\bigcirc a. Die Funktionswerte von π sind immer negativ.

 \bigcirc c. Die Summe aller Funktionswerte von π muss 1 ergeben.

 \bigcirc d. π heißt genau dann Wahrscheinlichkeitsfunktion, wenn $\prod_{\omega \in \Omega} \pi(\omega) > 1$.

 \bigcirc b. Die Definitionsmenge von π ist die σ -Algebra $\mathcal A$ eines Wahrscheinlichkeitsraums $(\Omega,\mathcal A,\mathbb P)$.

 $(\Omega,\mathcal{A},\mathbb{P}) \text{ sei ein Wahrscheinlichkeitsraum und es seien } A,B \in \mathcal{A}. \text{ Welche Aussage trifft dann im Allgemeinen } \mathbf{nicht} \text{ zu?}$

$$\bigcirc$$
 a. $\mathbb{P}(A^c) = 1 - \mathbb{P}(\Omega)$.

$$\bigcirc$$
 b. $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$.

$$\bigcirc$$
 c. $A \cap B = \emptyset \Rightarrow \mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$.

$$\bigcirc$$
 d. $A \subset B \Rightarrow \mathbb{P}(A) \leq \mathbb{P}(B)$.

Frage 5

Bisher nicht beantwortet

Erreichbare Punkte: 1,00

 $(\Omega,\mathcal{A},\mathbb{P})$ sei ein Wahrscheinlichkeitsraum und es seien $A,B\in\mathcal{A}$. Welche Aussage zur Definition der bedingten Wahrscheinlichkeit des Ereignisses A gegeben das Ereignis B trifft dann zu?

$$\bigcirc$$
 a. $\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$

$$\bigcirc$$
 b. $\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cup B)}{\mathbb{P}(B)}$

$$\bigcirc$$
 d. $\mathbb{P}(A|B) = \frac{\mathbb{P}(A)}{\mathbb{P}(B)}$.

Frage 6

Bisher nicht beantwortet

Erreichbare Punkte: 1,00

Welche Aussage zur Definition einer Wahrscheinlichkeitsmassefunktion p einer Zufallsvariable ξ trifft **nicht** zu?

- \bigcirc a. Wahrscheinlichkeitsmassefunktionen sind für Zufallsvariablen mit endlichem Ergebnisraum ${\mathcal X}$ relevant.
- \bigcirc b. Für p muss $\sum_{x \in \mathcal{X}} p(x) = 1$ gelten.
- \bigcirc c. p kann Werte kleiner als 0 annehmen.
- \bigcirc d. Für p muss $\mathbb{P}_{\xi}(\xi=x)=p(x)$ für alle $x\in\mathcal{X}$ gelten, wobei \mathbb{P}_{ξ} das Bildmaß von ξ bezeichnet.

Frage 7

Bisher nicht beantwortet

Erreichbare Punkte: 1,00

Welche Aussage trifft zu? Für eine Zufallsvariable $\xi:\Omega\to\mathbb{R}$ auf einem Wahrscheinlichkeitsraum $(\Omega,\mathcal{A},\mathbb{P})$ ist die kumulative Verteilungsfunktion $P:\mathbb{R} \to [0,1]$ von ξ definiert als

$$\bigcirc$$
 a. $P(x) := \mathbb{P}(\xi \leq x)$.

$$\bigcirc$$
 b. $P(x) := \mathbb{P}(\xi > x)$.

$$\bigcirc$$
 c. $P(x) := \mathbb{P}(\xi \ge x)$.

$$\bigcirc$$
 d. $P(x) := \mathbb{P}(\xi = x)$.

Frage **8**

Bisher nicht beantwortet

Erreichbare Punkte: 1,00

$$p:\mathbb{R}\to\mathbb{R}_{>0}, x\mapsto p(x):=rac{1}{\sqrt{2\pi\sigma^2}}\mathrm{exp}\left(-rac{1}{2\sigma^2}(x-\mu)^2
ight)$$
 bezeichnet

- O a. ... die Wahrscheinlichkeitsmassefunktion einer normalverteilten Zufallsvariable.
- Ob. ... die Wahrscheinlichkeitsdichtefunktion einer normalverteilten Zufallsvariable.
- O c. ... die inverse kumulative Verteilungsfunktion einer normalverteilten Zufallsvariable.
- Od. ... die kumulative Verteilungsfunktion einer normalverteilten Zufallsvariable.

