Water Wells in Tanzania

Using classification modeling to predict well functionality

Katarina Salcedo

- Water crisis = lack of fresh water resources to meet the standard demand
- 1/3 of the county is arid/semi-arid
- Ground and surface water are contaminated from toxic drainage systems, bacteria and human waste
- Water-borne illnesses account for over ½ of the diseases affecting nation
- Risking safety and education to walk to get water

Goal

- Provide The Water Project with information on the status of wells
 - Decide where to build next
 - What type of wells to build
 - Help determine which wells need maintenance

Data

- Data from Taarifa and the Tanzanian Ministry of Water
 - Contains ~59,000 rows
 - 40 independent variables that contain information about geographical location, funder, management, population, quantity and quality of water, extraction type, source, if payment is required, etc for each well
 - Target variable: status group
 - Functional
 - Non functional
 - Functional needs repair

EDA

- Looking at separability of independent variables
 - Dropped columns will little/no separability (all continuous variables)
- Dropping redundant columns i.e extraction type group, payment type, quantity group etc.
- Ended up with 16 independent variables
- Dropped null values in public meeting, scheme management, permit => ~50,000 rows
- Class imbalance:
 - \circ 54% = functional (0)
 - 38% = non functional (1)
 - 7% = functional needs repair (2)

		support	fl-score	recall	precision		
onfusion	Confu	21876	0.87	0.93	0.82	0	
		15020	0.83	0.78	0.82	1	
92		2976		100000000000000000000000000000000000000	0.69	1 2	
		29/6	0.50	0.40	0.69	2	
0 - 2e+0	0 -	39872	0.83			cacv	accui
		39872	0.73	0.70	0.79		macro
	<u>a</u>	39872	0.83	0.83	0.83		weighted
1 3070	Tue label		data:	testing	n report for	ation	Classificati
2	2	support	fl-score		precision		
		5505	0.83	0.88	0.78	0	
2 - 1410	2 -	3771	0.76	0.73	0.81	1	
		693	0.34	0.26	0.48	2	
ó	L	9969	0.78			racy	accui
		9969	0.65	0.62	0.69	10000	macro
		9969	0.77	0.78	0.77	-	weighted

- 2000

Classificatio	n report for precision	training recall		support
0	0.87	0.94	0.90	21837
1	0.89	0.80	0.84	15100
accuracy			0.88	36937
macro avg	0.88	0.87	0.87	36937
weighted avg	0.88	0.88	0.88	36937
Classificatio	n report for	testing	data:	
	precision	recall	f1-score	support
0	0.84	0.90	0.87	5544
1	0.84	0.74	0.78	3691
accuracy			0.84	9235
macro avg	0.84	0.82	0.83	9235
weighted avg	0.84	0.84	0.84	9235

Conclusions

- This model is able to predict the functionality of a water well with 84% accuracy.
- Most important features in determining this are:
 - Quantity
 - Waterpoint type
 - Extraction type
 - o Payment
- Next steps:
 - Improving accuracy
 - More feature engineering i.e getting the age of a well
 - Plotting locations of nonfunctional wells to see trends - identify areas with greater need

THANK YOU

Email: ksalcedo04@gmail.com

GitHub repo