Bazy danych ćw. 9 - projekt

Wykonanie: Dawid Olbrycht gr.2 284031

1. Cel projektu

Celem projektu było sprawdzenie wydajności złączeń i zagnieżdżeń dla schematów znormalizowanych i zdenormalizowanych. Sprawdzenie to wykonano na specjalnie przygotowanych tabelach przedstawiających tabele stratygraficzną. Wybrana przeze mnie tabela posiadała 98 pięter.

2. Parametry sprzętu i programu

Przy wykonywaniu pracy korzystałem z programu MySQL Community Server 8.0.23.

Pracowałem na komputerze z podanymi niżej podzespołami:

- Procesor Intel Core i7-7700HQ 2.8GHz 4-rdzenie
- Pamięć RAM 16 GB
- HDD Toshiba P300 2TB SATA III
- System operacyjny: Microsoft Windows 10 Home

3. Testy

Wykonałem szereg zapytań sprawdzających wydajność złączeń i zagnieżdżeń dla tabeli geochronologicznej w wersjach znormalizowanej i zdenormalizowanej. Zapytania te wykonałem w 2 etapach:

- 1. Dla tabel bez nałożonych indeksów na kolumnach
- 2. Dla tabel z nałożonymi indeksami

Zasadniczym celem testów była ocena wpływu normalizacji na zapytania złożone –złączenia i zagnieżdżenia (skorelowane) [14]. W tym celu zaproponowano cztery zapytania:

• 1 ZL, którego celem było złączenie syntetycznej tablicy miliona wyników z tabelą geochronologiczną w postaci ZDENORMALIZOWANEJ

SELECT COUNT(*) FROM Milion INNER JOIN GeoTabela ON (mod(Milion.liczba,98) = (GeoTabela.id_pietro));

• 2 ZL, którego celem którego celem było złączenie syntetycznej tablicy miliona wyników z tabelą geochronologiczną w postaci ZNORMALIZOWANEJ reprezentowanej przez złączenia 5 tabel

SELECT COUNT(*) FROM Milion INNER JOIN GeoPietro ON (mod(Milion.liczba,98)=GeoPietro.id_pietro) NATURAL JOIN GeoEpoka NATURAL JOIN GeoEon;

• **3 ZG**, którego celem jest złączenie syntetycznej tablicy miliona wyników ztabelą geochronologiczną w postaci ZDENORMALIZOWANEJ, przy czym złączenie jest wy-konywane poprzez zagnieżdżenie skorelowane:

SELECT COUNT(*) FROM Milion WHERE mod(Milion.liczba,98)= (SELECT id_pietro FROM GeoTabela WHERE mod(Milion.liczba,98)=(id_pietro));

• **4 ZG**, którego celem jest złączenie syntetycznej tablicy miliona wyników ztabelą geochronologiczną w postaci ZNORMALIZOWANEJ, przy czym złączenie jest wyko-nywane poprzez zagnieżdżenie skorelowane, a zapytanie wewnętrzne jest złączeniem ta-bel poszczególnych jednostek geochronologicznych:

SELECT COUNT(*) FROM Milion WHERE mod(Milion.liczba,98) IN (SELECT GeoPietro.id_pietro FROM GeoPietro NATURAL JOIN GeoEpoka NATURAL JOIN GeoEon;

Przy czwartym zapytaniu byłem zmuszony zmienić znak "=" na IN ponieważ w przeciwnym wypadku zapytanie nie chciało działać.

4. Wyniki

Każdy z testów przeprowadziłem 20 razy. Wyniki w każdej z prób były zgodne ze sobą. Z wszystkich 20 prób dla każdego testu wyciągnąłem średnią oraz wartość minimalną. Wartości średnich i wartości minimalnych umieściłem w tabeli 1.

Tabela 1. Wyniki testów

	1 ZL		2 ZL		3 ZG		4 ZG	
	MIN	ŚR	MIN	ŚR	MIN	ŚR	MIN	ŚR
<u>Bez</u>	531	553,95	3031	3193,05	46922	48531,9	2219	2328,1
<u>indeksów</u>								
<u>Z</u> indeksami	328	353,8	2609	2836,8	2750	2874,2	1765	1851,45

W celu lepszej wizualizacji wyników sporządziłem 2 wykresy:

Rys1. Wyniki testów.

Rys.2 Wyniki testów w zbliżeniu na wartości niższe

5. Wnioski

Z otrzymanych wyników można wyciągnąć następujące wnioski:

- Użycie indeksów w systemie MySQL we wszystkich testach przyśpiesza wykonanie zapytań dla zagnieżdżeń i złączeń.
- Dla złączeń postać zdenormalizowana jest wydajniejsza, natomiast dla zagnieżdżeń wydajniejszą postacią jest postać znormalizowana
- Najwięcej problemów systemowi MySQL sprawiło zagnieżdżenie skorelowane zdenormalizowanej wersji tabeli geochronologicznej