1) الف) دترمینان های زیر را با عملیات ردیفی بدست اورید.

a)
$$\begin{vmatrix} 1 & 0 & 0 & 1 \\ 2 & 1 & 1 & 0 \\ -1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 \end{vmatrix}$$
 b)
$$\begin{vmatrix} 3 & 1 & 2 \\ 3 & 1 & 0 \\ 0 & 1 & 4 \end{vmatrix}$$

را $\det((A^3)^{-1} B^T)$ مقدار عبارت $\det(B) = 3$ و $\det(A) = \frac{1}{2}$ مقدار عبارت $\det(A^3)^{-1} B^T$ را بدست آورید.

جواب: الف)

$$\mathsf{a} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 2 & 1 & 1 & 0 \\ -1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & -2 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & -2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} = 1$$

$$b = \begin{vmatrix} 3 & 1 & 2 \\ 3 & 1 & 0 \\ 0 & 1 & 4 \end{vmatrix} = \begin{vmatrix} 3 & 1 & 2 \\ 0 & 0 & -2 \\ 0 & 1 & 4 \end{vmatrix} = -\begin{vmatrix} 3 & 1 & 2 \\ 0 & 1 & 4 \\ 0 & 0 & -2 \end{vmatrix} = 6$$

ب
$$\det(A^{-1}) = \frac{1}{\det(A)}$$
 و $\det(B^T) = \det(B)$ و (ب

$$\det(A^3) = \det(A \times A \times A) = \det(A) \times \det(A) \times \det(A)$$

در نتیجه داریم :

$$\text{Det}(((A^3)^{-1}B^T) = \det((A^3)^{-1}) \cdot \det(B) = \frac{1}{\det(A^3)} \cdot \det(B) = 8 * 3 = 24$$

2) با استفاده از قانون کرامر γ را در سیستم زیر بدست بیاورید.

$$2x + y + z = 1$$

$$3x + z = 4$$

$$x - y - z = 2$$

جواب:

$$Y = \begin{vmatrix} 2 & 1 & 1 \\ 3 & 4 & 1 \\ 1 & 2 & -1 \end{vmatrix} = \frac{-6}{3} = -2$$

3) الف) مساحت شكل زير را با استفاده از قضيه 9 بدست بياوريد.

ب) حجم یک متوازی الاضلاع در R^3 محدود به یک مجموعه خطی و ابسته چقدر است؟

جواب : الف) متوازى الاضلاع را حركت ميدهيم تا از مبدا شروع شود، در اين صورت متوازى الاضلاع با دو بردار $\begin{bmatrix} 3 \\ 0 \end{bmatrix}$ و $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ تشكيل ميشود . طبق قضيه 9 مساحت ان برابر است با :

$$\begin{vmatrix} 3 & 2 \\ 0 & 1 \end{vmatrix} = 3$$

ب) حجم آن برابر صفر است چون دترمینان یک مجموعه خطی وابسته صفر است.

صحيح غلط:

- 1) اگر A یک ماتریس $n \times n$ باشد و row space آن R^n باشد، آنگاه دترمینان $n \times n$ مخالف صفر است. جواب $n \times n$ بخون فضای ردیفی $n \times n$ است در نتیجه ردیف های $n \times n$ یک basis برای فضای $n \times n$ هستند در نتیجه ردیف ها مستقل خطی هستند و دترمینان $n \times n$ مخالف صفر است.
 - 2) اگر det(A) = 0 باشد آنگاه داریم .A = 0 جواب) غلط ، لزوما اینطور نیست.