Lista 6

Proposições, valoração, validade, satisfazibilidade

- 1. As sentenças a seguir supõem implicitamente as prioridades de acordo com as convenções dos conectivos. Sendo assim, entendendo as prioridades, adicione tantos parênteses quanto possível. Por exemplo, dada a proposição $p \land q \rightarrow r$, transforme-a em $(p \land q) \rightarrow r$, já que \land tem prioridade mais alta do que \rightarrow .
 - a) $\neg p \land q \rightarrow r$
 - b) $(p \to q) \land \neg (r \lor p \to q)$
 - c) $(p \to q) \to (r \to s \lor t)$
 - d) $p \lor (\neg q \to p \land r)$
 - e) $p \lor q \to \neg p \land r$
 - f) $p \lor p \to \neg q$
- 2. Dê o conjunto das subfórmulas das fórmulas da questão anterior.
- 3. Classificar as fórmulas a seguir de acordo com sua satisfazibilidade, validade, falsificabilidade ou insatisfazibilidade:
 - a) $(p \to q) \to (q \to p)$
 - b) $p \rightarrow \neg \neg p$
 - c) $\neg (p \lor q \to p)$
 - d) $((p \to q) \land (r \to q)) \to (p \land r \to q)$
- 4. **POSCOMP 2014** Admitindo as proposições L,M,N e os conectivos lógicos usuais \lor (ou), \land (e), \neg (negação), \rightarrow (se...enão) e \leftrightarrow (se e somente se), considere as afirmativas a seguir.
 - I. $L \to (\neg L \to M)$ é tautologia.
 - II. $\neg L \wedge (L \wedge \neg M)$ é contraditória.
 - III. $(L \vee N) \wedge \neg N \Rightarrow L$.
 - IV. $M \leftrightarrow N \Leftrightarrow (\neg M \lor N)$

Assinale a alternativa correta. Justifique.

- a) Somente as afirmativas I e II são corretas.
- b) Somente as afirmativas I e IV são corretas.
- c) Somente as afirmativas III e IV são corretas.
- d) Somente as afirmativas I,II e III são corretas.
- e) Somente as afirmativas II, III e IV são corretas.
- 5. Encontrar uma valoração que satisfaça as seguintes fórmulas:

- a) $q \to p \land \neg q$
- b) $(p \to q) \to p$
- c) $\neg (p \lor q \to q)$
- d) $(p \to q) \land (\neg p \to \neg q)$
- e) $(p \to q) \land (q \to p)$
- 6. Se X, Y, Z são sentenças falsas e A, B, C são sentenças verdadeiras, então os valores de verdade de $(\neg X \land \neg A) \land (Y \to C)$, $B \to (Y \to Z)$ e $B \to Z$ são respectivamente:
 - a) verdadeiro, verdadeiro, falso.
 - b) falso, verdadeiro, falso.
 - c) falso, falso, verdadeiro.
 - d) verdadeiro, falso, falso.
- 7. Sejam P e Q duas proposições, a negação de $P \wedge Q$ equivale a:
 - a) $\neg P \wedge Q$
 - b) $P \wedge \neg Q$
 - c) $\neg P \land \neg Q$
 - d) $\neg P \lor \neg Q$
 - e) $P \vee Q$

Mostre através da tabela verdade que as duas fórmulas são equivalentes.

- 8. Seja ϕ uma formula qualquer, responda os seguintes itens, se é **verdadeiro** ou **falso** e justifique sua resposta:
 - a) se ϕ for satisfazível, então não existe uma valoração que aplicada a ϕ retorne falso.
 - b) se ϕ for falsificável, então ϕ não pode ser uma tautologia.
 - c) se ϕ for insatisfazível, ϕ obrigatoriamente deve ser falsificável.
 - d) se ϕ é tautologia, ϕ deve ser satisfazível.
 - e) se ϕ é uma tautologia, então $\neg \phi$ é insatisfazível.
 - f) para toda fórmula pertencente a lógica proposicional, esta fórmula deve ser satisfazível ou falsificável.
- 9. Para os argumentos a seguir, mostre a validade deles usando o sistema de dedução natural e dos tableaux analíticos. Use o teorema da dedução se for conveniente.
 - a) $\neg p \rightarrow \neg q \vdash q \rightarrow p$
 - b) $\neg p \lor \neg q \vdash \neg (p \land q)$
 - c) $\neg p, p \lor q \vdash q$

- d) $p \vee q, \neg q \vee r \vdash p \vee r$
- e) $p \to (q \lor r), \neg q, \neg r \vdash \neg p$
- f) $\neg p \land \neg q \vdash \neg (p \lor q)$
- g) $p \land \neg p \vdash \neg (r \to q) \land (r \to q)$
- h) $(A \vee \neg B) \rightarrow C, C \rightarrow D, A \vdash D$
- i) $(A \to B) \land (B \to C) \vdash A \to C$

A resolução do item i) da questão anterior é uma demostração da regra do $silogismo\ hipotético\ (sh)$ que diz:

De
$$P \to Q$$
e $Q \to R$ pode-se deduzir $P \to R$

Por ser uma regra de dedução legítima, o sh pode ser usado para justificar um passo em uma sequência de demostração.

j)
$$A, (B \to C) \vdash B \to (A \land C)$$

Para resolução dos itens k) e l) faça uso das equivalências notáveis para a mudança de conectivos se for conveniente.

k)
$$A \to (B \lor C), \neg B, \neg C \vdash \neg A$$

1)
$$A \rightarrow (B \rightarrow C), A \lor \neg D, B \vdash D \rightarrow C$$