Outline Evaluarea calității softulu Metoda lui Floyc Axiomatizarea lui Hoare Bibliografie

Verificarea și Validarea Sistemelor Soft Curs 7. Corectitudine (Floyd. Hoare. Dijkstra). Partea I

Lector dr. Camelia Chisăliță-Crețu

Universitatea Babeș-Bolyai Cluj-Napoca

07 Aprilie 2020

- Evaluarea calității softului
 - Evaluarea calității softului
 - Verificarea programelor
- 2 Metoda lui Floyd
 - Metoda aserţiunilor inductive
 - Metoda lui Floyd. Parţial corectitudine
 - Metoda lui Floyd. Terminare
- 3 Axiomatizarea lui Hoare
 - Triplete Hoare. Semantică
 - Parțial corectitudine. Reguli deductive
 - Total corectitudine. Reguli deductive
- 4 Bibliografie

Evaluarea calității softului

- calitatea softului
 - conformitatea cu cerințele funcționale și de performanță precizate, documentate explicit în standardele de dezvoltare și caracteristici implicite ale unui produs soft dezvoltat. [Scott Pressman, 2005]
- corectitudine proprietate a unui program de a respecta specificațiile și a oferi rezultate corecte [Fre10].

Verificarea programelor

- metode formale pentru verificarea programelor:
 - bazate pe demonstrarea corectitudinii:
 - asistate de calculator, presupune verificarea corectitudinii codului sursă asociat programului;
 - aplicate programelor care trebuie să se termine și să obțină un rezultat (curs 07);
 - bazate pe modele:
 - automate, presupune verificarea proprietăților programului;
 - aplicate sistemelor concurente; se aplică în etapele post-dezvoltare, e.g., verificarea modelelor (curs 09).

Metode pentru demonstrarea corectitudinii programelor

- Metoda lui Floyd
 - metoda asertiunilor inductive;
- Axiomatizarea lui Hoare
 - axiome şi reguli deducţive;
 - dezvoltarea algoritmilor din specificații;
- Limbajul lui Dijkstra
 - instrucţiuni cu santinelă;
 - non-determinism;
 - derivarea formală a programelor.

Robert W Floyd
(8 Iunie 1936 – 25 Septembrie 2001)

 Sir Charles Antony Richard Hoare (11 January 1934)

Edsger Wybe Dijkstra
 (11 Mai 1930 – 6 August 2002)

Metoda lui Floyd. Metoda aserțiunilor inductive

Aplicabilitate:

- pentru a demonstra:
 - parţial corectitudinea programului;
 - terminarea programului;
 - total corectitudinea = parţial corectitudinea programului + terminarea programului.

Folosește:

- precondiție condiția satisfăcută de datele de intrare ale programului;
- postcondiție condiția care trebuie satisfăcută de rezultatele programului;
- algoritmul descrierea programului (codul sursă);

Etape de aplicare:

- identificarea unui punct de tăietură în fiecare buclă;
- identificarea unei mulţimi de aserţiuni inductive;
- 3 construirea și demonstrarea condițiilor de verificare/terminare.

Parțial corectitudine. **Etape de realizare.**

- se aleg puncte de tăietură în cadrul algoritmului:
 - două puncte de tăietură particulare: un punct de tăietură la începutul algoritmului, un punct de tăietură la sfârșitul algoritmului;
 - cel puțin un punct de tăietură în fiecare instrucțiune repetitivă;
- 2 pentru fiecare punct de tăietură se alege câte un predicat invariant (aserțiune):
 - punctul de intrare $\varphi(X)$;
 - punctul de ieșire $\psi(X, Z)$;
- se construiesc şi se demonstrează condițiile de verificare:

 - Y vector de variabile cu rezultate intermediare;
 - 3 $\alpha_{i,j}$ drumul de la punctul de tăietură i la punctul de tăietură j;
 - ① P_i și P_j predicate invariante în punctele de tăietură i și j asociate;
 - § $R_{\alpha_{i,i}}(X,Y)$ predicat care dă condiția de parcurgere a drumului α ;
 - (a) $r_{\alpha_{i,j}}(X,Y)$ funcție care indică transformările variabilelor Y de pe drumul α :

