SISTEMAS / CARACTERÍSTICAS DE SISTEMAS

- 1 Qual das seguintes relações é linear?
 - (a) $y = 3x^2$
- (b) y = 5x
- (c) $y = 15\log(x)$
- (d) $y = 2x_1 + 3x_2$
- (e) $y = 10e^x$

(f)
$$y = \frac{dx}{dt} + 2x + 4$$

- 2 Uma resistência de $10 \text{ k}\Omega$ possui um tolerância de 5%. Quais são os limites (superior e inferior) para os valores que a resistência pode tomar?
- 3 Uma resistência variável de $10 \text{ k}\Omega$ apresenta uma resolução de 0.01% do fim de escala e uma linearidade de $\pm 50\Omega$.
- 3.1 Qual é a sua resolução em ohms?
- 3.2 Qual é a sua linearidade em percentagem do fim de escala?
- 3.3 Calcule a precisão em ohms no pior caso.
- 4 Um sistema de posicionamento possui uma sensibilidade de 0.2 cm / V e uma linearidade de ± 0.1 cm para uma gama de operação entre 0-2 cm.
- 4.1 Qual é a variação da entrada que produz uma variação de 1.5 cm na saída?
- 4.2 Trace o gráfico da sensibilidade admitindo que o sistema era linear.
- 4.3 Trace o gráfico da sensibilidade admitindo uma linearidade independente
- 4.4 Trace o gráfico da sensibilidade admitindo uma linearidade terminal.
- 5 Um sistema de controlo de temperatura possui uma gama de utilização entre -20°C e +80°C. Quando a temperatura é ajustada para 28°C, a temperatura medida é 26.5°C.
- 5.1 Calcule a precisão em percentagem do valor ajustado.
- 5.2 Calcule a precisão em percentagem da gama de utilização.
- 6 Na Figura 1 apresenta-se as características de resistência em função da temperatura de dois sensores (de níquel e de platina).
- 6.1 Qual dos sensores é mais sensível?
- 6.2 Qual dos sensores apresenta melhores características de linearidade?

Figura 1

Na figura abaixo apresenta-se o diagrama de blocos dum sistema composto por um transdutor e respectivo amplificador. Na mesma figura resume-se ainda as principais características de cada bloco.

Figura 2

- 7.1 Sabendo a tensão à saída do amplificador em circuito aberto é 10V, qual é a impedância de entrada do amplificador?
- 7.2 Qual é a resposta em frequência global do sistema?
- **8** Considere os circuitos da Figura 3:

- 8.1 Diga qual função de transferência para sinais sinusoidais $\left(\overline{V_{saida}(j\omega)}/\overline{V_{ent}(j\omega)}\right)$ de cada circuito.
- 8.2 Trace a sua resposta em frequência (em amplitude e fase) para $R_1 = 10\text{k}\Omega$, $R_2 = 1\text{k}\Omega$ e $C = 1\mu\text{F}$.
- 9 A resposta a um degrau de um sistema pode ser aproximada pela forma de onda da Figura 4. Diga qual é aproximadamente a largura de banda do sistema.

Figura 4

TRANSDUTORES E AMPLIFICADORES

Considere-se uma fonte de sinal, um amplificador e uma carga com as seguintes características: $E_f = 15 \text{mV}$, $R_f = 500\Omega$, A = 100, $R_{\text{ent}} = 1000\Omega$, $R_{\text{saida}} = 8\Omega$, $R_L = 8\Omega$.

Figura 5

- 10.1 Calcular a tensão de saída do amplificador ($V_{\text{saída}}$).
- 10.2 A potência fornecida à carga.
- 10.3 A potência fornecida à carga se a impedância de entrada do amplificador fosse $R_{\rm ent} = 10 {\rm k}\Omega$.
- 11 Uma ponte com dois extensómetros utilizada para medir forças possui uma sensibilidade de 2mV/V/Kgf. A resistência nominal dos extensómetros é de 300Ω (em repouso). Pretende-se que indicação da força seja mostrada num voltímetro cuja escala é convertida de volts para kg. O valor máximo da força aplicada é de 20 kgf e o fim de escala do voltímetro são 10V. Para um esquema como o da figura abaixo determine:

