DATA 622: Test 01

Shovan Biswas

10/15/2020

(A) Run Bagging (ipred package)

- sample with replacement
- estimate metrics for a model
- repeat as many times as specied and report the average

Bagging combines "weak" learners in a way that reduces their variance. In Bagging, a set of bootstrap samples are generated. The goal is to train the model and average them in regression and take the majority vote in classification. This makes Bagging parallelizable.

Load input dataset.csv

```
mydata <- read.csv('./dataset.csv', head = TRUE, sep = ',', stringsAsFactors = TRUE)
head(mydata)
##
     X Y label
## 1 5 a BLUE
## 2 5 b BLACK
## 3 5 c BLUE
## 4 5 d BLACK
## 5 5 e BLACK
## 6 5 f BLACK
str(mydata)
## 'data.frame':
                    36 obs. of 3 variables:
           : int 5 5 5 5 5 5 19 19 19 19 ...
           : Factor w/ 6 levels "a", "b", "c", "d", ...: 1 2 3 4 5 6 1 2 3 4 ....
    $ label: Factor w/ 2 levels "BLACK", "BLUE": 2 1 2 1 1 1 2 2 2 2 ...
```

Converting variable X to factor.

```
mydata$X <- factor(mydata$X)</pre>
```

Data exploration

```
print(paste0("Number of observations: ", dim(mydata)[1], " Number of columns: ", dim(mydata)[2]))
## [1] "Number of observations: 36
                                    Number of columns: 3"
Ratio of BLACK to BLUE in response variable label. The data is somewhat imbalanced.
table(mydata$label)
##
## BLACK BLUE
##
      22
            14
summary(mydata)
##
    Χ
          Y
                  label
##
   5:6
                BLACK:22
          a:6
## 19:6
                BLUE :14
          b:6
## 35:6
          c:6
## 51:6
          d:6
## 55:6
          e:6
## 63:6
          f:6
xtabs(~label + X, data = mydata)
##
         Х
          5 19 35 51 55 63
## label
    BLACK 4 1 5 5 6 1
##
    BLUE 2 5 1 1 0 5
xtabs(~label + Y, data = mydata)
##
         Y
## label
         abcdef
##
    BLACK 4 4 1 4 5 4
    BLUE 2 2 5 2 1 2
```

Split dataset

Splitting the dataset into train and test in 70/30 ratio.

```
set.seed(423)

mydata_train_index <- sample(1:nrow(mydata), 0.30 * nrow(mydata), replace = F)
mydata_train <- mydata[-mydata_train_index, ]
mydata_test <- mydata[mydata_train_index, ]</pre>
```

```
summary(mydata_train)
    Х
          Y
##
                  label
##
  5:6
          a:6 BLACK:16
                BLUE:10
## 19:3 b:4
## 35:5
          c:4
## 51:4
          d:4
## 55:4
          e:3
## 63:4
          f:5
summary(mydata_test)
##
    X
          Y
                  label
## 5:0
          a:0
                BLACK:6
## 19:3
          b:2 BLUE:4
## 35:1
          c:2
## 51:2
          d:2
## 55:2
          e:3
## 63:2
          f:1
Bagging model
start_tm1 <- proc.time()</pre>
mydata_train_bag <- bagging(label ~ .,</pre>
                      data = mydata_train,
                      nbagg = 100,
                      coob = TRUE)
end_tm1 <- proc.time()</pre>
mydata_train_bag
##
## Bagging classification trees with 100 bootstrap replications
##
## Call: bagging.data.frame(formula = label ~ ., data = mydata_train,
      nbagg = 100, coob = TRUE)
##
## Out-of-bag estimate of misclassification error: 0.3077
diff_bagging <- end_tm1 - start_tm1</pre>
diff_bagging
##
     user system elapsed
##
     0.25
           0.00
                     0.25
```

```
mydata_test_bag_pred <- predict(mydata_train_bag, mydata_test)</pre>
mydata_test_bag_pred_cm <- with(mydata_test, table(mydata_test_bag_pred, label))</pre>
cat("Confusion Matrix:")
## Confusion Matrix:
cat('\n\n')
mydata_test_bag_pred_cm
##
                       label
## mydata_test_bag_pred BLACK BLUE
                  BLACK
##
                            5
                                 0
##
                  BLUE
                                 4
cat("Original labels:")
## Original labels:
mydata_test$label
## [1] BLUE BLACK BLACK BLACK BLACK BLACK BLUE BLUE BLUE
## Levels: BLACK BLUE
cat('\n\n')
cat("Predicted labels:")
## Predicted labels:
mydata_test_bag_pred
## [1] BLUE BLACK BLACK BLUE BLACK BLACK BLUE BLUE BLUE
## Levels: BLACK BLUE
```