Frage 9

Bisher nicht beantwortet Erreichbare Punkte: 1,00

Welche Aussage zum Begriff der unabhängig und identisch verteilten Zufallsvariablen trifft zu?

- O a. Normalverteilte Zufallsvariablen können nie unabhängig und identisch verteilt sein.
- \bigcirc b. Wenn ξ_1,\ldots,ξ_n unabhängig und identisch verteilte Zufallsvariablen sind, so schreibt man auch $\xi_1,\ldots,\xi_n\sim\mathbb{P}_\xi$ mit $\mathbb{P}_\xi:=\mathbb{P}_{\xi_i}$ für $i=1,\ldots,n$.
- 🔾 c. Unabhängig und identisch verteilte Zufallsvariablen sind immer abhängige Zufallsvariablen.
- O d. Die Marginalverteilungen von unabhängigen und identisch verteilten Zufallsvariablen stimmen nie überein.

Frage 10

Bisher nicht beantwortet

Erreichbare Punkte: 1,00

Welche Aussage über die Varianz $\mathbb{V}(\xi)$ einer normalverteilten Zufallsvariable $\xi \sim N(\mu, \sigma^2)$ trifft zu?

- \bigcirc a. Verschiedenen Realisationen x von ξ ergeben verschiedene Werte für die Varianz $\mathbb{V}(\xi)$.
- \bigcirc b. Es gilt $\mathbb{V}(\xi) = \mu$.
- \bigcirc c. Es gilt $\mathbb{V}(\xi) = \sigma^2$.
- \bigcirc d. Es gilt $\mathbb{V}(\xi) = \sigma$.

Frage 11

Bisher nicht beantwortet

Erreichbare Punkte: 1,00

 ξ sei eine Zufallsvariablen und es seien $a,b\in\mathbb{R}$. Welche Aussage trifft dann im Allgemeinen **nicht** zu?

- $\bigcirc \ \, \text{a.} \quad \mathbb{E}(\xi+b)=\mathbb{E}(\xi)+b.$
- \bigcirc b. $\mathbb{E}(a\xi + b) = a\mathbb{E}(\xi) + b$.
- \bigcirc c. $\mathbb{E}(a\xi) = (a+b)\mathbb{E}(\xi)$.
- $\bigcirc \ \, \mathrm{d.} \quad \mathbb{E}(a\xi) = a\mathbb{E}(\xi).$

 ξ und v seien zwei Zufallsvariablen und es seien $a,b,c\in\mathbb{R}$. Welche Aussage trifft dann zu?

$$\bigcirc \text{ a. } \mathbb{V}(a\xi + bv) = a^2 \mathbb{V}(\xi) + b^2 \mathbb{V}(v) + 2a^2 b^2 \mathbb{C}(\xi, v).$$

$$\bigcirc$$
 b. $\mathbb{V}(a\xi + bv) = a^2 \mathbb{V}(\xi) + b^2 \mathbb{V}(v) + 2ab\mathbb{C}(\xi, v)$.

$$\bigcirc$$
 c. $\mathbb{V}(\xi + v) = \mathbb{V}(\xi) + \mathbb{V}(v) + \mathbb{C}(\xi, v)$.

$$\bigcirc$$
 d. $\mathbb{V}(\xi - v) = \mathbb{V}(\xi) - \mathbb{V}(v) - \mathbb{C}(\xi, v)$.

Frage 13

Bisher nicht beantwortet

Erreichbare Punkte: 1,00

 ξ_1,\ldots,ξ_n sei eine Stichprobe mit Stichprobenmittel $\bar{\xi}$. Welche Aussage zur Stichprobenvarianz trifft dann zu?

- \bigcirc a. Die Stichprobenvarianz ist definiert als $S^2:=\frac{1}{n-1}\sum_{i=1}^n(\xi_i-\bar{\xi})^2$
- \bigcirc b. Die Stichprobenvarianz ist definiert als $S^2:=\frac{1}{n-1}\sum_{i=1}^n(\xi_i-\bar{\xi})$
- \bigcirc c. Die Stichprobenvarianz ist definiert als $S^2:=rac{1}{n-1}\prod_{i=1}^n(\xi_i-ar{\xi})^2$
- \bigcirc d. Die Stichprobenvarianz ist definiert als $S^2:=\frac{1}{n}\sum_{i=1}^n(\xi_i-\bar{\xi})^2$