Figura 6

- 11.1 Para uma tensão de excitação da ponte de $E_e = 5V$, qual deveria ser o ganho do amplificador?
- 11.2 Qual é a variação de resistência correspondente ao valor máximo da força aplicada?
 - 12 O circuito da Figura 7 é muitas vezes utilizado como conversor corrente \rightarrow tensão, ou seja, para providenciar uma tensão de saída $v_{saída}$ proporcional a um sinal de entrada de corrente i_{ent} . Obtenha a expressão para a transresistência $R_m = \frac{V_{saída}}{i_{ent}}$. Qual é a resistência de entrada ($R_{ent} = \frac{V_{ent}}{i_{ent}}$) do circuito?

13 Na figura seguinte apresenta-se a característica de um fotodíodo. Estude-a atentamente e responda às seguintes questões:

Figura 8

13.1 O que é um fotodíodo? Trata-se de um transdutor activo ou passivo?

Utilizou-se o seguinte esquema de amplificação para o referido fotodíodo:

Figura 9

- 13.2 Sabendo que a impedância de saída do amplificador A_1 é 100Ω e que o amplificador A_2 apresenta uma impedância de entrada de $1k\Omega$ e um ganho em malha aberta A=100, diga, para uma intensidade de luz de 50 mW/cm^2 , qual a tensão de saída ($V_{\text{saída}}$) do sistema.
- 13.3 (Nota: caso não consiga calcular a tensão à entrada do amplificador A2, admita que o seu valor é 20 mV.)
- 13.4 Qual a sensibilidade média global do sistema (em V/(mW/cm²))?
- 13.5 A resposta a um degrau do conjunto transdutor/ A_1 é a indicada na mesma figura (b)). Sabendo que o tempo de subida é $t_r = 0.1 \mu s$, diga qual deveria ser a largura de banda do amplificador A_2 para que o sinal na saída não venha atenuado

(Nota: considere uma aproximação razoável admitir que, na resposta de um sistema a um degrau, a relação entre o tempo de subida a sua frequência superior de corte (f_{sc}) é $t_r = \frac{0.35}{f_{rec}}$.)

14 Esboce, para o circuito da Figura 10, a forma de onda de saída ($v_{\text{saída}}$).

- Apresente um circuito que, utilizando apenas AmpOP's e resistências de 10kΩ, implemente a função $v_{\text{saida}} = v_3 v_2 v_1$.
- 16 Pretende-se ligar uma fonte de 10 V com uma resistência interna de 10 k Ω a uma carga com uma resistência de 1 k Ω . Diga qual é a tensão que aparece aos terminais da carga se,
- 16.1 A carga for ligada directamente à fonte.
- 16.2 Se um seguidor de tensão for inserido entre a fonte e a carga.
- 16.3 Para cada caso diga qual é a corrente na carga. De onde vem a corrente da carga no caso de 16.2?
 - 17 A Figura 11 mostra o circuito de um digital-analógico conversor (DAC). circuito aceita uma palavra binária de 4 bits $a_3a_2a_1a_0$ (onde $a_3, a_2, a_1 e a_0$ podem tomar o valores lógicos "0" ou "1"), e produz uma saída analógica v_{saída} proporcional ao valor da entrada digital. Cada um dos bits de entrada controla um interruptor de correspondente Se, p. ex., $a_2 = 0$, então S_2 liga a resistência de $20k\Omega$ a 0V, enquanto que se $a_2 = 1$, então S_2 liga a resistência de $20k\Omega$ a +5V.
 - 17.1 Mostre que,

$$\boldsymbol{v}_{\text{saida}} \, = - \frac{R}{16 x 10^3} \big(2^0 \, \boldsymbol{a}_{\!_{0}} + 2^1 \boldsymbol{a}_{\!_{1}} + 2^2 \, \boldsymbol{a}_{\!_{2}} + 2^3 \, \boldsymbol{a}_{\!_{3}} \big)$$

17.2 Qual o valor de R tal que v_{saida} varia entre 0 e 12 V?

Figura 11

18 Na Figura 12 apresenta-se o circuito de um "deslocador de fase". Diga qual a sua função de transferência para sinais sinusoidais $\left(\frac{\overline{V_{saida}(j\omega)}}{\overline{V_{ent}(j\omega)}}\right)$. Trace a sua resposta em frequência (amplitude e fase) para $R=10~\mathrm{k}\Omega$ e $C=1\mu\mathrm{F}$.

