

Lecture 21: Introduction to
Generalized Linear Models;

<u>Course</u> > <u>Unit 7 Generalized Linear Models</u> > <u>Exponential Families</u>

- 7. Exponential Family: Continuous
- > Examples

7. Exponential Family: Continuous Examples Example: Gaussian Distribution

Exponential Distribution as Exponential Families

4/4 points (graded)

Recall that the exponential distribution with parameter λ is given by the pdf by

$$f_{\lambda}\left(y
ight)=\lambda e^{-\lambda y}.$$

Let $\theta = \lambda$. Rewrite $f_{\lambda}\left(y\right)$ in the form

$$f_{ heta}\left(y
ight)=h\left(y
ight)\exp\left(\eta\left(heta
ight)T\left(y
ight)-B\left(heta
ight)
ight),$$

and enter $\eta(\theta)$, T(y), $B(\theta)$ below.

These functions are not unique. To get unique answers, let $h\left(y\right)=1,\,$ and let the coefficient of y in $T\left(y\right)$ be +1.

$$T\left(y
ight)=egin{array}{c} y \ y \ \end{array}$$
 Answer: y

$$\eta\left(heta
ight)=$$
 -theta $lacksquare$ Answer: -theta

If instead of $h\left(y\right)=1$, we had used $\tilde{h}\left(y\right)=C$ for some constant C, then what is $\widetilde{B}\left(\theta\right)$ in terms of $B\left(\theta\right)$ and C? That is, find $\widetilde{B}\left(\theta\right)$ such that the pdf $f_{\theta}\left(y\right)$ of $Y\sim\mathsf{Exp}\left(\theta\right)$ is

$$f_{ heta}\left(y
ight) \,=\, ilde{h}\left(y
ight) \exp\left(\eta\left(heta
ight)T\left(y
ight) - \widetilde{B}\left(heta
ight)
ight).$$

(Enter **B** for $B(\theta)$ and **C** for C. Your answer should be in terms of only C and $B(\theta)$. Enter "In" for the natural logarithm.)

$$\widetilde{B}\left(heta
ight) = egin{array}{c} \operatorname{In(C)+B} \end{array}$$
 $ightharpoonup
ightarrow \operatorname{Answer: B+In(C)}$

STANDARD NOTATION

Solution:

$$f_{ heta}\left(y
ight) = heta e^{- heta y} \, = e^{-(heta)\left(y
ight) - \left(-ln(heta)
ight)}$$

Hence $\eta\left(heta
ight)=- heta,\,T\left(y
ight)=y,\,B\left(heta
ight)=-\ln\left(heta
ight)$. If instead $ilde{h}\left(y
ight)=C$ is used, then

$$f_{ heta}\left(y
ight) \,=\, heta e^{- heta y} \,= C e^{-(heta)\left(y
ight) - \left(-ln(heta) + \ln(C)
ight)}$$

Hence $\widetilde{B}\left(heta
ight) =B\left(heta
ight) +\ln\left(C
ight) .$

Submit

You have used 2 of 3 attempts

• Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Unit 7 Generalized Linear Models:Lecture 21: Introduction to Generalized Linear Models; Exponential Families / 7. Exponential Family: Continuous Examples

Add a Post

Show all posts

by recent activity ▼

There are no posts in this topic yet.

×

© All Rights Reserved