Lecture 4: Distortions and Misallocation

Kunal Sangani

ECON 416-1

Recap: Aggregation Results for Efficient Economies

Solow (1957) for economies with aggregate production functions:

$$d \log Y = d \log A + \sum_{f} \Lambda_f d \log L_f.$$

Hulten (1978) for disaggregated economies:

$$d \log A = \sum_{i} \lambda_i d \log A_i$$
, where $\lambda_i = \frac{\rho_i y_i}{\sum_{k} \rho_k y_k}$.

Nonlinearities depend on change in sales shares. E.g., CES economy with one factor:

$$\frac{d\lambda_i}{d\log A_i} = \sum_{j=0}^{N} (\theta_j - 1)\lambda_j Var_{\Omega^{(j)}}(\Psi_{(i)}).$$

Figure: Horizontal economy.

• Consider a horizontal economy with N firms,

$$y_i = A_i L_i,$$

$$Y = \left(\sum_{i=1}^N y_i^{\frac{\theta-1}{\theta}}\right)^{\frac{\theta}{\theta-1}},$$

$$L = \sum_{i=1}^N L_i.$$

We can write,

$$Y = \underbrace{\left(\sum_{i=1}^{N} \left(A_{i} \frac{L_{i}}{L}\right)^{\frac{\theta-1}{\theta}}\right)^{\frac{\theta}{\theta-1}}}_{A=\text{Solow residual}} L.$$

• Denote share of labor used each firm by $I_i = L_i/L$.

$$Y = AL = \left(\sum_{i=1}^{N} (A_i I_i)^{\frac{\theta-1}{\theta}}\right)^{\frac{\theta}{\theta-1}} L.$$

- Clearly, Y depends both on technological primitives $(\{A_i\}, L)$ and how resources are allocated across firms $\{I_i\}$.
- We can decompose changes in output into changes in each of these components.

$$d\log Y = \underbrace{\sum_{i} \frac{\partial \log Y}{\partial \log A_{i}} + d\log L}_{\text{Changes in technology}} + \underbrace{\sum_{i} \frac{\partial \log Y}{\partial \log I_{i}} d\log I_{i}}_{\text{Reallocations across firms}}.$$

Suppose we increase a firm's productivity? Which of these would change?

• Consider a perturbation dl_i . Feasibility requires $\sum_i dl_i = 0$. Can we improve output?

$$d\log A = \sum_{i} \frac{\left(A_{i} I_{i}\right)^{\frac{\theta-1}{\theta}}}{\sum_{k=1}^{N} \left(A_{k} I_{k}\right)^{\frac{\theta-1}{\theta}}} d\log I_{i}$$

• Consider a perturbation dl_i . Feasibility requires $\sum_i dl_i = 0$. Can we improve output?

$$d \log A = \sum_{i} \frac{(A_{i}l_{i})^{\frac{\theta-1}{\theta}}}{\sum_{k=1}^{N} (A_{k}l_{k})^{\frac{\theta-1}{\theta}}} d \log l_{i}$$
$$= \sum_{i} \frac{\lambda_{i}}{l_{i}} dl_{i}$$

• Consider a perturbation dl_i . Feasibility requires $\sum_i dl_i = 0$. Can we improve output?

$$d \log A = \sum_{i} \frac{(A_{i}I_{i})^{\frac{\theta-1}{\theta}}}{\sum_{k=1}^{N} (A_{k}I_{k})^{\frac{\theta-1}{\theta}}} d \log I_{i}$$

$$= \sum_{i} \frac{\lambda_{i}}{I_{i}} dI_{i}$$

$$= Cov\left(\frac{\lambda_{i}}{I_{i}}, dI_{i}\right)$$

• Consider a perturbation dl_i . Feasibility requires $\sum_i dl_i = 0$. Can we improve output?

$$d \log A = \sum_{i} \frac{\left(A_{i} I_{i}\right)^{\frac{\theta-1}{\theta}}}{\sum_{k=1}^{N} \left(A_{k} I_{k}\right)^{\frac{\theta-1}{\theta}}} d \log I_{i}$$

$$= \sum_{i} \frac{\lambda_{i}}{I_{i}} d I_{i}$$

$$= Cov\left(\frac{\lambda_{i}}{I_{i}}, d I_{i}\right)$$

- In efficient economy, sales and cost shares coincide. $\Rightarrow Cov(1, dl_i) = 0$.
- Intuition: Efficient economy equates marginal value of resource across all uses.

$$\frac{\partial \log Y}{\partial L_i} = \frac{\partial \log Y}{\partial \log L_i} \frac{1}{L_i} = \frac{\lambda_i}{L_i}.$$

Distortions (taxes/markups, quotas, central planner, etc.) can cause this to fail.

Table of Contents

Hsieh and Klenow (2009)

Technical vs. Allocative Efficiency

Ex Post Results

Ex Ante Results

Distance to the Frontier

Misallocation in the New Keynesian Model

Hsieh and Klenow (2009): Setup

- Canonical model of misallocation from Hsieh and Klenow (2009).
 - See also Banerjee and Duflo (2005) survey on motivating micro evidence.
- Output is a Cobb-Douglas aggregate across sectors s = 1, ..., S,

$$Y = \prod_{s=1}^{\mathcal{S}} Y_s^{\theta}, \quad ext{where} \quad \sum_{s=1}^{\mathcal{S}} \theta_s = 1.$$

Each sector's output is CES aggregate of M_s firms' products,

$$Y_s = \left(\sum_{i=1}^{M_s} y_{si}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}.$$

Each firm produces with capital and labor,

$$y_{si} = A_{si}K_{si}^{\alpha_s}L_{si}^{1-\alpha_s}.$$

Assumption: capital and labor shares identical within sector.