Now, let's spend a moment on the prediction

We observe (above) that originally there were 6 BLACKs and 4 BLUEs. The columns of the Confusion Matrix (CM) show the actual labels. So, the first column of CM shows 6 (5 + 1) actual BLACKs and the second column shows 4 (4 + 0) actual BLUEs.

But these were predicted differently. Out of the 6 actual BLACKs, 5 were predicted as BLACKs and 1 was predicted as BLUE. So, 5 were predicted as TRUE and 1 was predicted as FALSE. This is clearly shown in the CM.

Out of the 4 actual BLUEs, none (or 0) were predicted as BLACK and 4 were predicted as BLUE. So, none were predicted as FALSE and all 4 were predicted as TRUE. This is clearly supported by the CM.

Here's a quick summary of the predictions in the language of TP, TN, FP, FN. Before, I begin, let me state that I decided to call BLACK the positive. So, BLUE is negative.

(The ideas used in the following, were based on the Confusion Matrix Wiki at https://en.wikipedia.org/wiki/Confusion_matrix)

5 BLACK (P) were predicted as BLACK (P) i.e. 5 positives were predicted as positive. So, it was a True Positive (TP == 5) 1 BLACK (P) was predicted as BLUE (N) i.e. 1 positive was predicted as negative. So, it was a False Negative (FN == 1)

0 BLUE (N) was predicted as BLACK (P) i.e. 0 negative was predicted as positive. So, it was a False positive (FP == 0) 4 BLUE (N) were predicted as BLUE (N) i.e. 4 negative were predicted as negative. So, it was a False Negative (TN == 4)

In the following code chink, we'll use this knowledge to compute the rates (tpr, fpr etc).

```
acc <- sum(diag(mydata_test_bag_pred_cm)) / sum(mydata_test_bag_pred_cm)</pre>
tpr <- mydata_test_bag_pred_cm[1, 1] / (mydata_test_bag_pred_cm[1, 1] + mydata_test_bag_pred_cm[2, 1])
fpr <- mydata test bag pred cm[1, 2] / (mydata test bag pred cm[1, 2] + mydata test bag pred cm[2, 2])
fnr <- mydata_test_bag_pred_cm[2, 1] / (mydata_test_bag_pred_cm[2, 1] + mydata_test_bag_pred_cm[1, 1])</pre>
tnr <- mydata_test_bag_pred_cm[2, 2] / (mydata_test_bag_pred_cm[2, 2] + mydata_test_bag_pred_cm[1, 2])
auc <- auc(roc(mydata_test_bag_pred, ifelse(mydata_test$label == 'BLUE', 1, 0)))</pre>
## Setting levels: control = BLACK, case = BLUE
## Setting direction: controls < cases
mydata_test_bag_row <- c("Bagging model ", round(auc, 2), round(acc, 2), round(tpr, 2), round(fpr, 2),
names(mydata_test_bag_row) <- c("Bagging model ", "AUC", "accuracy", "tpr", "fpr", "fnr", "tnr")</pre>
mydata_test_bag_row
     Bagging model
                                  AUC
##
                                              accuracy
                                                                     tpr
                                                                  "0.83"
## "Bagging model "
                                "0.9"
                                                  "0.9"
##
                fpr
                                  fnr
                                                    tnr
                                                    "1"
##
                "0"
                               "0.17"
```

- (B) Run LOOCV (jacknife) for the same dataset
- iterate over all points
- keep one observation as test
- train using the rest of the observations
- determine test metrics
- aggregate the test metrics

end of loop

find the average of the test metric(s)

Compare (A), (B) above with the results you obtained in HW-1 and write 3 sentences explaining the

observed difference.