Theorem

1. Dacă toate condițiile de verificare sunt adevărate atunci programul P este parțial corect în raport cu specificația $(\varphi(X), \psi(X, Z))$. [Fre10]

Parțial corectitudine. **Exemplu.**

algoritmul pentru ridicarea la putere prin înmultiri repetate: $z = x^y$;

```
Algoritmul putere(x, y, z) este:
               A: \varphi(X) ::= (x > 0 \land y > 0)
   z := 1; \ u := x; \ v := y;
   cattimp (v > 0) execută
                     B: \eta(X, Y) ::= z * u^v = x^y
         dac\bar{a} (v \% 2 == 0)
           atunci u := u * u : v := v/2:
           altfel v := v - 1: z := z * u:
         sfdacă
   sfcattimp
               C: \psi(X, Z) ::= z = x^y
   sfAlg;
   se aleg punctele de tăietură: A, B și C;
```

- se stabilesc predicatele invariante pentru punctele de tăietură alese: $\varphi(X)$, $\psi(X,Z)$ și $\eta(X,Y)$;
- drumurile α între punctele de tăietură: {α_{AB}, α_{BB}, α_{BC}, α_{AC}} $\Rightarrow \{\alpha_{AB}, \alpha_{BB_{atunci}}, \alpha_{BB_{altfel}}, \alpha_{BC}, \alpha_{AC}\};$
- R_{α; i}(X, Y) predicate pentru parcurgerea drumurilor α_{i,j};
- \bullet $r_{\alpha_{i,j}}(X,Y)$ funcții care indică transformările variabilelor Y de pe drumurile $\alpha_{i,j}$;
- lacktriangle pentru fiecare drum lpha se construiește și se demonstrează condiția de verificare de forma $\forall X \ \forall Y \ (P_i(X, Y) \land R_{\alpha_{i-i}}(X, Y) \rightarrow P_i(X, r_{\alpha_{i-i}}(X, Y)));$

Terminarea algoritmului. Etape de realizare.

- se aleg punctele de tăietură în cadrul algoritmului;
- pentru fiecare punct de tăietură se alege câte un predicat invariant;
- se alege o mulțime convenabilă M (i.e., o mulțime parțial ordonată, care nu conține nici un șir descrescător infinit) și o funcție descrescătoare u_i ;
 - în punctul de tăietură i funcția aleasă este $u_i: D_X \times D_Y \to M$;
- se scriu condițiile de terminare:
 - condiția de terminare pe drumul $\alpha_{i,j}$ este: $\forall X \ \forall Y \ (\varphi(X) \land R_{\alpha_{i,j}}(X,Y) \rightarrow (u_i(X,Y) \ > \ u_j(X,\ r_{\alpha_{i,j}}(X,Y))));$
 - dacă s-a demonstrat parțial corectitudinea, atunci condiția de terminare poate fi:

$$\forall X \ \forall Y \ (P_i(X) \land R_{\alpha_{i,j}}(X,Y) \rightarrow (u_i(X,Y) \ > \ u_j(X,\ r_{\alpha_{i,j}}(X,Y))));$$

- se demonstrează condițiile de terminare:
 - lacktriangle la trecerea de la un punctul de tăietură i la j valorile funcției u descresc, i.e., $u_i > u_j$.

Theorem

2. Dacă toate condițiile de terminare sunt adevărate atunci programul P se termină în raport cu predicatul $\varphi(X)$. [Fre10]

Sistemul axiomatic al lui Hoare

- Relaţii şi notaţii:
 - deductibilitate: |=;
 g₁, g₂, ..., g_m |= h are semnificația: "formula predicativă h (concluzia) este deductivă din formulele predicative g₁, g₂, ..., g_m (premisele)";
 - implicaţia: ⇒;

```
P \Rightarrow P' are semnificația: "dacă P este satisfăcut atunci are loc și P'";
```

- negația: ¬;
 ¬b are semnificația: "negația expresiei logice b";
- contributiile lui Hoare:
 - triplet precondiție, bloc de instrucțiuni, postcondiție;
 - axioma atribuirii pentru: instrucțiunea de atribuire;
 - reguli deductive pentru: structura secvențială, structura alternativă şi structura repetitivă;
 - demonstrarea parțial și total corectitudinii, dezvoltarea corectă a algoritmilor folosind triplete.