19 Considere o circuito da Figura 13. A tensão de alimentação dos AmpOp's é±12 V e a sua tensão de saturação é±10 V. Esboce, no mesmo sistema de eixos, a forma de ondas nos pontos B, C, e D, quando à entrada do circuito (ponto A) se aplica uma tensão constante e igual a 1 V. (Indique de forma clara as escalas de tensão e de tempo utilizadas.)

Figura 13

20 O circuito da Figura 14 implementa um interruptor comandado por luz e utiliza um AmpOp como comparador.

- 20.1 Qual deve ser a relação entre V_1 e V_2 para que a saída do AmpOp seja negativa à luz do dia?
- 20.2 Diga o que acontece no escuro ao (a) LDR, (b) relação entre V_1 e V_2 , (c) saída do AmpOp, (d) estado de condução de T_r , (e) relé (ligado? desligado?)?
- 20.3 Como alteraria o circuito para que o relé ficasse desligado no escuro e ligado à luz do dia?

A tensão de saturação do AmpOp da Figura 15 é $V_{\text{sat}} = \pm 10\text{V}$. Admitindo que o sinal aplicado à sua entrada (v_{ent}) é que se apresenta na figura ao lado, esboce o sinal obtido na saída (v_{saida}) .

Figura 15

Esboce, para o circuito da Figura 16, a forma de onda de saída quando à entrada se aplica uma entrada sinusoidal. Obtenha ainda a sua característica de transferência (o gráfico da relação $V_{\text{saída}} = f(V_{\text{ent}})$

Figura 16

- 23 Apresente um circuito (utilizando apenas AmpOP's) que implemente a função $v_{\text{saída}} = k(v_2 \times v_1)$. Nota: tenha em atenção que $\log(A \times B) = \log(A) + \log(B)$
- 24 Um amplificador operacional apresenta a curva de resposta em frequência (assimptotas) da Figura 17 (a).
 Possui ainda, entre outras, as seguintes características: taxa de inclinação (ou *slew-rate*) SR = 50 V/μs;
 CMRR = 90dB; tensão de entrada de desvio (offset) Vos = 200μV.

Figura 17

- 24.1 Qual é o ganho de modo comum (para baixas frequências) do AmpOp?
- 24.2 O AmpOP é utilizado na montagem amplificadora da Figura 17 (b). Qual é a largura de banda da montagem?
- 24.3 Supondo que à entrada do amplificador da Figura 17 (b) é aplicado um sinal sinusoidal com uma amplitude de 200 mV_{pp}, qual é a largura de banda de potência do amplificador?
- 24.4 Qual é erro introduzido na saída da montagem da Figura 17 (b) pela tensão de desvio (Vos) à sua entrada?
- 24.5 Qual deveria ser o valor de *R* (Figura 17 (b)) para que o efeito na saída da corrente de polarização das entradas do AmpOP seja minimizado?

