COMP9418: Advanced Topics in Statistical Machine Learning

Propositional Logic

Instructor: Gustavo Batista

University of New South Wales

Introduction

- This lecture provides an introduction to propositional logic
 - Syntax and semantics of propositional logic
 - Monotonicity of propositional logic

- This topic will provide a basis to review probability calculus
 - As an extension of logic concepts
 - Allow to reason in the presence of uncertainty

- Consider an alarm for detecting burglaries
 - It can also be triggered by an earthquake
- An event of a burglary or earthquake can be expressed by the following sentence
 - Burglary and Earthquake are propositional variables
 - V is a logical disjunction (or)
- Propositional logic can be used to express more complex statements
 - ⇒ is the logical *implication*
 - It means that a burglary or an earthquake is guaranteed to trigger the alarm
- Consider also this sentence
 - \neg is a logical *negation* (not) and \land is the logical *conjunction* (and)
 - It means that if there is no burglary and no earthquake, the alarm will not trigger

- Consider an alarm for detecting burglaries
 - It can also be triggered by an earthquake
- An event of a burglary or earthquake can be expressed by the following sentence
 - Burglary and Earthquake are propositional variables
 - V is a logical disjunction (or)
- Propositional logic can be used to express more complex statements
 - ⇒ is the logical *implication*
 - It means that a burglary or an earthquake is guaranteed to trigger the alarm
- Consider also this sentence
 - \neg is a logical *negation* (not) and \land is the logical *conjunction* (and)
 - It means that if there is no burglary and no earthquake, the alarm will not trigger

Burglary ∨ Earthquake

 $Burglary \lor Earthquake \Rightarrow Alarm$

 $\neg Burglary \land \neg Earthquake \Rightarrow \neg Alarm$

 Propositional sentences are formed using a set of propositional variables

 P_1, \ldots, P_n

- These variables are also called Boolean variables or binary variables
- Assume one of two possible values, typically indicated by true and false
- The simplest sentence has the form P_i
 - It is an atomic sentence
 - It means that the variable P_i has the value true
- More generally, propositional sentences are formed as follows
 - Every propositional variable P_i is a *sentence*
 - If α and β are sentences, then $\neg \alpha$, $\alpha \land \beta$, and $\alpha \lor \beta$ are also sentences

- The symbols ¬, ∧ and ∨ are logical connectives
 - They stand for negation, conjunction and disjunction
- Other connectives can also be introduced
 - Such as implication (⇒) and equivalence (⇔)
 - But these can be defined in terms of the three primitive connectives
- A propositional knowledge base is a set of propositional sentences $\alpha_1, \alpha_2, ..., \alpha_n$
 - Interpreted as a conjunction $\alpha_1 \wedge \alpha_2 \wedge \cdots \wedge \alpha_n$

$$\alpha \Longrightarrow \beta \equiv \neg \alpha \lor \beta$$
$$\alpha \Longleftrightarrow \beta \equiv (\alpha \Longrightarrow \beta) \land (\beta \Longrightarrow \alpha)$$

- Consider this digital circuit with two inputs and one output
 - Let's write a propositional knowledge base that captures the behavior of this circuit
 - We need to choose a set of propositional variables
 - Common choice is one variable to each wire

- Consider this digital circuit with two inputs and one output
 - Let's write a propositional knowledge base that captures the behavior of this circuit
 - We need to choose a set of propositional variables
 - Common choice is one variable to each wire
- The idea is that when the variable is true, the corresponding wire is high
 - Also, a when a variable is false, the wire is low
 - This leads to the following knowledge base

$$\Delta = \begin{cases} A & \Longrightarrow \neg X \\ \neg A & \Longrightarrow X \\ A \land B & \Longrightarrow Y \\ \neg (A \land B) & \Longrightarrow \neg Y \\ X \lor Y & \Longrightarrow C \\ \neg (X \lor Y) & \Longrightarrow \neg C \end{cases}$$