Triplete Hoare

- $\{\varphi\}$ P $\{\psi\}$ triplet Hoare, unde:
 - φ este precondiţia;
 - ψ este postcondiţia;
- notația are semnificația:

"dacă execuția programului P începe dintr-o stare care satisface φ , atunci starea în care se ajunge după execuția lui P va satisface ψ ";

Triplete Hoare. Exemple (1)

Care dintre următoarele triplete sunt valide?

```
① \{x = 5\} \ x := x * 2 \ \{true\};
② \{x = 5\} \ x := x * 2 \ \{x > 0\};
③ \{x = 5\} \ x := x * 2 \ \{x = 10 \ || \ x = 5\};
① \{x = 5\} \ x := x * 2 \ \{x = 10\};
```

- toate tripletele sunt valide;
- $\{x = 5\}$ x := x * 2 $\{x = 10\}$ cel mai util triplet;
- $\{x = 10\}$ cea mai puternică postcondiție.

Triplete Hoare. Exemple (2)

Care dintre următoarele triplete sunt valide?

```
① \{x = 5 \&\& y = 10\}\ z := x/y \{z < 1\};
② \{x < y \&\& y > 0\}\ z := x/y \{z < 1\};
```

$$\begin{cases} x < y & & & \\ y \neq 0 & & \\ x/y < 1 \end{cases} z := x/y \{z < 1\};$$

- toate tripletele sunt valide;
- $\{y \neq 0 \&\& x/y < 1\}\ z := x/y\ \{z < 1\}$ cel mai util triplet;
- $\{y \neq 0 \&\& x/y < 1\}$ cea mai slabă precondiție.

Semantica tripletelor Hoare

corectitudine partială

- notație: $\models_{par} \{\varphi\}P\{\psi\}$
- tripletul $\{\varphi\}P\{\psi\}$ este satisfăcut relativ la corectitudinea parțială, dacă pentru orice stare care satisface φ , starea rezultată după execuția programului P satisface postcondiția ψ , având condiția că programul se termină;
- nu garantează că P se termină;

corectitudine totală

- notație: $\models_{tot} \{\varphi\}P\{\psi\}$
- tripletul $\{\varphi\}P\{\psi\}$ este satisfăcut relativ la corectitudinea totală, dacă pentru orice stare care satisface φ , programul P se termină, iar starea rezultată după execuția programului P satisface postcondiția ψ ;
- garantează că P se termină.

Parțial corectitudine. Reguli deductive

- axioma atribuirii;
- regula compunerii secvenţiale;
- regula consecinței;
- regula alternanței;
- regula iterației.

Axioma atribuirii

- $\models_{par} \{\varphi(x|e)\}\ x := e\ \{\psi(x)\}$ are semnificația "dacă prin înlocuirea lui x în $\varphi(x)$ cu e obținem o afirmație adevărată, atunci după atribuirea x := e afirmația $\psi(x)$ va fi adevărată."
- Fie tripletul $\{P\}$ $X := Y + 2 \{Q\}$
 - fiind dat Q, care este predicatul pentru care P are loc?
 - pentru orice P astfel încât $[P \Rightarrow \langle X \leftarrow Y + 2 \rangle (Q)]$

Regula compunerii secvențiale

```
• dacă \models_{par} \{\varphi\}S\{\omega\} și \models_{par} \{\omega\}T\{\psi\} atunci \models_{par} \{\varphi\}S; T\{\psi\};
```

Regula consecinței

dacă

$$\varphi_1 \Rightarrow \varphi_2$$
, $\models_{par} \{\varphi_2\}P\{\psi_2\}$ și $\psi_2 \Rightarrow \psi_1$ atunci $\models_{par} \{\varphi_1\} P\{\psi_1\}$

Regula alternanței

dacă

```
actor \exists p_{par} \{ \varphi \land cond \} S\{\psi\}  și \models_{par} \{ \varphi \land \neg cond \} T\{\psi\}  atunci propoziția \{ \varphi \} |F| (cond) |THEN| S |ELSE| |T| |T
```

Regula iterației

- Care sunt condițiile de realizare ale structurii repetitive while, astfel încât:
 {φ} WHILE (cond) DO S END {ψ}
 - presupunem că instrucțiunea while se termină , i.e., ¬cond;
 - în general, nu se cunoaște de câte ori se va executa S;
- considerăm un predicat η care rămâne satisfăcut după execuția S:
 - $\{\eta\}S\{\eta\}$ η este un predicat invariant;
 - la ieșirea din buclă avem $\eta \land \neg cond$;
 - pentru stabilirea post-condiției, $\{\eta\}$ trebuie ales astfel încât $[\eta \land \neg cond \Rightarrow \psi]$.

