

B#L Al

Jakub Ciborowski
Oliwia Gładysiak
Igor Kołakowski
Szymon Zborowski

#### Dane



#### Dane składają się z 6 klas aktywności

- 3 w spoczynku, 3 przemieszczające się
- Czynności wykonywane przez **30** osób

#### Dane zawierały wartości NaN

- 13% wierszy zawierały NaN
- Istniały tylko dwie kolumny bez wartości NaN
- Ilość NaN w kolumnach była mniejsza niż 1%

#### Podzieliliśmy na dane testowe i treningowe

Dane treningowe nie były zbalansowane

#### Dane - przygotowanie przed trenowaniem



Kroki podjete przed trenowaniem

- usunięcie kolumn 'subject', 'void()' oraz indexu
- usunięcie danych subjectów 28 i 9 dane zaburzające

W początkowych eksperymentach uwzględniliśmy:

- redukcję wymiarowości
- wypełnianie braków danych

# A co by było gdyby...? czyli Regresja Liniowa



6 klas aktywności można w logiczny sposób podzielić na 2 klastry

Idle - { STANDING, SITTING, LAYING }

Moving - { WALKING, WALKING\_UPSTAIRS, WALKING\_DOWNSTAIRS }

## A co by było gdyby...? czyli Regresja Liniowa

CoGOR-21+

| Dane                                               | Precyzja dopasowania do 2 klastrów |
|----------------------------------------------------|------------------------------------|
| Dane wyczyszczone z wyrównaną<br>licznością danych | 97.49 %                            |
| Dane wyczyszczone                                  | 96.79 %                            |



## Lasy losowe

|       |      | random<br>forest with 10<br>trees with<br>balanced<br>weight | random<br>forest with 20<br>trees with<br>balanced<br>weight | random<br>forest with 40<br>trees with<br>balanced<br>weight | random<br>forest with 80<br>trees with<br>balanced<br>weight | random<br>forest with<br>100 trees<br>with<br>balanced<br>weight | random<br>forest with<br>150 trees<br>with<br>balanced<br>weight | random<br>forest with<br>200 trees<br>with<br>balanced<br>weight | random<br>forest with<br>500 trees<br>with<br>balanced<br>weight |
|-------|------|--------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|
| Accui | racy | 0.918699                                                     | 0.897358                                                     | 0.869919                                                     | 0.887195                                                     | 0.905488                                                         | 0.906504                                                         | 0.903455                                                         | 0.90752                                                          |
|       |      | random<br>forest with 10<br>trees                            | random<br>forest with 20<br>trees                            | random<br>forest with 40<br>trees                            | random<br>forest with 80<br>trees                            | random<br>forest with<br>100 trees                               | random<br>forest with<br>150 trees                               | random<br>forest with<br>200 trees                               | random<br>forest with<br>500 trees                               |
| Accui | racy | 0.886179                                                     | 0.880081                                                     | 0.878049                                                     | 0.898374                                                     | 0.888211                                                         | 0.902439                                                         | 0.906504                                                         | 0.90752                                                          |