Hsieh and Klenow (2009): Setup

Output distortion and capital distortion for each firm, so that profits are

$$\pi_{si} = (1 - \tau_{Ysi})p_{si}y_{si} - wL_{si} - (1 + \tau_{Ksi})rK_{si}.$$

- τ_{Ysi} high: e.g., high taxes, government restrictions on size, transportation frictions.
- τ_{Ksi} high: e.g., costly access to credit.
- Profit-maximizing prices

$$\rho_{si} = \frac{\sigma}{\sigma - 1} \frac{\left(1 + \tau_{Ksi}\right)^{\alpha_s}}{\left(1 - \tau_{Ysi}\right)} \frac{1}{A_{si}} \left(\frac{r}{\alpha_s}\right)^{\alpha_s} \left(\frac{w}{1 - \alpha_s}\right)^{1 - \alpha_s}.$$

Capital-labor ratio and output across firms are

$$\frac{K_{si}}{L_{si}} = \frac{\alpha_s}{1 - \alpha_s} \frac{w}{r} \frac{1}{1 + \tau_{Ksi}}, \qquad Y_{si} \propto \left(A_{si} \frac{(1 - \tau_{Ysi})}{(1 + \tau_{Ksi})^{\alpha_s}}\right)^{\sigma}.$$

Marginal revenue products

Marginal revenue product of labor

$$MRPL_{si} = p_{si} \frac{\partial y_{si}}{\partial L_{si}} = (1 - \alpha_s) \frac{p_{si} y_{si}}{L_{si}} = \frac{\sigma}{\sigma - 1} w \frac{1}{1 - \tau_{Ysi}}.$$

Marginal revenue product of capital

$$\mathit{MRPK}_{si} = p_{si} \frac{\partial y_{si}}{\partial K_{si}} = \alpha_s \frac{p_{si}y_{si}}{K_{si}} = \frac{\sigma}{\sigma - 1} r \frac{1 + \tau_{Ksi}}{1 - \tau_{Ysi}}.$$

• In the absence of wedges τ_{Ksi} , τ_{Ysi} , MRPL and MRPK equalized across firms.

Output and TFPR

Output in each sector

$$Y_{s} = \left(\sum_{i} y_{si}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}} = \left(\sum_{i} \left(A_{si} \left(\frac{K_{si}}{L_{si}}\right)^{\alpha_{s}} L_{si}\right)^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}$$

$$\propto \left(\sum_{i} \left(A_{si} \frac{1 - \tau_{Ysi}}{(1 + \tau_{Ksi})^{\alpha_{s}}}\right)^{\sigma-1}\right)^{\frac{1}{\sigma-1}}$$

$$\Rightarrow Y_{s} = \left(\sum_{i} \left(A_{si} \frac{\overline{TFPR}_{s}}{TFPR_{si}}\right)^{\sigma-1}\right)^{\frac{1}{\sigma-1}} K_{s}^{\alpha_{s}} L_{s}^{1-\alpha_{s}}.$$

where $TFPR_{si} = p_{si}A_{si} \propto (MRPK_{si})^{\alpha_s}(MRPL_{si})^{1-\alpha_s}$, \overline{TFPR}_s is the geometric average across firms.

Output and TFPR

$$Y_s = \left(\sum_i \left(A_{si} \frac{\overline{TFPR}_s}{TFPR_{si}}\right)^{\sigma-1}\right)^{\frac{1}{\sigma-1}} \mathcal{K}_s^{\alpha_s} \mathcal{L}_s^{1-\alpha_s}.$$

• If *TFPR* equal across all firms, $A_s = \left(\sum_i (A_{si})^{\sigma-1}\right)^{\frac{1}{\sigma-1}}$.

Output and TFPR

$$Y_s = \left(\sum_i \left(A_{si} \frac{\overline{TFPR}_s}{TFPR_{si}}\right)^{\sigma-1}\right)^{\frac{1}{\sigma-1}} K_s^{\alpha_s} L_s^{1-\alpha_s}.$$

- If *TFPR* equal across all firms, $A_s = \left(\sum_i (A_{si})^{\sigma-1}\right)^{\frac{1}{\sigma-1}}$.
- Suppose productivities A_i and $TFPR_{si}$ distributed according to joint lognormal. Then:

$$\log A_{s} = \underbrace{\log \left(\sum_{i} \left(A_{si} \frac{\overline{TFPR}_{s}}{TFPR_{si}} \right)^{\sigma - 1} \right)^{\frac{1}{\sigma - 1}}}_{\text{log } A_{s} \text{ at frontier}} - \underbrace{\frac{\sigma}{2} \text{Var}(\log TFPR_{si})}_{\text{Distance to frontier}}.$$

Measurement

• We can infer wedges from capital-labor ratio and output-labor ratios:

$$\begin{aligned} 1 + \tau_{Ksi} &= \frac{\alpha_s}{1 - \alpha_s} \frac{wL_{si}}{rK_{si}}, \\ 1 - \tau_{Ysi} &= \frac{\sigma}{\sigma - 1} \frac{1}{1 - \alpha_s} \frac{wL_{si}}{p_{si}y_{si}}. \end{aligned}$$

 Of course, this is coming from (strong) assumption of common Cobb-Douglas sectoral technologies.

Measurement

Gains

Year	Gains from moving to frontier	Gains from moving to 1997 US TFPR dispersion		
China				
1998	115	51		
2001	96	37		
2005	87	31		
India				
1987	100	40		
1991	102	41		
1994	128	59		
United States				
1977	36			
1987	31			
1997	43			

- Manufacturing TFP in US 130% higher than China. \Rightarrow Misallocation accounts for 49%.
- Manufacturing TFP in US 160% higher than India. \Rightarrow Misallocation accounts for 35%.

Ownership and TFPR

TABLE VII TFP BY OWNERSHIP

	TFPR	TFPQ
China		
State	-0.415	-0.144
	(0.023)	(0.090)
Collective	0.114	0.047
	(0.010)	(0.013)
Foreign	-0.129	0.228
	(0.024)	(0.040)
ndia		
State (central)	-0.285	0.717
	(0.082)	(0.295)
State (local)	-0.081	0.425
	(0.063)	(0.103)
Joint public/private	-0.162	0.671
- *	(0.037)	(0.085)

Notes. The dependent variable is the deviation of log TPPR or log TPPQ from the industry mean. The independent variables for China are dummies for state-owned plants, collective-owned plants (plants injust) owned by local governments and private parties), and foreign-owned plants. The omitted group is domestic private plants. The independent variables for londs are dummies for a plant owned by the central government, as plant owned by a local government, and a plant jointly owned by the central government (either central government) by private individuals. The omitted group is a privately owned plant (both domestic and foreign.) Regressions are weighted least squares with industry value-added shares as weights. Entries are the dummy coefficients, with standard errors in parentheses. Results are nooled for all vears.

 State-owned firms tend to have lower TFPR, consistent with better access to credit or preferential treatment.

Takeaways

- Influential proof-of-concept that misallocation can be large.
- Changes in allocative efficiency can matter.
- Reasonable to have concerns about strong assumptions needed to map to data.
- Today, we're going to relax many of the parametric assumptions (horizontal economy, lognormal distributions) to analyze the effect of any "wedges."