- 25 Medidas do ganho em malha aberta de um AmpOP internamente compensado indicam que o ganho é 5.1 x 10³ para 100 kHz e que o ganho para baixas frequências é 8.3 x 10³. Diga qual é a frequência superior de corte do AmpOp, bem como a sua frequência de ganho unitário (f_T).
- 26 Um AmpOP internamente compensado apresenta, em malha aberta, um ganho para baixas frequências de 10⁵ e uma frequência superior de corte de 10 Hz.
- 26.1 Trace a resposta em frequência (comportamento assimptótico relativamente à amplitude) de uma montagem inversora com um ganho de 100 que utiliza o referido AmpOp. Qual é a frequência superior de corte da montagem?
- 26.2 Trace a resposta em frequência (comportamento assimptótico relativamente à amplitude) de uma montagem constituída por uma cascata de dois amplificadores inversores, cada um com um ganho de 10. Qual é a frequência superior de corte da montagem?
- 26.3 Que pode concluir dos resultados de 26.1 e 26.2?
- 27 Um AmpOp com um *slew rate* de 10V/μs é utilizado na configuração seguidor de tensão (ganho unitário). À sua entrada são aplicados impulsos que variam entre 0 e +5V. Qual seria a menor duração de um impulso para que a saída atinja o seu valor máximo (5V)? Para um tal impulso, desenhe a forma de onda da saída.
- No projecto de circuitos com AmpOp's é necessário prever as limitações em malha-fechada para as gamas de utilização de frequência e tensão, impostas por uma largura de banda finita (especificada, p. ex., através do valor da frequência de transição f_T), slew rate (SR) e saturaração da saída (± V_{sat}). Admita que um AmpOp com f_T = 2 MHz, SR = 1 V/μs, V_{sat} = ±10V é utilizado para implementar um amplificador não-inversor com um ganho nominal de 10. Assuma que à sua entrada é aplicado um sinal sinusoidal de amplitude de pico V_m.
- 28.1 Se V_m = 0.5 V, qual o valor máximo da frequência de entrada antes de se observar uma saída distorcida?
- 28.2 Para uma frequência de entrada f = 20 kHz, qual é o valor máximo de $V_{\rm m}$ antes de se observar uma saída distorcida?
- 28.3 Se $V_{\rm m}$ = 50 mV, qual é a gama de utilização da frequência de entrada?
- 28.4 Para f = 5 kHz, qual é a gama utilização da tensão de entrada?
- 29 Um AmpOP montado na configuração inversora possui $R_1 = 1 \text{ k}\Omega$ e $R_2 = 100 \text{ k}\Omega$. Com a entrada ligada a 0 V, a saída apresenta o valor de -0.5 V. Qual é a tensão de desvio (*offset*) na entrada do AmpOP? (Suponha que a corrente de entrada de polarização é desprezável.)
- 30 Um amplificador não inversor com um ganho em malha-fechada de 1000, utiliza um AmpOp com uma tensão de desvio (offset) de entrada $V_{\rm OS} = 4$ mV e uma tensão de saturação $V_{\rm sat} = \pm 13$ V. Qual é o valor máximo da amplitude de pico de uma entrada sinusoidal para que a tensão não seja "cortada" (limitada por $\pm V_{\rm sat}$)? Se a entrada for acoplada capacitivamente, tal como se indica na Figura 18, qual seria então o valor máximo da amplitude?

- 31 Um AmpOp ligado em malha-fechada com uma resistência de realimentação de 1 M Ω , possui um ganho de +100.
- 31.1 Para uma corrente de entrada de polarização de 100 nA, qual é a tensão de saída se a entrada for ligada a 0 V (admita que a tensão de *offset* é desprezável)?

- 31.2 Para um tensão de *offse*t na entrada de ±1 mV, qual é o maior valor de tensão expectável na saída, se a entrada for ligada a 0 V e a corrente de polarização de 31.1?
- 31.3 Qual é o valor da resistência a incluir no circuito (aonde?) para se fazer a compensação da corrente de polarização (I_B)? Se a corrente de *offset* (I_{OS}) não ultrapassar 1/10 da corrente de polarização qual é a tensão de *offset* resultante (devido apenas ao *offset* de corrente)?
- 31.4 Com a compensação da corrente de compensação de 31.3, qual é o valor máximo da tensão (*cc*) de saída, devido ao efeito combinado dos *offsets* de corrente e de tensão?

