDIN007 | Pedagogická praxe                   | 5 |                   | 2 týdny Z         |
|         | z informatiky 2                     |   |                   | Ů Ů               |

Předmět není vyučován v každém akademickém roce, je vyučován zpravidla jednou za dva roky. Zapište si jej podle toho v 1. nebo ve 2. roce svého studia.

#### 2. rok studia

| Kód     | Název                               | Kredity | ZS          | LS                |
|---------|-------------------------------------|---------|-------------|-------------------|
| NTIN090 | Základy složitosti                  | 4       | 2/1 Z+Zk    |                   |
|         | a vyčíslitelnosti                   |         |             |                   |
| NUIN019 | Základy tvorby webu <sup>1</sup>    | 4       | 1/2  KZ     |                   |
| NDIN008 | Pedagogická praxe                   | 5       | 2 týdny Z   |                   |
|         | z informatiky 3                     |         |             |                   |
| NUIN014 | Informační technologie <sup>1</sup> | 4       | <del></del> | 2/1  Z+Zk         |
| NDIN015 | Didaktika informatiky <sup>1</sup>  | 5       |             | $2/1 \mathrm{Z}$  |
| NDIN012 | Didaktika uživatelského             | 3       |             | $0/2 \mathrm{~Z}$ |
|         | $\mathbf{software}^{\ 1}$           |         |             |                   |
| NUIN017 | Speciální oborový seminář           | 3       |             | $0/2 \mathrm{~Z}$ |

Předmět není vyučován v každém akademickém roce, je vyučován zpravidla jednou za dva roky. Zapište si jej podle toho v 1. nebo ve 2. roce svého studia.

# Doporučené volitelné předměty

Doporučujeme stejné volitelné předměty jako u plánu maior.

# Požadavky znalostí ke státní závěrečné zkoušce z informatiky a didaktiky informatiky (zahájení studia před rokem 2022)

## Odborná témata

## 1. Zobrazení dat v počítači

Zobrazení celých a reálných čísel v počítači, algoritmy základních početních operací. Reprezentace znaků a řetězců. Implementace datových struktur (pole, záznamy, množiny).

## 2. Principy počítačů, operačních systémů a počítačových sítí

Architektury počítačů. Typické instrukce strojového kódu. Přerušovací systémy. Paměťové systémy. Sběrnice, způsob připojení a programové obsluhy typických periférií. Role a základní úkoly operačního systému, příklady konkrétních operačních systémů (Windows, Unix). Správa prostředků, algoritmy prevence uváznutí. Popis paralelismu a synchronizace procesů. Počítačové sítě, standard ISO, TCP/IP, Internet, elektronická pošta.

# 3. Datové a řídicí struktury programovacích jazyků (programátorský a implementační pohled)

Jednoduché a strukturované datové typy. Podprogramy, komunikace podprogramu s okolím (globální proměnné, parametry, typy předávání parametrů, moduly a separátní kompilace). Porovnání vybraných programovacích jazyků z hlediska jejich datových a řídicích struktur. Principy překladu programovacích jazyků, překlad a interpretace, podprogramy a makra. Formální popisy syntaxe programovacích jazyků.

# 4. Metodika programování

Vývoj metodiky programování. Strukturované programování, modulární a objektové programování, abstraktní datové typy. Událostmi řízené programy. Logické a funkcionální programování. Dětské programovací jazyky.

# 5. Správnost a složitost algoritmů

Částečná správnost algoritmu, konečnost algoritmu, invarianty. Časová, paměťová, asymptotická složitost algoritmu - nejhorší, nejlepší, průměrný případ (definice jednotlivých pojmů). Odhad asymptotické složitosti jednoduchých algoritmů. Časová a prostorová složitost - vztah determinismu a nedeterminismu. Polynomiální převeditelnost, P- a NP-problémy, NP-úplnost.

# 6. Základní programovací techniky a návrh datových struktur

Různé reprezentace abstraktních datových typů (množina, zásobník, fronta, prioritní fronta). Složitost vyhledávání, vkládání a vypouštění prvků, hledání minimálního a k-tého nejmenšího, průchod všemi prvky. Reprezentace faktorové množiny. Hashování. Reprezentace aritmetických výrazů a algoritmy pro výpočet jejich hodnoty. Obecnější metody návrhu efektivních algoritmů (metoda rozděl a panuj, dynamické programování atd.).

## 7. Algoritmy vnitřního a vnějšího třídění

Dolní odhady časové složitosti úlohy vnitřního třídění pro nejhorší a průměrný případ. Jednoduché algoritmy kvadratické složitosti. Třídění sléváním, heapsort, quicksort, přihrádkové třídění. Odlišnost vnějšího třídění od vnitřního třídění, základní myšlenky, přirozené slučování, polyfázové třídění.

