BSTs

Insertion Search

Traversal

Haversa

Join

Deletion

Exercises

COMP2521 25T3 Binary Search Trees

Sim Mautner

cs2521@cse.unsw.edu.au

trees binary search trees binary search tree operations

Examples
Binary Trees
BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

Binary Trees

Trees

BSTs

Insertion

Search Traversal

Deletion

A tree is a hierarchical data structure consisting of a set of connected nodes where:

Each node may have multiple other nodes as children (depending on the type of tree)

Each node is connected to one parent except the root node

Trees Examples

Binary Trees

BSTs

Insertion

Search Traversal

Ioin

Deletion

Exercises

Source: https://www.openbookproject.net/tutorials/getdown/unix/lesson2.html

BSTs

Insertion

Search

Traversal Ioin

Deletion

Exercises

Examples
Binary Trees
BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

BSTs Insertion

Search

Traversal Ioin

Deletion

Exercise

Source: "Data Structures and Algorithms in Java" (6th ed) by Goodrich et al.

BSTs

Insertion

Search

Traversal

Join Deletion

Exercises

BSTs

Insertion

Search

Traversal

Ioin

Deletion

Exercises

A binary tree is a tree where each node can have up to two child nodes, referred to as the left child and the right child.

Tree

BSTs Motivation Representati

Operatio

Insertio

Search

Traversal

rata.

Deletion

Evercise

A binary search tree is an ordered binary tree, where for each node:

- All values in the left subtree are less than the value in the node
- All values in the right subtree are greater than the value in the node

Why?

Trees

BSTs

motivatio

Operati

Insertion

Search

Traversal

Ioin

Deletio

Exercise

We need a more efficient way to search and maintain large amounts of data.

We have already explored some approaches:

	Ordered array	Ordered linked list
Searching/finding the insertion/deletion point	$O(\log n)$	O(n)
Inserting/deleting after finding the insertion/deletion point	O(n)	O(1)

Why?

Trees

Metivatio

motivatio

Operatio

Insertic

Search

Traversal

e de

Deletion

Exercises

Binary search trees are efficient to search and maintain:

- Searching in a binary search tree is similar to how binary search works
- A binary search tree is a linked data structure (like a linked list), so there
 is no need to shift elements when inserting/deleting

Concrete Representation

irees

BSTs

Representation

Representati

Operatio

Insertion

Search

Traversal Ioin

Deletion

Exercises

Binary trees are typically represented by node structures

Where each node contains a value and pointers to child nodes

```
struct node {
    int item;
    struct node *left;
    struct node *right;
};
```

Concrete Representation

Trees

BSTs

Motivation Representation

Operations

Insertion

Search

Traversal

Ioin

Deletion

Exercises

Terminology

Trees

BSTs

Motivation

Terminolog

Insertion

Search

Traversal

Ioin

Deletion

Exercises

The root node is the node with no parent node.

A leaf node is a node that has no child nodes.

An internal node is a node that has at least one child node.

Terminology

Trees BSTs

Motivatio

Representat Terminology

Operatio

Insertio

Search

Traversal

Ioin

Deletion

Exercise

Height of a tree: Maximum path length from the root node to a leaf

- The height of an empty tree is considered to be -1
- The height of the following tree is 3

Terminology

Trees

BSTs

Representation

Terminology Operations

.

Insertion

Search

Traversal

Ioin

Deletion

Exercises

For a tree with n nodes:

The maximum possible height is n-1

BSTs

Representation

Terminology

Insertion

Search

Traversal

Ioin

Deletion

Exercises

For a tree with n nodes:

The minimum possible height is $\lfloor \log_2 n \rfloor$

n	minimum height = $\lfloor \log_2 n \rfloor$	tree
1	0	0
2-3	1	8
4-7	2	
•••	•••	

BSTs

Motivation

Terminolo

Insertion

Search

Traversal

Join

Deletion

Exercises

For a given number of nodes, a tree is said to be balanced if its height is minimal (or close to minimal), and degenerate if its height is maximal (or close to maximal).