COMPONENTES DIGITAIS

Sistemas de Numeração

32	Converta os seguintes números de binário para decimal:					
	(a) 101	(b) 1001	(c) 1101	(d) 101101	(e) 101110	(f) 1011,11
	(g) 1010,101	(h) 0,1101	(i) 101010,01			
33	Converta os seguintes números de decimal para binário:					
	(a) 10	(b) 24	(c) 61	(d) 125	(e) 0,32	(g) 0,0981
	(h) 12,5	(i) 5,246				
34	Some os seguintes números em binário:					
	(a) 11 + 01	(b) 101 + 11	(c) 1101 + 110	(d) 1101 + 1011		
35	Faça a subtracção directa dos seguintes números:					
	(a) 11 – 1	(b) 101 – 10	(c) 1110 – 11	(d) 1100 – 1001		
36	Determine o complemento para 1 dos seguintes números binários:					
	(a) 101	(b) 110	(c) 1010	(d) 11101	(e) 1110101	
37	Determine o complemento para 2 dos seguintes números binários:					
	(a) 10	(b) 111	(c) 1001	(d) 10011	(e) 1011000	
38	Represente os seguintes números decimais em complemento para 1 utilizando 8 bits:					
	(a) -34	(b) +57	(c) -99	(d) +115		
39	Represente os seguintes números decimais em complemento para 2 utilizando 8 bits:					
	(a) +12	(b) -68	(c) +101	(d) -128		
40	Some os seguintes números em complemento para 2:					
	(a) 10001100 + 001	•	(b) 11011001 +	11100111		
41	Subtraia os seguintes números em complemento para 2:					
• •	(a) 00110011 - 000		(b) 01100101 -			
42	Converta os seguintes números de decimal para BCD:					
	(a) 10	(b) 13	(c) 25	(d) 57	(e) 125	(f) 1964
40			, ,	X /	· / -	() 22.
43	Converta os seguintes números de BCD para decimal:					
	(a) 10010110	(b) 1010100	(c) 1000010101	11		

Lógica Combinacional e Álgebra de Boole

Escreva as expressões booleanas correspondentes a cada um dos circuitos lógicos da Figura 19.

Figura 19

45 Desenhe os circuito lógicos que representam as seguintes expressões booleanas:

- (a) $A\bar{B} + \bar{A}B$
- (b) $AB + \overline{AB} + \overline{ABC}$
- (c) $\overline{A}B(C+\overline{D})$ (d) $A+B[C+D(B+\overline{C})]$
- Construa a tabela de verdade para cada uma das seguintes expressões booleanas:
 - (a) $A + \overline{B}$
- (b) $\overline{A}B$
- (c) A(B+C) (d) $(A+B)(\overline{B}+C)$

Utilizando técnicas da álgebra de Boole simplifique o mais possível as seguintes expressões:

- (a) A(A+B)
- (b) $A(\overline{A} + AB)$
- (c) $BC + \overline{B}C$ (d) $A(A + \overline{A}B)$

(e) $A\overline{B}C + \overline{A}BC + \overline{A}\overline{B}C$

Simplifique o mais possível os circuitos lógicos da Figura 20 e verifique que os circuitos simplificados são equivalentes aos circuitos originais mostrando que as respectivas tabelas de verdade são idênticas.

Figura 20

Dado o circuito lógico da Figura 21 e os respectivos sinais de entrada, obtenha o sinal na saída X.

Figura 21

- 50 Apresente um circuito lógico que produza uma saída "alta" se e só se a entrada, representada por um número binário de 4 bits, for maior do que 12 e menor do que 3. Primeiro construa a tabela de verdade e depois desenhe o diagrama lógico.
- 51 Desenvolva um circuito lógico que cumpra os seguintes requisitos:

Uma sala possui uma lâmpada que é comandada a partir de 2 comutadores – um na porta da frente e outro na porta de trás. A lâmpada fica acesa (ou ligada) se o comutador da frente estiver ligado e o de trás desligado, ou se o comutador da frente estiver desligado e o de trás ligado. A lâmpada deve ficar apagada os comutadores estiverem ambos ligados ou ambos desligados. Admita que uma saída "alta" representa a lâmpada acesa e uma saída "baixa", a lâmpada desligada.

52 Implemente um circuito digital que faça a soma/subtracção de dois números em complemento para 2. Utilize *full-adders* e a lógica adicional que for necessária.

Circuitos Sequenciais

Se sinais com as formas de onda da Figura 22 forem aplicadas às entradas de um Flip-Flop (FF) SR (com entradas activas em "0") qual seria a forma de onda na saída Q (admita que no instante inicial Q = 0)?