Table of Contents

Hsieh and Klenow (2009)

Technical vs. Allocative Efficiency

Ex Post Results

Ex Ante Results

Distance to the Frontier

Misallocation in the New Keynesian Model

Technical vs. Allocative Efficiency

- We can write output as a function of technology and resource allocation, $Y = \mathcal{Y}(A, \mathcal{X})$.
- In our example, $A = (\{A_i\}, L)$ and $\mathcal{X} = (\{I_i\})$.
- Then, we can always write:

$$d\log Y = \underbrace{\frac{\partial \log \mathcal{Y}}{\partial \log \mathcal{A}} d\log \mathcal{A}}_{\Delta \text{Technological Efficiency}} + \underbrace{\frac{\partial \log \mathcal{Y}}{\partial \mathcal{X}} d\mathcal{X}}_{\Delta \text{Allocative Efficiency}}.$$

- First term: Effect of technologies on output, holding fixed allocation of resources.
- Second term: Improvement in output due to reallocations across uses.

Technical vs. Allocative Efficiency: Distortions

- Let's introduce some set of distortionary instruments τ .
- E.g., in our horizontal economy ex, let $\tau = \{\tau_i\}$ be vector of taxes on each firm.
- ullet Allocation of resources ${\mathcal X}$ will depend both on technologies and on taxes.
- We now can write output in terms of technology primitives and distortions:

$$Y = \mathcal{Y}(A, \mathcal{X}(A, \tau)).$$

Technology change can have effects on both technical and allocative efficiency:

$$\frac{d \log Y}{d \log \mathcal{A}} = \underbrace{\frac{\partial \log \mathcal{Y}}{\partial \log \mathcal{A}}}_{\Delta \text{Technological Efficiency}} + \underbrace{\frac{\partial \log \mathcal{Y}}{\partial \mathcal{X}} \frac{\partial \mathcal{X}(\mathcal{A}, \tau)}{\partial \log \mathcal{A}}}_{\Delta \text{Allocative Efficiency}}.$$

Technical vs. Allocative Efficiency: Efficient economy

• Suppose output is initially efficient given technologies A. Then:

$$Y = \max_{\mathcal{X}} \mathcal{Y}(\mathcal{A}, \mathcal{X}) \qquad \Rightarrow \qquad \frac{\partial \log \mathcal{Y}}{\partial \mathcal{X}} = 0.$$

By the envelope theorem,

$$\frac{d\log Y}{d\log \mathcal{A}} = \underbrace{\frac{\partial \log \mathcal{Y}}{\partial \log \mathcal{A}}}_{\Delta \text{Technological Efficiency}} + \underbrace{\frac{\partial \log \mathcal{Y}}{\partial \mathcal{X}} \frac{\partial \mathcal{X}(\mathcal{A}, \tau)}{\partial \log \mathcal{A}}}_{\Delta \text{Allocative Efficiency}}.$$

Technical vs. Allocative Efficiency: Efficient economy

• Suppose output is initially efficient given technologies A. Then:

$$Y = \max_{\mathcal{X}} \mathcal{Y}(\mathcal{A}, \mathcal{X}) \qquad \Rightarrow \qquad \frac{\partial \log \mathcal{Y}}{\partial \mathcal{X}} = 0.$$

By the envelope theorem,

$$\frac{d \log Y}{d \log A} = \underbrace{\frac{\partial \log \mathcal{Y}}{\partial \log A}}_{\Delta \text{Technological Efficiency}} + \underbrace{0}_{\Delta \text{Allocative Efficiency}}$$

Technical vs. Allocative Efficiency: Efficient economy

• Suppose output is initially efficient given technologies A. Then:

$$Y = \max_{\mathcal{X}} \mathcal{Y}(\mathcal{A}, \mathcal{X}) \qquad \Rightarrow \qquad \frac{\partial \log \mathcal{Y}}{\partial \mathcal{X}} = 0.$$

By the envelope theorem,

$$\frac{d \log Y}{d \log \mathcal{A}} = \underbrace{\frac{\partial \log \mathcal{Y}}{\partial \log \mathcal{A}}}_{\Delta \text{Technological Efficiency}} + \underbrace{0}_{\Delta \text{Allocative Efficiency}}$$

- Starting at efficiency, marginal reallocations have no effect on output.
- Even if endpoint is inefficient!

Table of Contents

Hsieh and Klenow (2009)

Technical vs. Allocative Efficiency

Ex Post Results

Ex Ante Results

Distance to the Frontier

Misallocation in the New Keynesian Model

Framework

- To characterize changes in allocative efficiency generally (i.e., away from initially
 efficient economies), we will put some structure on the problem.
- Arbitrary factors f = 1, ..., F, each in fixed supply L_f .
- Arbitrary producers i = 1,...,N with CRS production given by cost functions,

$$TC_i(y_i) = \frac{1}{A_i}C_i(p_{i1},...,p_{iN},w_{i1},...,w_{iF})y_i.$$

• Each producer N has an exogenous markup μ_i :

$$p_i = \mu_i \frac{1}{A_i} C_i$$
.

Remember: μ_i stand-in for any sorts of "wedges" (taxes, shadow price of quota, etc.)

Framework

Final demand maximizes a homothetic aggregator,

$$Y = \max_{\{c_i\}} \mathcal{D}(c_1,...,c_N),$$

subject to budget constraint

$$\sum_{i} p_i c_i = \sum_{f} w_f L_f + \sum_{i} \pi_i,$$

where profits π_i given by

$$\pi_i = \left(1 - \frac{1}{\mu_i}\right) p_i y_i.$$

No rent seeking. (See Liu (2019) for an example where wedge revenue is wasted.)

1. Input-specific wedges.

2. Consumption taxes / wedges.

1. Input-specific wedges.

•
$$TC_i(y_i) = \frac{1}{A_i}C_i((1+\tau_{i1})p_1,...,(1+\tau_{iN})p_N,(1+\tau_{i1}^f)w_1,...,(1+\tau_{iF}^f)w_F)y_i.$$

2. Consumption taxes / wedges.

1. Input-specific wedges.

•
$$TC_i(y_i) = \frac{1}{A_i}C_i((1+\tau_{i1})p_1,...,(1+\tau_{iN})p_N,(1+\tau_{i1}^f)w_1,...,(1+\tau_{iF}^f)w_F)y_i.$$

2. Consumption taxes / wedges.

•
$$P = 1/Y = p_0 = C_0((1 + \tau_1^c)p_1, ..., (1 + \tau_N^c)p_N).$$

1. Input-specific wedges.

•
$$TC_i(y_i) = \frac{1}{A_i}C_i((1+\tau_{i1})p_1,...,(1+\tau_{iN})p_N,(1+\tau_{i1}^f)w_1,...,(1+\tau_{iF}^f)w_F)y_i.$$

