Enhancing Pneumonia Detection in X-Rays with Deep Learning Project Overview

Due Date: TBD

Submission Format: Upload a PDF and a link to your GitHub repository on Canvas.

Overview:

You will submit a professional case study consisting of two parts:

- A written report in PDF format (including a references page)
- A GitHub repository with your project code and any relevant data

Purpose: This case study is your opportunity to demonstrate both technical and conceptual data science skills through an integrated, independently-driven project. It mirrors the kind of work you might encounter if you were a data scientist working in a medical facility.

Your Task: Leverage the tools and knowledge you've gained throughout the course to design a model that predicts pneumonia cases in a set of X-Ray images.

Success Criteria: You will be evaluated based on how well you meet the expectations outlined in the rubric below.

Category	<u>Details</u>
1. Formatting	Written Report: Submit a polished PDF document with organized sections and visualizations.
	2. GitHub Repository:
	 Include all code files and any necessary data (excluding large raw datasets).
	 Organize your folders (e.g., /models, /notebooks, /data, /scripts) and include a README.md with setup instructions.
	 Title your repository: CS-PneumoniaDetection-[First NameLastName]
	3. References:

	 Include citations on a separate reference page in the PDF. Use IEEE citation style for any sources not already provided
2. Written Report	Your written analysis should communicate your approach, methods, and conclusions.
	Problem Definition:
	 Summarize the clinical relevance of pneumonia detection and the importance of early diagnosis.
	Approach Overview:
	 Describe your strategy for preprocessing DICOM files, resizing, normalization, and how you adapted them for CNN input.
	 Include a diagram or flowchart showing your end-to-end workflow.
	Model Architecture:
	 Outline your CNN structure, training settings, and hyperparameters.
	• Results & Evaluation:
	 Report accuracy, loss curves, confusion matrix, or other relevant metrics.
	 Discuss any observations about overfitting, model limitations, or misclassifications.
	• Reflection:
	 Reflect on challenges encountered (e.g., working with DICOM files, model tuning).

	 Describe what you'd improve or change and lessons learned from the project.
3. Code	Your analysis should include:
	Data Preprocessing:
	 Code for loading and converting DICOM files
	o Image resizing (e.g., to 224x224) and normalization to [0, 1]
	 Channel expansion for grayscale images
	Model Development:
	 CNN implementation with clear comments
	 Training loop, validation tracking, and testing on unseen data
	Model Evaluation:
	Metric calculations (e.g., accuracy, precision, recall)
	 Plots showing training/validation loss and accuracy
4. References	At the end of your PDF report, include all additional sources (e.g., research papers on CNNs, medical imaging tutorials) in IEEE citation style.