LOOCV or Leave-One-Out Cross-Validation procedure is used to estimate the performance of machine learning algorithms when they are used to make predictions on data not used to train the model.

In this exercise, I used the algorithm that was taught in class M11. However, in heart dataset since target field was numeric, and the field labels in my current dataset.csv is not numeric, I will substitute mydata_train\$labels to binary values 1 or 0-1 for BLACK and 0 for BLUE.

```
## Current content:

mydata_train$label

## [1] BLUE BLACK BLUE BLACK BLACK BLACK BLUE BLUE BLUE BLACK BLACK BLUE
## [13] BLACK BLACK BLACK BLUE BLACK BLUE
## [25] BLUE BLUE
## Levels: BLACK BLUE

mydata_train$label <- ifelse(mydata_train$label == 'BLACK', 1, 0)

cat("Content after alteration:")</pre>
```

mydata_train\$label **##** [1] 0 1 0 1 1 1 0 0 0 1 1 0 1 1 1 0 1 1 1 1 1 1 0 0 0 N <- nrow(mydata_train)</pre> start_tm2 <- proc.time()</pre> cv_df <- do.call('rbind', lapply(1:N, FUN = function(idx, data = mydata_train) {</pre> m <- naiveBayes(label~., data = data[-idx,])</pre> p <- predict(m, data[idx, -c(3)], type = 'raw')</pre> pc <- unlist(apply(round(p), 1, which.max)) - 1</pre> list(fold = idx, m = m, predicted = pc, actual = data[idx, c(3)]) })) end_tm2 <- proc.time()</pre> diff_LOOCV <- end_tm2 - start_tm2</pre> diff_LOOCV ## user system elapsed ## 0.04 0.00 0.05 cv_df fold m predicted actual ## [1,] 1 List,5 1 0 ## [2,] 2 List,5 0 1

```
## [3,] 3
                             0
             List,5 1
## [4,] 4
             List,5 1
                             1
## [5,] 5
             List,5 0
                             1
## [6,] 6
             List,5 1
                             1
## [7,] 7
             List,5 0
                             0
## [8,] 8
             List,5 0
## [9,] 9
                             0
             List,5 1
             List,5 1
## [10,] 10
                             1
## [11,] 11
             List,5 0
## [12,] 12
             List,5 1
                             0
## [13,] 13
             List,5 1
                             1
## [14,] 14
             List,5 1
                             1
## [15,] 15
             List,5 1
## [16,] 16
             List,5 1
                             0
## [17,] 17
             List,5 1
## [18,] 18 List,5 1
```

```
## [19,] 19
              List,5 1
## [20,] 20
              List,5 1
              List,5 1
## [21,] 21
## [22,] 22
              List,5 1
                                1
## [23,] 23
              List,5 0
                                1
## [24,] 24
              List,5 0
                                0
## [25,] 25
              List,5 1
## [26,] 26
              List,5 1
cv_df <- as.data.frame(cv_df)</pre>
loocv_tbl <- table(as.numeric(cv_df$actual), as.numeric(cv_df$predicted))</pre>
(loocv_caret_cfm <- caret::confusionMatrix(loocv_tbl))</pre>
## Confusion Matrix and Statistics
##
##
##
        0 1
     0 3 7
##
##
     1 4 12
##
##
                   Accuracy: 0.5769
##
                     95% CI: (0.3692, 0.7665)
       No Information Rate: 0.7308
##
       P-Value [Acc > NIR] : 0.9725
##
##
##
                      Kappa : 0.053
##
    Mcnemar's Test P-Value: 0.5465
##
##
##
               Sensitivity: 0.4286
##
               Specificity: 0.6316
##
            Pos Pred Value: 0.3000
##
            Neg Pred Value: 0.7500
##
                 Prevalence: 0.2692
##
            Detection Rate: 0.1154
##
      Detection Prevalence: 0.3846
##
         Balanced Accuracy: 0.5301
##
##
          'Positive' Class : 0
##
mydata_test$label <- ifelse(mydata_test$label == 'BLACK', 1, 0)</pre>
tstcv.perf <- as.data.frame(do.call('cbind', lapply(cv_df$m, FUN = function(m, data = mydata_test) {
  v <- predict(m, data[, -c(3)], type = 'raw')</pre>
  lbllist <- unlist(apply(round(v), 1, which.max)) - 1</pre>
}
  )))
np <- ncol(tstcv.perf)</pre>
```

```
predclass <- unlist(apply(tstcv.perf, 1, FUN = function(v) {
    ifelse(sum(v[2:length(v)]) / np < 0.5, 0, 1)
    }
))

loocvtbl <- table(mydata_test[, c(3)], predclass)

(loocv_cfm <- caret::confusionMatrix(loocvtbl))</pre>
```

```
## Confusion Matrix and Statistics
##
##
      predclass
##
       0 1
     0 4 0
##
##
     1 1 5
##
##
                  Accuracy: 0.9
                    95% CI: (0.555, 0.9975)
##
##
       No Information Rate: 0.5
##
       P-Value [Acc > NIR] : 0.01074
##
                     Kappa : 0.8
##
##
##
    Mcnemar's Test P-Value : 1.00000
##
##
               Sensitivity: 0.8000
##
               Specificity: 1.0000
##
            Pos Pred Value: 1.0000
            Neg Pred Value : 0.8333
##
##
                Prevalence: 0.5000
##
            Detection Rate: 0.4000
##
      Detection Prevalence : 0.4000
##
         Balanced Accuracy: 0.9000
##
##
          'Positive' Class : 0
##
```