2. Consumption taxes / wedges.

•
$$P = 1/Y = p_0 = C_0((1 + \tau_1^c)p_1, ..., (1 + \tau_N^c)p_N).$$

•
$$Y = \mathcal{Y}(A, \mathcal{X}(A, \mu)) \Rightarrow Y = \mathcal{Y}(A(h), \mathcal{X}(A(h), \mu(A, h))).$$

1. Input-specific wedges.

•
$$TC_i(y_i) = \frac{1}{A_i}C_i((1+\tau_{i1})p_1,...,(1+\tau_{iN})p_N,(1+\tau_{i1}^f)w_1,...,(1+\tau_{iF}^f)w_F)y_i.$$

2. Consumption taxes / wedges.

•
$$P = 1/Y = p_0 = C_0((1 + \tau_1^c)p_1, ..., (1 + \tau_N^c)p_N).$$

•
$$Y = \mathcal{Y}(A, \mathcal{X}(A, \mu)) \Rightarrow Y = \mathcal{Y}(A(h), \mathcal{X}(A(h), \mu(A, h))).$$

- 4. Decreasing returns to scale. Interpretation of profits?
- 5. Input-augmenting technologies.
- Elastic factor supply.

Input-Output Notation

• Now, we must keep track of both revenue-based and cost-based direct exposures:

$$\Omega_{ij} = rac{
ho_j x_{ij}}{
ho_i y_i}, \qquad ilde{\Omega}_{ij} = rac{
ho_j x_{ij}}{\sum_k
ho_k x_{ik}} = \mu_i \Omega_{ij}.$$

Is
$$\sum_{j} \tilde{\Omega}_{ij} \leq 1$$
? $\sum_{j} \Omega_{ij} \leq 1$?

Input-Output Notation

Now, we must keep track of both revenue-based and cost-based direct exposures:

$$\Omega_{ij} = \frac{\rho_j x_{ij}}{\rho_i y_i}, \qquad \tilde{\Omega}_{ij} = \frac{\rho_j x_{ij}}{\sum_k \rho_k x_{ik}} = \mu_i \Omega_{ij}.$$

Is
$$\sum_{j} \tilde{\Omega}_{ij} \lesssim 1$$
? $\sum_{j} \Omega_{ij} \lesssim 1$?

Likewise, we now have revenue-based and cost-based indirect exposures,

$$\Psi = (I - \Omega)^{-1}, \qquad \tilde{\Psi} = (I - \tilde{\Omega})^{-1}.$$

• Revenue-based and cost-based Domar weights given by first row of Ψ and $\tilde{\Psi},$

$$\lambda = \Psi^{(0)}, \qquad \tilde{\lambda} = \tilde{\Psi}^{(0)}.$$

• Which are sales shares? What happens if the economy is efficient ($\mu_i = 1$ for all i)?

Given a productivity shock, which Domar weight matters?

• How do prices respond to shocks?

$$d\log p_i = d\log \mu_i - d\log A_i + \sum_j \tilde{\Omega}_{ij} d\log p_j + \sum_f \tilde{\Omega}_{if} d\log w_f.$$

• Stacking, and using $d \log \Lambda_f = d \log w_f + d \log L_f = d \log w_f$, we have

$$d \log p = d \log \mu - d \log A + \tilde{\Omega} d \log p + \tilde{\Omega}_{(f)} d \log \Lambda.$$

$$\Rightarrow d\log p = \tilde{\Psi}\left(d\log \mu - d\log A + \tilde{\Omega}_{(f)}d\log \Lambda\right).$$

So for output,

$$d \log Y = -d \log p_0 = \tilde{\lambda}' (d \log A - d \log \mu) - \tilde{\Lambda}' d \log \Lambda.$$

Theorem

• The effect of productivity and markup shocks $d \log A$ and $d \log \mu$ on output is

$$d\log Y = \underbrace{\tilde{\lambda}' d\log A}_{\Delta \text{ Technological Efficiency}} \underbrace{-\tilde{\lambda}' d\log \mu - \tilde{\Lambda}' d\log \Lambda}_{\Delta \text{ Allocative Efficiency}}.$$

- d log Λ is how factor income shares change with shock (can be observed ex post).
- We will characterize $d \log \Lambda$ in terms of economy's structure (ex ante results).
- Since these results hold fixed factor supplies, growth accounting:

$$d \log Y = d \log \mathsf{TFP} + \tilde{\Lambda}' d \log L.$$

where

$$d\log \mathsf{TFP} = \tilde{\lambda}' d\log A - \tilde{\lambda}' d\log \mu - \tilde{\Lambda}' d\log \Lambda.$$

Theorem: Starting from efficiency

$$d\log Y = \underbrace{\tilde{\lambda}' d\log A}_{\Delta \text{ Technological Efficiency}} \underbrace{-\tilde{\lambda}' d\log \mu - \tilde{\lambda}' d\log \Lambda}_{\Delta \text{ Allocative Efficiency}}.$$

- What happens when economy is initially efficient?.
- Technology shock d log A_i:

$$d\log Y = \lambda_i d\log A_i - \tilde{\Lambda}' \frac{d\log \tilde{\Lambda}}{d\log A_i} d\log A_i$$
$$= \lambda_i d\log A_i - \sum_f \frac{d\tilde{\Lambda}_f}{d\log A_i} d\log A_i$$
$$= \lambda_i d\log A_i + 0.$$

• Useful property: $\sum_{f} \tilde{\Psi}_{if} = 1$ for all i. Thus, $\sum_{f} \tilde{\Lambda}_{f} = 1$.

Theorem: Starting from efficiency

$$d\log Y = \underbrace{\tilde{\lambda}' d\log A}_{\Delta \text{ Technological Efficiency}} \underbrace{-\tilde{\lambda}' d\log \mu - \tilde{\Lambda}' d\log \Lambda}_{\Delta \text{ Allocative Efficiency}}.$$

- What happens when economy is initially efficient?.
- Markup shock $d \log \mu_i$:

$$d\log Y = -\lambda_i d\log \mu_i - \tilde{\Lambda}' \frac{d\log \Lambda}{d\log \mu_i} d\log \mu_i$$

$$= -\lambda_i d\log \mu_i - \frac{d(\sum_f \Lambda_f)}{d\log \mu_i} d\log \mu_i$$

$$= -\lambda_i d\log \mu_i - (-\lambda_i) d\log \mu_i$$

$$= 0.$$

Theorem: Effect of Productivity and Markup Shocks

In general, for productivity shocks

$$\frac{d \log Y}{d \log A_k} = \underbrace{\tilde{\lambda}_k}_{\Delta \text{ Technology}} \underbrace{-\sum_f \tilde{\Lambda}_f \frac{d \log \Lambda_f}{d \log A_k}}_{\Delta \text{ Allocative Efficiency}}.$$

For markup shocks,

$$\frac{d \log Y}{d \log \mu_k} = \underbrace{-\tilde{\lambda}_k - \sum_f \tilde{\Lambda}_f \frac{d \log \Lambda_f}{d \log \mu_k}}_{\Delta \text{ Allocative Efficiency}}$$

Figure: Vertical supply chain.