Frage 14

Bisher nicht beantwortet

Erreichbare Punkte: 1,00

Es seien ξ sei eine Zufallsvariable mit $\mathbb{P}(\xi \geq 0)$ = 1. Die Markov Ungleichung besagt dann, dass

- \bigcirc a. $\mathbb{E}(\xi v) \leq \mathbb{E}(\xi) \mathbb{E}(v)$.
- \bigcirc b. $\mathbb{P}(\xi \ge x) \le \frac{\mathbb{E}(\xi)}{x}$.
- \bigcirc c. $\mathbb{E}(\xi v)^2 \leq \mathbb{E}(\xi^2) \mathbb{E}(v^2)$.
- \bigcirc d. $\mathbb{E}(\xi v) = \mathbb{E}(\xi) \mathbb{E}(v)$.

Frage 15

Bisher nicht beantwortet

Erreichbare Punkte: 1,00

 ξ sei eine Zufallsvariable mit Erwartungswert $\mathbb{E}(\xi)$ und Varianz $\mathbb{V}(\xi)$. Die Chebyshev Ungleichung besagt, dass

- $\bigcirc \ \ \text{a.} \quad \mathbb{P}(\xi \mathbb{E}(\xi) \leq x) \leq \frac{\mathbb{V}(\xi)}{x^2} \text{ für alle } x \in \mathbb{R}.$
- \bigcirc b. $\mathbb{P}(|\xi \mathbb{E}(\xi)| \le x) \le \mathbb{V}(\xi)$ für alle $x \in \mathbb{R}$.
- \bigcirc c. $\mathbb{P}(|\xi \mathbb{E}(\xi)| \le x) \ge \mathbb{V}(\xi)$ für alle $x \in \mathbb{R}$.
- $\bigcirc \ \, \mathrm{d.} \quad \mathbb{P}(|\xi \mathbb{E}(\xi)| \geq x) \leq \frac{\mathbb{V}(\xi)}{x^2} \text{ für alle } x \in \mathbb{R}.$

Frage 16 Bisher nicht beantwortet Erreichbare Punkte: 1,00		
 Welcher zentrale Aspekt der Frequentistischen Inferenz wird unter anderem durch das schwache Gesetz der Großen Zahl begründet? a. Der Gebrauch des Stichprobenmittels als Schätzer für Erwartungswerte. b. Der Gebrauch der Stichprobenvarianz als Schätzer für Erwartungswerte. c. Die Modellierung unbekannter Störeinflüsse durch normalverteilte Zufallsvariablen. d. Die Modellierung unbekannter Störeinflüsse durch gleichverteilte Zufallsvariablen. 		
Frage 17 Bisher nicht beantwortet Erreichbare Punkte: 1,00		
 Welche zentrale Annahme der Freqentistischen Inferenz wird durch die zentralen Grenzwertsätze begründet? a. Der Gebrauch der Stichprobenvarianz als Schätzer für Erwartungswerte. b. Die Modellierung unbekannter Störeinflüsse durch gleichverteilte Zufallsvariablen. c. Der Gebrauch des Stichprobenmittels als Schätzer für Erwartungswerte. d. Die Modellierung unbekannter Störeinflüsse durch normalverteilte Zufallsvariablen. 		
Frage 18 Bisher nicht beantwortet Erreichbare Punkte: 1,00		
Es seien $\xi_1,\dots,\xi_n\sim N(\mu,\sigma^2)$ unabhängig und identisch normalverteilte Zufallsvariablen. Dann gilt für die Verteilung des Stichprobenmittels $\bar{\xi}:=\frac{1}{n}\sum_{i=1}^n \xi_i$, dass $ \bigcirc \text{ a. } \bar{\xi}\sim N\left(\mu,n\sigma^2\right). $ $ \bigcirc \text{ b. } \bar{\xi}\sim N\left(\mu,\frac{\sigma^2}{n}\right). $ $ \bigcirc \text{ c. } \bar{\xi}\sim N\left(\mu,\sigma^2\right). $ $ \bigcirc \text{ d. } \bar{\xi}\sim N\left(\mu,n^2\sigma^2\right). $		
Frage 19 Bisher nicht beantwortet Erreichbare Punkte: 1,00		
Welche Aussage zur Standardannahme der Frequentistischen Inferenz trifft nicht zu? a. Es wird angenommen, dass die wahren Parameterwerte Frequentistischer Inferenzmodelle bekannt sind. b. Die Frequentistische Inferenz betrachtet Wahrscheinlichkeitsverteilungen von Schätzern und Statistiken. 		
 c. Es wird angenommen, dass ein Datensatz eine der möglichen Realisierungen des Zufallsvektors (der Stichprobe) eines Frequentistischen Inferenzmedells ist. d. Frequentistische Inferenzmethoden sollten bei häufiger Anwendung "im Mittel" gut sein. 		

