FEDERAL REPUBLIC

Unexamined Patent Application

Int. Cl.4:

OF GERMANY

DE 35 12 190 A1

B 24 B 23/02

Phone: (303)442-3471

Fax: (303)442-5805

German

File number:

P 35 12 190.4

Patent

Filing date:

April 3, 1985

Disclosure date:

October 9, 1986

Applicant:

Licentia Patent-Verwaltungs GmbH, 6000

Frankfurt, GERMANY

Inventor:

Stämmele, Siegfried, 7057 Leutenbach,

GERMANY; Göcmez, Musa, 7157 Murrhardt,

GERMANY

Representative:

Wolf, O., Patent Attorney, 7312 Kirchheim

Electric Motor-driven Grinding or Brushing Machine

The object of the invention is an electric motor-driven grinding or brushing machine with a working spindle driving a tool carrier, operated by a gearing.

This type of device is to be improved in that it operates without or, at best, with only very limited restoring torque.

To solve this task, the invention proposes that the rotor shaft (4) be provided with a pinion (7), which engages with crown gears (8, 9) arranged above it and beneath it, the lower one of which is joined to a working spindle in the form of a hollow shaft (11), and the other (9) drives a second working spindle (10) mounted in this hollow shaft, and that a tool carrier (12, 14) can be connected to the two working spindles (10, 11).

Phone: (303)442-3471

Fax: (303)442-5805

Claims

- 1. Electric motor-driven grinding or brushing machine with working spindles that drive a tool carrier arranged at an angle to the rotor shaft of the drive motor and operated via gearing, characterized by the fact that the rotor shaft (4) is provided with a pinion (7), which engages with crown gears (8, 9) arranged above and beneath it, the lower one of which is joined to a working spindle in the form of a hollow shaft (11), and the other (8) drives a second working spindle (10) mounted in this hollow shaft, and that a tool carrier (12, 14) can be connected to the two working spindles (10, 11).
- 2. Device according to Claim 1, characterized by the fact that the crown gear (8) arranged above pinion (7) has a smaller average gear rim diameter than the lower crown gear (9), and the working spindle (10) of the upper crown gear is guided in the hollow working spindle of the lower crown gear.
- 3. Device according to Claims 1 and 2, characterized by the fact that the tool carrier (12) driven by the working spindle of the upper crown gear revolves in a recess (13) of tool carrier (14) connected to the working spindle of the lower crown gear.
- 4. Device according to Claims 1 to 3, characterized by the fact that the tools (15, 16, 17, 18) are attached to tool carriers (12, 14).
- 5. Device according to Claims 1 to 4, characterized by the fact that the armature shaft pinion (7) is straight-toothed.
- 6. Device according to one of the preceding claims, characterized by the fact that the drive motor (6) is fed by a battery (3).
- 7. Device according to Claim 6, characterized by the fact that the housing (1) is provided with a receiving space (2) for the battery.

Phone: (303)442-3471

Fax: (303)442-5805

8. Device according to one of the preceding claims, characterized by the fact that it is equipped with a device for switching from line voltage to battery operation and vice versa.

Electric Motor-driven Grinding or Brushing Machine

The invention concerns an electric motor-driven grinding or brushing machine with working spindles that drive a tool carrier arranged at an angle to the rotor shaft of the drive motor and operated via gearing.

The known devices of this type have a shortcoming to the extent that, during work with the devices, a restoring torque occurs that adversely affects the work process and, under some circumstances, can lead to injury of the operating person.

The task of the invention is to devise a grinding or brushing machine of the type mentioned at the outset, which operates without or, at best, only very limited restoring torque.

This task is solved according to the invention in that the rotor shaft is provided with a pinion, which engages with crown gears arranged above and beneath it, the upper one of which is connected to a working spindle in the form of a hollow shaft, and the lower one drives a second working spindle mounted in this hollow shaft, and that a tool carrier can be connected to the two working spindles.

Modifications and expedient embodiments of the invention are mentioned in the subclaims.

The invention is explained below with reference to the drawing, which schematically shows a practical example.