Operations

Trees **BSTs**

Motivation

Operations

Insertion

Search

Traversal

Ioin

Deletion

Exercises

Key operations on binary search trees:

- Insert
- Search
- Traverse
- Join
- Delete

Operations - Analysis

Trees

BSTs

Donrocontati

Terminolog
Operations

Insertion

Search

Traversal

Join

Deletion

Exercises

The height h of a binary search tree determines the efficiency of many operations, so we will use both n and h in our analyses.

$$n = 20$$
 $h = 4$

Operations - Recursion

Trees BSTs

Motivation Representati

Operations

Incortic

Search

Traversal

Join

Deletion

Exercises

Many BST operations can be implemented recursively.

A binary search tree is either:

- · empty; or
- consists of a node with two subtrees
 - ...which are also binary search trees

BSTs

Insertion

method Examples

Pseudocode Analysis

Search

Traversal

Ioin

Deletion

Exercises

Insertion

bstInsert(t, v)

Given a BST t and a value v, insert v into the BST and return the root of the updated BST

BSTs

Insertion

Examples Pseudoco

Search

Traversal

Ioin

Deletion

Exercises

Insertion is straightforward:

- Start at the root
- Compare value to be inserted with value in the node
 - If value being inserted is less, descend to left child
 - If value being inserted is greater, descend to right child
- Repeat until...
 you have to go left/right but current node has no left/right child
 - Create new node and attach to current node

BSTs

Insertio

Example

Pseudoc Analysis

Search

Traversal

Ioin

Deletion

Exercises

Recursive method:

- t is empty
 - \Rightarrow make a new node with v as the root of the new tree
- v < t->item
 - \Rightarrow insert v into t's left subtree
- v > t->item
 - \Rightarrow insert v into t's right subtree
- v = t->item
 - \Rightarrow tree unchanged (assuming no duplicates)

EXERCISE Try writing an iterative version.

Insertion Method

Examples Pseudocode

A made made

Search

Traversal

Ioin

Deletion

Exercises

Insert the following values into an empty tree:

 $4\ 2\ 6\ 5\ 1\ 7\ 3$

BSTs

Insertion Method

Examples

Pseudocode

Search

Traversal

Ioin

Deletion

Exercises

Insert the following values into an empty tree:

4 2 6 5 1 7 3

Insertion

Method Examples

Pseudocode

Analysis

Search

Traversal

Ioin

Deletion

Exercises

Insert the following values into an empty tree:

5 6 2 3 4 7 1

Insertion

Method

Examples Pseudocode

rseudot

Search

Traversal

Ioin

Deletion

Exercises

Insert the following values into an empty tree:

5 6 2 3 4 7 1

Insertion

Method

Examples Pseudocode

Amelianta

Search

Traversal

Ioin

Deletion

Exercises

Insert the following values into an empty tree:

1 2 3 4 5 6 7

BSTs

Insertion Method

Examples

Pseudocode

Search

Traversal

Ioin

Deletion

Exercises

Insert the following values into an empty tree:

1 2 3 4 5 6 7


```
BSTs
Insertion
Method
Examples
```

Pseudocode Analysis

Search Traversal

Ioin

Deletion

Exercises

```
bstInsert(t, v):
    Input: tree t, value v
    Output: t with v inserted

if t is empty:
        return new node containing v
    else if v < t->item:
        t->left = bstInsert(t->left, v)
    else if v > t->item:
        t->right = bstInsert(t->right, v)

return t
```

rree

BSTs

Insertion
Method
Examples
Pseudocode

Analysis

Search

Haverse

Join

Deletion

Exercis

Analysis:

- At most one node is visited per level
- Number of operations performed per node is constant
- \bullet Therefore, the worst-case time complexity of insertion is O(h) where h is the height of the BST

BSTs

Insertion

Search Method

Evample

Denudoc

Analysis

Traversal

Join

Deletion

Exercises

Search

bstSearch(t, v)

Given a BST t and a value v, return true if v is in the BST and false otherwise

BSTs

Insertion

Search

Method Example Pseudocoo

Traversal

Deletion

Exercises

Recursive method:

- t is empty:
 - \Rightarrow return false
- v < t->item
 ⇒ search for v in t's left subtree
- v > t→item
 ⇒ search for v in t's right subtree
- v = t->item \Rightarrow return true

EXERCISE Try writing an iterative version.

