Azzolini Riccardo 2020-04-27

Calcolo a tableaux – Completezza

1 Hintikka set

Definizione: Un insieme di formule Γ è un **Hintikka set** (abbreviato **H-set**) se:

- Γ non contiene coppie complementari;
- se $\neg \neg A \in \Gamma$, allora $A \in \Gamma$;
- se $A \in \Gamma$, e A è un' α -formula con ridotti B e C, allora $B, C \in \Gamma$;
- se $A \in \Gamma$, e A è una β -formula con ridotti B e C, allora $B \in \Gamma$ oppure $C \in \Gamma$;

Osservazione: Non è richiesto che Γ sia un insieme finito.

1.1 Esempi

- $\Gamma_1 = \{A \rightarrow B, B, C\}$ è un H-set:
 - $-\Gamma_1$ non contiene coppie complementari;
 - $-A \rightarrow B \in \Gamma$ è una β -formula con ridotti $\neg A, B, e B \in \Gamma$.
- $\Gamma_2 = \{B, A \to B, A \land C, A\}$ non è un H-set: $A \land C$ è un' α -formula con ridotti B, C, ma $C \notin \Gamma_2$.
- $\Gamma_3 = \{ \neg (A \to B), A \land C, A \}$ non è un H-set, perché $\neg (A \to B)$ è un' α -formula con ridotti $A, \neg B,$ ma $\neg B \notin \Gamma_3$ (e inoltre, come nell'esempio precedente, $A \land C \in \Gamma_3$, ma $C \notin \Gamma_3$).
- $\Gamma_4 = \{\neg A, B, A \to B, A \lor C, C, \neg B\}$ non è un H-set, perché contiene la coppia complementare $B, \neg B$.

2 Schema della dimostrazione di completezza

Per dimostrare la completezza del calcolo a tableaux $T_{\rm CPL}$, si inizia dimostrando i seguenti lemmi:

- LH1: Ogni H-set è soddisfacibile.
- LH2: Se ρ è un ramo aperto di un tableau completo per Γ , allora Δ_{ρ} è un H-set.

Da questi, e dal fatto che $\Gamma \subseteq \Delta_{\rho}$, si deduce:

• LH3: Se Γ ha un tableau completo e aperto, allora Γ è soddisfacibile.

Di conseguenza, se Γ è insoddisfacibile, ogni tableau completo per Γ è chiuso, da cui segue immediatamente il teorema:

• Teorema (di completezza di T_{CPL}): Se un insieme finito di formule Γ è insoddisfacibile, allora esiste un tableau completo chiuso per Γ .

3 Soddisfacibilità degli H-set

Lemma (LH1): Ogni H-set è soddisfacibile.

Dimostrazione: Sia Γ un H-set. Si definisce la seguente valutazione $v: VAR \to \{0,1\}$:

$$\widetilde{\forall} p \in VAR \quad v(p) = \begin{cases} 1 & \text{se } p \in \Gamma \\ 0 & \text{se } p \notin \Gamma \end{cases}$$

Si dimostra per induzione su rg(H) che, per ogni $H \in \Gamma$, si ha $v \models H$.

- Base: rg(H) = 1, cioè H è un letterale:
 - Se $H = p \in \Gamma$, allora, per definizione

$$v(p) = 1 \implies v \models p$$

– Se invece $H=\neg p\in\Gamma,$ allora $p\notin\Gamma$ (perché $\Gamma,$ in quanto H-set, non contiene coppie complementari), e quindi

$$v(p) = 0 \implies v \not\models p \implies v \models \neg p$$

- Ipotesi induttiva: Per ogni $K \in \Gamma$ tale che $\operatorname{rg}(K) = h \ge 1, v \models K$.
- Passo induttivo: Sia $H \in \Gamma$, con rg(H) = h + 1. Si procede per casi sulla forma di H:

– Sia $H = \neg \neg K$. Poiché Γ è un H-set, $K \in \Gamma$. Dunque, dato che $\operatorname{rg}(K) \leq h$, per ipotesi di induzione si ha che

$$v \models K \implies v \models \neg \neg K$$

– Sia H un'α-formula con ridotti K_1 e K_2 . Allora, essendo Γ un H-set, per definizione si ha anche $K_1, K_2 \in \Gamma$. Dato che $\operatorname{rg}(K_1) \leq h$ e $\operatorname{rg}(K_2) \leq h$, per l'ipotesi induttiva si ha che

$$v \models K_1 \in v \models K_2 \implies v \models K_1 \land K_2$$

e quindi, ricordando che, in generale, una α -formula è equivalente alla congiunzione dei suoi ridotti, $H \equiv K_1 \wedge K_2$, si deduce che $v \models H$.