In the drawing:	Fig. 1	shows a longitudinal section through a battery-fed grinding or
		brushing machine,
	Fig. 2	shows a view of the device according to Fig. 1 in direction A,
	Fig. 3	a schematic view of the tools with their direction of rotation,
	Fig. 4	shows an alternative tool set of the device,
	Fig. 5	a bayonet-socket-like tool-tool carrier connection in cross section.

Phone: (303)442-3471

Fax: (303)442-5805

As is apparent from Fig. 1, the tool housing 1 contains a receiving space 2 for a quick-charge, replaceable battery 3. The rotor shaft 4 of drive motor 6, connectable to battery 3 by means of a switch 5, is provided with a straight-toothed drive pinion 7, which drives a crown gear 8 arranged spatially above it and a crown gear 9 lying spatially beneath it. The upper crown gear 8 has a smaller average gear rim diameter than the lower crown gear 9 and is rigidly attached to a drive shaft 10, which is guided to rotate in the drive shaft 11 of the lower crown gear 9, designed as a hollow shaft.

A tool carrier 12, which rotates in a recess 13 of tool carrier 14, which is mounted on drive shaft 11, is connected to the drive shaft 10 of crown gear 8.

The transmission ratio of crown gears 8 and 9, rotating in opposite directions, is chosen, so that the average rotational speeds of the two oppositely rotating tool carriers 12 and 14 are the same. Because of this, operation free of restoring torque is made possible (Fig. 2).

The tools, which, in the case of Fig. 1, are designed as grinding disks 15 and 16, can be attached to the corresponding tool carriers by a bayonet-socket-like connection (Fig. 5) or be clipped onto the corresponding tool carrier (Fig. 4).

Because of this, a rapid change or replacement of the tools is guaranteed. In the practical example according to Fig. 4, two brushes 17 and 18 are mounted on the tool carriers 12 and 14. Drive shaft 10 of the upper crown gear 8, containing a smaller number of teeth, as shown in Fig. 1, has a journal, which is connected to a ball bearing 20. The drive shaft 11 of the lower crown gear 9 is mounted to rotate in a lower ball bearing 21.

In the case of the bayonet-socket-like connection according to Fig. 5, 22 denotes the tool carrier and 23 the tool, whose tab-like attachment 24 engages in and behind the recess 25 in the tool carrier.

For operation of the device on line voltage, it can be equipped with an appropriate transformer-rectifier unit with corresponding switch.

Professional, Technical & Legal Translations

Language Matters
1445 Pearl Street
Boulder, Colorado 80302
Tel 303-442-5405
info@languagematters.com

CERTIFICATE OF ACCURACY

STATE OF COLORADO) SS: 84-1205131 COUNTY OF BOULDER)

ROSANGELA FIORI being duly sworn, deposes and says that she is the Manager of LANGUAGE MATTERS, 1445 Pearl Street, Boulder, CO 80302 and that she is thoroughly familiar with RICHARD VAN EMBURGH, who translated the attached

PATENT # DE 3512190A1

from the language GERMAN into the ENGLISH language, and that the ENGLISH text is a true and correct translation of the copy to the best of his knowledge and belief.

Sworn before me this 09/08/00

Cynthia K. Pollara Notary Public OF COLORA

MY COMMISSION EXPIRES

DEUTSCHES PATENTAMT (21) Aktenzeichen: P 35 12 190.4 (2) Anmeldetag: 3. 4.85

9.10.86 (43) Offenlegungstag:

Bahördeneigentum

(1) Anmelder:

Licentia Patent-Verwaltungs-GmbH, 6000 Frankfurt, DE

(4) Vertreter:

Wolf, O., Dipl.-Ing. Dr.-Ing., Pat.-Ass., 7312 Kirchheim

(7) Erfinder:

Stämmele, Siegfried, Dipl.-Ing. (FH), 7057 Leutenbach, DE; Göcmez, Musa, 7157 Murrhardt, DE

(S) Mittels Elektromotor angetriebenes Schleif- oder Bürstgerät

Gegenstand der Erfindung ist ein mittels Elektromotor angetriebenes Schleif- oder Bürstgerät mit über ein Getriebe betätigter, einen Werkzeugträger antreibenden Arbeitsspindel.

Ein derartiges Gerät soll dahingehend verbessert werden, daß es ohne oder allenfalls mit nur sehr geringem Rückstellmoment arbeitet.