Stats of Homework01 are as follows:

 $(Please\ refer\ my\ Homework01\ at\ https://github.com/ShovanBiswas/DATA622/blob/main/Homework01/Data621-HomeWork01.pdf)$

ALGO AUC ACCURACY TPR FPR TNR FNR

- 1 LR_test 0.84375 70 85.71 66.67 33.33 14.29
- 2 NB_test 0.5625 0.6 62.5 50 50 37.5
- $3~KNN_test3~0.8125~0.7~62.5~0~100~37.5$
- 4 KNN_test5 0.8125 0.7 62.5 0 100 37.5

```
cat('Bagging model:\n')
## Bagging model:
mydata_test_bag_row
     Bagging model
                                  AUC
                                               accuracy
                                                                      tpr
                                                                   "0.83"
## "Bagging model "
                                "0.9"
                                                  "0.9"
##
                fpr
                                  fnr
##
                "0"
                               "0.17"
                                                    "1"
cat('LOOCV:\n')
## LOOCV:
loocv_cfm$overall
##
         Accuracy
                            Kappa AccuracyLower
                                                   AccuracyUpper
                                                                    AccuracyNull
##
       0.9000000
                       0.80000000
                                      0.55498388
                                                      0.99747142
                                                                      0.50000000
  AccuracyPValue
##
                   McnemarPValue
##
       0.01074219
                       1.00000000
```

Conclusion

- 1) For both Bagging and LOOCV, the accuracies are 0.9.
- 2) The accuracies improved from Homework 01.

0.05

3) The system time used by both Bagging and LOOCV are almost the same (see below).

```
## Bagging:
## user system elapsed
## 0.25 0.00 0.25
## LOOCV:
## user system elapsed
```

0.04

##

0.00