– Sia H una β -formula con ridotti K_1 e K_2 . Per la definizione di H-set, deve essere $K_1 \in \Gamma$ oppure $K_2 \in \Gamma$. Dato che $\operatorname{rg}(K_1) \leq h$ e $\operatorname{rg}(K_2) \leq h$, per ipotesi induttiva

$$v \models K_1 \circ v \models K_2 \implies v \models K_1 \vee K_2$$

Di conseguenza, siccome $H \equiv K_1 \vee K_2$ (una β -formula equivale alla disgiunzione dei suoi ridotti), $v \models H$.

4 Richiamo – Proprietà dei tableaux

Nelle dimostrazioni successive, verranno usate alcune proprietà dei tableaux, dimostrate in precedenza:

- 1. Proposizione (PT1): Sia $\rho = N_1, \dots, N_k$ un ramo di un tableau \mathcal{T} (non necessariamente completo). Per ciascuna formula $H \in \Delta_{\rho}$ valgono le seguenti proprietà:
 - a) Se H è un letterale, allora $H \in \Gamma_{N_k}$, cioè appartiene alla foglia del ramo.
 - b) Se invece H è composta, allora:
 - o $H \in \Gamma_{N_h}$,
 - oppure deve esistere un indice $i \in \{1, ..., k-1\}$ l'indice di un nodo del ramo che non sia la foglia per cui $H \in \Gamma_{N_i}$ ma $H \notin \Gamma_{N_{i+1}}$, e N_{i+1} è ottenuto da N_i scomponendo la formula H.
- 2. Proposizione (PT2): Siano $\rho = N_1, \dots, N_k$ un ramo di un tableau completo \mathcal{T} e H una formula composta. Valgono le seguenti proprietà:
 - a) Se $H = \neg \neg A \in \Delta_{\rho}$, cioè se compare sul ramo una formula del tipo $\neg \neg A$, allora $A \in \Delta_{\rho}$, cioè sul ramo compare anche A.

- b) Se, invece, sul ramo è presente un' α -formula $H \in \Delta_{\rho}$, con ridotti H_1, H_2 , allora $H_1, H_2 \in \Delta_{\rho}$.
- c) Se $H \in \Delta_{\rho}$ è una β -formula con ridotti H_1, H_2 , allora compare sul ramo anche (almeno) uno dei due ridotti: $H_1 \in \Delta_{\rho}$ o $H_2 \in \Delta_{\rho}$.
- 3. Proposizione (PT3): Sia $\rho = N_1, \ldots, N_K$ un ramo di un tableau completo \mathcal{T} per Γ . Se Δ_{ρ} contiene una coppia complementare, allora anche Γ_{N_k} contiene una coppia complementare.

5 Un ramo aperto è un H-set

Lemma (LH2): Se ρ è un ramo aperto di un tableau completo per Γ, allora Δ_{ρ} è un H-set.

Dimostrazione: Per prima cosa, si osserva che Δ_{ρ} non contiene coppie complementari, poiché ρ è aperto. Infatti, se invece Δ_{ρ} contenesse una coppia complementare, per la PT3 sarebbe presente una tale coppia anche nella foglia del ramo, ovvero, per definizione, il ramo sarebbe chiuso.

Tutte le altre proprietà degli H-set seguono direttamente dalla PT2:

- se $\neg \neg A \in \Delta_{\rho}$, allora $A \in \Delta_{\rho}$;
- se $A \in \Delta_{\rho}$, e A è un' α -formula con ridotti B e C, allora $B, C \in \Delta_{\rho}$;
- se $A \in \Delta_{\rho}$, e A è una β -formula con ridotti B e C, allora $B \in \Delta_{\rho}$ oppure $C \in \Delta_{\rho}$;

6 Lemma principale

Lemma (LH3): Se Γ ha un tableau completo e aperto, allora Γ è soddisfacibile.