Zur Lösung dieser Aufgabe sieht die Erfindung vor, daß die Ankerwelle (4) mit einem Ritzel (7) versehen ist, das mit einem darüber und darunter angeordneten Kronenzahnrad (8, 9) im Eingriff steht, von denen das untere mit einer Arbeitsspindel in Form einer Hohlwelle (11) vereinigt ist und das andere (8) eine zweite, in dieser Hohlwelle gelagerte Arbeitsspindel (10) antreibt, und daß mit beiden Arbeitsspindeln (10, 11) ein Werkzeugträger (12, 14) vereinigbar ist.

ES 85/9

Frankfurt, 2.4.1985

10

15

20

Patentansprüche

1. Mittels Elektromotor angetriebenes Schleif- oder Bürstgerät mit winklig zur Ankerwelle des Antriebsmotors angeordneter und über ein Getriebe betätigter, einen Werkzeugträger antreibenden Arbeitsspindel, dadurch gekennzeichent, daß die Ankerwelle (4) mit einem Ritzel (7) versehen ist, das mit einem darüber und darunter angeordneten Kronenzahnrad (8,9) im Eingriff steht, von denen das untere mit einer Arbeitsspindel in Form einer Hohlwelle (11) vereinigt ist und das andere (8) eine zweite, in dieser Hohlwelle gelagerte Arbeitsspindel (10) antreibt, und daß mit beiden Arbeitspindeln (10,11) ein Werkzeugträger (12,14) vereinigbar ist.

25

30

35

40

- 2. Gerät nach Anspruch 1, dadurch gekennzeichnet, daß das oberhalb des Ritzels (7) angeordnete Kronenzahnrad (8) einen geringeren mittleren Zahnkranzdurchmesser aufweist als das untere Kronenzahnrad (9) und die Arbeitsspindel (10) des oberen Kronenzahnrads in der hohlen Arbeitsspindel des unteren Kronenzahnrads geführt ist.
- 3. Gerät nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß der von der Arbeitsspindel des oberen Kronenzahnrads angetriebene Werkzeugträger (12) in einer Ausnehmung (13) des mit der Arbeitsspindel des unteren Kronenzahnrads vereinigten Werkzeugträgers (14) umläuft.
- Gerät nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß die Werkzeuge (15,16,17,18) an den Werkzeugträgern (12,14) befestigt sind.

BAD ORIGINAL - 2

7

•

10

7

- 5. Gerät nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß das Ankerwellenritzel (7) geradverzahnt ist.
- 6. Gerät nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Antriebsmotor (6) durch eine Batterie (3) speisbar ist.
- 7. Gerät nach Anspruch 6, dadurch gekennzeichnet, daß das Gehäuse (1) mit einem Aufnahmeraum (2) für die Batterie versehen ist.
- 8. Gerät nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß es mit einer Einrichtung zum Umschalten von Netz- auf Batteriebetrieb und umgekehrt ausgerüstet ist.

5

10

15

20

25

30

35

ES 85/9

Frankfurt, den 2.4.1985

Ĺ

ş

Mittels Elektromotor angetriebenes Schleif- oder Bürstgerät

Die Erfindung bezieht sich auf ein mittels Elektromotor angetriebenes Schleif- oder Bürstgerät mit winklig zur Ankerwelle des Antriebsmotors angeordneter und über ein Getriebe betätigter, einen Werkzeugträger antreibenden Arbeitsspindel.

Die bekannten Geräte dieser Art weisen insofern eine Unzulänglichkeit auf, als beim Arbeiten mit den Geräten ein Rückstellmoment auftritt, das den Arbeitsvorgang nachteilig beeinflußt und unter Umständen zur Verletzung der Bedienungsperson führen kann.

Aufgabe der Erfindung ist es, ein Schleif- oder Bürstgerät . der eingangs erwähnten Art zu schaffen, das ohne oder allenfalls mit nur sehr geringem Rückstellmoment arbeitet.

Diese Aufgabe ist erfindungsgemäß dadurch gelöst, daß die Anker-welle mit einem Ritzel versehen ist, das mit einem darüber und darunter angeordneten Kronenzahnrad im Eingriff steht, von denen das oberemit einer Arbeitsspindel in Form einer Hohlwelle vereinigt ist und das untere eine zweite, in dieser Hohlwelle gelagerte Arbeitsspindel antreibt, und daß mit beiden Arbeitsspindeln ein Werkzeugträger vereinigbar ist.