Regula iterației (cont.)

• dacă $\models_{par} \{\varphi \land cond\} S\{\psi\}$ atunci $\{\varphi\}$ WHILE (cond) DO S END $\{\psi\}$, cu condiția că există un predicat invariant η asociat buclei, astfel încât:

```
• [\varphi \Rightarrow \eta] \eta este satisfăcut la intrare în buclă;

• [\eta \land \neg cond \Rightarrow \psi] \eta obține pe \psi la ieșirea din buclă;

• \{cond \land \eta\}S\{\eta\} \eta este satisfăcut la fiecare iterație.
```

Regula iterației. Exemple

Demonstrarea parțial corectitudinii folosind regula iterației:

Exemplu 1. $z = 2^N$;

Dezvoltarea algoritmilor (parțial corecți), folosind regula iterației:

- Exemplu 2. R = A * B;
- Exemplu 3. $R = A^B$.

Regula iterației. Exemplu 1.

• efectuarea calculului: $z = 2^N$:

```
• \varphi: \{N \ge 0\}

m := 0; y := 1;

\eta: \{y = 2^m\}

WHILE (m! = N) DO \eta: \{y = 2^m\}

y := 2 * y;

m := m + 1

END

\psi: \{y = 2^N\}
```

- lacktriangle trebuie demonstrat că invariantul η
 - este satisfăcut la intrare în buclă;
 - rămâne satisfăcut în buclă $\{\eta\}$ y := 2 * y; m := m + 1; $\{\eta\}$
 - obţine post-condiţia $[\eta \land (m = N) \Rightarrow (y = 2^N)]$.

Regula iterației. Exemplu 2.

• înmulțire prin adunări repetate – "R este A adunat de B ori": R = A * B:

```
• \varphi: \{B \ge 0\}

• \psi: \{R = A * B\} \Rightarrow \{B \ge 0\} S \{R = A * B\}

• rezolvare (dezvoltarea tripletului):

• \varphi: \{B \ge 0\}

"init R"

• WHILE (cond) DO

"update R"

• END

• \psi: \{R = A * B\}
```

- regulă: se înlocuiește în postcondiția ψ unul din termeni cu o variabilă pentru a obține predicatul invariant η asociat buclei, astfel încât $[(\eta \land \neg cond) \Rightarrow \psi]$;
 - se introduce variabila b în ψ și se determină invariantul η asociat buclei, descris prin: R = A * b;
 - pentru a obține postcondiția, se alege cond să fie $(b \neq B)$, unde $[(R = A * b) \land \neg (b \neq B) \Rightarrow (R = A * B)].$

Regula iterației. Exemplu 2 (cont.)

- înmulțire prin adunări repetate:
 - invariantul η : (R = A * b);
 - condiția de execuție a buclei (santinela) cond: $(b \neq B)$;
 - pentru a asigura că invariantul este satisfăcut inițial, se efectuează inițializarea: R := 0; b := 0;
 - în fiecare iterație: (1) *b* este incrementat cu 1; (2) *R* este actualizat, obținând:

```
\varphi : \{B \ge 0\} \\
R := 0; b := 0; \\
WHILE <math>(b \ne B) \text{ DO } \eta : \{R = A * b\} \\
R :=? \Rightarrow R := R + A \\
b := b + 1 \\
END \\
\psi : \{R = A * B\}
```

Regula iterativă. Exemplu 3.