Frage 20 Bisher nicht beantwortet		
Erreichbare Punkte: 1,00		
Welche Aussage zu Statistiken und Schätzern trifft nicht zu?		
 a. Die Stichprobenvarianz kann als Parameterschätzer dienen. b. In der Frequentistischen Inferenz nehmen Punktschätzer niemals Zahlwerte an. c. Statistiken sind Abbildungen aus dem Datenraum in einen beliebigen Raum. d. Die Stichprobenvarianz kann als Statistik dienen. 		
Frage 21 Bisher nicht beantwortet Erreichbare Punkte: 1,00		
Welche Aussage zur Likelihood-Funktion trifft zu?		
 a. Der Funktionswert einer Likelihood-Funktion hängt niemals von Datenwerten ab. b. Die Definitionsmenge einer Likelihood-Funktion ist der Parameterraum eines Frequentistischen Inferenzmodells. c. Die Likelihood-Funktion ist immer eine Wahrscheinlichkeitsmassefunktion. d. Die Likelihood-Funktion ist immer eine Wahrscheinlichkeitsdichtefunktion. 		
Frage 22 Bisher nicht beantwortet Erreichbare Punkte: 1,00		
Welche Aussage zu Maximum-Likelihood-Schätzern trifft nicht zu?		
 a. Das Stichprobenmittel ist kein Maximum-Likelihood-Schätzer für den Parameter eines Bernoullimodells. b. Ein Maximum-Likelihood-Schätzer maximiert die Likelihood-Funktion. c. Ein Maximum-Likelihood-Schätzer maximiert die Log-Likelihood-Funktion. d. Das Stichprobenmittel ist ein Maximum-Likelihood-Schätzer für den Erwartungswertparameter eines Normalverteilungsmodells. 		
Frage 23 Bisher nicht beantwortet Erreichbare Punkte: 1,00		
Welche Aussage zu einem Maximum-Likelihood-Schätzer trifft nicht zu?		
 a. Ein Maximum-Likelihood-Schätzer ist immer erwartungstreu. b. Ein Maximum-Likelihood-Schätzer ist immer asymptotisch erwartungstreu. c. Ein Maximum-Likelihood-Schätzer ist immer konsistent. d. Ein Maximum-Likelihood-Schätzer ist immer asymptotisch normalverteilt. 		