Insertion

Search Method

Example

raeddoi

Traversal

Join

Deletion

Exercises

Search for 4 and 7 in the following BST:

Pseudocode

Trees **BSTs**

```
Insertion
Search
           bstSearch(t, v):
                 Input: tree t, value v
Pseudocode
                Output: true if v is in t
                           false otherwise
Traversal
Ioin
                if t is empty:
Deletion
                      return false
Exercises
                else if v < t \rightarrow \text{item}:
                      return bstSearch(t->left, v)
                else if v > t->item:
                      return bstSearch(t->right, v)
                else:
                      return true
```

rrees

BSTs

Insertion Search

> Method Example

Pseudocoo

Analysis

Traversal

Ioin

Deletion

varcica

Analysis:

- At most one node is visited per level
- Number of operations performed per node is constant
- \bullet Therefore, the worst-case time complexity of search is O(h) where h is the height of the BST

Insertion

Search

Traversal

Pseudocode Examples Analysis

Ioin

Deletion

Exercises

Traversal

Given a BST, visit every node of the tree

Traversal

Pseudocod Examples Analysis

Join

Deletion

Exercise

There are 4 common ways to traverse a binary tree:

- 1 Pre-order (NLR): visit root, then traverse left subtree, then traverse right subtree
- In-order (LNR): traverse left subtree, then visit root, then traverse right subtree
- 3 Post-order (LRN): traverse left subtree, then traverse right subtree, then visit root
- Level-order: visit root, then its children, then their children, and so on

Insertion

Search

Traversal

Pseudocode

Analysis

Join

Deletion

Exercises

Pseudocode:

```
preorder(t):
                          inorder(t):
                                                   postorder(t):
                               Input: tree t
                                                        Input: tree t
    Input: tree t
    if t is empty:
                               if t is empty:
                                                        if t is empty:
        return
                                   return
                                                            return
    visit(t)
                               inorder(t->left)
                                                        postorder(t->left)
    preorder(t->left)
                              visit(t)
                                                        postorder(t->right)
    preorder(t->right)
                               inorder(t->right)
                                                        visit(t)
```

Note:

Level-order traversal is difficult to implement recursively. It is typically implemented using a queue.

Tree Traversal

Example: Binary Search Tree

Trees

BSTs

Insertion Search

Traversal

Pseudocod Examples

Analysis

Join

Deletio

Exercises

Pre-order 20 10 5 2 14 12 17 30 24 29 32 31

In-order 2 5 10 12 14 17 20 24 29 30 31 32

Post-order 2 5 12 17 14 10 29 24 31 32 30 20

Level-order 20 10 30 5 14 24 32 2 12 17 29 31

BSTs

Insertion Search

Traversal

Pseudocode Examples

Analysis

Deletion

Exercises

Expression tree for 1 * 3 + (5 * 7 - 9)

Pre-order + * 1 3 - * 5 7 9

In-order 1 * 3 + 5 * 7 - 9

Post-order 1 3 * 5 7 * 9 - +

Tree Traversal Applications

Trees

BSTs

Insertion

Search Traversal

Example Analysis

loin

Deletion

Exercises

Pre-order traversal:

• Useful for reconstructing a tree

In-order traversal:

Useful for traversing a BST in ascending order

Post-order traversal:

- Useful for evaluating an expression tree
- Useful for freeing a tree

Level-order traversal:

Useful for printing a tree

BSTs

Insertion Search

Traversal Pseudocode

Example Analysis

Join

Deletion

Exercises

Analysis:

- Each node is visited once
- Hence, time complexity of tree traversal is $\mathcal{O}(n)$, where n is the number of nodes

BSTs

Insertion Search

Traversal

Join

Method

Pseudocod

Deletion

Exercises

Join

 $bstJoin(t_1, t_2)$

Given two BSTs t_1 and t_2 where $\max{(t_1)} < \min{(t_2)}$ return a BST containing all items from t_1 and t_2

BST Join Method

Trees BSTs

.

Insertion Search

Traversal

.....