- ridicare la putere prin înmulţiri repetate "R este A înmulţit de B ori":
 R = A^B:
 - $\{\varphi : (A > 0) \land (B > 0)\}\ S\ \{\psi : R = A^B\}$
 - rezolvare (dezvoltarea tripletului):
 - pentru obținerea invariantului se înlocuiește în ψ o constantă cu o variabilă, obținându-se: $\eta: R = A^b$;

```
 \varphi : \{ (A > 0) \land (B \ge 0) \} 
 R :=?; b := 0; \Rightarrow R :=1; 
WHILE (b \ne B) \text{ DO } \eta : \{ R = A^b \} 
 R :=?; \Rightarrow R := R * A; 
 b := b + 1 
END
 \psi : \{ R = A^B \}
```

Total corectitudine. Reguli deductive

```
    atribuire
        {φ} X := E {ψ} cu condiția că [φ ⇒⟨X ← E⟩(ψ)];
    compunere
        {φ} S; T{ψ} cu condiția că există R astfel încât {φ} S{R} şi {R}T{ψ};
    alternanță
        {φ} IF (cond) THEN S ELSE T END {ψ} cu condiția că {φ ∧ cond} S{ψ} şi {φ ∧ ¬cond}T{ψ}
    Observație: similar cu regulile corectitudinii parțiale!
```

Total corectitudine. Iterația.

- fie tripletul $\{\varphi\}$ WHILE (cond) DO S END $\{\psi\}$
- cum demonstrăm că execuția buclei se termină?
- soluţie:
 - se identifică o expresie întreagă V astfel încât:
 - valoarea V este non-negativă (i.e., $V \ge 0$) și
 - ullet valoarea V este strict descrescătoare la fiecare iterație, $\{V=K\}$ S $\{V<K\}$
- V "invariant al buclei", expresia își păstrează caracteristicile de la o iterație la alta.

Total corectitudine. Exemplu

ridicare la putere prin înmulțiri repetate – "R este A înmulțit de B ori":
 R = A^B.

```
• \{(A > 0) \land (B \ge 0)\} S \{R = A^B\}

• invariantul buclei este: \eta : R = A^b \land (B \ge b); \varphi : \{(A > 0) \land (B \ge 0)\}

R := 1; b := 0; WHILE (b \ne B) DO \eta : R = A^b \land (B \ge b); R := R * A; b := b + 1

END \psi : \{R = A^B\}
```

- se defineşte V o construcție care variază la nivelul buclei descris prin expresia (B – b);
- V este strict descrescătoare la fiecare iterație a buclei, deoarece [(B-(b+1))<(B-b)]
- Cum demonstrăm că V este o expresie non-negativă?
 - demonstrând că $(B \ge b)$ este un invariant al buclei.

Total corectitudine. Regula iterației (rezumat)

- pentru a demonstra
 - $\models_{tot} \{\varphi\}$ WHILE (cond) DO S END $\{\psi\}$ se identifică un predicat invariant η al buclei și o expresie V, invariantă la nivelul buclei, astfel încât:
 - η este satisfăcut inițial $[\varphi \Rightarrow \eta]$;
 - η determină obținerea post-condiției prin condiția de ieșire din buclă $[(\eta \land \neg cond) \Rightarrow \psi];$
 - η se menține satisfăcut după execuția blocului S, i.e., $\{\eta\}$ S $\{\eta\}$;
 - expresia V este strict descrescătoare la fiecare iterație $\{V = K\}$ S $\{V < K\}$;
 - expresia V este întotdeauna non-negativă; $[\eta \Rightarrow (V > 0)]$.

Pentru examen...

- metoda lui Floyd:
 - demonstrarea parțial corectitudinii, terminării și total corectitudinii ([Fre10], Cap.1) – probleme:
 - căutarea unei valori într-un șir ordonat (Seminar 5);
 - determinarea celui mai mare divizor comun a două numere naturale (Seminar 5);

Outline Evaluarea calității softului Metoda lui Floyd Axiomatizarea lui Hoare Bibliografie

Triplete Hoare. Semantică Parțial corectitudine. Reguli deductive Total corectitudine. Reguli deductive

Urmează...

Limbajul Dijkstra;

Outline Evaluarea calității softului Metoda lui Floyd Axiomatizarea lui Hoare Bibliografie

Bibliografie I

[Fre10] M. Frentiu.

Verificarea și validarea sistemelor soft.

Presa Universitară Clujeană, 2010.