Dimostrazione: Sia \mathcal{T} un tableau completo e aperto per Γ. Per definizione, \mathcal{T} ha almeno un ramo aperto; sia ρ tale ramo. Allora:

- 1. per LH2, Δ_{ρ} è un H-set;
- 2. per LH1, Δ_{ρ} è soddisfacibile;
- 3. l'insieme Γ è quello associato alla radice di \mathcal{T} (poiché questo è, appunto, un tableau per Γ), e ogni ramo del tableau (compreso ρ) ha come primo nodo la radice, quindi $\Gamma \subseteq \Delta_{\rho}$, e dunque anche Γ è soddisfacibile.

7 Teorema di completezza

Teorema (di completezza di T_{CPL}): Se un insieme finito di formule Γ è insoddisfacibile, allora esiste un tableau completo chiuso per Γ.

Dimostrazione: Per prima cosa, si osserva che esiste sempre almeno un tableau completo per qualunque Γ : lo si può costruire mediante l'algoritmo presentato in precedenza, che termina sempre. Come caso limite, se Γ è composto solo da letterali (o è vuoto), l'albero costituito dalla sola radice è comunque un tableau completo (e, in particolare, l'unico tableau esistente per Γ).

Da LH3 si deduce, utilizzando la contronominale, che se Γ non è soddisfacibile (è insoddisfacibile) allora non esiste un tableau completo e aperto per Γ . Dunque, il tableau completo per Γ che sicuramente esiste (come appena osservato) può solo essere chiuso.

Osservazione: In realtà, si è dimostrata un'affermazione più forte: ogni tableau completo per Γ è chiuso. Questa proprietà vale per la logica proposizionale classica, ma non per altri sistemi logici.

8 Tableaux chiusi non completi

Per la PT3, se un nodo N di un ramo contiene una coppia complementare H, $\neg H$, anche nel caso in cui H sia una formula composta si può arrestare subito lo sviluppo del ramo, senza bisogno di arrivare fino alle foglie: tutti i rami completi che partono da N saranno sicuramente chiusi.

Utilizzando questa considerazione, si può formulare una versione più forte del teorema di completezza, eliminando la richiesta che il tableau chiuso sia completo:

Teorema (di completezza di T_{CPL}): Se un insieme finito di formule Γ è insoddisfacibile, allora esiste un tableau chiuso per Γ .

9 Tableaux e tautologie

Proposizione: Una formula H è una tautologia se e solo se ogni tableau per $\{\neg H\}$ è chiuso.

Dimostrazione:

$$H$$
 è una tautologia $\iff \neg H$ non è soddisfacibile \iff ogni tableau per $\{\neg H\}$ è chiuso

¹Più in generale, le due formule $H \in \neg H$ possono essere presenti anche solo in nodi diversi del ramo.

9.1 Esempio

Sia $H = \neg (A \to \neg B) \to (A \land B)$. Un tableau per $\neg H$ è il seguente:

$$\neg(\neg(A \to \neg B) \to (A \land B))$$

$$| \\ \neg(A \to \neg B), \neg(A \land B)$$

$$| \\ A, \neg \neg B, \neg(A \land B)$$

$$| \\ A, B, \neg(A \land B)$$

$$A, B, \neg A \qquad A, B, \neg B$$

Entrambi i rami sono chiusi, quindi $\neg H$ è insoddisfacibile, e di conseguenza H è una tautologia.

10 Tableaux aperti e contromodelli

Un'altra proprietà che si può dimostrare, e che fornisce un'informazione aggiuntiva relativamente agli insiemi di formule per cui si hanno solo tableaux aperti è la seguente:

Proposizione: Se un insieme finito di formule Γ ha un tableau completo aperto, si può estrarre da esso una valutazione che verifica Γ .