Semantics of Propositional Sentences

- Propositional logic provides a framework for defining
 - Properties of sentences such as consistency and validity
 - Relationships among them, such as implication, equivalence and mutual exclusiveness
- For instance, this sentence
 - Logically implies
- These properties and relationships are easy to figure out for simple sentences
 - $A \land \neg A$ is inconsistent (will never hold)
 - $A \lor \neg A$ is valid (always hold)
 - A and $(A \Longrightarrow B)$ implies B
 - $A \lor B$ is equivalent to $B \lor A$

```
Burglary \lor Earthquake \Rightarrow Alarm Burglary \Rightarrow Alarm Alarm \land \neg Burglary \Rightarrow Earthquake
```

Semantics of Propositional Sentences

- Yet it may not be obvious that $A \Longrightarrow B$ and $\neg B \Longrightarrow A$ are equivalent
 - Or that $(A \Longrightarrow B) \land (A \Longrightarrow \neg B)$ implies $\neg A$
- For this reason we need formal definitions of logical properties and relationships
 - These notions are relatively easy ones the notion of world is defined

Worlds, Models and Events

- A world is a state in which the value of each variable is known
 - In the Burglary example, we have three variables and eight worlds
- A world w is a function that maps each propositional variable P_i into a value $w(P_i) \in \{true, false\}$
 - A world is also called a truth assignment, variable assignment or variable instantiation
- Worlds allow to decide the truth of sentences without ambiguity
 - Burglary is true at world w_1
 - $\neg Burglary$ is true at world w_3
 - $Burglary \lor Earthquake$ is true at world w_4

world	Earthquake	Burglary	Alarm
w_1	true	true	true
W_2	true	true	false
W_3	true	false	true
W_4	true	false	false
w_5	false	true	true
w_6	false	true	false
w_7	false	false	true
w_8	false	false	false

Worlds, Models and Events

- We use the notation $w \models \alpha$ to mean that the sentence α is true at world w
 - Also, world w satisfies (or entails) sentence α
- A set of worlds that satisfy a sentence α is called the models of α
 - Every sentence α can be viewed as representing a set of worlds $Mods(\alpha)$, which is called the *event* denoted by α
 - We use the terms "sentence" and "events" interchangeably
- We can prove the following properties
 - $Mods(\alpha \land \beta) = Mods(\alpha) \cap Mods(\beta)$
 - $Mods(\alpha \lor \beta) = Mods(\alpha) \cup Mods(\beta)$
 - $Mods(\neg \alpha) = \overline{Mods(\alpha)}$

$$Mods(\alpha) \stackrel{\text{def}}{=} \{w : w \models \alpha\}$$

Worlds, Models and Events

- Some example sentences and their truth at worlds
 - Earthquake is true at worlds $w_1, ..., w_4$ $Mods(Earthquake) = \{w_1, ..., w_4\}$
 - ¬Earthquake is true at worlds $w_5, ..., w_8$ Mods(¬<math>Earthquake) = Mods(Earthquake)
 - $\neg Burglary$ is true at worlds w_3, w_4, w_7, w_8
 - Alarm is true at worlds w_1, w_3, w_5, w_7
 - \neg (Earthquake \lor Burglary) is true at worlds w_7, w_8 $Mods(\neg(Earthquake \lor Burglary)) = \overline{Mods(Earthquake) \cup Mods(Burglary)}$
 - \neg (Earthquake \lor Burglary) \lor Alarm is true at worlds w_1, w_3, w_5, w_7, w_8
 - (Earthquake \vee Burglary) \Longrightarrow Alarm is true at worlds w_1, w_3, w_5, w_7, w_8
 - $\neg Burglary \land Burglary$ is not true at any world

world	Earthquake	Burglary	Alarm
w_1	true	true	true
W_2	true	true	false
W_3	true	false	true
W_4	true	false	false
w_5	false	true	true
w_6	false	true	false
w_7	false	false	true
w_8	false	false	false