- Firm k has productivity A_k and markup μ_k .
- What is the labor share of income, Λ_L ?

Figure: Vertical supply chain.

- Firm k has productivity A_k and markup μ_k .
- Labor share of income $\Lambda_L = 1/\prod_{i=1}^N \mu_i$.
- What is the effect of a markup shock on output?

Figure: Vertical supply chain.

- Firm k has productivity A_k and markup μ_k .
- Labor share of income $\Lambda_L = 1/\prod_{i=1}^N \mu_i$.
- What is the effect of a markup shock on output?

$$d \log Y = -\tilde{\lambda}_i d \log \mu_i - \tilde{\Lambda}_L d \log \Lambda_L.$$

$$d\log \Lambda_L = -d\log \mu_i, \qquad \text{and} \qquad \tilde{\lambda}_i = \tilde{\Lambda}_L = 1.$$

Figure: Vertical supply chain.

- Firm k has productivity A_k and markup μ_k .
- Labor share of income $\Lambda_L = 1/\prod_{i=1}^N \mu_i$.
- What is the effect of a markup shock on output?

$$d\log Y = -\tilde{\lambda}_i d\log \mu_i - \tilde{\Lambda}_L d\log \Lambda_L.$$
 $d\log \Lambda_L = -d\log \mu_i, \quad \text{and} \quad \tilde{\lambda}_i = \tilde{\Lambda}_L = 1.$

• What is the effect of a productivity shock on output?

Figure: Vertical supply chain.

- Firm k has productivity A_k and markup μ_k .
- Labor share of income $\Lambda_L = 1/\prod_{i=1}^N \mu_i$.
- What is the effect of a markup shock on output?

$$d\log Y = -\tilde{\lambda}_i d\log \mu_i - \tilde{\Lambda}_L d\log \Lambda_L.$$
 $d\log \Lambda_L = -d\log \mu_i, \qquad ext{and} \qquad ilde{\lambda}_i = ilde{\Lambda}_L = 1.$

- What is the effect of a productivity shock on output?
- What would Hulten's theorem have given us?

Figure: Horizontal economy.

Figure: Horizontal economy.

• What is the effect of a markup shock on output?

$$\frac{d \log Y}{d \log \mu_i} = -\tilde{\lambda}_i - \tilde{\Lambda}_L \frac{d \log \Lambda_L}{d \log \mu_i}$$
$$= \lambda_i \theta_0 \left(\frac{\bar{\mu}}{\mu_i} - 1\right),$$

where the sales-weighted harmonic average markup $\bar{\mu} = \left(\sum_{i=1}^{N} \lambda_i/\mu_i\right)^{-1} = 1/\Lambda_L$.

• What is the effect of a productivity shock on output?

Figure: Horizontal economy.

What is the effect of a markup shock on output?

$$\frac{d \log Y}{d \log \mu_i} = -\tilde{\lambda}_i - \tilde{\Lambda}_L \frac{d \log \Lambda_L}{d \log \mu_i}$$
$$= \lambda_i \theta_0 \left(\frac{\bar{\mu}}{\mu_i} - 1\right),$$

where the sales-weighted harmonic average markup $\bar{\mu} = \left(\sum_{i=1}^{N} \lambda_i / \mu_i\right)^{-1} = 1/\Lambda_L$.

• What is the effect of a productivity shock on output?

$$\frac{d \log Y}{d \log A_i} = \tilde{\lambda}_i - \tilde{\Lambda}_L \frac{d \log \Lambda_L}{d \log A_i}$$
$$= \lambda_i - \lambda_i (\theta_0 - 1) \left(\frac{\bar{\mu}}{\mu_i} - 1\right),$$

Example: Round-about economy

Figure: Round-about economy.

- Round-about firm uses L and x_{11} with elasticity θ_1 .
- Effect of a markup shock:

$$\frac{d \log Y}{d \log \mu_1} = -\tilde{\lambda}_1 - \tilde{\Lambda}_L \frac{d \log \Lambda_L}{d \log \mu_1}$$
$$= \theta_1 \lambda_1 (\tilde{\lambda}_1 - 1)(1/\mu - 1).$$

- When is this positive? Negative?
- Effect of a productivity shock:

$$\frac{d \log Y}{d \log A_1} = \tilde{\lambda}_1 - \tilde{\Lambda}_L \frac{d \log \Lambda_L}{d \log A_1}$$
$$= \tilde{\lambda}_1 - (\theta_1 - 1)\lambda_1(\tilde{\lambda}_1 - 1)(1/\mu - 1).$$

Beware of ad hoc productivity indices

- Many popular decompositions of changes in an ad-hoc aggregate productivity index.
- E.g., Baily, Hulten, and Campbell (1992) define a "TFP index"

$$\log A = \sum_i \lambda_i \log A_i.$$

$$d \log A = \sum_{i} \lambda_{i} d \log A_{i} + \sum_{i} d \lambda_{i} \log A_{i}.$$

• E.g., Olley and Pakes (1992) define "industry productivity" for an industry with N firms,

$$A = \bar{A} + \sum_{i=1}^{N} (A_i - \bar{A}) \left(\lambda_i - \frac{1}{N} \right),$$

where
$$\bar{A} = (1/N)\sum_i A_i$$
.

• These indices do not generally coincide with TFP, and the decompositions can detect efficiency gains from reallocation where there are none.

Alternative useful decomposition

Another useful decomposition from Petrin and Levinsohn (2012):

$$d\log Y = \sum_{i} \lambda_i d\log A_i + \sum_{i} \lambda_i (1 - \mu_i^{-1}) (d\log y_i - d\log A_i).$$

Uses quantities rather than factor income shares.

- Careful with interpretation:
 - May be tempting to conclude that you always want to reallocate quantities toward high-markup producers.
 - The second term is not due to reallocations alone.

Caution: Interdependencies

Figure: Interdepencies.

- In horizontal economy, high-wedge = more distorted.
- This is not always the case.
- 1, 3 use labor directly. Suppose $\mu_1 > \mu_3 = 1$.
- Should we move labor to 1?
- Consider subsidy to labor for 1. We get:

$$\frac{d\log Y}{d\log \tau_1} = -\theta_0 \lambda_1 (1-\lambda_1) \bar{\mu} \left[\frac{\mu_2 - \mu_1}{\mu_1 \mu_2} \right].$$

• Depends on $\mu_2 \leq \mu_1$. Echoes McKenzie (1951) warning.