Es sei v die Stichprobe eines Frequentistischen Inferenzmodells mit wahrem, aber unbekannten, Parameter $\theta \in \Theta$, es sei $\delta \in]0,1[$ und $G_u(v)$ und $G_o(v)$ seien zwei Statistiken. Welche Aussage zu einem δ -Konfidenzintervall $\kappa(v):=[G_u(v),G_o(v)]$ trifft dann nicht zu? o a. $G_u(v)$ und $G_o(v)$ heißen die unteren und oberen Grenzen des Konfidenzintervalls, respektive. b. $\kappa(v)$ ist ein zufälliges Intervall, weil $G_u(v)$ und $G_o(v)$ Zufallsvariablen sind. c. $\kappa(v)$ ist ein zufälliges Intervall, weil der wahre, aber unbekannte, Parameter $\theta \in \Theta$ eine Zufallsvariable ist. d. Es gilt \mathbb{P}_{θ} ($\kappa(v) \ni \theta$) = δ für alle $\theta \in \Theta$.		
und $G_u(v)$ und $G_o(v)$ seien zwei Statistiken. Welche Aussage zu einem δ -Konfidenzintervall $\kappa(v) := [G_u(v), G_o(v)]$ trifft dann nicht zu? o a. $G_u(v)$ und $G_o(v)$ heißen die unteren und oberen Grenzen des Konfidenzintervalls, respektive. o b. $\kappa(v)$ ist ein zufälliges Intervall, weil $G_u(v)$ und $G_o(v)$ Zufallsvariablen sind. o c. $\kappa(v)$ ist ein zufälliges Intervall, weil der wahre, aber unbekannte, Parameter $\theta \in \Theta$ eine Zufallsvariable ist. o d. Es gilt \mathbb{P}_{θ} ($\kappa(v) \ni \theta$) = δ für alle $\theta \in \Theta$.		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
Bisher nicht beantwortet		
Welche Kenngrößen einer Stichprobe fließen in die Definition eines Konfidenzintervalls für den Erwartungswertparameter eines Normalverteilungsmodells ein?		
 a. Das Stichprobenmittel, die Stichprobenstandardabweichung und die Stichprobengröße. b. Das Stichprobenmittel, die Stichprobengröße und der Stichprobenmedian. c. Die Stichprobenstandardabweichung, die Stichprobengröße, aber das Stichprobenmittel nicht. d. Das Stichprobenmittel, die Stichprobengröße, aber die Stichprobenstandardabweichung nicht. 		
Frage 26 Bisher nicht beantwortet Erreichbare Punkte: 1,00		
Θ sei der Parameterraum eines Frequentistischen Inferenzmodells und $\Theta_0, \Theta_1 \subset \Theta$ seien Testhypothesen. Welche Aussage trifft dann zu? $ \bigcirc \ \text{a.} \ \Theta = \Theta_0 \cap \Theta_1. $		
○ b. $\Theta = \Theta_0 \cup \Theta_1$. ○ c. Wenn die Kardinalität von Θ_0 gleich 1 ist, dann wird Θ_0 zusammengesetzt genannt. ○ d. Nur wenn $0 \in \Theta_0$ gilt, wird Θ_0 Nullhypothese genannt.		
Frage 27 Bisher nicht beantwortet Erreichbare Punkte: 1,00		
Welche Aussage zu den Definitionen von Tests und Standardtests trifft zu?		
 a. Der Testwert φ(y) = 0 repräsentiert immer den Vorgang des Ablehnens der Nullhypothese. b. Ein Test ist eine Abbildung aus dem Parameterraum eines Frequentistischen Inferenzmodells nach ℝ. 		

Frage **24**

Frage 28			
Bisher nicht beantwortet			
Erreichbare Punkte: 1,00			
Welche	Aussage zu einer Testgütefunktion trifft nicht zu?		
○ a.	Eine Testgütefunktion gibt die Wahrscheinlichkeit dafür an, dass ein Test den Wert 1 annimmt.		
○ b.	Die Definitionsmenge einer Testgütefunktion ist der Parameterraum eines Frequentistischen Inferenzmodells.		
○ c.	Eine Testgütefunktion nimmt Werte im Intervall $\left[0,1\right]$ an.		
○ d.	Der Wert einer Testgütefunktion hängt nicht vom Parameter eines Frequentistischen Inferenzmodells ab.		
Frage 29			
Bisher nich	t beantwortet		
Erreichbare	Punkte: 1,00		
Welche	e Aussage zur Bedeutung der Testgütefunktion im Rahmen der Konstruktion von Hypothesentests trifft zu?		
○ a.	Die Testgütefunktion ist für die Konstruktion von Hypothesentests irrelevant.		
○ b.	Die Testgütefunktion ist sowohl für die Testumfangkontrolle als auch für die Bestimmung der Power eines Tests von Bedeutung.		
O c.	Im Rahmen der Testumfangkontrolle beabsichtigt man, bei Zutreffen der Nullhypothese möglichst einen Testgütefunktionswert von 1 zu erreichen.		
○ d.	Im Rahmen von Powerbetrachtungen beabsichtigt man, bei Zutreffen der Alternativhypothese möglichst einen Testgütefunktionswert von 0 zu erreichen.		
Frage 30			
Bisher nich	t beantwortet		
Erreichbare	Punkte: 1,00		
Welche	Aussage zum Begriff des p-Werts im Rahmen eines kritischen Wert-basierten Tests trifft zu?		
○ a.	Es gilt niemals p-Wert > 0.05.		
○ b.	Der p-Wert ist das kleinste Signifikanzlevel α_0 , bei welchem man die Nullhypothese basierend auf einem vorliegenden Wert der Teststatistik ablehnen würde.		
○ c.	Es gilt immer p-Wert < 0.05.		
○ d.	Der p-Wert hängt nie von dem vorliegenden Wert einer Teststatistik ab.		
Direkt			
Direkt	₹ Zu:		