Logical Properties

- We say that a sentence α is *consistent* if and only if there is at least one world w at which α is true
 - Otherwise, the sentence α is *inconsistent*
 - We also use the terms satisfiable/unsatisfiable
 - The symbol *false* is used to denote a sentence that is unsatisfiable
- A sentence α is valid is and only if it is true at every world
 - If a sentence α is not valid, we can identify a world w at which α is false
 - The symbol true is used to denote a sentence that is valid. We also write $\models \alpha$

$$Mods(\alpha) \neq \emptyset$$

$$Mods(\alpha) = \emptyset$$

$$Mods(\alpha) = \Omega$$

$$Mods(\alpha) \neq \Omega$$

Logical Relationships

- Logical properties apply to single sentences. Logical relationships apply to two or more sentences
 - Sentences α and β are *equivalent* iff they are true at the same set of worlds
 - Sentences α and β are mutually exclusive iff they are never true at the same world
 - Sentences α and β are *exhaustive* iff each world satisfies at least one of the sentences
 - Sentence α implies sentence β iff β is true whenever α is true
- Symbol ⊨ is also used to indicate implication between sentences
 - α implies or *entails* β

$$Mods(\alpha) = Mods(\beta)$$

$$Mods(\alpha) \cap Mods(\beta) = \emptyset$$

$$Mods(\alpha) \cup Mods(\beta) = \Omega$$

$$Mods(\alpha) \subseteq Mods(\beta)$$

$$\alpha \vDash \beta$$

Equivalences

- These equivalences are useful when working with propositional logic
 - They are defined for schemas, which are templates
 - For instance $\alpha \Longrightarrow \beta$ is a schema for $\neg A \Longrightarrow (B \lor \neg C)$

Schema	Equivalent Schema	Name
¬true	false	
$\neg false$	true	
$false \wedge \beta$	false	
$\alpha \wedge true$	α	
false V β	β	
α \vee $true$	true	
$\neg \neg \alpha$	α	Double negation
$\neg(\alpha \land \beta)$	$\neg \alpha \lor \neg \beta$	de Morgan
$\neg(\alpha \lor \beta)$	$\neg \alpha \land \neg \beta$	de Morgan
$\alpha \vee (\beta \wedge \gamma)$	$(\alpha \vee \beta) \wedge (\alpha \vee \gamma)$	distribution
$\alpha \wedge (\beta \vee \gamma)$	$(\alpha \wedge \beta) \vee (\alpha \wedge \gamma)$	distribution
$\alpha \Longrightarrow \beta$	$\neg \beta \Longrightarrow \neg \alpha$	contraposition
$\alpha \Longrightarrow \beta$	$\neg \alpha \lor \beta$	definition of \Longrightarrow
$\alpha \Longleftrightarrow \beta$	$(\alpha \Longrightarrow \beta) \land (\beta \Longrightarrow \alpha)$	definition of \Leftrightarrow

Reductions

- We can also state several reductions between logical properties and relationships
 - This table shows how the relationships of implication, equivalence, mutual exclusiveness and exhaustiveness can be defined in terms of satisfiability and validity

Relationship	Property
α implies β	$\alpha \land \neg \beta$ is unsatisfiable
α implies β	$\alpha \Longrightarrow \beta$ is valid
α and β are equivalent	$\alpha \iff \beta$ is valid
α and β are mutually exclusive	$\alpha \wedge \beta$ is unsatisfiable
α and β are exhaustive	$\alpha \vee \beta$ is valid

- Consider the earthquake-burglary-alarm example
 - Suppose we introduce the sentence $\alpha: (Earthquake \lor Burglary) \Rightarrow Alarm$
- lacksquare α makes some of the worlds impossible
 - Changing our state of belief
 - $Mods(\alpha) = \{w_1, w_3, w_5, w_7, w_8\}$

world	Earthquake	Burglary	Alarm	α
w_1	true	true	true	true
w_2	true	true	false	false
w_3	true	false	true	true
W_4	true	false	false	false
w_5	false	true	true	true
w_6	false	true	false	false
w_7	false	false	true	true
w_8	false	false	false	true

- Suppose we learn
 - β : Earthquake \Rightarrow Burglary
 - $Mods(\beta) = \{w_1, w_2, w_5, w_6, w_7, w_8\}$
- Our state of belief rules out w_3
 - $Mods(\alpha \land \beta) = Mods(\alpha) \cap Mods(\beta)$

world	Earthquake	Burglary	Alarm	α	β
w_1	true	true	true	true	true
w_2	true	true	false	false	true
W_3	true	false	true	true	false
W_4	true	false	false	false	false
w_5	false	true	true	true	true
W_6	false	true	false	false	true
w_7	false	false	true	true	true
w_8	false	false	false	true	true