## Lasy losowe

| precision/<br>recall/ f1_score | random forest<br>with 10 trees<br>with balanced<br>weight | random forest<br>with 20 trees<br>with balanced<br>weight | random forest<br>with 40 trees<br>with balanced<br>weight | random forest<br>with 80 trees<br>with balanced<br>weight | random forest<br>with 100 trees<br>with balanced<br>weight | random forest<br>with 150 trees<br>with balanced<br>weight | random forest<br>with 200 trees<br>with balanced<br>weight | random forest<br>with 500 trees<br>with balanced<br>weight |
|--------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|
| LAYING                         | 0.803/1.000/                                              | 0.803/1.000/                                              | 0.927/1.000/                                              | 0.797/1.000/                                              | 0.816/1.000/                                               | 0.816/1.000/                                               | 0.816/1.000/                                               | 0.810/1.000/                                               |
|                                | 0.891                                                     | 0.891                                                     | 0.962                                                     | 0.887                                                     | 0.899                                                      | 0.899                                                      | 0.899                                                      | 0.895                                                      |
| SITTING                        | 0.931/0.851/                                              | 0.979/0.851/0                                             | 0.976/0.925/                                              | 0.987/0.854/                                              | 0.987/0.866/                                               | 0.991/0.866/                                               | 0.991/0.851/                                               | 0.991/0.858/                                               |
|                                | 0.889                                                     | .910                                                      | 0.950                                                     | 0.916                                                     | 0.922                                                      | 0.924                                                      | 0.916                                                      | 0.920                                                      |
| STANDING                       | 0.928/0.919/                                              | 0.932/0.976/0                                             | 0.945/0.972/                                              | 0.941/0.986                                               | 0.941/0.986/                                               | 0.941/0.991/                                               | 0.925/0.991/                                               | 0.937/0.991/                                               |
|                                | 0.924                                                     | .954                                                      | 0.958                                                     | /0.963                                                    | 0.963                                                      | 0.965                                                      | 0.957                                                      | 0.963                                                      |
| WALKING                        | 0.967/0.780/                                              | 0.971/0.749/0                                             | 0.933/0.749/                                              | 0.974/0.830/                                              | 0.979/0.830/                                               | 0.984/0.825/                                               | 0.979/0.821/                                               | 0.979/0.830/                                               |
|                                | 0.864                                                     | .846                                                      | 0.831                                                     | 0.896                                                     | 0.898                                                      | 0.898                                                      | 0.893                                                      | 0.898                                                      |
| WALKING_                       | 0.667/0.992/                                              | 0.643/1.000/                                              | 0.670/0.992/                                              | 0.717/1.000/0                                             | 0.708/1.000/0                                              | 0.708/1.000/                                               | 0.708/1.000/                                               | 0.717/1.000/                                               |
| DOWNSTAIRS                     | 0.797                                                     | 0.783                                                     | 0.800                                                     | .835                                                      | .829                                                       | 0.829                                                      | 0.829                                                      | 0.835                                                      |
| WALKING_                       | 0.978/0.738/                                              | 1.000/0.754/                                              | 0.979/0.770/0                                             | 1.000/0.770/0                                             | 1.000/0.754/0                                              | 1.000/0.787/0                                              | 1.000/0.787/0                                              | 1.000/0.787/0                                              |
| UPSTAIRS                       | 0.841                                                     | 0.860                                                     | .862                                                      | .870                                                      | .860                                                       | .881                                                       | .881                                                       | .881                                                       |