Caution: Spurious reallocation effects in vertical supply chain

Figure: Vertical supply chain.

- Suppose we have productivity shock to firm N.
- $d \log Y = d \log A_N$, entire effect due to technology.
- Petrin and Levinsohn (2012) decomposition:

$$d \log Y = \lambda_N d \log A_N + \sum_{i=1}^{N-1} \lambda_i (1 - \mu_i^{-1}) d \log y_i$$

$$= [\lambda_N + (\lambda_{N-1} - \lambda_N) + (\lambda_{N-2} - \lambda_{N-1}) + \dots] d \log A_N$$

$$= \lambda_N d \log A_N + (\lambda_1 - \lambda_N) d \log A_N$$

$$= d \log A_N.$$

Acyclic economies: No reallocation effects!

- Unique feasible allocation, hence efficient and no reallocation effects.
- Alternative decompositions find spurious changes in "allocative efficiency."

Growth accounting: Quantitative application to US markups

- How important are changes in allocative efficiency for US growth?
- Idea: Suppose markups are only distortions.
 - Take BEA input—output data from 1997–2015.
 - Assign Compustat firms to each industry.
 - Measure firms' sales shares and markups.
 - Use changes in factor income shares (labor and capital) in the data.
- Distortion-adjusted Solow residual

$$\Delta \log A_t \approx \Delta \log Y_t - \tilde{\Lambda}'_{t-1} \Delta \log \Lambda_t$$
.

- Change in allocative efficiency, $-\tilde{\lambda}'\Delta\log\mu \tilde{\Lambda}'_{t-1}\Delta\log\Lambda_t$.
- Residual is change in technology.

Growth accounting: Quantitative application to US markups

- Δ allocative efficiency accounts for half of growth.
- Within-industry reallocations to distorted producers (important to disaggregate!).

Table of Contents

Hsieh and Klenow (2009)

Technical vs. Allocative Efficiency

Ex Post Results

Ex Ante Results

Distance to the Frontier

Misallocation in the New Keynesian Model

Changes in factor shares

- How can we solve for changes in factor shares $d \log \Lambda$ from shocks?
- Define covariance operator,

$$Cov_{\tilde{\Omega}^{(j)}}\left(\tilde{\Psi}_{(K)},\Psi_{(L)}\right) = \sum_{i} \tilde{\Omega}_{ji} \tilde{\Psi}_{iK} \Psi_{iL} - \left(\sum_{i} \tilde{\Omega}_{ji} \tilde{\Psi}_{iK}\right) \left(\sum_{i} \tilde{\Omega}_{ji} \Psi_{iL}\right).$$

For productivity shocks, changes in factor shares solve the system,

$$\frac{d\log\Lambda_f}{d\log A_k} = \frac{1}{\Lambda_f} \sum_j \frac{\lambda_j}{\mu_j} (\theta_j - 1) Cov_{\tilde{\Omega}^{(j)}} \left(\tilde{\Psi}_{(k)} - \sum_g \tilde{\Psi}_{(g)} \frac{d\log\Lambda_g}{d\log A_k}, \Psi_{(f)} \right).$$

Likewise, for markup shocks,

$$\frac{d\log\Lambda_f}{d\log\mu_k} = -\frac{1}{\Lambda_f}\sum_j\frac{\lambda_j}{\mu_j}(\theta_j - 1)\text{Cov}_{\tilde{\Omega}^{(j)}}\left(\tilde{\Psi}_{(k)} + \sum_g\tilde{\Psi}_{(g)}\frac{d\log\Lambda_g}{d\log A_k}, \Psi_{(f)}\right) - \lambda_k\frac{\Psi_{kf}}{\Lambda_f}.$$

Changes in factor shares: Single factor

- Let's consider a case with a single factor (labor):
- Productivity shocks:

$$\frac{d\log\Lambda_L}{d\log A_k} = \frac{1}{\Lambda_L} \sum_j \frac{\lambda_j}{\mu_j} (\theta_j - 1) Cov_{\widetilde{\Omega}^{(j)}} \left(\widetilde{\Psi}_{(k)}, \Psi_{(L)} \right).$$

- Dependence on $Cov_{\tilde{\Omega}^{(j)}}\left(\tilde{\Psi}_{(k)},\Psi_{(L)}/\Lambda_L\right)$:
 - $\tilde{\Psi}_{(k)}$ measures how much price of *i* decreases when A_i increases.
 - $\Psi_{(L)}/\Lambda_L$ measures how high markups are on i's supply chain relative to overall economy.
 - If $Cov_{\tilde{\Omega}^{(j)}}\left(\tilde{\Psi}_{(k)},\Psi_{(L)}/\Lambda_L\right)<0$, substitution by j lowers labor share.
 - ullet Effects summed up over all producers weighted by their cost shares λ_j/μ_j .
- Why does this equal zero in an efficient economy?

Changes in factor shares: Single factor

- Let's consider a case with a single factor (labor):
- Markup shocks:

$$\frac{d \log \Lambda_L}{d \log \mu_k} = -\frac{1}{\Lambda_L} \sum_j \frac{\lambda_j}{\mu_j} (\theta_j - 1) Cov_{\tilde{\Omega}^{(j)}} \left(\tilde{\Psi}_{(k)}, \Psi_{(L)} \right) - \lambda_k \frac{\Psi_{kL}}{\Lambda_L}.$$

- Substitution effects analogous to productivity shocks.
- Now we also have direct effect on wage.
- How does this expression simplify when the economy is initially efficient?

Figure: Horizontal economy.

• What is the effect of a markup shock on output?

$$\frac{d\log\Lambda_L}{d\log\mu_k} = -\frac{1}{\Lambda_L}(\theta_0 - 1)Cov_{\tilde{\Omega}^{(0)}}\left(\tilde{\Psi}_{(k)}, \Psi_{(L)}\right) - \lambda_k \frac{\Psi_{kL}}{\Lambda_L}.$$

• What is $\tilde{\Omega}_{0i}$?

Figure: Horizontal economy.

• What is the effect of a markup shock on output?

$$\frac{d\log\Lambda_L}{d\log\mu_k} = -\frac{1}{\Lambda_L}(\theta_0 - 1)Cov_{\tilde{\Omega}^{(0)}}\left(\tilde{\Psi}_{(k)}, \Psi_{(L)}\right) - \lambda_k \frac{\Psi_{kL}}{\Lambda_L}.$$

• What is $\tilde{\Omega}_{0i}$? λ_i .

