Exercice 1.

On donne la matrice $A = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix}$.

Le but de cet exercice est de décrire un procédé de codage d'un mot de deux lettres (partie A) à l'aide de la matrice A puis de détailler une méthode de décodage de ce mot (partie C) en s'appuyant sur des résultats mathématiques établis dans la partie B.

Un mot de deux lettres est assimilé à une matrice colonne $X = \begin{pmatrix} x \\ y \end{pmatrix}$, où x est le nombre correspondant à la première lettre du mot, et y le nombre correspondant à la deuxième lettre du mot, selon le tableau de correspondance ci-après :

A	В	С	D	E	F	G	Н	I	J	K	L	M
0	1	2	3	4	5	6	7	8	9	10	11	12
N	О	Р	Q	R	S	Τ	U	V	W	X	Y	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

Ainsi par exemple, le \pmb{mot} « SI » est assimilé à la matrice $X = \binom{18}{8}$

Partie A

Pour coder le **mot** assimilé à la matrice $X = \begin{pmatrix} x \\ y \end{pmatrix}$ on calcule la matrice $U = \begin{pmatrix} u \\ v \end{pmatrix}$ telle que AX = U, puis la matrice $C = \begin{pmatrix} c \\ d \end{pmatrix}$, où les nombres c et d sont les restes respectifs de la division euclidienne par 26 des

nombres u et v. Le mot codé en alors le mot de deux lettres assimilé à la matrice $C = \begin{pmatrix} c \\ d \end{pmatrix}$, selon le tableau de correspondance précédent, c'est-à-dire que c et d sont les deux lettres du mot codé. Déterminer le mot codé correspondant au mot « SI ».

Partie B: deux résultats mathématiques

On considère les matrices $B = \begin{pmatrix} 2 & -1 \\ -3 & 4 \end{pmatrix}$ et $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

- 1. Justifier que $5 \times 21 \equiv 1 \mod 26$.
- 2. (a) Calculer le produit matriciel $B \times A$.
 - (b) Soit $U = \begin{pmatrix} u \\ v \end{pmatrix}$ et $X = \begin{pmatrix} x \\ y \end{pmatrix}$ deux matrices quelconques à deux lignes et une colonne.

Justifier que si AX = U, alors 5X = BU.

Partie C: décodage d'un mot

On souhaite décoder le mot « BE » associé à la matrice $C = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$. Si $X = \begin{pmatrix} x \\ y \end{pmatrix}$ est la matrice associée au mot de départ ; la matrice $U = \begin{pmatrix} u \\ v \end{pmatrix}$ définie par l'égalité AX = U a ses coefficients qui vérifient : $\begin{cases} u \equiv 1 \mod 26 \\ v \equiv 4 \mod 26 \end{cases}$ d'après la **partie A**.

1. Démontrer que
$$\begin{cases} 5x &= 2u-v \\ 5y &= -3u+4v \end{cases}$$
 En déduire que
$$\begin{cases} 5x &\equiv -2 \mod 26 \\ 5y &\equiv 13 \mod 26 \end{cases} .$$

2. Décoder le mot « BE »

Exercice 2.

L'organisatrice d'une course à pied dans la ville de Berlin voudrait faire passer les participants par les lieux suivants:

- Alexanderplatz (A)
- Porte de Brandebourg (B)
- Checkpoint Charlie (C)
- Fleamarket (F)
- Musée de Pergame (P)
- Reichstag (R)

On peut résumer la situation par le graphe ci-dessous :

Les lieux sont représentés par les sommets, et les rues ouvertes à la course par les arêtes.

- 1. (a) Quel est l'ordre de ce graphe?
 - (b) Est-il complet? Justifier.
 - (c) Est-il connexe? Justifier.
- 2. (a) L'organisatrice peut-elle envisager un parcours passant par tous ces lieux en empruntant une seule fois chacune des rues? Justifier.
 - (b) Peut-elle envisager un parcours passant par tous ces lieux en empruntant une seule fois chacune des rues, et dont le départ et l'arrivée se font au même endroit?