Method Examples

Examples Pseudocodo Analysis

Deletion

Exercises

Method:

- **1** Find the minimum node min in t_2
- **2** Replace *min* by its right subtree (if it exists)
- **3** Elevate min to be the new root of t_1 and t_2

BSTs

Insertion Search

Traversal

Ioin

Method

Examples

Pseudocode Analysis

Deletion

Exercises

BSTs

Insertion Search

Traversal

Haverse

Join Method

Examples

Pseudocode Analysis

Deletion

Exercises

BST Join Pseudocode

```
Trees
BSTs
              bstJoin(t_1, t_2):
Insertion
                  Input: trees t_1, t_2
                  Output: t_1 and t_2 joined together
Search
Traversal
                   if t_1 is empty:
                       return to
Method
                  else if t_2 is empty:
                       return t_1
Pseudocode
Analysis
                  else if t_2->left is empty:
Deletion
                       t_2->left = t_1
                       return to
Exercises
                  else:
                       curr = t_2
                       parent = NULL
                       while curr->left ≠ NULL:
                            parent = curr
                            curr = curr->left
                       parent->left = curr->right
                       curr -> left = t_1
                       curr->right = t_2
                       return curr
```

BSTs

Insertion Search

Traversal

Join Method

Examples Pseudoco

Analysis

Deletion

Exercise

Analysis:

- ullet The join algorithm simply finds the minimum node in t_2
- ullet Thus, at most one node is visited per level of t_2
- Therefore, the worst-case time complexity of join is $\mathcal{O}(h_2)$ where h_2 is the height of t_2

BSTs

Insertion Search

Traversal

Ioin

Deletion

Method Examples Pseudocode

Exercises

Deletion

bstDelete(t, v)

 $\begin{array}{c} \text{Given a BST } t \text{ and a value } v \\ \text{delete } v \text{ from the BST} \\ \text{and return the root of the updated BST} \end{array}$

BST Deletion

Method

RSTs

Insertion

Search

Traversal

Ioin

Deletion

Examples
Pseudocod
Analysis

Exercises

Recursive method:

- *t* is empty:
 - \Rightarrow result is empty
- v < t->item
 - \Rightarrow delete v from t's left subtree
- v > t->item
 - \Rightarrow delete v from t's right subtree
- v = t->item
 - ⇒ three sub-cases:
 - t is a leaf
 - \Rightarrow result is empty tree
 - *t* has one subtree
 - \Rightarrow replace with subtree
 - t has two subtrees
 - ⇒ join the two subtrees

Insertion

Search

Traversal

Ioin

Deletio

Method

Examples

Pseudoc

Fuereion

If the node being deleted is a leaf, then the result is an empty tree

Insertion Search

Traversal

Haversa

Join Deletion

Method

Pseudocode

Analysis

Exercises

Node to be deleted has one subtree

Insertion Search

Traversal

Ioin

Deletion

Method

Examples Pseudocode

Annahanta

Exercises

Node to be deleted has two subtrees


```
BSTs
              bstDelete(t, v):
Insertion
                   Input: tree t, value v
                   Output: t with v deleted
Search
Traversal
                   if t is empty:
                        return empty tree
                   else if v < t->item:
Deletion
Method
                        t->left = bstDelete(t->left, v)
                   else if v > t->item:
Pseudocode
                        t->right = bstDelete(t->right, v)
                   else:
Exercises
                       if t->left is empty:
                            new = t - > right
                        else if t\rightarrowright is empty:
                            new = t \rightarrow left
                       else:
                            new = bstJoin(t->left, t->right)
                        free(t)
                        t = \text{new}
                   return t
```

Tree

BSTs

Insertion Search

Traversal

.....

Deletion Method Examples Pseudocod

Analysis Exercises

Analysis:

- The deletion algorithm traverses down just one branch
 - First, the item being deleted is found
 - If the item exists and has two subtrees, its successor is found
- Thus, at most one node is visited per level
- Therefore, the worst-case time complexity of deletion is $\mathcal{O}(h)$ where h is the height of the BST

Insertion

Search

Traversal

Join

Deletion

Exercises

- bstFree free all nodes of a tree
- bstSize return the size of a tree
- bstHeight return the height of a tree
- bstPrune given values lo and hi, remove all values outside the range [lo, hi]