Figure: Horizontal economy.

$$\frac{d\log \Lambda_L}{d\log \mu_k} = -\frac{1}{\Lambda_L}(\theta_0 - 1)Cov_{\widetilde{\Omega}^{(0)}}\left(\widetilde{\Psi}_{(k)}, \Psi_{(L)}\right) - \lambda_k \frac{\Psi_{kL}}{\Lambda_L}.$$

- What is $\tilde{\Omega}_{0i}$? λ_i .
- What is $\tilde{\Psi}_{ik}$?

Figure: Horizontal economy.

$$\frac{d\log \Lambda_L}{d\log \mu_k} = -\frac{1}{\Lambda_L}(\theta_0 - 1)Cov_{\tilde{\Omega}^{(0)}}\left(\tilde{\Psi}_{(k)}, \Psi_{(L)}\right) - \lambda_k \frac{\Psi_{kL}}{\Lambda_L}.$$

- What is $\tilde{\Omega}_{0i}$? λ_i .
- What is $\tilde{\Psi}_{ik}$? $1\{i=k\}$.

Figure: Horizontal economy.

$$\frac{d\log\Lambda_L}{d\log\mu_k} = -\frac{1}{\Lambda_L}(\theta_0 - 1)Cov_{\tilde{\Omega}^{(0)}}\left(\tilde{\Psi}_{(k)}, \Psi_{(L)}\right) - \lambda_k \frac{\Psi_{kL}}{\Lambda_L}.$$

- What is $\tilde{\Omega}_{0i}$? λ_i .
- What is $\tilde{\Psi}_{ik}$? $1\{i=k\}$.
- What is Ψ_{iL} ?

Figure: Horizontal economy.

$$\frac{d\log \Lambda_L}{d\log \mu_k} = -\frac{1}{\Lambda_L}(\theta_0 - 1)Cov_{\tilde{\Omega}^{(0)}}\left(\tilde{\Psi}_{(k)}, \Psi_{(L)}\right) - \lambda_k \frac{\Psi_{kL}}{\Lambda_L}.$$

- What is $\tilde{\Omega}_{0i}$? λ_i .
- What is $\tilde{\Psi}_{ik}$? $1\{i=k\}$.
- What is Ψ_{iL} ? $1/\mu_i$.

Figure: Horizontal economy.

$$\frac{d\log\Lambda_L}{d\log\mu_k} = -\frac{1}{\Lambda_L}(\theta_0 - 1)Cov_{\widetilde{\Omega}^{(0)}}\left(\widetilde{\Psi}_{(k)}, \Psi_{(L)}\right) - \lambda_k \frac{\Psi_{kL}}{\Lambda_L}.$$

- What is $\tilde{\Omega}_{0i}$? λ_i .
- What is $\tilde{\Psi}_{ik}$? $1\{i=k\}$.
- What is Ψ_{iL} ? $1/\mu_i$.

$$\frac{d \log \Lambda_L}{d \log \mu_k} = -\bar{\mu}(\theta_0 - 1) \left(\frac{\lambda_k}{\mu_k} - \lambda_k \sum_i \frac{\lambda_i}{\mu_i} \right) - \lambda_k \frac{\bar{\mu}}{\mu_k} \\
= -\theta_0 \lambda_k \left(\frac{\bar{\mu}}{\mu_k} - 1 \right) - \lambda_k.$$

Table of Contents

Hsieh and Klenow (2009)

Technical vs. Allocative Efficiency

Ex Post Results

Ex Ante Results

Distance to the Frontier

Misallocation in the New Keynesian Model

Losses from markup distortions

• What are the gains of moving to the efficient frontier?

Distance to frontier =
$$\frac{\log Y(\mathcal{A}, \mathcal{X}(\mathcal{A}, 1))}{\log Y(\mathcal{A}, \mathcal{X}(\mathcal{A}, \mu))}.$$

- Recall: Effect of reallocations at frontier is zero.
- At inefficient point, effect of changing quantities $\Delta \log y_i$ to a first order is

$$\Delta \log Y \approx \sum_{i} \lambda_{i} (1 - \mu_{i}^{-1}) (\Delta \log y_{i}).$$

Thus, distance to frontier given by summing over Harberger triangles:

Distance to frontier
$$\approx \frac{1}{2} \sum_{i} \lambda_i (1 - \mu_i^{-1}) \Delta \log y_i \approx -\frac{1}{2} \sum_{i} \lambda_i (\Delta \log \mu_i) (\Delta \log y_i)$$
.

Losses from markup distortions

Distance to frontier
$$\approx -\frac{1}{2}\sum_{i}\lambda_{i}(\Delta\log\mu_{i})(\Delta\log y_{i}).$$

- We can solve for $\Delta \log y_i \approx \sum_k \frac{\partial \log y_i}{\partial \log \mu_k} \Delta \log \mu_k$ given network structure.
- For economy with single factor,

Distance to frontier
$$pprox rac{1}{2} \sum_i \lambda_i \theta_i \textit{Var}_{\Omega^{(i)}} \left(\sum_k \Psi_{(k)} \Delta \log \mu_k
ight).$$

Losses from markup distortions

Distance to frontier
$$\approx -\frac{1}{2}\sum_{i}\lambda_{i}(\Delta \log \mu_{i})(\Delta \log y_{i}).$$

- We can solve for $\Delta \log y_i \approx \sum_k \frac{\partial \log y_i}{\partial \log \mu_k} \Delta \log \mu_k$ given network structure.
- For economy with single factor,

Distance to frontier
$$pprox rac{1}{2} \sum_i \lambda_i \theta_i \textit{Var}_{\Omega^{(i)}} \left(\sum_k \Psi_{(k)} \Delta \log \mu_k
ight).$$

For horizontal economy,

Distance to frontier
$$\approx \frac{1}{2}\theta_0 Var_{\lambda}(\Delta \log \mu_i)$$
.

• Recall Hsieh and Klenow (2009): $\frac{\theta_0}{2} Var(\log \mathsf{TFPR}_i)$.

Distance to frontier: Quantitative application to US economy

- BEA input—output data for 2015.
- Assign Compustat firms to each industry, and measure their sales and markups.
- Structural parameters:
 - Elasticities of substitution in consumption: 0.9.
 - Elasticity of substitution between value-added and intermediates: 0.5.
 - Elasticity of substitution across intermediates: 0.01.
 - Elasticity of substitution between labor and capital: 1.
 - Elasticity of substitution across firms outputs within industry: 8.