Dimostrazione: Per LH3, avendo un tableau completo aperto, Γ è soddisfacibile:

$$\rho \text{ aperto} \implies \Delta_{\rho} \text{ è un H-set}$$

$$\implies \Delta_{\rho} \text{ è soddisfacibile}$$

$$\implies \Gamma \text{ è soddisfacibile}$$
(LH1)

(dove $\rho = N_1, \dots, N_k$ è un ramo aperto del tableau). La dimostrazione di LH1 indica come costruire una valutazione v che soddisfi l'H-set Δ_{ρ} , e, siccome $\Gamma \subseteq \Delta_{\rho}$, si avrà anche $v \models \Gamma$:

$$\widetilde{\forall} p \in VAR \quad v(p) = \begin{cases} 1 & \text{se } p \in \Delta_{\rho} \\ 0 & \text{se } p \notin \Delta_{\rho} \end{cases}$$

Per la PT1, tutti i letterali presenti in Δ_{ρ} compaiono anche nell'insieme associato alla foglia del ramo, Γ_{N_k} , dunque (per praticità) la valutazione può essere costruita considerando anche solo Γ_{N_k} :

$$\widetilde{\forall} p \in VAR \quad v(p) = \begin{cases} 1 & \text{se } p \in \Gamma_{N_k} \\ 0 & \text{se } p \notin \Gamma_{N_k} \end{cases}$$

Osservazione: Se $\Gamma = \{\neg H\}$ ha un tableau completo aperto, allora $v \models \neg H$, ovvero $v \not\models H$, quindi v è un esempio di modello (valutazione) che rende falsa H, o, in altre parole, un controesempio che indica che H non è una tautologia. In generale, un modello che rende falsa una formula (o un insieme di formule) viene chiamato **contromodello** per la formula (o l'insieme).

10.1 Esempio

Sia $H = (A \to B) \land (A \lor B)$. Un tableau aperto per H è il seguente:

Dalle foglie dei (tre) rami aperti, si estraggono le seguenti valutazioni che soddisfano H:

$$v_N(A) = 0, \ v_N(B) = 1 \implies v_N \models (A \to B) \land (A \lor B)$$

 $v_{N'}(A) = 1, \ v_{N'}(B) = 1 \implies v_{N'} \models (A \to B) \land (A \lor B)$
 $v_{N''}(A) = 0, v_{N''}(B) = 1 \implies v_{N''} \models (A \to B) \land (A \lor B)$

11 Tableaux e conseguenza logica

I tableaux possono essere usati per verificare la conseguenza logica:

$$\Gamma \models H \iff \Gamma \cup \{\neg H\} \text{ è insoddisfacibile}$$

$$\iff \text{esiste un tableau chiuso per } \Gamma \cup \{\neg H\}$$

11.1 Esempi

• Siano $\Gamma = \{ \neg A \}$ e $H = (A \land \neg B) \rightarrow (A \land B)$. Un tableau per $\Gamma \cup \{ \neg H \}$ è:

$$\neg A, \neg((A \land \neg B) \to (A \land B))$$

$$| \\ \neg A, A \land \neg B, \neg(A \land B)$$

$$| \\ \neg A, A, \neg B, \neg(A \land B)$$

Siccome esso è chiuso, $\Gamma \cup \{\neg H\}$ è insoddisfacibile, ovvero

$$\neg A \models (A \land \neg B) \to (A \land B)$$

• Siano $\Gamma = \{A \to B\}$ e $H = \neg A \to B$. Un possibile tableau per $\Gamma \cup \{\neg H\}$ è

$$A \to B, \neg(\neg A \to B)$$

$$\mid A \to B, \neg A, \neg B$$

$$\neg A, \neg B \quad B, \neg B$$

che è aperto, quindi

$$A \to B \not\models \neg A \to B$$

• Siano $\Gamma = \{A \to B\}$ e $H = \neg B \to \neg A$. Per $\Gamma \cup \{\neg H\}$ si costruisce il seguente tableau:

$$A \to B, \neg(\neg B \to \neg A)$$

$$\mid$$

$$A \to B, \neg B, \neg \neg A$$

$$\mid$$

$$A \to B, \neg B, A$$

$$\neg A, \neg B, A$$

$$B, \neg B, A$$

Esso è chiuso, perciò

$$A \to B \models \neg B \to \neg A$$