## 8. Základní numerické algoritmy

Řešení soustav lineárních rovnic - metody přímé a iterační, metody řešení nelineárních rovnic. Interpolace funkcí polynomy, jiné metody aproximace funkcí. Numerická integrace.

# 9. Teorie automatů a jazyků

Chomského hierarchie, charakterizace jejich tříd pomocí gramatik a automatů. Různé ekvivalentní definice regulárních jazyků. Nerodova věta. Uzávěrové vlastnosti regulárních jazyků. Bezkontexové gramatiky, derivační stromy, normální tvary gramatik, zásobníkové automaty, uzávěrové vlastnosti, deterministické jazyky.

## 10. Kombinatorika a teorie grafů

Základní pojmy teorie grafů, různé možnosti datové reprezentace grafu. Základní kombinatorické pojmy a metody. Základní kombinatorické a grafové algoritmy (např. nejkratší cesta v grafu, minimální kostra, prohledávání grafu, určování různých typů souvislosti, acykličnost grafu, toky v sítích, maximální párování v grafech).

## 11. Vyčíslitelnost

Algoritmicky vyčíslitelné funkce, jejich vlastnosti, Churchova teze. Rekursivní a rekursivně spočetné množiny a jejich vlastnosti. Algoritmicky neřešitelné problémy. Gödelova věta o neúplnosti.

# 12. Informační systémy

Organizace souborů - sekvenční, indexsekvenční, indexované, hashovací metody, B-stromy. Databázové systémy - problematika návrhu, konceptuální, logické a fyzické schéma. Relační datový model. Pojem dotazu, dotazovací jazyky (SQL).

# 13. Počítačová geometrie a grafika

Algoritmy 2D grafiky: kreslení čar, vyplňování, půltónování a rozptylování barev. Barevné systémy, zobrazování barev na počítači. Transformace a projekce. 3D grafika: metody reprezentace 3D scén, zobrazovací algoritmy, výpočet viditelnosti.

# 14. Umělá inteligence

Heuristické metody řešení úloh. Neuronové sítě. Programování her - algoritmus minimaxu, alfa-beta prořezávání.

# 15. Vybrané oblasti použití počítačů

Databázové systémy, programy pro přípravu textů, programy pro přípravu prezentací, tabulkové kalkulátory, počítačová grafika a animace, formáty multimediálních souborů (grafika, audio, video). WWW - vyhledávání informací. Počítačové modelování a simulace. Kryptografie s veřejným klíčem, elektronický podpis.

#### Didaktická témata

Metodicky zajímavý krátký výklad jednoho z předem známých témat. Hodnotí se především metodický přístup k výkladu a vystižení podstaty problematiky.

- Vyhledávání v poli (sekvenční, binární, pomocí zarážky)
- Výpočet hodnoty polynomu Hornerovým schématem
- Generování všech permutací v lexikografickém uspořádání
- Jednoduchý třídicí algoritmus
- Quicksort
- Heapsort
- Vnější třídění
- Rekurzivní podprogramy
- Reflexívní, symetrický a tranzitivní uzávěr
- Práce s lineárním spojovým seznamem, srovnání s polem
- Průchod stromem do hloubky a do šířky (rekurze, zásobník, fronta)
- Prohledávání s návratem (backtracking)
- Vyhledávání, vkládání a vypouštění v binárním vyhledávacím stromu
- Problém stabilních manželství
- Algoritmus minimaxu
- Algoritmy vyčíslení hodnoty aritmetického výrazu
- Nalezení minimální kostry grafu
- Dijkstrův algoritmus
- Určení délky nejdelší rostoucí vybrané podposloupnosti
- Způsoby předávání parametrů procedur a funkcí
- Statické a virtuální metody a jejich srovnání

# Požadavky znalostí ke státní závěrečné zkoušce z informatiky a didaktiky informatiky (zahájení studia v roce 2022 nebo později)

## Odborná témata

## 1. Počítačová geometrie a grafika

Barvy v počítačové grafice, barevné systémy, rastrová a vektorová grafika, průhlednost, kreslicí algoritmy a anti-aliasing. Matematika pro 3D grafiku (homogenní transformace, projekce), reprezentace a zobrazení 3D scén. Principy zobrazování 3D scén na GPU (jen základy). Základy realistického renderingu, základy stínování.