CoGOR-21+ 7/15

## Lasy losowe

| precision/<br>recall/<br>f1_score | random<br>forest with<br>10 trees | random<br>forest with<br>20 trees | random<br>forest with<br>40 trees | random<br>forest with<br>80 trees | random<br>forest with<br>100 trees | random<br>forest with<br>150 trees | random<br>forest with<br>200 trees | random<br>forest with<br>500 trees |
|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|
| LAYING                            | 0.779/1.000<br>/0.876             | 0.791/1.000<br>/0.883             | 0.779/1.000<br>/0.876             | 0.779/1.000<br>/0.876             | 0.761/1.000<br>/0.864              | 0.761/1.000<br>/0.864              | 0.773/1.000<br>/0.872              | 0.767/1.000<br>/0.868              |
| SITTING                           | 0.953/0.840<br>/0.893             | 0.974/0.840<br>/0.902             | 1.000/0.843<br>/0.915             | 0.991/0.836<br>/0.907             | 0.991/0.836<br>/0.907              | 0.991/0.828<br>/0.902              | 0.996/0.847<br>/0.915              | 0.991/0.832<br>/0.905              |
| STANDING                          | 0.935/0.948<br>/0.941             | 0.928/0.972<br>/0.949             | 0.942/1.000<br>/0.970             | 0.933/0.991<br>/0.961             | 0.946/0.991<br>/0.968              | 0.937/0.991<br>/0.963              | 0.950/0.995<br>/0.972              | 0.937/0.991<br>/0.963              |
| WALKING                           | 0.948/0.812<br>/0.874             | 0.984/0.830<br>/0.900             | 0.978/0.807<br>/0.885             | 0.944/0.762<br>/0.844             | 0.989/0.821<br>/0.897              | 0.984/0.830<br>/0.900              | 0.989/0.830<br>/0.902              | 0.989/0.830<br>/0.902              |
| WALKING_<br>DOWNSTAI<br>RS        | 0.715/0.992<br>/0.831             | 0.720/0.992<br>/0.834             | 0.704/1.000<br>/0.826             | 0.654/1.000<br>/0.791             | 0.708/1.000<br>/0.829              | 0.713/1.000<br>/0.832              | 0.713/1.000<br>/0.832              | 0.713/1.000<br>/0.832              |
| WALKING_<br>UPSTAIRS              | 0.894/0.689<br>/0.778             | 0.980/0.820<br>/0.893             | 0.980/0.803<br>/0.883             | 1.000/0.672<br>/0.804             | 1.000/0.820<br>/0.901              | 1.000/0.787<br>/0.881              | 1.000/0.803<br>/0.891              | 1.000/0.803<br>/0.891              |

CoGOR-21+ 8/15

# XGBoost 3 uczestników zbiór testowy, 25 zbiór treningowy - 97.76%



### XGBoost 8 uczestników zbiór testowy, 20 zbiór treningowy - 95.22%



# XGBoost - cross validation bez podziału na osoby

```
from sklearn.model selection import StratifiedKFold
from sklearn.model selection import cross val score
from sklearn.metrics import accuracy score, classification report
import xgboost as xgb
kfold = StratifiedKFold(n splits=5, random state=123, shuffle = True)
model = xgb.XGBClassifier()
results = cross val score(model, X, Y, cv=kfold)
results
array([0.98727273, 0.9830303 , 0.99272286, 0.98787144, 0.98665858])
```



### XGBoost

| Dane                                         | Precyzja |
|----------------------------------------------|----------|
| Dane czyste niezmodyfikowane                 | 97.76 %  |
| Dane czyste z wyrównaną licznością<br>danych | 97.35 %  |
| Dane ze zmniejszonym rozmiarem zbioru        | 95.28 %  |



#### XGBoost - Importances

```
Sensor group: Body Acceleration (frequency)
Min in group: 0.008812, max in group: 410.929779, sum of values in group: 3950.171397, mean of values in group: 22.572408, Elements in group: 175
Sensor group: Body Acceleration
Min in group: 0.021953, max in group: 636.378494, sum of values in group: 3025.131423, mean of values in group: 21.154765, Elements in group: 143
Sensor group: Gravity Acceleration
Min in group: 0.050671, max in group: 162.244234, sum of values in group: 1321.470202, mean of values in group: 31.463576, Elements in group: 42
Sensor group: energy-mean
Min in group: 0.054298, max in group: 0.054298, sum of values in group: 0.054298, mean of values in group: 0.054298, Elements in group: 1
Sensor group: angle()
Min in group: 3.322535, max in group: 88.479849, sum of values in group: 112.693465, mean of values in group: 22.538693, Elements in group: 5
```





#### Podsumowanie

- Przedstawiliśmy modele o dużej skuteczności
- Zależało nam na możliwie prostych modelach
- Opcja skutecznej i bardzo taniej metody określenia stanu osoby jako aktywna / w spoczynku
- Charakter danych sprawia, że potencjalne błędy nie są krytyczne
  - Dane jasno opisane, więc można pozyskiwać nowe i rozwijać modele

## IGOR













## BOTTOM TEXT

....