Weiterbildungen und zweckmäßige Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.

Die Erfindung wird im nachstehenden anhand der Zeichnung, die ein Ausführungsbeispiel schematisch veranschaulicht, erläutert.

Ą –

BAD ORIGINAL

ES 85/9

5

10

15

20

25

30

35

?

Es zeigen: Fig. 1 einen Längsschnitt durch ein batteriegespeistes Schleif- oder Bürstgerät,

Fig. 2 eine Ansicht des Geräts nach Fig. 1 in Richtung A,

Fig. 3 eine schematische Darstellung der Werkzeuge mit deren Umlaufrichtung,

Fig. 4 eine alternative Werkzeugausstattung des Geräts.

Fig. 5 eine bajonettverschlußartige Verbindung Werkzeug - Werkzeugträger im Schnitt.

Wie aus Fig. 1 ersichtlich ist, enthält das Werkzeuggehäuse 1 einen Aufnahmeraum 2 für eine schnelladefähige, auswechselbare Batterie 3. Die Ankerwelle 4 des mittels eines Schalters 5 an die Batterie 3 anschließbaren Antriebsmotors 6 ist mit einem geradverzahnten Antriebsritzel 7 versehen, das ein räumlich darüber angeordnetes Kronenzahnrad 8 und ein räumlich darunter liegendes Kronenzahnrad 9 antreibt. Das obere Kronenzahnrad 8 weist einen geringeren mittleren Zahnkranzdurchmesser auf als das untere Kronenzahnrad 9 und sitzt fest auf einer Arbeitswelle 10, die in der als Hohlwelle ausgebildeten Arbeitswelle 11 des unteren Kronenzahnrads 9 drehbar geführt ist.

Mit der Arbeitswelle 10 des Kronenzahnrads 8 ist ein Werkzeugträger 12 vereinigt, der in einer Ausnehmung 13 des Werkzeugträgers 14 umläuft, welcher auf der Arbeitswelle 11 angebracht

Die Übersetzungsverhältnisse der mit entgegengesetztem Drehsinn umlaufenden Kronenzahnräder 8 und 9 sind so gewählt, daß die mittleren Umlaufgeschwindigkeiten der beiden entgegengesetzt rotierenden Werkzeugträger 12 und 14 gleich sind. Dadurch wird ein rückstellmomentfreies Arbeiten ermöglicht (Fig. 2). Die Werkzeuge, die im Falle der Fig. 1 als Schleifplatten 15 und 16 ausgebildet sind, können am jeweils zugehörigen Werkzeugträger durch eine bajonettverschlußartige Verbindung (Fig. 5) befestigt sein oder auf den betreffenden Werkzeugträger aufgeklipst werden (Fig. 4).

5

10

15

Dadurch ist ein rascher Wechsel bzw. Austausch der Werkzeuge gewährleistet. Beim Ausführungsbeispiel nach Fig. 4 sind zwei Bürsten 17 und 18 an den Werkzeugträgern 12 und 14 befestigt.

Die Arbeitswelle 10 des oberen, eine geringere Zähnezahl enthaltenden Kronenzahnrads 8 weist, wie Fig. 1 zeigt, einen Lagerzapfen 19 auf, dem ein Kugellager 20 zugeordnet ist. Die Arbeitswelle 11 des unteren Kronenzahnrads 9 ist in einem unteren Kugellager 21 drehbar gelagert.

Im Falle der bajonettverschlußartigen Verbindung gemäß Fig. 5 ist mit 22 der Werkzeugträger und mit 23 das Werkzeug angedeutet, dessen nasenförmiger Ansatz 24 in die Ausnehmung 25 im Werkzeugträger ein- und diesen hintergreift.

Zum Betrieb des Geräts an Netzspannung kann dieses mit einer geeigneten Einheit Transformator – Gleichrichter mit zugehörigem Umschalter ausgerüstet werden. **- 6-**- Leerseite -

Ę

\$

Anmeldetag: Offenlegungstag:

35 12 190

B 24 B 23/02 3. April 1985 9. Oktober 1986

3512190 F16.2 വ F16.1