Esboce a forma de onda na saída Q relativamente à entrada de relógio (CK) para um FFD admitindo que os sinais aplicados às suas entradas são os da Figura 23. Admita que inicialmente Q = 0.

55 Determine a forma de onda de Q se os sinais da Figura 24 forem aplicados à entrada do FFJK. Assuma que o valor inicial de Q é "0"

Complete o diagrama temporal da Figura 25, esboçando a forma de onda da saída Q. Admita que inicialmente Q = 0.

57 Tendo em atenção o sinais (A e B) aplicados à entrada do circuito da Figura 26, esboce as formas de onda nas saídas Q e X.

58 Considere o circuito lógico da Figura 27:

- 58.1 Esboce as formas de onda de Q_0 , Q_1 e Q_2 , para pelo menos 6 impulsos de CK. Admita que inicialmente todas as saídas se encontram em "0".
- 58.2 O que faz o circuito da Figura 27?
- 59 Considere o circuito lógico da Figura 28:

- 59.1 Esboce as formas de onda de CK, Q_0 , Q_1 , e Q_2 , para S=0. Admita que inicialmente todas as saídas se encontram em "0".
- 59.2 Repita a alínea 0 para S = 1.
- 59.3 O que faz o circuito da Figura 28?

OUTROS COMPONENTES E SUBSISTEMAS

Conversão de dados

- 60 Um sinal analógico na gama de 0 a +10V é convertido para um sinal digital de 8 bits.
- 60.1 Qual é a resolução da conversão em volts?
- 60.2 Qual é a representação digital de uma tensão de entrada de 6V? E de 6.2V? Qual é o erro resultante da quantização (ou discretização) em valor absoluto e em percentagem da entrada? E em percentagem do fim de escala?
- 60.3 Qual é o maior erro resultante da quantização em percentagem do fim de escala?
- 60.4 Qual seria a resolução (em volts) para uma gama de tensões de entrada entre -10V e +10V?
- 61 O sinal da Figura 29 é amostrado em intervalos de 1 ms.
- 61.1 Represente a curva por uma série de números de 4 bits.
- 61.2 Qual deveria ser, no mínimo, a frequência de amostragem do sinal?

Figura 29

- 62 Admita que utilizava um conversor D/A de 4 bits e com uma tensão de referência de 12 volts para obter a reprodução digital da sequência de 61.1.
- 62.1 Esboce a forma de onda do sinal à saída do conversor D/A.
- 62.2 Suponha que se ligava à saída do conversor D/A um filtro RC com uma constante de tempo igual a 1/5 do intervalo de amostragem. Esboce a forma de onda à saída do filtro.
- 63 Considere o conversor D/A da Figura 30. Qual deveria ser a tolerância das resistências utilizadas no circuito (±x%) para que o erro na saída não ultrapasse o equivalente a ± ½ L.S.B (admita que a tolerância das resistências são todas iguais)?

- 64 Considere o conversor D/A da Figura 30 (a).
- 64.1 Qual deveria ser o valor de R_F para que para o valor máximo da entrada a tensão seja saída seja 12 volts?
- 64.2 Esboce a saída do D/A quando se aplica à sua entrada os sinais de Figura 30 (b)

65 Admita que o conversor de 8 bits da Figura 31 utiliza um sinal de relógio (CLK) com uma frequência de 1 MHz. Qual é tempo de conversão máximo do conversor?

Figura 31

66 Um conjunto sensor de força + sistema de acondicionamento de sinal possui uma sensibilidade de 10 mV/N e a resposta em frequência da Figura 32. Pretende-se utilizar um sistema de aquisição de dados para ler e

processar num PC a informação relativa à força. O valor máximo da força a medir são 10 N, sendo necessária uma resolução de 10 mN.

- Figura 32
- 66.1 Diga qual deveria ser, no mínimo o número de bits do conversor A/D do sistema de aquisição de dados.
- 66.2 Qual deveria ser, no máximo o tempo de conversão do A/D?
- 66.3 Suponha que se utilizava um multiplexer analógico para ler o sinal proveniente de 8 sensores de força idênticos. Quantas entradas de controlo teria o multiplexer? Qual deveria ser, neste caso, a frequência de amostragem permitida pelo A/D?