Distance to frontier: Quantitative application to US economy

	Distance to the frontier					
Markup measure	User Cost (UC)	Accounting (AP)	Production Function (PF)			
2015	13%	11%	25%			
1997	3%	5%	23%			

- Economy became more productive (growth accounting) but distance to frontier also increased.
- Cost of distortions: Contrast with 0.1% estimate of Harberger (1954) triangles.
- Tobin: "It takes a heap of Harberger triangles to fill an Okun gap."

Distance to frontier: Quantitative application to US economy

	Benchmark	CD + CES	$\xi=4$	Cobb-Douglas	No I–O	Sectoral
UC	13%	14%	8%	3%	5%	0.7%
AP	11%	12%	6%	3%	5%	1%
PF	25%	29%	14%	10%	14%	4%

- Elasticities matter.
- Input-output structure matters.
- Illustrates importance of disaggregation.

Table of Contents

Hsieh and Klenow (2009)

Technical vs. Allocative Efficiency

Ex Post Results

Ex Ante Results

Distance to the Frontier

Misallocation in the New Keynesian Model

Per-period utility:

$$u_t(Y_t, L_t) = \frac{Y_t^{1-\sigma}}{1-\sigma} - \frac{L_t^{1+\varphi}}{1+\varphi}, \quad \text{where} \quad Y_t = \left(\int_0^1 Y_t(i)^{\frac{\varepsilon-1}{\varepsilon}} di\right)^{\frac{\varepsilon}{\varepsilon-1}}$$

subject to budget constraint,

$$P_t Y_t = W_t L_t + T_t, \qquad ext{where} \qquad P_t = \left(\int_0^1 P_t(i)^{1-arepsilon} di
ight)^{rac{1}{1-arepsilon}}.$$

Production:

$$Y_t(i) = L_t(i)$$
.

• Prices including optimal subsidy τ and wedges from price rigidities, $\mu_i(t)$:

$$P_t(i) = \mu_t(i) \frac{\varepsilon}{\varepsilon - 1} \tau W_t.$$

Optimal subsidy $\tau = 1 - \varepsilon^{-1}$ sets $\frac{P_t Y_t}{W_t L_t} = 1$.

Household optimality:

$$Y_t^{1-\sigma} = \frac{P_t Y_t}{W_t L_t} L_t^{1+\varphi}.$$

Differentiating per-period utility to a second-order in shocks,

$$\Delta u_{t} = Y_{t}^{1-\sigma} (\Delta \log Y_{t}) - L_{t}^{1+\varphi} (\Delta \log L_{t}) + \frac{1}{2} (1-\sigma) Y_{t}^{1-\sigma} (\Delta \log Y_{t})^{2} - \frac{1}{2} (1+\varphi) L_{t}^{1+\varphi} (\Delta \log L_{t})^{2} + h.o.t.$$

• Change in output due to change in inputs and misallocation:

$$\Delta \log Y_t = \Delta \log L_t - \frac{\varepsilon}{2} Var(\log \mu_t(i)) + h.o.t.$$

Plugging in and evaluating at optimal point,

$$\Delta u_t = -\frac{1}{2} Y_t^{1-\sigma} \left[\varepsilon Var(\log \mu_t(i)) + (\sigma + \varphi) (\Delta \log Y_t)^2 \right] + h.o.t.$$

$$\Delta u_t = -\frac{1}{2} Y_t^{1-\sigma} \left[\underbrace{\varepsilon Var(\log \mu_t(i))}_{\text{Cost of inflation:}} + \underbrace{(\sigma + \phi)(\Delta \log Y_t)^2}_{\text{Cost of output gap:}} + h.o.t. \right]$$

$$\text{Cost of inflation:}_{\text{Misallocation due to price dispersion}} + \underbrace{(\sigma + \phi)(\Delta \log Y_t)^2}_{\text{Cost of output gap:}} + h.o.t.$$

- $Var(\log \mu_t(i))$ depends on inflation due to price rigidity.
- Simple e.g.: Suppose wage jumps permanently by $\Delta \log W_t$. With Calvo friction δ ,

$$Var(\log \mu_t(i)) pprox \delta(1-\delta)(\Delta \log W_t)^2 = \frac{1-\delta}{\delta}(\Delta \log \pi_t)^2.$$

More generally, Woodford (2003, ch. 6) shows

$$\sum_{t=0}^{\infty} \beta^t Var(\log \mu_t(i)) = \frac{1-\delta}{\delta(1-\beta(1-\delta))} \sum_{t=0}^{\infty} \beta^t (d \log \pi_t)^2.$$

- Costs of inflation in the canonical NK model are misallocation costs.
- Due to inefficient price/markup dispersion, which arises from price-setting frictions.
- Nakamura, Steinsson, Sun, and Villar (2018) on "The Elusive Costs of Inflation":
 - In standard New Keynesian models [...] the consumption-equivalent welfare loss of moving from 0% inflation to 12% inflation is roughly 10%."
 - Conclusions from measuring (a proxy for) price dispersion during the 1970s Great Inflation: "There is thus no evidence that prices deviated more from their optimal level during the Great Inflation period when inflation was running at higher than 10% a year than during the more recent period when inflation has been close to 2% a year. We conclude from this that the main costs of inflation in the New Keynesian model are completely elusive in the data."

Does inflation lead to inefficient price dispersion and misallocation?

 $\label{eq:Figure V} \mbox{Inefficient Price Dispersion}$

(a) Price dispersion vs. inflation.

FIGURE II Welfare Loss

(b) Welfare loss vs. inflation.

Source: Nakamura, Steinsson, Sun, and Villar (2018).

Does inflation lead to inefficient price dispersion and misallocation?

Mean Absolute Size of Price Changes in Sticky-Price Models

(a) Absolute size of price changes: Model.

Absolute Size of Price Changes in U.S. Data

(b) Absolute size of price changes: Data.

Source: Nakamura, Steinsson, Sun, and Villar (2018).

Misallocation, revisited with data from Argentina's hyperinflation

The Frequency of Price Changes (λ) and Expected Inflation: International

(a) Frequency of price changes.

Cross-Sectional Standard Deviation of Prices and Costs of Price Dispersion

(b) Price dispersion.

Source: Alvarez, Beraja, Gonzalez-Rozada and Neumeyer (2019).

Price dispersion: Micro to macro

Figure 1: Product-level price dispersion and inflation, raw data $\,$

Figure: Sara-Zaror (2024).

- Nakamura et al. (2018) find little relationship between agg. inflation and price dispersion.
- At micro level, steep relationship between inflation and price dispersion!
- Aggregation over non-linear relationship.
- Alvarez et al. (2019) model with idiosyncratic productivity shocks and menu costs.