# 2. Základy tvorby webu

Umístění stránek na internetu, zobrazení v prohlížeči, webhosting, doména; cache, cookies. Přehled základních webových technologií a příklady jejich použití (HTML5, CSS3, JavaScript, AJAX, server-side jazyky, databáze, API), responsivní layout. Přístupnost webu, SEO optimalizace. Frameworky, systémy pro správu obsahu. Statické vs. dynamické stránky, průběh zpracování formuláře. Bezpečnost webových aplikací - certifikáty, HTTP/HTTPS, same-origin policy. Digitální stopa, cookies.

# 3. Základy složitosti a vyčíslitelnosti

Časová a prostorová složitost – vztah determinismu a nedeterminismu. Polynomiální převeditelnost, P– a NP–problémy, NP–úplnost. Algoritmicky vyčíslitelné funkce, jejich vlastnosti, Churchova teze. Rozhodnutelné a částečně rozhodnutelné jazyky a jejich vlastnosti. Algoritmicky neřešitelné problémy.

# 4. Informační technologie

Ztrátová a bezztrátová komprese dat, metody a využití. Formáty multimediálních souborů (grafika, audio, video). Vyhledávání informací na webu, centralizované vyhledávače, PageRank, decentralizované vyhledávání, sítě typu P2P. Kryptografie s veřejným klíčem, elektronický podpis, kryptoměny. Neuronové sítě (základy).

# Didaktická témata

Metodicky zajímavý krátký výklad některého z předem známých témat. Hodnotí se především metodický přístup k výkladu a vystižení podstaty problematiky. Student si téma připraví pro žáky druhého stupně základní školy nebo gymnázia.

## Výklad pro 2. stupeň ZŠ

- Proměnná
- Podmínka
- Cyklus s pevným počtem opakování
- Cyklus s podmínkou
- Podprogram
- Dvojková soustava a její význam pro digitální svět
- O čem je "umělá inteligence" stručný úvod pro dvanáctileté
- Princip ukládání dat na počítači; trvalé úložiště vs. operační paměť; alokační tabulka souborů, mazání dat z počítače
- Principy fungování internetu a struktura internetu; pojmy server, router, uživatelský počítač, IP adresa, útok DoS (Denial of service)

- Posílání dat po internetu; koncepty stahování (download), nahrávání na internet (upload) a streamování
- Koncept digitální stopy a identity na internetu pro dvanáctileté

# Výklad pro gymnázium

- Základy objektově orientovaného programování, rozdíl mezi jednoduchou proměnnou a objektem, objekt a jeho vlastnosti, metody
- Vyhledávání v poli (sekvenční, binární, pomocí zarážky)
- Výpočet hodnoty polynomu Hornerovým schématem
- Generování všech permutací v lexikografickém uspořádání
- Jednoduchý třídicí (řadicí) algoritmus
- Quicksort
- Heapsort
- Rekurzivní podprogramy
- Průchod stromem do hloubky a do šířky (rekurze, zásobník, fronta)
- Prohledávání s návratem (backtracking)
- Vyhledávání, vkládání a vypouštění v binárním vyhledávacím stromu
- Algoritmus minimaxu
- Algoritmy vyčíslení hodnoty aritmetického výrazu
- Grafy a jejich reprezentace
- Nalezení minimální kostry grafu
- Dijkstrův algoritmus
- Určení délky nejdelší rostoucí vybrané podposloupnosti
- Gaussova eliminace
- Viditelnost proměnných, způsoby předávání parametrů procedur a funkcí
- Reprezentace 2D obrázků na počítači (vektor vs. rastr a důležité pojmy s tím související)
- Reprezentace barev v počítači (RGB, CMYK, HSV)
- Z čeho se skládá 3D scéna a jak se zobrazuje na GPU
- Základní formáty pro ukládání rastrových obrázků (JPEG, GIF, PNG, BMP, TIFF,...), jejich možnosti a výhody; vysvětlení principu ztrátové a bezztrátové komprese
- O čem je "umělá inteligence" stručný úvod pro sedmnáctileté
- Co znamená "šifrování dat" stručný úvod; princip šifry, podpisu, klíče, certifikátu
- Co je to operační systém; kernel, ovladače, plánovač, jádra procesoru
- Posílání emailů, vysvětlení cesty od odesílatele k příjemci, zabezpečení, spam a spamové filtry, útoky vedené pomocí emailů
- Koncept digitální stopy a identity na internetu pro sedmnáctileté
- Zadání skupinového úkolu na téma evidence dat do sdílené tabulky (úlohu vymyslí student)
- Vysvětlení pojmu informační systém na jednoduchém konkrétním příkladu
- Pojem dotazu v relační databázi, dotazovací jazyky typu SQL
- Návrh počítačové hry: sestavení návrhu nějaké (obecně známé) hry