Wprowadzenie teoretyczne:

Co to jest kodowanie? Jakie znasz kodowania?

Odpowiedź:

Kodowanie zbioru X – dowolna funkcja różnowartościowa $f: X \to \mathbb{N}$.

Przykłady kodowań:

- 1. $\pi: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ określona wzorem $\pi(n,m) = 2^n(2m+1)-1$ jest bijektywnym kodowaniem par liczb naturalnych.
- 2. $\beta: \mathbb{N} \times \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ określona $\beta(n,m,p) = \pi(\pi(n,m),p)$ jest bijektywnym kodowaniem trójek liczb naturalnych.
- 3. Rozważmy funkcję $\tau: U_{k>0} \mathbb{N}^k \to \mathbb{N}$ taką, że $\tau(a_0, a_1, ..., a_{k-1}) = 2^{a_0} + 2^{a_0+a_1+1} + ... + 2^{a_0+a_1+...+a_{k-1}+k-1} 1$. Jest to bijektywne kodowanie wszystkich skończonych ciągów liczb naturalnych.

Aby zakodować ML-program jako liczbę naturalną potrzebujemy efektywnej metody zakodowania pojedynczych instrukcji KI oraz efektywnej metody zakodowania ciągu kodów instrukcji KP.

Rozważmy ML-program $P = \{I_1, I_2, \dots, I_k\}$ składający się z k instrukcji.

Każdą instrukcje P zakodujemy za pomocą wzoru

 $KI(Ij) = 4 \cdot [\text{kod argumentów}] + [\text{nr instrukcji}]$

W przypadku instrukcji Z(n) oraz S(n) kodem argumentów jest adres rejestru, w przypadku instrukcji T(m, n) używamy bijektywnego kodowania par π , natomiast w przypadku instrukcji I(m, n, q) używamy bijektywnego kodowania trójek β . Ponieważ instrukcje maszyny licznikowej są numerowane za pomocą liczb $\{0, 1, 2, 3\}$ zdefiniowane powyżej kodowanie instrukcji jest bijekcją.

Ciąg kodów poszczególnych instrukcji zakodujemy za pomocą bijektywnego kodowania skończonych ciągów liczb naturalnych $\tau: K_P(P) = \pi(K_I(I_1), K_I(I_2), \dots, K_I(I_k))$.

Zadanie 1

Oblicz

- a) $\pi^{-1}(7)$
- b) $\pi^{-1}(8)$
- c) $\pi^{-1}(9)$
- d) $\beta^{-1}(7)$
- e) $\beta^{-1}(8)$
- f) $\beta^{-1}(9)$
- g) $\beta^{-1}(15)$
- h) $\beta^{-1}(16)$.

Zadanie 2

Odkoduj/zakoduj instrukcje:

- a) S(6)
- b) T(2,3)
- c) I(1,2,0)
- d) $KI^{-1}(17)$
- e) $KI^{1}(65)$
- f) $KI^{1}(66)$
- g) $K\Gamma^{1}(67)$

Zadanie 3

Wyznacz program o numerze 641.

Zadanie 4

Wyznacz program o numerze 1254.

Zadanie 5

Wyznacz jakikolwiek numer funkcji $x \div 1$.

Zadanie 6

Wyznacz jakikolwiek numer funkcji |x-y|.

Zadanie domowe:

Wyznacz jakikolwiek numer funkcji $x \div y$.