- Suppose we learn
 - β : Earthquake \Rightarrow Burglary
 - $Mods(\beta) = \{w_1, w_2, w_5, w_6, w_7, w_8\}$
- Our state of belief rules out w_3
 - $Mods(\alpha \land \beta) = Mods(\alpha) \cap Mods(\beta)$

world	Earthquake	Burglary	Alarm	α	β
w_1	true	true	true	true	true
W_2	true	true	false	false	true
W_3	true	false	true	true	false
W_4	true	false	false	false	false
w_5	false	true	true	true	true
w_6	false	true	false	false	true
w_7	false	false	true	true	true
w_8	false	false	false	true	true

$$\alpha \vDash \gamma$$

 $\Delta \vDash \gamma$

Multivalued Variables

- Propositional variables are binary
 - As they assume the values true or false
 - These values are implicit in the syntax as we use X to mean X = true and $\neg X$ to mean X = false
- We can generalise propositional logic to allow multivalued variables
 - For instance, an alarm that triggers high or low
 - We will need to explicate the values assigned $Burglary \Rightarrow Alarm = high$ $Burglary = true \Rightarrow Alarm = high$

world	Earthquake	Burglary	Alarm
w_1	true	true	high
W_2	true	true	low
W_3	true	true	off
W_4	true	false	high
w_5	true	false	low
w_6	true	false	off
w_7	false	true	high
<i>W</i> ₈	false	true	low
W ₉	false	true	off
<i>w</i> ₁₀	false	false	high
<i>w</i> ₁₁	false	false	low
<i>w</i> ₁₂	false	false	off

Multivalued Variables

- Sentences in the generalized logic respect the following rules
 - Every propositional variable is a sentence
 - V = v is a sentence, where V is a variable and v is one of its values
 - If α and β are sentences, them $\neg \alpha$, $\alpha \land \beta$, and $\alpha \lor \beta$ are also sentences
- The semantics of generalized logic is similar to the standard logic
 - For example, the sentence $Earthquake \land Alarm = off$

rules out all worlds but w_3 and w_6

world	Earthquake	Burglary	Alarm
w_1	true	true	high
w_2	true	true	low
W_3	true	true	off
w_4	true	false	high
w_5	true	false	low
w_6	true	false	off
w_7	false	true	high
<i>W</i> ₈	false	true	low
W ₉	false	true	off
<i>w</i> ₁₀	false	false	high
<i>w</i> ₁₁	false	false	low
<i>w</i> ₁₂	false	false	off

Variable Instantiation

- An instantiation of variables is a propositional sentence if the form
 - For variables A, B and C and values a, b and c
- We simplify the notation by
 - Use simply a instead of A = a
 - Replace the operator ∧ by a comma
- A trivial instantiation is an instantiation to an empty set of variables
- We will denote variables by upper-case letters (A)
 - Values by lower-case letter (a)
 - Cardinalities (number of values) by |A|

$$(A = a) \wedge (B = b) \wedge (C = c)$$

a, *b*, *c*

Τ

Variable Instantiation

- Sets of variables will be denoted by bold-face uppercase letters (A)
 - Their instantiations by bold-face lower-case (a)
 - Number of instantiations by $A^{\#}$
- For a Boolean variable A
 - $a ext{ denotes } A = true$
 - \bar{a} denotes A = false
- We also use $x \sim y$ to denote x and y are compatible instantiations
 - They agree on the value of all common variables

$$A = \{a_1, a_2, a_3\}$$

 $B = \{b_1, b_2\}$
 $C = \{c_1, c_2\}$
 $D = \{A, B, C\}$
 $D^{\#} = 12$

 $\{a,b,\bar{c}\}\sim\{b,\bar{c},\bar{d}\}$ $\{a,b,\bar{c}\}$ and $\{b,c,\bar{d}\}$ are not compatible since they disagree on C

Conclusion

- Logic is a reasoning framework widely used in AI
 - Logic limitations include the monotonicity property and lack of support to uncertain events
 - This framework has been extended overcome this limitations, such as fuzzy logic and other ad-hoc methods (certainty factors and pseudoprobabilities)
 - This the next lecture, we will extend this framework to handle uncertainly through probabilistic reasoning
- Tasks
 - Read Chapter 2, but Section 2.7 from the textbook (Darwiche)